MATH 7752 Homework 2

James Harbour

January 29, 2022

Problem 3

Let R be a commutative ring. An R-module M is called *torsion* if for any $m \in M$ there exists some nonzero $r \in R$ such that rm = 0. An R-module N is called *divisible* if for any nonzero $r \in R$ it holds that rN = N.

(a) Suppose M is a torsion R-module and N is a divisible R-module. Prove that $M \otimes_R N = \{0\}$.

Proof. Let $m \in M$ and $n \in N$. Since M is torsion, there exists a nonzero rinR such that rm = 0. Now, by divisibility of N, there exists an $n' \in N$ such that rn' = n. Hence

$$m \otimes n = m \otimes rn' = rm \otimes n' = 0 \otimes n' = 0.$$

Thus every simple tensor in $M \otimes_R N$ is 0, whence $M \otimes_R N = 0$.

(b) Consider the \mathbb{Z} -module $M = \mathbb{Q}/\mathbb{Z}$. Prove that $M \otimes_{\mathbb{Z}} M = \{0\}$

Proof. We show that M is both torsion and divisible. Note that