§1 Lecture 03-11

§1.1 Inner product spaces

V over $F = \mathbb{R}, \mathbb{C}$.

1. Positivity:

$$\langle v, v \rangle \in \mathbb{R} \ge 0$$

 $\langle v, v \rangle = 0 \Leftrightarrow v = 0$

- 2. Rather than imposing bilinearity, we were lead to impose hermition linearity.
- 3. Basic symmetry assumption requiring the $\langle v, w \rangle = \overline{\langle w, v \rangle}$.
- 4. We defined norm of v as

$$||v|| = \sqrt{\langle v, v \rangle}$$

Theorem 1.1 (Cauchy-Schwartz Inequality)

For all $v, w \in V$,

$$|\langle v, w \rangle| \le ||v|| \cdot ||w||$$

With equal if $\operatorname{span}(v, w)$ is one dimensional

Proof. We can assume without loss of generality that $v \neq 0$.

Positivity implies that for all $\lambda \in F$,

$$\langle \lambda v + w, \lambda v + w \rangle \in \mathbb{R} \ge 0$$

$$= |\lambda|^2 \langle v, v \rangle + \lambda \langle v, w \rangle + \overline{\lambda} \langle w, v \rangle + \langle w, w, \rangle \ge 0$$

$$|\lambda|^2 \langle v, v, \rangle + 2Re(\lambda \langle v, w \rangle) + \langle w, w, \rangle \ge 0, \quad \forall \lambda \in F$$

1. If $F = \mathbb{R}$.

$$f(\lambda) = \lambda^2 \langle v, v \rangle + 2 \langle v, w \rangle \lambda + \langle w, w \rangle \ge 0, \quad \forall \lambda \in \mathbb{R}$$

This is a quadratic so either it has a root or it doesn't

$$\Rightarrow (2 \langle v, w \rangle)^2 - 4 \langle v, v, \rangle \langle w, w, \rangle \leq 0$$

with equal if there is a root

$$\Rightarrow \langle v, w \rangle^2 \le ||v||^2 ||w||^2$$

 $\Rightarrow |\left\langle \left. v,w\right. \right\rangle | \leq ||v||||w||$

with equal if $\exists \lambda_0$ such that $f(\lambda) = 0$ i.e. $\langle \lambda_0 v + w, \lambda_0 v + w \rangle = 0 \Rightarrow \lambda_0 v + w = 0 \Rightarrow \operatorname{span}(v, w) = \operatorname{span}(v) \checkmark$

2. If $F = \mathbb{C}$. Assume that $\lambda \langle v, w \rangle \in \mathbb{R}$.

$$|\lambda|^2 \langle v, v \rangle \pm 2|\lambda|| \langle v, w \rangle| + \langle w, w, \rangle > 0$$

Doesn't matter on the sign because b term squared in discriminant

$$4|\langle v, w \rangle|^2 - 4\langle v, v \rangle \langle w, w \rangle \le 0$$
$$|\langle v, w \rangle|^2 \le ||v||^2 ||w||^2$$

The rest follows like the real case.

§1.2 Properties of ||v||

1.

$$||v|| \in \mathbb{R} \ge 0$$

2.

$$||\lambda v|| = |\lambda| \cdot ||v||$$

3.

 $||v+w|| \le ||v|| + ||w||$ with equality if (v,w) are colinear.

Proof.

1. By definition

2.

$$||\lambda v|| = \sqrt{\langle \lambda v, \lambda v \rangle} = \sqrt{\lambda \overline{\lambda}} \sqrt{\langle v, v \rangle} = |\lambda| \cdot ||v||$$

3.

$$\begin{aligned} ||v+w||^2 &= \langle \, v+w, v+w \, \rangle = ||v||^2 + 2Re \, \langle \, v,w \, \rangle + ||w||^2 \\ &\leq ||v||^2 + 2| \, \langle \, v,w \, \rangle \, | + ||w||^2, \quad \text{because } Re(\lambda) \leq |\lambda| \\ &\leq ||v||^2 + 2||v||||w|| + ||w||^2 = (||v|| + ||w||)^2 \\ &\Rightarrow ||v+w|| \leq ||v|| + ||w|| \end{aligned}$$

Definition 1.2 (Orthogonality). Two vectors are orthogonal if $\langle v, w \rangle = 0$.

Definition 1.3 (Orthonormal Basis). An orthonormal basis of V is a basis Σ of V such that for all $v, w \in \Sigma$,

$$\langle v, w \rangle = \begin{cases} 0, & \text{if } v \neq w \\ 1, & \text{if } v = w \end{cases}$$

Example 1.4

1. $V = \mathbb{R}^n$ or \mathbb{C}^n with dot product.

$$e_1 = (1, 0, \dots, 0), e_2 = (0, 1, \dots, 0), e_n = (0, 0, \dots, 1)$$

is an orthonormal basis.

2. $V = P_n([0,1])$, the space of polynomials of degree $\leq n$ with

$$\langle f, g \rangle = \int_0^1 f(t) \overline{g(t)} dt$$

Then

$$\Sigma = (1, x, x^2, \dots, x^n)$$

is $\underline{\text{not}}$ an orthonormal basis because inner product is not zero pairwise between these elements

Theorem 1.5

If V is a finite-dimensional inner product space over \mathbb{R} or \mathbb{C} , then it has an orthonormal basis.

Proof. We will prove something more precise. Let (v_1, \ldots, v_n) be a basis for V, then there is (e_1, \ldots, e_n) orthonormal with

$$span(e_1, ..., e_j) = span(v_1, ..., v_j), \quad j = 1, ..., n$$

We will prove the existence of (e_1, \ldots, e_n) by induction on j.

- 1. Base case j = 1, let $e_1 = v_1/||v_1||$.
- 2. Inductive step $j \to j+1$. Assume that we have an orthonormal collection e_1, \ldots, e_j with $\operatorname{span}(e_1, \ldots, e_j)$, with $\operatorname{span}(e_1, \ldots, e_j) = \operatorname{span}(v_1, \ldots, v_j)$. We then must define e_{j+1} .

$$\widetilde{e_{i+1}} = \lambda_1 e_1 + \lambda_2 e_2 + \dots + \lambda_i e_i + \lambda_{i+1} v_{i+1}$$

Want $\widetilde{e_{j+1}} \perp e_i$, $i = 1, \ldots, j$.

$$0 = \langle \widetilde{e_{j+1}}, e_i \rangle = \lambda_i + \lambda_{j+1} \langle v_{j+1}, e_i \rangle$$
$$\lambda_i = -\lambda_{j+1} \langle v_{j+1}, e_i \rangle$$

Set $\lambda_{j+1} = 1$, then $\lambda_i = -\langle v_{j+1}, e_i \rangle$.

$$\widetilde{e_{j+1}} = v_{j+1} - \langle v_{j+1}, e_1 \rangle e_1 + \dots + \langle v_{j+1}, e_j \rangle e_j$$

is orthogonal to e_1, \ldots, e_j and hence v_1, \ldots, v_j .

$$e_{j+1} = \widetilde{e_{j+1}} \frac{1}{||\widetilde{e_{j+1}}|}$$