Unidad 3 – Selección de Componentes para Ensamble de Equipo de Cómputo

3.1 Chipset

El chipset es un conjunto de circuitos integrados que coordina el flujo de datos entre los componentes principales del sistema (CPU, memoria, dispositivos de entrada/salida). Actúa como puente entre la CPU y el resto del hardware.

3.1.1 ¿Para qué sirve?

- Gestiona la comunicación entre procesador, memoria RAM, discos, tarjetas gráficas, etc.
- Determina compatibilidades (tipo de CPU, cantidad máxima de RAM, puertos, etc.).

3.1.2 Procesador (CPU)

¿Qué es una CPU?

Es la unidad central de procesamiento, el "cerebro" del computador. Ejecuta instrucciones y coordina el funcionamiento de todo el sistema.

¿Cómo ha avanzado la tecnología de la CPU?

- Microprocesadores: Iniciaron en los años 70. Integraban millones de transistores en un solo chip. Ej: Intel 4004, 8086.
- Procesadores modernos: Multinúcleo (2, 4, 8 o más núcleos), soportan múltiples hilos de ejecución, con tecnologías como Hyper-Threading y Turbo

Componentes principales de una CPU:

- Unidad de control: Dirige la ejecución de instrucciones, decodifica las operaciones.
- Registros: Pequeñas memorias internas de acceso ultra rápido.
- ALU (Unidad Aritmético-Lógica): Realiza operaciones matemáticas y lógicas.
- Unidad de gestión de memoria: Coordina la lectura/escritura en RAM y caché.
- Reloj: Marca el ritmo de ejecución (GHz), regula sincronización.

¿Cómo funciona una CPU?

- Búsqueda de instrucciones (Fetch): Recupera instrucciones desde memoria.
- 2. Procesamiento (Decode + Execute): Interpreta y ejecuta la instrucción.
- 3. **Almacenamiento de resultados (Writeback):** Guarda los resultados en registros o memoria.

3.1.2.5 Controlador de Bus

¿Qué hace?

Gestiona la transmisión de datos por los buses del sistema (canales de comunicación entre componentes).

Responsabilidades:

- Determinar quién tiene permiso de usar el bus.
- Coordinar velocidades de transmisión.

Tipos:

• Controladores de bus de sistema, de expansión, de memoria, entre otros.

3.1.3 Puertos de Entrada/Salida (E/S)

Funciones principales:

Permiten la comunicación entre el computador y el entorno externo (usuario o dispositivos).

Tipos comunes:

USB: General, rápido y versátil.

• HDMI/VGA: Salida de video.

• Ethernet: Redes.

• **PS/2:** Teclado y mouse antiguos.

3.1.5 Controlador de Acceso Directo a Memoria (DMA)

• ¿Qué es?

Permite transferir datos entre memoria y dispositivos sin intervención constante del CPU.

Importancia:

Reduce la carga de la CPU y mejora el rendimiento del sistema.

Funcionamiento:

El controlador DMA toma el control del bus y transfiere datos directamente entre RAM y dispositivos (como discos o tarjetas de red).

3.1.6 Controlador de Interrupciones

• ¿Qué es?

Dispositivo que gestiona interrupciones: señales que indican que un dispositivo necesita atención del CPU.

Tipos:

- Interrupciones internas: Generadas por el procesador.
- Externas: Generadas por periféricos.

Circuitos de temporización:

- Cronometran operaciones (ej. reloj del sistema).
- Usados para tareas periódicas.

¿Para qué sirven?

 Permiten una respuesta eficiente a eventos del sistema sin depender de la supervisión constante del CPU.

Circuitos de control:

- Deciden cómo deben actuar los dispositivos del sistema.
- Importancia: Coordina tareas, controla señales, y evita conflictos.

3.2 Aplicaciones del Computador

- Procesamiento: Ejecución de tareas matemáticas y lógicas.
- Comunicación y redes: Transferencia de datos entre computadoras.
- Multimedia: Video, audio, gráficos.
- Control de dispositivos externos: Robótica, automatización.
- Aplicaciones especializadas: Medicina, simulación, investigación.

3.2.1 Entrada/Salida (E/S)

• ¿Qué es?

Proceso mediante el cual los dispositivos externos se comunican con el computador.

Componentes:

- Dispositivos de entrada: teclado, mouse, escáner.
- Dispositivos de salida: monitor, impresora, bocinas.

3.2.2 Almacenamiento

Tipos:

- Primario: RAM (temporal, rápida).
- Secundario: Disco duro, SSD (permanente).
- Terciario: Almacenamiento extraíble (USB, discos ópticos).
- Nube: Almacenamiento remoto vía internet.

3.2.3 Fuentes de alimentación

Funciones principales:

Convierte corriente alterna (CA) en corriente continua (CC) y distribuye energía a los componentes.

Tipos:

- ATX (más común)
- SFX (compacto)
- Modulares o no modulares

Componentes internos básicos:

Transformador, rectificador, filtro, regulador de voltaje, ventilador.

3.3 Ambientes de servicio

3.3.1 Negocios:

Computadoras utilizadas en administración, contabilidad, CRM, ERPs, etc.

Equipo Recomendado

Procesador: Core 15 14 gen o Ryzen 5 7600 Motherbord: Chipset Intel B760, Chipset AMD B650, compatible con DDR5 Memoria: 16GB DDR5 (2x8 GB, 5200MHZ) Almacenamiento: 1TB ssd NVMe Graficos: Integrados del Procesador Fuente: 500w 80+ Bronze (Certificacion de eficiencia)

3.3.2 Industria:

Automatización de procesos, control de maquinaria, monitoreo en tiempo real.

Equipo Recomendado

Procesador: Core 17 14 gen o Ryzen 7 PRO 7840 Motherbord: Chipset Intel Q670, Chipset AMD PRO SERIES, con soporte para vPRO / DASH Memoria: 32GB DDR5 Almacenamiento: 1TB ssd NVMe m.2(gen 4) + HDD 2TB Gráficos: NVIDIA Quaro T1000 o Radeon PRO W6400 Fuente: 650w 80+ Gold (Certificacion de eficiencia)

3.3.3 Comercio Electrónico:

Plataformas para ventas en línea, pagos digitales, gestión de inventarios.

Equipo Recomendado

Procesador: Core 15 14 gen o Ryzen 5 7600 Motherbord: Chipset Intel B760,

Chipset AMD B650, Memoria: 32GB DDR5 (2 x 16GB 5200MHz)

Almacenamiento: ITB ssd NVMe (PCIe Gen 4) Gráficos: NVIDIA GTX 1650 o

RTX 3050 Fuente: 550w 80+ Bronze(Certificación de eficiencia)