Tema 1

Funciones reales de una variable real

Contenido

1.1. Conjuntos de números

- 1.1.1. Números naturales, enteros y racionales
- 1.1.2. Números reales

1.2. Funciones

- 1.2.1. Funciones reales de una variable
- 1.2.2. Funciones elementales

1.3. Límites y continuidad

- 1.3.1. Límites de funciones
- 1.3.2. Cálculo de límites
- 1.3.3. Continuidad
- 1.3.4. Funciones continuas en intervalos cerrados

1.4. Funciones derivables

- 1.4.1. Derivada de una función
- 1.4.2. Cálculo de derivadas
- 1.4.3. La aplicación diferencial
- 1.4.4. Teoremas de valor medio

1.5. Fórmula de Taylor

1.5.1. Fórmula de Taylor

1.6. Aplicaciones de la derivada

- 1.6.1. Monotonía
- 1.6.2. Concavidad y convexidad
- 1.6.3. Asíntotas

1.1. Conjuntos de números

1.1.1. Números naturales, enteros y racionales

Los conjuntos de números que utilizaremos a lo largo del curso son:

- Números naturales: $\mathbb{N} = \{1, 2, 3, \dots\}$.
- Números enteros: $\mathbb{Z} = \{\dots, -3, -2, -1, 0, 1, 2, 3, \dots\}.$
- Números racionales: $\mathbb{Q} = \left\{ \frac{p}{q} : p, q \in \mathbb{Z}, \ q \neq 0 \right\}$. Los números racionales admiten una expresión decimal finita o periódica.

Método de inducción

El método de demostración por inducción puede resultar muy útil para probar que todos los números naturales cumplen una cierta propiedad. Este método consta de dos pasos:

- Se demuestra que 1 cumple la propiedad.
- Se supone que la propiedad es verdadera para un número natural n arbitrario y se demuestra para n+1.

Una vez realizados los dos pasos anteriores queda demostrado que cualquier número natural verifica la propiedad correspondiente.

1.1.2. Números reales

Describiremos los números reales como los números que admiten una expresión decimal finita o infinita. Este conjunto se denota por \mathbb{R} . Los números reales pueden ser:

- Racionales (ℚ): expresión decimal finita o periódica.
- Irracionales ($\mathbb{R}\setminus\mathbb{Q}$): expresión decimal infinita no periódica.

Operaciones en \mathbb{R}

- La suma de números reales tiene las siguientes propiedades:
 - operación interna,
 - conmutativa,
 - asociativa,
 - elemento neutro: 0,

- elemento opuesto o simétrico: -a es el opuesto de a.
- El producto de números reales tiene las siguientes propiedades:
 - operación interna,
 - conmutativa,
 - asociativa,
 - elemento neutro: 1,
 - elemento inverso: si $a \neq 0$ entonces $a^{-1} = \frac{1}{a}$ es el inverso de a.

Además se verifica la propiedad distributiva del producto respecto de la suma:

$$(a+b)c = ac + bc,$$
 $a, b, c \in \mathbb{R}$ cualesquiera.

El conjunto \mathbb{R} con las operaciones suma y producto que acabamos de definir es un cuerpo conmutativo (cuerpo de los números reales).

Valor absoluto de un número real

Definición 1.1.1 (Valor absoluto) Se define el valor absoluto de un número real x, y se denota |x|, de la forma

$$|x| = \begin{cases} x & si \quad x \ge 0, \\ -x & si \quad x < 0. \end{cases}$$

Figura 1.1: Representación gráfica de la función f(x) = |x| (valor absoluto).

Propiedades del valor absoluto

Sean $x, y \in \mathbb{R}$ cualesquiera. Entonces,

- |x| > 0,
- |x| = 0 si, y sólo si, x = 0,
- $|x| \le y$ si, y sólo si, $-y \le x \le y$,
- $|x+y| \le |x| + |y|.$

- $|x y| \ge ||x| |y||$,
- |x y| = |x| |y|,
- si $y \neq 0$, $\left| \frac{x}{y} \right| = \frac{|x|}{|y|}$.

Definición 1.1.2 (Conjunto acotado) Un subconjunto $A \subset \mathbb{R}$ se dice acotado si existe un número real positivo k tal que $|x| \leq k$, para cualquier $x \in A$.

Intervalos en \mathbb{R}

Intervalos acotados:

- Intervalo abierto: $(a, b) = \{x \in \mathbb{R} : a < x < b\}.$
- Intervalo cerrado: $[a, b] = \{x \in \mathbb{R} : a \le x \le b\}.$
- Intervalo semiabierto por la izquierda: $(a, b] = \{x \in \mathbb{R} : a < x \le b\}.$
- Intervalo semiabierto por la derecha: $[a,b) = \{x \in \mathbb{R} : a \le x < b\}.$

Intervalos no acotados:

- $(a, +\infty) = \{x \in \mathbb{R} : a < x\}$
- $a, +\infty) = \{x \in \mathbb{R} : a \le x\}$
- $(-\infty, b) = \{ x \in \mathbb{R} : x < b \}$
- $(-\infty, b] = \{x \in \mathbb{R} : x < b\}$
- $(-\infty, +\infty) = \mathbb{R}$

Definición 1.1.3 (Entorno de un punto) Sean $x_0, r \in \mathbb{R}$, r > 0. Se llama entorno del punto x_0 y radio r al intervalo abierto $(x_0 - r, x_0 + r)$.

Definición 1.1.4 (Conjunto abierto) Un subconjunto $A \subset \mathbb{R}$ se dice abierto si para todo $x_0 \in A$, existe r > 0 tal que $(x_0 - r, x_0 + r) \subset A$.

Definición 1.1.5 (Conjunto cerrado) Un subconjunto $A \subset \mathbb{R}$ se dice cerrado si $\mathbb{R} - A$ es abierto.

Definición 1.1.6 (Punto interior) Sea subconjunto $A \subset \mathbb{R}$, $x_0 \in A$ es un punto interior de A si existe r > 0 tal que $(x_0 - r, x_0 + r) \subset A$.

Definición 1.1.7 (Punto adherente) Sea subconjunto $A \subset \mathbb{R}$, $x_0 \in A$ es un punto adherente de A si para todo r > 0, $(x_0 - r, x_0 + r) \cap A \neq \emptyset$.

