Write control

The device has two types of $\overline{\text{WE}}$ signal control method, " $\overline{\text{WE}}$ Level Control" and " $\overline{\text{WE}}$ Single Clock Pulse Control", for synchronous burst write operation. It is configured through CR set sequence.

. Burst Read Suspend

Burst read operation can be suspended by \overline{OE} High pulse. During burst read operation, \overline{OE} brought to High from Low suspends burst read operation. Once \overline{OE} is brought to High with the specified setup time against clock where the data being suspended, the device internal counter is suspended, and the data output becomes high impedance after specified time duration. It is inhibited to suspend the first data output at the beginning of burst read.

 \overline{OE} brought to Low from High resumes burst read operation. Once \overline{OE} is brought to Low, data output becomes valid after specified time duration, and internal address counter is reactivated. The last data output being suspended as the result of $\overline{OE} = H$ and first data output as the result of $\overline{OE} = H$ are from the same address.

In order to guarantee to output last data before suspension and first data after resumption, the specified minimum value of \overrightarrow{OE} hold time and setup time against clock edge must be satisfied respectively.

. Burst Write Suspend

Burst write operation can be suspended by \overline{WE} High pulse. During burst write operation, \overline{WE} brought to High from Low suspends burst write operation. Once \overline{WE} is brought to High with the specified setup time against clock where the data being suspended, device internal counter is suspended, data input is ignored. It is inhibited to suspend the first data input at the beginning of burst write.

 $\overline{\text{WE}}$ brought to Low from High resumes burst write operation. Once $\overline{\text{WE}}$ is brought to Low, data input becomes valid after specified time duration, and internal address counter is reactivated. The write address of the cycle where data being suspended and the first write address as the result of $\overline{\text{WE}} = \text{L}$ are the same address.

In order to guarantee to latch the last data input before suspension and first data input after resumption, the specified minimum value of WE hold time and setup time against clock edge must be satisfied respectively.

Burst write suspend function is available when the device is operating in WE level controlled burst write only.

• Burst Read Termination

Burst read operation can be terminated by $\overline{CE}1$ brought to High. If BL is set on Continuous, burst read operation is continued endless unless terminated by $\overline{CE}1$ = H. It is inhibited to terminate burst read before first data output is completed. In order to guarantee last data output, the specified minimum value of $\overline{CE}1$ = L hold time from clock edge must be satisfied. After termination, the specified minimum recovery time is required to start new access.

Burst Write Termination

Burst write operation can be terminated by $\overline{CE}1$ brought to High. If BL is set on Continuous, burst write operation is continued endless unless terminated by $\overline{CE}1 = H$. It is inhibited to terminate burst write before first data input is completed. In order to guarantee last data input being latched, the specified minimum values of $\overline{CE}1 = L$ hold time from clock edge must be satisfied. After termination, the specified minimum recovery time is required to start new access.

■ ABSOLUTE MAXIMUM RATINGS

D	Comphal	Ra	ting	Unit
Parameter	Symbol	Min	Мах	- Uiiii
Voltage of Vbb Supply Relative to Vss*	Voo	- 0.5	+ 3.6	V
Voltage at Any Pin Relative to Vss*	Vin, Vout	- 0.5	+ 3.6	٧
Short Circuit Output Current *	lout	- 50	+ 50	mA
Storage Temperature	Tsia	- 55	+ 125	~℃

^{*:} All voltages are referenced to Vss = 0 V.

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

■ RECOMMENDED OPERATING CONDITIONS

	9	Va	Value		
Parameter	Symbol	Min	Max	Unit	
D	Voo	1.65	1.95	V	
Power Supply Voltage*1	Vee	0	0	٧	
High Level Input Voltage*1, *2	ViH	Voo × 0.8	V _{D0} + 0.2	V	
Low Level Input Voltage*1, *3	VIL	- 0.3	Vr∞ × 0.2	V	
Ambient Temperature	TA	- 30	+ 85	°C	

^{*1 :} All voltages are referenced to $V_{SS} = 0 \text{ V}$.

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.

Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand.

