## Von van Emde Boas Bäumen I

Dictionary Datenstruktur
Bitfelder → Definition vEB-Tree

# Abstrakter Datentyp Dictionary(++)

**Gesucht:** Datenstruktur D zum Speichern von Schlüsseln (ggf. Schlüssel/Daten-Paare) mit folgenden Operationen.

| insert(x)     | Füge x in D ein.                                    |  |  |  |  |
|---------------|-----------------------------------------------------|--|--|--|--|
| delete(x)     | Lösche x aus D.                                     |  |  |  |  |
| find(x)       | Ist x∈D?                                            |  |  |  |  |
| min()         | Liefere kleinstes Element in D.                     |  |  |  |  |
| max()         | Liefere größtes Element in D.                       |  |  |  |  |
| closeBelow(x) | Liefere das größtes Element y in D mit y < x.       |  |  |  |  |
| closeAbove(x) | Liefere das kleinste Element y in $D$ mit $y > x$ . |  |  |  |  |

| O(log n)        |
|-----------------|
| O(log n)        |
| O(log n)        |
| O(log n), O(1)* |
| O(log n), O(1)* |
| O(log n)        |
| O(log n)        |

### Mögliche Datenstrukturen

Balancierte Suchbäume (AVL-Baum, Rot-Schwarz-Baum,...)

Optimal wenn Schlüssel nur durch Vergleiche unterschieden werden können!

<sup>\*</sup> Wenn min/max zusätzlich gespeichert und bei insert/delete aktualisiert wird

# Aber häufiger Spezialfall...

Was, wenn die Schlüssel ganzzahlig und nur aus dem Intervall [0,...,u-1] sind?



| Operationen          | Bal. Suchbaum         | Bitfeld | BF+mn/mx |
|----------------------|-----------------------|---------|----------|
| insert(x)            | O(log n)              | O(1)    | O(1)     |
| delete(x)            | O(log n)              | O(1)    | O(u)     |
| find(x)              | O(log n)              | O(1)    | O(1)     |
| min()/max()          | O(log n), <b>O(1)</b> | O(u)    | O(1)     |
| closeAbove(x), cB(x) | O(log n)              | O(u)    | O(u)     |

n < u, also O(u) schlechter als O(n)

Was, wenn die Schlüssel ganzzahlig und nur aus dem Intervall [0,...,u-1] sind?



| Operationen          | Bal. Suchbaum         | Bitfeld | BF+mn/mx | Bitfeld mit Links |
|----------------------|-----------------------|---------|----------|-------------------|
| insert(x)            | O(log n)              | O(1)    | O(1)     | O(u)              |
| delete(x)            | O(log n)              | O(1)    | O(u)     | O(u)              |
| find(x)              | O(log n)              | O(1)    | O(1)     | O(1)              |
| min()/max()          | O(log n), <b>O(1)</b> | O(u)    | O(1)     | O(1)              |
| closeAbove(x), cB(x) | O(log n)              | O(u)    | O(u)     | O(1)              |

n < u, also O(u) schlechter als O(n)

Was, wenn die Schlüssel ganzzahlig und nur aus dem Intervall [0,...,u-1] sind?

Bitfeld mit u Einträgen (+ min/max Verweise)

+ vollst. Binärbaum: Innerer Knoten "1" falls mind. ein 1er im Teilbaum (Einfachheitshalber: u = 2<sup>w</sup>)





| Operationen          | Bal. Baum | Bitfeld | BF+mn/mx | BF+Links | Bitfeld+Baum |
|----------------------|-----------|---------|----------|----------|--------------|
| insert(x)            | O(log n)  | O(1)    | O(1)     | O(u)     | O(log u)     |
| delete(x)            | O(log n)  | O(1)    | O(u)     | O(u)     | O(log u)     |
| find(x)              | O(log n)  | O(1)    | 0(1)     | O(1)     | O(1)         |
| min()/max()          | O(1)      | O(u)    | 0(1)     | O(1)     | O(1)         |
| closeAbove(x), cB(x) | O(log n)  | O(u)    | O(u)     | O(1)     | O(log u)     |

# Bitfeld + Baum mit Verzweigungsgrad S



## Bitfeld + Baum mit Verzweigungsgrad S



u = 16

Was, wenn die Schlüssel ganzzahlig und nur aus dem Intervall [0,...,u-1] sind?

⇒ Klaro: Ganze Zahlen werden am Computer als **Bitfeld** repräsentiert.

$$\Rightarrow \log_2 u = w$$
 Bits. Einfachheithalber wieder:  $u = 2^w$ 

w = Id(16) = 400xx10xx 11xx 01xx 0 0 0 0 0 0 0 0 0 6 8 10 11 12 13 15 3 4 5 14

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

Wieviele Zahlen kann man mit w/2 vielen Bits kodieren?

$$\Rightarrow$$
 2<sup>w/2</sup> =  $\sqrt{2^w}$  =  $\sqrt{u}$ 

[Anders ausgedrückt: Verdopplung der Bits ⇒ Quadrieren der Anzahl der darstellbaren Zahlen]

