Writing Assignment 5

5.1. (2 points) (Bellman's equation) In a dynamic decision problem, given a policy π , the value function satisfies the Bellman equation:

$$V^{\pi}(s) = R(s) + \gamma \sum_{s' \in S} P_{s\pi(a)}(s') V^{\pi}(s')$$
 (1)

Now we play a simple game in a 3x3 block square. Our goal is to move the red object from the upper left (0,0) to the bottom right corner (2,2) (See Figure 1). The state s

Figure 1: Moving a red object from upper left to bottom right

is represented by a tuple (x, y) where $x, y \in \{0, 1, 2\}$. Choosing $\gamma = 0.8$. The reward matrix satisfies R((2, 2)) = 1 and R(s) = 0 for other state s. There are four actions possible for each state $\mathcal{A} = \{\mathsf{up}, \mathsf{down}, \mathsf{left}, \mathsf{right}\}$, which deterministically cause the corresponding state transitions, except that actions that would take the agent off the grid in fact leave the state unchanged. For example $P_{s=(1,1),a=\mathsf{right}}(s'=(1,2))=1$ and $P_{s=(1,1),a=\mathsf{right}}(s'=(0,2))=0$. Suppose π is a policy defined by

$$\pi((i,j)) = \begin{cases} (i+1,j) & i < 2\\ (i,j+1) & i = 2, j < 2\\ (2,2) & i = 2 \text{ and } j = 2 \end{cases}$$

Compute numerically the value function $V^{\pi}(s)$ for each s by solving the Bellman's equation.

Solution:

Let $p_{ij} = P(\pi((i,j)) = (i+1,j))$. Applying the equation (1) we have:

$$V^{\pi}((2,2)) = 1 + 0.8V^{\pi}((2,2)) \qquad \cdots 0.5 \text{ points}$$

$$V^{\pi}((2,1)) = 0.8V^{\pi}((2,2)), \ V^{\pi}((2,0)) = 0.8V^{\pi}((2,1))$$

$$V^{\pi}((1,2)) = 0.8V^{\pi}((2,2)), \ V^{\pi}((0,2)) = 0.8V^{\pi}((1,2))$$

$$V^{\pi}((1,1)) = 0.8V^{\pi}((2,1)), \ V^{\pi}((0,1)) = 0.8V^{\pi}((1,1))$$

$$V^{\pi}((1,0)) = 0.8V^{\pi}((2,0)), \ V^{\pi}((0,0)) = 0.8V^{\pi}((1,0)) \qquad \cdots 1 \text{ points}$$

Therefore, we can solve out:

$$V^{\pi} = \begin{bmatrix} 2.048 & 2.56 & 3.2\\ 2.56 & 3.2 & 4\\ 3.2 & 4 & 5 \end{bmatrix} \cdots 2 \text{ points}$$

5.2. (2 points) (Convergence of Value Iteration) You have learned in class value iteration algorithm updates the value function $V^{t+1}(s) = BV^t(s)$ for every state s, where B is the Bellman backup operator:

$$BV(s) = R(s) + \max_{a \in A} \gamma \sum_{s' \in S} P_{sa}(s')V(s')$$
(2)

(a) (1 point) Show that Bellman backup operator is a contraction operator. That is, for any value function V_1, V_2 ,

$$\max_{s \in S} |B V_1(s) - B V_2(s)| \le \gamma \max_{s \in S} |V_1(s) - V_2(s)| \tag{3}$$

(b) (1 point) Assuming $R_{\max} = \max_{s \in S} R(s)$ and $V^0(s) = 0$ for all $s \in S$, show that

$$\max_{s \in S} |V^t(s) - V^*(s)| \le \frac{\gamma^t R_{\text{max}}}{1 - \gamma} \tag{4}$$

From (4), we can see that $V^t(s)$ converges to $V^*(s)$.

