Test Plot 1#: GSM 850_Head Left Cheek_Middle

DUT: 2G RUGGED PHONE; Type: E100; Serial: 18031200421

Communication System: Generic GSM; Frequency: 836.6 MHz; Duty Cycle: 1:8 Medium parameters used: f = 836.6 MHz; σ = 0.878 S/m; ϵ_r = 42.01; ρ = 1000 kg/m³; Phantom section: Left Section

DASY5 Configuration:

• Probe: EX3DV4 - SN7441; ConvF(9.98, 9.98, 9.98); Calibrated: 2017/11/2;

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn1459; Calibrated: 2017/9/15

• Phantom: SAM (30deg probe tilt) with CRP v5.0_20150321; Type: QD000P40CD; Serial: TP:1874

Report No.: RSZ180312004-20

• Measurement SW: DASY52, Version 52.8 (8);

Area Scan (111x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.786 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 18.59 V/m; Power Drift = -0.11 dB

Peak SAR (extrapolated) = 0.887 W/kg

SAR(1 g) = 0.648 W/kg; SAR(10 g) = 0.462 W/kg

Maximum value of SAR (measured) = 0.796 W/kg

0 dB = 0.796 W/kg = -0.99 dBW/kg

SAR Plots Plot 1#

Test Plot 2#: GSM 850_Head Left Tilt_Middle

DUT: 2G RUGGED PHONE; Type: E100; Serial: 18031200421

Communication System: Generic GSM; Frequency: 836.6 MHz; Duty Cycle: 1:8 Medium parameters used: f = 836.6 MHz; σ = 0.878 S/m; ϵ_r = 42.01; ρ = 1000 kg/m³; Phantom section: Left Section

DASY5 Configuration:

- Probe: EX3DV4 SN7441; ConvF(9.98, 9.98, 9.98); Calibrated: 2017/11/2;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1459; Calibrated: 2017/9/15
- Phantom: SAM (30deg probe tilt) with CRP v5.0_20150321; Type: QD000P40CD; Serial: TP:1874

Report No.: RSZ180312004-20

• Measurement SW: DASY52, Version 52.8 (8);

Area Scan (111x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.439 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 15.52 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 0.493 W/kg

SAR(1 g) = 0.358 W/kg; SAR(10 g) = 0.258 W/kg

Maximum value of SAR (measured) = 0.448 W/kg

0 dB = 0.448 W/kg = -3.49 dBW/kg

SAR Plots Plot 2#

Test Plot 3#: GSM 850_Head Right Cheek_Middle

DUT: 2G RUGGED PHONE; Type: E100; Serial: 18031200421

Communication System: Generic GSM; Frequency: 836.6 MHz; Duty Cycle: 1:8 Medium parameters used: f = 836.6 MHz; σ = 0.878 S/m; ϵ_r = 42.01; ρ = 1000 kg/m³; Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN7441; ConvF(9.98, 9.98, 9.98); Calibrated: 2017/11/2;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1459; Calibrated: 2017/9/15
- Phantom: SAM (30deg probe tilt) with CRP v5.0_20150321; Type: QD000P40CD; Serial: TP:1874

Report No.: RSZ180312004-20

• Measurement SW: DASY52, Version 52.8 (8);

Area Scan (111x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.865 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 17.32 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 0.965 W/kg

SAR(1 g) = 0.704 W/kg; SAR(10 g) = 0.501 W/kg

Maximum value of SAR (measured) = 0.877 W/kg

0 dB = 0.877 W/kg = -0.57 dBW/kg

SAR Plots Plot 3#

Test Plot 4#: GSM 850_Head Right Tilt_Middle

DUT: 2G RUGGED PHONE; Type: E100; Serial: 18031200421

Communication System: Generic GSM; Frequency: 836.6 MHz; Duty Cycle: 1:8 Medium parameters used: f = 836.6 MHz; σ = 0.878 S/m; ϵ_r = 42.01; ρ = 1000 kg/m³; Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN7441; ConvF(9.98, 9.98, 9.98); Calibrated: 2017/11/2;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1459; Calibrated: 2017/9/15
- Phantom: SAM (30deg probe tilt) with CRP v5.0_20150321; Type: QD000P40CD; Serial: TP:1874

