

$$\vec{A} = \vec{a}^3 \Rightarrow \vec{A}^T \vec{A} = 2$$

$$\vec{B} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 1 \\ 2 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$\frac{2}{2}$$
 $\frac{1}{2}$ $\frac{1}$

$$\begin{bmatrix} 2 & 2 & 3 \\ 2 & 3 & 3 \\ 3 & 3 & 3 \end{bmatrix}$$

Hence,
$$\vec{q} = \frac{1}{\sqrt{2}} \cdot \left(\frac{1}{2} \cdot \frac{1}{\sqrt{3}} \right) = \frac{1}{\sqrt{6}} \cdot \left(\frac{1}{2} \cdot \frac{1}{\sqrt{6}} \cdot \frac{1}{2} \cdot \frac{1}{\sqrt{6$$

$$\frac{7}{9}$$
 $\frac{13}{2}$ $\frac{3}{2}$ $\frac{1}{\sqrt{3}}$

	2) Matrix form of the Gran-Schmidt Process: QR decomposition
	We started with a matrix A, whose columns are the vactors a, b, and i,
	and the Gram-Schmidt process gave us a matrix Q whose columns
	are the orthonormal vectors que que. Since the only operations involved in the process were addition/subtraction, dot products, and
	divisions by scalars, there is a matrix R such that
	A = QR
	Now, remember that any column; of the matrix QR can be
	Now, remember that any column j of the matrix QR can be viewed as the linear combination 7; 9; + 2; 92 + 5; 93, where
	the ris are the entries of the matrix R.
	The first column of A, a' is aligned with of and does not depend
	on q2 and q3. Hence, 5, - 5, -0
	The second column of A, b, is in the plane of q? and q2, and
	does not depend on $\overline{q_3}$: $r_{32} = 0$.
, and the second se	We see that by the nature of the Grown Schmidt process,
	We see that by the nature of the Grown-Schmidt process, Roust be upper triangular.
	1 1 · · · · · · · · · · · · · · · · · ·
	This is of course true no matter the number of columns A has.
	Now since Q has orthonormal columns, QQ = I. Multiplying
	Now since Q has orthonormal columns, QQ = I. Multiplying A = QR by QT on the left on both sides, we obtain
	which gives the explicit representation of the QR decomposition:

