

Meterrific: Adding Smart Functionality to Traditional Parking Meters

By: Shiv Chopra, Blake Heard, Madison Hester, Michael Knudson, Raj Patel, Andrew Trimper

Date: January 16, 2019

Introduction

- The main goal of Meterrific is to develop a smart add-on for existing parking meters
 - Why?
 - Address main points or issues with urban street parking
 - Minimize time spent and gas wasted looking for parking
 - Minimize stress associated with city parking
 - How?
 - Use sensors to identify spot availability
 - Relay information to users
 - Navigate to open parking spots near destination
 - Re-route users if selected spot becomes unavailable
- The team is requesting \$164.20 in funding to develop the prototype

Qualitative Goals

 Target population: people driving in heavily populated cities with street parking and associated parking meters

Parking Meter

- Protects processing unit from the environment
- Keeps track of overall status and sends status to a cloud database

Mobile App

- Navigates user to the closest parking spot near specified destination
- Receives meter status from cloud database and re-routes user as necessary in real time
- User can pay for the meter through the app

Design Approach: Hardware

- Attachment to existing parking meter
 - Interchangeable connection point
 - Customizable part between connection point and parking meter
- Electronics Housing
 - Protects electronics from environmental factors
 - Waterproof
 - Impact resistance
 - Smallest possible size and mass
 - Custom 3D-printed component cutouts
 - Waterproof Shell

Design Approach: Electrical

- Single printed circuit board (PCB)
 - LCD screen, LIDAR, solar panel, sit offboard
 - Central microprocessor handles interactions and logic
 - Wi-Fi module deals with sending data to cloud
- Microprocessor
 - Requires: I2C Interface, SPI Interface
 - Prototype with Arduino Nano
 - Final product uses Atmega328p
- Power
 - 3.7V lithium polymer battery
 - Use external voltage regulators
 - Use decoupling capacitors

Quantitative Specs

Resting current draw	~30mA		
Active current draw	~300mA		
Time active (wifi)	< 0.1%		
Battery life	1700 mAh for 300 to 500 cycles		
Usage time per battery charge	~52hrs		
Dimensions	6 in x 3 in x 2 in		
Cost per unit	\$82.10		

^{*} Dimensions and cost per unit based on preliminary research. Both are expected to decrease in final product

Design Approach: Software

- Parking Meter Add-on Firmware
 - Keeping tabs on spot availability
 - Power management
 - Sending status to database
- Cloud Database
 - Retrieving and handling of meter status data
- Mobile App
 - Integration of Pre-existing Maps and Navigation API
 - Retrieving and handling of meter status data

Current Status

- Moving to production stage
 - Any usability, feasibility, or efficiency discoveries will lead to changes in final design
- Finalizing parts requirements and placing orders

	Asset Name	Cost	Amount	Total Cost	Source
Electronics	LCD screen	\$11.52	1	\$11.52	Digikey
	LIDAR sensor	\$0.00	1	\$0.00	Team Supply
	Microprocessor	\$3.50	1	\$3.50	Digikey
	Wi-Fi Chip	\$6.95	1	\$6.95	Sparkfun
	Solar Panel	\$5.99	2	\$11.98	Xump
	LiPo Charge Controller	\$6.95	1	\$6.95	Digikey
	3.7V LiPo Battery	\$0.00	1	\$0.00	HIVE Makerspace
	PCB printing	\$33.00	1	\$33.00	Advanced Circuits
			Total Electronics:	\$73.90	
Mechanical Hardware	ABS Filament	\$0.00	1	\$0.00	Interdisciplinary Design Commons
	PVC Rod (1ft)	\$0.55	4	\$2.20	Home Depot
	Mounting Hardware	\$6.00	1	\$6.00	Home Depot
			Total Hardware:	\$8.20	
			Grand Total (per):	\$82.10	
			Grand Total (x2):	\$164.20	

Schedule and Next Steps

Questions?

