3.2 $H = \Sigma \Omega \Sigma H x^{\vee} = \alpha$

Για μια εξίσωση της μορφής $x^{\nu}=\alpha$ έχουμε τις εξής περιπτώσεις:

• Αν $\boldsymbol{\nu}$ άρτιος και $\boldsymbol{\alpha}>\mathbf{0}$ τότε η εξίσωση $x^{\nu}=\alpha$ έχει δύο λύσεις:

$$x^{\nu} = \alpha \iff x = \sqrt[\nu]{a} \quad \acute{\eta} \quad x = \sqrt[+]{a}$$

- Αν $\boldsymbol{\nu}$ άρτιος και $\boldsymbol{\alpha}<\mathbf{0}$ τότε η εξίσωση $x^{\nu}=\alpha$ είναι αδύνατη.
- Αν \mathbf{v} περιττός και $\mathbf{\alpha} > \mathbf{0}$ τότε η εξίσωση $\mathbf{x}^{\nu} = \mathbf{\alpha}$ έχει μία λύση:

$$x^{\nu} = \alpha \quad \Longleftrightarrow \quad x = \sqrt[\nu]{a}$$

• An ν περιττός και $\alpha > 0$ τότε η εξίσωση $x^{\nu} = \alpha$ έχει μία λύση:

$$x^{\nu} = \alpha \iff x = -\sqrt[\nu]{|a|}$$

Δηλαδή, συμπεραίνουμε ότι:

ightharpoonup Αν ο ν είναι **άρτιος**, τότε η εξίσωση $x^{\nu}=\alpha^{\nu}$, με $\nu\in\mathbb{N}^*$, έχει δύο λύσεις:

$$x^{\nu} = \alpha^{\nu} \iff x = a \quad \acute{\eta} \quad x = -a$$

> Αν ο ν είναι **περιττός**, τότε η εξίσωση $x^{\nu} = \alpha^{\nu}$, με $\nu \in \mathbb{N}^*$, έχει μία λύση:

$$x^{\nu} = \alpha^{\nu} \iff x = a$$