.[. Pr[Xt*=Yt*]
There exists two conditions: 1. X+* = Y+* at exactly +* step
2 Xt = Yt at previous step.
For the first condition:
Pr[Xt*=Y++] = Pr[Xt*=Y+*=1]
Construct a coupling of Markov Chains: (Xt, Yt)~WÉ
as in the note: YouTh while NowMo
$\frac{\mu_0}{\chi_0 \to \chi_1 \to \dots \to \chi_t \to \chi_{t+1} \to \dots}$
$Y_0 \rightarrow Y_1 \rightarrow \rightarrow Y_t \rightarrow Y_{tH} \rightarrow$
J J J
So Pr[x+*= Y+*=1] = Pr[X+*=Y+*=1] in the 1st condition
the above => Pr[X+ =1]. Pr[Y+ =1] - Pr[X+ = Y+ = a , for
all t< t*] * Pr[Xt = 1 Xt = a] Pr[Yt = 1 Yt = a]
(t: the first time X' and Y' meet, a: all
possible states)
For the second condition:
Pr[X+* = Y+*] = Pr[X+* = Y+*=1]
>Pr[X+* = Y+* = a for all + <+*]. Pr[X+*=1 X+9
Dr [Yex = 1 Yex = a] since Probility <1
While X't, I't independent. Pr[X+=1].Pr[Y+=1] 20
Compine the two conditions: the overall Pr = Pr(15t) + Pr(25t)
Since two conditions are apposite. We have Pr[X+x=X+x] > x: x = x2

2.1X+EQ, Q={1,2,3,4} Since at each vertex, & stay, & move at random direction, which means the move will only be infected by the pherious states suppose Xt=at then Xt will either be at or vettex nearby. Some have Pr[Xt = at | X++=at+,..., X1=a1, Xo=a0] = Pr[Xt=at | X++a it's a markov chain (for the following 6) By definition, A finite Markov chain is irreducible if its transition graph is Strongly Connected irreducible --> connected: if G is not connected instead of its divided into a Parts PI, Pz, ... I then, VIEPI, je Pj (inj are bestex), injis disconnected. so i can't transfer to j vice versa, which means the Markov Chain is reducible Connected -> irreducible: in G. i can go to j in finite step. since 6 is a simple undirected graph, we can transfer (A) for all edges and vertices to form a transition graph. Since G is connected , ti & 6 can always transfer to jed alongside a simple path in G. So it's irreducible

· TOTP = TOT, we have aperiodic , tinite. O If meduable, we have unique to, Tuci) = EIETI as learned in class. DIF reducible, we have sereval TU, and O is a special case is in previou Picture, Mo= 0

