Use Case Tutorial

Gary Chen 2018/10/23

Agenda

Overall Workflow

Exploratory Data Analysis

Feature Engineering + Training

Agenda

Overall Workflow

Exploratory Data Analysis

Feature Engineering + Training

Typical Enterprice Machine Learning Workflow

Typical Enterprice Machine Learning Workflow

Feature Engineering cycle

Typical Enterprice Machine Learning Workflow

The Training and Serving

Agenda

Overall Workflow

Exploratory Data Analysis

Feature Engineering + Training

Type of Variable

- Numerical variable: "Float, Integer"
 - Discrete numerical variable e.g: [1, 2, 3, 4]
 - ☐ Continuous numerical variable e.g: [1.23, 0.87, 1.5498, -0.3146]
- Nominal (Categorical) variable: "String, Integer"
 e.g: Geography: ['France', 'Germany', 'Spain']
 e.g: Address:
 1F., No.1, Bilong Ln., Zhongzheng 1st Rd., Yingge Dist., New Taipei City 239, Taiwan (R.O.C.)
 - Ordinal nominal variable: "String, Integer" e.g: Size of clothes: ['S', 'M', 'L', 'XL']

What We Want to Explore

- Numerical variables:
 mean, std, median, quartiles, deciles
 data distribution (histogram)
- Nominal variables: frequency distribution
- ☐ Relationship between variables
 - Numerical x Numerical
 - Numerical x Nominal
 - Nominal x Nominal

EDA Tools

$\mathsf{pandas}_{y_{it} = \beta' x_{it} + \mu_i + \epsilon_{it}}$

Data read write, data clean, data transformation, data join ...

seaborn: statistical data visualization

Data visualization

Statistical test, basic model

Numerical Variable Visualized

Visualization - Numerical Variable (Boxplot)

Visualization - Numerical Variable (Boxplot)

Visualization - Numerical Variable (Violinplot)

Include information

- Boxplot
- Data distribution

sns.violinplot(raw.Age, orient='v')

Visualization - Numerical Variable (Distplot, Lineplot)

Nominal Variable Visualized

Visualization - Nominal Variable (Countplot)

pandas.Series.value_counts

Multivariate Visualized - Numerical x Numerical

Regression Plot

⇒ sns.lmplot

Multivariate Visualized - Nominal x Nominal

Heatmap ⇒ sns.heatmap

Multivariate Visualized - Nominal x Numerical

Divide numerical variable by nominal variable!

⇒ Violinplot, Boxplot, Distplot, Lineplot ...

Pearson Correlation Coefficient

$$\rho = \frac{cov(X,Y)}{\sigma_x \sigma_y} = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum (x_i - \bar{x})^2 (y_i - \bar{y})^2}} \quad -1 < \rho < 1$$

Estimated Salary 0.014443 0.010461

1.000000

Pearson Correlation Coefficient

Spearman's rank correlation coefficient

Difference between rank of two variables

Data size

Spearman's rank correlation coefficient

	x	У	x_level	y_level	d_i	d_i^2
0	86	0	1	1	0	0
1	97	20	2	6	-4	16
2	99	28	3	8	-5	25
3	100	27	4	7	-3	9
4	101	50	5	10	-5	25
5	103	29	6	9	-3	9
6	106	7	7	3	4	16
7	110	17	8	5	3	9
8	112	6	9	2	7	49
9	113	12	10	4	6	36

Negative correlation, but not significant

Beware the scaler information lost, good for ordinal variable

Before The Chi-Square Test ..., About The Statistical Experiment

- 1. Hypothesis
 - a. H₀: Null Hypothesise.g: Vaiable X₁, X₂ independent
 - b. H₁: Alternative Hypothesis
 e.g: Vaiable X₁ association with X₂
- 2. Significant Level α , Confidence Interval (1α) e.g. Given $\alpha = 0.05$, means confidence interval = 0.95
- 3. The p-value
- 4. When to reject H₀? (Means the result is significant)
 H₀: Negative event
 H₁: Positive event

When is the experiment significant?

