Учебник SQL

в БД Oracle

Дата обновления: 2021.11.17

Содержание

Введение в SQL	7
Диалекты SQL	7
Особенности SQL	7
Зачем изучать SQL	7
DML, DDL	8
Выполнение SQL. Облачные сервисы	9
LiveSQL	
SQL Fiddle	1C
Запуск примеров учебника	17
Инструменты для работы с БД Oracle	12
Средства разработки	12
Проектирование БД	12
Таблицы	13
Создание таблицы	13
Создание таблицы с несколькими полями	13
Значения по умолчанию	14
Понятие NULL. Not-null колонки	14
Комментарии к таблице, колонкам	
Основные типы данных	
Varchar2	16
Number	16
Date	17
Boolean	
Пример SELECT запроса	18
Написание SQL- кода	
Комментарии	19
Разделение команд SQL	
Регистр	20
Сортировка результатов. Order by	2
Подготовка тестовых данных	
Сортировка по возрастанию. Аѕс	2
Сортировка по убыванию. Desc	
Порядок сортировки по-умолчанию	23
Сортировка по порядковому номеру	
Nulls last. Nulls first	
Часть WHERE. Операторы сравнения	26
Операторы сравнения	26
Оператор "Меньше"(<)	26
Оператор "Больше"(>)	27
Оператор "Больше либо равно"(≥)	27
Оператор "Меньше либо равно"(≤)	
Проверка нескольких условий. AND, OR	
Проверка значения на NULL	
IN, NOT IN	
Вхождение в набор данных. IN	
Отсутствие в наборе данных. NOT IN	
Вхождение в диапазон. BETWEEN. NOT BETWEEN	
Соединения таблиц	

Подготовка данных	39
Join	40
Left join	41
Соединение таблиц без join	43
Древовидные структуры данных. Рекурсивные запросы	44
Реализация древовидных структур в РСУБД	
Connect by	45
Псевдостолбец level	45
Псевдостолбец CONNECT_BY_ISLEAF	46
Сортировка в рекурсивных запросах	47
Нарушение древовидной структуры при выборке	48
Подзапросы в Oracle	50
Подготовка тестовых данных	50
Подзапросы в where- части запроса	51
Подзапросы в select-части	52
Подзапросы во FROM части	52
Коррелированные подзапросы	53
Подзапросы в IN, NOT IN	
Exists. Наличие строк в подзапросе	56
Объединение запросов. UNION	58
Разница запросов. MINUS	61
Пересечение запросов	
Работа с множествами. Общая информация	
Следить за порядком колонок	
Сортировка	66
Приоритет выполнения	67
Subquery factoring. WITH	69
Подготовка данных	69
Вариант без With	70
Вариант с WITH	71
Функции для работы со строками	72
UPPER, LOWER	72
Конкатенация строк	72
Поиск подстроки	73
Подобие строк. Like	
Выражение ESCAPE в LIKE	76
Приведение к верхнему регистру. INITCAP	77
Замена подстроки. REPLACE	78
Удаление пробелов. TRIM	78
LPAD, RPAD	79
Функции для работы с NULL	80
Подготовка тестовых данных	80
NvI	80
NvI2	
Coalesce	81
Условные функции	
DECODE	
CASE	85
Условные функции в WHERE части	
Битовые операции	
Тестовые данные	
BIN_TO_NUM	90

BITAND. Побитовое "И"	
Агрегирующие функции	93
Подготовка данных	
Having	95
Distinct. Удаление дубликатов	96
Подготовка данных	96
Удаление дупликатов из одной колонки	97
DISTINCT учитывает все колонки в строке	98
NULL учитывается	98
DISTINCT с агрегатными функциями	99
DISTINCT и GROUP BY	100
Работа с датами в Oracle	101
Тип DATE	101
Приведение строки к дате	101
Функция SYSDATE	101
Приведение даты к строке	101
Trunc	102
ADD_MONTHS	102
Разница между датами	102
Months_between	103
Тип ТІМЕЅТАМР	103
SYSTIMESTAMP	103
EXTRACT	104
Приведение строки к timestamp	104
Аналитические функции	106
Когда агрегирующая функция становится аналитической	108
Подсчет результатов по группам. Partition by	108
Порядок вычисления. Order by	109
Диапазон работы аналитических функций	
Строки и значения	
Смещения при определении окна	
Ограничения на ORDER BY	
Оператор INSERT	118
Вставка с указанием колонок	
Вставка без указания колонок	
INSERT INTO SELECT	
Изменение данных. UPDATE	
Удаление данных. DELETE	
Удаление данных из связанных таблиц	
Слияние данных. MERGE	
Подготовка данных	
Использование MERGE	
Использование DELETE в MERGE	
Изменение структуры таблицы. ALTER TABLE	
Подготовка данных	
Добавление колонки в таблицу	
Добавление нескольких колонок в таблицу	
Удаление колонки из таблицы	
Удаление нескольких колонок в таблице	
Логическое удаление колонок	
Переименование колонки	
Изменение типа данных колонки	132