■ PACKAGE CAPACITANCE

 $(f = 1 \text{ MHz}, T_A = +25 \, ^{\circ}\text{C})$

	C	Test	Value			_ Unit
Parameter	Symbol	conditions	Min	Тур	Max	7 01111
Address Input Capacitance	Cin1	V _{IN} = 0 V		_	5	pF
Control Input Capacitance	Cin2	V _{IN} = 0 V		_	5	pF
Data Input/Output Capacitance	Cı/o	V _{IO} = 0 V		<u> </u>	8	pF

^{*2 :} Maximum DC voltage on input and I/O pins is $V_{DD} + 0.2 \text{ V}$. During voltage transitions, inputs may overshoot to $V_{DD} + 1.0 \text{ V}$ for the periods of up to 5 ns.

^{*3 :} Minimum DC voltage on input or I/O pins is -0.3 V. During voltage transitions, inputs may undershoot Vss to -1.0 V for the periods of up to 5 ns.

■ ELECTRICAL CHARACTERISTICS

1. DC Characteristics

(At recommended operating conditions unless otherwise noted)

		Test Conditions		Ve	lue	Unit
Parameter	Symbol			Min	Max	Unit
Input Leakage Current	Ju	Vss ≤ Vin ≤ Vdd		-1.0	+1.0	μA
Output Leakage Current	lω	0 V ≤ Vout ≤ Vpo, Output D	isable	-1.0	+1.0	μΑ
Output High Voltage Level	Vон	$V_{DD} = V_{DD} (Min), I_{OH} = -0.5$	mA	1.4	_	٧
Output Low Voltage Level	Vo.	lo. = 1 mA			0.4	٧
	Icops	V _{DD} = V _{DD} (Max),	SLEEP		10	μА
Vod Power Down Current	loo p4	Vin = Vih of Vel.,	4 M-bit Partial		40	μА
	loore	CE2 ≤ 0.2 V	8 M-bit Partial		50	μΑ
/ /	lpos	Vob = Vob (Max), Vin (including CLK) = Viн о CE1 = CE2 = Viн	r VIL,		1.5	mA
V _{DD} Standby Current	loosi		V_N (including CLK) $\leq 0.2 \text{ V}$ or V_N (including CLK) $\geq V_{00} - 0.2 \text{ V}$,		80	μА
	10092	$V_{DD} = V_{DD}$ (Max), $t_{CK} = Mir$ $V_{IN} \le 0.2$ V or $V_{IN} \ge V_{DD} - V_{DD}$ $\overline{CE1} = \overline{CE2} \ge V_{DD} - 0.2$ V			200	μА
	IDOA1	V _{DD} = V _{DD} (Max), V _{IN} = V _H OF V _{IL} ,	tec/two = Min	-	30	mA
Vob Active Current	IDDA2	CE1 = V _{IL} and CE2 = V _{IB} , Ιουτ = 0 mA	tac/twc = 1 μs		3	mA
V _{DD} Page Read Current	EAGG	Vob = Vob (Max), Vin = Vin or Vil., CE1 = Vil. and CE2 = Vin, Iout = 0 mA, tenc = Min			10	mA
Voo Burst Access Current	IDDA4	$V_{DD} = V_{DD}$ (Max), $V_{IN} = V_{IH}$ $\overline{CE1} = V_{IL}$ and $CE2 = V_{IH}$, $t_{CK} = t_{CK}$ (Min), $BL = Continuous = 0$ mA		_	15	mA

Notes: • All voltages are referenced to Vss = 0 V.

loo depends on the output termination, load conditions, and AC characteristics.

 After power on, initialization following POWER-UP timing is required. DC characteristics are guaranteed after the initialization.