Definición 1.1.8 (Punto de acumulación) Sea subconjunto $A \subset \mathbb{R}$, $x_0 \in A$ es un punto de acumulación de A si para todo r > 0, $(x_0 - r, x_0 + r) - \{x_0\} \cap A \neq \emptyset$.

1.2. Funciones 5

1.2. Funciones

1.2.1. Funciones reales de una variable

Definición 1.2.1 (Función real de variable real) Una función real de variable real f es una aplicación entre conjuntos de números reales. Se denota

$$f:A\subset\mathbb{R}\longrightarrow\mathbb{R}$$

Si queremos indicar cuál es la imagen de x escribiremos

$$f: A \subset \mathbb{R} \longrightarrow \mathbb{R}$$

$$x \mapsto f(x)$$

Definición 1.2.2 (Dominio e imagen) Sea $f: A \to \mathbb{R}$, al conjunto A se llama dominio de la función f, y se denota Dom f. A veces nos referimos a una función sin mencionar su dominio, por ejemplo

$$f(x) = \frac{1}{x}.$$

En ese caso es necesario determinar el dominio de la función, i.e.,

$$Dom f = \{ x \in \mathbb{R} : f(x) \in \mathbb{R} \}.$$

Se llama imagen de la función f, y se denota Imf, al conjunto

$$\operatorname{Im} f = \{ y \in \mathbb{R} : \text{ existe } x \in \operatorname{Dom} f, \ f(x) = y \}.$$

Definición 1.2.3 (Gráfica) Se llama gráfica o grafo de una función f al conjunto

$$\{(x, f(x)) : x \in \text{Dom} f\}.$$

La gráfica de f suele representarse sobre unos ejes coordenados.

En lo que sigue f denota una función real de variable real.

Definición 1.2.4 (Función acotada) Se dice que f es una función acotada si $\operatorname{Im} f$ es un conjunto acotado, es decir, si existe k > 0 tal que |f(x)| < k para cualquier $x \in \operatorname{Dom} f$.

Definición 1.2.5 (Función par y función impar) Se dice que f es par si

$$f(x) = f(-x),$$

siempre que la expresión anterior tenga sentido, es decir, siempre que $x, -x \in \text{Dom} f$.

 $Se\ dice\ que\ f\ es\ impar\ si$

$$f(x) = -f(-x),$$

siempre que la expresión anterior tenga sentido, es decir, siempre que $x, -x \in \text{Dom} f$.

Figura 1.2: Ejemplos de simetría

Observación

La gráfica de una función par es simétrica respecto al eje de ordenadas y la gráfica de una función impar es simétrica respecto al origen de coordenadas.

Definición 1.2.6 (Función periódica) Se dice que f es periódica de periodo T > 0 si

- $x \in \text{Dom} f \implies x + T \in \text{Dom} f$,
- Para todo $x \in Dom f$, f(x+T) = f(x).

Al menor T > 0 con la propiedad anterior se le llama periodo minimal de la función f.

Figura 1.3: Una función periódica

Definición 1.2.7 (Función creciente y decreciente) Sea $A \subset Domf$.

Se dice que f es creciente en A si se verifica:

sean $x_1, x_2 \in A$ cualesquiera tales que $x_1 < x_2$, entonces $f(x_1) \le f(x_2)$.

Se dice que f es decreciente en A si se verifica:

sean $x_1, x_2 \in A$ cualesquiera tales que $x_1 < x_2$, entonces $f(x_1) \ge f(x_2)$.

Se dice que f es monótona en A si es creciente en A o bien decreciente en A.

1.2. Funciones 7

Definición 1.2.8 (Función estrictamente creciente y estrictamente decreciente) $Sea\ A\subset Domf$.

Se dice que f es estrictamente creciente en A si se verifica:

sean $x_1, x_2 \in A$ cualesquiera tales que $x_1 < x_2$, entonces $f(x_1) < f(x_2)$.

Se dice que f es estrictamente decreciente en A si se verifica:

sean $x_1, x_2 \in A$ cualesquiera tales que $x_1 < x_2$, entonces $f(x_1) > f(x_2)$.

Se dice que f es estrictamente monótona en A si es estrictamente creciente en A o bien estrictamente decreciente en A.

Composición de funciones

Definición 1.2.9 (Composición de funciones) Sean $f:A\subset\mathbb{R}\longrightarrow\mathbb{R}$ $y\ g:B\subset\mathbb{R}\longrightarrow\mathbb{R}$ tales que $\mathrm{Im} f\subset\mathrm{Dom}\, g.$ Se define la función compuesta $g\circ f:A\longrightarrow\mathbb{R}$ de la forma

$$(g \circ f)(x) = g(f(x)).$$

La composición de funciones no es, en general, conmutativa.

Función inversa

Definición 1.2.10 (Función inyectiva) Una función f se dice inyectiva en $A \subset \text{Dom} f$ si para cualesquiera $x_1, x_2 \in A$ tales que $f(x_1) = f(x_2)$, entonces $x_1 = x_2$.

Proposición 1.2.11 Si f es estrictamente monótona en [a,b], entonces f es inyectiva en [a,b].

Proposición 1.2.12 Sea $f: A \to \mathbb{R}$ inyectiva, entonces existe una única función $g: \operatorname{Im} f \to \mathbb{R}$ tal que

$$(g \circ f)(x) = x$$
, para todo $x \in A$.

En este caso, además,

$$(f \circ g)(x) = x$$
, para todo $x \in \text{Im } f$.

Definición 1.2.13 (Función inversa) A la función $g: \operatorname{Im} f \to \mathbb{R}$ de la proposición anterior se le llama función inversa de f y se denota por

$$g = f^{-1} : \operatorname{Im} f \to \mathbb{R}.$$

Observaciones

- Una función f puede ser inyectiva sólo en parte de su dominio. En este caso, aunque f no posee inversa, puede definirse una inversa de la función restringida al conjunto donde es inyectiva.
- Las gráficas de f y f^{-1} (en caso de que exista) son simétricas respecto a la bisectriz del primer cuadrante.

Figura 1.4: Funciones inversas.

