SEQUENCE LISTING

<110>	The	Cor	poration	οf	the	Trustees	of	the	Order	of	the	Sisters	of
			n Queens										

- <120> Therapeutic and Diagnostic Agents
- <130> 12373860/EJH
- <150> AU 2002952993
- <151> 2002-11-29
- <160> 28
- <170> PatentIn version 3.1
- <210> 1
- <211> 1151
- <212> DNA
- <213> Homo sapiens

<400> 1						
ctctaaaggc	cactagcacc	catcccagag	ctgtcagcac	cggcctcagc	ccaggcggct	60
ctctccctga	gcttcctgta	gccctgaccc	tctccagcct	cagacctgag	acagggctgg	120
acaaggaagc	agagagcaga	agaaaagcag	aagcgaagct	cagatctgct	gggaggaaga	180
ttacattttg	tcccctcctg	gggtcttgca	cagtggcagg	tgacattcgt	gttacaggaa	240
tgactgccag	ggcctgggcc	tcgtggcggt	cttcagctct	gctcctcctg	cttgtcccag	300
gctattttcc	tctgagccac	cccatgaccg	tggcgggccc	cgtgggggga	tccctgagtg	360
tgcagtgtcg	ctatgagaag	gaacacagga	ccctcaacaa	attctggtgc	agaccaccac	420
agattctccg	atgtgacaag	attgtggaga	ccaaagggtc	agcagggaaa	aggaatggcc	480
gagtgtccat	cagggacagt	cctgcaaacc	tcagcttcac	agtgaccctg	gagaatctca	540

cagaggagga cgcaggcacc tactggtgtg gggtggatac accgtggctc cgagactttc 600

atgatcccat	tgtcgaggtt	gaggtgtccg	tgttcccggc	cgggacgacc	acageeteca	660
gcccccagag	ctccatgggc	acctcaggtc	ctcccacgaa	gctgcccgtg	cacacctggc	720
ccagcgtgac	cagaaaggac	agccccgaac	ccagcccaca	ccctggctcc	ctgttcagca	780
atgtccgctt	cctgctcctg	gtcctcttgg	agctgcccct	gctcctgagc	atgctgggtg	840
ccgtcctctg	ggtgaacaga	cctcagagaa	gctctagaag	caggcagaat	tggcccaagg	900
gtgagaacca	gtagcatctg	ctgtccatca	aggccctgtg	ctgcaacaga	gcccctctgg	960
ggactggaat	gacctcctga	ccatcaaggc	ctgcaacaga	gcccctctgg	gggactggaa	1020
tgacctcctg	accactccct	cccgggctgc	tctctccaac	atctcctgga	atcctttgtg	1080
agcctccttc	agccttttcc	ctgtgcccga	tccaacatgt	gacacatgag	gactttagag	1140
cacaatggat	С					1151

<211> 224

<212> PRT

<213> Homo sapiens

<400> 2

Met Thr Ala Arg Ala Trp Ala Ser Trp Arg Ser Ser Ala Leu Leu Leu 1 5 10 15

Leu Leu Val Pro Gly Tyr Phe Pro Leu Ser His Pro Met Thr Val Ala 20 25 30

Gly Pro Val Gly Gly Ser Leu Ser Val Gln Cys Arg Tyr Glu Lys Glu 35 40 45

His Arg Thr Leu Asn Lys Phe Trp Cys Arg Pro Pro Gln Ile Leu Arg 50 55 60

Cys Asp Lys Ile Val Glu Thr Lys Gly Ser Ala Gly Lys Arg Asn Gly 65 70 75 80

Arg Val Ser Ile Arg Asp Ser Pro Ala Asn Leu Ser Phe Thr Val Thr 85 90 95

Leu Glu Asn Leu Thr Glu Glu Asp Ala Gly Thr Tyr Trp Cys Gly Val 100 105 110	
Asp Thr Pro Trp Leu Arg Asp Phe His Asp Pro Ile Val Glu Val Glu 115 120 125	
Val Ser Val Phe Pro Ala Gly Thr Thr Ala Ser Ser Pro Gln Ser 130 135 140	,
Ser Met Gly Thr Ser Gly Pro Pro Thr Lys Leu Pro Val His Thr Trp 145 150 155 160	
Pro Ser Val Thr Arg Lys Asp Ser Pro Glu Pro Ser Pro His Pro Gly 165 170 175	
Ser Leu Phe Ser Asn Val Arg Phe Leu Leu Leu Val Leu Leu Glu Leu 180 185 190	
Pro Leu Leu Ser Met Leu Gly Ala Val Leu Trp Val Asn Arg Pro 195 200 205	
Gln Arg Ser Ser Arg Ser Arg Gln Asn Trp Pro Lys Gly Glu Asn Gln 210 215 220	
<210> 3	
<211> 1560	
<212> DNA	
<213> Homo sapiens	
<pre><400> 3 ggaggagctg ggactctggc ttgtgttttc caggatgttt tgctctgagc aaatgcagga</pre>	60
ccgtggcggg ccccgtgggg ggatccctga gtgtgcagtg tccctatgag aaggaacaca	120
ggaccctcaa caaatactgg tgcagaccac cacagatttt cctatgtgac aagattgtgg	180
agaccaaagg gtcagcagga aaaaggaacg gccgagtgtc catcagggac agtcctgcaa	240
acctcagett cacagtgace etggagaate teacagagga ggatgeagge acctactggt	300
gtggggtgga tacaccgtgg ctccgagact ttcatgatcc cgttgtcgag gttgaggtgt	360

ccgtgttccc	ggcatcaacg	tcaatgacac	ctgcaagtat	cactgcggcc	aagacctcaa	420
caatcacaac	tgcatttcca	cctgtatcat	ccactaccct	gtttgcagtg	ggtgccaccc	480
acagtgccag	catccaggag	gaaactgagg	aggtggtgaa	ctcacagete	ccgctgctcc	540
tctccctgct	ggcattgttg	ctgcttctgt	tggtgggggc	ctccctgcta	gcctggagga	600
tgtttcagaa	atggatcaaa	gctggtgacc	attcagagct	gtcccagaac	cccaagcagg	660
ctgccacgca	gagtgagctg	cactacgcaa	atctggagct	gctgatgtgg	cctctgcagg	720
aaaagccagc	accaccaagg	gaggtggagg	tggaatacag	cactgtggcc	tcccccaggg	780
aagaacttca	ctatgcctcg	gtggtgtttg	attctaacac	caacaggata	gctgctcaga	84.0
ggcctcggga	ggaggaacca	gattcagatt	acagtgtgat	aaggaagaca	taggcttttg	900
tcctgcctcg	ccatcggagc	tctcatgggc	cccaggaagt	ccagggacag	ctcccttata	960
cctggcccac	gtccttctca	gcctgccctc	gacaacagtg	accaacagac	aggcagctgg	1020
gtttcccagg	ccatccctct	gttgccatca	gcttgattgg	cttccccgag	ggccagcagg	1080
gctgggggct	ccggagagca	gcaggaagca	ctcccagcca	ccagtgcctg	tcgcctcttt	1140
cccctttgcc	cctgcttcat	cccagctctg	tgtgtggagg	acaaagcttc	ttcctgcgtg	1200
gctccaggaa	aagatgtggc	tcacgtaggt	ggcacctgcc	aatagctttg	tcaatcacag	1260
ccccatagga	acgtctggaa	ttgcttggga	gttggggaga	actgtcaaga	agagtgaaga	1320
gagtgccaaa	gcggagatct	gttcacctgg	gggccatgga	ggggggaccc	actaaagatc	1380
aagatcaaag	attctcccca	tctcacagac	aaggaaactg	aggccagagg	gaggagagaa	1440
ttgctcatgg	ctccagaact	ggtggcaagt	ttctctggac	tcttaggttt	atttttaata	1500
tgaaatataa	aaacagtttc	aaatatctta	ttgagggaga	agtaaaaact	tatttaaaca	1560

