Семинарский лист 4

Василий Шныпко Александр Богданов Алиса Вернигор Анастасия Григорьева Telegram Telegram Telegram Telegram Денис Козлов Елизавета Орешонок Иван Пешехонов Иван Добросовестнов Telegram Telegram Telegram Telegram Настя Городилова Никита Насонков Telegram Telegram

Версия от 02.10.2020 16:22

Вычислите бесконечное произведение как предел частичного

Задача 1

$$\prod_{n=2}^{\infty} \left(1 - \frac{1}{n^2} \right)$$

$$\prod_{n=2}^{N} \left(1 - \frac{1}{n^2} \right) = \prod_{n=2}^{N} \frac{n^2 - 1}{n^2} = \prod_{n=2}^{N} \frac{(n-1)(n+1)}{n \cdot n} = \frac{1 \cdot 3}{2 \cdot 2} \cdot \frac{2 \cdot 4}{3 \cdot 3} \cdot \frac{3 \cdot 5}{4 \cdot 4} \cdot \dots \cdot \frac{(N-1) \cdot (N+1)}{N \cdot N} = \frac{N+1}{2N} \to \frac{1}{2N}$$

$$\begin{split} &\prod_{n=1}^{\infty}e^{\frac{(-1)^n}{n}}\\ &\prod_{n=1}^{N}e^{\frac{(-1)^n}{n}}=e^{\sum_{n=1}^{N}\frac{(-1)^n}{n}}=\diamondsuit\\ &\ln n+\gamma+o(1)=1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n}\implies\frac{1}{2}\left(\ln n+\gamma+o(1)\right)=\frac{1}{2}+\frac{1}{4}+\ldots+\frac{1}{2n}-\text{ чётные члены суммы }\sum_{n=1}^{N}\frac{(-1)^n}{n}\\ &\ln(2n+1)+\gamma+o(1)=1+\frac{1}{2}+\ldots+\frac{1}{2n+1}\implies\left(\ln(2n+1)+\gamma+o(1)\right)-\frac{1}{2}\left(\ln n+\gamma+o(1)\right)=\\ &=1+\frac{1}{3}+\ldots+\frac{1}{2n+1}-\text{ нечётные члены суммы }\sum_{n=1}^{N}\frac{1}{n}\\ &\diamondsuit=e^{\frac{1}{2}(\ln n+\gamma+o(1))-(\ln(2n+1)+\gamma+o(1))-\frac{1}{2}(\ln n+\gamma+o(1))}=e^{\frac{1}{2}\ln n+\frac{1}{2}\gamma+o(1)-\ln(2n+1)-\gamma+o(1)+\frac{1}{2}\ln n+\frac{1}{2}\gamma+o(1)}=e^{\ln n-\ln(2n+1)+o(1)}=\\ &=e^{\ln\frac{n}{2n+1}+o(1)}\to e^{\ln\frac{1}{2}}=\frac{1}{2} \end{split}$$

$$\prod_{n=1}^{\infty} \cos \frac{x}{2^n}$$

Найдем частичное произведение:

$$\prod_{n=1}^{N} \cos \frac{x}{2^n} = \cos \frac{x}{2} \cdot \cos \frac{x}{4} \cdot \dots \cdot \frac{x}{2^N}$$

$$\sin x = 2\sin\frac{x}{2}\cos\frac{x}{2} = 4\sin\frac{x}{4}\cos\frac{x}{4}\cos\frac{x}{2} = \dots = 2^k\sin\frac{x}{2^k}\prod_{k=1}^k\cos\frac{x}{2^m} \iff$$

$$\Leftrightarrow \prod_{m=1}^k \cos \frac{x}{2^m} = \frac{\sin x}{2^k \sin \frac{x}{2^k}} \Rightarrow \prod_{n=1}^N \cos \frac{x}{2^n} = \frac{\sin x}{2^N \sin \frac{x}{2^N}}$$

Бесконечное произведение как предел частичного:

$$\prod_{n=1}^{\infty}\cos\frac{x}{2^n}=\lim_{N\to\infty}\frac{\sin x}{2^N\sin\frac{x}{2^N}}=\sin x\lim_{N\to\infty}\frac{1}{2^N\frac{x}{2^N}}=\frac{\sin x}{x}$$

