

AD-A080 439

TRI-CON ASSOCIATES INC CAMBRIDGE MA

THE DESIGN OF MASS SPECTROMETER ASSEMBLIES FOR SPACE SHUTTLE LA--ETC(U)

F19628-78-C-0150

UNCLASSIFIED C-160

AFOL-TR-79-0233

F/8 4/1

ML

1 of 1
SD
43-0449

END
DATE
TIME
3 - 80
DDC

AFGL-TR-79-0233

LEVEL ✓

12
M

THE DESIGN OF MASS SPECTROMETER ASSEMBLIES
FOR SPACE SHUTTLE LAUNCHED SATELLITES

DA 080439

George P. Murphy

TRI-CON ASSOCIATES, INC.
765 Concord Avenue
Cambridge, Massachusetts 02138

September 1979

FINAL REPORT: Period Covered June 1978 to
September 1979

Approved for Public Release, Distribution Unlimited

AIR FORCE GEOPHYSICS LABORATORY
AIR FORCE SYSTEMS COMMAND
UNITED STATES AIR FORCE
WRIGHT AFB, MASSACHUSETTS 01731

THIS DOCUMENT IS DRAFT QUALITY AND IS NOT FOR
THE DRAFT IS UNARMED TO THE COMMUNITY
DO NOT USE THIS DOCUMENT IN ANY WAY

FILE COPY

DISCLAIMER NOTICE

**THIS DOCUMENT IS BEST QUALITY
PRACTICABLE. THE COPY FURNISHED
TO DDC CONTAINED A SIGNIFICANT
NUMBER OF PAGES WHICH DO NOT
REPRODUCE LEGIBLY.**

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

19 REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER <i>(B) AFGL-TR-79-0233</i>	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle) <i>THE DESIGN OF MASS SPECTROMETER ASSEMBLIES FOR SPACE SHUTTLE LAUNCHED SATELLITES</i>		5. SPONSORING ACTIVITY & PERIOD COVERED <i>FINAL REPORT, Jun 1978 - September 1979</i>
6. AUTHOR(s) <i>George P. Murphy</i>		7. PERFORMING ORG. REPORT NUMBER <i>(14) C-169</i>
8. CONTRACT OR GRANT NUMBER(S) <i>F19628-78-C-0150</i>		9. PROGRAM ELEMENT, PROJECT, TASK & WORK UNIT NUMBERS <i>61102F 2310G3AK GGE</i>
10. CONTROLLING OFFICE NAME AND ADDRESS <i>Air Force Geophysics Laboratories Hanscom Air Force Base, Massachusetts 01731 Contract Monitor: E. Trzcinski / LKD</i>		11. REPORT DATE <i>30 September 1979</i>
12. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office) <i>(12) 40</i>		13. NUMBER OF PAGES <i>33</i>
14. DISTRIBUTION STATEMENT (of this Report) <i>Approved For Public Release, Distribution Unlimited</i>		15. SECURITY CLASS. (of this report) <i>UNCLASSIFIED</i>
16. SUPPLEMENTARY NOTES		
17. KEY WORDS (Continue on reverse side if necessary and identify by block number) <i>Space Shuttle Launched Satellites</i>		
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) <i>This report discusses the development of instrumentation to be flown on satellites which will be launched from the space shuttle. The instrument is a quadrupole Mass Spectrometer designed to measure pre-selected masses in the 1 AMU to 50 AMU region. A discussion of the various circuits will be included in this report along with a complete set of Schematics and Drawings.</i>		

390 416

TABLE OF CONTENTS

1. INTRODUCTION	1
2. INSTRUMENT DESCRIPTION	1&2
2.1 Electrometer Amplifiers	2&3
2.2 Programmer	3-5
2.3.1 DC Amplifiers	5&6
2.3.2 RF Oscillator	6&7
2.4 High Voltage Power Supply	7
2.5 Housekeeping Circuits	7&8
2.6 Low Voltage Converter	8&9
2.7 Test Console	9

Accession For	
NTIS GRA&I	<input checked="" type="checkbox"/>
DDC TAB	<input type="checkbox"/>
Unannounced	<input type="checkbox"/>
Justification _____	
By _____	
Distribution _____	
Availability Codes	
Dist	Avail and/or special
A	23 CP

LIST OF FIGURES

FIGURE 1.	10
Temperature Monitor Graph	
FIGURE 2.	11
Log Electrometer Graph	
FIGURE 3A	12
Photograph Electronic Box (Front)	
FIGURE 3B	13
Photograph Electronic Box (Rear)	
FIGURE 4.	14
Photograph Sensor Package Electronic	
FIGURE 5.	16
Photograph Test Console	
FIGURE 6.	17
Block Diagram	
FIGURE 7.	18
RF Oscillator Coil	