2. AC Characteristics

(1) Asynchronous Read Operation (Page mode)

(At recommended operating conditions unless otherwise noted)

P	(At recommende		itue	Unit	Notes
Parameter	Symbol	Min	Max	Unit	Notes
Read Cycle Time	tac	70	1000	ns	*1, *2
CE1 Access Time	tce t	_	70	ns	*3
OE Access Time	toe		40	ns	*3
Address Access Time	taa		70	ns	*3, *5
ADV Access Time	tav		70	ns	*3
LB, UB Access Time	t _{BA}		30	ns	*3
Page Address Access Time	tpaa		20	ns	*3, *6
Page Read Cycle Time	trac	20	1000	ns	*1, *6, *7
Output Data Hold Time	toн	5	_	ns	*3
CE1 Low to Output Low-Z	teuz	5	_	п\$	*4
OE Low to Output Low-Z	touz	10		ns	*4
LB, UB Low to Output Low-Z	teuz	0		ns	*4
CE1 High to Output High-Z	tснz		14	ns	*3
ÖE High to Output High-Z	tонz		14	ns	*3
LB, UB High to Output High-Z	tвнz	_	14	ns	*3
Address Setup Time to CE1 Low	tasc	-5		ns	
Address Setup Time to OE Low	taso	10	_	ns	
ADV Low Pulse Width	tvei.	10		ns	*8
ADV High Pulse Width	tveн	15		ns	*8
Address Setup Time to ADV High	tasv	5	_	ns	
Address Hold Time from ADV High	tahv	10		ns	
Address Invalid Time	tax	_	10	ns	*5, *9
Address Hold Time from CE1 High	tснан	-5		ns	*10
Address Hold Time from OE High	toнан	5		ns	
WE High to OE Low Time for Read	twick	15	1000	ns	*11
CE1 High Pulse Width	tap	15		ns	

^{*1 :} Maximum value is applicable if CE1 is kept at Low without change of address input of A20 to A3.

(Continued)

^{*2 :} Address should not be changed within minimum tec.

^{*3 :} The output load 50 pF with 50 Ω termination to V_{DD} × 0.5 V.

^{*4 :} The output load 5 pF without any other load.

^{*5 :} Applicable to A_{20} to A_{3} when $\overline{CE}1$ is kept at Low.

^{*6 :} Applicable only to A2, A1 and A0 when CE1 is kept at Low for the page address access.

(Continued)

- *7 : In case Page Read Cycle is continued with keeping $\overline{CE}1$ stays Low, $\overline{CE}1$ must be brought to High within 4 μs. In other words, Page Read Cycle must be closed within 4 μs.
- *8 ; typL is specified from the falling edge of either CE1 or ADV whichever comes late. The sum of typL and typH must be equal or greater than the for each access.
- *9 : Applicable to address access when at least two of address inputs are switched from previous state.
- *10 : tac (Min) and trac (Min) must be satisfied.
- *11 : If actual value of two. is shorter than specified minimum values, the actual tax of following Read may become longer by the amount of subtracting actual value from specified minimum value.

(2) Asynchronous Write Operation

	 '	Va	alue	Unit	Notes	
Parameter	Symbol	Min	Max	UIIIL	IAOTAS	
Write Cycle Time	two	70	1000	ns	*1, *2	
Address Setup Time	las	0	_	ns	*3	
ADV Low Pulse Width	tvei.	10		ns	*4	
ADV High Pulse Width	tvpн	15		ns	*4	
Address Setup Time to ADV High	tagy	5	<u> </u>	ns		
Address Hold Time from ADV High	tarry	10	_	ns		
CE1 Write Pulse Width	tow	45	Ī —	ns	*3	
WE Write Pulse Width	twe	45	<u> </u>	ns	*3	
LB, UB Write Pulse Width	tew	45		ns	*3	
LB, UB Byte Mask Setup Time	tes	- 5	T -	ns	*5	
LB, UB Byte Mask Hotd Time	tвн	– 5	_	ns	*6	
Write Recovery Time	twn	0	_	ns	*7	
CE1 High Pulse Width	tor	15		ns		
WE High Pulse Width	twнР	15	1000	ns		
LB, UB High Pulse Width	т вне	15	1000	ns_		
Data Setup Time	tos	15	<u> </u>	ns		
Data Hold Time	tон	0		ns		
OE High to CE1 Low Setup Time for Write	"тонсі.	-5		ns	*8	
OE High to Address Setup Time for Write	toes	0	_	ns	*9	
LB and UB Write Pulse Overlap	tewo	30		ns		

^{*1 :} Maximum value is applicable if CE1 Is kept at Low without any address change.

