Approx. Inference via Markov Chain Monte Carlo

Piyush Rai

Topics in Probabilistic Modeling and Inference (CS698X)

March 27, 2018

Markov Chain Monte Carlo (MCMC)

- Goal: Generate samples from some target distribution $p(z) = \frac{\tilde{p}(z)}{Z}$, where z is high-dimensional
- Assume we can evaluate p(z) at least up to a proportionality constant (i.e., can compute $\tilde{p}(z)$)
- Basic idea: MCMC uses a Markov Chain which, when converged, starts giving samples from p(z)

$$\underbrace{\mathbf{z}^{(1)} \to \mathbf{z}^{(2)} \to \mathbf{z}^{(3)} \to}_{\text{initial samples typically garbage}} \dots \to \underbrace{\mathbf{z}^{(L-2)} \to \mathbf{z}^{(L-1)} \to \mathbf{z}^{(L)}}_{\text{after convergence, actual samples from } p(\mathbf{z})}$$

- ullet Given a current sample $oldsymbol{z}^{(\ell)}$ from the chain, MCMC generates the next sample $oldsymbol{z}^{(\ell+1)}$ as
 - Use a proposal distribution $q(z|z^{(\ell)})$ to generate a candidate sample z^*
 - Accept/reject z* as the next sample based on an acceptance criterion (will see later)
 - ullet If accepted, $\mathbf{z}^{(\ell+1)} = \mathbf{z}^*$. If rejected, $\mathbf{z}^{(\ell+1)} = \mathbf{z}^{(\ell)}$
- Note that in MCMC, the proposal distribution $q(z|z^{(\ell)})$ depends on the previous sample (unlike methods such as rejection sampling)

Markov Chain Monte Carlo (MCMC)

MCMC: The Basic Scheme

• MCMC chain run infinitely long (i.e., post-convergence) will give ONE sample from the target p(z)

- But we usually require several samples to approximate p(z). How do we get those?
 - Start at an initial $z^{(0)}$. Using a prop. dist. $q(z^{(\ell+1)}|z^{(\ell)})$, run the chain long enough, say T_1 steps
 - Discard the first $(T_1 1)$ samples (called "burn-in" samples) and take the last sample $z^{(T_1)}$
 - Continue from $\mathbf{z}^{(T_1)}$ up to T_2 steps, discard intermediate samples, take the last sample $\mathbf{z}^{(T_2)}$
 - This helps ensure that $z^{(T_1)}$ and $z^{(T_2)}$ are uncorrelated
 - Repeat the same for a total of S times
 - In the end, we have S i.i.d. samples from p(z), i.e., $\mathbf{z}^{(T_1)}, \mathbf{z}^{(T_2)}, \dots, \mathbf{z}^{(T_S)} \sim p(z)$
 - Note: Good choices for T_1 and $T_i T_{i-1}$ are usually based on heuristics
 - Note: MCMC is an approximate method because we don't usually know what T_1 is "long enough"

MCMC: Some Basic Theory

- ullet A first order Markov Chain assumes $p(\pmb{z}^{(\ell+1)}|\pmb{z}^{(1)},\ldots,\pmb{z}^{(\ell)})=p(\pmb{z}^{(\ell+1)}|\pmb{z}^{(\ell)})$
- ullet A 1st order Markov Chain $oldsymbol{z}^{(0)}, oldsymbol{z}^{(1)}, \dots, oldsymbol{z}^{(L)}$ is a sequence of r.v.'s and is defined by the following
 - An initial state distribution $p(z^{(0)})$
 - A Transition Function (TF): $T_{\ell}(z^{(\ell)} \to z^{(\ell+1)}) = p(z^{(\ell+1)}|z^{(\ell)})$.
- TF defines a distribution over the values of next state given the value of the current state
- ullet Assuming a discrete state-space, the TF is defined by a $K \times K$ probability table

Transition probabilities can be defined using a KxK table if **z** is a discrete r.v. with K possible values

	1	2	3	4	5
1	0.4	0.6	0.0 0.5 0.0	0.0	0.0
2	0.5	0.0	0.5	0.0	0.0
3	0.0	0.3	0.0	0.7	0.0
4	0.0	0.0	0.1 0.0	0.3	0.6
5	0.0	0.3	0.0	0.5	0.2