Изменение атрибута NOT NULL в колонке	133
Переименование таблицы	
Первичные ключи	135
Добавление первичного ключа в таблицу	135
Составные первичные ключи	136
Внешние ключи	
Создание внешних ключей	
Уникальные ключи	141
Создание уникальных ключей	141
Составные уникальные ключи	142
Представления(Views)	
Что такое представления	144
Создание представлений	144
Символ * при создании представлений	146
Изменение данных представления	147
Представления с проверкой (WITH CHECK OPTION)	
Изменение представлений из нескольких таблицтаблиц	
Ограничения в изменяемых представлениях	
Запрет изменения представления	151
Индексы	152
Что такое индексы	152
Создание индекса	152
Удаление индекса	152
Составные индексы	152
Index skip scan	153
Зачем использовать составные индексы	153
Уникальные индексы	154
Когда нужно создавать индекс	154
Виртуальные колонки	155
Создание виртуальных колонок	155
Добавление виртуальной колонки к уже существующей таблице	155
Когда использовать виртуальные колонки	156
Псевдостолбцы в Oracle	
ROWNUM	157
Top-N query	158
ROWID	159
LEVEL	159
Транзакции в Oracle	160
Что такое транзакции	160
COMMIT. ROLLBACK	160
Почему до сих пор нигде в учебнике не использовались commit/r	ollback?
	161
Транзакции в многопользовательской среде	161
Итого	
Где ещё брать информацию	163
Youtube	163
Блоги/сайты	163
Villagia	167

Введение в SQL

<u>SQL</u>, или *Structure Query Language* (Структурированный язык запросов) является основным инструментом для взаимодействия с реляционными базами данных.

С помощью SQL можно:

- Получать данные из базы данных
- Сохранять данные в базу данных
- Производить манипуляции с объектами базы данных

Диалекты SQL

Реляционных систем управления базой данных (СУБД) существует достаточно много. И как правило, в каждой СУБД есть свои отличительные особенности в SQL, которые заключаются в наличии или отсутствии в нем определённых функций, различиях синтаксиса самого SQL, а также по функциональным возможностям этого языка.

В данном учебнике мы будем рассматривать <u>СУБД Oracle</u>.

Особенности SQL

Пара слов о том, что необычного в SQL.

В отличие многих других языков программирования, например таких как Java, Pascal или JavaScript, программирование на которых заключается в том, чтобы описать, как нужно что-то сделать, в SQL описывается, что нужно сделать(т.е. какой результат мы хотим получить). SQL - ближайший к данным язык программирования. Он больше всего приближен к "чистым" данным системы. Под "чистыми" данными подразумевается то, что ниже тех абстракций, с которыми работает SQL, уже не будет.

Зачем изучать SQL

Как уже говорилось, SQL является основным средством общения с реляционными базами данных.

Когда какая-либо программа хочет получить, сохранить, или изменить данные в БД, то она это делает посредством SQL. Какой-нибудь список классов, с которыми работает объектно-ориентированный язык, должен получить данные, которые будут храниться в этих классах. Это все делается с помощью SQL.

Даже если в программе нигде явно не пишутся SQL-запросы, а используется с виду обычный программный код (например на языке Java), то это вовсе не значит, что в данном случае общение с БД происходит каким-то другим способом. Скорее всего, в программе используется специальная библиотека, которая превратит код на языке Java в соответствующий код на языке SQL и отправит его на выполнение БД. Подобных библиотек существует великое множество почти для всех популярных языков программирования.

DML, DDL

Команды языка SQL можно разбить на две группы - **DML** и **DDL**.

Кроме DML и DDL существуют еще команды DCL и TCL. На текущий момент они не рассматриваются в этом учебнике.

