Разбор статьи "Optimal Brain Compression: A Framework for Accurate Post-Training Quantization and Pruning"

Давыденко Григорий, Шалыгин Игорь

Московский физико-технический институт

Ноябрь 2024 г.

Предыстория проблемы

Плюсы сжатия нейросетей:

- Снижение затрат по памяти.
- 2 Понижение требуемых вычислительных мощностей.

Минусы сжатия нейросетей:

- Онижение точности.
- 2 Дополнительные затраты на сжатие.

Методы сжатия нейронных сетей

Прунинг

Прунинг - это сжатие путем уменьшения количества параметров нейросети. Алгоритм ищет наименее важные параметры нейросети и удаляет их, превращая нейросеть в разряженную таблицу.

Квантование

Квантование - это сжатие путем понижения точности параметров нейросети. Алгоритм уменьшает количество памяти, отведенное на нейроны, снижая вес сети и упрощая матетематические операции.

Методы сжатия нейронных сетей

Алгоритмы прунинга:

• OBD, OBS, L-OBS, AdaPrune

Алгоритмы квантования:

• BitSplit, AdaRound, AdaQuant, BRECQ

Паттерны сжатия:

N:M, Block sparsity

Постановка задачи в форме OBS

• Ставим задачу оптимального обновления весов в строке.

$$f: \mathbb{R}^n \to \mathbb{R}, \ f(\hat{W}) = \|WX - \hat{W}X\|_2^2 \to min$$

Раскладываем лосс в ряд до 2 порядка в W.

$$\delta_{\boldsymbol{\rho}} := \hat{W} - W$$

$$f(\hat{W}) \approx f(W) + \nabla f(W)^T \delta_p + \frac{1}{2} \delta_p^T H(W) \delta_p = \frac{1}{2} \delta_p^T H(W) \delta_p$$

Формируем задачу с ограничением и решаем.

$$\min_{\delta_p} \frac{1}{2} \delta_p^T H \delta_p$$
s.t. $e_p^T \delta_p + w_p = 0$

Находим вес, вносящий наименьший вклад.

$$w_p = \operatorname{argmin}_{w_p} \{ \delta_p^T H \delta_p \mid e_p^T \delta_p + w_p = 0 \} = \operatorname{argmin}_{w_p} \frac{w_p^2}{[H^{-1}]_{pp}}$$

Решение задачи в форме OBS

$$\begin{aligned} & \min_{\delta_p} \frac{1}{2} \delta_p^T H \delta_p \\ & \text{s.t. } e_p^T \delta_p + w_p = 0 \end{aligned}$$

Выпуклая функция с аффинным ограничением - ККТ:

$$L(\delta_{p}, \lambda) = \frac{1}{2} \delta_{p}^{T} H \delta_{p} + \lambda (e_{p}^{T} \delta_{p} + w_{p})$$

$$\bullet \frac{\partial L}{\partial \delta_p} = H \delta_p + \lambda e_p = 0 \Rightarrow \delta_p = -\lambda H^{-1} e_p$$

$$e_p^T \delta_p + w_p = 0$$

Подставляем δ_p во 2 равенство и выражаем λ : $\lambda = \frac{w_p}{e_p^T H^{-1} e_p} = \frac{w_p}{[H^{-1}]_{pp}}$ Подставляя λ в выражение для δ_p , получаем:

$$\delta_p = -rac{w_p}{[H^{-1}]_{pp}}[H^{-1}]_{:,p}, \ w_p = \mathrm{argmin}_{w_p}rac{w_p^2}{[H^{-1}]_{pp}}$$

ExactOBS

Переход к Гессианам для строк

Положим размерность $W = d_{row} imes d_{col}$,

$$\|WX - \hat{W}X\|_2^2 = \sum_{i=1}^{d_{col}} \|W_{i,:}X - \hat{W}_{i,:}X\|_2^2$$

Лемма (об обновлении Гессиана)

После удаления строки обратный Гессиан можно найти по следующей формуле:

$$H_{-p}^{-1} = (H^{-1} - \frac{1}{[H^{-1}]_{pp}}[H^{-1}]_{:,p}[H^{-1}]_{p,:})_{-p}$$

Замечание: $H = 2(XX^T)$

ExactOBS

Algorithm 1 Удаление $k \leq d_{col}$ весов из строки **w** с обращенным Гессианом $\mathbf{H}^{-1} = (2\mathbf{X}\mathbf{X}^T)^{-1}$ за время $\mathcal{O}(d_{col}\cdot k^2)$

$$\begin{split} & M = \{1,...,d_{col}\} \\ & \text{for } i = 1,...,k \text{ do} \\ & p \leftarrow \text{argmin}_{p \in M} \frac{w_p^2}{[H^{-1}]_{pp}} \\ & \text{w} \leftarrow \text{w} - \frac{w_p}{[H^{-1}]_{pp}} [H^{-1}]_{:,p} \\ & \text{H}^{-1} \leftarrow \text{H}^{-1} - \frac{1}{[\text{H}^{-1}]_{pp}} [\text{H}^{-1}]_{:,p} [\text{H}^{-1}]_{p,:} \\ & M \leftarrow M - \{p\} \\ & \text{end for} \end{split}$$

Итоговая формула обновления

Пусть M_i - маска для i-й строки,

$$\delta_{M_i} = -[\mathbf{H}^{-1}]_{:,M_i}([\mathbf{H}^{-1}]_{M_i})^{-1}\mathbf{w}_{M_i}$$

