

Week 34: Lecture 2

Conditional probability and conditional expectation

Geir-Arne Fuglstad

August 19, 2020

Section 2.1: Conditional distributions

Definition

Let *A* and *B* be events. The conditional probability of *A* given *B* is defined by

$$\Pr\{\textbf{A}|\textbf{B}\} = \begin{cases} \frac{\Pr\{\textbf{A}\cap \textbf{B}\}}{\Pr\{\textbf{B}\}}, & \Pr\{\textbf{B}\} > 0,\\ \text{Not defined}, & \Pr\{\textbf{B}\} = 0. \end{cases}$$

Example 1

Throw one die, and let X denote the number of eyes. Find $\Pr\{X \ge 5 | X \ge 3\}$

Conditional PMFs

Definition (Conditional probability mass function (PMF))

Assume X and Y are jointly distributed random variables. The **conditional PMF** $p_{X|Y}(x|y)$ of X given Y is given by

$$p_{X|Y}(x|y) = \frac{\Pr\{X = x, Y = y\}}{\Pr\{Y = y\}} = \frac{p_{X,Y}(x,y)}{p_Y(y)}, \quad \text{if } p_Y(y) > 0.$$

Note: $\{X = x, Y = y\}$ is short-hand for $\{(X = x) \cap (Y = y)\}$.

vw.ntnu.no \ Fuglstad, G.-A., Week 34: Lecture 2

Example 2

Throw one die and let

$$X =$$
 "Number of eyes", $Y = \begin{cases} 0, & \text{if } X \leq 2, \\ 1, & \text{if } X \geq 3. \end{cases}$

Find the conditional PMF $p_{X|Y}$.

Joint distribution

The conditional PMF is essential to us because we can simplify the joint PMF as

$$p_{X,Y}(x,y) = \Pr\{X = x, Y = y\}$$

Joint distribution

The conditional PMF is essential to us because we can simplify the joint PMF as

$$p_{X,Y}(x, y) = \Pr\{X = x, Y = y\}$$

= $\Pr\{Y = y\}\Pr\{X = x | Y = y\}$

Joint distribution

The conditional PMF is essential to us because we can simplify the joint PMF as

$$p_{X,Y}(x,y) = \Pr\{X = x, Y = y\}$$

= $\Pr\{Y = y\}\Pr\{X = x | Y = y\}$
= $p_Y(y)p_{X|Y}(x|y)$.

Simplified notation

Unless it will cause confusion, we typically write

- p(x) instead of $p_X(x)$
- p(y) instead of $p_Y(y)$
- p(x, y) instead of $p_{X,Y}(x, y)$
- p(x|Y = y) instead of $p_{X|Y}(x|y)$

Marginalization

The law of total probability gives

$$Pr{X = x} = \sum_{y} Pr{X = x, Y = y}$$
$$= \sum_{y} Pr{Y = y}Pr{X = x | Y = y},$$

Marginalization

The law of total probability gives

$$Pr{X = x} = \sum_{y} Pr{X = x, Y = y}$$

$$= \sum_{y} Pr{Y = y}Pr{X = x | Y = y},$$

Example 3 (Page 48 in book):

A hunter encounters N birds. For each bird, he gets one shot and either hits or misses. Assume the probability of hitting is p for each bird and that the shots are independent.

Marginalization

The law of total probability gives

$$Pr{X = x} = \sum_{y} Pr{X = x, Y = y}$$

$$= \sum_{y} Pr{Y = y}Pr{X = x | Y = y},$$

Example 3 (Page 48 in book):

A hunter encounters N birds. For each bird, he gets one shot and either hits or misses. Assume the probability of hitting is p for each bird and that the shots are independent. Additionally, assume that the number of birds encountered is Poisson distributed with mean λ , i.e., $N \sim \text{Poisson}(\lambda)$. Find the PMF of the number of birds hit.

Conditional expectation

Definition (Conditional exected value)

Let X and Y be random variables, and g a real function. The **Conditional expected value** of g(X) given Y = y is

$$E[g(X)|Y = y] = \sum_{x} g(x)Pr\{X = x|Y = y\}, \text{ if } Pr\{Y = y\} > 0.$$

IMPORTANT!

Theorem (Law of iterated expectations)

Let X and Y be random variables such that $\mathbb{E}[|g(X)|] < \infty$, and let g be a real function. Then

$$\mathrm{E}[g(X)] = \mathrm{E}[\mathrm{E}[g(X)|Y]]$$

IMPORTANT!

Theorem (Law of total variance)

Let X and Y be random variables such that $\mathbb{E}[X^2] < \infty$, then

$$\mathrm{Var}[\boldsymbol{X}] = \mathrm{E}[\mathrm{Var}[\boldsymbol{X}|\boldsymbol{Y}]] + \mathrm{Var}[\mathrm{E}[\boldsymbol{X}|\boldsymbol{Y}]].$$

Example 3 – Revisited

A hunter encounters N birds. For each bird, he gets one shot and either hits or misses. Assume the probability of hitting is p for each bird and that the shots are independent. Additionally, assume that the number of birds encountered is Poisson distributed with mean λ , i.e., $N \sim \text{Poisson}(\lambda)$. Find the expected value and the variance of the number of birds hit.

Formulas:

$$\begin{aligned} \mathbf{E}[\boldsymbol{X}] &= \mathbf{E}[\mathbf{E}[\boldsymbol{X}|\boldsymbol{Y}]] \\ \mathbf{Var}[\boldsymbol{X}] &= \mathbf{E}[\mathbf{Var}[\boldsymbol{X}|\boldsymbol{Y}]] + \mathbf{Var}[\mathbf{E}[\boldsymbol{X}|\boldsymbol{Y}]] \end{aligned}$$