<211> 301

<212> PRT

<213> Homo sapiens

<400> 4

Met Trp Leu Pro Trp Ala Leu Leu Leu Leu Trp Val Pro Gly Cys Phe 1 5 10 15

- Ala Leu Ser Lys Cys Arg Thr Val Ala Gly Pro Trp Gly Ser Leu Ser 20 25 30
- Val Gln Cys Pro Tyr Glu Lys Glu His Arg Thr Leu Asn Lys Tyr Trp 35 40 45
- Cys Arg Pro Pro Gln Ile Phe Leu Cys Asp Lys Ile Val Glu Thr Lys 50 55 60
- Gly Ser Ala Gly Lys Arg Asn Gly Arg Val Ser Ile Arg Asp Ser Pro 65 70 75 80
- Ala Asn Leu Ser Phe Thr Val Thr Leu Glu Asn Leu Thr Glu Glu Asp 85 90 95
- Ala Gly Thr Tyr Trp Cys Gly Val Asp Thr Pro Trp Leu Arg Asp Phe
 100 105 110
- His Asp Pro Val Val Glu Val Glu Val Ser Val Phe Pro Ala Ser Thr 115 120 125
- Ser Met Thr Pro Ala Ser Ile Thr Ala Ala Lys Thr Ser Thr Ile Thr 130 135 140
- Thr Ala Phe Pro Pro Val Ser Ser Thr Thr Leu Phe Ala Val Gly Ala 145 150 155 160
- Thr His Ser Ala Ser Ile Gln Glu Glu Thr Glu Glu Val Val Asn Ser 165 170 175
- Gln Leu Pro Leu Leu Leu Ser Leu Leu Ala Leu Leu Leu Leu Leu Leu 180 185 190
- Val Gly Ala Ser Leu Leu Ala Trp Arg Met Phe Gln Lys Trp Ile Lys 195 200 205
- Trp Ile Lys Ala Gly Asp His Ser Glu Leu Ser Gln Asn Pro Lys Gln 210 215 220
- Ala Ala Thr Gln Ser Glu Leu His Tyr Ala Asn Leu Glu Leu Leu Met 225 230 235 240

Trp Pro Leu Gln Glu Lys Pro Ala Pro Pro Arg Glu Val Glu Val Glu 245 250 255

Tyr Ser Thr Val Ala Ser Pro Arg Glu Glu Leu His Tyr Ala Ser Val 260 265 270

Val Phe Asp Ser Asn Thr Asn Arg Ile Ala Ala Gln Arg Pro Arg Glu 275 280 285

Glu Glu Pro Asp Ser Asp Tyr Ser Val Ile Arg Lys Thr 290 295 300

<210> 5

<211> 674

<212> DNA

<213> Homo sapiens

<400> 5 ttggattcca gctgggacct agatttgctg aggacggaag ccaaggagac aggaacatgt 60 ggctgctccc agctctactc cttctctgcc tctcaggctg tttgtctctg aagggccccg 120 getetgtgae tggeaetgeg ggggaetete tgaeagtgtg gtgteagtat gagageatgt 180 acaagggata taacaagtac tggtgccgag gacagtacga cacgtcatgt gagagcattg 240 tggagaccaa gggagaagag aaggtggaga ggaatggccg cgtgtccatc agagaccacc 300 cggaggetet egeetteact gtgaccatge agaaceteaa tgaagatgat getggatett 360 actggtgcaa aattcagaca gtgtgggtcc tggattcatg gtcacgcgat ccctcggacc 420 tggttagggt gtatgtttcc ccagcaatta caaccccaag gaggaccaca catccagcca 480 cacctcccat cttcctggtg gtgaaccctg ggcgaaacct cagcaccagg gaggtgttga 540 cccaaaattc agggttccgg ctcagcagcc ctcacttcct gctcgtggtc cttctgaagc 600 tgcccctgct cctgagcatg ctgggtgctg ttttctgggt gaacaggcct cagtgggctc 660 ctcctggaag atag 674

<211> 205

<212> PRT

<213> Homo sapiens

<400> 6

Met Trp Leu Leu Pro Ala Leu Leu Leu Cys Leu Ser Gly Cys Leu 1 5 10 15

Ser Leu Lys Gly Pro Gly Ser Val Thr Gly Thr Ala Gly Asp Ser Leu 20 25 30

Thr Val Trp Cys Gln Tyr Glu Ser Met Tyr Lys Gly Tyr Asn Lys Tyr 35 40 45

Trp Cys Arg Gly Gln Tyr Asp Thr Ser Cys Glu Ser Ile Val Glu Thr 50 60

Lys Gly Glu Glu Lys Val Glu Arg Asn Gly Arg Val Ser Ile Arg Asp 65 70 75 80

His Pro Glu Ala Leu Ala Phe Thr Val Thr Met Gln Asn Leu Asn Glu 85 90 95

Asp Asp Ala Gly Ser Tyr Trp Cys Lys Ile Gln Thr Val Trp Val Leu 100 105 110

Asp Ser Trp Ser Arg Asp Pro Ser Asp Leu Val Arg Val Tyr Val Ser 115 120 125

Pro Ala Ile Thr Thr Pro Arg Arg Thr Thr His Pro Ala Thr Pro Pro 130 135 140

Ile Phe Leu Val Val Asn Pro Gly Arg Asn Leu Ser Thr Arg Glu Val 145 150 155 160

Leu Thr Gln Asn Ser Gly Phe Arg Leu Ser Ser Pro His Phe Leu Leu 165 170 175 Val Val Leu Leu Lys Leu Pro Leu Leu Ser Met Leu Gly Ala Val 180 185 190

Phe Trp Val Asn Arg Pro Gln Trp Ala Pro Pro Gly Arg 195 200 205

<210> 7

<211> 510

<212> DNA

<213> Homo sapiens

<400> 7 atgtggctgt ccccagctct gctgcttctc atcctcccag gttactccat tgccgctaaa 60 atcactggtc caacaacagt gaatggctcg gagcagggct cattgactgt gcagtgtgct 120 tatggctcag gctgggagac ctacttgaag tggcggtgtc aaggagctga ttggaattac 180 tgtaacatcc ttgttaaaac aaatggatca gagcaggagg taaagaagaa tcgagtttcc 240 atcagggaca atcagaaaaa ccacgtgttc accgtgacca tggagaatct caaaagagat 300 gatgctgaca gttattggtg tgggactgag agacctggaa ttgatcttgg ggtcaaagtt 360 caagtgacca ttaacccagc tcagtgcctg agtctgttgc ccacagatga cagggtgatg 420 gttccagttt cagcccacag gccaaaggga cccccttccc tggtaaccag agaccccaat 480 ccctgccagt gccttcttgg aacttcttta 510

