Circunferência

Circunferência é a figura geométrica formada por todos os pontos que equidistam igualmente de um ponto fixo, chamado de centro. A essa distância entre o centro e cada ponto, chamamos de raio (r).

Matematicamente, uma circunferência $\lambda(O, r)$ é denotada por: $\lambda(O,r)=\{P|dPO=r\}$.

Assim, todos os pontos da circunferência têm a mesma distância ao centro. A distância do ponto A até o centro, por exemplo, é a mesma entre o ponto B e o centro.

Posição relativa de um ponto

Podemos determinar a posição de um ponto em relação à uma circunferência sem ter que "desenhar o ponto e a circunferência".

Um ponto pode ser interno, externo ou pertencer à circunferência. Vamos considerar um ponto x qualquer.

Se x é interno à circunferência, dox<r.

Se x pertence à circunferência, dox=r

Se x é externo à circunferência, dox>r.

Interior e exterior

O conjunto de todos os pontos que estão fora da circunferência é chamado de seu "exterior".

O conjunto de todos os pontos que estão dentro da circunferência é chamado de seu "interior".

Assim, Considerando uma circunferência $\lambda(O, r)$, circunferência de centro O e raio r, podemos dizer que:

Interior: $\{P|dPO>r\}$

Interior: $\{P|dPO \le r\}$

Onde P é um ponto qualquer que pode estar dentro ou fora da circunferência.

Corda, diâmetro e raio

A corda de uma circunferência é o segmento que possui as duas extremidades pertencentes à circunferência. Na figura, AB é uma corda.

O diâmetro de uma circunferência é uma corda que passa pelo centro da circunferência. Na figura, CD é um diâmetro.

O raio de uma circunferência é um segmento que possui uma extremidade no centro e outra pertencente à circunferência. Em qualquer circunferência, o raio sempre será metade do diâmetro. Na figura, OE é um raio.

Arco de circunferência e semicircunferência

Dada uma circunferência qualquer e dois pontos A e B, que não podem ser as extremidades de um diâmetro, chamamos de arco o conjunto de pontos que pertencem a circunferência que estão entre A e B. Também é um arco o conjunto de pontos que estão entre B e A.

Podemos dizer que arcos são "pedaços" da circunferência. Uma circunferência com pontos A e B sempre delimitarão dois arcos, um maior e outro menor.

Quando os pontos A e B forem extremidades de um diâmetro, o arco será igual o arco e este arco damos o nome de semicircunferência.

Círculo

Podemos definir um círculo como sendo o conjunto de todos os pontos interiores de uma circunferência, ou seja, é o espaço contido dentro da circunferência.

Assim, fica claro que:

- Circunferência: apenas a "linha" exterior.
- Círculo: circunferência mais o que está dentro dela.

Área de um círculo

A área de um círculo pode ser determinada matematicamente por:

$$A=\pi r^2$$

Onde r é a medida do círculo e um valor constante e usualmente igual a 3,14.

Setor circular

Um setor circular é uma região do círculo delimitada por dois de seus raios, partindo do centro e um arco

Usualmente podemos chamar um setor circular de "fatia de pizza", pelo seu formato. O ângulo θ é chamado de ângulo central.

Observe que sempre temos dois setores circulares, um maior e outro menor (partes cinza e azul, respectivamente).

Para calcular a área de um setor circular, utilizamos as fórmulas:

Asetor= $\theta \cdot \pi r^{23600}$

e

Asetor=Lr2

Onde na primeira, necessitamos do valor do ângulo e do raio do setor e na segunda, precisamos do raio e do comprimento do arco L do setor.

Perímetro de uma circunferência

Em qualquer circunferência, a razão entre a medida C do comprimento (perímetro) e a medida 2r de seu diâmetro (já que o diâmetro é o dobro do raio, ou o raio é metade do diâmetro) é constante. Ou seja, se pegarmos uma circunferência qualquer, a razão C2r será sempre a mesma em qualquer outra circunferência.

Esse valor constante, C2r, é chamado de π (Pi). Este número tem infinitas casas decimais, pois é um número irracional. Seu valor aproximado é 3,14159265...

Usualmente consideramos que π =3,14.

Então, partindo da igualdade C2r= π , concluímos que C= 2π r.

Então, o perímetro de uma circunferência, chamado apenas de comprimento, é determinado pelo produto do diâmetro (d = 2r) por π .

Exemplos

1. Qual o perímetro de uma circunferência cujo raio mede 3 cm?

Aplicando a fórmula:

 $C=2\pi r$

 $C=2\cdot3,14\cdot3$

C=18,84cm

2. (Enem–2010). Uma fábrica de tubos acondiciona tubos cilíndricos menores dentro de outros tubos cilíndricos. A figura mostra uma situação em que quatro tubos cilíndricos estão acondicionados perfeitamente em um tubo com raio maior.

Suponha que você seja o operador da máquina que produzirá os tubos maiores em que serão colocados, sem ajustes ou folgas, quatro tubos cilíndricos internos. Se o raio da base de cada um dos cilindros menores for igual a 6 cm, a máquina por você operada deverá ser ajustada para produzir tubos maiores, com raio da base igual a

- A) 12 cm.
- b) $122-\sqrt{\text{cm}}$.

- C) $242-\sqrt{\text{cm}}$.
- D) $6(1+2-\sqrt{)}$ cm.
- E) $12(1+2-\sqrt{)}$ cm.

Traçamos uma linha que será a diagonal do tubo maior, o segmento AB.

Note que os segmentos CE e ED tem, ambos 12 cm, já que são compostos de dois raios, um de cada tubo menor.

Assim, o diâmetro do tubo maior será CD + AC + DB.

Como AC e DB medem 6 cm, pois são raios, temos que a medida AB será:

$$AB = 12 + CD.$$

Para calcular CD, podemos usar o Teorema de Pitágoras:

CD=122–
$$\sqrt{cm}$$

Assim,

$$AB = 12 + 122 - \sqrt{cm}$$

$$AB = 12(1 + 2 - \sqrt{)}$$
 cm

Mas veja que o exercício pede o raio, então basta dividir AB por 2:

$$AB = 6(1 + 2 - \sqrt{)}$$
 cm