Analyse sémantique d'un corpus exhaustif de décisions jurisprudentielles

Comité de suivi individuel - 15 juin 2018

Gildas Tagny Ngompé

Début de thèse: 15 Décembre 2015

Direction de thèse:

- O Jacky Montmain (École des mines d'Alès, LGI2P)
- O Stéphane Mussard (Université de Nîmes, CHROME)

Encadrement de proximité:

- O Sébastien Harispe (Ecole des Mines d'Alès, LGI2P)
- O Guillaume Zambrano (Université de Nîmes, CHROME)

Plan

- 1. Motivations et objectifs
- 2. Extraction des demandes par pondération de termes clef et zonage
- 3. Classification binaire pour identifier le sens du résultat
- 4. Conclusion
- 5. Questions?

Motivations et objectifs

Les juristes analysent les décisions

Pquoi?

- $\bigcirc\,$ comprendre et comparer l'application loi (contentieux, ville, ...)
- O estimer le risque judiciaire
- O ...

Motivation: documents non-structurés, langage complexe

ARRÊT N°

R.G: 11/03924

•••

C D'APPEL DE NÎMES

CHAMBRE CIVILE 1ère Chambre A

A DDÊT DI A A A

ARRÊT DU 20 MARS 2012 APPELANTE :

Madame Michéle A. ...

assistée de la SELARL VAJOU, ...

INTIMES:

Monsieur Martial B ...

assisté de la SCP MARION GUIZARD PATRICIA SERVAIS....

COMPOSITION DE LA C LORS DU DÉLIBÉRÉ :

M. Dominique BRUZY, Président

M. Serge BERTHET, Conseiller

•••

FAITS, PROCEDURE, ...

Madame Michèle A. demande :

...

- de condamner Madame JONES-B. à lui payer la somme de 2.500 euros au titre de l'article 700 du

PAR CES MOTIFS, LA C:

Code de Procédure Civile,

•••

Vu l'article 809 du Code de Procédure Civile,

...

Déboute Madame A. de sa demande de provision sur dommages-intérêts.

.

Vu l'article 700 du Code de Procédure Civile, Condamne Madame JONES-B. à verser à Madame A. la somme de 2.500 euros.

Motivation : grand volume de décisions

Plus de 4 millions de décisions prononcées / an

	2010	2011	2012	2013	2014
Justice civile	2 673 131	2 654 179	2 647 813	2 761 554	2 618 374
Justice pénale	1 173 242	1 180 586	1 251 979	1 303 469	1 203 339
Justice admi- nistrative	224 787	225 608	228 680	221 882	230 477

Sce: http://www.justice.gouv.fr/budget-et-statistiques-10054/chiffres-cles-de-la-justice-10303/

Table – Nombre de décisions prononcées en France par an

Motivation : recherches et analyses sémantiques difficiles

Moteurs de recherche juridique à mots-clés

Pas d'analyse synthétique des décisions

	Recherche simple (a) Recherche avancée		
Mots ou expressions		Recherche	
	Ex : gérant et pouvoir, bail s/5 résil! Aide à la recherche		
	Gestion automatique des :		
	Singulier / Pluriel Masculin / Féminin		
	Verbes conjugués avoir cherche ayons		
Sources		0	
	Répertoire des sources		
	ou		
	Encyclopédies	Revues	Autorités administratives
	Codes et Lois	Bibliographies	Parlement
	JurisData	Actualités	Europe
	Toute la jurisprudence	Bulletins Officiels	Conventions Collectives
Période	Pas de restriction de date ▼		

Sce: LexisNexis.com

Objectif : Moteur d'analyse sémantique

Stage été 2017 [PRYSIAZHNIUK Anastasiia]

Problématiques d'extraction d'information

de termes clef et zonage

Extraction des demandes par pondération

Tâche : extraire les quanta et le sens du résultat

Expressions non structurées, par référence, par agrégation

EXPRESSION DE DEMANDE ET RESULTAT

Jennifer M. , Catherine M. et Sandra M. ... demandent à la C de $^\prime$:

- infirmer le dit jugement en toutes ses dispositions ; ...

