PREDICTIVE MODELLING

Gudla Sai Sirinvas

Predictive Modeling

Contents

1. Read the data and do exploratory data analysis. Describe the data types, shape, EDA, 5 point summary). Perform Univariate, Bivariate An	• •
2. Impute null values if present, also check for the values which are any meaning or do we need to change them or drop them? Check for t features if required. Also check for outliers and duplicates i there	he possibility of creating new
3. Encode the data (having string values) for Modelling. Split the dat Apply Linear regression using scikit learn. Perform checks for significan method from statsmodel. Create multiple models and check the perform and Test sets using Rsquare, RMSE & Adj Rsquare. Compare these models appropriate reasoning.	t variables using appropriate mance of Predictions on Train lels and select the best one
4. Inference: Basis on these predictions, what are the business insigh	nts and recommendations23
5. Data Ingestion: Read the dataset. Do the descriptive statistics and check for duplicates and outliers and write an inference on it. Perform Analysis and Multivariate Analysis	Univariate and Bivariate
6. Do not scale the data. Encode the data (having string values) for N data into train and test (70:30). Apply Logistic Regression and LDA (line CART	ear discriminant analysis) and
7. Performance Metrics: Check the performance of Predictions on Tr Accuracy, Confusion Matrix, Plot ROC curve and get ROC_AUC score fo Compare Both the models and write inference which model is best/op	r each model Final Model:
8. Inference: Basis on these predictions, what are the insights and re	ecommendations36
Table of Figures	
Fig. 1. Missing values	
Fig. 2. Univariate analysis graphs	
Fig. 4. Normal Distribution of Residual	
Fig. 5. Normal distribution of residuals with transformed data	
Fig. 6. Univariate analysis	
Fig. 7. Multivariate analysis	30
Fig. 8. Pair plot	31
Fig. 9. Confusion matrix for Logistic Regression	
Fig. 10. Sample decision tree diagram	34
List of Tables	
Table 1. Data types	
Table 2. First 5 rows Table 3. Last 5 rows	
Table 4. Summary of the Data	
Table 5. Linear regression model with original data	
Table 6. Regressional model with transformed data	
Table 7. Data types	

Table 8. First 5 rows of the data	26
Table 9. Last five rows of the data	27
Table 10. Summary of the data	27
Table 11. Classification of LDA model results for Train data	32
Table 12. Classification of LDA model results for Test data	33
Table 13. Confusion matrix for LDA	33

LINEAR REGRESSION

Problem 1: Linear Regression

The comp-activ databases is a collection of a computer systems activity measures . The data was collected from a Sun Sparcstation 20/712 with 128 Mbytes of memory running in a multi-user university department. Users would typically be doing a large variety of tasks ranging from accessing the internet, editing files or running very cpubound programs.

As you are a budding data scientist you thought to find out a linear equation to build a model to predict 'usr'(Portion of time (%) that cpus run in user mode) and to find out how each attribute affects the system to be in 'usr' mode using a list of system attributes.

DATA DICTIONARY:

System measures used:

Iread - Reads (transfers per second) between system memory and user memory

lwrite - writes (transfers per second) between system memory and user memory

scall - Number of system calls of all types per second

sread - Number of system read calls per second.

swrite - Number of system write calls per second .

fork - Number of system fork calls per second.

exec - Number of system exec calls per second.

rchar - Number of characters transferred per second by system read calls

wchar - Number of characters transfreed per second by system write calls

pgout - Number of page out requests per second

ppgout - Number of pages, paged out per second

pgfree - Number of pages per second placed on the free list.

pgscan - Number of pages checked if they can be freed per second

atch - Number of page attaches (satisfying a page fault by reclaiming a page in memory) per second

pgin - Number of page-in requests per second

ppgin - Number of pages paged in per second

pflt - Number of page faults caused by protection errors (copy-on-writes).

vflt - Number of page faults caused by address translation.

runqsz - Process run queue size (The number of kernel threads in memory that are waiting for a CPU to run.

Typically, this value should be less than 2. Consistently higher values mean that the system might be CPU-bound.)

freemem - Number of memory pages available to user processes

freeswap - Number of disk blocks available for page swapping.

usr - Portion of time (%) that cpus run in user mode

1. Read the data and do exploratory data analysis. Describe the data briefly. (Check the Data types, shape, EDA, 5 point summary). Perform Univariate, Bivariate Analysis, Multivariate Analysis.