9cj) fsi)d(i) 3. for ti and its neighbour j. gci) = dcj) fai) Its transition matrix Phas its Pcinjo decided by Ber (gci) hen , there are two conditions: so we have pci.i) = 2 dci) = 1 howe have Pcjil = 2 dcjr) ·Pci, T) = TC(i) ·Pci, i) tccj)-Pcjii) = Tcci) Pcij) TO is a stationary distribution, we have: $\underline{T(C)} P_{Ci,j} = \underline{T(Cj)} \rightarrow \underline{F(Ci)} P_{Ci,j} = \underline{F(Ci)} P_{Ci,j}$ $= \sum_{\substack{\alpha \in \mathbb{Z} \\ \alpha \in \mathbb{Z}}} \pi C(j) P(j,i) + \sum_{\substack{\alpha \in \mathbb{Z} \\ \alpha \in \mathbb{Z}}} \pi C(j) P(j,i) + \sum_{\substack{\alpha \in \mathbb{Z} \\ \alpha \in \mathbb{Z}}} \pi C(j) P(j,i) + \sum_{\substack{\alpha \in \mathbb{Z} \\ \alpha \in \mathbb{Z}}} \pi C(j) P(j,i) + \sum_{\substack{\alpha \in \mathbb{Z} \\ \alpha \in \mathbb{Z}}} \pi C(j) P(j,i) + \sum_{\substack{\alpha \in \mathbb{Z} \\ \alpha \in \mathbb{Z}}} \pi C(j) P(j,i) + \sum_{\substack{\alpha \in \mathbb{Z} \\ \alpha \in \mathbb{Z}}} \pi C(j) P(j,i) + \sum_{\substack{\alpha \in \mathbb{Z} \\ \alpha \in \mathbb{Z}}} \pi C(j) P(j,i) + \sum_{\substack{\alpha \in \mathbb{Z} \\ \alpha \in \mathbb{Z}}} \pi C(j) P(j,i) + \sum_{\substack{\alpha \in \mathbb{Z} \\ \alpha \in \mathbb{Z}}} \pi C(j) P(j,i) + \sum_{\substack{\alpha \in \mathbb{Z} \\ \alpha \in \mathbb{Z}}} \pi C(j) P(j,i) + \sum_{\substack{\alpha \in \mathbb{Z} \\ \alpha \in \mathbb{Z}}} \pi C(j) P(j,i) + \sum_{\substack{\alpha \in \mathbb{Z} \\ \alpha \in \mathbb{Z}}} \pi C(j) P(j,i) + \sum_{\substack{\alpha \in \mathbb{Z} \\ \alpha \in \mathbb{Z}}} \pi C(j) P(j,i) + \sum_{\substack{\alpha \in \mathbb{Z} \\ \alpha \in \mathbb{Z}}} \pi C(j) P(j,i) + \sum_{\substack{\alpha \in \mathbb{Z} \\ \alpha \in \mathbb{Z}}} \pi C(j) P(j,i) + \sum_{\substack{\alpha \in \mathbb{Z} \\ \alpha \in \mathbb{Z}}} \pi C(j) P(j,i) + \sum_{\substack{\alpha \in \mathbb{Z} \\ \alpha \in \mathbb{Z}}} \pi C(j) P(j,i) + \sum_{\substack{\alpha \in \mathbb{Z} \\ \alpha \in \mathbb{Z}}} \pi C(j) P(j,i) + \sum_{\substack{\alpha \in \mathbb{Z} \\ \alpha \in \mathbb{Z}}} \pi C(j) P(j,i) + \sum_{\substack{\alpha \in \mathbb{Z} \\ \alpha \in \mathbb{Z}}} \pi C(j) P(j,i) + \sum_{\substack{\alpha \in \mathbb{Z} \\ \alpha \in \mathbb{Z}}} \pi C(j) P(j,i) + \sum_{\substack{\alpha \in \mathbb{Z} \\ \alpha \in \mathbb{Z}}} \pi C(j,i) + \sum_{\substack{\alpha \in \mathbb{Z} \\ \alpha \in \mathbb{Z}}} \pi C(j,i) + \sum_{\substack{\alpha \in \mathbb{Z} \\ \alpha \in \mathbb{Z}}} \pi C(j,i) + \sum_{\substack{\alpha \in \mathbb{Z} \\ \alpha \in \mathbb{Z}}} \pi C(j,i) + \sum_{\substack{\alpha \in \mathbb{Z} \\ \alpha \in \mathbb{Z}}} \pi C(j,i) + \sum_{\substack{\alpha \in \mathbb{Z} \\ \alpha \in \mathbb{Z}}} \pi C(j,i) + \sum_{\substack{\alpha \in \mathbb{Z} \\ \alpha \in \mathbb{Z}}} \pi C(j,i) + \sum_{\substack{\alpha \in \mathbb{Z} \\ \alpha \in \mathbb{Z}}} \pi C(j,i) + \sum_{\substack{\alpha \in \mathbb{Z} \\ \alpha \in \mathbb{Z}}} \pi C(j,i) + \sum_{\substack{\alpha \in \mathbb{Z} \\ \alpha \in \mathbb{Z}}} \pi C(j,i) + \sum_{\substack{\alpha \in \mathbb{Z} \\ \alpha \in \mathbb{Z}}} \pi C(j,i) + \sum_{\substack{\alpha \in \mathbb{Z} \\ \alpha \in \mathbb{Z}}} \pi C(j,i) + \sum_{\substack{\alpha \in \mathbb{Z} \\ \alpha \in \mathbb{Z}}} \pi C(j,i) + \sum_{\substack{\alpha \in \mathbb{Z} \\ \alpha \in \mathbb{Z}}} \pi C(j,i) + \sum_{\substack{\alpha \in \mathbb{Z} \\ \alpha \in \mathbb{Z}}} \pi C(j,i) + \sum_{\substack{\alpha \in \mathbb{Z} \\ \alpha \in \mathbb{Z}}} \pi C(j,i) + \sum_{\substack{\alpha \in \mathbb{Z} \\ \alpha \in \mathbb{Z}}} \pi C(j,i) + \sum_{\substack{\alpha \in \mathbb{Z} \\ \alpha \in \mathbb{Z}}} \pi C(j,i) + \sum_{\substack{\alpha \in \mathbb{Z} \\ \alpha \in \mathbb{Z}}} \pi C(j,i) + \sum_{\substack{\alpha \in \mathbb{Z} \\ \alpha \in \mathbb{Z}}} \pi C(j,i) + \sum_{\substack{\alpha \in \mathbb{Z} \\ \alpha \in \mathbb{Z}}} \pi C(j,i) + \sum_{\substack{\alpha \in \mathbb{Z} \\ \alpha \in \mathbb{Z}}} \pi C(j,i) + \sum_{\substack{\alpha \in \mathbb{Z} \\ \alpha \in \mathbb{Z}}} \pi C(j,i) + \sum_{\substack{\alpha \in \mathbb{Z} \\ \alpha \in \mathbb{Z}}} \pi C(j,i) + \sum_{\substack{\alpha \in \mathbb{Z} \\ \alpha \in \mathbb{Z}}} \pi C(j,i) + \sum_{\substack{\alpha \in \mathbb{Z} \\ \alpha \in \mathbb{Z}}} \pi C(j,i) + \sum_{\substack{\alpha \in \mathbb{Z} \\ \alpha \in \mathbb{Z}}} \pi C(j,i) + \sum_{\substack{\alpha \in \mathbb{Z}}} \pi C(j,i) + \sum_{\substack{\alpha \in \mathbb{Z} \\ \alpha \in \mathbb{Z}}} \pi C(j,i) + \sum_{\substack{$

