Text classification using Naive Bayes

Naive Bayes

Naive bayes is a probabilistic algorithm

Naive Bayes

Naive bayes is a probabilistic algorithm

Based on bayes theorem

Naive Bayes

- Naive bayes is a probabilistic algorithm
- Based on bayes theorem

$$P(E_1 | E_2) = \frac{P(E_2 | E_1) * P(E_1)}{P(E_2)}$$

Naive bayes is a probabilistic algorithm

Document (d)

Features $(x_1, x_2, ..., x_n)$

- Naive bayes is a probabilistic algorithm
- Based on bayes theorem

$$P(c \mid d) = \frac{P(d \mid c) * P(c)}{P(d)}$$

- Naive bayes is a probabilistic algorithm
- Based on bayes theorem

$$P(c \mid d) = \frac{P(d \mid c) * P(c)}{P(d)}$$

$$C = \underset{c \in C}{\operatorname{argmax}} P(c \mid d) = \frac{P(d \mid c) * P(c)}{P(d)}$$

- Naive bayes is a probabilistic algorithm
- Based on bayes theorem

$$P(c \mid d) = \frac{P(d \mid c) * P(c)}{P(d)}$$

$$C = \underset{c \in C}{\operatorname{argmax}} P(c \mid d) = \frac{P(d \mid c) * P(c)}{P(d)}$$
How likely the document will occur

- Naive bayes is a probabilistic algorithm
- Based on bayes theorem

$$P(c \mid d) = \frac{P(d \mid c) * P(c)}{P(d)}$$

$$C = \underset{c \in C}{\operatorname{argmax}} P(c \mid d) = P(d \mid c) * P(c)$$

- Naive bayes is a probabilistic algorithm
- Based on bayes theorem

$$P(c \mid d) = \frac{P(d \mid c) * P(c)}{P(d)}$$

$$C = \underset{c \in C}{\operatorname{argmax}} P(c \mid d) = P(d \mid c) * P(c)$$
$$= P(x_1, x_2, ..., x_n \mid c) * P(c)$$

$$C = \underset{c \in C}{\operatorname{argmax}} P(c \mid d) = P(d \mid c) * P(c)$$
$$= P(x_1, x_2, ..., x_n \mid c) * P(c)$$

$$P(x_1, x_2, ..., x_n \mid c) =$$

$$C = \underset{c \in C}{\operatorname{argmax}} P(c \mid d) = P(d \mid c) * P(c)$$
$$= P(x_1, x_2, ..., x_n \mid c) * P(c)$$

$$P(x_1,x_2,...,x_n \mid c) = P(x_1|c) * P(x_2|c) * * P(x_n|c)$$

$$C = \underset{c \in C}{\operatorname{argmax}} P(c \mid d) = P(d \mid c) * P(c)$$
$$= P(x_1, x_2, ..., x_n \mid c) * P(c)$$

$$P(x_1, x_2, ..., x_n \mid c) = P(x_1 \mid c) * P(x_2 \mid c) * * P(x_n \mid c)$$

Calculate the probability of each class P(c)

- Calculate the probability of each class P(c)
 - For each class c in C:

- Calculate the probability of each class P(c)
 - For each class c in C:
 - P(c) = | docs | / | total number of documents |
 - docs is the number of documents belonging to class c

- Calculate the probability of each class P(c)
 - For each class c in C:
 - P(c) = | docs | / | total number of documents |
 - docs is the number of documents belonging to class c
- Calculate the conditional probabilities P(w|c)

- Calculate the probability of each class P(c)
 - For each class c in C:
 - P(c) = | docs | / | total number of documents |
 - docs is the number of documents belonging to class c
- Calculate the conditional probabilities P(w|c)
 - P(w|c) = Count(w,c) / Count(c)

- Calculate the probability of each class P(c)
 - For each class c in C:
 - P(c) = | docs | / | total number of documents |
 - docs is the number of documents belonging to class c
- Calculate the conditional probabilities P(w|c)
 - P(w|c) = Count(w,c) / Count(c)
 - Laplace add 1 smoothing to deal with new words

- Calculate the probability of each class P(c)
 - For each class c in C:
 - P(c) = | docs | / | total number of documents |
 - docs is the number of documents belonging to class c
- Calculate the conditional probabilities P(w|c)
 - P(w|c) = Count(w,c) / Count(c)
 - Laplace add 1 smoothing to deal with new words

- Calculate the probability of each class P(c)
 - For each class c in C:
 - P(c) = | docs | / | total number of documents |
 - docs is the number of documents belonging to class c
- Calculate the conditional probabilities P(w|c)
 - O P(w|c) = Count(w,c) / Count(c)
 - Laplace add 1 smoothing to deal with new words

 - Count(w,c) = Number of times w occurs in documents of class c
 - Count(c) = Number of words in documents of class c

