Examen Final Libre

Apellido y Nombre:	
Mail:	LU:

- 1. Sea \mathcal{E} la elipse que tiene vértices en $P_1(-3,1)$ y $P_2(-1,4)$ (con término rectangular nulo).
 - a) Dar la ecuación de la elipse, determinar en qué puntos corta al eje y.
 - b) Dar la ecuación de la parábola \mathcal{P} que corta al eje y en los mismos puntos que \mathcal{E} y su vértice coincide con el centro de la elipse.
 - c) Sea Q el punto superior donde se cortan \mathcal{E} y \mathcal{P} . Dar la ecuación simétrica de la tangente a \mathcal{E} y la segmentaria de la tangente de \mathcal{P} en dicho punto.
 - d) Graficar \mathcal{E} , \mathcal{P} , los focos, la directriz de \mathcal{P} y las tangentes.
- 2. Sea π_1 el plano que pasa por los puntos $P_1(1,0,-1)$, $P_2(2,-1,3)$ y $P_3(2,1,1)$, y sea π_2 el plano que pasa por P_1 y P_2 y es perpendicular a π_1 .
 - a) Dar la ecuación segmentaria de π_1 .
 - b) Determinar las trazas de π_2 .
 - c) Calcular la distancia de P_3 a π_2 .
- 3. a) Dar la ecuación de la cuádrica \mathcal{S} (con términos mixtos nulos), que pasa por los puntos $P_1(1,2,2)$ y $P_2(2,-1,-2)$, y su traza con el plano coordenado xy es la parábola $\mathcal{C}: x^2 2x + y + 1 = 0$.
 - b) Determinar el tipo de cuádrica. Justificar.
 - c) Graficar la superficie \mathcal{S} y sus trazas, indicando qué tipo de cónicas son.
- 4. Considere los siguientes puntos $P_1(1, \frac{\pi}{2}, 3)$ (cilíndricas) $P_2(2\sqrt{2}, \frac{\pi}{4}, \frac{\pi}{2})$ (esféricas), $P_3(\frac{1}{2}, 0, 0)$ (esféricas) y $P_4(2, -1, 2)$ (cartesianas).
 - a) Determinar si los cuatro puntos pertenecen a un mismo plano. Justificar.
 - b) En caso afirmativo, dar la ecuación de dicho plano. Caso contrario, dar el volumen del paralepípedo con vértices en los puntos.
 - c) Graficar los puntos y las trazas del plano, o el paralepípedo.
- 5. Sea la superficie de revolución $S: x^2 + y^2 + z^4 z^2 = 0$.
 - a) Determinar el eje de rotación y una curva generatriz \mathcal{C} .
 - b) Determinar el volumen del sólido limitado por S.
 - c) Graficar la superficie, el sólido y la curva \mathcal{C} .

- d) Dar la ecuación de la superficie en coordenadas esféricas.
- 6. Determinar el área de la región pintada en gris. Justificar

- 7. Considere la cuádrica $S: x^2 + y^2 z^2 + 2x 3y + 5z 12 = 0$
 - a) Determinar su centro C.
 - b) Expresar $\mathcal S$ y C en coordenadas esféricas.
 - c) Expresar en coordenadas cilíndricas la ecuación segmentaria del plano que pasa por $P_1(0,1,0)$ (cartesianas), $P_2(-2,3,1)$ (cartesianas) y C.

Justificar todas las respuestas.

Hojas entregadas:

Firma: