## **Projet**

## Modèle linéaire généralise et Choix de modèles

## Réalisé par Asma GHARIANI

## 09/01/2022

## Table des matières

| Intr | oduction                                                                 | 2  |
|------|--------------------------------------------------------------------------|----|
| 1.   | Analyse exploratoire des données                                         | 4  |
| 1.1  | Chargement des données                                                   | 4  |
| 1.2  | Vérifier les liens entre les variables                                   | 11 |
| 1.3  | Analyse complémentaire                                                   | 27 |
| 1.4  | Détection des valeurs aberrantes                                         | 28 |
| 1.5  | Proposition d'un premier modèle                                          | 32 |
| 1.6  | Interprétation de modèle choisi                                          | 38 |
| 1.7  | Régression par Recherche Exhaustive                                      | 43 |
| 2.   | Validation croisée avec le modèle g4                                     | 54 |
| 3.   | Vérifier la qualité de prédiction (modèle g4)                            | 56 |
| 4.   | Etude comparative entre les deux modèles (g4 et bestmodel3)              | 58 |
| 5.   | Etude comparative entre les deux modèles (reg. Logistique et reg.probit) | 60 |
| Cor  | nclusion                                                                 | 68 |

## Introduction

L'objectif principal de cette étude est de choisir et valider un modèle. Ensuite nous réalisons des prédictions afin de choisir le modèle le plus adéquat. Nous nous basons sur une base de données contenant 1180 observations,47 variables quantitative et qualitatives (Pluie.demain=f (Tempmean, Humimean, MeanPressuremean Totalprecipitation, etc.).

Nous mobilisons plusieurs démarches que nous exposons en ce qui suit :

- 1-Analyse exploratoire
- 2-Vérification des liens entre les variables
- 3-Identification des prédicteurs les plus importants afin de construire un modèle valide pour faire une bonne prédiction
- 4-Estimation de modèle sur un échantillon d'apprentissage
- 5-Validation de modèle sur un échantillon test
- 6-Comparaison entre plusieurs modèles et choix du modèle le plus adéquat
- 7-Proposition d'une prédiction pour l'échantillon test

Nous utilisons les abréviations suivantes :

Tempmean = Temperature.daily.mean..2.m.above.gnd.

Humimean = Relative. Humidity. daily.mean.. 2.m. above.gnd.

```
MeanPressuremean = Mean.Sea.Level.Pressure.daily.mean..MSL.
```

**#Totalprecipitation = Total.Precipitation.daily.sum..sfc.** 

#Snowfall =Snowfall.amount.raw.daily.sum..sfc.

#Totalcloudmean = Total.Cloud.Cover.daily.mean..sfc.

#Highcloudmean = High.Cloud.Cover.daily.mean..high.cld.lay.

# Mediumcloudmean = Medium.Cloud.Cover.daily.mean..mid.cld.lay. #Lowcloudmean

=Low.Cloud.Cover.daily.mean..low.cld.lay.

**#Sunshine** = Sunshine.Duration.daily.sum..sfc.

#Waveradia = Shortwave.Radiation.daily.sum..sfc.

# Windspdmean10m = Wind.Speed.daily.mean..10.m.above.gnd.

# Winddirecmean10m = Wind. Direction.daily.mean.. 10.m. above.gnd.

#Windspdmean80m = Wind.Speed.daily.mean..80.m.above.gnd.

```
# Winddirectmean80m = Wind. Direction. daily.mean.. 80.m. above.gnd.
# Windspdmean900mb = Wind.Speed.daily.mean..900.mb.
# Winddirectmean 900 mb = Wind. Direction. daily.mean.. 900.mb.
#Windgustmean = Wind.Gust.daily.mean..sfc.
# Tempmax = Temperature.daily.max..2.m.above.gnd.
#Tempmin =Temperature.daily.min..2.m.above.gnd.
#Humimax =Relative.Humidity.daily.max..2.m.above.gnd. #Humimin =
Relative.Humidity.daily.min..2.m.above.gnd. # Meanpressuremax
=Mean.Sea.Level.Pressure.daily.max..MSL.
#Meanpressuremin = Mean. Sea. Level. Pressure. daily.min.. MSL.
# Totalcloudmax = Total. Cloud. Cover. daily.max..sfc.
#Totalcloudmin =Total.Cloud.Cover.daily.min..sfc.
#Highcloudmax= High.Cloud.Cover.daily.max..high.cld.lay.
# Highcloudmin = High.Cloud.Cover.daily.min..high.cld.lay.
#Mediumcloudmax = Medium. Cloud. Cover. daily. max.. mid. cld. lay.
#Mediumcloudmin= Medium.Cloud.Cover.daily.min..mid.cld.lay.
# Lowcloudmax=Low.Cloud.Cover.daily.max..low.cld.lay.
Lowcloudmin= Low.Cloud.Cover.daily.min..low.cld.lay.
#Windspdmax10m=Wind.Speed.daily.max..10.m.above.gnd.
#Windspdmin10m= Wind.Speed.daily.min..10.m.above.gnd.
# Windspdmax80m = Wind.Speed.daily.max..80.m.above.gnd.
#Windspdmin80m=Wind.Speed.daily.min..80.m.above.gnd.
#Windspdmax900mb= Wind.Speed.daily.max..900.mb.
#Windspdmin900mb= Wind.Speed.daily.min..900.mb.
#Windgustmax= Wind.Gust.daily.max..sfc.
#Windgustmin= Wind.Gust.daily.min..sfc.
```

#### 1. Analyse exploratoire des données

#### 1.1 Chargement des données

```
data=read.csv("meteo.train.csv",na.strings = "" )
data1=read.csv("meteo.test.csv" )
     | Day | Hour | Min. | Median : 2012 | Ist Qu. : 4.000 | Ist Qu. : 8.00 | Ist Qu. : 0 | Ist Qu. : 1517 | Mean | 2014 | Median : 6.859 | Mean | 15.26 | Mean | Median : 0 | Median : 3rd Qu. : 2252 | 3rd Qu. : 2016 | 3rd Qu. : 10.000 | 3rd Qu. : 22.00 | 3rd Qu. : 0 | 3rd Qu. : 0 | 3rd Qu. : 0 | 3rd Qu. : 2936 | Max. | : 2018 | Max. | : 12.000 | Max. | : 31.00 | Max. | : 0 | Max. | : 12.000 | Max. | : 31.00 | Max. | : 0 | Max. | : 12.000 | Max. | : 36.42 | Ist Qu. : 5.625 | Ist Qu. : 64.35 | Median : 13.085 | Median : 71.64 | Mean | : 12.062 | Mean | : 71.08 | 3rd Qu. : 78.06 | Max. | : 26.600 | Max. | : 2938 |
summary(data1) ## "meteo.test.csv"
                                                                                                                                                                                                                                                                  Min. :0
1st Qu.:0
Median :0
Mean :0
                                                                                                                                                                                                                                                                   Median :0
Mean :0
3rd Qu.:0

      Mean : 12.062
      Mean : 71.08

      3rd Qu.:18.170
      3rd Qu.:78.06

      Max. : 26.600
      Max. : 91.46

      Mean.Sea.Level.Pressure.daily.mean..MSL. Total.Precipitation.daily.sum..sfc.
      Snowfall.amount.raw.daily.sum..sfc.

      Min. : 983
      Min. : 0.000
      Min. : 0.00000

      1st Qu.:1012
      1st Qu.: 0.000
      1st Qu.: 0.00000

      Median : 1017
      Median : 0.100
      Median : 0.00000

      Mean : 1017
      Mean : 2.202
      Mean : 0.08255

      3rd Qu.: 1022
      3rd Qu.: 2.475
      3rd Qu.: 0.00000

      Max. : 1046
      Max. : 39.300
      Max. : 6.65000

    Total.Cloud.Cover.daily.mean..sfc. High.Cloud.Cover.daily.mean..high.cld.lay.
                                                                                                                           Min. : 0.000
1st Qu.: 1.603
    Min. : 0.00
1st Qu.: 30.20
    Median : 52.30
                                                                                                                            Median :12.210
                                                                                                                            Mean :20.451
3rd Qu.:34.358
Max. :99.330
    Mean : 53.62
3rd Qu.: 79.60
Max. :100.00
    Max.
    Medium.Cloud.Cover.daily.mean..mid.cld.lay. Low.Cloud.Cover.daily.mean..low.cld.lay.
    Min. : 0.00
1st Qu.: 3.23
                                                                                                                                                           Min.
                                                                                                                                                                              : 0.00
                                                                                                                                                           1st Qu.: 12.55
   Median : 26.09
Mean : 32.66
                                                                                                                                                          Median : 39.65
Mean : 41.75
    3rd Qu.: 51.34
                                                                                                                                                           3rd Qu.: 66.50
   Max. :100.00 Max. :100.00
Sunshine.Duration.daily.sum..sfc. Shortwave.Radiation.daily.sum..sfc. Wind.Speed.daily.mean..10.m.above.gnd.
Min. : 0.0 Min. : 121.9 Min. : 3.03
1st Qu.: 116.7 1st Qu.:1946.0 1st Qu.: 6.35
    Median: 347.6
                                                                                                                         Median :3391.8
                                                                                                                                                                                                                                                    Median: 9.35
                                                                                                                                                                                                                                                    Mean :11.23
    Mean
                         : 353.0
                                                                                                                        Mean
                                                                                                                                             :3813.1
    3rd Qu.: 560.1
Max. :1021.1
                                                                                                                        3rd Qu.:5509.5
Max. :8259.2
                                                                                                                                                                                                                                                    3rd Qu.:13.47
                                                                                                                                                                                                                                                    Max.
                                                                                                                                                                                                                                                                            :49.14
    Wind.Direction.daily.mean..10.m.above.gnd. Wind.Speed.daily.mean..80.m.above.gnd.
   Min. : 45.08
1st Qu.:151.67
                                                                                                                                                      Min. : 2.990
1st Qu.: 8.082
                                                                                                                                                                             : 2.990
                                                                                                                                                       Median :12.565
Mean :14.725
   Median :206.38
Mean :201.27
    3rd Qu.:250.45
                                                                                                                                                        3rd Qu.:18.340
                           :326.87
                                                                                                                                                                               :63.100
```

```
Wind.Direction.daily.mean..80.m.above.gnd. Wind.Speed.daily.mean..900.mb. Wind.Direction.daily.mean..900.mb.
Min. : 37.18 Min. : 2.16 Min. : 32.09
1st Qu.:159.47 1st Qu.: 12.58 1st Qu.:165.43
                                                                   Median : 21.76
Mean : 25.57
                                                                                                                   Median :239.06
Mean :211.65
 Median :217.01
Mean :207.55

      3rd Qu.:256.15
      3rd Qu.: 34.66
      3rd Qu.: 265.90

      Max. :330.47
      Max. :104.89
      Max. :333.05

      Wind.Gust.daily.mean..sfc. Temperature.daily.max..2.m.above.gnd. Temperature.daily.min..2.m.above.gnd.

 Min. : 3.290
1st Qu.: 9.293
                                          Min. :-2.130
1st Qu.: 9.295
                                                                                                     Min. :-8.870
1st Qu.: 2.458
 Median :14.445
Mean :17.591
                                           Median :17.145
                                                                                                     Median : 8.595
                                           Mean :16.231
                                                                                                     Mean
                                                                                                               : 8.022
  3rd Qu.:22.065
                                           3rd Qu.:22.823
                                                                                                     3rd Qu.:13.367
 Max. :90.750 Max. :33.120 Max. :21.890
Relative.Humidity.daily.max..2.m.above.gnd. Relative.Humidity.daily.min..2.m.above.gnd.
                                                                    Min. :17.00

Min. :17.00

1st Qu.:45.00

Median :54.00

Mean :53.73

3rd Qu.:62.00

Max. :88.00
 Min. : 63.00
1st Qu.: 83.00
Median : 88.00
 Mean : 87.47
3rd Qu.: 94.00
 Max. :100.00
 Mean. Sea. Level. Pressure. daily. max.. MSL. Mean. Sea. Level. Pressure. daily. min.. MSL. Total. Cloud. Cover. daily. max.. sfc. Min. : 987.3 Min. : 980.6 Min. : 0.00 lst Qu.:1015.1 lst Qu.:1009.1 lst Qu.:100.00
 Median :1019.3
Mean :1019.7
                                                               Median :1014.9
Mean :1014.1
                                                                                                                            Median :100.00
Mean : 91.36
                                                               3rd Qu.:1019.7
  3rd Qu.:1024.5
                                                                                                                            3rd Qu.:100.00
 Max. :1049.0
                                                               Max.
                                                                       :1040.5
                                                                                                                            Max. :100.00
   Total.Cloud.Cover.daily.min..sfc. High.Cloud.Cover.daily.max..high.cld.lay. High.Cloud.Cover.daily.min..high.cld.lay.
                                                       Min. : 0.00
1st Qu.: 16.25
Median : 71.00
Mean : 58.67
   Min. : 0.000
1st Qu.: 0.000
                                                                                                                        Min. : 0.000
1st Qu.: 0.000
   Median: 0.000
Mean: 10.103
3rd Qu.: 2.925
                                                                                                                        Median: 0.000
Mean: 1.169
3rd Qu.: 0.000
                                                       3rd Qu.:100.00
   Max. :100.000 Max. :100.00 Max. :8
Medium.Cloud.Cover.daily.max..mid.cld.lay. Medium.Cloud.Cover.daily.min..mid.cld.lay.
                                                                                                                                   :84.000
   Min. : 0.00
1st Qu.: 41.25
                                                                     Min. : 0.000
1st Qu.: 0.000
Median : 0.000
   Median :100.00
Mean : 74.00
                                                                     Mean : 2.779
3rd Qu.: 0.000
Max. :100.000
   3rd Qu.:100.00
            :100.00
   Max.
   Low.Cloud.Cover.daily.max..low.cld.lay. Low.Cloud.Cover.daily.min..low.cld.lay. Wind.Speed.daily.max..10.m.above.gnd.
   Min. : 0.00
1st Qu.:100.00
                                                                Min. : 0.000
1st Qu.: 0.000
                                                                                                                              Min. : 4.35
1st Qu.:12.44
   Median :100.00
                                                                 Median : 0.000
                                                                                                                               Median :17.31
                                                                Mean : 4.745
3rd Qu.: 0.000
   Mean : 84.48
                                                                                                                               Mean :19.67
   3rd Qu.:100.00
                                                                                                                               3rd Qu.:23.90
   Max. :100.000 Max. :74.34
Wind.Speed.daily.min..10.m.above.gnd. Wind.Speed.daily.max..80.m.above.gnd. Wind.Speed.daily.min..80.m.above.gnd.
                                                                                                                        Min. : 0.000
1st Qu.: 1.095
Median : 2.520
Mean : 5.068
                                                             Min. : 5.82
1st Qu.:17.93
   Min. : 0.000
1st Qu.: 1.080
                                                             Median :24.14
Mean :26.08
   Median: 2.465
Mean: 3.906
3rd Qu.: 5.008
                                                             3rd Qu.:30.95
                                                                                                                        3rd Qu.: 6.145
   Max. :33.840
                                                             Max. :94.46
                                                                                                                        Max. :43.210
 Wind.Speed.daily.max..900.mb. Wind.Speed.daily.min..900.mb. Wind.Gust.daily.max..sfc. Wind.Gust.daily.min..sfc.
                                                                                               Min. : 5.76
1st Qu.: 18.00
Median : 26.64
Mean : 30.30
3rd Qu.: 38.43
 Min. : 6.92
1st Qu.: 25.36
                                                Min. : 0.00
1st Qu.: 3.34
                                                                                                                                        Min. : 0.000
1st Qu.: 1.800
                                                Median: 6.92
Mean: 11.66
3rd Qu.:15.58
                                                                                                                                         Median : 3.960
Mean : 6.825
3rd Qu.: 8.190
 Median : 39.55
Mean : 43.20
 3rd Qu.: 55.47
 Max.
           :148.95
                                                Max.
                                                          :81.12
                                                                                               Max.
                                                                                                         :133.20
                                                                                                                                         Max.
                                                                                                                                                   :54.720
summary(data) "meteo.train.csv"
                                                                               Day
Min. : 1.0
1st Qu.: 8.0
Median :16.0
Mean :15.8
                                                          Month
                                     Year
                                                                                                             Hour
                                                                                                                               Minute
                                                    Min. : 1.000
1st Qu.: 3.000
Median : 6.000
Mean : 6.436
   Min. : 2.0
1st Qu.: 721.5
                                                                                                                         Min. :0
1st Qu.:0
                             Min.
                                      :2010
                                                                                                       Min. :0
                             1st Qu.:2012
                                                                                                       1st Ou.:0
   Median :1451.0
Mean :1459.8
                             Median :2014
Mean :2014
                                                                                                       Median :0
                                                                                                                          Median :0
                                                                                                       Mean
                                                     3rd Qu.: 9.000
Max. :12.000
                                                                               3rd Qu.:23.0
Max. :31.0
   3rd Qu.:2189.0
                             3rd Qu.:2016
                                                                                                       3rd Qu.:0
                                                                                                                          3rd Qu.:0
   Max. :2940.0 Max. :2018 Max. :12.000 Max. :31.0 Max. :0
Temperature.daily.mean..2.m.above.gnd. Relative.Humidity.daily.mean..2.m.above.gnd.
   Min. :-7.63
1st Qu.: 6.71
                                                                Min. :38.33
1st Qu.:64.82
                                                                Median :72.21
Mean :71.40
   Median :12.08
   Mean :12.23
3rd Qu.:17.54
                                                                3rd Qu.:78.63
             :29.45
                                                                         :95.54
                                                                Max.
   Mean.Sea.Level.Pressure.daily.mean..MSL. Total.Precipitation.daily.sum..sfc. Snowfall.amount.raw.daily.sum..sfc.
                                                                  Min. : 0.000
1st Qu.: 0.000
                                                                                                                           Min. :0.00000
1st Qu.:0.00000
   Min. : 978.9
1st Qu.:1012.4
                                                                   Median: 0.100
Mean: 2.085
3rd Qu.: 2.300
                                                                                                                           Median :0.00000
Mean :0.04965
3rd Qu.:0.00000
   Median :1017.0
   Mean :1017.0
3rd Qu.:1022.0
                                                                            :31.500
   Max. :1042.4
                                                                   Max.
                                                                                                                           Max.
                                                                                                                                     :8.61000
```

```
Total.Cloud.Cover.daily.mean..sfc. High.Cloud.Cover.daily.mean..high.cld.lay.
Min. : 0.00
1st Qu.: 23.80
                                                  Min. : 0.000
1st Qu.: 1.657
Median : 51.67
                                                   Median :
                                                                11.880
Mean : 50.76
3rd Qu.: 78.53
                                                  Mean
                                                            : 20.284
                                                  3rd Qu.: 33.260
Max. :100.000
          :100.00
Medium.Cloud.Cover.daily.mean..mid.cld.lay. Low.Cloud.Cover.daily.mean..low.cld.lay.
Min. : 0.00 Min. : 0.00

1st Qu.: 1.83 1st Qu.: 9.42
Median : 24.98
Mean : 31.50
                                                                Median : 36.35
Mean : 39.34
3rd Qu.: 54.21
                                                                3rd Qu.: 65.76
Max.
         :100.00
                                                                Max.
                                                                          :100.00
Sunshine.Duration.daily.sum..sfc. Shortwave.Radiation.daily.sum..sfc. Wind.Speed.daily.mean..10.m.above.gnd.
                                                 Min. : 265.2
1st Qu.:2096.2
Median :3675.3
Mean :3984.6
                                                                                                     Min. : 1.260
1st Qu.: 6.428
Median : 9.195
Mean : 10.707
Min. : 0.0
1st Qu.: 114.3
                0.0
Median: 366.8
Mean: 373.1
3rd Qu:: 587.7
Max.: 1015.8
                                                 3rd Qu.:5723.6
Max. :8363.3
                                                                                                     3rd Qu.:12.977
                                                                                                               :42.210
                                                                                                     Max.
Wind.Direction.daily.mean..10.m.above.gnd. Wind.Speed.daily.mean..80.m.above.gnd.
Min. : 11.19
1st Qu.:152.40
                                                              Min. : 1.34
1st Qu.: 8.68
Median :206.36
                                                              Median :12.41
                                                              Mean :14.28
3rd Qu.:17.61
Mean :201.82
3rd Qu.:254.19
Max. :331.67
                                                              Max. :54.03
Wind.Direction.daily.mean..80.m.above.gnd. Wind.Speed.daily.mean..900.mb. Wind.Direction.daily.mean..900.mb.
Min. : 12.18
1st Qu.:157.42
                                                              Min. : 2.25
1st Qu.:13.02
                                                                                                          Min. : 17.37
1st Qu.:144.02
Median :213.78
Mean :206.23
                                                              Median :19.57
Mean :24.57
                                                                                                          Median :233.47
Mean :206.22
                                                              3rd Qu.:32.10
                                                                                                           3rd Qu.:265.93
Max. :333.43 Max. :97.06 Max. :344.82 Wind.Gust.daily.mean..sfc. Temperature.daily.max..2.m.above.gnd. Temperature.daily.min..2.m.above.gnd.
                                                                                             Min. :-12.520
1st Qu.: 3.350
Median : 8.005
Mean : 8.062
Min. : 2.25
1st Qu.: 9.48
                                      Min. :-3.84
1st Qu.:10.58
Median :14.06
Mean :16.69
                                       Median :16.54
Mean :16.54
3rd Qu.:21.15
Max. :79.38
                                       3rd Qu.:22.36
Max. :35.77
                                                                                             3rd Qu.: 13.092
Max. : 23.940
Relative.Humidity.daily.max..2.m.above.gnd. Relative.Humidity.daily.min..2.m.above.gnd.
Min. : 59.00
1st Qu.: 83.00
                                                               Min. :19.00
1st Qu.:45.00
Median: 89.00
Mean: 87.69
                                                               Median :54.00
Mean :54.04
 3rd Qu.: 94.00
                                                                3rd Qu.:63.00
Max. :100.00 Max. :92.00
Mean.Sea.Level.Pressure.daily.max..MSL. Mean.Sea.Level.Pressure.daily.min..MSL. Total.Cloud.Cover.daily.max..sfc.
                                                                                                                  Min.: 0.00
1st Qu.:100.00
Median:100.00
Mean:88.23
                                                         Min. : 977
1st Qu.:1009
Median :1015
Mean :1014
             981.9
Min. : 981.9
1st Qu.:1015.4
Median :1019.5
Mean :1019.9
                                                          3rd Qu.:1019
3rd Qu.:1024.7
                                                                                                                   3rd Ou.:100.00
Max. :1045.4
                                                 Max. :1039
                                                                                                                   Max. :100.00
```

```
Total.Cloud.Cover.daily.min..sfc. High.Cloud.Cover.daily.max..high.cld.lay. High.Cloud.Cover.daily.min..high.cld.lay. Min. : 0.000 Min. : 0.000
  Min. :
1st Qu.:
                                  Min. : 0.00
1st Qu.: 15.00
           0.000
                                                                         1st Qu.:
                                                                                   0.0000
  Median :
Mean :
           0.000
                                  Median :
                                          97.00
                                                                         Median :
                                                                                   0.0000
  Mean
3rd Qu.: 2.400
:100.000
  Mean
           8.692
                                  Mean
                                                                         Mean
                                  3rd Qu.:100.00
                                                                         3rd Qu.:
                                                                                   0.0000
                                                                                :100.0000
                                  Max.
                                        :100.00
                                                                         Max.
  Medium.Cloud.Cover.daily.max..mid.cld.lay. Medium.Cloud.Cover.daily.min..mid.cld.lay. Min. : 0.000
  Min. : 0.00
1st Qu.: 22.75
                                          Min. :
1st Qu.:
                                          Median :
                                                    0.000
2.097
  Median :100.00
        : 70.94
                                          Mean
  Mean
  3rd Qu.:100.00
                                          3rd Qu.:
                                                    0.000
                                                 :100.000
        :100.00
  Max.
                                          Max.
  Median :100
Mean : 80
                                                 0.000
3.879
                                                                             Median :17.36
Mean :19.06
                                        Median :
                                        Mean
                                        3rd Qu.: 0.000
Max. :100.000
  3rd Qu.:100
                                                                             3rd Qu.:23.44
  Max. :100.000 Max. :79.99
Wind.Speed.daily.min..10.m.above.gnd. Wind.Speed.daily.max..80.m.above.gnd. Wind.Speed.daily.min..80.m.above.gnd.
  Max.
  Min. : 0.00
1st Qu.: 1.14
Median : 2.41
Mean : 3.57
                                                                         Min. : 0.000
1st Qu.: 1.140
Median : 2.600
Mean : 4.727
                                     Min. : 3.98
1st Qu.:18.27
                                     Median :23.85
Mean :25.35
  3rd Qu.: 4.45
Max. :27.73
                                      3rd Qu.:29.92
                                                                         3rd Qu.: 5.830
                                                                                . 37, 700
  Max.
                                     Max.
                                            :93.84
                                                                         Max.
 Wind.Speed.daily.max..900.mb. Wind.Speed.daily.min..900.mb. Wind.Gust.daily.max..sfc. Wind.Gust.daily.min..sfc.
 Min. : 4.02
1st Qu.: 24.54
Median : 37.12
                              Min. : 0.00
1st Qu.: 3.05
Median : 6.73
                                                                                     Min. : 0.000
1st Qu.: 2.160
                                                           Min. : 4.32
1st Ou.:19.08
                                                            Median :26.10
                                                                                     Median : 3.960
 Mean : 41.82
3rd Qu.: 54.37
Max. :136.25
                                                                                     Mean : 6.502
3rd Qu.: 8.280
Max. :57.960
                              Mean
                                     :11.09
                                                            Mean :29.31
 Mean
                              3rd Qu.:15.31
Max. :76.13
                                                            3rd Qu.:37.08
Max. :95.04
 Max.
                                                            Max.
 pluie.demain
 Mode :logical
FALSE:579
 TRUE :601
str(data)
## 'data.frame':
                              1180 obs. of 47 variables:
## $ X
                                                                                      2 4 6 8 10 12 14 1
                                                                            : int
6 18 20 ...
     $ Year
                                                                            : int
                                                                                      2010 2010 2010 201
0 2010 2010 2010 2010 2010 2010 ...
                                                                                      66666666
     $ Month
                                                                           : int
6 ...
## $ Day
                                                                             int
                                                                                      2 4 6 8 10 12 14 1
6 18 20 ...
## $ Hour
                                                                              int
                                                                                      000000000
0 ...
## $ Minute
                                                                            : int
                                                                                      000000000
## $ Temperature.daily.mean..2.m.above.gnd.
                                                                                      15 17.3 21.6 20.2
                                                                           : num
22.6 ...
## $ Relative.Humidity.daily.mean..2.m.above.gnd.: num
                                                                                      76.5 77.6 69.5 75.
                                                                                      1015 1017 1015 100
     $ Mean.Sea.Level.Pressure.daily.mean..MSL.
                                                                           : num
8 1004 ...
      $ Total.Precipitation.daily.sum..sfc.
                                                                                      1 0 3.7 0.2 0 2.2
                                                                           : num
1.8 1.8 17.5 1.2 ...
## $ Snowfall.amount.raw.daily.sum..sfc.
                                                                                      000000000
                                                                            : num
0 ...
## $ Total.Cloud.Cover.daily.mean..sfc.
                                                                            : num
                                                                                      79.8 4.7 42.1 67.5
56.3 ...
## $ High.Cloud.Cover.daily.mean..high.cld.lay. : num 3 0.67 21.21 54.71
```

```
50.25 ...
## $ Medium.Cloud.Cover.daily.mean..mid.cld.lay. : num 31.6 0 25.9 65.8 5
## $ Low.Cloud.Cover.daily.mean..low.cld.lay. : num 79.2 4.5 35.3 18.9
34.2 ...
## $ Sunshine.Duration.daily.sum..sfc. : num 287.2 821.4 441.3
41.9 473.2 ...
## $ Shortwave.Radiation.daily.sum..sfc.
                                              : num 6710 7974 4834 539
0 7216 ...
## $ Wind.Speed.daily.mean..10.m.above.gnd. : num 11.64 6.34 8.4 5.4
9.16 ...
## $ Wind.Direction.daily.mean..10.m.above.gnd. : num 275 230 215 205 17
## $ Wind.Speed.daily.mean..80.m.above.gnd. : num 14.99 8.92 10.38 6
.53 11.91 ...
## $ Wind.Direction.daily.mean..80.m.above.gnd. : num 268 199 208 206 18
6 ...
## $ Wind.Speed.daily.mean..900.mb.
                                              : num 20.6 27.9 18.9 10.
4 21.9 ...
## $ Wind.Direction.daily.mean..900.mb.
                                              : num 180.4 93.7 250.1 2
38.6 153 ...
## $ Wind.Gust.daily.mean..sfc.
                                              : num 14.88 9.48 13.5 5.
31 12.21 ...
## $ Temperature.daily.max..2.m.above.gnd. : num 18.5 25 26.2 24.2
## $ Temperature.daily.min..2.m.above.gnd. : num 11.1 10.4 17.7 14.
7 16.9 ...
## $ Relative.Humidity.daily.max..2.m.above.gnd. : int 94 92 91 89 97 92
96 96 97 95 ...
## $ Relative.Humidity.daily.min..2.m.above.gnd. : int 59 54 57 62 39 65
69 64 74 61 ...
## $ Mean.Sea.Level.Pressure.daily.max..MSL. : num 1017 1019 1016 101
0 1006 ...
## $ Mean.Sea.Level.Pressure.daily.min..MSL. : num 1014 1016 1013 100
6 1001 ...
## $ Total.Cloud.Cover.daily.max..sfc.
                                              : num 100 28 100 100 100
100 100 100 100 100 ...
## $ Total.Cloud.Cover.daily.min..sfc. : num 0 0 0 0 0 0 0 100
00 ...
## $ High.Cloud.Cover.daily.max..high.cld.lay. : int 16 11 100 100 100
28 100 100 100 24 ...
## $ High.Cloud.Cover.daily.min..high.cld.lay. : int 0000000000
## $ Medium.Cloud.Cover.daily.max..mid.cld.lay. : int 100 0 100 100
100 100 100 100 41 ...
## $ Medium.Cloud.Cover.daily.min..mid.cld.lay. : int 000000000
## $ Low.Cloud.Cover.daily.max..low.cld.lay. : int 100 28 100 100 100
100 100 100 100 100 ...
## $ Low.Cloud.Cover.daily.min..low.cld.lay.
                                              : int 0000000290
## $ Wind.Speed.daily.max..10.m.above.gnd. : num 22 15.5 22.7 10.7
20.5 ...
## $ Wind.Speed.daily.min..10.m.above.gnd. : num 5.62 1.08 2.41 0 2
```

```
.52 2.28 1.3 4.32 7.2 8.05 ...
## $ Wind.Speed.daily.max..80.m.above.gnd.
                                                  : num 23.8 18.7 32 10.2
23.4 ...
                                                  : num 8.65 0 0.51 1.44 2
## $ Wind.Speed.daily.min..80.m.above.gnd.
.97 ...
                                                        32.1 48.1 44 22.2
## $ Wind.Speed.daily.max..900.mb.
                                                  : num
40.8 ...
                                                        12.25 6.62 5.48 4.
## $ Wind.Speed.daily.min..900.mb.
                                                  : num
69 4.68 ...
## $ Wind.Gust.daily.max..sfc.
                                                        25.2 20.2 41.8 11.
                                                  : num
2 24.1 ...
## $ Wind.Gust.daily.min..sfc.
                                                  : num 6.48 2.16 1.08 0.3
6 1.44 ...
## $ pluie.demain
                                                  : logi FALSE FALSE TRUE
TRUE TRUE TRUE ...
```

