

네트워크보안

[10] 무선 랜 보안

경기대학교 AI컴퓨터공학부 이재흥 jhlee@kyonggi.ac.kr

- 무선 랜의 특징
- 무선 랜 보안 대책
- Captive Portal (CP) 인증

- 무선 랜을 이해한다.
- 무선 랜에 해킹 공격을 실행할 수 있다.
- 무선 랜에 대한 보안 대책을 이해한다.
- Captive Portal (CP) 인증에 대해 이해한다.

무선 랜의 특징

- 초기의 무선 랜은 보안이 더 많이 취약했음
 - 무선 랜은 유선 랜에 비해 통신의 한계가 분명치 않으며, 방향성이 없음
 - 클라이언트가 어느 거리와 방향에서 접속하는지에 대한 정보를 얻을 수 없음
- 무선 랜은 유선 랜의 네트워크를 확장하려는 목적으로 사용됨
- 무선 랜을 사용하려면 아래 그림과 같이 내부의 유선 네트워크에 AP(Access Point) 장비를 설치해야 함

- 무지향성 안테나
 - 아래 그림 (a)와 같이 주로 봉의 형태
 - 전파 수신에 일정한 방향성이 없어 AP의 위치에 상관없이 동작
 - 사실 방향성이 없는 것이 아니라 방향성이 네 개 이상이라고 말하는 편이 더 정확
- 지향성 안테나
 - 목표 방향을 지정해 그 방향의 전파만 탐지하기 때문에 통신 거리가 더 긴 편
 - 지향성 안테나는 아래 그림 (b)와 같이 보통 쟁반 또는 접시 모양

(a) 무지향성 안테나

(b) 지향성 안테나

• 무선 랜은 좌우 방향으로는 상당한 거리까지 전송하지만 위아래로는 비교적 가까운 거리밖에 전송하지 못함

그림 10-3 무선 랜의 전파 확장 방향성

주요 무선 랜 프로토콜

표 10-1 주요 무선 랜 프로토콜

시기	프로토콜	주요사항	설명
1997년 6월	802.11	2.4GHz/2Mbps	최초의 무선 랜 프로토콜
1999년 9월	802,11b	2.4GHz/11Mbps	와이파이 ^{Wi-Fi} 라고 하며 WEP 방식의 보안을 구현한다.
	802.11a	5GHz/54Mbps	와이파이5 ^{Wi-Fi5} 라고 하며, 전파 투과성과 회절성이 떨어져 통신 단절 현상이 심하고 802.11b와 호환되지 않는다.
2003년 6월	802.11g	2.4GHz/54Mbps	802.11b에 802.11a의 속도 성능을 추가한 프로토콜로, 802.11b와 호환되지만 네트워크 공유 시 데이터 처리 효율 이 현격히 떨어지는 문제가 발생한다.
2004년 6월	802,11i	2.4GHz/11Mbps (802.11b와 동일)	802.11b 표준에 보안성을 강화한 프로토콜
2007년	802.11n	5GHz, 2.4GHz	여러 안테나를 사용하는 다중 입력/다중 출력 ^{MIMO} 기술로, 대 역폭 손실을 최소화하고 최대 속도는 600Mbps다.
2012년	802.11ac	5GHz, 2.4GHz	5GHz 주파수에서 높은 대역폭(80~160MHz)을 지원하고, 2.4GHz에서는 802.11n과의 호환성을 위해 40MHz까지 대역폭을 지원한다.
2014년	802,11ad	60GHz	최대 속도가 7Gb/s다. 기존 2,5GHz/5GHz 대신 60GHz 대역을 사용해 데이터를 전송하는 방식으로, 대용량 데이터나 무압축 HD 비디오 등 높은 비트레이트 동영상 스트리밍에 적합하다. 60GHz는 장애물을 통과하기 어려워서 10m 이내 같은 공간 내에서 근거리 기기에만 사용할 수 있다.

