WHAT IS CLAIMED IS:

1. A print head comprising:

a body, portions of the body defining an ink delivery channel, other portions of the body defining a nozzle bore, the nozzle bore being in fluid communication with the ink delivery channel; and

an obstruction having an imperforate surface positioned in the ink delivery channel.

- 2. The print head according to Claim 1, wherein the obstruction is centered over the nozzle bore.
- 3. The print head according to Claim 1, the ink delivery channel having at least one wall, wherein the obstruction is attached to the at least one wall.
- 4. The print head according to Claim 1, the ink delivery channel having at least one wall, wherein the obstruction is integrally formed with the at least one wall.
- 5. The print head according to Claim 1, further comprising: an ink drop forming mechanism operatively associated with the nozzle bore.
- 6. The print head according to Claim 5, wherein the ink drop forming mechanism is positioned on the print head at a location other than the obstruction.
- 7. The print head according to Claim 5, wherein the ink drop forming mechanism is a heater.

- 8. The print head according to Claim 7, wherein the heater includes a selectively actuated section.
- 9. The print head according to Claim 1, the obstruction having a lateral wall, wherein the lateral wall of the obstruction is positioned in the ink delivery channel parallel to the nozzle bore as viewed from a plane perpendicular to the nozzle bore.
- 10. The print head according to Claim 1, the nozzle bore having a diameter, the obstruction having a vertical wall, wherein the vertical wall of the obstruction is positioned in the ink delivery channel at locations extending beyond the diameter of the nozzle bore.
- 11. The print head according to Claim 1, the nozzle bore having a diameter, the obstruction having a vertical wall, wherein the vertical wall of the obstruction is positioned in the ink delivery channel at a location substantially equivalent to the diameter of the nozzle bore.
 - 12. A print head comprising:
 - a fluid delivery channel;
- a nozzle bore in fluid communication with the fluid delivery channel;
 - a heater positioned proximate to the nozzle bore;
- an insulating material located between the heater and at least one of the fluid delivery channel and the nozzle bore; and
- an obstruction having an imperforate surface positioned in the fluid delivery channel.
- 13. The print head according to Claim 12, wherein the insulating material forms at least a portion of at least one of the nozzle bore and the fluid delivery channel.

- 14. The print head according to Claim 12, wherein the insulating material is positioned between the heater and the material forming the nozzle bore.
- 15. The print head according to Claim 12, wherein the insulating material is positioned between the heater and the material forming the fluid delivery channel.
- 16. The print head according to Claim 12, wherein the heater comprises a plurality of individually actuateable sections.
- 17. The print head according to Claim 12, the obstruction having a lateral wall, wherein the lateral wall of the obstruction is positioned in the ink delivery channel parallel to the nozzle bore as viewed from a plane perpendicular to the nozzle bore.
- 18. The print head according to Claim 12, the nozzle bore having a diameter, the obstruction having a vertical wall, wherein the vertical wall of the obstruction is positioned in the ink delivery channel at locations extending beyond the diameter of the nozzle bore.

19. An emission device comprising:

a body, portions of the body defining a fluid delivery channel, other portions of the body defining a nozzle bore, the nozzle bore being in fluid communication with the fluid delivery channel;

an obstruction having an imperforate surface positioned in the fluid delivery channel;

a drop forming mechanism operatively associated with the nozzle bore; and

an insulating material positioned between drop forming mechanism and the body.

- 20. The emission device according to Claim 19, wherein the insulating material forms at least a portion of the body.
- 21. The emission device according to Claim 19, wherein the insulating material is a material layer distinct from the body.
- 22. The emission device according to Claim 19, wherein the ink drop forming mechanism is a heater.
- 23. The emission device according to Claim 22, wherein the heater comprises a plurality of individually actuateable sections.
- 24. The emission device according to Claim 19, the obstruction having a lateral wall, wherein the lateral wall of the obstruction is positioned in the ink delivery channel parallel to the nozzle bore as viewed from a plane perpendicular to the nozzle bore.
- 25. The emission device according to Claim 19, the nozzle bore having a diameter, the obstruction having a vertical wall, wherein the vertical wall of the obstruction is positioned in the ink delivery channel at locations extending beyond the diameter of the nozzle bore.
 - 26. A liquid emission device comprising: an ink delivery channel; a nozzle bore in fluid communication with the ink delivery

an ink drop forming mechanism operatively associated with the nozzle bore; and

channel;

an obstruction having an imperforate surface positioned in the ink delivery channel.

- 27. The device according to Claim 26, wherein the obstruction is centered over the nozzle bore.
- 28. The device according to Claim 26, the ink delivery channel having at least one wall, wherein the obstruction is integrally formed with the at least one wall.
- 29. The device according to Claim 26, wherein the ink drop forming mechanism is positioned on the print head at a location other than the obstruction.
- 30. The device according to Claim 26, wherein the ink drop forming mechanism is a heater.
- 31. The device according to Claim 30, wherein the heater comprises a plurality of individually actuateable sections.