Online and Reinforcement Learning (2025) Home Assignment 2

Davide Marchi 777881

Contents

1	Short Questions	2
2	MDPs with Similar Parameters Have Similar Values	3
3	Policy Evaluation in RiverSwim	5
4	Solving a Discounted Grid-World	5
5	Off-Policy Evaluation in Episode-Based River-Swim	5

1 Short Questions

Determine whether each statement below is True or False and provide a very brief justification.

1. **Statement:** "In a finite discounted MDP, every possible policy induces a Markov Reward Process."

Answer: False. This statement assumes that the policy depends only on the current state. If we allow policies to depend on the *entire* past history (*history-dependent* policies), then the resulting transitions in the state space may no longer satisfy the Markov property, since the chosen action at each step might be a function of all previous states and actions. Hence not *every* (fully history-dependent) policy necessarily induces a Markov Reward Process in the *original* state space.

2. **Statement:** "Consider a finite discounted MDP, and assume that π is an optimal policy. Then, the action(s) output by π does not depend on history other than the current state (i.e., π is necessarily stationary)."

Answer: False. While it is true that there exists an optimal policy which is stationary deterministic, it does not follow that all optimal policies must be so. In fact, multiple distinct policies (some stationary, others possibly history-dependent or randomized) can achieve exactly the same optimal value. Hence it is incorrect to say that any optimal policy π must be purely state-dependent (stationary).

3. Statement: "n a finite discounted MDP, a greedy policy with respect to optimal action-value function, Q^* , corresponds to an optimal policy."

Answer: True. From the Bellman optimality equations for Q^* , a policy that selects

$$\underset{a}{\operatorname{arg\,max}} \ Q^*(s,a)$$

at each state s is indeed an optimal policy. This policy attains the same value as Q^* itself, thus achieving the optimal value.

4. Statement: "Under the coverage assumption, the Weighted Importance Sampling Estimator \hat{V}_{wIS} converges to V^{π} with probability 1."

Answer: True. The coverage assumption ensures that the target policy's state-action probabilities are absolutely continuous w.r.t. the behavior policy. Under this assumption, Weighted Importance Sampling (though slightly biased) is a *consistent* estimator of V^{π} , meaning it converges almost surely to V^{π} as the sample size grows unbounded.

2 MDPs with Similar Parameters Have Similar Values

Setup: We have two discounted MDPs

$$M_1 = (S, A, P_1, R_1, \gamma)$$
 and $M_2 = (S, A, P_2, R_2, \gamma)$,

sharing the same discount factor $\gamma \in (0,1)$, the same finite state–action space, and rewards bounded in $[0, R_{\text{max}}]$. For all state–action pairs (s, a):

$$|R_1(s,a) - R_2(s,a)| \le \alpha, ||P_1(\cdot | s,a) - P_2(\cdot | s,a)||_1 \le \beta.$$

Consider a fixed stationary policy π , and let V_1^{π} and V_2^{π} be its value functions in M_1 and M_2 , respectively. The goal is to show that

$$|V_1^{\pi}(s) - V_2^{\pi}(s)| \le \frac{\alpha + \gamma R_{\max} \beta}{(1 - \gamma)^2}$$
 for every state $s \in S$.

Step 1: Write down the Bellman equations for each MDP.

By definition of π , the Bellman fixed-point form is:

$$V_1^{\pi} = r_1^{\pi} + \gamma P_1^{\pi} V_1^{\pi}, \quad V_2^{\pi} = r_2^{\pi} + \gamma P_2^{\pi} V_2^{\pi},$$

where

$$r_m^{\pi}(s) = R_m(s, \pi(s)), \quad (P_m^{\pi}f)(s) = \sum_{s'} P_m(s' \mid s, \pi(s)) f(s'), \quad m = 1, 2.$$

Define $\delta = V_1^{\pi} - V_2^{\pi}$. Then

$$\delta = (r_1^{\pi} - r_2^{\pi}) + \gamma (P_1^{\pi} V_1^{\pi} - P_2^{\pi} V_2^{\pi}).$$

