Лабораторная работа № 4 «Корреляционный анализ»

студента <u>Розинко Е.Д.</u>	группы <u> Б2</u>	<u>1-524</u> .	Дата сдачи: <u>17.12.2023</u>
Ведущий преподаватель:	Трофимов А.Г.	оценка:	подпись:

Вариант № 4

Цель работы: изучение функций Statistics and Machine Learning ToolboxTM MATLAB / Python SciPy.stats для проведения корреляционного анализа данных.

1. Исходные данные

Характеристики наблюдаемых случайных величин:

СВ	Распределение	Параметры	Математическое ожидание, m_i	Дисперсия, σ_i^2	Объем выборки, <i>п</i>
X	R(5, 15)	R(a, b)	10	8,3	200
Y	N(10, 5)	$N(m, \sigma)$	10	25	300

Примечание: для генерации случайных чисел использовать функции rand, randn, chi2rnd (scipy.stats: uniform.rvs, norm.rvs, chi2.rvs)

Выборочные характеристики:

СВ	Среднее, \bar{x}_i	Оценка дисперсии, s_i^2	КК по Пирсону, $\tilde{r}_{_{XY}}$	КК по Спирмену, $\tilde{\rho}_{_{XY}}$	КК по Кендаллу, т̂ _{хү}
X	9.946	8.229	0.012	0.009	0.005
Y	10.049	26.546	0.012	0.009	0.005

Проверка значимости коэффициентов корреляции:

Статистическая гипотеза, H_0	p-value	Статистическое решение при $\alpha = 0.05$	Ошибка стат. решения
H_0 : $r_{XY} = 0$	0.824	Но принимается	2 рода
H_0 : $\rho_{XY} = 0$	0.876	Но принимается	2 рода
H_0 : $\tau_{XY} = 0$	0.881	H_0 принимается	2 рода

Примечание: для проверки гипотез использовать функцию **corr** (**scipy.stats.pearsonr**)

2. Визуальное представление двумерной выборки

Диаграмма рассеяния случайных величин Х и У:

Примечание: для построения диаграммы использовать функции plot, scatter (matplotlib.pyplot.scatter)

3. Проверка независимости методом таблиц сопряженности

Статистическая гипотеза: $H_0: F_Y(y \mid X \in \Delta_1) = ... = F_Y(y \mid X \in \Delta_k) = F_Y(y)$

Эмпирическая таблица сопряженности:

X Y	[-5.765; 0.142)	[0.142; 6.050)	[6.050; 11.957)	[11.957; 17.865)	[17.865; 23.772]
$\Delta_1 = [5.021; 7.016)$	2	18	21	19	4
$\Delta_2 = [7.016; 9.011)$	2	12	20	22	4
$\Delta_3 = [9.011; 11.006)$	0	9	24	20	5
$\Delta_4 = [11.006; 13.001)$	1	16	29	19	1
$\Delta_5 = [13.001; 14.996]$	3	10	19	16	4

Теоретическая таблица сопряженности:

Y X	[-0.986; 3.905)	[3.905; 8.796)	[8.796; 13.687)	[13.687; 18.578)	[18.578; 23.473]
$\Delta_1 = [5.010; 7.006)$	1.70	13.86	24.10	20.48	3.84
$\Delta_2 = [7.006; 9.002)$	1.6	13	22.6	19.2	3.6
$\Delta_3 = [9.002; 10.998)$	1.54	12.56	21.84	18.56	3.48
$\Delta_4 = [10.998; 12.994)$	1.76	14.3	24.86	21.12	3.96
$\Delta_5 = [12.994; 14.990]$	1.38	11.26	19.58	16.64	3.12

Примечание: для группировки использовать функцию hist3 (matplotlib.pyplot.hist2d)

Выборочное значение статистики критерия	p-value	Статистическое решение при $\alpha = 0.05$	Ошибка стат. решения
12.227	0.728	H_0 принимается	нет

Примечание: для проверки гипотезы использовать функцию **crosstab** (scipy.stats.chi2_contingency)

4. Исследование корреляционной связи

Случайная величина $U = \lambda X + (1-\lambda)Y$, $\lambda \in [0; 1]$

Случайная величина $V = \lambda X^3 + (1-\lambda)Y^3$ $\lambda \in [0; 1]$

Графики зависимостей коэффициента корреляции $\tilde{r}_{_{XU}}(\lambda)$, рангового коэффициента корреляции по Спирмену $\tilde{\rho}_{_{XU}}(\lambda)$, по Кендаллу $\tilde{\tau}_{_{XU}}(\lambda)$

 Γ рафики зависимостей $\tilde{r}_{xv}(\lambda)$, $\tilde{\rho}_{xv}(\lambda)$, $\tilde{\tau}_{xv}(\lambda)$

Bыводы: С увеличением значения $\lambda \in [0,1]$ коэффициент корреляции $\tilde{r}_{x_U}(\lambda)$ ранговый коэффициент корреляции по Спирмену $\tilde{\rho}_{x_U}(\lambda)$ и по Кендаллу $\tilde{\tau}_{x_U}(\lambda)$ стремятся к единице. При $\lambda=0$ коэффициенты корреляции равны нулю и статистическая связь между случайными величинами отсутствует, а при увеличении значения λ теснота статистической связи между случайными величинами увеличивается, и при $\lambda=1$ между случайными величинами имеется линейная функциональная связь.

Диаграмма рассеяния случайных величин X и V при $\lambda = 0$:

Диаграмма рассеяния **рангов** случайных величин X и V при $\lambda = 0$:

Диаграмма рассеяния случайных величин X и V при $\lambda = 1$:

Диаграмма рассеяния **рангов** случайных величин X и V при $\lambda = 1$:

Примечание: для расчёта рангов использовать функцию **tiedrank** (scipy.stats.rankdata)

Выводы: Из диаграммы рассеяния случайных величин X и V при $\lambda=0$ видно, что статистическая связь между данными случайными величинами отсутствует, при этом ранги случайных величин X и V при $\lambda=0$ рассеяны практически равномерно внутри квадрата. На диаграмме рассеяния случайных величин X и V при $\lambda=1$ прослеживается монотонная зависимость между случайными величинами, при этом переход к рангам выпрямляет данную зависимость.