Educational Resources and Tools

William Giang

2023-06-13

Table of contents

Resources for beginners	1
Colocalization	2
Light-sheet	3
Analysis software downloads and resources	4
Fiji Plugins and Macros	
Acquisition (scope-specific)	5

Resources for beginners

For understanding digital images, image formation, and basic image processing and analysis, my all-time favorite resource has to be Pete Bankhead's Introduction to Bioimage Analysis.

For more details about fluorescence microscopy, MyScope (Microscopy Austrailia) is a good resource—especially if you go through their simulators for confocal/STED microscopy.

Table 1: Collection of online beginner resources with content category indicated by the icons and

Name Sample Prep Microscopy Analysis¹

Introduction

to

Bioim-

age

Analysis

MyScope

(Mi-

croscopy

Aus-

trailia)

Microcourses

Name	Sample Prep	Microscopy	Analysis	
Microscoj	oyU			
(Nikon)				
Designing	g			
a				
rigorous				
mi-				
croscopy				
experi-				
ment:				
Validat-				
ing				
methods				
and				
avoiding				
bias				
Tutorial:				
guidance				
for quan-				
titative				
confocal				
Fiji				
Training				
Notes				
(Cameron	l			
Nowell)				
Lecture				
BioIm-				
age				
Analysis				
2020				
(Robert				
Haase)				

Colocalization

Colocalization is a frequent analysis request, but avoid the common pitfalls!

¹Due to space limitations, "Analysis" refers to both image analysis and processing.

Table 2: Collection of colocalization resources

Name	Sample Prep	Microscopy	Analysis	
Colocaliz	zation			
Analysis				
(ImageJ)				
A				
practical				
guide to				
evaluat-				
ing				
colocal-				
ization				
in bio-				
logical				
mi-				
croscopy				
Image				
co-				
localizat	ion–			
CO-				
occurren	ce			
versus				
correla-				
tion				
A local-				
ization				
tale				
Deconstr	ructing			
co-				
localisati	ion			
work-				
flows: A				
journey				
into the				
black				
boxes				

Light-sheet

Table 3: Collection of light-sheet resources with content category indicated by the icons and .

Name	Sample Prep	Microscopy	Analysis	
Tutorial:				
practical				
considera-				
tions for				
tissue				
clearing				
and				
imaging				
Practical				
considera-				
tions for				
quantita-				
tive light				
sheet fluo-				
rescence				
microscopy				

Analysis software downloads and resources

While the free viewers from microscope companies can be helpful for inspecting metadata in an easy-to-parse way², knowing how to use Fiji (or ImageJ with Bio-Formats) will be more beneficial for beginners. Most likely, you'll need to use microscopes from different companies and also use Fiji for some processing/analysis.

Name	Brief Description	Resources
Fiji	A "batteries-included" distribution of ImageJ	link
NIS-	Nikon's free standalone program for .nd2 files	
Elements		
Viewer		
Imaris	Free 3D/4D image viewer (limited!)	Imaris Homeschool
Viewer		
Leica LAS	Free software for viewing Leica files	
X Office		
SVI	Deconvolution, Visualization, Analysis	Deconvolution video
Huygens		

 $^{^2}$ Another benefit of looking at .nd2 files using NIS-Elements Viewer (as opposed to Bio-Formats) is the faster loading which is especially helpful if inspecting metadata is the sole goal.

Fiji Plugins and Macros

Exporting a .lif file to individual .tifs can be done through Fiji. One macro that does the trick can be found here. See my video instructions.

Setting colors and adjusting brightness & contrast for multi-channel datasets can be done through BIOP Channel Tools.

Acquisition (scope-specific)

My documentation for a Nikon Ti2-E with a Yokogawa CSU-X1 spinning disk unit and 405nm photostimulation capabilities can be found online.

My video tutorials for the Advanced Light Microscopy Core's Leica SP8 FALCON and Leica SP8 STED 3X are on YouTube