Authenticated Encryption

Jeremy, Paul, Ken, and Mike

Objectives

 Examine three methods of authenticated encryption and determine the best solution considering performance and security

Basic Components

Message Authentication Code

Symmetric Encryption

Both of these components are used as black boxes

Generic Composition

SE - Symmetric encryption scheme

E - encryption algorithm

D - Decryption Algorithm

MA - Message authentication scheme

T - tagging algorithm

V - tag verifing algorithm

K - randomized key generation algorithm

 κ - security parameter, length of the key

k - the key

Note:

We separate the tagging and verification algorithm

Basic Components

Message Authentication Code (MAC)

- Integrity / Authenticity
 - Integrity of Plaintext (INT-PTXT)
 - Integrity of Ciphertext (INT-CTXT)

Symmetric Encryption

- -Privacy
 - Indistinguishability
 - Chosen-plaintext attack (IND-CPA)
 - Chosen-ciphertext attack (IND-CCA)
 - Non-malleability
 - Chosen-plaintext attack (NM-CPA)
 - Chosen-ciphertext attack (NM-CPA)

Integrity

- Integrity of Plaintext (INT-PTXT)
 - Computationally infeasible to produce a ciphertext decrypting to a message which the sender has never encrypted
- Integrity of Ciphertext (INT-CTXT)
 - Computationally infeasible to produce a ciphertext not previously produced by the sender, regardless of whether or not the underlying plaintext is "new"

Integrity of symmetric encryption schemed

SE = (E, K, D)

Algorithm $D_{K}^{*}(C)$ If $D_{K}(C) \neq \bot$, then return 1
Else return 0

Verification algorithm or Verification oracle

E – Encryption Algorithm

K– Randomized key generation algorithm

D – Decryption Algorithm

Integrity of Authenticated encryption scheme

The scheme SE is said to be INT-PTXT if the function Advint-ptxt (·) (the advantage of Aptxt) is very small for any adversary whose time-complexity is polynomial in k.

Likewise, the scheme SE is said to be INT-CTXT if the function $Adv_{SE,A_{cm}}^{int-ctxt}(\cdot)$ (the advantage of A_{ctxt}) is very small for any adversary whose time-complexity is polynomial in k.

Integrity of Authenticated encryption scheme

Experiment
$$Exp_{SE,A_{max}}^{int-ptxt}(k)$$

$$K \stackrel{R}{\longleftarrow} K(\kappa)$$

If $A_{ptxt}^{E_K(\cdot),D^*(\cdot)}(\kappa)$ makes a query C to

the oracle $D_{\kappa}^{*}(\cdot)$ such that

- $-D_{\kappa}^{*}(C)$ returns 1, and
- M $def D_K(C)$ was never a query to $E_K(\cdot)$

then return 1 else return 0

Experiment
$$Exp_{SE,A_{ctrt}}^{int-ctxt}(k)$$

$$K \stackrel{R}{\longleftarrow} K(\kappa)$$

If $A_{ctxt}^{E_K(\cdot),D^*(\cdot)}(\kappa)$ makes a query C to the oracle $D_{\kappa}^{*}(\cdot)$ such that

- $-D_{\kappa}^{*}(C)$ returns 1, and
- C was never a response to $E_{\kappa}(\cdot)$ then return 1 else return 0

$$Adv_{SE,A_{ptxt}}^{\text{int-}ptxt}(k) = \Pr[Exp_{SE,A_{ptxt}}^{\text{int-}ptxt}(k) = 1]$$

$$Adv_{SE,A_{ctxt}}^{\text{int-}ctxt}(k) = \Pr[Exp_{SE,A_{ctxt}}^{\text{int-}ctxt}(k) = 1]$$

$$Adversaries$$

$$Adv_{SE}^{\text{int-}ptxt}(k,t,q_e,q_d,\mu_e,\mu_d) = \max_{A_{ptxt}} \{Adv_{SE,A_{ptxt}}^{\text{int-}ptxt}(k)\}$$
 Advantages of the
$$Adv_{SE}^{\text{int-}ctxt}(k,t,q_e,q_d,\mu_e,\mu_d) = \max_{A_{ctxt}} \{Adv_{SE,A_{ctxt}}^{\text{int-}ctxt}(k)\}$$
 scheme

Indistinguishability

- Indistinguishability of Chosen Plaintext Attack (IND-CPA)
- Indistinguishability of Chosen Ciphertext Attack (IND-CCA)
- If M₀ and M₁ are encrypted, a 'reasonable' adversary should not be able to determine which message is sent.

