НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ УКРАЇНИ «КИЇВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТ ім. Ігоря СІКОРСЬКОГО» ФІЗИКО-ТЕХНІЧНИЙ ІНСТИТУТ

Протокол до лабораторної роботи **КІЛЬЦЯ НЬЮТОНА**

Виконали студенти групи ФІ-81

Кармазін А.О. Корешков М.О. Прохоренко О.С. Шкаліков О.В.

Перевірив: Долгошей В.Б.

Теоретична частина

Кільця Ньютона утворюються при інтерференції світлових хвиль, відбитих від границь тонкого повітряного прошарку, який знаходиться між опуклою поверхнею лінзи і плоскою скляною пластинкою (рис.1). Спостереження ведеться у відбитому світлі.

Нехай на систему згори падає монохроматичний паралельний пучок променів. Частина променів (промінь 1 на рис. 1) відбивається від верхнього краю пластини, а інша частина (промінь 2 на рис. 1) від нижнього краю лінзи. Промені 1 та 2 когерентні, але між ними виникає різниця ходу. Роль тонкої плівки виконує повітряний проміжок між пластиною та лінзою. Нехай на систему згори падає монохроматичний паралельний пучок променів.

В першому наближені, як що знехтувати невеликим нахилом променів у повітряному зазорі, геометрична різниця дорівнює

$$\delta' = 2(d_0 + d) \tag{1}$$

де d_0 - товщина зазору в місці контакту лінзи та пластини, яка може бути як додатною, наприклад, за наявності часток пилу між лінзою та пластиною, який викликає деформацію; $d_0 + d$ - товщина повітряного зазору на відстані r_m від центру лінзи. Для того, щоб визначити повну різницю ходу d треба прийняти до уваги зміну фаз світлової хвилі під час

Рис. 1: Утворення кілець Ньютона

відбиття від гранці поділу скло-повітря, коли показник заломлення першого середовища більше за показник заломлення другого, та під час відбиття від гранці повітря-скло, коли навпаки показник заломлення першого середовища менше за показник заломлення другого. Відомо, що для електричного вектора у першому випадку відбиття відбувається без зміни фаз, а в другому призводить до зміни фаз на π ; фаза магнітного вектора, навпаки, змінюється на π тільки під час першого відбиття. Таким чином, промені 1 і 2 набувають різниці фаз π , що відповідає додатковій різниці ходу $\frac{\lambda}{2}$, а повна різниця ходу:

$$\delta = 2(d_0 + d) + \frac{\lambda}{2} \tag{2}$$

Якщо форма лінзи близька до сферичної з радіусом кривизни $R\gg r_m$, то з геометричних міркувань $r_m^2=2Rd$ і:

$$\delta = \frac{r_m^2}{R} + 2d_0 + \frac{\lambda}{2} \tag{3}$$

Якщо повна різниця ходу дорівнює $\lambda\left(m+\frac{1}{2}\right)$, то промені 1 і 2 гаситимуть один одного і спостерігатимуться темні плями(кільця). Радіус цих кілець легко розрахувати за формулою:

$$r_{\text{\tiny TEM}}^2 = R(\lambda m - 2d_0) \tag{4}$$

Аналогічно, для радіуса світлих кілець маємо:

$$r_{\text{cBiT}}^2 = R(\lambda m - 2d_0 - \frac{\lambda}{2}) \tag{5}$$

Отже, за графіком залежності $r^2(m)$ від номеру кільця можна визначити радіус кривизни лінзи, а також величину проміжку в місці контакту.

Хід роботи

Mema poботи: Ознайомлення з явищем інтерференції в тонких плівках (смуги рівної товщини) на прикладі кілець Ньютона і з методикою інтерференційних вимірювань кривизни скляної поверхні.

В даній лабораторній роботі кільця Ньютона досліджується за допомогою мікроскопа. На столику мікроскопа розташоване держак, на якому розміщується досліджувана лінза з пластиною. В одному з окулярів мікроскопа встановлюється освітювач, що генерує пучок променів, паралельних тим, що падають в околі спостерігача. Для монохроматизації пучка перед освітлювачем встановлюють фільтр. В комплект входять 7 фільтрів, що створюють монохроматичні пучки, довжини хвилі яких наведені в таблиці 1.

Колір	Дожина швилі λ (нм)
Фіолетовий	404 ± 10
Синій	434 ± 10
Блакитний	486 ± 10
Зелений	546 ± 10
Жовтий	586 ± 10
Помаранчевий	656 ± 10
Червоний	706 ± 10

Табл. 1: Довжини хвиль

На початку експерименту рекомендуються знайти кільця Ньютона в білому світлі (без фільтра) і сфокусувати мікроскоп під своє око. Перехрестя шкал мікроскопа повинно проходити через центр кілець. Після цього можна встановити фільтр і переходити до безпосередніх вимірювань радіусу кілець. Для вимірювань на окулярі мікроскопа нанесено спеціальну шкалу з поділками. Ціну поділки для кожного значення збільшення вказано в інструкції до мікроскопа.

