Final-Assignment

July 10, 2024

Nastaran Qalandari - Karen Panahi - Maede Majidi - Maryam Fendereski

Table of contents

- Importing Required Libraries
- Loading Dataset
- Creating the Dataframe
- Getting Familiar with the Dataset
- Question 1
- Preprocessing
- Features Importance
- Checking for Missing Values
- Checking for Outliers
- Question 2
- Training Models
- Utils
- Logistic Regression
- KNN
- Naive Bayes
- Decision Tree
- Adaboost
- Random Forest
- Linear SVM
- Non-linear SVM
- Question 3
- Testing the Models
- Utils
- Logistic Regression
- KNN
- Naive Bayes
- Decision Tree
- Adaboost
- Random Forest
- Linear SVM
- Non-linear SVM

Importing Required Libraries 1

```
[]: import warnings
     import pandas as pd
     import seaborn as sns
     import matplotlib.pyplot as plt
     from sklearn.feature selection import mutual info classif
     from sklearn.model_selection import train_test_split
     from sklearn.model_selection import GridSearchCV
     from sklearn.metrics import classification_report
     import time
     from sklearn.linear_model import LogisticRegression
     from sklearn.neighbors import KNeighborsClassifier
     from sklearn.naive_bayes import GaussianNB
     from sklearn.tree import DecisionTreeClassifier
     from sklearn.ensemble import AdaBoostClassifier
     from sklearn.ensemble import RandomForestClassifier
     from sklearn.svm import LinearSVC
     from sklearn.svm import SVC
```

```
[]: warnings.filterwarnings('ignore')
```

$\mathbf{2}$ Loading Dataset

```
[]: from ucimlrepo import fetch_ucirepo
     spambase = fetch_ucirepo(id=94)
     X = spambase.data.features
     y = spambase.data.targets
     print(spambase.metadata)
     print(spambase.variables)
```

```
{'uci_id': 94, 'name': 'Spambase', 'repository_url':
'https://archive.ics.uci.edu/dataset/94/spambase', 'data_url':
'https://archive.ics.uci.edu/static/public/94/data.csv', 'abstract':
'Classifying Email as Spam or Non-Spam', 'area': 'Computer Science', 'tasks':
['Classification'], 'characteristics': ['Multivariate'], 'num_instances': 4601,
'num_features': 57, 'feature_types': ['Integer', 'Real'], 'demographics': [],
'target_col': ['Class'], 'index_col': None, 'has_missing_values': 'no',
'missing_values_symbol': None, 'year_of_dataset_creation': 1999, 'last_updated':
'Mon Aug 28 2023', 'dataset doi': '10.24432/C53G6X', 'creators': ['Mark
Hopkins', 'Erik Reeber', 'George Forman', 'Jaap Suermondt'], 'intro_paper':
None, 'additional info': {'summary': 'The "spam" concept is diverse:
advertisements for products/web sites, make money fast schemes, chain letters,
pornography...\n\nThe classification task for this dataset is to determine
```

whether a given email is spam or not.\n\t\nOur collection of spam e-mails came from our postmaster and individuals who had filed spam. Our collection of nonspam e-mails came from filed work and personal e-mails, and hence the word \'george\' and the area code \'650\' are indicators of non-spam. These are useful when constructing a personalized spam filter. One would either have to blind such non-spam indicators or get a very wide collection of non-spam to generate a general purpose spam filter.\n\nFor background on spam: Cranor, Lorrie F., LaMacchia, Brian A. Spam!, Communications of the ACM, 41(8):74-83, 1998.\n\nTypical performance is around ~7% misclassification error. False positives (marking good mail as spam) are very undesirable. If we insist on zero false positives in the training/testing set, 20-25% of the spam passed through the filter. See also Hewlett-Packard Internal-only Technical Report. External version forthcoming. ', 'purpose': None, 'funded_by': None, 'instances_represent': 'Emails', 'recommended_data_splits': None, 'sensitive_data': None, 'preprocessing_description': None, 'variable_info': 'The last column of \'spambase.data\' denotes whether the e-mail was considered spam (1) or not (0), i.e. unsolicited commercial e-mail. Most of the attributes indicate whether a particular word or character was frequently occuring in the e-mail. The run-length attributes (55-57) measure the length of sequences of consecutive capital letters. For the statistical measures of each attribute, see the end of this file. Here are the definitions of the attributes:\r\n\r\n48 continuous real [0,100] attributes of type word freq WORD \r\n= percentage of words in the e-mail that match WORD, i.e. 100 * (number of times the WORD appears in the e-mail) / total number of words in e-mail. A "word" in this case is any string of alphanumeric characters bounded by non-alphanumeric characters or end-of-string.\r\n\continuous real [0,100] attributes of type char freq CHAR] \r\n= percentage of characters in the e-mail that match CHAR, i.e. 100 * (number of CHAR occurences) / total characters in e-mail\r\n\r\n1 continuous real [1,...] attribute of type capital run length average \r\n= average length of uninterrupted sequences of capital letters $\n\$ n1 continuous integer [1,...] attribute of type capital run_length longest \r\n= length of longest uninterrupted sequence of capital letters\r\n\r\n1 continuous integer [1,...] attribute of type capital run length total \r\n= sum of length of uninterrupted sequences of capital letters \r\n= total number of capital letters in the e-mail\r\n\r\n1 nominal {0,1} class attribute of type spam\r\n= denotes whether the e-mail was considered spam (1) or not (0), i.e. unsolicited commercial e-mail. \r\n', 'citation': None}}

	name	role	type	demographic	\
0	${\tt word_freq_make}$	Feature	Continuous	None	
1	word_freq_address	Feature	Continuous	None	
2	${\tt word_freq_all}$	Feature	Continuous	None	
3	word_freq_3d	Feature	Continuous	None	
4	word_freq_our	Feature	Continuous	None	
5	word_freq_over	Feature	Continuous	None	
6	word_freq_remove	Feature	Continuous	None	
7	word_freq_internet	Feature	Continuous	None	
8	word_freq_order	Feature	Continuous	None	
9	word_freq_mail	Feature	Continuous	None	

