

Ideals for irreducible components of  $X_{par}$ 

$$I_1^u = \langle u^{66} - u^{65} + \dots + u - 1 \rangle$$

\* 1 irreducible components of  $\dim_{\mathbb{C}} = 0$ , with total 66 representations.

<sup>&</sup>lt;sup>1</sup>The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

<sup>&</sup>lt;sup>2</sup> All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I. 
$$I_1^u = \langle u^{66} - u^{65} + \dots + u - 1 \rangle$$

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u^{3} \\ u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{6} - u^{4} + 1 \\ u^{6} + 2u^{4} + u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{9} + 2u^{7} + u^{5} - 2u^{3} - u \\ -u^{9} - 3u^{7} - 3u^{5} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{3} \\ u^{5} + u^{3} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{16} - 4u^{14} - 8u^{12} - 8u^{10} - 4u^{8} + 2u^{6} + 4u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{25} + 6u^{23} + \dots + 2u^{3} + u \\ u^{27} + 7u^{25} + \dots + 3u^{3} + u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u^{50} - 13u^{48} + \dots - u^{2} + 1 \\ -u^{52} - 14u^{50} + \dots - 18u^{6} - 5u^{4} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{45} + 12u^{43} + \dots + 4u^{3} + u \\ -u^{45} - 13u^{43} + \dots + u^{3} + u \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes =  $4u^{64} 4u^{63} + \cdots 4u 10$

## (iv) u-Polynomials at the component

| Crossings             | u-Polynomials at each crossing            |
|-----------------------|-------------------------------------------|
| $c_1$                 | $u^{66} + 37u^{65} + \dots - 3u + 1$      |
| $c_2, c_7$            | $u^{66} + u^{65} + \dots - u - 1$         |
| $c_3, c_4, c_8$       | $u^{66} - u^{65} + \dots - u - 1$         |
| $c_5, c_{10}, c_{11}$ | $u^{66} - u^{65} + \dots - u - 1$         |
| <i>c</i> <sub>6</sub> | $u^{66} + u^{65} + \dots - 743u - 317$    |
| $c_9, c_{12}$         | $u^{66} - 11u^{65} + \dots - 2747u + 187$ |

## (v) Riley Polynomials at the component

| Crossings             | Riley Polynomials at each crossing              |
|-----------------------|-------------------------------------------------|
| $c_1$                 | $y^{66} - 15y^{65} + \dots - 47y + 1$           |
| $c_2, c_7$            | $y^{66} + 37y^{65} + \dots - 3y + 1$            |
| $c_3, c_4, c_8$       | $y^{66} - 67y^{65} + \dots - 99y + 1$           |
| $c_5, c_{10}, c_{11}$ | $y^{66} + 61y^{65} + \dots - 3y + 1$            |
| <i>c</i> <sub>6</sub> | $y^{66} + 17y^{65} + \dots + 1831157y + 100489$ |
| $c_9, c_{12}$         | $y^{66} + 45y^{65} + \dots - 101539y + 34969$   |

