Złożoność obliczeniowa algorytmów Redukcje i zupełność

Kordian A. Smoliński

Wydział Fizyki i Informatyki Stosowanej

2024/2025

Redukcje i zupełność

Treść wykładu

Redukcje

- Zupełność
 - Języki NP-zupełne

Definicja

Język $L_1 \subset A_1^*$ jest redukowalny do języka $L_2 \subset A_2^*$, $L_1 \leq L_2$, jeżeli istnieje maszyna Turinga M obliczająca funkcję $f: A_1^* \to A_2^*$ o złożoności pamięciowej $S(M, w) \in O(\log |w|)$ taka, że

$$\forall w \in L_1: f(w) \in L_2.$$

Definicja

Język $L_1 \subset A_1^*$ jest redukowalny do języka $L_2 \subset A_2^*$, $L_1 \leq L_2$, jeżeli istnieje maszyna Turinga M obliczająca funkcję $f: A_1^* \to A_2^*$ o złożoności pamięciowej $S(M, w) \in O(\log |w|)$ taka, że

$$\forall w \in L_1: f(w) \in L_2.$$

Definicja

Funkcję f nazywamy redukcją L_1 do L_2 .

Definicja

Język $L_1 \subset A_1^*$ jest redukowalny do języka $L_2 \subset A_2^*$, $L_1 \leq L_2$, jeżeli istnieje maszyna Turinga M obliczająca funkcję $f: A_1^* \to A_2^*$ o złożoności pamięciowej $S(M, w) \in O(\log |w|)$ taka, że

 $\forall w \in L_1: f(w) \in L_2.$

Definicja

Funkcję f nazywamy redukcją L_1 do L_2 .

Interpretacja

Rozstrzyganie L_1 jest co najwyżej tak samo trudne jak rozstrzyganie L_2 .

Fakt

Maszyna M oblicza redukcję f w czasie wielomianowym, tzn.

$$\exists k \in \mathbb{N} \ \forall w \in A_1^* \colon T(M, w) \in O(|w|^k).$$

Fakt

Maszyna M oblicza redukcję f w czasie wielomianowym, tzn.

 $\exists k \in \mathbb{N} \ \forall w \in A_1^* \colon T(M, w) \in O(|w|^k).$

Dowód.

Dla słowa w M ma $O(|w|c^{\log |w|})$ możliwych konfiguracji (dla pewnego c>1). Maszyna jest deterministyczna, i zatrzymuje się, więc podczas obliczenia żadna konfiguracja się nie powtarza. Zatem M może wykonać co najwyżej $O(|w|^k)$ kroków (dla pewnego $k\in\mathbb{N}$).

Twierdzenie

Jeżeli f_1 jest redukcją L_1 do L_2 , a f_2 redukcją L_2 do L_3 , to f_2 o f_1 jest redukcją L_1 do L_3 .

Twierdzenie

Jeżeli f_1 jest redukcją L_1 do L_2 , a f_2 redukcją L_2 do L_3 , to f_2 o f_1 jest redukcją L_1 do L_3 .

Dowód.

Nietrywialne jest udowodnienie, że $f_2 \circ f_1$ można obliczyć w pamięci logarytmicznej. Szczegóły w:

Twierdzenie

Jeżeli f_1 jest redukcją L_1 do L_2 , a f_2 redukcją L_2 do L_3 , to f_2 o f_1 jest redukcją L_1 do L_3 .

Dowód.

Nietrywialne jest udowodnienie, że f_2 o f_1 można obliczyć w pamięci logarytmicznej. Szczegóły w:

C. H. Papadimitriou,

Złożoność obliczeniowa,

Wydawnictwa Naukowo-Techniczne, Warszawa 2002.

Definicja

Niech C będzie klasą złożnoności. Język $L \in C$ jest C-zupełny, jeżeli $\forall L' \in C : L' \preceq L$.

Definicja

Niech \mathcal{C} będzie klasą złożnoności. Język $L \in \mathcal{C}$ jest \mathcal{C} -zupełny, jeżeli $\forall L' \in \mathcal{C}$: $L' \preccurlyeq L$.

Interpretacja

Język C-zupełny jest najtrudniejszym do rozstrzygnięcia językiem w klasie złożoności C.

Definicja

Niech C będzie klasą złożnoności. Język $L \in C$ jest C-zupełny, jeżeli $\forall L' \in C : L' \preceq L$.

Interpretacja

Język C-zupełny jest najtrudniejszym do rozstrzygnięcia językiem w klasie złożoności C.

Definicja

Klasa złożoności C jest zamknięta na redukcje, jeżeli $\forall L' \leq L \in C$: $L' \in C$.

Fakt

Klasy P, NP, L, NL, PSPACE, EXP są zamknięte na redukcje.

Fakt

Klasy P, NP, L, NL, PSPACE, EXP są zamknięte na redukcje.

Twierdzenie

Jeżeli klasy C i C' są zamknięte na redukcje i istnieje język L zupełny dla obu klas, to C = C'.

Fakt

Klasy P, NP, L, NL, PSPACE, EXP są zamknięte na redukcje.

Twierdzenie

Jeżeli klasy C i C' są zamknięte na redukcje i istnieje język L zupełny dla obu klas, to C = C'.

Dowód.

L jest zupełny w C więc $\forall L' \in C$: $L' \preccurlyeq L \in C'$. C' jest zamknięta na redukcje, więc $\forall L' \in C$: $L' \in C'$, czyli $C \subseteq C'$.

Fakt

Klasy P, NP, L, NL, PSPACE, EXP są zamknięte na redukcje.

Twierdzenie

Jeżeli klasy C i C' są zamknięte na redukcje i istnieje język L zupełny dla obu klas, to C = C'.

