

ADVANCED HPC CLUSTER USAGE SESSION

SABRINA BENASSOU

SUMMARY

- Parallelism Strategies
- Fully Sharded Data Parallel (FSDP)
- Algorithm Overview
- Communication Optimizations
- Model Initialization
- Sharding Strategies

SUMMARY

- FSDP Interoperability
- Limitations
- Conclusions
- Reference

DISTRIBUTED DATA PARALLEL (DDP)

DISTRIBUTED DATA PARALLEL (DDP)

- Inadequate for supporting large models
- Likely encounter out-of-memory errors on each device

PIPELINE PARALLELISM

PIPELINE PARALLELISM

 The entire model must be structured in sequential layers or stages, which might not be feasible for all types of models.

OTHER PARALLELISM STRATEGIES

- Tensor Parallelism
- 3D Parallelism
- MiCS parallelism

• ..

FULLY SHARDED DATA PARALLEL (FSDP)

- Distributed training technique used to scale deep learning model training across multiple GPUs by sharding the model's parameters.
- Integrates efficiently with PyTorch and optimizes communication and memory usage, making it effective for training extremely large models in a distributed environment.

ALGORITHM OVERVIEW

Figure 1: FSDP Algorithm Overview

COMMUNICATION OPTIMIZATIONS

DEFERRED INITIALIZATION

Challenge #1:

• PyTorch required full materialization of the entire model on one device, how to create a model instance without materializing any tensor storage, postponing initialization until a storage on a concrete device is attached to the tensor.

Solution #1:

- Model parameters are initially allocated on a simulated or "fake" device.
- All parameter initialization operations are recorded during this simulated phase.
- When parameters move to a GPU, recorded initialization operations are replayed.
- This method creates a model instance without consuming GPU memory initially.

MODEL INITIALIZATION

Challenge #2

 How to ensure accurate initialization of model parameters when the model is too large to fit on a single GPU.

Solution #2:

- FSDP initializes and shards one unit at a time.
- With deferred initialization, FSDP decomposes the model into units, moves each unit to a GPU sequentially, and replays tensor initialization operations.

HANDS-ON CODING

GOOD PRACTICE

- Always store your code in the project folder.
- Store data in the scratch directory for faster I/O access. Files in scratch are deleted after 90 days of inactivity.
- Store the data in `\$DATA_dataset` for a more permanent location.
 - This location is not accessible by compute nodes.
 - You have to Join the project in order to store and access data https://judoor.fz-juelich.de/projects/datasets/

LET'S PARALLELIZE THE CODE WITH DISTRIBUTED DATA PARALLEL (DDP)

Remove line 180 and add this code snippet at line 172

```
torch.distributed.init_process_group(backend='nccl')
local rank = int(os.getenv('LOCAL RANK'))
rank = int(os.environ['RANK'])
device = torch.device('cuda', local_rank)
torch.cuda.set_device(device)
torch.random.manual seed(args.seed + torch.distributed.get rank())
```


Add this snippet at line 111

```
train_dset = torch.utils.data.DataLoader(
    train_dset,
    batch_size=args.batch_size,
    # Uses the distributed sampler to ensure each process gets a different subset of the data.
    sampler=train_sampler,
    # Use multiple processes for loading data.
    num_workers=args.train_num_workers,
    # Use pinned memory on GPUs for faster device-copy.
    pin_memory=True,
    persistent_workers=args.train_num_workers > 0,
)
```


Add after train_sampler

```
valid_sampler = torch.utils.data.distributed.DistributedSampler(valid_dset)
test_sampler = torch.utils.data.distributed.DistributedSampler(test_dset)
valid dset = torch.utils.data.DataLoader(
     valid dset,
      batch_size=args.batch_size,
     sampler=valid_sampler,
      num_workers=args.valid_num_workers,
      pin memory=True,
      persistent workers=args.valid num workers > 0,
test_dset = torch.utils.data.DataLoader(
     test dset,
      batch size=args.batch size,
     sampler=test sampler,
      pin memory=True,
```


