Linear Regression - Salinity and Temperature

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn import preprocessing, svm
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
```

```
In [2]: #Step2: Reading the Dataset

df=pd.read_csv(r"C:\Users\sneha\Downloads\bottle.csv.zip")
df
```

C:\Users\sneha\AppData\Local\Temp\ipykernel_12900\2303548971.py:3: DtypeWarning: Columns (47,73) hav
e mixed types. Specify dtype option on import or set low_memory=False.
 df=pd.read_csv(r"C:\Users\sneha\Downloads\bottle.csv.zip")

Out[2]:

	Cst_Cnt	Btl_Cnt	Sta_ID	Depth_ID	Depthm	T_degC	Salnty	O2ml_L	STheta	O2Sat	 R_PHAEO	R_PRES I
0	1	1	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0000A-3	0	10.500	33.4400	NaN	25.64900	NaN	 NaN	0
1	1	2	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0008A-3	8	10.460	33.4400	NaN	25.65600	NaN	 NaN	8
2	1	3	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0010A-7	10	10.460	33.4370	NaN	25.65400	NaN	 NaN	10
3	1	4	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0019A-3	19	10.450	33.4200	NaN	25.64300	NaN	 NaN	19
4	1	5	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0020A-7	20	10.450	33.4210	NaN	25.64300	NaN	 NaN	20
•••											 	
864858	34404	864859	093.4 026.4	20- 1611SR- MX-310- 2239- 09340264- 0000A-7	0	18.744	33.4083	5.805	23.87055	108.74	 0.18	0
864859	34404	864860	093.4 026.4	20- 1611SR- MX-310- 2239- 09340264- 0002A-3	2	18.744	33.4083	5.805	23.87072	108.74	 0.18	2
864860	34404	864861	093.4 026.4	20- 1611SR- MX-310- 2239- 09340264- 0005A-3	5	18.692	33.4150	5.796	23.88911	108.46	 0.18	5
864861	34404	864862	093.4 026.4	20- 1611SR- MX-310- 2239- 09340264- 0010A-3	10	18.161	33.4062	5.816	24.01426	107.74	 0.31	10
864862	34404	864863	093.4 026.4	20- 1611SR- MX-310- 2239- 09340264- 0015A-3	15	17.533	33.3880	5.774	24.15297	105.66	 0.61	15
864863	rows × 74	columns	6									

```
In [3]: df=df[['Salnty','T_degC']]
df.columns=['Sal','Temp']
```

In [4]: df.head(10)

Out[4]:

Sal	T
	remp
33.440	10.50
33.440	10.46
33.437	10.46
33.420	10.45
33.421	10.45
33.431	10.45
33.440	10.45
33.424	10.24
33.420	10.06
33.494	9.86
	33.440 33.437 33.420 33.421 33.431 33.440 33.424 33.420

```
In [5]: #step3: Exploring the Data Scatter . Plotting the data scatter
sns.lmplot(x ="Sal", y="Temp", data =df, order = 2, ci = None)
```

Out[5]: <seaborn.axisgrid.FacetGrid at 0x1ee5bb30ca0>


```
In [6]: #Step4: Data Cleaning- Elimminating NaN or missing input numbers

df.fillna(method= 'ffill', inplace = True)
```

C:\Users\sneha\AppData\Local\Temp\ipykernel_12900\1577053232.py:3: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

df.fillna(method= 'ffill', inplace = True)

```
In [7]: #Step5: Training our Model

X = np.array(df['Sal']).reshape(-1, 1)
y = np.array(df['Temp']).reshape(-1, 1)

#Separating the data into independent and dependent variables and convert
#Now each dataframe contains only one column
```

```
In [8]: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25)
#Splitting the data into training and testing data
regr = LinearRegression()
regr.fit(X_train, y_train)
print(regr.score(X_test, y_test))
```

0.20408467365361427

```
In [9]: #Step6: Exploring our Results
y_pred = regr.predict(X_test)
plt.scatter(X_test, y_test, color = 'b')
plt.plot(X_test, y_pred,color = 'k')
plt.show()
```



```
In [10]: #Step7: Working with a Smaller dataset
df500 = df[:][:500]

#Selecting the 1st 500 rowss of the data
sns.lmplot(x= "Sal", y="Temp", data= df500, order = 1, ci = None)
```

Out[10]: <seaborn.axisgrid.FacetGrid at 0x1ee08c79f00>


```
In [11]: df500.fillna(method = 'ffill', inplace = True)
    X = np.array(df500['Sal']).reshape(-1, 1)
    y = np.array(df500['Temp']).reshape(-1, 1)
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25)
    regr = LinearRegression()
    regr.fit(X_train, y_train)
    print("Regression:",regr.score(X_test, y_test))
    y_pred=regr.predict(X_test)
    plt.scatter(X_test,y_test,color='b')
    plt.scatter(X_test,y_pred,color='k')
    plt.show()
```

Regression: 0.8118937504571804


```
In [12]: #Step8: Evaluation of model
from sklearn.linear_model import LinearRegression
from sklearn.metrics import r2_score
#train the model
model = LinearRegression()
model.fit(X_train, y_train)
# Evaluate the model on the test set
y_pred = model.predict(X_test)

r2 = r2_score(y_test, y_pred)
print("R2 score:",r2)
```

R2 score: 0.8118937504571804

```
In [ ]: #Step-9:Conclusion:
```

Dataset we have taken is poor for Linear Model, but with the smaller data works well with Linear Model

```
In [ ]:
```