Capacités attendues :

☐ Calculer une fonction dérivée, calculer des limites. Dresser un tableau de variation.

□ Dans le cadre de la résolution de problème, utiliser le calcul des limites, l'allure des courbes représentatives des fonctions inverse, carré, cube, racine carrée, exponentielle.

 \square Exploiter le tableau de variation pour déterminer le nombre de solutions d'une équation du type f(x) = k, pour résoudre une inéquation du type $f(x) \le k$.

 $oldsymbol{\Box}$ Déterminer des valeurs approchées, un encadrement d'une solution d'une équation du type f(x)=k.

Dérivation

Exercice 1

Pour chaque fonction, donner sa dérivée.

1. f définie sur **R** par $f(x) = 3x^2 + 2x - 5$. **3.**

2. g définie sur]0; $+\infty[$ par $g(x)=\frac{1}{x}+\sqrt{x}.$

Exercice 2

f est une fonction dérivable sur $[-5\ ;\ 6]$. Sa courbe représentative \mathcal{C}_f est donnée dans le repère ci-contre.

Lire graphiquement le signe de f'(x) suivant les valeurs de x.

Exercice 3

Pour chaque fonction, donner sa dérivée.

1. f définie sur]0; $+\infty[$ par $f(x) = (3x-4)\sqrt{x}$. **3.** h définie sur **R** par $h(x) = (1-2x)^4$.

2. g définie sur \mathbf{R} par $g(x)=\frac{3x-1}{x^2+1}$.

4. k définie sur $\left]-\frac{1}{2}\ ;\ +\infty\right[$ par $k(x)=\sqrt{2x+1}$.

Exercice 4

f est la fonction définie sur $]0\ ;\ +\infty[$ par $f(x)=x+rac{9}{x}.$

1. Déterminer la fonction dérivée de f.

2. Étudier le signe de f'(x) sur]0; $+\infty[$.

3. En déduire les variations de la fonction f sur $]0\;;\;+\infty[.$

Fonction exponentielle

Exercice 5

Simplifier au maximum les expressions suivantes.

$${} \cdot \ A = e^5 \times e^3 \times e^{-4}$$

$$\cdot \ B = \frac{e^{-3} \times e^8}{e^3}$$

$$\cdot C = \frac{e}{e^5}$$

Exercice 6

x est un réel quelconque. Simplifier au maximum les expressions suivantes.

•
$$a(x) = e^{2x} \times (e^x)^2 \times e^{-3x}$$

$$b(x) = \frac{e^{x^2}}{e^x}$$

$$\cdot c(x) = \frac{e^{x-1} \times e^{4x}}{e^x}$$

Exercice 7

Dans chaque cas, déterminer la fonction dérivée de la fonction définie sur R par :

1.
$$f(x) = e^x + x^3$$

3.
$$h(x) = (3x^2 + 4)(1 - e^x)$$
 5. $l(x) = e^{2x-1}$

5.
$$l(x) = e^{2x-1}$$

2.
$$g(x) = (5x - 8)e^x$$

4.
$$k(x) = \frac{2 - e^x}{e^x}$$

6.
$$m(x) = 2xe^{-x}$$

Exercice 8

Résoudre les équations suivantes dans R.

1.
$$e^{3x+4} = e^{2x-1}$$

3.
$$e^{x^2+x}=1$$

2.
$$e^{x-4} = e^{-x}$$

4.
$$e^{-x^2} = \frac{1}{e}$$

5.
$$3 + e^x = 1$$

6.
$$(3x+1)e^x = 0$$

Exercice 9

On a tracé la représentation graphique d'une fonction fdéfinie sur **R**. On sait qu'il existe deux réels a et b tels que pour tout $x \in \mathbf{R}$, $f(x) = (ax + b)e^x$.

- **1.** Déterminer graphiquement f(0) et f(2).
- **2.** En déduire la valeur des réels a et b.

Exercice 10

Résoudre les inéquations suivantes dans R.