2017년	802.11ah	1GHz 미만 주파수 대역 (일반적으로 900MHz 대역)	와이파이 할로우 Halow. TV 대역을 제외한 비허가 네트워크 운영을 정의한다. 세부 주파수는 국가마다 다르다. 802.11ah의 목적은 최대 347Mbps의 데이터 전송 속도로 2.4GHz와 5GHz 영역의 일반적인 네트워크보다 더 먼 거리까지 와이파이 네트워크를 확장하는 것이다. 에너지 소비 절감에도 초점을 두고 있어 많은 에너지를 사용하지 않으면서원거리 통신이 필요한 사물 인터넷 기기에 적합해 블루투스기술과도 경쟁한다.
	802.11ay	60GHz	차세대 60GHz로도 알려진 표준 프로토콜. 60GHz 주파수 내에서 20Gbps 이상의 최대 처리량을 제공하고 거리와 안 정성도 개선하는 것을 목표로 한다.

- 참고 동영상
 - 모르면 손해 보는 Wi-Fi 속도! Wi-Fi라고 해서 다 똑같은 속도가 아니다?
 - https://youtu.be/c59AQr-LkHM

무선 랜 보안 대책

- AP의 물리적 보안
 - AP도 스위치의 한 종류이므로 적절한 물리적 통제가 필요함
 - AP는 전파가 건물 내에 한정되도록 전파 출력을 조정하고, 창이나 외부에 접한 벽이
 아닌 건물 안쪽 중심부, 눈에 쉽게 띄지 않는 곳에 설치하도록 함
 - 설치한 후에는 AP의 기본 계정과 패스워드를 반드시 재설정해야 함

- AP 접근 방법
 - 무선 랜 네트워크를 검색하면 아래 그림 (a)와 같이 AP 목록(SSID)을 확인할 수 있음
 - 보통 SSID(Service Set Identifier)를 통해 확인한 AP를 선택해 접속
 - (b)와 같이 SSID를 직접 입력해 AP에 접속하는 방법도 있음

(a) AP 목록: SSID 브로드캐스팅을 금지하지 않은 경우

그림 10-4 AP 접근 방법

(b) SSID를 직접 입력해 AP에 접속: SSID 브로드캐스팅을 금지한 경우

- AP 접근 방법
 - 구글에서 구글 맵과 함께 제공하는 위글(Wigle)과 같은 서비스를 이용하면 아래 그림과 같이 AP를 지도에 체크할 수도 있음

실습 환경 • 공격자 시스템: 칼리 리눅스

• 필요 프로그램: Kismet

- 1. 무선 랜 인터페이스 확인하기
 - Kismet으로 무선 랜을 탐지하기 위해 우선 무선 랜 인터페이스를 확인
 - ifconfig

2. Kismet 실행하기

- 칼리 리눅스를 설치하면 Kismet이 기본으로 설치되어 있음
- 명령 창에 Kismet을 입력하고 실행하면 아래와 같은 화면을 확인할 수 있음
 - root 권한으로 Kismet을 실행하면 문제가 될 수 있음을 경고하는 내용

```
root@Kali: ~
                                                                          000
File Edit View Search Terminal Help
 ~ Kismet Sort View Windows
                                                                      Kismet
                                                                      Connected
                                                           Data
INFO: Auto-connecting to tcp://localhost:2501
ERROR: Could not connect to Kismet server 'localhost:2501' (Connecti
INFO: Welcome to the Kismet Newcore Client... Press '`' or '~' to ac
```


3. Kismet 서버 실행하기

- Start Kismet Server 창에서는 Kismet을 동작시키기 위해 필요한 Kismet 서버를 실행시킬지 여부를 물음
- [Yes]를 선택하면 다음 화면에서 실행 옵션을 묻는데, 변경 사항 없이 [Start]를 누르면 됨

