Μη Ντετερμινισμός και ΝΡ-Πληρότητα

Δημήτρης Φωτάκης

Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Εθνικό Μετσόβιο Πολυτεχνείο

Μη Ντετερμινιστικές Μηχανές Turing

- Μη ντετερμινιστική Μηχ. Turing (NTM) $N = (Q, \Sigma, \Delta, q_0, F)$
 - Q σύνολο καταστάσεων.
 - **Σ** αλφάβητο εισόδου και $\Gamma = \Sigma \cup \{ \bot \}$ αλφάβητο ταινίας.
 - $\mathbf{q}_0 \in \mathbf{Q}$ αρχική κατάσταση.
 - F ⊆ Q τελική κατάσταση (εστιάζουμε σε YES και NO).
 - $\Delta \subseteq ((Q \setminus F) \times \Gamma) \times (Q \times \Gamma \times \{L, R, S\})$ σχέση μετάβασης. (κατάσταση q, διαβάζει α) \rightarrow σύνολο ενεργειών (νέα κατάσταση q', γράφει α', κεφαλή μετακινείται L, R ή S).
- (Αρχική, τελική) διαμόρφωση όπως για DTM.
- Για κάθε τρέχουσα διαμόρφωση, υπάρχουν καμία ή περισσότερες επιτρεπτές επόμενες διαμορφώσεις όπου μπορεί DTM να μεταβεί!

Μη Ντετερμινιστικές Μηχανές Turing

- □ Υπολογισμός NTM: **σχέση** |- και σχέση |-* .
 - |- : διαμορφώσεις που προκύπτουν από τρέχουσα σε ένα βήμα.
 - |-*: διαμορφώσεις που προκύπτουν σε κάποιο #βημάτων.
- Υπολογισμός NTM αναπαρίσταται με δέντρο:
 - Ρίζα: αρχική διαμόρφωση (q₀, x).
 - Κόμβοι: όλες οι διαμορφώσεις που μπορεί να προκύψουν από αρχική διαμόρφωση (q₀, x).
 - Απόγονοι κόμβου: όλες οι διαμορφώσεις που προκύπτουν με βάση σχέση μετάβασης Δ.
 - Φύλλα: όλες οι τελικές διαμορφώσεις που προκύπτουν από αρχική.
 - Βαθμός σταθερός! Χβτγ, δυαδικό δέντρο.
 - Υπολογισμός DTM: μονοπάτι!

 (q_0,x)

Αποδοχή και Απόρριψη

- ΝΤΜ Ν έχει πολλούς κλάδους υπολογισμού («εκδοχές») που μπορεί να καταλήγουν σε διαφορετικό αποτέλεσμα.
 - Αποδέχεται αν τουλάχιστον ένας κλάδος αποδέχεται: «δικτατορία της αποδοχής»!
 - N(x) = YES avv $(q_0, \underline{x_1}x_2 \dots x_n) \vdash^* (YES, \dots)$
- Γλώσσα L NTM-αποκρίσιμη ανν υπάρχει NTM N, $\forall x \in \Sigma^*$:

 (q_0, x)

- ολοι οι κλάδοι της N(x) τερματίζουν, και $x \in L \Leftrightarrow N(x) = \text{YES}$
- □ Γλώσσα L NTM-αποδεκτή ανν υπάρχει NTM N:

 $\forall x \in \Sigma^*, x \in L \Leftrightarrow N(x) = \text{YES}$

- Ενδέχεται κλάδοι N(x) να μην τερματίζουν.
- "Όταν x ∈ L, τουλ. ἐνας τερματίζει σε YES.
- 'Όταν x ∉ L, ὁσοι τερματίζουν δίνουν ΝΟ.

Μη Ντετερμινιστική Χρονική Πολυπλοκότητα

- Χρονική πολυπλοκότητα NTM N:
 - **Α**ὑξουσα συνάρτηση $t: \mathbb{N} \to \mathbb{N}$ ώστε για κάθε x, |x| = n, όλοι οι κλάδοι της $\mathbb{N}(x)$ έχουν μήκος $\leq t(n)$.
 - Μέγιστο ὑψος δέντρου υπολογισμού Ν με εἰσοδο μήκους n.
- Μη ντετερμινιστική χρονική πολυπλοκότητα προβλ. Π:
 - Χρονική πολυπλοκότητα «ταχύτερης» NTM που λύνει Π.
- Κλάση πολυπλοκότητας
 - $\mathbf{NTIME}[t(n)] \equiv \{\Pi: \Pi$ λύνεται σε μη ντετερμινιστικό χρόνο $\mathrm{O}(t(n))\}$
- Όχι ρεαλιστικό μοντέλο,αλλά θεμελιώδες γιαΘεωρία Πολυπλοκότητας!

