ANALÍZIS FELADATGYŰJTEMÉNY I

Jegyzetek és példatárak a matematika egyetemi oktatásához sorozat

Algoritmuselmélet

Algoritmusok bonyolultsága

Analitikus módszerek a pénzügyben és a közgazdaságtanban

Analízis feladatgyűjtemény I

Analízis feladatgyűjtemény II

Bevezetés az analízisbe

Complexity of Algorithms

Differential Geometry

Diszkrét matematikai feladatok

Diszkrét optimalizálás

Geometria

Igazságos elosztások

Introductory Course in Analysis

Mathematical Analysis – Exercises I

Mathematical Analysis – Problems and Exercises II

Mértékelmélet és dinamikus programozás

Numerikus funkcionálanalízis

Operációkutatás

Operációkutatási példatár

Parciális differenciálegyenletek

Példatár az analízishez

Pénzügyi matematika

Szimmetrikus struktúrák

Többváltozós adatelemzés

Variációszámítás és optimális irányítás

GÉMES MARGIT, SZENTMIKLÓSSY ZOLTÁN

ANALÍZIS FELADATGYŰJTEMÉNY I

Eötvös Loránd Tudományegyetem Természettudományi Kar

Typotex

2014

© 2014–2019, Gémes Margit, Szentmiklóssy Zoltán, Eötvös Loránd Tudományegyetem, Természettudományi Kar

Szerkesztők: Kós Géza és Szentmiklóssy Zoltán

Lektorálta: Pach Péter Pál

Creative Commons NonCommercial-NoDerivs 3.0 (CC BY-NC-ND 3.0) A szerző nevének feltüntetése mellett nem kereskedelmi céllal szabadon másolható, terjeszthető, megjelentethető és előadható, de nem módosítható.

ISBN 978 963 279 230 9

Készült a Typotex Kiadó (http://www.typotex.hu) gondozásában

Felelős vezető: Votisky Zsuzsa Műszaki szerkesztő: Gerner József

Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0045 számú, "Jegyzetek és példatárak a matematika egyetemi oktatásához" című projekt keretében.

KULCSSZAVAK: analízis, kalkulus, derivált, integrál, több-változó, komplex.

ÖSSZEFOGLALÁS: Ez a feladatgyűjtemény elsősorban azon egyetemi hallgatók számára készült, akik matematikát, ezen belül kalkulust és analízist tanulnak. A könyv fő feladata bevezetni az olvasót a a differenciál és integrálszámításba és ezek alkalmazásaiba.

Tartalomjegyzék

	galmak, valós számok
1.1.	Elemi feladatok
1.2.	Logikai alapfogalmak
1.3.	Bizonyítási módszerek
1.4.	Halmazok
1.5.	A valós számok axiómarendszere
1.6.	A számegyenes
Számso	prozatok konvergenciája 3
2.1.	Sorozatok határértéke
2.2.	A határérték tulajdonságai
2.3.	Monoton sorozatok
2.4.	A Bolzano-Weierstrass-tétel és a Cauchy-kritérium 4
2.5.	Sorozatok nagyságrendje
2.6.	Vegyes feladatok
Valós f	üggvények határértéke, folytonossága 4
3.1.	Függvények globális tulajdonságai
3.2.	A határérték
3.3.	Folytonos függvények
A diffe	renciálszámítás és alkalmazásai 70
4.1.	A derivált fogalma
4.2.	Deriválási szabályok
4.3.	Középértéktételek, L'Hospital szabály 8
4.4.	Szélsőértékkeresés
4.5.	Függvényvizsgálat
4.6.	Elemi függvények
Az egy	változós Riemann-integrál 9
5.1.	Határozatlan integrál
5.2.	Határozott integrál
5.3.	
5.4.	Improprius integrál
Numer	rikus sorok 12
	Numerikus sorok konvergenciája
	Pozitív tagú sorok konvergenciakritériumai
	Feltételes és abszolút konvergencia 13

Függvénysorozatok és sorok		
7.1. Pontonkénti és egyenletes konvergencia	135	
7.2. Hatványsorok, Taylor-sor		
7.3. Trigonometrikus sorok, Fourier-sor		
Többváltozós függvények differenciálása		
8.1. Topológiai alapfogalmak	149	
8.2. Többváltozós függvények grafikonja	152	
8.3. Többváltozós határérték, folytonosság	156	
8.4. Parciális és totális derivált	158	
8.5. Többváltozós szélsőérték	164	
Többváltozós Riemann-integrál		
9.1. Jordan-mérték	171	
9.2. Többváltozós Riemann-integrál	174	
Vonalintegrál és primitív függvény		
10.1. Sík és térgörbék		
10.2. Skalár-, és vektormezők, differenciáloperátorok		
10.3. Vonalintegrál		
Komplex függvények		
Megoldások		
Ajánlott irodalom		

1. fejezet

Alapfogalmak, valós számok

Biztatásul közlöm, hogy tévesnek bizonyult a cáfolata annak a híresztelésnek, mely szerint mégsem hazugság azt tagadni, hogy lesz olyan vizsgázó, akinek egy analízis tétel bizonyítását sem kell tudnia ahhoz, hogy ne bukjon meg.

(Baranyai Zsolt)

1.1. Az $A \subset \mathbb{R}$ halmazt **korlátosnak** nevezzük, ha van olyan $K \in \mathbb{R}$ valós szám, hogy minden $a \in A$ esetén $|a| \leq K$.

Az $A \subset \mathbb{R}$ halmaz **felülről korlátos**, ha van olyan $M \in \mathbb{R}$ valós szám (**felső korlát**), amelyre minden $a \in A$ esetén $a \leq M$.

Az $A \subset \mathbb{R}$ halmaz **alulról korlátos**, ha van olyan $m \in \mathbb{R}$ valós szám (**alsó korlát**), amelyre minden $a \in A$ esetén $a \geq m$.

- 1.2. Cantor-axióma: Egymásba skatulyázott korlátos zárt intervallumsorozat metszete nem üres.
- 1.3. Felső határ, szuprémum: Ha az A halmaznak van legkisebb felső korlátja és ez a szám M, akkor ezt az M számot a halmaz felső határának vagy szuprémumának nevezzük és $M = \sup A$ -val jelöljük.
- **1.4.** Teljességi tétel: Ha $A \subset \mathbb{R}$ felülről korlátos nem üres halmaz, akkor van legkisebb felső korlátja.
- **1.5.** Bernoulli-egyenlőtlenség: Ha $n \in \mathbb{N}$ és x > -1, akkor

$$(1+x)^n \ge 1 + n \cdot x.$$

Egyenlőség akkor és csak akkor van, ha n = 0 vagy n = 1 vagy x = 0.

1.1. Elemi feladatok

Ábrázoljuk a számegyenesen a következő egyenlőtlenségek megoldáshalmazát!

1.1.
$$|x-5| < 3$$

1.2.
$$|5-x| < 3$$

1.3.
$$|x-5| < 1$$

1.4.
$$|5-x| < 0.1$$

Oldjuk meg az alábbi egyenlőtlenségeket!

1.5.
$$\frac{1}{5x+6} \ge -1$$

$$\boxed{1.6.} \quad 6x^2 + 7x - 20 > 0$$

1.7.
$$10x^2 + 17x + 3 \le 0$$

1.8.
$$-6x^2 + 8x - 2 > 0$$

$$8x^2 - 30x + 25 \ge 0$$

1.10.
$$-4x^2 + 4x - 2 \ge 0$$

$$\boxed{1.11.} \quad 9x^2 - 24x + 17 \ge 0$$

$$\begin{array}{|c|c|} \hline \textbf{1.12.} & -16x^2 + 24x - 11 < 0 \\ \hline \end{array}$$

1.13. Hol a hiba?

$$\log_2 \frac{1}{2} \le \log_2 \frac{1}{2} \quad \text{ és} \quad 2 < 4$$

Összeszorozva a két egyenlőtlenséget:

$$2\log_2\frac{1}{2} < 4\log_2\frac{1}{2}$$

A logaritmus azonosságait használva:

$$\log_2\left(\frac{1}{2}\right)^2 < \log_2\left(\frac{1}{2}\right)^4$$

A $\log_2 x$ függvény szigorúan monoton nő, tehát:

$$\frac{1}{4} < \frac{1}{16}$$

Átszorozva az egyenlőtlenséget:

16 < 4.

Oldjuk meg a következő egyenleteket és egyenlőtlenségeket!

1.14.
$$|x+1| + |x-2| \le 12$$

1.15.
$$\sqrt{x+3} + \sqrt{x-5} = 0$$

1.16.
$$\left| \frac{x+1}{2x+1} \right| > \frac{1}{2}$$

$$\boxed{1.17.} \quad |2x-1| < |x-1|$$

1.18.
$$\sqrt{x+3} + |x-2| = 0$$

1.19.
$$\sqrt{x+3} + |x-2| \le 0$$

1.2. Logikai alapfogalmak

- 1.20. Minél egyszerűbben mondjuk ki az alábbi állítások tagadását:
 - (a) Minden egér szereti a sajtot.
 - (b) Aki másnak vermet ás, maga esik bele.
 - (c) Minden asszony életében van egy pillanat Mikor olyat akar tenni, amit nem szabad.
 - (d) Van olyan a, hogy minden b-hez egyetlen x tartozik, melyre a + x = b
 - (e) 3 nem nagyobb, mint 2, vagy 5 osztója 10-nek.
 - (f) Nem zörög a haraszt, ha a szél nem fújja.
 - (g) Ha a nagynénémnek kerekei volnának, ő lenne a miskolci gyorsvo-
- 1.21. Egy udvarban van 5 kecske és 20 bolha. Tudjuk, hogy van olyan kecske, amit minden bolha megcsípett. Következik-e ebből, hogy van olyan bolha, amelyik minden kecskét megcsípett?
- 1.22. Fogadjuk el igaznak a következő állításokat:

- (a) Ha egy állat emlős, akkor vagy van farka, vagy van kopoltyúja.
- (b) Egyik állatnak sincs farka.
- (c) Minden állat vagy emlős, vagy van farka, vagy van kopoltyúja.

Következik-e ebből, hogy minden állatnak van kopoltyúja?

- 1.23. Balkezes Bendegúz, aki valóban balkezes, a bal kezével csak igaz állításokat tud leírni, a jobb kezével pedig csak csak hamis állításokat. Melyik kezével írhatja le a következő mondatokat?
 - (a) Balkezes vagyok.
 - (b) Jobbkezes vagyok.
 - (c) Balkezes vagyok és Bendegúz a nevem.
 - (d) Jobbkezes vagyok és Bendegúz a nevem.
 - (e) Balkezes vagyok vagy Bendegúz a nevem.
 - (f) Jobbkezes vagyok vagy Bendegúz a nevem.
 - (g) A 0 se nem páros, se nem páratlan.
- 1.24. Azt mondják, a fekete macska szerencsétlenséget hoz. Melyik mondattal tagadhatjuk ezt?
 - (a) A fekete macska szerencsét hoz.
 - (b) Nem a fekete macska hoz szerencsétlenséget.
 - (c) A fehér macska hoz szerencsétlenséget.
 - (d) A fekete macska nem hoz szerencsétlenséget.
- 1.25. Legyen A a pozitív egészek halmaza. Jelentse a|b azt az állítást, hogy aosztója b-nek. Döntsük el, hogy mely állítások igazak az alábbiak közül:
 - (a) $\forall a \in A \ \exists b \in A \ a | b$
- **(b)** $\forall a \in A \ \forall b \in A \ a|b$
- (c) $\exists a \in A \ \forall b \in A \ a|b$
- (d) $\exists a \in A \ \exists b \in A \ a|b$
- 1.26. Matematika országban a bíró csak a bizonyítékoknak hisz. Például, ha F azt állítja, hogy van fekete oroszlán, akkor állításának helyességéről meggyőzheti a bírót azzal, ha mutat neki egy fekete oroszlánt.
 - (a) F azt állítja, hogy minden oroszlán fekete. Elég bizonyíték-e, ha mutat a bírónak egy fekete oroszlánt?

- (b) F azt állítja, hogy minden oroszlán fekete, G pedig azt állítja, hogy F téved. Hogyan bizonyíthatná G az állítását?
- (c) F azt állítja, hogy minden 2-re végződő négyzetszám osztható 3mal. G szerint F téved. Hogyan bizonyíthatná G az állítását? F-nek vagy G-nek van igaza?
- (d) F azt állítja, hogy ha egy derékszögű háromszög befogói a és b, átfogója c, akkor $a^2 + b^2 = c^2$. Hogyan bizonyíthatná F az állítását?
- (e) F azt állítja, hogy egy másodfokú egyenletnek lehetnek negatív gyökei. Hogyan bizonyíthatná F az állítását?
- (f) F azt állítja, hogy egy másodfokú egyenletnek lehet 3 gyöke. G szerint F téved. Hogyan bizonyíthatná G az állítását?
- 1.27. :-) "Minden mohikán hazudik", mondta az utolsó mohikán. Igazat mondott?
- 1.28. 1) A 3 prímszám.
 - 2) 4 osztható 3-mal.
 - 3) Ebben a keretben pontosan 1 igaz állítás van.

Hány igaz állítás van a keretben?

- 1.29. Egy 13 jegyű kódszámban bármely 3 szomszédos számjegy összege 11. A kód második jegye 6, a tizenkettedik jegy pedig 4. Mi a 13-adik jegy?
- 1.30. Fogadjuk el igaznak, hogy ki korán kel, aranyat lel. Melyik állítás igazsága következik ebből?
 - (a) Aki későn kel, nem lel aranyat.
 - (b) Aki aranyat lelt, az korán kelt.
 - (c) Aki nem lelt aranyat, az későn kelt.
- 1.31. Ha kedd van, akkor Belgiumban vagyunk. Melyik állítás következik ebből?
 - (a) Ha szerda van, akkor nem Belgiumban vagyunk.
 - (b) Ha Belgiumban vagyunk, akkor kedd van.
 - (c) Ha nem Belgiumban vagyunk, akkor nincs kedd.

Mi a logikai kapcsolat az állítások között? (Melyikből következik a másik?)

1.32. **A**: x > 5 **B**: $x^2 > 25$

1.33.

A: $\sqrt{x^2 - 5} < 3$

B: $x^2 - 5 < 9$

1.34.

A: $\sqrt{x^2 - 5} > -4$

B: $x^2 - 5 > 16$

1.35.

A: $x^2 - x - 6 = 0$

B: x = 2

1.36.

A: $x^2 - x - 6 > 0$

B: x > 2

1.37.

A: 7 = 8

B: 3 = 3

1.38.

A: 7 = 8

B: 3 = 4

1.39.

A: x < 7 és y < 3

B: x - y < 4

1.40.

A: |x-5| < 0, 1 és |y-5| < 0, 1 **B**: |x-y| < 0, 2

Tagadjuk a következő állításokat! Döntsük el, hogy igaz-e az állítás! Igaz-e a tagadása?

1.41.

 $\forall n \in \mathbb{N}^+ \ 2|n$

1.42. $\exists k \in \mathbb{N}^+ \ 2|k$

1.43.

 $\forall n \in \mathbb{N}^+ \ \exists k \in \mathbb{N}^+ \ n | k$

1.44.

 $\exists k \in \mathbb{N}^+ \ \forall n \in \mathbb{N}^+ \ n | k$

1.45. Pistike azt mondta reggel az anyukájának, hogy ha a hó miatt nem jár a busz, nem megy iskolába. A busz járt, Pistike mégsem ment iskolába. Hazudott-e reggel Pistike, amikor a már említett mondatot mondta?

Hány olyan részhalmaza van a $H = \{1, 2, 3, \dots, 100\}$ halmaznak, amelyre igaz, és hány olyan, amelyre nem igaz, hogy

- 1.46. az 1 benne van a részhalmazban;
- 1.47. az 1 és a 2 benne van a részhalmazban;

- 1.48. az 1 vagy a 2 benne van a részhalmazban;
- 1.49. az 1 benne van a részhalmazban vagy a 2 nincs benne a részhalmazban;
- 1.50. ha az 1 benne van a részhalmazban, akkor a 2 benne van a részhalmazban?

Hány olyan H részhalmaza van az $A_n = \{1, 2, \dots, n\}$ halmaznak, amelyre teljesül, hogy

- $\forall x < n \ (x \in H \implies x + 1 \boxed{\textbf{1.52.}} \quad \forall x \ (x \in H \implies x + 1 \notin H)$
- 1.53. $\forall x \ (x \in H \land x + 1 \in H \Longrightarrow x + 2 \in H)$

Írjuk le logikai jelekkel az alábbi állításokat!

- 1.54. Nem igaz, hogy P vagy Q.
- 1.55. Sem Q, sem P.
- 1.56. Nem P, ha nem Q. 1.57. P pedig nem is Q.
- 1.58. Csak akkor P, ha Q. 1.59. Sem P, sem Q.
- 1.60. Q, feltéve, hogy P. 1.61. Nem P, mégis Q.
- 1.62. P vagy Q, de nem mindkettő.
- 1.63. Nem igaz, hogy ha P, akkor egyúttal Q is.
- 1.64. Írjuk fel logikai kvantorokkal a következő mondatot:

"Minden tengerész ismer olyan kikötőt, ahol van olyan kocsma, ahol még nem járt."

Írjuk fel a mondat tagadását szöveggel és logikai kvantorokkal is!

- 1.65. Van egy zacskó cukorka és a tanulócsoport hallgatói. Melyik állításból következik a másik?
 - (a) A csoport minden hallgatója szopogatott cukorkát (a zacskóból).
 - (b) Van olyan cukorka (a zacskóból), amit minden hallgató szopogatott.
 - (c) Van olyan hallgató, aki minden cukorkát szopogatott (a zacskó-
 - (d) Minden cukorkát (a zacskóból) szopogatta valamelyik hallgató.

1.3. Bizonyítási módszerek

Bizonyítsuk be, hogy

- $\sqrt{3}$ irracionális; 1.66.
- 1.67. $\frac{\sqrt{2}}{\sqrt{3}}$ irracionális;
- $\frac{\sqrt{2}+1}{2}+3\over {}^{4}+5 \text{ irracionális!}$ 1.68.
- 1.69. Tudjuk, hogy x és y racionális számok. Bizonyítsuk be, hogy
 - (a) x+y

(b) x - y

(c) xy

(d) $y \neq 0$ esetén $\frac{x}{y}$

is racionális!

- 1.70. Tudjuk, hogy x racionális szám, y pedig irracionális.
 - (a) Lehet-e x + y racionális?
- **(b)** Lehet-e x y racionális?
- (c) Lehet-e xy racionális?
- (d) Lehet-e $\frac{x}{y}$ racionális?
- 1.71. Tudjuk, hogy x és y irracionális.

- (a) Lehet-e x + y racionális? **(b)** Lehet-e xy racionális?
- 1.72. Igaz-e, hogy ha
 - (a) $a \in b$ racionális számok, akkor a + b is racionális?
 - (b) a és b irracionális számok, akkor a + b is irracionális?
 - (c) a racionális szám, b pedig irracionális, akkor a + b racionális?
 - (d) a racionális szám, b pedig irracionális, akkor a + b irracionális?
- 1.73. Adámnak 2 füle volt. Ha egy apának 2 füle van, akkor a fiának is 2 füle
 - (a) Következik-e a fenti két állításból, hogy minden ma élő embernek 2 füle van?
 - (b) Kikről tudjuk biztosan állítani a fenti két állítás alapján, hogy 2 fülük van?
 - (c) Mire következtethetünk, ha a két állításból az elsőt elhagyjuk, és csak a másodikat használjuk fel?
 - (d) Mire következtethetünk, ha a két állításból a másodikat elhagyjuk, és csak az elsőt használjuk fel?
- 1.74. **Tétel:** Az 1 a legnagyobb szám.

Bizonyítás: indirekt módszerrel. Tegyük fel, hogy nem 1 a legnagyobb szám, hanem A. Ekkor A > 1. Mivel A > 1, ezért A > 0 is teljesül, tehát ha az A > 1 egyenlőtlenséget megszorozzuk A-val, az $A^2 > A$ egyenlőtlenséget kapjuk. Ez az egyenlőtlenség viszont ellentmond annak, hogy A a legnagyobb szám. Tehát az 1 a legnagyobb szám.

Jó ez a bizonyítás? Ha nem, akkor hol a hiba?

- 1.75. Legyen A_1, A_2, \dots állítások egy sorozata. Mi következik az alábbiakból?
 - (a) A_1 igaz. Ha A_1, A_2, \ldots, A_n mind igaz, akkor A_{n+1} is igaz.
 - (b) A_1 igaz. Ha A_n és A_{n+1} igaz, akkor A_{n+2} is igaz.
 - (c) Ha A_n igaz, akkor A_{n+1} is igaz. A_{2^n} hamis minden n-re.
 - (d) A_{100} igaz. Ha A_n igaz, akkor A_{n+1} is igaz.
 - (e) A_{100} igaz. Ha A_n hamis, akkor A_{n+1} is hamis.
 - (f) A_1 hamis. Ha A_n igaz, akkor A_{n+1} is igaz.
 - (g) A_1 igaz. Ha A_n hamis, akkor A_{n-1} is hamis.

- 1.76. Bizonyítsuk be, hogy tetszőleges $n \in \mathbb{N}$ esetén $16|5^{n+1}-4n-5$.
- 1.77. Bizonyítsuk be, hogy tg 1° irracionális.
- Bizonyítsuk be, hogy ha $n \in \mathbb{N}^+$, akkor $n! \leq \left(\frac{n+1}{2}\right)^n$. 1.78.
- 1.79. Legyen $a_1 = 0, 9, \ a_{n+1} = a_n - a_n^2$. Igaz-e, hogy van olyan n, amelyre $a_n < 10^{-6}$?
- 1.80. Írjuk fel a következő kifejezéseket n = 1, 2, 3, 6, 7, k és k + 1 esetén
 - (a) \sqrt{n}
 - **(b)** $\sqrt{1} + \sqrt{2} + \sqrt{3} + \cdots + \sqrt{n}$
 - (c) $1^2 + 2^2 + 3^2 + \cdots + n^2$
 - (d) $\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \frac{1}{3\cdot 4} + \dots + \frac{1}{(n-1)\cdot n}$
 - (e) $1 \cdot 4 + 2 \cdot 7 + 3 \cdot 10 + \dots + n(3n+1)$
 - (f) $1 \cdot 2 + 2 \cdot 3 + 3 \cdot 4 + \cdots + n(n+1)$
- 1.81. Az első néhány tag kiszámítása után sejtsük meg, milyen egyszerűbb kifejezéssel egyenlő az alábbi összeg, majd a sejtést bizonyítsuk be teljes
 - (a) $\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \cdots + \frac{1}{(n-1)\cdot n}$
 - **(b)** $1+3+\ldots+(2n-1)$

Bizonyítsuk be, hogy minden n pozitív egész számra igazak a következő azonosságok:

1.82.
$$a^n - b^n = (a - b)(a^{n-1} + a^{n-2}b + \dots + ab^{n-2} + b^{n-1})$$

1.83.
$$1+2+\cdots+n=\frac{n(n+1)}{2}$$

1.84.
$$1^2 + 2^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$$

1.85.
$$1^3 + 2^3 + \dots + n^3 = \left(\frac{n(n+1)}{2}\right)^2$$

1.86.
$$1 - \frac{1}{2} + \frac{1}{3} - \dots - \frac{1}{2n} = \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n}$$

Fejezzük ki egyszerűbb alakban a következő kifejezéseket:

1.87.
$$\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \dots + \frac{1}{(n-1)\cdot n}$$

1.88.
$$\frac{1}{1 \cdot 2 \cdot 3} + \frac{1}{2 \cdot 3 \cdot 4} + \dots + \frac{1}{n \cdot (n+1) \cdot (n+2)}$$

1.89.
$$1 \cdot 2 + 2 \cdot 3 + \cdots + n \cdot (n+1)$$

1.90.
$$1 \cdot 2 \cdot 3 + 2 \cdot 3 \cdot 4 + \cdots + n \cdot (n+1) \cdot (n+2)$$

1.91. Egy gazdának van egy pár nyula. Minden nyúlpár 2 hónapos korától minden hónapban egy újabb párnak ad életet. Hány pár nyúl lesz a 2., 3., 4., 5. és 6. hónapban?

Legyen (u_n) a Fibonacci-sorozat, azaz $u_0=0,\ u_1=1$ és n>1esetén $u_{n+1} = u_n + u_{n-1}$.

- 1.92. Bizonyítsuk be, hogy u_n és u_{n+1} relatív prím számok.
- Bizonyítsuk be, hogy $\frac{1,6^n}{3} < u_n < 1,7^n \quad (n > 0).$ 1.93.
- 1.94. Bizonyítsuk be a következő azonosságokat:

(a)
$$u_1 + u_2 + \dots + u_n = u_{n+2} -$$
(b) $u_n^2 - u_{n-1}u_{n+1} = (-1)^{n+1}$

(c)
$$u_1^2 + u_2^2 + \dots + u_n^2 = u_n u_{n+1}$$

1.95. Hozzuk egyszerűbb alakra a következő kifejezéseket:

- (a) $s_n = u_0 + u_2 + \dots + u_{2n}$ (b) $s_n = u_1 + u_3 + \dots + u_{2n+1}$
- (c) $s_n = u_0 + u_3 + \dots + u_{3n}$ (d) $s_n = u_1 u_2 + u_2 u_3 + \dots + u_{3n}$ $u_{2n-1}u_{2n}$
- 1.96. **Tétel:** Minden ló egyszínű.

Bizonyítás: Teljes indukcióval belátjuk, hogy bármely n ló egyszínű. n=1-re az állítás nyilvánvaló. Tegyük fel, hogy igaz n-re, és ebből fogjuk n+1-re belátni: adott n+1 ló közül az indukciós feltevés miatt az $1, 2, \ldots, n$. is egyszínű és a $2, \ldots, n, (n+1)$. is egyszínű, tehát mind az n+1 egyszínű.

Jó ez a bizonyítás? Ha nem, akkor hol a hiba?

1.97. Tétel: Nincs józan tengerész.

> **Bizonyítás:** Teljes indukcióval. Tegyük fel, hogy az állítás igaz n tengerészre, és ebből fogjuk n+1 tengerészre belátni. Adott n+1tengerész közül az indukciós feltevés miatt az $1, 2, \ldots, n$. tengerész nem józan, és a $2, \ldots, n, (n+1)$. tengerész sem józan, tehát mind az n+1 részeg.

Jó ez a bizonvítás? Ha nem, akkor hol a hiba?

- 1.98. Bizonyítsuk be a számtani-mértani közép közötti egyenlőtlenséget az n=2 speciális esetben!
- 1.99. Bizonyítsuk be, hogy az $a_1, a_2, \dots a_n$ pozitív számok számtani, mértani és harmonikus közepe a számok legkisebbike és legnagyobbika közé esik!

Tudjuk, hogy a, b, c > 0 és a + b + c = 18. Határozzuk meg a, b és cértékét úgy, hogy a következő kifejezések értéke maximális legyen:

1.100. abc 1.101. a^2bc

1.102. a^3b^2c 1.103.

Tudjuk, hogy a,b,c>0 és abc=18. Határozzuk meg a,b és cértékét úgy, hogy a következő kifejezések értéke minimális legyen:

1.104.
$$a+b+c$$

1.105.
$$2a+b+c$$

1.106.
$$3a + 2b + c$$

1.107.
$$a^2 + b^2 + c^2$$

- 1.108. Tudjuk, hogy három pozitív szám szorzata 1.
 - (a) Legalább mennyi lehet az összegük?
 - (b) Legfeljebb mennyi lehet az összegük?
 - (c) Legalább mennyi lehet a reciprokösszegük?
 - (d) Legfeljebb mennyi lehet a reciprokösszegük?
- Bizonyítsuk be, hogy ha a > 0, akkor $a + \frac{1}{a} \ge 2$. 1.109.
- Bizonyítsuk be, hogy ha a, b és c pozitív számok, akkor $\frac{a}{b} + \frac{b}{c} + \frac{c}{a} \ge 3$. 1.110.
- Bizonyítsuk be, hogy minden pozitív egész n-re $\left(1+\frac{1}{n}\right)^{2n} \geq 4$. 1.111.
- 1.112. Egy motorcsónak motorja a csónakot állóvízben v sebességgel hajtja. A csónak az u sebességű folyóban s utat tesz meg a folyás irányában, majd visszamegy a kiindulási helyéhez. Mennyi lesz az átlagsebessége a teljes úton v-hez képest: v-vel egyenlő, v-nél nagyobb vagy v-nél kisebb?
- 1.113. Egy kereskedőnek nem pontos a kétkarú mérlege, mert a karok hossza nem egyenlő. Miután tudja ezt, minden vásárlónál az áru egyik felét a mérleg egyik serpenyőjében, a másik felét a mérleg másik serpenyőjében méri, gondolván, hogy ezzel kiküszöböli a mérleg pontatlanságát. Valóban ez a helyzet?
- 1.114. Határozzuk meg az f(x) = x(1-x) függvény legnagyobb értékét a [0,1]zárt intervallumon!

1.115.
$$f(x) = x + \frac{4}{x}$$

1.116.
$$g(x) = \frac{x^2 - 3x + 5}{x}$$

- 1.117. Határozzuk meg az $x^2(1-x)$ függvény legnagyobb értékét a [0,1] zárt
- 1.118. Mennyi a maximuma a $g(x) = x(1-x)^3$ függvénynek a [0,1] intervallumon?
- Mennyi a minimuma az $f(x) = 2x^2 + \frac{3}{x^2 + 1} + 5$ függvénynek? 1.119.
- Az $y = \frac{1}{4}x^2$ parabola melyik pontja van a legközelebb a (0,5) ponthoz? 1.120.
- 1.121. Melyik az egységkörbe írható maximális területű téglalap?
- 1.122. Melyik az egyenes körkúpba írható maximális térfogatú henger?
- 1.123. Melyik az egységgömbbe írható maximális térfogatú egyenes körhenger?
- 1.124. Legyen egy téglalap két éle a és b, átlója pedig c. Ekkor a téglalap területe T = ab, és a téglalap kerülete K = 2(a + b).

Tehát:

$$\frac{T}{\frac{K}{2}} = \frac{ab}{\frac{2(a+b)}{2}}$$

Így:

$$\frac{2T}{K} - \frac{c}{\sqrt{2}} = \frac{ab}{a+b} - \frac{c}{\sqrt{2}}$$

Mivel 0 < a < c, ezért:

$$a\left(\frac{2T}{K} - \frac{c}{\sqrt{2}}\right) < c\left(\frac{ab}{a+b} - \frac{c}{\sqrt{2}}\right)$$

Beszorzás után:

$$\frac{2Ta}{K} - \frac{ac}{\sqrt{2}} < \frac{abc}{a+b} - \frac{c^2}{\sqrt{2}}$$

T és K helyébe írjunk ab-t és 2(a+b)-t: $\frac{2a^2b}{2(a+b)} - \frac{ac}{\sqrt{2}} < \frac{abc}{a+b} - \frac{c^2}{\sqrt{2}}$

 $\frac{2a^2b}{2(a+b)}-\frac{abc}{a+b}<\frac{ac}{\sqrt{2}}-\frac{c^2}{\sqrt{2}}$ Rendezés után:

Kiemelés után:

$$\frac{ab}{a+b}\left(a-c\right) < \frac{c}{\sqrt{2}}\left(a-c\right)$$

Osztunk (a-c)-vel, de a-c<0: $\frac{ab}{a+b}>\frac{c}{\sqrt{2}}$

$$\frac{ab}{a+b} > \frac{c}{\sqrt{2}}$$

Négyzet esetén b=a és $c=a\sqrt{2}$: $\frac{a^2}{2a}>\frac{a\sqrt{2}}{\sqrt{2}}$

$$\frac{a^2}{2a} > \frac{a\sqrt{2}}{\sqrt{2}}$$

Egyszerűsítés és rendezés után:

Hol a hiba?

1.4. Halmazok

- 1.125. Melyik állítás **nem** igaz?
 - (a) $A \setminus B = \{x : x \in A \lor x \notin B\}$ (b) $A \setminus B = A \cap \overline{B}$

 - (c) $A \setminus B = (A \cup B) \setminus B$ (d) $A \setminus B = A \setminus (A \cap B)$
- 1.126. Melyik halmazzal egyenlő $\overline{A \cup B}$?

 - (a) $\{x : x \notin A \lor x \notin B\}$ (b) $\{x : x \notin A \land x \notin B\}$
 - (c) $\{x : x \in A \lor x \in B\}$ (d) $\{x : x \in A \land x \in B\}$
- 1.127. Melyik halmazzal egyenlő $A \cap (B \cup C)$?
 - (a) $A \cup (B \cap C)$
- **(b)** $(A \cap B) \cup C$
- (c) $(A \cup B) \cap C$
- **(d)** $(A \cap B) \cup (A \cap C)$

Állapítsuk meg, hogy az alábbi állítások közül melyek igazak és melyek hamisak. Ha egy állítás igaz, bizonyítsuk be, ha hamis, adjunk ellenpéldát!

1.128.
$$A \setminus B = A \cap \overline{B}$$

1.129.
$$(A \cup B) \setminus B = A$$

1.130.
$$(A \setminus B) \cup (A \cap B) = A$$

1.131.
$$\overline{A} \setminus B = A \setminus \overline{B}$$
?

1.132.
$$(A \cup B) \setminus A = B$$

$$1.133. \quad (A \cup B) \setminus C = A \cup (B \setminus C)$$

1.134.
$$(A \setminus B) \cap C = (A \cap C) \setminus B$$

1.135.
$$A \setminus B = A \setminus (A \cap B)$$

Legyenek A, B, C halmazok. Írjuk fel A, B, C és a halmazműveletek segítségével, azaz olyan jellegű formulával, mint például $(A \setminus B) \cup C$, az alábbi halmazokat!

- 1.136. Azon elemek halmaza, amelyek A-ban benne vannak, de B-ben és Cben nincsenek benne.
- 1.137. Azon elemek halmaza, amelyek A, B és C közül pontosan egyben vannak benne.
- 1.138. Azon elemek halmaza, amelyek A, B és C közül pontosan kettőben vannak benne.
- 1.139. Azon elemek halmaza, amelyek A, B és C közül pontosan háromban vannak benne.
- 1.140. Bizonyítsuk be, hogy tetszőleges A, B halmazokra $\overline{A \cup B} = \overline{A} \cap \overline{B}$.
- 1.141. Bizonyítsuk be a De Morgan azonosságokat:

$$\overline{\bigcup_{i=1}^{n} A_i} = \bigcap_{i=1}^{n} \overline{A_i} \qquad \text{és} \qquad \overline{\bigcap_{i=1}^{n} A_i} = \bigcup_{i=1}^{n} \overline{A_i}$$

1.5. A valós számok axiómarendszere

1.142. Bizonyítsuk be, hogy tetszőleges a, b valós számokra

(a)
$$|a| + |b| \ge |a+b|$$

(b)
$$|a| - |b| \le |a - b| \le |a| + |b|$$

1.143. Bizonyítsuk be, hogy tetszőleges a_1, a_2, \dots, a_n valós számokra igaz, hogy

$$|a_1| + |a_2| + \dots + |a_n| \ge |a_1 + a_2 + \dots + |a_n|$$
.

- 1.144. Igaz-e, hogy ha

 - (a) x < A, akkor |x| < |A| (b) |x| < A, akkor $|x^2| < A^2$
- 1.145. Igaz-e minden $a_1, a_2, \dots a_n$ valós számra, hogy
 - (a) $|a_1 + a_2 + \dots + a_n| \le |a_1| + |a_2| + \dots + |a_n|$
 - **(b)** $|a_1 + a_2 + \dots + a_n| \ge |a_1| + |a_2| + \dots + |a_n|$
 - (c) $|a_1 + a_2 + \cdots + a_n| < |a_1| + |a_2| + \cdots + |a_n|$
 - (d) $|a_1 + a_2 + \cdots + a_n| > |a_1| + |a_2| + \cdots + |a_n|$
- 1.146. Igaz-e minden a, b valós számra, hogy
 - (a) $|a+b| \ge |a| |b|$
- **(b)** |a+b| < |a| |b|
- (c) |a-b| < ||a| |b||
- (d) $|a-b| \le |a| |b|$
- 1.147. Legyen H a valós számok egy nem üres részhalmaza. Mit jelentenek a következő állítások?

 - (a) $\forall x \in H \ \exists y \in H \ (y < x)$ (b) $\forall y \in H \ \exists x \in H \ (y < x)$

 - (c) $\exists x \in H \ \forall y \in H \ (y < x)$ (d) $\exists y \in H \ \forall x \in H \ (y < x)$
- 1.148. Legyen $H_1 = \{ h \in \mathbb{R} : -3 < h \le 1 \}$ és $H_2 = \{ h \in \mathbb{R} : -3 \le h < 1 \}$. Melyik állítás igaz, ha $H = H_1$ vagy $H = H_2$?

 - (a) $\forall x \in H \ \exists y \in H \ (y < x)$ (b) $\forall y \in H \ \exists x \in H \ (y < x)$

 - (c) $\exists x \in H \ \forall y \in H \ (y \le x)$ (d) $\exists y \in H \ \forall x \in H \ (y \le x)$
- Legyen $A = \{a \in \mathbb{R} : -3 < a \le 1\}$ és $B = \{b \in \mathbb{R} : -3 < b < 1\}$. 1.149. Melvik állítás igaz?

- (a) $\forall a \in A \exists b \in B \ b < a$
- **(b)** $\exists b \in B \ \forall a \in A \ b < a$
- (c) $\forall b \in B \ \exists a \in A \ b < a$
- (d) $\exists a \in A \ \forall b \in B \ b < a$

Legyen $H \subset \mathbb{R}$. Írjuk fel az alábbi állításokat logikai formulákkal, írjuk föl a tagadásukat, továbbá adjunk példát (ha van) olyan H-ra amelyikre teljesül, és olyanra is amelyikre nem!

- 1.150. H-nak van legkisebb eleme.
- 1.151. H bármely két (különböző) eleme között van (mindkettőtől különböző) H-beli elem.

Határozzuk meg a következő számhalmaz-sorozatok metszetét!

- **1.152.** $A_n = \{ a \in \mathbb{Q} : -\frac{1}{n} < a < \frac{1}{n} \}$
- **1.153.** $B_n = \{b \in \mathbb{R} \setminus \mathbb{Q} : -\frac{1}{n} < b < \frac{1}{n}\}$
- **1.154.** $C_n = \{c \in \mathbb{Q} : \sqrt{2} \frac{1}{n} < c < \sqrt{2} + \frac{1}{n}\}$
- 1.155. $D_n = \{ d \in \mathbb{N} : -n < d < n \}$
- 1.156. $E_n = \{ e \in \mathbb{R} : -n < e < n \}$
- 1.157. Legyen $H \subset \mathbb{R}$. Írjuk fel a következő állítás tagadását:

$$\forall x \in H \ \exists y \in H \ (x > 2 \Longrightarrow y < x^2)$$

Határozzuk meg a következő intervallumsorozatok metszetét! (Például rajz segítségével sejtsük meg a metszetet! Ha a sejtés szerint a metszet M, akkor bizonyítsuk be, hogy $\forall x \in M$ esetén teljesül, hogy $\forall n \ x \in I_n$, továbbá ha $y \notin M$ akkor $\exists k \ y \notin I_k$. (Itt k és n pozitív egész számok.)

1.158.
$$I_n = [-1/n, 1/n]$$

1.159.
$$I_n = (-1/n, 1/n)$$

1.160.
$$I_n = [2 - 1/n, 3 + 1/n]$$

1.161.
$$I_n = (2 - 1/n, 3 + 1/n)$$

1.162.
$$I_n = [0, 1/n]$$

1.163.
$$I_n = (0, 1/n)$$

1.164.
$$I_n = [0, 1/n)$$

1.165.
$$I_n = (0, 1/n]$$

- 1.166. Melyik állítás igaz? (A választ mindig indokoljuk!)
 - (a) Ha egy egymásba skatulyázott intervallumsorozat metszete nem üres, akkor az intervallumok zártak.
 - (b) Ha egy egymásba skatulyázott intervallumsorozat metszete üres, akkor az intervallumok nyíltak.
 - (c) Egy egymásba skatulyázott, zárt intervallumsorozat metszete egyetlen pont.
 - (d) Ha egy egymásba skatulyázott intervallumsorozat metszete üres, akkor van az intervallumok között nyílt.
 - (e) Ha egy egymásba skatulyázott intervallumsorozat metszete üres, akkor van az intervallumok között nem zárt.
 - (f) Ha egy zárt intervallumsorozat metszete nem üres, akkor az intervallumok egymásba vannak skatulyázva.

A következő feladatokban is indokoljuk meg a válaszokat!

- 1.167. Lehet-e egy egymásba skatulyázott intervallumsorozat metszete üres?
- 1.168. Lehet-e egy egymásba skatulyázott, zárt intervallumsorozat metszete üres?
- 1.169. Lehet-e egy egymásba skatulyázott, zárt intervallumsorozat metszete egyetlen pont?
- 1.170. Lehet-e egy egymásba skatulyázott, nyílt intervallumsorozat metszete nem üres?

- 1.171. Lehet-e egy egymásba skatulyázott, nyílt intervallumsorozat metszete üres?
- 1.172. Lehet-e egy egymásba skatulyázott, zárt intervallumsorozat metszete valódi intervallum (nem csak egy pont)?
- 1.173. Lehet-e egy egymásba skatulyázott, nyílt intervallumsorozat metszete valódi intervallum?
- 1.174. Lehet-e egy egymásba skatulyázott, zárt intervallumsorozat metszete valódi nyílt intervallum?
- 1.175. Lehet-e egy egymásba skatulyázott, nyílt intervallumsorozat metszete valódi nyílt intervallum?
- 1.176. A valós számok axiómái közül melyek teljesülnek és melyek nem a racionális számok halmazára (a szokásos műveletekkel és rendezéssel)?
- 1.177.Bizonyítsuk be az Archimédeszi axiómából, hogy $(\forall b, c < 0)$ $(\exists n \in$ \mathbb{N}) nb < c!
- 1.178. Bizonyítsuk be, hogy bármely két valós szám között van véges tizedes
- 1.179. Bizonyítsuk be, hogy bármely két valós szám között van racionális szám!
- 1.180. Mi a kapcsolat a véges tizedestört alakban felírható számok halmaza és a racionális számok halmaza között?
- 1.181. Bizonyítsuk be, hogy egy valós szám tizedestört-alakja akkor és csak akkor periodikus, ha a szám racionális.
- 1.182. Fordítsuk le a végtelen tizedestörtekről tanultakat kettes számrendszerre, azaz definiáljuk a véges és végtelen bináris (kettedes) törteket és mondjuk ki a tételeink megfelelőit!
- 1.183. Ellenőrizzük, hogy a Cantor-axióma állítása nem marad igaz, ha bármelyik feltételét elhagyjuk.
- 1.184. Igazoljuk a testaxiómák segítségével a következő azonosságokat:

(a)
$$-a = (-1) \cdot a$$

(b)
$$(a-b)-c=a-(b+c)$$

(c)
$$(-a) \cdot b = -(a \cdot b)$$

(d)
$$\frac{1}{a/b} = \frac{b}{a}$$

(e)
$$\frac{a}{b} \cdot \frac{c}{d} = \frac{a \cdot c}{b \cdot d}$$

1.6. A számegyenes

Szemléltessük a következő számhalmazokat számegyenesen! Döntsük el, hogy melyik intervallum, és melyik nem az! Az intervallumok esetében döntsük el, hogy melyik zárt, melyik nyílt, és melyik se nem zárt, se nem nyílt!

1.185.
$$A = \{1, 2, 3\}$$

1.186.
$$B = \{2.6\}$$

1.187.
$$C = \{x \in \mathbb{R} : 2 < x < 6\}$$

$$C = \{x \in \mathbb{R} : 2 < x < 6\}$$
 1.188. $D = \{x \in \mathbb{N} : 2 \le x \le 6\}$

1.189.
$$E = \{x \in \mathbb{R} : 2 \le x \le 6\}$$

$$E = \{x \in \mathbb{R} : 2 \le x \le 6\}$$
 1.190. $F = \{x \in \mathbb{R} : 2 < x \le 6\}$

1.191.
$$G = \{x \in \mathbb{R} : 2 \le x < 6\}$$

$$G = \{x \in \mathbb{R} : 2 \le x < 6\}$$
 1.192. $H = \{x \in \mathbb{Q} : 2 \le x \le 6\}$

Döntsük el az alábbi halmazokról, hogy alulról korlátosak-e, felülről korlátosak-e, korlátosak-e, és hogy van-e legkisebb illetve legnagyobb elemük?

- 1.193. prímszámok halmaza
- 1.194. pozitív számok halmaza

$$\begin{bmatrix} 1.195. \end{bmatrix} [-5, -2)$$

$$\boxed{\mathbf{1.196.}} \quad \left\{ \frac{1}{n} : n \in \mathbb{N}^+ \right\}$$

1.197.
$$\{x \in \mathbb{R} : x \le 73\}$$

1.198.
$$\{x \in \mathbb{Q} : x \le 73\}$$

1.199.
$$| \{x \in \mathbb{R} : x \le \sqrt{2} \}$$

1.200.
$$| \{x \in \mathbb{Q} : x \le \sqrt{2} \}$$

1.201.
$$\{n \in \mathbb{N} : n \text{ prímszám } \wedge n + 2 \text{ prímszám}\}$$

~

1.202. Mi a kapcsolat az alábbi két állítás között, azaz melyikből következik a másik?

P: Az A halmaz véges (azaz véges sok eleme van).

 \mathbf{Q} : Az A halmaz korlátos.

1.203. Van-e olyan a_1, a_2, \ldots számsorozat, amelyre az $\{a_1, a_2, \ldots\}$ halmaz korlátos, de nincs se maximuma, se minimuma?

Írjuk fel logikai jelekkel az alábbi állításokat!

- **1.204.** Az A halmaz korlátos. **1.205.** Az A halmaz alulról nem korlátos.
- **1.206.** Az A halmaznak nincs legkisebb eleme.
- 1.207. Egy számhalmaznak hány maximuma, illetve felső korlátja lehet?
- 1.208. Mi a kapcsolat az alábbi két állítás között, azaz melyikből következik a másik?

P: Az A halmaznak van legkisebb eleme.

Q: Az A halmaz alulról korlátos.

- **1.209.** Legyen $A \cap B \neq \emptyset$. Mit tudunk mondani $\sup A, \sup B, \sup(A \cup B), \sup(A \cap B)$ és $\sup(A \setminus B)$ kapcsolatáról?
- **1.210.** Legyen $A=(0,1),\ B=[-\sqrt{2},\sqrt{2}]$ és $C=\left\{\frac{1}{2^n}+\frac{1}{2^m}:n,m\in\mathbb{N}^+\right\}$. Határozzuk meg amennyiben léteznek a fenti halmazok szuprémumát, infimumát, maximumát és minimumát.
- **1.211.** Legyen A egy tetszőleges számhalmaz, továbbá

$$B=\left\{ -a:a\in A\right\} ,C=\left\{ \frac{1}{a}:a\in A,a\neq 0\right\} .$$

Milyen kapcsolat van a felső és alsó határok között?

Határozzuk meg a következő halmazok minimumát, maximumát, infimumát és szuprémumát, ha vannak!

1.214.
$$\left\{ \frac{1}{2n-1} : n \in \mathbb{N}^+ \right\}$$

1.216.
$$\left\{ \frac{1}{n} + \frac{1}{\sqrt{n}} : n \in \mathbb{N}^+ \right\}$$

1.217.
$$\{ \sqrt[n]{3} : n \in \mathbb{N}^+ \}$$

1.218.
$$\{x: x \in (0,1) \cap \mathbb{Q}\}$$

1.219.
$$\left\{ \frac{1}{n} + \frac{1}{k} : n, k \in \mathbb{N}^+ \right\}$$

1.220.
$$\{\sqrt{n+1} - \sqrt{n} : n, k \in \mathbb{N}^+\}$$

$$\boxed{\mathbf{1.221.}} \quad \left\{ n + \frac{1}{n} : n \in \mathbb{N}^+ \right\}$$

1.222.
$$\left\{ \sqrt[n]{2} : n \in \mathbb{N}^+ \right\}$$

1.223.
$$\{\sqrt[n]{2^n - n} : n \in \mathbb{N}\}$$

- 1.224. Legyen H a valós számok egy nem üres részhalmaza. Mi a következő állítások logikai kapcsolata?
 - (a) H alulról nem korlátos.
- (b) *H*-nak nincs legkisebb eleme.
- (c) $\forall x \in H \ \exists y \in H \ (y < x)$. (d) $\forall y \in H \ \exists x \in H \ (y < x)$.
- 1.225. Tudjuk, hogy c felső korlátja H-nak. Következik-e ebből, hogy sup H =
- 1.226. Tudjuk, hogy H-nak nincs c-nél kisebb felső korlátja. Következik-e ebből, hogy sup H = c?
- 1.227. Legyenek A és B a valós számok nem üres részhalmazai. Bizonyítsuk be, hogy ha

$$\forall a \in A \ \exists b \in B (a < b).$$

akkor $\sup A \leq \sup B$.

1.228. Bizonyítsuk be, hogy alulról korlátos, nem üres halmaznak van alsó határa!

Legyenek x,y,A,B tetszőleges valós számok, ε pedig pozitív valós szám. Mi a P és Q állítások logikai kapcsolata, azaz melyikből következik a másik?

1.229. P:
$$|x - A| < \varepsilon$$

Q:
$$A - \varepsilon < x < A + \varepsilon$$

1.230. P:
$$|x-y| < 2\varepsilon$$

Q:
$$|x - A| < \varepsilon$$
 és $|y - A| < \varepsilon$

1.231.
$$| \mathbf{P} : |x| < A \text{ és } |y| < B$$

Q:
$$|x| - |y| < A - B$$

1.232.
$$| \mathbf{P} : |x| < A \text{ és } |y| < B$$

P:
$$|x| < A \text{ és } |y| < B$$
 Q: $|x| + |y| < A + B$

1.233. | **P:**
$$|x| < A \text{ és } |y| < B$$

Q:
$$|x| - |y| < A + B$$

- 1.234. Adjunk példát olyan nem üres valós számhalmazra, amelyik korlátos, de nincs legkisebb eleme!
- 1.235. Tegyük fel, hogy a $H\subset\mathbb{R}$ halmaz nem üres. Mi a következő állítások logikai kapcsolata, azaz melyikből következik a másik?
 - \mathbf{P} : H-nak nincs minimuma.
- **Q:** $\forall a \in \mathbb{R}^+ \ \exists b \in H \quad b < a$

2. fejezet

Számsorozatok konvergenciája

2.1. Az (a_n) sorozat konvergens és tart a $b \in \mathbb{R}$ számhoz, ha

$$\forall \varepsilon > 0 \ \exists n_0 \ \forall n \ge n_0 (|a_n - b| < \varepsilon).$$

Egy adott ε -hoz tartozó n_0 természetes számot küszöbindexnek nevezzük. Ha az (a_n) sorozat tart a b számhoz, ezt a következőképpen jelölhetjük:

$$\lim_{n\to\infty}a_n=b \text{ vagy } \lim a_n=b \text{ vagy } a_n\to b, \text{ ha } n\to\infty \text{ vagy } a_n\to b.$$

Ha az (a_n) sorozat nem konvergens, akkor azt mondjuk, hogy az (a_n) sorozat **divergens**.

2.2. Azt mondjuk, hogy az (a_n) sorozat **határértéke** ∞ , vagy (a_n) tart végtelenhez, ha

$$\forall P \in \mathbb{R} \ \exists n_0 \ \forall n > n_0(a_n > P).$$

Ennek jele

$$\lim_{n\to\infty}a_n=\infty \text{ vagy }\lim a_n=\infty \text{ vagy }a_n\to\infty \text{, ha }n\to\infty \text{ vagy }a_n\to\infty.$$

2.3. Azt mondjuk, hogy az (a_n) sorozat határértéke - ∞ , vagy (a_n) tart mínusz végtelenhez, ha

$$\forall P \in \mathbb{R} \ \exists n_0 \ \forall n \ge n_0 (a_n < P).$$

Ennek jele

$$\lim_{n\to\infty} a_n = -\infty \text{ vagy } \lim a_n = -\infty \text{ vagy } a_n \to -\infty,$$
 ha $n\to\infty$ vagy $a_n\to-\infty.$

2.4. Azt mondjuk, hogy az (a_n) sorozat **oszcillálva divergens**, ha nincs sem véges, sem végtelen határértéke.

2.5. Rendőr-szabály. Ha valahonnan kezdve $a_n \leq b_n \leq c_n$, létezik az (a_n) és a (c_n) sorozat határértéke és

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n,$$

akkor a (b_n) sorozatnak is létezik a határértéke és

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = \lim_{n \to \infty} c_n,$$

2.1. Sorozatok határértéke

Legyen az (a_n) sorozat a következőképp megadva: $a_n = 1 + \frac{1}{\sqrt{n}}$. A feladatokban szereplő n és n_0 jelek pozitív egész számokat jelölnek.

- 2.1. Adjunk meg olyan n_0 számot, hogy $\forall n > n_0$ esetén teljesüljön, hogy
 - (a) $|a_n 1| < 0, 1$
- **(b)** $|a_n 1| < 0,01$
- 2.2. Van-e olyan n_0 szám, hogy $\forall n > n_0$ esetén teljesül, hogy $|a_n - 2| < 0,001$?
- 2.3. Igaz-e, hogy
 - (a) $\forall \varepsilon > 0 \quad \exists n_0 \quad \forall n > n_0 \quad (|a_n 1| < \varepsilon)$
 - **(b)** $\exists n_0 \quad \forall \varepsilon > 0 \quad \forall n > n_0 \quad (|a_n 1| < \varepsilon)$
 - (c) $\exists \varepsilon > 0 \quad \exists n_0 \quad \forall n > n_0 \quad (|a_n 1| < \varepsilon)$
 - (d) $\exists \varepsilon > 0 \quad \exists n_0 \quad \forall n > n_0 \quad (|a_n 1| > \varepsilon)$
 - (e) $\forall \varepsilon > 0 \quad \exists n_0 \quad \forall n \le n_0 \quad (|a_n 1| < \varepsilon)$
 - (f) $\forall \varepsilon > 0 \quad \exists n_0 \quad \forall n \leq n_0 \quad (|a_n 1| > \varepsilon)$

Adjunk meg olyan N küszöbindexet, ahonnan kezdve az egyik sorozat nagyobb, mint a másik!

2.4.
$$a_n = 10n^2 + 25$$

$$b_n = n^3$$

2.5.
$$a_n = 4n^5 - 3n^2 - 7$$
 $b_n = 10n + 30$

$$b_n = 10n + 30$$

2.6.
$$a_n = 3^n - n^2$$

$$b_n = 2^n + n$$

2.7.
$$a_n = 2^n + 3^n$$

$$b_n = 4^n$$

2.8.
$$a_n = 2^n$$

$$b_n = n!$$

2.9.
$$a_n = n!$$

$$b_n = n^n$$

2.10.
$$a_n = \sqrt{n+1} - \sqrt{n}$$
 $b_n = \frac{1}{n}$

$$b_n = \frac{1}{2}$$

2.11.
$$a_n = 2^n$$

$$b_n = n^3$$

2.12.
$$a_n = 0,999^n$$
 $b_n = \frac{1}{n^2}$

$$b_n = \frac{1}{2}$$

2.13.
$$a_n = 10^n$$

$$b_n = n!$$

Keressünk olyan N számot, hogy $\forall n > N$ esetén teljesüljön, hogy

2.14.
$$1,01^n > 1000;$$

2.15.
$$0,9^n < \frac{1}{100};$$

2.16.
$$\sqrt[n]{2} < 1,01.$$

2.17.
$$\sqrt[n]{n} < 1,0001.$$

2.18.
$$n^2 > 6n + 15$$

2.19.
$$n^3 > 6n^2 + 15n + 37$$

2.20.
$$n^3 - 4n + 2 > 6n^2 - 15n + 37$$

2.21.
$$n^5 - 4n^2 + 2 > 6n^3 - 15n + 37$$

Mutassuk meg, hogy van olyan n_0 szám, amire igaz, hogy minden $n > n_0$ esetén

2.22.
$$\int \sqrt{n+1} - \sqrt{n} < 0,01$$

2.23.
$$\sqrt{n+3} - \sqrt{n} < 0,01$$

2.24.
$$\sqrt{n+5} - \sqrt{n+1} < 0.01$$
 2.25. $\sqrt{n^2+5} - n < 0.01$

$$\sqrt{n^2 + 5} - n < 0.01$$

Bizonyítsuk be az alábbi egyenlőtlenségeket!

2.26. $\forall n > 10 \text{ eset\'en } 2^n > n^3;$ **2.27.** $\sqrt{n} \le 1 + \frac{1}{\sqrt{2}} + \ldots + \frac{1}{\sqrt{n}} < 2\sqrt{n}.$

2.28. Melyik állításból következik a másik?

P: Az (a_n) sorozatban van legnagyobb és legkisebb tag.

Q: Az (a_n) sorozat korlátos.

2.29. Igaz-e, hogy b pontosan akkor határértéke az (a_n) sorozatnak, ha

(a) bármely $\varepsilon > 0$ -ra az a_n sorozatnak végtelen sok tagja van ε -nál közelebb b-hez?

(b) bármely $\varepsilon > 0$ -ra az a_n sorozatnak csak véges sok tagja van b-től legalább ε távolságban?

(c) van olyan $\varepsilon > 0$, amelyre az a_n sorozatnak végtelen sok tagja van ε -nál közelebb b-hez?

(d) van olyan $\varepsilon > 0$, amelyre az a_n sorozatnak végtelen sok tagja van b-től legalább ε távolságban?

Mit mondhatunk a $(-a_n)$ sorozat határértékéről, ha

2.30. $\lim_{n\to\infty} a_n = a \ (a\in\mathbb{R});$

2.32. $\lim a_n = -\infty$?

2.33. a_n oszcillálva divergens?

2.34. Mi az alábbi két állítás logikai kapcsolata?

 $\mathbf{P:} \lim_{n \to \infty} a_n = \infty$

 \mathbf{Q} : (a_n) alulról korlátos, de felülről nem korlátos.

Határozzuk meg a következő sorozatok határértékét, és adjunk meg egy ε -tól függő küszöbindexet:

2.35.
$$\frac{(-1)^n}{n}$$

2.36.
$$\frac{1}{\sqrt{n}}$$

2.37.
$$\frac{1+\sqrt{n}}{n}$$

2.38.
$$\frac{n}{n+1}$$

2.39.
$$\frac{5n-1}{7n+2}$$

$$2.40. 2n^6 + 3n^5 \over 7n^6 - 2$$

2.41.
$$\frac{n+\frac{1}{n}}{n+1}$$

2.42.
$$\sqrt{n+1} - \sqrt{n}$$

2.43.
$$\sqrt{n^2+1}-n$$

2.44.
$$\frac{1}{n-\sqrt{n}}$$

2.45.
$$\frac{1+\cdots+n}{n^2}$$

$$2.46. \qquad n\left(\sqrt{1+\frac{1}{n}}-1\right)$$

2.47.
$$\sqrt{n^2+1} + \sqrt{n^2-1} - 2n$$

2.48.
$$\sqrt[3]{n+2} - \sqrt[3]{n-2}$$

- 2.49. Konvergensek-e vagy divergensek-e a következő sorozatok? Határozzuk meg a határértékeket, ha vannak!
 - (a) $a_n = \begin{cases} 3, & \text{ha } n \text{ páros} \\ 4, & \text{ha } n \text{ páratlan} \end{cases}$ (b) $a_n = \begin{cases} 3, & \text{ha } n \le 100 \\ 4, & \text{ha } n > 100 \end{cases}$
 - (c) $a_n = \begin{cases} 3n, & \text{ha } n \text{ páros} \\ 4n^2, & \text{ha } n \text{ páratlan} \end{cases}$ (d) $a_n = \begin{cases} n, & \text{ha } n \text{ páros} \\ 0, & \text{ha } n \text{ páratlan} \end{cases}$
- Bizonyítsuk be, hogy az $\frac{1}{n}$ sorozat nem tart 7-hez! 2.50.
- Bizonyítsuk be, hogy a $(-1)^n \frac{1}{n}$ sorozat nem tart 7-hez! 2.51.
- 2.52. Bizonyítsuk be, hogy a $(-1)^n$ sorozat nem tart 7-hez!
- 2.53. Bizonyítsuk be, hogy a $(-1)^n$ sorozat divergens!
- 2.54. Bizonyítsuk be, hogy konvergens sorozatnak mindig van legkisebb vagy legnagyobb tagja.

- **2.55.** Adjunk példát arra, hogy $a_n b_n \to 0$ de $\frac{a_n}{b_n} \nrightarrow 1$
- **2.56.** Bizonyítsuk be, hogy ha (a_n) konvergens, akkor $(|a_n|)$ is. Igaz-e az állítás megfordítása ?
- **2.57.** Abból, hogy $a_n^2 \to a^2$ következik-e, hogy $a_n \to a$? És abból, hogy $a_n^3 \to a^3$ következik-e, hogy $a_n \to a$?
- **2.58.** Bizonyítsuk be, hogy ha $a_n \to a > 0$, akkor $\sqrt{a_n} \to \sqrt{a}$.

Melyik állításból következik, hogy $a_n \to \infty$?

- **2.59.** $\forall K$ esetén a (K, ∞) intervallumon kívül az a_n sorozatnak csak véges sok tagja van.
- **2.60.** $\forall K$ eseten a (K, ∞) intervallumban az a_n sorozatnak végtelen sok tagja van.
- **2.61.** Tegyük fel, hogy $\lim_{n\to\infty} a_n = \infty$. Melyik állítás igaz erre a sorozatra? Melyik állításból következik, hogy $\lim_{n\to\infty} a_n = \infty$?
 - (a) Az a_n sorozatnak nincs legnagyobb tagja.
 - (b) Az a_n sorozatnak van legkisebb tagja.
 - (c) A $(3,\infty)$ intervallumon kívül az a_n sorozatnak csak véges sok tagja van
 - (d) $\forall K$ esetén a (K, ∞) intervallumon kívül az a_n sorozatnak csak véges sok tagja van.
 - (e) A $(3, \infty)$ intervallumban az a_n sorozatnak végtelen sok tagja van.
 - (f) $\forall K$ eseten a (K, ∞) intervallumban az a_n sorozatnak végtelen sok tagja van.
- **2.62.** Igaz-e, hogy ha egy sorozatnak van (véges vagy végtelen) határértéke, akkor a sorozat alulról vagy felülről korlátos?
- **2.63.** Mi az **A** és a **B** állítások logikai kapcsolata, azaz melyikből következik a másik?

P: Az (a_n) sorozat szigorúan monoton nő.

Q: Az (a_n) sorozat tart a végtelenhez.

Lehet-e az a_n sorozat határértéke $-\infty,\,\infty$ vagy egy valós szám, ha

- 2.64. a sorozatnak végtelen sok 3-nál nagyobb tagja van?
- 2.65. a sorozatnak végtelen sok 3-nál kisebb tagja van?
- 2.66. a sorozatnak van legnagyobb tagja?
- 2.67. a sorozatnak van legkisebb tagja?
- 2.68. a sorozatnak nincs legkisebb tagja?
- 2.69. a sorozatnak nincs legnagyobb tagja?
- 2.70. Van-e olyan oszcillálva divergens sorozat, amelyik
 - (a) korlátos

- (b) nem korlátos?
- 2.71. Egy sorozatnak végtelen sok pozitív és végtelen sok negatív tagja van. Lehet-e a sorozat konvergens?

A következő, végtelenbe tartó sorozatokhoz keressünk küszöbindexet:

- $n \sqrt{n}$ 2.72.
- 2.73.
- $\frac{\sqrt{1} + \sqrt{2} + \dots + \sqrt{n}}{n}$ 2.74.
- $\frac{n^2 10n}{10n + 100}$ 2.75.

2.76.

- 2.77. $\overline{2^n}$
- Tetszőleges a valós szám esetén határozzuk meg $\frac{n^2+1}{n+1}-an$ határér-2.78. tékét.
- Tetszőleges a valós szám esetén határozzuk meg $\sqrt{n^2 n + 1} an$ ha-2.79. tárértékét.

- Tetszőleges a, b valós számok esetén határozzuk meg $\sqrt{(n+a)(n+b)}$ 2.80. n határértékét.
- 2.81. Bizonyítsuk be, hogy ha $a_{n+1} - a_n \to c > 0$, akkor $a_n \to \infty$.
- Bizonyítsuk be, hogy ha $a_n>0,\ \frac{a_{n+1}}{a_n}\to c>1,$ akkor $a_n\to\infty.$ 2.82.
- 2.83. Melyek azok az x valós számok, amelyekre a tizedestört jegyeiből álló sorozat oszcillálva divergens?

2.2. A határérték tulajdonságai

Meg lehet-e mondani az adott egyenlőtlenségek alapján, hogy a b_n sorozatnak van-e határértéke, illetve meg lehet-e határozni a határértéket, ha van? Ha igen, határozzuk meg b_n határértékét!

2.84.
$$\frac{1}{n} < b_n < \frac{2}{n}$$

2.85.
$$-\frac{1}{n} \le b_n \le \frac{1}{\sqrt{n}}$$

2.86.
$$\frac{1}{n} < b_n < \sqrt{n}$$

2.87.
$$n \leq b_n$$

2.88.
$$b_n < -1,01^n$$

2.89.
$$b_n < n^2$$

- 2.90. Bizonyítsuk be, hogy ha az (a_n) sorozatnak nincs végtelenhez tartó részsorozata, akkor a sorozat felülről korlátos.
- 2.91. Bizonyítsuk be, hogy ha $(a_{2n}), (a_{2n+1}), (a_{3n})$ konvergensek, akkor (a_n)
- 2.92. Lehetséges-e, hogy az (a_n) sorozatnak nincs konvergens részsorozata, de $(|a_n|)$ konvergens?

Legyen a egy valós szám és $a_n \to a$. Bizonyítsuk be, hogy

- 2.93. ha a > 1, akkor $a_n^n \to \infty$. 2.94. ha |a| < 1, akkor $a_n^n \to 0$.
- **2.95.** ha a > 0, akkor $\sqrt[n]{a_n} \to 1$. **2.96.** ha a < -1, akkor a_n^n divergens.
- 2.97. Bizonyítsuk be, hogy ha $(a_n + b_n)$ konvergens és (b_n) divergens, akkor (a_n) divergens.
- 2.98. Igaz-e, hogy ha $(a_n \cdot b_n)$ konvergens és (b_n) divergens, akkor (a_n) is divergens?
- 2.99. Igaz-e, hogy ha (a_n/b_n) konvergens és (b_n) divergens, akkor (a_n) is divergens?
- Bizonyítsuk be, hogy ha $\lim \frac{a_n-1}{a_n+1}=0$, akkor (a_n) konvergens és **2.100**. $\lim a_n = 1.$
- Tegyük fel, hogy az (a_n) sorozatra teljesül, hogy $\frac{a_n-5}{a_n+3} \to \frac{5}{13}$. Bizo-2.101. nyítsuk be, hogy $a_n \to 10$.
- 2.102. Tegyük fel, hogy az (a_n) sorozatra $\sqrt[n]{a_n} \to 0, 3$. Bizonyítandó, hogy
- Legyen p(x) egy polinom. Bizonyítsuk be, hogy $\frac{p(n+1)}{p(n)} \to 1$. 2.103.

Tegyük fel, hogy az a_n sorozatnak van határértéke. Mi a következő állítások logikai kapcsolata?

- **P:** Minden elég nagy *n*-re $\frac{1}{n} < a_n$ **Q:** $\lim_{n \to \infty} a_n > 0$ 2.104.
- **P:** Minden elég nagy n-re $\frac{1}{n} \le a_n$ **Q:** $\lim_{n \to \infty} a_n \ge 0$ 2.105.
- **P:** Minden elég nagy n-re $\frac{1}{n} < a_n$ **Q:** $\lim_{n \to \infty} a_n \ge 0$ 2.106.
- **P:** Minden elég nagy *n*-re $\frac{1}{n} \le a_n$ **Q:** $\lim_{n \to \infty} a_n > 0$ 2.107.

Tegyük fel, hogy az a_n és b_n sorozatnak van határértéke. Mi a következő állítások logikai kapcsolata?

P: Minden elég nagy n-re $a_n < b_n$ **Q:** $\lim_{n \to \infty} a_n < \lim_{n \to \infty} b_n$ 2.108.

2.109. **P:** Minden elég nagy *n*-re $a_n \leq b_n$ **Q:** $\lim_{n \to \infty} a_n \leq \lim_{n \to \infty} b_n$

Melyik állításokból következik, hogy az a_n sorozatnak van határértéke? Melyik állításokból következik, hogy a_n konvergens? Melyik állításokból következik, hogy a_n divergens?

2.110. b_n konvergens és $a_n > b_n$ minden elég nagy n-re.

 $\lim_{n\to\infty} b_n = \infty \text{ és } a_n > b_n \text{ minden elég nagy } n\text{-re.}$ 2.111.

 $\lim_{n\to\infty} b_n = -\infty$ és $a_n > b_n$ minden elég nagy n-re. 2.112.

2.113. b_n és c_n konvergens és $b_n \le a_n \le c_n$ minden elég nagy n-re.

2.114. $\lim_{n \to \infty} b_n = \infty$ és $a_n < b_n$ minden elég nagy *n*-re.

Korlátosak-e felülről a következő sorozatok? Határozzuk meg a határértékeket, ha vannak!

 $\frac{1+2+\cdots+n}{n}$ **2.116.** $\frac{1+2+\cdots+n}{n^2}$ 2.115.

 $\frac{\sqrt{1} + \sqrt{2} + \dots + \sqrt{n}}{n}$ **2.118.** $\frac{\sqrt{1} + \sqrt{2} + \dots + \sqrt{n}}{n^2}$

Konvergensek-e vagy divergensek-e a következő sorozatok? Határozzuk meg a határértékeket, ha vannak!

2.119. $\sqrt[n]{2^n + 3^n}$ 2.120. $\sqrt[n]{3^n - 2^n}$

 $\sqrt[n]{2^n - n}$ 2.121. $\sqrt[n]{7 + (-1)^n}$ 2.122.

 $\sqrt[n]{2^n - n^2}$ 2.123. $\sqrt[n]{2^n + n^2}$ 2.124.

2.125.
$$\frac{1-2+3-\cdots-2n}{\sqrt{n^2+1}}$$

$$\boxed{\textbf{2.126.}} \quad \left(\frac{n-1}{3n}\right)^n$$

$$2.127. \frac{n^3 - n^2 + 1}{\sqrt{n^6 + 1} + 100n^2 + n + 1}$$

2.128.
$$\sqrt[n]{\frac{n^3-n^2+1}{n^6+100n^2+n+1}}$$

2.129.
$$\sqrt[n]{\frac{2^n+n^2+1}{3^n+n^3+1}}$$

2.130.
$$\frac{n^2 + (-1)^n}{3n^2 + 1}$$

2.131.
$$\left(1 + \frac{1}{n}\right)^{n^2}$$

2.132.
$$\frac{n^2 - 1}{n^2 + 1}$$

2.133.
$$\frac{1}{n^3}$$

2.134.
$$\frac{5n-1}{7n+2}$$

2.135.
$$\frac{n}{n+1}$$

2.136.
$$\frac{2n^6 + 3n^5}{7n^6 - 2}$$

2.137.
$$\frac{n+1/n}{n+1}$$

2.138.
$$\frac{7n^5+2}{5n-1}$$

$$2.139. \frac{3n^7 + 4}{-5n^2 + 2}$$

2.140.
$$\frac{2^n + 3^n}{4^n + (-7)^n}$$

2.141.
$$\frac{3n^{5/3} + n\sqrt{n}}{n^{1/4} + \sqrt[5]{n}}$$

2.142.
$$\frac{7n-2n^3}{3n^3+18n^2-9}$$

Mi a következő állításpárok logikai kapcsolata?

2.143. **P:** a_n konvergens és b_n konver- **Q:** $a_n + b_n$ konvergens

2.144. P:
$$a_n + b_n \to \infty$$

Q:
$$a_n \to \infty$$
 és $b_n \to \infty$

[2.145.] **P:**
$$a_n + b_n \to \infty$$

Q:
$$a_n \to \infty$$
 vagy $b_n \to \infty$

2.146. P:
$$a_n \cdot b_n \to 0$$

Q:
$$a_n \to 0$$
 vagy $b_n \to 0$

2.147. P:
$$a_n$$
 és b_n korlátos

Q:
$$a_n + b_n$$
 korlátos

$$\begin{bmatrix} 2.148. \end{bmatrix}$$
 P: a_n és b_n korlátos

Q:
$$a_n \cdot b_n$$
 korlátos

- 2.149. Mutassunk példákat az $a_n + b_n$ sorozat lehetséges viselkedésére, ha $\lim_{n \to \infty} a_n = \infty \text{ és } \lim_{n \to \infty} b_n = -\infty.$
- 2.150. Mutassunk példákat az $a_n \cdot b_n$ sorozat lehetséges viselkedésére, ha $\lim_{n \to \infty} a_n = 0 \text{ és } \lim_{n \to \infty} b_n = \infty.$
- Mutassunk példákat az $\frac{a_n}{b_n}$ sorozat lehetséges viselkedésére, ha 2.151. $\lim_{n \to \infty} a_n = 0 \text{ és } \lim_{n \to \infty} b_n = 0.$
- Mutassunk példákat az $\frac{a_n}{b_n}$ sorozat lehetséges viselkedésére, ha 2.152. $\lim_{n\to\infty} a_n = \infty \text{ és } \lim_{n\to\infty} b_n = \infty.$
- 2.153. Tegyük fel, hogy a b_n sorozat egyetlen tagja sem 0. Mi a ${\bf P}$ és a ${\bf Q}$ állítások logikai kapcsolata, azaz melyikből következik a másik?

P: $b_n \to \infty$

 $\mathbf{Q}: \frac{1}{b_n} \to 0$

2.154. Mi a ${\bf P}$ és a ${\bf Q}$ állítások logikai kapcsolata, azaz melyikből következik a

P: $\frac{a_n}{b_n} \to 1$

Q: $a_n - b_n \to 0$

2.155. Tegyük fel, hogy $a_n \to \infty$ és $b_n \to \infty$. Mi a **P** és a **Q** állítások logikai kapcsolata, azaz melyikből következik a másik?

P: $\frac{a_n}{b_n} \to 1$

Q: $a_n - b_n \to 0$

Tegyük fel, hogy $a_n \to 0$ és $b_n \to 0$. Mi a **P** és a **Q** állítások logikai 2.156. kapcsolata, azaz melyikből következik a másik?

P: $\frac{a_n}{b_n} \to 1$

Q: $a_n - b_n \to 0$

2.3. Monoton sorozatok

Legyen (a_n) és (b_n) két monoton sorozat. Mit tudunk mondani a monotonitás szempontjából a következő sorozatokról? Milyen további feltételek mellett lesznek monotonok?

2.157.
$$(a_n + b_n)$$

$$[\ \, {f 2.158.} \] \ \, (a_n - b_n)$$

2.159.
$$(a_n \cdot b_n)$$

2.160.
$$\left(\frac{a_n}{b_n}\right)$$

- 2.161. Legyen $a_1 = 1$, és $n \ge 1$ esetén $a_{n+1} = \sqrt{2a_n}$. Bizonyítsuk be, hogy az a_n sorozat monoton növő!
- Legyen $a_1 = \frac{1}{2}$, és $n \ge 1$ esetén $a_{n+1} = 1 \sqrt{1 a_n}$. Bizonyítsuk be, hogy a sorozat minden tagja pozitív, továbbá, hogy a sorozat monoton 2.162. csökkenő!
- 2.163. Legyen $a_1 = 0, 9$, és $n \ge 1$ esetén $a_{n+1} = a_n - a_n^2$. Bizonyítsuk be, hogy a sorozat minden tagja pozitív, továbbá, hogy a sorozat monoton csökkenő! Mutassuk meg, hogy van olyan $n \in \mathbb{N}^+$, amelyre igaz, hogy $a_n < 10^{-6}$, és adjunk példát ilyen n számra!
- Legyen $a_1 > 0$, és minden $n \in \mathbb{N}^+$ esetén $\frac{a_{n+1}}{a_n} > 1, 1$. Mutassuk meg, 2.164. hogy van olyan $n \in \mathbb{N}^+$, amelyre igaz, hogy $a_n > 10^6$, és adjunk példát ilyen n számra!

Mi a következő állítások logikai kapcsolata, azaz melyikből következik a másik?

- 2.165. **P:** Az a_n sorozat monoton nő.
 - **Q:** Az a_n sorozat végtelenhez tart.
- 2.166. **P:** Az a_n sorozat monoton csökken.
 - **Q:** Az a_n sorozat mínusz végtelenhez tart.
- 2.167. Tegyük fel, hogy az (a_n) sorozat tagjai n > 1 esetén kielégítik a $a_n \le$ $\frac{a_{n-1}+a_{n+1}}{2}$ egyenlőtlenséget. Bizonyítsuk be, hogy az (a_n) sorozat nem lehet oszcillálva divergens.
- Legyen $a_1 = a > 0$ tetszőleges, $a_{n+1} = \frac{1}{2} \left(a_n + \frac{a}{a_n} \right)$. Mutassuk meg, 2.168. hogy $a_n \to \sqrt{a}$.

Határozzuk meg a következő rekurzív sorozatok határértékét, ha van! A rekurzív képletekben $n \ge 1$.

2.169.
$$a_1 = 2, \ a_{n+1} = \frac{2a_n}{1+a_n^2}$$
 2.170. $a_1 = 1, 5, \ a_{n+1} = -a_n + 1$

2.171.
$$a_1 = 3, \ a_{n+1} = \frac{a_n + \frac{5}{a_n}}{2}$$
 2.172. $a_1 = 6, \ a_{n+1} = \frac{a_n + \frac{5}{a_n}}{2}$

2.173.
$$a_1 = 0, \ a_{n+1} = \sqrt{2 + a_n}$$
 2.174. $a_1 = 0, \ a_{n+1} = \frac{1}{2 - a_n}$

2.175.
$$a_1 = 0, \ a_{n+1} = \frac{1}{4 - a_n}$$
 2.176. $a_1 = 0, \ a_{n+1} = \frac{1}{1 + a_n}$

2.177.
$$a_1 = 1, \ a_{n+1} = a_n + \frac{1}{a_n}$$
 2.178. $a_1 = 0, 9, \ a_{n+1} = a_n - a_n^2$

2.179.
$$a_1 = 1, \ a_{n+1} = \sqrt{2a_n}$$
 2.180. $a_1 = 1, \ a_{n+1} = a_n + \frac{1}{a_n^3 + 1}$

Korlátosak-e, illetve monotonok-e a következő sorozatok? Határozzuk meg a határértékeket, ha vannak!

2.181.
$$\left(1+\frac{1}{n}\right)^n$$
 2.182. $\left(1+\frac{1}{n}\right)^{n+1}$

2.183.
$$\left(1 - \frac{1}{n}\right)^n$$
 2.184. $\left(1 + \frac{1}{2n}\right)^n$

2.4. A Bolzano-Weierstrass-tétel és a Cauchy-kritérium

Írjuk fel a Cauchy-kritérium tagadását egy (a_n) sorozatra! Mi a felírt 2.185. állítás logikai kapcsolata az " (a_n) divergens" állítással?

Mi a következő állításpárok logikai kapcsolata?

2.186. P: a_{2n} és a_{2n+1} konvergens Q: a_n konvergens

2.187. **P:** a_{2n} , a_{2n+1} és a_{3n} konvergens **Q:** a_n konvergens

2.188. **P:** $a_{2n} \to 5$ Q: $a_n \to 5$

Következik-e valamelyik állításból, hogy a sorozat konvergens?

2.189. $a_{n+1} - a_n \to 0$, ha $n \to \infty$

 $|a_n - a_m| < \frac{1}{n+m}$ minden n, m-re 2.190.

Döntsük el az alábbi sorozatokról, hogy van-e konvergens részsorozatuk!