10	word_freq_receive	Feature	Continuous	None
11	word_freq_will	Feature	Continuous	None
12	word_freq_people	Feature	Continuous	None
13	word_freq_report	Feature	Continuous	None
14	${ t word_freq_addresses}$	Feature	Continuous	None
15	word_freq_free	Feature	Continuous	None
16	word_freq_business	Feature	Continuous	None
17	word_freq_email	Feature	Continuous	None
18	word_freq_you	Feature	Continuous	None
19	word_freq_credit	Feature	Continuous	None
20	word_freq_your	Feature	Continuous	None
21	word_freq_font	Feature	Continuous	None
22	word_freq_000	Feature	Continuous	None
23	word_freq_money	Feature	Continuous	None
24	word_freq_hp	Feature	Continuous	None
25	word_freq_hpl	Feature	Continuous	None
26	word_freq_george	Feature	Continuous	None
27	word_freq_650	Feature	Continuous	None
28	word_freq_lab	Feature	Continuous	None
29	word_freq_labs	Feature	Continuous	None
30	word_freq_telnet	Feature	Continuous	None
31	word_freq_857	Feature	Continuous	None
32	word_freq_data	Feature	Continuous	None
33	word_freq_415	Feature	Continuous	None
34	word_freq_415 word_freq_85	Feature	Continuous	None
35	word_freq_technology	Feature	Continuous	None
36	_ 1_ 00	Feature	Continuous	None
37	<pre>word_freq_1999 word_freq_parts</pre>	Feature	Continuous	None
38		Feature	Continuous	None
39	word_freq_pm			
39 40	word_freq_direct	Feature	Continuous	None
	word_freq_cs	Feature	Continuous	None
41	word_freq_meeting	Feature	Continuous	None
42	word_freq_original	Feature	Continuous	None
43	word_freq_project	Feature	Continuous	None
44	word_freq_re	Feature	Continuous	None
45	word_freq_edu	Feature	Continuous	None
46	word_freq_table	Feature	Continuous	None
47	word_freq_conference	Feature	Continuous	None
48	char_freq_;	Feature	Continuous	None
49	char_freq_(Feature	Continuous	None
50	char_freq_[Feature	Continuous	None
51	char_freq_!	Feature	Continuous	None
52	char_freq_\$	Feature	Continuous	None
53	char_freq_#	Feature	Continuous	None
54	capital_run_length_average	Feature	Continuous	None
55	capital_run_length_longest	Feature	Continuous	None
56	${\tt capital_run_length_total}$	Feature	Continuous	None
57	Class	Target	Binary	None

	description	units	missing_values
0	None	None	no
1	None	None	no
2	None	None	no
3	None	None	no
4	None	None	no
5	None	None	no
6	None	None	no
7	None	None	no
8	None	None	no
9	None	None	no
10	None	None	no
11	None	None	no
12	None	None	no
13	None	None	no
14	None	None	no
15	None	None	no
16	None	None	no
17	None	None	no
18	None	None	no
19	None	None	no
20	None	None	no
21	None	None	no
22	None	None	no
23	None	None	no
24	None	None	no
25	None	None	no
26	None	None	no
27	None	None	no
28	None	None	no
29	None	None	no
30	None	None	no
31	None	None	no
32	None	None	no
33	None	None	no
34	None	None	no
35	None	None	no
36	None	None	no
37	None	None	no
38	None	None	no
39	None	None	no
40	None	None	no
41	None	None	no
42	None	None	no
43	None	None	no
44	None	None	no
45	None	None	no

```
46
                         None
                               None
                                                 no
47
                         None
                               None
                                                 no
48
                         None
                               None
                                                 no
49
                         None
                               None
                                                 no
50
                         None
                               None
                                                 no
51
                         None
                               None
                                                 no
52
                         None
                               None
                                                 no
53
                         None None
                                                 no
54
                         None None
                                                 no
55
                         None
                               None
                                                 no
56
                         None
                               None
                                                 no
57
    spam (1) or not spam (0)
                               None
                                                 no
```