Χρονική Πολυπλ. = Ύψος Δέντρου

Μη Ντετερμινιστικός Υπολογισμός

- Ισοδύναμοι τρόποι για μη ντετερμινιστικό υπολογισμό:
 - N(x) «μαντεύει» (πάντα σωστά) κλάδο που καταλήγει σε YES και ακολουθεί μόνο αυτόν (επιβεβαιώνει YES).
 - Αναζήτηση x σε πίνακα A με n στοιχεία:
 «Μάντεψε» θέση k, και επιβεβαίωσε ότι A[k] = x.
 - Hamilton Cycle: «Μάντεψε» μετάθεση κορυφών και επιβεβαίωσε ότι δίνει HC.
 - □ k-SAT: «Μάντεψε» αποτίμηση και επιβεβαίωσε ότι ικανοποιεί φ.
 - Στο βήμα k, N(x) «εκτελεί» / βρίσκεται σε όλες τις διαμορφώσεις σε απόσταση k από αρχική ταυτόχρονα.
 - □ «Μηχανιστική» προσομοίωση νοημοσύνης.
 - Χρόνος = ὑψος δέντρου υπολογισμού.

Ντετερμινιστική Προσομοίωση

- □ Ντετερμινιστική προσομοίωση ΝΤΜ με εκθετική επιβάρυνση.
 - Προσομοίωση δέντρου υπολογισμού με BFS λογική.
 - Για t = 1, 2, ..., t(|x|), προσομοίωση όλων των κλάδων υπολογισμού N(x) μήκους $\leq t$.
 - Τερματισμός YES: πρώτος κλάδος που καταλήγει σε YES.
 - Τερματισμός NO: πρώτο t που όλοι οι κλάδοι τερματίζουν σε NO.
 - Μη τερματισμός: κανένας κλάδος σε YES και κάποιος δεν τερματίζει.
- □ NTM-αποκρίσιμο ανν DTM-αποκρίσιμο. (Θέση Church-Turing)
- ΝΤΜ-αποδεκτό ανν DTM-αποδεκτό.

NTIME Kai DTIME

- Ντετερμινιστική προσομοίωση NTM με εκθετική επιβάρυνση.
 - Για t = 1, 2, ..., t(|x|), προσομοίωση όλων των κλάδων υπολογισμού N(x) μήκους $\leq t$.
 - Τερματισμός YES: πρώτος κλάδος που καταλήγει σε YES.
 - Τερματισμός ΝΟ: πρώτο t που όλοι οι κλάδοι τερματίζουν σε ΝΟ.
- \square Αν ΝΤΜ χρόνου t(n) και με βαθμό μη ντετερμινισμού d, $t^{(n)}$ χρόνος προσομοίωσης: $\sum O(d^t) = O(d^{t(n)+1})$
- Κατά συνέπεια:

 $\mathbf{NTIME}[t(n)] \subseteq \bigcup_{d>1} \mathbf{DTIME}[d^{t(n)}]$

Η Κλάση ΝΡ

- Προβλήματα που λύνονται σε πολυωνυμικό μη ντετερμινιστικό χρόνο: $\mathbf{NP} \equiv \bigcup_{k>0} \mathbf{NTIME}[n^k]$
 - «YES-λύση» μπορεί να «μαντευθεί» σε πολυωνυμικό χρόνο (άρα πολυωνυμικού μήκους) και να επιβεβαιωθεί σε πολυωνυμικό **ντετερμινιστικό** χρόνο.
 - (k-)SAT, κὑκλος Hamilton, TSP, Knapsack, MST, Shortest Paths, Max Flow, ... ανήκουν στην κλάση **NP**.
 - Χρειάζεται προσπάθεια για να σκεφθείτε πρόβλημα εκτός ΝΡ!
- Κλάση ΝΡ κλειστή ως προς ένωση, τομή, και πολυωνυμική αναγωγή.
 - Πιστεύουμε ότι κλάση ΝΡ δεν είναι κλειστή ως προς συμπλήρωμα (ασυμμετρία υπέρ αποδοχής).
 - **coNP**: αντίστοιχη κλάση με ασυμμετρία υπέρ απόρριψης.

ΝΡ και Συνοπτικά Πιστοποιητικά

- \square Σχέση $R \subseteq \Sigma^* \times \Sigma^*$ είναι:
 - lacktriangle πολυωνυμικά ισορροπημένη αν $\forall (x,y) \in R, |y| \leq \operatorname{poly}(|x|)$
 - πολυωνυμικά αποκρίσιμη αν (x, y) ∈ R ελέγχεται (ντετερμινιστικά) σε πολυωνυμικό χρόνο.
- \square $L \in \mathbb{NP}$ ανν υπάρχει πολυωνυμικά ισορροπημένη και πολυωνυμικά αποκρίσιμη σχέση $R \subseteq \Sigma^* \times \Sigma^*$ ώστε

$$L = \{x \in \Sigma^* : \exists y \in \Sigma^*, (x, y) \in R\}$$

- y αποτελεί «σύντομο» και «εύκολο» να ελεγχθεί πιστοποιητικό ότι x ∈ L.
- Αν υπάρχει τέτοια σχέση R, υπάρχει NTM N:
 - $\forall x \in L, N(x) «μαντεύει» πιστοποιητικό y και επιβεβαιώνει ότι <math>(x, y) \in R$ σε πολυωνυμικό χρόνο.