2.191. $(-1)^n$ 2.192.

2.194. $(-1)^n \frac{1}{n}$ 2.193. \sqrt{n}

2.195. Bizonyítsuk be, hogy ha az (a_n) sorozatnak nincs konvergens részsorozata, akkor $|a_n| \to \infty$.

2.196. Bizonyítsuk be, hogy ha (a_n) korlátos és minden konvergens részsorozata a-hoz tart, akkor $a_n \to a$.

2.197. Bizonyítsuk be, hogy ha az (a_n) sorozatnak nincs két, különböző határértékhez tartó részsorozata, akkor a sorozatnak van határértéke.

Bizonyítsuk be, hogy ha $|a_{n+1}-a_n|\leq 2^{-n}$ minden
 n-re,akkor az (a_n) 2.198. sorozat konvergens.

2.199. Tegyük fel, hogy $a_{n+1}-a_n\to 0$. Következik-e ebből, hogy $a_{2n}-a_n\to 0$?

2.5. Sorozatok nagyságrendje

2.200. Bizonyítsuk be, hogy $n! \prec n^n$ igaz!

2.201. Tegyük az alábbi sorozatokat nagyságrend szerint sorba!

$$(n^7), \qquad (n^2 + 2^n), \qquad (100\sqrt{n}), \qquad \left(\frac{n!}{10}\right)$$

Illesszük be az $n \prec n^2 \prec n^3 \prec \cdots \prec 2^n \prec 3^n \prec \cdots \prec n! \prec n^n$ sorba a 2.202. megfelelő helyre \sqrt{n} -et, $\sqrt[3]{n}$ -et, ..., $\sqrt[k]{n}$ -et!

2.203. Keressük meg az alábbi sorozatok között az összes aszimptotikusan egyenlő párt!

$$(n!), (n^n), (n!+n^n), (\sqrt{n}), (\sqrt[n]{n}), (\sqrt{n+1}), (\sqrt[n]{2})$$

Konvergensek-e vagy divergensek-e a következő sorozatok? Határozzuk meg a határértékeket, ha vannak!

2.204.
$$\frac{2^n}{3^n}$$

$$2.205.$$
 $\frac{3^n}{2^n}$

2.206.
$$(1,1)^n$$

$$2.207. \left(-\frac{4}{5}\right)^n$$

2.208.
$$\frac{1}{(1,2)^n+1}$$

2.209.
$$\frac{n+2}{\sqrt{n}-3^{-n}}$$

2.210.
$$\frac{3,01^n}{2^n+3^n}$$

2.211.
$$\frac{3^n}{(-3)^n}$$

2.212.
$$\frac{3^n - \sqrt{n} + n^{10}}{2^n - \sqrt[n]{n} + n!}$$

2.213.
$$\frac{n^{100}}{100^n}$$

2.214.
$$\frac{10^n}{n!}$$

2.215.
$$0,99^n n^2$$

2.216.
$$\frac{n! - 3^n}{n^{10} - 2^n}$$

2.217.
$$\frac{1,01^n}{n^2}$$

2.218.
$$\frac{n^3}{1, 2^n}$$

$$\left[\ {f 2.219.} \ \right] \ \ \sqrt[n]{2^n+n-1}$$

$$\boxed{\textbf{2.220.}} \quad \frac{3^{n+6} + n^2}{2^{n+3}}$$

$$2.221. \quad \frac{4^n + 5^n}{6^n + (-7)^n}$$

2.6. Vegyes feladatok

- Legyen $a_n=\frac{1}{n}+\frac{1}{n}+\cdots+\frac{1}{n}$ (n tagú az összeg). Mivel a tagokat alkotó sorozatok 0-hoz tartanak, ezért az a_n sorozat tart 0-hoz. Másrészt minden n-re $a_n=n\cdot\frac{1}{n}=1$, ezért $a_n\to 1$. Melyik következtetés a hibás, és mi a hiba benne? 2.222.
- Tudjuk, hogy $1 + \frac{1}{n} \to 1$, továbbá $1^n = 1$, ezért $\left(1 + \frac{1}{n}\right)^n \to 1$. 2.223. Másrészt a Bernoulli-egyenlőtlenség felhasználásával bizonyíthatjuk, hogy $\left(1+\frac{1}{n}\right)^n \geq 2$, tehát $\left(1+\frac{1}{n}\right)^n$ határértéke nem lehet kisebb 2-nél. Melyik következtetés a hibás, és mi a hiba benne?
- 2.224. Tegyük fel, hogy $\sqrt[n]{a_n} \to 2$. Mit mondhatunk a $\lim_{n \to \infty} a_n$ határértékről?
- Tegyük fel, hogy $\sqrt[n]{a_n} \to \frac{1}{2}$. Mit mondhatunk a $\lim_{n \to \infty} a_n$ határértékről? 2.225.
- Tegyük fel, hogy $\sqrt[n]{a_n} \to 1$. Mit mondhatunk a $\lim_{n \to \infty} a_n$ határértékről? 2.226.
- 2.227. Tegyük fel, hogy $a_n \to 2$. Mit mondhatunk a $\lim_{n \to \infty} a_n^n$ határértékről?
- Tegyük fel, hogy $a_n \to \frac{1}{2}$. Mit mondhatunk a $\lim_{n \to \infty} a_n^n$ határértékről? 2.228.
- Tegyük fel, hogy $a_n \to 1$. Mit mondhatunk a $\lim_{n \to \infty} a_n^n$ határértékről? 2.229.

Mutassunk példát olyan a_n sorozatra, amelyre igaz, $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = 1, \text{ és}$

2.230.
$$\lim_{n \to \infty} a_n = 1$$
 2.231.
$$\lim_{n \to \infty} a_n = \infty$$

2.232.
$$\lim_{n \to \infty} a_n = 0$$
 2.233. $\lim_{n \to \infty} a_n = 7$

3. fejezet

Valós függvények határértéke, folytonossága

3.1. Jensen-egyenlőtlenség. Az f függvény akkor és csak akkor konvex az (a,b) intervallumon, ha bárhogy megadva véges sok $x_1,x_2,\ldots,x_n\in(a,b)$

számot és
$$t_1, t_2, \dots, t_n \ge 0$$
 súlyokat úgy, hogy $\sum_{i=1}^n t_i = 1$

$$f\left(\sum_{i=1}^{n} t_i x_i\right) \le \sum_{i=1}^{n} t_i f(x_i),$$

más szóval a súlyozott középen vett függvényérték kisebb vagy egyenlő a függvényértékek súlyozott közepénél.

3.2. Határérték és egyenlőtlenségek kapcsolata.

— Haaegy környezetében $f(x) \leq g(x), \, f$ -nek és g-nek létezik a határértékea-ban, akkor

$$\lim_{x \to a} f(x) \le \lim_{x \to a} g(x).$$

— Ha f-nek és g-nek létezik a határértéke a-ban és

$$\lim_{x \to a} f(x) < \lim_{x \to a} g(x),$$

akkor a egy környezetében f(x) < g(x).

— Rendőr-szabály. Ha $f(x) \leq g(x) \leq h(x)$ a egy környezetében, f-nek és h-nak létezik a határértéke a-ban,

$$\lim_{x \to a} f(x) = \lim_{x \to a} h(x),$$

akkor a g függvénynek is létezik a határértéke a-ban és

$$\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = \lim_{x \to a} h(x).$$

— "0-szor korlátos az 0". Ha $\lim_{x\to a} f(x) = 0$ és g(x) korlátos, akkor

$$\lim_{x \to a} f(x)g(x) = 0.$$

3.3. Folytonosság és határérték kapcsolata.

- Az f függvény akkor és csak akkor folytonos az a pontban, ha az a pontban létezik a függvény határértéke és az megegyezik az f(a) helyettesítési értékkel.
- Az f függvény akkor és csak akkor folytonos jobbról az a pontban, ha az a pontban létezik a függvény jobboldali határértéke és az megegyezik az f(a) helyettesítési értékkel.
- Az f függvény akkor és csak akkor folytonos balról az a pontban, ha az a pontban létezik a függvény baloldali határértéke és az megegyezik az f(a) helyettesítési értékkel.

3.4. Korlátos zárt intervallumon folytonos függvények.

- Weierstrass tétele: Korlátos zárt intervallumon folytonos függvénynek van legnagyobb értéke, azaz maximuma, és van legkisebb értéke, azaz minimuma.
- **Bolzano tétele:** Ha az f(x) függvény folytonos az [a,b] korlátos zárt intervallumon, akkor a függvény f(a) és f(b) között minden értéket felvesz.
- Inverz függvény folytonossága: Korlátos zárt intervallumon folytonos és invertálható függvény értékkészlete egy korlátos zárt intervallum, és ezen a függvény inverze folytonos.

3.5. Egyenletes folytonosság.

- Heine-Borel tétele: Korlátos zárt intervallumon folytonos függvény egyenletesen folytonos.
- Az f(x) függvény akkor és csak akkor egyenletesen folytonos a **korlátos nyílt** (a,b) intervallumon, ha folytonos (a,b)-n és léteznek és végesek a $\lim_{x \to a^+} f(x), \ \lim_{x \to b^-} f(x)$ határértékek.
- Ha f(x) folytonos az $[a, \infty)$ -en, deriválható (a, ∞) -en és a derivált korlátos, akkor f(x) egyenletesen folytonos $[a, \infty)$ -en.

3.1. Függvények globális tulajdonságai

- 3.1. Jelölje [x] az x szám egészrészét, azaz azt a legnagyobb egész számot, amelyik nem nagyobb, mint x. Ábrázoljuk a következő függvényeket!
 - (a) [x]

(b) [-x]

(c) [x+0,5]

- **(d)** [2x]
- Jelölje $\{x\}$ az x szám törtrészét: $\{x\} = x [x]$. Ábrázoljuk a következő 3.2. függvényeket!
 - (a) $\{x\}$

(b) $\{-x\}$

(c) $\{x+0,5\}$

- (d) $\{2x\}$
- 3.3. Függvényt ad-e meg a következő képlet?

$$D(x) = \begin{cases} 1 & \text{ha } x \in \mathbb{Q} \\ 0 & \text{ha } x \notin \mathbb{Q} \end{cases}$$

3.4. Adjuk meg a következő függvények képleteit a grafikonjaik alapján!

(a)

(b)

(c)

(d)

Határozzuk meg a valós számok legbővebb részhalmazát, ahol a következő függvények értelmezve lehetnek!

3.5. $\log_2 x^2$

 $\sqrt{x^2-16}$ 3.6.

3.7. $\sqrt{\sin x}$

- 3.8.
- 3.9. Párosítsuk a függvényeket és a függvénygrafikonokat!
 - (a) $(x-1)^2-4$
- **(b)** $(x-2)^2+2$
- (c) $(x+2)^2+2$
- (d) $(x+3)^2-2$

(A)

(B)

Az alábbi ábrákon az $y=-x^2$ függvény négy eltoltjának a grafikonját 3.10. ábrázoltuk. Írjuk fel a grafikonoknak megfelelő képleteket!

(b)

(c)

(d)

3.11. Vannak-e egyenlők a következő függvények között?

(a)
$$f_1(x) = x$$

(b)
$$f_2(x) = \sqrt{x^2}$$

(c)
$$f_3(x) = (\sqrt{x})^2$$
 (d) $f_4(x) = \ln e^x$

(d)
$$f_4(x) = \ln e^x$$

(e)
$$f_5(x) = e^{\ln x}$$

(f)
$$f_6(x) = (\sqrt{-x})^2$$

 Határozzuk meg a függvényértékeket, haf(x)=x+5 és $g(x)=x^2-3.$ 3.12.

(a)
$$f(g(0))$$

(b)
$$g(f(0))$$

(c)
$$f(g(x))$$

(d)
$$g(f(x))$$

(e)
$$f(f(-5))$$

(f)
$$g(g(2))$$

(g)
$$f(f(x))$$

(h)
$$g(g(x))$$

Határozzuk meg a függvényértékeket, ha f(x) = x - 1 és $g(x) = \frac{1}{x + 1}$. 3.13.

(a)
$$f(g(1/2))$$

(b)
$$g(f(1/2))$$

(c)
$$f(g(x))$$

(d)
$$g(f(x))$$

(e)
$$f(f(2))$$

(f)
$$g(g(2))$$

(g)
$$f(f(x))$$

(h)
$$g(g(x))$$

Melyik függvény páros, melyik páratlan, melyik se nem páros, se nem páratlan, melyik páros is, és páratlan is?

3.14.
$$x^3$$

3.15.
$$x^2$$

3.16. $\sin x$ 3.17. $\cos x$

3.18.
$$2 + \sin x$$

3.19.
$$2 + \cos x$$

3.21.
$$(x+1)^2$$

3.22. 0 3.23. $|x^3|$

3.24.

3.25. $\{x\}$

Tegyük fel, hogy f és g mindenütt értelmezett valós függvények. Döntsük el az alábbi következtetésekről, hogy igazak-e. A válaszokat indokoljuk!

3.26. Ha f páratlan, akkor f(0) = 0.

3.27. Ha f(0) = 0, akkor f páratlan.

3.28. Ha f páros, akkor f(-5) = f(5).

3.29. Ha f(-5) = f(5), akkor f páros.

3.30. Ha f és g páros, akkor fg páros.

3.31. Ha $f(-5) \neq -f(5)$, akkor f nem páratlan.

3.32. Ha f és g páratlan, akkor fg páros.

3.33. Hafés g páratlan, akkor fg páratlan.

3.34. Ábrázoljuk a következő függvények grafikonját! Színezzük be pirossal az x-tengelyen azokat az intervallumokat, ahol a függvény monoton csökken. Van-e olyan függvény ezek között, amelyik az egész értelmezési tartományán monoton csökken?

(a) $\sin x$

(b) $\cos x$

(c) x^2

(d) $\frac{1}{x}$

(e) |x|

(f) $|x^2-2|$

(g) $\operatorname{tg} x$

- (h) ctg x
- 3.35. Van-e olyan függvény, amely R-en monoton nő és monoton csökken? Ha van, akkor adjuk meg az összes ilyen függvényt!

Válaszoljunk az alábbi kérdésekre. A válaszokat indokoljuk!

- 3.36. Lehet-e két szigorúan monoton növő függvény összege szigorúan monoton csökkenő?
- 3.37. Lehet-e két szigorúan monoton növő függvény szorzata szigorúan monoton csökkenő?
- 3.38. Igaz-e, hogy két szigorúan monoton csökkenő függvény összege szigorúan monoton csökkenő?
- 3.39. Igaz-e, hogy két szigorúan monoton csökkenő függvény szorzata szigorúan monoton csökkenő?

Jelölje D(f) az f függvény értelmezési tartományát, R(f) pedig az értékkészletét. Van-e olyan monoton növő függvény, amelyikre igaz, hogy

- 3.40. D(f) = (0,1) és R(f) = [0,1]
- 3.41. D(f) = [0, 1] és R(f) = (0, 1)
- 3.42. Írjuk fel logikai jelekkel, hogy egy függvény korlátos!

Adjunk meg alsó, illetve felső korlátokat a következő függvényekhez, ha vannak! Melyik függvény korlátos?

 x^2 3.43.

3.44. $\sin x$

3.45. $\{x\}$ 3.46.

3.47. $\sin^2 x$ 3.48.

3.49. $\log_2 x$ 3.50.

Tegyük fel, hogy az f függvény mindenütt értelmezett. Írjuk fel logikai jelekkel és adjunk példát arra, hogy az f függvénynek

- 3.51. 3-ban maximuma van!
- 3.52. a maximuma 3.
- 3.53. van maximuma!
- 3.54. nincs minimuma!

Mi a következő állítások logikai kapcsolata, azaz melyikből következik a másik?

3.55. \mathbf{P} : Az f függvénynek van maximuma.

 \mathbf{Q} : Az f függvény felülről korlátos.

3.56. \mathbf{P} : Az f függvénynek nincs minimuma.

 \mathbf{Q} : Az f függvény alulról nem korlátos.

Adjuk meg a következő függvények m minimumát és M maximumát a megadott intervallumokon, ha vannak!

- 3.57.
- $(-\infty, \infty)$
- 3.58.
- [-1, 3]

- 3.59.
- [-1,1)
- 3.60. $\sin x$
- $(-\pi,\pi)$

- 3.61. $\cos x$
- $(-\pi,\pi)$
- 3.62.
- [-1, 1]

- 3.63. [x]
- (-1,1)
- 3.64. {*x*}
- [-1,1]

Mutassunk példát olyan mindenütt értelmezett függvényre, amelyik

3.65. sem alulról, sem felülről nem korlátos.

3.66. korlátos, de nincs sem minimuma, sem maximuma.

Mutassunk példát olyan függvényre, amelyiknek az értelmezési tartománya a [-1,1] intervallum, és a függvény

- 3.67. sem alulról, sem felülről nem korlátos.
- 3.68. korlátos, de nincs sem minimuma, sem maximuma.

Van-e olyan függvény, amelyik

- 3.69. szigorúan monoton csökken $(-\infty,0)$ -ban, szigorúan monoton nő $(0,\infty)$ en, és 0-ban nincs minimuma?
- 3.70. monoton csökken $(-\infty, 0]$ -ban, monoton nő $[0, \infty)$ -en, és 0-ban nincs minimuma?
- 3.71. nem korlátos [0, 1]-en?
- 3.72. korlátos [0, 1]-en, de nincs sem maximuma, sem minimuma [0, 1]-en?
- 3.73. pozitív R-en, de nincs minimuma?

Adjuk meg a következő függvények legkisebb pozitív periódusát!

3.74. $\sin x$ 3.75. $\sin(2x)$

 $\sin\frac{x}{2}$ 3.76.

- 3.77. $\operatorname{tg} x$
- 3.78. $\sin x + \operatorname{tg} x$
- $\sin 2x + \tan \frac{x}{2}$ 3.79.
- 3.80. Bizonyítsuk be, hogy ha egy függvény p szerint periodikus, akkor pminden pozitív egész többszöröse szerint is periodikus!
- 3.81. Periodikus-e az f(x) = 3 függvény? Ha igen, akkor adjuk meg az összes olyan számot, amely szerint periodikus!

- 3.82. Van-e minden nem konstans periodikus függvénynek legkisebb pozitív periódusa?
- 3.83. Periodikus-e a

$$D(x) = \begin{cases} 1 & \text{ha } x \in \mathbb{Q} \\ 0 & \text{ha } x \notin \mathbb{Q} \end{cases}$$

Dirichlet-függvény? Ha igen, akkor adjuk meg az összes olyan számot, amely szerint periodikus!

Döntsük el, hogy konvex-e illetve konkáv-e az adott függvény $(0,\infty)$ -ben!

3.84.

3.85.

3.86.

3.87.

3.88. $\sin x$ 3.89. [x]

3.90. Legyen f valós függvény a (0,10) intervallumon. Mi a ${\bf P}$ és ${\bf Q}$ állítások logikai kapcsolata, azaz melyikből következik a másik?

P: f konvex az (3,8) intervallumon.

Q: f konvex az (5,7) intervallumon.

- 3.91. Adjuk meg az összes olyan függvényt, amelyik egyszerre konvex és konkáv az (1,2) intervallumon! Van-e ezek közt szigorúan konvex vagy szigorúan konkáv?
- 3.92. Tegyük fel, hogy f értelmezve van a (-1,3) intervallumban. Mi a következő állítások logikai kapcsolata, azaz melyikből következik a másik?

P:
$$f(1) \leq \frac{f(0) + f(2)}{2}$$

 $\begin{aligned} \mathbf{P:} \ f(1) &\leq \frac{f(0) + f(2)}{2} \\ \mathbf{Q:} \ f \ \text{konvex a } (-1,3) \ \text{intervallumban}. \end{aligned}$

3.93. Döntsük el, hogy konvex-e illetve konkáv-e a \sqrt{x} függvény a $[0,\infty)$ intervallumban! Írjuk fel a megfelelő Jensen-egyenlőtlenséget. $t_1 =$ $\dots = t_n = \frac{1}{n}$ súlyokkal!

- **3.94.** Vázoljuk az x^{10} függvény grafikonját, és az [1,2] intervallum feletti húrját! Írjuk fel az x^{10} függvény [1,2] intervallum feletti húrjának az egyenletét! Bizonyítsuk be, hogy $x^{10} \leq 1023x 1022$ minden $x \in [1,2]$ -re!
- **3.95.** Írjuk fel az sin x függvény $\left[\frac{\pi}{6}, \frac{\pi}{2}\right]$ feletti húrjának egyenletét! Melyik nagyobb: $\frac{\sin(\pi/6) + \sin(\pi/2)}{2}$ vagy sin $\frac{\pi/6 + \pi/2}{2}$?
- 3.96. Írjuk fel az $\log_7 x$ függvény [2, 4] feletti húrjának egyenletét! Melyik nagyobb: $\log_7 3$ vagy $\frac{\log_7 2 + \log_7 4}{2}$?

Rajzoljunk függvénygrafikont úgy, hogy a függvény legyen

- **3.97.** monoton növő [1, 2]-ben és monoton csökkenő [3, 4]-ben
- **3.98.** monoton növő [1,4]-ben és monoton csökkenő [3,5]-ben
- **3.99.** konvex [1, 4]-ben és konkáv [4, 5]-ben
- **3.100.** konvex [1, 4]-ben és konkáv [2, 5]-ben
- **3.101.** szigorúan monoton növő [1, 2]-ben, szigorúan monoton csökkenő [2, 4]-ben, és legyen maximuma 2-ben
- 3.102. szigorúan monoton növő [1, 2]-ben, szigorúan monoton csökkenő [2, 4]-ben, és legyen minimuma 2-ben

Rajzoljunk függvénygrafikont úgy, hogy a függvényre teljesüljön, hogy

- **3.103.** $\forall x_1 \in [1,2] \land \forall x_2 \in [1,2] \quad f(x_1) = f(x_2)$
- **3.104.** $\forall x_1 \in [1,2] \land \forall x_2 \in [1,2] \quad (x_1 > x_2 \implies f(x_1) > f(x_2))$
- **3.105.** $\forall x_1 \in [1,2] \land \forall x_2 \in [1,2] \quad (x_1 > x_2 \implies f(x_1) \le f(x_2))$
- **3.106.** $\forall x_1 \in [1,2] \land \forall x_2 \in [1,2]$ $\exists c \in [x_1, x_2]$ $f(c) = \frac{f(x_1) + f(x_2)}{2}$

3.107.
$$\exists x_1 \in [1,2] \land \exists x_2 \in [1,2] \quad \forall x \in [1,2] \quad f(x) \neq \frac{f(x_1) + f(x_2)}{2}$$

3.108.
$$\forall x_1 \in [1,2] \land \forall x_2 \in [1,2] \quad f\left(\frac{x_1+x_2}{2}\right) > \frac{f(x_1)+f(x_2)}{2}$$

3.110.
$$\exists x_0 \in [1,2] \quad \forall x \in [1,2] \quad f(x) \leq f(x_0)$$

3.111.
$$(\forall x_1 \in [1, 2] \exists x_2 \in [1, 2] f(x_1) < f(x_2)) \land (\forall x_1 \in [1, 2] \exists x_2 \in [1, 2] f(x_1) > f(x_2))$$

- 3.112. Melvik függvény egy-egy értelmű ráképezés (bijekció) az egész számegyenesen?
 - (a) x

(b) x^2

(c) x^3

(d) \sqrt{x}

(e) $\sqrt[3]{x}$

(f) $\sqrt{|x|}$

(g) $\frac{1}{x}$

- **(h)** $f(x) = \begin{cases} 1/x & \text{ha } x \neq 0 \\ 0 & \text{ha } x = 0 \end{cases}$
- 3.113. Adjuk meg a következő függvények inverzeit! Rajzoljuk fel egy koordinátarendszerbe az inverz párokat!
 - (a) x^3

(b) $x^3 + 1$

(c) 2^x

(d) $2^x - 1$

Adjunk meg olyan intervallumokat, ahol a függvény egy-egy értelmű (injekció)! Határozzuk meg a függvények inverzét ezeken az intervallumokon!

 x^2 3.114.

3.115. \sqrt{x}

3.116. $\sin x$

3.117.
$$2^x$$

- 3.118. Keressünk olyan függvényeket, amelyek egyenlők az inverzükkel!
- 3.119. Mi a következő két állítás logikai kapcsolata, azaz melyikből következik a másik?

 $\mathbf{P} \text{:} \ \mathrm{Az} \ f$ függvény szigorúan monoton.

 \mathbf{Q} : Az f függvénynek van inverze.

3.120. Mutassuk meg, hogy az

$$f(x) = \begin{cases} x, \text{ ha } x \in \mathbb{Q} \\ -x \text{ ha } x \notin \mathbb{Q} \end{cases}$$

függvény semmilyen intervallumon sem monoton, de a függvénynek van inverze!

3.121. Keressünk inverz párokat a grafikonok között!

(a)

(b)

(d)

(f)

(g)

(h)

- 3.122. Van-e olyan mindenütt értelmezett függvény, amelynek a grafikonja szimmetrikus az
 - (a) x tengelyre?
- **(b)** y tengelyre?
- 3.123. Mi a következő állítások logikai kapcsolata, azaz melyikből következik a másik?

P: Az f függvény monoton nő \mathbb{R} -en.

Q: Minden $x \in \mathbb{R}$ esetén $f(x+1) \ge f(x)$

- Bizonyítsuk be, hogy az $f(x) = \frac{1}{x} + \frac{1}{x-1}$ függvény a (0,1) interval-3.124. lumban minden értéket pontosan egyszer vesz fel!
- Bizonyítsuk be, hogy ha minden $x \in \mathbb{R}$ esetén $f(x+1) = \frac{1+f(x)}{1-f(x)}$, 3.125. akkor az f függvény periodikus!
- 3.126. Tegyük fel, hogy az f függvény páros. Lehet-e f-nek inverze?
- 3.127. Tegyük fel, hogy az f függvény páratlan. Következik-e ebből, hogy f-nek van inverze?
- 3.128. Ábrázoljuk a következő f és g függvényeket! Határozzuk meg a $g \circ f$ függvényt! Igaz-e, hogy a g függvény az f függvény inverze?

$$f(x) = \begin{cases} x, & \text{ha } x < 0 \\ 1/2 & \text{ha } x = 0 \\ x+1 & \text{ha } x > 0 \end{cases}$$
és
$$g(x) = \begin{cases} x, & \text{ha } x < 0 \\ 0 & \text{ha } 0 \le x < 1 \\ x-1 & \text{ha } x \ge 1 \end{cases}$$

3.2. A határérték

3.129. Az ábrán látható f(x) függvény grafikonja alapján döntsük el, hogy léteznek-e az alábbi határértékek, és ha igen, adjuk meg ezt az értéket!

- (a) $\lim_{x \to 1} f(x)$ (b) $\lim_{x \to 2} f(x)$ (c) $\lim_{x \to 3} f(x)$

3.130. Az ábrán látható f(x) függvény grafikonja alapján döntsük el, hogy léteznek-e az alábbi határértékek, és ha igen, adjuk meg ezt az értéket!

- (a) $\lim_{x \to -2} f(x)$ (b) $\lim_{x \to -1} f(x)$ (c) $\lim_{x \to 0} f(x)$
- 3.131. Mely állítások igazak az ábrán látható f(x) függvény grafikonja alapján?

- (a) $\lim_{x\to 0} f(x)$ létezik. (b) $\lim_{x\to 0} f(x) = 0$ (c) $\lim_{x\to 0} f(x) = 1$
- (d) $\lim_{x \to 1} f(x) = 1$ (e) $\lim_{x \to 1} f(x) = 0$
- (f) Az f(x) függvénynek a (-1,1) nyílt intervallum minden pontjában van határértéke.
- 3.132. Mely állítások igazak az ábrán látható f(x) függvény grafikonja alapján?

- (a) $\lim_{x\to 2} f(x)$ nem létezik.
- **(b)** $\lim_{x \to 2} f(x) = 2$
- (c) $\lim_{x\to 1} f(x)$ nem létezik.
- (d) Az f(x) függvénynek a (-1,1) nyílt intervallum minden pontjában van határértéke.
- (e) Az f(x) függvénynek az (1,3) nyílt intervallum minden pontjában van határértéke.
- 3.133. Mely állítások igazak az ábrán látható f(x) függvény grafikonja alapján?

- (a) $\lim_{x \to 1^+} f(x) = 1$
- **(b)** $\lim_{x \to 0^-} f(x) = 0$
- (c) $\lim_{x \to 0^-} f(x) = 1$
- (d) $\lim_{x \to 0^-} f(x) = \lim_{x \to 0^+} f(x)$
- (e) $\lim_{x\to 0} f(x)$ létezik.
- $\mathbf{(f)} \ \lim_{x \to 0} f(x) = 0$
- (g) $\lim_{x\to 0} f(x) = 1$
- **(h)** $\lim_{x \to 1} f(x) = 1$

(i)
$$\lim_{x \to 1} f(x) = 0$$

(j)
$$\lim_{x \to 2^{-}} f(x) = 2$$

(k)
$$\lim_{x\to 1^-} f(x)$$
 nem létezik.

(1)
$$\lim_{x \to 2^+} f(x) = 0$$

3.134. Írjuk fel logikai jelekkel az alábbi állításokat! Adjunk példát olyan függvényekre, amelyekre igazak az állítások!

(a)
$$\lim_{x \to 0} f(x) = 4$$

(b)
$$\lim_{x \to \infty} f(x) = \infty$$

(a)
$$\lim_{x \to 3} f(x) = 4$$
 (b) $\lim_{x \to 4} f(x) = \infty$ (c) $\lim_{x \to 5} f(x) = -\infty$

(d)
$$\lim_{x \to 3^+} f(x) = 4$$

(e)
$$\lim_{x \to 3^+} f(x) = \infty$$

(d)
$$\lim_{x \to 3^+} f(x) = 4$$
 (e) $\lim_{x \to 3^+} f(x) = \infty$ (f) $\lim_{x \to 3^+} f(x) = -\infty$

(g)
$$\lim_{x \to 2^{-}} f(x) = 4$$

(h)
$$\lim_{x \to 0} f(x) = \infty$$

(g)
$$\lim_{x \to 3^{-}} f(x) = 4$$
 (h) $\lim_{x \to 3^{-}} f(x) = \infty$ (i) $\lim_{x \to 3^{-}} f(x) = -\infty$

(j)
$$\lim_{x \to \infty} f(x) = 0$$

(k)
$$\lim_{x \to \infty} f(x) = \infty$$

(j)
$$\lim_{x \to \infty} f(x) = 4$$
 (k) $\lim_{x \to \infty} f(x) = \infty$ (l) $\lim_{x \to \infty} f(x) = -\infty$

(m)
$$\lim_{x \to -\infty} f(x) = \frac{1}{2}$$

(n)
$$\lim_{x \to \infty} f(x) = \infty$$

(m)
$$\lim_{x \to -\infty} f(x) = 4$$
 (n) $\lim_{x \to -\infty} f(x) = \infty$ (o) $\lim_{x \to -\infty} f(x) = -\infty$

3.135. Keressük meg azokat a függvényeket, amelyeknek létezik és ugyanaz a határértéke 3-ban!

(c)
$$\begin{cases} 5, & \text{ha } x \neq 3 \\ 6, & \text{ha } x = 3 \end{cases}$$

(d)
$$\begin{cases} 5, \text{ ha } x \in \mathbb{Q} \\ 6, \text{ ha } x \notin \mathbb{Q} \end{cases}$$

(e)
$$\frac{1}{(x-3)^2}$$

$$(\mathbf{f}) \ \frac{1}{\cos(x-3)}$$

$$(\mathbf{g}) \ \frac{1}{\sin(x-3)}$$

(h)
$$\frac{1}{x-3}$$

Határozzuk meg az alábbi határértékeket behelyettesítéssel!

3.136. $\lim_{x\to 3} 5x$ 3.137. $\lim_{x\to 0} 5x$

 $\lim_{x \to 1/7} (7x - 3)$ 3.138.

3.139. $\lim_{x \to 1} \frac{-2}{7x - 3}$

3.140.
$$\lim_{x \to -1} 3x^2(7x - 3)$$

$$\boxed{\textbf{3.141.}} \quad \lim_{x \to 1} \frac{3x^2}{7x - 3}$$

$$\lim_{x \to \pi/2} x \sin x$$

3.143.
$$\lim_{x \to \pi} \frac{\cos x}{1 - \pi}$$

Határozzuk meg az alábbi határértékeket a törtek egyszerűsítése

$$\boxed{\mathbf{3.144.}} \quad \lim_{x \to 5} \frac{x - 5}{x^2 - 25}$$

$$\boxed{\textbf{3.145.}} \quad \lim_{x \to -3} \frac{x+3}{x^2+4x+3}$$

$$\boxed{\textbf{3.146.}} \quad \lim_{x \to -5} \frac{x^2 + 3x - 10}{x + 5}$$

$$\boxed{\mathbf{3.147.}} \quad \lim_{x \to 2} \frac{x^2 - 7x + 10}{x - 2}$$

3.148.
$$\lim_{t \to 1} \frac{t^2 + t - 2}{t^2 - 1}$$

3.149.
$$\lim_{t \to -1} \frac{t^2 + 3t + 2}{t^2 - t - 2}$$

3.150.
$$\lim_{x \to 9} \frac{\sqrt{x} - 3}{x - 9}$$

3.151.
$$\lim_{x \to 4} \frac{4x - x^2}{2 - \sqrt{x}}$$

$$\boxed{\mathbf{3.152.}} \quad \lim_{x \to 1} \frac{x-1}{\sqrt{x+3}-2}$$

$$\boxed{\textbf{3.153.}} \quad \lim_{x \to -1} \frac{\sqrt{x^2 + 8} - 3}{x + 1}$$

3.154.
$$\lim_{x \to 1} \frac{\sqrt{x} - 1}{x - 1}$$

3.155.
$$\lim_{x \to 0} \frac{\sqrt{1+x^2} - 1}{x^2}$$

Határozzuk meg a következő trigonometrikus határértékeket!

3.156.
$$\lim_{x \to 0} \frac{\sin x}{x}$$

3.157.
$$\lim_{x \to 0} \frac{1 - \cos x}{x^2}$$

$$\boxed{\textbf{3.158.}} \quad \lim_{\vartheta \to 0} \frac{\sin(\vartheta \sqrt{2})}{\vartheta \sqrt{2}}$$

$$\boxed{\mathbf{3.159.}} \quad \lim_{t \to 0} \frac{\sin kt}{t}$$

$$\boxed{\mathbf{3.160.}} \quad \lim_{y \to 0} \frac{\sin 3y}{4y}$$

$$\boxed{\mathbf{3.161.}} \quad \lim_{h \to 0} \frac{h}{\sin 3h}$$

3.162.
$$\lim_{x \to 0} \frac{\operatorname{tg} 2x}{x}$$

$$\boxed{\mathbf{3.163.}} \quad \lim_{t \to 0} \frac{2t}{\operatorname{tg} t}$$

Határozzuk meg a következő határértékeket, ha léteznek!

$$\boxed{\mathbf{3.164.}} \quad \lim_{x \to 0} x \sin x$$

3.165.
$$\lim_{x \to 0} \sin \frac{1}{x}$$

Határozzuk meg a következő függvények határértékeit a ∞-ben és $a - \infty$ -ben!

3.166.
$$\frac{2x+3}{5x+7}$$

$$\boxed{\textbf{3.167.}} \quad \frac{2x^2 - 7x + 1}{\sqrt{x^2 + 1} + 1}$$

$$\boxed{\textbf{3.168.}} \quad \frac{2x^3 - 7x}{x^3 + 1}$$

$$\boxed{\textbf{3.169.}} \quad \frac{2x+3}{5x^2+7}$$

$$\boxed{\textbf{3.170.}} \quad \frac{2x^2 - 7x}{x^3 + 1}$$

3.171.
$$\frac{x^{-1} + x^{-5}}{x^{-2} - x^{-3}}$$

Határozzuk meg az alábbi függvények (véges illetve végtelen) határértékét a ∞-ben!

$$\begin{array}{|c|c|} \hline \textbf{3.172.} & \frac{2\sqrt{x} + x^{-1}}{3x - 7} \\ \hline \end{array}$$

3.173.
$$\frac{2+\sqrt{x}}{2-\sqrt{x}}$$

$$\boxed{\textbf{3.174.}} \ \ \frac{2x^3 - 7x}{x^2 + 1}$$

$$\boxed{\textbf{3.175.}} \quad \frac{2x^2 - 7x + 1}{\sqrt{x^3 + 3} + 7}$$

$$\boxed{\textbf{3.176.}} \quad \frac{2x^2 - 7x + 1}{\sqrt{x^4 + 1} + 1}$$

$$\boxed{\textbf{3.177.}} \quad \frac{\sqrt[3]{2x^2+1}+1}{\sqrt{x^2+1}+1}$$

Számítsuk ki a következő féloldali határértékeket! Mindegyik feladatnál számoljuk ki a másik oldali határértéket is!

3.178.
$$\lim_{x\to 0^+} \frac{1}{3x}$$

$$\boxed{\mathbf{3.179.}} \quad \lim_{x \to 0^{-}} \frac{5}{2x}$$

$$\boxed{\mathbf{3.180.}} \quad \lim_{x \to 2^{-}} \frac{3}{x - 2}$$

$$\boxed{\textbf{3.181.}} \quad \lim_{x \to 3^+} \frac{1}{x - 3}$$

$$\boxed{\mathbf{3.182.}} \quad \lim_{x \to -8^+} \frac{2x}{x+8}$$

$$\boxed{\mathbf{3.183.}} \quad \lim_{x \to -5^-} \frac{3x}{2x+10}$$

3.184.
$$\lim_{x \to 7^+} \frac{4}{(x-7)^2}$$

3.185.
$$\lim_{x\to 0^-} \frac{-1}{x^2(x+1)}$$

Számítsuk ki a következő határértékeket!

$$\boxed{\textbf{3.186.}} \quad \lim_{x \to \infty} \frac{\sin x}{x}$$

$$\boxed{\mathbf{3.187.}} \quad \lim_{x \to \infty} \frac{e^x}{x}$$

$$\boxed{\mathbf{3.188.}} \quad \lim_{x \to \infty} \frac{\ln x}{x}$$

3.189.
$$\lim_{x \to \infty} \frac{x^2}{e^x}$$

Legyen k egy rögzített pozitív egész szám. Számítsuk ki a következő határértékeket:

$$\boxed{\mathbf{3.190.}} \quad \lim_{x \to \infty} \frac{x^k}{e^x}$$

$$\mathbf{3.191.} \quad \lim_{x \to \infty} \frac{\ln x}{\sqrt[k]{x}}$$

Van-e határértéke 0-ban a következő függvényeknek? Van-e féloldali határértékük ugyanitt?

3.192.
$$|x|$$

$$\begin{bmatrix} \mathbf{3.193.} \end{bmatrix} \ \{x\}$$

$$\boxed{\mathbf{3.194.}} \begin{cases} 1, \text{ ha } x \in \mathbb{Q} \\ 0, \text{ ha } x \notin \mathbb{Q} \end{cases}$$

$$3.195. \begin{cases} x, \text{ ha } x \in \mathbb{Q} \\ -x, \text{ ha } x \notin \mathbb{Q} \end{cases}$$

- 3.196. Mutassunk példát olyan mindenütt értelmezett függvényre, amelyiknek pontosan 2 pontban van határértéke!
- 3.197. Van-e olyan mindenütt értelmezett függvény, amelyiknek végtelen sok pontban végtelen a határértéke?
- 3.198. Bizonyítsuk be, hogy ha f nem konstans, periodikus függvény, akkor f-nek nincs határértéke végtelenben!

Van-e határértéke végtelenben a következő függvényeknek?

3.199. [x] 3.200. $\{x\}$

3.201. $\sin x$ 3.202.

Mi a logikai kapcsolata a következő állításoknak, azaz melyikből következik a másik?

3.203. $\mathbf{P:} \lim_{x \to \infty} f(x) = 5$ **Q:** $\lim_{x \to \infty} f^2(x) = 25$

 $\mathbf{P:} \lim_{x \to \infty} f(x) = -5$ 3.204.

 $\mathbf{Q:} \lim_{x \to \infty} |f(x)| = 5$

 $\mathbf{P:} \lim_{x \to \infty} f(x) = \infty$ 3.205.

 $\mathbf{Q:} \lim_{x \to \infty} \frac{1}{f(x)} = 0$

3.206. Van-e határértéke az

(a) $a_n = \sin(n\pi)$ sorozatnak?

(b) $f(x) = \sin x$ függvénynek végtelenben?

(c) $a_n = \left\lceil \frac{1}{n} \right\rceil$ sorozatnak?

(d) f(x) = [x] függvénynek 0-ban?

Mi a logikai kapcsolata a következő állításoknak, azaz melyikből következik a másik?

3.207. **P:** Az f(n) sorozat határértéke 5. **Q:** $\lim_{x \to \infty} f(x) = 5$.

P: Az $f\left(\frac{1}{n}\right)$ sorozat határértéke **Q:** $\lim_{x\to 0} f(x) = 5$. 3.208.

P: $\lim_{x \to \infty} (f(x) + g(x)) = \infty$ Q: $\lim_{x \to \infty} f(x)g(x) = \infty$ 3.209.

P: $\lim_{x \to \infty} (f(x) + g(x)) = \infty$ Q: $\lim_{x \to \infty} f(x) = \infty$ vagy $\lim_{x \to \infty} g(x) = \infty$ 3.210.

 $\begin{aligned} \mathbf{P:} & \lim_{x \to \infty} f(x)g(x) = \infty \\ \mathbf{Q:} & \lim_{x \to \infty} f(x) = \infty \text{ vagy } \lim_{x \to \infty} g(x) = \infty \end{aligned}$ 3.211.

3.212. Legyen f mindenütt értelmezett függvény! Mi a

 $\mathbf{P:} \lim_{x \to \infty} f(x) = 0$

Q: Az f(n) sorozat határértéke 0

állítások logikai kapcsolata, azaz melyikből következik a másik, ha

- (a) f tetszőleges?
- **(b)** *f* folytonos?
- (c) f monoton?
- (d) f korlátos?

3.3. Folytonos függvények

3.213. Írjuk fel logikai jelekkel, hogy az f függvény folytonos 3-ban!

Mi a következő állítások logikai kapcsolata, azaz melyikből következik a másik?

3.214. **P:** Az f függvénynek van határértéke 3-ban.

 \mathbf{Q} : Az f függvény folytonos 3-ban.

3.215. P: Az f függvénynek nincs határértéke 3-ban.

 \mathbf{Q} : Az f függvény nem folytonos 3-ban.

3.216. Folytonosak-e 0-ban a következő függvények?

(a) $D(x) = \begin{cases} 1, \text{ ha } x \in \mathbb{Q} \\ 0, \text{ ha } x \notin \mathbb{Q} \end{cases}$ (b) $f(x) = \begin{cases} x, \text{ ha } x \in \mathbb{Q} \\ -x, \text{ ha } x \notin \mathbb{Q} \end{cases}$

- 3.217. Mutassunk példát olyan függvényre, amelyik pontosan 2 pontban folytonos!
- 3.218. Az $f, g: \mathbb{R} \to \mathbb{R}$ függvények egy pontban eltérnek, mindenhol máshol megegyeznek. Lehet-e mindkét függvény mindenhol folytonos?
- 3.219. Tegyük fel, hogy az $f, g: \mathbb{R} \to \mathbb{R}$ függvényeknek minden pontban van véges határértékük és a határértékek meg is egyeznek. Következike ebből, hogy f = g mindenhol? Mi a helyzet akkor, ha f is, g is folytonos?
- 3.220. Mi a következő állítások logikai kapcsolata, azaz melyikből következik a másik?

 \mathbf{P} : Az f és g függvények folytonosak 3-ban.

Q: Az f + g függvény folytonos 3-ban.

3.221. Tegyük fel, hogy f folytonos, g pedig nem folytonos 3-ban. Lehet-e

(a)
$$f+g$$

folytonos 3-ban?

3.222. Tegyük fel, hogy sem f, sem g nem folytonos 3-ban. Következik-e ebből,

(a)
$$f + g$$

sem folytonos 3-ban?

3.223. Tegyük fel, hogy f is, g is folytonos 3-ban. Következik-ebből, hogy az $\frac{f}{g}$ függvény is folytonos 3-ban?

Hol folytonosak a következő függvények?

$$\boxed{3.224.} \quad \frac{x^2 - 4}{x + 2}$$

$$3.225.$$
 $\frac{x^3-1}{x-1}$

3.226.
$$\sqrt{x}$$

3.227.
$$\sqrt[3]{x}$$

3.228. Adjunk példát olyan $f: \mathbb{R} \to \mathbb{R}$ függvényre, amelyik sehol nem folytonos, de |f| mindenütt folytonos!

Milyen c szám megadása esetén lesznek a következő függvények folytonosak a 0-ban?

3.229.
$$f(x) = \begin{cases} x^2 + 2 & \text{ha } x \ge 0 \\ mx + c & \text{ha } x < 0 \end{cases}$$

3.230.
$$f(x) = \begin{cases} \frac{\sin x}{x} & \text{ha } x \neq 0 \\ c & \text{ha } x = 0 \end{cases}$$

3.231.
$$f(x) = \begin{cases} x^3 + x + 1 & \text{ha } x > 0 \\ ax^2 + bx + c & \text{ha } x \le 0 \end{cases}$$

3.232.
$$f(x) = \begin{cases} \sqrt{x+2} & \text{ha } x \ge 0 \\ (x+c)^2 & \text{ha } x < 0 \end{cases}$$

- 3.233. Bizonyítsuk be, hogy minden 3-adfokú polinomnak van valós gyöke!
- 3.234. Tegyük fel, hogy az f pozitív függvény folytonos [a, b]-ben. Bizonyítsuk be, hogy van olyan $c \in [a, b]$, amelyre igaz, hogy

(a)
$$f(c) = \frac{f(a) + f(b)}{2}$$
 (b) $f(c) = \sqrt{f(a)f(b)}$

(b)
$$f(c) = \sqrt{f(a)f(b)}$$

- 3.235. Tegyük fel, hogy f folytonos [a,b]-ben, továbbá $f(a) \geq a$ és $f(b) \leq b$. Bizonyítsuk be, hogy van olyan $c \in [a, b]$, amire f(c) = c.
- 3.236. Tegyük fel, hogy f és g folytonosak [a, b]-ben, továbbá $f(a) \ge g(a)$ és $f(b) \leq g(b)$. Bizonyítsuk be, hogy van olyan $c \in [a, b]$, amire f(c) =g(c).
- 3.237. Tegyük fel, hogy f és g folytonosak [a, b]-n, és minden $x \in [a, b]$ esetén f(x) < g(x). Bizonyítsuk be, hogy van olyan m > 0 szám, hogy minden $x \in [a, b]$ esetén $g(x) - f(x) \ge m$.
- 3.238. Adjunk példát olyan $f:[0,1]\to\mathbb{R}$ függvényre, amely egy pont kivételével folytonos és
 - (a) nem korlátos.
- (b) korlátos, de nincs legnagyobb értéke.

Mi a következő állításpárok logikai kapcsolata, azaz melyikből következik a másik?

- 3.239. **P:** f folytonos [1, 2]-n **Q:** f-nek van maximuma és minimuma [1, 2]-n
- 3.240. P: f folytonos (1,2)-n Q: f-nek van maximuma és minimuma (1,2)-n
- 3.241. **P**: f korlátos (1,2)-n **Q**: f-nek van maximuma és minimuma (1,2)-n
- 3.242. P: f korlátos [1, 2]-n Q: f-nek van maximuma és minimuma [1, 2]-n

Van-e olyan függvény, amelyik

3.243. nem folytonos [0, 1]-en, de [0, 1]-en van maximuma is és minimuma is?

3.244. folytonos (0,1)-en, és (0,1)-en van maximuma is és minimuma is?

3.245. folytonos (0,1)-en, de (0,1)-en nincs sem maximuma, sem minimuma?

3.246. folytonos [0, 1]-en, de [0, 1]-en nincs sem maximuma, sem minimuma?

Van-e maximuma a következő függvényeknek a [77, 888] intervallumon?

3.247.
$$3^{x+5} \sin x + \sqrt{x}$$

3.248.
$$\sin(2x) + \cos(3x)$$

3.250.
$$\{x\}$$

Jelölje D(f) az f függvény értelmezési tartományát, R(f) pedig az értékkészletét! Van-e olyan függvény, amelyikre igaz, hogy

3.251.
$$D(f) = (0,1) \text{ és } R(f) = [0,1]$$

3.252.
$$D(f) = [0,1] \text{ és } R(f) = (0,1)$$

3.253.
$$D(f) = [0,1]$$
 és $R(f) = [3,4] \cup [5,6]$

Van-e olyan monoton növő függvény, amelyikre igaz, hogy

3.254.
$$D(f) = (0,1) \text{ és } R(f) = [0,1]$$

3.255.
$$D(f) = [0,1]$$
 és $R(f) = (0,1)$

3.256.
$$D(f) = [0,1] \text{ és } R(f) = [3,4] \cup [5,6]$$

Van-e olyan folytonos függvény, amelyikre igaz, hogy

3.257.
$$D(f) = (0,1) \text{ és } R(f) = [0,1]$$

3.258.
$$D(f) = [0,1]$$
 és $R(f) = (0,1)$

3.259. $D(f) = [0,1] \text{ és } R(f) = [3,4] \cup [5,6]$

3.260. Bizonyítsuk be, hogy (korlátos) zárt intervallumon folytonos függvény értékkészlete (korlátos) zárt intervallum.

3.261. Bizonyítsuk be, hogy ha az f függvény folytonos \mathbb{R} -en, továbbá a határértéke végtelenben is, és mínusz végtelenben is nulla, akkor f korlátos!

3.262. Bizonyítsuk be, hogy ha az f függvény folytonos \mathbb{R} -en, továbbá a határértéke végtelenben is, és mínusz végtelenben is végtelen, akkor f-nek van minimuma!

3.263. Bizonyítsuk be, hogy az $x \sin x = 100$ egyenletnek végtelen sok gyöke van!

Hol folytonosak jobbról, hol folytonosak balról, illetve hol folytonosak a következő függvények?

3.264.

3.265.

3.266. [x] + [-x] 3.267.

Hol folytonosak a következő függvények?

3.268. $f(x) = \begin{cases} \cos \frac{1}{x}, & \text{ha } x \neq 0 \\ 0 & \text{ha } x = 0 \end{cases}$

3.269. $f(x) = \begin{cases} x \sin \frac{1}{x}, & \text{ha } x \neq 0 \\ 0 & \text{ha } x = 0 \end{cases}$

Egyenletesen folytonosak-e a következő függvények az adott intervallumokban?

3.270. $f(x) = x^{2}$ $(-\infty, \infty), \quad [-2, 2], \quad (-2, 2)$

3.271. $f(x) = \frac{1}{x}$ $(0, \infty), [1, 2], (1, 2), [1, \infty)$

4. fejezet

A differenciálszámítás és alkalmazásai

4.1. Az f függvénynek pontosan akkor van érintője az a pontban, ha itt deriválható. Ekkor az érintő egyenlete

$$y = f'(a)(x - a) + f(a)$$

4.2. Ha az f(x) függvény deriválható az a pontban, akkor a függvény folytonos az a pontban.

Ez a tétel nem fordítható meg: például az f(x) = |x| függvény folytonos 0-ban, de itt nem deriválható!

- **4.3.** Deriválási szabályok. Ha f és g deriválható a-ban, akkor
 - tetszőleges $c \in \mathbb{R}$ esetén $c \cdot f$ deriválhatóa-ban és

$$(c \cdot f)'(a) = c \cdot f'(a)$$
;

— f + g deriválható a-ban és

$$(f+q)'(a) = f'(a) + q'(a)$$
;

— $f \cdot g$ deriválható a-ban és

$$(f \cdot g)'(a) = f'(a) \cdot g(a) + f(a) \cdot g'(a);$$

— $g(a) \neq 0$ esetén $\frac{f}{g}$ deriválhatóa-ban, és

$$\left(\frac{f}{g}\right)'(a) = \frac{f'(a) \cdot g(a) - f(a) \cdot g'(a)}{g^2(a)}.$$

4.4. Láncszabály. Ha g deriválható a-ban, f deriválható g(a)-ban, akkor $f \circ g$ deriválható a-ban és

$$(f \circ g)'(a) = f'(g(a)) \cdot g'(a).$$

4.5. Inverz függvény deriváltja. Ha f folytonos és invertálható a körül, a-ban deriválható, és $f'(a) \neq 0$, akkor f^{-1} deriválható f(a)-ban és

$$(f^{-1})'(f(a)) = \frac{1}{f'(a)}.$$

4.6. Középértéktételek.

- Rolle tétele. Ha f folytonos az [a, b] zárt intervallumon, deriválható az (a,b) nyílt intervallumon és f(a)=f(b), akkor van olyan $c\in(a,b)$, amelyre f'(c) = 0.
- Lagrange-középértéktétel. Ha f folytonos az [a,b] zárt intervallumon, deriválható az (a,b) nyílt intervallumon, akkor van olyan $c \in$ (a,b), amelyre

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

A tétel geometriai jelentése az, hogy minden húrhoz található vele párhuzamos érintő.

— Cauchy-középértéktétel. Ha f és q folytonos az [a,b] zárt intervallumon, deriválható az (a,b) nyílt intervallumon, és $x \in (a,b)$ esetén $g'(x) \neq 0$, akkor van olyan $c \in (a, b)$, amelyre

$$\frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b) - g(a)}.$$

- Az integrálszámítás alaptétele. Ha f és g folytonos az [a,b] zárt intervallumon, deriválható az (a,b) nyílt intervallumon és $x \in (a,b)$ esetén f'(x) = g'(x), akkor f - g konstans függvény.
- **4.7.** Darboux-tétel. Ha f deriválható (a,b)-ben, a-ban jobbról, b-ben balról deriválható, akkor az f'(x) deriváltfüggvény minden $f'_+(a)$ és $f'_-(b)$ közötti értéket felvesz.
- **4.8.** Monotonitás és derivált kapcsolata. Legyen f(x) folytonos [a,b]-n és deriválható (a, b)-n.

- Az f(x) függvény monoton nő [a,b]-n, akkor és csak akkor, ha minden $x \in (a,b)$ esetén $f'(x) \ge 0$.
- Ha minden $x \in (a,b)$ esetén f'(x) > 0, akkor f(x) szigorúan monoton nő [a,b]-n.
 - Ez az állítás nem fordítható meg, például $f(x) = x^3$ szigorúan monoton nő de f'(0) = 0.
- Az f(x) függvény szigorúan monoton nő [a, b]-n akkor és csak akkor, ha minden $x \in (a,b)$ esetén f'(x) > 0 és minden a < c < d < b esetén f'(x)-nek csak véges sok gyöke van (c,d)-ben.
- **4.9.** Lokális szélsőérték és a derivált kapcsolata. Tegyük fel, hogy f(x)deriválható a-ban.
 - Ha f(x)-nek lokális szélsőértéke (maximum vagy minimum) van a-ban, akkor f'(a) = 0.
 - Ha f(x) deriválható a egy környezetében, f'(a) = 0 és f'(x) előjelet vált a-ban, akkor f(x)-nek lokális szélsőértéke van a-ban, mégpedig
 - lokális (szigorú) maximuma, ha a-tól balra (f'(x) > 0) f'(x) > 0, és a-tól jobbra (f'(x) < 0) $f'(x) \le 0$,
 - lokális (szigorú) minimuma, ha a-tól balra (f'(x) < 0) $f'(x) \le 0$, és a-tól jobbra (f'(x) > 0) $f'(x) \ge 0$.
 - Ha f(x) kétszer deriválható a-ban, f'(a) = 0 és $f''(a) \neq 0$, akkor f(x)nek lokális szélsőértéke van a-ban, mégpedig
 - lokális szigorú maximuma, ha f''(a) < 0,
 - lokális szigorú minimuma, ha f''(a) > 0.
- **4.10.** Konvexitás és a derivált kapcsolata. Tegyük fel, hogy f(x) deriválható (a, b)-ben.
 - f(x) akkor és csak akkor (szigorúan) konvex (a, b)-n, ha f'(x) (szigorúan) monoton növő (a, b)-n.
 - f(x) akkor és csak akkor (szigorúan) konkáv (a,b)-n, ha f'(x) (szigorúan) monoton csökken (a, b)-n.
 - f(x)-nek a $c \in (a,b)$ inflexiós pontja akkor és csak akkor, ha f'(x)-nek c-ben lokális szélsőértéke van.
- **4.11.** L'Hospital szabály. Tegyük fel, hogy f és q deriválható a egy pontozott környezetében, f-nek és g-nek van határértéke a-ban és vagy mindkét

határérték 0 vagy mindkét határérték ∞, azaz a két függvény hányadosának határértéke kritikus. Ekkor ha létezik a $\lim_{x\to a} \frac{f'(x)}{g'(x)}$ határérték, akkor

létezik a $\lim_{x \to a} \frac{f(x)}{g(x)}$ határérték is, és

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}.$$

A fenti tétel a (pontozott) környezet értelemszerű módosításával érvényes marad akkor is, ha a határértéket valamelyik végtelenben, illetve valamelyik oldalról vizsgáljuk.

4.1. A derivált fogalma

- 4.1. Számítsuk ki a definíció szerint \sqrt{x} és $\sqrt[3]{x}$ differenciálhányadosát az x=a pontban! Hol van értelmezve, hol folytonos és hol differenciálható a \sqrt{x} és a $\sqrt[3]{x}$ függvény? Adjuk meg a deriváltfüggvényeket!
- 4.2. Tegyük fel, hogy

$$\lim_{x \to 3} \frac{f(x) - f(3)}{x - 3} = 4.$$

Következik-e ebből, hogy az f függvény folytonos 3-ban?

4.3. Tegyük fel, hogy az f függvény folytonos 3-ban. Következik-e ebből, hogy a

$$\lim_{x \to 3} \frac{f(x) - f(3)}{x - 3}$$

határérték létezik és véges?

Számítsuk ki a következő határértékeket!

4.4.
$$\lim_{h \to 0} \frac{(x+h)^2 - x^2}{h}$$

$$\mathbf{4.5.} \quad \lim_{h \to 0} \frac{\sqrt{x+h} - \sqrt{x}}{h}$$

4.6.
$$\lim_{h \to 0} \frac{1/(x+h) - 1/x}{h}$$

$$\lim_{h \to 0} \frac{1/(x+h) - 1/x}{h} \qquad \boxed{4.7.} \quad \lim_{h \to 0} \frac{(x+h)^3 - x^3}{h}$$

$$\underbrace{\mathbf{4.8.}}_{x \to x_0} \lim_{x \to x_0} \frac{x^2 - x_0^2}{x - x_0}$$

4.9.
$$\lim_{x \to x_0} \frac{\sqrt{x} - \sqrt{x_0}}{x - x_0}$$

4.10.
$$\lim_{x \to x_0} \frac{1/x - 1/x_0}{x - x_0}$$

$$\boxed{\textbf{4.11.}} \quad \lim_{x \to x_0} \frac{x^3 - x_0^3}{x - x_0}$$

Hol folytonosak, és hol differenciálhatók a következő függvények?

4.12.
$$|x|$$

4.13.
$$|x^3|$$

4.14.
$$|x^2-1|$$

4.15.
$$|\sqrt[3]{x}|$$

Milyen b és c esetén lesznek a következő függvények differenciálhatók 3-ban? Adjuk meg a deriváltakat!

4.16.
$$f(x) = \begin{cases} x & \text{ha } x \ge 3 \\ bx^2 - c & \text{ha } x < 3 \end{cases}$$

4.17.
$$g(x) = \begin{cases} x^2 & \text{ha } x \le 3 \\ b - cx & \text{ha } x > 3 \end{cases}$$

4.18.
$$h(x) = \begin{cases} (1-x)(2-x) & \text{ha } x \ge -3 \\ bx+c & \text{ha } x < -3 \end{cases}$$

Hol differenciálhatók a következő függvények? Hol folytonosak a deriváltfüggvények?

4.19.
$$f(x) = \begin{cases} x \sin \frac{1}{x} & \text{ha } x \neq 0 \\ 0 & \text{ha } x = 0 \end{cases}$$

4.20.
$$f(x) = \begin{cases} x^2 \sin \frac{1}{x} & \text{ha } x \neq 0 \\ 0 & \text{ha } x = 0 \end{cases}$$

4.21.
$$f(x) = |x^3|$$

4.22.
$$f(x) = \{x\} \sin \pi x$$

4.23.
$$f(x) = [x] \sin^2 \pi x$$

4.24.
$$f(x) = \begin{cases} -x^2 & \text{ha } x \le 0 \\ x^2 & \text{ha } x > 0 \end{cases}$$

4.25.
$$f(x) = \begin{cases} 1 - x & \text{ha } x < 1 \\ (1 - x)(2 - x) & \text{ha } 1 \le x \le 2 \\ -(2 - x) & \text{ha } 2 < x \end{cases}$$

4.26.
$$f(x) = \left(\{x\} - \frac{1}{2}\right)^2$$
, ahol $\{x\}$ az x törtrészét jelöli.

4.27.
$$f(x) = [x] \sin \pi x$$
, ahol $[x]$ az x egészrészét jelöli.

Melyik grafikon az $f(x) = \sin^2 x$ függvényé és melyik a $g(x) = |\sin x|$ 4.28. függvényé?

(a) (b)

 $\cos x$

Határozzuk meg a következő függvények első, második, \dots , n-edik deriváltját!

4.29.
$$x^6$$
 4.30. $\frac{1}{x}$ **4.31.** $\sin x$ **4.32.**

4.2. Deriválási szabályok

Mi a következő állítások logikai kapcsolata, azaz melyikből következik a másik?

- 4.33. \mathbf{Q} : f' páratlan. \mathbf{P} : Az f függvény páros.
- 4.34. \mathbf{P} : Az f függvény páratlan. \mathbf{Q} : f' páros.

Tegyük fel, hogy az f függvény differenciálható. Mi a következő állítások logikai kapcsolata, azaz melyikből következik a másik?

4.35. **P:** Az f függvény periodikus. \mathbf{Q} : Az f' függvény periodikus.

P: $\lim_{x \to \infty} f(x) = 0$ 4.36.

Q: $\lim_{x \to \infty} f'(x) = 0$

P: $\lim_{x \to \infty} f(x) = \infty$ 4.37.

Q: $\lim_{x \to \infty} f'(x) = \infty$

4.38. \mathbf{P} : f differenciálható a-ban Q: $\lim_{h\to 0} \frac{f(a+h)-f(a-h)}{2h}$ létezik.

Keressük meg azokat a helyeket, ahol a $\sin x$ függvény érintője párhuzamos az

4.39. x tengellyel; **4.40.** az y = x egyenessel.

Adjuk meg $\cos x$ grafikonjának $x = \frac{\pi}{3}$ pontbeli érintőjét! 4.41.

4.42. Írjuk fel az $f(x) = x^3 - 2x^2 + 3x + 4$ függvény érintőjének az egyenletét az (1;6) pontban!

Hol vízszintes a $2x^3 - 6x^2 + 8$ függvény grafikonjának az érintője? 4.43.

4.44. Adjuk meg $2x^3 - 6x^2 + 8$ grafikonjának azokat az érintőit, amelyek az x-tengellyel 45 fokos, illetve 30 fokos szöget zárnak be!

4.45. Milyen szögben metszi az x^2 függvény grafikonja az y = 2x egyenest, azaz mekkora a közös pontokban az érintő és az egyenes szöge?

Bizonyítsuk be, hogy az $x^2 - y^2 = a$ és xy = b görbék merőlegesen 4.46. metszik egymást, azaz a metszéspontokban az érintők merőlegesek.

4.47. Hol függőleges az érintője a $\sqrt[3]{\sin x}$ függvény grafikonjának?

4.48. A következő két ábra egyikén a tg x, a másikon az x^3 függvény szerepel. Melvik rajzhoz melvik függvény tartozik?

(a)

(b)

- Egy autó út idő függvényét az $s(t) = 3t^2 + 5t + 8$ függvény adja meg. 4.49. Határozzuk meg az autó pillanatnyi sebességét a t=3 pillanatban! Adjuk meg az autó sebesség – idő függvényét!
- 4.50. Egy autó sebesség – idő függvényét a v(t) = 5t + 3 függvény adja meg. Határozzuk meg az autó pillanatnyi gyorsulását a t = 7 pillanatban! Adjuk meg az autó gyorsulás – idő függvényét!
- 4.51. Egy rezgő test kitérés – idő függvénye: $y(t)=5\sin\ t$. Adjuk meg a test sebesség – idő függvényét! Adjuk meg a test gyorsulás – idő függvényét!

Határozzuk meg a következő függvények értelmezési tartományát! Deriváljuk a következő függvényeket, és határozzuk meg a deriváltak értelmezési tartományát!

4.52.
$$3x^8 - \frac{3}{4}x^6 + 2$$

4.53.
$$\frac{5x+3}{2x-1}$$

4.54.
$$x + \frac{1}{x} + \sqrt{x}$$

4.55.
$$3x^2 - \frac{\sqrt[3]{x}}{5} + 7$$

$$4.56. \quad \sqrt{x\sqrt{x\sqrt{x}}}$$

$$4.57. \quad \sqrt{x + \sqrt{x + \sqrt{x}}}$$

4.58.
$$4 \sin x$$

$$4.59. \quad \frac{\sin x + \cos x}{3}$$

4.60.
$$\sin(x^{22})$$

4.61.
$$(\sin x)^{22}$$

$$4.62. \quad \frac{\sin x - x \cos x}{\cos x + x \sin x}$$

4.63.
$$4x^3 \operatorname{tg}(x^2 + 1)$$

$$4.64. \qquad \frac{\sin x}{\cos x}$$

4.65.
$$\sin \frac{1}{x}$$

4.66.
$$x \sin x$$

4.67.
$$(3x^5+1)\cos x$$

4.68.
$$x^x$$

4.69.
$$\sqrt[x]{x}$$

4.70.
$$x^{-x}$$

4.71.
$$e^{\sqrt{x}}$$

4.72.
$$\sqrt[x]{x^2+1}$$

4.73.
$$e^{-3x^2}$$

4.74.
$$\log_4 x$$

4.75.
$$\log_x 4$$

4.76.
$$\ln(\ln x)$$

$$\boxed{4.77. \quad \frac{1}{2} \ln \frac{x+1}{x-1}}$$

4.78.
$$\ln\left(x+\sqrt{x^2+1}\right), \quad (x>1)$$

4.79.
$$\ln\left(e^x + \sqrt{1 + e^{2x^2}}\right)$$

4.80.
$$4 \sin x$$

$$4.81. \quad \frac{\operatorname{sh} x + \operatorname{ch} x}{3}$$

4.82.
$$\sinh(x^{22})$$

4.83.
$$(\sin x)^{22}$$

$$4.84. \quad \frac{\operatorname{sh} x - x \operatorname{ch} x}{\operatorname{ch} x + x \operatorname{sh} x}$$

4.85.
$$4x^3 \operatorname{th}(x^2 + 1)$$

$$4.86. \quad \frac{\sin x}{\cot x}$$

4.87.
$$\sinh \frac{1}{x}$$

$$\boxed{\textbf{4.88.}} \quad x \sin x$$

4.89.
$$(3x^5+1) \operatorname{ch} x$$

$$4.90. \quad \log_3 x \cdot \cos x$$

$$4.91. \quad \frac{\sin x + 2\ln x}{\sqrt{x} + 1}$$

$$4.92. \quad \frac{x^2 e^x - 3^x \ln x + \cos \pi}{x^2 + 1}$$

4.94.
$$\frac{\cos(3^x) + 5}{\ln(\sin x) + x^2}$$

4.95.
$$\int (\sin x)^{\cos x}$$

4.96.
$$\ln(\sin x)$$

4.97.
$$x^{\operatorname{tg} x}$$

Mutassuk meg, hogy a következő függvények invertálhatóak egy alkalmas intervallumon, és számítsuk ki az inverz deriváltját a megadott helyen!

4.98.
$$x + \sin x$$
, $a = 1 + \pi/2$

4.99.
$$3x^3 + x$$
, $a = 4$

4.100.
$$f(x) = x^5 + x^2 \ (x > 0), \quad a = 2$$

4.101.
$$-2x^3 + \sqrt{x}, \quad a = -1$$

Határozzuk meg a következő trigonometrikus függvények inverzeinek a deriváltját!

4.102.
$$\arcsin x$$

4.103.
$$\arccos x$$

$$\begin{bmatrix} \mathbf{4.104.} \end{bmatrix} \operatorname{arctg} x$$

4.105.
$$\operatorname{arcctg} x$$

Hol deriválható és mi a deriváltja a következő függvényeknek?

4.106.
$$\arcsin(\cos x)$$

4.107.
$$\sin(\arccos x)$$

4.108.
$$\arctan(\sin x)$$

4.109.
$$tg(arcsin x)$$

4.110.
$$| \operatorname{arsh}(\operatorname{ch} x) |$$

4.111.
$$\sinh(\operatorname{arch} x)$$

4.112.
$$| \operatorname{arth}(\operatorname{sh} x) |$$

4.113.
$$th(arsh x)$$

Számítsuk ki a következő határértékeket, ha léteznek!

4.114.
$$\lim_{x \to \pi/6} \frac{2\sin x - 1}{6x - \pi}$$

4.115.
$$\lim_{x \to \pi/2} \frac{\sin x - 2/(\pi x)}{\cos x}$$

4.116.
$$\lim_{x \to \pi/2} \frac{\cos x}{x - \pi/2}$$

4.117.
$$\lim_{x\to 0} \frac{e^x-1}{x}$$

Számítsuk ki a következő sorozatok határértékét, ha léteznek!

$$\boxed{\textbf{4.118.}} \quad \lim_{n \to \infty} n \left(\sqrt{\frac{n+1}{n}} - 1 \right)$$

$$\lim_{n\to\infty} n\left(\sqrt{\frac{n+1}{n}}-1\right) \quad \boxed{\textbf{4.119.}} \quad \lim_{n\to\infty} n\left(\cos\frac{1}{n}-1\right)$$

4.120.
$$\lim_{n \to \infty} n e^{1/n} - 1$$

$$\boxed{\textbf{4.121.}} \quad \lim_{n \to \infty} n^2 \sin \frac{1}{n} \left(\sqrt[n]{e} - 1 \right)$$

Számoljuk ki a következő függvények második deriváltját:

4.122.
$$x^3 + 2x^2 + x + 1$$

4.123.
$$e^{\sin x}$$

$$\boxed{\textbf{4.124.}} \quad \ln \cos x$$

$$\boxed{\textbf{4.125.}} \quad \arctan \frac{1}{x}$$

4.3. Középértéktételek, L'Hospital szabály

- 4.126. Van-e olyan függvény, amelyiknek a deriváltja a [-3, 5] intervallumon [x], azaz x egész része?
- 4.127. Van-e olyan függvény, amelyiknek a deriváltja nem folytonos?
- Legyen $f(x) = \operatorname{arctg} x$, $g(x) = \operatorname{arctg} \frac{1+x}{1-x}$ és h(x) = f(x) g(x). Bi-4.128. zonyítsuk be, hogy h'(x) = 0. Következik-e ebből, hogy h(x) konstans függvény? Számítsuk kih(0)-t, és a $\lim_{x\to\infty}h(x)$ határértéket! Magyarázzuk meg az eredményt!
- 4.129. Tegyük fel,hogy f és g differenciálható függvények, továbbá $f(0) \ge$ g(0), és hogy minden $x \in \mathbb{R}$ esetén f'(x) > g'(x). Bizonyítsuk be, hogy ekkor f(x) > q(x), ha x > 0.

Hány gyöke van a következő egyenleteknek?

4.130.
$$x^3 + 2x + 4 = 0$$

4.131.
$$x^5 - 5x + 2 = 0$$

4.132.
$$e^x = 2x + 2$$

4.133.
$$\sin x = \frac{x}{2}$$

Számítsuk ki a következő határértékeket!

$$\boxed{\textbf{4.134.}} \quad \lim_{x \to \infty} x \left(\frac{\pi}{2} - \arctan x \right)$$

4.135.
$$\lim_{x \to 0} \frac{x}{\ln(1+x)}$$

4.136.
$$\lim_{x \to \pi/2} \frac{1 - \sin x}{1 + \cos 2x}$$

4.137.
$$\lim_{x \to 0^+} \frac{x}{\sin \sqrt{x}}$$

4.138.
$$\lim_{x \to 0^+} \frac{\ln x}{\cot x}$$

$$\boxed{\textbf{4.139.}} \quad \lim_{x \to \infty} \frac{x + \ln x}{x + 1}$$

4.140.
$$\lim_{x \to -\infty} \frac{x+1}{e^{-x}}$$

$$4.141. \quad \lim_{x \to 0} \frac{\sin x - x}{\operatorname{tg} x - x}$$

4.142.
$$\lim_{x \to 0} \frac{x \operatorname{ctg} x - 1}{x^2}$$

$$\boxed{\textbf{4.143.}} \quad \lim_{x \to 0} \left(\operatorname{ctg} x - \frac{1}{x} \right)$$

$$\boxed{\textbf{4.144.}} \quad \lim_{x \to 0} (1+x)^{1/x}$$

4.145.
$$\lim_{x \to 0} \left(\frac{\sin x}{x} \right)^{1/x^2}$$

$$\boxed{\textbf{4.146.}} \quad \lim_{x \to 0} \left(\frac{1 + e^x}{2} \right)^{\operatorname{ctg} x}$$

$$\boxed{\textbf{4.147.}} \quad \lim_{x \to \infty} \frac{x^3 + x^2 + 1}{e^x}$$

$$\boxed{\textbf{4.148.}} \quad \lim_{x \to \infty} \frac{\ln x}{\sqrt{x}}$$

$$\boxed{\textbf{4.149.}} \quad \lim_{x \to \infty} x \sin \frac{1}{x+1}$$

$$\boxed{\textbf{4.150.}} \quad \lim_{x \to 0} \frac{\operatorname{ch} x - \cos x}{x^2}$$

$$\boxed{\textbf{4.151.}} \quad \lim_{x \to \infty} \frac{1 + \arctan x}{\sinh x + \cosh x}$$

Számoljuk ki a $\lim_{x\to 0} \frac{\sin x}{x+1}$ határértéket! 4.152.

Megoldás: A L'Hospital-szabály alkalmazásával:

$$\lim_{x \to 0} \frac{\sin x}{x+1} = \lim_{x \to 0} \frac{\cos x}{1} = 1$$

Mi a hiba?

Számoljuk ki a $\lim_{x\to 0}\frac{x+1}{2x+2}$ határértéket! 4.153.

Megoldás: A L'Hospital-szabály alkalmazásával:

$$\lim_{x \to 0} \frac{x+1}{2x+2} = \lim_{x \to 0} \frac{1}{2} = \frac{1}{2}$$

Mi a hiba?

Számoljuk ki a $\lim_{x\to\infty}\frac{\sin x}{x}$ határértéket! 4.154.

Megoldás: A L'Hospital-szabály alkalmazásával:

$$\lim_{x\to\infty}\frac{\sin x}{x}=\lim_{x\to\infty}\frac{\cos x}{1}=\lim_{x\to\infty}\cos x.$$
 Ez a határérték nem létezik.

Mi a hiba?

4.4. Szélsőértékkeresés

Határozzuk meg következő függvények abszolút szélsőértékeit a megadott intervallumokon!

- 4.155. $x^3 - 12x$ [-10; 3], [0; 3]
- 4.156. $x^3 + 2x^5$ [-1, 4], [2, 5], [-7, 3]
- 4.157. A vékony lencsék leképezési törvénye szerint

$$\frac{1}{f} = \frac{1}{t} + \frac{1}{k},$$

ahol f a lencse fókusztávolsága, t a tárgy távolsága a lencsétől és k a képtávolság. Adott f fókusztávolság esetén mennyi legyen a tárgytávolság, hogy t + k maximális, illetve minimális legyen?

4.158. A ferde hajításnál a földről α szögben v_0 kezdősebességgel kilőtt test a kilövés helyétől

$$\frac{2v_0^2}{g}\sin\alpha\cos\alpha$$

távolságra ér földet, ha a közegellenállástól eltekintünk. Milyen szögben lőjük ki a testet, hogy a lehető legmesszebb repüljön?

4.159. Az egyenlő szárú derékszögű háromszögbe írható téglalapok közül melyiknek a területe a legnagyobb? Na és melyiknek a kerülete a legnagyobb?

Itt **beírt téglalapon** olyan téglalapot értünk, amelynek két szomszédos csúcsa az átfogón, a többi csúcsa a befogókon van.

- **4.160.** Határozzuk meg egy adott a alkotójú egyenes körkúp alapkörének R sugarát és m magasságát úgy, hogy a kúp térfogata maximális legyen!
- 4.161. A 16cm² területű téglalapok közül melyiknek a kerülete minimális? Mekkorák ennek az oldalai?
- 4.162. A 8 egység kerületű téglalapok közül miért a négyzetnek legnagyobb a területe?
- 4.163. Legfeljebb mekkora lehet a derékszögű háromszög területe, ha az egyik befogójának és az átfogójának az összege 10 cm?
- 4.164. Egy téglalap egyik oldala az x tengelyen fekszik, két felső csúcsa pedig az $y = 12 x^2$ parabolán. Mikor maximális a területe egy ilyen téglalapnak?
- 4.165. 8 x 15 dm-es kartonlapból téglalap alakú, nyitott dobozt készítünk úgy, hogy a kartonlap sarkaiból egybevágó négyzeteket vágunk ki, majd felhajtjuk az oldalakat. Milyenek legyenek a doboz méretei, ha azt szeretnénk elérni, hogy a lehető legnagyobb legyen a térfogata? Mekkora lesz a maximális térfogat?
- 4.166. Hozzunk létre egy háromszöget a koordináta-rendszer első síknegyedében úgy, hogy az x-, illetve y-tengely (a,0), (0,b) koordinátájú pontjait egy 20 egység hosszú egyenes szakasszal összekötjük. Mutassuk meg, hogy a közbezárt háromszög területe akkor lesz a legnagyobb, ha a=b.
- 4.167. Egy farmon az állatok számára el kell keríteni egy téglalap alakú karámot. A területet egyik oldalról folyó határolja, a másik három oldalon egyszálas vezetéket kell kifeszíteni, amelybe aztán áramot vezetnek. A rendelkezésre álló 800 méternyi vezetékkel mekkora területet lehet elkeríteni, és milyen méretű lesz a maximális területű karám?
- **4.168.** Határozzuk meg egy adott V térfogatú egyenes körhenger alapkörének R sugarát és m magasságát úgy, hogy a henger felszíne minimális legyen!

- 4.169. Egy borsóültetvény 216 m²-es téglalap alakú részét be kell keríteni, majd a kerítés egyik oldalával párhuzamosan két egyenlő részre kell osztani. Mekkorák legyenek a külső téglalap oldalai, hogy a lehető legkevesebb kerítésfonatot kelljen felhasználni? Milyen hosszú kerítésre van szükség?
- 4.170. Egy függőlegesen mozgó test magasságát az

$$s = -4,9t^2 + 30t + 34$$

függvény adja meg, ahol s-t méterben, t-t másodpercben mérjük. Mekkora lesz

- (a) a test sebessége a t = 0 időpontban;
- (b) a legnagyobb magassága, és mikor éri azt el;
- (c) a sebessége, amikor s = 0?
- 4.171. Janka a parttól 3 kilométerre egy csónakban ül, és szeretne eljutni a tőle légvonalban 5 kilométerre lévő part menti faluba. 2 km/h sebességgel tud evezni és 5 km/h sebességgel gyalogolni. Hol szálljon ki a csónakból, hogy a lehető legrövidebb idő alatt érjen a faluba?
- 4.172.Két részecske helyzetét az s-tengelyen az $s_1 = \cos t$ és $s_2 = \cos(t + \pi/4)$ függvények írják le.
 - (a) Mekkora a részecskék legnagyobb távolsága?
 - (b) Mikor ütköznek össze?

4.5. Függvényvizsgálat

Tegyük fel, hogy f differenciálható \mathbb{R} -en. Mi a következő állítások logikai kapcsolata, azaz melyikből következik a másik?

