

planetmath.org

Math for the people, by the people.

the sphere is indecomposable as a topological space

 $Canonical\ name \qquad The Sphere Is Indecomposable As A Topological Space$

Date of creation 2013-03-22 18:31:45 Last modified on 2013-03-22 18:31:45 Owner joking (16130)

Last modified by joking (16130)

Numerical id 8

Author joking (16130) Entry type Theorem

Classification msc 54F99

Proposition. If for any topological spaces X and Y the n-dimensional sphere \mathbb{S}^n is homeomorphic to $X \times Y$, then either X has exactly one point or Y has exactly one point.

Proof. Recall that the homotopy group functor is additive, i.e. $\pi_n(X \times Y) \simeq \pi_n(X) \oplus \pi_n(Y)$. Assume that \mathbb{S}^n is homeomorphic to $X \times Y$. Now $\pi_n(\mathbb{S}^n) \simeq \mathbb{Z}$ and thus we have:

$$\mathbb{Z} \simeq \pi_n(\mathbb{S}^n) \simeq \pi_n(X \times Y) \simeq \pi_n(X) \oplus \pi_n(Y).$$

Since \mathbb{Z} is an indecomposable group, then either $\pi_n(X) \simeq 0$ or $\pi_n(Y) \simeq 0$.

Assume that $\pi_n(Y) \simeq 0$. Consider the map $p: X \times Y \to Y$ such that p(x,y) = y. Since $X \times Y$ is homeomorphic to \mathbb{S}^n and $\pi_n(Y) \simeq 0$, then p is homotopic to some constant map. Let $y_0 \in Y$ and $H: I \times X \times Y \to Y$ be such that

$$H(0, x, y) = p(x, y) = y;$$

 $H(1, x, y) = y_0.$

Consider the map $F: I \times X \times Y \to X \times Y$ defined by the formula

$$F(t, x, y) = (x, H(t, x, y)).$$

Note that F(0,x,y)=(x,y) and $F(1,x,y)=(x,y_0)$ and thus $X\times\{y_0\}$ is a deformation retract of $X\times Y$. But $X\times Y$ is a sphere and spheres do not have proper deformation retracts (please see http://planetmath.org/EveryMapIntoSphereWhichIsNorentry for more details). Therefore $X\times\{y_0\}=X\times Y$, so $Y=\{y_0\}$ has exactly one point. \square