Don't

forget to

add the

sampler

here as

well

Add this snippet at line 200

```
# Wraps the model in a DistributedDataParallel (DDP) module to parallelize the training # across multiple GPUs.

model = torch.nn.parallel.DistributedDataParallel(
    model,
    device_ids=[local_rank],
)
```


Add at line 217

sets the current epoch for the dataset sampler to ensure proper data shuffling in each epoch train_dset.sampler.set_epoch(epoch)

Add this line of code at line 232 and line 167

Obtain the global average loss.

torch.distributed.all_reduce(loss, torch.distributed.ReduceOp.AVG)

Add those utility functions at line 83

```
functools.lru_cache(maxsize=None)
def is root process():
      return torch.distributed.get_rank() == 0
def print0(*args, **kwargs):
      if is_root_process():
            print(*args, **kwargs)
def save0(*args, **kwargs):
      process.
      if is_root_process():
            torch.save(*args, **kwargs)
```


Replace print with print0 at line 247

```
printO(f'[{epoch}/{args.epochs}; {i}] loss: {loss:.5f}')
```

Replace print with print0 at line 253

```
print0(f'[{epoch}/{args.epochs}; {i}] valid loss: {valid_loss:.5f}')
```

Replace print with print0 at line 268

```
print0('Finished training after', end_time - start_time, 'seconds.')
```

Replace print with print0 at line 271

```
print0('Final test loss:', test_loss)
```


Replace torch.save at line 259

Replace torch.save function by the utility function to save the model. saveO(model, 'model-best.pt')

Replace torch.save at line 273

Replace torch.save function by the utility function to save the model. save0(model, 'model-final.pt')

Change the number of node at line 3 in run_to_distributed_training.sh file

```
#SBATCH --nodes=2
```

Change the number of gpu at line 7 in run_to_distributed_training.sh file

```
#SBATCH --gres=gpu:4
```

Add in run_to_distributed_training.sh file at line 16

Add in run_to_distributed_training.sh file at line 34

```
srun --cpu_bind=none bash -c "torchrun \
--nnodes=$SLURM_NNODES \
--rdzv_backend c10d \
--nproc_per_node=gpu \
--rdzv_id $RANDOM \
--rdzv_endpoint=$MASTER_ADDR:$MASTER_PORT \
--rdzv_conf=is_host=\$(if ((SLURM_NODEID)); then echo 0; else echo 1; fi) \
to_distributed_training.py "
```


PARALLELIZE THE CODE WITH FULLY SHARDED DATA PARALLEL (FSDP)

Replace "DistributedDataParallel" with "FullyShardedDataParallel" at line 210

Replace "save0" method by "save_model" method at line 93

```
def save model(
     checkpoint_type,
     model,
     rank,
     save dir='model-final.pt',
     optim_dir="optimizer-final.pt",
     optimizer=None
     if checkpoint type == 'full':
            model checkpointing.save model checkpoint(model, save dir, rank)
     if optimizer is not None:
           model checkpointing.save optimizer checkpoint(model, optimizer, optim dir, rank)
     elif checkpoint_type == 'sharded':
           if optimizer is not None:
                  model checkpointing.save model and optimizer sharded(model, save dir, rank, optim=optimizer)
                  model checkpointing.save model and optimizer sharded(model, save dir, rank)
     elif checkpoint type == 'local':
            model checkpointing.save distributed model checkpoint(model, save dir, rank)
           if optimizer is not None:
                  model checkpointing.save optimizer checkpoint(model, optimizer, optim dir, rank)
```


Replace "save0" by "save_model" at line 275

Replace the following line with the utility function to save the model. save_model(args.save_model_opt, model, rank, "model-best.pt", "optimizer-best.pt", optimizer=opt)

Replace "save0" by "save_model" at line 289

Replace the following line with the utility function to save the model. save_model(args.save_model_opt, model, rank, optimizer=opt)

Export TORCH_LOGS at line 31 in run_to_distributed_training.sh file

export TORCH_LOGS='-torch.distributed.checkpoint._dedup_tensors'

