МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. УЛЬЯНОВА (ЛЕНИНА)

Кафедра алгоритмической математики

КУРСОВАЯ РАБОТА

по дисциплине «Дифференциальные уравнения»
Тема: Многоступенчатая ракета с сопротивлением воздуха и гравитацией

Студенты гр. 8382	Гордиенко А.М Ершов М.И.
Преподаватель	Павлов Д.А.

Санкт-Петербург 2021

ЗАДАНИЕ НА КУРСОВУЮ РАБОТУ

Студент Гордиенко А.М.

Студент Ершов М.И.

Группа 8382

Тема работы: Многоступенчатая ракета с сопротивлением воздуха и гравитацией

Исходные данные:

Многоступенчатая ракета

Содержание пояснительной записки:

«Содержание», «Введение», «Прямой метод Эйлера», «Обратный метод Эйлера», «Метод Хойна», «Метод Рунге-Кутты 4 порядка», «Графический интерфейс», «Заключение», «Список использованных источников».

Предполагаемый объем пояснительной записки:

Не менее 10 страниц.

Дата выдачи задания: 28.08.2021

Дата сдачи курсовой работы: 21.10.2021

Дата защиты курсовой работы: 21.10.2021

	Гордиенко А.М.
Студенты	Ершов М.И.
Пронодорожан	Париор Л А
Преподаватель	Павлов Д.А.

АННОТАЦИЯ

В курсовой работе рассмотрена задача полета многоступенчатой ракеты с учетом гравитации и сопротивления воздуха. Для этого использовалась формула Циолковского. Для решения поставленной задачи было использовано несколько методов: «Прямой метод Эйлера», «Обратный метод Эйлера», «Метод Хойна», «Метод Рунге-Кутты 4-го порядка». Результаты решения данного уравнения были представлены в виде графиков в графическом интерфейсе.

SUMMARY

In the course work, the problem of rocket flight. For this Tsiolkovsky rocket equation was used. To solve the problem, several methods were used: "Forward Newton's method", "Backward Newton's method", "Heun's method", "Runge-Kutta method of the 4th order". The results of solving this equation were presented in the form of graphs in the graphical interface.

СОДЕРЖАНИЕ

ЗАДАНИЕ НА КУРСОВУЮ РАБОТУ	2
АННОТАЦИЯ	
Выполнение работы	5
Прямой метод Эйлера	6
Обратный метод Эйлера	7
Метод Хойна	8
Метод Рунге-Кутты 4-го порядка	8
Сводная таблица методов	9
Продолжение сводной таблицы методов	10
GUI	
Вывод	13
Используемая литература	14

Введение

Дифференциальное уравнение является одним из фундаментальных понятий математики, широко применяемое в различных областях современных наук. Оно также применимо в физических процессах, один из которых рассматривается в данной курсовой работе. Полет ракеты является этим процессом. Были использованы методы интегрирования дифференциальных уравнений динамических систем такие как: «Прямой метод Эйлера», «Обратный метод Эйлера», «Метод Хойна», «Метод Рунге-Кутты 4-го порядка».

Выполнение работы

Была реализована программа, создающая графический интерфейс для ввода пользователем исходных данных ракеты, выбора численного метода, отрисовки графика зависимости скорости от времени.

Опишем начальные условия задачи в виде системы уравнений.

$$\frac{d}{dt}(mv) = F_{\mathsf{Итог}}$$

$$\frac{dm}{dt}v + \frac{dv}{dt}m = R - mg - kv^2,$$

где m — масса ракеты, изменяющаяся со временем, v — скорость ракеты, R — постоянная тяга, g — гравитационная постоянная, k — постоянное сопротивление воздуха (была получена экспериментально), t — время.

Зная постоянную скорость расхода топлива λ , заменим массу на функцию массы от времени.

$$m(t)=m_0-\lambda t.$$

Получаем

$$-\lambda v + (m_0 - \lambda t) \frac{dv}{dt} = R - (m_0 - \lambda t)g - kv^2.$$

Оставляем в одной части уравнения $\frac{dv}{dt}$:

$$\frac{dv}{dt} = \frac{R - (m_0 - \lambda t)g - kv^2 + \lambda v}{(m_0 - \lambda t)}$$

Результат каждого численного метода сравнивался с эталонной функцией, которая имеет следующую формулу:

$$\Delta v = I_{sp} g_0 \ln \left(\frac{m_0}{m_f} \right),$$

Где I_{sp} – импульс, g_0 – гравитационная постоянная, m_0 – начальная масса, m_f – конечная масса (изменяемая во времени).

Каждый метод был наследован от абстрактного класса Processor, в котором инициализируются основные параметры ракеты, а также методы вычислений массы и скорости ракеты в данный момент времени.

Структура класса Processor представлена на рис. 1.

```
class Processor:
    def __init__(self, stages, thrust, mass, burn_rate, burn_time, h):
        self.g = 9.8
        self.stages = stages

        self.mass = mass
        self.thrust = [i * 1000 for i in thrust] # 153.51 * 1000 # kN
        self.initial_mass = sum([i for i in mass]) # 3380 # kg
        self.burn_rate = burn_rate # 87.37864 # kg / s
        self.burn_time = burn_time # 10.3 # s

        self.specific_impulse = [self.thrust[i] / (self.g * self.burn_rate[i]) for i in range(self.stages)]
        self.drag_coefficient = 0.38 # kg / m

        self.final_mass = [self.initial_mass - self.burn_time[i] * self.burn_time[i] for i in range(stages)]
        self.h = h # 0.5

@statiomethod

def m_t(mass, time, lamb):
        return mass - time*lamb

def v_t(self, r, m, lam, t, g, k, v):
        return (r - g * self.m_t(m, t, lam) - k * v * v + lam * v) / self.m_t(m, t, lam)
```

Рисунок 1 – Структура класса Processor.