1.
$$e^{x+1} < e^4$$

3.
$$e^{x+1} < 1$$

5.
$$e^{-2x+5} \geqslant 0$$

2.
$$e^{-2x+1} \geqslant e^{x-7}$$

4.
$$-3e^{x^2-4} > 4$$

6.
$$e^{x+4} \leqslant \frac{1}{e^{3x}}$$

Fonction exponentielle - Démonstrations de cours

Exercice 11 Démontrer qu'une expression ne s'annule pas

On admet qu'il existe une fonction f définie et dérivable sur \mathbf{R} qui vérifie f(0)=1 et f'(x)=f(x) pour tout $x\in\mathbf{R}$.

On note g la fonction définie sur **R** par $g(x) = f(x) \times f(-x)$.

- **1.** Calculer g(0).
- 2. Montrer que g est dérivable sur \mathbf{R} et que pour tout $x \in \mathbf{R}, g'(x) = 0$.
- 3. Que peut-on en déduire concernant la fonction g?
- 4. Donner l'expression de g(x) pour tout réel x en utilisant les résultats des questions 1 et 3.
- **5.** En utilisant la définition de la fonction g, montrer que, pour tout $x \in \mathbf{R}, f(x) \neq 0$.
- **6. Bilan :** Que peut-on dire d'une fonction f définie et dérivable sur R qui vérifie : f(0) = 1 et f' = f.

Exercice 12 Démontrer qu'une fonction est unique

On considère une fonction f définie et dérivable sur \mathbf{R} qui vérifie f(0)=1 et f'(x)=f(x) pour tout $x \in \mathbf{R}$.

On suppose qu'il existe une deuxième fonction g qui vérifie cette relation : g(0) = 1 et g'(x) = g(x) pour tout $x \in \mathbb{R}$.

On définit également la fonction h sur \mathbf{R} par $h(x) = \frac{g(x)}{f(x)}$.

- 1. Justifier que h est bien définie.
- 2. Justifier que h est dérivable sur $\mathbf R$ et déterminer sa fonction dérivée.
- **3.** En déduire l'expression de h(x) pour tout réel x.
- 4. Que peut-on alors en déduire pour les fonctions f et g.
- 5. Bilan: Énoncer la propriété que l'on vient démontrer pour une fonction f définie et dérivable sur R et qui vérifie f(0) = 1 et f' = f.

3

Exercice 13

On souhaite démontrer que, pour tous réels x et y, $e^{x-y} = \frac{e^x}{e^y}$.

- 1. Écrire $\frac{e^x}{e^y}$ sous la forme d'un produit.
- 2. Sachant que $e^x \times e^y = e^{x+y}$ et $e^{-x} = \frac{1}{e^x}$, démontrer la proposition énoncée.

Limite d'une fonction

Exercice 14 Conjecturer la limite d'une fonction en l'infini

Soient f la fonction définie sur $\mathbf R$ par : $f(x) = (x+2)e^{-x} + 1$ et (d) la droite d'équation y=1.

- **1.** \blacksquare Tracer sur la calculatrice la courbe représentative de la fonction f et la droite (d) pour $x \in [-3; 3]$ et $y \in [-3; 4]$. Que peut-on conjecturer pour les limites de f en $+\infty$ et $-\infty$?
- **2.** Que représente la droite (d) pour la courbe C_f en $+\infty$?
- 3. P On donne le script Python suivant :
 - **a.** La fonction abs revoie la **valeur absolue** du nombre qui est donné en paramètre.

Que renvoit dist(a)?

b. En exécutant le script, on obtient que dist(10**(-3)) renvoit 10 et que dist(10**(-6)) renvoit 17.

Qu'est-ce que cela signifie?