4.173.

P: f'(a) = 0 Q: f-nek lokális szélsőértéke van a-ban

P: $f'(a) \neq 0$ 4.174.

Q: f-nek nincs lokális szélsőértéke a-ban

4.175. **P:** $f'(x) \ge 0$ (3,5)-ben \mathbf{Q} : f monoton nő (3,5)-ben

- 4.176.**P:** f'(x) > 0 (3,5)-ben
- \mathbf{Q} : f szigorúan monoton nő (3,5)-ben

Tegyük fel, hogy f kétszer differenciálható \mathbb{R} -en. Mi a következő állítások logikai kapcsolata, azaz melyikből következik a másik?

4.177.**P:** f''(a) > 0

- \mathbf{Q} : f-nek lokális minimuma van a-ban
- 4.178. **P:** f'(a) = 0 és f''(a) > 0
- \mathbf{Q} : f-nek lokális minimuma van

4.179. **P:** f''(a) = 0

 \mathbf{Q} : f-nek inflexiós pontja van aban

P: f''(a) = 04.180.

- Q: f-nek inflexiós pontja vagy lokális szélsőértéke van a-ban
- 4.181. **P:** $f''(x) \ge 0$ (3,5)-ben
- **Q:** f konvex (3,5)-ben
- **P:** f''(x) > 0 (3,5)-ben 4.182.
- $\mathbf{Q:}\ f$ szigorúan konvex(3,5)-ben

Milyen intervallumokon növekszik, illetve csökken, hol van lokális szélsőértéke a következő függvényeknek?

- 4.183. $f(x) = -x^2 - 3x + 23$
- $f(x) = 2x^3 18x + 23$ 4.184.
- $f(x) = x^4 4x^3 + 4x^2 + 23$ 4.185.
- $f(x) = x\sqrt{9 x^2}$ 4.186.
- $f(x) = x^2 \sqrt{5 x}$ 4.187.
- $f(x) = \frac{x^2 9}{x 2}$ 4.188.

Keressük meg a következő függvények lokális szélsőértékeit, és határozzuk meg a típusaikat!

4.189.
$$y = xe^{-x}$$

4.190.
$$y = 2 + x - x^2$$

4.191.
$$y = x^3 - 6x^2 + 9x - 4$$
 4.192. $y = x + \sin x$

4.192.
$$y = x + \sin x$$

Végezzük el a következő függvények teljes függvényvizsgálatát!

4.193.
$$f(x) = x + \frac{1}{x}$$

4.194.
$$f(x) = x - \frac{1}{x^2}$$

4.195.
$$f(x) = \frac{1}{1+x^2}$$

4.196.
$$f(x) = \frac{x}{1+x^2}$$

4.197.
$$f(x) = \frac{x+1}{1+x^2}$$

$$\boxed{\textbf{4.198.}} \quad f(x) = \frac{x^3}{x^2 + 1}$$

4.199.
$$f(x) = \frac{x^3}{x^2 - 1}$$

4.199.
$$f(x) = \frac{x^3}{x^2 - 1}$$
 4.200. $f(x) = x + \frac{2x}{x^2 - 1}$

4.201.
$$f(x) = \frac{1}{x^2} - \frac{1}{(x-1^2)}$$
 4.202. $f(x) = \frac{x\sqrt{1-x}}{1+x}$

4.202.
$$f(x) = \frac{x\sqrt{1-x}}{1+x}$$

Ábrázoljuk a következő függvényeket!

4.203.
$$f(x) = 6 - 2x - x^2$$

4.204.
$$f(x) = x^3 - 3x + 3$$

4.205.
$$f(x) = x(6-2x)^2$$

4.206.
$$f(x) = 1 - 9x - 6x^2 - x^3$$

4.207.
$$f(x) = (x-2)^3 + 1$$

4.208.
$$f(x) = 1 - (x+1)^3$$

4.6. Elemi függvények

Végezzük el a következő függvények teljes függvényvizsgálatát!

4.209.
$$x^{2n}, n \in \mathbb{N}^+$$

4.210.
$$x^{2n+1}, n \in \mathbb{N}^+$$

4.211.
$$x^{-2n}, n \in \mathbb{N}^+$$

4.212.
$$x^{-(2n+1)}, n \in \mathbb{N}^+$$

$$\boxed{\textbf{4.213.}} \quad \sqrt[2n]{x}, \quad n \in \mathbb{N}^+$$

$$\boxed{\textbf{4.214.}} \quad {}^{2n+\sqrt[4]{x}}, \quad n \in \mathbb{N}^+$$

4.215.
$$a^x$$
, $(a > 1)$

4.216.
$$a^x$$
, $(0 < a < 1)$

4.217.
$$\log_a x$$
, $(a > 1)$

4.218.
$$\log_a x$$
, $(0 < a < 1)$

4.219.
$$\sin x$$

4.221.
$$\arcsin x$$

$$\begin{bmatrix} \mathbf{4.222.} \end{bmatrix} \operatorname{arctg} x$$

$$\boxed{\textbf{4.223.}} \quad \text{sh } x = \frac{e^x - e^{-x}}{2}$$

4.224. ch
$$x = \frac{e^x + e^{-x}}{2}$$

4.225.
$$\arcsin x$$

4.226.
$$\arctan x$$

Számítsuk ki a következő értékeket!

4.227.
$$2^{\frac{\ln 100}{\ln 2}}$$

4.228.
$$\left(\frac{1}{9}\right)^{-\log_3 7}$$

4.229.
$$\arcsin \frac{\sqrt{3}}{2}$$

4.230.
$$arctg(-1)$$

$$\boxed{\textbf{4.231.}} \quad \arccos(\cos(9\pi))$$

$$\boxed{\textbf{4.232.}} \quad \sin\left(\arcsin\frac{1}{3}\right)$$

4.234.
$$\arcsin(\sin 3)$$

Periodikusak-e a következő függvények? Ha igen, adjunk meg egy periódust!

4.235.
$$| \operatorname{tg}(10x) |$$

4.236.
$$\int ctg(\pi x)$$

4.237.
$$\sin \frac{x}{5}$$

4.238.
$$\cos \frac{x}{2} + \tan \frac{x}{3}$$

4.239. ${\bf A}$ következő függvények közül ábrázoltunk néhányat, keressük meg a grafikonokhoz tartozó képleteket!

 ${\rm sh}\, x, \quad {\rm ch}\, x, \quad e^x, \quad e^{-x}, \quad \log_3 x, \quad \log_{0,5} x, \quad \ln(-x), \quad x^3, \quad x^{-3}$

(a)

(b)

(c)

(d)

(e)

(f)

4.240. A következő függvények közül ábrázoltunk néhányat, keressük meg a grafikonokhoz tartozó képleteket!

> $\cos 2x$, $2\sin x$, $\sin(x-2)$, $-\cos x$, $\sin x$,

> > tg x, ctg x, $sin^2 x$, |cos x|

(b) (a)

(c) (d)

(e)

(f)

4.241. A következő függvényeket ábrázoltuk, keressük meg a grafikonokhoz tartozó képleteket!

 $\arcsin x$, $\arccos x$, $\arctan x$, $\arctan x$

 $\sin(\arcsin x)$, $\arcsin(\sin x)$, $\operatorname{tg}(\operatorname{arctg} x)$, $\operatorname{arctg}(\operatorname{tg} x)$

(a)

(b)

(c)

(d)

(f)

(g)

(h)

4.242. A következő függvényeket ábrázoltuk, keressük meg a grafikonokhoz tartozó képleteket!

 $\arccos(\sin x), \quad \cos(\arcsin x), \quad \arcsin(\cos x)$ $\sin(\arccos x)$, $\operatorname{arcctg}(\operatorname{tg} x), \quad \operatorname{ctg}(\operatorname{arctg} x),$ tg(arcctg x), $\operatorname{arctg}(\operatorname{ctg} x)$

(b)

(d)

(a)

(c)

(e)

(g)

(h)

5. fejezet

Az egyváltozós Riemann-integrál

5.1. Alapintegrálok

$$\int x^{\alpha} dx = \frac{1}{\alpha + 1} x^{\alpha + 1} + C \quad (\alpha \neq \int \frac{1}{x} dx = \ln|x| + C$$

$$-1)$$

$$\int a^{x} dx = \frac{1}{\ln a} a^{x} + C \quad (a \neq 1) \qquad \int e^{x} dx = e^{x} + C$$

$$\int \cos x dx = \sin x + C \qquad \int \sin x dx = -\cos x + C$$

$$\int \frac{1}{\cos^{2} x} dx = \operatorname{tg} x + C \qquad \int \frac{1}{\sin^{2} x} dx = -\operatorname{ctg} x + C$$

$$\int \frac{1}{\sqrt{1 - x^{2}}} dx = \arcsin x + C \qquad \int \frac{1}{1 + x^{2}} dx = \operatorname{arctg} x + C$$

$$\int \operatorname{ch} x dx = \operatorname{sh} x + C \qquad \int \operatorname{sh} x dx = \operatorname{ch} x + C$$

$$\int \frac{1}{\sqrt{1 + x^{2}}} dx = \operatorname{arch} x + C \qquad \int \frac{1}{\sqrt{x^{2} - 1}} dx = \operatorname{arch} x + C$$

5.2. Integrálási szabályok

— Haf-nek és g-nek van primitív függvénye, akkor f+g-nek és $c\cdot f$ -nek is van, nevezetesen

$$\int (f+g) = \int f + \int g, \qquad \int c \cdot f = c \int f$$

— Ha F primitív függvénye f-nek, akkor minden $a, b \in \mathbb{R}, a \neq 0$ esetén

$$\int f(ax+b) dx = \frac{1}{a}F(ax+b) + C$$

— Ha f deriválható és mindenütt pozitív, akkor

$$\int f^{\alpha}(x)f'(x) dx = \frac{f^{\alpha+1}(x)}{\alpha+1} + C \quad (\alpha \neq -1)$$

— Haf deriválható, és sehol sem nulla, akkor

$$\int \frac{f'(x)}{f(x)} dx = \ln|f(x)| + C$$

Parciális integrálás:

Hafés gderiválható, és fg^\prime -nek van primitív függvénye, akkor $f^\prime g$ -nek is, és

$$\int f'g = fg - \int fg'$$

— Integrálás helyettesítéssel:

Ha g(x) deriválható, f(y) értelmezett g(x) értékkészletén, és itt van primitív függvénye, akkor az $f(g(x)) \cdot g'(x)$ összetett függvénynek is van primitív függvénye és

$$\int f(g(x)) \cdot g'(x) \, dx = F(g(x)) + C,$$

ahol F(y) az f(y) függvény egyik primitív függvénye.

5.3. Newton-Leibniz formula. Ha f integrálható az [a,b] zárt intervallumon, létezik az F primitív függvénye az (a,b) nyílt intervallumon, és F folytonos az [a,b] zárt intervallumon, akkor

$$\int_{a}^{b} f(x) dx = F(b) - F(a),$$

azaz az integrál megegyezik a primitív függvény megváltozásával.

5.4. Integráltranszformáció. Ha f folytonos az [a,b] intervallumon, $g:[c,d]\to [a,b]$ folytonosan deriválható függvény és $g(c)=a,\,g(d)=b,$ akkor

$$\int_{a}^{b} f(x) dx = \int_{a}^{d} f(g(t))g'(t) dt.$$

A fenti képlet előnye, hogy nem kell ismernünk a g helyettesítő függvény inverzét, elég ha a c és d pontokat meghatározzuk.

5.5. A határozott integrál alkalmazásai.

— Függvénygörbe alatti terület. Ha $f:[a,b]\to\mathbb{R}$ integrálható, és sehol sem negatív, akkor az

$$A = \{(x; y) : x \in [a, b], 0 \le y \le f(x)\}$$

síkidomnak van területe, és

$$t(A) = \int_{a}^{b} f(x) \, dx.$$

— Normáltartomány területe. Ha f és g két integrálható függvény [a,b]-n, $x \in [a,b]$ esetén $g(x) \geq f(x)$, akkor a

$$N = \{(x; y) : x \in [a, b], f(x) \le y \le g(x)\}$$

normáltartománynak van területe és

$$t(N) = \int_{a}^{b} (g(x) - f(x)) dx$$

Szektorszerű tartomány területe. Ha az S tartományt a polárkoordinátákkal megadott $r = r(\varphi), \ \varphi \in [\alpha, \beta]$ síkgörbe és az origóból a görbe két végpontjába húzott szakaszok határolják, és $r(\varphi)$ integrálható, akkor az S síkidomnak van területe, és

$$t(S) = \frac{1}{2} \int_{\alpha}^{\beta} r^{2}(\varphi) d\varphi.$$

Függvénygrafikon ívhossza. Ha az f függvény az [a, b] intervallumon folytonosan deriválható, akkor a függvény grafikonjának van ívhossza, és

$$L = \int_{a}^{b} \sqrt{1 + (f'(x))^{2}} \, dx.$$

— Forgástest térfogata. Ha $f:[a,b]\to\mathbb{R}$ integrálható és sehol sem negatív, akkor az

$$A = \{(x; y; z) : a \le x \le b, \ y^2 + z^2 \le f^2(x)\}$$

forgástestnek van térfogata és

$$V = \pi \int_{a}^{b} f^{2}(x) dx.$$

5.6. Majorizációs-elv vagy összehasonlító kritérium. Haf és g integrálható $[a,\infty)$ minden korlátos zárt részintervallumán, és $x\in[a,\infty)$ esetén $|f(x)| \leq g(x)$ és $\int_{a}^{\infty} g(x) dx$ konvergens, akkor $\int_{a}^{\infty} f(x) dx$ is (abszolút) konvergens.

5.7. Nagyságrendi kritérium vagy határérték összehasonlító kritérium. Ha f és q pozitív és integrálható $[a,\infty)$ minden korlátos zárt részintervallumán,

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = L$$

létezik, és $0 < L < \infty$, akkor az

$$\int_{a}^{\infty} f(x) dx \qquad \text{és} \qquad \int_{a}^{\infty} g(x) dx$$

improprius integrálok egyszerre konvergensek vagy divergensek.

A két fenti konvergencia-kritérium értelemszerűen megfogalmazható korlátos intervallumokon vett improprius integrálok esetén is.

5.1. Határozatlan integrál

5.1. A következő függvényeket a baloldali oszlopban, deriváltjaikat a jobboldali oszlopban ábrázoltuk. Keressük meg őket!

$$x^3 - 4x$$
, x^3 , $x + \sin x$, $\operatorname{tg} x$, e^{-x}

(1)

(A)

(2)

(3) (C)

Számítsuk ki a következő határozatlan integrálokat!

$$\boxed{\textbf{5.2.}} \int \sin(x+3) \ dx$$

5.3.
$$\int (1+x+5x^2) \ dx$$

$$\boxed{ 5.4. } \int \sqrt{x+2} \ dx$$

5.6.
$$\int \frac{1}{(x+2)^3} \ dx$$

$$\boxed{5.7.} \int e^{2x+3} \ dx$$

Alapintegrálokra való visszavezetéssel. illetve lineáris helyettesítés alkalmazásával számítsuk ki a következő határozatlan integrálokat! Az eredményt minden esetben ellenőrizzük deriválással!

5.8.
$$\int x^{3/2} dx$$

$$\boxed{\textbf{5.9.}} \int \left(\sqrt{x} + \frac{1}{x}\right) dx$$

5.10.
$$\int \frac{-5}{x-7} \, dx$$

$$\boxed{\textbf{5.11.}} \int \frac{x^5 - 3x^3 + x - 2}{x^2} \, dx$$

$$5.12. \int \sin 2x + 3\cos x \, dx$$

$$\boxed{\mathbf{5.13.}} \int 2^x \, dx$$

5.14.
$$\int e^{2x-3} dx$$

5.15.
$$\int e^{-x} + 3\cos\frac{x}{2} \, dx$$

Határozzuk meg a következő $\int \frac{f'}{f}$ vagy $\int f^a f'$ alakúra visszavezethető határozatlan integrálokat! Az eredményt minden esetben ellenőrizzük deriválással!

5.16.
$$\int \frac{x^2}{x^3 + 1} \ dx$$

$$\boxed{\textbf{5.17.}} \int \ln^2 x \cdot \frac{1}{x} \ dx$$

5.18.
$$\int \frac{2x+1}{\sqrt{x^2+x+1}} \ dx$$
 5.19.
$$\int x\sqrt{x^2+1} \ dx$$

$$\boxed{\textbf{5.19.}} \int x\sqrt{x^2+1}\,dx$$

$$\boxed{\textbf{5.20.}} \int \frac{x}{\sqrt{x^2 + 1}} \, dx$$

$$\boxed{\mathbf{5.21.}} \int \frac{1}{x \ln x} \, dx$$

5.22.
$$\int \frac{1}{(1+x^2) \arctan x} \, dx$$

$$\int \frac{\sin x}{\cos^{2013} x} dx$$

A következő határozatlan integrálok nevezőjében másodfokú kifejezések vannak. A megoldásban segíthet a parciális törtekre bontás, az $\frac{f'}{f}$ alakok felismerése, illetve visszavezetés az $\int \frac{1}{1+x^2} dx$ alapintegrálra. Az eredményt minden esetben ellenőrizzük deriválással!

5.24.
$$\int \frac{1}{2+x^2} \, dx$$

$$\boxed{\textbf{5.25.}} \int \frac{4}{5+6x^2} dx$$

5.26.
$$\int \frac{1}{4 - x^2} dx$$

$$\int \frac{1}{4 - 9x^2} dx$$

5.28.
$$\int \frac{3}{(x+3)(x+2)} dx$$

$$\boxed{5.29.} \int \frac{3}{(x+3)(2-x)} dx$$

5.30.
$$\int \frac{1}{10 - x^2} dx$$

5.31.
$$\int \frac{1}{10+x^2} dx$$

5.32.
$$\int \frac{x-2}{x^2 - 2x + 6} dx$$

5.33.
$$\int \frac{x}{x^2 - 2x + 6} dx$$

5.34.
$$\int \frac{x^2 + 1}{x^2 - 1} dx$$

5.35.
$$\int \frac{x^2 - 1}{x^2 + 1} dx$$

5.36.
$$\int \frac{3x^3 + 2x - 1}{x^2 - x - 6} dx$$

5.37.
$$\int \frac{3x^2 + 2x - 1}{x^2 - 2x + 6} dx$$

5.38.
$$\int \frac{x^4 + 2}{x^2 + 1} dx$$

5.39.
$$\int \frac{x^4 - 2}{x^2 - 1} dx$$

Integráljuk a következő racionális törtfüggvényeket!

5.40.
$$\int \frac{1}{x^3 + x^2} \, dx$$

$$\boxed{\textbf{5.41.}} \int \frac{1}{x^3 + x} \, dx$$

5.42.
$$\int \frac{x}{x^2 - 2x + 5} \, dx$$

5.43.
$$\int \frac{x}{x^2 - 2x - 3} \, dx$$

$$\boxed{\textbf{5.44.}} \int \frac{x+2}{x-1} \, dx$$

5.45.
$$\int \frac{x^2 + 2}{x - 1} \, dx$$

5.46.
$$\int \frac{x^2 - 2}{x + 1} \, dx$$

$$\boxed{\textbf{5.47.}} \int \frac{3x^2 + 2}{x^3 + 2x} \, dx$$

5.48.
$$\int \frac{x+2}{x^2+2x+2} \, dx$$

5.49.
$$\int \frac{2}{(x-1)^2} \, dx$$

Alapintegrálokra való visszavezetéssel, $\int \frac{f'}{f}$ vagy $\int f' f^a$ alakok felismerésével, illetve trigonometrikus azonosságok felhasználásával számítsuk ki a következő határozatlan integrálokat! Az eredményt minden esetben ellenőrizzük deriválással!

$$5.50. \int \sin^2 x \, dx$$

$$\boxed{\mathbf{5.51.}} \int \cos^2 2x \, dx$$

$$\boxed{\mathbf{5.52.}} \int \frac{3}{\cos^2 x} \, dx$$

$$\boxed{\mathbf{5.53.}} \int \frac{4}{\sin^2(3x-5)} \, dx$$

5.54.
$$\int \frac{5}{\cos^2(1-x)} \, dx$$

$$\boxed{\mathbf{5.55.}} \int \operatorname{tg} x \, dx$$

$$\boxed{\textbf{5.56.}} \int \frac{(\sin x + \cos x)^2}{\sin^2 x} dx$$

$$\boxed{\textbf{5.57.}} \int \frac{(\sin x - \cos x)^2}{\cos^2 x} \, dx$$

$$5.58. \int \frac{\sin^2 2x + 1}{\cos^2 x} \, dx$$

$$\mathbf{5.59.} \quad \int \sqrt{1+\sin x} \, dx$$

Határozzuk meg parciális integrálással a következő határozatlan integrálokat!

$$\boxed{\textbf{5.62.}} \int e^x \sin x \ dx$$

$$\boxed{\textbf{5.63.}} \int x^2 e^{-x} \, dx$$

$$\boxed{\textbf{5.65.}} \int x \arctan x \, dx$$

$$\boxed{\mathbf{5.66.}} \int x \sin x \, dx$$

$$\boxed{\textbf{5.67.}} \int x \ln^2 x \, dx$$

$$5.69. \int \sin 3x \cdot \cos 4x \, dx$$

5.70. Helyes-e a következő parciális integrálás? Ha igen, akkor 0 = 1?

$$\int \frac{1}{x} \cdot \frac{1}{\ln x} \, dx = \ln x \cdot \frac{1}{\ln x} - \int \ln x \cdot \frac{-\frac{1}{x}}{\ln^2 x} \, dx = 1 + \int \frac{1}{x} \cdot \frac{1}{\ln x} \, dx$$

Határozzuk meg a következő határozatlan integrálokat a javasolt helyettesítésekkel!

$$\int xe^{x^2} dx, \qquad t =$$

5.72.
$$\int x^2 \sqrt{x^3 + 1} \, dx, \qquad t = \sqrt{x^3 + 1}$$

5.73.
$$\int \frac{x^2}{\sqrt{1-x^2}} \, dx, \qquad x = \sin t$$

5.74.
$$\int \frac{1}{\sqrt{x(1-x)}} \, dx, \qquad x = \sin^2 t$$

$$\int \frac{1}{\sin x} dx, \qquad t = \cos x$$

$$\boxed{5.76.} \int \frac{1}{1+\cos^2 x} \, dx, \qquad t = \operatorname{tg} x$$

5.77.
$$\int \frac{1}{2^x + 4^x} \, dx, \qquad t = 2^x$$

$$\boxed{5.78.} \int \frac{1}{1 + \sin^2 x} \, dx, \qquad t = \lg x$$

5.79.
$$\int \frac{1}{(1-x^2)\sqrt{1-x^2}} dx, \qquad x = \sin t$$

5.80.
$$\int \frac{1}{(1+x^2)\sqrt{1+x^2}} dx, \qquad x = \operatorname{tg} t$$

$$\boxed{5.81.} \int \frac{1}{(1+x^2)\sqrt{1+x^2}} \, dx, \qquad x = \sin t$$

5.82.
$$\int \frac{1}{(x+1)^2(x-2)^3} dx, \qquad t = \frac{x+1}{x-2}$$

Számoljuk ki a következő határozatlan integrálokat helyettesítések-

5.83.
$$\int (2x+1)e^{x^2+x+1} \ dx$$
 5.84.
$$\int \cos x \ e^{\sin x} \ dx$$

5.85.
$$\int \frac{dx}{\sqrt{x(1-x)}}$$
 5.86.
$$\int \frac{x}{(x^2+1)^2} dx$$

5.87.
$$\int \frac{e^x + 2}{e^x + e^{2x}} \, dx$$

5.88.
$$\int \frac{1}{e^x + e^{-x}} \, dx$$

$$\boxed{ 5.89. } \int \frac{2^x + 3}{2^x + 2^{2x}} \, dx$$

$$\boxed{\mathbf{5.90.}} \int \frac{1}{\cos x} \, dx$$

Számoljuk ki a következő határozatlan integrálokat!

5.91.
$$\int \frac{1}{(x+2)(x-1)} \ dx$$

5.92.
$$\int \frac{x+1}{x^2+x+1} \ dx$$

$$\boxed{\mathbf{5.93.}} \int \cos^3 x \sin^2 x \ dx$$

5.94.
$$\int \frac{e^x - e^{-x}}{e^x + e^{-x}} dx$$

$$\boxed{\textbf{5.95.}} \int \frac{1}{e^x + e^{-x}} \ dx$$

$$\boxed{\textbf{5.96.}} \int x \sin(x^2 + 1) \ dx$$

$$\boxed{\mathbf{5.97.}} \int \frac{1}{1+\sqrt{x}} \ dx$$

$$\boxed{\mathbf{5.98.}} \int \ln x \ dx$$

5.99.
$$\int \ln(x^2 + 1) \ dx$$

5.100.
$$\int \frac{1}{(1+x^2) \arctan x} \ dx$$

$$\boxed{\textbf{5.101.}} \int \frac{1}{1+\cos x} \ dx$$

$$\boxed{\mathbf{5.102.}} \int \frac{\arctan x}{1+x^2} \, dx$$

5.103.
$$\int 2x \sin(x^2 + 1) \, dx$$

5.103.
$$\int 2x \sin(x^2 + 1) dx$$
 5.104.
$$\int e^{-3x} - 2 \sin(3x - 2) dx$$

5.105.
$$\int (2x+2)(x^2+2x)^{222} dx$$
 5.106.
$$\int \operatorname{ctg} x \, dx$$

$$\boxed{\textbf{5.106.}} \int \operatorname{ctg} x \, dx$$

5.107.
$$\int \frac{e^{2x}}{1 + e^x} \, dx$$

$$\boxed{\textbf{5.108.}} \int \sqrt{2-x} \, dx$$

$$\boxed{\textbf{5.109.}} \int \frac{1}{1+\sqrt{x}} \, dx$$

$$\boxed{\textbf{5.110.}} \int x^2 \ln x \, dx$$

5.111.
$$\int (x^2 + x) \ln x \, dx$$

5.111.
$$\int (x^2 + x) \ln x \, dx$$
 5.112. $\int (3\sqrt[4]{x} + 2) \, dx$

5.113.
$$\int \sin x \cdot \cos^{3000} x \, dx$$
 5.114. $\int \frac{1}{x \ln x} \, dx$

$$\boxed{\textbf{5.114.}} \int \frac{1}{x \ln x} \, dx$$

5.115.
$$\int 3^{-2x} \, dx$$

5.116.
$$\int \sqrt{2-x^2} \, dx$$

$$\boxed{\textbf{5.117.}} \int \cos x \cdot e^{\sin x} \, dx$$

$$\boxed{\textbf{5.118.}} \int \frac{\cos^3 x}{\sin^4 x} \, dx$$

$$\boxed{\textbf{5.119.}} \int \frac{1}{\sin^2 x \cos^4 x} \, dx$$

$$\boxed{\textbf{5.120.}} \int \frac{\cos^5 x}{\sin^3 x} \, dx$$

$$\boxed{\mathbf{5.121.}} \int \frac{1}{\cos^4 x} \, dx$$

$$\boxed{\textbf{5.122.}} \int \cos x \sin^2 x \, dx$$

5.2. Határozott integrál

5.123. Ellenőrizzük, hogy a [-2, 4] intervallumban megadott pontok megfelelneke a Riemann-integrál definíciójában szereplő felosztásnak? Ha igen, határozzuk meg a felosztás finomságát!

(a)
$$x_0 = -2, x_1 = -1, x_2 = 0, x_3 = \frac{1}{2}, x_4 = 4$$

(b)
$$x_0 = -1, x_1 = 2, x_2 = 4$$

(c)
$$x_0 = -2, x_1 = 4$$

(d)
$$x_0 = -2, x_1 = x_0 + 1, x_2 = x_1 + \frac{1}{2}, \dots, x_n = x_{n-1} + \frac{1}{n}$$

(e)
$$x_0 = -2, x_1 = -1, 5, x_2 = 3, x_3 = 4$$

5.124. Finomításai-e egymásnak a következő felosztások a [-2, 4] intervallum-

(a)
$$F=\{-2; -1; 0; 4\}$$

$$\Phi = \{-2; -1; 0; \frac{1}{2}; 3; 4\}$$

$$\Phi = \{-2; -1; 0; 3; 4\}$$

Határozzuk meg a következő függvények alsó és felső összegét az adott felosztás esetén a [-2,4] intervallumban!

5.125.
$$f(x) = \begin{cases} 1, & \text{ha } x \in \mathbb{Q} \\ 0, & \text{ha } x \notin \mathbb{Q} \end{cases}$$
, $\Phi = \{-2, 1, 5, 4\}$

5.126.
$$x^2$$
, $\Phi = \{-2, -1, 0, 4\}$ **5.127.** x^2 , $\Phi = \{-2, 4\}$

5.126.
$$x^2$$
, $\Phi = \{-2, -1, 0, 4\}$ **5.127.** x^2 , $\Phi = \{-2, 4\}$ **5.128.** $[x]$, $\Phi = \{-2, -1, 0, 4\}$ **5.129.** $[x]$, $\Phi = \{-2, 1, 5, 4\}$

5.130. Határozzuk meg az

$$f(x) = \begin{cases} 0, \text{ ha } 0 \le x < \frac{1}{2} \\ 1, \text{ ha } \frac{1}{2} \le x \le 1 \end{cases}$$

függvény alsó és felső összegeinek halmazát a [0,1] intervallum esetén! Adjuk meg az alsó összegek szuprémumát és a felső összegek infimumát!

Riemann-integrálhatók-e a következő függvények a megadott I intervallumokban?

5.131.
$$f(x) = 5$$
 $I = [0, 1]$ $\begin{bmatrix} 5.132. \\ \end{bmatrix}$ $f(x) = -4$ $I = (-1, 2)$

5.133.
$$f(x) = [x]$$
 $I = [2, 4]$ **5.134.** $f(x) = |x|$ $I = [-2, 1]$

5.135.
$$f(x) = \begin{cases} \frac{1}{x}, & \text{ha } x \neq 0 \\ 0, & \text{ha } x = 0 \end{cases}$$
 $I = [0, 1]$

5.136.
$$D(x) = \begin{cases} 1, \text{ ha } x \in \mathbb{Q} \\ 0, \text{ ha } x \notin \mathbb{Q} \end{cases} \qquad I = [3, 5]$$

$$\boxed{\textbf{5.137.}} \quad g(x) = \begin{cases} x, \text{ ha } x \in \mathbb{Q} \\ -x, \text{ ha } x \notin \mathbb{Q} \end{cases} \qquad I = [3, 5]$$

5.138. Bizonyítsuk be, hogy ha minden $x \in [a, b]$ esetén teljesül, hogy $m \le$ $f(x) \leq M$, továbbá f integrálható [a, b]-n, akkor

$$m(b-a) \le \int_a^b f(x) dx \le M(b-a).$$

5.139. Bizonyítsuk be, hogy ha minden $x \in [a, b]$ esetén teljesül, hogy $f(x) \le$ g(x), továbbá f és g integrálható [a, b]-n, akkor

$$\int_{a}^{b} f(x) \, dx \le \int_{a}^{b} g(x) \, dx.$$

Bizonyítsuk be a következő egyenlőtlenségeket!

5.140.
$$0 \le \int_{1}^{2} \frac{1}{x^2 + e^x} dx \le 1$$
 5.141. $1 \le \int_{4}^{5} \sqrt{\ln x + 0, 2} dx \le 2$

5.142. Legyen

$$f(t) = \operatorname{sgn} t \text{ és } G(x) = \int_{-6}^{x} f(t) dt \quad (x > -6).$$

 Határozzuk meg G(-4), G(0), G(1), G(6)értékét! Határozzuk meg G(x)deriváltját!

5.143. Legven

$$f(t) = \begin{cases} 1, \text{ ha } t = \frac{1}{n} \ (n \in \mathbb{N}^+) \\ 0 \text{ egyébként} \end{cases} \text{ és } G(x) = \int_0^x f(t) \, dt \quad (x > 0).$$

Határozzuk meg a G(x) és G'(x) függvényeket!

- **5.144.** Lehet-e $\operatorname{sgn} x$ valamilyen függvénynek az integrálfüggvénye [-1,1]-en? Van-e sgn x-nek primitív függvénye (-1,1)-en?
- 5.145. Legyen

$$F(x) = \begin{cases} x^2, \text{ ha } x \neq 0 \\ 0, \text{ ha } x = 0 \end{cases} \quad \text{és } g(x) = \begin{cases} F'(x), \text{ ha } x \neq 0 \\ 1, \text{ ha } x = 0 \end{cases}.$$

Van-e q-nek primitív függvénye? Integrálható-e a q függvény? Deriválhatóe a g függvény?

Számítsuk ki a következő sorozatok határértékét!

$$\underbrace{\mathbf{5.146.}}_{n \to \infty} \lim_{n \to \infty} \frac{\sin \frac{1}{n} + \sin \frac{2}{n} + \dots + \sin \frac{n}{n}}{n}$$

$$5.147. \quad \lim_{n \to \infty} \frac{\sqrt{1} + \sqrt{1} + \dots + \sqrt{n}}{n\sqrt{n}}$$

5.148.
$$\lim_{n \to \infty} \frac{\sqrt[3]{1} + \sqrt[3]{2} + \dots + \sqrt[3]{n}}{n\sqrt[3]{n}}$$

5.149.
$$\lim_{n \to \infty} n \sum_{i=1}^{n} \left(\frac{i}{n}\right)^2$$
 5.150. $\lim_{n \to \infty} n \sum_{i=1}^{n} \frac{i}{n^2 + i^2}$

$$\underbrace{ \mathbf{5.151.}} \quad \lim_{n \to \infty} \sum_{i=1}^{n} \left(\ln \sqrt[n]{n+i} - \ln \sqrt[n]{n} \right)$$

5.152. Legyen f korlátos függvény [0,1]-ben, és tegyük fel, hogy

$$\lim_{n \to \infty} \frac{f\left(\frac{1}{n}\right) + f\left(\frac{2}{n}\right) + \dots + f\left(\frac{n}{n}\right)}{n} = 5.$$

Következik-e ebből, hogy fintegrálható [0,1]-ben, és hogy $\int\! f(x)\,dx=5?$

5.153. Mi a következő két állítás logikai kapcsolata, azaz melyikből következik

P: Az f függvény integrálható [a, b]-n.

Q: Az |f| függvény integrálható [a, b]-n.

5.154. Számítsuk ki a

$$G(x) = \begin{cases} x^2 \sin \frac{1}{x}, & \text{ha } x \neq 0 \\ 0, & \text{ha } x = 0 \end{cases}$$

függvény deriváltját! Bizonyítsuk be ennek segítségével, hogy az

$$f(x) = \begin{cases} \cos\frac{1}{x}, \text{ ha } x \neq 0\\ 0, \text{ ha } x = 0 \end{cases}$$

függvénynek van primitív függvénye!

5.155. Tudjuk, hogy az

$$f(x) = \begin{cases} \cos\frac{1}{x}, \text{ ha } x \neq 0\\ 0, \text{ ha } x = 0 \end{cases}$$

függvénynek van primitív függvénye. Lehet-e primitív függvénye a

$$g(x) = \begin{cases} \cos\frac{1}{x}, \text{ ha } x \neq 0\\ 1, \text{ ha } x = 0 \end{cases}$$

függvénynek?

Határozzuk meg a következő függvények deriváltját!

5.156.
$$H(x) = \int_{-\infty}^{x} \frac{1}{\ln t} dt$$

$$H(x) = \int_{2}^{x} \frac{1}{\ln t} dt.$$
 5.157. $L(x) = \int_{0}^{\operatorname{ch} x} \frac{1}{\ln t} dt.$

Határozzuk meg a következő határértékeket!

$$\boxed{\textbf{5.158.}} \quad \lim_{x \to \infty} \frac{\ln x}{x} \int_{1}^{x} \frac{1}{\ln t} dt$$

$$\lim_{x \to \infty} \frac{\ln x}{x} \int_{2}^{x} \frac{1}{\ln t} dt \qquad \qquad \mathbf{5.159.} \quad \lim_{x \to \infty} \frac{\ln x}{x} \int_{2}^{\operatorname{ch} x} \frac{1}{\ln t} dt$$

Legyen f integrálható [-a,a]-n. Bizonyítsuk be, hogy ha f

5.160. páros függvény, akkor
$$\int_{-a}^{a} f(x) dx = 2 \int_{0}^{a} f(x) dx,$$

5.161. páratlan függvény, akkor
$$\int_{-a}^{a} f(x) dx = 0$$
.

Számítsuk ki a következő határozott integrálokat!

5.162.
$$\int_{2}^{3} x^{2} dx$$

$$\int_{4}^{6} 4^{5x+6} dx$$

$$\boxed{\textbf{5.164.}} \int_{0}^{\pi} \sin x \, dx$$

$$\boxed{\textbf{5.165.}} \int_{3}^{4} x^{2} \ln x \, dx$$

$$\int_{-2\pi}^{0} \sin^2 x \, dx$$

$$\boxed{\textbf{5.167.}} \int_{0}^{3} \frac{3x^4 + 4x^3 - 2x + 1}{x^2 + 1} \, dx$$

Határozzuk meg a következő határozott integrálokat a javasolt helyettesítésekkel!

$$\int_{1/2}^{\sqrt{3}/2} \frac{x^2}{\sqrt{1-x^2}} \, dx, \quad x = \sin t$$

$$\boxed{\textbf{5.169.}} \int_{2}^{5} x^{2} \sqrt{x^{3} + 1} \, dx, \quad t = \sqrt{x^{3} + 1}$$

Határozzuk meg a következő határozott integrálokat helyettesítésekkel!

$$\boxed{\textbf{5.170.}} \quad \int_{2}^{2} \frac{3^{x} + 2}{3^{x} + 3^{2x}} \, dx$$

$$\boxed{\textbf{5.171.}} \quad \int_{a}^{1} \arctan x \cdot \sqrt{x} \, dx$$

5.172.
$$\int_{\pi/6}^{\pi/2} \frac{1}{1 + \lg x} \, dx$$
 5.173.
$$\int_{1}^{2} \frac{5^{2x}}{1 + 5^{x}} \, dx$$

$$\boxed{\textbf{5.173.}} \int_{1}^{2} \frac{5^{2x}}{1+5^{x}} \, dx$$

5.174. Számítsuk ki az
$$\int_{-2}^{2} \sin^{9} x \cdot e^{x^{4}} dx$$
 integrált!

5.3. A határozott integrál alkalmazásai

5.175. Határozzuk meg a $-x^2 + 3$ függvény grafikonja alatti területet!

5.176. Határozzuk meg a $\sin^2 x$ függvény egy "huplija" alatti területet!

Határozzuk meg az f és g függvények grafikonja által bezárt tartományok területét!

5.177.
$$f(x) = x^2, \qquad g(x) = -x + 2$$

5.178.
$$f(x) = -x^2 + 2x, g(x) = -x$$

5.179.
$$f(x) = \sqrt{1-x^2}, \qquad g(x) = 0$$

5.180.
$$f(x) = \sqrt{1-x^2}, \qquad g(x) = -x$$

Határozzuk meg az adott görbék által bezárt területet!

5.181. x tengely, $\ln x$ grafikonja, x = e egyenes

5.182. x tengely, tg x grafikonja, $x = \pi/4$ egyenes

5.183. y tengely, x^2 grafikonja, y = 3 egyenes

5.184. y tengely, e^x grafikonja, y = 5 egyenes

 $\frac{1}{1+x^2}$ grafikonja, $\frac{x^2}{2}$ grafikonja **5.185.**

5.186. x^2 grafikonja, y = x egyenes, y = -x + 1 egyenes

 x^2 grafikonja, $2x^2$ grafikonja, y = x egyenes **5.187.**

 $\frac{1}{x}$ grafikonja, y = x egyenes, y = -2x + 4, 5 egyenes 5.188.

5.189. Bizonyítsuk be, hogy az ábrán látható parabolaszeletnek a területe, amelyiknek a magassága m, és amelyet h hosszúságú húr határol, T= $\frac{2}{3}mh$.

Határozzuk meg a következő, polárkoordinátákkal megadott görbék által határolt síkidomok területét!

5.190.
$$r = \cos \varphi$$

5.191.
$$r = \cos 2\varphi$$

5.192.
$$r = \cos 3\varphi$$

$$\boxed{\textbf{5.193.}} \quad r = \frac{1}{1 + \frac{1}{2}\cos\varphi}, \quad 0 \le \varphi \le \frac{\pi}{2}$$

Forgassuk meg a következő függvények grafikonjait az x tengely körül a megadott I intervallumok felett! Számítsuk ki a keletkezett forgástestek térfogatát!

5.194.
$$e^{-x}$$
 $I = [0, 1]$

5.195.
$$\sqrt{x}$$
 $I = [0, 1]$

5.196.
$$\sin x \quad I = [0, \pi]$$

5.197.
$$\frac{1}{x}$$
 $I = [1, 4]$

Forgassuk meg a következő függvények grafikonjait az y tengely körül a megadott intervallumokban! Számítsuk ki a keletkezett forgástestek térfogatát!

5.198.
$$e^{-x}$$
 $x \in [0,1]$

5.199.
$$\sqrt{x}$$
 $x \in [0,1]$

5.200.
$$\sin x \quad x \in [0, \pi/2]$$

5.201.
$$\frac{1}{x}$$
 $x \in [1, 4]$

Forgassuk meg f és g grafikonját az x tengely körül az $[x_1, x_2]$ intervallumban, majd számoljuk ki azoknak a forgástesteknek a térfogatát, amelyeket a megforgatott grafikonok, illetve az $x = x_1$ és $x = x_2$ síkok határolnak!

5.202.
$$f(x) = -x^2 + 4$$
 $g(x) = -2x$

$$f(x) = -x^2 + 4$$
 $g(x) = -2x^2 + 8$ $x_1 = -2$ $x_2 = 2$

5.203.
$$f(x) = \sin x$$
 $g(x) = -4x^4 + 4$ $x_1 = 0$ $x_2 = 1$

5.204.
$$f(x) = e^x$$
 $g(x) = \frac{1}{x}$ $x_1 = 1$ $x_2 = 2$

5.205.
$$f(x) = \ln x$$
 $g(x) = \cosh x$ $x_1 = 1$ $x_2 = 2$

Számítsuk ki a következő függvénygrafikonok ívhosszát a megadott I intervallumokon!

5.206.
$$\sqrt{x}$$
, $I = [0, 1]$ **5.207.** $\ln x$, $I = [\sqrt{3}, \sqrt{8}]$

5.208. ch
$$x$$
, $I = [-1, 1]$ **5.209.** $x^{3/2}$, $I = [0, 4]$

Határozzuk meg az egyenesvonalú pályán mozgó pont által megtett utat az adott időintervallumokban, ha a mozgó pont sebessége az idő függvényében

5.210.
$$v(t) = 5t^2$$
 $t \in [0, 2]$ $5.211.$ $v(t) = 3\sin 2t$ $t \in [0, 2\pi]$

Egy testet az x tengelyen az x tengely irányában ható F(x) erő mozgat az x_1 pontból az x_2 pontba. Mekkora munkát végez az erő?

5.212.
$$F(x) = 2x, [x_1, x_2] = [0, 2]$$

5.213.
$$F(x) = 3\sin x, \quad [x_1, x_2] = [0, \pi/4]$$

Egy 1 méter hosszúságú rudat az x tengelyre helyezünk úgy, hogy a rúd bal végpontja az origó. Mekkora a rúd tömege, ha a sűrűsége az origótól x távolságra $\varrho(x)$?

5.214.
$$\varrho(x) = 2 + x$$
 5.215. $\varrho(x) = 2 + \frac{x^2}{1000}$

- 5.216. Határozzuk meg az előző feladatban a rudak tömegközéppontját!
- 5.217. Határozzuk meg az előző feladatban a rudak y tengelyre vonatkozó tehetetlenségi nyomatékát!
- 5.218. Mekkora munkát kell végeznünk ahhoz, hogy az x tengely x_0 pontjában lévő q töltést az x tengely mentén a $2x_0$ pontba vigyük, ha az origóban egy Q töltést rögzítettünk?
- 5.219. Egy homogén rúd l hosszúságú, m tömegű. A rudat az x tengelyre helyezzük úgy, hogy a rúd bal végpontja az origó. Mekkora erővel vonzza ez a rúd a $(0, y_0)$ pontban lévő M tömegű anyagi pontot?

5.4. Improprius integrál

- Milyen c esetén konvergens az $\int_{-\infty}^{\infty} \frac{1}{x^c} dx$ improprius integrál? 5.220.
- Milyen c esetén konvergens az $\int_{-\infty}^{\infty} \frac{1}{x^c} dx$ improprius integrál? 5.221.
- Melyik állításból következik, hogy az $\int\limits_{1}^{\infty}f(x)\,dx$ improprius integrál kon-5.222. vergens vagy az, hogy divergens?

(a)
$$\forall x \in [1, \infty)$$
 $|f(x)| < \frac{1}{x^2}$ (b) $f(x) > \frac{1}{x^3}$

(c)
$$\forall x \in [1, \infty)$$
 $|f(x)| > \frac{1}{x}$ (d) $\forall x \in [1, \infty)$ $|f(x)| < \frac{1}{x}$

Konvergensek-e, és ha igen, mennyi az értékük az alábbi improprius integráloknak!

5.223.
$$\int_{2}^{\infty} 2^{-x} dx$$

5.224.
$$\int_{0}^{1} \frac{dx}{x-1}$$

$$\boxed{\textbf{5.225.}} \int\limits_{2}^{\infty} \frac{dx}{x^3}$$

$$\boxed{\textbf{5.226.}} \int_{0.7}^{7} \frac{dx}{x^3}$$

$$\begin{array}{ccc}
\mathbf{5.227.} & \int\limits_{1}^{\infty} \frac{dx}{\sqrt{x}}
\end{array}$$

$$\boxed{\mathbf{5.228.}} \quad \int\limits_{0}^{1} \frac{dx}{\sqrt{x}}$$

$$\boxed{\textbf{5.229.}} \int_{1}^{2} \frac{dx}{x \ln x}$$

$$\boxed{\mathbf{5.230.}} \quad \int\limits_{2}^{\infty} \frac{dx}{x \ln x}$$

$$\boxed{\textbf{5.231.}} \int_{\frac{1}{2}}^{1} \frac{dx}{x \ln x}$$

$$\boxed{\mathbf{5.232.}} \quad \int\limits_{0}^{\frac{1}{2}} \frac{dx}{x \ln x}$$

$$\boxed{\textbf{5.233.}} \int_{1}^{\infty} \frac{dx}{x + \sqrt{x}}$$

$$\boxed{\textbf{5.234.}} \int\limits_{0}^{1} \frac{dx}{x + \sqrt{x}}$$

5.235.
$$\int_{0}^{1} \frac{dx}{\sqrt{1-x^2}}$$

$$\boxed{\textbf{5.236.}} \quad \int_0^1 \ln x \, dx$$

$$\boxed{\textbf{5.237.}} \quad \int\limits_{0}^{\pi/2} \operatorname{tg} x \, dx$$

$$\boxed{\textbf{5.238.}} \int_{-\infty}^{+\infty} \frac{dx}{1+x^2}$$

Döntsük el az alábbi improprius integrálokról, hogy konvergensek, abszolút konvergensek vagy divergensek!

$$\begin{array}{|c|c|} \hline \textbf{5.239.} & \int\limits_{1}^{\infty} \frac{dx}{\sqrt{x} + x^2} \end{array}$$

$$\boxed{\textbf{5.240.}} \int_{0}^{1} \frac{dx}{\sqrt{x} + x^2}$$

$$\boxed{\textbf{5.241.}} \int\limits_{2}^{\infty} \frac{dx}{x \ln^2 x} \, dx$$

$$\boxed{\textbf{5.242.}} \int_{1}^{\infty} \frac{dx}{\sqrt{x+x^3}}$$

$$\begin{array}{|c|c|} \hline \textbf{5.243.} & \int\limits_{0}^{+\infty} \frac{x^2}{x^4 - x^2 + 1} \, dx \end{array}$$

$$\boxed{\mathbf{5.244.}} \quad \int_{1}^{+\infty} \frac{x+1}{\sqrt{x^4+1}} \, dx$$

$$\boxed{\textbf{5.245.}} \int_{-\infty}^{\infty} \frac{x+1}{x^3+x} \, dx$$

$$\boxed{\textbf{5.246.}} \int_{0}^{1} \frac{dx}{\sqrt{x+x^3}}$$

$$\int_{0}^{\pi/2} \frac{dx}{\sin x}$$

$$\boxed{\mathbf{5.248.}} \int\limits_{0}^{\infty} e^{-x^2} dx$$

$$\boxed{\textbf{5.249.}} \int \frac{\cos x}{x^2} \, dx$$

$$\boxed{\textbf{5.250.}} \int\limits_{1}^{\infty} \frac{\ln x}{x^2} \, dx$$

$$\boxed{\textbf{5.251.}} \quad \int\limits_{-\infty}^{\infty} x e^{-x^2} \, dx$$

$$\boxed{\mathbf{5.252.}} \int_{0}^{\infty} x^{2} e^{-x^{2}} dx$$

$$\boxed{\textbf{5.253.}} \int\limits_{0}^{+\infty} \frac{dx}{x^2}$$

$$\boxed{\textbf{5.254.}} \int_{1}^{+\infty} \frac{\cos x}{x^2} \, dx$$

6. fejezet

Numerikus sorok

6.1. Konvergenciakritériumok.

- Ha $\sum_{n=1}^{\infty} a_n$ konvergens, akkor $a_n \to 0$.
- Sorok Cauchy-kritériuma. A $\sum_{n=1}^{\infty} a_n$ numerikus sor akkor és csak akkor konvergens, ha

$$\forall \varepsilon > 0 \ \exists n_0 \ \forall n, m \ (n_0 \le n \le m \Longrightarrow \left| \sum_{k=n}^m a_k \right| < \varepsilon).$$

- Majoráns kritérium. Ha véges sok kivétellel minden $n \in \mathbb{N}^+$ esetén $|a_n| \leq b_n$ és $\sum_{n=1}^{\infty} b_n$ konvergens, akkor a $\sum_{n=1}^{\infty} a_n$ sor abszolút konvergens.
- Nagyságrendi kritérium vagy határérték összehasonlító kritérium. Ha $\sum_{n=1}^{\infty} a_n$ és $\sum_{n=1}^{\infty} b_n$ két pozitív tagú sor, valamint létezik a $\lim_{n \to \infty} \frac{a_n}{b_n} = c$ határérték és $0 < c < \infty$, akkor a két sor egyszerre konvergens vagy divergens.
- **Hányadoskritérium.** Ha $\lim_{n\to\infty}\frac{|a_{n+1}|}{|a_n|}$ létezik és értéke q, akkor q<1 esetén a $\sum_{n=1}^{\infty}a_n$ sor abszolút konvergens, q>1 esetén pedig divergens. q=1 esetén a hányadoskritériummal nem tudjuk eldönteni, hogy a sor konvergens vagy divergens.

- Gyökkritérium. Ha $\lim_{n\to\infty} \sqrt[n]{|a_n|}$ létezik és értéke q, akkor q<1esetén a $\sum_{n=0}^{\infty} a_n$ sor abszolút konvergens, q>1 esetén pedig divergens. $q\,=\,1$ esetén a gyökkritériummal nem tudjuk eldönteni, hogy a sor konvergens vagy divergens.
- Integrálkritérium. Ha f egy monoton csökkenő pozitív függvény az $[1,\infty)$ félegyenesen, akkor a $\sum_{n=1}^{\infty} f(n)$ végtelen sor és a $\int_{1}^{\infty} f(x) dx$ improprius integrál egyszerre konvergens vagy divergens.
- Leibniz-kritérium. A $\sum_{n=0}^{\infty} (-1)^n a_n$ numerikus sort *Leibniz-típusú* sornak vagy röviden Leibniz-sornak nevezzük, ha az (a_n) sorozat **monoton** csökkenően nullához tart. A Leibniz-típusú sorok konvergensek.

6.1. Numerikus sorok konvergenciája

Írjuk fel a következő sorok n-edik részletösszegét! Határozzuk meg a részletösszegek határértékét! Adjuk meg a sorok összegét!

6.1.
$$1 + \frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{2^k} + \dots$$

6.2.
$$1 + \frac{1}{10} + \frac{1}{100} + \dots + \frac{1}{10^k} + \dots$$

6.3.
$$\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \dots + \frac{1}{k \cdot (k+1)} + \dots$$

6.4.
$$\frac{1}{1 \cdot 4} + \frac{1}{4 \cdot 7} + \dots + \frac{1}{(3k-2) \cdot (3k+1)} + \dots$$

6.5.
$$\frac{1}{1\cdot 4} + \frac{1}{2\cdot 5} + \dots + \frac{1}{k\cdot (k+3)} + \dots$$

Határozzuk meg a következő sorok összegét, ha konvergensek!

6.6.
$$\sum_{n=1}^{\infty} \frac{4^n}{9^n}$$

6.7.
$$\sum_{n=1}^{\infty} \frac{5^n}{9^n}$$

6.8.
$$\sum_{n=1}^{\infty} \frac{4^n + 5^n}{9^n}$$

6.9.
$$\sum_{n=1}^{\infty} \frac{2 \cdot 4^n}{(-9)^n}$$

6.10.
$$\sum_{n=1}^{\infty} \frac{9^n}{4^n + 5^n}$$

6.11.
$$\sum_{n=1}^{\infty} \frac{(-2)^n}{5^n}$$

6.12.
$$\sum_{n=1}^{\infty} \frac{3^n}{10^n}$$

6.13.
$$\sum_{n=1}^{\infty} \frac{4^n}{(-3)^n}$$

- Konvergens-e a $\sum_{n=1}^{\infty} (-1)^n$ sor? 6.14.
- Bizonyítsuk be, hogy ha $\sum_{n=1}^{\infty} a_n$ konvergens, akkor $\lim_{n\to\infty} a_n = 0$ (lásd a tagok 0-hoz tartásáról szóló konvergencia kritériumot). 6.15.
- Bizonyítsuk be, hogy a $\sum_{n=1}^{\infty} \frac{1}{n}$ harmonikus sor divergens. 6.16.

Változhat-e egy végtelen sor konvergenciája, illetve összege, ha

- 6.17. a sorba új zárójeleket teszünk?
- 6.18. a sorba véges sok új tagot illesztünk?
- 6.19. a sorból zárójeleket veszünk ki?
- 6.20. a sorból véges sok tagot elhagyunk?

Igaz-e, hogy ha

6.21. $a_n \to 0$, akkor $\sum_{n=1}^{\infty} a_n$ konvergens?

 $\sum a_n$ konvergens, akkor $a_n \to 0$?

 $a_n \to 1$, akkor $\sum_{n=1}^{\infty} a_n$ divergens?

6.24. $\sum_{n=0}^{\infty} a_n \text{ divergens, akkor } a_n \to 1?$

Hova tartanak a következő sorok tagjaiból álló sorozatok? Konvergensek-e a sorok?

 $\sum_{n=1}^{\infty} \frac{1}{n+1}$ 6.25.

 $\sum_{n=1}^{\infty} \frac{1}{n^2}$ 6.26.

6.27. $\sum_{n=1}^{\infty} \frac{1}{n+n^2}$

 $\sum_{n=1}^{\infty} \frac{2}{n^2}$

6.29. $\sum_{n=1}^{\infty} \frac{1}{3n}$

6.30. $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$

6.31. $\sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n}}$

 $\sum_{1}^{\infty} \frac{1}{\sqrt[n]{3}}$ 6.32.

6.33. $\sum_{n=1}^{\infty} \frac{1}{\sqrt[n]{0,01}}$

6.34. $\sum_{n=1}^{\infty} \frac{1}{\sqrt[n]{n}}$

6.35. $\sum_{n=1}^{\infty} \sin(n\pi)$

6.36. $\sum_{n=1}^{\infty} \cos(n\pi)$

- Bizonyítsuk be, hogy ha minden n pozitív egész esetén $a_n > 0, a_n \le b_n \le c_n$, továbbá $\sum_{n=1}^{\infty} a_n = 7$ és $\sum_{n=1}^{\infty} c_n = 10$, akkor $\sum_{n=1}^{\infty} b_n$ konvergens! 6.37.
- 6.38. Bizonyítsuk be, hogy ha minden n pozitív egész esetén $a_n > 0$, akkor $\sum_{n=1}^{\infty} a_n$ konvergens vagy végtelen.

- Tegyük fel, hogy $\sum_{n=1}^{\infty} a_n$ konvergens, és hogy minden pozitív egész n6.39. szám esetén $b_n < a_n$. Következik-e ebből, hogy $\sum_{n=1}^{\infty} b_n$ konvergens?
- Tegyük fel, hogy $\sum_{n=1}^{\infty} a_n$ divergens, és hogy minden pozitív egész n szám esetén $b_n > a_n$. Következik-e ebből, hogy $\sum_{n=1}^{\infty} b_n$ divergens?

6.2. Pozitív tagú sorok konvergenciakritériumai

Döntsük el a majoráns kritérium segítségével, hogy konvergensek-e a következő sorok!

6.41.
$$\sum_{n=1}^{\infty} \frac{1}{n+4}$$

6.42.
$$\sum_{n=1}^{\infty} \frac{1}{2n+1}$$

6.43.
$$\sum_{n=1}^{\infty} \frac{1}{n^2 + 4}$$

6.44.
$$\sum_{n=1}^{\infty} \frac{1}{2^n}$$

- Tegyük fel, hogy minden pozitív egész n-re $a_n > 0$. Mit állíthatunk a 6.45. $\sum_{n=1}^{\infty}a_{n}$ sor konvergenciáját illetően biztosan, ha
- (a) $\lim \frac{a_{n+1}}{a_n} > 1$; (b) $\lim \frac{a_{n+1}}{a_n} < 1$; (c) $\lim \frac{a_{n+1}}{a_n} = 1$?

Döntsük el a hányadoskritérium segítségével, hogy konvergensek-e a következő sorok!

6.46.
$$\sum_{n=1}^{\infty} \frac{1}{n!}$$

6.47.
$$\sum_{n=1}^{\infty} \frac{n^2}{n!}$$

6.48.
$$\sum_{n=1}^{\infty} \frac{3^n n!}{n^n}$$

$$\boxed{\textbf{6.49.}} \sum_{n=1}^{\infty} \frac{2^n n!}{n^n}$$

- Tegyük fel, hogy minden pozitív egész $n\text{-re }a_n>0.$ Mit állíthatunk a **6.50.** $\sum a_n$ sor konvergenciáját illetően biztosan, ha

 - (a) $\lim \sqrt[n]{a_n} > 1$ (b) $\lim \sqrt[n]{a_n} < 1$ (c) $\lim \sqrt[n]{a_n} = 1$

Döntsük el a gyökkritérium segítségével, hogy konvergensek-e a következő sorok!

$$\boxed{\textbf{6.51.}} \quad \sum_{n=1}^{\infty} \frac{n}{2^n}$$

6.52.
$$\sum_{n=1}^{\infty} \frac{2^n + 1}{3^n}$$

6.53.
$$\sum_{n=1}^{\infty} \left(\frac{1}{2} + \frac{1}{n}\right)^n$$

6.53.
$$\sum_{n=1}^{\infty} \left(\frac{1}{2} + \frac{1}{n}\right)^n$$
 6.54. $\sum_{n=1}^{\infty} \left(\frac{3}{2} - \frac{1}{n}\right)^n$

Tegyük fel, hogy $b_n \neq 0 \quad (n = 1, 2, 3, ...)$, továbbá $\lim_{n \to \infty} \frac{a_n}{b_n} = c > 0$. 6.55.Mit állíthatunk a $\sum_{n=1}^{\infty} a_n$ sor konvergenciáját illetően biztosan, ha

(a)
$$\sum_{n=1}^{\infty} b_n$$
 konvergens. (b) $\sum_{n=1}^{\infty} b_n$ divergens.

(b)
$$\sum_{n=1}^{\infty} b_n$$
 divergens.

Tegyük fel, hogy $b_n \neq 0 \quad (n=1,2,3,\dots)$, továbbá $\lim_{n\to\infty} \frac{a_n}{b_n} = 0$. Mit 6.56. állíthatunk a $\sum_{n=1}^{\infty}a_{n}$ sor konvergenciáját illetően biztosan, ha

- (a) $\sum_{n=1}^{\infty} b_n$ konvergens. (b) $\sum_{n=1}^{\infty} b_n$ divergens.
- Tegyük fel, hogy $b_n \neq 0 \quad (n=1,2,3,\dots)$, tovább
á $\lim_{n \to \infty} \frac{a_n}{b_n} = \infty$. Mit 6.57. állíthatunk a $\sum_{n=1}^{\infty}a_{n}$ sor konvergenciáját illetően biztosan, ha
 - (a) $\sum_{n=1}^{\infty} b_n$ konvergens. (b) $\sum_{n=1}^{\infty} b_n$ divergens.

Döntsük el ismert sorok nagyságrendjével való összehasonlítással (ld. nagyságrendi kritérium), hogy konvergensek-e a következő sorok!

- **6.58.** $\sum_{n=1}^{\infty} \frac{n^2 + 4}{n^4 + 3n}$
- **6.59.** $\sum_{n=1}^{\infty} \frac{2n^3}{n^2 + 3}$
- **6.60.** $\sum_{n=1}^{\infty} \frac{\sqrt{2n^6}}{n^2 + 3}$
- **6.61.** $\sum_{n=1}^{\infty} \frac{\sqrt[3]{3n^9}}{\sqrt{n^4} + 3}$
- Tegyük fel, hogy $\int_{-\infty}^{\infty} f(x) dx = 5$. Következik-e ebből, hogy $\sum_{n=1}^{\infty} f(n) = 5$?
- Tegyük fel, hogy az $\int f(x) dx$ improprius integrál konvergens. Következik-6.63. e ebből, hogy $\sum_{n=0}^{\infty} f(n)$ konvergens?
- 6.64. Tegyük fel, hogy f(x) > 0, és f(x) monoton csökken az $(1, \infty)$ intervallumban, továbbá $\int_{-\infty}^{\infty} f(x) dx = 5$. Következik-e ebből, hogy $\sum_{n=2}^{\infty} f(n) = 5$?

6.65. Tegyük fel, hogy f(x)>0 és f(x) monoton csökken az $(1,\infty)$ intervallumban, továbbá az $\int\limits_{1}^{\infty}f(x)\,dx$ improprius integrál konvergens. Következik-e ebből, hogy $\sum_{n=2}^{\infty}f(n)$ konvergens?

Döntsük el az integrálkritérium segítségével, hogy konvergensek-e a következő sorok!

$$\begin{array}{|c|c|} \hline \textbf{6.66.} & \sum_{n=2}^{\infty} \frac{1}{n \ln n} \end{array}$$

6.67.
$$\sum_{n=2}^{\infty} \frac{1}{n^{4/5}}$$

Döntsük el, hogy konvergensek-e a következő sorok!

$$6.68. \qquad \sum_{n=1}^{\infty} \frac{1}{n + \sqrt{n}}$$

6.69.
$$\sum_{n=1}^{\infty} \frac{4}{n^2 + \sqrt{n}}$$

6.70.
$$\sum_{n=1}^{\infty} (-1)^n \frac{1}{\sqrt{n}}$$

6.71.
$$\sum_{n=1}^{\infty} (-1)^n \frac{1}{\sqrt[n]{n}}$$

6.72.
$$\sum_{n=1}^{\infty} \frac{n^2}{3^n}$$

6.73.
$$\sum_{n=1}^{\infty} (-1)^n \sqrt[n]{\frac{1}{2}}$$

6.74.
$$\sum_{n=1}^{\infty} \frac{n^2}{2^n}$$

6.75.
$$\sum_{n=1}^{\infty} \left(\frac{1}{2} - \frac{1}{n} \right)^n$$

$$\boxed{\textbf{6.76.}} \quad \sum_{n=1}^{\infty} \left(-\frac{2}{3} \right)^n$$

$$\boxed{\textbf{6.77.}} \quad \sum_{n=1}^{\infty} \frac{n!}{n^n}$$

6.78.
$$\sum_{n=1}^{\infty} \frac{1000^n}{n!}$$

6.79.
$$\sum_{n=2}^{\infty} \frac{1}{n \ln^2 n}$$

6.80.
$$\sum_{n=1}^{\infty} \frac{n^{10}}{3^n - 2^n}$$

6.81.
$$\sum_{n=1}^{\infty} n \left(\frac{1}{2}\right)^n$$

$$\boxed{\textbf{6.82.}} \quad \sum_{n=1}^{\infty} (-1)^n \left(-\frac{1}{n}\right)^n$$

$$\boxed{\textbf{6.83.}} \quad \sum_{m=1}^{\infty} \left(-\frac{3}{2}\right)^m$$

6.84.
$$\sum_{n=1}^{\infty} \left(\frac{n+200}{2n+7} \right)^n$$

6.85.
$$\sum_{n=1}^{\infty} \frac{n^5 + 3}{n^3 - n + 2}$$

6.86.
$$\sum_{n=1}^{\infty} \frac{2^n + 3^n}{5^n}$$

6.87.
$$\sum_{n=1}^{\infty} (-1)^n \sqrt[n]{\frac{1}{2}}$$

$$\boxed{\textbf{6.88.}} \quad \sum_{n=1}^{\infty} \left(\frac{5}{2}\right)^n$$

$$\boxed{\textbf{6.89.}} \quad \sum_{n=1}^{\infty} \left(\frac{2}{5}\right)^n$$

$$\boxed{\textbf{6.90.}} \quad \sum_{n=1}^{\infty} \left(1 - \frac{1}{n}\right)$$

$$\boxed{\textbf{6.91.}} \sum_{n=1}^{\infty} \left(1 - \frac{1}{n}\right)^n$$

6.92.
$$\sum_{n=1}^{\infty} \left(1 + \frac{1}{n} \right)$$

6.93.
$$\sum_{n=1}^{\infty} \left(1 + \frac{1}{n}\right)^n$$

6.94.
$$\sum_{n=1}^{\infty} \frac{(n+1)^3}{3^n}$$

$$\boxed{\textbf{6.95.}} \quad \sum_{n=1}^{\infty} (-1)^n \frac{1}{\sqrt[n]{n^2 + 1}}$$

$$\boxed{\textbf{6.96.}} \quad \sum_{n=1}^{\infty} n(n+5)$$

6.97.
$$\sum_{i=1}^{\infty} \left(\sqrt{n+1} - \sqrt{n} \right)$$

Tegyük fel, hogy $\sum_{n=1}^{\infty} a_n = A \in \mathbb{R}$ és $\sum_{n=1}^{\infty} b_n = B \in \mathbb{R}$, valamint c egy 6.98. valós szám. Következnek-e ebből az alábbi állítások?

(a)
$$\sum_{n=1}^{\infty} c \cdot a_n = c \cdot A$$

(a)
$$\sum_{n=1}^{\infty} c \cdot a_n = c \cdot A$$
 (b) $\sum_{n=1}^{\infty} (a_n + b_n) = A + B$

(c)
$$\sum_{n=1}^{\infty} (a_n - b_n) = A - B$$
 (d) $\sum_{n=1}^{\infty} (a_n b_n) = AB$

(d)
$$\sum_{n=1}^{\infty} (a_n b_n) = AB$$

(e)
$$\sum_{n=1}^{\infty} \frac{a_n}{b_n} = \frac{A}{B}$$
 $(b_n \neq 0)$ (f) $\sum_{n=1}^{\infty} |a_n| = |A|$

$$\textbf{(f)} \ \sum_{n=1}^{\infty} |a_n| = |A|$$

6.3. Feltételes és abszolút konvergencia

- 6.99. Igaz-e, hogy ha egy végtelen sorban a tagok előjele váltakozik, akkor a sor konvergens?
- 6.100. Igaz-e, hogy ha egy végtelen sorban a tagokból álló sorozat monoton csökken, akkor a sor konvergens?
- 6.101. Igaz-e, hogy ha egy végtelen sorban a tagok előjele váltakozik, és a tagok abszolút értékeiből álló sorozat monoton csökken, akkor a sor konvergens?
- 6.102. Igaz-e, hogy ha egy végtelen sorban a tagokból álló sorozat monoton csökkenve 0-hoz tart, akkor a sor konvergens?
- 6.103. Igaz-e, hogy ha egy végtelen sorban a tagok előjele váltakozik, és a tagok abszolút értékeiből álló sorozat 0-hoz tart, akkor a sor konvergens?

Melyik sor Leibniz-sor? Melyik sor konvergens?

6.104.
$$1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots$$

6.105.
$$1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \cdots$$

6.106.
$$1 - \frac{1}{1 \cdot 3} + \frac{1}{3 \cdot 5} - \frac{1}{5 \cdot 7} + \cdots$$

6.107.
$$1 - \frac{1}{2} + \frac{1}{4} - \frac{1}{8} + \cdots$$

6.108.
$$1 - \frac{1}{\sqrt{2}} + \frac{1}{\sqrt[3]{3}} - \frac{1}{\sqrt[4]{4}} + \cdots$$

6.109.
$$1 - \frac{1}{2 \cdot 3} + \frac{1}{4 \cdot 9} - \frac{1}{8 \cdot 27} + \cdots$$

Döntsük el, hogy konvergensek-e, illetve abszolút konvergensek-e a következő sorok!

6.110.
$$\sum_{n=1}^{\infty} (-1)^n$$

6.111.
$$\sum_{n=1}^{\infty} (-2)^n$$

$$\boxed{\textbf{6.112.}} \sum_{n=1}^{\infty} \left(-\frac{1}{2}\right)^n$$

6.113.
$$\sum_{n=1}^{\infty} (-1)^n \frac{1}{n}$$

6.114.
$$\sum_{n=1}^{\infty} (-1)^n \frac{1}{2n+1}$$

6.115.
$$\sum_{n=1}^{\infty} (-1)^n \frac{1}{n \cdot (n+1)}$$

6.116.
$$\sum_{n=1}^{\infty} (-1)^n \frac{1}{n^3}$$

6.117.
$$\sum_{n=1}^{\infty} (-1)^n \frac{1}{\sqrt[5]{n}}$$

6.118.
$$\sum_{n=1}^{\infty} (-1)^n \frac{1}{n^{1,3}}$$

6.119.
$$\sum_{n=1}^{\infty} (-1)^n \frac{1}{n^{0,3}}$$

$$\mathbf{6.120.} \quad \sum_{n=1}^{\infty} \frac{\sin n}{n^2}$$

6.121.
$$\sum_{n=1}^{\infty} \frac{(\sin n)^2}{n^2}$$

- 6.122. Változhat-e egy pozitív tagú végtelen sor konvergenciája, illetve össze-
 - (a) a sorba új zárójeleket teszünk?
 - (b) a sorból zárójeleket veszünk ki?
 - (c) a sor tagjainak a sorrendjét átrendezzük?

7. fejezet

Függvénysorozatok és sorok

7.1. Az egyenletes konvergencia tulajdonságai.

- **Folytonosság.** Folytonos függvények egyenletesen konvergens sorozatának határértéke folytonos.
- **Deriválhatóság.** Ha a deriválható függvényekből álló f_n sorozat pontonként tart az f függvényhez, f'_n pedig egyenletesen tart egy g függvényhez az (a,b) intervallumon, akkor ezen az intervallumon f deriválható és f'=g, azaz

$$\lim_{n \to \infty} f'_n = \left(\lim_{n \to \infty} f_n\right)' = f'$$

— Integrálhatóság. Ha a Riemann-integrálható függvényekből álló f_n sorozat egyenletesen tart az f függvényhez az [a,b] intervallumon, akkor az f függvény is integrálható, és integrálja megegyezik a sorozat integráljainak határértékével, azaz

$$\lim_{n \to \infty} \int_{a}^{b} f_n(x) dx = \int_{a}^{b} \left(\lim_{n \to \infty} f_n(x) \right) dx = \int_{a}^{b} f(x) dx$$

7.2. Egyenletes konvergencia Weierstrass-kritériuma. Ha a $\sum_{n=1}^{\infty} f_n(x)$

függvénysornak van a H halmazon konvergens numerikus majoránsa, azaz van olyan (M_n) sorozat, hogy minden $n \in \mathbb{N}$ és $x \in H$ esetén

$$|f_n(x)| \le M_n$$
 és $\sum_{n=1}^{\infty} M_n < \infty$,

akkor a $\sum_{n=1}^{\infty} f_n(x)$ függvénysor abszolút és egyenletesen konvergens H-n.

7.3. Hatványsorok konvergenciatartománya.

— A $\sum_{n=0}^{\infty} a_n(x-c)^n$ hatványsor konvergenciatartománya egy olyan intervallum, amelyik az esetleges végpontokat kivéve szimmetrikus a hatványsor középpontjára, c-re.

A fenti tételbe beleértendő az az eset, amikor ez a tartomány az egész számegyenes, illetve az egyedül a c pontból álló halmaz.

— Konvergenciasugár. Ha lim sup $\sqrt[n]{|a_n|} = L$, illetve ha lim sup $\frac{|a_{n+1}|}{|a_n|} = L$, akkor a konvergenciasugár

$$R = \begin{cases} \frac{1}{L} & \text{ha } 0 < L < \infty \\ \infty & \text{ha } L = 0 \\ 0 & \text{ha } L = \infty \end{cases}$$

- A konvergenciatartomány belsejében minden zárt intervallumon egyenletes a konvergencia és így lehet tagonként deriválni és integrálni.
- **7.4.** Ha f akárhányszor deriválható a c pontban, akkor a

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(c)}{n!} (x-c)^n$$

hatványsort az f függvény cpontbeli ${\bf Taylor\text{-}sorának}$ nevezzük, a fenti sorban szereplő

$$a_n = \frac{f^{(n)}(c)}{n!}$$

együtthatókat pedig Taylor-együtthatóknak.

7.5. Lagrange-maradék. Legyen az f függvény n+1-szer deriválható a [c,x] intervallumon. Ekkor van olyan $d \in (c,x)$ szám, amelyre

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(c)}{k!} (x - c)^{k} + \frac{f^{(n+1)}(d)}{(n+1)!} (x - c)^{n+1}.$$

Ha az f függvény n+1-szer deriválható az [x,c] intervallumon, akkor van olyan $d\in(x,c)$ szám, amelyre a fenti egyenlőség teljesül.

7.6. Egyenletesen korlátos deriváltú függvényt előállít a Taylor-sora, azaz ha az (a,b) intervallumon az f függvény akárhányszor deriválható, és megadható

egy M szám úgy, hogy tetszőleges $n \in \mathbb{N}$ és $x \in (a,b)$ esetén $\left| f^{(n)}(x) \right| \leq M$, akkor minden $c \in (a, b)$ -re a c-hez tartozó Taylor-sor előállítja a függvényt az egész (a,b) intervallumon.

7.7. Nevezetes Taylor-sorok.

$$e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!}$$

$$\ln x \in \mathbb{R};$$

$$\sin x = \sum_{n=0}^{\infty} (-1)^{n} \frac{x^{2n+1}}{(2n+1)!}$$

$$\cos x = \sum_{n=0}^{\infty} (-1)^{n} \frac{x^{2n}}{(2n)!}$$

$$\ln x \in \mathbb{R};$$

$$\sinh x = \sum_{n=0}^{\infty} \frac{x^{2n+1}}{(2n+1)!}$$

$$\ln x \in \mathbb{R};$$

$$\sinh x = \sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!}$$

$$\ln x \in \mathbb{R};$$

$$\ln x = \sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!}$$

$$\ln x \in \mathbb{R};$$

$$\ln x = \sum_{n=0}^{\infty} x^{2n}$$

$$\ln(1+x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{n+1}}{n+1}$$

$$\operatorname{arctg} x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1}$$
 ha $|x| < 1$; ha $|x| < 1$.

7.8. Fourier-sor.

Ha $f: \mathbb{R} \to \mathbb{R}$ periodikus 2π szerint és Riemann-integrálható a $[0, 2\pi]$ -n, akkor az

$$a_0 + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$$

trigonometrikus sort az f függvény Fourier-sorának nevezzük, ahol

$$a_0 = \frac{1}{2\pi} \int_0^{2\pi} f(x) dx, \ a_n = \frac{1}{\pi} \int_0^{2\pi} f(x) \cos nx dx, \ b_n = \frac{1}{\pi} \int_0^{2\pi} f(x) \sin nx dx$$

az f függvény Fourier-együtthatói.

- Cantor tétele. Ha $f(x) = a_0 + \sum_{n=0}^{\infty} (a_n \cos nx + b_n \sin nx) [0, 2\pi] n$ akkor az a_0 , a_n és b_n együtthatók egyértelműen meghatározottak, azaz egy függvényt csak egyféleképpen lehet trigonometrikus sorral előállítani. Ha a konvergencia egyenletes, akkor f(x) folytonos, és ez a trigonometrikus sor az f Fourier-sora.
- Pontonkénti konvergencia. Ha az f(x) függvény 2π szerint periodikus és szakaszonként folytonosan deriválható, akkor az f(x) függvény Fourier-sora mindenütt konvergens, az f(x) függvény folytonossági helyein a Fourier-sor előállítja a függvényt, a szakadási helyeken pedig a függvény bal-, és jobboldali határértékének a számtani közepe, azaz minden $x \in \mathbb{R}$ esetén

$$a_0 + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx) = \frac{f(x^+) + f(x^-)}{2}$$

7.1. Pontonkénti és egyenletes konvergencia

Hol konvergensek és mi a pontonkénti határértékük az alábbi függvénysorozatoknak? Milyen intervallumokban egyenletes a konvergencia?

7.1.
$$f_n(x) = x^n$$

7.2.
$$f_n(x) = x^n - x^{n+1}$$

7.3.
$$f_n(x) = \frac{x}{n}$$

7.4.
$$f_n(x) = \frac{x^n}{n!}$$

7.5.
$$f_n(x) = \sqrt[n]{1+x^{2n}}$$

7.6.
$$f_n(x) = \sqrt[n]{|x|}$$

7.7.
$$f_n(x) = \sqrt{x + \frac{1}{n}}$$

7.8.
$$f_n(x) = \sqrt{x^2 + \frac{1}{n^2}}$$

$$7.9. f_n(x) = \frac{\sin x}{n}$$

$$7.10. f_n(x) = \sin\frac{x}{n}$$

7.11.
$$f_n(x) = \begin{cases} 1, \text{ ha } x = \frac{1}{n} \\ 0, \text{ egyébként} \end{cases}$$
 7.12. $f_n(x) = \begin{cases} 1, \text{ ha } 0 < x < \frac{1}{n} \\ 0, \text{ egyébként} \end{cases}$

Mi a következő állításpárok logikai kapcsolata, azaz melyikből következik a másik?

7.13. P:
$$\forall x \in [a, b] \quad \lim_{n \to \infty} f_n(x) = 5$$

Q: $\forall n \in \mathbb{N} \quad \lim_{x \to \infty} f_n(x) = 5$

7.14. P:
$$\forall x \in [a, b]$$
 $\lim_{n \to \infty} f_n(x) = f(x)$ Q: $\forall x \in [a, b]$ $\lim_{n \to \infty} (f_n(x) - f(x)) = 0$

- **7.15.** P: f_n pontonként konvergál I-n. Q: f_n egyenletesen konvergál I-n.
- 7.16. Bizonyítsuk be, hogy az $f_n(x) = \cos nx$ függvénysorozat konvergens az $x = 2k\pi$ $(x \in \mathbb{Z})$ pontokban. Konvergens-e a függvénysorozat az $x = k\pi$ $(x \in \mathbb{Z})$ pontokban?
- 7.17. Adjunk meg 3 különböző függvénysorozatot úgy, hogy mindhárom függvénysorozat konvergáljon az azonosan 5 függvényhez [0, 1]-en!
- 7.18. Megadható-e olyan függvénysorozat, amelyik [0,1]-en az azonosan 5 függvényhez konvergál, és a függvénysorozat egyetlen tagja sem folytonos [0,1]-en?
- 7.19. Adjunk példát olyan függvénysorozatra, amelynek minden tagja minden pontban szakad a [0, 1] intervallumban, de a függvénysorozat egyenletesen tart egy [0, 1]-ben folytonos függvényhez!
- 7.20. Adjunk példát olyan függvénysorozatra, amelynek minden tagja minden pontban folytonos, és a függvénysorozat az

$$f(x) = \begin{cases} 1, & \text{ha } x = 5 \\ 0, & \text{egyébként} \end{cases}$$

függvényhez tart! Lehet-e a konvergencia egyenletes?