The required packages were loaded, work directory was set and data was loaded.

Dataset has 8192 rows and 22 features with below data types bifurcation:

Data Type	Count of Columns
float64	2
int64	8
object	13
Grand Total	22

Table 1. Data types

Data Exploration was performed using the following functions:

- 1. Head
- 2. Tail
- 3. Shape
- 4. Summary
- 5. Check Duplicates
- 6. Null Values

Table 2. First 5 rows

1.Head

2.Tail

Table 3. Last 5 rows

1. Shape.

Dataset has 8192 rows and 22 features

2. Summary:

	count	mean	std	min	25%	50%	75%	max
Iread	8192.0	1.955969e+01	53.353799	0.0	2.0	7.0	20.000	1845.00
lwrite	8192.0	1.310620e+01	29.891726	0.0	0.0	1.0	10.000	575.00
scall	8192.0	2.306318e+03	1633.617322	109.0	1012.0	2051.5	3317.250	12493.00
sread	8192.0	2.104800e+02	198.980146	6.0	86.0	166.0	279.000	5318.00
swrite	8192.0	1.500582e+02	160.478980	7.0	63.0	117.0	185.000	5456.00
fork	8192.0	1.884554e+00	2.479493	0.0	0.4	0.8	2.200	20.12
exec	8192.0	2.791998e+00	5.212456	0.0	0.2	1.2	2.800	59.56
rchar	8088.0	1.973857e+05	239837.493526	278.0	34091.5	125473.5	267828.750	2526649.00
wchar	8177.0	9.590299e+04	140841.707911	1498.0	22916.0	46619.0	106101.000	1801623.00
pgout	8192.0	2.285317e+00	5.307038	0.0	0.0	0.0	2.400	81.44
ppgout	8192.0	5.977229e+00	15.214590	0.0	0.0	0.0	4.200	184.20
pgfree	8192.0	1.191971e+01	32.363520	0.0	0.0	0.0	5.000	523.00
pgscan	8192.0	2.152685e+01	71.141340	0.0	0.0	0.0	0.000	1237.00
atch	8192.0	1.127505e+00	5.708347	0.0	0.0	0.0	0.600	211.58
pgin	8192.0	8.277960e+00	13.874978	0.0	0.6	2.8	9.765	141.20
ppgin	8192.0	1.238859e+01	22.281318	0.0	0.6	3.8	13.800	292.61
pflt	8192.0	1.097938e+02	114.419221	0.0	25.0	63.8	159.600	899.80
vflt	8192.0	1.853158e+02	191.000603	0.2	45.4	120.4	251.800	1365.00
freemem	8192.0	1.763456e+03	2482.104511	55.0	231.0	579.0	2002.250	12027.00
freeswap	8192.0	1.328126e+06	422019.426957	2.0	1042623.5	1289289.5	1730379.500	2243187.00
usr	8192.0	8.396887e+01	18.401905	0.0	81.0	89.0	94.000	99.00

Table 4. Summary of the Data

5.Check Duplicates:

No Duplicates were observed in the dataset.

6.Null Values:

On checking for missing entries/null values it was observed that 2 numeric variables include null values which are:

- Rchar
- Wchar

	0	
	0	
	0	
	0	
	0	
	0	
	0	
	104	
	15	
	0	
	0	
	0	
ар		
int64		
	n ap int64	0 0 0 0 104 15 0 0 0 0 0

Fig. 1. Missing values

The missing values were treated by calculating its mean values.

UNIVARIATE ANALYSIS:

0.0

fork fork

Fig. 2. Univariate analysis graphs

From the above graphs we can say that no variable is normally distributed.

Also it is observed that variables

Iread, Iwrite, scall, sread, swrite, fork, exec, rchar, wchar, pgout, ppgout, pgscan, atch, pgin, ppgin, pfit, vflt, freemem & usr has outliers which were further treated by capping due to their effect on the further model building.

BIVARIATE ANALYSIS:

Fig. 3. Bivariate Analysis Graphs

Correlation between the dependent variable with independents variables are being observed with the heat map.

2. Impute null values if present, also check for the values which are equal to zero. Do they have any meaning, or do we need to change them or drop them? Check for the possibility of creating new features if required. Also check for outliers and duplicates if there.

Null values were observed in the data which were further treated using mean as the variable with missing values was a continuous variable.

Values which are equal to 0 do have significance in the data, hence no 0's were removed.

