Optimization for Data Science

F. Rinaldi¹

Padova 2020

Outline

Optimization for Data Science

1 Useful Model Transformations

Min-max Problems

Min-max Problem

$$\min_{x \in X} \max\{f_1(x), \dots, f_l(x)\}. \tag{1}$$

Assume that *X* is a polyhedron and that f_i , i = 1, ..., l are linear functions:

$$f_i(x) = a_i^T x + b_i, \quad i = 1, \dots, l.$$

- It is easy to verify that the problem is nonlinear.
- Use new variable z to rewrite the problem as follows:

$$\min_{\substack{x,z\\z=\max\{f_1(x),\ldots,f_l(x)\}\\x\in X}} z$$

■ We can hence replace the max function with a set of constraints:

$$\min_{\substack{x,z\\f_i(x)\leq z,\\x\in X}} z$$
 $i=1,\ldots,l$

LP Formulation

LP Formulation of Min-max Problem

keeping in mind that all functions are linear, we get:

$$\min_{\substack{x,z\\a_i^T X}+b_i\leq z,\quad i=1,\ldots,l\\x\in X}.$$

 In general, we might have a feasible solution that satisfies the following inequality

$$z > \max\{f_i(x), i = 1, \dots, l\}.$$

- the objective function ensures that the optimal value of z is the same as the value of $\max\{f_i(x), i = 1, ..., l\}$.
- We can easily check that in the max-max case the transformation does not hold.

Absolute Value Program

Absolute Value Program

Let us consider the following problem:

$$\min_{x,y} \sum_{j} c_{j}|x_{j}| + \sum_{k} d_{k}y_{k}$$
$$(x,y) \in C$$

assume that *C* is a polyhedron and that $c_j \geq 0 \ \forall j$.

Comments

■ We transform variables the following way:

$$x = x_j^+ - x_j^-, \quad x_j^+ \ge 0, x_j^- \ge 0.$$

- Transformation we give here is not unique:
 - case 1: $x_j \ge 0$. We get $x_i^+ = x_j + \delta = |x_j| + \delta e x_i^- = \delta$,
 - case 2: $x_j < 0$. We get $x_j^+ = \delta$ e $x_j^- = -x_j + \delta = |x_j| + \delta$,

with $\delta \ge 0$. If $\delta = 0$, one component must be zero and the other one is equal to $|x_i|$.

■ Notice that

$$x_j^+ + x_j^- = |x_j| + 2\delta.$$

■ Replacing the term $|x_j|$ in the objective function with the sum of x_j^+ and x_j^- , we get (due to $c_j \ge 0$) that for the optimal solution $x_j^+ = 0$ or $x_i^- = 0$ (or, equivalently, $\delta = 0$).

LP Reformulation

LP model

$$\min_{x,y} \sum_{j} c_{j}(x_{j}^{+} + x_{j}^{-}) + \sum_{k} d_{k}y_{k}$$

$$(x_{j}^{+} - x_{j}^{-}, y) \in C$$

$$x_{j}^{+} \ge 0, x_{j}^{+} \ge 0, \quad = 1, \dots, n$$

Different LP Formulation

 A different formulation can be obtained by simply rewriting the absolute value as follows

$$|x_j| = \max\{x_j, -x_j\}.$$

Min-max Formulation

Replacing the absolute value in the objective function with this new term, we have:

$$\min_{x,y} \sum_{j} c_j \max\{x_j, -x_j\} + \sum_{k} d_k y_k$$
$$(x, y) \in C$$

Getting the new LP

• if we introduce new variables z_j , likewise the min-max problem, we can write:

$$\min_{x,y,z} \sum_{j} c_{j}z_{j} + \sum_{k} d_{k}y_{k}$$

$$z_{j} = \max\{x_{j}, -x_{j}\}$$

$$(x, y) \in C.$$

LP Model

$$\min_{x,y,z} \sum_{j} c_{j}z_{j} + \sum_{k} d_{k}y_{k}$$

$$-z_{j} \leq x_{j} \leq z_{j} \quad j = 1, \dots, n$$

$$(x,y) \in C.$$

Linear Regression Models

Our Model

Build a mathematical (linear) model related to a specific physical problem, having a finite set of experimental measurements available. Let

$$y = a^T x + b$$

be the model considered, where

- $x \in \mathbb{R}^n$ is the input vector for the model;
- $y \in \mathbb{R}$ is the output of the model;
- $a \in \mathbb{R}^n$ and $b \in R$ are the parameters related to the model.
- We further assume to have a set of input-output samples (*training set*):

$$T = \{(x^1, y^1), \dots, (x^m, y^l)\}.$$

■ For each sample, we define the error between real and model output (i.e., the *error term*):

$$E_i = y^i - (a^T x^i + b).$$

Classic Approach

- GOAL: Determine the set of parameters that better represent the phenomenon under analysis, i.e., the one minimizing the errors over the training set E_i , i = 1, ..., l.
- Simplest choice: use least-square error!

Least-square Problem

Consider the square loss function and then solve the well-known *least-square* problem

$$\min_{a,b} \sum_{i=1}^{l} (y^{i} - a^{T} x^{i} - b)^{2}.$$

REMARK: We will see two alternative ways to model the problem using LP.