7.21. Adjunk meg 3 különböző függvénysorozatot úgy, hogy mindhárom függvénysorozat egyenletesen konvergáljon a

$$D(x) = \begin{cases} 1, & \text{ha } x \in \mathbb{Q} \\ 0, & \text{egyébként} \end{cases}$$

Dirichlet-függvényhez [0,1]-en! Állhatnak-e az előbbi függvénysorozatok csak folytonos függvényekből?

7.22. Legyen $f_n(x) = n^2(x^{n-1} - x^n)$. Bizonyítsuk be, hogy

(a)
$$\forall x \in [0,1] \quad \lim_{n \to \infty} f_n(x) = 0$$

(b)
$$\lim_{n\to\infty}\int\limits_0^1 f_n(x)\ dx\neq 0$$

(c) [0,1]-en az f_n függvénysorozat nem tart egyenletesen az azonosan 0 függvényhez.

7.23. Legyen $f_n(x) = \sqrt{x^2 + \frac{1}{n}}$. Bizonyítsuk be, hogy

- (a) $\forall n \quad f_n(x)$ differenciálható 0-ban.
- **(b)** $\lim_{n\to\infty} f_n(x) = |x|$
- (c) f_n egyenletesen konvergál |x|-hez.
- (d) |x| nem differenciálható 0-ban.

7.24. Melyik függvényhez konvergál az $f_n(x) = x^n - x^{n+1}$ függvénysorozat a [0,1] intervallumon? Egyenletes-e a konvergencia?

Alkalmazzuk a Weierstrass-kritériumot, azaz keressünk olyan konvergens numerikus sorokat, amelyek tagonként nagyobbak a függvénysor tagjainak abszolút értékénél, és ezzel bizonyítsuk, hogy a függvénysorok egyenletesen konvergensek!

7.25.
$$\sum_{n=1}^{\infty} \frac{1}{n^2 + n^4 x^{2n}}$$
 7.26.
$$\sum_{n=1}^{\infty} \frac{1}{n^2} \sin^n x$$

Konvergensek-e, illetve egyenletesen konvergensek-e \mathbb{R} -en a követ-kező függvénysorok?

7.27.
$$\sum_{n=1}^{\infty} \frac{1}{x^2 + n^2}$$
 7.28.
$$\sum_{n=1}^{\infty} (x^n - x^{n-1})$$

7.29.
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{x^4 + 2^n}$$

7.30.
$$\sum_{n=1}^{\infty} (\arctan(n+1)x - \arctan(nx))$$

$$7.31. \sum_{n=1}^{\infty} \frac{\sin nx}{n!}$$

$$[7.32.] \sum_{n=1}^{\infty} 2^n x^n$$

7.33.
$$\sum_{n=1}^{\infty} \frac{1}{n^2[1+(nx)^2]}$$

$$\boxed{\textbf{7.34.}} \sum_{n=1}^{\infty} \frac{\sin nx}{n^2}$$

$$7.35. \sum_{n=1}^{\infty} \frac{\cos nx}{n! + 2^n}$$

7.36.
$$\sum_{n=1}^{\infty} \frac{1}{x^n}$$

7.37.
$$\sum_{n=1}^{\infty} \frac{x^4}{x^4 + 2^n}$$

7.38.
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{x^6 + 3^n}$$

- Hol konvergens a $\sum\limits_{n=1}^{\infty} x^n$ függvénysor? Egyenletes-e a konvergencia a 7.39. konvergenciatartományban?
- Egyenletesen konvergens-e a $\sum_{n=1}^{\infty} \frac{\sin(2n-1)x}{2n-1}$ függvénysor? 7.40.

7.2. Hatványsorok, Taylor-sor

Konvergens-e $\sum_{n=0}^{\infty}(2^n+3^n)x^n$ hatványsor $x=\frac{1}{6},\;x=0,3,\;x=\frac{1}{2},\;x=1$ esetén? 7.41.

Milyen x esetén konvergensek a következő hatványsorok?

$$\boxed{7.42.} \quad \sum_{n=0}^{\infty} \frac{n!}{n^n} x^n$$

$$\boxed{7.43.} \sum_{n=1}^{\infty} (-1)^{n+1} \frac{x^n}{n^2}$$

7.44.
$$\sum_{n=1}^{\infty} \left(1 + \frac{1}{n}\right)^{n^2} x^n$$
 7.45.
$$\sum_{n=1}^{\infty} nx^n$$

$$\boxed{7.45.} \quad \sum_{n=1}^{\infty} nx^n$$

$$\boxed{7.46.} \quad \sum_{n=1}^{\infty} \frac{x^n}{n}$$

$$\boxed{7.47.} \quad \sum_{n=1}^{\infty} \frac{x^n}{n^7}$$

Határozzuk meg a következő hatványsorok konvergenciasugarát!

$$7.48. \quad \sum_{n=0}^{\infty} n^2 x^n$$

7.49.
$$\sum_{n=1}^{\infty} \frac{x^n}{n^2}$$

7.50.
$$\sum_{n=1}^{\infty} \frac{1000^n}{n!} (x-2)^n$$

$$\boxed{7.51.} \sum_{n=1}^{\infty} \frac{(n-1)!}{n^n} (x-3)^n$$

$$\boxed{\textbf{7.52.}} \sum_{n=1}^{\infty} \frac{n}{2^n} x^n$$

7.53.
$$\sum_{n=1}^{\infty} (x+4)^n$$

7.54.
$$\sum_{n=1}^{\infty} \frac{(x+5)^n}{n \cdot 2^n}$$

7.55.
$$\sum_{n=1}^{\infty} \frac{(x-6)^n}{n!}$$

7.56.
$$\sum_{n=1}^{\infty} n!(x+7)^n$$

$$\boxed{7.57.} \quad \sum_{n=1}^{\infty} \frac{(x+1)^n}{\sqrt{n}}$$

$$\boxed{7.58.} \sum_{n=1}^{\infty} \frac{1000^n}{n^2 + 1} x^n$$

7.59.
$$\sum_{n=1}^{\infty} \frac{2^n + 3^n}{n^n} x^n$$

$$\boxed{7.60.} \quad \sum_{n=1}^{\infty} \frac{x^n}{n \cdot 3^n}$$

$$\boxed{\textbf{7.61.}} \quad \sum_{n=1}^{\infty} \frac{x^n}{n^n}$$

7.62.
$$\sum_{n=1}^{\infty} 2^n x^n$$

7.63.
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{x^n}{\sqrt{n}}$$

7.64.
$$\sum_{n=0}^{\infty} \frac{(n!)^2}{(2n)!} x^n$$

$$\boxed{7.65.} \quad \sum_{n=0}^{\infty} n! x^n$$

Igazak-e a következő állítások?

$$\begin{array}{|c|c|} \hline \textbf{7.66.} & \int\limits_{-0.2}^{0.3} \left(\sum_{n=0}^{\infty} x^n \right) dx = \sum_{n=1}^{\infty} \left(\int\limits_{-0.2}^{0.3} x^n dx \right) \end{array}$$

$$\boxed{7.67.} \int_{-2}^{3} \left(\sum_{n=0}^{\infty} x^{n} \right) dx = \sum_{n=1}^{\infty} \left(\int_{-2}^{3} x^{n} dx \right)$$

7.68.
$$\forall x \in \mathbb{R} - \text{re} \quad \left(\sum_{n=0}^{\infty} \frac{1}{n+1} x^{n+1}\right)' = \frac{1}{1-x}$$

7.69.
$$\forall |x| < 1 - \text{re} \left(\sum_{n=0}^{\infty} \frac{1}{n+1} x^{n+1} \right)' = \frac{1}{1-x}$$

Határozzuk meg a következő hatványsorok konvergenciasugarát! A konvergenciatartomány belsejében adjuk meg az összegfüggvénye-

7.70.
$$1 + x + x^2 + x^3 + \cdots$$
 7.71. $1 - x + x^2 - x^3 + \cdots$

7.72.
$$x + \frac{x^2}{2} + \frac{x^3}{3} + \cdots$$
 7.73. $1 - x^2 + x^4 - x^6 + x^8 - \cdots$

7.74.
$$x + \frac{x^3}{3} + \frac{x^5}{5} + \cdots$$
 7.75. $x + 2x^2 + 3x^3 + \cdots$

Hol konvergensek a következő függvénysorok? Adjuk meg az összegfüggvényeket!

7.76.
$$\sum_{n=0}^{\infty} (\sin x)^n$$
 7.77.
$$\sum_{n=1}^{\infty} (1+x^2)^n$$

7.78.
$$\sum_{n=1}^{\infty} \left(\frac{1}{0, 1+0, 2\cos^2 x} \right)^n$$
 7.79.
$$\sum_{n=1}^{\infty} \frac{1}{2^n x^n}$$

Számítsuk ki a következő hatványsorok konvergenciasugarát és összegét:

7.80.
$$f(x) = \sum_{n=1}^{\infty} \frac{x^n}{n(n+1)}$$
 7.81. $\sum_{n=0}^{\infty} \frac{x^n}{n+1}$

$$f(x) = \sum_{n=1}^{\infty} nx^n$$

$$\boxed{\textbf{7.83.}} \quad \sum_{n=1}^{\infty} n^2 x^n$$

7.84.
$$f(x) = \sum_{n=1}^{\infty} n(n+1)x^n$$
 7.85. $\sum_{n=0}^{\infty} \frac{x^{2n+1}}{2n+1}$

7.85.
$$\sum_{n=0}^{\infty} \frac{x^{2n+1}}{2n+1}$$

Adjuk meg a következő függvények a=0 körüli Taylor-sorát! Határozzuk meg a konvergenciatartományokat! Előállítja-e sor a függvényt a konvergenciatartományban?

7.86.
$$e^x$$

7.87.
$$e^{2a}$$

7.88.
$$e^{-x}$$

7.89.
$$e^{-x^2}$$

7.90.
$$\int \sin x$$

7.91.
$$\cosh x$$

$$\boxed{7.92.} \quad \frac{1}{1-x}$$

7.93.
$$\frac{1}{1+a}$$

7.94.
$$\frac{1}{1+x^2}$$

7.95.
$$\frac{x^3}{1-x^2}$$

7.96.
$$\ln(1+x)$$

7.98.
$$\frac{1}{2+x}$$

7.99.
$$f(x) = \frac{1}{1 + x + x^2}$$

7.100. $\sin x$ 7.101. $\cos x$

7.102. $\sin(2x)$ 7.103. $\cos x^2$

7.104. $\sin^2 x$

7.105. $\cos^2 x$

Legyen $f: \mathbb{R} \to \mathbb{R}$, 0-ban akárhányszor differenciálható függvény. Igazak-e a következő állítások? A választ minden esetben indokoljuk meg!

- 7.106. f Taylor-sora mindig felírható.
- 7.107. f Taylor-sora minden valós x helyen konvergens.
- 7.108. Haf Taylor-sora konvergens egy \boldsymbol{x}_0 pontban, akkor abban a pontban a Taylor-sor összege $f(x_0)$.
- Ha egy $\sum_{n=0}^{\infty} a_n x^n$ sor előállítja az f függvényt, akkor ez a hatványsor 7.109.
- Ha f(x) Taylor-sora $\sum_{n=0}^{\infty} a_n x^n$, akkor minden valós x esetén $\sum_{n=0}^{\infty} a_n x^n =$ 7.110.
- 7.111. Számítsuk ki 10^{-2} pontossággal sin 1 illetve eértékét!
- Számítsuk ki az $1 \frac{\pi^2}{2} + \frac{\pi^4}{4!} \frac{\pi^6}{6!} + \dots + (-1)^n \frac{\pi^{2n}}{(2n)!} + \dots$ összeget! 7.112.
- Bizonyítsuk be, hogy az $f(x) = \sum_{k=0}^{\infty} \frac{x^{3k}}{(3k)!}$ függvény kielégíti az f'''(x) =7.113. f(x) egyenletet!
- Írjuk fel az $f(x) = \int_{0}^{x} e^{-t^2} dt$ Taylor-sorát! Számítsuk ki $\int_{0}^{x} e^{-x^2} dx$ 7.114. értékét két tizedesjegy pontossággal!
- 7.115. Bizonyítsuk be, hogy az e szám irracionális!

Számítsuk ki a keresett deriváltakat az x = 0 helyen!

7.116.
$$\left(\frac{1}{1-x}\right)^{(135)}$$

7.117.
$$\left(e^{x^2}\right)^{(136)}$$

7.118.
$$(\operatorname{arctg} x)^{(356)}$$

7.119.
$$(\operatorname{arctg} x)^{(357)}$$

- 7.120. Írjuk fel az $f(x) = \operatorname{tg} x$ függvény harmadik Taylor-polinomját a 0ban.
- 7.121. A fonálinga mozgását leíró törvényben a $\sin x$ függvényt az x függvénnyel közelítik. Mekkora lesz legfeljebb az elkövetett hiba, ha a kitérés szöge legfeljebb $5^{\circ} < 0, 1$ radián?
- 7.122. Hány tagot vegyünk figyelembe $\sin x$ Taylor-sorából, ha azt akarjuk, hogy |x| < 0,1 esetén a hiba legfeljebb 10^{-6} legyen?
- 7.123. Hány tagot vegyünk figyelembe $\sin x$ Taylor-sorából, ha azt akarjuk, $|x| < 1 < \frac{\pi}{3} (= 60^{\circ})$ esetén a hiba legfeljebb 10^{-3} legyen?
- Fejtsük hatványsorba az $f(x)=x^2+x+1$ függvényt 7.124.
 - (a) 0-körül;

- **(b)** 1-körül.
- Fejtsük hatványsorba az $f(x) = \frac{1}{2+x}$ függvényt 7.125.
 - (a) 0-körül;

(b) 1-körül.

7.3. Trigonometrikus sorok, Fourier-sor

Állítsuk elő az alábbi függvények Fourier-sorát!

7.126. $\sin^2 x$

 $\cos^2 x$ 7.127.

Fejtsük Fourier-sorba a $(-\pi,\pi)$ intervallumon az alábbi függvényeket:

7.128.
$$f(x) = \operatorname{sgn} x$$
 $-\pi < x < \pi$

7.129.
$$f(x) = \begin{cases} 1 & \text{ha } 0 < x < \pi \\ 0 & \text{ha } -\pi < x < 0 \end{cases}$$

7.130.
$$f(x) = |\operatorname{sgn} x|$$
 $-\pi < x < \pi$

A fenti három függvény megegyezik a $(0,\pi)$ intervallumon!

7.131.
$$f(x) = x$$
 $-\pi < x < \pi$

7.132.
$$f(x) = |x|$$
 $-\pi < x < \pi$

Az előző két függvény megegyezik a $(0, \pi)$ intervallumon!

7.133.
$$f(x) = \begin{cases} x^2 & \text{ha } 0 < x < \pi \\ -x^2 & \text{ha } -\pi < x < 0 \end{cases}$$

- 7.134. Legyen most f(x) az a 2π szerint periodikus függvény, amelyikre f(x) = $\frac{\pi-x}{2},$ ha $x\in(0,2\pi)$ és f(0)=0. Ezt a függvényt fűrészfog-függvénynek
 - (a) Fejtsük Fourier-sorba az f(x) függvényt a $(0,2\pi)$ nyílt intervallu-
 - (b) Számoljuk ki a $\sum_{n=0}^{\infty} (-1)^n \frac{1}{2n+1}$ numerikus sor összegét.
- Legyen f az a periodikus függvény, amelyre $f(x) = x^2$, ha $x \in [-\pi, \pi]$. 7.135.
 - (a) Fejtsük Fourier-sorba az f(x) függvényt a $[-\pi, \pi]$ intervallumon.
 - (b) Számoljuk ki a $\sum_{n=1}^{\infty} \frac{1}{n^2}$ numerikus sor összegét.

Kirajzoltuk néhány előző feladat függvényeit és a 10-edik (egynél az 5-ödik) Fourier közelítéseit. Melyek ezek a függvények?

7.136.

7.137.

7.138.

7.139.

7.141.

Fejtsük Fourier-sorba a következő függvényeket a $(-\pi,\pi)$ intervallumban!

7.142.
$$e^x$$

7.143.
$$e^{2x}$$

7.145.
$$\int \sin 3x$$

7.146.
$$\cosh x$$

7.147.
$$ch 4x$$

8. fejezet

Többváltozós függvények differenciálása

8.1. Euklideszi terek topológiája.

- A $G \subset \mathbb{R}^n$ halmaz **nyílt** akkor és csak akkor, ha egyetlen határpontját sem tartalmazza.
- Az $F \subset \mathbb{R}^n$ halmazra a következő állítások ekvivalensek:
 - Az F halmaz **zárt**.
 - Az F halmaz tartalmazza minden határpontját.
 - Nem lehet F-ből kikonvergálni, azaz ha

$$\{p_n : n \in \mathbb{N}\} \subset F$$
, és $p_n \longrightarrow p$, akkor $p \in F$.

- A $K \subset \mathbb{R}^n$ halmazra a következő állítások ekvivalensek:
 - A K halmaz kompakt.
 - A K halmaz korlátos és zárt.
 - Minden K-beli sorozatnak van K-beli ponthoz konvergáló részsorozata.
- **8.2. Többváltozós Bolzano-Weierstrass-tétel.** Korlátos pontsorozatnak van konvergens részsorozata.
- **8.3. Többváltozós Weierstrass-tétel.** Kompakt halmaz folytonos képe kompakt. Speciálisan kompakt halmazon folytonos függvénynek van maximuma (és minimuma).
- **8.4. Többváltozós Bolzano-tétel.** Összefüggő halmaz folytonos képe összefüggő.

8.5. Többváltozós derivált.

- Ha az f függvény (totálisan) deriválható a \mathbf{p} pontban, akkor itt folytonos, minden parciális deriváltja létezik, és a derivált koordinátái a megfelelő parciális deriváltak.
- Ha az f függvény parciális deriváltjai léteznek a \mathbf{p} pont egy környezetében, és ezek **p**-ben folytonosak (**folytonosan deriválható p**-ben), akkor f deriválható **p**-ben.
- Ha az f függvény (totálisan) deriválható a \mathbf{p} pontban, akkor itt minden $\mathbf{v} \neq \mathbf{0}$ irány mentén deriválható, és

$$\frac{\partial}{\partial \mathbf{v}} f(\mathbf{p}) = \frac{1}{|\mathbf{v}|} \mathbf{v} \cdot \operatorname{grad} f(\mathbf{p})$$

Ennek következményeként

$$\max \left\{ \left| \frac{\partial}{\partial \mathbf{v}} f(\mathbf{p}) \right| : |\mathbf{v}| = 1 \right\} = |\operatorname{grad} f(p)|^2$$

— Ha az $f:\mathbb{R}^n \to \mathbb{R}$ függvény deriválható a **p** pontban, akkor grafikonjának van **érintő hipersíkja** a **p** pont felett, és ennek egyenlete

$$y = f(\mathbf{p}) + \operatorname{grad} f \cdot (\mathbf{x} - \mathbf{p}).$$

8.6. Young-tétel. Ha az n-változós f függvény kétszer folytonosan deriválható a **p** pont egy környezetében, akkor minden $1 \le i, j \le n$ esetén

$$f_{x_i x_j}^{\prime\prime}(\mathbf{p}) = f_{x_j x_i}^{\prime\prime}(\mathbf{p}).$$

8.7. Többváltozós szélsőérték.

- Ha az $f: \mathbb{R}^n \to \mathbb{R}$ n-változós függvénynek lokális szélsőértéke van az értelmezési tartomány **p** belső pontjában, és **p**-ben (parciálisan) deriválható, akkor grad $f(\mathbf{p}) = \mathbf{0}$.
- Tegyük fel, hogy az $f: \mathbb{R}^n \to \mathbb{R}$ függvény kétszer folytonosan deriválható a **p** pontban és grad $f(\mathbf{p}) = \mathbf{0}$. Jelölje H az f másodrendű parciális deriváltjaiból álló szimmetrikus Hesse-mátrixot a p pontban, valamint $Q(\mathbf{x}) = \mathbf{x} \cdot H\mathbf{x}$ a H-hoz tartozó kvadratikus leképezést. Ekkor
 - ha Q pozitív definit, akkor \mathbf{p} -ben lokális minimum van;

- ha Q negatív definit, akkor **p**-ben lokális maximum van;
- ha Q indefinit, akkor \mathbf{p} -ben nincs szélsőérték (nyeregpont);
- ha Q szemidefinit, akkor p-ben ez a próba nem dönti el, hogy van-e szélsőérték.

Speciálisan kétváltozós függvény esetén ha

$$D = \det H = \begin{vmatrix} f''_{xx} & f''_{xy} \\ f''_{yx} & f''_{yy} \end{vmatrix}$$

a Hesse-mátrix determinánsa a **p** pontban, akkor

- minimum van, ha D > 0 és $f''_{xx} > 0$;
- maximum van, ha D > 0 és $f_{xx}^{"} < 0$;
- nincs szélsőérték, ha D < 0;
- ez a próba nem dönti el, hogy van-e szélsőérték, ha D=0.

8.8. Feltételes szélsőérték, Lagrange-féle multiplikátor módszer. Ha az $f: \mathbb{R}^n \to \mathbb{R}$ függvénynek lokális szélsőértéke van aza pontban a $g_k(\mathbf{x}) =$ 0, $k=1,2,\ldots,p$ feltételek mellett, akkor megadhatók olyan $\lambda_1,\lambda_2,\ldots,\lambda_p$ valós számok, hogy

$$\frac{\partial}{\partial x_i} f(\mathbf{a}) + \sum_{k=1}^p \lambda_k \frac{\partial}{\partial x_i} g_k(\mathbf{a}) = 0, \quad i = 1, 2, \dots, n$$

8.1. Topológiai alapfogalmak

Írjuk fel a megadott pontok távolságát!

- $\mathbf{p}, \mathbf{q} \in \mathbb{R}^2 \quad \mathbf{p} = (-1, 3) \quad \mathbf{q} = (5, -4)$
- $\mathbf{p}, \mathbf{q} \in \mathbb{R}^3$ $\mathbf{p} = (-1, 3, 5)$ $\mathbf{q} = (5, -4, 0)$ 8.2.
- $\mathbf{p}, \mathbf{q} \in \mathbb{R}^n \quad \mathbf{p} = (p_1, p_2, \dots p_n) \quad \mathbf{q} = (q_1, q_2, \dots q_n)$ 8.3.
- 8.4. Írjuk fel az origó középpontú, 1 sugarú (nyílt) gömböt meghatározó egyenlőtlenséget \mathbb{R}^k -ban, ahol k=1,2,3,n.

8.5. Írjuk fel a \mathbf{c} középpontú, r sugarú (nyílt) gömböt meghatározó egyenlőtlenséget \mathbb{R}^k -ban, ahol k=1,2,3,n.

Rajzoljuk le az alábbi halmazokat, határozzuk meg a belső-, külsőés határpontjaikat, és döntsük el mindegyik halmazról, hogy nyílte, zárt-e, és hogy korlátos-e!

8.6.
$$\{h \in \mathbb{R} : -3 < h \le 5\}$$

8.7.
$$\{(x,y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$$

8.8.
$$\{(x,y) \in \mathbb{R}^2 : 1 < x^2 + y^2 < 4\}$$

8.9.
$$\{(x,y) \in \mathbb{R}^2 : -3 < x < 5\}$$

8.10.
$$\{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \ge 4\}$$

8.11.
$$\{(x,y) \in \mathbb{R}^2 : -1 \le x, y \le 1\}$$

8.12.
$$\{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \ge 0\}$$

8.13.
$$\{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le -4\}$$

Melyik halmaz nyílt, melyik zárt, melyik nyílt is, zárt is, és melyik se nem nyílt, se nem zárt? Indokoljuk a válaszokat! A feladatokban x és y valós számokat jelölnek.

8.14.
$$H = \{x : 0 < x < 1\}$$
 8.15. $H = \{(x, 0) : 0 < x < 1\}$

8.16.
$$H = \{x : 0 \le x \le 1\}$$
 8.17. $H = \{(x, 0) : 0 \le x \le 1\}$

8.18.
$$H = \{x : 0 \le x < 1\}$$
 8.19. $H = \{(x, 0) : 0 \le x < 1\}$

8.20.
$$H = \{(x, y) : x^2 + y^2 < 1\}$$

8.21.
$$H = \{(x, y, 0) : x^2 + y^2 < 1\}$$

8.22.
$$H = \{(x, y) : x \in \mathbb{Q}, y \in \mathbb{Q}\}$$

8.23.
$$H = \{(x, y) : 0 < x < 1, 0 < y < 1\}$$

Adjuk meg a következő síkbeli halmazok belső pontjait, külső pontjait és határpontjait!

8.24.
$$H = \{(x, y) : 0 \le x \le 1, 0 \le x \le 1\}$$

8.25.
$$H = \{(x,y) : 0 \le x < 1, 0 < y \le 1\}$$

8.26.
$$H = \{(x, y) : x \in \mathbb{Q}, y \in \mathbb{Q}, 0 \le x \le 1, 0 \le y \le 1\}$$

8.27.
$$H = \{(x,y) : 0 < x < 1, y = 0\}$$

Adjuk meg a következő térbeli halmazok belső pontjait, külső pontjait és határpontjait!

8.28.
$$H = \{(x, y, z) : x^2 + y^2 + z^2 < 1\}$$

8.29.
$$H = \{(x, y, z) : x^2 + y^2 + z^2 \le 1\}$$

8.30.
$$H = \{(x, y, z) : x \in \mathbb{Q}, y \in \mathbb{Q}, z \in \mathbb{Q}, 0 \le x \le 1, 0 \le y \le 1, 0 \le z \le 1\}$$

8.31.
$$H = \{(x, y, z) : x \in \mathbb{Q}, 0 < x < 1, y = z = 0\}$$

8.32. Legyen $H \subset \mathbb{R}^n$. Igazak-e a következő állítások?

- (a) Ha $x \in H$, akkor x belső pontja H-nak.
- (b) Ha $x \notin H$, akkor x nem lehet belső pontja H-nak.
- (c) Ha $x \in H$, akkor x nem lehet határpontja H-nak.
- (d) Ha $x \notin H$, akkor x nem lehet határpontja H-nak.
- (e) Van olyan halmaz, amelynek minden pontja határpont.
- (f) Van olyan halmaz, amelynek minden pontja belső pont.
- (g) Van olyan halmaz, amelynek nincs belső pontja.

8.2. Többváltozós függvények grafikonja

Számítsuk ki a következő függvények helyettesítési értékét a megadott p pontokban!

8.33.
$$f(x,y) = x + y^2$$
 p = (2,3)

8.34.
$$f(x,y) = \arctan x + \arcsin xy$$
 p = $(\pi/4,0)$

8.35.
$$f(x,y,z) = x^{(y^z)}$$
 p = (4,3,2)

8.36.
$$f(x,y,z) = x^{y^z}$$
 p = (4,3,2)

Adjuk meg a következő függvények helyettesítési értékét a megadott görbék pontjaiban!

8.37.
$$f(x,y) = x^2 + y^2$$
, $y = x$, illetve $x^2 + y^2 = 1$

8.38.
$$f(x,y) = x - y,$$
 $y = x, \text{ illetve } y = x^2$

8.39.
$$f(x,y) = \sin x,$$
 $x = \pi/4, \text{ illetve } y = \pi/4$

8.40.
$$f(x,y) = \sin xy$$
, $x = \pi/4$, illetve $y = \pi/4$

- 8.41. Keressük meg a következő kétváltozós függvények grafikonjait az ábrák között!

 - (a) $x^2 + y^2$ (b) $(x+y)^2$ (c) $x^2 y^2$

- (d) *xy*
- (e) $\sin x + \sin y$ (f) $\sin x \sin y$

 ${\rm Az}$ előző függvényeknek kirajzoltuk a szintvonalait is. Keressük meg a 8.42. rajzokhoz tartozó képleteket!

(A)

(B)

(F)

Ábrázoljuk a következő függvények szintvonalait! Készítsünk a függvények grafikonjáról térbeli rajzot!

8.43.
$$(x+y)^2$$

8.44.
$$\sqrt{x^2+y^2}$$

8.46.
$$\int (x-y)^2$$

8.47.
$$x^2 + y^2$$
,

8.48.
$$|x|$$

8.49.
$$x^2 - y^2$$

8.50.
$$|x+y|$$

Határozzuk meg a következő függvények szintfelületeit!

8.51.
$$f(x, y, z) = x + y + z$$

8.52.
$$f(x,y,z) = x^2 + y^2 + z^2$$

8.53.
$$f(x,y,z) = x + y$$

8.54.
$$f(x,y,z) = y^2$$

Döntsük el az alábbi térbeli halmazokról, hogy lehetnek-e grafikonjai-e valamilyen kétváltozós függvénynek! Ha igen, akkor adjunk meg ilyen függvényt!

8.56. gömbfelület

8.58. hengerpalást

8.60. félgömb felülete

Határozzuk meg a következő függvények lehetséges legbővebb értelmezési tartományát!

8.61.
$$f(x,y) = \frac{x+y}{x-y}$$

8.62.
$$f(x,y) = \sqrt{1-x^2} + \sqrt{y^2+1}$$

8.63.
$$f(x,y) = \frac{1}{x^2 + y^2}$$

8.64.
$$f(x,y) = \sqrt{1-x^2-y^2}$$

$$\boxed{\textbf{8.65.}} \quad f(x,y,z) = \frac{z}{\sin x} \cos y$$

8.66.
$$f(x,y,z) = \frac{x}{y-z} + \frac{y}{x+z} - \frac{z}{x^2 - y^2}$$

8.3. Többváltozós határérték, folytonosság

Van-e a következő többváltozós függvényeknek határértéke az adott pontokban? Ha igen, mennyi? Hol folytonosak ezek a függvények?

8.67.
$$f(x,y) = 7$$
 $\mathbf{p} = (0,0)$

8.68.
$$f(x,y) = x + y$$
 $\mathbf{p} = (3,5)$

8.69.
$$f(x,y) = \frac{x}{y}$$
 $\mathbf{p} = (3,0)$

8.70.
$$f(x,y) = \frac{\sin xy}{x}$$
 $\mathbf{p} = (0,2)$

8.71.
$$f(x,y) = \frac{\sin xy}{\operatorname{tg} 2xy}$$
 $\mathbf{p} = (0,3)$

8.72.
$$f(x,y) = \frac{\sin x - \sin y}{x - y}$$
 p = (0,0)

8.74.
$$\sqrt{x+y-1}$$
 $\mathbf{p} = (0,0)$

8.75.
$$y \ln(x^2 + y^2)$$
 $\mathbf{p} = (0, 0)$

8.76.
$$f(x,y) = \begin{cases} 1, \text{ ha } x \neq 0 \text{ és } y \neq 0 \\ 0, \text{ ha } x = 0 \text{ vagy } y = 0 \end{cases} \quad \mathbf{p} = (0,0), \quad \mathbf{q} = (0,1)$$

8.77.
$$f(x,y) = \begin{cases} 1, & \text{ha } x \neq 0 \\ 0, & \text{ha } x = 0 \end{cases}$$
 $\mathbf{p} = (0,0), \ \mathbf{q} = (0,1), \ \mathbf{r} = (1,0)$

8.78.
$$f(x,y) = \begin{cases} 1, \text{ ha } x^2 + y^2 \neq 0 \\ 0, \text{ egyébként} \end{cases}$$
 $\mathbf{p} = (0,0), \quad \mathbf{q} = (0,1)$

8.79.
$$f(x,y) = \begin{cases} x, \text{ ha } x = y \\ 0, \text{ egyébként} \end{cases}$$
 $\mathbf{p} = (0,0), \quad \mathbf{q} = (0,1)$

$$\mathbf{p} = (0,0), \quad \mathbf{q} = (0,1)$$

8.80.
$$f(x,y) = \begin{cases} 1, & \text{ha } x = y \\ 0, & \text{egyébként} \end{cases}$$
 $\mathbf{p} = (0,0), \quad \mathbf{q} = (0,1)$

$$\mathbf{p} = (0,0), \quad \mathbf{q} = (0,1)$$

8.81. Legyen
$$f(x,y) = \frac{x-y}{x+y}$$
. Léteznek-e a következő határértékek?

(a)
$$\lim_{(x,y)\to(0,0)} f(x,y)$$

(a)
$$\lim_{(x,y)\to(0,0)} f(x,y)$$
 (b) $\lim_{x\to 0} \left(\lim_{y\to 0} f(x,y)\right)$

(c)
$$\lim_{y\to 0} \left(\lim_{x\to 0} f(x,y)\right)$$
 (d) $\lim_{x\to 0} f(x,x)$

(d)
$$\lim_{x\to 0} f(x,x)$$

8.82. Legyen
$$f(x,y) = (x+y)\sin\frac{1}{x}\sin\frac{1}{y}$$
. Léteznek-e a következő határértékek?

(a)
$$\lim_{(x,y)\to(0,0)} f(x,y)$$

(a)
$$\lim_{(x,y)\to(0,0)} f(x,y)$$
 (b) $\lim_{x\to 0} \left(\lim_{y\to 0} f(x,y) \right)$

(c)
$$\lim_{y\to 0} \left(\lim_{x\to 0} f(x,y)\right)$$
 (d) $\lim_{x\to 0} f(x,x)$

(d)
$$\lim_{x\to 0} f(x,x)$$

$$f(x,y) = \begin{cases} \frac{2xy}{x^2 + y^2}, & \text{ha } x^2 + y^2 \neq 0 \\ 0, & \text{egyébként} \end{cases}.$$

Bizonyítsuk be, hogy a g(x) = f(x,0) és a h(y) = f(0,y) függvények folytonosak x = 0-ban, illetve y = 0-ban! Bizonyítsuk be, hogy az f(x,y) függvény nem folytonos (x,y)=(0,0)-ban!

8.84. Bizonyítsuk be, hogy ha
$$f(x,y)$$
 folytonos a síkon, akkor

(a) a
$$G = \{(x, y) : f(x, y) > 0\}$$
 halmaz nyílt;

(b) az
$$F = \{(x, y) : f(x, y) \ge 0\}$$
 halmaz zárt!

8.4. Parciális és totális derivált

8.85. Mutassunk példát olyan kétváltozós függvényre, amelynek mindkét parciális deriváltja létezik az origóban, de a függvény nem folytonos az origóban!

Határozzuk meg a következő függvények parciális deriváltjait!

8.86.
$$f(x,y) = x \sin y$$

8.87.
$$f(x,y) = \sin(xy)$$

8.88.
$$f(x,y) = (x+2y)\sin(x+2y)$$

8.89.
$$f(x,y) = 3x^2y^4 - 4$$

8.90.
$$f(x,y) = \frac{x+y}{x-y^2}$$

8.91.
$$f(x,y) = (5x + y^2)^{e^{x^2} + 3y}$$

8.92.
$$g(x, y, z) = \sin z \cdot (\cos x)^{\ln y}$$

8.93.
$$g(x,y,z) = \left(\frac{x}{y}\right)^z$$

8.94.
$$f(x,y) = x^2 + xy + y^2$$

[**8.95.**]
$$f(x,y) = e^{x-y}$$

8.96.
$$g(x,y,z) = x^{y^z}$$

8.97.
$$g(x, y, z) = \frac{z \arctan x^2 y}{1 + \ln(xy^3 + 2x\sqrt{z})}$$

8.98.
$$f(x,y,z) = \sin(x^2 + y^3 + z^4)$$

8.99.
$$f(x,y) = \arctan \frac{1-x}{1-y}$$

8.100.
$$f(x,y) = x^y + y^x$$

8.101.
$$f(x, y, z) = x^{yz}$$

- 8.102. Parciálisan deriválható-e f(x,y) = |x| + |y| a (0,0) pontban?
- 8.103. Mi a következő két állítás logikai kapcsolata, azaz melyikből következik a másik?

P: f(x,y) folytonos (0,0)-ban

Q: f(x,y) parciális deriváltjai léteznek (0,0)-ban

- 8.104. Tudjuk, hogy f(1,2) = 3, továbbá hogy minden (x,y) pontban $f'_x(x,y) =$ 0 és $f'_{y}(x,y) = 0$. Mennyi lehet f(5,10)?
- 8.105. Hol folytonosak az

$$f(x,y) = \begin{cases} (x+y)\sin\frac{1}{x}\sin y, & \text{ha } x \neq 0 \text{ \'es } y \neq 0\\ 0, & \text{ha } x = 0 \text{ vagy } y = 0 \end{cases}$$

függvény parciális derivált függvényei?

Határozzuk meg a következő függvények második parciális deriváltjait!

8.106.
$$g(x, y, z) = xy^2 \sin z$$

8.107.
$$g(x, y, z) = \frac{x}{y+z}$$

8.108.
$$g(x, y, z) = 2 + x + y^2 + z^3$$

8.109.
$$g(x,y,z) = \ln(x+y^2+z^3)$$

Írjuk fel a következő függvények iránymenti deriváltjait az adott pontokban az adott irányban!

8.110.
$$f(x,y) = x + y^2$$

$$\mathbf{p} = (2,3), \quad \mathbf{v} = (3,4)$$

8.111.
$$f(x,y) = \sin xy$$
 $\mathbf{p} = (0,0), \quad \mathbf{v} = (1,-1)$

8.112.
$$f(x,y) = e^{x+y} \cdot \ln y$$
 $\mathbf{p} = (0,1), \quad \mathbf{v} = (-4,3)$

8.113.
$$f(x,y) = \frac{x}{y}$$
 $\mathbf{p} = (1,1), \quad \mathbf{v} = (-1,-1)$

Határozzuk meg a következő függvények $\alpha=30^{\circ}$ -os szöghöz tartozó iránymenti deriváltját a (3,5) pontban!

8.114.
$$f(x,y) = x^2 - y^2$$
 8.115. $h(x,y) = xe^y$

Milyen irányban lesz az iránymenti derivált maximális, illetve minimális a (-4,2) pontban?

8.116.
$$f(x,y) = (x-y)^2$$
 8.117. $g(x,y) = x^2 + \frac{2}{xy}$

Egy terepasztal felületét az f(x,y) függvénnyel adjuk meg. Milyen irányban indul el a felület adott A = (1, 2), B = (2, 1), C = (2, 0)és D = (-2, 1) pontjai fölé helyezett golyó?

$$\begin{bmatrix} 8.118. \end{bmatrix} e^{-(x^2+y^2)}$$
 $\begin{bmatrix} 8.119. \end{bmatrix} x^3+y^3-9xy$

- 8.120. Egy buckás domb felületét az $f(x,y) = -x^2 + \sin y$ függvény adja meg, ha $-2 \le x \le 2, -10 \le y \le 10$. Milyen irányban induljon el a síelő a $\mathbf{p} = (1, \pi/3)$ pontból, ha a lehető legmeredekebb pályán akar lecsúszni?
- Legyen $f(x,y) = \sqrt{1-x^2-y^2}$. Írja fel az (1/2,1/2) ponton áthaladó 8.121. szintvonal egyenletét, valamint a szintvonal érintőjét az (1/2, 1/2) pontban! Írjuk fel a függvény gradiensét az (1/2, 1/2) pontban! Mekkora szöget zár be a szintvonal érintője a gradienssel?
- 8.122. Adjunk példát olyan f(x,y) függvényre, ahol a gradiens létezik, de nem merőleges a szintvonal érintőjére!

Segítség: vizsgáljuk az

$$f(x,y) = \begin{cases} 0, & \text{ha } (x-1)^2 + y^2 = 1\\ y, & \text{ha } x = 0 \text{ és } y \neq 0\\ x & \text{egyébként} \end{cases}$$

függvényt az origóban!

- 8.123. Legyen $f(x,y) = \sqrt{1-x^2-y^2}$. Ellenőrizzük, hogy az (1/2,1/2) pontban a függvény gradiense merőleges a szintvonal érintőjére!
- 8.124. Írjuk fel az $f(x,y) = \operatorname{sgn} x \operatorname{sgn} y$ függvény gradiensét azokban a pontokban, ahol létezik!

Egy terepasztal felületét az f(x,y) függvény adja meg. Tegyük fel, hogy az x tengely kelet felé, az y tengely pedig észak felé mutat. Határozzuk meg a p ponton átmenő, észak-északnyugati irányban induló ösvény meredekségét a p pontban!

8.125.
$$f(x,y) = x^2 - y^2$$
 $\mathbf{p} = (1,2,-3)$

8.126.
$$x^3 + y^3 - 9xy$$
 p = $(2,0,8)$

8.127. Legyen
$$f(x,y) = \begin{cases} xy\frac{x^2 - y^2}{x^2 + y^2}, & \text{ha } x^2 + y^2 \neq 0 \\ 0, & \text{ha } x^2 + y^2 = 0 \end{cases}$$

- (a) Mennyi $f'_x(0,0)$ és $f'_y(0,0)$?
- (b) Mennyi $f'_x(0,y)$ ha $y \neq 0$ és mennyi $f'_y(x,0)$ ha $x \neq 0$?
- (c) Mennyi $f''_{xy}(0,0)$ és $f''_{yx}(0,0)$?
- (d) Miért nincs ez ellentmondásban Young tételével?
- (e) Differenciálható-e kétszer f a (0,0)-ban?
- 8.128. Legven $f: \mathbb{R}^n \to \mathbb{R}$ függvény. Melyik állítás igaz és melyik hamis az alábbiak közül? Ha egy állítás hamis, adjunk ellenpéldát!
 - (a) Ha f folytonos a p pontban, akkor ott differenciálható.
 - (b) Ha f differenciálható a \mathbf{p} pontban, akkor f a \mathbf{p} pontban folytonos.

- (c) Ha f-nek léteznek a parciális deriváltjai a p pontban, akkor f a **p** pontban folytonos.
- (d) Ha f-nek léteznek és folytonosak a parciális deriváltjai a p pontban, akkor f a \mathbf{p} pontban differenciálható.
- (e) Ha $f\operatorname{-nek}$ léteznek és folytonosak a parciális deriváltjai a ${\bf p}\,$ pontban, akkor f a **p** pontban folytonos.
- (f) Ha f differenciálható a p pontban, akkor f-nek p-ben léteznek a parciális deriváltjai.
- (g) Ha p-ben f-nek léteznek a másodrendű parciális deriváltjai, akkor f 2-szer differenciálható \mathbf{p} -ben.
- (h) Ha p-ben f-nek léteznek és folytonosak a másodrendű parciális deriváltjai, akkor f 2-szer differenciálható \mathbf{p} -ben.
- (i) Ha f a \mathbf{p} pontban 2-szer differenciálható, akkor \mathbf{p} -ben léteznek fmásodrendű parciális deriváltjai.
- (j) Ha f a \mathbf{p} pontban 2-szer differenciálható, akkor \mathbf{p} -ben léteznek fparciális deriváltjai, és a parciális deriváltak **p**-ben folytonosak.

Van-e olyan $f: \mathbb{R}^2 \to \mathbb{R}$ függvény, amelyre

8.129.
$$f'_x(x,y) = \sin y, \ f'_y(x,y) = x \cos y$$

8.130.
$$f'_x(x,y) = e^{xy}, f'_y(x,y) = \cos(x-y)$$

Határozzuk meg az alábbi függvényeket a megadott pontokban érintő síkok illetve hipersíkok egyenletét!

8.131.
$$f(x,y) = x^y$$
 $\mathbf{p} = (2,3)$

8.132.
$$f(x,y) = \sin(xy)$$
 $\mathbf{p} = (1/2,\pi)$

8.133.
$$f(x, y, z) = xy^2 - z^3$$
 $\mathbf{p} = (3, 2, 1)$

8.134.
$$f(x_1, \ldots, x_n) = x_1 \cdot x_2 \cdot \ldots \cdot x_n$$
 $\mathbf{p} = (1, 2, \ldots, n)$

Írjuk fel a $G(t) = F(\mathbf{r}(t))$ összetett függvényt! Határozzuk meg G'(t)-t közvetlenül a képletből, és a láncszabály segítségével is!

8.135.
$$F(x,y) = x^2 + y^2$$
 $\mathbf{r}(t) = \cos t \cdot \mathbf{i} + \sin t \cdot \mathbf{j}$ $t \in [0, 2\pi]$

8.136.
$$F(x,y) = x^2 - y^2$$
 $\mathbf{r}(t) = \cos t \cdot \mathbf{i} + \sin t \cdot \mathbf{j}$ $t \in [0, 2\pi]$

8.137.
$$F(x,y) = x^2 + y^2$$
 $\mathbf{r}(t) = t \cdot \mathbf{i} + 3t \cdot \mathbf{j}$ $t \in [0,10]$

Írjuk fel a következő összetett leképezések Jacobi-mátrixát.

8.138.
$$g(t) = (\sin t, \cos t), \quad f(x, y) = x + y, \quad h = f \circ g.$$

8.139.
$$f(u,v) = (\sin uv, \cos uv), \quad g(x,y) = x^2 + y^2, \quad h = g \circ f$$

8.140.
$$f(u,v) = \left(u^2v^2, \frac{1}{uv}\right), \quad g(x,y) = \ln x + \ln y, \quad h = g \circ f.$$

Adjuk meg a következő síkbeli leképezések Jacobi-mátrixát!

8.141.
$$\mathbf{v} = \sin xy \cdot \mathbf{i} + x \cos y \cdot \mathbf{j}$$

8.142.
$$\mathbf{v} = \frac{xy}{1+x^2} \cdot \mathbf{i} + \frac{x}{x^2+y^2} \cdot \mathbf{j}$$

8.143.
$$\mathbf{v} = (\ln x + \ln y) \cdot \mathbf{i} + x^2 \cdot \mathbf{j}$$

8.144.
$$\mathbf{v} = \sin(x + 3y^2) \cdot \mathbf{i} + e^{xy} \cdot \mathbf{j}$$

- Legyen F(x,y)=xy, és legyenek $f:\mathbb{R}^2\to\mathbb{R},\,g:\mathbb{R}^2\to\mathbb{R}$ differenci-8.145. álható függvények! Írjuk fel az F(f,g) összetett függvény deriváltját a láncszabály segítségével!
- 8.146. Legyen $\mathbf{r}: \mathbb{R} \to \mathbb{R}^2$ differenciálható, és legyen f(x,y) = x + y. Írjuk fel $f \circ \mathbf{r}$ deriváltját a láncszabály segítségével!

Írjuk fel a következő függvények P ponton áthaladó szintvonalainak érintőjét a P pontban!

8.147.
$$f(x,y) = x^y,$$
 $P(3,5)$

8.148.
$$f(x,y) = x^2 - y^2$$
 $P(5,3)$

8.5. Többváltozós szélsőérték

Van-e abszolút szélsőértékük a következő függvényeknek az adott halmazokon? Indokoljuk a válaszokat!

8.149.
$$f(x) = \frac{1}{x}$$
 $H = \{(x) : x \neq 0\}$

8.150.
$$f(x) = \sin^2 \sqrt[7]{x^3}$$
 $H = \{(x) : x \in \mathbb{R}\}$

8.151.
$$f(x,y) = \frac{y}{x}$$
 $H = \{(x,y) : x \neq 0\}$

8.152.
$$f(x,y) = x^2 + e^y \sin(x^3 y^2)$$
 $H = \{(x,y) : x^2 + y^2 \le 1\}$

8.153.
$$f(x,y) = x^2 + y^2$$
 $H = \{(x,y) : x^2 + y^2 < 1\}$

8.154.
$$f(x,y) = x + y$$
 $H = \{(x,y) : 0 < x < 1, 0 < y < 1\}$

8.155.
$$f(x,y) = xy$$
 $H = \{(x,y) : 0 \le x \le 1, 0 \le y \le 1\}$

8.156.
$$f(x,y,z) = xyz$$
 $H = \{(x,y,z) : (x-1)^2 + (y+2)^2 + (z-3)^2 \le 4\}$

Határozzuk meg a következő függvények abszolút szélsőértékeit a megadott halmazokon!

8.157.
$$f(x,y) = x^3 y^2 (1-x-y)$$
 $H = \{(x,y) : 0 \le x, 0 \le y, x+y \le 1\}$

8.158.
$$f(x,y) = x^2 + y^2 + (x+y+1)^2$$
 $H = \mathbb{R}^2$

8.159.
$$f(x,y) = x - y - 3$$
 $H = \{(x,y) : x^2 + y^2 \le 1\}$

8.160.
$$f(x,y) = \ln x \cdot \ln y + \frac{1}{2} \ln x + \frac{1}{2} \ln y$$
$$H = \{(x,y) : \frac{1}{e} \le x \le e, \frac{1}{e} \le y \le e\}$$

8.161.
$$f(x,y) = \sin x + \sin y + \sin(x+y)$$

 $H = \{(x,y) : 0 \le x \le \frac{\pi}{2}, 0 \le y \le \frac{\pi}{2}\}$

8.162.
$$f(x,y) = x^2 - 2xy + 2y^2 - 2x + 4y$$
$$H = \{(x,y) : |x| \le 3, |y| \le 3\}$$

Keressük meg a következő függvények lokális szélsőértékhelyeit, ha vannak!

8.163.
$$f(x,y) = 3x^2 + 5y^2$$

8.164.
$$f(x,y) = (2x - 5y)^2$$

8.165.
$$f(x,y) = 2x^2 - 3y^2$$

8.166.
$$f(x,y) = 2x^2 - y^2 + 4x + 4y - 3$$

8.167.
$$f(x,y) = x^2 + y^2 - 6x + 8y + 35$$

8.168.
$$f(x,y) = 3 - \sqrt{2 - (x^2 + y^2)}$$

8.169.
$$f(x,y) = -y^2 + \sin x$$

8.170.
$$f(x,y) = e^{-(x^2+y^2)}$$

8.171.
$$f(x,y) = (x-y^2)(2x-y^2)$$

8.172.
$$f(x,y) = -2x^2 - 2xy - 2y^2 + 36x + 42y - 158$$

- 8.173. Van-e olyan egyváltozós polinom, amelynek értékkészlete $(0,\infty)$? Ha igen, adjunk rá példát! Van-e olyan kétváltozós polinom, amelynek értékkészlete $(0, \infty)$? Ha igen, adjunk rá példát!
- 8.174. Adjunk meg olyan kétváltozós függvényt, amelyiknek végtelen sok szigorú lokális maximuma van, de nincs lokális minimuma!
- 8.175. Határozzuk meg a 2x + 3y + 4z függvény maximumát és minimumát az origó középpontú 1 sugarú gömb felszínén!

- 8.176. Határozzuk meg a $\mathbf{p}(t) = 2t \cdot \mathbf{i} + t \cdot \mathbf{j} + (1 - t) \cdot \mathbf{k}$ és a $\mathbf{q}(t) = 3t \cdot \mathbf{i} + t \cdot \mathbf{j}$ $t \cdot \mathbf{j} + (2t - 1) \cdot \mathbf{k}$ egyenesek távolságát!
- 8.177. Igazak-e a következő állítások?
 - (a) Ha $f'_x(x_0, y_0) = 0$, akkor f-nek az (x_0, y_0) pontban lokális szélsőértékhelye van.
 - (b) Ha $f_x'(x_0,y_0)=0$ és $f_y'(x_0,y_0)=0$, akkor f-nek az (x_0,y_0) pontban lokális szélsőértékhelye van.
 - (c) Ha $f''_{xy}(x_0, y_0) = 0$ és $f''_{yx}(x_0, y_0) = 0$, akkor f-nek az (x_0, y_0) pontban lokális szélsőértékhelye van.
 - (d) Ha $f''_{xx}(x_0,y_0)f''_{yy}(x_0,y_0)-(f''_{xy}(x_0,y_0))^2<0$, akkor f-nek az (x_0,y_0) pontban nincs lokális szélsőértékhelye.
 - (e) Ha $f''_{xx}(x_0,y_0)f''_{yy}(x_0,y_0)-(f''_{xy}(x_0,y_0))^2\leq 0$, akkor f-nek az (x_0,y_0) pontban nincs lokális szélsőértékhelye.
 - (f) Ha $f_{xx}''(x_0, y_0) < 0$, akkor f-nek az (x_0, y_0) pontban nincs lokális minimumhelye.

Mely $(x,y) \in \mathbb{R}^2$ pontokban nulla az f(x,y) függvény mindkét parciális deriváltja? Mely $(x,y) \in \mathbb{R}^2$ pontokban van az f(x,y)függvénynek lokális szélsőértékhelye?

8.178.
$$f(x,y) = x^3$$

8.179.
$$f(x,y) = x^2$$

8.180.
$$f(x,y) = x^2 - y^2$$

8.181.
$$f(x,y) = x^2 + y^2$$

8.182.
$$f(x,y) = (x+y)^2$$

8.183.
$$f(x,y) = x^3 + y^3$$

8.184.
$$f(x,y) = e^{-(x^2+y^2)}$$

8.185.
$$\int f(x,y) = x^2 + \sin y$$

8.186.
$$f(x,y) = 3x^2 + 5y^2$$

8.187.
$$f(x,y) = \frac{2}{3}x^3 + y^4 + xy$$

8.188.
$$f(x,y) = xy$$

8.189.
$$f(x,y) = e^{y^2 - x^2}$$

8.190.
$$f(x, y, z) = xyz + x^2 + y^2 + z^2$$

8.191.
$$f(x,y) = x^3 - y^3$$

8.192.
$$f(x,y) = x^4 + y^4$$

8.193.
$$f(x,y) = -2x^2 - y^4$$

8.194.
$$f(x,y) = (2x - 5y)^2$$

8.195.
$$f(x,y) = (1+e^y)\cos x - ye^y$$

Egy hegy felületét az $F(x,y)=30-rac{x^2}{100}-rac{y^2}{100}$ függvény írja le. Adjuk meg a kiránduló ösvény legmagasabb pontját, ha az ösvény pontjainak koordinátái kielégítik a következő feltételeket:

8.196.
$$3x + 3y = \pi \sin x + \pi \sin y$$
 8.197. $4x^2 + 9y^2 = 36$

$$\boxed{\mathbf{8.198.}} y = \frac{1}{1+x^2}$$

8.199.
$$x^2 + y^2 = 25$$

Határozzuk meg f maximumát a megadott feltétel mellett!

8.200.
$$f(x,y) = xy$$
,

$$x^2 + y^2 = 1$$

8.201.
$$f(x,y,z) = x - y + 3z$$

$$f(x, y, z) = x - y + 3z,$$
 $x^{2} + \frac{y^{2}}{2} + \frac{z^{2}}{3} = 1$

8.202.
$$f(x, y, z) = xyz$$
,

$$x^2 + y^2 + z^2 = 3$$

8.203.
$$f(x,y) = xy$$
,

$$x + y + z = 5$$

8.204.
$$f(x,y) = xyz$$
,

$$xy + yz + xz = 8$$

8.205.
$$f(x,y) = xyz$$
,

$$xy+yz+xz=8,\quad x,y,z\geq 0$$

- 8.206. Egy részecske az $x^2 + y^2 = 25$ körpályán mozoghat azon a síkon, ahol az (x,y) pontban az energiája $E(x,y) = x^2 + 24xy + 8$. Van-e a részecskének stabil egyensúlyi helyzete?
- 8.207. Egy üzemben a gyártott termék mennyisége az x és y paraméterektől

M(x,y) = xy. A termelési költség C(x,y) = 2x + 3y. Legfeljebb mennyi terméket gyárthat az üzem, ha C(x,y) = 10 egységnyi pénze van a termelés költségeire?

- 8.208. Adott térfogatú téglák közül melyiknek a legkisebb a felszíne?
- 8.209. Határozzuk meg annak a háromszögnek a szögeit, amelynek a kerülete K, és a területe maximális!
- 8.210. Határozzuk meg a $3x^2 + 2y^2 + z^2 = 9$ egyenletű ellipszoidot az (1, -1, 2)pontban érintő sík egyenletét!
- 8.211. Legyen P = (3, -7, -1), Q = (5, -3, 5), S pedig az a Q-n átmenő sík, amelyik merőleges a PQ szakaszra!
 - (a) Írjuk fel az S sík egyenletét!
 - (b) Írjuk fel a sík egy pontjának és az origónak a távolságát!
 - (c) Melyik pontja van az S síknak legközelebb az origóhoz?
 - (d) Mutassuk meg, hogy az előbb kapott pontot az origóval összekötő szakasz merőleges az S síkra! Magyarázzuk meg geometriailag is, hogy ez miért van így!

9. fejezet

Többváltozós Riemann-integrál

9.1. Jordan-mérhető halmazok tulajdonságai.

- Ha $A \subset \mathbb{R}^n$ korlátos, akkor $b(A) = b(\text{int } A), \ k(A) = k(\overline{A}).$
- Az $A \subset \mathbb{R}^n$ korlátos halmaz akkor és csak akkor Jordan-mérhető, ha határa nullmértékű.
- Ha $A \subset \mathbb{R}^n$ Jordan-mérhető, és $f: A \to \mathbb{R}$ korlátos, akkor f pontosan akkor integrálható, ha graf $f \subset \mathbb{R}^{n+1}$ nullmértékű.

9.2. Az integrál tulajdonságai.

— Ha A Jordan-mérhető halmaz, akkor $t(A) = \int_A \chi_A$, ahol χ_A az A halmaz karakterisztikus függvénye,

$$\chi_A(x) = \begin{cases} 1 & \text{ha } x \in A \\ 0 & \text{ha } x \notin A \end{cases}$$

— Ha A és B két korlátos halmaz, int $A \cap$ int $B = \emptyset$ (egymásba nem nyúló halmazok), f integrálható A-n és B-n is, akkor f integrálható a $C = A \cup B$ halmazon és

$$\int_{C} f = \int_{A} f + \int_{B} f.$$

- Mérhető zárt halmazon folytonos függvény integrálható.
- Ha f és g egy nullmértékű halmazt kivéve megegyezik a mérhető A halmazon, és f integrálható A-n, akkor g is integrálható A-n, és

$$\int_{A} f = \int_{A} g.$$

— Ha f és q integrálható az A halmazon, c pedig egy tetszőleges valós szám, akkor f + g és $c \cdot f$ is integrálható, és

$$\int\limits_A (f+g) = \int\limits_A f + \int\limits_A g, \qquad \int\limits_A (c \cdot f) = c \int\limits_A f.$$

9.3. Integrálási módszerek.

- Szukcesszív integrálás - Fubini-tétel.

Legyen $A \subset \mathbb{R}^{n-1}$ egy zárt Jordan-mérhető halmaz, $B = [a, b] \times A \subset \mathbb{R}^n$ és $f: B \to \mathbb{R}$ folytonos, akkor

$$\iint\limits_B f(x,y) \, dx \, dy = \int\limits_a^b \left(\int\limits_A f(x,y) \, dy \right) \, dx$$

Integrálás normáltartományon.

Legyen $A \subset \mathbb{R}^{n-1}$ egy zárt Jordan-mérhető halmaz, $\varphi : A \to \mathbb{R}, \ \psi :$ $A \to \mathbb{R}$ két folytonos függvény, $\varphi \leq \psi$ az A pontjaiban,

$$N = \{(x, y) : x \in A, \varphi(x) \le y \le \psi(x)\} \subset \mathbb{R}^n, \qquad f : N \to \mathbb{R}$$

folytonos függvény. Ekkor N Jordan-mérhető, f integrálható N-en, és

$$\iint\limits_{N} f(x,y) \, dx \, dy = \int\limits_{A} \left(\int\limits_{\varphi(x)}^{\psi(x)} f(x,y) \, dy \right) \, dx.$$

Integráltranszformáció.

Legyen $A\subset\mathbb{R}^n$ zárt Jordan-mérhető halmaz, $\Phi:A\to\mathbb{R}^n$ folytonos, int A-n egy-egy értelmű és folytonosan deriválható, $B = \{\Phi(x) : x \in A\}$ $=\Psi(A)$, valamint $f:B\to\mathbb{R}$ folytonos függvény. Ekkor B (zárt) Jordan-mérhető halmaz, és

$$\int_{B} f(y) dy = \int_{A} |J| f(\Psi(x)) dx,$$

ahol $J = \det(\Psi')$ a Ψ leképezés **Jacobi-determinánsa**.

9.1. Jordan-mérték

Van-e területe a következő síkbeli halmazok határának? Ha igen, határozzuk meg a területét!

9.1.
$$H = \{(x, y) : 0 \le x < 1, 0 < y \le 1\}$$

9.2.
$$H = \{(x, y) : x \in \mathbb{Q}, y \in \mathbb{Q}, 0 \le x \le 1, 0 \le y \le 1\}$$

Van-e térfogata a következő térbeli halmazok határának? Ha igen, határozzuk meg a térfogatát!

9.3.
$$H = \{(x, y, z) : 0 \le x \le 1, 0 \le y \le 1, 0 \le z \le 1\}$$

9.4.
$$H = \{(x, y, z) : x \in \mathbb{Q}, y \in \mathbb{Q}, z \in \mathbb{Q}, 0 \le x \le 1, 0 \le y \le 1, 0 \le z \le 1\}$$

Határozzuk meg a következő síkbeli halmazok külső és belső területét! Melyik halmaz mérhető?

9.5.
$$H = \{(x, y) : 0 \le x \le 1, 0 \le y \le 1\}$$

9.6.
$$H = \{(x, y) : 0 \le x < 1, 0 < y \le 1\}$$

9.7.
$$H = \{(x, y) : 0 \le x \le 1, 0 \le y \le x\}$$

9.8.
$$H = \{(x, y) : x \in \mathbb{Q}, y \in \mathbb{Q}, 0 \le x \le 1, 0 \le y \le 1\}$$

Határozzuk meg a következő térbeli halmazok külső és belső mértékét! Melyik halmaz mérhető?

9.9.
$$H = \{(x, y, z) : 0 \le x \le 1, 0 \le y \le 1, 0 \le z \le 1\}$$

9.10.
$$H = \{(x, y, z) : 0 \le x < 1, 0 < y < 1, 0 < z < 1\}$$

9.11.
$$H = \{(x, y, z) : 0 < x < 1, 0 < y < 1, 0 < z < x + y\}$$

- 9.12. $H = \{(x, y, z) : x \in \mathbb{Q}, y \in \mathbb{Q}, z \in \mathbb{Q}, 0 \le x \le 1, 0 \le y \le 1, 0 \le z \le 1\}$
- 9.13. Bizonyítsuk be, hogy egy korlátos halmaz pontosan akkor mérhető, ha a határának a mértéke 0.
- 9.14. Bizonyítsuk be, hogy ha a H_1 és H_2 halmazok mérhetők, akkor a $H_1 \cup$ $H_2, H_1 \setminus H_2, H_1 \cap H_2$ halmazok is mérhetők!
- 9.15. Van-e olyan korlátos A és B síkbeli halmaz, amelyikre teljesül, hogy

 - (a) $b(A \cup B) > b(A) + b(B)$? (b) $k(A \cup B) < k(A) + k(B)$?
- 9.16. Van-e olyan korlátos és diszjunkt A és B síkbeli halmaz, amelyikre teljesül, hogy

 - (a) $b(A \cup B) > b(A) + b(B)$? (b) $k(A \cup B) < k(A) + k(B)$?
- 9.17. Tegyük fel, hogy a korlátos H halmaz határának a területe 0. Következike ebből, hogy a H halmaz belseje üres?
- 9.18. Tegyük fel, hogy a korlátos H halmaz belseje üres. Következik-e ebből, hogy a H halmaz mérhető?
- 9.19. Legyen R egy tengelypárhuzamos tégla, és legyen $H \subset R$ tetszőleges halmaz. Bizonyítsuk be, hogy $b(H) + k(R \setminus H) = t(R)!$
- 9.20. Legyen R egy tengelypárhuzamos tégla, és legyen $H \subset R$ tetszőleges halmaz. Bizonyítsuk be, hogy H pontosan akkor mérhető, ha k(H) + $k(R \setminus H) = t(R)!$
- 9.21. Van-e olyan korlátos H halmaz, amelyikre teljesül, hogy
 - (a) k(H) > b(H)
- **(b)** k(H) < b(H)
- (c) $t(\partial H) > b(H)$
- (d) $t(\partial H) > k(H)$?
- 9.22. Van-e olyan mérhető H halmaz, amelyikre teljesül, hogy

- (a) k(H) > b(H)
- **(b)** $t(\partial H) = 1$?
- 9.23. Tegyük fel, hogy H korlátos halmaz. Igaz-e, hogy ha H mérhető, akkor $H \cup \partial H$ is mérhető?
- 9.24. Legyen K_n az origó középpontú, 1/n sugarú körvonal a síkban! Határozzuk meg az $\bigcup_{n=1}^{\infty} K_n$ halmaz területét!
- Legyen K_n az (1/n,1/n) középpontú, 1/n sugarú körvonal a síkban! 9.25. Határozzuk meg az $\bigcup_{n=1}^{\infty} K_n$ halmaz területét!
- Legyen $f:[a,b]\to\mathbb{R}$ korlátos függvény, és $G_f=\{(x,y):a\le x\le$ 9.26. b, y = f(x), a függvény grafikonja. Bizonyítsuk be, hogy G_f pontosan akkor Jordan-mérhető, hafintegrálható!
- 9.27. Számoljuk ki az egységnégyzet racionális pontjaiból álló halmaz belső, illetve külső mértékét.
- 9.28. Adjunk meg a síkban egy korlátos nyílt halmazt, amelynek nincs Jordanterülete.
- 9.29. Adjunk meg a síkban korlátos zárt halmazt, amelynek nincs Jordanterülete.
- 9.30. Bizonyítsuk be, hogy tetszőleges korlátos $A \subset \mathbb{R}^n$ halmazra

$$b(A) = 0 \iff \text{int } A = \emptyset.$$

9.31. Bizonyítsuk be, hogy ha $A \subset \mathbb{R}^n$ Jordan-mérhető, akkor $\forall \varepsilon > 0 \; \exists \; K \subset \mathbb{R}^n$ A zárt, és $\exists G \supset A$ nyílt mérhető halmaz úgy, hogy

$$t(A) - \varepsilon < t(K) \le t(A) \le t(G) < t(A) + \varepsilon.$$

- 9.32. Legyen $C \subset \mathbb{R}$ a Cantor-halmaz. $H = C \times [0,1] \subset \mathbb{R}^2$. Jordan-mérhetőe H, és ha igen, mennyi a területe?
- Legyen $H = \bigcup_{n=1}^{\infty} K_n$, ahol K_n az origó középpontú, 1/n sugarú kör-9.33. vonal.

- (a) Mérhető halmaz H?
- (b) Van-e olyan $S \subset \mathbb{R}^2$ (mérhető) halmaz, amelyre $\partial S = H$?
- (c) Van-e olyan $S \subset \mathbb{R}^2$ (mérhető) halmaz, amelyre $\partial S \supset H$?

9.2. Többváltozós Riemann-integrál

9.34. Legyen
$$H = [-1, 1] \times [0, 1]$$
, és

$$f(x,y) = \begin{cases} |x|, & \text{ha } y \in \mathbb{Q} \\ 0, & \text{ha } y \notin \mathbb{Q} \end{cases}$$

Mutassuk meg, hogy $\int_{0}^{1} \left(\int_{-1}^{1} f(x,y) dx \right) dy = 0$, és hogy f nem integrálható H-n!

9.35. Legyen
$$H = \{x^2 + y^2 \le 1\}$$
, és

$$f(x,y) = \begin{cases} 1, & \text{ha } x \ge 0 \\ -1, & \text{ha } x < 0 \end{cases}$$

Számítsuk ki f alsó és felső integrálját a H halmazon! Integrálható-e fa H halmazon?

Integrálhatók-e az $N = [0,1] \times [0,1]$ egységnégyzeten a következő függvények? Ha igen, számítsuk ki az integrál értékét!

9.36.
$$f(x,y) = \begin{cases} 0, & \text{ha } y > x \\ 1, & \text{ha } y \le x \end{cases}$$

9.37.
$$f(x,y) = \begin{cases} 1, & \text{ha } y \ge x \\ 0, & \text{ha } y < x \end{cases}$$

9.38.
$$f(x,y) = \begin{cases} 0, & \text{ha } xy \neq 0 \\ 1, & \text{ha } xy = 0 \end{cases}$$

9.39.
$$f(x,y) = \begin{cases} 1, & \text{ha } x, y \in \mathbb{Q} \\ 0, & \text{egyébként} \end{cases}$$

9.40. $f(x,y) = \begin{cases} 1, & \text{ha } x \ge 1/2 \\ 2, & \text{ha } x < 1/2 \end{cases}$

9.41. $f(x,y) = \begin{cases} 1, & \text{ha } y \ge 1/2 \\ 2, & \text{ha } y < 1/2 \end{cases}$

9.42. f(x,y) = D(x)D(y), ahol $D(t) = \begin{cases} 1, & \text{ha } t \in \mathbb{Q} \\ 0, & \text{ha } t \notin \mathbb{Q} \end{cases}$ a Dirichlet-függvény.

Legyen $f(x,y) = \begin{cases} n & \text{ha } x + y = 1/n, \ n \in \mathbb{N}^+ \\ 0 & \text{egyébként} \end{cases}$ 9.43.

Mutassuk meg, hogy f nem integrálható az N egységnégyzeten, de

$$\int\limits_0^1 \left(\int\limits_0^1 f(x,y) \, dx \right) \, dy = 0 \text{ és } \int\limits_0^1 \left(\int\limits_0^1 f(x,y) \, dy \right) \, dx = 0.$$

Számítsuk ki az $N = [0,1] \times [0,1]$ halmazon a következő területi integrálokat! Alkalmazzuk Fubini tételét!

 $9.44. \int \int \sin x \, dx \, dy$

9.46. $\iint_{N} \sin(x+y) \, dx \, dy$ **9.47.** $\iint_{N} \sin xy \, dx \, dy$

 $9.48. \int \int e^{2x+y} \, dx \, dy$

 $\boxed{\mathbf{9.49.}} \quad \iint\limits_{\mathcal{S}} xy \, dx \, dy$

Legyen $N=[0,1]^2\subset\mathbb{R}^2$ az egységnégyzet. Integráljuk N-en a következő f(x, y) függvényeket:

9.50. f(x,y) = x **9.51.** $f(x,y) = x^3 - x^2y + \sqrt{y}$

 $f(x,y) = e^{x+2y}$ 9.52.

9.53. $f(x,y) = xe^{xy}$

9.54.
$$f(x,y) = \begin{cases} 1 & \text{ha } x = y \\ 0 & \text{ha } x \neq y \end{cases}$$
 9.55. $f(x,y) = \begin{cases} 1 & \text{ha } x = y \\ 0 & \text{ha } x < y \end{cases}$

$$\boxed{\textbf{9.56.}} \quad f(x,y) = \begin{cases} 1 & \text{ha } x + y = 1 \\ 0 & \text{egyébként} \end{cases}$$

9.57.
$$f(x,y) = \begin{cases} 1 & \text{ha } x = 1/n, \ n \in \mathbb{N}^+ \\ 0 & \text{egyébként} \end{cases}$$

Határozzuk meg a következő területi integrálokat a megadott téglalapokon:

9.58.
$$\iint_{T} (x+y) \, dx \, dy \qquad T: \ 0 \le x \le 1, \ 1 \le y \le 3$$

9.59.
$$\iint_T xy \, dx \, dy$$
 $T: 0 \le x \le 1, 1 \le y \le 3$

9.60.
$$\iint_T e^{x+y} \, dx \, dy \qquad T: \ 0 \le x \le 1, \ 0 \le y \le 1$$

9.61.
$$\iint_T xe^y \, dx \, dy \qquad T: \ 1 \le x \le 2, \ 3 \le y \le 4$$

9.62.
$$\iint_{T} \frac{x}{y} \, dx \, dy$$
 $T: 1 \le x \le 2, \ 3 \le y \le 4$

9.63.
$$\iint_{T} x \sin y \, dx \, dy \qquad T: \ 0 \le x \le 1, \ 2 \le y \le 3$$

Számítsuk ki a $H = \{(x,y): 0 \le x \le \pi/2, 0 \le y \le \sin x\}$ halmazon a következő területi integrálokat! Alkalmazzuk Fubini tételét!

$$\boxed{ 9.64. } \iint_{H} (x-y) dx dy \qquad \boxed{ 9.65. } \iint_{H} xy dx dy$$

$$\begin{array}{ccc}
\mathbf{9.66.} & \iint\limits_{H} y \sin x \, dx \, dy & \mathbf{9.67.} & \iint\limits_{H} \frac{x}{\sqrt{1+y^2}} \, dx \, dy
\end{array}$$

Határozzuk meg a következő területi integrálokat a megadott halmazokon:

9.68.
$$\iint_T (x+y) \, dx \, dy \qquad T: \ x^2 + y^2 \le 1$$

9.69.
$$\iint_T xy \, dx \, dy \qquad T: (x-1)^2 + (y+1)^2 \le 4$$

9.70.
$$\iint_T xy \, dx \, dy$$
 $T: (x-1)^2 + y^2 = 1$ körök által határolt tartomány.

9.71.
$$\iint_T (x - xy) \, dx \, dy \qquad T: (x - 2)^2 + (y + 3)^2 \le 4$$

9.72.
$$\iint_T e^{-x^2} dx dy \qquad T: \ 0 \le x \le 1, 0 \le y \le x$$

9.73.
$$\iint_T (x^2 + y^2)^{3/2} dx dy \quad T: \ x^2 + y^2 \le 1$$

Legyen $T=[0,1]\times [0,2]\times [0,3]\subset \mathbb{R}^3$. Számoljuk ki a következő térfogati integrálokat a T téglán:

9.74.
$$\iiint_T (x+y+z) dx dy dz$$
 9.75.
$$\iiint_T xyz dx dy dz$$

Határozzuk meg a következő görbék által határolt síkidomok terü-

9.78.
$$y = x^2, x = y^2$$
 9.79. $y = 2x - x^2, y = x^2$

9.78.

$$y = x^2$$
,
 $x = y^2$
 9.79.
 $y = 2x - x^2$,
 $y = x^2$

 9.80.
 $2y = x^2$,
 $y = x$
 9.81.
 $4y = x^2 - 4x$,
 $x - y - 3 = 0$

9.82.
$$y = x^2, y = 2x^2, xy = 1, xy = 2$$

9.83.
$$x^2 - y^2 = 1$$
, $x^2 - y^2 = 4$, $xy = 1$, $xy = 2$

- Határozzuk meg a $H=\{(x,y): -1 \leq x \leq 1, 0 \leq y \leq \sqrt{1-x^2}\}$ halmaz 9.84.
- Számoljuk ki az $y=x^2,\ y=2x^2$ parabolák és az x=1 egyenes által 9.85. határolt síkidom területét.
- Számoljuk ki az $x^2 + y^2 = 1$ hen-9.86. gerpalást és az x+y+z=2, z=0síkok által határolt test térfogatát. A keresett test:

Számoljuk ki az $x^2 + y^2 = 1$ hen-9.87. gerpalást és az x+y+z=1, z=0síkok által határolt test térfogatát. A keresett test:

- Számítsuk ki az $f(x,y)=1-\frac{x^2}{2}-\frac{y^2}{2}$ függvény grafikonja alatti test térfogatát a H halmaz felett, ha $H=[0,1]\times[0,1]!$ 9.88.
- 9.89. Számítsuk ki az $f(x,y)=x\!+\!y$ függvény grafikonja alatti test térfogatát a *H* halmaz felett, ha $H = \{0 \le x + y \le 1, 0 \le x, 0 \le y\}!$

Rajzoljuk le azt a testet, amelyiknek a térfogatát az adott integrállal számolhatjuk ki! Számítsuk ki a térfogatokat!

9.90.
$$\iint_{|x|+|y|\leq 1} (x^2+y^2) \ dy \ dx \quad 9.91.
$$\int_0^1 \left(\int_0^{1-x} (x^2+y^2) \ dy \right) \ dx$$$$

Számítsuk ki a következő felületek által határolt testek térfogatát!

9.92.
$$x + y + z = 6$$
, $x = 0$, $z = 0$, $x + 2y = 4$

9.93.
$$x-y+z=6, x+y=2, x=y, y=0, z=0$$

9.94.
$$z = 1 - x^2 - y^2, \quad x^2 + y^2 \le 1$$

9.95.
$$z = \cos x \cos y, \quad |x+y| \le \frac{\pi}{2}, \quad z = 0$$

Számítsuk ki a következő testek térfogatát!

Tegyük fel, hogy a H síkbeli tartományt $\varrho(x,y)$ sűrűségű anyag tölti ki. Ekkor a test tömege:

$$M = \iint\limits_{H} arrho(x,y) \, dx \, dy,$$

a test tömegközéppontjának a koordinátái pedig

$$S_x = rac{1}{M} \iint\limits_H x arrho(x,y) \, dx \, dy, \quad S_y = rac{1}{M} \iint\limits_H y arrho(x,y) \, dx \, dy.$$

Határozzuk meg a tömegközéppont koordinátáit, ha $H=[0,1]\times$ [0, 1] és,

9.100.
$$\varrho(x,y) = x^2$$
 9.101. $\varrho(x,y) = x + y$

9.102.
$$\rho(x,y) = xy$$

9.103.
$$\varrho(x,y) = x^2 + y^2$$

Határozzuk meg annak a kétdimenziós testnek a tömegközéppontját, amelyiket az y = 0, x = 2, y = 1, y = x egyenesek határolnak, és amelyiknek a sűrűsége

9.104.
$$\rho(x,y) = 1$$

9.105.
$$\varrho(x,y) = x$$

9.106.
$$\varrho(x,y) = y$$

9.107.
$$\varrho(x,y) = xy$$

9.108.
$$\varrho(x,y) = \frac{1}{x+y^3}$$

9.109.
$$\varrho(x,y) = e^{x+y}$$

Az xy síkban levő test tehetetlenségi nyomatéka a z tengelyre nézve

$$\Theta = \iint\limits_{H} r^{2}(x,y)\varrho(x,y)\,dx\,dy,$$

ahol r(x,y) az (x,y) pont távolsága a z tengelytől. Határozzuk meg a ϱ sűrűségű, egységoldalú négyzet z tengelyre vonatkozó tehetetlenségi nyomatékát, ha a négyzet egyik csúcsa ér hozzá a ztengelyhez!

9.110.
$$\varrho(x,y)=1$$

9.111.
$$\varrho(x,y) = xy$$

- 9.112. Határozzuk meg az előző két feladatban szereplő négyzetek tehetetlenségi nyomatékát az z tengelyre vonatkozóan, ha a négyzet egyik oldalának a felezőpontja ér hozzá a z tengelyhez!
- 9.113. Egy vékony lemezt az y = 0, x = 1 és az y = 2x egyenesek határolnak. A lemez sűrűsége $\varrho(x,y) = 6x + 6y + 6$. Határozzuk meg a test tömegét és tömegközéppontjának koordinátáit!
- 9.114. Egy test az első térnyolcadban van, a koordinátasíkok és az x+y+z=2sík határolja, a sűrűsége pedig $\rho(x,y,z)=2x$. Határozzuk meg a test tömegét és tömegközéppontjának koordinátáit!

- 9.115. Egy 1 méter mély gödörből a felszínre szivattyúzzuk a vizet. Mennyi munkát végzünk a gravitáció ellenében, ha a gödör
 - (a) kocka alakú,
- (b) félgömb alakú?

10. fejezet

Vonalintegrál és primitív függvény

10.1. Érintőegyenes. Az $\mathbf{r}(t)$ térgörbe érintőjének egyenlete az $\mathbf{r}_0 = \mathbf{r}(t_0)$ pontban

$$\mathbf{r} = \mathbf{r}_0 + \mathbf{v} \cdot t,$$

ahol $\mathbf{v} = \dot{\mathbf{r}}(t_0)$ az érintőegyenes irányvektora.

