SQL JOIN & Types of SQL JOIN

A SQL Join is used to fetch or combine data (rows or columns) from two or more tables based on the defined conditions.

Table 1: Order

OrderID	CustomerID	OrderName	ProductName
12025	101	Peter	ABC
12030	105	Robert	XYX
12032	110	James	XYZ
12034	115	Andrew	PQR
12035	120	Mathew	AAA

Table 2: Customer

CustomerID	CustomerName	Country
100	Messy	Maxico
101	Prince	Taiwan
103	Maria Fernandez	Turkey
105	Jasmine	Paris
110	Faf Weasel	Indonesia
120	Romen Rocket	Russia

Now,we have two tables **Order** and the **Customer**. There is a **CustomerID** column common in both tables. So, write the SQL query to define the general relationship to select the matches' records from both tables.

 Select Order.OrderID, Customer.CustomerName, Customer.Country, Order.ProductName from Order INNER JOIN Customer ON Order.CustomerID = Customer.CustomerID; After executing the above SQL

queries, it produces the following output:

OrderID	CustomerName	Country	ProductName
12025	Prince	Taiwan	ABC
12030	Jasmine	Paris	XYX
12032	Faf Weasel	Indonesi a	XYZ
12035	Romen Rocket	Russia	AAA

Types of SQL Join

There are different types of joins used in SQL:

- 1. Inner Join/Simple Join
- 2. Left Outer Join/Left Join
- 3. Right Outer Join/ Right Join
- 4. Full Outer Join
- 5. Cross Join
- 6. Self Join

Inner Join

The inner join is used to select all matching rows or columns in both tables or as long as the defined condition is valid in SQL.

Syntax:

 Select column_1, column_2, column_3 FROM table_1 INNER JOIN table_2 ON table_1.col umn = table_2.column;

We can represent the inner join through the Venn diagram, as follows:

Table 1: Students

Student_ID	StudentName	Subject	TeacherID
101	Alexandra	Computer Science	T201
102	Charles	Economics	T202
103	Tom Cruise	Computer Science	T201
104	Aron Finch	Electronics	T203
105	Siemen Bajoff	Web designing	T204
106	Christopher	English Literature	T205
107	Denim	Fashion Designer	T206

Table 2: Teachers

TeacherID	TeacherName	TeacherEmail
T201	Mr Davis	abc@email.com
T202	Mrs Jonas	jonas@email.com
T201	Mr Davis	abc@email.com
T204	Mrs Lopez	lopez@email.com
T205	Mrs Wiley	wiley@email.com

T206	Mr Bean	bean@email.com
1206	Mr Bean	bean@email.com

We have two tables: **Students** and the **Teachers** Tables. Let's write the SQL Queries to join the table using the **INNER JOIN** as follows:

Select Student_ID, StudentName, TeacherName, TeacherEmail FROM Students INNER JO
 IN Teachers ON Students.TeacherID = Teachers.TeacherID;
 After executing the query, it produces the below table.

+ Student_ID	StudentName	TeacherName	TeacherEmail
101 101 102 103 103 105 106 107	Alexandra Alexandra Charles Tom Cruise Tom Cruise Siemen Bajoff Chrishtopher Denim	Mr Davis Mr Davis Mrs Jonas Mr Davis Mr Davis Mrs Lopez Mrs Wiley Mr Bean	abc@email.com abc@email.com jonas@email.com abc@email.com abc@email.com lopez@email.com wiley@email.com bean@email.com
+ 8 rows in set		+	++

Natural Join

It is a type of inner type that joins two or more tables based on the same column name and has the same data type present on both tables.

Syntax:

- Select * from tablename1 Natural JOIN tablename_2;
 We have two tables: **Students** and the **Teachers** Tables. Let's write the SQL Queries to join the table using the **Natural JOIN** as follows:
- Select * from Students Natural JOIN Teachers;
 After executing the above query, it produces the following table.

