

What is Statistical Learning?

Statistical Learning (SL)

- SL is the brain's ability to detect and track statistical regularities in the environment.
- It is a continuous and implicit process as the environment is fluid and typically lacks stagnant boundaries.
- We employ SL across multiple cognitive domains including linguistic processing, visual processing, auditory processing, tactile processing and more.

Auditory Statistical Learning

- Auditory SL is how we acquire language.
- The brain begins to recognize statistical patterns in speech/auditory input.

Jenny Saffran, PhD

- In doing so, the brain can identify word boundaries with the use of transitional probabilities to extract words.
- Over time, the brain applies syntactic and semantic meaning to these words.
- Auditory SL has been demonstrated in infants and subserves how the human learns language (e.g., Saffran et al., 1996;1999).

Neuroimaging

Electroencephalography (EEG)

- EEG is a common and relatively cheap neuroimaging method used to study a variety of cognitive processes by measuring the neuronal activity at the cortex
- EEG has a high *temporal* resolution; this means it is particularly good at elucidating the timing of cognitive mechanisms.
- An example of this is through event related potentials (ERPs).
- ERPs are spikes in neural activity time locked to a stimulus.

Functional Magnetic Resonance Imaging (fMRI)

- fMRI makes use of the brain's hemodynamic response, called the blood oxygenation level dependent (BOLD) signal.
- fMRI has a high *spatial* resolution and is particularly good at identifying the function of a specific region of the brain.
- To extrapolate this information, researchers employ specific experimental paradigms to capture the BOLD signal, like blocked designs or slow-event designs.

What can Neuroimaging tell us About Statistical Learning?

- Neuroimaging allows us to understand the temporal and spatial dynamics of SL's representation in the brain.
- We know the important role that perceptual regions of the brain, i.e., superior temporal gyrus (STG) and inferior frontal gyrus (IFG), play in auditory SL (Karuza et al., 2013).

• However, despite SL being considered an implicit process, additional research has shown regions supporting attention and working memory are also involved in auditory SL (Sengupta et al., 2019).

What's left to learn?

What's left to learn?

- Little is known about the distributed patterns of activity in the brain *during* the actual process of learning of statistical patterns embedded within language.
- To test this, we can present participants with streams of sound that either contain statistical patterns or random sequences while in an MRI scanner.
- We can then conduct a specific analysis called a functional connectivity sliding window correlation. Which will allow us to identify the brain regions involved in auditory SL *during* the period of learning.

Questions?

Contact

- jdecke5@lsu.edu
- deckerwill7@gmail.com