Gradient-Based Monitoring of Learning Machines

Lang Liu¹ Joseph Salmon² Zaid Harchaoui¹

 $^{\rm 1}$ Department of Statistics, University of Washington, Seattle $^{\rm 2}$ IMAG, Univ. Montpellier, CNRS, Montpellier

July 8, 2020

Motivation

Facts of modern learning machines:

- Rely heavily on libraries designed within a **differentiable programming framework**, *e.g.*, PyTorch and TensorFlow.
- Can lead to catastrophic consequences, e.g., Microsoft's chatbot and Uber's self-driving car.

We need to monitor learning machines in an automatic and effortless way!

Goal

We want to design an automatic monitoring tool which

- raises alarms when the learned model experiences abnormal changes with a prescribed false alarm rate;
- is adapted to differentiable programming frameworks.
- has the flexibility to monitor specific model components.

Statistical decision theory:

- 1. Determine the null hypothesis and the alternative hypothesis.
- 2. Propose a test statistic R: the larger R is, the **LESS** likely the null is true.
- 3. Given a target false alarm rate α , choose a threshold $H(\alpha)$.
- 4. Decision rule: $\psi(\alpha) = \mathbf{1}\{R/H(\alpha) > 1\}.$
- 5. How to choose $H(\alpha)$? $\mathbb{P}(\psi(\alpha) = 1 \mid H_0) \leq \alpha$.

Method

Model: $W_k \sim \mathcal{M}_{\theta_k}$ with $\theta_k \in \mathbb{R}^d$ for k = 1, ..., n. Testing the existence of a changepoint:

 $\mathbf{H}_0: \theta_k = \theta_0$ for all $k \longleftrightarrow \mathbf{H}_1:$ after time τ, θ_k jumps from θ_0 to $\theta_0 + \Delta$.

Training: maximum likelihood estimation $\hat{\theta}_n = \arg\max_{\theta \in \mathbb{R}^d, \Delta = 0} \ell_{n,\tau}(\theta, \Delta)$.

Score function: $\hat{S}_{n,\tau} := \nabla_{\Delta} \ell_{n,\tau}(\hat{\theta}_n, \Delta)|_{\Delta=0}$.

Score statistic: for each fixed τ , $R_{n,\tau}:=Q(\hat{S}_{n,\tau})$ is "close" to 0 under the null.

Method

Linear test:

- linear statistic: $R_{\text{lin}} := \max_{\tau} \frac{R_{n,\tau}}{H_{\text{lin}}(\alpha)}$.
- linear test: $\psi_{\text{lin}}(\alpha) := \mathbf{1}\{R_{\text{lin}} > 1\}.$

Adaptation to sparse alternatives—component screening:

- truncated score statistic: $R_{n,\tau}(T) := Q([\hat{S}_{n,\tau}]_T)$.
- $scan\ test:\ \psi_{scan}(lpha):=\mathbf{1}\{R_{scan}>1\}\ ext{with}\ R_{scan}:=\max_{|T|\leq P}\max_{\tau}rac{R_{n,\tau}(T)}{H_{|T|}(lpha)}.$

Autograd-test¹: $\psi(\alpha) := \max\{\psi_{\text{lin}}(\alpha_I), \psi_{\text{scan}}(\alpha_s)\}\$ with $\alpha = \alpha_I + \alpha_s$.

¹Github: https://github.com/langliu95/autodetect.

Simulation

Parameters: pre-change θ_0 ; post-change θ_1 ; differ in p components. Models: linear model and text topic model.

Figure: Power versus magnitude of change. Up: linear model with d = 101, p = 1 (left) and p = 20 (right); Bottom: text topic model with p = 1, (N, M) = (3, 6) (left) and (N, M) = (7, 20) (right).

Application

Detecting shifts in rudeness level

- Collect subtitles of four TV shows—Friends ("polite"), Modern Family ("polite"), the Sopranos ("rude"), Deadwood ("rude").
- Concatenate each pair and detect shifts in rudeness level.

Linear test: raises alarms for all but 5 pairs (false alarm rate 27/32). Scan test: false alarm rate 11/32.

	F1	F2	M1	M2	S1	S2	D1	D2
F1	N	N	N	N	R	R	R	R
F2	Ν	Ν	R	N	R	R	R	R
M1	Ν	R	N	N	R	R	R	R
M2	Ν	Ν	N	N	R	R	R	R
S1	R	R	R	R	N	Ν	R	R
S2	R	R	R	R	N	N	R	R
D1	R	R	R	R	R	R	Ν	R
D2	R	R	R	R	R	R	N	N