

ÁRBOLES DE CLASIFICACIÓN

C4.5, C5.0 Y RANDOM FOREST

Luis María Costero Valero Jesús Javier Doménech Arellano

Enero 2016

ÍNDICE

- 1. ID3
- 2. C4.5
- 3. C5.0
- 4. Random Forest
- 5. Bibliografía

ID3

TDIDT

```
tdidt( C:conjunto_datos, 1:atributos_candidatos)
  cp := clase que aparece más veces en C
  si todas las instancias en C son de clase cj
  entonces
    return new Hoja(cj);
  si 1 es vacía entonces
    return new Hoja(cp);
  a := selecciona atributo(C,1);
  n := new NodoInterno(a);
  para cada valor aj del atributo a
   C_i := particion(C, a, a_i);
    si Cj = \emptyset entonces n' := new Hoja(cp);
    si no n' := tdidt(Ci, 1\setminus\{a\});
    n.añadeHijo(n',aj);
  return n;
```

Ganancia de información

- Lo más interesante es realizar la selección del atributo teniendo en cuenta la calidad del particionado que genera: nos interesa que los subconjuntos resultantes tengan la mínima variedad de clases posibles.
- Para ello utilizaremos la medida de ganancia de información (o reducción de la entropía), lo que da lugar al algoritmo ID3.

C4.5

C4.5

El algoritmo ID3 es mejorado por el C4.5. Esta mejora, aparte de la optimización de partes de código, incluye³:

- Permite atributos continuos.
- Permite dar un peso diferente a cada atributo.
- Permite a una instancia no tener definido un valor en sus atributos.
- Mejora la selección del atributo clasificador.
- Realiza una poda del árbol después de la creación.

³Artículo con las bases del algoritmo [Quinlan, 1986]

ALGORITMO C4.54

Split y Funciones Test: Para divir en subconjuntos las instancias test se divide el dominio donde haya mayor ganancia de información. Esta división se traduce en funciones test de tipo x > 40 ó x < 4, y para atributos discretos x = soleado.

⁴Obtenido del libro [?] y su review [Salzberg, 1994]

ALGORITMO C4.54

Split y Funciones Test: Para divir en subconjuntos las instancias test se divide el dominio donde haya mayor ganancia de información. Esta división se traduce en funciones test de tipo x > 40 ó x < 4, y para atributos discretos x = soleado.

Selección del atributo: La selección del atributo por el que dividir consiste en escoger el atributo con mayor ganancia de información normalizado y ponderado.

Para ello, se tiene en cuenta la proporción de instancias que queda en cada rama para el atributo candidato y el peso de importancia dado a dicho atributo. Siendo *D* el conjunto de instancias, la fórmula para el atributo *i* queda:

$$Ganancia_i = Peso_i * \sum_j \frac{|D_j|}{|D|} * Info_j$$

⁴Obtenido del libro [?] y su review [Salzberg, 1994]

EJEMPLO - ID3 VS C4.5 (ATRIBUTOS CONTINUOS)

EJEMPLO - ID3 vs C4.5 (ATRIBUTOS CONTINUOS)

C4.8 (J48)⁵: MEJORAS A C4.5

Problemas:

"The accuracy of T2's trees rivalled or surpassed C4.5's on 8 of the 15 datasets, including all but one of the datasets having only continuous attributes." [Auer et al., 1995]

"C4.5's performance was significantly improved on two data sets ... using the entropy discretization method and did no significantly degrade on any datasets [...] We conjeture that the C4.5 induction algorithm is not taking full advantage of possible local discretization." [Dougherty et al., 1995]

C4.8 (J48)⁵: MEJORAS A C4.5

Problemas:

"The accuracy of T2's trees rivalled or surpassed C4.5's on 8 of the 15 datasets, including all but one of the datasets having only continuous attributes." [Auer et al., 1995]

"C4.5's performance was significantly improved on two data sets ... using the entropy discretization method and did no significantly degrade on any datasets [...] We conjeture that the C4.5 induction algorithm is not taking full advantage of possible local discretization." [Dougherty et al., 1995]

Solución [Quinlan, 1996]:

- Aumentar el coste de usar atributos continuos disminuyendo el peso de importancia del atributo.
- Simplificar la división de un atributo continuo, en lugar de maximizar la ganacia, basta con superar un límite.
- Se añade el generador de reglas.

