1. Question 2.1.2

- (a) Let (X, d_X) be discrete and $f: X \to Y$ be a function from X to Y, a metric space. Let $V \subseteq Y$ be open. Then $f^{-1}(V) \subseteq X$ clearly. But we know that all subsets of the discrete space is open. Thus, the preimage of open sets in Y are open in X. Hence, the f is continuous.
- (b) Let $f: X \to Y$ be continuous. Then we know that **NEED TO FINISH**
- 2. Question 2.1.3

Let $f: \mathbb{R}^m \to \mathbb{R}^l$ be continuous. Then we know that for all $\varepsilon > 0$ there exists a δ such that for $a, b \in \mathbb{R}^m$, if $d(a, b) < \delta$ then $d(f(a), f(b)) < \varepsilon$. Assuming the Euclidean norms for each metric space, then $d(f(a), f(b)) = \sqrt{\sum_{i=1}^l (f_i(a) - f_i(b))^2}$. Since $d(f(a), f(b)) < \varepsilon$ we know that $\sqrt{\sum_{i=1}^l (f_i(a) - f_i(b))^2} < \varepsilon$. But through some algebraic manipulation, we see that $\sqrt{(f_i(a) - f_i(b))^2} < \sqrt{\sum_{i=1}^l (f_i(a) - f_i(b))^2} < \varepsilon$. Thus, for all a, b such that $d(a, b) < \delta$, we get that $d(f_i(a), f_i(b)) < \varepsilon$. Thus, if f is continuous, then so must be the component functions. Now, instead assume that all the f_i are continuous. This means that for all $a, b \in \mathbb{R}^m$, we see that if $d(a, b) < \delta$, we get that $d(f_i(a), f_i(b)) < \varepsilon$ for all i. Hence $\sqrt{\sum_{i=1}^l (f_i(a) - f_i(b))^2} < \sqrt{l \cdot \varepsilon}$ and thus function as a whole must be continuous.

3. Question 2.1.4

Let (X,d) be a metric space and $\varepsilon > 0$ be given. Now, suppose that $(a,b) \in X \times X$ and $(a',b') \in X \times X$ such that $\max d(a,a'), d(b,b') < 0.5\varepsilon = \delta$. Now we can see that $d(d(a,b),d(a',b')) \leq d(d(a,b),d(a',b)) + d(d(a',b),d(a',b')) \leq d(a,a') + d(b,b') \leq \varepsilon$. Thus, the metric is continuous.

4. Question 2.1.6

WHAT IS A DOMAIN???

5. Question 2.1.7

Let $G \subseteq \mathbb{R}^m$ be the topologist sin curve. That is, $G = \{0\} \times [-1,1] \cup \{(x,\sin(\frac{1}{x}) : x \in [0,1])\}$. We know from class that this is a connected set. But let a = (0,0) and b be any other point in G. Then there is no continuous function from a to b since we know that the topologist sin curve is not connected. Hence this is a connected but not path connected set.

6. Question 2.1.9

Let F be defined as in the question and let $a \in \mathbb{R}$ be arbitrary. Then there is a specific λ_0 such that $F(a) - \varepsilon < f_{\lambda_0}(a)$ for any $\varepsilon > 0$ since F is defined as the supremum. Since f_{λ_0} is continuous, we know there is a neighborhood G around a such that for all $x \in G$, we get $f_{\lambda_0}(x) - \varepsilon < f_{\lambda_0}(a)$ and thus

$$F(a) - \varepsilon < f_{\lambda_0}(a) - \varepsilon < f_{\lambda_0}(a) < F(a)$$

and hence F is lower semi-continuous.

October 13, 2024 1/2

7. Question 2.2.1

Since f is continuous, we know that for any x in X and for any $\varepsilon > 0$, there exists a δ such that $f(a) \in B(x, \varepsilon)$ if $a \in B(x, \delta)$. This means that if we swap the roles of ε and δ , for the inverse function $f^{-1}: Y \to X$ we get that f^{-1} is continuous. If X is not compact, we aren't guarenteed that the inverse is continuous. For example, let X = (0, 1) and $f = \frac{2x-1}{x-x^2}$. The inverse wouldn't be continuous.

8. Question 2.2.2

Since X is compact, it must be complete. This means we can use the Banach fixed point theorem and state that f has a fixed point. Assume that a, b are both fixed points of f. This means that d(f(a), f(b)) = d(a, b) < d(a, b). But this is a contradiction unless a = b. Hence, the fixed point is also unique.

9. Question 2.2.4

- (a) As $x \to 0$, it is clear that $sin(\frac{1}{x})$ oscillates rapidly between -1 and 1. Thus, as $x \to 0$
- 10. Question 2.2.7
- 11. Question 2.2.8
- 12. Question 2.2.9
- 13. Question 2.2.11
- 14. Question 2.2.12
- 15. Question 2.2.15
- 16. Question 2.2.16
- 17. Question 3.1.4
- 18. Question 3.1.5
- 19. Question 3.1.8
- 20. Question 3.1.9
- 21. Question 3.1.11