Mathématiques discrètes 1 Partiel du 22/11/2021

Partie 1: ensembles, relations, fonctions, treillis

Consignes:

- Le sujet est divisé en deux parties. Chaque partie doit être rédigée sur des copies distinctes.
- Les seuls documents autorisés pour cette partie sont : un pense-bête d'une page recto-verso et les supports de cours. La calculatrice est autorisée (mais inutile).
- Toute réponse doit être justifiée. Le vocabulaire et les notations adéquates doivent être utilisées.

Exercice 1. (5 points)

Soient les deux ensembles $A = \{a, b, c, d, e\}$ et $B = \{1, 2, 3, 4\}$.

1. (0,5 points) Donner $\mathcal{P}(B)$ en extension.

Solution:

$$\begin{split} \mathcal{P}(B) &= \{ \ \emptyset, \\ \{1\}, \{2\}, \{3\}, \{4\}, \\ \{1, 2\}, \{1, 3\}, \{1, 4\}, \{2, 3\}, \{2, 4\}, \{3, 4\}, \\ \{1, 2, 3\}, \{1, 2, 4\}, \{1, 3, 4\}, \{2, 3, 4\}, \\ \{1, 2, 3, 4\} \ \} \end{split}$$

- 2. Dire s'il existe (et donner un exemple) ou non (et dire pourquoi) :
 - (a) (0.25 points) une application injective de A vers B;
- (d) (0.25 points) une application surjective de B vers A;
- (b) (0,25 points) une application injective de B vers A;
- (c) (0,25 points) une application surjective de A vers B;
- (e) (0.25 points) une application bijective de A vers B.

Solution: Soient $f: A \to B$ et $g: B \to A$ définies par :

- (a) il n'existe pas d'application injective de A vers B car |A| > |B|;
- (b) g est une application injective de B vers A;
- (c) f est une application surjective de A vers B;
- (d) il n'existe pas d'application surjective de B vers A car |B| < |A|;
- (e) il n'existe pas d'application bijective de A vers B car il n'existe pas d'application injective de A vers B.
- 3. On ordonne A par la relation d'ordre \leq définie par : $a \leq a$, $a \leq d$, $b \leq a$, $b \leq b$, $b \leq d$, $c \leq c$, $c \leq d$, $d \leq d$, $e \leq a$, $e \leq d$ et $e \leq e$.

(a) (1 point) Donner le diagramme de Hasse représentant cette relation d'ordre.

Solution: En utilisant la méthode du cours qui consiste à trouver successivement les éléments minimaux et les placer par niveaux, on obtient :

(b) (0,5 points) En déduire les éléments maximaux, minimaux, ainsi que le minimum et le maximum de A selon \leq s'ils existent.

Solution:

- un seul élément maximal : d;
- deux éléments minimaux : b et e;
- aucun élément minimum;
- un élément maximum : d.
- (c) (0,75 points) Donner une relation d'ordre R sur B et une application $f:A\to B$ croissante i.e. telle que :

$$\forall x, y \in A \quad x \leq y \Rightarrow f(x) \ R \ f(y)$$

Solution: On peut associer à chaque élément de A son niveau par f (augmenté de 1) et utiliser l'ordre usuel \leq sur les entiers pour R. On a alors

est bien croissante. Par exemple $b \leq a$ et on a bien $f(b) = 1 \leq 2 = f(a)$.

(d) (1 point) Peut-on pour chaque couple $(x,y) \in A^2$ donner un élément $x \wedge y \in A$ et un élément $x \vee y \in A$ tel que (A, \leq, \wedge, \vee) soit un treillis? Si oui donner $x \vee y$ et $x \wedge y$ pour tout couple $(x,y) \in A^2$, si non donner un contre-exemple.

Solution: Il n'existe pas d'élément à la fois plus petit que b et que e, par conséquent $b \wedge e$ ne peut exister et on ne peut associer à A une structure de treillis en considérant l'ordre \leq .

Exercice 2. (5 points)

- 1. (2 points) Soient A, B et C des ensembles d'éléments d'un univers U. Répondre aux questions suivantes en justifiant par une preuve ou un contre-exemple :
 - (a) (1 point) A-t-on $(A \setminus B) \setminus C = A \setminus (C \setminus B)$?

Solution: Non, contre-exemple : avec $A = B = C = \{a, b\}$ on a $(A \setminus B) \setminus C = \emptyset \setminus C = \emptyset$, mais $A \setminus (C \setminus B) = A \setminus \emptyset = A \neq \emptyset$.

Plus généralement quand $A \cap B \cap C \neq \emptyset$, l'énoncé n'est pas valide.

(b) (1 point) A-t-on $(A \setminus B) \setminus C = (A \setminus C) \setminus B$?

Solution: La propriété est bien vérifiée :

Soit $x \in (A \setminus B) \setminus C$. Alors par définition $x \in A \setminus B$ et $x \notin C$, et donc $x \in A$, $x \notin B$ et $x \notin C$.

D'où $x \in A \setminus C$, et alors $x \in (A \setminus C) \setminus B$.

- De même que précédemment.
- 2. (1,5 points) Soit $(\mathcal{B}, \leq, \wedge, \vee, \perp, \top, \overline{})$ une algèbre de Boole et $a, b, c \in \mathcal{B}$. En indiquant les propriétés utilisées, démontrer que :

si
$$a \wedge c = b \wedge c$$
 et $a \wedge \overline{c} = b \wedge \overline{c}$ alors $a = b$

```
Solution: Supposons a \wedge c = b \wedge c (H<sub>1</sub>) et a \wedge \overline{c} = b \wedge \overline{c} (H<sub>2</sub>). Alors a = a \wedge \top \qquad (\top \text{ neutre pour } \wedge)
= a \wedge (c \vee \overline{c}) \qquad (\text{déf. complémentaire})
= (a \wedge c) \vee (a \wedge \overline{c}) \qquad (\text{distributivit\'e})
= (b \wedge c) \vee (b \wedge \overline{c}) \qquad (\text{H}_1 \text{ et H}_2)
= b \wedge (c \vee \overline{c}) \qquad (\text{distributivit\'e})
= b \wedge \top \qquad (\text{d\'ef. compl\'ementaire})
= b \qquad (\top \text{ neutre pour } \wedge)
```

3. (1,5 points) Soient A,B,C des sous-ensembles d'un ensemble univers U, et $f:A\to B$ et $g:B\to C$ deux applications.

Montrer que si $g \circ f$ est surjective et g injective alors f est surjective.

Rappel: pour tout élément x de A, $g \circ f(x) = g(f(x))$.

Solution: Supposons que $g \circ f$ est surjective (H_1) et g est injective (H_2) . Soit $g \in B$. Alors $g(y) \in C$, et comme $g \circ f$ est surjective $(par H_1)$ on a $x \in A$ tel que $g \circ f(x) = g(y)$, i.e. g(f(x)) = g(y). Or g étant injective $(par H_2)$ alors f(x) = y, i.e. g(f(x)) = g(y) and g(f(x)) = g(y) etant injective $(par H_2)$ alors f(x) = y, i.e. g(f(x)) = g(y) and g(f(x)) = g(y) etant injective $(par H_2)$ alors f(x) = y, i.e. g(f(x)) = g(y) and g(f(x)) = g(y) etant injective $(par H_2)$ alors f(x) = y, i.e. g(f(x)) = g(y).

Conclusion: f est surjective.