

AD/A-006 232

**COMPARISON OF ORTHOGONAL TRANSFORMS
FOR TELESEISMIC DATA**

C. H. Chen

Southeastern Massachusetts University

Prepared for:

Air Force Office of Scientific Research

31 October 1974

DISTRIBUTED BY:

**National Technical Information Service
U. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road, Springfield Va. 22151**

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE

READ INSTRUCTIONS
BEFORE COMPLETING FORM

1. REPORT NUMBER AFOSR - IR - 75 - 272	2. GOVT ACCESSION NO. AD/A-006232	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle) COMPARISON OF ORTHOGONAL TRANSFORMS FOR TELESEISMIC DATA		5. TYPE OF REPORT & PERIOD COVERED Interim
7. AUTHOR(s) C.H. Chen		6. PERFORMING ORG. REPORT NUMBER TN N. EE-74-5
9. PERFORMING ORGANIZATION NAME AND ADDRESS Southeastern Massachusetts University Department of Electrical Engineering North Dartmouth, Massachusetts 02747		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS 61102F 9769-02
11. CONTROLLING OFFICE NAME AND ADDRESS Air Force Office of Scientific Research (NM) 1400 Wilson Blvd Arlington, Virginia 22209		12. REPORT DATE October 31, 1974
14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)		13. NUMBER OF PAGES 392
		15. SECURITY CLASS. (of this report) UNCLASSIFIED
		16a. DECLASSIFICATION/DOWNGRADING SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited.		
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)		
18. SUPPLEMENTARY NOTES		
19. KEY WORDS (Continue on reverse side if necessary and identify by block number)		

Reproduced by
**NATIONAL TECHNICAL
INFORMATION SERVICE**
 US Department of Commerce
 Springfield, VA. 22151

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)
 The availability of fast algorithms for computing the orthogonal transforms such as the fast Fourier transform (FFT), Walsh-Hadamard transform (WHT), discrete Chebyshev transform (DCT), and related transforms has made such transforms increasingly popular in data processing. This paper is concerned with the comparative evaluation of these transforms as applied to the ACDA teleseismic data. Computer results and program listings are provided. The paper is concluded with the recommendation that better orthogonal transforms are needed for both signal processing and seismic discrimination.

Technical Note
TN No. EE-74-5
Grant AFOSR 71-2119
October 31, 1974

COMPARISON OF ORTHOGONAL
TRANSFORMS FOR TELESEISMIC DATA

by

C. H. Chen
Southeastern Massachusetts University
North Dartmouth, Massachusetts 02747

Abstract

The availability of fast algorithms for computing the orthogonal transforms such as the fast Fourier transform (FFT), Walsh-Hadamard transform (WHT), discrete Chebyshev transform (DCT), and related transforms has made such transforms increasingly popular in data processing. This paper is concerned with the comparative evaluation of these transforms as applied to the ACDA teleseismic data. Computer results and program listings are provided. The paper is concluded with the recommendation that better orthogonal transforms are needed for both signal processing and seismic discrimination.

Approved for public release;
Approved for unlimited.
Distribution unlimited.

Comparison of Orthogonal Transforms for Teleseismic Data

C. H. Chen

I. Introduction

In recent years there has been an increasing interest with respect to using a class of orthogonal transforms in the areas of pattern recognition and digital signal processing. In pattern recognition, orthogonal transforms enable a noninvertible transformation from the pattern space to a reduced dimensionality feature space. This allows a classification scheme to be implemented with substantially less features, with only a small increase in classification error. In digital processing, orthogonal transforms implemented by fast algorithms are basic operations for digital filtering, spectral estimation, etc. In discrete (Wiener) filtering for signal parameter estimation, orthogonal transforms "compress" the useful data to a substantially small number of elements and thus simplifies the filter structure and reduces the computation load. Orthogonal transforms are also useful in designing multiplexing communication systems.

