Numerical Methods Runtime Table

Mohamed Emary

November 2, 2023

We have used the same 10 problems with each method and run each method (Bisection, False Position, and Hybrid) 500 times for each problem and then we have calculated the average time. We have also calculated the number of iterations each method have taken for each problem.

We have also used the same accuracy for each problem which is 10^{-10}

These are the problems that we have used for each method:

Table 1: Problem Set

No	Equation	Equation Code	Interval
P1	$f(x) = x^3 + 4x^2 - 10 = 0$	x**3 + 4*x**2 - 10	[0, 4]
P2	$f(x) = x^2 - 4$	x**2 - 4	[0, 4]
P3	$f(x) = e^x - 2$	math.exp(x) - 2	[0, 2]
P4	$f(x) = \sin(x)$	math.sin(x)	[2, 6]
P5	$f(x) = x^3 - 6x^2 + 11x - 6$	x**3 - 6*x**2 + 11*x - 6	[1, 2.5]
P6	$f(x) = x^2 + 3x + 2$	x**2 + 3*x + 2	[-2.5, -1.5]
P7	$f(x) = \cos(x) - x$	math.cos(x) - x	[0, 1]
P8	$f(x) = 2^x - 8$	2**x - 8	[2,4]
P9	$f(x) = \tan(x)$	math.tan(x)	[-1, 1]
P10	$f(x) = x^4 - 8x^3 + 18x^2 - 9x + 1$	x**4 - 8*x**3 + 18*x**2 - 9*x + 1	[2, 4]
P11	$f(x) = x^2 - 3$	x**2 - 3	[1,2]
P12	$f(x) = x^2 - 5$	x**2 - 5	[2,7]
P13	$f(x) = x^2 - 10$	x**2 - 10	[3,4]
P14	$f(x) = x^2 - x - 2$	x**2 - x - 2	[1,4]
P15	$f(x) = x^2 + 2x - 7$	x**2 + 2*x - 7	[1,3]
P16	$f(x) = x^3 - 2$	x**3 - 2	[0,2]
P17	$f(x) = xe^x - 7$	x * math.exp(x) - 7	[0,2]
P18	$f(x) = x - \cos(x)$	x - math.cos(x)	[0,1]
P19	$f(x) = x\sin(x) - 1$	x * math.sin(x) - 1	[0,2]

No	Equation	Equation Code	Interval
P20	$f(x) = x\cos(x) + 1$	x * math.cos(x) + 1	[-2,4]
P21	$f(x) = x^{10} - 1$	x**10 - 1	[0,1.3]
P22	$f(x) = x^2 + e^{x/2} - 5$	x**2 + (2.71828**(x/2)) - 5	[1,2]
P23	$f(x) = \sin(x)\sinh(x) + 1$	math.sin(x) * math.sinh(x) + 1	[3,4]
P24	$f(x) = e^x - 3x - 2$	(2.71828**x) - 3*x - 2	[2,3]
P25	$f(x) = \sin(x) - x^2$	math.sin(x) - x**2	[0.5,1]

Table 2: Bisection Table

Problem Iter		Avg CPU Time	Root	
	37	5.7437896728515626e-05s	1.3652300134126563	
P2	1	0.0s	2.0	
P3	36	0.00013828516006469726s	0.6931471805728506	
P4	37	$9.968948364257812\mathrm{e}\text{-}05\mathrm{s}$	3.1415926536137704	
P5	35	$3.628253936767578\mathrm{e}\text{-}05\mathrm{s}$	1.999999999985448	
P6	1	0.0s	-2.0	
P7	35	0.0004040045738220215s	0.7390851332165767	
P8	1	0.0s	3.0	
P9	1	0.0s	0.0	
P10	36	$6.400394439697266 \mathrm{e}\text{-}05 \mathrm{s}$	3.111748656287091	

Table 3: False Position Table

Problem	Iter	Avg CPU Time	Root	
	60	0.00018867158889770508s	1.3652300134095658	
P2	25	0.00013594388961791993s	1.999999999985837	
P3	37	0.00042249441146850584s	0.6931471805263113	
P4	7	$3.332376480102539\mathrm{e}\text{-}05\mathrm{s}$	3.1415926535899232	
P5	2	0.0s	1.0	
P6	22	5.1965713500976564 e-05 s	-1.99999999994401	
P7	9	$6.48040771484375 \mathrm{e}\text{-}05 \mathrm{s}$	0.7390851331710709	
P8	23	$4.136466979980469\mathrm{e}\text{-}05\mathrm{s}$	2.999999999941527	
P9	2	0.0s	0.0	
P10	9	$3.2056331634521486\mathrm{e}\text{-}05\mathrm{s}$	3.1117486563093983	

Table 4: Hybrid Method Table

Problemeter		Avg CPU Time	a	Root	b	f(x)
P1	9	1.792669296264648 4 &6 05	552300132	71 0436 5230013413	3773 69770382	783838 - 5.25091081726714e-12
P2	1	0.0	0	2.0	4	0
P3	8	1.808691024780273 3 .69 05	931471790	9 2986 93147180554	4 0378 12092850	6565997 - 1.1810996625172265 11
P4	5	4.081249237060546 3 d4 06	115903579	55 6944 1592653604	1 8 8847874957	380742 - 1.5094913867333564 11
P5	1	1.857757568359375e- 06	1	1.0	2.5	0
P6	1	1.9383430480957033e- 06	-2.5	-2.0	-1.5	0.0
<i>P</i> 7	6	6.016731262207031 0- 73	390851296	37 737 39085133205	5 29785 16528968	822 038 505463662497277 11
P8	1	1.956939697265625e- 06	2	3.0	4	0.0
P9	1	0.0	-1	0.0	1	0.0
P10	6	1.791191101074218 8 @9 05	989059994	42 9415 1748656314	16 91117486590	071221 - 4.8132164920389187 11