Dérivabilité et étude de fonctions

I – Dérivée en un point

1 - Nombre dérivé

Définition 8.1 – Soient f une fonction définie sur intervalle I et $a \in I$ un réel. La fonction f est dite **dérivable en** a si le taux d'accroissement $\frac{f(x)-f(a)}{x-a}$ admet une limite **finie** lorsque x tend vers a. Cette limite est alors appelée **nombre dérivé** de f en a et est notée f'(a):

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}.$$

Exemple 8.2 -

• Montrer que la fonction f définie sur \mathbb{R} par $f(x) = x^2$ est dérivable en 1.

Je calcule le taux d'accroissement :
$$\frac{f(x) - f(1)}{x - 1} = \frac{x^2 - 1^2}{x - 1} = \frac{(x - 1)(x + 1)}{x - 1} = x + 1.$$
 Alors $\lim_{x \to 1} \frac{f(x) - f(1)}{x - 1} = \lim_{x \to 1} x + 1 = 2$ donc la fonction f est dérivable en 1 et $f'(1) = 2$.

• Plus généralement, montrer que la fonction f est dérivable en tout $a \in \mathbb{R}$.

De la même manière,
$$\frac{f(x)-f(a)}{x-a} = \frac{x^2-a^2}{x-a} = \frac{(x-a)(x+a)}{x-a} = x+a.$$
 Alors $\lim_{x\to a} \frac{f(x)-f(a)}{x-a} = \lim_{x\to a} x+a = 2a$ donc la fonction f est dérivable en a et $f'(a) = 2a$.

• Montrer que la fonction f définie sur \mathbb{R}^* par $f(x) = \frac{1}{x}$ est dérivable en tout $a \in \mathbb{R}^*$.

Je calcule le taux d'accroissement :
$$\frac{f(x) - f(a)}{x - a} = \frac{\frac{1}{x} - \frac{1}{a}}{x - a} = \frac{\frac{a - x}{ax}}{x - a} = \frac{a - x}{ax} \times \frac{1}{x - a} = -\frac{1}{ax}.$$
Alors $\lim_{x \to a} \frac{f(x) - f(a)}{x - a} = \lim_{x \to a} -\frac{1}{ax} = -\frac{1}{a^2}$ donc la fonction f est dérivable en a et $f'(a) = -\frac{1}{a^2}$.

Remarque 8.3 -

• En posant h = x - a et sous réserve d'existence, on peut également écrire que

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}.$$

• En pratique, on utilise la définition seulement pour montrer la dérivabilité aux "points à problèmes". En dehors de ces points, on justifie la dérivabilité à l'aide des propriétés de la Section II.

2 – Interprétation géométrique

Soient f une fonction définie sur un intervalle I et $a \in I$. On note A le point de coordonnées (a, f(a))et M le point de coordonnées (x, f(x)) pour $x \in I$.

Alors le taux d'accroissement $\frac{f(x) - f(a)}{x - a}$ correspond au coefficient directeur de la droite (AM).

- Si f est dérivable en a, ce coefficient directeur tend vers f'(a) lorsque x tend vers a. Par ailleurs, la droite (AM) tend vers une position limite qui est la tangente à la courbe représentative de f au point A. Le nombre dérivé f'(a) est alors le coefficient directeur de la tangente à la courbe représentative de f au point A.
- Si la limite du taux d'accroissement est infinie, alors la courbe représentative de f possède en A une tangente verticale d'équation x = a.

On résume cela dans la proposition suivante :

Proposition 8.4

Soient f une fonction définie sur un intervalle I et $a \in I$.

• Si f est dérivable en a, alors f'(a) est le coefficient directeur de la tangente à la courbe représentative \mathcal{C}_f de f au point d'abscisse a. L'équation de cette tangente est donnée par

$$y = f'(a)(x - a) + f(a).$$

• Si $\lim_{x \to a} \frac{f(x) - f(a)}{x - a} = \pm \infty$, alors f n'est pas dérivable en a et la courbe \mathcal{C}_f admet une tangente verticale au point d'abscisse a.

Exemple 8.5 -

• Puisque la fonction f définie sur \mathbb{R} par $f(x) = x^2$ est dérivable en a = 1, de dérivée f'(1) = 2, alors la courbe représentative de f admet au point A de coordonnées (1,1) une tangente d'équation

$$y = 2(x-1) + 1 \iff y = 2x - 1.$$

• Au contraire, la fonction définie sur \mathbb{R} par $f(x) = \sqrt{|x|}$ n'est pas dérivable en 0 et la courbe représentative de f admet une tangente verticale au point de coordonnées (0,0).