Otbet:
$$\prod_{n=1}^{\infty} \cos \frac{x}{2^n} = \frac{\sin x}{x}.$$

Исследуйте бесконечное произведение на сходимость

Задача 4

Формулы Тейлора:

$$(1+x)^a \sim 1+x$$
$$\ln(1+x) \sim x$$

$$\prod_{n=1}^{\infty} \frac{n}{\sqrt{n^2+3}}$$

$$\prod_{n=1}^{N} \frac{n}{\sqrt{n^2+3}} = e^{\ln \prod_{n=1}^{N} \frac{n}{\sqrt{n^2+3}}} = e^{\sum_{n=1}^{N} \ln \frac{n}{\sqrt{n^2+3}}}; \qquad a_n = \ln \frac{n}{\sqrt{n^2+3}} = \ln \left[\left(1 + \frac{3}{n^2}\right)^{-\frac{1}{2}} \right] \sim \ln \left(1 - \frac{3}{2n^2}\right) \sim -\frac{3}{2n^2} \implies 0$$

⇒ ряд сходится.

$$\prod_{n=1}^{\infty} \left(2 - \sqrt[n]{n}\right)$$

$$\prod_{n=1}^{N} \left(2 - \sqrt[n]{n}\right) = e^{\ln \prod_{n=1}^{N} \left(2 - \sqrt[n]{n}\right)} = e^{\sum_{n=1}^{N} \ln\left(2 - \sqrt[n]{n}\right)}$$

$$a_n = \ln\left(2 - \sqrt[n]{n}\right) = \ln\left(1 + \left(1 - \sqrt[n]{n}\right)\right) \sim \left(1 - \sqrt[n]{n}\right) = -\left(e^{\frac{\ln n}{n}} - 1\right) =$$

$$= \left[\Phi\text{ормула Тейлора для } e^x\right] - \left(1 + \frac{\ln n}{n} + \frac{\ln^2 n}{2n^2} + o\left(\frac{\ln^2 n}{n^2}\right) - 1\right) =$$

$$= -\left(\frac{\ln n}{n} + \frac{\ln^2 n}{2n^2} + o\left(\frac{\ln^2 n}{n^2}\right)\right) \le -\frac{\ln n}{n} \Longrightarrow$$

$$\Longrightarrow \sum_{n=1}^{N} \ln\left(2 - \sqrt[n]{n}\right) < -\sum_{n=1}^{N} \frac{\ln n}{n}, \quad \left|\sum_{n=1}^{N} \ln\left(2 - \sqrt[n]{n}\right)\right| > \sum_{n=1}^{N} \frac{\ln n}{n} \Longrightarrow$$

$$\Longrightarrow \sum_{n=1}^{N} \ln\left(2 - \sqrt[n]{n}\right) \text{ расходится в } -\infty \text{ по признаку сравнения } \Longrightarrow$$

$$\Longrightarrow \prod_{n=1}^{\infty} \left(2 - \sqrt[n]{n}\right) \text{ расходится к 0}$$

$$\prod_{n=1}^{\infty} \cos (\operatorname{arcctg} n)$$

$$\cos (\operatorname{arcctg} n) = \operatorname{ctg} (\operatorname{arcctg} n) \sin (\operatorname{arcctg} n) = n \sqrt{1 - \cos (\operatorname{arcctg} n)} \Leftrightarrow$$

$$\Leftrightarrow \cos (\operatorname{arcctg} n) = \frac{n}{\sqrt{1 + n^2}}$$

$$\prod_{n=1}^{N} \cos (\operatorname{arcctg} n) = \prod_{n=1}^{N} \frac{n}{\sqrt{1 + n^2}} = e^{\ln \prod_{n=1}^{N} \frac{n}{\sqrt{1 + n^2}}} = e^{\sum_{n=1}^{N} \ln \frac{n}{\sqrt{1 + n^2}}}$$

$$a_n = \ln \frac{n}{\sqrt{1 + n^2}} = \frac{1}{2} \ln \left(1 - \frac{1}{1 + n^2} \right) \sim -\frac{1}{2(1 + n^2)} \Rightarrow$$

$$\Rightarrow \sum_{n=1}^{N} a_n \operatorname{cxoдится} \text{ по признаку сравнения } \Rightarrow$$

$$\Rightarrow \prod_{n=1}^{\infty} \cos (\operatorname{arcctg} n) \operatorname{cxoдится}$$

