第1章

結論

誘電率 ϵ を大きくすればするほどギャップ-ミッドギャップは大きくなることがわかった。しかし、バンドギャップの生じる範囲については差は見られなかった。

ギャップ-ミッドギャップ比が最大となるのは $\epsilon=10$ のとき r/a=0.3554、 $\epsilon=13$ のとき、r/a=0.3580、 $\epsilon=15$ のときは r/a=0.3601 だった。これはいずれも逆オパール構造において最近接球同士が接するときの半径 $r/a=\sqrt{2}/4\simeq0.3535$ よりも大きい値である。これは、バンドギャップの形成において、空気球同士をつなぐ気孔が作用しているからであると考えられる。

また、ギャップマップにおいては半径 r/a が大きくなるほど周波数 ω が大きくなるような形状だった。これは、誘電率 ϵ の誘電体媒質中では周波数は $1/\sqrt{\epsilon}$ 倍されるため、空気球の領域が増えるに従い、周波数が大きくなっていると考えられる。