4. 인터페이스 설정하기

- 무선 랜 탐지에 사용할 인터페이스가 설정되어 있지 않음을 알리는 창의 다음 화면에서 [Yes]를 선택하면 인터페이스를 입력하는 창을 확인할 수 있음
- 여기서 무선 랜 인터페이스 이름은 wlan0이므로 Intf 항목에 wlan0을 입력하고
 [Add]를 누름
- 설정을 마친 뒤 화면 오른쪽 아래의 [Close Console Window]를 누름

```
File Edit View Search Terminal Help

INFD: Starting GPS components...
INFD: Enabling reconnection to the GPS device if the link is lost
INFD: Enabling reconnection to the GPS device if the link is lost
INFD: Using GPSD server on localhost:2947
ERROR: Could not open OUI file '/etc/manuf': No such file or directory
ERROR: Could not open OUI file '/usr/share/wireshark/wireshark/manuf': No such file or directory
INFD: Gpened OUI file '/usr/share/wireshark/manuf
INFD: Complet!
INFD: Complet!
INFD: Creatin No survey were defined or all defined sources
INFD: Registe encountered unrecoverable errors
INFD: Registe encountered unrecoverable errors
INFD: Opened
INFD: Opened
INFD: Opened started with no beautiful or beauti
```

```
000
                                    root@Kali: ~
File Edit View Search Terminal Help
 INFO: Enabling reconnection to the GPS device if the link is lost
 INFO: Using GPSD server on localhost:2947
ERROR: Could not open OUI file '/usr/share/wireshark/wireshark/manuf': No
       Opened OUI file '/usr/share/wireshark/manut
 INFO: Completed ind Intf wlan0
 INFO: Creating netw
INFO: Registering d
INFO: Pcap log in P
                                                            pcapdump
INFO: Kismet starting to gather packets
INFD: No packet sources defined. You MUST ADD SOME using the Kismet
      client, or by placing them in the Kismet config file
 INFO: Kismet server accepted connection from 127.0.0.1
```


5. Kismet 동작 확인하기

[Close Console Window]를 누르면 Kismet을 이용해 무선 랜 AP와 해당 AP를
 사용하는 무선 랜 클라이언트 정보를 확인할 수 있음

Kismet을 이용해 무선 랜을 탐지한 화면

- 참고 동영상
 - Wireless Hacking 34 Kismet
 - https://youtu.be/qsJ7WGb4Ed0

- 무선 랜은 통신 과정에서 데이터 유출을 막는 것뿐 아니라 네트워크에 대한 인증을 위해서도 암호화를 수행함
- 암호화된 통신을 수행하는 네트워크에 접근을 시도하면 아래 그림과 같이 [네트워크 보안 키 입력] 창이 나타남

그림 10-6 네트워크 보안 키 입력 창

- WEP(Wired Equivalent Privacy)
 - 무선 랜 통신을 암호화하기 위해 802.11b 프로토콜부터 적용됨
 - 64비트와 128비트를 사용할 수 있는데 64비트는 40비트, 128비트는 104비트의 RC 4 키를 사용
 - WEP를 이용한 암호화 세션은 아래 그림과 같음

그림 10-7 WEP 암호화 세션의 생성

- ① 사용하려는 무선 랜 서비스의 SSID 값을 알아내 무선 랜 AP에 연결 요청 메시지를 전송
- 가용자의 연결 요청 메시지를 받은 AP는 임의의 문장을 생성해 원본을 저장하고 연결 요청 응답 메시지를 이용 해 암호화되지 않은 인증용 문자열(Challenge)을 전송
 - 인증용 문자열을 받은 사용자는 자신이 가진 공유키로 WEP 암호화를 적용해 암호문을 만든 다음 AP에 전송
- ④ 사용자가 공유키로 만든 암호문을 전송받은 AP는 자신 이 가진 공유키로 암호문을 복호화함

• WEP 데이터 암호화의 기본 원리

• WEP 데이터 암호화 절차

25

• WEP 데이터 복호화 절차

- WEP 암호화의 취약성
 - 초기벡터(IV) 재사용
 - 생일 패러독스
 - 23명 이상의 사람이 있으면 생일이 같은 날인 두 사람이 있을 확률이 ½ 이상
 - WEP에 적용
 - 802.11b의 초당 패킷 전송 수: 19
 - WEP의 초기벡터(IV) 길이: 24비트 (2²⁴ = 16,777,216)
 - 4,823개 이상의 패킷이 전송될 경우 같은 IV를 사용할 확률이 ½ 이상
 - 12,430개 이상의 패킷이 전송될 경우 같은 IV를 사용할 확률이 99% 이상
 » 12,430 / 19 / 60 = 10.9분
 - IV는 평문으로 전송 + 재사용되는 IV → 재사용되는 IV를 찾을 수 있음
 - 두 개의 재사용되는 IV를 사용한 암호문 XOR → 두 평문의 XOR 값