1.2.2. Funciones elementales

Se llaman funciones elementales a las funciones:

- polinómicas,
- racionales (cocientes de polinómicas),
- irracionales (raíces),
- exponenciales,
- logarítmicas,
- trigonométricas y sus inversas.

Además las funciones que se obtienen mediante suma, diferencia, producto, cociente o composición de estas funciones también se consideran funciones elementales.

Función exponencial natural

La función exponencial es $f(x) = e^x$.

• Dom $f = \mathbb{R}$,

1.2. Funciones 9

- es una función creciente en su dominio.

Figura 1.5: Las funciones exponenciales $f(x) = e^x$ y $f(x) = e^{-x}$

Función logaritmo natural

La función logarítmica es $f(x) = \ln x$.

- $Dom f = (0, +\infty),$
- $\operatorname{Im} f = \mathbb{R}$,
- es una función creciente en su dominio.

Las funciones exponencial y logarítmica son inversas.

Figura 1.6: Función logaritmo natural.

Funciones trigonométricas

Las principales funciones trigonométricas son

Salvo que se indique lo contrario, los ángulos se expresan siempre en radianes.

Figura 1.7: La circunferencia unidad y las funciones trigonométricas seno, coseno y tangente.

$$\csc x = \frac{1}{\sec x}$$

$$\sec x = \frac{1}{\cos x}$$

$$\csc x = \frac{1}{\sec x}$$
 $\sec x = \frac{1}{\cos x}$ $\cot x = \frac{1}{\operatorname{tg} x} = \frac{\cos x}{\sin x}$

Para las funciones sen x y $\cos x$ se tiene:

- su dominio es \mathbb{R} ,
- su imagen es [-1,1],
- son periódicas de periodo 2π ,
- $\operatorname{sen} x \operatorname{es} \operatorname{impar} y \operatorname{cos} x \operatorname{es} \operatorname{par}$.

Figura 1.8: Las funciones $f(x) = \operatorname{sen} x$ y $f(x) = \cos x$

La función $f(x) = \operatorname{tg} x$:

- $\blacksquare \operatorname{Im} f = \mathbb{R},$
- ullet es periódica de periodo π ,
- es impar.

Figura 1.9: Función tangente.

1.2. Funciones

Algunas relaciones importantes que verifican estas funciones son:

- $\sin^2 A + \cos^2 A = 1$.
- = sen(A + B) =sen $A \cos B + \cos A \sin B$, sen(A B) =sen $A \cos B \cos A \sin B$,
- $\operatorname{sen} 2A = 2 \operatorname{sen} A \cos A$,
- $\cos(A+B) = \cos A \cos B \sin A \sin B, \cos(A-B) = \cos A \cos B + \sin A \sin B,$
- $\cos 2A = \cos^2 A \sin^2 A.$

Inversas de las funciones trigonométricas

Las funciones trigonométricas no son inyectivas, por tanto no tienen inversa; si las restringimos a un intervalo donde son inyectivas podemos definir la inversa en ese intervalo.

La función sen x es inyectiva en $[-\pi/2, \pi/2]$, vamos a definir una función inversa para sen x en este intervalo. Consideremos la función

$$f: [-\pi/2, \pi/2] \longrightarrow [-1, 1]$$

$$x \longrightarrow f(x) = \operatorname{sen} x$$

La función f es inyectiva y por tanto posee inversa:

$$f^{-1}$$
: $[-1,1]$ \longrightarrow $[-\pi/2,\pi/2]$ x \longrightarrow $f^{-1}(x) = y$, sen $y = x$

La función f^{-1} se llama función **arcoseno** y se denota $f^{-1}(x) = \arcsin x$.

Figura 1.10: Las funciones sen x en $[-\pi/2, \pi/2]$ (a la izquierda) y arc sen x en [-1, 1] (a la derecha).

La función $\cos x$ es inyectiva en $[0,\pi]$, vamos a definir una función inversa para $\cos x$ en este intervalo. Consideremos la función

$$g: [0,\pi] \longrightarrow [-1,1]$$

$$x \longrightarrow g(x) = \cos x$$

La función g es inyectiva y por tanto posee inversa:

$$g^{-1}$$
: $[-1,1]$ \longrightarrow $[0,\pi]$
$$x \longrightarrow g^{-1}(x) = y, \cos y = x$$

La función g^{-1} se llama función **arcocoseno** y se denota $g^{-1}(x) = \arccos x$.

Figura 1.11: Las funciones $\cos x$ en $[0,\pi]$ (a la izquierda) y $\arccos x$ en [-1,1] (a la derecha).

La función tg x es inyectiva en $(-\pi/2, \pi/2)$, vamos a definir una función inversa para tg x en este intervalo. Consideremos la función

$$h: (-\pi/2, \pi/2) \longrightarrow \mathbb{R}$$

$$x \longrightarrow h(x) = \operatorname{tg} x$$

La función h es inyectiva y por tanto posee inversa:

$$h^{-1}$$
: \mathbb{R} \longrightarrow $(-\pi/2, \pi/2)$ x \longrightarrow $h^{-1}(x) = y$, $\operatorname{tg} y = x$

La función h^{-1} se llama función **arcotangente** y se denota $h^{-1}(x) = \operatorname{arctg} x$.

Figura 1.12: Las funciones tan x en $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ (a la izquierda) y arctan x en \mathbb{R} (a la derecha).

1.2. Funciones

Funciones hiperbólicas

Las principales funciones hiperbólicas son el seno hiperbólico y el coseno hiperbólico y se definen:

$$senh x = \frac{e^x - e^{-x}}{2}$$
 $cosh x = \frac{e^x + e^{-x}}{2}$

Es claro que el dominio de estas funciones es el conjunto de los números reales.

