

Signaling and SynchronizationFall 2020

Topic 8
PLL & DLL Basics

Sameh A. Ibrahim
Ain Shams University
ICL

(Courtesy of S. Pamarti & B. Razavi – UCLA and S. Palermo – TAMU)

Outline

- PLL
 - Components
 - Models
 - Noise Transfer Functions
 - Circuits
- DLL
 - Types
 - Models
 - Noise Transfer Functions
- PLL/DLL comparison

Introduction

PLL

Negative Feedback Loop

Negative Feedback Loop

Generated clock

- No clock generation
- Same frequency and phase
 - Defined phase relationship

DLL

- PLLs applications
 - lications DLLs applications
 - Frequency synthesis

Chip-to-chip communication

Skew cancellation

De-skew circuits

- Clock recovery
- Modulation/De-modulation

Loop Filter

Many implementations

- Passive, active, sampled
- Filter classification
 - Based on number of integrators in F(s)
 - Type I: no integrators
 - Type II: one integrator
 - Based on number of poles in F(s)
 - 1st order, 2nd order, 3rd order, etc.

$$Type \ I: \ F(s) = 1, \ F(s) = \frac{1 + s\tau_2}{1 + s\tau_1},$$

$$Type \ II: \ F(s) = \frac{1 + s\tau_2}{s}, \ F(s) = \frac{1 + s\tau_2}{s(1 + s\tau_p)}.$$

Voltage Control Oscillators

- Ring or LC oscillators
- Differential or single-ended outputs

Voltage or current control

M

 V_{out}

 V_{out+}

Frequency Divider

- Counts integer number of VCO cycles
 - Synchronous or asynchronous implementations
- Many implementations
 - Static CMOS, dynamic logic, current mode logic (CML)

$$\phi_{\rm div}(t) = \frac{1}{N} \phi_{\rm VCO}(t)$$

Phase Comparator / Detector

Can assume that in the linear region, on average,

$$V_{ extit{avg}}(t) pprox K_{ extit{PD}}\left(\phi_{ extit{ref}}(t) - \phi_{ extit{div}}(t) - \phi_{ extit{0}}
ight)$$

Intuitive PLL Model

- Negative feedback loop tries to force Φ_{err}(t)= Φ₀
 - In steady state i.e. in "lock" f_{VCO}= N*f_{ref}
- The continuous time, analog model is in general incorrect
 - Many components have discrete time operation.
 - However, important conclusions can be drawn from it.

Understanding PLL Frequency Response

- Linear "small-signal" analysis is useful for understanding PLL dynamics if
 - PLL is locked (or near lock).
 - Input phase deviation amplitude is small enough to maintain operation in lock range.
- Frequency domain analysis can tell us how well the PLL tracks the input phase as it changes at a certain frequency.
- PLL transfer function is different depending on which point in the loop the output is responding to.

Phase Frequency Detector

- "Up" and "Dn" together contain the phase error information.
 - Their time difference is proportional to the phase error.
- A proportional voltage or current can be generated for F(s).
 - A charge pump is best suited for this purpose.

Charge Pump Integer-N PLLs

• PFD + CP together dump charge, Q_{avg} proportional to Φ_{err} into the loop filter, during each reference period.

Charge Pump Integer-N PLLs: LTI Model

Assumption: CP produces an average current during each reference period.

- Linear, time-invariant model
 - Ignores the non-linearity of the PFD
 - Ignores position and width of current pulses
 - Reasonable approximation for low bandwidth PLLs

Common Charge Pump Integer-N PLLs

Loop filter is usually of Type II.

$$F(s) = R \left(\frac{1 + s \tau_2}{s \tau_2} \right)$$

$$\tau_2 \triangleq R\,C_2,$$

$$F(s) = R\left(\frac{b-1}{b}\right) \left(\frac{1+s\tau_2}{s\tau_2\left(1+s\tau_p\right)}\right)$$

$$b \triangleq 1 + \frac{C_2}{C_1}, \ \tau_{\scriptscriptstyle p} \triangleq R \frac{C_1 C_2}{C_1 + C_2} = \frac{\tau_2}{b}$$