3 – Approximation affine

Soient f une fonction définie sur un intervalle I, dérivable en a, \mathcal{C}_f sa courbe représentative et A le point de \mathcal{C}_f d'abscisse a. Au voisinage de a, la tangente en A ressemble beaucoup à la courbe \mathcal{C}_f . On dit que la tangente est une **approximation affine** de la courbe \mathcal{C}_f au voisinage du point d'abscisse a.

Théorème 8.6

Soient f une fonction définie sur un intervalle I et $a \in I$. On suppose que f est dérivable en a. Alors pour h proche de 0, une valeur approchée de f(a+h) est donnée par

$$f(a+h) \approx f(a) + h f'(a)$$
.

Exemple 8.7 – Calculer une valeur approchée de $\sqrt{1.02}$.

Soient $f(x) = \sqrt{x}$ et a = 1. Alors f est dérivable en 1 et $f'(1) = \frac{1}{2}$. Donc

$$\sqrt{1.02} = f(1.02) \approx 1 + \frac{1}{2}(1.02 - 1) = 1.01.$$

Avec une calculatrice, j'obtiens $\sqrt{1.02} = 1.00995$.

Corollaire 8.8

Soient f une fonction définie sur un intervalle I et $a \in I$. Si f est dérivable en a, alors f est continue en a.

Remarque 8.9 – La réciproque n'est pas vraie : une fonction peut être continue en un point sans être dérivable en ce point. Par exemple, la fonction valeur absolue est continue en 0 mais n'y est pas dérivable.

II – Fonction dérivée

Définition 8.10 – Soit f une fonction définie sur un intervalle I. On dit que f est **dérivable sur** I, si f est dérivable en tout point $x \in I$. Alors la fonction

$$f': \begin{array}{ccc} I & \to & \mathbb{R} \\ x & \mapsto & f'(x) \end{array}$$
 avec $\forall a \in I, \quad f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$

est appelée la **fonction dérivée** de la fonction f.

Exemple 8.11 –

- La fonction carrée est dérivable sur \mathbb{R} .
- La fonction inverse est dérivable sur \mathbb{R}^* .
- La fonction $\sqrt{\cdot}$ est dérivable sur $]0, +\infty[$.

1 - Dérivée des fonctions usuelles

Le tableau suivant indique les dérivées des fonctions usuelles. $(k \in \mathbb{R} \text{ est une constante et } n \in \mathbb{N}^* \text{ un entier positif non nul})$

f est définie sur	f(x)	f'(x)	f est dérivable sur
\mathbb{R}	k	0	\mathbb{R}
\mathbb{R}	x	1	\mathbb{R}
\mathbb{R}	x^n	nx^{n-1}	\mathbb{R}
\mathbb{R}^*	$\frac{1}{x}$	$-\frac{1}{x^2}$	ℝ*
\mathbb{R}^*	$\frac{1}{x^n}$	$-\frac{n}{x^{n+1}}$	ℝ*
$[0,+\infty[$	\sqrt{x}	$\frac{1}{2\sqrt{x}}$]0,+∞[

Remarque 8.12 – Seule la fonction racine carrée n'est pas dérivable sur son ensemble de définition : en effet, elle est définie en 0 mais n'y est pas dérivable.

2 - Opérations sur les fonctions dérivables

Soient u et v deux fonctions dérivables sur un intervalle I.

Opération	Dérivée
Somme	(u+v)'=u'+v'
Multiplication par une constante k	$(ku)' = k \times u'$
Produit	(uv)' = u'v + uv'
Quotient	$\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$
Composition	$(v \circ u)' = u' \times (v' \circ u)$

Remarque 8.13 – La formule de dérivation de la composition de deux fonctions permet de déterminer de nombreuses autres formules de dérivation.

Fonction	Dérivée
u^n pour $n > 0$	$(u^n)' = nu'u^{n-1}$
\sqrt{u}	$\left(\sqrt{u}\right)' = \frac{u'}{2\sqrt{u}}$
$\frac{1}{u}$	$\left(\frac{1}{u}\right)' = -\frac{u'}{u^2}$

Proposition 8.14

- Une fonction polynomiale est dérivable sur \mathbb{R} .
- Une fraction rationnelle est dérivable sur son ensemble de définition.

