

题目名称	After 17	棒球	愚蠢的副官
程序文件名	seventeen	baseball	sillyz
输入文件名	seventeen.in	baseball.in	sillyz.in
输出文件名	seventeen.out	baseball.out	sillyz.out
每个测试点时限	1秒	1秒	2秒
内存限制	512 MB	512 MB	512 MB
测试点数目	10	10	10
每个测试点分值	10	10	10
是否有部分分	无	无	无

提交源程序需加后缀

对于 Pascal 语言	seventeen.pas	baseball.pas	sillyz.pas
对于 C 语言	seventeen.c	baseball.c	sillyz.c
对于 C++ 语言	seventeen.cpp	baseball.cpp	sillyz.cpp

测试环境:

Archlinux 32-bit @ Intel® Core TM i3-2350M CPU @ 2.30GHz

C/C++ 语言使用 GCC 版本 4.6.2 进行编译。

Pascal 语言使用 FPC 版本 2.6.0 进行编译。

编译命令:

Pascal 语言: fpc %s.pas

C语言: gcc -o %s %s.c

C++ 语言: g++ -o %s %s.cpp

After 17

(seventeen.pas/c/cpp)

题目描述

今天是 Cheer 的 17 岁生日,而她 17 岁这年最大的梦想就是出去远行。为此,她打算制定n条旅行线路。

为了简化起见,我们把这个世界想象成一个平面直角坐标系,而 Cheer 所在的小镇则为原点。由于父亲不让 Cheer 走得太远,她每次旅行的目的地都被限制在一个对应的右上角为 (x,y),左下角为(-x,-y)的矩形内。

每次 Cheer 都会从原点直接沿直线走到目的地。显然,她走过了一个向量,这被数学控的 Cheer 称为这次的旅行向量。Cheer 为了更好地规划旅行线路,为每条旅行线路定义了一个无聊值,即这次的旅行向量和其余所有之前的线路的旅行向量的点积和。

Cheer 希望合理的选择目的地,使得所有旅行线路的无聊值之和最小。

输入格式

第一行一个正整数n,表示 Cheer 打算制定n条旅行线路。接下来n行,每行两个整数x,y,描述一个限制目的地的矩形。

输出格式

一行一个整数,即最小的无聊值,保留2位小数。

样例输入

2

1 2

2 1

样例输出

-4.00

数据范围与约定

对于 10% 的数据, 保证 $0 < n \le 5$, $0 < x, y \le 5$ 。

对于 30% 的数据, 保证 $0 < n \le 20$, $0 < x, y \le 100$ 。

对于 100% 的数据,保证 $0 < n \le 200$, $0 < x, y \le 200$ 。

VIOLET 2

棒球

(baseball.pas/c/cpp)

题目描述

棒球中一项最原始简单的技术参数就是「安打率」。所谓「安打」,就是指打击手把投手投出来的球,击出到界内,使打者本身能至少安全上到一垒的情形。由于只有队员跑回本垒才能得分,安打是得分的最重要的途径。因此,安打率对于打击手来说也是非常重要的数据。顾名思义,安打率为安打数与打数的比值。如果一名打击手在 5 次打击中出现了 1 次安打,那么他的安打率就是 0.2。

Uruto 是一位业余棒球爱好者。有一次,他在训练中看到了自己的安打率数据。他发现这个数据是一个被四舍五入到了n位小数的一个值。Uruto 想知道,他至少打击了多少次才有可能得到这样的安打率。

输入格式

输入文件包含多个测试点。

每个测试点占一行,包含一个整数n和一个浮点数r。r是一个n位小数,表示 Uruto 安打率的近似值。

输出格式

对于每个测试点,在单独的一行内输出一个整数,表示 Uruto 最小可能的打击次数。

样例输入

2 0.33

3 0.316

样例输出

3

19

样例说明

对于第一个测试点,如果 Uruto 只击打过 2 次的话,那么他的安打率只能是 $0 \times \frac{1}{2} \times 1$ 中的一个,而其中的任何一个都不可能近似到 2 位小数之后得到 0.33 这样的值。如果他击打了 3 次,出现了 1 次安打,那么他的安打率就是 $\frac{1}{3}$,四舍五入到两位小数之后的值即为 0.33。

VIOLET 2

数据范围与约定

对于 20% 的数据,保证答案在 1000 以内。

对于 100% 的数据,保证 $0 < n \le 15$,测试点的数目在 500 以内。

如果一个棒球运动员的安打率在 30% 以上,那么他就绝对是球队的栋梁了。出于这方面的考虑,保证在所有数据中 $0 \le r < 1$ 。

愚蠢的副官

(sillyz.pas/c/cpp)

题目描述

宇宙纪元 45 年,D 将军与大魔王在银河两岸对垒。为了指挥方便,D 将军将自己的防线从 0 开始标号,一直到某个难以计数的量(鉴于 D 军威武雄壮,军势浩大,我们可以认为最大标号大于 10^{18} ,而小于 10^{19})。他的得力军师 L 参谋在每个整点处部署了一支分队,以保防线无虞,避免大魔王的偷袭。

D 将军身经百战,勇武无双,乃是全宇宙首屈一指的名将;麾下 L 参谋智勇双全,运筹帷幄,更是全宇宙绝无第二的奇才。不过俗话说得好,双拳难敌四手,独木难支,尽管手下不乏猛将谋臣,他们还是想培养能独当一面的帅才。于是 D 将军和 L 参谋决定让 Z 副官重新调度防线,来组织一次小规模的进攻。

尽管 D、L 二人在战场上所向披靡,可由于国家政策上的漏洞,手下的人才质与量都让人心忧。靠着小心眼和小算盘爬到副官一职上的 Z 副官就是一例。他尽管口若悬河,但实乃败絮其中;正所谓笔下虽有千言,胸中实无一策。他平日里夸夸其谈,但只是纸上谈兵;若要真让他带兵,他反倒没了主意。打小喜欢玩数字游戏的他,于是下达了这样一条指令:原来处于位置n的部队,转调到n与其各位数字之积的位置上。比如原来驻守在 312 坐标的 X 队长,将移驻到 312×3×1×2 = 1872 坐标处。毫无疑问,0 坐标处会集结大量的部队,Z 副官将组织部队从此处发动进攻。

在 Z 副官指挥调度之时,D、L 两人正在其他的防线视察。所以当他们回到前线时,他们被 Z 副官的调度计划惊呆了。整个防线因此而残破不堪,部队散落不均,根本无法抵挡大魔王的冲击。幸好 D、L 二人手中还有后备军,他们决定赶紧将后备军安排到前线。不过由于时间紧张,他们只能填补一段防线的空缺。他们找到了身为士官的你,要你告诉他们某段防线上现在有几支部队。由于他们并不打算参与 Z 副官的愚蠢进攻,所以他们不关心 0 点处的部队。

输入格式

输入只有一行,包含两个整数A、B,代表D将军和L参谋询问的区间[A,B]。

输出格式

输出一个数字,代表[A,B]中现有的部队数。

样例输入

145 192

VIOLET 2

样例输出

4

数据范围与约定

对于 20% 的数据, 保证 $A, B \le 1000$ 。

对于 40% 的数据,保证 $A, B \le 10^6$ 。

对于 100% 的数据, 保证 $1 \le A, B \le 10^{18}$ 。