Topology Analysis * (v1.5)

Xingyu Zhou [†] Beihang University

November 20, 2018

^{*}This package is implemented with reference to a program called Topo, which is developed by Prof. Shuxian Du from Zhengzhou University in China and has been widely used by people in BESIII collaboration. Several years ago, when I was a PhD student working on BESIII experiment, I learned the idea of topology analysis and a lot of programming techniques from the Topo program. So, I really appreciate Prof. Du's original work very much. To meet my own needs and to practice developing analysis tools with C++, ROOT and LaTex, I wrote the package from scratch. At that time, the package functioned well but was relatively simple. At the end of last year (2017), my co-supervisor, Prof. Chengping Shen reminded me that it could be a useful tool for Belle II experiment as well. So, I revised and extended it, making it more well-rounded and suitable for Belle II experiment. Here, I would like to thank Prof. Du for his original work, Prof. Shen for his suggestion and encouragement, and Wencheng Yan, Sen Jia, Yubo Li, Suxian Li, Longke Li and Guanda Gong for their efforts in helping me test the program. †Email: zhouxy@buaa.edu.cn

List of Tables

1	Event trees and their respective initial-final states	٠
2	Event initial-final states	20

Table 1: Event trees and their respective initial-final states. $\,$

index	event tree (event initial-final states)	iEvtTr	iEvtIFSts	nEvts	nCmltEvts
	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \pi^{0}\pi^{0}\rho^{0}\pi^{+}\bar{D}^{*-}, \bar{B}^{0} \to \pi^{+}D^{0}D_{s}^{*-}, \rho^{0} \to \pi^{+}\pi^{-}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0},$				
1	$\begin{array}{c} D^{0} \to \rho^{+} K^{*-}, D_{s}^{*-} \to D_{s}^{-} \gamma \\ (e^{+}e^{-} \to \pi^{+} \pi^{+} \pi^{+} \pi^{-} \pi^{-} \rho^{+} K^{*-} \bar{D}^{0} D_{s}^{-} \gamma \gamma \gamma \gamma \gamma) \end{array}$	0	0	1	1
	$e^+e^- \to \Upsilon(4S), \Upsilon(4S) \to B^0 \bar{B}^0, B^0 \to \pi^- K^{*+} J/\psi, \bar{B}^0 \to \pi^0 \pi^- D^{*+}, K^{*+} \to \pi^+ K^0, J/\psi \to \pi^+ K^0 K^{*-},$				
2	$\pi^0 \to e^+ e^-, D^{*+} \to \pi^+ D^0 \ (e^+ e^- \to e^+ e^- \pi^+ \pi^+ \pi^+ \pi^- \pi^- K^0 K^0 K^{*-} D^0)$	1	1	1	2
	$e^+e^- \to \Upsilon(4S), \Upsilon(4S) \to B^0 \dot{\bar{B}}^0, B^0 \to K^{*+} \bar{D}^{*-} D^{*0}, \bar{B}^0 \to \pi^0 \rho^0 \rho^- \eta D^+, K^{*+} \to \pi^+ K^0, \bar{D}^{*-} \to \pi^0 D^-,$	9	0	-	
3	$D^{*0} \to \pi^{0} D^{0}, \rho^{0} \to \pi^{+} \pi^{-}, \rho^{-} \to \pi^{0} \pi^{-}, \eta \to \gamma \gamma, D^{+} \to e^{+} \nu_{e} \bar{K}^{0}$ $(e^{+} e^{-} \to e^{+} \nu_{e} \pi^{0} \pi^{0} \pi^{0} \pi^{+} \pi^{+} \pi^{-} \pi^{-} K^{0} \bar{K}^{0} D^{-} D^{0} \gamma \gamma \gamma \gamma)$	2	2	1	3
4	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \bar{D}^{*-}a_{1}^{+}, \bar{B}^{0} \to \pi^{+}\pi^{+}\pi^{-}\pi^{-}D^{*+}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0}, a_{1}^{+} \to \pi^{0}\rho^{+}, D^{*+} \to \pi^{+}D^{0}$	3	3	1	4
4	$(e^{+}e^{-} \to \pi^{0}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\rho^{+}D^{0}\bar{D}^{0})$ $e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}B^{0}, B^{0} \to D^{-}D'_{s1}^{+}, B^{0} \to \pi^{0}\rho^{+}\omega\bar{D}^{*-}, D^{-} \to \pi^{0}\pi^{-}, D'_{s1}^{+} \to \pi^{0}D_{s}^{*+},$	3	3	1	4
5	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}B^{0}, B^{0} \to D^{-}D'_{s1}^{+}, B^{0} \to \pi^{0}\rho^{+}\omega\bar{D}^{*-}, D^{-} \to \pi^{0}\pi^{-}, D'_{s1}^{+} \to \pi^{0}D_{s}^{*+},$ $\rho^{+} \to \pi^{0}\pi^{+}, \omega \to \pi^{0}\pi^{+}\pi^{-}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0}$	4	4	1	5
	$(e^{+}e^{-} o \pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\bar{D}^{0}D_{s}^{*+}\gamma\gamma)$		1	1	Ü
6	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\dot{B}^{0}, B^{0} \to e^{+}\nu_{e}\bar{D}^{*-}, \bar{B}^{0} \to \pi^{+}\pi^{-}D^{+}D_{s}^{-}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0}, D^{+} \to e^{+}\nu_{e}\pi^{+}K^{-}, D_{s}^{-} \to \pi^{0}\pi^{-}\omega$	5	5	1	6
	$(e^+e^- o e^+e^+ u_e u_e\pi^0\pi^+\pi^+\pi^-\pi^-\pi^-\omega K^-ar{D}^0)$			_	Ů
7	$e^{+}e^{-} \rightarrow \Upsilon(4S), \Upsilon(4S) \rightarrow B^{0}\bar{B}^{0}, B^{0} \rightarrow \pi^{0}\pi^{0}\pi^{+}\bar{D}^{*-}, \bar{B}^{0} \rightarrow \pi^{0}K^{*}K^{-}D^{+}, \bar{D}^{*-} \rightarrow \pi^{-}\bar{D}^{0}, K^{*} \rightarrow \pi^{-}K^{+}, D^{+} \rightarrow \pi^{0}\pi^{+}\eta'$	6	6	1	7
	$(e^+e^- o \pi^0\pi^+\pi^+\pi^-\pi^-K^+\dot{K}^-\eta'\bar{D}^0\gamma\gamma\gamma\gamma\gamma\gamma)$				
8	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}B^{0}, B^{0} \to \tau^{+}\nu_{\tau}\bar{D}^{*-}, B^{0} \to \pi^{0}\pi^{+}\eta\eta D^{-}, \tau^{+} \to e^{+}\nu_{e}\bar{\nu}_{\tau}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0}, $ $\eta \to \gamma\gamma, \eta \to \gamma\gamma, D^{-} \to \pi^{0}\pi^{-}K^{*}$	7	7	1	8
	$\frac{(e^{+}e^{-} \to e^{+}\nu_{e}\nu_{\tau}\bar{\nu}_{\tau}\pi^{0}\pi^{+}\pi^{-}\pi^{-}K^{*}\bar{D}^{0}\gamma\gamma\gamma\gamma\gamma\gamma)}{e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \pi^{0}\pi^{+}\pi^{+}\pi^{-}\bar{D}^{*-}, \bar{B}^{0} \to \mu^{-}\bar{\nu}_{\mu}D^{*+}, \bar{D}^{*-} \to \pi^{0}D^{-}, D^{*+} \to \pi^{+}D^{0}}$				
9	$(e^+e^- ightarrow\mu^-ar{ u}_\mu\pi^0\pi^+\pi^+\pi^+\pi^-D^-D^0\gamma\gamma)$	8	8	1	9
10	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to K^{0}D^{-}D^{*+}, \bar{B}^{0} \to D^{*+}D^{*-}_{s}, K^{0} \to K_{S}, D^{-} \to \pi^{-}\pi^{-}K^{+}, D^{*+} \to \pi^{0}D^{+}, D^{*+} \to \pi^{0}D^{+}, D^{*-}_{s} \to D^{-}_{s} \gamma$	9	9	1	10
10	$(e^+e^- o \pi^0\pi^0\pi^-\pi^-K_SK^+D^+D^+D_s^-\gamma)$	3	3	1	10
11	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \mu^{+}\nu_{\mu}\bar{D}^{*-}, \bar{B}^{0} \to \rho^{0}K^{0}K^{*-}\bar{D}^{+}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0}, \rho^{0} \to \pi^{+}\pi^{-}, K^{0} \to K_{L}, K^{*-} \to \pi^{0}K^{-}, D^{+} \to \mu^{+}\nu_{\mu}\bar{K}^{0}$	10	10	1	11
	$(e^+e^- o \mu^+\mu^+ u_\mu u_\mu\pi^0K_L\pi^+\pi^-\pi^-ar{K}^0K^-ar{D}^0)$			-	
12	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \rho^{-}K^{+}J/\psi, \bar{B}^{0} \to D^{+}D_{s}^{*-}, \rho^{-} \to \pi^{0}\pi^{-}, J/\psi \to e^{+}e^{-}, D^{+} \to \pi^{0}\pi^{+}K_{S}, D_{s}^{*-} \to D_{s}^{-}\gamma$	11	11	1	12
	$(e^+e^- \to e^+e^-\pi^0\pi^0\pi^+\pi^-K_SK^+D_s^-\gamma)$				

index	event tree (event initial-final states)	iEvtTr	iEvtIFSts	nEvts	nCmltEvts
13	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \pi^{+}\pi^{-}K^{0}D^{0}\bar{D}^{0}, \bar{B}^{0} \to \pi^{0}\pi^{+}\rho^{-}\rho^{-}D^{+}, K^{0} \to K_{L}, D^{0} \to K_{S}\eta',$ $\bar{D}^{0} \to \rho^{-}K^{*+}, \rho^{-} \to \pi^{0}\pi^{-}, \rho^{-} \to \pi^{0}\pi^{-}, D^{+} \to \mu^{+}\nu_{\mu}\bar{K}^{0}$ $(e^{+}e^{-} \to \mu^{+}\nu_{\mu}\pi^{0}\pi^{0}K_{L}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\rho^{-}K_{S}\bar{K}^{0}K^{*+}\eta'\gamma\gamma)$ $e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \pi^{+}\eta\bar{D}^{*-}, \bar{B}^{0} \to K^{0}K^{*-}D^{*+}, \eta \to \pi^{0}\pi^{0}\pi^{0}, \bar{D}^{*-} \to \pi^{0}D^{-},$	12	12	1	13
14	$K^0 o K_S, K^{*-} o \pi^0 K^-, D^{*+} o \pi^+ D^0 \ (e^+e^- o \pi^0 \pi^0 \pi^0 \pi^0 \pi^0 \pi^+ \pi^+ K_S K^- D^- D^0)$	13	13	1	14
15	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \rho^{+}D^{-}, \bar{B}^{0} \to \pi^{-}K^{+}K^{-}D^{*+}, \rho^{+} \to \pi^{0}\pi^{+}, D^{-} \to K_{S}a_{1}^{-},$ $D^{*+} \to \pi^{+}D^{0}$ $(e^{+}e^{-} \to \pi^{0}\pi^{+}\pi^{+}\pi^{-}K_{S}K^{+}K^{-}D^{0}a_{1}^{-})$ $e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \pi^{0}\pi^{0}\pi^{+}\eta\bar{D}^{*-}, \bar{B}^{0} \to e^{-}\bar{\nu}_{e}D^{*+}, \eta \to \pi^{0}\pi^{0}\pi^{0}, \bar{D}^{*-} \to \pi^{0}D^{-},$	14	14	1	15
16	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \pi^{0}\pi^{0}\pi^{+}\eta\bar{D}^{*-}, \bar{B}^{0} \to e^{-}\bar{\nu}_{e}D^{*+}, \eta \to \pi^{0}\pi^{0}\pi^{0}, \bar{D}^{*-} \to \pi^{0}D^{-},$ $D^{*+} \to \pi^{0}D^{+}$ $(e^{+}e^{-} \to e^{-}\bar{\nu}_{e}\pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{+}D^{+}D^{-}\gamma\gamma\gamma\gamma)$ $e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to e^{+}\nu_{e}\bar{D}^{*-}, \bar{B}^{0} \to \pi^{0}\pi^{+}K^{*-}D^{0}\bar{D}^{*0}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0}, K^{*-} \to \pi^{-}\bar{K}^{0},$	15	15	1	16
17	$D^0 o K_L \pi^+ \pi^-, \bar{D}^{*0} o \pi^0 \bar{D}^0 \ (e^+ e^- o e^+ u_e \pi^0 K_L \pi^+ \pi^+ \pi^- \pi^- \pi^- \bar{K}^0 \bar{D}^0 \bar{D}^0 \gamma \gamma)$	16	16	1	17
18	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to K^{*}D^{-}D^{*+}, \bar{B}^{0} \to \pi^{0}\eta\bar{K}^{0}K^{-}D_{s}^{+}, K^{*} \to \pi^{0}K^{0}, D^{-} \to \pi^{-}\pi^{-}K^{+},$ $D^{*+} \to \pi^{+}D^{0}, \eta \to \gamma\gamma, \bar{K}^{0} \to K_{L}, D_{s}^{+} \to \mu^{+}\nu_{\mu}\phi$ $(e^{+}e^{-} \to \mu^{+}\nu_{\mu}\pi^{0}K_{L}\pi^{+}\pi^{-}\pi^{-}K^{0}K^{+}K^{-}\phi D^{0}\gamma\gamma\gamma\gamma)$	17	17	1	18
19	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \bar{D}^{*-}D_{s}^{*+}, \bar{B}^{0} \to e^{-}\bar{\nu}_{e}D^{*+}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0}, D_{s}^{*+} \to D_{s}^{+}\gamma,$ $D^{*+} \to \pi^{+}D^{0}$ $(e^{+}e^{-} \to e^{-}\bar{\nu}_{e}\pi^{+}\pi^{-}D^{0}\bar{D}^{0}D_{s}^{+}\gamma)$	18	18	1	19
20	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}B^{0}, B^{0} \to \mu^{+}\nu_{\mu}D_{2}^{*-}, B^{0} \to \pi^{0}\pi^{+}\pi^{+}\pi^{-}\rho^{-}\bar{D}^{*0}, D_{2}^{*-} \to \pi^{-}\bar{D}^{*0}, \rho^{-} \to \pi^{0}\pi^{-},$ $\bar{D}^{*0} \to \pi^{0}\bar{D}^{0}$ $(e^{+}e^{-} \to \mu^{+}\nu_{\mu}\pi^{0}\pi^{0}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\bar{D}^{0}\bar{D}^{*0}\gamma\gamma)$ $e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to \bar{B}^{0}\bar{B}^{0}, \bar{B}^{0} \to \mu^{-}\bar{\nu}_{\mu}D^{*+}, \bar{B}^{0} \to \pi^{0}\bar{K}^{*}K^{+}K^{-}, D^{*+} \to \pi^{+}D^{0}, \bar{K}^{*} \to \pi^{0}\bar{K}^{0}$	19	19	1	20
21	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to \bar{B}^{0}\bar{B}^{0}, \bar{B}^{0} \to \mu^{-}\bar{\nu}_{\mu}D^{*+}, \bar{B}^{0} \to \pi^{0}\bar{K}^{*}K^{+}K^{-}, D^{*+} \to \pi^{+}D^{0}, \bar{K}^{*} \to \pi^{0}\bar{K}^{0}$ $(e^{+}e^{-} \to \mu^{-}\bar{\nu}_{\mu}\pi^{0}\pi^{+}\bar{K}^{0}K^{+}K^{-}D^{0}\gamma\gamma)$ $e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \pi^{+}\pi^{+}\omega K^{0}K^{*-}\bar{D}^{*-}, \bar{B}^{0} \to e^{-}\bar{\nu}_{e}D^{*+}, \omega \to \pi^{0}\pi^{+}\pi^{-}, K^{0} \to K_{S},$	20	20	1	21
22	$K^{*-} ightarrow \pi^0 K^-, ar{D}^{*-} ightarrow \pi^0 D^-, D^{*+} ightarrow \pi^0 D^+ \ (e^+ e^- ightarrow e^- ar{ u}_e \pi^0 \pi^0 \pi^0 \pi^0 \pi^+ \pi^+ \pi^+ \pi^- K_S K^- D^+ D^-)$	21	21	1	22
23	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \bar{D}^{*-}D_{s}^{*+}, \bar{B}^{0} \to \pi^{0}\pi^{0}\rho^{-}\eta\omega D^{*+}, \bar{D}^{*-} \to \pi^{0}D^{-}, D_{s}^{*+} \to D_{s}^{+}\gamma,$ $\rho^{-} \to \pi^{0}\pi^{-}, \eta \to \pi^{0}\pi^{0}\pi^{0}, \omega \to \pi^{0}\pi^{+}\pi^{-}, D^{*+} \to \pi^{+}D^{0}$ $(e^{+}e^{-} \to \pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{0}$	22	22	1	23
24	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}B^{0}, B^{0} \to K^{*}D^{+}\bar{D}^{*-}, B^{0} \to \pi^{+}\pi^{-}\rho^{-}\omega K^{*+}, K^{*} \to \pi^{-}K^{+}, D^{+} \to \pi^{0}K_{L}\pi^{+},$ $\bar{D}^{*-} \to \pi^{-}\bar{D}^{0}, \rho^{-} \to \pi^{0}\pi^{-}, \omega \to \pi^{0}\pi^{+}\pi^{-}, K^{*+} \to \pi^{0}K^{+}$ $(e^{+}e^{-} \to \pi^{0}\pi^{0}\pi^{0}\pi^{0}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{+}\bar{D}^{0})$	23	23	1	24

index	event tree (event initial-final states)	iEvtTr	iEvtIFSts	nEvts	nCmltEvts
25	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \pi^{0}\rho^{0}\pi^{-}\rho^{+}\rho^{+}\eta D^{-}, \bar{B}^{0} \to \pi^{+}\bar{K}^{*}\bar{D}^{*}D^{0}, \rho^{0} \to \pi^{+}\pi^{-}, \rho^{+} \to \pi^{0}\pi^{+}, \\ \rho^{+} \to \pi^{0}\pi^{+}, \eta \to \pi^{0}\pi^{+}\pi^{-}, D^{-} \to \pi^{-}\pi^{-}K^{+}, \bar{K}^{*} \to \pi^{+}K^{-}, \bar{D}^{*} \to \pi^{-}\bar{D}^{0}, D^{0} \to e^{+}\nu_{e}\pi^{0}K^{-} \\ (e^{+}e^{-} \to e^{+}\nu_{e}\pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{-}K^{-}\bar{D}^{0}\gamma\gamma) \\ e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to K^{0}\bar{D}^{0}D^{*0}, \bar{B}^{0} \to \pi^{0}\pi^{-}\omega D^{+}, K^{0} \to K_{L}, \bar{D}^{0} \to K^{+}a_{1}^{-}, \\ h^{0} \to K^{0}\bar{D}^{0}, \bar{D}^{0} \to K^{0}\bar{D}^{0}D^{*0}, \bar{B}^{0} \to K^{0}\bar{D}^{0}D^{*0}D^{*0}, \bar{B}^{0} \to K^{0}\bar{D}^{0}D^{*0}D$	24	24	1	25
26	$D^{*o} ightarrow D^{o}\gamma, \omega ightarrow \pi^{o}\pi^{+}\pi^{-}, D^{+} ightarrow \pi^{+}K^{o}K^{*} \ (e^{+}e^{-} ightarrow \pi^{0}K_{L}\pi^{+}\pi^{+}\pi^{-}\pi^{-}K^{0}ar{K}^{*}K^{+}D^{0}a_{1}^{-}\gamma\gamma\gamma)$	25	25	1	26
27	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}B^{0}, B^{0} \to e^{+}\nu_{e}\bar{D}^{*-}, B^{0} \to \mu^{+}\nu_{\mu}D^{-}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0}, D^{-} \to \pi^{0}\pi^{-}K^{*}$ $(e^{+}e^{-} \to e^{+}\nu_{e}\mu^{+}\nu_{\mu}\pi^{0}\pi^{-}\pi^{-}K^{*}\bar{D}^{0})$	26	26	1	27
28	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \mu^{+}\nu_{\mu}\bar{D}^{*-}, \bar{B}^{0} \to \mu^{-}\bar{\nu}_{\mu}D_{1}^{+}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0}, D_{1}^{+} \to \pi^{+}\pi^{-}D^{+}$ $(e^{+}e^{-} \to \mu^{+}\mu^{-}\nu_{\mu}\bar{\nu}_{\mu}\pi^{+}\pi^{-}\pi^{-}D^{+}\bar{D}^{0})$	27	27	1	28
29	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \tau^{+}\nu_{\tau}\bar{D}^{*-}, \bar{B}^{0} \to \rho^{-}D^{+}, \tau^{+} \to \bar{\nu}_{\tau}\pi^{0}\pi^{+}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0},$ $\rho^{-} \to \pi^{0}\pi^{-}, D^{+} \to e^{+}\nu_{e}\bar{K}^{0}$ $(e^{+}e^{-} \to e^{+}\nu_{e}\nu_{\tau}\bar{\nu}_{\tau}\pi^{0}\pi^{0}\pi^{+}\pi^{-}\pi^{-}\bar{K}^{0}\bar{D}^{0})$	28	28	1	29
30	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to \bar{B}^{0}\bar{B}^{0}, \bar{B}^{0} \to \pi^{+}\pi^{-}\rho^{-}D^{+}, \bar{B}^{0} \to \pi^{+}\rho^{-}\rho^{-}D^{+}, \rho^{-} \to \pi^{0}\pi^{-}, D^{+} \to \pi^{0}K_{L}\pi^{+},$ $\rho^{-} \to \pi^{0}\pi^{-}, \rho^{-} \to \pi^{0}\pi^{-}, D^{+} \to K_{L}a_{1}^{+}$ $(e^{+}e^{-} \to \pi^{0}\pi^{0}\pi^{0}\pi^{0}K_{L}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}a_{1}^{+})$	29	29	1	30
31	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \mu^{+}\nu_{\mu}D_{1}^{-}, \bar{B}^{0} \to \bar{K}_{1}^{0}\gamma, D_{1}^{-} \to \pi^{+}\pi^{-}D^{-}, \bar{K}_{1}^{0} \to \pi^{+}\pi^{-}\bar{K}^{0}$ $(e^{+}e^{-} \to \mu^{+}\nu_{\mu}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\bar{K}^{0}D^{-}\gamma)$	30	30	1	31
32	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \pi^{-}K^{+}D^{*+}\bar{D}^{*-}, \bar{B}^{0} \to \rho^{0}\rho^{-}\eta\omega D^{+}, D^{*+} \to \pi^{+}D^{0}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0},$ $\rho^{0} \to \pi^{+}\pi^{-}, \rho^{-} \to \pi^{0}\pi^{-}, \eta \to \pi^{0}\pi^{+}\pi^{-}, \omega \to \pi^{+}\pi^{-}, D^{+} \to e^{+}\nu_{e}\pi^{+}K^{-}$ $(e^{+}e^{-} \to e^{+}\nu_{e}\pi^{0}\pi^{0}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{-}D^{0}\bar{D}^{0})$	31	31	1	32
33	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to D^{-}D_{s}^{+}, \bar{B}^{0} \to \pi^{0}\pi^{0}\rho^{0}\pi^{+}\pi^{-}\pi^{-}D^{+}, D^{-} \to \pi^{0}\pi^{-}K_{S}, D_{s}^{+} \to \pi^{0}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-},$ $\rho^{0} \to \pi^{+}\pi^{-}, D^{+} \to \mu^{+}\nu_{\mu}\bar{K}^{0}$ $(e^{+}e^{-} \to \mu^{+}\nu_{\mu}\pi^{0}\pi^{0}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K_{S}\bar{K}^{0}\gamma\gamma\gamma\gamma)$ $e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}B^{0}, B^{0} \to \tau^{+}\nu_{\tau}D_{0}^{*-}, B^{0} \to \rho^{+}\eta\omega\bar{D}^{*-}, \tau^{+} \to \bar{\nu}_{\tau}\pi^{0}K^{+}, D_{0}^{*-} \to \pi^{-}\bar{D}^{0},$	32	32	1	33
34	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}B^{0}, B^{0} \to \tau^{+}\nu_{\tau}D_{0}^{*-}, B^{0} \to \rho^{+}\eta\omega\bar{D}^{*-}, \tau^{+} \to \bar{\nu}_{\tau}\pi^{0}K^{+}, D_{0}^{*-} \to \pi^{-}\bar{D}^{0},$ $\rho^{+} \to \pi^{0}\pi^{+}, \eta \to \pi^{0}\pi^{0}\pi^{0}, \omega \to \pi^{0}\pi^{+}\pi^{-}, \bar{D}^{*-} \to \pi^{0}D^{-}$ $(e^{+}e^{-} \to \nu_{\tau}\bar{\nu}_{\tau}\pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{+}\pi^{+}\pi^{-}\pi^{-}K^{+}D^{-}\bar{D}^{0})$ $e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \bar{D}^{*-}\bar{\Delta}^{0}\Delta^{+}, \bar{B}^{0} \to \bar{K}^{*}\chi_{c1}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0}, \bar{\Delta}^{0} \to \pi^{0}\bar{n},$	33	33	1	34
35	$\Delta^+ o \pi^0 p, ar{K}^* o \pi^+ K^-, \chi_{c1} o \eta K^+ K^- \ (e^+ e^- o \pi^0 \pi^0 \pi^+ \pi^- \eta K^+ K^- K^- ar{D}^0 ar{n} p)$	34	34	1	35
36	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \bar{D}^{0}\bar{p}\Delta^{+}, \bar{B}^{0} \to e^{-}\bar{\nu}_{e}D_{1}^{+}, \bar{D}^{0} \to \pi^{0}\pi^{-}K^{+}, \Delta^{+} \to \pi^{+}n,$ $D_{1}^{+} \to \pi^{+}\pi^{-}D^{+}$ $(e^{+}e^{-} \to e^{-}\bar{\nu}_{e}\pi^{0}\pi^{+}\pi^{+}\pi^{-}\pi^{-}K^{+}D^{+}n\bar{p})$	35	35	1	36
37	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \mu^{+}\nu_{\mu}D^{-}, \bar{B}^{0} \to \pi^{0}\pi^{-}D^{*+}, D^{-} \to K_{L}a_{1}^{-}, D^{*+} \to \pi^{+}D^{0}$ $(e^{+}e^{-} \to \mu^{+}\nu_{\mu}K_{L}\pi^{+}\pi^{-}D^{0}a_{1}^{-}\gamma\gamma)$	36	36	1	37

