Ejercicios 73-87

Luis Gerardo Arruti Sebastian Sergio Rosado Zúñiga

Ej 73. Para una categoría abeliana \mathcal{A} , pruebe que:

- a) Si $0 \longrightarrow A \longrightarrow P \longrightarrow B \longrightarrow 0$ es exacta en \mathscr{A} , con $P \in Proj(\mathscr{A})$, entonces $\operatorname{Ext}^{n+1}_{\mathscr{A}}(B,X) \simeq \operatorname{Ext}^n_{\mathscr{A}}(A,X) \quad \forall n \geq 1, \ \forall x \in \mathscr{A}$.
- b) Si

$$\dots \longrightarrow P_n \stackrel{d_n}{\longrightarrow} P_{n-1} \stackrel{d_{n-1}}{\longrightarrow} \dots \stackrel{d_2}{\longrightarrow} P_1 \stackrel{d_1}{\longrightarrow} P_0 \stackrel{d_0}{\longrightarrow} A \longrightarrow 0$$
 es resolución proyectiva de \mathscr{A} , entonces
$$\operatorname{Ext}_{\mathscr{A}}^{n+1}(A,X) \simeq \operatorname{Ext}_{\mathscr{A}}^{1}(Ker(d_{n-1}),X) \quad \forall X \in \mathscr{A}.$$

$$0 \longrightarrow (B, X) \xrightarrow{(g, X)} (P, X) \xrightarrow{(f, X)} (A, X) \xrightarrow{\delta_0^*}$$

$$\xrightarrow{\delta_0^*} {}^1(B, X) \xrightarrow{{}^1(g, X)} {}^1(P, X) \xrightarrow{{}^1(f, X)} {}^1(A, X) \xrightarrow{\delta_0^*}$$

$$\delta_1^*$$

pero por 1.10.26 c), se tiene que $\mathrm{Ext}_{\mathscr{A}}^k(P,X)=0,\ \forall P\in Proj(\mathscr{A})\ \forall k\geq 1,$ entonces la sucesión

$$\operatorname{Ext}_{\mathscr{A}}^{k}(P,X) \xrightarrow{\operatorname{Ext}_{\mathscr{A}}^{k}(f,X)} \operatorname{Ext}_{\mathscr{A}}^{k}(A,X) \xrightarrow{\quad \delta_{k}*} \operatorname{Ext}_{\mathscr{A}}^{k+1}(B,X) \xrightarrow{\operatorname{Ext}_{\mathscr{A}}^{k+1}(g,X)} \operatorname{Ext}_{\mathscr{A}}^{k+1}(P,X)$$

es en realidad de esta forma:

$$0 \longrightarrow \operatorname{Ext}_{\mathscr{A}}^{k}(A, X) \xrightarrow{\delta_{k}^{*}} \operatorname{Ext}_{\mathscr{A}}^{k+1}(B, X) \longrightarrow 0$$

para toda $k \ge 1$.

Así
$$\operatorname{Ext}_{\mathscr A}^k(A,X) \simeq \operatorname{Ext}_{\mathscr A}^{k+1}(B,X) \ \forall k \geq 1.$$

b) Supongamos

$$\dots \longrightarrow P_n \xrightarrow{d_n} P_{n-1} \xrightarrow{d_{n-1}} \dots \xrightarrow{d_2} P_1 \xrightarrow{d_1} P_0 \xrightarrow{d_0} A \longrightarrow 0$$

es una resolución proyectiva en \mathscr{A} . Consideremos las siguientes sucesiones exactas para cada $i \in \mathbb{N}$,

$$0 \longrightarrow Ker(d_n) \xrightarrow{K_{d_n}} P_n \xrightarrow{i_{d_n}} Im(d_n) \longrightarrow 0.$$

Como la resolución proyectiva es exacta, entonces $Ker(d_{n-1}) = Im(d_n)$ $\forall n \geq 1$, así se tiene que

$$0 \longrightarrow Ker(d_n) \xrightarrow{K_{d_n}} P_n \xrightarrow{i_{d_n}} Ker(d_{n-1}) \longrightarrow 0$$

son sucesiones exactas para cada $n \in \mathbb{N}$. Ahora, como

$$0 \longrightarrow Ker(d_0) \xrightarrow{K_{d_0}} P_0 \xrightarrow{i_{d_0}} A \xrightarrow{d-1} 0$$
 es exacta, por a)

$$\operatorname{Ext}_{\mathscr{A}}^{n+1}(A,X) \simeq \operatorname{Ext}_{\mathscr{A}}^{n}(Ker(d_0),X), \ \forall n \geq 1.$$

