미래모빌리티와 AI

연세대학교 교수 공학박사

박 서 연

박서연 박사

주요 학력 / 경력

- 연세대학교 교수
- 연세대학원 공학박사
- 영국맨체스터 혁신기술연구원
- 대한기계학회이사
- 한국산업기술평가원위원
- 국토교통진흥원위원
- 국방과학연구소 자문위원 세종미래모빌리티 위원

해외 경력

- 독일 프라운호퍼 연구소(Mobility)
- 몽골 민족대학교 항공학과 설립 위원
- 싱가폴 UAM 행사 참여(국토부 자문)

미래자동차

Mobility Road Map

미래모빌리티 관련기업

기체, 추진, 에너지원, 비행제어, 통신관련 미래모빌리티 관련기업

기체 설계기업

• 기체 최적화 관련 설계/분석/M&S/ 시험평가 기술

에너지원기업

• 비행지속시간 향상을 위한 에너지 저장 및 관리 기술 Lithium-air battery

추진체 기업

• 추력 발생을 위한 전기 모터/ 프로펠 러 성능 및 효율 고도화 기술

자동제어기업

• 외란에 대한 강건성 의도에 부합하 는 모션제어 및 자율자동 설계

통신기업

 통신, 항법, 암호화 기법 등을 포함, 정보교환 및 유출방지 기술

비행효율 및 사업성 고려 시, Lift + Cruise 또는 Vectored Thrust type의 기체가 유력

운항인프라

안전한 PAV 운항을 위해서는 육상교통 연결, 비행안전지원(이착륙지원, 보안검색), 충전/정비 등을 지원하는 지상인프라(vertiport), 운항 시 항공교통관제를 지원하는 교통관제(ATM) 체계, 항행안전시설, 통신 등의 운항인프라필요

서비스 What is PAV ?

PAV의 상용운송을 위해서는 운항서비스(기체운용), 탑승예약, 타교통시스템(택시, 버스, 철도, 항만 등)과의 연계를 위한 기존교통망과의 연계 서비스가 필요

2

Future Forecast And Trends for PAV

수요전망

2032년 세계시장 기준 4.5만여대, 국내시장 기준 2천여대의 PAV수요 전망

세계 PAV 수요전망

국내 PAV 수요전망

출처: UBER Elevate ('19.02)

PAV의 세계시장규모는 제조, 운항 및 서비스 포함하여 2035년 50조원 규모로 성장 전망

예측 기관		2025	2030	2035
Porsche Consulting (2018)	High	\$3.0B (1,500대)	\$27.0B (18,000대)	\$86.0B (64,000 ^E)
	Mid	\$1.5B (750대)	\$6.0B (3,000대)	\$32.0B (23,000대)
	Low	O (O 대)	\$1.5B (1,500대)	\$6.0B (4,500대)
Uber (2019.2)	High	\$0.9B (885대)	\$20.7B (16,900대)	\$239.5B (187,600대)
	Low	\$0.2B (192대)	\$4.9B (4,040대)	\$74.0B (57,900대)
Morgan Stanley (2018.12)	High	\$37B (26,000대)	\$154B (105,000대)	\$508B (308,000대)
	Mid	\$23B (20,600대)	\$83B (78,000대)	\$231B (233,000대)
	Low	\$9.1B (10,400대)	\$29.3B (36,400대)	\$73.8B (83,000대)

Mobility Road Map

미래모빌리티동향

거의 모든 주요 항공기제작사(Boeing, Airbus, Bell, Kittyhawk)에서 PAV개발 진행

Boeing

* Lift + Cruise 방식

- · Aurora Flight Science 인수
- · 10년간 보잉의 혁신시제제작협력
- · '18년 Full Scale 시제 제작
- · Uber Elevate의 기체 협력사

최대속도	180km/h
운항시간	0.8Hr
탑승인원 (Payload)	1인승(225kg)

Airbus

* Vectored Thrust

- · A3 (美, 독립 자회사)의 Project
- · Airbus 벤처 캐피탈 지분
- · '18.1 1인승 시제 비행

최대속도	200km/h
운항시간	1.0Hr
탑승인원 (Payload)	2인승

Bell

* Vectore d Thrust

- · Bell의 헬기 양산 및 인증 경험 보유
- · Uber와 eVTOL의 기체협력사
- · CES 2019 에서 NEXUS 발표 및전시
- · 6 Ducted Fan, Hybrid Type

최대속도	288km/h
운항시간 탑승인원 (Payload)	0.8Hr
	5인승(2,720kg)

KittyHawk

* Lift + Cruise

- · 레리 페이지(구글 창업자) 100M투자
- · '17년 유인 비행시험
- · '18년 뉴질랜드 운항사와 파트너쉽 체결
- · 완성도 높은 기체로 Boeing과 협력

최대속도	180km/h
운항시간	0.8Hr
탑승인원 (Payload)	2인승

Vision 서비스 기체 관제/항행안전 운항서비스 기체/부품 연계 플랫폼 **MRO** 지상 인프라

Realization of the UAM Ecosystem

Thank you!

