### Storage Technologies - 2 COMP 25212 - Lecture 9

Antoniu Pop

antoniu.pop@manchester.ac.uk

28 February 2018

#### Previous lecture

- ► Characterisation of storage technologies
  - ► Write once/many/not-too-many and Read many times
- Performance model
  - Seek, Search and Transfer time
  - Latency and Bandwidth
- Limitations
  - Mechanical constraints latency and reliability issues
- RAID (Redundant Array of Independent/Inexpensive Disks)

### Hard Disk Performance (recap)

Seek time Time for the **head** to reach the target **track**.

Search time Time for the target **sector** to arrive under the **head**. Also called *rotational latency*.

Transfer rate Amount of data that can be read / written per unit of time. Dependent on access patterns.

Aka. "sustained transfer rate" in contrast to "interface transfer rate"

Disk access time = seek time + search time + transfer time

Note: all values are average as they depend on many factors.

# Learning Objectives - Storage 2

- ▶ Motivate RAID
- Understand the principles of RAID configurations
- Understand how RAID impacts performance and reliability
- Understand failure & recovery constraints

### Historic comparison





1956 first HDD IBM 350:  $\sim$  3.5 MB (enough to store one selfie!) 2015 first 10 TB disk: 1000s of times smaller,  $3 \cdot 10^6 \times$  capacity

#### 1000s of times cheaper!

 $Source: \verb|https://www-03.ibm.com/ibm/history/exhibits/storage/storage_350.html| \\$ 

# Technology Trends and Drivers

#### 1956 - 1980s

- Mainframe/Server Disk Drives
  - High capacity, large formats (e.g., 14")
  - Expensive, low volume market
  - Somewhat slow evolution
- ► PCs used mostly floppy disks

#### (Early) 1990s

- Still two markets: Server & PC drives
- Most PCs use hard disks
- PC hard disk sales explode high volume market
  - Drives costs lower
  - Drives disk technology faster

How to use PC disks to build server-class storage?



#### **RAID**

#### Redundant Array of Independent Disks

- Compensate for loss of reliability, capacity, performance
- ▶ Use lots of cheap(er), (disposable ?) disks



# Disk Problems and Solutions (recap)

- Disks are too small
  - ► Fixed: use multiple disks
- Disks are too slow
  - ► Fixed: disk striping (RAID 0)
- ► Disks are unreliable
  - ► Fixed: disk mirroring (RAID 1)
  - Data redundancy

# RAID 0 — Striping



| Number of disks     | n              | 4              |
|---------------------|----------------|----------------|
| Read (short long)   | 1× <i>n</i> ×  | 1× 4×          |
| Write (short long)  | 1× <i>n</i> ×  | 1× 4×          |
| Failure tolerance   | <b>0</b> disks | <b>0</b> disks |
| Capacity efficiency | 1              | 100%           |

### RAID 1 — Mirroring



| Number of disks     | n                         | 4              |
|---------------------|---------------------------|----------------|
| Read (short long)   | 1× <i>n</i> ×             | 1× 4×          |
| Write (short long)  | 1× 1×                     | 1× 1×          |
| Failure tolerance   | <b>n</b> − <b>1</b> disks | <b>3</b> disks |
| Capacity efficiency | 1/n                       | 25%            |

## **Parity**

- ▶ Old idea: first tape drive (1951) had a parity track
- ► Transverse redundancy check
- ► How does it really work?

# **Parity**

Assume we have three blocs  $A_0$ ,  $A_1$ ,  $A_2$ :

| $A_0$                   | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 |
|-------------------------|---|---|---|---|---|---|---|---|---|---|---|
| <b>A</b> <sub>1</sub>   | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 |
| $A_2$                   | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 |
|                         |   |   |   |   |   |   |   |   |   |   |   |
| A <sub>p</sub> (parity) | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 |

Where  $A_p = A_0 \oplus A_1 \oplus A_2$ .

And, importantly:

$$A_0 = A_p \oplus A_1 \oplus A_2$$

$$A_1 = A_0 \oplus A_p \oplus A_2$$

$$A_2 = A_p \oplus A_1 \oplus A_0$$

# RAID 3 — Byte-Striping + Parity



| Number of disks     | n+1            | 4       |
|---------------------|----------------|---------|
| Read (short long)   | 1× <i>n</i> ×  | 1× 3×   |
| Write (short long)  | 1× <i>n</i> ×  | 1× 3×   |
| Failure tolerance   | <b>1</b> disks | 1 disks |
| Capacity efficiency | n/(n+1)        | 75%     |

# RAID 4 — Block-Striping + Parity



| Number of disks     | n + 1                                      | 4                 |
|---------------------|--------------------------------------------|-------------------|
| Read (short long)   | 1× n×                                      | 1× 3×             |
| Write (short long)  | $0.5 \times (RMW) \dots \mathbf{n} \times$ | 0.5	imes $3	imes$ |
| Failure tolerance   | <b>1</b> disks                             | <b>1</b> disks    |
| Capacity efficiency | n/(n+1)                                    | 75%               |

### RAID 5 — Block-Striping + Distrib. Parity



| Number of disks     | n + 1                                      | 4                 |
|---------------------|--------------------------------------------|-------------------|
| Read (short long)   | 1× n + 1×                                  | 1× 4×             |
| Write (short long)  | $0.5 \times (RMW) \dots \mathbf{n} \times$ | 0.5	imes $3	imes$ |
| Failure tolerance   | <b>1</b> disks                             | <b>1</b> disks    |
| Capacity efficiency | n/(n+1)                                    | 75%               |