Min-max Formulation

Min-max Formulation

$$\min_{a,b} \max_{i} |y^i - a^T x^i - b|.$$

IDEA: minimize the possible loss for a worst case (*maximum loss*) scenario, that is minimizing the biggest error over the training set.

■ Taking into account the transformations we described, we can write:

$$\min_{\substack{a,b,z \\ |y^i - a^T x^i - b| \le z}} z$$

Using same tricks as before we get an LP:

$$\min_{a,b,z} z -z \le y^i - a^T x^i - b \le z \quad \forall i = 1, \dots, l.$$

Absolute Value Formulation

Absoute Value Formulation

$$\min_{a,b} \sum_{i=1}^{l} |y^{i} - a^{T} x^{i} - b|.$$

This is the well-known Least Absolute Deviation (LAD) model (also known as least absolute residual, least absolute error or least absolute value model).

The reasons why we choose to use ℓ_1 -norm formulation are the following:

- the model we get is very easy to solve (since it is equivalent to a linear programming problem);
- 2 ℓ_1 -norm is less sensitive to outliers (i.e., usually occurring when the underlying data distributions have pronounced tails).

LP Transformations

Using the transformations we described, we get:

$$\min_{a,b,z} \sum_{i=1}^{l} z_i$$

$$|y^i - a^T x^i - b| \le z_i \quad \forall i = 1, \dots, l$$

that is

$$\min_{a,b,z} \sum_{i=1}^{l} z_i$$

$$-z_i \le y^i - a^T x^i - b \le z_i \quad \forall i = 1, \dots, l.$$

■ Using the alternative transformation, we can write:

$$\min_{\substack{a,b,v,u \\ i=1}} \sum_{i=1}^{l} v_i + u_i$$

$$v_i - u_i = y^i - a^T x^i - b \ \forall \ i = 1, \dots, l$$

$$v > 0, \ u > 0.$$

Compressive Sensing

GOAL

Reconstructing a given input signal by means of a linear combination of elementary signals.

- These elementary signals do usually belong to a large, linearly dependent collection (Dictionary).
- A preference for linear combinations involving only a few elementary signals is obtained by penalizing non-zero coefficients.
- A well-known "penalty function" is the number of elementary signals used in the approximation.
- Obviously the choice we make about the specified collection, the linear model and the sparsity criterion must be justified by the domain of the problem we deal with.

Overcomplete Dictionaries

- Consider a real-valued, finite-length, one-dimensional, discrete-time input signal b, which we view as an $m \times 1$ column vector in R^m with elements b_i i = 1, ..., m.
- A dictionary

$$D = \{A_j \in \mathbb{R}^m : j = 1, \dots, n\}$$

of elementary discrete-time signals, usually called **atoms**.

Represent our signal as a linear combination of the atoms in this dictionary:

$$b = \sum_{i=1}^{n} x_j A_j.$$

- In many applications the dictionary we deal with is *overcomplete*, which means m < n.
- In this case, the atoms form a linear dependent set...there exists an infinite number of approximations for a given input signal.
- We are basically interested in representations having as few nonzero coefficients x_j as possible!

Enforcing Sparsity

Sparse Optimization Problem

Function P(x) measuring the *sparsity* of a solution x is needed. The optimization problem we want to solve is

$$\min_{x \in \mathbb{R}^n} P(x)
Ax = b$$
(2)

with A an $\mathbb{R}^{m \times n}$ matrix having as columns A_j the elementary signals of the dictionary D.

- A good measure of sparsity is the number of nonzero elements of the vector x.
- We can use the *support function* (i.e., function measuring the number of non-zero component in *x*)!

Minimum Weight Solution to Linear Equations

New Model

Set
$$P(x) = |\text{supp}(x)| = \text{card}\{i : x_i \neq 0\}$$
, thus getting:

$$\min_{x \in \mathbb{R}^n} |\operatorname{supp}(x)|
Ax = b.$$
(3)

- This is a classical problem and was referred to as minimum weight solution to linear equations.
- There is no polynomial time algorithm that computes an approximate solution for it.
- It is a hard problem!!!
- Support function is usually called ℓ_0 norm in Machine Learning.

How to Handle the Problem?

- IDEA: Replace the objective function with a relaxed version that can be handled efficiently.
- ℓ_1 norm represents the best convex approximant of the ℓ_0 norm.
- Using the ℓ_1 norm in place of the ℓ_0 norm is a natural strategy to obtain a convex problem we can easily handle.
- This is the well-known *Basis Pursuit Method* proprosed by Chen, Donoho and Saunders.

Classic Basis Pursuit (BP) Problem

$$\min_{x \in \mathbb{R}^n} ||x||_1
Ax = b,$$
(4)

with
$$||x||_1 = \sum_{i=1}^n |x_i|$$
.

Getting an LP

LP Formulation for BP

BP can be expressed as the following linear programming problem

$$\min_{x,y} \sum_{i=1}^{n} y_{i}$$

$$Ax = b,$$

$$-y \le x \le y$$

- Solved efficiently using modern methods.
- In some cases BP equivalent to the original ℓ_0 norm problem.