LIST OF DRAWINGS

DRAWING D-1031.	19
Wiring Diagram	
DRAWING D-1030.	20
Electronics Box & Assembly	
DRAWING D-1023.	21
Power Supply Schematic	
DRAWING D-1026.	22
Mass Spec Programmer Schematic	
DRAWING D-1028.	23
Sweep Amp Clock & Data Multiplexer Schematic	
DRAWING D-1024.	24
Power Supply P/C Layout	
DRAWING D-1025.	25
Power Supply & Relay P/C Layout	
DRAWING D-1027.	26
Programmer P/C Layout	
DRAWING D-1029.	27
Sweep Amp Clock & Data Multiplexer P/C Layout	
DRAWING D-1032.	28
Console Schematic	
DRAWING D-1034.	29
Console Layout	
DRAWING D-873	30
Electrometer Mass Spec Schematic	
DRAWING C-888	31
Spectra Log Electronic Amp P/C Layout	
DRAWING C-857	32
RF Oscillator Schematic	
DRAWING B-860	33
RF Oscillator Layout	
DRAWING C-889	34
Aperture Electronic Layout	

1. INTRODUCTION

The objective of this contract was to Design, Develop and Fabricate three mass spectrometer assemblies to be used for ion composition studies during the Space Shuttle Program.

This report discusses the operation of the electronic circuits, and the mechanical layout of what is referred to as the "LASSII" Mass Spectrometer Experiment.

There are two packages to each instrument, one referred to as the Electronics Package and the other referred to as the Sensor Package.

The Sensor Package does contain some of the electronics discussed in this report such as the electrometer amplifiers, RF Oscillator and High Voltage Power Supply.

2. INSTRUMENT DESCRIPTION

The electronic portion of a quadrupole mass spectrometer consists of the following sub-assemblies.

- (1) Electrometer amplifiers for measuring the very small signal currents, derived from an electron multiplier.
- (2) A programmer to select the masses to be measured and the order in which they are sampled.
- (3) The DC amplifier and RF oscillator which supply the signals to the quadrupole rods that are necessary for mass focussing.

- (4) The high voltage power supply for the electron multiplier biasing.
- (5) The housekeeping and monitor circuits.
- (6) The low voltage converter power supply.
- (7) Test Console.

2.1 Electrometer Amplifiers

The schematic for the two logarithmic amplifiers used to measure the spectra data and aperture current is shown on Drawing D-873.

The amplifiers have a logarithmic transfer characteristic and provide an output voltage of from zero to five volts for an input current range of 5×10^{-11} amps to 5×10^{-6} amps. The transfer function of a typical logarithmic amplifier is plotted on 5 cycle Lin-Log paper as shown in Figure 2.

The amplifiers are designed around very high input impedance (10^{15} ohms) integrated operational amplifiers. This design uses Intersil ICH 8500A amplifiers and are designated U₁ and U₅ on Drawing D-873.

The logarithmic characteristic is obtained from the relationship between the collector current and the emitter base voltage of standard junction transistors.

The base emitter voltage changes approximately 58 millivolts for every decade change of input current at 25°C. The 58 millivolts is amplified by use of a β network consisting of R₂, R₄, and S₁ so that the output presented to telemetry is 1 volt per decade.

The transistors Q_1 and Q_2 are dual NPN, PNP in the same T0-5 can. A dual transistor is used to compensate for the change in the base emitter voltage with temperature.

The compensation is accomplished by holding the collector current in the transistor on the right hand side (Q_1 , Q_2) at a constant value. The change in VBE with temperature is approximately 2 millivolts per degree centigrade.

If the right hand side tracks the left hand side a $\frac{\Delta V}{\Delta T}$ change will appear at the common emitter point and not at the output.

To prevent latch up from opposite polarity inputs (spikes, transients etc.) each amplifier has a reverse polarity limiter.

For the spectra electronics Q_3 will conduct and prevent the amplifier from going into an "open loop" state in the event of a positive input current.

In the aperture electronics, diode CR_6 serves the same purpose for negative input current.

Each electrometer has a buffer amplifier for voltage level shifting into the telemetry range of 0 to 5 volts, and also to provide isolation from long lines.

2.2 Programmer

The LASSII Mass Spectrometer Programmer is designed to have five modes, any one of which can be selected by

ground command. The contract work statement requested that the first four modes were to be sit modes while the fifth mode would scan up to 32 different masses. A design change was introduced into the programmer such that the four sit modes can also be used as mini-scan modes. A selection of from one to eight different masses can now be programmed in modes 1 through 1V.