Left-or-right

```
\begin{split} &\Sigma_{K}(LR(.,.,b)), \text{ where b } \{0,\ 1\}, \text{ to take input } (M_{0},\\ &M_{1})\ |M_{0}| = |M_{1}|\\ &\text{if b } = 0\\ &C \leftarrow \Sigma_{K}(M_{0})\\ &\text{return } C\\ &\text{else}\\ &C \leftarrow \Sigma_{K}(M_{1}) \end{split}
```

return C

As was mentioned from Adam's lecture, we consider the encryption scheme to be "good" if a "reasonable" adversary cannot obtain "significant" advantage in distinguishing the cases b = 0 and b = 1 given access to the left-or-right oracle.

Non-malleability

- Prevents the generation of a ciphertext whose plaintexts are meaningful
- Requires that an attacker given a challenge ciphertext be unable to modify it into another, different ciphertext in such a way that the plaintexts underlying the two ciphertexts are "meaningful related" to each other.
- i.e.
 - Ptxt1: send a check of \$100.00
 - Ptxt2: send a check of \$1000.00

Non-malleability - Formally

Experiment
$$\operatorname{Exp}^{nm-cpa-b}_{\operatorname{SE}, A_{\operatorname{cpa}}}(b)$$

$$k \stackrel{R}{\longleftarrow} K(\kappa)$$

$$(\vec{c},s) \leftarrow A_{cpa_1}^{E_k(LR(\cdot,\cdot,b))}(k)$$

$$\vec{p} \leftarrow \vec{D}_k(\vec{c})$$

$$x \leftarrow A_{cpa}, (\vec{p}, \vec{c}, s)$$

return x

Experiment
$$\operatorname{Exp}^{nm-cca-b}_{\operatorname{SE, A_{cca}}}(b)$$

$$k \stackrel{R}{\longleftarrow} K(\kappa)$$

$$(\vec{c},s) \leftarrow A_{cca_1}^{E_k(LR(...,b))}(k)$$

$$\vec{p} \leftarrow \vec{D}_k(\vec{c})$$

$$x \leftarrow A_{cca}, (\vec{p}, \vec{c}, s)$$

return x

$$SE = (K, E, D)$$

$$b \in \{0,1\}$$

$$\kappa \in N$$

$$A_{cpa} = (A_{cpa1}, A_{cpa2}), 1 \text{ oracle}$$

$$A_{cca} = (A_{cca1}, A_{cca2}), 2 \text{ oracles}$$

$$Adv_{SE,A_{cpa}}^{nm-cpa}(k) = \Pr[Exp_{SE,A_{cpa}}^{nm-cpa-1}(k) = 1] - \Pr[Exp_{SE,A_{cpa}}^{nm-cpa-0}(k) = 1]$$

$$Adv_{SE,A_{cca}}^{nm-cpa}(k) = \Pr[Exp_{SE,A_{cca}}^{nm-cca-1}(k) = 1] - \Pr[Exp_{SE,A_{cca}}^{nm-cca-0}(k) = 1]$$

$$Adv_{SE}^{nm-cpa}(k,t,q_e,\mu_e) = \max_{A_{cpa}} \{Adv_{SE,A_{cpa}}^{nm-cpa}(k)\}$$
 If negligible, NM-CPA Secure

$$Adv_{SE}^{nm-cca}(k,t,q_e,\mu_e) = \max_{A_{cca}} \{Adv_{SE,A_{cca}}^{nm-cca}(k)\}$$
 If negligible, NM-CCA Secure

Unforgeability

- Weak Unforgeability against Chosen Message Attacks (WUF-CMA)
 - Adversary F can't create a new message and tag
- Strong Unforgeability against Chosen Message Attacks (SUF-CMA)
 - Adversary F can't create a new tag for an existing message

Difficulties

- The notions of authenticity are by themselves quite disjoint from the notions of privacy
 - i.e. Sending the message in the clear with an accompanying (strong) MAC achieves INT-CTXT but no kind of privacy

Relations among notions of symmetric encryption

Relations among notions of symmetric encryption Theorem 3.1

 $INT - CTXT \rightarrow INT - PTXT$

$$Adv_{SE}^{\text{int}-ptxt}(k,t,q_e,q_d,\mu_e,\mu_d) \leq Adv_{SE}^{\text{int}-ctxt}(k,t,q_e,q_d,\mu_e,\mu_d)$$