2.1 Creating the Dataframe

```
[ ]: df = pd.DataFrame(X, columns=spambase.feature_names_short)
df['target'] = y
```

3 Getting Familiar with the Dataset

[]:	X						
[]:		word_freq_make	word_freq_addr	ess	word_freq_all	word_freq_3d	\
	0	0.00	-	. 64	0.64	0.0	
	1	0.21	0	. 28	0.50	0.0	
	2	0.06	0	.00	0.71	0.0	
	3	0.00	0	.00	0.00	0.0	
	4	0.00	0	.00	0.00	0.0	
	•••		•••		•••	•••	
	4596	0.31	0	.00	0.62	0.0	
	4597	0.00	0	.00	0.00	0.0	
	4598	0.30	0	.00	0.30	0.0	
	4599	0.96	0	.00	0.00	0.0	
	4600	0.00	0	.00	0.65	0.0	
		word_freq_our	word_freq_over	word	l_freq_remove	word_freq_inte	rnet \
	0	0.32	0.00		0.00		0.00
	1	0.14	0.28		0.21		0.07
	2	1.23	0.19		0.19		0.12
	3	0.63	0.00		0.31		0.63
	4	0.63	0.00		0.31		0.63
	•••		•••			•••	
	4596	0.00	0.31		0.00		0.00
	4597	0.00	0.00		0.00		0.00
	4598	0.00	0.00		0.00		0.00
	4599	0.32	0.00		0.00		0.00
	4600	0.00	0.00		0.00		0.00

```
word_freq_order word_freq_mail ... word_freq_conference
                                                                     char_freq_;
0
                  0.00
                                    0.00
                                                                 0.0
                                                                             0.000
1
                  0.00
                                    0.94
                                                                 0.0
                                                                             0.000
2
                  0.64
                                                                 0.0
                                    0.25
                                                                             0.010
3
                  0.31
                                    0.63
                                                                0.0
                                                                             0.000
4
                  0.31
                                    0.63
                                                                0.0
                                                                             0.000
                                    ...
4596
                  0.00
                                    0.00
                                                                0.0
                                                                             0.000
4597
                  0.00
                                    0.00
                                                                0.0
                                                                             0.000
4598
                  0.00
                                    0.00
                                                                0.0
                                                                             0.102
4599
                  0.00
                                    0.00
                                                                             0.000
                                                                 0.0
4600
                  0.00
                                    0.00
                                                                 0.0
                                                                             0.000
      char_freq_(
                    char_freq_[
                                   char_freq_!
                                                 char_freq_$
                                                               char_freq_# \
0
             0.000
                             0.0
                                         0.778
                                                        0.000
                                                                      0.000
1
             0.132
                             0.0
                                         0.372
                                                        0.180
                                                                      0.048
2
                             0.0
             0.143
                                         0.276
                                                        0.184
                                                                      0.010
3
                             0.0
                                                                      0.000
             0.137
                                         0.137
                                                        0.000
4
                             0.0
                                         0.135
                                                        0.000
                                                                      0.000
             0.135
                             0.0
                                         0.000
                                                        0.000
                                                                      0.000
4596
             0.232
4597
             0.000
                             0.0
                                         0.353
                                                        0.000
                                                                      0.000
4598
             0.718
                             0.0
                                         0.000
                                                        0.000
                                                                      0.000
4599
             0.057
                             0.0
                                         0.000
                                                        0.000
                                                                      0.000
4600
             0.000
                             0.0
                                                        0.000
                                                                      0.000
                                         0.125
      capital_run_length_average
                                     capital_run_length_longest
0
                              3.756
                                                               61
1
                             5.114
                                                              101
2
                             9.821
                                                              485
3
                                                               40
                             3.537
4
                             3.537
                                                               40
                                                                3
4596
                             1.142
4597
                             1.555
                                                                4
4598
                              1.404
                                                                6
4599
                                                                5
                             1.147
4600
                             1.250
                                                                5
      capital_run_length_total
0
                             278
1
                            1028
2
                            2259
3
                             191
4
                             191
```

88
14
118
78
40

[4601 rows x 57 columns]

[]: X.columns

```
[]: Index(['word_freq_make', 'word_freq_address', 'word_freq_all', 'word_freq_3d',
            'word_freq_our', 'word_freq_over', 'word_freq_remove',
            'word_freq_internet', 'word_freq_order', 'word_freq_mail',
            'word_freq_receive', 'word_freq_will', 'word_freq_people',
            'word_freq_report', 'word_freq_addresses', 'word_freq_free',
            'word_freq_business', 'word_freq_email', 'word_freq_you',
            'word_freq_credit', 'word_freq_your', 'word_freq_font', 'word_freq_000',
            'word_freq_money', 'word_freq_hp', 'word_freq_hpl', 'word_freq_george',
            'word_freq_650', 'word_freq_lab', 'word_freq_labs', 'word_freq_telnet',
            'word_freq_857', 'word_freq_data', 'word_freq_415', 'word_freq_85',
            'word_freq_technology', 'word_freq_1999', 'word_freq_parts',
            'word_freq_pm', 'word_freq_direct', 'word_freq_cs', 'word_freq_meeting',
            'word_freq_original', 'word_freq_project', 'word_freq_re',
            'word_freq_edu', 'word_freq_table', 'word_freq_conference',
            'char_freq_;', 'char_freq_(', 'char_freq_[', 'char_freq_!',
            'char_freq_$', 'char_freq_#', 'capital_run_length_average',
            'capital_run_length_longest', 'capital_run_length_total'],
           dtype='object')
```

[]: X.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4601 entries, 0 to 4600
Data columns (total 57 columns):

#	Column	Non-Null Count	Dtype
0	word_freq_make	4601 non-null	float64
1	word_freq_address	4601 non-null	float64
2	word_freq_all	4601 non-null	float64
3	word_freq_3d	4601 non-null	float64
4	word_freq_our	4601 non-null	float64
5	word_freq_over	4601 non-null	float64
6	word_freq_remove	4601 non-null	float64
7	word_freq_internet	4601 non-null	float64
8	word_freq_order	4601 non-null	float64
9	word_freq_mail	4601 non-null	float64
10	word_freq_receive	4601 non-null	float64
11	word_freq_will	4601 non-null	float64

12	word_freq_people	4601	non-null	float64
13	word_freq_report	4601	non-null	float64
14	word_freq_addresses	4601	non-null	float64
15	word_freq_free	4601	non-null	float64
16	word_freq_business	4601	non-null	float64
17	word_freq_email	4601	non-null	float64
18	word_freq_you	4601	non-null	float64
19	word_freq_credit	4601	non-null	float64
20	word_freq_your	4601	non-null	float64
21	word_freq_font	4601	non-null	float64
22	word_freq_000	4601	non-null	float64
23	word_freq_money	4601	non-null	float64
24	word_freq_hp	4601	non-null	float64
25	word_freq_hpl	4601	non-null	float64
26	word_freq_george	4601	non-null	float64
27	word_freq_650	4601	non-null	float64
28	word_freq_lab	4601	non-null	float64
29	word_freq_labs	4601	non-null	float64
30	word_freq_telnet	4601	non-null	float64
31	word_freq_857		non-null	
32	word_freq_data	4601	non-null	float64
33	word_freq_415		non-null	
34	word_freq_85		non-null	
35	word_freq_technology		non-null	
36	word_freq_1999	4601	non-null	float64
37	word_freq_parts	4601	non-null	float64
38	word_freq_pm	4601	non-null	float64
39	word_freq_direct	4601	non-null	float64
40	word_freq_cs	4601	non-null	float64
41	word_freq_meeting	4601	non-null	float64
42	word_freq_original	4601	non-null	float64
43	word_freq_project	4601	non-null	float64
44	word_freq_re	4601	non-null	float64
45	word_freq_edu	4601	non-null	float64
46	word_freq_table	4601	non-null	float64
47	word_freq_conference	4601	non-null	float64
48	<pre>char_freq_;</pre>	4601	non-null	float64
49	char_freq_(4601	non-null	float64
50	char_freq_[4601	non-null	float64
51	char_freq_!	4601	non-null	float64
52	char_freq_\$	4601	non-null	float64
53	char_freq_#	4601	non-null	float64
54	capital_run_length_average	4601	non-null	float64
55	capital_run_length_longest	4601	non-null	int64
56	capital_run_length_total	4601	non-null	int64
dtyp	es: float64(55), int64(2)			

memory usage: 2.0 MB

[]: X.describe()

