

Eric Fabris Marcelo Lubaszewski

O que é um FPGA?

- Flexibilidade
- Rápida prototipação
- Uso de tecnologias de ponta
- Baixo custo para baixa demanda

circuito integrado dedicado

ASIC

Como ligar os elementos programáveis?

Células Bit 0 SRAM Bit 1 Linhas de Seleção

- Exige memória externa
- Necessidade de grande área
- Reconfigurabilidade:
 - rápida
 - ilimitada
- Fabricação simples

Antifusível

- Circuito para queimar lógica
- Pequeno tamanho
- R e C baixos

Porta Flutuante

- Similar a EPROM
- Remoção de lógica com UV
- Reconfigurabilidade
- R e C maiores
- Fabricação mais complexa

Blocos Lógicos (1)

- Comumente chamados de CLBs
- Compostos basicamente por 3 sub-blocos
 - LUT (look-up table)
 - Registrador
 - Multiplexador

Blocos Lógicos (2): LUT

- Configura qualquer função lógica de 4 entradas
- Pode ser vista como um multiplexador
 - Endereços são os dados da programação (que porta é esta?)
 - Seleção é o sinal de entrada
- Alto custo de área para implementação
- Grande flexibilidade

Roteamento (1)

Roteamento (3)

Novos FPGAs

- Usam conjunto de blocos lógicos básicos
 - permitem redes locais de roteamento
 - alto desempenho
- Apresentam módulos com funcionalidade específica
 - memórias acesso simples e duplo, PLLs, multiplicadores, etc
 - maior eficiência em tarefas comuns
- Capacidades especiais
 - Reconfigurabilidade parcial (Xilinx)
- Agregação de IP Hard e Soft Cores

Altera Apex 20K (1)

- Interconexões locais
- Memória embutida distribuída pelo circuito
- Não possui reconfigurabilidade parcial

Altera Apex 20K (2)

- Estrutura locais (MegaLAB)
 - 10, 16 ou 24 LUTs
 - alto desempenho
- Menor uso do roteamento global

Métodos de Teste da Manufatura

Teste Funcional

VS

Teste Estrutural

- não otimizado
- não automatizado
- sem parâmetros para aplicação do teste

- sem modelo de falhas
- sem ferramentas

Métodos de Teste da Manufatura

Teste Estrutural do FPGA:

- Teste das Células de Base
- Teste das Interconexões
- Teste da Memória

Teste das Células de Base (1)

Para cada possível bloco é necessário:

- Gerar um modelo de falhas
- Gerar configurações de teste e vetores de teste
- Minimizar o número de configurações de teste

Número de configurações necessárias possui grande influência no custo do teste.

Teste das Células de Base (2)

Objetivo : Testar várias células de base simultaneamente.

- Gerar a seqüência de teste para células que não podem ser acessadas diretamente por entradas primárias.
- » Observar a saída dos CLBs nas saídas primárias do circuito.

Teste das Células de Base (2)

Objetivo : Testar várias células de base simultaneamente.

- Gerar a seqüência de teste para células que não podem ser acessadas diretamente por entradas primárias.
- » Observar a saída dos CLBs nas saídas primárias do circuito.

Teste das Células de Base (2)

Objetivo : Testar várias células de base simultaneamente.

- Gerar a seqüência de teste para células que não podem ser acessadas diretamente por entradas primárias.
- » Observar a saída dos CLBs nas saídas primárias do circuito.

Teste das Células de Base (2)

Objetivo : Testar várias células de base simultaneamente.

- Gerar a seqüência de teste para células que não podem ser acessadas diretamente por entradas primárias.
- » Observar a saída dos CLBs nas saídas primárias do circuito.

Teste das Células de Base (3)

Como testar uma célula de base?

Células de base são divididas em sub-elementos.

Para testar a CLB basta testar os sub-elementos.

Teste das Células de Base (4)

Como testar os sub-elementos ?

Testando a Look-up Table (1)

Modelo de falhas stuck-at

Testando a Look-up Table (2)

Teste com duas configurações

Seqüência de vetores para a 1ª configuração: 0011 0101 01 10 1 00

Falhas da lista de falhas detectadas :

1^a Configuração

Testando a Look-up Table (3)

Teste com duas configurações

Seqüência de vetores para a 2ª configuração: 0011 0101 01 10 11 00 0

Falhas da lista de falhas detectadas :

2ª Configuração

Testando a Look-up Table (4)

Para identificar todas as falhas de colagem em uma LUT basta configurá-la com duas funções complementares.

As LUTs são configuradas com a função XOR e NXOR para aumentar a controlabilidade e a observabilidade dos CLBs.

Testando o MUX (1)

O multiplexador: (modelo de falhas stuck-at)

para teste

Testando o MUX (2)

O numero de configurações necessárias é igual ao numero de entradas do mesmo.

Permite observar qualquer sinal de entrada. O sinal que será observado é determinado pela configuração do multiplexador.

Aplicando a todo CLB (1)

Configurações do CLB para teste da LUT

Configurações do CLB para teste do MUX e FF

Aplicando a todo CLB (2)

O número de configurações pode ser reduzido.

Configurações mínimas necessárias para teste da CLB.

Teste das Interconexões

Modelos de Falhas para Teste de Interconexões (1)

Line Open

Modelos de Falhas para Teste de Interconexões (2)

LinePair Short

Modelos de Falhas para Teste de Interconexões (3)

Permanentemente Conectados (pinos conectáveis)

Modelos de Falhas para Teste de Interconexões (4)

Permanentemente Conectados (pinos não conectáveis)

Modelos de Falhas para Teste de Interconexões (5)

Permanentemente Desconectados (pinos conectáveis)

Detecção de falhas nas interconexões (1)

1^a proposta:

3 Configurações

Configuração sem conexões

Configuração em N

Configuração em Z

Detecção de falhas nas interconexões (1)

Detecção de permanentemente conectados:

Se algum pino tiver valor lógico igual aos valores do vetor de entrada o pino está permanentemente conectado.

Detecção de falhas nas interconexões (1)

Detecção de linhas abertas e pinos permanentemente desconectados:

Se algum pino estiver com o valor diferente do valor de entrada existe uma falha na conexão ou no pino.

Detecção de falhas nas interconexões (1)

2ª proposta:

3 Configurações

Configuração Ortogonal

Configuração Diagonal 1

Configuração Diagonal 2

Detecção de falhas nas interconexões (1)

Configuração sem Conexões Apenas um sub-elemento de conexão é testado a cada vez.

Detecção de falhas nas interconexões (2)

Detecção de falhas nas interconexões (3)

Configuração Diagonal 1 Permite o teste de vários subelementos ao mesmo tempo

Detecção de falhas nas interconexões (4)

Configuração Diagonal 2 Permite o teste de vários subelementos ao mesmo tempo

Detecção de falhas nas interconexões (5)

Vetores de Teste – 2^a Proposta:

Utilizando as configurações de teste da segunda proposta apresentada, um array completo de mXm elementos de conexão pode ser conceitualmente considerado um barramento global.

É conhecido que um barramento de n bits pode ser testado para todos curtos e abertos com $\log_2(n)$ vetores.

Então, para cada configuração apresentada, precisamos de $log_2(2km)$ vetores de teste, resultando em um total de $3log_2(2km)$ vetores de teste, onde k é o número de bits de cada elemento de conexão.

Seminário de Tópicos Especiais em Sistemas Digitais

Teste de FPGAs

Marcelo Lubaszewski

