- Pour montrer que f^{-1} est dérivable sur un intervalle J, on détermine l'intervalle I tel que J = f(I), puis on montre que f est dérivable sur I et de dérivée non nulle sur I.
- Pour montrer que f^{-1} est dérivable en un point y_0 , on détermine le réel x_0 tel que $y_0 = f(x_0)$, puis on montre que f est dérivable en x_0 et que $f'(x_0) \neq 0$.

Dans ce cas
$$(f^{-1})'(y_0) = \frac{1}{f'(x_0)}$$
.

*

Inégalité des accroissements finis

➤ **Théorème**: Soit f une fonction dérivable sur un intervalle I. S'il existe un nombre réel k tel que $|f'(x)| \le k$ sur I, alors pour tous réels x_1 et x_2 appartenant à I,

$$|f(x_1) - f(x_2)| \le k|x_1 - x_2|.$$

1.2. EXERCICES D'APPLICATION

Exercice 1

Soit les fonctions f, g, h, i et j définies par $f(x) = -3x^3 + 2x + 1$; $g(x) = \frac{x-1}{2-x}$; $h(x) = \frac{2x^2 - x - 6}{x-1}$; $i(x) = \sqrt{x^2 + 1} - 2x$; $j(x) = x - 2\sqrt{x - 1}$.

- 1. Pour chacune de ces fonctions, déterminer l'ensemble de définition, les limites aux bornes de l'ensemble de définition et en déduire les éventuelles asymptotes.
- 2. Montrer que la droite (d) d'équation y = 2x+1 est une asymptote oblique à C_h la courbe de h.
- 3. Etudier les branches infinies de C_i à ∞ et de C_j à + ∞ .

Exercice 2

Déterminer la limite de f en a dans les cas suivants

1)
$$f(x) = \frac{x^3 - 3x - 2}{2x^2 - x - 6}$$
, $a = 2$; 2) $f(x) = \frac{\sqrt{x + 5} - 2}{x + 1}$, $a = -1$;

3)
$$f(x) = \frac{\sin x}{x}$$
, $a = 0$; 4) $f(x) = \frac{x + \sin x + \sin 3x}{x(x^2 - 1)}$, $a = 0$;

$$5) f(x) = \frac{x}{2 + \cos^2 x}, a = +\infty.$$

Exercice 3

Soit les fonctions f et g définies par

$$f(x) = \begin{cases} x^2 + x + 1 & \text{si } x \le -2\\ \sqrt{7 - x} & \text{si } -2 < x \le 1\\ \frac{x^2 - 1}{x - 1} & \text{si } x > 1 \end{cases} \text{ et} \begin{cases} g(x) = \frac{x}{x - 1} \text{ si } x \le 0\\ g(x) = \frac{-1 + \cos 2x}{2x} \text{ si } x > 0 \end{cases}$$

- 1. a) Etudier la continuité et la dérivabilité de f aux points -2 et 1.
- b) Interpréter graphiquement le résultat de l'étude de la dérivabilité de f en -2.
- 2. Etudier la continuité et la dérivabilité de *g* sur son ensemble de définition.

Exercice 4

Soit la fonction f, $f(x) = \frac{1-\cos x}{x}$. Montrer qu'on peut prolonger f par continuité en 0; définir ce prolongement.

Exercice 5

Déterminer l'ensemble de dérivabilité, la fonction dérivée et le signe de la dérivée de chacune des fonctions suivantes.

1)
$$f(x) = x^3 + x^2 - 5x + 3$$
; 2) $g(x) = \frac{2x^2 - x - 1}{x^2 + x + 1}$; 3) $h(x) = (\frac{-2x + 1}{x - 1})^3$;

4)
$$i(x) = x-1 + \frac{4}{x+1}$$
; 5) $j(x) = \frac{x}{\sqrt{x^2 + 2x + 1}}$;

6)
$$k(x) = (1 + \cos 2x)\sin^2 x$$
; 7) $l(x) = \sqrt{|x^2 - 1|}$.

Exercice 6

Soit la fonction f définie par $f(x) = x^3 - 3x + 8$.

- 1. Déterminer l'image par f des intervalles [-3; -2],]-1;0] et $[1; +\infty[$.
- 2. Montrer que l'équation f(x) = 0 admet une unique solution α ; donner un encadrement de α à 10⁻¹ prés.
- 3. En déduire le signe de f(x).

Exercice 7

Soit la fonction f définie par $f(x) = \frac{2x-1}{x-3}$

- 1. Etudier les variations de f; soit g la restriction de f sur $]-\infty$; 3].
- 2. Montrer que g est une bijection de $]-\infty$; 3] vers un intervalle J à déterminer.
- 3. En déduire que g admet une bijection réciproque g^{-1} ; préciser son ensemble de définition et son tableau de variation.
- 4. Calculer g(0); montrer que g^{-1} est dérivable au point $\frac{1}{3}$ et calculer $(g^{-1})^{2}(\frac{1}{2})$.
- 5. Résoudre l'équation $g^{-1}(x) = 1$.
- 6. Déterminer l'expression explicite de g -1.