GA2001 Econometrics Solution to Problem Set 1

Junbiao Chen*

September 11, 2025

Problem 1.

(a) The Probability Space of an Urns-Balls Experiment

The probability space for an n-urns-k-balls experiement with n > k is given by

- $\Omega = \{(x_1, x_2, \dots, x_n) : \sum_{i=1}^n x_i = k \text{ and } x_i \in \mathbb{Z}\} \text{ with } |\Omega| = {k+n-1 \choose n-1}.$
- $\mathcal{F} = 2^{\Omega}$, the power set of Ω .
- For any event $A \in \mathcal{F}$, $P(A) = \frac{|A|}{\binom{k+n-1}{n-1}}$, where |A| is the cardinality of set A.

(b) The Law of Total Probability

Since $(B_i)_{i\in\mathbb{N}}$ is a partition of Ω , $(A\cap B_i)$ are disjoint across i. Therefore, $\sum_{i=1}^{\infty} P(A\cap B_i) = P(\cup_i (A\cap B_i)) = P(A)$.

(c)

Denote $P(B_i)$ the probability that exactly i urns are empty. Then the probability of all empty urns are located to the left of non-empty urns is given by

$$P(A) = \frac{1}{\binom{k+n-1}{n-1}} \left(\sum_{i=1}^{k} \frac{1}{P(B_{n-i})} \right)$$

Problem 2.

Let $\mathcal{I} := \{(a, b); a, b \in \mathbb{R}\}$ and $\mathcal{F} = \sigma(\mathcal{I})$.

^{*}E-mail: jc14076@nyu.edu.

(a)

Note that $(c,d] = \bigcap_{n}^{\infty}(c,d+\frac{1}{n})$. Since $(c,d+\frac{1}{n}) \in \mathcal{F}$, and the countable intersection is closed in σ -algebra, $\{(c,d]\} \subseteq \mathcal{F}$ We need to show that \mathcal{F} is strictly larger than $\{(c,d]:c< d;a,b\in\mathbb{R}\}$. In particular, $[a,b)\in\mathcal{F}$ (because $[a,b)=\cup_{n=1}^{\infty}(a-\frac{1}{n},b)$), while [a,b) cannot be generated by (c,d] with either countable union or intersection. Therefore, we have $\{(c,d]:c< d;a,b\in\mathbb{R}\}\subset\mathcal{F}$.

Similarly, $(a, \infty) = \bigcup_{n=0}^{\infty} (a, n)$, therefore, $\{(a, \infty)\} \subseteq \mathcal{F}$. However, $\{b\} \in \mathcal{F}$ while it cannot be generated by (a, ∞) with either countable union or intersection. Thus, $\{(a, \infty) : a \in \mathbb{R}\} \subset \mathcal{F}$.

(b)

To show that both $\mathcal{A} = \{[a, b] : a < b; a, b \in \mathbb{R}\}$ and $\mathcal{B} = \{(-\infty, b] : b \in \mathbb{R}\}$ generate \mathcal{F} , we need to show that $\sigma(\mathcal{A}) = \mathcal{F}$ and $\sigma(\mathcal{B}) = \mathcal{F}$.

Part 1. First, we show that $\mathcal{I} \subseteq \sigma(\mathcal{A})$. Pick any $(a, b) \in \sigma(\mathcal{I})$,

$$(a,b) = \bigcup^{\infty} [a + \frac{1}{n}, b - \frac{1}{n}] \in \sigma(\mathcal{A})$$

Therefore, $\sigma(\mathcal{I}) \subseteq \sigma(\mathcal{A})$.

Pick any $[a,b] \in \sigma(\mathcal{A})$, one can show that $[a,b] = \{a\} \cup (a,b) \cup \{b\} \in \sigma(\mathcal{I})$. Therefore, $[a,b] \in \sigma(\mathcal{I})$. Thus, $\sigma(\mathcal{A}) \subseteq \sigma(\mathcal{I})$. It concludes that, $\sigma(\mathcal{I}) = \sigma(\mathcal{A})$.

