Ćwiczenia z ANALIZY NUMERYCZNEJ (M)

Blok 1: lista M 2 12 października 2016 r.

M2.1. I punkt Dla danych: naturalnej liczby t oraz niezerowej liczby rzeczywistej $x=s\,m\,2^c$, gdzie s jest znakiem liczby $x,\,c$ – liczbą całkowitą, a m – liczbą z przedziału $[1,\,2)$, o rozwinięciu dwójkowym $m=1+\sum_{k=1}^\infty e_{-k}2^{-k}$, w którym $e_{-k}\in\{0,1\}$ dla $k\geqslant 1$, definiujemy zaokrąglenie liczby x do t+1 cyfr za pomocą wzoru

$$rd(x) := s \,\bar{m} \, 2^c,$$

gdzie $\bar{m} = 1 + \sum_{k=1}^{t} e_{-k} 2^{-k} + e_{-t-1} 2^{-t}$.

Wykazać, że

$$|\operatorname{rd}(x) - x| \leq 2^{c} \mathsf{u},$$

gdzie $u := 2^{-t-1}$ jest precyzją arytmetyki.

Wywnioskować stąd, że błąd względny zaokrąglenia liczby x nie przekracza precyzji arytmetyki u.

M2.2. I punkt Załóżmy, że $|\alpha_j| \le u$ i $\rho_j \in \{-1, +1\}$ dla $j = 1, 2, \dots, n$ oraz że n u < 1, gdzie $u := 2^{-t-1}$. Wykazać, że zachodzi równość

$$\prod_{j=1}^{n} (1 + \alpha_j)^{\rho_j} = 1 + \theta_n,$$

gdzie θ_n jest wielkością spełniającą nierówność $|\theta_n| \leqslant \gamma_n$, gdzie z kolei

$$\gamma_n := \frac{n\mathsf{u}}{1-n\mathsf{u}}.$$

M2.3. 1 punkt Załóżmy, że $|\alpha_j| \le u$ dla j = 1, 2, ..., n oraz że nu < 0.01. Wykazać, że zachodzi równość

$$\prod_{j=1}^{n} (1 + \alpha_j) = 1 + \eta_n,$$

gdzie

$$|\eta_n| \leqslant 1.01nu$$
.

- **M2.4.** 1 punkt Wykazać, że jeśli x, y są liczbami maszynowymi takimi, że $|y| \le \frac{1}{2} \mathbf{u} |x|$, to $\mathbf{fl}(x+y) = x$.
- **M2.5.** 1 punkt Znaleźć liczbę maszynową x (double, w standardzie IEEE 754) z przedziału (1,2), dla której $\mathrm{fl}(x\cdot\mathrm{fl}(1/x))\neq 1$.
- **M2.6.** 1 punkt Zaproponować sposób uniknięcia utraty cyfr znaczących wyniku w związku z obliczaniem wartości wyrażeń

(a)
$$e^x - e^{-2x}$$
; (c) $\cos^2 x - 1$.

M2.7. I punkt Zbadać uwarunkowanie zadania obliczania wartości funkcji f, podanej wzorem (a) $f(x) = 1/(x^2 + c)$, gdzie c jest stałą; (b) $f(x) = (1 - \cos x)/x^2$ dla $x \neq 0$.

7 października 2016, Rafal~Nowak