University of New Brunswick Faculty of Computer Science

CS2333: Computability and Formal Languages

Homework Assignment 4, **Due Time, Date** 5:00 PM, February 18, 2022

	Student Name:	Matriculation Number:	
	Instructor: Rongxing Lu The marking scheme is shown in the left margin and [100] constitutes full marks.		
[100]	1. Use the pumping lemma to sho	ow that the following languages are not regular.	
[20]	(a) $A_0 = \{a^n b^n n \ge 0\}.$		
[40]	(b) $A_1 = \{0^n 1^n 2^n n \ge 0\}.$		
[40]	(c) $A_2 = \{ww w \in \{a, b\}^*\}.$		

Solutions.

- 1. Use the pumping lemma to show that the following languages are not regular.
 - (a) $A_0 = \{a^n b^n | n \ge 0\}.$

This is a sample solution, you still need to check and write it down in your own assignment. You can also follow what I discussed in the class and tutorial to finish the assignment 4.

Proof by Contradiction. (We only need to find one counter example.)

Assume that A_0 is regular.

Let p be the pumping length given by the pumping lemma. Choose s to be the string a^pb^p . Because s is a member of A_0 and s has length more than p, the pumping lemma guarantees that s can be split into three pieces, s = xyz, where for any $i \ge 0$ the string xy^iz is in A_0 .

- i. The string y consists only of as, or only of bs. In both cases, the string xyyz will not have equal number of as, and bs, leading to a contradiction.
- ii. The string y consists of two kind of symbol. In this case xyyz will have as, bs out of order. Hence it is not a member of A_0 , which a contradiction.

Therefore, A_0 is not regular.

For clarity, consider p = 7 as an example, then

$$s = a^p b^p = aaaaaaabbbbbbb$$

According to the pumping lemma, three conditions should be satisfied, i) $xy^iz \in A_0$ for every $i \ge 0$; ii) |y| > 0; and iii) $xy \le p$. Therefore, based on ii) and iii), we first consider cases of y in the splitting of s = xyz. Clear, we will have three cases for |y| = 4:

• case 1: The y is in the a part

$$s = \underbrace{aa}_{x} \underbrace{aaaa}_{y} \underbrace{abbbbbb}_{z}$$

Consider xy^iz as xy^2z when i=2, we have

$$xy^2z = \underbrace{aa}_x \underbrace{aaaaaaaa}_{y^2} \underbrace{abbbbbb}_z$$

Clearly, $11 \neq 7$, and thus $xy^2z \notin A_0$, the condition i) is not satisfied.

• case 2: The y is in the b part

$$s = \underbrace{aaaaaaabb}_{x} \underbrace{bbbb}_{y} \underbrace{b}_{z}$$

Consider xy^iz as xy^2z when i=2, we have

$$xy^2z = \underbrace{aaaaaaabb}_{x} \underbrace{bbbbbbb}_{y^2} \underbrace{b}_{z}$$

Clearly, $7 \neq 11$, and thus $xy^2z \notin A_0$, the condition i) is not satisfied.

• case 3: The y is in the a and b parts

$$s = \underbrace{aaaaa}_{x} \underbrace{aabb}_{y} \underbrace{bbbbb}_{z}$$

Consider xy^iz as xy^2z when i=2, we have

$$xy^2z = \underbrace{aaaaa}_x \underbrace{aabbaabb}_y \underbrace{bbbbb}_z$$

Clearly, as, bs are out of order in xy^2z , and thus $xy^2z \notin A_0$, the condition i) is not satisfied.

(b)
$$A_1 = \{0^n 1^n 2^n | n \ge 0\}.$$

Proof by Contradiction. (We only need to find one counter example.)

Assume that A_1 is regular.

Let p be the pumping length given by the pumping lemma. Choose s to be the string $0^p1^p2^p$. Because s is a member of A_1 and s has length more than p, the pumping lemma guarantees that s can be split into three pieces, s = xyz, where for any $i \ge 0$ the string xy^iz is in A_1 .

- i. The string y consists only of 0s, only of 1s or only of 2s. In these cases, the string xyyz will not have equal number of 0s, 1s and 2s, leading to a contradiction.
- ii. The string y consists of more than one kind of symbol. In this case xyyz will have 0s, 1s and 2s out of order. Hence it is not a member of A_1 , which a contradiction.

Therefore, A_1 is not regular.

For clarity, consider p = 3 as an example, then

$$s = 0^p 1^p 2^p = 000111222$$

According to the pumping lemma, three conditions should be satisfied, i) $xy^iz \in A_1$ for every $i \ge 0$; ii) |y| > 0; and iii) $xy \le p$. Therefore, based on ii) and iii), we first consider cases of y in the splitting of s = xyz. Clear, we will have five cases for |y| = 2:

• case 1: The y is in the 0 part

$$s = \underbrace{0}_{x} \underbrace{00}_{y} \underbrace{111222}_{z}$$

Consider xy^iz as xy^2z when i=2, we have

$$xy^2z = \underbrace{0}_{x} \underbrace{0000}_{y^2} \underbrace{111222}_{z}$$

Clearly, $5 \neq 3 = 3$, and thus $xy^2z \notin A_1$, the condition i) is not satisfied.

