



# PAIK6401 / AIK21341 Pemrograman Berorientasi Objek

12 Persistensi

Informatika FSM Universitas Diponegoro



# Capaian Pembelajaran

#### CPL03

Mampu menerapkan ilmu dan teknologi informasi dalam proses penyelesaian permasalahan, yang meliputi analisis permasalahan kompleks, pemodelan, pendefinisian kebutuhan, perancangan, implementasi dan evaluasi terhadap sistem, proses, komponen, dan program.

#### CPL05

Mampu menghasilkan rancangan, mengimplementasikan, dan mengevaluasi solusi berbasis algoritma dengan mempertimbangkan aspek kompleksitas

#### CPL07

Mampu memilih, mengadaptasi atau membuat, kemudian menerapkan teknik, sumber daya, kakas komputasi moderen dengan tepat pada aktivitas komputasi kompleks, serta memahami



# Capaian Pembelajaran CPMK05-2:

Mampu menerapkan konsep teoretis bidang pengetahuan dan keterampilan Ilmu Komputer dalam menyelesaikan permasalahan kompleks dengan pemikiran komputasional untuk pengambilan keputusan.

#### **CPMK10-2:**

Mampu menghasilkan rancangan dan Mengimplementasi solusi berbasis algoritma untuk permasalahan kompleks.



# Capaian Pembelajaran

#### Sub CPMK05-2 dan Sub CPMK10-2:

- 1.Mampu menerapkan (C3) konsep enkapsulasi, kelas, dan algoritma siklus hidup objek dengan mendemonstrasikan (P3) dalam bahasa pemrograman tertentu.
- 2.Mampu menerapkan (C3) konsep dan konsekuensi pewarisan dengan mengkonstruksi (P4) kelas dalam bahasa pemrograman tertentu.
- 3.Mampu menganalisis (C4) polimorfisme dan generik dengan mengembangkan (P4) kasus dalam bahasa pemrograman tertentu.
- 4.Mampu mendesain (C6) koleksi objek persisten dengan mendemonstrasikan (P3) penyelesaian permasalahan kompleks. 5.Mampu memadukan (C6) prinsip rancangan berorientasi objek dengan paradigma lain yang relevan.



# Bahan Kajian

- 1.Objek, Kelas, Enkapsulasi, dan Information Hiding
- 2.Inheritance, Overloading, Overriding, Kelas Abstrak dan Interface, Eksepsi dan Asersi
- 3. Polimorfisme dan Generik
- 4. Koleksi Objek Persisten
- 5. Desain Berorientasi Objek, Multiparadigma



## Persistensi

- Koleksi objek yang 'hidup' dalam runtime program, akan 'mati' ketika program selesai beroperasi.
- Kondisi (state) nilai data koleksi akan 'musnah' bila komputer dimatikan.
- Diperlukan suatu mekanisme untuk menyimpan nilai data koleksi objek ke dalam suatu media eksternal (memori sekunder: file, database), juga untuk membaca Kembali hasil penyimpanan data tersebut.



## Sifat Nilai Data

- Volatil = berubah-ubah → memori utama
- Transien = sementara  $\rightarrow$  memori utama
- Persisten = permanen → memori sekunder



# Penyimpanan ke File

- Input : koleksi objek
- Output : file (csv, txt, dat, ...)
- Proses:
  - Menjelajahi setiap elemen koleksi
  - Memisahkan nilai komponen-komponen setiap elemen dengan tanda tertentu, misalnya koma, titik koma.
  - Menuliskan data setiap elemen sebagai baris



#### Pembacaan dari File

- Input : file (csv, txt, dat, ...)
- Output : koleksi objek
- Proses :
  - Membaca file baris demi baris
  - Memisahkan komponen baris berdasarkan tanda tertentu misalnya koma, titik koma.
  - Memasukkan nilai setiap komponen baris ke dalam komponen objek calon elemen
  - Menambahkan objek elemen ke dalam koleksi



# Kasus Pembacaan Data Mahasiswa

- Input : file mahasiswa.csv
- Output : koleksi objek mahasiswa
- Proses:
  - Membaca baris demi baris file
  - Memisahkan komponen baris berdasarkan tanda tertentu misalnya titik koma.
  - Memasukkan nilai setiap kolom ke dalam komponen objek calon elemen
  - Menambahkan objek elemen ke dalam koleksi



