Mathematische Grundlagen

Das Handout ist Bestandteil der Vortragsfolien zur Höheren Mathematik; siehe die Hinweise auf der Internetseite www.imng.uni-stuttgart.de/LstNumGeoMod/VHM/ für Erläuterungen zur Nutzung und zum Copyright.

Seil Seil

Beispiel

Die Gleichung

$$x^4 - 8x^2 - 9 = 0$$

kann mit der Substitution $z=x^2$ als quadratische Gleichung

$$z^2 - 8z - 9 = 0$$

geschrieben werden. Diese hat die Lösungen z=-1 und z=9.

Rücksubstitution führt auf $x^2=-1$ bzw. $x^2=9$. Die Gleichung $x^2=-1$ hat keine reelle Lösung. Die Gleichung $x^2=9$ liefert $x=\pm 3$ als die einzigen reellen Lösungen der ursprünglichen Gleichung.

Gleichungen und Ungleichungen

Lösung einer quadratischen Gleichung:

$$ax^{2} + bx + c = 0$$
 \Longrightarrow $x = \frac{-b \pm \sqrt{\Delta}}{2a}$, $\Delta = b^{2} - 4ac$
 $x^{2} + px + q = 0$ \Longrightarrow $x = -\frac{p}{2} \pm \sqrt{\Delta}$, $\Delta = \frac{p^{2}}{4} - q$

$$\Delta > 0 \implies$$
 zwei reelle Lösungen

$$\Delta = 0 \quad \Longrightarrow \quad \text{eine reelle L\"osung}$$

$$\Delta < 0 \implies$$
 keine reelle Lösung

Rechenregeln für Ungleichungen (auch gültig mit \leq bzw. \geq):

$$x < y \implies cx < cy$$
, falls $c > 0$

$$x < y \implies cx > cy$$
, falls $c < 0$

$$|x - a| < r \quad \Leftrightarrow \quad a - r < x < a + r$$

undlagen – Gleichungen und Ungleichungen

1 1

Beispiel

Bestimmung der Lösungsmenge L der Ungleichung

$$\frac{3}{4}(3x+1) \ge 2x + \frac{1}{2}|x-1|.$$

Äquivalente Umformungen ~>>

$$9x + 3 \ge 8x + 2|x - 1| \Leftrightarrow x + 3 \ge 2|x - 1|$$

1. Fall: $x \ge 1 \leadsto$

$$x+3 \ge 2(x-1) \Leftrightarrow x \le 5$$

 $\leadsto L_1 : 1 < x < 5$

2. Fall: $x < 1 \leadsto$

$$x+3 \ge -2(x-1)$$
 \Leftrightarrow $x \ge -\frac{1}{3}$

$$\rightsquigarrow L_2:-\frac{1}{3} \leq x < 1$$

Lösungsmenge: $L=L_1\cup L_2=[-\frac{1}{3},5]$

1-1

Fakultät

Das Produkt der ersten n natürlichen Zahlen wird mit

$$n! = 1 \cdot 2 \cdots n$$

bezeichnet (lies: n Fakultät). Konsistent mit der Definition des leeren Produktes setzt man 0!=1.

Die Zahl n! entspricht der Anzahl der verschiedenen Möglichkeiten n unterschiedliche Objekte anzuordnen.

Grundlagen - Rinomischer Lehrsatz

Fakultät

= 1 1 ...

1-1

Beispiel

$$\binom{5}{2} = \frac{5!}{3!2!} = \frac{5 \cdot 4}{1 \cdot 2} = 10$$

Auswahl von 2-elementigen Teilmengen aus der Menge $\{a, b, c, d, e\}$:

$${a,b}, {a,c}, {a,d}, {a,e}$$

 ${b,a}, {b,c}, {b,d}, {b,e}$
...

 $\leadsto 5 \cdot 4$ Teilmengen. Reihenfolge irrelevant

$${a,b} = {b,a}, \cdots$$

→ Division durch 2

Binomialkoeffizient

Für $n,k\in\mathbb{N}_0$ mit $n\geq k$ definiert man den Binomialkoeffizienten

$$\binom{n}{k} = \frac{n!}{(n-k)!k!} = \frac{n(n-1)(n-2)\cdots(n-k+1)}{1\cdots(k-2)(k-1)k}.$$

Er gibt die Anzahl der k-elementigen Teilmengen einer Menge mit n Elementen an.

Wegen 0! = 1 gilt insbesondere

$$\left(\begin{array}{c} 0\\0 \end{array}\right) = 1, \quad \left(\begin{array}{c} n\\n \end{array}\right) = \left(\begin{array}{c} n\\0 \end{array}\right) = 1$$

und aus der Definition folgt:

$$\binom{n}{n-k} = \binom{n}{k}.$$

Grundlagen – Binomischer Lehi

Binomialkoeffizient

Pascalsches Dreieck

Die Binomialkoeffizienten

$$\binom{n}{k} = \frac{n!}{(n-k)! \, k!}$$

lassen sich mit Hilfe der Rekursion

$$\binom{n+1}{k} = \binom{n}{k-1} + \binom{n}{k}$$

in einem Dreiecksschema, dem sogenannten Pascalschen Dreieck, berechnen.

