Assignment

SUBMITTED TO:

Dr. Irfan Yousuf

SUBMITTED BY:

Hammad Ali (2021-CS-705)

SECTION:

<u>A</u>

Department of Computer Science, New Campus

University of Engineering and Technology

Lahore, Pakistan

DES Mode of Operation: Cipher Block Chaining (CBC)

Figures:

Cipher Block Chaining Mode (CBC)

Cipher Block Chaining (CBC) mode encryption

Cipher Block Chaining (CBC) mode decryption

Here,

Block Cipher: **DES**

DES Key Schedule

64-bit ciphertext

Figure 4.5 General Depiction of DES Encryption Algorithm

Note: Only 2 rounds as per requirement.

DES Tables

	10	***		-	-			- 4		**	- 2	1.4	10	W		1.0
	15	12	*	2		0		7	5	11	2	1.4	10	0	6	12
Sı	4	1	14	8	13	6	2	11	15	12	9	7	3	10	5	0
	0	15	7	4	14	2	13	1	10	6	12	11	9	10	3	8
	2.4		4.3		-	2.3	8.8	0	3	10	0	12	3	9	0	1

	15												12			
-	3	13	4	7	15	2	8	14	12	0	1	10	6	9	11	5
52	0	14	7	11	10	4	13	1	5	8	12	6	9	3	2	15
	13	8	10	1	3	15	4	2	11	6	7	12	0	5	14	9

	10	0	9	14	6	3	15	5	1	13	12	7	11	4	2	8
	13	7	0	9	3	4	6	10	2	8	5	14	12	11	15	1
S ₃	13	6	4	9	8	15	3	0	11	1	2	12	5	10	14	7
	1	10	13	0	6	9	8	7	4	15	14	3	11	5	2	12

	7	13	14	3	0	6	9	10	1	2	8	5	11	12	- 4	15
	13	8	11	5	6	15	0	3	4	7	2	12	1	10	14	9
St	10	6	11 9	0	12	11	7	13	15	1	3	14	5	2	8	4
			0													

													13			
40	14	11	2	12	4	7	13	1	5	0	15	10	3	9	8	6
35	4	2	1	11	10	13	7	8	15	9	12	5	6	3	0	14
													10			

	12	1	10	15	9	2	6	8	0	13	3	- 4	14	7	5	11
	10	15	4	2	7	12	9	5	6	1	13	14	0	11	3	8
Sh	9	14	15	2 5	2	8	12	3	7	0	4	10	1	13	11	6
	4	3	2	12	.9	5	15	10	11	14	1	7	6	0	8	13

	4	11	2	14	15	0	8	13	3	12	9	7	5	10	6	1
2	13	0	11	7	4	9	1	10	14	3	5	12	2	15	8	6
S7	1	4	11	13	12	3	7	14	10	3 15	6	8	0	5	9	2
										5						

	13	2	8	4	6	15	11	1	10	9	3	14	5	0	12	7
	1	15	13	8	10	3	7	4	12	5	6	11	0	14	9	2
Sg	7	11	13	1	9	12	14	2	0	6	10	13	15	3	5	8
														5		

DES Tables

(a) Initial Permutation (IP)

58 60 62 64 57 59 61 63	50	42	34	26	18	10	2
60	52	44	36	28		12	4
62	54	46	38	30	22	14	6
64	56	48	40	32	24	16	8
57	49	41	33	25	17	9	1
59	51	43	35	27	19	11	3
61	50 52 54 56 49 51 53 55	42 44 46 48 41 43 45 47	34 36 38 40 33 35 37 39	26 28 30 32 25 27 29 31	20 22 24 17 19 21 23	10 12 14 16 9 11 13 15	2 4 6 8 1 3 5 7
63	55	47	39	31	23	15	7

(b) Inverse Initial Permutation (IP-1)

40	8	48	16	56	24	64	32
39	7	48 47	15	55	23	63	
38	6	46	14	54	22	63 62	30
37	5	45	13	53	21	61	31 30 29 28 27 26
36	4	44	12	52		60	28
35	3	43	11	53 52 51	20 19	59	28 27
34	2	42	10	50	18	58 57	26
40 39 38 37 36 35 34 33	1	41	9	49	17	57	25

(c) Expansion Permutation (E)

32	1	2	3	4	5
4	5	6	7	8	9
8	9	10	11	12	13
12	13	14	15	16	17
16	17	18	19	20	21
20	21	22	23	24	25
24	25	26	27	28	29
28	29	30	31	32	1

(d) Permutation Function (P)

16 1 2 19	7	20	21	29	12	28	ě
1	15	23	26	5	18	31	
2	8	24	14	32	27	3	
19	13	30	6	22	11	4	-

Plain Text = LAHORE IS A BIG CITY

 $P_1 = LAHOREIS$

 $P_1 = 01001100\ 01000001\ 01001000\ 01001111\ 01010010\ 01000101\ 01001001$

 $P_2 = ABIGCITY$

KEY = HAMMADAL

KEY = 01001000 01000001 01001101 01001101 01000001 01000100 01000001 01001100

IV = MYVECTOR

Generating Keys

KEY = 01001000 01000001 01001101 01001101 01000001 01000100 01000001 01001100

PC1:

Apply PC1: (64 => 56)

 $D_0 = 0000000 \ 0101011 \ 0010001 \ 1010000$

1 circular left shift C₀, D₀

 $C_1 = 0000000 11111111 1000000 0000000$

 $D_1 = 0000000 1010110 0100011 0100000$

Again 1 circular left shift C₁, D₁

 $C_2 = 0000001 11111111 0000000 0000000$

 $D_2 = 0000001 \ 0101100 \ 1000110 \ 1000000$

 $C_2D_2 = 0000001\ 11111111\ 0000000\ 0000000\ 0101100\ 1000110\ 1000000$

PC2:

Apply PC2: (56 => 48)

 $K_1 = 101000\ 001001\ 001001\ 000010\ 100000\ 011001\ 110000\ 000100$

 $C_2D_2 = 0000001\ 11111111\ 0000000\ 0000000\ 0101100\ 1000110\ 1000000$

 $K_2 = 101000\ 000001\ 001001\ 010010\ 000110\ 010001\ 001000\ 001000$

Encryption

Block₁

 $P_1 = 01001100\ 01000001\ 01001000\ 01001111\ 01010010\ 01000101\ 01001001$

IP:

Apply Initial Permutation on M_1 :

Split $(64 \Rightarrow 32,32)$ bit:

 $L_0 = 00000000 \ 00110110 \ 01000100 \ 10110001$

 R_0 = 00000000 00000000 00001110 01001100

$$L_n = R_{n-1}$$

$$R_n = L_{n-1} \bigoplus f(R_{n-1}, K_n)$$

Round₁

 $L_1 = 000000000000000000000111001001100$

 R_0 = 00000000 00000000 00001110 01001100

 $K_1 = 101000\ 001001\ 001001\ 000010\ 100000\ 011001\ 110000\ 000100$

 $K_1 \bigoplus E(R_0) = 101000\ 001001\ 001001\ 000010\ 100001\ 000101\ 111001\ 011100$

Apply S-Boxes:

 $S_1(B_1) S_2(B_2) S_3(B_3) S_4(B_4) S_5(B_5) S_6(B_6) S_7(B_7) S_8(B_8) = 1101 1111 0011 1101 1011 0100 1110 1100$

Apply P-Box:

 $f = P(S_1(B_1) S_2(B_2) ... S_8(B_8)) = 11101101 10011000 11010100 111111111$

 $R_1 = L_0 \oplus f = 11101101 \ 10101110 \ 10010000 \ 01001110$

Round₂

 $L_2 = 11101101\ 10101110\ 10010000\ 01001110$

R₁= 11101101 10101110 10010000 01001110

 $E(R_1) = 011101 \ 011011 \ 110101 \ 011101 \ 010010 \ 100000 \ 001001 \ 011101$

 $K_2 = 101000\ 000001\ 001001\ 010010\ 000110\ 010001\ 001000\ 001000$

 $K_2 \oplus E(R_1) = 11010101 10101111 00001111 01010011 00010000 01010101$

Apply S-Boxes:

 $S_1(B_1)$ $S_2(B_2)$ $S_3(B_3)$ $S_4(B_4)$ $S_5(B_5)$ $S_6(B_6)$ $S_7(B_7)$ $S_8(B_8)$ = 0011 0000 1110 0011 1011 1101 0110

Apply P-Box:

 $f = P(S_1(B_1) S_2(B_2) ... S_8(B_8)) = 10110010 01110011 00100011 10100111$

 $R_2 = L_1 \bigoplus f = 10110010 \ 01110011 \ 00101101 \ 11101011$

 $R_2L_2 = 10110010\ 01110011\ 00101101\ 11101011\ 11101101\ 10101110$ 10010000\ 01001110

IP⁻¹:

Apply Inverse of Initial Permutation on R₂L₂:

 $C_1 = IP^{-1} = 10010101 \ 01110011 \ 10100110 \ 10100111 \ 01011000 \ 11110101 \ 10010011 \ 11101001$

 $C_1 = s \mid \S X \tilde{o} \acute{e}$

Block₂

 $M_2 = 11010100\ 00110001\ 11101111\ 11100000\ 00011011\ 10111100\ 11000111$ 10110000

<u>IP:</u>

Apply Initial Permutation on M₂:

Split (64 => 32,32) bit:

