CLÚSTERES, EXPLORADORES DEL CENTRO DE LA GALAXIA

M. Medrano 1 ⊕, B. Pradel 2 ⊕, F. De La Barra 3 ⊕, I. Nina 4 ↑, A. Mayorga 5 ↑

1 Cristo Rey, Santa Cruz, Bolivia 2 San Ignacio, La Paz, Bolivia 3 Instituto de Educación Bancario, La Paz, Bolivia 4 Nacional Quillacollo, Cochabamba, Bolivia 5 Santa Ana, Sucre, Bolivia

Abstract:

La Vía Láctea está conformada por miles de millones de estrellas y al observar una noche despejada la esfera celeste, uno se pregunta ¿cuál es el centro de nuestra galaxia? En 1917 el astrónomo estadounidense Harlow Shapley utilizó grupos de estrellas para obtener mejor entendimiento sobre la estructura de nuestra galaxia.

En esto se basa nuestro artículo, encontrar el centro de la Vía Láctea y su esencia con base a datos obtenidos de Shapley sobre constelaciones y la cantidad de sus clústeres. Usando herramientas como Excel y Stellarium, analizaremos los datos proporcionados de la lista de clusters Messier, para poder orientarnos y definir el centro de la Vía Láctea.

1. Introducción

Tratar de determinar el centro de la galaxia y su naturaleza sin elementos lo suficientemente modernos como los de la Nasa, puede llegar a ser todo un desafío. Se realizó una investigación científica con el propósito de afrontar dicho desafío de forma real y posible.

El resaltado proyecto utiliza como base fundamental, el estudio de clusters de determinadas constelaciones de nuestra Vía Láctea. Esto debido a que el centro de una galaxia, suele determinarse por la cantidad extensiva de estrellas y mayor actividad de ondas electromagnéticas de distintas frecuencias, y los clusters, son aquellas regiones de galaxias con gran contenido de estrellas englobadas y diversas frecuencias, por lo que, es más sencillo contar la cantidad de los mismos, que cada una de las estrellas en el centro de la galaxia singularmente. Como acotación, partiendo de los clusters, también se definió la insólita relación entre los mismos y el gran agujero negro de nuestra via lactea.

Primero, utilizando una base de datos como primera herramienta se logró agrupar cantidad de clusters por constelación, para determinar cuáles de estas eran las de mayor número y cuáles las de menor, información que sería útil para la localizar el centro de la galaxia de forma directa. Segundo, empleando "Stellarium", aplicación de observación virtual, para corroborar datos previos de la base de datos.

Finalmente, para precisar de forma visual los resultados de la investigación, se observó detalladamente el centro de la galaxia en diversas longitudes de onda mediante fotografías de las mismas.

2. Metodología

Para determinar el centro de la galaxia, se decidió centrar la investigación en el estudio de los clusters de diversas constelaciones, debido a que los mismos, son grandes representaciones de lo que fundamentalmente se encuentra al centro de la galaxia, cantidades exuberantes de estrellas. Para el desarrollo de este planteamiento, se tuvo que agrupar esencialmente, datos de clusters acorde a la constelación en la que se encontraban. Es importante recalcar que el centro de la Vía Láctea no es visible desde la Tierra. Lo tapan nebulosas, materia oscura, estrellas muy brillantes, nebulosas planetarias, etc. Sin embargo, la presencia del supuesto agujero negro se ha deducido por medio de sus emisiones de rayos gamma, rayos X y ondas infrarrojas.

