

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ _	«Информатика и системы управления»
КАФЕДРА	«Программное обеспечение ЭВМ и информационные технологии»

ОТЧЕТ

по лабораторной работе №1

по курсу «Моделирование»

на тему: «Распределение случайных величин»

Студент	ИУ7-73Б		Лагутин Д. В.
	(Группа)	(Подпись, дата)	(Фамилия И. О.)
Преподаватель			Рудаков И. В.
		(Подпись, дата)	(Фамилия И. О.)

Цель работы

Целью работы является реализация программы для визуализации графиков функции распределения случайной величины и функции ее плотности.

Случайная величина удовлетворяет следующим распределениям:

- равномерное распределение;
- нормальное распределение (номер по списку 10).

Равномерное распределение

Равномерное распределение задается двумя параметрами: координатами начала и конца интервала (a и b соответственно). Внутри этого интервала значение функции плотности принимается постоянным.

Функция плотности распределения:

$$\chi(x) = egin{cases} rac{1}{b-a}, & ext{если} & x \in [a,b]; \ 0, & ext{иначе}. \end{cases}$$

Функция распределения:

$$F_X(x)=egin{cases} 0, & x\leq a; \ rac{x-a}{b-a}, & ext{если} & x\in(a,b]; \ 1, & ext{иначе}. \end{cases}$$

Нормальное распределение

Нормальное распределение характеризуется тем, что функция плотности распределения совпадает с функцией Гаусса.

Функция плотности распределения:

$$f_X(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-m)^2}{2\sigma^2}},$$

где μ — математическое ожидание случайной величины, σ — среднеквадратическое отклонение.

Функция распределения:

$$F_X(x) = \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^x e^{-\frac{(x-m)^2}{2\sigma^2}} dx.$$

Результаты работы

Рисунок 1 — Результаты работы для равномерного распределения с параметрами $a=0,\,b=5$

Рисунок 2 — Результаты работы для нормального распределения с параметрами $\mu=0,\,\sigma=1$

Рисунок 3 – Изменение графиков равномерного распределения в зависимости от входных параметров

Рисунок 4 – Изменение графиков нормального распределения в зависимости от входных параметров

Вывод

В ходе выполнения лабораторной работы была разработана программа, позволяющая строить графики функции распределения и функции плотности распределения для равномерных и нормальных случайных величин. Были построены и приведены графики для различных значений входных параметров.