### RAID 6 — Double Distributed Parity



| Number of disks     | n+2                                        | 5                 |
|---------------------|--------------------------------------------|-------------------|
| Read (short long)   | 1× n + 2×                                  | 1× 5×             |
| Write (short long)  | $0.5 \times (RMW) \dots \mathbf{n} \times$ | 0.5	imes $3	imes$ |
| Failure tolerance   | <b>2</b> disks                             | <b>2</b> disks    |
| Capacity efficiency | n/(n + 2)                                  | 3/5 = 60%         |

#### **Nested RAID**

- ► Each raid configuration comes with tradeoffs
- ► Combine RAID configurations to alleviate shortcomings
- ► Multiple RAID layers

# RAID 1+0 (aka. RAID 10)



| Number of disks     | <b>m</b> [RAID 1] • <b>n</b> [RAID 0] | $2 \cdot 2 = 4$ |
|---------------------|---------------------------------------|-----------------|
| Read (short long)   | 1× n · m×                             | 1× 4×           |
| Write (short long)  | $1 \times n \times$                   | 1× 2×           |
| Failure tolerance   | <b>m</b> − <b>1</b> disks             | <b>1</b> disks  |
| Capacity efficiency | $n/(m \cdot n) = 1/m$                 | 1/2 = 50%       |

### RAID 01



| Number of disks     | <b>m</b> [RAID 1] ⋅ <b>n</b> [RAID 0] | $2 \cdot 2 = 4$ |
|---------------------|---------------------------------------|-----------------|
| Read (short long)   | 1× <i>n</i> · <i>m</i> ×              | 1× 4×           |
| Write (short long)  | $1 \times n \times$                   | 1× 2×           |
| Failure tolerance   | <b>m</b> − <b>1</b> disks             | <b>1</b> disks  |
| Capacity efficiency | $n/(m \cdot n) = 1/m$                 | 1/2 = 50%       |

### RAID 10 vs. 01 — different?



#### RAID 50



#### **RAID 160**



### **RAID Failure Mode Operation**

#### What happens when a disk fails?

RAID 0 Lose all data (hope there's more than one RAID layer)

RAID 1 Business as usual, hot-swap the failed disk

RAID 2-6 Operate in degraded mode

- If data drive failed, every read must be reconstructed
- If parity drive failed, low performance impact
- Replace drive (hot-swapping: the system continues running)
- Rebuild the array (re-constitute the state of the lost drive)

### **RAID Recovery Limitations**

#### Rebuilding a degraded array

- ► Sequentially
- ► How long?
- ▶ On live system?

#### Risk of failure during recovery

- Statistical distortion:
  - higher risk of multiple failures within a narrow time frame
- ► RAID 5 risk advisory notice:
  - Do not use for business-critical data! [Dell]

#### **RAID 160**



No performance degradation on disk failure!

## Where to Implement RAID?

- ► Software Operating System
  - ► Most OS now provide software RAID
  - ► E.g. Linux **md** (multiple devices) supports RAID 0, 1, 4, 5, 6 plus nestings
- ► Software File System
  - ► E.g., ZFS
- Dedicated hardware (RAID controller)

# Array Failure Rates (full data loss)

Failure rate of a disk drive: **r** (with **some** assumptions!)

Failure rate  $\mathcal{R}$  of an array of  $\mathbf{n}$  disks (RAID) where  $\mathbf{k}$  disks can safely fail:

$$\mathcal{R} = 1 - (\mathcal{P}(0) + \mathcal{P}(1) + \dots + \mathcal{P}(k))$$

where  $\mathcal{P}(i)$  is the probability of precisely i disks failing:

$$\mathcal{P}(i) = \binom{n}{i} r^{i} (1 - r)^{n-i}$$

# Array Failure Rates for RAID configurations

RAID 0 1  $-(1-r)^n$ 

(**0** disks can safely fail)

RAID 1 rn

(n-1) disks can safely fail)

RAID 2 It's complicated

**RAID 3-5** 

(1 disk can safely fail)

$$1-(1-r)^n-\binom{n}{1}r^1(1-r)^{n-1}$$

RAID 6

(2 disks can safely fail)

$$1-(1-r)^n-\binom{n}{1}r^1(1-r)^{n-1}-\binom{n}{2}r^2(1-r)^{n-2}$$

# Array Failure Rate (Raid 6 example)

Failure rate:

$$1-(1-r)^n-\binom{n}{1}r^1(1-r)^{n-1}-\binom{n}{2}r^2(1-r)^{n-2}$$

Example drive 1%/year failure rate with RAID 6 (3+2 drives):

$$1 - 0.99^5 - 5 \cdot 0.01 \cdot 0.99^4 - \frac{4 * 5}{2} \cdot 0.01^2 \cdot 0.99^3 = 0.0000098511$$

Rounding up, that's a 1% failure rate of the RAID in 1000 years!

### RAID 2 — Bit-Striping + Hamming Code





| Number of disks     | $2^{k} - 1$                         | $k = 3 \Longrightarrow 7$ |
|---------------------|-------------------------------------|---------------------------|
| Read (short long)   | $1 \times \dots 2^k - k - 1 \times$ | 1× 4×                     |
| Write (short long)  | $1 \times \dots 2^k - k - 1 \times$ | 1× 4×                     |
| Failure tolerance   | <b>12</b> * disks                   | <b>12</b> * disks         |
| Capacity efficiency | $\frac{2^{k}-k-1}{2^{k}-1}$         | <b>4/7</b> ⇒⇒ <b>57%</b>  |

# **Hamming Codes**



- ► RAID 2 no longer used, but...
- ► Hamming code error correction
- ► ECC