[]:		word_freq_mal	ce word_fred	q_address	word	_freq_all	word_freq_3d	\	
	count	4601.00000	00 460	01.000000	46	01.000000	4601.000000		
	mean	0.1045	53	0.213015		0.280656	0.065425		
	std	0.3053	58	1.290575		0.504143	1.395151		
	min	0.00000	00	0.000000		0.000000	0.000000		
	25%	0.00000	00	0.000000		0.000000	0.000000		
	50%	0.00000	00	0.000000		0.000000	0.000000		
	75%	0.00000	00	0.000000		0.420000	0.000000		
	max	4.54000	00 1	14.280000		5.100000	42.810000		
		word_freq_ou	word frea	over wo	rd fre	a remove	word_freq_inter	met.	\
	count	4601.000000	_			1.000000	4601.000		`
	mean	0.31222		95901		0.114208	0.105		
	std	0.672513		73824		0.391441	0.401		
	min	0.000000		00000		0.000000	0.000		
	25%	0.000000		00000		0.000000	0.000		
	50%	0.000000		00000		0.000000	0.000		
	75%	0.380000		00000		0.000000	0.000		
	max	10.000000		30000		7.270000	11.110		
		word_freq_ord	-	_	wor	d_freq_con			
	count	4601.0000					.000000		
	mean	0.0900					.031869		
	std	0.2786					. 285735		
	min	0.0000					.000000		
	25%	0.0000					.000000		
	50%	0.0000					.000000		
	75%	0.0000					.000000		
	max	5.2600	000 18.	. 180000	•••	10	.000000		
		<pre>char_freq_;</pre>	char_freq_(char_fr	eq_[char_freq_	! char_freq_\$	\	
	count	4601.000000	4601.000000	4601.00	0000	4601.00000	0 4601.000000		
	mean	0.038575	0.139030	0.01	6976	0.26907	1 0.075811		
	std	0.243471	0.270355	0.10	9394	0.81567	0.245882		
	min	0.000000	0.000000	0.00	0000	0.00000	0.000000		
	25%	0.000000	0.000000	0.00	0000	0.00000	0.000000		
	50%	0.000000	0.065000	0.00	0000	0.00000	0.000000		
	75%	0.000000	0.188000	0.00	0000	0.31500	0.052000		
	max	4.385000	9.752000	4.08	1000	32.47800	6.003000		
		char_freq_#	capital_run_	length o	meran	canital :	run_length_long	rag+	\
	count	4601.000000	capitar_run_		verage 000000	-	4601.000	•	`
	mean	0.044238			191515		52.172		
	std	0.429342			729449		194.891		
	min	0.429342			729449 000000		1.000		
	штп	0.00000		1.			1.000	,000	

```
25%
                0.000000
                                              1.588000
                                                                            6.000000
     50%
                0.000000
                                              2.276000
                                                                           15.000000
     75%
                0.000000
                                              3.706000
                                                                           43.000000
               19.829000
                                          1102.500000
                                                                        9989.000000
     max
            capital_run_length_total
                          4601.000000
     count
                           283.289285
     mean
     std
                           606.347851
     min
                              1.000000
     25%
                            35.000000
     50%
                            95.000000
     75%
                           266.000000
                         15841.000000
     max
     [8 rows x 57 columns]
[ ]: y
[]:
           Class
     0
                1
                1
     1
     2
                1
     3
                1
     4
                1
     4596
                0
     4597
                0
     4598
                0
     4599
                0
     4600
                0
     [4601 rows x 1 columns]
[]:
    y.describe()
[]:
                   Class
            4601.000000
     count
                0.394045
     mean
     std
                0.488698
                0.000000
     min
     25%
                0.00000
     50%
                0.000000
     75%
                1.000000
                1.000000
     max
[]:
    y.info()
```

3.1 Question 1

1.1 How many features are there in the dataset?

As you have observed, the variable X, which represents the feature vector, consists of 57 columns. This indicates that the dataset contains 57 features

1.2 Could you provide a brief explanation of each feature?

First of all, please note that all features in this dataset are numerical. Based on the names of each column and their data types, the columns that contain the keyword "freq" represent the frequency of a word or character in the text. However, there are three columns that do not have the "freq" keyword:

- 1. capital_run_length_average: This column indicates the average length of phrases with capital letters in the text of the email.
- 2. capital_run_length_longest: This column indicates the longest consecutive sequence of capital letters in the text of the email.
- 3. capital_run_length_total: This column indicates the overall frequency of capital letters in the text of the email.
- 1.3 What is the relationship between the features and the target variable?

To answer this question, let's see the correlation heatmap between input features and the target variable:

```
[]: corr_with_target = df.corr()['target'].sort_values(ascending=False)

[]: plt.figure(figsize=(40, 32))
    sns.heatmap(df[corr_with_target.index].corr(), cmap="YlGnBu", annot=True)
    plt.title('Correlation Heatmap')
    plt.show()
```


Furthermore, let's plot a pairplot of the 7 input features that have the highest correlation with the target variable. This will allow us to visualize their relationship with the target variable in a more effective manner.

1.4 Are all of the features informative and useful in predicting the target variable?

Not all features in a dataset are always informative or useful for predicting the target variable. Some features might be redundant or irrelevant, and can be removed without incurring much loss of information. Reducing the number of features can help improve the performance of a machine learning model by alleviating issues such as overfitting and high computational cost. We will perform preprocessing steps to identify the most suitable features and ensure they are properly cleaned for the models that will be trained on the dataset.