ΝΡ και Συνοπτικά Πιστοποιητικά

 \square $L \in \mathbb{NP}$ ανν υπάρχει πολυωνυμικά ισορροπημένη και πολυωνυμικά αποκρίσιμη σχέση $R \subseteq \Sigma^* \times \Sigma^*$ ώστε

$$L = \{x \in \Sigma^* : \exists y \in \Sigma^*, (x, y) \in R\}$$

- □ Av L ∈ NP, θεωρούμε NTM N που αποφασίζει L.
 - Πιστοποιητικό y αποτελεί κωδικοποίηση μη ντετερμινιστικών επιλογών N(x) που οδηγούν σε YES.

$$R = \{(x,y) : x \in L$$
 και y κωδικοποιεί κλάδο $N(x)$ με YES $\}$

- $|y| \le \text{poly}(|x|)$ γιατί Ν πολυωνυμικού χρόνου.
- (x, y) ∈ R ελέγχεται πολυωνυμικά ακολουθώντας (μόνο)
 κλάδο υπολογισμού N(x) που κωδικοποιείται από y.
 - \square (x, y) \in R ανν ο y-κλάδος N(x) καταλήγει σε YES.

ΝΡ και Συνοπτικά Πιστοποιητικά

- Η κλάση ΝΡ περιλαμβάνει προβλήματα απόφασης:
 - Για κάθε YES-στιγμιότυπο, υπάρχει «συνοπτικό» πιστοποιητικό που ελέγχεται «εὐκολα» (πολυωνυμικά).
 - Ένα τέτοιο πιστοποιητικό μπορεί να είναι
 δύσκολο να υπολογισθεί.
 - Δεν απαιτείται κάτι αντίστοιχο για NO-στιγμιότυπα.
- Κλάση conp περιλαμβάνει προβλήματα απόφασης που έχουν αντίστοιχο πιστοποιητικό για ΝΟ-στιγμιότυπα.
 - Av πρόβλημα $\Pi \in \mathbb{NP}$, πρόβλημα $\mathsf{co}\Pi = \{ x : x \notin \Pi \} \in \mathsf{coNP}$.
- Προβλήματα στο P ανήκουν NP
- Προβλήματα στο P ανήκουν conP
- $ightarrow
 ightarrow \mathrm{P} \subseteq \mathrm{NP} \cap \mathrm{coNP}$

ΝΡ-Πληρότητα

- □ Πρόβλημα Π είναι **ΝΡ**-πλήρες αν Π \in **ΝΡ** και κάθε πρόβλημα Π' \in **ΝΡ** ανάγεται πολυωνυμικά στο Π (Π' \leq_P Π).
 - Π είναι από τα δυσκολότερα προβλήματα στο NP (όσον αφορά στον υπολογισμό πολυωνυμικού χρόνου).
- \square Π κάποιο **NP**-πλήρες πρόβλημα: $\Pi \in \mathbf{P}$ ανν $\mathbf{P} = \mathbf{NP}$.
 - Av P = NP, πολλά σημαντικά προβλήματα ευεπίλυτα!
 - Αν P ≠ NP (ὁπως ὁλοι πιστεύουν), υπάρχουν προβλήματα στο NP που δεν λύνονται σε πολυωνυμικό χρόνο!
 - Εξ' ορισμού, τα ΝΡ-πλήρη ανήκουν σε αυτή την κατηγορία.

NP

Πλήρη

ΝΡ-Πληρότητα

- Αντίστοιχα με conp και conp-πλήρη προβλήματα.
- \square Έστω προβλήματα Π_1 , $\Pi_2 \in \mathbb{NP}$ ώστε $\Pi_1 \leq_P \Pi_2$. Ποιες από τις παρακάτω δηλώσεις αληθεύουν;
 - 1. $\Pi_1 \in \mathbf{P} \Rightarrow \Pi_2 \in \mathbf{P}$
 - 2. $\Pi_2 \in \mathbf{P} \Rightarrow \Pi_1 \in \mathbf{P}$
 - 3. Π_2 όχι \mathbf{NP} -πλήφες $\Rightarrow \Pi_1$ όχι \mathbf{NP} -πλήφες
 - 4. Π_1 NP-πλήρες $\Rightarrow \Pi_2 \leq_P \Pi_1$

SAT είναι NP-Πλήρες

- □ Ικανοποιησιμότητα (SAT):
 - \blacksquare Δίνεται λογική πρόταση φ σε CNF. Είναι φ ικανοποιήσιμη;
- \square SAT \in **NP**.
 - «Μαντεύουμε» ανάθεση τιμών αλήθειας α σε μεταβλητές φ.
 - **Ε**λέγχουμε ότι ανάθεση α ικανοποιεί φ .
- Θεώρημα Cook (1971):
 - SAT είναι **NP**-πλήρες.
 - Υπολογισμός οποιασδήποτε NTM πολυωνυμικού χρόνου N με είσοδο x κωδικοποιείται σε CNF πρόταση φ_{N,x}:
 - \square $\phi_{\mathsf{N},\mathsf{x}}$ έχει μήκος πολυωνυμικό σε $|\mathsf{x}|$ και $|\mathsf{N}|$.
 - \square $\varphi_{N,x}$ υπολογίζεται σε χρόνο πολυωνυμικό σε |x| και |N|.
 - \Box $\phi_{N,x}$ είναι ικανοποιήσιμη ανν N(x) = YES.

