

UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE CENTRO DE TECNOLOGIA DEPARTAMENTO DE ENGENHARIA DE COMPUTAÇÃO E AUTOMAÇÃO CURSO DE ENGENHARIA DE COMPUTAÇÃO CURSO DE ENGENHARIA MECATRÔNICA

RELATÓRIO DA 03º EXPERIÊNCIA CONTROLE DE SISTEMAS DINÂMICOS: SISTEMA DE SEGUNDA ORDEM

Grupo 02

Aluno 1: 2016007810

Aluno 2: 20160153697

Aluno 3: 20160153928

Aluno 4: 2016008362

2

Aluno 1: Alexandre Luz Xavier da Costa

Aluno 2: Anderson Henrique de Araújo Dias

Aluno 3: Higo Bessa Magalhães

Aluno 4: Jaime Cristalino Jales Dantas

CONTROLE DE SISTEMAS DINÂMICOS: SISTEMA DE SEGUNDA ORDEM

Terceiro Relatório Parcial apresentado à disciplina Laboratorial de Sistemas de Controle, correspondente à avaliação da 2º unidade do semestre 2016.2 do 8º período do curso de Engenharia de Computação e Engenharia Mecatrônica da Universidade Federal do Rio Grande do Norte, sob orientação do **Prof. Fábio Meneghetti Ugulino de Araújo.**

Professor: Fábio Meneghetti Ugulino de Araújo.

Natal-RN

2016

3

RESUMO

O trabalho aqui apresentado foi desenvolvido a partir dos dois relatórios dos

experimentos anteriores das aulas práticas da disciplina de Sistemas de Controle. O

objetivo agora está no controle do nível de água nos dois tanques acoplados,

caracterizando um sistema de segunda ordem, por meio da implementação de

controladores Proporcionais, Integrais e Deriváveis (PID), seja em malha aberta ou

fechada.

Empregando as atualizações no software com interface do segundo experimento

de modo a realizar, com os novos controladores, a leitura, escrita, coleta e plotagem de

gráficos.

Palavras-chave: Controle, Tanques, Malha aberta, Malha fechada, Sinais, PID.

LISTA DE SÍMBOLOS

V Tensão.

S Segundos

cm Centímetros

F Força

m Massa

a Aceleração

LISTA DE ABREVIATURAS E SIGLAS

MV Variável Manipulada

MF Malha Fechada

MA Malha Aberta

SP Set-Point, Resposta Desejada

PV Variável de Processos

ED Equação Diferencial

LISTA DE FIGURAS

Figura 1 - Resposta ao degrau de um sistema de controle	. 12
Figura 2 - Forma padrão do sistema de segunda ordem.	. 13
Figura 3 - Diagrama de bloco de sistema de 2ª ordem.	. 14
Figura 4 - Erro enviado ao sistema.	. 14
Figura 5 - Diagrama de bloco de sistema de 2ª ordem com controlador	. 15
Figura 6 - Diagrama de bloco de sistema com controlador PI.	. 17
Figura 7 - Diagrama de bloco de sistema PID com controlador.	. 18
Figura 8 - Diagrama de blocos de sistema PI-D com controlador	. 18
Figura 9 - Tela de conexão ao servidor.	. 20
Figura 10 - Tela de aviso.	. 20
Figura 11 - Interface de leitura.	. 21
Figura 12 - Valores de pico e overshoot.	. 22
Figura 13 – Tempo de subida e acomodação.	. 22
Figura 14 - Nível do tanque e tensão na bomba para controlador P	. 22
Figura 15 - Valores de pico e overshoot.	. 23
Figura 16 - Tempo de subida e acomodação.	. 23
Figura 17 - Nível do tanque e tensão na bomba para controlador PI.	. 23
Figura 18 - Valores de pico e overshoot.	. 24
Figura 19 - Nível do tanque e tensão na bomba com controlador PD	. 24
Figura 20 - Tempo de subida e acomodação.	. 24
Figura 21 - Valores de pico e overshoot.	. 25
Figura 22 - Tempo de subida e acomodação.	. 25
Figura 23 – Nível do tanque e tensão na bomba com controlador PID	. 25
Figura 24 - Valores de pico e overshoot.	. 26
Figura 25 - Tempo de subida e acomodação.	. 26
Figura 26 - Nível de tanque e tensão na bomba com controlador PID	. 26
Figura 27 - Valores de pico e overshoot.	. 27
Figura 28 - Tempo de subida e acomodação.	. 27
Figura 29 - Nível do tanque e tensão na bomba com controlador PI-D	. 27
Figura 30 - Valores de pico e overshoot antes e depois do filtro.	. 28
Figura 31 - Tempo de subida e acomodação antes e depois do filtro	. 28
Figura 32 - Nível do tanque e tensão na bomba com controlador PI-D com filtro	. 28