Outliers were present in the below variables which were treated by capping.

Variables with outliers:

lread,lwrite,scall,sread,swrite,fork,exec,rchar,wchar,pgout,ppgout,pgscan,atch,pgin,ppgin,pfit,vflt,freemem & usr

Duplicate values were not observed in the dataset.

3. Encode the data (having string values) for Modelling. Split the data into train and test (70:30). Apply Linear regression using scikit learn. Perform checks for significant variables using appropriate method from statsmodel. Create multiple models and check the performance of Predictions on Train and Test sets using Rsquare, RMSE & Adj Rsquare. Compare these models and select the best one with appropriate reasoning.

Data encoding was done by using the getdummies function with which all object datatypes were converted to categorical data.

Data was split into train & test with 70% & 30% spread respectively.

On performing transformation on the original dataset, it was observed that the transformed data was better in performance compared to the original data.

```
Output exceeds the size limit. Open the full output data in a text editor
<class 'statsmodels.iolib.summary.Summary'>
                                 OLS Regression Results
Dep. Variable:
                                         usr R-squared:
                                                                                        0.620
                                         OLS Adj. R-squared:
Model:
                                                                                       0.619
                     Least Squares F-statistic:
Method:
                       Sun, 05 Feb 2023 Prob (F-statistic):
18:11:51 Log-Likelihood:
Date:
                                                                                        0.00
Time:
                                                                                     -23560.
No. Observations:
                                              AIC:
                                                                                 4.716e+04
                                       6144
Df Residuals:
                                        6123 BIC:
                                                                                   4.730e+04
Df Model:
                                         20
Covariance Type:
                                nonrobust
                                                        t P>|t| [0.025 0.975]
                                coef std err

      45.3637
      0.770
      58.944
      0.000
      43.855
      46.872

      -0.0767
      0.022
      -3.500
      0.000
      -0.120
      -0.034

      0.0390
      0.032
      1.218
      0.223
      -0.024
      0.102

const
lread
lwrite

    0.0011
    0.000

    0.0016
    0.002

    -0.0056
    0.003

scall
                                                        6.909
                                                                      0.000
                                                                                    0.001
                                                                                                  0.001
                                                        0.642
                                                                      0.521
                                                                                                   0.006
sread
                                                                                    -0.003
                          -0.0016
-0.0056

      -0.0056
      0.003
      -1.598

      -0.8859
      0.322
      -2.751

      -0.0167
      0.126
      -0.132

                                                                      0.110
                                                                                                   0.001
swrite
                                                                                    -0.012
                                                                                    -1.517
fork
                                                                      0.006
                                                                                                 -0.255
                                                                      0.895
                                                                                   -0.263
                                                                                                    0.230
exec
                        -1.031e-05 1.19e-06 -8.652
rchar
                                                                      0.000 -1.26e-05 -7.97e-06
Warnings:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
[2] The smallest eigenvalue is 4.07e-29. This might indicate that there are
strong multicollinearity problems or that the design matrix is singular.
```

Table 5. Linear regression model with original data

R^2 value for = 0.62

From the above tables it is observed that:

R² value: 0.62(62%) which is low for a model to be processed further.

Fig. 4. Normal Distribution of Residual

The residuals for the original data are not normally distributed which can be observed in the above graphs. Hence transformation is needed for the better model delivery.

After transformation it is observed that:

	OLS Re	gression R	esults 			
Dep. Variable:		====== usr R-sq	======= uared:		0.867	
Model:		OLS Adj.	R-squared:		0.866	
Method:	Least Squa	res F-st	atistic:		2655.	
Date:	Sun, 05 Feb 2	023 Prob	(F-statisti	c):	0.00	
Time:	19:20	:46 Log-	Likelihood:		-1160.3	
No. Observations:	5	734 AIC:			2351.	
Df Residuals:	5	719 BIC:			2450.	
Df Model:		14				
Covariance Type:	nonrob	ust				
	coef	std err	 t	P> t	======= [0.025	0.975]
const	-0 . 4463	0.037	-12 . 056	0.000	-0.519	 -0.374
lwrite	0.0056	0.004	1.456	0.145	-0.002	0.013
scall	0.0246	0.002	10.935	0.000	0.020	0.029
swrite	0.0100	0.006	1.606	0.108	-0.002	0.022
fork	-0.3463	0.041	-8.444	0.000	-0.427	-0.266
exec	0.0728	0.019	3.796	0.000	0.035	0.110
rchar	-0.0024	0.000	-9.427	0.000	-0.003	-0.002
pgout	-0.0821	0.009	-9.480	0.000	-0.099	-0.065
atch	0.0506	0.012	4.157	0.000	0.027	0.075
pgin	0.0693	0.006	11.155	0.000	0.057	0.082
pflt	-0.1039	0.010	-10.149	0.000	-0.124	-0.084
vflt	0.1067	0.008	12.566	0.000	0.090	0.123
freemem	-0.0341	0.002	-21.404	0.000	-0.037	-0.031
freeswap	0.0446	0.000	170.948	0.000	0.044	0.045
runqsz_Not_CPU_Bound	0.2219	0.008	26.301	0.000	0.205	0.238
Omnibus:	 5.	======= 303 Durb	======= in-Watson:	=======	2.040	
Prob(Omnibus):	0.	071 Jarq	ue-Bera (JB)		4.781	
Skew:	-0.	013 Prob	(JB):		0.0916	
Kurtosis:	2.	861 Cond	. No.		1.35e+03	

 $\textit{Table 6. Regressional model with transformed data after dimensional reduction using \textit{VIF values} \;.}$

 $R^2 = 0.868$ (for the transformed data)

Fig. 5. Normal distribution of residuals with transformed data

The residuals for the transformed data are now normally distributed which can be observed in the above graphs. The R² values has increased to 0.867(87%) which states that the transformed model is delivering better outcomes.

As transformation required for the given model, will run the model on test data too for more inferences.

Let us observe the different values of train and test from the model on transformed data,

 R^2 for Train data = 0.867

 R^2 for Test data = 0.88

Adj. R-squared for Train data: 0.866

Adj. R-squared for Test data: 0.879

RMSE value for Train data: 0.29

RMSE value for Test data: 0.31

R², Adj. R², RMSE value for train and test are nearly equal to each other.

The regression model with original data have R^2 value is 0.62 (approx.). But for the transformed data model R^2 value is 0.867.

From this it is observed that percentage(%) variability of usr (Portion of time (%) that CPUs run in user mode) with all the independence variable is more in Transformed data model than the original data model.

So, we can consider the regression model made with Transformed data as the apt model for this data set.

Therefore, the linear regression equation for the given data set is,

```
usr = -0.44630643867097636 + 0.005574039028878019 * (lwrite) + 0.024552830539764835 * (scall) + 0.00995061092301841 * (swrite) + (-0.34625960283487744) * (fork) + 0.07282623310597805 * (exec) + (-0.0023597025694529336) * (rchar) + (-0.08211331397359337) * (pgout) + 0.0506282519769673 * (atch) + 0.06934455145127787 * (pgin) + -0.10390486913144725 * (pflt) + 0.10668668134488296 * (vflt) + -0.03406748500220984 * (freemem) + 0.04457112055308339 * (freeswap) + (-0.03322907797377543) * (runqsz_Not_CPU_Bound)
```

4. Inference: Basis on these predictions, what are the business insights and recommendations.

Based on the model results, the attributes that are mostly affects the computer systems are

Lwrite - writes (transfers per second) between system memory and user memory

vflt - Number of page faults caused by address translation

scall - Number of system calls of all types per second

swrite - Number of system write calls per second .

fork – Number of system fork calls per second.

exec – Number of system exec calls per second.

rchar - Number of characters transferred per second by system read calls

pgout - Number of page out requests per second

atch – Number of page attaches (satisfying a page fault by reclaiming a page in memory) per second

pgin - Number of page-in requests per second

pflt – Number of page faults caused by protection errors (copy-on-writes).

freemem – Number of memory pages available to user processes

freeswap - Number of disk blocks available for page swapping.

rungsz- Process run queue size (The number of kernel threads in memory that are waiting for a CPU to run.

Company should concentrate on these variables to get better portion of time that CPU runs in user mode.

- ➤ EDA process to deep dive in the data and understand each variable significance and the correlation with each other
- Data cleaning by imputing null values, treating outliers to avoid any biasness in the data
- ➤ Encoding the string values to satisfy the data requirement while running the model. (numerical values/ categorical acceptable for running the models)

- > Applied linear regression model by using scikit learn for both original data and transformed data
- > Justified the transformed model is the best model using R square, RMSE, Adj R square values.
- > Dimensionality reduction has been taken by using VIF values
- > Find the best fit line for the linear regression and given with equation

Problem 2: Logistic Regression, LDA and CART

You are a statistician at the Republic of Indonesia Ministry of Health and you are provided with a data of 1473 females collected from a Contraceptive Prevalence Survey. The samples are married women who were either not pregnant or do not know if they were at the time of the survey.

