In the claims:

1. (original) A compound represented by formula I:

$$R^{40}$$
 R^{40}
 R^{60}
 R^{60}

wherein,

n is 1-4;

R represents independently for each occurrence H, alkyl, aryl, - CH_2 -aryl, -C(O)-alkyl, -C(O)-aryl, or - $Si(alkyl)_3$;

 R^1 and R^2 are independently H, -CH₂-aryl, -C(O)-alkyl, -C(O)-aryl, -Si(alkyl)₃; or R^1 and R^2 taken together are C(CH₃)₂, P(O)OH, or P(O)OR⁵;

 R^3 is amino, $-N_3$, or $-NH_3X$;

 R^4 represents independently for each occurrence H, alkyl, aryl, -CH₂-aryl, -C(O)-alkyl, -C(O)-aryl, -Si(alkyl)₃, or -P(O)(OR⁵)₂;

R⁵ represents independently for each occurrence H, Li⁺, Li⁺, Na⁺, K⁺, Rb⁺, Cs⁺, aryl, or an optionally substituted alkyl group; and

X is a halogen, alkyl carboxylate, or aryl carboxylate.

- 2. **(original)** The compound of claim 1, wherein n is 1, 2, or 3.
- 3. **(original)** The compound of claim 1, wherein n is 3.

- 4. **(original)** The compound of claim 1, wherein R is H.
- 5. (original) The compound of claim 1, wherein R^1 and R^2 taken together are $P(O)OR^5$.
- 6. (original) The compound of claim 1, wherein R^3 is N_3 .
- 7. (original) The compound of claim 1, wherein R^3 is -NH₃X.
- 8. **(original)** The compound of claim 1, wherein R⁴ represents independently for each occurrence H, -CH₂Ph, or -Si(alkyl)₃;
- 9. **(original)** The compound of claim 1, wherein R⁴ represents independently for each occurrence H, -CH₂Ph, -or P(O)OR⁵; and R⁵ is an optionally substituted alkyl group.
- 10. **(original)** The compound of claim 1, wherein said compound of formula I is selected from the group consisting of:

11. (original) A compound represented by formula II:

wherein,

n is 1-4;

R represents independently for each occurrence H, alkyl, aryl, -CH₂-aryl, -C(O)-alkyl, -C(O)-aryl, or -Si(alkyl)₃;

 R^1 is $-(CH_2)_mCH=CH_2$ or trichloroacetimidate; and m is 1-6.

- 12. **(original)** The compound of claim 11, wherein n is 2 or 3.
- 13. **(original)** The compound of claim 11, wherein n is 3.
- 14. **(original)** The compound of claim 11, wherein m is 3.
- 15. (**original**) The compound of claim 11, wherein R represents independently for each occurrence -CH₂-aryl or -Si(alkyl)₃.
- 16. (**original**) The compound of claim 11, wherein R represents independently for each occurrence benzyl or -Si(iPr)₃.
- 17. **(original)** The compound of claim 11, wherein R¹ is trichloroacetimidate and R represents independently for each occurrence benzyl or -Si(iPr)₃. and
- 18. **(original)** The compound of claim 11, wherein said compound of formula II is selected from the group consisting of:

19. **(original)** A method of preparing glycosylphosphatidylinositol glycans as depicted in Scheme 5:

Scheme 5

wherein,

R represents independently for each occurrence H, alkyl, aryl, -CH₂-aryl, -C(O)-alkyl, -C(O)-aryl, or -Si(alkyl)₃;

 R^1 and R^2 are independently H, -CH₂-aryl, -C(O)-alkyl, -C(O)-aryl, -Si(alkyl)₃; or R^1 and R^2 taken together are C(CH₃)₂, P(O)OH, or P(O)OR⁵;

 R^3 is amino, -N₃, or -NH₃X;

R⁵ represents independently for each occurrence H, Li⁺, Li⁺, Na⁺, K⁺, Rb⁺, Cs⁺, aryl, or an optionally substituted alkyl group;

R⁶ is alkyl or aryl;

 R^7 is alkyl, aryl, -CH₂-aryl, -C(O)-alkyl, -C(O)-aryl, or -Si(alkyl)₃; and

X is a halogen, alkyl carboxylate, or aryl carboxylate.

- 20. **(original)** The method of claim 19, wherein R is -CH₂-aryl.
- 21. (original) The method of claim 19, wherein R^1 and R^2 taken together are $C(CH_3)_2$.
- 22. (original) The method of claim 19, wherein R^3 is $-N_3$.
- 23. **(original)** The method of claim 19, wherein R⁶ is alkyl.
- 24. (original) The method of claim 19, wherein R^7 is -C(O)-alkyl.
- 25. (original) The method of claim 19, wherein R is benzyl, R^1 and R^2 taken together are $C(CH_3)_2$, and R^3 is $-N_3$.
- 26. (**original**) The method of claim 19, wherein R is benzyl, R^1 and R^2 taken together are $C(CH_3)_2$, R^3 is $-N_3$, and R^6 is ethyl.
- 27. **(original)** A method of preparing glycosylphosphatidylinositol glycans, comprising the steps of:

binding a mannopyranoside to a solid support to provide a first substrate, reacting said first substrate with a mannopyranose trichloroacetimidate to give a disaccharide bound to said solid support, reacting said disaccharide with a mannopyranose trichloroacetimidate to give a triisaccharide bound to said solid support, reacting said trisaccharide with a mannopyranose trichloroacetimidate to give a tetrasaccharide bound to said solid support, and cleaving said tetrasaccharide from said solid support.

- 28. **(original)** The method of claim 27, wherein said mannopyranoside is bound to said solid support through a glycosidic linkage.
- 29. **(original)** The method of claim 27, wherein said tetrasaccharide is cleaved from said solid support using Grubbs' catalyst.
- 30. **(original)** The method of claim 27, wherein said tetrasaccharide is represented by formula **VI**:

VI