Nous allons renommer les variables des fichiers "meteo, train "&" meteo, test ":

```
```{r Redéfinition DES VARIABLES meteo.train }
library(dplyr)
data2=rename(Tempmean=Temperature.daily.mean..2.m.above.gnd., Humimean=Relat
ive.Humidity.daily.mean..2.m.above.gnd.,MeanPressuremean= Mean.Sea.Level.Pr
essure.daily.mean..MSL. , Totalprecipitation= Total.Precipitation.daily.s
                ,Snowfall=Snowfall.amount.raw.daily.sum..sfc.
um..sfc.
                                                   ,Highcloudmean= High.C
oudmean= Total.Cloud.Cover.daily.mean..sfc.
loud.Cover.daily.mean..high.cld.lay. , Mediumcloudmean= Medium.Cloud.Cover
.daily.mean..mid.cld.lay. ,Lowcloudmean=Low.Cloud.Cover.daily.mean..low.cl
         ,Sunshine= Sunshine.Duration.daily.sum..sfc.
                                                               ,Waveradia
= Shortwave.Radiation.daily.sum..sfc. , Windspdmean10m= Wind.Speed.
                             , Winddirecmean10m=Wind.Direction.daily.me
daily.mean..10.m.above.gnd.
an..10.m.above.gnd. , Windspdmean80m= Wind.Speed.daily.mean..80.m.above.gn
       , Winddirectmean80m=Wind.Direction.daily.mean..80.m.above.gnd. , W
                                                           , Winddirectm
indspdmean900mb= Wind.Speed.daily.mean..900.mb.
ean900mb =Wind.Direction.daily.mean..900.mb.
                                                     , Windgustmean= Wind.
                                      , Tempmax=Temperature.daily.max..2.m
Gust.daily.mean..sfc.
                ,Tempmin=Temperature.daily.min..2.m.above.gnd. ,Humima
.above.gnd.
x=Relative.Humidity.daily.max..2.m.above.gnd. ,Humimin= Relative.Humidity.d
aily.min..2.m.above.gnd. , Meanpressuremax=Mean.Sea.Level.Pressure.daily.ma
           ,Meanpressuremin =Mean.Sea.Level.Pressure.daily.min..MSL.
x..MSL.
Totalcloudmax =Total.Cloud.Cover.daily.max..sfc.
                                                         ,Totalcloudmin =T
                                          ,Highcloudmax= High.Cloud.Cover.
otal.Cloud.Cover.daily.min..sfc.
daily.max..high.cld.lay. , Highcloudmin= High.Cloud.Cover.daily.min..high
           ,Mediumcloudmax = Medium.Cloud.Cover.daily.max..mid.cld.lay. ,M
ediumcloudmin= Medium.Cloud.Cover.daily.min..mid.cld.lay. , Lowcloudmax=Lo
w.Cloud.Cover.daily.max..low.cld.lay.
              ,Lowcloudmin= Low.Cloud.Cover.daily.min..low.cld.lay.
                                                       ,Windspdmin10m= Win
ndspdmax10m=Wind.Speed.daily.max..10.m.above.gnd.
d.Speed.daily.min..10.m.above.gnd.
                                       , Windspdmax80m= Wind.Speed.daily.
                         ,Windspdmin80m=Wind.Speed.daily.min..80.m.above.g
max..80.m.above.gnd.
         ,Windspdmax900mb= Wind.Speed.daily.max..900.mb.
dspdmin900mb= Wind.Speed.daily.min..900.mb.
                                                         ,Windgustmax= Win
d.Gust.daily.max..sfc. ,Windgustmin= Wind.Gust.daily.min..
```

```
sfc.
               ,data)
names(data2) "meteo.train"
    [1] "X"
                              "Year"
                                                     "Month"
##
##
    [4]
       "Day"
                              "Hour"
                                                     "Minute"
    [7] "Tempmean"
                              "Humimean"
                                                     "MeanPressuremean"
##
## [10] "Totalprecipitation"
                               "Snowfall"
                                                     "Totalcloudmean"
## [13] "Highcloudmean"
                              "Mediumcloudmean"
                                                     "Lowcloudmean"
                                                     "Windspdmean10m"
## [16] "Sunshine"
                              "Waveradia"
## [19] "Winddirecmean10m"
                              "Windspdmean80m"
                                                     "Winddirectmean80m"
## [22] "Windspdmean900mb"
                               "Winddirectmean900mb"
                                                     "Windgustmean"
## [25] "Tempmax"
                              "Tempmin"
                                                     "Humimax"
## [28] "Humimin"
                              "Meanpressuremax"
                                                     "Meanpressuremin"
## [31] "Totalcloudmax"
                              "Totalcloudmin"
                                                     "Highcloudmax"
## [34] "Highcloudmin"
                              "Mediumcloudmax"
                                                     "Mediumcloudmin"
## [37] "Lowcloudmax"
                              "Lowcloudmin"
                                                     "Windspdmax10m"
## [40] "Windspdmin10m"
                              "Windspdmax80m"
                                                     "Windspdmin80m"
## [43] "Windspdmax900mb"
                              "Windspdmin900mb"
                                                     "Windgustmax"
## [46] "Windgustmin"
                              "pluie.demain"
{r Redéfinition DES VARIABLES meteo.test }
library(dplyr)
data3=rename(Tempmean=Temperature.daily.mean..2.m.above.gnd., Humimean=Relat
ive.Humidity.daily.mean..2.m.above.gnd.,MeanPressuremean= Mean.Sea.Level.Pr
                         , Totalprecipitation= Total.Precipitation.daily.s
essure.daily.mean..MSL.
                 ,Snowfall=Snowfall.amount.raw.daily.sum..sfc.
oudmean= Total.Cloud.Cover.daily.mean..sfc.
                                                      ,Highcloudmean= High.C
loud.Cover.daily.mean..high.cld.lay. , Mediumcloudmean= Medium.Cloud.Cover
.daily.mean..mid.cld.lay. ,Lowcloudmean=Low.Cloud.Cover.daily.mean..low.cl
          ,Sunshine= Sunshine.Duration.daily.sum..sfc.
                                                                  ,Waveradia
                                              , Windspdmean10m= Wind.Speed.
= Shortwave.Radiation.daily.sum..sfc.
daily.mean..10.m.above.gnd.
                                 , Winddirecmean10m=Wind.Direction.daily.me
an..10.m.above.gnd. , Windspdmean80m= Wind.Speed.daily.mean..80.m.above.gn
d.
        , Winddirectmean80m=Wind.Direction.daily.mean..80.m.above.gnd.
                                                              , Winddirectm
indspdmean900mb= Wind.Speed.daily.mean..900.mb.
                                                       , Windgustmean= Wind.
ean900mb =Wind.Direction.daily.mean..900.mb.
Gust.daily.mean..sfc.
                                       , Tempmax=Temperature.daily.max..2.m
                 ,Tempmin=Temperature.daily.min..2.m.above.gnd.
.above.gnd.
x=Relative.Humidity.daily.max..2.m.above.gnd. ,Humimin= Relative.Humidity.d
aily.min..2.m.above.gnd. , Meanpressuremax=Mean.Sea.Level.Pressure.daily.ma
x..MSL.
            ,Meanpressuremin =Mean.Sea.Level.Pressure.daily.min..MSL.
                                                           ,Totalcloudmin =T
Totalcloudmax =Total.Cloud.Cover.daily.max..sfc.
                                           ,Highcloudmax= High.Cloud.Cover.
otal.Cloud.Cover.daily.min..sfc.
                         , Highcloudmin= High.Cloud.Cover.daily.min..high
daily.max..high.cld.lay.
            ,Mediumcloudmax = Medium.Cloud.Cover.daily.max..mid.cld.lay. ,M
ediumcloudmin= Medium.Cloud.Cover.daily.min..mid.cld.lay. , Lowcloudmax=Lo
w.Cloud.Cover.daily.max..low.cld.lay.
               ,Lowcloudmin= Low.Cloud.Cover.daily.min..low.cld.lay.
ndspdmax10m=Wind.Speed.daily.max..10.m.above.gnd.
                                                         ,Windspdmin10m= Win
                                         , Windspdmax80m= Wind.Speed.daily.
d.Speed.daily.min..10.m.above.gnd.
max..80.m.above.gnd. , Windspdmin80m=Wind.Speed.daily.min..80.m.above.g
```

```
,Windspdmax900mb= Wind.Speed.daily.max..900.mb.
                                                                          ,Win
dspdmin900mb= Wind.Speed.daily.min..900.mb.
                                                             ,Windgustmax= Win
                                          ,Windgustmin= Wind.Gust.daily.min..
d.Gust.daily.max..sfc.
sfc.
                ,data1)
names(data3) "meteo.test"
    [1] "X"
                               "Year"
                                                      "Month"
##
##
    [4] "Day"
                               "Hour"
                                                      "Minute"
## [7] "Tempmean"
                               "Humimean"
                                                      "MeanPressuremean"
## [10] "Totalprecipitation"
                               "Snowfall"
                                                      "Totalcloudmean"
## [13] "Highcloudmean"
                               "Mediumcloudmean"
                                                      "Lowcloudmean"
## [16] "Sunshine"
                               "Waveradia"
                                                      "Windspdmean10m"
## [19] "Winddirecmean10m"
                               "Windspdmean80m"
                                                      "Winddirectmean80m"
## [22] "Windspdmean900mb"
                               "Winddirectmean900mb"
                                                      "Windgustmean"
## [25] "Tempmax"
                               "Tempmin"
                                                      "Humimax"
## [28] "Humimin"
                               "Meanpressuremax"
                                                      "Meanpressuremin"
## [31] "Totalcloudmax"
                               "Totalcloudmin"
                                                      "Highcloudmax"
## [34] "Highcloudmin"
                               "Mediumcloudmax"
                                                      "Mediumcloudmin"
## [37] "Lowcloudmax"
                               "Lowcloudmin"
                                                      "Windspdmax10m"
## [40] "Windspdmin10m"
                               "Windspdmax80m"
                                                      "Windspdmin80m"
## [43] "Windspdmax900mb"
                               "Windspdmin900mb"
                                                      "Windgustmax"
## [46] "Windgustmin"
```

Nous allons supprimer toutes les valeurs manquantes possibles du jeu de données (meteo.train.csv) & (meteo.test.csv)

```
data2 <- na.omit(data2)
attach(data2)

data3 <- na.omit(data3)
attach(data3)</pre>
```

#### 1.2 Vérifier les liens entre les variables

# 1.2.1 Premières observations sur les corrélations entre les variables : meteo.train.csv(Data2)

Nous utilisons la matrice de corrélation pour évaluer la dépendance entre plusieurs variables en même temps.