The mode selection is accomplished through the ground control to spacecraft command link and stored in the experiment on latching relays K_1 to K_4 (Drawing D-1026.)

The relays in turn change the operation of the digital logic to produce the five different modes.

The digital logic and memory (Drawing D-1026) are used to control the voltage output of a 10 bit digital to analog converter U_9 . A particular voltage output from U_9 can be related to a particular mass, and it is this parameter that is controlled in the process of mass selection.

For laboratory adjustments a ten bit binary counter U_8 is used to produce a linear sweep output from the digital to analog converter U_9 .

When the programmer is in the mode selectable operation, the DAC is controlled by a pair of PROMS U_6 and U_7 .

The PROMS U_6 and U_7 are in turn controlled or addressed by either the counter U_5 and U_6 or by another PROM U_3 .

PROMS U_6 and U_7 have data stored in them which relates to the selected masses. The PROM can store up to 32 mass positions and will probably be programmed to generate the MODE V "All Masses of Interest" scan.

The mode V scan will be generated by the binary counter U_4 and U_5 sequencing through the 32 address of memories U_6 and U_7 .

In modes I through IV the counter U_4 and U_5 is inhibited and the data presented at the jar inputs of U_4 and U_5 , appears at the outputs. Therefore, the address of memories U_6 and U_7 can be stored as data in memory U_3 . Memory U_3 is controlled by the command logic relays and a counter U_{15} . The counter allows for up to eight different masses in modes I through IV. If only one mass is desired then U_3 will be programmed with the same data at eight different positions.

Also included in the programmer is a ten bit staircase which is generated by U_{14} and U_{11} . This output can be superimposed on the mass selection analog voltage, at the rate of ten increments per unit mass scan.

The mass scan is stepped along at a rate of 10 ms per mass step, and the staircase at 1 increment per ms.

2.3.1 DC Amplifiers

The DC amplifiers (Drawing D-1028) supply equal but opposite polarity voltages to the quadrupole rods. The voltage amplitude depends on the particular mass to be focussed and must be maintained at a fixed ratio relative to the peak RF amplitude in order to obtain good mass resolution. The amplifiers are linear and are capable of sweeping from 0 to \pm 60 volts relative to a fixed rod bias of

-15 volts. The circuit is designed around an integrated high voltage operational amplifier such as the Burr Brown type 3582J and are shown schematically as U_2 U_3 on Drawing D-1028.

The input to the DC amplifier is derived from the digital to analog converter which appears in program schematic Drawing D-1026. The output of the DC sweep is divided down by resistors R_{13} and R_{14} and supplied to telemetry in a 0 to 5 volt level by way of 1/4 of the quad operational amplifier U_1 .

2.3.2 RF Oscillator

The RF oscillator (Drawing C-857) consists of two sections, the oscillator proper, and the control and monitor section.

The oscillator is a tuned secondary, Hartley oscillator with the frequency being determined by the inductance of the secondary winding and the rod capacitance. The secondary is split and capacitively coupled so that a \pm DC voltage can also be applied to the rods.

The amplitude and power to the oscillator is controlled by the base drive of transistors Q_1 and Q_2 . A servo loop consisting of amplifiers U_1 , U_2 and U_3 maintain the peak RF amplitude at a fixed ratio relative to the DC. The output of a control winding is peak detected by U_3 and summed into the input of U_1 which in turn supplies the base drive of transistors Q_1 and Q_2 . Ferrite beads are used in the oscillator base drive windings and in the control winding to suppress parasitic oscillations. The predominant parasitic is usually about twenty mega hertz for this particular layout.

The oscillator coil is wound on a one inch diameter hollow cylinder of polystyrene and has a turns ratio of 1,2,2,1 in the primary and a 104 turn center tap secondary. The frequency of oscillation is fixed at about 3.5 mega-hertz and the amplitude varied from 0 to 600 volts peak to peak. The oscillator coil is mounted in a shielded cavity and isolated from the rest of the circuits to minimize RF interference. Conductive interference is minimized by use of LC filters in the \pm DC sweep lines, the +28 line and also on the \pm 15 volt lines.

2.4 High Voltage Power Supply

The high voltage power supply is manufactured by Velonex, Inc. of Santa Clara, California.

The power supply is contained in a welded metal can with the dimensions of 1.25" by 1.75 by 1.75. The output is a nominal 3000 volts with a \pm 500 volt adjustment.