Исследуйте бесконечное произведение на сходимость и абсолютную сходимость

Задача 7

$$\prod_{n=1}^{\infty} n^{\frac{(-1)^n}{n}} = e^{\sum_{n=1}^{\infty} \ln n^{\frac{(-1)^n}{n}}}; \qquad \sum_{n=1}^{\infty} \frac{(-1)^n \ln n}{n} \implies a_n = \frac{\ln n}{n} \to 0;$$

$$f(x) = \frac{\ln x}{x} \implies f'(x) = -\frac{\ln x - 1}{x^2} < 0 \implies \text{ монотонно убывает } \implies \text{ ряд сходится по Лейбницу}$$

$$|a_n| = \left| \frac{(-1)^n \ln n}{n} \right| \geqslant \frac{\ln 2}{n} \implies \text{ряд расходится абсолютно}.$$

$$\prod_{n=1}^{\infty} \left(1 - \frac{(-1)^n}{\sqrt[3]{n^2 + 2}}\right) = e^{\sum_{n=1}^{\infty} \ln\left(1 - \frac{(-1)^n}{\sqrt[3]{n^2 + 2}}\right)}$$

$$\sum_{n=1}^{\infty} \ln\left(1 - \frac{(-1)^n}{\sqrt[3]{n^2 + 2}}\right) \sim \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\sqrt[3]{n^2 + 2}} -$$
 знакочередующийся ряд, $a_n = \frac{1}{\sqrt[3]{n^2 + 2}}$
Проверим монотонность $|a_n|$: $f(n) = \frac{1}{\sqrt[3]{n^2 + 2}}$, $f'(n) = -\frac{2n}{3(n^2 + 2)^{4/3}} < 0$ и $f(n)$ монотонно убывает при $n > 0$,
$$\lim_{n \to \infty} |a_n| = \frac{1}{\sqrt[3]{n^2 + 2}} = 0 \implies \text{ряд сходится по Лейбницу}$$

$$\sum_{n=1}^{\infty} \left| \frac{(-1)^{n+1}}{\sqrt[3]{n^2 + 2}} \right| = \sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n^2 + 2}} \text{ расходится по признаку сравнения с } \sum_{n=1}^{\infty} \frac{1}{n} \implies$$

$$\implies \sum_{n=1}^{\infty} \ln\left(1 - \frac{(-1)^n}{\sqrt[3]{n^2 + 2}}\right) \text{ расходится абсолютно} \implies$$

$$\implies \prod_{n=1}^{\infty} \left(1 - \frac{(-1)^n}{\sqrt[3]{n^2 + 2}}\right) \text{ сходится условно}$$

Задача 9 (лажа, не смотреть)

$$\prod_{n=1}^{\infty} \frac{\sqrt{n}}{\sqrt{n} + \sin n} = e^{\sum_{n=1}^{\infty} \ln \frac{\sqrt{n}}{\sqrt{n} + \sin n}} = e^{\sum_{n=1}^{\infty} \ln \left(1 - \frac{\sin n}{\sqrt{n} + \sin n}\right)}$$

$$\sum_{n=1}^{\infty} \ln \left(1 - \frac{\sin n}{\sqrt{n} + \sin n} \right) \sim -\sum_{n=1}^{\infty} \frac{\sin n}{\sqrt{n} + \sin n},$$

$$a_n = \frac{\sin n}{\sqrt{n} + \sin n} = 1 - \frac{\sqrt{n}}{\sqrt{n} + \sin n} = 1 - \frac{1}{1 + \frac{\sin n}{\sqrt{n}}} = 1$$

По формуле Тейлора для $(1+x)^{-1/2}$:

$$a_n = 1 - 1 + \frac{1}{2} \left(1 + \frac{\sin n}{\sqrt{n}} \right) - \frac{3}{4} \left(1 + \frac{2\sin n}{\sqrt{n}} + \frac{\sin^2 n}{n} \right) + o\left(\frac{1}{n}\right) \sim$$

$$\sim \underbrace{\frac{\sin n}{\sqrt{n}}}_{\text{Cxodutcs}} + \underbrace{\frac{\sin^2 n}{n}}_{\text{pacxodutcs}} + o\left(\frac{1}{n^{3/2}}\right) \Rightarrow$$

$$\Rightarrow \sum_{n=1}^{\infty} \ln \left(1 - \frac{\sin n}{\sqrt{n} + \sin n} \right)$$
 расходится по признаку сравнения \implies

$$\Longrightarrow \prod_{n=1}^{\infty} rac{\sqrt{n}}{\sqrt{n} + \sin n}$$
 расходится