 $L_0 = 01001101\ 10110011\ 01100101\ 01010110$

R₀= 11101101 10101110 00110100 01010100

$$L_n = R_{n-1}$$

$$R_n = L_{n-1} \bigoplus f(R_{n-1}, K_n)$$

Round₁

 $L_1 = 11101101 \ 10101110 \ 00110100 \ 01010100$

R₀= 11101101 10101110 00110100 01010100

 $E(R_0) = 011101\ 011011\ 110101\ 011100\ 000110\ 101000\ 001010\ 101001$

 $K_1 = 101000\ 001001\ 001001\ 000010\ 100000\ 011001\ 110000\ 000100$

 $K_1 \bigoplus E(R_0) = 110101 \ 010010 \ 111100 \ 011110 \ 100110 \ 110001 \ 111010 \ 101101$

Apply S-Boxes:

 $S_1(B_1)$ $S_2(B_2)$ $S_3(B_3)$ $S_4(B_4)$ $S_5(B_5)$ $S_6(B_6)$ $S_7(B_7)$ $S_8(B_8)$ = 0011 0111 1110 1111 1011 1011 1010 1010 1000

Apply P-Box:

 $f = P(S_1(B_1) S_2(B_2) ... S_8(B_8)) = 111111011 01110001 01110011 11010110$

L₀ = 01001101 10110011 01100101 01010110

 $R_1 = L_0 \bigoplus f =$ 10110110 11000010 00010110 10000000

Round₂

 $L_2 = R_1 = 10110110 \ 11000010 \ 00010110 \ 10000000$

R₁= 10110110 11000010 00010110 10000000

 $E(R_1) = 010110 \ 101101 \ 011000 \ 000100 \ 000010 \ 101101 \ 010000 \ 000001$

 $K_2 = 101000\ 000001\ 001001\ 010010\ 000110\ 010001\ 001000\ 001000$

 $K_2 \bigoplus E(R_1) = 111110 \ 101100 \ 010001 \ 010110 \ 000100 \ 111100 \ 011000 \ 001001$

Apply S-Boxes:

 $S_1(B_1)$ $S_2(B_2)$ $S_3(B_3)$ $S_4(B_4)$ $S_5(B_5)$ $S_6(B_6)$ $S_7(B_7)$ $S_8(B_8)$ = 0000 1101 0010 0101 0100 1011 0101 1010

Apply P-Box:

 $f = P(S_1(B_1) S_2(B_2) ... S_8(B_8)) = 10011010 00111110 01110000 00010100$

L₁ = 11101101 10101110 00110100 01010100

 $R_2 = L_1 \bigoplus f =$ 01110111 10010000 01000100 01000000

 $R_2L_2 = 01110111 \ 10010000 \ 01000100 \ 01000000 \ 10110110 \ 11000010 \ 00010110 \ 10000000$

IP⁻¹:

Apply Inverse of Initial Permutation on R_2L_2 :

 $C_2 = @elØAe^2$

Decryption

 $C_1 = s \mid \S X \tilde{o} \acute{e}$

 $C_1 = 10010101 \ 01110011 \ 10100110 \ 10100111 \ 01011000 \ 11110101 \ 10010011 \ 11101001$

 $C_2 = @eld \triangle e^2$

KEY = HAMMADAL

KEY = 01001000 01000001 01001101 01001101 01000001 01000100 01000001 01001100

IV = MYVECTOR

From Encryption:

 $K_1 = 101000\ 001001\ 001001\ 000010\ 100000\ 011001\ 110000\ 000100$

 $K_2 = 101000\ 000001\ 001001\ 010010\ 000110\ 010001\ 001000\ 001000$

Block₁

IP:

 $C_1 = s \mid \S X \tilde{o} \acute{e}$

 $C_1 = 10010101 \ 01110011 \ 10100110 \ 10100111 \ 01011000 \ 11110101 \ 10010011 \ 11101001$

Apply Initial Permutation C₁:

Split $(64 \Rightarrow 32,32)$ bit:

 $L_0 = 10110010\ 01110011\ 00101101\ 11101011$

R₀= 11101101 10101110 10010000 01001110

$$L_n = R_{n-1}$$

$$R_n = L_{n-1} \bigoplus f(R_{n-1}, K_{3-n})$$

Round₁

L₁ = 11101101 10101110 10010000 01001110

R₀= 11101101 10101110 10010000 01001110

 $E(R_0) = 011101 \ 011011 \ 110101 \ 011101 \ 010010 \ 100000 \ 001001 \ 011101$

 $K_2 = 101000\ 000001\ 001001\ 010010\ 000110\ 010001\ 001000$

 $K_2 \oplus E(R_0) = 110101 \ 011010 \ 1111100 \ 001111 \ 010100 \ 110001 \ 000001 \ 010101$

Apply S-Boxes:

 $S_1(B_1) S_2(B_2) S_3(B_3) S_4(B_4) S_5(B_5) S_6(B_6) S_7(B_7) S_8(B_8) = 0011 0000 1110 0011 0011 1101 0110$

Apply P-Box:

 $f = P(S_1(B_1) S_2(B_2) ... S_8(B_8)) = 10110010 01110011 00100011 10100111$

L₀ = 10110010 01110011 00101101 11101011

 $R_1 = L_0 \bigoplus f = 0000000000000000000111001001100$

Round₂

 $L_2 = 00000000000000000000111001001100$

R₁= 00000000 00000000 00001110 01001100

 $K_1 = 101000\ 001001\ 001001\ 000010\ 100000\ 011001\ 110000\ 000100$

 $K_1 \bigoplus E(R_1) = 101000\ 001001\ 001001\ 000010\ 100001\ 000101\ 111001\ 011100$

Apply S-Boxes:

 $S_1(B_1)$ $S_2(B_2)$ $S_3(B_3)$ $S_4(B_4)$ $S_5(B_5)$ $S_6(B_6)$ $S_7(B_7)$ $S_8(B_8)$ = 1101 1111 0011 1101 1011 0100 1110 1100

Apply P-Box:

 $f = P(S_1(B_1) S_2(B_2) ... S_8(B_8)) = 11101101 10011000 11010100 111111111$

L₁ = 11101101 10101110 10010000 01001110

 $R_2 = L_1 \oplus f = 00000000 00110110 01000100 10110001$

FP:

Apply Final Permutation on R₂L₂:

 $P_1 = FP \bigoplus IV = 01001100 \ 01000001 \ 01001000 \ 01001111 \ 01010010 \ 01001001$ 01001001

 $P_1 = LAHOREIS$

Block₂

IP:

 $C_2 = @eld \triangle e^2$

Apply Initial Permutation C₂:

Split (64 => 32,32) bit:

 $L_0 = 01110111 \ 10010000 \ 01000100 \ 01000000$

R₀= 10110110 11000010 00010110 10000000

 $L_n = R_{n-1}$

 $R_n=L_{n-1}\bigoplus f(R_{n-1},K_{3-n})$

Round₁

 $L_1 = R_0 = 10110110 11000010 00010110 10000000$

R₀ = 10110110 11000010 00010110 10000000

 $E(R_0) = 010110 \ 101101 \ 011000 \ 000100 \ 000010 \ 101101 \ 010000 \ 000001$

 $K_2 = 101000\ 000001\ 001001\ 010010\ 000110\ 010001\ 001000$

 $K_2 \oplus E(R_0) = 111110 \ 101100 \ 010001 \ 010110 \ 000100 \ 111100 \ 011000 \ 001001$

Apply S-Boxes:

 $S_1(B_1) S_2(B_2) S_3(B_3) S_4(B_4) S_5(B_5) S_6(B_6) S_7(B_7) S_8(B_8) = 0000 1101 0010 0101 0100 1011 0101 1010$

Apply P-Box:

 $f = P(S_1(B_1) S_2(B_2) ... S_8(B_8)) = 10011010 00111110 01110000 00010100$

L₀ = 01110111 10010000 01000100 01000000

 $R_1 = L_0 \bigoplus f =$ 11101101 10101110 00110100 01010100

Round₂

 $L_2 = R_1 = 11101101 \ 10101110 \ 00110100 \ 01010100$

R₁ = 11101101 10101110 00110100 01010100

 $E(R_1) = 011101 \ 011011 \ 110101 \ 011100 \ 000110 \ 101000 \ 001010 \ 101001$

 $K_1 = 101000\ 001001\ 001001\ 000010\ 100000\ 011001\ 110000\ 000100$

 $K_1 \oplus E(R_1) = 110101 \ 010010 \ 111100 \ 011110 \ 100110 \ 110001 \ 111010 \ 101101$

Apply S-Boxes:

 $S_1(B_1)$ $S_2(B_2)$ $S_3(B_3)$ $S_4(B_4)$ $S_5(B_5)$ $S_6(B_6)$ $S_7(B_7)$ $S_8(B_8)$ = 0011 0111 1110 1111 1011 1011 1010 1101 1000

Apply P-Box:

 $f = P(S_1(B_1) S_2(B_2) ... S_8(B_8)) = 111111011 01110001 01110011 11010110$

L₁ = 10110110 11000010 00010110 10000000

 $R_2 = L_1 \bigoplus f =$ 01001101 10110011 01100101 01010110

 $R_2L_2 = 01001101\ 10110011\ 01100101\ 01010110\ 11101101\ 10101110$ $00110100\ 01010100$

FP:

Apply Final Permutation on R_2L_2 :

 $P_2 = FP \bigoplus IV = 01000001 \ 01000010 \ 01001001 \ 010000111 \ 01000011 \ 01001001 \ 01011001$

 $P_2 = ABIGCITY$

The End