Song Popularity Prediction

Anton Reut s24382

June 11 - 2025

Agenda

• Music Evolution

• Preparation

• Modeling and Evaluation

Deployment

Conclusions

Objective

- Analyze Emotional & Musical Correlates of Song Popularity
- Predict Song Popularity
- Examine the **Evolution** of Music Over the Last 50 Years

Challenges 500

- Popularity is Multifactorial
- Emotion Is Hard to Quantify
- Genres identifying and cross products
- Collinearity Between Features
- Ensuring Model Generalization

Data

Summary

		-	
•		3 files	
	$\{i\}$.json	2
		.CSV	1
•		39 columns	
	#	Integer	18
	A	String	15
	#	Decimal	3
		Other	3

500K+ Spotify Songs with Lyrics, Emotions & More

A Dataset for Music Recommendation and Emotion Analysis (500K+ Tracks)

final_milliondataset_BERT_500K_revised.json (1.64 GB)

This dataset was part of the **Top 200** projects in the **NVIDIA Llama-Index** Contest, supporting the Abracadabra project — a Retrieval-Augmented Generation (RAG) system for intelligent playlist creation using LLMs.

Over 30 features including:

- Popularity, Energy, Danceability, Speechiness, Tempo, Loudness, Key
- Acousticness, Instrumentalness, Time Signature
- Contextual tags (e.g., Good for Party, Relaxation, Study, Exercise, Driving, etc.)

3 similar songs per track (with artist, title, and similarity score)

<u>Link to the dataset</u>

- 0.8

- 0.6

- 0.4

- 0.2

- 0.0

- -0.2

- -0.4

-0.6

Good for Party = 0.34corr

Good for Social Gatherings = 0.19corr

Unfortunately the basic data does any columns that have correlation > 0.20

Develop the Dataset further to cover more data (that currently are not numeric)

Genre should be a good determination point in **predicting song popularity**

Song key does not give strong insights on song popularity

Distribution of Songs by Emotion

Boolean features with their correlation on Popularity

When exploring song evolution we have to account that current dataset has more <u>recent</u> songs.

Bear in mind one song can be in multiple genres (ex. "rock, pop, indie rock")

Bear in mind one song can be in multiple genres (ex. "rock, pop, indie rock")

- Loudness is clearly increasing over the years
- Tempo is slowly increasing, but the average stays around 120 BPM
- Average tempo high variance before 1960 is related to the number of songs in dataset per year

- 1. Drop columns ['Artist(s)', 'song', 'Album','Similar Songs', 'ISRC']
- 2. Finding and fixing outliers, like emotion: 'love' and 'Love'
- 3. Length from string into integer '1:23' \rightarrow 83 (seconds)
- 4. Loudness from string into float '-6.5db' → -6.5
- 5. Date from string into Year, Month, Age '29th April 2013' ightarrow Year:2013, Month:4, Age:12
- 6. Dropping NA columns

A String 15

Because of using Regressors One-hot encoding needed to be performed:

- 1. **Emotion** from string into **Binary** (emotion_sadness (0:1), emotion_love(0:1)
- 2. **Explicit** from string into **Binary**
- 3. **Key** from string into **Binary**
- 4. New column **Major**, that depending on Key (maj or min) in **Binary**
- 5. Rhythm signature from string into **Binary** '1/4' \rightarrow ½:1, ½:0

Preparation

Genre is one of the most **important column** in the dataset, so it needed to be transformed carefully. Yet **big dimensionality** can also be a **problem**.

TF IDF vectorising words

Preparation

1. Language detection using languetect library

Cell execution finished in 1h 35m
View cell

2. Is English encoding

Starting language detection...

Language detection complete.

Distribution of detected languages:

Language
en 549005
tl 439
so 379
id 334

229

CY

Language	English
en	1

Modeling and Evaluation

Main parameters for evaluation

- R2 helps understand how well your model captures the underlying patterns in data,
 beyond just prediction error
- MAE gives a clear sense of the typical error size
- MSE is commonly used in regression tasks because it is differentiable,
 is Sensitive to outliers

Pipeline

- 1. Get balanced probe
- 2. Train different models
- 3. Train with preprocessing Scaling
- 4. Train with Cross Validation

Modeling and Evaluation

First iterations of models before genre grouping, TF IDF and dataset balancing

After genre grouping, TF IDF and dataset balancing

After Scaling Features

\$		\$ 123 MAE	\$	123 MSE	\$	123 R2	‡
(LinearRegression	16.42317	1085242725	391.	9093390620383	0.	30245772280755834
1	RandomForest	9.02477	5120481927	168.	3887767187517	0	.7002921873534269
2	2 eXtremeGBoost	11.39864	3493652344	221.5	7508850097656	0	.6056281924247742
3	GBoost	15.17887	2903759737	352.9	6343441357345	0	.3717758336768415
4	HGBoosting	13.16273	5272293684	291.1	6213112852716	0	.4817732681092164

Modeling and Evaluation

After Standard Scaling

After RandomizedSearchCV

 $R^2: 0.6989$

MSE: 169.1511

MAE: 9.1237

```
rf = RandomForestRegressor(random_state=42)
search = RandomizedSearchCV(
    rf,
    param_grid,
    n_iter=5, # Lowered from 20
    cv=4, # Lowered from 5 if applicable
    scoring='neg_mean_squared_error'
)

    [14] 26m 53s
```

Feature importances (sorted):
Good for Party: 0.1188
Loudness: 0.0838
Danceability: 0.0600
Length: 0.0573
Good for Exercise: 0.0555
Energy: 0.0466
Word count: 0.0464
Good for Social Gatherings: 0.0453

Positiveness: 0.0438

Results are worse due to Overfitting to Validation Data and launching it on full dataset can take more than 9 hours of fitting.

Data still has some noise due to human nature and emotions.

Conclusions

Critical and Important Features

1) Genre

- a) Popular genres (Pop, Rap, Rock) correlate strongly with popularity.
- b) Rare genres (Jazz, Classical) often indicate unpopularity.
- c) Recommendation: Use one-hot encoding for genres if rare subgenres are informative, but group them, to avoid dimensionality is an issue.

2) Audio Features

- a) High energy, danceability, and loudness predict popularity.
- b) Low acousticness and instrumentalness are also linked to popularity.
- 3) Songs become popular at parties as large crowds listen to them.
 - a) Good for Parties
 - b) Good for Social Gatherings

4) Song Time Signature

a) Most people like rather simple 4/4 time signature then else

Conclusions

Music popularity is still too hard to precisely measure and predict due to its emotional nature, yet it can be at least estimated based on the song details.

Conclusions

Music popularity is still too hard to precisely measure and predict due to its emotional nature, yet it can be at least estimated based on the song details.

Elementy graficzne

Użyj tych elementów w swojej prezentacji Canva. Udanego projektowania! Pamiętaj, aby usunąć lub ukryć tę stronę, zanim wyświetlisz prezentację.

