TRANSMITTAL LETTER TO THE UNITED STATES FEB 2 6 2001 3009 Rec'd PCT/PTO

DESIGNATED/ELECTED OFFICE (DO/EO/US) **CONCERNING A FILING UNDER 35 U.S.C. 371**

U.S. APPLICATION NO. (If known, see 37 CFR 1.5)

INTERNATIONAL APPLICATION NO.

PCT/EP 99/06322

INTERNATIONAL FILING DATE 27 August 1999

PRIORITY DATE CLAIMED

ATTORNEY'S DOCKET NUMBER 49365

8 September 1998

TITLE OF INVENTION: CYCLOHEXENONEQUINOLINOYL DERIVATIVES

APPLICANT(S) FOR DO/EO/US Matthias WITSCHEL, Ulf MISSLITZ, Ernst BAUMANN, Wolfgang von DEYN, Klaus LANGEMANN, Guido MAYER, Ulf NEIDLEIN, Roland GOETZ, Norbert GOETZ, Michael RACK, Stefan ENGEL, Martina OTTEN, Karl-Otto WESTPHALEN, Helmut WALTER

Applicant herewith submits to the United States Designated/Elected Office (DO/EO/US) the following items and other information:

1. /X/ This is a FIRST submission of items concerning a filing under 35 U.S.C. 371.

β. /X/

This is a SECOND or SUBSEQUENT submission of items concerning a filing under 35 U.S.C. 371.

This express request to begin national examination procedures (35 U.S.C.371(f)) at any time rather than delay examination until the expiration of the applicable time limit set in 35 U.S.C. 371(b) and PCT Articles 22 and 39(1).

- 4. /x / A proper Demand for International Preliminary Examination was made by the 19th month from the earliest claimed priority date.
- 5. /X/ A copy of the International Application as filed (35 U.S.C. 371(c)(2)).

a./X/ is transmitted herewith (required only if not transmitted by the International Bureau).

b.// has been transmitted by the International Bureau.

c.// is not required, as the application was filed in the United States Receiving Office (RO/US0).

- 6. /X/ A translation of the International Application into English (35 U.S.C. 371(c)(2)).
- 7.// Amendments to the claims of the International Application under PCT Article 19 (35 U.S.C. 371(c)(3)).
 - a.// are transmitted herewith (required only if not transmitted by the International Bureau).

b.// have been transmitted by the International Bureau.

c.// have not been made; however, the time limit for making such amendments has NOT expired.

d.// have not been made and will not be made.

- 8.// A translation of the amendments to the claims under PCT Article 19(35 U.S.C. 371(c)(3)).
- 9. /X / An oath or declaration of the inventor(s)(35 U.S.C. 171(c)(4)).
- 10.// A translation of the annexes to the International Preliminary Examination Report under PCT Article 36 (35 U.S.C. 371(c)(5)).

Items 11. to 16. below concern other document(s) or information included:

- 11.// An Information Disclosure Statement under 37 CFR 1.97 and 1.98.
- 12./X / An assignment document for recording. A separate cover sheet in compliance with 37 CFR 3.28 and 3.31 is included.
- 13./X / A FIRST preliminary amendment.
- A SECOND or SUBSEQUENT preliminary amendment. II
- 14// A substitute specification.
- 15.// A change of power of attorney and/or address letter.
- 16./x/ Other items or information. International Search Report International Preliminary Examination Report

JC02 Rec'd PCT/PTO 2 6 FEB 2

PTO USE ONLY

ATTORNEY'S DOCKET NO.

49365

CALCULATIONS

860.00

Account No. 11-0345. A duplicate copy of this sheetis enclosed.

be filed and granted to restore the application to pending status.

SEND ALL CORRESPONDENCE TO:

KEIL & WEINKAUF 1101 Connecticut Ave., N.W.

Washington, D. C. 20036

NOTE: Where an appropriate time limit under 37 CFR 1.494 or 1.495 has not been met, a petition to revive (37 CFR 1.137(a) or (b) must

Herbert B. Keil

Registration No. 18,967

NAME

U.S. Appin. No. (if Known) INTERNATIONAL APPLN. NO.

17. /X/ The following fees are submitted

BASIC NATIONAL FEE (37 CFR 1.492(a)(1)-(5)): Search Report has been prepared by the EPO or JPO......\$860.00

PCT/EP99/06322

IN THE UNITED STA	I ES PATEINT AND TRADEWARK OFFICE
In re the Application of WITSCHEL et al.) BOX PCT
International Application PCT/EP 99/06322)))
Filed: August 27, 1999)))

For: CYCLOHEXENONEQUINOLINOYL DERIVATIVES

PRELIMINARY AMENDMENT

Honorable Commissioner of Patents and Trademarks Washington, D.C. 20231

Sir:

Prior to examination, kindly amend the above-identified application as follows:

IN THE CLAIMS

- 3. A cyclohexenonequinolinoyl derivative of the formula I as claimed in claim 1 [or 2], where
- R^5 is halogen, OR7, NR10R11 or N-bonded heterocyclyl which may be partially or fully halogenated and/or may carry one to three of the following radicals:
 - nitro, cyano, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy or C₁-C₄-haloalkoxy.
- 4. A cyclohexenonequinolinoyl derivative of the formula I as claimed in claim 1 [claims 1 to 3], where
- R^7 is C₁-C₆-alkyl, C₁-C₂₀-alkylcarbonyl, C₁-C₆-alkoxycarbonyl, (C₁-C₂₀-alkylthio)carbonyl, N,N-di-(C₁-C₆-alkyl)aminocarbonyl, phenyl, phenylcarbonyl or phenoxy-C₁-C₆-alkylcarbonyl, where the phenyl radical of the three last-mentioned substituents may be partially or fully halogenated and/or may carry one to three of the following radicals: nitro, cyano, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -alkoxy or C_1 - C_4 -haloalkoxy;
- \mathbb{R}^{10} is C_1 - C_6 -alkyl or C_1 - C_6 -alkoxy;
- \mathbb{R}^{11} is C_1 - C_6 -alkyl.
- 5. A cyclohexenonequinolinoyl derivative of the formula I as claimed in claim 1 [claims 1 to 4], where
- R^6 is nitro, halogen, cyano, C₁-C₆-alkyl, C₁-C₆-haloalkyl, di-(C₁-C₆-alkoxy)methyl, di- $(C_1-C_6$ -alkylthio)methyl, $(C_1-C_6$ -alkoxy) $(C_1-C_6$ -alkylthio)methyl, hydroxyl, C₁-C₆-alkoxy, C₁-C₆-haloalkoxy, C₁-C₆-alkoxycarbonyloxy, C₁-C₆-

alkylthio, C_1 - C_6 -haloalkylthio, C_1 - C_6 -alkylsulfinyl, C_1 - C_6 -haloalkylsulfinyl, C_1 - C_6 -haloalkylsulfonyl, C_1 - C_6 -haloalkylsulfonyl, C_1 - C_6 -haloalkylsulfonyl, C_1 - C_6 -haloalkylsulfonyl, C_1 - C_6 -haloalkoxycarbonyl,

or

two radicals R^6 , which are linked to the same carbon, together form an $-O-(CH_2)_m-O-$, $-O-(CH_2)_m-S-$, $-S-(CH_2)_m-S-$, $-O-(CH_2)_n-O-S-(CH_2)_n$ chain which may be substituted by one to three radicals from the following group:

halogen, cyano, C₁-C₄-alkyl, C₁-C₄-haloalkyl or C₁-C₄-alkoxycarbonyl;

or

two radicals R^6 , which are linked to the same carbon, together form a -(CH_2)_p chain which may be interrupted by oxygen or sulfur and/or may be substituted by one to four radicals from the following group:

halogen, cyano, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl or C_1 - C_4 -alkoxycarbonyl;

or

two radicals R⁶, which are linked to the same carbon, together with this carbon form a carbonyl group.

6. A process for preparing compounds of the formula I as claimed in <u>claim 1</u> [claims 1 to 5] where R^5 = halogen, which comprises reacting a cyclohexanedione derivative of the formula III,

$$(R^6)_1$$
 R^3
 R^2
 R^2
 R^2

where the variables R^1 to R^3 , R^6 and 1 are each as defined in <u>claim 1</u> [claims 1 to 5], with a halogenating agent.

7. A process for preparing compounds of the formula I as claimed in claim 1 [claims 1 to 5] where

R⁵ = OR⁷, OSO₂R⁸, OPR⁸R⁹, OPOR⁸R⁹ or OPSR⁸R⁹, which comprises reacting a cyclohexanedione derivative of the formula III,

$$(R^6)_1$$
 R^3
 R^2
 R^2
 R^1

where the variables R^1 to R^3 , R^6 and 1 are each as defined in <u>claim 1</u> [claims 1 to 5], with a compound of the formula IV α , IV β , IV γ , Iv δ or IV ϵ ,

 L^1 -R⁷ L^1 -SO₂ R⁸ L^1 -PR⁸R⁹ L^1 -POR⁸R⁹ L^1 -PSR⁸R⁹ (IV α) (IV β) (IV β) (IV β)

where the variables R^7 to R^9 are each as defined in <u>claim 1</u> [claims 1 to 5] and L^1 is a nucleophilically replaceable leaving group.

8. A process for preparing compounds of the formula I as claimed in <u>claim 1</u> [claims 1 to 5] where $R^5 = OR^7$, SR^7 , POR^8R^9 , $NR^{10}R^{11}$, $ONR^{11}R^{12}$, N-linked heterocyclyl or O-(N-linked heterocyclyl), which comprises reacting a compound of the formula I α (\equiv I where $R^5 =$ halogen, OSO_2R^8),

$$(R^6)_1 \xrightarrow{R^3} R^2$$
 and/or
$$(R^6)_1 \xrightarrow{R^5} R^3$$

I where R5= halogen or OSO₂R8

where the variables R1 to R3, R6 and 1 are each as defined in claim 1 [claims 1 to 5], with a compound

of the formula $V\alpha$, $V\beta$, $V\gamma$, $V\delta$, $V\epsilon$, $V\eta$, $V\vartheta$,

where the variables R^7 to R^{12} are each as defined in <u>claim 1</u> [claims 1 to 5], if appropriate in the presence of a base.

9. A process for preparing compounds of the formula I as claimed in <u>claim 1</u> [claims 1, 2 or 5], where $R^5 = SOR^8$, SO_2R^8 , which comprises reacting a compound of the formula I β (\equiv I where $R^5 = SR^8$),

$$(R^6)_1 \xrightarrow{\mathbb{R}^3} \mathbb{R}^2$$
and/or
$$(R^6)_1 \xrightarrow{\mathbb{R}^5} \mathbb{R}^2$$

$$\mathbb{I} \text{ where } \mathbb{R}^5 = \mathbb{S}\mathbb{R}^8$$

where the variables R^1 to R^8 and 1 are each as defined in <u>claim 1</u> [claims 1, 2 or 5], with an oxidizing agent.

- 10. A composition, comprising a herbicidally effective amount of at least one cyclohexenon-equinolinoyl derivative of the formula I or an agriculturally useful salt of <u>formula</u> I as claimed in <u>claim</u>

 1 [claims 1 to 5] and auxiliaries which are customarily used for formulating crop protection agents.
- 11. A process for preparing compositions as claimed in claim 10, which comprises mixing a

herbicidally effective amount of at least one cyclohexenonequinolinoyl derivative of the formula I or an agriculturally useful salt of <u>formula</u> I [as claimed in claims 1 to 5] and auxiliaries which are customarily used for formulating crop protection agents.

12. A method for controlling undesirable vegetation, which comprises allowing a herbicidally effective amount of at least one cyclohexenonequinolinoyl derivative of the formula I or an agriculturally useful salt of <u>formula</u> I as claimed in <u>claim 1</u> [claims 1 to 5] to act on plants, their habitat and/or on seeds.

13. The use of cyclohexenonequinolinoyl derivatives of the formula I or their agriculturally useful salts as claimed in <u>claim 1</u> [claims 1 to 5] as herbicides.

REMARKS

The claims have been amended to eliminate multiple dependency and to put them in better form for U.S. filing. No new matter is included. A clean copy of the claims is attached.

Favorable action is solicited.

Respectfully submitted,

KEIL & WEINKAUF

Herbert B. Keil Reg. No. 18,967

1101 Connecticut Ave., N.W. Washington, D.C. 20036

(202)659-0100

CLAIMS AS FILED IN PRELIMINARY AMENDMENT 0Z 49365

1. A cyclohexenonequinolinoyl derivative of the formula I

$$\mathbb{R}^{4} \longrightarrow \mathbb{N}^{\mathbb{R}^{2}}$$

where:

is hydrogen, nitro, halogen, cyano, C₁-C₆-alkyl, C₁-C₆-haloalkyl, C₁-C₆-alkoxyiminomethyl, C₁-C₆-alkoxy, C₁-C₆-haloalkoxy, C₁-C₆-alkylsulfinyl, C₁-C₆-haloalkylsulfinyl, C₁-C₆-haloalkylsulfinyl, C₁-C₆-haloalkylsulfonyl, aminosulfonyl, N-(C₁-C₆-alkylsulfonyl, Aminosulfonyl, Aminosulfonyl, N-(C₁-C₆-alkylsulfonyl, Aminosulfonyl, Aminosulfony

N, N-di-(C₁-C₆-alkyl) aminosulfonyl,

N-(C₁-C₆--alkylsulfonyl)amino,

N-(C₁-C₆-haloalkylsulfonyl)amino,

 $N-(C_1-C_6-alkyl)-N-(C_1-C_6-alkylsulfonyl)$ amino,

N-(C₁-C₆--alkyl)-N-(C₁-C₆-haloalkylsulfonyl)amino,

phenoxy, heterocyclyloxy, phenylthio or heterocyclylthio, where the four last-mentioned radicals may be partially or fully halogenated and/or may carry one to three of the following substituents:

nitro, cyano, C1-C4-alkyl, C1-C4-haloalkyl,

 C_1 - C_4 -alkoxy or C_1 - C_4 -haloalkoxy;

R², R³ are hydrogen, C₁-C₆-alkyl, C₁-C₆-haloalkyl or halogen;

R4 is a compound IIa or IIb

$$(R^6)_1$$
 R^5
 $(R^6)_1$
 R^5
IIIa
IIIb

where

is halogen, OR⁷, SR⁷, SOR⁸, SO₂R⁸, OSO₂R⁸, POR⁸R⁹, OPR⁸R⁹, OPOR⁸R⁹, OPSR⁸R⁹, NR¹⁰R¹¹, ONR¹¹R¹², N-linked heterocyclyl or O-(N-linked heterocyclyl), where the heterocyclyl radical of the two last-mentioned substituents may be partially or fully halogenated and/or mlay carry one to three of the following radicals: nitro, cyano, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy or C₁-C₄-haloalkoxy;

R⁶ is nitrol, halogen, cyano, C₁-C₆-alkyl,

C₁-C₆-haloalkyl, di-(C₁-C₆-alkoxy)methyl,

di-(C₁-C₆-alkylthio)methyl,

(C₁-C₆-alkoxy)(C₁-C₆-alkylthio)methyl, hydroxyl,

C₁-C₆-alkoxy, C₁-C₆-haloalkoxy,

C₁-C₆-alkoxycarbonyloxy, C₁-C₆-alkylthio,

C₁-C₆-haloalkylthio, C₁-C₆-alkylsulfinyl,

C₁-C₆-haloalkylsulfinyl, C₁-C₆-alkylsulfonyl,

C₁-C₆-haloalkylsulfonyl, C₁-C₆-alkylcarbonyl,

C₁-C₆-haloalkylcarbonyl, C₁-C₆-alkoxycarbonyl or

C₁-C₆-haloalkoxycarbonyl;

or

two radicals R⁶, which are linked to the same carbon,

together form an $-O-(CH_2)_m-O-$, $-O-(CH_2)_m-S-$, $-S-(CH_2)_m-S-$, $-O-(CH_2)_n-O-$ or $-S-(CH_2)_n$ chain which may be substituted by one to three radicals from the following group:

halogen, cyano, C₁-C₄-alkyl, C₁-C₄-haloalkyl or C₁-C₄-alkoxycarbonyl;

or

two radicals R6, which are linked to the same carbon,

together form a -(CH_2)_p chain which may be interrupted by oxygen or sulfur and/or may be substituted by one to four radicals from the following group:

halogen, cyano, C₁-C₄-alkyl, C₁-C₄-haloalkyl or C₁-C₄-alkoxycarbonyl;

or

two radicals R⁶, which are linked to the same carbon,

together form a methylidene group which may be substituted by one or two radicals

from the following group:

halogen, hydroxyl, formyl, cyano, C_1 - C_6 -alkyl, C_1 - C_6 -haloalkyl, C_1 - C_6 -alkoxy, C_1 - C_6 -haloalkylthio, C_1 - C_6 -alkylthio, C_1 - C_6 -haloalkylsulfinyl, C_1 - C_6 -haloalkylsulfinyl, C_1 - C_6 -haloalkylsulfonyl;

or

two radicals R6, which are linked to the same carbon,

together with this carbon form a carbonyl group;

or

two radicals R⁶, which are linked to different carbons,

together form a $-(CH_2)_n$ chain which may be substituted by one to three radicals from the following group:

halogen, C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy, hydroxyl or C_1 - C_6 -alkoxycarbonyl;

 R^7 is C_1 - C_6 ,-alkyl, C_3 - C_6 -alkenyl, C_3 - C_6 -haloalkenyl,

C₃-C₆-alkynyl, C₃-C₆-haloalkynyl, C₃-C₆-cyloalkyl,

C₁-C₂₀-alkylcarbonyl, C₂-C₆-alkenylcarbonyl,

C2-C6-alkynylcarbonyl, C3-C6-cyloalkylcarbonyl,

 C_1 - C_6 -alkoxycarbonyl, C_3 - C_6 -alkenyloxycarbonyl,

 C_3 - C_6 -alkynyloxycarbonyl,

(C₁-C₂₀-alkylthio)carbonyl,

C₁-C₆-alkylaminocarbonyl,

C₃-C₆-alkenylaminocarbonyl,

C₃-C₆-alkynylaminocarbonyl,

N,N-di-(C₁-C₆-alkyl)aminocarbonyl,

 $N-(C_3-C_6-alkenyl)-N-(C_1-C_6-alkyl)$ aminocarbonyl,

N-(C₃-C₆-alkynyl)-N-(C₁-C₆-alkyl) aminocarbonyl,

 $N-(C_1-C_6-alkoxy)-$

N-(C₁-C₆-alkyl) aminocarbonyl, N-(C₃-C₆-alkenyl)-

N-(C₁-C₆-alkoxy) aminocarbonyl, N-(C₃-C₆-alkynyl)-

N-(C₁-C₆-alkoxy) aminocarbonyl, di-(C₁-C₆-alkyl)-

aminothiocarbonyl, C1-C6-alkylcarbonyl-C1-C6-alkyl,

 C_1 - C_6 -alkoxyimino- C_1 - C_6 -alkyl,

N-(C₁-C₆-alkylamino) imino-C₁-C₆-alkyl or

N,N-di-(C₁-C₆-alkylamino)imino-C₁-C₆-alkyl, where

the above-mentioned alkyl, cycloalkyl and alkoxy radicals may be partially or fully halogenated and/or may carry one to three of the following groups:

cyano, C_1 - C_4 -alkoxy, C_1 - C_4 -alkylthio, di- $(C_1$ - C_4 -alkyl)amino, C_1 - C_4 -alkylcarbonyl, C_1 - C_4 -alkoxycarbonyl, C_1 - C_4 -alkoxycarbonyl, di- $(C_1$ - C_4 -alkyl)amino- C_1 - C_4 -alkoxycarbonyl, hydroxycarbonyl, C_1 - C_4 -alkylaminocarbonyl, di- $(C_1$ - C_4 -alkyl)aminocarbonyl, aminocarbonyl, C_1 - C_4 -alkylcarbonyloxy or C_3 - C_6 -cycloalkyl; phenyl, heterocyclyl, phenyl- C_1 - C_6 -alkyl, heterocyclyl- C_1 - C_6 -alkyl, phenylcarbonyl- C_1 - C_6 -alkyl, heterocyclylcarbonyl, heterocyclylcarbonyl, phenoxycarbonyl, heterocyclyloxycarbonyl, phenoxycarbonyl, heterocyclyloxythiocarbonyl, phenoxy- C_1 - C_6 -alkylcarbonyl, heterocyclyloxythiocarbonyl, phenoxy- C_1 - C_6 -alkyl- C_1 - C_6 -alkenylcarbonyl, phenyl- C_1 - C_6 -alkenylcarbonyl, where the phenyl and the heterocyclyl radical of the 20 last-mentioned substituents may be partially or fully halogenated and/or may carry one to three of the following radicals:

nitro, cyano, C₁-C₄-alkyl, C₁-C₄-halogenalkyl, C₁-C₄-alkoxy or C₁-C₄-haloalkoxy;

⁸,R⁹ are C₁-C₆-alkyl, C₃-C₆-alkenyl, C₃-C₆-haloalkenyl, C₃-C₆-alkynyl, C₃-C₆-haloalkynyl, C₃-C₆-cycloalkyl, hydroxyl, C₁-C₆-alkoxy, amino, C₁-C₆-alkylamino, C₁-C₆-haloalkylamino, di-(C₁-C₆-alkyl)amino or di-(C₁-C₆-haloalkyl)amino, where the abovementioned alkyl, cycloalkyl and alkoxy radicals may be partially or fully halogenated and/or may carry one to three of the following groups:

cyano, C_1 - C_4 -alkoxy, C_1 - C_4 -alkylthio, di- $(C_1$ - C_4 -alkyl)amino, C_1 - C_4 -alkylcarbonyl, C_1 - C_4 -alkoxycarbonyl, di- $(C_1$ - C_4 -alkoxycarbonyl, di- $(C_1$ - C_4 -alkyl)amino- C_1 - C_4 -alkoxycarbonyl,

hydroxycarbonyl, C_1 - C_4 -alkylaminocarbonyl, di- $(C_1$ - C_4 -alkyl)aminocarbonyl, aminocarbonyl, C_1 - C_4 -alkylcarbonyloxy or C_3 - C_6 -cycloalkyl;

phenyl, heterocyclyl, phenyl- C_1 - C_6 -alkyl, heterocyclyl- C_1 - C_6 -alkyl, phenoxy, heterocyclyloxy, where the phenyl and the heterocyclyl radical of the last-mentioned substituents may be partially or fully halogenated and/or may carry one to three of the following radicals:

nitro, cyano, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy or C₁-C₄-haloalkoxy;

is C₁-C₆-alkyl, C₃-C₆-alkenyl, C₃-C₆-haloalkenyl, C₃-C₆-alkynyl, C₃-C₆-haloalkynyl, C₃-C₆-cycloalkyl, hydroxyl, C₁-C₆-alkoxy, C₃-C₆-alkenyloxy, C₃-C₆-alkynyloxy, amino, C₁-C₆-alkylamino, di-(C₁-C₆-alkyl)amino or C₁-C₆-alkylcarbonylamino, where the abovementioned alkyl, cycloalkyl and alkoxy radicals may be partially or fully halogenated and/or may carry one to three radicals from the following group: cyano, C₁-C₄-alkoxy, C₁-C₄-alkylthio, di-(C₁-C₄-alkyl)amino, C₁-C₄-alkylcarbonyl, C₁-C₄-alkoxycarbonyl, C₁-C₄-alkoxycarbonyl, di-(C₁-C₄-alkyl)amino-C₁-C₄-alkyl)amino-C₁-C₄-alkyl)aminocarbonyl, di-(C₁-C₄-alkyl)aminocarbonyl, di-(C₁-C₄-alkyl)aminocarbonyl, di-(C₁-C₄-alkyl)aminocarbonyl, c₁-C₄-alkylcarbonyloxy or C₃-C₆-cycloalkyl; phenyl, heterocyclyl, phenyl-C₁-C₆-alkyl or heterocyclyl-C₁-C₆-alkyl, where the phenyl or heterocyclyl radical of the four last-mentioned substituents may be partially or fully halogenated and/or may carry one to three of the following radicals:

nitro, cyano, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy or C₁-C₄-haloalkoxy;

 R^{11} , R^{12} are C_1 - C_6 -alkyl, C_3 - C_6 -alkenyl, C_3 - C_6 -alkynyl or C_1 - C_6 -alkylcarbonyl;

```
1 is 0 to 6;
```

m is 2 to 4;

n is 1 to 5;

p is 2 to 5;

and their agriculturally useful salts.

- 2. A cyclohexenonequinolinoyl derivative of the formula I as claimed in claim 1 where
- R¹ is halogen, C₁-C₆-alkyl, C₁-C₆-haloalkyl, C₁-C₆-alkoxy, C₁-C₆-alkylthio, heterocyclyloxy or phenylthio, where the two last-mentioned radicals may be partially or fully halogenated and/or may carry one to three of the substituents mentioned below:

nitro, cyano, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy or C₁-C₄-haloalkoxy;

 R^5 is halogen, OR^7 , SR^7 , SOR^8 , SO_2R^8 , OSO_2R^8 , OPR^8R^9 , $OPOR^8R^9$ $OPSR^8R^9$, $NR^{10}R^{11}$ or N-

bonded heterocyclyl which may be partially or fully halogenated and/or may carry one to three of the following radicals:

nitro, cyano, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy or C₁-C₄ -haloalkoxy.

- 3. A cyclohexenonequinolinoyl derivative of the formula I as claimed in claim I, where
- is halogen, OR⁷, NR¹⁰R¹¹ or N-bonded heterocyclyl which may be partially or fully halogenated and/or may carry one to three of the following radicals:

nitro, cyano, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy or C₁-C₄-haloalkoxy.

- 4. A cyclohexenonequinolinoyl derivative of the formula I as claimed in claim 1, where
- R⁷ is C₁-C₆-alkyl, C₁-C₂₀-alkylcarbonyl,

 C₁-C₆-alkoxycarbonyl, (C₁-C₂₀-alkylthio)carbonyl, N,N-di-(C₁-C₆-alkyl)aminocarbonyl,

 phenyl, phenylcarbonyl or phenoxy-C₁-C₆-alkylcarbonyl, where the phenyl radical of
 the three last-mentioned substituents may be partially or fully halogenated and/or may
 carry one to three of the following radicals:

nitro, cyano, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy or C₁-C₄ -haloalkoxy;

 R^{10} is C_1 - C_6 -alkyl or C_1 - C_6 -alkoxy;

 R^{11} is C_1 - C_6 -alkyl.

- 5. A cyclohexenonequinolinoyl derivative of the formula I as claimed in claim 1, where
- is nitro, halogen, cyano, C_1 - C_6 -alkyl, C_1 - C_6 -haloalkyl, di- $(C_1$ - C_6 -alkoxy)methyl, di- $(C_1$ - C_6 -alkylthio)methyl, $(C_1$ - C_6 -alkoxy) $(C_1$ - C_6 -alkylthio)methyl, hydroxyl, C_1 - C_6 -alkoxy, C_1 - C_6 -haloalkoxy, C_1 - C_6 -alkoxycarbonyloxy, C_1 - C_6 -alkylthio, C_1 - C_6 -haloalkylthio, C_1 - C_6 -alkylsulfinyl, C_1 - C_6 -haloalkylsulfinyl, C_1 - C_6 -haloalkylsulfonyl, C_1 - C_6 -haloalkylsulfonyl, C_1 - C_6 -haloalkylcarbonyl, C_1 - C_6 -haloalkylcarbonyl, C_1 - C_6 -haloalkoxycarbonyl or C_1 - C_6 -haloalkoxycarbonyl;

or

two radicals R^6 , which are linked to the same carbon, together form an $-O-(CH_2)_m-O-$, $-O-(CH_2)_m-S-$, $-S-(CH_2)_m-S-$, $-O-(CH_2)_n-$ or $-S-(CH_2)_n$ chain which may be substituted by one to three radicals from the following group :

halogen, cyano, C₁-C₄-alkyl, C₁-C₄-haloalkyl or C₁-C₄-alkoxycarbonyl;

or

two radicals R⁶, which are linked to the same carbon, together form a -(CH₂)_p chain which may be interrupted by oxygen or sulfur and/or may be substituted by one to

four radicals from the following group:

halogen, cyano, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl or C_1 - C_4 -alkoxycarbonyl;

or

two radicals R⁶, which are linked to the same carbon, together with this carbon form a carbonyl group.

6. A process for preparing compounds of the formula I as claimed in claim 1 where R^5 = halogen, which comprises reacting a cyclohexanedione derivative of the formula III,

$$(R^6)_1 \xrightarrow{Q} Q \xrightarrow{R^3} R^2$$
III

where the variables R¹ to R³, R⁶ and 1 are each as defined in claim 1, with a halogenating agent.

7. A process for preparing compounds of the formula I as claimed in claim 1 where $R^5 = OR^7$, OSO_2R^8 , OPR^8R^9 , $OPOR^8R^9$ or $OPSR^8R^9$, which comprises reacting a cyclohexanedione derivative of the formula III,

where the variables R^1 to R^3 , R^6 and 1 are each as defined in claim 1, with a compound of the formula $IV\alpha$, $IV\beta$, $IV\gamma$, $Iv\delta$ or $IV\epsilon$,

 L^1-R^7 $L^1-SO_2 R^8$ $L^1-PR^8R^9$ $L^1-POR^8R^9$ $L^1-PSR^8R^9$ (IVa) (IVb) (IVb) (IVb)

where the variables R^7 to R^9 are each as defined in claim 1 and L^1 is a nucleophilically replaceable leaving group.

8. A process for preparing compounds of the formula I as claimed in claim 1 where $R^5 = OR^7$, SR^7 , POR^8R^9 , $NR^{10}R^{11}$, $ONR^{11}R^{12}$, N-linked heterocyclyl or O-(N-linked heterocyclyl), which comprises reacting a compound of the formula I α (\equiv I where $R^5 = \text{halogen}$, OSO_2R^8),

$$(R^6)_1 \xrightarrow{\mathbb{R}^3} \mathbb{R}^2$$
and/or
$$(R^6)_1 \xrightarrow{\mathbb{R}^5} \mathbb{R}^1$$

I where R5= halogen or OSO₂R8

where the variables R^1 to R^3 , R^6 and 1 are each as defined in claim 1, with a compound of the formula $V\alpha, V\beta, V\gamma, V\delta, V\epsilon, V\eta, V\vartheta$,

HOR ⁷	HSR ⁷	HPOR ⁸ R ⁹	HNR ¹⁰ R ¹¹	HONR ¹¹ R ¹²
(Va)	$(V\beta)$	$(V\gamma)$	(Vδ)	(Vε)
	H(N-linked		H(ON-linked	
	heterocyclyl)		heterocyclyl)	
	Vη		Vϑ	

where the variables R⁷ to R¹² are each as defined in claim 1, if appropriate in the presence of a base.

9. A process for preparing compounds of the formula I as claimed in claim 1, where $R^5 = SOR^8$, SO_2R^8 , which comprises reacting a compound of the formula I β (\equiv I where $R^5 = SR^8$),

$$(R^{6})_{1} \xrightarrow{R^{5}} R^{2}$$
and/or
$$(R^{6})_{1} \xrightarrow{R^{5}} R^{2}$$

$$I \text{ where } R^{5} = SR^{8}$$

where the variables R¹ to R⁸ and 1 are each as defined in claim 1, with an oxidizing agent.

- 10. A composition, comprising a herbicidally effective amount of at least one cyclohexenon-equinolinoyl derivative of the formula I or an agriculturally useful salt of formula I as claimed in claim 1 and auxiliaries which are customarily used for formulating crop protection agents.
- 11. A process for preparing compositions as claimed in claim 10, which comprises mixing a herbicidally effective amount of at least one cyclohexenonequinolinoyl derivative of the formula I or an agriculturally useful salt of formula I and auxiliaries which are customarily used for formulating crop protection agents.
- 12. A method for controlling undesirable vegetation, which comprises allowing a herbicidally effective amount of at least one cyclohexenonequinolinoyl derivative of the formula I or an agriculturally useful salt of formula I as claimed in claim 1 to act on plants, their habitat and/or on seeds.
- 13. The use of cyclohexenonequinolinoyl derivatives of the formula I or their agriculturally useful salts as claimed in claim 1 as herbicides.

09/763704 JC02 Rec'd PCT/PTO 2 6 FEB 2001

Cyclohexenonequinolinoyl derivatives

The present invention relates to novel cyclohexenonequinolinoyl derivatives of the formula I,

where: 15

	R^1	is hydrogen, nitro, halogen, cyano, C_1 - C_6 -alkyl, C_1 - C_6 -haloalkyl, C_1 - C_6 -alkoxyiminomethyl, C_1 - C_6 -alkoxy, C_1 - C_6 -haloalkoxy, C_1 - C_6 -alkylthio,
20		C_1-C_6 -haloalkylthio, C_1-C_6 -alkylsulfinyl, C_1-C_6 -haloalkylsulfinyl, C_1-C_6 -alkylsulfonyl, C_1-C_6 -haloalkylsulfonyl, aminosulfonyl, $N-(C_1-C_6$ -alkyl)aminosulfonyl,
25		N, N-di-(C ₁ -C ₆ -alkyl) aminosulfonyl, N-(C ₁ -C ₆ -alkylsulfonyl) amino, N-(C ₁ -C ₆ -haloalkylsulfonyl) amino, N-(C ₁ -C ₆ -alkyl)-N-(C ₁ -C ₆ -alkylsulfonyl) amino, N-(C ₁ -C ₆ -alkyl)-N-(C ₁ -C ₆ -haloalkylsulfonyl) amino,
30		phenoxy, heterocyclyloxy, phenylthio or heterocyclylthio, where the four last-mentioned radicals may be partially or fully halogenated and/or may carry one to three of the following substituents:
35		nitro, cyano, C_1-C_4 -alkyl, C_1-C_4 -haloalkyl, C_1-C_4 -alkoxy or C_1-C_4 -haloalkoxy;
	R^2 , R^3	are hydrogen, C_1 - C_6 -alkyl, C_1 - C_6 -haloalkyl or halogen;
40	R ⁴	is a compound IIa or IIb

 $(R^6)_1$ R^5 IIa

IIb

where

10

15

5

is halogen, OR⁷, SR⁷, SOR⁸, SO₂R⁸, OSO₂R⁸, POR⁸R⁹, OPR⁸R⁹, OPOR⁸R⁹, OPSR⁸R⁹, NR¹⁰R¹¹, ONR¹¹R¹², N-linked heterocyclyl or O-(N-linked heterocyclyl), where the heterocyclyl radical of the two last-mentioned substituents may be partially or fully halogenated and/or may carry one to three of the following radicals:

nitro, cyano, C_1-C_4 -alkyl, C_1-C_4 -haloalkyl, C_1-C_4 -alkoxy or C_1-C_4 -haloalkoxy;

20

25

30

35

40

is nitro, halogen, cyano, C₁-C₆-alkyl,
C₁-C₆-haloalkyl, di-(C₁-C₆-alkoxy)methyl,
di-(C₁-C₆-alkylthio)methyl,
(C₁-C₆-alkoxy)(C₁-C₆-alkylthio)methyl, hydroxy,
C₁-C₆-alkoxy, C₁-C₆-haloalkoxy,
C₁-C₆-alkoxycarbonyloxy, C₁-C₆-alkylthio,
C₁-C₆-haloalkylthio, C₁-C₆-alkylsulfinyl,
C₁-C₆-haloalkylsulfinyl,
C₁-C₆-alkylsulfonyl,C₁-C₆-haloalkylsulfonyl,
C₁-C₆-alkylcarbonyl, C₁-C₆-haloalkylcarbonyl,

C₁-C₆-alkoxycarbonyl or C₁-C₆-haloalkoxycarbonyl;

or

 R^6

two radicals R^6 , which are linked to the same carbon, together form an $-O-(CH_2)_m-O-$, $-O-(CH_2)_m-S-$, $-S-(CH_2)_m-S-$, $-O-(CH_2)_n-$ or $-S-(CH_2)_n$ chain which may be substituted by one to three radicals from the following group: halogen, cyano, C_1-C_4 -alkyl, C_1-C_4 -haloalkyl or C_1-C_4 -alkoxycarbonyl;

or

3 two radicals R6, which are linked to the same carbon, together form a -(CH2)p chain which may be interrupted by oxygen or sulfur and/or may be substituted by one to four radicals from the following group: 5 halogen, cyano, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl or C_1-C_4 -alkoxycarbonyl; or10 two radicals R6, which are linked to the same carbon, together form a methylidene group which may be substituted by one or two radicals from the following group: 15 halogen, hydroxyl, formyl, cyano, C1-C6-alkyl, C_1-C_6 -haloalkyl, C_1-C_6 -alkoxy, C_1-C_6 -haloalkoxy, C₁-C₆-alkylthio, C₁-C₆-haloalkylthio, C_1-C_6 -alkylsulfinyl, C_1-C_6 -haloalkylsulfinyl, C_1-C_6 -alkylsulfonyl or C_1-C_6 -haloalkylsulfonyl; 20 or two radicals R6, which are linked to the same carbon, 25 together with this carbon form a carbonyl group; or two radicals R6, which are linked to different carbons, 30 together form a $-(CH_2)_n$ chain which may be substituted by one to three radicals from the following group: halogen, C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy, hydroxyl or $C_1-C_6-alkoxycarbonyl;$ 35 is C_1 - C_6 -alkyl, C_3 - C_6 -alkenyl, C_3 - C_6 -haloalkenyl, R^7 $C_3-C_6-alkynyl$, $C_3-C_6-haloalkynyl$, $C_3-C_6-cycloalkyl$, C_1-C_{20} -alkylcarbonyl, C_2-C_6 -alkenylcarbonyl, C_2-C_6 -alkynylcarbonyl, C_3-C_6 -cycloalkylcarbonyl, 40 $C_1-C_6-alkoxycarbonyl$, $C_3-C_6-alkenyloxycarbonyl$, C_3-C_6 -alkynyloxycarbonyl, (C₁-C₂₀-alkylthio)carbonyl, C1-C6-alkylaminocarbonyl, C3-C6-alkenylaminocarbonyl, 45 C3-C6-alkynylaminocarbonyl,

