## Systems Thinking for Design

Session 2



INDIAN INSTITUTE OF INFORMATION TECHNOLOGY, DESIGN AND MANUFACTURING, KANCHEEPURAM

Dr. Karthik Chandrasekaran School of Interdisciplinary Design and Innovation (SIDI)

## Recap of last session

- 1. IIITDM and its relevance
- 2. Gap between student's competencies and industry requirements
- 3. Global state of the art in engineering
- 4. Assignments

## Understanding context



Sample mail from students

## Recap: What do these terms mean to you? (10 min)

- 1. Science (Natural / Social)
- Make-in-India

9. Product

2. Engineering

Startup India

10. Industrial Design

11. Engineering Design

3. Technology

Skill India

12. Prototype

13. Manufacturing

4. Innovation

\_\_\_\_\_

5. Entrepreneurship

IIITDM

6. Management

15. Customer

7. Enterprise/Business/Company

16. Market

14. User

8. Industry

Constraint: Should not exceed a page & should include all terms

## Recap: What competencies did you develop in Year-1 & how?



Relook at your first year courses and depict using the skills you have acquired in the first year My assumption: all of you remember the courses

| Category | Course Name                                   |  |  |
|----------|-----------------------------------------------|--|--|
| BSC      | Calculus                                      |  |  |
| BSC      | Engineering Electromagnetics                  |  |  |
| BEC      | Electrical Circuits for Engineers             |  |  |
| BEC      | Problem Solving and Programming               |  |  |
| BEC      | Materials for Engineers                       |  |  |
| DSC      | Foundation for Engineering and Product Design |  |  |
| BSC      | Engineering Electromagnetics Practice         |  |  |
| BEC      | Problem Solving and Programming Practice      |  |  |
| HSC      | Effective Language and Communication Skills   |  |  |

| Category | Course Name                              |  |  |  |
|----------|------------------------------------------|--|--|--|
| BSC      | Differential Equations                   |  |  |  |
| SEC      | Science Elective 1                       |  |  |  |
| BEC      | Engineering Graphics                     |  |  |  |
| ITC      | Data Structures and Algorithms           |  |  |  |
| DSC      | Sociology of Design                      |  |  |  |
| ITC      | Design and Manufacturing Lab             |  |  |  |
| PCC      | Discrete Structures for Computer Science |  |  |  |
| ITC      | Data Structures and Algorithms Practice  |  |  |  |
| HSC      | NSO/NCC/SSG/NSS                          |  |  |  |
| HSC      | Earth, Environment and Design            |  |  |  |

The answer that is most common will receive lowest marks



### Session outline

Challenges in the Fuzzy Front End of NPD

Need for inter-disciplinary concepts and approaches

## Exercise 2.1: What do you want to work on? (20 min)

- Identify a few areas of interest individually
- List a couple of dimensions of each area
- Summarize top 10 factors/aspects of the problem you identified
- Work together as a team on the idea
- Add relevant class work to Google drive and maintain it for the rest of your stay at IIITDM

## Lota – A study by Charles & Ray Eames



Link - https://youtu.be/BMC5gDv\_Yos

### Think about the hidden cost

How much do you think the headlight of Maruti 800 would cost?



## How to identify latent/unstated need?

What do you think is the reason for TATA motor's growth?

| No | OEM<br>Wholesales | Sep-20   | Sep-19   | Diff   | %<br>Growth |
|----|-------------------|----------|----------|--------|-------------|
| 1  | Maruti            | 1,47,912 | 1,10,454 | 37,458 | 33.91       |
| 2  | Hyundai           | 50,313   | 40,705   | 9,608  | 23.60       |
| 3  | Tata              | 21,200   | 8,097    | 13,103 | 161.83      |
| 4  | Kia               | 18,676   | 7,754    | 10,922 | 140.86      |
| 5  | Mahindra          | 14,857   | 14,333   | 524    | 3.66        |
| 6  | Honda             | 10,199   | 9,301    | 898    | 9.65        |
| 7  | Renault           | 8,805    | 8,345    | 460    | 5.51        |
| 8  | Toyota            | 8,116    | 10,203   | -2,087 | -20.45      |
| 9  | Ford              | 5,765    | 5,556    | 209    | 3.76        |
| 10 | MG                | 2,537    | 2,608    | -71    | -2.72       |
| 11 | VW                | 2,050    | 2,550    | -500   | -19.61      |
| 12 | Skoda             | 1,312    | 1,233    | 79     | 6.41        |
| 13 | Nissan            | 780      | 1,433    | -653   | -45.57      |
| 14 | Jeep              | 554      | 603      | -49    | -8.13       |
| -  | Total             | 2,93,076 | 2,23,175 | 69,901 | 31.32       |



## How to identify latent/unstated need?

- 1. Competitive price?
- 2. New design?
- 3. Aggressive marketing?
- 4. Nice features?