SUMÁRIO

	<u>Pág.</u>
1 INTRODUÇÃO 2 REFERENCIAL TEÓRICO 2.1 Sistemas Dinâmicos de Segunda Ordem	9 10 10
2.2 Ações de Controle	14
2.2.1. Controlador Proporcional (P)	15
2.2.2. Controlador Integral (I)	15
2.2.3. Controlador Derivativo D	16
2.2.4. Controlador Proporcional e Integral (PI)	16
2.2.5. Controlador Proporcional, Integral e Derivativo (PID)	17
2.2.6. Controlador Proporcional, Integral e Derivativo (PI-D)	18
2.3 Sistema de Tanques Acoplados Quanser	19
3 METODOLOGIA 3.1 Software de Controle	19 19
3.1.1 Interface de Leitura	21
3.2 Sinais Plotados	22
3.2.1 Controlador P	22
3.2.2 Controlador PI	23
3.2.3 Controlador PD	24
3.2.4 Controlador PID	25
3.2.5 Controlador PI-D	27
3.2.6 Controlador PI-D com filtro	28
3.3 Sistemas de Travas	29
4 CONCLUSÃO REFERÊNCIAS	30 31

1 INTRODUÇÃO

A utilização de controladores no sistema objetiva a modificação de sua dinâmica, manipulando a relação entrada/saída a partir de atuadores sobre seus parâmetros, com o intuito de satisfazer as especificações com relação a sua resposta (Ogata, 1993).

Os controladores PID são os mais usados na indústria. São compostos por P, PI, PD, PI-D e PID. De uma forma simples, o controle se faz a partir da manipulação dos ganhos K_p , K_i e K_d em cada controlador. Esse relatório apresenta uma base teórica desses controladores e iremos explicar nossa solução para sua utilização em MF e MA.

Nesse experimento será apresentado o controle aplicado em um sistema de segunda ordem para controlar o nível de água em um sistemas de tanques em série.

2 REFERENCIAL TEÓRICO

Nessa sessão será discutida sobre a definição de sistemas de segunda ordem bem como as ações de controle que foram utilizadas para que o experimento ocorresse de forma satisfatória no controle de nível do fluido.

Um dos conceitos mais importantes quando no que se trata de sistemas de controle de 2ª ordem, é a definição de estabilidade, uma vez que ela indica como um sistema irá agir de acordo com um sinal de entrada. Um sistema de controle de qualidade deve garantir que o processo tenderá a um valor estável e finito, dessa forma o sistema estará prevenido de uma saída que possa causar danos ou que nunca chega a um valor definido. Diz-se que um sistema é estável quando sua saída é prevista para toda e qualquer entrada limitada.

Outro conceito tão importante quando dito anteriormente é o erro atuante estacionário. Isto é, dada uma entrada do tipo degrau, o erro atuante estacionário é a diferente entre o SP e o sinal realimentado. Muitas vezes o sinal realimentado é o próprio valor de saída, devido a sensores que possuem função de transferência de valor unitário, podendo assim dizer que o erro de regime é igual o erro atuante.

$$e_{ss} = \frac{1}{1 + G(0)H(0)}$$

Onde G(0)H(0) determina o valor do erro atuante estacionário. Logo, para uma entrada do tipo degrau, sempre haverá um valor de erro que diminuirá a medida que o valor de G(0)H(0) aumenta, isso pode ser feito aplicando um ganho constante na entrada do sistema. Quanto maior o valor do ganho, menor o valor do ess.