Python

```
from math import *
def f(x) :
    return (x+2)*exp(-x)+1

def dist(a) :
    x = 1
    while abs(f(x)-1) >= a :
        x = x+1
    return x
```

Exercice 15 Conjecturer la limite d'une fonction en un point

Soit f la fonction définie sur $\mathbf{R} \setminus \{2\}$ par $f(x) = \frac{0,5x^2 - 1,5x + 2}{x - 2}$.

1. \blacksquare Tracer sur la calculatrice C_f , la courbe représentative de f, dans la fenêtre $x \in [-1; 5]$ et $y \in [-5; 2]$.

Que peut-on conjecturer pour les limites de la fonction f lorsque x tend vers 2, en valeurs supérieures et en valeurs inférieures?

Peut-on conjecturer qu'il existe une limite de la fonction f en 2?

2. Tracer sur le même graphique la droite (d) d'équation x=2. Que représente la droite (d) pour la courbe \mathcal{C}_f en 2?

Exercice 16 Conjecturer la limite d'une fonction en un point

Soit g la fonction définie sur \mathbf{R}^* par : $g(x) = \frac{e^x - 1}{x}$.

- **1.** \blacksquare Tracer sur la calculatrice C_g , la courbe représentative de g, dans la fenêtre $x \in [-4; 4]$ et $y \in [-1; 5]$.
- 2. La fonction g est-elle définie en 0? Semble-t-elle admettre une limite finie en 0? Si oui, laquelle?

On donne ci-dessous la courbe \mathcal{C}_f représentant une fonction f. Dans chaque cas, choisir la ou les bonne(s) réponse(s).

1. La courbe \mathcal{C}_f admet une assymptote verticale d'équation :

b.
$$y = -2$$

c.
$$x = 1$$

d.
$$y = 1$$

2. La courbe \mathcal{C}_f admet une assymptote horizontale d'équation :

b.
$$y = -2$$

$$r = 1$$

d.
$$u = 1$$

3. D'après la courbe \mathcal{C}_f on peut dire :

b.
$$\lim_{x \to -\infty} f(x) = 1$$

$$c. \lim_{\substack{x \to 1 \\ x > 1}} f(x) = +\infty$$

$$\text{a.} \lim_{x \to +\infty} f(x) = -2 \qquad \qquad \text{b.} \lim_{x \to -\infty} f(x) = 1 \qquad \qquad \text{c.} \lim_{\substack{x \to 1 \\ x > 1}} f(x) = +\infty \qquad \qquad \text{d.} \lim_{\substack{x \to 1 \\ x < 1}} f(x) = +\infty$$

<u>-</u>2 -<u>1</u>0

Opérations sur les limites

Exercice 18

Soit g la fonction définie sur **R** par $g(x) = \frac{2x^2 + 3}{4x^2 + 1}$.

- 1. \blacksquare Tracer sur la calculatrice la courbe représentative de la fonction g. Que peut-on conjecturer sur les limites de la fonction f en $+\infty$ et en $-\infty$?
- 2. Vérifier ces conjectures par le calcul.

Exercice 19

Soit *h* la fonction définie sur **R** par $h(x) = 0, 1x^3 + 0, 15x^2 - 1, 8x - 0, 7.$

- **1.** \blacksquare Tracer sur la calculatrice la courbe représentative de la fonction h. Que peut-on conjecturer sur les limites de la fonction f en $+\infty$ et en $-\infty$?
- 2. Vérifier ces conjectures par le calcul.

Exercice 20

Déterminer les limites en $+\infty$ et $-\infty$ des fonctions suivantes en expliquant la méthode utilisée.

5

1. f définie sur **R** par $f(x) = x^3 - 5x^2 - x + 2$.

2. g définie sur $\mathbb{R} \setminus \{-1\}$ par $g(x) = 1 - x + \frac{2}{x+1}$.