PDF: Probability Density Function

to: Statistic value

p-value: Area under PDF and to

P < α: Reject H_o

 $P \ge \alpha$: Not reject H_0

When is the experiment significant?

PDF: Probability Density Function

to: Statistic value

t₀ > t´: Reject H₀ t₀ <= t´: Not reject H₀

- → Goodness of Fit
 - ◆ H₀: There is no difference between the observed and expected frequencies
 - ◆ H₁: There is a difference between the observed and the expected frequencies
- → Test for homogeneity
 - ◆ H₀: Populations follow the same probability distribution
 - ♦ H₁: One of populations dosen't follow the specific probability distribution
- Test for Independent
 - ◆ H₀: Nominal vaiables X₁, X₂ independent
 - H₁: Nominal vaiables X₁ association with X₂

H₀: Vaiable X₁, X₂ independent

marit	educ		
Never married	PhD or higher		
Married	Middle school or lower		
Divorced	Bachelor's		
Widowed	PhD or higher		
Married	PhD or higher		

Marital Status by Education | n = 300

	Middle school or lower	High school	Bachelor's	Master's	PhD or higher	Total
Never married	18	36	21	9	6	90
Married	12	36	45	36	21	150
Divorced	6	9	9	3	3	30
Widowed	3	9	9	6	3	30
Total	39	90	84	54	33	300

Nominal x Nominal (Non-Linear): Chi-Square Test

 H_0 : Vaiable X_1 , X_2 independent H_1 : Vaiable X_1 association with X_2

Marital Status by Education n = 300								
	Middle school or lower	High school	Bachelor's	Master's	PhD or higher	Total		
Never married	18	36	21	9	6	90		
Married	12	36	45	36	21	150		
Divorced	6	9	9	3	3	30		
Widowed	3	9	9	6	3	30		
Total	39	90	84	54	33	300		

$$\chi^2 = \sum_{i} \frac{(Actual_i - Expected_i)^2}{Expected_i}$$

Assume the events between **Education** and **Marital** status are mutual independent

$$P(A \cap B) = P(A)P(B)$$

P(Education and Marital) = P(Education) x P(Marital)

Nominal x Nominal (Non-Linear): Chi-Square Test

 H_0 : Vaiable X_1 , X_2 independent H_1 : Vaiable X_1 association with X_2

					7	
	Middle school or lower	High school	Bachelor's	Master's	PhD or higher	Total
Never married	18	36	21	9	6	90
Married	12	36	45	36	21	150
Divorced	6	9	9	3	3	30
Widowed	3	9	9	6	3	30
Total	39	90	84	54	33	300

$$\chi^2 = \sum_{i} \frac{(Actual_i - Expected_i)^2}{Expected_i}$$

Actual(Master's x Married) = 36
Expected(Master's x Married) =
$$P(Master's) \times P(Married) \times Length(data)$$

= $(54 / 300) \times (150 / 300) \times 300$
= $0.18 \times 0.5 \times 300$
= 27
 $\Rightarrow (36 - 27)^2 / 27 = 3.0$

Nominal x Nominal (Non-Linear): Chi-Square Test

statsmodels package example

```
# Calculate chi-square value, p-value, degree of freedom, expected value
chi, pv, df, expected = stats.chi2_contingency(observed=data)

# check if chi-square value > criterion(95% confidence interval)
crit = stats.chi2.ppf(q=0.95, df=df)

print(f'chi-square value: {chi}, criterion: {crit}')

chi-square value: 1022.025, criterion: 11.070
result: True
```

Significant! Reject H₀ There is a relationship between X₁, X₂

Nominal x Nominal (Non-Linear): Chi-Square Test

Utilize The Concept of The Chi-Sqaure Independent Test

Find new vocabulary for Jieba

- → N-gram
 - ◆ 球不是這麼踢滴 ⇒ (2-gram) [球不, **不是**, 是這, **這麼**, 麼踢, 踢滴]
- → Long term first skip short term in the long term
 - ◆ 台灣大哥大 ⇒ Skip [台灣] [大哥]

```
s = "球不是這麼踢滴"
n_win = 2
[s[i:i + n_win]
for i in range(len(s) - n_win + 1)]

['球不', '不是', '是這', '這麼', '麼踢', '踢滴']
```


