CHAPITRE

46

DIAGONALISATION

46.1 VECTEURS PROPRES ET VALEURS PROPRES D'UN ENDOMORPHISME

Définition 1

Soient E un espace vectoriel sur un corps \mathbb{K} , u un endomorphisme de E.

Soit λ ∈ K. On dit que λ est une valeur propre de u si l'endomorphisme u − λ Id_E n'est pas injectif. Dans ce cas, le noyau de u − λ Id_E est appelé sous-espace propre de u relatif à λ. On note

$$E_{\lambda}(u) = \ker \left(u - \lambda \operatorname{Id}_E \right) = \left\{ \; x \in E \; | \; u(x) = \lambda x \; \right\}.$$

 On dit qu'un vecteur x ≠ 0_E de E est un vecteur propre de u si u(x) est colinéaire à x, c'est-à-dire

$$\exists \lambda \in \mathbb{K}, u(x) = \lambda x.$$

On dit que x est un vecteur propre de u associé à la valeur propre λ .

• L'ensemble des valeurs propres d'un endomorphisme u s'appelle le **spectre** de u et se note Sp(u).

Lorsqu'il n'y a pas d'ambiguïté, on notera $E_{\lambda} = \ker (u - \lambda \operatorname{Id}_{E})$.

Remarque

Soit $u \in \mathcal{L}(E)$ et λ une valeur propre de u. Alors, E_{λ} est stable par u:

$$u(E_{\lambda}) \subset E_{\lambda}$$
.

De plus,

$$E_0=\ker(u).$$

et si $\lambda \neq 0$,

$$E_{\lambda} \subset \operatorname{Im}(f)$$
.

Exemples 2

Soit E un \mathbb{K} -espace vectoriel.

1. Une homothétie n'a qu'une valeur propre, son rapport α , et on a

$$E=E_{\alpha}$$
.

2. Un projecteur $p \in \mathcal{L}(E)$ a deux valeurs propres, 1 et 0, et on a

$$E = E_1 \oplus E_0$$
.

3. Une symétrie $s \in \mathcal{L}(E)$ a deux valeurs propres, 1 et -1, et on a

$$E=E_1\oplus E_{-1}.$$

Exemple 3

Soit $E = \mathscr{C}^{\infty}(\mathbb{R}, \mathbb{R})$ et D: $E \to E$ l'endomorphisme de dérivation. Pour $\alpha \in \mathbb{R}$, on $f \mapsto f'$

pose $f_{\alpha}: \mathbb{R} \to \mathbb{R}$. Alors, pour tout réel x, on a $x \mapsto \mathrm{e}^{\alpha x}$

$$(D f_{\alpha})(x) = f'_{\alpha}(x) = \alpha e^{\alpha x} = \alpha f_{\alpha}(x).$$

Autrement dit, D $f_{\alpha} = \alpha f_{\alpha}$. Tout réel α est donc valeur propre de D. De plus le sous-espace propre de D relatif à la valeur propre α est

$$\begin{split} E_{\alpha} &= \{ \ f \in E \mid \mathsf{D} \ f = \alpha f \ \} \\ &= \left\{ \ f \in E \mid f' = \alpha f \ \right\} \\ &= \left\{ \ f \ : \begin{array}{c} \mathbb{R} & \to & \mathbb{R} \\ x & \mapsto & \lambda \, \mathrm{e}^{\alpha x} \end{array} \right| \ \lambda \in \mathbb{R} \ \right\}, \end{split}$$

c'est-à-dire $E_{\alpha} = \text{Vect} \{ f_{\alpha} \}.$

Théorème 4

Soit u un endomorphisme de E, et (v_1, \ldots, v_p) une famille finie de vecteurs propres de u associés respectivement à des valeurs propres $(\lambda_1, \ldots, \lambda_p)$ deux à deux distinctes. Alors la famille (v_1, \ldots, v_p) est libre.

Corollaire 5

Le spectre d'un endomorphisme d'un espace vectoriel de dimension finie n est fini, et de cardinal au plus n.