A	В	С	D	E	47	[]		Lynga 7	Nor		1	1	UKS 1, UKS 1751-241	Sgr	151	72	/^^	i .	1
1 "	IM		ID/Name/Crossref	Con	48	80	6093		Sco	_		6496	Dun 460	Sco		72	_	_	Aqr
	1-1		47 Tuc, Lac I.1	Tuc	49	4	6121	Lac I.9	Sco	_		0470	Terzan 9	Sgr	152		700	6 H 1.52	Del
			H 6.20	Scl	50			Dun 68	Aps				Djorg 2, E456-SC38	Sgr	153	15	707	0	Peg
			Dun 62	Tuc	51			H 6.10	Sco			6517	H 2.199	Oph			_	_	-
,		302	Whiting 1	Cet	52		6139	Dun 536	Sco				H 1.49	Sgr	154	1 2	708	9	Agr
3		1261	Dun 337	Hor	53			Terzan 3	Sco	_		-	Terzan 10	Sgr	155	30	709	9	Cap
7		1201	Pal 1		54	107	6171	H 6.40	Oph			6535		SerCd	156	 -	140	_	
В				Сер	55			1636-283,ESO 452-SC11	Sco			6528	H 2.200	Sgr			_	Pal 12, Cap Dwarf	Сар
9			E 1, AM 1	Hor	56 57	13	6205		Her			6539		SerCd	157			Pal 13	Peg
0			Eridanus	Eri	58			H 4.50	Her			6540	H 2.198, Djorg 3	Sgr	158		740	2 H 3.558	Agr
-			Pal 2	Aur	59	12	6218	FSR 1735, 2MASS-GC03	Oph			6544	H 2.197	Sgr	100		/47	2 n 3.330	АЦІ
11		1851	Dun 508	Col	60		(005	H 2.584	Ara			6541	Dun 473	CrA	1				
2	79			Lep	61	10	6235	H 2.584	Oph				2MASS-GC01	Sgr	W				
3			Dun 578	Pup	62	10	6254		Sco				ESO 280-SC06	Ara	Key	words:			
4		2419	H 1.218	Lyn	63		0230	Pal 15, Zwicky1	Oph			6553	H 4.12	Sgr	M	NGC/IC	ID/N-	me/Crossre	of.
5			Koposov 2	Gem	64	62	6266	Dun 627	Oph				2MASS-GC02	Sgr	IVI,	NUC/IC,	ועוו	ille/Clossic	C1.
6			Pyxis	Рух	65	19	6273	50527	Oph			6558		Sgr	Mρ	ssier nu	mher	NGC or IC r	numh
7		2808	Dun 265	Car	66	17		H 6.11	Oph			11276	Pal 7	SerCd	000000000		,		
8			E3	Cha	67			H 2.195	Oph				Terzan 12	Sgr	and	d other i	dentif	fication or n	iame
9			Pal 3	Sex	68			H 6.12	Oph			6569	H 2.201, Dun 619	Sgr					
10		3201	Dun 445	Vel	69			H 1.147	Oph				AL 3	Sgr	Cor	1:			
1		0202	Pal 4	UMa	70			H 1.45	Oph				GLIMPSE-C02, Mercer 3	Sgr		and Heat's			
2			Koposov 1	Vir	71	92	6341		Her			6584	Dun 376	Tel	Cor	rstellatio	on		
3		4447			72		6325		Oph			6624	H 1.50	Sgr	1				
			H 1.19	Com	73	9	6333		Oph		28	6626	Lac I.11	Sgr	1				
14		4372		Mus	74		6342	H 1.149	Oph			6638	H 1.51	Sgr	1				
!5			Rup 106	Cen	75		6356	H 1.48	Oph		69	6637	Lac I.12, Dun 613	Sgr	1				
16	68	4590		Hya	76			H 1.46	Oph			6642	H 2.205	Sgr					
.7		4833	Lac I.4, Dun 164	Mus	77			Dun 417	Ara			6652		Sgr					
18	53	5024		Com	78		11257		Oph		22	6656		Sgr					
19		5053	H 6.7	Com	79			Terzan 2, HP 3	Sco				Pal 8	Sgr					
10		5139	Omega Cen, Lac I.5	Cen	80		6366		Oph		70	6681	Dun 614	Sgr					
11	3			CVn	81			Terzan 4, HP 4	Sco				GLIMPSE-C01	Aql					
12			Dun 388	Cen	82			HP 1, BH 229	Oph			6712	H 1.47	Sct					
13		5200	AM 4		83		6362	Dun 225	Ara		54	6715	Dun 624	Sgr					
4				Hya	84			Liller 1	Sco			6717	H 3.143, Pal 9	Sgr					
_			H 6.9	Boo	86		6380	Ton 1, Dun 538?	Sco			6723	Dun 573	Sgr					
5			H 1.70	Vir	87			Terzan 1, HP 2 Ton 2, Pismis 26	Sco				Berkeley 42	Aql	1				
6		5694	H 2.196	Hya	88		6200	Dun 457	Sco				Dun 295	Pav	1				
7		14499		Aps	89	14	6402	Dun 43/	Oph			6760		AqI	1				
8		5824		Lup	90	14		H 1.44	Oph		56	6779		Lyr	1				
9			Pal 5	SerCp	91			Lac III.11.Dun 366	Ara				Terzan 7	Sgr	1				
0		5897	H 6.8, H 6.19	Lib	92		0377	Pal 6	Oph				Pal 10	Sge	1				
1	5		,	SerCp	93		6426	H 2.587	Oph				Arp 2	Sgr	1				
2	+ 3	0,01	Dun 389		94		5 120	Diorg 1	Sco		55	6809	Lac I.14, Dun 620	Sgr	1				
3	_		Duli 369	Lup	96			Terzan 5, Terzan 11	Sgr				Terzan 8	Sgr	1				
		5946		Nor	96		6440	H 1.150	Sgr				Pal 11	AqI	1				
4			BH 176	Nor	97			Dun 557	Sco		71			Sge	1				
5		5986	Dun 552	Lup	98			Terzan 6, HP 5	Sco		75	6864		Sgr	1				
16			Pal 14. AvdB	Her	99		6453		Sco			6934	H 1.103	Del					

Figura 1

Se recolectaron dichos datos y posteriormente fueron tabulados en Excel, para hacer un conteo más detallado y preciso de la cantidad de clusters agrupados en cada una de las constelaciones. (Figura 1)

Para poder corroborar la información recolectada, primeramente, se utilizó la herramienta de observación virtual "Stellarium", para comparar a las constelaciones. No se realizó ninguna técnica de astronomía observacional, debido a la incidencia de la contaminación lumínica en el panorama nocturno de diversas ciudades de Bolivia. Añadiendo que la calidad del aire

atmosférico de los últimos meses ha sido perjudicada grandemente debido a los incendios forestales alrededor del país como para realizar manualmente observaciones.

También se utilizaron imágenes del centro de la galaxia en diferentes ondas del espectrograma de luz, para lograr distinguir las áreas de clusters con mayor visibilidad posible. El espectro electromagnético cubre una región de longitudes de onda que varían en 22 órdenes de magnitud, y que va desde los rayos gamma hasta las ondas de radio. Únicamente una pequeña parte de él es visible al ojo humano. La radiación que contribuye de un modo importante al balance energético de la Tierra está formada por ondas electromagnéticas con longitudes de onda entre los aproximadamente 100 nm y los 100 μm. El espectro que se estudia en relación con la atmósfera se extiende de la radiación de onda corta (UV) a la región de las microondas.

Figura 2

En un extremo de la constelación de Sagitario, casi tocando la constelación de Ofiuco, a unos 28.000 años luz, hay una radio fuente que indica la proximidad del centro de la Vía Láctea. A esta fuente de radio se la conoce como Saggitarius A. En el proceso de recopilación de datos, al momento de hablar del centro de la galaxia, se cuestionó la órbita estable de estrellas y

clusters respectivamente, debido a la existencia de la fuente de radio o supuesto agujero negro "Sagitario A".

Las constelaciones estudiadas fueron:

La constelación de Escorpio se encuentra ubicada entre el Sur y el Sureste, justo a la izquierda de Centauro y sus estrellas más notables son Antares, Larawag, Girtab, Shaula e Iclarkrau.

Figura 3. Constelación Escorpio

La constelación de Sagitario atraviesa como en muchas otras, la Vía Láctea es una constelación del zodíaco, generalmente representada como un centauro sosteniendo un arco. Sagittarius se encuentra entre Scorpius al oeste y Capricornus al este.

Figura 4. Constelación Sagitario

Ofiuco u Ophiuchus o también conocido como "El cazador de serpientes" es una de las 88 constelaciones modernas, y era una de las 48 listadas por Ptolomeo. Puede verse en ambos hemisferios entre los meses de abril a octubre por estar situada sobre el ecuador celeste.

Figura 5. Constelación de Ofiuco

Se compararon los resultados con estos datos mencionados para lograr determinar si efectivamente en dichas constelaciones se podía distinguir aquel brillo del centro de la galaxia ya que en el medio se encuentra el mayor número de clusters agrupados en cada una de las constelaciones.