The problem is to predict do/don't they use a contraceptive method of choice based on their demographic and socio-economic characteristics.

Data Dictionary:

- 1. Wife's age (numerical)
- 2. Wife's education (categorical) 1=uneducated, 2, 3, 4=tertiary
- 3. Husband's education (categorical) 1=uneducated, 2, 3, 4=tertiary
- 4. Number of children ever born (numerical)
- 5. Wife's religion (binary) Non-Scientology, Scientology
- 6. Wife's now working? (binary) Yes, No
- 7. Husband's occupation (categorical) 1, 2, 3, 4(random)
- 8. Standard-of-living index (categorical) 1=verlow, 2, 3, 4=high
- 9. Media exposure (binary) Good, Not good
- 10. Contraceptive method used (class attribute) No, Yes
 - 5. Data Ingestion: Read the dataset. Do the descriptive statistics and do null value condition check, check for duplicates and outliers and write an inference on it. Perform Univariate and Bivariate Analysis and Multivariate Analysis.

The required packages were loaded, work directory was set and data was loaded.

Dataset has 1473 rows and 10 features with below data types bifurcation:

Data Type	Count of Columns
float64	2
int64	1
object	7
Grand Total	10

Table 7. Data types

Data Exploration was performed using the following functions:

- 1. Head
- 2. Tail
- 3. Shape
- 4. Summary
- 5. Check Duplicates
- 6. Null Values

1.Head:

Wif e_a ge	Wife_ educa tion	Husban d_educ ation	No_of_c hildren_ born	Wife _reli gion	Wife _Wor king	Husban d_Occu pation	Standard _of_living index	Media _expo sure	Contracept ive_metho d_used
0-				Scien			-		
	Prima	Second		tolog				Expos	
24	ry	ary	3	у	No	2	High	ed	No
	Uned	-		Scien					
	ucate	Second		tolog				Expos	
45	d	ary	10	У	No	3	3 Very High		No
				Scien					
	Prima	Second		tolog				Expos	
43	ry	ary	7	У	No	3	Very High	ed	No
				Scien					
	Secon			tolog				Expos	
42	dary	Primary	9	У	No	3	High	ed	No
				Scien					
	Secon	Second		tolog				Expos	
36	dary	ary	8	У	No	3	Low	ed	No

Table 8. First 5 rows of the data

2.Tail:

Wif e_a ge	Wife_ educa tion	Husban d_educ ation	No_of_c hildren_ born	Wife _reli gion	Wife _Wor king	Husban d_Occu pation	Standard _of_living _index	Media _expo sure	Contracept ive_metho d_used
33	Tertia ry	Tertiary	NaN	Scien tolog y	Yes	2	Very High	Expos ed	Yes
33	Tertia ry	Tertiary	NaN	Scien tolog y	No	1	Very High	Expos ed	Yes
39	Secon dary	Second ary	NaN	Scien tolog y	Yes	1	Very High	Expos ed	Yes
33	Secon dary	Second ary	NaN	Scien tolog y	Yes	2	Low	Expos ed	Yes

	17	Secon dary	Second ary	1	Scien tolog V	No	2	Very High	Expos ed	Yes	
--	----	---------------	---------------	---	---------------------	----	---	-----------	-------------	-----	--

Table 9. Last five rows of the data

3. Shape:

The dataset has 1473 rows and 10 variables.

4. Summary:

	count	mean	std	min	25%	50%	75%	max
Wife_age	1259.0	32.516283	8.303964	16.0	26.0	32.0	39.0	49.0
No_of_children_born	1301.0	3.327440	2.431604	0.0	1.0	3.0	5.0	16.0
Husband_Occupation	1322.0	2.208018	0.843461	1.0	1.0	2.0	3.0	4.0

Table 10. Summary of the data

We can observe that the average age group of females is 32 with minimum age being 16 and maximum age with 49 years.

5. Checking Null Values:

On checking for null values, it was observed that there are 2 variables where null value is found which are as follows:

Wife_age	63
Wife_ education	0
Husband_education	0
No_of_children_born	21
Wife_religion	0
Wife_Working	0
Husband_Occupation	0
Standard_of_living_index	0
Media_exposure	0
Contraceptive_method_used	0
dtype: int64	

As both the parameters were numeric, null value treatment was done by calculating the mean of the variables.