- WEP 암호화의 취약성
 - FMS (Fluhrer, Mantin, Shamir) 공격
 - WEP 공격을 위해 가장 많이 쓰이는 방법
 - Weakness IV
 - 키 스트림의 첫 번째 바이트에 비밀 키에 대한 정보를 노출
 - 일반적인 802.11b 패킷의 첫 번째 바이트는 0xAA
 - » 0xAA 0xAA 0x03 0x00 0x00 0x00 0x80 0x00
 - 이러한 Weakness IV를 충분히 수집하여 WEP 키 추출
 - 필요한 IV의 수
 - WEP-40
 - » 약 50,000 ~ 200,000개
 - WEP-104
 - » 약 200,000 ~ 700,000개

- WEP 암호화의 취약성
 - FMS (Fluhrer, Mantin, Shamir) 공격

- 실습 개요
 - 무선 랜 공유기와 클라이언트가 WEP 키로 암호화 통신할 때 패킷을 수집해 WEP
 키를 크랙해보기

- 실습 환경 공격자 시스템: 칼리 리눅스
 - 클라이언트 시스템: 윈도우
 - 필요 프로그램: airodump-ng, aircrack-ng, aireplay-ng

- 1. 무선 랜 인증 방법 설정하기
 - 무선 랜 공유기에서 WEP 키를 설정
 - 무선 랜 공유기는 웹 브라우저에서 'http://무선 랜 게이트웨이 IP' 형태로 접근 할 수 있음
 - 빠른 실습을 위해 WEP 키는 짧은 64비트로 선택했고 암호화 키는 12345abcde로, 통신 채널은 1로 설정함

- 1. 무선 랜 인증 방법 설정하기
 - 클라이언트에서 설정한 WEP 키로 무선 랜 공유기에 접속

2. 모니터링 모드 설정하기

- WEP 키를 크랙하기 위해서는 현재 통신 중인 AP와 클라이언트로부터 Ⅳ를 모아야 함
- 이를 위해서 airmon-ng를 사용해 무선 랜 인터페이스를 모니터 모드로 변경
 - ifconfig wlan0 down
 - airmon-ng start wlan0

2. 모니터링 모드 설정하기

- 실행 중에 기존 프로세스와 충돌이 있을 수도 있음 → 관련 프로세스를 죽이고 다시
 모니터 모드를 시도
 - airmon-ng check kill
 - airmon-ng start wlan0

2. 모니터링 모드 설정하기

- iwconfig 명령으로 모니터 모드 설정 상태를 확인할 수 있음
 - iwconfig

- 3. 공격 대상 AP 설정하기
 - airodump-ng 명령으로 공격 대상 AP를 확인
 - airodump-ng wlan0mon

4. IV 수집하기

- AP wishfree에서 WEP 키 크랙을 위해 airodump-ng 명령을 사용해 Ⅳ를 수집
- 이 명령을 실행하면 WEP_DUMP-01.ivs, WEP_DUMP-02.ivs 등의 파일이 해당
 당 디렉터리에 생성되는 것을 확인할 수 있음
 - airodump-ng --ivs -c 1 -w WEP_DUMP --bssid 90:9F:33:DA:72:16
 wlan0mon

```
root@Kali:/airodump

File Edit View Search Terminal Help

CH 1 ][ Elapsed: 42 s ][ 2016-09-16 23:20 ][ fixed channel wlan0mon: 10

BSSID PWR RXQ Beacons #Data, #/s CH MB ENC CIPHER AUTH E

90:9F:33:DA:72:16 -16 25 86 7 0 1 54e WEP WEP w
```

