$\begin{array}{l} \text{Lagrangian density} \\ \hline -t_1 \ \omega_i^{\ \alpha i} \ \omega_{\kappa\alpha}^{\ \kappa} - \frac{1}{3} \ t_1 \ \omega_i^{\ \kappa\lambda} \ \omega_{\kappa\lambda}^{\ i} + \frac{2}{3} \ t_2 \ \omega_i^{\ \kappa\lambda} \ \omega_{\kappa\lambda}^{\ i} + \frac{1}{3} \ t_1 \ \omega_{\kappa\lambda}^{\ i} \ \omega^{\kappa\lambda}_{\ i} + \frac{1}{3} \ t_1 \ \omega_{\kappa\lambda}^{\ i} \ \omega^{\kappa\lambda}_{\ i} + \frac{1}{3} \ t_2 \ \omega_{\kappa\lambda}^{\ i} \ \omega_{\kappa\lambda}^{\ i} + \frac{1}{3} \ t_1 \ \omega_{\kappa\lambda}^{\ i} \ \omega^{\kappa\lambda}_{\ i} + \frac{1}{3} \ t_2 \ \omega_{\kappa\lambda}^{\ i} \ \omega^{\kappa\lambda}_{\ \kappa} + \frac{1}{3} \ t_2 \ \omega_{\kappa\lambda}^{\ i} \ \omega^{\kappa\lambda}_{\ \kappa} + \frac{1}{3} \ t_2 \ \omega_{\kappa\lambda}^{\ i} \ \omega^{\kappa\lambda}_{\ \kappa} + \frac{1}{3} \ t_2 \ \omega_{\omega}^{\ \kappa} \ \omega^{\omega}_{\alpha\beta}^{\ \kappa} + \frac{1}{3} \ t_2 \ \omega_{\omega}^{\ \kappa} \ \omega^{\omega}_{\alpha\beta}^{\ \kappa} + \frac{1}{3} \ t_2 \ \omega_{\omega}^{\ \kappa} \ \omega^{\omega}_{\alpha\beta}^{\ \kappa} + \frac{1}{3} \ t_2 \ \omega_{\omega}^{\ \kappa} \ \omega^{\omega}_{\alpha\beta}^{\ \kappa} + \frac{1}{3} \ t_2 \ \omega_{\omega}^{\ \kappa} \ \omega^{\omega}_{\alpha\beta}^{\ \kappa} + \frac{1}{3} \ t_2 \ \omega_{\omega}^{\ \kappa} \ \omega^{\omega}_{\alpha\beta}^{\ \kappa} + \frac{1}{3} \ t_2 \ \omega_{\omega}^{\ \kappa} \ \omega^{\omega}_{\alpha\beta}^{\ \kappa} + \frac{1}{3} \ t_2 \ \omega_{\omega}^{\ \kappa} \ \omega^{\omega}_{\alpha\beta}^{\ \kappa} + \frac{1}{3} \ t_2 \ \omega_{\omega}^{\ \kappa} \ \omega^{\omega}_{\alpha\beta}^{\ \kappa} + \frac{1}{3} \ t_2 \ \omega_{\omega}^{\ \kappa} \ \omega^{\omega}_{\alpha\beta}^{\ \kappa} + \frac{1}{3} \ t_2 \ \omega_{\omega}^{\ \kappa} \ \omega^{\omega}_{\alpha\beta}^{\ \kappa} + \frac{1}{3} \ t_2 \ \omega_{\omega}^{\ \kappa} \ \omega^{\omega}_{\alpha\beta}^{\ \kappa} + \frac{1}{3} \ t_1 \ \omega_{\omega}^{\ \kappa} \ \omega^{\omega}_{\alpha\beta}^{\ \kappa} + \frac{1}{3} \ t_1 \ \omega_{\omega}^{\ \kappa} \ \omega^{\omega}_{\alpha\beta}^{\ \kappa} + \frac{1}{3} \ t_1 \ \omega_{\omega}^{\ \kappa} \ \omega^{\omega}_{\alpha\beta}^{\ \kappa} + \frac{1}{3} \ t_1 \ \omega_{\omega}^{\ \kappa} \ \omega^{\omega}_{\alpha\beta}^{\ \kappa} + \frac{1}{3} \ t_1 \ \omega_{\omega}^{\ \kappa} \ \omega^{\omega}_{\alpha\beta}^{\ \kappa} + \frac{1}{3} \ t_1 \ \omega_{\omega}^{\ \kappa} \ \omega^{\omega}_{\alpha\beta}^{\ \kappa} + \frac{1}{3} \ t_1 \ \omega_{\omega}^{\ \kappa} \ \omega^{\omega}_{\alpha\beta}^{\ \kappa} + \frac{1}{3} \ t_1 \ \omega_{\omega}^{\ \kappa} \ \omega^{\omega}_{\alpha\beta}^{\ \kappa} + \frac{1}{3} \ t_2 \ \omega_{\omega}^{\ \kappa} \ \omega^{\omega}_{\alpha\beta}^{\ \kappa} + \frac{1}{3} \ t_1 \ \omega_{\omega}^{\ \kappa} \ \omega^{\omega}_{\alpha\beta}^{\ \kappa} + \frac{1}{3} \ t_2 \ \omega_{\omega}^{\ \kappa} \ \omega^{\omega}_{\alpha\beta}^{\ \kappa} + \frac{1}{3} \ t_1 \ \omega_{\omega}^{\ \kappa} \ \omega^{\omega}_{\alpha\beta}^{\ \kappa} + \frac{1}{3} \ t_2 \ \omega_{\omega}^{\ \kappa} \ \omega^{\omega}_{\alpha\beta}^{\ \kappa} + \frac{1}{3} \ t_1 \ \omega_{\omega}^{\ \kappa} \ \omega^{\kappa}_{\beta}^{\ \kappa} + \frac{1}{3} \ t_2 \ \omega_{\omega}^{\ \kappa} \ \omega^{\kappa}_{\beta}^{\ \kappa} + \frac{1}{3} \ t_1 \ \omega_{\omega}^{\ \kappa} \ \omega^{\kappa}_{\beta}^{\ \kappa} + \frac{1}{3} \ t_2 \ \omega_{\omega}^{\ \kappa} \ \omega^{\kappa}_{\beta}^{\ \kappa} + \frac{1}{3} \ t_1 \ \omega_{\omega}^{\ \kappa} \ \omega^{\kappa}_{\beta}^{\ \kappa} + \frac{1}{3} \ t_1 \ \omega_{\omega}^{\ \kappa} \ \omega^{\kappa}_{\beta}^{\ \omega} + \frac{1}{3} \ t_2 \ \omega_{\omega}^{\ \omega}^{\ \omega}_{\alpha\beta}^{\ \omega} + \frac{1}{3}$

