#### Continuous treatments: Brief introduction

Ian Lundberg

Soc 212C

## Learning goals

- 1. Define causal effects with continuous treatments
- 2. Understand an outcome modeling estimator
- 3. Select a causal estimand involving credible counterfactuals



Person 1

Person 2

Person 3

Person 4

|          | Outcome under treatment value |   |  |  |  |
|----------|-------------------------------|---|--|--|--|
|          | Untreated Treated             |   |  |  |  |
| Person 1 | 0                             | 0 |  |  |  |
| Person 2 | 0                             | 0 |  |  |  |
| Person 3 | 0                             | 0 |  |  |  |
| Person 4 | 0                             | 0 |  |  |  |

|          | Factual   | Outcome under treatment value |         |  |  |
|----------|-----------|-------------------------------|---------|--|--|
|          | treatment | Untreated                     | Treated |  |  |
| Person 1 | Untreated | 0                             | 0       |  |  |
| Person 2 | Treated   | 0                             | 0       |  |  |
| Person 3 | Treated   | 0                             | 0       |  |  |
| Person 4 | Untreated | 0                             | 0       |  |  |

|          | Factual   | Outcome under treatment value |         |  |  |
|----------|-----------|-------------------------------|---------|--|--|
|          | treatment | Untreated                     | Treated |  |  |
| Person 1 | Untreated | •                             | 0       |  |  |
| Person 2 | Treated   | 0                             | •       |  |  |
| Person 3 | Treated   | 0                             | •       |  |  |
| Person 4 | Untreated | •                             | 0       |  |  |

|          | Factual   | Outcome under treatment value |   |   |   |   |   |
|----------|-----------|-------------------------------|---|---|---|---|---|
|          | treatment | 1                             | 2 | 3 | 4 | 5 |   |
| Person 1 | 3         | 0                             | 0 | • | 0 | 0 | 0 |
| Person 2 | 2         | 0                             | • | 0 | 0 | 0 | 0 |
| Person 3 | 5         | 0                             | 0 | 0 | 0 | • | 0 |
| Person 4 | 4         | 0                             | 0 | 0 | • | 0 | 0 |

|          | Factual   | Outcome under treatment value |      |      |      |      |     |
|----------|-----------|-------------------------------|------|------|------|------|-----|
|          | treatment | 1                             | 2    | 3    | 4    | 5    |     |
| Person 1 | 3         | 000                           | 0000 | 0000 | 0000 | 0000 | 000 |
| Person 2 | 2         | 000                           | 0000 | 0000 | 0000 | 0000 | 000 |
| Person 3 | 5         | 000                           | 0000 | 0000 | 0000 | 0000 | 000 |
| Person 4 | 4         | 000                           | 0000 | 0000 | 0000 | 0000 | 000 |

Solution: Parametric outcome model

$$\mathsf{E}(Y^a \mid \vec{X}) = \mathsf{E}(Y \mid A = a, \vec{X}) \qquad \text{by causal assumptions} \qquad (1)$$
$$= \alpha + \beta \mathbf{a} + \vec{X}' \vec{\gamma} \qquad \text{by a statistical model} \qquad (2)$$

#### Procedure:

- ► Model Y given A and  $\vec{X}$
- ► Set *A* to the value of interest *a*
- ► Predict for all units
- ▶ Average to estimate  $E(Y^a)$

## Additive shift esitmands for credible counterfactuals

For some units, some treatment values are implausible

- $ightharpoonup ec{X} = {\sf child}$  has two parents with college degrees
- ► A = family income of \$10,000 per year
- ► *A* never occurs given  $\vec{X} = \vec{x}$

## Additive shift esitmands for credible counterfactuals

For some units, some treatment values are implausible

- $ightharpoonup \vec{X} = \text{child has two parents with college degrees}$
- ► A = family income of 10,000 per year
- ► *A* never occurs given  $\vec{X} = \vec{x}$

Additive shift estimands are plausible:

$$\tau_i = \mathsf{E}(Y^{A_i + \delta} - Y^{A_i})$$

Predict counterfactual outcome if treatment increases by  $\delta$ 

## Recap: Continuous treatments are

- the same as categorical treatments in these ways
  - ► assume conditional exchangeability
  - ightharpoonup model Y given  $A, \vec{X}$
  - ightharpoonup predict under counterfactual A = a
- ▶ different from categorical treatments in these ways
  - ▶ huge number of treatment values and thus potential outcomes
  - may require careful choice of a credible counterfactual