- --ivs: 무선 랜 패킷 스니핑 시 암호화 크랙에 필요한 IV만 수집
- -c 1: 통신 채널은 1만 스니핑함
- -w WEP_DUMP: WEP 키에 관한 내용을 WEP_DUMP.ivs 파일에 저장
- --bssid 90:9F:33:DA:72:16: AP의 MAC 주소가 90:9F:33:DA:72:16인 패킷만을 저장
- wlan0mon: 무선 랜 인터페이스를 wlan0mon으로 지정

- 5. WEP 키 크랙하기
 - WEP 키 크랙을 위해서는 IV를 충분히 모아야 함
 - 64비트 WEP 키 크랙을 위해서는 약 20,000개 정도가 필요
 - 충분한 IV를 모으지 못한 경우 패킷을 더 모아서 재시도할 수 있음
 - KEY FOUND! 부분에 12:34:5A:BC:DE로 키 값이 크랙되어 나오는 것을 확인
 - aircrack-ng -b 90:9F:33:DA:72:16 WEB_DUMP-01.ivs

```
0 0 0
                                root@Kali: /airodump
File Edit View Search Terminal Help
                                 Aircrack-ng 1.2 rc3
                 [00:00:01] Tested 10 keys (got 43707 IVs)
        depth
                byte(vote)
                12(59412) 72(57164) FF(52844) CF(51896) 76(51316)
        0/ 1 34(57040) 72(51796) EE(51748) BE(51356) 91(50108)
        1/ 3
                39(53556) A0(52348) A4(51932) 2D(51688) 16(51164)
                BC(53280) 06(52308) D3(52264) 1C(51932) 7A(51492)
                DE(58900) 21(52556) 3E(51620) B2(51296) 82(50908)
                         KEY FOUND! [ 12:34:5A:BC:DE ]
       Decrypted correctly: 100%
root@Kali:/airodump#
```


6. 패킷 강제 생성하기

- WEP 키 크랙 과정에서 클라이언트와 서버 간의 충분한 데이터 통신이 있을 경우에
 는 IV를 수집하는 데 별 문제가 없을 수도 있으나, 그렇지 않은 경우도 있음
 - 이 경우 강제적으로 공격자와 AP 간 데이터를 발생시킬 수도 있음
- 그러나 이 방법은 무선 랜 카드에 따라 기능을 지원하지 않는 경우도 있음
- 우선 AP가 공격자에게 보내는 패킷을 받으려면 서로 연결되어 있어야 하는데 그렇지 않은 상태에서 패킷을 보내면, AP 자체에서 패킷을 무시
 - 이를 위해 공격자는 AP와 거짓 인증을 수행

6. 패킷 강제 생성하기

- 거짓 인증은 aireplay를 이용해 실행
 - aireplay-ng -1 0 -a 90:9F:33:DA:72:16 -h 58:94:6B:D0:F7:3C
 wlan0mon

```
root@kali:~

File Edit View Search Terminal Help

root@kali:~# aireplay-ng -1 0 -a 90:9F:33:DA:72:16 -h 58:94:6B:D0:F7:3C wlan0mon 08:35:29 Waiting for beacon frame (BSSID: 90:9F:33:DA:72:16) on channel 10

08:35:29 Sending Authentication Request (Open System) [ACK]
08:35:29 Authentication successful
08:35:29 Sending Association Request [ACK]
08:35:29 Association successful :-) (AID: 1)

root@kali:~#
```

- -1: aireplay를 이용해 거짓 인증(Fake Authentication)을 수행
- 0: 패킷의 개수
- -a 90:9F:33:DA:72:16: AP의 MAC 주소를 지정
- -h 58:94:6B:D0:F7:3C: 공격자의 MAC 주소를 지정
- wlan0mon: 무선 랜 인터페이스를 wlan0mon으로 지정

