Advanced Microeconomics I Note 10: Extensive form games

Xiang Han (SUFE)

Fall 2023

Extensive form representation

- A dynamic game generally has a richer set of rules compared to simultaneous move games.
 - Who moves when, what actions each player can take when it is his turn to move, what he knows when he moves
- To study dynamic games, we usually use the extensive form representation: a game tree

- Extensive form: Γ_E
- A set of nodes \mathcal{X} , a set of possible actions \mathcal{A} , and a finite set of players $\{1,2,...,n\}$

- A function $p: \mathcal{X} \to {\mathcal{X} \cup \phi}: p(x)$ is the immediate predecessor of node x.
 - notice that p(x) is unique
- There is a single node x_0 with $p(x_0) = \phi$: the initial node.
- A correspondence $s: \mathcal{X} \to \mathcal{X}$: s(x) is the set of immediate successors of x.
- For any x, its set of predecessors and set of successors are disjoint.
 - No cycles are allowed.
- $T = \{x \in \mathcal{X} : s(x) = \phi\}$: terminal nodes
- $\mathcal{X} \setminus T$: decision nodes

5 / 22

- For each $x \in \mathcal{X}$ and $x' \in s(x)$, the branch connecting x and x' is labeled by an action $a \in \mathcal{A}$.
- For each decision node $x \in \mathcal{X} \setminus \mathcal{T}$, c(x) is the set of actions (choices) available at x.
 - ▶ For $a \in \mathcal{A}$, $a \in c(x)$ if and only if there is $x' \in s(x)$ such that x and x' are connected by a branch labeled by the action a.
 - ▶ If $x', x'' \in s(x)$ and $x' \neq x''$, then the two actions leading to x' and x'' from x cannot be the same.

- An **information set** $H \subseteq \mathcal{X} \setminus T$ is a collection of decision nodes. Each information set is labeled by one player and it represents a circumstance in which this player might be called upon to move.
- Each decision node belongs to one and only one information set. That is, all the information sets form a partition of $\mathcal{X} \setminus \mathcal{T}$.
- If $x, x' \in H$, then c(x) = c(x').
- Then, given an information set H, pick some $x \in H$ and denote C(H) = c(x).
- Let \mathcal{H}_i denote the collection of player i's information sets. Then $\mathcal{H} = \cup_i \mathcal{H}_i$ is the collection of all the information sets.
- Finally, each player i has a (Bernoulli) utility function $u_i: T \to \mathbb{R}$. This finishes the definition of Γ_E .
- The extensive form game Γ_E is finite if \mathcal{X} is finite.
 - ► The game can be infinite due to infinite player set, infinite action set, or infinite time horizon

 Γ_E is an extensive form game with **perfect information** if every information set contains only one decision node. Otherwise it is an extensive form game with **imperfect information**.

However, we maintain the assumption of complete information in this note: the game structure Γ_E is common knowledge.

A simultaneous move game can be represented as an extensive form game with imperfect information.

Example: Prisoner's dilemma game.

Normal form representation:

		S	С
ſ	S	-2,-2	-10, -1
	С	-1,-10	-5, -5

Extensive form representation:

9 / 22

This cannot be overemphasized: In an extensive form game, a strategy is a complete contingent plan that specifies how each player will act in every possible circumstance in which he might be called upon to move.

Formally, in the extensive form game Γ_E , a **(pure)** strategy for player i is a function $s_i : \mathcal{H}_i \to \mathcal{A}$ such that $s_i(H) \in C(H)$ for all $H \in \mathcal{H}_i$.

Given any extensive form game, there is a unique normal form representation.

Example: find the normal form of the following game

In an extensive form game, a player can also play mixed strategies, as in normal form games. Additionally, a player has another way to randomize: he can randomize separately over the possible actions at each of his information sets. This is called a **behavior strategy**.

These two types of randomizations are equivalent in finite games with **perfect recall** (Kuhn, 1953).

A player has perfect recall if he never forgets what he once knew.

In analyzing dynamic games, we usually consider behavior strategies instead of mixed strategies.

Subgame perfection

- A natural starting point of solving a dynamic game is to find its Nash equilibria.
 - Given a dynamic game, we can (completely) represent this game using an extensive form.
 - Once the players' strategies are specified, we can derive a normal form representation of this game and apply the solution concept of Nash equilibrium.
- However, there is an important issue in this approach: the credibility of strategies in the NE of a dynamic game.

Example: Entry deterrence game

Extensive form:

Normal form:

	F	Α
Out	0,2	0,2
In	-3,-1	2,1

There are two pure strategy NE: (Out, F) and (In, A), and the first one involves a non-credible threat.

- To rule out such unreasonable equilibrium, generally in the dynamic setting
 we want players' equilibrium strategies to be sequentially rational: the
 equilibrium strategies should specify optimal choice from any point in the
 game onward.
- The principle of sequential rationality is first captured by a stronger solution concept called subgame perfect Nash equilibrium.
- Given an extensive form game Γ_E , a **subgame** is a subset of the game with the following two properties.
 - It begins with an information set containing a single decision node, contains all the decision nodes that are successors of this node, and contains only these nodes.
 - ▶ If a decision node x is in the subgame and $x, x' \in H$ for some information set H, then x' is also in the subgame.

Given an extensive form game Γ_E , a strategy profile σ is a **subgame perfect Nash equilibrium** (SPE) if it induces a Nash equilibrium in every subgame of Γ_E .

Since a game is a subgame of itself, SPE is a refinement on NE.

In the entry deterrence game, (Out, F) is not a SPE because it does not induce a NE in the subgame that starts from the incumbent's decision node (information set).

Example: Entry deterrence II

Three pure strategy NE: ((Out, A), F), ((Out, F), F), ((In, A), A)

Only the last one is SPE.

- Generally, for extensive form games, SPE can be found using the method of backward induction.
 - ▶ Start at the end of the game tree Γ_E , and identify the NE for all the final subgames.
 - Select one NE in each of the final subgames, and replace these final subgames using the payoffs in the selected NE.
 - Repeat this procedure for the reduced game tree, until every move in Γ_E is specified. The resulting collection of moves at each information set constitutes a SPE.

Example: find the SPE in the game on page 3 using backward induction.

Example: Entry deterrence III

Three SPE: ((In, L), S), ((Out, S), L), ((Out, $\frac{2}{9}S + \frac{7}{9}L)$, $\frac{2}{9}S + \frac{7}{9}L$).

Example: the Centipede game

- Basic settings:
 - ► Two players each start with \$1 in front of them.
 - ▶ They alternate saying "stop" or "continue", starting with player 1.
 - ► When a player says "continue", \$1 is taken from his pile and \$2 are added to his opponent's pile.
 - When a player says "stop", the game ends and each player receives the money in his current pile.
 - ▶ The game also ends if both players' piles reach \$100.
- The unique SPE can be easily found using backward induction, and the SPE makes a sharp prediction.

Example: sequential bargaining

- Basic settings:
 - Player 1 and 2 are bargaining over one dollar.
 - ▶ At the beginning of t = 1, player 1 proposes $(s_1, 1 s_1)$.
 - Player 2 either accepts, or rejects the offer (in which case play continues to period 2).
 - ▶ At the beginning of t = 2, player 2 proposes $(s_2, 1 s_2)$.
 - Player 1 either accepts, or rejects the offer (in which case play continues to period 3).
 - At the beginning of t=3, player 1 and 2 receive (s,1-s): the disagreement values, with $s\in(0,1)$.
 - ▶ Players are impatient: discount factor $\delta \in (0,1)$.
- Agreement is immediate in the SPE.