DML расшифровывается как *Data Manipulation Language* (Язык манипулирования данными). В него входят те команды SQL, которые могут изменять уже имеющиеся данные в БД. Под изменением следует понимать также добавление новой информации в БД и удаление уже существующей.

К командам DML относятся:

- SELECT
- INSERT
- UPDATE
- DELETE
- MERGE

Интересный момент - команда SELECT не изменяет данные, а только получает, но она все равно относится к категории DML.

DDL расшифровывается как *Data Definition Language* (Язык определения данных). В него входят те команды, которые отвечают за создание или изменение структуры данных или новых объектов в БД.

K DDL командам языка SQL относятся:

- CREATE
- RENAME
- ALTER
- DROP
- RENAME
- TRUNCATE
- COMMENT

Более подробно большая часть этих команд будет рассмотрена далее в этом учебнике.

Выполнение SQL. Облачные сервисы

Для того, чтобы начать работу с БД (причём любой), она должна быть где-либо установлена, и к ней должен быть доступ на подключение и выполнение запросов.

LiveSQL

В этом учебнике для выполнения sql-запросов будет использоваться сервис <u>Live SQL</u>. Он позволяет выполнять SQL в облаке, что непременно большой плюс - там гораздо быстрее зарегистрироваться, чем скачивать, устанавливать и настраивать себе БД Oracle.

Работать с livesql очень просто; опишем стандартные шаги, необходимые для запуска своих sql-запросов.

Входим под своей учёткой, после чего в левом боковом меню выбираем "SQL WorkSheet":

В открывшемся окне вводим наши SQL-запросы:

SQL Worksheet

```
1 create table test(
2 id nubmer(10) not null primary key,
3 value varchar2(100)
```

Чтобы выполнить запрос, написанный в SQL Worksheet, нажимаем на кнопку "Run", которая находится сверху над полем для ввода текста запроса:

Вообще, работа с LiveSQL не должна вызывать вопросов, но на всякий случай вот видео с youtube(на английском) с подробным описанием работы в нем: https://youtu.be/4oxsxJQQC-s.

SQL Fiddle

<u>SQL Fiddle</u> - еще один популярный сервис для работы с SQL. Поддерживает разные базы данных. Для работы SQLFiddle даже не требует регистрации.

Далее будет описано, как работать с данным сервисом.

Сначала заходим на SQL Fiddle.

Так как сервис поддерживает работу с несколькими БД, нужно выбрать ту, с которой будем работать - это Oracle:

Перед началом работы SQL Fiddle требует создания схемы. Это значит, что таблицы, с которыми нужно работать, должны быть созданы на этом этапе. Вводим текст ddl-скрипта (скрипта, который создаёт таблицы и др. объекты БД), после чего нажимаем на кнопку "Build Schema":

```
1 Create table test(
2 msg varchar2(10) not null
3 );

Build Schema L

Edit Fullscreen
```

После того, как схема будет построена, можно выполнять SQL-запросы. Они вводятся в правой панели(она называется "Query Panel"). Чтобы выполнить запрос, нажимаем на кнопку "Run Sql":

Результаты выполнения запросов отображаются под панелями создания схемы и ввода sql:

Запуск примеров учебника

Запускать примеры из учебника можно в любой среде. Тем не менее, в силу того, что тема транзакций будет рассматриваться в самом конце, лучше всего(и удобнее) использовать сервис LiveSQL.

В дальнейшем, при изучении PL/SQL, придётся выбрать какую-нибудь IDE, но при изучении базового SQL это необязательно.

Инструменты для работы с БД Oracle

Далее будут приведены ссылки на полезные инструменты, которые могут пригодиться для работы с Oracle.

Средства разработки

- <u>Pl/sql developer</u> известная среда разработки для Oracle, платная, есть пробный период.
- <u>SQL Developer</u> бесплатная среда разработки от Oracle.
- Toad for Oracle
- DBForge studio for Oracle
- <u>JetBrains Datagrip</u> отлично подходит, если необходимо работать одновременно с разными БД. Если рассматривать функционал, доступный с БД Oracle, то немного отстаёт от всех вышеперечисленных.
- <u>VSCode</u>(совместно с дополнением <u>Oracle Developer Tools for VS Code</u>) неплохой вариант, особенно если не хочется использовать тяжёлый SQL Developer, а платить за остальные IDE не хочется.