10.2. Sík és térgörbe ívhossza.

— Ha az $\mathbf{r}:[a,b]\to\mathbb{R}^2$ síkgörbe folytonosan deriválható, akkor rektifikálható, és ívhossza

$$L = \int_{a}^{b} |\dot{\mathbf{r}}| dt = \int_{a}^{b} \sqrt{\dot{x}^{2} + \dot{y}^{2}} dt.$$

— Ha $f:[a,b]\to\mathbb{R}$ folytonosan deriválható, akkor grafikonja rektifikálható, és ívhossza

$$L = \int_{a}^{b} \sqrt{1 + (f')^2} \, dx.$$

— Ha az $\mathbf{r}:[a,b]\to\mathbb{R}^3$ térgörbe folytonosan deriválható, akkor rektifikálható, és ívhossza

$$L = \int_{a}^{b} |\dot{\mathbf{r}}| dt = \int_{a}^{b} \sqrt{\dot{x}^2 + \dot{y}^2 + \dot{z}^2} dt.$$

10.3. Érintősík. Az $\mathbf{r}(u,v)$ felület érintősíkjának egyenlete az $\mathbf{r}_0 = \mathbf{r}(u_0,v_0)$ pontban

$$\mathbf{n} \cdot \mathbf{r} = \mathbf{n} \cdot \mathbf{r}_0$$

ahol $\mathbf{n} = \mathbf{r}'_{u}(u_0, v_0) \times \mathbf{r}'_{v}(u_0, v_0)$ az érintősík normálisa.

Speciálisan a z = f(x, y) grafikonjának érintősíkja az (x_0, y_0) pont felett

$$z = f(x_0, y_0) + f'_x(x_0, y_0)(x - x_0) + f'_y(x_0, y_0)(y - y_0)$$

10.4. Felszín. Ha az $\mathbf{r}:A\to\mathbb{R}^3$ felület folytonosan deriválható, akkor a felületnek van (véges) felszíne, és

$$S = \iint\limits_A |\mathbf{r}'_u \times \mathbf{r}'_v| \ du \, dv.$$

Speciálisan a z=f(x,y) folytonosan deriválható függvény grafikonjának felszíne az A mérhető síkidom felett

$$S = \iint_{\Lambda} \sqrt{1 + (z'_x)^2 + (z'_y)^2} \, dx \, dy.$$

10.5. Vonalintegrál kiszámolása. Ha $\mathbf{v} = v_1(x,y,z) \cdot \mathbf{i} + v_2(x,y,z) \cdot \mathbf{j} + v_3(x,y,z) \cdot \mathbf{k}$ vektormező folytonos a G tartományon, $\mathbf{r} : [a,b] \to G$, $\mathbf{r}(t) = x(t) \cdot \mathbf{i} + y(t) \cdot \mathbf{j} + z(t) \cdot \mathbf{k}$ folytonosan deriválható, akkor \mathbf{v} vonalmenti integrálja létezik a $\Gamma : \mathbf{r}(t)$ görbe mentén, és

$$\int_{\Gamma} v \, d\mathbf{r} = \int_{a}^{b} \mathbf{v} \left(\mathbf{r} \left(t \right) \right) \cdot \dot{\mathbf{r}} \left(t \right) dt.$$

Koordinátákkal kiírva

$$\int_{\Gamma} v_1(x, y, z) dx + v_2(x, y, z) dy + v_3(x, y, z) dz =$$

$$= \int_{a}^{b} \left[v_1(x, y, z) \dot{x} + v_2(x, y, z) \dot{y} + v_3(x, y, z) \dot{z} \right] dt.$$

Hasonlóan, síkbeli vektormező és görbe esetén

$$\int_{\Gamma} v_1(x,y) \, dx + v_2(x,y) \, dy = \int_a^b \left[v_1(x,y) \dot{x} + v_2(x,y) \dot{y} \right] \, dt.$$

10.6. Konzervatív vektortér.

— A \mathbf{v} vektormező pontosan akkor konzervatív a G tartományon, ha minden G-ben fekvő zárt rektifikálható Γ görbén

$$\oint_{\Gamma} \mathbf{v} \ d\mathbf{r} = 0,$$

azaz minden körintegrál nulla.

— Newton-Leibniz-formula vonalintegrálokra.

Ha a \mathbf{v} vektortér konzervatív a G tartományon és $U(\mathbf{r})$ egy primitív függvénye G-n, Γ egy folytonosan deriválható G-beli görbe az \mathbf{a} kezdő és **b** végpontokkal, akkor

$$\int_{\Gamma} \mathbf{v} \ d\mathbf{r} = U(\mathbf{b}) - U(\mathbf{a}).$$

— Ha a ${\bf v}$ vektormező konzervatív és folytonosan deriválható a G tartományon, akkor

$$rot \mathbf{v} = \mathbf{0}$$
,

azaz a keresztbe vett deriváltak megegyeznek, örvénymentes a vektormező.

— Ha a **v** vektormező folytonosan deriválható az **egyszeresen összefüggő** G tartományon, és G pontjaiban rot $\mathbf{v} = \mathbf{0}$, akkor \mathbf{v} konzervatív.

10.1. Sík és térgörbék

Ábrázoljuk a következő síkgörbéket!

10.1.
$$\mathbf{r} = t \cdot \mathbf{i} + t^2 \cdot \mathbf{j}$$

 $t \in [0, 4]$

10.2.
$$\mathbf{r} = t^2 \cdot \mathbf{i} + t \cdot \mathbf{j}$$
 $t \in [0, 16]$

10.3.
$$\mathbf{r} = \sqrt{t} \cdot \mathbf{i} + t \cdot \mathbf{j}$$
$$t \in [0, 16]$$

$$\begin{array}{c}
\mathbf{10.4.} \\
 \mathbf{r} = t \cdot \mathbf{i} + \sqrt{t} \cdot \mathbf{j} \\
 t \in [0, 4]
\end{array}$$

10.5.
$$\mathbf{r} = 2t \cdot \mathbf{i} + 4t^2 \cdot \mathbf{j}$$

 $t \in [0, 2]$

10.6.
$$\mathbf{r} = t^2 \cdot \mathbf{i} + t^2 \cdot \mathbf{j}$$
 $t \in [0, 4]$

10.7.
$$\mathbf{r} = \cos t \cdot \mathbf{i} + \sin t \cdot \mathbf{j}$$
$$t \in [0, 2\pi]$$

10.8.
$$\mathbf{r} = \cos t \cdot \mathbf{i} + \sin t \cdot \mathbf{j}$$

$$t \in [0, \pi]$$

10.9.
$$\mathbf{r} = \cos t \cdot \mathbf{i} + \sin t \cdot \mathbf{j}$$
$$t \in [-\pi/2, \pi/2]$$

10.10.
$$\mathbf{r} = 2\cos t \cdot \mathbf{i} + 4\sin t \cdot \mathbf{j}$$
$$t \in [0, 2\pi]$$

10.11.
$$\mathbf{r} = 4\cos t \cdot \mathbf{i} + 2\sin t \cdot \mathbf{j}$$
$$t \in [\pi/2, 3\pi/2]$$

10.12.
$$\mathbf{r} = \cos t \cdot \mathbf{i} + t \sin t \cdot \mathbf{j}$$
$$t \in [0, 2\pi]$$

10.13.
$$\mathbf{r} = t \cos t \cdot \mathbf{i} + \sin t \cdot \mathbf{j}$$
$$t \in [0, 6\pi]$$

$$\begin{array}{c}
\mathbf{10.14.} \quad \mathbf{r} = t\cos t \cdot \mathbf{i} + t\sin t \cdot \mathbf{j} \\
t \in [0, 4\pi]
\end{array}$$

Ábrázoljuk a következő térgörbéket!

10.15.
$$\mathbf{r} = t \cdot \mathbf{i} + 2t \cdot \mathbf{j} + 3t \cdot \mathbf{k}$$
$$t \in [2, 4]$$

10.16.
$$\mathbf{r} = -2t \cdot \mathbf{i} + t \cdot \mathbf{j} - (t/3) \cdot \mathbf{k}$$

 $t \in [2, 4]$

10.17.
$$\mathbf{r} = \cos t \cdot \mathbf{i} + \sin t \cdot \mathbf{j} + t \cdot \mathbf{k}$$

 $t \in [0, 6\pi]$

10.18.
$$\mathbf{r} = t \cdot \mathbf{i} + \sin t \cdot \mathbf{j} + \cos t \cdot \mathbf{k}$$

 $t \in [0, 6\pi]$

10.19.
$$\mathbf{r} = 2\sin t \cdot \mathbf{i} - t^2 \cdot \mathbf{j} + \cos t \cdot \mathbf{k}$$

 $t \in [2, 6\pi]$

10.20.
$$\mathbf{r} = t \cos t \cdot \mathbf{i} + t \sin t \cdot \mathbf{j} + t \cdot \mathbf{k}$$

 $t \in [2, 6\pi]$

- 10.21. Adjunk meg olyan görbét, amelyik
 - (a) egy hengerre felcsavarodó spirál;
 - (b) egy kúpra felcsavarodó spirál!
- 10.22. Számoljuk ki az előző görbék ívhosszát, ha adott a henger, illetve kúp alapkörének a sugara, továbbá a henger és a kúp magassága!

Vázoljuk a következő síkgörbéket! Írjuk fel az érintők egyenletét $t = \pi/4$ -ben!

10.23.
$$\mathbf{r}(t) = 2\cos t \cdot \mathbf{i} + 3\sin t \cdot \mathbf{j}$$
 $t \in [0, 8\pi]$

10.24.
$$\mathbf{r}(t) = t \cos t \cdot \mathbf{i} + t \sin t \cdot \mathbf{j}$$
 $t \in [0, 8\pi]$

Írjuk fel a következő síkgörbék érintőit a megadott P pontokban!

10.25.
$$x^2 - xy^3 + y^5 = 17$$
 $P(5,2)$

10.26.
$$(x^2 + y^2)^2 = 3x^2y - y^3$$
 $P(0,0)$

Számoljuk ki a következő térgörbék érintőinek egyenletét a megadott helyeken:

10.27.
$$\mathbf{r}(t) = (t-3) \cdot \mathbf{i} + (t^2+1) \cdot \mathbf{j} + t^2 \cdot \mathbf{k} \ t = 2$$

10.28.
$$\mathbf{r}(t) = \sin t \cdot \mathbf{i} + \cos t \cdot \mathbf{j} + \frac{1}{\cos t} \cdot \mathbf{k} \ \mathbf{p} = \mathbf{j} + \mathbf{k}$$

Határozzuk meg az alábbi síkgörbék ívhosszát:

10.29. (ciklois)
$$x = r(t - \sin t)$$

$$y = r(1 - \cos t)$$

$$0 \le t \le 2\pi$$

10.30. (arkhimédészi spirális)
$$r = a\varphi \qquad \qquad 0 \leq \varphi \leq 2\pi$$

10.31.
$$y = \sqrt{x}$$

$$0 \le x \le a$$

10.2. Skalár-, és vektormezők, differenciáloperátorok

10.32. Milyen geometriai transzformációnak felel meg a síkon az

$$f(x,y) = \left(\frac{x}{x^2 + y^2}, -\frac{y}{x^2 + y^2}\right)$$

leképezés?

Adjunk meg olyan $f:\mathbb{R}^2 \to \mathbb{R}^2$ leképezéseket, amelyeknek H az értelmezési tartománya, és K az értékkészlete!

$$\begin{array}{c|c} \textbf{10.33.} & H = \{(x,y): 0 < x < 1, 0 < y < 1\} \\ & K = \{(x,y): 0 < x < 2, 0 < y < 4\} \end{array}$$

10.35.
$$H = \{(x, y) : 0 < x \le 1, y = 0\}$$

 $K = \{(x, y) : x^2 + y^2 = 1\}$

10.36.
$$H = \{(x, y) : 0 < x < 1, 0 < y < 2\}$$

 $K = \{(x, y) : x^2 + y^2 < 1\}$

Határozzuk meg grad $f = \nabla f$ -et, ha

10.39.
$$f(x,y) = x^4 - 6x^2y^2 + y^4$$
 10.40. $f(x,y) = \sqrt{x^2 + y^2}$

Írjuk fel a következő függvények gradiensét a megadott pontokban!

10.41.
$$f(x,y) = x^2 \sin y$$

$$\mathbf{p} = (\pi/3, -\pi/4)$$

10.42.
$$f(x,y) = \sqrt{x} \ln xy$$
 $\mathbf{p} = (e^2, e^4)$

10.43.
$$f(x,y,z) = x + xy^2 + x^2z^3$$
 $\mathbf{p} = (2,-1,1)$

10.44.
$$f(x, y, z) = x \sin y + z^2 \cos y$$
 $\mathbf{p} = (\pi/2, \pi/6)$

Számoljuk ki a következő skalármezők gradiensét, itt 'a' egy rögzített állandó vektort jelöl, 'r' pedig egy térbeli vektorváltozót:

$$\begin{bmatrix} \mathbf{10.45.} \end{bmatrix} \ U(\mathbf{r}) = \mathbf{a} \cdot \mathbf{r} \qquad \begin{bmatrix} \mathbf{10.46.} \end{bmatrix} \ U(\mathbf{r}) = |\mathbf{a} \times \mathbf{r}|$$

10.47.
$$U(\mathbf{r}) = \mathbf{r}^2 + \frac{1}{\mathbf{r}^2}$$
 10.48. $U(\mathbf{r}) = \frac{\mathbf{a}^2}{\mathbf{r}^2}$

Határozzuk meg az alábbi felületek érintősíkját az adott helyeken:

10.49.
$$\mathbf{r} = (u^2 - v) \cdot \mathbf{i} + (u - v^3) \cdot \mathbf{j} - (u + v) \mathbf{k};$$
 $u = 1, v = 2$

10.50.
$$z = x^2 + y^2;$$
 $x = 1, y = 2$

Számoljuk ki az alábbi felületdarabok felszínét:

10.51.
$$\mathbf{r} = u \cos v \cdot \mathbf{i} + u \sin v \cdot \mathbf{j} + u \cdot \mathbf{k}$$
 $0 \le u \le 1; \ 0 \le v \le \pi$

10.52.
$$z = \frac{x^2}{2y}$$
 $0 \le x \le 1; 1 \le y \le 2$

10.3. Vonalintegrál

Legyen v $=(x+y)\cdot \mathbf{i}+(x-y)\cdot \mathbf{j}$. Számítsuk ki v vonalintegrálját a következő síkgörbéken!

10.53.
$$\Gamma: t \cdot \mathbf{i}$$
 $t \in [0, 1]$

10.54.
$$\Gamma: \begin{cases} t \cdot \mathbf{i} + (t+1) \cdot \mathbf{j}, & \text{ha } t \in [-1, 0] \\ t \cdot \mathbf{i} + (-t+1) \cdot \mathbf{j}, & \text{ha } t \in (0, 1] \end{cases}$$

10.55.
$$\Gamma : \cos t \cdot \mathbf{i} + \sin t \cdot \mathbf{j}$$
 $t \in [0, \pi]$

10.56.
$$\Gamma: \begin{cases} (1+\cos t) \cdot \mathbf{i} + \sin t \cdot \mathbf{j}, & \text{ha } t \in [0,\pi] \\ \frac{t-\pi}{\pi} \cdot \mathbf{i}, & \text{ha } t \in (\pi, 2\pi] \end{cases}$$

Legyen v = $(x^2-2xy)\cdot {\bf i} + (y^2-2xy)\cdot {\bf j}$. Számítsuk ki v vonalintegrálját a következő görbéken!

10.57.
$$\Gamma: t \cdot \mathbf{i} + t^2 \cdot \mathbf{j}$$
 $t \in [-1, 1]$

10.58.
$$\Gamma: t \cdot \mathbf{i} + \mathbf{j}$$
 $t \in [-1, 1]$

Legyen a Γ_1 görbe az A(0,0) és B(1,1) pontokat összekötő egyenes szakasz, Γ_2 pedig az A(0,0) és B(1,1) pontokat összekötő parabolaív, mégpedig az $y=x^2$ függvény grafikonja 0 és 1 között. Számítsuk ki ezeken a görbéken a következő leképezések vonalintegrálját!

10.59.
$$\mathbf{v} = (x - y) \cdot \mathbf{i} + (x + y) \cdot \mathbf{j}$$

$$\boxed{\mathbf{10.60.}} \quad \mathbf{v} = x \cdot \mathbf{i} + y \cdot \mathbf{j}$$

$$10.61. \quad \mathbf{v} = y \cdot \mathbf{i} + x \cdot \mathbf{j}$$

10.62.
$$\mathbf{v} = (x^2 + y^2) \cdot \mathbf{i} + (x^2 - y^2) \cdot \mathbf{j}$$

Legyen a Γ görbe az A(0,0), B(1,0) és a C(0,1) pontokat összekötő töröttvonal. Számítsuk ki ezen a görbén a következő leképezések vonalintegrálját!

10.65.
$$\mathbf{v} = y^2 \cdot \mathbf{i} - \mathbf{j}$$
 10.66. $\mathbf{v} = xy \cdot \mathbf{i} + (x+y) \cdot \mathbf{j}$

10.67. Legyen a Γ görbe az A(-2,0) és a B(1,0) pontokat összekötő egyenes szakasz. Számítsuk ki ezen a görbén az

$$\mathbf{v} = \frac{2x^3 - 3x}{x^2 + y^2} \cdot \mathbf{i} + \frac{1}{x^2 + y^2} \cdot \mathbf{j}$$

leképezés vonalintegrálját!

Legyen v = $(x + y) \cdot \mathbf{i} + (y + z) \cdot \mathbf{j} + (z + x) \cdot \mathbf{k}$. Számítsuk ki v vonalintegrálját a következő görbéken!

- 10.68. $\Gamma: t \cdot \mathbf{i} + 2t \cdot \mathbf{j} + 3t \cdot \mathbf{k}$ $t \in [0, 1]$
- 10.69. $\Gamma: t \cdot \mathbf{i} + t^2 \cdot \mathbf{j}$ $t \in [1, 2]$
- 10.70. $\Gamma : \cos t \cdot \mathbf{i} + \sin t \cdot \mathbf{j} + t \cdot \mathbf{k}$ $t \in [0,\pi]$
- 10.71. $\Gamma : \cos t \cdot \mathbf{i} + \sin t \cdot \mathbf{j} + t \cdot \mathbf{k}$ $t \in [\pi, 2\pi]$

Legyen a Γ görbe az A(0,0,0) és B(1,1,1) pontokat összekötő egyenes szakasz. Számítsuk ki ezen a görbén a következő leképezések vonalintegrálját!

- 10.72. $\mathbf{v} = xz \cdot \mathbf{i} + yx \cdot \mathbf{j} + xy \cdot \mathbf{k}$
- $\mathbf{v} = (x y) \cdot \mathbf{i} + (x + y) \cdot \mathbf{j} + z \cdot \mathbf{k}$ 10.73.
- 10.74. $\mathbf{v} = xy \cdot \mathbf{i} + yz \cdot \mathbf{j} + xz \cdot \mathbf{k}$
- **10.75.** $\mathbf{v} = y^2 \cdot \mathbf{i} + z^2 \cdot \mathbf{j} + x^2 \cdot \mathbf{k}$
- 10.76. Legyen a Γ görbe az A(-2,0,1) és a B(1,0,3) pontokat összekötő egyenes szakasz. Számítsuk ki ezen a görbén a

$$\mathbf{v} = \frac{x}{x^2 + y^2 + z^2} \cdot \mathbf{i} + \frac{1}{x^2 + y^2 + z^2} \cdot \mathbf{j} + \frac{z}{x^2 + y^2 + z^2} \cdot \mathbf{k}$$

leképezés vonalintegrálját!

Határozzuk meg az alábbi vonalintegrálokat:

10.77.
$$\int_C (x^2 - 2xy) \, dx + (y^2 - 2xy) \, dy \qquad \Gamma: \ y = x^2 \quad (-1 \le x \le 1)$$

10.78.
$$\oint_C (x+y) dx + (x-y) dy \qquad \Gamma: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

10.79.
$$\int_C y \, dx + z \, dy + x \, dz$$

$$C: \begin{cases} x = a \cos t \\ y = a \sin t \\ z = bt \end{cases}$$
 $0 \le t \le 2\pi$

Van-e a következő síkbeli vektormezőknek primitív függvénye? Ha igen, határozzuk meg őket!

10.80.
$$\mathbf{v} = y \cdot \mathbf{i} + x \cdot \mathbf{j}$$

10.81.
$$\mathbf{v} = x \cdot \mathbf{i} + y \cdot \mathbf{j}$$

10.82.
$$\mathbf{v} = (x - y) \cdot \mathbf{i} + (y - x) \cdot \mathbf{j}$$

10.83.
$$\mathbf{v} = (x^4 + 4xy^3) \cdot \mathbf{i} + (6x^2y^2 - 5y^4) \cdot \mathbf{j}$$

10.84.
$$\mathbf{v} = (x+y) \cdot \mathbf{i} + (x-y) \cdot \mathbf{j}$$

$$\boxed{\mathbf{10.85.}} \quad \mathbf{v} = e^x \cdot \mathbf{i} + e^y \cdot \mathbf{j}$$

$$\boxed{\mathbf{10.86.}} \quad \mathbf{v} = e^y \cdot \mathbf{i} + e^x \cdot \mathbf{j}$$

10.87.
$$\mathbf{v} = e^x \cos y \cdot \mathbf{i} - e^x \sin y \cdot \mathbf{j}$$

10.88.
$$\mathbf{v} = (x^2 + y) \cdot \mathbf{i} + (x + \operatorname{ctg} y) \cdot \mathbf{j}$$

$$[10.89.] \mathbf{v} = \sin y \cdot \mathbf{i} + \sin x \cdot \mathbf{j}$$

$$\mathbf{10.90.} \quad \mathbf{v} = \cos xy \cdot \mathbf{i} + \sin xy \cdot \mathbf{j}$$

10.91.
$$\mathbf{v} = y \sin xy \cdot \mathbf{i} + x \sin xy \cdot \mathbf{j}$$

10.92.
$$\mathbf{v} = \frac{x}{x^2 + y^2} \cdot \mathbf{i} + \frac{y}{x^2 + y^2} \cdot \mathbf{j}$$

10.93.
$$\mathbf{v} = \frac{x}{x^2 + y^2} \cdot \mathbf{i} - \frac{y}{x^2 + y^2} \cdot \mathbf{j}$$

10.94.
$$\mathbf{v} = \frac{y}{x^2 + y^2} \cdot \mathbf{i} + \frac{x}{x^2 + y^2} \cdot \mathbf{j}$$

10.95.
$$\mathbf{v} = \frac{y}{x^2 + y^2} \cdot \mathbf{i} - \frac{x}{x^2 + y^2} \cdot \mathbf{j}$$

10.96.
$$\mathbf{v} = \frac{y}{(x^2 + y^2)^2} \cdot \mathbf{i} + \frac{x}{(x^2 + y^2)^2} \cdot \mathbf{j}$$

10.97.
$$\mathbf{v} = -\frac{y}{(x^2 + y^2)^2} \cdot \mathbf{i} + \frac{x}{(x^2 + y^2)^2} \cdot \mathbf{j}$$

Számítsuk ki a 10.80. és 10.97. közötti feladatokban szereplő leképezések vonalintegrálját

10.98. az origó körüli egységsugarú körön pozitív irányban haladva;

10.99. azon a négyzeten, amelynek csúcspontjai A(-1,-1), B(1,-1), C(1,1)és D(-1,1), pozitív irányban haladva végig a négyzet teljes kerületén.

Konzervatívak-e következő erőterek az egész síkon? Ha igen, adjunk meg egy potenciálfüggvényt!

[10.100.]
$$\mathbf{E} = 9,81 \cdot \mathbf{j}$$

10.101.
$$\mathbf{E} = (y+x) \cdot \mathbf{i} + x \cdot \mathbf{j}$$

$$10.102. \quad \mathbf{E} = (y + \operatorname{sgn} x) \cdot \mathbf{i} + x \cdot \mathbf{j}$$

10.103.
$$\mathbf{E} = (x+y) \cdot \mathbf{i} + (x+[y]) \cdot \mathbf{j}$$

$$\begin{bmatrix} \mathbf{10.104.} \end{bmatrix} \quad \mathbf{E} = x \cdot \mathbf{i} + 2y \cdot \mathbf{j}$$

10.105.
$$\mathbf{E} = (x^2 - 2xy) \cdot \mathbf{i} + (y^2 - 2xy) \cdot \mathbf{j}$$

10.106.
$$\mathbf{E} = -\frac{y}{x^2 + y^2} \cdot \mathbf{i} + \frac{x}{x^2 + y^2} \cdot \mathbf{j}$$

10.107.
$$\mathbf{E} = \frac{x}{(x^2 + y^2)^{3/2}} \cdot \mathbf{i} + \frac{y}{(x^2 + y^2)^{3/2}} \cdot \mathbf{j}$$

Van-e a következő térbeli vektormezőknek primitív függvénye? Ha igen, határozzuk meg őket!

10.108.
$$\mathbf{v} = yz \cdot \mathbf{i} + xz \cdot \mathbf{j} + xy \cdot \mathbf{k}$$

10.109.
$$\mathbf{v} = xy \cdot \mathbf{i} + yz \cdot \mathbf{j} + xz \cdot \mathbf{k}$$

[10.110.]
$$\mathbf{v} = (x+y) \cdot \mathbf{i} + (z-y) \cdot \mathbf{j} + xz \cdot \mathbf{k}$$

$$\boxed{\mathbf{10.111.}} \quad \mathbf{v} = \frac{-x^2 + y^2 + z^2}{x^2 + y^2 + z^2} \cdot \mathbf{i} + \frac{x^2 - y^2 + z^2}{x^2 + y^2 + z^2} \cdot \mathbf{j} + \frac{x^2 + y^2 - z^2}{x^2 + y^2 + z^2} \cdot \mathbf{k}$$

10.112.
$$\mathbf{v} = 2xy^3z^4 \cdot \mathbf{i} + 3x^2y^2z^4 \cdot \mathbf{j} + 4x^2y^3z^3 \cdot \mathbf{k}$$

10.113.
$$\mathbf{v} = 3xy^3z^4 \cdot \mathbf{i} + 3x^2y^2z^4 \cdot \mathbf{j} + x^2y^3z^3 \cdot \mathbf{k}$$

$$10.114. \quad \mathbf{v} = \sin y \cdot \mathbf{i} + x \cos y \cdot \mathbf{j} + 2z \cdot \mathbf{k}$$

10.115.
$$\mathbf{v} = e^x z \sin y \cdot \mathbf{i} + e^x z \cos y \cdot \mathbf{j} + e^x \sin y \cdot \mathbf{k}$$

- 10.116. A 10.108. és 10.115. közötti feladatokban szereplő leképezések közül melyeknek lesz biztosan 0 a vonalintegrálja bármely (3,4,5) középpontú, 1 sugarú körvonalon?
- 10.117. Határozzuk meg az alábbi vonalintegrált, és ellenőrizzük, hogy a keresztbe vett deriváltak megegyeznek:

$$\oint\limits_C \frac{y\,dx-x\,dy}{x^2+y^2}, \qquad \Gamma:\ x^2+y^2=R^2.$$

Határozzuk meg a z(x,y) primitív függvényt:

10.118.
$$dz = (x^2 + 2xy - y^2) dx + (x^2 - 2xy - y^2) dy$$

$$\boxed{\textbf{10.119.}} \quad dz = \frac{y \, dx - x \, dy}{3x^2 - 2xy + 3y^2}$$

$$\boxed{10.120.} \quad dz = \frac{(x^2 + 2xy + 5y^2) dx + (x^2 - 2xy + y^2) dy}{(x+y)^3}$$

Határozzuk meg az u(x, y, z) primitív függvényt:

10.121.
$$du = (x^2 - 2yz) dx + (y^2 - 2xz) dy + (z^2 - 2xy) dz$$

10.122.
$$du = \left(1 - \frac{1}{y} + \frac{y}{z}\right) dx + \left(\frac{x}{z} + \frac{x}{y^2}\right) dy - \frac{xy}{z^2} dz$$

10.123.
$$du = \frac{(x+y) dx + (x+y) dy + z dz}{x^2 + y^2 + z^2 + 2xy}$$

Az origóban elhelyezett M tömegpont az (x,y,z) pontban levő mtömegpontra

$$c\frac{Mm}{x^2 + y^2 + z^2}$$

gravitációs vonzóerővel hat, ahol c egy állandó. Az erő iránya megegyezik az (x, y, z) pontból az origóba mutató vektor irányával. Számítsuk ki a gravitációs erő munkáját, ha az m tömegű test a következő görbéken mozog:

[10.124.]
$$\Gamma : \cos t \cdot \mathbf{i} + \sin t \cdot \mathbf{j} \quad t \in [0, 2\pi]$$

[10.125.]
$$\Gamma : \cos t \cdot \mathbf{i} + \sin t \cdot \mathbf{j} \quad t \in [0, \pi]$$

10.126.
$$\Gamma: t \cdot \mathbf{i} + 2t \cdot \mathbf{j} + 3t \cdot \mathbf{k} \quad t \in (0, 1]$$

- 10.127. Γ : az a négyzet, amelynek csúcspontjai $A(-1,-1,0),\ B(1,-1,0),$ C(1,1,0), D(-1,1,0) pozitív irányban végighaladva a négyzet teljes kerületén.
- 10.128. Határozzuk meg az előző feladatokban szereplő gravitációs erő potenciálfüggvényét!

Az origóban elhelyezett Q pontszerű töltés az (x,y,z) pontban levő, q pontszerű töltésre

$$c\frac{Mm}{x^2+y^2+z^2}$$

taszító erővel hat, ahol c egy állandó, és az erő iránya ellentétes az (x, y, z) pontból az origóba mutató vektor irányával.

- 10.129. Mekkora munkát végez ez az elektrosztatikus erő, amikor a q töltést az (1,2,3) pontból az (5,6,7) pontba viszi? Függ-e a végzett munka az útvonaltól?
- 10.130. Mekkora munkát végez ez az elektrosztatikus erő, amikor a q töltést az (1, 2, 3) pontból a végtelen távoli pontba viszi? Függ-e a végzett munka az útvonaltól?
- 10.131. Határozzuk meg az előző feladatokban szereplő elektrosztatikus erő potenciálfüggvényét!
- 10.132. Az asztal lapján csúszó m tömegű testre az asztal lapja $c \cdot m$ súrlódási erővel hat, ahol c egy állandó. Az erő iránya mindig ellentétes az elmozdulás irányával. Mekkora munkát végez a súrlódási erő, amikor a testet a (0,0) pontból egy egyenes szakasz mentén a (3,4) pontba csúsztatjuk? Mekkora munkát végez a súrlódási erő, amikor a testet a (0,0) pontból először egy egyenes szakasz mentén a (3,0), majd egy csatlakozó egyenes szakasz mentén a (3,4) pontba csúsztatjuk? Függ-e végzett munka az útvonaltól?
- 10.133. Van-e az előző feladatban szereplő súrlódási erőnek potenciálfüggvénye?

11. fejezet

Komplex függvények

11.1. Cauchy-Riemann differenciálegyenletek. Ha az $f(z) = f(x + iy) = u(x, y) + i \cdot v(x, y)$ deriválható a $z_0 = x_0 + iy_0$ pontban, akkor

$$u'_x(x_0, y_0) = v'_y(x_0, y_0), \qquad u'_y(x_0, y_0) = -v'_x(x_0, y_0).$$

Megfordítva, ha teljesülnek a fenti egyenletek az (x_0, y_0) pontban és ebben a pontban u és v totálisan deriválható (mint kétváltozós valós függvények), akkor az f(z) komplex függvény (komplex értelemben) deriválható z_0 -ban.

11.2. Cauchy-féle integráltétel. Ha f analitikus a Γ egyszerű zárt görbe belsejében, Ω -ban, a Γ pontjaiban folytonos, akkor

$$\oint_{\Gamma} f(z) \, dz = 0.$$

11.3. Cauchy-féle integrálformulák. Ha f analitikus a-ban, Γ pozitív irányítású zárt körvonal a körül az f regularitási tartományában, akkor

$$f^{(n)}(a) = \frac{n!}{2\pi i} \oint_{\Gamma} \frac{f(z)}{(z-a)^{n+1}} dz.$$

11.4. Holomorf függvények.

- Maximum elv. Egyszeresen összefüggő tartományon holomorf függvény abszolút-értékének nincs (lokális) maximuma a tartomány pontjaiban.
- Liouville tétele. Az egész komplex síkon holomorf korlátos függvény konstans.
- Rouché tétele. Legyen Γ egyszerű zárt görbe a komplex síkon, belseje Ω , f és g két folytonos komplex függvény $\overline{\Omega} = \Omega \cup \Gamma$ -n, f és g holomorf Ω -n, valamint tegyük fel, hogy minden $z \in \Gamma$ esetén

$$|g(z)| > |f(z) - g(z)|.$$

Ekkor a két függvénynek, multiplicitással számolva, ugyanannyi gyöke van Ω -ban.

11.5. Meromorf függvények.

— Ha f(z) Laurent-sorba fejthető a körül,

$$f(z) = \sum_{n = -\infty}^{\infty} a_n (z - a)^n,$$

akkor

$$\operatorname{Res}(f, a) = a_{-1} = \frac{1}{2\pi i} \oint_{\Gamma} f(z) \, dz,$$

ahol Γ egy pozitív irányítású körvonal a körül, amelynek sugara kisebb a Laurent-sor konvergenciasugaránál.

Residuum tétel. Ha $D \subset \mathbb{C}$ egyszeresen összefüggő tartomány, f meromorf D-ben, Γ pedig D-beli egyszerű zárt görbe pozitív irányítással, amely nem megy át póluson, akkor

$$\oint\limits_{\Gamma} f(z)\,dz = 2\pi i \sum \left\{ \operatorname{Res}(f,a) : a \in \Omega \right\}$$

ahol Ω a Γ görbe belseje.

- 11.1. Bizonyítsuk be, hogy a z komplex szám konjugáltjának reciproka megegyezik z reciprokának konjugáltjával!
- 11.2. Tegyük fel, hogy |z| < 1 és $|\alpha| < 1$. Bizonyítsuk be, hogy ekkor

Ellenőrizzük, hogy teljesülnek-e a Cauchy-Riemann differenciálegyenletek a következő komplex függvények esetében!

11.3.
$$f(z) = z^2$$

11.4.
$$f(z) = z^n, \quad n \in \mathbb{N}^+$$

11.5.
$$f(z) = \frac{1}{z}, \quad z \neq 0$$
 11.6. $f(z) = \frac{1}{z^2 + 1}$

11.6.
$$f(z) = \frac{1}{z^2 + 1}$$

- 11.7. Teljesülnek-e a Cauchy-Riemann differenciálegyenletek az $f(z) = \sqrt{|xy|}$ függvényre, ahol x a z komplex szám valós, y pedig a képzetes része? Differenciálható-e az előző függvény z = 0-ban?
- 11.8. Bizonyítsuk be, hogy az $f(z) = 2x^2 + 3y^2 + xy + 2x + i(4xy + 5y)$ függvény a sík egyetlen tartományán sem differenciálható!

Keressük meg azokat a pontokat, ahol f differenciálható!

11.9.
$$f(x+iy) = xy + iy$$

11.10.
$$f(x+iy) = (2x^2 - y) + i(x^2 + y^2)$$

Határozzuk meg a differenciálható f(x+iy) = u(x,y) + iv(x,y)függvényt a következő feltételek mellett!

11.11.
$$u(x,y) = x^2 - y^2 + xy$$
, $f(0) = 0$

11.12.
$$v(x,y) = \frac{x^2}{x^2 + y^2}, \quad f(2) = 0$$

Határozzuk meg a következő hatványsorok konvergenciasugarát!

11.13.
$$\sum_{n=1}^{\infty} \frac{1}{n} (z-i)^n$$

11.14.
$$\sum_{n=1}^{\infty} 2^n (z+i)^n$$

11.15.
$$\sum_{n=1}^{\infty} n^2 (z-2-2i)^n$$
 11.16.
$$\sum_{n=1}^{\infty} \frac{(n-1)!}{n!} z^n$$

11.16.
$$\sum_{n=1}^{\infty} \frac{(n-1)!}{n!} z^{n}$$

11.17.
$$\sum_{n=0}^{\infty} \frac{(n^2)!}{3^{n!}} z^n$$

$$\boxed{\mathbf{11.18.}} \quad \sum_{n=1}^{\infty} \ln(n!) z^n$$

$$\boxed{\mathbf{11.19.}} \quad \sum_{n=1}^{\infty} \frac{1}{n} z^n$$

$$\boxed{\mathbf{11.20.}} \quad \sum_{n=0}^{\infty} \left(\frac{in}{n+1}\right)^{n^2} z^n$$

Adjuk meg a következő hatványsorok konvergenciasugarát és összegfüggvényét!

$$\boxed{11.21.} \quad \sum_{n=1}^{\infty} z^n$$

$$\boxed{11.22.} \quad \sum_{n=0}^{\infty} i^n z^n$$

11.23.
$$\sum_{n=0}^{\infty} (n+1)z^n$$

11.24.
$$\sum_{n=0}^{\infty} (n+2)(n+1)z^n$$

Bizonyítsuk be a megfelelő hatványsorok felhasználásával az Eulerféle összefüggéseket:

11.25.
$$e^{iz} = \cos z + i \sin z$$

11.26.
$$e^{-iz} = \cos z - i \sin z$$

11.27.
$$\cos z = \frac{1}{2} \left(e^{iz} + e^{-iz} \right)$$

$$\cos z = \frac{1}{2} \left(e^{iz} + e^{-iz} \right)$$
 11.28. $\sin z = \frac{1}{2i} \left(e^{iz} - e^{-iz} \right)$

- 11.29. Bizonyítsuk be az Euler-féle összefüggések segítségével, hogy az e^z exponenciális függvény $2\pi i$ szerint periodikus!
- 11.30. Bizonyítsuk be, hogy a sin z és cos z függvényeknek pontosan ugyanazok a zérushelyei, mint a valós $\sin x$ és $\cos x$ függvényeknek!

Legyen Γ a |z|=1 körvonal, és integráljuk a zárt körvonalon pozitív irányban a következő függvényeket!

11.31.
$$f(x+iy) = x$$

11.32.
$$f(x+iy) = y$$

11.33.
$$f(x+iy) = x-iy$$

11.34.
$$f(x+iy) = x+iy$$

Legyen Γ a |z|=R körvonal, és integráljuk a zárt körvonalon pozitív irányban a következő függvényeket!

11.35.
$$f(z) = \frac{1}{z}$$

11.36.
$$f(z) = \frac{1}{z^2}$$

Integráljuk az f(z) = |z| függvényt a következő, $z_1 = -1$ -ből kiinduló, $z_2 = i$ -be érkező görbéken! Függ-e az integrál értéke az útvonaltól?

11.37. $\Gamma = \{e^{-it} : t \in [\pi, 3\pi/2]\}$

11.38. $\Gamma = \{t : t \in [-1, 0]\} \cup \{it : t \in [0, 1]\}$

Számítsuk ki a $\int (x^2 - y^2) dx - 2xy dy$ vonalintegrált az 1 + i pontból 11.39. ki
induló és a 3+2ipontba érkező szakaszon (valós) primitív függvény segítségével!

Számítsuk ki a $\int (x^2 - y^2) dx - 2xy dy$ vonalintegrált az 1 + i pontból 11.40. kiinduló és a 3+2i pontba érkező szakaszon a Cauchy-féle integráltétel segítségével!

Legyen $\Gamma: z(t) = 1 + it, t \in [0,1]$. Integráljuk a Γ görbén a Cauchyféle integráltétel segítségével a következő függvényeket!

11.41. $f(z) = 3z^2$

11.42. $f(z) = \frac{1}{z}$ 11.42. $f(z) = \frac{1}{z}$ 11.44. $f(z) = ze^{z^2}$

 $f(z) = e^z$ 11.43.

Határozzuk meg az $\int\limits_{\mathbb{R}} \frac{1}{z^2+1}\,dz$ integrált a következő zárt görbé-

ken!

11.45. $\Gamma: |z| = 1/2$ **11.46.** $\Gamma: |z| = 3$

11.47. $| \Gamma : |z-i|=1$

11.48. $\Gamma: |z+i|=1$

Írjuk fel a következő függvények adott a pont körüli hatványsorát!

11.49. $\frac{1}{(1-z)^2}$, a=3 **11.50.** $\frac{1}{(z-2)(z-3)}$, a=5

$$\boxed{11.51.} \quad \frac{1}{1-z+z^2}, \quad a=0$$

11.51.
$$\frac{1}{1-z+z^2}$$
, $a=0$ **11.52.** $\frac{3z-6}{(z-4)(z+25)}$, $a=10$

Számítsuk ki az f(z) függvény $z_0=0$ pontbeli reziduumát!

11.53.
$$f(z) = \frac{e^z}{z^2}$$

11.53.
$$f(z) = \frac{e^z}{z^2}$$
 11.54. $f(z) = \frac{\cos z}{\sin z}$

Számítsuk ki az $f(z) = \frac{1}{z^3 - z^5}$ függvény z_0 pontbeli reziduumát!

11.55.
$$z_0 = 0$$

11.56.
$$z_0 = 1$$

11.57.
$$z_0 = -1$$

11.58.
$$z_0 = i$$

Számítsuk ki az $f(z)=rac{z^2}{\left(z^2+1
ight)^2}$ függvény z_0 pontbeli reziduumát!

11.59.
$$z_0 = i$$

$$\begin{bmatrix} 11.60. \end{bmatrix} z_0 = -i$$

Határozzuk meg az $\oint\limits_{|z|=4} f(z)\,dz$ körintegrált, ahol

11.61.
$$f(z) = \frac{e^z \sin z}{z - 1}$$
 11.62. $f(z) = \frac{e^{\sin z}}{z^2}$

11.62.
$$f(z) = \frac{e^{\sin z}}{z^2}$$

11.63.
$$f(z) = \frac{e^{\sin z}}{z - 2}$$

11.63.
$$f(z) = \frac{e^{\sin z}}{z - 2}$$
 11.64. $f(z) = \frac{e^{\sin z}}{(z - 1)(z - 2)}$

11.65.
$$f(z) = \frac{e^z \cos z}{z - \pi}$$

11.65.
$$f(z) = \frac{e^z \cos z}{z - \pi}$$
 11.66. $f(z) = \frac{e^{\sin z}}{z^2 - 1}$

Legyen $\Gamma:z(t)=t+it, t\in[0,1]$. Integráljuk a Γ görbén a következő függvényeket!

11.67.
$$f(z) = z^2$$

11.68.
$$f(z) = e^z$$

Legyen Γ az |z-2i|=1 körvonal, és pozitív körüljárási irányban integráljuk a Γ görbén a következő függvényeket!

11.69.
$$f(z) = z^2$$

11.70.
$$f(z) = \frac{1}{z}$$

11.71.
$$f(z) = z^2 + \frac{1}{z}$$

11.72.
$$f(z) = z + \frac{1}{z}$$

Hány gyöke van a következő egyenleteknek az |z| < 1 körben? (Segítség: alkalmazzuk Rouché tételét.)

11.73.
$$z^6 - 6z + 10 = 0$$

$$\boxed{11.74.} \quad z^4 - 5z + 1 = 0$$

- Számítsuk ki az $\int_{-\infty}^{\infty} \frac{1}{\left(x^2+1\right)^2} dx$ integrált a komplex számsíkon görbe 11.75. menti integrálással!
- Hova képezi az $f(z) = \frac{az+b}{cz+d}$ függvény az origó középpontú, egységsu-11.76. garú kört?
- 11.77. Adjunk meg olyan komplex függvényt, amelyik a felső félsíkot az origó középpontú, egységsugarú körbe viszi!

Milyen görbéket vagy tartományokat határoznak meg a következő feltételek?

11.78.
$$|z-2| < |z|$$

11.79.
$$|z^2 - 1| < 1$$

11.80. Im
$$\frac{1}{z} = 2$$

$$\boxed{\mathbf{11.81.}} \quad \operatorname{Re} z = \operatorname{Im} z$$

 A w=f(z) függvény a z=x+iysíkot a w=u+ivsíkba képezi le. Határozzuk meg az adott T tartományok képét!

11.82.
$$w = z^2, \quad T = \{x + iy : x \ge 0, y \ge 0\}$$

11.83.
$$w = e^z$$
, $T = \{x + iy : 0 < y < \frac{\pi}{2}\}$

Megoldások

Alapfogalmak, valós számok

1.1 Elemi feladatok

1.1. A megoldáshalmaz a (2,8) nyílt intervallum.

- 1.2. Ugyanaz, mint az előző feladatban.
- 1.3. A megoldáshalmaz a (4,6) nyílt intervallum.

1.5. Az eredeti egyenlőtlenség:

$$\frac{1}{5x+6} \ge -1$$

Szorozzuk át az egyenlőtlenséget $5x+6\text{-}\mathrm{tal}.$ Két esetet kell megkülönböztetnünk:

I. eset: 5x + 6 > 0, azaz x > -6/5. Ekkor az új egyenlőtlenség:

$$1 \ge -(5x+6), \quad 5x \ge -7, \quad x \ge -7/5$$

A vizsgált esetben ez csak akkor lehetséges, ha x > -6/5.

II. eset: 5x+6<0, azaz x<-6/5. Ekkor az új egyenlőtlenség megfordul:

$$1 \le -(5x+6), \quad 5x \le -7, \quad x \le -7/5$$

A vizsgált esetben ez csak akkor lehetséges, ha $x \leq -7/5$.

Tehát az összes megoldás egy zárt és egy nyílt félegyenes uniója:

$$x \in (-\infty, -7/5] \cup (-6/5, \infty)$$

1.7. Az eredeti egyenlőtlenség:

$$10x^2 + 17x + 3 < 0$$

A baloldalon szereplő másodfokú polinom főegyütthatója pozitív, ezért a parabola pontjai a két gyök által kapott intervallumban vannak az x tengely alatt. Számoljuk ki a két gyököt:

$$10x^2 + 17x + 3 = 0$$

$$x_1 = -\frac{3}{2}, \quad x_2 = -\frac{1}{5}$$

Tehát a megoldások halmaza:

$$x \in [-3/2, -1/5]$$

1.9. Az eredeti egyenlőtlenség:

$$8x^2 - 30x + 25 > 0$$

Számoljuk ki a másodfokú egyenlet gyökeit:

$$8x^2 - 30x + 25 = 0$$

$$x_{1,2} = \frac{30 \pm \sqrt{900 - 800}}{16}, \quad x_1 = \frac{5}{2}, \ x_2 = \frac{5}{4}$$

Mivel a főegyüttható pozitív, ezért a másodfokú polinom a két gyök által meghatározott intervallumon kívül pozitív, tehát a megoldások

$$x \in (-\infty, 5/4] \cup [5/2, \infty)$$

1.11. Az eredeti egyenlőtlenség:

$$9x^2 - 24x + 17 > 0$$

Számoljuk ki a másodfokú egyenlet gyökeit:

$$9x^2 - 24x + 17 = 0$$

Ennek az egyenletnek a diszkriminánsa negatív (-36), ezért a másodfokú polinom sehol sem nulla. Mivel a főegyüttható pozitív, ezért minden $x\in\mathbb{R}$ esetén

$$9x^2 - 24x + 17 > 0$$

Tehát az egyenlőtlenségnek minden $x \in \mathbb{R}$ megoldása.

1.14. Milyen $x \in \mathbb{R}$ esetén lesz $|x+1|+|x-2| \le 12$?

> Három esetet különböztethetünk meg aszerint, hogy (x+1) és (x-2)milyen előjelű.

I. eset: x < -1, azaz mindkét tag negatív.

$$-(x+1) - (x-2) \le 12, \quad -2x \le 11, \quad x \ge -\frac{11}{2}$$

Ebben az esetben a megoldások:

$$x \in [-11/2; -1)$$

II. eset: $-1 \le x < 2$, azaz az első tag nem negatív, a második negatív.

$$(x+1) - (x-2) \le 12$$
, $3 \le 12$, $x \text{ tetsz\"oleges}$

Ebben az esetben a megoldások:

$$x \in [-1; 2)$$

III. eset: $x \ge 2$, azaz egyik tag sem negatív.

$$(x+1) + (x-2) \le 12, \quad 2x \le 13, \quad x \le \frac{13}{2}$$

Ebben az esetben a megoldások:

$$x \in [2; 13/2]$$

Összesítve a három esetet

$$x \in [-11/2; 13/2]$$

az összes megoldás.

Milyen $x \in \mathbb{R}$ esetén lesz $\left| \frac{x+1}{2x+1} \right| > \frac{1}{2}$? 1.16.

I. eset: x < -1, azaz a számláló és a nevező is negatív.

$$\frac{x+1}{2x+1} > \frac{1}{2}$$
, $2(x+1) < 2x+1$, $2 < 1$

Ebben az esetben nincs megoldás.

II. eset: x > -1/2, azaz a számláló és a nevező is pozitív.

$$\frac{x+1}{2x+1} > \frac{1}{2}$$
, $2(x+1) > 2x+1$, $2 > 1$

Ebben az esetben a megoldások:

$$x \in (-1/2; \infty)$$

III. eset: -1 < x < -1/2, azaz a számláló pozitív a nevező pedig negatív. A negatív nevezővel átszorozva megfordul az egyenlőtlenség:

$$\left|\frac{x+1}{2x+1}\right| = -\frac{x+1}{2x+1} > \frac{1}{2}, \quad -2(x+1) < 2x+1, \quad 4x > -3, \quad x > -\frac{3}{4}$$

Ebben az esetben a megoldások:

$$x \in (-3/4; -1/2)$$

Ha a nevező pozitív, akkor a számláló is az, ezért több eset nincs. Így az összes megoldás:

$$x \in (-3/4; -1/2) \cup (-1/2; \infty)$$

1.18.

$$\sqrt{x+3} + |x-2| = 0$$

Két nem negatív szám összege csak úgy lehet nulla, ha mindkettő nulla. Tehát

$$x + 3 = 0$$
 és $x - 2 = 0$

Ez a két egyenlet semmilyen x-re sem teljesül egyszerre, ezért az egyenletnek nincs megoldása.

1.2 Logikai alapfogalmak

- 1.20. (a) Van olyan egér, amelyik nem szereti a sajtot.
 - (b) Valaki másnak vermet ásott és nem esett bele.
 - (c) Van olyan asszony, aki csak olyat akar tenni, amit szabad.
 - (d) Minden a-hoz van olyan b, hogy az a+x=b legalább két különböző x-re teljesül.
 - (e) 3 nagyobb, mint 2, és 5 nem osztója 10-nek.
 - (f) Zörög a haraszt és nem fúj a szél.
 - (g) A nagynénémnek kerekei vannak, mégsem ő a miskolci gyorsvonat.

- 1.22. Igen:
 - (b)+(c) ⇒ Minden állat vagy emlős, vagy van kopoltyúja.
 - (b)+(a) ⇒ Ha egy állat emlős, akkor van kopoltyúja.

Tehát egy állatnak akár emlős akár nem, van kopoltyúja.

- 1.25. Csak a (b) állítás hamis, a többi igaz.
- 1.27. Ehhez a "Minden mohikán hazudik" mondathoz nem lehet igazságértéket rendelni, ha csak egy mohikán van.

Ha a mondat igaz lenne, akkor az utolsó mohikán is hazudott, tehát nem igaz a mondat.

Ha a mondat hamis lenne, akkor van igazmondó mohikán. De ha csak egy mohikán van, akkor ő az igazmondó. Ezért igaz amit mondott, tehát igaz a mondat.

1.29. Jelölje x az első, y pedig a harmadik számjegyet. A feltevés miatt $x+y=5.\ \mathrm{Most}$ már az összes számjegy felírhatóxés ysegítségével:

A 12. jegy y = 4, és ezért x = 1. Tehát a kód:

1641641641641

Azaz a 13-adik jegy 1.

1.31. Csak a (c) állítás következik, sőt a két állítás ekvivalens:

$$(A \Longrightarrow B) \iff (\neg B \Longrightarrow \neg A)$$

- $A \Longrightarrow B$ (mert 5 pozitív), de $B \not\Longrightarrow A$ ha például x=-6.1.32.
- 1.34. $B \Longrightarrow A$, mert az A állítás mindig igaz (ha értelmes a gyökös kifejezés). Fordítva nem igaz a következtetés, például ha x = 3.
- Egyikből sem következik a másik (mert $x^2 x 6$ gyökei -2 és 3). 1.36. Például ha x=-3 akkor A igaz de B nem, ha pedig x=3 akkor A hamis és B igaz.
- 1.38. Mindkét állítás hamis, ezért mindegyikből következik a másik (és bármely egyéb állítás).

1.40. $A \Longrightarrow B$, mert a két egyenlőtlenséget összeadva, felhasználva a háromszög egyenlőtlenséget:

$$0, 2 = 0, 1 + 0, 1 > |x - 5| + |y - 5| = |x - 5| + |5 - y| \ge |x - 5 - y + 5| = |x - y|$$

 $B \implies A$, például ha x = y = 0

1.42. $\exists k \in \mathbb{N}^+ \ 2 | k \text{ jelentése: van páros pozitív egész szám, ez igaz.}$

Tagadása: $\forall k \in \mathbb{N}^+ \ 2 \nmid k$, azaz minden pozitív egész páratlan. Ez nem igaz, például k = 2-re.

1.43. $\forall n \in \mathbb{N}^+ \ \exists k \in \mathbb{N}^+ \ n | k$ jelentése: minden n pozitív egésznek van többszöröse. Ez igaz, minden $n \in \mathbb{N}^+$ esetén legyen $k = 2 \cdot n$

Tagadása: $\exists n \in \mathbb{N}^+ \ \forall k \in \mathbb{N}^+ \ n \nmid k$, azaz van olyan $n \in \mathbb{N}^+$, amelyik egyetlen pozitív egésznek sem osztója. Ez nem igaz (mert az eredeti állítás igaz).

- 1.45. Nem hazudott. Akkor hazudott volna, hogyha a hó miatt nem járt a busz, Pistike mégis elment az iskolába.
- 1.47. 2^{98} részhalmaz esetén igaz, $2^{100} 2^{98} = 3 \cdot 2^{98}$ esetén pedig nem.
- 1.49. 1 benne van: 2⁹⁹ részhalmaz.

2 nincs benne: 2⁹⁹ részhalmaz.

1 benne van és 2 nincs benne: 2⁹⁸ részhalmaz.

1 benne van a részhalmazban vagy a 2 nincs benne: $2^{99} + 2^{99} - 2^{98} = 3 \cdot 2^{98}$

A komplementer esemény: 2^{98} részhalmaz esetén 1 nincs benne és 2 benne van

- Az üres halmaz ilyen. Ha $H \neq \emptyset$, legyen $k = \min H$. De akkor $H = \{i : k \leq i \leq n\}$. Tehát n + 1 ilyen halmaz van.
- Jelölje \mathcal{A}_n az ilyen halmazok halmazát, a_n az \mathcal{A}_n számosságát. Nyilván $a_1 = 2$ és $a_2 = 3$. Ha most n > 2, akkor legyen

 $\mathcal{B}_n = \{ A \in \mathcal{A}_n : n \notin A \} \text{ és } \mathcal{C}_n = \{ A \in \mathcal{A}_n : n \in A \land n - 1 \notin A \}$

Könnyen látható, hogy

 $A \in \mathcal{B}_n \iff \widehat{A} \in \mathcal{A}_{n-1} \text{ és } A \in \mathcal{C}_n \iff A \cap A_{n-2} \in \mathcal{A}_{n-2}.$

Tehát $a_n = a_{n-1} + a_{n-2}$. Ez az un. Fibonacci-sorozat, pontosabban $a_n = u_{n+2}$.

- 1.53. Jelölje most \mathcal{B}_n a feltételnek megfelelő halmazok halmazát, $B \in \mathcal{B}$ esetén két lehetőség van:
 - (1) Minden $x \in B$ esetén $x+1 \notin B$. Ilyen halmaz az előző feladat szerint $a_n = u_{n+2}$ darab van.
 - (2) Van olyan $x \in B$, amelyre $x + 1 \in B$. Ebben az esetben legyen $k(B) = \min \{ x \in B : x + 1 \in B \}.$

Ha most

$$b_k = |\{B \in \mathcal{B}: k(B) = k\}|,$$
akkor nyilván $b_k = a_{k-2} = u_k, \ k = 1, 2, \dots, n-1.$

Tehát $|\mathcal{B}_n| = (u_1 + u_2 + \dots + u_n) + u_{n+2}$. A Fibonacci számok összegére vonatkozó képlet a Fibonacci-sorozatról szóló feladatok közt megtalálható.

1.55.
$$\neg P \cap \neg Q$$

1.57.
$$P \cap \neg Q$$

1.59.
$$\neg P \cap \neg Q$$

1.61.
$$\neg P \cap Q$$

1.63.
$$\neg (P \Longrightarrow Q) = P \cap \neg Q$$

1.65. (b)
$$\Longrightarrow$$
 (a), (c) \Longrightarrow (d).

Más következtetés nem igaz.

1.3 Bizonyítási módszerek

Indirekt módon tegyük fel, hogy van olyan $p, q \in \mathbb{N}^+$, amelyekre $\sqrt{3}$ 1.66. $\frac{p}{q}$. Feltehetjük azt is, hogy p és q relatív prím. Átalakítás után:

$$3 = \frac{p^2}{q^2}, \quad 3q^2 = p^2.$$

Eszerint p^2 osztható 3-mal, de mivel 3 prímszám, ezért p is osztható 3-mal: $p^2=9r^2.$ Így tehát

$$3q^2 = 9r^2$$
, $q^2 = 3r^2$.

Megismételve az előző gondolatmenetet p helyett q-ra, azt kapjuk, hogy q is osztható 3-mal. ami ellentmond annak, hogy p és q relatív prím.

1.68. Indirekt módon tegyük fel, hogy

$$r = \frac{\sqrt{2}+1}{2} + 3 + 5$$

racionális. De akkor

$$(r-5)\cdot 4 = \frac{\sqrt{2}+1}{2} + 3$$

is racionális. Tovább folytatva az okoskodást, azt kapjuk, hogy $\sqrt{2}$ racionális. Ez ellentmondás. Azt, hogy $\sqrt{2}$ irracionális, ugyanúgy láthatjuk be, ahogy $\sqrt{3}$ esetén.

- 1.70. (a) Nem lehet: ha x + y racionális lenne, akkor (x + y) - x = y is az
 - (b) Nem lehet: ha x-y racionális lenne, akkor x-(x-y)=y is az
 - (c) Lehet, de csak ha x = 0.
 - (d) Lehet, de csak ha x = 0.
- 1.72. (a) Igaz.
 - (b) Nem igaz: például $a = \sqrt{2}$, $b = -\sqrt{2}$
 - (c) Nem igaz, a + b irracionális.
 - (d) Igaz.
- 1.74. Annak tagadása, hogy 1 a legnagyobb szám az, hogy 1-nél van nagyobb szám, nem pedig az, hogy egy másik szám a legnagyobb szám. A valós (vagy a természetes) számok között nincs legnagyobb!
- 1.76. Teljes indukcióval:

$$n = 1:16|16$$

n+1-re: Mivel ha k|a-b és k|b, akkor k|a, ezért elég belátni, hogy

 $16|(5^{n+2}-4(n+1)-5)-(5^{n+1}-4n-5) \text{ azaz, hogy } 16|4\cdot(5^{n+1}-1).$ Ez teljesül, ha $4|5^{n+1}-1.$ Ezt teljes indukcióval könnyű bizonyítani.

1.77. Indirekt, tegyük fel, hogy tg 1° racionális. Ekkor teljes indukcióval bebizonyítjuk, hogy minden $n \in \mathbb{N}^+$, n < 90 esetén tg n° racionális. Ez

$$tg(n+1)^{\circ} = \frac{tg \, n^{\circ} + tg \, 1^{\circ}}{1 - tg \, n^{\circ} \cdot tg \, 1^{\circ}}$$

következik a szögek összegére vonatkozó képletből: $\operatorname{tg}(n+1)^\circ = \frac{\operatorname{tg} n^\circ + \operatorname{tg} 1^\circ}{1 - \operatorname{tg} n^\circ \cdot \operatorname{tg} 1^\circ}$ Ennek a racionális kifejezésnek minden eleme racionális, így az eredmény is az. Mivel tg 30° irracionális, ellentmondásra jutottunk.

1.78. A számtani és mértani közepekre vonatkozó egyenlőtlenség szerint

$$\sqrt[n]{n!} = \sqrt[n]{1 \cdot 2 \cdots n} \le \frac{1 + 2 + \cdots n}{n} = \frac{n+1}{2}$$

 $\sqrt[n]{n!} = \sqrt[n]{1\cdot 2\cdots n} \leq \frac{1+2+\cdots n}{n} = \frac{n+1}{2}$ Mindkét oldalt az n-edik hatványra emelve a kívánt egyenlőtlenséget kapjuk.

1.79. Igaz az állítás.

Indirekt módon tegyük fel, hogy minden $a_n \ge 10^{-6}$ és így $a_n^2 \ge d = 10^{-12} > 0$. Ezért $a_{n+1} \le a_n - d$ és általában $a_{n+k} \le a_n - k \cdot d$. Tehát a $k = 10^{12} = \frac{1}{d}$ választással $a_{1+k} \le 0, 9-1 < 0 < 10^{-6}$. Ez ellentmondás.

1.81. (a) Jelölje a keresett összeget s_n , azaz

$$s_n = \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \dots + \frac{1}{(n-1) \cdot n}.$$

Kiszámoljuk s_n értékét n=2, 3, 4 esetében.

$$s_2 = \frac{1}{2}, \ s_3 = \frac{2}{3}, \ s_4 = \frac{3}{4}, \ \cdots$$

A sejtés az összegképletre:

$$s_n = \frac{n-1}{n} = 1 - \frac{1}{n}.$$

Bizonyítás teljes indukcióval: n = 2-re igaz. Tegyük fel, hogy n-re igaz az állítás.

$$s_{n+1} = \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \dots + \frac{1}{(n-1) \cdot n} + \frac{1}{n \cdot (n+1)} = s_n + \frac{1}{n \cdot (n+1)}$$

$$= \frac{n-1}{n} + \frac{1}{n \cdot (n+1)} = \frac{(n-1)(n+1)+1}{n \cdot (n+1)} = \frac{n}{n+1}$$

Egy másik bizonyítást láthatunk az 1.87. feladat megoldásánál.

(b) Most legyen $s_n = 1 + 3 + \ldots + (2n - 1)$ a páratlan számok összege.

$$s_1 = 1$$
, $s_2 = 4$, $s_3 = 9$, $s_4 = 16$, ...

A sejtés: $s_n = n^2$.

Teljes indukcióval: n=1-re igaz. Tegyük fel, hogy n-re igaz az állítás.

$$s_n + 1 = 1 + 3 + \dots + (2n - 1) + (2n + 1) =$$

= $s_n + (2n + 1) = n^2 + 2n + 1 = (n + 1)^2$

- 1.82. A jobb oldalon elvégezve az (a - b)-vel való szorzást, két tagot kivéve minden tag kiesik.
- 1.83. Első bizonyítás: Teljes indukcióval. n = 1-re az állítás igaz. Ha n-re igaz, akkor

$$(1+2+\cdots+n)+(n+1)=\frac{n(n+1)}{2}+(n+1)=\frac{(n+1)(n+2)}{2}$$

Második bizonyítás: Írjuk egymás alá kétszer az összeget, de másodszor fordított sorrendben:

$$1 + 2 + \cdots + n$$

$$n + (n-1) + \cdots + 1$$

Az így kialakult oszlopokban a számok összege n+1 és mivel n darab oszlop van, a keresett összeg kétszerese éppen n(n+1).

1.84. Teljes indukcióval. n=1-re az állítás igaz. Ha n-re igaz az állítás, akkor

$$(1^{2} + 2^{2} + \dots + n^{2}) + (n+1)^{2} = \frac{n(n+1)(2n+1)}{6} + (n+1)^{2} =$$
$$= \frac{(n+1)(n+2)(2(n+1)+1)}{6}$$

1.85. Teljes indukcióval. n = 1-re az állítás igaz. Ha n-re igaz az állítás, akkor

$$(1^{3} + 2^{3} + \dots + n^{3}) + (n+1)^{3} = \left(\frac{n(n+1)}{2}\right)^{2} + (n+1)^{3} =$$
$$= \left(\frac{(n+1)(n+2)}{2}\right)^{2}$$

1.86. Legyen s_n az egyenlőség baloldalán, t_n pedig a jobboldalán szereplő

$$s_n = 1 - \frac{1}{2} + \frac{1}{3} - \dots - \frac{1}{2n}$$

 $t_n = \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n}$

Teljes indukcióval. n=1-re az állítás igaz, azaz $s_1=t_1$. Ha n-re igaz az állítás, akkor

$$s_{n+1} = s_n + \left(\frac{1}{2n+1} - \frac{1}{2n+2}\right) =$$

$$= \left(1 - \frac{1}{2} + \frac{1}{3} - \dots - \frac{1}{2n}\right) + \left(\frac{1}{2n+1} - \frac{1}{2n+2}\right) =$$

$$= \left(\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n}\right) + \left(\frac{1}{2n+1} - \frac{1}{2n+2}\right) =$$

$$= \frac{1}{n+1} + \left(\frac{1}{n+2} + \dots + \frac{1}{2n}\right) + \left(\frac{1}{2n+1} + \frac{1}{2(n+1)} - \frac{1}{n+1}\right) =$$

$$= \frac{1}{n+2} + \frac{1}{n+3} + \dots + \frac{1}{2(n+1)} = t_{n+1}$$

 Felhasználva, hogy $\frac{1}{(k-1)k} = \frac{1}{k-1} - \frac{1}{k},$ un. teleszkopikus összeget 1.87. kapunk:

$$\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \dots + \frac{1}{(n-1)\cdot n} =$$

$$= \left(\frac{1}{1} - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \dots + \left(\frac{1}{n-1} - \frac{1}{n}\right) = 1 - \frac{1}{n}$$

1.88. Itt két teleszkopikus összegre lehet bontani az eredeti összeget, mivel

$$\begin{split} \frac{1}{k(k+1)(k+2)} &= \frac{1}{2} \left(\frac{1}{k} - \frac{2}{k+1} + \frac{1}{k+2} \right) = \\ &= \frac{1}{2} \left(\frac{1}{k} - \frac{1}{k+1} \right) - \frac{1}{2} \left(\frac{1}{k+1} - \frac{1}{k+2} \right). \end{split}$$

Tehát:

$$\begin{split} \sum_{k=1}^n \frac{1}{k(k+1)(k+2)} &= \frac{1}{2} \sum_{k=1}^n \left(\frac{1}{k} - \frac{1}{k+1} \right) - \frac{1}{2} \sum_{k=1}^n \left(\frac{1}{k+1} - \frac{1}{k+2} \right) = \\ &= \frac{1}{2} \left(\frac{1}{2} - \frac{1}{n+1} + \frac{1}{n+2} \right). \end{split}$$

1.89. A 1.83. és 1.84. feladatokban szereplő képletek felhasználásával:

$$\sum_{k=1}^{n} k(k+1) = \sum_{k=1}^{n} k^2 + \sum_{k=1}^{n} k = \frac{n(n+1)(2n+1)}{6} + \frac{n(n+1)}{2} = \frac{n(n+1)(n+2)}{3}$$

1.90. A 1.83. , 1.84. és 1.85. feladatokban szereplő képletek felhasználásával:

$$\sum_{k=1}^{n} k(k+1)(k+2) = \sum_{k=1}^{n} k^3 + 3\sum_{k=1}^{n} k^2 + 2\sum_{k=1}^{n} k =$$

$$= \left(\frac{n(n+1)}{2}\right)^2 + 3 \cdot \frac{n(n+1)(2n+1)}{6} + 2 \cdot \frac{n(n+1)}{2} =$$

$$= \frac{n(n+1)(n^2 + 5n + 6)}{4} = \frac{n(n+1)(n+2)(n+3)}{4}$$

- 1.92. Teljes indukcióval: n=0 esetén igaz. Tegyük fel, hogy n-re igaz az állítás és, hogy egy k pozitív egész szám osztója u_{n+1} -nek és u_{n+2} -nek is. De akkor k osztója $u_{n+2}-u_{n+1}=u_n$ -nek is. Mivel az indukciós feltevés szerint u_n és u_{n+1} relatív prímek, ezért k=1, tehát u_{n+1} és u_{n+2} is relatív prím számok.
- 1.93. Teljes indukcióval:

Az n = 1 és az n = 2 eset könnyen ellenőrizhető.

Tegyük fel, hogy
$$n>2$$
 és $n-1$ -re illetve $n-2$ -re igaz az állítás.
$$u_n=u_{n-1}+u_{n-2}>\frac{1,6^{n-1}}{3}+\frac{1,6^{n-2}}{3}=\frac{1,6^{n-2}}{3}(1,6+1)>\frac{1,6^{n-2}}{3}1,6^2=\frac{1,6^n}{3}$$

Másrészt
$$u_n = u_{n-1} + u_{n-2} < 1, 7^{n-1} + 1, 7^{n-2} = 1, 7^{n-2}(1, 7+1) < 1, 7^{n-2}1, 7^2 = 1, 7^n$$

- 1.94. Teljes indukcióval: Az n=1 eset mindegyik feladatnál könnyen ellenőrizhető. Tegyük fel, hogy n-re igaz a megfelelő állítás, be kell látnunk, hogy akkor n + 1-re is.
 - (a) $(u_1 + u_2 + \cdots + u_n) + u_{n+1} = u_{n+2} 1 + u_{n+1} = u_{n+3} 1$
 - (b) $u_{n+1}^2 u_n u_{n+2} = u_{n+1}^2 u_n (u_{n+1} + u_n) = u_{n+1} (u_{n+1} u_n) u_n^2 = u_{n+1} u_{n-1} u_n^2 = -(-1)^{n+1} = (-1)^{n+2}$
 - (c) $(u_1^2 + u_2^2 + \dots + u_n^2) + u_{n+1}^2 = u_n u_{n+1} + u_{n+1}^2 = u_{n+1} (u_n + u_{n+1}) = u_{n+1} (u_n + u_{n+1}$ $u_{n+1}u_{n+2}$
- Az alábbi formulák teljes indukcióval könnyen bizonyíthatók. 1.95.
 - (a) $s_n = \alpha \cdot u_{2n+1} + \beta = u_{2n+1} 1$.
 - (b) $s_n = \alpha \cdot u_{2n+2} + \beta = u_{2n+2}$.
 - (c) $s_n = \alpha \cdot u_{3n+2} + \beta = \frac{u_{3n+2} 1}{2}$.
 - (d) $s_n = u_{2n}^2$
- 1.97. Az indoklás csak akkor helyes, ha n legalább 2. Ezért az n=1 és az n=2 eseteket nem "bizonyítottuk" be.
- 1.99. Mindhárom közepet csökkentjük illetve növeljük, ha minden számot lecserélünk a legkisebbre, illetve a legnagyobbra.
- 1.101. Az a^2bc egy négytényezős szorzat. Írjuk fel a megadott 3 tagú összeget 4 tagú összegként és használjuk a számtani és mértani közepek közti egyenlőtlenséget 4 szám esetén:

$$\frac{\frac{a}{2} + \frac{a}{2} + b + c}{4} \ge \sqrt[4]{\frac{a}{2} \cdot \frac{a}{2} \cdot b \cdot c} = \sqrt[4]{\frac{1}{4}a^2bc}$$

Eszerint

$$\frac{18}{4} = \frac{9}{2} \ge \sqrt[4]{\frac{1}{4}a^2bc}$$

Negyedik hatványra emelés és átrendezés után:

$$a^2bc \le 4\left(\frac{9}{2}\right)^4$$

A jobboldalon szereplő szám a keresett maximum, hiszen $\frac{a}{2}=b=c=$ $\frac{18}{4} = \frac{9}{2}$ esetén egyenlőség van.

1.103. Használjuk a harmonikus és a számtani közepek közötti egyenlőtlensé-

$$\frac{abc}{ab + bc + ac} = \frac{1}{3} \cdot \frac{3}{\frac{1}{c} + \frac{1}{a} + \frac{1}{b}} \le \frac{1}{3} \cdot \frac{a + b + c}{3} = \frac{18}{9} = 2$$

Itt egyenlőség pontosan akkor van, ha a=b=c=6

1.105.

$$2a + b + c = 3 \cdot \frac{2a + b + c}{3} \ge 3\sqrt[3]{(2a)bc} = 3\sqrt[3]{2 \cdot 18} = 3\sqrt[3]{36}$$

Itt egyenlőség pontosan akkor van, ha $2a = b = c = \sqrt[3]{36}$

1.107. Felhasználjuk a mértani és a négyzetes közepek közötti egyenlőtlensé-

$$a^{2} + b^{2} + c^{2} = 3\left(\sqrt{\frac{a^{2} + b^{2} + c^{2}}{3}}\right)^{2} \ge 3\left(\sqrt[3]{abc}\right)^{2} = 3\left(\sqrt[3]{18}\right)^{2}$$

Itt egyenlőség pontosan akkor van, ha $a = b = c = \sqrt[3]{18}$.

1.109.

$$a + \frac{1}{a} = 2 \cdot \frac{a + \frac{1}{a}}{2} \ge 2 \cdot \sqrt{a \cdot \frac{1}{a}} = 2$$

1.112. Természetesen csak akkor értelmes a feladat, ha v > u. A v_a átlagsebesség a megtett út osztva a megtételhez szükséges t idővel:

$$v_a = \frac{2s}{t}$$

Számoljuk ki $t\text{--}t.\,$ A folyásirányban a sebesség v+u, az s úthoz szükséges idő

$$t_1 = \frac{s}{v + u}$$

Az ellenkező úton a sebesség v-u, az s úthoz szükséges idő

$$t_2 = \frac{s}{v - u}$$

Mivel $t = t_1 + t_2$

$$v_a = \frac{2s}{\frac{s}{v+u} + \frac{s}{v-u}} = \frac{2}{\frac{1}{v+u} + \frac{1}{v-u}}$$

Tehát v_a éppen a harmonikus közepe a $v+u,\ v-u$ számoknak, és ezért u>0 esetén határozottan kisebb a két szám számtani közepénél, v-nél.

1.114.

$$f(x) = x(1-x) = \left(\sqrt{x(1-x)}\right)^2 \le \left(\frac{x+(1-x)}{2}\right)^2 = \frac{1}{4}$$

Itt egyenlőség van, ha $x = 1 - x = \frac{1}{2}$

1.115.

$$f(x) = x + \frac{4}{x} = 2 \cdot \frac{x + \frac{4}{x}}{2} \ge 2 \cdot \sqrt{x \cdot \frac{4}{x}} = 4$$

A minimum ott van, ahol egyenlőség van, azaz $x = \frac{4}{r} = 2$.

1.117. Felhasználva a számtani és mértani közepek közötti egyenlőtlenséget:

$$x^{2}(1-x) = 4 \cdot \frac{x}{2} \cdot \frac{x}{2} \cdot (1-x) \le 4 \cdot \left(\frac{\frac{x}{2} + \frac{x}{2} + (1-x)}{3}\right)^{3} = \frac{4}{27}$$

Egyenlőség csak akkor van, ha $\frac{x}{2}=1-x$, azaz $x=\frac{2}{3}$. Tehát a keresett maximum: $\frac{4}{27}$.

(x,y)

Legyen $g(x) = f(x) - 3 = 2(x^2 + 1) + \frac{3}{x^2 + 1}$. A g(x) függvénynek 1.119. ugyanott van a minimuma, mint f(x)-nek. Mivel a pozitív $2(x^2 + 1)$ és $\frac{3}{x^2+1}$ számoknak a szorzata állandó (= 6), ezért az összegük akkor minimális, ha megegyeznek.

$$2(x^2+1) = \frac{3}{x^2+1}$$

Innen $x^2 = \sqrt{3/2} - 1$ és így g(x) minimuma

$$m_g = g\left(\sqrt{\sqrt{3/2} - 1}\right) = 2\left(\sqrt{3/2}\right) + \frac{3}{\sqrt{3/2}} = \frac{6}{\sqrt{3/2}} = 2\sqrt{6},$$

f(x) minimuma pedig

$$m_f = m_g + 3 = 2\sqrt{6} + 3$$

1.121. Az ábra jelöléseit használva, a téglalap területe:

$$T = 4F$$
, ahol $F = x \cdot y$ és $x^2 + y^2 = 1$.

Ezért $F = x\sqrt{1-x^2}$. Számoljuk ki F^2

$$F^2 = x^2(1 - x^2) \le \left(\frac{x^2 + (1 - x^2)}{2}\right)^2 = \frac{1}{4}.$$

Egyenlőség csak akkor van, ha $x^2 = 1 - x^2$, azaz

$$x = y = \frac{1}{\sqrt{2}}.$$

Tehát a maximális terület: T=2, mégpedig a négyzet esetén.

1.122. Az ábra a kúp és a henger egy síkmetszetét ábrázolja. Az ábra jelöléseit használva, a henger térfogata:

$$V = \pi r^2 h$$
. Mivel $\frac{h}{m} = \frac{R-r}{R}$, ezért $V = \frac{\pi m}{R} \cdot r^2 (R-r)$

Az előző feladathoz hasonlóan

$$V = \frac{4\pi m}{R} \cdot \frac{r}{2} \cdot \frac{r}{2} \cdot (R - r) \le \frac{4\pi m}{R} \left(\frac{R}{3}\right)^3 = \frac{4}{27} \cdot \frac{r}{2} \cdot$$

Egyenlőség csak akkor van, ha $\frac{r}{2} = R - r$. Ekkor a henger sugara, illetve magassága:

$$r = \frac{2}{3}R, \quad h = \frac{m}{3}$$

Tehát a maximális térfogat: $V=\frac{4}{27}\pi Rm$.

1.123. Az ábra a gömb és a henger egy síkmetszetét ábrázolja. Az ábra jelöléseit használva, a henger térfogata:

$$V = 2\pi \cdot U$$
, ahol $U = x^2 \cdot y$ és $x^2 + y^2 = 1$, $0 \le x \le 1$.

Ezért $U=x^2\sqrt{1-x^2}$. Számoljuk ki $\frac{U^2}{4}$ maximumát:

$$\frac{U^2}{4} = \frac{x^4(1-x^2)}{4} = \frac{x^2}{2} \cdot \frac{x^2}{2} \cdot (1-x^2)$$

Az itt szereplő három pozitív szám összege x-től függetlenül 1, és így szorzatuk akkor maximális, ha megegyeznek:

$$\frac{x^2}{2} = 1 - x^2 \text{ azaz } x = \frac{\sqrt{2}}{\sqrt{3}}, \ \ y = \frac{1}{\sqrt{3}}.$$

Tehát a maximális térfogat: $V = \frac{4\pi}{3\sqrt{3}}$.

1.124. Mikor az első egyenlőség mindkét oldalából kivonjuk a $\frac{c}{\sqrt{2}}$ számot, negatív számot kapunk. Ezzel beszorozva az a < c egyenlőtlenséget, az egyenlőtlenség megfordul.

1.4 Halmazok

- 1.126. A (b)-ben szereplő halmazzal: $\overline{A \cup B} = \{x : x \notin A \land x \notin B\}.$
- 1.128. Igaz az állítás.

$$x \in (A \setminus B) \iff (x \in A) \land (x \notin B) \iff (x \in A) \land (x \in \overline{B}) \iff x \in (A \cap \overline{B})$$

- 1.131. Nem igaz, legyen például $A = B = \{1\} \subset \mathbb{R}$. Ekkor $\overline{A} \setminus B = \overline{A} = \mathbb{R} \setminus \{1\}$, viszont $A \setminus \overline{B} = A = \{1\}.$
- 1.132. Nem igaz, legyen például $A = B = \{1\}$. Ekkor $(A \cup B) \setminus A = \emptyset \neq B$.
- 1.135. Igaz az állítás.

Első bizonyítás.

Megmutatjuk, hogy $A \setminus B \subset A \setminus (A \cap B)$, és azt is, hogy $A \setminus (A \cap B) \subset$ $A \setminus B$.

Legyen $x \in A \setminus B$ tetszőleges. Ekkor $x \notin B$ és ezért $x \notin A \cap B$. Mivel $x \in A$, ezért $x \in A \setminus (A \cap B)$.