2.1 Sistemas Dinâmicos de Segunda Ordem

Semelhante aos sistemas de 1ª ordem, as equações que descrevem a dinâmica dos sistemas de 2ª ordem são obtidas por meio da utilização de leis físicas e são dadas na forma de equações diferenciais. A principal característica desse tipo de sistema é a presença de termos contendo derivadas de 2ª ordem.

Um sistema de 2ª ordem típico possuía a seguinte forma equacionaria no domínio do tempo:

$$M\frac{d^2y}{dt^2} + B\frac{dy}{dt} + Ky = u$$

Definido:

$$\frac{M}{B} = B\xi W_n \quad \frac{K}{M} = W_n^2 \qquad \frac{u}{M} = K$$

Ao se aplicar a Transformada de Laplace e considerando que as condições iniciais do sistema sejam nulas, chegamos na função de transferência:

$$G(s) = \frac{1}{Ms^2 + Bs + K}$$
 ou $\frac{C(s)}{R(s)} = \frac{K}{s^2 + 2\xi W_n + W_n^2}$

Obtém-se os polos de $s^2 + 2\xi W_n + W_n^2 = 0$

Isolando s tem-se que as raízes da equação característica, ou polos da relação de controle são:

$$S_{1,2} = -\xi W_n \pm W_n \sqrt{\xi^2 - 1}$$

Onde ξ é o fator de amortecimento, W_n é a frequência natural (frequência de oscilação do sistema sem amortecimento) e K é o ganho do sistema.

Sabendo também que W_d é a frequência do sistema e é dada por:

$$W_d = W_n \sqrt{1 - \xi^2}$$

Podemos observar a respeito de ξ que:

Quando $\xi=\mathbf{0}$ não há amortecimento. Nesse caso $W_d=W_n$ e a resposta oscila com frequência natural W_n .

Quando $0 < \xi < 1$ a oscilação vai sendo gradativamente amortecida, caracterizando assim o SOBREAMORTECIMENTO.

Quando $\boldsymbol{\xi}=\mathbf{1}$ ocorre a transição para o desaparecimento da oscilação e tem-se assim o AMORTECIMENTO CRITICO.

Quando $\xi > 1$ não ocorre oscilação na resposta, caracterizando o SUPERAMORTECIMENTO.

A fim de analisar a resposta transitória para um sistema de controle de 2ª ordem com entrada degrau ilustrada, tem-se as observações:

Figura 1 - Resposta ao degrau de um sistema de controle.

Onde:

 M_p — SOBRE-SINAL PERCENTUAL, é o máximo valor de pico da curva de resposta, medido a partir do valor unitário. Influenciado apenas por ξ .

$$M_p(\%) = 100e^{-\frac{\xi \pi}{\sqrt{1-\xi^2}}}$$

 t_r — TEMPO DE SUBIDA, é o tempo para a resposta passar de 0% a 100% do seu valor final.

$$t_r = \frac{\pi - \beta}{W_d}$$

Onde
$$\beta = tg^{-1} \frac{\sqrt{1-\xi^2}}{\xi}$$

 t_p — TEMPO DE PICO, é instante de tempo em que a resposta atinge o primeiro pico do sobre-sinal.

$$t_p = \frac{\pi}{W_d}$$

 t_s — TEMPO DE ACOMODAÇÃO, é o tempo necessário para a curva de resposta alcançar e permanecer dentro de uma faixa em torno do valor final.

Faixa de acomodação de $\pm 2\%$ e $\pm 5\%$ são os valores usuais para o tempo de acomodação, nesse experimento além desses valores, será abordado também $\pm 7\%$ e $\pm 10\%$.

$$t_s = \frac{4}{W_n \xi}$$
, para o critério de 2%.

$$t_s = \frac{3}{W_n \xi}$$
, para o critério de 5%.