C5.0

C5.0

C5.0 tiene licencia comercial y licencia GPL para un solo proceso.

Mejoras ⁶:

- Aumenta el rendimiento del algoritmo.
- Reduce el consumo de memoria local y total.
- Devuelve árboles de clasificación reducidos.
- Poda atributos irrelevantes para la clasificación.
- Hace la ponderación de atributos más precisa.
- Agrupa valores de atributos discretos en una misma rama.
- Genera reglas con más acierto que las de C4.8.
- Facilita la aplicación de técnicas como bagging y boosting, mejorando sus resultados.⁷

 $^{^6}$ Basado en [Pandya and Pandya, 2015] y la página oficial del autor [Quinlan,] 7 [Freund and Mason, 1999]

C5.0: EXAMPLE IN R⁸

```
\label{eq:crx-read} $$\operatorname{crx}<\operatorname{-read.table(file="./crx.data",header=FALSE,sep=",")}$ head( \ensuremath{\operatorname{crx}}, 6 )
```

C5.0: EXAMPLE IN R8

```
 \begin{array}{l} crx<\text{-read.table(file="./crx.data",header=FALSE,sep=",")} \\ head(\ crx,\ 6\ ) \\ crx<-\ crx[\ sample(\ nrow(\ crx\ )\ ),\ ] \\ X<-\ crx[,1:15] \\ y<-\ crx[,16] \\ \end{array}
```

C5.0: EXAMPLE IN R⁸

```
 \begin{array}{l} crx < - read. table(file="./crx.data",header=FALSE,sep=",") \\ head(\ crx,\ 6\ ) \\ crx < - \ crx[\ sample(\ nrow(\ crx\ )\ ),\ ] \\ X < - \ crx[,1:15] \\ y < - \ crx[,16] \\ trainX < - \ X[1:600,] \\ trainy < - \ y[1:600] \\ testX < - \ X[601:690,] \\ testy < - \ y[601:690] \\ \end{array}
```

C5.0: EXAMPLE IN R⁸

```
crx<-read.table(file="./crx.data",header=FALSE,sep=",")
head(crx, 6)
crx <- crx[ sample( nrow( crx ) ), ]
X < -crx[,1:15]
y < - crx[,16]
trainX <- X[1:600,]
trainy <- y[1:600]
testX <- X[601:690,]
testy <- y[601:690]
library(C50)
model <- C50::C5.0( trainX, trainy )
summary( model )
```

RANDOM FOREST

Introducción - I

Hasta ahora:

Un conjunto de entrenamiento -> Un árbol de clasificación

Sexo	Altura	Peso	Ехр.	Act.
Н	1,55	45	A+	Fútbol
Н	1,67	58	С	Fútbol
M	1,45	45	В	Fútbol
M	1,58	50	A+	Pádel
Н	1,20	40	В	Fútbol
M	1,80	60	Α	Pádel
	• • •			• • •

Introducción - I

Random forest:

Un conjunto de entrenamiento \rightarrow Varios árboles de clasificación

Sexo	Altura	Peso	Ехр.	Act.
Н	1,55	45	A+	Fútbol
Н	1,67	58	С	Fútbol
M	1,45	45	В	Fútbol
M	1,58	50	A+	Pádel
Н	1,20	40	В	Fútbol
M	1,80	60	Α	Pádel

Introducción - II

Random forest⁹ (No me gusta este título)

- ¿Cómo se clasifica una instancia?
- ¿Cómo se generan varios árboles con el mismo conjunto de entrenamiento?
- ¿Cómo se genera un árbol en concreto?

⁹Técnica propuesta por primera vez en [Breiman, 2001].

CLASIFICACIÓN DE INSTANCIAS

Al existir varios árboles, pueden existir varias clases posibles para una instancia.

