Aspects of Decision Making in Cost-effectiveness Modelling

Nathan Green (n.green@ucl.ac.uk) (with thanks to Gianluca Baio, Chris Jackson, Nicky J. Welton, Mark Strong, Anna Heath)

24th November 2022

Preliminaries

University College London

- UCL was rated 2nd in the UK for research power in the Research Excellence Framework 2021
- UCL is ranked 8th in the 2022 QS World University Rankings
- The Department of Statistical Science has played a major role in the development of the subject ever since its foundation in 1911 as the Department of Applied Statistics

Objectives

- Introduction to Health economics modelling
 - Decision trees
 - Markov models
- Introduction to sensitivity analyses
 - Deterministic
 - ★ One-way & multi-way
 - ★ Scenario
 - Probabilistic

Objectives

Computer practicals

- Emphasis on practical examples
 - Decision tree and Markov models
 - using R programming language

Timetable

- 0:00-1:00 Health Economics modelling lecture
- 1:00 1:45 Decision tree and Markov model practical
- BREAK
- 1:50 2:20 Sensitivity analysis
- 2:20-3:00 Sensitivity analysis practical

More Bayesian Health Economics...

- This course is only a small part of an annual week-long summer school
 - usually in Florence, Italy
- Several books available
- Edition two of BCEA book in the pipeline and a Health Economic in R book close to being finished!

Lecture 2

Uncertainty analysis

Handling uncertainty in economic evaluations

- Population uncertainty: Sub-group analysis
- Parameter uncertainty: Sensitivity analysis
- Structural uncertainty: Sensitivity analysis
- Collect more data
- Sensitivity analysis (SA)
- Deterministic sensitivity analysis
 - One-way SA
 - ► Two-way SA
 - Scenario analysis (best or worst case, what if..)
- Probabilistic sensitivity analysis (PSA)
 - Monte Carlo simulation
- Cost-effectiveness acceptability curves (CEAC)

How robust are health economic evaluations

- Do limitations in either the quality or availability of evidence affect the recommended decision?
- If the decision is not altered despite 'reasonable' variations in key assumptions/parameters, then the analysis can be considered to be 'robust'
- Two types of uncertainty:
 - Structural (is the model design correct?)
 - ▶ Parameter (are the values correct?)
- In economic evaluation, some form of sensitivity analysis is frequently carried out in order to allow for uncertainty
- This uncertainty may be present in the evaluation for several reasons:
 - Data are unavailable and assumptions are necessary
 - Available but inaccurate
- In this type of analysis the values recorded for important parameters are varied, usually one at a time, in order to determine whether the results are sensitive to the assumptions made

- Structural: scenario analysis
- Re-run the analysis with alternate assumptions and model structures
- Parameter: sensitivity analysis (SA)
- Re-run the analysis with different parameter values
- Type of sensitivity analysis:
 - One-way SA
 - Multi-way SA
 - Extreme values SA
 - Probabilistic SA

Types of sensitivity analysis

- Simple sensitivity analysis entails varying one or more of the components of an evaluation to see how it affects the results
- Probabilistic sensitivity analysis assigns ranges and distribution to variables and computer programs are used to select values at random from each range and to record the results
- By using these different methods of sensitivity analysis it is possible to show whether
 the results of a particular study over a range of assumptions or hinge on the
 accuracy of particular assumptions

XXX

References

Bayesian Methods in Health Economics, chapter 1. Baio et al (2017). Bayesian Cost-Effectiveness Analysis with the R package BCEA

XXX

References

Bayesian Methods in Health Economics, chapter 1. Baio et al (2017). Bayesian Cost-Effectiveness Analysis with the R package BCEA

XXX

References

Bayesian Methods in Health Economics, chapter 1. Baio et al (2017). Bayesian Cost-Effectiveness Analysis with the R package BCEA

Parameters

Model structure Old chemotherapy

New chemotherapy

Decision analysis

Old chemotherapy	
Benefits	Costs

New chemotherapy Benefits Costs

Parameters

Model structure Old chemotherapy

New chemotherapy

Decision analysis

Old chemotherapy	
Benefits	Costs

New chemotherapy Benefits Costs

Parameters

Model structure Old chemotherapy

New chemotherapy

Decision analysis

Old chemotherapy	
Benefits	Costs

New chemotherapy
Benefits Costs

Parameters

Model structure Old chemotherapy

New chemotherapy

Old chemotherapy	
Benefits	Costs

New chemotherapy	
Benefits	Costs

Parameters

Model structure Old chemotherapy

New chemotherapy

Old chemotherapy	
Benefits	Costs

New chemotherapy	
Benefits	Costs

Parameters

Model structure Old chemotherapy

New chemotherapy

Old cher	motherapy
Benefits	Costs
741	670 382.1

New chemotherapy	
Benefits	Costs
732	1 131 978

Parameters

Model structure Old chemotherapy

New chemotherapy

Old chemotherapy	
Benefits	Costs
741	670 382.1
699	871 273.3

New chemotherapy	
Benefits	Costs
732	1 131 978
664	1 325 654

Parameters

Model structure Old chemotherapy

New chemotherapy

Old chemotherapy	
Costs	
670 382.1	
871 273.3	
425 822.2	
790 381.2	

New chemotherapy	
Benefits	Costs
732	1 131 978
664	1 325 654
811	766 411.4
774.5	1 066 849.8

$$ICER = \frac{276\,468.6}{58.3}$$
$$= 6\,497.1$$

Is this all we need? (see Vol)

- The CEAC only deals with the probability of making the "right decision"
- But it does not account for the payoff/penalty associated with making the "wrong" one!

Is this all we need? (see Vol)

- The CEAC only deals with the probability of making the "right decision"
- But it does not account for the payoff/penalty associated with making the "wrong" one!
- **Example 1**: Intervention t = 1 is the most cost-effective, given current evidence
 - $ightharpoonup \Pr(t=1 \text{ is cost-effective}) = 0.51$
 - ► If we get it wrong: Increase in costs = £3
 - $\label{eq:decrease} Decrease \ in \ effectiveness = 0.000001 \ QALYs$
 - ► Large uncertainty/negligible consequences ⇒ can afford uncertainty

Is this all we need?

- The CEAC only deals with the probability of making the "right decision"
- But it does not account for the payoff/penalty associated with making the "wrong" one!
- **Example 1**: Intervention t = 1 is the most cost-effective, given current evidence
 - ▶ Pr(t = 1 is cost-effective) = 0.51
 - ▶ If we get it wrong: Increase in costs = £3

 Decrease in effectiveness = 0.000001 QALYs
 - ► Large uncertainty/negligible consequences ⇒ can afford uncertainty
- Example 2: Intervention t=1 is the most cost-effective, given current evidence
 - ▶ Pr(t = 1 is cost-effective) = 0.999
 - ► If we get it wrong: Increase in costs = £1 000 000 000

 Decrease in effectiveness = 999999 QALYs
 - ► Tiny uncertainty/dire consequences ⇒ probably should think about it...