Алгоритмы и вычислительные методы оптимизации

Лекция 4

1.10. Симплекс-метод

Симплекс-метод (метод последовательного улучшения плана) позволяет решить любую ЗЛП, заданную в канонической форме.

Симплекс — простейший многогранник данного числа измерений, например, треугольник в R^2 , тетраэдр — в R^3 и т.д.). Название метода связано с тем историческим обстоятельством, что ограничения одной из первых задач, решенных этим методом, задавали симплекс в пространстве соответствующей размерности.

Пусть задача линейного программирования представлена в канонической форме:

$$Z = c_{1}x_{1} + c_{2}x_{2} + \dots + c_{n}x_{n} \to \max$$

$$\begin{cases} a_{11}x_{1} + a_{12}x_{2} + \dots + a_{1n}x_{n} = b_{1} \\ \dots & \dots & \dots \\ a_{m1}x_{1} + a_{m2}x_{2} + \dots + a_{mn}x_{n} = b_{m} \\ x_{1}, x_{2}, \dots, x_{n} \ge 0 \end{cases}$$

$$(1.15)$$

Прежде, чем описать алгоритм симплекс-метода, сформулируем ряд теорем, которые дают этот алгоритм.

Пусть система (1.16) приведена к единичному базису с неотрицательными правыми частями ($b_i \ge 0, i = 1, 2, ..., m$):

$$\begin{cases} x_{1} + a'_{1,r+1}x_{r+1} + \dots + a'_{1n}x_{n} = b'_{1} \\ x_{2} + a'_{2,r+1}x_{r+1} + \dots + a'_{2n}x_{n} = b'_{2} \\ \dots & \dots & \dots \\ x_{r} + a'_{r,r+1}x_{r+1} + \dots + a'_{rn}x_{n} = b'_{r} \\ x_{i} \ge 0, i = 1, 2, \dots, n \end{cases}$$

$$(1.17)$$

Выразим целевую функцию через свободные переменные.

$$Z = c'_0 + c'_1 x_{r+1} + \dots + c'_n x_n \to \max$$
 (1.18)

Системе (1.17) соответствует опорное решение $(b'_1,...,b'_r,0,...,0)$, при этом значение функции $Z=c'_0$.

Из (1.17), (1.18) можно перейти к симметричной форме ЗЛП и для нее построить область допустимых решений — многогранник.

Теорема 8 Каждому опорному решению системы (1.16) соответствует вершина многогранника планов эквивалентной симметричной задачи и наоборот.

Из теоремы 8 следует, что максимального значения функция достигает для одного из опорных решений системы (1.16).

Симплекс-метод позволяет найти этот опорный план в результате упорядоченного перебора опорных планов. При этом упорядоченность понимается в том смысле, что переход от одного опорного решения к другому значения функции не убывают.

$$\begin{cases} x_{1} + a'_{1,r+1}x_{r+1} + \dots + a'_{1n}x_{n} = b'_{1} \\ x_{2} + a'_{2,r+1}x_{r+1} + \dots + a'_{2n}x_{n} = b'_{2} \\ \dots & , \\ x_{r} + a'_{r,r+1}x_{r+1} + \dots + a'_{rn}x_{n} = b'_{r} \\ x_{i} \ge 0, i = 1, 2, \dots, n \end{cases}$$

$$Z = c'_{0} + c'_{1}x_{r+1} + \dots + c'_{n}x_{n} \to \max$$

$$(1.18)$$

Средством хранения информации о решаемой задаче линейного программирования являются симплекс-таблицы, начальная таблица составляется по (1.17), (1.18) и имеет следующий вид:

Последнюю строку называют *строкой целевой функции* или *Z*-строкой. Столбец с заголовком 1 содержит правые части уравнений (1.17), свободный член целевой функции и называется *столбцом свободных членов*.

Таблице (1.19) соответствует опорное решение $(b'_1,...,b'_r,0,...,0)$, при этом значение функции $Z=c'_0$.

Теорема 9 (признак оптимальности опорного решения) Если в таблице (1.19) коэффициенты $-c'_j \ge 0$ ($j=r+1,\ldots,n$), то опорное решение $X'=(b'_1,\ldots,b'_r,0,\ldots,0)$ является оптимальным и при этом $Z_{\max}=Z(X')=c'_0$.

Теорема 10 (признак неограниченности функции) Если в таблице (1.19) существует хотя бы один коэффициент $-c'_{j} < 0$ такой, что среди элементов a'_{ij} (i = 1, 2, ..., r) нет положительных, то целевая функция (1.18) при ограничениях (1.17), не ограничена сверху.

