4.6. PROBLEMS 135

Prove that the column vectors of the matrix B_2 given by

$$B_2 = \begin{pmatrix} 1 & -2 & 2 & -2 \\ 0 & -3 & 2 & -3 \\ 3 & -5 & 5 & -4 \\ 3 & -4 & 4 & -4 \end{pmatrix}$$

are linearly independent.

Prove that the coordinates of the column vectors of the matrix B_2 over the basis consisting of the column vectors of A_2 are the columns of the matrix P_2 given by

$$P_2 = \begin{pmatrix} 2 & 0 & 1 & -1 \\ -3 & 1 & -2 & 1 \\ 1 & -2 & 2 & -1 \\ 1 & -1 & 1 & -1 \end{pmatrix}.$$

Check that $A_2P_2 = B_2$. Prove that

$$P_2^{-1} = \begin{pmatrix} -1 & -1 & -1 & 1\\ 2 & 1 & 1 & -2\\ 2 & 1 & 2 & -3\\ -1 & -1 & 0 & -1 \end{pmatrix}.$$

What are the coordinates over the basis consisting of the column vectors of B_2 of the vector whose coordinates over the basis consisting of the column vectors of A_2 are (2, -3, 0, 0)?

Problem 4.3. Consider the polynomials

$$B_0^2(t) = (1-t)^2$$
 $B_1^2(t) = 2(1-t)t$ $B_2^2(t) = t^2$
 $B_0^3(t) = (1-t)^3$ $B_1^3(t) = 3(1-t)^2t$ $B_2^3(t) = 3(1-t)t^2$ $B_3^3(t) = t^3$,

known as the *Bernstein polynomials* of degree 2 and 3.

(1) Show that the Bernstein polynomials $B_0^2(t)$, $B_1^2(t)$, $B_2^2(t)$ are expressed as linear combinations of the basis $(1, t, t^2)$ of the vector space of polynomials of degree at most 2 as follows:

$$\begin{pmatrix} B_0^2(t) \\ B_1^2(t) \\ B_2^2(t) \end{pmatrix} = \begin{pmatrix} 1 & -2 & 1 \\ 0 & 2 & -2 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ t \\ t^2 \end{pmatrix}.$$

Prove that

$$B_0^2(t) + B_1^2(t) + B_2^2(t) = 1.$$

(2) Show that the Bernstein polynomials $B_0^3(t)$, $B_1^3(t)$, $B_2^3(t)$, $B_3^3(t)$ are expressed as linear combinations of the basis $(1, t, t^2, t^3)$ of the vector space of polynomials of degree at most 3 as follows:

$$\begin{pmatrix} B_0^3(t) \\ B_1^3(t) \\ B_2^3(t) \\ B_3^3(t) \end{pmatrix} = \begin{pmatrix} 1 & -3 & 3 & -1 \\ 0 & 3 & -6 & 3 \\ 0 & 0 & 3 & -3 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ t \\ t^2 \\ t^3 \end{pmatrix}.$$