Table 6: The ablation of mIoU improvement of each component on the nuScenes and WOD val split when trained only for the segmentation task. XSF and STD stand for cross-space transformer and segmentation transformer decoder.

Baseline (3.1)	STD	Multi-frame	XSF	nuScenes	WOD
√				76.6	70.3
✓	✓			78.3 (+1.7)	70.6 (+0.3)
✓	✓	✓		80.8 (+4.2)	71.2 (+0.9)
✓	✓	✓	\checkmark	81.7 (+5.1)	71.3 (+1.0)

Table 8: Panoptic segmentation result on nuScenes val split.

	stage	PQ	SQ	RQ	mIoU
LidarMultiNet [66]	2-stage	81.8	90.8	89.7	83.6
LiDARFormer	1-stage	81.8	90.7	89.9	84.1

Table 9: Design choice of the segmentation decoder on the nuScenes val split.

LiDARFormer seg only result without XSF (mIoU)	80.8
w/o voxel to class attention	80.4 (-0.4)
w/o class to voxel attention	80.1 (-0.7)
w/o dynamic kernel	80.3 (-0.5)
w/o class embedding initialization	80.4 (-0.4) 80.1 (-0.7) 80.3 (-0.5) 80.5 (-0.3)

formance, particularly for the detection task. We also evaluate the panoptic segmentation performance of our multitask network in Table 8. Even without a second stage dedicated to panoptic segmentation, our model achieves competitive results compared to the previous best method, LidarMultiNet. This demonstrates the ability of our multi-task transformer decoder to generate more compatible results for both tasks.

Table 7: The ablation of the improvement of shared transformer decoder on the nuScenes val split when jointly trained with detection task.

Baseline [66]	XTF Seg Det		XSF	mIoU	mAP	NDS	
√				81.8	65.2	70.0	
✓	✓			82.1 (+0.3)	65.4 (+0.2)	70.2 (+0.2)	
✓		\checkmark		82.4 (+0.6)	65.9 (+0.7)	70.3 (+0.3)	
✓	✓	\checkmark		82.6 (+0.8)	66.0 (+0.8)	70.2 (+0.2)	
✓	✓	\checkmark	\checkmark	82.7 (+0.9)	66.6 (+1.4)	70.8 (+0.8)	

Table 10: The ablation of XSF on the nuScenes val split. $S\rightarrow D$ and $D\rightarrow S$ denote sparse-to-dense (3b) and dense-to-sparse (3a) XSFs.

$S \rightarrow D$	$D \rightarrow S$	Add Convs	mIoU	mAP	NDS			
Segmentation Only								
$\overline{\hspace{1em}}$	√		81.7	-	-			
		\checkmark	80.9 (-0.8)	-	-			
Multi-task								
$\overline{\hspace{1cm}}$	√		82.7	66.6	70.8			
	\checkmark	✓	82.8 (+0.1)	66.0 (-0.6)	70.5 (-0.3)			

Figure 5: **Visualization of the learned offsets.** We showcase the features of a car's 3D voxels (blue) and their corresponding deformable offsets (red) that were learned in our XSF module. For a better visual representation, we only highlight the offsets with high attention scores.