```
library(corrplot)
data2.quanti<-data2[,c(7:46)]
cor.data2.quanti<-cor(data2.quanti,use = "complete")</pre>
```

# corrplot(cor.data2.quanti,type="upper") library(Hmisc)



## rcorr(as.matrix(data2[,7:46]))

|                     | Tempmean | Humimean | MeanPressuremean | Totalprecipitation | Snowfall | Totalcloudmean | Highcloudmear |
|---------------------|----------|----------|------------------|--------------------|----------|----------------|---------------|
| Tempmean            | 1.00     | -0.42    | -0.14            | -0.01              | -0.20    | -0.24          | 0.11          |
| Humimean            | -0.42    | 1.00     | -0.01            | 0.36               | 0.16     | 0.49           | 0.11          |
| MeanPressuremean    | -0.14    | -0.01    | 1.00             | -0.31              | -0.10    | -0.36          | -0.34         |
| Totalprecipitation  | -0.01    | 0.36     | -0.31            | 1.00               | 0.17     | 0.48           | 0.30          |
| Snowfall            | -0.20    | 0.16     | -0.10            | 0.17               | 1.00     | 0.13           | -0.02         |
| Totalcloudmean      | -0.24    | 0.49     | -0.36            | 0.48               | 0.13     | 1.00           | 0.48          |
| Highcloudmean       | 0.11     | 0.11     | -0.34            | 0.30               | -0.02    | 0.48           | 1.00          |
| Mediumcloudmean     | -0.10    | 0.29     | -0.49            | 0.52               | 0.13     | 0.79           | 0.70          |
| Lowcloudmean        | -0.30    | 0.56     | -0.26            | 0.51               | 0.17     | 0.90           | 0.24          |
| Sunshine            | 0.42     | -0.55    | 0.25             | -0.42              | -0.12    | -0.91          | -0.4          |
| Waveradia           | 0.70     | -0.62    | 0.03             | -0.32              | -0.15    | -0.57          | -0.2          |
| Windspdmean10m      | -0.32    | 0.11     | -0.30            | 0.32               | 0.21     | 0.35           | 0.1           |
| Winddirecmean10m    | 0.03     | 0.24     | -0.11            | 0.26               | 0.06     | 0.40           | 0.0           |
| Windspdmean80m      | -0.33    | 0.11     | -0.29            | 0.31               | 0.16     | 0.33           | 0.1           |
| Winddirectmean80m   | 0.04     | 0.22     | -0.11            | 0.26               | 0.06     | 0.40           | 0.0           |
| Windspdmean900mb    | -0.31    | 0.09     | -0.19            | 0.26               | 0.04     | 0.29           | 0.20          |
| Winddirectmean900mb | 0.09     | 0.11     | -0.15            | 0.28               | -0.01    | 0.36           | 0.1           |
| Windgustmean        | -0.28    | 0.06     | -0.29            | 0.32               | 0.13     | 0.35           | 0.16          |
| Tempmax             | 0.98     | -0.48    | -0.10            | -0.08              | -0.20    | -0.34          | 0.08          |
| Tempmin             | 0.97     | -0.30    | -0.15            | 0.07               | -0.18    | -0.10          | 0.1           |
| Humimax             | -0.22    | 0.77     | 0.02             | 0.22               | 0.10     | 0.27           | 0.0           |
| Humimin             | -0.40    | 0.89     | -0.02            | 0.36               | 0.16     | 0.50           | 0.1           |
| Meanpressuremax     | -0.22    | 0.02     | 0.97             | -0.26              | -0.04    | -0.32          | -0.3          |
| Meanpressuremin     | -0.06    | -0.03    | 0.97             | -0.32              | -0.15    | -0.38          | -0.3          |
| Totalcloudmax       | 0.08     | 0.26     | -0.26            | 0.20               | 0.05     | 0.61           | 0.30          |

| Tempmean Humimean MeanPressuremean Totalprecipitation Snowfall Totalcloudmean Highcloudmean Lowcloudmean Sunshine Waveradia Windspdmean10m Windspdmean80m Winddirectmean80m Winddirectmean900mb Windgustmean Tempmax Tempmax Tempmin Humimax Humimin Meanpressuremax Meanpressuremin Totalcloudmax                                                                                                            |                                                                                                                                             | Oudmean Lowclo -0.10 0.29 -0.49 0.52 0.13 0.79 0.70 1.00 0.57 -0.74 -0.45 0.34 0.18 0.34 0.20 0.33 0.28 0.36 -0.17 -0.01 0.11 0.32 -0.45 -0.50 0.41 | udmean s -0.30 0.56 -0.26 0.51 0.17 0.90 0.24 0.57 1.00 -0.80 -0.56 0.34 0.32 0.44 0.32 0.44 0.32 0.44 0.32 0.44 0.32 0.45 0.33 0.34 -0.16 0.33 0.56 -0.22 0.50 | Sunshine War 0.42   -0.55   -0.55   -0.25   -0.42   -0.12   -0.91   -0.47   -0.80   1.00   0.75   -0.34   -0.28   -0.34   -0.29   -0.35   0.50   0.29   -0.28   -0.57   0.20   0.28   -0.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.70 -0.62 0.03 -0.32 -0.15 -0.57 -0.25 -0.45 -0.56 0.75 1.00 -0.34 -0.09 -0.38 -0.10 -0.43 -0.21 -0.36 0.75 0.58 -0.29 -0.64 -0.04 -0.08 -0.24 |                                                                                                                                                                                       | an10m Winddir -0.32 0.11 -0.30 0.32 0.21 0.35 0.11 0.34 -0.34 -0.34 -0.34 -0.023 0.98 0.21 0.79 0.24 0.92 -0.35 -0.27 -0.07 0.16 -0.27 -0.07 0.16 -0.39 0.20 | 0.03 0.24 -0.11 0.26 0.06 0.40 0.03 0.18 0.44 -0.28 -0.09 0.23 1.00 0.18 0.97 0.13 0.53 0.23 -0.07 0.14 0.11 0.28 -0.09 -0.12 0.30                            | dspdmean80m -0.33 -0.11 -0.29 -0.31 -0.16 -0.33 -0.13 -0.13 -0.34 -0.32 -0.34 -0.38 -0.98 -0.18 -0.00 -0.16 -0.80 -0.23 -0.92 -0.35 -0.28 -0.07 -0.16 -0.19 -0.37 -0.17                           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Tempmean Humimean MeanPressuremean Totalprecipitation Snowfall Totalcloudmean Highcloudmean Mediumcloudmean Lowcloudmean Sunshine Waveradia Windspdmean10m Windspdmean80m Winddirectmean80m Winddirectmean900mb Winddirectmean90mb Windgustmean Tempmax Tempmax Tempmin Humimax Humimin Meanpressuremin Totalcloudmax                                                                                         |                                                                                                                                             | ectmean80m Win 0.04 0.22 -0.11 0.26 0.06 0.40 0.05 0.29 -0.10 0.21 0.97 0.16 1.00 0.14 0.61 0.22 -0.05 0.15 0.08 0.27 -0.10 -0.12 0.31              | dspdmear                                                                                                                                                        | 0900mb Wind<br>-0.31<br>0.09<br>-0.19<br>0.26<br>0.04<br>0.29<br>0.20<br>0.33<br>0.27<br>-0.34<br>-0.43<br>0.79<br>0.13<br>0.80<br>0.14<br>1.00<br>0.23<br>0.89<br>-0.33<br>-0.27<br>-0.08<br>0.14<br>-0.00<br>0.23<br>0.27<br>-0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ddirectme                                                                                                                                       | an900mb W<br>0.09<br>0.11<br>-0.15<br>0.28<br>-0.01<br>0.36<br>0.17<br>0.28<br>0.33<br>-0.21<br>0.24<br>0.53<br>0.23<br>0.61<br>0.23<br>1.00<br>0.26<br>0.00<br>0.19<br>-0.02<br>0.19 | vindgus tmean -0.28 0.06 -0.29 0.32 0.13 0.35 0.16 0.36 0.34 -0.35 -0.36 0.92 0.22 0.89 0.22 0.89 0.26 1.00 -0.31 -0.23 -0.11 0.13 -0.23 -0.11               | 0.98 00.48 -00.10 -00.08 00.20 -00.34 -0. 0.08 00.17 -00.41 -0. 0.50 0. 0.75 00.35 -00.05 00.35 -00.05 0. 0.33 -00.05 0. 0.091 10.24 -00.49 -00.18 -00.04 -0. | 97 -0.22 30 0.77 15 0.02 07 0.22 18 0.10 10 0.27 15 0.04 01 0.11 16 0.33 29 -0.28 58 -0.29 27 -0.07 14 0.11 28 -0.07 15 0.08 27 -0.08 19 -0.02 23 -0.11 91 -0.24 00 -0.19 19 1.00 26 0.53 23 0.03 |
| Tempmean Humimean MeanPressuremean Totalprecipitation Snowfall Totalcloudmean Highcloudmean Mediumcloudmean Lowcloudmean Sunshine Waveradia Windspdmean10m Windspdmean80m Winddirectmean900mb Windspdmean900mb Windspdmean900mb Windspdmean90mb Windspdmean90mb Windspdmean90mb Windspdmean90mb Windspdmean90mb Windspdmean90mb Tempmax Tempmin Humimax Humimin Meanpressuremax Meanpressuremin Totalcloudmax | Humimin -0.40 0.89 -0.02 0.36 0.16 0.50 0.12 0.32 0.56 -0.57 -0.64 0.16 0.28 0.16 0.27 0.14 0.19 0.13 -0.49 -0.26 0.53 1.00 0.00 -0.04 0.23 | Meanpressurema -0.2 0.0 0.9 -0.2 -0.0 -0.3 -0.3 -0.4 -0.2 0.2 -0.0 -0.1 -0.1 -0.1 -0.1 -0.1 -0.2 -0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.            |                                                                                                                                                                 | -essuremin -0.06 -0.03 0.97 -0.32 -0.15 -0.38 -0.33 -0.50 -0.28 0.28 0.28 0.28 -0.37 -0.12 -0.37 -0.16 -0.37 -0.16 -0.37 -0.16 -0.37 -0.16 -0.37 -0.16 -0.37 -0.16 -0.37 -0.16 -0.37 -0.16 -0.37 -0.16 -0.37 -0.16 -0.37 -0.16 -0.37 -0.16 -0.37 -0.16 -0.37 -0.16 -0.37 -0.16 -0.37 -0.16 -0.37 -0.16 -0.37 -0.16 -0.37 -0.16 -0.37 -0.16 -0.37 -0.16 -0.37 -0.16 -0.37 -0.16 -0.37 -0.16 -0.37 -0.16 -0.37 -0.16 -0.37 -0.16 -0.37 -0.16 -0.37 -0.16 -0.37 -0.16 -0.37 -0.16 -0.37 -0.16 -0.37 -0.16 -0.37 -0.16 -0.37 -0.16 -0.37 -0.16 -0.37 -0.16 -0.37 -0.16 -0.37 -0.16 -0.37 -0.16 -0.37 -0.16 -0.37 -0.16 -0.37 -0.16 -0.37 -0.16 -0.37 -0.16 -0.37 -0.16 -0.37 -0.16 -0.37 -0.16 -0.37 -0.16 -0.37 -0.16 -0.37 -0.16 -0.37 -0.16 -0.37 -0.16 -0.37 -0.16 -0.37 -0.16 -0.37 -0.16 -0.37 -0.16 -0.37 -0.16 -0.37 -0.16 -0.37 -0.16 -0.37 -0.16 -0.37 -0.16 -0.37 -0.16 -0.37 -0.16 -0.37 -0.16 -0.37 -0.04 -0.08 |                                                                                                                                                 | oudmax To1 -0.08 0.26 -0.26 0.20 0.05 0.61 0.30 0.41 0.50 -0.52 -0.24 0.20 0.31 0.16 0.28 0.19 -0.14 0.01 0.18 0.23 -0.24 -0.27 1.00                                                  | talcloudmin H -0.15 0.29 -0.18 0.35 0.16 0.53 0.30 0.49 0.55 -0.47 -0.33 0.17 0.18 0.15 0.17 0.11 0.08 0.16 -0.20 -0.07 0.13 0.32 -0.16 -0.17 0.15           | 10 18 0 18 0 18 0 18 0 18 0 18 0 18 0 1                                                                                                                       |                                                                                                                                                                                                   |

| _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Mediumcloudmax                                                                              |                                                                      |                                                                                                  |                                                                      |                                                                                                              |                                                                                                               |                                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|
| Tempmean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00                                                                                        | -0.06                                                                | -0.18                                                                                            | -0.12                                                                | -0.30                                                                                                        | -0.27                                                                                                         | -0.29                                                               |
| Humimean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.15                                                                                        | 0.12                                                                 | 0.37                                                                                             | 0.24                                                                 | 0.11                                                                                                         | 0.09                                                                                                          | 0.11                                                                |
| 1eanPressuremean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -0.40                                                                                       | -0.16                                                                | -0.25                                                                                            | -0.08                                                                | -0.32                                                                                                        | -0.21                                                                                                         | -0.32                                                               |
| Totalprecipitation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.33                                                                                        | 0.25                                                                 | 0.26                                                                                             | 0.31                                                                 | 0.31                                                                                                         | 0.25                                                                                                          | 0.30                                                                |
| nowfall                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.08                                                                                        | 0.20                                                                 | 0.07                                                                                             | 0.16                                                                 | 0.20                                                                                                         | 0.12                                                                                                          | 0.17                                                                |
| otalcloudmean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.60                                                                                        | 0.27                                                                 | 0.67                                                                                             | 0.34                                                                 | 0.36                                                                                                         | 0.28                                                                                                          | 0.32                                                                |
| lighcloudmean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.52                                                                                        | 0.27                                                                 | 0.20                                                                                             | 0.11                                                                 | 0.14                                                                                                         | 0.06                                                                                                          | 0.18                                                                |
| lediumcloudmean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.70                                                                                        | 0.39                                                                 | 0.41                                                                                             | 0.24                                                                 | 0.36                                                                                                         | 0.25                                                                                                          | 0.36                                                                |
| .owcloudmean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.39                                                                                        | 0.25                                                                 | 0.65                                                                                             | 0.43                                                                 | 0.35                                                                                                         | 0.31                                                                                                          | 0.29                                                                |
| unshine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -0.54                                                                                       | -0.24                                                                | -0.57                                                                                            | -0.30                                                                | -0.34                                                                                                        | -0.28                                                                                                         | -0.33                                                               |
| Vaveradia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -0.28                                                                                       | -0.17                                                                | -0.34                                                                                            | -0.22                                                                | -0.34                                                                                                        | -0.30                                                                                                         | -0.36                                                               |
| vindspdmean10m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.28                                                                                        | 0.08                                                                 | 0.26                                                                                             | 0.08                                                                 | 0.92                                                                                                         | 0.83                                                                                                          | 0.89                                                                |
| /inddirecmean10m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.21                                                                                        | 0.05                                                                 | 0.39                                                                                             | 0.13                                                                 | 0.21                                                                                                         | 0.17                                                                                                          | 0.14                                                                |
| /indspdmean80m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.27                                                                                        | 0.08                                                                 | 0.22                                                                                             | 0.06                                                                 | 0.90                                                                                                         | 0.82                                                                                                          | 0.90                                                                |
| /inddirectmean80m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.23                                                                                        | 0.04                                                                 | 0.39                                                                                             | 0.12                                                                 | 0.19                                                                                                         | 0.16                                                                                                          | 0.12                                                                |
| Vindspdmean900mb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.22                                                                                        | 0.07                                                                 | 0.23<br>0.29                                                                                     | 0.01                                                                 | 0.77<br>0.20                                                                                                 | 0.63<br>0.22                                                                                                  | 0.75<br>0.18                                                        |
| /inddirectmean900mb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                             | 0.02                                                                 |                                                                                                  | 0.02                                                                 |                                                                                                              |                                                                                                               |                                                                     |
| /indgustmean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.27                                                                                        | 0.10                                                                 | 0.27                                                                                             | 0.06                                                                 | 0.87                                                                                                         | 0.74                                                                                                          | 0.84                                                                |
| Гетртах<br>Гетртіп                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -0.06<br>0.08                                                                               | -0.08<br>-0.03                                                       | -0.26<br>-0.07                                                                                   | -0.16<br>-0.06                                                       | -0.32<br>-0.26                                                                                               | -0.31<br>-0.22                                                                                                | -0.30<br>-0.26                                                      |
| Tempmin<br>Humimax                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.08                                                                                        | 0.03                                                                 | 0.26                                                                                             | -0.06<br>0.12                                                        | -0.26<br>-0.03                                                                                               | -0.22<br>-0.10                                                                                                | -0.26<br>-0.04                                                      |
| Humimax<br>Humimin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.01                                                                                        | 0.06                                                                 | 0.26                                                                                             | 0.12                                                                 | 0.12                                                                                                         | 0.15                                                                                                          | 0.13                                                                |
| Humimin<br>Meanpressuremax                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.36                                                                                       | -0.15                                                                | -0.21                                                                                            | -0.08                                                                | -0.21                                                                                                        | -0.13                                                                                                         | -0.21                                                               |
| Meanpressuremax<br>Meanpressuremin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -0.36                                                                                       | -0.15                                                                | -0.21                                                                                            | -0.08                                                                | -0.21                                                                                                        | -0.13                                                                                                         | -0.42                                                               |
| Fotalcloudmax                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.60                                                                                        | 0.07                                                                 | 0.77                                                                                             | 0.09                                                                 | 0.23                                                                                                         | 0.12                                                                                                          | 0.19                                                                |
| o ca re rouamen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                             |                                                                      |                                                                                                  |                                                                      |                                                                                                              | 0.12                                                                                                          | 0.13                                                                |
| o ca i c i ou umax                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                             | 0.00                                                                 | 0.0/                                                                                             | V.//                                                                 | 0.05                                                                                                         | V.23                                                                                                          | V.1                                                                 |
| empmean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                             | 80m Windspdma<br>.26                                                 | .x900mb win<br>-0.28                                                                             | aspamin900n<br>0.2-                                                  |                                                                                                              |                                                                                                               |                                                                     |
| the state of the s |                                                                                             |                                                                      |                                                                                                  |                                                                      |                                                                                                              |                                                                                                               |                                                                     |
| lumimean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                             | . 10                                                                 | 0.11                                                                                             | 0.0                                                                  |                                                                                                              |                                                                                                               |                                                                     |
| eanPressuremean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                             | . 19                                                                 | -0.26                                                                                            | -0.1                                                                 |                                                                                                              |                                                                                                               |                                                                     |
| otalprecipitatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                             | . 25                                                                 | 0.32                                                                                             | 0.1                                                                  |                                                                                                              |                                                                                                               | 23                                                                  |
| nowfall                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                           | . 09                                                                 | 0.06                                                                                             | 0.0                                                                  | 0 0.1                                                                                                        | 2 0.0                                                                                                         | )7                                                                  |
| otalcloudmean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                           | . 28                                                                 | 0.34                                                                                             | 0.2                                                                  | 0 0.3                                                                                                        | 7 0.2                                                                                                         | 27                                                                  |
| ighcloudmean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                           | . 05                                                                 | 0.25                                                                                             | 0.1                                                                  | 0 0.2                                                                                                        | 1 0.0                                                                                                         | )9                                                                  |
| ediumcloudmean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                             | . 23                                                                 | 0.39                                                                                             | 0.2                                                                  |                                                                                                              |                                                                                                               |                                                                     |
| owcloudmean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                             | .31                                                                  | 0.29                                                                                             | 0.2                                                                  |                                                                                                              |                                                                                                               |                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                             |                                                                      |                                                                                                  |                                                                      |                                                                                                              |                                                                                                               |                                                                     |
| Gunshine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                             | . 28                                                                 | -0.38                                                                                            | -0.2                                                                 |                                                                                                              |                                                                                                               |                                                                     |
| laveradia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -0                                                                                          | . 29                                                                 | -0.43                                                                                            |                                                                      |                                                                                                              | 5 -0.2                                                                                                        | '8                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                             |                                                                      |                                                                                                  | -0.3                                                                 |                                                                                                              |                                                                                                               |                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                                                           | . 81                                                                 | 0.73                                                                                             | 0.7                                                                  | 3 0.8                                                                                                        | 1 0.8                                                                                                         | 30                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                                                           | .81<br>.20                                                           |                                                                                                  |                                                                      | 3 0.8                                                                                                        | 1 0.8                                                                                                         | 30                                                                  |
| inddirecmean10m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                                                           | . 20                                                                 | 0.73<br>0.13                                                                                     | 0.7<br>0.1                                                           | 3 0.8<br>5 0.2                                                                                               | 1 0.8<br>0 0.2                                                                                                | 30<br>22                                                            |
| inddirecmean10m<br>indspdmean80m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0<br>0<br>0                                                                                 | . 20<br>. 83                                                         | 0.73<br>0.13<br>0.73                                                                             | 0.7<br>0.1<br>0.7                                                    | 3 0.8<br>5 0.2<br>3 0.8                                                                                      | 1 0.8<br>0 0.2<br>1 0.7                                                                                       | 80<br>22<br>79                                                      |
| inddirecmean10m<br>indspdmean80m<br>inddirectmean80m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0<br>0<br>0<br>1                                                                            | .20<br>.83<br>.19                                                    | 0.73<br>0.13<br>0.73<br>0.13                                                                     | 0.7<br>0.1<br>0.7<br>0.1                                             | 3 0.8<br>5 0.2<br>3 0.8<br>5 0.1                                                                             | 1 0.8<br>0 0.2<br>1 0.7<br>9 0.2                                                                              | 80<br>22<br>29<br>21                                                |
| /indd <sup>i</sup> recmean10m<br>/indspdmean80m<br>/inddirectmean80n<br>/indspdmean900mb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0<br>0<br>0<br>0<br>1                                                                       | . 20<br>. 83<br>. 19<br>. 63                                         | 0.73<br>0.13<br>0.73<br>0.13<br>0.92                                                             | 0.7<br>0.1<br>0.7<br>0.1<br>0.9                                      | 3 0.8<br>5 0.2<br>3 0.8<br>5 0.1<br>0 0.8                                                                    | 1 0.8<br>0 0.2<br>1 0.7<br>9 0.2<br>0 0.7                                                                     | 80<br>22<br>79<br>21<br>74                                          |
| inddirecmean10m<br>indspdmean80m<br>inddirectmean80n<br>indspdmean900mb<br>inddirectmean900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0<br>0<br>0<br>1<br>0<br>0mb 0                                                              | .20<br>.83<br>.19<br>.63<br>.23                                      | 0.73<br>0.13<br>0.73<br>0.13<br>0.92<br>0.25                                                     | 0.7<br>0.1<br>0.7<br>0.1<br>0.9<br>0.2                               | 3 0.8<br>5 0.2<br>3 0.8<br>5 0.1<br>0 0.8<br>0 0.2                                                           | 1 0.8<br>0 0.7<br>1 0.7<br>9 0.2<br>0 0.7<br>3 0.2                                                            | 80<br>22<br>29<br>21<br>44<br>22                                    |
| linddirecmean10m<br>lindspdmean80m<br>linddirectmean80m<br>lindspdmean900mb<br>linddirectmean900<br>lindgustmean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0<br>0<br>0<br>1<br>0<br>0mb 0                                                              | . 20<br>. 83<br>. 19<br>. 63<br>. 23                                 | 0.73<br>0.13<br>0.73<br>0.13<br>0.92<br>0.25<br>0.82                                             | 0.7<br>0.1<br>0.7<br>0.1<br>0.9<br>0.2<br>0.8                        | 3 0.8<br>5 0.2<br>3 0.8<br>5 0.1<br>0 0.8<br>0 0.2<br>1 0.8                                                  | 1 0.8<br>0 0.2<br>1 0.7<br>9 0.2<br>0 0.7<br>3 0.2<br>9 0.8                                                   | 30<br>22<br>39<br>21<br>44<br>22                                    |
| inddirecmean10m<br>indspdmean80m<br>inddirectmean80m<br>indspdmean900mb<br>inddirectmean900<br>indgustmean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0<br>0<br>0<br>1<br>0<br>0mb 0                                                              | .20<br>.83<br>.19<br>.63<br>.23                                      | 0.73<br>0.13<br>0.73<br>0.13<br>0.92<br>0.25                                                     | 0.7<br>0.1<br>0.7<br>0.1<br>0.9<br>0.2                               | 3 0.8<br>5 0.2<br>3 0.8<br>5 0.1<br>0 0.8<br>0 0.2<br>1 0.8                                                  | 1 0.8<br>0 0.2<br>1 0.7<br>9 0.2<br>0 0.7<br>3 0.2<br>9 0.8                                                   | 30<br>22<br>39<br>21<br>44<br>22                                    |
| linddirecmean10m<br>lindspdmean80m<br>linddirectmean80m<br>lindspdmean900mb<br>linddirectmean900<br>lindgustmean<br>empmax                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0<br>0<br>0<br>1<br>0<br>0)mb<br>0<br>0                                                     | . 20<br>. 83<br>. 19<br>. 63<br>. 23                                 | 0.73<br>0.13<br>0.73<br>0.13<br>0.92<br>0.25<br>0.82                                             | 0.7<br>0.1<br>0.7<br>0.1<br>0.9<br>0.2<br>0.8                        | 3 0.8<br>5 0.2<br>3 0.8<br>5 0.1<br>0 0.8<br>0 0.2<br>1 0.8<br>7 -0.2                                        | 1 0.8<br>0 0.2<br>1 0.7<br>9 0.2<br>0 0.7<br>3 0.2<br>9 0.8<br>7 -0.2                                         | 30<br>22<br>9<br>9<br>21<br>24<br>22<br>32                          |
| linddirecmean10m<br>lindspdmean80m<br>linddirectmean80m<br>lindspdmean900mb<br>linddirectmean900<br>lindgustmean<br>empmax<br>empmin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0<br>0<br>0<br>1<br>0<br>0)mb<br>0<br>-0<br>-0                                              | . 20<br>. 83<br>. 19<br>. 63<br>. 23<br>. 75<br>. 30                 | 0.73<br>0.13<br>0.73<br>0.13<br>0.92<br>0.25<br>0.82<br>-0.30<br>-0.24                           | 0.7<br>0.1<br>0.7<br>0.1<br>0.9<br>0.2<br>0.8<br>-0.2<br>-0.2        | 3 0.8<br>5 0.2<br>3 0.8<br>5 0.1<br>0 0.8<br>0 0.2<br>1 0.8<br>7 -0.2<br>1 -0.2                              | 1 0.8<br>0 0.2<br>1 0.7<br>9 0.2<br>0 0.7<br>3 0.2<br>9 0.8<br>7 -0.2                                         | 30<br>22<br>9<br>11<br>4<br>22<br>22<br>32<br>27                    |
| rinddirecmean10m<br>rindspdmean80m<br>rinddirectmean80m<br>rindspdmean900mb<br>rinddirectmean900<br>rindgustmean<br>empmax<br>empmin<br>umimax                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | . 20<br>. 83<br>. 19<br>. 63<br>. 23<br>. 75<br>. 30<br>. 21         | 0.73<br>0.13<br>0.73<br>0.13<br>0.92<br>0.25<br>0.82<br>-0.30<br>-0.24<br>-0.03                  | 0.7<br>0.1<br>0.7<br>0.1<br>0.9<br>0.2<br>0.2<br>-0.2<br>-0.2        | 3 0.8<br>5 0.2<br>3 0.8<br>5 0.1<br>0 0.8<br>0 0.2<br>1 0.8<br>7 -0.2<br>1 -0.2<br>3 -0.0                    | 1 0.8<br>0 0.2<br>1 0.7<br>9 0.2<br>0 0.7<br>3 0.2<br>9 0.8<br>7 -0.2<br>1 -0.1                               | 30<br>22<br>29<br>21<br>24<br>22<br>32<br>27<br>29                  |
| rinddirecmean10m<br>rindspdmean80m<br>rinddirectmean80m<br>rindspdmean900mb<br>rinddirectmean900<br>rindgustmean<br>rempmax<br>empmin<br>umimax<br>umimin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | . 20<br>. 83<br>. 19<br>. 63<br>. 23<br>. 75<br>. 30<br>. 21<br>. 10 | 0.73<br>0.13<br>0.73<br>0.13<br>0.92<br>0.25<br>0.82<br>-0.30<br>-0.24<br>-0.03<br>0.14          | 0.7<br>0.1<br>0.7<br>0.1<br>0.9<br>0.2<br>0.8<br>-0.2<br>-0.1        | 3 0.8<br>5 0.2<br>3 0.8<br>5 0.1<br>0 0.8<br>0 0.2<br>1 0.8<br>7 -0.2<br>1 -0.2<br>3 -0.0<br>8 0.1           | 1 0.8<br>0 0.7<br>1 0.7<br>9 0.2<br>0 0.7<br>3 0.2<br>9 0.8<br>7 -0.2<br>1 -0.1<br>4 0.0                      | 30<br>22<br>29<br>21<br>24<br>22<br>32<br>27<br>29<br>27            |
| Jinddirecmean10m Jindspdmean80m Jinddirectmean80m Jindspdmean900mb Jinddirectmean900 Jindgustmean Tempmax Tempmin Humimax Humimin Heanpressuremax                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>-0<br>-0<br>-0<br>-0                 | . 20<br>. 83<br>. 19<br>. 63<br>. 23<br>. 75<br>. 30<br>. 21<br>. 11 | 0.73<br>0.13<br>0.73<br>0.13<br>0.92<br>0.25<br>0.82<br>-0.30<br>-0.24<br>-0.03<br>0.14<br>-0.16 | 0.7<br>0.1<br>0.7<br>0.1<br>0.9<br>0.2<br>0.8<br>-0.2<br>-0.1<br>0.0 | 3 0.8<br>5 0.2<br>3 0.8<br>5 0.1<br>0 0.8<br>0 0.2<br>1 0.8<br>7 -0.2<br>1 -0.2<br>3 -0.0<br>8 0.1<br>4 -0.2 | 1 0.8<br>0 0.7<br>1 0.7<br>9 0.2<br>0 0.7<br>3 0.2<br>9 0.8<br>7 -0.2<br>1 -0.1<br>4 -0.1<br>4 -0.4           | 30<br>22<br>9<br>9<br>14<br>4<br>22<br>32<br>7<br>7<br>7<br>9<br>.7 |
| Vindspdmean10m Vinddirecmean10m Vindspdmean80m Vindspdmean900m Vindspdmean900m Vindgirectmean900 Vindgustmean Fempmax Fempmin Humimax Heanpressuremax Meanpressuremin Fotalcloudmax                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>-0<br>-0<br>-0<br>0<br>0                  | . 20<br>. 83<br>. 19<br>. 63<br>. 23<br>. 75<br>. 30<br>. 21<br>. 10 | 0.73<br>0.13<br>0.73<br>0.13<br>0.92<br>0.25<br>0.82<br>-0.30<br>-0.24<br>-0.03<br>0.14          | 0.7<br>0.1<br>0.7<br>0.1<br>0.9<br>0.2<br>0.8<br>-0.2<br>-0.1        | 3 0.8<br>5 0.2<br>3 0.8<br>5 0.1<br>0 0.8<br>0 0.2<br>1 0.8<br>7 -0.2<br>1 -0.2<br>3 -0.0<br>8 0.1<br>4 -0.2 | 1 0.8<br>0 0.2<br>1 0.7<br>9 0.2<br>0 0.7<br>3 0.2<br>9 0.8<br>7 -0.2<br>1 -0.1<br>4 -0.1<br>4 -0.1<br>2 -0.2 | 30<br>22<br>9<br>9<br>21<br>24<br>22<br>32<br>27<br>9<br>9<br>33    |

## 1.2.2 Interprétation de la matrice de corrélation

Nous nous sommes basés sur la matrice de corrélation pour analyser les relations entre les variables quantitatives. Les résultats font apparaître les corrélations suivantes :

Forte corrélation positive entre Tempmean, Tempmin et Tempmax

Forte corrélation positive entre Humimean et Humimin

Forte corrélation positive entre Meanpressuremax, Meanpressuremin et MeanPressuremean

Forte corrélation positive entre Totalcloudmean et Lowcloudmean

Forte corrélation négatives entre Totalcloudmean et Sunshine

Forte corrélation positive entre Windspdmean10m, Windspdmean80m, windgustmean, windspedmax10m et windspedmax80m

Forte corrélation positive entre Winddirecmean 10m et Winddirectmean 80m

Forte corrélation positive entre Windspdmean80m, windgustmean, windspedmax10m et windspedmax80m

Forte corrélation positive entre windspedmean900mb, windgustmean, windspedmin900mb, windspedmax900mb

Forte corrélation positive entre windgustmean et windgustmax

Forte corrélation positive entre Tempmax et Tempmin

Forte corrélation positive entre windspdmax10m et windspdmax80m

Forte corrélation positive entre windspdmin10m et windspdmin80m

#### 1.2.3 Analyse de colinéarités entre Les variables

Nous utilisons les histogrammes pour détecter une éventuelle colinéarité entre Les variables.