3. h définie sur $\mathbf{R} \setminus \left\{ -\sqrt{5} ; \sqrt{5} \right\}$ par $h(x) = \frac{5}{r^2 - 5}$

4. k définie sur **R** par $k(x) = e^x - 2$

Exercice 21 Chute libre

La vitesse de chute d'un parachutiste en chute libre, avant qu'il actionne son parachute est modélisée par

$$v(t) = 50 \left(1 - e^{-0.2t} \right)$$

où v(t) est la vitesse de chute (en ${\rm m.s^{-1}})$ du parachutiste en fonction du temps (en secondes).

- 1. Quelle est la vitesse du parachutiste à t = 0?
- 2. Déterminer $\lim_{t \to +\infty} v(t)$.
- **3.** Calculer v'(t) pour dresser le tableau de variations de la fonction v sur $[0; +\infty[$.
- 4. Interpréter ce tableau de variations du point de vue du parachutiste.
- 5. Dans un article consacré à la découverte du saut en parachute, on peut lire : « Dès la sortie de l'avion et au début du saut, la vitesse de chute augmente très rapidement; puis la vitesse se stabilise aux alentours de 200 km/h.»
 Justifier le propos de cet article.

Exercice 22

Pour chaque fonction, déterminer la limite à gauche et à droite de la valeur a donnée, en justifiant le signe du dénominateur.

6

1.
$$f$$
 définie par $f(x) = \frac{3x-1}{2-x}$ et $a=2$.

2.
$$g$$
 définie par $g(x) = \frac{1-2x}{(x+3)^2}$ et $a=-3$.

3.
$$h$$
 définie par $h(x) = \frac{e^x}{e^x - 1}$ et $a = 0$.

4.
$$k$$
 définie par $k(x)=\frac{3x^3+1}{x+1}$ et $a=-1$.

Exercice 23

f est la fonction définie sur $[0 ; +\infty[$ par $f(x) = \sqrt{x^2 + 1}.$

- 1. Démontrer que pour tout réel $x\geqslant 0, \quad \sqrt{x^2+1}\geqslant \sqrt{x^2}.$
- **2.** En déduire que pour tout réel $x \ge 0$, $f(x) \ge x$.
- 3. Étudier alors la limite de f en $+\infty$.

g est la fonction définie sur **R** par $g(x) = \frac{\sin(x)}{1+x^2}$.

- 1. Montrer que pour tout réel $x: -\frac{1}{1+x^2} \leqslant g(x) \leqslant \frac{1}{1+x^2}$.
- 2. En déduire la limite de g en $+\infty$. Expliquer.

Continuité

Exercice 25 ₪

f est la fonction définie sur **R** par : $f(x) = \left\{ egin{array}{ll} -x^2 & ext{si } x < 2 \\ x^2 - 8 & ext{si } x \geqslant 2 \end{array}
ight.$

1. Afficher, à l'écran de la calculatrice, la courbe représentative de la fonction f.

Tutoriel vidéo: https://youtu.be/GWE_ksi9I2c

- 2. Conjecturer la continuité de f en 2.
- 3. Démontrer cette conjecture.

Exercice 26

Voici une fonction f écrite en langage Python.

1. Déterminer l'image par la fonction **f** de chacun des nombres suivants :

 $\cdot 0 \qquad \cdot -2 \qquad \cdot 5 \qquad \cdot 1 \qquad \cdot 0,5$

2. Compléter la définition de la fonction f

$$f(x) = \left\{ \begin{array}{ll} \ldots & \text{si } x < \ldots \\ \ldots & \text{si } \ldots \leqslant x \leqslant \ldots \\ \ldots & \text{si } > \ldots \end{array} \right.$$

- 3. La fonction f est-elle continue sur R? Expliquer.
- **4.** Sur quels intervalles, les plus grands possibles, la fonction *f* est-elle continue?

Python

from math import*

def f(x) :
 if x<0 :
 y = exp(x)
 elif x<=1 :
 y = x**2
 else :
 y = 2*x-1
 return y</pre>

Exercice 27

f est la fonction définie sur R par $f(x)=x^4-9x+8$. Démontrer que l'équation f(x)=5 admet au moins une solution dans l'intervalle $[-1\ ;\ 1]$.

g est la fonction définie sur **R** par $g(x) = e^x - x^2 - 5$. Démontrer que l'équation $e^x = x^2 + 5$ admet au moins une solution dans l'intervalle [0; 3].