Вимірювати радіус кілець слід від центру системи до середини кільця. Для збільшення точності рекомендуємо після першої серії вимірів із заданим фільтром повернути лінзу на 90° навколо вертикальної осі і повторити виміри. Якщо робота виконується двома студентами, то рекомендуємо провести виміри кожному з студентів, а потім порівняти й усереднити одержані результати.

- 1. Виміряйте радіуси темних та світлих кілець для усіх наявних фільтрів, Побудуйте графіки залежностей квадрату радіусів від номеру кільця.
- 2. За графіками визначте нахил прямих і розрахуйте радіус кривизни. Оцініть похибку експерименту.
- 3. Оцініть діаметр плями стику лінзи зі скляною пластинкою.

Практична частина

У результаті проведених експериментів були отримані наступні дослідні дані:

Фільтр	Кільце	$r_{\text{\tiny CBIT}}(10^{-5}{ m M})$	$r_{\text{\tiny TEM}}(10^{-5} { m M})$
	1	1	1.07
червоний	2	1.15	1.25
	3	1.35	1.4
	4	1.5	1.55
	5	1.6	1.65
	1	1	1.1
	2	1.2	1.29
помаранчевий	3	1.35	1.41
	4	1.46	1.5
	5	1.56	1.6
	1	0.93	1.03
	2	1.12	1.17
зелений	3	1.25	1.31
	4	1.36	1.41
	5	1.44	1.50
синій	1	0.99	1.08
	2	1.18	1.22
	3	1.32	1.36
	4	1.41	1.46
	5	1.47	1.50

Табл. 2: Дослідні дані

З формул 4 і 5 бачимо, що значення радіуса кривизни R та товщини зазору в місці контакту d_0 можна знайти розв'язав задачу лінійної регресіі, а саме, якщо $r^2 = km + b$, то

$$R=rac{k}{\lambda}$$

$$d_0=-rac{b_{ ext{\tiny TEM}}}{2R}=-rac{b_{ ext{\tiny CBIT}}}{2R}-rac{\lambda}{4}$$

Діаметр плями, що утворилася міє лінзою та скляною поверхней, з елементарних геометричних міркувань (теорема Піфагора) можна образувати наступним чином:

$$D = 2\sqrt{R^2 - (R - d_0)^2} = 2\sqrt{2R|d_0| - d_0^2}$$

Отже, обрахуємо R, як середнє значення результатів для світлих і темних кілець. Результати містяться у таблиці 3 (усі величини у мкм) Графіки отриманих залежносетй наведені нижче(рис. 2, рис. 3).

Фільтр	$R_{\scriptscriptstyle \mathrm{TEM}}$	$R_{ m cBit}$	R	$d_{0_{\scriptscriptstyle \mathrm{TeM}}}$	$d_{0_{\text{світ}}}$	d_0	D
червоний	56.59	57.33	56.96	-0.67	-0.68	-0.68	17.49
помаранчевий	50.1	54.25	52.17	-0.95	-0.81	-0.88	19.05
зелений	57.9	55.18	55.04	-0.71	-0.7	-0.7	17.52
синій	64.75	68.14	66.45	-0.72	-0.67	-0.7	19.18

Табл. 3: Результати обчислень

Рис. 2: Графіки залежностей квадрату радіуса темних кілець від номера

Рис. 3: Графіки залежностей квадрату радіуса світлих кілець від номера Обчислимо абсолютні похибки за наступними формулами:

$$\Delta R =$$

Покладаючи $\Delta r = 10^{-6}$, отримуємо наступні значення похибок.

Фільтр	ΔR	ΔD	ε_R	ε_D
червоний				
помаранчевий				
зелений				
синій				

Табл. 4: Абсолютні та відносні похибки

Висновки

Ми ознайомились з явищем інтерференції в тонких плівках на прикладі кілець Ньютона і з методикою інтерференційних вимірювань кривизни скляної поверхні.

В результаті виконання лабораторної роботи було обраховано радіуси кривизни та діаметри плями стику лінзи зі скляною пластиною. Результати наведені у таблиці 3. Також були обраховані абсолютні та відносні похибки (таблиця 4). Їх можна пояснити людським фактором та не зовсім коректним використанням обладнання.

Відповіді на контрольні питання

- 1. Від чого залежить кількість спостережуваних кілець?
- 2. Чому кільця, що спостерігаються мають райдужне забарвлення?
- 3. Чому по мірі віддалення від центру кільця розташовуються ближче один до одного?
- 4. Що станеться з кільцями Ньютона, якщо проміжок між лінзою і пластинкою заповнити рідиною?
- 5. Чи можна при спостережені кілець Ньютона у відбитому світлі отримати в центрі не темне, а світле кільце? Якщо так, то сформулюйте умови, які для цього необхідні.