- A adversary mounting an attack against integrity of plaintexts of SE
- A' adversary mounting an attack against integrity of ciphertexts of SE
- A' = A

Adversary A'(k)

return A(C)

$$Adv_{SE,A}^{\text{int}-ptxt}(k) \leq Adv_{SE,A'}^{\text{int}-ctxt}(k)$$

C - is the winning query

It is initiative that if an adversary violates integrity of plaintexts of a scheme SE = (K,E,D) also violates integrity of ciphertexts of the same scheme

Proposition 3.3

- IND-CCA → INT-PTXT
- Given a symmetric encryption scheme SE which is IND-CCA secure, we can construct a symmetric encryption scheme SE which is also IND-CCA secure but is not INT-PTXT secure

IND-CCA--- INT-PTXT

- •Let SE = (K, E, D)
- •We define a \overline{SE} such that \overline{SE} is IND-CCA secure but is not INT-PTXT secure
- •Basically a certain known string (or strings) will be viewed by *D* as valid and decrypted to certain known messages, so that forgery is easy
- •However these 'ciphertexts' will never be produced by the encryption algorithm, so privacy will not be affected

$$\overline{SE} = (K, \overline{E}, \overline{D})$$

Algorithm
$$\overline{\mathbb{E}}_{k}(M)$$
 Algorithm $\overline{\mathbb{D}}_{k}(C)$

C' \leftarrow E_k(M) Parse C as b||C' where b is a bit \leftarrow E_k(M)

C \leftarrow 0||C' if b = 0 then M \leftarrow D_k(C'); return M

Return C Else return 0

IND-CCA----------INT-PTXT Attack

Adversary $A^{\overline{E_K(\cdot)},\overline{D_k(\cdot)}}(k)$ Submit query 10 to oracle $\overline{D_k^*}(\cdot)$

•••

$$\overline{D_k^*}(10) = 0$$

 $10 \to 1010$

(little Endian, LSB 1st)

$$Adv_{SE,A}^{\text{int}-ptxt}(k) = 1$$

- Query 10 is a valid ciphertext
- It decrypts to a msg (0)
 that the adversary
 never queried of its
 oracle

A makes zero queries to $\overline{E_K(\cdot)}$ and one query to $\overline{D_K(\cdot)}$ totaling 2 bits, and Is Certainly poly(k)-time

IND-CCA INT-PTXT IND-CCA Secure

To prove that SE is IND-CCA secure, it suffices (enough) to associate with any poly(k)-time adversary B attacking SE in the IND-CCA sense such that Advind-cca (k) ≤ Advind-cca (k)

```
Adversary B^{E_k(LR(.,.,b)),D_k(\cdot)}(k)

for i=1,...,q_e+q_d do

when A makes a query M_{i,0},M_{i,1} to its left - or - right encryption oracle do

A \leftarrow 0 \parallel E_k(LR(M_{i,0},M_{i,1},b))

when A makes a query C_i to its decryption oracle do

Parse C as b_i \parallel C_i' where b_i is a bit

if b=0 then A \leftarrow D_k(C_i')
```

Else $A \Leftarrow 0$

B simulates A and Uses its oracles to Answer A's oracle queries

It is easy for B to break the scheme if A can

Other Relations

- Theorem 3.2
 - INT-CTXT ^ IND-CPA → IND-CCA

- Proposition 3.4
 - INT-PTXT ^ IND-CPA (does not) →NM-CPA

Security of the Composite Schemes

Secure

Proven to meet the security requirement, assuming component encryption scheme meets IND-CPA and message authentication scheme is unforgeable under CMA

Insecure

Some IND-CPA secure symmetric encryption and some message authentication scheme unforgeable under CMA exist that doesn't meet the security requirement

Generic Composition

Using both functions as black boxes

MAC

Symmetric Encryption

Encrypt-and-MAC

Algorithm
$$\overline{\mathcal{K}}(k)$$
 $K_e \overset{R}{\leftarrow} \mathcal{K}_e(k)$
 $K_m \overset{R}{\leftarrow} \mathcal{K}_m(k)$
Return $\langle K_e, K_m \rangle$

Algorithm
$$\overline{\mathcal{E}}_{\langle K_e, K_m \rangle}(M)$$

$$C' \leftarrow \mathcal{E}_{K_e}(M)$$

$$\tau \leftarrow \mathcal{T}_{K_m}(M)$$

$$C \leftarrow C' || \tau$$
Return C

Algorithm
$$\overline{\mathcal{D}}_{\langle K_e, K_m \rangle}(C)$$

Parse C as $C' \| \tau$
 $M \leftarrow \mathcal{D}_{K_e}(C')$
 $v \leftarrow \mathcal{V}_{K_m}(M, \tau)$
If $v = 1$, return M
else return \bot .