Exercice 29

f est une fonction continue sur l'intervalle [-10; 40] dont voici le tableau de variations.

x	-10	21	40
Variations de f	-2	3	1

- **1.** Montrer que l'équation f(x) = 0 admet une unique solution α dans l'intervalle [-10; 40].
- **2.** En déduire le tableau de signes de f(x) dans l'intervalle [-10; 40].

Exercice 30

g est la fonction définie sur [0; 5] par $g(x) = xe^x - 2e^x - 5$.

- **1.** Montrer que pour tout réel x, $g'(x) = (x-1)e^x$.
- 2. Dresser le tableau de variations de g.
- **3.** Démontrer que l'équation g(x) = 0 admet une seule solution α dans l'intervalle [1; 5].
- **4.** Donner un encadrement d'amplitude 1 de α .

Exercice 31 Méthode de dichotomie

Le but de cet exercice est de déterminer par une **méthode de dichotomie** une valeur approchée de la solution de l'équation $x^3 + x - 1 = 0$.

- 1. On définit la fonction f sur \mathbf{R} par $f(x)=x^3+x-1$. Montrer que l'équation f(x)=0 admet une unique solution α sur \mathbf{R} et que $\alpha \in [0\ ;\ 1]$.
- 2. On veut obtenir un encadrement de α . On procède par **dichotomie** : On partage l'intervalle $[0\ ;\ 1]$ en deux intervalles $I_1=\left[0\ ;\ \frac{1}{2}\right]$ et $I_2=\left[\frac{1}{2}\ ;\ 1\right]$.
 - a. Calculer $f\left(\frac{1}{2}\right)$. Expliquer pourquoi α appartient à l'intervalle I_2 .
 - b. On réintère le procédé en partageant l'intervalle I_2 en deux : $I_3 = \left[\frac{1}{2}; \frac{3}{4}\right]$ et $I_4 = \left[\frac{3}{4}; 1\right]$. Calculer $f\left(\frac{3}{4}\right)$. Dans quel intervalle, I_3 ou I_4 , se trouve α ?
- 3. On automatise ce procédé à l'aide d'un algorithme. On rédige un script Python pour donner un encadrement de α d'amplitude inférieure à 10^{-3} .

8

Python

```
def f(x) :
    return x**3+x-1

def dicho(a,b) :
    n=0
    while b-a >= 10**(-3) :
        c=(a+b)/2
        if f(a)*f(c)<0 :
            b=c
        else :
            a=c
        n=n+1
    return a,b,n</pre>
```

- a. Que représentent les paramètres a et b de la fonction dicho?
- b. Quelles valeurs peut-on utiliser pour a et b lorsqu'on demande à exécuter la fonction dicho pour approcher la solution de l'équation f(x) = 0?
- **c.** Que représente la variable n?
- d. Expliquer les quatre lignes d'instructions à
 partir de if f(a)*f(c)<0 :</pre>
- e. Utiliser ce programme pour donner un encadrement à 10^{-3} de α . En combien d'itération est-il obtenu?
- **f.** Que faut-il modifier pour avoir un endrement de α à 10^{-6} ?

 Donner alors cet encadrement ainsi que le nombre d'itérations nécessaires.

Exercice 32 Bénéfice

Une entreprise est spécialisée dans la production et la vente de peinture éco-responsable.

La production quotidienne varie entre 0 et 800 litres.

Toute la production est vendue. Les montants de la recette et du coût sont exprimés en dizaine d'euros.