<210> 8

<211> 174

<212> PRT

<213> Homo sapiens

<400> 8

Met Trp Leu Ser Pro Ala Leu Leu Leu Leu Ile Leu Pro Gly Tyr Ser 1 5 10 15

Ile Ala Ala Lys Ile Thr Gly Pro Thr Thr Val Asn Gly Ser Glu Gln 20 25 30

Gly	Ser	Glu 35	Gln	Gly	Ser	Leu	Thr 40	Val	Gln	Cys	Ala	Tyr 45	Gly	Ser	Gly		
Trp	Glu 50	Thr	Tyr	Leu	Lys	Trp 55	Arg	Cys	Gln	Gly	Ala 60	Asp	Trp	Asn	Tyr		
Cys 65	Asn	Ile	Leu	Val	Lys 70	Thr	Asn	Gly	Ser	Glu 75	Gln	Glu	Val	Lys	Lys 80		
Asn	Arg	Val	Ser	Ile 85	Arg	Asp	Asn	Gln	Lys 90	Asn	His	Val	Phe	Thr 95	Val		
Thr	Met	Glu	Asn 100	Leu	Lys	Arg	Asp	Asp 105	Ala	Asp	Ser	Tyr	Trp 110	Cys	Gly		
Thr	Glu	Arg 115	Pro	Gly	Ile	Asp	Leu 120	Gly	Val	Lys	Val	Gln 125	Val	Thr	Ile		
Asn	Pro 130	Ala	Gln	Cys	Leu	Ser 135	Leu	Leu	Pro	Thr	Asp 140	Asp	Arg	Val	Met		
Val 145	Pro	Val	Ser	Ala	His 150	Arg	Pro	Lys	Gly	Pro 155	Pro	Ser	Leu	Val	Thr 160		
Arg	Asp	Pro	Asn	Pro 165	Cys	Gln	Cys	Leu	Leu 170	Gly	Thr	Ser	Leu				
<210)> 9	•															
<211	l> 1	026															
<212	2> [ONA															
<213	3> · E	omo	sapi	.ens													
<400)> 9)															
ccac	gcgt	cc ç	ctcc	ggta	c to	tcca	ccag	ctt	tgag	aac	ccaa	acco	ca ç	gaaga	iggcca	6	60
gaga	agga	ac c	gaga	agat	g ta	gaag	gaaa	aag	agco	tca	gaco	cttg	ict ç	gccca	caagg	12	20
actt	ccca	tg t	tgtg	agat	gac	ccag	aggg	ctg	gggc	tgc	catg	ctgo	ct t	cago	tctgc	18	30
tcct	tctc	tg t	gtcc	cagg	ıc tg	tctg	actg	tga	gtgg	ccc	cago	accg	tg a	atggg	cgccg	24	40

tgggggaatc	cctgagtgtt	cagtgtcggt	atgaagacaa	atacaagacg	tttaacaaat	300
actggtgcag	acaaccatgc	ttgccaattt	ggcatgaaat	ggtggagacc	ggagggtctg	360
agggagtggt	gaggagtgac	caagtgatca	tcacggacca	tcctggagac	ctcaccttca	420
ccgtgacctt	ggagaacctc	acggcagacg	atgcaggaaa	ataccgatgt	gggattgcaa	480
caatactgca	ggaagatggc	ctgtctggtt	tcctgcccga	tecettette	caggttcaag	540
tgctggtctc	atcggcctcc	agtactgaga	actctgtgaa	gacacctgca	tctcccacca	600
ggcccagcca	atgccaaggg	tccctgccca	gcagcacctg	cttcctgctt	ctcccactcc	660
tgaaggtgcc	tctgctcctg	agcatactcg	gtgctatcct	ctgggtgaac	aggccttgga	720
ggactccttg	gacagagtca	tgaacaggag	aacttgcaac	accccatgcc	cattggaacc	780
ctgtccagag	acacagecee	tctgactgca	aaaaggactt	ctgaccctga	ccctcatatt	840
tctttccatc	ttatcacccg	gatacttttt	aaaagttaaa	aaaaaaatgt	aggccgggtg	900
cggtggctta	cacctgcaat	cccagcactt	tgggaggcca	aggcaaggtg	gatcacttga	960
gtccagggaa	gtttgagagc	ctgggcagca	tggtcagacc	tcatctctac	aaaaaaaaa	1020
aaaaag			-			1026

<211> 193

<212> PRT

<213> Homo sapiens

<400> 10

Met Leu Pro Ser Ala Leu Leu Leu Cys Val Pro Gly Cys Leu Thr 1 5 10 15

Val Ser Gly Pro Ser Thr Val Met Gly Ala Val Gly Glu Ser Leu Ser 20 25 30

Val Gln Cys Arg Tyr Glu Asp Lys Tyr Lys Thr Phe Asn Lys Tyr Trp $35 \hspace{1cm} 40 \hspace{1cm} 45$

Cys Arg Gln Pro Cys Leu Pro Ile Trp His Glu Met Val Glu Thr Gly 50 55 60

Gly 65	Ser	Glu	Gly	Val	Val 70	Arg	Ser	Asp	Gln	Val 75	Ile	Ile	Thr	Asp	His 80	
Pro	Gly	Asp	Leu	Thr 85	Phe	Thr	Val	Thr	Leu 90	Glu	Asn	Leu	Thr	Ala 95	Asp	
Asp	Ala	Gly	Lys 100	Tyr	Arg	Cys	Gly	Ile 105	Ala	Thr	Ile	Leu	Gln 110	Glu	Asp	
Gly	Leu	Ser 115	Gly	Phe	Leu	Pro	Asp 120	Pro	Phe	Phe	Gln	Val 125	Gln	Val	Leu	
Val	Ser 130	Ser	Ala	Ser	Ser	Thr 135	Glu	Asn	Ser	Val	Lys 140	Thr	Pro	Ala	Ser	
Pro 145	Thr	Arg	Pro	Ser	Gln 150	Cys	Gln	Gly	Ser	Leu 155	Pro	Ser	Ser	Thr	Cys 160	
Phe	Leu	Leu	Leu	Pro 165	Leu	Leu	Lys	Val	Pro 170	Leu	Leu	Leu	Ser	Ile 175	Leu	•
Gly	Ala	Ile	Leu 180	Trp	Val	Asn	Arg	Pro 185	Trp	Arg	Thr	Pro	Trp 190	Thr	Glu	
Ser																
<210	> 1	1														
<211	> 1	352														
<212	> 0	NA														
<213	> н	omo	sapi	ens												
<400 gtct		l gt g	caga	aggt	g ca	agcc	agag	ctc	aggc	aga	actt	ccad	ag t	gcat	ctggg	60
															ccatg	120
															gccca	180
															aagga	240

tgggagacct	acattaagtg	gtggtgccga	ggggtgcgct	gggatacatg	caagatcctc	300
attgaaacca	gagggtcgga	gcaaggagag	aagagtgacc	gtgtgtccat	caaggacaat	360
cagaaagacc	gcacgttcac	tgtgaccatg	gaggggctca	ggcgagatga	cgcagatgtt	420
tactggtgtg	ggattgaaag	aagaggacct	gaccttggga	ctcaagtgaa	agtgatcgtt	480
gacccagagg	gagcggcttc	cacaacagca	agctcaccta	ccaacagcaa	tatggcagtg	540
ttcatcggct	cccacaagag	gaaccactac	atgctcctgg	tatttgtgaa	ggtgcccatc	600
ttgctcatct	tggtcactgc	catcctctgg	ttgaaggggt	ctcagagggt	ccctgaggag	660
ccaggggaac	agcctatcta	catgaacttc	tccgaacctc	tgactaaaga	catggccact	720
tagagagatg	gatctgcaga	gccttcctgc	cctggccacg	tttccagaag	agactcgggc	780
tgtggaagga	acatctacga	gtcctcggga	tgcagtgact	gagatagggg	ccctgggcct	840
ccgccctggc	cttggaˌgctg	gtgggcacct	ccctgttctg	cacageteag	ggacttagcc	900
aggtcctctc	ctgagccacc	atcacctcct	ggggtgccag	cacctgttct	cttggtcagg	960
agctgtagag	atggagctca	agcactggac	gactctgtcc	ccactgctgg	aataactcgg	1020
gcacagagca	tgggaccaaa	gtacagaaag	aggttggggg	agacccccc	agccctagac	1080
ttccatcatt	ccggagacca	actcaacacc	gtctttgcct	gagaacctga	tatatccgtg,	1140
tttttaaatt	tttttttc	tagcaaagtt	gggttttaat	gacttatgtt	cataggaaac	1200
ctctctgatc	ccacacacaa	ggagggtgat	tctgggatga	gttcctggtt	ctagggcatg	1260
aggggctgga	tggaccctgt	ccccagggag	gacatggctc	tgagtccaca	gggctgagga	1320
ggcaatggga	acctccctgg	cccggcccgg	tg			1352