Afirmamos que $\operatorname{Ext}_{\mathscr{A}}^{n+1}(A,X) \simeq \operatorname{Ext}_{\mathscr{A}}^{n-j}(Ker(d_j),X), \ \forall n \geq 1 \ \forall 0 \leq j \leq n-1.$

Procedamos por inducción sobre j. Base j=0. Por lo anterior sabemos que $\operatorname{Ext}_{\mathscr{A}}^{n+1}(A,X) \simeq \operatorname{Ext}_{\mathscr{A}}^{n}(Ker(d_{0}),X), \ \forall n \geq 1, \ y \ \text{como}$ $\operatorname{Ext}_{\mathscr{A}}^{n+1}(A,X) = \operatorname{Ext}_{\mathscr{A}}^{n+1}(Ker(d_{-1}),X)$ (considerando $d_{-1}:A \to 0$) entonces se sigue el resultado.

Supongamos pasa para cierto $j \in \mathbb{N}$, entonces, como

$$0 \longrightarrow Ker(d_{j+1}) \xrightarrow{K_{d_{j+1}}} P_j \xrightarrow{i_{d_{j+1}}} Ker(d_j) \longrightarrow 0$$

es exacta, por a) se tiene que $\operatorname{Ext}_{\mathscr{A}}^n(Ker(d_{j+1}),X) \simeq \operatorname{Ext}_{\mathscr{A}}^{n+1}(Ker(d_j),X)$ $\forall n \geq 1, \text{ y puesto que el resultado vale para } j$ por hipótesis inductiva, entonces

$$\operatorname{Ext}_{\mathscr{A}}^{n-(j+1)}(Ker(d_{j+1}),X) = \operatorname{Ext}_{\mathscr{A}}^{n-j-1}(Ker(d_{j+1}),X) \simeq \operatorname{Ext}_{\mathscr{A}}^{n-j}(Ker(d_{j}),X)$$
$$\operatorname{Ext}_{\mathscr{A}}^{n+(j+1)-j}(A,X) \simeq \operatorname{Ext}_{\mathscr{A}}^{n+1}(A,X).$$

Entonces el resultado es cierto, y en particular si tomamos j=n-2 obtenemos b).

Ej 74. Para un anillo R y M en Mod(R), pruebe que:

- a) $\forall e^2 = e \in \text{End}_R(M), eM$ y (1-e)M son R-submódulos de M y $M = eM \bigoplus (1-e)M$.
- b) Si $M_1, M_2 \leq M$ son tales que $M = M_1 \bigoplus M_2$, entonces $\exists e \in \operatorname{End}_R(M)$ tal que M1 = eM y $M_2 = (1 e)M$.
- c) M es inescindible \iff $\operatorname{End}_R(M)$ es no trivial y los únicos idempotentes en $\operatorname{End}_R(M)$ son los triviales (i.e. 0, 1 el morfismo cero y la identidad).

d) Si R es local entonces R tiene solo idempotentes triviales.

 $\begin{array}{l} Demostraci\'on. \text{ Primero hay que notar que } \forall f \in \operatorname{End}_R(M) \\ rf(x)+f(y)=f(rx+y) \text{ por ser morfismo de m\'odulos, as\'i} fM \text{ es subm\'odulo de } M. \text{ Ahora, sea } e^2=e \in \operatorname{End}_R(M), \text{ entonces } (1-e) \in \operatorname{End}_R(M) \text{ y} \\ eM, (1-e)M \text{ son subm\'odulos de } M. \text{ Sea } x \in M \text{ entonces} \\ e(x)+(1-e)(x)=e(x)+x-e(x)=x \text{ as\'i } M=eM+(1-e)M. \text{ Por \'ultimo, sea } x \in eM \cap (1-e)M, \text{ entonces } \exists y,z \in M \text{ tal que } e(y)=x=(1-e)(z), \\ \text{en particular} \end{array}$

$$x = e(y) = e^{2}(y) = e(x) = e(1 - e)(z) = e(z) - e^{2}(z) = e(z) - e(z) = 0.$$

Por lo tanto $M = eM \bigoplus (1 - e)M$.

b) Definamos $e \in End_R(M)$ como $e := \mu_1 \pi_1 : M \to M$, donde $\mu_1 : M_1 \hookrightarrow M$ es la inclusión canónica de M_1 en M y $\pi_1 : M \twoheadrightarrow M_1$ es la proyección canónica de M en M_1 .

Entonces dado $x \in M$, $x \in M1 \bigoplus M_2$, es decir, $x \in M_1$ o $x \in M_2$. Así, si $x \in M_1$ entonces $e(x) = \mu_1 \pi_1(x) = \mu_1(x) = x$, es decir $M_1 \subseteq eM$.