Dowód.

L jest zupełny w \mathcal{C} więc $\forall L' \in \mathcal{C} \colon L' \preccurlyeq L \in \mathcal{C}'$. \mathcal{C}' jest zamknięta na redukcje, więc $\forall L' \in \mathcal{C} \colon L' \in \mathcal{C}'$, czyli $\mathcal{C} \subseteq \mathcal{C}'$. Podobnie dowodzimy, że $\mathcal{C}' \subseteq \mathcal{C}$, więc $\mathcal{C} = \mathcal{C}'$.

Języki **NP**-zupełne

Twierdzenie

$$\{0,1\}^* \supseteq L \in \mathbf{NP} \iff \exists p(x) \land \exists L' \in \mathbf{P} \ \forall n \in \mathbb{N} \land \forall w \in \{0,1\}^n :$$

$$(w \in L \iff \exists v \in \{0,1\}^{p(n)} : w || v \in L').$$

Języki NP-zupełne

Twierdzenie

$$\{0,1\}^* \supseteq L \in \mathbb{NP} \iff$$

$$\exists p(x) \land \exists L' \in \mathbb{P} \ \forall n \in \mathbb{N} \land \forall w \in \{0,1\}^n :$$

$$\left(w \in L \iff \exists v \in \{0,1\}^{p(n)} : w \| v \in L'\right).$$

Interpretacja

Klasa **NP** składa się z języków L, dla których istnieje język L' z klasy **P** dla każdego słowa $w \in L$ o długości n istnieje dowód $w || v \in L'$ o długości będącej wielomianem w n.

Języki NP-zupełne

Przykład

Język NONPRIME to rozwinięcia binarne liczb złożonych, tzn. $n \in \mathbb{N} \setminus \{0, 1\} \land n \notin \mathbb{P}$.

Języki NP-zupełne

Przykład

Język NONPRIME to rozwinięcia binarne liczb złożonych, tzn. $n \in \mathbb{N} \setminus \{0, 1\} \land n \notin \mathbb{P}$. NONPRIME $\in \mathbf{NP}$.

Języki NP-zupełne

Przykład

Język NONPRIME to rozwinięcia binarne liczb złożonych, tzn. $n \in \mathbb{N} \setminus \{0, 1\} \land n \notin \mathbb{P}$. NONPRIME $\in \mathbb{NP}$. Jeżeli znamy 1 < k < n takie, że k|n, to n jest złożona.

Języki NP-zupełne

Przykład

Język NONPRIME to rozwinięcia binarne liczb złożonych, tzn. $n \in \mathbb{N} \setminus \{0,1\} \land n \not\in \mathbb{P}$. NONPRIME $\in \mathbf{NP}$. Jeżeli znamy 1 < k < n takie, że k | n, to n jest złożona. $\lfloor \log_2 k \rfloor + 1 \leqslant \lfloor \log_2 n \rfloor + 1$, więc rozwinięcie binarne k nie jest dłuższe od rozwinięcia binarnego n, czyli możemy przyjąć p(x) = x, czyli konkatenacja rozwinięć binarnych n i k jest wielomianowej długości w długości rozwinięcia n. Język tych konkatenacji należy do \mathbf{P} , gdyż można go rozstrzygnąć w czasie wielomianowym w długości rozwinięcia n przeprowadzając algorytm dzielenia, który działa w czasie kwadratowym w długości rozwinięcia n.

Języki NP-zupełne

Przykład

Język NONPRIME to rozwinięcia binarne liczb złożonych, tzn. $n \in \mathbb{N} \setminus \{0,1\} \land n \not\in \mathbb{P}$. NONPRIME $\in \mathbf{NP}$. Jeżeli znamy 1 < k < n takie, że $k \mid n$, to n jest złożona. $\lfloor \log_2 k \rfloor + 1 \leqslant \lfloor \log_2 n \rfloor + 1$, więc rozwinięcie binarne k nie jest dłuższe od rozwinięcia binarnego n, czyli możemy przyjąć p(x) = x, czyli konkatenacja rozwinięć binarnych n i k jest wielomianowej długości w długości rozwinięcia n. Język tych konkatenacji należy do \mathbf{P} , gdyż można go rozstrzygnąć w czasie wielomianowym w długości rozwinięcia n przeprowadzając algorytm dzielenia, który działa w czasie kwadratowym w długości rozwinięcia n.

Uwaga

NONPRIME jest w **NP**, ale nie jest **NP**-zupełny.

Języki NP-zupełne

Problem (SAT)

Czy dla danej formuły rachunku zdań istnieje takie wartościowanie zmiennych zdaniowych, żeby przyjmowała dla niego wartość **prawda**?

Języki **NP**-zupełne

Problem (SAT)

Czy dla danej formuły rachunku zdań istnieje takie wartościowanie zmiennych zdaniowych, żeby przyjmowała dla niego wartość **prawda**?

Fakt (Cook–Lewin)

Problem SAT jest **NP**-zupełny.

Języki NP-zupełne

Problem (SAT)

Czy dla danej formuły rachunku zdań istnieje takie wartościowanie zmiennych zdaniowych, żeby przyjmowała dla niego wartość **prawda**?

Fakt (Cook-Lewin)

Problem SAT jest **NP**-zupełny.

Dowód.

Języki NP-zupełne

Problem (SAT)

Czy dla danej formuły rachunku zdań istnieje takie wartościowanie zmiennych zdaniowych, żeby przyjmowała dla niego wartość **prawda**?

Fakt (Cook–Lewin)

Problem SAT jest NP-zupełny.

Dowód.

C. H. Papadimitriou,

Złożoność obliczeniowa,

Wydawnictwa Naukowo-Techniczne, Warszawa 2002.