Figura 1.13: Las funciones $f(x) = \operatorname{senh} x$ y $f(x) = \cosh x$

A partir de estas funciones se definen la tangente hiperbólica y la cotangente hiperbólica:

$$tgh x = \frac{senh}{cosh} = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$
 $cotgh x = \frac{cosh}{senh} = \frac{e^x + e^{-x}}{e^x - e^{-x}}$

De las definiciones de seno hiperbólico y coseno hiperbólico se deducen relaciones análogas a las conocidas para las funciones trigonométricas:

- $\cosh^2 x \sinh^2 x = 1,$
- $\operatorname{senh}(x+y) = \operatorname{senh} x \cosh y + \cosh x \operatorname{senh} y$, $\operatorname{senh}(x-y) = \operatorname{senh} x \cosh y \cosh x \operatorname{senh} y$,
- $\operatorname{senh} 2x = 2 \operatorname{senh} x \operatorname{cosh} x$,
- $\bullet \cosh(x+y) = \cosh x \cosh y + \sinh x \sinh y, \cosh(x-y) = \cosh x \cosh y \sinh x \sinh y,$
- $\bullet \cosh 2x = \cosh^2 x + \sinh^2 x.$

Las funciones inversas de las funciones seno hiperbólico y coseno hiperbólico se llaman, respectivamente, argumento seno hiperbólico y argumento coseno hiperbólico:

$$\operatorname{argsenh} x = \ln \left(x + \sqrt{x^2 + 1} \right), \quad x \in \mathbb{R}.$$

$$\operatorname{argcosh} x = \ln \left(x + \sqrt{x^2 - 1} \right), \quad x \in [1, +\infty).$$

1.3. Límites y continuidad

1.3.1. Límites de funciones

Definición 1.3.1 (Límite de una función en un punto) Se dice que el límite de una función f en el punto x_0 (de acumulación del Domf) es l, si para cada número real $\varepsilon > 0$ existe un número real $\delta > 0$ (que depende de ε y de x_0) tal que si $x \in \text{Dom} f$ y $0 < |x - x_0| < \delta$, entonces $|f(x) - l| < \varepsilon$. Se denota

$$\lim_{x \to x_0} f(x) = l.$$

Figura 1.14: Interpretación geométrica de la definición de límite real en un punto.

Teorema 1.3.2 El límite de una función en un punto, si existe, es único.

Definición 1.3.3 (Límites laterales) Se dice que el límite por la derecha de una función f en el punto x_0 es l, si para cada número real $\varepsilon > 0$ existe un número real $\delta > 0$

(que depende de ε y de x_0) tal que si $x \in \text{Dom} f$ y $0 < x - x_0 < \delta$, entonces $|f(x) - l| < \varepsilon$. Se denota

$$\lim_{x \to x_0^+} f(x) = l.$$

Se dice que el límite por la izquierda de una función f en el punto x_0 es l, si para cada número real $\varepsilon > 0$ existe un número real $\delta > 0$ (que depende de ε y de x_0) tal que si $x \in \text{Dom} f$ y $0 < x_0 - x < \delta$, entonces $|f(x) - l| < \varepsilon$. Se denota

$$\lim_{x \to x_0^-} f(x) = l.$$

Teorema 1.3.4 El límite de una función f en un punto x_0 existe y es l si, y sólo si, existen los dos límites laterales de f en x_0 y ambos son iguales a l.

Figura 1.15: Interpretación geométrica de la definición de límites laterales.

Definición 1.3.5 (Límite infinitos y límites en el infinito) Se dice que el límite de una función f en el punto x_0 es $+\infty$, si para cada número real M > 0 existe un número real $\delta > 0$ (que depende de M y de x_0) tal que si $x \in \text{Dom} f$ y $0 < |x - x_0| < \delta$, entonces f(x) > M. Se denota

$$\lim_{x \to x_0} f(x) = +\infty.$$

Se dice que el límite de una función f en $+\infty$ es l, si para cada número real $\varepsilon > 0$ existe un número real N > 0 (que depende de N) tal que si $x \in \mathrm{Dom} f$ y x > N, entonces $|f(x) - l| < \varepsilon$. Se denota

$$\lim_{x \to +\infty} f(x) = l.$$

Se dice que el límite de una función f en $+\infty$ es $+\infty$, si para cada número real M>0 existe un número real N>0 (que depende de M) tal que si $x\in \mathrm{Dom} f$ y x>N, entonces f(x)>M. Se denota

$$\lim_{x \to +\infty} f(x) = +\infty.$$

Análogamente se definen los límites anteriores en el caso de $-\infty$.

La función $f(x) = \sin x$ no tiene límite en el infinito.

1.3.2. Cálculo de límites

Propiedades de los límites

Sea $\alpha \in \mathbb{R}$ cualquiera, y sean f y g tales que $\lim_{x \to x_0} f(x) = l_1 \in \mathbb{R}$ y $\lim_{x \to x_0} g(x) = l_2 \in \mathbb{R}$, donde $x_0 \in \mathbb{R}$ o puede ser $\pm \infty$. Entonces,

- $\blacksquare \lim_{x \to x_0} \alpha f(x) = \alpha l_1,$
- $\blacksquare \lim_{x \to x_0} f(x)g(x) = l_1 l_2,$
- $\blacksquare \lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{l_1}{l_2} \text{ si } l_2 \neq 0,$

Observación

Si en los resultados anteriores l_1 o l_2 son $\pm \infty$, en muchos casos se puede deducir cuál es el valor del límite total sin más que aplicar los conceptos correspondientes de límites infinitos. Por ejemplo, si $\lim_{x\to x_0} f(x) = +\infty$ y $\lim_{x\to x_0} g(x) = +\infty$, entonces $\lim_{x\to x_0} (f(x) + g(x)) = +\infty$.

Indeterminaciones

Al efectuar el cálculo de límites aparecen en ocasiones expresiones cuyo valor es desconocido, es decir, el cálculo del límite no es inmediato utilizando las propiedades anteriores y requiere la utilización de otro tipo de técnicas. Estas expresiones se llaman indeterminaciones, y se representan abreviadamente mediante los símbolos:

$$\frac{0}{0}$$
 $\frac{\infty}{\infty}$ $0 \cdot \infty$ $\infty - \infty$ 0^0 ∞^0 1^∞

Estas expresiones deben entenderse de la forma: si $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = 0$, entonces $\lim_{x \to x_0} \frac{f(x)}{g(x)}$ es una indeterminación del tipo $\frac{0}{0}$.