^{*2:} Minimum value must be equal or greater than the sum of write pulse width (tcw, two or tew) and write recovery time (twa).

^{*3:} Write pulse width is defined from High to Low transition of $\overline{CE}1$, \overline{WE} , \overline{LB} , or \overline{UB} , whichever occurs last.

^{*4:} typl is specified from the falling edge of either CE1 or ADV whichever comes late. The sum of typl and typh must be equal or greater than two for each access.

^{*5:} Applicable for byte mask only. Byte mask setup time is defined from the High to Low transition of CE1 or WE whichever occurs last.

^{*6:} Applicable for byte mask only. Byte mask hold time is defined from the Low to High transition of CE1 or WE whichever occurs first.

^{*7:} Write recovery time is defined from Low to High transition of CE1, WE, LB, or UB, whichever occurs first.

^{*8:} If \overline{OE} is Low after minimum touck, read cycle is initiated. In other word, \overline{OE} must be brought to High within 5 ns after CE1 is brought to Low.

^{*9:} If \overline{OE} is Low after new address input, read cycle is initiated. In other word, \overline{OE} must be brought to High at the same time or before new address is valid.

(3) Synchronous Operation - Clock Input (Burst mode)

(At recommended operating conditions unless otherwise noted)

<u> </u>		Ott	Va	lue	Unit	Notes
Para	meter	Symbol	Min	Max	JUIL	140199
	RL = 5		15		ns	*1
Clock Period	RL = 4	t _{CK}	20		ns	*1
	RL = 3		30		пs	*1
Clock High Pulse Wid	th	tскн	5		ns	
Clock Low Pulse Widt	h	takı	5	_	ns	
Clock Transition Time		tcкт	_	3	ns	*2

^{*1:} Clock period is defined between valid clock edges.

(4) Synchronous Operation - Address Latch (Burst mode)

	Cumbal	Va	lue	Unit	Notes
Parameter	Symbol	Min	Mex		140(65
Address Setup Time to CE1 Low	tasca.	<u>-</u> 5		ns	*1
Address Setup Time to ADV Low	tasvi.	-5		ns	*2
Address Hold Time from ADV High	tahv	10		ns	T
ADV Low Pulse Width	tvpl	10	·	ns	*3
ADV Low Setup Time to CLK	tvack	7		ns	*4
CE1 Low Setup Time to CLK	talak	7		ns	*4
ADV Low Hold Time from CLK	taкvн	1		ns	*4
Burst End ADV High Hold Time from CLK	1vhvL	15	-	ns	

^{*1:} tascuis applicable if CE1 is brought to Low after ADV is brought to Low.

^{*2:} Clock transition time is defined between Viii (Min) and Vi∟ (Max)

^{*2:} tasvL Is applicable if \overline{ADV} is brought to Low after $\widetilde{CE}1$ is brought to Low.

^{*3:} tvp_ is specified from the falling edge of either CE1 or ADV whichever comes late.

^{*4:} Applicable to the 1st valid clock edge.

(5) Synchronous Read Operation (Burst mode)

B		Oh al	V٤	lue	Unit	Notes
Para	meter	Symbol	Min	Max	John	Mores
Burst Read Cycle Time		tece		8000	ns	
CLK Access Time		tac		12	ns	*1
Output Hold Time from CL	K	tскох	3		ns	*1
CE1 Low to WAIT Low		t _{GLTL}	5	20	ns	*1
OE Low to WAIT Low		toltl	0	20	ns	*1, *2
CLK to WAIT Valid Time		tсктv	_	12	ns	*1, *3
WAIT Valld Hold Time from	n CLK	tсктх	3		ns	*1
CE1 Low to Output Low-Z		touz	5	_	ns	*4
OE Low to Output Low-Z		torz	10	_	ns	*4
LB, UB Low to Output Lov	v-Z	teuz	0	_	ทร	*4
CE1 High to Output High-	Z	tснz	A. clark	14	ns	*1
OE High to Output High-Z		tonz	_	14	ns	#1
LB, UB High to Output Hig	jh-Z	tвнz	_	14	ns	*1
CE1 High to WAIT High-Z		1снт2		20	ns	*1
OE High to WAIT High-Z		tонтz		20	ns	*1
OE Low Setup Time to 1s	Data-output	toLa	30		ns	
LB, UB Setup Time to 1st	Data-output	tero	30		ns	*5
OE Setup Time to CLK		tosck	5		ns	
OE Hold Time from CLK	 	tскон	5		ns	
Burst End CE1 Low Hold	Time from CLK	tсксин	5	_	ns	
Burst End LB, UB Hold Til	me from CLK	tскон	5		ns	
Burst Terminate	BL = 8, 16	—	30		ns	*6
Recovery Time	BL = Continuous	ттв -	70		ns	*6