- Calculate the probability of each class P(c)
 - For each class c in C:
 - P(c) = | docs | / | total number of documents |
 - docs is the number of documents belonging to class c
- Calculate the conditional probabilities P(w|c)
 - O P(w|c) = Count(w,c) / Count(c)
 - Laplace add 1 smoothing to deal with new words

 - Count(w,c) = Number of times w occurs in documents of class c
 - Count(c) = Number of words in documents of class c
 - |V| = Vocabulary size

	Doc_ID	Document	Class
	1	Chennai Delhi Mumbai	i
Train	2	Delhi Delhi Kolkata	i
Train	3	Delhi Gurgaon	i
	4	Beijing Shanghai Delhi	С

	Doc_ID	Document	Class
	1	Chennai Delhi Mumbai	i
Train	2	Delhi Delhi Kolkata	i
Train	3	Delhi Gurgaon	i
	4	Beijing Shanghai Delhi	С
Test	5	Delhi Delhi Kolkata Kolkata Beijing	

	Doc_ID	Document	Class
	1	Chennai Delhi Mumbai	i
Train	2	Delhi Delhi Kolkata	i
Train	3	Delhi Gurgaon	i
	4	Beijing Shanghai Delhi	С
Test	5	Delhi Delhi Kolkata Kolkata Beijing	

$$P(i) = 3/4$$

	Doc_ID	Document	Class
	1	Chennai Delhi Mumbai	i
Train	2	Delhi Delhi Kolkata	i
Train	3	Delhi Gurgaon	i
	4	Beijing Shanghai Delhi	С
Test	5	Delhi Delhi Kolkata Kolkata Beijing	

$$P(i) = 3/4$$

$$P(c) = 1/4$$

	Doc_ID	Document	Class
	1	Chennai Delhi Mumbai	i
Train	2	Delhi Delhi Kolkata	i
Train	3	Delhi Gurgaon	i
	4	Beijing Shanghai Delhi	С
Test	5	Delhi Delhi Kolkata Kolkata Beijing	

$$P(i) = 3/4$$
 $P(w|c) = [Count(w,c) + 1] / [Count(c) + |V|]$
 $P(c) = 1/4$

	Doc_ID	Document	Class
	1	Chennai Delhi Mumbai	i
Train	2	Delhi Delhi Kolkata	i
ITalii	3	Delhi Gurgaon	i
	4	Beijing Shanghai Delhi	С
Test	5	Delhi Delhi Kolkata Kolkata Beijing	

$$P(i) = 3/4$$

$$P(c) = 1/4$$

$$P(w|c) = [Count(w,c) + 1] / [Count(c) + |V|]$$

	Doc_ID	Document	Class
	1	Chennai <mark>Delhi</mark> Mumbai	i
Train	2	Delhi Delhi Kolkata	i
ITam	3	Delhi Gurgaon	i
	4	Beijing Shanghai Delhi	С
Test	5	Delhi Delhi Kolkata Kolkata Beijing	

$$P(i) = 3/4$$

$$P(c) = 1/4$$

$$P(w|c) = [Count(w,c) + 1] / [Count(c) + |V|]$$

	Doc_ID	Document	Class
	1	Chennai Delhi Mumbai	i
Train	2	Delhi Delhi Kolkata	i
Train	3	Delhi Gurgaon	i
	4	Beijing Shanghai Delhi	С
Test	5	Delhi Delhi Kolkata Kolkata Beijing	

$$P(i) = 3/4$$

$$P(c) = 1/4$$

$$P(w|c) = [Count(w,c) + 1] / [Count(c) + |V|]$$

$$P(Delhi | i) = [4 + 1] / [8 +$$

	Doc_ID	Document	Class
	1	Chennai Delhi Mumbai	i
Train	2	Delhi Delhi Kolkata	i
Train	3	Delhi Gurgaon	i
	4	Beijing Shanghai Delhi	С
Test	5	Delhi Delhi Kolkata Kolkata Beijing	

$$P(i) = 3/4$$

$$P(c) = 1/4$$

$$P(w|c) = [Count(w,c) + 1] / [Count(c) + |V|]$$

$$P(Delhi | i) = [4 + 1] / [8 + 7]$$

	Doc_ID	Document	Class
	1	Chennai Delhi Mumbai	i
Train	2	Delhi Delhi Kolkata	i
Train	3	Delhi Gurgaon	i
	4	Beijing Shanghai Delhi	С
Test	5	Delhi Delhi Kolkata Kolkata Beijing	

$$P(i) = 3/4$$
 $P(Delhi | i) = 5/15$ $P(c) = 1/4$

	Doc_ID	Document	Class
	1	Chennai Delhi Mumbai	i
Train	2	Delhi Delhi Kolkata	i
Train	3	Delhi Gurgaon	i
	4	Beijing Shanghai Delhi	С
Test	5	Delhi Delhi Kolkata Kolkata Beijing	