Méthode 8.15 - Calculer la dérivée d'une fonction

Pour calculer la dérivée d'une fonction f:

- 1. On commence par repérer sous quelle forme est donnée la fonction f. Est-ce une somme de fonctions usuelles u + v? Un produit $u \times v$? Un quotient $\frac{u}{v}$?
- 2. On identifie les différentes fonctions u et v puis on calcule les dérivées u' et v'.
- 3. On applique la formule adéquate pour obtenir la dérivée f'.

Exemple 8.16 – Calculer la dérivée des fonctions suivantes.

• $f(x) = 2x^2 - x + 5$

f est une fonction polynomiale donc sa dérivée se calcule terme à terme :

$$f'(x) = 2 \times (2x) - 1 = 4x - 1.$$

 $g(x) = (x+3)\sqrt{x}$

g est de la forme uv avec u(x) = x + 3 et $v(x) = \sqrt{x}$. Donc g' = u'v + uv' avec

$$u'(x) = 1$$
 et $v'(x) = \frac{1}{2\sqrt{x}}$.

Ainsi

$$g'(x) = 1 \times \sqrt{x} + (x+3) \times \frac{1}{2\sqrt{x}} = \sqrt{x} + \frac{x+3}{2\sqrt{x}} = \frac{2x}{2\sqrt{x}} + \frac{x+3}{2\sqrt{x}} = \frac{3x+3}{2\sqrt{x}} = \frac{3(x+1)}{2\sqrt{x}}.$$

$$\bullet \quad h(x) = \frac{2x-5}{x^2+3}$$

h est de la forme $\frac{u}{v}$ avec u(x) = 2x - 5 et $v(x) = x^2 + 3$. Donc $h' = \frac{u'v - uv'}{v^2}$ avec

$$u'(x) = 2$$
 et $v'(x) = 2x$.

Ainsi

$$h'(x) = \frac{2(x^2+3)-2x(2x-5)}{(x^2+3)^2} = \frac{2x^2+6-4x^2+10x}{(x^2+3)^2} = \frac{-2x^2+10x+6}{(x^2+3)^2}.$$

• $i(x) = \frac{1}{2x^2 + 3}$

i est de la forme $\frac{1}{u}$ avec $u(x) = 2x^2 + 3$. Donc $i' = -\frac{u'}{u^2}$ avec u'(x) = 4x. Ainsi

$$i'(x) = -\frac{4x}{(2x^2+3)^2}.$$

• $j(x) = \sqrt{x^2 + 1}$

j est de la forme \sqrt{u} avec $u(x) = x^2 + 1$. Donc $j' = \frac{u'}{2\sqrt{u}}$ avec u'(x) = 2x. Ainsi

$$j'(x) = \frac{2x}{2\sqrt{x^2 + 1}} = \frac{x}{\sqrt{x^2 + 1}}.$$

Remarque 8.17 – Il est très important de prendre l'habitude de toujours simplifier au maximum les calculs de dérivées. Cela facilite ensuite l'étude de son signe. Il faut notamment penser à factoriser au maximum et à regrouper les différents termes (fractions à mettre au même dénominateur).

III - Application à l'étude des variations d'une fonction

1 - Monotonie et signe de la dérivée

Théorème 8.18

Soit f une fonction définie et dérivable sur un intervalle I. Alors

f est constante sur I si et seulement si $\forall x \in I$, f'(x) = 0.

ATTENTION! Le résultat est faux si I n'est pas un intervalle. Ainsi la fonction définie sur \mathbb{R}^* par f(x) = -1 si x < 0 et f(x) = 1 si x > 0, vérifie f'(x) = 0 pour tout $x \in \mathbb{R}^*$ mais f n'est pas constante.

Théorème 8.19

Soit f une fonction définie et dérivable sur un intervalle I.

- La fonction f est croissante (resp. décroissante) sur I si et seulement si $\forall x \in I$, $f'(x) \ge 0$ (resp. $f'(x) \le 0$).
- La fonction f est strictement croissante (resp. strictement décroissante) sur I si et seulement si f' est strictement positive (resp. strictement négative) sur I sauf éventuellement en un nombre fini de points où f' peut s'annuler.

Exemple 8.20 – Étudier les variations de la fonction f définie sur \mathbb{R} par $f(x) = x^3$.

La fonction f est dérivable sur \mathbb{R} et pour tout $x \in \mathbb{R}$, $f'(x) = 3x^2$. Ainsi f'(0) = 0 et pour tout $x \in \mathbb{R}^*$, f'(x) > 0. On peut donc appliquer le deuxième point du théorème précédent et en déduire que f est strictement croissante sur \mathbb{R} .

