Why public cloud, why CSA?

Agenda

- Why this class?
- High level plan
 - Day #1 laaS
 - Day #2 PaaS
 - Day #3 Data
- ~50 Key Concepts

Why Public Cloud?

Azure

Intelligent Cloud segment (ICS) revenue up 27% to \$12.28b

Growth from the Azure cloud 'slowed' to 59% - actual Azure revenue number not available in public

ICS consists of Azure, GitHub & Server products (incl. SQL Server & Windows Server)

Potential for \$50b+ in CY 20 revenue – largest segment in MS

Amazon

AWS hits 10b\$ quarter for the 1st time ever

Potential for \$45-\$50 in CY 2020 revenue

However growth 'slowed' to 33%

Why Public Cloud?

Google

Cloud revenue grew 52% YoY to \$2.8b during the quarter

Cloud revenue consists of Google Cloud Platform (GCP) & GSuite (Google Office products)

GCP growing faster than overall cloud revenue but breakdown not shared

Alibaba

Global adoption may be impacted if another China tariff cycle is on the way

Cloud computing revenue +62% YoY to \$1.54 billion (7% of total revenue)

Monitoring **Location-based Authentication** Orchestrators Serverless **Event driven** Mixed Reality **Machine Learning** Compliance Containers **Haptics** NoSQL Automation Microservices Quantum computing Log telemetry **Digital Twin** Data privacy Blockchain Big data Bots Hybrid cloud **Beacons Ambient UX Artificial Intelligence** Threat Intelligence

Productive Hybrid • Open • Trusted

© Microsoft Corporation Azure

Productive

Infrastructure

Data

Code

01010

"What your application runs on"

"What your application works with"

"What your application does"

Migrate • Innovate

Unified Management • Security • Governance • Tools • DevOps ————

Infrastructure for all workloads

On-demand	Purpose-built	Linux, Open Source, and Red Hat	Best Choice for Microsoft workloads
Compute	SAP	+40% of Azure VMs are running Linux	Cost savings
Networking	□ NetApp [™]	1.4x growth of Linux	Easy migrations
			First-party support
Storage	vm ware°	Co-located support with Red Hat on-site team	Modernize apps beyond infrastructure

Azure Operational Data Services

Azure for Cloud Scale Analytics

Azure for Cloud Scale Analytics

A serverless platform for Application Modernization

Containers

Microservices

Integration services

Event-driven

ΑI

AWS and Azure Comparison

https://docs.microsoft.com/en-us/azure/architecture/aws-professional/services

Azure and its competitors: The big picture - BRK2287

	Compute					Data		
	laaS	CaaS	PaaS	FaaS	Object Storage	Relational	NoSQL	
Microsoft Azure	Virtual Machines	Azure Container Service (ACS)	App Service, Service Fabric	Azure Functions	Blobs	SQL Database	Cosmos DB,	
Amazon Web Services	Elastic Compute Cloud (EC2)	EC2 Container Service (ECS)	Elastic Beanstalk	Lambda	Simple Storage Service (S3)	Relational Database Service (RDS),	DynamoD8, 	
Google oud Platform	Compute Engine	Container Engine	App Engine	Cloud Functions	Cloud Storage	Cloud SQL, Cloud Spanner	Cloud Datastore	
Salesforce Force.com			Force.com				Force.com Database	

https://www.youtube.com/watch?v=uUskdZ_Gwt0

Productive Hybrid • Open • Trusted

© Microsoft Corporation Azure

Productive

Infrastructure

Data

Code

01010

"What your application runs on"

"What your application works with"

"What your application does"

Migrate • Innovate

Unified Management • Security • Governance • Tools • DevOps ————

Infrastructure for all workloads

On-demand	Purpose-built	Linux, Open Source, and Red Hat	Best Choice for Microsoft workloads
Compute	SAP	+40% of Azure VMs are running Linux	Cost savings
Networking	□ NetApp [™]	1.4x growth of Linux	Easy migrations
			First-party support
Storage	vm ware°	Co-located support with Red Hat on-site team	Modernize apps beyond infrastructure

Azure Operational Data Services

Azure for Cloud Scale Analytics

Azure for Cloud Scale Analytics

A serverless platform for Application Modernization

Containers

Microservices

Integration services

Event-driven

ΑI

© Microsoft Corporation Azure

the only consistent, comprehensive hybrid cloud

Consistency across the cloud and the edge

Consistent security, identity, management, and Al

© Microsoft Corporation Azure

GitHub contributions

2014

Satya "Microsoft loves Linux"

.NET foundation created

2015

VSCode released

HDInsight (Hadoop/ Ubuntu) announced

Microsoft jointly forms Node.js foundation

2016

.NET Core 1.0

PowerShell Core

SQL on Linux announced

Windows Subsystem for Linux in Windows 10

Microsoft joins Linux foundation

2017

Microsoft Azure Kubernetes Service launched

Draft, Brigade, Kashti projects submitted to Kubernetes community

Microsoft joins Cloud Native Computing & Cloud Foundry Foundations

Azure Database for Postgres & MySQL announced

Azure Databricks (Apache Spark) announced

2018

VSCode ranked #1 developer tool (Stack Overflow, 2018 language survey)

