CS168 Introduction to the Internet: Architecture and Protocols

Peyrin Kao, Sylvia Ratnasamy, Rob Shakir Fall 2024

Today

Introductions

What is (this course on) the Internet about?

Class logistics

Peyrin Kao (he/him)

Background

- 2022 present: lecturer in EECS (CS161, 61b, 61c, 188)
- 2021 2022: MS in EECS;
 Research focus: CS education
- 2017–2021: BA in CS/Data Science, UC Berkeley

Rob Shakir (he/him)

Background

- Got into networking via a startup he founded in 2003
- Learnt a lot through "just doing it"
- Tech lead for multiple global networks, including British Telecom
- Moved to the US to join Google and now a lead architect and engineer working on Google's global WAN network

Sylvia Ratnasamy (she/her)

Background

- PhD from UC Berkeley
- Joined the UCB faculty in 2011
- Industry experience: ~10 years at Intel; co-founded startup; stints at Google
- Networking has been my focus throughout

TAS (see class website for office hours and sections)

• TODO

Today

Introductions

What is (this course on) the Internet about?

Class logistics (Peyrin)

Internet

Protocols

Architecture

Two Meanings of "Internet"

- The infrastructure that ties together computing devices
 - TCP, IP, BGP, DNS, OSPF, ...
- The ecosystem of applications built on top of the above infrastructure
 - amazon, facebook, google, twitter,
- In this class, we use the first definition!

heart pacemaker

The Internet transfers data between end hosts

Internet

Protocols

Architecture


```
while (...) {
while (...) {
                                                 message = receive( ... );
 message = ...;
 send (message, ...);
                                                                   Bob
    Alice
```

Alice Bob hello hello give me http://cs.berkeley.edu here: ...

Alice Bob

```
hello
give me http://...
```

Protocol

- A specification of the messages that communicating entities exchange
 - their syntax and semantics

- Very much like conversational conventions ... determining who should talk next and how they should respond
- Designing a good protocol is harder than it first

Internet

Protocols

Architecture

Why study the Internet?

The Internet has and is transforming everything

- The way we do business ...
 - retail, advertising, cloud computing
- The way we have relationships
 - Twitter, chat
- The way we learn
 - Wikipedia, ChatGPT, AR/VR
- The way we govern
 - E-voting, censorship, cyber-warfare
- The way we cure disease
 - digital health, remote surgery

What's your formal model for the Internet? -- theorists

Aren't you just writing software for networks? – OS community

But why is the Internet interesting?

You don't have performance benchmarks??? – hardware folks

ut the Internet seems to be working now ... – my parents

A few defining characteristics of the Internet...

Network versus "The Internet"

- There are many kinds of network technologies (switches and links)
 - Ethernet, optical, wifi access points, DSL modems, Infiniband switches, ...
- The Internet is not a new/particular kind of network technology

 Instead, the Internet ties different networks together

A federated system

Interoperability is the Internet's most important goal!

The Internet interconnects over 100,000 independently operated

A federated system

- Fundamental challenge: how do you interconnect competing entities?
 - Competing network providers must cooperate to serve their customers!

- Leads to a constant tussle between business and technical factors
 - Real-world incentives determine topology, path selection, diagnostics, and more
- And complicates innovation

Tremendous scale

- > 5 Billion users (> 50% of world population)
- 1.24 Trillion unique URLs (web pages)
- Every second, we generate > 10000 tweets, > 100,000
 Google queries, > 3M emails

Enormous diversity and dynamic range

- Technologies: optical, wireless, satellite, copper, ...
- Communication latency: microseconds to seconds (106 operating range)
- **Bandwidth:** 1Kbits/second to 1 Terabit/second (10⁸ operating range)
- **Reliability**: 0 90%
- Devices: sensors, cell phones, datacenters, ...
- Users: the governing, governed, operators, malicious, ...
- Applications: skype, live video, gaming, remote medicine, ...

