SEGUNDO EXAMEN PARCIAL (Práctica)

- 1. Considere el grupo abeliano ($\mathbb{Z}_8, +$).
 - (a) Determine el elemento neutro, los inversos de cada elemento del grupo, los elementos involutivos y los elementos idempotentes. (2 puntos)

Verano de 2010-11

Tiempo: 2 h. 30 m.

Total: 37 puntos

- (b) Calcule todos los subgrupos de $(\mathbb{Z}_8, +)$. (3 puntos)
- 2. En el conjunto $\mathbb{R} \times \mathbb{R}^*$ se define la operación \otimes como:

$$(a,b)\otimes(c,d)=(a+c-1,2bd)$$

Si se sabe que $(\mathbb{R} \times \mathbb{R}^*, \otimes)$ es grupo abeliano.

- (a) Determine la fórmula explícita de $(a, b)^{-1}$ (2 puntos)
- (b) Calcule el valor exacto de $(3,-1)^{-2}\otimes(1,2)^3$ (2 puntos)
- (c) Si $H = \{(1,t) / t \in \mathbb{R}^*\}$, pruebe que $(H, \otimes) < (\mathbb{R} \times \mathbb{R}^*, \otimes)$ (2 puntos)
- 3. Se
a $W\subset {\rm I\!R}^4$ el espacio solución del siguiente sistema lineal homogéneo:

$$\begin{cases} 3x_1 + 2x_2 + x_3 + 3x_4 &= 0\\ 2x_1 - x_2 + x_3 + 3x_4 &= 0\\ -x_1 + 4x_2 - x_3 - 3x_4 &= 0 \end{cases}$$

Encuentre una base para W y determine la dimension de W. (4 puntos)

- 4. Sea $p(x) = -2x^2 + 3x + 1$ un vector del espacio vectorial P_2 . Exprese a p como combinación lineal de los vectores $x^2 2x + 3$, $3x^2 x + 1$, -x + 2. (4 puntos)
- 5. Sea $\{u, v, w\}$ una base para el espacio vectorial V. Determine si el conjunto $\{v + 2w 2u, w + 2v + u, v + 3u w\}$ es o no, base de V. (4 puntos)
- 6. Considere el subespacio de P_3 dado por $H = \{ p \in P_3 \ / \ p''(1) = 0 \land p'(2) = 0 \}$. Determine una base de H y calcule su dimensión. (4 puntos)

7. Sea
$$W = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_{2 \times 2} : a + c - 2d = 0 \land 3a + 2c + d = 0 \right\}$$

- (a) Pruebe que W es subespacio vectorial de $M_{2\times 2}$. (4 puntos)
- (b) Determine una base de W y calcule su dimensión. (2 puntos)
- 8. Sean V algún espacio vectorial y $S = \{u_1, u_2, \dots, u_n\}$ un subconjunto de V, tal que S es linealmente independiente. Si $x \in V$, tal que $x \notin Gen(S)$, demuestre que el conjunto $H = \{x, u_1, u_2, \dots, u_n\}$ es, también, linealmente independiente. (4 puntos)