$$P(i) = 3/4$$
 $P(Delhi | i) = 5/15$
 $P(c) = 1/4$ $P(Kolkata | i) = 2/15$

	Doc_ID	Document	Class
	1	Chennai Delhi Mumbai	i
Train	2	Delhi Delhi Kolkata	i
ITam	3	Delhi Gurgaon	i
	4	Beijing Shanghai Delhi	С
Test	5	Delhi Delhi Kolkata Kolkata Beijing	

$$P(i) = 3/4$$
 $P(Delhi | i) = 5/15$
 $P(c) = 1/4$ $P(Kolkata | i) = 2/15$
 $P(Beijing | i) = 1/15$

	Doc_ID	Document	Class
Train	1	Chennai Delhi Mumbai	i
	2	Delhi Delhi Kolkata	i
	3	Delhi Gurgaon	i
	4	Beijing Shanghai Delhi	С
Test	5	Delhi Delhi Kolkata Kolkata Beijing	

$$P(i) = 3/4$$
 $P(Delhi | i) = 5/15$ $P(Delhi | c) = 2/10$
 $P(c) = 1/4$ $P(Kolkata | i) = 2/15$
 $P(Beijing | i) = 1/15$

	Doc_ID	Document	Class
Train	1	Chennai Delhi Mumbai	i
	2	Delhi Delhi Kolkata	i
	3	Delhi Gurgaon	i
	4	Beijing Shanghai Delhi	С
Test	5	Delhi Delhi Kolkata Kolkata Beijing	

$$P(i) = 3/4$$
 $P(Delhi | i) = 5/15$ $P(Delhi | c) = 2/10$
 $P(c) = 1/4$ $P(Kolkata | i) = 2/15$ $P(Kolkata | c) = 1/10$
 $P(Beijing | i) = 1/15$

Analytics Vidhya

	Doc_ID	Document	Class
	1	Chennai Delhi Mumbai	i
Train	2	Delhi Delhi Kolkata	i
ITam	3	Delhi Gurgaon	i
	4	Beijing Shanghai Delhi	С
Test	5	Delhi Delhi Kolkata Kolkata Beijing	

$$P(i) = 3/4$$
 $P(Delhi | i) = 5/15$ $P(Delhi | c) = 2/10$ $P(c) = 1/4$ $P(Kolkata | i) = 2/15$ $P(Kolkata | c) = 1/10$ $P(Beijing | i) = 1/15$ $P(Beijing | c) = 2/10$

$$P(i) = 3/4$$
 $P(Delhi | i) = 5/15$ $P(Delhi | c) = 2/10$ $P(c) = 1/4$ $P(Kolkata | i) = 2/15$ $P(Kolkata | c) = 1/10$ $P(Beijing | i) = 1/15$ $P(Beijing | c) = 2/10$

	Doc_ID	Document	Class
Test	5	Delhi Delhi Kolkata Kolkata Beijing	

$$P(i) = 3/4$$
 $P(Delhi | i) = 5/15$ $P(Delhi | c) = 2/10$ $P(c) = 1/4$ $P(Kolkata | i) = 2/15$ $P(Kolkata | c) = 1/10$ $P(Beijing | i) = 1/15$ $P(Beijing | c) = 2/10$

	Doc_ID	Document	Class
Test	5	Delhi Delhi Kolkata Kolkata Beijing	

$$P(i \mid D5) =$$

$$P(i) = 3/4$$
 $P(Delhi | i) = 5/15$ $P(Delhi | c) = 2/10$ $P(c) = 1/4$ $P(Kolkata | i) = 2/15$ $P(Kolkata | c) = 1/10$ $P(Beijing | i) = 1/15$ $P(Beijing | c) = 2/10$

	Doc_ID	Document	Class
Test	5	Delhi Delhi Kolkata Kolkata Beijing	

$$P(i \mid D5) = P(i)$$

$$P(i) = 3/4$$
 $P(Delhi | i) = 5/15$ $P(Delhi | c) = 2/10$ $P(c) = 1/4$ $P(Kolkata | i) = 2/15$ $P(Kolkata | c) = 1/10$ $P(Beijing | i) = 1/15$ $P(Beijing | c) = 2/10$

	Doc_ID	Document	Class
Test	5	Delhi Delhi Kolkata Kolkata Beijing	

P(i | D5) = P(i) * P(Delhi | i) * P(Delhi | i) * P(Kolkata | i) * P(Kolkata | i) * P(Beijing | i)

$$P(i) = 3/4$$
 $P(Delhi | i) = 5/15$ $P(Delhi | c) = 2/10$ $P(c) = 1/4$ $P(Kolkata | i) = 2/15$ $P(Kolkata | c) = 1/10$ $P(Beijing | i) = 1/15$ $P(Beijing | c) = 2/10$

