PROGRAMA DE PÓS-GRADUAÇÃO DOUTORADO EM CIÊNCIA DA COMPUTAÇÃO ASSOCIAÇÃO UFMA/UFPI

Disciplina: Redes Neurais (DCC40) Professor: Areolino de Almeida Neto

Aluno: Raimundo Vale

Trabalho sobre Reconhecimento de Fonemas via RNA

Atividade do trabalho

Realizar o treinamento de uma RNA do tipo **MLP** para aprender a reconhecer as sílabas das palavras DIREITA e ESQUERDA. Foram utilizadas 119 amostras gravadas pelos alunos da disciplina. As amostras foram gravadas de diferentes formas, entonações, velocidades e pronúncias para propiciar mais diversidade. As amostras foram separadas em três partes: treino, validação e teste.

Proposta para a solução

Os arquivos foram gerados e agrupados conforme as sílabas das palavras DIREITA e ESQUERDA. Cada arquivo de sílaba foi lido e tratado via FFT obter a representação das senoides. Os dados obtidos após o tratamento com FFT resultava em arquivos muito grandes pelo que optei por agrupar as frequências em tamanhos iguais e iniciar o aprendizado. Ao longo do aprendizado vários cenários (conjunto das variáveis importantes do problema) foram testados para avaliar qual obtinha os melhores resultados. As variáveis que julguei importantes e que foram modificadas nos cenários foram: quantidade de amplitudes agrupadas para formar uma média, quantidade de médias fixa dos arquivos pós-tratramento com FFT, tamanho das bases de validação, treino e teste, taxa de aprendizagem, função de ativação, quantidade de épocas. Os cenários estão descritos detalhadamente no Anexo II deste documento. Segue abaixo a tabela comparativa de resultados.

Tabela comparativa de resultados – **Cenário 5** teve a melhor acurácia combinada na validação e no teste.

Tabela comparativa de resultados de la teste de memor dedirecta combinada na variatição e no teste.										
Cenário	s Relação	Amplitudes por médias /	Acurácia A	Acuráci a	1 MSE	MSE	Acertos	Erros	Acertos	Erros
	T/V/Te	Tamanho	Validaçã	Teste	Validaçã	Teste	Validaçã	Validaçã	Teste	Teste
		amostra	0		0		0	0		
1	60/25/15	600/40	16,76	13,08	3,09	2,99	30	149	14	93
2	70/20/10	300/80	16,08	15,49	3,37	3,12	23	120	11	60
3	85/10/5	300/80	12,68	13,89	3,48	3,13	9	62	5	31
4	60/25/15	600/40	17,88	16,82	2,8	3	32	147	18	89
5	70/20/10	600/40	16,08	22,54	3,86	4	23	120	16	55
6	70/20/10	900/20	9,09	12,68	3,13	3,06	13	130	9	62
7	70/20/10	600/40	13,99	12,68	3,22	3,01	20	123	9	62
8	70/20/10	600/40	13,99	12,68	3,59	3,58	20	123	9	62
9	70/20/10	600/40	13,99	12,68	3,51	3,5	20	123	9	62
10	70/20/10	600/40	13,29	16,9	5,55	6,16	19	124	12	59

Detalhamento do Cenário 5

Cenário 5:

Quantidade de amplitudes agrupadas para formar uma média: 600

Quantidade de médias por arquivo: 40

Tamanho dos grupos de treino, validação e teste: 70%-20%-10%

Tamanho da base de treino: 500 Neurônios da camada de entrada: 40 Neurônios da camada escondida: 80 Neurônios da camada de saída: 1

Total de épocas por treinamento: 5 por treinamento

Número de treinamento: 10

Valor do eta: 0.05

Função de ativação: Tangente hiperbólica

Valor de k = 1 (função linear)

Gráficos Resultantes

Acurácia

Este cenário proveu a melhor acurácia na fase de teste 22,54% que é um valor baixo para uma aplicação para uso, porém dada pequena base de treinamento, validação e teste foi o melhor resultado dentre todos as tentativas feitas. O resultado da validação foi quarto melhor dentre todos os cenários. E os resultados combinado de ambas as fases foi o melhor de todos pelo que concluí sendo este o melhor cenário do aprendizado.