To facilitate the separation of terms, we introduce and subtract $\gamma P_1^{\pi} V_2^{\pi}$, which allows us to rewrite the second term as:

$$P_1^{\pi}V_1^{\pi} - P_2^{\pi}V_2^{\pi} = (P_1^{\pi}V_1^{\pi} - P_1^{\pi}V_2^{\pi}) + (P_1^{\pi}V_2^{\pi} - P_2^{\pi}V_2^{\pi}).$$

Substituting this back, we obtain:

$$\delta = (r_1^{\pi} - r_2^{\pi}) + \gamma P_1^{\pi} (V_1^{\pi} - V_2^{\pi}) + \gamma (P_1^{\pi} - P_2^{\pi}) V_2^{\pi}.$$

Step 3: Take norms and use triangle/inequality bounds.

Taking the supremum norm $(\|\cdot\|_{\infty})$ on both sides,

$$\|\delta\|_{\infty} \le \|r_1^{\pi} - r_2^{\pi}\|_{\infty} + \gamma \|P_1^{\pi} \delta\|_{\infty} + \gamma \|(P_1^{\pi} - P_2^{\pi}) V_2^{\pi}\|_{\infty}.$$

- Reward difference: Since $|R_1(s,a) - R_2(s,a)| \le \alpha$, it follows that $||r_1^{\pi} - r_2^{\pi}||_{\infty} \le \alpha$.
- Term with $P_1^{\pi} \delta$: We have

$$\|P_1^{\pi}\delta\|_{\infty} \leq \|\delta\|_{\infty},$$

since P_1^{π} is a probability kernel and thus a contraction in sup norm.

• Term with $(P_1^{\pi} - P_2^{\pi}) V_2^{\pi}$: For each s,

$$\left| \; \left(P_1^{\pi} - P_2^{\pi} \right) V_2^{\pi}(s) \right| \; \leq \; \sum_{s'} \left| \; P_1(s' \mid s, \pi(s)) - P_2(s' \mid s, \pi(s)) \right| \left| \; V_2^{\pi}(s') \right|.$$

By assumption, $||P_1(\cdot \mid s, a) - P_2(\cdot \mid s, a)||_1 \le \beta$, and $||V_2^{\pi}||_{\infty} \le \frac{R_{\text{max}}}{1-\gamma}$. Hence,

$$\|(P_1^{\pi} - P_2^{\pi})V_2^{\pi}\|_{\infty} \le \beta \frac{R_{\max}}{1 - \gamma}.$$

Putting these bounds together,

$$\|\delta\|_{\infty} \le \alpha + \gamma \|\delta\|_{\infty} + \gamma \beta \frac{R_{\max}}{1-\gamma}.$$

Step 4: Solve for $\|\delta\|_{\infty}$.

We isolate $\|\delta\|_{\infty}$ on one side:

$$(1-\gamma) \|\delta\|_{\infty} \le \alpha + \gamma \beta \frac{R_{\max}}{1-\gamma}.$$

Thus

$$\|\delta\|_{\infty} \le \frac{\alpha}{1-\gamma} + \frac{\gamma \beta R_{\max}}{(1-\gamma)^2}.$$

Since $\alpha/(1-\gamma) \le \alpha/(1-\gamma)^2$ whenever $0 < \gamma < 1$, we can write

$$\|\delta\|_{\infty} \leq \frac{\alpha + \gamma \beta R_{\max}}{(1-\gamma)^2}.$$

Hence, for every state $s \in S$,

$$|V_1^{\pi}(s) - V_2^{\pi}(s)| \le ||\delta||_{\infty} \le \frac{\alpha + \gamma R_{\max} \beta}{(1 - \gamma)^2}.$$

This is the desired result.

- 3 Policy Evaluation in RiverSwim
- 4 Solving a Discounted Grid-World
- 5 Off-Policy Evaluation in Episode-Based River-Swim