**Definition.** [Voraussetzung: w ist gerade]

high(x) :=  $\lfloor x/\sqrt{u} \rfloor$  ...Zahl, die sich aus den oberen w/2 Bits von x ergibt low(x) := x mod  $\sqrt{u}$  ...Zahl, die sich aus den unteren w/2 Bits von x ergibt

Ganzzahlige Schlüssel aus dem Intervall [0,...,u-1] benötigen  $\lceil log_2 u \rceil = w$  Bits. Annahme nun:  $w = 2^k$ 



### **Rekursive Definition: van Emde Boas Tree.**

Ein vEB-Tree **T(u)** kodiert, welche Schlüssel aus einem Intervall [0,...,u-1] enthalten sind.

```
T(u) {
  int min, max, count;
  T(√u) overview;
  T(√u) details[√n];
}
```

```
T(u)

ints: min max count

overview T(\sqrt{u})

Array details[0,...,\sqrt{u} - 1]

T(\sqrt{u}) T(\sqrt{u}) T(\sqrt{u})
```

T(u): Schlüssel hat w Bits T( $\sqrt{u}$ ): Schlüssel hat w/2 Bits

Wähle Konstante (zB. 64 bit):  $T(2^6=64)$  = einfaches Bitfeld mit O(1)-Ops

### van Emde Boas Tree



### Bedeutung.

min/max: Speichert kleinsten/größten

Schlüssel in T(u)

count: #Schlüssel in T(u), inkl. min/max

Schlüssel x (außer min/max!) wird codiert

gespeichert:  $x = high(x) \cdot \sqrt{n + low(x)}$ 

Stelle sicher, dass high(x) in overview

gespeichert ist, und speichere low(x) in details[high(x)]

ints: min max count

overview  $T(\sqrt{u})$ Array details[0,..., $\sqrt{u} - 1$ ]  $T(\sqrt{u})$   $T(\sqrt{u})$   $T(\sqrt{u})$ 

Beobachtung: Alle Schlüssel x deren low(x) in details[high(x)] gespeichert werden haben die gleichen w/2 high-order Bits (=high(x)).

**Invariante:** h ∈ overview ⇔ details[h] ≠ leer

```
insert(vEB-Tree T, Bits w, Schlüssel x):
if w <= 5: //normalerweise: 2<sup>w</sup> = Maschinenwortlänge
  insert-in-Bitfeld
else if T.count < 2:
  Trage x in min und/oder max ein
  Erhöhe T.count um 1, falls x neu
else if x∉{T.min, T.max}:
  if x < T.min:
    Vertausche T.min und x
  if x > T.max:
    Vertausche T.max und x
  if T.details[high(x)].count == 0:
    insert(T.overview, w/2, high(x))
  insert (T.details[high(x)], w/2, low(x))
  Aktualisiere T.count
```

```
insert(vEB-Tree T, Bits w, Schlüssel x):
if w <= 5: //normalerweise: 2<sup>w</sup> = Maschinenwortlänge
                                                 Fall 1
                                                                   O(1)
  insert-in-Bitfeld
else if T.count < 2:
                                                                   O(1)
                                                 Fall 2
  Trage x in min und/oder max ein
  Erhöhe T.count um 1, falls x neu
else if x∉{T.min, T.max}:
  if x < T.min:
    Vertausche T.min und x
                                                  O(1)
  if x > T.max:
    Vertausche T.max und x
                                                 Fall 3
                                                                   O(?)
  if T.details[high(x)].count == 0:
                                                  O(1) oder O(?)
    insert(T.overview, w/2, high(x))
                                                  O(?) oder O(1) *
  insert(T.details[high(x)], w/2, low(x))
                                                  O(1)
  Aktualisiere T.count
```

<sup>\*</sup> O(1) falls details [high (x)] leer war (insert ist "einfach", d.h. Fall 1 oder Fall 2)

```
insert(vEB-Tree T, Bits w, Schlüssel x):
if w <= 5: //normalerweise: 2<sup>w</sup> = Maschinenwortlänge
                                                Fall 1
                                                                  O(1)
  insert-in-Bitfeld
else if T.count < 2:
                                                                  O(1)
                                                Fall 2
  Trage x in min und/oder max ein
  Erhöhe T.count um 1, falls x neu
else if x∉{T.min, T.max}:
  if x < T.min:
    Vertausche T.min und x
                                                  O(1)
  if x > T.max:
    Vertausche T.max und x
                                                                  T(w)
  if T.details[high(x)].count == 0:
    insert(T.overview, w/2, high(x))
                                                  T(w/2) + O(1)
  insert(T.details[high(x)], w/2, low(x))
                                                  O(1)
  Aktualisiere T.count
```

T(w) = T(w/2) + O(1) ... wie löst man diese Rekursionsformel auf?

```
find(vEB-Tree T, Bits w, Schlüssel x):
if w \le 5:
  find-in-Bitfeld
else if T.count == 0:
  return false
else if x \in \{T.min, T.max\}
  return true
else
  if T.details[high(x)].count == 0:
   return false
  return find(T.details[high(x)], w/2, low(x))
```

```
Laufzeit. Wieder T(w) = T(w/2) + O(1)?
```