 $N, N-di-(C_1-C_6-alkyl)$ aminocarbonyl,

	4
	$N-(C_3-C_6-alkenyl)-N-(C_1-C_6-alkyl)$ aminocarbonyl,
	$N-(C_3-C_6-alkynyl)-N-(C_1-C_6-alkyl)$ aminocarbonyl,
	$N-(C_1-C_6-alkoxy)-N-(C_1-C_6-alkyl)$ aminocarbonyl,
	$N-(C_3-C_6-alkenyl)-N-(C_1-C_6-alkoxy)$ aminocarbonyl,
5	$N-(C_3-C_6-alkynyl)-N-(C_1-C_6-alkoxy)$ aminocarbonyl,
	di-(C ₁ -C ₆ -alkyl)-aminothiocarbonyl,
	$C_1-C_6-alkylcarbonyl-C_1-C_6-alkyl$,
	C_1 - C_6 -alkoxyimino- C_1 - C_6 -alkyl,
	$N-(C_1-C_6-alkylamino)imino-C_1-C_6-alkyl$ or
10	$N, N-di-(C_1-C_6-alkylamino)imino-C_1-C_6-alkyl, where$
10	the abovementioned alkyl, cycloalkyl and alkoxy
	radicals may be partially or fully halogenated
	and/or may carry one to three of the following
	groups:
15	cyano, C_1-C_4 -alkoxy, C_1-C_4 -alkylthio, $di-(C_1-C_4-C_4-C_4-C_4-C_4-C_4-C_4-C_4-C_4-C_4$
	alkyl)amino, C_1 - C_4 -alkylcarbonyl,
	C ₁ -C ₄ -alkoxycarbonyl,
	C_1 - C_4 -alkoxy- C_1 - C_4 -alkoxycarbonyl,
	$di-(C_1-C_4-alkyl)$ amino- $C_1-C_4-alkoxycarbonyl$,
20	hydroxycarbonyl, C ₁ -C ₄ -alkylaminocarbonyl,
	di-(C ₁ -C ₄ -alkyl)aminocarbonyl, aminocarbonyl,
	C ₁ -C ₄ -alkylcarbonyloxy or C ₃ -C ₆ -cycloalkyl;
25	phenyl, heterocyclyl, phenyl-C ₁ -C ₆ -alkyl,
25	phenyl, heterocyclyl, phenyl- C_1 - C_6 -alkyl, heterocyclyl- C_1 - C_6 -alkyl,
25	phenyl, heterocyclyl, phenyl- C_1 - C_6 -alkyl, heterocyclyl- C_1 - C_6 -alkyl, phenylcarbonyl- C_1 - C_6 -alkyl,
25	phenyl, heterocyclyl, phenyl- C_1 - C_6 -alkyl, heterocyclyl- C_1 - C_6 -alkyl, phenylcarbonyl- C_1 - C_6 -alkyl, heterocyclylcarbonyl- C_1 - C_6 -alkyl, phenylcarbonyl,
25	phenyl, heterocyclyl, phenyl- C_1 - C_6 -alkyl, heterocyclyl- C_1 - C_6 -alkyl, phenylcarbonyl- C_1 - C_6 -alkyl, heterocyclylcarbonyl- C_1 - C_6 -alkyl, phenylcarbonyl, heterocyclylcarbonyl, phenoxycarbonyl,
25 30	phenyl, heterocyclyl, phenyl-C ₁ -C ₆ -alkyl, heterocyclyl-C ₁ -C ₆ -alkyl, phenylcarbonyl-C ₁ -C ₆ -alkyl, heterocyclylcarbonyl-C ₁ -C ₆ -alkyl, phenylcarbonyl, heterocyclylcarbonyl, phenoxycarbonyl, heterocyclylcarbonyl, phenoxycarbonyl,
	phenyl, heterocyclyl, phenyl-C ₁ -C ₆ -alkyl, heterocyclyl-C ₁ -C ₆ -alkyl, phenylcarbonyl-C ₁ -C ₆ -alkyl, heterocyclylcarbonyl-C ₁ -C ₆ -alkyl, phenylcarbonyl, heterocyclylcarbonyl, phenoxycarbonyl, heterocyclylcarbonyl, phenoxythiocarbonyl, heterocyclyloxycarbonyl, phenoxythiocarbonyl, heterocyclyloxythiocarbonyl,
	phenyl, heterocyclyl, phenyl- C_1 - C_6 -alkyl, heterocyclyl- C_1 - C_6 -alkyl, phenylcarbonyl- C_1 - C_6 -alkyl, heterocyclylcarbonyl- C_1 - C_6 -alkyl, phenylcarbonyl, heterocyclylcarbonyl, phenoxycarbonyl, heterocyclylcarbonyl, phenoxycarbonyl, heterocyclyloxycarbonyl, phenoxythiocarbonyl, heterocyclyloxythiocarbonyl, phenoxy- C_1 - C_6 -alkylcarbonyl,
	phenyl, heterocyclyl, phenyl-C ₁ -C ₆ -alkyl, heterocyclyl-C ₁ -C ₆ -alkyl, phenylcarbonyl-C ₁ -C ₆ -alkyl, heterocyclylcarbonyl-C ₁ -C ₆ -alkyl, phenylcarbonyl, heterocyclylcarbonyl, phenoxycarbonyl, heterocyclylcarbonyl, phenoxycarbonyl, heterocyclyloxycarbonyl, phenoxythiocarbonyl, heterocyclyloxythiocarbonyl, phenoxy-C ₁ -C ₆ -alkylcarbonyl, heterocyclyloxy-C ₁ -C ₆ -alkylcarbonyl,
	phenyl, heterocyclyl, phenyl- C_1 - C_6 -alkyl, heterocyclyl- C_1 - C_6 -alkyl, phenylcarbonyl- C_1 - C_6 -alkyl, heterocyclylcarbonyl- C_1 - C_6 -alkyl, phenylcarbonyl, heterocyclylcarbonyl, phenoxycarbonyl, heterocyclyloxycarbonyl, phenoxythiocarbonyl, heterocyclyloxythiocarbonyl, phenoxy- C_1 - C_6 -alkylcarbonyl, heterocyclyloxy- C_1 - C_6 -alkylcarbonyl, phenylaminocarbonyl,
30	phenyl, heterocyclyl, phenyl- C_1 - C_6 -alkyl, heterocyclyl- C_1 - C_6 -alkyl, phenylcarbonyl- C_1 - C_6 -alkyl, heterocyclylcarbonyl- C_1 - C_6 -alkyl, phenylcarbonyl, heterocyclylcarbonyl, phenoxycarbonyl, heterocyclyloxycarbonyl, phenoxythiocarbonyl, heterocyclyloxythiocarbonyl, phenoxy- C_1 - C_6 -alkylcarbonyl, heterocyclyloxy- C_1 - C_6 -alkylcarbonyl, heterocyclyloxy- C_1 - C_6 -alkylcarbonyl, phenylaminocarbonyl, C_1 - C_6 -alkyl- C_1 - C_6
	phenyl, heterocyclyl, phenyl-C ₁ -C ₆ -alkyl, heterocyclyl-C ₁ -C ₆ -alkyl, phenylcarbonyl-C ₁ -C ₆ -alkyl, heterocyclylcarbonyl-C ₁ -C ₆ -alkyl, phenylcarbonyl, heterocyclylcarbonyl, phenoxycarbonyl, heterocyclyloxycarbonyl, phenoxythiocarbonyl, heterocyclyloxythiocarbonyl, phenoxy-C ₁ -C ₆ -alkylcarbonyl, phenoxy-C ₁ -C ₆ -alkylcarbonyl, heterocyclyloxy-C ₁ -C ₆ -alkylcarbonyl, phenylaminocarbonyl, N-(C ₁ -C ₆ -alkyl)-N-(phenyl)aminocarbonyl, heterocyclylaminocarbonyl,
30	phenyl, heterocyclyl, phenyl-C ₁ -C ₆ -alkyl, heterocyclyl-C ₁ -C ₆ -alkyl, phenylcarbonyl-C ₁ -C ₆ -alkyl, heterocyclylcarbonyl-C ₁ -C ₆ -alkyl, phenylcarbonyl, heterocyclylcarbonyl, phenoxycarbonyl, heterocyclyloxycarbonyl, phenoxythiocarbonyl, heterocyclyloxythiocarbonyl, phenoxy-C ₁ -C ₆ -alkylcarbonyl, phenoxy-C ₁ -C ₆ -alkylcarbonyl, heterocyclyloxy-C ₁ -C ₆ -alkylcarbonyl, phenylaminocarbonyl, N-(C ₁ -C ₆ -alkyl)-N-(phenyl)aminocarbonyl, heterocyclylaminocarbonyl,
30	phenyl, heterocyclyl, phenyl- C_1 - C_6 -alkyl, heterocyclyl- C_1 - C_6 -alkyl, phenylcarbonyl- C_1 - C_6 -alkyl, heterocyclylcarbonyl- C_1 - C_6 -alkyl, phenylcarbonyl, heterocyclylcarbonyl, phenoxycarbonyl, heterocyclyloxycarbonyl, phenoxythiocarbonyl, heterocyclyloxythiocarbonyl, phenoxy- C_1 - C_6 -alkylcarbonyl, heterocyclyloxy- C_1 - C_6 -alkylcarbonyl, heterocyclyloxy- C_1 - C_6 -alkylcarbonyl, phenylaminocarbonyl, N - $(C_1$ - C_6 -alkyl)- N - $(phenyl)$ aminocarbonyl, heterocyclylaminocarbonyl, N - $(C_1$ - C_6 -alkyl)- N - $(heterocyclyl)$ aminocarbonyl, phenyl- C_2 - C_6 -alkenylcarbonyl or
30	phenyl, heterocyclyl, phenyl-C ₁ -C ₆ -alkyl, heterocyclyl-C ₁ -C ₆ -alkyl, phenylcarbonyl-C ₁ -C ₆ -alkyl, heterocyclylcarbonyl-C ₁ -C ₆ -alkyl, phenylcarbonyl, heterocyclylcarbonyl, phenoxycarbonyl, heterocyclyloxycarbonyl, phenoxythiocarbonyl, heterocyclyloxythiocarbonyl, phenoxy-C ₁ -C ₆ -alkylcarbonyl, phenoxy-C ₁ -C ₆ -alkylcarbonyl, heterocyclyloxy-C ₁ -C ₆ -alkylcarbonyl, phenylaminocarbonyl, N-(C ₁ -C ₆ -alkyl)-N-(phenyl)aminocarbonyl, heterocyclylaminocarbonyl,
30 35	phenyl, heterocyclyl, phenyl- C_1 - C_6 -alkyl, heterocyclyl- C_1 - C_6 -alkyl, phenylcarbonyl- C_1 - C_6 -alkyl, heterocyclylcarbonyl- C_1 - C_6 -alkyl, phenylcarbonyl, heterocyclylcarbonyl, phenoxycarbonyl, heterocyclyloxycarbonyl, phenoxythiocarbonyl, heterocyclyloxythiocarbonyl, phenoxy- C_1 - C_6 -alkylcarbonyl, heterocyclyloxy- C_1 - C_6 -alkylcarbonyl, heterocyclyloxy- C_1 - C_6 -alkylcarbonyl, phenylaminocarbonyl, N - $(C_1$ - C_6 -alkyl)- N - $(phenyl)$ aminocarbonyl, heterocyclylaminocarbonyl, N - $(C_1$ - C_6 -alkyl)- N - $(heterocyclyl)$ aminocarbonyl, phenyl- C_2 - C_6 -alkenylcarbonyl or
30	phenyl, heterocyclyl, phenyl—C1—C6—alkyl, heterocyclyl—C1—C6—alkyl, phenylcarbonyl—C1—C6—alkyl, heterocyclylcarbonyl—C1—C6—alkyl, phenylcarbonyl, heterocyclylcarbonyl, phenoxycarbonyl, heterocyclyloxycarbonyl, phenoxythiocarbonyl, heterocyclyloxythiocarbonyl, phenoxy—C1—C6—alkylcarbonyl, phenoxy—C1—C6—alkylcarbonyl, heterocyclyloxy—C1—C6—alkylcarbonyl, phenylaminocarbonyl, N—(C1—C6—alkyl)—N—(phenyl)aminocarbonyl, heterocyclylaminocarbonyl, N—(C1—C6—alkyl)—N—(heterocyclyl)aminocarbonyl, phenyl—C2—C6—alkenylcarbonyl or heterocyclyl—C2—C6—alkenylcarbonyl, where the
30 35	phenyl, heterocyclyl, phenyl—C1—C6—alkyl, heterocyclyl—C1—C6—alkyl, phenylcarbonyl—C1—C6—alkyl, heterocyclylcarbonyl—C1—C6—alkyl, phenylcarbonyl, heterocyclylcarbonyl, phenoxycarbonyl, heterocyclyloxycarbonyl, phenoxythiocarbonyl, heterocyclyloxythiocarbonyl, phenoxy-C1—C6—alkylcarbonyl, phenoxy-C1—C6—alkylcarbonyl, heterocyclyloxy-C1—C6—alkylcarbonyl, phenylaminocarbonyl, N—(C1—C6—alkyl)—N—(phenyl)aminocarbonyl, heterocyclylaminocarbonyl, N—(C1—C6—alkyl)—N—(heterocyclyl)aminocarbonyl, phenyl—C2—C6—alkenylcarbonyl or heterocyclyl—C2—C6—alkenylcarbonyl, where the phenyl and the heterocyclyl radical of the 20
30 35	phenyl, heterocyclyl, phenyl-C ₁ -C ₆ -alkyl, heterocyclyl-C ₁ -C ₆ -alkyl, phenylcarbonyl-C ₁ -C ₆ -alkyl, heterocyclylcarbonyl-C ₁ -C ₆ -alkyl, phenylcarbonyl, heterocyclylcarbonyl, phenoxycarbonyl, heterocyclyloxycarbonyl, phenoxythiocarbonyl, heterocyclyloxythiocarbonyl, phenoxy-C ₁ -C ₆ -alkylcarbonyl, phenoxy-C ₁ -C ₆ -alkylcarbonyl, heterocyclyloxy-C ₁ -C ₆ -alkylcarbonyl, phenylaminocarbonyl, N-(C ₁ -C ₆ -alkyl)-N-(phenyl)aminocarbonyl, heterocyclylaminocarbonyl, phenyl-C ₂ -C ₆ -alkenylcarbonyl or heterocyclyl-C ₂ -C ₆ -alkenylcarbonyl, where the phenyl and the heterocyclyl radical of the 20 last-mentioned substituents may be partially or
30 35	phenyl, heterocyclyl, phenyl—C1—C6—alkyl, heterocyclyl—C1—C6—alkyl, phenylcarbonyl—C1—C6—alkyl, heterocyclylcarbonyl—C1—C6—alkyl, phenylcarbonyl, heterocyclylcarbonyl, phenoxycarbonyl, heterocyclyloxycarbonyl, phenoxythiocarbonyl, heterocyclyloxythiocarbonyl, phenoxy—C1—C6—alkylcarbonyl, phenoxy—C1—C6—alkylcarbonyl, heterocyclyloxy—C1—C6—alkylcarbonyl, phenylaminocarbonyl, N—(C1—C6—alkyl)—N—(phenyl) aminocarbonyl, heterocyclylaminocarbonyl, N—(C1—C6—alkyl)—N—(heterocyclyl) aminocarbonyl, phenyl—C2—C6—alkenylcarbonyl or heterocyclyl—C2—C6—alkenylcarbonyl, where the phenyl and the heterocyclyl radical of the 20 last—mentioned substituents may be partially or fully halogenated and/or may carry one to three of
30 35	phenyl, heterocyclyl, phenyl—C1—C6—alkyl, heterocyclyl—C1—C6—alkyl, phenylcarbonyl—C1—C6—alkyl, heterocyclylcarbonyl—C1—C6—alkyl, phenylcarbonyl, heterocyclylcarbonyl, phenoxycarbonyl, heterocyclylcarbonyl, phenoxycarbonyl, heterocyclyloxycarbonyl, phenoxythiocarbonyl, heterocyclyloxythiocarbonyl, phenoxy—C1—C6—alkylcarbonyl, heterocyclyloxy—C1—C6—alkylcarbonyl, heterocyclyloxy—C1—C6—alkylcarbonyl, phenylaminocarbonyl, N—(C1—C6—alkyl)—N—(phenyl)aminocarbonyl, heterocyclylaminocarbonyl, N—(C1—C6—alkyl)—N—(heterocyclyl)aminocarbonyl, phenyl—C2—C6—alkenylcarbonyl or heterocyclyl—C2—C6—alkenylcarbonyl, where the phenyl and the heterocyclyl radical of the 20 last—mentioned substituents may be partially or fully halogenated and/or may carry one to three of the following radicals:

		5
	R ⁸ , R ⁹	are C_1 - C_6 -alkyl, C_3 - C_6 -alkenyl, C_3 - C_6 -haloalkenyl, C_3 - C_6 -alkynyl, C_3 - C_6 -cycloalkyl, hydroxyl, C_1 - C_6 -alkoxy, amino, C_1 - C_6 -alkylamino,
		C_1 — C_6 —haloalkylamino, di- $(C_1$ — C_6 —
_		alkyl)amino or di- $(C_1-C_6-haloalkyl)$ amino, where the
5		
		abovementioned alkyl, cycloalkyl and alkoxy
		radicals may be partially or fully halogenated
		and/or may carry one to three of the following
		groups:
10		cyano, C_1 - C_4 -alkoxy, C_1 - C_4 -alkylthio, di - $(C_1$ - C_4 -
		alkyl)amino, C_1 - C_4 -alkylcarbonyl,
		C_1 - C_4 -alkoxycarbonyl,
		C_1-C_4 -alkoxy- C_1-C_4 -alkoxycarbonyl,
		$di-(C_1-C_4-alkyl)$ amino- $C_1-C_4-alkoxycarbonyl$,
15		hydroxycarbonyl, C ₁ _C ₄ _alkylaminocarbonyl,
		di-(C ₁ -C ₄ -alkyl)aminocarbonyl, aminocarbonyl,
		C ₁ -C ₄ -alkylcarbonyloxy or C ₃ -C ₆ -cycloalkyl;
		01 04 4211/20422011/2011/2011/2011
		and the second of the second o
20		phenyl, heterocyclyl, phenyl-C ₁ -C ₆ -alkyl,
20		heterocyclyl-C ₁ -C ₆ -alkyl, phenoxy, heterocyclyloxy,
		where the phenyl and the heterocyclyl radical of
		the last-mentioned substituents may be partially
		or fully halogenated and/or may carry one to three
		of the following radicals:
25		nitro, cyano, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl,
		C_1 - C_4 -alkoxy or C_1 - C_4 -haloalkoxy;
	\mathbb{R}^{10}	is C_1-C_6 -alkyl, C_3-C_6 -alkenyl, C_3-C_6 -haloalkenyl,
		C_3-C_6 -alkynyl, C_3-C_6 -haloalkynyl, C_3-C_6 -cycloalkyl,
30		hydroxyl, C_1 - C_6 -alkoxy, C_3 - C_6 -alkenyloxy,
		C ₃ -C ₆ -alkynyloxy, amino, C ₁ -C ₆ -alkylamino,
		$di-(C_1-C_6-alkyl)$ amino or $C_1-C_6-alkyl$ carbonylamino,
		where the abovementioned alkyl, cycloalkyl and
		alkoxy radicals may be partially or fully
35		halogenated and/or may carry one to three radicals
		from the following group:
		cyano, C_1 - C_4 -alkoxy, C_1 - C_4 -alkylthio,
		$di-(C_1-C_4-alkyl)$ amino, $C_1-C_4-alkyl$ carbonyl,
40		C ₁ -C ₄ -alkoxycarbonyl,
		$C_1-C_4-alkoxy-C_1-C_4-alkoxycarbonyl$,
		$di-(C_1-C_4-alkyl)$ amino- $C_1-C_4-alkoxycarbonyl$,
		hydroxycarbonyl, C ₁ -C ₄ -alkylaminocarbonyl,
		$di-(C_1-C_4-alkyl)$ aminocarbonyl, aminocarbonyl,
4-		C_1-C_4 -alkylcarbonyloxy or C_3-C_6 -cycloalkyl;
45		

phenyl, heterocyclyl, phenyl- C_1 - C_6 -alkyl or heterocyclyl- C_1 - C_6 -alkyl, where the phenyl or heterocyclyl radical of the four last-mentioned substituents may be partially or fully halogenated and/or may carry one to three of the following radicals: nitro, cyano, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl,

nitro, cyano, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -alkoxy or C_1 - C_4 -haloalkoxy;

10 R^{11} , R^{12} are C_1-C_6 -alkyl, C_3-C_6 -alkenyl, C_3-C_6 -alkynyl or C_1-C_6 -alkylcarbonyl;

1 is 0 to 6;

m is 2 to 4;

n is 1 to 5;

20 p is 2 to 5;

and their agriculturally useful salts.

- 25 Moreover, the invention relates to processes for preparing compounds of the formula I, to compositions comprising them and to the use of these derivatives or the compositions comprising them for controlling harmful plants.
- The literature, for example WO 98/12 180 and EP-A 283 261, discloses quinolinoyl or fused phenyl derivatives which are linked to an unsubstituted or substituted (1-hydroxy-3-oxo-cyclohex-1-en-2-yl)carbonyl radical. However, the herbicidal properties of the prior art compounds and their compatibility with crop plants are not entirely satisfactory.

It is an object of the present invention to provide other biologically, in particular herbicidally, active compounds.

- We have found that this object is achieved by the cyclohexenonequinolinoyl derivatives of the formula I and their herbicidal action.
- Furthermore, we have found herbicidal compositions which comprise the compounds I and have very good herbicidal action. Moreover, we have found processes for preparing these compositions and

methods for controlling undesirable vegetation using the compounds I.

- Depending on the substitution pattern, the compounds of the formula I may contain one or more chiral centers, in which case they are present as enantiomers or mixtures of diastereomers. The invention provides both the pure enantiomers or diastereomers and their mixtures.
- The compounds of the formula I may also be present in the form of their agriculturally useful salts, where the type of salt is usually immaterial. In general, the salts of those cations and the acid addition salts of those acids are suitable whose cations and anions, respectively, do not negatively affect the herbicidal action of the compounds I.

Suitable cations are, in particular, ions of the alkali metals, preferably lithium, sodium and potassium, of the alkaline earth metals, preferably calcium and magnesium, and of the transition metals, preferably manganese, copper, zinc and iron, and also ammonium, where, if desired, one to four hydrogen atoms may be replaced by C₁-C₄-alkyl, hydroxy-C₁-C₄-alkyl, C₁-C₄-alkyl, hydroxy-C₁-C₄-alkoxy-C₁-C₄-alkyl, phenyl or benzyl, preferably ammonium, dimethylammonium, disopropylammonium, tetramethylammonium, tetrabutylammonium,

2-(2-hydroxyeth-1-oxy)eth-1-ylammonium,
di(2-hydroxyeth-1-yl)ammonium, trimethylbenzylammonium,
furthermore phosphonium ions, sulfonium ions, preferably
tri(C₁-C₄-alkyl)sulfonium and sulfoxonium ions, preferably
tri(C₁-C₄-alkyl)sulfoxonium.

Anions of useful acid addition salts are primarily chloride, bromide, fluoride, hydrogen sulfate, sulfate, dihydrogen 35 phosphate, hydrogen phosphate, nitrate, hydrogen carbonate, carbonate, hexafluorosilicate, hexafluorophosphate, benzoate and also the anions of C₁-C₄-alkanoic acids, preferably formate, acetate, propionate and butyrate.

- The organic moieties mentioned for the substituents R¹-R¹² or as radicals on phenyl and heterocyclyl radicals are collective terms for individual enumerations of the particular group members. All hydrocarbon chains, i.e. all alkyl, haloalkyl, alkoxy, haloalkoxy, alkylthio, haloalkylthio, alkylsulfynyl,
- haloalkylsulfynyl, alkylsulfonyl, haloalkylsulfonyl, N-alkylaminosulfonyl, N-dialkylaminosulfonyl, N-alkylamino, N-dialkylamino, N-alkoxyamino,

```
8
  N-alkoxy-N-alkylamino, N-alkylcarbonylamino,
  N-alkylsulfonylamino, N-haloalkylsulfonylamino,
  N-alkyl-N-alkylsulfonylamino, N-alkyl-N-haloalkylsulfonylamino,
  alkylcarbonyl, haloalkylcarbonyl, alkoxycarbonyl,
5 haloalkoxycarbonyl, alkylthiocarbonyl, alkylcarbonyloxy,
  alkylaminocarbonyl, dialkylaminocarbonyl,
  dialkylaminothiocarbonyl, alkoxyalkyl, dialkoxymethyl,
  dialkylthiomethyl, (alkoxy)(alkylthio)methyl, alkylcarbonylalkyl,
   alkoxyiminomethyl, alkoxyiminoalkyl, N-(alkylamino)iminoalkyl,
10 N-(dialkylamino)iminoalkyl, phenylalkenylcarbonyl,
   heterocyclylalkenylcarbonyl, phenoxyalkylcarbonyl,
   heterocyclyloxyalkylcarbonyl, N-alkoxy-N-alkylaminocarbonyl,
   N-alkyl-N-phenylaminocarbonyl,
   N-alkyl-N-heterocyclylaminocarbonyl, alkoxycarbonyloxy,
15 phenylalkyl, heterocyclylalkyl, phenylcarbonylalkyl,
   heterocyclylcarbonylalkyl, dialkylaminoalkoxycarbonyl,
   alkoxyalkoxycarbonyl, alkenylcarbonyl, alkenyloxycarbonyl,
   alkenylaminocarbonyl, N-alkenyl-N-alkylaminocarbonyl,
   N-alkenyl-N-alkoxyaminocarbonyl, alkynylcarbonyl,
```

20 alkynyloxycarbonyl, alkynylaminocarbonyl, N-alkynyl-N-alkylaminocarbonyl, N-alkynyl-N-alkoxyaminocarbonyl, alkenyl, alkynyl, haloalkenyl, haloalkynyl, alkenyloxy, alkynyloxy and alkoxyalkoxy moieties, may be straight-chain or branched. Unless indicated otherwise, halogenated substituents

25 preferably carry one to five identical or different halogen atoms. The term "halogen" in each case represents fluorine, chlorine, bromine or iodine.

Examples of other meanings are:

C₁—C₄—alkyl: for example methyl, ethyl, propyl, 1—methylethyl, butyl, 1—methylpropyl, 2—methylpropyl or 1,1—dimethylethyl;

35 - C_1 - C_6 -alkyl, and the alkyl moieties of C_1 - C_6 -alkoxyimino- C_1 - C_6 -alkyl, N- $(C_1$ - C_6 -alkylamino)imino- C_1 - C_6 -alkyl, N-(di- C_1 - C_6 -alkylamino)imino- C_1 - C_6 -alkyl, N- $(C_1$ - C_6 -alkoxy)-N- $(C_1$ - C_6 -

alkyl)-aminocarbonyl,
N-(C₃-C₆-alkenyl)-N-(C₁-C₆-alkyl)aminocarbonyl,
(C₃-C₆-alkynyl)-N-(C₁-C₆-alkyl)aminocarbonyl,
N-(C₁-C₆-alkyl)-N-phenylaminocarbonyl, N-(C₁-C₆-alkyl)-N-heterocyclylaminocarbonyl, phenyl-C₁-C₆-alkyl, N-(C₁-C₆-alkyl)

alkyl)-N-(C_1 - C_6 -alkylsulfonyl)amino, N-(C_1 - C_6 -alkyl)-N- (C_1 - C_6 -haloalkylsulfonyl)amino, heterocyclyl- C_1 - C_6 -alkyl, phenylcarbonyl- C_1 - C_6 -alkyl, heterocyclylcarbonyl- C_1 - C_6 -alkyl:

```
9
       C_1-C_4-alkyl as mentioned above, and also, for example, pentyl,
       1-methylbutyl, 2-methylbutyl, 3-methylbutyl,
       2,2-dimethylpropyl, 1-ethylpropyl, hexyl, 1,1-dimethylpropyl,
       1,2—dimethylpropyl, 1—methylpentyl, 2—methylpentyl,
       3-methylpentyl, 4-methylpentyl, 1,1-dimethylbutyl,
5
       1,2-dimethylbutyl, 1,3-dimethylbutyl, 2,2-dimethylbutyl,
       2,3—dimethylbutyl, 3,3—dimethylbutyl, 1—ethylbutyl,
       2-ethylbutyl, 1,1,2-trimethylpropyl, 1-ethyl-1-methylpropyl
       or 1-ethyl-3-methylpropyl;
10
       C<sub>1</sub>-C<sub>4</sub>-haloalkyl: a C<sub>1</sub>-C<sub>4</sub>-alkyl radical as mentioned above
       which is partially or fully substituted by fluorine,
       chlorine, bromine and/or iodine, i.e., for example,
       chloromethyl, dichloromethyl, trichloromethyl, fluoromethyl,
15
       difluoromethyl, trifluoromethyl, chlorofluoromethyl,
       dichlorofluoromethyl, chlorodifluoromethyl, 2-fluoroethyl,
        2-chloroethyl, 2-bromoethyl, 2-iodoethyl, 2,2-difluoroethyl,
        2,2,2-trifluoroethyl, 2-chloro-2-fluoroethyl,
        2-chloro-2,2-difluoroethyl, 2,2-dichloro-2-fluoroethyl,
        2,2,2-trichloroethyl, pentafluoroethyl, 2-fluoropropyl,
20
        3-fluoropropyl, 2,2-difluoropropyl, 2,3-difluoropropyl,
        2-chloropropyl, 3-chloropropyl, 2,3-dichloropropyl,
        2-bromopropyl, 3-bromopropyl, 3,3,3-trifluoropropyl,
        3,3,3-trichloropropyl, 2,2,3,3,3-pentafluoropropyl,
25
        heptafluoropropyl, 1-(fluoromethyl)-2-fluoroethyl,
        1-(chloromethyl)-2-chloroethyl, 1-(bromomethyl)-2-bromoethyl,
        4-fluorobutyl, 4-chlorobutyl, 4-bromobutyl or
        nonafluorobutyl;
```

- C₁-C₆-haloalkyl, and the haloalkyl moieties of
 N-C₁-C₆-haloalkylamino: C₁-C₄-haloalkyl, as mentioned above,
 and also, for example, 5-fluoropentyl, 5-chloropentyl,
 5-bromopentyl, 5-iodopentyl, undecafluoropentyl,
 6-fluorohexyl, 6-chlorohexyl, 6-bromohexyl, 6-iodohexyl or
 dodecafluorohexyl;
- C₁-C₄-alkoxy: for example methoxy, ethoxy, propoxy,
 1-methylethoxy, butoxy, 1-methylpropoxy, 2-methylpropoxy or
 1,1-dimethylethoxy;
- C₁-C₆-alkoxy, and the alkoxy moieties of N-C₁-C₆-alkoxyamino, di-(C₁-C₆-alkoxy)methyl,
 (C₁-C₆-alkoxy)(C₁-C₆-alkylthio)-methyl,
 C₁-C₆-alkoxyiminomethyl, C₁-C₆-alkoxyimino-C₁-C₆-alkyl,

 $N-(C_1-C_6-alkoxy)-N-(C_1-C_6-alkyl)$ aminocarbonyl, $N-(C_3-C_6-alkenyl)-N-(C_1-C_6-alkoxy)$ aminocarbonyl and

 $N-(C_3-C_6-alkynyl)-N-(C_1-C_6-alkoxy)$ aminocarbonyl: $C_1-C_4-alkoxy$ as mentioned above, and also, for example, pentoxy, 1-methylbutoxy, 2-methylbutoxy, 3-methylbutoxy, 1,1-dimethylpropoxy, 1,2-dimethylpropoxy,

- 2,2-dimethylpropoxy, 1-ethylpropoxy, hexoxy, 1-methylpentoxy, 2-methylpentoxy, 3-methylpentoxy, 4-methylpentoxy, 1,1-dimethylbutoxy, 1,2-dimethylbutoxy, 1,3-dimethylbutoxy, 2,2-dimethylbutoxy, 2,3-dimethylbutoxy, 3,3-dimethylbutoxy, 1-ethylbutoxy, 2-ethylbutoxy, 1,1,2-trimethylpropoxy,
- 10 1,2,2-trimethylpropoxy, 1-ethyl-1-methylpropoxy or 1-ethyl-2-methylpropoxy;
- C₁-C₄-haloalkoxy: a C₁-C₄-alkoxy radical as mentioned above which is partially or fully substituted by fluorine, chlorine, bromine and/or iodine, i.e., for example, fluoromethoxy, difluoromethoxy, trifluoromethoxy, chlorodifluoromethoxy, bromodifluoromethoxy, 2-fluoroethoxy, 2-chloroethoxy, 2-bromomethoxy, 2-iodoethoxy, 2,2-difluoroethoxy, 2,2,2-trifluoroethoxy,
- 2-chloro-2-fluoroethoxy, 2-chloro-2,2-difluoroethoxy,
 2,2-dichloro-2-fluoroethoxy, 2,2,2-trichloroethoxy,
 pentafluoroethoxy, 2-fluoropropoxy, 3-fluoropropoxy,
 2-chloropropoxy, 3-chloropropoxy, 2-bromopropoxy,
 3-bromopropoxy, 2,2-difluoropropoxy, 2,3-difluoropropoxy,
- 2,3-dichloropropoxy, 3,3,3-trifluoropropoxy,
 3,3,3-trichloropropoxy, 2,2,3,3,3-pentafluoropropoxy,
 heptafluoropropoxy, 1-(fluoromethyl)-2-fluoroethoxy,
 1-(chloromethyl)-2-chloroethoxy,
 1-(bromomethyl)-2-bromoethoxy, 4-fluorobutoxy,
- 4-chlorobutoxy, 4-bromobutoxy or nonafluorobutoxy;
- C₁-C₆-haloalkoxy: C₁-C₄-haloalkoxy as mentioned above, and also, for example, 5-fluoropentoxy, 5-chloropentoxy, 5-bromopentoxy, 5-iodopentoxy, undecafluoropentoxy, 6-fluorohexoxy, 6-chlorohexoxy, 6-bromohexoxy, 6-iodohexoxy or dodecafluorohexoxy;
- C₁—C₄—alkylthio: for example methylthio, ethylthio, propylthio, 1—methylethylthio, butylthio, 1—methylpropylthio, 2—methylpropylthio or 1,1—dimethylethylthio;
- C₁-C₆-alkylthio, and the alkylthio moieties of (C₁-C₆-alkylthio)carbonyl, di-(C₁-C₆-alkylthio)methyl and (C₁-C₆-alkoxy)-(C₁-C₆-alkylthio)methyl: C₁-C₄-alkylthio as mentioned above, and also, for example, pentylthio, 1-methylbutylthio, 2-methylbutylthio, 3-methylbutylthio,

```
2,2—dimethylpropylthio, 1—ethylpropylthio, hexylthio,
1,1—dimethylpropylthio, 1,2—dimethylpropylthio,
1—methylpentylthio, 2—methylpentylthio, 3—methylpentylthio,
4—methylpentylthio, 1,1—dimethylbutylthio,
1,2—dimethylbutylthio, 1,3—dimethylbutylthio,
2,2—dimethylbutylthio, 2,3—dimethylbutylthio,
3,3—dimethylbutylthio, 1—ethylbutylthio, 2—ethylbutylthio,
1,1,2—trimethylpropylthio, 1,2,2—trimethylpropylthio,
1—ethyl—1—methylpropylthio or 1—ethyl—2—methylpropylthio;
```

10

5

C₁-C₂₀-alkylthio as alkylthio radical of (C₁-C₂₀-alkylthio)carbonyl: C₁-C₆-alkylthio as mentioned above, and also, for example, heptylthio, octylthio, hexadecylthio or octadecylthio;

15

- C₁-C₄-haloalkylthio: a C₁-C₄-alkylthio radical as mentioned above which is partially or fully substituted by fluorine, chlorine, bromine and/or iodine, i.e., for example, fluoromethylthio, difluoromethylthio, trifluoromethylthio,
- chlorodifluoromethylthio, bromodifluoromethylthio,
 2-fluoroethylthio, 2-chloroethylthio, 2-bromoethylthio,
 2-iodoethylthio, 2,2-difluoroethylthio,
 2,2,2-trifluoroethylthio, 2,2,2-trichloroethylthio,
 2-chloro-2-fluoroethylthio, 2-chloro-2,2-difluoroethylthio,
- 2,2-dichloro-2-fluoroethylthio, pentafluoroethylthio, 2-fluoropropylthio, 3-fluoropropylthio, 2-chloropropylthio, 3-chloropropylthio, 2-bromopropylthio, 3-bromopropylthio, 2,2-difluoropropylthio, 2,3-difluoropropylthio, 2,3-dichloropropylthio, 3,3,3-trifluoropropylthio,
- 3,3,3-trichloropropylthio, 2,2,3,3,3-pentafluoropropylthio, heptafluoropropylthio, 1-(fluoromethyl)-2-fluoroethylthio, 1-(chloromethyl)-2-chloroethylthio, 1-(bromomethyl)-2-bromoethylthio, 4-fluorobutylthio, 4-chlorobutylthio, 4-bromobutylthio or nonafluorobutylthio;

35

40

- C₁-C₆-haloalkylthio: C₁-C₄-haloalkylthio, as mentioned above, and also, for example, 5-fluoropentylthio, 5-chloropentylthio, 5-bromopentylthio, 5-iodopentylthio, undecafluoropentylthio, 6-fluorohexylthio, 6-chlorohexylthio, 6-bromohexylthio, 6-iodohexylthio or dodecafluorohexylthio;
- C₁-C₆-alkylsulfinyl (C₁-C₆-alkyl-S(=0)-): for example methylsulfinyl, ethylsulfinyl, propylsulfinyl, 1-methylethylsulfinyl, butylsulfinyl, 1-methylpropylsulfinyl, 2-methylpropylsulfinyl, 1,1-dimethylethylsulfinyl, pentylsulfinyl, 1-methylbutylsulfinyl, 2-methylbutylsulfinyl,

```
12
```

```
3-methylbutylsulfinyl, 2,2-dimethylpropylsulfinyl,
       1-ethylpropylsulfinyl, 1,1-dimethylpropylsulfinyl,
       1,2-dimethylpropylsulfinyl, hexylsulfinyl,
       1-methylpentylsulfinyl, 2-methylpentylsulfinyl,
       3-methylpentylsulfinyl, 4-methylpentylsulfinyl,
5
       1,1-dimethylbutylsulfinyl, 1,2-dimethylbutylsulfinyl,
       1,3-dimethylbutylsulfinyl, 2,2-dimethylbutylsulfinyl,
       2,3-dimethylbutylsulfinyl, 3,3-dimethylbutylsulfinyl,
       1-ethylbutylsulfinyl, 2-ethylbutylsulfinyl,
       1,1,2-trimethylpropylsulfinyl, 1,2,2-trimethylpropylsulfinyl,
10
       1-ethyl-1-methylpropylsulfinyl or
       1-ethyl-2-methylpropylsulfinyl;
       C1-C6-haloalkylsulfinyl: a C1-C6-alkylsulfinyl radical as
15
       mentioned above which is partially or fully substituted by
       fluorine, chlorine, bromine and/or iodine, i.e., for example,
       fluoromethylsulfinyl, difluoromethylsulfinyl,
       trifluoromethylsulfinyl, chlorodifluoromethylsulfinyl,
       bromodifluoromethylsulfinyl, 2-fluoroethylsulfinyl,
20
       2-chloroethylsulfinyl, 2-bromoethylsulfinyl,
       2-iodoethylsulfinyl, 2,2-difluoroethylsulfinyl,
       2,2,2-trifluoroethylsulfinyl, 2,2,2-trichloroethylsulfinyl,
       2-chloro-2-fluoroethylsulfinyl,
       2-chloro-2,2-difluoroethylsulfinyl,
25
       2,2-dichloro-2-fluoroethylsulfinyl, pentafluoroethylsulfinyl,
       2-fluoropropylsulfinyl, 3-fluoropropylsulfinyl,
       2-chloropropylsulfinyl, 3-chloropropylsulfinyl,
       2-bromopropylsulfinyl, 3-bromopropylsulfinyl,
       2,2-difluoropropylsulfinyl, 2,3-difluoropropylsulfinyl,
30
       2,3-dichloropropylsulfinyl, 3,3,3-trifluoropropylsulfinyl,
       3,3,3-trichloropropylsulfinyl,
       2,2,3,3,3-pentafluoropropylsulfinyl,
       heptafluoropropylsulfinyl,
        1-(fluoromethyl)-2-fluoroethylsulfinyl,
35
        1-(chloromethyl)-2-chloroethylsulfinyl,
        1-(bromomethyl)-2-bromoethylsulfinyl, 4-fluorobutylsulfinyl,
        4-chlorobutylsulfinyl, 4-bromobutylsulfinyl,
        nonafluorobutylsulfinyl, 5-fluoropentylsulfinyl,
        5-chloropentylsulfinyl, 5-bromopentylsulfinyl,
40
        5-iodopentylsulfinyl, undecafluoropentylsulfinyl,
        6-fluorohexylsulfinyl, 6-chlorohexylsulfinyl,
        6-bromohexylsulfinyl, 6-iodohexylsulfinyl or
        dodecafluorohexylsulfinyl;
45
        C_1-C_6-alkylsulfonyl (C_1-C_6-alkyl-S(=0)<sub>2</sub>--), and the
        alkylsulfonyl radicals of N-(C_1-C_6-alkylsulfonyl) amino and
        N-(C_1-C_6-alkyl)-N-(C_1-C_6-alkylsulfonyl) amino: for example,
```

```
methylsulfonyl, ethylsulfonyl, propylsulfonyl,
       1-methylethylsulfonyl, butylsulfonyl, 1-methylpropylsulfonyl,
       2-methylpropylsulfonyl, 1,1-dimethylethylsulfonyl,
       pentylsulfonyl, 1-methylbutylsulfonyl, 2-methylbutylsulfonyl,
       3-methylbutylsulfonyl, 1,1-dimethylpropylsulfonyl,
5
       1,2-dimethylpropylsulfonyl, 2,2-dimethylpropylsulfonyl,
       1-ethylpropylsulfonyl, hexylsulfonyl, 1-methylpentylsulfonyl,
       2-methylpentylsulfonyl, 3-methylpentylsulfonyl,
       4-methylpentylsulfonyl, 1,1-dimethylbutylsulfonyl,
       1,2-dimethylbutylsulfonyl, 1,3-dimethylbutylsulfonyl,
10
       2,2-dimethylbutylsulfonyl, 2,3-dimethylbutylsulfonyl,
       3,3-dimethylbutylsulfonyl, 1-ethylbutylsulfonyl,
       2-ethylbutylsulfonyl, 1,1,2-trimethylpropylsulfonyl,
       1,2,2-trimethylpropylsulfonyl, 1-ethyl-1-methylpropylsulfonyl
15
       or 1-ethyl-2-methylpropylsulfonyl;
       C_1-C_6-haloalkylsulfonyl, and the haloalkylsulfonyl radicals of
       N-(C<sub>1</sub>-C<sub>6</sub>-haloalkylsulfonyl)amino and
       N-(C_1-C_6-alkyl)-N-(C_1-C_6-haloalkylsulfonyl) amino: a
20
       C_1-C_6-alkylsulfonyl radical as mentioned above which is
       partially or fully substituted by fluorine, chlorine, bromine
       and/or iodine, i.e., for example, fluoromethylsulfonyl,
       difluoromethylsulfonyl, trifluoromethylsulfonyl,
       chlorodifluoromethylsulfonyl, bromodifluoromethylsulfonyl,
25
       2-fluoroethylsulfonyl, 2-chloroethylsulfonyl,
       2-bromoethylsulfonyl, 2-iodoethylsulfonyl,
       2,2-difluoroethylsulfonyl, 2,2,2-trifluoroethylsulfonyl,
       2-chloro-2-fluoroethylsulfonyl,
       2-chloro-2,2-difluoroethylsulfonyl,
30
        2,2-dichloro-2-fluoroethylsulfonyl,
        2,2,2-trichloroethylsulfonyl, pentafluoroethylsulfonyl,
        2-fluoropropylsulfonyl, 3-fluoropropylsulfonyl,
        2-chloropropylsulfonyl, 3-chloropropylsulfonyl,
        2-bromopropylsulfonyl, 3-bromopropylsulfonyl,
35
        2,2-difluoropropylsulfonyl, 2,3-difluoropropylsulfonyl,
        2,3-dichloropropylsulfonyl, 3,3,3-trifluoropropylsulfonyl,
        3,3,3-trichloropropylsulfonyl,
        2,2,3,3,3-pentafluoropropylsulfonyl,
        heptafluoropropylsulfonyl,
40
        1-(fluoromethyl)-2-fluoroethylsulfonyl,
        1-(chloromethyl)-2-chloroethylsulfonyl,
        1-(bromomethyl)-2-bromoethylsulfonyl, 4-fluorobutylsulfonyl,
        4-chlorobutylsulfonyl, 4-bromobutylsulfonyl,
        nonafluorobutylsulfonyl, 5-fluoropentylsulfonyl,
45
        5-chloropentylsulfonyl, 5-bromopentylsulfonyl,
        5-iodopentylsulfonyl, 6-fluorohexylsulfonyl,
```