Statuant à nouveau ...

- les condamner au paiement d' une somme de 3 000,00 € pour procédure abusive et aux entiers dépens; ...

La c, ... CONFIRME le jugement entreprise en toutes ses dispositions.

IDENT	IFICATION DE LA	DECISION 🔻	DESCRIP	TION DE LA PRETENT	▼	DESCRIPTION	ON DU RESULTAT	
Туре	Ressort	RG	OBJET	NORME	QUANTUM		RESULTAT	QUANTUM RESULTAT (obtenu)
CA	Saint Denis	14/01082	dommages-intérêts	1382 code civil + 32-1 code de procédure civile : en procédure abusive	3,000.00 €		rejette	0.00 €

Décomposition du problème

Problème décomposé en 3 tâches:

- Identification des catégories présentes dans le document
- 2. Détection des quanta demandés, quantas obtenus, et sens du résultat
- 3. Liaison des informations relatives à la même demande

Problèmes similaires : objectif des tâches

Extraction d'évènement :

Champs	[ACE, 2005]	Analogie chez les demandes
Type	Die	Catégorie="Dommages-intérêts pour
		procédure abusive"
Expression	"Il est mort hier d'une insuffi-	(voir page précédente)
(extend)	sance rénale."	
Déclencheur	"mort"	"procédure abusive"
Argument	Victim-Arg="il"	Quantum-demandé="3000€"
	Time-Arg="hier"	Quantum-obtenu="o €"
Attribut	Polarity=POSITIVE,	Sens-résultat="Rejeté"
	Tense=PAST	

- Remplissage de champs des entités **Demande** (*slot-filling*) :
 Catégorie, Quantum-demandé, Quantum-obtenu, Sens-résultat
- Extraction d'entités et relations : par ex. (quantum demandé, quantum obtenu)

Problèmes similaires : Approches

Type d'approches	Exemples
Chaine de traitement	Chaîne de classifieurs [Ahn, 2006]
Modélisation probabi-	Modèle joint d'inférence des entités, arguments, déclencheurs
liste de la structure de	$p_{\theta}(t_i, r_i, a i, N_i, x)$ [Yang and Mitchell, 2016]
l'évènement	
Réseau de neuronnes	(i) Architecture multicouche de réseaux de neuronnes récurrents :
pour automatiser la gé-	encodage de la phrase, encodage des contextes, prédiction du dé-
nération des caractéris-	clencheur, prédiction des rôles, mémoire matricielle d'interdépendance
tiques et la modélisation	déclencheur-argument [Nguyen et al., 2016],
de la structure	(ii) Réseau de pointeur (pointer network) : un encodeur de la phrase
	et des contextes, plusieurs décodeurs (un pour chaque champ)
	[Palm et al., 2017]

Table - Type d'approches

Difficultés liées à l'extraction des demandes

- Présence de plusieurs demandes de catégories similaires et/ou différentes dans une même décision
- Toutes les catégories ne sont pas connues d'avance (+500 catégories)
- O Difficile d'annoter une base d'évaluation pour toutes les couvrir

Il faut une approche:

- qui s'adapte à la catégorie à extraire
- o qui permette de rajouter de nouvelles catégories

Architecture du pipeline d'extraction

Identification des passages et des informations

Demande dans la section *Litige* (Faits, procédures, et moyens des parties) Résultat dans la section *Dispositif*

Demande	Résultat (organisé par polarité)					
	accepte	sursis à sta-	rejette			
		tuer				
accorder, admettre, admission, allouer, condamnation, condamner, fixer, laisser,	accorde, accordons, admet, admettons, alloue, allouons, condamne, condamnons, déclare,	réserve, réservons, surseoit,	déboute, dé- boutons, re- jette, rejet-			
prononcer, ramener, surseoir	déclarons, fixe, fixons, laisse, laissons, prononce, prononçons	sursoyons	tons			

Table – Mots introduisant les énoncés de demandes et de résultats

- le **<demande categorie="acpa">** <u>condamner</u> à payer une **<**trigger categorie="acpa">**amende civile**</trigger> de **<**argent> **1.500 euros </**argent> pour procédure abusive ...
- le**</demande>** <u>condamner</u> à payer la somme ..."

