Diskrete Wahrscheinlichkeitstheorie

Abgabetermin: 18. Juni 2014, 10 Uhr in die DWT Briefkästen

Hausaufgabe 1 (5 Punkte)

Seien $X_1, X_2, \ldots, X_{100}$ unabhängige diskrete Zufallsvariable, die gleichverteilt auf $\{1, 2, \ldots, 20\}$ sind. Wir nehmen Zufallsvariablen $Y_i \sim \text{Bin}(1; \frac{8}{20})$ an, die genau dann den Wert 1 liefern, wenn $X_i > 12$ gilt.

Bestimmen Sie mit Hilfe einer geeigneten Chernoff-Schranke nach Vorlesung eine möglichst gute obere Schranke für die Wahrscheinlichkeit des Ereignisses

$$Y_1 + Y_2 + \ldots + Y_{100} \ge 50$$
.

Hausaufgabe 2 (5 Punkte)

Wir betrachten ein Münzwurfexperiment, das darin besteht, jede von drei unterschiedlichen Münzen A bzw. B bzw. C so lange zu werfen, bis Kopf erscheint. Dabei nehmen wir an, dass die Erfolgswahrscheinlichkeiten für einen einzigen Wurf mit A bzw. B bzw. C die Werte $p_1 = \frac{1}{3}$ bzw. $p_2 = \frac{1}{2}$ bzw. $p_3 = \frac{2}{3}$ sind. Die Münzen A und C sind also unfair.

 X_A bzw. X_B bzw. X_C seien die entsprechenden unabhängigen Zufallsvariablen, die die Anzahl der Würfe mit A bzw. B bzw. C zählen. Die Gesamtzahl der Würfe sei gegeben durch die Zufallsvariable $Y=X_A+X_B+X_C$.

- 1. Sei $G_Y(s)$ die wahrscheinlichkeitserzeugende Funktion für Y. Bestimmen Sie $G_Y'(0)$.
- 2. Sei f_Y die Dichtefunktion von Y. Bestimmen Sie $f_Y(4)$.
- 3. Bestimmen Sie den Erwartungwert $\mathbb{E}[Y]$.
- 4. Zeigen Sie $\Pr[Y \ge 16,5] \le \frac{1}{10}$.

Hinweis: Benutzen Sie die Ungleichung von Chebyshev.

Hausaufgabe 3 (5 Punkte)

Sei X eine binomialverteilte Zufallsvariable mit Parametern n=4 und $p=\frac{1}{2}$, d.h. $X\sim \text{Bin}(4,\frac{1}{2})$.

- 1. Geben Sie die erzeugende Funktion $G_X(s)$ in geschlossener Form an.
- 2. Berechnen Sie den Erwartungswert der bedingten Variablen $X|X\neq 2$.

3. Ein Experiment bestehe darin, dass die Zufallsvariable X wiederholt ausgewertet wird, und zwar so oft, bis bei der n-ten Wiederholung der Wert 2 erstmalig erscheint. Dann wird die Summe der aufgetretenen Werte $\neq 2$ gebildet.

Sei X_i für $i \in \mathbb{N}$ die *i*-te Wiederholung von X, sei N die Zufallsvariable, die die Nummer n der letzten Wiederholung darstellt, und sei $S = \sum_{i=1}^{N-1} X_i$.

Berechnen Sie den Erwartungswert $\mathbb{E}[S]$ von S.

Hausaufgabe 4 (5 Punkte)

Es sei M_1 eine Maschine, die bei Aufruf zufällig mit gleicher Wahrscheinlichkeit eine der Zahlen 1, 2, 3 oder 4 ausgibt. Wir bezeichnen die entsprechende Zufallsvariable mit N. Eine Maschine M_2 werfe bei Aufruf eine faire Münze, die entweder "Kopf" oder "Wappen" zeigt.

Wir betrachten einen Algorithmus A, dessen Ausführung in 2 Schritten ein Ergebnis erzeugt. Im ersten Schritt wird M_1 veranlasst, eine Zahl k auszugeben. Im zweiten Schritt wird M_2 k mal aufgerufen. Das Ergebnis einer Ausführung von A definieren wir als diejenige Zahl, die angibt, wie oft im zweiten Schritt "Kopf" geworfen wurde. Es sei Y die Zufallsvariable, die die Ergebnisse des Algorithmus A beschreibt.

- 1. Geben Sie die wahrscheinlichkeitserzeugende Funktion $G_N(z)$ für N an.
- 2. Berechnen Sie den Erwartungswert $\mathbb{E}[Y]$.
- 3. Berechnen Sie die wahrscheinlichkeitserzeugende Funktion $G_Y(z)$ für Y.