Nominal x Nominal (Non-Linear): Chi-Square Test

Utilize The Concept of The Chi-Sqaure Independent Test

- 何者更適合成詞?
 - □ "的電影"-> 389次
 - □ "電影院"-> 175次

假設**電影**是已知詞

- 可以根據機率計算成詞可能性
 - □ 2400萬字的文本資料中,"電影"一共出現了2774次,出現的概率 約為0.000113。"院"字則出現了4797次,出現的概率約為 0.0001969
 - □ 如果兩者之間真的毫無關係,它們恰好在一起的概率就應該是 0.000113×0.0001969,約為2.223*10^-8
 - □ "電影院"在語料中一共出現了175次,出現概率約為7.183乘以10的-6次方,是預測值的300多倍

Expection = P(電影)P(院)

Actual

Nominal x Nominal (Non-Linear): Chi-Square Test

Utilize The Concept of The Chi-Sqaure Independent Test

■ "的"字的出現概率約為0.0166,因而"的"和"電影" 隨機組合到了一起的理論概率值為 0.0166×0.000113,約為1.875*10^-6,真實概率 約為1.6乘以10的-5次方,是預測值的8.5倍

```
P(電影院) / P(電影)P(院) ==> 300 Winner
P(的電影) / P(的)P(電影) ==> 8.5
```


Assume we have k group, k > 1

H₀: μ 1 = μ 2 ... = μ k

H₁: Means are not all equal.

Prerequisite

- → Each groups approximately follow normal distribution (Guassian distribution)
- → Independent cases
- → Equality (or "homogeneity") of variances

Welch test, Brown Forsythe test...

??% Confidence in ANOVA test

Assume we have k group, k > 1

H₀: μ 1 = μ 2 ... = μ k

H₁: Means are not all equal.

Prerequisite

- → Each groups approximately follow normal distribution (Guassian distribution)
- → Independent cases
- → Equality (or "homogeneity") of variances

X: Numerical variable

Y: Nominal variable

$$SS_T = \sum_{i} (X_i - \overline{X_{all}})^2$$

Sum of square between groups

$$SS_B = \sum_{\#group} (\overline{X_{group}} - \overline{X_{all}})^2$$

Sum of square within groups

$$SS_W = \sum_{\text{\#group \#within group}} (X_i - \overline{X_{group}})^2$$

$$MS_B = \frac{SS_B}{df_B}$$

$$MS_W = \frac{SS_W}{df_W}$$

$$MS_W = \frac{MS_B}{MS_W}$$

B SSB G-1 MSB MSB / MSw P-value W SSW (N-1)-(G-1) MSw T SST (N-1)		SS	DF	MS	F	P
	В	SSB	G - 1	МЅв	MSB / MSw	P-value
T 55T (N - 1)	W	SSw	(N - 1) - (G - 1)	MSw		
	Т	SST	(N - 1)			

Total sum of square

$$SS_T = \sum_{i} (X_i - \overline{X_{all}})^2$$

Sum of square between groups

$$SS_B = \sum_{\#group} (\overline{X_{group}} - \overline{X_{all}})^2$$

Sum of square within groups

$$SS_W = \sum_{\text{\#group \#within group}} (X_i - \overline{X_{group}})^2$$

We hope the F Larger

```
statsmodels package example
```

```
def anova(formula, data):
    table = sm.stats.anova_lm(
        ols(formula, data=data).fit(),
        typ=2
    )
    return table
anova("Age ~ C(Claim)", data=data)
```

	sum_sq	df	F	PR(>F)
C(Claim)	63991.391600	1.0	629.02925 (2.	266897e-133
Residual	762774.471867	7498.0	NaN	NaN

P-value

Recap

- ☐ Single Variable
 - □ Numerical variable ⇒ Boxplot, Violinplot, Distplot, Lineplot
 - Nominal variable ⇒ Countplot
- Multi-Variable
 - Numerical x Numerical ⇒ Regression plot
 - Nominal x Nominal ⇒ Heatmap
 - □ Nominal x Numerical \Rightarrow Conditional Boxplot, Conditional Violinplot ...
- □ Relationship
 - Numerical x Numerical ⇒ Pearson, Spearman Correlation Coefficient
 - Nominal x Nominal ⇒ Chi-Square
 - Nominal x Numerical ⇒ ANOVA