### Nein! Find geht in O(1)!

Alle 64bit-Bitfelder liegen in einem konsekutiven Speicherbereich als ein großes Bitfeld mit u Bits. ⇒ Direkt nachschauen

```
closeAbove(vEB-Tree T, Bits w, Schlüssel x):
Löse Spezialfälle für w <= 5
Löse Spezialfälle für T.count < 3
if x < T.min:
  return T.min
TT = T.details[high(x)]
if TT.count == 0 OR TT.max <= x:</pre>
  H = closeAbove(T.overview, w/2, high(x)) //*
  L = T.details[H].min
else
  H = high(x)
  L = closeAbove(TT, w/2, low(x))
return \mathbf{H} \cdot 2^{w/2} + \mathbf{L}
```

\* Achtung: Falls kein Nachfolger existiert, müsste hier ein Fehler geworfen werden

```
Laufzeit. Wieder T(w) = T(w/2) + O(1)...
```

```
T(w) = T(w/2) + O(1)
     = T(w/4) + 2 \cdot O(1)
     = T(w/8) + 3 \cdot O(1)
     = T(w/16) + 4.0(1)
                               w = 2^k
                               angenommen, wir teilen bis zum Schluss:
     = T(w/2^k) + k \cdot O(1)
                               T(w/2^k) = O(1) ... Bitfeld funktioniert in O(1)
     = O(1) + k \cdot O(1)
     = O(k)
     = O(\log w)
     = O(\log \log u)
```

Theorem. Insert, delete (analog zu Insert) und closeAbove/closeBelow benötigen in einem vEB-Tree O(log log u) Zeit.

| Operationen          | Bal. Baum            | BF   | BF+min | BF+link | BF+Baum  | vEB          |
|----------------------|----------------------|------|--------|---------|----------|--------------|
| insert(x)            | O(log n)             | O(1) | O(1)   | O(u)    | O(log u) | O(log log u) |
| delete(x)            | O(log n)             | O(1) | O(u)   | O(u)    | O(log u) | O(log log u) |
| find(x)              | O(log n)             | O(1) | 0(1)   | O(1)    | 0(1)     | O(1)         |
| min()/max()          | O(lg n), <b>O(1)</b> | O(u) | O(1)   | 0(1)    | 0(1)     | O(1)         |
| closeAbove(x), cB(x) | O(log n)             | O(u) | O(u)   | O(1)    | O(log u) | O(log log u) |

 $\log_2 \log_2 4,294,967,296 = 5$  $\log_2 \log_2 18,446,744,073,709,551,616 = 6$ 

## van Emde Boas: Platzverbrauch

Theorem. vEB-Trees benötigen O(u) Platz.

#### Beweis.

S(u) ... Platzverbrauch des vEB-Trees T(u)

**Rekursionsformel:** 

```
S(u) = O(1)  // min, max, count 
+ S(<math>\sqrt{u})  // overview 
+ \sqrt{u} \cdot S(\sqrt{u})  // details[] 
= O(\sqrt{u}) \cdot S(\sqrt{u}) + O(1)
```

```
\Rightarrow S(u) = O(u^{1/2}) \cdot S(u^{1/2}) + O(1)
= O(u^{1/2}) \cdot O(u^{1/4}) \cdot S(u^{1/4}) + 2 \cdot O(1)
= O(u^{1/2}) \cdot O(u^{1/4}) \cdot O(u^{1/8}) \cdot S(u^{1/8}) + 3 \cdot O(1)
= O(\prod_{i=1...k} u^{1/(2^{i})}) \cdot S(u^{1/(2^{k})}) + k \cdot O(1)
= O(\prod_{i=1...\log \log u} u^{1/(2^{i})}) \cdot O(1) + O(\log \log u)
... ist der erste Term jetzt linear?
```

```
ints: min max count

overview T(\sqrt{u})

Array details[0,...,\sqrt{u} - 1]

T(\sqrt{u}) T(\sqrt{u}) T(\sqrt{u})
```

## van Emde Boas: Platzverbrauch

```
\prod_{i=1...\log\log u} u^{1/(2^i)} = O(u)
Setze ein: u = 2^{2^k}, \log \log u = k
                                     \prod_{i=1}^{k} (2^{2^k})^{1/(2^i)}
                                    = \prod_{i=1,k} 2^{(2^k)/(2^i)}
                                          = \prod_{i=1}^{k} 2^{2^{k-i}}
                                          =\prod_{i=0,k-1} 2^{2^i} = O(2^{2^k})
                                                                 =? O(2^{2\cdot 2^{k-1}})
                                                                  =? O(2^{2^{k-1}} \cdot 2^{2^{k-1}})
                                            \prod_{i=0...k-2} 2^{2^{i}} = {}^{?} O(2^{2^{k-1}})
                                            \prod_{i=0, k-3} 2^{2^i} = {}^{?} O(2^{2^{k-2}})
                                            \prod_{i=0...k-k} 2^{2^i} = O(2^{2^{k-(k-1)}})
                                                          2^{2^0} = {}^{?} O(2^{2^1})
                                                             2 = O(4)
                                                                 [Ende Beweis "linearer Speicherbedarf"]
```