Legyen most $x \in A \setminus (A \cap B)$ tetszőleges. Ekkor $x \notin A \cap B$. Mivel $x \in A$, ezért $x \notin B \setminus A$. Így tehát $x \notin (B \setminus A) \cup (A \cap B) = B$. Eszerint $x \in A \setminus B$.

Második bizonyítás. (lásd a 1.128. feladatot)

$$A \setminus (A \cap B) = A \cap \overline{(A \cap B)} = A \cap (\overline{A} \cup \overline{B}) = (A \cap \overline{A}) \cup (A \cap \overline{B}) =$$
$$= \emptyset \cup (A \cap \overline{B}) = (A \cap \overline{B}) = A \setminus B$$

1.136.

$$A \setminus (B \cup C)$$

1.138.

$$((A\cap B)\cup (A\cap C)\cup (B\cap C))\setminus (A\cap B\cap C)$$

1.140.

$$x \in \overline{(A \cup B)} \iff x \notin (A \cup B) \iff (x \notin A) \land (x \notin B) \iff (x \in \overline{A}) \land (x \in \overline{B}) \iff x \in (\overline{A} \cap \overline{B})$$

1.5 A valós számok axiómarendszere

- 1.144. (a) Nem igaz, például x = -1, A = 0 esetén.
 - (b) Igaz. Mivel az első egyenlőtlenség, |x| < A bal oldala nem negatív, ezért saját magával szorozható, azaz $|x|^2 < A^2$. Mivel $|x|^2 = |x^2|$ ezért $|x^2| < A^2$.
- 1.147. (a) A H halmaznak nincs minimuma (minimális eleme).
 - **(b)** *H*-nak nincs maximuma.
 - (c) *H*-nak van maximuma.
 - (d) A H halmaznak van minimuma.
- 1.149. A (b) állítás nem igaz, a többi igaz.

1.152.
$$\bigcap_{n=1}^{\infty} A_n = \{0\}$$
 1.153. $\bigcap_{n=1}^{\infty} B_n = \emptyset$

$$\exists x \in H \ \forall y \in H \ (x > 2 \land y \ge x^2)$$

Ez az állítás egyetlen $H\subset\mathbb{R}$ esetén sem teljesül, mert y=x választással ha x > 2 (x > 1) akkor $x < x^2$.

1.158.
$$M = \bigcap_{n=1}^{\infty} I_n = \{0\}$$

Mivel minden $n \in \mathbb{N}^+$ esetén $-1/n \le 0 \le 1/n$, azaz $0 \in I_n$, ezért $0 \in M$. Ha $x \neq 0$, akkor van olyan $k \in \mathbb{N}^+$, amelyre 1/k < |x|. Erre a k-ra $x \notin I_k = [-1/k, 1/k].$

1.159.
$$M = \bigcap_{n=1}^{\infty} I_n = \{0\}$$

1.164.
$$M = \bigcap_{n=1}^{\infty} I_n = \{0\}$$

Mivel minden $n \in \mathbb{N}^+$ esetén 0 < 1/n azaz $0 \in I_n$, ezért $0 \in M$. Ha $x \neq 0$, akkor van olyan $k \in \mathbb{N}^+$, amelyre 1/k < |x|. Erre a k-ra $x \notin I_k = [0, 1/k).$

 $\boxed{\mathbf{1.165.}} \quad M = \bigcap_{n=1}^{\infty} I_n = \emptyset$

Mivel minden $n \in \mathbb{N}^+$ esetén $0 \notin I_n$, ezért $0 \notin M$. Ha $x \neq 0$, akkor van olyan $k \in \mathbb{N}^+$, amelyre 1/k < |x|. Erre a k-ra $x \notin I_k = (0, 1/k]$.

- **1.166.** Egyedül a 1.166.e állítás igaz.
- **1.168.** Nem lehet a Cantor-axióma miatt.
- **1.174.** Nem lehet.

Akárhány zárt intervallum metszete vagy üres, vagy egy pont, vagy egy zárt intervallum. Ezért a metszet nem lehet valódi nyílt intervallum.

1.175. Lehet, de csak akkor, ha valahonnan kezdve ugyanazok az intervallumok.

Legyen ugyanis $I_n=(a_n,b_n)$. Az, hogy ezek egymásba vannak "skatulyázva", azt jelenti, hogy minden n esetén $a_n\leq a_{n+1}< b_{n+1}\leq b_n$

Legyen $a = \sup a_n$, $b = \inf b_n$. Tudjuk, hogy $a \le b$.

Négy esetet különböztetünk meg:

1) $a = \max a_n$ és $b = \min b_n$. Ez pontosan akkor teljesül, ha valahonnan

kezdve $a_n = a_{n+1}$ és $b_n = b_{n+1}$. Ekkor $\bigcap_{n=1}^{\infty} I_n = I_N = (a, b)$.

- 2) $a = \max a_n$ és a b_n -ek között nincs minimális. Ekkor $\bigcap_{n=1}^{\infty} I_n = (a, b]$, ami üres, ha a = b és nem üres balról nyílt, jobbról zárt intervallum, ha a < b.
- 3) a_n -ek között nincs maximális, de $b = \min b_n$. Ekkor $\bigcap_{n=1}^{\infty} I_n = [a, b)$.
- 4) a_n -ek között nincs maximális és a b_n -ek között nincs minimális. Ekkor $\bigcap_{n=1}^{\infty} I_n = [a,b].$
- 1.176. A Cantor-axióma kivételél minden teljesül.
- 1.180. Minden véges tizedestört alakban felírható szám racionális, de például az 1/3-nak nincs véges tizedestört alakja.

Pontosan azoknak a racionális számoknak van véges tizedestört alakja, amelyek felírhatók úgy két egész szám hányadosaként, hogy a nevezőnek csak a 2 és az 5 a prímosztói.

- **1.183.** Az I_n intervallumsorozatra két feltételt követel meg a Cantor-axióma:
 - 1. Az I_n -ek korlátos zárt intervallumok.
 - 2. Az I_n -ek "egymásba skatulyázottak", azaz a nagyobb indexű intervallum része a kisebb indexűnek.

Ha az első feltételt elhagyom, akkor például az $I_n=(0,1/n)$ nyílt intervallumsorozat metszete üres.

Ha a második feltételt hagyom el, akkor például az $I_n = [n, n+1]$ zárt intervallumsorozat metszete üres.

Megjegyzés:

a 2. feltétel helyettesíthető azzal a gyengébb feltétellel, hogy bármely véges sok intervallum metszete nem üres.

Ha a szereplő intervallumok tetszőleges típusúak és sem a bal sem a jobb végpontok sorozata nem "stabilizálódik", azaz végtelen sok különböző bal és jobb végpont van, akkor (a 2. feltétel meghagyása mellett) a metszet nem üres.

1.6 A számegyenes

1.186. $B = \{2.6\}$, amely egyetlen pontból áll. Ez a feladat mutatja, hogy a tizedes vessző használata bizonyos helyzetekben félreérthető, hiszen a $\{2,6\}$ halmaznak két eleme van.

1.187.
$$C = (2,6)$$

1.188.
$$D = \{2, 3, 4, 5, 6\}$$

1.189.
$$E = [2, 6]$$

1.190.
$$F = (2, 6]$$

1.191.
$$G = [2, 6)$$

1.192.
$$H = [2, 6] \cap \mathbb{Q}$$
, nem intervallum!

1.196. Az $A = \left\{ \frac{1}{n} : n \in \mathbb{N}^+ \right\}$ halmaz alulról korlátos, legnagyobb alsó korlátja a 0, felülről is korlátos, mert van maximuma, legnagyobb eleme az 1. Mivel alulról és felülről is korlátos, ezért korlátos.

- 1.201. Az $Ip = \{n \in \mathbb{N} : n \text{ prímszám} \land n+2 \text{ prímszám} \}$ halmaz, az úgynevezett ikerprímek halmaza alulról korlátos, hiszen például a 0 egy alsó korlát. Az, hogy felülről nem korlátos, azaz van-e végtelen sok ikerprím, a mai napig (2014. március 4.) nem ismert.
- **1.203.** Ilyen sorozat például az $a_n = (-1)^n \cdot \left(1 \frac{1}{n}\right)$, azaz

$$a_n = \begin{cases} 1 - \frac{1}{n} & \text{ha } n \text{ páros} \\ -1 + \frac{1}{n} & \text{ha } n \text{ páratlan} \end{cases}$$

- **1.206.** $\forall x \in A \ \exists y \in A \ (y < x)$
- **1.209.** $\sup(A \cup B) = \max \{ \sup A, \sup B \}, \qquad \sup(A \cap B) = \min \{ \sup A, \sup B \}.$ Ha $\sup(A \setminus B) \neq \emptyset$, azaz $A \nsubseteq B$, akkor $\sup(A \setminus B) \leq \sup A$.
- **1.214.** $A = \left\{ \frac{1}{2n-1} : n \in \mathbb{N}^+ \right\}, \quad \text{inf } A = 0, \text{ sup } A = \max A = 1, \text{ nincs minimuma.}$
- **1.216.** $A = \left\{ \frac{1}{n} + \frac{1}{\sqrt{n}} : n \in \mathbb{N}^+ \right\}$ esetén inf A = 0, $\sup A = \max A = 2$, nincs
- **1.220.** $A = \left\{ \frac{1}{n} + \frac{1}{k} : n \in \mathbb{N}^+ \right\}$ esetén inf A = 0, sup $A = \max A = 2$, nincs minimuma.
- **1.222.** Legyen $A = \left\{ \sqrt[n]{2} : n \in \mathbb{N}^+ \right\}$. Az világos, hogy sup $A = \max A = 2$. Belátjuk, hogy inf A = 1. Mivel $\sqrt[n]{2} > 1$, ezért 1 alsó korlát. Megmutatjuk, hogy tetszőleges x > 0 esetén 1 + x nem alsó korlát: Mivel a Bernoulli-egyenlőtlenség szerint $(1+x)^n \ge 1 + nx$ és 1 + nx > 2 ha $n > \frac{1}{x}$, ezért van olyan n (valahonnan kezdve mindegyik n), hogy $1 + x > \sqrt[n]{2}$.
- **1.223.** Legyen $A = \{ \sqrt[n]{2^n n} : n \in \mathbb{N}^+ \}$. Mivel minden $n \in \mathbb{N}^+$ esetén $2^n \ge n + 1$ a Bernoulli-egyenlőtlenség szerint, ezért sup $A = \min A = 1$.

Másrészt $2^n - n < 2^n$, ezért A egy felső korlátja 2. Ez egyben az A halmaz szuprémuma is, sup A = 2, mert

$$\sqrt[n]{2^n - n} \ge \sqrt[n]{2^n - 2^{n-1}} = 2 \cdot \frac{1}{\sqrt[n]{2}}$$

és az előző feladat szerint

$$\sup \left\{ \frac{1}{\sqrt[n]{2}} : n \in \mathbb{N}^+ \right\} = \frac{1}{\inf \left\{ \sqrt[n]{2} : n \in \mathbb{N}^+ \right\}} = 1$$

Mivel $2 \notin A$, ezért az A halmaznak nincs maximuma.

1.227. A szuprémum definíciója miatt elég megmutatni, hogy a B halmaz minden felső korlátja az A halmaznak is felső korlátja.

> Legyen tehát K tetszőleges felső korlátja B-nek, továbbá $a \in A$ tetszőleges. A feltétel szerint van olyan $b \in B$, amelyre $a \leq b$. Mivel Kfelső korlát, ezért $b \leq K$ is teljesül. Így tehát tetszőleges $a \in A$ esetén $a \leq K$, azaz K felső korlátja A-nak.

1.230. $\mathbf{Q} \Longrightarrow \mathbf{P}$:

$$|x-y| = |(x-A) + (A-y)| \le |x-A| + |A-y| = |x-A| + |y-A| < \varepsilon + \varepsilon = 2\varepsilon.$$

$$P \Longrightarrow Q$$
:

Legyen például $x=y=0,\ \varepsilon=1$ és A=2.

1.235. $\mathbf{P} \implies \mathbf{Q}$: Legyen például H=(1,2]. Ekkor \mathbf{P} teljesül de az a=1választás mutatja, hogy Q nem teljesül.

 $\mathbf{Q} \implies \mathbf{P}$: Legyen például $H = \{-1\}$.

Számsorozatok konvergenciája

2.1 Sorozatok határértéke

- 2.1. Mivel $a_n \to 1$, ezért megadhatók a keresett küszöbindexek.
 - (a) $\varepsilon = 0, 1$

$$|a_n - 1| = \left| 1 + \frac{1}{\sqrt{n}} - 1 \right| = \frac{1}{\sqrt{n}} < 0, 1 \iff \sqrt{n} > 10 \iff n > 10^2$$

Tehát az $n_0 = 10^2$ választás megfelel.

- (b) $\varepsilon=0,01$ Az előző megoldásban 0,1-et 0,01-re cserélve kapjuk, hogy az $n_0 = 10^4$ választás megfelel.
- 2.2. Nincs ilyen n_0 küszöbindex, ugyanis az előző feladat (a) részének megoldása szerint ha

 $n > 10^4$, akkor $|a_n - 1| < 0, 1$. Ezért ezekre az n-ekre

$$|a_n - 2| = |(a_n - 1) - (2 - 1)| \ge |1 - |a_n - 1|| > 1 - 0, 1 = 0, 9 > 0,001.$$

- 2.3. Ezek a feladatok a konvergencia definíciójában szereplő jelek (logikai kvantorok, egyenlőtlenség) sorrendjének és típusának a fontosságát mutatják meg.
 - (a) Igaz. A 2.1. feladatot általánosítva könnyen látható, hogy $a_n \to 1$ és ez a formula éppen ezt mondja.
 - (b) Nem igaz. Ez a formula pontosan akkor teljesül egy (a_n) sorozatra, ha valahonnan kezdve a sorozat minden tagja 1. A megadott sorozat nem ilyen.
 - (c) Igaz. A formula pontosan akkor teljesül egy (a_n) sorozatra, ha a sorozat korlátos. A megadott sorozat korlátos.
 - (d) Nem igaz. A formula pontosan akkor teljesül egy (a_n) sorozatra, ha van olyan nyílt (ε sugarú) intervallum az 1 körül, amelyik a sorozatnak csak véges sok tagját tartalmazza.
 - (e) Igaz. A formula pontosan akkor teljesül egy (a_n) sorozatra, ha a sorozat első tagja $a_1=1,$ ugyanis az $n_0=1$ választás minden ε esetén megfelel.
 - (f) Nem igaz. A formula pontosan akkor teljesül egy (a_n) sorozatra, ha a sorozat első tagja $a_1 \neq 1$.

2.4. Megmutatjuk, hogy elég nagy n-re $b_n > a_n$:

$$10n^2 + 25 \le 10n^2 + n^2 = 11n^2$$
, ha $n > 5$.

Másrészt
$$11n^2 < n^3$$
, ha $n > 11$.

Így az
$$N = 11$$
 választással $b_n > a_n$, ha $n > N$.

2.6. Az (a_n) a nagyobb valahonnan kezdve:

$$3^n - n^2 > 2^n + n \iff 3^n > 2^n + n^2 + n.$$

Belátjuk először, hogy valahonnan kezdve $2^n>n^2.$ A binomiális kifejtést használva

$$2^{n} = (1+1)^{n} = \sum_{k=0}^{n} \binom{n}{k} > \binom{n}{3} = \frac{n(n-1)(n-2)}{6} >$$
$$> \left(\frac{n}{2}\right)^{3} \cdot \frac{1}{6} = \frac{n^{3}}{48} > n^{2}$$

Ez teljesül ha egyrészt $n-2>\frac{n}{2},$ azaz n>4, másrészt n>48. Tehát $n>48=2^3\cdot 6$ esetén

$$2^{n} + n^{2} + n < 2^{n} + 2^{n} + 2^{n} = 3 \cdot 2^{n} < 3^{n}$$

Az egyenlőtlenség biztosan teljesül, ha

$$\left(\frac{3}{2}\right)^n = (1+0,5)^n > 3.$$

Ez utóbbi pedig a Bernoulli-egyenlőtlenség szerint igaz, ha n > 4.

Tehát összefoglalva a keresett Nszámra kapott feltételeket, az N=48 választás megfelel.

2.8. A (b_n) a nagyobb valahonnan kezdve:

Ha n > 3, akkor

$$n! = 6 \cdot (4 \cdot 5 \cdots n) > 6 \cdot 4^{n-3} = \frac{6}{4^3} 2^{2n} > 2^n$$

Az egyenlőtlenség teljesül, ha $2^n>\frac{4^3}{6}=\frac{2^7}{3},$ ez pedig akkor, ha n>8. Tehát az N=8 választás megfelel.

 \geq

2.16.

$$\sqrt[n]{2} < 1,01 = 1+0,1 \iff 2 < (1+0,1)^n$$

A Bernoulli-egyenlőtlenség szerint

$$(1+0,1)^n \ge 1+0, 1n > 0, 1n > 2$$

ha n > 20.

2.17.

$$\sqrt[n]{n} < 1,0001 \iff n < (1+10^{-4})^n$$

A binomiális kifejtést használva

$$(1+10^{-4})^n = \sum_{k=0}^n \binom{n}{k} 10^{-4k} > \binom{n}{2} 10^{-8} = \frac{n(n-1)}{2 \cdot 10^8} > \frac{n^2}{8 \cdot 10^8} > n$$

ha $n > 8 \cdot 10^8$.

2.25.

$$\sqrt{n^2 + 5} - n = (\sqrt{n^2 + 5} - n) \cdot \frac{\sqrt{n^2 + 5} + n}{\sqrt{n^2 + 5} + n} = \frac{5}{\sqrt{n^2 + 5} + n} < \frac{5}{n} < 0,01$$

ha n > 500.

2.28. $\mathbf{P} \Longrightarrow \mathbf{Q}$, mert a legkisebb tag alsó korlát, a legnagyobb pedig felső korlát

 $\mathbf{Q} \implies \mathbf{P}$, mert például az $a_n = \frac{1}{n}$ sorozat korlátos, de nincs legkisebb eleme.

2.29. (b) igaz, a többi nem igaz.

2.40.

$$\lim_{n \to \infty} \frac{2n^6 + 3n^5}{7n^6 - 2} = \frac{2}{7}$$

$$\left| \frac{2n^6 + 3n^5}{7n^6 - 2} - \frac{2}{7} \right| = \frac{7(2n^6 + 3n^5) - 2(7n^6 - 2)}{7(7n^6 - 2)} = \frac{21n^5 + 4}{7(7n^6 - 2)} < \frac{21n^5 + 4n^5}{7(7n^6 - 2n^6)} = \frac{25}{35} \cdot \frac{1}{n} < \frac{1}{n} < \varepsilon.$$

Ez utóbbi egyenlőtlenség biztosan teljesül, ha $n>\frac{1}{\varepsilon},$ és így küszöbindexnek megfelel a

$$n_0 = \left[\frac{1}{\varepsilon}\right] + 1$$

2.47.
$$\lim_{n \to \infty} (\sqrt{n^2 + 1} - n) = \lim_{n \to \infty} (\sqrt{n^2 - 1} - n) = 0, \text{ ezért } \lim_{n \to \infty} (\sqrt{n^2 + 1} + 1) = 0$$

$$\sqrt{n^2 - 1} - 2n = 0.$$

Keressünk küszöbindexet $\frac{\varepsilon}{2}$ -höz külön az $a_n=\sqrt{n^2+1}-n$ és a $b_n=\sqrt{n^2-1}-n$ sorozathoz.

$$|a_n| = \sqrt{n^2 + 1} - n = \frac{1}{\sqrt{n^2 + 1} + n} < \frac{1}{n} < \frac{\varepsilon}{2}$$

teljesül, ha $n>\frac{2}{\varepsilon}.$

$$|b_n| = n - \sqrt{n^2 - 1} = \frac{1}{n + \sqrt{n^2 - 1}} < \frac{1}{n} < \frac{\varepsilon}{2}.$$

Ez is teljesül, ha $n>\frac{2}{\varepsilon},$ tehát az $n_0=\left[\frac{2}{\varepsilon}\right]$ megfelel küszöbindexnek:

$$\left| \sqrt{n^2 + 1} + \sqrt{n^2 - 1} - 2n \right| \le \left| \sqrt{n^2 + 1} - n \right| + \left| \sqrt{n^2 - 1} - n \right| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

ha $n > n_0$.

- **2.49.** (a) Az (a_n) sorozat oszcillálva divergens.
 - (b) Az (a_n) sorozat konvergens, $a_n \to 4$.
 - (c) Az (a_n) sorozat divergens, $a_n \to \infty$.
 - (d) Az (a_n) sorozat oszcillálva divergens.

2.55. Legyen például
$$a_n = \frac{1}{n}$$
, $b_n = \frac{1}{n^2}$.

2.58. Mivel a > 0, ezért az (a_n) sorozatnak csak véges sok tagja lehet negatív, így valahonnan kezdve $\sqrt{a_n}$ értelmes.

$$\left|\sqrt{a_n} - \sqrt{a}\right| = \frac{|a_n - a|}{\sqrt{a_n} + \sqrt{a}} \le \frac{|a_n - a|}{\sqrt{a}}$$

~

Mivel $a_n \to a$, választhatunk olyan n_0 küszöbindexet, hogy $n > n_0$ esetén $|a_n - a| < \varepsilon \cdot \sqrt{a}$ legyen. Ez az n_0 megfelel a keresett küszöbindexnek:

$$\left|\sqrt{a_n} - \sqrt{a}\right| \le \frac{|a_n - a|}{\sqrt{a}} < \frac{\varepsilon \cdot a}{\sqrt{a}} = \varepsilon,$$

ha $n > n_0$.

- **2.61.** Mindegyik állítás igaz. Egyedül a (d) állítás jelenti azt, hogy $a_n \to \infty$.
- **2.66.** A sorozat nem tarthat ∞ -hez, de tarthat $-\infty$ -hez vagy egy valós számhoz
- **2.69.** A sorozat nem tarthat $-\infty$ -hez, de a többi eset lehetséges.
- 2.74.

$$\frac{\sqrt{1} + \sqrt{2} + \dots + \sqrt{n}}{n} > \frac{\sqrt{\left[\frac{n}{2}\right]} + \dots + \sqrt{n}}{n} > \frac{1}{n} \cdot \frac{n}{2} \cdot \sqrt{\left[\frac{n}{2}\right]} >$$
$$> \frac{1}{n} \cdot \frac{n}{2} \cdot \sqrt{\frac{n}{2} - 1} > K$$

ha $n > 8K^2 + 2$. Tehát megfelelő küszöbindex az $n_0 = [8K^2 + 2] + 1$.

2.81. A feltétel szerint van olyan N szám, hogy n > N esetén

$$a_{n+1} - a_n > d = \frac{c}{2} > 0.$$

Teljes indukcióval könnyen látható, hogy n > N esetén

$$a_n > a_N + d \cdot (n - N)$$
.

Mivel $\lim_{n\to\infty}(a_N+d\cdot(n-N))=\infty$, ezért a rendőr-szabály szerint $\lim_{n\to\infty}a_n=\infty$.

2.2 A határérték tulajdonságai

2.84. Mivel $\frac{1}{n} \to 0$ és $\frac{2}{n} \to 0$, ezért a rendőr-szabály szerint $b_n \to 0$.

- **2.89.** Semmit sem lehet mondani a (b_n) viselkedéséről, tarthat bárhova és lehet oszcillálva divergens is.
- **2.91.** Elég megmutatni, hogy a_{2n} és a_{2n+1} ugyanoda tart, mert a két részsorozatra kapott küszöbindexek közül a nagyobbik az egész sorozatra is megfelel.

Az a_{6n} közös részsorozata $a_{2n}\text{-nek}$ és $a_{3n}\text{-nek},$ ezért

$$\lim_{n \to \infty} a_{2n} = \lim_{n \to \infty} a_{3n}.$$

Másrészt az a_{6n+3} közös részsorozata a_{2n+1} -nek és a_{3n} -nek, ezért

$$\lim_{n \to \infty} a_{2n+1} = \lim_{n \to \infty} a_{3n}.$$

2.95. Mivel a > 0, valahonnan kezdve $\frac{a}{2} < a_n < 2a$, és ezért

$$\sqrt[n]{\frac{a}{2}} < \sqrt[n]{a_n} < \sqrt[n]{2a}.$$

Mivel tetszőleges $c \in \mathbb{R}^+$ esetén $\sqrt[n]{c} \to 1$, ezért a rendőr-szabály szerint $\sqrt[n]{a_n} \to 1$.

2.100.

$$b_n = \frac{a_n - 1}{a_n + 1} = \frac{a_n + 1 - 2}{a_n + 1} = 1 - \frac{2}{a_n + 1} \to 0$$

Fejezzük ki a_n -t b_n segítségével:

$$\frac{2}{a_n+1} = 1 - b_n, \qquad a_n+1 = \frac{2}{1-b_n}, \qquad a_n = \frac{2}{1-b_n} - 1$$

A határérték műveleti szabályait alkalmazva kapjuk, hogy $a_n \to 1$.

- **2.102.** Valahonnan kezdve $0 \le \sqrt[n]{a_n} < 0, 5$, és ezért $0 \le a_n < 0, 5^n \to 0$.
- **2.107.** $\mathbf{P} \Rightarrow \mathbf{Q}$: legyen például $a_n = \frac{1}{\sqrt{n}}$

 $\mathbf{Q} \Longrightarrow \mathbf{P}$: Legyen $\lim_{n \to \infty} a_n = a > 0$.

Első eset: $a = \infty$. Ekkor van olyan N küszöbindex, hogy n > N esetén

$$a_n > 1 \ge \frac{1}{n}.$$

Második eset: $0 < a < \infty$: Válasszunk az $\varepsilon = \frac{a}{2}$ -höz egy N küszöbindexet, amelyre

$$|a_n - a| < \varepsilon$$
 és $\frac{1}{n} < \varepsilon$.

ha n > N. De akkor

$$\frac{1}{n} < \varepsilon = \frac{a}{2} = a - \varepsilon < a_n.$$

- 2.111. Az állításból következik, hogy $a_n \to \infty$, "rendőr-szabály a végtelenre": Legyen ugyanis $K \in \mathbb{R}$ tetszőleges. Mivel $b_n \to \infty$, ezért van olyan N küszöbindex, hogy n > N esetén $K < b_n$. De a feltétel szerint ezekre az n-ekre $K < a_n$ is igaz.
- 2.114. Semmi sem következik: az (a_n) sorozat lehet konvergens, például ha $a_n = 0$, tarthat ∞ -hez, például ha $a_n = b_n - 1$ vagy $-\infty$ -hez, például ha $a_n = -n$, de lehet oszcillálva divergens is, például ha $a_n = (-1)^n$.
- 2.118. Korlátos, mert konvergens,

$$\lim_{n \to \infty} \frac{\sqrt{1} + \sqrt{2} + \dots + \sqrt{n}}{n^2} = 0,$$

$$0 < \frac{\sqrt{1} + \sqrt{2} + \dots + \sqrt{n}}{n^2} \le \frac{\sqrt{n} + \sqrt{n} + \dots + \sqrt{n}}{n^2} = \frac{n\sqrt{n}}{n^2} = \frac{1}{\sqrt{n}} \to 0.$$

Mivel valahonnan kezdve $2^n < \frac{1}{2}3^n$, ezért 2.120.

$$\frac{3}{\sqrt[n]{2}} = \sqrt[n]{3^n - \frac{1}{2}3^n} < \sqrt[n]{3^n - 2^n} < \sqrt[n]{3^n} = 3,$$

ha n elég nagy. Az egyenlőtlenség baloldala $\frac{3}{\sqrt[n]{2}} \to 3$, és ezért a rendőrszabály szerint

$$\sqrt[n]{3^n-2^n} \rightarrow 3.$$

2.125. Hozzuk egyszerűbb alakra a sorozat tagjait:

$$a_n = \frac{1 - 2 + 3 - \dots - 2n}{\sqrt{n^2 + 1}} = \frac{(1 - 2) + (3 - 4) + \dots + (2n - 1 - 2n)}{\sqrt{n^2 + 1}} = \frac{n}{\sqrt{n^2 + 1}}$$

Végig osztva a számlálót és a nevező a nevező nagyságrendjével, n-nel, kapjuk, hogy

$$a_n = -\frac{n}{\sqrt{n^2 + 1}} = -\frac{1}{\sqrt{1 + \frac{1}{n^2}}} \to -1.$$

2.131. A 2.181. feladat szerint $\left(1+\frac{1}{n}\right)^n$ monoton növő sorozat, és ezért $\left(1+\frac{1}{n}\right)^n \geq 2.$

$$a_n = \left(1 + \frac{1}{n}\right)^{n^2} = \left[\left(1 + \frac{1}{n}\right)^n\right]^2 \ge 2^n \to \infty.$$

2.140. Ennél a törtnél a nevező "nagyságrendje" 7^n , de a váltakozó előjel problémát okoz. Megmutatjuk, hogy $a_n = \frac{2^n + 3^n}{4^n + (-7)^n} \to 0$. Ehhez elég azt megmutatni, hogy $|a_n| \to 0$.

$$|a_n| = \left| \frac{2^n + 3^n}{4^n + (-7)^n} \right| \le \frac{2^n + 3^n}{7^n - 4^n} = \frac{\left(\frac{2}{7}\right)^n + \left(\frac{3}{7}\right)^n}{1 - \left(\frac{4}{7}\right)^n} \to 0.$$

2.146. $P \implies Q$: legyen

$$a_n = \left\{ \begin{array}{ccc} 1 & \text{ ha } n \text{ páros} \\ 1/n & \text{ ha } n \text{ páratlan} \end{array} \right., \qquad b_n = \left\{ \begin{array}{ccc} 1/n & \text{ ha } n \text{ páros} \\ 1 & \text{ ha } n \text{ páratlan} \end{array} \right.$$

$$\mathbf{Q} \Rightarrow \mathbf{P}$$
: legyen $a_n = \frac{1}{n}, \quad b_n = n$

Megjegyzés: Ha az egyik sorozat 0-hoz tart, a másik pedig korlátos, akkor igaz, hogy $a_n \cdot b_n$ tart 0-hoz.

- (a) $\frac{a_n}{b_n}$ konvergens és $\lim_{n\to\infty} \frac{a_n}{b_n} > 0$: $a_n = n, \quad b_n = n+1$. (b) $\frac{a_n}{b_n}$ konvergens és $\lim_{n\to\infty} \frac{a_n}{b_n} = 0$: $a_n = n, \quad b_n = n^2$. 2.152.

 - (c) $\frac{a_n}{b_n}$ divergens és $\lim_{n\to\infty} \frac{a_n}{b_n} = \infty$: $a_n = n^2, b_n = n.$
 - (d) $\frac{a_n}{b_n}$ oszcillálva divergens: $a_n = \begin{cases} n & \text{ha } n \text{ páros} \\ n^2 & \text{ha } n \text{ páratlan} \end{cases}$, $b_n = \begin{cases} n^2 & \text{ha } n \text{ páros} \\ n & \text{ha } n \text{ páratlan} \end{cases}$
- $\mathbf{P} \implies \mathbf{Q}$: legyen például $a_n = n+1, \quad b_n = n.$

 $\mathbf{Q} \implies \mathbf{P} \text{: Mivel } b_n \to \infty \text{ ezért } \frac{1}{b_n} \to 0 \text{ és így } \frac{a_n - b_n}{b_n} = \frac{a_n}{b_n} - 1 \to 0.$

2.3 Monoton sorozatok

- 2.159. Két pozitív tagú monoton növő/csökkenő sorozat szorzata monoton nő/csökken.
 - Két negatív tagú monoton növő/csökkenő sorozat szorzata monoton csökken/nő.
 - Egy pozitív tagú monoton növő és egy negatív tagú monoton csökkenő sorozat szorzata monoton csökken.
 - Egy pozitív tagú monoton csökkenő és egy negatív tagú monoton növő sorozat szorzata monoton nő.

Más esetekben nem állíthatjuk biztosan, hogy a szorzat monoton.

Teljes indukcióval könnyen bizonyítható, hogy $a_n > a_1 \cdot (1,1)^{n-1}$. Elég 2.164. tehát találnunk egy olyan n-et, amelyre $1, 1^{n-1} > \frac{10^6}{a_1}$. A Bernoulliegyenlőtlenség szerint

$$1, 1^{n-1} = (1+0, 1)^{n-1} \ge 1 + (n-1) \cdot 0, 1 > (n-1) \cdot 0, 1 > \frac{10^6}{a_1}.$$

Ez biztosan teljesül, ha $n-1>\frac{10^7}{a_1}$, azaz ha $n>\frac{10^7}{a_1}+1$.

2.168. Első lépésként belátjuk, hogy a sorozat minden tagja pozitív, de ez teljes indukcióval nyilvánvaló. Most már jobb alsó becslést is mondhatunk a sorozat tagjaira: a (két tagú) számtani és mértani közepek közötti egyenlőtlenség szerint

$$a_{n+1} = \frac{1}{2} \left(a_n + \frac{a}{a_n} \right) \ge \sqrt{a_n \cdot \frac{a}{a_n}} = \sqrt{a}.$$

Belátjuk, hogy n=2-től kezdve az (a_n) sorozat monoton csökken. Felhasználva, hogy $a_n>0$

$$\frac{1}{2}\left(a_n + \frac{a}{a_n}\right) \le a_n \iff a_n^2 + a \le 2a_n^2 \iff a_n^2 \ge a \iff a_n \ge \sqrt{a}.$$

De az előbb már beláttuk, hogy minden $n \geq 2$ esetén $a_n \geq \sqrt{a}$, tehát a sorozat monoton csökken és (alulról) korlátos, de akkor konvergens. Legyen $\lim_{n \to \infty} a_n = b$, és persze $b \geq \sqrt{a}$. De akkor $\lim_{n \to \infty} a_{n+1} = b$ is igaz. Másrészt

$$a_{n+1} = \frac{1}{2} \left(a_n + \frac{a}{a_n} \right) \to \frac{1}{2} \left(b + \frac{a}{b} \right).$$

Tehát

$$\frac{1}{2}\left(b + \frac{a}{b}\right) = b \iff b = \sqrt{a}.$$

2.173. A rekurzív képletből könnyű kiolvasni, hogy $a_n \ge 0$ (sőt azt is, hogy $a_n \ge \sqrt{2}$, ha n > 1). Másrészt teljes indukcióval bizonyítjuk, hogy $a_n < 2$.

n=1 re ez igaz. Tegyük fel, hogy n-re igaz, hogy $a_n < 2$.

$$a_{n+1} = \sqrt{2 + a_n} < \sqrt{2 + 2} = 2.$$

Megmutatjuk, hogy a sorozat monoton nő. Oldjuk meg a $\sqrt{2+x} \ge x$ egyenlőtlenséget a nemnegatív számok körében:

$$\sqrt{2+x} \geq x \iff 2+x \geq x^2 \iff x^2-x-2 \leq 0 \iff 0 \leq x \leq 2.$$

Mivel már beláttuk, hogy $0 \le a_n < 2$, ezért x helyébe írhatunk a_n -et, és így $a_{n+1} \ge a_n$. Tehát (a_n) monoton nő és (felülről) korlátos, ezért konvergens. Legyen $a = \lim_{n \to \infty} a_n$. Mivel a sorozat tagjai nemnegatívok, ezért $a \ge 0$. A határérték műveleti szabályai és a rekurzív képlet miatt

$$a = \sqrt{2+a} \iff a = 2.$$

2.180. $a_1 > 0$ és ha $a_n > 0$, akkor $a_{n+1} = a_n + \frac{1}{a_n^3 + 1} > 0$, ezért minden n-re $a_n > 1$. A rekurzív képlet szerint

$$a_{n+1} - a_n = \frac{1}{a_n^3 + 1} > 0,$$

tehát a sorozat (szigorúan) monoton nő. Indirekt módon megmutatjuk, hogy a sorozat nem konvergens és ezért nem is korlátos. Ha $\lim_{n\to\infty} a_n = a$, akkor $a\geq 0$, mert $a_n\geq 0$, és ezért $a^3+1\neq 0$.

$$a = a + \frac{1}{a^3 + 1}.$$

De ennek az egyenletnek nincs megoldása! Tehát (a_n) monoton nő és nem korlátos, ezért $a_n \to \infty$.

2.181. Megmutatjuk, hogy a sorozat szigorúan monoton nő. Felhasználva az n+1 tagú számtani és mértani közepek egyenlőtlenségét

$$\left(1 + \frac{1}{n}\right)^n = 1 \cdot \left(1 + \frac{1}{n}\right)^n < \left(\frac{1 + n \cdot \left(1 + \frac{1}{n}\right)}{n+1}\right)^{n+1} = \left(1 + \frac{1}{n+1}\right)^{n+1}.$$

Most belátjuk, hogy

$$\left(1+\frac{1}{n}\right)^n < 4 \iff \frac{1}{4}\left(1+\frac{1}{n}\right)^n < 1.$$

Most n+2tagra használva a számtani és mértani közepek egyenlőtlenségét

$$\frac{1}{4}\left(1+\frac{1}{n}\right)^n = \frac{1}{2} \cdot \frac{1}{2}\left(1+\frac{1}{n}\right)^n < \left(\frac{\frac{1}{2}+\frac{1}{2}+n\cdot\left(1+\frac{1}{n}\right)}{n+2}\right)^{n+2} = 1.$$

Tehát az $\left(1+\frac{1}{n}\right)^n$ sorozat konvergens. A sorozat határértékét **Euler-konstansnak** nevezzük és e-vel jelöljük. Belátható, hogy 2 < e < 3, e irracionális (sőt transzcendens) és e = 2,71...

2.4 A Bolzano-Weierstrass-tétel és a Cauchy-kritérium

2.186. $\mathbf{P} \implies \mathbf{Q}$: legyen $a_n = (-1)^n$

> $\mathbf{Q} \Longrightarrow \mathbf{P}$: Ha (a_n) konvergens, akkor minden részsorozata is konvergens (és ugyanoda tart).

- 2.189. Ez a feltétel nem elég (viszont szükséges) a konvergenciához. Ha például $a_n = \sqrt{n}$, akkor $\sqrt{n+1} - \sqrt{n} \to 0$ de $\sqrt{n} \to \infty$.
- 2.195. Az (a_n) sorozatnak pontosan akkor nincs konvergens részsorozata a Bolzano-Weierstrass-tétel szerint, ha nincs korlátos részsorozata.

Ez akkor igaz, ha minden K > 0 valós számra csak véges sok tagja van a sorozatnak a [-K, K] intervallumban, azaz véges sok n kivételével $|a_n| > K$.

Ez pedig éppen azt jelenti, hogy $|a_n| \to \infty$.

2.198. Belátjuk, hogy a sorozatra teljesül a Cauchy-kritérium. Legyen $\varepsilon > 0$ tetszőleges, továbbá n < m.

$$|a_n - a_m| = |(a_{n+1} - a_n) + (a_{n+2} - a_{n+1}) + \dots + (a_m - a_{m-1})| \le$$

$$\le |a_{n+1} - a_n| + |a_{n+2} - a_{n+1}| + \dots + |a_m - a_{m-1}| \le$$

$$\le 2^{-n} + 2^{-(n+1)} + \dots + 2^{-(m-1)} =$$

$$= 2^{-n} \cdot 2 \cdot \left(1 - 2^{-(m-n)}\right) < 2^{-(n-1)}.$$

Mivel $2^{-(n-1)} \to 0$, ezért valahonnan kezdve

$$|a_n - a_m| < 2^{-(n-1)} < \varepsilon.$$

2.5 Sorozatok nagyságrendje

2.203.

$$n^n \sim n! + n^n, \qquad \sqrt{n} \sim \sqrt{n+1}.$$

Más aszimptotikusan egyenlő pár nincs a sorozatok között. Habár $\frac{\sqrt[n]{2}}{\sqrt[n]{n}} \to 1$, de ezek a sorozatok nem tartanak ∞ -hez.

2.210.

$$\frac{3,01^n}{2^n+3^n} = \frac{\left(\frac{3,1}{3}\right)^n}{\left(\frac{2}{3}\right)^n+1}.$$

Itt a számláló ∞ -hez tart, mert $\frac{3,1}{3}>1$, a nevező pedig 1-hez, mert $\frac{2}{3}<1$. Tehát

$$\lim_{n \to \infty} \frac{3,01^n}{2^n + 3^n} = \infty.$$

2.216. A nevező nagyságrendje 2^n .

$$\frac{n! - 3^n}{n^{10} - 2^n} = \frac{\frac{n!}{2^n} - \left(\frac{3}{2}\right)^n}{\frac{n^{10}}{2^n} - 1}.$$

Mivel $\frac{n^{10}}{2^n} \to 0$, ezért a nevező -1-hez tart. Viszont a számláló még mindig kritikus, két végtelenhez tartó sorozat különbsége. Felhasználva, hogy $n! > \left(\frac{n}{4}\right)^n$,

$$\frac{n!}{2^n} - \left(\frac{3}{2}\right)^n > \left(\frac{n}{8}\right)^n - \left(\frac{3}{2}\right)^n > \left(\frac{24}{8}\right)^n - \left(\frac{3}{2}\right)^n >$$

$$> 2 \cdot \left(\frac{3}{2}\right)^n - \left(\frac{3}{2}\right)^n = \left(\frac{3}{2}\right)^n,$$

ha $n \geq 24.$ Így tehát a számláló
 $\infty\text{-hez}$ tart és

$$\frac{n! - 3^n}{n^{10} - 2^n} \to -\infty.$$

2.6 Vegyes feladatok

2.222. A sorozat nem áll elő az (1/n) sorozat **véges sok** tagú összegeként, hiszen az a_n -ben szereplő összeg tagjainak a száma tart végtelenhez. Tehát az első okoskodás a hibás.

2.225. $a_n \to 0$.

Ugyanis van olyan Nküszöbindex, hogyn>Nesetén

$$0 < \sqrt[n]{a_n} < \frac{2}{3} \iff 0 < a_n < \left(\frac{2}{3}\right)^n$$

Mivel $\left(\frac{2}{3}\right)^n \to 0$, ezért a rendőr-szabály szerint $a_n \to 0$.

 $a_n^n \to 0$. 2.228.

Ugyanis van olyan Nküszöbindex, hogyn>Nesetén

$$0 < a_n < \frac{2}{3}, \iff 0 < a_n^n < \left(\frac{2}{3}\right)^n$$

Mivel $\left(\frac{2}{3}\right)^n \to 0$, ezért a rendőr-szabály szerint $a_n^n \to 0$.

Legyen például $a_n = \frac{1}{n}$. 2.232.

Valós függvények határértéke, folytonossága

3.1 Függvények globális tulajdonságai

- 3.3. Igen, függvény. A neve Dirichlet-függvény.
- $-\infty < x < 0.$ 3.8.
- 3.11. Írjuk fel a függvények értelmezési tartományát és a függvény formulát egyszerűbb alakban:

(a)
$$f_1(x) = x,$$

 $D_{f_1} = (-\infty, \infty)$

(b)
$$f_2(x) = \sqrt{x^2} = |x|,$$

 $D_{f_2}(-\infty, \infty)$

(c)
$$f_3(x) = (\sqrt{x})^2 = x$$
 (d) $f_4(x) = \ln e^x = x$ $D_{f_3} = [0, \infty)$ $D_{f_4} = (-\infty, \infty)$

(d)
$$f_4(x) = \ln e^x = x$$

 $D_{f_4} = (-\infty, \infty)$

(e)
$$f_5(x) = e^{\ln x} = x$$

 $D_{f_5} = (0, \infty)$

(e)
$$f_5(x) = e^{\ln x} = x$$

 $D_{f_5} = (0, \infty)$
 (f) $f_6(x) = (\sqrt{-x})^2 = |x|$
 $D_{f_6} = (-\infty, 0]$

Mivel két függvény pontosan akkor egyezik meg, ha megegyezik az értelmezési tartományuk és minden helyen ugyanazt az értéket veszik fel, ezért csak az f_1 és az f_4 függvények egyeznek meg egymással.

- 3.14. Páratlan.
- 3.19. Páros.
- 3.22. Páros is és páratlan is.
- 3.25. Se nem páros, se nem páratlan.

- **3.28.** Igaz.
- Nem igaz, például $f(x) = \begin{cases} x & \text{ha } x \neq -5 \\ 5 & \text{ha } x = -5 \end{cases}$ 3.29.
- A ct
gxés az $\frac{1}{x}$ függvény az egész értelmezési tartományán (szigorúan) csökken, a többinek vannak monoton növő szakaszai. 3.34.

Igaz. Két szigorúan monoton csökkenő (növő) függvény összege szigorúan monoton csökken (nő).

3.39. Általában nem igaz, például ha f(x) = g(x) = -x, akkor $f(x) \cdot g(x) =$ x^2 nem (mindenütt) csökken.

> Ha viszont mindkét függvény pozitív és szigorúan monoton csökken (nő), akkor a szorzatuk is szigorúan monoton csökken (nő).

- 3.43. Alulról korlátos, legnagyobb alsó korlát a 0. Felülről nem korlátos.
- 3.47. Alulról korlátos, legnagyobb alsó korlát a 0. Felülről is korlátos, legkisebb felső korlát az 1.
- 3.51. $\forall x \in \mathbb{R} (f(x) \le f(3)).$ Például $f(x) = -(x-3)^2.$
- 3.54. $\forall x \in \mathbb{R} \ \exists y \in \mathbb{R} \ (f(y) < f(x)).$ Például f(x) = x.
- **3.60.** m = -1, M = 1.3.57. $m=0,\,M$ nem létezik.
- 3.63. 3.66. $m = -1, \quad M = 0.$ Például $\operatorname{arctg} x$.
- Például $f(x) = \begin{cases} x & \text{ha } -1 < x < 1 \\ 0 & \text{ha } x = -1 \text{ vagy } x = 1 \end{cases}$ 3.68.
- 3.74. 3.76.
- 3.78. 3.79. 2π 2π
- 3.82. A Dirichlet-függvénynek minden nem nulla racionális szám periódusa, ezért nincs legkisebb periódusa.
- 3.86. A \sqrt{x} függvény (szigorúan) konkáv a $(0, \infty)$ félegyenesen.

Elég belátni, hogy minden 0 < a < x < b esetén

$$\sqrt{x} > \frac{\sqrt{b} - \sqrt{a}}{b - a}(x - a) + \sqrt{a}$$

azaz

$$\frac{\sqrt{x} - \sqrt{a}}{x - a} > \frac{\sqrt{b} - \sqrt{a}}{b - a}.$$

Átalakítás után

$$\frac{1}{\sqrt{x}+\sqrt{a}} > \frac{1}{\sqrt{b}+\sqrt{a}} \iff \sqrt{b}+\sqrt{a} > \sqrt{x}+\sqrt{a} \iff \sqrt{b} > \sqrt{x}.$$

Mivel a feltevés szerint 0 < x < b, ezért az utolsó egyenlőtlenség igaz.

3.92. $\mathbf{P} \implies \mathbf{Q}$: Például $f(x) = \sin \pi x$

> $\mathbf{Q} \implies \mathbf{P} \colon \mathrm{Ha}$ az f(x) függvény konvex (-1,3)-on, akkor minden -1 < a < b < 3 és 0 < t < 1 esetén

$$f(ta + (1-t)b) \le tf(a) + (1-t)f(b).$$

Az $a=0,\ b=2,\ t=\frac{1}{2}$ választással épp a **P**-ben szereplő egyenlőtlenséget kapjuk.

3.96. A húr egyenlete

$$h(x) = \frac{\log_7 4 - \log_7 2}{4 - 2}(x - 2) + \log_7 2 = \frac{\log_7 2}{2}x.$$

Írjunk x helyébe 3-at. Mivel $\log_7 x$ konkáv, ezért

$$\log_7 3 \ge h(3) = \frac{3\log_7 2}{2} = \frac{\log_7 8}{2} = \frac{\log_7 2 + \log_7 4}{2}.$$

3.100. Mivel a függvény a [2, 4] intervallumon egyszerre konvex és konkáv, ezért itt csak lineáris kifejezés lehet. Legyen például

 $f(x) = \begin{cases} (x-2)^2 & \text{ha } 1 \le x \le 2\\ 0 & \text{ha } 2 < x \le 4\\ -(x-4)^2 & \text{ha } 4 < x \le 5 \end{cases}$

- **3.112.** Az x, x^3 , $\sqrt[3]{x}$ és az $f(x) = \begin{cases} 1/x & \text{ha } x \neq 0 \\ 0 & \text{ha } x = 0 \end{cases}$ függvények bijekciók, a többi nem az.
- $f(x) = x^2$ invertálható $[0, \infty)$ -en, itt $f^{-1}(x) = \sqrt{x}$ és $(-\infty, 0]$ -n, itt $f^{-1}(x) = \sqrt{-x}.$
- 3.116. $f(x) = \sin x$ tetszőleges $n \in \mathbb{Z}$ esetén invertálható a $[-\pi/2 + n\pi, \pi/2 + n\pi]$ $n\pi$] intervallumon. Az inverz függvény minden esetben a [-1,1] zárt

intervallumon van értelmezve. Ha $\arcsin x$ jelöli a $\sin x$ inverzét a $[-\pi/2, \pi/2]$ intervallumon, akkor a $[-\pi/2 + n\pi, \pi/2 + n\pi]$ intervallumon

$$f^{-1}(x) = \left\{ \begin{array}{ll} n\pi + \arcsin x & \text{ ha } n \text{ páros} \\ n\pi - \arcsin x & \text{ ha } n \text{ páratlan} \end{array} \right.$$

vagy másképp felírva

$$f^{-1}(x) = n\pi + (-1)^n \arcsin x.$$

- 3.122. (a) Van ilyen, de csak egy, az azonosan nulla függvény. Az, hogy egy függvény grafikonja szimmetrikus az x tengelyre, pontosan akkor teljesül, ha minden $x \in D_f$ esetén f(x) = -f(x).
 - **(b)** Van, például az $f(x) = x^2$ függvény. Az, hogy egy függvény grafikonja szimmetrikus az y tengelyre, pontosan akkor teljesül, ha minden $x \in D_f$ esetén f(-x) = f(x), azaz a függvény páros.
- 3.125. Belátjuk, hogy az f(x) függvénynek a 4 periódusa. Előbb fejezzük ki f(x+2)-t f(x) segítségével:

$$f(x+2) = \frac{1+f(x+1)}{1-f(x+1)} = \frac{1+\frac{1+f(x)}{1-f(x)}}{1-\frac{1+f(x)}{1-f(x)}} = -\frac{1}{f(x)}.$$

Mivel ez minden x-re igaz,

$$f(x+4) = -\frac{1}{f(x+2)} = -\frac{1}{-\frac{1}{f(x)}} = f(x).$$

3.128. A $h = g \circ f$ függvény mindenütt értelmezve van és h(x) = g(f(x)) =x. A q(x) függvény mégsem az f függvény inverze, mert értelmezési tartománya bővebb mint f értékkészlete.

3.2 A határérték

3.130.

$$(\mathbf{a})\lim_{x\to -2} f(x) = 0$$

(b)
$$\lim_{x \to -1} f(x) = -1$$

(a) $\lim_{x \to -2} f(x) = 0$ (b) $\lim_{x \to -1} f(x) = -1$ (c) $\lim_{x \to 0} f(x)$ nem létezik.

3.133. Igazak: (b), (d), (e), (f).

Hamisak: (a), (c), (g), (h), (i), (j), (k), (l).

 $\lim_{x \to 3} 5x = 5 \cdot \lim_{x \to 3} x = 5 \cdot 3 = 15$ 3.136.

3.139.
$$\lim_{x \to 1} \frac{-2}{7x - 3} = \frac{-2}{7 \cdot 1 - 3} = -\frac{1}{2}$$

3.142.
$$\lim_{x \to \pi/2} x \sin x = \frac{\pi}{2} \sin \frac{\pi}{2} = \frac{\pi}{2}$$

3.148.
$$\frac{t^2+t-2}{t^2-1} = \frac{(t-1)(t+2)}{(t-1)(t+1)} = \frac{t+2}{t+1} \xrightarrow[t \to 1]{} = \frac{3}{2}$$

3.149.
$$\frac{t^2+3t+2}{t^2-t-2} = \frac{(t+1)(t+2)}{(t+1)(t-2)} = \frac{t+2}{t-2} \xrightarrow[t\to -1]{} -\frac{1}{3}$$

3.154. Bővítsük a törtet $\sqrt{x} + 1$ -gyel (a számláló "gyöktelenítése").

$$\frac{\sqrt{x}-1}{x-1} = \frac{(\sqrt{x}-1)(\sqrt{x}+1)}{(x-1)(\sqrt{x}+1)} = \frac{x-1}{(x-1)(\sqrt{x}+1)} = \frac{1}{\sqrt{x}+1} \xrightarrow{x\to 1} \frac{1}{2}$$

3.155. A $t = 1 + x^2$ helyettesítést elvégezve és az előző feladat eredményét felhasználva:

$$\lim_{x \to 0} \frac{\sqrt{1+x^2}-1}{x^2} = \lim_{t \to 1} \frac{\sqrt{t}-1}{t-1} = \frac{1}{2}$$

Helyettesítés nélkül, "gyöktelenitéssel":

$$\frac{\sqrt{1+x^2}-1}{x^2} = \frac{\sqrt{1+x^2}-1}{x^2} \cdot \frac{\sqrt{1+x^2}+1}{\sqrt{1+x^2}+1} = \frac{x^2}{x^2(\sqrt{1+x^2}+1)} = \frac{1}{\sqrt{1+x^2}+1} \xrightarrow[x\to 0]{} \frac{1}{2}$$

3.156. Mivel a $\sin x$ páratlan függvény, ezért elég a "jobboldali" határértéket kiszámolni. Ha $0 < x < \frac{\pi}{2}$, akkor

$$0 < \sin x < x < \operatorname{tg} x$$

Osszuk el az egyenlőtlenségeket a pozitív $\sin x$ -szel:

$$1 < \frac{x}{\sin x} < \frac{1}{\cos x}$$

Mivel a szereplő kifejezések mind pozitívak, vehetjük az egyenlőtlenségek reciprokait:

$$\cos x < \frac{\sin x}{x} < 1$$

Tudjuk, hogy $\lim_{x\to 0} \cos x = 1$, mert a $\cos x$ függvény folytonos a 0-ban. Ezért alkalmazható a rendőr-szabály:

$$\lim_{x \to 0} \frac{\sin x}{x} = 1.$$

3.157. Bővítsük a törtet $1 + \cos x$ -szel:

$$\frac{1 - \cos x}{x^2} = \frac{(1 - \cos x)(1 + \cos x)}{x^2(1 + \cos x)} = \frac{\sin^2 x}{x^2} \cdot \frac{1}{1 + \cos x} \to \frac{1}{2}$$

 $\frac{\operatorname{tg} 2x}{x} = \frac{\operatorname{tg} 2x}{2x} \cdot 2 = \frac{\sin 2x}{2x} \cdot \frac{2}{\cos 2x} = \frac{\sin t}{t} \cdot \frac{2}{\cos t} \xrightarrow[t \to 0]{} 2.$ 3.162. Itt felhasználtuk, hogy $t = 2x \rightarrow 0$ ha $x \rightarrow 0$

3.167. Osszuk el a számlálót és a nevező a nevező nagyságrendjével, x-szel. Ezzel megszüntetjük a határérték "kritikusságát", a $\frac{\infty}{\infty}$ esetet. Ha x>0, akkor

$$\frac{2x^2 - 7x + 1}{\sqrt{x^2 + 1} + 1} = \frac{2x - 7 + \frac{1}{x}}{\sqrt{1 + \frac{1}{x^2} + \frac{1}{x}}} \to \infty, \text{ ha } x \to \infty.$$

A $-\infty$ -ben ugyanezt a határértéket kapjuk, ha negatív x esetén "nagyságrendnek" a |x|-szet választjuk.

3.172.
$$\frac{2\sqrt{x} + x^{-1}}{3x - 7} = \frac{2\frac{\sqrt{x}}{x} + \frac{1}{x^2}}{3 - \frac{7}{x}} \to \frac{0 + 0}{3 - 0} = 0$$

3.180.
$$\lim_{x \to 2^{-}} \frac{3}{x-2} = \frac{3}{0^{-}} = -\infty, \qquad \lim_{x \to 2^{+}} \frac{3}{x-2} = \infty.$$

3.184.
$$\lim_{x \to 7^+} \frac{4}{(x-7)^2} = \lim_{x \to 7^-} \frac{4}{(x-7)^2} = \infty$$

3.190. Legyen
$$a = \sqrt[k]{e} > 1$$
.

$$\frac{x^k}{e^x} = \left(\frac{x}{a^x}\right)^k \to 0.$$

Ez az eredmény általánosabban azt jelenti, hogy az exponenciális függvény minden polinomnál gyorsabban tart a végtelenbe.

3.191. Vezessük be a $t = \ln x$ helyettesítést. Ekkor

$$\sqrt[k]{x} = \sqrt[k]{e^t} = \left(\sqrt[k]{e}\right)^t = a^t,$$

és ezért

$$\lim_{x \to \infty} \frac{\ln x}{\sqrt[k]{x}} = \lim_{t \to \infty} \frac{t}{a^t} = 0.$$

Eszerint tehát a logaritmus-függvény minden gyökös kifejezésnél lassabban tart a végtelenbe.

3.196. Legyen például

$$f(x) = \begin{cases} x^2 & \text{ha } x \in \mathbb{Q} \\ 1 & \text{ha } x \notin \mathbb{Q} \end{cases}$$

Ennek a függvénynek az x = -1-ben és az x = 1-ben van határértéke, de másutt nincs.

3.198. Legyen p > 0 egy (pozitív) periódus, a és b pedig két olyan valós szám, amelyre $f(a) \neq f(b)$. Ekkor

$$x_n = a + n \cdot p \to \infty, \ f(a) = f(x_n) \to f(a),$$

$$y_n = b + n \cdot p \to \infty, \ f(b) = f(y_n) \to f(b).$$

Az átviteli elv szerint $\lim_{x\to\infty}f(x)$ nem létezik.

3.203. $\mathbf{P} \implies \mathbf{Q}$: A szorzási szabály szerint

$$\lim_{x \to \infty} f^2(x) = \left(\lim_{x \to \infty} f(x)\right) \cdot \left(\lim_{x \to \infty} f(x)\right) = 5 \cdot 5 = 25.$$

- $\mathbf{Q} \implies \mathbf{P}$: Legyen például f(x) = -5.
- **3.206.** (a) $a_n = \sin(n\pi) = 0 \to 0.$
 - (b) Az $f(x) = \sin x$ függvény nem konstans periodikus függvény, ezért nincs határértéke a végtelenben (lásd a 3.198. feladatot).
 - (c) $a_n = \left\lceil \frac{1}{n} \right\rceil = 0$, ha n > 1, ezért $a_n \to 0$.
 - (d) Mivel $\lim_{x\to 0^+}[x]=0\neq -1=\lim_{x\to 0^-}[x]$, ezért az f(x)=[x] (x egészrésze) függvénynek nincs határértéke a 0-ban.
- **3.208. P** \implies **Q**: Legyen például $f(x) = \begin{cases} 5 & \text{ha valamely } n\text{-re } x = 1/n \\ 0 & \text{különben} \end{cases}$

Ennek a függvénynek nincs határértéke 0-ban, de $f\left(\frac{1}{n}\right)=5\rightarrow 5.$

 $\mathbf{Q} \implies \mathbf{P}$: Az átviteli elv szerint, mivel $\frac{1}{n} \to 0$ és $\lim_{x \to 0} f(x) = 5$, ezért $f\left(\frac{1}{n}\right) \to 5$.

- M
- **3.212.** $P \implies Q$: Az átviteli elv szerint ez tetszőleges függvény esetén is igaz.

 $\mathbf{Q} \Longrightarrow \mathbf{P}$? Ha az f függvény monoton ((c) eset), akkor van (véges vagy végtelen) határértéke a végtelenben és akkor az átviteli elv miatt ez csak 0 lehet. A többi esetben nem igaz a következtetés: legyen $f(x) = \sin(\pi x)$. Ez egy folytonos és korlátos (nem konstans) periodikus függvény és nincs határértéke a végtelenben. De minden n-re f(n) = 0.

3.3 Folytonos függvények

- **3.216.** (a) Ez a függvény a D(x) Dirichlet-függvény, sehol sem folytonos, sőt határértéke sincs. Ugyanis tetszőleges $a \in \mathbb{R}$ esetén van olyan $x_n \in \mathbb{Q}$ és $y_n \notin \mathbb{Q}$ sorozat, amelyre $a \neq x_n, a \neq y_n, x_n \to a$ és $y_n \to a$. De így $D(x_n) \to 1$ és $D(y_n) \to 0$. Az átviteli elv miatt ezért a-ban nincs határértéke a D(x) függvénynek.
 - (b) f(x) folytonos a 0-ban (de másutt nem). Legyen ugyanis $\varepsilon > 0$ tetszőleges. $\delta = \varepsilon$. Ha $|x - 0| = |x| < \delta$, akkor $|f(x) - f(0)| = |f(x)| = |x| < \varepsilon = \delta$.
- **3.221.** (a) A h = f + g függvény nem folytonos 3-ban. Indirekt módon, ha az lenne, akkor a műveleti szabályok miatt a g = h f is folytonos lenne
 - (b) $f \cdot g$ lehet folytonos 3-ban, de csak úgy, ha f(3) = 0. Legyen például f(x) = 0 és g(x) = D(x) a Dirichlet-függvény.
- **3.224.** Az $\frac{x^2-4}{x+2}$ függvény az x=-2 kivételével mindenütt folytonos. Az x=-2-ben megszüntethető szakadása van, $\lim_{x\to -2}\frac{x^2-4}{x+2}=-4$.
- **3.226.** Az \sqrt{x} függvény folytonos, ha x > 0. A 0-ban jobbról folytonos.
- **3.229.** Az $f(x) = \begin{cases} x^2 + 2 & \text{ha } x \geq 0 \\ mx + c & \text{ha } x < 0 \end{cases}$ függvény pontosan akkor folytonos a 0-ban, ha balról is és jobbról is folytonos. Az f(x) "jobbról", azaz $x \geq 0$ esetén megegyezik az $x^2 + 2$ függvénnyel, amelyik mindenütt, tehát 0-ban is folytonos.

Az f(x) függvény x<0 esetén megegyezik az mx+c függvénnyel, amelynek "baloldali" határértéke 0-ban c. Ezért tehát az f függvény pontosan akkor folytonos 0-ban, ha

$$2 = f(0) = c.$$

Az $f(x) = \begin{cases} \frac{\sin x}{x} & \text{ha } x \neq 0 \\ c & \text{ha } x = 0 \end{cases}$ függvény pontosan akkor folytonos a

0-ban, ha itt van határértéke és az megegyezik a helyettesítési értékkel.

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{\sin x}{x} = 1 \text{ és } f(0) = c.$$

Így tehát a c=1 esetben lesz a függvény folytonos a 0-ban.

3.233. Legyen p(x) tetszőleges harmadfokú polinom. Elég azt az esetet vizsgálni, amikor p(x) főegyütthatója (az x^3 -ös tag együtthatója) pozitív. De akkor

$$\lim_{x \to \infty} p(x) = \infty, \qquad \lim_{x \to -\infty} p(x) = -\infty.$$

Ezért a p(x) függvény biztosan felvesz pozitív értéket is (valahonnan kezdve p(x) > 0) és negatív értéket is. De akkor a Bolzano-tétel szerint a 0-t is felveszi értékként.

- 3.236. Legyen h(x) = f(x) - g(x). A h függvény folytonos [a, b]-ben, $h(a) \ge$ $0, h(b) \leq 0$. A Bolzano-tétel szerint van olyan $c \in [a, b]$, amelyre h(c) = f(c) - g(c) = 0.
- 3.237. Legyen most h(x) = g(x) - f(x). Ez a h(x) függvény pozitív és folytonos [a,b]-n. A Weierstrass-tétel szerint a h(x)-nek van minimuma, azaz van olyan $c \in [a, b]$, hogy minden $x \in [a, b]$ esetén

$$0 < m = h(c) \le h(x) = g(x) - f(x).$$

 $\mathbf{P} \implies \mathbf{Q} \text{: Legyen p\'eld\'aul } f(x) = \left\{ \begin{array}{ll} x^2 & \text{ha } x \in (1,2) \\ 2 & \text{ha } x = 1 \text{ vagy } x = 2 \end{array} \right.$ 3.242.

> $\mathbf{Q} \implies \mathbf{P} : \mathsf{Az} \; f$ függvény maximuma felső korlát, minimuma pedig alsó korlát.

- 3.245. Igen, például az f(x) = x függvény.
- 3.249. Az [x] függvény monoton növő, ezért minden korlátos zárt intervallumon van maximuma, a jobb végpontban felvett érték. Tehát

$$\max\{[x]: x \in [77,888]\} = [888] = 888.$$

3.250. Az $f(x) = \{x\}$ függvénynek nincs maximuma egyetlen olyan [a, b] intervallumon sem, amelynek a hossza legalább 1, ugyanis

$$\sup \{f(x) : x \in [a, b]\} = \sup \{f(x) : x \in [a, a + 1]\} =$$
$$= \sup \{f(x) : x \in [0, 1]\} = 1,$$

mivel a törtrész x függvény 1 szerint periodikus. Másrészt f(x) = $\{x\} \neq 1$.

3.254. Van ilyen függvény, még folytonos is:

$$f(x) = \begin{cases} 0 & \text{ha } 0 < x < 1/3 \\ 3x - 1 & \text{ha } 1/3 \le x \le 2/3 \\ 1 & \text{ha } 2/3 < x < 1 \end{cases}$$

- 3.257. Van ilyen függvény. A 3.254. feladat megoldásában szereplő függvény folytonos.
- 3.258. Nincs ilyen függvény. Indirekt módon tegyük fel, hogy f(x) folytonos a [0, 1] zárt intervallumon és értékkészlete a (0, 1) nyílt intervallum. A Weierstrass-tétel szerint az f(x) függvénynek van maximuma. Legyen ez a maximum M. A feltevés miatt M < 1 és mivel M maximális érték, ezért $f(x) \notin (M,1)$.

Ez az állítás sokkal általánosabban is bizonyítható, lásd a 3.260. feladatot.

3.260. Legyen az f függvény folytonos az [a, b] intervallumon. A Weierstrasstétel szerint f-nek van minimuma, legyen ez m és maximuma, legyen ez M. Eszerint $R(f) \subset [m, M]$.

> Másrészt a Bolzano-tétel szerint az f függvény m és M között minden értéket felvesz, azaz $R(f) \supset [m, M]$.

Legyen $x_n = \frac{\pi}{2} + 2\pi n$, $y_n = \frac{3\pi}{2} + 2\pi n$. Ha n > 100, akkor 3.263.

$$x_n \sin x_n = x_n > 2\pi n > 100$$
 és $y_n \sin y_n = -y_n < -100$.

A Bolzano-tétel szerint minden n > 100 esetén van olyan $z_n \in [x_n, y_n]$, amelyre

$$z_n \sin z_n = 100.$$

Mivel az $[x_n, y_n]$ intervallumok diszjunktak, ezért a z_n gyökök külön-

3.271. Az
$$f(x) = \frac{1}{x}$$
 függvény

(a) nem egyenletesen folytonos $(0, \infty)$ -en. Megmutatjuk, hogy az $\varepsilon =$ 1-hez nincs "jó" $\delta > 0$. Tetszőleges $\delta > 0$ esetén válasszunk olyan $n \in \mathbb{N}^+$ pozitív egész számot, amelyre

$$\frac{1}{n} - \frac{1}{n+1} < \delta.$$

Ekkor

$$\left| f\left(\frac{1}{n}\right) - f\left(\frac{1}{n+1}\right) \right| = 1 \not< \varepsilon.$$

- (b) egyenletesen folytonos [1, 2]-n a Heine-Borel tétel szerint.
- (c) egyenletesen folytonos (1, 2)-n, mivel a bővebb [1, 2] halmazon is egyenletesen folytonos.
- (d) egyenletesen folytonos $[1, \infty)$ -en. Legyen $\varepsilon > 0$ tetszőleges, $\delta = \varepsilon$. Ha $x, y \ge 1$ és $|x - y| < \delta$, akkor

$$|f(x) - f(y)| = \left|\frac{1}{x} - \frac{1}{y}\right| = \frac{|x - y|}{xy} \le |x - y| < \delta = \varepsilon.$$

A differenciálszámítás és alkalmazásai

4.1 A derivált fogalma

- 4.2. Ha $\lim_{x\to 3} \frac{f(x)-f(3)}{x-3}=4$, akkor a derivált definíciója szerint az f(x) függvény deriválható 3-ban és f'(3)=4. A 4.2. állítás szerint tehát f(x) folytonos 3-ban.
- **4.3.** Nem következik, például ha f(x) = |x 3|.
- **4.5.** Ez a határérték a \sqrt{x} függvény deriváltját adja meg tetszőleges x>0 pontban.

$$\frac{\sqrt{x+h}-\sqrt{x}}{h} = \frac{\sqrt{x+h}-\sqrt{x}}{h} \cdot \frac{\sqrt{x+h}+\sqrt{x}}{\sqrt{x+h}+\sqrt{x}} = \frac{1}{\sqrt{x+h}+\sqrt{x}} \xrightarrow[h \to 0]{} \frac{1}{2\sqrt{x}}$$

4.10. Legyen $x_0 \neq 0$ tetszőleges.

$$\frac{1/x - 1/x_0}{x - x_0} = \frac{x_0 - x}{xx_0(x - x_0)} = -\frac{1}{xx_0} \xrightarrow[x \to x_0]{} -\frac{1}{x_0^2}$$

Tehát az $\frac{1}{x}$ függvény deriváltja $-\frac{1}{x^2}$.

4.14. Az $f(x) = |x^2 - 1|$ függvény mindenütt folytonos, az 1 és a -1 kivételével deriválható, mert "ilyenekből van összerakva", azaz alkalmazhatjuk a megfelelő műveleti szabályokat. Megmutatjuk, hogy 1-ben a differenciahányadosnak balról más a határértéke, mint jobbról, és ezért nem deriválható. A következő kifejezésekben feltesszük, hogy x > 0. (Miért tehető fel?)

$$\frac{f(x) - f(1)}{x - 1} = \frac{|x^2 - 1|}{x - 1} = (x + 1)\frac{|x - 1|}{x - 1} =$$

$$= (x + 1)\operatorname{sgn}(x - 1) \to \begin{cases} 2 & \text{ha } x \to 1^+ \\ -2 & \text{ha } x \to 1^- \end{cases}$$

Mivel a függvény páros, ezért -1-ben sem deriválható.

4.18. Előbb megvizsgáljuk, hogy milyen b és c esetén lesz folytonos a

$$h(x) = \begin{cases} (1-x)(2-x) & \text{ha } x \ge -3 \\ bx + c & \text{ha } x < -3 \end{cases}$$

függvény -3-ban.

$$\lim_{x \to -3^+} h(x) = \lim_{x \to -3} (1 - x)(2 - x) = 20,$$

$$\lim_{x \to -3^{-}} h(x) = \lim_{x \to -3} (bx + c) = -3b + c$$

Így tehát a függvény pontosan akkor folytonos -3-ban, ha

$$-3b + c = 20$$

A h(x) függvény akkor deriválható -3-ban, ha itt a differenciahányados bal és jobboldali határértéke megegyezik. Mivel a $h_1(x) = (1-x)(2-x)$ és a $h_2(x) = bx + c$ függvény deriválható -3-ban, ez akkor teljesül, ha $h_1'(-3) = h_2'(-3)$.

$$h'_1(x) = ((1-x)(2-x))' = -(2-x)-(1-x) = 2x-3, \qquad h'_1(-3) = -9,$$

$$h_2'(x) = (bx + c)' = b$$

Tehát a h(x) függvény pontosan akkor deriválható -3-ban, ha folytonos, azaz -3b+c=20 és b=-9. A két egyenletből

$$b = -9,$$
 $c = -7$

Megjegyzés: A feladat valójában azt kérdezi, hogy melyik egyenessel "folytatható balra" deriválható módon a $h_1(x) = (1-x)(2-x)$ függvény a -3-ban. Az érintőegyenes definíciója szerint ez az egyenes csak az érintő lehet, azaz

$$bx + c \equiv h_1'(-3)(x+3) + h_1(-3)$$

4.19. Az x = 0-át kivéve f(x) deriválható és f'(x) folytonos, mert alkalmazhatjuk a műveleti szabályokat. Mivel 0 körül f(x) egy 0-hoz tartó és egy korlátos függvény szorzata, ezért $\lim_{x\to 0} f(x) = 0 = f(0)$ (lásd 3.2.).

Így tehát 3.3. szerint f(x) folytonos 0-ban is.

Az f(x) függvény 0-ban nem deriválható, ugyanis a

$$g(x) = \frac{f(x) - f(0)}{x} = \sin\frac{1}{x}$$

differenciahányadosnak nincs határértéke 0-ban.

Az ábrán jól látható, hogy a $g(x) = \sin \frac{1}{x}$ függvényt "beszorítottuk" az x és -x egyenesek közé.

4.20. Az f(x) függvény mindenütt deriválható. Az x = 0-át kivéve ez nyilvánvaló. Megmutatjuk, hogy x = 0-ban a differenciahányados határértéke 0.

$$\lim_{x \to 0} \frac{f(x) - f(0)}{x} = \lim_{x \to 0} x \sin \frac{1}{x} = 0,$$

mivel a $g(x)=x\sin\frac{1}{x}$ függvény 0 körül egy 0-hoz tartó és egy korlátos függvény szorzata (lásd 3.2.). A deriváltfüggvény

$$f'(x) = \begin{cases} 2x \sin \frac{1}{x} - \cos \frac{1}{x} & \text{ha } x \neq 0 \\ 0 & \text{ha } x = 0 \end{cases}$$

folytonos, ha $x \neq 0$, de nincs határértéke és ezért nem is folytonos

Az ábrán jól látható, hogy a $g(x) = \sin \frac{1}{x}$ függvényt "beszorítottuk" az x^2 és $-x^2$ parabolák közé.

4.25. Az f(x) függvény az 1 és a 2 kivételével folytonosan deriválható. Mindkét kivételes pontban folytonos. Számoljuk ki a "középső rész", a $g(x) = (1-x)(2-x) = x^2 - 3x + 2$ deriváltját és érintőegyeneseit az 1-ben és 2-ben:

$$g'(x) = 2x - 3,$$
 $g'(1) = -1,$ $g'(2) = 1$

$$e_1(x) = 1 - x,$$
 $e_2(x) = x - 2 = -(2 - x).$

Mivel mindkét pontban a g(x) függvény az érintővel "folytatódik", ezért ezeken a helyeken is folytonosan deriválható az f(x) függvény.

4.31. Ha $f(x) = \sin x$, akkor

$$f'(x) = \cos x, \ f''(x) = -\sin x, \ f^{(n)}(x) = \begin{cases} \sin x & \text{ha } n = 4k \\ \cos x & \text{ha } n = 4k + 1 \\ -\sin x & \text{ha } n = 4k + 2 \\ -\cos x & \text{ha } n = 4k + 3 \end{cases}$$

4.32. Ha $f(x) = \cos x$, akkor

$$f'(x) = -\sin x, \ f''(x) = -\cos x, \ f^{(n)}(x) = \begin{cases} \cos x & \text{ha } n = 4k \\ -\sin x & \text{ha } n = 4k + 1 \\ -\cos x & \text{ha } n = 4k + 2 \\ \sin x & \text{ha } n = 4k + 3 \end{cases}$$

4.2 Deriválási szabályok

4.33. $\mathbf{P} \Longrightarrow \mathbf{Q}$: Mivel f(x) = f(-x), ezért $f'(x) = f'(-x) \cdot (-1) = -f'(-x)$. $\mathbf{Q} \Longrightarrow \mathbf{P}$: Legyen g(x) = f(-x). Mivel f'(x) = -f'(-x), ezért g'(x) = -f'(-x) = f'(x). Eszerint f és g deriváltja mindenütt megegyezik, ezért az integrálszámítás alaptétele szerint van olyan $c \in \mathbb{R}$, amelyre

$$g(x) = f(x) + c$$
, azaz $f(-x) = f(x) + c$.

Mivel ez minden x-re teljesül, ezért x = 0-ra alkalmazva

$$f(0) = f(0) + c \iff c = 0.$$

4.34. $\mathbf{P} \Longrightarrow \mathbf{Q}$: Mivel f(x) = -f(-x), ezért $f'(x) = -f'(-x) \cdot (-1) = f'(-x)$.

 $\mathbf{Q} \implies \mathbf{P}$: Legyen például f(x) = x + 1.

 \bigvee

Ha még azt is feltesszük, hogy f(0) = 0, akkor már igaz, hogy f páratlan:

Legyen g(x) = -f(-x). Mivel f'(x) = f'(-x), ezért g'(x) = f'(-x) = f'(x). Eszerint f és g deriváltja mindenütt megegyezik, ezért az integrálszámítás alaptétele szerint van olyan $c \in \mathbb{R}$, amelyre

$$g(x) = f(x) + c$$
, azaz $-f(-x) = f(x) + c$.

Mivel ez minden x-re teljesül, ezért x = 0-ra alkalmazva

$$0 = f(0) = f(0) + c \iff c = 0.$$

4.38. $P \implies Q$:

$$\begin{split} \lim_{h \to 0} \frac{f(a+h) - f(a-h)}{2h} &= \\ &= \frac{1}{2} \lim_{h \to 0} \left(\frac{f(a+h) - f(a)}{h} + \frac{f(a) - f(a-h)}{h} \right) = \\ &= \frac{1}{2} \lim_{h \to 0} \frac{f(a+h) - f(a)}{h} + \lim_{h \to 0} \frac{f(a) - f(a-h)}{h} = \\ &= \frac{1}{2} (f'(a) + f'(a)) = f'(a). \end{split}$$

 $\mathbf{Q} \implies \mathbf{P}$: Legyen például $a = 0, \ f(x) = |x|$.

4.42. Ellenőrizzük, hogy az adott pont rajta van-e a görbén! Ehhez az kell, hogy a függvény értéke az 1 helyen éppen 6 legyen: $f(1) = 1^3 - 2 \cdot 1^2 + 3 \cdot 1 + 4 = 6$.

Az érintőegyenes egyenlete $y = m(x-x_0)+y_0$, ahol most $x_0 = 1$, $y_0 = 6$ és m = f'(1).

A függvény deriváltja $f'(x) = 3x^2 - 4x + 3$. Innen m = f'(1) = 2. Tehát az érintő egyenlete az adott pontban:

$$y = 2(x-1) + 6$$
, vagy másképp felírva $y = 2x + 4$.

4.56. Legyen $f(x) = \sqrt{x\sqrt{x\sqrt{x}}}$. Ekkor $D_f = [0, \infty)$ és $D_{f'} = (0, \infty)$. Írjuk fel az f(x) függvényt "törtkitevős" alakban:

$$f(x) = \sqrt{x\sqrt{x\sqrt{x}}} = \left(x \cdot \left(x \cdot (x)^{1/2}\right)^{1/2}\right)^{1/2} =$$
$$= \left(x \cdot \left(x^{3/2}\right)^{1/2}\right)^{1/2} = \left(x^{7/4}\right)^{1/2} = x^{7/8}$$

Így tehát

$$f'(x) = \frac{7}{8}x^{-1/8} = \frac{7}{8\sqrt[8]{x}}$$

4.57. Legyen
$$f(x) = \sqrt{x + \sqrt{x + \sqrt{x}}}$$
. Ekkor $D_f = [0, \infty)$ és $D_{f'} = (0, \infty)$.

$$f'(x) = \frac{1}{2\sqrt{x + \sqrt{x + \sqrt{x}}}} \left(1 + \frac{1}{2\sqrt{x + \sqrt{x}}} \left(1 + \frac{1}{2\sqrt{x}} \right) \right)$$

4.62. Legyen
$$f(x) = \frac{\sin x - x \cos x}{\cos x + x \sin x}$$
. Az értelmezési tartomány

$$D_f = \{x : \cos x + x \sin x \neq 0\} = \{x : \operatorname{ctg} x \neq -x\}.$$

Alkalmazzuk a hányados deriválási szabályát:

$$f'(x) = \frac{(\sin x - x \cos x)'(\cos x + x \sin x) - (\sin x - x \cos x)(\cos x + x \sin x)'}{(\cos x + x \sin x)^2}.$$

Kiszámítjuk a számlálóban szereplő deriváltakat az összeg és a szorzat deriválási szabályát felhasználva:

$$(\sin x - x\cos x)' = \cos x - \cos x + x\sin x = x\sin x$$

$$(\cos x + x\sin x)' = -\sin x + \sin x + x\cos x = x\cos x$$

Ezeket behelyettesítve:

$$f'(x) = \frac{x \sin x (\cos x + x \sin x) - (\sin x - x \cos x) x \cos x}{(\cos x + x \sin x)^2} = \frac{x^2}{(\cos x + x \sin x)^2}$$

A deriváltfüggvény értelmezési tartománya $D_{f'} = D_f$.