6—bromohexylsulfonyl, 6—iodohexylsulfonyl or dodecafluorohexylsulfonyl;

```
C_1-C_6-alkylamino, and the alkylamino radicals of
       N-(C_1-C_6-alkylamino)imino-C_1-C_6-alkyl: for example
       methylamino, ethylamino, propylamino, 1-methylethylamino,
       butylamino, 1-methylpropylamino, 2-methylpropylamino,
       1,1-dimethylethylamino, pentylamino, 1-methylbutylamino,
       2-methylbutylamino, 3-methylbutylamino,
10
       2,2-dimethylpropylamino, 1-ethylpropylamino, hexylamino,
       1,1-dimethylpropylamino, 1,2-dimethylpropylamino,
       1-methylpentylamino, 2-methylpentylamino,
       3-methylpentylamino, 4-methylpentylamino,
       1.1-dimethylbutylamino, 1,2-dimethylbutylamino,
15
       1.3-dimethylbutylamino, 2,2-dimethylbutylamino,
       2,3-dimethylbutylamino, 3,3-dimethylbutylamino,
       1-ethylbutylamino, 2-ethylbutylamino,
       1,1,2-trimethylpropylamino, 1,2,2-trimethylpropylamino,
       1-ethyl-1-methylpropylamino or 1-ethyl-2-methylpropylamino;
20
        (C<sub>1</sub>-C<sub>4</sub>-alkylamino)sulfonyl: for example methylaminosulfonyl,
       ethylaminosulfonyl, propylaminosulfonyl,
        1-methylethylaminosulfonyl, butylaminosulfonyl,
        1-methylpropylaminosulfonyl, 2-methylpropylaminosulfonyl or
25
        1,1-dimethylethylaminosulfonyl;
        (C_1-C_6-alkylamino) sulfonyl: (C_1-C_4-alkylamino) sulfonyl, as
        mentioned above, and also, for example, pentylaminosulfonyl,
        1-methylbutylaminosulfonyl, 2-methylbutylaminosulfonyl,
30
        3-methylbutylaminosulfonyl, 2,2-dimethylpropylaminosulfonyl,
        1-ethylpropylaminosulfonyl, hexylaminosulfonyl,
        1,1-dimethylpropylaminosulfonyl,
        1,2-dimethylpropylaminosulfonyl, 1-methylpentylaminosulfonyl,
        2-methylpentylaminosulfonyl, 3-methylpentylaminosulfonyl,
35
        4-methylpentylaminosulfonyl, 1,1-dimethylbutylaminosulfonyl,
        1,2-dimethylbutylaminosulfonyl,
        1,3-dimethylbutylaminosulfonyl,
        2,2-dimethylbutylaminosulfonyl,
        2,3-dimethylbutylaminosulfonyl,
40
        3,3-dimethylbutylaminosulfonyl, 1-ethylbutylaminosulfonyl,
        2-ethylbutylaminosulfonyl,
        1,1,2-trimethylpropylaminosulfonyl,
        1,2,2-trimethylpropylaminosulfonyl,
        1-ethyl-1-methylpropylaminosulfonyl or
45
        1-ethyl-2-methylpropylaminosulfonyl;
```

```
di-(C_1-C_4-alkyl) aminosulfonyl: for example
       N, N-dimethylaminosulfonyl, N, N-diethylaminosulfonyl,
       N, N-di-(1-methylethyl) aminosulfonyl,
       N, N-dipropylaminosulfonyl, N, N-dibutylaminosulfonyl,
       N, N-di-(1-methylpropyl)aminosulfonyl,
5
       N, N-di-(2-methylpropyl)aminosulfonyl,
       N, N-di-(1,1-dimethylethyl)aminosulfonyl,
       N-ethyl-N-methylaminosulfonyl,
       N-methyl-N-propylaminosulfonyl,
       N-methyl-N-(1-methylethyl)aminosulfonyl,
10
       N-butyl-N-methylaminosulfonyl,
       N-methyl-N-(1-methylpropyl)aminosulfonyl,
       N-methyl-N-(2-methylpropyl)aminosulfonyl,
       N-(1,1-dimethylethyl)-N-methylaminosulfonyl,
15
       N-ethyl-N-propylaminosulfonyl,
       N-ethyl-N-(1-methylethyl)aminosulfonyl,
       N-butyl-N-ethylaminosulfonyl,
       N-ethyl-N-(1-methylpropyl)aminosulfonyl,
       N-ethyl-N-(2-methylpropyl)aminosulfonyl,
       N-ethyl-N-(1,1-dimethylethyl)aminosulfonyl,
20
       N-(1-methylethyl)-N-propylaminosulfonyl,
       N-butyl-N-propylaminosulfonyl,
       N-(1-methylpropyl)-N-propylaminosulfonyl,
       N-(2-methylpropyl)-N-propylaminosulfonyl,
       N-(1,1-dimethylethyl)-N-propylaminosulfonyl, N-butyl-N-
25
       (1-methylethyl)aminosulfonyl,
       N-(1-methylethyl)-N-(1-methylpropyl)aminosulfonyl,
       N-(1-methylethyl)-N-(2-methylpropyl)aminosulfonyl,
       N-(1,1-dimethylethyl)-N-(1-methylethyl)aminosulfonyl,
       N-butyl-N-(1-methylpropyl)aminosulfonyl,
30
       N-butyl-N-(2-methylpropyl)aminosulfonyl,
       N-butyl-N-(1,1-dimethylethyl)aminosulfonyl,
       N-(1-methylpropyl)-N-(2-methylpropyl)aminosulfonyl,
       N-(1,1-dimethylethyl)-N-(1-methylpropyl)aminosulfonyl or
       N-(1,1-dimethylethyl)-N-(2-methylpropyl)aminosulfonyl;
35
       di-(C_1-C_6-alkyl) aminosulfonyl: di-(C_1-C_4-alkyl) aminosulfonyl,
        as mentioned above, and also, for example,
        N-methyl-N-pentylaminosulfonyl,
40
        N-methyl-N-(1-methylbutyl)aminosulfonyl,
        N-methyl-N-(2-methylbutyl)aminosulfonyl,
        N-methyl-N-(3-methylbutyl)aminosulfonyl, N-methyl-N-
        (2,2-dimethylpropyl)aminosulfonyl,
        N-methyl-N-(1-ethylpropyl)aminosulfonyl,
45
        N-methyl-N-hexylaminosulfonyl,
        N-methyl-N-(1,1-dimethylpropyl)aminosulfonyl, N-methyl-
        N-(1,2-dimethylpropyl)aminosulfonyl,
```

```
N-methyl-N-(1-methylpentyl)aminosulfonyl,
       N-methyl-N-(2-methylpentyl)aminosulfonyl,
       N-methyl-N-(3-methylpentyl)aminosulfonyl,
       N-methyl-N-(4-methylpentyl)aminosulfonyl, N-methyl-N-
       (1,1-dimethylbutyl)aminosulfonyl,
5
       N-methyl-N-(1,2-dimethylbutyl)aminosulfonyl,
       N-methyl-N-(1,3-dimethylbutyl)aminosulfonyl,
       N-methyl-N-(2,2-dimethylbutyl)aminosulfonyl,
       N-methyl-N-(2,3-dimethylbutyl)aminosulfonyl, N-methyl-N-
       (3,3-dimethylbutyl)aminosulfonyl,
10
       N-methyl-N-(1-ethylbutyl)aminosulfonyl,
       N-methyl-N-(2-ethylbutyl)aminosulfonyl,
       N-methyl-N-(1,1,2-trimethylpropyl)aminosulfonyl,
       N-methyl-N-(1,2,2-trimethylpropyl)aminosulfonyl,
15
       N-methyl-N-(1-ethyl-1-methylpropyl)aminosulfonyl, N-methyl-N-
       (1-ethyl-2-methylpropyl)aminosulfonyl,
       N-ethyl-N-pentylaminosulfonyl,
       N-ethyl-N-(1-methylbutyl)aminosulfonyl,
       N-ethyl-N-(2-methylbutyl)aminosulfonyl,
20
       N-ethyl-N-(3-methylbutyl)aminosulfonyl,
       N-ethyl-N-(2,2-dimethylpropyl)aminosulfonyl,
       N-ethyl-N-(1-ethylpropyl)aminosulfonyl,
       N-ethyl-N-hexylaminosulfonyl,
       N-ethyl-N-(1,1-dimethylpropyl)aminosulfonyl,
25
       N-ethyl-N-(1,2-dimethylpropyl)aminosulfonyl,
       N-ethyl-N-(1-methylpentyl)aminosulfonyl,
       N-ethyl-N-(2-methylpentyl)aminosulfonyl,
       N-ethyl-N-(3-methylpentyl)aminosulfonyl,
       N-ethyl-N-(4-methylpentyl)aminosulfonyl,
30
       N-ethyl-N-(1,1-dimethylbutyl)aminosulfonyl,
       N-ethyl-N-(1,2-dimethylbutyl)aminosulfonyl,
       N-ethyl-N-(1,3-dimethylbutyl)aminosulfonyl,
       N-ethyl-N-(2,2-dimethylbutyl)aminosulfonyl,
       N-ethyl-N-(2,3-dimethylbutyl)aminosulfonyl,
35
       N-ethyl-N-(3,3-dimethylbutyl)aminosulfonyl,
       N-ethyl-N-(1-ethylbutyl)aminosulfonyl,
       N-ethyl-N-(2-ethylbutyl)aminosulfonyl,
       N-ethyl-N-(1,1,2-trimethylpropyl)aminosulfonyl,
       N-ethyl-N-(1,2,2-trimethylpropyl)aminosulfonyl,
40
       N-ethyl-N-(1-ethyl-1-methylpropyl)aminosulfonyl,
       N-ethyl-N-(1-ethyl-2-methylpropyl)aminosulfonyl,
       N-propyl-N-pentylaminosulfonyl,
       N-butyl-N-pentylaminosulfonyl, N,N-dipentylaminosulfonyl,
       N-propyl-N-hexylaminosulfonyl, N-butyl-N-hexylaminosulfonyl,
       N-pentyl-N-hexylaminosulfonyl or N,N-dihexylaminosulfonyl;
45
```

```
di-(C_1-C_4-alkyl) amino and the dialkylamino radicals of:
       di-(C_1-C_4-alkyl) amino-C_1-C_4-alkoxycarbonyl and
       N-(di-C_1-C_4-alkylamino)imino-C_1-C_6-alkyl for example
       N, N-dimethylamino, N, N-diethylamino, N, N-dipropylamino,
       N, N-di-(1-methylethyl)amino, N, N-dibutylamino,
5
       N, N-di-(1-methylpropyl)amino, N, N-di-(2-methylpropyl)amino,
       N, N-di-(1, 1-dimethylethyl) amino, N-ethyl-N-methylamino,
       N-methyl-N-propylamino, N-methyl-N-(1-methylethyl)amino,
       N-butyl-N-methylamino, N-methyl-N-(1-methylpropyl)amino,
       N-methyl-N-(2-methylpropyl)amino,
10
       N-(1,1-dimethylethyl)-N-methylamino, N-ethyl-N-propylamino,
       N-ethyl-N-(1-methylethyl)amino, N-butyl-N-ethylamino,
       N-ethyl-N-(1-methylpropyl)amino,
       N-ethyl-N-(2-methylpropyl)amino,
15
       N-ethyl-N-(1,1-dimethylethyl)amino,
       N-(1-methylethyl)-N-propylamino, N-butyl-N-propylamino,
       N-(1-methylpropyl)-N-propylamino,
       N-(2-methylpropyl)-N-propylamino,
       N-(1,1-dimethylethyl)-N-propylamino,
       N-butvl-N-(1-methylethyl)amino,
20
        N-(1-methylethyl)-N-(1-methylpropyl)amino,
        N-(1-methylethyl)-N-(2-methylpropyl)amino,
        N-(1,1-dimethylethyl)-N-(1-methylethyl)amino,
        N-butyl-N-(1-methylpropyl)amino,
25
        N-butyl-N-(2-methylpropyl)amino,
        N-butyl-N-(1,1-dimethylethyl)amino,
        N-(1-methylpropyl)-N-(2-methylpropyl)amino,
        N-(1,1-dimethylethyl)-N-(1-methylpropyl)amino or
        N-(1,1-dimethylethyl)-N-(2-methylpropyl)amino;
30
        di-(C_1-C_6-alkyl) amino, and the dialkylamino radicals of
        di-(C_1-C_6-alkyl) amino-imino-C_1-C_6-alkyl: di-(C_1-C_4-alkyl) amino
        as mentioned above, and also N,N-dipentylamino,
        N, N-dihexylamino, N-methyl-N-pentylamino,
35
        N-ethyl-N-pentylamino, N-methyl-N-hexylamino or
        N-ethyl-N-hexylamino;
        C1-C4-alkylcarbonyl: for example methylcarbonyl,
        ethylcarbonyl, propylcarbonyl, 1-methylethylcarbonyl,
40
        butylcarbonyl, 1-methylpropylcarbonyl, 2-methylpropylcarbonyl
        or 1,1-dimethylethylcarbonyl;
        C1-C6-alkylcarbonyl, and the alkylcarbonyl radicals of
        phenoxy-C<sub>1</sub>-C<sub>6</sub>-alkylcarbonyl,
45
        heterocyclyloxy-C_1-C_6-alkylcarbonyl, C_1-C_6-alkylcarbonylamino,
        C_1-C_6-alkylcarbonyl-C_1-C_6-alkyl: C_1-C_4-alkylcarbonyl, as
```

```
18
       mentioned above, and also, for example, pentylcarbonyl,
       1-methylbutylcarbonyl, 2-methylbutylcarbonyl,
       3-methylbutylcarbonyl, 2,2-dimethylpropylcarbonyl,
       1-ethylpropylcarbonyl, hexylcarbonyl,
       1,1-dimethylpropylcarbonyl, 1,2-dimethylpropylcarbonyl,
5
       1-methylpentylcarbonyl, 2-methylpentylcarbonyl,
       3-methylpentylcarbonyl, 4-methylpentylcarbonyl,
       1,1-dimethylbutylcarbonyl, 1,2-dimethylbutylcarbonyl,
       1,3-dimethylbutylcarbonyl, 2,2-dimethylbutylcarbonyl,
       2,3-dimethylbutylcarbonyl, 3,3-dimethylbutylcarbonyl,
10
       1-ethylbutylcarbonyl, 2-ethylbutylcarbonyl,
       1,1,2-trimethylpropylcarbonyl, 1,2,2-trimethylpropylcarbonyl,
       1-ethyl-1-methylpropylcarbonyl or
       1-ethyl-2-methylpropylcarbonyl;
15
       C_1-C_{20}-alkylcarbonyl: C_1-C_6-alkylcarbonyl, as mentioned above,
       and also heptylcarbonyl, octylcarbonyl, pentadecylcarbonyl or
       heptadecylcarbonyl;
20
       C_1-C_6-haloalkylcarbonyl: a C_1-C_6-alkylcarbonyl radical as
       mentioned above which is partially or fully substituted by
       fluorine, chlorine, bromine and/or iodine, i.e., for example,
       chloroacetyl, dichloroacetyl, trichloroacetyl, fluoroacetyl,
       difluoroacetyl, trifluoroacetyl, chlorofluoroacetyl,
25
       dichlorofluoroacetyl, chlorodifluoroacetyl,
       2-fluoroethylcarbonyl, 2-chloroethylcarbonyl,
       2-bromoethylcarbonyl, 2-iodoethylcarbonyl,
       2,2-difluoroethylcarbonyl, 2,2,2-trifluoroethylcarbonyl,
       2-chloro-2-fluoroethylcarbonyl,
30
       2-chloro-2,2-difluoroethylcarbonyl,
       2,2-dichloro-2-fluoroethylcarbonyl,
       2,2,2-trichloroethylcarbonyl, pentafluoroethylcarbonyl,
        2-fluoropropylcarbonyl, 3-fluoropropylcarbonyl,
        2,2-difluoropropylcarbonyl, 2,3-difluoropropylcarbonyl,
35
        2-chloropropylcarbonyl, 3-chloropropylcarbonyl,
        2,3-dichloropropylcarbonyl, 2-bromopropylcarbonyl,
        3-bromopropylcarbonyl, 3,3,3-trifluoropropylcarbonyl,
        3,3,3-trichloropropylcarbonyl,
        2,2,3,3,3-pentafluoropropylcarbonyl,
40
        heptafluoropropylcarbonyl,
        1-(fluoromethyl)-2-fluoroethylcarbonyl,
        1-(chloromethyl)-2-chloroethylcarbonyl,
        1-(bromomethyl)-2-bromoethylcarbonyl, 4-fluorobutylcarbonyl,
        4-chlorobutylcarbonyl, 4-bromobutylcarbonyl,
45
        nonafluorobutylcarbonyl, 5-fluoropentylcarbonyl,
        5-chloropentylcarbonyl, 5-bromopentylcarbonyl,
        Perfluoropentylcarbonyl, 6-fluorohexylcarbonyl,
```

```
19
```

6-chlorohexylcarbonyl, 6-bromohexylcarbonyl or Perfluorohexylcarbonyl;

- C₁-C₄-alkoxycarbonyl, and the alkoxycarbonyl moieties of di-(C₁-C₄-alkyl)amino-C₁-C₄-alkoxycarbonyl, for example methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl, 1-methylethoxycarbonyl, butoxycarbonyl, 1-methylpropoxycarbonyl, 2-methylpropoxycarbonyl or 1,1-dimethylethoxycarbonyl;
 - $(C_1-C_6-alkoxy)$ carbonyl, and the alkoxycarbonyl moieties of $C_1-C_6-alkoxy$ carbonyloxy: $(C_1-C_4-alkoxy)$ carbonyl, as mentioned above, and also, for example, pentoxycarbonyl,
- 1-methylbutoxycarbonyl, 2-methylbutoxycarbonyl,
 3-methylbutoxycarbonyl, 2,2-dimethylpropoxycarbonyl,
 1-ethylpropoxycarbonyl, hexoxycarbonyl,
 1,1-dimethylpropoxycarbonyl, 2-methylpropoxycarbonyl,
 1-methylpropoxycarbonyl, 2-methylpropoxycarbonyl
- 1-methylpentoxycarbonyl, 2-methylpentoxycarbonyl,
 3-methylpentoxycarbonyl, 4-methylpentoxycarbonyl,
 1,1-dimethylbutoxycarbonyl, 1,2-dimethylbutoxycarbonyl,
 - 1,3-dimethylbutoxycarbonyl, 2,2-dimethylbutoxycarbonyl, 2,3-dimethylbutoxycarbonyl, 3,3-dimethylbutoxycarbonyl,
 - 1-ethylbutoxycarbonyl, 2-ethylbutoxycarbonyl,
- 1,1,2-trimethylpropoxycarbonyl,
 1,2,2-trimethylpropoxycarbonyl,
 1-ethyl-1-methylpropoxycarbonyl or
 1-ethyl-2-methylpropoxycarbonyl;
- 30 C₁-C₆-haloalkoxycarbonyl: a C₁-C₆-alkoxycarbonyl radical as mentioned above which is partially or fully substituted by fluorine, chlorine, bromine and/or iodine, i.e., for example, fluoromethoxycarbonyl, difluoromethoxycarbonyl, trifluoromethoxycarbonyl, chlorodifluoromethoxycarbonyl,
- bromodifluoromethoxycarbonyl, 2-fluoroethoxycarbonyl, 2-chloroethoxycarbonyl, 2-bromoethoxycarbonyl, 2-iodoethoxycarbonyl, 2,2-difluoroethoxycarbonyl, 2,2-trifluoroethoxycarbonyl, 2-chloro-
- 2-fluoroethoxycarbonyl, 2-chloro-2,2-difluoroethoxycarbonyl, 2,2-dichloro-2-fluoroethoxycarbonyl,
- 2,2,2-trichloroethoxycarbonyl, pentafluoroethoxycarbonyl,
 2-fluoropropoxycarbonyl, 3-fluoropropoxycarbonyl,
 2-chloropropoxycarbonyl, 3-chloropropoxycarbonyl,
 2-bromopropoxycarbonyl, 3-bromopropoxycarbonyl,
- 2,2—difluoropropoxycarbonyl, 2,3—difluoropropoxycarbonyl, 2,3—dichloropropoxycarbonyl, 3,3,3—trichloropropoxycarbonyl,

```
2,2,3,3,3-pentafluoropropoxycarbonyl,
       heptafluoropropoxycarbonyl,
       1-(fluoromethyl)-2-fluoroethoxycarbonyl,
       1-(chloromethyl)-2-chloroethoxycarbonyl,
       1-(bromomethyl)-2-bromethoxycarbonyl, 4-fluorobutoxycarbonyl,
5
       4-chlorobutoxycarbonyl, 4-bromobutoxycarbonyl,
       4-iodobutoxycarbonyl, 5-fluoropentoxycarbonyl,
       5-chloropentoxycarbonyl, 5-bromopentoxycarbonyl,
       6-fluorohexoxycarbonyl, 6-chlorohexoxycarbonyl or
       6-bromohexoxycarbonyl;
10
       (C<sub>1</sub>-C<sub>4</sub>-alkyl)carbonyloxy: acetyloxy, ethylcarbonyloxy,
       propylcarbonyloxy, 1-methylethylcarbonyloxy,
       butylcarbonyloxy, 1-methylpropylcarbonyloxy,
15
       2-methylpropylcarbonyloxy or 1,1-dimethylethylcarbonyloxy;
        (C1-C4-alkylamino)carbonyl: for example methylaminocarbonyl,
       ethylaminocarbonyl, propylaminocarbonyl,
        1-methylethylaminocarbonyl, butylaminocarbonyl,
20
        1-methylpropylaminocarbonyl, 2-methylpropylaminocarbonyl or
        1,1-dimethylethylaminocarbonyl;
        (C_1-C_6-alkylamino) carbonyl: (C_1-C_4-alkylamino) carbonyl, as
        mentioned above, and also, for example, pentylaminocarbonyl,
25
        1-methylbutylaminocarbonyl, 2-methylbutylaminocarbonyl,
        3-methylbutylaminocarbonyl, 2,2-dimethylpropylaminocarbonyl,
        1-ethylpropylaminocarbonyl, hexylaminocarbonyl,
        1,1-dimethylpropylaminocarbonyl,
        1,2-dimethylpropylaminocarbonyl, 1-methylpentylaminocarbonyl,
30
        2-methylpentylaminocarbonyl, 3-methylpentylaminocarbonyl,
        4-methylpentylaminocarbonyl, 1,1-dimethylbutylaminocarbonyl,
        1,2-dimethylbutylaminocarbonyl,
        1,3-dimethylbutylaminocarbonyl,
        2,2-dimethylbutylaminocarbonyl,
35
        2,3-dimethylbutylaminocarbonyl,
        3,3-dimethylbutylaminocarbonyl, 1-ethylbutylaminocarbonyl,
        2-ethylbutylaminocarbonyl,
        1,1,2-trimethylpropylaminocarbonyl,
        1,2,2-trimethylpropylaminocarbonyl,
40
        1-ethyl-1-methylpropylaminocarbonyl or
        1-ethyl-2-methylpropylaminocarbonyl;
        di-(C1-C4-alkyl)aminocarbonyl: for example
        N, N-dimethylaminocarbonyl, N, N-diethylaminocarbonyl,
45
        N, N-di-(1-methylethyl)aminocarbonyl,
        N, N-dipropylaminocarbonyl, N, N-dibutylaminocarbonyl,
```

t.

```
N, N-di-(1-methylpropyl)aminocarbonyl,
       N, N-di-(2-methylpropyl)aminocarbonyl,
       N, N-di-(1, 1-dimethylethyl) aminocarbonyl,
       N-ethyl-N-methylaminocarbonyl,
       N-methyl-N-propylaminocarbonyl,
5
       N-methyl-N-(1-methylethyl)aminocarbonyl,
       N-butyl-N-methylaminocarbonyl,
       N-methyl-N-(1-methylpropyl)aminocarbonyl,
       N-methyl-N-(2-methylpropyl)aminocarbonyl,
       N-(1,1-dimethylethyl)-N-methylaminocarbonyl,
10
       N-ethyl-N-propylaminocarbonyl,
       N-ethyl-N-(1-methylethyl)aminocarbonyl,
       N-butyl-N-ethylaminocarbonyl,
       N-ethyl-N-(1-methylpropyl)aminocarbonyl,
       N-ethyl-N-(2-methylpropyl)aminocarbonyl,
15
       N-ethyl-N-(1,1-dimethylethyl)aminocarbonyl,
       N-(1-methylethyl)-N-propylaminocarbonyl,
       N-butyl-N-propylaminocarbonyl,
       N-(1-methylpropyl)-N-propylaminocarbonyl,
       N-(2-methylpropyl)-N-propylaminocarbonyl,
20
       N-(1,1-dimethylethyl)-N-propylaminocarbonyl,
       N-butyl-N-(1-methylethyl)aminocarbonyl,
       N-(1-methylethyl)-N-(1-methylpropyl)aminocarbonyl,
       N-(1-methylethyl)-N-(2-methylpropyl)aminocarbonyl,
       N-(1,1-dimethylethyl)-N-(1-methylethyl)aminocarbonyl,
25
       N-butyl-N-(1-methylpropyl)aminocarbonyl,
       N-butyl-N-(2-methylpropyl)aminocarbonyl,
        N-butyl-N-(1,1-dimethylethyl)aminocarbonyl,
        N-(1-methylpropyl)-N-(2-methylpropyl)aminocarbonyl,
        N-(1,1-dimethylethyl)-N-(1-methylpropyl)aminocarbonyl or
30
        N-(1,1-dimethylethyl)-N-(2-methylpropyl)aminocarbonyl;
        di-(C_1-C_6-alkyl) aminocarbonyl: di-(C_1-C_4-alkyl) aminocarbonyl,
        as mentioned above, and also, for example,
35
        N-methyl-N-pentylaminocarbonyl,
        N-methyl-N-(1-methylbutyl)aminocarbonyl,
        N-methyl-N-(2-methylbutyl)aminocarbonyl,
        N-methyl-N-(3-methylbutyl)aminocarbonyl, N-methyl-N-
        (2,2-dimethylpropyl)aminocarbonyl,
40
        N-methyl-N-(1-ethylpropyl)aminocarbonyl,
        N-methyl-N-hexylaminocarbonyl,
        N-methyl-N-(1,1-dimethylpropyl)aminocarbonyl, N-methyl-N-
        (1,2-dimethylpropyl)aminocarbonyl,
        N-methyl-N-(1-methylpentyl)aminocarbonyl,
45
        N-methyl-N-(2-methylpentyl)aminocarbonyl,
        N-methyl-N-(3-methylpentyl)aminocarbonyl,
        N-methyl-N-(4-methylpentyl)aminocarbonyl, N-methyl-N-
```

```
(1,1-dimethylbutyl)aminocarbonyl,
      N-methyl-N-(1,2-dimethylbutyl)aminocarbonyl,
      N-methyl-N-(1,3-dimethylbutyl)aminocarbonyl,
      N-methyl-N-(2,2-dimethylbutyl)aminocarbonyl,
       N-methyl-N-(2,3-dimethylbutyl)aminocarbonyl, N-methyl-N-
5
       (3,3-dimethylbutyl)aminocarbonyl,
       N-methyl-N-(1-ethylbutyl)aminocarbonyl,
       N-methyl-N-(2-ethylbutyl)aminocarbonyl,
       N-methyl-N-(1,1,2-trimethylpropyl)aminocarbonyl,
       N-methyl-N-(1,2,2-trimethylpropyl)aminocarbonyl, N-methyl-
10
       N-(1-ethyl-1-methylpropyl)aminocarbonyl, N-methyl-N-(1-
       ethyl-2-methylpropyl)aminocarbonyl,
       N-ethyl-N-pentylaminocarbonyl,
       N-ethyl-N-(1-methylbutyl)aminocarbonyl, N-ethyl-
15
       N-(2-methylbutyl)aminocarbonyl,
       N-ethyl-N-(3-methylbutyl)aminocarbonyl,
       N-ethyl-N-(2,2-dimethylpropyl)aminocarbonyl,
       N-ethyl-N-(1-ethylpropyl)aminocarbonyl,
       N-ethyl-N-hexylaminocarbonyl,
       N-ethyl-N-(1,1-dimethylpropyl)aminocarbonyl,
20
       N-ethyl-N-(1,2-dimethylpropyl)aminocarbonyl,
       N-ethyl-N-(1-methylpentyl)aminocarbonyl,
       N-ethyl-N-(2-methylpentyl)aminocarbonyl,
       N-ethyl-N-(3-methylpentyl)aminocarbonyl,
       N-ethyl-N-(4-methylpentyl)aminocarbonyl,
25
       N-ethyl-N-(1,1-dimethylbutyl)aminocarbonyl,
       N-ethyl-N-(1,2-dimethylbutyl)aminocarbonyl,
       N-ethyl-N-(1,3-dimethylbutyl)aminocarbonyl,
       N-ethyl-N-(2,2-dimethylbutyl)aminocarbonyl, N-ethyl-N-(2,3-
       dimethylbutyl)aminocarbonyl,
30
       N-ethyl-N-(3,3-dimethylbutyl)aminocarbonyl,
       N-ethyl-N-(1-ethylbutyl)aminocarbonyl,
        N-ethyl-N-(2-ethylbutyl)aminocarbonyl,
        N-ethyl-N-(1,1,2-trimethylpropyl)aminocarbonyl,
        N-ethyl-N-(1,2,2-trimethylpropyl)aminocarbonyl,
35
        N-ethyl-N-(1-ethyl-1-methylpropyl)aminocarbonyl,
        N-ethyl-N-(1-ethyl-2-methylpropyl)aminocarbonyl,
        N-Propyl-N-pentylaminocarbonyl,
        N-butyl-N-pentylaminocarbonyl, N,N-dipentylaminocarbonyl,
        N-Propyl-N-hexylaminocarbonyl, N-butyl-N-hexylaminocarbonyl,
40
        N-pentyl-N-hexylaminocarbonyl or N,N-dihexylaminocarbonyl;
        di-(C1-C6-alkyl)aminothiocarbonyl: for example
        N, N-dimethylaminothiocarbonyl, N, N-diethylaminothiocarbonyl,
45
        N, N-di-(1-methylethyl)aminothiocarbonyl,
        N, N-dipropylaminothiocarbonyl, N, N-dibutylaminothiocarbonyl,
        N, N-di-(1-methylpropyl)aminothiocarbonyl,
```

```
23
       N, N-di-(2-methylpropyl)aminothiocarbonyl,
       N, N-di-(1, 1-dimethylethyl) aminothiocarbonyl,
       N-ethyl-N-methylaminothiocarbonyl,
       N-methyl-N-propylaminothiocarbonyl,
       N-methyl-N-(1-methylethyl)aminothiocarbonyl,
5
       N-butyl-N-methylaminothiocarbonyl,
       N-methyl-N-(1-methylpropyl)aminothiocarbonyl,
       N-methyl-N-(2-methylpropyl)aminothiocarbonyl,
       N-(1,1-dimethylethyl)-N-methylaminothiocarbonyl,
       N-ethyl-N-propylaminothiocarbonyl,
10
       N-ethyl-N-(1-methylethyl)aminothiocarbonyl,
       N-butyl-N-ethylaminothiocarbonyl,
       N-ethyl-N-(1-methylpropyl)aminothiocarbonyl,
       N-ethyl-N-(2-methylpropyl)-aminothiocarbonyl, N-ethyl-N-
       (1,1-dimethylethyl)-aminothiocarbonyl, N-(1-methylethyl)-
15
       N-propylaminothiocarbonyl, N-butyl-N-propylaminothiocarbonyl,
       N-(1-methylpropyl)-N-propylaminothiocarbonyl,
       N-(2-methylpropyl)-N-propylaminothiocarbonyl,
       N-(1,1-dimethylethyl)-N-propylaminothiocarbonyl,
       N-butyl-N-(1-methylethyl)aminothiocarbonyl,
20
       N-(1-methylethyl)-N-(1-methylpropyl)aminothiocarbonyl,
       N-(1-methylethyl)-N-(2-methylpropyl) aminothiocarbonyl,
       N-(1,1-dimethylethyl)-N-(1-methylethyl) aminothiocarbonyl,
       N-butyl-N-(1-methylpropyl)aminothiocarbonyl,
       N-butyl-N-(2-methylpropyl)aminothiocarbonyl, N-butyl-N-
25
       (1,1-dimethylethyl)aminothiocarbonyl, N-(1-methylpropyl)-
       N-(2-methylpropyl)aminothiocarbonyl,
       N-(1,1-dimethylethyl)-N-(1-methylpropyl) aminothiocarbonyl,
       N-(1,1-dimethylethyl)-N-(2-methylpropyl)aminothiocarbonyl,
        N-methyl-N-pentylaminothiocarbonyl,
30
        N-methyl-N-(1-methylbutyl)aminothiocarbonyl,
        N-methyl-N-(2-methylbutyl)aminothiocarbonyl,
        N-methyl-N-(3-methylbutyl)aminothiocarbonyl, N-methyl-N-
        (2,2-dimethylpropyl)aminothiocarbonyl,
        N-methyl-N-(1-ethylpropyl)aminothiocarbonyl,
35
        N-methyl-N-hexylaminothiocarbonyl,
        N-methyl-N-(1,1-dimethylpropyl)aminothiocarbonyl, N-methyl-
        N-(1,2-dimethylpropyl)aminothiocarbonyl, N-methyl-N-
        (1-methylpentyl)aminothiocarbonyl,
        N-methyl-N-(2-methylpentyl)aminothiocarbonyl,
40
        N-methyl-N-(3-methylpentyl)aminothiocarbonyl,
        N-methyl-N-(4-methylpentyl)aminothiocarbonyl,
        N-methyl-N-(1,1-dimethylbutyl)aminothiocarbonyl, N-methyl-
        N-(1,2-dimethylbutyl)aminothiocarbonyl,
        N-methyl-N-(1,3-dimethylbutyl)aminothiocarbonyl,
 45
        N-methyl-N-(2,2-dimethylbutyl)aminothiocarbonyl,
        N-methyl-N-(2,3-dimethylbutyl)aminothiocarbonyl,
```

```
24
```

```
N-methyl-N-(3,3-dimethylbutyl)aminothiocarbonyl,
       N-methyl-N-(1-ethylbutyl)aminothiocarbonyl,
       N-methyl-N-(2-ethylbutyl)aminothiocarbonyl, N-methyl-N-ethyl-
       N-(1,1,2-trimethylpropyl)aminothiocarbonyl, N-methyl-N-
       (1,2,2-trimethylpropyl)aminothiocarbonyl, N-methyl-N-(1-
5
       ethyl-1-methylpropyl)aminothiocarbonyl, N-methyl-N-(1-ethyl-
       2-methylpropyl)aminothiocarbonyl,
       N-ethyl-N-pentylaminothiocarbonyl,
       N-ethyl-N-(1-methylbutyl)aminothiocarbonyl,
       N-\text{ethyl-}N-(2-\text{methylbutyl}) aminothiocarbonyl, N-\text{ethyl-}N-(3-\text{methyl-}N)
10
       methylbutyl) aminothiocarbonyl,
       N-ethyl-N-(2,2-dimethylpropyl)aminothiocarbonyl,
       N-ethyl-N-(1-ethylpropyl)aminothiocarbonyl,
       N-ethyl-N-hexylaminothiocarbonyl, N-ethyl-N-
       (1,1-dimethylpropyl)aminothiocarbonyl, N-ethyl-N-(1,2-
15
       dimethylpropyl)aminothiocarbonyl,
       N-ethyl-N-(1-methylpentyl)aminothiocarbonyl,
       N-ethyl-N-(2-methylpentyl)aminothiocarbonyl,
       N-ethyl-N-(3-methylpentyl)aminothiocarbonyl,
       N-ethyl-N-(4-methylpentyl)aminothiocarbonyl, N-ethyl-N-
20
        (1,1-dimethylbutyl)aminothiocarbonyl, N-ethyl-N-(1,2-
        dimethylbutyl)aminothiocarbonyl,
        N-ethyl-N-(1,3-dimethylbutyl)aminothiocarbonyl,
        N-ethyl-N-(2,2-dimethylbutyl)aminothiocarbonyl,
        N-ethyl-N-(2,3-dimethylbutyl)aminothiocarbonyl,
25
        N-ethyl-N-(3,3-dimethylbutyl)aminothiocarbonyl,
        N-ethyl-N-(1-ethylbutyl)aminothiocarbonyl, N-ethyl-N-(2-
        ethylbutyl)aminothiocarbonyl,
        N-ethyl-N-(1,1,2-trimethylpropyl)aminothiocarbonyl,
        N-ethyl-N-(1,2,2-trimethylpropyl)aminothiocarbonyl,
30
        N-ethyl-N-(1-ethyl-1-methylpropyl)aminothiocarbonyl,
        N-ethyl-N-(1-ethyl-2-methylpropyl)aminothiocarbonyl,
        N-Propyl-N-pentylaminothiocarbonyl,
        N-butyl-N-pentylaminothiocarbonyl,
        N, N-dipentylaminothiocarbonyl,
35
        N-Propyl-N-hexylaminothiocarbonyl,
        N-butyl-N-hexylaminothiocarbonyl,
        N-pentyl-N-hexylaminothiocarbonyl or
        N, N-dihexylaminothiocarbonyl;
40
        C_1-C_4-alkoxy-C_1-C_4-alkyl: C_1-C_4-alkyl which is substituted by
        C_1-C_4-alkoxy as mentioned above, i.e., for example,
        methoxymethyl, ethoxymethyl, propoxymethyl,
        (1-methylethoxy) methyl, butoxymethyl,
 45
        (1-methylpropoxy)methyl, (2-methylpropoxy)methyl,
        (1,1-dimethylethoxy)methyl, 2-(methoxy)ethyl,
        2-(ethoxy)ethyl, 2-(propoxy)ethyl, 2-(1-methylethoxy)ethyl,
```

```
2-(butoxy)ethyl, 2-(1-methylpropoxy)ethyl,
       2-(2-methylpropoxy)ethyl, 2-(1,1-dimethylethoxy)ethyl,
       2-(methoxy)-propyl, 2-(ethoxy)propyl, 2-(propoxy)propyl,
       2-(1-methylethoxy)propyl, 2-(butoxy)propyl,
       2-(1-methylpropoxy)propyl, 2-(2-methylpropoxy)propyl,
5
       2-(1,1-dimethylethoxy)propyl, 3-(methoxy)propyl,
       3-(ethoxy)propyl, 3-(propoxy)propyl,
       3-(1-methylethoxy)propyl, 3-(butoxy)propyl,
       3-(1-methylpropoxy)propyl, 3-(2-methylpropoxy)propyl,
       3-(1,1-dimethylethoxy)propyl, 2-(methoxy)butyl,
10
       2-(ethoxy)butyl, 2-(propoxy)butyl, 2-(1-methylethoxy)butyl,
       2-(butoxy)butyl, 2-(1-methylpropoxy)butyl,
       2-(2-methylpropoxy)butyl, 2-(1,1-dimethylethoxy)butyl,
       3-(methoxy)butyl, 3-(ethoxy)butyl, 3-(propoxy)butyl,
       3-(1-methylethoxy)butyl, 3-(butoxy)butyl,
15
       3-(1-methylpropoxy)butyl, 3-(2-methylpropoxy)butyl,
       3-(1,1-dimethylethoxy)butyl, 4-(methoxy)butyl, 4-(ethoxy)-
       butyl, 4-(propoxy)butyl, 4-(1-methylethoxy)butyl,
       4-(butoxy)butyl, 4-(1-methylpropoxy)butyl,
       4-(2-methylpropoxy)butyl or 4-(1,1-dimethylethoxy)butyl;
20
       C_1-C_4-alkoxy-C_1-C_4-alkoxy, and the alkoxyalkoxy moieties of
       C_1-C_4-alkoxy-C_1-C_4-alkoxycarbonyl: C_1-C_4-alkoxy which is
       substituted by C_1-C_4-alkoxy as mentioned above, i.e., for
25
       example, methoxymethoxy, ethoxymethoxy, propoxymethoxy,
        (1-methylethoxy) methoxy, butoxymethoxy,
        (1-methylpropoxy)methoxy, (2-methylpropoxy)methoxy,
        (1,1-dimethylethoxy) methoxy, 2-(methoxy) ethoxy,
        2-(ethoxy)ethoxy, 2-(propoxy)ethoxy,
30
        2-(1-methylethoxy)ethoxy, 2-(butoxy)ethoxy,
        2-(1-methylpropoxy)ethoxy, 2-(2-methylpropoxy)ethoxy,
        2-(1,1-dimethylethoxy)ethoxy, 2-(methoxy)propoxy,
        2-(ethoxy)propoxy, 2-(propoxy)propoxy,
        2-(1-methylethoxy)propoxy, 2-(butoxy)propoxy,
35
        2-(1-methylpropoxy)propoxy, 2-(2-methylpropoxy)propoxy,
        2-(1,1-dimethylethoxy)propoxy, 3-(methoxy)propoxy,
        3-(ethoxy)propoxy, 3-(propoxy)propoxy, 3-(1-methylethoxy)-
        propoxy, 3-(butoxy)propoxy, 3-(1-methylpropoxy)propoxy,
        3-(2-methylpropoxy)propoxy, 3-(1,1-dimethylethoxy)propoxy,
40
        2-(methoxy)butoxy, 2-(ethoxy)butoxy, 2-(propoxy)butoxy,
        2-(1-methylethoxy)butoxy, 2-(butoxy)butoxy,
        2-(1-methylpropoxy)butoxy, 2-(2-methylpropoxy)butoxy,
        2-(1,1-dimethylethoxy)butoxy, 3-(methoxy)butoxy,
        3-(ethoxy)butoxy, 3-(propoxy)butoxy,
45
        3-(1-methylethoxy)butoxy, 3-(butoxy)butoxy,
        3-(1-methylpropoxy)butoxy, 3-(2-methylpropoxy)butoxy,
        3-(1,1-dimethylethoxy)butoxy, 4-(methoxy)butoxy,
```

```
26
```

```
4-(ethoxy)butoxy, 4-(propoxy)butoxy,
       4-(1-methylethoxy)butoxy, 4-(butoxy)butoxy,
       4-(1-methylpropoxy)butoxy, 4-(2-methylpropoxy)butoxy or
       4-(1,1-dimethylethoxy)butoxy;
5
       C3-C6-alkenyl, and the alkenyl moieties of
       C_3-C_6-alkenylcarbonyl, C_3-C_6-alkenyloxy,
       C_3-C_6-alkenyloxycarbonyl, C_3-C_6-alkenylaminocarbonyl,
       N-(C_3-C_6-alkenyl)-N-(C_1-C_6alkyl) aminocarbonyl,
10
       N-(C_3-C_6-alkenyl)-N-(C_1-C_6-alkoxy) aminocarbonyl: for example
       prop-2-en-1-yl, but-1-en-4-yl, 1-methyl-prop-2-en-1-yl,
       2-methylprop-2-en-1-y1, 2-buten-1-y1, 1-penten-3-y1,
       1-penten-4-yl, 2-penten-4-yl, 1-methylbut-2-en-1-yl,
       2-methylbut-2-en-1-yl, 3-methylbut-2-en-1-yl,
15
       1-methylbut-3-en-1-yl, 2-methylbut-3-en-1-yl,
       3-methylbut-3-en-1-yl, 1,1-dimethylprop-2-en-1-yl,
       1,2-dimethylprop-2-en-1-yl, 1-ethylprop-2-en-1-yl,
       hex-3-en-1-y1, hex-4-en-1-y1, hex-5-en-1-y1,
        1-methylpent-3-en-1-yl, 2-methylpent-3-en-1-yl,
20
       3-methylpent-3-en-1-yl, 4-methylpent-3-en-1-yl,
        1-methylpent-4-en-1-y1, 2-methylpent-4-en-1-y1,
        3-methylpent-4-en-1-yl, 4-methylpent-4-en-1-yl,
        1,1-dimethylbut-2-en-1-yl, 1,1-dimethylbut-3-en-1-yl,
        1,2-dimethylbut-2-en-1-yl, 1,2-dimethylbut-3-en-1-yl,
25
        1,3-dimethylbut-2-en-1-yl, 1,3-dimethylbut-3-en-1-yl,
        2,2-dimethylbut-3-en-1-yl, 2,3-dimethylbut-2-en-1-yl,
        2.3—dimethylbut-3—en-1-yl, 3.3—dimethylbut-2—en-1-yl,
        1-ethylbut-2-en-1-yl, 1-ethylbut-3-en-1-yl,
        2-ethylbut-2-en-1-yl, 2-ethylbut-3-en-1-yl,
30
        1,1,2-trimethylprop-2-en-1-yl, 1-ethyl-1-methylprop-2-en-1-yl
        or 1-ethyl-2-methylprop-2-en-1-yl;
        C2-C6-alkenyl, and the alkenyl moieties of
        C_2-C_6-alkenylcarbonyl, phenyl-C_2-C_6-alkenylcarbonyl and
35
        heterocyclyl-C_2-C_6-alkenylcarbonyl: C_3-C_6-alkenyl as mentioned
        above, and also ethenyl;
        C_3-C_6-haloalkenyl: a C_3-C_6-alkenyl radical as mentioned above
        which is partially or fully substituted by fluorine,
40
        chlorine, bromine and/or iodine, i.e., for example,
        2-chloroallyl, 3-chloroallyl, 2,3-dichloroallyl,
        3,3-dichloroallyl, 2,3,3-trichloroallyl,
        2.3-dichlorobut-2-enyl, 2-bromoallyl, 3-bromoallyl,
        2,3-dibromoally1, 3,3-dibromoally1, 2,3,3-tribromoally1 or
45
        2,3-dibromobut-2-enyl;
```