Si $x \in M_2$ entonces $e(x) = \mu_1 \pi_1(x) = \mu_1(0) = 0$, por lo que $M_2 \cap eM = \{0\}$. Entonces, como $M = M1 \bigoplus M_2$, se tiene que $eM \subseteq M_1$ y así $eM = M_1$.

De manera análoga, si $x \in M_2$ entonces $(1-e)(x) = (1-\mu_1\pi_1)(x) = 1(x) - \mu_1\pi_1(x) = x - 0 = x$, y si $x \notin M_2$ entonces $x \in M_1$ y (1-e)(x) = 1(x) - e(x) = x - x = 0. Por lo tanto $M_2 = (1-e)M$.

c) Supongamos M es inesindible.

Primero se observa que $\operatorname{End}_R(M)$ no puede ser trivial, pues de serlo M sería el módulo 0 lo cual no puede pasar por definición de inescindible.

Sea e un idempotente en $\operatorname{End}_R(M)$, por el inciso a) eM y (1-e)M son R-módulos de M y $M=eM\bigoplus (1-e)M$, pero M es inescindible, por lo tanto eM=0 o (1-e)M=0, así e=0 o e=1 (los morfismos triviales).

Ahora supongamos que $\operatorname{End}_R(M)$ es no trivial y los únicos idempotentes en $\operatorname{End}_R(M)$ son los triviales.

Sean $M_1, M_2 \leq M$ tales que $M = M_1 \bigoplus M_2$, por el inciso b) existe $e \in \operatorname{End}_R(M)$ tal que $M_1 = eM$ y $M_2 = (1 - e)M$. Afirmamos que e

es idempotente.

Sea $x \in M$, si $x \in M_2$ entonces e(x) = 0 pues $eM \cap (1 - e)M = \{0\}$, y así $e^2(x) = e(x) = 0$.

Si $x \in M_1$ entonces (1-e)(x) = 0 y asi x = e(x) por lo tanto $e^2(x) = e(x)$ por lo que e es idempotente, pero los únicos idempotentes en $\operatorname{End}_R(M)$ son los triviales, entonces e = 0 o e = 1, en ambos casos $M \neq 0$ y $M_1 = 0$ o $M_2 = 0$.

d Supongamos R es local.

Por 2.1.2 d), se tiene que $\{r, 1-r\} \cap U(R) \neq \emptyset \quad \forall r \in R$. Supongamos $r=r^2$ en R, entonces $r-r^2=0$ lo cual implica que r(1-r)=0. Como $\{r, 1-r\} \cap U(R) \neq \emptyset$ entonces r o (1-r) es unidad, así r=0 o (1-r)=0 por lo tanto r=0 o r=1, es decir, r es un idempotente trivial.

Ej 75.

Ej 76.

- **Ej 77.** Sean $\mathscr A$ una categoría abeliana y $X,Y\in\mathscr A.$ Pruebe que las siguientes condiciones son equivalentes
 - a) Y es un sumando directo propio de X.
 - b) \exists un spli-mono $\alpha: Y \to X$ que no es iso.
 - c) Todo split-mono $\beta: Y \to X$ no es iso.

Demostración. $a) \Rightarrow b$ Como Y es un sumando propio de X, entonces Y|X y la inclusión canónica $\mu_Y:Y\to X$ (asosiada con la descomposición en producto $X=Y\coprod Y'$) no es un isomorfismo. μ_Y es splitmono, pues al ser $\mathscr A$ categoría abeliana, por 1.8.3 existe una única familia $\{\pi_Y:Y\coprod Y'\longrightarrow Y,\ \pi_{Y'}:Y\coprod Y'\longrightarrow Y'\}$ en $\mathscr A$ tal que $\pi_Y\mu_Y=1_Y$ y $\pi_{Y'}\mu_YY'=1_{Y'}$ (las proyecciones naturales de $Y\coprod Y'$ en Y y Y'), las cuales por a) no son iso.

 $b \to c$ Sean $\eta: Y \to X$ un split-mono no iso y $\beta: Y \to x$ un split-mono cualquiera, observemos que por b) existe dicho β . Sean $\gamma: X \to Y$ y $\alpha: X \to Y$ split-epi tales que $\gamma \eta = 1_Y$ y $\alpha \beta = 1_y$.

Supongamos β es iso con inverso α . Observemos que, como η es split-epi, se tiene la sucesión exacta corta

$$0 \longrightarrow Ker(\eta) \xrightarrow{k_{\eta}} Y \xrightarrow{\eta} X \longrightarrow 0.$$

Como β es iso, entonces β es split-mono y split-epi, así

$$0 \longrightarrow Ker(\eta) \xrightarrow{k_{\eta}} Y \xrightarrow{\beta\eta} X \longrightarrow 0$$

es exacta, pues $\beta\eta$ es epi por ser β mono.

