(Simple) Linear regression

images/reg-1.pdf

Statistical Reasoning and Quantitative Methods

François Briatte & Ivaylo Petev

Session 9

Outline

images/econ.png

Presidential approval and economic performance

- Presidential approval: "Always/Somewhat trustworthy" single measurement (ANES).
- Economic performance: change in disposable income per capita.
- To what extent can presidential approval be predicted from variations in disposable income?

Example provided by John Sides, using data by Douglas Hibbs.

images/obama.png

images/reg-0.pdf

Fitting a regression model

The model fits a **linear function** to the data, of the form:

$$Y = \alpha + \beta X + \epsilon$$
 or identically $\hat{Y} = \alpha + \beta X$

where:

- Y is the dependent variable (response)
- *X* is the **independent variable** (predictor)
- α is the **constant** (intercept)
- β is the **regression coefficient** (slope)
- ϵ is the **error term** (residuals)

Note: the model assumes that the relationship is linear.

images/reg-1.pdf

Fitting the regression line

The **regression coefficient** b is calculated as to **minimize** the **residual sum of squares** (RSS): $\sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$, where Y_i is a data point and \hat{Y}_i is the corresponding point on the regression line.

$$\beta = \frac{\sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})}{\sum_{i=1}^{n} (X_i - \bar{X})^2}$$

and

$$\alpha = \bar{Y} - \beta \bar{X}$$

Reminders:

- \bar{X}_i is the **mean** of X, $\sum_{i=1}^n (X_i \bar{X}_i)^2$ the **variance** of X.
- $\sum_{i=1}^{n} (X_i \bar{X})(Y_i \bar{Y})$ is the **covariance** of XY.

images/reg-2.pdf

Goodness of fit

The goodness of fit of the model is provided by its coefficient of determination, R^2 , which is the ratio between

- the variance predicted by the model, $\sum_{i=1}^{n} (\hat{Y}_i \bar{Y}_i)^2$, and
- the residuals, or unpredicted variance, $\sum_{i=1}^{n} (Y_i \bar{Y}_i)^2$.

$$R^{2} = \frac{\sum_{i=1}^{n} (\hat{Y}_{i} - \bar{Y}_{i})^{2}}{\sum_{i=1}^{n} (Y_{i} - \bar{Y}_{i})^{2}}$$

- As the residual sum of squares (RSS) $\sum_{i=1}^{n} (Y_i \hat{Y}_i)^2 \to 0$, the coefficient of determination $R^2 \to 1$ towards higher goodness of fit.
- Goodness of fit is a theoretical notion that eventually relies on substantive explanation. No theory, no model.

images/reg-3.pdf

Model fit

Remember that your model needs to be **theoretically and empirically supported**:

- Theoretically, past economic performance relates to presidential approval by virtue of retrospective voting theory.
- Empirically, economic performance is a better predictor of presidential approval at lower values.

Always, always run a full intellectual check of your model after marvelling (or weeping) at your regression output:

- The direction of the causal link from *X* to *Y* should be deduceable through logical implication.
- The extent to which *X* influences *Y* must be interpreted and exemplified through data inspection.

Overall model fit

Model fit is provided by the R^2 , calculated on N observations. Model significance tests the model against the null hypothesis.

- The number of observations determines your ability to generalize the model to the full sample or population.
- The *F*-statistic Its probability level tests the null hypothesis for your model, according to which all model coefficients are equal to 0.

images/reg-out-1.pdf

images/reg-out-1b.pd

Regression coefficients

Regression coefficients are unit-less variations of Y predicted by a change in one unit of X, as in Y = aX + b.

Assignment No. 2

Univariate statistics

- Introduction
- Datasets
- Distributions
- Estimation

Assignment No. 1

corrected revised appended

Bivariate statistics

- Significance
- Crosstabulation
- Correlation
- Linear regression

Statistical modelling

- Basics
- Extensions
- Diagnostics
- Conclusion

Final paper

Assignment No. 2

images/holy-grail2.jpmages/holy-grail.j

How to proceed

Revise Assignment No. 1 using instructor feedback:
Read all corrected material.Proceed to required adjustments.Append new research to the text.
Explore associations using crosstabulations and comparisons:
 □ Find and/or recode variables to crosstabulate their categories. □ Find and/or recode variables to compare means and proportions. □ Keep working with continuous and interval variables.
Model relationships using correlations and linear regression:
 Produce a correlation matrix. Regress independent variables on the dependent variable. Regress collinear independent variables.

Step 1: Revision

- Adjust your research design:
 - Select variables with a sufficient number of observations.
 - \Box **Devise clear hypotheses** $H_1, H_2, ...$ to prepare for modelling.
 - □ **Reformulate all text** to fit scientific presentation.
- Adjust your do-file:
 - □ **Use comments** to structure and explain your methods.
 - □ **Clean up** unnecessary code like lookfor and codebook commands.
 - □ **Replicate** your edited do-file to update the log file, graphs and tables.
- Chill out for a minute.

Step 2: Association

Associations look at contingency tables:

- tab with the chi2 option performs a Chi-squared test on variables coded into categories with at least 5 cell counts.
- tab with the exact option performs **Fisher's exact test** on small crosstabulations $(2 \times 2 \text{ contigency tables or cell counts} < 5)$.
- ttest and prtest compares means (Fisher's t-test) and proportions in two independent groups.

Associations depend on variable types:

- Crosstabulations use two categorical variables.
- **Comparisons** use one continuous and one categorical variable.
- Correlations use two continuous variables.

Correlation and simple linear regression are treated as preliminary steps to writing a **multiple regression model**.

Step 3: Model

Visually explore relationships using scatterplots:
 sc (scatter) draws scatterplots. gr mat draws a scatterplot matrix. tw (twoway) combines scatterplots.
Formally explore relationships using correlations:
 pwcorr (pairwise correlation) works with any number of variables. Use the obs (observations) and sig (significance) options. Reproduce the correlation matrix as a table in your work.
Model relationships using simple linear regression:
 reg (regress) does all the work. predict r, r stores the model residuals. rvfplot plots the residuals against fitted values.
Regress the dependent variable on the main independent variable, and also regress collinear independent variables on each other.

Further help

- Course-specific help:
 - □ Stata Guide
 - □ Session do-files
 - Course slides
- General help:
 - □ Handbook chapters
 - Stata documentation (help command)
 - Online tutorials

Handbook chapters and course emails are available from the ENTG. Everything else is systematically archived on the course website:

http://f.briatte.org/teaching/quanti/

Happy coding!