Subject Mos logic continued Date 1/5/2011 No.	_
& three modes of operation of the MMOS:	-
1- cutoff:	ĕ
Vos - VTN , ID=0 for enhancement: Vos 70	-
2 - paturation:	-6
VOS > VTN Kreshold notinge Winter	
Vos > Vos - Von In: Channel conduction garagneter, lan = 1 ?	-0
ID = Rn (Var - Vrw)2 W8L: channel length and with Cox: Cognitary of mile	-6
3 - Ofmic (linear): The maintur garameter of a	-
Vons > VTN MOSFET me VT & In	
Vos < Vos - VTN	
To = An 2(Var - VIV) Var - Var) Rs is the galling returned a Var = 5V	- 0
* NMOS innerter with resisting land: In I Show to	19
Vos = Vin 1 Vo = Von - Io. Ro	1.0
+1/ Vos < VTN: TD=0 1 Vo= VD0=51	(4
+ if Vin > VTN: VTN = VV, bn= DOUAIV2	
- assume sot then deels assumption: Ro. kn = 1 V'	•
$I_{0} = I_{0} \left(V_{in} - V_{TN} \right)^{2}$	-
Vo=Voy = Vox - [lon (Vin-VIN)]. Ro > Vin - VIN (Cor Dat)	
$> V_0 = V_{05} = 5 - (V_{in} - 1)^2 > V_{in} - 1$	
solving Van - Son Ap[Van - VTW]2 = Van - VTW	
Ser Von = Vin = Vs	
-> 1 12 Vap	
Vs = VTN - 20, Rp - V (24, Rp) + halo	
· · · · · · · · · · · · · · · · · · ·	
s Vs = 2.94 V	
	9

(limit Ro. lan -> 00)

- Ramen dissignation: Ps = VDD [ID (Vin=VoL) + ID (Vin=VoH)]

for inverter with resisting lood: Pd = (VOD). (VOD - VOL)

* steps to sidning:

1 - And Vox , is Vox > Vo then transists on also all

2- check Vor. il Vor > Voy - VT, then protunted

Else's Vs < Vor - VT, then linear ortine

3 - A Vor with he cheshed first, somme sot then chech'il

assumption is wreat.

0

: Vo = Kg - VTM2 - / This (Vin - VTW) >> V21 = VTM1
3 - Vin = V+ > M. saturated Johnnie (edge)
Var = VGSI - VTN, S Vot = Vt - VTI & IDI = IDA
An (VGG - YTH) = An (VGG - YTN)
=> how (Vt - Vt1)2 = how (Voo - Vot - VT2)2 = home (Voo - Vt + VT1 - VT2)?
4- Vin 7 Vt 3 M. ishmi:
IN = In VOVI [2(VGSI - VTI) - VOSI), Vo = VOSI, VGSI = Vin
1 Vance = Von - Vo
50 Joj = Tox 1 Joz = Dnz (Vins) - VTz)2
> kn Vos (2 (Vos - VT) - Vos) = kn (Vos - VT2)2
- in this region, VIH can be found by toking the designative of
the above equation: dva = -1
- taking the second case and solving for Vt:
Tani VT + Von
Vt = This vy + Voo
-> V+ = The · V + Voo , by should be large
Wi Un Cox Wr Un lox Un Cas
of An = Wi Un Cox 1 hn = Wr Un Cox undly contain
he = (W/L), potes of the report ration of the transistory
> M, should be wide and M, norraw
example: 4=1V, by = 103 AIV, bn = 0.34 × 103 AIV, Voo = 5V
1) Vt = Vba. VT + VDD 1 Jan = 1.715 > Vt = 2.473 V
Vot = Vt - VT = 1.493V
2) for Vin = Vas - V7 = 4V, showing 3 1/0 [2(3) - 1/6] = 500 (5-16-1)
3 Ans + bas V2 - 6 pm + 8 pm . V + pm 19 = 0
> Vo = 0.6989 V on 5,8085 out of rough

(2) Vin > Vss., Mp is linear, M, Remains saturated
By Vosi [2 (Vasi - Vin) - Vosi) = Dr. (Vasi - Vin)
> 1, 16 [2(Vi-Vrd)-16] = lov (0-Vrd)2
then find VIH, Dr VOL if VO = VOD
- by is the output notinge corresponding to an input equal to Vos
- larger to makes the currie steeper and abserts ideal
example: VII = IV, VIL = -IV, & = 1×103 A/V2
by = 0.2 x 103 A/V2, Voo = SV, find Vsr, Vos and Voj
00 VS = V71 + () V51 >> V55 = 0.563 V (2) 1.4492
0.553 > Vorse - Vin - Voy > negetime > My cutallix
:. Vx = 1.4492 V
00 Voss = + VTI 1 > Voss = 0.497V
for Vol @ 3 hy Vo [2 (Von-VI) - No] = hy [-VI)
: 2 Vo · (4) - Vo = 0.2 > Vo = 25 my
* N-Mos NOR gute:
AB (Vo
O O O VOD VCO-KING VOOLE M.
O O Voc
1 1 0 Vos
look is not and others setting or In = & L (Vose - 42)
I I = m To, m: number of trunsisters for input
M, >3 one linear: In = ho. Vaso 2 (Vaso-VTO) - Vaso!
: mIo = m las. Vasa [2 (Vasa - VTD) - Vasa = Du (Vasa - VTD)
- moust case is when m=1 1 Voz < VII

