11

12

WHAT IS CLAIMED IS:

1	1. A method for preparing multicrystalline substrates as handling wafers for
2	subsequent bonding to device layer materials, the method comprising the steps of:
3	providing an initial multicrystalline substrate;
4	polishing the multicrystalline substrate to reduce surface roughness to
5	about 5 nm;
6	forming a filler layer overlying the face of the substrate to a predetermined
7	thickness, the filler layer comprising a surface that is substantially free from
8	indications of the multicrystalline arrangement; and
9	further polishing the surface of the filler layer to form a substantially
10	smooth upper surface on the substrate,

wherein the substantially smooth upper surface is characterized by a

1 2. The method of claim 1, wherein the initial substrate is selected from a

surface roughness of twenty Angstroms or less.

- 2 polycrystalline silicon wafer, a glass substrate, a ceramic substrate, an organic film, a
- 3 metal substrate, and an amorphous wafer.
- The method of claim 1, wherein the initial substrate has a typical crystalline
 dimension of about 0.5 to 10 millimeters in size.
 - The method of claim 1, wherein the filler layer is selected from a CVD oxide, and
 a polycrystalline silicon.
 - 1 5. The method of claim 1, wherein the filler layer is removed to a thickness of one
 - 2 half or more of the predetermined thickness.
 - 1 6. The method of claim 1, wherein the filler layer is a polycrystalline silicon, the
- $2 \quad \ \ polycrystalline being formed using a low pressure chemical deposition technique.$
- 1 7. The method of claim 1, wherein the filler layer is chosen from the group
- 2 consisting of an insulating layer andor a composite layer.
- 1 8. The method of claim 1, wherein the surface roughness is five Angstroms or less.

1	9.	The method of claim 1, wherein the filler layer is made by a chemical deposition	
2	process or a sputtering process.		
1	10.	The method of claim 1, wherein the substrate is a ground substrate or unpolished	
2	substr	ate.	
1	11.	The method of claim 1, wherein the polishing process is a chemical mechanical	
2	polish	ing technique comprising:	
3		applying a mechanical fine-grinding step;	
4		applying a rough polishing step using a weakly alkaline slurry;	
5		changing the composition of the slurry by feeding a neutral polishing	
6	slurry	to the polishing pad and gradually reducing supply of rough polishing slurry; and	
7		wherein surface roughness after polishing is 0.5 nm or less.	
1	12.	The method of claim 1, wherein the polishing process is a chemical mechanical	
2	polishing comprising:		
3		applying a mechanical fine-grinding step;	
4		applying a rough polishing step using a weakly alkaline slurry;	
5		adding TMAH to the slurry to adjust the alkalinity of the slurry for	
6	increa	sed removal rates while maintaining material removal rates relatively constant	
7	between various grain regions of the substrate; and		
8		effecting a controlled transition to a second slurry composition to obtain	
9	micro	scopically smooth surfaces;	
10		wherein surface roughness after polishing is 0.5 nm or less.	
1	13.	The method of claim 1, wherein the polishing process is a double-sided chemical	
2	mecha	nical polishing technique comprising:	
3		applying a mechanical fine-grinding step;	
4		applying a rough polishing step using a weakly alkaline slurry;	
5		changing the composition of the slurry by feeding a neutral polishing	
6	slurry to the polishing pad and gradually reducing supply of rough polishing slurry; and		
7		wherein surface roughness after polishing is twenty Angstroms or less.	

1	14. The method of claim 1, wherein the polishing process is a double-sided chemical			
2	mechanical polishing technique in which polishing is done on a double-sided polishing			
3	machine to polish front and back sides of the substrate simultaneously, comprising:			
4	applying a mechanical fine-grinding step;			
5	applying a rough polishing step using a weakly alkaline slurry;			
6	adding TMAH to the slurry to adjust the alkalinity of the slurry for			
7	increased removal rates while maintaining material removal rates relatively constant			
8	between various grain regions of the substrate;			
9	effecting a controlled transition to a second slurry composition to obtain			
10	microscopically smooth surfaces;			
11	wherein the front and back side each achieve a flatness of 0.5 micron or			
12	less; and			
13	the front side achieves a roughness of 0.5 nm or less.			
1	15. Electronic devices made from bonded assemblies prepared using the method of			
2	claim 1.			
1	16. Micro-Electro-Mechanical Structures (MEMS) made from bonded assemblies			
2	prepared using the method of claim 1.			
1	17. Micro-Opto-Electro-Mechanical Structures (MOEMS) made from bonded			
2	assemblies prepared using the method of claim 1.			
1	18. A method for polishing substrates, the method comprising steps of:			
2	applying a rough polishing step using a weakly alkaline slurry;			
3	changing the composition of the slurry by feeding a neutral polishing			
4	slurry to the polishing pad and gradually reducing supply of rough polishing slurry; and			
5	wherein surface roughness after polishing is 0.5 nm or less.			
1	19. The method of claim 18, wherein the polishing is performed on a double-sided			
2	polishing machine to polish front and back sides of said substrate simultaneously.			
1	20. Electronic devices made from bonded assemblies prepared using the method of			
2	claim 18.			

6

7

8

- 1 21. Micro-Electro-Mechanical Structures (MEMS) made from bonded assemblies 2 prepared using the method of claim 18. 1 22. Micro-Opto-Electro-Mechanical Structures (MOEMS) made from bonded 2 assemblies prepared using the method of claim 18. 1 23. A method for detection of hidden bonding flaws in multiple bonded wafers, the 2 method comprising steps of: 3 transmitting infrared radiation through a first side of a multiple bonded 4 wafer sample; 5 receiving the scattered infrared radiation exiting from a second side of said
 - sample, said second said being opposite from said first side; and
 converting said received radiation into an electronic signal in which
 defects appear as local maxima of said signal.