Report No.: RSZ180312004-20

Measurement SW: DASY52, Version 52.8 (8);

Area Scan (111x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.450 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 15.27 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 0.509 W/kg

SAR(1 g) = 0.370 W/kg; SAR(10 g) = 0.266 W/kg

Maximum value of SAR (measured) = 0.465 W/kg

0 dB = 0.465 W/kg = -3.33 dBW/kg

SAR Plots Plot 4#

Test Plot 5#: GSM 850_Body Worn Back_Low

DUT: 2G RUGGED PHONE; Type: E100; Serial: 18031200421

Communication System: Generic GSM; Frequency: 824.2 MHz; Duty Cycle: 1:8 Medium parameters used: f = 824.2 MHz; σ = 0.956 S/m; ϵ_r = 57.206; ρ = 1000 kg/m³; Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN7441; ConvF(9.95, 9.95, 9.95); Calibrated: 2017/11/2;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1459; Calibrated: 2017/9/15
- Phantom: SAM (30deg probe tilt) with CRP v5.0_20150321; Type: QD000P40CD; Serial: TP:1874
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (61x101x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 1.29 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 27.15 V/m; Power Drift = -0.14 dB

Peak SAR (extrapolated) = 1.40 W/kg

SAR(1 g) = 1.03 W/kg; SAR(10 g) = 0.731 W/kg

Maximum value of SAR (measured) = 1.27 W/kg

0 dB = 1.27 W/kg = 1.04 dBW/kg

SAR Plots Plot 5#

Test Plot 6#: GSM 850_Body Worn Back_Middle

DUT: 2G RUGGED PHONE; Type: E100; Serial: 18031200421

Communication System: Generic GSM; Frequency: 836.6 MHz;Duty Cycle: 1:8 Medium parameters used: f = 836.6 MHz; σ = 0.959 S/m; ϵ_r = 56.865; ρ = 1000 kg/m³; Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN7441; ConvF(9.95, 9.95, 9.95); Calibrated: 2017/11/2;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1459; Calibrated: 2017/9/15
- Phantom: SAM (30deg probe tilt) with CRP v5.0_20150321; Type: QD000P40CD; Serial: TP:1874

Report No.: RSZ180312004-20

• Measurement SW: DASY52, Version 52.8 (8);

Area Scan (61x101x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 1.27 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 26.42 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 1.38 W/kg

SAR(1 g) = 1 W/kg; SAR(10 g) = 0.712 W/kg

Maximum value of SAR (measured) = 1.26 W/kg

0 dB = 1.26 W/kg = 1.00 dBW/kg

SAR Plots Plot 6#

Test Plot 7#: GSM 850_Body Worn Back_High

DUT: 2G RUGGED PHONE; Type: E100; Serial: 18031200421

Communication System: Generic GSM; Frequency: 848.8 MHz; Duty Cycle: 1:8 Medium parameters used: f = 848.8 MHz; σ = 0.967 S/m; ϵ_r = 56.097; ρ = 1000 kg/m³; Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN7441; ConvF(9.95, 9.95, 9.95); Calibrated: 2017/11/2;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1459; Calibrated: 2017/9/15
- Phantom: SAM (30deg probe tilt) with CRP v5.0_20150321; Type: QD000P40CD; Serial: TP:1874

Report No.: RSZ180312004-20

• Measurement SW: DASY52, Version 52.8 (8);

Area Scan (61x101x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 1.06 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 30.02 V/m; Power Drift = -0.12 dB