^{*1:} The output load 50 pF with 50 Ω termination to $V_{DD} \times 0.5 \text{ V}$.

^{*2:} WAIT drives High at the beginning depending on OE falling edge timing.

^{*3:} textv is guaranteed after tout. (Max) from $\overline{\text{OE}}$ falling edge and tosex must be satisfied.

^{*4:} The output load 5 pF without any other load.

^{*5:} Once LB and UB are determined, they must not be changed until the end of burst read.

^{*6:} Defined from the Low to High transition of $\overline{\text{CE}}1$ to the High to Low transition of either $\overline{\text{ADV}}$ or $\overline{\text{CE}}1$ whichever occurs late.

(6) Synchronous Write Operation (Burst mode)

		0	Va	lue	Unit	Notes
Para	ıməter	Symbol	Min	Max	Julia	140100
Burst Write Cycle Time		twcs		8000	ns	
Data Setup Time to CLK		tosck	7		ns	
Data Hold Time from CLK		рнск	3		ns	
WE Low Setup Time to 1s	st Data Input	twip	30	-	ns	
LB, UB Setup Time for W	rite	tus	-5		пз	*1
WE Setup Time to CLK		twscx	5		ns	
WE Hold Time from CLK		tокwн	5		ns	
CE1 Low to WAIT High		touth	5	20	ns	*2
WE Low to WAIT High		twith	0	20	ns	*2
CE1 High to WAIT High-Z		tснтz	_	20	ns	*2
WE High to WAIT High-Z		tverz	_	20	ns	*2
Burst End CE1 Low Hold	Time from CLK	tckcLH	5		ns	
Burst End CE1 High Setu	p Time to next CLK	тснск	5		ns	
Burst End LB, UB Hold Ti	me from CLK	tскан	5	_	ns	
Burst Write Recovery Tim	18	twas	30		ns	*3
Burst Terminate	BL = 8, 16		30		ns	*4
Recovery Time	BL = Continuous	ttre	70		ns	*4

^{*1:} Defined from the valid input edge to the High to Low transition of either ADV, CE1, or WE, whichever occurs last. And once LB, UB are determined, LB, UB must not be changed until the end of burst write.

^{*2:} The output load 50 pF with 50 Ω termination to $V\infty \times 0.5$ V.

^{*3:} Defined from the valid clock edge where last data-input being latched at the end of burst write to the High to Low transition of either ADV or CE1 whichever occurs late for the next access.

^{*4:} Defined from the Low to High transition of CE1 to the High to Low transition of either ADV or CE1 whichever occurs late for the next access.

(7) Power Down Parameters

(At recommended operating conditions unless otherwise noted)

	0	Value		Linit	Notes
Parameter	Symbol	Min	Max	Unit	Notes
CE2 Low Setup Time for Power Down Entry	tose	20	_	ns	
CE2 Low Hold Time after Power Down Entry	tcarb	70		ns	
CE1 High Hold Time following CE2 High after Power Down Exit [Sleep mode only]	torar	300	_	μs	* 1
CE1 High Hold Time following CE2 High after Power Down Exit [not in Sleep mode]	tсння	70		ns	*2
CE1 High Setup Time following CE2 High after Power Down Exit	tснs	0		ns	*1

^{*1 :} Applicable also to power-up.