Méthode 8.21 - Étudier les variations d'une fonction

Pour étudier les variations d'une fonction :

- 1. On justifie que la fonction est bien dérivable.
- 2. On calcule la dérivée de la fonction.
- 3. On étudie le signe de la dérivée.
- 4. On en déduit les variations de la fonction.

Exemple 8.22 – Étudier les variations de la fonction f définie sur \mathbb{R} par $f(x) = 2x^3 - 15x^2 + 36x + 7$.

La fonction f est une fonction polynomiale donc elle est dérivable sur \mathbb{R} . De plus, pour tout $x \in \mathbb{R}$,

$$f'(x) = 6x^2 - 30x + 36 = 6 \times (x^2 - 5x + 6).$$

Il me faut maintenant étudier le signe du polynôme de degré 2, en sachant que 6 > 0. Son discriminant vaut $\Delta = (-5)^2 - 4 \times 1 \times 6 = 25 - 24 = 1 > 0$. Le polynôme admet donc deux racines :

$$x_1 = \frac{-(-5) - \sqrt{1}}{2 \times 1} = \frac{5 - 1}{2} = 2$$
 et $x_2 = \frac{5 + 1}{2} = 3$.

Par ailleurs, le coefficient dominant est strictement positif.

J'en déduis alors le tableau de signe de f'(x) et le tableau de variation de f:

X	$-\infty$		2		3		+∞
f'(x)		+	0	_	0	+	
f			<i></i>		\		<i></i>

Remarque 8.23 – On prend par ailleurs l'habitude de compléter les tableaux de variation par les limites de f aux bornes de l'intervalle et par les valeurs de f(x) en les abscisses où f change de variation.

Je calcule les limites de la fonction f ainsi que les images de 2 et de 3 :

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} 2x^3 = -\infty \quad \text{ et } \quad \lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} 2x^3 = +\infty$$

et

$$f(2) = 2 \times 2^3 - 15 \times 2^2 + 36 \times 2 + 7 = 35$$
 et $f(3) = 2 \times 3^3 - 15 \times 3^2 + 36 \times 3 + 7 = 34$.

D'où le tableau de variation complété suivant :

X	$-\infty$		2		3		+∞
f'(x)		+	0	_	0	+	
f	-∞		35		34		+∞

2 - Extrema locaux

On rappelle qu'un extremum est un maximum ou un minimum.

Théorème 8.24

Soient f une fonction dérivable sur un intervalle I de $\mathbb R$ et a un réel appartenant à I.

- Si f admet un extremum local en a, alors f'(a) = 0.
- Si la dérivée f' s'annule en a en changeant de signe, alors f admet un extremum local en a.

Exemple 8.25 – Donner les extrema de la fonction précédente $f(x) = 2x^3 - 15x^2 + 36x + 7$ sur \mathbb{R} . En me servant du tableau de variation de f établi dans l'exemple précédent, je remarque que f' s'annule aux points d'abscisses 2 et 3 tout en changeant de signe. Donc 2 et 3 sont les abscisses des extrema locaux de f. D'après les variations, je peux affirmer que 35 est un maximum local, atteint en 2,

3 - Représentation graphique

et que 34 est un minimum local, atteint en 3.

Grâce à la méthode du chapitre précédent, qui permet de tracer l'allure d'une courbe à partir du tableau de variation de la fonction, l'étude de la fonction f permet donc de connaître l'allure de la courbe. Parfois, le tracé d'une tangente en un point peut aider à obtenir un tracé plus précis.

Méthode 8.26 - Calculer l'équation de la tangente en un point

Pour calculer l'équation de la tangente en un point *A*, d'abscisse *a* :

- 1. Si ce n'est pas déjà fait, on calcule l'expression de la dérivée f'(x).
- 2. On calcule ensuite les images f(a) et f'(a).
- 3. On utilise la formule de la Proposition 8.4 :

$$y = f'(a)(x - a) + f(a).$$

Exemple 8.27 – On considère à nouveau la fonction f définie sur \mathbb{R} par $f(x) = 2x^3 - 15x^2 + 36x + 7$. Calculer l'équation de la tangente à la courbe représentative de la fonction f au point d'abscisse 0.

Le calcul de la dérivée f^\prime a déjà été effectué dans l'exemple précédent :

$$f'(x) = 6x^2 - 30x + 36.$$

Je calcule alors f(0) et f'(0):

$$f(0) = 2 \times 0^3 - 15 \times 0^2 + 36 \times 0 + 7 = 7$$
 et $f'(0) = 6 \times 0^2 - 30 \times 0 + 36 = 36$.