<211> 158

<212> PRT

<213> Homo sapiens

<400> 12

Met Trp Leu Pro Pro Ala Leu Leu Leu Leu Ser Leu Ser Gly Cys Phe 1 5 10 15

Ser Ile Gln Gly Pro Glu Ser Val Arg Ala Pro Glu Gln Gly Ser Leu 20 25 Thr Val Gln Cys His Tyr Lys Gln Gly Trp Glu Thr Tyr Ile Lys Trp 45 35 Trp Cys Arg Gly Val Arg Trp Asp Thr Cys Lys Ile Leu Ile Glu Thr 50 55 Arg Gly Ser Glu Gln Gly Glu Lys Ser Asp Arg Val Ser Ile Lys Asp 65 70 75 80 Asn Gln Lys Asp Arg Thr Phe Thr Val Thr Met Glu Gly Leu Arg Arg 85 95 90 Asp Asp Ala Asp Val Tyr Trp Cys Gly Ile Glu Arg Arg Gly Pro Asp 100 105 110 Leu Gly Thr Gln Val Lys Val Ile Val Asp Pro Glu Gly Ala Ala Ser 115 120 125 Thr Thr Ala Ser Ser Pro Thr Asn Ser Asn Met Ala Val Phe Ile Gly 130 135 140 Ser His Lys Arg Asn His Tyr Met Leu Leu Gly Thr Ser Leu 145 150 <210> 13 <211> 812 <212> DNA <213> Homo sapiens

<400> 13
gaagttcaag ggcgagagtg agtaccagca gaaggctggg agtctgtagt ttgttcctgc 60
tgccaggctc cactgagggg aacggggacc tgtctgaaga gaagatgccc ctgctgacac 120
tctacctgct cctcttctgg ctctcaggct actccattgt cactcaaatc accggtccaa 180
caacagtgaa tggcttggag cggggctcct tgaccgtgca gtgtgtttac agatcaggct 240
gggagaccta cttgaagtgg tggtgtcgag gagctatttg gcgtgactgc aagatccttg 300

ttaaaaccag	tgggtcagag	caggaggtga	agagggaccg	ggtgtccatc	aaggacaatc	360
agaaaaaccg	cacgttcact	gtgaccatgg	aggatctcat	gaaaactgat	gctgacactt	420
actggtgtgg	aattgagaaa	actggaaatg	accttggggt	cacagttcaa	gtgaccattg	480
acccagcacc	agtcacccaa	gaagaaacta	gcagctcccc	aactctgacc	ggccaccact	540
tggacaacag	gcacaagctc	ctgaagctca	gtgtcctcct	gcccctcatc	ttcaccatat	600
tgctgctgct	tttggtggcc	gcctcactct	tggcttggag	gatgatgaag	taccagcaga	660
aaggtgagag	gacctgggta	ctgcagcccc	tggagggcga	cctctgctat	gcagacctga	720
ccctgcagct	ggccggaacc	tccccgcaaa	aggctaccac	gaagctttcc	tctgcccagg	780
ttgaccaggt	ggaagtggaa	tatgtcacca	tg		•	812

<211> 287

<212> PRT

<213> Homo sapiens

<400> 14

Met Pro Leu Leu Thr Leu Tyr Leu Leu Leu Phe Trp Leu Ser Gly Tyr $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Ser Ile Val Thr Gln Ile Thr Gly Pro Thr Thr Val Asn Gly Leu Glu 20 25 30

Arg Gly Ser Leu Thr Val Gln Cys Val Tyr Arg Ser Gly Trp Glu Thr 35 40 . 45

Tyr Leu Lys Trp Trp Cys Arg Gly Ala Ile Trp Arg Asp Cys Lys Ile 50 55 60

Leu Val Lys Thr Ser Gly Ser Glu Gln Glu Val Lys Arg Asp Arg Val 65 70 75 80

Ser Ile Lys Asp Asn Gln Lys Asn Arg Thr Phe Thr Val Thr Met Glu

Asp Leu Met Lys Thr Asp Ala Asp Thr Tyr Trp Cys Gly Ile Glu Lys
100 105 110

Thr Gly Asn Asp Leu Gly Val Thr Val Gln Val Thr Ile Asp Pro Ala 115 120 125

Pro Val Thr Gln Glu Glu Thr Ser Ser Pro Thr Leu Thr Gly His 130 135 140

His Leu Asp Asn Arg His Lys Leu Leu Lys Leu Ser Val Leu Leu Pro 145 150 155 160

Leu Ile Phe Thr Ile Leu Leu Leu Leu Val Ala Ala Ser Leu Leu Leu 165 170 175

Ala Trp Arg Met Met Lys Tyr Gln Gln Lys Gly Glu Arg Thr Trp Val 180 185 190

Leu Gln Pro Leu Glu Gly Asp Leu Cys Tyr Ala Asp Leu Thr Leu Gln
195 200 205

Leu Ala Gly Thr Ser Pro Gln Lys Ala Thr Thr Lys Leu Ser Ser Ala 210 215 220

Gln Val Asp Gln Val Glu Val Glu Tyr Val Thr Met Ala Ser Leu Pro 225 230 235 240

Lys Glu Asp Ile Ser Tyr Ala Ser Leu Thr Leu Gly Ala Glu Asp Gln 245 250 255

Glu Pro Thr Tyr Cys Asn Met Gly His Leu Ser Ser His Leu Pro Gly 260 265 270

Arg Gly Pro Glu Glu Pro Thr Glu Tyr Ser Thr Ile Ser Arg Pro 275 280 285

<210> 15

<211> 2389

<212> DNA

<213> mouse

<400> 15						
	gaagctaaag				_	60
cacccaccat	gaggcctctg	gtcctgctat	ggggctgcct	ggtgctccca	ggttatgaag	120
ccctgaaggg	tccaaaggag	atcagtggat	ttgaaggtga	caccgtgtcc	ctgcggtgta	180
cctacgtgga	gaagatgaag	gagcacagga	agtattggtg	ccggcagggt	ggcatcctgg	240
tgtcacgctg	cggtgacatt	gtctacgcaa	atcaggacca	ggaggtgact	cgaggcagga	300
tgtccatccg	agacagtccc	caagagetet	cgatgaccgt	gatcatgagg	gaccttaccc	360
tgaaggattc	agggaagtac	tggtgtggga	ttgacagact	gggccgcgat	gagtcttttg	420
aggttacact	cattgtcttt	ccagggagct	cccgtccagt	cgtctggctg	ccccttacca	480
caccacagga	ctccagggct	gtagccagca	gtgtctccaa	gcccagtgtg	tccatcccga	540
tggtccgcat	gatggcccca	gtcctgatac	tcttgtccct	gctgttggct	gcaggactaa	600
ttgcctttgg	cagccacatg	ctccggtgga	gaaagaaagc	ttggctggcc	acagagacac	660
agaagaacga	gaaggtctac	cttgaaacct	cgctgccagg	gaacggctgg	accactgaag	720
actcgacgat	agaccttgca	gtgactcctg	aatgtctcag	aaacctcaac	ccttctgctg	780
tgccctctcc	tgagacacag	aacctcagtc	agtctacaga	ggaggaagag	gcagctcgtt	840
ccctggacga	cgacaaggag	gacgtgatgg	cacccctcc	cttgcagatg	tctgcggagg	900
aactggcctt	ctctgagttc	atctctgtgt	aattgcagaa	tgccccgtgg	tcggccaggg	960
attgtgaagc	tgaacagctg	agttctcatg	aattcttggg	ttctactcac	agtccacggc	1020
tctgtccacc	ttccttccgg	ctctcttca	tgccccagat	ggagaagtgt	cttggtccct	1080
gaagcccgga	tggtacttaa	caagtccagc	cagaggctgg	aacctcccgc	atattctaat	1140
ccctgggaag	agttaatggg	tgtgtgggcc	ttcatcgggg	cctggccagg	ctccatggat	1200
aaaggctgag	tttgtgtgcg	ttccaggaaa	ttccctgggc	atggatgtcc	agcaacagtc	1260
ccacctccca	tcctcggaag	atcccacctt	cacctcctcc	agcaacagtc	ccacctccca	1320
tcctcggaag	atcccacctt	cacctccctc	taattcttct	gcatcaattg	ctatggagga	1380
gacaacatat	gtgtgtctat	gaaacacctg	catcctggcc	tcttagaaaa	taattaaaac	1440
aaaattctgc	agacccatca	agactcacca	aaccatctct	agggcagggc	ctgggactcc	1500
acagttctga	caagtgaccc	tgccattcct	acccttgggt	ctgatgaatc	ctcagcccat	1560