Identification des passages et des informations(2)

- Identification des passages :
 - 1. Soit par la seule **présence d'un trigger** : on zone aut des triggers
 - 2. Soit par pondération des zones à argent :
 - 2.1 on zone aut des sommes d'argent
 - 2.2 on pondère les zones (par ex. somme des poids des triggers)
 - 2.3 on sélectionne une zone si elle a un poids ≥ POIDS SEUIL
- Identification des informations :
 - 1. quantum : somme d'argent près d'un trigger
 - 2. sens du résultat :
 - o soit en fonction du verbe introductif de l'énoncé du résultat
 - o soit "rejette" si pas d'énoncé du résultat
- Résolution des références :
 - matching des énoncés (similarité textuelle)
 - o matching des quanta (Hypothèse d'apparition dans le même ordre)

Phase d'entrainement

Catégorie c_i , Corpus d'entrainement $D = D_{c_i} \cup D_{\overline{c_i}} = \{D_j\}_{1 \le j \le |D|}$

1. Détecteur de catégorie :

proches voisins ...)

- o vectoriser les décisions de la base d'entrainement :
 - $w(t_k, D_j) = lw(t_k, D_j) \times gw(t_k) \times nf(D_j)$ [Salton and Buckley, 1988] • entrainer un algorithme de classification (SVM, Naïf Bayésien, K plus

2. Extracteur de triplets de quanta et sens du résultat :

- Apprendre les triggers sur la base d'entrainement (passages à quanta vs. passages sans quanta)
 - 2.1 pondération des termes t_k avec une métrique de RI par ex. :

Métrique non supervisée :
$$idf(t_k) = \log_2(\frac{N}{N_{t_k}})$$
 [Sparck Jones, 1972]

Métriques supervisées :

$$\begin{split} gss(t_k,c_i) &= (N_{t_k,c_i}N_{\overline{t_k},\overline{c_i}}) - (N_{t_k,\overline{c_i}}N_{\overline{t_k},c_i}) \text{ [Galavotti et al., 2000]} \\ ngl(t_k,c_i) &= \frac{\sqrt{N}((N_{t_k,c_i}N_{\overline{t_k},\overline{c_i}}) - (N_{t_k,\overline{c_i}}N_{\overline{t_k},c_i}))}{\sqrt{N_{t_k}N_{\overline{t_k}}N_{c_i}N_{\overline{c_i}}}} \text{ [Ng et al., 1997]} \end{split}$$

2.2 sélection des termes aux poids

Données

P chaque catégorie, plus de 50% des documents annotées ont une seule demande. (**sauf pour l'article 700**)

Métriques d'évaluation

Catégorie c_i , tuple d'information $I \subseteq \{Q_{DMD}, S_{RST}, Q_{RST}\}$

Corpus d'évaluation $D = D_{c_i} \cup D_{\overline{c_i}} = \{D_i\}_{1 \le i \le |D|}$, où D_i est un document

Nombre de vrais positifs (bons) :
$$TP_{c_i,I,D} = \sum_{j=1}^{|D|} TP_{c_i,I,D_j}$$

Nombre de faux positifs (en trop) : $FP_{c_i,I,D} = \sum_{j=1}^{|D|} FP_{c_i,I,D_j}$
Nombre de faux négatifs (manqués) : $FN_{c_i,I,D_j} = \sum_{j=1}^{|D|} FN_{c_i,I,D_j}$

$$Precision_{c_i,I,D} = \frac{TP_{c_i,I,D}}{TP_{c_i,I,D} + FP_{c_i,I,D}}$$

$$F1_{c_i,I,D} = 2 \times \frac{Precision_{c_i,I,D} \times Rappel_{c_i,I,D}}{Precision_{c_i,I,D} + Rappel_{c_i,I,D}}$$

