

PSE – Neural Network based Image Classification System on Heterogeneous Platforms 2nd Meeting

Dennis Weller & Sarath Mohanachandran Nair

INSTITUTE OF COMPUTER ENGINEERING (ITEC) - CHAIR FOR DEPENDABLE NANO COMPUTING (CDNC)

Roadmap

Phase	von – bis	Dauer
Auftaktveranstaltung	18.10.	
Anmeldung/Einteilung	18.10. – 25.10.	
Erstes Gruppentreffen	28.10. – 31.10.	
Pflichtenheft	04.11. – 22.11.	3 Wochen
Entwurf	25.11. – 20.12.	4 Wochen
Weihnachtspause	23.12. – 06.01.	
Implementierung	07.01. – 31.01.	4 Wochen
z.B. Klausurpause	03.02. – 14.02.	
Qualitätssicherung	17.02. – 06.03.	3 Wochen
interne Abnahme	09.03. – 13.03.	
Abschlusspräsentation	16.03. – 20.03.	

Responsible persons

- Responsible persons for each phase
- One person for each phase

Phase	Anteil
Pflichtenheft	10%
Entwurf	30%
Implementierung	30%
Qualitätssicherung	20%
Abschlusspräsentation	10%

Requirements

Requirements Engineering

Description: https://en.wikipedia.org/wiki/Requirements_engineering

Requirements Engineering

- Requirements Inception Meeting between developers and customers
 - We want to perform image classification
 - We want to run NN on heterogeneous platforms under different operating modes:
 - Highest Performance possible
 - Lowest Power Consumption possible
 - Highest Energy-Efficiency (Performance/(Power Consumption))
 - The heterogeneous platform should consist of an CPU and FPGA
 - We need a GUI from where we run our program
- Requirements Analysis Requirements identification (Use cases, UML)
- Requirements specification Formal artifact, only official after validation
- Validation Checking if the documented requirements meet the needs
- Requirements Management During the full life cycles of the project

OpenCL - Framework

Programming of heterogeneous platforms in a C -like fashion

- Using OpenCL Programming language
- No hardware knowledge required

OpenCL

- Always 2 components:
 - Host Main program, control of the acellerator: data transfers, start computations, read results back
 - Acellerator Acelleration of computations, calculations can be pipelined and parallel
 - Supported platforms: CPU, GPU, FPGA (most recently), DSP
- FPGA support
 - OpenCL compatibility provided since recent years (Science 2012 for Altera FPGAs, 2014 for Xilinx FPGAs)

Intel Movidius Neural Compute Stick

- Neural Compute SDK
 - Neural network frameworks: TensorFlow, Caffe
 - Compile, profile, and validate (check) DNNs
 - Neural Compute API (NCAPI) using Python or C
 - Accesses the neural compute device hardware to accelerate DNN inferences via the NCAPI

Must Requirements

Backend:

- Image Classification of at least one pre-trained Deep Neural Network Model (AlexNet, GoogleNet)
- Interface classes from Host PC (Desktop PC with Ubuntu OS) to Accelerator (FPGA)
- Class for Prediction of Performance (Bandwidth, FLOPS), Power Consumption for each accelerator and the implemented NN
- Dispatching computationally expensive tasks to the accelerators (FPGA) according to the mode of operation and based on the assessment of the performance/power consumption of the prediction class
- Interface for controlling other system (send images and get back results)

Frontend:

- GUI run on the Ubuntu system
- Choose Operation Mode: High Performance, Low Power Consumption, High Energy Efficiency
- Choose Input Image
- Output Results

Can Requirements

Backend:

- Multiple Deep Neural Network Model
- Other Accelerators:
 - Neural Compute Stick
 - GPU (on-board)
 - Other FPGAs with OpenCL support (Altera 5SGXEA7, Xilinx ADM-PCIE-7V3)
 - FPGA in the Cloud (Amazon Web Services)
- Movidius NCS USB stick can also be attached to the DE1-SoC instead of the host PC
- Implement Learning Algorithms (Supervised/Unsupervised Learning; Transfer Learning)
- Other modes of operation

Frontend:

- Choose any NN type
- Deploy training of an arbitrary NN or carry out transfer learning of the already implemented NN
- Illustrate Neural Network Topology
- Beautify Output Results

Non-functional Requirements

- Object-Oriented Design (40-80 classes without interfaces)
- 10k LOC
- Design in UML
- Design Pattern: Model-View-Controller (MVC)
- Implementation in C++ recommended, other languages can be included
- Quality Assurance (Gcov, Lcov, catch2, ...)
- Product environment: Lab PC at CDNC institute
- Operating System: Xubuntu 18.04

Criteria of Dimarcation

What the software should not do...

- No real time requirements
- Product not developed for mobile platforms

Milestones

NOVEMBER 2019 Wed Thu Sun Mon Tue Fri Sat 30 3 Requirement s Inception 10 16 Requirement Req. Analys. s Analysis 20 21 17 18 19 22 23 Req.Spec 24 26 28 25 30 Requirements Requiremen ts Validation **Specification**

Printable Calendars From 123Calendars.Com

Next steps

Important Documents: https://pp.ipd.kit.edu/lehre/WS201920/pse/

Thema	Dokumente
Einführung	[PDF]
Organisatorisches + Themenvorstellung	[PDF]
Auszug aus dem Modulhandbuch (PSE und TSE)	[PDF]
Allgemeine (unverbindliche) Tipps & Tricks entstanden am IPD Snelting	[PDF]

Recommended Materials

- Vorlesung Software Technik I
 - Folien auf Ilias
 - Folien, Übungsblätter & Co

Musterdokumente:

Anmerkung_Entwur f.pdf

Implementierungspl an_Geplant.pdf

Anmerkung_Implem entierung.pdf

Implementierungspl an_Realitaet.pdf

Anmerkung_Pflicht enheft.pdf

Pflichtenheft.pdf

Anmerkung_Validier ung.pdf

Validierung.pdf

Entwurf.pdf

Implementierung.p

Good luck!