```
attach(data2)
par(mfrow = c(3, 2))
hist(x = Humimean, col = "lightblue", main = "Humimean", xlab = "", ylab =
hist(x = Humimin, col = "green2", main = "Humimin", xlab = "", ylab = "")
hist(x = Tempmax, col = "orange", main = "Tempmax", xlab = ""
     ylab = "")
hist(x = Tempmin, col = "red", main = "Tempmin", xlab = "",
     ylab = "")
hist(x = Tempmean, col = "orange", main = "Tempmean", xlab = "",
     ylab = "")
hist(x = MeanPressuremean, col = "red", main = "MeanPressuremean", xlab = "
     vlab = "")
hist(x = Meanpressuremax, col = "slategray", main = "Meanpressuremax", xlab
= "", ylab = "")
hist(x = Meanpressuremin, col = "slategray", main = "Meanpressuremin", xlab
= "", ylab = "")
hist(x = Windspdmean80m, col = "red", main = "Windspdmean80m", xlab = "",
vlab = "")
hist(x = Windspdmean900mb, col = "green2", main = "Windspdmean900mb", xlab
= "", ylab = "")
hist(x = Windspdmax10m, col = "red", main = "Windspdmax10m", xlab = "", y
lab = "")
```

```
hist(x = Winddirectmean80m, col = "violet", main = "Winddirectmean80m", xla
b = "", ylab = "")
```







## 1.2.4 Interprétation des histogrammes

D'après les graphiques des histogrammes ci-dessus nous avons détecté les colinéarités entre les variables suivantes:

Humimean et Humimin

Tempmin,Tempmin,Tempmean

Winddirectmean80m, Winddirecmean900mb

Windspdmean80m, Windspdmean900mb, Windspdmax10m

MeanPressuremean, Meanpressuremax, Meanpressuremin,

### 1.2.5 Recherche des variables les plus pertinentes

Nous utilisons en ce qui suit les boxplots et les diagrammes de densité qui permettent de comprendre visuellement la significativité d'un prédicteur en examinant le degré de chevauchement des valeurs prédictives fixées en fonction de la variable à prédire (pluie.demain).

-Analyse avec les boxplots

boxplot(data2\$Meanpressuremax~data2\$pluie.demain,varwidth = TRUE, notch = T
RUE, outline = TRUE)



boxplot(data2\$Meanpressuremin~data2\$pluie.demain,varwidth = TRUE, notch = T
RUE, outline = TRUE)



boxplot(data2\$MeanPressuremean~data2\$pluie.demain,varwidth = TRUE, notch =
TRUE, outline = TRUE)



boxplot(data2\$Totalcloudmean~data2\$pluie.demain,varwidth = TRUE, notch = TR
UE, outline = TRUE)



boxplot(data2\$Lowcloudmean~data2\$pluie.demain,varwidth = TRUE, notch = TRUE
, outline = TRUE)



boxplot(data2\$Sunshine~data2\$pluie.demain,varwidth = TRUE, notch = TRUE, ou tline = TRUE)



boxplot(data2\$Windspdmax10m~data2\$pluie.demain,varwidth = TRUE, notch = TRU
E, outline = TRUE)



boxplot(data2\$Winddirecmean10m~data2\$pluie.demain,varwidth = TRUE, notch =
TRUE, outline = TRUE)



boxplot(data2\$Winddirectmean80m~data2\$pluie.demain,varwidth = TRUE, notch =
TRUE, outline = TRUE)



### Interprétation des résultats de boxplot

Nous constatons qu'une valeur élevée de chacune de variables suivantes (Totalcloudmean,Lowcloudmean,Sunshine,Winddirectmean80m,Winddirectmean10m,) est associée avec une forte la probabilité de pleuvoir vs Une faible valeur de la variable est associé avec la probabilité de ne pas pleuvoir.

En outre certaines variables comme la tempmean Windspmean10m,Windspmean80m et Windgustmean ayant un faible impact sur la probabilité de pleuvoir .

#### -Analyse avec les diagrammes de densités

```
library(ggplot2)
# Changer La couleur des traits par groupe
ggplot(data2, aes(x=Meanpressuremax, color=pluie.demain)) +
   geom_density()
```



```
ggplot(data2, aes(x=Meanpressuremin, color=pluie.demain)) +
  geom_density()
```



ggplot(data2, aes(x=MeanPressuremean, color=pluie.demain)) +
 geom\_density()



ggplot(data2, aes(x=Totalcloudmean, color=pluie.demain)) +
 geom\_density()



ggplot(data2, aes(x=Lowcloudmean, color=pluie.demain)) +
 geom\_density()



ggplot(data2, aes(x=Sunshine, color=pluie.demain)) +
 geom\_density()



ggplot(data2, aes(x=Windspdmax10m, color=pluie.demain)) +
 geom\_density()



ggplot(data2, aes(x=Winddirecmean10m, color=pluie.demain)) +
 geom\_density()







#Interprétation de diagramme de densité

Les résultats obtenus par cette méthode nous confirme la pertinence des variables déjà sélectionnées par la méthode précédente .

#Meanpressuremax,Meanpressuremin ,Meanpressuremean,Totalcloudmean, #Lowcloudmean,Sunshine,Winspdmax10m,Windirectmean10m,Winddirectmean80m

#### 1.3 Analyse complémentaire

Nous avons réalisé une analyse supplémentaire afin de s'assurer de la pertinence des variables présélectionnées

#Meanpressuremax,Meanpressuremin,Meanpressuremean,Totalcloudmean, #Lowcloudmean,Sunshine,Winspdmax10m,Windirectmean10m,Winddirectmean80m,

```
library(PerformanceAnalytics)
datavp <- data2[, c(29,30,9,12,15,16,39,19,21)]
chart.Correlation(datavp, histogram=TRUE, pch=19)</pre>
```



## -Interprétation de la charte de corrélation

En haut de la diagonale : On a la valeur de la corrélation plus le niveau de signification en tant qu'étoiles :

En bas de la diagonale : les nuages de points bivariés avec une ligne ajustée sont affichés qui présente la linéarité ou non entre les variables

Dans notre charte nous constatons une forte corrélation entre les variables :

(Meanpressuremax, Meanpressuremin, Meanpressuremean): la valeur du coefficient de corrélation de Pearson correspondante : 0.90 et 0.97, avec une significativité élevée (p < 0.001) et enfin une corrélation linéaire positive

**Totalcloudmean, Lowcloudmean:** la valeur du coefficient de corrélation de Pearson correspondante : 0.90, avec une significativité élevée (p < 0.001) et enfin corrélation linéaire positive

 $\label{eq:windirectmean80m} Windirectmean80m: la valeur du coefficient de corrélation de Pearson correspondante: 0.97, avec une significativité élevée (p < 0.001) et enfin corrélation linéaire positive.$ 

#### 1.4 Détection des valeurs aberrantes

Les valeurs aberrantes dépendent de la distribution. Nous regardons encore une fois les statistiques de la base de données.

```
summary(data2)
##
          Χ
                           Year
                                         Month
                                                            Day
                                                                            Но
ur
               2.0
                     Min.
                             :2010
                                     Min.
                                                       Min.
                                                               : 1.0
                                                                       Min.
##
    Min.
                                             : 1.000
:0
##
    1st Qu.: 721.5
                      1st Qu.:2012
                                     1st Qu.: 3.000
                                                       1st Qu.: 8.0
                                                                       1st Qu.
:0
##
    Median :1451.0
                     Median :2014
                                     Median : 6.000
                                                       Median :16.0
                                                                       Median
:0
##
    Mean
           :1459.8
                     Mean
                             :2014
                                     Mean
                                             : 6.436
                                                       Mean
                                                              :15.8
                                                                       Mean
:0
                                                                       3rd Qu.
##
    3rd Qu.:2189.0
                      3rd Qu.:2016
                                     3rd Qu.: 9.000
                                                       3rd Qu.:23.0
:0
##
    Max.
           :2940.0
                             :2018
                                             :12.000
                                                                       Max.
                      Max.
                                     Max.
                                                       Max.
                                                               :31.0
:0
                                    Humimean
##
        Minute
                    Tempmean
                                                  MeanPressuremean
##
    Min.
           :0
                Min.
                        :-7.63
                                 Min.
                                         :38.33
                                                  Min.
                                                         : 978.9
##
    1st Qu.:0
                1st Qu.: 6.71
                                 1st Ou.:64.82
                                                  1st Qu.:1012.4
                Median :12.08
##
    Median :0
                                 Median :72.21
                                                  Median :1017.0
                        :12.23
                                                         :1017.0
##
    Mean
           :0
                Mean
                                 Mean
                                         :71.40
                                                  Mean
    3rd Qu.:0
##
                3rd Qu.:17.54
                                 3rd Qu.:78.63
                                                  3rd Qu.:1022.0
                                         :95.54
##
    Max.
           :0
                Max.
                        :29.45
                                 Max.
                                                  Max.
                                                         :1042.4
    Totalprecipitation
                           Snowfall
##
                                           Totalcloudmean
                                                            Highcloudmean
##
    Min.
           : 0.000
                        Min.
                               :0.00000
                                          Min.
                                                  : 0.00
                                                            Min.
                                                                       0.000
                                                                    :
##
    1st Qu.: 0.000
                        1st Qu.:0.00000
                                           1st Qu.: 23.80
                                                                       1.657
                                                            1st Qu.:
##
    Median : 0.100
                        Median :0.00000
                                          Median : 51.67
                                                            Median : 11.880
##
    Mean
           : 2.085
                        Mean
                               :0.04965
                                          Mean
                                                  : 50.76
                                                            Mean
                                                                    : 20.284
##
    3rd Qu.: 2.300
                                           3rd Qu.: 78.53
                                                            3rd Qu.: 33.260
                        3rd Qu.:0.00000
           :31.500
                        Max.
                               :8.61000
                                          Max.
                                                  :100.00
                                                            Max.
                                                                    :100.000
##
    Max.
##
    Mediumcloudmean
                      Lowcloudmean
                                           Sunshine
                                                           Waveradia
##
    Min.
           : 0.00
                      Min.
                             :
                                0.00
                                       Min.
                                              :
                                                   0.0
                                                         Min.
                                                                : 265.2
##
    1st Qu.:
              1.83
                      1st Qu.:
                                9.42
                                       1st Qu.: 114.3
                                                         1st Qu.:2096.2
##
    Median : 24.98
                      Median : 36.35
                                       Median : 366.8
                                                         Median :3675.3
    Mean : 31.50
                     Mean : 39.34
                                       Mean : 373.1
                                                         Mean :3984.6
```

```
##
    3rd Qu.: 54.21
                     3rd Qu.: 65.76
                                      3rd Qu.: 587.7
                                                       3rd Qu.:5723.6
##
    Max.
           :100.00
                     Max.
                            :100.00
                                      Max.
                                             :1015.8
                                                       Max.
                                                               :8363.3
##
    Windspdmean10m
                     Winddirecmean10m Windspdmean80m
                                                      Winddirectmean80m
##
    Min.
           : 1.260
                     Min.
                           : 11.19
                                      Min. : 1.34
                                                      Min.
                                                             : 12.18
                                      1st Qu.: 8.68
##
    1st Qu.: 6.428
                     1st Qu.:152.40
                                                      1st Qu.:157.42
##
    Median : 9.195
                     Median :206.36
                                      Median :12.41
                                                      Median :213.78
##
    Mean
         :10.707
                     Mean
                           :201.82
                                      Mean
                                            :14.28
                                                      Mean
                                                             :206.23
##
    3rd Qu.:12.977
                     3rd Qu.:254.19
                                      3rd Qu.:17.61
                                                      3rd Qu.:259.06
##
                                                            :333.43
    Max.
           :42.210
                     Max.
                            :331.67
                                      Max.
                                             :54.03
                                                      Max.
##
    Windspdmean900mb Winddirectmean900mb Windgustmean
                                                            Tempmax
##
    Min. : 2.25
                           : 17.37
                                         Min. : 2.25
                                                                 :-3.84
                     Min.
                                                         Min.
    1st Qu.:13.02
                     1st Qu.:144.02
                                         1st Qu.: 9.48
                                                         1st Qu.:10.58
   Median :19.57
                     Median :233.47
                                         Median :14.06
                                                         Median :16.54
   Mean :24.57
                     Mean
                           :206.22
                                              :16.69
                                                         Mean
                                         Mean
                                                                :16.54
    3rd Qu.:32.10
                     3rd Qu.:265.93
                                         3rd Qu.:21.15
                                                         3rd Qu.:22.36
                                                :79.38
    Max.
           :97.06
                     Max.
                            :344.82
                                         Max.
                                                         Max.
                                                                :35.77
       Tempmin
                         Humimax
                                          Humimin
                                                       Meanpressuremax
   Min. :-12.520
                             : 59.00
                                                       Min. : 981.9
                      Min.
                                       Min. :19.00
                      1st Qu.: 83.00
                                       1st Qu.:45.00
                                                       1st Qu.:1015.4
    1st Qu.: 3.350
    Median : 8.005
                      Median : 89.00
                                       Median :54.00
                                                       Median :1019.5
                                              :54.04
                                                       Mean :1019.9
##
    Mean : 8.062
                      Mean : 87.69
                                       Mean
##
    3rd Qu.: 13.092
                      3rd Qu.: 94.00
                                       3rd Qu.:63.00
                                                       3rd Ou.:1024.7
                             :100.00
    Max.
          : 23.940
                      Max.
                                       Max.
                                              :92.00
                                                       Max.
                                                              :1045.4
    Meanpressuremin Totalcloudmax
                                     Totalcloudmin
                                                        Highcloudmax
   <u>Min. : 977</u>
                    Min.
                           : 0.00
                                     Min. :
                                               0.000
                                                       Min.
                                                             : 0.00
    1st Qu.:1009
                    1st Qu.:100.00
                                     1st Qu.:
                                               0.000
                                                       1st Qu.: 15.00
##
    Median :1015
                    Median :100.00
                                     Median :
                                               0.000
                                                       Median : 97.00
##
                                                       Mean : 60.17
   Mean
         :1014
                           : 88.23
                                               8.692
                    Mean
                                     Mean
                                     3rd Qu.:
    3rd Qu.:1019
                    3rd Qu.:100.00
                                               2.400
                                                       3rd Qu.:100.00
                                                       Max.
                    Max.
                                            :100.000
    Max.
           :1039
                           :100.00
                                     Max.
                                                              :100.00
    Highcloudmin
                       Mediumcloudmax
                                        Mediumcloudmin
                                                           Lowcloudmax
   Min. : 0.0000
                       Min. : 0.00
                                        Min. : 0.000
                                                          Min. : 0
                                                  0.000
                       1st Qu.: 22.75
                                        1st Qu.:
##
              0.0000
                                                          1st Qu.:100
    1st Qu.:
##
              0.0000
                       Median :100.00
                                                  0.000
    Median :
                                        Median :
                                                          Median :100
##
                              : 70.94
    Mean
              0.9432
                                                  2.097
                                                          Mean: 80
                       Mean
                                        Mean
##
    3rd Qu.:
              0.0000
                       3rd Qu.:100.00
                                        3rd Qu.:
                                                  0.000
                                                          3rd Qu.:100
##
                                               :100.000
    Max.
           :100.0000
                       Max.
                             :100.00
                                        Max.
                                                          Max.
                                                                 :100
##
     Lowcloudmin
                      Windspdmax10m
                                      Windspdmin10m
                                                      Windspdmax80m
##
    Min.
              0.000
                      Min.
                            : 2.52
                                      Min.
                                           : 0.00
                                                      Min. : 3.98
          :
##
    1st Qu.:
              0.000
                      1st Qu.:12.32
                                      1st Qu.: 1.14
                                                      1st Qu.:18.27
##
    Median :
              0.000
                      Median :17.36
                                      Median : 2.41
                                                      Median :23.85
##
    Mean
              3.879
                      Mean
                             :19.06
                                      Mean
                                             : 3.57
                                                      Mean :25.35
           :
##
    3rd Qu.:
              0.000
                      3rd Qu.:23.44
                                      3rd Qu.: 4.45
                                                      3rd Qu.:29.92
##
    Max.
           :100.000
                      Max.
                             :79.99
                                      Max.
                                             :27.73
                                                      Max.
                                                             :93.84
                     Windspdmax900mb
##
   Windspdmin80m
                                      Windspdmin900mb
                                                       Windgustmax
##
         : 0.000
                     Min. : 4.02
   Min.
                                      Min.
                                             : 0.00
                                                      Min. : 4.32
##
    1st Qu.: 1.140
                     1st Qu.: 24.54
                                      1st Qu.: 3.05
                                                      1st Qu.:19.08
##
    Median : 2.600
                     Median : 37.12
                                                      Median :26.10
                                      Median : 6.73
##
    Mean
          : 4.727
                     Mean
                            : 41.82
                                      Mean
                                             :11.09
                                                      Mean
                                                             :29.31
##
    3rd Qu.: 5.830
                     3rd Qu.: 54.37
                                      3rd Qu.:15.31
                                                      3rd Qu.:37.08
##
           :37.700
    Max.
                     Max.
                            :136.25
                                      Max.
                                             :76.13
                                                      Max.
                                                              :95.04
##
    Windgustmin
                     pluie.demain
##
    Min. : 0.000
                     Mode :logical
##
    1st Qu.: 2.160
                     FALSE:579
```