SAT είναι NP-Πλήρες

- □ Έστω ΝΤΜ Ν p(n)-χρόνου και είσοδος x, |x| = n.
- Για κωδικοποίηση N(x), εισάγουμε 3 είδη μεταβλητών:
 - Q[k, t]: N(x) βρίσκεται στην κατάσταση q_k την στιγμή t.
 - H[j, t]: κεφαλή βρίσκεται στη θέση j την στιγμή t.
 - S[j, i, t]: θέση j περιέχει σύμβολο s_i την στιγμή t. $0 \le t \le p(n), 0 \le k \le r, -p(n) \le j \le p(n), 0 \le i \le |\Gamma|$
- Για κωδικοποίηση N(x), εισάγουμε 7 ομάδες όρων:
 - G₁: N(x) βρίσκεται σε μία μόνο κατάσταση κάθε στιγμή.
 - **G**₂: κεφαλή σε μία μόνο θέση κάθε στιγμή.
 - G₃: κάθε θέση ταινίας περιέχει ένα μόνο σύμβολο κάθε στιγμή.
 - \blacksquare G_4 : N(x) ξεκινά από αρχική διαμόρφωση (q_0 , x).
 - \blacksquare G₅: N(x) βρίσκεται σε κατάσταση YES την στιγμή p(n).

SAT είναι NP-Πλήρες

- Για κωδικοποίηση N(x), εισάγουμε 7 ομάδες όρων:
 - G₆: για κάθε t, μόνο το σύμβολο στη θέση όπου βρίσκεται η κεφαλή μπορεί να αλλάξει στην επόμενη στιγμή t+1.
 - G₇: για κάθε t, η διαμόρφωση στην επόμενη στιγμή t+1
 προκύπτει από την τρέχουσα διαμόρφωση με εφαρμογή
 της σχέσης μετάβασης Δ.
- lacksquare Τελικά: $arphi_{N,x}=G_1\wedge G_2\wedge G_3\wedge G_4\wedge G_5\wedge G_6\wedge G_7$
 - $\phi_{N,x}$ έχει μήκος και κατασκευάζεται σε χρόνο $O(p^3(n))$. από περιγραφή N και είσοδο x.
 - $\phi_{N,x}$ είναι ικανοποιήσιμη ανν N(x) = YES.

Αποδείξεις ΝΡ-Πληρότητας

- Απόδειξη ότι πρόβλημα (απόφασης) Π είναι NP-πλήρες:
 - Αποδεικνύουμε ότι Π ∈ NP (εύκολο, αλλά απαραίτητο!).
 - Επιλέγουμε (κατάλληλο) γνωστό NP-πλήρες πρόβλημα Π΄.
 - **Ανάγουμε** πολυωνυμικά το Π' στο Π ($\Pi' \leq_P \Pi$):
 - Περιγράφουμε κατασκευή στιγμιότυπου R(x) του Π
 από στιγμιότυπο x του Π'.
 - Εξηγούμε ότι R(x) υπολογίζεται σε πολυωνυμικό χρόνο.
 - □ Αποδεικνύουμε ότι x ∈ Π' ⇔ R(x) ∈ Π.
- Αναγωγή με γενίκευση.
 - Π αποτελεί γενίκευση του Π΄, και προφανώς Π είναι τουλάχιστον τόσο δύσκολο όσο το Π΄.

Ακολουθία Αναγωγών

3-SAT είναι NP-Πλήρες

- 3-SAT: λογική πρόταση φ σε 3-CNF. Είναι φ ικανοποιήσιμη;
- □ 3-SAT ∈ NP (ὁπως και SAT). Θδο SAT ≤_P 3-SAT.
 - Έστω πρόταση $\psi = c_1 \wedge ... \wedge c_m$ σε CNF.
 - Κατασκευάζουμε $φ_{\psi}$ σε 3-CNF αντικαθιστώντας κάθε όρο $c_j = \ell_{j_1} \lor \ldots \lor \ell_{j_k}, \, k \ge 4, \, \mu \epsilon \, \text{όρο}$ $c'_j = (\ell_{j_1} \lor \ell_{j_2} \lor z_{j_1}) \land (\neg z_{j_1} \lor \ell_{j_3} \lor z_{j_2}) \land (\neg z_{j_2} \lor \ell_{j_4} \lor z_{j_3}) \land \ldots$ $\land (\neg z_{j_{k-4}} \lor \ell_{j_{k-2}} \lor z_{j_{k-3}}) \land (\neg z_{j_{k-3}} \lor \ell_{j_{k-1}} \lor \ell_{j_k})$
 - lacksquare \mathbf{c}_j ικανοποιήσιμος. Αν ℓ_p πρώτο αληθές literal c_j , θέτουμε $\mathbf{z}_{j_i} = egin{cases} 1 & \mathbf{αv} \ i < p-1 \\ 0 & \mathbf{αv} \ i \geq p-1 \end{cases}$
 - lacktriangle Άρα $oldsymbol{arphi}_{oldsymbol{w}}$ ικανοποιήσιμη ανν $oldsymbol{w}$ ικανοποιήσιμη.
 - \blacksquare Και βέβαια, κατασκευή φ_w σε πολυωνυμικό χρόνο.