Peak SAR (extrapolated) = 1.19 W/kg

SAR(1 g) = 0.835 W/kg; SAR(10 g) = 0.593 W/kg

Maximum value of SAR (measured) = 1.06 W/kg

0 dB = 1.06 W/kg = 0.25 dBW/kg

SAR Plots Plot 7#

Test Plot 8#: GSM 850_Body Back_Low

DUT: 2G RUGGED PHONE; Type: E100; Serial: 18031200421

Communication System: Generic GPRS-4 slots; Frequency: 824.2 MHz;Duty Cycle: 1:2 Medium parameters used: f = 824.2 MHz; $\sigma = 0.956$ S/m; $\epsilon_r = 57.206$; $\rho = 1000$ kg/m³; Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN7441; ConvF(9.95, 9.95, 9.95); Calibrated: 2017/11/2;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1459; Calibrated: 2017/9/15
- Phantom: SAM (30deg probe tilt) with CRP v5.0_20150321; Type: QD000P40CD; Serial: TP:1874
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (61x101x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 1.44 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 34.97 V/m; Power Drift = -0.12 dB

Peak SAR (extrapolated) = 1.63 W/kg

SAR(1 g) = 1.14 W/kg; SAR(10 g) = 0.808 W/kg

Maximum value of SAR (measured) = 1.45 W/kg

0 dB = 1.45 W/kg = 1.61 dBW/kg

SAR Plots Plot 8#

Test Plot 9#: GSM 850_Body Back_Middle

DUT: 2G RUGGED PHONE; Type: E100; Serial: 18031200421

Communication System: Generic GPRS-4 slots; Frequency: 836.6 MHz;Duty Cycle: 1:2 Medium parameters used: f = 836.6 MHz; $\sigma = 0.959$ S/m; $\epsilon_r = 56.865$; $\rho = 1000$ kg/m³; Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN7441; ConvF(9.95, 9.95, 9.95); Calibrated: 2017/11/2;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1459; Calibrated: 2017/9/15
- Phantom: SAM (30deg probe tilt) with CRP v5.0_20150321; Type: QD000P40CD; Serial: TP:1874
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (61x101x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 1.38 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 31.14 V/m; Power Drift = -0.15 dB

Peak SAR (extrapolated) = 1.52 W/kg

SAR(1 g) = 1.05 W/kg; SAR(10 g) = 0.743 W/kg

Maximum value of SAR (measured) = 1.32 W/kg

0 dB = 1.32 W/kg = 1.21 dBW/kg

SAR Plots Plot 9#

Test Plot 10#: GSM 850_Body Back_High

DUT: 2G RUGGED PHONE; Type: E100; Serial: 18031200421

Communication System: Generic GPRS-4 slots; Frequency: 848.8 MHz;Duty Cycle: 1:2 Medium parameters used: f = 848.8 MHz; $\sigma = 0.967$ S/m; $\epsilon_r = 56.097$; $\rho = 1000$ kg/m³; Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN7441; ConvF(9.95, 9.95, 9.95); Calibrated: 2017/11/2;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1459; Calibrated: 2017/9/15
- Phantom: SAM (30deg probe tilt) with CRP v5.0_20150321; Type: QD000P40CD; Serial: TP:1874

Report No.: RSZ180312004-20

• Measurement SW: DASY52, Version 52.8 (8);

Area Scan (61x101x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 1.29 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 29.80 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 1.45 W/kg

SAR(1 g) = 1.02 W/kg; SAR(10 g) = 0.724 W/kg

Maximum value of SAR (measured) = 1.31 W/kg

0 dB = 1.31 W/kg = 1.17 dBW/kg

SAR Plots Plot 10#

Test Plot 11#: GSM 1900_Head Left Cheek_Middle

DUT: 2G RUGGED PHONE; Type: E100; Serial: 18031200421

Communication System: Generic GSM; Frequency: 1880 MHz; Duty Cycle: 1:8 Medium parameters used: f = 1880 MHz; σ = 1.364 S/m; ϵ_r = 40.413; ρ = 1000 kg/m³; Phantom section: Left Section

DASY5 Configuration:

• Probe: EX3DV4 - SN7441; ConvF(7.9, 7.9, 7.9); Calibrated: 2017/11/2;

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn1459; Calibrated: 2017/9/15