index	event tree (event initial-final states)	iEvtTr	iEvtIFSts	nEvts	nCmltEvts
	$e^+e^- \rightarrow \Upsilon(4S), \Upsilon(4S) \rightarrow \bar{B}^0\bar{B}^0, \bar{B}^0 \rightarrow \eta D^+ p\bar{\Delta}^{++}, \bar{B}^0 \rightarrow \pi^0\pi^+\pi^-\rho^-D^+, \eta \rightarrow \gamma\gamma, D^+ \rightarrow \pi^+K_S,$				
38	$e^+e^- ightarrow 1 (4S), 1 (4S) ightarrow B B , B^- ightarrow \eta D^+ p \Delta^{++}, B^- ightarrow \pi^+ \pi^- p D^+, \eta ightarrow \gamma \gamma, D^+ ightarrow \pi^+ K_S, \ ar{\Delta}^{++} ightarrow \pi^- ar{p}, ho^- ightarrow \pi^0 \pi^-, D^+ ightarrow \pi^0 K_L \pi^+$	37	37	1	38
30	$egin{array}{cccccccccccccccccccccccccccccccccccc$	31	31	1	30
	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to \bar{B}^{0}\bar{B}^{0}, \bar{B}^{0} \to \pi^{-}D^{+}, \bar{B}^{0} \to \pi^{0}\pi^{0}K^{*}K^{*-}D^{+}, D^{+} \to e^{+}\nu_{e}\bar{K}^{*}, K^{*} \to \pi^{0}K^{0},$				
39	$e^+e^- \rightarrow \Gamma(4S), \Gamma(4S) \rightarrow B^- B^-, B^- \rightarrow \pi^- K^0, D^+ \rightarrow \pi^+ K^- K^- D^-, D^+ \rightarrow e^- \nu_e K^-, K^- \rightarrow \pi^- K^0, D^+ \rightarrow \mu^+ \nu_\mu \pi^0$	38	38	1	39
39	$(e^+e^- ightarrow e^+ u_e\mu^+ u_\mu\pi^0\pi^0\pi^-\pi^-K^0ar K^0ar K^*\gamma\gamma\gamma\gamma)$	30	30	1	39
	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \rho^{0}\pi^{+}\bar{D}^{*-}, \bar{B}^{0} \to \rho^{-}D^{*+}\gamma, \rho^{0} \to \pi^{+}\pi^{-}, \bar{D}^{*-} \to \pi^{0}D^{-},$				
40	$ ho^- ightarrow \pi^0 \pi^-, D^{*+} ightarrow \pi^+ D^0$	39	39	1	40
10	$(e^{+}e^{-} \rightarrow \pi^{0}\pi^{0}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}D^{-}D^{0}\gamma)$	55	33	1	40
	$e^{+}e^{-} \rightarrow \Upsilon(4S), \Upsilon(4S) \rightarrow \bar{B}^{0}\bar{B}^{0}, \bar{B}^{0} \rightarrow \mu^{-}\bar{\nu}_{\mu}D^{*+}, \bar{B}^{0} \rightarrow \mu^{-}\bar{\nu}_{\mu}\pi^{0}\pi^{0}D^{*+}, D^{*+} \rightarrow \pi^{0}D^{+}, D^{*+} \rightarrow \pi^{+}D^{0}$				
41	$(e^+e^- o \mu^-\mu^- ar{ u}_\mu ar{ u}_\mu \mu^0 \pi^+ D^+ D^0 \gamma \gamma \gamma \gamma)$	40	40	1	41
	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \mu^{+}\nu_{\mu}\bar{D}^{*-}, \bar{B}^{0} \to \pi^{-}\omega D^{*+}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0}, \omega \to \pi^{0}\pi^{+}\pi^{-},$				
42	$D^{*+} ightarrow \pi^0 D^+$	41	41	1	42
1-	$(e^+e^- \to \mu^+ \nu_\mu \pi^0 \pi^0 \pi^+ \pi^- \pi^- \pi^- D^+ \bar{D}^0)$		11	_	12
	$e^{+}e^{-} \rightarrow \Upsilon(4S), \Upsilon(4S) \rightarrow \bar{B}^{0}\bar{B}^{0}, \bar{B}^{0} \rightarrow \pi^{+}K^{-}\eta_{c}(2S), \bar{B}^{0} \rightarrow \pi^{0}\pi^{+}\pi^{-}D^{+}\Sigma^{-}\Sigma^{0}, \eta_{c}(2S) \rightarrow \pi^{0}\rho^{0}\pi^{+}\pi^{-}\pi^{-}\rho^{+}\eta, D^{+} \rightarrow \mu^{+}\nu_{\mu}\bar{K}^{*},$				
43	$\Sigma^- o \pi^- n, \bar{\Sigma}^0 o \bar{\Lambda} \gamma$	42	42	1	43
	$(e^{+}e^{-} \to \mu^{+}\nu_{\mu}\pi^{0}\rho^{0}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\rho^{+}\eta\bar{K}^{*}K^{-}n\bar{\Lambda}\gamma\gamma\gamma)$				
	$e^+e^- o \Upsilon(4S), \Upsilon(4S) o B^0 \bar{B}^0, B^0 o nD^- D^+_c, \bar{B}^0 o e^- \bar{\nu}_e D^{*+}, n o \pi^0 \pi^0 \pi^0, D^- o \rho^- K^*$				
44	$D_s^+ \to \pi^+ \eta', D^{*+} \to \pi^+ D^0$	43	43	1	44
	$(e^{+}e^{-} \rightarrow e^{-}\bar{\nu}_{e}\pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{+}\pi^{+}\rho^{-}K^{*}\eta'D^{0})$				
	$D_{s}^{+} \to \pi^{+} \eta', D^{*+} \to \pi^{+} D^{0}$ $(e^{+}e^{-} \to e^{-} \bar{\nu}_{e} \pi^{0} \pi^{0} \pi^{+} \pi^{+} \rho^{-} K^{*} \eta' D^{0})$ $e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0} \bar{B}^{0}, B^{0} \to \omega K^{+} \bar{D}^{*-}, \bar{B}^{0} \to D^{*+} D_{s}^{-}, \omega \to \pi^{0} \pi^{+} \pi^{-}, \bar{D}^{*-} \to \pi^{-} \bar{D}^{0},$				
45	$D^{*+} o \pi^0 D^+, D_s^- o \pi^- f_0(980)$	44	44	1	45
	$(e^+e^- \to \pi^0\pi^0\pi^+\pi^-\pi^-\pi^-K^+D^+\bar{D}^0f_0(980))$				
	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}B^{0}, B^{0} \to \eta \bar{D}^{*-}D^{+}_{s}, B^{0} \to \pi^{0}\pi^{-}\rho^{+}\bar{K}^{0}K^{+}D^{-}, \eta \to \gamma\gamma, \bar{D}^{*-} \to \pi^{0}D^{-},$				
46	$D_s^+ o \mu^+ u_\mu \eta, ho^+ o \pi^0 \pi^+, ar K^0 o K_S, D^- o K_S K^{*-}$	45	45	1	46
	$(e^{+}e^{-} \to \mu^{+}\nu_{\mu}\pi^{0}\pi^{0}\pi^{+}\pi^{-}\eta K_{S}K_{S}K^{+}K^{*-}D^{-}\gamma\gamma\gamma\gamma)$				
	$e^{+}e^{-} o \Upsilon(4S), \Upsilon(4S) o B^{0}B^{0}, B^{0} o \pi^{0}\pi^{+}\pi^{+}\pi^{-}\rho^{-}\eta\eta K^{0}K^{+}D^{-}, B^{0} o \pi^{0}\rho^{0}\pi^{-}D^{*+}, \rho^{-} o \pi^{0}\pi^{-}, \eta o \gamma\gamma,$				
47	$\eta \to \pi^0 \pi^0 \pi^0, \bar{K}^0 \to K_L, D^- \to \pi^- K_S, \rho^0 \to \pi^+ \pi^-, D^{*+} \to \pi^0 D^+$	46	46	1	47
	$(e^{+}e^{-} \to \pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{0}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K_{S}K^{+}D^{+}\gamma\gamma\gamma\gamma\gamma)$				
	$e^+e^- o \Upsilon(4S), \Upsilon(4S) o B^0 \bar{B}^0, B^0 o \rho^0 \rho^+ \bar{D}^{*-}, \bar{B}^0 o \pi^+ K^- D^+ D^-, \rho^0 o \pi^+ \pi^-, \rho^+ o \pi^0 \pi^+,$				
48	$ar{D}^{*-} ightarrow\pi^-ar{D}^0, D^+ ightarrow\pi^0\pi^+ar{K}^*, D^- ightarrow\mu^-ar{ u}_\mu K^0$	47	47	1	48
	$(e^+e^- \to \mu^- \bar{\nu}_\mu \pi^0 \pi^0 \pi^+ \pi^+ \pi^+ \pi^+ \pi^- \pi^- K^0 \bar{K}^* \dot{K}^- \bar{D}^0)$				
	$e^+e^- o \Upsilon(4S), \Upsilon(4S) o B^0 ar{B}^0, B^0 o ho^0 ho^+ D^-, ar{B}^0 o \mu^- ar{ u}_\mu D^+, ho^0 o \pi^+ \pi^-, ho^+ o \pi^0 \pi^+,$				
49	$D^- o \mu^- \bar{\nu}_\mu K^*, D^+ o e^+ \nu_e \bar{K}^*$	48	48	1	49
	$(e^+e^- \to e^+ \nu_e \mu^- \mu^- \bar{\nu}_\mu \bar{\nu}_\mu \pi^0 \pi^+ \pi^+ \pi^- K^* \bar{K}^*)$				

index	event tree (event initial-final states)	iEvtTr	iEvtIFSts	nEvts	nCmltEvts
50	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \pi^{+}\pi^{-}\rho^{+}\eta D^{-}, \bar{B}^{0} \to \mu^{-}\bar{\nu}_{\mu}D^{*+}, \rho^{+} \to \pi^{0}\pi^{+}, \eta \to \pi^{0}\pi^{0}\pi^{0},$ $D^{-} \to K_{S}K^{-}, D^{*+} \to \pi^{+}D^{0}$ $(e^{+}e^{-} \to \mu^{-}\bar{\nu}_{\mu}\pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{+}\pi^{+}\pi^{-}K_{S}K^{-}D^{0})$	49	49	1	50
51	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}B^{0}, B^{0} \to e^{+}\nu_{e}\eta D^{-}, B^{0} \to \pi^{0}\pi^{+}\pi^{+}\pi^{-}\bar{D}^{*-}, \eta \to \pi^{+}\pi^{-}, D^{-} \to K_{L}a_{1}^{-}, \\ \bar{D}^{*-} \to \pi^{-}\bar{D}^{0} \\ (e^{+}e^{-} \to e^{+}\nu_{e}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\bar{D}^{0}a_{1}^{-}\gamma\gamma) \\ e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \pi^{0}\pi^{+}\pi^{+}\rho^{-}D^{-}, \bar{B}^{0} \to e^{-}\bar{\nu}_{e}D^{+}, \rho^{-} \to \pi^{0}\pi^{-}, D^{-} \to \pi^{0}\pi^{+}\pi^{-}\pi^{-}K^{0},$	50	50	1	51
52	$D^+ o \pi^+ \pi^+ K^- \ (e^+ e^- o e^- ar{ u}_e \pi^0 \pi^0 \pi^+ \pi^+ \pi^+ \pi^+ \pi^+ \pi^- \pi^- \pi^- K^0 K^- \gamma \gamma)$	51	51	1	52
53	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \rho^{0}\pi^{+}\pi^{+}\pi^{-}\omega D^{-}, \bar{B}^{0} \to \rho^{+}\rho^{-}D^{*0}, \rho^{0} \to \pi^{+}\pi^{-}, \omega \to \pi^{0}\pi^{+}\pi^{-}, \omega \to \pi^{0}\pi^{-}, \omega \to \pi^{0}\pi$	52	52	1	53
54	$e^+e^- o \Upsilon(4S), \Upsilon(4S) o B^0 \bar{B}^0, B^0 o \pi^- \bar{D}^0 D_s^+, \bar{B}^0 o D^{*+} D_s^{*-}, \bar{D}^0 o \rho^- K^{*+}, D_s^+ o \rho^+ \eta,$ $D^{*+} o \pi^+ D^0, D_s^{*-} o D_s^- \gamma$	53	53	1	54
55	$\frac{(e^{+}e^{-} \to \pi^{+}\pi^{-}\rho^{+}\rho^{-}\eta K^{*+}D^{0}D_{s}^{-}\gamma)}{e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \bar{D}^{*-}a_{1}^{+}, \bar{B}^{0} \to \pi^{0}\rho^{0}\rho^{0}\rho^{-}D^{+}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0}, a_{1}^{+} \to \pi^{+}K^{0}\bar{K}^{0},}\\ \rho^{0} \to \pi^{+}\pi^{-}, \rho^{0} \to \pi^{+}\pi^{-}, \rho^{-} \to \pi^{0}\pi^{-}, D^{+} \to \pi^{0}\pi^{+}K_{S}\\ (e^{+}e^{-} \to \pi^{0}\pi^{0}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K_{S}K^{0}\bar{K}^{0}\bar{D}^{0}\gamma\gamma)$	54	54	1	55
56	$(e^{+}e^{-} \to \pi^{0}\pi^{0}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K_{S}K^{0}\bar{K}^{0}\bar{D}^{0}\gamma\gamma)$ $e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \pi^{0}\Delta^{+}\bar{\Xi}^{*-}_{c}, \bar{B}^{0} \to \pi^{0}\pi^{+}D^{0}D^{*-}_{s}, \Delta^{+} \to \pi^{+}n, \bar{\Xi}^{*-}_{c} \to \bar{\Xi}^{-}_{c}\gamma,$ $D^{0} \to \mu^{+}\nu_{\mu}K^{*-}, D^{*-}_{s} \to D^{-}_{s}\gamma$ $(e^{+}e^{-} \to \mu^{+}\nu_{\mu}\pi^{+}\pi^{+}K^{*-}D^{-}_{s}n\bar{\Xi}^{-}_{c}\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$ $e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to e^{+}\nu_{e}\bar{D}^{*-}, \bar{B}^{0} \to \pi^{0}\bar{\Delta}^{+}\Sigma^{+}_{c}, \bar{D}^{*-} \to \pi^{0}D^{-}, \bar{\Delta}^{+} \to \pi^{-}\bar{n},$	55	55	1	56
57	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to e^{+}\nu_{e}\bar{D}^{*-}, \bar{B}^{0} \to \pi^{0}\bar{\Delta}^{+}\Sigma_{c}^{+}, \bar{D}^{*-} \to \pi^{0}D^{-}, \bar{\Delta}^{+} \to \pi^{-}\bar{n},$ $\Sigma_{c}^{+} \to \pi^{0}\Lambda_{c}^{+}$ $(e^{+}e^{-} \to e^{+}\nu_{e}\pi^{0}\pi^{0}\pi^{-}D^{-}\bar{n}\Lambda_{c}^{+}\gamma\gamma)$ $e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \rho^{0}\pi^{+}\pi^{-}\bar{D}^{*0}, \bar{B}^{0} \to \mu^{-}\bar{\nu}_{\mu}D^{*+}, \rho^{0} \to \pi^{+}\pi^{-}, \bar{D}^{*0} \to \bar{D}^{0}\gamma,$	56	56	1	57
58	$D^{*+} ightarrow D^+\gamma \ (e^+e^- ightarrow \mu^-ar u_ u\pi^+\pi^+\pi^-\pi^-D^+ar D^0\gamma\gamma)$	57	57	1	58
59	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to \bar{B}^{0}\bar{B}^{0}, \bar{B}^{0} \to D^{+}\bar{\Delta}^{0}\bar{\Delta}^{+}, \bar{B}^{0} \to \pi^{0}\rho^{0}\pi^{+}\pi^{-}\eta\eta, D^{+} \to \mu^{+}\nu_{\mu}\bar{K}^{*}, \Delta^{0} \to \pi^{0}n,$ $\bar{\Delta}^{+} \to \pi^{0}\bar{p}, \rho^{0} \to \pi^{+}\pi^{-}, \eta \to \gamma\gamma, \eta \to \pi^{0}\pi^{+}\pi^{-}$ $(e^{+}e^{-} \to \mu^{+}\nu_{\mu}\pi^{0}\pi^{0}\pi^{0}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\bar{K}^{*}n\bar{p}\gamma\gamma\gamma)$ $e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \pi^{0}\pi^{+}\pi^{+}\pi^{-}\bar{D}^{*}, \bar{B}^{0} \to \pi^{0}\pi^{0}\pi^{0}\rho^{0}\rho^{0}\pi^{+}\pi^{-}\pi^{-}D^{*}, \bar{D}^{*} \to \pi^{-}\bar{D}^{0}, \rho^{0} \to \pi^{+}\pi^{-},$	58	58	1	59
60	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \pi^{0}\pi^{+}\pi^{+}\pi^{-}\bar{D}^{*-}, \bar{B}^{0} \to \pi^{0}\pi^{0}\pi^{0}\rho^{0}\rho^{0}\pi^{+}\pi^{-}\pi^{-}D^{*+}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0}, \rho^{0} \to \pi^{+}\pi^{-}, \rho^{0} \to \pi^{+}\pi^{-}, D^{*+} \to \pi^{+}D^{0}$ $(e^{+}e^{-} \to \pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}D^{0}\bar{D}^{0}\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$ $e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \pi^{0}\pi^{+}\omega\bar{D}^{*-}, \bar{B}^{0} \to \pi^{-}\bar{K}^{0}D^{+}\bar{D}^{*0}, \omega \to \pi^{0}\pi^{+}\pi^{-}, \bar{D}^{*-} \to \pi^{0}D^{-},$	59	59	1	60
61	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \pi^{0}\pi^{+}\omega\bar{D}^{*-}, \bar{B}^{0} \to \pi^{-}\bar{K}^{0}D^{+}\bar{D}^{*0}, \omega \to \pi^{0}\pi^{+}\pi^{-}, \bar{D}^{*-} \to \pi^{0}D^{-}, \\ \bar{K}^{0} \to K_{S}, D^{+} \to \pi^{0}\pi^{+}\bar{K}^{*}, \bar{D}^{*0} \to \bar{D}^{0}\gamma \\ (e^{+}e^{-} \to \pi^{0}\pi^{0}\pi^{0}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}K_{S}\bar{K}^{*}D^{-}\bar{D}^{0}\gamma\gamma\gamma)$	60	60	1	61