Part 2. Pick $(-\infty, b] \in \sigma(\mathcal{B})$, it follows that

$$(-\infty, b] = \mathbb{R} \setminus (b, \infty) \in \mathcal{F}$$
$$\Rightarrow \sigma(\mathcal{B}) \subseteq \mathcal{F}$$

Pick $(a, b) \in \mathcal{F}$, it follows that

$$(a,b) = \mathbb{R} \setminus (-\infty, a] \bigcap \left(\cup_{n=1}^{\infty} (-\infty, b - \frac{1}{n}] \right) \in \sigma(\mathcal{B})$$

$$\Rightarrow \mathcal{F} \subseteq \sigma(\mathcal{B})$$

Therefore, $\mathcal{F} = \sigma(\mathcal{B})$.

(c)

False. Because this set doesn't include singleton.

 $^{1{}a} \in \sigma(\mathcal{I})$ because ${a} = \bigcap_{n=1}^{\infty} (a, a + \frac{1}{n}).$

Problem 3.

The set $\mathcal{L} := \{(x,y) \in \mathbb{R}^2 : x = y; 0 \le x \le 1\}$ can be obtained by countable intersection of open sets in \mathbb{R}^2 . Concretely,

$$\mathcal{L} = \bigcap_{n \in \mathbb{N}} \{ (x, y) \in \mathbb{R}^2 : y > x + \frac{1}{n} \text{ and } x \in (-\frac{1}{n}, 1 + \frac{1}{n}) \} \bigcap_{n \in \mathbb{N}} \{ (x, y) \in \mathbb{R}^2 : y < x - \frac{1}{n} \text{ and } x \in (-\frac{1}{n}, 1 + \frac{1}{n}) \}$$

Problem 4.

Consider the following sequence:

$$A_1 = \{1, 2, \dots, \}$$

 $A_2 = \{2, 3, \dots, \}$

It follows that $\bigcap_{i\in\mathbb{N}} A_i = \emptyset$ (because suppose $n \in \mathbb{N}$ is in A_n , there exists A_m , s.t. $n \notin A_m$ for $i \geq m$.) Now we use length measure. Therefore, we have $\mu(\bigcap_{i\in\mathbb{N}} A_i) = 0$ while $\lim_{i\to\infty} \mu(A_i) = \infty$. (In fact, $\mu(A_i) = \infty$, $\forall i$.)

Problem 5.

Recall that in $(\mathbb{R}^k, \mathbb{B}^k)$, the Lebesgue measure λ is

$$\lambda(B) \equiv \inf_{B \subseteq \bigcup_{j=1}^{\infty} \{ \times_{i=1}^k (a_{ij}, b_{ij}) \}} \sum_{j=1}^{\infty} \pi_{j=1}^k (b_{ji} - a_{ij})$$

- (a.) Since a a = 0, we have $\lambda(\{a\}) = 0$
- **(b.)** Since every countable set A can be enumerated using singletons, $\mu(A) = 0$ for every countable set $A \in (B)(\mathbb{R})$.
- (C.) Similar to (b.), $\lambda((a,b)) = \lambda([a,b]) \lambda(\{a\}) \lambda(\{b\}) = b a 0 0$. Following this logic, $\lambda([a,b)) = \lambda((a,b]) = b a$.

Problem 6.

Note that $A\Delta B=(A\backslash B)\cup(B\backslash A)$. Since $(A\backslash B)\cap(B\backslash A)=\emptyset,\ P\Big((A\backslash B)\cup(B\backslash A)\Big)=P(A\backslash B)+P(B\backslash A)$.

$$|P(A) - P(B)| = |P((A \backslash B) \cup (A \cap B)) - P((B \backslash A) \cup (A \cap B))|$$

$$= |P(A \backslash B) + P(A \cap B) - P(B \backslash A) - P(A \cap B)|$$

$$= |P(A \backslash B) - P(B \backslash A)|$$

$$\leq |P(A \backslash B) + P(B \backslash A)| = |P(A \Delta B)|$$