27

```
C_3-C_6-alkynyl, and the alkyinyl moieties of
       C<sub>3</sub>-C<sub>6</sub>-alkynylcarbonyl, C<sub>3</sub>-C<sub>6</sub>-alkynyloxy,
       C3-C6-alkynyloxycarbonyl, C3-C6-alkynylaminocarbonyl,
       N-(C_3-C_6-alkynyl)-N-(C_1-C_6-alkyl) aminocarbonyl,
       N-(C_3-C_6-alkynyl)-N-(C_1-C_6-alkoxyaminocarbonyl: for example
5
       propargyl, but-1-yn-3-y1, but-1-yn-4-y1, but-2-yn-1-y1,
       pent-1-yn-3-y1, pent-1-yn-4-y1, pent-1-yn-5-y1,
       pent-2-yn-1-yl, pent-2-yn-4-yl, pent-2-yn-5-yl,
       3-methyl-but-1-yn-3-yl, 3-methylbut-1-yn-4-yl, hex-1-yn-3-yl
       y1, hex-2-yn-4-y1, hex-2-yn-5-y1, hex-2-yn-6-y1,
```

y1, hex-1-yn-4-y1, hex-1-yn-5-y1, hex-1-yn-6-y1, hex-2-yn-1-y110 hex-3-yn-1-y1, hex-3-yn-2-y1, 3-methylpent-1-yn-3-y1, 3-methylpent-1-yn-4-yl, 3-methylpent-1-yn-5-yl, 4-methylpent-2-yn-4-yl or 4-methylpent-2-yn-5-yl;

- C2-C6-alkynyl, and the alkynyl moieties of $C_2-C_6-alkynylcarbonyl:$ $C_3-C_6-alkynyl$ as mentioned above, and also ethynyl;
- 20 C₃-C₆-haloalkynyl: a C₃-C₆-alkynyl radical as mentioned above which is partially or fully substitued by fluorine, chlorine, bromine and/or iodine, i.e., for example, 1,1-difluoroprop-2-yn-1-yl, 3-iodoprop-2-yn-1-yl, 4-fluorobut-2-yn-1-yl, 4-chlorobut-2-yn-1-yl,
- 25 1,1-difluorobut-2-yn-1-yl, 4-iodobut-3-yn-1-yl, 5-fluoropent-3-yn-1-yl, 5-iodopent-4-yn-1-yl, 6-fluorohex-4-yn-1-yl or 6-iodohex-5-yn-1-yl;
- C3-C6-cycloalkyl, and the cycloalkyl moieties of 30 -C3-C6-cycloalkylcarbonyl: for example cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl;
- heterocyclyl, and the heterocyclyl moieties of heterocyclylcarbonyl, heterocyclyl-C1-C6-alkyl, 35 heterocyclyloxy, heterocyclylthio, heterocyclyloxyalkylcarbonyl, heterocyclyloxycarbonyl, $\label{lem:heterocyclyloxythiocarbonyl, heterocyclylcarbonyl-C_1-C_6-alkyl, heterocyclylcarbonyl-C_1$ $N-(C_1-C_6-alkyl)-N-(heterocyclyl)$ aminocarbonyl,
- heterocyclylaminocarbonyl: a saturated, partially saturated 40 or unsaturated 5- or 6-membered heterocyclic ring which is attached via a carbon and has one to four identical or different hetero atoms selected from the following group: oxygen, sulfur or nitrogen, i.e., for example, 5-membered rings having a hetero atom such as, for example: 45

```
28
       tetrahydrofuran-2-yl, tetrahydrofuran-3-yl, tetrahydrothien-
       2-yl, tetrahydrothien-3-yl, tetrahydropyrrol-2-yl,
       tetrahydropyrrol-3-yl, 2,3-dihydrofuran-2-yl,
       2,3-dihydrofuran-3-yl, 2,5-dihydrofuran-2-yl,
       2.5-dihydrofuran-3-yl, 4.5-dihydrofuran-2-yl,
5
       4,5-dihydrofuran-3-yl, 2,3-dihydrothien-2-yl,
       2,3-dihydrothien-3-yl, 2,5-dihydrothien-2-yl,
       2,5-dihydrothien-3-yl, 4,5-dihydrothien-2-yl,
       4,5-dihydrothien-3-yl, 2,3-dihydro-1H-pyrrol-2-yl,
       2,3-dihydro-1H-pyrrol-3-yl, 2,5-dihydro-1H-pyrrol-2-yl,
10
       2.5-dihydro-1H-pyrrol-3-yl, 4.5-dihydro-1H-pyrrol-2-yl,
       4,5-dihydro-1H-pyrrol-3-yl, 3,4-dihydro-2H-pyrrol-2-yl,
       3.4-dihydro-2H-pyrrol-3-yl, 3,4-dihydro-5H-pyrrol-2-yl,
       3,4-dihydro-5H-pyrrol-3-yl, 2-furyl, 3-furyl, 2-thienyl,
15
       3-thienyl, pyrrol-2-yl or pyrrol-3-yl;
       5-membered rings having two hetero atoms such as, for
       example,
20
       tetrahydropyrazol-3-yl, tetrahydropyrazol-3-yl,
       tetrahydropyrazol-4-yl, tetrahydroisoxazol-3-yl,
       tetrahydroisoxazol-4-yl, tetrahydroisoxazol-5-yl,
       1,2-oxathiolan-3-yl, 1,2-oxathiolan-4-yl,
        1,2-oxathiolan-5-yl, tetrahydroisothiazol-3-yl,
25
       tetrahydroisothiazol-4-yl, tetrahydroisothiazol-5-yl,
        1,2-dithiolan-3-yl, 1,2-dithiolan-4-yl,
        tetrahydroimidazol-2-yl, tetrahydroimidazol-4-yl,
        tetrahydrooxazol-2-yl, tetrahydrooxazol-4-yl,
        tetrahydrooxazol-5-yl, tetrahydrothiazol-2-yl,
30
        tetrahydrothiazol-4-yl, tetrahydrothiazol-5-yl,
        1,3-dioxolan-2-yl, 1,3-dioxolan-4-yl, 1,3-oxathiolan-2-yl,
        1,3-oxathiolan-4-yl, 1,3-oxathiolan-5-yl, 1,3-dithiolan-2-yl,
        1,3-dithiolan-4-yl, 4,5-dihydro-1H-pyrazol-3-yl,
        4,5-dihydro-1H-pyrazol-4-yl, 4,5-dihydro-1H-pyrazol-5-yl,
35
        2,5-dihydro-1H-pyrazol-3-yl, 2,5-dihydro-1H-pyrazol-4-yl,
        2,5-dihydro-1H-pyrazol-5-yl, 4,5-dihydroisoxazol-3-yl,
        4,5-dihydroisoxazol-4-yl, 4,5-dihydroisoxazol-5-yl,
        2,5-dihydroisoxazol-3-yl, 2,5-dihydroisoxazol-4-yl,
        2,5-dihydroisoxazol-5-yl, 2,3-dihydroisoxazol-3-yl,
40
        2,3-dihydroisoxazol-4-yl, 2,3-dihydroisoxazol-5-yl,
        4,5-dihydroisothiazol-3-yl, 4,5-dihydroisothiazol-4-yl,
        4,5-dihydroisothiazol-5-yl, 2,5-dihydroisothiazol-3-yl,
        2,5-dihydroisothiazol-4-yl, 2,5-dihydroisothiazol-5-yl,
        2,3-dihydroisothiazol-3-yl, 2,3-dihydroisothiazol-4-yl,
45
        2,3-dihydroisothiazol-
        5-yl, \Delta^{3-1}, 2-dithiol-3-yl, \Delta^{3-1}, 2-dithiol-4-yl,
```

 Δ^{3-1} , 2-dithiol-5-yl, 4,5-dihydro-1H-imidazol-2-yl,

```
ASSET OF CERT
```

```
4,5-dihydro-1H-imidazol-4-yl, 4,5-dihydro-1H-imidazol-5-yl,
       2,5-dihydro-1H-imidazol-2-yl, 2,5-dihydro-1H-imidazol-4-yl,
       2,5-dihydro-1H-imidazol-5-yl, 2,3-dihydro-1H-imidazol-2-yl,
       2,3-dihydro-1H-imidazol-4-yl, 4,5-dihydrooxazol-2-yl,
       4,5-dihydrooxazol-4-yl, 4,5-dihydrooxazol-5-yl,
 5
       2,5-dihydrooxazol-2-yl, 2,5-dihydrooxazol-4-yl,
       2,5-dihydrooxazol-5-yl, 2,3-dihydrooxazol-2-yl,
        2,3-dihydrooxazol-4-yl, 2,3-dihydrooxazol-5-yl,
        4,5-dihydrothiazol-2-yl, 4,5-dihydrothiazol-4-yl,
        4,5-dihydrothiazol-5-yl, 2,5-dihydrothiazol-2-yl,
10
        2,5-dihydrothiazol-4-yl, 2,5-dihydrothiazol-5-yl,
        2,3-dihydrothiazol-2-yl, 2,3-dihydrothiazol-4-yl,
        2,3-dihydrothiazol-5-yl, 1,3-dioxol-2-yl, 1,3-dioxol-4-yl,
        1,3-dithiol-2-yl, 1,3-dithiol-4-yl, 1,3-oxathiol-2-yl,
        1,3-oxathiol-4-yl, 1,3-oxathiol-5-yl, pyrazol-3-yl,
15
        pyrazol-4-yl, isoxazol-3-yl, isoxazol-4-yl, isoxazol-5-yl,
        isothiazol-3-yl, isothiazol-4-yl, isothiazol-5-yl,
        imidazol-2-yl, imidazol-4-yl, oxazol-2-yl, oxazol-4-yl,
        oxazol-5-yl, thiazol-2-yl, thiazol-4-yl or thiazol-5-yl;
20
        5-membered rings having 3 hetero atoms such as, for example,
        1,2,3-\Delta^2-oxadiazolin-4-yl, 1,2,3-\Delta^2-oxadiazolin-5-yl,
        1,2,4-\Delta^4-oxadiazolin-3-yl, 1,2,4-\Delta^4-oxadiazolin-5-yl,
        1,2,4-\Delta^2-oxadiazolin-3-yl, 1,2,4-\Delta^2-oxadiazolin-5-yl,
25
        1,2,4-\Delta^3-oxadiazolin-3-yl, 1,2,4-\Delta^3-oxadiazolin-5-yl,
        1,3,4-\Delta^2-oxadiazolin-2-yl, 1,3,4-\Delta^2-oxadiazolin-5-yl,
        1,3,4-\Delta^3-oxadiazolin-2-yl, 1,3,4-oxadiazolin-2-yl,
        1,2,4-\Delta^4-thiadiazolin-3-yl, 1,2,4-\Delta^4-thiadiazolin-5-yl,
        1,2,4-\Delta^3-thiadiazolin-3-yl, 1,2,4-\Delta^3-thiadiazolin-5-yl,
30
        1,2,4-\Delta^2-thiadiazolin-3-yl, 1,2,4-\Delta^2-thiadiazolin-5-yl,
        1,3,4-\Delta^2-thiadiazolin-2-yl, 1,3,4-\Delta^2-thiadiazolin-5-yl,
        1,3,4-\Delta^3-thiadiazolin-2-yl, 1,3,4-thiadiazolin-2-yl,
        1.3.2-dioxathiolan-4-yl, 1.2.3-\Delta^2-triazolin-4-yl,
        1,2,3-\Delta^2-triazolin-5-yl, 1,2,4-\Delta^2-triazolin-3-yl,
35
        1,2,4\Delta^2-triazolin-5-yl, 1,2,4\Delta^3-triazolin-3-yl,
        1,2,4\Delta3-triazolin-5-yl, 1,2,4\Delta1-triazolin-2-yl,
        1,2,4-triazolin-3-yl, 3H-1,2,4-dithiazol-5-yl,
        2H-1,3,4-dithiazol-5-yl, 2H-1,3,4-oxathiazol-5-yl,
        1,2,3-oxadiazol-4-yl, 1,2,3-oxadiazol-5-yl,
 40
        1,2,4-oxadiazol-3-yl, 1,2,4,-oxadiazol-5-yl,
        1,3,4-oxadiazol-2-yl, 1,2,3-thiadiazol-4-yl,
         1,2,3-thiadiazol-5-yl, 1,2,4-thiadiazol-3-yl,
         1,2,4-thiadiazol-5-yl, 1,3,4-thiadiazolyl-2-yl,
         1,2,3-triazol-4-yl or 1,2,4-triazol-3-yl;
 45
```

5-membered rings having 4 hetero atoms such as, for example,

```
tetrazol-5-yl,
```

6-membered rings having 1 hetero atom such as, for example:

```
5
       tetrahydropyran-2-yl, tetrahydropyran-3-yl,
       tetrahydropyran-4-yl, piperidin-2-yl, piperidin-3-yl,
       piperidin-4-yl, tetrahydrothiopyran-2-yl,
       tetrahydrothiopyran-3-yl, tetrahydrothiopyran-4-yl,
       2H-3,4-dihydropyran-6-yl, 2H-3,4-dihydropyran-5-yl,
10
       2H-3,4-dihydropyran-4-yl, 2H-3,4-dihydropyran-3-yl,
       2H-3,4-dihydropyran-2-yl, 2H-3,4-dihydropyran-6-yl,
       2H-3,4-dihydrothiopyran-5-yl, 2H-3,4-dihydrothiopyran-4-yl,
       2H-3,4-dihydropyran-3-yl, 2H-3,4-dihydropyran-2-yl,
       1,2,3,4-tetrahydropyridin-6-yl,
15
       1,2,3,4-tetrahydropyridin-5-yl, 1,2,3,4-tetrahydropyridin-4-
       yl, 1,2,3,4-tetrahydropyridin-3-yl,
       1,2,3,4-tetrahydropyridin-2-yl, 2H-5,6-dihydropyran-2-yl,
       2H-5,6-dihydropyran-3-yl, 2H-5,6-dihydropyran-4-yl,
       2H-5,6-dihydropyran-5-yl, 2H-5,6-dihydropyran-6-yl,
20
       2H-5,6-dihydrothiopyran-2-yl, 2H-5,6-dihydrothiopyran-3-yl,
       2H-5,6-dihydrothiopyran-4-yl, 2H-5,6-dihydrothiopyran-5-yl,
       2H-5,6-dihydrothiopyran-6-yl, 1,2,5,6-tetrahydropyridin-2-yl,
       1,2,5,6-tetrahydropyridin-3-yl, 1,2,5,6-tetrahydro-
       pyridin-4-yl, 1,2,5,6-tetrahydropyridin-5-yl, 1,2,5,6-
25
       tetrahydropyridin-6-yl, 2,3,4,5-tetrahydropyridin-2-yl,
       2,3,4,5-tetrahydropyridin-3-yl, 2,3,4,5-tetra-
       hydropyridin-4-yl, 2,3,4,5-tetrahydropyridin-5-yl,
       2,3,4,5—tetrahydropyridin—6—yl, 4H—pyran—2—yl, 4H—pyran—3—yl,
       4H-pyran-4-yl, 4H-thiopyran-2-yl, 4H-thiopyran-3-yl,
30
       4H-thiopyran-4-yl, 1,4-dihydropyridin-2-yl,
       1,4-dihydropyridin-3-yl, 1,4-dihydropyridin-4-yl,
       2H-pyran-2-yl, 2H-pyran-3-yl, 2H-pyran-4-yl, 2H-pyran-5-yl,
       2H-pyran-6-yl, 2H-thiopyran-2-yl, 2H-thiopyran-3-yl,
       2H-thiopyran-4-yl, 2H-thiopyran-5-yl, 2H-thiopyran-6-yl,
35
       1,2-dihydropyridin-2-yl, 1,2-dihydropyridin-3-yl,
       1,2-dihydropyridin-4-yl, 1,2-dihydropyridin-5-yl,
        1,2-dihydropyridin-6-yl, 3,4-dihydropyridin-2-yl,
        3,4-dihydropyridin-3-yl, 3,4-dihydropyridin-4-yl,
        3,4-dihydropyridin-5-yl, 3,4-dihydropyridin-6-yl,
40
        2,5—dihydropyridin—2—yl, 2,5—dihydropyridin—3—yl,
        2,5-dihydropyridin-4-yl, 2,5-dihydropyridin-5-yl,
        2.5-dihydropyridin-6-yl, 2.3-dihydropyridin-2-yl,
        2,3-dihydropyridin-3-yl, 2,3-dihydropyridin-4-yl,
        2,3-dihydropyridin-5-yl, 2,3-dihydropyridin-6-yl,
45
        pyridin-2-yl, pyridin-3-yl or pyridin-4-yl;
```

6-membered rings having 2 hetero atoms such as, for example,

```
1,3-dioxan-2-yl, 1,3-dioxan-4-yl, 1,3-dioxan-5-yl,
       1,4-dioxan-2-yl, 1,3-dithian-2-yl, 1,3-dithian-4-yl,
       1,3-dithian-5-yl, 1,4-dithian-2-yl, 1,3-oxathian-2-yl,
5
       1,3-oxathian-4-yl, 1,3-oxathian-5-yl, 1,3-oxathian-6-yl,
       1,4-oxathian-2-yl, 1,4-oxathian-3-yl, 1,2-dithian-3-yl,
       1,2-dithian-4-yl, hexahydropyrimidin-2-yl,
       hexahydropyrimidin-4-yl, hexahydropyrimidin-5-yl,
10
       hexahydropyrazin-2-yl, hexahydropyridazin-3-yl,
       hexahydropyridazin-4-yl, tetrahydro-1,3-oxazin-2-yl,
       tetrahydro-1,3-oxazin-4-yl, tetrahydro-1,3-oxazin-5-yl,
       tetrahydro-1,3-oxazin-6-yl, tetrahydro-1,3-thiazin-2-yl,
       tetrahydro-1,3-thiazin-4-yl, tetrahydro-1,3-thiazin-5-yl,
       tetrahydro-1,3-thiazin-6-yl, tetrahydro-1,4-thiazin-2-yl,
15
       tetrahydro-1,4-thiazin-3-yl, tetrahydro-1,4-oxazin-2-yl,
       tetrahydro-1,4-oxazin-3-yl, tetrahydro-1,2-oxazin-3-yl,
       tetrahydro-1,2-oxazin-4-yl, tetrahydro-1,2-oxazin-5-yl,
       tetrahydro-1,2-oxazin-6-yl, 2H-5,6-dihydro-1,2-oxazin-3-yl,
20
       2H-5,6-dihydro-1,2-
       oxazin-4-yl, 2H-5,6-dihydro-1,2-oxazin-5-yl,
       2H-5,6-dihydro-1,2-oxazin-6-yl, 2H-5,6-dihydro-
       1,2-thiazin-3-y1, 2H-5,6-dihydro-1,2-thiazin-4-y1,
       2H-5,6-dihydro-1,2-thiazin-5-yl, 2H-5,6-dihydro-1,2-
25
       thiazin-6-y1, 4H-5,6-dihydro-1,2-oxazin-3-y1,
        4H-5,6-dihydro-1,2-oxazin-4-yl, 4H-5,6-dihydro-
        1,2-oxazin-5-yl, 4H-5,6-dihydro-1,2-oxazin-6-yl,
       4H-5,6-dihydro-1,2-thiazin-3-yl, 4H-5,6-dihydro-1,2-
        thiazin-4-yl, 4H-5,6-dihydro-1,2-thiazin-5-yl,
30
        4H-5,6-dihydro-1,2-thiazin-6-y1, 2H-3,6-dihydro-1,2-
        oxazin-3-yl, 2H-3,6-dihydro-1,2-oxazin-4-yl,
        2H-3,6-dihydro-1,2-oxazin-5-yl, 2H-3,6-dihydro-1,2-
        oxazin-6-yl, 2H-3,6-dihydro-1,2-thiazin-3-yl,
        2H-3,6-dihydro-1,2-thiazin-4-yl, 2H-3,6-dihydro-1,2-
35
        thiazin-5-yl, 2H-3,6-dihydro-1,2-thiazin-6-yl,
        2H-3,4-dihydro-1,2-oxazin-3-y1, 2H-3,4-dihydro-1,2-
        oxazin-4-yl, 2H-3,4-dihydro-1,2-oxazin-5-yl,
        2H-3,4-dihydro-1,2-oxazin-6-yl, 2H-3,4-dihydro-1,2-
        thiazin-3-yl, 2H-3,4-dihydro-1,2-thiazin-4-yl,
        2H-3,4-dihydro-1,2-thiazin-5-yl, 2H-3,4-dihydro-
40
        1,2-thiazin-6-yl, 2,3,4,5-tetrahydropyridazin-3-yl,
        2,3,4,5-tetrahydropyridazin-4-yl,
        2,3,4,5-tetrahydropyridazin-5-yl,
        2,3,4,5-tetrahydropyridazin-6-yl,
 45
        3,4,5,6-tetrahydropyridazin-3-yl,
        3,4,5,6-tetrahydropyridazin-4-yl,
        1,2,5,6-tetrahydropyridazin-3-yl,
```

```
1,2,5,6-tetrahydropyridazin-4-yl,
       1,2,5,6-tetrahydropyridazin-5-yl,
       1,2,5,6-tetrahydropyridazin-6-yl,
       1,2,3,6-tetrahydropyridazin-3-yl,
       1,2,3,6-tetrahydropyridazin-4-yl,
5
       4H-5,6-dihydro-1,3-oxazin-2-yl,
       4H-5,6-dihydro-1,3-oxazin-4-yl,
       4H-5,6-dihydro-1,3-oxazin-5-yl,
       4H-5,6-dihydro-1,3-oxazin-6-yl,
       4H-5,6-dihydro-1,3-thiazin-2-yl,
10
       4H-5,6-dihydro-1,3-thiazin-4-yl,
       4H-5,6-dihydro-1,3-thiazin-5-yl, 4H-5,6-dihydro-
       1,3-thiazin-6-yl, 3,4,5-6-tetrahydropyrimidin-2-yl,
       3,4,5,6-tetrahydropyrimidin-4-yl, 3,4,5,6-tetrahydro-
       pyrimidin-5-yl, 3,4,5,6-tetrahydropyrimidin-6-yl,
15
       1,2,3,4-tetrahydropyrazin-2-yl, 1,2,3,4-tetrahydro-
       pyrazin-5-yl, 1,2,3,4-tetrahydropyrimidin-2-yl,
       1,2,3,4-tetrahydropyrimidin-4-yl, 1,2,3,4-tetrahydro-
       pyrimidin-5-yl, 1,2,3,4-tetrahydropyrimidin-6-yl,
       2,3-dihydro-1,4-thiazin-2-yl, 2,3-dihydro-1,4-thiazin-3-yl,
20
       2,3-dihydro-1,4-thiazin-5-yl, 2,3-dihydro-1,4-thiazin-6-yl,
       2H-1,2-oxazin-3-y1, 2H-1,2-oxazin-4-y1, 2H-1,2-oxazin-5-y1,
       2H-1,2-oxazin-6-yl, 2H-1,2-thiazin-3-yl, 2H-1,2-thiazin-4-yl,
       2H-1,2-thiazin-5-y1, 2H-1,2-thiazin-6-y1, 4H-1,2-oxazin-3-y1,
       4H-1,2-oxazin-4-yl, 4H-1,2-oxazin-5-yl, 4H-1,2-oxazin-6-yl,
25
       4H-1,2-thiazin-3-yl, 4H-1,2-thiazin-4-yl,
       4H-1,2-thiazin-5-y1, 4H-1,2-thiazin-6-y1, 6H-1,2-oxazin-3-y1,
       6H-1,2-oxazin-4-yl, 6H-1,2-oxazin-5-yl, 6H-1,2-oxazin-6-yl,
       6H-1,2-thiazin-3-yl, 6H-1,2-thiazin-4-yl,
       6H-1,2-thiazin-5-y1, 6H-1,2-thiazin-6-y1, 2H-1,3-oxazin-2-y1,
30
       2H-1,3-oxazin-4-y1, 2H-1,3-oxazin-5-y1, 2H-1,3-oxazin-6-y1,
       2H-1,3-thiazin-2-y1, 2H-1,3-thiazin-4-y1, 2H-1,3-thiazin-5-
       y1, 2H-1,3-thiazin-6-y1, 4H-1,3-oxazin-2-y1, 4H-1,3-oxazin-
       4-y1, 4H-1,3-oxazin-5-y1, 4H-1,3-oxazin-6-y1, 4H-1,3-thiazin-
       2-yl, 4H-1,3-thiazin-4-yl, 4H-1,3-thiazin-5-yl,
35
       4H-1,3-thiazin-6-yl, 6H-1,3-oxazin-2-yl, 6H-1,3-oxazin-4-yl,
       6H-1,3-oxazin-5-yl, 6H-1,3-oxazin-6-yl, 6H-1,3-thiazin-2-yl,
        6H-1,3-oxazin-4-yl, 6H-1,3-oxazin-5-yl, 6H-1,3-thiazin-6-yl,
        2H-1,4-oxazin-2-yl, 2H-1,4-oxazin-3-yl, 2H-1,4-oxazin-5-yl,
        2H-1,4-oxazin-6-yl, 2H-1,4-thiazin-2-yl, 2H-1,4-thiazin-3-yl,
40
        2H-1,4-thiazin-5-yl, 2H-1,4-thiazin-6-yl, 4H-1,4-oxazin-2-yl,
        4H-1,4-oxazin-3-yl, 4H-1,4-thiazin-2-yl, 4H-1,4-thiazin-3-yl,
        1,4-dihydropyridazin-3-yl, 1,4-dihydropyridazin-4-yl,
        1,4-dihydropyridazin-5-yl, 1,4-dihydropyridazin-6-yl,
        1,4-dihydropyrazin-2-yl, 1,2-dihydropyrazin-2-yl,
45
        1,2-dihydropyrazin-3-yl, 1,2-dihydropyrazin-5-yl,
        1,2-dihydropyrazin-6-yl, 1,4-dihydropyrimidin-2-yl,
```

```
1,4-dihydropyrimidin-4-yl, 1,4-dihydropyrimidin-5-yl,
```

1,4—dihydropyrimidin—6—yl, 3,4—dihydropyrimidin—2—yl,

- 3,4-dihydropyrimidin-4-yl, 3,4-dihydropyrimidin-5-yl or
- 3,4-dihydropyrimidin-6-yl, pyridazin-3-yl, pyridazin-4-yl,
- pyrimidin-2-yl, pyrimidin-4-yl, pyrimidin-5-yl or pyrazin-2-yl;

6-membered rings having 3 hetero atoms such as, for example,

10 1,3,5-triazin-2-y1, 1,2,4-triazin-3-y1, 1,2,4-triazin-5-yl or 1,2,4-triazin-6-yl;

6-membered rings having 4 hetero atoms such as, for example,

1,2,4,5-tetrazin-3-yl;

where, if appropriate, the sulfur of the abovementioned heterocycles may be oxidized to S=0 or $S(=0)_2$;

and where a bicyclic ring system may be formed with a fused-on phenyl ring or with a C_3 - C_6 -carbocycle or with another 5— to 6-membered heterocycle.

- N-linked heterocyclyl: a saturated, partially saturated or unsaturated 5- or 6-membered heterocyclic ring which is attached via nitrogen and which contains at least one nitrogen and optionally one to three identical or different hetero atoms selected from the following group: oxygen,
- 30 sulfur or nitrogen, i.e., for example,

5-membered rings having 1 hetero atom which are linked by a nitrogen, such as, for example,

tetrahydropyrrol-1-yl, 2,3-dihydro-1H-pyrrol-1-yl,
2,5-dihydro-1H-pyrrol-1-yl or pyrrol-1-yl;

5-membered rings having 2 hetero atoms which are linked by a nitrogen such as, for example,

tetrahydropyrazol-1-yl, tetrahydroisoxazol-2-yl, tetrahydroisothiazol-2-yl, tetrahydroimidazol-1-yl, tetrahydrooxazol-3-yl, tetrahydrothiazol-3-yl,

4,5—dihydro-1H-pyrazol-1-yl, 2,5—dihydro-1H-pyrazol-1-yl, 2,3—dihydro-1H-pyrazol-1-yl, 2,5—dihydroisoxazol-2-yl, 2,5—dihydroisothiazol-2-yl, 2,5—dihydroisothiazol-2-yl,

10

15

20

25

30

35

40

```
34
2,3-dihydroisoxazol-2-yl, 4,5-dihydro-1H-imidazol-1-yl,
2,5-dihydro-1H-imidazol-1-yl, 2,3-dihydro-1H-imidazol-1-yl,
2,3-dihydrooxazol-3-yl, 2,3-dihydrothiazol-3-yl, pyrazol-1-yl
or imidazol-1-yl;
5-membered rings having 3 hetero atoms which are linked by a
nitrogen such as, for example,
1,2,4-\Delta^4-oxadiazolin-2-yl, 1,2,4-\Delta^2-oxadiazolin-4-yl,
1,2,4-\Delta^3-oxadiazolin-2-yl, 1,3,4-\Delta^2-oxadiazolin-4-yl,
1,2,4-\Delta^5-thiadiazolin-2-yl, 1,2,4-\Delta^3-thiadiazolin-2-yl,
1,2,4-\Delta^2-thiadiazolin-4-yl, 1,3,4-\Delta^2-thiadiazolin-4-yl,
1,2,3-\Delta^2-triazolin-1-yl, 1,2,4-\Delta^2-triazolin-1-yl,
1,2,4-\Delta^2-triazolin-4-yl, 1,2,4-\Delta^3-triazolin-1-yl, 1,2,4-\Delta^1-
triazolin-4-yl, 1,2,3-triazol-1-yl or 1,2,4-triazol-1-yl;
5-membered rings having 4 hetero atoms which are linked by a
nitrogen such as, for example,
tetrazol-1-y1;
and 6-membered rings having 1 hetero atom which are linked by
a nitrogen, such as, for example
piperidin-1-yl, 1,2,3,4-tetrahydropyridin-1-yl,
1,2,5,6-tetrahydropyridin-1-yl, 1,4-dihydropyridin-1-yl or
 1,2—dihydropyridin—1—yl;
 6-membered rings having 2 hetero atoms which are linked by a
 nitrogen such as, for example,
 hexahydropyrimidin-1-yl, hexahydropyrazin-1-yl,
 hexahydropyridazin-1-yl, tetrahydro-1,3-oxazin-3-yl,
 tetrahydro-1,3-thiazin-3-yl, tetrahydro-1,4-thiazin-4-yl,
 tetrahydro-1,4-oxazin-4-yl, tetrahydro-1,2-oxazin-2-yl,
 2H-5,6-dihydro-1,2-oxazin-2-yl,
 2H-5,6-dihydro-1,2-thiazin-2-y1, 2H-3,6-dihydro-1,2-
 oxazin-2-yl, 2H-3,6-dihydro-1,2-thiazin-oxazin-2-yl,
 2H-3,4-dihydro-1,2-thiazin-2-yl, 2,3,4,5-tetrahydro-
 pyridazin-2-yl, 1,2,5,6-tetrahydropyridazin-1-yl,
```

pyridazin-1-y1, 3,4,5,6-tetrahydropyrimidin-3-y1, 1,2,3,4-tetrahydropyrazin-1-yl, 1,2,3,4-tetrahydro-45 pyrimidin-1-y1, 1,2,3,4-tetrahydropyrimidin-3-y1, 2,3-dihydro-1,4-thiazin-4-yl, 2H-1,2-oxazin-2-yl,

1,2,5,6-tetrahydropyridazin-2-yl, 1,2,3,6-tetrahydro-

30

2H-1,2-thiazin-2-yl, 4H-1,4-oxazin-4-yl, 4H-1,4-thiazin-4-yl, 1,4-dihydropyridazin-1-yl, 1,4-dihydropyrazin-1-yl, 1,2-dihydropyrazin-1-yl, 1,4-dihydropyrimidin-1-yl or 3,4-dihydropyrimidin-3-yl, and also cyclic imides which are linked via nitrogen, such as: phthalimide, tetrahydrophthalimide, succinimide, maleimide or glutarimide, and also 4-oxo-1,4-dihydropyridin-1-yl.

All phenyl rings or heterocyclyl radicals, and also all phenyl components in phenyl—C₁—C₆—alkyl, phenylcarbonyl—C₁—C₆—alkyl, phenoxy, phenylthio, phenylcarbonyl, phenylalkenylcarbonyl, phenoxycarbonyl, phenoxyalkylcarbonyl, phenylaminocarbonyl and N—(C₁—C₆—alkyl)—N—phenylaminocarbonyl or heterocyclyl components in heterocyclyl—C₁—C₆—alkyl, heterocyclylcarbonyl—C₁—C₆—alkyl, heterocyclylcarbonyl, heterocyclyloxy, heterocyclylthio, heterocyclylcarbonyl, heterocyclylalkenylcarbonyl, heterocyclylaminocarbonyl and N—(C₁—C₆—alkyl)—N—heterocyclylaminocarbonyl are, unless stated otherwise, preferably unsubstituted, or they carry one to three halogen atoms and/or one nitro group, one cyano radical and/or one or two methyl, trifluoromethyl, methoxy or trifluoromethoxy substituents.

The compounds of the formula I according to the invention where R^4 = IIa are referred to as compounds of the formula Ia, and compounds of the formula I where R^4 = IIb are referred to as Ib.

