1、 加法器:

(1)首先在输入端输入两路直流信号(X和Y),用万用表测量输出结果,记入下表:

Χ	(mV)	10	50	100	200	400	600
Υ	(mV)	20	40	80	160	320	640
V - V/\/\		-0.234444	-0.634412	-1.284	-2.584	-5.184	-9.384

(2)在输入端输入两路交流信号,幅值固定 (X和Y),用示波器观察输出结果:

X (无相移)	0	0	0	0	0	0
Y (相位, 度)	10	30	60	90	120	150
X+Y(截图)	图 1	图 2	图 3	图 4	图 5	图 6

图表 110度

图表 2 30 度

图表 3 60 度

图表 490度

图表 5 120 度

图表 6 150 度

2、 积分器:

(1) 输入方波的频率和幅值固定,改变 RC 积分网络的值,观察结果的变化。(自己制表,最少 6 组数据)

R (k 欧姆)	30	300	3000	30	30	30
C (uF)	0.01	0.01	0.01	0.1	1	0.001
截图	图 7	图 8	图 9	图 10	图 11	图 12

图表 7

图表8

图表9

图表 10

图表 11

图表 12

(2) 电路参数确定的情况下,改变方波的频率和幅值,观察积分结果的 变化。(自己制表,最少 6 组数据)

频率 Hz │ 1k │ 10k │ 0.1k │ 1k │ 1k │ 1k	TK .	1k	1k	0.1k	10k	1k	一加率 67
--	------	----	----	------	-----	----	--------

幅值 V	2	2	2	20	200	0.2
截图	图 13	图 14	图 15	图 16	图 17	图 18

图表 13

图表 14

图表 15

图表 16

图表 17

图表 18