- 6. 패킷 강제 생성하기
 - 이 거짓 인증은 AP가 제공하는 개방 인증
 - 공격자와 AP 간 데이터 전송을 위해서는 WEP 키가 필요
 - 이 상태에서는 네트워크 구성을 위한 아주 단순한 형태의 패킷 송수신이 가능한데, 그중
 하나가 ARP
 - 개방 인증이 완료된 상태에서 aireplay-ng 명령을 3 옵션을 주어 실행해 ARP
 request와 reply를 지속적으로 보내면 AP와 클라이언트 간의 데이터 통신이 충분하지
 않은 경우에도 IV를 쉽게 모을 수 있음
 - aireplay-ng -3 -b 90:9F:33:DA:72:16 -h 58:94:6B:D0:F7:3C wlan0mon

```
root@kali:~

File Edit View Search Terminal Help
root@kali:~#
root@kali:~#
root@kali:~#
root@kali:~#
aireplay-ng -3 -b 90:9F:33:DA:72:16 -h 58:94:6B:D0:F7:3C wlan0mon
08:37:25 Waiting for beacon frame (BSSID: 90:9F:33:DA:72:16) on channel 10
Saving ARP requests in replay_arp-0917-083725.cap
You should also start airodump-ng to capture replies.
Read 159 packets (got 0 ARP requests and 0 ACKs), sent 0 packets...(0 pps)
```


aireplay-ng 공격 종류

표 10-2 aireplay-ng 공격 종류

공격 번호	공격
0	Deauthentication(인증 해제)
1	Fake Authentication(거짓 인증)
2	Interactive Packet Replay(대화형 패킷 재생)
3	ARP Request Replay Attack(ARP 요청 재생 공격)
4	KoreK Chopchop Attack(KoreK의 Chopchop 공격)
5	Fragmentation Attack(분할 공격)
6	Cafe-latte Attack(카페라떼 공격)
7	Client-oriented Fragmentation Attack(클라이언트 중심의 단편화 공격)
8	WPA Migration Mode(WPA 마이그레이션 모드)
9	Injection Test(주입 테스트)

₩PA-PSK

- WPA-PSK(Wi-Fi Protected Access Pre-Shared Key)
 - 802.11i 보안 표준의 일부분으로 WEP 보안의 문제점을 해결하기 위해 만들어짐
 - 802.11i에는 WPA-1과 WPA-2 규격이 포함되어 있음
 - 이는 암호화 방식에 따른 분류로 WPA-1은 TKIP(Temporal Key Integrity
 Protocol)를, WPA-2는 CCMP(CCM mode Protocol) 암호화 방식을 사용하는
 것으로 정의되어 있음

- WPA 규격
 - WPA-개인
 - PSK(Pre-Shared Key) 모드 사용
 - WPA-엔터프라이즈
 - RADIUS 인증 서버 사용
 - TKIP(WPA-1)
 - WEP의 취약점을 해결하기 위해 제정된 표준
 - CCMP(WPA-2)
 - 128비트 블록키를 사용하는 CCM 모드의 AES 블록 암호 방식을 사용

- 1. 무선 랜 인증 방법 설정하기
 - 무선 랜 인증 방법을 WPA2PSK로 바꾸고 인증 문구를 설정
 - 여기서는 wishfree로 설정하고 채널은 1로 설정함

2. 모니터링 모드 설정하기

- [실습 10-2]와 같이 ifconfig 명령으로 인터페이스를 일시적으로 다운시키고 airmon-ng 명령으로 해당 인터페이스를 다시 모니터링 모드로 활성화시킴
 - ifconfig wlan0 down
 - airmon-ng start wlan0

- 3. 공격 대상 AP 설정하기
 - airodump-ng 명령으로 공격 대상 AP를 확인
 - airodump-ng wlan0mon

- 4. WPA2-PSK 인증 패킷 수집하기
 - airodump-ng를 AP wishfree에 타깃팅하여 실행
 - airodump-ng -c 1 --bssid 90:9F:33:DA:72:16 -w WPA wlan0mon

