Spark

Part 4: Advanced Programming, ML use case: k-means

Dario Colazzo

Credits: Amir H. Payberah

Accumulators and Broadcast variables

Not totally shared-nothing...

- When Spark runs a function in parallel as a set of tasks on different nodes, it ships a copy of each variable used in the function to each task.
- Sometimes, a variable needs to be shared across tasks, or between tasks and the driver program.
- General read-write shared variables across tasks is inefficient.
- Two types of shared variables: accumulators and broadcast variables.

Accumulators

Aggregating values from worker nodes back to the driver program.

Accumulators

- Example: counting events that occur during job execution.
- Worker code can add to the accumulator with its += method.

 The driver program can access the value by calling the value property on the accumulator

attention:

```
>>> accum = sc.accumulator(0)
>>> accum
Accumulator<id=0, value=0>

>>> >> sc.parallelize([1, 2, 3, 4]).foreach(lambda x: accum.add(x))
>>> accum
Accumulator<id=0, value=10>
>>> accum.value
10
```

Example

O How many lines from a file were blank?

```
>>> t = sc.textFile("file:/home/dario.colazzo/data/JSON/people.txt",4)
>>> t.collect()
[u'Michael, 29', u'', u'', u'Andy, 30', u'', u'Justin, 19']
>>> blankLines = sc.accumulator(0)
>>> blankLines
Accumulator<id=4, value=0>
>>> def f(x):
   if x=="":
               blankLines.add(1)
                return []
        return [y.encode('utf-8') for y in x.split(" ")]
>>> words = t.flatMap(f)
>>> blankLines.value
\mathbf{0}
>>> words.collect()
['Michael,', '29', 'Andy,', '30', 'Justin,', '19']
>>> blankLines.value
3
```

Broadcast Variables

- Recall that each time Spark runs a function in parallel as a set of tasks on different nodes, it ships a copy of each variable used in the function to each task.
- The broadcast values are sent to each node only once, rather than shipping a copy of it whenever a task is activated.
- Broadcast variables are cached in main memory, and are read-only
- The task using broadcast variables can access its value with the value property.

```
>>> rdd = sc.parallelize(range(100))
>>> broadcastVar = sc.broadcast([1, 2, 3])
>>> broadcastVar.value
[1, 2, 3]
>>> rdd.flatMap(lambda y : broadcastVar.value).count()
300
```

Example: Map joins

Let's first see standard join

```
>>>>> bigCollection =
   [(random.randint(1,3),random.randint(1,100)) for x in range(1000)]
>>> smallCollection=[(1, 'a'),(2, 'b'), (3,'c')]
>>> bigc = sc.parallelize(bigCollection)
>>> smallc = sc.parallelize(smallCollection)
>>>
>>> smallc.join(bigc).take(5)
[(1, ('a', 38)), (1, ('a', 11)), (1, ('a', 67)), (1, ('a', 89)), (1,
('a', 71))]
                                           Both RDDs are shuffled
                     smallc
                      bigc
                           Map tasks
                                    Reduce tasks
```

Example: Map joins

Map join : smallc can be broadcasted

```
>>> smallDict=dict( (x[0], x[1]) for x in smallc.collect() )
>>> smallDict[1]
'a'
>>> bc=sc.broadcast(smallDict)
>>> mapJoined = bigc.map(lambda x : (x[0], (bc.value[x[0]], x[1])))
>>> mapJoined.take(5)
[(3, ('c', 60)), (2, ('b', 26)), (3, ('c', 96)), (3, ('c', 29)), (2, ('b', 63))]
>>>bigc.take(5)
[(3, 60), (2, 26), (3, 96), (3, 29), (2, 63)]
>>>
```

Example: Map joins

Map join : smallc can be broadcasted

```
>>> smallDict=dict( (x[0], x[1]) for x in smallc.collect() )
>>> smallDict[1]
'a'
>>> bc=sc.broadcast(smallDict)
>>> mapJoined = bigc.map(lambda x : (x[0], (bc.value[x[0]], x[1])))
>>> mapJoined.take(5)
[(3, ('c', 60)), (2, ('b', 26)), (3, ('c', 96)), (3, ('c', 29)), (2,
('b', 63))]
>>>bigc.take(5)
[(3, 60), (2, 26), (3, 96), (3, 29), (2, 63)]
>>>
                                      bigc
                     smallc
                             master
                                               result
           smallc is sent once to
                                           map
                Workers
```

Conclusion on Spark

- Spark enables dataflow programming
- RDD as a new type added to existing Programming Languages
- RDD distribution in main memory
- Two types of operations: transformations and actions
- Execution engine based on stages, task and lineage
- Spark SQL: Dataframes, also used in ML
- Counters and broadcast variables

K-means in spark

Basic notions

 In French! Borrowed from nice notes of Francis Back nice notes at ENS (https://www.di.ens.fr/~fbach/courses/fall2010/ cours3.pdf)

K-means est un algorithme de quantification vectorielle (clustering en anglais). K-means est un algorithme de minimisation alternée qui, étant donné un entier K, va chercher à séparer un ensemble de points en K clusters (Figure 3.1).

Fig. 3.1. Clustering sur un ensemble de points 2D, 3 clusters.

Notations

On utilise les notations suivantes :

- Les $x_i \in \mathbb{R}^p$, $i \in \{1, ..., n\}$ sont les points à séparer.
- Les z_i^k sont des variables indicatrices associées aux x_i telles que $z_i^k = 1$ si x_i appartient au cluster k, $z_i^k = 0$ sinon. z est la matrice des z_i^k .
- $-\mu$ est le vecteur des $\mu_k \in \mathbb{R}^p$, où μ_k est le centre du cluster k.

