Tratamento Estatístico de Dados em Física Experimental - Atividade 15

Testes Estatísticos – I (testes "t" e "z")

Faça as questões abaixo e depois envie suas respostas no formulário correspondente https://forms.gle/YyHcC3zqJdi3LqAj7. Esta atividade deve ser entregue até às **23h59** do dia 1/12 (quarta-feira).

A Tabela 1 apresenta os valores para o módulo da variável aleatória $t=\frac{x-x_0}{\widetilde{\sigma}_x}$ que definem os intervalos de confiança de 68,27%, 95,45% e 99,73% em termos do número de graus de liberdade, ν , usados para estimar $\widetilde{\sigma}_x$.

Tabel	la 1. Valores de t que definem os intervalos de confiança de 68,2/%, 95,45% e 99,73%, para a	lguns
	valores do número de graus de liberdade, L , usados para estimar o desvio-padrão amostral.	
-		

L	t_1 $IC_1 \cong 68,27\%$	t_2 $IC_2 \cong 95,45\%$	t_3 $IC_3 \cong 99,73\%$
1	1,84	14,0	235,8
2	1,32	4,53	19,21
3	1,20	3,31	9,22
5	1,11	2,65	5,51
10	1,053	2,28	3,96
20	1,026	2,13	3,42
100	1,005	2,03	3,08
∞	1	2	3

Escreva uma rotina para gerar um conjunto de N dados com função densidade de probabilidade gaussiana de valor verdadeiro $x_0=50$ com desvio-padrão $\sigma_0=10$ e que retorne o valor médio, x_m , e o correspondente desvio-padrão da média, $\tilde{\sigma}_m=\frac{\tilde{\sigma}}{\sqrt{N}}$, onde $\tilde{\sigma}=\sqrt{\sum_{i=1}^N\frac{(x_i-x_m)^2}{N-1}}$ é o desvio-padrão amostral estimado com L=N-1 graus de liberdade. OBS: no Python, $\tilde{\sigma}$ pode ser obtido pelo comando numpy.std(x,ddof=1).

- a) Considere o caso em que o número de dados de cada conjunto seja N=4.
 - a.1) Determine, usando a tabela de limites críticos para o teste "t" qual é o valor crítico t_2 , que encerra um intervalo de confiança de 95,45% de que o módulo da variável t seja menor que t_2 .
 - a.2) Faça o mesmo para o teste "z" (isto é, determine o valor crítico z_2 que encerra um intervalo de confiança de 95,45% de que o módulo da variável z seja menor que z_2).
- b) Use a rotina descrita no enunciado para gerar $N_{REP}=10.000$ conjuntos de N dados cada e, para cada conjunto gerado, determine o valor da variável aleatória "t" ($t=\frac{x_m-x_0}{\widetilde{\sigma}_m}$). Calcule f_{t_2} , a frequência relativa de valores de t que têm módulo menor ou igual a t_2 , e sua respectiva incerteza.
- c) Use a rotina descrita no enunciado para gerar outros $N_{REP}=10.000$ conjuntos de N dados cada e, para cada conjunto gerado, determine o valor da variável aleatória "z" ($z=\frac{x_m-x_0}{\sigma_{m_0}}$), onde σ_{m_0} é o valor verdadeiro do desvio-padrão da média ($\sigma_{m_0}=\frac{\sigma_0}{\sqrt{N}}$). Em seguida, calcule f_{z_2} , a frequência relativa de valores de z que têm módulo menor ou igual a z_2 , e sua respectiva incerteza.
- d) Refaça para o caso em que o número de dados gerados em cada conjunto seja N=101.