

Exercise 5A

Question 36: In \triangle ABC,

$$\angle A = \angle B = 45^{\circ}$$

So, $\angle C = 180^{\circ} - \angle A - \angle B$
 $= 180^{\circ} - 45^{\circ} - 45^{\circ}$
 $= 180^{\circ} - 90^{\circ} = 90^{\circ}$

Thus we find that $\angle C$ is the greatest angle of $\triangle ABC$. So, AB is the longest side which is opposite to $\angle C$.

Question 37:

In AABC,

$$\Rightarrow$$
 70° + 60° + \angle C= 180°

$$\Rightarrow$$
 $\angle C = 180^{\circ} - 130^{\circ} = 50^{\circ}$

Now in ABCD we have,

$$\angle$$
CBD = \angle DAC + \angle ACB [:: \angle CBD is the

exterior angle of ∠ABC]

$$= 70^{\circ} + 50^{\circ} = 120^{\circ}$$

Since BC=BD [Given]

So, ∠BCD =∠BDC

$$=180^{\circ} - 120^{\circ} = 60^{\circ}$$

Now in AACD we have

$$\angle A=70^{\circ}, \angle D=30^{\circ}$$

and
$$\angle ACD = \angle ACB + \angle BCD$$

$$=50^{\circ} + 30^{\circ} = 80^{\circ}$$

: ∠ACD is the greatest angle.

So the side opposite to $\angle ACD$, that is

AD, is the longest side of AACD

(ii) Since \angle BDC is the smallest angle, the side opposite to \angle BDC, that is AC, is the shortest side of \triangle ACD

.: AD > AC.

********* END ********