Проектирование БД

- <u>SQL Data Modeler</u> бесплатный, предоставляется корпорацией Oracle. Обладает обширным функционалом, заточенным именно на работу с БД Oracle.
- <u>ERWin DataModeler</u> платный. Есть пробный период. Хорошо подходит для моделирования структуры данных без привязки к БД.

Таблицы

Данные в реляционных базах данных хранятся в таблицах. Таблицы - это ключевой объект, с которыми придётся работать в SQL.

Таблицы в БД совсем не отличаются от тех таблиц, с которыми все уже знакомы со школы - они состоят из колонок и строк.

Каждая колонка в таблице имеет своё имя и свой тип, т.е. тип данных, которые будут в ней содержаться. Помимо типа данных для колонки можно указать максимальный размер данных, которые могут содержаться в этой таблице.

Например, мы можем указать, что для колонки возраст тип данных - это целое число, и это число должно состоять максимум из 3-х цифр. Таким образом максимальное число, которое может содержаться в этой колонке = 999. А с помощью дополнительных конструкций можно задать и правила проверки корректности для значения в колонке,- например, мы можем указать, что для колонки возраст в таблице минимальное значение = 18.

Создание таблицы

```
create table hello(
    text_to_hello varchar2(100)
)
```

После выполнения данной sql-команды в базе данных будет создана таблица под названием hello. Эта таблица будет содержать всего одну колонку под названием text_to_hello. В этой колонке мы можем хранить только строковые значения(т.е. любой текст, который можно ввести с клавиатуры) длинной до 100 байт.

Обратите внимание на размер допустимого текста в колонке text_to_hello. 100 байт - это не одно и то же, что и 100 символов! Для того, чтобы сказать базе данных Oracle, что длина строки может быть 100 символов, нужно было определить столбец следующим образом:

```
text_to_hello varchar2(100 char)
```

Создание таблицы с несколькими полями

В таблице может много столбцов. Например, можно создать таблицу с тремя, пятью или даже 100 колонками. В версиях oracle с 8i по 11g максимальное количество колонок в одной таблице достигает 1000.

Для того, чтобы создать таблицу с несколькими колонками, нужно перечислить все колонки через запятую.

Например, создадим таблицу cars, в которой будем хранить марку автомобиля и страну производитель:

```
create table cars(
   model varchar2(50 char),
   country varchar2(70 char)
)
```

Эта таблица может содержать, например, такие данные:

model	country
toyota	japan
ВАЗ	Россия
Tesla	

Следует обратить внимание на последние 2 строки в таблице cars - они не полные. Первая из них содержит данные только в колонке model, вторая - не содержит данных ни в одной из колонок. Эта таблица может даже состоять из миллиона строк, подобных последней - и каждая строка не будет содержать в себе абсолютно никаких данных.

Значения по умолчанию

При создании таблицы можно указать, какое значение будет принимать колонка по умолчанию:

```
create table cars(
   model varchar2(50 char),
   country varchar2(50 char),
   wheel_count number(2) default 4
)
```

В этом примере создаётся таблица cars, в которой помимо модели и страны производителя хранится ещё и количество колес, которое имеет автомобиль. И поле wheel_count по умолчанию будет принимать значение, равное 4.

Что значит по умолчанию? Это значит, что если при вставке данных в эту таблицу не указать значение для колонки wheel_count, то оно будет равно числу 4.

Понятие NULL. Not-null колонки

Ячейки в таблицах могут быть пустыми, т.е. не содержать значения. Для обозначения отсутствия значения в ячейке используется ключевое слово NULL. Null могут содержать ячейки с любым типом данных.

Рассмотрим таблицу cars из предыдущего примера. В каждой из трёх ее колонок может храниться Null (даже в колонке wheel_count, если указать значение Null явно при вставке).

Но представляют ли информационную ценность строки в таблице, где абсолютно нет значений? Конечно нет. Если рассматривать таблицу cars как источник информации об автомобилях, то нам хотелось бы получать хоть какую-то полезную информацию. Наиболее важной здесь будет колонка model - без нее информация о стране производителе и количестве колес будет бесполезной.

Для того, чтобы запретить Null-значения в колонке при создании таблицы, к описанию колонки добавляется not null:

```
create table cars(
   model varchar2(50 char) not null,
   country varchar2(50 char),
   wheel_count number(2) default 4
)
```