The power supply is used to Bias a 20 stage Johnson Laboratory Electron Multiplier Model MM-1. The power supply and electron multiplier are mounted on a plate directly behind the quadrupole rods.

2.5 Monitor Circuits

The monitor circuits provide an insight to the performance of the instrument as a function of time and temperature.

An on board commutator is used to sample various power supply voltages, two temperature indicators and a mode indicator.

The commutator circuit is drawn on Schematic D-1028, and consists of a counter U_6 and a CMOS analog multiplexer U_5 . The counter U_6 will be driven by a 1 pulse per second signal supplied by the spacecraft.

The power supply monitors are resistor dividers with operational amplifiers used where level shifting is required.

The temperature monitors were designed around a Fenwal Thermistor Type GA51J11, and are located in each package. The thermistors are purchased with a threaded screw type mount and are attached directly to the aluminum chassis.

A curve of output voltage versus temperature appears in Figure 1.

The mode monitor is a voltage staircase generated by relays K_1 to K_4 and is shown on Schematic D-1026.

2.6 Low Voltage Converter

A low voltage converter is necessary because of the range of the various biases required in the operation of a mass spectrometer.

The input regulator for the power supply (Drawing D-1023) was originally designed as a switching regulator using a Fairchild ua78S40.

Problems in the manufacturing of the ua78S40 resulted in delayed deliveries of the component, and a fixed voltage regulator of the ua78GKM type was installed to prevent delays in the testing of the instruments.

The input to the converter is protected from a reverse polarity being applied by the diodes CR₃ and CR₄. The filter C₁, L₁ and C₂ is used to reduce any conducted interference from the experiment and may be changed during EMI testing.

The transformer is wound on a toroid and potted in a heat conductive epoxie.

The frequency of oscillation for the transformer, with a 20 volt input is about five kilo-hertz.

Post regulators U₂, U₃ and U₄ are used to minimize drift in the low voltage analog circuits.

2.7 Test Console

A test console is supplied with the mass spectrometer experiment to allow for field tests without the need of a large number of test instruments.

The test console will supply the power and timing functions and display mode and data signals received from the experiment.

A photograph of the front panel appears in Figure 5.

Auxilliary jacks are available to allow for more precise measurements of each parameter.

DIETZGEN GRAVES FABRIC
C. V. P. & C. H. P. INC.

DIETZGEN CORPORATION

TEMPERATURE, DEGREES CENTIGRADE

FIGURE 1

No. 34-1001. DIETZGEN GRAPH PAPER
STANDARD LOGARITHMIC
5 CYCLES X 10 DIVISIONS PER INCH

DIETZGEN CORPORATION
MANUFACTURERS OF
ELECTRICAL EQUIPMENT

INPUT CURRENT IN AMPERES

ELECTRONIC BOX FRONT FIGURE 3

-12-

ELECTRONIC BOX REAR FIGURE 3

SENSOR PACKAGE FIGURE 4

SENSOR PACKAGE FIGURE 4

TEST CONSOLE FIGURE 5

BLOCK DIAGRAM

FIGURE 6

RF OSCILLATOR

FIGURE 7

NOTES
 1. MATT 1004747M EPOXYLAC NEMA G10
 2. 0.3 COPPER
 2. ALL HOLES 0.125 INCHES MIN
 3. 0.06 DIA. B, 0.05 DIA. C, 0.05 DIA.
 4. 3. PWR SCHEMATIC SEE D-1023

Trl-Con Assemblies	
DATE	1024
DRAWN BY	LASSI
CHECKED	Power Supply
MECHANICAL	
ELECTRICAL	
PRO JNR	
SUPERVISOR	
APPROVED	

VOTES
 1. MATA - SEE THIS MESSAGE
 2. ERIC 155 - SEE COPIE
 3. ALL MODES - SEE DIVA UNLESS
 NOTED. AIRPORT DIRECTOR CANNOT
 SEE SCHEMATIC DIS
 4. SEE SCHEMATIC DIS
 RECALLS D-1023

Tri-Con Associates	
CLASS	C-332
OWNER'S NAME	STANLEY WEINSTEIN
DATE	10/25/68
INITIALS	D
REVISION	0
PRINTED	10/25/68
CHECKED	
MECHANICAL	
ELECTRICAL	
PROD.	
SUPERVISOR	