Исследуйте функциональную последовательность f_n на равномерную сходимость к поточечному пределу f на множестве D, оценивая $||f_n - f||$.

$$f_n(x) = \sin \frac{x}{n}, D = [-1, 1]$$

$$f_n(x) = \sin\frac{x}{n} \to \sin 0 = 0 \implies f \equiv 0$$

$$\sup_{D} \left\| \sin \frac{x}{n} \right\| = \sin \frac{1}{n} \to 0 \implies$$
 равномерная сходимость.

$$f_n(x) = x^n - x^{2n}, D = [0, 1]$$

$$f_n(x) = x^n - x^{2n} \to 0 \implies f \equiv 0$$

$$\sup_{n} \left\| x^n - x^{2n} \right\| = \Diamond$$

$$f'_n(x) = (x^n - x^{2n})' = nx^{n-1} - 2nx^{2n-1} = nx^{n-1}(1 - 2x^n) = 0$$

Критические точки:
$$x=0, f_n(x)=0; \quad x=\sqrt[n]{\frac{1}{2}}, f_n(x)=\frac{1}{4}; \quad x=1, f_n(x)=0;$$

 $\lozenge = \frac{1}{4} \neq 0 \implies$ отсутствие равномерной сходимости.

Задача 12

$$f_n(x) = n \ln \left(1 + \frac{x}{n} \right), \quad D = [0, 3]$$

$$\lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} n \ln \left(1 + \frac{x}{n} \right) = \lim_{n \to \infty} n \frac{x}{n} = x \implies f \equiv x \implies$$

 \implies функциональная последовательность $f_n(x)$ сходится поточечно к f(x)=x

$$\sup_{D} ||f_n(x) - f(x)|| = \sup_{D} ||n \ln\left(1 + \frac{x}{n}\right) - x|| = \Diamond$$

$$(f_n(x) - f(x))' = \left(n\ln\left(1 + \frac{x}{n}\right) - x\right)' = n\frac{x/n}{1 + x/n} - 1 = \frac{x}{1 + x/n} - 1$$

Критические точки:

$$x = 1 + \frac{x}{n} \iff x = \frac{n}{n-1} \to 1, \ 1 \in D, \ f_n(1) - f(1) = n \ln\left(1 + \frac{1}{n}\right) - 1 \sim n \frac{1}{n} - 1 = 0$$

 $\lozenge=0 \implies$ сходимостт равномерная

$$f_n(x) = \frac{2nx}{1 + n^2 x^2}, \quad D = [0, 1]$$

$$\lim_{n\to\infty} f_n(x) = \lim_{n\to\infty} \frac{2nx}{1+n^2x^2} = [\text{ Правило Лопиталя }] \lim_{n\to\infty} \frac{2x}{2nx^2} = 0 \implies f \equiv 0 \implies$$

 \implies функциональная последовательность $f_n(x)$ сходится поточечно к f(x)=0

$$\sup_{D} ||f_n(x) - f(x)|| = \sup_{D} \left| \frac{2nx}{1 + n^2 x^2} \right| = \Diamond$$

$$(f_n(x) - f(x))' = \left(\frac{2nx}{1 + n^2x^2}\right)' = \frac{2n\left(1 + n^2x^2\right) - 4n^3x^2}{(1 + n^2x^2)^2} = \frac{2n(1 - n^2x^2)}{(1 + n^2x^2)^2}$$

Критические точки:

$$n^2x^2 = 1 \iff x = \pm \frac{1}{n} \to 0, \ 0 \in D, \ f_n(0) = 0$$

 $\Diamond = 0 \implies$ сходимость равномерная

Задача 14 (не написана, не смотреть)

$$f_n(x) = \frac{nx^2}{n+x}, \quad D = [0,2]$$

$$\lim_{n\to\infty} f_n(x) = \lim_{n\to\infty} \frac{nx^2}{n+x} = [\text{ Правило Лопиталя }] \lim_{n\to\infty} \frac{x^2}{1} \implies f \equiv x^2 \implies$$