index	event tree (event initial-final states)	iEvtTr	iEvtIFSts	nEvts	nCmltEvts
62	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to e^{+}\nu_{e}\bar{D}^{*-}, \bar{B}^{0} \to \pi^{+}\bar{K}^{*}\bar{D}^{*-}D^{0}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0}, \bar{K}^{*} \to \pi^{0}\bar{K}^{0},$ $\bar{D}^{*-} \to \pi^{-}\bar{D}^{0}, D^{0} \to \rho^{+}K^{*-}$ $(e^{+}e^{-} \to e^{+}\nu_{e}\pi^{0}\pi^{+}\pi^{-}\pi^{-}\rho^{+}\bar{K}^{0}K^{*-}\bar{D}^{0}\bar{D}^{0})$	61	61	1	62
63	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}B^{0}, B^{0} \to \bar{D}^{*-}a_{1}^{+}, B^{0} \to \pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}D^{-}\Delta^{+}\bar{\Delta}^{+}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0}, a_{1}^{+} \to \rho^{0}\pi^{+},$ $D^{-} \to e^{-}\bar{\nu}_{e}\pi^{-}K^{+}, \Delta^{+} \to \pi^{0}p, \bar{\Delta}^{+} \to \pi^{0}\bar{p}$ $(e^{+}e^{-} \to e^{-}\bar{\nu}_{e}\pi^{0}\pi^{0}\rho^{0}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}\bar{D}^{0}p\bar{p})$	62	62	1	63
64	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \pi^{+}\pi^{-}\eta\bar{D}^{0}, \bar{B}^{0} \to \pi^{-}\pi^{-}\pi^{-}\rho^{+}\rho^{+}\omega D^{*+}, \eta \to \pi^{0}\pi^{0}, \bar{D}^{0} \to \pi^{0}\pi^{-}K^{+}, \\ \rho^{+} \to \pi^{0}\pi^{+}, \rho^{+} \to \pi^{0}\pi^{+}, \omega \to \pi^{0}\pi^{+}\pi^{-}, D^{*+} \to \pi^{+}D^{0} \\ (e^{+}e^{-} \to \pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{0}$	63	63	1	64
65	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \rho^{0}\pi^{+}K^{-}K^{*+}\bar{D}^{*-}, \bar{B}^{0} \to \pi^{0}\pi^{0}\rho^{0}\rho^{0}\pi^{-}D^{+}, \rho^{0} \to \pi^{+}\pi^{-}, K^{*+} \to \pi^{+}K^{0},$ $\bar{D}^{*-} \to \pi^{-}\bar{D}^{0}, \rho^{0} \to \pi^{+}\pi^{-}, \rho^{0} \to \pi^{+}\pi^{-}, D^{+} \to e^{+}\nu_{e}\bar{K}^{0}$ $(e^{+}e^{-} \to e^{+}\nu_{e}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{0}\bar{K}^{0}K^{-}\bar{D}^{0}\gamma\gamma\gamma\gamma)$ $e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to e^{+}\nu_{e}D^{-}, \bar{B}^{0} \to \pi^{0}\pi^{0}\pi^{+}\pi^{-}\pi^{-}D^{*+}p\bar{p}, D^{-} \to \pi^{+}\pi^{-}\pi^{-}K_{S}, D^{*+} \to \pi^{+}D^{0}$	64	64	1	65
66	$(e^+e^- o e^+ u_e\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-K_SD^0par{p}\gamma\gamma\gamma\gamma)$	65	65	1	66
67	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \mu^{+}\nu_{\mu}D_{0}^{*-}, \bar{B}^{0} \to \tau^{-}\bar{\nu}_{\tau}D^{*+}, D_{0}^{*-} \to \pi^{-}\bar{D}^{0}, \tau^{-} \to \nu_{\tau}\pi^{0}\pi^{-}, D^{*+} \to \pi^{+}D^{0}$ $(e^{+}e^{-} \to \mu^{+}\nu_{\mu}\nu_{\tau}\bar{\nu}_{\tau}\pi^{0}\pi^{+}\pi^{-}\pi^{-}D^{0}\bar{D}^{0})$	66	66	1	67
68	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \pi^{+}\omega\omega\bar{D}^{*-}, \bar{B}^{0} \to \eta D^{+}D_{s}^{*-}, \omega \to \pi^{0}\gamma, \omega \to \pi^{0}\pi^{+}\pi^{-},$ $\bar{D}^{*-} \to \pi^{-}\bar{D}^{0}, \eta \to \gamma\gamma, D^{+} \to K_{L}\pi^{+}, D_{s}^{*-} \to D_{s}^{-}\gamma$ $(e^{+}e^{-} \to \pi^{0}\pi^{0}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\bar{D}^{0}D_{s}^{-}\gamma\gamma\gamma\gamma)$	67	67	1	68
69	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to \bar{B}^{0}\bar{B}^{0}, \bar{B}^{0} \to e^{-}\bar{\nu}_{e}D^{+}, \bar{B}^{0} \to \rho^{0}\rho^{-}\eta D^{*+}, D^{+} \to \pi^{0}\pi^{+}K_{S}, \rho^{0} \to \pi^{+}\pi^{-},$ $\rho^{-} \to \pi^{0}\pi^{-}, \eta \to \gamma\gamma, D^{*+} \to \pi^{+}D^{0}$ $(e^{+}e^{-} \to e^{-}\bar{\nu}_{e}\pi^{0}\pi^{0}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}K_{S}D^{0}\gamma\gamma)$	68	68	1	69
70	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \rho^{+}D^{-}, \bar{B}^{0} \to \rho^{-}D^{*+}, \rho^{+} \to \pi^{0}\pi^{+}, D^{-} \to \pi^{0}\pi^{-}\phi,$ $\rho^{-} \to \pi^{0}\pi^{-}, D^{*+} \to \pi^{+}D^{0}$ $(e^{+}e^{-} \to \pi^{0}\pi^{0}\pi^{0}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\phi D^{0})$ $e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \pi^{-}K^{+}D^{0}\bar{D}^{0}, \bar{B}^{0} \to K^{*-}D^{+}, D^{0} \to \rho^{+}K^{*-}, \bar{D}^{0} \to \rho^{0}\rho^{0},$	69	69	1	70
71	$K^{*-} ightarrow \pi^- ar{K}^0, D^+ ightarrow e^+ u_e ar{K}^* \ (e^+ e^- ightarrow e^+ u_e ho^0 ho^0 \pi^- \pi^- ho^+ ar{K}^0 ar{K}^* K^+ K^{*-})$	70	70	1	71
72	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \pi^{0}\pi^{0}\pi^{+}\rho^{+}\rho^{-}D^{-}, \bar{B}^{0} \to e^{-}\bar{\nu}_{e}D^{+}, \rho^{+} \to \pi^{0}\pi^{+}, \rho^{-} \to \pi^{0}\pi^{-}, \\ D^{-} \to e^{-}\bar{\nu}_{e}\pi^{-}K^{+}, D^{+} \to \pi^{0}\pi^{+}\pi^{+}K^{-} \\ (e^{+}e^{-} \to e^{-}e^{-}\bar{\nu}_{e}\bar{\nu}_{e}\pi^{0}\pi^{0}\pi^{0}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}K^{+}K^{-}\gamma\gamma\gamma\gamma)$	71	71	1	72
73	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to K^{*}n\bar{\Sigma}_{c}^{*0}, \bar{B}^{0} \to \pi^{-}D^{+}, K^{*} \to \pi^{-}K^{+}, \bar{\Sigma}_{c}^{*0} \to \pi^{+}\bar{\Lambda}_{c}^{-}, \\ D^{+} \to \pi^{0}\pi^{+}\bar{K}^{*} \\ (e^{+}e^{-} \to \pi^{0}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\bar{K}^{*}K^{+}n\bar{\Lambda}_{c}^{-})$	72	72	1	73

index	event tree (event initial-final states)	iEvtTr	iEvtIFSts	nEvts	nCmltEvts
74	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to e^{+}\nu_{e}\bar{D}^{*-}, \bar{B}^{0} \to \pi^{-}\pi^{-}D^{*+}\bar{n}\Delta^{+}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0}, D^{*+} \to \pi^{+}D^{0}, \\ \Delta^{+} \to \pi^{0}p \\ (e^{+}e^{-} \to e^{+}\nu_{e}\pi^{0}\pi^{+}\pi^{-}\pi^{-}\pi^{-}D^{0}\bar{D}^{0}\bar{n}p)$	73	73	1	74
75	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to K^{*+}\bar{D}^{*-}D^{0}, \bar{B}^{0} \to D^{*+}D_{s0}^{*-}, K^{*+} \to \pi^{+}K^{0}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0},$ $D^{0} \to \pi^{0}\pi^{+}K^{-}, D^{*+} \to \pi^{0}D^{+}, D_{s0}^{*-} \to \pi^{0}D_{s}^{-}$ $(e^{+}e^{-} \to \pi^{0}\pi^{0}\pi^{0}\pi^{+}\pi^{+}\pi^{-}K^{0}K^{-}D^{+}\bar{D}^{0}D_{s}^{-})$	74	74	1	75
76	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \mu^{+}\nu_{\mu}\bar{D}^{*-}, \bar{B}^{0} \to \pi^{0}\pi^{+}\pi^{-}\rho^{+}\bar{D}^{*-}D^{*0}, \bar{D}^{*-} \to \pi^{0}D^{-}, \rho^{+} \to \pi^{0}\pi^{+}, \\ \bar{D}^{*-} \to \pi^{0}D^{-}, D^{*0} \to \pi^{0}D^{0} \\ (e^{+}e^{-} \to \mu^{+}\nu_{\mu}\pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{+}\pi^{+}\pi^{-}D^{-}D^{0}\gamma\gamma)$	75	75	1	76
77	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \pi^{0}\rho^{+}\omega\omega D^{-}, \bar{B}^{0} \to K^{-}D^{*+}\bar{D}^{*0}, \rho^{+} \to \pi^{0}\pi^{+}, \omega \to \pi^{+}\pi^{-}, \omega \to \pi^{0}\pi^{+}\pi^{-}, D^{-} \to \pi^{0}K_{L}\pi^{-}, D^{*+} \to \pi^{0}D^{+}, \bar{D}^{*0} \to \pi^{0}\bar{D}^{0} $ $(e^{+}e^{-} \to \pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{0}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K^{-}D^{+}\bar{D}^{0}\gamma\gamma)$	76	76	1	77
78	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to \bar{B}^{0}\bar{B}^{0}, \bar{B}^{0} \to e^{-}\bar{\nu}_{e}D^{*+}, \bar{B}^{0} \to \pi^{0}\pi^{+}\pi^{-}\rho^{-}\omega\bar{K}^{0}D^{*+}, D^{*+} \to \pi^{+}D^{0}, \rho^{-} \to \pi^{0}\pi^{-},$ $\omega \to \pi^{0}\pi^{+}\pi^{-}, \bar{K}^{0} \to K_{S}, D^{*+} \to \pi^{+}D^{0}$ $(e^{+}e^{-} \to e^{-}\bar{\nu}_{e}\pi^{0}\pi^{0}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K_{S}D^{0}D^{0}\gamma\gamma)$	77	77	1	78
79	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to e^{+}\nu_{e}\eta D^{-}, \bar{B}^{0} \to \rho^{0}\pi^{-}D^{*+}, \eta \to \pi^{0}\pi^{+}\pi^{-}, D^{-} \to e^{-}\bar{\nu}_{e}K_{1}^{0},$ $\rho^{0} \to \pi^{+}\pi^{-}, D^{*+} \to \pi^{+}D^{0}$ $(e^{+}e^{-} \to e^{+}e^{-}\nu_{e}\bar{\nu}_{e}\pi^{0}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}D^{0}K_{1}^{0})$	78	78	1	79
80	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \rho^{0}\pi^{+}\pi^{-}\rho^{+}\eta\eta\bar{D}^{*-}, \bar{B}^{0} \to \mu^{-}\bar{\nu}_{\mu}D^{*+}, \rho^{0} \to \pi^{+}\pi^{-}, \rho^{+} \to \pi^{0}\pi^{+},$ $\eta \to \pi^{0}\pi^{+}\pi^{-}, \eta \to \pi^{0}\pi^{+}\pi^{-}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0}, D^{*+} \to \pi^{0}D^{+}$ $(e^{+}e^{-} \to \mu^{-}\bar{\nu}_{\mu}\pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}D^{+}\bar{D}^{0})$	79	79	1	80
81	$\frac{(e^{+}e^{-} \to \mu^{-}\bar{\nu}_{\mu}\pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}D^{+}\bar{D}^{0})}{(e^{+}e^{-} \to \mu^{-}\bar{\nu}_{\mu}\pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}D^{+}\bar{D}^{0})}$ $e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \tau^{+}\nu_{\tau}D_{0}^{*-}, \bar{B}^{0} \to \pi^{0}\pi^{-}\omega K^{0}\bar{K}^{0}\bar{K}^{*}D^{*+}, \tau^{+} \to \mu^{+}\nu_{\mu}\bar{\nu}_{\tau}, D_{0}^{*-} \to \pi^{-}\bar{D}^{0},$ $\omega \to \pi^{0}\pi^{+}\pi^{-}, K^{0} \to K_{S}, \bar{K}^{0} \to K_{L}, \bar{K}^{*} \to \pi^{+}K^{-}, D^{*+} \to \pi^{0}D^{+}$ $(e^{+}e^{-} \to \mu^{+}\nu_{\mu}\nu_{\tau}\bar{\nu}_{\tau}\pi^{0}\pi^{0}K_{L}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K_{S}K^{-}D^{+}\bar{D}^{0}\gamma\gamma)$	80	80	1	81
82	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to D^{-}a_{1}^{+}, \bar{B}^{0} \to \pi^{+}\pi^{-}D^{+}D_{s}^{*-}, D^{-} \to \mu^{-}\bar{\nu}_{\mu}\omega, a_{1}^{+} \to \rho^{0}\pi^{+},$ $D^{+} \to \pi^{+}\pi^{+}K^{-}, D_{s}^{*-} \to D_{s}^{-}\gamma$ $(e^{+}e^{-} \to \mu^{-}\bar{\nu}_{\mu}\rho^{0}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\omega K^{-}D_{s}^{-}\gamma)$	81	81	1	82
83	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \rho^{+}\eta\omega D^{-}, \bar{B}^{0} \to \pi^{+}D^{0}D_{s}^{-}, \rho^{+} \to \pi^{0}\pi^{+}, \eta \to \pi^{+}\pi^{-},$ $\omega \to \pi^{0}\gamma, D^{-} \to \mu^{-}\bar{\nu}_{\mu}K^{*}, D^{0} \to K_{S}K^{+}K^{-}, D_{s}^{-} \to \rho^{-}\phi$ $(e^{+}e^{-} \to \mu^{-}\bar{\nu}_{\mu}\pi^{0}\pi^{0}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\rho^{-}K_{S}K^{*}K^{+}K^{-}\phi\gamma)$	82	82	1	83
84	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \pi^{+}K^{0}D^{-}, \bar{B}^{0} \to \pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}D^{*+}, K^{0} \to K_{S}, D^{-} \to \pi^{-}K^{+}K^{-}, D^{*+} \to \pi^{+}D^{0}$ $(e^{+}e^{-} \to \pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K_{S}K^{+}K^{-}D^{0})$	83	83	1	84
85	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \pi^{0}\pi^{+}\rho^{-}\bar{D}^{*0}, \bar{B}^{0} \to e^{-}\bar{\nu}_{e}\eta D^{+}, \rho^{-} \to \pi^{0}\pi^{-}, \bar{D}^{*0} \to \pi^{0}\bar{D}^{0},$ $\eta \to \pi^{0}\pi^{+}\pi^{-}, D^{+} \to \mu^{+}\nu_{\mu}\bar{K}^{0}$ $(e^{+}e^{-} \to e^{-}\bar{\nu}_{e}\mu^{+}\nu_{\mu}\pi^{0}\pi^{0}\pi^{0}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\bar{K}^{0}\bar{D}^{0}\gamma\gamma)$	84	84	1	85

index	event tree	iEvtTr	iEvtIFSts	nEvts	nCmltEvts
	(event initial-final states)				
0.0	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}B^{0}, B^{0} \to \eta' D^{+} \bar{D}^{*-}, B^{0} \to \omega \bar{D}^{*-} \bar{n}p, \eta' \to \pi^{0}\pi^{0}\eta, D^{+} \to \pi^{+}\phi, \\ \bar{D}^{*-} \to \pi^{-} \bar{D}^{0}, \omega \to \pi^{0}\pi^{+}\pi^{-}, \bar{D}^{*-} \to \pi^{-} \bar{D}^{0}$	05	٥٣		0.0
86	$D^{\circ} ightarrow \pi^{\circ} D^{\circ}, \omega ightarrow \pi^{\circ} \pi^{\circ} \pi^{\circ}, D^{\circ} ightarrow \pi^{\circ} D^{\circ} \ (e^{+}e^{-} ightarrow \pi^{0} \pi^{0} \pi^{0} \pi^{+} \pi^{+} \pi^{-} \pi^{-} \pi^{0} \eta \phi ar{D}^{0} ar{D}^{0} ar{D}^{0} ar{n} p)$	85	85	1	86
	$(e^{+}e^{-} \to \pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}$				
87	$e^+e^- ightarrow 1 (4S), 1 (4S) ightarrow B^- B^-, B^- ightarrow e^+ D^-, B^- ightarrow e^- u_e D_2^-, ho^+ ightarrow \pi^+, D^- ightarrow \mu^- K^-, onumber 1 (4S), 1 (4S) ightarrow B^- B^-, B^- ightarrow e^- u_e D_2^-, ho^+ ightarrow \pi^+, D^- ightarrow \mu^- K^-, onumber 1 (4S), 1 (4S) ightarrow B^- B^-, B^- ightarrow e^- u_e D_2^-, \rho^+ ightarrow \pi^+, D^- ightarrow \mu^- K^-, onumber 1 (4S), 1 (4S) ightarrow B^- B^-, B^- ightarrow e^- u_e D_2^-, \rho^+ ightarrow \pi^+, D^- ightarrow \mu^- onumber 1 (4S), 1 (4S) ightarrow B^- B^-, B^- ightarrow \pi^+ D^0$	86	86	1	87
01	$(e^{+}e^{-} \rightarrow e^{-}\bar{\nu}, \nu^{-}\bar{\nu}, \pi^{0}\pi^{+}\pi^{+}\pi^{-}K^{*}D^{0})$	30	80	1	01
	$\frac{(e^{+}e^{-} \to e^{-}\bar{\nu}_{e}\mu^{-}\bar{\nu}_{\mu}\pi^{0}\pi^{+}\pi^{+}\pi^{+}\pi^{-}K^{*}D^{0})}{e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \rho^{0}\pi^{+}\eta D^{-}, \bar{B}^{0} \to \pi^{-}\rho^{+}K^{0}K^{*-}D^{+}, \rho^{0} \to \pi^{+}\pi^{-}, \eta \to \gamma\gamma,}$				
88	$D^{-} \rightarrow \pi^{-}\pi^{-}K^{+}, \rho^{+} \rightarrow \pi^{0}\pi^{+}, K^{0} \rightarrow K_{L}, K^{*-} \rightarrow \pi^{0}K^{-}, D^{+} \rightarrow \rho^{0}\pi^{+}$	87	87	1	88
	$(e^{+}e^{-} \to \pi^{0}\pi^{0}\rho^{0}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{-}\gamma\gamma)$				
	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \rho^{0}p\bar{\Sigma}_{c}^{*-}, \bar{B}^{0} \to \mu^{-}\bar{\nu}_{\mu}D_{0}^{*+}, \rho^{0} \to \pi^{+}\pi^{-}, \bar{\Sigma}_{c}^{*-} \to \pi^{0}\bar{\Lambda}_{c}^{-},$				
89	$D_0^{*+} ightarrow \pi^+ D^0$	88	88	1	89
	$\frac{(e^{+}e^{-} \to \mu^{-}\bar{\nu}_{\mu}\pi^{0}\pi^{+}\pi^{+}\pi^{-}D^{0}p\bar{\Lambda}_{c}^{-})}{e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \mu^{+}\nu_{\mu}\bar{D}^{*-}, \bar{B}^{0} \to \pi^{-}\pi^{-}D^{+}\bar{n}p, \bar{D}^{*-} \to \pi^{0}D^{-}, D^{+} \to K_{S}a_{1}^{+}}$				
90	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \mu^{+}\nu_{\mu}\bar{D}^{*-}, \bar{B}^{0} \to \pi^{-}\pi^{-}D^{+}\bar{n}p, \bar{D}^{*-} \to \pi^{0}D^{-}, D^{+} \to K_{S}a_{1}^{+}$	89	89	1	90
	$(e^{+}e^{-} \to \mu^{+}\nu_{\mu}\pi^{0}\pi^{-}\pi^{-}K_{S}D^{-}\bar{n}pa_{1}^{+})$ $e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \pi^{0}\pi^{+}\pi^{-}\rho^{+}D^{-}, \bar{B}^{0} \to \mu^{-}\bar{\nu}_{\mu}D^{*+}, \rho^{+} \to \pi^{0}\pi^{+}, D^{-} \to \mu^{-}\bar{\nu}_{\mu}\pi^{-}K^{+},$				00
0.1	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}B^{0}, B^{0} \to \pi^{0}\pi^{+}\pi^{-}\rho^{+}D^{-}, B^{0} \to \mu^{-}\bar{\nu}_{\mu}D^{*+}, \rho^{+} \to \pi^{0}\pi^{+}, D^{-} \to \mu^{-}\bar{\nu}_{\mu}\pi^{-}K^{+}, D^{*+} \to \pi^{0}D^{+}$	00	00		0.1
91		90	90	1	91
	$\frac{(e^{+}e^{-} \to \mu^{-}\mu^{-}\bar{\nu}_{\mu}\bar{\nu}_{\mu}\pi^{0}\pi^{0}\pi^{+}\pi^{+}\pi^{-}\pi^{-}K^{+}D^{+}\gamma\gamma)}{e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \pi^{-}K^{*+}J/\psi, \bar{B}^{0} \to \pi^{0}\pi^{+}K^{-}\eta_{c}(2S), K^{*+} \to \pi^{0}K^{+}, J/\psi \to e^{+}e^{-},}$				
92	$e^+e^- \rightarrow \Gamma(4S), \Gamma(4S) \rightarrow B^- B^-, H^- K^- J/\psi, B^- \rightarrow K^- K^- I/c(2S), K^- \rightarrow K^- K^-, J/\psi \rightarrow e^+e^-, $ $\pi^0 \rightarrow e^+e^-, \eta_c(2S) \rightarrow \eta \Sigma^+ \bar{\Sigma}^-$	91	91	1	92
32	$(e^{+}e^{-} \rightarrow e^{+}e^{+}e^{-}e^{-}\pi^{0}\pi^{+}\pi^{-}\eta K^{+}K^{-}\Sigma^{+}\bar{\Sigma}^{-})$		31	1	32
	$e^{+}e^{-} \rightarrow \Upsilon(4S), \Upsilon(4S) \rightarrow \bar{B}^{0}\bar{B}^{0}, \bar{B}^{0} \rightarrow \bar{K}^{0}\psi', \bar{B}^{0} \rightarrow \pi^{-}\rho^{+}\rho^{-}D^{+}, \bar{K}^{0} \rightarrow K_{S}, \psi' \rightarrow \pi^{0}\pi^{0}J/\psi,$				
93	$ ho^+ o \pi^0 \pi^+, ho^- o \pi^0 \pi^-, D^+ o ar{K}^* a_1^+$	92	92	1	93
	$(e^{+}e^{-} ightarrow \pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{+}\pi^{-}\pi^{-}K_{S}\bar{K}^{*}J/\psi a_{1}^{+})$				
	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \rho^{0}\rho^{+}\bar{D}^{*-}, \bar{B}^{0} \to \pi^{-}K^{0}\bar{D}^{+}, \rho^{0} \to \pi^{+}\pi^{-}, \rho^{+} \to \pi^{0}\pi^{+},$				
94	$\bar{D}^{*-} o \pi^- \bar{D}^0, K^0 o K_L, D^+ o K_L a_1^+$	93	93	1	94
	$(e^{+}e^{-} \to \pi^{0}K_{L}K_{L}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\bar{D}^{0}a_{1}^{+})$				
	$e^{+}e^{-} o \Upsilon(4S), \Upsilon(4S) o B^{0}\bar{B}^{0}, B^{0} o \rho^{+}\omega D^{-}, \bar{B}^{0} o \pi^{0}\omega K^{0}K^{-}D^{+}, \rho^{+} o \pi^{0}\pi^{+}, \omega o \pi^{0}\pi^{+}\pi^{-},$				
95	$D^- o \pi^- \pi^- K^+, \pi^0 o e^+ e^-, \omega o \pi^0 \pi^+ \pi^-, K^0 o K_S, D^+ o \mu^+ \nu_\mu \bar{K}^*$	94	94	1	95
	$(e^{+}e^{-} \rightarrow e^{+}e^{-}\mu^{+}\nu_{\mu}\pi^{0}\pi^{0}\pi^{0}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K_{S}\bar{K}^{*}K^{+}K^{-})$ $e^{+}e^{-} \rightarrow \Upsilon(4S), \Upsilon(4S) \rightarrow B^{0}\bar{B}^{0}, B^{0} \rightarrow e^{+}\nu_{e}\bar{D}^{*-}, \bar{B}^{0} \rightarrow e^{-}\bar{\nu}_{e}D^{*+}, \bar{D}^{*-} \rightarrow \pi^{-}\bar{D}^{0}, D^{*+} \rightarrow \pi^{+}D^{0}$				
96		95	95	1	96
	$(e^{+}e^{-} \to e^{+}e^{-}\nu_{e}\bar{\nu}_{e}\pi^{+}\pi^{-}D^{0}\bar{D}^{0})$ $e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to K^{*+}\bar{D}^{*-}, \bar{B}^{0} \to \pi^{0}\pi^{-}D^{*+}\Delta^{+}\bar{\Delta}^{+}, K^{*+} \to \pi^{+}K^{0}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0},$				
97	$\begin{array}{c} P = P \rightarrow P & P &$	96	96	1	97
"	$(e^+e^- ightarrow\pi^0\pi^+\pi^+\pi^+\pi^-\pi^-K^0D^0ar{D}^0nar{p}\gamma\gamma)$	30	30	1	31
	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to D_{s}^{*-}D_{s}^{*+}, \bar{B}^{0} \to \pi^{+}\pi^{-}D^{+}D_{s}^{*-}, D_{s}^{*-} \to \pi^{0}\bar{D}^{*-}, D_{s}^{*+} \to D_{s}^{+}\gamma,$				
98	$D^+ ightarrow \pi^+ ar{K}_1^{\prime 0}, D_s^- ightarrow e^- ar{ u}_e \eta^\prime$	97	97	1	98
	$(e^+e^- o e^-ar{ u}_e\pi^0\pi^+\pi^+\pi^-\eta'ar{D}_s^{*-}ar{K}_1^{'0}\gamma)$	"		-	
	(l	I	