46.2 POLYNÔME CARACTÉRISTIQUE

Dans tout ce paragraphe, on étudie un endomorphisme u d'un \mathbb{K} -espace vectoriel E de dimension finie $n \geq 1$. On désigne par $\mathcal{B} = (e_1, \dots, e_n)$ une base de E et $A = (a_{i,j})$ la matrice de u dans la base \mathcal{B} .

§1 Polynôme caractéristique d'un endomorphisme

Proposition 6

Soit u un endomorphisme d'un espace vectoriel E de dimension finie $n \ge 1$. Un scalaire λ est valeur propre de u si, et seulement si

$$\det\left(\lambda\operatorname{Id}_{E}-u\right)=0.$$

Définition 7

Soit u un endomorphisme d'un espace vectoriel E de dimension finie $n \ge 1$. On appelle **polynôme caractéristique de** u le polynôme χ_u défini par la relation

$$\chi_u(\lambda) = \det \left(\lambda \operatorname{Id}_E - u \right).$$

L'ordre de multiplicité d'une racine λ de χ_u est dit **multiplicité de la valeur propre** λ de u.

En dimension finie, les valeurs propres de *u* sont exactement les racines de son polynôme caractéristique.

§2 Polynôme caractéristique d'une matrice

Définition 8

Soit A une matrice de $\mathcal{M}_n(\mathbb{K})$. On appelle **polynôme caractéristique de** A le polynôme χ_A défini par la relation

$$\chi_A(\lambda) = \det(\lambda I_n - A).$$

Proposition 9

Les polynômes caractéristiques de deux matrices semblables sont égaux.

Proposition 10

Soit u un endomorphisme d'un espace vectoriel E de dimension finie $n \ge 1$. Le polynôme caractéristique de u est le polynôme caractéristique de n'importe laquelle de ses matrices.

Définition 11

Par extension, les valeurs propres, vecteurs propres, sous-espaces propres d'une matrice $A \in \mathcal{M}_n(\mathbb{K})$ sont les valeurs propres, les vecteurs propres, les sous-espaces propres de l'endomorphisme de $\mathcal{M}_{n,1}(\mathbb{K})$ qui est canoniquement associé à A.

Exemple 12

Soit E un \mathbb{K} -espace vectoriel de dimension 2 muni d'une base $\mathcal{B} = (e_1, e_2)$. On considère $u \in \mathcal{L}(E)$ l'endomorphisme dont la matrice dans la base \mathcal{B} est

$$A = \begin{pmatrix} 7 & -15 \\ 2 & -4 \end{pmatrix}.$$

Alors

$$\lambda I_2 - A = \lambda \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} - \begin{pmatrix} 7 & -15 \\ 2 & -4 \end{pmatrix} = \begin{pmatrix} \lambda - 7 & 15 \\ -2 & \lambda + 4 \end{pmatrix},$$

et son polynôme caractéristique est

$$\det(\lambda I_2 - A) = (\lambda - 7)(\lambda + 4) + 30 = \lambda^2 - 3\lambda + 2.$$

Ainsi, les valeurs propres de A (et de u) sont les solutions de $\lambda^2 - 3\lambda + 2 = 0$, c'est-à-dire $\lambda = 1$ et $\lambda = 2$.

Pour trouver les vecteurs propres associées à la valeur propre 1, on détermine les solutions du système $(A - I_2)x = 0$, on a

$$A - I_2 = \begin{pmatrix} 6 & -15 \\ 2 & -5 \end{pmatrix} \underset{L}{\sim} \cdots \underset{L}{\sim} \begin{pmatrix} 1 & -5/2 \\ 0 & 0 \end{pmatrix}.$$

Ainsi,

$$E_1(A) = \operatorname{Vect} \left\{ \begin{pmatrix} 5 \\ 2 \end{pmatrix} \right\} \quad \text{ et } \quad E_1(u) = \operatorname{Vect} \left\{ 5e_1 + 2e_2 \right\}.$$

De manière analogue, on trouve

$$E_2(A) = \operatorname{Vect} \left\{ \begin{pmatrix} 3 \\ 1 \end{pmatrix} \right\}$$
 et $E_2(u) = \operatorname{Vect} \left\{ 3e_1 + e_2 \right\}$.

Test 13

Déterminer les valeurs propres et les sous-espaces propres de la matrice

$$A = \begin{pmatrix} 4 & 0 & 4 \\ 0 & 4 & 4 \\ 4 & 4 & 8 \end{pmatrix}.$$

§3 Multiplicité

Définition 14

Soit u un endomorphisme d'un espace vectoriel E de dimension finie $n \ge 1$. La **multiplicité d'une valeur propre** λ de u est l'ordre de multiplicité de la racine λ de χ_u .

Théorème 15

Soit u un endomorphisme d'un espace vectoriel E de dimension finie $n \ge 1$. Soit λ une valeur propre de u d'ordre de multiplicité k et E_{λ} le sous-espace propre associé. Alors

$$1 \leq \dim E_{\lambda} \leq k$$
.

Théorème 16

Soit u un endomorphisme d'un espace vectoriel E de dimension finie $n \ge 1$. On suppose χ_u scindé et on note note $\lambda_1, \ldots, \lambda_n$ ses racines listées avec leur multiplicité. Alors

- 1. Le déterminant de u est égal au produit de ses valeurs propres.
- 2. La trace de u est égal à la somme de ses valeurs propres.

Rappel

Si $\mathbb{K} = \mathbb{C}$, χ_u est toujours scindé.

Exemple 17

On considère la matrice

$$A = \begin{pmatrix} -3 & -1 & -2 \\ 1 & -1 & 1 \\ 1 & 1 & 0 \end{pmatrix}.$$

Déterminer les valeurs propres et les sous-espaces propres de la matrice sachant que -1 l'une des valeurs propres.

46.3 DIAGONALISATION EN DIMENSION FINIE

Dans cette section, E est un \mathbb{K} -espace vectoriel de dimension finie $n \ge 1$.

§1 Diagonalisation

Définition 18

- Un endomorphisme u de E est **diagonalisable** s'il existe une base de E formée de vecteurs propres de u. Dans ce cas, la matrice de u dans cette base est diagonale.
- Une matrice carrée A est diagonalisable si elle est semblable à une matrice diagonale, autrement dit, s'il existe une matrice diagonale D de M_n(K) et une matrice P ∈ GL_n(K) telle que P⁻¹AP = D.

Exemple 19

On reprend l'exemple de la matrice

$$A = \begin{pmatrix} 7 & -15 \\ 2 & -4 \end{pmatrix}.$$

Cette matrice est diagonalisable, car si l'on considère la matrice

$$P = \begin{pmatrix} 5 & 3 \\ 2 & 1 \end{pmatrix},$$

alors P est inversible et

$$P^{-1} = \begin{pmatrix} -1 & 3 \\ 2 & -5 \end{pmatrix} \quad \text{et} \quad P^{-1}AP = D = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}.$$

Test 20

Vérifier les calculs précédents.

Un endomorphisme n'est pas nécessairement diagonalisable. Par exemple, un endomorphisme nilpotent non nul n'est jamais diagonalisable : en effet une matrice diagonale nilpotente est nécessairement nulle !

Exemple 21

La matrice

$$A = \begin{pmatrix} 4 & 1 \\ -1 & 2 \end{pmatrix}$$

n'est pas diagonalisable.

§2 Cas des valeurs propres simples

- **Théorème 22** Soit u endomorphisme de E. Si u possède $n = \dim(E)$ valeurs propres distinctes, alors u est diagonalisable.
- **Théorème 23** Soit $A \in \mathcal{M}_n(\mathbb{K})$. Si A possède n valeurs propres distinctes, alors A est diagonalisable.
- Exemple 24 La matrice (3, 3) $A = \begin{pmatrix} 4 & 0 & 4 \\ 0 & 4 & 4 \\ 4 & 4 & 8 \end{pmatrix}$

a trois valeurs propres, 0, 4 et 12 : elle est donc diagonalisable.

