	1					0.0		
Reg. No.			in i	I F				

MINOR CERTIFICATION EXAMINATION, MAY 2024

Second Semester

18CSE011J - CRYPTOGRAPHY AND NETWORK SECURITY

(For the candidates admitted during the academic year 2018-2019 to 2021-2022)

10.	F - 4
- 176	ULD.

Page 1 of 4

Part - A should be answered in OMR sheet within first 40 minutes and OMR sheet should be handed (i) over to hall invigilator at the end of 40th minute.

(ii)	Par	- B & Part - C should be answ	vered in ans	swer booklet.				
Time: 3	hours				Max. I	Marl	cs: 1	00
*		DADT A (20	v 1 20 T	Mayles)	Marks	BL	СО	РО
		PART - A (20						
1	rary)	Answer AL	L Quesuc	DIIS	1	3	1	2
1.		GCD (55, 22) is	(D)	1				
	(A)		(B)					
-	(C)	U	(D)	22				
2.		g CRT calculate the value of $3 \pmod{5}$ and $X \equiv 1 \pmod{2}$	f "X" for	the following where	1	3	1	2
	(A)		(B)	11				
•	(C)		(D)					
	(0)	12	(2)					
3.	The	\(\phi(7) \) is			1	3	1	2
٥,	(A)		(B)	5				
	(C)		(D)					
	(0)	in the light	(-)	(0)				
4.	Whi	ch of the following is not a s	ecurity se	rvice?	1	2	1	4
		Confidentiality		Authentication				
		Non-repudiation	(D)	Encipherment				
				United To			•	
5.	_	oher is one that encodes a co- in turn		ed information stream as 1 bit or	1 1	1	2	1
	(A)	Stream cipher	` '	Block cipher				
	(C)	Ideal cipher	(D)	Classic cipher				
6.		tle change in the plaintext cr	eates sign	ificant noteworthy changes in the	e ¹	2	2	1
	_	Brute force attack	(B)	Meet in the middle				
		Avalanche effect		Man in the middle				
7.		orm Diffie Hellman calculat 7 and common prime Q = 71		the following given primitive root $X_A = 3$, find Y_A	t 1	3	2	2
	(A)		(B)					
		59	(D)	2				
_	` '			I) ECD 41-1-f-	1	1	2	ì
8.		ode of operation (block ciph				•	-	•
	/	Electronic code book	` '	Electronic computer book				
D	(C)	Electrical code book	(D)	Electrical computer book	18MF2-1	iscei	7.011.T	
Dage 1 of A					TOTATE TO	エリマレジョ	-VIII	

9.	MA	C is function.			1	2	3	4
	(A)	Many to many	(B)	One to one				
	(C)	One to many	` '	Many to one				
10.	Digi	tal signature is generates from			1	2	3	4
	_	Conventional algorithm		Secret key encryption				
		Public key cryptography		Symmetric key algorithm				
11.	The	primitive root of 5 is			1	3	3	2
	(A)	1	(B)	2				
	(C)	4	(D)	5				
12.	Whi	ch of the following is not a vers	sion of	SHA?	1	1	3	4
		SHA-0		SHA-1				
		SHA-224		SHA-288				
13.	OSI	is a type of firewall tha model.	t opera	ites at the application layer of the	1	2	4	4
	(A)	Application firewall	(B)	Packet filtering firewall				
		Stateful inspection firewall	, ,	Network address translation firewall				
14.	base	d on MAC addresses.	sed to	filter and forward network traffic	1	1	4	4
	` '	Switch	(B)	Router				
	(C)	Hub	(D)	Repeater				
15.		the threats			1	2	4	4
	(A)	Detect and prevent	(B)	Prevent				
	(C)	Detect	(D)	Unhandled				
16.	State		attack 1	that floods a network with bogus	1	2	4	4
	(A)	Smurf attack	(B)	Spoofing				
	(C)	Syn flood		Ping of death				
17.	The	client-key-exchange message u	ses a p	re master key of size	1	2	5	2
	(A)	48 bytes	(B)	56 bytes				
	(C)	64 bytes	(D)	32 bytes				25
18.		e handshake protocol which is the server?	he mes	sage type first sent between client	1	1	5	2
	(A)	Server-hello	(B)	Client-hello				
	(C)	Hello-request		Certificate-request				
19.	the I	provides either authenticat P level.	ion or	encryption, or both for packets at	1	2	5	2
	(A)		(B)	ESP				
	` .	PGP		SSL				

20.	In the mode, IP sec protects the whole IP packet, including the original IP header.				
	(A) Transport (B) Tunnel				
	(C) Bidirectional (D) Unidirectional				
	$PART - B (5 \times 4 = 20 \text{ Marks})$				
	Answer ANY FIVE Questions	Marks	BL	co	PO
21.	State the Euler's totient function? Calculate $\phi(25)$.	4	3	1	2
22.	Write and prove the properties of modular arithmetic.	4	4	1	2
23.	Draw and write about Feistel cipher structure.	4	2	2	1
24.	In RSA algorithm, if $e = 7$, $P = 11$, $Q = 5$, then find "d". (Note: e and d are public and private key values).	4	3	2	2
25.	Discuss briefly the message authentication code.	4	2	3	4
26.	List the write bout various types of firewalls and briefly explain the package filtering firewall.				4
27.	27. Draw and write about authentication header.				2
	PART – C ($5 \times 12 = 60$ Marks) Answer ALL Questions	Marks	BL	CO	PO
28. a.	. a. Encrypt the plaintext "information security" using possible polyalphabetic ciphering techniques with the key "Crypto".			1	2
	(OR)				
b.	Find the value of "X" for the given equations using Chinese remainder theorem. $X \equiv 2 \pmod{3}$ $X \equiv 3 \pmod{5}$ $X \equiv 2 \pmod{7}$	12	3	1	2
29. a.	Calculate the ciphertext using S-DES for the following inputs. Plaintext: 0111 1111	12	3	2	2
	Initial permutation: 2 6 1 3 4 7 5 8 E/P: 4 1 2 3 2 3 4 1 K1: 1010 0100 K2: 0100 0011 P4: 2 4 3 1 $S_0 = \begin{bmatrix} 1 & 0 & 3 & 2 \\ 3 & 2 & 1 & 0 \\ 0 & 2 & 1 & 3 \\ 3 & 1 & 3 & 2 \end{bmatrix} S_1 = \begin{bmatrix} 0 & 1 & 2 & 3 \\ 2 & 0 & 1 & 3 \\ 3 & 0 & 1 & 0 \\ 2 & 1 & 0 & 3 \end{bmatrix}$				

b. Draw and explain various modes of operation in block ciphering technique.

12 2 2

Page 3 of 4

18MF2-18CSE011J

30. a.	Explain in detail about MD5 hash algorithm with required diagrams.	12	2	3	4
	(OR)				
b.	Describe detail about Schnorr digital signature algorithm.	12	2	3	2
31. a.	Elaborate the intrusion prevention system.	12	2	4	4
	(OR)				
b.	Discuss the cloud security with neat sketch.	12	2	4	4
32. a.	With neat diagram, explain the operation of SSL.	12	2	5	2
	(OR)				
b.	What is PVN? Explain the different types of VPN	12	2	5	2

* * * *