

I - L'immunité active

Le déroulement étape par étape

Résumé

Le syndrome grippal = un classique

II - Les actions en détail

Acteurs et rôles

Zoom sur quelques situations « anormales »

Le macrophage ... un « phagocyte » sentinelle

L'activité phagocytaire basale des macrophages

L' activité bactéricide du lysozyme

L'aléa de la phagocytose seule

Adhésion aléatoire sans intervention du complément ou des anticorps

Macrophage vs. pathogène virulent

- Sans l'action du complément et l'amplification par la voie lymphocytaire, cette action est inefficace contre les pathogènes très virulents
 - Virulence = rapidité de développement d'un pathogène dans l'organisme
- La virulence d'un pathogène varie selon
 - · Sa reconnaissance par le phagocyte
 - · La présence d'immunosuppresseurs
 - La présence conjointe d'un autre pathogène (co-infection, surinfection)

Efficacité des cellules NK sentinelles

Également réduite car dépend de l'aléa de rencontre entre une cellule NK et une cellule infectée

Sans l'amplification, aucune action contre les virus virulents

Le sondage antigénique des cellules dendritiques

- Directs:
- · dans le liquide interstitiel

- ou par l'extension de leur ramifications jusque dans la lumière intestinale entre les jonctions serrées des cellules épithéliales
- Indirects:
- les cellules M des plaques de Peyer transportent les antigènes de la lumière intestinale vers les cellules dendritiques du tissu sous-jacent

Réponses aux membranes bactériennes

Réponses aux virus et aux bactéries intracellulaires

Réponses aux parasites pluricellulaires

Action finale des éosinophiles :

- sécrétion de leucotriènes (irritation) et de prostaglandines (oedeme)
- production de nombreuses interleukines (signal général)
- sécrétion de radicaux libre de l'oxygène (lutte directe contre le parasite)
- sécrétion de facteurs de croissance (répération tissulaire)

Action sur les lignées hématopoïétiques

- Chaque cytokine induit la différenciation d'une lignée hématopoïétique de la moelle osseuse en cellule immunitaire différente
- Chaque cytokine attire les cellules recrutées sur le leu de l'infection = chimiotactisme
- Le nombre de cellules immunitaires dans le sang ou le tissu infecté est souvent un indicateur du type d'infection

Bilan de l'inflammation = le recrutement

Efficacité totale ou presque des TLR

- L'ARN double brin est un passage incontournable pour les virus à ARN
- Le LPS est un composant indispensable des parois des bactéries gram-
- Le LTA (acide téichoïque) est un composant indispensable des parois des bactéries gram+

= RECONNAISSANCE DES MOTIFS MOLÉCULAIRES CONSERVÉS

L'antigène à la surface des cellules dendritiques

La rencontre CPA-lymphocytes (1)

Une série de recombinaison génétique induit l'unicité des récepteurs antigéniques à la surface de chaque lymphocytes T

- 2 millions de récepteurs différents, certains avec une affinité faible, d'autres avec une affinité élevée
- Aucun lymphocyte disposant d'un récepteur aux CMH de l'organisme = autotolérance grâce à l'apoptose systématique des lymphocytes spécifiques au CMH de l'organisme

Prolifération et différenciation des lymphocytes T

Les différents anticorps des lymphocytes B

L'importance du complexe immun

- Les anticorps entourent la bactérie ou le virus circulant (opsonisation)
 - → complexe immun qui précipite
 - → ... et qui réagit avec le complément

Bilan : adhésion très rapide aux <u>neutrophiles</u> ou aux macrophages

- Les IgG se maintiennent plusieurs semaines dans le sang
 - → garantie contre une ré-infection

La phase de guérison

- Les lymphocytes $\gamma \delta$
 - · limitent l'inflammation une fois que le pathogène est éliminé
 - produisent des facteurs de croissance favorisant la réparation des tissus
- Les plaquettes
 - · coagulation refermant la plaie et bouchant les capillaires éventrés
- Les fibroblastes
 - · Production de collagène formant une cicatrice
- Certaines lésions peuvent être irréversibles = signes graves

La mémoire immunitaire

- Réduction du nombre de lymphocyte T et B après 15 jours
- Conservation de 10 % des lymphocytes

Lymphocytes T à mémoire effectrice (TEM)