Solution:

(a) Using the definition of Bellman backup operator,

$$B V_{1}(s) - B V_{2}(s) = \gamma (\max_{a \in A} \sum_{s' \in S} P_{sa}(s') V_{1}(s') - \max_{a \in A} \sum_{s' \in S} P_{sa}(s') V_{2}(s'))$$

$$\leq \gamma \max_{a \in A} \sum_{s' \in S} P_{sa}(s') (V_{1}(s') - V_{2}(s'))$$

$$\leq \gamma \max_{s \in S} |V_{1}(s) - V_{2}(s)|$$

Similarly $BV_2(s) - BV_1(s) \le \gamma \max_{s \in S} |V_1(s) - V_2(s)|$. Therefore $|BV_2(s) - BV_1(s)| \le \gamma \max_{s \in S} |V_1(s) - V_2(s)|$. Taking the maximum on the left hand side we can show (3). $\cdots 1$ points

(b) For V^* we have $BV^*(s) = V^*(s)$ using (3) we have

$$\max_{s \in S} |V^{t+1}(s) - V^*(s)| \le \gamma \max_{s \in S} |V^t(s) - V^*(s)| \le \gamma^t \max_{s \in S} V^*(s)$$

$$\cdots \cdots 0.5 \text{ points}$$

From Bellman equation (1), we have $V^*(s) \leq R_{\max} + \gamma \max_{s \in S} V^*(s)$. Taking the maximum on the left hand side we have $V^*(s) \leq \frac{R_{\max}}{1-\gamma}$. Therefore, (4) holds.

- 5.3. (3 points) (Mean Square Error) We mentioned Bias-Variance Tradeoff in class. We define the MSE of \hat{X} , an estimator of X as $MSE(\hat{X}) \triangleq \mathbb{E}[(\hat{X}-X)^2]$. The variance of \hat{X} is defined as $Var(\hat{X}) \triangleq \mathbb{E}[(\hat{X}-\mathbb{E}[\hat{X}])^2]$ and the bias is defined as $Bias(\hat{X}) \triangleq \mathbb{E}[\hat{X}] X$.
 - (a) (1 point) Please prove that

$$MSE(\hat{X}) = Var(\hat{X}) + (Bias(\hat{X}))^2$$

(b) (2 points) Our data are added with an independent Gaussian noise, say, X + N, where $\mathbb{E}[N] = 0$ and $\mathbb{E}[N^2] = \sigma^2$ and the estimator is \hat{X} . We define the empirical MSE as $\mathbb{E}[(\hat{X} - X - N)^2]$. Please prove that

$$\mathbb{E}[(\hat{X} - X - N)^2] = MSE(\hat{X}) + \sigma^2$$

The equation tells us that the empirical error is a good estimation of the true error. Thus, we can minimize the empirical error in order to properly minimize the true error.

Solution:

(a)

$$\mathbb{E}[(\hat{X} - X)^{2}] = \mathbb{E}[(\hat{X} - \mathbb{E}[\hat{X}] + \mathbb{E}[\hat{X}] - X)^{2}]$$

$$= \mathbb{E}[(\hat{X} - \mathbb{E}[\hat{X}])^{2}] + \mathbb{E}[(\mathbb{E}[\hat{X}] - X)^{2}] + 2\mathbb{E}[(\hat{X} - \mathbb{E}[\hat{X}])(\mathbb{E}[\hat{X}] - X)]$$

$$= \text{Var}(\hat{X}) + (\text{Bias}(\hat{X}))^{2}$$

, since that the expectation is only about \hat{X}

$$\mathbb{E}[(\hat{X} - \mathbb{E}[\hat{X}])(\mathbb{E}[\hat{X}] - X)] = (\mathbb{E}[\hat{X}] - \mathbb{E}[\hat{X}])(\mathbb{E}[\hat{X}] - X) = 0$$

(b)
$$\mathbb{E}[(\hat{X} - X - N)^2] = \mathbb{E}[(\hat{X} - X)^2] + \mathbb{E}[N^2] + 2 \mathbb{E}[(\hat{X} - X)N]$$
$$= MSE(\hat{X}) + \sigma^2 + 2 \mathbb{E}[(\hat{X} - X)] \mathbb{E}[N]$$
$$= MSE(\hat{X}) + \sigma^2$$