Lab: Exploratory Data Analysis

Topic: Exploratory Data Analysis

Filename	lab_eda_insurance_claim.ipynb	
Data	Financial Customer Churn Prediction	
Target	 → Understand the data → Features distribution → Relationship between features or between features and label 	
Duration	About 20 min	

Agenda

Overall Workflow

Exploratory Data Analysis

Feature Engineering + Training

Basic - Data Clean

- → Missing value in numerical variable
 - Fill **mean** or **median**
- → Outlier in numerical variable
 - Utilize the quartile to find outlier, and fill mean or median
- → Missing value in nominal variable
 - See missing value as an special class
 - Add a feature to describe missing value

nominal column	added
Α	0
NaN	1
В	0

Basic

Numeric variable ⇒ Normalization

Basic

Numeric variable ⇒ Normalization

→ Min max scaler to [0, 1] (Beware outlier)

$$\frac{x_i - min}{max - min}$$

→ Scale to standard normal distribution (Z-score standardize)

$$\mu = 0, \ \sigma = 1$$

Basic

Nominal variable ⇒ One Hot Encoding

Topic: Knowing Programing Structure

Filename	lab_model_insurance_claim.ipynb
Data	Financial Customer Churn Prediction
Target	
Duration	

ROC: Receiver Operating Characteristic

TP Rate cross FP Rate (0 < AUC < 1)

AUC = 0.5 (no discrimination) $0.7 \le AUC \le 0.8$ (acceptable discrimination) $0.8 \le AUC \le 0.9$ (excellent discrimination) $0.9 \le AUC \le 1.0$ (outstanding discrimination)

AUROC (Code)

```
from sklearn.metrics import roc_curve, auc

fpr, tpr, thres = roc_curve(y, pred, pos_label=1)
auc_scr = auc(fpr, tpr)
```

	fpr	tpr	threshold
0	0.000000	0.002045	0.999386
1	0.000000	0.104294	0.883024
2	0.000497	0.104294	0.880933
3	0.000497	0.110429	0.870801
4	0.000995	0.110429	0.870346
5	0.000995	0.118609	0.852421

Find Best Threshold ⇒ F Beta Score

$$F_eta = (1 + eta^2) \cdot rac{ ext{precision} \cdot ext{recall}}{(eta^2 \cdot ext{precision}) + ext{recall}}$$

Prediction

0 1

Ground O TN FP

Truth 1 FN TP

recall

Small $\beta \Rightarrow$ prefer precision Large $\beta \Rightarrow$ prefer recall

Suggested adjust range $0.1 < \beta < 2$

Function f_beta_scann

```
def f_beta_scann(y_true, y_pred, beta=0.5):
   """F beta score掃描找出最佳threshold"""
   y pred = pd.Series(y pred.ravel())
   # 切割100等分,尋找最佳 f beta score
   bins = np.linspace(y_pred.min(), y_pred.max(), 100)
   # 找出F beta score最高的點
   result =
      np.array([
         precision recall fscore support(
           y true=y true,
           y pred=y pred > thres, beta=beta()[2][1]
         for thres in bins])
   best idx = result.argmax()
   return bins[best idx], result[best idx]
```


Advanced Feature Engineering

Advanced Feature Engineering

Coming up with features is difficult, time consuming, requires expert knowledge.

"Applied machine learning" is basically feature engineering.

