Recursive functions

Michael Nowak

Texas A&M University

Overview

Basics of recursion

Writing a recursive function

Recursive functions and the call stack Factorial Fibonacci

Recursion vs. iteration

References

Overview

Basics of recursion

Writing a recursive function

Recursive functions and the call stack Factorial Fibonacci

Recursion vs. iteration

References

► In mathematics, a recursive function is a function that is defined in terms of itself

- ► In mathematics, a recursive function is a function that is defined in terms of itself
- From our function basics lecture, we introduced the factorial function

$$n! = \prod_{i=1}^{n} i$$

- ▶ In mathematics, a recursive function is a function that is defined in terms of itself
- From our function basics lecture, we introduced the factorial function

$$n! = \prod_{i=1}^{n} i$$

► This definition assumes that we know how to make the multiplication happen repeatedly

- ► In mathematics, a recursive function is a function that is defined in terms of itself
- From our function basics lecture, we introduced the factorial function

$$n! = \prod_{i=1}^{n} i$$

- ► This definition assumes that we know how to make the multiplication happen repeatedly
- We can make the repetitive multiplication more explicit by writing the definition of this function using recursion

$$n! = egin{cases} 1 & ext{if } n < 2, \\ n imes (n-1)! & ext{otherwise} \end{cases}$$

- ► In mathematics, a recursive function is a function that is defined in terms of itself
- From our function basics lecture, we introduced the factorial function

$$n! = \prod_{i=1}^{n} i$$

- ► This definition assumes that we know how to make the multiplication happen repeatedly
- We can make the repetitive multiplication more explicit by writing the definition of this function using recursion

$$n! = egin{cases} 1 & ext{if } n < 2, \\ n imes (n-1)! & ext{otherwise} \end{cases}$$

 Using this definition, we are defining factorial in terms of factorial

$$n! = egin{cases} 1 & \text{if } n < 2, \\ n \times (n-1)! & \text{otherwise} \end{cases}$$

▶ It is apparent in our recursive definition of factorial that there are two cases:

$$n! = \begin{cases} 1 & \text{if } n < 2, \\ n \times (n-1)! & \text{otherwise} \end{cases}$$

▶ In the case where n < 2, factorial evaluates to 1; this is the base case

$$n! = \begin{cases} 1 & \text{if } n < 2, \\ n \times (n-1)! & \text{otherwise} \end{cases}$$

- ▶ In the case where *n* < 2, factorial evaluates to 1; this is the base case
 - ► All recursive functions need a base case

$$n! = \begin{cases} 1 & \text{if } n < 2, \\ n \times (n-1)! & \text{otherwise} \end{cases}$$

- ▶ In the case where *n* < 2, factorial evaluates to 1; this is the base case
 - ► All recursive functions need a base case
 - The defining attribute of the base case is that it is not recursive

$$n! = \begin{cases} 1 & \text{if } n < 2, \\ n \times (n-1)! & \text{otherwise} \end{cases}$$

- ▶ In the case where *n* < 2, factorial evaluates to 1; this is the base case
 - All recursive functions need a base case
 - The defining attribute of the base case is that it is not recursive
 - ▶ Without a base case, you'd get infinite recursion

$$n! = \begin{cases} 1 & \text{if } n < 2, \\ n \times (n-1)! & \text{otherwise} \end{cases}$$

- ▶ In the case where *n* < 2, factorial evaluates to 1; this is the base case
 - All recursive functions need a base case
 - The defining attribute of the base case is that it is not recursive
 - ▶ Without a base case, you'd get infinite recursion
- ► The other necessary case is the recursive case

$$n! = \begin{cases} 1 & \text{if } n < 2, \\ n \times (n-1)! & \text{otherwise} \end{cases}$$

- ▶ In the case where *n* < 2, factorial evaluates to 1; this is the base case
 - All recursive functions need a base case
 - The defining attribute of the base case is that it is not recursive
 - ▶ Without a base case, you'd get infinite recursion
- ▶ The other necessary case is the recursive case
 - ► The recursive call is made with a value that moves the recursive function towards its base case

$$n! = egin{cases} 1 & ext{if } n < 2, \\ n imes (n-1)! & ext{otherwise} \end{cases}$$

- ▶ In the case where *n* < 2, factorial evaluates to 1; this is the base case
 - All recursive functions need a base case
 - The defining attribute of the base case is that it is not recursive
 - ▶ Without a base case, you'd get infinite recursion
- ► The other necessary case is the recursive case
 - ► The recursive call is made with a value that moves the recursive function towards its base case
 - ▶ In this case, we define n! as (n-1)!