- 4. WPA2-PSK 인증 패킷 수집하기
 - aireplay-ng를 이용해 AP wishfree에 접속되어 있는 클라이언트의 MAC 주소를
 - c 옵션으로 지정해 강제로 접속을 해제시켜보기
 - aireplay-ng -0 0 -a 90:9F:33:DA:72:16 -c 58:94:6B:D0:F7:3C
 wlan0mon

```
root@Kali: ~
                                                                          000
File Edit View Search Terminal Help
root@Kali:~#
root@Kali:~# aireplay-ng -0 0 -a 90:9F:33:DA:72:16 -c 58:94:6B:D0:F7:3C wlan0mon
06:22:08 Waiting for beacon frame (BSSID: 90:9F:33:DA:72:16) on channel 11
06:22:09 wlan0mon is on channel 11, but the AP uses channel 1
root@Kali:~#
root@Kali:~# aireplay-ng -0 0 -a 90:9F:33:DA:72:16 -c 58:94:6B:D0:F7:3C wlan0mon
06:22:12 Waiting for beacon frame (BSSID: 90:9F:33:DA:72:16) on channel 1
         Sending 64 directed DeAuth. STMAC: [58:94:6B:D0:F7:3C] [
06:22:12 Sending 64 directed DeAuth. STMAC: [58:94:6B:D0:F7:3C] [ 0 | 0 ACKs]
         Sending 64 directed DeAuth. STMAC: [58:94:6B:D0:F7:3C] [ 0| 0 ACKs]
         Sending 64 directed DeAuth. STMAC: [58:94:6B:D0:F7:3C] [ 0| 0 ACKs]
06:22:13
         Sending 64 directed DeAuth. STMAC: [58:94:6B:D0:F7:3C] [ 0| 0 ACKs]
06:22:14
         Sending 64 directed DeAuth. STMAC: [58:94:6B:D0:F7:3C] [ 0| 0 ACKs]
06:22:14
```

무선 랜 세션 강제 종료

- 5. WPA2-PSK 키 크랙하기
 - WPA2PSK 인증 패킷 (handshake)은 4단계 과정을 통하거나 임의의 새로운 클라
 이언트가 해당 네트워크를 통해서 확보할 수 있음
 - aircrack-ng -WPA-01.cap

- 5. WPA2-PSK 키 크랙하기
 - WEP 키와 달리 WPA2-PSK 키 크랙은 랜덤하게 되지 않으므로 먼저 크랙을 위한
 사전 파일을 만들어야 함

```
passlist + (~) - VIM

File Edit View Search Terminal Help

qwer1234
abcde
12345abcde
123456789
wishfree

-- INSERT --recording @w

1,9

All ✓
```


- 5. WPA2-PSK 키 크랙하기
 - WPA2-PSK 키를 크랙하면 wishfree를 확인할 수 있음
 - WPA2-PSK 키는 일반적인 패스워드처럼 영문자, 숫자, 특수문자를 적절히 섞어 충분한 길이로 설정하는 것이 좋음
 - aircrack-ng -w dic WPA-01.cap

- EAP와 802.1x 암호화
 - WPA/WPA2-PSK가 기존 WEP의 암호화·복호화 키 관리 방식을 중점적으로 보 완한 것인데 비해 WPA-엔터프라이즈는 사용자 인증 영역까지 보완한 방식
 - WPA-EAP(Extensible Authentication Protocol)로도 불리는 WPA-엔터프라
 이즈 방식은 인증 및 암호화를 강화하기 위해 다양한 보안 표준과 알고리즘을 채택
 - 그중 가장 중요하고 핵심적인 사항은 유선 랜 환경에서 포트 기반 인증 표준으로 사용되는 IEEE 802.1x 표준과 함께 다양한 인증 메커니즘을 수용할 수 있도록 IETF
 의 EAP 인증 프로토콜을 채택한 것

- EAP와 802.1x 암호화
 - 802.1x/EAP는 개인 무선 네트워크의 인증 방식에 비해 다음과 같은 기능이 추가됨
 - 사용자 인증을 수행
 - 사용 권한을 중앙에서 관리
 - 인증서, 스마트카드 등 다양한 인증을 제공
 - 세션별 암호화 키를 제공