Así se tiene que $\beta \eta k_{\eta} = 0$ por lo tanto

$$\gamma \alpha (\beta \eta k_{\eta}) = \gamma \alpha 0 = 0$$
$$\gamma 1_X \eta k_{\eta} = 0$$
$$1_Y k_{\eta} = 0$$
$$k_{\eta} = 0.$$

Esto es una contradicción, pues implicaría que $Ker(\eta) = 0$ y como

$$0 \longrightarrow Ker(\eta) \xrightarrow{k_{\eta}} Y \xrightarrow{\eta} X \longrightarrow 0.$$

es exacta, entonces $0 \longrightarrow Y \xrightarrow{\eta} X \longrightarrow 0$ es exacta por lo que η sería iso. Por lo tanto β no puede ser iso.

 $c) \Rightarrow a)$ Supongamos Y|X entonces la inclusión canónica $\mu_1: Y \to X$ (asociada a la descomposición en coproducto $X = Y \coprod Y'$) es un splitmono en $\mathscr A$ donde $\pi_1: Y \coprod Y' \longrightarrow Y$ (la proyección canónica) es el único split-epi tal que $\pi_1\mu_1 = 1_Y$, por c) π_1 no puede ser iso, entonces μ_1 no puede ser iso. Por lo tanto Y es sumando directo de X.

Ej 78. Sea $\mathscr C$ una categoría preaditiva y $M,N\in\mathscr C$. Pruebe que la composición de morfismos en $\mathscr C$ induce en $\operatorname{Hom}_{\mathscr C}(M,N)$ una estructura de $\operatorname{End}_{\mathscr C}(N)$ -izquierdo $\operatorname{End}_{\mathscr C}(M)$ -derecho bimódulo, i.e. $\operatorname{Hom}_{\mathscr C}(M,N)\in {}_{\operatorname{End}_{\mathscr C}(N)}Mod_{\operatorname{End}_{\mathscr C}(M)}$ donde $\operatorname{End}_{\mathscr C}(N)\times\operatorname{Hom}_{\mathscr C}(M,N)\times\operatorname{End}_{\mathscr C}(M)\longrightarrow \operatorname{Hom}_{\mathscr C}(M,N)$ con $(\beta,g,\alpha)\mapsto \beta\circ g\circ \alpha.$

Demostración. Definición. Sean M un grupo abeliano y R,S anillos. Decimos que M es un R-izquierdo y S-derecho bimódulo, si

- 1) $M \in {}_{R}Mod \cap Mod_{S}$.
- 2) r(ms) = (rm)s.

Veamos primero que $\operatorname{Hom}_{\mathscr{C}}(M,N) \in \operatorname{End}_{\mathscr{C}}(N) Mod \cap Mod_{\operatorname{End}_{\mathscr{C}}(M)}$.

Sean $\alpha, \beta \in \operatorname{End}_{\mathscr{C}}(N)$, $f, g \in \operatorname{Hom}_{\mathscr{C}}(M, N)$ y $\gamma, \eta \in \operatorname{End}_{\mathscr{C}}(M)$.

Por 1.9.10, tenemos que la suma f + g en $\text{Hom}_{\mathscr{C}}(M, N)$ sólo puede estar dada por alguna de las siguientes tres composiciones de morfismos en \mathscr{C} .

a)
$$M \xrightarrow{\Delta_M} M \coprod M \xrightarrow{(f \ g)} N .$$

b)
$$M \xrightarrow{\left(\begin{smallmatrix} f \\ g \end{smallmatrix}\right)} N \coprod N \xrightarrow{\nabla_N} N \; .$$

c)
$$M \xrightarrow{\Delta_M} M \coprod M \xrightarrow{\begin{pmatrix} f & 0 \\ 0 & g \end{pmatrix}} N \coprod N \xrightarrow{\nabla_N} N .$$

Análogamente para $f, g \in \text{Hom}_{\mathscr{C}}(M, N)$ y $\gamma, \eta \in \text{End}_{\mathscr{C}}(M)$. Veamos que $\alpha \circ (f + g) = \alpha f + \alpha g$.