 $Rappel_{c_i,I,D} = \frac{TP_{c_i,I,D}}{TP_{c_i,I,D} + FN_{c_i,I,D}}$

Evaluation de la détection des catégories

Table — Resultats d'une 5-fold cross-validation sur D pour la detection categorie (P= Precision, R=Rappel, F1 = F1-mesure)

	N	aïf Bayés	ien	Arbr	e de déci	sion		KNN			SVM	
Category	P	R	F1	Р	R	F1	Р	R	F1	P	R	F1
асра	1.0	1.0	1.0	0.996	0.955	0.972	1.0	1.0	1.0	0.996	0.955	0.972
concdel	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	0.995	0.967	0.979
danais	0.988	0.989	0.988	0.996	0.995	0.995	0.995	0.995	0.995	0.993	0.993	0.99
dcppc	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
doris	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
styx	1.0	1.0	1.0	0.984	0.983	0.983	1.0	1.0	1.0	1.0	1.0	1.0

Quelle métrique de pondération et quel zonage?

Table — Comparaison des métriques de pondération et des stratégies de zonage sur le corpus D (F1-mesure sur l'extraction du tuple (Q_{DMD} , S_{RST} , Q_{RST}))

Métrique	ac	pa	con	cdel	daı	nais	dej	ррс	do	oris	st	yx
	tp	zw										
CHI2	0.683	0.698	0.061	0.061	0.443	0.411	0.259	0.264	0.187	0.071	0.321	0.366
DBIDF	0.683	0.698	0.076	0.033	0.461	0.416	0.254	0.264	0.084	0	0.331	0.358
DELTADF	0.683	0.698	0.144	0.082	0.443	0.41	0.259	0.264	0.143	0.142	0.334	0.281
DSIDF	0.678	0.698	0.076	0.052	0.399	0.152	0.014	0	0.019	0	0.343	0.33
GSS	0.683	0.698	0.144	0.082	0.443	0.41	0.259	0.264	0.143	0.142	0.334	0.281
IDF	0.067	0	0.033	0	0.04	0	0	0	0	0	0	0
IG	0.011	0.049	0.05	0.034	0.304	0.073	0	0	0.019	0	0.058	0
KLD	0.432	0.398	0.146	0.124	0.459	0.409	0.252	0.254	0.158	0.154	0.243	0.42
MAR	0.683	0.698	0.144	0.091	0.443	0.42	0.259	0.264	0.156	0.146	0.334	0.281
NGL	0.683	0.698	0.061	0.034	0.443	0.411	0.259	0.264	0.122	0.02	0.321	0.347
RF	0.683	0.698	0.202	0.043	0.491	0.367	0.242	0.21	0.101	0.058	0.387	0.351
Max	0.683	0.698	0.202	0.124	0.491	0.42	0.259	0.264	0.187	0.154	0.387	0.42

tp = zonage par la seule présence d'un trigger

 $zw = zonage \ par \ pondération \ des \ passages à somme \ d'argent$

La métrique et la stratégie de zonage dépendent de la catégorie

Exemple de termes sélectionnés

	concdel	danais					
NGL	DSIDF	NGL	DSIDF				
déloyale	concurrence déloyale	procédure abusive	procédure abusive et injusti-				
			fiée				
perte	déloyale	32-1	fondement de l'article 32-1				
actes		abusive	dommages-intérêts pour				
			procédure abusive				
50.000	agissements	intérêts pour procédure	titre de dommages-intérêts				
			pour procédure abusive				

$$\begin{split} ngl(t_k,c_i) &= \frac{\sqrt{N}((N_{t_k,c_i}N_{\overline{t_k},\overline{c_i}}) - (N_{t_k,\overline{c_i}}N_{\overline{t_k},c_i}))}{\sqrt{N_{t_k}N_{\overline{t_k}}N_{c_i}N_{\overline{c_i}}}} \\ \\ dsidf(t_k,c_i) &= \log(\frac{(N_{\overline{c_i}}N_{t_k,c_i}) + 0.5}{(N_{c_i}N_{t_k,\overline{c_i}}) + 0.5} \end{split}$$