Infinitésimos

Definición 1.3.6 (Infinitésimo) Se dice que la función f es un infinitésimo en el punto x_0 (o cuando $x \to x_0$) si

$$\lim_{x \to x_0} f(x) = 0.$$

Definición 1.3.7 (Infinitésimos equivalentes) Se dice que dos infinitésimos f y g en el punto x_0 (o cuando $x \to x_0$) son equivalentes si

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = 1.$$

Se denota $f \sim g$ o $f(x) \sim g(x)$.

Las definiciones anteriores son análogas si $x \to +\infty$ o $x \to -\infty$.

Teorema 1.3.8 El producto de una función acotada por un infinitésimo en x_0 es un infinitésimo en x_0 .

Si f es un infinitésimo en x_0 , entonces:

- \bullet sen $f(x) \sim f(x)$
- $\operatorname{tg} f(x) \sim f(x)$
- $1 \cos f(x) \sim \frac{(f(x))^2}{2}$
- $\ln(1 + f(x)) \sim f(x)$
- $e^{f(x)} 1 \sim f(x)$

Además, si $\lim_{x \to x_0} f(x) = 1$, entonces f(x) - 1 es un infinitésimo en x_0 , y $f(x) - 1 \sim \ln f(x)$.

Teorema 1.3.9 (Principio de sustitución) $Si \ f \ y \ g \ son \ infinitésimos \ equivalentes \ en x_0, \ entonces$

$$\lim_{x \to x_0} f(x)h(x) = \lim_{x \to x_0} g(x)h(x) \qquad y \qquad \lim_{x \to x_0} \frac{h(x)}{f(x)} = \lim_{x \to x_0} \frac{h(x)}{g(x)}.$$

Infinitos en un punto

Definición 1.3.10 (Infinito en un punto) Se dice que la función f es un infinito en el punto x_0 (o cuando $x \to x_0$) si

$$\lim_{x \to x_0} f(x) = \pm \infty.$$

La definición anterior es análoga si $x \to +\infty$ o $x \to -\infty$.

Definición 1.3.11 (Comparación de infinitos en un punto) Sean f y g tales que

$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = +\infty.$$

Sea l el límite siguiente (si existe):

$$l = \lim_{x \to x_0} \frac{f(x)}{g(x)}.$$

- Si $l = +\infty$, se dice que que f es de orden superior a g y se denota $g \ll f$.
- Si l=0, se dice que que g es de orden superior a f y se denota $f \ll g$.
- Si $l \in (0, +\infty)$, se dice que f y g son del mismo orden. Además, cuando l = 1, decimos que f y g son infinitos equivalentes y se denota por $f \sim g$

Para comparar infinitos en un punto si f o g tienden a $-\infty$, basta tomar en la definición anterior |f| o |g|.

La definición anterior es análoga si $x \to +\infty$ o $x \to -\infty$.

Se puede demostrar que si $x \to +\infty$:

$$\ln x \ll x^n \ll a^x \ll x^{bx}$$

con a > 1 y n, b > 0.

1.3.3. Continuidad

Definición 1.3.12 (Función continua en un punto) Se dice que f es continua en el $punto x_0 \in \text{Dom} f$ si

$$\lim_{x \to x_0} f(x) = f(x_0).$$

Equivalentemente, si para cada número real $\varepsilon > 0$ existe un número real $\delta > 0$ (que depende de ε y de x_0) tal que si $x \in \text{Dom} f$ y $|x - x_0| < \delta$, entonces $|f(x) - f(x_0)| < \varepsilon$.

Definición 1.3.13 (Continuidad lateral) Se dice que f es continua por la derecha en el punto $x_0 \in \text{Dom} f$ si

$$\lim_{x \to x_0^+} f(x) = f(x_0).$$

Se dice que f es continua por la izquierda en el punto $x_0 \in \text{Dom} f$ si

$$\lim_{x \to x_0^-} f(x) = f(x_0).$$

Teorema 1.3.14 Una función es continua en un punto $x_0 \in \text{Dom} f$ si, y sólo si, es continua por la derecha y por la izquierda en x_0 .

Definición 1.3.15 (Función continua en un conjunto) Se dice que f es continua en $A \subset \text{Dom} f$ si f es continua en todos los puntos de A.

Observaciones

- Las funciones elementales son continuas en sus dominios.
- Al operar con funciones continuas se obtienen funciones que son también continuas en sus dominios.
- La inversa de una función continua es una función continua en su dominio.

1.4. Funciones derivables 21

1.3.4. Funciones continuas en intervalos cerrados

Definición 1.3.16 (Extremos relativos) Sea f una función real de variable real.

Se dice que el punto $x_0 \in \text{Dom} f$ es un máximo relativo o local de f si existe un entorno de x_0 , $(x_0 - \delta, x_0 + \delta)$, tal que $f(x) \leq f(x_0)$ para todos los valores $x \in (x_0 - \delta, x_0 + \delta) \cap \text{Dom} f$.

Se dice que el punto $x_0 \in \text{Dom} f$ es un mínimo relativo o local de f si existe un entorno de x_0 , $(x_0 - \delta, x_0 + \delta)$, tal que $f(x) \geq f(x_0)$ para todos los valores $x \in (x_0 - \delta, x_0 + \delta) \cap \text{Dom} f$.

Los máximos y mínimos relativos de una función se llaman extremos relativos de la función.

Definición 1.3.17 (Extremos absolutos) Sea f una función real de variable real y sea $A \subset \text{Dom } f$.

Se dice $x_0 \in \text{Dom} f$ es un máximo absoluto o global de f en A si $f(x) \leq f(x_0)$ para todos los valores $x \in A$.

Se dice $x_0 \in \text{Dom} f$ es un mínimo absoluto o global de f en A si $f(x) \ge f(x_0)$ para todos los valores $x \in A$.

Los máximos y mínimos absolutos de una función se llaman extremos absolutos de la función.

Observaciones

En las dos definiciones anteriores si cambiamos los signos "\le " por "\le "

Teorema 1.3.18 (Weierstrass) Sea f continua en [a,b]. Entonces f alcanza máximo y mínimo absolutos en [a,b].

Teorema 1.3.19 (Bolzano) Sea f continua en [a,b] tal que f(a)f(b) < 0. Entonces existe $c \in (a,b)$ tal que f(c) = 0.