• Phantom: SAM (30deg probe tilt) with CRP v5.0_20150321; Type: QD000P40CD; Serial: TP:1874

Report No.: RSZ180312004-20

• Measurement SW: DASY52, Version 52.8 (8);

Area Scan (111x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 1.08 W/kg

Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 21.35 V/m; Power Drift = -0.11 dB

Peak SAR (extrapolated) = 1.15 W/kg

SAR(1 g) = 0.696 W/kg; SAR(10 g) = 0.428 W/kg

Maximum value of SAR (measured) = 0.978 W/kg

0 dB = 0.978 W/kg = -0.10 dBW/kg

SAR Plots Plot 11#

Test Plot 12#: GSM 1900_Head Left Tilt_Middle

DUT: 2G RUGGED PHONE; Type: E100; Serial: 18031200421

Communication System: Generic GSM; Frequency: 1880 MHz;Duty Cycle: 1:8 Medium parameters used: f = 1880 MHz; σ = 1.364 S/m; ϵ_r = 40.413; ρ = 1000 kg/m³; Phantom section: Left Section

DASY5 Configuration:

• Probe: EX3DV4 - SN7441; ConvF(7.9, 7.9, 7.9); Calibrated: 2017/11/2;

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn1459; Calibrated: 2017/9/15

• Phantom: SAM (30deg probe tilt) with CRP v5.0_20150321; Type: QD000P40CD; Serial: TP:1874

Report No.: RSZ180312004-20

• Measurement SW: DASY52, Version 52.8 (8);

Area Scan (111x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 1.12 W/kg

Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 21.91 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 1.24 W/kg

SAR(1 g) = 0.708 W/kg; SAR(10 g) = 0.404 W/kg

Maximum value of SAR (measured) = 1.04 W/kg

0 dB = 1.04 W/kg = 0.17 dBW/kg

SAR Plots Plot 12#

Test Plot 13#: GSM 1900_Head Right Cheek_Low

DUT: 2G RUGGED PHONE; Type: E100; Serial: 18031200421

Communication System: Generic GSM; Frequency: 1850.2 MHz;Duty Cycle: 1:8 Medium parameters used: f = 1850.2 MHz; σ = 1.339 S/m; ϵ_r = 40.748; ρ = 1000 kg/m³; Phantom section: Right Section

DASY5 Configuration:

• Probe: EX3DV4 - SN7441; ConvF(7.9, 7.9, 7.9); Calibrated: 2017/11/2;

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn1459; Calibrated: 2017/9/15

• Phantom: SAM (30deg probe tilt) with CRP v5.0_20150321; Type: QD000P40CD; Serial: TP:1874

Report No.: RSZ180312004-20

• Measurement SW: DASY52, Version 52.8 (8);

Area Scan (111x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 1.41 W/kg

Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 11.84 V/m; Power Drift = -0.13 dB

Peak SAR (extrapolated) = 1.62 W/kg

SAR(1 g) = 0.942 W/kg; SAR(10 g) = 0.541 W/kg

Maximum value of SAR (measured) = 1.35 W/kg

0 dB = 1.35 W/kg = 1.30 dBW/kg

SAR Plots Plot 13#

Test Plot 14#: GSM 1900_Head Right Cheek_Middle

DUT: 2G RUGGED PHONE; Type: E100; Serial: 18031200421

Communication System: Generic GSM; Frequency: 1880 MHz; Duty Cycle: 1:8 Medium parameters used: f = 1880 MHz; σ = 1.364 S/m; ϵ_r = 40.413; ρ = 1000 kg/m³; Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN7441; ConvF(7.9, 7.9, 7.9); Calibrated: 2017/11/2;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1459; Calibrated: 2017/9/15
- Phantom: SAM (30deg probe tilt) with CRP v5.0_20150321; Type: QD000P40CD; Serial: TP:1874

Report No.: RSZ180312004-20

Measurement SW: DASY52, Version 52.8 (8);

Area Scan (111x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 1.42 W/kg

Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 14.72 V/m; Power Drift = -0.19 dB