The Walsh-Hadamard transform, discrete Fourier transform, the Haar transform, the slant transform, and discrete Chebyshev transform (also called discrete cosine transform) have been considered for various applications, since these are orthogonal transforms that can be computed using fast algorithms. The Karhunen-Loeve transform (KLT) is an orthogonal transform which is optimal in the minimum mean squared error sense; but is computationally difficult. In this paper we are concerned with the comparative evaluation of these orthogonal transforms for teleseismic data study including signal processing and seismic discrimination (pattern recognition).

II. The Orthogonal Transforms

Of all the orthogonal transforms presently available, the discrete Fourier transform is probably the most conveniently available and provides the most familiar frequency domain informations on the seismic data. The fast Fourier transform also serves as

the groundwork for all transforms with sinusoidal basis functions such as the discrete Chebyshev transform and nonrecursive digital filtering. The phase spectrum which is often ignored contains much useful information. To utilize both amplitude and phase spectra in the Fourier domain is not a simple task. The homomorphic deconvolution or the complex cepstrum accomplishes this objective by taking the logarithm of the complex Fourier spectrum. The problem with the cepstral approach is that it is difficult to obtain accurate long pass and short pass system outputs especially with the noisy data. The teleseismic data is highly sinusoidal in nature and thus the Fourier domain transforms appear to be most appropriate. Once digitized for computer compatibility, the amount of data needed to analyze the seismic waveforms can be reduced by the orthogonal transforms. A fast Fourier transform reduces the data needed to analyze the waveform by a factor of 10 (it would be a factor of 5 if both amplitude and phase spectra are used) with a very small percentage of the reconstructed root-mean-squared error. The fast Fourier transform accomplishes the data compression by changing the usual time domain representation of the seismic signal to one of frequency representation. A representation of the seismic wave requires less data points in the frequency domain than in the original time domain. A Walsh-Hadamard transform may also be used in a similar manner to yield a data compression factor of four. (The factor is reduced if the plus and minus signs are included.)

Haar transform and slant transform are more suitable for image processing than for seismic study. The discrete Chebyshev transform has the important advantage in that it is closest to KLT in mean square error while computable by fast algorithms. It does require much more computation time than Fourier or Walsh transforms. The Walsh transform is computationally the best. The data compression factor for DCT is nearly the same as for FFT. The DCT should be considered as a member of Fourier domain transforms with good promise for wide range of applications.

For seismic data study, the minimum mean squared error criterion, however, is of questionable value. Such criterion depends only up to the second order statistics (the mean and covariance functions) which may be not enough to characterize the seismic waves. Furthermore, reconstruction of the seismic wave is not an important objective. To estimate some parameters such as to determine the P-wave amplitude, and to discriminate explosion from earthquake, are among the important objectives of the seismic study. Both DCT and WHT spread the signal energy to higher spectral components than the FFT and thus may not be as effective in dimensionality reduction for pattern recognition as compared with FFT. Note that DCT is better than WHT in this sense. Unfortunately, the reduced feature space provided by all orthogonal transforms is still too large in dimension and the subsequent classifier is too complex in structure or computation. For two-dimensional display, the transformed data has to be considerably compressed further to make the display possible.

Therefore we conclude that the presently available orthogonal transforms have to be considerably improved for seismic study in processing, display, and discrimination. At the present time, the Fourier domain transforms are still most useful for seismic study. New transforms must be computable in fast algorithms while drastically compress the data so that the dimension of the reduced feature space falls below 10, which is a factor of 100 in reduction of 1024 data points typically used in digital seismic data study.

III. Computer Results

The seismic data considered is the ACDA Seismic Signature Data Base provided by Lt. Colonel Russell B. Ives. A complete spectral plot of all 269 records was submitted to him with report, "Fourier Spectral Plot of ACDA Seismic Signature Data Base", dated September 12, 1974. Some conclusions of the spectral analysis are:

- 1) With a few exceptions, all explosions have a pronounced spectral peak at 0.5 - 0.7 Hz.
- 2) The earthquakes have many discrete frequency components, i.e. they are rich in subharmonics.
- 3) The explosion spectra spread to higher frequencies than the earthquake spectra.
- 4) Most records have strong DC components which could be removed to provide better discrimination results.