Entrainement avec sélection de la meilleure métrique (1)

c_i	Tuple d'info (I)	$P_{c_i,I,D_{c_i}}$	$R_{c_i,I,D_{c_i}}$	$F1_{c_i,I,Dc_i}$	Docs. Parfaits	#extraits/#attendus/ $ D_{c_i} $
	(Q_{DMD})	0.709	0.73	0.705	0.47	
асра	(S_{RST})	0.691	0.7	0.683	0.48	
асра	(Q_{RST})	0.72	0.74	0.716	0.48	5.2/4.6/4.6
	$(Q_{DMD}, S_{RST}, Q_{RST})$	0.651	0.65	0.638	0.43	
	(Q _{DMD})	0.461	0.393	0.376	0.233	
concdel	(S_{RST})	0.544	0.442	0.427	0.2	
Concaer	(Q_{RST})	0.595	0.482	0.465	0.2	11.6/11.6/6.0
	$(Q_{DMD}, S_{RST}, Q_{RST})$	0.337	0.299	0.28	0.167	
	(Q_{DMD})	0.548	0.516	0.527	0.346	
danais	(S_{RST})	0.69	0.646	0.661	0.454	36.6/38.8/37.0
uanais	(Q_{RST})	0.714	0.666	0.682	0.465	30.0/ 30.0/ 37.0
	$(Q_{DMD}, S_{RST}, Q_{RST})$	0.482	0.46	0.466	0.314	
	(Q_{DMD})	0.334	0.392	0.358	0.217	
dcppc	(S_{RST})	0.665	0.798	0.721	0.544	26.8/22.2/16.6
исррс	(Q_{RST})	0.62	0.744	0.672	0.509	20.07 22.27 10.0
	$(Q_{DMD}, S_{RST}, Q_{RST})$	0.22	0.26	0.237	0.181	
	(Q _{DMD})	0.279	0.373	0.314	0.033	
doris	(S_{RST})	0.391	0.524	0.439	0.146	26.8/20.0/12.4
uons	(Q _{RST})	0.329	0.414	0.361	0.131	20.0/ 20.0/ 12.4
	$(Q_{DMD}, S_{RST}, Q_{RST})$	0.177	0.229	0.197	0.017	
	(Q_{DMD})	0.762	0.642	0.695	0.46	
ctrry	(S_{RST})	0.701	0.593	0.64	0.34	15.0/17.8/10.0
styx	(Q_{RST})	0.824	0.696	0.752	0.46	15.0/ 17.0/ 10.0
	(QDMD, QRST, SRST)	0.44	0.372	0.402	0.28	

Table – Zonage par la seule présence d'un trigger (sur le corpus D_{c_i})

Entrainement avec sélection de la meilleure métrique (2)

