Nolan Anderson

CPE221-01

Dr. Rhonda Gaede

3/11/2020

Homework #5

7.91

Cycle 1: $E_{R0_C} = 1$

- Put R0 onto bus C

 $E_{R1_D} = 1$,

- Put R1 onto bus D

<u>Cycle 2</u>: $ALU(F_3, F_2, F_1, F_0) = 0,0,1,0, M_ALU_B, M_R1, C_{R1}$

- Perform addition on R0 and R1 and put the value back into R1.

7.92

Cycle 1: $E_{PC_C} = 1$

- PC moves onto bus C

Cycle 2: M_ALU_B;

- PC moves to bus B

Cycle 3: C_{MAR} , Read = 1

- MAR gets PC and the memory is read.

Cycle 4: M_MBR, C_{IR}

- The instruction register gets the memory of PC.

Cycle 5: Incrementor, M_PC

- Increment the value of PC.

7.95

Cycle 1:
$$E_{IR_C} = 1$$

- M moves to bus C

Cycle 2: M_ALU_B

- M moves to bus B

Cycle 3: C_{MAR} , Read = 1

- MAR gets M and reads the address of the data

Cycle 4:
$$M_{BR}$$
, C_{MBR} , $E_{MBR_C} = 1$

- M moves through the MBR and gets put onto bus C

Cycle 5:
$$E_{R0_D} = 1$$

- R0 moves to bus D

Cycle 6:
$$ALU(F_3, F_2, F_1, F_0) = 0,0,1,0, M_ALU_B, M_R1, C_{R0}$$

- Perform addition on M and R0 and put the value back into R0.

Cycle 1:
$$E_{R1_C} = 1$$

- R1 moves to bus C

Cycle 2:
$$M_ALU_B = 1$$

- R1 moves to bus B

Cycle 3:
$$C_{MAR}$$
, Read = 1

- MAR gets R1 and reads the address of the data

Cycle 4:
$$M_{BR}$$
, C_{MBR} , $E_{MBR_C} = 1$

- R1 moves through the MBR and gets put onto bus C

Cycle 5:
$$E_{R0_D} = 1$$

- R0 moves to bus D

Cycle 6:
$$ALU(F_3, F_2, F_1, F_0) = 0.0, 1.0, M_ALU_B, M_R0, C_{R0}$$

- Perform addition on M[R1] and R0 and put the value back into R0.

Cycle 1: $E_{R0_B} = 1$

- R0 moves to bus B

Cycle 2: $M_ALU, C_{R1} = 1$

- R0 moves to R1

Cycle 3: $E_{IR_B} = 1$, M_ALU

- M moves to bus A

Cycle 4: $C_{MAR} = 1$, Read = 1

- M moves to MAR

Cycle 5: M_{BR} , C_{MBR} , $E_{MBR_B} = 1$

- M[M] moves to bus B

Cycle 6: M_ALU, C_{MAR}, Read = 1

- M[M] moves to MAR and the memory is read

<u>Cycle 7:</u> M_MBR, C_{MBR} , $E_{MBR_B} = 1$

- M[M[M]] moves to bus B

 $\underline{\text{Cycle 8:}} \, ALU(F_1,\!F_0),\, 1,\, 0,\, M_ALU,\, C_{R0}$

- Perform addition and move the data back into R0.

Cycle 1: $E_{IR_B} = 1$

- M moves to bus B

<u>Cycle 2:</u> ALU(F₁,F₀), 1, 0, M_ALU

- M+R1 moves to bus A

Cycle 3: C_{MAR}, Read =1

- Read the address of M+R1, result is M[M+R1]

Cycle 4: $M_{MBR} = 1$

- M[M+R1] Moves to MBR

Cycle 5: $E_{R0_B} = 1$

- R0 moves to bus B

Cycle 6: M_ALU , $C_{R1} = 1$

- R0 moves to R1

Cycle 7: $E_{MBR_B} = 1$

- M[M+R1] moves to bus B

Cycle 8: ALU(F₁,F₀), 1, 0, M_ALU, C_{R0}

- Perform addition on M[M+R1]+R0 and move the data back into R0.

3-Address	2-Address	1-Address	0-Address
SUB A, C, D MUL A, A, B DIV A, A, E ADD A, A, F MUL A, A, G	LDR A, C SUB A, D MUL A, B DIV. A, E ADD. A, F DIV. A, G	LDR C SUB. D MUL. B DIV. E ADD. F MUL. G STR. A	PUSH C PUSH. D SUB. PUSH. B MUL PUSH. E DIV PUSH. F
			ADD PUSH. G MUL POP. A