Right

$$\left(\begin{array}{cc}
 0.5 & 0.5 \\
 0.9 & 0.1
 \end{array} \right) = 1$$

Left

Double

$$\begin{bmatrix}
 0.1 & 0.9 \\
 0.9 & 0.1
 \end{bmatrix} = 1$$

$$= 1$$

ATGATCATA

	А	С	G	Т
Α	0	1	0	0
С	0.33	0	0.33	0.33
G	1	0	0	0
Т	1	0	0	0

ATGATCATA

$$Tr_{AT} = \frac{counts(D_{AT})}{counts(N_A)} = \frac{3}{3} = 1$$

ATGATCATA

ATGATCATA

$$Tr_{TG} = \frac{counts(D_{TG})}{counts(N_T)} = \frac{1}{3} = 0.33$$

ATGATCATA

ATGATCATA

$$Tr_{GA} = \frac{counts(D_{GA})}{counts(N_G)} = \frac{1}{1} = 1$$

ATGATCATA

ATGATCATA

$$Tr_{AT} = \frac{counts(D_{AT})}{counts(N_A)} = \frac{3}{3} = 1$$

ATGATCATA

to t

		А	Т	G	С
From f	A	0	1	0	0
	Т	0	0	0	0
	G	0	0	0	0
	С	0	0	0	0

to t

		А	Т	G	С
/ IIIOIL	А	0	1	0	0
	Т	0	0	0.33	0
	G	0	0	0	0
	С	0	0	0	0

to t

		А	Т	G	С
	А	0	1	0	0
)	Т	0	0	0.33	0
	O	1	0	0	0
	С	0	0	0	0

to t

		А	Т	G	С
	А	0	1	0	0
	Т	0	0	0.33	0
-	O	1	0	0	0
	С	0	0	0	0

Computation of transition matrices

Computation of transition matrices. (a) shows the types of transition matrices, namely the right stochastic matrix, the left stochastic matrix and the double stochastic matrix. Note that a transition matrix or a stochastic matrix are two names that represent the same thing. (c) shows just the first four steps in computing a right transition matrix from a sequence "ATGATCATA". (b) Shows the final transition matrix for sequence "ATGATCATA".