3-SAT(3) είναι NP-Πλήρες

- □ 3-SAT(3): στην φ κάθε μεταβλητή εμφανίζεται ≤ 3 φορές:
 - Είτε ≤ 1 χωρίς άρνηση και ≤ 2 με άρνηση, είτε ≤ 2 χωρίς άρνηση και ≤ 1 με άρνηση.
- - **Ε** Έστω πρόταση $\psi = c_1 \wedge ... \wedge c_m$ σε 3-CNF.
 - Arr μεταβλητή x που εμφανίζεται k > 3 φορές, αντικαθιστούμε κάθε εμφάνιση x με διαφορετική μεταβλητή $x_1, x_2, ..., x_k$.
 - Προσθέτουμε όρους που ικανοποιούνται ανν οι x₁, x₂, ..., x_k έχουν ίδια τιμή αλήθειας (εμφανίσεις ίδιας μετ/τής x):

$$(\neg x_1 \lor x_2) \land (\neg x_2 \lor x_3) \land \cdots \land (\neg x_{k-1} \lor x_k) \land (\neg x_k \lor x_1)$$

- **Ε** Έτσι κατασκευάζουμε 3-SAT(3) στιγμιότυπο ψ' :
 - $\square \quad \psi'$ ικανοποιήσιμη ανν ψ ικανοποιήσιμη.

MAX 2-SAT είναι ΝΡ-Πλήρες

- MAX 2-SAT: (μη ικανοποιήσιμη) φ σε 2-CNF και K < #ὁρων.
 Υπάρχει ανάθεση τιμών αλήθειας που ικανοποιεί ≥ K ὁρους;
- \square MAX 2-SAT \in **NP**. $\Theta \delta o$ 3-SAT \leq_P MAX 2-SAT.
 - "Εστω $\mathbf{c_i} = \mathbf{x} \lor \mathbf{y} \lor \mathbf{z}$, $\mathbf{w_i}$ μετ/τή, $(x), (y), (z), (w_i)$ και ομάδα $\mathbf{C'_i}$ 10 2-CNF ὀρων: $(\neg x \lor \neg y), (\neg y \lor \neg z), (\neg z \lor \neg x)$ $(x \lor \neg w_i), (y \lor \neg w_i), (z \lor \neg w_i)$
 - Ανάθεση ικανοποιεί c_i: επιλέγουμε w_i, ικανοποιούνται 7 όροι C'_i.
 - Ανάθεση δεν ικανοποιεί c_i: ικανοποιούνται μόνο 6 όροι C'_i.
 - Έτσι από $\psi = c_1 \wedge ... \wedge c_m$ σε 3-CNF, κατασκευάζουμε $\varphi_{\psi} = C'_1 \wedge ... \wedge C'_m$ σε 2-CNF σε πολυωνυμικό χρόνο.
 - lacktriangle $m{\psi}$ ικανοποιήσιμη ανν υπάρχει ανάθεση τιμών αλήθειας που ικανοποιεί ≥ 7 m όρους της $m{\phi}_{m{w}}$.

- □ Max Independent Set (MIS): Γράφημα G(V, E) και k < |V|. Έχει G ανεξάρτητο σύνολο με $\geq k$ κορυφές;
- □ MIS ∈ **NP**. Θδο 3-SAT \leq_P MIS.
 - Έστω $\psi = c_1 \wedge ... \wedge c_m$ σε 3-CNF. Κατασκευάζουμε G_{ψ} .
 - lacktriangle 'Eva «τρίγωνο» $\mathsf{t_j}$ για κάθε όρο $c_j = \ell_{j_1} \lor \ell_{j_2} \lor \ell_{j_3}$
 - Μια ακμή (x_i, ¬x_i) για κάθε ζευγάρι συμπληρωματικών εμφανίσεων μεταβλητής x_i.

$$\psi = (\neg x_1 \lor x_2 \lor \neg x_3)$$

$$\land (x_1 \lor \neg x_2 \lor x_3)$$

$$\land (x_1 \lor x_2 \lor x_3)$$

$$\land (\neg x_1 \lor \neg x_2)$$

- \square 3-SAT \leq_P MIS (συνέχεια).
 - Έστω $\psi = c_1 \wedge ... \wedge c_m$ σε 3-CNF. Κατασκευάζουμε G_{ψ} .
 - lacktriangle Ένα «τρίγωνο» lacktriangle για κάθε όρο $c_j=\ell_{j_1}\lor\ell_{j_2}\lor\ell_{j_3}$
 - Μια ακμή (x_i, ¬x_i) για κάθε ζευγάρι συμπληρωματικών εμφανίσεων μεταβλητής x_i.
 - Αν ψ ικανοποιήσιμη, από κάθε «τρίγωνο» t_j επιλέγουμε μια κορυφή που αντιστοιχεί σε (κάποιο) αληθές literal όρου c_j.
 - 'Όχι συμπληρωματικά literals ⇒ ανεξάρτητο σύν. m κορυφών.
 - Αν G_ψ έχει ανεξάρτητο σύν. m κορυφών, αυτό έχει μια κορυφή από κάθε «τρίγωνο» t_i και όχι «συμπληρωματικές» κορυφές.
 - Θέτουμε αντίστοιχα literals αληθή: ψ ικανοποιήσιμη.
 - \blacksquare ψ ικανοποιήσιμη ανν G_{ω} έχει ανεξάρτητο συν. \geq ∞ κορυφών.