Encrypt-and-MAC Security

Security		Weak MAC	Strong MAC	
Privacy	IND-CPA	Insecure	Insecure	
	IND-CCA	Insecure	Insecure	
	NM-CPA	Insecure	Insecure	
Integrity	INT-PTXT	Secure	Secure	
	INT-CTXT	Insecure	Insecure	

MAC-then-Encrypt

Algorithm
$$\overline{\mathcal{K}}(k)$$

 $K_e \stackrel{R}{\leftarrow} \mathcal{K}_e(k)$
 $K_m \stackrel{R}{\leftarrow} \mathcal{K}_m(k)$
Return $\langle K_e, K_m \rangle$

Algorithm
$$\overline{\mathcal{E}}_{\langle K_e, K_m \rangle}(M)$$

 $\tau \leftarrow \mathcal{T}_{K_m}(M)$
 $C \leftarrow \mathcal{E}_{K_e}(M||\tau)$
Return C

Algorithm
$$\overline{\mathcal{D}}_{\langle K_e, K_m \rangle}(C)$$

 $M' \leftarrow \mathcal{D}_{K_e}(C)$
Parse M' as $M \| \tau$
 $v \leftarrow \mathcal{V}_{K_m}(M, \tau)$
If $v = 1$, return M
else return \bot .

MAC-then-Encrypt Security

Security		Weak MAC	Strong MAC	
	IND-CPA	Secure	Secure	
Privacy	IND-CCA	Insecure	Insecure	
	NM-CPA	Insecure	Insecure	
Integrity	INT-PTXT	Secure	Secure	
	INT-CTXT	Insecure	Insecure	

Encrypt-then-MAC

Algorithm
$$\overline{\mathcal{K}}(k)$$

 $K_e \stackrel{R}{\leftarrow} \mathcal{K}_e(k)$
 $K_m \stackrel{R}{\leftarrow} \mathcal{K}_m(k)$
Return $\langle K_e, K_m \rangle$

Algorithm
$$\overline{\mathcal{E}}_{\langle K_e, K_m \rangle}(M)$$

 $C' \leftarrow \mathcal{E}_{K_e}(M)$
 $\tau' \leftarrow \mathcal{T}_{K_m}(C')$
 $C \leftarrow C' \| \tau'$
Return C

Algorithm
$$\overline{\mathcal{D}}_{\langle K_e, K_m \rangle}(C)$$

Parse C as $C' || \tau'$
 $M \leftarrow \mathcal{D}_{K_e}(C')$
 $v \leftarrow \mathcal{V}_{K_m}(C', \tau')$
If $v = 1$, return M
else return \bot .

Encrypt-then-MAC Security

Security		Weak MAC	Strong MAC	
	IND-CPA	Secure	Secure	
Privacy	IND-CCA	Insecure	Secure	
	NM-CPA	Insecure	Secure	
Integrity	INT-PTXT	Secure	Secure	
	INT-CTXT	Insecure	Secure	

Summary of Methods

Weakly Unforgeable

Composition	Privacy			Integrity	
Method	IND-CPA	IND-CCA	NM-CPA	INT-PTXT	INT-CTXT
Encrypt-and-MAC	Insecure	Insecure	Insecure	Secure	Insecure
MAC-then-Encrypt	Secure	Insecure	Insecure	Secure	Insecure
Encrypt-then-MAC	Secure	Insecure	Insecure	Secure	Insecure

Strongly Unforgeable

Composition	Privacy			Integrity	
Method	IND-CPA	IND-CCA	NM-CPA	INT-PTXT	INT-CTXT
Encrypt-and-MAC	Insecure	Insecure	Insecure	Secure	Insecure
MAC-then-Encrypt	Secure	Insecure	Insecure	Secure	Insecure
Encrypt-then-MAC	Secure	Secure	Secure	Secure	Secure