```
## Median : 3.960 TRUE :601
## Mean : 6.502
## 3rd Qu.: 8.280
## Max. :57.960
```

Nous observons que les distributions des variables suivantes sont très étalées : #Totalprecipitation,Snowfall,Totalcloudmin,Highcloudmin,Mediumcloudmin,Lowcloudmin,Windspdmin10m,Windspdmin80m,Windgustmin #Windspdmin900mb. Les autres distributions semblent plutot cohérentes.

Pour le moment nous les considérons à priori comme aberrantes compte tenue de la distribution.

Afin de vérifier si ces variables sont aberrantes nous utilisons la méthode de discrétisation qui consiste à découper les variables en faisant une distinction entre min, médiane et max.

```
#discrétisation de variable Totalprécipitation
Breaksprec = c(0, 2, max(Totalprecipitation))
Totalprecipitation.d = cut(Totalprecipitation, breaks = Breaksprec , includ
e.lowest = TRUE)
summary(Totalprecipitation.d)
##
      [0,2] (2,31.5]
##
        866
                 314
#discrétisation de variable Snowfall
BreaksSnow = c(0, 0.04, max(Snowfall))
Snowfall.d = cut(Snowfall, breaks = BreaksSnow , include.lowest = TRUE)
summary(Snowfall.d)
##
      [0,0.04] (0.04,8.61]
##
          1132
#discrétisation de variable Totalcloudmin
BreaksTTcloumin = c(0, 8, max(Totalcloudmin))
Totalcloudmin.d = cut(Totalcloudmin, breaks = BreaksTTcloumin , include.low
est = TRUE)
summary(Totalcloudmin.d)
##
     [0,8] (8,100]
       972
               208
##
#discrétisation de variable Highcloudmin
Breakshigcloumin = c(0, 0.9, max(Highcloudmin))
Highcloudmin.d = cut(Highcloudmin, breaks = Breakshigcloumin , include.lowe
st = TRUE)
summary(Highcloudmin.d)
##
     [0,0.9] (0.9,100]
##
        1084
                    96
#discrétisation de variable Mediumcloudmin
Breaksmedcloumin = c(0, 2, max(Mediumcloudmin))
Mediumcloudmin.d = cut(Mediumcloudmin, breaks = Breaksmedcloumin, include.
```

```
lowest = TRUE)
summary(Mediumcloudmin.d)
##
     [0,2] (2,100]
##
      1114
#discrétisation de variable Lowcloudmin
Breakslowcloumin = c(0, 3, max(Lowcloudmin))
Lowcloudmin.d = cut(Lowcloudmin, breaks = Breakslowcloumin , include.lowest
= TRUE)
summary(Lowcloudmin.d)
##
     [0,3] (3,100]
##
      1081
#discrétisation de variable Windspdmin10m
Breakswindspmin10 = c(0, 2, max(Windspdmin10m))
Windspdmin10m.d = cut(Windspdmin10m, breaks = Breakswindspmin10 , include.1
owest = TRUE)
summary(Windspdmin10m.d)
##
      [0,2] (2,27.7]
##
                677
        503
#discrétisation de variable Windspdmin80m
BreaksWindspdmin80 = c(0, 4, max(Windspdmin80m))
Windspdmin80m.d = cut(Windspdmin80m, breaks = BreaksWindspdmin80 , include.
lowest = TRUE)
summary(Windspdmin80m.d)
##
      [0,4] (4,37.7]
##
        760
                 420
#discrétisation de variable Windspdmin900mb
Breakswindspdmin900mb = c(0, 11, max(Windspdmin900mb))
Windspdmin900mb.d = cut(Windspdmin900mb, breaks = Breakswindspdmin900mb , i
nclude.lowest = TRUE)
summary(Windspdmin900mb.d)
##
      [0,11] (11,76.1]
##
         789
                   391
#discrétisation de variable Windgustmin
Breakswindgtmin = c(0, 6, max(Windgustmin))
Windgustmin.d = cut(Windgustmin, breaks = Breakswindgtmin , include.lowest
= TRUE)
summary(Windgustmin.d)
## [0,6] (6,58]
## 778 402
```

La discrétisation nous a permis de purifier nos variables. En effet nous avons supprimé celles qui représentent une forte déviation par apport à la moyenne. La comparaison entre la médiane, min et max fait apparaitre que les variables suivantes sont étalées: #Totalprecipitation,Snowfall,Totalcloudmin,Highcloudmin,Mediumcloudmin,Lowcloudmin,Windspdmin10m,Windspdmin80m #et Windgustmin

#### 1.5 Proposition d'un premier modèle

Nous nous sommes basés sur les tests analysés précédemment pour comparer entre plusieurs modèles et en choisir le plus significatif.

```
# Premier étape nous supprimons les variables aberrantes
g1=glm(pluie.demain~.-Totalprecipitation-Snowfall-Totalcloudmin-Highcloudmi
n-Mediumcloudmin-Lowcloudmin-Windspdmin10m
       -Windspdmin80m - Windgustmin -Hour-Minute-X-Day-Year-Month
       ,family = binomial, data = data2)
summary(g1)
##
## Call:
## glm(formula = pluie.demain ~ . - Totalprecipitation - Snowfall -
       Totalcloudmin - Highcloudmin - Mediumcloudmin - Lowcloudmin -
##
##
       Windspdmin10m - Windspdmin80m - Windgustmin - Hour - Minute -
       X - Day - Year - Month, family = binomial, data = data2)
##
##
## Deviance Residuals:
##
       Min
                 10
                      Median
                                   3Q
                                           Max
## -2.3704
           -0.8458
                      0.2806
                               0.8631
                                        2.9720
##
## Coefficients:
##
                         Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                        6.153e+01 1.220e+01
                                               5.042 4.61e-07 ***
## Tempmean
                        1.438e-01 1.608e-01
                                               0.894 0.371119
                                               0.645 0.518732
## Humimean
                        2.040e-02 3.162e-02
                        5.029e-01
                                   1.367e-01
                                               3.680 0.000234 ***
## MeanPressuremean
                        9.295e-03
## Totalcloudmean
                                   1.146e-02
                                               0.811 0.417312
## Highcloudmean
                       -1.807e-03
                                   6.122e-03 -0.295 0.767944
## Mediumcloudmean
                        8.326e-03
                                   5.786e-03
                                               1.439 0.150146
## Lowcloudmean
                        4.030e-03 7.219e-03
                                               0.558 0.576649
## Sunshine
                        5.177e-04 8.605e-04
                                               0.602 0.547415
## Waveradia
                        2.467e-05
                                   9.178e-05
                                               0.269 0.788128
## Windspdmean10m
                        4.510e-02
                                   8.384e-02
                                               0.538 0.590575
                                   5.603e-03
## Winddirecmean10m
                        4.731e-03
                                               0.844 0.398441
                                              -1.753 0.079536 .
## Windspdmean80m
                       -1.081e-01
                                   6.164e-02
## Winddirectmean80m
                       -8.541e-03
                                   5.809e-03
                                              -1.470 0.141498
## Windspdmean900mb
                        1.159e-02 2.463e-02
                                               0.471 0.637880
## Winddirectmean900mb
                        5.243e-03
                                   1.407e-03
                                               3.726 0.000194 ***
## Windgustmean
                                   3.213e-02
                                               0.905 0.365526
                        2.907e-02
## Tempmax
                        2.458e-03
                                   9.416e-02
                                               0.026 0.979175
## Tempmin
                       -1.068e-01
                                   8.492e-02
                                              -1.257 0.208688
## Humimax
                       -4.430e-03
                                   2.013e-02
                                              -0.220 0.825797
                       -1.334e-02 1.799e-02
## Humimin
                                              -0.742 0.458158
                   -2.527e-01 7.124e-02 -3.547 0.000389 ***
## Meanpressuremax
```

```
-3.150e-01 7.611e-02 -4.139 3.48e-05 ***
## Meanpressuremin
## Totalcloudmax
                        3.899e-03 4.787e-03
                                               0.815 0.415339
## Highcloudmax
                        3.550e-03 2.787e-03
                                              1.274 0.202799
## Mediumcloudmax
                        6.201e-03 3.069e-03
                                               2.021 0.043294 *
## Lowcloudmax
                        8.179e-04
                                   3.255e-03
                                               0.251 0.801624
## Windspdmax10m
                        3.071e-02 3.260e-02
                                               0.942 0.346248
## Windspdmax80m
                        1.419e-02 2.724e-02
                                               0.521 0.602431
## Windspdmax900mb
                       -7.957e-03 1.166e-02 -0.682 0.495090
## Windspdmin900mb
                        1.279e-03 1.749e-02
                                               0.073 0.941679
## Windgustmax
                        5.716e-03 1.525e-02
                                               0.375 0.707891
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
##
       Null deviance: 1635.4 on 1179
                                      degrees of freedom
## Residual deviance: 1258.1 on 1148 degrees of freedom
## AIC: 1322.1
## Number of Fisher Scoring iterations: 4
# Nous constatons que le modèle q1 présente plusieurs variables ayant une v
aleur p-value non significatif avec un AIC=1322.1
# Nous essayons d'améliorer sa qualité dans l'étape suivantes (q2)
# Deuxième étape suppression de certaines variables qui présentent
une forte corrélation
#modèle g2
g2=glm(pluie.demain~.-Totalprecipitation-Snowfall-Totalcloudmin-Highcloudmi
n-Mediumcloudmin-Lowcloudmin-Windspdmin10m
       -Windspdmin80m - Windgustmin -Hour-Minute-X-Day-Year-Month
     -Tempmax-Tempmin -Humimean -Windspdmean10m-Windgustmean-Windspdmax80m
     -Windspdmin900mb-Windspdmax900mb, family = binomial, data = data2)
summary(g2)
##
## Call:
## glm(formula = pluie.demain ~ . - Totalprecipitation - Snowfall -
       Totalcloudmin - Highcloudmin - Mediumcloudmin - Lowcloudmin -
##
##
       Windspdmin10m - Windspdmin80m - Windgustmin - Hour - Minute -
##
       X - Day - Year - Month - Tempmax - Tempmin - Humimean - Windspdmean1
0m -
       Windgustmean - Windspdmax80m - Windspdmin900mb - Windspdmax900mb,
##
##
       family = binomial, data = data2)
## Deviance Residuals:
##
       Min
                 1Q
                      Median
                                   3Q
                                           Max
## -2.4170
                      0.3069
           -0.8434
                               0.8742
                                        2.9450
##
```

```
## Coefficients:
                         Estimate Std. Error z value Pr(>|z|)
                                               5.072 3.94e-07 ***
## (Intercept)
                        6.132e+01 1.209e+01
## Tempmean
                        3.910e-02
                                   1.736e-02
                                               2.253 0.024283 *
## MeanPressuremean
                        4.738e-01
                                   1.326e-01
                                               3.572 0.000354 ***
## Totalcloudmean
                        6.728e-03
                                   1.132e-02
                                               0.594 0.552337
## Highcloudmean
                       -1.766e-03
                                   6.072e-03 -0.291 0.771227
## Mediumcloudmean
                        8.692e-03
                                   5.741e-03
                                               1.514 0.129998
## Lowcloudmean
                        4.854e-03 7.104e-03
                                               0.683 0.494470
## Sunshine
                        3.078e-04 8.456e-04
                                               0.364 0.715844
## Waveradia
                                               0.987 0.323822
                        7.937e-05
                                   8.045e-05
## Winddirecmean10m
                        4.120e-03
                                   5.542e-03
                                               0.743 0.457300
## Windspdmean80m
                       -5.082e-02 2.356e-02
                                              -2.157 0.031015 *
## Winddirectmean80m
                       -8.042e-03
                                   5.782e-03
                                              -1.391 0.164247
## Windspdmean900mb
                        9.529e-03
                                  8.922e-03
                                               1.068 0.285530
## Winddirectmean900mb 4.914e-03 1.375e-03
                                               3.574 0.000351 ***
## Humimax
                        7.608e-03 1.153e-02
                                               0.660 0.509454
## Humimin
                       -7.970e-03 9.072e-03
                                              -0.878 0.379702
## Meanpressuremax
                       -2.365e-01 6.954e-02
                                              -3.401 0.000671 ***
## Meanpressuremin
                       -3.014e-01 7.337e-02
                                              -4.108 3.99e-05 ***
## Totalcloudmax
                        3.913e-03 4.762e-03
                                               0.822 0.411282
## Highcloudmax
                        3.480e-03
                                   2.762e-03
                                               1.260 0.207775
## Mediumcloudmax
                                              2.035 0.041888 *
                        6.179e-03 3.037e-03
## Lowcloudmax
                        1.511e-04 3.211e-03
                                               0.047 0.962450
## Windspdmax10m
                        4.106e-02
                                   2.185e-02
                                               1.879 0.060215 .
## Windgustmax
                        1.052e-02 1.123e-02
                                               0.937 0.348922
## ---
                   0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
##
## (Dispersion parameter for binomial family taken to be 1)
##
##
       Null deviance: 1635.4
                              on 1179
                                       degrees of freedom
## Residual deviance: 1262.7 on 1156
                                       degrees of freedom
## AIC: 1310.7
##
## Number of Fisher Scoring iterations: 4
# Dans cette étape nous observons que l'AIC du modèle g2 a diminué.
Nous appliquons par la suite l'Anova sur ce modèle (q2) pour voir quelle co
variable ayant un p-value non sgnificatif
anova(g2,test = "LRT")
## Analysis of Deviance Table
##
## Model: binomial, link: logit
##
## Response: pluie.demain
## Terms added sequentially (first to last)
##
##
##
                       Df Deviance Resid. Df Resid. Dev Pr(>Chi)
## NULL
                                        1179
                                                 1635.4
```

```
## Tempmean
                            16.508
                                                  1618.9 4.845e-05 ***
                        1
                                         1178
## MeanPressuremean
                        1
                                                  1451.4 < 2.2e-16 ***
                           167.501
                                         1177
                                                  1375.4 < 2.2e-16 ***
## Totalcloudmean
                        1
                            76.024
                                         1176
## Highcloudmean
                        1
                             8.694
                                         1175
                                                  1366.7 0.0031921 **
## Mediumcloudmean
                        1
                             9.004
                                         1174
                                                  1357.7 0.0026934 **
## Lowcloudmean
                        1
                             0.378
                                         1173
                                                  1357.3 0.5386986
## Sunshine
                        1
                             1.483
                                         1172
                                                  1355.8 0.2232984
## Waveradia
                        1
                             0.021
                                         1171
                                                  1355.8 0.8838512
## Winddirecmean10m
                        1
                             0.538
                                                  1355.3 0.4633002
                                         1170
                                                  1344.3 0.0009198 ***
## Windspdmean80m
                        1
                             10.982
                                         1169
                                                  1344.0 0.5849784
## Winddirectmean80m
                             0.298
                                         1168
                        1
## Windspdmean900mb
                        1
                             4.906
                                                  1339.1 0.0267566 *
                                         1167
## Winddirectmean900mb
                        1
                            18.478
                                         1166
                                                  1320.6 1.718e-05 ***
## Humimax
                        1
                             0.449
                                         1165
                                                  1320.2 0.5025771
## Humimin
                        1
                              2.196
                                         1164
                                                  1318.0 0.1383818
                        1
                                                  1317.4 0.4433019
## Meanpressuremax
                             0.588
                                         1163
## Meanpressuremin
                        1
                            27.140
                                                  1290.2 1.893e-07 ***
                                         1162
## Totalcloudmax
                                                  1281.2 0.0027375 **
                        1
                             8.975
                                         1161
                        1
## Highcloudmax
                             6.091
                                         1160
                                                  1275.2 0.0135878 *
## Mediumcloudmax
                        1
                             4.361
                                         1159
                                                  1270.8 0.0367698 *
## Lowcloudmax
                        1
                             0.127
                                         1158
                                                  1270.7 0.7215241
## Windspdmax10m
                        1
                             7.062
                                         1157
                                                  1263.6 0.0078738 **
## Windgustmax
                        1
                                                  1262.7 0.3479278
                             0.881
                                         1156
## ---
                   0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
Suite à cette étape nous avons supprimé les variables : Lowcloudmean ,Lowcl
oudmax, Humimax
#modèle q3
g3=glm(pluie.demain~.-Totalprecipitation-Snowfall-Totalcloudmin-Highcloudmi
n-Mediumcloudmin-Lowcloudmin-Windspdmin10m
       -Windspdmin80m - Windgustmin -Hour-Minute-X-Day-Year-Month
     -Tempmax-Tempmin -Humimean -Windspdmean10m-Windgustmean-Windspdmax80m
     -Windspdmin900mb-Windspdmax900mb
     -Humimax-Lowcloudmax- Highcloudmean
,family = binomial, data = data2)
summary(g3)
##
## Call:
## glm(formula = pluie.demain ~ . - Totalprecipitation - Snowfall -
##
       Totalcloudmin - Highcloudmin - Mediumcloudmin - Lowcloudmin -
       Windspdmin10m - Windspdmin80m - Windgustmin - Hour - Minute -
##
##
       X - Day - Year - Month - Tempmax - Tempmin - Humimean - Windspdmean1
0m -
       Windgustmean - Windspdmax80m - Windspdmin900mb - Windspdmax900mb -
##
       Humimax - Lowcloudmax - Highloudmean, family = binomial,
##
##
       data = data2)
##
## Deviance Residuals:
       Min
                 10
                      Median
                                    3Q
                                            Max
## -2.4104 -0.8478
                      0.3063
                               0.8714
                                         2.9314
```

```
##
## Coefficients:
                         Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                        6.174e+01
                                   1.205e+01
                                               5.125 2.98e-07 ***
## Tempmean
                        3.744e-02
                                   1.705e-02
                                               2.196 0.028125 *
## MeanPressuremean
                        4.787e-01 1.325e-01
                                               3.613 0.000303 ***
## Totalcloudmean
                        6.010e-03
                                   1.117e-02
                                               0.538 0.590514
## Mediumcloudmean
                        8.316e-03
                                   5.442e-03
                                               1.528 0.126468
## Lowcloudmean
                        5.848e-03 6.833e-03
                                               0.856 0.392070
## Sunshine
                        3.335e-04 8.423e-04
                                               0.396 0.692188
## Waveradia
                                   7.979e-05
                                               1.055 0.291600
                        8.415e-05
## Winddirecmean10m
                        4.438e-03
                                   5.520e-03
                                               0.804 0.421469
## Windspdmean80m
                       -5.295e-02 2.313e-02
                                              -2.289 0.022062 *
## Winddirectmean80m
                                   5.751e-03
                                              -1.455 0.145561
                       -8.370e-03
## Windspdmean900mb
                        9.334e-03
                                  8.875e-03
                                               1.052 0.292944
## Winddirectmean900mb 4.899e-03 1.375e-03
                                               3.563 0.000367 ***
## Humimin
                       -5.237e-03 8.145e-03
                                              -0.643 0.520241
                                              -3.421 0.000625 ***
## Meanpressuremax
                       -2.378e-01 6.952e-02
## Meanpressuremin
                       -3.049e-01 7.321e-02
                                              -4.165 3.11e-05 ***
## Totalcloudmax
                        4.303e-03 3.823e-03
                                               1.125 0.260408
## Highcloudmax
                        3.103e-03
                                   2.266e-03
                                               1.369 0.170998
## Mediumcloudmax
                        6.138e-03
                                   2.851e-03
                                               2.153 0.031310 *
## Windspdmax10m
                        4.249e-02 2.167e-02
                                               1.961 0.049908 *
## Windgustmax
                        1.025e-02 1.122e-02
                                               0.914 0.360703
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
                                       degrees of freedom
##
       Null deviance: 1635.4
                              on 1179
## Residual deviance: 1263.2
                                       degrees of freedom
                             on 1159
## AIC: 1305.2
##
## Number of Fisher Scoring iterations: 4
anova(g3,g2,test = "LRT") # g3 sgnificatif
# Effectuer une comparaison entre les modèles g2 et g3
## Analysis of Deviance Table)
#g3# 1
            1159
                     1263.2
#g2# 2
            1156
                     1262.7 3 0.51143
                                          0.9164
le modèle q2 possède un p-value non significatif 0.9164 donc on choisit le
modèle q3
# Effectuer un comparaison entre les modèles g1 et g3
anova(g3,g1,test = "LRT") # g3 sgnificatif
     Resid. Df Resid. Dev Df Deviance Pr(>Chi)
# g3# 1
             1159
                      1263.2
# g1# 2
             1148
                      1258.1 11
                                  5.1075
                                           0.9258
le modele q1 possède un p-value non significatif 0.9258 donc on choisit le
modèle g3
```