c_i	Tuple d'info (I)	$P_{c_i,I,D_{c_i}}$	$R_{c_i,I,D_{c_i}}$	$F1_{c_i,I,Dc_i}$	Docs. Parfaits	#extraits/#attendus/ $ D_{c_i} $
	(Q_{DMD})	0.753	0.61	0.672	0.57	
асра	(S_{RST})	0.92	0.74	0.818	0.7	
	(Q_{RST})	0.92	0.74	0.818	0.7	3.8/4.6/4.6
	$(Q_{DMD}, S_{RST}, Q_{RST})$	0.753	0.61	0.672	0.57	
	(Q _{DMD})	0.343	0.128	0.11	0.067	
concdel	(S_{RST})	0.535	0.15	0.17	0.067	
concuer	(Q_{RST})	0.543	0.17	0.182	0.067	5.6/11.6/6.0
	$(Q_{DMD}, S_{RST}, Q_{RST})$	0.135	0.098	0.079	0.033	
	(Q_{DMD})	0.66	0.296	0.395	0.227	
danais	(S_{RST})	0.732	0.328	0.438	0.27	
danais	(Q_{RST})	0.77	0.348	0.464	0.276	17.8/38.8/37.0
	$(Q_{DMD}, S_{RST}, Q_{RST})$	0.61	0.276	0.367	0.216	
	(Q_{DMD})	0.391	0.363	0.372	0.252	
dcppc	(S_{RST})	0.732	0.688	0.703	0.532	
исррс	(Q_{RST})	0.665	0.624	0.638	0.471	21.4/22.2/16.6
	$(Q_{DMD}, S_{RST}, Q_{RST})$	0.275	0.248	0.259	0.204	
	(Q _{DMD})	0.211	0.146	0.171	0.064	
doris	(S_{RST})	0.418	0.217	0.268	0.114	
doris	(Q _{RST})	0.342	0.166	0.211	0.096	9.8/20.0/12.4
	$(Q_{DMD}, S_{RST}, Q_{RST})$	0.095	0.067	0.078	0.017	
	(Q_{DMD})	0.838	0.632	0.718	0.52	
otro	(S_{RST})	0.772	0.571	0.654	0.36	
styx	(Q_{RST})	0.786	0.583	0.666	0.38	13.2/17.8/10.0
	(ODMD, SRST, ORST)	0.573	0.44	0.496	0.32	

Table – Zonage par pondération des passages à somme d'argent (sur le corpus D_{c_i})

Classification binaire pour identifier le sens du résultat

Restriction et motivation

- Uniquement les décisions à une demande de la catégorie considérée
 - Raison : plus de 50% des documents dans la majorité des catégories
- Classification binaire
 - Raison : le sens d'un résultat est pratiquement toujs une de ces deux valeurs : accepte ou rejette

NBSVM [Wang and Manning, 2012]

 $x^{(k)} = f^{(k)}$ vecteur intitial des caractéristiques du texte k $r = \log\left(\frac{p/||p||_1}{q/||q||_1}\right)$, vecteur poids du classifieur bayésien multinomial avec $p = \alpha + \sum_{i:y^{(i)}=1f^{(i)}}, q = \alpha + \sum_{i:y^{(i)}=-1f^{(i)}}$

L'idée : transformer les caractéristiques réduites à leur simple présence

$$\widehat{f}^{(k)}$$
 avec $r(\widetilde{f}^{(k)} = \widehat{r} \circ \widehat{f}^{(k)})$

$$\widehat{r}$$
 est calculé avec $\widehat{f}^{(k)}$

les nouveaux $x^{(k)} = f^{(k)}$ sont utilisés dans un SVM.

fastText [Grave et al., 2017]

FIGURE - Architecture similaire au model CBOW: le label remplace le mot au milieu.

Entrainement :
$$min\left(-\frac{1}{N}y_n \cdot \sum_{n=1}^{N}y_n \cdot \log f(B \cdot A \cdot x_n)\right)$$

où f est la fonction softmax $f(z) = \left[\frac{e^{z_j}}{\sum\limits_{k=1}^{K}e^{z_k}}\right]_{\forall j \in \{1,\dots,K\}}$

Résultats obtenus avec fastText et NBSVM

Influence du déséquilibre et de la (très) faible taille des données

Cat. Dmd.	Algo.	Préc.	Préc. équi.	err-o	err-1	f1-0	f1-1	f1-macro-avg
dcppc	nbsvm	0.875	0.812	0.375	0	0.752	0.916	0.834
danais	fasttext	0.888	0.5	1	0	0	0.941	0.47
danais	nbsvm	0.888	0.5	0	1	0.941	0	0.47
concdel	fasttext	0.775	0.5	1	0	0	0.873	0.437
concdel	nbsvm	0.775	0.5	0	1	0.873	0	0.437
acpa	fasttext	0.745	0.5	1	0	0	0.853	0.426
acpa	nbsvm	0.745	0.5	0	1	0.853	0	0.426
doris	nbsvm	0.5	0.492	0.85	0.167	0.174	0.63	0.402
dcppc	fasttext	0.667	0.5	0	1	0.8	0	0.4
styx	fasttext	0.667	0.5	1	0	0	0.8	0.4
styx	nbsvm	0.667	0.5	0	1	0.8	0	0.4
doris	fasttext	0.523	0.5	О	1	0.686	0	0.343

