Álgebra Folha 4

1. Seja G um grupo tal que, para quaisquer $a, b \in G$, $(ab)^{10} = a^{10}b^{10}$. Sejam $H = \{a^{10} \mid a \in G\}$ e $K = \{a \in G \mid a^{10} = e\}$.

- (a) Mostre que $f: G \to G$ dado por $f(a) = a^{10}$ é um endomorfismo.
- (b) Usando o Teorema do Homomorfismo, mostre que |H| = |G:K|.
- 2. Considere o grupo ortogonal $O(2) = \{A \in \mathcal{M}_{2\times 2}(\mathbb{R}) : A \cdot A^T = A^T \cdot A = I_2\}$ bem como o seu subgrupo $SO(2) = \{A \in O(2) : \det(A) = 1\}$. Recorrendo ao Teorema do Homomorfismo mostre que |O(2) : SO(2)| = 2.
- 3. Seja $f: G \to G'$ um epimorfismo de grupos em que G e G' são finitos. Mostre que a ordem de G' divide a ordem de G.
- 4. Seja $G = \langle a \rangle$ um grupo cíclico em que $a \neq e$. Diga, justificando, se é verdadeiro ou falsa cada uma das afirmações seguintes:
 - (a) Se |G| = 18, então $a^{30} = a^{12}$.
 - (b) Se $a^{30} = a^{12}$, então |G| = 18.
 - (c) Se $a^{25} = a^{38}$, então |G| = 13.
 - (d) Se G é infinito então G admite exactamente dois geradores distintos: $a \in a^{-1}$.
 - (e) Se os geradores distintos de G são exactamente a e a^{-1} , então G é infinito.
- 5. Seja G um grupo finito e $a \in G$. Mostre que $a^{|G|} = e$.
- **6.** Seja $G = \langle a \rangle$ um grupo cíclico de ordem 15.
 - (a) Mostre que G admite exactamente 8 geradores distintos.
 - (b) Indique todos os subgrupos de G.
- 7. Seja $G = \langle a \rangle$ um grupo cíclico de ordem 30 e $H = \langle a^{25} \rangle$.
 - (a) Determine H.
 - (b) Indique, caso existam, os elementos de H que têm ordem 3.
 - (c) Diga, justificando, se G admite subgrupos de ordem 5 e, em caso afirmativo, indique-os.
- 8. Considere em S_8 as permutações

e $\sigma_3 = (1,3,6)(2,7,4)(5,8)$.

- (a) Decomponha σ_1 e σ_2 em cíclos dois a dois disjuntos.
- (b) Determine as permutações σ_1^{-1} , $\sigma_1\sigma_2$, $\sigma_1\sigma_3$, σ_2^2 , σ_2^3 e $\sigma_2^2\sigma_3$ e factorize-os em cíclos dois a dois disjuntos.
- (c) Indique a ordem e a paridade de cada uma das permutações da alínea anterior.
- 9. Considere em S_9 a permutação $\sigma = (9,5,7)(3,4,1,5,7,6)(1,2,8,4)(3,4,8)$.
 - (a) Determine a ordem e a paridade de σ .
 - (b) Determine σ^{339} .
- 10. Considere o grupo simétrico S_8 .
 - (a) Exiba um elemento de S_8 de ordem 15.
 - (b) Mostre que não existe um elemento de S_8 de ordem 14.