(S,d) を距離空間とし, $((S^*,d^*),\phi),((\tilde{S}^*,\tilde{d}^*),\tilde{\phi})$ は,以下の条件を満たす距離空間とする.

- 1. (S^*, d^*) は完備である.
- 2. 任意の $x, y \in S$ に対して $d(x, y) = d^*(\phi(x), \phi(y))$.
- 3. $\phi(S)$ は S^* において密である. すなわち、 $\overline{\phi(S)} = S^*$

ここで、 x^* を S^* の任意の点とすれば、 $((S^*, d^*), \phi)$ に関する条件 3 によって、

$$x^* = \lim_{n \to \infty} \phi(x_n) \tag{0.1}$$

となる S の点列 (x_n) が存在する。また,点列 $(\tilde{\phi}(x_n))$ は $(\tilde{S}^*,\tilde{d}^*)$ の Cauchy 列となり,条件 1 より $(\tilde{S}^*,\tilde{d}^*)$ は完備だから $(\tilde{\phi}(x_n))$ は収束列である。従って, \tilde{S}^* において

$$\tilde{x}^* = \lim_{n \to \infty} \tilde{\phi}(x_n) \tag{0.2}$$

が存在する. ここで、 $x^* \in \S^*$ に $\tilde{x}^* \in \tilde{S}^*$ を対応させる S^* から \tilde{S}^* への写像を f とする.

この時, (x_n) の取り方によらず \tilde{x}^* が一意に定まることを示したい.ここで,ある S の点列 $(x_n),(y_n)$ が存在して,

$$\tilde{x}^* = \lim_{n \to \infty} \tilde{\phi}(x_n), \quad \tilde{y}^* = \lim_{n \to \infty} \tilde{\phi}(y_n)$$
 (0.3)

とする.この時、任意の $\epsilon > 0$ に対して、

$$\exists n_0 \in \mathbb{N}, n > n_0 \Rightarrow \tilde{d}^*(\tilde{x}^*, \tilde{\phi}(x_n)) < \frac{\epsilon}{3}$$
 (0.4)

$$\exists n_1 \in \mathbb{N}, n > n_1 \Rightarrow \tilde{d}^*(\tilde{y}^*, \tilde{\phi}(y_n)) < \frac{\epsilon}{3}$$
(0.5)

ここで,

$$\tilde{d}^*(\tilde{x}^*, \tilde{y}^*) \le \tilde{d}^*(\tilde{x}^*, \tilde{\phi}(x_n)) + \tilde{d}^*(\tilde{\phi}(x_n), \tilde{\phi}(y_n)) + \tilde{d}^*(\tilde{\phi}(y_n), \tilde{y}^*) \tag{0.6}$$

$$<\frac{\epsilon}{3} + \tilde{d}^*(\tilde{\phi}(x_n), \tilde{\phi}(y_n)) + \frac{\epsilon}{3}$$
 (0.7)

ここから先が行き詰まっています.