(8) Other Timing Parameters

Dovemeter	Cumbal	Va	lue	Unit	Notes
Parameter	Symbol	Min	Max	Junit	Morea
ČE1 High to OE Invalid Time for Standby Entry	tснох	10	_	ns	
CE1 High to WE Invalid Time for Standby Entry	tchwx	10	<u> </u>	ns	*1
CE2 Low Hold Time after Power-up	tc2LH	50		μs	
CE1 High Hold Time following CE2 High after Power-up	tснн	300	_	μs	
Input Transition Time (except for CLK)	tτ	1	25	ns	*2, *3

^{*1 :} Some data might be written into any address location if tonwx (Min) is not satisfied.

^{*2 :} Applicable when 4 M-bit and 8 M-bit Partial mode is set.

^{*2 :} Except for clock input transition time.

^{*3:} The Input Transition Time (t₁) at AC testing is 5 ns for Asynchronous operation and 3 ns for Synchronous operation respectively. If actual t₁ is longer than 5 ns or 3 ns specified as AC test condition, it may violate AC specification of some timing parameters. Refer to " (9) AC Test Conditions".

(9) AC Test Conditions

Description		Symbol	Test Setup	Value	Unit	Notes
Input High Level		Vян	_	V ₀₀ × 0.8	V	
Input Low Level		Vit	_	$V_{\rm DD} \times 0.2$	V	
Input Timing Measurement Level		VREF		V _{DD} × 0.5	V	
Input Transition Time	Async.		Between V⊾ and V⊪	5	กธ	
	Sync.	→ t τ		3	nş	

■ TIMING DIAGRAMS

(19) Address Latch Timing (Synchronous Mode) Case #2 Case #1 CLK Address Valid Valid lasvi, LAHV IVSCK tekyn tysck tekvit ADV totok CE1 Low Notes: • Case #1 is the timing when $\overline{CE}1$ is brought to Low after \overline{ADV} is brought to Low. Case #2 is the timing when ADV is brought to Low after CE1 is brought to Low. • tvp. is specified from the falling edge of either CE1 or ADV whichever comes late.

At least one valid clock edge must be input during ADV = L.

• tvscκ and tc.cκ are applied to the 1st valid clock edge during ADV=L.

- *1: The all address inputs must be High from Cycle #1 to #5.
- *2: The address key must confirm the format specified in "**EFUNCTIONAL DESCRIPTION**". If not, the operation and data are not guaranteed.
- *3: After top or the following Cycle #6, the Configuration Register Set is completed and returned to the normal operation. top and the are applicable to returning to asynchronous mode and to synchronous mode respectively.
- *4: Byte read or write is available in addition to Word read or write. At least one byte control signal (LB or UB) need to be Low.

- *1: The all address inputs must be High from Cycle #1 to #5.
- *2: The address key must confirm the format specified in "■FUNCTIONAL DESCRIPTION". If not, the operation and data are not guaranteed.
- *3: After the following Cycle #6, the Configuration Register Set is completed and returned to the normal operation.
- *4: Byte read or write is available in addition to Word read or write. At least one byte control signal (LB or UB) need to be Low.

■ BONDING PAD INFORMATION

Please contact local FUJITSU representative for pad layout and pad coordinate information.

■ ORDERING INFORMATION

Part Number	Shipping Form / Package	Remarks
MB82DBS02163C-70LWT	wafer	
MB82DBS02163C-70LPBT	71-ball plastic FBGA (BGA-71P-M03)	

■ PACKAGE DIMENSION

FUJITSU LIMITED

All Rights Reserved.

The contents of this document are subject to change without notice. Cusiomers are advised to consult with FUJITSU sales representatives before ordering.

The Information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose of reference to show examples of operations and uses of Fujitsu semiconductor device; Fujitsu does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporating the device based on such information, you must assume any responsibility arising out of such use of the information. Fujitsu assumes no liability for any damages whatsoever arising out of the use of the information.

Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of Fujitsu or any third party or does Fujitsu warrant non-infringement of any third-party's intellectual property right or other right by using such information. Fujitsu assumes no liability for any infringement of the intellectual property rights or other rights of third parties which would result from the use of Information contained herein.

The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high sufety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass (tansport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).

Please note that Fujitsu will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.

Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will be required for export of those products from Japan.

Edited Business Promotion Dept.

F0604

EXHIBIT F