-Andrew Ng

Advanced - Binning Numerical Variable

Binning ⇒ Find The Non-Linear Relationship

Advanced - Binning Numerical Variable

Binning Example ⇒ Quartile Cut

Advanced - Binning Numerical Variable

Binning Example ⇒ Quartile Cut

```
def quartile binning(x):
    # Quartile cut
    bins = np.percentile(x, range(0, 100, 25))[1:].tolist()
    # IOR
    igr \times 150 = (bins[-1] - bins[0]) * 1.5
    bins = [bins[0] - iqr_x_150] + bins + [bins[-1] + iqr x 150]
                                                 Upper bound
               Lower bound
    result = pd.Series(np.digitize(x, bins)) \
                .map(pd.Series([0, 1, 2, 3, 4, 0])).values
    return result, bins
```


Lab

Topic: Try Binning

Filename	lab_eda_insurance_claim.ipynb	
Data	Financial Customer Churn Prediction	
Target	Add binning features: → Age, HasBalance, CreditScore, Tenure, EstimatedSalary	
Duration	About 10 min	

Weight of Evidence

Inspired from **Logistic Regression** \Rightarrow Binary Classification \Rightarrow 0 or 1

$$\sigma(\underline{wx+b}) \qquad z = wx+b \qquad \sigma = \frac{1}{1+e^{-z}}$$
LR function

Odds Ratio
$$\Rightarrow \frac{P}{1-P}$$

$$\frac{P}{1-P} = \frac{\frac{1}{1+e^{-z}}}{1-\frac{1}{1+e^{-z}}} = \dots = e^z = e^{wx+b} \implies log(\frac{P}{1-P}) = wx+b$$

For the interpretable

Cancer Prediction Example
$$\implies wx + b = 0.095 \cdot age + 2.645$$

Log Odds Ratio
$$log(\frac{P}{1-P}) = 0.095 \cdot age + 2.645$$

Odds Ratio
$$e^{log(\frac{P}{1-P})} = e^{0.095age + 2.645} = e^{0.095age}e^{2.645}$$

If age increase 1

$$e^{0.095(age+1)+2.645} = e^{0.095age}e^{0.095}e^{2.645}$$

(after increase) / (original)

$$\frac{e^{0.095age}e^{2.645}e^{0.095}}{e^{0.095age}e^{2.645}} = e^{0.095} = 1.099$$

When age increase 1, the odds ratio of having cancer increase 1.099

Weight of Evidence

$$WoE = \ln(\frac{\% non - events}{\% events})$$

To avoid division by zero

$$WoE_{adj} = \ln(\frac{\text{Number of non-events in a group + 0.5}}{\text{Number of events in a group + 0.5}})$$

Weight of Evidence

Feature	Outcome	WoE
А	1	0.4
Α	0	0.4
Α	1	0.4
Α	1	0.4
В	1	0.74
В	1	0.74
В	0	0.74
С	1	-0.35
С	1	-0.35

	Non- events	Events	% of non- events	% of events	WoE
А	1	3	50	42	$\ln\left(\frac{(1+0.5)/2}{(3+0.5)/7}\right) = 0.4$
В	1	2	50	29	$\ln\left(\frac{(1+0.5)/2}{(2+0.5)/7}\right) = 0.74$
С	0	2	0	29	$\ln\left(\frac{(0+0.5)/2}{(2+0.5)/7}\right) = -0.35$

Function do_woe_encoding

```
total vc = data[label].value counts().sort index()
def woe(pipe, total_vc):
   # Count by label in this group
   group vc = pipe[label].value counts().sort index()
   # Some class in the feature is missing, fill zero to missing class
   if len(group vc) < len(total vc):</pre>
       for key in total vc.index:
           if key not in group_vc:
               group vc[key] = 0.
       group vc = group vc.sort index()
   # WOE formula
   r = ((group vc + 0.5) / total vc).values
   # Odd ratio => 1 to 0, you can define meaning of each class
   return np.log(r[1] / r[0])
return data.groupby(x).apply(lambda pipe: woe(pipe, total_vc))
```


Advanced - Target Encoding

Nominal Variable Frequency Encoding

Feature	Encoded Feature
A	0.44
А	0.44
А	0.44
А	0.44
В	0.33
В	0.33
В	0.33
С	0.22
С	0.22

Α	0.44 (4 out of 9)
В	0.33 (3 out of 9)
С	0.22 (2 out of 9)

Advanced - Target Encoding

Nominal Variable Mean Encoding

Feature	Outcome	MeanEncode
А	1	0.75
А	0	0.75
А	1	0.75
А	1	0.75
В	1	0.66
В	1	0.66
В	0	0.66
С	1	1.00
С	1	1.00

А	0.75 (3 out of 4)
В	0.66 (2 out of 3)
С	1.00 (2 out of 2)

Lab

Topic: WOE + Target Encoding

Filename	lab_eda_insurance_claim.ipynb
Data	Financial Customer Churn Prediction
Target	→ Add WOE Encoding Feature→ Add Target Encoding Feature
Duration	About 15 min

Advanced - Entropy Encoding

Entropy ⇒ Define the events first!

