a place of mind

ELEC 341: Systems and Control

Lecture 9

Step responses of 1st and 2nd order systems

Course roadmap

Modeling

Laplace transform

Transfer function

Models for systems

- Electrical
- Electromechanical
- Mechanical

Linearization, delay

Analysis

- Routh-Hurwitz
- Nyquist

- Transient
- Steady state

Frequency response

Bode plot

Design

Design specs

Root locus

Frequency domain

PID & Lead-lag

Design examples

Matlab simulations

2

Typical step response (review)

(Today's lecture)

Performance measures

- Transient response
 - Peak value
 - Peak time
 - Percent overshoot
 - Delay time
 - Rise time
 - Settling time
- Steady state response
 - Steady state error

Next, we will connect these performance measures

with s-domain.

(Done)

Today's topics

- Characterization of step responses (performance measures) for
 - 1st-order system

$$G(s) = \frac{K}{Ts + 1}$$

2nd-order system

$$G(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

in terms of

- System parameters (K, T), (ζ, ω_n)
- Pole locations

First-order system

A standard form of the first-order system:

$$G(s) = \frac{K}{Ts + 1}$$

DC motor example (See L5)

DC motor example (cont'd)

• If $L_a << R_a$, we can obtain a 1st-order system

$$\frac{\Omega_m(s)}{E_a(s)} = \frac{K_i}{(L_a s + R_a)(J_m s + B_m) + K_b K_i} \approx \frac{K_i}{R_a(J_m s + B_m) + K_b K_i}$$

$$= \frac{K}{Ts+1} \quad \left(K = \frac{K_i}{R_a B_m + K_b K_i}, \ T = \frac{R_a J_m}{R_a B_m + K_b K_i}\right)$$

2nd order system

1st order system

- Remember that TF from motor voltage to
 - motor speed is 1st-order
 - motor position is 2nd-order

Step response of 1st-order system

 Input a unit step function to a first-order system. Then, what is the output?

(Partial fraction expansion)

 $= \frac{K}{s} + \frac{-K}{s+1/T}$

Meaning of K and T

- K : DC gain (next slide)
 - Final (steady-state) value

$$\lim_{t \to \infty} y(t) = K$$

- T: Time constant
 - Time when response rises to 63% of final value
 - Indication of speed of response (convergence)
 - Response is faster as T (also shown by τ) becomes smaller.

DC gain for a stable system

- DC gain: Final value of a unit step response
 - For a stable system G, DC gain is G(0).

$$\lim_{t \to \infty} y(t) = \lim_{s \to 0} sG(s) \frac{1}{s} = G(0)$$

Final value theorem

Examples:

$$G(s) = \frac{3}{2s+5}$$
 \longrightarrow $G(0) = \frac{3}{5}$
 $G(s) = \frac{7}{s^2+2s+3}$ \longrightarrow $G(0) = \frac{7}{3}$

Settling time of 1st-order systems

$$y(t) = K(1 - e^{-t/T})$$

Relation between time and exponential decay

t	$e^{-t/T}$		
0	1	-	
T	0.3679		
2 <i>T</i>	0.1353		
3 T	0.0498	-	5% settling time is about $3T$
4 <i>T</i>	0.0183	←	2% settling time is about $4T$
5 <i>T</i>	0.0067		2 /0 Setting time is about 41

Step response for some K & T

System identification

Suppose that we have a "black-box" system:

Obtain step response:

Can you obtain a transfer function? How?

Summary: Step response of 1st order systems

$$G(s) = \frac{K}{Ts + 1}$$

- For 1st order systems, step responses have:
 - Steady-state value: *K*
 - Peak value, peak time, percent overshoot: undefined
 - Delay time: 0.7*T*
 - Rise time: 2.2*T*
 - Settling time
 - 2%: 4*T*
 - 5%: 3*T*
 - Characterization in terms of poles

$$|\text{Real part of the pole}| = \frac{1}{T} \longrightarrow T = \frac{1}{|\text{Real part of the pole}|}$$

Second-order systems

A standard form of the second-order system:

$$G(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2} \quad \begin{cases} \zeta : & \text{damping ratio} \\ \omega_n : & \text{undamped natural frequency} \end{cases}$$

DC motor position control example:

Second-order system (Mechanical Example)

