AUTOMATIC COCONUT HARVESTER TEAM-3 RUDRA

MECHANICAL

- Rough diagrams
- CAD Model
- Calculations
- Budget and weight
- Simulation

ROUGH DIAGRAMS

CAD MODEL

CALCULATIONS

COST OF FRAME

ELECTRONICS

- Schematic for ARM
- Calculations
- Budget
- PCB Design

SCHEMATIC FOR ARM

BATTERY CAPACITY CALCULATION

formula: (current x time)

Current Requirement of different components (for body):

- 1. NEMA 34(45 kg-cm) stepper motor: 5A/phase x 4 = 20A
- 2. Linear Actuator: 2Amps max Total current =20+2=22 Amps.

If the current drawn is x amps, the time is T hours then the capacity C in amphours is

$$C = xT$$

Capacity calculation: $22 \times 1 \text{ Ah} = 22 \text{Ah}$ (we multiplied with 1 coz we need the system to work for one hour)

Cycle life considerations

It isn't good to run a battery all the way down to zero during each charge cycle. For example, if you want to use a lead acid battery for many cycles you shouldn't run it past 80% of its charge, leaving 20% left in the battery. This not only extends the number of cycles you get, but lets the battery degrade by 20% before you start getting less run time than the design calls for

$$C' = C/0.8$$

Final capacity requirement for body = 22/0.8 = 27.5Ah

CURRENT REQUIREMENT OF DIFFERENT COMPONENTS (FOR ARM):

- 1. NEMA 23(18.5 kg-cm) stepper motor: $2.8A/\text{phase x } 2 = 5.6A \sim 6A$
- 2. Johnson dc motor: 5A (max) x 2 = 10A Total current = 16 Amps.

If the current drawn is x amps, the time is T hours then the capacity C in amphours is

$$C = xT$$

Capacity calculation: $16 \times (20/60) \text{ Ah} = 5.33 \text{Ah}$ (we multiplied with 20/60 coz we need the system to work for 20 min)

Cycle life considerations

C' = C/0.8

Final capacity requirement for arm = 5.33/0.8 = 6.66Ah NEMA 23(18.5 kg-cm) stepper motor: 2.8A/phase x 2 = 5.6A ~ 6A

1. Johnson dc motor: 5A (max) x 2 = 10A Total current = 16 Amps.

If the current drawn is x amps, the time is T hours then the capacity C in amphours is

$$C = xT$$

Capacity calculation: $16 \times (20/60) \text{ Ah} = 5.33 \text{Ah}$ (we multiplied with 20/60 coz we need the system to work for 20 min)

Cycle life considerations

$$C' = C/0.8$$

Final capacity requirement for arm = 5.33/0.8 = 6.66Ah

BUDGET

PICTORIAL REPRESENTATION

PCB DESIGN/SCHEMATIC

BODY DESIGN

CODING • CODE • INTERFACE • PACKAGES USED

CODE

```
The base decimal field of the base of the
```

INTERFACE

PACKAGES USED

- 1) Flask
- 2) GPIO
- 3) Serial
- 4) Jquery

BUSINESS PLAN

India is one amongst the highest producer and also consumer of coconut in the world market and yet this comes with a bit of risk and to counter that our product the Automatic Coconut Harvester will play a key role

- Our Idea is to make coconut harvesting much more fun and easy by providing farmers the access to our product through a scheme.
- Scheme- Under our scheme farmers can rent our machine to harvest coconuts in a safe and better way