4.63. Legyen
$$f(x) = 4x^3 \operatorname{tg}(x^2 + 1)$$
. Az értelmezési tartomány

$$D_f = \left\{ x : x^2 + 1 \neq (2n+1)\frac{\pi}{2} \right\} = \mathbb{R} \setminus \left\{ \pm \sqrt{(2n-1)\frac{\pi}{2} - 1} : n \in \mathbb{N} \right\}.$$

$$f'(x) = 12x^2 \operatorname{tg}(x^2 + 1) + 4x^3 (\operatorname{tg}(x^2 + 1))'$$

A láncszabály szerint

$$(\operatorname{tg}(x^2+1))' = \frac{1}{\cos^2(x^2+1)} \cdot 2x = \frac{2x}{\cos^2(x^2+1)}.$$

Így tehát

$$f'(x) = 12x^2 \operatorname{tg}(x^2 + 1) + \frac{2x}{\cos^2(x^2 + 1)}.$$

A deriváltfüggvény értelmezési tartománya $D_{f'} = D_f$.

4.68.
$$f(x) = x^x = e^{x \ln x}, \quad D_f = D_{f'} = (0, \infty).$$

$$f'(x) = (x^x)' = (e^{x \ln x})' = e^{x \ln x} (\ln x + 1) = x^x (\ln x + 1).$$

4.69.
$$f(x) = \sqrt[x]{x} = x^{1/x} = e^{\frac{\ln x}{x}}, \quad D_f = D_{f'} = (0, \infty).$$

$$f'(x) = \left(\sqrt[x]{x}\right)' = \left(e^{\frac{\ln x}{x}}\right)' = \frac{1 - \ln x}{x^2} \sqrt[x]{x}$$

4.74.
$$f(x) = \log_4 x = \frac{\ln x}{\ln 4}, \quad D_f = D_{f'} = (0, \infty).$$

$$f'(x) = (\log_4 x)' = \left(\frac{\ln x}{\ln 4}\right)' = \frac{1}{x \ln 4}$$

4.75.
$$f(x) = \log_x 4 = \frac{\ln 4}{\ln x}, \quad D_f = D_{f'} = (0, 1) \cup (1, \infty).$$

$$f'(x) = (\log_x 4)' = \left(\frac{\ln 4}{\ln x}\right)' = -\frac{\ln 4}{x \ln^2 x}$$

4.84. Legyen $f(x) = \frac{\sinh x - x \cosh x}{\cosh x + x \sinh x}$. Mivel a nevező sehol sem $0, D_f = \mathbb{R}$.

Alkalmazzuk a hányados deriválási szabályát:

$$f'(x) = \frac{(\sin x - x \cot x)'(\cot x + x \sin x) - (\sin x - x \cot x)(\cot x + x \sin x)'}{(\cot x + x \sin x)^2}.$$

Kiszámítjuk a számlálóban szereplő deriváltakat az összeg és a szorzat deriválási szabályát felhasználva:

$$(\operatorname{sh} x - x \operatorname{ch} x)' = \operatorname{ch} x - \operatorname{ch} x - x \operatorname{sh} x = -x \operatorname{sh} x$$
$$(\operatorname{ch} x + x \operatorname{sh} x)' = \operatorname{sh} x + \operatorname{sh} x + x \operatorname{ch} x = 2 \operatorname{sh} x + x \operatorname{ch} x$$

Ezeket behelvettesítve:

$$f'(x) = \frac{-x \operatorname{sh} x(\operatorname{ch} x + x \operatorname{sh} x) - (\operatorname{sh} x - x \operatorname{ch} x)(2 \operatorname{sh} x + x \operatorname{ch} x)}{(\operatorname{ch} x + x \operatorname{sh} x)^2} =$$

$$= \frac{x^2 - 2 \operatorname{sh}^2 x}{(\operatorname{ch} x + x \operatorname{sh} x)^2}$$

A deriváltfüggvény értelmezési tartománya $D_{f'} = D_f = \mathbb{R}$.

4.85. Legyen $f(x) = 4x^3 \operatorname{th}(x^2 + 1)$. Az értelmezési tartomány $D_f = \mathbb{R}$, mert $\operatorname{ch} x$ sehol sem 0.

$$f'(x) = 12x^{2} \operatorname{th}(x^{2} + 1) + 4x^{3} (\operatorname{th}(x^{2} + 1))'$$

A láncszabály szerint

$$(\operatorname{th}(x^2+1))' = \frac{1}{\operatorname{ch}^2(x^2+1)} \cdot 2x = \frac{2x}{\operatorname{ch}^2(x^2+1)}.$$

Így tehát

$$f'(x) = 12x^{2} \operatorname{th}(x^{2} + 1) + \frac{2x}{\operatorname{ch}^{2}(x^{2} + 1)}.$$

A deriváltfüggvény értelmezési tartománya $D_{f'} = D_f = \mathbb{R}$.

4.90. $f(x) = \log_3 x \cdot \cos x, \quad D_f = D_{f'} = (0, \infty).$

$$f'(x) = \frac{\cos x}{x \ln 3} - \log_3 x \cdot \sin x$$

4.91. $f(x) = \frac{\sin x + 2 \ln x}{\sqrt{x} + 1}, \quad D_f = D_{f'} = (0, \infty).$

$$f'(x) = \frac{\left(\cos x + \frac{2}{x}\right) \cdot (\sqrt{x} + 1) - \frac{\sin x + 2\ln x}{2\sqrt{x}}}{(\sqrt{x} + 1)^2}$$

 $f(x) = \ln(\sin x), \quad D_f = D_{f'} = \{x : \sin x > 0\}.$ 4.96.

$$f'(x) = \frac{\cos x}{\sin x} = \operatorname{ctg} x$$

4.97.
$$f(x) = x^{\operatorname{tg} x} = e^{\ln x \cdot \operatorname{tg} x}, \quad D_f = D_{f'} = \left\{ x : x \neq (2n+1) \frac{\pi}{2}, \ \operatorname{tg} x > 0 \right\}.$$

$$f'(x) = \left(x^{\lg x}\right)' = \left(e^{\ln x \cdot \lg x}\right)' = x^{\lg x} \left(\frac{\lg x}{x} + \frac{\ln x}{\cos^2 x}\right)$$

4.100. Első lépésként keressük meg azt a c helyet, ahol a függvény értéke a=2, azaz az inverz függvény értékét a a=2 helyen. Ezt próbálgatással kaphatjuk: c=1. Mivel a $(0,\infty)$ félegyenesen az f(x) szigorúan nő, mert a derivált pozitív, ezért csak ezen a helyen lesz a függvény értéke 2. Az inverz függvény deriváltjáról szóló képlet szerint

$$(f^{-1})'(2) = \frac{1}{f'(1)}.$$

A függvény deriváltja $f'(x) = 5x^4 + 2x$ és így f'(1) = 7. Tehát

$$(f^{-1})'(2) = \frac{1}{7}.$$

Megjegyzés: Meg kell azt is vizsgálni, hogy van-e inverze az adott függvénynek. A deriváltfüggvény vizsgálatából kiderül, hogy az egész számegyenesen nem invertálható f(x), hiszen $\sqrt[3]{-2/5}$ -ben lokális szigorú maximuma, 0-ban minimuma van, ezért nem szigorúan monoton. Mivel mínusz végtelenben végtelenhez tart a függvény, 0-ban pedig 0 = f(0) < 2, ezért f(x) = 2 valahol $-\infty$ és 0 között. Viszont az 1-et tartalmazó $(0,\infty)$ félegyenesen f(x) szigorúan monoton növő, ezért itt invertálható.

Mivel $\operatorname{arctg} x$ a $\operatorname{tg} x$ függvény inverze, ezért 4.104.

$$(\operatorname{arctg} x)' = \frac{1}{\operatorname{tg}'(\operatorname{arctg} x)} = \cos^2(\operatorname{arctg} x) = \frac{1}{1 + \operatorname{tg}^2(\operatorname{arctg} x)}.$$

Mivel $\operatorname{tg}(\operatorname{arctg} x) = x$, ezért

$$(\operatorname{arctg} x)' = \frac{1}{1+x^2}$$

4.108. $f(x) = \arctan(\sin x), \quad D_{f'} = \mathbb{R}.$

$$f'(x) = \frac{1}{1 + \sin^2 x} \cdot \cos x = \frac{\cos x}{1 + \sin^2 x}$$

4.109. $f(x) = \operatorname{tg}(\arcsin x), \quad D_{f'} = (-1, 1).$

$$f'(x) = \frac{1}{\cos^2(\arcsin x)} \cdot \frac{1}{\sqrt{1 - x^2}} = \frac{1}{1 - \sin^2(\arcsin x)} \cdot \frac{1}{\sqrt{1 - x^2}} = \frac{1}{(1 - x^2)\sqrt{1 - x^2}}$$

4.114.

$$\frac{2\sin x - 1}{6x - \pi} = \frac{2}{6} \cdot \frac{\sin x - \frac{1}{2}}{x - \frac{\pi}{6}} = \frac{2}{6} \cdot \frac{\sin x - \sin \frac{\pi}{6}}{x - \frac{\pi}{6}} \to \frac{2}{6}\cos \frac{\pi}{6} = \frac{\sqrt{3}}{6}$$

4.119.

$$\lim_{n \to \infty} n \left(\cos \frac{1}{n} - 1 \right) = \lim_{n \to \infty} \frac{\cos \frac{1}{n} - \cos 0}{1/n} = -\sin 0 = 0$$

4.123.

$$(e^{\sin x})' = \cos x \cdot e^{\sin x}$$
$$(e^{\sin x})'' = (\cos x \cdot e^{\sin x})' = (\cos^2 x - \sin x)e^{\sin x}$$

4.3 Középértéktételek, L'Hospital szabály

4.128. Ha $f(x) = \operatorname{arctg} x$, $g(x) = \operatorname{arctg} \frac{1+x}{1-x}$ és h(x) = f(x) - g(x), akkor

$$\left(\frac{1+x}{1-x}\right)' = \frac{(1-x)-(1+x)(-1)}{(1-x)^2} = \frac{2}{(1-x)^2},$$

$$g'(x) = \left(\arctan \frac{1+x}{1-x}\right)' = \frac{1}{1+\frac{(1+x)^2}{(1-x)^2}} \cdot \frac{2}{(1-x)^2} = \frac{2}{(1-x)^2 + (1+x)^2} = \frac{1}{1+x^2}.$$

Ezért h'(x) = 0 mindenütt, ahol h(x) deriválható! De mivel g(x) 1-ben nem értelmes, ezért h(x) sem, és így h(x) nem is deriválható 1 ben.

$$h(0) = \operatorname{arctg} 0 - \operatorname{arctg} 1 = -\frac{\pi}{4},$$

$$\lim_{x\to\infty}h(x)=\lim_{x\to\infty}\arctan x-\lim_{x\to\infty}\arctan \frac{1+x}{1-x}=\frac{\pi}{2}+\frac{\pi}{4}=\frac{3\pi}{4}.$$

Tehát h(x) nem konstans, mert $h(0) \neq h(\infty) = \lim_{x \to \infty} h(x)$. Viszont az integrálszámítás alaptétele alkalmazható a $(-\infty,1)$ és $(1,\infty)$ félegyenesekre.

4.129. Legyen h(x) = f(x) - g(x). Ekkor h(x) folytonos $[0, \infty)$ -n, h'(x) > 0, ha x > 0, ezért a 4.8. tétel szerint szigorúan monoton nő $[0, \infty)$ -en. Így tehát

$$0 \le h(0) = f(0) - g(0) < h(x) = f(x) - g(x)$$
, ha $x > 0$.

4.131. Keressük meg az $f(x) = x^5 - 5x + 2$ függvény monoton szakaszait.

$$f'(x) = 5(x^4 - 1) = 5(x^2 + 1)(x^2 - 1),$$

$$f'(x) > 0$$
, ha $x \in (-\infty, -1) \cup (1, \infty)$, és $f'(x) < 0$, ha $x \in (-1, 1)$.

Eszerint a függvény -1-től balra és 1-től jobbra szigorúan nő, (-1,1)-ben pedig szigorúan csökken.

$$\lim_{x \to -\infty} f(x) = -\infty, \ f(-1) = 6 > 0, \ f(1) = -2 < 0, \ \lim_{x \to \infty} f(x) = \infty$$

A Bolzano tétel szerint f(x)-nek van gyöke a három diszjunkt nyílt intervallumon. A szigorú monotonitás miatt mindegyik intervallumon pontosan egy gyök van, tehát összesen három.

4.138. Mivel a határérték ∞/∞ alakú, ezért alkalmazhatjuk a L'Hospital szabályt.

$$\lim_{x \to 0^+} \frac{(\ln x)'}{(\operatorname{ctg} x)'} = \lim_{x \to 0^+} \frac{\frac{1}{x}}{-\frac{1}{\sin^2 x}} = -\lim_{x \to 0^+} \frac{\sin x}{x} \cdot \sin x = 0.$$

Tehát $\lim_{x \to 0^+} \frac{\ln x}{\operatorname{ctg} x} = 0.$

4.143. A $\lim_{x\to 0}\left(\operatorname{ctg} x-\frac{1}{x}\right)$ határérték kritikus ($\infty-\infty$ alakú). Írjuk fel a különbséget hányados alakban:

$$\operatorname{ctg} x - \frac{1}{x} = \frac{\cos x}{\sin x} - \frac{1}{x} = \frac{x \cos x - \sin x}{x \sin x}.$$

Erre a hányadosra alkalmazhatjuk a L'Hospital szabályt mert 0/0 alakú.

$$\lim_{x \to 0} \frac{(x \cos x - \sin x)'}{(x \sin x)'} = \lim_{x \to 0} \frac{\cos x - x \sin x - \cos x}{\sin x + x \cos x} =$$

$$= -\lim_{x \to 0} \frac{\sin x}{\frac{\sin x}{x} + \cos x} = 0.$$

Tehát
$$\lim_{x \to 0} \left(\operatorname{ctg} x - \frac{1}{x} \right) = 0.$$

4.144. Hozzuk az exponenciális kifejezést *e* alapúra:

$$(1+x)^{\frac{1}{x}} = \left(e^{\ln(1+x)}\right)^{\frac{1}{x}} = e^{\frac{\ln(1+x)}{x}}.$$

Mivel $\lim_{x\to 0} \frac{\ln(1+x)}{x} = 1$ és az e^x függvény folytonos, ezért

$$\lim_{x \to 0} (1+x)^{\frac{1}{x}} = e^1 = e.$$

4.145. A $\lim_{x\to 0} \left(\frac{\sin x}{x}\right)^{1/x^2}$ határérték kritikus, mert 1^{∞} alakú. Alakítsuk át a kifejezést úgy, hogy alkalmazhassuk a $\lim_{x\to 0} (1+x)^{1/x} = e$ nevezetes határértéket (lásd a 4.144. feladatot):

$$\left(\frac{\sin x}{x}\right)^{\frac{1}{x^2}} = \left[\left(1 + \frac{\sin x - x}{x}\right)^{\frac{x}{\sin x - x}}\right]^{\frac{\sin x - x}{x^3}}$$

Ez az exponenciális kifejezés már nem kritikus, mert az "új" alap e-hez tart. (Miért?) Számoljuk ki az "új" kitevő határértékét a L'Hospital szabály segítségével (0/0 alakú):

$$\lim_{x \to 0} \frac{(\sin x - x)'}{(x^3)'} = \frac{1}{3} \lim_{x \to 0} \frac{\cos x - 1}{x^2} = -\frac{1}{6}.$$

Tehát $\lim_{x\to 0} \frac{\sin x - x}{x^3} = -\frac{1}{6}$, és ezért

$$\lim_{x \to 0} \left(\frac{\sin x}{x} \right)^{\frac{1}{x^2}} = e^{-1/6} = \frac{1}{\sqrt[6]{e}}.$$

4.148. A határérték ∞/∞ , alakú, ezért alkalmazhatjuk a L'Hospital szabályt.

$$\lim_{x \to \infty} \frac{(\ln x)'}{(\sqrt{x})'} = \lim_{x \to \infty} \frac{\frac{1}{x}}{\frac{1}{2\sqrt{x}}} = \lim_{x \to \infty} \frac{2\sqrt{x}}{x} = \lim_{x \to \infty} \frac{2}{\sqrt{x}} = 0.$$

Tehát $\lim_{x \to \infty} \frac{\ln x}{\sqrt{x}} = 0.$

4.4 Szélsőértékkeresés

4.155. Legyen $f(x) = x^3 - 12x$. Az f(x) függvénynek ott lehet abszolút szélsőértéke (maximuma vagy minimuma) ahol a derivált nulla, vagy pedig a zárt intervallum végpontjaiban. Keressük meg a derivált gyökeit:

$$f'(x) = (x^3 - 12x)' = 3x^2 - 12 = 0$$

A két gyök:

$$x_1 = -2 \text{ és } x_2 = 2.$$

A [-10; 3] intervallum esetén:

$$f(-10) = -880$$
, $f(-2) = 16$, $f(2) = -16$, $f(3) = -9$

Így tehát a [-10;3] intervallumon az $f(x)=x^3-12x$ függvény abszolút minimuma -880 az x=-10 pontban, abszolút maximuma pedig 16 az x=-2 pontban.

A [0; 3] intervallum esetén:

$$f(0) = 0$$
, $f(2) = -16$, $f(3) = -9$.

(Mivel a -2 nem esik bele a vizsgált intervallumba, ezért az itt felvett függvényértéket nem vesszük számításba!)

Így tehát a [0;3] intervallumon az $f(x) = x^3 - 12x$ függvény abszolút minimuma -16 az x=2 pontban, abszolút maximuma pedig 0 az x=0 pontban.

4.159. Mivel csak a téglalap alakjára (oldalainak arányára) vagyunk kíváncsiak, feltehetjük, hogy a befoglaló derékszögű háromszög átfogója 2. Az ábra jelöléseit használva, fejezzük kix segítségével a keresett téglalap T(x) területét illetve k(x) kerületét.

$$y = 1 - x,$$

$$T(x) = 2xy = 2x(1-x), \quad k(x) = 2(2x+y) = 2(1+x).$$

P(x, y)

 \bigvee

A feltételek szerint $0 \le x \le 1$. Mivel k(x) monoton növő függvény, ezért maximumát az x = 1 esetben veszi fel, ami egy elfajult téglalap (y = 0).

A T(x) folytonos függvény maximuma (lásd Weierstrass-tétel) nincs a széleken, mert T(0) = T(1) = 0, ezért a maximum lokális maximum is, tehát itt T'(x) = 0 (lásd a 4.9. tételt).

$$T'(x) = 2[(1-x) - x] = 2 - 4x = 0,$$

$$x = \frac{1}{2},$$

Akkor az átfogó z = 10 - x, és a másik befogó

Megjegyzés: Az $f(x) = \frac{T(x)}{2} = x(1-x)$ függvény maximuma a számtani és mértani közepek közötti egyenlőtlenség szerint a(0,1)in-

tervallumon akkor van, ha x = 1 - x, azaz $x = \frac{1}{2}$. 4.163.

$$y = \sqrt{(10-x)^2 - x^2} = \sqrt{100 - 20x} = 2\sqrt{25 - 5x},$$

Jelölje x a háromszög egyik befogóját és y a másikat, z pedig az átfogót.

a háromszög területe pedig

$$T(x) = \frac{1}{2}xy = x\sqrt{25 - 5x}.$$

Itt $0 \le x \le 5$ lehet, ezért a feladatunk az, hogy megkeressük a T(x)folytonos függvény abszolút maximumát a [0,5] zárt intervallumon. A Weierstrass-tétel szerint van maximum. Mivel $T(x) \geq 0$, T(0) =T(5) = 0, ezért a maximumot a (0,5) nyílt intervallumon veszi fel a T(x) függvény. De akkor ez a maximum lokális maximum is, ezért a 4.9. tétel szerint itt a derivált nulla. Keressük meg a T'(x) gyökeit:

$$T'(x) = \sqrt{25 - 5x} - \frac{5x}{2\sqrt{25 - 5x}} = 0$$

$$\sqrt{25 - 5x} = \frac{5x}{2\sqrt{25 - 5x}} \quad \Longleftrightarrow \quad 2(25 - 5x) = 5x \quad \Longleftrightarrow \quad x = \frac{10}{3}$$

Mivel a deriváltnak pontosan egy gyöke van, ezért a (lokális) maximum csak itt lehet. Így tehát

$$\max T = T\left(\frac{10}{3}\right) = \frac{10}{3}\sqrt{25 - \frac{50}{3}} = \frac{50}{3\sqrt{3}}.$$

Tehát a terület akkor maximális, ha

$$x = \frac{10}{3}$$
, $y = \frac{10}{\sqrt{3}} = x\sqrt{3}$, $z = \frac{20}{3} = 2x$.

Eszerint az adott feltétel mellett annak a derékszögű háromszögnek a területe maximális, amelyiknek a nagyobbik hegyesszöge $\frac{\pi}{3}=60^{\circ}$, azaz a szabályos háromszög fele.

Megjegyzés: A T(x) függvénynek ugyanott van a maximuma, mint a $f(x) = T^2(x) = x^2(25 - 5x)$ függvénynek. Ennek a függvénynek a maximumát deriválás nélkül is kiszámolhatjuk, ha "ügyesen" alkalmazzuk a számtani és mértani közepek közötti egyenlőtlenséget. Tekintsük ugyanis az

$$\left(\frac{5}{2}x\right)^2(25-5x)$$

háromtényezős szorzatot a (0,5) intervallumon. Itt mindegyik tényező pozitív, összegük pedig 25, nem függ x-től. Ezért a szorzat akkor maximális, ha a tényezők megegyeznek, azaz

$$\frac{5}{2}x = 25 - 5x \quad \iff \quad 15x = 50 \quad \iff \quad x = \frac{10}{3}.$$

4.168. A henger felszíne és térfogata

$$F = 2\pi R^2 + 2\pi mR, \quad V = mR^2\pi.$$

A térfogat képletéből fejezzük ki $\emph{m-}\text{et}$ és helyettesítsük be a felszín képletébe:

$$m = \frac{V}{\pi R^2}, \quad F(R) = 2\pi R^2 + \frac{2V}{R}.$$

Az F(R) függvény a $(0,\infty)$ nyílt félegyenesen van értelmezve, és itt végig pozitív, 0-hoz közeli (kicsi), illetve ∞ -hez közeli (nagy) R-ek esetén F(R) értéke "nagy", ezért a keresett abszolút minimum egyben lokális minimum is. Keressük meg tehát az F(R) függvény deriváltjának a gyökeit:

$$F'(R) = 4\pi R - \frac{2V}{R^2} = 0$$
, azaz $2\pi R = \frac{V}{R^2}$, $R = \sqrt[3]{\frac{V}{2\pi}}$.

Tehát az adott V térfogatú egyenes körhenger felszíne akkor minimális, ha

$$R = \sqrt[3]{\frac{V}{2\pi}}.$$

Számoljuk ki az ehhez a sugárhoz tartozó magasságot, illetve a magasság és az átmérő arányát:

$$m = \frac{V}{\pi R^2} = \sqrt[3]{\frac{4V}{\pi}}, \quad \frac{m}{2R} = 1.$$

Tehát annak a hengernek a felszíne minimális, amelynek az átmérője megegyezik a magassággal!

Megjegyzés: Annak belátása, hogy az F(R) függvénynek van abszolút minimuma még hátra van, az erről szóló fenti "okoskodás" semmiképp sem tekinthető bizonyításnak. Lássunk tehát egy korrekt bizonyítást:

Legyen $F_0 = F(1) = 2\pi + 2V$. Mivel $\lim_{R \to 0^+} F(R) = \lim_{R \to \infty} F(R) = \infty$, ezért megadható egy 0 < a < 1, és egy 1 < b úgy, hogy $R \in (0, a]$, illetve $R \in [b, \infty)$ esetén $F(R) > F_0$. A Weierstrass-tétel szerint az F(R) függvénynek van minimuma az [a,b] zárt intervallumon. Az a és b megválasztása miatt ez a minimum az egész $(0, \infty)$ félegyenesen is minimum.

Mivel ez a minimumhely nem lehet az [a, b] intervallum egyik végpontja sem, ezért ez egyben lokális minimum is. Itt tehát a 4.9. tétel szerint a derivált nulla. Ilyen R azonban az egész félegyenesen csak egy van, tehát ez a keresett minimumhoz tartozó sugár.

4.171. Használjuk az ábra jelöléseit. A feladat tehát az O pontból eljutni a Ppontba (a faluba) a Q ponton keresztül a lehető legrövidebb idő alatt. A partvonal teljes hossza x + y = $\sqrt{25-9} = 4$, és így

$$y(x) = 4 - x.$$

A távolságok megtételéhez szükséges idő órában mérve:

$$t(x) = t_f(x) + t_b(x) = \frac{x}{5} + \frac{1}{2}\sqrt{9 + (4 - x)^2}.$$

A t(x) függvény minimumát keressük 0 és 4 között. Ez vagy a végpontok valamelyikén felvett érték, vagy lokális minimum, ahol tehát a derivált nulla (lásd 4.9.).

$$t'(x) = \frac{1}{5} - \frac{1}{2} \frac{4-x}{\sqrt{9+(4-x)^2}} = 0$$

$$25(4-x)^2 = 4(9+(4-x)^2), \quad 16(4-x)^2 = 36$$
$$y = 4-x = \frac{3}{2}, \quad x = \frac{5}{2}.$$

A monotonitás vizsgálatával megmutatjuk, hogy a t(x) függvénynek az $x_0=\frac{5}{2}$ pontban abszolút minimuma van.

$$t'(0) = \frac{1}{5} - \frac{2}{5} = -\frac{1}{5} < 0, \quad t'(4) = \frac{1}{5} > 0.$$

Mivel a deriváltnak csak az x_0 -ban van gyöke, ezért a Darboux-tétel miatt a $(0, x_0)$ intervallumon t'(x) < 0, és így itt t(x) szigorúan csökken. Hasonlóan kapjuk, hogy t(x) szigorúan növő $(x_0, 4)$ -en.

4.5 Függvényvizsgálat

- **4.175. P** ⇔ **Q**: lásd a 4.8. tételt.
- **4.179. P** \Longrightarrow **Q**: Legyen például $f(x) = x^4$, a = 0.

 $\mathbf{Q} \implies \mathbf{P}$: Lásd a konvexitásról és derivált kapcsolatáról szóló tételeket.

4.185. Keressük meg f'(x) gyökeit:

$$f'(x) = 4x^3 - 12x^2 + 8x = 4x(x^2 - 3x + 2) = 4x(x - 1)(x - 2) = 0,$$

$$x_1 = 0, \quad x_2 = 1, \quad x_3 = 2.$$

A derivált tényezőinek az előjele, és így a derivált előjele könnyen kapható az egész számegyenesen:

- Hax<0,akkor f'(x)<0,és ezért f(x)szigorúan csökken $(-\infty,0)\text{-ban}.$
- Ha0 < x < 1,akkor f'(x) > 0,és ezért f(x)szigorúan nő (0,1)ben.

- Ha1 < x < 2,akkor f'(x) < 0,és ezért f(x)szigorúan csökken (1,2)-ben.
- Ha 2 < x, akkor f'(x) > 0, és ezért f(x) szigorúan nő $(2, \infty)$ -ben.

A monoton szakaszok találkozásánál lokális szigorú szélsőérték van, mégpedig

- 0-ban minimum,
- 1-ben maximum,
- 2-ben minimum.

4.189.
$$y' = e^{-x} + xe^{-x}(-1) = (1-x)e^{-x}$$
.

Keressük meg a derivált gyökeit. Az $(1-x)e^{-x}=0$ egyenletből kapjuk, hogy x=1, ezért a függvénynek csak a c=1-ben lehet lokális szélsőértéke.

Mivel y'(x) > 0, ha x < 1, és y'(x) < 0, ha x > 1, ezért a függvénynek lokális szigorú maximuma van és itt az érték e^{-1} . A függvény további vizsgálatából az is kiderül, hogy ez egyben abszolút maximuma is a függvénynek.

4.197. Az $f(x) = \frac{x+1}{1+x^2}$ értelmezési tartománya \mathbb{R} , mindenütt akárhányszor deriválható.

$$\lim_{x \to -\infty} \frac{x+1}{1+x^2} = \lim_{x \to \infty} \frac{x+1}{1+x^2} = 0.$$

$$f'(x) = \frac{1 + x^2 - 2x(x+1)}{(1+x^2)^2} = \frac{1 - 2x - x^2}{(1+x^2)^2} = -\frac{(x-x_1)(x-x_2)}{(1+x^2)^2}$$

ahol $x_1 = -1 - \sqrt{2}$ és $x_2 = -1 + \sqrt{2}$ a számláló gyökei.

$$f''(x) = \frac{(-2-2x)(1+x^2)^2 - 4x(1-2x-x^2)(1+x^2)}{(1+x^2)^4} =$$

$$= -2\frac{(1+x)(1+x^2) + 2x(1-2x-x^2)}{(1+x^2)^3} =$$

$$= 2\frac{x^3 + 3x^2 - 3x - 1}{(1+x^2)^3} =$$

$$= 2\frac{(x-X_1)(x-X_2)(x-X_3)}{(1+x^2)^3}$$

ahol $X_1=-2-\sqrt{3},~X_2=-2+\sqrt{3},~X_3=1$ a számláló gyökei növekvő sorrendben. Az első derivált előjelének vizsgálatával kapjuk, hogy

- f(x) szigorúan csökken $(-\infty, x_1)$ -ben,
- $-x_1$ -ben szigorú minimum van,
- f(x) szigorúan nő (x_1, x_2) -ben,
- $-x_2$ -ben szigorú maximum van,
- f(x) szigorúan csökken (x_2, ∞) -ben.

A második derivált előjelének vizsgálatával kapjuk, hogy

- f(x) szigorúan konkáv $(-\infty, X_1)$ -ben,
- f(x) szigorúan konvex (X_1, X_2) -ben,
- f(x) szigorúan konkáv (X_2, X_3) -ban,
- f(x) szigorúan konvex (X_3, ∞) -ben,
- $-X_1, X_2$ és X_3 -ban inflexió van.
- Az $f(x) = 1 9x 6x^2 x^3$ függvény egy harmadfokú polinom, akár-4.206. hányszor deriválható R-en. Mivel a főegyüttható negatív,

$$\lim_{x \to -\infty} 1 - 9x - 6x^2 - x^3 = \infty, \quad \lim_{x \to \infty} 1 - 9x - 6x^2 - x^3 = -\infty$$

Számoljuk ki az első és a második derivált gvökeit:

$$f'(x) = -9 - 12x - 3x^2 = 0,$$

$$x_1 = -3, \ x_2 = -1.$$

$$f''(x) = -12 - 6x = 0, \quad X_1 = -2.$$

Az ábrából kiolvasható, a deriváltak vizsgálatával pedig bizonyítható, hogy x_1 ben minimum, x_2 -ben maximum, X_1 -ben pedig inflexió van, $(-\infty, -3]$ -ban csökken, [-3, -1]-ben nő, $[-1, \infty)$ -ben csökken, $(-\infty, -2]$ -ben konvex, és $(-2, \infty)$ ben konkáv a függvény.

4.6 Elemi függvények

4.227.
$$2^{\frac{\ln 100}{\ln 2}} = 2^{\log_2 100} = 100.$$

4.229.
$$\arcsin \frac{\sqrt{3}}{2} = \frac{\pi}{3} (= 60^{\circ}).$$

- 4.231. $\arccos(\cos(9\pi)) = \pi$ (és nem 9π).
- 4.233. tg(arctg 100) = 100.
- Az $f(x)=\cos\frac{x}{2}+\tan\frac{x}{3}$ periódusa például a $p=12\pi,$ mert $\cos\frac{x}{2}$ -nek a $4\pi,$ tg $\frac{x}{3}$ -nek pedig a 3π periódusa. 4.238.

Az egyváltozós Riemann-integrál

5.1 Határozatlan integrál

f(x) =
$$x^3 - 4x$$
,
 $f(x) : (2)$,
 $f'(x) : (E)$.

 f(x) = x^3 ,
 $f(x) : (4)$,
 $f'(x) : (C)$.

 f(x) = $x + \sin x$,
 $f(x) : (5)$,
 $f'(x) : (A)$.

 f(x) = $\tan x$,
 $f(x) : (4)$,
 $f'(x) : (D)$.

 f(x) = e^{-x} ,
 $f(x) : (1)$,
 $f'(x) : (B)$.

5.5. Előbb alakítsuk át az integrandust:

$$(\sin x + \cos x)^2 = \sin^2 x + 2\sin x \cos x + \cos^2 x = 1 + 2\sin x \cos x = 1 + \sin 2x.$$

$$\int (\sin x + \cos x)^2 dx = \int (1 + \sin 2x) dx = \int dx + \int \sin 2x dx =$$

$$= x - \frac{\cos 2x}{2} + C$$

$$\int x^{3/2} \, dx = \frac{2}{5} x^{5/2} + C$$

5.10.
$$\int \frac{-5}{x-7} dx = -5\ln(x-7) + C$$

5.12.
$$\int \sin 2x + 3\cos x \, dx = -\frac{\cos 2x}{2} + 3\sin x + C$$

5.14.
$$\int e^{2x-3} dx = \frac{1}{2}e^{2x-3} + C$$

5.16.
$$\int \frac{x^2}{x^3 + 1} dx = \frac{1}{3} \int \frac{3x^2}{x^3 + 1} dx = \frac{1}{3} \int \frac{(x^3 + 1)'}{x^3 + 1} dx = \frac{1}{3} \ln(x^3 + 1) + C$$

5.20.
$$\int \frac{x}{\sqrt{x^2 + 1}} dx = \frac{1}{2} \int \frac{2x}{\sqrt{x^2 + 1}} dx = \frac{1}{2} \int \frac{(x^2 + 1)'}{\sqrt{x^2 + 1}} dx = \sqrt{x^2 + 1} + C$$

5.24.
$$\int \frac{1}{2+x^2} \, dx = \frac{1}{2} \int \frac{1}{1+\left(\frac{x}{\sqrt{2}}\right)^2} \, dx = \frac{1}{\sqrt{2}} \arctan\left(\frac{x}{\sqrt{2}}\right) + C$$

5.28. Bontsuk parciális törtekre az integrandust:

$$\frac{3}{(x+3)(x+2)} = \frac{A}{x+2} + \frac{B}{x+3}$$

Szorozzuk be mindkét oldalt a baloldal nevezőjével:

$$3 = A(x+3) + B(x+2)$$

Az együtthatók összehasonlításával lineáris egyenletrendszert kapunk A-ra és B-re:

$$3A + 2B = 3$$

 $A + B = 0$
 $A = 3$, $B = -3$

Így tehát

$$\int \frac{3}{(x+3)(x+2)} dx = \int \frac{3}{x+2} dx - \int \frac{3}{x+3} dx = 3 \ln \frac{x+2}{x+3} + C$$

5.32. Az integrandus nevezőjének nincs valós gyöke. Első lépésként szabaduljunk meg a számlálóban az "x"-es tagtól a nevező deriváltjának a

$$\int \frac{x-2}{x^2 - 2x + 6} dx = \frac{1}{2} \int \frac{(2x-2) - 2}{x^2 - 2x + 6} dx =$$

$$= \frac{1}{2} \int \frac{2x-2}{x^2 - 2x + 6} dx - \int \frac{1}{x^2 - 2x + 6} dx$$

A jobboldalon az első integrál f^{\prime}/f alakú, és a nevező pozitív, ezért

$$\int \frac{2x-2}{x^2-2x+6} \, dx = \ln(x^2-2x+6) + C.$$

A második integrált visszavezetjük az $\int \frac{1}{1+t^2} dt$ alapintegrálra a teljes négyzetté kiegészítés módszerével:

$$\int \frac{1}{x^2 - 2x + 6} dx = \int \frac{1}{(x - 1)^2 + 5} dx = \frac{1}{5} \int \frac{1}{\left(\frac{x}{\sqrt{5}} - \frac{1}{\sqrt{5}}\right)^2 + 1} dx =$$
$$= \frac{1}{\sqrt{5}} \operatorname{arctg}\left(\frac{x}{\sqrt{5}} - \frac{1}{\sqrt{5}}\right) + C.$$

Így tehát

$$\int \frac{x-2}{x^2 - 2x + 6} dx = \frac{1}{2} \ln(x^2 - 2x + 6) - \frac{1}{\sqrt{5}} \arctan\left(\frac{x}{\sqrt{5}} - \frac{1}{\sqrt{5}}\right) + C.$$

5.36. Írjuk fel az integrandust egy polinom és egy valódi (számláló foka kisebb a nevező foknál) racionális függvény összegeként a polinomok maradékos osztásának segítségével:

$$\frac{3x^3 + 2x - 1}{x^2 - x - 6} = 3x + 3 + \frac{23x + 17}{x^2 - x - 6} = 3x + 3 + \frac{23x + 17}{(x - 3)(x + 2)}$$

$$\int \frac{3x^3 + 2x - 1}{x^2 - x - 6} dx = \int (3x + 3) dx + \int \frac{23x + 17}{(x - 3)(x + 2)} dx$$

A jobboldal második integráljában szereplő racionális függvényt bontsuk fel parciális törtek összegére:

$$\frac{23x+17}{(x-3)(x+2)} = \frac{A}{x-3} + \frac{B}{x+2}$$

$$23x + 17 = A(x+2) + B(x-3)$$

$$\begin{array}{rcl}
A & + & B & = & 23 \\
2A & - & 3B & = & 17
\end{array}$$

Az első egyenlet háromszorosát a másodikhoz adva:

$$5A = 86$$

$$A = \frac{86}{5}, \qquad B = \frac{29}{5}$$

$$\int \frac{3x^3 + 2x - 1}{x^2 - x - 6} dx = \int (3x + 3) dx + \frac{86}{5} \int \frac{1}{x - 3} dx + \frac{29}{5} \int \frac{1}{x + 2} dx =$$

$$= \frac{3}{2}x^2 + 3x + \frac{86}{5}\ln|x - 3| + \frac{29}{5}\ln|x + 2| + C$$

5.40. Bontsuk parciális törtekre az integrandust:

$$\frac{1}{x^3 + x^2} = \frac{A}{x} + \frac{B}{x^2} + \frac{C}{x+1}$$

$$1 = Ax(x+1) + B(x+1) + Cx^2$$

Ha x helyébe 0-át helyettesítünk, megkapjuk B-t, -1-et helyettesítve pedig megkapjuk C-t. Ezek segítségével pedig A-t:

$$A = -1, B = 1, C = 1$$

$$\int \frac{1}{x^3 + x^2} dx = -\int \frac{1}{x} dx + \int \frac{1}{x^2} dx + \int \frac{1}{x+1} dx = \ln \left| \frac{x+1}{x} \right| - \frac{1}{x} + C$$

5.44.

$$\int \frac{x+2}{x-1} dx = \int \frac{(x-1)+3}{x-1} dx = \int dx + 3 \int \frac{1}{x-1} dx =$$
$$= x + 3 \ln|x-1| + C$$

5.48.

$$\int \frac{x+2}{x^2+2x+2} \, dx = \frac{1}{2} \int \frac{(2x+2)+2}{x^2+2x+2} \, dx =$$

$$= \frac{1}{2} \ln(x^2+2x+2) + \int \frac{1}{x^2+2x+2} \, dx =$$

$$= \frac{1}{2} \ln(x^2+2x+2) + \int \frac{1}{(x+1)^2+1} \, dx =$$

$$= \frac{1}{2} \ln(x^2+2x+2) + \arctan(x+1) + C$$

5.50.

$$\int \sin^2 x \, dx = \int \frac{1 - \cos 2x}{2} \, dx = \frac{x}{2} - \frac{\sin 2x}{4} + C$$

5.54.

$$\int \frac{5}{\cos^2(1-x)} \, dx = -5 \operatorname{tg}(1-x) + C$$

5.58.

$$\int \frac{\sin^2 2x + 1}{\cos^2 x} \, dx = \int \frac{4\sin^2 x \cos^2 x + 1}{\cos^2 x} \, dx = 2x - \sin 2x + \operatorname{tg} x + C$$

Itt felhasználtuk az 5.50. feladat eredményét.

5.60. Legyen f(x) = x, $g'(x) = \cos x$. Ezzel a szereposztással

$$\int x \cos x \, dx = x \sin x - \int \sin x \, dx = x \sin x + \cos x + C.$$

5.64.

$$\int \arctan x \, dx = \int 1 \cdot \arctan x \, dx = x \arctan x - \int \frac{x}{1+x^2} =$$

$$= x \arctan x - \frac{1}{2} \int \frac{2x}{1+x^2} \, dx =$$

$$= x \arctan x - \frac{1}{2} \ln(1+x^2) + C$$

5.68.

$$\int x \ln \frac{1+x}{1-x} \, dx = \frac{1}{2} x^2 \ln \frac{1+x}{1-x} - \frac{1}{2} \int \frac{x^2}{\frac{1+x}{1-x}} \cdot \frac{2}{(1-x)^2} \, dx =$$

$$= \frac{1}{2} x^2 \ln \frac{1+x}{1-x} - \int \frac{x^2}{1-x^2} \, dx$$

$$- \int \frac{x^2}{1-x^2} \, dx = \int \frac{1-x^2-1}{1-x^2} \, dx = x - \int \frac{1}{1-x^2} \, dx$$

$$\int \frac{1}{1-x^2} \, dx = \frac{1}{2} \int \left(\frac{1}{1-x} + \frac{1}{1+x}\right) \, dx = \frac{1}{2} \ln \frac{1+x}{1-x} + C$$

Felhasználtuk, hogy az eredeti integrandus csak $\frac{1+x}{1-x}>0$ esetén értelmes. Így tehát

$$\int x \ln \frac{1+x}{1-x} \, dx = \frac{1}{2} x^2 \ln \frac{1+x}{1-x} + x - \frac{1}{2} \ln \frac{1+x}{1-x} + C$$

5.71.

$$t = x^2, dt = 2x dx$$

$$\int xe^{x^2} dx = \frac{1}{2} \int 2xe^{x^2} dx = \frac{1}{2} \int e^t dt = \frac{1}{2}e^t + C = \frac{1}{2}e^{x^2} + C$$

5.75.

$$t = \cos x, \qquad dt = -\sin x \, dx$$

$$\int \frac{1}{\sin x} \, dx = \int \frac{\sin x}{\sin^2 x} \, dx = -\int \frac{-\sin x}{1 - \cos^2 x} \, dx =$$

$$= -\int \frac{1}{1 - t^2} \, dt = \frac{1}{2} \ln \frac{1 - t}{1 + t} + C = \frac{1}{2} \ln \frac{1 - \cos x}{1 + \cos x} + C$$

Itt felhasználtuk az 5.68. feladat egy részeredményét és azt, hogy |t| < 1 $\text{miatt } \frac{1-t}{1+t} > 0.$

5.79.

$$x = \sin t, dx = \cos t \, dt, t = \arcsin x$$

$$\int \frac{1}{(1 - x^2)\sqrt{1 - x^2}} \, dx = \int \frac{1}{(1 - \sin^2 t)\cos t} \cos t \, dt =$$

$$= \int \frac{1}{\cos^2 t} \, dt = \operatorname{tg} t + C =$$

$$= \frac{\sin t}{\sqrt{1 - \sin^2 t}} + C = \frac{x}{\sqrt{1 - x^2}} + C$$

5.83.

$$t = x^{2} + x + 1, dt = 2x + 1$$
$$\int (2x+1)e^{x^{2} + x + 1} dx = \int e^{t} dt = e^{t} + C = e^{x^{2} + x + 1} + C$$

5.87.

$$t = e^x$$
, $x = \ln t$, $dx = \frac{dt}{t}$
$$\int \frac{e^x + 2}{e^x + e^{2x}} dx = \int \frac{t + 2}{t + t^2} \cdot \frac{dt}{t} = \int \frac{t + 2}{t^2(t + 1)} dt$$

Bontsuk parciális törtekre az integrandust:

$$\frac{t+2}{t^2(t+1)} = \frac{A}{t} + \frac{B}{t^2} + \frac{C}{t+1}$$

$$t+2 = At(t+1) + B(t+1) + Ct^2$$

$$A = -1, \qquad B = 2, \qquad C = 1$$

$$\int \frac{t+2}{t^2(t+1)} dt = \int \left(-\frac{1}{t} + \frac{2}{t^2} + \frac{1}{t+1}\right) dt = -\frac{2}{t} + \ln\frac{t+1}{t} + C$$

Felhasználtuk, hogy $\frac{t+1}{t} > 0$. Elvégezve a visszahelyettesítést

$$\int \frac{e^x + 2}{e^x + e^{2x}} dx = -\frac{2}{e^x} + \ln \frac{e^x + 1}{e^x} + C = -2e^{-x} + \ln(1 + e^{-x}) + C$$

5.91.

$$\int \frac{1}{(x+2)(x-1)} dx = \frac{1}{3} \int \left(\frac{1}{x-1} - \frac{1}{x+2} \right) dx = \frac{1}{3} \ln \left| \frac{x-1}{x+2} \right| + C$$

5.95.

$$\int \frac{1}{e^x + e^{-x}} dx = \frac{1}{2} \int \frac{dx}{\operatorname{ch} x} = \frac{1}{2} \int \frac{\operatorname{ch} x}{1 + \operatorname{sh}^2 x} dx = \frac{1}{2} \operatorname{arctg} \operatorname{sh} x + C$$

5.99.

$$\int \ln(x^2+1) \ dx = \int 1 \cdot \ln(x^2+1) \ dx = x \ln(x^2+1) - 2 \int \frac{x^2}{x^2+1} \ dx$$

$$\int \frac{x^2}{x^2+1} \ dx = \int \frac{(x^2+1)-1}{x^2+1} \ dx = x - \arctan x + C$$

$$\int \ln(x^2+1) \ dx = x \ln(x^2+1) - 2x + 2 \arctan x + C$$

5.103.

$$\int 2x\sin(x^2+1)\,dx = \int (x^2+1)'\sin(x^2+1)\,dx = -\cos(x^2+1) + C$$

5.107.

$$\int \frac{e^{2x}}{1+e^x} dx = \int \frac{e^x}{e^x + 1} e^x dx = \int \frac{t}{t+1} dt = t - \ln(t+1) + C$$
ahol $t = e^x$.
$$\int \frac{e^{2x}}{1+e^x} dx = e^x - \ln(e^x + 1) + C$$

5.111.

$$\int (x^2 + x) \ln x \, dx = \left(\frac{x^3}{3} + \frac{x^2}{2}\right) \ln x - \int \left(\frac{x^2}{3} + \frac{x}{2}\right) \, dx =$$

$$= \left(\frac{x^3}{3} + \frac{x^2}{2}\right) \ln x - \frac{x^3}{9} - \frac{x^2}{4} + C$$

5.115.

$$\int 3^{-2x} dx = \int e^{(-2\ln 3)x} dx = -\frac{1}{2\ln 3} e^{(-2\ln 3)x} + C = -\frac{1}{2\ln 3} 3^{-2x} + C$$

5.119.

$$t = \operatorname{tg} x, \qquad dt = \frac{1}{\cos^2 x} \, dx, \qquad \cos^2 x = \frac{1}{1+t^2}, \qquad \sin^2 x = \frac{t^2}{1+t^2}$$

$$\int \frac{1}{\sin^2 x \cos^4 x} \, dx = \int \frac{1}{\sin^2 x \cos^2 x} \cdot \frac{1}{\cos^2 x} \, dx = \int \frac{(t^2+1)^2}{t^2} \, dt =$$

$$= \int \left(t^2 + 2 + \frac{1}{t^2}\right) \, dt = \frac{t^3}{3} + 2t - \frac{1}{t} + C =$$

$$= \frac{\operatorname{tg}^3 x}{3} + 2\operatorname{tg} x - \operatorname{ctg} x + C$$

5.2 Határozott integrál

- **5.124.** (a) A Φ finomítása az F felosztásnak.
 - (b) A Φ nem finomítása F-nek, mert 1, 5 nem szerepel a Φ osztópontjai között.

Az F sem finomítása Φ -nek, mert -1 nem szerepel az F osztópontjai között.

5.125.

$$S_{\Phi} = 6, \qquad s_{\Phi} = 0$$

5.128.

$$S_{\Phi} = -1 \cdot 1 + 0 \cdot 1 + 4 \cdot 4 = 15, \qquad s_{\Phi} = -2 \cdot 1 - 1 \cdot 1 + 0 \cdot 4 = -3$$

5.131. Igen, mert f(x) folytonos (és monoton).

5.135. Nem, mert f(x) nem korlátos [0, 1]-en.

5.140. Legyen $f(x) = \frac{1}{x^2 + e^x}$. Ekkor $x \in [1, 2]$ esetén 0 < f(x) < 1, és így a 5.138. feladat szerint

$$0 = 0 \cdot (2 - 1) \le \int_{1}^{2} \frac{1}{x^{2} + e^{x}} dx \le 1 \cdot (2 - 1) = 1$$

5.144. Mivel minden integrálfüggvény folytonos, $\operatorname{sgn} x$ pedig 0-ban nem folytonos, ezért $\operatorname{sgn} x$ nem lehet integrálfüggvény [-1, 1]-en.

A Darboux-tétel szerint sgn x-nek nincs primitív függvénye (-1, 1)-en.

5.146. A $\sigma_n = \frac{\sin\frac{1}{n} + \sin\frac{2}{n} + \dots + \sin\frac{n}{n}}{n}$ integrálközelítő összege az integrálható $\sin x$ függvénynek a [0,1] intervallum egyenletes felosztásán, ezért

$$\sigma_n = \frac{\sin\frac{1}{n} + \sin\frac{2}{n} + \dots + \sin\frac{n}{n}}{n} \to \int_0^1 \sin x \, dx = 1 - \cos 1$$

5.150.

$$n\sum_{i=1}^{n} \frac{i}{n^2 + i^2} = \sum_{i=1}^{n} \frac{\frac{i}{n}}{1 + \left(\frac{i}{n}\right)^2} \to \int_{0}^{1} \frac{x}{1 + x^2} dx = \left[\frac{1}{2}\ln(1 + x^2)\right]_{0}^{1} = \frac{\ln 2}{2}$$

5.154.

$$g(x) = G'(x) = \begin{cases} 2x \sin\frac{1}{x} - \cos\frac{1}{x} & \text{ha } x \neq 0 \\ 0 & \text{ha } x = 0 \end{cases}$$

Mivel

$$h(x) = f(x) + g(x) = \begin{cases} 2x \sin \frac{1}{x} & \text{ha } x \neq 0 \\ 0 & \text{ha } x = 0 \end{cases}$$

folytonos mindenütt, ezért van primitív függvénye, de akkor az f(x) = h(x) - g(x) függvénynek is van primitív függvénye.

5.156.

$$H(x) = \int_{2}^{x} \frac{1}{\ln t} dt, \qquad H'(x) = \frac{1}{\ln x}$$

5.158. Mivel
$$\lim_{x \to \infty} \frac{x}{\ln x} = \infty$$
 és $\lim_{x \to \infty} \int_{2}^{x} \frac{1}{\ln t} dt = \infty$, ezért az

$$\frac{\ln x}{x} \int_{2}^{x} \frac{1}{\ln t} dt = \frac{\int_{2}^{x} \frac{1}{\ln t} dt}{\frac{x}{\ln x}}$$

hányadosra alkalmazhatjuk a L'Hospital szabályt:

$$\lim_{x \to \infty} \frac{\ln x}{x} \int_{2}^{x} \frac{1}{\ln t} dt = \lim_{x \to \infty} \frac{\frac{1}{\ln x}}{\frac{\ln x - 1}{\ln^{2} x}} = \lim_{x \to \infty} \frac{\ln x}{\ln x - 1} = 1$$

5.162.

$$\int_{3}^{3} x^{2} dx = \left[\frac{x^{3}}{3}\right]_{2}^{3} = 9 - \frac{8}{3}$$

5.166.

$$\int_{-2\pi}^{0} \sin^2 x \, dx = \int_{-2\pi}^{0} \frac{1 - \cos 2x}{2} \, dx = \left[\frac{x}{2} - \frac{\sin 2x}{4} \right]_{-2\pi}^{0} = \pi$$

5.168.

$$x = \sin t$$
, $dx = \cos t \, dt$, $\frac{1}{2} = \sin \frac{\pi}{6}$, $\frac{\sqrt{3}}{2} = \sin \frac{\pi}{3}$

$$\int_{1/2}^{\sqrt{3}/2} \frac{x^2}{\sqrt{1-x^2}} dx = \int_{\pi/6}^{\pi/3} \frac{\sin^2 t}{\sqrt{1-\sin^2 t}} \cos t \, dt =$$

$$= \int_{\pi/6}^{\pi/3} \sin^2 t \, dt = \left[\frac{t}{2} - \frac{\sin 2t}{4} \right]_{\pi/6}^{\pi/3} = \frac{\pi}{12}$$

(lásd az 5.50. feladatot).

5.172.

$$t = \operatorname{tg} x, \qquad x = \operatorname{arctg} t, \qquad dx = \frac{1}{dt}, \qquad \operatorname{tg} \frac{\pi}{6} = \frac{\sqrt{3}}{3}, \qquad \operatorname{tg} \frac{\pi}{2} = \infty$$

$$\int_{\pi/6}^{\pi/2} \frac{1}{1 + \operatorname{tg} x} \, dx = \int_{\sqrt{3}/3}^{\infty} \frac{1}{(1 + t)(1 + t^2)} \, dt = \frac{1}{2} \int_{\sqrt{3}/3}^{\infty} \left(\frac{1}{t + 1} + \frac{1 - t}{1 + t^2} \right) \, dt =$$

$$= \frac{1}{2} \left[\ln \frac{1 + t}{\sqrt{1 + t^2}} + \operatorname{arctg} t \right]_{\sqrt{3}/3}^{\infty} = -\frac{1}{2} \ln \frac{1 + \sqrt{3}}{2} + \frac{\pi}{6}$$

5.3 A határozott integrál alkalmazásai

5.177. Számoljuk ki a parabola és az egyenes két metszéspontját:

$$x^2 = -x + 2,$$
 $x_1 = -2, x_2 = 1$

A két metszéspont között a -x + 2 egyenes a "nagyobb"

$$T = \int_{-2}^{1} (-x+2-x^2) dx = \int_{-2}^{1} (2-x-x^2) dx = \left[2x - \frac{x^2}{2} - \frac{x^3}{3}\right]_{-2}^{1} = 6 + \frac{3}{2} + \frac{7}{3}$$

5.181.

$$T = \int_{1}^{e} \ln x \, dx = [x \ln x - x]_{1}^{e} = 1$$

5.185. A két metszéspont:

$$\frac{1}{1+x^2} = \frac{x^2}{2}$$
, $x^4 + x^2 - 2 = 0$, $x_1 = -1$, $x_2 = 1$

$$T = \int_{1}^{1} \left(\frac{1}{1+x^2} - \frac{x^2}{2} \right) dx = \left[\operatorname{arctg} x - \frac{x^3}{6} \right]_{-1}^{1} = \frac{\pi}{2} - \frac{1}{3}$$

Egy ilyen parabolaszeletet kapunk, ha tekintjük az $y = m\left(1 - \frac{4}{h^2}x^2\right)$ 5.189. parabola és az x tengely által határolt síkidom területét.

$$T = \int_{-h/2}^{h/2} m \left(1 - \frac{4}{h^2} x^2 \right) dx = m \left[x - \frac{4}{3h^2} x^3 \right]_{-h/2}^{h/2} = m \left(h - \frac{h}{3} \right) = \frac{2}{3} mh$$

$$\boxed{\textbf{5.192.}} \quad \text{Itt } -\frac{\pi}{6} \le \varphi \le \frac{\pi}{6}.$$

$$T = \frac{1}{2} \int_{-\pi/6}^{\pi/6} \cos^2 3\varphi \ d\varphi = \frac{1}{2} \left[\frac{\varphi}{2} + \frac{\sin 6\varphi}{6} \right]_{-\pi/6}^{\pi/6} = \frac{\pi}{12}$$

5.196.

$$V = \pi \int_{0}^{\pi} \sin^{2} x \, dx = \pi \left[\frac{x}{2} - \frac{\sin 2x}{4} \right]_{0}^{\pi} = \frac{\pi^{2}}{2}$$

5.200.

$$V = \pi \int_{0}^{1} \arcsin^{2} y \, dy = \pi \int_{0}^{\pi/2} x^{2} \cos x \, dx$$

Számoljuk ki kétszeres parciális integrálással a $\int x^2 \cos x \, dx$ határozatlan integrált:

$$\int x^2 \cos x \, dx = x^2 \sin x - 2 \int x \sin x \, dx =$$

$$= x^2 \sin x + 2x \cos x - 2 \int \cos x \, dx =$$

$$= x^2 \sin x + 2x \cos x - 2 \sin x + C.$$

Ezt felhasználva

$$V = \pi \int_{0}^{\pi/2} x^{2} \cos x \, dx = \pi \left[x^{2} \sin x + 2x \cos x - 2 \sin x \right]_{0}^{\pi/2} = \frac{\pi^{3}}{4} - 2\pi.$$

5.204.

$$V = \pi \int_{1}^{2} \left(e^{2x} - \frac{1}{x^2} \right) dx = \pi \left[\frac{e^{2x}}{2} + \frac{1}{x} \right]_{1}^{2} = \pi \left(\frac{e^{2}(e^{2} - 1)}{2} - \frac{1}{2} \right)$$

5.208.

$$L = \int_{-1}^{1} \sqrt{1 + \sinh^2 x} \, dx = \int_{-1}^{1} \cosh x \, dx = [\sinh x]_{-1}^{1} = 2 \sinh 1$$

5.4 Improprius integrál

5.220. Ha $c \neq 1$, akkor

$$\int\limits_{1}^{\infty} \frac{1}{x^{c}} \, dx = \left[\frac{1}{1-c} \cdot \frac{1}{x^{c-1}} \right]_{1}^{\infty} = \left\{ \begin{array}{cc} \frac{1}{c-1} & \text{ha } c > 1 \\ \\ \infty & \text{ha } c < 1 \end{array} \right.$$

Ha pedig c = 1, akkor

$$\int_{1}^{\infty} \frac{1}{x} dx = \left[\ln x\right]_{1}^{\infty} = \infty.$$

Tehát az $\int_{-\infty}^{\infty} \frac{1}{x^c} dx$ improprius integrál akkor és csak akkor konvergens,

5.223.

$$\int_{3}^{\infty} 2^{-x} dx = \left[-\frac{2^{-x}}{\ln 2} \right]_{3}^{\infty} = \frac{1}{8 \ln 2}$$

- **5.227.** Az 5.220. feladat megoldása szerint $\int_{1}^{\infty} \frac{dx}{\sqrt{x}}$ divergens.
- **5.231.**

$$\int_{\frac{1}{2}}^{1} \frac{dx}{x \ln x} = \left[\ln |\ln x| \right]_{1/2}^{1-} = -\infty$$

5.235.

$$\int_{0}^{1} \frac{dx}{\sqrt{1-x^2}} = \left[\arcsin x\right]_{0}^{1^{-}} = \frac{\pi}{2}$$

5.239.

$$\int_{1}^{\infty} \frac{dx}{\sqrt{x} + x^2} < \int_{1}^{\infty} \frac{dx}{x^2} < \infty$$

(lásd a 5.220. feladatot).

is konvergens.

5.243. Az $\frac{x^2}{x^4 - x^2 + 1}$ függvény Riemann-integrálható [0, 1]-en (mert a nevező nem nulla), ezért elég megmutatni, hogy az $\int_{1}^{+\infty} \frac{x^2}{x^4 - x^2 + 1} dx$ improprius integrál konvergens.

Mivel az $f(x)=\frac{x^2}{x^4-x^2+1}$ és a $g(x)=\frac{1}{x^2}$ függvény nagyságrendje azonos (a két függvény hányadosa tart 1-hez a ∞ -ben), $\int\limits_1^\infty \frac{dx}{x^2}$ pedig konvergens, ezért a nagyságrendi kritérium szerint $\int\limits_1^{+\infty} \frac{x^2}{x^4-x^2+1}\,dx$

5.247. Mivel $\sin x \sim x$ a 0-ban, $\int_{0}^{\pi/2} \frac{dx}{x}$ pedig divergens, ezért $\int_{0}^{\pi/2} \frac{dx}{\sin x}$ divergens.

5.251.

$$\int_{0}^{\infty} xe^{-x^{2}} dx = -\frac{1}{2} \left[e^{-x^{2}} \right]_{0}^{\infty} = \frac{1}{2}$$

Numerikus sorok

6.1 Numerikus sorok konvergenciája

6.1. A véges geometriai sor összegképletét használva

$$s_n = 1 + \frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{2^n} = \sum_{k=0}^n \left(\frac{1}{2}\right)^k = \frac{1 - \left(\frac{1}{2}\right)^{n+1}}{\frac{1}{2}} = 2\left(1 - \frac{1}{2^{n+1}}\right) \longrightarrow 2$$

6.5.

$$\frac{1}{k(k+3)} = \frac{1}{3} \left(\frac{1}{k} - \frac{1}{k+3} \right)$$

$$s_n = \sum_{k=1}^n \frac{1}{k(k+3)} = \frac{1}{3} \sum_{k=1}^n \left(\frac{1}{k} - \frac{1}{k+3} \right) =$$

$$= \frac{1}{3} \left(1 + \frac{1}{2} + \frac{1}{3} - \frac{1}{n+1} - \frac{1}{n+2} - \frac{1}{n+3} \right) \longrightarrow \frac{1}{3} \left(1 + \frac{1}{2} + \frac{1}{3} \right) = \frac{11}{18}$$

6.8.

$$\sum_{n=1}^{\infty} \frac{4^n + 5^n}{9^n} = \sum_{n=1}^{\infty} \left(\frac{4}{9}\right)^n + \sum_{n=1}^{\infty} \left(\frac{5}{9}\right)^n = \frac{4}{9} \frac{1}{1 - \frac{4}{9}} + \frac{5}{9} \frac{1}{1 - \frac{5}{9}} = \frac{4}{5} + \frac{5}{4}$$

- 6.13. Mivel a tagok nem tartanak 0-hoz, ezért a sor divergens (lásd a tagok 0-hoz tartásáról szóló konvergencia kritériumot).
- **6.15.** Ha A jelöli a végtelen sor összegét s_n pedig az első n tag összegét, akkor

$$s_n \longrightarrow A$$
, $s_{n-1} \longrightarrow A$, $a_n = s_n - s_{n-1} \longrightarrow 0$.

6.16. Megmutatjuk, hogy a harmonikus sor nem teljesíti a Cauchy-kritériumot, mert az $\varepsilon=\frac{1}{2}$ esetén nem található "jó" küszöbindex:

$$s_{2n} - s_n = \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n} > \frac{1}{2n} + \frac{1}{2n} + \dots + \frac{1}{2n} = n \cdot \frac{1}{2n} = \frac{1}{2}$$

- **6.21.** Nem, például a harmonikus sor divergens, de tagjai 0-hoz tartanak.
- **6.27.** A $\sum_{n=1}^{\infty} \frac{1}{n+n^2} = \sum_{n=1}^{\infty} \frac{1}{n(n+1)}$ sor részletösszegei úgynevezett **teleszkopikus összegek**:

$$s_n = \sum_{k=1}^n \frac{1}{k(k+1)} = \sum_{k=1}^n \left(\frac{1}{k} - \frac{1}{k+1}\right) = 1 - \frac{1}{n+1} \longrightarrow 1.$$

6.31. Mivel az $\int_{1}^{\infty} \frac{dx}{\sqrt[3]{x}}$ improprius integrál divergens, ezért az integrálkritérium szerint a $\sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n}}$ sor is divergens.

Használhatjuk a majoráns-kritériumot is, mivel $\frac{1}{\sqrt[3]{n}} \ge \frac{1}{n}$.

6.35.

$$\sum_{n=1}^{\infty} \sin(n\pi) = \sum_{n=1}^{\infty} 0 = 0$$

6.40. Nem, legyen például $b_n=0,\ a_n=-1.$ Ha viszont feltesszük azt is, hogy $a_n>0$, akkor a majoráns-kritérium "kontra-pozitív" verziója szerint $\sum_{n=1}^{\infty}b_n$ divergens.

6.2 Pozitív tagú sorok konvergenciakritériumai

- **6.43.** Mivel az integrálkritérium szerint (az $\frac{1}{x^2}$ -re alkalmazva) a $\sum_{n=1}^{\infty} \frac{1}{n^2}$ sor konvergens majoránsa a $\sum_{n=1}^{\infty} \frac{1}{n^2+4}$ sornak, ezért a $\sum_{n=1}^{\infty} \frac{1}{n^2+4}$ sor is konvergens.
- **6.45.** Lásd a hányadoskritériumot.

6.48.

$$\frac{a_{n+1}}{a_n} = \frac{3^{n+1}(n+1)!}{(n+1)^{n+1}} \cdot \frac{n^n}{3^n n!} = \frac{3}{(1+1/n)^n} \longrightarrow \frac{3}{e} > 1.$$

Ezért a $\sum_{n=1}^{\infty} \frac{3^n n!}{n^n}$ sor divergens.

6.50. Lásd a gyökkritériumot.

6.53.

$$\sqrt[n]{a_n} = \sqrt[n]{\left(\frac{1}{2} + \frac{1}{n}\right)^n} = \frac{1}{2} + \frac{1}{n} \longrightarrow \frac{1}{2} < 1.$$

A $\sum_{n=1}^{\infty} \left(\frac{1}{2} + \frac{1}{n}\right)^n$ sor konvergens.

6.58. A $\sum_{n=1}^{\infty} \frac{n^2+4}{n^4+3n}$ sor nagyságrendje $\frac{1}{n^2}$:

$$\frac{n^2+4}{n^4+3n}: \frac{1}{n^2} = \frac{(n^2+4)n^1}{n^4+3n} \longrightarrow 1,$$

és a $\sum_{n=1}^{\infty}\frac{1}{n^2}$ sor konvergens, ezért a $\sum_{n=1}^{\infty}\frac{n^2+4}{n^4+3n}$ sor is konvergens.

6.62. Nem, még akkor sem, ha f(x) monoton csökken. Legyen például $f(x) = 5e^{-x+1}$. Ekkor

$$\int_{1}^{\infty} 5e^{-x+1} dx = \left[-5e^{-x+1} \right]_{1}^{\infty} = 5, \quad \sum_{n=1}^{\infty} 5e^{-n+1} = 5\frac{1}{1 - 1/e} = 5\frac{e}{e - 1} \neq 5$$

6.66. Az $f(x) = \frac{1}{x \ln x}$ függvény deriváltja $f'(x) = -\frac{\ln x + 1}{x^2 \ln^2 x} < 0$, ha $x \ge 2$, tehát f(x) monoton csökken és pozitív az $[2, \infty)$ félegyenesen. Alkalmazhatjuk erre a függvényre az integrálkritériumot:

$$\int_{2}^{\infty} \frac{1}{x \ln x} \, dx = \left[\ln \ln x \right]_{2}^{\infty} = \infty,$$

ezért a $\sum_{n=2}^{\infty} \frac{1}{n \ln n}$ sor divergens.

6.68.

$$\sum_{n=1}^{\infty} \frac{1}{n+\sqrt{n}} > \sum_{n=1}^{\infty} \frac{1}{2n} = \frac{1}{2} \sum_{n=1}^{\infty} \frac{1}{n} = \infty,$$

tehát $\sum_{n=1}^{\infty} \frac{1}{n+\sqrt{n}}$ divergens (majoráns-kritérium).

6.74.

$$\sqrt[n]{\frac{n^2}{2^n}} = \frac{\left(\sqrt[n]{n}\right)^2}{2} \longrightarrow \frac{1}{2} < 1,$$

tehát $\sum_{n=1}^{\infty} \frac{n^2}{2^n}$ konvergens (gyökkritérium).

6.80. $\frac{n^{10}}{3^n-2^n}<\frac{2n^{10}}{3^n}$, ha $2^n<\frac{1}{2}3^n$, ami valahonnan kezdve igaz. A $\sum_{n=0}^{\infty} \frac{2n^{10}}{3^n}$ sorra alkalmazva a gyökkritériumot

$$\sqrt[n]{\frac{2n^{10}}{3^n}} = \frac{\sqrt[n]{2} \left(\sqrt[n]{n}\right)^{10}}{3} \longrightarrow \frac{1}{3} < 1,$$

ezért a $\sum_{n=1}^{\infty} \frac{n^{10}}{3^n - 2^n}$ sor konvergens.

6.86.

$$\sum_{n=1}^{\infty} \frac{2^n + 3^n}{5^n} = \sum_{n=1}^{\infty} \left(\frac{2}{5}\right)^n + \sum_{n=1}^{\infty} \left(\frac{3}{5}\right)^n = \frac{2}{3} + \frac{3}{2} < \infty$$

A sor tagjai nem tartanak 0-hoz (konvergencia kritériumok):

$$1 + \frac{1}{n} \longrightarrow 1 \neq 0$$
,

tehát a $\sum_{n=1}^{\infty} \left(1 + \frac{1}{n}\right)$ sor divergens.

6.3 Feltételes és abszolút konvergencia

- Nem igaz, például legyen $a_n = (-1)^n$. 6.99.
- Az $1 \frac{1}{2} + \frac{1}{3} \frac{1}{4} + \dots = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n}$ Leibniz-sor, mert $\frac{1}{n}$ mono-6.104. ton csökkenően tart 0-hoz, tehát a sor konvergens (de nem abszolút konvergens).
- A $1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt[3]{3}}-\frac{1}{\sqrt[4]{4}}+\cdots=\sum_{n=1}^{\infty}(-1)^n\frac{1}{\sqrt[n]{n}}$ sor ugyan váltakozó előjelű, de tagjai nem tartanak 0-hoz $(|a_n|\to 1)$, ezért a sor divergens.
- **6.114.** A $\sum_{n=1}^{\infty} (-1)^n \frac{1}{2n+1}$ sor konvergens, mert Leibniz-típusú, de nem abszo-
- **6.120.** A $\sum_{n=1}^{\infty} \frac{\sin n}{n^2}$ sor abszolút konvergens, mert $\left| \frac{\sin n}{n^2} \right| \leq \frac{1}{n^2}$.

Függvénysorozatok és sorok

7.1 Pontonkénti és egyenletes konvergencia

7.1. Az $f_n(x) = x^n$ függvénysorozat a (-1,1] intervallum pontjaiban konvergens, másutt divergens.

$$\lim_{n \to \infty} x^n = \begin{cases} 0 & \text{ha } |x| < 1\\ 1 & \text{ha } x = 1 \end{cases}$$

Minden -1 < a < b < 1 esetén az [a,b] intervallumon egyenletes a konvergencia, mert

$$\max\{|x^n|: x \in [a, b]\} = (\max\{|a|, |b|\})^n \longrightarrow 0.$$

Mivel a limesz-függvény nem folytonos (balról 1-ben) a (-1,1]-ben ezért a 7.1. tétel szerint a konvergencia nem egyenletes az egész konvergenciatartományban.

7.5. Az $f_n(x) = \sqrt[n]{1+x^{2n}}$ sorozat pontonként tart az egész számegyenesen a konstans 1 függvényhez. Minden korlátos [a,b] intervallumon egyenletes a konvergencia, mivel $1+x^{2n}$ korlátos [a,b]-n. Mivel minden $n \in \mathbb{N}$ esetén

$$\lim_{x \to \infty} f_n(x) = \lim_{x \to \infty} \sqrt[n]{1 + x^{2n}} = \infty,$$

azaz f_n nem korlátos, ezért f_n nem egyenletesen tart a korlátos $f(x) \equiv 1$ függvényhez \mathbb{R} -en illetve $[0,\infty)$ -en. Az $f_n(x)$ függvények párosak, ezért a konvergencia a $(-\infty,0]$ félegyenesen sem egyenletes.

- 7.11. Minden $x \in \mathbb{R}$ esetén $\lim_{n \to \infty} f_n(x) = 0$. Ez a konvergencia egyenletes minden olyan intervallumon vagy félegyenesen, amelyik csak véges sok $\frac{1}{n}$ alakú pontot tartalmaz, de minden b > 0 esetén a (0, b) intervallumon (és minden ilyennél bővebb intervallumon) nem egyenletes a konvergencia, mert az $\varepsilon = 1/b$ -hez nincs jó küszöbindex.
- **7.18.** Igen, legyen például $g_n(x) = f_n(x) + 5$, ahol f_n a 7.11. feladatban szereplő függvény.

7.23. (a)
$$f'(0) = \lim_{x \to 0} \frac{f_n(x) - f_n(0)}{x} = \lim_{x \to 0} \frac{\sqrt{x^2 + \frac{1}{n}} - \sqrt{\frac{1}{n}}}{x} =$$

$$= \lim_{x \to 0} \frac{x}{\sqrt{x^2 + \frac{1}{n} + \sqrt{\frac{1}{n}}}} = 0.$$

(b)
$$\lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} \sqrt{x^2 + \frac{1}{n}} = \sqrt{x^2} = |x|.$$

(c)
$$|f_n(x) - |x|| = \sqrt{x^2 + \frac{1}{n}} - |x| = \frac{\frac{1}{n}}{\sqrt{x^2 + \frac{1}{n}} + |x|} \le \sqrt{\frac{1}{n}} \longrightarrow 0.$$

(d) Mivel a bal- és jobboldali deriváltja nem egyezik meg (−1 illetve 1), |x| nem deriválható 0-ban.

7.25.

$$|f_n(x)| = \frac{1}{n^2 + n^4 x^{2n}} \le \frac{1}{n^2}, \qquad \sum_{n=1}^{\infty} \frac{1}{n^2 + n^4 x^{2n}} \le \sum_{n=1}^{\infty} \frac{1}{n^2} < \infty.$$

7.29. A $\sum_{n=1}^{\infty} \frac{(-1)^n}{x^4 + 2^n}$ sor egyenletesen konvergens a Weierstrass-kritérium sze-

$$\left|\frac{(-1)^n}{x^4+2^n}\right| \le \frac{1}{2^n}, \qquad \sum_{n=1}^{\infty} \frac{1}{2^n} < \infty.$$

A Weierstrass-kritérium szerint $\sum_{n=1}^{\infty} \frac{\cos nx}{n! + 2^n}$ egyenletesen konvergens \mathbb{R} en, mert

$$\left| \frac{\cos nx}{n! + 2^n} \right| \le \frac{1}{n! + 2^n} \le \frac{1}{n!}, \qquad \sum_{n=1}^{\infty} \frac{1}{n!} < \infty.$$

7.2 Hatványsorok, Taylor-sor

Számoljuk ki a $\sum_{n=0}^{\infty} \frac{n!}{n^n} x^n$ hatványsor R konvergenciasugarát. A 7.3.

$$\frac{a_{n+1}}{a_n} = \frac{(n+1)!}{(n+1)^{n+1}} \cdot \frac{n^n}{n!} = \frac{1}{\left(1 + \frac{1}{n}\right)^n} \longrightarrow \frac{1}{e}, \qquad R = e.$$

Ismert (Stirling-formula), hogy elég nagy n-re $n! > \left(\frac{n}{e}\right)^n$, és ezért a konvergenciatartomány végpontjaiban, e-ben és -e-ben a sor tagjai nem tartanak 0-hoz:

$$\frac{n!}{n^n}e^n = n! \cdot \left(\frac{e}{n}\right)^n > 1,$$

ha n elég nagy.

- **7.48.** $\sqrt[n]{|a_n|} = \sqrt[n]{n^2} = (\sqrt[n]{n})^2 \to 1$, R = 1. A végpontokban divergens, mert nem tartanak 0-hoz a tagok.
- **7.54.** $\sqrt[n]{\frac{1}{n2^n}} = \frac{1}{2\sqrt[n]{n}} \longrightarrow \frac{1}{2}$, R = 2. Tehát a konvergenciatartomány belseje a (-7, -3) intervallum. A jobb végpontban divergens (harmonikus sor), a bal végpontban Leibniz-sor.
- **7.60.** $\sqrt[n]{\frac{1}{n3^n}} = \frac{1}{3\sqrt[n]{n}} \longrightarrow \frac{1}{3}$, R = 3. Tehát a konvergenciatartomány belseje a (-3,3) intervallum. A jobb végpontban divergens (harmonikus sor), a bal végpontban Leibniz-sor.
- 7.64. $\frac{|a_{n+1}|}{|a_n|} = \frac{((n+1)!)^2}{(2n+2)!} \cdot \frac{(2n)!}{(n!)^2} = \frac{(n+1)^2}{(2n+1)(2n+2)} \to \frac{1}{4}$. Ezért R = 4.
- **7.66.** A $\sum_{n=0}^{\infty} x^n$ hatványsor konvergenciasugara 1, ezért a tagonkénti integrálásról szóló tétel szerint igaz az állítás.
- **7.72.** A $x + \frac{x^2}{2} + \frac{x^3}{3} + \dots = \sum_{n=1}^{\infty} \frac{x^n}{n}$ hatványsor konvergencia sugara 1. Jelölje f(x) a hatványsor összegfüggvényét a (-1,1) intervallumon. A tagonkénti deriválásról szóló tétel szerint

$$f'(x) = \sum_{n=1}^{\infty} \frac{n \cdot x^{n-1}}{n} = \sum_{n=1}^{\infty} x^{n-1} = \sum_{k=0}^{\infty} x^k = \frac{1}{1-x},$$

így tehát f(x) primitív függvénye az $\frac{1}{1-x}$ függvénynek, és f(0)=0, ezért

$$f(x) = -\ln(1-x), \qquad -1 < x < 1.$$

Megjegyzés: Mivel -1-ben a sor konvergens (Leibniz-sor), ezért az úgy nevezett *Abel-kritérium* segítségével belátható, hogy a fenti képlet -1-ben is érvényes.

7.76. Felhasználva a geometriai sor összegfüggvényét

$$\sum_{n=0}^{\infty} (\sin x)^n = \frac{1}{1-\sin x} \quad , \text{ ha} \quad |\sin x| \neq 1 \quad , \text{ azaz} \quad x \neq \frac{\pi}{2} + k\pi, \ k \in \mathbb{Z}$$

7.80. $\sqrt[n]{\frac{1}{n(n+1)}} \to 1$, tehát R = 1.

Legyen
$$g(x)=x\cdot f(x)=\sum_{n=1}^\infty\frac{x^{n+1}}{n(n+1)}$$
. Tagonkénti deriválással $g'(x)=\sum_{n=1}^\infty\frac{x^n}{n}$.

Újabb deriválással
$$g''(x) = \sum_{n=1}^{\infty} x^{n-1} = \sum_{k=0}^{\infty} x^k = \frac{1}{1-x}$$
.

Ezért
$$g'(x) = \int \frac{1}{1-x} dx = -\ln(1-x), \quad g(x) = -\int \ln(1-x) dx = x + (1-x)\ln(1-x).$$

Így tehát
$$f(x) = 1 + \frac{1-x}{x} \ln(1-x)$$
, ha $|x| < 1$.

7.82. $\sqrt[n]{n} \to 1$, tehát R = 1.

Legyen
$$g(x) = \frac{f(x)}{x} = \sum_{n=1}^{\infty} nx^{n-1}$$
.