Service Fabric Open Sourced

Azure Sphere with Linux kernel

GitHub intent to acquire announced

~5,000 Microsoft employees committing to open source projects on Github

Azure trending to 50% Linux

2018/19

Microsoft acquires GitHub

2014 2015 2016 2017 2018

Azure supports the open source ecosystem

Management

Databases & middleware

Infrastructure

Applications

J puppet

App frameworks

Productive • Hybrid • Open • Trusted

© Microsoft Corporation

Azure Compliance

Azure has the largest compliance portfolio in the industry

Industry

ISO 27001

SOC₁ Type 2

SOC 2 Type 2 SOC 3

FERPA

PCI DSS Level 1

ISO 27018 Content Delivery and Security Association

Cloud Controls Matrix v3.0.1

MPAA

Shared Assessments

United States

Regional

FedRAMP JAB P-ATO

HIPAA / HITFCH

FIPS 21 CFR 140-2

Part 11

DISA Level 2

CJIS

IRS 1075

ITAR -readv Section 508

(DIACAP)

VPATs

FISMA NIST 800-171 MARS-E

GxP

DIACAP

Argentine Data Protection Act 25.326

China **TRUCS**

Singapore MTCS Level 3

Australian Signals Directorate

N7CC Framework

China Multi Layer Protection Scheme

Japan My Number Act

Japan **Financial Services** **ENISA** IAF

Cloud Security Mark Gold

Spain **FNS**

FACT

FU-US **Privacy Shield**

27017

ISA/IEC

Learn about cloud architect responsibilities

More than technical skills

Technical Skills:

- Application Architecture
- Automation and Orchestration
- High Availability
- Governance
- Infrastructure and Operations
- Networking
- ITSM/ITOM
- Security

Nontechnical Skills:

- Change Management
- Communication and Collaboration
- Company/Vertical Experience
- Delegation
- Finance and Legal
- Self-starting

Cloud Architect Responsibilities

Culture

Collaboration

Adoption Framework Cloud Architecture

More than technical skills...

Technical Skills:

- Application Architecture
- Automation and Orchestration
- High Availability
- Governance
- Infrastructure and Operations
- Networking
- ITSM/ITOM
- Security

Nontechnical Skills:

- Change Management
- Communication and Collaboration
- Company/Vertical Experience
- Delegation
- Finance and Legal
- Self-starting

Cloud Adoption Framework for Azure

Learn about cloud design patterns

Resilience Patterns

- Include retry logic
- Test your retry logic
- Break the circuit!
- Watch for uninitialized state (during recycle events)
- Plan for resilience

Resilience Modeling and Analysis (RMA)

Address reliability issues early in the design

Prioritize reliability related work efforts

Provide tangible output for other reliability efforts

https://www.microsoft.com/en-us/download/details.aspx?id=38823

Component Interaction Diagram

Learn of Azure building blocks

Application Architecture	VMs - Azure Virtual Machines	ACI - Azure Container Instances	Azure App Service (w-w/o containers)	AKS - Azure Kubernetes Services	Azure Functions	Azure Batch
Web apps (Monolithic)	√	√	✓	✓		
N-Tier apps (Services)	/	/	✓	✓	✓	
Cloud-Native (Microservices)		✓		(Linux containers)	(Event-driven)	
Batch/Jobs (Background tasks)	/	/	/	√	(Background tasks)	(Large-scale)

Choosing Azure compute platforms

Legend

Azure SQL Database

- Active geo-replication
- Automatic Asynchronous Replication
- Multiple readable secondaries
- Planned failover Unplanned failover
- User-controlled failover and failback

Azure Cosmos DB

- Geo Replication
- Automatic Regional Failures
- Multi-Master Support

PaaS meets VNET

- VNet Paas via the Microsoft backbone
- PaaS resource mapped to Private IP Address.
- In-built data exfiltration protection

Understand your workload Optimizing VM composition

Azure Compute Optimizations Year total **Burstable VMs** Web servers w/usage spikes \$658,752 Services w/usage VMSS with Autoscaling swings 40x @ day 100x D8sv3 20x @ night (4-core) Batch **Low Priority** Workloads Containers **Applications** Windows OS running 24x7x365 (US West 2)

Burstable VMs

Efficiently handle workload spikes

Purchase VM with baseline performance, build credits to handle workload spikes

Burst up to 100% of the vCPU when the application requires higher CPU perf Support sizes from 1 vcpu to 20 vcpu Memory from 0.5G to 80G

Ideal for workloads that do not need full CPU perf continuously

- Web servers, Proof of concept, dev build env

VMSS Autoscale

Starting total \$658,752

Optimize availability and savings

Autoscale based on CPU threshold

Leverage Azure's spare capacity

Take advantage of Azure's unutilized capacity at a steep fixed discounted price.

~60% - 80% depending on VM type/region

At any point when Azure needs the capacity back, VMs will be evicted with 30 seconds notice.

Great for batch workloads where job completion time is flexible and the work distributed across many VMs.

Starting total \$658,752

Containers

Reducing VM overhead