Asynchronous Operation

- Fundamental constraint: speed of light
- Consider: how many cycles does your 3GHz CPU in Berkeley execute before it can possibly get a response for a message it sends to a server in NY?
 - Berkeley to New York: 4,125 km
 - Traveling to NY and back at 300,000 km/s: 27. 5 milliseconds
 - 3,000,000,000 cycles/sec * 0.0275 = 84,000,000 cycles!
- Thus, communication feedback is always dated

Prone to Failure

- Many components along a path
 - software, switches, links, network interface cards, wireless access points, modem,...
- Consider: 50 components, that work correctly 99% of time → 39.5% chance communication fail
 - Plus asynchrony → takes a long time to hear (bad) news

Constant evolution

1970s:

- 10⁴ bits/second links
- < 100 computers in the US
- File transfer is the "killer" app

Today

- 10¹⁴ bits/second links
- 10B+ devices, all over the globe
- 3B+ facebook users; self-driving car

Yet change must be backward compatible, incremental, and "in place"

Recap: The Internet is ...

- A federated system ...
- of enormous scale ...
- with tremendous dynamic range and diversity ...
- that is asynchronous in operation ...
- failure prone ...
- and constantly evolving

Recap: The Internet is ...

- Too complex for theoretical models
- "Working code" needn't mean much
- Performance benchmarks are too narrow

The creation of the Internet required a new design paradigm

The Internet design paradigm

- Decentralized control
- A best-effort service model
- "Route around trouble"
- Dumb infrastructure (w/ smart endhosts)
- The end-to-end design principle
- Layering
- Federation via a "narrow waist" interface

A radical departure from systems at the time

Example: a best-effort service model

- Fundamental question: what's the right service model that a network should support?
 - "contract" between network and its users/end-hosts

Some possibilities:

- "guarantee that data will be delivered"
- "guarantee that data will be delivered within X time"
- "return a confirmation of successful delivery or an error"
- Instead, what the Internet supports: "best effort" delivery of data
 - No guarantee on whether or when data will be delivered

The Internet design paradigm

- Decentralized control
- A best-effort service model
- "Route around trouble"
- Dumb infrastructure (w/ smart endpoints)
- The end-to-end design principle
- Layering
- Federation via a "narrow waist" interface

A radical departure from systems at Now the de-facto btheptime for scalable services

The Internet design paradigm

- Decentralized con SDN: centralize dSDN: (re)decentralize?
- A best-effort service madequality of service guarantees? **Nvidia's Infiniband**
- "Route around trouble"
- Dumb infrastructure (w/ smart enconnection to the two restrictions of the tw
- The end-to-end design pageiplemputing ection?
- Layarioross-layer optimizations
- Federation via a "narrow waist" interface

But it is just one design ... that is constantly being questioned

Backing up a level

- The Internet poses a design challenge like no other
- From its creation emerged a new design paradigm
- That shaped how we reason about the design of scalable systems
 - What's the right prioritization of goals?
 - What are fundamental constraints?
 - How do we decompose a problem?
 - What abstractions do we need?
 - What are the tradeoffs?
- In short, a lesson in how to architect a (networked) system

Internet

Protocols

Architecture

Network architecture

- More about thinking rigorously than doing rigorous math
- More about understanding tradeoffs than running benchmarks

More about practicality than optimality

Done right, can be a powerful thing!

Class topics, more concretely

Reflect three broad phases in the Internet's evolution

- 1. Building a global data communication network
- 2. Scaling communication; and the emergence of a commercial ecosystem
- 3. (Networks that enable) scaling data; and a shifting commercial ecosystem

Phase 1: Building a global data communication network

Military interest in a communication infrastructure to withstand a nuclear attack

Scientists want to share data

Conce

1960

Building a

Scaling the

◆Commercialization

packet switching

statistical multiplexing layering

routing reliability

naming (DNS) congestion control

Impact: transformed how humans communicate

Phase 2: Scaling & the emergence of a commercial ecosystem

"Content is king" – Bill Gates

Proliferation of PCs

Commercializ

1995

2005

Exponential

Policy (BGP)

Content retrieval
(HTTP)
Security (firewalls, DoS)

Caching (CDNs, load balancers)
Scalable addressing (NA

High-speed routers

Impact: everything moves to the Internet (content, brick-and-mortar businesses, banks, etc.)

Phase 3: Data and a shifting ecosystem

Impact: The Internet is everywhere, transforming everything

To recap, what we hope CS 168 will teach you

How the Internet works

Why it works the way it does

 How to reason through a complex (networking) design problem

Today

Introductions

What is (this course on) the Internet about?

Class logistics