Caso a)
$$f + g = (f g) \Delta_M$$

 $\alpha \circ (f + g) = \alpha (f g) \Delta_M = (\alpha f \alpha g) \Delta_M = \alpha f + \alpha g.$

Caso b)
$$f + g = \nabla_N \begin{pmatrix} f \\ g \end{pmatrix}$$

 $\alpha \circ (f + g) = \alpha \nabla_N \begin{pmatrix} f \\ g \end{pmatrix} = (\alpha \alpha) \begin{pmatrix} f \\ g \end{pmatrix} = \alpha f + \alpha g.$

Caso c)
$$f + g = \nabla_N \begin{pmatrix} f & 0 \\ 0 & g \end{pmatrix} \Delta_M$$

$$\alpha \circ (f + g) = \alpha \circ \left(\nabla_N \begin{pmatrix} f & 0 \\ 0 & g \end{pmatrix} \Delta_M \right) = (\alpha \alpha) \begin{pmatrix} f & 0 \\ 0 & g \end{pmatrix} \Delta_M$$

$$= (\alpha f + 0 \ 0 + \alpha g) \Delta_M = (\alpha f \ \alpha g) \Delta_M = \alpha f + \alpha g.$$

Veamos ahora que $(\alpha + \beta) \circ f = \alpha f + \beta f$

Caso a) $\alpha + \beta = (\alpha \beta) \Delta_N$

$$(\alpha + \beta) \circ f = (\alpha \beta) \Delta_N \circ f = (\alpha \beta) \binom{f}{f} = \alpha f + \beta f.$$

Caso b) $\alpha + \beta = \nabla_N \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$

$$(\alpha + \beta) \circ f = \nabla_N \begin{pmatrix} \alpha \\ \beta \end{pmatrix} \circ f = \nabla_N \begin{pmatrix} \alpha f \\ \beta f \end{pmatrix} = \alpha f + \beta f.$$

Caso c) $\alpha + \beta = \nabla_N \begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix} \Delta_N$

$$(\alpha+\beta)\circ f=\nabla_N\left(\begin{smallmatrix}\alpha&0\\0&\beta\end{smallmatrix}\right)\Delta_N\circ f=\left(\begin{smallmatrix}\alpha+0&0+\beta\end{smallmatrix}\right)\left(\begin{smallmatrix}f\\f\end{smallmatrix}\right)=\alpha f+\beta f.$$

Observemos que $1_{\operatorname{End}_{\mathscr{C}}(N)} \circ f = f$, pues $1_{\operatorname{End}_{\mathscr{C}}(N)} = Id_N$. Además $(\alpha \circ \beta) \circ f = \alpha \circ (\beta \circ f)$ por ser la composición asociativa en \mathscr{C} . Entonces $\operatorname{Hom}_{\mathscr{C}}(M,N)$ tiene estructura de módulo a izquierda sobre $\operatorname{End}_{\mathscr{C}}(N)$. Análogamente se prueba que $\operatorname{Hom}_{\mathscr{C}}(M,N)$ tiene estructura de módulo a derecha sobre $\operatorname{End}_{\mathscr{C}}(M)$.

2) es trivial por que la composición es asosiativa en $\mathscr C$ para toda $f \in \operatorname{Hom}_{\mathscr C}(M,N), \quad \alpha \in \operatorname{End}_{\mathscr C}(N) \quad \text{y} \quad \gamma \in \operatorname{End}_{\mathscr C}(M),$ es decir, se tiene que $\alpha \circ (f \circ \gamma) = (\alpha \circ f) \circ \gamma$. Por lo tanto $\operatorname{Hom}_{\mathscr C}(M,N)$ es un bimódulo.

Ei 78*.

Ej 79.

Ej 80.

Ej 81.

Ej 82. Sean \mathscr{A} una categoría abeliana, $X \subseteq \mathscr{A}$ e $i \geq 1$. Pruebe que las clases ${}^{\perp_i}X, X^{\perp_i}, {}^{\perp}X$ y X^{\perp} son cerradas por: sumandos directos en \mathscr{A} , extensiones e isomorfismos.

Demostración. Veamos que $^{\perp_n}X$ es cerrada bajo extenciones para $n \geq 1$.

Sea $0 \longrightarrow X_1 \xrightarrow{f} E \xrightarrow{g} X_2 \longrightarrow 0$ una sucesión exacta con $X_1, X_2 \in {}^{\perp_n}X$ y $n \ge 1$, por 1.10.28 se tiene que la sucesión ... $\longrightarrow \operatorname{Ext}_{\mathscr{A}}^n(A, X_1) \xrightarrow{\operatorname{Ext}_{\mathscr{A}}^n(A, f)} \operatorname{Ext}_{\mathscr{A}}^n(A, E) \xrightarrow{\operatorname{Ext}_{\mathscr{A}}^n(A, g)} \operatorname{Ext}_{\mathscr{A}}^n(A, X_2) \longrightarrow ...$

es exacta para toda $A \in \mathscr{A}$, pero $X_1, X_2 \in {}^{\perp_n}X$, entonces $\operatorname{Ext}^n_\mathscr{A}(A, X_1) = 0 = \operatorname{Ext}^n_\mathscr{A}(A, X_2)$, por lo que $0 \longrightarrow \operatorname{Ext}^n_\mathscr{A}(A, E) \longrightarrow 0$ es exacta en \mathscr{A} lo cual implica que $\operatorname{Ext}^n_\mathscr{A}(A, E) = 0$ para toda $A \in \mathscr{A}$, y así $E \in {}^{\perp_n}X$.