The compounds of the formula I should be particularly emphasized, where

is C_1 - C_6 -alkyl, C_3 - C_6 -alkenyl, C_3 - C_6 -haloalkenyl, R^7 C_3-C_6 -alkynyl, C_3-C_6 -haloalkynyl, C_3-C_6 -cycloalkyl, C₁-C₂₀-alkylcarbonyl, C₂-C₆-alkenylcarbonyl, C2-C6-alkynylcarbonyl, C3-C6-cycloalkylcarbonyl, 35 C_1 - C_6 -alkoxycarbonyl, C_3 - C_6 -alkenyloxycarbonyl, $C_3-C_6-alkynyloxycarbonyl$, $C_1-C_6-alkylthiocarbonyl$, C₁-C₆-alkylaminocarbonyl, C₃-C₆-alkenylaminocarbonyl, C₃-C₆-alkynylaminocarbonyl, N,N-di-(C₁-C₆-alkyl)aminocarbonyl, $N-(C_3-C_6-alkenyl)-N-(C_1-C_6-alkyl)-$ 40 aminocarbonyl, $N-(C_3-C_6-alkynyl)-N-(C_1-C_6-alkyl)$ aminocarbonyl, $N-(C_1-C_6-alkoxy)-N-(C_1-C_6-alkyl)$ aminocarbonyl, $N-(C_3-C_6-alkenyl)-N-(C_1-C_6-alkoxy)$ aminocarbonyl, $N-(C_3-C_6-alkynyl)-N-(C_1-C_6-alkoxy)$ aminocarbonyl, di-(C₁-C₆-alkyl)aminothiocarbonyl, 45 C₁-C₆-alkylcarbonyl-C₁-C₆-alkyl, C₁-C₆-alkoxyimino- $C_1-C_6-alkyl$, $N-(C_1-C_6-alkylamino)imino-C_1-C_6-alkyl$ or $N, N-di-(C_1-C_6-alkylamino)imino-C_1-C_6-alkyl$, where the

20

25

alkyl, cycloalkyl and alkoxy radicals mentioned may be partially or fully halogenated and/or may carry one to three of the following groups:

cyano, C₁-C₄-alkoxy, C₁-C₄-alkylthio, di-(C₁-C₄-alkyl)
amino, C₁-C₄-alkylcarbonyl, C₁-C₄-alkoxycarbonyl,

C₁-C₄-alkoxy-C₁-C₄-alkoxycarbonyl, di-(C₁-C₄-alkyl)
amino-C₁-C₄-alkoxycarbonyl, hydroxycarbonyl,

C₁-C₄-alkylaminocarbonyl,

di-(C₁-C₄-alkyl) aminocarbonyl, aminocarbonyl,

C₁-C₄-alkylcarbonyloxy or C₃-C₆-cycloalkyl;

phenyl, heterocyclyl, phenyl-C1-C6-alkyl, heterocyclyl- C_1 - C_6 -alkyl, phenylcarbonyl- C_1 - C_6 -alkyl, heterocyclyl $carbonyl-C_1-C_6-alkyl$, phenylcarbonyl, heterocyclylcarbonyl, phenoxycarbonyl, heterocyclyloxycarbonyl, phenoxythiocarbonyl, heterocyclyloxythiocarbonyl, phenoxy-C₁-C₆-alkylcarbonyl, heterocyclyloxy-C₁-C₆alkylcarbonyl, phenylaminocarbonyl, N-(C1-C6-alkyl)-N-(phenyl)aminocarbonyl, heterocyclylaminocarbonyl, $N-(C_1-C_6-alkyl)-N-(heterocyclyl)$ aminocarbonyl, $phenyl-C_2-C_6-alkenylcarbonyl$ or heterocyclyl- C_2 - C_6 -alkenylcarbonyl, where the phenyl and the heterocyclyl radical of the 20 last-mentioned substituents may be partially or fully halogenated and/or may carry one to three of the following radicals: nitro, cyano, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -alkoxy or C_1-C_4 -haloalkoxy;

- With a view to the use of the compounds of the formula I according to the invention as herbicides, the variables preferably have the following meanings, in each case on their own or in combination:
- is nitro, halogen, C_1 — C_6 —alkyl, C_1 — C_6 —haloalkyl, C_1 — C_6 —alkoxy, C_1 — C_6 —haloalkoxy, C_1 — C_6 —alkylthio, C_1 — C_6 —haloalkylthio, C_1 — C_6 —alkylsulfonyl or C_1 — C_6 —haloalkylsulfonyl;
- 40 R^2 , R^3 are hydrogen, C_1 - C_6 -alkyl or halogen;
 - R4 is a compound of IIa or IIb

$$(R^6)_1$$
 R^5

IIa

IIb

where

10

15

5

is halogen, OR7, SR7, SO₂R8, OSO₂R8, OPOR8R9, OPR8R9, OPSR8R9, NR¹⁰R¹¹, ONR¹¹R¹², N-linked heterocyclyl or O-(N-linked heterocyclyl), where the heterocyclyl radical of the two last-mentioned substituents may be partially or fully halogenated and/or may carry one to three of the following radicals:

nitro, cyano, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -alkoxy or C_1 - C_4 -haloalkoxy;

20 R⁶

25

is halogen, cyano, C₁-C₆-alkyl, C₁-C₆-haloalkyl, di-(C₁-C₆-alkoxy)methyl, di-(C₁-C₆-alkylthio)methyl, (C₁-C₆-alkoxy)(C₁-C₆-alkylthio)methyl, hydroxyl, C₁-C₆-alkoxy, C₁-C₆-haloalkoxy, C₁-C₆-alkoxycarbonyloxy, C₁-C₆-alkylthio, C₁-C₆-haloalkylthio, C₁-C₆-haloalkylthio,

C₁-C₆-alkylsulfonyl, C₁-C₆-haloalkylsulfonyl, C₁-C₆-alkylcarbonyl, C₁-C₆-haloalkylcarbonyl, C₁-C₆-alkoxycarbonyl or C₁-C₆-haloalkoxycarbonyl;

30 or

two radicals R^6 , which are linked to the same carbon, together form an $-O-(CH_2)_m-O-$, $-O-(CH_2)_m-S-$, $-S-(CH_2)_m-S-$, $-O-(CH_2)_n-$ or $-S-(CH_2)_n-$ chain which may be substituted by one to three radicals from the following group:

halogen, cyano, C_1-C_4 -alkyl, C_1-C_4 -haloalkyl or C_1-C_4 -alkoxycarbonyl;

40

35

or

two radicals R⁶, which are linked to the same carbon, together form a -(CH₂)_p chain which may be interrupted by oxygen or sulfur and/or may be substituted by one to four radicals from the following group:

halogen, cyano, C_1-C_4 -alkyl, C_1-C_4 -haloalkyl or C_1-C_4 -alkoxycarbonyl;

or 5 two radicals R6, which are linked to the same carbon, together with this carbon form a carbonyl group; or 10 two radicals R6, which are linked to different carbons, together form a -(CH2)n chain which may be substituted by one to three radicals from the following group: halogen, C_1-C_6 -alkyl, C_1-C_6 -alkoxy, hydroxyl or 15 C₁-C₆-alkoxycarbonyl; is C_1-C_6 -alkyl, C_3-C_6 -alkenyl, C_3-C_6 -haloalkenyl, \mathbb{R}^7 $C_3-C_6-alkynyl$, $C_1-C_{20}-alkylcarbonyl$, C2-C6-alkenylcarbonyl, C3-C6-cycloalkylcarbonyl, $C_1-C_6-alkoxycarbonyl$, $C_3-C_6-alkenyloxycarbonyl$, 20 C_3-C_6 -alkynyloxycarbonyl, (C_1-C_{20} -alkylthio)carbonyl (particularly preferably (C₁-C₆-alkylthio)carbonyl), C₁-C₆-alkylaminocarbonyl, C₃-C₆-alkenylaminocarbonyl, C_3-C_6 -alkynylaminocarbonyl, $N, N-di-(C_1-C_6-alkyl)$ aminocarbonyl, 25 $N-(C_3-C_6-alkenyl)-N-(C_1-C_6-alkyl)$ aminocarbonyl, $N-(C_3-C_6-alkynyl)-N-(C_1-C_6-alkyl)$ aminocarbonyl, $N-(C_1-C_6-alkoxy)-N-(C_1-C_6-alkyl)$ aminocarbonyl, $N-(C_3-C_6-alkenyl)-N-(C_1-C_6-alkoxy)$ aminocarbonyl, $N-(C_3-C_6-alkynyl)-N-(C_1-C_6-alkoxy)$ aminocarbonyl, 30 di-(C1-C6-alkyl) aminothiocarbonyl, $C_1-C_6-alkylcarbonyl-C_1-C_6-alkyl$, C_1-C_6 -alkoxyimino- C_1-C_6 -alkyl, $N-(C_1-C_6-alkylamino)imino-C_1-C_6-alkylor$ $N, N-di-(C_1-C_6-alkylamino)imino-C_1-C_6-alkyl,$ where the 35 abovementioned alkyl, cycloalkyl and alkoxy radicals may be partially or fully halogenated and/or may carry one to three of the following groups: cyano, C_1-C_4 -alkoxy, C_1-C_4 -alkylthio, 40 C_1-C_4 -alkylcarbonyl, C_1-C_4 -alkoxycarbonyl, hydroxycarbonyl, $di-(C_1-C_4-alkyl)$ aminocarbonyl, C₁-C₄-alkylcarbonyloxy or C₃-C₆-cycloalkyl; 45 phenyl, heterocyclyl, phenyl-C1-C6-alkyl,

heterocyclyl- C_1 - C_6 -alkyl, phenylcarbonyl- C_1 - C_6 -alkyl, heterocyclylcarbonyl- C_1 - C_6 -alkyl, phenylcarbonyl,

heterocyclylcarbonyl, phenoxycarbonyl,
heterocyclyloxycarbonyl, phenoxythiocarbonyl,
heterocyclyloxythiocarbonyl,
phenoxy-C1-C6-alkylcarbonyl,
heterocyclyloxy-C1-C6-alkylcarbonyl,
phenyl-C2-C6-alkenylcarbonyl or
heterocyclyl-C2-C6-alkenylcarbonyl, where the phenyl
and the heterocyclyl radical of the 16 last mentioned
substituents may be partially or fully halogenated
and/or may carry one to three of the following
radicals:
nitro, cyano, C1-C4-alkyl, C1-C4-haloalkyl, C1-C4-alkoxy
or C1-C4-haloalkoxy;

are C₁-C₆-alkyl, C₃-C₆-alkenyl, C₃-C₆-haloalkenyl,

C₃-C₆-cycloalkyl, hydroxy, C₁-C₆-alkoxy,

di-C₁-C₆-alkylamino, or di-(C₁-C₆-haloalkyl)amino,

where the abovementioned alkyl, cycloalkyl and alkoxy

radicals may be partially or fully halogenated and/or

may carry one to three of the following groups:

cyano, C₁-C₄-alkoxy, C₁-C₄-alkylthio,

C₁-C₄-alkylcarbonyl, C₁-C₄-alkoxycarbonyl,

hydroxycarbonyl, di-(C₁-C₄-alkyl)aminocarbonyl,

C₁-C₄-alkylcarbonyloxy or C₃-C₆-cycloalkyl;

phenyl, heterocyclyl, phenyl— C_1 — C_6 —alkyl, heterocyclyl— C_1 — C_6 —alkyl, phenoxy, heterocyclyloxy, where the phenyl— and the heterocyclyl radical of the last-mentioned substituents may be partially or fully halogenated and/or may carry one to three of the following radicals:

nitro, cyano, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -alkoxy or C_1 - C_4 -haloalkoxy;

is C_1 - C_6 -alkyl, C_3 - C_6 -alkenyl, C_3 - C_6 -haloalkenyl, C_3 - C_6 -cycloalkyl, C_1 - C_6 -alkoxy, C_3 - C_6 -alkenyloxy or di- $(C_1$ - C_6 -alkyl)amino, where the abovementioned alkyl, cycloalkyl and alkoxy radicals may be partially or fully halogenated and/or may carry one to three radicals from the following group:

45

30

		40
		cyano, C ₁ -C ₄ -alkoxy, C ₁ -C ₄ -alkylthio,
		C ₁ -C ₄ -alkylcarbonyl, C ₁ -C ₄ -alkoxycarbonyl,
		hydroxycarbonyl, di-(C ₁ -C ₄ -alkyl)aminocarbonyl,
		C ₁ -C ₄ -alkylcarbonyloxy or C ₃ -C ₆ -cycloalkyl;
5		
		phenyl, heterocyclyl, phenyl-C ₁ -C ₆ -alkyl or heterocyclyl-C ₁ -C ₆ -alkyl, where the phenyl or heterocyclyl radical of the four last-mentioned substituents may be partially or fully halogenated
10		and/or may carry one to three of the following radicals:
		nitro, cyano, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -alkoxy or C_1 - C_4 -haloalkoxy;
15		
	R ¹¹ , R ¹²	are C ₁ -C ₆ -alkyl or C ₃ -C ₆ -alkenyl;
	1	0 to 6;
20	m	2 to 4;
	n	1 to 5;
25	р	2 to 5.
		preference is given to compounds of the formula I
		variables have the following meanings, either on their
30	Own of In	combination:
30	_ 1	
	R ¹	is halogen, C_1 - C_6 -alkyl, C_1 - C_6 -haloalkyl, C_1 - C_6 -alkoxy, C_1 - C_6 -alkylthio or C_1 - C_6 -alkylsulfonyl;
35		in particular halogen, such as fluorine or chlorine, C_1 - C_6 -alkyl, such as methyl or ethyl, C_1 - C_6 -haloalkyl, such as difluoromethyl or trifluoromethyl;
		particularly preferably fluorine, chlorine, methyl, difluoromethyl or trifluoromethyl;
40	R ²	is hydrogen or C_1 - C_6 -alkyl, such as methyl or ethyl;

is hydrogen or C₁-C₆-alkyl, such as methyl or ethyl; in particular hydrogen or methyl;

R³ is hydrogen or C₁-C₆-alkyl; in particular hydrogen;

A⁸ is a compound IIa or IIb

$$(R^6)_1$$
 R^5

IIa

IIb

where

10

15

5

is halogen, OR⁷, SR⁷, SO₂R⁸, OSO₂R⁸, NR¹⁰R¹¹, ONR¹¹R¹², N-linked heterocyclyl or O-(N-linked heterocyclyl), where the heterocyclyl radical of the two last-mentioned substituents may be partially or fully halogenated and/or may carry one to three of the following radicals:

nitro, cyano, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -alkoxy or C_1 - C_4 -haloalkoxy;

20 R6

is halogen, cyano, C_1 — C_6 —alkyl, C_1 — C_6 —haloalkyl, di— $(C_1$ — C_6 —alkoxy)methyl, di— $(C_1$ — C_6 —alkylthio)methyl, di— $(C_1$ — C_6 —alkoxy) $(C_1$ — C_6 —alkoxy, C_1 — C_6 —haloalkoxy, C_1 — C_6 —alkoxycarbonyloxy, C_1 — C_6 —alkylthio, or C_1 — C_6 —haloalkylthio.

may be partially or fully halogenated and/or may carry

 C_1 — C_6 —alkylthio or C_1 — C_6 —haloalkylthio;

or

45

two radicals R⁶, which are linked to the same carbon, together with this carbon form a carbonyl group;

is C₁-C₆-alkyl, C₃-C₆-alkenyl, C₃-C₆-haloalkenyl,

C₃-C₆-alkynyl, C₁-C₂₀-alkylcarbonyl,

C₃-C₆-cycloalkylcarbonyl, C₁-C₆-alkoxycarbonyl,

C₃-C₆-alkenyloxycarbonyl, C₁-C₆-alkylaminocarbonyl,

C₃-C₆-alkenylaminocarbonyl,

N,N-di-(C₁-C₆-alkyl)aminocarbonyl,

N-(C₃-C₆-alkenyl)-N-(C₁-C₆-alkyl)aminocarbonyl,

N-(C₁-C₆-alkoxy)-N-(C₁-C₆-alkyl)aminocarbonyl,

N-(C₃-C₆-alkenyl)-N-(C₁-C₆-alkoxy)aminocarbonyl,

di-(C₁-C₆-alkyl)aminothiocarbonyl or

C₁-C₆-alkylcarbonyl-C₁-C₆-alkyl, where the abovementioned alkyl, cycloalkyl and alkoxy radicals

one to three of the following groups:

cyano, C_1-C_4 -alkoxy, C_1-C_4 -alkylthio, C₁-C₄-alkylcarbonyl, C₁-C₄-alkoxycarbonyl, hydroxycarbonyl, $di-(C_1-C_4-alkyl)$ aminocarbonyl, C_1-C_4 -alkylcarbonyloxy or C_3-C_6 -cycloalkyl; 5 phenyl, heterocyclyl, phenyl-C1-C6-alkyl, heterocyclyl-C₁-C₆-alkyl, phenylcarbonyl-C₁-C₆-alkyl, heterocyclylcarbonyl-C1-C6-alkyl, phenylcarbonyl, heterocyclylcarbonyl, phenoxycarbonyl, 10 heterocyclyloxycarbonyl, phenoxythiocarbonyl, heterocyclyloxythiocarbonyl, phenoxy-C₁-C₆-alkylcarbonyl or heterocyclyloxy-C₁-C₆-alkylcarbonyl, where the phenyl and the heterocyclyl radical of the 14 last-mentioned 15 substituents may be partially or fully halogenated and/or may carry one to three of the following radicals: nitro, cyano, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy or C_1 - C_4 -haloalkoxy; 20 R^8 is C_1 - C_6 -alkyl, C_3 - C_6 -alkenyl, C_3 - C_6 -haloalkenyl, $C_3-C_6-cycloalkyl$, hydroxyl, $C_1-C_6-alkoxy$, di-C₁-C₆-alkylamino or di-(C₁-C₆-haloalkyl)amino, where the abovementioned alkyl, cycloalkyl and alkoxy 25 radicals may be partially or fully halogenated and/or may carry one to three of the following groups: cyano, C_1 - C_4 -alkoxy, C_1 - C_4 -alkylthio, C_1-C_4 -alkylcarbonyl, C_1-C_4 -alkoxycarbonyl, 30 hydroxycarbonyl, di-(C₁-C₄-alkyl)aminocarbonyl, C₁-C₄-alkylcarbonyloxy or C₃-C₆-cycloalkyl; phenyl, heterocyclyl, phenyl-C1-C6-alkyl, heterocyclyl-C₁-C₆-alkyl, phenoxy, heterocyclyloxy, 35 where the phenyl and the heterocyclyl radical of the last-mentioned substituents may be partially or fully halogenated and/or may carry one to three of the following radicals: 40 nitro, cyano, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy or C_1 - C_4 -haloalkoxy; R10 is C₁-C₆-alkyl, C₃-C₆-alkenyl, C₃-C₆-haloalkenyl, C₃-C₆-cycloalkyl, C₁-C₆-alkoxy, C₃-C₆-alkenyloxy or 45 di-(C1-C6-alkyl)amino, where the abovementioned alkyl,

cycloalkyl and alkoxy radicals may be partially or

fully halogenated and/or may carry one to three radicals from the following group: cyano, C_1 - C_4 -alkoxy, C_1 - C_4 -alkylthio, C_1 - C_4 -alkylcarbonyl, C_1 - C_4 -alkoxycarbonyl, hydroxycarbonyl, di- $(C_1$ - C_4 -alkyl)aminocarbonyl, C_1 - C_4 -alkylcarbonyloxy or C_3 - C_6 -cycloalkyl;

phenyl, heterocyclyl, phenyl-C₁-C₆-alkyl or
heterocyclyl-C₁-C₆-alkyl, where the phenyl or
heterocyclyl radical of the four last-mentioned
substituents may be partially or fully halogenated
and/or may carry one to three of the following
radicals:
nitro, cyano, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy
or C₁-C₄-haloalkoxy;

 R^{11} , R^{12} are C_1-C_6 -alkyl or C_3-C_6 -alkenyl;

20 l is 0 to 6.

Particular preference is also given to the compounds of the formula I where the variables have the following meaning, on their own or in combination:

is halogen, C₁-C₆-alkyl, C₁-C₆-haloalkyl, C₁-C₆-alkoxy, C₁-C₆-alkylthio, heterocyclyloxy or phenylthio, where the two last-mentioned radicals may be partially or fully halogenated and/or may carry one to three of the substituents mentioned below:

nitro, cyano, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy or C₁-C₄-haloalkoxy;

particularly preferably halogen, C_1 - C_6 -alkyl or C_1 - C_6 -alkylthio;

35 R^2 is hydrogen, C_1 - C_6 -alkyl or C_1 - C_6 -haloalkyl; particularly preferably hydrogen;

R³ is hydrogen;

is halogen, OR⁷, SR⁷, SOR⁸, SO₂R⁸, OSO₂R⁸, OPR⁸R⁹,
OPOR⁸R⁹, OPSR⁸R⁹, NR¹⁰R¹¹ or N-bonded heterocyclyl which
may be partially or fully halogenated and/or may carry
one to three of the following radicals:
nitro, cyano, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy
or C₁-C₄-haloalkoxy;

particularly preferably halogen, OR^7 , $NR^{10}R^{11}$ or

	44
	N-bonded heterocyclyl which may be partially or fully
	halogenated and/or may carry one to three of the
	following radicals:
	nitro, cyano, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -alkoxy
5	or C ₁ -C ₄ -haloalkoxy;
	particularly preferably fluorine, OR7, NR10R11 or
	N-bonded heterocyclyl selected from the group
	consisting of 4-morpholinyl or 4-oxo-1,4-dihydro-
	pyrid-1-yl;
10	
R ⁶	is C ₁ -C ₆ -alkyl
	or two radicals R ⁶ which are attached to the same
	carbon form, together with this carbon, a carbonyl
	group;
15	
R^7	is C_1-C_6 -alkyl, C_1-C_{20} -alkylcarbonyl, C_1-C_6 -alkoxy-
	carbonyl, (C ₁ -C ₂₀ -alkylthio)carbonyl,
	N, N-di-(C ₁ -C ₆ -alkyl)aminocarbonyl, phenyl,
	phenylcarbonyl or phenoxy- C_1 - C_6 -alkylcarbonyl, where
20	the phenyl radical of the three last-mentioned
	substituents may be partially or fully halogenated
	and/or may carry one to three of the following
	radicals:
	nitro, cyano, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -alkoxy
25	or C ₁ -C ₄ -haloalkoxy;
	particularly preferably C ₁ -C ₆ -alkyl, C ₁ -C ₂₀ -alkyl-
	carbonyl, C ₁ -C ₆ -alkoxycarbonyl, (C ₁ -C ₆ -alkylthio)-
	carbonyl, N,N-di-(C ₁ -C ₆ -alkyl)aminocarbonyl, phenyl,
	phenylcarbonyl or phenoxy- C_1 - C_6 -alkylcarbonyl, where
30	the phenyl radical of the three last-mentioned
	substituents may be partially or fully halogenated
	and/or may carry one to three of the following
	radicals:
	nitro, cyano, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -alkoxy
35	or C ₁ -C ₄ -haloalkoxy;
	particularly preferably C ₁ -C ₂₀ -alkylthiocarbonyl;
	most preferably C ₁ -C ₆ -alkylthiocarbonyl;
R ⁸ , R ⁹	are $C_1-C_6-alkyl$, $C_1-C_6-alkoxy$, $di-(C_1-C_6-alkyl)$ amino or
•	
40	phenyl, where the last-mentioned radical may be
	partially or fully halogenated and/or may carry one to
	three of the following radicals:
	nitro, cyano, C ₁ -C ₄ -alkyl, C ₁ -C ₄ -haloalkyl, C ₁ -C ₄ -alkoxy
	or C ₁ -C ₄ -haloalkoxy;
45	or of-of-natoarvovi
45	

```
R^{11}
                 is C_1-C_6-alkyl;
   1
                 is from 0 to 6;
                 particularly preferably from 4 to 6;
 5
                 in particular 6.
   Particular preference is also given to compounds of the formula I
   where
10
   R^6
                 is nitro, halogen, cyano, C1-C6-alkyl, C1-C6-haloalkyl,
                 di-(C_1-C_6-alkoxy) methyl, di-(C_1-C_6-alky)thio) methyl,
                 (C_1-C_6-alkoxy)(C_1-C_6-alkylthio) methyl, hydroxyl,
                 C_1-C_6-alkoxy, C_1-C_6-haloalkoxy, C_1-C_6-alkoxycarbonyloxy,
                 C<sub>1</sub>-C<sub>6</sub>-alkylthio, C<sub>1</sub>-C<sub>6</sub>-haloalkylthio,
15
                 C<sub>1</sub>-C<sub>6</sub>-alkylsulfinyl, C<sub>1</sub>-C<sub>6</sub>-haloalkylsulfinyl,
                 C_1-C_6-alkylsulfonyl, C_1-C_6-haloalkylsulfonyl,
                 C<sub>1</sub>-C<sub>6</sub>-alkylcarbonyl, C<sub>1</sub>-C<sub>6</sub>-haloalkylcarbonyl,
                 C_1-C_6-alkoxycarbonyl or C_1-C_6-haloalkoxycarbonyl;
20
   or
   two radicals R<sup>6</sup>, which are linked to the same carbon, together
                 form an -O-(CH_2)_m-O-, -O-(CH_2)_m-O-, -O-(CH_2)_m-S-,
25
                 -S-(CH_2)_m-S-, -O-(CH_2)_n- or -S-(CH_2)_n chain which may be
                 substituted by one to three radicals from the following
                 group:
                 halogen, cyano, C<sub>1</sub>-C<sub>4</sub>-alkyl, C<sub>1</sub>-C<sub>4</sub>-haloalkyl or
                 C_1-C_4-alkoxycarbonyl;
30
   or
    two radicals R<sup>6</sup>, which are linked to the same carbon, form a
                 -(CH<sub>2</sub>)<sub>p</sub> chain which may be interrupted by oxygen or
35
                 sulfur and/or which may be substituted by one to four
                 radicals from the following group:
                 halogen, cyano, C_1-C_4-alkyl, C_1-C_4-haloalkyl or
                 C_1-C_4-alkoxycarbonyl;
40
    or
    two radicals R<sup>6</sup>, which are linked to the same carbon, together
                 with this carbon form a carbonyl group.
45
```

Particular preference is given to compounds of the formula I where

R⁶

is nitro, halogen, cyano, C_1 - C_6 -alkyl, C_1 - C_6 -haloalkyl, di- $(C_1$ - C_6 -alkoxy)methyl, di- $(C_1$ - C_6 -alkylthio)methyl,

 $(C_1-C_6-alkoxy)(C_1-C_6-alkylthio)$ methyl, hydroxyl,

 $C_1-C_6-alkoxy$, $C_1-C_6-haloalkoxy$, $C_1-C_6-alkoxycarbonyloxy$,

C₁-C₆-alkylthio, C₁-C₆-haloalkylthio,

C₁-C₆-alkylsulfinyl, C₁-C₆-haloalkylsulfinyl,

10 C₁-C₆

 $\texttt{C}_1\text{-}\texttt{C}_6\text{-}\texttt{alkylsulfonyl}\text{, }\texttt{C}_1\text{-}\texttt{C}_6\text{-}\texttt{haloalkylsulfonyl}\text{,}$

C₁-C₆-alkylcarbonyl, C₁-C₆-haloalkylcarbonyl,

 C_1-C_6 -alkoxycarbonyl or C_1-C_6 -haloalkoxycarbonyl;

15 or

two radicals R^6 , which are linked to the same carbon, together with this carbon form a carbonyl group.

20 Particular preference is also given to the compounds of the formula I where

 \mathbb{R}^5

is halogen or $(C_1-C_{20}-alkylthio)$ carbonyloxy;

particularly preferably fluorine or

(C₁-C₆-alkylthio)carbonyloxy;

Particular preference is also given to the compounds of the formula I where

30

35

R⁵ is NR¹⁰R¹¹ or N-linked heterocyclyl which may be

partially or fully halogenated and/or may carry one to

three of the following radicals:

nitro, cyano, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy

or C_1-C_4 -haloalkoxy;

Particular preference is also given to the compounds of the formula I where R⁴ has the following meanings:

40

45

IIal

IIb1

IIb2

30

35

5

IIa7

IIb7

IIb7

IIb8 H_5C_2OCOO H_5C_2OCOO

S IIal0 IIbl0

Very particular preference is given to the compounds of the formula I where

is NR¹⁰R¹¹ or tetrahydropyrrol-1-yl,
2,3-dihydro-1H-pyrrol-1-yl, 2,5-dihydro-1H-pyrrol-1-yl,
pyrrol-1-yl, tetrahydropyrazol-1-yl,
tetrahydroisoxazol-2-yl, tetrahydrothiazol-2-yl,
tetrahydroimidazol-1-yl, tetrahydrooxazol-3-yl,
tetrahydrothiazol-3-yl, pyrazol-1-yl, imidazol-1-yl,
1,2,4-triazol-1-yl, tetrazol-1-yl, piperidin-1-yl,
4-oxo-1,4-dihydro-1-pyridyl, hexahydropyrimidin-1-yl,
hexahydropyrazin-1-yl, tetrahydro-1,4-oxazin-4-yl,
tetrahydro-1,2-oxazin-2-yl, succinimide, maleimide or

glutarimide, where the abovementioned heterocycles may be partially or fully halogenated and/or may carry one to three of the following radicals:

nitro, cyano, C_1 - C_4 -alkyl, such as methyl or ethyl, C_1 - C_4 -haloalkyl such as chloromethyl, difluoromethyl or trifluoromethyl, C_1 - C_4 -alkoxy, such as methoxy or ethoxy or C_1 - C_4 -haloalkoxy such as difluoromethoxy or trifluoromethoxy;

 $\begin{array}{ccc} \textbf{10} & & & & \\ \textbf{R}^{10} & & & \textbf{C}_1\textbf{-C}_6\textbf{-alkoxy} \end{array}$

Extraordinary preference is given to compounds of the formula Ial and Ibl (\equiv I where l = 0), in particular to the compounds Ial.1 to Ial.456 and the compounds Ibl.1 to Ibl.456, where the radical definitions R^1 to R^5 and l have a preferred meaning for the compounds according to the invention not only in combination with each other, but in each case also on their own.

20

5

25

30

35

40

Į	No.	R ¹	R ²	R ³	R ⁵
15	Ial.1 or Ibl.1	CH ₃	H	H	F
	Ial.2 or Ibl.2	CH ₃	H	Н	Cl
	Ial.3 or Ibl.3	CH ₃	Н	H	Br
	Ial.4 or Ibl.4	CH ₃	H	Н	I
20	Ial.5 or Ibl.5	CH ₃	H	H	SCH ₃
	Ial.6 or Ibl.6	CH ₃	H	H	SCH ₂ CH ₃
	Ial.7 or Ibl.7	CH ₃	H	H	SCO(N(CH ₃) ₂) ₂
	Ial.8 or Ibl.8	CH ₃	Ħ	H	SO ₂ CH ₃
	Ial.9 or Ibl.9	CH ₃	H	H	SO ₂ CH ₂ CH ₃
25	Ial.10 or Ibl.10	CH ₃	H	H	SC ₆ H ₅
	Ial.11 or Ib1.11	CH ₃	H	Н	S(4-CH ₃ -C ₆ H ₄)
	Ia1.12 or Ib1.12	CH ₃	Ħ	H	S(4-C1-C ₆ H ₄)
	Ial.13 or Ibl.13	CH ₃	Н	H	SO ₂ C ₆ H ₅
20	Ial.14 or Ibl.14	CH ₃	Н	Н	$SO_2(4-CH_3-C_6H_4)$
30	Ial.15 or Ibl.15	CH ₃	Н	H	SO ₂ (4-C1-C ₆ H ₄)
	Ia1.16 or Ib1.16	CH ₃	Н	H	4-morpholinyl
	Ial.17 or Ibl.17	CH ₃	Н	Н	1-pyrrolidinyl
	Ial.18 or Ibl.18	CH ₃	Н	Н	1-(1,2,4-triazolyl)
35	Ial.19 or Ibl.19	CH ₃	Н	Н	1-imidazolyl
	Ial.20 or Ibl.20	CH ₃	Н	Н	1-pyrazolyl
	Ia1.21 or Ib1.21	CH ₃	Н	Н	4-oxo-1,4-dihydro-1- pyridyl
	Ia1.22 or Ib1.22	CH ₃	H	Н	N(OCH ₃)CH ₃
40	Ia1.23 or Ib1.23	CH ₃	Н	Н	2-tetrahydroisoxazolyl
	Ia1.24 or Ib1.24	CH ₃	H	Н	N(CH ₃)N(CH ₃) ₂
	Ia1.25 or Ib1.25	CH ₃	Н	Н	$N(CH_2CH=CH_2)N(CH_3)_2$
	Ial.26 or Ibl.26	CH ₃	H	Н	OPO(OCH ₃) ₂
45	Ial.27 or Ibl.27	CH ₃	Н	Н	OPO(OCH ₂ CH ₃) ₂
40	Ial.28 or Ib1.28	CH ₃	Н	н	OPO(N(CH ₃) ₂) ₂
	Ial.29 or Ib1.29	CH ₃	H	Н	OPO(OC ₆ H ₅) ₂

Γ	No.	R ¹	R ²	R ³	R ⁵
Ì	Ia1.30 or Ib1.30	CH ₃	Н	Н	OPO(CH ₃) ₂
İ	Ial.31 or Ibl.31	CH ₃	H	H	OPO(CH ₂ CH ₃) ₂
ľ	Ial.32 or Ibl.32	CH ₃	Н	H	OPO(C ₆ H ₅) ₂
5	Ial.33 or Ibl.33	CH ₃	Н	Н	OPS(OCH ₃) ₂
	Ia1.34 or Ib1.34	CH ₃	H	Н	OPS(OCH ₂ CH ₃) ₂
ı	Ia1.35 or Ib1.35	CH ₃	н	H	OP(OCH ₃) ₂
	Ia1.36 or Ib1.36	CH ₃	H	Н	OP(OCH ₂ CH ₃) ₂
10	Ial.37 or Ibl.37	CH ₃	H	H	PO(OCH ₃) ₂
	Ial.38 or Ibl.38	CH ₃	H	H	PO(OCH ₂ CH ₃) ₂
	Ia1.39 or Ib1.39	CH ₃	H	H	PO(C ₆ H ₅) ₂
	Ial.40 or Ibl.40	CH ₃	H	H	OCH ₃
	Ial.41 or Ib1.41	CH ₃	H	H	OCH ₂ CH ₃
15	Ia1.42 or Ib1.42	CH ₃	H	H	OCH ₂ C ₆ H ₅
	Ial.43 or Ib1.43	CH ₃	H	H	OCH ₂ (2-furyl)
	Ial.44 or Ib1.44	CH ₃	H	H	OCH ₂ (3-furyl)
	Ial.45 or Ibl.45	CH ₃	H	H	OCOOCH ₃
20	Ia1.46 or Ib1.46	CH ₃	H	Н	OCOOCH ₂ CH ₃
	Ial.47 or Ibl.47	CH ₃	H	H	OCOOCH(CH ₃) ₂
	Ia1.48 or Ib1.48	CH ₃	H	H	OCOOC ₆ H ₅
	Ial.49 or Ibl.49	CH ₃	H	H	OCOOC(CH ₃) ₃
	Ial.50 or Ibl.50	CH ₃	Н	H	OCSOC ₆ H ₅
25	Ial.51 or Ib1.51	CH ₃	H	Н	OCSN(CH ₃) ₂
	Ia1.52 or Ib1.52	CH ₃	H	H	OCON (CH ₃) ₂
	Ial.53 or Ibl.53	CH ₃	H	H	OCOSCH ₃
	Ia1.54 or Ib1.54	CH ₃	H	H	ON (CH ₃) ₂
30	Ial.55 or Ibl.55	CH ₃	H	н	O-1-piperidyl
	Ial.56 or Ibl.56	CH ₃	H	Н	OCOCH ₃
	Ia1.57 or Ib1.57	CH ₃	н	H	OCOCH ₂ CH ₃
	Ial.58 or Ibl.58	CH ₃	Н	н	OCOCH(CH ₃) ₂
	Ial.59 or Ibl.59	CH ₃	H	H	OCOC (CH ₃) ₃
35	Ial.60 or Ibl.60	CH ₃	H	H	OCO(CH ₂) ₆ CH ₃
	Ial.61 or Ib1.61	CH ₃	H	H	OCO(CH ₂) ₇ CH ₃
	Ial.62 or Ibl.62	CH ₃	H	H	OCO(CH ₂) ₁₆ CH ₃
	Ial.63 or Ibl.63	CH ₃	H	H	OCO(CH ₂) ₁₄ CH ₃
40	Ial.64 or Ibl.64	CH ₃	H	H	OCOCH ₂ CH ₂ CH=CH ₂
40	Ial.65 or Ibl.65	CH ₃	H	H	OCO(CH ₂) ₃ O(2,4-Cl ₂ -C ₆ H ₃)
	Ial.66 or Ibl.66	CH ₃	Н	Н	$OCOCH(CH_3)O-$ (2-CH ₃ -4-Cl-C ₆ H ₃)
	Ial.67 or Ibl.67	CH ₃	Н	Н	OCOcyclopropyl
45	Ial.68 or Ib1.68	CH ₃	Н	Н	OCOcyclopentyl
40	Ia1.69 or Ib1.69	CH ₃	Н	Н	OCOcyclohexyl
	Ial.70 or Ibl.70	CH ₃	H	Н	OCOC ₆ H ₅

	Tarret.
T.	
	1
Œ	
ij.	i i
£.,	
E.	į
	=
23	
	· Second
ď,	· State
Ť.	diam'r.
ũ	
	Ī
-	•

	52								
[No.		R ¹	R ²	R ³	R ⁵			
ſ	Ial.71 or Ib	1.71	CH ₃	H	H	OCO(2-tetrahydrofuryl)			
	Ial.72 or Ib	1.72	CH ₃	H	Н	OCO(2-furyl)			
_ [Ial.73 or Ib	1.73	CH ₃	H	Н	OCO(2-thienyl)			
5	Ial.74 or Ib	1.74	CH ₃	Н	H	OCO(3-pyridyl)			
ľ	Ial.75 or Ib	1.75	CH ₃	H	Н	OSO ₂ CH ₃			
	Ial.76 or Ib	1.76	CH ₃	H	Н	OSO ₂ CH ₂ CH ₃			
Ī	Ial.77 or Ib	1.77	F	H	Н	F			
10	Ial.78 or Ib	1.78	F	H	Н	Cl			
	Ial.79 or Ib	1.79	F	Н	H	Br			
Ī	Ia1.80 or Ib	1.80	F	H	Н	I			
Ī	Ial.81 or Ib	1.81	F	H	H	SCH ₃			
Ī	Ial.82 or Ib	1.82	F	Н	Н	SCH ₂ CH ₃			
15	Ial.83 or Ib	1.83	F	H	H	SCO(N(CH ₃) ₂) ₂			
	Ial.84 or Ib	1.84	F	н	Н	SO ₂ CH ₃			
	Ial.85 or Ib	1.85	F	н	Н	SO ₂ CH ₂ CH ₃			
	Ial.86 or Ib	1.86	F	H	H	SC ₆ H ₅			
20	Ial.87 or Ib	1.87	F	Н	Н	S(4-CH ₃ -C ₆ H ₄)			
20	Ial.88 or Ib	1.88	F	Н	Н	S(4-C1-C ₆ H ₄)			
	Ial.89 or Ib	1.89	F	H	Н	SO ₂ C ₆ H ₅			
	Ial.90 or Ib	1.90	F	H	H	SO ₂ (4-CH ₃ -C ₆ H ₄)			
	Ial.91 or Ib	1.91	F	H	H	SO ₂ (4-Cl-C ₆ H ₄)			
25	Ial.92 or Ib	1.92	F	Н	Н	4-morpholinyl			
	Ial.93 or Ib	1.93	F	H	H	1-pyrrolidinyl			
	Ial.94 or Ib	1.94	F	Н	H	1-(1,2,4-triazolyl)			
	Ial.95 or Ib	1.95	F	H	H	1-imidazolyl			
30	Ial.96 or Ib	1.96	F	H	H	1-pyrazolyl			
30	Ial.97 or Ib	1.97	F	Н	н	4-oxo-1,4-dihydro-1- pyridyl			
	Ial.98 or Ib	1.98	F	H	H	N(OCH ₃)CH ₃			
	Ial.99 or Ib	01.99	F	H	H	2-tetrahydroisoxazolyl			
35	Ial.100 or It	01.100	F	H	H	N(CH ₃)N(CH ₃) ₂			
33	Ial.101 or Ib	01.101	F	H	H	N(CH ₂ CH=CH ₂)N(CH ₃) ₂			
	Ial.102 or Ib	01.102	F	Н	н	OPO(OCH ₃) ₂			
	Ial.103 or Ib	01.103	F	Н	H	OPO(N(CH ₃) ₂) ₂			
	Ial.104 or I	01.104	F	Н	H	OPO(OCH ₂ CH ₃) ₂			
40	Ia1.105 or I	01.105	F	Н	Н	OPO(OC ₆ H ₅) ₂			
	Ial.106 or I	01.106	F	H	Н	OPO(CH ₃) ₂			
	Ia1.107 or I	01.107	F	Н	H	OPO(CH ₂ CH ₃) ₂			
	Ia1.108 or I	01.108	F	Н	Н	OPO(C ₆ H ₅) ₂			
4=	Ia1.109 or I	01.109	F	Н	Н	OPS(OCH ₃) ₂			
45	Ial.110 or Il	01.110	F	Н	Н	OPS(OCH ₂ CH ₃) ₂			
	Ial.111 or I	01.111	F	Н	Н	OP(OCH ₃) ₂			
					<u> </u>				

1	No.	R ¹	R ²	R ³	R ⁵
	Ia1.112 or Ib1.112	F	H	H	OP(OCH ₂ CH ₃) ₂
	Ial.113 or Ibl.113	F	H	H	PO(OCH ₃) ₂
5	Ial.114 or Ib1.114	F	H	H	PO(OCH ₂ CH ₃) ₂
	Ial.115 or Ibl.115	F	H	Н	PO(C ₆ H ₅) ₂
	Ial.116 or Ibl.116	F	Н	Н	OCH ₃
	Ial.117 or Ibl.117	F	Н	H	OCH ₂ CH ₃
	Ial.118 or Ib1.118	F	Н	Н	OCH ₂ C ₆ H ₅
10	Ial.119 or Ibl.119	F	Н	Н	OCH ₂ (2-furyl)
	Ial.120 or Ib1.120	F	H	н	OCH ₂ (3-furyl)
	Ia1.121 or Ib1.121	F	H	Н	OCOOCH ₃
	Ial.122 or Ib1.122	F	H	H	OCOOCH ₂ CH ₃
	Ia1.123 or Ib1.123	F	Н	H	OCOOCH(CH ₃) ₂
15	Ia1.124 or Ib1.124	F	Н	H	OCOOC ₆ H ₅
	Ial.125 or Ibl.125	F	H	Н	OCOOC(CH ₃) ₃
	Ial.126 or Ibl.126	F	H	H	OCSOC ₆ H ₅
	Ia1.127 or Ib1.127	F	Н	H	OCSN(CH ₃) ₂
20	Ial.128 or Ibl.128	F	H	H	OCON(CH ₃) ₂
	Ial.129 or Ibl.129	F	H	H	OCOSCH ₃
	Ial.130 or Ibl.130	F	H	H	ON(CH ₃) ₂
	Ia1.131 or Ib1.131	F	H	H	O-1-piperidyl
	Ial.132 or Ib1.132	F	H	H	OCOCH ₃
25	Ial.133 or Ib1.133	F	Н	H	OCOCH ₂ CH ₃
	Ia1.134 or Ib1.134	F	Н	H	OCOCH(CH ₃) ₂
	Ial.135 or Ibl.135	F	H	H	OCOC (CH ₃) ₃
	Ial.136 or Ib1.136	F	H	H	OCO(CH ₂) ₆ CH ₃
30	Ial.137 or Ibl.137	F	H	H	OCO(CH ₂) ₇ CH ₃
	Ial.138 or Ib1.138	F	Н	Н	OCO(CH ₂) ₁₆ CH ₃
	Ial.139 or Ibl.139	F	H	H	OCO(CH ₂) ₁₄ CH ₃
	Ial.140 or Ib1.140	F	H	H	OCOCH ₂ CH ₂ CH=CH ₂
	Ial.141 or Ib1.141	F	H	H	OCO(CH ₂) ₃ O(2,4-Cl ₂ -C ₆ H ₃)
35	Ial.142 or Ib1.142	F	Н	н	OCOCH(CH ₃)O- (2-CH ₃ -4-Cl-C ₆ H ₃)
	Ial.143 or Ib1.143	F	н	H	OCOcyclopropyl
	Ial.144 or Ibl.144	F	н	Н	OCOcyclopentyl
	Ial.145 or Ibl.145	F	Н	Н	OCOcyclohexyl
40	Ial.146 or Ibl.146	F	Н	Н	OCOC ₆ H ₅
	Ial.147 or Ibl.147	F	Н	Н	OCO(2-tetrahydrofuryl)
	Ial.148 or Ib1.148	F	Н	Н	OCO(2-furyl)
	Ial.149 or Ibl.149	F	H	Н	OCO(2-thienyl)
45	Ial.150 or Ibl.150	F	H	Н	OCO(3-pyridyl)
23	Ia1.151 or Ib1.151	F	Н	H	OSO ₂ CH ₃
	Ial.152 or Ib1.152	F	H	Н	OSO ₂ CH ₂ CH ₃