Teorema 1.3.20 (Valores intermedios) Sea f continua en [a,b] y sea α comprendido entre f(a) y f(b) $(f(a) < \alpha < f(b)$ o bien $f(b) < \alpha < f(a)$). Entonces existe $c \in (a,b)$ tal que $f(c) = \alpha$.

1.4. Funciones derivables

1.4.1. Derivada de una función

Definición 1.4.1 (Derivada de una función en un punto) Una función f se dice derivable o diferenciable en $x_0 \in \mathbb{R}$ si el siguiente límite existe y es un número real

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} \, .$$

Este valor se llama derivada de f en x_0 y se denota $f'(x_0)$.

Observación

La derivada también puede definirse de forma equivalente (basta considerar $h = x - x_0$) mediante el límite

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$
.

Definición 1.4.2 (Derivadas laterales) Una función f se dice derivable o diferenciable por la derecha en $x_0 \in \mathbb{R}$ si el siguiente límite existe y es un número real

$$\lim_{h \to 0^+} \frac{f(x_0 + h) - f(x_0)}{h} .$$

Este valor se llama derivada de f en x_0 y se denota $f'(x_0^+)$.

Una función f se dice derivable o diferenciable por la izquierda en $x_0 \in \mathbb{R}$ si el siguiente límite existe y es un número real

$$\lim_{h \to 0^{-}} \frac{f(x_0 + h) - f(x_0)}{h} .$$

Este valor se llama derivada de f en x_0 y se denota $f'(x_0^-)$.

Teorema 1.4.3 Una función es derivable en x_0 si, y sólo si, es derivable por la derecha y por la izquierda en x_0 y las derivadas laterales coinciden. Además, si f es derivable en x_0 , se tiene que

$$f'(x_0) = f'(x_0^+) = f'_-(x_0^-).$$

Teorema 1.4.4 Si f es derivable en x_0 , entonces es continua en x_0 .

Observación

El recíproco de este teorema no se verifica en general.

Interpretación geométrica de la derivada

El cociente

$$\frac{f(x_0+h)-f(x_0)}{h}$$

es la pendiente de la recta r que pasa por los puntos $(x_0, f(x_0))$ y $(x_0 + h, f(x_0 + h))$. Si h es muy pequeño estos dos puntos estarán muy próximos. Si f es derivable en x_0 , en el límite $(h \to 0)$, la recta r es tangente a la gráfica de f en $(x_0, f(x_0))$.

Teorema 1.4.5 (Recta tangente) Si f es derivable en x_0 , entonces existe una única recta tangente a la gráfica de f en el punto $(x_0, f(x_0))$. La ecuación de esta recta es

$$y = f(x_0) + f'(x_0)(x - x_0).$$

Definición 1.4.6 (Función derivable en un conjunto) Una función f se dice derivable en un conjunto $A \subset \text{Dom} f$ si es derivable en todos los puntos de A.

Definición 1.4.7 (Función derivada) Si f es derivable en un conjunto $A \subset \mathrm{Dom} f$, entonces la función

$$f': A \longrightarrow \mathbb{R}$$

$$x \longrightarrow f'(x)$$

se llama función derivada de f.

Es habitual utilizar para la derivada la siguiente notación (de Leibniz): si y = f(x), entonces

$$y'(x) = \frac{dy}{dx}.$$

Si queremos indicar la derivada en un punto x_0 :

$$y'(x_0) = \frac{dy}{dx}(x_0).$$

1.4.2. Cálculo de derivadas

En la siguiente tabla se recogen las derivadas de algunas funciones elementales.

f(x) = k	f'(x) = 0	$f(x) = x^n$	$f'(x) = nx^{n-1}$
$f(x) = e^x$	$f'(x) = e^x$	$f(x) = \ln x$	f'(x) = 1/x
$f(x) = a^x$	$f'(x) = a^x \ln a$	$f(x) = \log_a x$	$f'(x) = (\log_a e)/x$
$f(x) = \sin x$	$f'(x) = \cos x$	$f(x) = \cos x$	$f'(x) = -\sin x$
$f(x) = \operatorname{senh} x$	$f'(x) = \cosh x$	$f(x) = \cosh x$	$f'(x) = \operatorname{senh} x$

Si f y g son funciones derivables, kf (k constante), f+g, $f\cdot g$ y f/g ($g(x)\neq 0$) son también funciones derivables. A continuación se detallan las reglas de derivación correspondientes a estas operaciones.

h(x) = kf(x)	h'(x) = kf'(x)
h(x) = f(x) + g(x)	h'(x) = f'(x) + g'(x)
h(x) = f(x)g(x)	h'(x) = f'(x)g(x) + f(x)g'(x)
$h(x) = \frac{f(x)}{g(x)}$	$h'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^2}$

Teorema 1.4.8 (Regla de la cadena) Si f es derivable en x_0 y g es derivable en $f(x_0)$, entonces $g \circ f$ es derivable x_0 y además,

$$(g \circ f)'(x_0) = g'(f(x_0))f'(x_0).$$

La regla de la cadena se escribe utilizando la notación de Leibniz de la forma: si y = g(u) con u = f(x), entonces

$$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}.$$

Teorema 1.4.9 (Derivada de la función inversa) Sea f^{-1} la inversa de una función f. Si f es derivable en $f^{-1}(x_0)$ y $f'(f^{-1}(x_0)) \neq 0$, entonces f^{-1} es derivable en x_0, y además,

$$(f^{-1})'(x_0) = \frac{1}{f'(f^{-1}(x_0))}.$$

Observación

La derivadas de las funciones inversas de las funciones trigonométricas se obtienen aplicando el teorema anterior:

$f(x) = \arcsin x$	$f'(x) = \frac{1}{\sqrt{1 - x^2}}$
$f(x) = \arccos x$	$f(x) = -\frac{1}{\sqrt{1 - x^2}}$
$f(x) = \operatorname{arc} \operatorname{tg} x$	$f'(x) = \frac{1}{1+x^2}$

La funciones $\arcsin x$ y $\arccos x$ son derivables en (-1,1).