- Test 25 Diagonaliser la matrice $A = \begin{pmatrix} 4 & 0 & 4 \\ 0 & 4 & 4 \\ 4 & 4 & 8 \end{pmatrix}.$
- Exemple 26 La matrice $A=\begin{pmatrix}0&-1\\-1&0\end{pmatrix}$ n'est pas diagonalisable dans $\mathcal{M}_2(\mathbb{R})$ mais est diagonalisable dans $\mathcal{M}_2(\mathbb{C})$.

§3 Conditions nécessaires et suffisantes de diagonalisabilité

Lemme 27 Soit u un endomorphisme de E, et $\lambda_1, \dots, \lambda_p$ des valeurs propres de u deux à deux distinctes. Alors,

$$\begin{aligned} \forall (x_1, x_2, \dots, x_p) \in E_{\lambda_1} \times E_{\lambda_2} \times \dots E_{\lambda_p}, \\ x_1 + x_2 + \dots + x_p &= 0_E \implies x_1 = 0_E, x_2 = 0_E, \dots, x_p = 0_E. \end{aligned}$$

On dira que les sous-espaces propres de u associés à des valeurs propres deux à deux distinctes sont en **somme directe**.

- Théorème 28 Soit u un endomorphisme de E. L'endomorphisme u est diagonalisable si, et seulement si
 - le polynôme caractéristique de u est scindé sur K,
 - pour toute valeur propre de u, sa multiplicité est égale à la dimension du sous-espace propre associé.

Corollaire 29 Soit u un endomorphisme de E. L'endomorphisme u est diagonalisable si, et seulement si

$$\sum_{\lambda \in \operatorname{Sp}(u)} \dim \left(E_{\lambda}(u) \right) = \dim(E).$$

Corollaire 30 Soit u un endomorphisme de E et $E_{\lambda_1}, \dots, E_{\lambda_p}$ les sous-espaces propres de u. L'endomorphisme u est diagonalisable si, et seulement si

$$E_{\lambda_1} + \dots + E_{\lambda_p} = \sum_{\lambda \in \mathrm{Sp}(u)} \left(E_{\lambda}(u) \right) = E.$$

Exemple 31 La matrice

$$A = \begin{pmatrix} 3 & -1 & 1 \\ 0 & 2 & 0 \\ 1 & -1 & 3 \end{pmatrix}$$

n'a que deux valeurs propres, 2 et 4, mais est diagonalisable.

Exemple 32 La matrice

$$A = \begin{pmatrix} -3 & -1 & -2 \\ 1 & -1 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$

n'a que deux valeurs propres, -1 et -2, mais n'est pas diagonalisable.

CHAPITRE

46

COMPLÉMENTS

46.4 Puissances de matrices

Exemple 33

$$A = \begin{pmatrix} 7 & -15 \\ 2 & -4 \end{pmatrix} \qquad P = \begin{pmatrix} 5 & 3 \\ 2 & 1 \end{pmatrix} \qquad P^{-1}AP = D = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}.$$

Alors

$$A^{n} = PD^{n}P^{-1} = \begin{pmatrix} 5 & 3 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 2^{n} \end{pmatrix} \begin{pmatrix} -1 & 3 \\ 2 & -5 \end{pmatrix}$$
$$= \begin{pmatrix} -5 + 6 \cdot 2^{n} & 15 - 15 \cdot 2^{n} \\ -2 + 2 \cdot 2^{n} & 6 - 5 \cdot 2^{n} \end{pmatrix}.$$

46.5 SUITES RÉCURRENTES

Exemple 34

Soit (x_n) et (y_n) deux suites telles que $x_0 = 1$, $y_0 = 1$ et pour tout $n \in \mathbb{N}$,

$$x_{n+1} = 7x_n - 15y_n,$$

$$y_{n+1} = 2x_n - 4y_n.$$

Alors, pour tout $n \in \mathbb{N}$,

$$x_n = 10 - 9 \cdot 2^n,$$
 $y_n = 4 - 3 \cdot 2^n.$

46.6 ÉQUATIONS DIFFÉRENTIELLES

Exemple 35

On considère le système différentiel

$$y'_1(t) = 7y_1(t) - 15y_2(t)$$

$$y'_2(t) = 2y_1(t) - 4y_2(t)$$

d'inconnues $y_1, y_2 : \mathbb{R} \to \mathbb{R}$. Alors...