- 5.4. (3 points) Important inequalities in Learning Theory.
 - (a) (1.5 points) (Markov's Inequality) Let X be a non-negative random variable, then for every positive constant a, please show that

$$P(X \ge a) \le \frac{\mathbb{E}(X)}{a}$$

(b) (1.5 points) (Chebyshev's inequality) For random variable X, if its expected value $\mathbb{E}(X)$ and variance Var(X) are both finite, for every positive constant a, please show that

$$P(|X - \mathbb{E}(X)| \ge a) \le \frac{Var(X)}{a^2}$$

5.5. (3 points) (Bonus question: VC Dimension) Given some finite domain set, \mathcal{X} , and a number $k < |\mathcal{X}|$,

please figure out the VC-dimension of each of the following classes:

- (a) (1.5 points) $\mathcal{H}_k^{\mathcal{X}} = \{h \in \{0,1\}^{\mathcal{X}} : |\{x : h(x) = 1\}| = k\}$. That is, the set of all functions that assign the value 1 to exactly k elements of \mathcal{X} .
- (b) (1.5 points) $\mathcal{H}_{\leq k}^{\chi} = \left\{ h \in \{0, 1\}^{\chi} : |\{x : h(x) = 1\}| \leq k \text{ or } |\{x : h(x) = 0\}| \leq k \right\}$

Solution:

- (a) $\operatorname{VCdim}(\mathcal{H}_k^{\mathfrak{X}}) = \min\{k, |\mathfrak{X}| k\}$ First, we prove $\operatorname{VCdim}(\mathcal{H}_k^{\mathfrak{X}}) \leq k$. Let $C \subseteq \mathfrak{X}$ be a set of size k+1. Then, there doesn't exist $h \in \mathcal{H}_k^{\mathfrak{X}}$ which satisfies h(x) = 1 for all $x \in C$. Analogously, it is easy to verify that $\operatorname{VCdim}(\mathcal{H}_k^{\mathfrak{X}}) \leq |\mathfrak{X}| - k$. Hence, $\operatorname{VCdim}(\mathcal{H}_k^{\mathfrak{X}}) \leq \min\{k, |\mathfrak{X}| - k\}$ Then, we prove $\operatorname{VCdim}(\mathcal{H}_k^{\mathfrak{X}}) \geq \min\{k, |\mathfrak{X}| - k\}$. Let $C = \{x_1, \ldots, x_m\} \subseteq \mathfrak{X}$ be a set with of size $m \leq \min\{k, |\mathfrak{X}| - k\}$. Let $(y_1, \ldots, y_m) \in \{0, 1\}^m$ be a vector of labels. Denote $\sum_{i=1}^m y_i$ by s. Pick an arbitrary subset $E \subseteq \mathfrak{X} \setminus C$ of k-s elements, and let $h \in \mathcal{H}_k^{\mathfrak{X}}$ be the hypothesis which satisfies $h(x_i) = y_i$ for every $x_i \in C$, and $h(x) = \mathbbm{1}\{E\}$ for every $x \in \mathfrak{X} \setminus C$. We conclude that C is shattered by $\mathfrak{H}_k^{\mathfrak{X}}$. It follows that $\operatorname{VCdim}(\mathfrak{H}_k^{\mathfrak{X}}) \geq \min\{k, |\mathfrak{X}| - k\}$.
- (b) $\operatorname{VCdim}(\mathcal{H}_{\leq k}^{\chi}) = k$ First, we prove $\mathcal{H}_{\leq k}^{\chi} \leq k$. It is the same as part (a). Then, we prove $\mathcal{H}_{\leq k}^{\chi} \geq k$. Let $C = \{x_1, \ldots, x_m\} \subseteq \chi$ be a set with of size $m \leq k$. Let $(y_1, \ldots, y_m) \in \{0, 1\}^m$ be a vector of labels. This labeling is obtained by some hypothesis $h \in \mathcal{H}_{\leq k}^{\chi}$ which satisfies $h(x_i) = y_i$ for every $x_i \in C$, and h(x) = 0 for every $x \in \mathcal{X} \setminus C$. We conclude that C is shattered by $\mathcal{H}_{\leq k}^{\chi}$. It follows that $\operatorname{VCdim}(\mathcal{H}_{\leq k}^{\chi}) \geq k$.