100
74.
4.
-
2
en de
Entrain Entrain

	54							
[No.	R^1	R ²	R ³	R ⁵			
	Ial.153 or Ibl.153	CF ₃	Н	Н	F			
	Ia1.154 or Ib1.154	CF ₃	H	H	Cl			
	Ia1.155 or Ib1.155	CF ₃	Н	Н	Br			
5	Ial.156 or Ibl.156	CF ₃	Н	H	I			
	Ial.157 or Ibl.157	CF ₃	Н	Н	SCH ₃			
	Ial.158 or Ibl.158	CF ₃	Н	Н	SCH ₂ CH ₃			
	Ial.159 or Ibl.159	CF ₃	H	H	SCO(N(CH ₃) ₂) ₂			
10	Ial.160 or Ib1.160	CF ₃	Н	Н	SO ₂ CH ₃			
	Ial.161 or Ib1.161	CF ₃	H	H	SO ₂ CH ₂ CH ₃			
	Ial.162 or Ib1.162	CF ₃	H	H	SC ₆ H ₅			
	Ial.163 or Ibl.163	CF ₃	H	H	S(4-CH ₃ -C ₆ H ₄)			
	Ial.164 or Ibl.164	CF ₃	H	H	S(4-C1-C ₆ H ₄)			
15	Ial.165 or Ib1.165	CF ₃	H	H	SO ₂ C ₆ H ₅			
	Ial.166 or Ibl.166	CF ₃	H	Н	SO ₂ (4-CH ₃ -C ₆ H ₄)			
	Ial.167 or Ibl.167	CF ₃	H	H	SO ₂ (4-Cl-C ₆ H ₄)			
	Ial.168 or Ib1.168	CF ₃	H	H	4-morpholinyl			
20	Ial.169 or Ibl.169	CF ₃	H	H	1-pyrrolidinyl			
	Ia1.170 or Ib1.170	CF ₃	H	H	1-(1,2,4-triazoly1)			
	Ial.171 or Ibl.171	CF ₃	H	Н	l-imidazolyl			
	Ial.172 or Ib1.172	CF ₃	H	Н	1-pyrazolyl			
25	Ial.173 or Ib1.173	CF ₃	Н	Н	4-oxo-1,4-dihydro-1- pyridyl			
	Ial.174 or Ibl.174	CF ₃	Н	Н	N(OCH ₃)CH ₃			
	Ial.175 or Ibl.175	CF ₃	H	Н	2-tetrahydroisoxazolyl			
	Ial.176 or Ibl.176	CF ₃	H	Н	N(CH ₃)N(CH ₃) ₂			
	Ial.177 or Ibl.177	CF ₃	Н	Н	N(CH ₂ CH=CH ₂)N(CH ₃) ₂			
30	Ial.178 or Ibl.178	CF ₃	Н	Н	OPO(OCH ₃) ₂			
	Ial.179 or Ibl.179	CF ₃	Н	H	OPO(OCH ₂ CH ₃) ₂			
	Ial.180 or Ib1.180	CF ₃	Н	H	OPO(N(CH ₃) ₂) ₂			
	Ial.181 or Ibl.181	CF ₃	H	H	OPO(OC ₆ H ₅) ₂			
35	Ial.182 or Ibl.182	CF ₃	H	H	OPO(CH ₃) ₂			
	Ial.183 or Ibl.183	CF ₃	H	H	OPO(CH ₂ CH ₃) ₂			
	Ial.184 or Ibl.184	CF ₃	H	H	OPO(C ₆ H ₅) ₂			
	Ial.185 or Ibl.185	CF ₃	H	H	OPS(OCH ₃) ₂			
	Ial.186 or Ibl.186	CF ₃	H	H	OPS(OCH ₂ CH ₃) ₂			
40	Ial.187 or Ibl.187	CF ₃	Н	H	OP(OCH ₃) ₂			
	Ia1.188 or Ib1.188	CF ₃	H	Н	OP(OCH ₂ CH ₃) ₂			
	Ial.189 or Ibl.189	CF ₃	Н	H	PO(OCH ₃) ₂			
	Ial.190 or Ib1.190	CF ₃	Н	Н	PO(OCH ₂ CH ₃) ₂			
45	Ia1.191 or Ib1.191	CF ₃	H	H	PO(C ₆ H ₅) ₂			
43	Ia1.192 or Ib1.192	CF ₃	H	Н	OCH ₃			
	Ial.193 or Ibl.193	CF ₃	H	H	OCH ₂ CH ₃			
	· · · · · · · · · · · · · · · · · · ·							

1	No.	R ¹	R ²	R ³	R ⁵
	Ial.194 or Ibl.194	CF ₃	H H	H	OCH ₂ C ₆ H ₅
	Ial.195 or Ibl.195	CF ₃	Н	Н	OCH ₂ (2-furyl)
	Ial.196 or Ib1.196	CF ₃	Н	H	OCH ₂ (3-furyl)
5	Ial.197 or Ibl.197	CF ₃	Н	н	OCOOCH ₃
	Ial.198 or Ibl.198	CF ₃	Н	Ħ	OCOOCH ₂ CH ₃
	Ial.199 or Ibl.199	CF ₃	Н	Н	OCOOCH(CH ₃) ₂
	Ial.200 or Ibl.200	CF ₃	Н	Н	OCOOC ₆ H ₅
10	Ia1.201 or Ib1.201	CF ₃	Н	Н	OCOOC(CH ₃) ₃
10	Ial.202 or Ibl.202	CF ₃	H	Н	OCSOC ₆ H ₅
	Ia1.203 or Ib1.203	CF ₃	Н	Н	OCSN(CH ₃) ₂
	Ial.204 or Ibl.204	CF ₃	Н	Н	OCON(CH ₃) ₂
	Ial.205 or Ibl.205	CF ₃	Н	Н	OCOSCH3
15	Ial.206 or Ibl.206	CF3	H	Н	ON(CH ₃) ₂
	Ial.207 or Ibl.207	CF ₃	Н	H	O-1-piperidyl
	Ial.208 or Ibl.208	CF ₃	H	H	ососн3
	Ia1.209 or Ib1.209	CF ₃	H	Н	OCOCH ₂ CH ₃
20	Ial.210 or Ibl.210	CF ₃	H	Н	OCOCHC (CH ₃) ₂
20	Ial.211 or Ib1.211	CF ₃	H	Н	OCOC (CH ₃) ₃
	Ial.212 or Ib1.212	CF ₃	H	H	OCO(CH ₂) ₆ CH ₃
	Ial.213 or Ib1.213	CF ₃	H	Н	OCO(CH ₂) ₇ CH ₃
	Ial.214 or Ib1.214	CF ₃	H	H	OCO(CH ₂) ₁₆ CH ₃
25	Ial.215 or Ib1.215	CF ₃	H	H	OCO(CH ₂) ₁₄ CH ₃
	Ial.216 or Ib1.216	CF ₃	Н	H	OCOCH ₂ CH ₂ CH=CH ₂
	Ial.217 or Ibl.217	CF ₃	Н	H	$OCO(CH_2)_3O(2,4-Cl_2-C_6H_3)$
	Ia1.218 or Ib1.218	CF3	Н	H	OCOCH(CH ₃)O- (2-CH ₃ -4-Cl-C ₆ H ₃)
30	Ial.219 or Ibl.219	CF ₃	н	Н	OCOcyclopropyl
	Ia1.220 or Ib1.220	CF ₃	н	н	OCOcyclopentyl
	Ial.221 or Ibl.221	CF ₃	H	H	OCOcyclohexyl
	Ial.222 or Ibl.222	CF ₃	H	H	OCOC ₆ H ₅
35	Ial.223 or Ibl.223	CF ₃	H	Н	OCO(2-tetrahydrofuryl)
	Ial.224 or Ib1.224	CF ₃	H	Н	OCO(2-furyl)
	Ial.225 or Ibl.225	CF ₃	Н	Н	OCO(2-thienyl)
	Ial.226 or Ib1.226	CF ₃	Н	H	OCO(3-pyridyl)
	Ial.227 or Ibl.227	CF ₃	Н	H	OSO ₂ CH ₃
40	Ial.228 or Ibl.228	CF ₃	H	H	OSO ₂ CH ₂ CH ₃
	Ial.229 or Ibl.229	Cl	Н	H	F
	Ia1.230 or Ib1.230	Cl	Н	H	Cl
	Ial.231 or Ibl.231	Cl	H	H	Br
45	Ia1.232 or Ib1.232	Cl	Н	H	I
	Ial.233 or Ibl.233	Cl	H	H	SCH ₃
	Ia1.234 or Ib1.234	Cl	H	H	SCH ₂ CH ₃

	No.	R ¹	R ²	R ³	R ⁵
	Ia1.235 or Ib1.235	Cl	Н	H	SCO(N(CH ₃) ₂) ₂
	Ia1.236 or Ib1.236	Cl	H	н	SO ₂ CH ₃
_ i	Ia1.237 or Ib1.237	Cl	H	H	SO ₂ CH ₂ CH ₃
5	Ia1.238 or Ib1.238	Cl	H	H	SC ₆ H ₅
	Ia1.239 or Ib1.239	Cl	H	Н	S(4-CH ₃ -C ₆ H ₄)
	Ial.240 or Ibl.240	Cl	H	Н	$S(4-C1-C_6H_4)$
	Ial.241 or Ibl.241	Cl	H	Н	SO ₂ C ₆ H ₅
10	Ial.242 or Ib1.242	Cl	Н	H	$SO_2(4-CH_3-C_6H_4)$
	Ial.243 or Ibl.243	Cl	H	H	$SO_2(4-C1-C_6H_4)$
	Ial.244 or Ibl.244	Cl	Н	H	4-morpholinyl
	Ia1.245 or Ib1.245	Cl	H	H	1-pyrrolidinyl
	Ial.246 or Ibl.246	Cl	Н	H	1-(1,2,4-triazolyl)
15	Ia1.247 or Ib1.247	Cl	H	Н	1-imidazolyl
	Ia1.248 or Ib1.248	Cl	H	H	1-pyrazolyl
	Ial.249 or Ib1.249	Cl	H	н	4-oxo-1,4-dihydro-1- pyridyl
	Ia1.250 or Ib1.250	Cl	Н	H	N(OCH ₃)CH ₃
20	Ia1.251 or Ib1.251	Cl	H	H	2-tetrahydroisoxazolyl
	Ial.252 or Ibl.252	Cl	H	H	N(CH ₃)N(CH ₃) ₂
	Ia1.253 or Ib1.253	Cl	Н	H	$N(CH_2CH=CH_2)N(CH_3)_2$
	Ial.254 or Ibl.254	Cl	H	H	OPO(OCH ₃) ₂
25	Ial.255 or Ib1.255	Cl	H	H	OPO(OCH ₂ CH ₃) ₂
	Ia1.256 or Ib1.256	Cl	H	H	OPO(N(CH ₃) ₂) ₂
	Ia1.257 or Ib1.257	Cl	H	H	OPO(OC ₆ H ₅) ₂
	Ia1.258 or Ib1.258	Cl	H	H	OPO(CH ₃) ₂
20	Ial.259 or Ibl.259	Cl	Н	Н	OPO(CH ₂ CH ₃) ₂
30	Ial.260 or Ibl.260	Cl	H	H	OPO(C ₆ H ₅) ₂
	Ia1.261 or Ib1.261	Cl	H	H	OPS(OCH ₃) ₂
	Ial.262 or Ibl.262	Cl	H	H	OPS(OCH ₂ CH ₃) ₂
	Ial.263 or Ibl.263	Cl	H	H	OP(OCH ₃) ₂
35	Ial.264 or Ibl.264	Cl	H	H	OP(OCH ₂ CH ₃) ₂
	Ial.265 or Ibl.265	Cl	н	H	PO(OCH ₃) ₂
	Ia1.266 or Ib1.266	Cl	H	н	PO(OCH ₂ CH ₃) ₂
	Ia1.267 or Ib1.267	Cl	Н	H	PO(C ₆ H ₅) ₂
	Ial.268 or Ibl.268	Cl	H	Н	OCH ₃
40	Ial.269 or Ibl.269	Cl	Н	H	OCH ₂ CH ₃
	Ial.270 or Ibl.270	Cl	H	H	OCH ₂ C ₆ H ₅
	Ial.271 or Ibl.271	cl	Н	Н	OCH ₂ (2-furyl)
	Ial.272 or Ibl.272	Cl	H	H	OCH ₂ (3-furyl)
45	Ial.273 or Ibl.273	Cl	H	H	OCOOCH ₃
	Ial.274 or Ibl.274	Cl	H	H	OCOOCH ₂ CH ₃
	Ia1.275 or Ib1.275	Cl	H	H	OCOOCH(CH ₃) ₂

Time?	12	
ŧ,	The state of the	10.00
2	ž,	Shiner
ding.	Spirit.	10000
111111	E.	
1111/		-
5	The state of the state of	-
ī		
1		1
firms	Mary Street	43.000
il il	may you	
1111111	111111	-
il mili	Harman III	1000
	-	100

			57		
	No.	R ¹	R ²	R ³	R ⁵
	Ia1.276 or Ib1.276	Cl	H	H	OCOOC ₆ H ₅
	Ia1.277 or Ib1.277	Cl	H	Н	OCOOC(CH ₃) ₃
_	Ia1.278 or Ib1.278	Cl	H	H	OCSOC ₆ H ₅
5	Ia1.279 or Ib1.279	Cl	Н	H	OCSN(CH ₃) ₂
	Ial.280 or Ib1.280	Cl	H	H	OCON(CH ₃) ₂
	Ia1.281 or Ib1.281	Cl	H	Н	OCOSCH ₃
	Ia1.282 or Ib1.282	Cl	H	Н	ON(CH ₃) ₂
10	Ial.283 or Ibl.283	Cl	H	Н	0-1-piperidyl
	Ia1.284 or Ib1.284	Cl	H	H	OCOCH ₃
	Ial.285 or Ibl.285	Cl	H	H	OCOCH ₂ CH ₃
	Ial.286 or Ibl.286	Cl	H	H	OCOCH(CH ₃) ₂
	Ial.287 or Ibl.287	Cl	H	H	OCOC(CH ₃) ₃
15	Ial.288 or Ibl.288	Cl	H	Н	OCO(CH ₂) ₆ CH ₃
	Ial.289 or Ib1.289	Cl	H	H	OCO(CH ₂) ₇ CH ₃
	Ia1.290 or Ib1.290	Cl	Н	Н	OCO(CH ₂) ₁₆ CH ₃
	Ial.291 or Ibl.291	Cl	H	H	OCO(CH ₂) ₁₄ CH ₃
20	Ial.292 or Ibl.292	Cl	Н	Н	OCOCH ₂ CH ₂ CH=CH ₂
	Ia1.293 or Ib1.293	Cl	H	Н	OCO(CH ₂) ₃ O(2,4-Cl ₂ -C ₆ H ₃)
	Ial.294 or Ibl.294	Cl	Н	н	OCOCH(CH ₃)O- (2-CH ₃ -4-Cl-C ₆ H ₃)
	Ial.295 or Ibl.295	Cl	Н	H	OCOcyclopropyl
25	Ial.296 or Ibl.296	Cl	H	Н	OCOcyclopentyl
	Ial.297 or Ibl.297	Cl	H	Н	OCOcyclohexyl
	Ial.298 or Ibl.298	Cl	Н	Н	OCOC ₆ H ₅
	Ial.299 or Ibl.299	Cl	Н	Н	OCO(2-tetrahydrofuryl)
	Ia1.300 or Ib1.300	Cl	H	Н	OCO(2-furyl)
30	Ial.301 or Ib1.301	Cl	H	Н	OCO(2-thienyl)
	Ial.302 or Ib1.302	Cl	H	Н	OCO(3-pyridyl)
	Ial.303 or Ib1.303	Cl	H	Н	OSO ₂ CH ₃
	Ia1.304 or Ib1.304	Cl	H	Н	OSO ₂ CH ₂ CH ₃
35	Ial.305 or Ibl.305	CHF ₂	H	Н	F
-	Ial.306 or Ibl.306	CHF ₂	H	Н	Cl
	Ia1.307 or Ib1.307	CHF ₂	H	Н	Br
	Ia1.308 or Ib1.308	CHF ₂	H	H	I
	Ial.309 or Ibl.309	CHF ₂	H	H	SCH ₃
40	Ial.310 or Ibl.310	CHF ₂	H	H	SCH ₂ CH ₃
	Ial.311 or Ib1.311	CHF ₂	H	H	SCO(N(CH ₃) ₂) ₂
	Ial.312 or Ibl.312	CHF ₂	H	H	SO ₂ CH ₃
	Ial.313 or Ibl.313	CHF ₂	Н	Н	SO ₂ CH ₂ CH ₃
45	Ial.314 or Ibl.314	CHF ₂	H	Н	SC ₆ H ₅
43	Ial.315 or Ibl.315	CHF ₂	H	H	S(4-CH ₃ -C ₆ H ₄)
	Ial.316 or Ib1.316	CHF ₂	H	Н	S(4-C1-C ₆ H ₄)

			20		
	No.	R ¹	R ²	R ³	R ⁵
	Ial.317 or Ibl.317	CHF ₂	Н	H	SO ₂ C ₆ H ₅
	Ial.318 or Ibl.318	CHF ₂	Н	Н	$SO_2(4-CH_3-C_6H_4)$
_	Ial.319 or Ibl.319	CHF ₂	Н	н	$SO_2(4-C1-C_6H_4)$
5	Ia1.320 or Ib1.320	CHF ₂	H	Н	4-morpholinyl
	Ial.321 or Ib1.321	CHF ₂	Н	H	1-pyrrolidinyl
	Ial.322 or Ib1.322	CHF ₂	Н	н	1-(1,2,4-triazoly1)
	Ial.323 or Ib1.323	CHF ₂	H	H	1-imidazolyl
10	Ial.324 or Ib1.324	CHF ₂	H	Н	1-pyrazolyl
	Ial.325 or Ibl.325	CHF ₂	Н	Н	4-oxo-1,4-dihydro-1- pyridyl
	Ial.326 or Ib1.326	CHF ₂	Н	H	N(OCH ₃)CH ₃
	Ia1.327 or Ib1.327	CHF ₂	H	H	2-tetrahydroisoxazolyl
15	Ial.328 or Ib1.328	CHF ₂	H	H	$N(CH_3)N(CH_3)_3$
	Ia1.329 or Ib1.329	CHF ₂	Н	Н	N(CH ₂ CH=CH ₂)N(CH ₃) ₂
	Ial.330 or Ibl.330	CHF ₂	H	H	OPO(OCH ₃) ₂
	Ial.331 or Ibl.331	CHF ₂	H	H	OPO(OCH ₂ CH ₃) ₂
	Ial.332 or Ib1.332	CHF ₂	H	H	OPO(N(CH ₃) ₂) ₂
20	Ia1.333 or Ib1.333	CHF ₂	Н	Н	OPO(OC ₆ H ₅) ₂
	Ial.334 or Ib1.334	CHF ₂	H	Н	OPO(CH ₃) ₂
	Ia1.335 or Ib1.335	CHF ₂	H	H	OPO(CH ₂ CH ₃) ₂
	Ial.336 or Ibl.336	CHF ₂	Н	H	OPO(C ₆ H ₅) ₂
25	Ial.337 or Ibl.337	CHF ₂	H	Н	OPS(OCH ₃) ₂
	Ia1.338 or Ib1.338	CHF ₂	H	H	OPS(OCH ₂ CH ₃) ₂
	Ial.339 or Ibl.339	CHF ₂	H	H	OP(OCH ₃) ₂
	Ia1.340 or Ib1.340	CHF ₂	H	H	OP(OCH ₂ CH ₃) ₂
	Ial.341 or Ib1.341	CHF ₂	H	H	PO(OCH ₃) ₂
30	Ial.342 or Ibl.342	CHF ₂	Н	H	PO(OCH ₂ CH ₃) ₂
	Ial.343 or Ib1.343	CHF ₂	Н	H	PO(C ₆ H ₅) ₂
	Ia1.344 or Ib1.344	CHF ₂	H	Н	OCH ₃
	Ial.345 or Ibl.345	CHF ₂	H	Н	OCH ₂ CH ₃
35	Ial.346 or Ibl.346	CHF ₂	H	H	OCH ₂ C ₆ H ₅
	Ial.347 or Ibl.347	CHF ₂	H	H	OCH ₂ (2-furyl)
	Ial.348 or Ib1.348	CHF ₂	H	H	OCH ₂ (3-furyl)
	Ial.349 or Ib1.349	CHF ₂	H	H	OCOOCH ₃
	Ial.350 or Ib1.350	CHF ₂	Н	H	OCOOCH ₂ CH ₃
40	Ial.351 or Ib1.351	CHF ₂	H	H	OCOOCH(CH ₃) ₂
	Ial.352 or Ibl.352	CHF ₂	Н	Н	OCOOC ₆ H ₅
	Ial.353 or Ibl.353	CHF ₂	Н	Н	OCOOC(CH ₃) ₃
	Ia1.354 or Ib1.354	CHF ₂	Н	H	OCSOC ₆ H ₅
45	Ial.355 or Ibl.355	CHF ₂	H	Н	OCSN(CH ₃) ₂
	Ial.356 or Ibl.356	CHF ₂	Н	H	OCON (CH ₃) ₂
	Ial.357 or Ibl.357	CHF ₂	H	H	OCOSCH ₃
			-		

			59		
	No.	R ¹	R ²	R ³	R ⁵
	Ial.358 or Ibl.358	CHF ₂	H	H	ON(CH ₃) ₂
	Ia1.359 or Ib1.359	CHF ₂	Н	Н	0-1-piperidyl
_ !	Ial.360 or Ibl.360	CHF ₂	Н	H	OCOCH ₃
5	Ia1.361 or Ib1.361	CHF ₂	Н	H	OCOCH ₂ CH ₃
	Ial.362 or Ibl.362	CHF ₂	Н	H	OCOCH(CH ₃) ₂
	Ia1.363 or Ib1.363	CHF ₂	Н	Н	OCOC(CH ₃) ₃
	Ia1.364 or Ib1.364	CHF ₂	Н	H	OCO(CH ₂) ₆ CH ₃
10	Ia1.365 or Ib1.365	CHF ₂	H	Н	OCO(CH ₂) ₇ CH ₃
	Ial.366 or Ibl.366	CHF ₂	Н	H	OCO(CH ₂) ₁₆ CH ₃
	Ia1.367 or Ib1.367	CHF ₂	Н	H	OCO(CH ₂) ₁₄ CH ₃
	Ial.368 or Ibl.368	CHF ₂	H	H	OCOCH ₂ CH ₂ CH=CH ₂
	Ia1.369 or Ib1.369	CHF ₂	Н	Н	$OCO(CH_2)_3O(2,4-Cl_2-C_6H_3)$
15	Ial.370 or Ibl.370	CHE	-	1.7	OCOCH(CH ₃)O-
	1a1.370 Of 1b1.370	CHF ₂	H	H	$(2-CH_3-4-Cl-C_6H_3)$
	Ia1.371 or Ib1.371	CHF ₂	H	H	OCOcyclopropyl
	Ial.372 or Ib1.372	CHF ₂	H	H	OCOcyclopentyl
20	Ial.373 or Ibl.373	CHF ₂	H	H	OCOcyclohexyl
20	Ial.374 or Ibl.374	CHF ₂	H	H	OCOC ₆ H ₅
	Ia1.375 or Ib1.375	CHF ₂	H	Н	OCO(2-tetrahydrofuryl)
	Ial.376 or Ibl.376	CHF ₂	H	H	OCO(2-furyl)
	Ial.377 or Ibl.377	CHF ₂	H	H	OCO(2-thienyl)
25	Ial.378 or Ibl.378	CHF ₂	H	H	OCO(3-pyridyl)
	Ial.379 or Ibl.379	CHF ₂	H	H	OSO ₂ CH ₅
	Ia1.380 or Ib1.380	CHF ₂	H	H	OSO ₂ CH ₂ CH ₃
	Ial.381 or Ibl.381	Cl	CH ₃	H	F
	Ial.382 or Ibl.382	Cl	CH ₃	H	Cl
30	Ia1.383 or Ib1.383	Cl	CH ₃	Н	Br
	Ia1.384 or Ib1.384	Cl	CH ₃	Н	Ι
	Ia1.385 or Ib1.385	Cl	CH ₃	H	SCH ₃
	Ial.386 or Ibl.386	Cl	CH ₃	H	SCH ₂ CH ₃
35	Ial.387 or Ibl.387	Cl	CH ₃	H	SCO(N(CH ₃) ₂) ₂
	Ial.388 or Ibl.388	Cl	CH ₃	H	SO ₂ CH ₃
	Ia1.389 or Ib1.389	Cl	CH ₃	H	SO ₂ CH ₂ CH ₃
	Ial.390 or Ibl.390	Cl	CH ₃	H	SC ₆ H ₅
	Ial.391 or Ibl.391	Cl	CH ₃	H	S(4-CH ₃ -C ₆ H ₄)
40	Ial.392 or Ibl.392	Cl	CH ₃	H	S(4-C1-C ₆ H ₄)
	Ial.393 or Ibl.393	Cl	CH ₃	H	SO ₂ C ₆ H ₅
	Ial.394 or Ibl.394	Cl	CH ₃	Н	SO ₂ (4-CH ₃ -C ₆ H ₄)
	Ial.395 or Ibl.395	Cl	CH ₃	Н	SO ₂ (4-C1-C ₆ H ₄)
45	Ial.396 or Ibl.396	Cl	CH ₃	Н	4-morpholinyl
40	Ial.397 or Ibl.397	Cl	CH ₃	Н	1-pyrrolidinyl
	Ial.398 or Ibl.398	Cl	CH ₃	Н	1-(1,2,4-triazolyl)

			00		
	No.	R ¹	R ²	R ³	R ⁵
	Ia1.399 or Ib1.399	Cl	CH ₃	H	1-imidazolyl
	Ial.400 or Ib1.400	Cl	CH ₃	H	1-pyrazolyl
5	Ial.401 or Ib1.401	Cl	CH ₃	Н	4-oxo-1,4-dihydro-1- pyridyl
	Ia1.402 or Ib1.402	Cl	CH ₃	H	N(OCH ₃)CH ₃
	Ial.403 or Ibl.403	Cl	CH ₃	Н	2-tetrahydroisoxazolyl
	Ial.404 or Ib1.404	Cl	CH ₃	Н	N(CH ₃)N(CH ₃) ₂
10	Ial.405 or Ib1.405	Cl	CH ₃	H	N(CH ₂ CH=CH ₂)N(CH ₃) ₂
10	Ial.406 or Ibl.406	Cl	CH ₃	Н	OPO(OCH ₃) ₂
	Ia1.407 or Ib1.407	Cl	CH ₃	H	OPO(OCH ₂ CH ₃) ₂
	Ial.408 or Ibl.408	Cl	CH ₃	Н	OPO(N(CH ₃) ₂) ₂
	Ia1.409 or Ib1.409	Cl	CH ₃	Н	OPO(OC ₆ H ₅) ₂
15	Ial.410 or Ibl.410	Cl	CH ₃	Н	OPO(CH ₃) ₂
	Ial.411 or Ib1.411	Cl	CH ₃	H	OPO(CH ₂ CH ₃) ₂
	Ial.412 or Ib1.412	Cl	CH ₃	Н	OPO(C ₆ H ₅) ₂
	Ial.413 or Ibl.413	Cl	CH ₃	H	OPS(OCH ₃) ₂
	Ial.414 or Ibl.414	Cl	CH ₃	H	OPS(OCH ₂ CH ₃) ₂
20	Ial.415 or Ibl.415	Cl	CH ₃	H	OP(OCH ₃) ₂
	Ial.416 or Ibl.416	Cl	CH ₃	H	OP(OCH ₂ CH ₃) ₂
	Ial.417 or Ibl.417	Cl	CH ₃	Н	PO(OCH ₃) ₂
	Ial.418 or Ibl.418	Cl	CH ₃	H	PO(OCH ₂ CH ₃) ₂
25	Ial.419 or Ib1.419	Cl	CH ₃	H	PO(C ₆ H ₅) ₂
	Ia1.420 or Ib1.420	Cl	CH ₃	H	OCH ₃
	Ial.421 or Ibl.421	Cl	CH ₃	H	OCH ₂ CH ₃
	Ial.422 or Ib1.422	Cl	CH ₃	H	OCH ₂ C ₆ H ₅
	Ial.423 or Ib1.423	Cl	CH ₃	H	OCH ₂ (2-furyl)
30	Ial.424 or Ibl.424	Cl	CH ₃	Н	OCH ₂ (3-furyl)
	Ia1.425 or Ib1.425	Cl	CH ₃	H	ОСООСH ₃
	Ial.426 or Ibl.426	Cl	CH ₃	Н	OCOOCH ₂ CH ₃
	Ial.427 or Ib1.427	Cl	CH ₃	Н	OCOOCH(CH ₃) ₂
35	Ial.428 or Ibl.428	Cl	CH ₃	Н	OCOOC ₆ H ₅
	Ia1.429 or Ib1.429	Cl	CH ₃	H	OCOOC(CH ₃) ₃
	Ia1.430 or Ib1.430	Cl	CH ₃	Н	OCSOC ₆ H ₅
	Ia1.431 or Ib1.431	Cl	CH ₃	Н	OCSN(CH ₃) ₂
	Ial.432 or Ibl.432	Cl	CH ₃	H	OCON(CH ₃) ₂
40	Ial.433 or Ib1.433	Cl	CH ₃	Н	OCOSCH ₃
	Ial.434 or Ib1.434	Cl	CH ₃	H	ON(CH ₃) ₂
	Ial.435 or Ibl.435	Cl	CH ₃	Н	0-1-piperidyl
	Ial.436 or Ibl.436	Cl	CH ₃	Н	OCOCH ₃
45	Ial.437 or Ibl.437	Cl	CH ₃	Н	OCOCH ₂ CH ₃
40	Ial.438 or Ibl.438	Cl	CH ₃	H	OCOCH(CH ₃) ₂
	Ial.439 or Ibl.439	Cl	CH ₃	H	OCOC(CH ₃) ₃

	No.	R^1	R ²	R ³	R ⁵
	Ial.440 or Ib1.440	Cl	CH ₃	H	OCO(CH ₂) ₆ CH ₃
	Ial.441 or Ib1.441	Cl	CH ₃	Ħ	OCO(CH ₂) ₇ CH ₃
_	Ial.442 or Ib1.442	Cl	CH ₃	H	OCO(CH ₂) ₁₆ CH ₃
5	Ial.443 or Ib1.443	Cl	CH ₃	H	OCO(CH ₂) ₁₄ CH ₃
	Ial.444 or Ibl.444	Cl	CH ₃	H	OCOCH ₂ CH ₂ CH=CH ₂
	Ial.445 or Ib1.445	Cl	CH ₃	H	$OCO(CH_2)_3O(2,4-Cl_2-C_6H_3)$
10	Ial.446 or Ibl.446	Cl	CH ₃	Н	OCOCH(CH ₃)O- (2-CH ₃ -4-C1-C ₆ H ₃)
10	Ial.447 or Ib1.447	Cl	CH ₃	Н	OCOcyclopropyl
	Ial.448 or Ibl.448	Cl	CH ₃	H	OCOcyclopentyl
	Ial.449 or Ib1.449	Cl	CH ₃	Н	OCOcyclohexyl
	Ia1.450 or Ib1.450	Cl	CH ₃	H	OCOC ₆ H ₅
15	Ia1.451 or Ib1.451	Cl	CH ₃	H	OCO(2-tetrahydrofuryl)
	Ia1.452 or Ib1.452	Cl	CH ₃	H	OCO(2-furyl)
	Ia1.453 or Ib1.453	Cl	CH ₃	Н	OCO(2-thienyl)
	Ial.454 or Ibl.454	Cl	CH ₃	H	OCO(3-pyridyl)
20	Ial.455 or Ib1.455	Cl	CH ₃	H	OSO ₂ CH ₃
20	Ial.456 or Ibl.456	Cl	CH ₃	H	OSO ₂ CH ₂ CH ₃

Extraordinary preference is furthermore given to the following cyclohexenonequinolinoyl derivatives of the formula I:

25

30

- the compounds of the formulae Ia2 and Ib2, in particular the compounds Ia2.1 to Ia2.456 and the compounds Ib2.1 to Ib2.456, which differ from the compounds Ia1.1 to Ia1.456 and Ib1.1 to Ib1.456, respectively, in that (R⁶)₁ is "5,5-dimethyl".

35
$$\mathbb{R}^3$$
 \mathbb{R}^2 \mathbb{R}^2 \mathbb{R}^3 \mathbb{R}^3 \mathbb{R}^2

40

- the compounds of the formulae Ia3 and Ib3, in particular the compounds Ia3.1 to Ia3.456 and the compounds Ib3.1 to Ib3.456, which differ from the compounds Ia1.1 to Ia1.456 and Ib1.1 to Ib1.456, respectively, in that (R⁶)₁ is "5-methyl".

- the compounds of the formulae Ia4 and Ib4, in particular the compounds Ia4.1 to Ia4.456 and the compounds Ib4.1 to Ib4.456, which differ from the compounds Ia1.1 to Ia1.456 and Ib1.1 to Ib1.456, respectively, in that (R⁶)₁ is "4,4-dimethyl".

- the compounds of the formulae Ia5 and Ib5, in particular the compounds Ia5.1 to Ia5.456 and the compounds Ib5.1 to Ib5.456, which differ from the compounds Ia1.1 to Ia1.456 and Ib1.1 to Ib1.456, respectively, in that (R⁶)₁ is "6,6-dimethyl".

25

30

- the compounds of the formulae Ia6 and Ib6, in particular the compounds Ia6.1 to Ia6.456 and the compounds Ib6.1 to Ib6.456, which differ from the compounds Ia1.1 to Ia1.456 and Ib1.1 to Ib1.456, respectively, in that (R⁶)₁ is "4,4,6,6-tetramethyl-5-oxo".

10
$$\bigcap_{R^5} \bigcap_{R^1} \bigcap_{R^2} \bigcap_{R^1} \bigcap_{R^2} \bigcap_{R^3} \bigcap_{R^2} \bigcap_{R^3} \bigcap_{R^3} \bigcap_{R^2} \bigcap_{R^3} $

- the compounds of the formulae Ia7 and Ib7, in particular the compounds Ia7.1 to Ia7.456 and the compounds Ib7.1 to Ib7.456, which differ from the compounds Ia1.1 to Ia1.456 and Ib1.1 to Ib1.456, respectively, in that (R⁶)₁ is "6-methyl".

the compounds of the formulae Ia8 and Ib8, in particular the compounds Ia8.1 to Ia8.456 and the compounds Ib8.1 to Ib8.456, which differ from the compounds Ia1.1 to Ia1.456 and Ib1.1 to Ib1.456, respectively, in that (R⁶)₁ is "5-hydroxy-4,4,6,6-tetramethyl".

45

30

35

The cyclohexenonequinolinoyl derivatives of the formula I can be obtained by various routes, for example by the following processes:

A. Preparation of compounds of the formula I where R⁵ = halogen by reaction of cyclohexanedione derivatives of the formula III with halogenating agents:

25
$$(R^6)_1$$
 halogenating agent Ia and/or Ib (where R^5 = halogen)

Suitable halogenating agents are, for example, phosgene, diphosgene, triphosgene, thionyl chloride, oxalyl chloride, phosphorus chloride, phosphorus pentachloride, mesyl chloride, chloromethylene-N,N-dimethylammonium chloride, oxalyl bromide, phosphorus oxybromide etc.

B. Preparation of compounds of the formula I where $R^5 = OR^7$, OSO_2R^8 , OPR^8R^9 , $OPOR^8R^9$ or $OPSR^8R^9$ by reaction of cyclohexane dione derivatives of the formula III with alkylating, sulfonylating or phosphonylating agents $IV\alpha$, $IV\beta$, $IV\gamma$, $IV\delta$ or $IV\epsilon$.

20

25

$$\mathbf{5} \quad (\mathbf{R}^{6})_{1} = \begin{pmatrix} \mathbf{R}^{3} & \mathbf{L}^{1} - \mathbf{R}^{7} & (\mathbf{IV}\alpha) & \text{or} \\ & \mathbf{L}^{1} - \mathbf{SO}_{2}\mathbf{R}^{8} & (\mathbf{IV}\beta) & \text{or} \\ & + & \mathbf{L}^{1} - \mathbf{PR}^{8}\mathbf{R}^{9} & (\mathbf{IV}\gamma) & \text{or} \\ & & + & \mathbf{L}^{1} - \mathbf{POR}^{8}\mathbf{R}^{9} & (\mathbf{IV}\delta) & \text{or} \\ & & + & \mathbf{L}^{1} - \mathbf{PSR}^{8}\mathbf{R}^{9} & (\mathbf{IV}\delta) & \text{or} \\ & & + & \mathbf{L}^{1} - \mathbf{PSR}^{8}\mathbf{R}^{9} & (\mathbf{IV}\delta) & \text{or} \\ & & + & \mathbf{L}^{1} - \mathbf{PSR}^{8}\mathbf{R}^{9} & (\mathbf{IV}\delta) & \text{or} \\ & & + & \mathbf{L}^{1} - \mathbf{PSR}^{8}\mathbf{R}^{9} & (\mathbf{IV}\delta) & \text{or} \\ & & + & \mathbf{L}^{1} - \mathbf{PSR}^{8}\mathbf{R}^{9} & (\mathbf{IV}\delta) & \text{or} \\ & & + & \mathbf{L}^{1} - \mathbf{PSR}^{8}\mathbf{R}^{9} & (\mathbf{IV}\delta) & \text{or} \\ & & + & \mathbf{L}^{1} - \mathbf{PSR}^{8}\mathbf{R}^{9} & (\mathbf{IV}\delta) & \text{or} \\ & & + & \mathbf{L}^{1} - \mathbf{PSR}^{8}\mathbf{R}^{9} & (\mathbf{IV}\delta) & \text{or} \\ & & + & \mathbf{L}^{1} - \mathbf{PSR}^{8}\mathbf{R}^{9} & (\mathbf{IV}\delta) & \text{or} \\ & & + & \mathbf{L}^{1} - \mathbf{PSR}^{8}\mathbf{R}^{9} & (\mathbf{IV}\delta) & \text{or} \\ & & + & \mathbf{L}^{1} - \mathbf{PSR}^{8}\mathbf{R}^{9} & (\mathbf{IV}\delta) & \text{or} \\ & & + & \mathbf{L}^{1} - \mathbf{PSR}^{8}\mathbf{R}^{9} & (\mathbf{IV}\delta) & \text{or} \\ & & + & \mathbf{L}^{1} - \mathbf{PSR}^{8}\mathbf{R}^{9} & (\mathbf{IV}\delta) & \text{or} \\ & & + & \mathbf{L}^{1} - \mathbf{PSR}^{8}\mathbf{R}^{9} & (\mathbf{IV}\delta) & \text{or} \\ & & + & \mathbf{L}^{1} - \mathbf{PSR}^{8}\mathbf{R}^{9} & (\mathbf{IV}\delta) & \text{or} \\ & & + & \mathbf{L}^{1} - \mathbf{PSR}^{8}\mathbf{R}^{9} & (\mathbf{IV}\delta) & \text{or} \\ & & + & \mathbf{L}^{1} - \mathbf{PSR}^{8}\mathbf{R}^{9} & (\mathbf{IV}\delta) & \text{or} \\ & & + & \mathbf{L}^{1} - \mathbf{PSR}^{8}\mathbf{R}^{9} & (\mathbf{IV}\delta) & \text{or} \\ & & + & \mathbf{L}^{1} - \mathbf{PSR}^{8}\mathbf{R}^{9} & (\mathbf{IV}\delta) & \text{or} \\ & & + & \mathbf{L}^{1} - \mathbf{PSR}^{8}\mathbf{R}^{9} & (\mathbf{IV}\delta) & \text{or} \\ & & + & \mathbf{L}^{1} - \mathbf{PSR}^{8}\mathbf{R}^{9} & (\mathbf{IV}\delta) & \text{or} \\ & & + & \mathbf{L}^{1} - \mathbf{PSR}^{8}\mathbf{R}^{9} & (\mathbf{IV}\delta) & \text{or} \\ & & + & \mathbf{L}^{1} - \mathbf{PSR}^{8}\mathbf{R}^{9} & (\mathbf{IV}\delta) & \text{or} \\ & & + & \mathbf{L}^{1} - \mathbf{PSR}^{8}\mathbf{R}^{9} & (\mathbf{IV}\delta) & \text{or} \\ & & + & \mathbf{L}^{1} - \mathbf{PSR}^{8}\mathbf{R}^{9} & (\mathbf{IV}\delta) & \text{or} \\ & & + & \mathbf{L}^{1} - \mathbf{PSR}^{8}\mathbf{R}^{9} & (\mathbf{IV}\delta) & \text{or} \\ & & + & \mathbf{L}^{1} - \mathbf{PSR}^{8}\mathbf{R}^{9} & (\mathbf{IV}\delta) & \text{or} \\ & & + & \mathbf{L}^{1} - \mathbf{PSR}^{8}\mathbf{R}^{9} & (\mathbf{IV}\delta) & \text{or} \\ & & + & \mathbf{L}^{1} - \mathbf{PSR}^{8}\mathbf{R}^{9} & (\mathbf{IV}\delta) & \text{or} \\ & & + & \mathbf{L}^{1} - \mathbf{PSR}^{8}\mathbf{R}^{9} & (\mathbf{IV}\delta) & \text{or} \\ & & + & \mathbf{L}^{1} - \mathbf{PSR}^{8}$$

Ia and/or Ib (where $R^5 = OR^7$, OSO_2R^8 , OPR^8R^9 , $OPOR^8R^9$ or $OPSR^8R^9$)

L¹ is a nucleophilically replaceable leaving group, such as halogen, for example chlorine or bromine, hetaryl, for example imidazolyl, carboxylate, for example acetate, or sulfonate, for example mesylate or triflate, etc.

The compounds of the formula IV α , IV β , IV γ , IV δ or IV ϵ can be employed directly such as, for example, in the case of the carbonyl halides, or generated in situ, for example activated carboxylic acids (using carboxylic acid and dicyclohexyl carbodimide, etc.).