index	event tree (event initial-final states)	iEvtTr	iEvtIFSts	nEvts	nCmltEvts
99	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to K_{L}\eta_{c}, \bar{B}^{0} \to \pi^{-}\pi^{-}\rho^{+}D^{*+}, \eta_{c} \to \pi^{0}K^{0}\bar{K}^{0}\bar{K}^{0}K^{*}, \rho^{+} \to \pi^{0}\pi^{+},$ $D^{*+} \to \pi^{0}D^{+}$ $(e^{+}e^{-} \to \pi^{0}\pi^{0}\pi^{0}K_{L}\pi^{+}\pi^{-}\pi^{-}K^{0}\bar{K}^{0}K^{0}K^{*}D^{+})$	98	98	1	99
100	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \pi^{0}\pi^{0}\rho^{0}\pi^{+}\bar{D}^{*-}, \bar{B}^{0} \to K^{*}K^{-}D^{+}, \rho^{0} \to \pi^{+}\pi^{-}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0},$ $K^{*} \to \pi^{0}K^{0}, D^{+} \to \pi^{+}\pi^{+}K^{-}$ $(e^{+}e^{-} \to \pi^{0}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}K^{0}K^{-}K^{-}\bar{D}^{0}\gamma\gamma\gamma\gamma)$	99	99	1	100
101	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \pi^{0}\pi^{+}\rho^{-}\eta\bar{D}^{0}, \bar{B}^{0} \to \pi^{-}\rho^{+}\rho^{-}D^{+}, \rho^{-} \to \pi^{0}\pi^{-}, \eta \to \pi^{0}\pi^{+}\pi^{-}, \\ \bar{D}^{0} \to \pi^{0}\pi^{+}\pi^{-}K_{S}, \rho^{+} \to \pi^{0}\pi^{+}, \rho^{-} \to \pi^{0}\pi^{-}, D^{+} \to e^{+}\nu_{e}\bar{K}^{0} \\ (e^{+}e^{-} \to e^{+}\nu_{e}\pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K_{S}\bar{K}^{0}\gamma\gamma)$	100	100	1	101
102	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \pi^{0}\pi^{0}\eta\omega\bar{D}^{0}, \bar{B}^{0} \to \pi^{+}\pi^{-}D^{+}D_{s}^{-}, \eta \to \pi^{+}\pi^{-}, \omega \to \pi^{0}\pi^{+}\pi^{-}, \omega \to \pi^{0}\pi^{+}, \omega \to \pi^{0}\pi^{+}\pi^{-}, \omega \to \pi^{0}\pi^{$	101	101	1	102
103	$\omega \to \pi^0 \pi^+ \pi^-, D^- \to \pi^- \pi^- K^+, \rho^0 \to \pi^+ \pi^-, \rho^+ \to \pi^0 \pi^+, D^{*+} \to \pi^+ D^0 \\ (e^+ e^- \to \pi^0 \pi^0 \pi^0 \pi^0 \pi^+ \pi^+ \pi^+ \pi^+ \pi^+ \pi^- \pi^- \pi^- \pi^- \pi^- \pi^- K^+ D^0 \gamma \gamma \gamma \gamma \gamma)$	102	102	1	103
104	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to D^{-}D_{s}^{*+}, \bar{B}^{0} \to \rho^{0}\pi^{-}\rho^{+}D^{0}, D^{-} \to \pi^{0}\pi^{-}K_{S}, D_{s}^{*+} \to D_{s}^{+}\gamma,$ $\rho^{0} \to \pi^{+}\pi^{-}, \rho^{+} \to \pi^{0}\pi^{+}, D^{0} \to \mu^{+}\nu_{\mu}K^{-}$ $(e^{+}e^{-} \to \mu^{+}\nu_{\mu}\pi^{0}\pi^{0}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K_{S}K^{-}D_{s}^{+}\gamma)$ $e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \pi^{0}\rho^{0}\pi^{+}\pi^{+}\pi^{-}\omega D^{-}, \bar{B}^{0} \to \pi^{+}D^{*0}D_{s}^{-}, \rho^{0} \to \pi^{+}\pi^{-}, \omega \to \pi^{0}\pi^{+}\pi^{-},$	103	103	1	104
105	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \pi^{0}\rho^{0}\pi^{+}\pi^{+}\pi^{-}\omega D^{-}, \bar{B}^{0} \to \pi^{+}D^{*0}D_{s}^{-}, \rho^{0} \to \pi^{+}\pi^{-}, \omega \to \pi^{0}\pi^{+}\pi^{-}, \omega \to \pi^{0}\pi^{+}\pi^{-}, \omega \to \pi^{0}\pi^{-}K^{*}, D^{*0} \to \pi^{0}D^{0}, D_{s}^{-} \to e^{-}\bar{\nu}_{e}\eta'$ $(e^{+}e^{-} \to e^{-}\bar{\nu}_{e}\pi^{0}\pi^{0}\pi^{0}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{*}\eta'D^{0}\gamma\gamma)$ $e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \rho^{+}K^{+}K^{-}\bar{D}^{*-}, \bar{B}^{0} \to e^{-}\bar{\nu}_{e}D^{*+}, \rho^{+} \to \pi^{0}\pi^{+}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0},$	104	104	1	105
106	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \rho^{+}K^{+}K^{-}\bar{D}^{*-}, \bar{B}^{0} \to e^{-}\bar{\nu}_{e}D^{*+}, \rho^{+} \to \pi^{0}\pi^{+}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0},$ $D^{*+} \to \pi^{0}D^{+}$ $(e^{+}e^{-} \to e^{-}\bar{\nu}_{e}\pi^{0}\pi^{0}\pi^{+}\pi^{-}K^{+}K^{-}D^{+}\bar{D}^{0})$ $e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to K^{0}J/\psi, \bar{B}^{0} \to \pi^{0}\pi^{+}\pi^{-}\pi^{-}D^{*+}, K^{0} \to K_{S}, J/\psi \to e^{+}e^{-},$	105	105	1	106
107	$D^{*+} ightarrow \pi^+ D^0 \ (e^+e^- ightarrow e^+e^- \pi^+ \pi^+ \pi^- \pi^- K_S D^0 \gamma \gamma)$	106	106	1	107
108	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \pi^{0}\pi^{0}\pi^{+}\rho^{-}\bar{D}^{*0}, \bar{B}^{0} \to \rho^{-}\eta\omega\omega D^{*+}, \rho^{-} \to \pi^{0}\pi^{-}, \bar{D}^{*0} \to \bar{D}^{0}\gamma,$ $\rho^{-} \to \pi^{0}\pi^{-}, \eta \to \pi^{0}\pi^{0}\pi^{0}, \omega \to \pi^{0}\pi^{+}\pi^{-}, \omega \to \pi^{0}\pi^{+}\pi^{-}, D^{*+} \to \pi^{0}D^{+}$ $(e^{+}e^{-} \to \pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{0}$	107	107	1	108
109	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \pi^{+}\pi^{-}\bar{D}^{*0}, \bar{B}^{0} \to \pi^{0}\pi^{+}\pi^{-}\rho^{-}D^{+}, \bar{D}^{*0} \to \pi^{0}\bar{D}^{0}, \rho^{-} \to \pi^{0}\pi^{-},$ $D^{+} \to \pi^{+}K_{S}$ $(e^{+}e^{-} \to \pi^{0}\pi^{0}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K_{S}\bar{D}^{0}\gamma\gamma)$ $e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to \bar{B}^{0}\bar{B}^{0}, \bar{B}^{0} \to \rho^{0}\pi^{-}D^{*+}, \bar{B}^{0} \to \bar{K}^{0}\bar{\Sigma}^{*0}\Sigma_{c}^{*0}, \rho^{0} \to \pi^{+}\pi^{-}, D^{*+} \to \pi^{+}D^{0},$	108	108	1	109
110	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to \bar{B}^{0}\bar{B}^{0}, \bar{B}^{0} \to \rho^{0}\pi^{-}D^{*+}, \bar{B}^{0} \to \bar{K}^{0}\bar{\Sigma}^{*0}\Sigma_{c}^{*0}, \rho^{0} \to \pi^{+}\pi^{-}, D^{*+} \to \pi^{+}D^{0},$ $\bar{K}^{0} \to K_{L}, \bar{\Sigma}^{*0} \to \pi^{0}\bar{\Lambda}, \Sigma_{c}^{*0} \to \pi^{-}\Lambda_{c}^{+}$ $(e^{+}e^{-} \to \pi^{0}K_{L}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}D^{0}\bar{\Lambda}\Lambda_{c}^{+})$	109	109	1	110

index	event tree (event initial-final states)	iEvtTr	iEvtIFSts	nEvts	nCmltEvts
111	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to \bar{B}^{0}\bar{B}^{0}, \bar{B}^{0} \to D^{*+}D^{*-}_{s}, \bar{B}^{0} \to \rho^{0}\pi^{+}\bar{\Delta}^{++}\Lambda^{+}_{c}, D^{*+} \to \pi^{0}D^{+}, D^{*-}_{s} \to \pi^{0}D^{-}_{s},$ $\rho^{0} \to \pi^{+}\pi^{-}, \bar{\Delta}^{++} \to \pi^{-}\bar{p}, \Lambda^{+}_{c} \to \rho^{0}\Sigma^{+}$ $(e^{+}e^{-} \to \pi^{0}\pi^{0}\rho^{0}\pi^{+}\pi^{+}\pi^{-}\pi^{-}D^{+}D^{-}_{s}\bar{p}\Sigma^{+})$	110	110	1	111
112	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to e^{+}\nu_{e}D_{2}^{*-}, \bar{B}^{0} \to \rho^{-}\bar{D}^{*+}, D_{2}^{*-} \to \pi^{-}\bar{D}^{0}, \rho^{-} \to \pi^{0}\pi^{-}, D^{*+} \to \pi^{+}D^{0}$ $(e^{+}e^{-} \to e^{+}\nu_{e}\pi^{0}\pi^{+}\pi^{-}\pi^{-}D^{0}\bar{D}^{0})$	111	111	1	112
113	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to e^{+}\nu_{e}D^{-}, \bar{B}^{0} \to D_{s}^{*+}\bar{\Delta}^{+}\Lambda, D^{-} \to \pi^{-}\pi^{-}K^{+}, D_{s}^{*+} \to D_{s}^{+}\gamma,$ $\bar{\Delta}^{+} \to \pi^{-}\bar{n}, \Lambda \to \pi^{0}n$ $(e^{+}e^{-} \to e^{+}\nu_{e}\pi^{0}\pi^{-}\pi^{-}\pi^{-}K^{+}D_{s}^{+}n\bar{n}\gamma)$ $e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \pi^{0}\pi^{+}\pi^{+}\pi^{-}\bar{D}^{*-}, \bar{B}^{0} \to K^{-}D^{*+}\bar{D}^{*0}, \bar{D}^{*-} \to \pi^{0}D^{-}, D^{*+} \to \pi^{+}D^{0},$	112	112	1	113
114	$ar{D}^{*0} o \pi^0 ar{D}^0 \ (e^+e^- o \pi^0\pi^0\pi^+\pi^+\pi^+\pi^-K^-D^-D^0ar{D}^0\gamma\gamma)$	113	113	1	114
115	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \bar{D}^{*-}D_{s1}^{'+}, \bar{B}^{0} \to e^{-}\bar{\nu}_{e}D^{*+}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0}, D_{s1}^{'+} \to \pi^{0}D_{s}^{*+}, \\ D^{*+} \to \pi^{+}D^{0} \\ (e^{+}e^{-} \to e^{-}\bar{\nu}_{e}\pi^{0}\pi^{+}\pi^{-}D^{0}\bar{D}^{0}D_{s}^{*+})$	114	114	1	115
116	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to \bar{B}^{0}\bar{B}^{0}, \bar{B}^{0} \to D^{*+}D^{*-}_{s}, \bar{B}^{0} \to \mu^{-}\bar{\nu}_{\mu}D^{\prime+}_{1}, D^{*+} \to \pi^{+}D^{0}, D^{*-}_{s} \to D^{-}_{s}\gamma,$ $D^{\prime+}_{1} \to \pi^{0}D^{*+}_{1}$ $(e^{+}e^{-} \to \mu^{-}\bar{\nu}_{\mu}\pi^{0}\pi^{+}D^{*+}D^{0}D^{-}_{s}\gamma)$	115	115	1	116
117	$e^+e^- o \Upsilon(4S), \Upsilon(4S) o B^0 \bar{B}^0, B^0 o \pi^0 \pi^+ \eta \bar{K}^0 K^* D^-, \bar{B}^0 o D^{*+} D_s^{*-}, \eta o \pi^+ \pi^-, \bar{K}^0 o K_L, K^* o \pi^- K^+, D^- o \pi^0 \pi^- K^*, D^{*+} o \pi^+ D^0, D_s^{*-} o D_s^- \gamma$	116	116	1	117
118	$\frac{(e^{+}e^{-} \to \pi^{0}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K^{*}K^{+}D^{0}D_{s}^{-}\gamma\gamma\gamma)}{e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \rho^{-}\eta\bar{K}^{0}K^{+}\bar{D}^{*0}, \bar{B}^{0} \to \pi^{-}\eta D^{*+}, \rho^{-} \to \pi^{0}\pi^{-}, \eta \to \pi^{0}\pi^{0}\pi^{0}, K^{0} \to K_{S}, \bar{D}^{*0} \to \bar{D}^{0}\gamma, \eta \to \pi^{0}\pi^{0}\pi^{0}, D^{*+} \to \pi^{+}D^{0} \\ (e^{+}e^{-} \to \pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{0}$	117	117	1	118
119	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}B^{0}, B^{0} \to \pi^{0}\pi^{0}\bar{D}^{0}, B^{0} \to \pi^{0}\rho^{0}\bar{\rho}^{+}\omega D^{-}, \bar{D}^{0} \to \rho^{0}\pi^{-}K^{+}, \rho^{0} \to \pi^{+}\pi^{-}, \rho^{+} \to \pi^{0}\pi^{+}, \omega \to \pi^{0}\pi^{+}\pi^{-}, D^{-} \to e^{-}\bar{\nu}_{e}\pi^{-}K^{+} $ $(e^{+}e^{-} \to e^{-}\bar{\nu}_{e}\pi^{0}\pi^{0}\rho^{0}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{+}\gamma\gamma\gamma\gamma\gamma\gamma)$	118	118	1	119
120	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to K^{0}D^{*+}\bar{D}^{*-}, \bar{B}^{0} \to \mu^{-}\bar{\nu}_{\mu}D^{*+}, K^{0} \to K_{S}, D^{*+} \to \pi^{0}D^{+}, \\ \bar{D}^{*-} \to \pi^{-}\bar{D}^{0}, D^{*+} \to \pi^{+}D^{0} \\ (e^{+}e^{-} \to \mu^{-}\bar{\nu}_{\mu}\pi^{0}\pi^{+}\pi^{-}K_{S}D^{+}D^{0}\bar{D}^{0})$	119	119	1	120
121	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to \bar{B}^{0}\bar{B}^{0}, \bar{B}^{0} \to e^{-}\bar{\nu}_{e}D^{*+}, \bar{B}^{0} \to \mu^{-}\bar{\nu}_{\mu}D^{*+}, D^{*+} \to \pi^{+}D^{0}, D^{*+} \to \pi^{+}D^{0}$ $(e^{+}e^{-} \to e^{-}\bar{\nu}_{e}\mu^{-}\bar{\nu}_{\mu}\pi^{+}\pi^{+}D^{0}D^{0})$	120	120	1	121
122	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \pi^{0}\pi^{+}\bar{D}^{*-}, B^{0} \to \pi^{+}\pi^{-}\omega\bar{D}^{*0}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0}, \omega \to \pi^{0}\pi^{+}\pi^{-}, D^{*0} \to \pi^{0}D^{0}$ $(e^{+}e^{-} \to \pi^{0}\pi^{0}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}D^{0}\bar{D}^{0}\gamma\gamma)$	121	121	1	122