4 Preprocessing

4.1 Features Importance

One way to find importance of each feature is to calculate the mutual information of each feature with the target variable that can be done using "mutual_info_classif" method in python. This

method computes the information gain of each feature using the following formula:

```
H(X) - H(X|Y)
```

That H(X) is entropy of X

```
[]:
                                        fi
     char_freq_!
                                  0.207199
     capital_run_length_longest
                                 0.186514
     char_freq_$
                                  0.179647
     capital_run_length_average
                                 0.172395
     word_freq_your
                                  0.160483
     word_freq_remove
                                  0.155613
     capital_run_length_total
                                  0.138657
     word_freq_free
                                  0.134731
     word_freq_money
                                  0.116666
     word_freq_hp
                                  0.116089
     word_freq_000
                                  0.110283
     word_freq_you
                                  0.104641
     word_freq_our
                                  0.099015
     word_freq_george
                                  0.087874
     word_freq_business
                                  0.085198
     word_freq_all
                                  0.080496
     word_freq_hpl
                                  0.078179
     word_freq_receive
                                  0.076259
     word_freq_mail
                                  0.071755
     word_freq_address
                                  0.068259
     word_freq_over
                                  0.063330
     word_freq_internet
                                  0.059936
     word_freq_email
                                  0.057100
     word_freq_credit
                                  0.057071
     word_freq_will
                                  0.053527
     word_freq_order
                                  0.053378
     char_freq_(
                                  0.051365
     word_freq_edu
                                  0.050793
     word_freq_re
                                  0.048533
```

word_freq_addresses 0.045612 char_freq_# 0.043857 word_freq_lab 0.041429 word_freq_people 0.041222 word_freq_make 0.040439 word_freq_85 0.037944 word_freq_labs 0.037589 word_freq_1999 0.035242 word_freq_telnet 0.031501 word_freq_meeting 0.029336 word_freq_original 0.028302 word_freq_650 0.028238 word_freq_technology 0.028061 word_freq_pm 0.027902 word_freq_857 0.021855 word_freq_cs 0.021353 word_freq_conference 0.021194 word_freq_data 0.021141 word_freq_415 0.020587 word_freq_project 0.019880 char_freq_; 0.015641 word_freq_report 0.014027 word_freq_font 0.010290 word_freq_parts 0.009443 word_freq_direct 0.008153 word_freq_3d 0.007104 word_freq_table 0.001882 char_freq_[0.00000

4.2 Checking for Missing Values

[]: X.isna().any()

[]:	word_freq_make	False
	word_freq_address	False
	word_freq_all	False
	word_freq_3d	False
	word_freq_our	False
	word_freq_over	False
	word_freq_remove	False
	word_freq_internet	False
	word_freq_order	False
	word_freq_mail	False
	word_freq_receive	False
	word_freq_will	False
	word_freq_people	False
	word_freq_report	False

word_freq_addresses	False
word_freq_free	False
word_freq_business	False
word_freq_email	False
word_freq_you	False
word_freq_credit	False
word_freq_your	False
word_freq_font	False
word_freq_000	False
word_freq_money	False
word_freq_hp	False
word_freq_hpl	False
word_freq_george	False
word_freq_650	False
word_freq_lab	False
word_freq_labs	False
word_freq_telnet	False
word_freq_857	False
word_freq_data	False
word_freq_415	False
word_freq_85	False
word_freq_technology	False
word_freq_1999	False
word_freq_parts	False
word_freq_pm	False
word_freq_direct	False
word_freq_cs	False
word_freq_meeting	False
word_freq_original	False
word_freq_project	False
word_freq_re	False
word_freq_edu	False
word_freq_table	False
word_freq_conference	False
char_freq_;	False
char_freq_(False
char_freq_[False
char_freq_!	False
char_freq_\$	False
char_freq_#	False
capital_run_length_average	False
capital_run_length_longest	False
capital_run_length_total	False
dtype: bool	
V 1	

As, you can observe, there's no missing value in this dataset.

4.3 Checking for Outliers

```
[]: def detect_outliers_iqr(df, col):
         Q1 = df[col].quantile(0.25)
         Q3 = df[col].quantile(0.75)
         IQR = Q3 - Q1
         upper_limit = Q3 + 1.5 * IQR
         lower_limit = Q1 - 1.5 * IQR
         outliers = df[(df[col] < lower_limit) | (df[col] > upper_limit)]
         return outliers
[]: outliers_count = {}
[]: for col in X.columns:
         outliers_count[col] = len(detect_outliers_iqr(X, col))
[]: sorted_outliers_count = {k: v for k, v in sorted(outliers_count.items(),_
      →key=lambda item: item[1])}
    Now, you can observe the columns with their correspond outliers count:
[]: for col, count in sorted_outliers_count.items():
         print(f"{col}: {count} outliers")
    word_freq_3d: 47 outliers
    word_freq_table: 63 outliers
    word_freq_you: 75 outliers
    word_freq_parts: 83 outliers
    word_freq_font: 117 outliers
    word_freq_cs: 148 outliers
    word_freq_conference: 203 outliers
    word_freq_857: 205 outliers
    word_freq_415: 215 outliers
    word_freq_your: 229 outliers
    word freq will: 270 outliers
    word_freq_telnet: 293 outliers
    char freq (: 296 outliers
    word_freq_project: 327 outliers
    word_freq_addresses: 336 outliers
    word_freq_all: 338 outliers
    word_freq_meeting: 341 outliers
    word_freq_report: 357 outliers
    capital_run_length_average: 363 outliers
    word_freq_lab: 372 outliers
    word_freq_original: 375 outliers
    word_freq_pm: 384 outliers
    word_freq_data: 405 outliers
    char_freq_!: 411 outliers
    word_freq_credit: 424 outliers
```

word_freq_direct: 453 outliers word_freq_650: 463 outliers capital_run_length_longest: 463 outliers word_freq_labs: 469 outliers word freq 85: 485 outliers word_freq_our: 501 outliers word freq edu: 517 outliers char_freq_[: 529 outliers capital_run_length_total: 550 outliers word_freq_technology: 599 outliers word_freq_000: 679 outliers word_freq_receive: 709 outliers word_freq_money: 735 outliers char_freq_#: 750 outliers word_freq_order: 773 outliers word_freq_george: 780 outliers char_freq_;: 790 outliers word_freq_remove: 807 outliers word_freq_hpl: 811 outliers char freq \$: 811 outliers word_freq_internet: 824 outliers word_freq_1999: 829 outliers word_freq_mail: 852 outliers word_freq_people: 852 outliers word_freq_address: 898 outliers word_freq_free: 957 outliers word_freq_business: 963 outliers word_freq_over: 999 outliers word_freq_re: 1001 outliers word_freq_email: 1038 outliers word_freq_make: 1053 outliers word_freq_hp: 1090 outliers