 $\frac{2}{3}\,r_1\,\partial^\beta\omega_{_{_{I}}}{}^{\alpha\lambda}\,\partial_\lambda\omega_{\alpha\beta}{'}-\frac{2}{3}\,r_2\,\partial^\beta\omega_{_{_{I}}}{}^{\alpha\lambda}\,\partial_\lambda\omega_{\alpha\beta}{'}-\frac{8}{3}\,r_1\,\partial^\beta\omega_{_{_{I}}}{}^{\lambda\alpha}\,\partial_\lambda\omega_{\alpha\beta}{'}+$

 $\frac{2}{3} \, r_2 \, \partial^\beta \omega_{_I}^{\ \lambda \alpha} \, \partial_\lambda \omega_{\alpha\beta}^{\ \ \prime} - 2 \, r_1 \, \partial_\alpha \omega_{\lambda}^{\ \alpha}_{\ \theta} \, \partial^\lambda \omega^{\theta\kappa}_{\ \kappa} + 2 \, r_1 \, \partial_\theta \omega_{\lambda}^{\ \alpha}_{\ \alpha} \, \partial^\lambda \omega^{\theta\kappa}_{\ \kappa}$

Added source term: $f^{\alpha\beta} \tau_{\alpha\beta} + \omega^{\alpha\beta\chi} \sigma_{\alpha\beta\chi}$

$\tau_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{2ik}{t_1 + 2k^2t_1}$	$\frac{i\sqrt{2}k(2k^2r_1+t_1)}{(t_1+2k^2t_1)^2}$	0	$\frac{2k^2(2k^2r_1+t_1)}{(t_1+2k^2t_1)^2}$
$\tau_{1}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\sigma_{1^-}^{\#2}$	0	0	0	$\frac{\sqrt{2}}{t_1 + 2 k^2 t_1}$	$\frac{2k^2r_1+t_1}{(t_1+2k^2t_1)^2}$	0	$-\frac{i\sqrt{2}k(2k^2r_1+t_1)}{(t_1+2k^2t_1)^2}$
$\sigma_{1^{\bar{-}}\alpha}^{\#1}$	0	0	0	0	$\frac{\sqrt{2}}{t_1 + 2k^2t_1}$	0	$-\frac{2ik}{t_1+2k^2t_1}$
$\tau_{1}^{\#1}_{\alpha\beta}$	$\frac{i\sqrt{2}k(t_1-2t_2)}{3(1+k^2)t_1t_2}$	$\frac{i k (t_1 + 4t_2)}{3 (1 + k^2)^2 t_1 t_2}$	$\frac{k^2 (t_1 + 4t_2)}{3 (1 + k^2)^2 t_1 t_2}$	0	0	0	0
$\sigma_{1}^{\#2}$	$\frac{\sqrt{2} (t_1 - 2t_2)}{3 (1 + k^2) t_1 t_2}$	$\frac{t_1+4t_2}{3(1+k^2)^2t_1t_2}$	$-\frac{ik(t_1+4t_2)}{3(1+k^2)^2t_1t_2}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{\alpha\beta}$	$\frac{2(t_1+t_2)}{3t_1t_2}$	$\frac{\sqrt{2} (t_1 - 2t_2)}{3(1 + k^2) t_1 t_2}$	$-\frac{i\sqrt{2}k(t_1-2t_2)}{3(1+k^2)t_1t_2}$	0	0	0	0
	$\sigma_{1}^{\#1} + ^{\alpha eta}$	$\sigma_{1}^{#2} + \alpha \beta$	$t_1^{\#1} + \alpha \beta$	$\sigma_{1}^{\#1} +^{lpha}$	$\sigma_{1}^{\#2} + ^{lpha}$	$\tau_{1^{\bar{-}}}^{\#_1} +^{\alpha}$	$\tau_{1}^{\#2} + \alpha$

$f_{1^-}^{\#2}$	0	0	0	$\bar{l} k t_1$	0	0	0
$f_{1^{-}}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\omega_{1^-}^{\#2}_{\alpha} f_{1^-}^{\#1}_{\alpha}$	0	0	0	$\frac{t_1}{\sqrt{2}}$	0	0	0
$\omega_{1^{\bar{-}}}^{\#1}{}_{\alpha}$	0	0	0	$-k^2 r_1 - \frac{t_1}{2}$	$\frac{t_1}{\sqrt{2}}$	0	$-ikt_1$
$f_{1}^{\#1}_{\alpha\beta}$	$-\frac{ik(t_1-2t_2)}{3\sqrt{2}}$	$\frac{1}{3}$ \vec{i} k $(t_1 + t_2)$	$\frac{1}{3} k^2 (t_1 + t_2)$	0	0	0	0
$\omega_{1}^{\#2}{}_{+}\alpha_{\beta}$	$-\frac{t_1-2t_2}{3\sqrt{2}}$	$\frac{t_1+t_2}{3}$	$-\frac{1}{3}ik(t_1+t_2)\left \frac{1}{3}k^2(t_1+t_2)\right $	0	0	0	0
$\omega_{1}^{\#1}{}_{+}\alpha\beta$	$\frac{1}{6}(t_1+4t_2)$	$-\frac{t_1-2t_2}{3\sqrt{2}}$	$\frac{i k (t_1 - 2t_2)}{3 \sqrt{2}}$	0	0	0	0
	$\omega_{1}^{\#1} + \alpha \beta \frac{1}{6}$	$\omega_1^{\#2} + \alpha \beta$	$f_1^{#1} + \alpha \beta$	$\omega_1^{\#1} +^\alpha$	$\omega_1^{\#2} +^{lpha}$	$f_{1}^{\#1} +^{\alpha}$	$f_1^{\#2} + \alpha$

