Assignment -3

Build CNN Model for Classification Of Flowers

Assignment Date	30 September 2022
Student Name	ABINAYA
Student Roll Number	211419205003
Maximum Marks	2 Marks

Question-1:

Download the dataset

Question-2:

Image Augmentation

Solution

from tensorflow.keras.preprocessing.image import ImageDataGenerator train_datagen=ImageDataGenerator(rescale=1./255,zoom_range=0.2,horizontal_flip=True,vertical_flip=True)

test_datagen=ImageDataGenerator(rescale=1./255)

2)Image Augmentation	1 T	(3)	口	<i>></i> 🖳	î	1
[] from tensorflow.keras.preprocessing.image import ImageDataGenerator						
[] train_datagen=ImageDataGenerator(rescale=1./255,zoom_range=0.2,horizontal_flip=True,vertical_flip=True)						
[] test_datagen=ImageDataGenerator(rescale=1./255)						
Load Data						
[] x_train=train_datagen.flow_from_directory(r"/content/drive/MyDrive/Assignment 3/Flowers-Dataset/Training",target_size=(64,64),class_	node='	catego	orica	l',ba	tch_	siz€
Found 3293 images belonging to 5 classes.						
[] x_test=test_datagen.flow_from_directory(r"/content/drive/MyDrive/Assignment 3/Flowers-Dataset/Testing",target_size=(64,64),class_models_	e='cat	egori	cal'	batch	_size	e=24
Found 1317 images belonging to 5 classes.						
[] x_train.class_indices						
{'daisy': 0, 'dandelion': 1, 'rose': 2, 'sunflower': 3, 'tulip': 4}						

Question-3:

Create model

Solution

from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense,Convolution2D,MaxPooling2D,Flatten model=Sequential()

3)Create Model	
[] from tensorflow.keras.models import Sequential	
[] from tensorflow.keras.layers import Dense,Convolution2D,MaxPooling2D,Flatten	
[] model=Sequential()	↑ ↓ ⊕ 目 / □ i :

Question-4:

Add Layers (Convolution, MaxPooling, Flatten, Dense-(Hidden Layers), Output)

Solution

a)Convolution Layer

 $model. add (Convolution 2D(32, (3,3), kernel_initializer = "random_uniform", activation = "relu", strides = (1,1), input_shape = (64,64,3)))$

b) MaxPooling Layer

model.add(MaxPooling2D(pool_size=(2,2)))

c) Flatten Layer

model.add(Flatten())

d) Dense(Hidden layer)

model.add(Dense(300,activation="relu"))
model.add(Dense(300,activation="relu"))

e) Output layer

model.add(Dense(5,activation="softmax"))

a)Convolution Layer		
[] model.add(Convolution2D(32,(3,3),kernel_initializer="random_uniform",activation="relu",strides=(1,1),input_shape=(64,64,3)))		
b)MaxPooling Layer		
[] model.add(MaxPooling2D(pool_size=(2,2)))		
c)Flatten		
[] model.add(Flatten())		
d)Dense(Hidden layer)		
[] model.add(Dense(300,activation="relu"))		
[] model.add(Dense(300,activation="relu"))		
d)Dense(Hidden layer)		
[] model.add(Dense(300,activation="relu"))		
[] model.add(Dense(300,activation="relu"))		
e)Output layer	A 1 - 8 4 8 2	
<pre>model.add(Dense(5,activation="softmax"))</pre>	<u> </u>	÷

Question-5:

Compile The Model

Solution

model.compile(loss="categorical_crossentropy",metrics=['accuracy'],optimizer='adam')

```
5)Compile the model

[ ] model.compile(loss="categorical_crossentropy",metrics=['accuracy'],optimizer='adam')
```

Question-6:

Fit The Model

Solution

 $model.fit(x_train,epochs=5,steps_per_epoch=len(x_train),validation_data=x_test,validation_steps=len(x_test))$

Question-7:

Save The Model

Solution

model.save("Flowers.h5")

```
7)Save the model

[ ] model.save("Flowers.h5")
```

Question-8:

Test The Model

Solution

import numpy as np
from tensorflow.keras.models import load_model
from tensorflow.keras.preprocessing import image
model=load_model("Flowers.h5")
img=image.load_img(r"/content/drive/MyDrive/Assignment 3/FlowersDataset/Testing/daisy/14333681205_a07c9f1752_m.jpg",target_size=(64,64))
x=image.img_to_array(img)
x=np.expand_dims(x,axis=0)
pred=model.predict(x)
pred
index=['daisy','dandelion','rose','sunflower','tulip']
index[np.argmax(pred)]

8)Te	Test the model	
[]] import numpy as np from tensorflow.keras.models import load_model from tensorflow.keras.preprocessing import image	
[]] model=load_model("Flowers.h5")	
[]] img=image.load_img(r"/content/drive/MyDrive/Assignment 3/Flowers-Dataset/Testing/daisy/14333681205_a07c9f1752_m.jpg",target_size=(64,64)	64))
[]] img	
[]] x=image.img_to_array(img)	
[]] x=np.expand_dims(x,axis=0)	
[]] x=image.img_to_array(img)	
	<pre> x=image.img_to_array(img) x=np.expand_dims(x,axis=0)</pre>	
] x=np.expand_dims(x,axis=0)	
[]] x=np.expand_dims(x,axis=0)	
[]] x=np.expand_dims(x,axis=0)] pred=model.predict(x)	
[]	<pre> x=np.expand_dims(x,axis=0) pred=model.predict(x) pred array([[1., 0., 0., 0., 0.]], dtype=float32) index=['daisy','dandelion','rose','sunflower','tulip']</pre>	
[]	<pre> x=np.expand_dims(x,axis=0) pred=model.predict(x) pred array([[1., 0., 0., 0., 0.]], dtype=float32) index=['daisy','dandelion','rose','sunflower','tulip']</pre>	↑ ↓ ∞ ■ 幸 ② 盲 ∶