Práctico 2

1. Para las siguientes funciones hallar el dominio más grande posible, determinar el conjunto imágen (asuma para esto el Teorema de Bolzano para este contexto), y hallar las curvas de nivel, intentando bosquejar o reconocer geométricamente:

a)
$$f(x,y) = e^{\sqrt{x-y}}$$
 b) $\ln\left(\frac{1}{x^2 - y^2 + 1}\right)$ c) $\sin(x^2 + y^2)$
d) $f(x,y) = \cos(y) + x$ e) $f(x,y) = \sqrt{x^2 + y^2}$ si $x^2 + y^2 \ge 1$, $\frac{1}{x^2 + y^2}$ si $x^2 + y^2 \le 1$
f) $f(x,y) = \arctan (\ln(x) + 2y)$ g) $f(x,y) = e^{\cos(x) + y}$ h) $\frac{1}{y^2 + \ln(x)}$

2. Para las siguientes funciones hallar dominio máximo, el conjunto imágen y los conjuntos de nivel:

a)
$$f(x, y, z) = 2x + y - 3z$$
, b) $f(x, y, z) = x^2 - y^2 + z^2$, c) $f(x, y, z) = e^{x+y} - z$
d) $f(x, y, z) = x \cos(y)$, e) $f(x_1, \dots, x_n) = x_1 + \dots + x_n$ f) $f(x_1, \dots, x_n) = x_1^2 + \dots + x_n^2$.

3. Estudiar la convergencia de las siguientes sucesiones definidas en \mathbb{R}^2 , y hallar sus *puntos de aglomeración* (los límites de las subsucesiones convergentes).

a)
$$x_n = (e^{-n}, \frac{3}{n}).$$

b) $x_n = (e^{-n} + 2, [1 + (-1)^n]n).$
c) $x_n = ((-1)^n, (-1)^n + \frac{1}{n}).$
d) $(n \operatorname{sen} \frac{1}{n}, \sqrt{n+1} - \sqrt{n}).$
e) $(\cos n, \cos n).$
f) $(\cos n, \sin n).$

Sugerencia: Para los dos últimos, probar primero que el conjunto $\{n+2k\pi:n,k\in\mathbb{Z}\}$ es denso en \mathbb{R} .

4. En cada uno de los casos siguientes, sea S el conjunto de todos los puntos (x, y) del plano que satisfacen las desigualdades dadas. Hacer un gráfico mostrando el conjunto S y explicar si S es o no abierto. Indicar la frontera de S en el gráfico.

$$\begin{array}{lll} a) & x^2 + y^2 < 1. & & h) & 1 \le x \le 2 & y & 3 < y < 4. \\ b) & 3x^2 + 2y^2 < 6. & & i) & 1 < x < 2 & y & y > 0. \\ c) & |x| < 1 & y & |y| < 1. & & j) & x \ge y. \\ d) & x \ge 0 & y & y > 0. & & k) & x > y. \\ e) & |x| \le 1 & y & |y| \le 1. & & l) & y > x^2 & y & |x| < 2. \\ f) & x > 0 & y & y < 0. & & m) & (x^2 + y^2 - 1)(4 - x^2 - y^2) > 0. \\ g) & xy < 1. & & n) & (2x - x^2 - y^2)(x^2 + y^2 - x) > 0. \end{array}$$

5. Se definen los siguientes conjuntos:

$$A_{1} = \{(x,y) \in \mathbb{R}^{2} : 1 \leq x \leq 2, 1 < y < 3\}$$

$$A_{2} = \{(x,y) \in \mathbb{R}^{2} : 1 \leq x \leq 2, y > 0\}$$

$$A_{3} = \{(x,y) \in \mathbb{R}^{2} : y = x^{2}\}$$

$$A_{4} = \{(x,y) \in \mathbb{R}^{2} : x^{2} + y^{2} < 1, (x,y) \neq (0,0)\}$$

$$A_{5} = \{(x,y) \in \mathbb{R}^{2} : 2x^{2} + y^{2} < 1\} \cup \{(x,y) \in \mathbb{R}^{2} : x = y\}$$

$$A_{6} = \{(x,y) \in \mathbb{R}^{2} : x = (-1)^{n} + \frac{1}{n}, y = 1, n \geq 1\}$$

$$A_{7} = \{(x,0) \in \mathbb{R}^{2} : x = (-1)^{n} + e^{-n}, n \geq 1\} \cup \{(-1,0)\} \cup \{A_{1} \cap \mathbb{Q}^{2}\}$$

$$A_{8} = \{(x,y,z) \in \mathbb{R}^{3} : x + y + z < 1, x > 0, y > 0, z > 0\}$$

$$A_{9} = \{(x,y,z) \in \mathbb{R}^{3} : x^{2} + y^{2} + 1 < z\}$$

- a) Representarlos gráficamente.
- b) Hallar el interior, la frontera y la clausura de cada uno de ellos. Hallar el conjunto de sus puntos de acumulación.
- c) Indicar si son abiertos, cerrados, acotados, compactos, y/o conexos.
- 6. Probar los siguientes resultados.
 - a) Si A es un conjunto abierto y $x \in A$ entonces $A \setminus \{x\}$ es abierto.
 - b) A es abierto sii $A \cap \partial A = \phi$.
 - c) $\stackrel{\circ}{A} = \bar{A} \setminus \partial A$ es un conjunto abierto, más aún, es la unión de los subconjuntos abiertos contenidos en A (es el conjunto abierto incluido en A más grande).
 - d) A es cerrado sii $\partial A \subset A$ sii $A' \subset A$.
 - e) $\bar{A} = A \cup \partial A$ es un conjunto cerrado, más aún, es la intersección de todos los conjuntos cerrados que contienen a A (es el cerrado que contiene a A más chico).
 - f) A' es un conjunto cerrado.
- 7. Probar que si K es compacto y $\mathcal{A} = (A_{\lambda})_{{\lambda} \in \Lambda}$ es un cubrimiento abierto de K, entonces existe $\delta > 0$ tal que para cada $x \in K$ se tiene que $B(x, \delta) \subseteq A_{\lambda}$, para algún $\lambda \in \Lambda$ (un tal número δ se llama número de Lebesgue para el cubrimiento \mathcal{A}).