## Datum Mahasiswa

```
class Mahasiswa has
 {atribut}
  nim : string
  nama : string
  jkel : <u>character</u>
 {operator}
  procedure setNim( n: string )
     this.nama <- n
  function getNim() -> string
     -> this nama
  procedure setNama( n: string )
     this.nama <- n
  function getNama() -> string
     -> this.nama
  procedure setJkel( n: character )
     this.nama <- n
  function getJkel() -> character
     -> this.nama
```



# Aplikasi Pengolahan Data

```
class main
  constructor main {business object}
  kamus
    f : file {data-access object}
    baris : string
    kolom : array of string
    mhs : Mahasiswa {instans elemen koleksi}
    K : Koleksi< Mahasiswa > {transfer object}
```



#### Pembacaan Data

```
algoritma
  {membaca isi file, dimuat ke koleksi}
 K <- new Koleksi {persistent}</pre>
  f <- new File( "mahasiswa.csv" ) {datasource}</pre>
  f.open()
  while ( not EOF(f) ) do {data access}
     baris <- f.readline()</pre>
     kolom <- baris.split(";");</pre>
     mhs <- new Mahasiswa {transien}</pre>
     mhs.setNim (kolom[1]) {nim}
     mhs.setNama( kolom[2] ) {nama}
     mhs.setJkel( kolom[3] ) { jkel}
     K.add( mhs ); {memasukkan elemen ke K}
  f.close()
```



## Manipulasi Data

```
{menampilkan isi}
foreach x in K
   output x.getNim(), x.getNama(), x.getJkel()
{mengubah isi data koleksi}
K.getWadah(2).setNama("Fulan") {ganti nama}
foreach x in K {menampilkan isi, berubah}
   output x.getNim(), x.getNama(), x.getJkel()
{menambah elemen koleksi}
mhs <- new Mahasiswa {transien}</pre>
mhs.setNim ("12479") {nim}
mhs.setNama( "Budi" ) {nama}
mhs.setJkel('L') {jkel}
K.add( mhs ); {memasukkan elemen ke K}
```



#### Sinkronisasi Data



## Kondisi File mahasiswa.csv

<u>Input</u>: <u>Output</u>:

12345;Anna;P 12345;Anna;P

12378;Bima;L 12378;**Fulan**;L

12398;Cica;P 12398;Cica;P

12479;Budi;L



## Pemetaan OO ke Relasional

- 1. Nama class menjadi nama tabel RDBMS
- Nama atribut menjadi nama kolom dalam tabel RDBMS
- 3. Setiap instans/elemen koleksi **menjadi** satu baris/record dalam tabel RDBMS
- 4. Atribut yang mengacu ke objek lain, objek acuan tersebut menjadi tabel RDBMS



# Penyimpanan ke Database

- Input : koleksi objek
- Output : tabel
- Proses :
  - Koneksi ke database dan tabel
  - Menjelajahi setiap elemen koleksi
  - Memasukkan nilai komponen-komponen ke dalam kolom-kolom tabel yang sesuai.



#### Pembacaan dari Database

- Input : tabel
- Output : koleksi objek
- Proses :
  - Koneksi ke database dan tabel
  - Membaca baris/record demi baris/record
  - Memasukkan nilai setiap kolom ke dalam komponen objek elemen koleksi
  - Menambahkan objek elemen ke dalam koleksi



#### Referensi

- 1.Panji Wisnu Wirawan, Indra Waspada, Satriyo Adhy. 2018. Buku Ajar Pemrograman Berorientasi Objek.
- 2.Herbert Schildt. 2019. Java The Complete Reference, 11<sup>th</sup> edition.
- 3. Vaskaran Sarcar. 2020. Interactive Object-
- Oriented Programming in Java.
- 4.Robert C. Martin. 2013. Agile Software Development, Principles, Patterns, and Practices, 1<sup>st</sup> edition.
- 5.Peter Sestoft. 2017. Programming Language Concepts, 2<sup>nd</sup> edition.