Mass spring damper system (L4):

$$\frac{X(s)}{F(s)} = \frac{1}{Ms^2 + Bs + K}$$

$$= \frac{1}{K} \cdot \frac{1}{(M/K)s^2 + (B/K)s + 1}$$

$$= \frac{1}{K} \cdot \frac{(K/M)}{s^2 + (B/M)s + (K/M)}$$

$$= \frac{1}{K} \cdot \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

$$x = 0: \text{ Static equilibrium } \qquad \zeta = \frac{B}{2\sqrt{KM}}, \quad \omega_n = \sqrt{\frac{K}{M}}$$

Second-order system (Electrical Example)

• Series RLC circuit system:

• If the output is the capacitor voltage (V):

$$\frac{V}{V_g} = \frac{(sC)^{-1}}{R + sL + (sC)^{-1}} = \frac{1}{s^2 LC + sRC + 1}$$

Step response of 2nd-order system

• Input a unit step function to a 2nd-order system. What is the output?

$$\lim_{t \to \infty} y(t) = \lim_{s \to 0} sG(s) \frac{1}{s} = G(0)$$

Final value theorem

DC gain

$$\lim_{t\to\infty}y(t)=G(0)=1 \text{ if } G \text{ is stable}$$

Step response of 2nd-order system for various damping ratios

Undamped

$$\zeta = 0$$

Underdamped

$$0 < \zeta < 1$$

Critically damped

$$\zeta = 1$$

Overdamped

$$\zeta > 1$$

Step response of 2nd-order system: Underdamped case

• Math expression of y(t) for underdamped case

$$0 < \zeta < 1$$

$$Y(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2} \cdot \frac{1}{s}$$

$$y(t) = 1 - \frac{e^{-\zeta \omega_n t}}{\sqrt{1 - \zeta^2}} \sin\left(\omega_d t + \cos^{-1} \zeta\right)$$

Damped natural frequency
$$\longrightarrow$$
 $\omega_d = \omega_n \sqrt{1 - \zeta^2}$

Peak value and peak time: Underdamped case

Properties of underdamped $2^{\rm nd}$ -order system in terms of ζ and ω_n

$$G(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2} \quad 0 < \zeta < 1$$

(5%) (2%)

Settling time	$pprox rac{3}{\zeta \omega_n}$ or $rac{4}{\zeta \omega_n}$
Peak time	$\frac{\pi}{\omega_d} = \frac{\pi}{\omega_n \sqrt{1 - \zeta^2}}$
Peak value	$1 + e^{-\zeta \pi / \sqrt{1 - \zeta^2}}$
Percent overshoot	$100e^{-\zeta\pi/\sqrt{1-\zeta^2}}$

Remarks for underdamped cases

- Time constant is $1/(\zeta \omega_n)$, indicating convergence speed.
- Percent overshoot depends on ζ , but NOT ω_n . (See the next slide.)
- For $\zeta > 1$ (overdamped case), we cannot define peak time, peak value, and percent overshoot (PO).
- For the 2nd-order transfer function, analytic expressions of delay & rise time are harder to obtain. You can use the following formula for rise time:

$$\omega_n T_r = (1.76\zeta^3 - 0.417\zeta^2 + 1.039\zeta + 1)$$

PO vs. damping ratio

Step response properties of underdamped 2nd order system in terms of pole locations

• Poles $(0 < \zeta < 1)$

$$s = -\zeta \omega_n \pm j \underline{\omega_n \sqrt{1 - \zeta^2}}$$

$$\omega_d$$

$$\zeta = \cos \theta$$

Pole Performance Real part $\zeta \omega_n$ determines $T_s = \frac{3}{\zeta \omega_n}, \frac{4}{\zeta \omega_n}$ $= \frac{3}{|\mathrm{Re}|}, \frac{4}{|\mathrm{Re}|}$ Imag. part ω_d determines $T_p = \frac{\pi}{\omega_d}$ $= \frac{\pi}{|\mathrm{Im}|}$ Angle θ determines overshoot

Angle θ and the overshoot

Influence of real part of poles

• Settling time T_s decreases.

Influence of imag. part of poles

• As oscillation frequency (ω_d) increases, T_P decreases.

Influence of angle of poles

• As θ decreases from 90° to 0°, ζ increases from 0 to 1 and over/under-shoot decreases.

Summary

- Step responses of
 - 1st-order system is characterized by
 - Time constant, T, and DC gain, K
 - Pole location
 - 2nd-order system is characterized by
 - Damping ratio ζ & undamped natural frequency ω_n
 - Pole location
- Next
 - Time response examples