

UFPR - Universidade Federal do Paraná Departamento de Matemática CM304 Complementos de Matemática

JEPR IVERSIDADE FEDERAL DO PARANA Lista de Exercícios 6		
1. Mostre que cada uma das seguintes congruências é verdadeira:		
	(a) $13 \equiv 1 \pmod{2}$ (b) $22 \equiv 7 \pmod{5}$ (c) $91 \equiv 0 \pmod{13}$ (d) $69 \equiv 62 \pmod{7}$	(e) $-2 \equiv 1 \pmod{3}$ (f) $-3 \equiv 30 \pmod{11}$ (g) $111 \equiv -9 \pmod{40}$ (h) $666 \equiv 0 \pmod{37}$
2. Para cada um dos pares de inteiros abaixo, determine se eles são congruentes módulo 7:		
	(a) 1, 15(b) 0, 42(c) 2, 99	(d) -1, 8 (e) -9, 5 (f) -1, 699
 3. Para quais inteiros positivos m cada uma das seguintes afirmações é verdadeira? (a) 27 ≡ 5 (mod m) (b) 1000 ≡ 1 (mod m) (c) 1331 ≡ 0 (mod m) 		
4.	Mostre que se a é um inteiro par, então $a^2 \equiv 0 \pmod 4$, e se a é um inteiro ímpar, então $a^2 \equiv 1 \pmod 4$.	
5.	Encontre o resto da divisão dos seguintes números (a) 2 ³⁵ dividido por 7 (b) 5 ³¹ dividido por 12 (c) 23 ¹⁰⁰¹ dividido por 17 (d) 19 ¹⁹⁷⁶ dividido por 23	:
6.	. Mostre que se a é um inteiro ímpar, então $a^2 \equiv 1 \pmod{8}$.	
7.	. Encontre o menor resíduo não-negativo módulo 13 de cada um dos seguintes inteiros:	
	(a) 22(b) 100(c) 1001	(d) -1 (e) -100 (f) -1000
8.	. Encontre o menor resíduo não-negativo módulo 28 de cada um dos seguintes inteiros:	
	(a) 99(b) 1100(c) 12 345	(d) -1 (e) -1000 (f) -54321
9. Encontre o menor resíduo positivo de $1! + 2! + 3! + \cdots + 10!$ módulo cada um dos seguintes inteix		
	(a) 3(b) 11	(c) 4 (d) 23

10. Encontre o menor resíduo positivo de $1! + 2! + 3! + \cdots + 100!$ módulo cada um dos seguintes inteiros:

- (a) 2
- (b) 7

- (c) 12
- (d) 25
- 11. Encontre todos os inteiros x que satisfazem:
 - (a) $2x \equiv 1 \pmod{7}$
 - (b) $2x \equiv 3 \pmod{7}$
 - (c) $3x \equiv 9 \pmod{13}$
 - (d) $5x \equiv 7 \pmod{13}$
 - (e) $4x \equiv 2 \pmod{9}$

- (f) $6x \equiv 5 \pmod{11}$
- (g) $7x \equiv 1 \pmod{10}$
- (h) $8x \equiv 6 \pmod{14}$
- (i) $9x \equiv 4 \pmod{13}$
- (j) $11x \equiv 3 \pmod{17}$
- 12. Prove cada uma das proposições a seguinte, onde a, n, p são inteiros positivos e p é primo.
 - (a) Se $2a \equiv 0 \pmod{p}$ e p é um primo ímpar, então $a \equiv 0 \pmod{p}$.
 - (b) Verifique que $n^2 + n \equiv 0 \pmod{2}$.
 - (c) Verifique que $n^4 + 2n^3 + n^2 \equiv 0 \pmod{4}$.
 - (d) Verifique que $2n^3 + 3n^2 + n \equiv 0 \pmod{6}$.