46.7 THÉORÈME DE CAYLEY-HAMILTON

Théorème 36

Soient u un endomorphisme d'un espace vectoriel E de dimension finie $n \ge 1$.

$$\chi_u(X) = \det (X \operatorname{Id}_E - u) = \sum_{k=0}^n \alpha_k X^k$$

son polynôme caractéristique. Alors $\chi_u(u) = \sum_{k=0}^n \alpha_k u^k$ est l'endomorphisme nul de E.

Théorème 37

Soient M une matrice carrée d'ordre n et

$$\chi_M(X) = \det \left(X I_n - M \right) = \sum_{k=0}^n \alpha_k X^k$$

son polynôme caractéristique. Alors $\chi_M(M) = \sum_{k=0}^n \alpha_k M^k$ est la matrice nulle de $\mathcal{M}_n(\mathbb{K})$.

Démonstration. Non exigible.

Désignons par C(X) le polynôme à coefficients dans $\mathcal{M}_n(\mathbb{K})$ tel que pour $x \in \mathbb{K}$, C(x) est la transposée de la comatrice de la matrice $xI_n - M$. On a donc, pour tout $x \in \mathbb{K}$,

$$(xI_n - M) C(x) = (\det(xI_n - M) I_n = \chi_M(x)I_n.$$

Pour tout entier $k \ge 1$, on a

$$X^{k}I_{n} - M^{k} = (XI_{n} - M)(X^{k-1}I_{n} + X^{k-2}M + \dots + M^{k-1}),$$

et puisque $\chi_M(X)I_n=\sum_{k=0}^n\alpha_kX^kI_n$ et $\chi_M(M)=\sum_{k=0}^n\alpha_kM^k$, on obtient après combinaison linéaire

$$\chi_M(X)I_n - \chi_M(M) = (XI_n - M)Q(X)$$

où Q(X) est un polynôme à coefficients dans $\mathcal{M}_n(\mathbb{K})$. On en déduit

$$\chi_M(M) = \left(XI_n - M\right)\left(C(X) - Q(X)\right) = \left(XI_n - M\right)\left(\sum_{k=0}^n X^k B_k\right) \quad \text{avec} \quad B_k \in \mathcal{M}_n(\mathbb{K}).$$

Supposons que l'une des matrices B_k soit non nulle. On pose alors $r = \max\{k \in [1, n] \mid B_k \neq 0\}$, alors

$$\chi_M(M) = X^{r+1}B_r + \sum_{k=0}^{r-1} X^{k+1}B_k - \sum_{k=0}^r X^k M B_k.$$

Ainsi, parmi les coefficients de la matrice $\chi_M(M)$ figurerait au moins un terme en X^{r+1} , ce qui est contradictoire avec $\chi_M(M) \in \mathcal{M}_n(\mathbb{K})$. Les matrices B_k sont donc toutes nulles et $\chi_M(M) = 0$.

Exemple 38

Soit
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_2(\mathbb{K})$$
, alors

$$\chi_A(X) = \begin{vmatrix} X - a & -b \\ -c & X - d \end{vmatrix} = (X - a)(X - d) - bc = X^2 - (a + d)X + ad - bc$$

$$\chi_A(X) = X^2 - \text{Tr}(A)X + \det(A).$$

D'après le théorème de Cayley-Hamilton, on en déduit

$$A^2 = \text{Tr}(A)A - \det(A)I_2.$$