Stability (1)

$$\begin{split} T(s) &= \frac{K\left(1 + s\tau_2\right)}{s^2\tau_2\left(1 + s\tau_p\right)},\\ K &= \left(\frac{b-1}{b}\right)\frac{I_{\mathit{CP}}K_{\mathit{VCO}}R}{2\pi N},\\ PM &\approx \tan^{-1}\left(K\tau_2\right) - \tan^{-1}\left(K\tau_2/b\right) \end{split}$$

Stability (2)

$$\begin{split} T(s) &= \frac{K\left(1+s\tau_2\right)}{s^2\tau_2\left(1+s\tau_p\right)},\\ K &= \left(\frac{b-1}{b}\right)\frac{I_{\mathit{CP}}K_{\mathit{VCO}}R}{2\pi N},\\ PM &\approx \tan^{-1}\left(K\tau_2\right) - \tan^{-1}\left(K\tau_2/b\right) \end{split}$$

- Two poles at s= 0 cause instability
 - The zero provides phase margin (PM).
 - Large K_{τ_2} values give better PM.

Stability (3)

$$\begin{split} T(s) &= \frac{K\left(1 + s\tau_2\right)}{s^2\tau_2\left(1 + s\tau_p\right)},\\ K &= \left(\frac{b-1}{b}\right)\frac{I_{\mathit{CP}}K_{\mathit{VCO}}R}{2\pi N},\\ PM &\approx \tan^{-1}\left(K\tau_2\right) - \tan^{-1}\left(K\tau_2/b\right) \end{split}$$

Large "b" gives better PM: typically, b > 16 is used

Closed Loop Response (1)

$$\begin{split} A_{\phi}(s) &= \frac{N\left(1+s\tau_{2}\right)}{1+s\tau_{2}+s^{2}\tau_{2}\big/K+s^{3}\tau_{2}\tau_{p}\big/K},\\ \text{where } K &= \left(\frac{b-1}{b}\right)\frac{I_{\mathcal{OP}}K_{\mathcal{VOO}}R}{2\pi N}, \end{split}$$

- A pole-zero doublet exists at the zero location.
 - Magnitude response of A_Φ(s) rises at the doublet.
 - Doublet slows down settling response.

Closed Loop Response (2)

$$\begin{split} A_{\phi}(s) &= \frac{N\left(1+s\tau_{2}\right)}{1+s\tau_{2}+s^{2}\tau_{2}\big/K+s^{3}\tau_{2}\tau_{p}\big/K},\\ \text{where } K &= \left(\frac{b-1}{b}\right)\frac{I_{\textit{OP}}K_{\textit{VOO}}R}{2\pi N}, \end{split}$$

- A pole-zero doublet exists at the zero location.
 - Magnitude response of A_Φ(s) rises at the doublet.
 - Doublet slows down settling response.
- Decreasing "b" or " K_{τ_2} " increases peaking.
 - Frequency where peaking occurs is not necessarily K.

Simple Design Procedure

Given quantities

- F_{ref}, N, K_{VCO}(Hz/V), minimum phase margin, PM_{required}
- Required closed loop bandwidth, f_{BW}(Hz)
- Calculate b

$$PM_{ extit{required}} \leq an^{-1} iggl(rac{\sqrt{b} - 1\!iggl/\sqrt{b}}{2} iggr)$$

Calculate I_{CP}, R, C₂ such that

$$I_{\mathit{CP}}R = \left(\frac{b}{b-1}\right) \frac{2\pi N f_{\mathit{BW}}}{K_{\mathit{VCO}}} \text{ and } RC_2 = \frac{\sqrt{b}}{2\pi f_{\mathit{BW}}}$$

- Calculate C_1 such that $C_1 = \frac{C_2}{b-1}$
- Note: Multiple choices for (I_{CP}, R, C₂) are possible
 - Thermal noise, power considerations will help in making the choice

Design Issues

- Sophisticated filter design is possible.
 - Implementation concerns
 - Not much room to play with
- Several tools available
 - Mainly choose the components of a chosen filter structure,
 - Good example: Michael Perrott's PLL Design tool
- The challenging problems in PLL design are usually elsewhere
 - Dealing with component variability
 - How much phase margin is enough phase margin?