```
# Appliquer les Critères AIC et BIC pour comparer g1 et g3
c(BIC(g3),BIC(g1))
## [1] 1411.780 1484.478
c(AIC(g3),AIC(g1))
## [1] 1305.241 1322.134
#Après cette comparaison nous choisissons le modèle q3
# choisir le modele q3
step(g3)
## Call: glm(formula pluie.demain ~ Tempmean + MeanPressuremean + Mediumcl
oudmean +
##
       Lowcloudmean + Waveradia + Windspdmean80m + Winddirectmean80m +
##
       Windspdmean900mb + Winddirectmean900mb + Meanpressuremax +
##
       Meanpressuremin + Highcloudmax + Mediumcloudmax + Windspdmax10m,
##
       family = binomial, data = data2)
##
## Coefficients:
##
           (Intercept)
                                   Tempmean
                                                MeanPressuremean
            63.2364460
##
                                  0.0348834
                                                       0.5060734
##
       Mediumcloudmean
                               Lowcloudmean
                                                       Waveradia
##
             0.0086752
                                  0.0098179
                                                       0.0001235
##
        Windspdmean80m
                          Winddirectmean80m
                                                Windspdmean900mb
##
            -0.0543200
                                 -0.0038980
                                                       0.0127039
## Winddirectmean900mb
                                                 Meanpressuremin
                            Meanpressuremax
##
                                                      -0.3204917
             0.0046515
                                 -0.2509566
##
          Highcloudmax
                             Mediumcloudmax
                                                   Windspdmax10m
##
             0.0035623
                                  0.0079133
                                                       0.0541016
##
## Degrees of Freedom: 1179 Total (i.e. Null); 1165 Residual
## Null Deviance:
## Residual Deviance: 1267 AIC: 1297
#modèle g4=step(g3)
g4=glm( pluie.demain ~ Tempmean + MeanPressuremean + Mediumcloudmean +
    Lowcloudmean + Waveradia + Windspdmean80m + Winddirectmean80m +
    Windspdmean900mb + Winddirectmean900mb + Meanpressuremax +
    Meanpressuremin + Highcloudmax + Mediumcloudmax + Windspdmax10m,
    family = binomial, data = data2)
summary(g4)
##
## Call:
## glm(formula = pluie.demain ~ Tempmean + MeanPressuremean + Mediumcloudme
an +
##
       Lowcloudmean + Waveradia + Windspdmean80m + Winddirectmean80m +
##
       Windspdmean900mb + Winddirectmean900mb + Meanpressuremax +
##
       ,Meanpressuremin + Highcloudmax + Mediumcloudmax + Windspdmax10m
##
       family = binomial, data = data2)
##
## Deviance Residuals:
       Min 10 Median
                                   30
                                           Max
```

```
## -2.3607 -0.8449
                    0.2870 0.8730
                                      2.8411
## Coefficients:
##
                       Estimate Std. Error z value Pr(>|z|)
                      6.324e+01 1.189e+01 5.320 1.04e-07 ***
## (Intercept)
## Tempmean
                      3.488e-02 1.674e-02 2.084 0.037146 *
                      5.061e-01 1.314e-01 3.853 0.000117 ***
## MeanPressuremean
                      8.675e-03 4.159e-03 2.086 0.037011 *
## Mediumcloudmean
## Lowcloudmean
                      9.818e-03 3.449e-03 2.847 0.004419 **
## Waveradia
                      1.235e-04 6.162e-05 2.004 0.045038 *
## Windspdmean80m
                   -5.432e-02 2.267e-02 -2.396 0.016581 *
## Winddirectmean80m -3.898e-03 1.549e-03 -2.517 0.011851 *
## Windspdmean900mb
                      1.270e-02 7.949e-03 1.598 0.109984
## Winddirectmean900mb 4.651e-03 1.295e-03 3.592 0.000328 ***
                     -2.510e-01 6.905e-02 -3.634 0.000279 ***
## Meanpressuremax
## Meanpressuremin
                     -3.205e-01 7.244e-02 -4.424 9.67e-06 ***
## Highcloudmax
                      3.562e-03 2.232e-03 1.596 0.110545
## Mediumcloudmax
                      7.913e-03 2.572e-03 3.077 0.002091 **
## Windspdmax10m
                                            2.859 0.004244 **
                      5.410e-02 1.892e-02
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 1635.4 on 1179
                                    degrees of freedom
## Residual deviance: 1267.1 on 1165 degrees of freedom
## AIC: 1297.1
##
## Number of Fisher Scoring iterations: 4
```

#### 1.6 Interprétation de modèle choisi

Nous nous intéressons plus précisément aux estimateurs et au p-value.

On prend les exemples de deux covariables suivantes.

MeanPressuremean est significative avec un impact positif sur la probabilité que la pluie tombe.

```
exp(5.061e-01)=1.658809 x Probabilité
```

Cependant Windspdmean80m est significative mais son impact sur la probabilité que la pluie tombe est négative.

```
exp(-5.061e-01)=0.947129xProbabilité
```

Evaluation de la qualité de modèle choisi (g4=step(g3))

Nous nous focalisons sur la déviance du modèle. Les tests de rapport des vraisemblances et le calcul de la p\_value à l'écart de degré de liberté entre le modèle Null à la cste et le modèle retenu qui nous donne la significativité globale du modèle.

La sortie nous indique :

```
Null deviance: 1635.4 on 1179 degrees of freedom
```

Residual deviance: 1267.1 on 1165 degrees of freedom

```
pchisq(1635.4 - 1267.1 , 1179 - 1165 , lower = F)
## [1] 5.924801e-70
```

On remarque que P-value est très faible donc on rejette le modèle sans covariable et on garde notre modèle=Notre modèle est utile

Dans le sommaire du résultat de glm, la déviance du modèle ajusté est indiquée comme Residual Deviance. Le sommaire inclut aussi une autre valeur, Null Deviance, qui correspond à la déviance du modèle nul ne comptant aucun prédicteur. Ces deux valeurs jouent un rôle semblable à la somme des écarts carrés résiduels et la somme des écarts carrés totaux. On peut donc définir le pseudo R2 (ou R2 de McFadden) comme la fraction de la déviance du modèle nul expliquée par le modèle incluant les prédicteurs.

| #### Extraction des coefficients du modele coef(g4)       |                 |                     |                  |            |  |  |  |  |
|-----------------------------------------------------------|-----------------|---------------------|------------------|------------|--|--|--|--|
| ##<br>oudmean                                             | (Intercept)     | Tempmean            | MeanPressuremean | Mediumcl   |  |  |  |  |
| ##<br>6752062                                             | 63.2364460146   | 0.0348834336        | 0.5060733975     | 0.008      |  |  |  |  |
| ##<br>mean80m                                             | Lowcloudmean    | Waveradia           | Windspdmean80m   | Winddirect |  |  |  |  |
| ##<br>8979783                                             | 0.0098178921    | 0.0001235098        | -0.0543199698    | -0.003     |  |  |  |  |
| ## Wi<br>suremin                                          | .ndspdmean900mb | Winddirectmean900mb | Meanpressuremax  | Meanpres   |  |  |  |  |
| ##<br>4916864                                             | 0.0127039416    | 0.0046514695        | -0.2509565565    | -0.320     |  |  |  |  |
| ##                                                        | Highcloudmax    |                     | Windspdmax10m    |            |  |  |  |  |
| ##                                                        | 0.0035623035    | 0.0079132535        | 0.0541015551     |            |  |  |  |  |
| #### Extraction des résidus resid(g4)                     |                 |                     |                  |            |  |  |  |  |
| <pre>#### pseudo_R2 library(DescTools) PseudoR2(g4)</pre> |                 |                     |                  |            |  |  |  |  |
| ## McFadden<br>## 0.2251859                               |                 |                     |                  |            |  |  |  |  |

| PseudoR2(g4,"all")        |                     |                        |                         |                   |        |  |  |  |  |  |
|---------------------------|---------------------|------------------------|-------------------------|-------------------|--------|--|--|--|--|--|
| ##<br>hNels               | McFadden<br>son     | McFaddenAdj            | CoxSnell                | Nagelkerke        | Aldric |  |  |  |  |  |
| ##<br>23786               | 0.2251859<br>504    | 0.2068419              | 0.2680884               | 0.3574927         | 0.     |  |  |  |  |  |
| ## VeallZimmermann<br>AIC |                     | Efron McKelveyZavoina  |                         | Tjur              |        |  |  |  |  |  |
| ##<br>14433               | 0.4094835<br>390    | 0.2861717              | 0.3752691               | 0.2829294         | 1297.  |  |  |  |  |  |
| ##<br>##                  | BIC<br>1373.2433847 | logLik<br>-633.5721695 | logLik0<br>-817.7085764 | G2<br>368.2728139 |        |  |  |  |  |  |

Pseudo R2 fait apparaître plusieurs critères avec des valeurs différentes. Nous ne pouvons pas avoir des informations claires permettant de valider notre modèle. Nous utilisons donc AIC et BIC pour l'évaluation de modèle

Après avoir obtenu un modèle, nous diagnostiquons la régression afin de valider ou non le modèle. L'analyse des résidus est de ce point de vue très importante. Il est important de noter qu'en régression logistique, on s'intéresse la plupart du temps aux résidus de déviance. On construit généralement un index plot pour détecter les valeurs aberrantes (en dehors des lignes).



Le graphique des résidus affiche une répartition relativement homogène des résidus, on constate alors que la distribution des résidus est symétrique autour de 0, la symétrie de résidu est un signe que leur distribution suit la loi normale, On remarque aussi la présence de quelques points aberrants(en dehors de lignes).

Analyse de la distribution des résidus suivant la loi normale





# Interprétation

Le diagramme **Quantile-Quantile** Q-Q plot (en haut à droite)montre que les queues droite et gauche sont petites et les valeurs extrêmes du graphique tombent près du centre sauf une petite déviation au milieu . Nous avons donc une distribution uniforme des données.

## Analyse ACP (modèle g4)

Nous appliquons sur les 14 variables de g4 une analyse ACP afin de les synthétiser en quelles nouvelles variables appeler composantes principalement qui peuvent être visualiser graphiquement.

```
Tary("FactoMineR")

Pary("factoextra")

Pary("yarrr")

Pary("yarrr")

Pary("yarrr")

Pary(data2.global)

Pary(data2.global)

Pary(atoextra")

Pary(data2.global)

Pary(data2.global)

Pary(data2.global)

Pary(atoextra")

Pary(data2.global)

Pary(data2.global)

Pary(data2.global, choice = "var", axes = 1)

Pary(cos2(pca.global, choice = "var", axes = 2)

Pary(cos2(pca.global)

Pary(mkt.pca.global)

Pary(mkt.pca.global
```

 $\{r\}$ 

Sélection du nombre de composantes : Nous utilisons le critère du coude pour le choix des axes

La proportion d'inertie expliquée par les 3 premiers axes est de de 69 %. Cela reste acceptable pour 14 variables.



Présentation de la corrélation des variables avec les différentes dimensions





#Le graphique ci-dessus est également connu sous le nom de graphique de corrélation des variables. Il montre les relations #entre toutes les variables. Il peut être interprété comme suit :

Les variables positivement corrélées sont regroupées.

Les variables négativement corrélées sont positionnées sur les côtés opposés de l'origine du graphique.

La distance entre les variables et l'origine mesure la qualité de représentation des variables. Les variables qui sont loin de l'origine sont bien représentées par l'ACP

## 1.7 Régression par Recherche Exhaustive

Autre méthode de sélection d'un meilleur modèle est de celle Best subset. Il s'agit d'une technique de construction de modèle permettant de trouver le meilleur groupe (sous-ensemble) de variables prédictives qui prévoient le mieux les réponses d'une variable dépendante. La sélection de modèle peut être vue comme la recherche du modèle optimal, au sens d'un critère choisi, parmi toutes les possibilités. On voudrait chercher le modèle de régression qui explique le mieux si la pluie tombe le lendemain ou non.

La principale fonction pour faire de la sélection de variables est regsubsets

```
#Utiliser la fonction regsubsets() (du package leaps pour effectuer une sél
ection de variables via l'approche exhaustive Best Subset.
library(leaps)
 res1 = regsubsets(pluie.demain~.-X-Year-Month-Day-Hour-Minute-Snowfall-Hig
hcloudmin-Mediumcloudmin,data=data2,
                    nbest = 1,
                                      # 1 seul meilleur pour chaque nombre d
e variables
                    nvmax = NULL, # NULL pas de limites pour le
                      force.in = NULL, # pas de variables à inclure de for
ce
                      force.out = NULL, # pas de variables à exclure de fo
rce.
            method = "exhaustive") # choix de La méthode exhaustive)
names(res1)
                                 "d"
    [1] "np"
                    "nrbar"
                                             "rbar"
                                                         "thetab"
                                                                      "first"
##
    [7] "last"
##
                    "vorder"
                                 "tol"
                                             "rss"
                                                         "bound"
                                                                      "nvmax"
                                 "nbest"
                    "ir"
                                             "lopt"
                                                         "il"
                                                                      "ier"
## [13] "ress"
                                 "force.in"
                                            "force.out" "sserr"
## [19] "xnames"
                    "method"
                                                                      "interc
ept"
                    "nullrss"
                                 "nn"
                                             "call"
## [25] "lindep"
reg.summary <- summary(res1)</pre>
reg.summary
```

Nous réalisons des plots suivants selon les critères : adjr2, BIC et R2

```
plot(res1,scale="adjr2")
```







Pour choisir le modèle à sélectionner, nous identifions l'emplacement du point maximum / minimum pour chaque critère : RSS, R2 ajusté, Cp et BIC. Dans chaque cas, afficher les variables sélectionnées.

```
min.rss <- which.min(reg.summary$rss)
max.adjr2 <- which.max(reg.summary$adjr2)</pre>
```

```
min.cp <- which.min(reg.summary$cp)
min.bic <- which.min(reg.summary$bic)
#
min.rss
## [1] 37
#
max.adjr2
## [1] 19
#
min.cp
## [1] 16
#
min.bic
## [1] 5</pre>
```

La liste des variables sélectionnées en se basant chaque fois sur les critères : RSS, BIC, CP et adjr2

```
names(which(reg.summary$which[min.rss,]==TRUE))
    [1] "(Intercept)"
                               "Tempmean"
                                                      "Humimean"
##
    [4]
        "MeanPressuremean"
                               "Totalprecipitation"
                                                      "Totalcloudmean"
##
    [7] "Highcloudmean"
                               "Mediumcloudmean"
                                                      "Lowcloudmean"
## [10] "Sunshine"
                               "Waveradia"
                                                      "Windspdmean10m"
## [13] "Winddirecmean10m"
                               "Windspdmean80m"
                                                      "Winddirectmean80m"
                               "Winddirectmean900mb"
## [16] "Windspdmean900mb"
                                                      "Windgustmean"
## [19] "Tempmax"
                               "Tempmin"
                                                       "Humimax"
        "Humimin"
## [22]
                               "Meanpressuremax"
                                                      "Meanpressuremin"
                               "Totalcloudmin"
## [25] "Totalcloudmax"
                                                      "Highcloudmax"
## [28] "Mediumcloudmax"
                               "Lowcloudmax"
                                                      "Lowcloudmin"
## [31] "Windspdmax10m"
                               "Windspdmin10m"
                                                      "Windspdmax80m"
## [34] "Windspdmin80m"
                               "Windspdmax900mb"
                                                      "Windspdmin900mb"
## [37] "Windgustmax"
                               "Windgustmin"
names(which(reg.summary$which[max.adjr2,]==TRUE))
    [1] "(Intercept)"
                               "MeanPressuremean"
                                                      "Totalprecipitation"
        "Totalcloudmean"
                               "Mediumcloudmean"
                                                      "Waveradia"
##
    [4]
                               "Winddirectmean80m"
                                                      "Winddirectmean900mb"
##
   [7] "Windspdmean10m"
## [10] "Windgustmean"
                               "Tempmax"
                                                      "Meanpressuremax"
## [13] "Meanpressuremin"
                               "Totalcloudmin"
                                                      "Highcloudmax"
## [16] "Mediumcloudmax"
                               "Lowcloudmax"
                                                      "Windspdmax10m"
## [19] "Windspdmin10m"
                               "Windspdmin80m"
names(which(reg.summary$which[min.cp,]==TRUE))
    [1] "(Intercept)"
                               "Tempmean"
                                                      "MeanPressuremean"
##
##
    [4] "Mediumcloudmean"
                               "Windspdmean80m"
                                                      "Winddirectmean80m"
    [7] "Winddirectmean900mb"
                               "Tempmin"
##
                                                      "Meanpressuremax"
                               "Totalcloudmin"
## [10] "Meanpressuremin"
                                                      "Highcloudmax"
```

```
## [13] "Mediumcloudmax" "Lowcloudmax" "Windspdmax10m"
## [16] "Windspdmin10m" "Windgustmax"

names(which(reg.summary$which[min.bic,]==TRUE))
## [1] "(Intercept)" "Totalcloudmean" "Tempmax" "Meanpressurem in"
## [5] "Mediumcloudmax" "Windgustmax"
```

Sur une même fenêtre graphique nous représentons les courbes des différents critères. Nous ajoutons sur chaque courbe, le maximum/minimum correspondant.

```
par(mfrow =c(2,2))
plot(reg.summary$rss,xlab="Number of Variables",ylab="RSS",type="l")
points(min.rss,reg.summary$rss[min.rss],col ="red",cex =2, pch =20)
plot(reg.summary$adjr2,xlab="Number of Variables ",ylab="Adjusted RSq",type
="l")
points(max.adjr2,reg.summary$adjr2[max.adjr2],col ="red",cex =2, pch =20)
plot(reg.summary$cp,xlab="Number of Variables ",ylab="Cp",type="l")
points(min.cp,reg.summary$cp[min.cp],col ="red",cex =2, pch =20)
plot(reg.summary$bic,xlab="Number of Variables ",ylab="BIC",type="l")
points(min.bic,reg.summary$bic[min.bic],col ="red",cex =2, pch =20)
```



#### Nous réalisons une régression avec le meilleur modèle selon la statistique BIC

```
var.bic <- names(which(reg.summary$which[min.bic,]==TRUE))
var.bic.formula <- paste("pluie.demain", "~", paste(var.bic[-1], collapse="
+ "))
var.bic.formula
## [1] "pluie.demain ~ Totalcloudmean + Tempmax + Meanpressuremin + Mediumc
loudmax + Windgustmax"</pre>
```

```
best.model <- glm(var.bic.formula, family=binomial, data=data2)</pre>
summary(best.model)
##
## Call:
## glm(formula = var.bic.formula, family = binomial, data = data2)
## Deviance Residuals:
##
                 1Q
       Min
                      Median
                                   3Q
                                          Max
## -2.2825
           -0.8975
                      0.3940
                               0.8631
                                        2.6940
##
## Coefficients:
##
                    Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                   59.236757 10.376489
                                         5.709 1.14e-08 ***
                                         4.105 4.04e-05 ***
## Totalcloudmean
                    0.012263
                               0.002987
## Tempmax
                                         6.099 1.07e-09 ***
                    0.064181
                               0.010523
## Meanpressuremin -0.061488
                               0.010128
                                        -6.071 1.27e-09 ***
                                        5.284 1.27e-07 ***
                               0.002060
## Mediumcloudmax
                    0.010884
## Windgustmax
                    0.022965
                               0.005630
                                        4.079 4.52e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
##
                                      degrees of freedom
       Null deviance: 1635.4 on 1179
## Residual deviance: 1300.9 on 1174 degrees of freedom
## AIC: 1312.9
##
## Number of Fisher Scoring iterations: 4
```

Le résultat de glm montre que les 5 variables ayant tous un p-value significatif avec un AIC de 1312. Ces variables, malgré leur importance, n'explique qu'une partie des informations. D 'autres variables pourraient compléter notre modèle.

#### Choisir le meilleur modèle suivant le critère RSS

```
var.rss <- names(which(reg.summary$which[min.rss,]==TRUE))</pre>
var.rss.formula <- paste("pluie.demain", "~", paste(var.rss[-1], collapse="</pre>
+ "))
var.rss.formula
## [1] "pluie.demain ~ Tempmean + Humimean + MeanPressuremean + Totalprecip
itation + Totalcloudmean + Highcloudmean + Mediumcloudmean + Lowcloudmean +
Sunshine + Waveradia + Windspdmean10m + Winddirecmean10m + Windspdmean80m +
Winddirectmean80m + Windspdmean900mb + Winddirectmean900mb + Windgustmean +
Tempmax + Tempmin + Humimax + Humimin + Meanpressuremax + Meanpressuremin +
Totalcloudmax + Totalcloudmin + Highcloudmax + Mediumcloudmax + Lowcloudmax
+ Lowcloudmin + Windspdmax10m + Windspdmin10m + Windspdmax80m + Windspdmin8
Om + Windspdmax900mb + Windspdmin900mb + Windgustmax + Windgustmin"
best.model1 <- glm(var.rss.formula, family=binomial, data=data2)</pre>
summary(best.model1)
##
## Call:
```