1. Le graphique ci-dessous modélise les recettes et les coûts de production de l'entreprise.

- a. Que représentent les abscisses sur le graphique?
- b. Que représentent les ordonnées?
- 2. A l'aide du graphique, déterminer à partir de quel volume de peinture vendu l'entreprise réalise un bénéfice.
- 3. Le bénéfice en dizaine d'euros correspondant à la vente de x centaines de litres de peinture est donné par $f(x) = 25x 150e^{-0.5x+1}$. On définit ainsi la fonction f sur l'intervalle [0; 8].

- a. Donner les valeurs exactes de f(0) et de f(8), puis en donner les valeurs arrondies au centième.
- **b.** Montrer que pour tout $x \in [0; 8]$, $f'(x) = 25 + 75e^{-0.5x+1}$.
- **c.** Déterminer le signe de f'(x) et en déduire les variations de f sur [0; 8].
- **d.** Justifier que l'équation f(x) = 0 admet une unique solution α sur l'intervalle [0; 8] puis en donner la valeur arrondie au centième.
- e. \blacksquare Donner une valeur de α à 10^{-3} près. Expliquer la méthode utilisée.
- **f.** En déduire la quantité de peinture produite et vendue à partir de laquelle l'entreprise réalisera un bénéfice. Donner le résultat au litre près.

Exercice 33 Population de grenouilles

Des biologistes étudient l'évolution d'une population de grenouilles autour d'un étang. Ils estiment que le nombre de grenouilles peut être modélisé par :

$$P(t) = \frac{1000}{0.4 + 3.6e^{-0.5t}}$$

où t est le temps écoulé (en années) depuis le 1^{er} janvier 2020.

Grenouille arboricole

- **1.** Étudier les variations de la fonction P sur $[0; +\infty[$.
- **2.** Déterminer la limite de la fonction P en $+\infty$.
- 3. Montrer qu'il existe une unique valeur $t_0 \in [0 ; +\infty[$ telle que $P(t_0) = 2000$. Déterminer cette valeur à 10^{-1} près.
- **4.** Selon ce modèle, déterminer l'année au cours de laquelle la population dépassera pour la première fois 2000 grenouilles.

Prolongements

Exercice 34 Démontrer avec un contre-exemple

Toutes les propositions suivantes sont fausses. Infimer chacune d'elles à l'aide d'un contre exemple (qui peut être graphique).

- 1. f est une fonction définie sur **R** telle que : $\lim_{x\to -\infty} f(x) = -\infty$ et $\lim_{x\to +\infty} f(x) = +\infty$ donc f est croissante sur **R**.
- 2. f est une fonction strictement croissante sur \mathbf{R} donc $\lim_{x\to +\infty} f(x) = +\infty$.
- 3. f est une fonction définie sur $[0; +\infty[$ telle que f(0)=0 et $\lim_{x\to +\infty} f(x)=+\infty$ donc f est positive sur \mathbf{R} .
- **4.** Si f est une fonction définie sur l'intervalle [-1; 2], alors f est continue sur l'intervalle [-1; 2].
- 5. Si f est une fonction continue sur l'intervalle [-1; 2] telle que f(-1) = -2 et f(2) = 3, alors l'équation f(x) = 0 admet une unique solution dans l'intervalle [-1; 2].

f est la fonction définie sur **R** par $f(x) = \frac{x^4}{4} - \frac{3}{2}x^2 + 4x$.

- 1. Déterminer l'expression de f', la fonction dérivée de f et de la fonction dérivée de f', notée f'' (dérivée seconde de f).
- **2. a.** Étudier les variations de la fonction f'.
 - **b.** Dresser le tableau de variations de f' et en déduire que l'équation f'(x) = 0 admet une unique solution α dans l'intervalle $]-\infty$; -1].
 - c. \blacksquare Donner un encadrement d'amplitude 10^{-2} de α .
- **3. a.** Déterminer le signe de la fonction f'.
 - **b.** Dresser le tableau de variations de la fonction f.
 - c. Montrer que $f(\alpha) = \frac{3}{4}\alpha(4-\alpha)$.
 - d. Déterminer le nombre de racines du polynôme f.