Прямой метод Эйлера

Метод представляет собой дискретное получение следующего значения путем приращения предыдущего значения на величину изменения функции, умноженной на шаг.

Алгоритм можно описать следующим образом:

$$v_{n+1} = v_n + hf(v_n, t_n),$$

где $f = \frac{dv}{dt}$ — ускорение, h - шаг.

Реализация метода представлена на рис. 2.

Рисунок 2 – Реализация прямого метода Эйлера.

Обратный метод Эйлера

Обратный метод Эйлера схож с прямым методов.

$$v_{n+1} = v_n + hf(v_{n+1}, t_{n+1})$$

Реализация метода представлена на рис. 3:

Рисунок 3 – Реализация обратного метода Эйлера.

Метод Хойна

Метод Хойна, или же трапецеидальный метод, можно интерпретировать как сочетание прямого и обратного методов Эйлера.

$$v_{n+1} = v_n + \frac{h}{2}(f(v_n, t_n) + f(v_{n+1}, t_{n+1}))$$

Реализация метода представлена на рис. 4:

Рисунок 4 – Реализация метода Хойна.

Метод Рунге-Кутты 4-го порядка

$$v_{n+1} = v_n + \frac{h}{6}(k_1 + 2k_2 + 2k_3 + k_4)$$

$$k_1 = f(v_n, t_n)$$

$$k_2 = f(v_n + \frac{h}{2}k_1, t_n + \frac{h}{2})$$

$$k_3 = f(v_n + \frac{h}{2}k_2, t_n + \frac{h}{2})$$

$$k_4 = f(v_n + \frac{h}{2}k_3, t_n + \frac{h}{2})$$

Реализация метода представлена на рис. 5.

Рисунок 5 — Реализация метода Рунге-Кутты 4 порядка.

Все значения были получены при инициализации модели ракеты со следующими параметрами:

№ Ступени	Тяга, кН	Масса, кг	Расход	Время
			топлива, кг/с	работы, с
1	153.51	3380	87.37864	30
2	153.51	3380	87.37864	20
3	153.51	3380	87.37864	20

Сводная таблица методов

	Прямой метод Эйлера			Обратный метод Эйлера		
h	1	0.5	0.25	1	0.5	0.25
max_err	1472.144	1543.245	1579.312	1468.985	1490.737	1507.820
mean_err	409.388	432.669	444.503	404.810	372.727	301.740
median_err	294.007	314.928	325.449	287.836	213.450	131.355

Продолжение сводной таблицы методов

	Метод Хойна			Метод Рунге-Кутты 4-го порядка			
h	1	0.5	0.25	1	0.5	0.25	
max_err	1470.514	1522.506	2286.356	1473.217	1543.791	1579.588	
mean_er	407.080	375.269	563.230	408.935	432.440	444.388	
median_ err	290.915	217.088	459.124	291.992	313.932	324.954	

GUI

Графический интерфейс был написан на языке Python с использованием библиотеки tkinter.

Интерфейс включает в себя поля ввода параметров ракеты, список методов, список с выбором шага алгоритма и кнопку запуска алгоритма.

Окно приложения представлено на рис. 6.

Рисунок 6 – Окно приложения в момент запуска.

После выбора пользователем количества ступеней появляются поля для ввода параметров ступеней.

Рисунок 7 – Окно приложения с полями для ввода параметров ракеты.

Результаты работы методов представлены на рис. 8–11.

Forward Euler:

Рисунок 8 – Вывод программы прямого метода Эйлера.

Backward Euler:

Рисунок 9 – Вывод программы обратного метода Эйлера.

Heun:

Рисунок 10 – Вывод программы метода Хойна.

Runge-Kutta:

Рисунок 11 — Вывод программы метода Рунге-Кутта 4 порядка.

С помощью выкидного списка выбирается количество ступеней ракеты, численный метод, шаг алгоритма.

В поля ввода каждой ступени пользователь вводит параметры соответствующей ступени.

После ввода пользователем нажимается кнопка Evaluate, которая выбранным пользователем методом проводит вычисления.

Результат работы метода выводится в виде графика в окне приложения.

На графике синей линией рисуется физический метод, зеленой — математический метод (эталонный), красной — значение ошибки.

Вывод

В ходе выполнения курсовой работы была написана программа, реализующая оконное приложение с численными методами, были изучены основные методы аппроксимации решения с непрерывным дискретным временем.

Используемая литература

https://www.python.org/

http://chaos.sgu.ru/K52/MND/algoritms/algoritms.html

https://www.simiode.org/resources/8310/download/SIMIODE_EXPO_2021_B1-R2_Christopher_Scott_Vaughen.pdf

https://ru.wikipedia.org/wiki/%D0%A4%D0%BE%D1%80%D0%BC%D1 %83%D0%BB%D0%B0_%D0%A6%D0%B8%D0%BE%D0%BB%D0%BA%D 0%BE%D0%B2%D1%81%D0%BA%D0%BE%D0%B3%D0%BE

https://ru.wikipedia.org/wiki/%D0%A3%D1%80%D0%B0%D0%B2%D0%BD%D0%B5