tttagctaga	atcttccttc	cttccttcct	tccttccttc	cttccttcct	tccttccttt	1620
ccttcctttc	cttcctttcc	ttcctttcct	tcctttcctt	cctttcttcg	ttccttcctg	1680
ccttccctgt	ggggtttcct	atatgcttcc	tagacctaga	tcatgacagt	acggtcccag	1740
taggcacttc	ctgatgcctc	tctggtcagg	cacactatgg	tgacagccag	cccaaggcag	1800
ccagggatca	gctgtctctc	catcctcctt	ccccaaggcc	ctgtgtccct	tgctttggta	1860
ggacactgga	ggaagtctcg	atatcattcc	tgtccagagt	ggttactcct	ccatggggtc	1920
tggaggctga	gggagaggag	gaggaggagg	ataccagagt	gggaaggggg	gcggggaaac	1980
agaagacact	agactctagt	tactagagga	gaatactaaa	tccagtactg	ttgagtgagg	2040
gaaagatgga	ctggctcaac	tattttttt	cctttttcta	ttttgttttg	aaaagtaaga	2100
tgttgggaag	ggaggtgttc	agaatataaa	acagaaatgt	agggagaata	caaaagaagt	2160
gctgtttcta	ggatcatata	taacctcacc	aaaccttgtt	gacggctctg	cctgagcttg	2220
caggaccccc	ctcccttccc	ctcccttcc	agtatttgca	gatgctccgt	ttacagaggg	2280
gtcctctcac	catgcacagc	ccactacgca	tcacacgctg	tctcgtcata	agcatccctc	2340
cgtgttctac	gaactttgta	caataaactt	tctcagctgt	gtagtattt		2389

<211> 287

<212> PRT

<213> mouse

<400> 16

Met Arg Pro Leu Val Leu Leu Trp Gly Cys Leu Val Leu Pro Gly Tyr 1 5 10 15

Glu Ala Leu Lys Gly Pro Lys Glu Ile Ser Gly Phe Glu Gly Asp Thr 20 25 30

Val Ser Leu Arg Cys Thr Tyr Val Glu Lys Met Lys Glu His Arg Lys 35 40 45

Tyr Trp Cys Arg Gln Gly Gly Ile Leu Val Ser Arg Cys Gly Asp Ile 50 60

- Val Tyr Ala Asn Gln Asp Gln Glu Val Thr Arg Gly Arg Met Ser Ile 65 70 75 80
- Arg Asp Ser Pro Gln Glu Leu Ser Met Thr Val Ile Met Arg Asp Leu 85 90 95
- Thr Leu Lys Asp Ser Gly Lys Tyr Trp Cys Gly Ile Asp Arg Leu Gly 100 105 110
- Arg Asp Glu Ser Phe Glu Val Thr Leu Ile Val Phe Pro Gly Ser Ser 115 120 125
- Arg Pro Val Val Trp Leu Pro Leu Thr Thr Pro Gln Asp Ser Arg Ala 130 135 140
- Val Ala Ser Ser Val Ser Lys Pro Ser Val Ser Ile Pro Met Val Arg 145 150 155 160
- Met Met Ala Pro Val Leu Ile Leu Leu Ser Leu Leu Leu Ala Ala Gly 165 170 175
- Leu Ile Ala Phe Gly Ser His Met Leu Arg Trp Arg Lys Lys Ala Trp 180 185 190
- Leu Ala Thr Glu Thr Gln Lys Asn Glu Lys Val Tyr Leu Glu Thr Ser 195 200 205
- Leu Pro Gly Asn Gly Trp Thr Thr Glu Asp Ser Thr Ile Asp Leu Ala 210 215 220
- Val Thr Pro Glu Cys Leu Arg Asn Leu Asn Pro Ser Ala Val Pro Ser 225 230 235 240
- Pro Glu Thr Gln Asn Leu Ser Gln Ser Thr Glu Glu Glu Glu Ala Ala 245 250 255
- Arg Ser Leu Asp Asp Asp Lys Glu Asp Val Met Ala Pro Pro Pro Leu 260 265 270

Gln Met Ser Ala Glu Glu Leu Ala Phe Ser Glu Phe Ile Ser Val 275 280 285

<210> 17

<211> 1111

<212> DNA

<213> mouse

<400> 17				.		60
gaaatgaccc	aactggcctc	agctgtgtgg	ctgcccacgc	tgttgctgct	gctgctgctt	60
ttttggcttc	caggctgtgt	ccctctgcat	ggtcccagca	ccatgacagg	aagtgtgggt	120
caatccctga	gtgtgtcgtg	tcagtatgag	gagaaattta	agactaagga	caaatactgg	180
tgcagagggt	cacttaaggt	actgtgcaaa	gatattgtca	agaccagcag	ctcagaagaa	240
gctaggagtg	gcagagtgac	catcagggac	catccagaca	acctcacctt	tacagtgacc	300
tatgagagcc	tcaccctgga	ggatgcagac	acctacatgt	gtgcggtgga	tatatcactt	360
tttgatggct	ccttggggtt	cgataagtac	ttcaagattg	agttgtctgt	ggttccaagt	420
gaggacccag	gaccaacact	agagacacct	gtggtgtcca	ccagtctgcc	taccaagggt	480
cccgccctag	gatccaacac	agaggaccgc	cgtgagcatg	actattccca	gggcttgagg	540
ctcccagcgc	tgttgtctgt	gttagctctc	ctgctgtttc	tgttggtggg	gacctctctg	600
ctggcctgga	ggatgttcca	gaagcggctg	gtcaaagctg	ataggcatcc	agagctgtcc	660
cagaacctca	gacaggcttc	tgagcagaat	gagtgccagt	atgtgaattt	gcagctgcac	720
acgtggtctc	tgagggaaga	gccggtgcta	ccaagtcagg	tagaagtggt	ggaatatagc	780
acattggcat	taccccagga	agagcttcac	tattcatccg	tggcattcaa	ctcccagagg	840
caggattctc	acgccaatgg	agattctctt	catcaacctc	aggaccagaa	agcagagtac	900
agtgagatcc	agaagcccag	aaaaggactc	tctgaccttt	acctgtgact	ccttgtcacc	960
tgatcctctc	agtggtgact	accaggttcc	aaggctccct	gctggctgct	gccctcaatg	1020
tcatgagcct	cagtggcttc	actaaagatg	agcaggagcc	agggctctgt	gggcacagtc	1080
tcatcccact	ggctctctcc	tcttagcctg	t			1111