• Homogeneous Markov Chain: The TF is the same for all ℓ , i.e., $T_{\ell} = T$

MCMC: Some Basic Theory

• Consider the following simple TF

$$T = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0.1 & 0.9 \\ 0.6 & 0.4 & 0 \end{bmatrix}$$

- Consider the initial state distribution $p(\mathbf{z}^{(0)}) = [0.5, 0.2, 0.3]$
- Easy to see that $p(z^{(0)}) \times T = [0.2, 0.6, 0.2] \Rightarrow$ distribution of $z^{(1)}$
- Also easy to see that, after a few (say m) iterations, $p(z^{(0)}) \times T^m = [0.2, 0.4, 0.4] = p(z)$ (say)
- For the above T, any choice of $p(z^{(0)})$ leads to p(z)
 - Such a p(z) is called the stationary/invariant distribution of this Markov Chain
- A Markov Chain has a stationary distribution if T has the following properties
 - Irreducibility: T's graph is connected (ensures reachability from anywhere to anywhere)
 - Aperiodicity: T's graph has no cycles (ensures that the chain isn't trapped in cycles)

MCMC: Some Basic Theory

• A Markov Chain has a stationary distribution p(z) is the chain satisfies detailed balance

$$p(z)T(z \rightarrow z') = p(z')T(z' \rightarrow z)$$

• Integrating out (or summing over) both sides w.r.t. z' gives

$$p(z) = \int p(z')T(z' \to z)dz'$$

- Therefore p(z) is a stationary distribution of this chain
- Thus a Markov Chain with detailed balance will always converge to a stationary distribution

Some MCMC Algorithms

Metropolis-Hastings (MH) Sampling (Hastings, 1970)

- ullet Suppose we wish to generate samples from a distribution $p(oldsymbol{z}) = rac{ ilde{p}(oldsymbol{z})}{Z_{
 ho}}$
- Assume a proposal distribution $q(\mathbf{z}|\mathbf{z}^{(\tau)})$, e.g., $\mathcal{N}(\mathbf{z}|\mathbf{z}^{(\tau)},\sigma^2\mathbf{I}_D)$
- ullet In each step, draw $oldsymbol{z}^* \sim q(oldsymbol{z} | oldsymbol{z}^{(au)})$ and accept the sample $oldsymbol{z}^*$ with probability

$$A(\boldsymbol{z}^*, \boldsymbol{z}^{(\tau)}) = \min\left(1, \frac{\tilde{p}(\boldsymbol{z}^*)q(\boldsymbol{z}^{(\tau)}|\boldsymbol{z}^*)}{\tilde{p}(\boldsymbol{z}^{(\tau)})q(\boldsymbol{z}^*|\boldsymbol{z}^{(\tau)})}\right)$$

- The acceptance probability makes intuitive sense. Note the kind of z^* would it favor/unfavor:
 - It favors accepting z^* if $\tilde{p}(z^*)$ has a higher value than $\tilde{p}(z^{(\tau)})$
 - Unfavors z^* if the proposal distribution q unduly favors it (i.e., if $q(z^*|z^{(\tau)})$ is large)
 - Favors z^* if we can "reverse" to $z^{(\tau)}$ from z^* (i.e., if $q(z^{(\tau)}|z^*)$ is large). Needed for good "mixing"
- ullet Transition function of this Markov Chain: $T(z^{(au)} o z^*)=A(z^*,z^{(au)})q(z^*|z^{(au)})$
- Exercise: Show that $T(z \to z^{(\tau)})$ satisfies the detailed balance property

$$T(z \rightarrow z^{(\tau)})p(z) = T(z^{(\tau)} \rightarrow z)p(z^{(\tau)})$$

The MH Sampling Algorithm

- Initialize $z^{(0)}$ randomly
- For $\ell = 0, ..., L 1$
 - Sample $u \sim \text{Unif}(0, 1)$
 - Sample $z^* \sim q(z^*|z^{(\ell)})$

$$\bullet \ \ \mathsf{lf} \ u < A(\pmb{z}^*, \pmb{z}^{(\ell)}) = \min\left(1, \frac{\bar{\rho}(\pmb{z}^*)q(\pmb{z}^{(\ell)}|\pmb{z}^*)}{\bar{\rho}(\pmb{z}^{(\ell)})q(\pmb{z}^*|\pmb{z}^{(\ell)})}\right)$$

$$\mathbf{z}^{(\ell+1)} = \mathbf{z}^*$$
 (meaning: accepting with probability $A(\mathbf{z}^*, \mathbf{z}^{(\ell)})$)

else

$$\pmb{z}^{(\ell+1)} = \pmb{z}^{(\ell)}$$

MH Sampling: Some Comments

• If proposal distrib. is symmetric, we get Metropolis Sampling algorithm (Metropolis, 1953) with

$$A(\pmb{z}^*, \pmb{z}^{(au)}) = \min\left(1, rac{ ilde{p}(\pmb{z}^*)}{ ilde{p}(\pmb{z}^{(au)})}
ight)$$