Теорема 11 (о возможности улучшения плана) Если в таблице (1.19) существует хотя бы один коэффициент $-c'_j < 0$ (j = r + 1, ..., n), а в каждом столбце с таким элементом среди a'_{ij} (i = 1, 2, ..., r) есть хотя бы один положительный, то поменяв базис, можно перейти к другому опорному плану X'' такому, что $Z(X'') \ge Z(X')$.

Теорема 12 (признак альтернативного оптимума) Если в Z-строке симплексной таблицы (1.19), содержащей оптимальный план, среди чисел $-c'_j \ge 0$ (j = r + 1, ..., n) есть равные 0, то множество оптимальных решений бесконечно.

Сформулированные теоремы позволяют проверить, является ли найденное опорное решение оптимальным, и выявить целесообразность перехода к новому опорному решению, но не дают самого алгоритма перехода.

Идея симплекс-метода: осуществлять переход от одной таблицы к другой, заменяя одну из базисных переменных на свободную до тех пор, пока не получим оптимальное решение или не установим, что функция не ограничена (теоремы 9, 10).

Если в Z-строке есть отрицательные элементы, то введение в базис соответствующих свободных переменных позволит не уменьшить значение целевой функции (теорема 11). Так как количество переменных в базисе должно остаться неизменным, то одна из переменных должна быть выведена из базиса. Таким образом, на каждом шаге симплекс-метода осуществляется преобразование базиса: одна из свободных переменных вводится в базис, а одна из базисных — выводится.

Алгоритм симплексного преобразования

б.п.	1	$ x_1 $	x_2	• • •	x_r	x_{r+1}	• • •	x_n
x_1	b_1'	1	0	• • •	0	$a'_{1,r+1}$	• • •	$a'_{1,n}$
x_2	b_2'	0	1	• • •	0	$a'_{2,r+1}$	• • •	$a'_{2,n}$
• • •		•••	•••	• • •	•••	$a'_{r,r+1}$	• • •	• • •
x_r	b_r'	U	Ü	• • •	1	$a'_{r,r+1}$	• • •	$a'_{r,n}$
\overline{Z}	c_0'	0	0	• • •	0	$-c'_{r+1}$	• • •	$\overline{-c'_n}$

1. Для перехода к новому опорному решению в Z-строке среди отрицательных коэффициентов $-c'_j$ (j=r+1,...,n) выбирают наибольший по абсолютной величине, пусть это будет $-c'_{j_0}$. Тем самым выбрана свободная переменная x_{j_0} , которая будет вводиться в базис. Столбец с заголовком x_{j_0} называется разрешающим.

Отметим разрешающий столбец.

б.п.	1	$ x_1 $	x_2	• • •	x_r	x_{r+1}	• • •	x_{j_0}	• • •	x_n	CO	
$\overline{x_1}$	b'_1	1	0	• • •	0	$a'_{1,r+1}$	• • •	a'_{1,j_0}	• • •	$a'_{1,n}$		
x_2	b_2'	0	1	•••	0	$a'_{2,r+1}$	•••	a'_{2,j_0}	• • •	$a'_{2,n}$		
x_{i_0}	$\begin{vmatrix} \cdots \\ b'_{i_0} \end{vmatrix}$	0	0	•••	0	$a'_{i_0,r+1}$	•••	(a'_{i_0,j_0})	•••	$a'_{i_0,n}$	—	$-c'_{j_0} < 0$
x_r	b'_r	0	0	• • •	 1	$a'_{r,r+1}$	• • •	a'_{r,j_0}	•••	$a'_{r,n}$		
\overline{Z}	$ c'_0 $	0	0	• • •	0	$-c'_{r+1}$	• • •	$-c'_{j_0}$	•••	$-c'_n$		

2. Для выбора базисной переменной, выводимой из базиса, находятся симплексные отношения — отношения элементов столбца свободных членов к положительным элементам разрешающего столбца. И записывают эти отношения в специальный столбец.

Переменная, выводимая из базиса, определяется минимальным симплексным соотношением, соответствующая ей строка называется разрешающей. Отметим ее.

Элемент, находящийся на пересечении разрешающей строки и разрешающего столбца, называется разрешающим элементом, выделим его.