Now, we will proceed to select the top 10 best features for further steps. The criterion for selecting these best features is based on their importance. Additionally, we will address any outliers present in the chosen best features.

```
[]: top_12_features = feature_importance.head(12).index
best_X = X[top_12_features]
```

[]: best_X

[]:	char_freq_!	capital_run_length_longest	char_freq_\$	\
0	0.778	61	0.000	
1	0.372	101	0.180	
2	0.276	485	0.184	
3	0.137	40	0.000	
4	0.135	40	0.000	

	•••		***	•••		
4596	0.000		3	0.000		
4597	0.353		4	0.000		
4598	0.000		6	0.000		
4599	0.000		5	0.000		
4600	0.125		5	0.000		
1000	0.120		· ·	0.000		
	capital_run_length	average wo	ord_freq_your	word_freq_rem	ove \	
0	capitai_iai_icingtii	_average we 3.756	0.96	-	.00	
1		5.114	1.59		.21	
2		9.821	0.51		.19	
3			0.31		.31	
		3.537				
4		3.537	0.31	0	.31	
4596		1.142	0.00		.00	
4597		1.555	2.00		.00	
4598		1.404	0.30		.00	
4599		1.147	0.32		.00	
4600		1.250	0.65	0	.00	
	capital_run_length		-	ord_freq_money	_	-
0		278	0.32	0.00		.0
1		1028	0.14	0.43	0	.0
2		2259	0.06	0.06	0	.0
3		191	0.31	0.00	0	.0
4		191	0.31	0.00	0	.0
•••		•••	•••	•••	•••	
4596		88	0.00	0.00	0	.0
4597		14	0.00	0.00	0	.0
4598		118	0.00	0.00	0	.0
4599		78	0.00	0.00	0	.0
4600		40	0.00	0.00	0	.0
	word_freq_000 wor	d_freq_you				
0	0.00	1.93				
1	0.43	3.47				
2	1.16	1.36				
3	0.00	3.18				
4	0.00	3.18				
•••	***	•••				
4596	0.00	0.62				
4597	0.00	6.00				
4598	0.00	1.50				
4599	0.00	1.93				
4600	0.00	4.60				
4000	0.00	4.00				

[4601 rows x 12 columns]

Let's see the outliers count in our best features:

```
[]: for col in best_X.columns:
    print(f'{col} outliers count: {outliers_count[col]}')

char_freq_! outliers count: 411
    capital_run_length_longest outliers count: 463
    char_freq_$ outliers count: 811
    capital_run_length_average outliers count: 363
    word_freq_your outliers count: 229
    word_freq_remove outliers count: 807
    capital_run_length_total outliers count: 550
    word_freq_free outliers count: 957
    word_freq_money outliers count: 735
    word_freq_hp outliers count: 1090
    word_freq_000 outliers count: 679
    word_freq_you outliers count: 75
```

Now, let's create box plots for each column to enhance the visualization of outliers.

```
[]: for col in best_X.columns:

    plt.figure(figsize=(8, 6))
    sns.boxplot(x=best_X[col])
    plt.title(f'Boxplot: {col} outliers')
    plt.show()

# Check for negative values in the column outliers
    negative_outliers = outliers_count[col] < 0
    if negative_outliers:
        print(f'Negative outliers exist in column: {col}')</pre>
```

Boxplot: char_freq_! outliers

Boxplot: capital_run_length_longest outliers

Boxplot: char_freq_\$ outliers

Boxplot: capital_run_length_average outliers

Boxplot: word_freq_your outliers

Boxplot: word_freq_remove outliers

Boxplot: capital_run_length_total outliers

Boxplot: word_freq_free outliers

Boxplot: word_freq_you outliers

Good news! The outliers in the dataset are not of a casual nature, and they do not have negative values. Although they have a significant impact on our models, they will not result in erroneous predictions. Therefore, there is no need to remove them.

5 Question 2

2.1 Split the dataset into train and test sets and reserve 30 percent of the data for the test set.

```
[]: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, u orandom_state=42)
```

2.2 Train multiple ML models including Logistic Regression, KNN, Naive Bayes, Decision Tree, Adaboost, Random Forest, linear, and non-linear SVM. Furthermore, tune the hyperparameters for each model. Moreover, report the classification results and the time consumed for training each model

5.1 Training Models

5.1.1 Utils

```
[]: def tune_hyperparameters(model, param_grid, X_train, y_train):
         grid_search = GridSearchCV(estimator=model, param_grid=param_grid,_
      ⇔scoring='accuracy', cv=5)
         grid_search.fit(X_train, y_train)
         best_params = grid_search.best_params_
         return best_params
     def train_model(model, X_train, y_train, best_params):
         if best_params:
             model.set_params(**best_params)
         start_time = time.time()
         model.fit(X train, y train)
         end_time = time.time()
         training_time = end_time - start_time
         return model, training_time
     def report_results(model_name, best_params, model, X_train, y_train, u
      →training_time):
         train_predictions = model.predict(X_train)
         train_report = classification_report(y_train, train_predictions)
         print(f"Model Name: {model name}")
         if best params:
             print(f"\nBest Hyperparameters: {best_params}")
         print(f"\nThe time consumed for training: {training_time} seconds")
         print("\nClassification Report for Train Data:")
         print(train_report)
```

5.1.2 Logistic Regression

Model Name: Logistic Regression

Best Hyperparameters: {'C': 10, 'penalty': '12'}

The time consumed for training: 0.03457331657409668 seconds

Classification Report for Train Data:

	precision	recall	f1-score	support
0	0.92	0.94	0.93	1984
1	0.90	0.87	0.89	1236
accuracy			0.91	3220
macro avg	0.91	0.91	0.91	3220
weighted avg	0.91	0.91	0.91	3220