A obtenção das ED que descrevem esses sistemas permite que as ações de controle sejam definidas obedecendo aos requisitos de ganho, estabilidade e velocidade, que são de extrema importância para o funcionamento adequado de processos que envolvam esses sistemas. Logo, um estudo dos parâmetros vistos até agora também é relevante, antes de se planejar qualquer aplicação envolvendo não só sistemas de 1ª ordem, mas de ordens superiores também.

Figura 2 - Forma padrão do sistema de segunda ordem.

2.2 Ações de Controle

Em sistemas de MF, algumas ações de controle são implementadas para que os dispositivos controladores interfiram no funcionamento da planta com o objetivo de fazer com que a saída do processo atinja o valor desejado. Essa ação é feita através da comparação do valor prático de saída com o valor teórico (SP), que é pré-definido. Essa comparação resulta em um erro que, para cada ação de controle, terá uma forma individual de ser usado para manipular a planta. Cada ação de controle permite melhorar os diferentes parâmetros no comportamento do sistema.

Dentre as ações de controle mais importantes que atuam em controladores industriais estão: proporcional (P), integral (I), derivativa (D) e suas variáveis resultantes da combinação dessas três. Para esse experimento, foi considerado um sistema de 2ª ordem representado pelo diagrama de bloco.

Figura 3 - Diagrama de bloco de sistema de 2ª ordem.

Onde

$$E(s) = SP - Y(s)$$

$$Y(s) = G(s)E(s)$$

Entretanto, existe um problema no procedimento de realimentação usado nesse experimento. Na medida em que o valor prático de saída fica próximo do valor teórico de saída, o erro diminui ao ponto de não impor nenhuma interferência no sistema, causando um erro de regime, mesmo que pequeno.

Figura 4 - Erro enviado ao sistema.

Ao se aplicar o sinal do erro diretamente na entrada do sistema significa, na teoria, impor ao sistema uma ação de controle do tipo proporcional com ganho $K_p=1$. Logo, surge a figura do controlador dentro da malha.

Figura 5 - Diagrama de bloco de sistema de 2ª ordem com controlador.

2.2.1. Controlador Proporcional (P)

Para um controlador proporcional, a relação entre sinal de saída M(s) e erro que atua E(s) é dada por:

$$M(s) = K_p E(s)$$

O controle proporcional pode ser visto como uma relação proporcional entre K_p e o ganho ajustável, isso é, com o aumento do valor do K_p o erro enviado ao sistema é amplificado, consequentemente o erro de regime diminui. Entretanto, diminuir o erro de regime não significa que será eliminado. Para que isso ocorra, o valor do K_p deve ser muito alto, o que pode levar o sistema se fragilizar no que diz respeito à estabilidade.

2.2.2. Controlador Integral (I)

Para um controlador integrador, a relação entre sinal de saída e erro que atua é dada por:

$$M(s) = \frac{K_i E(s)}{s}$$

Esse controle tem uma função que armazena os valores entre o erro e o valor teórico, similar a uma integral entre duas curvas. A medida que a saída da planta se

aproxima do set point, o erro diminui, mas o sinal que controla continua grande e proporcional ao somatório das diferenças entre cada ponto das duas curvas. Isso permite que o erro de regime seja igual a zero em um determinado instante.

Ao ser aplicado, esse controlador aumenta a ordem do sistema, podendo causar instabilidade, por isso é incomum a aplicação da ação integral de forma isolada.

2.2.3. Controlador Derivativo D

Para um controlador derivativo, a relação entre sinal de saída e erro que atua é dada por:

$$M(s) = sK_dE(s)$$

O controlador derivativo possui uma propriedade antecipatória, uma vez que a derivada de uma função está relacionada com a tendência de variação da mesma função em um instante de tempo. Logo, utilizar a derivada do erro como ação de controle implica em uma ação baseada na tendência de evolução do erro, dessa forma, o sistema reage rapidamente a variações na saída. Além disso, ao observar a equação acima é possível deduzir que a ação derivativa é nula quando o sistema atingir o regime permanente, pois o erro se torna constante.