Cerrado bajo isomorfismos:

Sea $X_0 \in {}^{\perp_n} X$ y $M \in \mathscr{A}$ tales que $\varphi : M \to X_0$ es iso. Por definición el funtor $\operatorname{Ext}_{\mathscr{A}}^n(A, \bullet)|_X = 0$ para toda $A \in \mathscr{A}$. Consideremos un elemnto ϵ de $\operatorname{Ext}_{\mathscr{A}}^n(A, M)$, entonces

$$\epsilon = 0 \longrightarrow A \xrightarrow{e_n} E_n \longrightarrow \dots \longrightarrow E_0 \xrightarrow{e_0} M \longrightarrow 0$$
.

Como φ es isomorfismo, se tiene que

$$0 \longrightarrow A \xrightarrow{e_n} E_n \longrightarrow \dots \longrightarrow E_0 \xrightarrow{e_0} M \longrightarrow 0$$

$$\parallel \qquad \qquad \parallel \qquad \qquad \downarrow \varphi$$

$$0 \longrightarrow A \xrightarrow{e_n} E_n \longrightarrow \dots \longrightarrow E_0 \xrightarrow{e_0} X_0 \longrightarrow 0$$
es conmutativo, por lo que $\operatorname{Ext}^n_{\mathscr{A}}(A, M) = \operatorname{Ext}^n_{\mathscr{A}}(A, X_0)$ por lo tanto

 $M \in {}^{\perp_n}X$.

Cerrado bajo sumandos directos:

Sean $X_0 \in {}^{\perp_n}X$ y $Y|X_0$, entonces $X_0 = Y \coprod Y'$. Si β es split-mono, entonces no es iso por el ejercicio 77, y por la observación 1.10.27 b) se tiene que $\operatorname{Ext}_{\mathscr{A}}^n(A,Y \coprod Y') = \operatorname{Ext}_{\mathscr{A}}^n(A,Y) \coprod \operatorname{Ext}_{\mathscr{A}}^n(A,Y')$.

Como $X_0 \in {}^{\perp_n}X$, por a) entonces $\operatorname{Ext}_{\mathscr{A}}^n(A,Y) \coprod \operatorname{Ext}_{\mathscr{A}}^n(A,Y') = 0$ por lo que $\operatorname{Ext}_{\mathscr{A}}^n(A,Y) = 0$ y así $Y \in {}^{\perp_n}X$.

Ahora veamos que $^{\perp}X$ es cerrado bajo sumandos directos, isomorfismos y extensiones.

Consideramos $^{\perp}X=\bigcap_{i>0}{^{\perp_i}X}$ como la clase $\{Z\in\mathscr{A}\,|\,Z\in{^{\perp_i}X}\ \forall i\geq 1\}.$

Cerrado bajo isomorfismos:

Sea $X_0 \in {}^{\perp}$ y $M \in \mathscr{A}$ tal que $\varphi : X_0 \to M$ es iso, entonces $\forall n \geq 1$, $X_0 \in {}^{\perp} {}^n X$, así por la primera parte $M \in {}^{\perp} {}^n X$ para cada $n \geq 1$, es decir, $M \in {}^{\perp} X$.

Cerrado bajo extensiones:

Sea $0 \longrightarrow X_1 \stackrel{f}{\longrightarrow} E \stackrel{g}{\longrightarrow} X_2 \longrightarrow 0$ una sucesión exacta en $\mathscr A$ con $X_1, X_2 \in {}^{\perp}X$, entonces para cada $n \geq 1$ se tiene que $0 \longrightarrow X_1 \stackrel{f}{\longrightarrow} E \stackrel{g}{\longrightarrow} X_2 \longrightarrow 0$ es una sucesión exacta en $\mathscr A$ con $X_1, X_2 \in {}^{\perp}{}^nX$, así por la primera parte $M \in {}^{\perp}X$ para cada $n \geq 1$, es decir $M \in {}^{\perp}X$.

Cerrado bajo sumandos directos.