index	event tree (event initial-final states)	iEvtTr	iEvtIFSts	nEvts	nCmltEvts
123	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \mu^{+}\nu_{\mu}\bar{D}^{*-}, \bar{B}^{0} \to e^{-}\bar{\nu}_{e}D^{*+}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0}, D^{*+} \to \pi^{+}D^{0}$ $(e^{+}e^{-} \to e^{-}\bar{\nu}_{e}\mu^{+}\nu_{\mu}\pi^{+}\pi^{-}D^{0}\bar{D}^{0})$	122	122	1	123
124	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \tau^{+}\nu_{\tau}\bar{D}^{*-}, \bar{B}^{0} \to \pi^{0}\omega K^{*-}D_{s}^{+}, \tau^{+} \to \bar{\nu}_{\tau}\pi^{0}\pi^{+}, \bar{D}^{*-} \to \pi^{0}D^{-},$ $\omega \to \pi^{0}\pi^{+}\pi^{-}, K^{*-} \to \pi^{-}\bar{K}^{0}, D_{s}^{+} \to \pi^{+}f_{0}(980)$ $(e^{+}e^{-} \to \nu_{\tau}\bar{\nu}_{\tau}\pi^{0}\pi^{0}\pi^{0}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\bar{K}^{0}D^{-}f_{0}(980)\gamma\gamma)$	123	123	1	124
125	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \pi^{-}\bar{K}^{0}K^{+}\bar{D}^{*0}, \bar{B}^{0} \to \mu^{-}\bar{\nu}_{\mu}\bar{D}^{+}, \bar{K}^{0} \to K_{L}, \bar{D}^{*0} \to \pi^{0}\bar{D}^{0},$ $D^{+} \to K_{L}K^{*+}$ $(e^{+}e^{-} \to \mu^{-}\bar{\nu}_{\mu}\pi^{0}K_{L}K_{L}\pi^{-}K^{+}K^{*+}\bar{D}^{0})$	124	124	1	125
126	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \mu^{+}\nu_{\mu}D_{1}^{\prime-}, \bar{B}^{0} \to \mu^{-}\bar{\nu}_{\mu}D^{*+}, D_{1}^{\prime-} \to \pi^{-}\bar{D}^{*0}, D^{*+} \to \pi^{0}D^{+}$ $(e^{+}e^{-} \to \mu^{+}\mu^{-}\nu_{\mu}\bar{\nu}_{\mu}\pi^{0}\pi^{-}D^{+}\bar{D}^{*0})$	125	125	1	126
127	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \pi^{0}\pi^{+}\pi^{+}\pi^{-}\bar{D}^{*-}, \bar{B}^{0} \to D_{2}^{*+}D_{s}^{-}, \pi^{0} \to e^{+}e^{-}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0},$ $D_{2}^{*+} \to \pi^{+}D^{0}, D_{s}^{-} \to \pi^{0}\pi^{0}\pi^{-}$ $(e^{+}e^{-} \to e^{+}e^{-}\pi^{0}\pi^{0}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}D^{0}\bar{D}^{0})$	126	126	1	127
128	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to \bar{B}^{0}\bar{B}^{0}, \bar{B}^{0} \to e^{-}\bar{\nu}_{e}D^{*+}, \bar{B}^{0} \to \bar{K}^{*}D^{+}D^{-}, D^{*+} \to \pi^{+}D^{0}, \bar{K}^{*} \to \pi^{+}K^{-},$ $D^{+} \to e^{+}\nu_{e}\bar{K}^{0}, D^{-} \to e^{-}\bar{\nu}_{e}K^{*}$ $(e^{+}e^{-} \to e^{+}e^{-}e^{-}\nu_{e}\bar{\nu}_{e}\bar{\nu}_{e}\pi^{+}\pi^{+}\bar{K}^{0}K^{*}K^{-}D^{0})$	127	127	1	128
129	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to e^{+}\nu_{e}D_{1}^{\prime-}, \bar{B}^{0} \to \pi^{+}D^{0}D_{s}^{-}, D_{1}^{\prime-} \to \pi^{-}\bar{D}^{*0}, D^{0} \to \pi^{0}\pi^{+}\pi^{-}K_{S},$ $D_{s}^{-} \to \tau^{-}\bar{\nu}_{\tau}$ $(e^{+}e^{-} \to e^{+}\nu_{e}\tau^{-}\bar{\nu}_{\tau}\pi^{0}\pi^{+}\pi^{+}\pi^{-}\pi^{-}K_{S}\bar{D}^{*0})$ $e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \bar{D}^{*-}a_{1}^{+}, \bar{B}^{0} \to e^{-}\bar{\nu}_{e}D^{*+}, \bar{D}^{*-} \to \pi^{0}D^{-}, a_{1}^{+} \to \pi^{0}\rho^{+},$	128	128	1	129
130	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \bar{D}^{*-}a_{1}^{+}, \bar{B}^{0} \to e^{-}\bar{\nu}_{e}D^{*+}, \bar{D}^{*-} \to \pi^{0}D^{-}, a_{1}^{+} \to \pi^{0}\rho^{+},$ $D^{*+} \to \pi^{0}D^{+}$ $(e^{+}e^{-} \to e^{-}\bar{\nu}_{e}\pi^{0}\pi^{0}\rho^{+}D^{+}D^{-})$ $e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \eta\bar{K}^{0}K^{+}\bar{D}^{*-}, \bar{B}^{0} \to \rho^{-}\eta D^{+}, \eta \to \pi^{0}\pi^{+}\pi^{-}, \bar{K}^{0} \to K_{S},$	129	129	1	130
131	$\bar{D}^{*-} \to \pi^0 D^-, \rho^- \to \pi^0 \pi^-, \eta \to \gamma \gamma, D^+ \to \pi^0 \pi^0 \pi^+ \\ (e^+ e^- \to \pi^0 \pi^0 \pi^0 \pi^0 \pi^0 \pi^+ \pi^+ \pi^- \pi^- K_S K^+ D^- \gamma \gamma)$	130	130	1	131
132	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}B^{0}, B^{0} \to \rho^{-}D^{+}, B^{0} \to \rho^{0}\pi^{-}\omega D^{+}, \rho^{-} \to \pi^{0}\pi^{-}, D^{+} \to e^{+}\nu_{e}\pi^{+}K^{-},$ $\rho^{0} \to \pi^{+}\pi^{-}, \omega \to \pi^{0}\pi^{+}\pi^{-}, D^{+} \to \pi^{+}\pi^{+}K^{-}$ $(e^{+}e^{-} \to e^{+}\nu_{e}\pi^{0}\pi^{0}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{-}K^{-})$	131	131	1	132
133	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}B^{0}, B^{0} \to \bar{D}^{*-}D_{s}^{+}, B^{0} \to e^{+}\nu_{e}D_{2}^{*-}, \bar{D}^{*-} \to \pi^{0}D^{-}, D_{s}^{+} \to \mu^{+}\nu_{\mu}\phi,$ $D_{2}^{*-} \to \pi^{-}\bar{D}^{*0}$ $(e^{+}e^{-} \to e^{+}\nu_{e}\mu^{+}\nu_{\mu}\pi^{0}\pi^{-}\phi D^{-}\bar{D}^{*0})$	132	132	1	133
134	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \pi^{+}\pi^{-}\rho^{+}\bar{D}^{*-}, \bar{B}^{0} \to D_{2}^{*+}D_{s}^{-}, \rho^{+} \to \pi^{0}\pi^{+}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0},$ $D_{2}^{*+} \to \pi^{+}D^{0}, D_{s}^{-} \to \tau^{-}\bar{\nu}_{\tau}$ $(e^{+}e^{-} \to \tau^{-}\bar{\nu}_{\tau}\pi^{0}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}D^{0}\bar{D}^{0})$	133	133	1	134
135	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \pi^{0}\omega K^{+}D_{s}^{*-}, \bar{B}^{0} \to \mu^{-}\bar{\nu}_{\mu}D^{*+}, \omega \to \pi^{0}\pi^{+}\pi^{-}, D_{s}^{*-} \to D_{s}^{-}\gamma,$ $D^{*+} \to \pi^{+}D^{0}$ $(e^{+}e^{-} \to \mu^{-}\bar{\nu}_{\mu}\pi^{0}\pi^{+}\pi^{+}\pi^{-}K^{+}D^{0}D_{s}^{-}\gamma\gamma\gamma)$	134	134	1	135

index	event tree (event initial-final states)	iEvtTr	iEvtIFSts	nEvts	nCmltEvts
136	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to D_{s}^{*+}D_{1}^{\prime-}, \bar{B}^{0} \to \rho^{0}\pi^{-}D^{*+}, D_{s}^{*+} \to D_{s}^{+}\gamma, D_{1}^{\prime-} \to \pi^{-}\bar{D}^{*0},$ $\rho^{0} \to \pi^{+}\pi^{-}, D^{*+} \to \pi^{+}D^{0}$ $(e^{+}e^{-} \to \pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}D^{0}\bar{D}^{*0}D_{s}^{+}\gamma)$	135	135	1	136
137	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, \bar{B}^{0} \to \rho^{0}\pi^{-}\rho^{+}\rho^{+}K^{0}D^{-}, \bar{B}^{0} \to \pi^{0}\rho^{0}\pi^{-}\eta\omega D^{+}, \rho^{0} \to \pi^{+}\pi^{-}, \rho^{+} \to \pi^{0}\pi^{+},$ $\rho^{+} \to \pi^{0}\pi^{+}, K^{0} \to K_{S}, D^{-} \to K_{L}\pi^{+}\pi^{-}K^{-}, \pi^{0} \to e^{+}e^{-}, \rho^{0} \to \pi^{+}\pi^{-}, \eta \to \pi^{+}\pi^{-},$ $\omega \to \pi^{0}\pi^{+}\pi^{-}, D^{+} \to K_{L}a_{1}^{+}$ $(e^{+}e^{-} \to e^{+}e^{-}\pi^{0}\pi^{0}\pi^{0}K_{L}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K_{S}K^{-}a_{1}^{+})$	136	136	1	137
138	$e^{+}e^{-} o \Upsilon(4S), \Upsilon(4S) o B^{0}\bar{B}^{0}, B^{0} o \pi^{0}\pi^{0}K^{+}D_{s}^{*-}, \bar{B}^{0} o D^{*0}n\bar{n}, D_{s}^{*-} o D_{s}^{-}\gamma, D^{*0} o \pi^{0}D^{0}$ $(e^{+}e^{-} o \pi^{0}K^{+}D^{0}D_{s}^{-}n\bar{n}\gamma\gamma\gamma\gamma\gamma)$	137	137	1	138
139	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}B^{0}, B^{0} \to e^{+}\nu_{e}D^{-}, B^{0} \to K^{+}\Delta^{+}\bar{\Sigma}_{c}^{*}, D^{-} \to K_{L}\pi^{+}\pi^{-}K^{-}, \Delta^{+} \to \pi^{0}p,$ $\bar{\Sigma}_{c}^{*} \to \pi^{-}\bar{\Lambda}_{c}^{-}$ $(e^{+}e^{-} \to e^{+}\nu_{e}\pi^{0}K_{L}\pi^{+}\pi^{-}\pi^{-}K^{+}K^{-}p\bar{\Lambda}_{c}^{-})$ $e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \rho^{+}\rho^{+}\rho^{-}\eta\bar{D}^{*-}, \bar{B}^{0} \to \pi^{0}\pi^{+}\pi^{+}\pi^{-}\pi^{-}K^{0}K^{*}K^{+}K^{*-}, \rho^{+} \to \pi^{0}\pi^{+}, \rho^{+} \to \pi^{0}\pi^{+},$	138	138	1	139
140	$ ho^- o \pi^0 \pi^-, \eta o \pi^0 \pi^+ \pi^-, ar D^{*-} o \pi^0 D^-, ar K^0 o K_S, K^* o \pi^- K^+, K^{*-} o \pi^- ar K^0 \ (e^+ e^- o \pi^0 \pi^0 \pi^0 \pi^0 \pi^0 \pi^+ \pi^+ \pi^+ \pi^+ \pi^+ \pi^- \pi^- \pi^- \pi^- \pi^- K_S ar K^0 K^+ K^+ D^- \gamma \gamma)$	139	139	1	140
141	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \mu^{+}\nu_{\mu}\bar{D}^{*-}, \bar{B}^{0} \to \pi^{0}\rho^{0}\pi^{-}D^{+}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0}, \rho^{0} \to \pi^{+}\pi^{-},$ $D^{+} \to \pi^{0}\pi^{+}\bar{K}^{*}$ $(e^{+}e^{-} \to \mu^{+}\nu_{\mu}\pi^{0}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\bar{K}^{*}\bar{D}^{0}\gamma\gamma)$ $e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to D^{-}D_{s}^{*+}\gamma, \bar{B}^{0} \to \pi^{+}\pi^{-}\rho^{-}D^{+}, D^{-} \to \pi^{0}\pi^{-}K^{+}K^{-}, D_{s}^{*+} \to D_{s}^{+}\gamma,$	140	140	1	141
142	$ ho^- o \pi^0 \pi^-, D^+ o \mu^+ u_\mu K^* \ (e^+ e^- o \mu^+ u_\mu \pi^0 \pi^0 \pi^+ \pi^- \pi^- \pi^- ar{K}^* K^+ K^- D_s^+ \gamma \gamma)$	141	141	1	142
143	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \rho^{+}n\bar{\Sigma}_{c}^{-}, \bar{B}^{0} \to D^{*+}D_{s1}^{'-}, \rho^{+} \to \pi^{0}\pi^{+}, \bar{\Sigma}_{c}^{-} \to \pi^{0}\bar{\Lambda}_{c}^{-},$ $D^{*+} \to \pi^{+}D^{0}, D_{s1}^{'-} \to \pi^{0}D_{s}^{*-}$ $(e^{+}e^{-} \to \pi^{0}\pi^{0}\pi^{0}\pi^{+}\pi^{+}D^{0}D_{s}^{*-}n\bar{\Lambda}_{c}^{-})$	142	142	1	143
144	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to \bar{B}^{0}\bar{B}^{0}, \bar{B}^{0} \to \mu^{-}\bar{\nu}_{\mu}D^{+}, \bar{B}^{0} \to \bar{K}^{*}K^{-}D^{*+}, D^{+} \to K_{S}K^{*+}, \bar{K}^{*} \to \pi^{+}K^{-},$ $D^{*+} \to \pi^{0}D^{+}$ $(e^{+}e^{-} \to \mu^{-}\bar{\nu}_{\mu}\pi^{0}\pi^{+}K_{S}K^{-}K^{-}K^{*+}D^{+})$	143	143	1	144
145	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \pi^{+}\pi^{+}\pi^{-}\omega\bar{D}^{*-}, \bar{B}^{0} \to \pi^{0}\pi^{+}\pi^{-}\pi^{-}D^{*+}, \omega \to \pi^{0}\pi^{+}\pi^{-}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0},$ $D^{*+} \to \pi^{+}D^{0}$ $(e^{+}e^{-} \to \pi^{0}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}D^{0}\bar{D}^{0}\gamma\gamma)$	144	144	1	145
146	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \pi^{+}K^{0}\bar{K}^{*}\bar{D}^{*-}, \bar{B}^{0} \to \pi^{+}K^{-}D^{-}D^{*+}, K^{0} \to K_{L}, \bar{K}^{*} \to \pi^{+}K^{-}, \\ \bar{D}^{*-} \to \pi^{-}\bar{D}^{0}, D^{-} \to K_{S}a_{1}^{-}, D^{*+} \to \pi^{+}D^{0} \\ (e^{+}e^{-} \to K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{-}K_{S}K^{-}K^{-}D^{0}\bar{D}^{0}a_{1}^{-})$	145	145	1	146
147	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to \bar{B}^{0}\bar{B}^{0}, \bar{B}^{0} \to \rho^{-}D_{2}^{*+}, \bar{B}^{0} \to \rho^{0}\pi^{+}K^{*-}\eta_{c}, \rho^{-} \to \pi^{0}\pi^{-}, D_{2}^{*+} \to \pi^{+}D^{0},$ $\rho^{0} \to \pi^{+}\pi^{-}, K^{*-} \to \pi^{-}\bar{K}^{0}, \eta_{c} \to \pi^{0}\pi^{+}\pi^{-}\omega$ $(e^{+}e^{-} \to \pi^{0}\pi^{0}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\omega\bar{K}^{0}D^{0})$	146	146	1	147

index	event tree (event initial-final states)	iEvtTr	iEvtIFSts	nEvts	nCmltEvts
	$e^+e^- \to \Upsilon(4S), \Upsilon(4S) \to B^0\bar{B}^0, B^0 \to \rho^0\pi^+\pi^+\rho^-D^-, \bar{B}^0 \to D_s^{*-}D_1^+, \rho^0 \to \pi^+\pi^-, \rho^- \to \pi^0\pi^-,$				
148	$D^- o \mu^- ar{ u}_\mu K^0, D_s^{*-} o D_s^- \gamma, D_1^+ o \pi^+ D^{*0}$	147	147	1	148
	$(e^+e^- \to \mu^- \bar{\nu}_\mu \pi^0 \pi^+ \pi^+ \pi^+ \pi^+ \pi^- \pi^- K^0 D^{*0} D_s^- \gamma)$				
	$e^{+}e^{-} \rightarrow \Upsilon(4S), \Upsilon(4S) \rightarrow B^{0}\bar{B}^{0}, B^{0} \rightarrow \pi^{0}\rho^{0}\pi^{+}D^{-}, \bar{B}^{0} \rightarrow \pi^{+}\pi^{-}\pi^{-}D^{+}, \rho^{0} \rightarrow \pi^{+}\pi^{-}, D^{-} \rightarrow \pi^{-}K_{1}^{'0},$				
149	$D^+ o K_S a_1^+$	148	148	1	149
	$\frac{(e^{+}e^{-} \to \pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K_{S}a_{1}^{+}K_{1}^{'0}\gamma\gamma)}{e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \tau^{+}\nu_{\tau}D_{0}^{*-}, \bar{B}^{0} \to \pi^{0}\omega K^{*}K^{-}D^{+}, \tau^{+} \to \mu^{+}\nu_{\mu}\bar{\nu}_{\tau}, D_{0}^{*-} \to \pi^{-}\bar{D}^{0},}$				
	$e^+e^- o \Upsilon(4S), \Upsilon(4S) o B^0 \bar{B}^0, B^0 o \tau^+ \nu_{\tau} D_0^{*-}, \bar{B}^0 o \pi^0 \omega K^* K^- D^+, \tau^+ o \mu^+ \nu_{\mu} \bar{\nu}_{\tau}, D_0^{*-} o \pi^- \bar{D}^0,$				
150	$\omega \to \pi^0 \pi^+ \pi^-, K^* \to \pi^0 K^0, D^+ \to \pi^+ \pi^+ K^-$	149	149	1	150
	$\frac{(e^{+}e^{-} \to \mu^{+}\nu_{\mu}\nu_{\tau}\bar{\nu}_{\tau}^{'}\pi^{0}\pi^{0}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}K^{0}K^{-}K^{-}\bar{D}^{0}\gamma\gamma)}{e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to e^{+}\nu_{e}\pi^{+}\pi^{-}\bar{D}^{*-}, \bar{B}^{0} \to e^{-}\bar{\nu}_{e}D^{*+}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0}, D^{*+} \to \pi^{0}D^{+}}$				
151	$(e^{+}e^{-} \rightarrow e^{+}e^{-}\nu_{e}\bar{\nu}_{e}\pi^{0}\pi^{+}\pi^{-}D^{+}\bar{D}^{0})$ $(e^{+}e^{-} \rightarrow e^{+}e^{-}\nu_{e}\bar{\nu}_{e}\pi^{0}\pi^{+}\pi^{-}\pi^{-}D^{+}\bar{D}^{0})$	150	150	1	151
	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \rho^{0}\bar{D}^{*-}\bar{\Sigma}^{0}\Sigma^{+}, \bar{B}^{0} \to \eta \bar{K}^{0}J/\psi, \rho^{0} \to \pi^{+}\pi^{-}, \bar{D}^{*-} \to \pi^{0}D^{-},$				
152	$ar{\Sigma}^0 ightarrow ar{\Lambda}\gamma, \Sigma^+ ightarrow \pi^+ n, \eta ightarrow \pi^0 \pi^0, ar{K}^0 ightarrow K_L, J/\psi ightarrow \pi^- \eta K_S K^+$	151	151	1	152
	$(e^{+}e^{-} o \pi^{0}\pi^{0}\pi^{0}\pi^{0}K_{L}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\eta K_{S}K^{+}D^{-}n\bar{\Lambda}\gamma)$				
	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \rho^{0}\rho^{0}\rho^{0}\rho^{+}\bar{D}^{*-}, \bar{B}^{0} \to e^{-}\bar{\nu}_{e}D^{*+}, \rho^{0} \to \pi^{+}\pi^{-}, \rho^{0} \to \pi^$				
153	$ ho^0 o \pi^+ \pi^-, ho^+ o \pi^0 \pi^+, ar{D}^{*-} o \pi^- ar{D}^0, D^{*+} o D^+ \gamma$	152	152	1	153
	$(e^{+}e^{-} \to e^{-}\bar{\nu}_{e}\pi^{0}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}D^{+}\bar{D}^{0}\gamma)$				
	$e^+e^- \to \Upsilon(4S), \Upsilon(4S) \to B^0\bar{B}^0, B^0 \to K^{*+}D^-, \bar{B}^0 \to \pi^+K^-\chi_{c1}, K^{*+} \to \pi^0K^+, D^- \to \pi^-K_1^{'0},$				
154	$\chi_{c1} ightarrow \pi^- \eta \eta ar K^0 K^+$	153	153	1	154
	$(e^{+}e^{-} \to \pi^{0}\pi^{+}\pi^{-}\pi^{-}\eta\eta\bar{K}^{0}K^{+}K^{+}K^{-}K_{1}^{'0})$				
155	$e^{+}e^{-} \rightarrow \Upsilon(4S), \Upsilon(4S) \rightarrow B^{0}\bar{B}^{0}, B^{0} \rightarrow K^{*+}D^{-}D^{0}, \bar{B}^{0} \rightarrow e^{-}\bar{\nu}_{e}D_{2}^{*+}, K^{*+} \rightarrow \pi^{0}K^{+}, D^{-} \rightarrow \pi^{0}\pi^{-}K_{S},$ $D^{0} \rightarrow \pi^{0}\pi^{0}\pi^{+}\pi^{-}, D_{2}^{*+} \rightarrow \pi^{+}D^{0}$	154	154	1	155
199	$(e^{+}e^{-} \rightarrow e^{-}\bar{\nu}_{e}\pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{+}\pi^{+}\pi^{-}\pi^{-}K_{S}K^{+}D^{0})$	104	104	1	199
	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \rho^{+}D^{-}, \bar{B}^{0} \to \pi^{-}\pi^{-}\rho^{+}D^{*+}, \rho^{+} \to \pi^{0}\pi^{+}, D^{-} \to \rho^{-}K^{*},$				
156	$a^{+} \rightarrow \pi^{0} \pi^{+} D^{*+} \rightarrow \pi^{+} D^{0}$	155	155	1	156
	$\frac{(e^{+}e^{-} \to \pi^{0}\pi^{0}\pi^{0}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\rho^{-}K^{*}D^{0})}{e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to e^{+}\nu_{e}\bar{D}^{*-}, \bar{B}^{0} \to \pi^{0}\rho^{0}\rho^{-}D^{*+}\gamma, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0}, \rho^{0} \to \pi^{+}\pi^{-},}$				
	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to e^{+}\nu_{e}\bar{D}^{*-}, \bar{B}^{0} \to \pi^{0}\rho^{0}\rho^{-}D^{*+}\gamma, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0}, \rho^{0} \to \pi^{+}\pi^{-},$				
157	$ ho^- ightarrow \pi^0 \pi^-, D^{*+} ightarrow \pi^+ D^0$	156	156	1	157
	$\frac{(e^{+}e^{-} \stackrel{\cdot}{\to} e^{+}\nu_{e}\pi^{0}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}D^{0}\bar{D}^{0}\gamma\gamma\gamma)}{e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}B^{0}, B^{0} \to \pi^{+}\bar{D}^{*-}, B^{0} \to \pi^{0}\rho^{0}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\eta\omega D^{-}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0}, \rho^{0} \to \pi^{+}\pi^{-},}$				
150	$e^{+}e^{-} o \Upsilon(4S), \Upsilon(4S) o B^{0}B^{0}, B^{0} o \pi^{+}D^{*-}, B^{0} o \pi^{0}\rho^{0}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\eta\omega D^{-}, D^{*-} o \pi^{-}D^{0}, \rho^{0} o \pi^{+}\pi^{-},$	1.55		_	1.50
158	$\eta \to \pi^0 \pi^+ \pi^-, \omega \to \pi^0 \pi^+ \pi^-, D^- \to \mu^- \bar{\nu}_\mu \pi^- K^+$	157	157	1	158
	$\frac{(e^{+}e^{-} \to \mu^{-}\bar{\nu}_{\mu}\pi^{0}\pi^{0}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}\bar{D}^{0}\gamma\gamma)}{e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \pi^{-}K^{0}D^{+}\bar{D}^{*0}, \bar{B}^{0} \to e^{-}\bar{\nu}_{e}D^{+}, K^{0} \to K_{S}, D^{+} \to K_{S}a_{1}^{+},$				
159	$e^+e^- ightarrow 1 (4S), 1 (4S) ightarrow D^- D^- D^- D^- D^- D^- D^- D^- D^- D^-$	158	158	1	159
100	$(e^{+}e^{-} ightarrow e^{-}ar{ u}_{e}\mu^{+} u_{\mu}\pi^{-}K_{S}K_{S}ar{K}^{*}ar{D}^{0}a_{1}^{+}\gamma)$	100	100	1	100