- Some limitations of MH sampling
 - ullet MH can have a very slow convergence. Figure below: P is the target dist., Q is the proposal

• Computing acceptance probability can be expensive: When $p(z) = \frac{\tilde{p}(z)}{Z_p}$ represents a posterior distribution of some model, \tilde{p} is the unnormalized posterior that depends on all the data (note: a lot of recent work on speeding up this step using subsets of data)

Gibbs Sampling (Geman & Geman, 1984)

- Suppose we wish to sample from a joint distribution p(z) where $z=(z_1,z_2,\ldots,z_M)$
- However, suppose we can't sample from p(z) but can sample from each conditional $p(z_i|z_{-i})$
 - Can we done easily if we have a locally conjugate model
- Gibbs sampling uses the conditionals $p(z_i|\mathbf{z}_{-i})$ as the proposal distribution
- Gibbs sampling samples from these conditionals in a cyclic order
- ullet Gibbs sampling is equivalent to Metropolis Hastings sampling with acceptance prob. = 1

$$A(z^*, z) = \frac{p(z^*)q(z|z^*)}{p(z)q(z^*|z)} = \frac{p(z_i^*|z_{-i}^*)p(z_{-i}^*)p(z_i|z_{-i}^*)}{p(z_i|z_{-i})p(z_{-i})p(z_i^*|z_{-i})} = 1$$

where we use the fact that $\mathbf{z}_{-i}^* = \mathbf{z}_{-i}$

Gibbs Sampling: Sketch of the Algorithm

M: Total number of variables, T: number of Gibbs sampling steps

```
\begin{split} &1. \text{ Initialize } \{z_i: i=1,\dots,M\} \\ &2. \text{ For } \tau=1,\dots,T \colon \\ &-\text{ Sample } z_1^{(\tau+1)} \sim p(z_1|z_2^{(\tau)},z_3^{(\tau)},\dots,z_M^{(\tau)}). \\ &-\text{ Sample } z_2^{(\tau+1)} \sim p(z_2|z_1^{(\tau+1)},z_3^{(\tau)},\dots,z_M^{(\tau)}). \\ &\vdots \\ &-\text{ Sample } z_j^{(\tau+1)} \sim p(z_j|z_1^{(\tau+1)},\dots,z_{j-1}^{(\tau+1)},z_{j+1}^{(\tau)},\dots,z_M^{(\tau)}). \\ &\vdots \\ &-\text{ Sample } z_M^{(\tau+1)} \sim p(z_M|z_1^{(\tau+1)},z_2^{(\tau+1)},\dots,z_{M-1}^{(\tau+1)}). \end{split}
```

Note: When sampling each variable from its conditional posterior, we use the most recent values of all other variables (this is akin to a co-ordinate ascent like procedure)

Note: Order of updating the variables usually doesn't matter (but see "Scan Order in Gibbs Sampling: Models in Which it Matters and Bounds on How Much" from NIPS 2016)

Gibbs Sampling: A Simple Example

Can sample from a 2-D Gaussian using 1-D Gaussians (recall that if the joint distribution is a 2-D Gaussian, conditionals will simply be 1-D Gaussians)

Gibbs Sampling: Some Comments

- One of the most popular MCMC algorithm
- Very easy to derive and implement for locally conjugate models
- Many variations exist, e.g.,
 - Blocked Gibbs: sample multiple variables jointly (sometimes possible)
 - Rao-Blackwellized Gibbs: Can collapse (i.e., integrate out) the unneeded variables while sampling.
 Also called "collapsed" Gibbs sampling
 - MH within Gibbs
- Instead of sampling from the conditionals, an alternative is to use the mode of the conditional.
 - Called the "Itearative Conditional Mode" (ICM) algorithm (doesn't give the posterior though)