```
## glm(formula = var.rss.formula, family = binomial, data = data2)
##
## Deviance Residuals:
##
       Min
                 1Q
                       Median
                                    3Q
                                             Max
## -2.5712
            -0.8298
                       0.2753
                                0.8398
                                          2.9424
##
## Coefficients:
##
                          Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                                                 5.029 4.93e-07 ***
                         6.186e+01
                                    1.230e+01
## Tempmean
                         1.655e-01
                                    1.624e-01
                                                 1.019 0.308034
                         1.711e-02
## Humimean
                                    3.210e-02
                                                 0.533 0.593876
## MeanPressuremean
                         5.256e-01
                                    1.389e-01
                                                 3.784 0.000154 ***
## Totalprecipitation
                         2.515e-02
                                    2.720e-02
                                                 0.925 0.355146
## Totalcloudmean
                         1.315e-02
                                    1.185e-02
                                                 1.109 0.267442
## Highcloudmean
                        -2.233e-03
                                    6.262e-03
                                                -0.357 0.721424
## Mediumcloudmean
                         4.730e-03
                                    6.426e-03
                                                 0.736 0.461699
## Lowcloudmean
                        -3.427e-03
                                    8.029e-03
                                                -0.427 0.669467
## Sunshine
                                                 0.497 0.618848
                         4.337e-04
                                    8.718e-04
## Waveradia
                         4.585e-05
                                    9.341e-05
                                                 0.491 0.623528
## Windspdmean10m
                        -8.886e-02
                                    9.376e-02
                                                -0.948 0.343268
## Winddirecmean10m
                         5.198e-03
                                    5.681e-03
                                                 0.915 0.360232
## Windspdmean80m
                        -7.431e-02
                                    6.815e-02
                                                -1.090 0.275557
## Winddirectmean80m
                                                -1.510 0.130984
                        -8.863e-03
                                    5.869e-03
## Windspdmean900mb
                         2.076e-02
                                    2.561e-02
                                                 0.811 0.417558
## Winddirectmean900mb
                         5.462e-03
                                    1.444e-03
                                                 3.783 0.000155
## Windgustmean
                         2.143e-02
                                    3.634e-02
                                                 0.590 0.555408
## Tempmax
                        -9.598e-03
                                    9.511e-02
                                                -0.101 0.919616
## Tempmin
                        -1.199e-01
                                    8.557e-02
                                                -1.401 0.161226
## Humimax
                        -1.422e-03
                                    2.040e-02
                                                -0.070 0.944442
## Humimin
                        -1.106e-02
                                    1.827e-02
                                                -0.605 0.544855
## Meanpressuremax
                        -2.681e-01
                                    7.391e-02
                                                -3.628 0.000286
                        -3.228e-01
                                    7.607e-02
                                                -4.244 2.20e-05
## Meanpressuremin
## Totalcloudmax
                         3.460e-03
                                    4.821e-03
                                                 0.718 0.473032
## Totalcloudmin
                         6.602e-03
                                    5.978e-03
                                                 1.104 0.269452
## Highcloudmax
                         3.195e-03
                                    2.833e-03
                                                 1.128 0.259521
## Mediumcloudmax
                         6.443e-03
                                    3.125e-03
                                                 2.062 0.039214 *
## Lowcloudmax
                         2.500e-03
                                    3.360e-03
                                                 0.744 0.456923
## Lowcloudmin
                        -2.868e-04
                                    6.967e-03
                                                -0.041 0.967170
## Windspdmax10m
                         6.221e-02
                                    3.432e-02
                                                 1.812 0.069926
                                                 2.720 0.006532 **
## Windspdmin10m
                         1.731e-01
                                    6.363e-02
## Windspdmax80m
                                    2.821e-02
                         9.165e-03
                                                 0.325 0.745252
## Windspdmin80m
                        -5.994e-02
                                    4.179e-02
                                                -1.434 0.151504
## Windspdmax900mb
                        -1.279e-02
                                    1.203e-02
                                                -1.063 0.287645
## Windspdmin900mb
                        -6.592e-03
                                    1.890e-02
                                                -0.349 0.727225
## Windgustmax
                         1.355e-02
                                    1.658e-02
                                                 0.818 0.413549
## Windgustmin
                         1.746e-02
                                    2.726e-02
                                                 0.640 0.521865
## ---
                   0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
##
## (Dispersion parameter for binomial family taken to be 1)
##
##
       Null deviance: 1635.4
                               on 1179
                                        degrees of freedom
## Residual deviance: 1242.8
                               on 1142
                                        degrees of freedom
## AIC: 1318.8
```

```
##
## Number of Fisher Scoring iterations: 4
```

Avec le critère RSS on a un modèle qui présente un glm avec plusieurs variables dont 6 seulement qui sont significatives. Les résultats font apparaître plusieurs variables ont risque d'avoir un problème de sur-dispersion.

### Choisir le meilleur modèle suivant le critère adjr2

```
var.adjr2 <- names(which(reg.summary$which[max.adjr2,]==TRUE))</pre>
var.adjr2.formula <- paste("pluie.demain", "~", paste(var.adjr2[-1], collap</pre>
se=" + "))
var.adjr2.formula
## [1] "pluie.demain ~ MeanPressuremean + Totalprecipitation + Totalcloudme
an + Mediumcloudmean + Waveradia + Windspdmean10m + Winddirectmean80m + Win
ddirectmean900mb + Windgustmean + Tempmax + Meanpressuremax + Meanpressurem
in + Totalcloudmin + Highcloudmax + Mediumcloudmax + Lowcloudmax + Windspdm
ax10m + Windspdmin10m + Windspdmin80m"
best.model2 <- glm(var.adjr2.formula, family=binomial, data=data2)</pre>
summary(best.model2)
##
## Call:
## glm(formula = var.adjr2.formula, family = binomial, data = data2)
## Deviance Residuals:
##
       Min
                 10
                      Median
                                   30
                                           Max
## -2.5048
            -0.8264
                      0.2896
                               0.8504
                                         2.9005
##
## Coefficients:
##
                         Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                        6.118e+01
                                   1.191e+01
                                               5.138 2.78e-07 ***
                        5.138e-01 1.334e-01
                                               3.852 0.000117 ***
## MeanPressuremean
## Totalprecipitation
                        2.298e-02 2.356e-02
                                               0.976 0.329237
## Totalcloudmean
                                   5.326e-03
                                               1.502 0.133128
                        8.000e-03
## Mediumcloudmean
                        3.504e-03 5.061e-03
                                               0.692 0.488676
## Waveradia
                        1.310e-04 6.346e-05
                                               2.065 0.038962 *
                                               -3.237 0.001208 **
## Windspdmean10m
                       -1.778e-01
                                   5.493e-02
## Winddirectmean80m
                       -3.805e-03
                                   1.611e-03
                                               -2.362 0.018178 *
## Winddirectmean900mb 4.833e-03
                                               3.662 0.000251 ***
                                   1.320e-03
## Windgustmean
                        4.201e-02 1.957e-02
                                               2.146 0.031868 *
## Tempmax
                        3.299e-02
                                   1.688e-02
                                               1.955 0.050640
## Meanpressuremax
                       -2.590e-01 7.186e-02
                                              -3.604 0.000313 ***
## Meanpressuremin
                       -3.185e-01 7.197e-02
                                               -4.426 9.60e-06 ***
## Totalcloudmin
                        6.175e-03 4.043e-03
                                               1.527 0.126673
## Highcloudmax
                        2.978e-03
                                   2.248e-03
                                               1.325 0.185221
## Mediumcloudmax
                        7.696e-03 2.641e-03
                                               2.914 0.003566 **
## Lowcloudmax
                                   2.629e-03
                        3.624e-03
                                               1.378 0.168113
                                                3.073 0.002119 **
## Windspdmax10m
                        7.654e-02
                                   2.491e-02
## Windspdmin10m
                                                3.372 0.000746 ***
                        1.926e-01
                                   5.713e-02
## Windspdmin80m
                       -7.386e-02 3.666e-02 -2.015 0.043946 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

```
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 1635.4 on 1179 degrees of freedom
## Residual deviance: 1249.7 on 1160 degrees of freedom
## AIC: 1289.7
##
## Number of Fisher Scoring iterations: 4
```

Le modèle choisi selon le critère adjr2 comprend plusieurs variables significatives. De même la valeur de AIC est nettement meilleure (1289.7) des autres modèles.

## Choisir le meilleur modèle suivant le critère Cp

```
var.cp <- names(which(reg.summary$which[min.cp,]==TRUE))</pre>
var.cp.formula <- paste("pluie.demain", "~", paste(var.cp[-1], collapse=" +</pre>
"))
var.cp.formula
## [1] "pluie.demain ~ Tempmean + MeanPressuremean + Mediumcloudmean + Wind
spdmean80m + Winddirectmean80m + Winddirectmean900mb + Tempmin + Meanpressu
remax + Meanpressuremin + Totalcloudmin + Highcloudmax + Mediumcloudmax + L
owcloudmax + Windspdmax10m + Windspdmin10m + Windgustmax"
best.model3 <- glm(var.cp.formula, family=binomial, data=data2)</pre>
summary(best.model3)
##
## Call:
## glm(formula = var.cp.formula, family = binomial, data = data2)
##
## Deviance Residuals:
##
       Min
                 1Q
                      Median
                                    3Q
                                            Max
## -2.4811 -0.8140
                      0.2683
                                0.8580
                                         2.8732
##
## Coefficients:
##
                        Estimate Std. Error z value Pr(>|z|)
                                               5.282 1.28e-07 ***
## (Intercept)
                       62.606221
                                  11.852733
## Tempmean
                        0.159670
                                    0.051476
                                               3.102 0.001923 **
## MeanPressuremean
                        0.507009
                                    0.133265
                                               3.805 0.000142 ***
## Mediumcloudmean
                                    0.004221
                                               1.821 0.068635
                        0.007686
                                              -3.608 0.000309 ***
## Windspdmean80m
                       -0.108050
                                    0.029949
## Winddirectmean80m
                       -0.002899
                                    0.001547
                                              -1.875 0.060826 .
                                               3.573 0.000353 ***
## Winddirectmean900mb 0.004599
                                    0.001287
## Tempmin
                                    0.055214
                                              -2.110 0.034867 *
                       -0.116496
                                    0.070539
                                             -3.684 0.000230 ***
## Meanpressuremax
                       -0.259860
## Meanpressuremin
                       -0.312160
                                    0.073240
                                             -4.262 2.02e-05 ***
## Totalcloudmin
                        0.007285
                                    0.003824
                                               1.905 0.056758 .
                                               1.365 0.172251
                                    0.002218
## Highcloudmax
                        0.003027
## Mediumcloudmax
                        0.007611
                                    0.002610
                                               2.916 0.003545 **
## Lowcloudmax
                                               2.367 0.017913 *
                        0.005544
                                    0.002342
## Windspdmax10m
                                               2.726 0.006412 **
                        0.061028
                                    0.022388
                                               3.177 0.001486 **
## Windspdmin10m
                        0.114462
                                    0.036023
## Windgustmax
                        0.018079
                                    0.010463
                                               1.728 0.084016 .
## ---
```

```
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 1635.4 on 1179 degrees of freedom
## Residual deviance: 1253.2 on 1163 degrees of freedom
## AIC: 1287.2
##
## Number of Fisher Scoring iterations: 4
```

Le modèle choisi selon le critère adjr2 comprend plusieurs variables significatives. De même la valeur de AIC est nettement meilleure (1287.2) des autres modèles.

La performance du modèle issu d'une méthode d'apprentissage s'évalue par sa capacité de prévision. La mesure de cette performance est très importante puisque, d'une part, elle permet d'opérer une sélection de modèle dans une famille associée à la méthode d'apprentissage utilisée et, d'autre part, elle guide le choix de la méthode en comparant chacun des modèles optimisés à l'étape précédente. Enfin, elle fournit une mesure de la qualité ou encore de la confiance que l'on peut accorder à la prévision.

Partage de l'échantillon en un ensemble d'apprentissage et un ensemble test (par exemple en prenant 2/3:1/3).

```
set.seed(10)
train <- sample(1:nrow(data2),2*nrow(data2)/3)
test <- (-train)
test</pre>
```

Utiliser regsubsets() sur l'ensemble d'apprentissage à l'aide de la méthode exhaustive.

```
regfit.best <- regsubsets(pluie.demain~.-X-Year-Month-Day-Hour-Minute,data=
data2[train,],nvmax=10)</pre>
```

Calculer l'erreur de test pour le meilleur modèle de chaque taille.

```
test.mat <- model.matrix(pluie.demain~.-X-Year-Month-Day-Hour-Minute,data=d
ata2[test,])
# initialisation de l'erreur de prediction
val.errors <- rep(NA ,10)</pre>
for(i in 1:10){
  # extraction des estimateurs des coefs
  coefi <- coef(regfit.best,id=i)</pre>
  # calcul de la prediction
  pred5 <- test.mat[,names(coefi)]%*%coefi</pre>
 # calcul de l'erreur de prediction
  val.errors[i] <- mean((data2$pluie.demain[test]-pred5)^2)</pre>
}
val.errors
    [1] 0.2220517 0.2077234 0.2034660 0.2000028 0.1937633 0.1969085 0.20079
75
## [8] 0.1962813 0.1964854 0.1952214
```

Sur l'ensemble des données, effectuer une sélection de variables par la méthode exhaustive et sélectionner le meilleur modèle.

```
regfit.best <- regsubsets(pluie.demain~.-X-Year-Month-Day-Hour-Minute</pre>
                          ,data=data2,nvmax=10)
coef(regfit.best,which.min(val.errors))
       (Intercept) Totalcloudmean
                                          Tempmax Meanpressuremin Mediumc
loudmax
##
      11.217987387
                       0.002253715
                                       0.011545514
                                                      -0.011150040
                                                                       0.00
2358918
##
       Windgustmax
##
       0.004321003
best.model <- glm(var.bic.formula, family=binomial, data=data2)</pre>
summary(best.model)
##
## Call:
## glm(formula = var.bic.formula, family = binomial, data = data2)
## Deviance Residuals:
##
       Min
                10
                      Median
                                   3Q
                                          Max
## -2.2825 -0.8975
                      0.3940
                               0.8631
                                       2.6940
##
## Coefficients:
##
                   Estimate Std. Error z value Pr(>|z|)
                   59.236757 10.376489 5.709 1.14e-08 ***
## (Intercept)
## Totalcloudmean 0.012263
                               0.002987
                                         4.105 4.04e-05 ***
                                         6.099 1.07e-09 ***
## Tempmax
                   0.064181
                              0.010523
                               0.010128 -6.071 1.27e-09 ***
## Meanpressuremin -0.061488
## Mediumcloudmax 0.010884
                               0.002060 5.284 1.27e-07 ***
## Windgustmax
                   0.022965
                               0.005630
                                        4.079 4.52e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
       Null deviance: 1635.4 on 1179
                                       degrees of freedom
## Residual deviance: 1300.9 on 1174 degrees of freedom
## AIC: 1312.9
## Number of Fisher Scoring iterations: 4
```

Le meilleur modèle généré par cette méthode contient des informations limitées. Nous ne retenons pas pour le moment ce modèle.

-→ Suite aux différents méthodes mobilisées nous constatons que le modèle g4 est le plus significatif (sur la base de l'AIC et le BIC) De même, les variables sélectionnées représentent une bonne quantité d'informations. Pour confirmer ce choix nous mobilisons la méthode de validation croisée pour confirmer notre choix

En ce qui suit nous présentons la méthode :

On calcule une matrice de confusion et donc on mesure un taux d'erreur on évalue l'air sous la courbe ROC sur l'échantillon d'apprentissage et sur l'échantillon test.

### 2. Validation croisée avec le modèle g4

```
train = sample(c(T, F), nrow(data2), replace = T, prob = c(.6, .4))
# nous utilisons uniquement la base d'entrainement
#q4 step(q3)
g4 =
  glm( pluie.demain ~ Tempmean + MeanPressuremean + Mediumcloudmean +
    Lowcloudmean + Waveradia + Windspdmean80m + Winddirectmean80m +
    Windspdmean900mb + Winddirectmean900mb + Meanpressuremax +
    Meanpressuremin + Highcloudmax + Mediumcloudmax + Windspdmax10m,
    family = binomial, data = data2[train, ])
summary(g4)
##
## Call:
## glm(formula = pluie.demain ~ Tempmean + MeanPressuremean + Mediumcloudme
an +
##
       Lowcloudmean + Waveradia + Windspdmean80m + Winddirectmean80m +
##
       Windspdmean900mb + Winddirectmean900mb + Meanpressuremax +
       Meanpressuremin + Highcloudmax + Mediumcloudmax + Windspdmax10m,
##
##
       family = binomial, data = data2[train, ])
##
## Deviance Residuals:
##
       Min
                 10
                      Median
                                   30
                                           Max
## -2.4418 -0.8520 -0.2979
                               0.8865
                                        2.7611
##
## Coefficients:
##
                         Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                        4.830e+01 1.463e+01
                                               3.303 0.000958 ***
## Tempmean
                        2.769e-02 2.158e-02
                                               1.283 0.199585
## MeanPressuremean
                        3.550e-01 1.685e-01
                                               2.107 0.035146 *
## Mediumcloudmean
                        1.206e-02 5.445e-03
                                               2.215 0.026756 *
## Lowcloudmean
                        1.043e-02 4.333e-03
                                               2.407 0.016069 *
## Waveradia
                        1.656e-04
                                  7.932e-05
                                               2.088 0.036803 *
## Windspdmean80m
                       -9.123e-02 2.930e-02 -3.114 0.001848 **
## Winddirectmean80m -5.352e-03 1.920e-03 -2.788 0.005304 **
```

```
1.342e-02 1.001e-02
                                              1.340 0.180228
## Windspdmean900mb
## Winddirectmean900mb 5.343e-03 1.635e-03
                                              3.269 0.001081 **
## Meanpressuremax
                      -1.646e-01 8.846e-02 -1.861 0.062780 .
## Meanpressuremin
                      -2.411e-01 9.184e-02
                                              -2.625 0.008667 **
## Highcloudmax
                       2.122e-03
                                  2.913e-03
                                               0.729 0.466258
## Mediumcloudmax
                       7.985e-03 3.253e-03
                                               2.455 0.014105 *
## Windspdmax10m
                       7.753e-02 2.465e-02 3.145 0.001659 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
##
       Null deviance: 993.80 on 716
                                     degrees of freedom
## Residual deviance: 785.75 on 702 degrees of freedom
## AIC: 815.75
##
## Number of Fisher Scoring iterations: 4
#Nous éffectuons la prédiction uniquement sur la base de test
pred1 = predict(g4, data2[!train, ], type = "response")
# Nous évaluons l'erreur de prédiction
mean(abs(pred1 - data2[!train, "pluie.demain"]), na.rm = T)
## [1] 0.3566688
#Matrice de confusion
table(data2[!train, "pluie.demain"], pred1>.5)
##
##
           FALSE TRUE
##
     FALSE
             147
                   68
##
     TRUE
              52
                 196
mean(data2[!train, "pluie.demain"] == (pred1>.5), na.rm=T)
## [1] 0.7408207
# change de seuil
table(data2[!train, "pluie.demain"], pred1>.7)
##
##
           FALSE TRUE
     FALSE
##
             188
                   27
##
     TRUE
             123
                 125
mean(data2[!train, "pluie.demain"] == (pred1>.7), na.rm=T)
## [1] 0.6760259
# Nous avons comparé deux seuils différents qui sont respectivement 0.5 et
0.7. En utilisant le seuil de 0.7 nous constatons l'exitance de plus de
«Faux positifs » et de « vrais négatifs »
```

## 3. Vérifier la qualité de prédiction (modèle g4)

Nous allons en ce qui suit étudier la courbe ROC et mesurer l'AUC

```
library(ROCR)
library(ggplot2)

p = prediction(pred1, data2[!train, ]$pluie.demain)
Perf = performance(p, "tpr", "fpr")
plot(Perf, colorize = TRUE, main = "ROC ")
```



# Interprétation de la courbe ROC (modèle g4):

Les taux de vrais positifs augmentent rapidement plus que les faux positifs. Nous observons également que la courbe est au dessus de la diagonale.

```
table(data2[!train, "pluie.demain"], pred1>.5)

##

## FALSE TRUE

## FALSE 147 68

## TRUE 52 196

performance(p, "auc")@y.values[[1]]

## [1] 0.8111965
```

L'air sous la courbe est de 0.81 ce qui signifie que le modèle est de bonne qualité. Plus AUC augmente plus le modèle présente une bonne qualité de prédiction

-> Nous essayons maintenant de comparer les résultats de prédiction de deux modèles g4 et celui qui est sélectionné par la méthode de régression par recherche exhaustive.

Nous représentons ci-dessous la courbe de modèle sélectionné par la méthode de régression par recherche exhaustive.

