普通物理学实验 II 电子实验报告

实验名称: ______ 传感器应用实验设计_____

班 级:
hl
姓 名:
学 号:

实验日期: __2024 __ 年__12 __ 月__25 __ 日 __星期__三__

目录

1	实验	· 综述	3
2	实验	:内容	4
	2.1	实验数据	4
		2.1.1 应变片与电桥性能实验	4
		2.1.2 电涡流传感器实验	7
	2.2	实验结果与误差分析	14
		2.2.1 应变片与电桥性能实验	14
		2.2.2 电涡流传感器实验	14
3	实验	·····································	14
	3.1	半桥测量时两片不同受力状态的电阻应变片接入电桥时,应放在?	14
	3.2	半桥测量中,两组对边电阻相等且 R1≠R2 时,是否可组成全桥?	14
	3.3	根据实验曲线分析应选用哪一个作为被测体为好?	15
	3.4	传感器的类型及其特性	15
	3.5	传感器的实际应用实例	15
4	参考	· ·文献	16

1 实验综述

本实验主要由两个部分组成: 应变片与电桥性能实验以及电涡流传感器实验。

在应变片与电桥性能实验中,应变片具有电阻应变效应,即具有规则外形的金属导体或半导体材料在外力作用下产生应变,其电阻值相应发生变化。这主要取决于几何效应和压阻效应。金属导体在受到应变作用时,电阻会发生变化:拉伸时电阻增大,压缩时电阻减小,且与轴向应变成正比。金属导体的电阻应变灵敏度通常在2左右。

实验中,我们使用非平衡电桥来测量电阻值,采用单臂桥、双臂桥和全桥三种电桥 讲行测量。

电桥如图所示:

图 1: 电桥示意图, 从左到右依次为单臂桥、双臂桥和全桥电桥

理论上,在相同放大倍数和电源电压的情况下,三种电桥测得的电压比值应为1:2:4

电涡流式传感器是一种建立在涡流效应原理上的传感器,其由传感器线圈和被测物体组成。我们往传感器线圈通以交变电流,则会在这附近产生一个交变磁场。当这个磁场靠近一个导体面时,它会产生感应电流,这感应电流又会以同样的方式产生阻碍传感器线圈的电流,这个电流的大小与传感器与导体面的距离有关。因此,我们在这个实验中会用不同导体面研究与距离有关的测量。

根据电涡流传感器的基本原理,将传感器与被测体间的距离变换为传感器的 Q 值、等效阻抗 Z 和等效电感 L 三个参数,用相应的测量电路(前置器)来测量。

电涡流传感器是通过传感器端部线圈与被测物体(导电体)间的间隙变化来测物体的振动相对位移量和静位移的,它与被测物之间没有直接的机械接触,具有很宽的使用频率范围(从 $0\sim10{\rm Hz}$)。

当无被测导体时,振荡器回路谐振于 f_0 ,传感器端部线圈 Q_0 为定值且最高,对应的检波输出电压 V_o 最大。

当被测导体接近传感器线圈时,线圈 Q 值发生变化,振荡器的谐振频率发生变化,谐振曲线变得平坦,检波出的幅值 V_0 变小。 V_0 变化反映了位移 x 的变化。

2 实验内容

2.1 实验数据

2.1.1 应变片与电桥性能实验

单臂电桥:

表 1: 单臂电桥实验数据

重量/g	0	20	40	60	80	100	120	140	160	180	200
电压/mV	0	7	14	21	28	35	42	49	56	63	69

绘制拟合曲线:

图 2: 单臂电桥实验数据拟合曲线

从拟合曲线中可以看出,系统灵敏度 $\Delta S=\frac{\Delta V}{\Delta W}=0.3487\,\mathrm{mV/g}$ 非线性误差 $\delta=\frac{\Delta m}{yFS}$,利用 Python 分析数据得, $\Delta m=0.7403$,故 $\delta=0.7403/200\times100\%=0.3702\%$

双臂电桥:

表 2: 双臂电桥实验数据

重量/g	0	20	40	60	80	100	120	140	160	180	200
电压/mV	0	14	28	41	55	70	83	97	111	125	138

绘制拟合曲线:

图 3: 双臂电桥实验数据拟合曲线

从拟合曲线中可以看出,系统灵敏度 $\Delta S=\frac{\Delta V}{\Delta W}=0.6926\,\mathrm{mV/g}$ 非线性误差 $\delta=\frac{\Delta m}{yFS}$,利用 Python 分析数据得, $\Delta m=0.7403$,故 $\delta=0.7403/200\times100\%=0.3702\%$

全桥电桥:

表 3: 全桥电桥实验数据

重量/g	0	20	40	60	80	100	120	140	160	180	200
电压/mV	0	29	54	80	105	136	160	191	217	242	265

绘制拟合曲线:

图 4: 全桥电桥实验数据拟合曲线

从拟合曲线中可以看出,系统灵敏度 $\Delta S = \frac{\Delta V}{\Delta W} = 1.343 \, \text{mV/g}$ 非线性误差 $\delta = \frac{\Delta m}{yFS}$,利用 Python 分析数据得, $\Delta m = 3.519$,故 $\delta = 3.519/200 \times 100\% = 1.756\%$

同等质量下三种电桥电压值汇总:

表 4: 同等质量下三种电桥电压值汇总

重量/g	单臂电桥电压/mV	双臂电桥电压/mV	全桥电桥电压/mV
0	0	0	0
20	7	14	29
40	14	28	54
60	21	41	80
80	28	55	105
100	35	70	136
120	42	83	160
140	49	97	191
160	56	111	217
180	63	125	242
200	69	138	265

电子秤实验:

在多次调平衡后,电子秤称量砝码的结果为:

表 5: 电子秤实验数据

砝码数量	1	2	3	4	5	6	7	8	9	10
显示的质量	20	40	59	79	99	120	140	160	180	200

测量了一些小物品的质量: 修正带 (33g), 笔 (8g)

2.1.2 电涡流传感器实验

铁圆片:

表 6: 铁圆片实验数据

X/mm	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1	1.1	1.2	1.3
V_0/V	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.03	0.12	0.23	0.33	0.44	0.55
X/mm	1.4	1.5	1.6	1.7	1.8	1.9	2	2.1	2.2	2.3	2.4	2.5	2.6	2.7
V_0/V	0.66	0.79	0.92	1.04	1.17	1.3	1.45	1.59	1.72	1.86	2.01	2.18	2.33	2.48
X/mm	2.8	2.9	3	3.1	3.2	3.3	3.4	3.5	3.6	3.7	3.8	3.9	4	4.1
V_0/V	2.64	2.79	2.97	3.11	3.27	3.44	3.60	3.76	3.93	4.10	4.20	4.37	4.56	4.74
X/mm	4.2	4.3	4.4	4.5	4.6	4.7	4.8	4.9	5	5.1	5.2	5.3	5.4	5.5
V_0/V	4.90	5.08	5.25	5.44	5.61	5.78	5.95	6.12	6.31	6.48	6.64	6.81	6.98	7.16
X/mm	5.6	5.7	5.8	5.9	6	6.1	6.2	6.3	6.4	6.5	6.6	6.7	6.8	6.9
V_0/V	7.33	7.49	7.65	7.81	7.97	8.13	8.28	8.39	8.47	8.52	8.54	8.55	8.56	8.57
X/mm	7	7.1	7.2	7.3	7.4	7.5	7.6	7.7	7.8					
V_0/V	8.58	8.58	8.59	8.59	8.60	8.60	8.61	8.61	8.61					

根据实验数据,绘图得:

图 5: 铁圆片实验数据曲线

选取其中线性部分单独拟合,得到下图:

图 6: 铁圆片实验数据线性部分拟合曲线

于是得到灵敏度为 $S=1.5582\,\mathrm{V/mm}$,线性度 $(R^2)=0.9961$

铜圆片:

表 7: 铜圆片实验数据

X/mm	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1	1.1	1.2	1.3
V_0/V	2.64	2.90	3.16	3.47	3.77	4.10	4.41	4.70	4.99	5.28	5.59	5.87	6.12	6.39
X/mm	1.4	1.5	1.6	1.7	1.8	1.9	2	2.1	2.2	2.3	2.4	2.5	2.6	2.7
V_0/V	6.66	6.94	7.20	7.44	7.68	7.91	8.16	8.37	8.49	8.53	8.55	8.57	8.58	8.58
X/mm	2.8	2.9	3	3.1	3.2	3.3	3.4	3.5						
V_0/V	8.59	8.60	8.61	8.61	8.61	8.61	8.62	8.62						

根据实验数据,绘图得:

图 7: 铜圆片实验数据曲线

选取其中线性部分单独拟合,得到下图:

图 8: 铜圆片实验数据线性部分拟合曲线

于是得到灵敏度为 $S=1.2358\,\mathrm{V/mm}$,线性度 $(R^2)=0.9973$ 铝圆片 (大):

表 8: 铝圆片 (大) 实验数据

X/mm	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1	1.1	1.2	1.3
V_0/V	2.96	3.33	3.66	4.06	4.40	4.75	5.08	5.38	5.67	5.98	6.29	6.58	6.85	7.11
X/mm	1.4	1.5	1.6	1.7	1.8	1.9	2	2.1	2.2	2.3	2.4	2.5	2.6	2.7
V_0/V	7.38	7.64	7.89	8.12	8.33	8.47	8.53	8.56	8.57	8.58	8.59	8.59	8.60	8.61
X/mm	2.8	2.9	3	3.1	3.2									
V_0/V	8.61	8.62	8.63	8.63	8.63									

根据实验数据,绘图得:

图 9: 铝圆片 (大) 实验数据曲线

选取其中线性部分单独拟合,得到下图:

图 10: 铝圆片 (大) 实验数据线性部分拟合曲线

于是得到灵敏度为 $S=1.0310\,\mathrm{V/mm}$,线性度 $(R^2)=0.9700$

将三中圆片的数据汇总,绘制成下图:

图 11: 三种圆片实验数据曲线

同种铝材的面积大小影响的实验数据

把面积小的铝材数据与之前的汇总,如下表:

表 9: 同种铝材的面积大小影响的实验数据, 表格中的大/小代表了铝材的面积大/小

X/mm	V_0 (大)/V	$V_0(小)/V$	X/mm	$V_0(大)/V$	$V_0(1)/V$	X/mm	$V_0(大)/V$	$\mid V_0(\mathrel{ u})/\mathrm{V}\mid$
0	2.96	5.39	1.4	7.38	8.58	2.8	8.61	8.65
0.1	3.33	5.68	1.5	7.64	8.59	2.9	8.62	8.65
0.2	3.66	6.01	1.6	7.89	8.59			
0.3	4.06	6.33	1.7	8.12	8.60			
0.4	4.40	6.64	1.8	8.33	8.61			
0.5	4.75	6.97	1.9	8.47	8.61			
0.6	5.08	7.28	2	8.53	8.62			
0.7	5.38	7.56	2.1	8.56	8.62			
0.8	5.67	7.83	2.2	8.57	8.63			
0.9	5.98	8.11	2.3	8.58	8.63			
1	6.29	8.37	2.4	8.59	8.64			
1.1	6.58	8.50	2.5	8.59	8.64			
1.2	6.85	8.54	2.6	8.60	8.64			
1.3	7.11	8.56	2.7	8.61	8.65			

绘制成下图:

图 12: 同种铝材的面积大小影响的实验数据曲线

2.2 实验结果与误差分析

2.2.1 应变片与电桥性能实验

由最终的汇总表格可以看出,虽然有一点偏差,但同等条件下,三种电桥的电压值 比例确实为 1:2:4,符合理论预期。这说明了电桥的工作原理是正确的,电桥的灵敏度是 可以通过调整电桥的结构来调整的。

