```
import numpy as np
```

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

salary = pd.read_csv('https://github.com/YBI-Foundation/Dataset/raw/main/Salary%20Data.csv')

salary.head()

₽		Experience	Years	Salary	1
	0		1.1	39343	
	1		1.2	42774	
	2		1.3	46205	
	3		1.5	37731	
	4		2.0	43525	

salary.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 40 entries, 0 to 39

Data columns (total 2 columns):

#	Column	Non-Null Count	Dtype	
0	Experience Years	40 non-null	float64	
1	Salary	40 non-null	int64	

dtypes: float64(1), int64(1)
memory usage: 768.0 bytes

salary.describe()

	Experience Years	Salary
count	40.000000	40.000000
mean	5.152500	74743.625000
std	2.663715	25947.122885
min	1.100000	37731.000000
25%	3.200000	56878.250000
50%	4.600000	64472.500000
75%	6.875000	95023.250000
max	10.500000	122391.000000

```
y = salary['Salary'] #always use single square bracket
y.shape
     (40,)
Split Data
from sklearn.model_selection import train_test_split
X = salary[['Experience Years']] #always use double square bracket
X_train, X_test, y_train, y_test = train_test_split(X, y, train_size = 0.8, random_state = 2529)
X_train.shape, X_test.shape, y_train.shape, y_test.shape
     ((32, 1), (8, 1), (32,), (8,))
from sklearn.linear_model import LinearRegression
model = LinearRegression()
model.fit(X_train, y_train)
     LinearRegression()
model.coef_
     array([9398.19785815])
model.intercept_
     26344.85810217697
y_pred = model.predict(X_test)
y_pred
     array([ 90252.60353757, 59238.55060569, 106229.53989642, 63937.64953476,
             68636.74846383, 123146.29604108, 84613.68482268, 62997.82974895])
from sklearn.metrics import mean_absolute_percentage_error
mean_absolute_percentage_error(y_test, y_pred)
```

Define y and x

Problem 1: Predict SAT with GPA

sat = pd.read_csv('https://github.com/ybifoundation/Dataset/raw/main/SAT%20GPA.csv')

sat.head()

	SAT	GPA	1
0	1270	3.4	
1	1220	4.0	
2	1160	3.8	
3	950	3.8	
4	1070	4.0	

sat.info()

sat.describe()

	SAT	GPA
count	1000.000000	1000.000000
mean	1033.290000	3.203700
std	142.873681	0.542541
min	530.000000	1.800000
25%	930.000000	2.800000
50%	1030.000000	3.200000
75%	1130.000000	3.700000
max	1440.000000	4.500000

sat.corr()

	SAT	GPA	1
SAT	1.000000	0.429649	
GPA	0.429649	1.000000	

sns.pairplot(sat)

sat.columns

X_train


```
GPA
      669
            3.7
      583
            3.7
      688
            2.8
      422
            3.9
      825
            4.0
       ...
      740
            2.5
      399
            2.6
      828
            3.2
            2.7
      562
      250
from sklearn.linear_model import LinearRegression
reg = LinearRegression()
reg.fit(X_train, y_train)
     LinearRegression()
reg.intercept_
     673.2291896122774
reg.coef_
     array([111.01584994])
y_pred = reg.predict(X_test)
from \ sklearn.metrics \ import \ mean\_absolute\_error, mean\_absolute\_percentage\_error, \ r2\_score
mean_absolute_error(y_test, y_pred)
     105.93877473699905
mean_absolute_percentage_error(y_test, y_pred)
     0.10467104034918914
r2_score(y_test, y_pred)
```

0.18785383761597474

sns.regplot(x= 'GPA' , y = 'SAT' , data = sat)

Multiple Regression

df = pd.read_csv('https://github.com/ybifoundation/Dataset/raw/main/Boston.csv')

df.head()

	CRIM	ZN	INDUS	CHAS	NX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTAT	M
0	0.00632	18.0	2.31	0	0.538	6.575	65.2	4.0900	1	296.0	15.3	396.90	4.98	2
1	0.02731	0.0	7.07	0	0.469	6.421	78.9	4.9671	2	242.0	17.8	396.90	9.14	2
2	0.02729	0.0	7.07	0	0.469	7.185	61.1	4.9671	2	242.0	17.8	392.83	4.03	3
3	0.03237	0.0	2.18	0	0.458	6.998	45.8	6.0622	3	222.0	18.7	394.63	2.94	3
4	0.06905	0.0	2.18	0	0.458	7.147	54.2	6.0622	3	222.0	18.7	396.90	5.33	3