	Doc_ID	Document	Class
Test	5	Delhi Delhi Kolkata Kolkata Beijing	

$$P(i \mid D5) = 3/4 * 5/15 * 5/15 * 2/15 * 2/15 * 1/15$$

$$P(i) = 3/4$$
 $P(Delhi | i) = 5/15$ $P(Delhi | c) = 2/10$ $P(c) = 1/4$ $P(Kolkata | i) = 2/15$ $P(Kolkata | c) = 1/10$ $P(Beijing | i) = 1/15$ $P(Beijing | c) = 2/10$

	Doc_ID	Document	Class
Test	5	Delhi Delhi Kolkata Kolkata Beijing	

$$P(i \mid D5) = 3/4 * 5/15 * 5/15 * 2/15 * 2/15 * 1/15 = 0.000098$$

$$P(i) = 3/4$$
 $P(Delhi | i) = 5/15$ $P(Delhi | c) = 2/10$ $P(c) = 1/4$ $P(Kolkata | i) = 2/15$ $P(Kolkata | c) = 1/10$ $P(Beijing | i) = 1/15$ $P(Beijing | c) = 2/10$

	Doc_ID	Document	Class
Test	5	Delhi Delhi Kolkata Kolkata Beijing	

$$P(i \mid D5) = 0.000098$$

$$P(c \mid D5) = P(c) * P(Delhi \mid c) * P(Delhi \mid c) * P(Kolkata \mid c) * P(Kolkata \mid c) * P(Beijing \mid c)$$

$$P(i) = 3/4$$
 $P(Delhi | i) = 5/15$ $P(Delhi | c) = 2/10$ $P(c) = 1/4$ $P(Kolkata | i) = 2/15$ $P(Kolkata | c) = 1/10$ $P(Beijing | i) = 1/15$ $P(Beijing | c) = 2/10$

	Doc_ID	Document	Class
Test	5	Delhi Delhi Kolkata Kolkata Beijing	

$$P(i \mid D5) = 0.000098$$

$$P(c \mid D5) = P(c) * P(Delhi \mid c) * P(Delhi \mid c) * P(Kolkata \mid c) * P(Kolkata \mid c) * P(Beijing \mid c)$$

$$P(c \mid D5) = 1/4 * 2/10 * 2/10 * 1/10 * 1/10 * 2/10$$

$$P(i) = 3/4$$
 $P(Delhi | i) = 5/15$ $P(Delhi | c) = 2/10$ $P(c) = 1/4$ $P(Kolkata | i) = 2/15$ $P(Kolkata | c) = 1/10$ $P(Beijing | i) = 1/15$ $P(Beijing | c) = 2/10$

	Doc_ID	Document	Class
Test	5	Delhi Delhi Kolkata Kolkata Beijing	

$$P(i \mid D5) = 0.000098$$

$$P(c \mid D5) = 1/4 * 2/10 * 2/10 * 1/10 * 1/10 * 2/10 = 0.00002$$

$$P(i) = 3/4$$
 $P(Delhi | i) = 5/15$ $P(Delhi | c) = 2/10$ $P(c) = 1/4$ $P(Kolkata | i) = 2/15$ $P(Kolkata | c) = 1/10$ $P(Beijing | i) = 1/15$ $P(Beijing | c) = 2/10$

	Doc_ID	Document	Class
Test	5	Delhi Delhi Kolkata Kolkata Beijing	

$$P(i \mid D5) = 0.000098$$

$$P(c \mid D5) = 0.00002$$

$$P(i) = 3/4$$
 $P(Delhi | i) = 5/15$ $P(Delhi | c) = 2/10$ $P(c) = 1/4$ $P(Kolkata | i) = 2/15$ $P(Kolkata | c) = 1/10$ $P(Beijing | i) = 1/15$ $P(Beijing | c) = 2/10$

	Doc_ID	Document	Class
Test	5	Delhi Delhi Kolkata Kolkata Beijing	

$$P(i \mid D5) = 0.000098$$

$$P(c \mid D5) = 0.00002$$

$$P(i) = 3/4$$
 $P(Delhi | i) = 5/15$ $P(Delhi | c) = 2/10$ $P(c) = 1/4$ $P(Kolkata | i) = 2/15$ $P(Kolkata | c) = 1/10$ $P(Beijing | i) = 1/15$ $P(Beijing | c) = 2/10$

	Doc_ID	Document	Class
Test	5	Delhi Delhi Kolkata Kolkata Beijing	i

$$P(i \mid D5) = 0.000098$$

$$P(c \mid D5) = 0.00002$$

Thank You

