

<u>Lecture 14: Wald's Test, Likelihood</u> <u>Ratio Test, and Implicit Hypothesis</u>

4. Interlude: Square Roots of

Matrices

课程 □ Unit 4 Hypothesis testing □ Test

4. Interlude: Square Roots of Matrices

Interlude: Square root of a positive semi-definite matrix

Recall that a matrix \mathbf{A} of size $d \times d$ is **positive semi-definite** if $\mathbf{x}^T \mathbf{A} \mathbf{x} \geq \mathbf{0}$ for all $\mathbf{x} \in \mathbb{R}^d$. Two example classes of positive semi-definite matrices are:

- Diagonal matrices with non-negative entries: $\mathbf{D} = \begin{pmatrix} c_1 & 0 & \dots & 0 \\ 0 & c_2 & & 0 \\ \vdots & & \ddots & \vdots \\ 0 & & \dots & c_d \end{pmatrix}$ where $c_i \geq 0$ for all i. (You have shown in exercise in a previous lecture that indeed $\mathbf{x}^T\mathbf{D}\mathbf{x} \geq 0$ for all \mathbf{x} .
- Matrix products $\mathbf{P}^T \mathbf{D} \mathbf{P}$ where \mathbf{P} is an invertible (square) matrix and \mathbf{D} is a diagonal matrix with non-negative entries (as above). **Proof:** $\mathbf{x}^T (\mathbf{P}^T \mathbf{D} \mathbf{P}) \mathbf{x} = (\mathbf{P} \mathbf{x})^T \mathbf{D} (\mathbf{P} \mathbf{x}) = \mathbf{y}^T \mathbf{D} \mathbf{y} \ge 0$ for all vectors \mathbf{x} .

The **positive semi-definite square root** (or simply the square root) of a positive semi-definite matrix $\bf A$ is another positive semi-definite matrix, denoted by $\bf A^{1/2}$, satisfying $\bf A^{1/2} \bf A^{1/2} = \bf A$. It is the case that for any positive semi-definite matrix (positive definite matrix, respectively), the positive semi-definite square root (positive definite square root, respectively) is unique.

Square Root of a Matrix

1/1 point (graded)

Using the definition above of the square root of a matrix, find the square root ${f D}^{1/2}$ of ${f D}=\begin{pmatrix} 2 & 0 \ 0 & 0 \end{pmatrix}$.

(Enter your answer as a matrix, e.g. by typing **[[1,2],[5,1]]** for the matrix $\begin{pmatrix} 1 & 2 \\ 5 & 1 \end{pmatrix}$. Note the square brackets, and the commas as separators.)

$$\mathbf{D}^{1/2} = [[\text{sqrt}(2),0],[0,0]]$$

Answer: [[sqrt(2),0],[0,0]]

STANDARD NOTATION

Solution:

Since

$$\begin{pmatrix} \sqrt{2} & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} \sqrt{2} & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix},$$

We have
$$\, {f D}^{1/2} = \left(egin{array}{cc} \sqrt{2} & 0 \\ 0 & 0 \end{array}
ight).$$

提交

你已经尝试了1次(总共可以尝试3次)

□ Answers are displayed within the problem

0 points possible (ungraded) Let

$$\mathbf{A} \ = \mathbf{P}^T \mathbf{D} \mathbf{P} \qquad ext{where} \quad \mathbf{D} \ = egin{pmatrix} 3 & 0 \ 0 & 0 \end{pmatrix} \ \mathbf{P} \ = rac{1}{\sqrt{2}} egin{pmatrix} 1 & -1 \ 1 & 1 \end{pmatrix}.$$

Note that $\mathbf{P}^T = \mathbf{P}^{-1}$.

Find the square root $\mathbf{A}^{1/2}$ of the matrix \mathbf{A} . Hint: $\mathbf{P}^T\mathbf{B}^2\mathbf{P} = \mathbf{P}^T\mathbf{B}\left(\mathbf{P}\mathbf{P}^T\right)\mathbf{B}\mathbf{P}$.

(Enter your answer as a matrix, e.g. by typing **[[1,2],[5,-1]]** for the matrix $\begin{pmatrix} 1 & 2 \\ 5 & -1 \end{pmatrix}$. Note the square brackets, and commas as separators.)

$$A^{1/2} =$$

[[1.22474,1.22474*sqrt(-1)],[1.22474*sqrt(-1),1.22474]]

Answer: sqrt(3)/2*[[1,-1],[-1,1]]

STANDARD NOTATION

Solution:

$$\begin{aligned} \left(\mathbf{P}^T \mathbf{D}^{1/2} \mathbf{P}\right) \left(\mathbf{P}^T \mathbf{D}^{1/2} \mathbf{P}\right) &= & \mathbf{P}^T \mathbf{D}^{1/2} \left(\mathbf{P} \mathbf{P}^T\right) \mathbf{D}^{1/2} \mathbf{P} \\ &= & \mathbf{P}^T \mathbf{D}^{1/2} \left(\mathbf{P} \mathbf{P}^{-1}\right) \mathbf{D}^{1/2} \mathbf{P} & \text{ since } \mathbf{P}^T &= \mathbf{P}^{-1} \\ &= & \mathbf{P}^T \mathbf{D}^{1/2} \mathbf{D}^{1/2} \mathbf{P} \\ &= & \mathbf{P}^T \mathbf{D} \mathbf{P} \end{aligned}$$

Hence $\mathbf{A}^{1/2} = \mathbf{P}^T \mathbf{D}^{1/2} \mathbf{P}$. Plugging in the values of \mathbf{D} and \mathbf{P} , we get

$$\mathbf{A}^{1/2} = \mathbf{P}^T \mathbf{D}^{1/2} \mathbf{P} = \begin{pmatrix} \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \end{pmatrix} \begin{pmatrix} \sqrt{3} & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \end{pmatrix}$$
$$= \frac{1}{2} \begin{pmatrix} \sqrt{3} & 0 \\ -\sqrt{3} & 0 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$$
$$= \frac{\sqrt{3}}{2} \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$$

提交

你已经尝试了3次(总共可以尝试3次)

Answers are displayed within the problem

讨论

显示讨论

主题: Unit 4 Hypothesis testing:Lecture 14: Wald's Test, Likelihood Ratio Test, and Implicit Hypothesis Test / 4. Interlude: Square Roots of Matrices