2nd Odrer vs. 3rd Order Type II CP PLL

- 2nd order PLL is a special case of the 3rd order PLL.
 - b = infinity
- However, analysis has been application specific
 - Digital, wired communication analyses focus on 2nd order PLL

Control Voltage Ripple

- The "ripple" on V_{ctrl} causes periodic jumps in VCO phase
 - Causes spikes in power spectral density of VCO output
 - Bad for both wireless and wire-line communications
- 3rd pole attenuates the ripple and its effects
 - Small "b" is desired for more attenuation
 - Recall: small "b" reduces phase margin
- Often choose K to be the geometric mean of $1/\tau_2$, and $1/\tau_p$
 - Used this in the design procedure mentioned earlier

Effect of Feedback Delay in PLLs

- Non-zero delay in the feedback is common in PLLs.
 - E.g., clock distribution in chip-to-chip I/O
- Feedback delay degrades the phase margin of the PLL.
- Can be shown that

$$PM \approx PM_{t_d=0} - f_{BW}t_d \times 360^\circ$$

• Assuming $K \approx f_{BW}$

Noise in the PLL

- Many sources of noise
 - Charge pump, loop filter, reference, divider, VCO, buffers, PFD
- Both random and deterministic sources of "noise"
- Linear model can be used because noise terms are small.

Ref./Divider/PFD Noise Contribution (1)

- Reference, divider, and PFD noise are combined into a single equivalent phase error term, $\phi_{n,ref}(t)$.
- This noise is effectively low-pass filtered by the PLL.

$$\begin{split} \frac{\phi_{\textit{VCO}}(s)}{\phi_{\textit{\eta,ref}}(s)} &= \frac{NT(s)}{1+T(s)}, \ T(s) \ \text{is open-loop transfer} \\ &= A_{\!\phi}(s), \ \text{"PLL closed loop transfer function"}. \end{split}$$

Ref./Divider/PFD Noise Contribution (2)

Circuit noise

- Usually white, possibly some flicker noise
- A small "N", small "K", and a small "b" are advisable.

Noise in the reference itself

- Considerable particularly in clock recovery loops
- "Peaking" in $|A_{\sigma}(j\omega)|$ is bad.
 - A small " K_{τ_2} " and a large "b" are advisable.

Charge Pump Noise Contribution (1)

- Charge pump dumps a net noise charge into the loop filter
 - Both white noise and flicker noise components are present
- Charge pump noise charge can be translated into an equivalent phase error at the reference
 - Charge pump noise is low-pass filtered by the PLL.

$$\frac{\phi_{VCO}(s)}{i_{\eta,CP}(s)} = \left(\frac{2\pi}{I_{CP}}\right) \frac{NT(s)}{1+T(s)} = \frac{2\pi}{I_{CP}} A_{\phi}(s)$$

Charge Pump Noise Contribution (2)

- Charge pump noise is low-pass filtered by the PLL.
 - Again, a small "N", small "K", and a small "b" are advisable.

Loop Filter Noise Contribution (1)

- Noise comes from resistors and transistors in active filters.
- Noise can be referred to the output of the filter.
 - E.g., $v_{n,LPF} = v_n$ for the 2nd order loop filter
 - E.g., for the 3rd order loop filter,

$$v_{\eta, LPF}(s) = \bigg(\frac{b-1}{b}\bigg) \bigg(\frac{1}{1+s\tau_p}\bigg) v_n(s)$$

- Refer the voltage noise to the filter output
 - It is band pass filtered by the PLL.

$$\frac{\phi_{VCO}(s)}{v_{\eta,LPF}(s)} = \frac{2\pi}{I_{CP}} \left(\frac{1}{F(s)}\right) A_{\phi}(s)$$

Loop Filter Noise Contribution (2)

- For the 3rd order LPF,
 - Again, a small "N", a small "K", and a small "b" are advisable

Oscillator Noise Contribution (1)

- Free running oscillators usually accumulate phase noise.
 - Has a complicated power spectral density.
 - Usually, the 1/f² terms dominates.

