Data Modeling: The Star Schema

123 \bigcirc 1

Inventory

Inventory_ID INT

Product_ID INT

Product

Product_ID INT

Product_Name VARCHAR(45)

Data modeling is a crucial step in modern data workflows, as its purpose is to organize raw data into convenient and efficient forms. Data analysts and scientists will find their jobs much easier if a usable dataset is readily accessible. Quicker analytics and predictions will then lead to faster insight for business decisions.

The first step to modeling is often to normalize the data, which is a process

Top highlight

of organization that increases database flexibility by reducing inconsistent dependencies and redundancy. I'd suggest <u>reading up</u> on this and/or looking up some videos if you're unfamiliar! The problem with a normalized database is that any truly interesting insights from the data will require many Joins, which can significantly slow down the speed of our query as the size of our database increases. For instance, looking at the schema below, most tables are not directly related. This means that to connect information from two tables like Orders and Location we'd need a minimum of 4 JOINS (Orders -> Employment -> Person -> Phone_Number -> Location is one way to arrive there)

■ Warehouse

* Warehouse_ID INT

Warehouse_ID INT * Location_ID INT Description TINYTEXT Warehouse_Name VARCHAR(45) Quantity_on_Hand INT Category INT Quantity_Available INT Weight_Class INT Warranty_Period INT Location Supplier_ID INT Location_ID INT Status VARCHAR(15) ☐ Order_Item ▼ Country_ID INT List_Price DECIMAL Order_Item_ID INT Address_Line_1 VARCHAR(45) Minimum_Price DECIMAL Order_ID INT Address_Line_2 VARCHAR(45) Price_Currency VARCHAR(5) Product_ID INT City VARCHAR (45) Catalog_URL VARCHAR (128) Unit_Price DECIMAL State VARCHAR (24) Quantity DOUBLE District VARCHAR (24) Postal_code VARCHAR(20) OF Cocation_type_code INT Description VARCHAR(128) ☐ Phone_Number ▼ Customer_Company Shipping_notes VARCHAR(256) Phone_num ber_ID INT Company_ID INT Orders Countries_Country_ID INT Persons_Person_ID_INT Company_Name VARCHAR(45) Order_ID INT *Locations_Location_ID I. Company_Credit_Limit INT Customer_ID INT O Phone_num ber INT Credit_Limit_Currency VARCHAR(5) Sales_Rep_ID INT Country_code INT Order_Date DATE Phone_Type_ID INT Person_Location Order_Code INT Persons_Person_ID INT Order_Status VARCHAR(15) * Locations_Location_ID INT Order_Total INT ■ Customer_Employee Sub_Address VARCHAR(45) Order_Currency VARCHAR(5) Custom er_Em ployee_ID_INT Location_Usage VARCHAR(4... Promotion_Code VARCHAR(45) Company_ID INT Notes TINYTEXT Badge_Number VARCHAR(20) Person Job_Title VARCHAR(45) Person_ID INT Department VARCHAR(45) First_name VARCHAR(20) Credit_Limit INT Last_name VARCHAR(20) Credit_Limit_Currency VARCHAR(5) Middle_names VARCHAR(45) Nicknam e VARCHAR (20) Nat_lang_code INT Country Culture_code INT Gender VARCHAR(12) Country_ID INT Customer Country_Name VARCHAR(24) Custom er_ID INT Country_Code VARCHAR(3) Person_ID INT Nat_Lang_Code INT Custom er_Em ployee_ID_INT ■ Employment ▼ Currency_Code VARCHAR(10) Account)Mgr_ID INT Employee_ID INT Income_level INT Person_ID INT HR_Job_ID INT Restricted_Info Manager_Employee_I... ■ Employment_Jobs ▼ Person_ID INT Start_Date DATE Date_of_Birth DATE HR_Job_ID INT End_Date DATE Date_of_Death DATE Countries_Country_ID INT Salary INT Government_ID VARCHAR(24) Job_Title VARCHAR(45) Commission_Percent D... Passport_ID VARCHAR(24) Min_Salary INT Employmentcol VARCH. Hire_Date DATE Max_Salary INT Seniority_Code INT https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/bp-relational-modeling.html

write the query without any errors.