• 802.1x/EAP와 RADIUS 서버를 이용한 무선 랜 사용자 인증 과정

- ① 클라이언트가 AP에 접속을 요청. 이때 클라이언트와 AP는 암호화되지 않은 통신을 수행
- ② RADIUS 서버는 클라이언트에 인증 Challenge를 전송
- ③ 클라이언트는 Challenge에 대한 응답으로 맨 처음 전송받은 Challenge 값, 계정, 패스워드에 대한 해시 값을 구해 RADIUS 서버로 전송
- ④ RADIUS 서버는 사용자 관리 DB 정보에서 해당 계정의 패 스워드를 확인
- ⑤ 해시 값이 일치하면 암호화 키를 생성
- ⑥ 생성한 암호화 키를 클라이언트에 전달
- ⑦ 전달받은 암호화 키를 이용해 암호화 통신을 수행

- 실습 개요
 - WPA-PSK를 이용해 인증을 수행하는 무선 랜에서 스마트폰을 이용해 무선 랜을
 이용하는 사용자의 네트워크 패킷을 스니핑함

실습 환경 • 공격자 시스템: 칼리 리눅스

- 공격 대상 시스템: 모바일 단말기(노트북, 안드로이드나 아이폰 등의 무선 랜 단말기로 종류 무관)
- 필요 프로그램: ettercap, Wireshark

- 1. ARP 스푸핑하기
 - ARP 스푸핑은 9장에서 사용한 ettercap을 이용
 - [Sniff] [Unified Sniffing]을 선택하고 인터페이스는 무선 랜을 선택
 - [View] [Set the WiFi Key] 를 이용해 무선 랜의 암호화 키를 입력해두기

1. ARP 스푸핑하기

- 공격 대상을 식별하기 위해 [Hosts] [Hosts List]를 실행한 뒤 [Hosts] [Scan for hosts]를 실행해 해당 네트워크의 모든 호스트를 확인
 - 192.168.0.82라는 IP를 가진 무선 랜 단말기는 스마트폰
 - 192.168.0.1은 Target 1로, 192.168.0.82를 Target 2로 설정한 뒤,
 [Mitm] [ARP poisoning]을 실행

- 2. 스마트폰의 통신 패킷 스니핑하기
 - 스니핑은 Wireshark를 실행해 확인

무선 랜 기타 보안 대책

• DHCP 정지

- AP에 대한 설정 사항으로는 먼저 DHCP를 정지하는 것이 좋음
- 무선 랜에서 사용하는 사설 IP 주소를 AP에 따로 설정하고, 허용된 사용자에게만 네트워크의 IP 주소를 알려주는 것이 좋음

• MAC 필터링

- AP에 접근이 가능한 MAC 주소를 기록해 기록된 MAC 주소 외의 무선 랜 카드에 의한 접속은 차단하도록 설정
- 실제로 꽤 효과적인 방법이지만 앞서 살펴본 macof(스위치 재밍) 공격에는 취약

Captive Portal(CP) 인증

• 스타벅스에서 Wi-Fi 사용

Captive Portal 인증

Captive Portal 인증

- Captive Portal
 - 사용자가 무선 랜을 통해 특정 사이트로 접속할 때 본래 목적지가 아닌 서비스 제공
 자가 의도한 특정 페이지로 접속하게 함
 - 서비스 제공자가 허가할 때까지 다른 곳으로 갈 수 없음

Captive Portal 인증

- 사용목적
 - 사용자 인증
 - 개인 정보 수집
 - 광고
- 구현 방법
 - HTTP 302 Redirection
 - ICMP Redirect
 - Redirect by DNS

- KT
 - ollehWiFi (secure, 자물쇠 O)

- ollehWifi (자물쇠 X)
 - 가입자 단말의 MAC 주소를 KT 서버에 등록하고, 이 MAC 기반으로 인증
 - ID/PW를 가입자가 KT Portal 혹은 KT에서 제공한 CM(Connection Manager)을 통해 입력하여 인증 받음
 - Captive Portal에 접속하여 이용권 구매 → ID/PW 발급

KT Captive Portal

○ KT 인증 과정 (1)

KT 인증 과정 (2)

HTTP 302 Redirection 메시지 - KT

HTTP 302 Redirection 메시지 - SKT

HTTP 302 Redirection 메시지 – LG U+