C. Preparation of compounds of the formula I where $R^5 = OR^7$, SR^7 , POR^8R^9 , $NR^{10}R^{11}$, $ONR^{11}R^{12}$, N-linked heterocyclyl or O-(N-linked heterocyclyl) by reaction of compounds of the formula I where R^5 = halogen, OSO_2R^8 (I α) with compounds of the formula $V\alpha$, $V\beta$, $V\gamma$, $V\delta$, $V\epsilon$, $V\eta$ or $V\vartheta$, if appropriate in the presence of a base or with prior formation of salt.

40

```
HOR^7 (Va) or
                                               HSR^7 (V\beta) or
                                               HPOR8R9 (Vy) or
 5
                                               HNR^{10}R^{11} (V\delta) or
             Ia and/or
                             Ib
                                               HONR^{11}R^{12} (Ve) or
      where R^5 = halogen, OSO_3R^8)
                                               H(N-linked
                                               heterocyclyl) (Vη) or
10
                                               H(ON-linked
                                               heterocyclyl) (V\vartheta)
                                 Ia and/or Ib
                                 (where R^5 = OR^7, SR^7,
15
                                 POR<sup>8</sup>R<sup>9</sup>, NR<sup>10</sup>R<sup>11</sup>,
                                 ONR11R12
                                 N-linked
                                 heterocyclyl or
                                 ON-linked
                                 heterocyclyl)
20
```

D. Preparation of compounds of the formula I where $R^5 = SOR^8$, SO_2R^8 by reaction of compounds of the formula I where $R^5 = SR^8$ (IB) with an oxidizing agent.

25

```
Ia and/or Ib oxidizing agent Ia and/or Ib (where R^5 = SR^8) (where R^5 = SOR^8 or SO_2R^8)
```

30

Suitable oxidizing agents are, for example, m-chloroperbenzoic acid, peroxy acetic acid, trifluoroperoxy acetic acid, hydrogen peroxide, if appropriate in the presence of a catalyst such as tungstate.

35

The following conditions apply to the abovementioned reactions:

The starting materials are generally employed in equimolar amounts. However, it will also be advantageous to employ an excess of one or the other component.

If appropriate, it may be advantageous to carry out the reactions in the presence of a base. Here, the starting materials and the base are advantageously employed in equimolar amounts. An excess of base, for example 1.5 to 3 molar equivalents, based on Ia

and/or Ib (where R^5 = halogen or OSO_2R^8) or III may in certain cases be advantageous.

Suitable bases are tertiary alkyl amines, such as triethylamine, aromatic amines, such as pyridine, alkali metal carbonates, for example sodium carbonate or potassium carbonate, alkali metal bicarbonates, such as sodium bicarbonate and potassium bicarbonate, alkali metal alkoxides, such as sodium methoxide, sodium ethoxide, potassium tert-butoxide or alkali metal hydrides, for example sodium hydride. Preference is given to using triethylamine or pyridine.

Suitable solvents are, for example, chlorinated hydrocarbons, such as methylene chloride or 1,2-dichloroethane, aromatic hydrocarbons, for example toluene, xylene or chlorobenzene, ethers, such as diethyl ether, methyl-tert-butyl ether, tetrahydrofuran or dioxane, polar aprotic solvents, such as acetonitrile, dimethyl formamide or dimethyl sulfoxide, or esters, such as ethyl acetate, or mixtures of these.

The reaction temperature is generally in the range of from 0°C to the boiling point of the reaction mixture.

25 Work-up to give the product can be carried out in a manner known per se.

Depending on the reaction conditions, the compounds Ia, Ib or mixtures of these can be formed. The latter can be separated by classical separation methods, such as, for example, crystallization, chromatography, etc.

The cyclohexanedione derivatives of the formula III are known or can be prepared by processes known per se (for example DE-A 19 532 311), for example by reacting cyclohexanones of the formula VI with an activated benzoic acid VIIa or a benzoic acid VIIb, which is preferably activated in situ, to give the acylation product which is subsequently rearranged.

5 R^3 R^2 R^2 R^3 R^3 R^2 R^3 R^3

- 30 L² is a nucleophilically replaceable leaving group, such as halogen, for example bromine or chlorine, hetaryl, for example imidazolyl or pyridyl, carboxylate, for example acetate or trifluoroacetate, etc.
- 35 The activated benzoic acid VIIa can be employed directly, such as in the case of the benzoyl halides, or be generated in situ, for example using dicyclohexyl carbodiimide, triphenylphosphine/azodicarboxylic ester, 2—pyridine disulfide/triphenyl phosphine, carbonyldiimidazole, etc.
 40

If appropriate, it may be advantageous to carry out the acylation reaction in the presence of a base. Here, the starting materials and the auxiliary base are advantageously employed in equimolar amounts. A slight excess of the auxiliary base, for example from 1.2 to 1.5 molar equivalents, based on VII, may be advantageous in certain cases.

Suitable auxiliary bases are tertiary alkyl amines, pyridine or alkali metal carbonates. Suitable solvents are, for example, chlorinated hydrocarbons, such as methylene chloride or 1,2-dichloroethane, aromatic hydrocarbons, such as toluene, 5 xylene or chlorobenzene, ethers, such as diethyl ether, methyl tert-butyl ether, tetrahydrofuran or dioxane, polar aprotic solvents, such as acetonitrile, dimethylformamide or dimethyl sulfoxide, or esters, such as ethyl acetate, or mixtures of these.

10

If the activated carboxylic acid component employed is a benzoyl halide, it may be advantageous to cool the reaction mixture to 0-10°C on addition of this reaction partner. The mixture is subsequently stirred at 20 - 100°C, preferably at 25 - 50°C, until the reaction is complete. Work-up is carried out in a customary manner, for example the reaction mixture is poured into water and the product of value is extracted. Solvents which are suitable for this purpose are, in particular, methylene chloride, diethyl ether and ethyl acetate. The organic phase is dried and the solvent is removed, after which the crude ester can be employed without any further purification for the rearrangement.

The rearrangement of the esters to the compounds of the formula III is advantageously carried out at 20 - 100°C in a solvent and in the presence of a base and, if appropriate, with the aid of a cyano compound as catalyst.

Suitable solvents are, for example, acetonitrile, methylene 30 chloride, 1,2-dichloroethane, dioxane, ethyl acetate, toluene or mixtures of these. Preferred solvents are acetonitrile and dioxane.

Suitable bases are tertiary amines, such as triethylamine,

35 aromatic amines, such as pyridine, or alkali metal carbonates,
such as sodium carbonate or potassium carbonate, which are
preferably employed in an equimolar amount, or up to a four-fold
excess, based on the ester. Preference is given to using
triethylamine or alkali metal carbonate, preferably in twice the
40 equimolar amount, based on the ester.

Suitable cyano compounds are inorganic cyanides, such as sodium cyanide or potassium cyanide, and organic cyano compounds, such as acetone cyanohydrin or trimethylsilyl cyanide. They are employed in an amount from 1 to 50 mol percent, based on the ester. Preference is given to using acetone cyanohydrin or

trimethylsilyl cyanide, for example in an amount from 5 to 15, preferably 10, mol percent, based on the ester.

- Work-up can be carried out in a manner known per se. For example, the reaction mixture is acidified with dilute mineral acid, such as 5% strength hydrochloric acid, or sulfuric acid, and extracted with an organic solvent, for example methylene chloride or ethyl acetate. The organic extract can be extracted with 5-10% strength alkali metal carbonate solution, for example sodium carbonate or potassium carbonate solution. The aqueous phase is acidified and the resulting precipitate is filtered off with suction and/or extracted with methylene chloride or ethyl acetate, dried and concentrated.
- The benzoyl halides of the formula VIIa (where L² = Cl, Br) can be prepared in a manner known per se by reaction of the benzoic acids of the formula VIIb with halogenating agents, such as thionyl chloride, thionyl bromide, phosgene, diphosgene, triphosgene, oxalyl chloride, oxalyl bromide.

The benzoic acids of the formula VIIb can be prepared in a known manner from the corresponding esters by acidic or basic hydrolysis. The latter are known from the literature or can be prepared in a manner known per se.

8-Difluoromethyl-5-alkoxycarbonyl-quinolines can be obtained from the corresponding 8-aldehyde derivatives by fluorination. A suitable fluorinating agent is, inter alia, DAST. The formyl
30 quinoline is obtained by oxidation of the corresponding bromomethyl quinoline.

Furthermore, it is possible to obtain
8-difluoromethoxy-5-alkoxycarbonyl-quinolines from the
corresponding 8-hydroxy derivatives by reaction with
chlorodifluoromethane. This reaction is preferably carried out in
the presence of a base, such as potassium hydroxide or sodium
hydroxide, in an aprotic solvent. The
8-hydroxy-5-alkoxycarbonylquinolines are obtained from
8-hydroxy-5-hydroxycarbonyl-quinoline by esterification reactions

which are known per se.

Preparation examples:

```
2-[(8-Chloroquinolin-5-yl)carbonyl]-1-chloro-4,4,6,6-tetramethyl-cyclohex-1-ene-3,5-dione (Compound 2.22) and 2-[(8-chloroquinolin-5-yl)chloromethylidene]-4,4,6,6-tetramethyl-
```

cyclohexane-1,3,5-trione (Compound 3.1)

- 4.0 g (10.8 mmol) of 2-(8-chloroquinolin-5-yl)carbonyl-4,4,6,6-10 tetramethylcyclohexane-1,3,5-trione were dissolved in 40 ml of dichloromethane, and 4.1 g (32.4 mmol) of oxalyl chloride and 1.5 ml of dimethylformamide were added. The mixture was stirred at 25°C for 1.5 hours, after which the solvent was removed. This gave 3.9 g of colorless crystals. Silica gel chromatography (mobile phase: toluene/methyl-tert-butyl ether) gave:
 - 2-[(8-chloroquinolin-5-yl)carbonyl]-1-chloro-4,4,6,6-tetra-methylcyclohex-1-ene-3,5-dione: Yield 0.65 g (colorless crystals); m.p.: 180°C;
- 2-[(8-chloroquinolin-5-yl)chloromethylidene-4,4,6,6-tetramethyl20 cyclohexane-1,3,5-trione: Yield: 0.35 g (colorless crystals);
 m.p.: 156°C.
- 2-[(8-Chloroquinolin-5-yl)-1-(4'-oxo-1',4'-dihydropyrid-1'-yl)4,4,6,6-tetramethyl-cyclohex-1-ene-3,5-dione (Compound 2.46) and
 2-[(8-chloroquinolin-5-yl)-(4'-oxo-1',4'-dihydropyrid-1'-yl)methylidene]-4,4,6,6-tetramethyl-cyclohexane-1,3,5-trione
 (Compound 3.5)
- 30 1.0 g (2.6 mmol) of a mixture of the compounds 2.22 and 3.1 was dissolved in 25 ml of methylene chloride, 0.82 g (8.7 mmol) of 4-hydroxypyridine were added and the mixture was stirred at 40° C for 8 hours. Insoluble components were subsequently filtered off, the solvent was removed and the residue was chromatographed over
- 35 silica gel (mobile phase: methylene chloride/methanol). This gave: 2-[(8-chloroquinolin-5-yl)-4'-oxo-1',4'-dihydropyridin-1'-yl)methylidene-4,4,6,6-tetramethylcyclohexane-1,3,5-trione: Yield 0.40 g (colorless oil);
- 2-[(8-chloroquinolin-5-yl)carbonyl]-1-(4'-oxo-1',4'-dihydro-40 pyrid-1'-yl)-4,4,6,6-tetramethylcyclohex-1-ene-3,5-dione: Yield 0.25 g (colorless crystals); m.p. > 210°C.
 - 2-(8-fluoroquinolin-5-yl)carbonyl-1,5-di(ethoxycarbonyloxy)-4,4,6,6-tetramethyl-cyclohex-1-ene-3,5-dione (Compound 3.20)

0.12 g (4 mmol) of sodium hydride was dissolved in 10 ml of
tetrahydrofuran, 0.36 g (1 mmol) of
2-[(8-fluoroquinolin-5-yl)carbonyl]-4,4,6,6-tetramethyl-1hydroxy-cyclohexane-3,5-dione in 5 ml of tetrahydrofuran was
5 added dropwise at room temperature and the mixture was stirred at
40°C for 1 hour. At room temperature, 0.43 g (4 mmol) of ethyl
chloroformate were subsequently added dropwise, and the mixture
was heated under reflux for 3 hours. After cooling, water was
added and the mixture was extracted with ethyl acetate, the
10 organic phase was washed with 2% strength potassium carbonate
solution and water and dried and the solvent was removed. This
gave 0.45 g of a colorless oil).

2-[(8-Chloroquinolin-5-yl)carbonyl]-1-[(dimethylamino)carbonylthio]-4,4,6,6-tetramethyl-cyclo-hex-1-ene-3,5-dione (Compound
2.45) and
2-{(8-chloroquinolin-5-yl)-[(dimethylamino)carbonylthio]methylidene}-4,4,6,6-tetramethylcyclohexane-1,3,5-trione
(Compound 3.4)

0.50 g (1.3 mmol) of 2-[(8-chloroquinolin-5-yl)carbonyl]4,4,6,6-tetramethyl-cyclohexane-1,3,5-trione was dissolved in
15 ml of tetrahydrofuran, 0.52 g (5.2 mmol) of triethylamine was
added and 0.32 g (2.6 mmol) of dimethylaminothiocarbonyl chloride
in 5 ml of tetrahydrofuran was added dropwise. The mixture was
stirred at room temperature for 30 hours, the solvent was
removed, and the residue was taken up in the ethyl acetate,
washed with 5% strength potassium carbonate solution and water,
dried, concentrated and chromatographed over silica gel using
cyclohexane/ethyl acetate. This gave
2-[(8-chloroquinolin-5-yl)carbonyl]-1-[(dimethylamino)carbonylthio]-4,4,6,6-tetramethyl-cyclohex-1-ene-3,5-dione: Yield 0.5 g
(colorless crystals); m.p. 138°C;
2-{(8-chloroquinolin-5-yl)-[(dimethylamino)carbonyl-thio]methyl-i
dene}-4,4,6,6-tetramethylcyclohexane-1,3,5-trione: Yield: 0.2 g

2-[(8-difluoromethylquinolin-5-yl)carbonyl]-1-chloro-4,4,6,6-40 tetramethyl-cyclohex-1-ene-3,5-dione (Compound 2.31)

Step a) Methyl 8-formyl-5-quinolinecarboxylate

(colorless crystals) m.p. 75°C.

28.8 g (103 mmol) of 8-(bromomethyl)-5-quinolinecarboxylate were dissolved in 200 ml of acetonitrile, 36.1 g (309 mmol) of N-methylmorpholine N-oxide were added, the mixture was stirred at 25°C for 7 hours and the solvent was then removed. Silica gel

chromatography (mobile phase: cyclohexane/ethyl acetate) gave 12.0 g of methyl 8-formyl-5-quinolinecarboxylate (colorless crystals), m.p.: 128°C.

- 5 Step b) 8-difluoromethyl-5-quinolinecarboxylate
- 0.5 g (2.3 mmol) of methyl 8-formyl-5-quinolinecarboxylate was dissolved in 50 ml of dichloroethane and, at -20°C, 1.1 g (6.8 mmol) of diethylaminosulfur trifluoride (DAST) were added dropwise. The mixture was stirred at -20°C for 30 min and then warmed to 25°C, and 50 ml of water were added dropwise. The aqueous phase was extracted with methylene chloride, the combined organic phases were washed with sodium bicarbonate solution and dried and the solvent was removed. Yield: 0.7 g of colorless crystals;

¹H-NMR (δ in ppm, d⁶-DMSO): 9.28 (d,1H); 9.04 (s, 1H); 8.36 (d, 1H); 8.11 (d, 1H); 7.90 (t, 1H); 7.80 (brd s, 1H); 3.96 (s,3H).

- 20 Step c) 8-difluoromethyl-5-quinolinecarboxylic acid
- 0.5 g (2.0 mmol) of methyl 8-difluoromethyl-5-quinolinecarboxylate was dissolved in 5 ml of ethanol, 0.43 g (10.5 mmol)
 of sodium hydroxide and 1 ml of water were added, and the mixture
 was stirred at 25°C for 20 hours. The solvents were subsequently
 removed, the residue was taken up in water, washed twice with
 methylene chloride and adjusted to pH 1 using 10 N hydrochloric
 acid, and the precipitate was filtered off with suction. Drying
 gave 0.5 g of 8-difluoromethyl-5-quinolinecarboxylic acid
 (colorless crystals);

 ¹H-NMR (δ in ppm, d⁶-DMSO): 9.35 (d,1H); 9.04 (s, 1H); 8.38 (d,
 1H); 8.10 (d, 1H); 7.92 (t, 1H); 7.78 (brd s, 1H).
- Step d) 2-[(8-difluoromethylquinolin-5-yl)carbonyl]-4,4,6,6-tetramethylcyclohexane-1,3,5-trione
- 0.26 g (1.4 mmol) of 2,2,4,4-tetramethylcyclohexane-1,3,5-trione was dissolved in 10 ml of acetonitrile, 0.34 g (1.4 mmol) of 8-difluoromethyl-5-quinolinecarboxylic acid and 0.38 g (1.9 mmol) of dicyclohexylcarbodiimide were added and the mixture was stirred at 25°C for 17 hours. 0.57 g (5.6 mmol) of triethylamine and 5 drops of trimethylsilyl cyanide were then added to the suspension, and stirring was continued at 25°C for a further 25 hours. 50 ml of 5% strength potassium carbonate solution were subsequently added, the mixture was filtered, the filtrate was washed with methyl tert-butyl ether, the aqueous phase was

adjusted to pH 2 using concentrated hydrochloric acid and the precipitate was filtered off, washed with water and dried. Yield: 0.25 g (colorless crystals);

74

¹H-NMR (δin ppm, CDCl₃): 17.5 (s,1H); 9.02 (q, 1H); 8.24 (d, 1H); 5 8.06 (d, 1H); 7.82 (t, 1H); 7.50 (m, 2H); 1.60 (s,6H); 1.36 (s,6H).

- Step e) 2-[(8-Difluoromethylquinolin-5-yl)carbonyl]-1-chloro-4,4,6,6-tetramethyl-cyclohex-1-ene-3,5-dione (Compound 2.31)
- 0.25 g (0.65 mmol) of 2-(8-difluoromethylquinolin-5-yl)carbonyl4,4,6,6-tetramethyl-cyclohexane-1,3,5-trione was dissolved in

 15 ml of dichloromethane and 0.25 g (1.95 mmol) of oxalyl
 chloride and 7 drops of dimethylformamide were added. The mixture
 was stirred at 25°C for 17 hours, after which the solvent was
 removed. This gave 0.2 g of colorless crystals.
- 20 Preparation of the precursor 2-[(8-difluoromethoxyquinolin-5-yl)carbonyl]-4,4,6,6-tetramethylcyclohexane-1,3,5-trione
 - Step a) Methyl 8-hydroxy-5-quinolincarboxylate
- 25 16.25 g (86 mmol) of 8-hydroxy-5-quinolinecarboxylic acid were dissolved in 70 ml of methanol, 3 ml of concentrated sulfuric acid were added and the mixture was heated under reflux for 25 hours. The solvent was then removed and the residue was taken up in ice-water, adjusted to a pH of 8 using sodium carbonate
- solution and filtered hot. The residue was extracted with methyl-tert-butyl ether for 7 hours on a jacketed Soxhlet extractor, and the solvent was subsequently removed from the extract. This gave 6.8 g of a brown powder;
- $^{1}\text{H-NMR}$ (δ in ppm, d^{6} -DMSO): 9.38 (d, 1H); 8.90 (d, 1H); 8.26 (d, 35 1H); 7.71 (dd, 1H); 7.15 (d, 1H); 3.93 (s, 3H).
 - Step b) Methyl 8-difluoromethoxy-5-quinolinecarboxylate
- 40 1.0 g (5.0 mmol) of methyl 8-hydroxy-5-quinolinecarboxylate was dissolved in 20 ml of dimethylformamide, 0.76 g (5.5 mmol) of potassium carbonate was added and 14 g of chlorodifluoromethane were introduced at 40°C over a period of 2 hours. Solid components were then filtered off, the solvent was removed and the residue
- 45 was washed with water and dried. This gave 0.75 g of a brown powder;

¹H-NMR (δ in ppm, CDCl₃): 9.45 (d,1H); 9.00 (d, 1H); 8.30 (d, 1H); 7.61 (dd, 1H); 7.49 (d, 1H); 7.18 (t, 1H); 3.99 (s, 3H).

Step c) 8-difluoromethoxy-5-quinolinecarboxylic acid

0.7 g (2.8 mmol) of methyl 8-difluoromethoxy-5-quinoline-carboxylate was suspended in 15 ml of water and 0.4 g (10 mmol) of sodium hydroxide was added. The mixture was stirred at 25°C for 20 hours and then filtered off, and the filtrate was washed with methyl tert-butyl ether. The aqueous phase was adjusted to pH 3 using concentrated hydrochloric acid and filtered off, and the residue was dried. This gave 0.45 g of a colorless powder; ¹H-NMR (&\delta in ppm, d6-DMSO): 13.5 (br, 1H); 9.39 (d, 1H); 9.03 (d, 1H); 8.32 (d, 1H); 7.78 (dd, 1H); 7.62 (d, 1H); 7.60 (t, 1H).

Step d) 2-[(8-difluoromethoxyquinolin-5-yl)carbonyl]-4,4,6,6-tetramethylcyclohexane-1,3,5-trione

- 20 0.4 g (1.7 mmol) of 8-difluoromethoxy-5-quinolinecarboxylic acid was dissolved in 20 ml of acetonitrile, 0.4 g (1.9 mmol) of N, N-dicyclohexylcarbodiimide and 0.3 g (1.7 mmol) of 2,2,4,4-tetramethylcyclohexane-1,3,5-trione were added and the mixture was stirring at 25°C for 20 hours. 0.4 g (4.0 mmol) of 25 triethylamine and 2 drops of trimethylsilyl cyanide were then added, and stirring was continued at 30-35°C for a further 3 hours. The precipitate was filtered off, and the filtrate was concentrated, 20 ml of 5% strength potassium carbonate solution were added and the mixture was washed with methyl tert-butyl 30 ether. The aqueous phase was subsequently adjusted to pH 3 using concentrated hydrochloric acid and extracted with ethyl acetate. The solvent was removed and the residue was chromatographed over silica qel (mobile phase: methylene chloride/methanol). This gave 0.2 g of a colorless powder; 35 1H-NMR (δin ppm, CDCl₃): 16.5 (br, 1H); 9.02 (d, 1H); 8.30 (d, 1H); 7.51 (m, 2H); 7.21 (d, 1H); 7.17 (t, 1H); 1.60 (s, 6H); 1.35
- In addition to the cyclohexenone quinolinoyl derivatives of the formula I described above, further derivatives which were prepared or are preparable in a similar manner or in a manner known per se are listed in Tables 2 and 3:

(s, 6H).

Table 2:

$$(R^6)_1$$
 $(R^6)_1$
 R^5
 R^7
 R^2
 R^2
 R^3
 R^3

	\mathtt{R}^1	\mathbb{R}^2	\mathbb{R}^3	R5	(R ⁶) ₁	m.p. [°C] or ¹ H-NMR [ppm]
됴		н	H	OCOC ₆ H ₅	4,4,6,6-(CH ₃) ₄ -5-oxo 178	178
Et.		ш	ш	OCOC(CH3)3	4,4,6,6-(CH ₃) ₄ -5-oxo	4,4,6,6-(CH ₃) ₄ -5-oxo 9.22(d, 1H); 9.03 (d, 1H); 7.98 (q, 1H); 7.52 (q, 1H); 7.39 (t, 1H); 1.49 (s, 6H); 1.11 (s, 9H)
C1	1	н	Н	OCOC6H5	4,4,6,6-(CH ₃) ₄ -5-oxo	>200
C1		н	Н	0СОС(СН3)3	4,4,6,6-(CH ₃) ₄ -5-oxo	4,4,6,6-(CH ₃) ₄ -5-oxo 9.20 (dd, 2H); 8.85 (q, 2H); 7.60 (q, 1H); 1.40 (s, 12H); 1.12 (s, 9H)
บ	СН3	ш	H	OPS(OCH2CH3)2	4,4,6,6-(CH ₃) ₄ -5-oxo	9.50 (d, 1H); 8.98 (d, 1H); 8.06 (d, 1H); 7.60 (m, 2H); 3.95 (m, 4H); 2.90 (s, 3H); 1.65 (s, 6H); 1.51 (s, 6H)
C	CH ₃	н	н	OCOSCH ₃	4,4,6,6-(CH ₃) ₄ -5-oxo	128
O	CH3	H	H	OCSN(CH ₃) ₂	4,4,6,6-(CH ₃) ₄ -5-oxo	163

ii.		
-	Ž.	
-	ŧ.	
	No.	
711117	1	
-	i.	
fact.	40	
21	THE STATE	:
=	1	
1500000	of Hotel	
(factor)	Manage	
Harris.	Breed.	
	j	
1411191	in:	
119911	r,a	

R1 R2 R3 R5	R ³		R5		(R ⁶) ₁	m.p. [°C] or ¹ H-NMR [ppm]
сн3 н н осос ₆ н ₅	E		осос, н5		4,4,6,6-(CH ₃) ₄ -5-oxo	9.05 (d, 1H); 9.85 (d, 1H); 7.92 (d, 1H); 7.72 (d, 2H); 7.51 (d, 1H); 7.48
						(t, 1H); 7.35 (g, 1H); 7.28 (t, 2H); 2.79 (s, 3H); 1.62 (s, 6H); 1.55 (s, 6H)
CH ₃ H H OPO[N(CH ₃)] ₂	H OPO[N(CH3)	OPO[N(CH3)		1	4,4,6,6-(CH ₃) ₄ -5-oxo	9.41 (d, 1H); 8.95 (d, 1H); 8.07 (d, 1H); 7.58 (d, 1H); 7.50 (q, 1H); 2.88 (s, 3H); 2.45 (s, 6H); 2.42 (s, 6H); 1.65 (s, 6H); 1.48 (s, 6H)
CH ₃ H H OCO(CH ₂) ₃ O(2,4- C12-C ₆ H ₃)	Œ		OCO(CH ₂) ₃ O(2,4- C12-C ₆ H ₃)		4,4,6,6-(CH ₃) ₄ -5-oxo	oil
CH ₃ H H OCOCH(CH ₃)O(2-CH ₃ -4-C1-C ₆ H ₃)	H OCOCH(CH ₃) 4-C1-C ₆ H ₃)	OCOCH(CH ₃) 4-C1-C ₆ H ₃)	ОСОСН (СН ₃) O (2-СН ₃ - 4-С1-С ₆ Н ₃)		4,4,6,6-(CH ₃) ₄ -5-oxo	oil
СН3 Н Н ОСОС (СН3)3	ш		осос(сн3)3		4,4,6,6-(CH ₃) ₄ -5-oxo	9.20 (d, 1H); 8.85 (d, 1H); 7.80 (d, 1H); 7.51 (d, 1H); 7.48 (q, 1H); 2.85 (s, 3H); 1.55 (s, 6H); 1.50 (s, 6H); 1.08 (s, 9H)
F H H OCOC(CH ₃) ₃	н		OCOC(CH ₃) ₃		4,4,6-(CH ₃) ₃	oil
с1 н н ососн ₂ сн ₃	Œ		ососн2сн3		4,4,6,6-(CH ₃) ₄ -5-oxo	9.13 (d, 1H); 9.02 (d, 1H); 7.85 (s, 2H); 7.58 (q, 1H); 2.40 (q, 2H);1.60 (s, 6H); 1.50 (s, 6H); 1.05 (t, 3H)
F H H OCOSCH ₃	Н		осоѕснз		4,4,6,6-(CH ₃) ₄ -5-(OH)	190–192
C1 H H OCOSCH ₃	H		осоѕснз		4,4,6,6-(CH ₃) ₄ -5-oxo	84
F H H OCOSCH ₃	Н		осоѕснз		4,4,6,6-(CH ₃) ₄ -5-oxo	72

Thirt .	The state of	35
÷,	1	-
-	7::	
1711	1	-
ill.		
il il	-	-
=	The state of the state of	-2
3	:	
111111	-	
ii con		
1111111	The state of the state of	-
Ė	1	-
March.	=======================================	
2	:::	

		—	2	78					
m.p. [°C] or ¹ H-NMR [ppm]	9.44 (d, 1H); 9.03 (d, 1H); 7.88 (d, 1H); 7.59 (m, 2H); 3.92 (s, 3H); 2.90 (s, 3H); 1.50 (s, 6H); 1.38 (s, 6H)	9.30 (d, 1H); 9.02 (d, 1H); 7.93 (q, 1H); 7.61 (q, 1H); 7.40 (q, 1H); 3.01 (s, 3H); 1.57 (s, 3H); 1.53 (s, 3H); 1.32 (s, 3H); 1.28 (s, 3H)	9.18 (d, 1H); 9.02 (s, 1H); 7.92 (q, 1H); 7.65 (q, 1H); 7.41 (q, 1H); 4.32 (q, 2H); 4.11 (q, 1H); 1,45 (s, 3H); 1.40 (s, 3H); 1.38 (s, 3H); 1.30 (s, 3H); 1.15 (s, 3H)	9.45 (d, 1H); 9.03 (d, 1H); 7.96 (q, 1H); 7.68 (q, 1H); (7.40 (t, 1H); 3.88 (s, 3H); 1.50 (s, 6H); 1.39 (s, 6H)	180	152	119	132–135	
(R ⁶) ₁	4,4,6,6-(CH ₃) ₄ -5-oxo	4,4,6,6-(CH ₃) ₄ -5-(OH)	4,4,6,6-(CH ₃) ₄ -5- (OCOOCH ₂ CH ₃)	4,4,6,6-(CH ₃) ₄ -5-oxo	4,4,6,6-(CH ₃) ₄ -5-oxo	4,4,6,6-(CH ₃) ₄ -5-oxo	4,4,6,6-(CH ₃) ₄ -5-oxo	4,4,6,6-(CH ₃) ₄ -5-oxo	4,4,6,6-(CH ₃) ₄ -5-oxo
R ⁵	осн3	оѕо2сн3	осооси2си3	оснз	c1	C1	S(4-CH3-C6H4)	S(4-CH ₃ -C ₆ H ₄)	C1
R ³	m	н	н	Н	H	H	Н	Ħ	H
\mathbb{R}^2	H	н	н	н	Н	Н	Н	н	Н
\mathbb{R}^1	СН3	Ēų	ĒΨ	년	c1	ഥ	Cl	S(4-CH ₃ -C ₆ H ₄)	C1
No.	2.18	2.19	2.20	2.21	2.22	2.23	2.24	2.25	2.26

AND STATE OF THE PARTY OF THE P	
iii.	
4	
nge,	
部	
-	
Manager Manage	
Street, or other party of the p	

<u> </u>	R1	\mathbb{R}^2	R3	R5	(R6) ₁	m.p. [oC] or 1H-NMR [ppm]
	0(te-	н	H	Cl	4,4,6,6-(CH ₃) ₄ -5-oxo	9.65 (d, 1H); 9.05 (d, 1H); 8.83 (d,
1 1 1	trany- drofu-					(d, 2H); 4.05
	ran-3- y1)					2.39 (m, 2H); 1.62 (s, 6H); 1.48 (s, 6H)
	CH ₃	н	H	C1	4,4,6,6-(CH ₃) ₄ -5-oxo	194
	Ħ	H	н	C1	4,4,6-(CH ₃) ₃	oi1
	CH ₃	Ħ	Н	Br	4,4,6,6-(CH ₃) ₄ -5-0xo	oil
	CHF_2	н	н	C1	4,4,6,6-(CH ₃) ₄ -5-oxo	9.40 (d, 1H); 9.05 (d, 1H); 8.05 (d, 1H); 7.86 (t, 1H); 7.80 (d, 1H); 7.65 (q, 1H); 1.59 (s, 6H); 1.48 (s, 6H)
L U	\mathtt{CF}_3	田	出	C1	4,4,6,6-(CH ₃) ₄ -5-oxo	oi1
I C	CF_3	CH ₃	н	C1	5,5-(CH ₃) ₂	9.15 (d, 1H); 8.10 (d, 1H); 7.75 (d, 1H); 7.52 (d, 1H); 3.02 (s, 2H); 2.91 (s, 2H); 2.80 (s, 3H); 1.20 (s, 6H)
ı O	СН3	Н	H	N(CH ₃)OCH ₃	4,4,6,6-(CH ₃) ₄ -5-oxo	oi1
	СН3	н	二	SCH ₃	4,4,6,6-(CH ₃) ₄ -5-oxo	9.50 (d, 1H); 9.02 (d, 1H); 7.80 (d, 1H); 7.50 (m, 3H); 2.90 (s, 3H); 2.30 (s, 3H); 1.50 (s, 6H); 1.35 (s, 3H); 1.25 (s, 3H)
	C1	H	н	1-pyrazoly1	4,4,6,6-(CH ₃) ₄ -5-oxo	9.30 (d, 1H); 9.05 (d, 1H); 7.80 (d, 1H); 7.75 (d, 1H); 7.61 (q, 1H); 7.52 (d, 1H); 7.40 (s, 1H); 6.11 (s, 1H); 1.65 (s, 3H); 1.60 (s, 3H); 1.50 (s, 6H)
	C1	Н	Н	N (CH ₃) OCH ₃	4,4,6,6-(CH ₃) ₄ -5-oxo	190

	the street of	
	4000	-
	ŧ.,	
i	900	
	1	
1	4	
4	=	-
=	. If the Market	7
Ħ	ŧ	
· Trans	the state of the state of	75
1	There's	-
	giris)	-
19116	1	2
71117	The street	-
1		

										8	<i></i>		
m.p. [oC] or ¹ H-NMR [ppm]	oi1	205	205	194	150	oi1	oi1	138	>210	oil	166	9.65 (d, 1H); 8.97 (d, 1H); 7.79 (d, 1H); 7.60 (m, 2H); 4.00 (m, 4H); 2.91 (s, 3H); 1.71 (s, 6H); 1.51 (s, 6H)	9.65 (d, 1H); 9.01 (d, 1H); 7.83 (d, 1H); 7.65 (q, 1H); 7.02 (d, 1H); 4.18 (s, 3H); 1.65 (s, 6H); 1.55 (s, 6H)
(R ⁶) ₁	4,4,6,6-(CH ₃) ₄ -5-oxo	4,6-(CH ₃) ₂ -4-SCH ₃	4,4,6,6-(CH ₃) ₄ -5-oxo	4,4,6,6-(CH ₃) ₄ -5-oxo	4,4,6,6-(CH ₃) ₄ -5-oxo								
R5	1-pyrolidinyl	4-morpholinyl	4-morpholinyl	C1	1-pyrazolyl	4-morpholinyl	C1	SCON(CH ₃) ₂	4-oxo-1,4-dihydro- pyrid-1-yl	C1	SCON (CH ₃) ₂	OP (OCH ₂ CH ₃) ₂	C 1
R ³	H	Н	Н	E	H	田	н	H	н	H	Н	Н	H
\mathbb{R}^2	H	н	H	н	Н	н	H	H	H	H	н	H	н
\mathbb{R}^1	CH ₃	CH ₃	c1	CH ₃	CH_3	\mathtt{CF}_3	CHNOCH ₃	C1	C1	F	CH ₃	СН3	OCH ₃
No.	2.38	2.39	2.40	2.41	2.42	2.43	2.44	2.45	2.46	2.47	2.48	2.49	2.50

The state of the s	
4E	
ij	
÷.	
Ē.	
E STATE	
ř	
Ħ,	
=	

	<u></u>	R5	(R ⁶) ₁	m.p. [°C] or ¹ H-NMR [ppm]
	田	OCOS (CH ₂) 7CH ₃	4,4,6,6-(CH ₃) ₄ -5-oxo	9.20 ((d, 1H); 9.02 (d, 1H); 7.89 (q, 1H); 7.60 (q, 1H); 7.40 (t, 1H); 2.62 (t, 2H); 1.55 (s, 6H); 1.48 (s, 6H); 1.1-1.5 (m, 12H); 0.85 (t, 3H)
	æ	c1	4,6-(ethan-1,2-diyl) ¹⁾	9.55 (d, 1H); 9.02 (d, 1H); 7.78 (q, 1H); 7.65 (q, 1H); 7.40 (t, 1H); 3.24 (m, 1H); 3.17 (m, 1H); 2.41 (d, 1H); 1.8-2.4 (m, 5H)
1	H	0C0SCH ₃	4,4,6,6-(CH ₃) ₄ -5-oxo	147
l	H	OCOSCH2CH3	4,4,6,6-(CH ₃) ₄ -5-oxo	107
I	н	ococ(cH ₃) ₃	4,4,6,6-(CH ₃) ₄ -5-oxo	134
l	н	OCO(C ₆ H ₅)	4,4,6,6-(CH ₃) ₄ -5-oxo	228
l	H	[Z.4	4,4,6,6-(CH ₃) ₄ -5-oxo	181
l	Ħ	SO ₂ CH ₃	4,4,6,6-(CH ₃) ₄ -5-oxo	206
1	H	sосн ₃	4,4,6,6-(CH ₃) ₄ -5-oxo	190
	ш	Ŀ	4,4,6,6-(CH ₃) ₄ -5-oxo	9.50 (d, 1H); 9.00 (d, 1H); 7.81 (s, 2H); 7.65 (g, 1H); 6.01 (d, 2H)
	H	SC ₆ H ₅	4,4,6,6-(CH ₃) ₄ -5-oxo	(2)
1	H	SO ₂ C ₆ H ₅	4,4,6,6-(CH ₃) ₄ -5-oxo	111
l	н	SCH ₃	4,4,6,6-(CH ₃) ₄ -5-oxo	143
1	н	F	4,4,6,6-(CH ₃) ₄ -5-oxo	183

411116	de la	3
-	í	
•		
.11011.	The state of the state of	-
175037		
-	L.	
.1116	÷	
	L. S. S.	
211	i	
- CAMP	The state of	
1111111		
1111111	The House of the	
	1	
111111	ė	-

No.	R1	R ²	\mathbb{R}^3	R5	(R ⁶) ₁	m.p. [°C] or ¹ H-NMR [ppm]
2.65	C1	CHF_2	Н	F	4,4,6,6-(CH ₃) ₄ -5-oxo	173
2.66	댐	Н	Н	Ħ	4,4,6,6-(CH ₃) ₄ -5-oxo	153

1) $R^4 = 4-0xo-(bicyclo[3.2.1]oct-2-en-3-yl)carbonyl$

Table 3:

$$(R^6)_1$$

O

R

D

D

ID

No.	R1	\mathbb{R}^2	R ³	R5	R6	m.p. [°C] or ¹ H-NMR [ppm]
3.1	C1	H	H	C1	4,4,6,6-(CH ₃) ₄ -5-oxo	156
3.2	СН3	H	I	1-(1,2,4-triazo- 1y1)	4,4,6,6-(CH ₃) ₄ -5-oxo	9.00 (d, 1H); 8.09 (s, 1H); 7.82 (d, 1H); 7.72 (s, 1H); 7.68 (d, 1H); 7.47 (d, 1H); 7.35 (q, 1H); 2.95 (s, 3H); 1.55 (s, 6H); 1.30 (s, 6H)
3.3 CI	C1	æ	Œ	4-morpholinyl	4,4,6,6-(CH ₃) ₄ -5-oxo	9.15 (d, 1H); 8.32 (d, 1H); 7.82 (d, 1H); 7.60 (q, 1H); 7.45 (d, 1H); 4.05 (m, 2H); 3.68 (m, 4H); 3.35 (m, 1H); 3.25 (m, 1H); 1.30 (s, 6H); 1.22 (s, 6H)
3.4	C1	H	H	SCON(CH3)2	4,4,6,6-(CH ₃) ₄ -5-oxo	75
3.5	C1	ш	m	4-oxo-1,4-dihydro- pyrid-1-yl	4-oxo-1,4-dihydro- 4,4,6,6-(CH ₃) ₄ -5-oxo pyrid-1-yl	9.02 (d, 1H); 8.42 (d, 1H); 7.80 (2d, 3H); 7.50 (q, 1H); 7.38 (d, 1H); 6.72 (d, 2H); 1.50 (s, 12H)
3.6 Cl	C1	н	H	N(CH ₃) ₂	4,4,6,6-(CH ₃) ₄ -5-oxo	190

The compounds of the formula I and their agriculturally useful salts are suitable, both in the form of isomer mixtures and in the form of the pure isomers, as herbicides. The herbicidal 5 compositions comprising compounds of the formula I control vegetation on non-crop areas very efficiently, especially at high rates of application. They act against broad-leaved weeds and harmful grasses in crops such as wheat, rice, maize, soya and cotton without causing any significant damage to the crop plants. 10 This effect is mainly observed at low rates of application.

Depending on the application method used, the compounds of the formula I, or the compositions comprising them, can additionally be employed in a further number of crop plants for eliminating 15 undesirable plants. Examples of suitable crops are the following:

Allium cepa, Ananas comosus, Arachis hypogaea, Asparagus officinalis, Beta vulgaris spec. altissima, Beta vulgaris spec. rapa, Brassica napus var. napus, Brassica napus var.