Peak SAR (extrapolated) = 1.69 W/kg

SAR(1 g) = 0.946 W/kg; SAR(10 g) = 0.532 W/kg

Maximum value of SAR (measured) = 1.41 W/kg

0 dB = 1.41 W/kg = 1.49 dBW/kg

SAR Plots Plot 14#

Test Plot 15#: GSM 1900_Head Right Cheek_High

DUT: 2G RUGGED PHONE; Type: E100; Serial: 18031200421

Communication System: Generic GSM; Frequency: 1909.8 MHz;Duty Cycle: 1:8 Medium parameters used: f = 1909.8 MHz; σ = 1.41 S/m; ϵ_r = 40.315; ρ = 1000 kg/m³; Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN7441; ConvF(7.9, 7.9, 7.9); Calibrated: 2017/11/2;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1459; Calibrated: 2017/9/15
- Phantom: SAM (30deg probe tilt) with CRP v5.0_20150321; Type: QD000P40CD; Serial: TP:1874

Report No.: RSZ180312004-20

• Measurement SW: DASY52, Version 52.8 (8);

Area Scan (111x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 1.41 W/kg

Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 8.114 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 1.63 W/kg

SAR(1 g) = 0.921 W/kg; SAR(10 g) = 0.524 W/kg

Maximum value of SAR (measured) = 1.35 W/kg

0 dB = 1.35 W/kg = 1.30 dBW/kg

SAR Plots Plot 15#

Test Plot 16#: GSM 1900_Head Right Tilt_Low

DUT: 2G RUGGED PHONE; Type: E100; Serial: 18031200421

Communication System: Generic GSM; Frequency: 1850.2 MHz;Duty Cycle: 1:8 Medium parameters used: f = 1850.2 MHz; σ = 1.339 S/m; ϵ_r = 40.748; ρ = 1000 kg/m³; Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN7441; ConvF(7.9, 7.9, 7.9); Calibrated: 2017/11/2;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1459; Calibrated: 2017/9/15
- Phantom: SAM (30deg probe tilt) with CRP v5.0_20150321; Type: QD000P40CD; Serial: TP:1874

Report No.: RSZ180312004-20

Measurement SW: DASY52, Version 52.8 (8);

Area Scan (111x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 1.32 W/kg

Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 16.65 V/m; Power Drift = -0.14 dB

Peak SAR (extrapolated) = 1.69 W/kg

SAR(1 g) = 0.945 W/kg; SAR(10 g) = 0.531 W/kg

Maximum value of SAR (measured) = 1.41 W/kg

0 dB = 1.41 W/kg = 1.49 dBW/kg

SAR Plots Plot 16#

Test Plot 17#: GSM 1900_Head Right Tilt_Middle

DUT: 2G RUGGED PHONE; Type: E100; Serial: 18031200421

Communication System: Generic GSM; Frequency: 1880 MHz; Duty Cycle: 1:8 Medium parameters used: f = 1880 MHz; σ = 1.364 S/m; ϵ_r = 40.413; ρ = 1000 kg/m³; Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN7441; ConvF(7.9, 7.9, 7.9); Calibrated: 2017/11/2;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1459; Calibrated: 2017/9/15
- Phantom: SAM (30deg probe tilt) with CRP v5.0_20150321; Type: QD000P40CD; Serial: TP:1874

Report No.: RSZ180312004-20

• Measurement SW: DASY52, Version 52.8 (8);

Area Scan (111x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 1.17 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 12.56 V/m; Power Drift = 0.11 dB

Peak SAR (extrapolated) = 1.41 W/kg

SAR(1 g) = 0.792 W/kg; SAR(10 g) = 0.446 W/kg

Maximum value of SAR (measured) = 1.16 W/kg

0 dB = 1.16 W/kg = 0.64 dBW/kg

SAR Plots Plot 17#

Test Plot 18#: GSM 1900_Head Right Tilt_High

DUT: 2G RUGGED PHONE; Type: E100; Serial: 18031200421

Communication System: Generic GSM; Frequency: 1909.8 MHz;Duty Cycle: 1:8 Medium parameters used: f = 1909.8 MHz; σ = 1.41 S/m; ϵ_r = 40.315; ρ = 1000 kg/m³; Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN7441; ConvF(7.9, 7.9, 7.9); Calibrated: 2017/11/2;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1459; Calibrated: 2017/9/15
- Phantom: SAM (30deg probe tilt) with CRP v5.0_20150321; Type: QD000P40CD; Serial: TP:1874

