

7 NOVEMBER 2024

ASE 367K: FLIGHT DYNAMICS

TTH 09:30-11:00 CMA 2.306

JOHN-PAUL CLARKE

Ernest Cockrell, Jr. Memorial Chair in Engineering, The University of Texas at Austin

Topics for Today

- Topic(s):
 - Rocket (Launch Vehicle) Aerodynamics and Stability
 - Computing the Location of the Center of Pressure

ROCKET AERODYNAMICS AND STABILITY

JOHN-PAUL CLARKE

Ernest Cockrell, Jr. Memorial Chair in Engineering, The University of Texas at Austin

What Affects Aerodynamic Drag?

- The Object
 - Size
 - Shape
- Motion
 - Inclination
 - Speed
- Atmosphere
 - Mass
 - Compressibility
 - Viscosity

Air Flow Around Objects

Plate - Induce large resistance

Cylindrical Rod - Lower resistance

Symmetrical wing profile (Alpha = 0 °) - Least resistance

Air Flow Around Objects

The shape of an object has a very great effect on the amount of drag. Cd=1.14 Prism Cd=1.28 Cd= .295 Bullet Cd=.07 to .5 Sphere Cd = .045Airfoil Almost factor 30 better than the flat plate! All objects have the same frontal area. A = frontal area

Drag Coefficients for Various Noses

Cd for different nose design (subsonic velocity) and zero alpha:

Drag Coefficient v. Mach Number

Aerodynamic Forces

L = Lift, net force normal to air flow D = Drag, net force parallell to air flow

$$\vec{F}_{Aero} = \sum_{Surface} \vec{p} \cdot \vec{n} \cdot \vec{A} = \oint \vec{p} \cdot \vec{n} \cdot d\vec{A}$$

Center of Pressure

Center of Pressure is the average location of the pressure. Pressure varies around the surface of an object. P = P(x)

$$C_P = \frac{\int x \cdot p(x) \cdot dx}{\int p(x) \cdot dx}$$

Aerodynamic force acts through the center of pressure.

Center of pressure moves with angle of attack.

Center of Pressure

Each component has some area a_i located some distance d_i from reference line.

Distance *cp* times the area A equals the sum of the component distance times area.

$$cp A = d_n a_n + d_b a_b + d_f a_f$$

Rocket Drag Equation

$$D = C_D(M, \alpha) \cdot A \cdot \frac{\rho \cdot v^2}{2} [N]$$

$$\longrightarrow Dynamic Pressure$$

C_D: Drag coefficient. Contains all complex dependencies like air compressibility, viscosity body shape and angle-of-attack.

A : Reference area, typically the base diameter of the nose. Different A, affect the value of C_D.

 ρ : Density of the atmosphere of consideration (typically 1.23kg/m³ for air at sea-level).

v : Rocket speed

Dynamic Load

Student Rocket:

$$A = \frac{\pi \cdot D^2}{4} \Rightarrow 0.00385m^2$$

$$F_{\text{max}} = Q_{\text{max}} \cdot A \Rightarrow 550000 \cdot 0.00385 = 2117.5N \approx 216.0k$$

Induced Drag

A symmetrical wing/fin will generate lift when $|\alpha>0^{\circ}|$

A unsymmetrical fin / wing in an airflow will have excess pressure on the face with least surface (often on the side facing down) and low pressure on the opposite face with largest surface. The pressure difference is the lift.

Po > Pu ⇒ Positive Lift

Po

Aft vortex

Vortex'center

Pu

Drag Reduction

What Rocket Shape has the Highest Drag?

Axes

Center of Gravity

Each component has some weight \mathbf{w}_{i} located some distance \mathbf{d}_{i} from the reference line.

Distance of times the weight W equals the sum of the component distance times component weight.

$$cg W = d_n w_n + d_r w_r + d_b w_b + d_e w_e + d_f w_f$$

Weathercock (Passive) Stability

Spin Stabilization

Active Stabilization

Naturally dynamic unstable, but maintained stable due to an automatic attitude system. Trajectory and stability can be maintained by moving servo controlled fins or by use of side thrusters. A thrust vectoring system (TVC) can also be used. A TVC system is a device that can change the thrust vector by changing the orientation of the nozzle or by deflecting the plume.

Thrust Vectoring

IRIS-T Air-To-Air Jet Vane TVC System

Static Margin

Which of these are stable? And why?

COMPUTING LOCATION OF THE CENTER OF PRESSURE

JOHN-PAUL CLARKE

Ernest Cockrell, Jr. Memorial Chair in Engineering, The University of Texas at Austin

Barrowman Equations

 L_N = length of nose

d = diameter at base of nose

d_F = diameter at front of transition

d_R= diameter at rear of transition

 L_T = length of transition

X_P= distance from tip of nose to front of transition

 C_R = fin root chord

 C_T = fin tip chord

S = fin semispan

L_F = length of fin mid-chord line

R = radius of body at aft end

 X_R = distance between fin root leading edge and fin tip leading edge parallel to body

X_B= distance from nose tip to fin root chord leading edge

N = number of fins

Barrowman Equations

$$\bar{X} = \frac{(C_N)_N X_N + (C_N)_T X_T + (C_N)_F X_F}{(C_N)_R}$$

NOSE

 $(C_N)_N = 2$

For Cone: $X_N = 0.666L_N$ For Ogive: $X_N = 0.466L_N$

TRANSITION

$$(C_N)_T = 2 \left[\left(\frac{d_R}{d} \right)^2 - \left(\frac{d_F}{d} \right)^2 \right]$$

$$X_{T} = X_{P} + \frac{L_{T}}{3} \left[1 + \frac{1 - \frac{d_{F}}{d_{R}}}{1 - \left(\frac{d_{F}}{d_{R}}\right)^{2}} \right]$$

FIN

$$(C_N)_F = \left[1 + \frac{R}{S + R}\right] \left[\frac{4N\left(\frac{S}{d}\right)^2}{1 + \sqrt{1 + \left(\frac{2L_F}{C_R + C_T}\right)^2}} \right]$$

$$X_{F} = X_{B} + \frac{X_{R}}{3} \frac{\left(C_{R} + 2C_{T}\right)}{\left(C_{R} + C_{T}\right)} + \frac{1}{6} \left[\left(C_{R} + C_{T}\right) - \frac{\left(C_{R}C_{T}\right)}{\left(C_{R} + C_{T}\right)}\right]$$