# table(data2\$pluie.demain[test], pred5>.5)

```
##
##
            FALSE TRUE
##
     FALSE
              128
                     62
##
     TRUE
               46
                    158
performance(p1, "auc")@y.values[[1]]
## [1] 0.7834881
mean(data2$pluie.demain[test] == (pred5>.5), na.rm=T)
## [1] 0.7258883
mean(abs(pred5 - data2$pluie.demain[test]), na.rm = T)
## [1] 0.3866845
p = prediction(pred1, data2[!train, ]$pluie.demain)
Perf = performance(p, "tpr", "fpr")
plot(Perf, colorize = TRUE, main = "ROC ")
```



Courbe ROC du modèle sélectionné par la méthode de recherche exhaustive La courbe ROC n'augmente d'une façon significative par rapport à celle du modèle g4

4. Etude comparative entre les deux modèles (g4 et bestmodel3)

```
table(data2[!train, ]$pluie.demain, pred1>.5)
##
##
           FALSE TRUE
     FALSE 147
##
                   68
##
     TRUE
              52 196
performance(p, "auc")@y.values[[1]]
## [1] 0.8111965
mean(data2[!train, ]$pluie.demain == (pred1>.5), na.rm=T)
## [1] 0.7408207
mean(abs(pred1- data2[!train, ]$pluie.demain), na.rm = T)
## [1] 0.3566688
library(ROCR)
p1 = prediction(pred5, data2$pluie.demain[test])
Perf1 = performance(p1, "tpr", "fpr")
p = prediction(pred1, data2[!train, ]$pluie.demain)
Perf = performance(p, "tpr", "fpr")
library(ROCR)
data(ROCR.simple)
preds <- cbind(p = ROCR.simple$predictions,</pre>
                p1= abs(ROCR.simple$predictions +
                rnorm(length(ROCR.simple$predictions), 0, 0.1)))
pred.mat <- prediction(preds, labels = matrix(ROCR.simple$labels,</pre>
                nrow = length(ROCR.simple$labels), ncol = 2) )
perf.mat <- performance(pred.mat, "tpr", "fpr")</pre>
plot(perf.mat, colorize = TRUE)
```



Tableau récapitulatif des valeurs qui présentent la qualité de prédiction de chaque modèle :

|             | Erreur de prédiction | Taux de bonne<br>prédiction | Taux de vrai<br>negatif | Taux de faux<br>positif | AUC  |
|-------------|----------------------|-----------------------------|-------------------------|-------------------------|------|
| Modele g4   | 0.35                 | 0.74                        | 68                      | 52                      | 0.81 |
| Best model3 | 0.38                 | 0.72                        | 62                      | 46                      | 0.78 |

- 1-Le taux d'erreur de prédiction du modèle choisi g4 est plus petit que l'erreur de prédiction du modèle validé par la régression de recherche exhaustive (Best model3)
- 2-Le modèle g4 présente un AUC plus élevé q que Best model3 c'est un bon indicateur pour comparer les deux classifieurs
- 3- Le taux de bonne prédiction du modèle g4 est supérieur de taux de prédiction de modèle (Best model3)

D'après tous ces interprétations nous constatons que le modèle g4 donne une bonne qualité de prédiction par apport au modèle (Best model3)

#### 5. Etude comparative entre les deux modèles (reg. Logistique et reg.probit)

Afin de s'assurer de la qualité de modèle choisi(g4), nous comparons les résultats à travers une régression Probit et une régression logistique :

```
#régression probit
g5= glm( pluie.demain ~ Tempmean + MeanPressuremean + Mediumcloudmean +
    Windspdmean80m + Winddirectmean80m + Winddirectmean900mb +
    Meanpressuremax + Meanpressuremin + Totalcloudmax + Totalcloudmin +
    Mediumcloudmax + Windspdmax10m + Windspdmin10m + Windgustmax,
    family = binomial(link="probit"),data=data2)
summary(g5)
##
## Call:
## glm(formula = pluie.demain ~ Tempmean + MeanPressuremean + Mediumcloudme
an +
      Windspdmean80m + Winddirectmean80m + Winddirectmean900mb +
##
      Meanpressuremax + Meanpressuremin + Totalcloudmax + Totalcloudmin +
##
      Mediumcloudmax + Windspdmax10m + Windspdmin10m + Windgustmax,
##
##
      family = binomial(link = "probit"), data = data2)
##
## Deviance Residuals:
                     Median
##
      Min
                10
                                 3Q
                                         Max
## -2.5253 -0.8618
                     0.2521
                             0.8711
                                      3.0444
##
## Coefficients:
                        Estimate Std. Error z value Pr(>|z|)
##
## (Intercept)
                      37.0015519 6.7981026 5.443 5.24e-08 ***
## Tempmean
                       0.0331172 0.0070277
                                            4.712 2.45e-06 ***
## MeanPressuremean
                       0.2754342 0.0764586
                                            3.602 0.000315 ***
## Mediumcloudmean
                       0.0054791 0.0023467
                                           2.335 0.019554 *
## Windspdmean80m
                      ## Winddirectmean80m
                      -0.0019819 0.0008639 -2.294 0.021781 *
## Winddirectmean900mb 0.0025329 0.0007430
                                           3.409 0.000652 ***
## Meanpressuremax
                      -0.1743853 0.0415941
                                            -4.193 2.76e-05 ***
## Meanpressuremin
## Totalcloudmax
                                            1.997 0.045861 *
                      0.0039129 0.0019597
## Totalcloudmin
                       0.0034653 0.0021947
                                            1.579 0.114348
## Mediumcloudmax
                                             2.684 0.007283 **
                       0.0042112 0.0015692
## Windspdmax10m
                      0.0363833 0.0128739
                                            2.826 0.004711 **
                                            2.981 0.002878 **
## Windspdmin10m
                       0.0618921 0.0207655
## Windgustmax
                       0.0120676 0.0060510
                                            1.994 0.046119 *
## ---
                  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 1635.4 on 1179 degrees of freedom
```

```
## Residual deviance: 1261.9 on 1165 degrees of freedom
## AIC: 1291.9
##
## Number of Fisher Scoring iterations: 5
# Validation croisée en probit
# Nous utilison uniquement la base d'entrainement
g6 =
 glm( pluie.demain ~ Tempmean + MeanPressuremean + Mediumcloudmean +
    Windspdmean80m + Winddirectmean80m + Winddirectmean900mb +
    Meanpressuremax + Meanpressuremin + Totalcloudmax + Totalcloudmin +
    Mediumcloudmax + Windspdmax10m + Windspdmin10m + Windgustmax,
    family = binomial(link="probit"), data = data2[train, ])
summary(g6)
##
## Call:
## glm(formula = pluie.demain ~ Tempmean + MeanPressuremean + Mediumcloudme
##
       Windspdmean80m + Winddirectmean80m + Winddirectmean900mb +
##
       Meanpressuremax + Meanpressuremin + Totalcloudmax + Totalcloudmin +
##
       Mediumcloudmax + Windspdmax10m + Windspdmin10m + Windgustmax,
##
       family = binomial(link = "probit"), data = data2[train, ])
##
## Deviance Residuals:
##
                      Median
                                   3Q
       Min
                 10
                                           Max
## -2.5414
           -0.8890
                    -0.2581
                               0.9014
                                        2.8606
##
## Coefficients:
##
                         Estimate Std. Error z value Pr(>|z|)
                                               3.385 0.000711 ***
## (Intercept)
                       28.5020999 8.4191783
                                               3.374 0.000741 ***
## Tempmean
                        0.0307286 0.0091078
                                               1.761 0.078164
## MeanPressuremean
                        0.1745038 0.0990687
## Mediumcloudmean
                        0.0077786 0.0030479
                                               2.552 0.010706 *
## Windspdmean80m
                       -0.0897952 0.0230703
                                              -3.892 9.93e-05 ***
## Winddirectmean80m
                       -0.0025473 0.0010722
                                              -2.376 0.017518 *
## Winddirectmean900mb 0.0027287
                                   0.0009292
                                               2.937 0.003318 **
## Meanpressuremax
                       -0.0838883 0.0525955
                                              -1.595 0.110719
## Meanpressuremin
                       -0.1202834 0.0535368
                                              -2.247 0.024657 *
## Totalcloudmax
                        0.0038737 0.0023946
                                              1.618 0.105738
## Totalcloudmin
                        0.0007677 0.0028307
                                               0.271 0.786223
                        0.0035468 0.0019677
## Mediumcloudmax
                                               1.802 0.071468 .
                                               2.960 0.003074 **
## Windspdmax10m
                        0.0494915
                                   0.0167190
## Windspdmin10m
                        0.0719744
                                   0.0294111
                                               2.447 0.014398 *
## Windgustmax
                        0.0133923 0.0075442
                                               1.775 0.075869 .
## ---
                   0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
##
## (Dispersion parameter for binomial family taken to be 1)
##
       Null deviance: 993.80
                              on 716
                                      degrees of freedom
## Residual deviance: 783.95
                              on 702
                                      degrees of freedom
## AIC: 813.95
```

```
##
## Number of Fisher Scoring iterations: 4
# Nous effectuons une prédiction, uniquement sur la base de test
pred4 = predict(g6, data2[!train, ], type = "response")
# Nous évaluons l'erreur de prédiction
mean(abs(pred4 - data2[!train, "pluie.demain"]), na.rm = T)
## [1] 0.3561464
# Matrice de confusion
table(data2[!train, "pluie.demain"], pred4>.5)
##
##
           FALSE TRUE
##
     FALSE
             149
                   66
##
     TRUE
              48
                  200
mean(data2[!train, "pluie.demain"] == (pred4>.5), na.rm=T)
## [1] 0.7537797
# Validation croisée k-fold
k = 10
index = sample(1:k, nrow(data2), replace=T)
res.logistique = rep(NA, k)
res.probit = rep(NA, k)
for(i in 1:k){
  reg.logistique = glm( pluie.demain ~ Tempmean + MeanPressuremean + Medium
cloudmean +
    Windspdmean80m + Winddirectmean80m + Winddirectmean900mb +
    Meanpressuremax + Meanpressuremin + Totalcloudmax + Totalcloudmin +
    Mediumcloudmax + Windspdmax10m + Windspdmin10m + Windgustmax,
    family = binomial,
    data = data2[index != i, ]
  )
  reg.probit =
   glm( pluie.demain ~ Tempmean + MeanPressuremean + Mediumcloudmean +
    Windspdmean80m + Winddirectmean80m + Winddirectmean900mb +
    Meanpressuremax + Meanpressuremin + Totalcloudmax + Totalcloudmin +
    Mediumcloudmax + Windspdmax10m + Windspdmin10m + Windgustmax,
    family = binomial(link="probit"),
    data = data2[index != i, ]
  )
  pred.logistique = predict(reg.logistique, newdata=data2[index == i, ],
                            type="response")
  pred.probit = predict(reg.probit, newdata=data2[index == i, ],
                            type="response")
  res.logistique[i] = mean(data2[index==i, "Pluie.demain"] == (pred.logisti
```

```
que >.5), na.rm = T)
  res.probit[i] = mean(data2[index==i, "Pluie.demain"] == (pred.probit >.5)
, na.rm = T)
}
mean(res.logistique)
mean(res.probit)

AIC(reg.probit)
## [1] 1151.267

AIC(reg.logistique)
## [1] 1148.672
# Nous avons un AIC de reg.Probit plus grande que AIC reg.logitique
Le modèle reg.logistique et mieux que le modèle reg.probit suivant le
critère de AIC
```

Nous allons faire maintenant une étude comparative entre les deux types de regression

```
```{r}
                    Regression Probit
library(ROCR)
p2 = prediction(pred4, data2[!train, ]$pluie.demain)
Perf2 = performance(p2, "tpr", "fpr")
plot(Perf2, colorize = TRUE, main = "ROC ")
table(data2[!train, ]$pluie.demain, pred4>.5)
performance(p2, "auc")@y.values[[1]]
mean(data2[!train, ]$pluie.demain == (pred4>.5), na.rm=T)
mean(abs(pred4 - data2[!train, ]$pluie.demain), na.rm = T)
       Regression Logistique
p = prediction(pred1, data2[!train, ]$pluie.demain)
Perf = performance(p, "tpr", "fpr")
plot(Perf, colorize = TRUE, main = "ROC ")
table(data2[!train, ]$pluie.demain, pred1>.5)
performance(p, "auc")@y.values[[1]]
mean(data2[!train, ]$pluie.demain == (pred1>.5), na.rm=T)
mean(abs(pred1- data2[!train, ]$pluie.demain), na.rm = T)
 library(ROCR)
 p = prediction(pred1, data2[!train, ]$pluie.demain)
Perf = performance(p, "tpr", "fpr")
p2 = prediction(pred4, data2[!train, ]$pluie.demain)
 Perf2 = performance(p2, "tpr", "fpr")
 library(ROCR)
 data(ROCR.simple)
 preds <- cbind(p = ROCR.simple$predictions,</pre>
                    p2= abs(ROCR.simple$predictions +
                    rnorm(length(ROCR.simplespredictions), 0, 0.1)))
 pred.mat <- prediction(preds, labels = matrix(ROCR.simple$labels,</pre>
                    nrow = length(ROCR.simple$labels), ncol = 2) )
 perf.mat <- performance(pred.mat, "tpr", "fpr")</pre>
 plot(perf.mat, colorize = TRUE)
```





Tableau récapitulatif des valeurs qui présentent la qualité de prédiction de chaque modèle :

|                              | Erreur de<br>prédiction | Taux de bonne<br>prédiction | Taux de vrai<br>negative | Taux de faux<br>positive | AUC  |
|------------------------------|-------------------------|-----------------------------|--------------------------|--------------------------|------|
| Reg.logistique<br>(model g4) | 0.35                    | 0.74                        | 68                       | 52                       | 0.81 |
| Reg.probit                   | 0.36                    | 0.74                        | 58                       | 57                       | 0.80 |

- 1-Le taux d'erreur de prédiction du modèle choisi g4 est plus petit que l'erreur de prédiction du modèle validé par la régression logistique
- 2-Le modèle g4 présente un AUC plus élevé que le modèle de la régression logistique c'est un bon indicateur pour comparer les deux classifieurs
- 3- Le taux de bonne prédiction du modèle g4 est supérieur de taux de prédiction de modèle de la régression logistique

--->Suites à ces différentes étapes d'analyse et d'étude comparatives, nous choisissons le modèle g4

Sur la base de modèle choisi, nous allons proposer une prédiction pour le fichier méteotest

```
pred= predict(g4, newdata = data3, type = "response")
pred2 = (pred >= 0.5)
pred2
##
       1
              2
                     3
                           4
                                  5
                                         6
                                               7
                                                      8
                                                             9
                                                                  10
                                                                         11
                                                                                12
13
## FALSE
           TRUE
                 TRUE
                        TRUE
                               TRUE FALSE
                                            TRUE
                                                  TRUE
                                                                             TRUE
                                                         TRUE FALSE
                                                                       TRUE
TRUE
##
      14
             15
                    16
                          17
                                 18
                                        19
                                              20
                                                     21
                                                            22
                                                                  23
                                                                         24
                                                                                25
26
##
    TRUE
           TRUE FALSE
                        TRUE FALSE
                                     TRUE
                                            TRUE FALSE FALSE FALSE FALSE
TRUE
      27
##
             28
                    29
                          30
                                 31
                                        32
                                              33
                                                     34
                                                            35
                                                                  36
                                                                         37
                                                                                38
39
## FALSE
           TRUE FALSE FALSE
                               TRUE
                                     TRUE
                                            TRUE
                                                  TRUE FALSE FALSE
                                                                      TRUE
                                                                             TRUE
TRUE
##
                    42
                                                                  49
      40
             41
                          43
                                 44
                                        45
                                              46
                                                     47
                                                            48
                                                                         50
                                                                                51
52
##
    TRUE FALSE FALSE FALSE FALSE FALSE FALSE
                                                         TRUE
                                                                TRUE
                                                                       TRUE FALSE
TRUE
      53
             54
                    55
                          56
                                 57
                                        58
                                              59
##
                                                     60
                                                            61
                                                                  62
                                                                         63
                                                                               64
65
##
                 TRUE FALSE FALSE
                                            TRUE FALSE FALSE FALSE
                                                                       TRUE
                                                                             TRUE
    TRUE FALSE
TRUE
##
      66
             67
                    68
                          69
                                 70
                                        71
                                              72
                                                     73
                                                            74
                                                                  75
                                                                         76
                                                                               77
78
##
    TRUE
           TRUE FALSE
                        TRUE FALSE FALSE
                                            TRUE FALSE FALSE FALSE
                                                                       TRUE
                                                                             TRUE
TRUE
##
      79
             80
                    81
                          82
                                 83
                                        84
                                              85
                                                     86
                                                            87
                                                                  88
                                                                         89
                                                                                90
91
##
    TRUE FALSE FALSE
                        TRUE
                               TRUE FALSE FALSE
                                                   TRUE
                                                         TRUE
                                                                TRUE
                                                                       TRUE FALSE
FALSE
      92
                          95
                                 96
                                                     99
##
             93
                    94
                                        97
                                              98
                                                          100
                                                                 101
                                                                        102
                                                                              103
104
##
    TRUE
           TRUE
                 TRUE
                        TRUE
                               TRUE FALSE FALSE
                                                   TRUE
                                                         TRUE
                                                                TRUE
                                                                       TRUE FALSE
TRUE
##
     105
            106
                  107
                         108
                                109
                                      110
                                             111
                                                    112
                                                          113
                                                                 114
                                                                        115
                                                                              116
117
## FALSE FALSE FALSE
                        TRUE FALSE
                                     TRUE FALSE
                                                  TRUE FALSE
                                                                TRUE
                                                                       TRUE FALSE
TRUE
##
     118
            119
                   120
                         121
                                122
                                      123
                                                          126
                                                                 127
                                                                        128
                                                                               129
                                             124
                                                    125
130
```

| ## TRUE<br>TRUE    | TRUE  | FALSE       | FALSE       | TRUE  | TRUE  | TRUE  | TRUE  | TRUE  | FALSE | FALSE | TRUE  |
|--------------------|-------|-------------|-------------|-------|-------|-------|-------|-------|-------|-------|-------|
| ## 131<br>143      | 132   | 133         | 134         | 135   | 136   | 137   | 138   | 139   | 140   | 141   | 142   |
| ## TRUE<br>FALSE   | TRUE  | TRUE        | FALSE       | FALSE | TRUE  | FALSE | FALSE | TRUE  | FALSE | TRUE  | TRUE  |
| ## 144<br>156      | 145   | 146         | 147         | 148   | 149   | 150   | 151   | 152   | 153   | 154   | 155   |
| ## TRUE<br>FALSE   | TRUE  | FALSE       | TRUE        | FALSE | TRUE  | TRUE  | FALSE | TRUE  | FALSE | TRUE  | FALSE |
| ## 157<br>169      | 158   | 159         | 160         | 161   | 162   | 163   | 164   | 165   | 166   | 167   | 168   |
| ## FALSE<br>TRUE   | TRUE  | FALSE       | FALSE       | TRUE  | FALSE | FALSE | TRUE  | TRUE  | FALSE | FALSE | FALSE |
| ## 170<br>182      | 171   | 172         | 173         | 174   | 175   | 176   | 177   | 178   | 179   | 180   | 181   |
| ## TRUE<br>FALSE   | TRUE  | TRUE        | TRUE        | TRUE  | TRUE  | TRUE  | TRUE  | FALSE | FALSE | TRUE  | FALSE |
| ## 183<br>195      | 184   | 185         | 186         | 187   | 188   | 189   | 190   | 191   | 192   | 193   | 194   |
|                    | FALSE | TRUE        | TRUE        | FALSE | TRUE  | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE |
| ## 196<br>208      | 197   | 198         | 199         | 200   | 201   | 202   | 203   | 204   | 205   | 206   | 207   |
| ## FALSE<br>TRUE   | FALSE | FALSE       | TRUE        | FALSE | TRUE  | FALSE | TRUE  | FALSE | TRUE  | TRUE  | TRUE  |
| ## 209<br>221      | 210   | 211         | 212         | 213   | 214   | 215   | 216   | 217   | 218   | 219   | 220   |
| ## TRUE<br>TRUE    | TRUE  | TRUE        | TRUE        | FALSE | TRUE  | TRUE  | TRUE  | TRUE  | TRUE  | FALSE | TRUE  |
| ## 222<br>234      | 223   | 224         | 225         | 226   | 227   | 228   | 229   | 230   | 231   | 232   | 233   |
| ## FALSE<br>FALSE  | FALSE | TRUE        | TRUE        | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE  | TRUE  | FALSE |
| ## 235<br>247      | 236   | 237         | 238         | 239   | 240   | 241   | 242   | 243   | 244   | 245   | 246   |
| ## FALSE<br>FALSE  | FALSE | FALSE       | FALSE       | FALSE | FALSE | FALSE | TRUE  | TRUE  | FALSE | TRUE  | FALSE |
| ## 248<br>260      | 249   | 250         | 251         | 252   | 253   | 254   | 255   | 256   | 257   | 258   | 259   |
| ## TRUE<br>TRUE    | TRUE  | TRUE        | TRUE        | FALSE | TRUE  | TRUE  | FALSE | FALSE | TRUE  | TRUE  | FALSE |
| ## 261<br>273      | 262   | 263         | 264         | 265   | 266   | 267   | 268   | 269   | 270   | 271   | 272   |
| ## TRUE<br>FALSE   | TRUE  | TRUE        | FALSE       | TRUE  | TRUE  | FALSE | TRUE  | TRUE  | FALSE | FALSE | TRUE  |
| ## 274<br>286      | 275   | 276         | 277         | 278   | 279   | 280   | 281   | 282   | 283   | 284   | 285   |
| ## FALSE<br>TRUE   | TRUE  | FALSE       | TRUE        | TRUE  | FALSE | FALSE | TRUE  | FALSE | FALSE | TRUE  | TRUE  |
| ## 287<br>## FALSE |       | 289<br>TRUE | 290<br>TRUE |       |       |       |       |       |       |       |       |
|                    |       |             |             |       |       |       |       |       |       |       |       |

```
# enregistrer pred2
write.csv(pred2,file = "pred2.csv",row.names = FALSE)
summary(pred2)

## Mode FALSE TRUE
## logical 133 157

# ajouter colonne prediction
data4=cbind(data3,pred2)
# renomer La colonne
library(dplyr)
data4=rename(pluie.demain=pred2,data4)
```

#### Conclusion

Le modèle développé dans le cadre de ce travail apparait comme performant dans la prédiction s'il pleuvra le lendemain. Disposant d'un échantillon d'apprentissage et de test destiné à nous informer sur les facteurs qui peuvent déterminer cette prévision,

Nous avons pu réaliser plusieurs tests et analyses statistiques. Dans un premier temps nous avons réalisé une étude exploratoire qui vise à purifier nos données.

Nous avons vérifié les liens entre les variables à traves la matrice de corrélation qui nous a permis d'évaluer la dépendance entre plusieurs variables en même temps.

Dans un second temps nous avons utilisé les diagrammes de densité et les boxplots qui nous ont permis d'avoir la représentation graphique de données statistiques et visualiser la répartition des observations des variables quantitatives. Cette étape nous a aidé à identifier les valeurs extrêmes et de comprendre la répartition des observations. Par la suite nous avons mobilisé la méthode de discrétisation des variables afin d'identifier les variables aberrantes. Ce travail préliminaire nous a permis de supprimer les variables inutiles à notre analyse

Nous avons mené une étude comparative entre plusieurs modèles moyennant plusieurs critères tel ques l'anova, le p-value, l'AIC et le BIC . En se basant sur ces critères nous avons choisi le modèle g4 . Nous appliquons sur les 14 variables de g4 une analyse ACP afin de les synthétiser en quelles nouvelles variables appeler composantes principalement qui peuvent être visualiser graphiquement.

Après le choix de ce modèle nous avons également utilisé la méthode de recherche exhaustive qui consiste principalement à essayer toutes les solutions possibles et de générer le modèle le plus adéquat pour faire une prédiction.

Ensuite nous avons testé notre modèle g4 par la validation croisée pour s'assurer de sa qualité de prédiction. Les résultats font apparaître une bonne qualité de modèle. En effet les indicateurs AUC et taux de prédiction sont satisfaisants.

Ces résultats nous ont également permis de comparer ce modèle g4 avec celui généré par la méthode recherche exhaustive. Nous concluons à travers cette comparaison que le

modèle g4 est meilleur pour le moment. Afin de s'assurer de ce choix nous mobilisons dans un dernier temps la régression Probit et comparer sa qualité de prédiction avec notre modèle g4. Les résultats nous confirment que ce modèle est le meilleur pour une prédiction. Enfin ce modèle a été utilisé pour faire la prédiction.