Derivadas de orden superior

Si f es derivable en $A \subset \text{Dom} f$, su derivada f' es de nuevo una función

$$\begin{array}{cccc} f' & : & A & \longrightarrow & \mathbb{R} \\ & x & \longrightarrow & f'(x) \end{array}$$

Si f' es derivable podemos calcular su derivada que llamaremos derivada segunda de f y denotaremos por f''. De forma análoga podemos definir las derivadas tercera (f'''), cuarta $(f^{(4)})$ y, sucesivamente, hasta la derivada n-ésima $(f^{(n)})$. Con la notación de Leibniz las derivadas se escriben

$$y' = \frac{dy}{dx}$$
 $y'' = \frac{d^2y}{dx^2}$... $y^{(n)} = \frac{d^ny}{dx^n}$

Definición 1.4.10 Decimos que f es n-veces derivable en A si para todo $x \in A$ existe $f^{(n)}(x)$. Si además la función $f^{(n)}: A \to \mathbb{R}$ es continua, decimos que f es de clase C^n .

1.4.3. Teoremas fundamentales del cálculo diferencial

Teorema 1.4.11 Sea $f:(a,b) \to \mathbb{R}$ derivable en x_0 y sea x_0 un extremo relativo de f. Entonces $f'(x_0) = 0$.

El recíproco de este teorema no se verifica en general.

Definición 1.4.12 (Punto crítico) Se dice que x_0 es un punto crítico de la función f si no existe $f'(x_0)$ o bien $f'(x_0) = 0$.

Observaciones

- Sea $f:(a,b) \longrightarrow \mathbb{R}$. Los extremos de f son puntos críticos de f.
- Sea $f:[a,b] \longrightarrow \mathbb{R}$. Los extremos de f son puntos críticos de f o extremos del intervalo. Si f es continua en [a,b], por el teorema de Weierstrass, sabemos que f alcanza máximo y mínimo absolutos en [a,b]. Los extremos absolutos de f en [a,b] son puntos críticos o extremos del intervalo.

Teorema 1.4.13 (Valor medio) Sea f continua en [a,b] y derivable en (a,b). Entonces existe un punto $c \in (a,b)$ tal que

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

Teorema 1.4.14 (Rolle) Sea f continua en [a,b] y derivable en (a,b). Si f(a) = f(b), entonces existe un punto $c \in (a,b)$ tal que f'(c) = 0.

Teorema 1.4.15 (Regla de L'Hôpital) Sean f y g tales que

$$\lim_{x \to x_0} f(x) = 0 = \lim_{x \to x_0} g(x).$$

Entonces, si existe $\lim_{x\to x_0} \frac{f'(x)}{g'(x)} = l$, también existe $\lim_{x\to x_0} \frac{f(x)}{g(x)} = l$.

Observaciones

- El teorema anterior es válido para límites laterales y límites en el infinito.
- lacksquare El teorema anterior es válido para indeterminaciones del tipo $\frac{\infty}{\infty}$.

1.5. Fórmula de Taylor

1.5.1. Fórmula de Taylor

Teorema 1.5.1 (Fórmula de Taylor) Sea f derivable hasta orden n+1 en un entorno de un punto x_0 , $(x_0 - \delta, x_0 + \delta)$. Entonces, para cualquier $x \in (x_0 - \delta, x_0 + \delta)$, $x \neq x_0$, existe c_x comprendido entre x y x_0 (i.e., $c_x \in (\min\{x_0, x\}, \max\{x_0, x\})$) tal que

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + \frac{f^{(n+1)}(c_x)}{(n+1)!}(x - x_0)^{n+1}.$$

La expresión anterior se llama fórmula de Taylor de f en el punto x_0 (si $x_0 = 0$ recibe el nombre de fórmula de MacLaurin).

El polinomio

$$P_n(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \frac{f'''(x_0)}{3!}(x - x_0)^3 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n.$$

se llama polinomio de Taylor de f en el punto x_0 .

El último término de la fórmula de Taylor se llama resto de orden n de Lagrange

$$R_n(x) = \frac{f^{(n+1)}(c_x)}{(n+1)!}(x-x_0)^{n+1}.$$

Observaciones

- El polinomio de Taylor nos proporciona una aproximación de f en un entorno del punto x_0 (aproximación local).
- Puesto que $f(x) P_n(x) = R_n(x)$, el resto es el error que se comete al tomar el valor del polinomio de Taylor en un punto en lugar del valor de la función en ese punto.

1.6. Aplicaciones de la derivada

1.6.1. Monotonía

En lo que sigue f representa una función real de variable real.

Teorema 1.6.1 Sea f una función derivable en (a, b).

- 1. f'(x) > 0 para cualquier $x \in (a,b)$ si, y sólo si, f es estrictamente creciente en (a,b).
- 2. f'(x) < 0 para cualquier $x \in (a,b)$ si, y sólo si, f es estrictamente decreciente en (a,b).
- 3. f'(x) = 0 para cualquier $x \in (a, b)$ si, y sólo si, f es constante en (a, b).

Corolario 1.6.2 Sean f g functiones derivables en (a,b). Si f'(x) = g'(x) para cualquier $x \in (a,b)$, entonces f(x) = g(x) + c (c constante) para cualquier $x \in (a,b)$.

Teorema 1.6.3 Sea f una función derivable en (a, b).

- 1. $f'(x) \ge 0$ para cualquier $x \in (a,b)$ si, y sólo si, f es creciente en (a,b).
- 2. $f'(x) \leq 0$ para cualquier $x \in (a,b)$ si, y sólo si, f es decreciente en (a,b).

Teorema 1.6.4 (Criterio de la primera derivada) Sea x_0 un punto crítico de f y sea f continua en x_0 .

- 1. Si existe un entorno de x_0 , $(x_0 \delta, x_0 + \delta)$, tal que
 - $f'(x) \ge 0$ para cualquier $x \in (x_0 \delta, x_0)$ y
 - $f'(x) \leq 0$ para cualquier $x \in (x_0, x_0 + \delta)$,

entonces x_0 es un máximo local de f.

- 2. Si existe un entorno de x_0 , $(x_0 \delta, x_0 + \delta)$, tal que
 - $f'(x) \leq 0$ para cualquier $x \in (x_0 \delta, x_0)$ y
 - $f'(x) \ge 0$ para cualquier $x \in (x_0, x_0 + \delta)$,

entonces x_0 es un mínimo local de f.