$\begin{pmatrix} 0 \\ k \end{pmatrix}$				1					
$\begin{pmatrix} 1 \\ k \end{pmatrix}$			1		1				
$\binom{2}{k}$		1		2		1			
$\binom{3}{k}$	1		3		3		1		
		$\searrow + \swarrow$		$\searrow + \swarrow$		$\searrow + \swarrow$			
$\binom{4}{k}$	1	4		6		4		1	
		:		:		:			

Abbildung

Unter einer Abbildung f von einer Menge A in eine Menge B versteht man eine Vorschrift, die jedem $a \in A$ eindeutig ein bestimmtes $b = f(a) \in B$ zuordnet:

$$f:A\longrightarrow B$$
.

Für die Elementzuordnung verwendet man die Schreibweise

$$a \mapsto b = f(a)$$

und bezeichnet b als das Bild von a, bzw. a als ein Urbild von b. Ist $M \subseteq A$, so heißt $f(M) = \{f(m) | m \in M\} \subseteq B$ das Bild von M und für $N \subseteq B$ heißt $f^{-1}(N) = \{a | f(a) \in N\} \subseteq A$ das Urbild von N unter der Abbildung f.

Die Menge f(A) heißt Wertebereich und A Definitionsbereich der Abbildung f.

Binomischer Satz

Mit der binomischen Formel lassen sich Potenzen einer Summe von zwei Variablen berechnen. Für alle $n \in \mathbb{N}_0$ gilt

$$(a+b)^n = a^n + \binom{n}{1}a^{n-1}b + \dots + \binom{n}{n-1}ab^{n-1} + b^n$$
$$= \sum_{k=0}^n \binom{n}{k}a^{n-k}b^k.$$

Insbesondere ist für n = 2, 3

$$(a+b)^2 = a^2 + 2ab + b^2,$$

 $(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3.$

Eine Abbildung kann man folgendermaßen illustrieren.

Wie aus dem Bild ersichtlich ist, müssen nicht alle Elemente aus B als Bild eines Elementes aus A auftreten und ein Element aus B darf auch Bild mehrerer Elemente aus A sein. Es muss allerdings für jedes Element aus Aein eindeutiges Bild geben, das heißt von jedem a muss genau ein Pfeil ausgehen.

Man erkennt auch, dass ein Bild b mehrere Urbilder haben kann, hier beispielsweise a und a'.

Statt Abbildung verwendet man auch den Begriff Funktion, insbesondere in der reellen und komplexen Analysis.

Grundlagen - Abbildunger

Abbildung

1 2

Beispiel

(i) Die Funktion

$$f: \mathbb{R} \to \mathbb{R}, \ x \mapsto x^2$$

ist nicht surjektiv, da z.B. -1 kein Urbild hat. f ist nicht injektiv, da z.B. f(-1)=f(1).

(ii) Die Funktion

$$f: \mathbb{R} \to \mathbb{R}, \ x \mapsto x^3$$

ist bijektiv.

- Surjektivität: Sei $y \in \mathbb{R}$ beliebig. Für $x := \sqrt[3]{y}$ gilt

$$f(x) = f(\sqrt[3]{y}) = y.$$

- Injektivität:

$$f(x) = f(x') \implies x^3 = x'^3 \implies x = x'.$$

Eigenschaften von Abbildungen

Eine Abbildung

$$f:A\longrightarrow B$$

zwischen zwei Mengen A und B heißt

- injektiv, falls $f(a) \neq f(a')$ für alle $a, a' \in A$ mit $a \neq a'$
- surjektiv, falls es für jedes $b \in B$ ein $a \in A$ gibt mit f(a) = b
- \bullet bijektiv, falls f sowohl injektiv als auch surjektiv ist.

Diese Begriffe lassen sich anhand von Mengendiagrammen illustrieren:

Grundlagen – Abbildungen

Abbildung

0.1

Verknüpfung von Abbildungen

Die Verknüpfung oder Komposition zweier Abbildungen $f:A\to B$ und $g:B\to C$ ist durch

$$a \mapsto (g \circ f)(a) = g(f(a)), \quad a \in A,$$

definiert und in dem folgendem Diagramm veranschaulicht.

Die Verknüpfung ∘ ist assoziativ, d.h.

$$(h \circ g) \circ f = h \circ (g \circ f)$$

aber nicht kommutativ, also ist im Allgemeinen $f\circ g\neq g\circ f.$

Inverse Abbildung

Für eine bijektive Abbildung $f:A\to B$ ist durch

$$b = f(a) \Leftrightarrow a = f^{-1}(b)$$

die inverse Abbildung $f^{-1}:B\to A$ definiert.

Insbesondere ist $a=f^{-1}(f(a))$, d.h. $f^{-1}\circ f$ ist die identische Abbildung.

Grundlagen – Abbildunger

Verknüpfung von Abbildunge

1.0

rundlagen – Abbildunger

Inverse Abbildung