本实验的可能误差来源:

- 1. 不同电桥所使用的导线数量不同,由于导线也是有电阻的,可能会对电桥的灵敏度产生影响。
- 2. 电压表测量的精度受到限制。
- 3. 导线接触处的连接可能不够好,导致电桥的电阻值发生变化。在实验中,尝试将 一些导线连接处按得紧一点,电压表的示数立刻发生变化。

2.2.2 电涡流传感器实验

从实验数据中可以看出,铁圆片的灵敏度最高,铜圆片次之,铝圆片最低,并且铁圆片的变化范围也最大,说明铁圆片对电涡流传感器的灵敏度最高,这可能是由于铁磁效应的存在,即磁场作用下铁可能会自发磁化,从而对电涡流传感器的灵敏度产生影响。

在同种铝材的面积大小影响的实验中,可以看出,面积大的铝材的灵敏度更高,变 化范围更大,但大小铝片最终的稳定值基本相等,说明铝材的面积大小对灵敏度有影响, 但不会影响最终的稳定值。

本实验的可能误差来源:

- 1. 电压表测量的精度受到限制。
- 2. 距离的测量依靠螺旋测微器与人眼观察,可能存在一定的偶然误差

3 实验拓展

3.1 半桥测量时两片不同受力状态的电阻应变片接入电桥时,应放在?

我认为应该放在对边。在不同受力状态下,两个电阻应变片的阻值变化方向可能相 反,如果将它们接入对边,电桥的输出电压变化会得到叠加,灵敏度提高。

3.2 半桥测量中,两组对边电阻相等且 R1≠R2 时,是否可组成全桥?

可以。桥路的平衡条件为 $R_1/R_2=R_3/R_4$,如果 $R_1=R_3$, $R_2=R_4$,则可以组成全桥。

3.3 根据实验曲线分析应选用哪一个作为被测体为好?

我认为应当选用面积大的铝片作为被测体,应为它的灵敏度比面积小的铝片更高, 并且测量范围更大。

3.4 传感器的类型及其特性

传感器根据不同的分类标准,包括但不限于以下几种类型:

1. 按被测物理量分类:

- (a) **机械量传感器:**用于测量长度、厚度、位移、速度、加速度、转数、质量、重量、力、压力、力矩等物理量。例如,位移传感器、加速度传感器、压力传感器等。
- (b) **声学传感器**:用于测量声压、噪声等声学物理量。例如,麦克风、声级计等。
- (c) **温度传感器:** 用于测量温度、热量、比热等热学物理量。例如,热电偶、热敏电阻等。
- (d) **磁学传感器**:用于测量磁通、磁场等磁学物理量。例如,霍尔传感器、磁通 门传感器等。
- (e) **光学传感器**:用于测量亮度、色彩等光学物理量。例如,光电池、颜色传感器等。

2. 按工作的物理基础分类:

- (a) **机械式传感器**:基于机械运动或变形来感知物理量的变化。例如,机械式压力传感器、机械式位移传感器等。
- (b) **电气式传感器**:基于电气特性变化来感知物理量的变化。例如,电阻应变片、电容传感器等。
- (c) **光学式传感器:** 基于光的反射、折射、干涉或衍射等光学现象来感知物理量的变化。例如,光纤传感器、激光传感器等。
- (d) **流体式传感器**:基于流体力学原理来感知物理量的变化。例如,流量传感器、压力传感器等。

3.5 传感器的实际应用实例

我想以手机中的加速度传感器为例,加速度传感器是用于检测手机的运动状态和方向变化。

工作原理:加速度传感器通常内部含有质量块和弹簧。当手机发生加速度变化时,质量块会相对于弹簧发生位移。此位移通过电容、电阻或其它物理变化转换为电信号,经过放大和处理后得出加速度值。

仪器功能: 在手机中,加速度传感可以用来实现多种功能,包括自动旋转屏幕、计步器、运动追踪、游戏控制等。

4 参考文献

本实验无参考文献。