10月9日上机实习安排

使用Gaussian软件完成:

- 1. (H₂O)₃团簇结构的优化,并进一步计算该团簇中氢键的平均键能
- 2. S_{N2} 反应机理研究: $F(g) + CH_3Cl(g) \rightarrow CH_3F(g) + Cl(g)$,以及主要反应物、产物的IR、UV-vis、NMR光谱

PPT展示: 2名同学

李振兴(+10): NBO分析,给出 H_2O 孤对电子的自然键轨道 钱思源 (+10): NMR原理

上机操作:作业逐项完成,下课前10 min告之完成情况

Geometry Optimization of (H₂O)₃ Cluster

Computational level: M06-2X/6-31+G(d)

Isomer I Isomer II Isomer III -229.18487148 a.u. -229.18436347 a.u. **-229.18657639 a.u.**

Geometry Optimization of $(H_2O)_3$ Cluster

Computational level: M06-2X/6-31+G(d)

Isomer III

$$E_{\text{I}}(\text{corrected}) = [E_{123} - (E_1 + E_2 + E_3) - E_{\text{BSSE}}]/3$$

$S_{\rm N2}$ -Reaction Mechanism:

$$F^{-}(g) + CH_3Cl(g) \rightarrow CH_3F(g) + Cl^{-}(g)$$

Computational level: CAM-B3LYP/6-31+G(d)

Reaction Coordinates

The structure of the TS:

$$r(C-C1)=2.134$$

 $r(C-F)=2.125$
 $\angle H-C-H=118.4^{\circ}$

S_{N2} -Reaction Mechanism:

$$F^{-}(g) + \widetilde{CH}_{3}Cl(g) \rightarrow CH_{3}F(g) + Cl^{-}(g)$$

Computational level: CAM-B3LYP/6-31+G(d)

Animation of IRC

Animation of TS

$$E_a = ? \text{ kcal/mol}^{-1} (298.15 \text{ K } \& 1 \text{ atom})$$

Properties of Reactant CH₃Cl (g) & Product CH₃F (g)

Computational level: CAM-B3LYP/6-31+G(d)

➤IR: freq

➤NMR: nmr test

>UV-vis: TD=(50-50,nstates=50)