Analiza I

Adisa Bolić, abolic@pmf.unsa.ba

Vj. br. 3. Princip matematičke indukcije - nastavak, Newtonova binomna formula

- [1] Koristeći PMI, dokazati da je broj $11^{n+2} + 12^{2n+1}$ djeljiv sa 133 za svako $n \in \mathbb{N}_0$.
- [2] Neka je S skup koji ima n elemenata. Dokazati da njegov partitivni skup $\mathcal{P}(S)$ ima 2^n elemenata.
- Nephodnost baze indukcije, primjer: $1 + 2 + \cdots + n = \frac{(2n+1)^2}{8}$
- Faktorijel: $n! = 1 \cdot 2 \cdot 3 \cdot ... \cdot n$ za $n \in \mathbb{N}_0$ pri čemu posebno je 0! = 1
- Binomni koeficijent: $\binom{n}{k} = \frac{n!}{k! \cdot (n-k)!}$ za $n, k \in \mathbb{N}_0$, $n \ge k$
- Osnovne osobine binomnog koeficijenta:

 - $\begin{array}{ll}
 \circ & \binom{n}{k} = \binom{n}{n-k} \\
 \circ & \binom{n}{k} = \frac{n}{n-k} \cdot \binom{n-1}{k}
 \end{array}$
 - $\circ \quad \text{Paskalov identitet: } \binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}$
- [2] Dokazati da za svaki prirodan broj n i sve realne brojeve x i y vrijedi Newtonova binomna formula

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k$$

[3] U razvoju izraza $\left(x\sqrt{x}+\frac{1}{x^4}\right)^n$ po Newtonovoj binomnoj formuli, koeficijent trećeg člana je za 44 veći od koeficijenta drugog člana. Naći član koji ne sadrži x.

Za samostalan rad

- [1] Koristeći PMI, dokazati da je broj $9^{n-3} 3^{n-2}$ djeljiv sa 6 za svako $n \in \mathbb{N}_0$.
- [2] Družite se s Miličićem, Ušćumlićem, Ljaškom, Boljarčukom, Gajom i Golovačem