index	event tree (event initial-final states)	iEvtTr	iEvtIFSts	nEvts	nCmltEvts
160	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \mu^{+}\nu_{\mu}D_{1}^{-}, \bar{B}^{0} \to e^{-}\bar{\nu}_{e}D^{*+}, D_{1}^{-} \to \pi^{-}\bar{D}^{*0}, D^{*+} \to \pi^{0}D^{+}$ $(e^{+}e^{-} \to e^{-}\bar{\nu}_{e}\mu^{+}\nu_{\mu}\pi^{0}\pi^{-}D^{+}\bar{D}^{*0})$	159	159	1	160
161	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \bar{K}^{0}K^{+}D^{-}, \bar{B}^{0} \to \rho^{0}\pi^{-}D^{*+}, \bar{K}^{0} \to K_{L}, D^{-} \to K^{*}a_{1}^{-},$ $\rho^{0} \to \pi^{+}\pi^{-}, D^{*+} \to \pi^{+}D^{0}$ $(e^{+}e^{-} \to K_{L}\pi^{+}\pi^{+}\pi^{-}\pi^{-}K^{*}K^{+}D^{0}a_{1}^{-})$	160	160	1	161
162	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to \bar{B}^{0}\bar{B}^{0}, \bar{B}^{0} \to D^{*+}D_{s}^{-}, \bar{B}^{0} \to \pi^{0}\pi^{0}\pi^{-}\omega D^{+}, D^{*+} \to \pi^{+}D^{0}, D_{s}^{-} \to \mu^{-}\bar{\nu}_{\mu}\eta,$ $\omega \to \pi^{+}\pi^{-}, D^{+} \to \mu^{+}\nu_{\mu}\bar{K}^{*}$ $(e^{+}e^{-} \to \mu^{+}\mu^{-}\nu_{\mu}\bar{\nu}_{\mu}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\eta\bar{K}^{*}D^{0}\gamma\gamma\gamma\gamma)$	161	161	1	162
163	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, \bar{B}^{0} \to \pi^{+}\omega\bar{D}^{*-}, \bar{B}^{0} \to D^{*+}D_{s}^{-}, \omega \to \pi^{0}\pi^{+}\pi^{-}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0},$ $D^{*+} \to \pi^{0}D^{+}, D_{s}^{-} \to \mu^{-}\bar{\nu}_{\mu}\eta'$	162	162	1	163
164	$\frac{(e^{+}e^{-} \to \mu^{-}\bar{\nu}_{\mu}\pi^{0}\pi^{0}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\eta'D^{+}\bar{D}^{0})}{e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \pi^{0}\Sigma^{0}\bar{\Xi}^{0}_{c}, \bar{B}^{0} \to D^{+}D'^{-}_{s1}, \Sigma^{0} \to \Lambda\gamma, \bar{\Xi}^{0}_{c} \to \pi^{-}K^{+}\bar{\Sigma}^{0},}$ $D^{+} \to \mu^{+}\nu_{\mu}\bar{K}^{*}, D'^{-}_{s1} \to \pi^{0}D^{*}_{s}^{-}$ $(e^{+}e^{-} \to \mu^{+}\nu_{\mu}\pi^{0}\pi^{-}\bar{K}^{*}K^{+}D^{*}_{s}^{-}\Lambda\bar{\Sigma}^{0}\gamma\gamma\gamma)$	163	163	1	164
165	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \rho^{0}\eta\omega\bar{D}^{*0}, \bar{B}^{0} \to \pi^{0}\rho^{-}\omega\bar{D}^{*+}, \rho^{0} \to \pi^{+}\pi^{-}, \eta \to \pi^{0}\pi^{+}\pi^{-}, \omega \to \pi^{0}\pi^{+}\pi^{-}, \bar{D}^{*0} \to \pi^{0}\bar{D}^{0}, \rho^{-} \to \pi^{0}\pi^{-}, \omega \to \pi^{0}\pi^{+}\pi^{-}, D^{*+} \to \pi^{+}D^{0}$ $(e^{+}e^{-} \to \pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}D^{0}\bar{D}^{0}\gamma\gamma)$	164	164	1	165
166	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \bar{D}^{*-}\bar{\Delta}^{-}\Delta^{0}, \bar{B}^{0} \to \rho^{-}D^{+}, \bar{D}^{*-} \to \pi^{0}D^{-}, \bar{\Delta}^{-} \to \pi^{+}\bar{n},$ $\Delta^{0} \to \pi^{0}n, \rho^{-} \to \pi^{0}\pi^{-}, D^{+} \to \mu^{+}\nu_{\mu}\pi^{+}K^{-}$ $(e^{+}e^{-} \to \mu^{+}\nu_{\mu}\pi^{0}\pi^{0}\pi^{0}\pi^{+}\pi^{+}\pi^{-}K^{-}D^{-}n\bar{n})$	165	165	1	166
167	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \rho^{-}p\bar{\Sigma}_{c}^{0}, \bar{B}^{0} \to \tau^{-}\bar{\nu}_{\tau}D^{*+}, \rho^{-} \to \pi^{0}\pi^{-}, \bar{\Sigma}_{c}^{0} \to \pi^{+}\bar{\Lambda}_{c}^{-},$ $\tau^{-} \to \nu_{\tau}\pi^{0}\pi^{-}, D^{*+} \to \pi^{+}D^{0}$ $(e^{+}e^{-} \to \nu_{\tau}\bar{\nu}_{\tau}\pi^{0}\pi^{0}\pi^{+}\pi^{+}\pi^{-}\pi^{-}D^{0}p\bar{\Lambda}_{c}^{-})$	166	166	1	167
168	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to \bar{B}^{0}\bar{B}^{0}, \bar{B}^{0} \to \pi^{+}K^{*-}J/\psi, \bar{B}^{0} \to \bar{K}^{0}D^{*0}\bar{D}^{*0}, K^{*-} \to \pi^{-}\bar{K}^{0}, J/\psi \to K^{*}\bar{K}^{*}\gamma,$ $\bar{K}^{0} \to K_{L}, D^{*0} \to D^{0}\gamma, \bar{D}^{*0} \to \bar{D}^{0}\gamma$ $(e^{+}e^{-} \to K_{L}\pi^{+}\pi^{-}\bar{K}^{0}K^{*}\bar{K}^{*}D^{0}\bar{D}^{0}\gamma\gamma\gamma)$	167	167	1	168
169	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, \bar{B}^{0} \to \pi^{-}K^{*+}D^{0}\bar{D}^{*0}, \bar{B}^{0} \to \pi^{0}\pi^{+}\pi^{-}\pi^{-}D^{*+}, K^{*+} \to \pi^{+}K^{0}, D^{0} \to K^{-}a_{1}^{+}, \\ \bar{D}^{*0} \to \pi^{0}\bar{D}^{0}, D^{*+} \to \pi^{+}D^{0} \\ (e^{+}e^{-} \to \pi^{0}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K^{0}K^{-}D^{0}\bar{D}^{0}a_{1}^{+}\gamma\gamma)$	168	168	1	169
170	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}B^{0}, B^{0} \to \mu^{+}\nu_{\mu}D^{-}, B^{0} \to \pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\eta K^{+}K^{+}D_{s}^{*-}, D^{-} \to \mu^{-}\bar{\nu}_{\mu}K^{0}, \eta \to \pi^{0}\pi^{+}\pi^{-},$ $D_{s}^{*-} \to D_{s}^{-}\gamma$ $(e^{+}e^{-} \to \mu^{+}\mu^{-}\nu_{\mu}\bar{\nu}_{\mu}\pi^{0}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K^{0}K^{+}K^{+}D_{s}^{-}\gamma)$ $e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}B^{0}, B^{0} \to \pi^{0}K^{0}D^{-}\Delta^{0}\bar{\Sigma}^{+}, B^{0} \to \pi^{0}\pi^{+}\pi^{+}\pi^{-}\rho^{-}\bar{D^{0}}, \bar{K}^{0} \to K_{L}, D^{-} \to \pi^{0}\pi^{-}K_{S},$	169	169	1	170
171	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}B^{0}, B^{0} \to \pi^{0}\bar{K}^{0}D^{-}\Delta^{0}\bar{\Sigma}^{+}, B^{0} \to \pi^{0}\pi^{+}\pi^{+}\pi^{-}\rho^{-}\bar{D}^{0}, \bar{K}^{0} \to K_{L}, D^{-} \to \pi^{0}\pi^{-}K_{S},$ $\Delta^{0} \to \pi^{0}n, \bar{\Sigma}^{+} \to \pi^{+}\bar{n}, \rho^{-} \to \pi^{0}\pi^{-}, \bar{D}^{0} \to \pi^{-}\rho^{+}$ $(e^{+}e^{-} \to \pi^{0}\pi^{0}\pi^{0}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\rho^{+}K_{S}n\bar{n}\gamma\gamma\gamma\gamma)$	170	170	1	171

index	event tree (event initial-final states)	iEvtTr	iEvtIFSts	nEvts	nCmltEvts
172	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \mu^{+}\nu_{\mu}\bar{D}^{*-}, \bar{B}^{0} \to \pi^{+}\rho^{-}\rho^{-}\omega D^{*+}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0}, \rho^{-} \to \pi^{0}\pi^{-},$ $\rho^{-} \to \pi^{0}\pi^{-}, \omega \to \pi^{0}\pi^{+}\pi^{-}, D^{*+} \to \pi^{0}D^{+}$ $(e^{+}e^{-} \to \mu^{+}\nu_{\mu}\pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}D^{+}\bar{D}^{0})$ $e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \bar{D}^{*-}D'^{+}_{s1}, \bar{B}^{0} \to \pi^{0}\pi^{+}\pi^{+}K^{-}D^{-}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0}, D'^{+}_{s1} \to \pi^{0}D^{*+}_{s},$	171	171	1	172
173	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \bar{D}^{*-}D_{s1}^{'+}, \bar{B}^{0} \to \pi^{0}\pi^{+}\pi^{+}K^{-}D^{-}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0}, D_{s1}^{'+} \to \pi^{0}D_{s}^{*+}, D^{-} \to K_{S}K^{*-}$ $(e^{+}e^{-} \to \pi^{0}\pi^{+}\pi^{+}\pi^{-}K_{S}K^{-}K^{*-}\bar{D}^{0}D_{s}^{*+}\gamma\gamma)$ $e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to K^{*}D^{-}D^{*+}, \bar{B}^{0} \to \rho^{0}\rho^{-}\eta D^{*+}, K^{*} \to \pi^{-}K^{+}, D^{-} \to \mu^{-}\bar{\nu}_{\mu}K^{0},$	172	172	1	173
174	$D^{*+} ightarrow \pi^+ D^0, ho^0 ightarrow \pi^+ \pi^-, ho^- ightarrow \pi^0 \pi^-, \eta ightarrow \pi^0 \pi^+ \pi^-, D^{*+} ightarrow \pi^+ D^0 \ (e^+ e^- ightarrow \mu^- ar{ u}_\mu \pi^0 \pi^0 \pi^+ \pi^+ \pi^+ \pi^+ \pi^- \pi^- \pi^- K^0 K^+ D^0 D^0)$	173	173	1	174
175	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to \bar{B}^{0}\bar{B}^{0}, \bar{B}^{0} \to \rho^{-}\omega D^{+}\gamma, \bar{B}^{0} \to \pi^{0}\pi^{0}\pi^{+}K^{0}K^{0}K^{-}K^{-}D^{*+}, \rho^{-} \to \pi^{0}\pi^{-}, \omega \to \pi^{0}\pi^{+}\pi^{-},$ $D^{+} \to \pi^{0}\pi^{+}\bar{K}^{*}, K^{0} \to K_{L}, K^{0} \to K_{L}, D^{*+} \to \pi^{+}D^{0}$ $(e^{+}e^{-} \to \pi^{0}\pi^{0}\pi^{0}K_{L}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\bar{K}^{*}K^{-}K^{-}D^{0}\gamma\gamma\gamma\gamma\gamma)$	174	174	1	175
176	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \tau^{+}\nu_{\tau}\bar{D}^{*-}, \bar{B}^{0} \to \pi^{0}\bar{n}\Sigma_{c}^{0}, \tau^{+} \to \bar{\nu}_{\tau}\pi^{0}\pi^{0}\pi^{+}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0},$ $\Sigma_{c}^{0} \to \pi^{-}\Lambda_{c}^{+}$ $(e^{+}e^{-} \to \nu_{\tau}\bar{\nu}_{\tau}\pi^{0}\pi^{0}\pi^{+}\pi^{-}\pi^{-}\bar{D}^{0}\bar{n}\Lambda_{c}^{+}\gamma\gamma)$ $e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \rho^{-}D^{-}\bar{\Delta}^{0}\Delta^{++}, \bar{B}^{0} \to e^{-}\bar{\nu}_{e}D^{*+}, \rho^{-} \to \pi^{0}\pi^{-}, D^{-} \to K_{L}K_{L}K^{-},$	175	175	1	176
177	$\Delta^0 o \pi^0 ar{n}, \Delta^{++} o \pi^+ p, D^{*+} o \pi^0 D^+ \ (e^+ e^- o e^- ar{ u}_e \pi^0 \pi^0 \pi^0 K_L K_L \pi^+ \pi^- K^- D^+ ar{n} p)$	176	176	1	177
178	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \pi^{0}D^{-}\bar{n}p, \bar{B}^{0} \to \pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{+}K^{*-}\bar{D}^{*0}, D^{-} \to K_{L}a_{1}^{-}, K^{*-} \to \pi^{0}K^{-}, \\ \bar{D}^{*0} \to \bar{D}^{0}\gamma \\ (e^{+}e^{-} \to \pi^{0}K_{L}\pi^{+}K^{-}\bar{D}^{0}\bar{n}pa_{1}^{-}\gamma\gamma\gamma\gamma\gamma\gamma\gamma) \\ e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to \bar{B}^{0}\bar{B}^{0}, \bar{B}^{0} \to \mu^{-}\bar{\nu}_{\mu}D^{*+}, \bar{B}^{0} \to D^{+}\Delta^{-}\bar{n}, D^{*+} \to \pi^{0}D^{+}, D^{+} \to \pi^{+}\pi^{+}K^{-},$	177	177	1	178
179	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to \bar{B}^{0}\bar{B}^{0}, \bar{B}^{0} \to \mu^{-}\bar{\nu}_{\mu}D^{*+}, \bar{B}^{0} \to D^{+}\Delta^{-}\bar{n}, D^{*+} \to \pi^{0}D^{+}, D^{+} \to \pi^{+}\pi^{+}K^{-}, \\ \Delta^{-} \to \pi^{-}n \\ (e^{+}e^{-} \to \mu^{-}\bar{\nu}_{\mu}\pi^{0}\pi^{+}\pi^{+}\pi^{-}K^{-}D^{+}n\bar{n}) \\ e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to \bar{B}^{0}\bar{B}^{0}, \bar{B}^{0} \to \mu^{+}\nu_{\mu}\bar{D}^{*-}, \bar{B}^{0} \to \pi^{0}\pi^{+}D^{0}D^{*-}_{s}, \bar{D}^{*-} \to \pi^{0}D^{-}, D^{0} \to e^{+}\nu_{e}K^{*-},$	178	178	1	179
180	$(e^{+}e^{-} \to e^{+}\nu_{e}\mu^{+}\nu_{\mu}\pi^{0}\pi^{+}K^{*-}D^{-}D_{s}^{-}\gamma\gamma\gamma)$	179	179	1	180
181	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \mu^{+}\nu_{\mu}X_{u}^{-}, \bar{B}^{0} \to \bar{K}^{*}\bar{\Lambda}\Xi_{c}^{*0}, X_{u}^{-} \to \pi^{0}\rho^{-}, \bar{K}^{*} \to \pi^{+}K^{-}, \\ \bar{\Lambda} \to \pi^{+}\bar{p}, \Xi_{c}^{*0} \to \Xi_{c}^{0}\gamma \\ (e^{+}e^{-} \to \mu^{+}\nu_{\mu}\pi^{0}\pi^{+}\pi^{+}\rho^{-}K^{-}\bar{p}\Xi_{c}^{0}\gamma) \\ e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \pi^{0}\rho^{0}\pi^{+}\omega\bar{D}^{*-}, \bar{B}^{0} \to \pi^{+}\pi^{-}\rho^{-}D^{+}, \rho^{0} \to \pi^{+}\pi^{-}, \omega \to \pi^{0}\pi^{+}\pi^{-},$	180	180	1	181
182	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \pi^{0}\rho^{0}\pi^{+}\omega\bar{D}^{*-}, \bar{B}^{0} \to \pi^{+}\pi^{-}\rho^{-}D^{+}, \rho^{0} \to \pi^{+}\pi^{-}, \omega \to \pi^{0}\pi^{+}\pi^{-}, \omega \to \pi^{0}\pi^{+}\pi^{-}, \omega \to \pi^{0}\pi^{-}, \rho^{-} \to \pi^{-}\bar{D}^{0}, \rho^{-} \to \pi^{0}\pi^{-}, D^{+} \to \mu^{+}\nu_{\mu}\pi^{+}K^{-}$ $(e^{+}e^{-} \to \mu^{+}\nu_{\mu}\pi^{0}\pi^{0}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{-}\bar{D}^{0}\gamma\gamma)$ $e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to \bar{B}^{0}\bar{B}^{0}, \bar{B}^{0} \to D^{*+}D'_{s1}^{-}, \bar{B}^{0} \to \pi^{-}\eta D^{*+}, D^{*+} \to \pi^{0}D^{+}, D'_{s1}^{-} \to \pi^{0}D^{*-}_{s}^{-}, \omega \to \pi^{0}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-$	181	181	1	182
183	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to \bar{B}^{0}\bar{B}^{0}, \bar{B}^{0} \to D^{*+}D'_{s1}, \bar{B}^{0} \to \pi^{-}\eta D^{*+}, D^{*+} \to \pi^{0}D^{+}, D'_{s1} \to \pi^{0}D^{*-}, \\ \eta \to \pi^{0}\pi^{0}\pi^{0}, D^{*+} \to \pi^{+}D^{0} \\ (e^{+}e^{-} \to \pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{+}\pi^{-}D^{+}D^{0}D^{*-}_{s})$	182	182	1	183

index	event tree (event initial-final states)	iEvtTr	iEvtIFSts	nEvts	nCmltEvts
184	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \mu^{+}\nu_{\mu}D_{1}^{\prime-}, \bar{B}^{0} \to \pi^{0}\pi^{+}\pi^{-}\rho^{-}D^{*+}, D_{1}^{\prime-} \to \pi^{0}\bar{D}^{*-}, \rho^{-} \to \pi^{0}\pi^{-},$ $D^{*+} \to \pi^{+}D^{0}$ $(e^{+}e^{-} \to \mu^{+}\nu_{\mu}\pi^{0}\pi^{0}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\bar{D}^{*-}D^{0}\gamma\gamma)$ $e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}B^{0}, B^{0} \to \mu^{+}\nu_{\mu}\bar{D}^{*-}, B^{0} \to \pi^{0}\omega D^{-}\bar{\Delta}^{-}\Delta^{0}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0}, \omega \to \pi^{0}\pi^{+}\pi^{-},$	183	183	1	184
185	$D^- o e^-ar u_e K^0, ar\Delta^- o \pi^+ar n, \Delta^0 o \pi^0 n \ (e^+e^- o e^-ar u_e \mu^+ u_\mu\pi^0\pi^0\pi^+\pi^+\pi^-\pi^-K^0ar D^0 nar n\gamma\gamma)$	184	184	1	185
186	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to e^{+}\nu_{e}\bar{D}^{*-}, \bar{B}^{0} \to \omega\bar{K}^{0}K^{*}\bar{K}^{*}, \bar{D}^{*-} \to \pi^{0}D^{-}, \omega \to \pi^{0}\pi^{+}\pi^{-}, \\ \bar{K}^{0} \to K_{L}, K^{*} \to \pi^{-}K^{+}, \bar{K}^{*} \to \pi^{0}\bar{K}^{0} \\ (e^{+}e^{-} \to e^{+}\nu_{e}\pi^{0}\pi^{0}\pi^{0}K_{L}\pi^{+}\pi^{-}\pi^{-}\bar{K}^{0}K^{+}D^{-})$	185	185	1	186
187	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \mu^{+}\nu_{\mu}D_{2}^{*-}, \bar{B}^{0} \to \mu^{-}\bar{\nu}_{\mu}D^{*+}, D_{2}^{*-} \to \pi^{-}\bar{D}^{*0}, D^{*+} \to \pi^{0}D^{+}$ $(e^{+}e^{-} \to \mu^{+}\mu^{-}\nu_{\mu}\bar{\nu}_{\mu}\pi^{0}\pi^{-}D^{+}\bar{D}^{*0})$	186	125	1	187
188	$e^{+}e^{-} \rightarrow \Upsilon(4S), \Upsilon(4S) \rightarrow B^{0}\bar{B}^{0}, B^{0} \rightarrow \pi^{+}\pi^{-}\rho^{+}\rho^{-}\bar{D}^{0}, \bar{B}^{0} \rightarrow \mu^{-}\bar{\nu}_{\mu}D^{*+}, \rho^{+} \rightarrow \pi^{0}\pi^{+}, \rho^{-} \rightarrow \pi^{0}\pi^{-},$ $\bar{D}^{0} \rightarrow K^{+}a_{1}^{-}, D^{*+} \rightarrow \pi^{+}D^{0}$ $(e^{+}e^{-} \rightarrow \mu^{-}\bar{\nu}_{\mu}\pi^{0}\pi^{0}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}K^{+}D^{0}a_{1}^{-})$	187	186	1	188
189	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \bar{D}^{*-}D_{s1}'^{+}, \bar{B}^{0} \to e^{-}\bar{\nu}_{e}D_{2}^{*+}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0}, D_{s1}'^{+} \to \pi^{0}D_{s}^{*+},$ $D_{2}^{*+} \to \pi^{+}D^{*0}$ $(e^{+}e^{-} \to e^{-}\bar{\nu}_{e}\pi^{0}\pi^{+}\pi^{-}\bar{D}^{0}D^{*0}D_{s}^{*+})$	188	187	1	189
190	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\dot{B}^{0}, B^{0} \to \rho^{+}\eta\eta\bar{D}^{*-}, \bar{B}^{0} \to \pi^{0}\pi^{+}\eta\dot{K}^{*-}, \rho^{+} \to \pi^{0}\pi^{+}, \eta \to \pi^{0}\pi^{0}\pi^{0}, \\ \eta \to \pi^{0}\pi^{0}\pi^{0}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0}, \eta \to \pi^{0}\pi^{0}\pi^{0}, K^{*-} \to \pi^{0}K^{-} \\ (e^{+}e^{-} \to \pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{0}$	189	188	1	190
191	$\begin{array}{c} e^{+}e^{-} \rightarrow \Upsilon(4S), \Upsilon(4S) \rightarrow B \ B, B \rightarrow \rho \ \eta \eta D \ , B \rightarrow \pi \ \eta \Lambda \ , \eta \Lambda \ , \eta \Lambda \ , \eta \rightarrow \pi \ , \eta \rightarrow \pi \ , \eta \Lambda \ , \eta \rightarrow \pi $	190	189	1	191
192	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}B^{0}, B^{0} \to e^{+}\nu_{e}D^{-}, B^{0} \to \rho^{0}\rho^{-}D^{*+}, D^{-} \to e^{-}\bar{\nu}_{e}K^{0}, \rho^{0} \to \pi^{+}\pi^{-}, \\ \rho^{-} \to \pi^{0}\pi^{-}, D^{*+} \to \pi^{+}D^{0} \\ (e^{+}e^{-} \to e^{+}e^{-}\nu_{e}\bar{\nu}_{e}\pi^{0}\pi^{+}\pi^{+}\pi^{-}\pi^{-}K^{0}D^{0})$	191	190	1	192
193	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \rho^{+}\bar{D}^{*-}, \bar{B}^{0} \to \rho^{0}\pi^{-}K^{0}\bar{K}^{*}D^{+}, \rho^{+} \to \pi^{0}\pi^{+}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0},$ $\rho^{0} \to \pi^{+}\pi^{-}, K^{0} \to K_{S}, \bar{K}^{*} \to \pi^{+}K^{-}, D^{+} \to K_{L}a_{1}^{+}$ $(e^{+}e^{-} \to \pi^{0}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K_{S}K^{-}\bar{D}^{0}a_{1}^{+})$ $e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to e^{+}\nu_{e}D^{-}, \bar{B}^{0} \to K^{*-}D^{*+}\bar{D}^{0}, D^{-} \to K^{*}K^{-}, K^{*-} \to \pi^{-}\bar{K}^{0},$	192	191	1	193
194	$D^{*+} ightarrow \pi^+ D^0, ar{D}^0 ightarrow \pi^0 \pi^- K^+ \ (e^+ e^- ightarrow e^+ u_e \pi^0 \pi^+ \pi^- \pi^- ar{K}^0 K^* K^+ K^- D^0)$	193	192	1	194
195	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to J/\psi K_{1}^{0}, \bar{B}^{0} \to \pi^{0}D^{+}D_{s}^{*-}, J/\psi \to \pi^{0}\eta\eta, K_{1}^{0} \to \pi^{+}\pi^{-}K^{0},$ $D^{+} \to e^{+}\nu_{e}\bar{K}^{0}, D_{s}^{*-} \to D_{s}^{-}\gamma$ $(e^{+}e^{-} \to e^{+}\nu_{e}\pi^{0}\pi^{+}\pi^{-}\eta\eta K^{0}\bar{K}^{0}D_{s}^{-}\gamma\gamma\gamma)$	194	193	1	195