Com isso, controladores derivativos torna o sistema muito suscetível a variações de alta frequência na saída, pois esses sinais possuem um valor de derivada muito alto, fazendo com que o controlador amplifique sinais de ruído. Para corrigir esse problema, o controlador derivativo geralmente é utilizado acompanhado de um filtro passa-baixa.

2.2.4. Controlador Proporcional e Integral (PI)

Combinando as ações proporcional e integral, temos o controlador PI com a função de transferência:

$$M(s) = E(s)(K_p + \frac{K_i}{s})$$

O PI é normalmente aplicado em sistemas onde há um erro diferente de zero, pois o controlador P viabiliza a utilização de controladores integrais. Em paralelo, o controlador I permite zerar o erro de regime sem elevar o K_p . Logo, controladores PI são recomendados quando a resposta do sistema possui um transitório aceitável e uma resposta em regime insatisfatória.

Figura 6 - Diagrama de bloco de sistema com controlador PI.

2.2.5. Controlador Proporcional, Integral e Derivativo (PID)

Usando-se das ações proporcionais, integrais e derivativas o controlador PID possui a função de transferência:

$$M(s) = E(s)(K_p + sK_d + \frac{K_i}{s})$$

Não possuindo uma desvantagem clara diante dos já citados, mas melhorando as vantagens de cada ação individual, o PID torna-se o controlador mais utilizado na prática.

Figura 7 - Diagrama de bloco de sistema PID com controlador.

2.2.6. Controlador Proporcional, Integral e Derivativo (PI-D)

Sendo uma variação do PID, onde o controlador derivativo passa a fazer parte da realimentação, tornando a atuação com base no sinal de saída, diferentemente do sinal de erro, com a função de transferência:

$$M(s) = \left(K_p + \frac{K_i}{s}\right)E(s) + K_dY(s)$$

Evitando que ocorra a diferenciação de possíveis variações no SP (podendo gerar sinais de saturação nos atuadores), com configuração

Figura 8 - Diagrama de blocos de sistema PI-D com controlador.

2.3 Sistema de Tanques Acoplados Quanser

Com o uso de um computador e uma placa de aquisição de dados pode ocorrer o controle dos níveis dos tanques acoplados em laboratório, de modo que o computador enviasse sinais elétricos ao modulo de potência, que por sua vez multiplica a tensão por uma variável acionando a bomba.

Os componentes deste sistema de tanques são:

- I. 2 Tanques acoplados da Quanser
- II. 2 Sensores de nível
- III. 1 Bomba
- IV. 1 Reservatório
- V. Módulo de potência VoltPAQ-X1
- VI. Placa de aquisição de dados MultQ da Quanser
- VII. Computador

3 METODOLOGIA

O projeto objetivou o desenvolvimento de um software de interação com a planta de interface gráfica intuitiva, para fácil manipulação do usuário, em linguagem Java com o auxílio do NetBeans de forma que o software passe parâmetros de controle de nível ao servidor, efetuando o controle da coluna de fluido.

A escolha da linguagem Java para elaboração do experimento foi baseada nos critérios:

- I. Linguagem de maior domínio de conhecimento do grupo desenvolvedor;
- II. Maior compatibilidade com sistemas operacionais diversos, viabilizando a crossplataforma;
- III. Rápida prototipagem.

3.1 Software de Controle

Foram solicitados requisitos mínimos para o funcionamento e geração da interface gráfica do software:

 Implementação de controladores P, PI, PD, PID e PI-D em sistemas de segunda ordem.

- II. Analise de sistemas de controle: Estabilidade, desempenho transitório, desempenho em regime permanente.
- III. Estabelecer conexão com servidor do sistema de tanques.
- IV. Implementar travas de segurança para evitar acidentes ou danos aos equipamentos.