б.п.	1	x_1	x_2	• • •	x_r	x_{r+1}	• • •	x_{j_0}	• • •	x_n	CO
$\overline{x_1}$	b'_{1}	1	0	• • •	0	$a'_{1,r+1}$	• • •	a'_{1,j_0}	• • •	$a'_{1,n}$	
x_2	b_2'	0	1	• • •	0	$a'_{2,r+1}$	•••	a'_{2,j_0}	• • •	$a'_{2,n}$	
• • •	11		•••	• • •		,	• • •		• • •	•••	
x_{i_0}	ρ_{i_0}	U	U	• • •	U	$a'_{i_0,r+1}$ \cdots	• • •	a_{i_0,j_0}	• • •	$a_{i_0,n}$	
• • •		•••	•••	• • •	1		• • •	• • •	• • •	• • •	
x_r	b_r	U	Ü	• • •	1	$a'_{r,r+1}$	• • •	a_{r,j_0}	• • •	$a_{r,n}$	
Z	c_0'	0	0	• • •	0	$-c'_{r+1}$	• • •	$-c'_{j_0}$	• • •	$-c'_n$	

- 3. Формируется новая симплексная таблица по следующим правилам:
- в базис вместо переменной x_{i_0} вводим переменную x_{j_0} ;

	1	$ x_1 $	x_2	• • •	x_r	x_{r+1}	• • •	x_{j_0}	• • •	x_n	CO
x_1 x_2				• • •			• • •		• • •		
x_2				• • •			• • •		• • •		
	•••	•••	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	
x_{j_0}				• • •			• • •		• • •		
	•••	•••	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	
X_r				• • •			• • •		• • •		
Z				• • •					• • •		

б.п.	1	x_1	x_2	• • •	x_r	x_{r+1}	• • •	x_{j_0}	• • •	x_n	CO
$\overline{x_1}$	b'_1	1	0	• • •	0	$a'_{1,r+1}$	• • •	a'_{1,j_0}	• • •	$a'_{1,n}$	
x_2	b_2'	0	1	•••	0	$a'_{2,r+1}$	•••	a'_{2,j_0}	• • •	$a'_{2,n}$	
•••	 'b'			• • •		$a'_{i_0,r+1}$	• • •		• • •	 	
x_{i_0}	$ v_{i_0} $	U	U	• • •	U	$a_{i_0,r+1}$	• • •	a_{i_0,j_0}	• • •	$a_{i_0,n}$	
•••	1 ₂ '			• • •	1	···	• • •	···	• • •	···	
x_r	D_r	U	U	• • •	1	$a'_{r,r+1}$	• • •	a_{r,j_0}	• • •	$a_{r,n}$	
Z	c_0'	0	0	• • •	0	$-c'_{r+1}$	• • •	$-c'_{j_0}$	• • •	$-c'_n$	

- элементы разрешающей строки делятся на разрешающий элемент;

б.п.	1	x_1	x_2	• • •	x_r	x_{r+1}	• • •	x_{j_0}	• • •	x_n	CO
x_1 x_2				• • •			• • •		• • •		
x_2				• • •			• • •		• • •		
• • •			• • •	• • •	• • •		• • •	• • •	• • •	• • •	
x_{j_0}	$\frac{b'_{i_0}}{a'_{i_0,j_0}}$	0	0	•••	0	$\frac{a'_{i_0,r+1}}{a'_{i_0,j_0}}$	•••	1	•••	$\frac{a'_{i_0,n}}{a'_{i_0,j_0}}$	
• • •	•••		• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	
x_r				• • •			• • •		• • •		
Ż				• • •			• • •		• • •		

б.п.	1	x_1	x_2	•••	x_r	x_{r+1}	•••	x_{j_0}	• • •	x_n	CO
$\overline{x_1}$	b'_1	1	0	• • •	0	$a'_{1,r+1}$	• • •	a'_{1,j_0}	• • •	$a'_{1,n}$	
x_2	b_2'	0	1	• • •	0	$a'_{2,r+1}$	• • •	a'_{2,j_0}	• • •	$a'_{2,n}$	
• • •	1.'			• • •		$a'_{i_0,r+1}$	• • •		• • •	· · ·	
x_{i_0}	ρ_{i_0}	U	U	• • •	U	$a_{i_0,r+1}$	• • •	a_{i_0,j_0}	• • •	$a_{i_0,n}$	
• • •		•••	•••	• • •	• • •		• • •	• • •	• • •	•••	
x_r	b_r	U	O	• • •	1	$a'_{r,r+1}$	• • •	a'_{r,j_0}	• • •	$a'_{r,n}$	
Z	c_0'	0	0	• • •	0	$-c'_{r+1}$	• • •	$-c'_{j_0}$	• • •	$-c'_n$	

- на месте остальных элементов разрешающего столбца будут стоять нули;

б.п.	1	$ x_1 $	x_2	• • •	x_r	x_{r+1}	• • •	x_{j_0}	• • •	x_n	$\mid CO \mid$
$\overline{x_1}$				• • •			• • •	0	• • •		
x_1 x_2				• • •			• • •	0	• • •		
• • •		•••	• • •	• • •	• • •		• • •	• • •	• • •	• • •	
x_{j_0}	$\frac{b'_{i_0}}{a'_{i_0,j_0}}$	0	0	•••	0	$\frac{a'_{i_0,r+1}}{a'_{i_0,j_0}}$	•••	1	•••	$\frac{a'_{i_0,n}}{a'_{i_0,j_0}}$	
• • •	• • •	•••	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	
$\frac{x_r}{Z}$				• • •			• • •	0	• • •		
\overline{Z}								0			

