Conditional Logistic Regression Model

Stefanie Muff (stefanie.muff@uzh.ch), Johannes Signer, John Fieberg

July 16th 2018

Parametrization

Some binomial sampling schemes in Biostatistics or Biology may result in what is called *matched case-control* data, which require a *conditional logistic regression* model. For the j^{th} observed binary response y_{nj} in stratum n, the model is given as

$$\mathsf{Prob}(y_{nj} = 1 \,|\, \eta_{n \cdot}) = p_{nj} = \frac{\exp(\eta_{nj})}{\sum_{i} \exp(\eta_{ni})} \;, \quad y_{nj} \sim \mathsf{Bern}(p_{nj}) \;,$$

with linear predictor η_{nj} and success probability p_{nj} . The sum in the denominator is over all observations in the respective stratum. This model is a special case of a multinomial model, and as such it can be fitted by using a likelihood-equivalent reformulation as a Poisson model

$$\mathsf{E}(y_{nj}) = \mu_{nj} = \exp(\alpha_n + \eta_{nj}) \;, \qquad y_{nj} \sim \mathsf{Po}(\mu_{nj}) \;,$$

with stratum-specific intercepts α_n . If the number of strata is large, the explicit estimation of these intercepts can be circumvented by $\alpha_n \sim \mathsf{N}(0, \tau_\alpha)$ and fixing the precision τ_α at a very small value, e.g. 10^{-6} or 10^{-12} , which corresponds to a large variance. This mimicks a uniform distribution and ensures that the α_n can be estimated freely instead of being shrunken towards 0.

Hyperparameters

None.

Specification

- family =Poisson
- To fix the variance at a large value the stratum-specific intercept α_n use
 - model="iid"
 - hyper=list(theta = list(initial=log(1e-6),fixed=T))

Example

The following example stems from a habitat selection study of 6 radio collared fishers ($Pekania\ pennanti$) (LaPoint et al. 2013), and was adapted from Signer et al. (2018). Outcomes with y=1 represent locations that were visited by fishers, and y=0 represents nearby locations that were not visited. Each visited location was matched to 2 nearby available locations, and together these 3 observations form a stratum (indicated by stratum). By design, only exactly one location can be visited in each stratum, thus these data need to be analyzed by a conditional logistic regression model. Covariates include sex (sex), land use (landuse, categorical covariate) and distance to the center of the habitat ($dist_center$), with individual-dependent random slopes for $dist_cent$. The 6 individuals are represented using id and id1. Shown is a reduced dataset with only 100 steps per individual and a sampling ratio of 1:2.

```
fisher.dat <- readRDS(system.file("demodata/data_fisher2.rds", package
= "INLA"))
fisher.dat$id1 <- fisher.dat$id
fisher.dat$dist_cent <- scale(fisher.dat$dist_cent)

formula.inla <- y ~ sex + landuse + dist_cent +
    f(stratum,model="iid",hyper=list(theta = list(initial=log(1e-6),fixed=T))) +
    f(id1,dist_cent, model="iid")

r.inla <- inla(formula.inla, family ="Poisson", data=fisher.dat)</pre>
```

References

Muff, S., Signer, J. and Fieberg, J. (preprint) Accounting for individual-specific variation in habitat selection studies: Efficient estimation using integrated nested Laplace approximations

Signer, J., Fieberg, J. and Avgar, T. In press. Animal Movement Tools (amt): R-Package for Managing Tracking Data and Conducting Habitat Selection Analyses. Ecology and Evolution.

LaPoint, S., Gallery, P., Wikelski, M. and Kays, R. (2013) Animal behavior, cost-based corridor models, and real corridors. Landscape Ecology, 28, 1615–1630.