• case 2: The y is in the 1 part

$$s = \underbrace{0001}_{x} \underbrace{11}_{y} \underbrace{222}_{z}$$

Consider xy^iz as xy^2z when i=2, we have

$$xy^2z = \underbrace{0001}_{x}\underbrace{1111}_{y^2}\underbrace{222}_{z}$$

Clearly, $3 \neq 5 \neq 3$, and thus $xy^2z \notin A_1$, the condition i) is not satisfied.

• case 3: The y is in the 2 part

$$s = \underbrace{000111}_{x} \underbrace{22}_{y} \underbrace{2}_{z}$$

Consider xy^iz as xy^2z when i=2, we have

$$xy^2z = \underbrace{000111}_{x}\underbrace{2222}_{y^2}\underbrace{2}_{z}$$

Clearly, $3 = 3 \neq 5$, and thus $xy^2z \notin A_1$, the condition i) is not satisfied.

• case 4: The y is in the 0 and 1 parts

$$s = \underbrace{00}_x \underbrace{01}_y \underbrace{11222}_z$$

Consider xy^iz as xy^2z when i=2, we have

$$xy^2z = \underbrace{00}_{x} \underbrace{0101}_{y^2} \underbrace{11222}_{z}$$

Clearly, 0s, 1s and 2s are out of order in xy^2z , and thus $xy^2z \notin A_1$, the condition i) is not satisfied.

• case 5: The y is in the 1 and 2 parts

$$s = \underbrace{00011}_{x} \underbrace{12}_{y} \underbrace{22}_{z}$$

Consider xy^iz as xy^2z when i=2, we have

$$xy^2z = \underbrace{00011}_{x}\underbrace{1212}_{y^2}\underbrace{22}_{z}$$

Clearly, 0s, 1s and 2s are out of order in xy^2z , and thus $xy^2z \notin A_1$, the condition i) is not satisfied.

(c) $A_2 = \{ww | w \in \{a, b\}^*\}.$

Proof by Contradiction. (We only need to find one counter example.)

Assume that A_2 is regular.

Let p be the pumping length given by the pumping lemma. Choose s to be the string a^pba^pb . Because s is a member of A_2 and s has length more than p, the pumping lemma guarantees that s can be split into three pieces, s = xyz, where for any $i \ge 0$ the string xy^iz is in A_2 .

- i. The string y consists of as only. In both cases that y is left or right of the middle b, xyyz would not be in the form of ww. Hence it is not a member of A_2 , which is a contradiction.
- ii. The string y is $a^p b$. The condition $|xy| \le p$ would be violated.
- iii. The string y contains the center b and $y \neq a^p b$. Therefore, xyyz would not be in the form of ww. Hence it is not a member of A_2 , which is a contradiction.

Therefore, A_2 is not regular.

For clarity, consider p = 3 as an example, then

$$s = a^p b a^p b = aaabaaab$$

According to the pumping lemma, three conditions should be satisfied, i) $xy^iz \in A_2$ for every $i \ge 0$; ii) |y| > 0; and iii) $xy \le p$. Therefore, based on ii) and iii), we first consider cases of y in the splitting of s = xyz. Clear, we will have five cases for |y| = 2:

• case 1: The y is in the a part

$$s = \underbrace{a}_{x} \underbrace{aa}_{y} \underbrace{baaab}_{z}$$
 or $s = \underbrace{aaab}_{x} \underbrace{aa}_{y} \underbrace{ab}_{z}$

Consider xy^iz as xy^2z when i=2, we have

$$xy^2z = \underbrace{a}_x \underbrace{aaaa}_{y^2} \underbrace{baaab}_z$$
 or $xy^2z = \underbrace{aaab}_x \underbrace{aaaa}_{y^2} \underbrace{ab}_z$

Clearly, both cases are not in the form of ww, and thus $xy^2z \notin A_2$, the condition i) is not satisfied.

• case 2: The y contains the middle b

$$s = \underbrace{aa}_{x} \underbrace{ab}_{y} \underbrace{aaab}_{z}$$
 or $s = \underbrace{aaa}_{x} \underbrace{ba}_{y} \underbrace{aab}_{z}$

Consider xy^iz as xy^2z when i=2, we have

$$xy^2z = \underbrace{aa}_x \underbrace{abab}_{y^2} \underbrace{aaab}_z$$
 or $xy^2z = \underbrace{aaa}_x \underbrace{baba}_{y^2} \underbrace{aab}_z$

Clearly, both cases are not in the form of ww, and thus $xy^2z \notin A_2$, the condition i) is not satisfied.

6