Application des extensions de la Régression PLS (1)

PLS standard (Régression partielle des moindres carrés)

Réduction supervisée des dimensions $x_1, x_2, ..., x_p$ en composantes orthogonales $t_1,, t_h$

$$\begin{split} t_h &= w_{h1} x_1 + \dots + w_{hj} x_j + \dots + w_{hp} x_p \\ \text{avec } w_{hj} &= \frac{cov(u_{(h-1)j}, \epsilon_h)}{\sqrt{\sum_p^{j-1} cov^2(u_{(h-1)j}, \epsilon_h)}} \,, \, y = c_1 t_1 + \dots + c_h t_h + \epsilon_h, \\ \text{et } x_j &= \beta_{1j} t_1 + \dots + \beta_{hj} t_h + u_{(h-1)j} \end{split}$$

Application des extensions de la Régression PLS (2)

- 1. Gini-PLS : élimination de la sensibilité au *outliers* en remplaçant la covariance $cov(x_j, y)$ par la covariance de Gini $cog(y; x_j) := cov(y; R(x_j))$ pour l'estimation des résidus $u_{(h)j}$ et des poids w_{hj} [Souissi and Mussard, 2013]
- 2. Logit-PLS : $\forall j > 1$, les w_{hj} sont les coefficients de la régression logistique de y sur les composantes $t_1, ..., t_{h-1}, u_{(h-1)j}$ [Tenenhaus, 2005]
- 3. Gini-Logit-PLS : covariance Gini pour $u_{(h)j}$ et coefficient Logit pour les w_{hj}

Résultats : meilleures configurations

Vecteur	classifieur	F1	min	Cat. min	max	Cat. max	F1 - 1 ^e F1	max - min	rang
GSS*TF	Tree	0.668	0.5	doris	0.92	dcppc	0	0.42	1
AVG-G*TF	LogitPLS	0.648	0.518	danais	0.781	dcppc	0.02	0.263	13
AVG-G*TF	StandardPLS	0.636	0.49	danais	0.836	dcppc	0.032	0.346	24
DELTADF*TF	GiniPLS	0.586	0.411	danais	0.837	dcppc	0.082	0.426	169
DELTADF*TF	GiniLogitPLS	0.578	0.225	styx	0.772	dcppc	0.09	0.547	220

 $AVG\text{-}G == Moyenne \ des \ métriques \ globales \ de \ pondération$

En moyenne, la meilleure zone est la partie principale (litige_motifs_dispositif)

Les extensions du PLS ne sont pas très éloignées (si on choisi le bon shéma de vectorisation)

