Mitchell T. Ong

Durand Building 496 Lomita Mall Stanford, CA 94305 650-723-4399 (work) 465 Stierlin Rd. Apt. #43 Mountain View, CA, 94043 217-220-0314 (mobile) mitchong@stanford.edu

EDUCATION

Aug. 2004 – Sept. 2010 University of Illinois at Urbana-Champaign Urbana, IL

Ph.D in Chemistry 3.96 GPA

• **Ph.D Advisor:** Todd J. Martínez

• Thesis: The Photochemical and Mechanochemical Ring Opening of Cyclobutene from First Principles

Sept. 1999 – Dec. 2003 University of California at Los Angeles Los Angeles, CA

B.S. in Chemistry (Computer Specialization)

3.508 GPA

• Undergraduate Advisor: Emily A. Carter

• Project: Energetics and Kinetics of Vacancy Diffusion in Shocked Aluminum

RESEARCH EXPERIENCE

Oct 2010 - Present Stanford University Stanford, CA

Postdoctoral Associate Department of Materials Science and Engineering

• Principle Investigator: Evan J. Reed

• Manipulation of graphene's properties for electronic and photonic applications

• *Ab initio* calculations to demonstrate engineered piezoelectricity in graphene through selective surface adsorption of atoms

Nov 2004 – May 2010 University of Illinois, Urbana-Champaign Urbana, IL

Research Assistant Department of Chemistry

- Collaborated with experimentalists to design and screen new mechanically-active polymers that show beneficial chemical properties in response to external stress
- Implemented *ab initio* steered molecular dynamics to simulate the effect of external forces
- Modeled the energetics and kinetics of mechanochemical reactions
- Interfaced our *ab initio* molecular dynamics program with the Columbus software package to study excited state dynamics at a high level of theory

Jan. 2004 – Jun. 2004 University of California, Los Angeles Los Angeles, CA

Research Assistant Department of Chemistry and Biochemistry

Modeled the kinetics of vacancy diffusion in aluminum with first principles quantum mechanics

TEACHING EXPERIENCE

Aug. 2006 University of Illinois, Urbana-Champaign Urbana, IL

Lab Assistant Materials Computation Center Summer School

Organized and helped students with lab exercises using the GAMESS electronic structure program

Aug. 2004 – Dec. 2005 University of Illinois, Urbana-Champaign Urbana, IL

Teaching Assistant Department of Chemistry

- Chem. 442 (Fall 2004, 2005) Undergraduate Quantum Mechanics
- Chem. 444 (Spring 2005) Undergraduate Statistical Mechanics and Thermodynamics
- Assisted students in understanding course material and conducted review sessions for exams

PUBLICATIONS

- M. T. Ong and E. J. Reed, Engineered Piezoelectricity in Graphene, ACS Nano, (2012).
- J. M. Lenhardt, J. W. Ogle, M. T. Ong, R. Choe, T. J. Martinez, S. L. Craig, Reactive Cross-Talk between Adjacent Tension-Trapped Transition States, Journal of the American Chemical Society, 133 (10), 3222-3225 (2011).

- J. M. Lenhardt, M. T. Ong, R. Choe, C. R. Evenhuis, T. J. Martínez, S. L. Craig, *Trapping a Diradical Transition State by Mechanochemical Polymer Extension*, Science, 329 (5995), 1057-1060 (2010).
- M. J. Kryger, M. T. Ong, S. A. Odom, N. R. Sottos, S. R. White, T. J. Martinez, J. S. Moore, *Masked Cyanoacrylates Unveiled by Mechanical Force*, Journal of the American Chemical Society, 132 (13), 4558-4559 (2010).
- D. A. Davis, A. Hamilton, J. Yang, L. D. Cremar, D. Van Gough, S. L. Potisek, M. T. Ong, P. V. Braun, T. J. Martínez, S. R. White, J. S. Moore, N. R. Sottos, Force-induced activation of covalent bonds in mechanoresponsive polymeric materials, Nature, 459, 68 72 (2009).
- M. T. Ong, J. Leiding, H. Tao, A. M. Virshup, T. J. Martínez, *First Principles Dynamics and Minimum Energy Pathways for Mechanochemical Ring Opening of Cyclobutene*, Journal of the American Chemical Society, 131 (18), 6377 6379 (2009).
- J. D. Coe, M. T. Ong, B. G. Levine, T. J. Martínez, *On the Extent and Connectivity of Conical Intersection Seams and the Effects of Three-State Intersections*, Journal of Physical Chemistry A, 112 (49), 12559 12567 (2008).
- G. Ho, M. T. Ong, K. J. Caspersen, E. A. Carter, *Energetics and kinetics of vacancy diffusion and aggregation in shocked aluminum via orbital-free density functional theory*, Physical Chemistry Chemical Physics, 9, 4951 4966 (2007).

ORAL PRESENTATIONS

- M. T. Ong, J. Leiding, H. Tao, A. M. Virshup, T. J. Martínez, Mechanochemical Ring Opening of Cyclobutene from First Principles Dynamics, International Conference on Self-Healing Materials (ICSHM), June 28 – July 1, 2009, Chicago, IL
- M. T. Ong, J. Leiding, H. Tao, A. M. Virshup, T. J. Martínez, Mechanochemical Ring Opening of Cyclobutene from First Principles Dynamics, Student Summer Seminar Series, June 25, 2009, Stanford, CA

POSTER PRESENTATIONS

- M. T. Ong, J. M. Lenhardt, C. R. Evenhuis, S. L. Craig and T. J. Martínez, *Mechanochemical Stereomutation of Gem-difluorocyclopropane from First Principles*, Gordon Research Conference: Atomic and Molecular Interactions, July 18 23, New London, NH
- M. T. Ong, J. M. Lenhardt, C. R. Evenhuis, S. L. Craig and T. J. Martínez, Mechanochemical Stereomutation of Gem-difluorocyclopropane from First Principles, Molecular Quantum Mechanics Conference, May 24 – 29, 2010, Berkeley, CA
- M. T. Ong, J. Leiding, H. Tao, A. M. Virshup, T. J. Martínez, Mechanochemical Ring Opening of Cyclobutene from First Principles Dynamics, American Conference on Theoretical Chemistry, July 19 – 24, 2008, Evanston, IL
- M. T. Ong, and T. J. Martínez, *Ab Initio Molecular Dynamics of the Photochemical Ring Opening of Cyclobutene*, Frontiers in Theoretical Chemistry Symposium, May 31, 2005, Urbana, IL
- M. T. Ong, and E. A. Carter, Vacancy Formation and Diffusion in Aluminum, Materials Creation Training Program Symposium, November 14, 2003, Los Angeles, CA
- M. T. Ong, and E. A. Carter, *Vacancy Formation and Diffusion in Aluminum*, Science, Engineering and Mathematics Poster Session, August 27, 2003, Los Angeles, CA

LEADERSHIP

• Department of Chemistry Graduate Student Advisory Committee (DCGSAC)

Communications (2008) – Responsibilities include promoting and organizing department events, maintaining website and conducting annual elections

COMPUTER SKILLS

• Operating Systems: Linux/Unix, Windows, Mac OSX

- Programming Languages:

 Experience with Fortran
 Familiar HTML, Python, C++, Ruby on Rails, Javascript

REFERENCES

• Available upon request