On définit de plus la mesure de distorsion $J(\mu, z)$ par :

$$J(\mu, z) = \sum_{i=1}^{n} \sum_{k=1}^{n} z_i^k ||x_i - \mu_k||^2$$

L'algorithme

Le but de l'algorithme est de minimiser $J(\mu,z)$, il se présente sous la forme d'un algorithme de minimisation alternée :

- Etape 0 : "choisir le vecteur μ "
- Etape 1 : on minimise J par rapport à $z: z_i^k = 1$ pour $k \in \arg\min ||x_i \mu_k||$, ie on associe à x_i le centre μ_k le plus proche.
- Etape 2 : on minimise J par rapport à $\mu : \mu_k = \frac{\sum_i z_i^k x_i}{\sum_i z_i^k}$.
- Etape 3 : retour à l'étape 1 jusqu'à convergence.

Data

 We will use a simple (classical) data set describing features of flowers (available at https://www.dropbox.com/s/9kits2euwawcsj0/iris.data.txt)

Le jeu de données [modifier | modifier |e code]

Fisher's Iris Data				
longueur des sépales (en cm) ‡	largeur des sépales (en cm) ‡	longueur des pétales (en cm) (Petal length)	largeur des pétales (en cm) ‡	Espèce (Species)
5.1	3.5	1.4	0.2	I. setosa
4.9	3.0	1.4	0.2	I. setosa
4.7	3.2	1.3	0.2	I. setosa
4.6	3.1	1.5	0.2	I. setosa
5.0	3.6	1.4	0.2	I. setosa
5.4	3.9	1.7	0.4	I. setosa
4.6	3.4	1.4	0.3	I. setosa
5.0	3.4	1.5	0.2	I. setosa

source: https://fr.wikipedia.org/wiki/Iris_(jeu_de_données)

How do we proceed

- I will give you the code soon
- To launch a Python program from the master node of the cluster.

- Step-by-step presentation of the code
- Then you can launch the job and eventually modify it.

Nice Cloudera documentation on how to tune your submit command: http://blog.cloudera.com/blog/2015/03/how-to-tune-your-apache-spark-jobs-part-2/

Initialising variables and RDDs

Initialising the centroids

In the same manner, zipWithIndex gives an id to each cluster

```
centroides =
sc.parallelize(data.takeSample('withoutReplacment',nb_clusters
))\
.zipWithIndex()\
.map(lambda x: (x[1],x[0][1][:-1]))
# (0, [4.4, 3.0, 1.3, 0.2])
```


Points repartition

```
joined = data.cartesian(centroides)
# ((0, [5.1, 3.5, 1.4, 0.2, 'Iris-setosa']), (0, [4.4, 3.0, 1.3, 0.2]))
```

We compute the distance between the points and each cluster

```
dist = joined.map(lambda x: (x[0][0], (x[1][0], computeDistance(x[0][1][:-1], x[1]
[1]))))

def computeDistance(x,y):
    return sqrt(sum([(a - b)**2 for a,b in zip(x,y)]))

# (0, (0, 0.866025403784438))

dist_list = dist.groupByKey().mapValues(list)

# (0, [(0, 0.866025403784438), (1, 3.7), (2, 0.5385164807134504)])
```

Points repartition

```
def closestCluster(dist_list):
    cluster = dist_list[0][0]
    min_dist = dist_list[0][1]
    for elem in dist_list:
        if elem[1] < min_dist:
            cluster = elem[0]
                 min_dist = elem[1]
    return (cluster, min_dist)</pre>
```

We keep only the closest cluster to each point.

```
min_dist = dist_list.mapValues(closestCluster)

# (0, [(0, 0.866), (1, 3.7), (2, 0.538)])

# (0, (2, 0.538))
```

assignment will be our return value: It contains the datapoint, # the id of the closest cluster and the distance of the point to the centroid

```
assignment = min_dist.join(data)
# (0, ((2, 0.538), [5.1, 3.5, 1.4, 0.2, 'Iris-setosa']))
```

Spark Lightning-Fast Cluster Computing

New centroids

```
# (0, ((2, 0.538), [5.1, 3.5, 1.4, 0.2, 'Iris-setosa']))
clusters = assignment.map(lambda x: (x[1][0][0], x[1][1]
[:-1])
\# (2, [5.1, 3.5, 1.4, 0.2])
count = clusters.map(lambda x: (x[0],1)).
\reduceByKey(lambda x,y: x+y)
somme = clusters.reduceByKey(sumList)
newCentroides = somme.join(count).map(lambda x :
(x[0], movenneList(x[1][0], x[1][1]))
def moyenneList(x,n):
   return [x[i]/n for i in range(len(x))]
```

Spark Lightning-Fast Cluster Computing

End Condition

Based on counting the number of point moves

End Condition

The whole program

Available at https://www.dropbox.com/s/k5cn7otu5q9ck4c/kmeans-dario.py

ATTENTION: you need to

load the iris data on your HDFS home

https://www.dropbox.com/s/jj8h4hypq03r89x/iris.data.txt

- change the program by indicating where to load the data and to store the result - this is left as an exercice
- run the program with a command of the kind (of course you need to change the path/filename for the program - last line)

Work on the program

- Study the whole code
- Identify weaknesses of the way the algorithm is implemented and suggest possible improvements
- Time permitting implement and test your modifications.