<211> 314

<212> PRT

<213> mouse

<400> 18

Met Thr Gln Leu Ala Ser Ala Val Trp Leu Pro Thr Leu Leu Leu 1 5 10 15

Leu Leu Phe Trp Leu Pro Gly Cys Val Pro Leu His Gly Pro Ser 20 25 30

Thr Met Thr Gly Ser Val Gly Gln Ser Leu Ser Val Ser Cys Gln Tyr 35 40 45

Glu Glu Lys Phe Lys Thr Lys Asp Lys Tyr Trp Cys Arg Gly Ser Leu 50 60

Lys Val Leu Cys Lys Asp Ile Val Lys Thr Ser Ser Ser Glu Glu Ala 65 70 75 80

Arg Ser Gly Arg Val Thr Ile Arg Asp His Pro Asp Asn Leu Thr Phe 85 90 95

Thr Val Thr Tyr Glu Ser Leu Thr Leu Glu Asp Ala Asp Thr Tyr Met 100 105 110

Cys Ala Val Asp Ile Ser Leu Phe Asp Gly Ser Leu Gly Phe Asp Lys 115 120 125

Tyr Phe Lys Ile Glu Leu Ser Val Val Pro Ser Glu Asp Pro Gly Pro 130 135 140

Thr Leu Glu Thr Pro Val Val Ser Thr Ser Leu Pro Thr Lys Gly Pro 145 150 155 160

Ala Leu Gly Ser Asn Thr Glu Asp Arg Glu His Asp Tyr Ser Gln 165 170 175

Gly Leu Arg Leu Pro Ala Leu Leu Ser Val Leu Ala Leu Leu Leu Phe 180 185 190

Leu Leu Val Gly Thr Ser Leu Leu Ala Trp Arg Met Phe Gln Lys Arg 195 200 205	
Leu Val Lys Ala Asp Arg His Pro Glu Leu Ser Gln Asn Leu Arg Gln 210 215 220	
Ala Ser Glu Gln Asn Glu Cys Gln Tyr Val Asn Leu Gln Leu His Thr 225 230 235 240	
Trp Ser Leu Arg Glu Glu Pro Val Leu Pro Ser Gln Val Glu Val Val 245 250 255	
Glu Tyr Ser Thr Leu Ala Leu Pro Gln Glu Glu Leu His Tyr Ser Ser 260 265 270	
Val Ala Phe Asn Ser Gln Arg Gln Asp Ser His Ala Asn Gly Asp Ser 275 280 285	
Leu His Gln Pro Gln Asp Gln Lys Ala Glu Tyr Ser Glu Ile Gln Lys 290 295 300	
Pro Arg Lys Gly Leu Ser Asp Leu Tyr Leu 305 310	
<210> 19	
<211> 711	
<212> DNA	
<213> mouse	
<400> 19 atgtggctgt ccccagcttt gcttcttctc agttttccag gctgcctctc catccaaggc	60
ccagcattgg tgaggggtcc agagcagggg tcagtgactg tgcaatgtcg ctatagctca	120
agatggcaaa ccaacaagaa gtggtggtgc cggggagcaa gctggagcac ttgcagggtc	180
ctcatccgat ccactgggtc agagaaagaa acgaagagcg gccggctgtc catcagggac	240
aatcagaaaa atcactcatt ccaggttacc atggagatgc tcaggcaaaa tgacacggac	300
acttactggt gtggtattga aaagttcgga actgaccgtg ggaccagagt taaagtgaac	360

420

480

540

600

660

711

gtctacttcg	gccatatgca	gaccttct	tc agttc	agcag c	cacactgac	tcctgagagg
gcagcagaga	tgtgggtaaa	gataccat	gt cgact	tctaa to	caacttccc	tggcccactg
tggacggcag	tacagacatg	gtgtcttc	tg acttg	cagaa ga	aggacttga	agccagtcta
gttggggcct	ttgtgggtgg	gctgatgc	aa gttcc	ttcct gt	tctctggc	cgtcgccatc
tttaccttcg	tgctaacact	gactcctc	ct agttc	ccagg aa	gcacacag	cacaccgtca
tcacactcag	ccccagtggc	ttccaagg	aa gagat	gaacc gt	ctcttcta	a
<210> 20						
<211> 236						
<212> PRT						
<213> mous	е					
<400> 20						
,						
Met Trp Leu l	Ser Pro Al	a Leu Lei	Leu Leu 10	Ser Ph	e Pro Gly	Cys Leu 15
Ser Ile Cla						
Ser Ile Gln	20 PIO A1	a Leu val	25	Pro Gla	ı Gln Gly 30	Ser Val
Thr Val Gln	Cvs Ara Tu	r Ser Ser	. A~~ T	C) - m-		_
35	0,5g .y	40	AIG IID	GIN TN	Asn Lys 45	Lys Trp
Trp Cys Arg	Glv Ala Se	r Tro Ser	Thr Cve	Ara Val	T a.v. T] -	7
50	1	55	ini cys	60 60	red ite	Arg Ser
Thr Gly Ser	Glu Lys Gl	u Thr Lys	Ser Glv	Ara Leu	Ser Ile	Ara Ass
65	70	-	,	75		80
Asn Gln Lys	Asn His Se	r Phe Gln	Val Thr	Met Glu	Met Leu	Arg Gln
	85		90			95
Asn Asp Thr	Asp Thr Ty	Trp Cys	Gly Ile	Glu Lys	Phe Gly	Thr Asp
•	100		105		110	

Arg Gly Thr Arg Val Lys Val Asn Val Tyr Phe Gly His Met Gln Thr 115 120 125

420

480

Phe Phe Ser Ser Ala Ala Thr Leu Thr Pro Glu Arg Ala Ala Glu Met 130 135 140 Trp Val Lys Ile Pro Cys Arg Leu Leu Ile Asn Phe Pro Gly Pro Leu 145 150 155 Trp Thr Ala Val Gln Thr Trp Cys Leu Leu Thr Cys Arg Arg Gly Leu 165 170 175 Glu Ala Ser Leu Val Gly Ala Phe Val Gly Gly Leu Met Gln Val Pro 180 185 Ser Cys Ser Leu Ala Val Ala Ile Phe Thr Phe Val Leu Thr Leu Thr 195 200 205 Pro Pro Ser Ser Gln Glu Ala His Ser Thr Pro Ser Ser His Ser Ala 210 215 220 Pro Val Ala Ser Lys Glu Glu Met Asn Arg Leu Phe 225 230 <210> 21 <211> 819 <212> DNA <213> mouse <400> 21 aggaagtagc tcagagtgca aaggaagcag ataagaaaaa aacacatgga gagaacttga 60 acaagaaggt ggttgcctgg gctctgttac acacatctgg attccagcag cgacctggag 120 ttttctggag acagtaccca gtgaggcagg aggatgaggc tatgtgcagg tctgctcctt 180 ctctgcttcc aaggttgttt gtctctgacg ggccctggct ctgtgtctgg ctacgtagga 240 ggctctctcc gtgtgcagtg tcaatatagt ccatcatata agggctatat gaaatactgg 300 tgccgaggac cgcatgacac gacgtgtaaa actattgtag aaaccgacgg aagtgagaaa 360 gaaaagagga gtggcccagt gtccatcaga gaccatgctg cgaactccac catcacagtg

atcatggagg accttagcga agacgatgct gggtcttact ggtgcaagat tcagacttcc

tttatctggg	attcgtggtc	acgtgatcca	tcggtcagcg	taagggtgaa	tgtttttcca	540
gtgaattctg	ggcagaacct	gaggattagt	actaatgtga	tgttcatctt	ccaactgtgg	600
tccctgctca	gcagcatcca	gttccaggtc	ctggtcttcc	tgaagctgcc	tctgtttctg	660
agcatgctct	gtgctatctt	ctgggtgaac	agactttagg	gggttcctgg	gggcaatgta	720
gagtgaccca	tccaagaact	atgaagtgaa	gcatcccagg	aatgccctgg	gaggaactca	780
gtcctgcatg	cagactggac	ttcattgttc	tgtgtctca			819