## (vi) Complex Volumes and Cusp Shapes

| Solutions to $I_1^u$      | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape          |
|---------------------------|---------------------------------------|---------------------|
| u = 0.083821 + 1.004040I  | -1.38136 - 1.50722I                   | -13.6391 + 3.9055I  |
| u = 0.083821 - 1.004040I  | -1.38136 + 1.50722I                   | -13.6391 - 3.9055I  |
| u = 0.510793 + 0.913895I  | 7.93842 + 0.05224I                    | -2.32745 - 2.85719I |
| u = 0.510793 - 0.913895I  | 7.93842 - 0.05224I                    | -2.32745 + 2.85719I |
| u = -0.488111 + 0.930566I | 1.77759 - 2.77554I                    | -5.98797 + 2.90769I |
| u = -0.488111 - 0.930566I | 1.77759 + 2.77554I                    | -5.98797 - 2.90769I |
| u = -0.244653 + 1.025230I | -0.013940 - 0.329657I                 | -12.44759 + 0.I     |
| u = -0.244653 - 1.025230I | -0.013940 + 0.329657I                 | -12.44759 + 0.I     |
| u = -0.061449 + 1.057390I | 4.20453 + 4.47748I                    | -9.15575 - 3.23057I |
| u = -0.061449 - 1.057390I | 4.20453 - 4.47748I                    | -9.15575 + 3.23057I |
| u = 0.335683 + 1.010860I  | -3.14750 + 2.83532I                   | -16.6157 - 6.0807I  |
| u = 0.335683 - 1.010860I  | -3.14750 - 2.83532I                   | -16.6157 + 6.0807I  |
| u = 0.498424 + 0.958106I  | 1.39631 + 6.68158I                    | -8.00000 - 9.54655I |
| u = 0.498424 - 0.958106I  | 1.39631 - 6.68158I                    | -8.00000 + 9.54655I |
| u = -0.515583 + 0.963149I | 7.31403 - 9.92245I                    | -8.00000 + 8.98858I |
| u = -0.515583 - 0.963149I | 7.31403 + 9.92245I                    | -8.00000 - 8.98858I |
| u = -0.404764 + 1.024030I | 1.07785 - 5.52425I                    | 0. + 8.14607I       |
| u = -0.404764 - 1.024030I | 1.07785 + 5.52425I                    | 0 8.14607I          |
| u = -0.233677 + 0.852210I | -0.623068 - 1.187120I                 | -7.72350 + 5.05624I |
| u = -0.233677 - 0.852210I | -0.623068 + 1.187120I                 | -7.72350 - 5.05624I |
| u = 0.851377 + 0.083934I  | 2.85684 - 9.44870I                    | -4.98605 + 5.54911I |
| u = 0.851377 - 0.083934I  | 2.85684 + 9.44870I                    | -4.98605 - 5.54911I |
| u = 0.852586 + 0.022594I  | -3.20905 - 3.31217I                   | -8.79110 + 3.45488I |
| u = 0.852586 - 0.022594I  | -3.20905 + 3.31217I                   | -8.79110 - 3.45488I |
| u = 0.410067 + 0.744637I  | 4.35656 + 1.82130I                    | -1.37205 - 4.42499I |
| u = 0.410067 - 0.744637I  | 4.35656 - 1.82130I                    | -1.37205 + 4.42499I |
| u = -0.849857             | -6.87858                              | -13.9160            |
| u = -0.845627 + 0.073889I | -2.90459 + 5.98857I                   | -9.04687 - 5.67956I |
| u = -0.845627 - 0.073889I | -2.90459 - 5.98857I                   | -9.04687 + 5.67956I |
| u = 0.827138 + 0.064864I  | -2.07867 - 2.02369I                   | -7.11684 - 0.30058I |