	$\omega_0^{\#1}$	$f_{0}^{#1}$	$f_{0+}^{#2}$	$\omega_{0}^{\sharp 1}$
$\omega_{0^{+}}^{\#1}$ †	-t ₁	$i \sqrt{2} kt_1$	0	0
$f_{0^{+}}^{#1}$ †	$-\bar{l}\sqrt{2}kt_1$	$-2 k^2 t_1$	0	0
$f_{0}^{#2}$ †	0	0	0	0
$\omega_0^{\sharp_1}$ †	0	0	0	$k^2 r_2 + t_2$

 $\frac{1}{(1+2k^2)^2t_1}$

 $\frac{i \sqrt{2} k}{(1+2k^2)^2 t_1}$

 $\sigma_0^{\#1}$ †

 $(1+2k^2)^2t_1$

0

 $\frac{1}{k^2 r_2 + t_2}$

$f_{2}^{\#1}$	- <u># kt1</u>	$\sqrt{2}$ $k^2 t_1$	0	
$\omega_{2}^{\#1}_{+lphaeta}f_{2}^{\#1}_{lpha}$	<u>1</u>	2 ikt1		
	$(\alpha)^{\#} + \alpha\beta$	$f_{2}^{*+} + \alpha \beta$	$\omega_{2}^{\sharp} + \alpha \beta \chi$	
#1 0 ⁺	$ au_{0}^{\#2}$	$\sigma_0^{\#1}$		
$\frac{\sqrt{2} k}{(k^2)^2 t_1}$	0	0		
^				

 $\omega_{2^{-}}^{\#1}{}_{lphaeta\chi}$

	#	1	1	3	3	3	2	16
Source constraints	SO(3) irreps	$\tau_{0+}^{#2} == 0$	$\tau_{0+}^{\#1} - 2 i k \sigma_{0+}^{\#1} = 0$	$t_1^{\#2}{}^{\alpha} + 2ik \sigma_1^{\#2}{}^{\alpha} == 0$	$t_1^{\#_1^{}\alpha} == 0$	$t_1^{\#1}{}^\alpha\beta + ik \ \sigma_1^{\#2}{}^\alpha\beta == 0$	$\tau_{2+}^{\#1}\alpha\beta - 2ik\sigma_{2+}^{\#1}\alpha\beta == 0$	Total #:

	•	$\frac{1}{k^{\mu}}$		$\frac{1}{2}$, $\frac{1}{2}$	
Parity:	$\stackrel{\cdot}{?}$ Spin:	Square mass:	$_{\gamma}$ Polarisations:	Pole residue:	Massive partic

	.?	$\frac{1}{k^{\mu}}$	\(\frac{1}{2}\)	$I_D - 0 - i$	
Parity:	Spin:	Square mass:	ှ Polarisations:	Pole residue:	Massive particle
Odd	0	$-\frac{t_2}{r_2} > 0$	1	$-\frac{1}{r_2} > 0$	le

Unitarity conditions

 $\overline{r_1 < 0 \&\& r_2 < 0 \&\& t_1 > 0 \&\& t_2 > 0}$

assless particles)