

INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE CÓMPUTO

Nombre del alumno: Reyes Valenzvela Alejandro

Grupo: 1CV4 Fecha: 8 de diciembre del 2016

Asignatura: Matemáticas discretas Profesora: Olga Kolesnikova

EXAMEN PARCIAL 3

1. Convertir el número 854.72 d	de base	: 10:
---------------------------------	---------	-------

- a. a base 2, con 5 dígitos después del punto (0.25 puntos)
- b. a base 8, con 4 dígitos después del punto (0.25 puntos)
- c. a base 16, con 2 dígitos después del punto (0.25 puntos)

2. Convertir a base 10 los números:

- a. 1101.1011₂, con 4 dígitos después del punto (0.25 puntos)
- b. 471.6₈, con 3 dígitos después del punto (0.25 puntos)
- c. CD.F₁₆, con 3 dígitos después del punto (0.25 puntos)

3. Convertir

- a. 11110101.01001011₂ a base 8 (0.25 puntos)
- b. 100111.101101010₂ a base 16 (0.25 puntos)
- c. A94B7.30E6₁₆ a base 2 (0.25 puntos)
- d. 6372.02541₈ a base 2 (0.25 puntos)

4. Realizar operaciones en base 2:

- a. 1101001111 + 1110011111 (0.25 puntos)
- b. 10010010000 110111111 (0.25 puntos)
- c. 111010×101011 (0.5 puntos)
- d. $100110101101 \div 11011$ (0.5 puntos)

5. Realizar operaciones en base 8:

- a. 357456 + 345657 (0.25 puntos)
- b. 20132013 6434567 (0.25 puntos)
- c. 4672×543 (0.5 puntos)
- d. $67102574 \div 564$ (0.5 puntos)

6. Demostrar por la inducción matemática:
$$\sum_{i=1}^{n} i^3 = \frac{n^2(n+1)^2}{4}$$
, $n \in \mathbb{N}$ (1.5 puntos)

- 7. Demostrar por la inducción matemática: $3|7^n 4^n, n \in \mathbb{N}$. (1.5 puntos)
- 8. Demostrar por la inducción matemática: $n-2 \le \frac{n^2-n}{12}$, $n \ge 11$. (1.5 puntos)
- 9. Hacer análisis de la relación en \mathbb{Z} : $R = \{(a, b) | a = b + 3\}$. (1.5 puntos)