Theorem 4.7

Encrypt-then-MAC method is IND-CPA and INT-PTXT

- SE be a symmetric scheme
- MA be message authentication scheme

$$\begin{split} Adv_{\overline{SE}}^{ind-cpa}(k,t,q,\mu) &\leq Adv_{SE}^{ind-cpa}(k,t,q,\mu) \\ Adv_{\overline{SE}}^{int-ptxt}(k,t,q_e,q_d,\mu_e,\mu_d) &\leq Adv_{MA}^{wuf-cma}(k,t,q_e,q_d,\mu_e,\mu_d) \end{split}$$

Theorem 4.7 - IND-CPA

$$Adv_{\overline{SE}}^{ind-cpa}(k) \le Adv_{SE,A_p}^{ind-cpa}(k,t,q,\mu)$$

Adversary
$$A_{p}^{E_{Ke}(LR(.,.,b))}(\kappa)$$

$$k_m \stackrel{R}{\longleftarrow} K_m(\kappa)$$

For
$$i = 1,...,q$$
 do

When A makes a query $(M_{i,o}, M_{i,1})$ to its left – or – right encryption oracle do

$$C_i \leftarrow E_{K_e}(LR(M_{i,o}, M_{i,1}, b)); \tau_i \leftarrow T_{K_m}(C_i); A \leftarrow C_i \parallel \tau_i$$

$$A \Rightarrow b'$$

Return b'

Theorem 4.7 - INT-PTXT

$$Adv_{\overline{SE},A}^{\text{int}-ptxt}(k) \leq Adv_{M,A_p}^{wuf-cma}(k)$$

Adversary
$$F_{p}^{T_{K_{m}}(\cdot),V_{K_{m}}(\cdot,\cdot)}(\kappa)$$

$$k_e \stackrel{R}{\longleftarrow} K_e(\kappa)$$

For
$$i = 1,..., q_e + q_d$$
 do

When A makes a query M_i to its encryption oracle do

$$C_i \leftarrow E_{K_e}(M_i); \tau_i \leftarrow T_{K_m}(C_i'); A \leftarrow C_i^i || \tau_i$$

When A makes a query C_i to its verification oracle do

Parse
$$C_i$$
 as $C_i^i || \tau_i^i; v_i \leftarrow V_{K_m}(C_i, \tau_i^i); A \leftarrow v_i$

Proposition 4.9

 Encrypt-then-MAC method with a SUF-CMA-secure MAC is INT-CTXT, IND-CPA, and IND-CCA

$$Adv_{\overline{SE},A}^{\text{int}-ctxt}(k) \le Adv_{MA,F}^{suf-cma}(k)$$

$$\begin{split} Adv_{\overline{SE}}^{ind-cpa}(k,t,q,\mu) & \leq Adv_{SE}^{ind-cpa}(k,t,q,\mu) \\ Adv_{\overline{SE}}^{int-ctxt}(k,t,q_{e},q_{d},\mu_{e},\mu_{d}) & \leq Adv_{MA}^{suf-cma}(k,t,q_{e},q_{d},\mu_{e}+q_{e}l,\mu_{d}) \\ Adv_{\overline{SE}}^{ind-cca}(k,t,q_{e},q_{d},\mu_{e},\mu_{d}) & \leq 2 \times Adv_{MA}^{suf-cma}(k,t,q_{e},q_{d},\mu_{e}+q_{e}l,\mu_{d}) \\ & + Adv_{SE}^{ind-cpa}(k,t,q_{e},\mu_{e}) \end{split}$$

Conclusion

Encrypt-then-MAC provides the most secure solution for authenticated encryption

CBC - Cipher Block Chain

- •If IV is different then instances of same msg (or block) will be encrypted differently
- •If K'th cipher block Ck gets corrupted in transmission only blocks Pk and Pk+1 are affected
 - •This can also allow some msg tampering
- •If one plaintext block Pk is changed All subsequent ciphertext blocks will be affected
 - •This leads to an effective MAC

ECB – Electronic Code Book

If the same key is used then identical plaintext blocks map to identical ciphertext

Proposition 4.1

Encrypt-and MAC method is not IND-CPA

Proposition 4.2

 Encrypt-and MAC method is IND-CPA insecure for any deterministic MAC)

Theorem 4.3

Encrypt-and-MAC is INT-PTXT secure

Proposition 4.4

 Encrypt-and-MAC method is not INT-CTXT secure

Theorem 4.5

 MAC-then-encrypt method is both INT-PTXT an IND-CPA secure

Proposition 4.6

MAC-then-encrypt method is not NM-CPA secure

Proposition 4.8

 Encrypt-then-MAC method with a WUF-CMA-secure MAC is not NM-CPA secure