MULTIVARIATE OPTIMIZATION FOR NON-DECOMPOSABLE PERFORMANCE MEASURES

Debojyoti Dey (15511264) Nimisha Agarwal (15511267) (Group 15)

November 14, 2016

Overview

- Proposed Work
- 2 Basic Ideas
- 3 Formulation of Optimization Prob
- problem with existing online solution
- References

Problem Statement

Finding general optimization technique to maximize performance which are non-decomposable in nature. Our work will primarily consider some concave measures of performance.

- Examples: Min, G-mean, H-mean etc.
- Expressed as f(TPR, TNR).
- TPR = True Positive Rate, TNR = True Negative Rate

Decomposable vs Non-decomposable

• Misclassification rate is decomposable. Loss function:

$$\Delta(\overline{y}, \overline{y}^*) = \sum_{i=1}^n \frac{1 - y_i y_i^*}{2}$$

• F_{β} score is non-decomposable. Performance measure:

$$\phi(\overline{y}, \overline{y}^*) = \frac{(1+\beta^2)TP}{(1+\beta^2)TP + \beta^2FN + FP}$$

- Problem with misclassification rate?
 - class imbalanced setting

Multivariate Optimization setting

• Hypothesis function h is maps $\overline{x} \in \mathcal{X}$ and $\overline{x} = \{x_1, x_2, \cdots, x_n\}$ to $\overline{y} \in \mathcal{Y}$ and $\overline{y} = \{y_1, y_2, \cdots, y_n\}$ where $y_i \in \{+1, -1\}$

$$\overline{h}:\overline{\mathcal{X}}
ightarrow\overline{\mathcal{Y}}$$

• We define score for a particular input-output combination as follows:

$$f_w(\overline{x}, \overline{y}) = w^T \psi(\overline{x}, \overline{y})$$

• Hypothesis function gives \overline{y} with highest score for an input \overline{x} .

$$\overline{h}_{w}(\overline{x}) = \underset{\overline{y} \in \mathcal{Y}}{\arg \max}(w^{T}\psi(\overline{x}, \overline{y}))$$

ullet We use the following form of ψ

$$\psi(\overline{x},\overline{y}) = \sum_{i=1}^{n} y_i^* x_i$$

Structural SVM

• Struct SVM by Joachims et al('04) used for multi-class classification.

$$\min_{\substack{w,\xi \geq 0}} \frac{1}{2} ||w||^2 + C\xi$$

$$s.t \quad \forall \overline{y} \in \overline{\mathcal{Y}} \setminus \overline{y}^* : w^T [\psi(\overline{x}, \overline{y}^*) - \psi(\overline{x}, \overline{y})] \geq \Delta(\overline{y}^*, \overline{y}) - \xi$$

$$\Rightarrow \Delta(\overline{y}^*, \overline{y}) + \Sigma(y_i - y_i^*) w^T x_i \leq \xi$$

where $\Delta(\overline{y}^*, \overline{y})$ is loss function.

- ξ is the upper bound of loss function.
- ullet We substitute margin violation ξ in objective function by

$$\mathcal{L}_{w}(\overline{x}, \overline{y}^{*}) = \max_{\overline{y} \in \{1, -1\}^{n}} \{ \Delta(\overline{y}^{*}, \overline{y}) + \sum_{i=1}^{n} (y_{i} - y_{i}^{*}) w^{T} x_{i} \}$$
 (1)

Performance measure in Fenchel Dual

Performance measure G-mean is given by

$$\phi(P, N) = \sqrt{PN}$$

$$= \min_{\alpha, \beta} \{\alpha P + \beta N - \phi^*(\alpha, \beta)\}$$

as ϕ is a concave function. P,N stands for TPR and TNR respectively.

We define our loss function as

$$\begin{split} \Delta(\overline{y}^*, \overline{y}) &= -\phi(P, N) \\ &= \max_{\alpha, \beta} \{ -\alpha P - \beta N + \phi^*(\alpha, \beta) \} \\ &= \max_{\alpha, \beta} \{ \alpha P + \beta N - (-\phi^*(-\alpha, -\beta)) \} \end{split}$$

Optimization Problem

We can re-write equation 1 as,

$$\mathcal{L}_{w}(\overline{x}, \overline{y}^{*})$$

$$= \max_{\overline{y} \in \{1, -1\}^{n}} \{ \max_{\alpha, \beta} \{ \alpha P + \beta N + \phi^{*}(-\alpha, -\beta) \} + \frac{1}{n} \sum_{i=1}^{n} (y_{i} - y_{i}^{*}) w^{T} x_{i} \}$$

$$= \max_{\alpha, \beta} \{ \max_{\overline{y}} \{ \alpha P + \beta N + \frac{1}{n} \sum_{i=1}^{n} (y_{i} - y_{i}^{*}) w^{T} x_{i} \} + \phi^{*}(-\alpha, -\beta) \}$$

• Express P and N as following:

$$P = \sum_{i=1}^{n} P_i(y_i, y_i^*) = \frac{1}{n_+} \sum_{i=1}^{n} \frac{(1+y_i)(1+y_i^*)}{4}$$

Continued...

$$N = \sum_{i=1}^{n} N_i(y_i, y_i^*) = \frac{1}{n_-} \sum_{i=1}^{n} \frac{(1 - y_i)(1 - y_i^*)}{4}$$

Substituting, inner maximization becomes,

$$\sum_{i=1}^{n} \max_{y_i \in \{-1,+1\}} \frac{\alpha}{n_+} \frac{(1+y_i)(1+y_i^*)}{4} + \frac{\beta}{n_-} \frac{(1-y_i)(1-y_i^*)}{4} + \frac{1}{n} \sum_{i=1}^{n} (y_i - y_i^*) w^T x_i$$

using independence among the data points.

Now we can perform maximization for each point seperately.

Continued...

Solving the above maximization, we get the following hinge loss like function,

$$\frac{\alpha}{n_{+}}\max\{0,1-y_{i}^{*}\frac{2n_{+}}{\alpha n}w^{T}x_{i}\}-\frac{\alpha}{n_{+}}$$

for positive points and similarly for negatives.

Shortcoming of SPADE

- Requires link functions to be L-Lipschitz.
- Works with non-Lipschitz functions when some restrictions are imposed on them.

References

Joachims, Thorsten

A Support Vector Method for Multivariate Performance Measures.

Proceedings of the 22Nd International Conference on Machine Learning

Narasimhan, Harikrishna and Vaish, Rohit and Agarwal, Shivani

On the Statistical Consistency of Plug-in Classifiers for Non-decomposable Performance Measures

Advances in Neural Information Processing Systems 27

Narasimhan, Harikrishna and Kar, Purushottam and Jain, Prateek
Optimizing Non-decomposable Performance Measures: A Tale of Two Classes.

ICML

Questions?