老產鄉電光灣

学生实验实习报告册

学年学期:	2020 -2021 学年 口春口秋学期					
课程名称:	信号处理实验					
学生学院:	通信与信息工程学院					
专业班级:	01011803					
学生学号:	2018210207					
学生姓名:	胡洪					
联系电话:	15802310335					

重庆邮电大学教务处制

课程名称	信号处理实验	课程编号		
实验地点	YF304	实验时间	第七周周二	
校外指导教师		校内指导教师	邵凯	
实验名称	系统响应及系统稳定性			
评阅人签字		成绩		

一、实验目的

学会运用 MATLAB 求解离散时间系统的零状态响应

学会运用 MATLAB 求解离散时间系统的单位取样响应

学会运用 MATLAB 求解离散时间系统的卷积和

二、实验原理

2.1 离散时间系统的响应

离散时间 LTI 系统可用线性常系数差分方程来描述,即

$$\sum_{i=0}^{N} a_i y(n-i) = \sum_{j=0}^{N} b_j x(n-i)$$
 (2-1)

其中, $a_i(i=0,1,\dots,N)$ 和 $b_i(j=0,1,\dots,M)$ 为实常数。

MATLAB 中函数 filter 可对式(2-1)的差分方程在指定时间范围内的输入序列所产生的相应进行求解。函数 filter 的语句格式为

$$y=filter(b,a,x)$$
 (2-2)

其中, x 为输入的离散序列; y 为输出的离散序列; y 的长度与 x 的长度一样; b 与 a 分别为差分方程右端与左端的系数向量。

2.2 离散时间系统的单位取样响应

系统的单位取样响应定义为系统在 $\delta(n)$ 激励下系统的零状态响应,用h(n)表示。MATLAB求解单位取样响应可利用函数filter,并将激励设为单位抽样序列。

MATLAB 中另一种求单位取样响应的方法是利用控制系统工具箱提供的函数impz 来实现。impz 函数的常用语句格式为

$$impz(b,z,N) (2-3)$$

其中,参数 N 通常为正整数,代表计算单位取样响应的样值个数。

2.3 离散时间信号的卷积和运算

由于系统的零状态响应是激励与系统的单位取样响应的卷积,因此卷积运算在离散时间信号处理领域被广泛应用。离散时间信号的卷积定义为

$$y(n) = x(n) * h(n) = \sum_{m = -\infty}^{\infty} x(m)h(n - m)$$
 (2-4)

可见,离散时间信号的卷积运算是求和运算,因而常称为"卷积和"

MATLAB 求离散时间信号卷积和的命令为conv, 其语句格式为

$$y=conv(x,h) (2-5)$$

其中,x与 h表示离散时间信号值的向量;y为卷积结果。用MATLAB 进行卷积和运算时,无法实现无限的累加,只能计算时限信号的卷积。

对于给定函数的卷积和,我们应计算卷积结果的起始点及其长度。两个时限序列的卷积和长度 等于两个序列长度的和减1。

三、实验程序及结果分析

实验内容:

1. 试用 MATLAB 命令求解以下离散时间系统的单位取样响应,并判断系统的稳定性。

$$(1) 3y(n) + 4y(n-1) + y(n-2) = x(n) + x(n-1)$$

(2)
$$\frac{5}{2}y(n) + 6y(n-1) + 10y(n-2) = x(n)$$

2. 已知某系统的单位取样响应为 $h(n) = (\frac{7}{8})^n [u(n) - u(n-10)]$, 试用 MATLAB 求当激励信号为 x(n) = u(n) - u(n-5) 时,系统的零状态响应。

实验程序:

%%second class to do

%% define variable

```
a = [3, 4, 1];
b = [1, 1];
n=0:40;
a2=[2.5,6,10];
b2=[1,0];
%% a b use the filter to get system
subplot(2,1,1);
x=(n==0);
h=filter(b,a,x);
stem(n,h,'fill'),grid on
xlabel('n')
title('first system xiang ying');
figure(1);
%%a2 b2 second little question
subplot(2,1,2);
x2=(n==0);
h2=filter(b2,a2,x2);
stem(n,h2,'fill'),grid on
xlabel('n')
title('second system xiang ying');
```

```
%% use the conv to get static
nx = -2:5;
nh=-2:10;
ns=nx(1)+nh(1);
nf=nx (end) +nh (end);
xn=stepfun(nx, 0)-stepfun(nx, 5);
hn=((7/8).^nh).*(stepfun(nh,0)-stepfun(nh,10));
y=conv(xn,hn);
figure(2);
subplot(3,1,1);
stem(nx,xn);
xlabel('n')
ylabel('x(n)')
axis([-4,16,-1,3]);
subplot(3,1,2);
stem(nh,hn);
xlabel('n')
ylabel('h(n)')
subplot(3,1,3);
stem(ns:nf,y);
xlabel('n')
```


结果分析:利用离散时间系统的差分特性,利用递归方程,求得单位冲激序列的系数,最终求得单位取样响应并与结果对比,从而验证答案的正确性。

四、思考题

题目: matlab 的工具箱函数 conv,能用于计算两个有限长序列之间的卷积,但 conv 函数 假定这两个序列都从 n=0 开始。 试编写 M 文件计算 x(n) = [3,11,7,0,-1,4,2], $-3 \le n \le 3$ 和 h(n) = [2,3,0,-5,2,1], $-1 \le n \le 4$ 之间的卷积,并绘制 y(n)的波形图。

代码:

%%forth question make n forward

```
xn2=[3,11,7,0,-1,4,2];
x_n=0:6;
hn2=[2,3,0,-5,2,1];
h_n=0:5;
yn2=conv(xn2,hn2);
x_s=(x_n(1)-3+h_n(1)-1):(x_n(end)+h_n(end)-3-1);
figure(3);
stem(x_s,yn2);
xlabel('n')
ylabel('y(n)');
title('yn wave figure');

实验运行结果:
```


● 结果分析:

由 x(n)=[3,11,7,0,-1,4,2], h(n)=[2,3,0,-5,2,1], 线性卷积公式为

 $y(n)=x(n)*h(n)=\sum_{m=-\infty}^{\infty}x(m)h(n-m)$ 计算所得 g(n)=[6,31,47,6,-51,-5,41,18,-22,-3,8,2],可验

证其值正确,且满足g(n)序列的长度为x(n)和h(n)的长度和减1。