Report No.: RSZ180312004-20

Measurement SW: DASY52, Version 52.8 (8);

Area Scan (111x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 1.29 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 16.16 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 1.64 W/kg

SAR(1 g) = 0.906 W/kg; SAR(10 g) = 0.504 W/kg

Maximum value of SAR (measured) = 1.36 W/kg

0 dB = 1.36 W/kg = 1.34 dBW/kg

SAR Plots Plot 18#

Test Plot 19#: GSM 1900_Body Worn Back_Low

DUT: 2G RUGGED PHONE; Type: E100; Serial: 18031200421

Communication System: Generic GSM; Frequency: 1850.2 MHz;Duty Cycle: 1:8 Medium parameters used: f = 1850.2 MHz; σ = 1.461 S/m; ϵ_r = 54.628; ρ = 1000 kg/m³; Phantom section: Flat Section

DASY5 Configuration:

• Probe: EX3DV4 - SN7441; ConvF(7.79, 7.79, 7.79); Calibrated: 2017/11/2;

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn1459; Calibrated: 2017/9/15

• Phantom: SAM (30deg probe tilt) with CRP v5.0_20150321; Type: QD000P40CD; Serial: TP:1874

Report No.: RSZ180312004-20

• Measurement SW: DASY52, Version 52.8 (8);

Area Scan (61x101x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 1.65 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 11.06 V/m; Power Drift = -0.12 dB

Peak SAR (extrapolated) = 1.80 W/kg

SAR(1 g) = 0.910 W/kg; SAR(10 g) = 0.500 W/kg

Maximum value of SAR (measured) = 1.39 W/kg

0 dB = 1.39 W/kg = 1.43 dBW/kg

SAR Plots Plot 19#

Test Plot 20#: GSM 1900_Body Worn Back_Middle

DUT: 2G RUGGED PHONE; Type: E100; Serial: 18031200421

Communication System: Generic GSM; Frequency: 1880 MHz;Duty Cycle: 1:8 Medium parameters used: f = 1880 MHz; σ = 1.486 S/m; ϵ_r = 54.16; ρ = 1000 kg/m³; Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN7441; ConvF(7.79, 7.79, 7.79); Calibrated: 2017/11/2;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1459; Calibrated: 2017/9/15
- Phantom: SAM (30deg probe tilt) with CRP v5.0_20150321; Type: QD000P40CD; Serial: TP:1874

Report No.: RSZ180312004-20

• Measurement SW: DASY52, Version 52.8 (8);

Area Scan (61x101x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 1.58 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 14.92 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 1.59 W/kg

SAR(1 g) = 0.841 W/kg; SAR(10 g) = 0.469 W/kg

Maximum value of SAR (measured) = 1.28 W/kg

0 dB = 1.28 W/kg = 1.07 dBW/kg

SAR Plots Plot 20#

Test Plot 21#: GSM 1900_Body Worn Back_High

DUT: 2G RUGGED PHONE; Type: E100; Serial: 18031200421

Communication System: Generic GSM; Frequency: 1909.8 MHz;Duty Cycle: 1:8 Medium parameters used: f = 1909.8 MHz; σ = 1.526 S/m; ϵ_r = 54.065; ρ = 1000 kg/m³; Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN7441; ConvF(7.79, 7.79, 7.79); Calibrated: 2017/11/2;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1459; Calibrated: 2017/9/15
- Phantom: SAM (30deg probe tilt) with CRP v5.0_20150321; Type: QD000P40CD; Serial: TP:1874

