Day 4

Cosets and index

Proposition: If K is a subgroup of H and H is a subgroup of G then [G:K] = [G:H][H:K].

Proposition: If H and K are subgroups of G, and $HK = \{hk : h \in H, k \in K\}$ then 1. $\mid HK \mid = \frac{|H||K|}{|H \cap K|}$ 2. HK is a subgroup if and only if HK = KH. This holds if H is a subgroup of $N_G(K)$, and a fortiori if K is normal in G. 3. If m and n are [G:H] and [G:K] respectively, then the index of $H \cap K$ in G is between $\operatorname{lcm}(m,n)$ and mn.

Coset examples

Example 1 Let $G = S_n$. The permutation group S_k is a subgroup of S_n . What are its cosets? There are n!/k! of them.

The coset representatives can be viewed as maps from the set $\{k+1,\ldots,n\}$ to the set $\{1,\ldots,n\}$.

Example 2 Let $G = S_n$. The permutation group $S_k \times S_{n-k}$ is a subgroup of S_n where S_{n-k} is viewed as the permutations of the set $\{k+1,\ldots,\}$. What are the cosets of this subgroup?

Example 3 Let $G = \operatorname{GL}_2(\mathbb{R})$. Let P be the subgroup of upper triangular matrices. Show that the cosets G/P are in bijection with equivalence classes of vectors [x,y] where $xy \neq 0$ and $[x,y] \sim [x',y']$ whenever there is a nonzero constant a so that ax = x' and ay = y'.

Equivalently show that the cosets are in bijection with the lines through the origin in \mathbb{R}^2 .

Example 4 Let $G = D_{2n}$ and let H be a subgroup generated by a reflection fixing a vertex. Show that the cosets of H are in bijection with the n vertices of the polygon on which D_{2n} acts in its usual representation.

Example 5 Let G be the affine group of \mathbb{R}^2 . Let H be the copy of $GL_2(\mathbb{R})$ inside G. Show that the cosets are in bijection with the points of \mathbb{R}^2 .

Quotients

Show that every subgroup of the quaternion group Q_8 is normal. What are the quotient groups?

Show that every quotient group of a cyclic group is cyclic.

A group is simple if it has no nontrivial normal subgroups, hence no nontrivial quotients. $\mathbb{Z}/p\mathbb{Z}$, for p prime, are the simple cyclic groups.

 $\mathrm{SL}_n(F)$ is the kernel of the determinant map $\mathrm{GL}_n(F) \to F^{\times}$.

 $\operatorname{PGL}_n(F)$ is the quotient of $\operatorname{GL}_n(F)$ by the normal subgroup of matrices aI_n for $a \in F^{\times}$.

Universal property

- 1. Every homomorphism $f:G\to H$ makes a quotient of G into a subgroup of H.
- 2. Every surjective homomorphism $f: G \to H$ is an isomorphism from a quotient of G to H.
- 3. Every injective homomorphism $f: G \to H$ makes G into a subgroup of H.
- 4. If G is simple, every homomorphism $f: G \to H$ is either trivial or injective.

The alternating group

The alternating group A_n is the subgroup of S_n consisting of even permutations.