SHARDING STRATEGIES

SHARDING STRATEGIES

Figure 4: Hybrid Sharding on 16 GPUs: GPUs are configured

into 2 sharding groups and 8 replication groups

SHARDING STRATEGIES

Sharding strategies for distributed training by FullyShardedDataParallel

- FULL_SHARD: Parameters, gradients, and optimizer states are sharded. Default strategy.
- SHARD_GRAD_OP: For the parameters, this strategy unshards before the forward, does not reshard them after the forward, and only reshards them after the backward computation
- NO_SHARD: Similar to PyTorch's DistributedDataParallel API.
- HYBRID SHARD: Apply FULL SHARD within a node, and replicate parameters across nodes.
- _HYBRID_SHARD_ZERO2: Apply SHARD_GRAD_OP within a node, and replicate parameters across nodes. This is like HYBRID_SHARD, except this may provide even higher throughput since the unsharded parameters are not freed after the forward pass, saving the all-gathers in the pre-backward.

Pass this argument at line 230

FSDP INTEROPERABILITY

Combination with Pipeline Parallelism

- Integration: FSDP can wrap each stage of a pipeline parallel model.
- Challenge with Micro-Batches: Pipeline parallelism involves splitting input batches into micro-batches, requiring frequent unsharding and resharing of model parameters, which can lead to high communication overhead.
- **Optimization**: FSDP offers alternative sharding strategies that keep parameters unsharded post-forward pass, reducing the need for AllGather communications after each micro-batch.
- **Memory Efficiency**: Even though entire pipeline stage parameters are stored on the GPU device, FSDP minimizes memory usage by still sharding gradients and optimizer states.

FSDP INTEROPERABILITY

Combination with Tensor Parallelism

- **Distinctive Approach**: Unlike FSDP, tensor parallelism maintains parameters sharded during computations to fit large sub-modules within GPU memory constraints.
- 2D Parallelism in PyTorch: PyTorch's parallelize_module feature can create a 2D parallel structure by combining tensor parallelism and FSDP.
- **Device Organization**: Devices are organized into a 2D mesh, with DTensor managing tensor parallelism on one dimension (typically intra-node for higher bandwidth) and FSDP handling sharded data parallelism on the other dimension (inter-node).
- Communication Strategy: This setup optimizes communication paths, keeping tensor-parallel operations within the node and FSDP communications between nodes to efficiently manage network bandwidth and computational delays.

LIMITATIONS

Mathematical Equivalence:

- Challenges with Optimizer Computation: FSDP's sharding mechanism can alter the original data layout of parameters, impacting computations that depend on unsharded values, such as vector norms or complex optimizer functions.
- **Impact on Optimizer Efficiency**: Using padding, uneven sharding, or extra communication to maintain optimizer accuracy can negatively affect performance.
- Research Area: Properly integrating sophisticated optimizer computations with parameter sharding remains an open and active area of research.

Shared Parameters:

- Management of Shared Parameters: FSDP must avoid flattening shared parameters into multiple segments to prevent errors related to tensor storage or size mismatches.
- Strategic Sharding: It's recommended to structure FSDP units so that shared parameters are always accessible and unsharded across all uses by placing them in the lowest-common-ancestor unit.
- Ongoing Improvements: Methods to handle shared parameters more efficiently are under investigation to optimize their management without extended periods of being unsharded.

CONCLUSIONS

- FSDP is a distributed training method in PyTorch that shards model parameters and optimizer states across GPUs to maximize memory efficiency and scalability.
- FSDP enables model initialization on a dummy device, which is then replayed on GPUs, supporting large models. This is called deferred initialization.
- FSDP decomposes the model into units and materializes the parameters of one unit at a time.
- FSDP offers different sharding strategies.
- FSDP can be combined with pipeline parallelism or tensor parallelism.

REFERENCE

• Zhao, Yanli, et al. "Pytorch fsdp: experiences on scaling fully sharded data parallel." *arXiv preprint* arXiv:2304.11277 (2023).

Thank you!