- Noise on the VCO supply also causes phase noise.
- VCO noise gets high-pass filtered by the PLL.

$$\frac{\phi_{VCO}(s)}{\phi_{\eta,VCO}(s)} = \frac{1}{1 + T(s)}$$

Oscillator Noise Contribution (2)

- VCO noise is suppressed within the PLL bandwidth.
- A wide PLL bandwidth is desired to suppress VCO noise.
 - Typical target for PLLs in chip-to-chip communications

Buffer Noise Contribution

- Phase noise induced by both thermal noise and supply noise.
- Thermal noise
 - Induces timing jitter.
- Supply noise
 - Changes the buffer delay.
- Buffer noise sees the same PLL response as VCO noise.

Overall PLL Noise

Noise Transfer Functions

PLL Noise Contributions

Outline

- PLL
 - Components
 - Models
 - Noise Transfer Functions
 - Circuits
- DLL
 - Types
 - Models
 - Noise Transfer Functions
- PLL/DLL comparison

Phase Frequency Detector (PFD)

- Phase Frequency Detector allows for wide frequency locking range, potentially entire VCO tuning range.
- 3-stage operation with UP and DOWN outputs
- Edge-triggered results in duty cycle insensitivity

PFD Transfer Characteristic

 Constant slope and polarity asymmetry about zero phase allows for wide frequency range operation.

PFD Deadzone

- If phase error is small, then short output pulses are produced by PFD.
- Cannot effectively propagate these pulses to switch charge pump.
- Results in phase detector "dead zone" which causes low loop gain and increased jitter.

Solution is to add delay in PFD reset path to force a minimum UP

and DOWN pulse length.

Charge Pump

Design Goals

- Low noise
- Low power consumption
- Low mismatch between Up and Down currents
- Low switch charge injection
- High speed of switching for wide bandwidth PLLs

Mismatch and Current Injection Problem

- Mismatch and charge injection add a net charge (+ve or -ve) into the loop every period.
- The PLL locks with a non-zero phase offset between the reference and the divider output.
 - Undesirable, mainly in chip-to-chip communications

Reducing Charge Injection (1)

- Choose the switch sizes to match charge injection from nMOS and pMOS switches.
 - Not reliable, just an estimate

Reducing Charge Injection (2)

- Move the switches close to the supply and ground rails.
 - Channel charge goes into the parasitic cap instead of the loop filter
- Bias generation is somewhat complicated.

Reducing Charge Injection (3)

- Equal sized dummy devicés cancel charge injection.
 - They also cancel clock feed through.
- The amplifier keeps V_A at the same voltage as V_{CTRL} to cancel charge injection from dummy devices.

Reducing Charge Pump Mismatch

- Very slow feedback loop to match Up current to Down current
 - Mitigates current mismatches due to finite R_{out} of current sources.
 - Loop picks appropriate V_{BP} to make V_A match the loop filter voltage.

Design of Fast Switching Charge Pumps

- Turning the current sources off makes switching them back on slow.
 - This is particularly so when the switches are close to the rails.
 - Use a large capacitor on the bias lines
- Redirecting the current (instead of switching it off) is much faster.
 - E.g., differential structure shown below
 - Too much power consumption

Loop Filter Design

Design Goals

- Low ripple on the control voltage
- Low die area
 - Important concern in chip-to-chip communications
- Adaptability and re-configurability
 - Component variability over process, voltage, and temperature (PVT)

Loop Filter Passive Components

Resistors

- Poly, n-well, non-silicided diffusion
- MOS triode resistors
 - Limited operating range
 - Very sensitive to PVT variations

Capacitors

- Typically MOS capacitors, 5 15 fF/μm²
- Occupy a large die area
- Miller multiplication can decrease die area

Active Zero for Reduced Cap Area

$$\begin{split} V_{CTRL}(s) &= \frac{I_{CP}}{sC} + kI_{CP}R \\ \Rightarrow F(s) &= R_{eq} \frac{\left(1 + sCR_{eq}\right)}{sCR_{eq}}, \\ R_{eq} &= kR \end{split}$$

- A large cap is required for a low zero frequency.
- A second, scaled, charge pump places the zero at 1/kCR rad/s.
- The resistance, R, is the output impedance of an amplifier.
- Helps in loop BW adaptability.