index	event tree (event initial-final states)	iEvtTr	iEvtIFSts	nEvts	nCmltEvts
196	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}B^{0}, B^{0} \to K^{*}D^{+}D^{-}, B^{0} \to \bar{D}^{*-}\bar{\Delta}^{-}\Delta^{0}, K^{*} \to \pi^{0}K^{0}, D^{+} \to \pi^{+}\bar{K}_{1}^{'0},$ $D^{-} \to e^{-}\bar{\nu}_{e}K_{2}^{*0}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0}, \bar{\Delta}^{-} \to \pi^{+}\bar{n}, \Delta^{0} \to \pi^{0}n$ $(e^{+}e^{-} \to e^{-}\bar{\nu}_{e}\pi^{0}\pi^{0}\pi^{+}\pi^{+}\pi^{-}K^{0}K_{2}^{*0}\bar{D}^{0}n\bar{n}\bar{K}_{1}^{'0})$	195	194	1	196
197	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \pi^{0}\pi^{-}\eta\bar{D}^{*0}D_{s}^{*+}, \bar{B}^{0} \to D^{*0}\Delta^{0}\bar{\Delta}^{0}, \eta \to \gamma\gamma, \bar{D}^{*0} \to \bar{D}^{0}\gamma, \\ D_{s}^{*+} \to D_{s}^{+}\gamma, D^{*0} \to \pi^{0}D^{0}, \Delta^{0} \to \pi^{0}n, \bar{\Delta}^{0} \to \pi^{0}\bar{n} \\ (e^{+}e^{-} \to \pi^{0}\pi^{0}\pi^{0}\pi^{-}D^{0}\bar{D}^{0}D_{s}^{+}n\bar{n}\gamma\gamma\gamma\gamma\gamma\gamma)$	196	195	1	197
198	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \rho^{0}\pi^{+}\omega\bar{D}^{*-}, \bar{B}^{0} \to D^{0}n\bar{n}, \rho^{0} \to \pi^{+}\pi^{-}, \omega \to \pi^{0}\pi^{+}\pi^{-}, \\ \bar{D}^{*-} \to \pi^{-}\bar{D}^{0}, D^{0} \to K_{L}\eta \\ (e^{+}e^{-} \to \pi^{0}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\eta\bar{D}^{0}n\bar{n})$	197	196	1	198
199	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}B^{0}, B^{0} \to \mu^{+}\nu_{\mu}\bar{D}^{*-}, B^{0} \to \rho^{0}\pi^{+}\pi^{-}\rho^{+}\omega\bar{D}^{*-}, \bar{D}^{*-} \to \pi^{0}D^{-}, \rho^{0} \to \pi^{+}\pi^{-}, \rho^{+} \to \pi^{0}\pi^{+}, \omega \to \pi^{0}\pi^{+}, \omega \to \pi^{0}\pi^{+}\pi^{-}, \bar{D}^{*-} \to \pi^{0}D^{-}$ $(e^{+}e^{-} \to \mu^{+}\nu_{\mu}\pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}D^{-}D^{-})$	198	197	1	199
200	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}D^{-}, \bar{B}^{0} \to e^{-}\bar{\nu}_{e}\pi^{+}D^{0}, D^{-} \to \mu^{-}\bar{\nu}_{\mu}K_{1}^{0}, D^{0} \to \pi^{+}\pi^{-}K_{S}$ $(e^{+}e^{-} \to e^{-}\bar{\nu}_{e}\mu^{-}\bar{\nu}_{\mu}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K_{S}K_{1}^{0})$	199	198	1	200

Table 2: Event initial-final states.

index	event initial-final states	iEvtIFSts	nEvts	nCmltEvts
1	$e^+e^- \to \mu^+\mu^-\nu_\mu\bar{\nu}_\mu\pi^0\pi^-D^+\bar{D}^{*0}$	125	2	2
2	$e^{+}e^{-} \rightarrow e^{+}e^{-}\pi^{+}\pi^{+}\pi^{-}\pi^{-}K^{0}K^{0}K^{*-}D^{0}$	1	1	3
3	$e^{+}e^{-} \rightarrow e^{+}\nu_{e}\pi^{0}\pi^{0}\pi^{0}\pi^{+}\pi^{+}\pi^{-}\pi^{-}K^{0}\bar{K}^{0}D^{-}D^{0}\gamma\gamma\gamma\gamma$	2	1	4
4	$e^{+}e^{-} \to \pi^{0}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\rho^{+}D^{0}\bar{D}^{0}$	3	1	5
5	$e^{+}e^{-} \to \pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\bar{D}^{0}D_{s}^{*+}\gamma\gamma$	4	1	6
6	$e^{+}e^{-} \rightarrow e^{+}e^{+}\nu_{e}\nu_{e}\pi^{0}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\omega K^{-}\bar{D}^{0}$	5	1	7
7	$e^+e^- \to \pi^0\pi^+\pi^+\pi^-\pi^-K^+K^-\eta'\bar{D}^0\gamma\gamma\gamma\gamma\gamma\gamma$	6	1	8
8	$e^+e^- \to e^+\nu_e\nu_\tau\bar{\nu}_\tau\pi^0\pi^+\pi^-\pi^-K^*\bar{D}^0\gamma\gamma\gamma\gamma\gamma\gamma$	7	1	9
9	$e^{+}e^{-} \rightarrow \mu^{-}\bar{\nu}_{\mu}\pi^{0}\pi^{+}\pi^{+}\pi^{+}\pi^{-}D^{-}D^{0}\gamma\gamma$	8	1	10
10	$e^{+}e^{-} \to \pi^{0}\pi^{0}\pi^{-}\pi^{-}K_{S}K^{+}D^{+}D^{-}_{s}\gamma$	9	1	11
11	$e^{+}e^{-} \to \mu^{+}\mu^{+}\nu_{\mu}\nu_{\mu}\pi^{0}K_{L}\pi^{+}\pi^{-}\pi^{-}\bar{K}^{0}K^{-}\bar{D}^{0}$	10	1	12
12	$e^{+}e^{-} \rightarrow e^{+}e^{-}\pi^{0}\pi^{0}\pi^{+}\pi^{-}K_{S}K^{+}D_{s}^{-}\gamma$	11	1	13
13	$e^{+}e^{-} \to \mu^{+}\nu_{\mu}\pi^{0}\pi^{0}K_{L}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\rho^{-}K_{S}\bar{K}^{0}K^{*+}\eta'\gamma\gamma$	12	1	14
14	$e^{+}e^{-} \to \pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{+}\pi^{+}K_{S}K^{-}D^{-}D^{0}$	13	1	15
15	$e^{+}e^{-} \to \pi^{0}\pi^{+}\pi^{+}\pi^{-}K_{S}K^{+}K^{-}D^{0}a_{1}^{-}$	14	1	16
16	$e^{+}e^{-} \rightarrow e^{-}\bar{\nu}_{e}\pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{0}T^{+}D^{+}D^{-}\gamma\gamma\gamma\gamma$	15	1	17
17	$e^{+}e^{-} \to e^{+}\nu_{e}\pi^{0}K_{L}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\bar{K}^{0}\bar{D}^{0}\bar{D}^{0}\gamma\gamma$	16	1	18
18	$e^{+}e^{-} \to \mu^{+}\nu_{\mu}\pi^{0}K_{L}\pi^{+}\pi^{-}\pi^{-}K^{0}K^{+}K^{-}\phi D^{0}\gamma\gamma\gamma\gamma$	17	1	19
19	$e^{+}e^{-} \to e^{-}\bar{\nu}_{e}\pi^{+}\pi^{-}D^{0}\bar{D}^{0}D_{s}^{+}\gamma$	18	1	20
20	$e^{+}e^{-} \to \mu^{+}\nu_{\mu}\pi^{0}\pi^{0}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\bar{D}^{0}\bar{D}^{*0}\gamma\gamma$	19	1	21
21	$e^+e^- \rightarrow \mu^-\bar{\nu}_\mu \pi^0 \pi^+\bar{K}^0 K^+ K^- D^0 \gamma \gamma$	20	1	22
22	$e^{+}e^{-} \rightarrow e^{-}\bar{\nu}_{e}\pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{+}\pi^{+}\pi^{+}\pi^{-}K_{S}K^{-}D^{+}D^{-}$	21	1	23
23	$e^{+}e^{-} \rightarrow \pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{+}\pi^{+}\pi^{-}\pi^{-}D^{-}D^{0}D_{s}^{+}\gamma\gamma\gamma\gamma\gamma\gamma$	22	1	24
24	$e^{+}e^{-} \to \pi^{0}\pi^{0}\pi^{0}\pi^{0}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{+}\bar{D}^{0}$	23	1	25
25	$e^{+}e^{-} \rightarrow e^{+}\nu_{e}\pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{-}K^{-}\bar{D}^{0}\gamma\gamma$	24	1	26
26	$e^+e^- ightarrow\pi^0K_L\pi^+\pi^+\pi^-\pi^-K^0K^*K^+D^0a_1^-\gamma\gamma\gamma$	25	1	27
27	$e^{+}e^{-} \rightarrow e^{+}\nu_{e}\mu^{+}\nu_{\mu}\pi^{0}\pi^{-}\pi^{-}K^{*}\bar{D}^{0}$	26	1	28
28	$e^+e^- \to \mu^+\mu^-\nu_\mu\bar{\nu}_\mu\pi^+\pi^-\pi^-D^+\bar{D}^0$	27	1	29
29	$e^{+}e^{-} \rightarrow e^{+}\nu_{e}\nu_{\tau}\bar{\nu}_{\tau}\pi^{0}\pi^{0}\pi^{+}\pi^{-}\pi^{-}\bar{K}^{0}\bar{D}^{0}$	28	1	30
30	$e^{+}e^{-} \to \pi^{0}\pi^{0}\pi^{0}\pi^{0}K_{L}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}a_{1}^{+}$	29	1	31
31	$e^{+}e^{-} \to \mu^{+}\nu_{\mu}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\bar{K}^{0}D^{-}\gamma$	30	1	32
32	$e^{+}e^{-} \rightarrow e^{+}\nu_{e}\pi^{0}\pi^{0}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{-}D^{0}\bar{D}^{0}$	31	1	33
33	$e^{+}e^{-} \to \mu^{+}\nu_{\mu}\pi^{0}\pi^{0}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K_{S}\bar{K}^{0}\gamma\gamma\gamma\gamma$	32	1	34
34	$e^{+}e^{-} \rightarrow \nu_{\tau}\bar{\nu}_{\tau}\pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{0$	33	1	35
35	$e^{+}e^{-} \rightarrow \pi^{0}\pi^{0}\pi^{+}\pi^{-}\eta K^{+}K^{-}K^{-}\bar{D}^{0}\bar{n}p$	34	1	36
36	$e^{+}e^{-} \rightarrow e^{-}\bar{\nu}_{e}\pi^{0}\pi^{+}\pi^{+}\pi^{-}\pi^{-}K^{+}D^{+}n\bar{p}$	35	1	37
37	$e^{+}e^{-} \to \mu^{+}\nu_{\mu}K_{L}\pi^{+}\pi^{-}D^{0}a_{1}^{-}\gamma\gamma$	36	1	38
38	$e^+e^- \to \pi^0\pi^0 K_L\pi^+\pi^+\pi^-\pi^-\pi^-K_S p\bar{p}\gamma\gamma\gamma\gamma$	37	1	39
39	$e^+e^- \rightarrow e^+\nu_e\mu^+\nu_\mu\pi^0\pi^0\pi^-\pi^-K^0\bar{K}^0\bar{K}^*\gamma\gamma\gamma\gamma$	38	1	40
40	$e^{+}e^{-} \rightarrow \pi^{0}\pi^{0}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}D^{-}D^{0}\gamma$	39	1	41

index	event initial-final states	iEvtIFSts	nEvts	nCmltEvts
41	$e^+e^- \to \mu^-\mu^-\bar{\nu}_\mu\bar{\nu}_\mu\pi^0\pi^+D^+D^0\gamma\gamma\gamma\gamma$	40	1	42
42	$e^+e^- o \mu^+ u_\mu\pi^0\pi^0\pi^+\pi^-\pi^-D^+\bar{D}^0$	41	1	43
43	$e^{+}e^{-} \to \mu^{+}\nu_{\mu}\pi^{0}\rho^{0}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\rho^{+}\eta\bar{K}^{*}K^{-}n\bar{\Lambda}\gamma\gamma\gamma$	42	1	44
44	$e^{+}e^{-} \rightarrow e^{-}\bar{\nu}_{e}\pi^{0}\pi^{0}\pi^{0}\pi^{+}\pi^{+}\rho^{-}K^{*}\eta'D^{0}$	43	1	45
45	$e^{+}e^{-} \to \pi^{0}\pi^{0}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K^{+}D^{+}\bar{D}^{0}f_{0}(980)$	44	1	46
46	$e^{+}e^{-} \to \mu^{+}\nu_{\mu}\pi^{0}\pi^{0}\pi^{+}\pi^{-}\eta K_{S}K_{S}K^{+}K^{*-}D^{-}\gamma\gamma\gamma\gamma$	45	1	47
47	$e^{+}e^{-} \to \pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{0}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K_{S}K^{+}D^{+}\gamma\gamma\gamma\gamma\gamma\gamma$	46	1	48
48	$e^+e^- \to \mu^- \bar{\nu}_\mu \pi^0 \pi^0 \pi^+ \pi^+ \pi^+ \pi^+ \pi^- \pi^- K^0 \bar{K}^* K^- \bar{D}^0$	47	1	49
49	$e^{+}e^{-} \to e^{+}\nu_{e}\mu^{-}\mu^{-}\bar{\nu}_{\mu}\bar{\nu}_{\mu}\pi^{0}\pi^{+}\pi^{+}\pi^{-}K^{*}\bar{K}^{*}$	48	1	50
50	$e^{+}e^{-} \rightarrow \mu^{-}\bar{\nu}_{\mu}\pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{+}\pi^{+}\pi^{+}\pi^{-}K_{S}K^{-}D^{0}$	49	1	51
51	$e^{+}e^{-} \rightarrow e^{+}\nu_{e}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\bar{D}^{0}a_{1}^{-}\gamma\gamma$	50	1	52
52	$e^{+}e^{-} \rightarrow e^{-}\bar{\nu}_{e}\pi^{0}\pi^{0}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K^{0}K^{-}\gamma\gamma$	51	1	53
53	$e^{+}e^{-} \rightarrow e^{-}\bar{\nu}_{e}\pi^{0}\pi^{0}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K^{0}K^{-}\gamma\gamma$ $e^{+}e^{-} \rightarrow \pi^{0}\pi^{0}\pi^{0}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}D^{0}K_{1}^{'0}\gamma$	52	1	54
54	$e^{+}e^{-} \to \pi^{+}\pi^{-}\rho^{+}\rho^{-}\eta K^{*+}D^{0}D_{s}^{-}\gamma$	53	1	55
55	$e^{+}e^{-} \rightarrow \pi^{0}\pi^{0}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K_{S}K^{0}\bar{K}^{0}\bar{D}^{0}\gamma\gamma$	54	1	56
56	$e^+e^- \to \mu^+\nu_\mu\pi^+\pi^+K^{*-}D_s^-n\bar{\Xi}_c^-\gamma\gamma\gamma\gamma\gamma\gamma\gamma$	55	1	57
57	$e^+e^- \rightarrow e^+\nu_e\pi^0\pi^0\pi^-D^-\bar{n}\Lambda_c^+\gamma\gamma$	56	1	58
58	$e^{+}e^{-} \rightarrow \mu^{-}\bar{\nu}_{\mu}\pi^{+}\pi^{+}\pi^{-}\pi^{-}D^{+}\bar{D}^{0}\gamma\gamma$	57	1	59
59	$e^{+}e^{-} \rightarrow \mu^{+}\nu_{\mu}\pi^{0}\pi^{0}\pi^{0}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K^{*}n\bar{p}\gamma\gamma\gamma\gamma$	58	1	60
60	$e^{+}e^{-} \rightarrow \pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}D^{0}\bar{D}^{0}\gamma$	59	1	61
61	$e^{+}e^{-} \rightarrow \pi^{0}\pi^{0}\pi^{0}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}K_{S}\bar{K}^{*}D^{-}\bar{D}^{0}\gamma\gamma\gamma$	60	1	62
62	$e^{+}e^{-} \rightarrow e^{+}\nu_{e}\pi^{0}\pi^{+}\pi^{-}\pi^{-}\rho^{+}\bar{K}^{0}K^{*-}\bar{D}^{0}\bar{D}^{0}$	61	1	63
63	$e^{+}e^{-} \to e^{-}\bar{\nu}_{e}\pi^{0}\pi^{0}\rho^{0}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}\bar{D}^{0}p\bar{p}$ $e^{+}e^{-} \to \pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}D^{0}$	62	1	64
64	$e^{+}e^{-} \rightarrow \pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{0}$	63	1	65
65	$e^{+}e^{-} \rightarrow e^{+}\nu_{e}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{0}\bar{K}^{0}K^{-}\bar{D}^{0}\gamma\gamma\gamma\gamma$	64	1	66
66	$e^{+}e^{-} \to e^{+}\nu_{e}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K_{S}D^{0}p\bar{p}\gamma\gamma\gamma\gamma$	65	1	67
67	$e^{+}e^{-} o \mu^{+} u_{\mu} u_{ au} \overline{\nu_{ au}}^{0} \pi^{+} \pi^{-} \pi^{-} D^{0} \overline{D}^{0}$	66	1	68
68	$e^{+}e^{-} \to \pi^{0}\pi^{0}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\bar{D}^{0}D_{s}^{-}\gamma\gamma\gamma\gamma$	67	1	69
69	$e^{+}e^{-} \rightarrow e^{-}\bar{\nu}_{e}\pi^{0}\pi^{0}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}K_{S}D^{0}\gamma\gamma$	68	1	70
70	$e^{+}e^{-} \rightarrow \pi^{0}\pi^{0}\pi^{0}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\phi D^{0}$	69	1	71
71	$e^{+}e^{-} \rightarrow e^{+}\nu_{e}\rho^{0}\rho^{0}\pi^{-}\pi^{-}\rho^{+}\bar{K}^{0}\bar{K}^{*}K^{+}K^{*-}$	70	1	72
72	$e^{+}e^{-} \rightarrow e^{-}e^{-}\bar{\nu}_{e}\bar{\nu}_{e}\pi^{0}\pi^{0}\pi^{0}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}K^{+}K^{-}\gamma\gamma\gamma\gamma$	71	1	73
73	$e^{+}e^{-} \to \pi^{0}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\bar{K}^{*}K^{+}n\bar{\Lambda}_{c}^{-}$	72	1	74
74	$e^{+}e^{-} \rightarrow e^{+}\nu_{e}\pi^{0}\pi^{+}\pi^{-}\pi^{-}\pi^{-}D^{0}\bar{D}^{0}\bar{n}p$	73	1	75
75	$e^{+}e^{-} o \pi^{0}\pi^{0}\pi^{0}\pi^{+}\pi^{+}\pi^{-}K^{0}K^{-}D^{+}\bar{D}^{0}D_{s}^{-}$	74	1	76
76	$e^{+}e^{-} \rightarrow \mu^{+}\nu_{\mu}\pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{+}\pi^{+}\pi^{-}D^{-}D^{0}\gamma\gamma$	75	1	77
77	$e^{+}e^{-} \rightarrow \pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{0}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}K^{-}D^{+}\bar{D}^{0}\gamma\gamma$	76	1	78
78	$e^{+}e^{-} \rightarrow e^{-}\bar{\nu}_{e}\pi^{0}\pi^{0}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}K_{S}D^{0}D^{0}\gamma\gamma$	77	1	79
79	$e^{+}e^{-} \rightarrow e^{+}e^{-}\nu_{e}\bar{\nu}_{e}\pi^{0}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}D^{0}K_{1}^{0}$	78	1	80
80	$e^{+}e^{-} \to \mu^{-}\bar{\nu}_{\mu}\pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}D^{+}\bar{D}^{0}$	79	1	81