MIS(4) είναι NP-πλήρες

- \square Πρόταση ψ στιγμιότυπο 3-SAT(3):
 - Κάθε μετ/τή εμφανίζεται ≤ 3 φορές.
 - Είτε ≤ 1 χωρίς άρνηση και ≤ 2 με άρνηση, είτε ≤ 2 χωρίς άρνηση και ≤ 1 με άρνηση.
- Στο γράφημα G_w, μέγιστος βαθμός κορυφής = 4.
- MIS παραμένει NP-πλήρες για γραφήματα με μέγιστο βαθμό 4!

Vertex Cover, Independent Set, kai Clique

- \square Min Vertex Cover \equiv_P Max Independent Set \equiv_P Max Clique.
 - Vertex cover C σε γράφημα G(V, E) ανν independent set V \ C σε γράφημα G ανν clique V \ C σε συμπληρωματικό γράφημα \overline{G} .
- Έστω μη κατευθυνόμενο γράφημα G(V, E), |V| = n.Τα παρακάτω είναι ισοδύναμα:
 - To G έχει vertex cover $\leq k$.
 - To G έχει independent set $\geq n k$.
 - Το συμπληρωματικό \overline{G} έχει clique $\geq n k$.
- Min Vertex Cover
 αποτελεί (απλή) ειδική
 περίπτωση Ακέραιου
 Γραμμικού Προγρ. (ILP):

$$\begin{aligned} & \min \quad \sum_{v \in V} x_v \\ & \text{s.t.} \quad x_v + x_u \geq 1 \quad \forall e = \{v, u\} \in E \\ & x_v \in \{0, 1\} \qquad \forall v \in V \end{aligned}$$

Set Cover

- □ Κάλυμμα Συνόλου (Set Cover):
 - \blacksquare Σύνολο S, υποσύνολα X₁, ..., X_m του S, φυσικός k, 1 < k < m.
 - Υπάρχουν ≤ k υποσύνολα που η ένωσή τους είναι το S.
 - \square «Κάλυψη» του S με \leq k υποσύνολα (από συγκεκριμένα).
- Παράδειγμα:
 - $S = \{1, 2, 3, 4, 5, 6, 7, 8\}$
 - $X_1 = \{1, 2, 3\}$ $X_2 = \{2, 3, 4, 8\}$ $X_3 = \{3, 4, 5\}$ $X_4 = \{4, 5, 6\}$ $X_5 = \{2, 3, 5, 6, 7\}$ $X_6 = \{1, 4, 7, 8\}$
 - Βέλτιστη λύση: X₅, X₆

Set Cover

- Κάλυμμα Συνόλου (Set Cover):
 - Σύνολο S, υποσύνολα X_1 , ..., X_m του S, φυσικός k, 1 < k < m.
 - Υπάρχουν \leq k υποσύνολα που η ένωσή τους είναι το S.
 - «Κάλυψη» του S με \leq k υποσύνολα (από συγκεκριμένα).
- Set Cover αποτελεί γενίκευση του Vertex Cover:
 - Vertex Cover προκύπτει όταν κάθε στοιχείο e ∈ S ανήκει σε (ακριβώς) δύο υποσύνολα Χ_i και Χ_i.
 - S: ακμές γραφήματος με m κορυφές / υποσύνολα.
 - Ακμή $e \in S$ συνδέει κορυφές / υποσύνολα X_i και X_i .

Subgraph Isomorphism

- Subgraph Isomorphism:
 - Γραφήματα $G_1(V_1, E_1)$ και $G_2(V_2, E_2)$, $|V_1| > |V_2|$.
 - Υπάρχει υπογράφημα του G_1 ισομορφικό με το G_2 ;
 - \square Δηλ. είναι το G_2 υπογράφημα του G_1 ;
- Subgraph Isomorphism αποτελεί γενίκευση MIS (Clique):
 - MIS προκύπτει για G₂ ανεξάρτητο σύνολο k κορυφών.
 - Clique προκύπτει για G_2 πλήρες γράφημα k κορυφών.

Ακολουθία Αναγωγών

- \Box 3-χρωματισμός (3-COL): Γράφημα G(V, E). $\chi(G) = 3$;
- □ 3-COL ∈ **NP**. Θδο 3-SAT \leq_{p} 3-COL.
 - Έστω $\psi = c_1 \wedge ... \wedge c_m$ σε 3-CNF. Κατασκευάζουμε G_{ψ} .
 - Κορυφή b και ένα «τρίγωνο» [b, x_i, ¬x_i] για κάθε μετ/τή x_i.
 - lacksquare 'Eva gadget ${f g_j}$ για κάθε όρο $c_j=\ell_{j_1}\lor\ell_{j_2}\lor\ell_{j_3}$
 - Ακμή μεταξύ κάθε literal g_j και της αντίστοιχης κορυφής σε b-τρίγωνο.
 - Κορυφή α και «τρίγωνο» [b, α, C_i] με κάθε g_i.

