Universidade do Minho

SAT

Mestrado Integrado em Engenharia Informática

Verificação Formal

 $2^{\mathrm{O}}\mathrm{Semestre}\ 2020/21$

Aluno: Etienne Costa Docente: Maria João Frade

7 de março de 2021

Conteúdo

1	Res	mo	2
2	Puz	e	3
3	Sud	ku	6
	3.1	Restrições e Modelação	6
	3.2	Formato DIMACS CNF	6
	3.3	Resultados obtidos	8
		3.3.1 Sudoku 2x2 - Puzzle 1	8
		3.3.2 Sudoku 2x2 - Puzzle 2	9
		3.3.3 Sudoku 3x3 - Puzzle 1	10
		3.3.4 Sudoku 3x3 - Puzzle 2	11

1 Resumo

O relatório apresentado diz respeito ao primeiro trabalho proposto no âmbito da unidade curricular de verificação formal. O universo de discurso recaí sobre problemas de decisão, cuja instância é uma expressão booleana escrita somente com operadores AND, OR, NOT e variáveis.

2 Puzzle

A "Associação Recreativa do Paraíso" tem o seguinte conjunto de regras :

- Os sócios loiros não podem ir ao Sábado.
- Quem não for adulto tem que usar chapéu.
- Cada sócio usa anel ou não usa chapéu.
- Um sócio vai ao Sábado se e só se é adulto.
- Todos os sócios adultos têm que usar anel.
- Quem usa anel tem que ser loiro.

Para a resolução deste puzzle foram definidas as seguintes variáveis proposicionais:

```
loiro : 1sábado : 2adulto : 3chapéu : 4
```

• anel: 5

De seguida são apresentadas as fórmulas proposicionais e as respectivas conversões para a forma normal conjuntiva (CNF):

```
Regra 1 : Os sócios loiros não podem ir ao Sábado.
  Fórmula proposicional : loiro \implies \negsábado
  Forma normal conjuntiva : \neg loiro \lor \neg s\'abado
 Número de cláusulas : 1
 Regra 2 : Quem não for adulto tem que usar chapéu.
  Fórmula proposicional : \neg adulto \implies chapéu
  Forma\ normal\ conjuntiva\ :\ adulto \lor chap\'eu
 Número de cláusulas : 1
 Regra 3 : Cada sócio usa anel ou não usa chapéu
 Fórmula proposicional : anel \lor \neg chap\'eu
 Forma\ normal\ conjuntiva\ :\ adulto \lor \neg chap\'eu
 Número de cláusulas : 1
 Regra 4 : Um sócio vai ao Sábado se e só se é adulto
 F\'{o}rmula \ proposicional \ : \ s\'{a}bado \Leftrightarrow adulto
 Forma normal conjuntiva : (\neg s\'abado \lor adulto) \land (s\'abado \lor \neg adulto)
7 Número de cláusulas : 2
```

```
Regra 5 : Todos os sócios adultos têm que usar anel

Fórmula proposicional : adulto ⇒ anel

Forma normal conjuntiva : ¬adulto∨anel

Número de cláusulas : 1

Regra 6 : Quem usa anel tem que ser loiro
```

```
Regra 6 : Quem usa anel tem que ser loiro

Fórmula proposicional : anel ⇒ loiro

Forma normal conjuntiva : ¬anel ∨ loiro

Número de cláusulas : 1
```

Feito isto, é escrito o resultado obtido no formato DIMACS CNF, formato esse usado para definir expressões booleanas, escritas na forma normal conjuntiva passando de seguida para o SAT Solver :

O resultado produzido pelo SAT solver foi o seguinte :

```
s satisfiable
v 1 -2 -3 4 5 0

loiro ∧ ¬sábado ∧ ¬adulto ∧ chapéu ∧ anel

Podemos afirmar que o modelo é satisfazível, i.e , é possível encontrar uma valoração que satisfaça o modelo.
```

De seguida foram propostas algumas questões que podiam ser respondidas à custa do modelo definido:

```
1 A afirmação " Quem usa anel não pode ir ao Sábado." é correcta ?
  Para responder a isso foi feita a negação da fórmula proposicional obtendo o
       seguinte:
  Fórmula proposicional : \neg (anel \implies \neg sábado)
  Forma normal conjuntiva : (anel \land s\'abado)
9 Número de cláusulas : 2
Adicionando as duas novas cláusulas ao modelo:
13 p cnf 5 9
14 -1 -2 0
15 3 4 0
16 5 -4 0
17 -2 3 0
18 2 -3 0
19 -3 5 0
20 -5 1 0
21 5 0
22 2 0
24 Obtem - se como resposta UNSATISFIABLE, com base nisso podemos afirmar que
      a afirmação é VERDADEIRA.
1 Pode um sócio de chapéu ser loiro ?
3 Com base na valoração obtida no modelo inicial, chegamos ao seguinte:
5 S SATISFIABLE
6 v 1 -2 -3 4 5 0
s loiro \land \neg s\'{a}bado \land \neg adulto \land chap\'{e}u \land anel
10 Podemos confirmar à custa da fórmula proposicional acima que é possível ter sócios
   de chapéu e cabelo loiro.
 _{\rm 1} A afirmação " Afinal a associação não pode ter sócios adultos. " é correcta ?
3 Para responder a isso foi feita a negação da fórmula proposicional obtendo o
       seguinte:
5 Fórmula proposicional : ¬(¬adulto)
7 Forma normal conjuntiva : adulto
9 Número de cláusulas : 1
10
11 Adicionando a nova cláusula ao modelo:
12
13 p cnf 5 8
14 -1 -2 0
15 3 4 0
16 5 -4 0
17 -2 3 0
18 2 -3 0
19 -3 5 0
20 -5 1 0
21 3 0
23 Obtem - se como resposta UNSATISFIABLE, com base nisso podemos afirmar que
  a afirmação é VERDADEIRA.
```