Report No.: RSZ180312004-20

• Measurement SW: DASY52, Version 52.8 (8);

Area Scan (61x101x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 1.78 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 10.67 V/m; Power Drift = -0.11 dB

Peak SAR (extrapolated) = 1.91 W/kg

SAR(1 g) = 0.990 W/kg; SAR(10 g) = 0.548 W/kg

Maximum value of SAR (measured) = 1.51 W/kg

0 dB = 1.51 W/kg = 1.79 dBW/kg

SAR Plots Plot 21#

Test Plot 22#: GSM 1900_Body Back_Low

DUT: 2G RUGGED PHONE; Type: E100; Serial: 18031200421

Communication System: Generic GPRS-4 slots; Frequency: 1850.2 MHz; Duty Cycle: 1:2 Medium parameters used: f = 1850.2 MHz; σ = 1.461 S/m; ϵ_r = 54.628; ρ = 1000 kg/m³; Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN7441; ConvF(7.79, 7.79, 7.79); Calibrated: 2017/11/2;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1459; Calibrated: 2017/9/15
- Phantom: SAM (30deg probe tilt) with CRP v5.0_20150321; Type: QD000P40CD; Serial: TP:1874

Report No.: RSZ180312004-20

• Measurement SW: DASY52, Version 52.8 (8);

Area Scan (61x101x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 2.17 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 14.08 V/m; Power Drift = -0.10 dB

Peak SAR (extrapolated) = 2.31 W/kg

SAR(1 g) = 1.19 W/kg; SAR(10 g) = 0.646 W/kg

Maximum value of SAR (measured) = 1.86 W/kg

0 dB = 1.86 W/kg = 2.70 dBW/kg

SAR Plots Plot 22#

Test Plot 23#: GSM 1900_Body Back_Middle

DUT: 2G RUGGED PHONE; Type: E100; Serial: 18031200421

Communication System: Generic GPRS-4 slots; Frequency: 1880 MHz; Duty Cycle: 1:2 Medium parameters used: f = 1880 MHz; σ = 1.486 S/m; ϵ_r = 54.16; ρ = 1000 kg/m³; Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN7441; ConvF(7.79, 7.79, 7.79); Calibrated: 2017/11/2;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1459; Calibrated: 2017/9/15
- Phantom: SAM (30deg probe tilt) with CRP v5.0_20150321; Type: QD000P40CD; Serial: TP:1874

Report No.: RSZ180312004-20

• Measurement SW: DASY52, Version 52.8 (8);

Area Scan (61x101x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 2.21 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 14.25 V/m; Power Drift = -0.17 dB

Peak SAR (extrapolated) = 2.42 W/kg

SAR(1 g) = 1.21 W/kg; SAR(10 g) = 0.657 W/kg

Maximum value of SAR (measured) = 1.89 W/kg

0 dB = 1.89 W/kg = 2.76 dBW/kg

SAR Plots Plot 23#

Test Plot 24#: GSM 1900_Body Back_High

DUT: 2G RUGGED PHONE; Type: E100; Serial: 18031200421

Communication System: Generic GPRS-4 slots; Frequency: 1909.8 MHz; Duty Cycle: 1:2 Medium parameters used: f = 1909.8 MHz; σ = 1.526 S/m; ϵ_r = 54.065; ρ = 1000 kg/m³; Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN7441; ConvF(7.79, 7.79, 7.79); Calibrated: 2017/11/2;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1459; Calibrated: 2017/9/15
- Phantom: SAM (30deg probe tilt) with CRP v5.0_20150321; Type: QD000P40CD; Serial: TP:1874

Report No.: RSZ180312004-20

• Measurement SW: DASY52, Version 52.8 (8);

Area Scan (61x101x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 1.87 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 13.15 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 2.04 W/kg

SAR(1 g) = 1.05 W/kg; SAR(10 g) = 0.576 W/kg

Maximum value of SAR (measured) = 1.61 W/kg

0 dB = 1.61 W/kg = 2.07 dBW/kg

SAR Plots Plot 24#