- \square Θδο ψ ικανοποιήσιμη ανν $\chi(G_{\psi}) = 3$.
 - **Σ**βτγ, υποθέτουμε ότι χρ(b) = **2**, χρ(a) = **1**. Έτσι χ(G_{ψ}) = **3** ανν χρ(C_{j}) = **0** για κάθε gadget g_{j} (όρο c_{j}).
 - **Δ**ν ψ ικανοποιήσιμη, χρ(x_i) = **1** και χρ($\neg x_i$) = **0** αν x_i αληθής, και χρ(x_i) = **0** και χρ($\neg x_i$) = **1** αν x_i ψευδής (βλ. b-τρίγωνα).
 - Aν όρος c_j ικανοποιείται: χρωματίζουμε g_j ώστε χρ $(C_j) = \mathbf{0}$.

- \square Θδο ψ ικανοποιήσιμη ανν $\chi(G_{\psi}) = 3$.
 - **Σ**βτγ, υποθέτουμε ότι χρ(b) = **2**, χρ(a) = **1**. Έτσι χ(G_w) = **3** ανν χρ(C_i) = **0** για κάθε gadget g_i (όρο c_i).
 - **Δ**ν χρ(C_j) = **0** για κάθε gadget g_j πρέπει τουλ. μία από 3 «εισόδους» g_j έχει χρώμα **1** (αντιστοιχεί σε αληθές literal).
 - Θέτουμε x_i αληθές αν $χρ(x_i) = 1$ και $χρ(¬x_i) = 0$ και x_i ψευδές αν $χρ(x_i) = 0$ και $χρ(¬x_i) = 1$.
 - Έτσι ψ ικανοποιείται, αφού υπάρχει τουλ. ένα αληθές literal σε κάθε όρο c_i.

- Τρισδιάστατο Ταίριασμα (3-Dimensional Matching, 3DM).
 - Ξένα μεταξύ τους σύνολα B, G, H, |B| = |G| = |H| = n, και σύνολο τριάδων M ⊆ B × G × H.
 - Υπάρχει Μ' ⊆ Μ, |M'| = n, ὁπου κάθε στοιχείο των Β, G, Η εμφανίζεται μία φορά (δηλ. Μ' καλύπτει όλα τα στοιχεία).

 h_{x0}

- □ 3DM ∈ **NP**. Θδο 3-SAT(3) \leq_p 3DM.
 - Έστω $\psi = c_1 \wedge ... \wedge c_m$ σε 3-CNF(3). Κατασκευάζουμε B_{ψ} , G_{ψ} , H_{ψ} , και M_{ψ} .
 - Για κάθε μετ/τή x, 2 «αγόρια»,
 2 «κορίτσια», 4 «σπίτια»,
 και 4 τριάδες.
 - Τριάδες με h_{x0}, h_{x2} για x (x αληθής).
 - Τριάδες με (h_{x1}, h_{x3}) για ¬x (x ψευδής).

 h_{x3}

- \square 3-SAT(3) \leq_p 3DM.
 - $\Psi = c_1 \wedge ... \wedge c_m$ σε 3-CNF(3). Κατασκ. B_w , G_w , H_w , και M_w .
 - Για κάθε όρο, π.χ. $\mathbf{c} = \mathbf{x} \vee \neg \mathbf{y} \vee \mathbf{z}$, «ζευγάρι» όρου \mathbf{c} («αγόρι» $\mathbf{b}_{\mathbf{c}}$ και «κορίτσι» $\mathbf{g}_{\mathbf{c}}$), και 3 τριάδες:
 - \Box (b_c, g_c, h_{x1}) (ἡ με h_{x3}): επιλογή αν x αληθές.
 - \Box (b_c, g_c, h_{v0}) (ἡ με h_{v2}): επιλογή αν **y** ψευδές. h_{v1}
 - \Box (b_c, g_c, h_{z1}) (ἡ με h_{z3}): επιλογή αν z αληθές.
 - Περιορισμός στον #εμφανίσεων:«σπίτια» επαρκούν για τριάδες όρων.
 - 4η «σπίτια» και 2η+m «ζευγάρια».
 - 2n m «αζήτητα σπίτια»!
 - 2n m «εὐκολα ζευγάρια» που συνδέονται με όλα τα «σπίτια».

- \square 3-SAT(3) \leq_P 3DM.
 - Ακόμη 4 «εὐκολα ζευγάρια» που συνδέονται με όλα τα «σπίτια».

 $\psi = (x \vee y \vee \neg z) \qquad \begin{aligned} x &= F \\ y &= T \\ \wedge (\neg x \vee \neg y \vee z) \qquad z &= T \end{aligned}$

- □ Θδο ψ ικανοποιήσιμη ανν υπάρχει 3DM M' \subseteq M_{ψ}, |M'| = 4n.
- Αν ψ ικανοποιήσιμη:
 - ▼ αληθή μετ/τή x, επιλέγουμε 2 x-τριάδες.
 - Ψευδή μετ/τή x, επιλέγουμε 2 ¬x-τριάδες (2n).
 - Τουλ. ένα αληθές literal σε κάθε όρο της ψ: τουλ. ένα «ελεύθερο σπίτι» για
 «ζευγάρι» κάθε όρου (m).
 - «Αζήτητα σπίτια» καλύπτονται από
 2n m «εὐκολα ζευγάρια».