Teorema 1.6.5 Sea f una función derivable en (a,b) y tal que $f'(x) \neq 0$ para cualquier $x \in (a,b)$. Entonces f' no cambia de signo en (a,b).

Teorema 1.6.6 (Criterio de la segunda derivada) Sean f derivable en un entorno de x_0 y x_0 un punto crítico de f tal que existe $f''(x_0)$ y $f''(x_0) \neq 0$.

- 1. Si $f''(x_0) > 0$, entonces x_0 es un mínimo relativo de f.
- 2. Si $f''(x_0) < 0$, entonces x_0 es un máximo relativo de f.

1.6.2. Concavidad y convexidad

Definición 1.6.7 Se dice que f es convexa en [a,b] si el segmento que une dos puntos cualesquiera de la gráfica de f entre a y b está por encima de la gráfica de f, i.e., para todo $x,y \in [a,b]$ se cumple

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$$
 para todo $\lambda \in [0, 1]$.

Definición 1.6.8 Se dice que f es cóncava en [a,b] si el segmento que une dos puntos cualesquiera de la gráfica de f entre a y b está por debajo de la gráfica de f, i.e., para todo $x, y \in [a,b]$ se cumple

$$f(\lambda x + (1 - \lambda)y) \ge \lambda f(x) + (1 - \lambda)f(y)$$
 para todo $\lambda \in [0, 1]$.

Observación

Teorema 1.6.9 Sea f una función dos veces derivable en (a, b).

- 1. f es convexa en [a,b] si, y sólo si, $f''(x) \ge 0$ para cualquier $x \in (a,b)$.
- 2. f es cóncava en [a,b] si, y sólo si, $f''(x) \leq 0$ para cualquier $x \in (a,b)$.

Definición 1.6.10 Sea $x_0 \in Domf$. Se dice que x_0 es un punto de inflexión de f si f es cóncava en un entorno por la izquierda de x_0 y convexa en un entorno por la derecha de x_0 , o si f es convexa en un entorno por la izquierda de x_0 y cóncava en un entorno por la derecha de x_0

Teorema 1.6.11 Sean f una función dos veces derivable en un entorno de x_0 y x_0 punto de inflexión de f. Entonces $f''(x_0) = 0$.

Teorema 1.6.12 Sea f una función dos veces derivable en un entorno de x_0 tal que $f''(x_0) = 0$. Si $f'''(x_0) \neq 0$, entonces x_0 es un punto de inflexión de f.

1.6.3. Asíntotas

Definición 1.6.13 Se dice que la recta $x = x_0$ es una asíntota vertical de una función f si

$$\lim_{x \to x_0^+} f(x) = \pm \infty \qquad o \qquad \lim_{x \to x_0^-} f(x) = \pm \infty.$$

Definición 1.6.14 Se dice que la recta y = mx + n es una asíntota oblícua por la derecha de una función f si

$$\lim_{x \to +\infty} (f(x) - (mx + n)) = 0.$$

Se dice que la recta y=mx+n es una asíntota oblícua por la izquierda de una función f si

$$\lim_{x \to -\infty} (f(x) - (mx + n)) = 0.$$

En ambos casos, si m = 0 se dice que la asíntota es horizontal.

Para calcular m y n en una asíntota oblícua por la derecha:

$$m = \lim_{x \to +\infty} \frac{f(x)}{x} \,,$$

$$n = \lim_{x \to +\infty} (f(x) - mx).$$

Para calcular m y n en una asíntota oblícua por la izquierda:

$$m = \lim_{x \to -\infty} \frac{f(x)}{x} \,,$$

$$n = \lim_{x \to -\infty} (f(x) - mx).$$

Estudio cualitativo de una función y representación gráfica

- 1. Dominio de la función: determinar el conjunto donde está definida f.
- 2. Simetrías y periodicidad:
 - Simetrías:
 - Función par (simetría respecto al eje OY): f(x) = f(-x).
 - Función impar (simetría respecto a (0,0): f(x) = -f(-x).
 - Periodicidad:
 - Función periódica de período T: f(x) = f(x+T).
- 3. Puntos de corte con los ejes:
 - Eje OX: soluciones de la ecuación f(x) = 0.
 - Eje OY: punto (0, f(0)).
- 4. Continuidad: estudiar los límites de f en los posibles puntos de discontinuidad y determinar el conjunto donde es continua.
- 5. **Derivabilidad:** estudiar la derivabilidad de f en los posibles puntos angulosos, determinar el conjunto donde es derivable y calcular su derivada f'.
- 6. Monotonía y extremos:
 - Intervalos de monotonía: se obtienen a partir de los puntos críticos (f'(x) = 0 o no existe f'(x)).
 - Monotononía: se estudia el signo de f' en los intervalos de monotonía obtenidos en el apartado anterior.
 - Extremos: se deducen de la monotonía de la función (criterio de la derivada primera) o se aplica el criterio de la derivada segunda.
- 7. Curvatura y puntos de inflexión:

- Intervalos de curvatura (concavidad-convexidad): se obtienen a partir de los puntos que anulan a f''(x) y de los puntos donde no existe f''(x).
- Curvatura: se estudia el signo de f'' en los intervalos de concavidad—convexidad obtenidos en el apartado anterior.
- Puntos de inflexión: se deducen del apartado anterior (cambio de signo de f'').

8. Asíntotas:

• Verticales: $x = x_0$ si:

$$\lim_{x \to x_0^+} f(x) = \pm \infty \qquad \text{o} \qquad \lim_{x \to x_0^-} f(x) = \pm \infty.$$

- Horizontales y oblícuas:
 - Por la derecha: y = mx + n

$$m = \lim_{x \to +\infty} \frac{f(x)}{x}, \qquad n = \lim_{x \to +\infty} (f(x) - mx).$$

- Por la izquierda: y = mx + n

$$m = \lim_{x \to -\infty} \frac{f(x)}{x}, \qquad n = \lim_{x \to -\infty} (f(x) - mx).$$

En ambos casos, si m = 0 la asíntota es horizontal.

9. Representación gráfica: trazar la gráfica de la función teniendo en cuenta todos los datos obtenidos en los apartados anteriores.