Switched-Capacitor Loop Filters

- Realizes the filter zero using a switched capacitor circuit.
- V_{CTRL} is changed only as much as needed
 - Can reduce ripple significantly.
- Charge injection and clock feed-through are serious problems.

$$V_{\mathit{CTRL}}(s) = \frac{I_\mathit{CP}}{sC_2} + kI_\mathit{CP}R_\mathit{sc} \\ \Rightarrow F(s) = R_\mathit{eq} \\ \frac{\left(1 + sCR_\mathit{eq}\right)}{sCR_\mathit{eq}}, R_\mathit{eq} = kR_\mathit{sc}$$

VCO

Ring Oscillator

- Easy to integrate
- Wide tuning range (5x)
- Higher phase noise

LC Oscillator

- Large area
- Narrow tuning range (20-30%)
- Lower phase noise

Matters of Interest

- Frequency range, K_{vco}
- Phase noise and/or jitter
- Thermal noise and power supply noise
- Power consumption and die area

LC VCOs

- Multiple oscillator structures
 - Negative-gm, Colpitts, Clapp etc.
- Frequency control is achieved using varactors.

Ring Oscillators

N-stage ring oscillator will have a period:

$$T_{\rm period} = 2N \times t_{\rm inv}$$

- N should be odd.
 - Differential inverter stages enable even number of stages.
- The delay of each inverter stage depends on V_{CTRL}.

Current Starved Inverter Stage

$$t_{\scriptscriptstyle inv} \ \alpha \ \frac{V_{\scriptscriptstyle DD}}{\left(V_{\scriptscriptstyle CTRL}-V_{\scriptscriptstyle T}\right)} \ \text{or} \ t_{\scriptscriptstyle inv} \ \alpha \ \frac{V_{\scriptscriptstyle DD}}{\left(V_{\scriptscriptstyle CTRL}-V_{\scriptscriptstyle T}\right)^2}$$

- Very wide tuning range
- Terrible supply sensitivity
 - 1% change in V_{DD} causes a 1% change in t_{inv}.

Differential Inverter Stages

- Differential nature reduces supply noise only slightly.
- Bias current has to be adjusted to maintain swing.
- Third circuit is a full swing VCO.

Supply-Regulated VCOs

- The amplifier adjusts V_{bp}
 - So, V_{reg} is relatively free of V_{DD} variations
- Desirable features
 - Large regulation range i.e. low dropout regulation
 - Low amplifier power consumption
 - Small area
 - Wide bandwidth suppression of V_{DD} variations

Basic Divide-by-2

- Divide-by-2 can be realized by a flip-flip in "negative feedback".
- Divider should operate correctly up to the maximum output clock frequency of interest PLUS some margin.

Divide-by-2 with TSPC FF

Advantages

- Reasonably fast, compact size, and no static power
- Requires only one phase of the clock.

Disadvantages

- Signal needs to propagate through three gates per input cycle.
- Need full swing CMOS inputs.
- Dynamic flip-flop may have issues at very low frequency operation (test mode) depending on process leakage.

Divide-by-2 with CML FF

Advantages

- Signal only propagates through two CML gates per input cycle.
- Accepts CML input levels.

Disadvantages

- Larger size and dissipates static power.
- Requires differential input.
- Additional speedup (>50%) can be achieved with shunt peaking inductors.

Binary Dividers

Asynchronous Divider

Advantages

- Each stage runs at lower frequency, resulting in reduced power
- Reduced high frequency clock loading

Disadvantage

Jitter accumulation

Synchronous Divider

Advantage

Reduced jitter

Disadvantage

- All flip-flops work at maximum frequency, resulting in high power
- Large loading on high frequency clock

Dual Modulus Prescalers

 For /15, first prescaler circuit divides by 3 once and 4 three times during the 15 cycles.

Outline

- PLL
 - Components
 - Models
 - Noise Transfer Functions
 - Circuits
- DLL
 - Types
 - Models
 - Noise Transfer Functions
- PLL/DLL comparison

DLL VCDL

- Just a chain of inverter stages (similar to ring oscillators)
- Delay is controlled by V_{CTRL}.