La clase final será aquella que más veces aparece elegida (moda).

```
clasifica(x):
  for_each a in arboles:
    cjto += clasifica(x, a)
  return moda(cjto)
```


CLASIFICACIÓN DE INSTANCIAS

Al existir varios árboles, pueden existir varias clases posibles para una instancia.

La clase final será aquella que más veces aparece elegida (moda).

```
clasifica(x):
for_each a in arboles:
cjto += clasifica(x, a)
return moda(cjto)
```


CLASIFICACIÓN DE INSTANCIAS

Al existir varios árboles, pueden existir varias clases posibles para una instancia.

La clase final será aquella que más veces aparece elegida (moda).

```
clasifica(x):
for_each a in arboles:
cjto += clasifica(x, a)
return moda(cjto)
```


GENERACIÓN DE ÁRBOLES — SELECCIÓN DE INSTANCIAS

Esto es un borrador rápido de lo que quiero poner aquí:

- Nombrar la técnica de bagging o bootstrap aggregating, y poner referencia.
- Mencionar los tamaños de cada cosa, y el número de árboles es ilimitado.
- Nombrar muestreo aleatorio con reemplazamiento.
- Explicar que significa con reemplazamiento.
- Poner el ejemplo de la tabla, y sacar flechas con los distintos árboles. (opcional, puede quedar chulo).

GENERACIÓN DE ÁRBOLES — SELECCIÓN DE INSTANCIAS

Problema: A partir de un mismo conjunto de entrenamiento se desean obtener distintos árboles de clasificación.

Solución: Técnica conocida como Bagging o Bootstrap aggregating:

- Dado un conjunto de entrenamiento con N instancias, obtener B conjuntos de entrenamiento de tamaño n' (n' < N).
- Utilizar muestreo aleatorio con reemplazamiento.

images/randomForest/bagging pre.png

GENERACIÓN DE ÁRBOLES — SELECCIÓN DE INSTANCIAS

Problema: A partir de un mismo conjunto de entrenamiento se desean obtener distintos árboles de clasificación.

Solución: Técnica conocida como Bagging o Bootstrap aggregating:

- Dado un conjunto de entrenamiento con N instancias, obtener B conjuntos de entrenamiento de tamaño n' (n' < N).
- Utilizar muestreo aleatorio con reemplazamiento.

Sexo	Altura	Peso	Ехр.	Act.	>	2
Н	1,55	45	A+	Fútbol		
Н	1,67	58	С	Fútbol		
M	1,45	45	В	Fútbol		\rightarrow
M	1,58	50	A+	Pádel	-	
Н	1,20	40	В	Fútbol		6
		• • • •				

GENERACIÓN DE ÁRBOLES — SELECCIÓN DE ATRIBUTOS

BIBLIOGRAFÍA

BIBLIOGRAFÍA I

Auer, P., Holte, R. C., and Maass, W. (1995).

Theory and applications of agnostic pac-learning with small decision trees.

In Proceedings of the Twelfth International Conference on Machine Learning, pages 21–29.

Breiman, L. (2001).

Random forests.

Machine Learning, 45(1):5-32.

Dougherty, J., Kohavi, R., Sahami, M., et al. (1995).

Supervised and unsupervised discretization of continuous features.

In Machine learning: proceedings of the twelfth international conference, volume 12, pages 194–202.

BIBLIOGRAFÍA II

Freund, Y. and Mason, L. (1999).

The alternating decision tree learning algorithm.

In *icml*, volume 99, pages 124–133.

Pandya, R. and Pandya, J. (2015).

C5. 0 algorithm to improved decision tree with feature selection and reduced error pruning.

International Journal of Computer Applications, 117(16).

Quinlan, J. R.

Company ir quilan.

[Web; accedido el 28-12-2015].

Quinlan, J. R. (1986).

Induction of decision trees.

Machine learning, 1(1):81–106.

BIBLIOGRAFÍA III

Salzberg, S. L. (1994).

C4. 5: Programs for machine learning by j. ross quinlan. morgan kaufmann publishers, inc., 1993.

Machine Learning, 16(3):235–240.

; ?