Sea $X_0 \in {}^{\perp}X$ y supongamos $Y|X_0$ es sumando directo. Como $X_0 \in {}^{\perp}$ entonces $\forall n \geq 1, X_0 \in {}^{\perp}nX$ y por la primera parte entonces $Y \in {}^{\perp}nX$ $\forall n \geq 1$ lo cual implica que $Y \in {}^{\perp}X$.

La prueba para X^{\perp_n} y X^{\perp} son análogas a las anteriores.

Ej 83.

Ej 84.

Ej 85. Sean \mathscr{A} una categoría abeliana y $\mathscr{C} \subseteq \mathscr{A}$. Pruebe que:

- a) $\mathscr{C} \subseteq {}^{\perp_1}(\mathscr{C}^{\perp_1})$ y $\mathscr{C} \subseteq ({}^{\perp_1}\mathscr{C})^{\perp_1}$.
- b) $(^{\perp_1}(\mathscr{C}^{\perp_1}), \mathscr{C}^{\perp_1})$ es un par de cotorsión, y se le conoce como el par de cotorsión en \mathscr{A} generado por \mathscr{C} .

c) $(^{\perp_1}\mathscr{C}, (^{\perp_1}\mathscr{C})^{\perp_1})$ es un par de cotorsión, y se le conoce como el par de cotorsión en \mathscr{A} cogenerado por \mathscr{C} .

Demostración.

 $\begin{array}{|c|c|c|c|c|} \hline (a) & \text{Por definición} & {}^{\perp_1}(\mathscr{C}^{\perp_1}) = \{Z \in \mathscr{A} \mid \operatorname{Ext}^1_\mathscr{A}(Z, \bullet)|_{\mathscr{C}^{\perp_1}} = 0\}. \\ \hline \text{Sea } C \in \mathscr{C}, \text{ por definición } \mathscr{C}^{\perp_1} = \{Z \in \mathscr{A} \mid \operatorname{Ext}^1_\mathscr{A}(\bullet, Z)|_{\mathscr{C}} = 0\}, \text{ entonces} \\ \hline \operatorname{Ext}^1_\mathscr{A}(C, X) = 0 & \forall X \in \mathscr{C}^{\perp_1}, \text{ es decir,} \\ \hline C \in \{Z \in \mathscr{A} \mid \operatorname{Ext}^1_\mathscr{A}(Z, \bullet)|_{\mathscr{C}^{\perp_1}} = 0\} = {}^{\perp_1}(\mathscr{C}^{\perp_1}). \\ \hline \end{array}$

Análogamente tomamos $C \in \mathscr{C}$. Por definición $^{\perp_1}\mathscr{C} = \{Z \in \mathscr{A} \mid \operatorname{Ext}^1_\mathscr{A}(Z, \bullet)|_{\mathscr{C}} = 0\}$, entonces para cada $X \in {}^{\perp_1}\mathscr{C}$ se tiene que $\operatorname{Ext}^1_\mathscr{A}(X, C) = 0$. Esto implica que $C \in \{Z \in \mathscr{A} \mid \operatorname{Ext}^1_\mathscr{A}(\bullet, Z)|_{{}^{\perp_1}\mathscr{C}} = 0\} = ({}^{\perp_1}\mathscr{C})^{{}^{\perp_1}}$.

b) Por definición (X,Y) es un par de cotorsión si $X = {}^{\perp_1}Y$ y $Y = X^{\perp_1}$. Por una parte ${}^{\perp_1}(\mathscr{C}^{\perp_1})$ ya es el ortogonal 1 a izquierda de \mathscr{C}^{\perp_1} , solo falta ver que \mathscr{C}^{\perp_1} es el ortogonal 1 a derecha de ${}^{\perp_1}(\mathscr{C}^{\perp_1})$.

Por el inciso a) se tiene que $\mathscr{C}^{\perp_1} \subseteq \left[^{\perp_1}(\mathscr{C}^{\perp_1}) \right]^{\perp_1}$. Si $C \in \left[^{\perp_1}(\mathscr{C}^{\perp_1}) \right]^{\perp_1}$ entonces por definición $\operatorname{Ext}^1_\mathscr{A}(X,C) = 0 \ \forall X \in ^{\perp_1}(\mathscr{C}^{\perp_1})$, pero si $Y \in \mathscr{C}$, por el inciso a) $Y \in ^{\perp_1}(\mathscr{C}^{\perp_1})$, es decir, $\operatorname{Ext}^1_\mathscr{A}(Y,C) = 0 \ \forall Y \in \mathscr{C}$. Por lo tanto $\left[^{\perp_1}(\mathscr{C}^{\perp_1}) \right]^{\perp_1} \subseteq \mathscr{C}^{\perp_1}$ y se tiene que $\left[^{\perp_1}(\mathscr{C}^{\perp_1}) \right]^{\perp_1} = \mathscr{C}^{\perp_1}$.

