Section 4.1

The Graphs of Sine and Cosine

A **periodic function** f is a function such that

$$f(x) = f(x + np)$$

for every integer n and some positive real p. The smallest possible p is called the **period** of the function.

While trying to graph the trigonometric functions, we will refer to the known values shown below:

GRAPH OF THE SINE FUNCTION

$y = \sin x$
0
-1/2
$-\sqrt{2}/2$
$-\sqrt{3}/2$
-1
$-\sqrt{3}/2$
$-\sqrt{2}/2$
-1/2

Notes:

- 1. The period of 2π .
- 2. The *x*-intercepts occur at $n\pi$, where *n* is any integer.
- 3. $\sin(x) = 1$ at $x = pi/2 + 2n\pi$, where *n* is any integer.
- 4. sin(x) = -1 at $x = -pi/2 + 2n\pi$ where n is any integer.
- 5. The sine function is an odd function. That is: $\sin(-x) = -\sin(x)$.

Graph of the Cosine Function

x	$y = \cos x$
0	
$\pi/6$	
$\pi/4$	
$\pi/3$	
$\pi/2$	
$2\pi/3$	
$3\pi/4$	
$5\pi/6$	
π	-1
$7\pi/6$	$-\sqrt{3}/2$
$5\pi/4$	$-\sqrt{2}/2$
$4\pi/3$	-1/2
$3\pi/2$	0
$5\pi/3$	1/2
$7\pi/4$	$\sqrt{2}/2$
$11\pi/6$	$\sqrt{3}/2$

VERTICALLY SCALED SINES AND COSINES

Recall that the graph of $y = a \cdot f(x)$ is the same as the graph of y = f(x) that has been stretched vertically by a factor of a. See for example, the following diagram which shows two graphs, one of y = f(x) where $f(x) = x^3 - x$ and another where $y = 5 \cdot f(x)$.

The graph of $y = a \sin(x)$ and $y = a \cos(x)$ with $a \ne 0$ will have the same shape as their original graph without the a, except with a range of [-|a|, |a|]. The **amplitude** of is |a|.

Problem 1. Graph the equation $y = 2\sin(x)$.

		3								
x	$y = 2\sin(x)$									
		2								
		1								
		0								
		-1								
		-2								
		-3								
		-2π	$-\frac{3\pi}{2}$	$-\pi$	$-\frac{\pi}{2}$	0	$\frac{\pi}{2}$	π	$\frac{3\pi}{2}$	2π

Problem 2. Graph the equation $y = -\frac{1}{2}\sin(x)$.

x	$y = -\frac{1}{2}\sin(x)$	1								
		0.5								
		0								
		-0.5								
		-1								
		-2π	$-\frac{3\pi}{2}$	$-\pi$	$-\frac{\pi}{2}$	0	$\frac{\pi}{2}$	π	$\frac{3\pi}{2}$	2π

Problem 3. Graph the equation $y = 3.5 \cos(x)$.

		4								
x	$y = 3.5\cos(x)$									
		3								
		2								
		-								
		1								
		1								
		0								
		-1								
		-2								
		-3								
		-3								
		-4 $+$ -2π	$-\frac{3\pi}{2}$	$-\pi$	$-\frac{\pi}{2}$	0	$\frac{\pi}{2}$	π	$\frac{3\pi}{2}$	2π
		27	$-{2}$		2	J	2		2	27

HORIZONTALLY SCALED SINES AND COSINES

The graph of y = f(bx) is the same as the graph of y = f(x) that has been *compressed* (the opposite of stretched!) horizontally by a factor of b. See for example, the following figure which shows two graphs, one of y = f(x) where $f(x) = x^3 - x$ and another where y = f(2x).

The graph of $y = \sin(bx)$ and $y = \cos(bx)$ with $b \ne 0$ will have the same shape as the graph as their original, except with a new **period** of $\frac{2\pi}{b}$. Compressing by a factor of b compresses the period also by a factor of b.