<211> 181

<212> PRT

<213> mouse

<400> 22

Met Arg Leu Cys Ala Gly Leu Leu Leu Cys Phe Gln Gly Cys Leu 1 5 10 15

Ser Leu Thr Gly Pro Gly Ser Val Ser Gly Tyr Val Gly Gly Ser Leu 20 25 30

Arg Val Gln Cys Gln Tyr Ser Pro Ser Tyr Lys Gly Tyr Met Lys Tyr 35 40 45

Trp Cys Arg Gly Pro His Asp Thr Thr Cys Lys Thr Ile Val Glu Thr 50 55 60

Asp Gly Ser Glu Lys Glu Lys Arg Ser Gly Pro Val Ser Ile Arg Asp 65 70 75 80

His Ala Ala Asn Ser Thr Ile Thr Val Ile Met Glu Asp Leu Ser Glu 85 90 95

Asp Asp Ala Gly Ser Tyr Trp Cys Lys Ile Gln Thr Ser Phe Ile Trp 100 105 110

Asp Ser Trp Ser Arg Asp Pro Ser Val Ser Val Arg Val Asn Val Phe 115 120 125

Pro Val Asn Ser Gly Gln Asn Leu Arg Ile Ser Thr Asn Val Met Phe 130 135 140

Ile Phe Gln Leu Trp Ser Leu Leu Ser Ser Ile Gln Phe Gln Val Leu 145 150 155 160

Val Phe Leu Lys Leu Pro Leu Phe Leu Ser Met Leu Cys Ala Ile Phe 165 170 175

Trp Val Asn Arg Leu 180

<210> 23

<211> 2487

<212> DNA

<213> mouse

<400> 23 gaagttactg agagaagtga acaagagaga cctaaaggca actcaagctg agctgcgagt 60 cctcacaggg tcctgacatc tgtcgtcaac aaggacatga gaggagacga ccatgtggca 120 gttctctgct ctactcctat tcttcctccc aggctgctgc acggctcagg attcagtcac 180 aggtccagag gaggtgagcg gtcaggagca gggctccttg acagtgcagt gcagatattc 240 ctcatactgg aagggttaca agaagtactg gtgccgagga gttcctcaga gatcatgtga 300 tattcttgtt gaaaccgata aatcagagca gctggtgaag aagaaccgtg tgtccatcag 360 ggacaaccag agagactica tcttcacagt gaccatggag gatctgagga tgagcgatgc 420 tggcatttac tggtgtggaa ttacgaaagg tggacctgat cccatgttta aagttaatgt 480 gaacattgac caagccccaa aaagttcaat gatgaccacc acagccacag ttctgaaatc 540 catacaacca agcgctgaga acactggcaa ggaacaagtg actcagagca aagaagtgac 600 tcagagcagg ccccacacca ggtccctgct gagcagcatc tacttcctgc tgatggtctt 660 tgtggagtta cccctgctcc tgagcatgct cagtgctgtc ctctgggtga ccaggcctca 720 gagatgcttt gggagaggtg aaaatgacct ggtgaagacc catagtcctg ttgcctagga 780 tagagagaaa cagttcccaa gaaatggaaa ataatctctg tctctctgtt gtctctgtct 840

	ctgtctctgg	ggtgtatgta	tgtgtgtgca	tgcaccttgc	cggggcagat	gtgtatgtgg	900
	gagacatcta	ctggaatcat	tcccttagta	tctgagacag	ggtttctaat	: tgaccagcac	960
	ctttgtgtgg	taggtcagac	agctggccag	ggaactccag	ggatctccct	gcctctacca	1020
	tccatcctga	gattgcaagc	atacacgagt	gccctagctt	aaaaacaaac	aaacaaacaa	1080
	acaccttagg	ttgtagggat	tgaactcatg	tccttgtacc	tgcaaggaag	gtaggcgatt	1140
	tacctgctga	gccatctccc	caatctggag	aagactcaat	ctagtaaaga	acaactcatc	1200
	agcagtacca	tggctctgat	gtgctgcaca	accagactca	gactaatccc	actcctatag	1260
	cagggacagc	tgagttctgg	aacccattca	tgtgcccctc	tctcaggaca	tcctgcaata	1320
	cctatctggg	gctatcttcc	actgatgact	tccaaagaag	aaaatacaag	aaaacatcac	1380
	atttcttctt	agtgtactag	ttccttagag	gacacatgcc	aatataagac	tgcgggccac	1440
	cagccagttg	attgaccaaa	tatctcggtg	atgtggcctc	accaagtagc	ataaagtttg	1500
	ccactgtcac	actagctatc	tgtcccttat	tggcaggaca	caccctgctt	tctttttct	1560
	caacacagee	cagtgactaa	gcccattgca	aacccagatg	gagtagttga	cctaagcttt	1620
	gtaccacctg	ctcaggtctt	caagtagtag	ttaagccttg	gtccctgaaa	tctagattgc	1680
	tcagtgagac	caaatgggga	ggtcaactgc	aggaatcagc	tgatctcaca	ggagtcacga	1740
	acccacatca	ccccaaacc	cttccaggaa	tggtctcttc	accaggccct	tccactctct	1800
	cccttttact	cagacaaatc	tattgaatgt	ctaagtagtt	atcactctcc	acatacatgc	1860
	tccaaaataa	gacagaccca	attaaagtcc	atagagaagg	ccaatgggat	caaaggtaaa	1920
	tactcagggg	aaatgagtag	tctcagccca	ccagtctcag	acatcctgag	ttctgcacca	1980
	tgacacagtc	ttcttcttga	gtggggctct	gacacccaca	gccaaattca	caactaacat	2040
	gggtgttctc	caactttgtg	gaagaagagt	ccccaggtta	gcatcttctc	agtgatgaca	2100
	tgtgttggac	tctagtgagc	ttgcctcttg	ttaagaggat	ggttttcatt	tgcttcaggg	2160
	gtatacctgc	cagtcagtca	gccacattcc	cactcatgct	cagaccaaca	atcatggtta	2220
			cacacacaca				2280
			agagcctgta				2340
			ggcaggtgga				2400
(gagtgagttc	taggactaca	cagagaaatc	caaaaaaaca	aggctacaca	gagaaaccat	2460

2487

gtcctggggt aaaaaagaaa aagaaaa <210> 24 <211> 221 <212> PRT <213> mouse <400> 24 Met Trp Gln Phe Ser Ala Leu Leu Leu Phe Phe Leu Pro Gly Cys Cys 10 Thr Ala Gln Asp Ser Val Thr Gly Pro Glu Glu Val Ser Gly Gln Glu 25 Gln Gly Ser Leu Thr Val Gln Cys Arg Tyr Ser Ser Tyr Trp Lys Gly 40 Tyr Lys Lys Tyr Trp Cys Arg Gly Val Pro Gln Arg Ser Cys Asp Ile 55 Leu Val Glu Thr Asp Lys Ser Glu Gln Leu Val Lys Lys Asn Arg Val 70 Ser Ile Arg Asp Asn Gln Arg Asp Phe Ile Phe Thr Val Thr Met Glu 90 Asp Leu Arg Met Ser Asp Ala Gly Ile Tyr Trp Cys Gly Ile Thr Lys 105 Gly Gly Pro Asp Pro Met Phe Lys Val Asn Val Asn Ile Asp Gln Ala 115 120 Pro Lys Ser Ser Met Met Thr Thr Ala Thr Val Leu Lys Ser Ile 130 135 Gln Pro Ser Ala Glu Asn Thr Gly Lys Glu Gln Val Thr Gln Ser Lys 145 150

Glu Val Thr Gln Ser Arg Pro His Thr Arg Ser Leu Leu Ser Ser Ile 165 170 175

Tyr Phe Leu Leu Met Val Phe Val Glu Leu Pro Leu Leu Ser Met 180 185 190

Leu Ser Ala Val Leu Trp Val Thr Arg Pro Gln Arg Cys Phe Gly Arg 195 200 205

Gly Glu Asn Asp Leu Val Lys Thr His Ser Pro Val Ala 210 215 220

<210> 25

<211> 1307

<212> DNA

<213> mouse

<400> 25

cgggaagtgg ctaaaggagg aagtgccgag tgagagtgag ggaaaccaca ggaccaggag 60 acgcaggagt ggagcatgta gcctgttctc gctggcaggc tccaccaagg tgacccggtg 120 tgagaagatg catttgtcat tgctggtccc ctttctcttc tggatcacag gctgctgcac 180 ggctgaggat ccagtcacag gtccagagga ggtgagcggt caggagcagg gctccttgac 240 agtgcagtgc cgatatacct caggctggaa ggattacaag aagtactggt gccaaggagt 300 tcctcagaga tcatgtaaga ctcttgttga aaccgatgca tcagagcagc tggtgaagaa 360 gaaccgtgtg tccatcaggg acaaccagag agacttcatc ttcacagtga ccatggagga 420 tctgaggatg agcgatgctg gcatttactg gtgtggaatt acgaaagtgc caaccatgcc 480 ccccatcacc tccaccacca ccatcttcac agtgacaacc acagtaaaag agaccagcat 540 gtttccaacg ctgactagct actactctga taacgggcat ggcggtggtg acagtggcgg 600 tggtgaagat ggcgtcggtg atgggtttct ggatctcagt gtgctcctcc cagtcatctc 660 tgcagtcctg ttgcttctcc tgttggtggc ctcgctcttt gcttggagga tggtgaggag 720 acagaagaaa gacctgtccc tgaagcagcc cagaacctcc cctggctcct cttggaaaaa 780 gggctcctcc atgtcctcct ctggcaagga ccaccaagag gaagtggaat atgtcaccat 840 ggctcccttt cccagggagg aggtttcata tgccgctctg actttggccg gcttgggtca 900