5.1.3 KNN

Model Name: KNN

Best Hyperparameters: {'n_neighbors': 5, 'weights': 'distance'}

The time consumed for training: 0.0021038055419921875 seconds

Classification Report for Train Data:

	precision	recall	f1-score	support
0	1.00	1.00	1.00	1984
1	1.00	1.00	1.00	1236
accuracy			1.00	3220
macro avg	1.00	1.00	1.00	3220

weighted avg 1.00 1.00 1.00 3220

5.1.4 Naive Bayes

Note that since Naive Bayes models do not require hyperparameter tuning, there is no need for the tune_hyperparameters method

```
[]: report_results("Naive Bayes", [], naive_bayes_trained_model, X_train, y_train, u_naive_bayes_training_time)
```

Model Name: Naive Bayes

The time consumed for training: 0.010539531707763672 seconds

Classification Report for Train Data:

	precision	recall	f1-score	support
0	0.96	0.73	0.83	1984
1	0.68	0.95	0.80	1236
accuracy			0.81	3220
macro avg	0.82	0.84	0.81	3220
weighted avg	0.86	0.81	0.82	3220

5.1.5 Decision Tree

```
[]: report_results("Decision Tree", decision_tree_best_params,__

strained_decision_tree_model, X_train, y_train, decision_tree_training_time)
```

Model Name: Decision Tree

Best Hyperparameters: {'max_depth': 15, 'min_samples_split': 2}

The time consumed for training: 0.045362234115600586 seconds

Classification Report for Train Data:

	precision	recall	f1-score	support
0	0.98	0.99	0.99	1984
1	0.99	0.97	0.98	1236
accuracy			0.99	3220
macro avg	0.99	0.98	0.98	3220
weighted avg	0.99	0.99	0.99	3220

5.1.6 Adaboost

Model Name: Adaboost

Best Hyperparameters: {'learning_rate': 0.5, 'n_estimators': 200}

The time consumed for training: 1.380237340927124 seconds

Classification Report for Train Data:

	precision	recall	f1-score	support
0	0.97	0.97	0.97	1984
1	0.96	0.95	0.95	1236
accuracy			0.96	3220
macro avg	0.96	0.96	0.96	3220
weighted avg	0.96	0.96	0.96	3220

5.1.7 Random Forest

[]: report_results("Random Forest", random_forest_best_params, __

⇔trained_random_forest_model, X_train, y_train, random_forest_training_time)

Model Name: Random Forest

Best Hyperparameters: {'max_depth': None, 'n_estimators': 500}

The time consumed for training: 2.8785240650177 seconds

Classification Report for Train Data:

	precision	recall	f1-score	support
0	1.00	1.00	1.00	1984
1	1.00	1.00	1.00	1236
accuracy			1.00	3220
macro avg	1.00	1.00	1.00	3220
weighted avg	1.00	1.00	1.00	3220

5.1.8 Linear SVM

[]: report_results("Linear SVM", linear_svm_best_params, trained_linear_svm_model,__
\(\times X_\) train, y_train, linear_svm_training_time)

Model Name: Linear SVM

Best Hyperparameters: {'C': 1}

The time consumed for training: 0.04999566078186035 seconds

Classification Report for Train Data:

	precision	recall	f1-score	support
0	0.93	0.96	0.94	1984
1	0.93	0.88	0.90	1236
accuracy			0.93	3220
macro avg	0.93	0.92	0.92	3220
weighted avg	0.93	0.93	0.93	3220

5.1.9 Non-linear SVM

```
[]: report_results("Non-linear SVM", nonlinear_svm_best_params,_

trained_nonlinear_svm_model, X_train, y_train, nonlinear_svm_training_time)
```

Model Name: Non-linear SVM

Best Hyperparameters: {'C': 10, 'kernel': 'rbf'}

The time consumed for training: 0.3791682720184326 seconds

Classification Report for Train Data:

	precision	recall	f1-score	support
0	0.73	0.90	0.81	1984
1	0.76	0.47	0.58	1236
accuracy			0.74	3220
macro avg	0.75	0.69	0.70	3220
weighted avg	0.74	0.74	0.72	3220

2.3 What are training errors? Explain 2 of them at least.

During the training of a machine learning model, training errors refer to the discrepancies or mistakes made by the model during the learning process. Here are explanations of two common types of training errors:

1. Bias Error: Bias error, also known as underfitting, occurs when a model is too simplistic to

capture the underlying patterns or complexity of the data. It often leads to high errors on both the training and testing data. Bias error can arise when the model is too simple or lacks the necessary features to accurately represent the data. It can result in a model that is unable to learn important relationships and produces inaccurate predictions.

2. Variance Error: Variance error, also known as overfitting, occurs when a model becomes too complex or too closely fits the training data, leading to poor generalization on unseen data. While a model with low bias aims to minimize training errors, it can suffer from high variance if the model becomes too sensitive to noise or random fluctuations in the training data. Overfitting typically results in low errors on the training data but performs poorly on new, unseen data.

