MATH 211

Online Asynchronous Survey in Calculus and Analytical Geometry

Dr. Ahmed Kaffel

Department of Mathematical Sciences University of Wisconsin Milwaukee

Spring 2023

Exponential Growth and Decay

Often quantities grow or decay proportional to their size:

- growth of a population (animals, bacteria,...)
- decay of radioactive material
- growth of savings on your bank account (interest rates)

Assume that

- ▶ y(t) be a quantity depending on time t
- rate of change of y(t) is proportional to y(t)

Then

$$y' = ky$$
 or equivalently $\frac{d}{dt}y = ky$

where k is a constant. This equation is called:

- ▶ law of natural growth if k > 0
- ▶ law of natural decay if k < 0</p>

Exponential Growth and Decay

Assume that y(t) be a function, and k a constant such that

$$y' = ky$$

We have seen functions with this behavior:

$$y(t) = Ce^{kt}$$
 $y'(t) = k(Ce^{kt}) = ky(t)$

Note that

$$y(0) = Ce^0 = C$$

The only solutions of the differential equation

$$y' = ky$$

are the exponential functions

$$y(t) = Ce^{kt}$$

where C is any real number.

Exponential Population Growth

Let *y* be the size of a population.

Instead of saying 'the growth rate is proportional to the size'

$$y' = ky$$

we can equivalently say that the relative growth rate

$$\frac{y'}{y} = k$$
 or equivalently $\frac{1}{y} \frac{dy}{dt} = k$

is constant.

Then the solution is of the form

$$y = Ce^{kt}$$

Exponential Population Growth

The world population was

- ▶ 2560 million in 1950, and
- 3040 million in 1960.

Assume a constant growth rate. Find a formula P(t) with

- ► P(t) in millions of people and
- ► *t* in years since 1950.

We have

$$P(t) = P(0)e^{kt}$$

$$P(0) = 2560$$

$$P(10) = 2560e^{10k} = 3040$$

$$e^{10k} = \frac{3040}{2560} \implies k = \frac{1}{10} \ln \frac{3040}{2560} \approx 0.017$$

The world population growths with a rate of 1.7% per year.

Exponential Radioactive Decay

Let m(t) be the mass of a radioactive substance after time t.

Then the relative decay rate rate

$$-\frac{m'}{m} = k$$
 or equivalently $-\frac{1}{m}\frac{dm}{dt} = k$

is constant.

Then the solution is of the form

$$m = Ce^{-kt}$$

Physicists typically express the decay in terms of half-life.

The **half-life** is the time until only half of the quantity is left.

Exponential Radioactive Decay

The half-life of radium-226 is 1590 years.

▶ We consider a sample of 100mg.

Find a formula for the mass that remains after t years.

We have:

$$m(t) = m(0) \cdot e^{-kt}$$

$$m(0) = 100$$

$$m(1590) = \frac{1}{2} \cdot 100 = 50 = 100 \cdot e^{-k \cdot 1590}$$

$$e^{-k \cdot 1590} = \frac{1}{2} \implies -k \cdot 1590 = \ln \frac{1}{2} = \ln 1 - \ln 2 = -\ln 2$$

$$k = \frac{\ln 2}{1590}$$

Hence $m(t) = 100e^{-\frac{\ln 2}{1590}t} = 100(\frac{1}{2})^{\frac{t}{1590}}$ is the mass after t years.

Newtons Law of Cooling/Warming

Newtons Law of Cooling

The rate of cooling of an object is proportional to the temperature difference of the object and surrounding temperature.

Let

- ightharpoonup T(t) be the temperature after time t, and
- $ightharpoonup T_s$ the temperature of the surroundings.

Then the law can be written as differential equation:

$$T'(t) = k(T(t) - T_s)$$

where *k* is constant.

This is not yet the form that we need. Let

$$y(t) = T(t) - T_s$$
 then $y'(t) = T'(t)$ thus $y'(t) = ky(t)$

Thus the solution for y is an exponential function Ce^{kt} .

Newtons Law of Cooling/Warming

$$T'(t) = k(T(t) - T_s)$$

A bottle of water is placed in the refrigerator:

- ► bottle has temperature 60°F,
- ► refrigerator has temperature 20°F

After 2 minutes the bottle has cooled down to 30°F.

► Find a formula for the temperature.

$$T'(t) = k(T(t) - T_s) = k(T(t) - 20)$$

We let y(t) = T(t) - 20, then

$$y(0) = T(0) - 20 = 60 - 20 = 40$$

 $y(t) = y(0)e^{kt} = 40e^{kt}$

$$y(2) = 40e^{k2} = T(2) - 20 = 10 \implies k = \frac{\ln \frac{10}{40}}{2} = \ln \frac{1}{2}$$

Thus $T(t) = y(t) + 20 = 40e^{t \cdot \ln \frac{1}{2}} + 20$

Continuously Compounded Interest

Assume 1000\$ are invested with 6% interest compounded annually. Then

- ▶ after 1 year we have 1000\$ · 1.06 = 1060\$
- ▶ after 2 year we have 1000\$ · 1.06² = 1123.6\$
- ▶ after t year we have 1000\$ · 1.06^t

If A_0 is invested with interest rate r, compounded annually, then after t years the amount is

$$A_0 \cdot (1+r)^t$$

Usually, interest is compounded more frequently.

If the interest is compounded n times per year, then after t years the value is

$$A_0 \cdot \left(1 + \frac{r}{n}\right)^{nt}$$

Continuously Compounded Interest

If the interest is compounded *n* times per year, then after *t* years the value is $A_0 \cdot \left(1 + \frac{r}{n}\right)^{nt}$

For instance, 1000\$ with 6% interest after 3 years:

- ► $1000\$ \cdot (1 + 0.06)^3 = 1191.02\$$ annual compounding
- ▶ $1000\$ \cdot (1 + 0.03)^6 = 1194.05\$$ semiannual compounding
- ▶ $1000\$ \cdot (1 + 0.015)^{12} = 1195.62\$$ quarterly compounding
- ► $1000\$ \cdot (1 + 0.005)^{36} = 1196.68\$$ monthly compounding
- ▶ $1000\$ \cdot (1 + 0.06/356)^{356 \cdot 3} = 1197.20\$$ daily compounding

If we let $n \to \infty$, we get continuous compounding:

$$A(t) = \lim_{n \to \infty} A_0 \cdot \left(1 + \frac{r}{n}\right)^{nt} = A_0 \cdot \left(\lim_{n \to \infty} \left(1 + \frac{r}{n}\right)^{\frac{n}{r}}\right)^{rt} = A_0 \cdot e^{rt}$$

► $1000\$ \cdot e^{0.06 \cdot 3} = 1197.22\$$ continuous compounding