Delay Locked Loop —Types I and II

- Closed loop response is different between Type I and II DLLs
- Type I
 - More popular type of DLL
 - Used in multi-phase clock generation
 - High frequency reference noise shows up in the output
- Type II
 - Used in clock and data recovery (CDR) loops

Type II Continuous-Time Model

- Just as in the PLL, the continuous time model is accurate for bandwidths << f_{ref}/10.
- Negative feedback loop tries to force $\Phi_{err}(t) = \Phi_0$
- Loop transfer function is

$$T(s) = K_{\mathit{PD}} K_{\mathit{DL}} F(s)$$

Closed loop response is

$$A_{\phi}(s) = \frac{K_{PD}K_{DL}F(s)}{1 + K_{PD}K_{DL}F(s)}$$

Type II Charge Pump DLL

- F(s) is typically just an integrator.
- Sometimes, an additional pole is added

1st Order Type II CP DLL

Loop transfer function is

$$T(s) = \frac{K}{s}, K = \frac{I_{CP}K_{DL}}{2\pi C}$$

Unconditionally stable!

Closed loop response is

$$A_{\phi}(s) = \frac{1}{1 + s/K}$$

1st order response, no peaking!

Noise Transfer Functions

- VCDL noise is suppressed by a high-pass filter.
 - Wide bandwidth can be easily achieved because stability is not a problem.
- Ref/PD/CP noise is suppressed by a low-pass filter.
 - There is no jitter peaking.

2nd Order Type II CP DLL

Loop transfer function is

$$T(s) = \frac{K}{s(1 + s/\omega_p)}, \quad K = \frac{I_{CP}K_{DL}}{2\pi C}$$

Not unconditionally stable, anymore!

Closed loop response is

$$A_{\phi}(s) = \frac{1}{1 + s/K + s^2/K\omega_p}$$

Noise Transfer Functions

- Additional pole has multiple effects.
 - Increases jitter peaking.
 - Attenuates high frequency Ref/PD/CP noise a lot more.
 - Could increase VCDL noise contribution.

Type I CP DLL

Type I DLL Discrete-Time Model

- A continuous time mode can be derived, but a discrete time model is simpler and more appropriate.
- Loop transfer function is

$$T(z) = z^{-1} \frac{I_{CP} K_{DL} F(z)}{2\pi}$$

$$T(z) = \frac{KT_{ref}z^{-1}}{1-z^{-1}}, \ K = \frac{I_{CP}K_{DL}}{2\pi C}$$

Closed loop response is

$$A_{\phi}(z) = \frac{1 + zT(z)}{1 + T(z)}$$

$$A_{\phi}(z) = \frac{1 - z^{-1} + KT_{ref}}{1 - z^{-1} + KT_{ref}z^{-1}} = \frac{(1 + \alpha) - z^{-1}}{1 - (1 - \alpha)z^{-1}}$$

Jitter Peaking

- Noise on the reference does NOT see a low-pass filter.
- The reference noise is actually, significantly, amplified
 - The Type I DLL thinks a sudden +ve jump in the Reference phase is actually a sudden –ve jump on the VCDL output phase
 - So, it increases the VCDL delay → jitter amplification

Other Noise Transfer Functions

$$\frac{\phi_{out}(z)}{\phi_{\eta,PD/CP}(z)} = \frac{\alpha z^{-1}}{1 - (1 - \alpha)z^{-1}}$$

$$\frac{\phi_{\rm out}(z)}{\phi_{\rm \eta, VCDL}(z)} = \frac{1-z^{-1}}{1-(1-\alpha)z^{-1}}$$

PLL vs. DLL (1)

Stability

DLLs are more stable, and hence easier to design.

Supply noise

- DLLs can be designed with higher bandwidths.
- So, supply noise is better attenuated.

PLL vs. DLL (2)

Circuit noise

- The VCDL does not accumulate jitter unlike the VCO.
 - The VCDL actually accumulates noise within a period.
 - But, at the end of the period, the noise is cleaned up.
- So, DLLs have lower phase noise and/or jitter due to circuit noise.

Reference noise

DLLs (particularly Type I) have higher jitter peaking.