= réactifs en quelques heures

Mastocytes sur lesquels se sont fixés les IGE

= accélèreront la prochaine réponse au pathogène (risque allergique)

Lymphocytes T à mémoire centrale (TCM)

= non différenciés

Certains plasmocytes migrent vers la moelle osseuse depuis laquelle ils continuent à sécréter des anticorps (quelques mois à plusieurs années)

marquage sérologique

La mémoire immunitaire

- Durée de la mémoire immunitaire
 - De 10 à 30 ans après la primo-infection
 - · Selon la restimulation antigénique fréquente
 - · Selon le pouvoir immunogène du pathogène
- La réactivation est très rapide (2 à 3 jours)
 - · Lymphocytes déjà activés
 - · Maturation d'affinité déjà réalisée

mais insuffisante contre les virus très virulent (grippe, ...) d'où la nécessité de la présence d'Ac spécifique en lien avec une infection récente ou une vaccination

L'immonodépression post-infectieuse

- Le nombre de lymphocytes circulants restent stable : 10^12
- Donc lors d'une réaction immunitaire, les lymphocytes spécifique à l'infection en cours dominent le répertoire des lymphocytes
 → il y a moins de lymphocytes naïfs
- Donc l'organisme reste sensible à une autre pathogène le temps que le répertoire se rééquilibre.

L'immunodéficience acquise

- Pathogènes infestant les cellules du système immunitaire
 - Leucose bovine
 - · CAEV caprin
 - Tuberculose
 - HIV (CD4)
 - ... Induction d'une lymphopénie

Cas du veau

- Système immunitaire non fonctionnel avant 3 semaines
- Immunité passive assurée par le transfert des anticorps de la mère via le colostrum puis le lait
 - Importance de la concentration en Ac

Alimentation de la mère en fin de gestation (vit E, vit A, sélénium, Mg)

- + Laps de temps écoulé depuis la dernière exposition
- + Influence génétique
- Importance du moment d'ingestion (brève < 2j ; tardive > 6h)
- Importance de la digestibilité du lait (attention si TB> 50)

Immunodépresseurs

- La production de radicaux libres à un effet néfaste sur les cellules alentours dont les macrophages eux-mêmes
 - La présence locale ou diffuse d'antioxydants limite cet effet néfaste (vit E, Se, phytothérapie, aromathérapie)
 - · Ces antioxydants accélèrent la convalescence
- Les macrophages sont également sensibles
 - Au froid (vasoconstriction, réduction du métabolisme)
 - Au stress (cortisol)
 - · À certains pathogènes...

Être immunocompétent n'est pas une garantie

- L'immunité n'est parfois pas stérilisante
 - lorsque qu'un pathogène intracellulaire (virus ou bactérie) réduit la reconnaissance par les LTc
 - ou lorsque qu'il reste dans les cellules phagocytaires sans être digéré ou lorsque qu'il s'insère dans les neurones
 - On parle de pathogènes persistants
 - On les nomme aussi <u>« latents » c</u>ar ils se réveillent au gré d'un stress
- Certains pathogènes se développent trop vite (virulence élevée)
 - · Car ils se cachent des cellules dendritiques ou des cellules NK
 - · Ou car ils suppriment les messages envoyés par les cellules infectés

Régulation de l'inflammation si virulence élevée

Anti-inflammatoires Corticoïdes Récepteurs solubles à TNF IL-10 et TGF-β Acétycholine (inhibiteur IL1 et TNF) Surrénales TH reg Nerf vague après stimulation des nerfs sensitifs Macrophages « scavengers » détectant les débris de cellules mortes

- Bilan : un rétrocontrôle souvent trop lent et une régulation faible de la sécrétion histaminique
 - ... d'où la sévérité de certaines inflammations qui peuvent être mortelles avant toutes actions lymphocytaires.
 - ... d'où l'importance des traitements symptomatiques

La septicémie

- Si le système immunitaire est inefficace à endiguer l'infection, les pathogènes peuvent atteindre la circulation sanguine
- Alors l'inflammation n'est plus locale mais systémique (tout l'organisme)
 - · Les tissus se gonflent (la trachée se collapse, ...)
 - De l'eau passe dans les poumons (œdème pulmonaire)
 - · La pression sanguine chute, le cœur s'arrête.

Migration vers d'autres sites

- Si l'agent est peu immunogène (virus, certaines bactéries), il n'y a pas d'inflammation systémique
 - · phase de virémie
 - · phase de bactérémie
- Dans ce cas, l'agent pathogène peut parfois rejoindre les zones où le système immunitaire est absent
 - Méninges (listeriose, ...)
 - Articulation (polyarthrite juvénile, ...)
 - Myocarde (myocardite)
- > Sinon il en profite pour rejoindre l'organe pour lequel il a le plus d'affinité

Le portage sain

- Certains individus portent des gênes originaux responsables de mécanismes anti-inflammatoires contre une bactérie ou un virus
 - · On parle de porteurs sains (immunotolérant)
- Certains nouveau-nés contaminés in-utéro avant 4 mois deviennent immunotolérants
 - On parle d'IPI : Immunotolérants en Permanence Infectés

III - La vaccination

Une primo-infection fictive

Discussion autour de la sérothérapie

- > Sérothérapie = injection de sérum provenant d'un autre organisme
- Problèmes immunogènes
 - · Autres antigènes présents
 - · Protéines d'un organisme différent
- Problèmes infectieux
 - · Transmission de pathogène présent dans le sang du donneur
- D'où la limitation aux virus contre lesquels c'est la seule solution, ou pour des individus déficitaires en lymphocytes B.

Principe de la vaccination

- Créer une mémoire immunitaire avant la primo-infection
 - · Des plasmocytes produisant des anticorps neutralisant à haute affinité
 - Des LTc mémoire
- Objectifs :
- · Annuler les symptômes (réduire la morbidité et la léthalité)
- · Réduire l'excrétion du pathogène (annuler la contagiosité)
- La vaccination =
 - exposition à l'antigène + stimulation des lymphocytes
 - sans action cytolytiques du pathogène ou des LTc
 - · sans réaction inflammatoire excessive
- Le paradoxe =
 - · Une prolifération lymphocytaire
 - · Sans médiateurs inflammatoire

Résolution du paradoxe

- Exposition à l'antigène par administration
 - D'un variant non virulent mais avec des antigènes communs (vaccine/variole Edward Jenner 1876)
 - D'un agent atténué = tué ou inactivé (Pasteur)
 - · De sous unités du pathogène (toxines)

Bilan: avantages/inconvénients

- Vivant (variant ou inactivé)
 - une stimulation immunitaire identique à la primo-infection
 - une réaction inflammatoire inévitable (supportable chez des individus sains)
 - → limitation de la vaccination aux maladies dangereuses
- Agent tué et sous-unités
 - · Pas de réactions inflammatoires
 - → obligation d'administration en plusieurs doses espacées dans le temps
 - → vaccins combinés pour réduire le nombre d'injection (DTPolio, ROR)
 - → emploi d'adjuvants stimulant le système immunitaire

Les adjuvants

- La stratégie « ligand des TLR » (LPS, ADN CpG, protéines du manteau viral)
 - · Réaction inflammatoire courte mais puissante
- La stratégie classique (alun, huile MF59)
 - · La plus utilisée
 - Mécanismes inconnus
- La stratégie « cytokines »
 - · Actuellement à l'étude

Le tropisme du pathogène

- Un vaccin sanguin confère une immunité principalement en IgG qui ne traversent que les muqueuses pulmonaires et urogénitale
- D'où la mise au point de vaccin oraux et nasaux pour protéger les autres muqueuses (oro-pharyngée, intestinale)
 - · Vibrio cholerae
 - · Salmonella typhimurium
 - Polio
 - Grippe
 - · HIV : actuellement à l'étude

Enjeu de l'immunité de communauté

- Immunité de communauté
 - · acquise quand 95% des individus sont vaccinés
- Au-delà de ce seuil
 - · la maladie se ne répand plus dans la population
- Immunité de communauté à atteindre
 - si le vaccin est moins dangereux que la maladie
- Exemples historiques
 - Années 70 : la presse anglaise se déchaine sur les effets cérébraux du vaccin contre la coqueluche
 - La population vaccinée est tombée à 30 %
 - · 2 épidémies, 30 morts ...
 - (30 seulement grâce à la relance de la vaccination)
 - Les effets cérébraux n'ont jamais été démontrés
 - · Aujourd'hui le vaccin est un vaccin sous-unitaire sans effets néfastes