4. To prove it's irreducible, we need to prove that for any two
States S1,52,51 -> 52 S1 can transfer to S2.
The process: By shuffling, we can iteratively pick ithin &
and compare with Sz. if i-th cards are the same, then let
i=j, otherwise, switch the card in SI to make the i-th card
the same in two states S1, S2, In this way, S1 can transfer to
Sz, so irreducible.
Since there is a chance that i = j (self loop) the
chain is aperiodic.
The chain has finite state, so it has a unique Stationary
distribution, and it's the same as other shuffling so uniform
distribution is to
· Since the two picks in the following is independent,
the position i can't infect c. Therefore, it's equal to
pick two inj Cican equal to jl and switch (Since the
Stationary distribution is the uniform distribution, random and
c could be randomly in the deak)

Alba I Charles

J. Construct a coupling of Markov Chain Xt, Yt
Xt Smitch Xt+1 , Yt Switch Yt+1
We apply the following simple coupling rule:
the two deaks pick the same i, c
There are different situations:
1 i-th cards are the same in Xt. It , then whether or not
the card e are in the same position, it remains the same
the amount of cords to be shuffled to let X=Y
2. i-th ands are different in Xt. Yt. Then if card c are in
the same position, it also remains the same the amount.
If care in different position, then the amount of cards
to be shuffled decrease by 1.
Combined with the above = (4) situation, the selection to decrease
the amount has Pr(decrease) = Ct . Ct = Ct (Ct refers to
the amount of cords in the same posterion but differs)
So the mixing time $T = \sum_{i=1}^{n} T_i$, $T_i = \frac{1}{(n-i+1)^2}$ $T = \sum_{i=1}^{n} \frac{n^2}{(n-i+1)^2} \leq \sum_{i=1}^{n} \frac{1}{(n-i)} + \frac{1}{(n-i+1)} + \frac{1}{(n-i+1)^2} + \frac{1}{(n-i+1)^2} + \frac{1}{(n-i+1)^2}$
$= h^{2} \cdot \left(\frac{1}{h-1} - \frac{1}{h} + \frac{1}{h-2} - \frac{1}{h-1} + \dots + 1 - \frac{1}{2} \right) + h^{2}$
= >N2-n
Therefore, the mixing time is O(n2)
Reference: Your pravious note & Sylling