Лабораторная работа №7

Эффективность рекламы

Сунгурова Мариян М.

Содержание

1	Цель работы	4
2	Задание	5
3	Теоретическое введение	6
4	Выполнение лабораторной работы 4.1 Программная реализация модели эпидемии	8 8 12
5	Выводы	16
Сп	Список литературы	

Список иллюстраций

4.1	График изменения интенсивности рекламы для первого случая.	
	OpenModelica	13
4.2	График изменения интенсивности рекламы для первого случая. Julia	
4.3	График изменения интенсивности рекламы для второго случая.	
	OpenModelica	14
4.4	График изменения интенсивности рекламы для второго случая. Julia	
4.5	График изменения интенсивности рекламы для третьего случая.	
	OpenModelica	15
4.6	График изменения интенсивности рекламы для третьего случая. Julia	15

1 Цель работы

Исследовать простейшую математическую модель эффективности рекламы.

2 Задание

Вариант 23

Постройте график распространения рекламы, математическая модель которой описывается следующим уравнением:

$$\begin{aligned} &1. \ \ \frac{dn}{dt} = (0.51 + 0.000099(t)n(t))(N-n(t)) \\ &2. \ \ \frac{dn}{dt} = (0.0000019 + 0.99(t)n(t))(N-n(t)) \\ &3. \ \ \frac{dn}{dt} = (0.99 + 0.3cos(4t)n(t))(N-n(t)) \end{aligned}$$

2.
$$\frac{dn}{dt} = (0.0000019 + 0.99(t)n(t))(N - n(t))$$

3.
$$\frac{dn}{dt} = (0.99 + 0.3\cos(4t)n(t))(N - n(t))$$

При этом объем аудитории N=945, в начальный момент о товаре знает 13человек. Для случая 2 определите в какой момент времени скорость распространения рекламы будет иметь максимальное значение.

3 Теоретическое введение

Организуется рекламная кампания нового товара или услуги. Необходимо, чтобы прибыль будущих продаж с избытком покрывала издержки на рекламу. Вначале расходы могут превышать прибыль, поскольку лишь малая часть потенциальных покупателей будет информирована о новинке. Затем, при увеличении числа продаж, возрастает и прибыль, и, наконец, наступит момент, когда рынок насытиться, и рекламировать товар станет бесполезным.

Предположим, что торговыми учреждениями реализуется некоторая продукция, о которой в момент времениt из числа потенциальных покупателей N знает лишь n покупателей. Для ускорения сбыта продукции запускается реклама по радио, телевидению и других средств массовой информации. После запуска рекламной кампании информация о продукции начнет распространяться среди потенциальных покупателей путем общения друг с другом. Таким образом, после запуска рекламных объявлений скорость изменения числа знающих о продукции людей пропорциональна как числу знающих о товаре покупателей, так и числу покупателей о нем не знающих.

Модель рекламной кампании описывается следующими величинами. Считаем, что $\frac{dn}{dt}$ - скорость изменения со временем числа потребителей, узнавших о товаре и готовых его купить,t - время, прошедшее с начала рекламной кампании, n(t) - число уже информированных клиентов. Эта величина пропорциональна числу покупателей, еще не знающих о нем, это описывается следующим образом: $\alpha_1(t)(N-n(t))$, где N - общее число потенциальных платежеспособных покупателей, $\alpha_1(t)$ - характеризует интенсивность рекламной кампании (зависит от

затрат на рекламу в данный момент времени). Помимо этого, узнавшие о товаре потребители также распространяют полученную информацию среди потенциальных покупателей, не знающих о нем (в этом случае работает т.н. сарафанное радио). Этот вклад в рекламу описывается величиной $\alpha_2(t)n(t)(N-n(t))$, эта величина увеличивается с увеличением потребителей узнавших о товаре. Математическая модель распространения рекламы описывается уравнением:

$$\frac{dn}{dt} = (\alpha_1 + \alpha_2(t)n(t))(N - n(t))$$

При $\alpha_1>\alpha_2$ получается модель типа модели Мальтуса. При $\alpha_2>\alpha_1$ получаем уравнение логистической кривой.

