Artificial Intelligence:

Summary of the Module Summary of Exam

- Clustering & Association Rules
 - Distance metrics
 - 2 key clustering algorithms in detail
- Classification
 - 2 key classification algorithms in detail
 - Sensitivity Analysis TPs vs FPs
- Neural Networks
 - Forward propagation in Perceptron and Multilayer
 NNs
 - General form of Backpropagation

- Clustering & Association Rules
 - Distance metrics
 - 2 key clustering algorithms in detail

x 1	5.5	2.9	4.8	6.7	0.6
x2	0.2	1.0	4.8	3.8	9.2

Clustering & Association Rules

Market Basket Example

Classification

- 2 key classification algorithms in detail
- Sensitivity Analysis TPs vs FPs
- Resampling & Overfitting

	Class Pos. (C+)	Class Neg. (C-)
Predict	True	False
Pos. (P+)	Positive	Positive
Predict	False	True
Neg. (P-)	Negative	Negative

Think about running a bath...

- $-Y_d$: desired temperature
- Y: current temperature
- w1: opening of hot water
- w2: opening of cold water

Adjust strategy:

- If $Y_d < Y$, decrease w1 and increase w2
- If $Y_d > Y$, increase w1 and decrease w2

Neural Networks

- Forward propagation in Perceptron and Multilayer
 NNs
- General form of Backpropagation

Think about running a bath...

- $-Y_d$: desired temperature
- Y: current temperature
- w1: opening of hot water
- w2: opening of cold water

$\begin{array}{c|c} x_1 & & -\theta \\ \hline \Sigma & f & \\ x_2 & w_2 & \\ \end{array}$

Adjust strategy:

- If $Y_d < Y$, decrease w1 and increase w2
- If $Y_d > Y$, increase w1 and decrease w2

Neural Networks

- Forward propagation in Perceptron and Multilayer
 NNs
- General form of Backpropagation
- Deep Learning general concept

1	2	3	4	5
0	0	-1.5	-0.5	2
0	1	-0.5	0.5	1
1	0	-0.5	0.5	1
1	1	0.5	1.5	0

1	2	3	4	5
0	0	-1.5	-0.5	2
0	1	-0.5	0.5	1
1	0	-0.5	0.5	1
1	1	0.5	1.5	0

1	2	3	4	5
0	0	-1.5	-0.5	2
0	1	-0.5	0.5	1
1	0	-0.5	0.5	1
1	1	0.5	1.5	0

	1	2	3	4	5
	0	0	-1.5	-0.5	2
—	0	1	-0.5	0.5	1
	1	0	-0.5	0.5	1
	1	1	0.5	1.5	0

	1	2	3	4	5
	0	0	-1.5	-0.5	2
—	0	1	-0.5	0.5	1
	1	0	-0.5	0.5	1
	1	1	0.5	1.5	0

- Expert Systems
 - Knowledge Representation & Definition of Expert System
 - Rule based ES & Inference (forward / backward chaining & conflict resolution)
- Bayesian Networks
 - Definition and how to retrieve the joint probability
 - D-separation & Markov Blanket
- Time Series / Sequence Models
 - Markov chains and calculating probabilities of sequences
 - Hidden Markov Models and the key algorithms

- Expert Systems
 - Knowledge Representation & Definition of Expert System
 - Rule based ES & Inference (forward / backward chaining & conflict resolution)

- Expert Systems
 - Knowledge Representation & Definition of Expert System
 - Rule based ES & Inference (forward / backward chaining & conflict resolution)

- Bayesian Networks
 - Definition and how to retrieve the joint probability
 - D-separation & Markov Blanket
 - e.g. Probability of John and Mary Calling, Alarm sounding, no Burglary and no Earthquake:

 $P(J \& M \& A \& \neg B \& \neg E)$

 $= P(J|A)P(M|A)P(A|\neg B, \neg E)P(\neg B)P(\neg E)$

 $= 0.9 \times 0.7 \times 0.001 \times 0.999 \times 0.998$

= 0.00062

D-Separation

D-Separation - Example

- Moves and Battery are independent given it is known about Ignition
- Moves and Radio are independent if it is known that Battery works
- Petrol and Radio are independent given no evidence. But are dependent given evidence of Starts

D-Separation - Example

- Moves and Battery are independent given it is known about Ignition
- Moves and Radio are independent if it is known that Battery works
- Petrol and Radio are independent given no evidence. But are dependent given evidence of Starts

D-Separation

D-Separation - Example

- Moves and Battery are independent given it is known about Ignition
- Moves and Radio are independent if it is known that Battery works
- Petrol and Radio are independent given no evidence. But are dependent given evidence of Starts

D-Separation

D-Separation - Example

- Moves and Battery are independent given it is known about Ignition
- Moves and Radio are independent if it is known that Battery works
- Petrol and Radio are independent given no evidence. But are dependent given evidence of Starts

D-Separation

- Time Series / Sequence Models
 - Markov chains and calculating probabilities of sequences
 - Hidden Markov Models and the key algorithms

- Initial State Distribution $P(H^1 = i)$: $\pi = \begin{bmatrix} 1 & 0 \end{bmatrix}$
- Transition Probability Distribution $P(H^t = j \mid H^{t-1} = i)$:

$$A = \begin{bmatrix} 0.8 & 0.2 \\ 0.4 & 0.6 \end{bmatrix} \quad \Xi$$

– We also need an Emission (or Sensor) Distribution:

$$B = \begin{bmatrix} 0.5 & 0.5 \\ 0.1 & 0.9 \end{bmatrix} \quad \mathbf{x}$$

- Time Series / Sequence Models
 - Markov chains and calculating probabilities of sequences
 - Hidden Markov Models and the key algorithms

- Deep Learning (Alina Miron)
 - Image Analysis and CNNs
 - Natural Language Processing and LSTMs
- Philosophy & Social Aspects:
 - What has been easy and what has been hard (examples)
 - Language / consciousness Searle's Chinese room
 - Impact on Society / Automation / Trolley problem / Black Box vs Explanation

Convolutional Neural Networks

- Convolution
- Pooling / MaxPooling
- Dropout

Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units whose weights are constrained to be identical.

Natural Language Processing

- One Hot Encoding
- Term frequency / Inverse Document
 Frequency
- Word Embedding (similar words similar

vectors)

- Relu function
- AlexNet

Natural Language Processing

- One Hot Encoding
- Term frequency / Inverse Document
 Frequency
- Recurrent Neural Networks & LSTMs

- Philosophy & Social Aspects:
 - What has been easy and what has been hard (examples)
 - Language / consciousness Searle's Chinese room
 - Impact on Society / Automation / Trolley problem / Black Box vs Explanation

The Exam

- In-person exam on Wiseflow (NOT open book)
- 3 hours
- 100 marks
- Short answer questions

Finally – Revise & Good Luck!

anorak.co.uk