ExactOBS

Optimal Brain Quantizer

Задача квантования

 $\operatorname{quant}(w_p)$ - значение веса после квантования,

$$L(\delta_{p}, \lambda) = \frac{1}{2} \delta_{p}^{T} H \delta_{p} + \lambda (e_{p}^{T} \delta_{p} + w_{p} - quant(w_{p})))$$

$$w_p = \operatorname{argmin}_{w_p} \frac{(w_p - quant(w_p))^2}{[H^{-1}]_{pp}}, \ \delta_p = -\frac{w_p - quant(w_p)}{[H^{-1}]_{pp}}[H^{-1}]_{:,p}$$

Optimal Brain Quantizer

Algorithm 2 Модификация алгоритма прунинга для задачи квантования

$$\begin{split} M &= \{1,...,d_{col}\} \\ \text{for } i &= 1,...,k \text{ do} \\ p &\leftarrow \text{argmin}_{p \in M} \frac{1}{[H^{-1}]_{pp}} \cdot (quant(w_p) - w_p)^2 \\ \mathbf{w} &\leftarrow \mathbf{w} - \frac{1}{[H^{-1}]_{pp}} [H^{-1}]_{:,p} \cdot (w_p - quant(w_p)) \\ \mathbf{H}^{-1} &\leftarrow \mathbf{H}^{-1} - \frac{1}{[\mathbf{H}^{-1}]_{pp}} [\mathbf{H}^{-1}]_{:,p} [\mathbf{H}^{-1}]_{p,:} \\ M &\leftarrow M - \{p\} \end{split}$$

end for

ResNet18 квадратичная ошибка в зависимости от алгоритма

Точность прунинга в зависимости от уменьшения FLOP

	Method	ResNet50			BERT		
		2 ×	3 ×	4 ×	2 ×	3 ×	4 ×
	Dense		76.13			88.53	
Paper	GMP	74.86	71.44	64.84	65.64	12.52	9.23
	L-OBS	75.48	73.73	71.24	77.67	3.62	6.63
	AdaPrune	75.53	74.47	72.39	87.12	70.32	18.75
	ExactOBS	75.64	75.01	74.05	87.81	85.87	82.10
Our	Dense		75.58				
results	ExactOBS	74.20	74.33	73.39			

Результат:

Только ExactOBS показывает хорошие результаты сжатия BERT

Точность ResNet в зависимости от N:M сжатия и алгоритма

		Paper results				Our results		
Model	Dense	AdaPrune	Exac	tOBS	Dense	ExactOBS		
		4:8	2:4	4:8		2:4	4:8	
ResNet18	69.76	68.63	68.81	69.18	70.00	68.70	69.36	
ResNet34	73.31	72.36	72.66	72.95	71.93	70.97	71.37	
ResNet50	76.13	74.75	74.71	75.20	75.58	74.28	75.04	

Результат:

- 2:4 прунинг ExactOBS > 4:8 прунинг AdaPrune
- ② Более строгая схема 2:4 хорошо поддерживается NVIDIA

Точность 2:4 сжатия BERT в зависимости от алгоритма

		Paper resu	Our results		
Model	Dense	AdaPrune	ExactOBS	Dense	ExactOBS
BERT 3	84.66	82.75	83.54	84.64	83.44
BERT 6	88.33	85.02	86.97	88.33	86.94
BERT	88.53	85.24	86.77	88.55	86.73

Результат:

- Наш эксперимент подтвердил результаты из статьи
- ② Качество ExactOBS выше на 1-2 процента, чем у AdaPrune

Точность после ассиметричного квантования слоев

	Method	F	ResNet18			ResNet5	0
		4bit	3bit	2bit	4bit	3bit	2bit
	Dense		69.76			76.13	
Paper	AdaRound	69.34	68.37	63.37	75.84	75.14	71.58
	AdaQuant	68.12	59.21	00.10	74.68	64.98	00.10
	BRECQ	69.37	68.47	64.70	75.88	75.32	72.41
	OBQ	69.56	68.69	64.04	75.72	75.24	70.71
Our	Dense		70.00			75.58	
results	OBQ	69.44	68.21	63.65	75.10	74.51	70.25

Приложение: доказательство леммы об обновлении

Лемма (об обновлении Гессиана)

$$H_{-p}^{-1} = (H^{-1} - \frac{1}{[H^{-1}]_{pp}}[H^{-1}]_{:,p}[H^{-1}]_{p,:})_{-p}$$

План доказательства:

$$\begin{pmatrix} A_1 & a_1 & A_2 \\ a_2^T & A_{ii} & a_3^T \\ A_3 & a_4 & A_4 \end{pmatrix} - \frac{1}{A_{ii}} A_{:,i} \cdot A_{i,:} = \begin{pmatrix} A_1' & 0 & A_2' \\ 0^T & 0 & 0^T \\ A_3' & 0 & A_4' \end{pmatrix}$$

② $AB = I \rightarrow (A - \frac{1}{A_{ii}}A_{:,i} \cdot A_{i,:})B = I - \frac{1}{A_{ii}}A_{:,i} \cdot A_{i,:} \cdot B \rightarrow A'B = C$

$$\begin{pmatrix} A'_1 & 0 & A'_2 \\ 0^T & 0 & 0^T \\ A'_3 & 0 & A'_4 \end{pmatrix} \cdot \begin{pmatrix} B_1 & b_1 & B_2 \\ b_2^T & B_{ii} & b_3^T \\ B_3 & b_4 & B_4 \end{pmatrix} = \begin{pmatrix} I & c_1 & 0 \\ c_2^T & C_{ii} & c_2^T \\ 0 & c_4 & I \end{pmatrix}$$

3 $A_{-i} \cdot B_{-i} = I$

Приложение: ссылки

- Optimal Brain Compression (текущая статья)
- Репозиторий с экспериментами
- Optimal Brain Damage
- Optimal Brain Surgeon
- SparseGPT
- GPTQ