index	event initial-final states	iEvtIFSts	nEvts	nCmltEvts
81	$e^{+}e^{-} \to \mu^{+}\nu_{\mu}\nu_{\tau}\bar{\nu}_{\tau}\pi^{0}\pi^{0}K_{L}\pi^{+}\pi^{+}\pi^{-}\pi^{-}K_{S}K^{-}D^{+}\bar{D}^{0}\gamma\gamma$	80	1	82
82	$e^{+}e^{-} \to \mu^{-}\bar{\nu}_{\mu}\rho^{0}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\omega K^{-}D_{s}^{-}\gamma$	81	1	83
83	$e^{+}e^{-} \to \mu^{-}\bar{\nu}_{\mu}\pi^{0}\pi^{0}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\rho^{-}K_{S}K^{*}K^{+}K^{-}\phi\gamma$	82	1	84
84	$e^{+}e^{-} \rightarrow \pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K_{S}K^{+}K^{-}D^{0}$	83	1	85
85	$e^{+}e^{-} \rightarrow e^{-}\bar{\nu}_{e}\mu^{+}\nu_{\mu}\pi^{0}\pi^{0}\pi^{0}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\bar{K}^{0}\bar{D}^{0}\gamma\gamma$	84	1	86
86	$e^{+}e^{-} \to \pi^{0}\pi^{0}\pi^{0}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\eta\phi\bar{D}^{0}\bar{D}^{0}\bar{n}p$	85	1	87
87	$e^{+}e^{-} \rightarrow e^{-}\bar{\nu}_{e}\mu^{-}\bar{\nu}_{\mu}\pi^{0}\pi^{+}\pi^{+}\pi^{+}\pi^{-}K^{*}D^{0}$	86	1	88
88	$e^{+}e^{-} \to \pi^{0}\pi^{0}\rho^{0}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{-}\gamma\gamma$	87	1	89
89	$e^{+}e^{-} \to \mu^{-}\bar{\nu}_{\mu}\pi^{0}\pi^{+}\pi^{+}\pi^{-}D^{0}p\bar{\Lambda}_{c}^{-}$	88	1	90
90	$e^+e^- \to \mu^+\nu_\mu\pi^0\pi^-\pi^-K_SD^-\bar{n}pa_1^+$	89	1	91
91	$e^{+}e^{-} \to \mu^{-}\mu^{-}\bar{\nu}_{\mu}\bar{\nu}_{\mu}\pi^{0}\pi^{0}\pi^{+}\pi^{+}\pi^{-}\pi^{-}K^{+}D^{+}\gamma\gamma$	90	1	92
92	$e^{+}e^{-} \rightarrow e^{+}e^{+}e^{-}e^{-}\pi^{0}\pi^{+}\pi^{-}\eta K^{+}K^{-}\Sigma^{+}\bar{\Sigma}^{-}$	91	1	93
93	$e^{+}e^{-} \rightarrow \pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{+}\pi^{-}\pi^{-}K_{S}\bar{K}^{*}J/\psi a_{1}^{+}$	92	1	94
94	$e^{+}e^{-} \to \pi^{0}K_{L}K_{L}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\bar{D}^{0}a_{1}^{+}$	93	1	95
95	$e^{+}e^{-} \rightarrow e^{+}e^{-}\mu^{+}\nu_{\mu}\pi^{0}\pi^{0}\pi^{0}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K_{S}\bar{K}^{*}K^{+}K^{-}$	94	1	96
96	$e^{+}e^{-} \rightarrow e^{+}e^{-}\nu_{e}\bar{\nu}_{e}\pi^{+}\pi^{-}D^{0}\bar{D}^{0}$	95	1	97
97	$e^{+}e^{-} \to \pi^{0}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}K^{0}D^{0}\bar{D}^{0}n\bar{p}\gamma\gamma$	96	1	98
98	$e^{+}e^{-} \rightarrow e^{-}\bar{\nu}_{e}\pi^{0}\pi^{+}\pi^{+}\pi^{-}\eta'\bar{D}^{*-}D_{s}^{+}\bar{K}_{1}^{'0}\gamma$	97	1	99
99	$e^{+}e^{-} \rightarrow \pi^{0}\pi^{0}\pi^{0}K_{L}\pi^{+}\pi^{-}\pi^{-}K^{0}\bar{K}^{0}\bar{K}^{0}K^{*}D^{+}$	98	1	100
100	$e^{+}e^{-} \rightarrow \pi^{0}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}K^{0}K^{-}K^{-}\bar{D}^{0}\gamma\gamma\gamma\gamma$	99	1	101
101	$e^+e^- o e^+ u_e\pi^0\pi^0\pi^0\pi^0\pi^0\pi^0\pi^+\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-K_S\bar{K}^0\gamma\gamma$	100	1	102
102	$e^{+}e^{-} o e^{-} \bar{ u}_{e} \pi^{0} \pi^{0} \pi^{0} \pi^{+} \pi^{+} \pi^{+} \pi^{-} \pi^{-} \pi^{-} \pi^{-} \eta K_{S} K^{+} \gamma \gamma \gamma \gamma$	101	1	103
103	$e^+e^- \rightarrow \pi^0\pi^0\pi^0\pi^0\pi^+\pi^+\pi^+\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-K^+D^0\gamma\gamma\gamma\gamma\gamma$	102	1	104
104	$e^{+}e^{-} \rightarrow \mu^{+}\nu_{\mu}\pi^{0}\pi^{0}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K_{S}K^{-}D_{s}^{+}\gamma$	103	1	105
105	$e^{+}e^{-} \rightarrow e^{-}\bar{\nu}_{e}\pi^{0}\pi^{0}\pi^{0}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K^{*}\eta'D^{0}\gamma\gamma$	104	1	106
106	$e^{+}e^{-} \to e^{-}\bar{\nu}_{e}\pi^{0}\pi^{0}\pi^{+}\pi^{-}K^{+}K^{-}D^{+}\bar{D}^{0}$	105	1	107
107	$e^{+}e^{-} \to e^{+}e^{-}\pi^{+}\pi^{+}\pi^{-}\pi^{-}K_{S}D^{0}\gamma\gamma$	106	1	108
108	$e^{+}e^{-} \to \pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{0}$	107	1	109
109	$e^{+}e^{-} \to \pi^{0}\pi^{0}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K_{S}\bar{D}^{0}\gamma\gamma$	108	1	110
110	$e^{+}e^{-} \to \pi^{0}K_{L}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}D^{0}\bar{\Lambda}\Lambda_{c}^{+}$	109	1	111
111	$e^{+}e^{-} \to \pi^{0}\pi^{0}\rho^{0}\pi^{+}\pi^{+}\pi^{-}\pi^{-}D^{+}D_{s}^{-}\bar{p}\Sigma^{+}$	110	1	112
112	$e^{+}e^{-} \rightarrow e^{+}\nu_{e}\pi^{0}\pi^{+}\pi^{-}\pi^{-}D^{0}\bar{D}^{0}$	111	1	113
113	$e^{+}e^{-} \to e^{+}\nu_{e}\pi^{0}\pi^{-}\pi^{-}\pi^{-}K^{+}D_{s}^{+}n\bar{n}\gamma$	112	1	114
114	$e^{+}e^{-} \rightarrow \pi^{0}\pi^{0}\pi^{+}\pi^{+}\pi^{+}\pi^{-}K^{-}D^{-}D^{0}D^{0}\gamma\gamma$	113	1	115
115	$e^{+}e^{-} \rightarrow e^{-}\bar{\nu}_{e}\pi^{0}\pi^{+}\pi^{-}D^{0}\bar{D}^{0}D_{s}^{*+}$	114	1	116
116	$e^{+}e^{-} \to \mu^{-}\bar{\nu}_{\mu}\pi^{0}\pi^{+}D^{*+}D^{0}D_{s}^{-}\gamma$	115	1	117
117	$e^{+}e^{-} \to \pi^{0}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K^{*}K^{+}D^{0}D_{s}^{-}\gamma\gamma\gamma$	116	1	118
118	$e^{+}e^{-} \to \pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{0}$	117	1	119
119	$e^+e^- \to e^- \bar{\nu}_e \pi^0 \pi^0 \rho^0 \pi^+ \pi^+ \pi^+ \pi^- \pi^- \pi^- K^+ K^+ \gamma \gamma \gamma \gamma \gamma \gamma$	118	1	120
120	$e^{+}e^{-} \rightarrow \mu^{-}\bar{\nu}_{\mu}\pi^{0}\pi^{+}\pi^{-}K_{S}D^{+}D^{0}\bar{D}^{0}$	119	1	121

index	event initial-final states	iEvtIFSts	nEvts	nCmltEvts
121	$e^{+}e^{-} \to e^{-}\bar{\nu}_{e}\mu^{-}\bar{\nu}_{\mu}\pi^{+}\pi^{+}D^{0}D^{0}$	120	1	122
122	$e^{+}e^{-} \to \pi^{0}\pi^{0}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}D^{0}\bar{D}^{0}\gamma\gamma$	121	1	123
123	$e^{+}e^{-} \to e^{-}\bar{\nu}_{e}\mu^{+}\nu_{\mu}\pi^{+}\pi^{-}D^{0}\bar{D}^{0}$	122	1	124
124	$e^{+}e^{-} \rightarrow \nu_{\tau}\bar{\nu}_{\tau}\pi^{0}\pi^{0}\pi^{0}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\bar{K}^{0}D^{-}f_{0}(980)\gamma\gamma$	123	1	125
125	$e^{+}e^{-} \to \mu^{-}\bar{\nu}_{\mu}\pi^{0}K_{L}K_{L}\pi^{-}K^{+}K^{*+}\bar{D}^{0}$	124	1	126
126	$e^+e^- \to \pi^+\pi^+\pi^-\pi^-\rho^+K^{*-}\bar{D}^0D_s^-\gamma\gamma\gamma\gamma\gamma$	0	1	127
127	$e^{+}e^{-} \rightarrow e^{+}e^{-}\pi^{0}\pi^{0}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}D^{0}\bar{D}^{0}$	126	1	128
128	$e^{+}e^{-} \rightarrow e^{+}e^{-}e^{-}\nu_{e}\bar{\nu}_{e}\bar{\nu}_{e}\pi^{+}\pi^{+}\bar{K}^{0}K^{*}K^{-}D^{0}$	127	1	129
129	$e^+e^- \to e^+\nu_e \tau^- \bar{\nu}_\tau \pi^0 \pi^+ \pi^+ \pi^- \pi^- K_S \bar{D}^{*0}$	128	1	130
130	$e^{+}e^{-} \to e^{-}\bar{\nu}_{e}\pi^{0}\pi^{0}\pi^{0}\rho^{+}D^{+}D^{-}$	129	1	131
131	$e^{+}e^{-} \to \pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{+}\pi^{+}\pi^{-}\pi^{-}K_{S}K^{+}D^{-}\gamma\gamma$	130	1	132
132	$e^{+}e^{-} \rightarrow e^{+}\nu_{e}\pi^{0}\pi^{0}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K^{-}K^{-}$	131	1	133
133	$e^{+}e^{-} \to e^{+}\nu_{e}\mu^{+}\nu_{\mu}\pi^{0}\pi^{-}\phi D^{-}\bar{D}^{*0}$	132	1	134
134	$e^{+}e^{-} \rightarrow \tau^{-}\bar{\nu}_{\tau}\pi^{0}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}D^{0}\bar{D}^{0}$	133	1	135
135	$e^{+}e^{-} \to \mu^{-}\bar{\nu}_{\mu}\pi^{0}\pi^{+}\pi^{+}\pi^{-}K^{+}D^{0}D_{s}^{-}\gamma\gamma\gamma$	134	1	136
136	$e^{+}e^{-} \to \pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}D^{0}\bar{D}^{*0}D_{s}^{+}\gamma$	135	1	137
137	$e^{+}e^{-} \rightarrow e^{+}e^{-}\pi^{0}\pi^{0}\pi^{0}K_{L}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K_{S}K^{-}a_{1}^{+}$	136	1	138
138	$e^+e^- \to \pi^0 K^+ D^0 D_s^- n \bar{n} \gamma \gamma \gamma \gamma \gamma$	137	1	139
139	$e^{+}e^{-} \to e^{+}\nu_{e}\pi^{0}K_{L}\pi^{+}\pi^{-}\pi^{-}K^{+}K^{-}p\bar{\Lambda}_{c}^{-}$	138	1	140
140	$e^{+}e^{-} \to \pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K_{S}\bar{K}^{0}K^{+}K^{+}D^{-}\gamma\gamma$	139	1	141
141	$e^{+}e^{-} \to \mu^{+}\nu_{\mu}\pi^{0}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\bar{K}^{*}\bar{D}^{0}\gamma\gamma$	140	1	142
142	$e^{+}e^{-} \rightarrow \mu^{+}\nu_{\mu}\pi^{0}\pi^{0}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\bar{K}^{*}K^{+}K^{-}D_{s}^{+}\gamma\gamma$	141	1	143
143	$e^{+}e^{-} \to \pi^{0}\pi^{0}\pi^{0}\pi^{+}\pi^{+}D^{0}D_{s}^{*-}n\bar{\Lambda}_{c}^{-}$	142	1	144
144	$e^+e^- \to \mu^- \bar{\nu}_\mu \pi^0 \pi^+ K_S K^- K^- K^{*+} D^+$	143	1	145
145	$e^{+}e^{-} \to \pi^{0}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}D^{0}\bar{D}^{0}\gamma\gamma$	144	1	146
146	$e^+e^- \to K_L \pi^+ \pi^+ \pi^+ \pi^- K_S K^- K^- D^0 \bar{D}^0 a_1^-$	145	1	147
147	$e^{+}e^{-} \to \pi^{0}\pi^{0}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\omega \bar{K}^{0}D^{\bar{0}}$	146	1	148
148	$e^+e^- \to \mu^- \bar{\nu}_\mu \pi^0 \pi^+ \pi^+ \pi^+ \pi^- \pi^- K^0 D^{*0} D_s^- \gamma$	147	1	149
149	$e^{+}e^{-} \to \pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K_{S}a_{1}^{+}K_{1}^{'0}\gamma\gamma$	148	1	150
150	$e^{+}e^{-} \rightarrow \mu^{+}\nu_{\mu}\nu_{\tau}\bar{\nu}_{\tau}\pi^{0}\pi^{0}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}K^{0}K^{-}K^{-}\bar{D}^{0}\gamma\gamma$	149	1	151
151	$e^{+}e^{-} \rightarrow e^{+}e^{-}\nu_{e}\bar{\nu}_{e}\pi^{0}\pi^{+}\pi^{-}\pi^{-}D^{+}\bar{D}^{0}$	150	1	152
152	$e^{+}e^{-} \to \pi^{0}\pi^{0}\pi^{0}\pi^{0}K_{L}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\eta K_{S}K^{+}D^{-}n\bar{\Lambda}\gamma$	151	1	153
153	$e^{+}e^{-} \rightarrow e^{-}\bar{\nu}_{e}\pi^{0}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}D^{+}\bar{D}^{0}\gamma$	152	1	154
154	$e^{+}e^{-} \rightarrow \pi^{0}\pi^{+}\pi^{-}\pi^{-}\eta\eta\bar{K}^{0}K^{+}K^{+}K^{-}K_{1}^{'0}$	153	1	155
155	$e^{+}e^{-} \rightarrow e^{-}\bar{\nu}_{e}\pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{+}\pi^{+}\pi^{-}\pi^{-}K_{S}K^{+}D^{0}$	154	1	156
156	$e^{+}e^{-} \rightarrow \pi^{0}\pi^{0}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\rho^{-}K^{*}D^{0}$	155	1	157
157	$e^{+}e^{-} \rightarrow e^{+}\nu_{e}\pi^{0}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}D^{0}\bar{D}^{0}\gamma\gamma\gamma$	156	1	158
158	$e^{+}e^{-} \rightarrow \mu^{-}\bar{\nu}_{\mu}\pi^{0}\pi^{0}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}\bar{D}^{0}\gamma\gamma$	157	1	159
159	$e^{+}e^{-} \rightarrow e^{-}\bar{\nu}_{e}\mu^{+}\nu_{\mu}\pi^{-}K_{S}K_{S}\bar{K}^{*}\bar{D}^{0}a_{1}^{+}\gamma$	158	1	160
160	$e^{+}e^{-} \rightarrow e^{-}\bar{\nu}_{e}\mu^{+}\nu_{\mu}\pi^{0}\pi^{-}D^{+}\bar{D}^{*0}$	159	1	161

index	event initial-final states	iEvtIFSts	nEvts	nCmltEvts
161	$e^{+}e^{-} \to K_{L}\pi^{+}\pi^{+}\pi^{-}\pi^{-}K^{*}K^{+}D^{0}a_{1}^{-}$	160	1	162
162	$e^+e^- \to \mu^+\mu^-\nu_\mu\bar{\nu}_\mu\pi^+\pi^+\pi^-\pi^-\eta\bar{K}^*D^0\gamma\gamma\gamma\gamma$	161	1	163
163	$e^{+}e^{-} \to \mu^{-}\bar{\nu}_{\mu}\pi^{0}\pi^{0}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\eta'D^{+}\bar{D}^{0}$	162	1	164
164	$e^+e^- \to \mu^+\nu_\mu\pi^0\pi^-\bar{K}^*K^+D_s^{*-}\Lambda\bar{\Sigma}^0\gamma\gamma\gamma$	163	1	165
165	$e^{+}e^{-} \rightarrow \pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}D^{0}\bar{D}^{0}\gamma\gamma$	164	1	166
166	$e^+e^- \to \mu^+\nu_\mu\pi^0\pi^0\pi^0\pi^+\pi^+\pi^-K^-D^-n\bar{n}$	165	1	167
167	$e^{+}e^{-} \rightarrow \nu_{\tau}\bar{\nu}_{\tau}\pi^{0}\pi^{0}\pi^{+}\pi^{+}\pi^{-}\pi^{-}D^{0}p\bar{\Lambda}_{c}^{-}$	166	1	168
168	$e^+e^- \to K_L \pi^+ \pi^- \bar{K}^0 K^* \bar{K}^* D^0 \bar{D}^0 \gamma \gamma \gamma$	167	1	169
169	$e^{+}e^{-} \rightarrow \pi^{0}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K^{0}K^{-}D^{0}\bar{D}^{0}a_{1}^{+}\gamma\gamma$	168	1	170
170	$e^{+}e^{-} \to \mu^{+}\mu^{-}\nu_{\mu}\bar{\nu}_{\mu}\pi^{0}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K^{0}K^{+}K^{+}D_{s}^{-}\gamma$	169	1	171
171	$e^{+}e^{-} \rightarrow \pi^{0}\pi^{0}\pi^{0}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\rho^{+}K_{S}n\bar{n}\gamma\gamma\gamma\gamma$	170	1	172
172	$e^{+}e^{-} \rightarrow \mu^{+}\nu_{\mu}\pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}D^{+}\bar{D}^{0}$	171	1	173
173	$e^{+}e^{-} \rightarrow \pi^{0}\pi^{+}\pi^{+}\pi^{-}K_{S}K^{-}K^{*-}\bar{D}^{0}D_{s}^{*+}\gamma\gamma$	172	1	174
174	$e^{+}e^{-} \rightarrow \mu^{-}\bar{\nu}_{\mu}\pi^{0}\pi^{0}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{0}K^{+}D^{0}D^{0}$	173	1	175
175	$e^{+}e^{-} \to \pi^{0}\pi^{0}\pi^{0}K_{L}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\bar{K}^{*}K^{-}K^{-}D^{0}\gamma\gamma\gamma\gamma\gamma$	174	1	176
176	$e^+e^- o u_ au ar{ u}_ au \pi^0 \pi^0 \pi^+ \pi^- \pi^- ar{D}^0 ar{n} \Lambda_c^+ \gamma \gamma$	175	1	177
177	$e^{+}e^{-} \rightarrow e^{-}\bar{\nu}_{e}\pi^{0}\pi^{0}\pi^{0}K_{L}K_{L}\pi^{+}\pi^{-}K^{-}D^{+}\bar{n}p$	176	1	178
178	$e^+e^- \to \pi^0 K_L \pi^+ K^- \bar{D}^0 \bar{n} p a_1^- \gamma \gamma \gamma \gamma \gamma \gamma \gamma \gamma \gamma$	177	1	179
179	$e^{+}e^{-} \rightarrow \mu^{-}\bar{\nu}_{\mu}\pi^{0}\pi^{+}\pi^{+}\pi^{-}K^{-}D^{+}n\bar{n}$	178	1	180
180	$e^{+}e^{-} \to e^{+}\nu_{e}\mu^{+}\nu_{\mu}\pi^{0}\pi^{+}K^{*-}D^{-}D_{s}^{-}\gamma\gamma\gamma$ $e^{+}e^{-} \to \mu^{+}\nu_{\mu}\pi^{0}\pi^{+}\pi^{+}\rho^{-}K^{-}\bar{p}\Xi_{c}^{0}\gamma$	179	1	181
181	$e^+e^- ightarrow\mu^+ u_\mu\pi^0\pi^+\pi^+ ho^-K^-ar{p}\Xi_c^0\gamma$	180	1	182
182	$e^{+}e^{-} ightarrow\mu^{+} u_{\mu}\pi^{0}\pi^{0}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{-}ar{D}^{0}\gamma\gamma$	181	1	183
183	$e^{+}e^{-} \to \pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{+}\pi^{-}D^{+}D^{0}D_{s}^{*-}$	182	1	184
184	$e^{+}e^{-} \rightarrow \mu^{+}\nu_{\mu}\pi^{0}\pi^{0}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\bar{D}^{*-}D^{0}\gamma\gamma$	183	1	185
185	$e^{+}e^{-} \rightarrow e^{-}\bar{\nu}_{e}\mu^{+}\nu_{\mu}\pi^{0}\pi^{0}\pi^{+}\pi^{+}\pi^{-}\pi^{-}K^{0}\bar{D}^{0}n\bar{n}\gamma\gamma$	184	1	186
186	$e^{+}e^{-} \rightarrow e^{+}\nu_{e}\pi^{0}\pi^{0}\pi^{0}K_{L}\pi^{+}\pi^{-}\pi^{-}\bar{K}^{0}K^{+}D^{-}$	185	1	187
187	$e^+e^- \to \mu^- \bar{\nu}_\mu \pi^0 \pi^0 \pi^+ \pi^+ \pi^+ \pi^- \pi^- K^+ D^0 a_1^-$	186	1	188
188	$e^{+}e^{-} ightarrow e^{-}ar{ u}_{e}\pi^{0}\pi^{+}\pi^{-}ar{D}^{0}D^{*0}D^{*+}$	187	1	189
189	$e^{+}e^{-} \rightarrow \pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{0}$	188	1	190
190	$e^{+}e^{-} \rightarrow \pi^{0}\pi^{0}\pi^{0}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\bar{K}^{0}D^{0}p\bar{\Lambda}_{c}^{-}$	189	1	191
191	$e^{+}e^{-} \rightarrow e^{+}e^{-}\nu_{e}\bar{\nu}_{e}\pi^{0}\pi^{+}\pi^{+}\pi^{-}\pi^{-}K^{0}D^{0}$	190	1	192
192	$e^{+}e^{-} \rightarrow \pi^{0}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K_{S}K^{-}\bar{D}^{0}a_{1}^{+}$	191	1	193
193	$e^{+}e^{-} \rightarrow e^{+}\nu_{e}\pi^{0}\pi^{+}\pi^{-}\pi^{-}\bar{K}^{0}K^{*}K^{+}K^{-}D^{0}$	192	1	194
194	$e^+e^- \rightarrow e^+ \nu_e \pi^0 \pi^+ \pi^- \eta \eta K^0 \bar{K}^0 D_s^- \gamma \gamma \gamma$	193	1	195
195	$e^{+}e^{-} \rightarrow e^{-}\bar{\nu}_{e}\pi^{0}\pi^{0}\pi^{+}\pi^{+}\pi^{-}K^{0}K_{2}^{*0}\bar{D}^{0}n\bar{n}\bar{K}_{1}^{'0}$	194	1	196
196	$e^{+}e^{-} \rightarrow \pi^{0}\pi^{0}\pi^{0}\pi^{-}D^{0}\bar{D}^{0}D_{s}^{+}n\bar{n}\gamma\gamma\gamma\gamma\gamma\gamma$	195	1	197
197	$e^{+}e^{-} ightarrow \pi^{0}K_{L}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\eta \bar{D}^{0}nar{n}$	196	1	198
198	$e^{+}e^{-} \rightarrow \mu^{+}\nu_{\mu}\pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}D^{-}D^{-}$	197	1	199
199	$e^{+}e^{-} \rightarrow e^{-}\bar{\nu}_{e}\mu^{-}\bar{\nu}_{\mu}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K_{S}K_{1}^{0}$	198	1	200