Legyen h(x) az a primitív függvénye g(x)-nek, amelyre h(0) = 0. Ezt a függvényt a hatványsor tagonkénti integrálásával kaphatjuk meg:

$$h(x) = \sum_{n=1}^{\infty} x^n = \frac{1}{1-x} - 1 = \frac{x}{1-x}$$
. Így tehát $g(x) = h'(x) = \frac{1}{(1-x)^2}$, ezért

$$f(x) = x \cdot g(x) = \frac{x}{(1-x)^2}.$$

7.84. $\sqrt[n]{n(n+1)} \to 1$, tehát R = 1.

Legyen g(x) az a primitív függvénye f(x)-nek, amelyre g(0) = 0. Ezt a függvényt a hatványsor tagonkénti integrálásával kaphatjuk meg:

$$g(x)=\sum_{n=1}^\infty nx^{n+1}=x\sum_{n=1}^\infty nx^n.$$
 Az előző feladat eredményét felhasználva
$$g(x)=\frac{x^2}{(1-x)^2}.$$

Innen már könnyen kapjuk f(x)-et:

$$f(x) = g'(x) = \frac{2x(1-x)^2 + 2x^2(1-x)}{(1-x)^4} = 2\frac{x(1-x) + x^2}{(1-x)^3} = 2\frac{x}{(1-x)^3}$$

7.87. Helyettesítsünk az e^x Taylor-sorában x helyébe 2x-et (nevezetes Taylor-sorok).

$$e^{2x} = \sum_{n=0}^{\infty} \frac{(2x)^n}{n!} = \sum_{n=0}^{\infty} \frac{2^n}{n!} x^n, \quad x \in \mathbb{R}.$$

7.93.

$$\frac{1}{1+x} = \frac{1}{1-(-x)} = \sum_{n=0}^{\infty} (-x)^n = \sum_{n=0}^{\infty} (-1)^n x^n, \qquad |x| < 1.$$

7.96. Legyen $f(x) = \ln(1+x)$. Ekkor a 7.93. feladat szerint

$$f'(x) = \frac{1}{1+x} = \sum_{n=0}^{\infty} (-1)^n x^n, \quad \text{ha } |x| < 1.$$

$$f(x) = \int_0^x \frac{1}{1+t} dt = \sum_{n=0}^{\infty} (-1)^n \int_0^x t^n dt = \sum_{n=0}^{\infty} (-1)^n \frac{x^{n+1}}{n+1} = \sum_{n=1}^{\infty} (-1)^n \frac{x^n}{n}$$

7.99. Bővítsük a függvényt 1 - x-szel:

$$f(x) = \frac{1-x}{(1+x+x^2)(1-x)} = \frac{1-x}{1-x^3}.$$

Felhasználva a geometriai sor összegfüggvényét, x helyébe x^3 -öt írva

$$\frac{1}{1-x^3} = \sum_{n=0}^{\infty} x^{3n}, \qquad |x| < 1.$$

Ezért

$$f(x) = \frac{1}{1 - x^3} - x \frac{1}{1 - x^3} = \sum_{n=0}^{\infty} x^{3n} - \sum_{n=0}^{\infty} x^{3n+1} = \sum_{k=0}^{\infty} a_k x^k,$$

ahol

$$a_k = \begin{cases} 1 & \text{ha } k = 3n \\ -1 & \text{ha } k = 3n + 1 \\ 0 & \text{ha } k = 3n + 2 \end{cases}$$

7.105.

$$\cos^2 x = \frac{1}{2} + \frac{1}{2}\cos 2x = \frac{1}{2} + \frac{1}{2}\sum_{n=0}^{\infty} (-1)^n \frac{(2x)^{2n}}{(2n)!} =$$

$$= 1 + \sum_{n=1}^{\infty} (-1)^n 2^{2n-1} \frac{x^{2n}}{(2n)!}, \qquad x \in \mathbb{R}.$$

7.111. A Lagrange-maradék segítségével becsüljük meg a függvényérték és egy Taylor-polinom eltérését.

Az $f(x) = \sin x$ függvény esetén valamilyen $d \in [0, 1]$ -re

$$|\sin 1 - T_{2n}(1)| = \left| \sin 1 - \sum_{k=0}^{n-1} (-1)^k \frac{1}{(2k+1)!} \right| =$$
$$= \frac{d^{2n+1}}{(2n+1)!} \le \frac{1}{(2n+1)!} < 10^{-2},$$

ha $n \ge 2$. Ezért

$$\left|\sin 1 - T_4(1)\right| = \left|\sin 1 - 1 + \frac{1}{3!}\right| = \left|\sin 1 - \frac{5}{6}\right| < 10^{-2}.$$

Az $f(x)=e^x$ függvény esetén valamilyen $d\in[0,1]\text{-re}$

$$|e^1 - T_n(1)| = e - T_n(1) = \frac{e^d d^{n+1}}{(n+1)!} \le \frac{e}{(n+1)!} < 10^{-2},$$

ha $n \geq 5$. Ezért

$$e - T_5(1) = e - \left(1 + 1 + \frac{1}{2} + \frac{1}{6} + \frac{1}{24} + \frac{1}{120}\right) =$$

= $e - \left(2 + \frac{43}{60}\right) \sim e - 2.716666667 < 10^{-2}$

7.117. A keresett derivált az $f(x) = e^{x^2}$ függvény 0 körüli Taylor-sorában az x^{136} hatványhoz tartozó együttható és 136! szorzata.

$$f(x) = e^{x^2} = \sum_{n=0}^{\infty} \frac{1}{n!} x^{2n}, \qquad f^{(136)}(0) = \frac{136!}{68!}$$

7.120.
$$f'(x) = (\operatorname{tg} x)' = \frac{1}{\cos^2 x}$$

$$f''(x) = (\operatorname{tg} x)'' = \left(\frac{1}{\cos^2 x}\right)' = 2\frac{\sin x}{\cos^3 x}$$

$$f'''(x) = (\operatorname{tg} x)''' = \left(2\frac{\sin x}{\cos^3 x}\right)' = 2\frac{\cos^4 x + 3\sin^2 x \cos^2 x}{\cos^6 x} = 2\frac{\cos^2 x + 3\sin^2 x}{\cos^4 x} = 2\frac{1 + 2\sin^2 x}{\cos^4 x}$$

Tehát f(0) = 0, f'(0) = 1, f''(0) = 0, f'''(0) = 2. Tehát a 3-adik Taylor-polinom

$$t_3(x) = x + \frac{x^3}{3}.$$

Mivel tgx páratlan függvény, ezért a negyedik deriváltja a 0-ban 0. Tehát a fenti polinom egyben a negyedik Taylor-polinom is, $t_3(x) =$ $t_4(x)$.

7.125. (a)
$$\frac{1}{2+x} = \frac{1}{2} \frac{1}{1 - \frac{-x}{2}} = \sum_{n=0}^{\infty} (-1)^n \frac{1}{2^{n+1}} x^n, \quad |x| < 2$$

(b)
$$\frac{1}{2+x} = \frac{1}{3+(x-1)} = \frac{1}{3} \frac{1}{1-\frac{-(x-1)}{3}} =$$

$$= \sum_{n=0}^{\infty} (-1)^n \frac{1}{3^{n+1}} (x-1)^n, \qquad |x-1| < 3$$

7.3 Trigonometrikus sorok, Fourier-sor

7.126.
$$\sin^2 x = \frac{1}{2} - \frac{1}{2}\cos 2x$$

7.128. Mivel
$$\operatorname{sgn} x$$
 páratlan, ezért minden $a_n = 0$.

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} \operatorname{sgn} x \sin nx \, dx = \frac{2}{\pi} \int_{0}^{\pi} \sin nx \, dx = -\frac{2}{\pi n} \left[\cos nx \right]_{0}^{\pi} =$$

$$= \begin{cases} \frac{4}{\pi n} & \text{ha } n \text{ páratlan} \\ 0 & \text{ha } n \text{ páros} \end{cases}$$

Mivel a sg
nx függvény szakaszonként folytonosan deriválható és 0-ban az érték a két "féloldali" határérték számtani közepe, ez
ért a Fouriersora előállítja a $(-\pi,\pi)$ intervallumon.

$$\operatorname{sgn} x = \frac{4}{\pi} \sum_{k=0}^{\infty} \frac{\sin(2k+1)x}{2k+1}$$
 ha $-\pi < x < \pi$.

7.134. (a) Ez a függvény páratlan függvény, azaz f(-x) = -f(x), ezért minden $a_n = 0$.

$$\int_{0}^{2\pi} \frac{\pi - x}{2} \sin nx \, dx = \left[-\frac{\pi - x}{2} \cdot \frac{1}{n} \cos nx \right]_{0}^{2\pi} - \frac{1}{2n} \int_{0}^{2\pi} \cos nx \, dx =$$

$$= \left[\frac{x - \pi}{2n} \cos nx \right]_{0}^{2\pi} = \frac{\pi}{n}$$

Így tehát

$$b_n = \frac{1}{\pi} \int_{0}^{2\pi} \frac{\pi - x}{2} \sin nx \, dx = \frac{1}{n}.$$

Mivel az f(x) függvény szakaszonként folytonosan deriválható, azért $(0, 2\pi)$ -n, a folytonossági helyein a függvényt előállítja a Fourier-sora.

$$\frac{\pi - x}{2} = \sum_{n=1}^{\infty} \frac{\sin nx}{n}$$
, ha $0 < x < 2\pi$.

(b) Az előző Fourier-sorfejtésben írjunk x helyébe $\frac{\pi}{2}$ -t.

Mivel
$$\sin\left(k\frac{\pi}{2}\right)=\left\{\begin{array}{ll} (-1)^n & \text{ha } k=2n+1\\ \\ 0 & \text{ha } k=2n\\ \\ \frac{\pi}{4}=\sum_{n=0}^{\infty}(-1)^n\frac{1}{2n+1}. \end{array}\right.$$

7.135. (a) Mivel f páros függvény,

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} x^2 \sin nx \, dx = 0$$
, azaz a b_n -ek mind nullák.

$$a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} x^2 dx = \frac{1}{2\pi} \left[\frac{x^3}{3} \right]_{-\pi}^{\pi} = \frac{\pi^2}{3}$$

ha n > 0, kétszer parciálisan integrálva kapjuk, hogy

$$\int_{-\pi}^{\pi} x^2 \cos nx \, dx = \left[\frac{1}{n} x^2 \sin nx \right]_{-\pi}^{\pi} - \frac{2}{n} \int_{-\pi}^{\pi} x \sin x \, dx =$$

$$= \frac{2}{n^2} \left[x \cos nx \right]_{-\pi}^{\pi} - \frac{2}{n^2} \int_{-\pi}^{\pi} \cos nx \, dx = (-1)^n \frac{4\pi}{n^2} - \frac{2}{n^3} \left[\sin nx \right]_{-\pi}^{\pi} =$$

$$= (-1)^n \frac{4\pi}{n^2}.$$

Így tehát n>0 esetén

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} x^2 \cos nx \, dx = (-1)^n \frac{4}{n^2}.$$

Mivel $\sum \frac{1}{n^2}$ konvergens, ezért f Fourier-sora egyenletesen konvergens a Weierstrass-kritérium szerint, és mivel f folytonos, a Fourier-sora előállítja a függvényt.

$$x^{2} = \frac{\pi^{2}}{3} + 4 \cdot \sum_{n=1}^{\infty} (-1)^{n} \frac{\cos nx}{n^{2}}, \text{ ha } -\pi \le x \le \pi.$$

(b) Ha az előző Fourier-sorban x helyébe π -t írunk, és felhasználjuk, hogy $\cos n\pi = (-1)^n$ kapjuk, hogy

$$\pi^2 = \frac{\pi^2}{3} + 4 \cdot \sum_{n=1}^{\infty} \frac{1}{n^2}.$$

Átrendezés után pedig

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}.$$

7.142.

$$e^x = a_0 + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$$

Kétszer parciálisan integrálva kapjuk, hogy

$$\int e^x \cos nx \, dx = \frac{\cos nx + n \sin nx}{n^2 + 1} e^x + C,$$

$$\int e^x \sin nx \, dx = \frac{\sin nx - n\cos nx}{n^2 + 1} e^x + C$$

Ezt felhasználva

$$a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^x dx = \frac{1}{2} \cdot \frac{e^{\pi} - e^{-\pi}}{\pi},$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} e^x \cos nx \, dx = (-1)^n \frac{1}{n^2 + 1} \cdot \frac{e^{\pi} - e^{-\pi}}{\pi},$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} e^x \sin nx \, dx = (-1)^{n+1} \frac{n}{n^2 + 1} \cdot \frac{e^{\pi} - e^{-\pi}}{\pi}$$

Behelyettesítés után

$$e^x = \frac{e^\pi - e^{-\pi}}{\pi} \left(\frac{1}{2} + \sum_{n=1}^{\infty} \frac{(-1)^n}{n^2 + 1} (\cos nx - n \sin nx) \right), \quad -\pi < x < \pi$$

Többváltozós függvények differenciálása

8.1 Topológiai alapfogalmak

8.2.
$$|\mathbf{p} - \mathbf{q}| = \sqrt{(-1-5)^2 + (3-(-4))^2 + (5-0)^2} = \sqrt{36+49+25} = \sqrt{110}$$

 $k = 1: \quad x^2 < r^2$ 8.5.

k = 2: $x^2 + y^2 < r^2$

k = 3: $x^2 + y^2 + z^2 < r^2$

k = n: $x_1^2 + x_2^2 + \dots + x_n^2 < r^2$

8.8. Ez a halmaz az ábrán látható nyílt körgyűrű. Nyílt és korlátos határpontjai az $x^2 + y^2 = 1$ és az $x^2 + y^2 = 4$ körvonal pontjai.

- 8.14. $H = \{x : 0 < x < 1\} \subset \mathbb{R}$ nyîlt (nyîlt intervallum), mert ha $x \in H$, $r = \min\{x, 1 - x\}, \text{ akkor } \{y : |x - y| < r\} \subset H.$
- 8.15. Ha $H = \{(x,0) : 0 < x < 1\} \subset \mathbb{R}^2$, akkor $\partial H = \{(x,0) : 0 \le x \le 1\}$. A 8.1. tétel szerint H nem nyílt, mert $H \cap \partial H \neq \emptyset$, és nem zárt, mert $\partial H \not\subseteq H$.
- 8.22. Ha $H = \{(x, y) : x \in \mathbb{Q}, y \in \mathbb{Q}\} \subset \mathbb{R}^2$, akkor $\partial H = \mathbb{R}^2$, és ezért a 8.1. tétel szerint H se nem nyílt, se nem zárt.
- 8.23. A $H = \{(x,y) : 0 < x < 1, 0 < y < 1\} \subset \mathbb{R}^2$ halmaz nyílt (nyílt téglalap), mert $p = (x, y) \in H$, $r = \min\{x, 1 - x, y, 1 - y\} > 0$ esetén

$$B(p;r) = \left\{ q \in \mathbb{R}^2 : |p - q| < r \right\} \subset H.$$

8.29.

$$\begin{split} H &= \{(x,y,z): x^2 + y^2 + z^2 \leq 1\}, \quad \text{int } H = \{(x,y,z): x^2 + y^2 + z^2 < 1\}, \\ &\text{ext } H = \{(x,y,z): x^2 + y^2 + z^2 > 1\}, \quad \partial H = \{(x,y,z): x^2 + y^2 + z^2 = 1\} \end{split}$$

- 8.32. (a) Nem igaz, például $H = \{0\}, x = 0$.
 - (b) Igaz, mert int $H \subset H$.
 - (c) Nem igaz, például $H = \{0\}$.
 - (d) Nem igaz, például $H = \{ p \in \mathbb{R}^n : |p| < 1 \}, \ x = (1, 0, \dots, 0).$
 - (e) Igaz, például $H = \mathbb{Q}^n$.
 - (f) Igaz, például $H = \{ p \in \mathbb{R}^n : |p| < 1 \}.$
 - (g) Igaz, például $H = \{ p \in \mathbb{R}^n : |p| = 1 \}.$

8.2 Többváltozós függvények grafikonja

8.33.
$$f(\mathbf{p}) = f(2,3) = 2 + 3^2 = 11.$$

8.38.
$$f(x,y) = x - y$$
, $f(x,x) = 0$, $f(x,x^2) = x - x^2$.

8.43.

szintvonalak

grafikon

8.49.

szintvonalak

grafikon

8.61.
$$f(x,y) = \frac{x+y}{x-y}, \quad D_f = \{(x,y) \in \mathbb{R}^2 : x \neq y\}.$$

8.3 Többváltozós határérték, folytonosság

- $f(x,y)=7,\quad \lim_{(x,y)\to(0,0)}f(x,y)=\lim_{(x,y)\to(0,0)}7=7.$ A függvény minde-8.67. nütt folytonos.
- Az $f(x,y)=\frac{\sin x-\sin y}{e^x-e^y}$ függvény nincs értelmezve ha x=y, és így nincs értelmezve az origó egy pontozott környezetében. Az origóban 8.73. ezért nincs határérték. Az f(x,y) függvény folytonos az $\{(x,y): x \neq y\}$ értelmezési tartomány minden pontjában.

8.79.

$$f(x,y) = \begin{cases} x, \text{ ha } x = y\\ 0, \text{ egyébként} \end{cases}$$

A függvény mindenütt folytonos, kivéve a $H = \{(x, x) : x \neq 0\}$ halmaz pontjait. Ezért (0,0)-ban is és (0,1)-ben is van határérték, mégpedig a helyettesítési érték:

$$\lim_{(x,y)\to(0,0)} f(x,y) = f(0,0) = 0, \qquad \lim_{(x,y)\to(0,1)} f(x,y) = f(0,1) = 0.$$

M

8.4 Parciális és totális derivált

8.85. Legyen például $f(x,y) = \begin{cases} \frac{2xy}{x^2 + y^2} & \text{ha } x^2 + y^2 > 0 \\ 0 & \text{ha } x^2 + y^2 > 0 \end{cases}$.

Mivel $f(x,0) \equiv 0 \equiv f(0,y)$, ezért az origóban mindkét parciális derivált létezik és nulla. De mivel $f(x,x) \equiv 1 \neq 0$, ezért még határértéke sincs f-nek az origóban.

8.90. Ha $x \neq y^2$, akkor az $f(x,y) = \frac{x+y}{x-y^2}$ függvény (parciálisan) deriválható, és

$$f'_x(x,y) = \frac{(x-y^2) - (x+y)}{(x-y^2)^2} = -\frac{y^2 + y}{(x-y^2)^2},$$

$$f'_y(x,y) = \frac{(x-y^2) + (x+y) \cdot 2y}{(x-y^2)^2} = \frac{x+y^2 + 2xy}{(x-y^2)^2}.$$

8.96. A $g(x,y,z)=x^{y^z}$ függvény értelmezési tartománya a $\{(x,y,z)\in\mathbb{R}^3:x>0,\ y>0\}$ térnegyed. Ennek pontjaiban deriválható, és

$$\frac{\partial}{\partial x} \left(x^{y^z} \right) = x^{(y^z - 1)} \cdot y^z, \quad \frac{\partial}{\partial y} \left(x^{y^z} \right) = x^{y^z} \cdot \ln x \cdot z \cdot y^{z - 1},$$

$$\frac{\partial}{\partial z} \left(x^{y^z} \right) = x^{y^z} \cdot \ln x \cdot \ln y \cdot y^z$$

- **8.102.** Egyik parciális derivált sem létezik az origóban, mert az f(x,0) = |x|, illetve f(0,y) = |y| egyváltozós függvények nem deriválhatók 0-ban.
- 8.108.

$$g(x, y, z) = 2 + x + y^2 + z^3,$$

$$g_x'(x,y,z) = 1, \quad g_y'(x,y,z) = 2y, \quad g_z'(x,y,z) = 3z^2, \quad g_{xx}''(x,y,z) = 0,$$

$$g_{xy}''(x,y,z) = g_{yx}''(x,y,z) = 0, \quad g_{xz}''(x,y,z) = g_{zx}''(x,y,z) = 0,$$

$$g_{yy}''(x, y, z) = 2, \quad g_{yz}''(x, y, z) = g_{zy}''(x, y, z) = 0,$$

$$g_{zz}^{\prime\prime}(x,y,z)=6z$$

8.112. A $\mathbf{v} = (-4,3)$ vektor hossza $|\mathbf{v}| = 5$. Mivel az $f(x,y) = e^{x+y} \cdot \ln y$ függvény a $\mathbf{p} = (0,1)$ pontban deriválható ezért ebben a pontban minden irányban deriválható (lásd a 8.5. tételt), és

$$\frac{\partial}{\partial \mathbf{v}} f(0,1) = \frac{1}{5} \left(-4 \frac{\partial}{\partial x} f(0,1) + 3 \frac{\partial}{\partial y} f(0,1) \right).$$

$$\frac{\partial}{\partial x} \left(e^{x+y} \cdot \ln y \right) = e^{x+y} \cdot \ln y, \quad \frac{\partial}{\partial y} \left(e^{x+y} \cdot \ln y \right) = e^{x+y} \cdot \left(\ln y + \frac{1}{y} \right)$$

Behelyettesítés után $\frac{\partial}{\partial \mathbf{v}} f(0,1) = \frac{3e}{5}$.

8.119. Egy (sima) felület tetszőleges pontjában az iránymenti deriváltak abszolút értékben a gradiens irányában maximálisak (lásd a 8.5. tételt), és ezért a golyó ebben az irányban lefelé indul el.

$$f'_x(x,y) = 3x^2 - 9y$$
, $f'_y(x,y) = 3y^2 - 9x$

$$\operatorname{grad} f(1,2) = (-15,3), \quad \operatorname{grad} f(2,1) = (3,-15),$$

$$\operatorname{grad} f(2,0) = (12, -18), \quad \operatorname{grad} f(-2,1) = (3,21)$$

8.127.

$$f(x,y) = \begin{cases} xy\frac{x^2 - y^2}{x^2 + y^2}, & \text{ha } x^2 + y^2 \neq 0\\ \\ 0, & \text{ha } x^2 + y^2 = 0 \end{cases}$$

Ha $x^2 + y^2 \neq 0$

$$f'_x(x,y) = y\frac{x^2 - y^2}{x^2 + y^2} + xy\frac{2x(x^2 + y^2) - 2x(x^2 - y^2)}{(x^2 + y^2)^2} =$$

$$= y\frac{x^2 - y^2}{x^2 + y^2} + xy\frac{4xy^2}{(x^2 + y^2)^2}$$

$$f'_y(x,y) = x\frac{x^2 - y^2}{x^2 + y^2} + xy\frac{-2y(x^2 + y^2) - 2y(x^2 - y^2)}{(x^2 + y^2)^2} =$$

$$= x\frac{x^2 - y^2}{x^2 + y^2} - xy\frac{4x^2y}{(x^2 + y^2)^2}$$

(a)
$$f(x,0) = f(0,y) = 0$$
, $f'_x(0,0) = f'_y(0,0) = 0$

(b)
$$f'_x(0,y) = -y$$
, $f'_y(x,0) = x$

- (c) $f''_{xy}(0,0) = -1$, $f''_{yx}(0,0) = 1$
- (d) Mert a másodrendű parciális deriváltak nem folytonosak az origóban.
- (e) Belátjuk, hogy fnem deriválható kétszer, mert f_x^\prime nem deriválható az origóban. Az eddigi eredményeket felhasználva

$$f'_x(0,0) = 0, \quad f''_{xx}(0,0) = 0, \quad f''_{xy}(0,0) = -1$$
$$\frac{f'_x(x,y) - \left[f''_{xx}(0,0)x + f''_{xy}(0,0)y + f'_x(0,0)\right]}{\sqrt{x^2 + y^2}} = \frac{f'_x(x,y) + y}{\sqrt{x^2 + y^2}}$$

Megmutatjuk, hogy ez a kifejezés nem tart 0-hoz (0,0)-ban már az y = x egyenes mentén sem.

$$\frac{f_x'(x,x) + x}{\sqrt{x^2 + x^2}} = \frac{2x}{\sqrt{2}x} = \sqrt{2}$$

- 8.129. Igen, például az $f(x, y) = x \sin y$ megfelel.
- 8.131. Ha x > 0, akkor

$$\operatorname{grad} f(x,y) = (yx^{y-1}, x^y \ln x), \quad \operatorname{grad} f(2,3) = (12, 8 \ln 2).$$

Az érintő sík egyenlete

$$z = 8 + 12(x - 2) + 8 \ln 2 \cdot (y - 3).$$

8.134.

$$y = n! + \sum_{k=1}^{n} \frac{n!}{k} (x_k - k)$$

Itt $h = g \circ f : \mathbb{R}^2 \to \mathbb{R}, \quad h(u, v) = g(f(u, v)) = g(f_1(u, v), f_2(u, v))$ 8.140.

$$f_1(u,v) = u^2 v^2, \quad f_2(u,v) = \frac{1}{uv}.$$

$$h'_u(u,v) = g'_x(f(u,v))(f_1)'_u(u,v) + g'_y(f(u,v))(f_2)'_u(u,v) =$$

$$= \frac{1}{u^2 v^2} \cdot 2uv^2 + uv \cdot \left(-\frac{1}{u^2 v}\right) = \frac{1}{u}$$

$$h'_{v}(u,v) = g'_{x}(f(u,v))(f_{1})'_{v}(u,v) + g'_{y}(f(u,v))(f_{2})'_{v}(u,v) =$$

$$= \frac{1}{u^{2}v^{2}} \cdot 2u^{2}v + uv \cdot \left(-\frac{1}{uv^{2}}\right) = \frac{1}{v}$$

$$J=(h_u'(u,v),h_v'(u,v))=\left(\frac{1}{u},\frac{1}{v}\right)$$

Ellenőrizzük ezt az eredményt úgy, hogy kiszámoljuk a h(u,v) függvényt, majd deriváljuk.

$$h(u, v) = \ln(u^2 v^2) + \ln\left(\frac{1}{uv}\right) = 2\ln u + 2\ln v - \ln u - \ln v = \ln u + \ln v$$

8.146. Jelölje t az \mathbf{r} síkgörbe változóját. $\mathbf{r}(t) = (x(t), y(t))$

$$h = f \circ \mathbf{r}, \quad h(t) = f(\mathbf{r}(t)) = x(t) + y(t),$$

$$h'(t) = h'(\mathbf{r}(t)) \cdot \mathbf{r}'(t) = x'(t) + y'(t)$$

8.5 Többváltozós szélsőérték

8.152. Az $f(x,y) = x^2 + e^y \sin(x^3y^2)$ függvény folytonos a kompakt (korlátos és zárt)

$$H = \{(x,y) : x^2 + y^2 \le 1\}$$

halmazon, ezért a Weierstrass-tétel szerint van abszolút maximuma és minimuma H-n.

8.157. Az $f(x,y) = x^3y^2(1-x-y)$ függvény mindenütt folytonos, a korlátos és zárt

$$H = \{(x, y) : 0 \le x, 0 \le y, x + y \le 1\}$$

halmazon (zárt háromszög) f nem negatív. A háromszög peremén (határán) f(x,y)=0, a belsejében pedig f(x,y)>0. Ezért az f függvény maximuma a háromszög belsejében van, és így ez lokális maximum is. Számoljuk ki az f függvény stacionárius pontjait, azaz a derivált gyökeit (8.7. tétel), ha x,y>0, x+y<1.

$$f'_x(x,y) = 3x^2y^2(1-x-y) - x^3y^2 = 0,$$
 $4x + 3y = 3$

$$f'_y(x,y) = 2x^3y(1-x-y) - x^3y^2 = 0,$$
 $2x + 3y = 2$

$$x = \frac{1}{2}, \qquad y = \frac{1}{3}$$

Mivel csak egy gyököt kaptunk, ezért ez a maximumhely.

8.163. Az $f(x,y) = 3x^2 + 5y^2$ függvény sehol sem negatív, és az origót kivéve minden pontban szigorúan monoton a koordináta-tengelyek mentén, ezért egyetlen szélsőértéke az origóban van, mégpedig minimum. Ellenőrizzük ezt a tényt a derivált vizsgálatával (8.7. tétel).

$$f_x'(x,y) = 6x = 0,$$
 $x = 0$

$$f_y'(x,y) = 10y = 0, \qquad y = 0$$

Tehát az origó az egyetlen stacionárius pont.

8.169. Keressük meg az $f(x,y) = -y^2 + \sin x$ függvény stacionárius pontjait.

$$f'_x(x,y) = \cos x = 0, \qquad x = (2n+1)\frac{\pi}{2}, \ n \in \mathbb{Z}$$

$$f_y'(x,y) = -2y = 0, \qquad y = 0$$

Tehát a függvény stacionárius pontjai az x-tengelyen a $\left\{\mathbf{p}_n = \left((2n+1)\frac{\pi}{2},0\right):\ n\in\mathbb{Z}\right\}$ pontok. Vizsgáljuk meg a megfelelő kvadratikus alakok definitségét (8.7. tétel).

$$f_{xx}''(x,y) = -\sin x$$
, $f_{xy}''(x,y) = f_{yx}''(x,y) = 0$. $f_{yy}''(x,y) = -2$

A Hesse-mátrixok ezekben a pontokban

$$H_n = \begin{pmatrix} (-1)^{n+1} & 0\\ 0 & -2 \end{pmatrix}$$

A H_n mátrix determinánsa negatív ha n páratlan, ezért ezekben a pontokban nincs szélsőérték.

Hanpáros, akkor f-nek a
 $\mathbf{p}_{\,n}\text{-ben}$ maximuma van, mert $f_{xx}''<0$ ezekben a pontokban.

8.176. Írjuk fel a két egyenes egy-egy tetszőleges pontjának a távolságát

$$d(\mathbf{p}(t), \mathbf{q}(s)) = \sqrt{(2t - 3s)^2 + (t - s)^2 + (2 - t - 2s)^2}, \qquad t, s \in \mathbb{R}$$

A távolságok minimuma ugyanott van, ahol a távolságok négyzetének a minimuma. Keressük tehát az

$$f(t,s) = (2t-3s)^2 + (t-s)^2 + (2-t-2s)^2 = 6t^2 - 10ts + 14s^2 - 4t - 8s + 4t - 10ts + 14t - 10ts + 14t + 10t +$$

kétváltozós függvény minimumát a síkon.

$$f'_t(t,s) = 12t - 10s - 4 = 0,$$
 $6t - 5s = 2$

$$f_s'(t,s) = -10t + 28s - 8 = 0, -5t + 14s = 4$$
$$t = \frac{48}{59}, s = \frac{34}{59}, \min\{f(t,s) : t, s \in \mathbb{R}\} = \frac{4}{59}$$

Tehát a két egyenes távolsága $\frac{2}{\sqrt{59}}$

8.182.

$$f(x,y) = (x+y)^2$$
, $f'_x(x,y) = f'_y(x,y) = 2(x+y)$

Tehát az x+y=0 egyenes összes pontja kritikus pont. Ezekben a pontokban a függvény értéke nulla, másutt pozitív, tehát f-nek minimuma van az x+y=0 pontjaiban. Megjegyezzük, hogy ezekben a pontokban nem tudunk dönteni a második parciális deriváltak segítségével, mert a kvadratikus alak szemidefinit:

$$f_{xx}'' = f_{xy}'' = f_{yy}'' = 2,$$
 $D = \begin{vmatrix} 2 & 2 \\ 2 & 2 \end{vmatrix} = 0.$

8.190.

$$f(x, y, z) = xyz + x^2 + y^2 + z^2$$

$$f'_x(x, y, z) = yz + 2x = 0, \quad f'_y(x, y, z) = xz + 2y = 0,$$

$$f'_z(x, y, z) = xy + 2z = 0$$

Az egvenletek átalakítása után

$$xyz + 2x^2 = 0$$
, $xyz + 2y^2 = 0$, $xyz + 2z^2 = 0$

Innen $x^2 = y^2 = z^2$. Könnyen látható, hogy ha az egyik változó nulla, akkor a másik kettő is. Az egyik kritikus pont tehát az

$$\mathbf{a} = (0, 0, 0) \text{ (origó)}.$$

A többi esetet nézve xyz negatív kell, hogy legyen, ezért vagy mindhárom negatív, és akkor

$$\mathbf{b} = (-2, -2, -2)$$

megoldás, vagy az egyik negatív, a másik kettő pozitív, és akkor a

$$\mathbf{c}_1 = (-2, 2, 2), \ \mathbf{c}_2 = (2, -2, 2), \ \mathbf{c}_3 = (2, 2, -2)$$

a további három kritikus pont. Mivel a függvény változóinak szerepe felcserélhető, ezért elég a három utolsó gyök közül az egyiket megvizsgálni.

$$f''_{xx} = 2$$
, $f''_{xy} = f''_{yx} = z$, $f''_{xz} = f''_{zx} = y$, $f''_{yz} = f''_{zy} = x$,

$$f''_{yy} = 2, \quad f''_{zz} = 2$$

A Hesse-mátrix a-ban

$$H_a = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}.$$

Mivel a sarok-determinánsok pozitívak, ezért az origóban minimum van.

A Hesse-mátrix **b**-ben

$$H_b = \begin{pmatrix} 2 & -2 & -2 \\ -2 & 2 & -2 \\ -2 & -2 & 2 \end{pmatrix}.$$

A kvadratikus alak indefinit, mivel van negatív (-2) és pozitív (4) sajátértéke is. Tehát a $\mathbf{q} = (-2, -2, -2)$ pontban nincs szélsőérték. Ezt beláthatjuk úgy is, hogy megmutatjuk, hogy a \mathbf{q} ponthoz akármilyen közel az f felvesz f(-2, -2, -2) = 4-nél nagyobb és kisebb értéket is. Ugyanis a $g(x) = f(x, x, x) = x^3 + 3x^2$ függvénynek szigorú lokális maximuma van -2-ben, a $h(x) = f(x, -2, -2) = x^2 + 4x + 8$ függvénynek pedig szigorú minimuma.

Végül pedig például c₁-ben nincs szélsőérték, mert a $g(x)=f(x,-x,-x)=x^3+3x^2$ függvénynek szigorú lokális maximuma van -2-ben, a $h(x) = f(x,2,2) = x^2 + 4x + 8$ -nek pedig szigorú minimuma.

8.197. A Lagrange-multiplikátor módszer szerint keressük az

$$L(x,y) = 30 - \frac{x^2}{100} - \frac{y^2}{100} + \lambda(4x^2 + 9y^2 - 36)$$

kritikus pontjait a $4x^2 + 9y^2 = 36$ feltétel mellett.

$$L'_x(x.y) = -\frac{x}{50} + 8\lambda x = \left(8\lambda - \frac{1}{50}\right)x = 0$$

$$L'_y(x.y) = -\frac{y}{50} + 18\lambda y = \left(18\lambda - \frac{1}{50}\right)y = 0$$
$$4x^2 + 9y^2 = 36$$

A háromismeretlenes egyenletrendszer megoldásai

$$x_1 = 0, \quad y_1 = 2, \quad \lambda_1 = \frac{1}{18 \cdot 50}$$

$$x_2 = 3, \quad y_2 = 0, \quad \lambda_2 = \frac{1}{8 \cdot 50}$$

Mivel a feltételt kielégítő pontok egy kompakt halmaz (zárt körvonal) pontjai, ezért itt F-nek van maximuma és minimuma is. Mivel a zárt körvonalnak nincs "pereme", ezért a szélsőértékek a fenti két pontban vannak, lokális szélsőértékek.

$$F(0,2) = 30 - \frac{4}{100}, \quad F(3,0) = 30 - \frac{9}{100}, \quad F(0,2) > f(3,0)$$

Tehát az ösvény legmagasabb pontja (0, 2) felett, legalacsonyabb pontja pedig (3,0) felett van.

8.202. Mivel f(x, y, z) minden változójában páratlan, ezért a minimum értékek a maximumok negáltjai. Elég tehát az xyz függvény maximumát keresni az

$$x > 0$$
, $y > 0$, $z > 0$, $x^2 + y^2 + z^2 = 3$

feltételek mellett. A mértani és a négyzetes közepek közötti egyenlőtlenséget használva

$$xyz \le \left(\sqrt{\frac{x^2 + y^2 + z^2}{3}}\right)^3 = 1$$

és egyenlőség pontosan akkor van, ha x = y = z. De akkor x = y = z

8.208. Ha a tégla térfogata V, akkor tehát keressük a

$$F(x, y, z) = 2(xy + xz + yz)$$

függvény minimumát az

$$xyz = V$$
, $x > 0$, $y > 0$, $z > 0$

feltételek mellett. Ez nyilván ugyanott van ahol az f(x,y,z) = xy + xz + zyz függvénynek. A Lagrange-multiplikátor módszer szerint keressük az

$$L(x, y, z) = xy + xz + yz + \lambda(xyz - V)$$

függvény kritikus pontjait.

$$L'_{x}(x, y, z) = y + z + \lambda yz = 0$$

$$L'_y(x, y, z) = x + z + \lambda xz = 0$$

$$L'_z(x, y, z) = x + y + \lambda xy = 0$$

Az első egyenletet yz-vel, a másodikat xz-vel, a harmadikat xy-nal osztva kapjuk, hogy

$$\frac{1}{z} + \frac{1}{y} = \frac{1}{z} + \frac{1}{x} = \frac{1}{y} + \frac{1}{x} = -\lambda,$$

ahonnan $x = y = z = \sqrt[3]{V}$.

Többváltozós Riemann-integrál

9.1 Jordan-mérték

9.1.
$$H = \{(x, y) : 0 \le x < 1, 0 < y \le 1\}, \quad t(h) = 1.$$

9.2.

$$\begin{split} H &= \{(x,y): x \in \mathbb{Q}, y \in \mathbb{Q}, 0 \leq x \leq 1, 0 \leq y \leq 1\},\\ & \text{int } H = \emptyset, \quad \overline{H} = N = [0,1] \times [0,1]. \end{split}$$

Az 9.1. tétel szerint $b(H) = 0 \neq 1 = k(H)$, és így H nem Jordanmérhető.

- 9.8. Lásd a 9.2. feladatot.
- 9.12. $H = \{(x, y, z) : x \in \mathbb{Q}, y \in \mathbb{Q}, z \in \mathbb{Q}, 0 \le x \le 1, 0 \le y \le 1, 0 \le z \le 1\}$ Hasonlóan a 9.2. feladathoz b(H) = 0, k(H) = 1.
- 9.18. Nem, lásd a 9.2. feladatot.
- Minden $n \in \mathbb{N}^+$ esetén a $K_n = \left\{ \mathbf{p} \in \mathbb{R}^2 : |\mathbf{p}| = \frac{1}{n} \right\}$ körvonal null-9.24. mértékű. Megmutatjuk, hogy a $H=\bigcup_{n=0}^\infty K_n$ halmaz is mérhető és null-mértékű. Ehhez elég megmutatni, hogy Hkülső mértéke nulla. Legyen $\varepsilon > 0$ tetszőleges, r > 0 esetén $G_r = \{ \mathbf{p} \in \mathbb{R}^2 : |\mathbf{p}| < r \}$ az origó középpontú r sugarú nyílt körlap,

$$H_r = G_r \cup \bigcup \left\{ K_n : r \le \frac{1}{n} \right\}.$$

Ekkor H_r véges sok mérhető halmaz diszjunkt uniója, ezért mérhető. Mivel minden r > 0 esetén $H \subset H_r$, ezért

$$k(H) \le k(H_r) = t(H_r) = t(G_r) = \pi r^2 < \varepsilon,$$

ha r elég kicsi.

9.30. Felhasználjuk, hogy minden (nem elfajuló) tégla tartalmaz gömböt, és minden gömb tartalmaz (nem elfajuló) téglát. Legyen tehát $A \subset \mathbb{R}^n$ tetszőleges korlátos halmaz.

b(A) = 0 akkor és csak akkor, ha A nem tartalmaz téglát, akkor és csak akkor, ha A nem tartalmaz gömböt, akkor és csak akkor, ha $int(A) = \emptyset$.

9.2 Többváltozós Riemann-integrál

9.34.

$$f(x,y) = \begin{cases} |x|, & \text{ha } y \in \mathbb{Q} \\ 0, & \text{ha } y \notin \mathbb{Q} \end{cases}$$
$$g(y) = \int_{-1}^{1} f(x,y) \, dx = 0, \qquad \int_{0}^{1} \left(\int_{-1}^{1} f(x,y) \, dx \right) \, dy = \int_{0}^{1} g(y) \, dy = 0.$$

Bontsuk ketté a H halmazt:

$$H_1 = \{(x, y) \in H : x \le 0\}$$
 és

$$H_2 = \{(x, y) \in H : x > 0\}.$$

Ekkor H_1 -en minden felső összeg nulla, és H_2 -n minden felső összeg legalább 1/2, és így

$$\overline{\int_{H}} f \ge \overline{\int_{H_{1}}} f + \overline{\int_{H_{2}}} f \ge \frac{1}{2}.$$

Mivel H-n minden alsó összeg nulla, ezért a Darboux-integrálok nem egyeznek meg,

$$\int_{\overline{H}} f = 0 < \frac{1}{2} \le \overline{\int_{H}} f,$$

tehát f nem integrálható H-n.

Legyen $A = \left\{ (x, y) \in N : x \ge \frac{1}{2} \right\}, \ B = N \setminus A = \left\{ (x, y) \in N : x < \frac{1}{2} \right\}.$ 9.40. Mindkét halmaz mérhető (téglalapok), és rajtuk az

$$f(x,y) = \begin{cases} 1, & \text{ha } x \ge 1/2 \\ 2, & \text{ha } x < 1/2 \end{cases}$$

függvény konstans. Így tehát f integrálható N-en, és

$$\iint_{N} f(x,y) \, dx \, dy = \iint_{A} 1 \, dx \, dy + \iint_{B} 2 \, dx \, dy = \frac{1}{2} + 1 = \frac{3}{2}$$

 \bigvee

9.43. Mivel f(x,y) nem korlátos, ezért nem integrálható. Másrészt minden vízszintes és függőleges egyenesen a függvény véges sok hely kivételével nulla.

Megjegyzés: Megadható korlátos példa is. Legyen ugyanis

$$H = \left\{ (x, y) \in N : x, y \in \mathbb{Q}, x = \frac{p_x}{q}, y = \frac{p_y}{q}, (p_x, q) = (p_y, q) = 1 \right\}.$$

Kissé pongyola módon, H azon racionális pontpárokból áll, amelyeknek "közös a nevezőjük" (egyszerűsítés után).

Legyen f(x, y) a H halmaz karakterisztikus függvénye, azaz

$$f(x,y) = \chi_H(x,y) = \begin{cases} 1 & \text{ha } (x,y) \in H \\ 0 & \text{egyébként} \end{cases}$$

9.46.

$$\iint_{N} \sin(x+y) \, dx \, dy = \int_{0}^{1} \left(\int_{0}^{1} \sin(x+y) \, dx \right) \, dy =$$

$$= \int_{0}^{1} \left[-\cos(x+y) \right]_{x=0}^{1} \, dy =$$

$$= \int_{0}^{1} (\cos y - \cos(1+y)) \, dy = \left[\sin y - \sin(1+y) \right]_{0}^{1} =$$

$$= 2\sin 1 - \sin 2$$

9.52.

$$\iint\limits_N e^{x+2y} \, dx \, dy = \left(\int\limits_0^1 e^x \, dx \right) \cdot \left(\int\limits_0^1 e^{2y} \, dy \right) = (e-1) \frac{e^2 - 1}{2}$$

9.58.

$$\iint_{T} (x+y) \, dx dy = \int_{1}^{3} \left(\int_{0}^{1} (x+y) \, dx \right) dy = \int_{1}^{3} \left[\frac{x^{2}}{2} + xy \right]_{x=0}^{1} dy =$$

$$= \int_{1}^{3} \left(\frac{1}{2} + y \right) dy = \left[\frac{y}{2} + \frac{y^{2}}{2} \right]_{y=1}^{3} = 5$$

9.60.

$$\iint_{T} e^{x+y} dxdy = \left(\int_{0}^{1} e^{x} dx \right) \cdot \left(\int_{0}^{1} e^{y} dy \right) = \left(\int_{0}^{1} e^{x} dx \right)^{2} =$$
$$= \left(\left[e^{x} \right]_{0}^{1} \right)^{2} = (e-1)^{2}$$

9.69. Alkalmazzuk a körlapokra vonatkozó transzformációs képletet:

$$\iint_{T} xy \, dx dy = \int_{0}^{2} \left(\int_{0}^{2\pi} r(r\cos\varphi + 1)(r\sin\varphi - 1) d\varphi \right) dr =$$

$$= \int_{0}^{2} \left(\int_{0}^{2\pi} \left(\frac{r^{3}\sin(2\varphi)}{2} + r^{2}(\sin\varphi - \cos\varphi) - r \right) d\varphi \right) dr =$$

$$= \left(\int_{0}^{2} \frac{r^{3}}{2} dr \right) \left(\int_{0}^{2\pi} \sin(2\varphi) \, d\varphi \right) +$$

$$+ \left(\int_{0}^{2} r^{2} \, dr \right) \left(\int_{0}^{2\pi} (\sin\varphi - \cos\varphi) \, d\varphi \right) -$$

$$- \left(\int_{0}^{2} r \, dr \right) \left(\int_{0}^{2\pi} 1 \, d\varphi \right) =$$

$$= - \left(\int_{0}^{2} r \, dr \right) \left(\int_{0}^{2\pi} 1 \, d\varphi \right) = -4\pi$$

Felhasználtuk, hogy a $\sin(2\varphi)$ és a $(\sin\varphi-\cos\varphi)$ függvények primitív függvényei 2π szerint periodikusak, ezért megváltozásuk a $[0,2\pi]$ intervallumon 0.

9.74.

$$\iiint_{T} (x+y+z) \, dx \, dy \, dz = \int_{0}^{3} \left(\int_{0}^{2} \left(\int_{0}^{1} (x+y+z) \, dx \right) \, dy \right) \, dz =$$

$$= \int_{0}^{3} \left(\int_{0}^{2} \left[\frac{x^{2}}{2} + xy + xz \right]_{x=0}^{1} \, dy \right) \, dz =$$

$$= \int_{0}^{3} \left(\int_{0}^{2} \left(\frac{1}{2} + y + z \right) \, dy \right) \, dz =$$

$$= \int_{0}^{3} \left[\frac{y}{2} + \frac{y^{2}}{2} + yz \right]_{y=0}^{2} \, dz = \int_{0}^{3} (3 + 2z) \, dz = \left[3z + z^{2} \right]_{0}^{3} = 18$$

9.82. Jelölje H az $y=x^2$, $y=2x^2$, xy=1, xy=2 görbék által határolt síkidomot. Tekintsük azt a

$$\Psi: \mathbb{R}^2 \to \mathbb{R}^2, \quad \Psi(u, v) = (x(u, v), y(u, v))$$

transzformációt, amelyet az

$$y = ux^2, \qquad xy = v$$

egyenletrendszer határoz meg, azaz

$$x = u^{-1/3}v^{1/3}, y = u^{1/3}v^{2/3}.$$

A H síkidom

Erre a Ψ transzformációra teljesülnek az integráltranszformációról szóló tétel feltételei. A H halmaz a $T=[1,2]\times[1,2]$ négyzet transzformáltja, $H=\Psi(T)$. Számoljuk ki a Ψ Jacobi-determinánsát.

$$\Psi'(u,v) = \begin{pmatrix} -\frac{1}{3}u^{-4/3}v^{1/3} & \frac{1}{3}u^{-1/3}v^{-2/3} \\ \frac{1}{3}u^{-2/3}v^{2/3} & \frac{2}{3}u^{1/3}v^{-1/3} \end{pmatrix}, \quad J = -\frac{1}{3u}, \quad |J| = \frac{1}{3u}$$

$$t(H) = \iint\limits_{H} \, dx \, dy = \iint\limits_{T} \, \frac{1}{3u} \, du \, dv = \frac{1}{3} \left(\int\limits_{1}^{2} \frac{1}{u} \, du \right) \left(\int\limits_{1}^{2} \, dv \right) = \frac{\ln 2}{3}$$

9.88.
$$f(x,y) = 1 - \frac{x^2}{2} - \frac{y^2}{2}, \ H = [0,1] \times [0,1],$$
 $N = \{(x,y,z) : (x,y) \in H, 0 \le z \le f(x,y)\}$

$$t(N) = \iiint_{N} dx \, dy \, dz =$$

$$= \iiint_{H} \left(\int_{0}^{f(x,y)} dz \right) dx \, dy =$$

$$= \iiint_{H} \left(1 - \frac{x^{2}}{2} - \frac{y^{2}}{2} \right) dx \, dy =$$

$$= \int_{0}^{1} \left(\int_{0}^{1} \left(1 - \frac{x^{2}}{2} - \frac{y^{2}}{2} \right) dx \right) dy =$$

$$= \int_{0}^{1} \left(\frac{5}{6} - \frac{y^{2}}{2} \right) dy = \frac{2}{3}$$

$$1 - \frac{x^{2}}{2} - \frac{y^{2}}{2} \text{ alatti test.}$$

$$1 - \frac{x^2}{2} - \frac{y^2}{2} \text{ alatti test.}$$

9.94.
$$H = \{(x, y, z) : x^2 + y^2 \le 1, 0 \le z \le 1 - x^2 - y^2\}.$$

$$t(H) = \iiint_{H} dx \, dy \, dz =$$

$$= \iint_{x^2 + y^2 \le 1} \left(\int_{0}^{1 - x^2 - y^2} dz \right) \, dx \, dy =$$

$$= \iint_{x^2 + y^2 \le 1} \left(1 - x^2 - y^2 \right) \, dx \, dy =$$

$$= \int_{0}^{1} \left(\int_{0}^{2\pi} r(1 - r^2) \, d\varphi \right) \, dr =$$

$$= 2\pi \left[\frac{r^2}{2} - \frac{r^3}{3} \right]_{0}^{1} = \frac{\pi}{3}$$

 $1 - x^2 - y^2$ alatti test.

9.100.
$$\rho(x,y) = x^2, \quad H = [0,1] \times [0,1]$$

$$M = \iint_{H} \varrho(x, y) \, dx \, dy = \int_{0}^{1} \left(\int_{0}^{1} x^{2} \, dx \right) \, dy = \frac{1}{3}$$

$$S_{x} = 3 \int_{0}^{1} \left(\int_{0}^{1} x^{3} \, dx \right) \, dy = \frac{3}{4}, \qquad S_{y} = 3 \int_{0}^{1} \left(\int_{0}^{1} x^{2} y \, dx \right) \, dy = \frac{1}{2}$$

9.106. Az y = 0, x = 2, y = 1, y = x egyenesek által határolt H síkidom egy trapéz, amelyik egy normáltartomány az y-tengely mentén.

$$H = \{(x, y) : 0 \le y \le 1, y \le x \le 2\}$$

Ha $\varrho(x,y) = y$, akkor

$$M = \iint_{H} y \, dx \, dy = \int_{0}^{1} \left(\int_{y}^{2} y \, dx \right) \, dy = \int_{0}^{1} y(2 - y) \, dy = \frac{2}{3}$$

$$S_{x} = \frac{3}{2} \iint_{H} xy \, dx \, dy = \frac{3}{2} \int_{0}^{1} \left(\int_{y}^{2} xy \, dx \right) \, dy =$$

$$= \frac{3}{2} \int_{0}^{1} y \left(2 - \frac{y^{2}}{2} \right) \, dy = \frac{3}{2} \cdot \frac{7}{8} = \frac{21}{16}$$

$$S_{y} = \frac{3}{2} \iint_{H} y^{2} \, dx \, dy = \frac{3}{2} \int_{0}^{1} \left(\int_{y}^{2} y^{2} \, dx \right) \, dy =$$

$$= \frac{3}{2} \int_{0}^{1} y^{2} (2 - y) \, dy = \frac{3}{2} \left(\frac{2}{3} - \frac{1}{4} \right) = \frac{5}{8}$$

Vonalintegrál és primitív függvény

$10.1~\mathrm{Sík}$ és térgörbék

10.1.

$$\mathbf{r} = t \cdot \mathbf{i} + t^2 \cdot \mathbf{j}$$

 $t \in [0, 4]$

10.7.

$$\mathbf{r} = \cos t \cdot \mathbf{i} + \sin t \cdot \mathbf{j}$$
$$t \in [0, 2\pi]$$

10.13.

$$\mathbf{r} = t \cos t \cdot \mathbf{i} + \sin t \cdot \mathbf{j}$$

 $t \in [0, 6\pi]$

10.19.

$$\mathbf{r} = 2\sin t \cdot \mathbf{i} - t^2 \cdot \mathbf{j} + \cos t \cdot \mathbf{k}$$
$$t \in [2, 6\pi]$$

 A $x^2 - xy^3 + y^5 = 17$ síkgörbe a P(5,2) pont körül meghatároz egy 10.25. implicit y(x) függvényt. Ennek a függvénynek keressük az érintőegyenesét a P pontban. Az implicit egyenlet deriválásával megkapjuk az érintő meredekségét:

$$2x - y^3 - 3xy^2y' + 5y^4y' = 0,$$
 $y' = \frac{y^3 - 2x}{5y^4 - 3xy^2} = \frac{8 - 10}{80 - 60} = -\frac{1}{10}.$

Így tehát az érintő egyenlete a P(5,2) pontban

$$y=-\frac{1}{10}(x-5)+2, \text{ vagy normál alakban } x+10y=25.$$

10.27. Számoljuk ki az érintőegyenes \mathbf{v} irányvektorát, azaz a görbe deriváltvektorát a t=2 paraméterérték esetén:

$$\mathbf{r}(t) = (t-3)\mathbf{i} + (t^2+1)\mathbf{j} + t^2\mathbf{k}$$

$$\dot{\mathbf{r}}(t) = \mathbf{i} + 2t\mathbf{j} + 2t\mathbf{k}$$

Az irányvektor: $\mathbf{v} = \dot{\mathbf{r}}(2) = \mathbf{i} + 4\mathbf{j} + 4\mathbf{k}$.

Az érintési pont: $\mathbf{r}_0 = \mathbf{r}(2) = -\mathbf{i} + 5\mathbf{j} + 4\mathbf{k}$.

Az érintő irányvektoros alakja:

$$\mathbf{r}_0 + \mathbf{v} t = (t-1)\mathbf{i} + (4t+5)\mathbf{j} + (4t+4)\mathbf{k}$$
.

10.29. Az 10.2. képletek szerint a ciklois ívhossza

$$L = \int_{0}^{2\pi} \sqrt{\dot{x}^2 + \dot{y}^2} \, dt = \int_{0}^{2\pi} \sqrt{r^2 (1 - \cos t)^2 + r^2 \sin^2 t} \, dt =$$

$$= r \int_{0}^{2\pi} \sqrt{2 - 2\cos t} \, dt = r \int_{0}^{2\pi} \sqrt{4\sin^2 \frac{t}{2}} \, dt =$$

$$= 2r \int_{0}^{2\pi} \sin \frac{t}{2} \, dt = 4r \left[-\cos \frac{t}{2} \right]_{0}^{2\pi} = 8r.$$

10.2 Skalár-, és vektormezők, differenciáloperátorok

10.35. Legyen például

$$f(x,y) = \cos(2\pi x) \cdot \mathbf{i} + \sin(2\pi x) \cdot \mathbf{j},$$

$$(x,y) \in H = \{(x,y) : 0 < x \le 1, y = 0\}.$$

Ekkor $R_f = K = \{(x, y) : x^2 + y^2 = 1\}.$

10.39.
$$f(x,y) = x^4 - 6x^2y^2 + y^4,$$
$$\operatorname{grad} f = \frac{\partial}{\partial x} f \cdot \mathbf{i} + \frac{\partial}{\partial y} f \cdot \mathbf{j} = (4x^3 - 12xy^2) \cdot \mathbf{i} + (4y^3 - 12x^2y) \cdot \mathbf{j}$$

10.43.
$$f(x, y, z) = x + xy^2 + x^2z^3$$
, $\mathbf{p} = (2, -1, 1)$
 $\operatorname{grad} f(x, y, z) = (1 + y^2 + 2xz^3) \cdot \mathbf{i} + 2xy \cdot \mathbf{j} + 3x^2z^2 \cdot \mathbf{k}$
 $\operatorname{grad} f(2, -1, 1) = 6\mathbf{i} - 4\mathbf{j} + 12\mathbf{k}$

10.47.

$$\operatorname{grad} U(\mathbf{r}\,) = \nabla U(\mathbf{r}\,) = \nabla \left(\mathbf{r}^{\,2} + \frac{1}{\mathbf{r}^{\,2}}\right) = 2\left(1 - \frac{1}{\mathbf{r}^{\,4}}\right)\mathbf{r}$$

A $z=f(x,y)=x^2+y^2$ függvény grafikonjának érintősíkja az $x=1,\,y=2$ pont felett

$$z = f(x_0, y_0) + f'_x(x_0, y_0)(x - x_0) + f'_y(x_0, y_0)(y - y_0) = 5 + 2(x - 1) + 4(y - 2)$$

10.51.

$$\mathbf{r} = u\cos v \cdot \mathbf{i} + u\sin v \cdot \mathbf{j} + u \cdot \mathbf{k}, \qquad A = [0, 1] \times [0, \pi]$$

$$\mathbf{r}'_u = \cos v \cdot \mathbf{i} + \sin v \cdot \mathbf{j} + \mathbf{k}, \qquad \mathbf{r}'_v = -u\sin v \cdot \mathbf{i} + u\cos v \cdot \mathbf{j}$$

$$\mathbf{r}'_u \times \mathbf{r}'_v = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \cos v & \sin v & 1 \\ -u\sin v & u\cos v & 0 \end{vmatrix} = -u\cos v \cdot \mathbf{i} - u\sin v \cdot \mathbf{j} + u \cdot \mathbf{k}$$

$$|\mathbf{r}'_u \times \mathbf{r}'_v| = \sqrt{u^2\cos^2 v + u^2\sin^2 v + u^2} = u\sqrt{2}$$

A felszín kiszámolásáról szóló tétel szerint

$$S = \iint\limits_A |\mathbf{r}'_u \times \mathbf{r}'_v| \ du \, dv = \sqrt{2} \int\limits_0^\pi \left(\int\limits_0^1 u \, du \right) \, dv = \frac{\sqrt{2}}{2} \pi.$$

10.3 Vonalintegrál

10.55. A vonalintegrál kiszámolásáról szóló tétel szerint

$$\int_{\Gamma} (x+y) \, dx + (x-y) \, dy =$$

$$= \int_{0}^{\pi} \left[(\cos t + \sin t)(-\sin t) + (\cos t - \sin t) \cos t \right] \, dt =$$

$$= \int_{0}^{\pi} (\cos 2t - \sin 2t) \, dt = \left[\frac{\sin 2t}{2} + \frac{\cos 2t}{2} \right]_{0}^{\pi} = 0$$

M

Megjegyzés:

Mivel a $\mathbf{v}=(x+y)\cdot\mathbf{i}+(x-y)\cdot\mathbf{j}$ vektormező egy primitív függvénye $U(x,y)=\frac{x^2}{2}+xy-\frac{y^2}{2}$, ezért a konzervatív erőtér integrálja a primitív függvény megváltozása:

$$\int_{\Gamma} \mathbf{v} \ d\mathbf{r} = U(-1,0) - U(1,0) = 0$$

10.61. A Γ_1 görbe egy parametrizálása $x=t,\ y=t,$ a Γ_2 görbének pedig $x=t,\ y=t^2,$ ahol $0 \le t \le 1.$ A $\mathbf{v}=y\cdot \mathbf{i}+x\cdot \mathbf{j}$ vektormező integráljai

$$\int_{\Gamma_1} y \, dx + x \, dy = \int_0^1 2t \, dt = 1, \qquad \int_{\Gamma_2} y \, dx + x \, dy = \int_0^1 3t^2 \, dt = 1.$$

Megjegyzés:

A $\mathbf{v}=y\cdot\mathbf{i}+x\cdot\mathbf{j}$ vektormező konzervatív U(x,y)=xy primitív függvénnyel.

10.67. A vonalintegrál nem létezik, mert \mathbf{v} nincs értelmezve az origóban, a Γ görbe pedig átmegy az origón.

10.70.

$$\int_{\Gamma} (x+y) \, dx + (y+z) \, dy + (z+x) \, dz =$$

$$= \int_{0}^{\pi} \left[(\cos t + \sin t)(-\sin t) + (\sin t + t) \cos t + (t + \cos t) \right] \, dt =$$

$$= \int_{0}^{\pi} (-\sin^{2} t + t \cos t + t + \cos t) \, dt =$$

$$= \left[-\frac{t}{2} + \frac{\cos 2t}{4} + t \sin t + \cos t + \frac{t^{2}}{2} + \sin t \right]_{0}^{\pi} =$$

$$= -\frac{\pi}{2} + 0 + 0 - 2 + \frac{\pi^{2}}{2} + 0 = \frac{\pi^{2}}{2} - \frac{\pi}{2} - 2$$

10.77. A Γ görbe paraméteres alakja:

$$\mathbf{r}(t) = t \cdot \mathbf{i} + t^2 \cdot \mathbf{j}, \quad -1 < t < 1$$

azaz

$$x = t, y = t^2,$$
 $dx = \dot{x}(t) = 1, dy = \dot{y}(t) = 2t,$ $-1 \le t \le 1.$

A vonalintegrál kiszámolásáról szóló képlet szerint

$$\begin{split} &\int\limits_{\Gamma} \left(x^2 - 2xy\right) dx + \left(y^2 - 2xy\right) dy = \\ &= \int\limits_{-1}^{1} \left[\left(t^2 - 2t^3\right) \cdot 1 + \left(t^4 - 2t^3\right) \cdot 2t \right] dt = \\ &= \int\limits_{-1}^{1} \left(t^2 - 2t^3 - 4t^4 + 2t^5\right) dt = \left[\frac{t^3}{3} - \frac{2t^4}{4} - \frac{4t^5}{5} + \frac{2t^6}{6} \right]_{t=-1}^{1} = \\ &= \frac{2}{3} - \frac{8}{5} = -\frac{14}{15} \end{split}$$

10.78. Az ellipszis természetes paraméterezéseként válasszuk az

$$x = a \cos t$$
, $y = b \sin t$, $0 < t < 2\pi$

paraméterezést. Ekkor dx, illetve dy helyébe

$$dx = -a\sin t$$
, $dy = b\cos t$

kerül. Így az integrál visszavezethető egyváltozós Riemann-integrálra:

$$\oint_{\Gamma} (x+y) \, dx + (x-y) \, dy =
= \int_{0}^{2\pi} [-a(a\cos t + b\sin t)\sin t + b(a\cos t - b\sin t)\cos t] \, dt =
= \int_{0}^{2\pi} (-ab\sin^2 t + ab\cos^2 t - a^2\sin t\cos t - b^2\sin t\cos t) \, dt =
= \int_{0}^{2\pi} (ab\cos 2t - \frac{a^2 + b^2}{2}\sin 2t) \, dt = 0$$

~

Megjegyzés:

Könnyen látható, hogy az $U(x,y)=\frac{x^2}{2}+xy-\frac{y^2}{2}$ függvény
 primitív függvénye az integrandusnak, ezért a körintegrál értéke 0.

10.84. Igen, a $\mathbf{v} = (x+y) \cdot \mathbf{i} + (x-y) \cdot \mathbf{j}$ vektormező primitív függvényei:

$$U(x,y) = \frac{x^2}{2} + xy - \frac{y^2}{2} + C.$$

10.90. Nincs primitív függvény, mivel a keresztbe vett deriváltak nem egyeznek meg:

$$\frac{\partial}{\partial y}(\cos xy) = -x\sin xy \neq \frac{\partial}{\partial x}(\sin xy) = y\cos xy$$

10.95. A $\mathbf{v} = \frac{y}{x^2 + y^2} \cdot \mathbf{i} - \frac{x}{x^2 + y^2} \cdot \mathbf{j}$ vektormező keresztbe vett deriváltjai megegyeznek:

$$\frac{\partial}{\partial y} \left(\frac{y}{x^2 + y^2} \right) = \frac{x^2 - y^2}{(x^2 + y^2)^2}, \qquad \frac{\partial}{\partial x} \left(-\frac{x}{x^2 + y^2} \right) = \frac{x^2 - y^2}{(x^2 + y^2)^2}.$$

Mégsincs primitív függvény, mert ha $\Gamma: x=\cos t,\ y=\sin t,\ 0\leq t\leq 2\pi$ a zárt egység-körvonal, akkor

$$\oint_{\Gamma} \frac{y}{x^2 + y^2} dx - \frac{x}{x^2 + y^2} dy = \int_{0}^{2\pi} (-\sin^2 t - \cos^2 t) dt = -2\pi \neq 0.$$

A problémát az okozza, hogy ${\bf v}\,$ nincs értelmezve az origóban, a Γ görbe pedig megkerüli az origót.

10.101. Az $\mathbf{E} = (y + x) \cdot \mathbf{i} + x \cdot \mathbf{j}$ erőtér konzervatív, primitív függvénye

$$U(x,y) = \frac{x^2}{2} + xy, \text{ potenciálja } \Phi(x,y) = -U(x,y) = -\frac{x^2}{2} - xy.$$

10.107. Mivel nincs értelmezve az origóban, ezért nincs potenciálfüggvénye az egész síkon. Viszont a pontozott síkon, $\mathbb{R}^2 \setminus \{\mathbf{0}\}$ -n már van:

$$\Phi(x,y) = \frac{1}{(x^2 + y^2)^{1/2}}.$$

10.108. A $\mathbf{v} = yz \cdot \mathbf{i} + xz \cdot \mathbf{j} + xy \cdot \mathbf{k}$ vektormező rotációja nulla a tér minden pontjában,

$$\frac{\partial}{\partial y}(yz) = \frac{\partial}{\partial x}(xz) = z, \ \frac{\partial}{\partial z}(yz) = \frac{\partial}{\partial x}(xy) = y, \ \frac{\partial}{\partial z}(xz) = \frac{\partial}{\partial y}(xy) = x,$$

ezért van primitív függvénye, U(x,y,z). Mivel $U_x'=yz$, ezért

$$U(x,y,z) = \int yz \, dx = xyz + f(y,z).$$

$$U'_y = \frac{\partial}{\partial y}(xyz + f(y,z)) = xz + f'_y(y,z) = xz.$$

Innen $f_y'(y,z)=0$, azaz f(y,z) nem függ y-tól, f(y,z)=g(z).

$$U'_z = \frac{\partial}{\partial z}(xyz + g(z)) = xy + g'(z) = xy,$$

és így g'(z)=0, azaz a g függvény konstans. Tehát U(x,y,z)=xyz+C, ahol C tetszőleges konstans lehet.

Persze az xyz primitív függvényt minden számolás nélkül is elég könnyű megtalálni.

10.113. A $\mathbf{v} = 3xy^3z^4 \cdot \mathbf{i} + 3x^2y^2z^4 \cdot \mathbf{j} + x^2y^3z^3 \cdot \mathbf{k}$ vektormezőnek nincs primitív függvénye, mivel például

$$\frac{\partial}{\partial y}(3xy^3z^4) = 9xy^2z^4 \neq \frac{\partial}{\partial x}(3x^2y^2z^4) = 6xy^2z^4.$$

10.118. Keressünk egy olyan z(x,y) kétváltozós függvényt, amelyre

$$z_x'(x,y) = p(x,y) = x^2 + 2xy - y^2, \quad z_y'(x,y) = q(x,y) = x^2 - 2xy - y^2$$

$$z(x,y) = \int p(x,y) dx = \int (x^2 + 2xy - y^2) dx = \frac{x^3}{3} + x^2y - xy^2 + g(y)$$

Itt g(y) egyelőre ismeretlen (deriválható) függvénye y-nak. Erre a z(x,y) függvényre teljesülnie kell, hogy

$$z'_y(x,y) = x^2 - 2xy + g'(y) = q(x,y) = x^2 - 2xy - y^2.$$

Ebből az egyenletből

$$g'(y) = -y^2$$
, ezért $g(y) = -\frac{y^3}{3} + C$.

Így tehát az összes primitív függvény

$$z(x,y) = \frac{x^3}{3} + x^2y - xy^2 - \frac{y^3}{3} + C.$$

10.123.

$$u'_x(x,y,z) = \frac{x+y}{x^2+y^2+z^2+2xy},$$

$$u(x,y,z) = \int \frac{x+y}{x^2+y^2+z^2+2xy} \, dx =$$

$$= \frac{1}{2} \ln \left| x^2+y^2+z^2+2xy \right| + f(y,z)$$

$$u'_y(x,y,z) = \frac{x+y}{x^2+y^2+z^2+2xy} + f'_y(y,z) = \frac{x+y}{x^2+y^2+z^2+2xy},$$
 tehát
$$f(y,z) = g(z).$$

$$u'_z(x,y,z) = \frac{z}{x^2+y^2+z^2+2xy} + g'(z) = \frac{z}{x^2+y^2+z^2+2xy},$$
 ezért
$$g'(z) = 0, \ g \ \text{konstans}.$$

$$u(x,y,z) = \frac{1}{2} \ln \left| x^2+y^2+z^2+2xy \right| + C$$

az összes primitív függvény.

Komplex függvények

11.3.
$$z^2 = (x^2 - y^2) + 2xyi$$
, tehát $u_x = v_y = 2x$ és $v_x = -u_y = 2y$.

11.6.

$$\frac{1}{z^2+1} = \frac{1}{x^2-y^2+1+2xyi} = \frac{x^2-y^2+1-2xyi}{(x^2-y^2+1)^2+4x^2y^2} = \frac{x^2-y^2+1-2xyi}{(x^2-y^2+1)^2+4x^2y^2}.$$

$$u(x,y) = \frac{x^2 - y^2 + 1}{(x^2 - y^2 + 1)^2 + 4x^2y^2}, \quad v(x,y) = -\frac{2xy}{(x^2 - y^2 + 1)^2 + 4x^2y^2}$$

A parciális deriváltak kiszámolása után látható, hogy teljesülnek a Cauchy-Riemann differenciálegyenletek, ha $z^2+1\neq 0$.

11.7.

Re
$$f(z) = u(x, y) = \sqrt{|xy|}$$
, Im $f(z) = v(x, y) = 0$

Mivel u(x,0)=0=v(0,y) és u(0,y)=0=v(x,0), ezért $u_x'(0,0)=0=v_y'(0,0)$ és $u_y'(0,0)=0=v_x'(0,0)$, ezért $u_x(0,0)=u_y(0,0)=0$, tehát a Cauchy-Riemann differenciálegyenletek teljesülnek z=0-ban. Ugyanakkor az y=x egyenes mentén $f(z)=(|x|)^2$, tehát az f(z) függvény az origóban nem differenciálható.

11.8.

$$u(x,y) = 2x^2 + 3y^2 + xy + 2x,$$
 $v(x,y) = 4xy + 5y.$

A Cauchy-Riemann differenciálegyenletek szerint

$$4x + y + 2 = 4x + 5$$
, és $6y + x = -4y$

minden olyan pontban, ahol f deriválható. Az egyenletrendszer csak $x=-30,\ y=3$ esetén teljesül, tehát a függvény máshol nem differenciálható.

11.9.

$$\frac{\partial}{\partial x}(xy) = y, \qquad \frac{\partial}{\partial y}(y) = 1, \qquad \frac{\partial}{\partial y}(xy) = x, \qquad \frac{\partial}{\partial x}(y) = 0$$

Ezért a Cauchy-Riemann differenciálegyenletek csak a z=i pontban teljesülnek.

11.10. Írjuk fel a Cauchy-Riemann differenciálegyenleteket:

$$\frac{\partial u}{\partial x} = 4x = 2y = \frac{\partial v}{\partial y}$$

pontosan akkor, ha y = 2x, továbbá

$$\frac{\partial u}{\partial y} = -1 = -2x = -\frac{\partial v}{\partial x}$$

pontosan akkor, ha $x=\frac{1}{2}.$ Ezért a függvény egyedül az $\frac{1}{2}+i$ pontban differenciálható.

11.11. A Cauchy-Riemann differenciálegyenleteknek teljesülniük kell, ezért

$$v'_y(x,y) = u'_x(x,y) = 2x + y, \quad v(x,y) = \int (2x + y) \, dy = 2xy + \frac{y^2}{2} + g(x)$$

$$v'_x(x,y) = 2y + g'(x) = -u'_y(x,y) = 2y - x,$$

$$g'(x) = -x,$$
 $g(x) = -\frac{x^2}{2} + C$

$$f(z) = (x^2 - y^2 + xy) + i\left(2xy - \frac{x^2}{2} + \frac{y^2}{2} + C\right)$$

Mivel f(0) = 0, ezért C = 0

$$f(z) = (x^2 - y^2 + xy) + i\left(2xy - \frac{x^2}{2} + \frac{y^2}{2}\right)$$

- **11.13.** R = 1
- **11.14.** $R = \frac{1}{2}$
- **11.15.** $\lim_{n \to \infty} \sqrt[n]{n^2} = 1$, így R = 1
- 11.20. A gyökkritérium felhasználásával:

$$\lim_{n \to \infty} \sqrt[n]{\left| \left(\frac{in}{n+1} \right)^{n^2} \right|} = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^{-n} = \frac{1}{e}, \text{ fgy } R = e.$$

11.21.
$$\sum_{n=1}^{\infty} z^n = \frac{z}{1-z}, \quad R = 1$$

A gyökkritérium felhasználásával: $\lim_{n\to\infty} \sqrt[n]{|i^n|} = 1$, így R = 1. 11.22.

$$\sum_{n=0}^{\infty} i^n z^n = \sum_{n=0}^{\infty} (iz)^n = \frac{1}{1 - iz}$$

11.23. $\sum_{n=0}^{\infty} (n+1)z^n = \left(\frac{1}{1-z}\right)' = \frac{1}{(1-z)^2}, \quad R = 1$

11.24. $\sum_{n=0}^{\infty} (n+2)(n+1)z^n = \left(\frac{1}{1-z}\right)^n = \frac{2}{(1-z)^3}, \quad R=1$

 Használjuk fel az $e^{x+iy} = e^x \cdot e^{iy} = e^x \cdot (\cos y + i \sin y)$ összefüggést! 11.29.

11.31. $\int_{\Gamma} f(x+iy) dz = i\pi$ **11.32.** $\int_{\Gamma} f(x+iy) dz = -\pi$

11.33. $\int_{\Gamma} f(x+iy) dz = 2i\pi$ **11.34.** $\int_{\Gamma} f(x+iy) dz = 0$

Paraméterezzük a görbét: $z(t) = e^{it}, t \in [0, 2\pi]$. Ekkor $\frac{dz}{dt} = ie^{it}$. Így

$$\int_{\Gamma} \frac{1}{z} \, dz = \int_{0}^{2\pi} \frac{i e^{it}}{e^{it}} \, dt = i \int_{0}^{2\pi} dt = 2\pi i$$

11.36.

$$\int\limits_{\Gamma} \frac{1}{z^2} \, dz = \int\limits_{0}^{2\pi} \frac{i e^{it}}{e^{2it}} \, dt = \int\limits_{0}^{2\pi} i e^{-it} \, dt = \left[-e^{-it} \right]_{0}^{2\pi} = -1 - (-1) = 0$$

11.37. $\int_{0}^{3\pi/2} \left| e^{-it} \right| (-i)e^{-it} dt = i$ **11.38.** $\int_{0}^{0} |t| dt + \int_{0}^{1} |it| dt = 0$

11.39. $\int_{0}^{(3.2)} (x^2 - y^2) dx - 2xy dy = \left[\frac{x^3}{3} - xy^2 \right]_{(1.1)}^{(3.2)} = -\frac{7}{3}$

$$\underbrace{ \begin{array}{c} \mathbf{11.40.} \\ \int\limits_{1+i}^{3+2i} (x^2 - y^2) \, dx - 2xy \, dy = \operatorname{Re} \int\limits_{1+i}^{3+2i} z^2 \, dz = \operatorname{Re} \left(\frac{(3+2i)^3}{3} - \frac{(1+i)^3}{3} \right) = \\ -\frac{7}{3} \end{array} }$$

11.41.
$$\int_{\Gamma} 3z^2 dz = \left[z^3\right]_1^{1+i} = -3$$
11.42.
$$\int_{1}^{1+i} \frac{1}{z} dz = \left[\operatorname{Log} z\right]_{1}^{1+i} = \frac{1}{2} \ln 2 + i \frac{\pi}{4}$$

11.65. Alkalmazzuk a reziduumtételt:
$$\oint_{|z|=4} f(z) dz = 2\pi \cdot i \cdot \text{Res}\left(\frac{e^z \cos z}{z-\pi}, \pi\right) = 2\pi \cdot i \cdot e^{\pi} \cos \pi.$$

11.67.
$$\int_{\Gamma} z^2 dz = \left[\frac{z^3}{3} \right]_0^{1+i} = \frac{(1+i)^3}{3}$$

11.68.
$$\int_{0}^{1+i} e^{z} dz = [e^{z}]_{0}^{1+i} = e^{1+i} - 1$$

11.73. Legyen
$$g(z) = 10 - 6z$$
, $f(z) = z^6 - 6z + 10$. Ha z az egységkörvonal tetszőleges pontja, azaz $|z| = 1$, akkor

$$|f(z)-g(z)|=\left|z^6\right|=1, \qquad |g(z)|=|10-6z|\geq 10-6=4,$$

teljesülnek a Rouché tétel feltételei. Mivel a g(z)=10-6z függvénynek nincs gyöke az egységkörben, ezért az $f(z)=z^6-6z+10$ függvénynek sincs.

11.75. A keresett
$$\int_{-\infty}^{\infty} \frac{1}{(x^2+1)^2} dx$$
 konvergens, ezért

$$\int_{-\infty}^{\infty} \frac{1}{(x^2+1)^2} dx = \lim_{R \to \infty} \int_{-R}^{R} \frac{1}{(x^2+1)^2} dx.$$

Legyen $\Gamma_R = \Phi_R + \Psi_R$ az a zárt görbe, amelyre Φ_R a valós tengely [-R,R]szakasza, Ψ_R pedig az Rsugarú, origó középpontú körvonal

felső félsíkba eső része. Ha $f(z)=\frac{1}{(z^2+1)^2},$ akkor a residuum tétel szerint

$$\oint_{\Gamma_R} f(z) dz = \oint_{\Gamma_R} \frac{dz}{(z^2 + 1)^2} = 2\pi i \operatorname{Res}(f, i) = \oint_{|z - i| = 1} \frac{dz}{(z^2 + 1)^2} =$$

$$= \oint_{|z - i| = 1} \frac{1}{(z + i)^2} \cdot \frac{dz}{(z - i)^2} = 2\pi i \cdot g'(i) = -4\pi i \frac{1}{(2i)^3} = \frac{\pi}{2}.$$

Itt a Cauchy integrálformulát használtuk az i-ben reguláris $g(z)=\frac{1}{(z+i)^2}$ függvényre. A felső félkörön $|f(z)|<\frac{1}{R^2}$, ha R elég nagy, ezért $\lim_{R\to\infty}\int\limits_{\mathbb{T}}\frac{1}{(z^2+1)^2}\,dz=0$.

$$\frac{\pi}{2} = \lim_{R \to \infty} \int_{\Gamma_R} \frac{dz}{(z^2 + 1)^2} = \lim_{R \to \infty} \int_{\Phi_R} \frac{dz}{(z^2 + 1)^2} + \lim_{R \to \infty} \int_{\Psi_R} \frac{dz}{(z^2 + 1)^2} =$$

$$= \int_{-\infty}^{\infty} \frac{1}{(x^2 + 1)^2} dx$$

Ajánlott irodalom

Laczkovich Miklós – T. Sós Vera: Analízis I. és II., Nemzeti Tankönyvkiadó, 2007.

Laczkovich Miklós – T. Sós Vera: Valós Analízis, TypoTex Kiadó, 2012–2013.

Urbán János: Matematikai logika, Műszaki Kiadó Kft., 2006.

Urbán János: Határértékszámítás, Műszaki Kiadó Kft., 2009.

Gyemidovics: *Matematikai analízis*, Tankönyvkiadó Vállalat, 1974. – Typo-Tex Kiadó (reprint)

Thomas-féle kalkulus I., II., III., TypoTex Kiadó, 2008.

Bárczy Barnabás: Differenciálszámítás, Műszaki Kiadó, 2005.

Bárczy Barnabás: Integrálszámítás, Műszaki Kiadó, 2003.