

FIG. 1

Video Coder 105
Audio Coder 110
Ancillary Data 115
Control Data 120

FIG. 2

FIG. 3

FIG. 4

FIG. 5

FIG. 6

Figure 6 shows a block diagram of a communication system. The input signal $r(n)$ is processed by a block labeled $\frac{\hat{h}^{-1}}{580}$. The output of this block is fed into a summing junction. The summing junction has two inputs: one with a '+' sign and one with a '-' sign. The output of the summing junction is $\hat{s}(n)$. This signal is fed into a block labeled 610 . The output of the 610 block is also fed into the summing junction. The output of the summing junction is $e(n)$, which is fed into a block labeled 'Adaptive Algorithm'. The output of the 'Adaptive Algorithm' block is $\hat{x}(n)$, which is fed into a block labeled 'Demodulator'. The output of the 'Demodulator' block is $\hat{x}(n)$.

FIG. 7

FIG. 8

FIG. 9

105, 110
HDTV
Program 1

TRANSPORT
MUX

130
CHANNEL
CODING

140, 150

DTV TRANSMIT

SDTV
Program 2

SDTV
Program 3

PSIP
Data

Ancillary
Data

DTV RECEIVE

FIG. 10

FIG. 11

FIG. 12

Y(t) = M₁, M₂, ..., M₁₂, S₁, S₂, ..., S₁₂

EXAMPLE: 1 PER 13

FIG. 13

FIG. 14

FIFO shift registers: $M = 4$, $B=52$, $BxM=208=N$, RS Block = 207

EXAMPLE: 1 PER 6

0	6	12	18	24	30	36	42	48	9
0	6	12	18	24	30	36	42	48	48
0	6	12	18	24	30	36	42	48	48
0	6	12	18	24	30	36	42	48	48
1	7	13	19	25	31	37	43	49	9
1	7	13	19	25	31	37	43	49	49
1	7	13	19	25	31	37	43	49	49
1	7	13	19	25	31	37	43	49	49
2	8	14	20	26	32	38	44	50	9
2	8	14	20	26	32	38	44	50	50
2	8	14	20	26	32	38	44	50	50
2	8	14	20	26	32	38	44	50	50
3	9	15	21	27	33	39	45	51	8
3	9	15	21	27	33	39	45	51	51
3	9	15	21	27	33	39	45	51	51
3	9	15	21	27	33	39	45	51	51
4	10	16	22	28	34	40	46	52	8
4	10	16	22	28	34	40	46	52	52
4	10	16	22	28	34	40	46	52	52
4	10	16	22	28	34	40	46	52	52
5	11	17	23	29	35	41	47	47	47
5	11	17	23	29	35	41	47	47	47
5	11	17	23	29	35	41	47	47	52

FIG. 15

FIG. 16

Byte from Byte Interleaver

FIG. 17

FIG. 18

प्र० गुणवत्ता के लिए यह एक अच्छी विकल्प है।