| Solutions to $I_1^u$      | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape          |
|---------------------------|---------------------------------------|---------------------|
| u = 0.827138 - 0.064864I  | -2.07867 + 2.02369I                   | -7.11684 + 0.30058I |
| u = -0.807037 + 0.087568I | 4.26879 - 0.24717I                    | -3.39910 + 0.07734I |
| u = -0.807037 - 0.087568I | 4.26879 + 0.24717I                    | -3.39910 - 0.07734I |
| u = 0.551203 + 0.548693I  | 8.95890 + 4.23168I                    | 0.05530 - 3.66862I  |
| u = 0.551203 - 0.548693I  | 8.95890 - 4.23168I                    | 0.05530 + 3.66862I  |
| u = -0.577788 + 0.471903I | 8.68670 + 5.56921I                    | -0.54288 - 3.39779I |
| u = -0.577788 - 0.471903I | 8.68670 - 5.56921I                    | -0.54288 + 3.39779I |
| u = -0.519271 + 0.522136I | 2.91441 - 1.35335I                    | -3.12429 + 3.82186I |
| u = -0.519271 - 0.522136I | 2.91441 + 1.35335I                    | -3.12429 - 3.82186I |
| u = -0.414950 + 1.212190I | 0.41454 - 4.45821I                    | 0                   |
| u = -0.414950 - 1.212190I | 0.41454 + 4.45821I                    | 0                   |
| u = 0.542248 + 0.471260I  | 2.74694 - 2.46929I                    | -3.89041 + 3.84904I |
| u = 0.542248 - 0.471260I  | 2.74694 + 2.46929I                    | -3.89041 - 3.84904I |
| u = 0.427149 + 1.228820I  | -5.94379 + 2.35769I                   | 0                   |
| u = 0.427149 - 1.228820I  | -5.94379 - 2.35769I                   | 0                   |
| u = -0.491901 + 1.207950I | 0.95958 - 4.49375I                    | 0                   |
| u = -0.491901 - 1.207950I | 0.95958 + 4.49375I                    | 0                   |
| u = -0.420560 + 1.239830I | -6.87549 + 1.57708I                   | 0                   |
| u = -0.420560 - 1.239830I | -6.87549 - 1.57708I                   | 0                   |
| u = 0.413959 + 1.243570I  | -1.17541 - 5.05428I                   | 0                   |
| u = 0.413959 - 1.243570I  | -1.17541 + 5.05428I                   | 0                   |
| u = 0.488156 + 1.219310I  | -5.50486 + 6.78902I                   | 0                   |
| u = 0.488156 - 1.219310I  | -5.50486 - 6.78902I                   | 0                   |
| u = 0.450005 + 1.240990I  | -7.01271 + 1.29972I                   | 0                   |
| u = 0.450005 - 1.240990I  | -7.01271 - 1.29972I                   | 0                   |
| u = -0.494953 + 1.224760I | -6.33970 - 10.83790I                  | 0                   |
| u = -0.494953 - 1.224760I | -6.33970 + 10.83790I                  | 0                   |
| u = -0.461598 + 1.237740I | -10.59200 - 4.67210I                  | 0                   |
| u = -0.461598 - 1.237740I | -10.59200 + 4.67210I                  | 0                   |
| u = 0.500220 + 1.225040I  | -0.5543 + 14.3411I                    | 0                   |

| Solutions to $I_1^u$      | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape          |
|---------------------------|---------------------------------------|---------------------|
| u = 0.500220 - 1.225040I  | -0.5543 - 14.3411I                    | 0                   |
| u = 0.472689 + 1.236350I  | -6.84904 + 8.05701I                   | 0                   |
| u = 0.472689 - 1.236350I  | -6.84904 - 8.05701I                   | 0                   |
| u = -0.495413 + 0.227551I | 3.21756 + 1.88641I                    | -4.06409 - 3.74590I |
| u = -0.495413 - 0.227551I | 3.21756 - 1.88641I                    | -4.06409 + 3.74590I |
| u = 0.373493              | -0.759282                             | -12.9670            |

II. u-Polynomials

| Crossings             | u-Polynomials at each crossing            |
|-----------------------|-------------------------------------------|
| $c_1$                 | $u^{66} + 37u^{65} + \dots - 3u + 1$      |
| $c_2, c_7$            | $u^{66} + u^{65} + \dots - u - 1$         |
| $c_3, c_4, c_8$       | $u^{66} - u^{65} + \dots - u - 1$         |
| $c_5, c_{10}, c_{11}$ | $u^{66} - u^{65} + \dots - u - 1$         |
| $c_6$                 | $u^{66} + u^{65} + \dots - 743u - 317$    |
| $c_9, c_{12}$         | $u^{66} - 11u^{65} + \dots - 2747u + 187$ |

III. Riley Polynomials

| Crossings             | Riley Polynomials at each crossing              |
|-----------------------|-------------------------------------------------|
| $c_1$                 | $y^{66} - 15y^{65} + \dots - 47y + 1$           |
| $c_2, c_7$            | $y^{66} + 37y^{65} + \dots - 3y + 1$            |
| $c_3, c_4, c_8$       | $y^{66} - 67y^{65} + \dots - 99y + 1$           |
| $c_5, c_{10}, c_{11}$ | $y^{66} + 61y^{65} + \dots - 3y + 1$            |
| $c_6$                 | $y^{66} + 17y^{65} + \dots + 1831157y + 100489$ |
| $c_9, c_{12}$         | $y^{66} + 45y^{65} + \dots - 101539y + 34969$   |