 \implies функциональная последовательность $f_n(x)$ сходится поточечно к $f(x)=x^2$

$$\sup_{D} ||f_n(x) - f(x)|| = \sup_{D} \left| \frac{nx^2}{n+x} - x^2 \right| = 0$$

$$(f_n(x) - f(x))' = \left(\frac{nx^2}{n+x} - x^2\right)' = \frac{2n\left(1 + n^2x^2\right) - 4n^3x^2}{(1+n^2x^2)^2} = \frac{2n(1-n^2x^2)}{(1+n^2x^2)^2}$$

Критические точки:

$$n^2x^2 = 1 \iff x = \pm \frac{1}{n} \to 0, \ 0 \in D, \ f_n(0) = 0$$

 $\Diamond = 0 \implies$ сходимость равномерная

$$f_n(x) = n \sim \frac{1}{nx}, \quad D = (0, 3]$$

$$\frac{1}{nx} \to 0 \implies \sin \frac{1}{nx} \sim \frac{1}{nx} \implies f_n(x) \sim \frac{1}{x} \implies f(x) = \frac{1}{x}$$

Расширим D до компакта: D = [0, 3]

$$\sup_{D} \left\| n \sin \frac{1}{nx} - \frac{1}{x} \right\|$$

Возьмём последовательность аргументов $x_n = \frac{1}{n} \in D$. Тогда $\sup_{D} \left\| n \sin \frac{1}{nx} - \frac{1}{x} \right\| \geqslant \sup_{D} \left\| n \sin 1 - n \right\| \to +\infty \implies 0$

⇒ Отсутствует равномерная сходимость.

Докажите равномерную сходимость функциональной последовательности на заданном множестве, применяя теорему Дини (о монотонной сходимости)

Теорема Дини: Если $f_n \to f$ на множестве одновременно выполнены следующие условия:

- 1. *D* компакт
- 2. f_n монотонна
- 3. f_n непрерывна
- 4. f непрерывна

тогда f_n равномерно сходится к f.

$$f_n = \left(1 + \frac{x}{n}\right)^n, \quad D = [1, 2]$$

$$\begin{cases} f_n - \text{непрерывна, монотонна} \\ D = [1,2] - \text{компакт} \\ f_n \to f(x) = e^x - \text{непрерывна} \end{cases} \implies f_n \text{ равномерно сходится к } f \text{ по Т. Дини.}$$

$$f_n = nx^2 e^{-nx}, \quad D = [1, +\infty)$$

Расширим D до компакта: $D' = [1, +\infty]$

$$f_n'=2nx\cdot e^{-nx}+nx^2(-n)\cdot e^{-nx}=nxe^{-nx}(2-nx)=0\implies \text{при }n\geqslant 2,\ x\geqslant \frac{2}{n},\quad f_n'\leqslant 0\implies f_n-\text{ монотонна}.$$

$$\int_{f} f_n$$
 — монотонна

$$\begin{cases} f_n - \text{монотонна} \\ f_n - \text{непрерывна} \\ f_n \to 0 - \text{непрерывна} \\ D' = [1, +\infty] - \text{компакт} \end{cases} \implies f_n \text{ равномерно сходится к } f \text{ по Т. Дини.}$$

$$f_n \to 0$$
 — непрерывна

$$D' = [1, +\infty]$$
 — компакт

Докажите неравномерную сходимость функциональной последовательности на заданном множестве, используя локализацию особенности.

Теорема: Если f_n непрерывна, и на множестве D равномерно сходится к f, то f — непрерывна.

Задача 20

$$f_n(x) = \frac{1}{1+nx}, D = [0,1]$$

$$f_n(x) = \frac{1}{1+nx} \to f(x) = \begin{cases} 1, & x=0 \\ 0, & x \neq 0 \end{cases} \implies \text{ т.к. } f \text{ разрывна в } 0, \text{ то равномерная сходимость отсутствует.}$$

Задача 24

$$f_n(x) = \frac{n^2}{4 + n^2 x^2}, \quad D = (0, +\infty)$$

Добавим точку 0 в $D: D = [0, +\infty)$

$$f_n(x) = \frac{n^2}{4 + n^2 x^2} \to f(x) = \begin{cases} \frac{1}{x^2}, & x \neq 0 \\ +\infty, & x = 0 \end{cases}$$
 т.к. f разрывна в 0 , то равномерная сходимость отсутствует.