An important reason for providing spectral plot of all records is to enable us to get an accurate interpretation of the results. In the attachments of this report we have included the following:

1. Computer program to plot the original seismic waveform with 1024 data points (samples) at 10 samples per second, and to plot the amplitude of FFT up to 5 Hz.
2. Application note on DCT.
3. Computer program to plot WHT and DCT.
4. A complete plot of DCT and WHT for each record. On each page there are two graphs, the upper one is for DCT up to 512 data points and the lower one is for WHT up to 1024 data points.

The following are conclusions which can be drawn from the plot of DCT and WHT:

- 1) DCT appears as a low-passed filtered WHT. Theoretical explanation of this phenomenon is not available. There might be some theoretical relationship between the two which is not yet discovered.
- 2) The DCT for explosion is a more smooth function of the number of data points than the earthquake.
- 3) The WHT is nearly periodic (except in amplitude) with a period of approximately 256 data points.

Attachment #1 Computer Program to Plot Seismic Wave and its
Amplitude Spectrum for PDP 11-45 Computer

FORTRAN V004A

00:00:00

21-SEP-74

PAGE

1

```
0001      DIMENSION C(257)
0002      COMPLEX E(2000)
0003      REAL X(2,2000), B(2000)
0004      BYTE IA(70), IX(9), IQ(10), TEST
0005      EQUIVALENCE (E,X)
0006      DATA TEST, IX, IQ/ 'X', 'E', 'X', 'P', 'L', 'O', 'S', 'I', 'O', 'N',
+                  'E', 'A', 'R', 'T', 'H', 'Q', 'U', 'A', 'K', 'E'/
0007      CALL XYINIT(B, 2000)
0008      CALL SIZE(C, 1024)
0009      CALL CHSIZE(0, 4, 90, 0)
0010      6      FORMAT(I3)
0011      7      IC=0
0012      1      READ(6,6) IF
0013      DO 9 I=1,2000
0014      X(2,I)=0.0
0015      9      X(1,I)=0.0
0016      11     IC=IC+1
0017      READ(1,END=10) IA
0018      READ(1)NPT, (X(1,I), I=1,NPT)
0019      IF(IF.GE. IC) GO TO 8
0020      REWIND 1
0021      GO TO 7
0022      8      IF(IF.NE. IC) GO TO 11
0023      CALL IXYPT(230,0,0)
0024      CALL XYCHAR(IA,20)
0025      CALL IXYPT(486,0,0)
0026      IF(IA(70).EQ. TEST) GO TO 2
0027      CALL XYCHAR(IQ,10)
0028      GO TO 3
0029      2      CALL XYCHAR(IX,9)
0030      3      CALL IXYPT(500,0,0)
0031      CALL IXYPT(2190,0,1)
0032      XMAX=X(1,1)
0033      XMIN=XMAX
0034      DO 4 I=1,NPT
0035      IF(XMIN.GT. X(1,I)) XMIN=X(1,I)
0036      4      IF(XMAX.LT. X(1,I)) XMAX=X(1,I)
0037      XS=1690.0/(XMAX-XMIN)
0038      N=2190.0+XMIN*XS
0039      CALL IXYPT(N,0,0)
0040      CALL IXYPT(N,4000,1)
0041      IXX=0
0042      IY=2190.0+(XMIN-X(1,1))*XS
0043      CALL IXYPT(IY,IXX,0)
0044      DO 5 I=2,NPT
0045      IXX=IXX+1
0046      IY=2190.0+(XMIN-X(1,I))*XS
0047      5      CALL IXYPT(IY,IXX,1)
0048      CALL IXYPT(2390,0,0)
0049      CALL IXYPT(4090,0,1)
0050      CALL IXYPT(4090,4095,1)
0051      NP=NPT-1024
0052      IF(NP.GT.0) CALL SHIFTL(X,2000,NP)
0053      CALL FFOUT(X,1024,C,-1.0)
0054      XMAX=CABS(E(1))
```

