Факультет компьютерных технологий и прикладной математики Кафедра информационных технологий 02.03.03

Приложение нейросетевых алгоритмов Лабораторная работа № 3. Радиальные нейронные сети.

Задание. Требуется реализовать алгоритм на языке программирования Python без использования специализированных библиотек.

Задача. Рассмотреть пример решения задачи аппроксимации данных с использованием искусственной нейронной сети на основе радиально симметричных функций. Дана экспериментальная зависимость в виде набора из 9 пар точек: значений независимой переменной x и соответствующих им значений функции отклика y, представленных в таблице.

Таблица 1 – Экспериментальная выборка данных

№ примера	X	у
1	-2,0	-0,48
2	-1,5	-0,78
3	-1,0	-0,83
4	-0,5	-0,67
5	0,0	-0,20
6	0,5	0,70
7	1,0	1,48
8	1,5	1,17
9	2,0	0,20

Требуется, используя данную выборку в качестве обучающей, получить аппроксимирующую модель виде нейронной сети на основе Единственный радиально-симметричных функций. данной ВХОД независимой переменной, сети – значение единственный выход – соответствующее ей значение функции.

Структура сети (рисунок 1), включает 5 скрытых нейронов (радиальных элементов). Требуется указать центры и радиусы скрытых радиальных элементов. В качестве центров радиальных элементов использовать значения независимой переменной в опытах 1, 3, 5, 7 и 9.

Указание:

Использовать функцию Гаусса, евклидову норму. Рассчитать веса по формуле: $w = \left(G^T G\right)^{-1} G^T y$.

Рисунок 1 – Структура радиальной нейронной сети

Рисунок 2 – График нейросетевой аппроксимирующей зависимости