4 Выполнение лабораторной работы

4.1 Программная реализация модели эпидемии

Зададим функцию для решения модели эффективности рекламы. Возьмем интервал $t\in[0;20]$ для первого сулчая и $t\in[0;0.05]$ для второго и третьего, а также начальное условие n0=12 и параметры. Рассмотрим сначала реализацию в Julia. Зададим начальные условия и функции для трех случаев:

```
n0 = 12

p1 = [0.51, 0.000099, 945]

p2 = [0.000019, 0.99, 945]

p3 = [0.99, 0.3, 945]

tspan1 = (0,20)

tspan2 = (0,0.05)

f(n, p, t) = (p[1] + p[2]*n)*(p[3]-n)
```

```
f3(n, p, t) = (p[1]*t + p[2]*cos(4*t)*n)*(p[3]-n)
```

Для задания проблемы используется функция ODEProblem, а для решения – численный метод Tsit5():

```
prob1 = ODEProblem(f, n0, tspan1, p1)

prob2 = ODEProblem(f, n0, tspan1, p2)

prob3 = ODEProblem(f3, n0, tspan2, p3)

sol1 = solve(prob1, Tsit5())

sol2 = solve(prob2, Tsit5())

sol3 = solve(prob3, Tsit5())

Также зададим эту модель в OpenModelica. Модель для первого случая:
model lab7
```

Real n(start=13);

parameter Real a1 = 0.51;

```
parameter Real a2 = 0.000099;
parameter Real N = 945;
equation
der(n) = (a1 - a2*n)*(N - n);
end lab7;
 Также зададим эту модель в OpenModelica. Модель для второго случая:
model lab7
Real n(start=13);
parameter Real a1 = 0.51;
parameter Real a2 = 0.000099;
```

```
parameter Real N = 945;
equation
der(n) = (a1 - a2*n)*(N - n);
end lab7;
 Также зададим эту модель в OpenModelica. Модель для третього случая:
model lab7
Real n(start=13);
parameter Real a1 = 0.99;
parameter Real a2 = 0.3;
parameter Real N = 945;
```

```
p = time;

q = cos(4*time);

equation

der(n) = (a1*p - a2*q*n)*(N - n);

end lab7;
```

4.2 Посмтроение графиков решений и их анализ

Посмотрим график распространения рекламы для первого случая(рис. fig. 4.1, fig. 4.2):

Рис. 4.1: График изменения интенсивности рекламы для первого случая. OpenModelica

Рис. 4.2: График изменения интенсивности рекламы для первого случая. Julia

Графики решений, полученные с помощью OpenModelica и Julia идентичны. Можно увидеть, что распространение рекламы сначала быстро увеличивается, а затем перестает меняться.

Посмотрим график распространения рекламы для второго случая(рис. fig. 4.3, fig. 4.4):

Рис. 4.3: График изменения интенсивности рекламы для второго случая. OpenModelica

Рис. 4.4: График изменения интенсивности рекламы для второго случая. Julia

Графики решений, полученные с помощью OpenModelica и Julia идентичны. Можно увидеть, что распространение рекламы сначала быстро увеличивается, а затем перестает меняться.

Посмотрим график распространения рекламы для третьего случая(рис. fig. 4.5, fig. 4.6):

Рис. 4.5: График изменения интенсивности рекламы для третьего случая. OpenModelica

Рис. 4.6: График изменения интенсивности рекламы для третьего случая. Julia

Графики решений, полученные с помощью OpenModelica и Julia идентичны. Можно увидеть, что распространение рекламы сначала быстро увеличивается, а затем перестает меняться.

5 Выводы

Построили математическую модель эффективности рекламы.

Список литературы