3 Sudoku

Os puzzles Sudoku são problemas de colocação de números inteiros entre $1 e N^2$ numa matriz quadrada de dimensão N^2 , por forma a que**cada coluna e cada linha contenha todos os números, sem repetições**. Além disso, cada matriz contém N^2 sub-matrizes quadradas disjuntas, de dimensão N, **que deverão também elas conter os números entre 1 e** N^2 . Cada problema é dado por uma matriz parcialmente preenchida, cabendo ao jogado completá-la.

3.1 Restrições e Modelação

Com base nesta breve introdução é possível especificar algumas restrições correspondentes às regras do puzzle bem com uma possível representação do modelo:

3.2 Formato DIMACS CNF

Para a geração do ficheiro DIMACS CNF , tirou-se partido das facilidades que a linguagem ${\bf Python}$ oferece.

A ideia principal do **script** criado, consiste na geração de todas as fórmulas proposicionais à custa da dimensão da sub-matriz e um ficheiro de entrada com a representação de um estado inicial da mesma.

Tendo em conta que boa parte dos algoritmos perdem desempenho com inputs maiores, optou-se por otimizar os ciclos gerando muita das vezes as fórmulas proposicionais de 2 restrições numa só iteração.

Uma das condições iniciais do puzzle, está relacionada com o estado inicial que o puzzle apresenta, de forma a facilitar essa inserção é passado um ficheiro de entrada no seguinte formato :

Após a geração de todas as cláusulas e variáveis proposicionais, é feita a passagem do ficheiro gerado para o SAT Solver e feita a filtragem dos valores positivos à custa do seguinte comando **grep -Eo** ' [0-9]+' ficheiro, pois só estes correspondem as variáveis proposicionais do nosso interesse.

3.3 Resultados obtidos

3.3.1 Sudoku 2x2 - Puzzle 1

4		1	
	2		
		3	
	4		1

4	3	1	2
1	2	4	3
2	1	3	4
3	4	2	1

```
Pode ser feita a interpretação da solução à custa do último valor, i.e.,
     m[1][1]=4 m[1][2]=3 m[1][3]=1 m[1][4]=2.
  114
   123
   131
   142
   211
   222
   234
   243
   312
   321
13
   333
   344
  413
   424
17
   432
   441
   0
```

3.3.2 Sudoku 2x2 - Puzzle 2

2			
		3	
	1		
			3

2	3	4	1
1	4	3	2
3	1	2	4
4	2	1	3

```
Pode ser feita a interpretação da solução à custa do último valor, i.e.,
    m[1][1]=2 m[1][2]=3 m[1][3]=4 m[1][4]=1.
  112
  123
  134
   141
   211
   224
   233
   242
   313
   321
   332
14
   344
15
  414
  422
17
  431
  443
   0
```

3.3.3 Sudoku 3x3 - Puzzle 1

8		2				6		9
1			7		2			8
5								1
	1			8	3		5	
	7		1	6			4	
6								2
2			4		7			5
7		1				8		4

8	3	2	5	4	1	6	7	9
1	6	4	7	9	2	5	3	8
5	9	7	6	3	8	4	2	1
4	1	6	2	8	3	9	5	7
3	2	5	9	7	4	1	8	6
9	7	8	1	6	5	2	4	3
6	4	3	8	5	9	7	1	2
2	8	9	4	1	7	3	6	5
7	5	1	3	2	6	8	9	4

The solution is correct You took 04 minutes 25 seconds to solve the puzzle

3.3.4 Sudoku 3x3 - Puzzle 2

5								2
2	7		9		5		4	8
	4		3		2		5	
	1	9				5	2	
				1				
	5	4				7	3	
	6		1		8		9	
1	9		4		6		7	5
4								3

5	3	8	7	4	1	9	6	2
2	7	1	9	6	5	3	4	8
9	4	6	3	8	2	1	5	7
3	1	9	8	7	4	5	2	6
6	2	7	5	1	3	4	8	9
8	5	4	6	2	9	7	3	1
7	6	3	1	5	8	2	9	4
1	9	2	4	3	6	8	7	5
4	8	5	2	9	7	6	1	3

The solution is correct You took 03 minutes 33 seconds to solve the puzzle