J'applique alors la formule de la Proposition 8.4 et j'obtiens l'équation de la tangente :

$$y = 36(x - 0) + 7 \iff y = 36x + 7.$$

Méthode 8.28 - Tracer une droite lorsque l'on en connait l'équation

Pour tracer une droite à partir de son équation y = ax + b, il suffit de déterminer les coordonnées de deux points appartenant à cette droite. Pour cela, on remplace successivement x dans l'équation par deux valeurs x_1 et x_2 puis on calcule les ordonnées correspondantes y_1 et y_2 . On obtient ainsi les coordonnées de deux points $A(x_1, y_1)$ et $B(x_2, y_2)$ appartenant à la droite. On place alors ces deux points dans un repère et on trace la droite passant par ces deux points.

Exemple 8.29 – Tracer dans un repère la droite \mathcal{D} d'équation y = 2x + 1.

Je commence par choisir deux valeurs de *x* et je calcule les ordonnées correspondantes :

- ▶ Pour $x_1 = -2$, j'obtiens $y_1 = 2 \times (-2) + 1 = -3$.
- ▶ Pour $x_2 = 3$, j'obtiens $y_2 = 2 \times 3 + 1 = 7$.
- Je place les deux points A(-2, -3) et B(3, 7).
- Je trace la droite passant par les deux points.

4 - Exemple: étude d'une fonction

Exemple 8.30 – Soit f la fonction définie sur \mathbb{R} par $f(x) = 1 - \frac{4x - 3}{x^2 + 1}$.

1. Calculer f'(x).

La fonction f est dérivable sur $\mathbb R$ comme somme et quotient de fonctions dérivables. Comme f est de la forme $f=1-\frac{u}{v}$ avec u(x)=4x-3 et $v(x)=x^2+1$, alors $f'=-\frac{u'v-uv'}{v^2}$ avec u'(x)=4 et v'(x)=2x. Donc pour tout réel x,

$$f'(x) = -\frac{4(x^2+1)-2x(4x-3)}{(x^2+1)^2} = -\frac{4x^2+4-8x^2+6x}{(x^2+1)^2} = -\frac{-4x^2+6x+4}{(x^2+1)^2} = \frac{4x^2-6x-4}{(x^2+1)^2}.$$

Ainsi f' est la fonction définie sur \mathbb{R} par $f'(x) = \frac{4x^2 - 6x - 4}{(x^2 + 1)^2}$.

2. Étudier les variations de la fonction f.

Les variations de la fonction f se déduisent du signe de sa dérivée, donc j'étudie le signe de $f'(x) = \frac{4x^2-6x-4}{\left(x^2+1\right)^2}$. Pour tout réel x, $\left(x^2+1\right)^2>0$. Ainsi f'(x) est du même signe que le polynôme $4x^2-6x-4$. Son discriminant vaut $\Delta=(-6)^2-4\times4\times(-4)=36+64=100>0$. Il admet donc deux racines :

$$x_1 = \frac{-(-6) - \sqrt{100}}{2 \times 4} = \frac{6 - 10}{8} = -\frac{1}{2}$$
 et $x_2 = \frac{6 + 10}{8} = 2$.

Je calcule aussi les limites de f ainsi que les images en $-\frac{1}{2}$ et 2 :

$$\lim_{x \to -\infty} f(x) = 1 - \lim_{x \to -\infty} \frac{4x}{x^2} = 1 - \lim_{x \to -\infty} \frac{4}{x} = 1 \quad \text{et} \quad \lim_{x \to +\infty} f(x) = 1 - \lim_{x \to +\infty} \frac{4}{x} = 1,$$

$$f\left(-\frac{1}{2}\right) = 1 - \frac{4 \times \left(-\frac{1}{2}\right) - 3}{\left(-\frac{1}{2}\right)^2 + 1} = 1 - \frac{-5}{\frac{5}{4}} = 1 + 4 = 5 \quad \text{et} \quad f(2) = 1 - \frac{4 \times 2 - 3}{2^2 + 1} = 1 - \frac{5}{5} = 0.$$

J'en déduis alors le tableau de signe de f'(x) et le tableau de variation de f :

x	$-\infty$		$-\frac{1}{2}$		2		+∞
f'(x)		+	0	_	0	+	
f	1		5				1

3. Tracer l'allure de la courbe représentative de f.

