Mesterséges Intelligencia minta vizsga

1. Sorolja fel és mutassa be a mesterséges intelligenciák csoportjait a problémák szemszögéből (100 pont)

Diagnózis

Egy objektum működési hibájának feltárása viselkedése alapján, és megoldások javaslása.

Kiválasztás

A legjobb választás kijelölése egy lehetséges alternatívákat tartalmazó listából.

Jóslás

Egy objektum jövőbeni viselkedésének megjóslása a múltbeli viselkedése alapján.

Osztályozás

Egy objektum hozzárendelése az előre definiált osztályok valamelyikéhez.

Csoportosítás

Objektumok heterogén csoportjának felosztása homogén alcsoportokra.

Optimalizálás

Megoldások minőségének javítása, amíg egy optimális nem áll elő. Szabályozás

Egy objektum viselkedésének irányítása azzal a céllal, hogy valós időben teljesítse az előírt követelményeket.

2. Mi a különbség a nem informált és az informált keresési módszerek között? (100 pont)

Nem informált keresés: semmilyen információjuk nincs az állapotokról a probléma definíciójában megadott információn kívül.

Informált keresés: tudják, hogy az egyik közbülső állapot "ígéretesebb", mint egy másik közbülső állapot

problémaspecifikus információkat is figyelembe veszünk

3. Legyen A1, A2 az X alaphalmazon, míg B1, B2, B3 az Y alaphalmazon definiált bemeneti, míg C1, C2, C3 a Z alaphalmazon definiált kimeneti fuzzy halmaz! A szabálybázis az R1, R2 és R3 szabályok alkotják. Az x és y legyenek a crisp megfigyelések! Határozzuk meg a Mamdani-féle következtetést First-of-Maxima és Last-of-Maxima defuzzifikációs módszerekkel! (200 pont)

A1: (10, 50, 70)

A2: (30, 60, 80)

B1: (10, 30, 50)

B2: (20, 40, 70)

B3: (60, 80, 100)

C1: (10, 30, 50)

C2: (20, 40, 70)

C3: (40, 60, 80)

R1: ha x az A1 VAGY y az B1 akkor z az C1

R2: ha x az A2 <u>ÉS</u> y az B2 akkor z az C2

R3: ha y az B3 akkor z az C3

x=50, y=65

FoM=30, LoM=30

4. Sorolja fel a Konvolúciós Neurális Hálózatok főbb rétegeit! Hol alkalmazzuk a Konvolúciós Neurális Hálózatokat? (100 pont)

Konvolúciós réteg(ek)

Összevonó (polling) réteg(ek)

Teljesen összekapcsolt (fully connected) réteg(ek)

elsősorban képfeldolgozás

5. Mit jelent a felügyelt tanulás? Soroljon fel három felügyelt tanulási algoritmust, amit neurális hálózatok tanítására alkalmaznak! (100 pont)

Tanítóminták (bemenet-kimenet párok) adottak, ezekkel történik a tanítás Perceptron Learning Rule

Delta Learning Rule

Backpropagation

6. Ismertesse a Vágás és egyesítés szegmentálási eljárás folyamatát! (100 pont)

Vágás: felosztjuk a képet egyre csökkenő méretű kockákra, amíg minden kocka homogén nem lesz (Nem homogén régiók 4 részre vannak felosztva, így az eredmény egy négyesfa)

Egyesítés: a szomszéd régiókat egyesítjük, ha az uniójukra teljesül a homogenitási feltétel

7. Ismertesse a Bakteriális Evolúciós Algoritmus bakteriális mutáció operátorának működését! (150 pont)

- 1. létrehozunk adott számú klónt az eredeti baktériumból
- 2. véletlenszerűen kiválasztunk egy még nem vizsgált allélt és a klónokban módosítjuk a tartalmát
- 3. kiértékeljük a módosított klónokat és kiválasztjuk a legjobbat a klónok és az eredeti baktérium közül
- 4. a legjobb egyed átadja ezt az alléljét az összes többinek (klónoknak és/vagy eredeti baktériumnak)

addig ismételjük a 2-4. lépést, amíg az összes allél meg nem lett vizsgálva

8. Ismertesse a Tartalomalapú szűrést! (150 pont)

Az egyes termékekkel kapcsolatos leírások és egyéb alapadatok állhatnak rendelkezésre a (jellemzően korlátozott) felhasználói profilon túl. Különösképp olyan helyzetekben alkalmazzák, amikor a termékekről kiterjedt adatokkal rendelkeznek, azonban a felhasználókról egyáltalán nem, vagy korlátozottan. Az ilyen rendszerek alapvetően a felhasználó korábbi választásai alapján ajánl azokhoz nagyon hasonló termékeket. Az értékelési mátrixot (R) a kollaboratív szűrésen alapuló technikákhoz hasonlóan itt is felbontják a felhasználói és termékvektorokra. Az egyes termékvektorok tartalmazzák az azokat leíró jellemzőket, amely alapján összehasonlíthatóak. Az ajánlások a felhasználói (U) és termékvektorok (I) koszinusz hasonlósága (cosine similarity) alapján kerülnek meghatározásra:

$$similarity(U, I) = \cos(\theta) = \frac{U \cdot I}{\|U\| \|I\|} = \frac{\sum_{j=1}^{n} U_{j} I_{j}}{\sqrt{\sum_{j=1}^{n} U_{j}^{2}} \sqrt{\sum_{j=1}^{n} I_{j}^{2}}}$$

Előnye - a hidegindítási problémára megoldást nyújtanak, mivel alacsony szintű, alapadatokra építik az ajánlásokat és a modellek finomítására jellemzően meta-adatokat használnak. Hátránya - nem generálnak kellően változatos, vagy új tartalmakat a felhasználók számára. Alapvetően a

korábbi, ismert preferenciákhoz nagyon hasonló termékeket ajánlják, nem segítik a felhasználókat a tartalmak felfedezésében (discovery).