MSE

Apesar de ter havido outros cenários com MSEs menores, no Cenário 5 os menores MSEs foram 3,8 e 4, havendo ainda picos de 4,45 e 4,32. Mesmo com MSE tão alto a acurácia do cenário foi determinante para a escolha. Os MSEs altos necessariamente não implicaram baixa acurácia ou poucos de acertos.

Acertos vs Erros

Apesar de resultados bem lineares e não tendo sido os melhores em valores absolutos — O Cenário 1 foi o melhor devido a base de validação e teste maior. O Cenário 5 em termos percentuais teve melhor retorno.

Conclusão:

- 1. Em não havendo uma base de comparação entre os resultados que obtive, conclui que os resultados foram baixos, porém dada o tamanho da base que consegui talvez os resultados estejam dentro do razoável.
- 2. O tamanho das bases foram determinantes para a variação dos valores. A maior base de treinamento (85%) não proporcionou os melhores resultados. A menor base de treinamento (60%) por sua vez proporcionou até bons resultados comparativamente aos demais cenários.
- 3. Uma opção que poderia ser testada porém pela exiguidade do tempo após conseguir um algorimo estável seria avaliar agrupar uma quantidade menor de amplitude por média (150) e comparar resultados já que optei por agrupo a partir de 300 amplitudes.

Anexo I - Detalhamento dos algoritmos

Para atacar problema utilizei tempo e esforço excessivo, com pouco retorno para desenvolver um algoritmo próprio funcional, em não conseguindo optei por utilizar os algoritmos de MLP e RBF disponibilizados pelos alunos da disciplina. Depois de avaliar bastante o resultado e andamento da atividade, escolhi utilizar o MLP para a RNA proposta. Somente na segunda tentativa de modificação do algoritmo é que consegui executar a RNA. A solução consiste em:

Módulo O que faz Saídas preProcessamento_1. Lê os arquivos *.wav dentro da pasta fonemas; arquivo: preProc.mat

Fonemas_v0.m

2. Define as variáveis: quantidade de amplitudes agrupadas por média (indiceCompac); quantidade fixa de médias de amplitudes

por amostra (tamSaida);3. Aplica FFT nas amostras;

4. Divide as bases para serem processadas.

training_Fonemas_ 1. Define variáveis: eta, função de ativação, épocas, quantidadearquivo: MelhorRede.mat

v0.m fixa de médias de amplitudes por amostra (tamSaida);

2. Chama em um laço na quantidade dos treinamentos as funções:

rnafit (treinamento da rede); rnapredict (validação) e para teste. 3. Gera os gráficos resultantes

rnafit.m Na quantidade épocas definidas aplica o cálculo dos pesos, dosObs.: desenvolvido por Alisson

erros, utiliza a função de ativação e a taxa de aprendizagem, fazMendonça.

propagação dos pesos nas camadas sobre a base de treinamento e

acumula o erro quadrático.

rnapredict.m Na base de validação e de teste compara os resultados de saídaObs.: desenvolvido por Alisson

com os de referência e assim acumula os resultados de acurácia, Mendonça.

acertos e erros.

grafico.m Gera os gráficos dos dados acumulados nos processamentosObs.: desenvolvido por Alisson

anteriores. Mendonça.

Anexo II – Descrição dos cenários

Cenário 1:

Quantidade de amplitudes agrupadas para formar uma média: 300

Quantidade de médias por arquivo: 80

Tamanho dos grupos de treino, validação e teste: 60%-25%-15%

Tamanho da base de treino: 428 Neurônios da camada de entrada: 80 Neurônios da camada escondida: 160 Neurônios da camada de saída: 1

Total de épocas por treinamento: 5 por treinamento

Número de treinamento: 10

Valor do eta: 0.07

Função de ativação: Sigmoide Valor de k = 1 (função linear)

Gráficos Resultantes

Conclusão do cenário

Apesar de o MSE ter se estabilizado ao longo dos treinamentos a números iguais e a base de treino menor - somente 428 exemplos — a quantidade de erros se manteve alta.

