Numerical Methods and Optimization

Tutorial 7

21/4/2024 - 3rd Year

Tutorial 7

ENSIA - Spring 2024

- Numerical integration -

Exercise 1: Newton-Cotes formulas

We define the function $f(x) = \frac{1}{x}$.

- (1) Calculate the polynomial $P_1(x)$ of degree less than or equal to 1, which approximates the function f in the sense of continuous least squares over $[\frac{1}{2}, 1]$.
- (2) Calculate $\int_{\frac{1}{2}}^{1} \frac{1}{x} dx$ with 2 methods.

Exercise 2: Practice problems

- (1) Compute the trapezoidal approximation for $\int_0^2 \sqrt{x} dx$ using a regular partition with n=4. Compare the estimate with the exact value.
- (2) Use Simpson's rule to approximate $\int_0^2 \sqrt{x} dx$ using a regular partition with n = 4. Compare the estimate with the exact value.

Exercise 3: Generalized Trapezoidal/Simpson methods

Let the integral $I = \int_0^{\pi} \sin x \, dx$.

- (1) Calculate the exact value of I.
- (2) Using the generalized trapezoidal method and the generalized Simpson's method for $h = \frac{\pi}{4}$.
 - (a) Calculate I;
 - (b) Estimate the error;
 - (c) Evaluate the error.
- (3) Provide the value of step h and the number of subdivisions of the interval $[0, \pi]$ so that the error obtained by the generalized trapezoidal method (resp. Simpson's) is less than 5×10^{-4} .

Exercise 4: A problem

The widths (in meters) of a kidney-shaped swimming pool were measured at 2-meter intervals, as indicated in the figure. Use Simpson's Rule to estimate the area of the pool.

