Ejercicios Tema 1: Conceptos fundamentales

Programación Concurrente

Francisco Javier Pérez Martínez 1 de octubre de 2021

Ejercicios

1. Usando las condiciones de Bernstein, construye una tabla como la anterior para el siguiente código:

```
\begin{array}{l} S1 \; cuad := x \; * \; x; \\ S2 \; m1 := a \; * \; cuad; \\ S3 \; m2 := b \; * \; x; \\ S4 \; z := m1 \; + \; m2; \\ S5 \; y := z \; + \; c; \end{array}
```

Para que se puedan ejecutar concurrentemente dos conjuntos de instrucciones Si y Sj se debe cumplir que ninguno escriba lo que el otro lee o escribe.

```
1. L(Si) \cap E(Sj) = \emptyset
```

2.
$$E(Si) \cap L(Sj) = \emptyset$$

3.
$$E(Si) \cap E(Sj) = \emptyset$$

Aplicando estas reglas, obtenemos la siguiente tabla:

	S1	S2	S3	S4	S5
$\mathbf{S}1$	-	N	S	S	S
S2	-	-	\mathbf{S}	N	\mathbf{S}
S3	-	-	-	N	\mathbf{S}
S4	-	-	-	-	N
S5	-	-	-	-	-

2. Supongamos que una variable se actualiza con dos funciones que se ejecutan concurrentemente, ¿qué valor tendría x al acabar el programa?

La variable x tendría una valor entre 5 y 10, un mínimo de 5 debido a que el bucle se itera 5 veces y hasta 10 porque al ejecutarse concurrentemente y compartir una variable común los 2 procesos podría darse el caso que a la hora de leer uno de los dos lea el mismo dato y éste se sobrescriba.

- a) Plantea una traza que haría que x valiese 5 al final de la ejecución. ¿Qué rango de valores crees que podría acabar teniendo x ?
 - XiA = Valor de x inicialmente en la función A.
 - ullet XiB = Valor de x inicialmente en la función B.
 - $extbf{X}fA = Valor de x finalmente en la función A.$
 - lacktriangle XfB = Valor de x finalmente en la función B.

it	XiA	XiB	XfA	XfB
0	0	0	1	1
1	1	1	2	2
2	2	2	3	3
3	3	3	4	4
4	4	4	5	5

Ambas funciones A y B acceden al mismo valor de X. En la 1^0 iteración con x=0; la función A le suma uno (x:=x+1) y la función B realiza lo mismo, pero al valor de x inicial (0), por lo que ambas funciones ahora tienen x=1. En la siguiente iteración ocurriría igual por lo que hasta finalizar el bucle, x se iría sobrescribiendo y su valor final sería de 5.

b) ¿De qué problemas de los nombrados en esta sesión adolece el programa?

Problemas de exclusión mutua y condición de sincronización.

Cuestiones breves

1. ¿Cuál es la ventaja de la concurrencia en los sistemas monoprocesador?

Utilizando sistemas monoprocesador optimizamos el uso de los recursos como p.e. el aprovechamiento de la CPU.

2. ¿Cuáles son las diferencias entre programación concurrente, paralela y distribuida?

- La programación concurrente es un conjunto de instrucciones que se pueden ejecutar al mismo tiempo.
- La programación paralela es un tipo de programación concurrente para sistemas multiprocesador.
- La programación distribuida es un tipo de programación paralela para sistemas distribuidos.

3. ¿Cuáles son los dos problemas principales inherentes a la programación concurrente?

Los problemas de exclusión mutua y de condición de sincronización.

4. ¿Qué es una sección crítica?

La región donde se encuentra un recurso que comparten dos o más procesos.

5. ¿Cuáles son las características de un programa concurrente?

Las características de un programa concurrente son su orden parcial y su indeterminismo.

6. ¿Qué se entiende por un programa concurrente correcto?

Un programa que cumple con las siguientes reglas:

- Propiedad de seguridad: controla exclusión mutua, condiciones de sincronización e interbloqueo.
- Propiedades de *viveza*: controla el interbloqueo activo y la inanición.