MINI_PROJECT

PROBLEM STATEMENT:- TO PREDICT THE RAIN FALL BASED ON VARIOUS FEATURES OF THE DATASET

IMPORTING THE ESSENTIAL LIBRARIES:

In [111]:

```
import numpy as np
import pandas as pd
from sklearn.linear_model import LinearRegression
from sklearn import preprocessing,svm
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
import seaborn as sns
```

In [112]:

 $\label{lem:csv} $$ df=pd.read_csv(r"C:\Users\prajapath\ Arjun\Downloads\rainfall\ in\ India1901-2015\ dataset.cdf $$$

Out[112]:

	SUBDIVISION	YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	0
0	ANDAMAN & NICOBAR ISLANDS	1901	49.2	87.1	29.2	2.3	528.8	517.5	365.1	481.1	332.6	38
1	ANDAMAN & NICOBAR ISLANDS	1902	0.0	159.8	12.2	0.0	446.1	537.1	228.9	753.7	666.2	19 [.]
2	ANDAMAN & NICOBAR ISLANDS	1903	12.7	144.0	0.0	1.0	235.1	479.9	728.4	326.7	339.0	18
3	ANDAMAN & NICOBAR ISLANDS	1904	9.4	14.7	0.0	202.4	304.5	495.1	502.0	160.1	820.4	22:
4	ANDAMAN & NICOBAR ISLANDS	1905	1.3	0.0	3.3	26.9	279.5	628.7	368.7	330.5	297.0	26
4111	LAKSHADWEEP	2011	5.1	2.8	3.1	85.9	107.2	153.6	350.2	254.0	255.2	11
4112	LAKSHADWEEP	2012	19.2	0.1	1.6	76.8	21.2	327.0	231.5	381.2	179.8	14
4113	LAKSHADWEEP	2013	26.2	34.4	37.5	5.3	88.3	426.2	296.4	154.4	180.0	7:
4114	LAKSHADWEEP	2014	53.2	16.1	4.4	14.9	57.4	244.1	116.1	466.1	132.2	16
4115	LAKSHADWEEP	2015	2.2	0.5	3.7	87.1	133.1	296.6	257.5	146.4	160.4	16
4116 rows × 19 columns												

4116 rows × 19 columns

DATA PREPROCESSING:-

In [113]:

df.head()

Out[113]:

	SUBDIVISION	YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	
0	ANDAMAN & NICOBAR ISLANDS	1901	49.2	87.1	29.2	2.3	528.8	517.5	365.1	481.1	332.6	388.5	5
1	ANDAMAN & NICOBAR ISLANDS	1902	0.0	159.8	12.2	0.0	446.1	537.1	228.9	753.7	666.2	197.2	3
2	ANDAMAN & NICOBAR ISLANDS	1903	12.7	144.0	0.0	1.0	235.1	479.9	728.4	326.7	339.0	181.2	2
3	ANDAMAN & NICOBAR ISLANDS	1904	9.4	14.7	0.0	202.4	304.5	495.1	502.0	160.1	820.4	222.2	3
4	ANDAMAN & NICOBAR ISLANDS	1905	1.3	0.0	3.3	26.9	279.5	628.7	368.7	330.5	297.0	260.7	
4		-	-	-	-	-	-						

In [114]:

df.tail()

Out[114]:

	SUBDIVISION	YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	oc.
4111	LAKSHADWEEP	2011	5.1	2.8	3.1	85.9	107.2	153.6	350.2	254.0	255.2	117.4
4112	LAKSHADWEEP	2012	19.2	0.1	1.6	76.8	21.2	327.0	231.5	381.2	179.8	145.9
4113	LAKSHADWEEP	2013	26.2	34.4	37.5	5.3	88.3	426.2	296.4	154.4	180.0	72.
4114	LAKSHADWEEP	2014	53.2	16.1	4.4	14.9	57.4	244.1	116.1	466.1	132.2	169.;
4115	LAKSHADWEEP	2015	2.2	0.5	3.7	87.1	133.1	296.6	257.5	146.4	160.4	165.4
4												

In [115]:

```
df.isnull().any()
```

Out[115]:

SUBDIVISION False YEAR False JAN True **FEB** True MAR True APR True MAY True JUN True JUL True **AUG** True SEP True OCT True NOV True DEC True **ANNUAL** True Jan-Feb True Mar-May True Jun-Sep True Oct-Dec True dtype: bool

In [116]:

```
df.fillna(method='ffill',inplace=True)
```

In [117]:

```
df.isnull().sum()
```

Out[117]:

SUBDIVISION 0 YEAR 0 0 JAN **FEB** 0 0 MAR **APR** 0 MAY 0 JUN 0 0 JUL **AUG** 0 0 SEP 0 OCT 0 NOV 0 DEC 0 **ANNUAL** 0 Jan-Feb Mar-May 0 0 Jun-Sep Oct-Dec 0

dtype: int64

In [118]:

df.describe()

Out[118]:

	YEAR	JAN	FEB	MAR	APR	MAY	
count	4116.000000	4116.000000	4116.000000	4116.000000	4116.000000	4116.000000	4116.0
mean	1958.218659	18.957240	21.823251	27.415379	43.160641	85.788994	230.5
std	33.140898	33.576192	35.922602	47.045473	67.816588	123.220150	234.89
min	1901.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.40
25%	1930.000000	0.600000	0.600000	1.000000	3.000000	8.600000	70.4 ⁻
50%	1958.000000	6.000000	6.700000	7.900000	15.700000	36.700000	138.9
75%	1987.000000	22.200000	26.800000	31.400000	50.125000	97.400000	306.1
max	2015.000000	583.700000	403.500000	605.600000	595.100000	1168.600000	1609.9

In [119]:

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4116 entries, 0 to 4115
Data columns (total 19 columns):

#	Column	Non-Null C	ount	Dtype
0	SUBDIVISION	4116 non-n	ull	object
1	YEAR	4116 non-n	ull	int64
2	JAN	4116 non-n	ull	float64
3	FEB	4116 non-n	ull	float64
4	MAR	4116 non-n	ull	float64
5	APR	4116 non-n	ull	float64
6	MAY	4116 non-n	ull	float64
7	JUN	4116 non-n	ull	float64
8	JUL	4116 non-n	ull	float64
9	AUG	4116 non-n	ull	float64
10	SEP	4116 non-n	ull	float64
11	OCT	4116 non-n	ull	float64
12	NOV	4116 non-n	ull	float64
13	DEC	4116 non-n	ull	float64
14	ANNUAL	4116 non-n	ull	float64
15	Jan-Feb	4116 non-n	ull	float64
16	Mar-May	4116 non-n	ull	float64
17	Jun-Sep	4116 non-n	ull	float64
18	Oct-Dec	4116 non-n	ull	float64
	67 164/4		. .	

dtypes: float64(17), int64(1), object(1)

memory usage: 611.1+ KB

```
In [120]:
df.columns
Out[120]:
Index(['SUBDIVISION', 'YEAR', 'JAN', 'FEB', 'MAR', 'APR', 'MAY', 'JUN', 'J
UL',
       'AUG', 'SEP', 'OCT', 'NOV', 'DEC', 'ANNUAL', 'Jan-Feb', 'Mar-May',
       'Jun-Sep', 'Oct-Dec'],
      dtype='object')
In [121]:
df.shape
Out[121]:
(4116, 19)
In [122]:
df['ANNUAL'].value_counts()
Out[122]:
ANNUAL
790.5
          4
770.3
          4
1836.2
          4
1024.6
          4
1926.5
          3
443.9
          1
689.0
          1
605.2
          1
509.7
          1
1642.9
Name: count, Length: 3712, dtype: int64
In [123]:
df['Jan-Feb'].value_counts()
Out[123]:
Jan-Feb
0.0
        238
0.1
         80
         52
0.2
0.3
         38
0.4
         32
23.3
          1
95.2
          1
76.9
          1
66.5
          1
69.3
          1
Name: count, Length: 1220, dtype: int64
```

```
In [124]:
```

```
df['Mar-May'].value_counts()
Out[124]:
Mar-May
         29
0.0
0.1
         13
0.3
         11
         11
8.3
11.5
         10
246.3
          1
248.1
          1
151.3
          1
249.5
          1
223.9
          1
Name: count, Length: 2262, dtype: int64
In [125]:
df['Jun-Sep'].value_counts()
Out[125]:
Jun-Sep
434.3
          4
334.8
          4
573.8
          4
613.3
          4
1082.3
          3
          . .
301.6
          1
380.9
          1
409.3
          1
229.4
          1
958.5
          1
Name: count, Length: 3683, dtype: int64
In [126]:
df['Oct-Dec'].value_counts()
Out[126]:
Oct-Dec
0.0
         16
         15
0.1
0.5
         13
0.6
         12
         11
0.7
191.5
          1
124.5
          1
          1
139.1
41.5
          1
555.4
Name: count, Length: 2389, dtype: int64
```

EXPLORATARY DATA ANALYSIS:-

In [127]:

```
df=df[['JAN','FEB','MAR','APR','DEC']]
sns.heatmap(df.corr(),annot=True)
plt.show()
```


In [128]:

```
df.columns
```

Out[128]:

```
Index(['JAN', 'FEB', 'MAR', 'APR', 'DEC'], dtype='object')
```

In [129]:

```
x=df[["FEB"]]
y=df["JAN"]
```

LINEAR REGRESSION:-

In [130]:

```
from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test=train_test_split(x,y,test_size=0.33,random_state=42)
```

In [131]:

```
from sklearn.linear_model import LinearRegression
reg=LinearRegression()
reg.fit(X_train,y_train)
print(reg.intercept_)
coeff_=pd.DataFrame(reg.coef_,x.columns,columns=['coefficient'])
coeff_
```

9.650666612303553

Out[131]:

coefficient

FEB 0.442278

In [132]:

```
score=reg.score(X_test,y_test)
print(score)
```

0.1793580786264921

In [133]:

```
predictions=reg.predict(X_test)
```

In [134]:

plt.scatter(y_test,predictions)