Así $(^{\perp_1}(\mathscr{C}^{\perp_1}),\mathscr{C}^{\perp_1})$ es un par de cotorsión a derecha y por lo tanto un par de cotorsión.

[c) Análogamente a b), como $^{\perp_1}\mathscr{C}\subseteq^{\perp_1}\left[(^{\perp_1}\mathscr{C})^{\perp_1}\right]$ por a) se tiene que cada $C\in^{\perp_1}\left[(^{\perp_1}\mathscr{C})^{\perp_1}\right]$ cumple que $\operatorname{Ext}^1_\mathscr{A}(C,Y)=0\ \forall Y\in\mathscr{C}$, por lo tanto $C\in^{\perp_1}\mathscr{C}$ y así $^{\perp_1}\mathscr{C}=^{\perp_1}\left[(^{\perp_1}\mathscr{C})^{\perp_1}\right]$ y $(^{\perp_1}\mathscr{C},(^{\perp_1}\mathscr{C})^{\perp_1})$ es un par de cotorsión a izquierda.

Notando además que $(^{\perp_1}\mathscr{C})^{\perp_1}$ es el ortogonal 1 a derecha de $^{\perp_1}\mathscr{C}$ entonces $(^{\perp_1}\mathscr{C},(^{\perp_1}\mathscr{C})^{\perp_1})$ es un par de cotorsión.

- **Ej 86.** Sean $X,Y\subseteq \mathscr{A}$ con \mathscr{A} una categoría abeliana. Pruebe que : (X,Y) es un par de cotorsión completo a derecha si y sólo si, las siguientes condiciones se satisfacen:
 - a) Y = Smd(Y) y $Ext^{1}_{\mathscr{A}}(X, Y) = 0$.
 - b) $\forall A \in \mathscr{A} \exists$ una Y-preenvolvente $\varphi : A \to Y$ tal que φ es mono y $Coker(\varphi) \in X.$

Demostración. \implies Sea (X,Y) un par de cotorsión completo a derecha. Dado que $Y=X^{\perp_1}$, $\operatorname{Ext}^1_{\mathscr{A}}(X,Y)=0$ se sigue trivialmente y Y=Smd(Y) es consecuencia del ejercicio 82. Veremos ahora que se cumple b).

En efecto, sea $A \in \mathscr{A}$. Por ser (X,Y) completo a derecha, existe una sucesión exacta $\epsilon: 0 \longrightarrow A \xrightarrow{\varphi} Y_0 \longrightarrow X_0 \longrightarrow 0$ en \mathscr{A} , con $x_0 \in X$ y $Y_0 \in Y$. veamos que φ es Y-preenvolvente. Sea $f: A \to Y_0'$, con $Y_0' \in Y$. Aplicando $\operatorname{Hom}_{\mathscr{A}}(\bullet,Y)$ a ϵ , se tiene por 1.10.28 b) la sucesión exacta

$$\operatorname{Hom}_{\mathscr{A}}(Y_0,Y_0') \xrightarrow{\operatorname{Hom}_{\mathscr{A}}(\varphi,Y_0')} \operatorname{Hom}_{\mathscr{A}}(A,Y_0') \longrightarrow \operatorname{Ext}^1_{\mathscr{A}}(X_0,Y_0')$$

y como ${\rm Ext}^1_{\mathscr A}(X_0,Y_0')=0$ por estar $Y_0'\in Y,$ entonces se sigue que ${\rm Hom}_{\mathscr A}(\varphi,Y_0')$ es supra.

Así φ es una Y-preenvolvente, φ es mono y $Coker(\varphi) \in X$.

 \sqsubseteq Supongamos que a) y b) se satisfacen. Por a) se tiene que $Y \subset X^{\perp_1}$. Sea $Z \in X^{\perp_1}$. Luego por b), existe una sucesión exacta $\epsilon: 0 \longrightarrow Z \longrightarrow Y_0 \longrightarrow X_0 \longrightarrow 0$ en \mathscr{A} , con $x_0 \in X$ y $Y_0 \in Y$.

Dado que $Z \in X^{\perp_1}$, se tiene que $\operatorname{Ext}^1_{\mathscr{A}}(Z,X_0) = 0$ y así ϵ se parte. Así $Z|Y_0$, con $Y_0 \in Y$; y como Y = Smd(Y), se concluye que $Z \in Y$. Por lo tanto $Y = X^{\perp_1}$. Finalmente la completitud (a derecha) se sigue inmediatamente de b).