Cenário 2: Variáveis que mudaram em relação ao cenário anterior estão destacadas em vermelho

Quantidade de amplitudes agrupadas para formar uma média: 300

Quantidade de médias por arquivo: 80

Tamanho dos grupos de treino, validação e teste: 70%-20%-10%

Tamanho da base de treino: 500 Neurônios da camada de entrada: 80

Neurônios da camada escondida: 160 Neurônios da camada de saída: 1

Total de épocas por treinamento: 5 por treinamento

Número de treinamento: 10

Valor do eta: 0.06

Função de ativação: Sigmoide Valor de k = 1 (função linear)

Gráficos Resultantes

Conclusão do cenário

Em relação ao cenário 1 – a base de treino aumentou e ocorreu uma melhoria da acurácia (de 13,08 para 15,49). O MSE foi aumentou tanto na validação e teste. Já a quantidade de acertos melhorou em relação ao cenário 1.

Cenário 3: Variáveis que mudaram em relação ao cenário anterior estão destacadas em vermelho

Quantidade de amplitudes agrupadas para formar uma média: 300

Quantidade de médias por arquivo: 80

Tamanho dos grupos de treino, validação e teste: 85%-10%-5%

Tamanho da base de treino: 607 Neurônios da camada de entrada: 80

Neurônios da camada de entrada. 60 Neurônios da camada escondida: 160 Neurônios da camada de saída: 1

Total de épocas por treinamento: 5 por treinamento

Número de treinamento: 10

Valor do eta: 0.06

Função de ativação: Sigmoide Valor de k = 1 (função linear)

Gráficos Resultantes

Conclusão do cenário

Em relação ao cenário 2 — as bases de validação e treino diminuíram e tiveram pior desempenho. Já o MSE da validação aumentou. Por fim a relação de acertos e erros piorou. Entendemos pelos resultados obtidos que a melhor amostra de treino, validação e teste está entre a relação 60-25-15 e 70-20-10.

Cenário 4: Variáveis que mudaram em relação ao cenário anterior estão destacadas em vermelho

Quantidade de amplitudes agrupadas para formar uma média: 600

Quantidade de médias por arquivo: 40

Tamanho dos grupos de treino, validação e teste: 60%-25%-15%

Tamanho da base de treino: 428 Neurônios da camada de entrada: 40 Neurônios da camada escondida: 80 Neurônios da camada de saída: 1

Total de épocas por treinamento: 5 por treinamento

Número de treinamento: 10

Valor do eta: 0.05

Função de ativação: Tangente hiperbólica

Valor de k = 1 (função linear)

Gráficos Resultantes

Conclusão do cenário

Neste cenário no treinamento 6 apresentou ocorrência de NaN acarretando resultados impróprios para avaliação e por isso entendemos que este não é o melhor cenário para continuação do trabalho.

Cenário 5: Variáveis que mudaram em relação ao cenário anterior estão destacadas em vermelho

Quantidade de amplitudes agrupadas para formar uma média: 600

Quantidade de médias por arquivo: 40

Tamanho dos grupos de treino, validação e teste: 70%-20%-10%

Tamanho da base de treino: 500 Neurônios da camada de entrada: 40 Neurônios da camada escondida: 80 Neurônios da camada de saída: 1

Total de épocas por treinamento: 5 por treinamento

Número de treinamento: 10

Valor do eta: 0.05

Função de ativação: Tangente hiperbólica

Valor de k = 1 (função linear)

Gráficos Resultantes

Conclusão do cenário

Os resultados deste cenário apresentaram os melhores índices pelo que adotarei a relação de treinamento de 70%-20%-10% para as bases de treinamento, validação e teste. Nos cenários seguintes variarei outros elementos como as médias de amplitude. Sendo até o momento o melhor cenário.

Cenário 6: Variáveis que mudaram em relação ao cenário anterior estão destacadas em vermelho

Quantidade de amplitudes agrupadas para formar uma média: 900

Quantidade de médias por arquivo: 20

Tamanho dos grupos de treino, validação e teste: 70%-20%-10%

Tamanho da base de treino: 500 Neurônios da camada de entrada: 20 Neurônios da camada escondida: 40 Neurônios da camada de saída: 1

Total de épocas por treinamento: 5 por treinamento

Número de treinamento: 10

Valor do eta: 0.05

Função de ativação: Tangente hiperbólica

Valor de k = 1 (função linear)

Gráficos Resultantes

Conclusão do cenário

O cenário 6 melhorou em relação ao cenário 5 somente no MSE menor tanto na validação quanto no teste, porém obteve resultados piores na Acurácia e na relação de Acertos vs Erros.