б.п.	1	x_1	x_2	• • •	x_r	x_{r+1}	• • •	x_{j_0}	• • •	x_n	CO
$\overline{x_1}$	b'_1	1	0	• • •	0	$a'_{1,r+1}$	• • •	a'_{1,j_0}	• • •	$a'_{1,n}$	
x_2	b_2'	0	1	• • •	0	$a'_{2,r+1}$	•••	a'_{2,j_0}	• • •	$a'_{2,n}$	
• • •	11			• • •		,	• • •		• • •	•••	
x_{i_0}	b_{i_0}	U	U	• • •	U	$a'_{i_0,r+1}$	• • •	a_{i_0,j_0}	• • •	$a_{i_0,n}$	
• • •	1 /	•••	•••	• • •	1	,	• • •	•••	• • •	•••	
						$a'_{r,r+1}$					
Z	c_0'	0	0	• • •	0	$-c'_{r+1}$	• • •	$-c'_{j_0}$	• • •	$-c'_n$	

- столбцы таблицы с заголовками базисных переменных (кроме x_{i_0}), не изменяются;

б.п.	1	x_1	x_2	• • •	x_r	x_{r+1}	• • •	x_{j_0}	• • •	x_n	$\mid CO \mid$
$\overline{x_1}$		1	0	• • •	0		• • •	0	• • •		
x_2		0	1	• • •	0		• • •	0	• • •		
• • •	• • •	• • •	• • •	• • •	• • •	•••	• • •	• • •	• • •	• • •	
x_{j_0}	$\frac{b'_{i_0}}{a'_{i_0,j_0}}$	0	0	•••	0	$\frac{a'_{i_0,r+1}}{a'_{i_0,j_0}}$	•••	1	•••	$\frac{a'_{i_0,n}}{a'_{i_0,j_0}}$	
• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	
x_r		0	0	• • •	1		• • •	0	• • •		
\overline{Z}		0	0		0			0			

- все остальные элементы пересчитываются по правилу прямоугольника:

$$\begin{array}{c|c}
a'_{i_0j_0} & a'_{i_0j} \\
a'_{ij_0} & a'_{ij}
\end{array} \qquad a''_{ij} = a'_{ij} - \frac{a'_{i_0j} \cdot a'_{ij_0}}{a'_{i_0j_0}}$$

Правило 3 распространяется на коэффициенты столбца свободных членов и *Z*-строки.

Симплексные преобразования проводят до тех пор, пока не будет получено оптимальное решение или установлена неразрешимость задачи (теоремы 9, 10).

Геометрически симплекс-метод можно проинтерпретировать следующим образом. Начальному опорному плану соответствует угловая точка многогранника решений (1.17). Шагу симплексного преобразования соответствует переход в соседнюю вершину таким образом, чтобы значение целевой функции не уменьшилось

Замечания:

- 1. Если таблица (1.19) соответствует оптимальному решению, а среди чисел $-c'_j$ (j=r+1,...,n) имеется коэффициент $-c'_{j_0}$ равный нулю, то задача имеет бесконечно много решений. Вторую вершину, соответствующую оптимальному решению, можно найти, выбрав в качестве разрешающего столбец, содержащий $-c'_{j_0}$.
- 2. Задачу минимизации Z можно формально заменить задачей максимизации функции (-Z). Но можно этого не делать. Признаком оптимальности опорного плана задачи минимизации является отсутствие положительных элементов в Z-строке таблицы (1.19). Для выбора разрешающего столбца выбирают максимальный среди положительных коэффициентов $-c'_j$ ($j=r+1,\ldots,n$), а вся остальная вычислительная процедура остается прежней.

Пример 1

Решить задачу симплекс-методом и дать геометрическую интерпретацию процесса

поиска оптимального решения.

$$Z = x_1 + 2x_2 \to \max$$

$$\begin{cases} 2x_1 + 3x_2 \le 6 \\ x_1 \le 1 \\ x_1 - x_2 \ge -1 \\ x_i \ge 0, i = 1, 2 \end{cases}$$

Решение примера 1 – в файле lecture4.pdf.

$$Z_{\text{max}} = Z(3/5, 8/5) = 19/5$$

Номер таблицы	Опорное решение из таблицы	Значение функции	Точка на графике
1	$X^1 = (0;0;6;1;1)$	0	0
2	$X^2 = (0;1;3;1;0)$	2	A
3	$X^3 = (3/5;8/5;0;2/5;0)$	19/5	В