Image courtesy: https://www.globalncap.org

### Session outline

Kickstart Opportunity Identification

Challenges in the Fuzzy Front End of NPD

Need for inter-disciplinary concepts and approaches

## Fuzzy Front End (FFE) of NPD and Innovation



## The importance of FFE

- About 60% of the product cost is committed when the concept design is selected (wrong choices can destroy the advantage)
- Opportunity to shape a market and create new sources of competitive advantage ... (In a world of interdependence, competition can come from anywhere)
- Proliferation of technologies (digital), emergence of integrated product concepts (PSS, SCS, CPS) and regulatory issues like sustainability necessitates a deeper understanding of market and technology trends



## Key Challenges in FFE



## A variety of factors are involved in design



## We could easily get lost in the detail

- Cna yuo raed tihs? Olny 55 plepoe out of 100 can.
- i cdnuolt blveiee taht I cluod aulaclty uesdnatnrdwaht I was rdanieg. The phaonmneal pweor of the hmuan mnid, aoccdrnig to a rscheearch at Cmabrigde Uinervtisy, it dseno't mtaetr in waht oerdr the ltteres in a wrod are, the olny iproamtnt tihng is taht the frsit and lsat ltteer be in the rghit pclae. The rset can be a taotl mses and you can sitll raed it whotuit a pboerlm. Tihs is bcuseae the huamn mnid deos not raed ervey lteter by istlef, but the wrod as a wlohe. Azanmig huh? yaeh and I awlyas tghuhot slpeling was ipmorantt!

The power of seeing the whole without knowing all the parts

## The underlying pattern may not be obvious



Seeing connections and patterns requires immersion in the problem context

## The problem/requirement can be ambiguous

#### **Set of Elements**



#### **Different Meanings**

- •WITH A COMPUTER, I HANDLE A PROBLEM IN MY OFFICE
  - Using Computer to handle business problem
- •WITH MY OFFICE, I HANDLE A PROBLEM IN A COMPUTER
  - Providing hardware services to clients
- •IN MY OFFICE, I HANDLE A PROBLEM WITH A COMPUTER
  - Using computers for solving client problems

Source: Allen S. Lee (1999), Researching MIS

Each pattern suggests different requirements

## Scenarios may be difficult to visualize



Becomes more problematic with increasing use of IoT

## Effects over time may be difficult to predict



Did we change the TECHNOLOGY? OR It CHANGED us?

## Exercise 2.2: Is there scope for taking a more holistic view of your problem/idea? (15 min)



Can you see the elephant in your opportunity/idea description or are you seeing the tail/trunk?

## Are you able to see the difference between problem space & solution space?



### Session outline

Kickstart Opportunity Identification

Challenges in the Fuzzy Front End of NPD

Need for inter-disciplinary concepts and approaches



## Multi-disciplinary & cross-functional challenge



**INCOMMENSURABILITY** 

### Multiple disciplines = Multiple approaches

Assumptions about real-world (disciplinary boundary)

Methodologies

Techniques

Tools

Approaches to Design

(Engg Design, FBS Model, Axiomatic Design, QFD, TRIZ, Agile, Lean, Design Thinking)

## Popular Approaches to Product Design



## Approaches differ in their core assumptions

Real-world problem situations have Ambiguity Inter-dependency Uncertainty Multi-disciplinarity

How do we DESIGN solutions that are creative, efficient and economical?

People
Face
Problems
Problems

Engineers, Industrial Designers & Managers focus a lot on this

Far more emphasis on

<u>Discovery & Diagnosis</u> coupled with <u>iterative approach</u> can help focus on the right <u>Design</u>

<u>Challenge</u>

How do we ensure that the SOLUTION is effective, does not create new problems or worsen the original problem?

Systems Thinkers are

these issues because

more concerned about

## FFE & NPD needs a Holistic Approach



## Systems Thinking helps in Holistic Design



### Systems thinking enhances design competence



## While approaches are useful in different ways, never forget that design is a social activity



"Thinking outside of the box didn't work.
Thinking inside of the box didn't work.
Maybe it's a defective box!"

Expert designers pay attention to the real issues without becoming prisoners of methods ... Pay greater attention to collaborative problem solving

# Welcome to the world of inter-disciplinary concepts

Reflect on today's session and post your comments