UNIVARIATE ANALYSIS:

Fig. 6. Univariate analysis

From the above graphs we can say that:

The dataset does not have normal distribution in any variable.

Outliers are observed in No of_children_born, wife_religion, Media_exposure.

MULTIVARIATE ANALYSIS:

Fig. 7. Multivariate analysis

From the above graphs we can say that:

- 3. Age group of wife with contraceptive method used(Y/N) is between 30-35. Not much difference was observed in both the cases.
- 4.

BIVARIATE ANALYSIS:

6. Do not scale the data. Encode the data (having string values) for Modelling. Data Split: Split the data into train and test (70:30). Apply Logistic Regression and LDA (linear discriminant analysis) and CART.

For the above query, as mentioned scaling was not performed.

For the variables that had object datatype encoding was performed to have categoric/continuous values for model building.

As defined in the above query, train & test data has been split up to 70% & 30% respectively.

On applying multiple models we found the following results:

LOGISTIC REGRESSION:

Accuracy observed: ~61%.

	precision	recall	f1-score	support
(0.64	0.41	0.50	187
1	0.60	0.80	0.69	210
accuracy	/		0.61	397
macro av	g 0.62	0.60	0.59	397
weighted av	g 0.62	0.61	0.60	397

 ${\it Fig.~9.~Confusion~matrix~for~Logistic~Regression}$

LDA:

	precision	recall	f1- score	support
0	0.63	0.46	0.53	413
1	0.64	0.79	0.71	512
accuracy			0.64	925
macroavg	0.64	0.62	0.62	925
weightedavg	0.64	0.64	0.63	925

Table 11. Classification of LDA model results for Train data

	precision	recall	f1-score	support
0	0.65	0.4	0.5	187
1	0.6	0.8	0.69	210
accuracy			0.61	397
macroavg	0.62	0.6	0.59	397
weightedavg	0.62	0.61	0.6	397

Table 12. Classification of LDA model results for Test data

Table 13. Confusion matrix for LDA

CART:

	Imp
Wife_age	0.307761
Wife_ education	0.092646
Husband_education	0.073109
No_of_children_born	0.261894
Wife_religion	0.035091
Wife_Working	0.023390
Husband_Occupation	0.087982
Standard_of_living_index	0.099668
Media_exposure	0.018459

After Pruning:

	Imp
Wife_age	0.307761
Wife_ education	0.092646
Husband_education	0.073109
No_of_children_born	0.261894
Wife_religion	0.035091
Wife_Working	0.023390
Husband_Occupation	0.087982
Standard_of_living_index	0.099668
Media_exposure	0.018459

Fig. 10. Sample decision tree diagram.

7. Performance Metrics: Check the performance of Predictions on Train and Test sets using Accuracy, Confusion Matrix, Plot ROC curve and get ROC_AUC score for each model Final Model: Compare Both the models and write inference which model is best/optimized.

AUC & ROC-LOGISTIC REGRESSION:

AUC LOGISTIC TRAIN DATA: 0.678 AUC LOGISTIC TEST DATA: 0.632

AUC & ROC: LDA:

AUC CART TRAIN DATA: 0.678 AUC CART TEST DATA: 0.632

AUC & ROC: CART:

AUC CART TRAIN DATA: 0.788 AUC CART TEST DATA: 0.662

On observing the values and graphs given above,

It is observed that the best fit for our data set is Decision tree-based model i.e.., CART

8. Inference: Basis on these predictions, what are the insights and recommendations.

By implying multiple models on the data set we could analyse that the decision tree model was the best fit for the data set as it covered maximum area under the curve while performing ROC.

Also, the AUC of CART for decision tree model was the highest followed by LDA and Logistic regression.

To summarize the project, we have done the following to get the best fit model for the dataset:

- ➤ EDA process to deep dive in the data and understand each variable significance and the correlation with each other
- Data cleaning by imputing null values, treating outliers to avoid any biasness in the data
- Encoding the string values to satisfy the data requirement while running the model. (Numerical values/ categorical acceptable for running the models)
- Running various supervised learning models on the data set like Decision tree (CART), LDA, Logistic regression to attain the desired results.
- > Based on the accuracy confirming the CART to be best model for the data set