gga	gcct	act	tato	gcaa	ita d	ctggc	tgc	cc ca	tcac	ccat	gtt	ccca	gga	cago	gccttga
aga	ggag	acc	acaç	gagta	ca ç	gcago	atca	ag ga	ggco	cttg	cct	gcag	jcca	tgc	ttaatc
ttg	gtct	ctg	aago	gegge	tt ç	gago	atgg	ga to	ttta	cato	tgo	ctct	gta	ccto	cttcct
tac	ccgg	ccc	agct	ggtg	ac t	ggaa	ctct	g to	cato	cgtc	tct	cato	gcc	atca	gctcta
cct	tgct	tga	gctt	ggag	tt c	aacc	tcag	19 gg	gtto	cagg	gaa	ttaa	ggc	tcct	tccaca
tcc	ccac	tta	tago	caat	gt a	cctt	ggaa	ıg gt	acca	ggca	ggc	tgct	tca	ggga	tgctgt
gta	aatc	gta	tcaa	cgat	ga c	aata	atag	ıc aa	tcaa	cctt	tat	ttat			
- 21	0.	2.6													
<21		26													
<21		296													
<21		PRT													
<21	3>	mous	е			,									
< 40	0>	26													
Met 1	His	Leu	Ser	Leu 5	Leu	Val	Pro	Phe	Leu 10	Phe	Trp	Ile	Thr	Gly 15	Cys
Cys	Thr	Ala	Glu 20	Asp	Pro	Val	Thr	Gly 25	Pro	Glu	Glu	Val	Ser 30	Gly	Gln
Glu	Gln	Gly 35	Ser	Leu	Thr	Val	Gln 40	Cys	Arg	Tyr	Thr	Ser 45	Glý	Trp	Lys
Asp	Tyr 50	Lys	Lys	Tyr	Trp	Cys 55	Gln	Gly	Val	Pro	Gln 60	Arg	Ser	Cys	Lys
Thr 65	Leu	Val	Glu	Thr	Asp 70	Ala	Ser	Glu	Gln	Leu 75	Val	Lys	Lys	Asn	Arg 80
Val	Ser	Ile	Arg	Asp 85	Asn	Gln	Arg	Asp	Phe 90	Ile	Phe	Thr	Val	Thr 95	Met
Glu	Asp	Leu	Arg 100	Met	Ser	Asp	Ala	Gly 105	Ile	Tyr	Trp	Cys	Gly 110	Ile	Thr

Lys Val Pro Thr Met Pro Pro Ile Thr Ser Thr Thr Thr Ile Phe Thr 115 120 125

Val Thr Thr Thr Val Lys Glu Thr Ser Met Phe Pro Thr Leu Thr Ser 130 135 140

Tyr Tyr Ser Asp Asn Gly His Gly Gly Gly Asp Ser Gly Gly Glu 145 150 155 160

Asp Gly Val Gly Asp Gly Phe Leu Asp Leu Ser Val Leu Leu Pro Val 165 170 175

Ile Ser Ala Val Leu Leu Leu Leu Leu Leu Val Ala Ser Leu Phe Ala 180 185 190

Trp Arg Met Val Arg Arg Gln Lys Lys Asp Leu Ser Leu Lys Gln Pro 195 200 205

Arg Thr Ser Pro Gly Ser Ser Trp Lys Lys Gly Ser Ser Met Ser Ser 210 220

Ser Gly Lys Asp His Gln Glu Glu Val Glu Tyr Val Thr Met Ala Pro 225 230 235 240

Phe Pro Arg Glu Glu Val Ser Tyr Ala Ala Leu Thr Leu Ala Gly Leu 245 250 255

Gly Gln Glu Pro Thr Tyr Gly Asn Thr Gly Cys Pro Ile Thr His Val 260 265 270

Pro Arg Thr Gly Leu Glu Glu Glu Thr Thr Glu Tyr Ser Ser Ile Arg 275 280 285

Arg Pro Leu Pro Ala Ala Met Pro 290 295

<210> 27

<211> 114

<212> PRT

<213> mouse

<400> 27

Gly Cys Cys Thr Ala Gln Asp Pro Val Thr Gly Pro Glu Glu Val Ser 1 5 10 15

Gly Gln Glu Gln Gly Ser Leu Thr Val Gln Cys Arg Tyr Asp Ser Gly 20 25 30

Trp Lys Asp Tyr Lys Lys Tyr Trp Cys Arg Gly Ala Tyr Trp Lys Ser 35 40 45

Cys Glu Ile Leu Val Glu Thr Asp Ala Ser Glu Gln Leu Val Lys Glu
50 55 60

Asn Arg Val Ser Ile Arg Asp Asp Gln Thr Asp Phe Ile Phe Thr Val 65 70 75 80

Thr Met Glu Asp Leu Arg Met Ser Asp Ala Asp Ile Tyr Trp Cys Gly 85 90 95

Ile Thr Lys Ala Gly Thr Asp Pro Met Phe Lys Val Asn Val Asn Ile 100 105 110

Asp Pro

<210> 28

<211> 295

<212> PRT

<213> homosapiens

<400> 28

Met Pro Leu Leu Thr Leu Tyr Leu Leu Phe Trp Leu Ser Gly Tyr
1 10 15

Ser Ile Val Thr Gln Ile Thr Gly Pro Thr Thr Val Asn Gly Leu Glu 20 25 30 Arg Gly Ser Leu Thr Val Gln Cys Val Tyr Arg Ser Gly Trp Glu Thr 35 40 45

Tyr Leu Lys Trp Trp Cys Arg Gly Ala Ile Trp Arg Asp Cys Lys Ile 50 55 60

Leu Val Lys Thr Ser Gly Ser Glu Gln Glu Val Lys Arg Asp Arg Val 65 70 75 80

Ser Ile Lys Asp Asn Gln Lys Asn Arg Thr Phe Thr Val Thr Met Glu 85 90 95

Asp Leu Met Lys Thr Asp Ala Asp Thr Tyr Trp Cys Gly Ile Glu Lys 100 105 110

Thr Gly Asn Asp Leu Gly Val Thr Val Gln Val Thr Ile Asp Pro Ala 115 120 125

Pro Val Thr Gln Glu Glu Thr Ser Ser Ser Pro Thr Leu Thr Gly His 130 $$ 135 $$ 140

His Leu Asp Asn Arg His Lys Leu Leu Lys Leu Ser Val Leu Leu Pro 145 150 155 160

Leu Ile Phe Thr Ile Leu Leu Leu Leu Leu Val Ala Ala Ser Leu Leu 165 170 175

Ala Trp Arg Met Met Lys Tyr Gln Gln Lys Gly Glu Arg Thr Trp Val 180 185 190

Leu Gln Pro Leu Glu Gly Asp Leu Cys Tyr Ala Asp Leu Thr Leu Gln
195 200 205

Leu Ala Gly Thr Ser Pro Gln Lys Ala Thr Thr Lys Leu Ser Ser Ala 210 215 220

Gln Val Asp Gln Val Glu Val Glu Tyr Val Ala Ala Gly Met Ser Pro 225 230 235 240

Glu Gln Thr Met Ala Ser Leu Pro Lys Glu Asp Ile Ser Tyr Ala Ser 245 250 255

Leu Thr Leu Gly Ala Glu Asp Gln Glu Pro Thr Tyr Cys Asn Met Gly 260 265 270

His Leu Ser Ser His Leu Pro Gly Arg Gly Pro Glu Glu Pro Thr Glu 275 280 285

Tyr Ser Thr Ile Ser Arg Pro 290 295