Como primeiro layout o usuário vai encontrar a tela de conexão com o servidor dos tanques acoplados.

Figura 9 - Tela de conexão ao servidor.

A tela de conexão monstra o endereço IP do servidor e a porta de comunicação que o usuário deve utilizar, há uma opção de entrada off-line que permite ao usuário efetuar testes sem comunicar-se a bomba d'água, nela haverá um aviso de que o usuário não está conectado a planta.

Figura 10 - Tela de aviso.

3.1.1 Interface de Leitura

A tela de interface de leitura será onde o usuário poderá acompanhar os gráficos de níveis de tanques e também a tensão gerada nas bombas, dentre as modificações realizadas para os níveis dos tanques, agora haverá os gráficos do canal 1 e o SP plotados de acordo com a medição realizada pelos sensores e orientados pelo usuário respectivamente.

Já para a tensão das bombas o usuário poderá verificar a saída calculada e saída tratada.

Figura 11 - Interface de leitura.

3.2 Sinais Plotados

Para o experimento foi utilizado em todos os testes o sinal degrau em sua entrada, sempre tentando atingir o melhor tempo de acomodação no menor tempo de subida para todos os controladores.

3.2.1 Controlador P

Utilizando o controlador P com os seguintes parâmetros:

$$K_p = 2$$

SetPoint	Tpico	Мр% Мр
0.0cm - 15.0cm	31.75s	6.13%- 0.92cm

Figura 12 - Valores de pico e overshoot.

Tr 100%	Tr 95%	Tr 90%	Ts 2%	Ts 5%	Ts 10%	
28.31s	22.10s	19.07s	32.99s	65.04s	46.75s	

Figura 13 - Tempo de subida e acomodação.

Figura 14 - Nível do tanque e tensão na bomba para controlador P.

3.2.2 Controlador PI

Utilizando o controlador PI com os seguintes parâmetros:

$$K_p = 2 e K_i = 0.05$$

SetPoint	Tpico	Мр% Мр
0.0cm - 15.0cm	44.29s	34.06%- 5.11cm

rigura 13 - vaiores de pico e overshood

Tr 100%	Tr 95%	Tr 90%	Ts 2%	Ts 5%	Ts 10%
28.71s	22.06s	19.17s	158.34s	106.80s	Ts 10% 84.28s

Figura 16 - Tempo de subida e acomodação.

Figura 17 - Nível do tanque e tensão na bomba para controlador PI.

3.2.3 Controlador PD

Utilizando o controlador PD com os seguintes parâmetros:

$$K_p = 2 e K_d = 0.005$$

SetPoint	Tpico	Мр% Мр	
0.0cm - 15.0cm	31.76s	6.07% - 0.91cm	

Figura 18 - Valores de pico e overshoot.

20 21 22 01 10 21 45 20 40 40 45 20 45 20 45 20 45 20 45 20 4	Tr 100%	Tr 95%	Tr 90%	Ts 2%	Ts 5%	Ts 10%
26.315 22.015 19.215 43.295	28.31s	22.01s	19.21s			45.29s

Figura 20 - Tempo de subida e acomodação.

Figura 19 - Nível do tanque e tensão na bomba com controlador PD.

3.2.4 Controlador PID

Utilizando o controlador PID com os seguintes parâmetros:

$$K_p = 2 e K_i = 0.05 e K_d = 0.005$$

SetPoint	Tpico	Мр% Мр	
0.0cm - 15.0cm	32.51s	9.18%- 1.38cm	

Figura 21 - Valores de pico e overshoot.

Tr 100%	Tr 95%	Tr 90%	Ts 2%	Ts 5%	Ts 10%
28.37s	22.11s	19.17s	76.78s	47.31s	43.52s

Figura 22 - Tempo de subida e acomodação.

Figura 23 – Nível do tanque e tensão na bomba com controlador PID.

