#### Abschnitt 4

#### **Automaten**

#### Überblick

- Automaten im Sinne der Vorlesung sind abstrakte, mathematische Konstrukte. Sie lassen sich jedoch als gegenständliche Maschine zur Datenverarbeitung veranschaulichen (ähnlich eines Computers).
- Endliche Automaten lesen ein Eingabeband mit Symbolen.
- Sie befinden sich stets ein einem bestimmten Zustand. Es gibt einen Startzustand und einen oder mehrere Endzustände.
- Das Eingabeband wird Symbol für Symbol gelesen. Abhängig vom aktuellen Zustand und dem nächsten Symbol des Eingabebands wechselt der endliche Automat in einen anderen Zustand.
- Der endliche Automat akzeptiert eine Eingabe, wenn er diese komplett lesen kann und sich danach in einem der Endzustände befindet. Sonst lehnt er sie ab.

### Veranschaulichung



#### **Definition**

Ein nicht-deterministischer **endlicher Automat** ist ein 5-Tupel  $(Q, \Sigma, \delta, q_0, F)$  mit

- einer endlichen Menge von Zuständen Q,
- einem endlichen Eingabealphabet Σ,
- einer Zustandsübergangsfunktion  $\delta: Q \times \Sigma \to \mathcal{D}(Q)$ , die das Steuerungsverhalten des Automaten bestimmt
- einem Startzustand  $q_0 \in Q$
- einer Menge von Endzuständen F ⊆ Q

### Darstellung von Automaten: Tupelnotation I

$$FSA = (Q, \Sigma, \delta, q_0, F)$$
 mit

$$Q = \{0, 1, 2, 3\}$$

$$\Sigma = \{a, b, f, o, r\}$$

$$\delta = \{((0, f), \{1\}), ((0, b), \{1\}), ((1, o), \{2\}), ((1, a), \{2\}), ((2, o), \{3\}), ((2, r), \{3\})\}$$

$$q_0 = 0$$

$$F = \{3\}$$

### Darstellung von Automaten: Tupelnotation II

$$FSA = (Q, \Sigma, \delta, q_0, F)$$
 mit

$$Q = \{0, 1, 2, 3\}$$

$$\Sigma = \{a, b, f, o, r\}$$

$$\delta : \delta(0, f) = \{1\}$$

$$\delta(1, o) = \{2\}$$

$$\delta(1, a) = \{2\}$$

$$\delta(2, o) = \{3\}$$

$$\delta(2, r) = \{3\}$$

$$q_0 = 0$$

$$F = \{3\}$$

# Tabellennotation der Übergangsfunktion

#### Darstellung von Automaten: Graphnotation



### Konfiguration

Sei  $FSA = (Q, \Sigma, \delta, q_0, F)$  ein endlicher Automat.

- Ein Paar (q,ω) ∈ Q × Σ\* heißt Konfiguration von FSA.
   Konfigurationen sind also Paare aus Zustand und (verbliebenem)
   Eingabewort.
- Eine Konfiguration  $(q_0, \omega)$  mit  $\omega \in \Sigma^*$  heißt initiale Konfiguration oder Startkonfiguration.
- Eine Konfiguration  $(q, \varepsilon)$  mit  $q \in F$  heißt akzeptierende Konfiguration oder Endkonfiguration.

#### Bewegung

Sei  $FSA = (Q, \Sigma, \delta, q_0, F)$  ein endlicher Automat,  $\gamma \in \Sigma^*$  ein Wort über  $\Sigma$  und  $\tau$  ein Symbol  $\in \Sigma$ .

- Der Wechsel von einer Konfiguration zur nächsten wird durch die Relation **Bewegung**  $\vdash_{FSA} \subseteq (Q \times \Sigma^*) \times (Q \times \Sigma^*)$  dargestellt.
- Es gilt  $(q, \tau \gamma) \vdash_{FSA} (q', \gamma)$  (sprich "geht unter FSA nach") genau dann, wenn  $q' \in \delta(q, \tau)$ , also wenn q' ein möglicher Folgezustand von q ist.

#### Akzeptanz

Sei  $FSA = (Q, \Sigma, \delta, q_0, F)$  ein endlicher Automat,  $\vdash_{FSA}^*$  die reflexive und transitive Hülle der Relation *Bewegung über FSA* und  $\omega \in \Sigma^*$  ein Eingabewort.

• Das Eingabewort  $\omega$  wird durch den Automaten **akzeptiert**, wenn es einen Zustand  $g \in F$  gibt, sodass

$$(q_0,\omega)\vdash_{\mathsf{FSA}}^*(q,\varepsilon)$$

#### Sprache eines Automaten

Sei  $FSA = (Q, \Sigma, \delta, q_0, F)$  ein endlicher Automat.

 $\bullet$  Die Menge aller von FSA akzeptierten Wörter definiert die Sprache  $\mathcal{L}_{\text{FSA}}$  .

$$\mathscr{L}_{\mathsf{FSA}} := \{ \omega \in \Sigma^* \mid \mathsf{FSA} \; \mathsf{akzeptiert} \; \omega \}$$

## Übung: Graph- zu Tupeldarstellung

Stellen Sie eine vollständige Definition für folgenden Automaten auf. Welche Sprache definiert er?



# Übung: Sprachen zu Automaten

Erstellen Sie zu folgenden Sprachen jeweils einen passenden Automaten.

- $L_1 = \{a, aa, aaa, ...\}$
- ullet  $L_2 = \{a, b, aa, ab, bb, aaa, aab, aba, abb, baa, bba, bbb, aaaa, ...}$
- $L_3 = \{c, cab, cabab, cababab, ...\}$

#### Implementierung eines Deterministischen FSA

```
def automat_det(transition, eingabe, startzustand,
       endzustaende):
       zustand = startzustand
       for w in eingabe:
            folgezustand = transition.get((w, zustand))
5
            if not folgezustand: # folgezustand None?
6
                return False
           else:
8
                zustand = folgezustand
9
       if zustand in endzustaende:
10
           return True
11
       else:
12
           return False
```

```
1 trans = {("a",0): 1, ("b",1): 2}
2 automat_det(trans, "ab", 0, [2]) # True
```