FORTRAN V004A

00:00:00

21-SEP-74

PAGE

2

```

0055      DO 12 I=1,512
0056      X(1,I)=CABS(E(I))
0057 12      IF(XMAX.LT.X(1,I)) XMAX=X(1,I)
0058      XS=1690.0/XMAX
0059      N=4090.0-X(1,1)*XS
0060      CALL IXYPT(N,0,0)
0061      DO 13 I=1,512
0062      IXX=8*I-4
0063      IY=4090.0-X(1,I)*XS
0064 13      CALL IXYPT(IY,IXX,1)
0065      CALL IXYPT(0,4095,0)
0066      CALL IXYPT(0,0,0)
0067      CALL IXYPT(4095,0,0)
0068      CALL IXYPT(4095,4095,0)
0069      GO TO 1
0070 10      CALL XYEND
0071      CALL EXIT
0072      END

```

ROUTINES CALLED:

XYINIT, SIZE, CHSIZE, IXYPT, XYCHAR, SHIFTL, FFOUR
CABS, XYEND, EXIT

SWITCHES = /ON

BLOCK	LENGTH
MAIN.	13422 (064334)*

```

**COMPILER ----- CORE**
    PHASE      USED   FREE
DECLARATIVES 00366 05535
EXECUTABLES  00937 04964
ASSEMBLY     01478 07340

```

Attachment #2 Application Note on DCT
DCT - Discrete Chebyshev Transform

A. Implementation:

The Discrete Chebyshev Transform of a data set $y(m)$ is defined by [1]

$$Y(k) = \frac{A}{N} \operatorname{Re} \left\{ e^{-kwi/2N} \sum_{m=0}^{N-1} y(m) e^{-2mkwi/2N} \right\}$$

$$\text{and } A = \begin{cases} \sqrt{2} & k = 0 \\ 2 & k = 1, 2, \dots, N-1 \end{cases}$$

$$k = 0, 1, \dots, N-1$$

The DCT program evaluates this expression utilizing an in-place, $4N$ -point Fast Fourier Transform; the various parameters employed are as follows:

$$\begin{aligned} N &= \text{number of data pts } y(m) \\ &= 2^p \text{ where } p \text{ is integral} \\ N_2 &= 2N \\ N_4 &= 4N \\ NM &= \text{number of sub-matrices employed in the FFT} \\ &= p + 2 \\ \text{Sign} &= -1.0 \text{ for forward transform} \\ &= +1.0 \text{ for inverse transform} \end{aligned}$$

Because the computations are done in-place, Y is both input and output arrays; X is a complex buffer array.

The program generates $2N$ output coefficients, of which the first N contain the correctly-ordered, desired output. Although this program utilizes an FFT, unlike the FFT only the $2N$ real output points from the forward transform are required to generate the inverse.

B. Program Notes

The FFT employed is Robinson's decimation-in-frequency algorithm[2]. The 'phase-shift' operates on the complex X array only when its components represent functions of k ; i.e., for the forward transform the FFT is done first, then the array is phase-shifted; for the inverse transform the reverse procedure is followed.

Each time the FFT is performed, the bit-reversed outputs are unscrambled within the subroutine to produce a sequentially-ordered array; the output consists of the real component of the complex array.

C. References

1. N. Ahmed, T. Natarajan, and K. R. Rao, IEEE Trans. Computers, C-23, 90(1974).
2. E. A. Robinson, Multichannel Time Series Analysis, Holden-Day, San Francisco, 1967.