Furthermore, real-life databases can have far more tables than just the ones

would be madness. Not to mention, it would be an absolute headache to just

Now what if we need data from even MORE tables after that 4-part JOIN? It

shown in the example above. As you can imagine, it becomes increasingly difficult to even understand the relationships between tables as our schema grows.

One solution to this problem is to perform a denormalization step of data modeling to create a simpler and easy-to-understand schema optimized for ceratin queries. The process of creating a star schema involves distilling down our full schema into just relevant features for a particular analytic prupose. The general structure of the star schema is as follows:

The Star Schema

Dim

dimension tables. There is just one fact table at the center of the star

goods sold). These typically contain qualitative information. There are

• A simplified schema means that we won't have to write confusingly long

• We optimized for reads. Now that we can write fewer Joins, our results

queries every time we want some information from our database.

• Also, it will business logic for reporting. We won't have to explain to

2. Dimensions: The where, when, what, etc. (e.g. date/time, locations,

multiple dimension tables in the schema, all of which are related to the fact table.

will be returned more quickly.

Dimension Table

Dealer

Dealer_ID

Location_ID

Country_ID

Dealer_NM

Dealer_CNTCT

Dimension Table

revenue by product in the year 2010:

p.Product_Name AS product,

SUM(r.Revenue) AS total_revenue

recommend checking the others out too!

Data Modeling

Product p ON (r.Model_ID = p.Model_ID)

DateDim d ON (r.Date_ID = d.Date_ID)

SELECT

FROM

JOIN

JOIN

WHERE

GROUP BY

Data Engineering

 \bigcirc 1

123

Revenue r

d.Year = 2010

p.Product_ID

schema.

Advantages

- stakeholders all the crazy joins that went into making the schema, just maybe. **Disadvantages**
- Denormalizing our data means that data anomalies could arise from oneoff inserts or updates. In practice, star schemas are implemented via "trickle feeds" or batch processing to compensate for this issue.
- We have limited analytical flexibility. A star schema is generally designed for a particular purpose. Since we have fewer features in the star schema than in the full database, we are restricted to just what this star schema contains.

Fact Table

Revenue

Dealer_ID

Model_ID

Branch_ID

Date_ID

Dimension Table

Date Dim

Date_ID

Year

Month

Quarter

Date

Dimension Table

Example

The star schema is widely used and incredibly useful for business applications. It helps us speed up queries that we may run often and clean up what could otherwise be very messy queries, among other things. There are other schemas such as the snowflake and galaxy schemas that are simple extensions of the star schema. If you like the star schema, I

Sql

Star Schema

Analytics

Written by Marco Sanchez-Ayala 94 Followers

Marco Sanchez-Ayala in The Startup

Introduction to Plotly graph_objects

See all from Marco Sanchez-Ayala

Easy with Plotly

5 min read · Feb 16, 2020

231

Lists

Deepanshu tyagi

5 min read · Jan 2

Introduction to Data Modeling—

Data modeling is the process of creating the

conceptual representation of data and its...

Once upon a time, in the mystical realm of

2024 Guide With Problems

Marco Sanchez-Ayala in Level Up Coding

Calculating Median in MySQL

6 min read · Mar 18, 2020

While sharpening my SQL skills online, I was

asked to calculate the median of a column in...

Marco Sanchez-Ayala in The Startup

Regular Expressions in MySQL

extract relevant and/or meaningful...

6 min read · Dec 18, 2019

Text data often requires complex searching to

Taranjit Kaur in Code Like A Girl

Unlocking the Potential.

7 min read · Jul 14, 2023

Slowly Changing Dimensions:

Strategies and Best Practices for Maintaining

If you were missing a framework for modeling

Data Consistency and Accuracy Over Time

Introduction to Data Build Tool (dbt)	Yet Another Data Modeling Approach for the Data Lakehouse
Seckin Dinc in Dev Genius	Carlos Costa
139 Q 2	•• 👸 3 🔾 ••

data management, two powerful forces... data inside the Data Lakehouse, I hope this... 10 min read · Aug 6, 2023 12 min read · Jul 22, 2023 195 🔾 2 102 See more recommendations

Help Status About Careers Blog Privacy Terms Text to speech Teams