Problem 4. Graph the equation $y = \sin(2x)$.

			_ :	1											-	
																_
X	2x	$y = \sin(2x)$	1 -													
			0.5													
			0.5													
																_
			0 -													+
																-
																+
																-
			-0.5													
			-1 -													
			-1													
												-			$\overline{}$	
] -	-2π	$-\frac{3\pi}{2}$	$-\pi$	-	$\frac{\pi}{2}$	C)	$\frac{\pi}{2}$		π	$\frac{3\pi}{2}$		2π

Problem 5. Graph the equation $y = \cos(3x)$.

x	3 <i>x</i>	$y = \cos(3x)$	1								
			0.5								
			0.5								
			0								
			-0.5								
			-1								
											
			-2π	$-\frac{3\pi}{2}$	$-\pi$	$-\frac{\pi}{2}$	0	$\frac{\pi}{2}$	π	$\frac{3\pi}{2}$	2π

HORIZONTAL TRANSLATIONS OF SINE AND COSINE

Recall that adding or subtracting a constant to the independent variable in a function shifts the graph left or right (depending whether you are adding or subtracting), which is called a horizontal translation.

- The graph of y = f(x d), assuming d > 0, shifts the graph of y = f(x) to the **right** by d units.
- The graph of y = f(x + d), assuming d < 0, shifts the graph of y = f(x) to the **left** by d units.

See for example, the following figure which shows three graphs, one of y = f(x) where $f(x) = x^3 - x$, another where y = f(x-2), and another where f(x+2).

The same result applies to the graphs of the trigonometric functions, with two new vocabulary words:

- A horinztal translation is called a phase shift.
- The expression x d that you plug into the trig function is called the **argument**.

To graph a horizontally translated trigonometric function, you can use one of two methods:

- Draw the trig function shifted left or right by the given phase shift,
- Make a table of values where you list the key values for the argument x d, and then work backwards to find the x value that produces those key values.

Problem 6. Graph the function $y = \sin\left(x + \frac{3\pi}{4}\right)$ over two periods.

x	$x + \frac{3\pi}{4}$	$y = \sin\left(x + \frac{3\pi}{4}\right)$

Problem 7. Graph the function $y = -2\cos\left(x - \frac{\pi}{3}\right)$.

x	$x-\frac{\pi}{3}$	$y = -2\cos\left(x - \frac{\pi}{3}\right)$

Problem 8. Graph the function $y = \frac{2}{3}\cos(2x - \pi)$. Note that you have to factor a 2 out of both terms in the argument to get the correct phase shift.

x	$2x-\pi$	$y = \frac{2}{3}\cos(2x - \pi)$

VERTICAL TRANSLATIONS OF SINE AND COSINE

Recall from algebra that adding or subtracting a constant to a function shifts the graph up or down, which is called a vertical translation.

- The graph of y = f(x) + c, assuming c > 0, shifts the graph of y = f(x) up by c units.
- The graph of y = f(x) c, assuming c < 0, shifts the graph of y = f(x) down by c units.

See for example, the following figure which shows three graphs, one of y = f(x) where $f(x) = x^3 - x$, another where y = f(x) + 1, and another where f(x) - 1.

Like before you can approach this problem two different ways:

- Draw that trig function shifted up or down
- Make a table of values where you compute values for key values of the argument of the trig function.

Problem 9. Graph $y = -2 + 3\cos(2x)$ over two periods.

		6 🛧								
x	$y = -2 + 3\cos(2x)$									
		4								
		2								
		0								
		-2								
		-2								
		-4								
		-6								
		-2π	$-\frac{3\pi}{2}$	$-\pi$	$-\frac{\pi}{2}$	0	$\frac{\pi}{2}$	π	$\frac{3\pi}{2}$	2π

Sine vs Cosine

Here are both trigonometric functions graphed side-by-side:

Problem 10. From the graph above, it appears that the sin(x) graph is the same as the cos(x) graph, but shifted. Can you explain this?