1. Lue kuva.png $m \times n$ -matriisiksi M ja etsi siitä reunoja muodostamalla $(m-2) \times (n-2)$ -matriisi K, joka sisältää M:n alkioiden ja niiden neljän naapurialkion keskiarvojen erotukset, eli

$$K(i,j) = M(i+1,j+1) - \frac{1}{4} \left(M(i+1,j) + M(i+1,j+2) + M(i,j+1) + M(i+2,j+1) \right)$$

eli

$$K(1,1) = M(2,2) - \frac{1}{4}(M(2,1) + M(2,3) + M(1,2) + M(3,2))$$

$$K(1,2) = M(2,3) - \frac{1}{4}(M(2,2) + M(2,4) + M(1,3) + M(3,3))$$

jne

käyttämällä allaolevia $(m-2)\times (n-2)$ -matriiseja Mk, Mv, Mo, My, Ma

2. Tee laskelma, jolle annetaan allaolevan sekoituksen alkumäärät, ja joka laskee määrät vaikkapa 50 kierroksen ajalta

ja piirtää allaolevan näköisen kuvan

3. Muodosta allaolevan webin PageRank-matriisi $P\left(d=0.85\right)$ ja laske satunnaisen surffailijan todennäköisyydet olla sivuilla 1-6 vaikkapa 20 askeleen ajalta, kun aloitussivu valitaan umpimähkään eli alkutodennäköisyydet ovat 1/6, ja PageRankvektori X niin, että PX=X

ja piirrä allaolevan näköinen kuva

4. Tee laskelma, joka etsii annettujen pisteiden $[x_1, y_1], [x_2, y_2], [x_3, y_3]$ ja $[x_4, y_4]$ kautta kulkevan kolmannen asteen polynomin

$$y = ax^3 + bx^2 + cx + d$$

kertoimet a-d ratkaisemalla yhtälöryhmän

$$\begin{cases} ax_1^3 + bx_1^2 + cx_1 + d = y_1 \\ ax_2^3 + bx_2^2 + cx_2 + d = y_2 \\ ax_3^3 + bx_3^2 + cx_3 + d = y_3 \\ ax_4^3 + bx_4^2 + cx_4 + d = y_4 \end{cases}$$

ja piirtää allaolevan näköisen kuvan

5. Tee laskelma, joka etsii annettujen pisteiden

$$P_1 = [x_1, y_1, z_1], P_2 = [x_2, y_2, z_2], P_3 = [x_3, y_3, z_3], P_4 = [x_4, y_4, z_4]$$

kautta kulkevan pallon keskipisteen $[x_0, y_0, z_0]$ ratkaisemalla yhtälöryhmän

$$\begin{cases} (x_1 - x_0)^2 + (y_1 - y_0)^2 + (z_1 - z_0)^2 = r^2 \\ (x_2 - x_0)^2 + (y_2 - y_0)^2 + (z_2 - z_0)^2 = r^2 \\ (x_3 - x_0)^2 + (y_3 - y_0)^2 + (z_3 - z_0)^2 = r^2 \\ (x_4 - x_0)^2 + (y_4 - y_0)^2 + (z_4 - z_0)^2 = r^2 \end{cases}$$

ja piirtää allaolevan näköisen kuvan

ohje: vähennä neljäs yhtälö kolmesta ensimmäisestä \rightarrow lineaarinen yhtälöryhmä keskipisteen koordinaateille

6. 3D-paikannus, 4 tukiasemaa, tapa 1

Tee laskelma, jolle annetaan 3D-tukiasemat

$$P_1 = [x_1, y_1, z_1], P_2 = [x_2, y_2, z_2], P_3 = [x_3, y_3, z_3], P_4 = [x_4, y_4, z_4]$$

ja mitatut etäisyydet r_1, r_2, r_3, r_4 pisteeseen P = [x, y, z], ja joka etsii P:n koordinaateille likiarvot etsimällä yhtälöryhmälle

$$\begin{cases} (x - x_1)^2 + (y - y_1)^2 + (z - z_1)^2 = r_1^2 \\ (x - x_2)^2 + (y - y_2)^2 + (z - z_2)^2 = r_2^2 \\ (x - x_3)^2 + (y - y_3)^2 + (z - z_3)^2 = r_3^2 \\ (x - x_4)^2 + (y - y_4)^2 + (z - z_4)^2 = r_4^2 \end{cases}$$

likiarvoratkaisun X vähentämällä neljäs yhtälö kolmesta ensimmäisestä (\to lineaarinen yhtälöryhmä x:lle, y:lle ja z:lle), ja piirtää allaolevan näköisen kuvan

