

Clara-Maria Kohlpoth (B.Sc.) Philipp Dittrich (B.Sc.) Christopher Riesner (B.Sc.) Sommersemester 2018

Mathematik für Informatiker 2 PowerLernTage

Die hier gestellten Aufgaben sind beispielhaft. Keine Gewähr auf Vollständigkeit, Richtigkeit, Lösbarkeit. Die Punktezahlen sind plausibel erscheinende Vorschläge. Dieses Blatt behandelt Stetigkeit.

Aufgabe Stetigkeit.1 (6 Punkte)

- 1. Sei $f: \mathbb{R} \to \mathbb{R}$ gegeben durch $f(x) = x^2$.
 - a) Zeigen Sie mit Hilfe des ε - δ -Kriteriums, dass f in \mathbb{R} stetig ist.
 - b) Zeigen oder widerlegen Sie, dass f im Intervall [-1,1] gleichmäßig stetig ist.
 - c) Zeigen oder widerlegen Sie, dass f in \mathbb{R} gleichmäßig stetig ist.

Aufgabe Stetigkeit.2 (3 Punkte)

- 1. Zeigen oder widerlegen Sie für Funktionen $f, g : \mathbb{R} \to \mathbb{R}$ und $a \in \mathbb{R}$ die folgenden Aussagen:
 - a) f ist stetig in $a \Rightarrow |f|$ ist stetig in a
 - b) |f| ist stetig in $a \Rightarrow f$ ist stetig in a
 - c) $f \cdot g$ ist stetig in $a \Rightarrow f$ und g sind stetig in a

Hinweis: $|f|: \mathbb{R} \to \mathbb{R}$ ist diejenige Funktion, für die gilt |f|(x) = |f(x)|.

Aufgabe Stetigkeit.3 (3 Punkte)

1. Sei $c \in \mathbb{N}$. Untersuchen Sie, an welchen Stellen die Funktion $f: \mathbb{R} \to \mathbb{R}$ mit

$$f(x) = \begin{cases} cx & \text{falls } x \in \mathbb{Q} \\ 1 - cx & \text{falls } x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$

stetig ist. Zeigen Sie an diesen Stellen Stetigkeit mittels der ε - δ -Definition (Satz 4.22).

Hinweis: Sie dürfen ohne Beweis verwenden, dass für jede beliebige reelle Zahl k, konvergente Folgen mit Grenzwert k existieren, die vollständig rational oder vollständig irrational sind.