Hinweis: Die Vorbereitungsaufgaben bereiten die Tutoraufgaben vor und werden in der Zentralübung unterstützt. Tutoraufgaben werden in den Übungsgruppen bearbeitet. Hausaufgaben sollen selbstständig bearbeitet und zur Korrektur und Bewertung abgegeben werden.

Vorbereitung 1

Seien X_1 und X_2 unabhängige exponentialverteilte Zufallsvariablen mit Parametern λ_1 bzw. λ_2 .

1. Berechnen Sie die Dichtefunktion von $Y=X_1+X_2$ durch Anwendung der Faltungsformel

$$f_Y(y) = \int_{-\infty}^{\infty} f_{X_1}(x) \cdot f_{X_2}(y - x) \, \mathrm{d}x$$

und vereinfachen Sie das Ergebnis im Fall $\lambda_1 = \lambda_2$ so weit wie möglich.

2. Seien X_1, X_2, X_3 unabhängig exponentialverteilt mit gleichem Parameter λ und $Y = X_1 + X_2 + X_3$. Berechnen Sie die Verteilungsfunktion F_Y in geschlossener Form.

Vorbereitung 2

Sei X eine kontinuierliche Zufallsvariable.

- 1. Zeigen Sie: Falls $X \sim \mathcal{N}(2, \frac{1}{2})$, dann gilt $2X + 1 \sim \mathcal{N}(5, 2)$.
- 2. Seien $d_1, d_2, c \in \mathbb{R}$ mit $d_1 < d_2$ und c > 0. Berechnen Sie $a, b \in \mathbb{R}$, so dass für Y = aX + b gilt

$$\Pr[d_1 \le X \le d_2] = \Pr[-c \le Y \le c].$$

Vorbereitung 3

Wir betrachten unabhängige stetige Zufallsvariablen X und Y, die beide auf dem Intervall $[0,1] \subseteq \mathbb{R}$ gleichverteilt sind. Sei $Z = \max\{X,Y\}$.

- 1. Berechnen Sie die Verteilungsfunktion F_Z .
- 2. Bestimmen Sie eine Funktion $u:[0,1] \to [0,1]$, so dass u(X) die gleiche Verteilung wie Z besitzt.

Tutoraufgabe 1

Seien X und Y kontinuierliche Zufallsvariablen mit gemeinsamer Dichtefunktion

$$f_{X,Y}(x,y) = \begin{cases} 6xy^2 & : & 0 \le x \le 1, \ 0 \le y \le 1 \\ 0 & : & \text{sonst} \end{cases}$$

- 1. Berechnen Sie die Randdichte $f_X(x)$.
- 2. Bestimmen Sie den Wert der Verteilungsfunktion $F_{X,Y}(\frac{1}{2},\frac{1}{2})$.
- 3. Zeigen Sie die Unabhängigkeit der Variablen X und Y.

Tutoraufgabe 2

In einem Unfallkrankenhaus treffen im Schnitt alle 20 Minuten Patienten zur Behandlung ein. Die Zeit zwischen zwei Behandlungsfällen sei exponentialverteilt mit Parameter $\frac{1}{20}$. Wenn 1 Stunde lang kein Patient eingetroffen ist, macht das Personal Ruhepause. Wir wollen wissen, welcher Zeitabstand zwischen zwei Ruhepausen zu erwarten ist. Seien T_1, T_2, \ldots die Zeitspannen zwischen dem Eintreffen zweier Behandlungsfälle und W die Wartezeit bis zur nächsten Ruhepause.

- 1. Geben Sie $\mathbb{E}[T_1 \mid T_1 \geq 60]$ an.
- 2. Geben Sie $\mathbb{E}[W \mid T_1 \geq 60]$ an.
- 3. Berechnen Sie $\mathbb{E}[W]$.

Tutoraufgabe 3

Wir benutzen die Funktion $h(t) = 0.027 + 0.0025 \cdot (t - 40)^2$ für $t \in \mathbb{R}$, um die "Sterblichkeitsrate" durch Lungenkrebs von Kettenraucherinnen abzuschätzen, die mindestens $t \geq 40$ Jahre alt sind. Ihre Lebensdauer sei X und es gelte

$$\Pr[X > t \mid X > 40] = \exp\left(-\int_{40}^{t} h(s) ds\right).$$

Wie groß ist die Wahrscheinlichkeit, dass eine 45-jährige Kettenraucherin mindestens 50 Jahre alt wird?