7. Tee laskelma, jolle annetaan levyn reunojen lämpötilat

$$Ty = [T_{y1}, T_{y2}, T_{y3}, T_{y4}], Tv = [T_{v1}, T_{v2}, T_{v3}, T_{v4}]$$

 $To = [T_{o1}, T_{o2}, T_{o3}, T_{o4}], Ta = [T_{a1}, T_{a2}, T_{a3}, T_{a4}]$

ja joka muodostaa keskiarvoperiaatteen perusteella lämpötiloille $T_{11}-T_{44}$ yhtälöryhmän, ratkaisee sen

ja piirtää allaolevan näköisen kuvan

8. Tee laskelma, joka laskee harj
7:n lämpötilat $T_{11}-T_{44}$ suoraan keskiarvoperiaatteen avulla seuraavasti:
 Muodosta matriisi

$$T_{ka} = \begin{bmatrix} T_{v,y} & T_{y,1} & T_{y,2} & T_{y,3} & T_{y,4} & T_{o,y} \\ T_{v,1} & 0 & 0 & 0 & 0 & T_{o,1} \\ T_{v,2} & 0 & 0 & 0 & 0 & T_{o,2} \\ T_{v,3} & 0 & 0 & 0 & 0 & T_{o,3} \\ T_{v,4} & 0 & 0 & 0 & 0 & T_{o,4} \\ \hline T_{v,a} & T_{a,1} & T_{a,2} & T_{a,3} & T_{a,4} & T_{o,a} \end{bmatrix}$$

eli aluksi lämpötilat ovat = 0, nurkka-arvot voivat olla mitä tahansa.

Laske uudet arvot T_{11} :stä alkaen keskiarvoperiaatteella kahdella for-silmukalla:

for r = 2:5 for s = 2:5 $T_{ka}(r,s)$ =neljän naapuriarvon keskiarvo end end

Kun tätä toistetaan tarpeeksi monta kierrosta, niin lämpötilojen arvot lähestyvät tarkkoja arvoja. Vakuuttaudu tästä keräämällä silmukassa vaikkapa lämpötilojen T_{11} ja T_{44} arvoja talteen

ja piirrä allaolevan näköinen kuva

9. Tee laskelma, jolle annetaan jousivakiot c_1-c_5 ja voimat f_1-f_4 , ja joka ratkaisee massojen m_1-m_4 liikkeet u_1-u_4 ja piirtää allaolevan näköisen kuvan

10. Tee laskelma, jolle annetaan allaolevan virtapiirin resistanssit $R_1 - R_8$ ja patterijännitteet b_1, b_3, b_6 , ja joka ratkaisee piuhoissa 1-8 kulkevat virrat y_1-y_8

11. Heittoliike, lähtökorkeus h, -nopeus v_0 ja -kulma α . Lentorata on paraabeli $y = ax^2 + bx + h$, missä

$$a = -\frac{g}{2(v_0 \cos(\alpha))^2}, \quad g = 9.81, \quad b = \tan(\alpha)$$

Etsi a,b ja h PNS-menetelmällä mittaustulosten

\boldsymbol{x}	y
1.0	2.3
1.6	3.7
2.5	4.2
3.2	3.1
5.1	1.6

perusteella, laske niiden avulla α ja v_0

ja piirrä allaolevan näköinen kuva

12. 3D-paikannus, 4 tukiasemaa, tapa 2

Tee laskelma, jolle annetaan 3D-tukiasemat

$$P_1 = [x_1, y_1, z_1], P_2 = [x_2, y_2, z_2], P_3 = [x_3, y_3, z_3], P_4 = [x_4, y_4, z_4]$$

ja mitatut etäisyydet r_1, r_2, r_3, r_4 pisteeseen P = [x, y, z], ja joka etsii P:n koordinaateille likiarvot seuraavasti:

Arvataan ensin P:n sijainniksi X_1 ja lasketaan sen etäisyydet

$$R_1 = ||X_1P_1||, R_2 = ||X_1P_2||, R_3 = ||X_1P_3||, R_4 = ||X_1P_4||$$

tukiasemiin

Muodostetaan yksikkövektorit

$$\mathbf{a}_1 = \frac{X_1 P_1}{R_1}, \ \mathbf{a}_2 = \frac{X_1 P_2}{R_2}, \ \mathbf{a}_3 = \frac{X_1 P_3}{R_3}, \ \mathbf{a}_4 = \frac{X_1 P_4}{R_4}$$

joiden suunnat ovat X_1 :stä tukiasemiin

Korjataan arvausta seuraavasti:

$$X_1 = [x_1, y_1, z_1] \rightarrow X_2 = [x_1 + \Delta x, y_1 + \Delta y, z_1 + \Delta z]$$

missä korjaus

$$\Delta X = \begin{bmatrix} \Delta x \\ \Delta y \\ \Delta z \end{bmatrix}$$

on yhtälöryhmän $A\Delta X=B$ PNS-ratkaisu, kun matriisin A riveinä ovat yksikkövektorit $\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3, \mathbf{a}_4$ ja B:ssä on laskettujen ja mitattujen etäisyyksien erotukset

Toistetaan: $X_2 \to X_3 \to X_4 \to \dots$, kunnes arvio ei enää muutu eli korjausaskeleen pituus $\|\Delta X\| \approx 0$

$$P1 = 10$$
 0 0 $r1 = 10$
 $P2 = 0$ 10 0 $r2 = 8$
 $P3 = 0$ 0 10 $r3 = 7$
 $P4 = 10$ 10 10 $r4 = 13$
 $X = 1.1370$ 2.9314 3.6852

Piirrä myös allaolevan näköinen kuva, jossa näkyvät pallot $P_1, r_1, P_2, r_2, P_3, r_3$ ja P_4, r_4 , ja rata X_1, X_2, X_3, \dots