Advanced - Entropy Encoding

Entropy

Feature	Outcome
А	1
А	0
А	1
А	1
В	1
В	1
В	0
С	1
С	1

Evnet: 0, 1

entropy(A) =
$$-(1/4 \times \log(1/4) + 3/4 \times \log(3/4))$$

= 0.81
proba(A) = 4/9

$$\Rightarrow$$
 result = 0.81 * 4/9 = 0.36

$$entropy(C) = -(1 \times log(1)) = 0$$

Advanced - Polynomial Encoding

nets = Dense(units=64, ...)
nets = Dense(units=32, ...)
logits = Dense(units=1, ...)

Tensorflow Playground

Lab

Topic: Entropy Encoding + Polynomial Encoding

Filename	lab_eda_insurance_claim.ipynb	
Data	Financial Customer Churn Prediction	
Target	→ Add Entropy encoding→ Add Polynomial encoding	
Duration	About 10 min	

Advanced - PCA (Principal Component Analysis)

Sometimes we could face the curse of dimensionality

- Reduce the dimension of data
- Coordinate system transformation
- Mutually orthogonal axis
- Linear transformation

```
from sklearn.decomposition import PCA

pca = PCA(32)
data = pca.fit_transform(data)
```

So simple! thank god we have scikit learn

Advanced - AutoEncoder

- Goal
 - Learn a specified data representation
 - Reduce the dimension of data
- Unsupervised learning
 - The input is the label
- Can be non-linear transformation
- The "Code" is what we want

Advanced - AutoEncoder

	AutoEncoder	PCA
Linear?	Non-linear	Linear
Dimension limitation	Non-limited	Less than input dimension

Advanced - AutoEncoder

```
inputs = Input(shape=(inputs dim, ))
# Fncoder
encoded = Dense(inputs dim, activation='selu')(inputs)
encoded = Dense(128, activation='selu')(encoded)
encoded = Dense(64, activation='selu')(encoded)
encoded = Dense(64, activation='selu')(encoded)
# Decoder
decoded = Dense(64, activation='selu')(encoded)
decoded = Dense(128, activation='selu')(decoded)
decoded = Dense(inputs dim, activation='linear')(decoded)
# this model maps an input to its reconstruction
autoencoder = Model(inputs, decoded)
# Adam Optimizer + Mean square error loss
autoencoder.compile(optimizer='adam', loss='mse')
# this model maps an input to its encoded representation
encoder = Model(inputs, encoded)
```

Coded

AutoEncoder model for training

Encoder model for prediction

Lab

Topic: PCA Encoding + AutoEncoder Encoding

Filename	lab_eda_insurance_claim.ipynb	
Data	Financial Customer Churn Prediction	
Target	→ Add PCA Encoding→ Add AutoEncoder Encoding	
Duration	About 10 min	

Advanced - Imbalanced Data For Classification


```
class_weight: ...

This can be useful to tell the model to "pay more attention" to samples from an under-represented class.
```

Loss = -
$$(W * Ylog(Y^{\circ}) + (1 - Y)log(1-Y^{\circ}))$$

Minority Majority

Minority : Majority = 1 : 40 class weights ⇒ {Minority : 40, Majority: 1}

Advanced - RFM (Recency, Frequency, Monetary)

How recently, how often and how much did they buy.

Beware the "Data leakage", label not in test data, so we take the RFM value from the last moment of train data

Conclusion

- → Domain knowlage is still the key of model performance ⇒ Why do you know RFM are good for transactional data?
- → Deep learning can learning the feature transformation, but still got limitation
- → Still need "a little" trial and error