Foi utilizado também o controlador PID com outros parâmetros, sendo eles:

$$K_p = 2 e K_i = 0.01 e K_d = 0.001$$

SetPoint	Tpico	Мр% Мр
0.0cm - 15.0cm	31.83s	6.38%- 0.96cm

Figura 24 - Valores de pico e overshoot.

Tr 100%	Tr 95%	Tr 90%	Ts 2%	Ts 5%	Ts 10%
28.55s	21.94s	19.14s	33.62s	98.00s	45.64s

Figura 25 - Tempo de subida e acomodação.

Figura 26 - Nível de tanque e tensão na bomba com controlador PID.

3.2.5 Controlador PI-D

Utilizando o controlador PI-D com os seguintes parâmetros:

$$K_p = 2 \ e \ K_i = 0.05 \ e \ K_d = 0.005$$

SetPoint	Tpico	Мр% Мр
0.0cm - 15.0cm	33.10s	9.18% - 1.38cm

Figura 27 - Valores de pico e overshoot.

Tr 100%	Tr 95%	Tr 90%	Ts 2%	Ts 5%	Ts 10%	
28.50s	22.12s	19.00s		60.25s	43.28s	

Figura 28 - Tempo de subida e acomodação.

Figura 29 - Nível do tanque e tensão na bomba com controlador PI-D.

3.2.6 Controlador PI-D com filtro

Utilizando um controlador PI-D com filtro derivativos com os seguintes parâmetros:

$$K_p = 2 e K_i = 0.05 e K_d = 0.005$$

SetPoint	Tpico	Мр% Мр
0.0cm - 15.0cm	33.10s	9.18% - 1.38cm
0.0cm - 15.0cm	34.08s	13.04% - 1.96cm

Figura 30 - Valores de pico e overshoot antes e depois do filtro.

Tr 100%	Tr 95%	Tr 90%	Ts 2%	Ts 5%	Ts 10%
28.50s	22.12s	19.00s		60.25s	43.28s
28.15s	22.00s	19.13s	84.35s	54.62s	35.48s

Figura 31 - Tempo de subida e acomodação antes e depois do filtro.

Figura 32 - Nível do tanque e tensão na bomba com controlador PI-D com filtro.

3.3 Sistemas de Travas

Foi locado em código um sistema de travamentos de forma que não permita o envio de tensões superiores as máximas suportadas pela bomba d'água. Além disso, foram implementadas travas para evitar que os tanques transbordem o fluido, e para evitar que a bomba bombeie ar.

4 CONCLUSÃO

A prática foi útil para o aprendizado sobre o comportamento das ações de controle, principalmente, ao variar os parâmetros K_p , K_i e K_d dos controladores. Ao modificar os valores dessas variáveis, o sistema obteve boas respostas para valores próximos dos valores padrões, tanto para erro de regime quanto erro transitório, entretanto, para valores muito diferentes desses valores padrões, a resposta foi inadequada.

Ao aumentar o K_d observa-se uma melhora no overshoot, mas este mesmo aumento prejudicou o tempo de acomodação. Ao aumentar o K_i foi percebe-se que o erro de regime do sistema tende a ser eliminado, porém prejudica o regime transitório.

Por fim, ao aumentar o K_p , ocorre a diminuição do erro de regime, mas pode levar a instabilidade do sistema.

Portanto, em um sistema de segunda ordem, fica mais difícil chegar a valores de K_p , K_i e K_d que equilibrem ambos os regimes, permanente e transitório.

REFERÊNCIAS

BAZANELLA, A.S. e SILVA JR, J.M.G. Sistemas de Controle: Princípios e Métodos de Projeto. Editora UFRGS, 2005.

UFRGS. Descrição de Sinais Aleatórios. Disponível em:

http://www.ece.ufrgs.br/~fetter/ele00071/dec/signals.pdf. Acesso em: 11 Out. 2016.

UNICAMP. Função Degrau Unitário. Disponível em:

http://www.dt.fee.unicamp.br/~www/ea612/node32.html. Acesso em: 10 Out. 2016.