1. Die gemeinsame Wahrscheinlichkeitsfunktion der zweidimensionalen Zufallsvariablen (X;Y) lautet wie in der folgenden Tabelle dargestellt:

X	1	2	3	
1	0.3	0.05	0.05	
2	0.1	0.1	0.1	
3	0.1	0.1	0.1	

(a) Bestimmen Sie die Wahrscheinlichkeit, dass $Y \le 2$ und X > 2 ist.

Lösung:

Es gilt:

$$P(X > 2; Y \le 2) = \sum_{x_i > 2} \sum_{y_i \le 2} f(x_i; y_j) = 0.1 + 0.1 = 0.2$$

(b) Geben Sie die Randwahrscheinlichkeiten an.

Lösung:

Es gilt:

$$f_1(x) = \begin{cases} 0.4 & \text{für } x = 1 \\ 0.3 & \text{für } x = 2 \\ 0.3 & \text{für } x = 3 \\ 0 & \text{sonst} \end{cases} \quad \text{und} \quad f_2(y) = \begin{cases} 0.5 & \text{für } y = 1 \\ 0.25 & \text{für } y = 2 \\ 0.25 & \text{für } y = 3 \\ 0 & \text{sonst} \end{cases}$$

bzw.

X	1	2	3	$f_1(x)$
1	0.3	0.05	0.05	0.4
2	0.1	0.1	0.1	0.3
3	0.1	0.1	0.1	0.3
$f_2(y)$	0.5	0.25	0.25	1

(c) Sind X und Y unabhängig?

Lösung:

Es gilt:

$$f(1;1) = 0.3 \neq 0.2 = 0.5 \cdot 0.4 = f_1(1) \cdot f_2(1)$$

Damit sind *X* und *Y* stochastisch abhängig.

(d) Wie sehen die Wahrscheinlichkeit für Y aus, wenn X = 1 ist?

Lösung:

Es gilt:

$$P(Y \mid X = 1) = \frac{f(X = 1; Y)}{f_1(1)} = \frac{f(X = 1; Y)}{0.4} = \begin{cases} 0.3/0.4 & \text{für } Y = 1\\ 0.05/0.4 & \text{für } Y = 2\\ 0.05/0.4 & \text{für } Y = 3\\ 0/0.4 & \text{sonst} \end{cases} = \begin{cases} 3/4 & \text{für } Y = 1\\ 1/8 & \text{für } Y = 2\\ 1/8 & \text{für } Y = 3\\ 0 & \text{sonst} \end{cases}$$