- □ Θδο ψ ικανοποιήσιμη ανν υπάρχει 3DM M' \subseteq M_{ψ}, |M'| = 4n.
- □ Aν υπάρχει 3DM M' \subseteq M_w, |M'| = 4n:
 - Εστιάζουμε σε 2n+m «δύσκολα ζευγάρια».
 - Επιλέγονται 2n «ζευγάρια» μεταβλητών:
 - □ ∀ μετ/τη x, είτε 2 x-τριάδες, οπότε x αληθής, είτε 2 ¬x-τριάδες, οπότε x ψευδής.
 - Επιλέγονται m «ζευγάρια» όρων:
 - «Ελεύθερο σπίτι» για κάθε όρο.
 - Ανάθεση τιμών αλήθειας
 δημιουργεί τουλάχιστον ένα αληθές literal σε κάθε όρο.
- Bipartite Matching (2DM) \in **P**.

Subset Sum kai Knapsack

- ☐ Subset Sum:
 - \blacksquare Σύνολο φυσικών $A = \{w_1, ..., w_n\}$ και W, 0 < W < w(A).
 - \blacksquare Υπάρχει $\mathsf{A}' \subseteq \mathsf{A}$ με $w(A') = \sum_{i \in A'} w_i = W;$
- Knapsack αποτελεί γενίκευση Subset Sum.
 - Subset sum προκύπτει όταν για κάθε αντικείμενο i,
 μέγεθος(i) = αξία(i) (θεωρούμε μέγεθος σακιδίου = W).

Subset Sum kai Partition

- Partition:
 - **Σ**ύνολο φυσικών $A = \{w_1, ..., w_n\}$ με άρτιο $w(A) = \sum_{i \in A'} w_i$;
 - Υπάρχει A' ⊆ A με w(A') = w(A \ A');
- \square Subset Sum \leq_P Partition.
 - □ Έστω σύνολο A = {w₁, ..., w_n} και W, 0 < W < w(A).</p>
 - Xβτγ, θεωρούμε ότι W ≥ w(A)/2.
 - \blacksquare Σύνολο B = {w₁, ..., w_n, 2W w(A)} με w(B) = 2W.
 - Υπάρχει $A' \subseteq A$ με w(A') = W ανν υπάρχει $B' \subseteq B$ με $w(B') = w(B \setminus B') = W$.
 - □ 'Ενα από τα Β', Β \ Β' είναι υποσύνολο του Α.
- □ Όμως το Subset Sum αποτελεί γενίκευση Partition.
 - Τελικά Subset Sum \equiv_P Partition.

Ακολουθία Αναγωγών

Subset Sum είναι ΝΡ-Πλήρες

- □ Subset Sum \in **NP**. $\Theta \delta o$ 3DM \leq_{P} Subset Sum.
 - Έστω $B = \{b_1, ..., b_n\}$, $G = \{g_1, ..., g_n\}$, $H = \{h_1, ..., h_n\}$, και $M \subseteq B \times G \times H$, |M| = m.
 - Τριάδα $t_i \in M \rightarrow δυαδική συμβ/ρά <math>b_i$ μήκους 3n με 3 «άσσους».
 - □ 1°ς «ἀσσος» σε θέση 1 ως η δηλώνει το «αγόρι».
 - □ 2°ς «ἀσσος» σε θέση n+1 ως 2n δηλώνει το «κορίτσι».
 - □ 3°ς «ἀσσος» σε θέση 2n+1 ως 3n δηλώνει το «σπίτι».
 - \square $\Pi.\chi.$ n = 4. (b₂, g₃, h₁): 0001 0100 0010
 - Υπάρχει 3DM M' \subseteq M, |M'| = n, ανν υπάρχει $B' = \{b_{i_1}, \ldots, b_{i_n}\}$ που οι «άσσοι» των $b_{i_\ell} \in B'$ καλύπτουν όλες τις 3n θέσεις.

Subset Sum είναι NP-Πλήρες

- $3DM \leq_p Subset Sum$.
 - Υπάρχει 3DM M' \subseteq M, |M'| = n, ανν υπάρχει $B' = \{b_{i_1}, \ldots, b_{i_n}\}$ που οι «άσσοι» των $b_{i_\ell} \in B'$ καλύπτουν όλες τις 3η θέσεις.
 - \blacksquare ... ανν σύνολο A = {w₁, ..., w_m} με $w_i = \sum_{j=1}^{3n} b_i(j) 2^{j-1}$ έχει υποσύνολο $A' \subseteq A$ με $w(A) = 2^{3n} - 1$ (;).
 - □ Μπορεί και όχι(!): π.χ. A = { 0011, 0101, 0111 }
 - «Επιπλοκή» <mark>λόγω κρατούμενου</mark> δυαδικής πρόσθεσης.
 - Λύση: ερμηνεύουμε αριθμούς σε βάση m+1 ώστε πρόσθεση m «άσσων» να μην εμφανίζει κρατούμενο.
 - ... ανν σύνολο A = { w_1 , ..., w_m } με $w_i = \sum_{j=1}^{3n} b_i(j)(m+1)^{j-1}$ έχει υποσύνολο $A' \subseteq A$ με $w(A) = ((m+1)^{3n} - 1)/m$.

Ακολουθία Αναγωγών