Résultats pour chaque classe

Cat. Dmd	zone	Vecteur	classifieur	F1
асра	demande_resultat_a_resultat_context	DBIDF*TF	Tree	0.846
асра	litige_motifs_dispositif	DELTADF*TF	StandardPLS	0.697
асра	litige_motifs_dispositif	AVERAGEGlobals*TF	LogitPLS	0.683
concdel	litige_motifs_dispositif	GSS*TF	Tree	0.798
concdel	motifs	IDF*TF	GiniLogitPLS	0.703
concdel	context	DBIDF*LOGAVE	StandardPLS	0.657
danais	demande_resultat_a_resultat_context	CHI2*AVERAGELocals	Tree	0.813
danais	demande_resultat_a_resultat_context	AVERAGEGlobals*ATF	LogitPLS	0.721
danais	demande_resultat_a_resultat_context	AVERAGEGlobals*ATF	StandardPLS	0.695
dcppc	demande_resultat_a_resultat_context	CHI2*TF	Tree	0.985
dcppc	demande_resultat_a_resultat_context	CHI2*TF	LogitPLS	0.94
dcppc	litige_motifs_dispositif	MARASCUILO*TP	StandardPLS	0.934
doris	litige_motifs_dispositif	DSIDF*TP	GiniPLS	0.806
doris	litige_motifs_dispositif	DSIDF*TP	GiniLogitPLS	0.806
doris	litige_motifs_dispositif	IG*ATF	StandardPLS	0.772
styx	motifs	DSIDF*TF	Tree	1
styx	demande_resultat_a_resultat_context	DSIDF*LOGAVE	GiniLogitPLS	0.917
styx	litige_motifs_dispositif	RF*TF	GiniPLS	0.833

De bonnes performances si on varie les métaparamètres en fonction de la catégorie de demande

Résumé

- Extraction des informations relatives aux demandes :
 - La présence des catégories de demande fonctionne bien avec une simple classification : le vocabulaire de chaque catégorie est très discriminant;
 - L'identification des informations est une tâche très difficile
 - o l'expression du résultat est plus accessible que celle de la demande
- Oéterminantion du sens du résultat par classification binaire :
 - o Difficulté de fastText et le NBSVM : déséquilibre des données, faibles nombre d'échantillons, $N_{accepte} <= N_{rejette}$?

Objectifs pour la suite

- O Rédaction du mémoire
- Valorisation des résultats
- Travail en parallèle sur l'identification non-supervisée des circonstances factuelles

Questions?

References I

ACE (2005).

Ahn, D. (2006).

ACE (Automatic Content Extraction) English Annotation Guidelines for Events.

Linguistic Data Consortium, 5.4.3 edition.

https://www.ldc.upenn.edu/sites/www.ldc.upenn.edu/files/english-events-guidelines-v5.4.3.pdf.

The stages of event extraction.

In Proceedings of the Workshop on Annotating and Reasoning about Time and Events, pages 1–8. Association for Computational Linguistics.

Galavotti, L., Sebastiani, F., and Simi, M. (2000).

Experiments on the use of feature selection and negative evidence in automated text categorization.

In International Conference on Theory and Practice of Digital Libraries, pages 59-68. Springer.

Grave, E., Mikolov, T., Joulin, A., and Bojanowski, P. (2017).

Bag of tricks for efficient text classification.

In Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics, pages 427–431.

Ng, H. T., Goh, W. B., and Low, K. L. (1997).

 $Feature\ selection,\ perceptron\ learning,\ and\ a\ usability\ case\ study\ for\ text\ categorization.$

In ACM SIGIR Forum, volume 31, pages 67–73. ACM.

Nguyen, T. H., Cho, K., and Grishman, R. (2016).

Joint event extraction via recurrent neural networks.

In HLT-NAACL, pages 300-309.

References II

Palm, R. B., Hovy, D., Laws, F., and Winther, O. (2017).

End-to-end information extraction without token-level supervision.

arXiv preprint arXiv:1707.04913.

Salton, G. and Buckley, C. (1988).

Term-weighting approaches in automatic text retrieval.

Information processing & management, 24(5):513-523.

Souissi, F. and Mussard, S. (2013).

Gini-pls regressions.

In AFSE Meeting 2013.

Sparck Jones, K. (1972).

A statistical interpretation of term specificity and its application in retrieval.

Journal of documentation, 28(1):11-21.

Tenenhaus, M. (2005).

La regression logistique PLS.

Wang, S. and Manning, C. D. (2012).

Baselines and bigrams: Simple, good sentiment and topic classification.

In Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics: Short Papers-Volume 2, pages 90–94. Association for Computational Linguistics.

Yang, B. and Mitchell, T. (2016).

Joint extraction of events and entities within a document context.

In Proceedings of NAACL-HLT, pages 289–299.