Devoir maison 7 - Etude de la fonction exponentielle

PRÉSENTATION

L'objectif du devoir est de démontrer que les fonctions dérivables solutions de l'équation fonctionnelle :

$$\forall (x,y) \in \mathbb{R}^2, \qquad f(x+y) = f(x)f(y) \qquad (EF)$$

sont les solutions du problème de Cauchy :

$$\begin{cases} y' = ky \\ y(0) = 1 \end{cases}, \quad k \in \mathbb{R} \qquad (ED)$$

puis de démontrer l'existence d'une fonction solution, pour k=1.

Le principe de démonstration repose sur la fabrication, pour tout réel x, de deux suites adjacentes $(u_n(x))$ et $(v_n(x))$ dont la limite commune définit l'image de x par une fonction vérifiant l'équation différentielle.

PARTIE I

Dans cette partie, on s'intéresse aux fonctions f dérivables sur \mathbb{R} vérifiant (EF).

- **1.** Soit f une telle fonction. Pour $a \in \mathbb{R}$, on définit la fonction φ_a sur \mathbb{R} par $\varphi_a(x) = f(x+a) f(x)f(a)$.
 - a. Justifier la dérivabilité de φ_a sur \mathbb{R} , puis exprimer sa dérivée à l'aide de celle de f.
 - **b.** En déduire que toute fonction f vérifiant (EF) vérifie :

$$\exists k \in \mathbb{R}, \forall a \in \mathbb{R}, \quad f'(a) = kf(a)$$

- **c.** On suppose que f n'est pas la fonction nulle; que vaut f(0)?
- **2.** Soit $k \in \mathbb{R}^*$. On suppose qu'il existe une fonction f dérivable sur \mathbb{R} vérifiant (ED).
 - **a.** Montrer que $\forall x \in \mathbb{R}, f(x)f(-x) = 1$ et par suite que f ne s'annule pas sur \mathbb{R} .
- **b.** Soit $a \in \mathbb{R}$. On définit sur \mathbb{R} la fonction ψ_a par $\psi_a(x) = f(x+a)f(-x)$. Après avoir examiné la dérivée de ψ_a , montrer que f vérifie (EF).

PARTIE II

1. Construction de $(u_n(x))$ et $(v_n(x))$.

En appliquant la méthode d'Euler, montrer par récurrence que pour tout réel a, tout réel h " suffisamment petit" et tout entier naturel n, on a :

$$f(a+nh) \approx f(a)(1+h)^n$$
 (*)

Soient $x \in \mathbb{R}$ et n > |x|.

Avec
$$a = 0$$
 et $h = \frac{x}{n}$, (*) donne $f(x) \approx f(0) \left(1 + \frac{x}{n}\right)^n$. On note $u_n(x) = \left(1 + \frac{x}{n}\right)^n$
Avec $a = x$ et $h = -\frac{x}{n}$, (*) donne $f(0) \approx f(x) \left(1 - \frac{x}{n}\right)^n$. On note $v_n(x) = \left(1 - \frac{x}{n}\right)^{-n}$.

2. Étude des suites $(u_n(x))$ et $(v_n(x))$

Soit $x \in \mathbb{R}$. Les suites $(u_n(x))$ et $(v_n(x))$ sont définies comme au 1., pour n > |x|.

- **a.** Montrer que $\forall x \ge -1, \forall n \in \mathbb{N}^*, (1+x)^n \ge 1+nx$.
- **b.** Montrer que $(u_n(x))$ est croissante.
- **c.** Vérifier que $\frac{1}{v_n(x)} = u_n(-x)$; en déduire le sens de variation de $(v_n(x))$.
- **d.** Montrer que $\forall n > |x|$, on a : $1 \ge \frac{u_n(x)}{v_n(x)} \ge 1 \frac{x^2}{n}$; en déduire que $0 \le v_n(x) u_n(x) \le v_n(x) \frac{x^2}{n}$.
- e. Déduire des questions précédentes que les suites $(u_n(x))$ et $(v_n(x))$ sont adjacentes.

Les suites $(u_n(x))$ et $(v_n(x))$ étant adjacentes, elles ont la même limite.

On note exp la fonction qui à x fait correspondre cette limite.

3. Étude de la fonction exp

- **a.** Vérifier que $\exp(0) = 1$.
- **b.** Montrer que $\forall x \in \mathbb{R}, \forall n \in \mathbb{N}$ tel que n+1 > |x| et $\forall h \in \mathbb{R}$ tel que |h| < 1 on a :

$$\left(1 + \frac{x+h}{n}\right)^n \ge \left(1 + \frac{x}{n}\right)^n \left(1 + \frac{h}{1 + \frac{x}{n}}\right)$$

c. En déduire que pour $x \in \mathbb{R}, h \in \mathbb{R}$ tel que |h| < 1,

$$\exp(x) \times h \le \exp(x+h) - \exp(x) \le \exp(x) \times \frac{h}{1-h}$$

d. Démontrer que la fonction exp est dérivable sur \mathbb{R} et qu'elle vérifie (ED).