Using our recursive definition of factorial, we would solve 5! as:

► Using our recursive definition of factorial, we would solve 5! as:

▶ That is, $5! = 5 \times 4 \times 3 \times 2 \times 1 = 120$

Overview

Basics of recursion

Writing a recursive function

Recursive functions and the call stack Factorial Fibonacci

Recursion vs. iteration

References

► In the function basics lecture, we wrote an iterative solution for

$$n! = \prod_{i=1}^{n} i$$

as

► In the function basics lecture, we wrote an iterative solution for

$$n! = \prod_{i=1}^{n} i$$

```
as
  int fact(int val)
  {
    int res = 1;
    while(val > 1) {
       res *= val;
       val -= 1;
    }
    return res;
}
```

► We would now like to write a recursive function that calculates the factorial of a number

- ► We would now like to write a recursive function that calculates the factorial of a number
- ► The recursive definition gives us some insight as to how we should go about this:

$$n! = \begin{cases} 1 & \text{if } n < 2, \\ n \times (n-1)! & \text{otherwise} \end{cases}$$

- ► We would now like to write a recursive function that calculates the factorial of a number
- ► The recursive definition gives us some insight as to how we should go about this:

$$n! = \begin{cases} 1 & \text{if } n < 2, \\ n \times (n-1)! & \text{otherwise} \end{cases}$$

Our recursive function fact requires:

- ► We would now like to write a recursive function that calculates the factorial of a number
- ► The recursive definition gives us some insight as to how we should go about this:

$$n! = \begin{cases} 1 & \text{if } n < 2, \\ n \times (n-1)! & \text{otherwise} \end{cases}$$

- Our recursive function fact requires:
 - One integer parameter, n, whose argument we will calculate the factorial for

- ► We would now like to write a recursive function that calculates the factorial of a number
- ► The recursive definition gives us some insight as to how we should go about this:

$$n! = egin{cases} 1 & \text{if } n < 2, \\ n \times (n-1)! & \text{otherwise} \end{cases}$$

- Our recursive function fact requires:
 - One integer parameter, n, whose argument we will calculate the factorial for
 - ▶ A base case, such that when n < 2 we return 1

- ► We would now like to write a recursive function that calculates the factorial of a number
- ► The recursive definition gives us some insight as to how we should go about this:

$$n! = \begin{cases} 1 & \text{if } n < 2, \\ n \times (n-1)! & \text{otherwise} \end{cases}$$

- Our recursive function fact requires:
 - One integer parameter, n, whose argument we will calculate the factorial for
 - ▶ A base case, such that when n < 2 we return 1
 - ▶ A recursive case, that moves towards the base case, such that when $n \ge 2$ we return n*fact(n-1)

- Our recursive function fact requires:
 - ► One integer parameter, n, whose argument we will calculate the factorial for
 - ▶ A base case, such that when n < 2 we return return 1
 - A recursive case, that moves towards the base case, such that when n ≥ 2 we return n*fact(n-1)

- Our recursive function fact requires:
 - ► One integer parameter, n, whose argument we will calculate the factorial for
 - ▶ A base case, such that when n < 2 we return return 1
 - ▶ A recursive case, that moves towards the base case, such that when $n \ge 2$ we return n*fact(n-1)
- ► From these requirements, we can easily write our recursive function as:

- ► Our recursive function fact requires:
 - ► One integer parameter, n, whose argument we will calculate the factorial for
 - ▶ A base case, such that when n < 2 we return return 1
 - A recursive case, that moves towards the base case, such that when $n \ge 2$ we return n*fact(n-1)
- ► From these requirements, we can easily write our recursive function as:

```
int fact(int n)
{
    if(n < 2)
        return 1;
    else
        return n*fact(n-1);
}</pre>
```

- ▶ When writing a recursive function, we must always write:
 - ► One or more base cases that prompt our function to return without further recursion
 - One or more recursive cases that moves us closer towards meeting the base case(s)

Overview

Basics of recursion

Writing a recursive function

Recursive functions and the call stack Factorial Fibonacci

Recursion vs. iteration

References

Overview

Basics of recursion

Writing a recursive function

Recursive functions and the call stack Factorial

Fibonacci

Recursion vs. iteration

References

Recursive functions and the call stack: factorial

- ► Let's consider the state of the call stack as our program uses our recursive function fact to solve 5!
- ► Our program starts from main(), so a stack frame (activation record) for main() is pushed to the stack
 - Assume that main has two local variables, int val and int fval storing the value to calculate the factorial of and the return value of fact(val) respectively

Recursive functions and the call stack: factorial

- Let's assume that our recursive function fact is called from main with the argument 3
- This prompts a stack frame for fact(3) to be pushed to the stack
- ► fact(3) stores its argument 3 in the local variable n in its stack frame
- ► Execution has been transfered from main() to fact(3)

Recursive functions and the call stack: factorial

- As n ≥ 2, we will execute the recursive case of the fact function, return n*fact(2); fact(2) must be evaluated before the expression in the return statement can be evaluated
- ► A stack frame for fact(2) is thus pushed to the stack and execution is transfered to fact(2)
- ► fact(2) stores its argument 2 in the local variable n in its stack frame

- As n ≥ 2, we will execute the recursive case of the fact function, return n*fact(1); fact(1) must be evaluated before the expression in the return statement can be evaluated
- A stack frame for fact(1) is thus pushed to the stack and execution is transfered to fact(1)
- ► fact(1) stores its argument 1 in the local variable n in its stack frame

- As n < 2, we have finally arrived at the base case of the fact function, return 1; this statement is evaluated immediately
- ► fact(1) returns the value 1 to its caller, fact(2)

- When fact(1) returns the value 1, its stack frame is popped from the stack
- Execution picks back up where things left off in fact(2) at the return n*fact(1) statement
- ► The return value of fact(1) is used in place of fact(1) call and fact(2) returns the product of 2*1 (2) to its caller, fact(3)

- When fact(2) returns the value 2, its stack frame is popped from the stack
- Execution picks back up where things left off in fact(3) at the return n*fact(2) statement
- ➤ The return value of fact(2) is used in place of fact(2) call and fact(3) returns the product of 3*2 (6) to its caller, main()

► When fact(3) returns the value 6, its stack frame is popped from the stack and our calculation of 3! using our recursive function is complete

▶ Instead of illustrating this using a vertical stack, we will draw things using a tree structure, where each new stack frame is presented below the one that called it

- ▶ Instead of illustrating this using a vertical stack, we will draw things using a tree structure, where each new stack frame is presented below the one that called it
- ▶ In our tree representation, black boxes will be used to represent stack frames, straight red arrows depicting function calls, and curved blue arrows with values denoting return values

- Perhaps the following diagram will help detail better what's going on and where
 - ► The blue, red, and green circles represent the function call to fact(1), fact(2), and fact(3) respectively
 - ► The blue, red, and green rectangles represent the expressions evaluated in fact(1), fact(2), and fact(3) respectively
 - ► The blue, red, and green curved lines detail the return value of the expressions evaluated in fact(1), fact(2), and fact(3) respectively

Overview

Basics of recursion

Writing a recursive function

Recursive functions and the call stack

Factorial

Fibonacci

Recursion vs. iteration

References

► Our recursive function fact() included one recursive call

- ► Our recursive function fact() included one recursive call
- ► Let's consider the Fibonacci numbers, a sequence of numbers where each number is defined as the sum of the previous two:

$$\mathit{fib}(n) = egin{cases} 1 & \text{if } n < 3, \\ \mathit{fib}(n-1) + \mathit{fib}(n-2) & \textit{otherwise} \end{cases}$$

- ► Our recursive function fact() included one recursive call
- ▶ Let's consider the Fibonacci numbers, a sequence of numbers where each number is defined as the sum of the previous two:

$$fib(n) = \begin{cases} 1 & \text{if } n < 3, \\ fib(n-1) + fib(n-2) & \text{otherwise} \end{cases}$$

•
$$fib(1) = 1$$

- ▶ Our recursive function fact() included one recursive call
- ► Let's consider the Fibonacci numbers, a sequence of numbers where each number is defined as the sum of the previous two:

$$fib(n) = \begin{cases} 1 & \text{if } n < 3, \\ fib(n-1) + fib(n-2) & \text{otherwise} \end{cases}$$

- fib(1) = 1• fib(2) = 1

- ► Our recursive function fact() included one recursive call
- ► Let's consider the Fibonacci numbers, a sequence of numbers where each number is defined as the sum of the previous two:

$$fib(n) = \begin{cases} 1 & \text{if } n < 3, \\ fib(n-1) + fib(n-2) & \text{otherwise} \end{cases}$$