Using MCMC Samples: An Example

- Consider making <u>predictions</u> in the PMF model: $\mathbf{R} = \mathbf{U}\mathbf{V}^{\top} + \boldsymbol{\epsilon}$, with \mathbf{R} being $N \times M$, \mathbf{U} being $N \times K$, \mathbf{V} being $M \times K$, and each entry $r_{ij} = \mathbf{u}_i^{\top} \mathbf{v}_j + \epsilon_{ij}$
- ullet Suppose our MCMC sampler (e.g., Gibbs sampler) gave us S samples $\{ \mathbf{U}^{(s)}, \mathbf{V}^{(s)} \}_{s=1}^S$
- \bullet How to make predictions for a missing r_{ij} (its predictive mean, its predictive variance)?
- Given the samples $\{\mathbf{U}^{(s)}, \mathbf{V}^{(s)}\}_{s=1}^{S}$ from the posterior, we can approximate the mean of r_{ij} as $\mathbb{E}[r_{ij}|\mathbf{R}] = \mathbb{E}[\mathbf{u}_i^{\top}\mathbf{v}_j + \epsilon_{ij}] = \mathbb{E}[\mathbf{u}_i^{\top}\mathbf{v}_j] \approx \frac{1}{S} \sum_{s=1}^{S} \mathbf{u}_i^{(s)}^{\top} \mathbf{v}_j^{(s)}$
- The variance can be likewise approximated as

$$\begin{aligned} \mathsf{Var}[r_{ij}|\mathbf{R}] &= \mathsf{Var}[\boldsymbol{u}_i^\top \boldsymbol{v}_j + \epsilon_{ij}] &= \mathsf{Var}[\boldsymbol{u}_i^\top \boldsymbol{v}_j] + \mathsf{Var}[\epsilon_{ij}] \\ &= \mathbb{E}[(\boldsymbol{u}_i^\top \boldsymbol{v}_j)^2] - \left[\mathbb{E}[\boldsymbol{u}_i^\top \boldsymbol{v}_j]\right]^2 + \beta^{-1} \\ &\approx \frac{1}{S} \sum_{i=1}^{S} \left(\boldsymbol{u}_i^{(s)\top} \boldsymbol{v}_j^{(s)}\right)^2 - \left(\frac{1}{S} \sum_{i=1}^{S} \boldsymbol{u}_i^{(s)\top} \boldsymbol{v}_j^{(s)}\right)^2 + \beta^{-1} \end{aligned}$$

- ullet Question: Can't we average all samples to get a single $oldsymbol{U}$ and a single $oldsymbol{V}$ and use those?
 - No. Reason: Possible mode or label switching

Mode/Label Switching

- The posterior of most latent variable models has multiple modes
 - .. even if it is unimodal when the latent variables are known
- Each sampling iteration can give samples of latent variables from one of the modes
- Example: Consider a clustering model like GMM. Likelihood is invariant to label permutations
 - What one sample considers as cluster 1 may become cluster 2 for next sample
- Therefore averaging latent variables or parameters across samples can be meaningless
- Quantities not affected by permutations of latent variables can be safely averaged
 - Probability that two points belong to the same cluster (e.g., in GMM)
 - Predicting the mean/variance of a missing entry r_{ij} in matrix factorization

MCMC/Sampling vs Variational Inference

- MCMC gives samples from the true posterior when run infinitely long
 - But in practice we can never run the chain infinitely long
- VB only gives a locally optimal approximation of the posterior
 - But VB guarantees that we will give it in finite time!
- MCMC is quite general; doesn't assume simplifying assumptions such as mean-field
- Many VB methods (e.g.. BBVI) use sampling as a routine
- MCMC approximation is expensive storage-wise (need to store all the samples)
 - Also, computing any quantity that depends on the posterior is expensive with MCMC because we need to average using all the stored samples!

MCMC and Random Walk

• MCMC methods use a proposal distribution to draw the next sample given the previous sample

$$\theta^{(t)} \sim \mathcal{N}(\theta^{(t-1)}, \sigma^2)$$

- .. and then we accept/reject (if doing MH) or always accept (if doing Gibbs sampling)
- Such proposal distributions typically lead to a random-walk behavior (e.g., a zig-zag trajectory in Gibbs sampling) and may lead to very slow convergence (pic below: $\theta = [z_1, z_2]$)

- Can be especially critical when the components of θ are highly correlated
- Using the posterior's gradient may be beneficial for faster convergence (next class)