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 506 entries, 0 to 505

Data columns (total 14 columns):

Data	COTUIIIIS	(cocar 14 corumn	5).
#	Column	Non-Null Count	Dtype
0	CRIM	506 non-null	float64
1	ZN	506 non-null	float64
2	INDUS	506 non-null	float64
3	CHAS	506 non-null	int64
4	NX	506 non-null	float64
5	RM	506 non-null	float64
6	AGE	506 non-null	float64
7	DIS	506 non-null	float64

8	RAD	506	non-null	int64
9	TAX	506	non-null	float64
10	PTRATIO	506	non-null	float64
11	В	506	non-null	float64
12	LSTAT	506	non-null	float64
13	MEDV	506	non-null	float64

dtypes: float64(12), int64(2)

memory usage: 55.5 KB

df.describe()

	CRIM	ZN	INDUS	CHAS	NX	RM	AGE	
count	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.C
mean	3.613524	11.363636	11.136779	0.069170	0.554695	6.284634	68.574901	3.7
std	8.601545	23.322453	6.860353	0.253994	0.115878	0.702617	28.148861	2.1
min	0.006320	0.000000	0.460000	0.000000	0.385000	3.561000	2.900000	1.1
25%	0.082045	0.000000	5.190000	0.000000	0.449000	5.885500	45.025000	2.1
50%	0.256510	0.000000	9.690000	0.000000	0.538000	6.208500	77.500000	3.2
75%	3.677083	12.500000	18.100000	0.000000	0.624000	6.623500	94.075000	5.1
max	88.976200	100.000000	27.740000	1.000000	0.871000	8.780000	100.000000	12.1

sns.pairplot(df)

```
df.columns
     Index(['CRIM', 'ZN', 'INDUS', 'CHAS', 'NX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX',
            'PTRATIO', 'B', 'LSTAT', 'MEDV'],
           dtype='object')
y = df['MEDV']
X = df[['CRIM', 'ZN', 'INDUS', 'CHAS', 'NX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX',
       'PTRATIO', 'B', 'LSTAT']]
X.shape
     (506, 13)
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, train_size = 0.7, random_state = 2529)
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
X train = sc.fit transform(X train)
X_test = sc.fit_transform(X_test)
X_train
     array([[-0.14113619, -0.48175769, -0.19860022, ..., 0.00438903,
             -0.05084503, -0.01555641],
            [-0.42121529, 3.02166196, -1.33410259, ..., -1.68641979,
              0.42969249, -1.33650784],
            [-0.41266839, -0.48175769, 0.22414717, ..., 0.14148164,
              0.19739169, -0.10842497],
            [-0.38944304, -0.48175769, -0.19860022, \ldots, 0.00438903,
              0.37963873, 0.77313338],
            [-0.41404001, 0.41002186, -0.81324318, ..., -0.72677154,
              0.43161763, 0.09671754],
            [-0.41578561, 2.06618387, -1.3831586, ..., -0.04130851,
              0.39707198, -0.68781395]])
```

```
model = LinearRegression()
model.fit(X_train, y_train)
     LinearRegression()
model.intercept_
     22.83248587570622
model.coef_
     array([-1.20767891, 0.85995285, 0.1070255, 0.63555228, -2.43159195,
             3.08829222, 0.13082323, -3.31025945, 2.22711291, -1.65403572,
            -2.10989321, 0.94408913, -3.91890566])
df.columns
     Index(['CRIM', 'ZN', 'INDUS', 'CHAS', 'NX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX',
            'PTRATIO', 'B', 'LSTAT', 'MEDV'],
           dtype='object')
y_pred = model.predict(X_test)
from sklearn.metrics import mean_absolute_percentage_error, r2_score
mean_absolute_percentage_error(y_test, y_pred)
     0.18900464575924525
r2_score(y_test, y_pred)
     0.5945114562128394
```