15) QUINDICESIMA LEZIONE

Uno **spazio vettoriale** è un insieme X provvisto di due operazioni:

- Somma: $x, y \in X \rightarrow x + y \in X$
- Moltiplicazione per scalari: $x \in X, \lambda \in R^2 \to x * \lambda \in X$

Sia la Somma che la Moltiplicazione hanno le classiche proprietà di:

- Commutatività
- Associativà
- Esistenza di un elemento neutro
- Esistenza di un elemento nullo

Di conseguenza un sottoinsieme Y di X si dice un sottospazio vettoriale di X se valgono le seguenti condizioni:

- Per ogni $y, z \in Y$, si ha $y + z \in Y$;
- Per ogni $y \in Y \ e \ \lambda \in R$, si ha $\lambda * y \in Y$;

Quindi è un sottoinsieme in cui possiamo eseguire le stesse operazioni dell'insieme originale.

Consideriamo un spazio vettoriale X e consideriamo due elementi x_1 e x_2 , e dati gli scalari α_1 e α_2 si dice che:

$$\alpha_1 x_1 + \alpha_2 x_2$$

è una combinazione lineare dei due vettori dati.

Un vettore y si dice linearmente indipendente se non si può scrivere nella forma $y = \alpha * x$, dove α è uno scalare e x un vettore, altrimenti è linearmente dipendente se x è un multiplo di y o viceversa.

Questo concetto è uguale anche quando abbiamo più vettori e non solo due.

Infatti se consideriamo n vettori x_1, \ldots, x_n di uno spazio vettoriale X, essi sono linearmente indipendenti se non esiste una combinazione lineare, a coefficienti non tutti nulli, tale che la loro somma sia il vettore nullo 0x. Quindi sono linearmente indipendenti se:

$$\lambda_1 x_1 + \ldots + \lambda_n x_n = 0$$
 $x \to \lambda_1 = \ldots = \lambda_n = 0$