3. Resultados

Al no contar con telescopios para observar manualmente las estrellas de estas constelaciones y más aún debido a la cantidad de ellas que se encuentran en nuestra galaxia, es que recurrimos a utilizar la base de datos MILKY WAY GLOBULAR CLUSTERS de Messier. Se extrajo de ella una lista precisa de las 47 constelaciones presentes para luego hacer el recuento de sus clusters. (Figura 6)

CONS.		Lup	3			
Tuc	2	SerCp	2			
Scl	1	Lib	1			
Cet	1	-	100			
Hor	2	Nor	3			
Сер	1	Her	4			
Eri	1	Sco	19			
Aur	1	Oph	25			
Col	1	Ara	5			
Lep Pup	1	Sgr	35			
Lyn	1	SerCd	3			
Gem	1	CrA				
Рух	1					
Car	1	Tel	1			
Cha	1	AqI	4			
Sex	1	Sct	1			
Vel	1	Pav	1			
UMa	1	Lyr	1			
Vir	2					
Com	3	Sge	2			
Mus	2	Del	2			
Cen	3	Aqr	3			
Hya	3	Peg	2			
CVn	1	Сар	2			
Boo	1	Сир	157			
Aps	2		15/			

Figura 6

Figura 7

De acuerdo con el cuadro de datos (Figura 7) podemos observar que las constelaciones con mayor número de clústeres son Escorpio, Ofiuco y Sagitario; y en estas constelaciones es donde la Vía Láctea parece más brillante, siendo Sagitario la constelación con mayor número de clústeres. (Figura 8)

Figura 8 Figura 9

Evidentemente la cantidad de constelaciones con menores clústeres son significativas, sin embargo para seguir con el modelo de nuestro recuento tenemos los datos de las tres constelaciones con menor número de clústeres que son Eridanus, Auriga y Columba. (Figura 9).

Figura 10. Constelación Escorpio, Sagitario, Ofiuco

Parece ser que el centro exacto de nuestra Galaxia está a 0,3 grados de Saggitarius A, el supuesto agujero negro. De todas maneras no se sabe con certeza cuál es la naturaleza del centro de nuestra Galaxia. Al objeto que ocupa su posición se le ha llamado GZ-A.

4. Conclusiones

Desde luego, la tecnología en softwares y base de datos en línea con la que contamos hoy en día facilita en gran medida el proceso de este proyecto, al no poder contar con telescopios adecuados para estudiar clústeres a distancias tan lejanas como lo hizo Harlow Shapley en su tiempo o materiales para observar en ondas de radio o infrarrojo. Al apoyarnos en la contribución que realizó este hombre, podemos entender la relevancia que tiene el número de estrellas presentes en una constelación, ya que con ella es posible estimar la ubicación del centro de la Vía Láctea.

La razón por la que no podemos apreciar tanta luminosidad de estas constelaciones y sus clústeres vista en nuestros resultados, como cualquiera pensaría, se debe al polvo cósmico tan grueso y disperso en el espacio que actúa como una barrera que absorbe la luz visible que llega a la Tierra. A simple vista no podemos observar el centro de la galaxia, pero con las

herramientas adaptadas para visualizar diferentes detalles de ella en cada frecuencia, según el espectro electromagnético de longitudes de onda, fue posible y real.

5. Referencias

https://www.e-education.psu.edu/astro801/content/l8 p6.htm

https://www.espectrometria.com/espectro_electromagntico

Ihttps://www.constelaciones.info/

https://www.nombresuniverso.com/wordpress/sagittarius-guia-astronomica/

http://www.messier.seds.org/xtra/supp/mw_gc.html

https://stellarium.org/es/

https://youtu.be/ZGcylrm_3B8

https://www.google.com/amp/s/www.abc.es/ciencia/abci-centro-lactea-y-agujero-negro-supermasivo-como-nunca-habias-visto-202006080220_noticia_amp.html

https://www.google.com/amp/s/www.lavanguardia.com/vida/20160824/404173971540/astronomos-observan-cuatro-clusters-de-galaxias-nacidos-en-el-universo-temprano.html%3ffacet=amp

http://astroblogmanuel.blogspot.com/2014/10/que-es-un-cluster.html?m=1