Out[134]:

<matplotlib.collections.PathCollection at 0x2230ea20b50>

In [135]:

```
df500=df[:][:500]
sns.lmplot(x="FEB",y="JAN",order=2,ci=None,data=df500)
plt.show()
```


In [136]:

```
X_train,X_test,y_train,y_test=train_test_split(x,y,test_size=0.33)
reg.fit(X_train,y_train)
reg.fit(X_test,y_test)
```

Out[136]:

```
LinearRegression
LinearRegression()
```

In [137]:

```
y_pred=reg.predict(X_test)
plt.scatter(X_test,y_test,color='black')
plt.plot(X_test,y_pred,color='red')
plt.show()
```


In [138]:

```
from sklearn.linear_model import LinearRegression
from sklearn.metrics import r2_score
model=LinearRegression()
model.fit(X_train,y_train)
y_pred=model.predict(X_test)
r2=r2_score(y_test,y_pred)
print("R2 Score:",r2)
```

R2 Score: 0.12531627895298036

RIDGE MODEL:-

In [139]:

```
from sklearn.linear_model import Lasso,Ridge
from sklearn.preprocessing import StandardScaler
```

In [140]:

```
features= df.columns[0:5]
target= df.columns[-5]
```

In [141]:

```
x=np.array(df['JAN']).reshape(-1,1)
y=np.array(df['FEB']).reshape(-1,2)
```

In [142]:

```
x= df[features].values
y= df[target].values
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3,random_state=17)
```

In [143]:

```
ridgeReg=Ridge(alpha=10)
ridgeReg.fit(x_train,y_train)
train_score_ridge=ridgeReg.score(x_train,y_train)
test_score_ridge=ridgeReg.score(x_test,y_test)
```

In [144]:

```
print("\n Ridge Model:\n")
print("the train score for ridge model is{}".format(train_score_ridge))
print("the test score for ridge model is{}".format(test_score_ridge))
```

Ridge Model:

the train score for ridge model is0.9999999999874192 the test score for ridge model is0.9999999998833

In [145]:

```
lr=LinearRegression()
```

In [146]:

```
plt.figure(figsize = (10, 10))
plt.plot(features,ridgeReg.coef_,alpha=0.7,linestyle='none',marker='*',markersize=5,colo
plt.plot(features,alpha=0.4,linestyle='none',marker='o',markersize=7,color='green',label
plt.xticks(rotation = 90)
plt.legend()
plt.show()
```


LASSO MODEL:-

In [147]:

```
print("\n Lasso Model:\n")
lasso=Lasso(alpha=10)
lasso.fit(x_train,y_train)
train_score_ls=lasso.score(x_train,y_train)
test_score_ls=lasso.score(x_test,y_test)
print("The train score for ls model is {}".format(train_score_ls))
print("The test score for ls model is{}".format(test_score_ls))
```

Lasso Model:

The train score for ls model is 0.9999207747038827 The test score for ls model is 0.9999206791315255

In [148]:

```
pd.Series(lasso.coef_,features).sort_values(ascending=True).plot(kind="bar")
```

Out[148]:

<Axes: >

In [149]:

```
from sklearn.linear_model import LassoCV
lasso_cv=LassoCV(alphas=[0.0001,0.001,0.01,1,10],random_state=0).fit(x_train,y_train)
print(lasso_cv.score(x_train,y_train))
print(lasso_cv.score(x_test,y_test))
```

- 0.999999999999921
- 0.999999999999921

In [150]:

```
plt.figure(figsize= (10,10))
plt.plot(features,ridgeReg.coef_,alpha=0.7,linestyle='none',marker="*",markersize=5,colo
plt.plot(lasso_cv.coef_,alpha=0.5,linestyle='none',marker='d',markersize=6,color='blue',
plt.plot(features,alpha=0.4,linestyle='none',marker='o',markersize=7,color="green",label
plt.xticks(rotation = 90)
plt.xticks(rotation = 90)
plt.legend()
plt.show()
```


ELASTIC NET:-

In [151]:

```
from sklearn.linear_model import ElasticNet
eln=ElasticNet()
eln.fit(x,y)
print(eln.coef_)
print(eln.intercept_)
print(eln.score(x,y))
```

```
[9.99098574e-01 0.00000000e+00 3.02728910e-05 0.00000000e+00 0.00000000e+00]
0.016258606966612632
0.9999992160905338
```

In [155]:

```
y_pred_elastic = eln.predict(x_train)
mean_squared_error=np.mean((y_pred_elastic - y_train)**2)
print(mean_squared_error)
```

0.0008816302333951303

CONCLUSION:-

In []:

```
THE SCORE OF LINEAR REGRESSION IS :- 0.1793580786264921

THE SCORE OF RIDGE MODEL IS :- 0.9999999998833

THE SCORE OF LASSO MODEL IS :- 0.99999999999992

THE SCORE OF ELASTIC NET IS :- 0.9999992160905338

*AMONG ALL MODELS LASSO YEILD HIGHEST ACCURACY.SO,WE PREFER LASSO MODEL FOR THIS DATA S
```