TeacherID	Student_ID	StudentName	Subject	TeacherName	TeacherEmail
T291 T261 T202 T201 T201 T201 T204	101 101 102 103 103	Alexandra Alexandra Charles Tom Cruise Tom Cruise Siemen Bajoff	Computer Science Computer Science Science Computer Science Computer Science Computer Science	Mr Davis Mr Davis Mrs Jonas Mr Davis Mr Davis Mrs Lopez	abc@email.co abc@email.co jonas@email abc@email.co abc@email.co lopez@email
T205 T206	106 107	Chrishtopher Denim	English Literature Fashion Designer	Mrs Wiley Mr Bean	wiley@email.d bean@email.d

LEFT JOIN

The LEFT Join is used to retrieve all records from the left table (table1) and the matched rows or columns from the right table (table2). If both tables do not contain any matched rows or columns, it returns the NULL.

Syntax:

Select column_1, column_2, column(s) FROM table_1 LEFT JOIN table_2 ON table_1.column_name = table_2.column_name;

We can also represent the left join through the Venn diagram, as follows:

Note: In some databases, LEFT JOIN is also known as LEFT OUTER JOIN.

Table 1: Product_Details

ProductID	ProductName	Amount
Рго101	Laptop	56000
Pro102	Mobile	38000
Рго103	Headphones	5000
Рго104	Television	25000
Рго105	iPad	60000

Table 2: Customer_Details

CustomerName	CustomerAddress	CustomerAge	ProductID
Martin Guptill	San Francisco, USA	26	Рго101
James	Australia	29	Pro103

Ambati Williamson	New Zealand	27	Рго102
Jofra Archer	South Africa	24	Рго105
Kate Wiley	Australia	20	Pro103

We have two tables: **Product_Details** and the **Customer_Details** Tables. Let's write the SQL Queries to join the table using the **LEFT JOIN** as follows:

 Select ID, ProductName, CustomerName, CustomerAddress, Amount FROM Product_Det ails LEFT JOIN Customer_Details ON Product_Details.ID = Customer_Details.ProductID; After executing the query, it produces the following table.

Pro101 Laptop Martin Guptill San Francisco, USA 56000 Pro102 Mobile Ambati Williamson New Zealand 38000 Pro103 HeadPhone James Australia 5000 Pro104 Television NULL NULL 25000 Pro105 iPad Jofra Archer South Africa 60000	ID Pr	roductName	CustomerName	CustomerAddress	Amount
Pro104 Television NULL NULL 25000					
			Jofra Archer	South Africa	60000

RIGHT JOIN or RIGHT Outer JOIN:

The RIGHT JOIN is used to retrieve all records from the right table (table2) and the matched rows or columns from the left table (table1). If both tables do not contain any matched rows or columns, it returns the NULL.

Syntax:

 Select column_1, column_2, column(s) FROM table_1 RIGHT JOIN table_2 ON table_1.col umn_name = table_2.column_name;
 We can also represent the right join through the Venn diagram, as follows:

Note: In some databases, the RIGHT JOIN is also known as the RIGHT OUTER JOIN.

Table 1: Product_Details

ID	ProductName	Amount
Pro10	Laptop	56000
Pro10 2	Mobile	38000
Pro10 3	Headphones	5000
Pro10 4	Television	25000
Pro10 5	iPad	60000

Table 2: Customer_Details

CustomerName	CustomerAddress	CustomerAge	ProductID
Martin Guptill	San Francisco, USA	26	Рго101
James	Australia	29	Рго103
Ambati Williamson	New Zealand	27	Pro102
Jofra Archer	South Africa	24	Pro105
Omen	England	29	Рго107
Morgan	England	20	Рго108

We have two tables: **Product_Details** and the **Customer_Details** Tables. Let's write the SQL Queries to join the table using the **RIGHT JOIN** as follows:

 Select ID, ProductName, CustomerName, CustomerAddress, Amount FROM Product_Det ails LEFT JOIN Customer_Details ON <u>Product_Details.ID</u> = <u>Customer_Details.ProductID</u>; After executing the query, it produces the below table.