Cenário 7: Variáveis que mudaram em relação ao cenário anterior estão destacadas em vermelho

Quantidade de amplitudes agrupadas para formar uma média: 600

Quantidade de médias por arquivo: 40

Tamanho dos grupos de treino, validação e teste: 70%-20%-10%

Tamanho da base de treino: 500 Neurônios da camada de entrada: 40 Neurônios da camada escondida: 80 Neurônios da camada de saída: 1

Total de épocas por treinamento: 5 por treinamento

Número de treinamento: 10

Valor do eta: 0.06

Função de ativação: Sigmoide Valor de k = 1 (função linear)

Gráficos Resultantes

Conclusão do cenário

Os resultados deste cenário apresentaram os melhores índices pelo que adotarei a relação de treinamento de 70%-20%-10% para as bases de treinamento, validação e teste. Em relação ao cenário 5 que obteve os melhores resultados até agora variei a taxa de aprendizagem e a função de ativação. Ainda assim o Cenário 7 não melhorou ao ponto de superar o Cenário 5.

Cenário 8: Variáveis que mudaram em relação ao cenário anterior estão destacadas em vermelho

Quantidade de amplitudes agrupadas para formar uma média: 600

Quantidade de médias por arquivo: 40

Tamanho dos grupos de treino, validação e teste: 70%-20%-10%

Tamanho da base de treino: 500 Neurônios da camada de entrada: 40 Neurônios da camada escondida: 80 Neurônios da camada de saída: 1

Total de épocas por treinamento: 50 por treinamento

Número de treinamento: 5

Valor do eta: 0.06

Função de ativação: Sigmoide Valor de k = 1 (função linear)

Gráficos Resultantes

Conclusão do cenário

O Cenário 8 aumentou em 10 vezes a quantidade de épocas (mesmo diminuindo o número de treinamento) para avaliar se o MSE seria menos. Diminui pouco em relação ao Cenário 5 que continuou com melhor acurácia entre os cenários testados.

Cenário 9: Variáveis que mudaram em relação ao cenário anterior estão destacadas em vermelho

Quantidade de amplitudes agrupadas para formar uma média: 600

Quantidade de médias por arquivo: 40

Tamanho dos grupos de treino, validação e teste: 70%-20%-10%

Tamanho da base de treino: 500 Neurônios da camada de entrada: 40 Neurônios da camada escondida: 80 Neurônios da camada de saída: 1

Total de épocas por treinamento: 5 por treinamento

Número de treinamento: 10

Valor do eta: $0.05 \rightarrow \text{na}$ metade da base o eta recebe o valor 0.09.

Função de ativação: Tangente hiperbólica

Valor de k = 1 (função linear)

Gráficos Resultantes

Conclusão do cenário

O Cenário 9 variou (de 0.05 para 0.09) a taxa de aprendizagem (eta) uma durante cada época. Houve uma melhora pequena no MSE, porém o Cenário 5 continuou com melhor acurácia entre os cenários testados.

Cenário 10: Variáveis que mudaram em relação ao cenário anterior estão destacadas em vermelho

Quantidade de amplitudes agrupadas para formar uma média: 600

Quantidade de médias por arquivo: 40

Tamanho dos grupos de treino, validação e teste: 70%-20%-10%

Tamanho da base de treino: 500 Neurônios da camada de entrada: 40 Neurônios da camada escondida: 80 Neurônios da camada de saída: 1

Total de épocas por treinamento: 5 por treinamento

Número de treinamento: 10

Valor do eta: $0.05 \rightarrow a$ cada terço da base o eta recebe o valor 0.09.

Função de ativação: Tangente hiperbólica

Valor de k = 1 (função linear)

Gráficos Resultantes

Conclusão do cenário

O Cenário 10 variou (de 0.05 para 0.09) a taxa de aprendizagem (eta) por duas vezes em cada época. Houve uma melhora pequena no MSE aumentou bastante e ocorreu uma melhora na acurácia mas não superou o Cenário 5.