Universidade de São Paulo - USP

Instituto de Ciências Matemáticas e de Computação SSC0124 - Análise e Projeto Orientados a Objetos

Projeto 3: Diagramas de Comunicação Sistema de Biblioteca

9167910 Carlos Alberto Schneider Junior
8936926 Frederico de Azevedo Marques
8937420 Lucas Kassouf Crocomo
8936756 Roberto Pommella Alegro
8066395 Rodrigo das Neves Bernardi

Sumário

Introdução	2
Diagramas de Comunicação	3
inserirLivro	3
alterarDadosFuncionário	4
buscarUsuário	5
excluirFornecedor	6
Observações	7
Conclusão	8

Introdução

Durante a primeira fase de um projeto, a de análise, alguns artefatos são estudados visando compreender quais serão os processos, os eventos e as operações que são pertinentes ao sistema e quais serão modeladas. Uma vez concluída a análise, é feita a transição para a fase de projeto, onde uma solução lógica e competente entre em cena.

Um dos principais artefatos estudados durante esta segunda fase do projeto é o diagrama de Interação, que busca descrever em formato de grafo as interações entre classes e objetos, do ponto de vista das funcionalidades do sistema.

O diagrama em questão pode ser representado na UML através do chamado Diagrama de Comunicação, cujo objetivo é modelar quais mensagens serão transmitidas, dada um certa funcionalidade, ao longo do sistema e observar a relação entre as classes e objetos, como o nível de coesão e acoplamento. Esse diagrama, em outras palavras, também é conhecido por atribuir responsabilidades aos elementos do sistema.

Para a elaboração do diagrama é necessário partir de um Contrato de Operações, tendo em vista as descrições da funcionalidade que será modelada, suas pré e pós condições, e os parâmetros utilizados conforme descritos no contrato. A noção e a manipulação desses aspectos são necessários para modelarmos quais mensagens serão enviadas à cada elemento (classe, objeto, classe instanciada).

Afim de tornar a modelagem mais concisa, serão aplicados os conceitos de Orientação a Objeto e também alguns padrões para atribuição de responsabilidade (GRASP), ensinados em sala de aula, tais como Especialista, Criador, Coesão Alta, Acoplamento fraco e Controlador.

Foi utilizada a ferramenta Astah Professional¹ para criar os diagramas de comunicação.

-

¹ http://astah.net/

Diagramas de Comunicação

inserirLivro

Padrões GRASP:

- Criador: A classe que gerencia os livros cria objetos do tipo Livro.
- Especialista: A classe de livros é aquela que conhece as informações para a criação de novos livros, por tanto é sua responsabilidade criar novos livros.
- Controlador: Representa um subsistema (livros da biblioteca)
- Acoplamento baixo: Separação da coleção de livros em: Gerenciador, Livro (individuo) e coleção em si.
- Coesão alta: A característica semântica do sistema é garantida, com um baixo nível de complexidade.

alterarDadosFuncionário

Padrões GRASP:

- Especialista: Dado um funcionário, ele mesmo é o responsável por suas informações, logo a alteração de seus dados deve ser providenciada por um método do objeto.
- Controlador: Representa um subsistema (funcionários da biblioteca)
- Coesão alta: A característica semântica do sistema é garantida, com um baixo nível de complexidade.

buscarUsuário

Padrões GRASP:

- Especialista: A coleção de usuários é responsável pela consulta de usuários
- Controlador: Representa um subsistema (funcionários da biblioteca)
- Coesão alta: A característica semântica do sistema é garantida, com um baixo nível de complexidade.

excluirFornecedor

Padrões GRASP:

- Especialista: As coleções Aquisição e Fornecedor são responsáveis respectivamente por saber as informações das aquisições (para busca de fornecedores atrelados a uma delas) e por excluir um fornecedor da coleção de existentes
- Controlador: Representa um subsistema (fornecedores da biblioteca)
- Acoplamento baixo: Separação da dos fornecedores e aquisições em duas classes distintas com uma coleção cada.
- Coesão alta: A característica semântica do sistema é garantida, com um baixo nível de complexidade.

Observações

- Como o PlantUML não tem suporte para o Diagrama de Comunicação, tivemos a necessidade de mudar a ferramenta. Escolhemos assim, o Astah Professional que suporta geração de código fonte a partir deste diagrama, indispensável para o trabalho seguinte.
- 2. O grupo encontrou dificuldades na execução deste trabalho, uma vez que o anterior se encontrava incompleto e superficial. Foram necessárias mudanças nos Contratos de Operação e alguns detalhes no Modelo Conceitual para que a execução deste trabalho fosse realizada corretamente.

Conclusão

No contexto da modelagem de software, os diagramas representam um passo fundamental para a concepção do programa final, pois permitem a análise das interações entre classes de cada evento do sistema.

Através dos diagramas criados, foi possível modelar o comportamento de objetos e classes, a partir de uma determinada funcionalidade. Para a modelagem dos diagramas, nota-se que para se determinar as mensagens que serão transmitidas, foram necessários um certo nível de criatividade e o conhecimento de Orientação a Objetos. Esse nos permitiu manter a integridade semântica e a execução correta do sistema, mantendo-o simples e funcional.

Dessa forma, foi possível compreender a importância desse diagrama para a modelagem, através da análise das responsabilidades e das interações entre as classes, tendo em vista a coesão e o acoplamento entre elas. O programa deve ser reaproveitável (modularizado, com baixo acoplamento) e, ao mesmo tempo, atender as suas especificações (confiabilidade ou coesão).