Pro101 Laptop Martin Guptill San Francisco, USA 56000
Pro103 HeadPhone James Australia 5000 Pro102 Mobile Ambati Williamson New Zealand 38000 Pro105 iPad Jofra Archer South Africa 60000 NULL NULL Omen England NULL NULL NULL Morgan England NULL

FULL JOIN or FULL Outer JOIN:

It is a combination result set of both **LEFT JOIN** and **RIGHT JOIN**. The joined tables return all records from both the tables and if no matches are found in the table, it places NULL. It is also called a **FULL Outer JOIN**.

Syntax:

- Select column_1, column_2, column(s) FROM table_1 FULL JOIN table_2 ON table_1.column_name = table_2.column_name;
 Or, FULL OUTER JOIN
- Select column_1, column_2, column(s) FROM table_1 FULL OUTER JOIN table_2 ON table_1.column_name = table_2.column_name;
 We can also represent the full outer join through the Venn diagram, as follows:

Full Outer Join

Table 1: Product_Details

ID	ProductName Amount		
Рго10 1	Laptop	56000	
Pro10	Mobile	38000	

2		
Pro10 3	Headphones	5000
Pro10 4	Television	25000
Pro10 5	iPad	60000

Table 2: Customer_Details

CustomerName	CustomerAddress	CustomerAge	ProductID
Martin Guptill	San Francisco, USA	26	Рго101
James	Australia	29	Рго103
Ambati Williamson	New Zealand	27	Pro102
Jofra Archer	South Africa	24	Pro105
Omen	England	29	Рго107
Morgan	England	20	Рго108

We have two tables: **Product_Details** and the **Customer_Details** Tables. Let's write the SQL Queries to join the table using the **FULL** JOIN as follows:

 Select ID, ProductName, CustomerName, CustomerAddress, Amount FROM Product_Det ails FULL JOIN Customer_Details ON <u>Product_Details.ID</u> = <u>Customer_Details.ProductID</u>; After executing the query, it produces the below table.

++		+	++	+
Pro101	Laptop	Martin Guptill	San Francisco, USA	56000
Pro102	Mobile	Ambati Williamson	New Zealand	38000
Pro103	HeadPhone	James	Australia	5000
Pro104	Television	NULL	NULL	25000
Pro105	iPad	Jofra Archer	South Africa	60000
Pro101	Laptop	Martin Guptill	San Francisco, USA	56000
Pro103	HeadPhone	James	Australia	5000
Pro102	Mobile	Ambati Williamson	New Zealand	38000
Pro105	iPad	Jofra Archer	South Africa	60000
NULL	NULL	Omen	England	NULL
NULL	NULL	Morgan	England	NULL
+	+	+	++	+

Note: MySQL does not support FULL JOIN concepts, so we can use UNION ALL clause to combine both tables.

Here is the Syntax for **UNION ALL** Clause to combine the tables.

- Select ID, ProductName, CustomerName, CustomerAddress, Amount FROM Product_Det ails LEFT JOIN Customer_Details ON Product_Details.ID = Customer_Details.ProductID
- 2. UNION ALL
- 3. Select ID, ProductName, CustomerName, CustomerAddress, Amount FROM Product_Det ails RIGHT JOIN Customer_Details ON Product_Details.ID = Customer_Details.ProductID

+	+	+	+	+
Pro101 L	.aptop	Martin Guptill	San Francisco, USA	56000
Pro102 M	lobile	Ambati Williamson	New Zealand	38000
Pro103 H	leadPhone	James	Australia	5000
Pro104 T	elevision	NULL	NULL	25000
Pro105 i	.Pad	Jofra Archer	South Africa	60000
Pro101 L	.aptop	Martin Guptill	San Francisco, USA	56000
Pro103 H	leadPhone	James	Australia	5000
Pro102 M	Mobile	Ambati Williamson	New Zealand	38000
Pro105 i	.Pad	Jofra Archer	South Africa	60000
NULL N	IULL	Omen	England	NULL
NULL N	IULL	Morgan	England	NULL
+	+	+	+	+

CROSS JOIN

It is also known as **CARTESIAN JOIN**, which returns the Cartesian product of two or more joined tables. The **CROSS JOIN**

produces a table that merges each row from the first table with each second table row. It is not required to include any condition in CROSS JOIN.

