ATIVIDADE: MMQ - APLICAÇÃO DE REGRESSÃO LINEAR

DISCIPLINA	METODOS NUMERICOS COMPUTACIONAIS - TURMA 48 - MM	
PROFESSOR	DEBORA VIRGILIA CANNE	
ALUNO	PAULO ROBERTO SOARES FILHO	

01 - Suponha que você é um analista de dados de uma empresa de comércio eletrônico que está estudando o comportamento de compra dos seus clientes. Você coletou dados de 20 clientes, medindo duas variáveis: o tempo que eles gastaram navegando no site (em minutos) e o valor total de suas compras (em reais). Você deseja descobrir se há uma relação linear entre essas duas variáveis e, em caso afirmativo, qual é a equação da linha que melhor se ajusta aos dados.

Usando o método de mínimos quadrados, determine a equação da reta de regressão linear que melhor descreve essa relação e interprete os resultados.

Dados:

- Tempo navegação = [5, 10, 12, 20, 22, 28, 35, 40, 45, 50, 55, 60, 70, 80, 85, 90, 95, 100, 110, 120]
- *Valor compra* = [30, 50, 60, 100, 110, 150, 190, 200, 240, 260, 290, 310, 360, 420, 440, 480, 500, 520, 560, 600]
- Exibir a reta de regressão.

O gráfico abaixo exibe:

Os pontos reais (azul). A reta de regressão (vermelha). E os valores previstos para 25, 75 e 105 minutos (verde).

Reta de Regressão Corrigida:

Inclinação (b): 5, 137

Intercepto (a): 2,729

A equação correta é: y = 2,729 + 5,137x

2. Analise o valor da correlação (r).

• O coeficiente de correlação de Pearson mede a intensidade e direção da relação linear entre as variáveis:

Há uma forte correlação positiva quase perfeita entre o tempo de navegação e o valor da compra. Quanto mais tempo no site, maior tende a ser o valor da compra.

3. Faça alguns testes de previsão.

Para 25 minutos de navegação: y = 2,729 + 5,137 * 25 = R\$131,16

Para 75 minutos de navegação: y = 2,729 + 5,137 * 75 = R\$388,03

Para 105 minutos de navegação: y = 2,729 + 5,137 * 105 = R\$542,15

02 - Suponha que você tenha uma balança e queira calibrá-la para que ela possa ser usada com precisão em experimentos futuros. Para fazer isso, você pode usar MMQ para encontrar a relação entre os pesos reais e os valores medidos pela balança.

Aqui está um exemplo de tabela de valores

PESO (G)	VALOR MEDIDO (G)
50	50,1
100	100,3

PESO (G)	VALOR MEDIDO (G)
150	150,6
200	201,1
250	251,2
300	302,5

Nesse problema, o peso real é a variável independente, enquanto o valor medido é a variável dependente. Para aplicar MMQ, você precisa encontrar a equação da reta que melhor descreve a relação entre essas duas variáveis. Faça uma análise do resultado. Testar outros valores para previsão.

Reta de regressão (medido = a + b * pesoReal):

Inclinação (b): 1,007

Intercepto (a): -0, 146

Equação da reta: Valor Medido = -0, 146 + 1,007 * pesoReal

Análise:

A inclinação próxima de 1 mostra que a balança está bem calibrada.

O intercepto é muito próximo de 0, o que é ideal.

Pequena tendência de superestimar o peso em aproximadamente 0,7%.

• Previsão com a equação:

Para um peso de 180g: -0, 146 + 1, 007 * 180 aproximadamente 181, 11g

Para um peso de 350g: -0, 146 + 1, 007 * 350 aproximadamente 352, 3g