Check
SAC 1025
Component side

701-1025
Poly. 1025
C-1025

REVISIONS	DATE	APPROVED
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		
11		
12		
13		
14		
15		
16		
17		
18		
19		
20		
21		
22		
23		
24		
25		
26		
27		
28		
29		
30		
31		
32		
33		
34		
35		
36		
37		
38		
39		
40		
41		
42		
43		
44		
45		
46		
47		
48		
49		
50		
51		
52		
53		
54		
55		
56		
57		
58		
59		
60		
61		
62		
63		
64		
65		
66		
67		
68		
69		
70		
71		
72		
73		
74		
75		
76		
77		
78		
79		
80		
81		
82		
83		
84		
85		
86		
87		
88		
89		
90		
91		
92		
93		
94		
95		
96		
97		
98		
99		
100		
101		
102		
103		
104		
105		
106		
107		
108		
109		
110		
111		
112		
113		
114		
115		
116		
117		
118		
119		
120		
121		
122		
123		
124		
125		
126		
127		
128		
129		
130		
131		
132		
133		
134		
135		
136		
137		
138		
139		
140		
141		
142		
143		
144		
145		
146		
147		
148		
149		
150		
151		
152		
153		
154		
155		
156		
157		
158		
159		
160		
161		
162		
163		
164		
165		
166		
167		
168		
169		
170		
171		
172		
173		
174		
175		
176		
177		
178		
179		
180		
181		
182		
183		
184		
185		
186		
187		
188		
189		
190		
191		
192		
193		
194		
195		
196		
197		
198		
199		
200		
201		
202		
203		
204		
205		
206		
207		
208		
209		
210		
211		
212		
213		
214		
215		
216		
217		
218		
219		
220		
221		
222		
223		
224		
225		
226		
227		
228		
229		
230		
231		
232		
233		
234		
235		
236		
237		
238		
239		
240		
241		
242		
243		
244		
245		
246		
247		
248		
249		
250		
251		
252		
253		
254		
255		
256		
257		
258		
259		
260		
261		
262		
263		
264		
265		
266		
267		
268		
269		
270		
271		
272		
273		
274		
275		
276		
277		
278		
279		
280		
281		
282		
283		
284		
285		
286		
287		
288		
289		
290		
291		
292		
293		
294		
295		
296		
297		
298		
299		
300		
301		
302		
303		
304		
305		
306		
307		
308		
309		
310		
311		
312		
313		
314		
315		
316		
317		
318		
319		
320		
321		
322		
323		
324		
325		
326		
327		
328		
329		
330		
331		
332		
333		
334		
335		
336		
337		
338		
339		
340		
341		
342		
343		
344		
345		
346		
347		
348		
349		
350		
351		
352		
353		
354		
355		
356		
357		
358		
359		
360		
361		
362		
363		
364		
365		
366		
367		
368		
369		
370		
371		
372		
373		
374		
375		
376		
377		
378		
379		
380		
381		
382		
383		
384		
385		
386		
387		
388		
389		
390		
391		
392		
393		
394		
395		
396		
397		
398		
399		
400		
401		
402		
403		
404		
405		
406		
407		
408		
409		
410		
411		
412		
413		
414		
415		
416		
417		
418		
419		
420		
421		
422		
423		
424		
425		
426		
427		
428		
429		
430		
431		
432		
433		
434		
435		
436		
437		
438		
439		
440		
441		
442		
443		
444		
445		
446		
447		
448		
449		
450		
451		
452		
453		
454		
455		
456		
457		
458		
459		
460		
461		
462		
463		
464		
465		
466		
467		
468		
469		
470		
471		
472		
473		
474		
475		
476		
477		
478		
479		
480		
481		
482		
483		
484		
485		
486		
487		
488		
489		
490		
491		
492		
493		
494		
495		
496		
497		
498		
499		
500		
501		
502		
503		
504		
505		
506		
507		
508		
509		
510		
511		
512		
513		
514		
515		
516		
517		
518		

NOTES

1. NAT'L 1/8 IN. NEAGG. IN. FROGGLASS
2. OR COOPER 2 SIDED
3. ALL HOLES .031 DIA
4. LINELESS NOTED
5. XDP SCHEMATIC SEE D-873

TRI-CON ASSOCIATES		DATE 10-18-77	
1111 N. 17TH ST. PHOENIX, AZ 85007		TELE 2-2417	
C-169		SHEET 1/2	
UNLESS OTHERWISE SPECIFIED		CONTRACT NO. C-169	
TOLERANCES		DRAWN BY	
DO		CHECKED BY	
0.00		MECHANICAL	
ANODIZED		ELECTRICAL	
FINISHED SURFACE ROUGHNESS		PROT. APPRO.	
CENTERS PERMISSIBLE		APPROVED	
DIMENSIONS IN INCHES		AND APPLY	
AFTER PROCESSING			
PRINT ASSY		PRINT ON	
SPECIFICATION		SHEET	