- 20 napobrassica, Brassica rapa var. silvestris, Camellia sinensis, Carthamus tinctorius, Carya illinoinensis, Citrus limon, Citrus sinensis, Coffea arabica (Coffea canephora, Coffea liberica), Cucumis sativus, Cynodon dactylon, Daucus carota, Elaeis guineensis, Fragaria vesca, Glycine max, Gossypium hirsutum,
- 25 (Gossypium arboreum, Gossypium herbaceum, Gossypium vitifolium), Helianthus annuus, Hevea brasiliensis, Hordeum vulgare, Humulus lupulus, Ipomoea batatas, Juglans regia, Lens culinaris, Linum usitatissimum, Lycopersicon lycopersicum, Malus spec., Manihot esculenta, Medicago sativa, Musa spec., Nicotiana tabacum
- 30 (N.rustica), Olea europaea, Oryza sativa, Phaseolus lunatus, Phaseolus vulgaris, Picea abies, Pinus spec., Pisum sativum, Prunus avium, Prunus persica, Pyrus communis, Ribes sylvestre, Ricinus communis, Saccharum officinarum, Secale cereale, Solanum tuberosum, Sorghum bicolor (s. vulgare), Theobroma cacao,
- 35 Trifolium pratense, Triticum aestivum, Triticum durum, Vicia faba, Vitis vinifera and Zea mays.

In addition, the compounds of the formula I may also be used in crops which tolerate the action of herbicides owing to breeding, 40 including genetic engineering methods.

The compounds of the formula I, or the herbicidal compositions comprising them, can be used for example in the form of ready-to-spray aqueous solutions, powders, suspensions, also

45 highly-concentrated aqueous, oily or other suspensions or dispersions, emulsions, oil dispersions, pastes, dusts, materials for broadcasting or granules, by means of spraying, atomizing,

and water.

dusting, broadcasting or watering. The use forms depend on the intended aims; in any case, they should guarantee a very fine distribution of the active compounds according to the invention.

- 5 The herbicidal compositions comprise a herbicidally effective amount of at least one compound of the formula I or of an agriculturally useful salt of I, and auxiliaries which are customary for the formulation of crop protection agents.
- 10 Essentially, suitable inert auxiliaries include: mineral oil fractions of medium to high boiling point, such as kerosene and diesel oil, furthermore coal tar oils and oils of vegetable or animal origin, aliphatic, cyclic and aromatic hydrocarbons, e.g. paraffin, tetrahydronaphthalene, alkylated
 15 naphthalenes and their derivatives, alkylated benzenes and their derivatives, alcohols such as methanol, ethanol, propanol, butanol and cyclohexanol, ketones such as cyclohexanone, or strongly polar solvents, e.g. amines such as N-methylpyrrolidone,

Aqueous use forms can be prepared from emulsion concentrates, suspensions, pastes, wettable powders or water-dispersible granules by adding water. To prepare emulsions, pastes or oil dispersions, the cyclohexenonequinolinoyl derivatives of the 25 formula I, either as such or dissolved in an oil or solvent, can be homogenized in water by means of a wetting agent, tackifier, dispersant or emulsifier. Alternatively, it is possible to prepare concentrates comprising active substance, wetting agent, tackifier, dispersant or emulsifier and, if desired, solvent or oil, which are suitable for dilution with water.

Suitable surfactants are the alkali metal salts, alkaline earth metal salts and ammonium salts of aromatic sulfonic acids, e.g. ligno-, phenol-, naphthalene- and dibutylnaphthalenesulfonic 35 acid, and of fatty acids, alkyl- and alkylarylsulfonates, alkyl sulfates, lauryl ether sulfates and fatty alcohol sulfates, and salts of sulfated hexa-, hepta- and octadecanols, and also of fatty alcohol glycol ethers, condensates of sulfonated naphthalene and its derivatives with formaldehyde, condensates of 40 naphthalene, or of the naphthalenesulfonic acids with phenol and formaldehyde, polyoxyethylene octylphenol ether, ethoxylated isooctyl-, octyl- or nonylphenol, alkylphenyl or tributylphenyl polyglycol ether, alkylaryl polyether alcohols, isotridecyl alcohol, fatty alcohol/ethylene oxide condensates, ethoxylated 45 castor oil, polyoxyethylene alkyl ethers or polyoxypropylene alkyl ethers, lauryl alcohol polyglycol ether acetate, sorbitol esters, lignin-sulfite waste liquors or methylcellulose.

Powders, materials for broadcasting and dusts can be prepared by mixing or grinding the active substances together with a solid carrier.

- 5 Granules, e.g. coated granules, impregnated granules and homogeneous granules, can be prepared by binding the active compounds to solid carriers. Solid carriers are mineral earths, such as silicas, silica gels, silicates, talc, kaolin, limestone, lime, chalk, bole, loess, clay, dolomite, diatomaceous earth,
- 10 calcium sulfate, magnesium sulfate, magnesium oxide, ground synthetic materials, fertilizers such as ammonium sulfate, ammonium phosphate and ammonium nitrate, ureas, and products of vegetable origin, such as cereal meal, tree bark meal, wood meal and nutshell meal, cellulose powders, or other solid carriers.

The concentrations of the compounds of the formula I in the ready-to-use preparations can be varied within wide ranges. In general, the formulations comprise from about 0.001 to 98% by weight, preferably 0.01 to 95% by weight of at least one active compound. The active compounds are employed in a purity of from 90% to 100%, preferably 95% to 100% (according to the NMR spectrum).

The following formulation examples illustrate the production of 25 such preparations:

- 1. 20 parts by weight of the compound No. 2.2 are dissolved in a mixture composed of 80 parts by weight of alkylated benzene, 10 parts by weight of the adduct of 8 to 10 mol of ethylene oxide to 1 mol of oleic acid N-monoethanolamide, 5 parts by weight of calcium dodecylbenzenesulfonate and 5 parts by weight of the adduct of 40 mol of ethylene oxide to 1 mol of castor oil. Pouring the solution into 100,000 parts by weight of water and finely distributing it therein gives an aqueous dispersion which comprises 0.02% by weight of the active compound.
- II. 20 parts by weight of the compound No. 2.4 are dissolved in a mixture composed of 40 parts by weight of cyclohexanone, 30 parts by weight of isobutanol, 20 parts by weight of the adduct of 7 mol of ethylene oxide to 1 mol of isooctylphenol and 10 parts by weight of the adduct of 40 mol of ethylene oxide to 1 mol of castor oil. Pouring the solution into 100,000 parts by weight of water and finely distributing it therein gives an aqueous dispersion which comprises 0.02% by weight of the active compound.

III. 20 parts by weight of the compound No. 2.16 are dissolved in a mixture composed of 25 parts by weight of cyclohexanone, 65 parts by weight of a mineral oil fraction of boiling point 210 to 280°C and 10 parts by weight of the adduct of 40 mol of ethylene oxide to 1 mol of castor oil. Pouring the solution into 100,000 parts by weight of water and finely distributing it therein gives an aqueous dispersion which comprises 0.02% by weight of the active compound.

10

15

5

IV. 20 parts by weight of the compound No. 2.18 are mixed thoroughly with 3 parts by weight of sodium diisobutylnaphthalenesulfonate, 17 parts by weight of the sodium salt of a lignosulfonic acid from a sulfite waste liquor and 60 parts by weight of pulverulent silica gel, and the mixture is ground in a hammer mill. Finely distributing the mixture in 20,000 parts by weight of water gives a spray mixture which comprises 0.1% by weight of the active compound.

20

V. 3 parts by weight of the compound No. 2.22 are mixed with 97 parts by weight of finely divided kaolin. This gives a dust which comprises 3% by weight of the active compound.

25 VI. 20 parts by weight of the compound No. 2.46 are mixed intimately with 2 parts by weight of the calcium salt of dodecylbenzenesulfonate, 8 parts by weight of fatty alcohol polyglycol ether, 2 parts by weight of the sodium salt of a phenol/urea/formaldehyde condensate and 68 parts by weight of a paraffinic mineral oil. This gives a stable oily dispersion.

- VII. 1 part by weight of the compound No. 3.1 is dissolved in a mixture composed of 70 parts by weight of cyclohexanone, 20 parts by weight of ethoxylated isooctylphenol and 10 parts by weight of ethoxylated castor oil. This gives a stable emulsion concentrate.
- VIII. 1 part by weight of the compound No. 3.4 is dissolved in a
 40 mixture composed of 80 parts by weight of cyclohexanone and
 20 parts by weight of Wettol® EM 31 (nonionic emulsifier
 based on ethoxylated castor oil). This gives a stable
 emulsion concentrate.
- 45 The compounds of the formula I or the herbicidal compositions can be applied pre- or post-emergence. If the active compounds are less well tolerated by certain crop plants, application

techniques may be used in which the herbicidal compositions are sprayed, with the aid of the spraying equipment, in such a way that they come into contact as little as possible, if at all, with the leaves of the sensitive crop plants, while the active compounds reach the leaves of undesirable plants growing underneath, or the bare soil surface (post-directed, lay-by).

The application rates of the compound of the formula I are from 0.001 to 3.0, preferably 0.01 to 1.0 kg/ha of active substance 10 (a.s.), depending on the control target, the season, the target plants and the growth stage.

To widen the activity spectrum and to achieve synergistic effects, the cyclohexenonequinolinoyl derivatives of the formula 15 I may be mixed with a large number of representatives of other herbicidal or growth-regulating active compound groups and then applied concomitantly. Suitable components for mixtures are, for example, 1,2,4-thiadiazoles, 1,3,4-thiadiazoles, amides, aminophosphoric acid and its derivatives, aminotriazoles, 20 anilides, (het)aryloxyalkanoic acids and their derivatives, benzoic acid and its derivatives, benzothiadiazinones, 2-aroyl-1,3-cyclohexanediones, hetaryl aryl ketones, benzylisoxazolidinones, meta-CF3-phenyl derivatives, carbamates, quinolinecarboxylic acid and its derivatives, chloroacetanilides, 25 cyclohexenone oxime ether derivatives, diazines,

25 cyclohexenone oxime ether derivatives, diazines, dichloropropionic acid and its derivatives, dihydrobenzofurans, dihydrofuran- 3-ones, dinitroanilines, dinitrophenols, diphenyl ethers, dipyridyls, halocarboxylic acids and their derivatives, ureas, 3-phenyluracils, imidazoles, imidazolinones, N-phenyl-

- 30 3,4,5,6-tetrahydrophthalimides, oxadiazoles, oxiranes, phenols, aryloxy- and hetaryloxyphenoxypropionic esters, phenylacetic acid and its derivatives, phenylpropionic acid and its derivatives, pyrazoles, phenylpyrazoles, pyridazines, pyridinecarboxylic acid and its derivatives, pyrimidyl ethers, sulfonamides,
- 35 sulfonylureas, triazines, triazinones, triazolinones, triazolecarboxamides and uracils.

It may furthermore be advantageous to apply the compounds of the formula I, alone or else concomitantly in combination with other 40 herbicides, in the form of a mixture with other crop protection agents, for example together with agents for controlling pests or phytopathogenic fungi or bacteria. Also of interest is the miscibility with mineral salt solutions, which are employed for treating nutritional and trace element deficiencies.

45 Non-phytotoxic oils and oil concentrates may also be added.

Use Examples

The herbicidal activity of the cyclohexenonequinolinoyl derivatives of the formula I was demonstrated by the following 5 greenhouse experiments:

The culture containers used were plastic pots containing loamy sand with approximately 3.0% of humus as the substrate. The seeds of the test plants were sown separately for each species.

10

For the pre-emergence treatment, the active compounds, which had been suspended or emulsified in water, were applied directly after sowing by means of finely distributing nozzles. The containers were irrigated gently to promote germination and

- 15 growth and subsequently covered with transparent plastic hoods until the plants had rooted. This cover caused uniform germination of the test plants, unless this was adversely affected by the active compounds.
- 20 For the post-emergence treatment, the test plants were first grown to a height of 3 to 15 cm, depending on the plant habit, and only then treated with the active compounds which had been suspended or emulsified in water. The test plants were for this purpose either sown directly and grown in the same containers, or
- 25 they were first grown separately as seedlings and transplanted into the test containers a few days prior to treatment. The application rate for the post-emergence treatment was 0.25 or 0.125 kg of a.s. (active substance)/ha.
- 30 Depending on the species, the plants were kept at 10 25°C or 20 35°C. The test period extended over 2 to 4 weeks. During this time, the plants were tended, and their response to the individual treatments was evaluated.
- 35 The evaluation was carried out using a scale from 0 to 100. 100 means no emergence of the plants, or complete destruction of at least the aerial parts and 0 means no damage, or normal course of growth.
- 40 The plants used in the greenhouse experiments are composed of the following species:

	Scientific Name	Common Name
	Abutilon theophrasti	velvet leaf
5	Chenopodium album	lambsquarters
	Galium aparine	catchweed bedstraw
	Ipomoea spp.	morning glory
10	Setaria faberi	giant foxtail
	Setaria viridis	green foxtail
	Solanum nigrum	black nightshade

15 At application rates of 0.25 and 0.125 kg of a.s./ha, the compounds 2.2, 2.4 and 2.16, applied post-emergence, showed very good activity against harmful plants such as giant foxtail, green foxtail and black nightshade. Furthermore, the compounds 2.2 and 2.4 controlled velvet leaf and morning glory very efficiently.

20 Compound 2.16 additionally showed excellent activity against the weeds lambsquarters and catchweed bedstraw.

We claim:

10

20

25

30

45

1. A cyclohexenonequinolinoyl derivative of the formula I 5

$$\mathbb{R}^4$$
 \mathbb{N}
 \mathbb{R}^2

where:

15 R₁ is hydrogen, nitro, halogen, cyano, C_1-C_6 -alkyl,

C₁-C₆-haloalkyl, C₁-C₆-alkoxyiminomethyl,

 C_1 - C_6 -alkoxy, C_1 - C_6 -haloalkoxy, C_1 - C_6 -alkylthio,

 C_1 - C_6 -haloalkylthio, C_1 - C_6 -alkylsulfinyl,

 C_1 - C_6 -haloalkylsulfinyl, C_1 - C_6 -alkylsulfonyl,

C₁-C₆-haloalkylsulfonyl, aminosulfonyl,

 $N-(C_1-C_6-alkyl)$ aminosulfonyl,

 $N, N-di-(C_1-C_6-alkyl)$ aminosulfonyl,

 $N-(C_1-C_6-alkylsulfonyl)$ amino,

 $N-(C_1-C_6-haloalkylsulfonyl)$ amino,

 $N-(C_1-C_6-alkyl)-N-(C_1-C_6-alkylsulfonyl)$ amino,

 $N-(C_1-C_6-alkyl)-N-(C_1-C_6-haloalkylsulfonyl)amino,$

phenoxy, heterocyclyloxy, phenylthio or

heterocyclylthio, where the four last-mentioned radicals may be partially or fully halogenated and/or may carry one to three of the following

substituents:

nitro, cyano, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl,

 C_1-C_4 -alkoxy or C_1-C_4 -haloalkoxy;

35 R^2 , R^3 are hydrogen, C_1 - C_6 -alkyl, C_1 - C_6 -haloalkyl or halogen;

narogen,

R⁴ is a compound IIa or IIb

40 $(R^6)_1$ $(R^6)_1$

IIa IIb

where R⁵ is halogen, OR⁷, SR⁷, SOR⁸, SO₂R⁸, OSO₂R⁸, POR⁸R⁹, OPR8R9, OPOR8R9, OPSR8R9, NR10R11, ONR11R12, N-linked 5 heterocyclyl or O-(N-linked heterocyclyl), where the heterocyclyl radical of the two last-mentioned substituents may be partially or fully halogenated and/or may carry one to three of the following radicals: 10 nitro, cyano, C_1-C_4 -alkyl, C_1-C_4 -haloalkyl, C_1-C_4 -alkoxy or C_1-C_4 -haloalkoxy; R^6 is nitro, halogen, cyano, C1-C6-alkyl, $C_1-C_6-haloalkyl$, $di-(C_1-C_6-alkoxy)methyl$, 15 $di-(C_1-C_6-alkylthio)$ methyl, $(C_1-C_6-alkoxy)(C_1-C_6-alkylthio)$ methyl, hydroxyl, C_1-C_6 -alkoxy, C_1-C_6 -haloalkoxy, C_1 - C_6 -alkoxycarbonyloxy, C_1 - C_6 -alkylthio, C₁-C₆-haloalkylthio, C₁-C₆-alkylsulfinyl, 20 C₁-C₆-haloalkylsulfinyl, C₁-C₆-alkylsulfonyl, C₁-C₆-haloalkylsulfonyl, C₁-C₆-alkylcarbonyl, C_1 - C_6 -haloalkylcarbonyl, C_1 - C_6 -alkoxycarbonyl or C_1-C_6 -haloalkoxycarbonyl; 25 or two radicals R6, which are linked to the same carbon, together form an $-O-(CH_2)_m-O-$, $-O-(CH_2)_m-S-$, $-S-(CH_2)_m-S-$, $-O-(CH_2)_n-$ or $-S-(CH_2)_n$ chain which 30 may be substituted by one to three radicals from the following group: halogen, cyano, C₁-C₄-alkyl, C₁-C₄-haloalkyl or C_1-C_4 -alkoxycarbonyl; 35 or two radicals R⁶, which are linked to the same carbon, together form a -(CH2)p chain which may be interrupted by oxygen or sulfur and/or may be 40 substituted by one to four radicals from the

following group:

 C_1-C_4 -alkoxycarbonyl;

halogen, cyano, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl or

45 or

two radicals R6, which are linked to the same carbon, together form a methylidene group which may be substituted by one or two radicals from the following group: halogen, hydroxyl, formyl, cyano, C₁-C₆-alkyl, 5 C_1 - C_6 -haloalkyl, C_1 - C_6 -alkoxy, C_1 - C_6 -haloalkoxy, C₁-C₆-alkylthio, C₁-C₆-haloalkylthio, C₁-C₆-alkylsulfinyl, C₁-C₆-haloalkylsulfinyl, C₁-C₆-alkylsulfonyl or C₁-C₆-haloalkylsulfonyl; 10 or two radicals R6, which are linked to the same carbon, together with this carbon form a carbonyl group; 15 or two radicals R6, which are linked to different carbons, together form a -(CH2)n chain which may be 20 substituted by one to three radicals from the following group: halogen, C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy, hydroxyl or $C_1-C_6-alkoxycarbonyl;$ \mathbb{R}^7 is C1-C6-alkyl, C3-C6-alkenyl, C3-C6-haloalkenyl, 25 C₃-C₆-alkynyl, C₃-C₆-haloalkynyl, C₃-C₆-cycloalkyl, C₁-C₂₀-alkylcarbonyl, C₂-C₆-alkenylcarbonyl, C2-C6-alkynylcarbonyl, C3-C6-cycloalkylcarbonyl, C_1-C_6 -alkoxycarbonyl, C_3-C_6 -alkenyloxycarbonyl, 30 C₃-C₆-alkynyloxycarbonyl, $(C_1-C_{20}-alkylthio)$ carbonyl, C₁-C₆-alkylaminocarbonyl, C3-C6-alkenylaminocarbonyl, C₃-C₆-alkynylaminocarbonyl, $N, N-di-(C_1-C_6-alkyl)$ aminocarbonyl, 35 $N-(C_3-C_6-alkenyl)-N-(C_1-C_6-alkyl)$ aminocarbonyl, $N-(C_3-C_6-alkynyl)-N-(C_1-C_6-alkyl)$ aminocarbonyl, $N-(C_1-C_6-alkoxy) N-(C_1-C_6-alkyl)$ aminocarbonyl, $N-(C_3-C_6-alkenyl)$ -40 $N-(C_1-C_6-alkoxy)$ aminocarbonyl, $N-(C_3-C_6-alkynyl)$ - $N-(C_1-C_6-alkoxy)$ aminocarbonyl, $di-(C_1-C_6-alkyl)$ aminothiocarbonyl, C_1 - C_6 -alkylcarbonyl- C_1 - C_6 -alkyl, $C_1-C_6-alkoxyimino-C_1-C_6-alkyl$, $N-(C_1-C_6-alkylamino)imino-C_1-C_6-alkyl$ or $N, N-di-(C_1-C_6-alkylamino)imino-C_1-C_6-alkyl,$ where 45 the abovementioned alkyl, cycloalkyl and alkoxy radicals may be partially or fully halogenated

		94
		<pre>and/or may carry one to three of the following groups:</pre>
		cyano, C_1 - C_4 -alkoxy, C_1 - C_4 -alkylthio, di - $(C_1$ - C_4 -
		alkyl)amino, C_1 — C_4 —alkylcarbonyl,
5		C_1-C_4 —alkoxycarbonyl,
3		C_1-C_4 -alkoxy- C_1-C_4 -alkoxycarbonyl,
		$C_1-C_4-a1koxy-C_1-C_4-a1koxy-Carbony1$, $di-(C_1-C_4-a1ky1)$ amino- $C_1-C_4-a1koxy-Carbony1$,
		hydroxycarbonyl, C ₁ -C ₄ -alkylaminocarbonyl,
		$di-(C_1-C_4-alkyl)$ aminocarbonyl, aminocarbonyl,
10		C_1 - C_4 -alkylcarbonyloxy or C_3 - C_6 -cycloalkyl;
		phenyl, heterocyclyl, phenyl-C ₁ -C ₆ -alkyl,
		heterocyclyl-C ₁ -C ₆ -alkyl,
		phenylcarbonyl-C ₁ -C ₆ -alkyl,
15		heterocyclylcarbonyl- C_1 - C_6 -alkyl, phenylcarbonyl,
1.5		heterocyclylcarbonyl, phenoxycarbonyl,
		heterocyclyloxycarbonyl, phenoxythiocarbonyl,
		heterocyclyloxythiocarbonyl,
		phenoxy-C ₁ -C ₆ -alkylcarbonyl,
20		heterocyclyloxy-C ₁ -C ₆ -alkylcarbonyl,
		phenylaminocarbonyl,
		$N-(C_1-C_6-alkyl)-N-(phenyl)$ aminocarbonyl,
		heterocyclylaminocarbonyl,
		$N-(C_1-C_6-alkyl)-N-(heterocyclyl)$ aminocarbonyl,
25		phenyl-C ₂ -C ₆ -alkenylcarbonyl or
		heterocyclyl- C_2 - C_6 -alkenylcarbonyl, where the
		phenyl and the heterocyclyl radical of the 20
		last-mentioned substituents may be partially or
		fully halogenated and/or may carry one to three of
30		the following radicals:
		nitro, cyano, C ₁ -C ₄ -alkyl, C ₁ -C ₄ -halogenalkyl,
		C ₁ -C ₄ -alkoxy or C ₁ -C ₄ -haloalkoxy;
	-9 -0	
	R^8 , R^9	are C ₁ -C ₆ -alkyl, C ₃ -C ₆ -alkenyl, C ₃ -C ₆ -haloalkenyl,
35		C_3 - C_6 -alkynyl, C_3 - C_6 -haloalkynyl, C_3 - C_6 -cycloalkyl,
		hydroxyl, C_1 - C_6 -alkoxy, amino, C_1 - C_6 -alkylamino,
		C_1-C_6 -haloalkylamino, di-(C_1-C_6 -
		alkyl)amino or $di-(C_1-C_6-haloalkyl)$ amino, where the
		abovementioned alkyl, cycloalkyl and alkoxy
40		radicals may be partially or fully halogenated
		and/or may carry one to three of the following
		groups:
		cyano, C_1-C_4 -alkoxy, C_1-C_4 -alkylthio, $di-(C_1-C_4-$
		alkyl)amino, C ₁ -C ₄ -alkylcarbonyl,
45		C_1-C_4 -alkoxycarbonyl,
		C_1 — C_4 —alkoxy— C_1 — C_4 —alkoxycarbonyl,
		$di-(C_1-C_4-alkyl)$ amino- $C_1-C_4-alkoxycarbonyl$,
		at-(c1-c4-atryt) amitho-c1-c4-atroxycarbonyt,

m

		hydroxycarbonyl, C_1 — C_4 —alkylaminocarbonyl, di— $(C_1$ — C_4 —alkyl)aminocarbonyl, aminocarbonyl, C_1 — C_4 —alkylcarbonyloxy or C_3 — C_6 —cycloalkyl;
5		phenyl, heterocyclyl, phenyl—C ₁ —C ₆ —alkyl, heterocyclyl—C ₁ —C ₆ —alkyl, phenoxy, heterocyclyloxy, where the phenyl and the heterocyclyl radical of the last-mentioned substituents may be partially or fully halogenated and/or may carry one to three
10		of the following radicals: nitro, cyano, C_1 — C_4 —alkyl, C_1 — C_4 —haloalkyl, C_1 — C_4 —alkoxy or C_1 — C_4 —haloalkoxy;
15	R ¹⁰	is C_1 - C_6 -alkyl, C_3 - C_6 -alkenyl, C_3 - C_6 -haloalkenyl, C_3 - C_6 -alkynyl, C_3 - C_6 -haloalkynyl, C_3 - C_6 -cycloalkyl, hydroxyl, C_1 - C_6 -alkoxy, C_3 - C_6 -alkenyloxy, C_3 - C_6 -alkyloxy, amino, C_1 - C_6 -alkylamino, di- $(C_1$ - C_6 -alkyl)amino or C_1 - C_6 -alkylcarbonylamino, where the abovementioned alkyl, cycloalkyl and
20		alkoxy radicals may be partially or fully halogenated and/or may carry one to three radicals from the following group: cyano, C_1-C_4 -alkoxy, C_1-C_4 -alkylthio, di- $(C_1-C_4$ -alkyl)amino, C_1-C_4 -alkylcarbonyl,
25		$C_1-C_4-alkoxycarbonyl$, $C_1-C_4-alkoxycarbonyl$, $di-(C_1-C_4-alkyl)amino-C_1-C_4-alkoxycarbonyl$, hydroxycarbonyl, $C_1-C_4-alkyl$ aminocarbonyl, $di-(C_1-C_4-alkyl)$ aminocarbonyl, aminocarbonyl,
30		C_1 - C_4 -alkylcarbonyloxy or C_3 - C_6 -cycloalkyl; phenyl, heterocyclyl, phenyl- C_1 - C_6 -alkyl or heterocyclyl- C_1 - C_6 -alkyl, where the phenyl or heterocyclyl radical of the four last-mentioned
35		substituents may be partially or fully halogenated and/or may carry one to three of the following radicals: nitro, cyano, C ₁ -C ₄ -alkyl, C ₁ -C ₄ -haloalkyl, C ₁ -C ₄ -alkoxy or C ₁ -C ₄ -haloalkoxy;
40	R ¹¹ , R ¹²	are C_1 - C_6 -alkyl, C_3 - C_6 -alkenyl, C_3 - C_6 -alkynyl or C_1 - C_6 -alkylcarbonyl;
	1	is 0 to 6;

is 2 to 4;

n is 1 to 5;

p is 2 to 5;

- 5 and their agriculturally useful salts.
 - 2. A cyclohexenonequinolinoyl derivative of the formula I as claimed in claim 1, where
- 10 R¹ is halogen, C₁-C₆-alkyl, C₁-C₆-haloalkyl, C₁-C₆-alkoxy, C₁-C₆-alkylthio, heterocyclyloxy or phenylthio, where the two last-mentioned radicals may be partially or fully halogenated and/or may carry one to three of the substituents mentioned below:
- nitro, cyano, C_1-C_4 -alkyl, C_1-C_4 -haloalkyl, C_1-C_4 -alkoxy or C_1-C_4 -haloalkoxy;
- R⁵ is halogen, OR⁷, SR⁷, SOR⁸, SO₂R⁸, OSO₂R⁸, OPR⁸R⁹, OPOR⁸R⁹,
 OPSR⁸R⁹, NR¹⁰R¹¹ or N-bonded heterocyclyl which may be
 partially or fully halogenated and/or may carry one to
 three of the following radicals:
 nitro, cyano, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy
 or C₁-C₄-haloalkoxy.
- 25 3. A cyclohexenonequinolinoyl derivative of the formula I as claimed in claim 1 or 2, where
- is halogen, OR⁷, NR¹⁰R¹¹ or N-bonded heterocyclyl which may be partially or fully halogenated and/or may carry one to three of the following radicals: nitro, cyano, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy or C₁-C₄-haloalkoxy.
- 4. A cyclohexenonequinolinoyl derivative of the formula I as35 claimed in claims 1 to 3, where
- R⁷ is C₁-C₆-alkyl, C₁-C₂₀-alkylcarbonyl,

 C₁-C₆-alkoxycarbonyl, (C₁-C₂₀-alkylthio)carbonyl,

 N,N-di-(C₁-C₆-alkyl)aminocarbonyl, phenyl, phenylcarbonyl

 or phenoxy-C₁-C₆-alkylcarbonyl, where the phenyl radical

 of the three last-mentioned substituents may be partially

 or fully halogenated and/or may carry one to three of the

 following radicals:

 nitro, cyano, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy

 or C₁-C₄-haloalkoxy;

```
97
```

is C_1-C_6 -alkyl or C_1-C_6 -alkoxy;

 R^{11} is C_1-C_6 -alkyl.

A cyclohexenonequinolinoyl derivative of the formula I as **5** 5. claimed in claims 1 to 4, where

 R^6 is nitro, halogen, cyano, C₁-C₆-alkyl, $C_1-C_6-haloalkyl$, $di-(C_1-C_6-alkoxy)$ methyl, $di-(C_1-C_6-alkylthio)$ methyl,

10 $(C_1-C_6-alkoxy)(C_1-C_6-alkylthio)-$

methyl, hydroxyl, C_1 - C_6 -alkoxy, C_1 - C_6 -haloalkoxy,

 C_1-C_6 -alkoxycarbonyloxy, C_1-C_6 -alkylthio, C₁-C₆-haloalkylthio, C₁-C₆-alkylsulfinyl,

C₁-C₆-haloalkylsulfinyl, C₁-C₆-alkylsulfonyl,

C₁-C₆-haloalkylsulfonyl, C₁-C₆-alkylcarbonyl,

C₁-C₆-haloalkylcarbonyl, C₁-C₆-alkoxycarbonyl or

C₁-C₆-haloalkoxycarbonyl;

or

20

25

15

two radicals R6, which are linked to the same carbon, together form an $-O-(CH_2)_m-O-$, $-O-(CH_2)_m-S-$, $-S-(CH_2)_m-S-$, $-O-(CH_2)_n-$ or $-S-(CH_2)_n$ chain which may be substituted by one to three radicals from the following group: halogen, cyano, C₁-C₄-alkyl, C₁-C₄-haloalkyl or

 C_1-C_4 -alkoxycarbonyl;

or

30

35

two radicals R6, which are linked to the same carbon, together form a $-(CH_2)_p$ chain which may be interrupted by oxygen or sulfur and/or may be substituted by one to four radicals from the following group: halogen, cyano, C₁-C₄-alkyl, C₁-C₄-haloalkyl or

 C_1-C_4 -alkoxycarbonyl;

or

40

two radicals R6, which are linked to the same carbon, together with this carbon form a carbonyl group.

A process for preparing compounds of the formula I as claimed 45 in claims 1 to 5 where R^5 = halogen, which comprises reacting a cyclohexanedione derivative of the formula III,

15

20

25

30

$$(R^6)_1$$
 R^3
 R^2
III

where the variables R^1 to R^3 , R^6 and 1 are each as defined in claims 1 to 5, with a halogenating agent.

7. A process for preparing compounds of the formula I as claimed in claims 1 to 5 where $R^5 = OR^7$, OSO_2R^8 , OPR^8R^9 , $OPOR^8R^9$ or $OPSR^8R^9$, which comprises reacting a cyclohexanedione derivative of the formula III,

$$(R^6)_1$$
 R^3
 R^2
 R^2
 R^2

where the variables R^1 to R^3 , R^6 and 1 are each as defined in claims 1 to 5, with a compound of the formula $IV\alpha$, $IV\beta$, $IV\gamma$, $IV\delta$ or $IV\epsilon$,

$$L^1-R^7$$
 $L^1-SO_2R^8$ $L^1-PR^8R^9$ $L^1-POR^8R^9$ $L^1-PSR^8R^9$ (IV α) (IV β) (IV γ) (IV δ) (IV ϵ)

where the variables R^7 to R^9 are each as defined in claims 1 to 5 and L^1 is a nucleophilically replaceable leaving group.

8. A process for preparing compounds of the formula I as claimed in claims 1 to 5 where $R^5 = OR^7$, SR^7 , POR^8R^9 , $NR^{10}R^{11}$, $ONR^{11}R^{12}$, N-linked heterocyclyl or O-(N-linked heterocyclyl), which comprises reacting a compound of the formula $I\alpha$ (\equiv I where R^5 = halogen, OSO_2R^8),

40

$$\mathbf{5} \qquad (\mathbf{R}^6)_1 \xrightarrow{\mathbf{R}^5} \mathbf{R}^2 \qquad \text{and/or} \qquad (\mathbf{R}^6)_1 \xrightarrow{\mathbf{R}^5} \mathbf{R}^2$$

I where R⁵ = halogen or OSO₂R⁸

where the variables R^1 to R^3 , R^6 and 1 are each as defined in claims 1 to 5, with a compound of the formula $V\alpha$, $V\beta$, $V\gamma$, $V\delta$, $V\epsilon$, $V\eta$ or $V\vartheta$,

15
$$HOR^7$$
 HSR^7 $HPOR^8R^9$ $HNR^{10}R^{11}$ $HONR^{11}R^{12}$ $(V\alpha)$ $(V\beta)$ $(V\gamma)$ $(V\delta)$ $(V\epsilon)$ $H(N-linked$ $H(ON-linked$ $heterocyclyl)$ $heterocyclyl)$ $(V\vartheta)$

where the variables R^7 to R^{12} are each as defined in claims 1 to 5, if appropriate in the presence of a base.

25 9. A process for preparing compounds of the formula I as claimed in claims 1, 2 or 5, where $R^5 = SOR^8$, SO_2R^8 , which comprises reacting a compound of the formula I β (= I where $R^5 = SR^8$),

30
$$(R^{6})_{1} \xrightarrow{R^{5}} R^{2}$$

$$R^{5} = SR^{8}$$

$$R^{3} = R^{2}$$

$$R^{6})_{1} \xrightarrow{R^{5}} R^{2}$$

$$R^{7} = R^{7}$$

where the variables R^1 to R^8 and 1 are each as defined in claims 1, 2 or 5, with an oxidizing agent.

10. A composition, comprising a herbicidally effective amount of at least one cyclohexenonequinolinoyl derivative of the formula I or an agriculturally useful salt of I as claimed in claims 1 to 5 and auxiliaries which are customarily used for formulating crop protection agents.

- 11. A process for preparing compositions as claimed in claim 10, which comprises mixing a herbicidally effective amount of at least one cyclohexenonequinolinoyl derivative of the formula I or an agriculturally useful salt of I as claimed in claims 1 to 5 and auxiliaries which are customarily used for formulating crop protection agents.
- 12. A method for controlling undesirable vegetation, which comprises allowing a herbicidally effective amount of at least one cyclohexenonequinolinoyl derivative of the formula I or an agriculturally useful salt of I as claimed in claims 1 to 5 to act on plants, their habitat and/or on seeds.
- 13. The use of cyclohexenonequinolinoyl derivatives of the formula I or their agriculturally useful salts as claimed in claims 1 to 5 as herbicides.

Cyclohexenonequinolinoyl derivatives

Abstract

5

Cyclohexenonequinolinoyl derivatives of the formula I

10

$$\mathbb{R}^4$$
 \mathbb{N} \mathbb{R}^2 \mathbb{R}^4 \mathbb{R}^4

15 where:

 \mathbb{R}^1

is hydrogen, nitro, halogen, cyano, alkyl, haloalkyl, alkoxyiminomethyl, alkoxy, haloalkoxy, alkylthio, C_1 — C_6 —haloalkylthio, alkylsulfinyl, haloalkylsulfinyl, alkylsulfonyl, haloalkylsulfonyl, unsubstituted or substituted amino sulfonyl, unsubstituted or

20

substituted amino sulfonyl, unsubstituted or substituted sulfonyl amino, unsubstituted or substituted phenoxy, unsubstituted or substituted heterocyclyloxy, unsubstituted or substituted phenylthio or unsubstituted or substituted

25

heterocyclylthio;

 R^2 , R^3

are hydrogen, alkyl, haloalkyl or halogen;

 \mathbb{R}^4

is substituted (3-oxo-1-cyclohexen-2-yl)carbonyl or substituted (1,3-dioxo-2-cyclohexyl)methylidene;

30

and their agriculturally useful salts;

processes for preparing the cyclohexenonequinolinoyl derivatives; compositions comprising them, and the use of these derivatives or compositions comprising them for controlling undesirable plants are described.

40

45

Declaration, Power of Attorney

Page 1 of 6

0050/049365

We (I), the undersigned inventor(s), hereby declare(s) that:

My residence, post office address and citizenship are as stated below next to my name,

We (I) believe that we are (I am) the original, first, and joint (sole) inventor(s) of the subject matter which is claimed and for which a patent is sought on the invention entitled

Cyclohexenonequinolinoyl derivatives

the	specification	of	which
uic	specification	ı Oı	WILLUIT

[-] is at	tached hereto.	
[] was	filed on	as
App	lication Serial No.	-
and	amended on	. •
[x] was	filed as PCT international application	
Nur	nber PCT/EP99/06322	_
on	August 27, 1999	
and	was amended under PCT Article 19	
on	(if applica)	ale)

We (I) hereby state that we (I) have reviewed and understand the contents of the above—identified specification, including the claims, as amended by any amendment referred to above.

We (I) acknowledge the duty to disclose information known to be material to the patentability of this application as defined in Section 1.56 of Title 37 Code of Federal Regulations.

We (I) hereby claim foreign priority benefits under 35 U.S.C. § 119(a)—(d) or § 365(b) of any foreign application(s) for patent or inventor's certificate, or § 365(a) of any PCT International application which designated at least one country other than the United States, listed below and have also identified below, by checking the box, any foreign application for patent or inventor's certificate, or PCT International application having a filing date before that of the application on which priority is claimed. Prior Foreign Application(s)

Application No.	Country	Day/Month/Year	Priority Claimed
19840799.8	Germany	08 September 1998	[x] Yes [] No

We (I) hereby claim the benefit under Title 35, United application(s) listed below.	States Codes, § 119(e) of any United States provisional
(Application Number)	(Filing Date)
(Application Number)	(Filing Date)

We (I) hereby claim the benefit under 35 U.S.C. § 120 of any United States application(s), or § 365(c) of any PCT International application designating the United States, listed below and, insofar as the subject matter of each of the claims of this application is not disclosed in the prior United States or PCT International application in the manner provided by the first paragraph of 35 U.S.C. § 112, I acknowledge the duty to disclose information which is material to patentability as defined in 37 CFR § 1.56 which became available between the filing date of the prior application and the national or PCT International filing date of this application.

Application Serial No.	Filing Date	Status (pending, patented, abandoned)
-		

And we (I) hereby appoint Messrs. HERBERT. B. KEIL, Registration Number 18,967; and RUSSEL E. WEINKAUF, Registration Number 18,495; the address of both being Messrs. Keil & Weinkauf, 1101 Connecticut Ave., N.W., Washington, D.C. 20036 (telephone 202–659–0100), our attorneys, with full power of substitution and revocation, to prosecute this application, to make alterations and amendments therein, to sign the drawings, to receive the patent, and to transact all business in the Patent Office connected therewith.

We (I) declare that all statements made herein of our (my) own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issuing thereon.

Matthias Witschel NAME OF INVENTOR

Signature of Inventor

Date September 9, 1999 Wittelsbachstr. 81 67061 Ludwigshafen Germany EX Citizen of: Germany

Post Office Address: same as residence

Ulf Mißlitz NAME OF INVENTOR

September 9, 1999 Date

Mandelring 74

67433 Neustadt Germany De

Citizen of: Germany

Post Office Address: same as residence

Ernst Baumann

NAME OF INVENTOR

Signature of Inventor

Date September 9, 1999 Falkenstr.6a

67373 Dudenhofen

Germany) EX

Citizen of: Germany

Post Office Address: same as residence

Hand the Good farm

Wolfgang von Deyn

NAME OF INVENTOR

Date September 9, 1999 An der Bleiche 24 67435 Neustadt

Germany SEX Citizen of: Germany

Klaus Langemann NAME OF INVENTOR

Date

September 9, 1999

Goldbergstr. 18

67551 Worms

Germany DEX Citizen of: Germany

Post Office Address: same as residence

Guido Mayer

NAME OF INVENTOR

Signature of Inventor

Date

September 9, 1999

Gutleuthausstr. 8 67433 Neustadt

Germany \

Citizen of: Germany

Post Office Address: same as residence

Ulf Neidlein

NAME OF INVENTOR

Signature of Inventor

Date

September 9, 1999

Brahmsstr.3

68165 Mannheim

Germany EX Citizen of: Germany

Post Office Address: same as residence

Roland Götz

NAME OF INVENTOR

Signature of Inventor

September 9, 1999

Langebrücker Str. 25

68809 Neulußheim Germany 1) 2

Citizen of: Germany

Norbert Götz

NAME OF INVENTOR

Signature of Inventor

Date

September 9, 1999

Schöfferstr.25

67547 Worms

Germaný DZX Citizen of: Germany

Post Office Address: same as residence

Michael Rack
NAME OF INVENTOR

Signature of Inventor

Date

September 9, 1999

Sandwingert 67 69123 Heidelberg

Germany |

Citizen of Germany

Post Office Address: same as residence

Stefan Engel

NAME OF INVENTOR

Signature of Inventor

Date

September 9, 1999

Königsberger Str. 103a

55268 Nieder-Olm

Germany ファメ Citizen of: Germany

Post Office Address: same as residence

Martina Otten

NAME OF INVENTOR

Signature of Inventor

Date

September 9, 1999

Gunterstr.28

67069 Ludwigshafen

Germany S

Citizen of: Germany

NAME OF INVENTOR

Signature of Inventor

Date

September 9, 1999

Mausbergweg 58

67346 Speyer
Germany
Citizen of: Germany

Post Office Address: same as residence

Date

September 9, 1999

Grünstadter Str.82 67283 Obrigheim

Germany OEX Citizen of: Germany