6 Question 3

3.1 Apply the trained models on test dataset and report the classification results as well as the time consumed for test

6.1 Testing the Models

6.1.1 Utils

```
[]: def report_test_results(model_name, model, X_test, y_test):
    start_time = time.time()
    test_predictions = model.predict(X_test)
    end_time = time.time()

    testing_time = end_time - start_time

    test_report = classification_report(y_test, test_predictions)

    print(f"Model Name: {model_name}")
    print(f"\nThe time consumed for testing: {testing_time} seconds")
    print("\nClassification Report for Test Data:")
    print(test_report)
```

6.1.2 Logistic Regression

```
[]: report_test_results("Logistic Regression", logistic_model, X_test, y_test)
```

Model Name: Logistic Regression

The time consumed for testing: 0.0015742778778076172 seconds

Classification Report for Test Data:

	precision	recall	f1-score	support
0	0.92	0.94	0.93	804
1	0.91	0.89	0.90	577

accuracy			0.92	1381
macro avg	0.91	0.91	0.91	1381
weighted avg	0.92	0.92	0.92	1381

6.1.3 KNN

[]: report_test_results("KNN", knn_model, X_test, y_test)

Model Name: KNN

The time consumed for testing: 0.01650404930114746 seconds

Classification Report for Test Data:

	precision	recall	f1-score	support
0	0.82	0.85	0.84	804
1	0.78	0.74	0.76	577
accuracy			0.81	1381
macro avg	0.80	0.80	0.80	1381
weighted avg	0.81	0.81	0.81	1381

6.1.4 Naive Bayes

[]: report_test_results("Naive Bayes", naive_bayes_model, X_test, y_test)

Model Name: Naive Bayes

The time consumed for testing: 0.006520986557006836 seconds

Classification Report for Test Data:

	precision	recall	f1-score	support
0	0.95	0.74	0.83	804
1	0.72	0.95	0.82	577
accuracy			0.82	1381
macro avg	0.84	0.84	0.82	1381
weighted avg	0.86	0.82	0.83	1381

6.1.5 Decision Tree

[]: report_test_results("Decision Tree", decision_tree_model, X_test, y_test)

Model Name: Decision Tree

The time consumed for testing: 0.0027549266815185547 seconds

Classification Report for Test Data:

	precision	recall	f1-score	support
0	0.92	0.93	0.93	804
1	0.90	0.89	0.90	577
accuracy			0.91	1381
macro avg	0.91	0.91	0.91	1381
weighted avg	0.91	0.91	0.91	1381

6.1.6 Adaboost

[]: report_test_results("Adaboost", adaboost_model, X_test, y_test)

Model Name: Adaboost

The time consumed for testing: 0.06086611747741699 seconds

Classification Report for Test Data:

	precision	recall	f1-score	support
0	0.95	0.96	0.96	804
1	0.95	0.93	0.94	577
accuracy			0.95	1381
macro avg	0.95	0.95	0.95	1381
weighted avg	0.95	0.95	0.95	1381

6.1.7 Random Forest

[]: report_test_results("Random Forest", random_forest_model, X_test, y_test)

Model Name: Random Forest

The time consumed for testing: 0.0995640754699707 seconds

Classification Report for Test Data:

support	f1-score	recall	precision	
804	0.96	0.97	0.95	0
577	0.95	0.93	0.96	1
1381	0.96			accuracy
1381	0.95	0.95	0.96	accuracy macro avg

weighted avg 0.96 0.96 0.96 1381

6.1.8 Linear SVM

[]: report_test_results("Linear SVM", linear_svm_model, X_test, y_test)

Model Name: Linear SVM

The time consumed for testing: 0.003495454788208008 seconds

Classification Report for Test Data:

precision	recall	f1-score	support
0.92	0.96	0.94	804
0.94	0.88	0.91	577
		0.92	1381
0.93	0.92	0.92	1381
0.93	0.92	0.92	1381
	0.92 0.94 0.93	0.92 0.96 0.94 0.88 0.93 0.92	0.92 0.96 0.94 0.94 0.88 0.91 0.93 0.92 0.92

6.1.9 Non-linear SVM

[]: report_test_results("Non-linear SVM", nonlinear_svm_model, X_test, y_test)

Model Name: Non-linear SVM

The time consumed for testing: 0.2033226490020752 seconds

Classification Report for Test Data:

	precision	recall	f1-score	support
0	0.71	0.91	0.79	804
1	0.79	0.48	0.59	577
accuracy			0.73	1381
macro avg	0.75	0.69	0.69	1381
weighted avg	0.74	0.73	0.71	1381

3.2 Which model had the best performance and why?

As you can observe the Random Forest model had the best performance while the Non-linear SVM and KNN models were the weakest. The performance of machine learning models can vary based on the characteristics of the dataset and the inherent properties of the models themselves. Here are some justifications for why the Random Forest model might have outperformed the non-linear SVM and KNN models in our scenario:

1. Handling Non-linear Relationships: Non-linear SVM models are known for their ability to

handle non-linear relationships. However, in cases where the decision boundaries are highly complex and have non-linear patterns, the Random Forest model can often provide better performance. Random Forests operate by creating an ensemble of decision trees and combining their predictions through voting or averaging. This ensemble approach can capture intricate non-linear relationships more effectively than individual non-linear SVM models.

- 2. Robustness Against Noisy Data: KNN models are sensitive to noise and outliers in the data. If our dataset contained a significant amount of noise or outliers, it could have negatively impacted the performance of the KNN model. Random Forests, on the other hand, are generally more robust to noisy data since each decision tree in the ensemble is trained on a subset of the data and is less likely to be affected by outliers.
- 3. Feature Importance and Dimensionality: Random Forests have the advantage of providing feature importance measures. This can help in identifying the most relevant features for the classification task. In contrast, non-linear SVM models do not inherently provide feature importance measures. Additionally, if the dataset has a high dimensionality, Random Forest models can handle a large number of features more efficiently compared to non-linear SVM models.

3.3 Can eliminating non-informative features improve the results?

Eliminating non-informative features of a dataset can potentially improve the results of training a machine learning model. Here's why:

- 1. Reduce Overfitting: Non-informative features do not contribute meaningful information to the model's learning process. Including them in the model can lead to overfitting, where the model becomes too complex and starts interpreting noise or irrelevant patterns in the data. By removing non-informative features, the model becomes more focused on the relevant patterns and reduces the chances of overfitting.
- 2. Improve Model Efficiency: Including non-informative features increases the dimensionality of the dataset. High-dimensional datasets can make the model more computationally expensive and increase the risk of the curse of dimensionality. By eliminating non-informative features, the dataset's dimensionality is reduced, leading to faster training times and potentially better model performance.
- 3. Enhance Interpretability: Non-informative features can introduce noise and make it more challenging to interpret the model's results. The presence of irrelevant features can obscure the true relationships between the input features and the target variable. By removing non-informative features, the model becomes more interpretable, enabling easier identification and understanding of the meaningful relationships.