Constrain the satellite fraction in HSC

Looking forward to DESI

Constrain the satellite fraction in HSC

Looking forward to DESI

Overview

Goal

Constrain the high mass ($\log(M_*/M_\odot) \gtrsim 11.5$) satellite fraction ($f_{\rm sat}$) in Hyper Suprime-Cam (HSC) observations. Why HSC? Large volume – more massive galaxies, deep images – better M_* .

How

- ▶ In an N-body simulation, map some halo property (e.g. $M_{\rm halo,peak}$, $V_{\rm max}@M_{\rm peak}$) to M_* , with some scatter.
- Optimize this mapping in to fit some HSC observations (e.g. SMF, clustering).
- ightharpoonup Measure $f_{\rm sat}$ in the best fitting mock.

See also

Reddick 2013 did this for SDSS

Observations + Simulation data

Hyper Suprime Cam

- \sim 4500, 30 $\log(M_*/M_{\odot}) > 11.5, 12$
- $ightharpoonup z \sim 0.3$
- ightharpoonup ~ 95% spec-z.

MDPL

- ▶ 1000 $Mpc h^{-1}$
- ▶ Snapshot at $z \sim 0.37$

Fitting choices

Halo Parameter

 $M_* = f(\text{halo property})$. We build models with $V_{\max}@M_{\text{peak}}$ and $M_{\text{halo,peak}}$.

Functional form

We use the 5 parameter form from Behroozi 2010 (though only 3 are needed), and a linear scatter – $\sigma(\text{halo property})$.

Fitting Data

- ▶ The SMF
- ▶ Counts in cylinders: $\xi(r_p, r_\pi)$ in a single $r_p < 1\,\mathrm{Mpc}$ and $r_\pi < 10\,\mathrm{Mpc}$ bin. HSC doesn't have enough data for a more detailed measurement of clustering. This is a cross correlation between galaxies $\log(M_*/M_\odot) > M_{cut}$ and $M_{cut} 0.1 < \log(M_*/M_\odot) < M_{cut}$.

Fits with $M_{\rm halo}$

SMF

Clustering

Bestfit Models 1: SMF

$V_{\rm max}@M_{\rm peak}$

$M_{ m halo,peak}$

Bestfit Models 2: Clustering

$V_{\rm max}@M_{\rm peak}$

$M_{\rm halo,peak}$

Results 1: f_{sat}

Figure: Errors on the UM are statistical from the bestfit. Errors on our mocks include the uncertainty of the parameters.

Constrain the satellite fraction in HSC

Looking forward to DESI

Modelling RSD in DESI with the UM?

UM Parameters

Table 2. Table of parameters.

Symbol	Description	Equation	Parameters	Section
$\sigma_{SF}(z)$	Scatter in SFR for star-forming galaxies	3	2	3.2
V(z)	Characteristic v_{max} in SFR – v_{max} relation	6	4	3.2
$\varepsilon(z)$	Characteristic SFR in SFR $-\nu_{max}$ relation	7	4	3.2
$\alpha(z)$	Faint-end slope of SFR $-\nu_{max}$ relation	8	4	3.2
$\beta(z)$	Massive-end slope of SFR $-\nu_{max}$ relation	9	3	3.2
$\gamma(z)$	Strength of Gaussian efficiency boost in SFR – v_{max} relation	10	3	3.2
δ	Width of Gaussian efficiency boost in SFR – v_{max} relation	11	1	3.2
$Q_{\min}(z)$	Minimum quenched fraction	13	2	3.2
$V_Q(z)$	Characteristic v_{max} for quenching	14	3	3.2
$\sigma_{VQ}(z)$	Characteristic v_{max} width over which quenching happens	15	3	3.2
$r_c(z)$	Rank correlation between halo assembly history ($\Delta \nu_{max}$) and SFR	16	4	3.2
τ_R	Correlation time for long-timescale random contributions to SFR rank	_	1	3.2
f_{short}	Fraction of short-timescale random contributions to SFR rank	19	1	3.2
Torphan	Threshold for $v_{\text{max}}/v_{\text{Mpeak}}$ at which disrupted haloes are no longer tracked	_	1	3.3
f_{merge}	Fraction of host halo's radius below which disrupted satellites merge into the central galaxy	_	1	3.3
$\alpha_{ m dust}$	Characteristic rate at which dust increases with UV luminosity	22	1	3.4
$M_{dust}(z)$	Characteristic UV luminosity for dust to become important	23	2	3.4
μ(z)	Systematic offset in both observed stellar masses and SFRs	24	2	3.5
$\kappa(z)$	Additional systematic offset in observed SFRs	25	1	3.5
$\sigma_{SM,obs}(z)$	Random error in recovering stellar masses	26	1	3.5
$\sigma_{SFR.obs}(z)$	Random error in recovering SFRs	27	0	3.5

Notes. Δv_{max} is described by Eq. 1 in §3.1. Symbols followed by "(z)" depend on redshift and are described by multiple parameters (see equation references above). τ_R is expressed in units of the halo dynamical time $((\sqrt{\frac{4}{3}\pi G\rho_{\text{vir}}})^{-1})$ and so has an implicit redshift dependence. The total number of model parameters is 44.

Questions

- ► Thoughts about the incompatible f_{sat} in seemingly reasonably models?
- ► Can we use X-ray observations to measure f_{sat} in observations?
- ► Are there other ways in which centrals can be distinguished from satellites? Shape, orientation, something else?
- N-body resolution requirements for the UM to do RSD?
- How many UM params can be cut?