CCK Special Topics Problem: Whack-a-Mol 2007-Jul-26

A turbine is used to reduce the gas pressure in a volume (the "low pressure" region). A separate vacuum pump keeps the "high pressure" region at 7.6×10^{-3} torr. The turbine will be idealized as a series of thin, diagonal 1 cm blades in linear motion (see sketch).

- A. Let $T=300\,\mathrm{K}$ everywhere. Show that the mean free path of the gas in the high pressure region is longer than the dimensions of the turbine blades (thus collisions between molecules can be ignored).
- B. A molecule of velocity $v_z \hat{z}$ is incident on the turbine from the high pressure region. The turbine blades move at speed v_f . Treat collisions with the blades as elastic scattering of a point particle from a flat surface. Show that for $v_z > v_f$, the molecule will cross over ("backstream") to the low pressure region.
- C. Molecules in the high pressure region have a Maxwellian distribution,

$$\frac{dn_H}{dv_z} = \frac{n_H}{c\sqrt{2\pi}} e^{-v_z^2/2c^2},$$

where n_H is the molar density (mol m⁻³) of molecules and c is the thermal speed. Express the rate of molecules (mol m⁻² s⁻¹) incident on the turbine from the high pressure region in the velocity range v_z to $v_z + dv_z$, in terms of n_H .

- D. Let $v_f = 10^4$ m/s. Assume that all molecules with $v_z > v_f$ will backstream, and estimate the total rate (mol m⁻² s⁻¹).
- E. Assume that all molecules incident on the turbine from the low pressure region (which has
 - 1 Gas at 300 K, 760 torr has a molar volume of \sim 22.4 liters.

- number density n_L) pass "forward" through the turbine. Express the forward rate (mol m⁻² s⁻¹) in terms of n_L .
- F. In a steady state, the forward and backstreaming rates balance. Calculate numerical values for the molar density N_L (mol m⁻³) and pressure (torr) of the low pressure region.