- fib(1) = 1
- fib(2) = 1
- fib(3) = fib(2) + fib(1)

- ► Our recursive function fact() included one recursive call
- ► Let's consider the Fibonacci numbers, a sequence of numbers where each number is defined as the sum of the previous two:

$$fib(n) = \begin{cases} 1 & \text{if } n < 3, \\ fib(n-1) + fib(n-2) & \text{otherwise} \end{cases}$$

- fib(1) = 1
- fib(2) = 1
- fib(3) = fib(2) + fib(1)
- fib(4) = fib(3) + fib(2)

- ► Our recursive function fact() included one recursive call
- ► Let's consider the Fibonacci numbers, a sequence of numbers where each number is defined as the sum of the previous two:

$$fib(n) = egin{cases} 1 & \text{if } n < 3, \\ fib(n-1) + fib(n-2) & \text{otherwise} \end{cases}$$

- fib(1) = 1
- fib(2) = 1
- fib(3) = fib(2) + fib(1)
- fib(4) = fib(3) + fib(2)
- ▶ etc.

► We can write the a function that calculates the value of the *n*th Fibonacci number recursively as:

► We can write the a function that calculates the value of the *n*th Fibonacci number recursively as:

```
int fib(int n)
{
    if(n < 3)
        return 1;
    else
        return fib(n-1)+fib(n-2);
}</pre>
```

► Let's consider a call to our recursive function fib() that calculates the value of the 4th Fibonacci number

- ► Let's consider a call to our recursive function fib() that calculates the value of the 4th Fibonacci number
- ▶ Instead of illustrating this using a vertical stack, we will draw things using a tree structure, where each new stack frame is presented below the one that called it

- ► Let's consider a call to our recursive function fib() that calculates the value of the 4th Fibonacci number
- ▶ Instead of illustrating this using a vertical stack, we will draw things using a tree structure, where each new stack frame is presented below the one that called it
- ► In our tree representation, black boxes will be used to represent stack frames, straight red arrows depicting function calls, and curved blue arrows with values denoting return values

- ► Let's consider a call to our recursive function fib() that calculates the value of the 4th Fibonacci number
- ▶ Instead of illustrating this using a vertical stack, we will draw things using a tree structure, where each new stack frame is presented below the one that called it
- ► In our tree representation, black boxes will be used to represent stack frames, straight red arrows depicting function calls, and curved blue arrows with values denoting return values
- ▶ We will assume function calls are processed from left to right; in C++ the order of such evaluation is up to the implementation (undefined)

Overview

Basics of recursion

Writing a recursive function

Recursive functions and the call stack Factorial Fibonacci

Recursion vs. iteration

References

► Factorial and the Fibonacci sequence are common examples of recursion

- Factorial and the Fibonacci sequence are common examples of recursion
 - ► You can fairly easily write an iterative solution for calculating n! (we already did this!) or the nth Fibonacci number (why not try at home?)

- Factorial and the Fibonacci sequence are common examples of recursion
 - ► You can fairly easily write an iterative solution for calculating n! (we already did this!) or the nth Fibonacci number (why not try at home?)
- ▶ In general, anything solved recursively has an iterative solution

- Factorial and the Fibonacci sequence are common examples of recursion
 - ► You can fairly easily write an iterative solution for calculating n! (we already did this!) or the nth Fibonacci number (why not try at home?)
- ▶ In general, anything solved recursively has an iterative solution
 - ► Sometimes the iterative version is more efficient, other times it is not

- Factorial and the Fibonacci sequence are common examples of recursion
 - ► You can fairly easily write an iterative solution for calculating n! (we already did this!) or the nth Fibonacci number (why not try at home?)
- ▶ In general, anything solved recursively has an iterative solution
 - Sometimes the iterative version is more efficient, other times it is not
 - ► In some problems, a recursive solution maybe shorter to write and/or more elegant in nature; this may not be the case for other problems

Overview

Basics of recursion

Writing a recursive function

Recursive functions and the call stack Factorial Fibonacci

Recursion vs. iteration

References

References

- ▶ Lewis, M. C. (2015). *Introduction to the art of programming using Scala*. CRC Press.
- ► Lippman, B., Lajoie, Josee, & Moo, B. E. (2016). *C++* primer (5th ed.). Addison-Wesley.
- ► Stroustrup, B. (2014). *Programming: principles and practice using C++* (2nd ed.). Addison-Wesley.