Syntax:

- Select * from table_1 cross join table_2;
 Or,
- Select column1, column2, column3 FROM table_1, table_2;
 Table 1: Product_Details

ID	ProductName	Amount
Pro10	Laptop	56000
Pro10 2	Mobile	38000
Pro10 3	Headphones	5000

Pro10 4	Television	25000
Pro10 5	iPad	60000

Table 2: Customer_Details

CustomerName	CustomerAddress	CustomerAge	ProductID
Martin Guptill	San Francisco, USA	26	Рго101
James	Australia	29	Рго103
Ambati Williamson	New Zealand	27	Рго102
Jofra Archer	South Africa	24	Рго105
Omen	England	29	Рго107
Morgan	England	20	Рго108

We have two tables: **Product_Details** and the **Customer_Details** Tables. Let's write the SQL Queries to join the table using the **FULL** JOIN as follows:

1. Select ID, ProductName, CustomerName, CustomerAddress, Amount FROM Product_Det ails, Customer_Details;

After executing the query, it produces the below table.

ID	ProductName	CustomerName	 CustomerAddress	Amount
Pro101	Laptop	Martin Guptill	San Francisco, USA	56000
Pro102	Mobile	Martin Guptill	San Francisco, USA	38000
Pro103	HeadPhone	Martin Guptill	San Francisco, USA	5000
Pro104	Television	Martin Guptill	San Francisco, USA	25000
Pro105	iPad	Martin Guptill	San Francisco, USA	60000
Pro101	Laptop	James .	Australia	56000
Pro102	Mobile	James	Australia	38000
Pro103	HeadPhone	James	Australia	5000
Pro104	Television	James	Australia	25000
Pro105	iPad	James	Australia	60000
Pro101	Laptop	Ambati Williamson	New Zealand	56000
Pro102	Mobile	Ambati Williamson	New Zealand	38000
Pro103	HeadPhone	Ambati Williamson	New Zealand	5000
Pro104	Television	Ambati Williamson	New Zealand	25000
Pro105	iPad	Ambati Williamson	New Zealand	60000
Pro101	Laptop	Jofra Archer	South Africa	56000
Pro102	Mobile	Jofra Archer	South Africa	38000
Pro103	HeadPhone	Jofra Archer	South Africa	5000
Pro104	Television	Jofra Archer	South Africa	25000
Pro105	iPad	Jofra Archer	South Africa	60000
Pro101	Laptop	Omen	England	56000
Pro102	Mobile	Omen	England	38000
Pro103	HeadPhone	Omen	England	5000
Pro104	Television	Omen	England	25000
Pro105	iPad	Omen	England	60000
Pro101	Laptop	Morgan	England	56000
Pro102	Mobile	Morgan	England	38000
Pro103	HeadPhone	Morgan	England	5000
Pro104	Television	Morgan	England	25000
Pro105	iPad	Morgan	England	60000
0 rows ir	n set (0.00 sec	:)	+	++

SELF JOIN

It is a SELF JOIN used to create a table by joining itself as there were two tables. It makes temporary naming of at least one table in an SQL statement.

Syntax:

1. Select column1, column2, column(s) FROM table_1 Tbl1, table_2 Tbl2 WHERE condition; **Tbl1** and **Tbl2** are two different table aliases for the same table.

Table 1: Product_Details

ID	ProductName Amount		
Рго10 1	Laptop	56000	
Pro10 2	Mobile	38000	

Pro10 3	Headphones	5000
Pro10 4	Television	25000
Pro10 5	iPad	60000

Let's write the SQL Queries to join the table using the **SELF JOIN** as follows:

- 1. Select TB.ID, TB.ProductName FROM Product_Details TB, Product_Details TB2
- WHERE TB.AMOUNT < TB2.AMOUNT;After executing the query, it produces the below table.