Attachment #3 Computer Program to Plot DCT and WHT

FORTRAN V004A

00:00:00

21-SEP-74

PAGE

1

```

DIMENSION Z(1024)
DIMENSION Y(1024), MM(12)
REAL X(2,2048), B(100)
BYTE IA(70), IX(9), IQ(10), TEST
EQUIVALENCE (E,X)
DATA TEST, IX, IQ/'X','E','X','P','L','O','S','I','Q','N',
+                               'E','A','R','T','H','Q','U','A','K','E'
CALL XYINIT(B, 100)
CALL CHSIZE(0.4, 90.0)
6   FORMAT(I3)
7   IC=0
1   READ(6,6) IF
      DO 20 I=1, 1024
20   Y(I)=0.0
11   IC=IC+1
      READ(1,END=10) IA
      READ(1) NPT, (Y(I), I=1, NPT)
      IF(IF.GE. IC) GO TO 8
      REWIND 1
      GO TO 7
8   IF(IF.NE. IC) GO TO 11
      CALL IXYPT(230, 0, 0)
      CALL XYCHAR(IA, 20)
      CALL IXYPT(486, 0, 0)
      IF(IA(70).EQ. TEST) GO TO 2
      CALL XYCHAR(IQ, 10)
      GO TO 3
2   CALL XYCHAR(IX, 9)
3   CALL IXYPT(500, 0, 0)
      CALL IXYPT(2190, 0, 1)
      DO 15 I=1, 1024
15   Z(I)=Y(I)
      CALL DCT(512, 1024, 2048, 11, MM, X, Y, -1, 0)
      XMAX=Y(1)
      XMIN=XMAX
      DO 4 I=2, 512
      IF(XMIN.GT. Y(I)) XMIN=Y(I)
4     IF(XMAX.LT. Y(I)) XMAX=Y(I)
      XS=1690.0/(XMAX-XMIN)
      N=2190.0+XMIN*XS
      CALL IXYPT(N, 0, 0)
      CALL IXYPT(N, 4000, 1)
      IXX=0
      IY=2190.0+(XMIN-Y(1))*XS
      CALL IXYPT(IY, IXX, 0)
      DO 5 I=2, NPT
      IXX=4*I-4
      IY=2190.0+(XMIN-Y(I))*XS
5     CALL IXYPT(IY, IXX, 1)
      CALL IXYPT(2390, 0, 0)
      CALL IXYPT(4090, 0, 1)
      DO 9 I=1, 1024
      X(1,I)=Z(I)
9     X(2,I)=0.0
      DO 14 I=1025, 2048

```

FORTRAN V004A

00:00:00

21-SEP-74

PAGE

2

```

        X(1, I)=0. 0
14      X(2, I)=0. 0
        CALL FWT(X, 1024)
        XMAX=X(1, I)
        XMIN=XMAX
        DO 12 I=1, 1024
        IF(XMIN. GT. X(1, I)) XMIN=X(1, I)
12      IF(XMAX. LT. X(1, I)) XMAX=X(1, I)
        XS=1690. 0/(XMAX-XMIN)
        N=4090. 0+XMIN*XS
        CALL IXYPT(N, 0, 0)
        CALL IXYPT(N, 4095, 1)
        N=4090. 0+(XMIN-X(1, I))*XS
        CALL IXYPT(N, 0, 0)
        DO 13 I=2, 1024
        IXX=4*I-4
        IY=4090. 0+(XMIN-X(1, I))*XS
13      CALL IXYPT(IY, IXX, 1)
        CALL IXYPT(0, 4095, 0)
        CALL IXYPT(0, 0, 0)
        CALL IXYPT(4095, 0, 0)
        CALL IXYPT(4095, 4095, 0)
        GO TO 1
10      CALL XYEND
        CALL EXIT
        END

```

ROUTINES CALLED:

XYINIT, CHSIZE, IXYPT, XYCHAR, DCT, FWT, XYEND
EXIT

SWITCHES = /ON, /SU

BLOCK	LENGTH
MAIN.	13316 (064010)*

##COMPILER ---- CORE##		
PHASE	USED	FREE
DECLARATIVES	00366	05529
EXECUTABLES	00937	04958
ASSEMBLY	01472	07340

Attachment #4

**Plot of DCT and WHT for
ACDA Seismic Signature Data Base**

Q002

EVENT NUMBER 2019

EARTHQUAKE

DCT

512

WHT

1024

Q004

EVENT NUMBER 2010

EARTHQUAKE

DCT

512

WHT

1024

Q006

EVENT NUMBER 2029
EARTHQUAKE

Q008

EVENT NUMBER 2030
EARTHQUAKE

Q010

EVENT NUMBER 2031
EARTHQUAKE

DCT

WHT

Q012

EVENT NUMBER 2035

EARTHQUAKE

DCT

WHT

Q014

EVENT NUMBER 2024

EARTHQUAKE

DCT

WHT

Q016

EVENT NUMBER 2006
EARTHQUAKE

Q018

EVENT NUMBER 2017

EARTHQUAKE

DCT

WHT

EVENT NUMBER 2003
EARTHQUAKE

Q020

DCT

WHT

Q022

EVENT NUMBER 2011

EARTHQUAKE

DCT

WHT

Q024

EVENT NUMBER 2012

EARTHQUAKE

DCT

WHT

Q026

EVENT NUMBER 2014

EARTHQUAKE

DCT

WHT

Q028

EVENT NUMBER 2018

EARTHQUAKE

DCT

WHT

Q030

EVENT NUMBER 2016

EARTHQUAKE

DCT

WHT

Q032

EVENT NUMBER 2008

EARTHQUAKE

DCT

WHT

Q034

EVENT NUMBER 2020

EARTHQUAKE

Q036

EVENT NUMBER 2023

EARTHQUAKE

DCT

WHT

Q038

EVENT NUMBER 2025
EARTHQUAKE

DCT

A seismogram showing a sharp, vertical initial pulse followed by a period of low-frequency ground motion. The signal then returns to baseline.

NHT

A seismogram showing a complex, multi-phased seismic wave, starting with a large initial pulse and continuing with several smaller, higher-frequency oscillations.

Q040

EVENT NUMBER 2026
EARTHQUAKE

Q042

EVENT NUMBER 2027
EARTHQUAKE

DCT

WHT

QC44

EVENT NUMBER 2028

EARTHQUAKE

DCT

WHT

Q046

EVENT NUMBER 2032
EARTHQUAKE

DCT

A seismogram showing ground motion over time. The signal starts with a large, sharp negative deflection followed by a series of smaller positive and negative pulses. After approximately 10 seconds, the signal becomes relatively flat, indicating a period of low seismic activity.

WHT

A seismogram showing ground motion over time. The signal exhibits a continuous series of high-frequency, low-amplitude oscillations, characteristic of noise or a distant event. There is no distinct primary wave or aftershock.

Q048

EVENT NUMBER 2033
EARTHQUAKE

Q050

EVENT NUMBER 2034
EARTHQUAKE

X052

EVENT NUMBER 1507
EXPLOSION

x054

EVENT NUMBER 1531
EXPLOSION

x056

EVENT NUMBER 1512
EXPLOSION

x058

EVENT NUMBER 1525
EXPLOSION

DCT

WHT

X060

EVENT NUMBER 1518
EXPLOSION

DCT

WHT

x062

EVENT NUMBER 1514
EXPLOSION

DCT

WHT

x064

EVENT NUMBER 1513

EXPLOSION

DCT

WHT

x066

EVENT NUMBER 1511

EXPLOSION

DCT

WHT

X068

EVENT NUMBER 1532
EXPLOSION

X070

EVENT NUMBER 1530
EXPLOSION

DCT

WHT

X072

EVENT NUMBER 1528
EXPLOSION

DCT

WHT

X074

EVENT NUMBER 1540
EXPLOSION

X076

EVENT NUMBER 1527
EXPLOSION

x078

EVENT NUMBER 1524
EXPLOSION

DCT

WHT

x080

EVENT NUMBER 1521
EXPLOSION

DCT

WHT

X082

EVENT NUMBER 1504
EXPLOSION

DCT

WHT

x084

EVENT NUMBER 1522
EXPLOSION

DCT

WHA

Q086

EVENT NUMBER 1208
EARTHQUAKE

DCT

WHT

Q088

EVENT NUMBER 1009
EARTHQUAKE

DCT

WHT

Q090

EVENT NUMBER 1011
EARTHQUAKE

Q092

EVENT NUMBER 1023
EARTHQUAKE

Q094

EVENT NUMBER 1020
EARTHQUAKE

Q096

EVENT NUMBER 1029
EARTHQUAKE

Q098

EVENT NUMBER 1030
EARTHQUAKE

Q100

VENT NUMBER 1036
EARTHQUAKE

Q102

EVENT NUMBER 1040
EARTHQUAKE

Q104

EVENT NUMBER 1059
EARTHQUAKE

Q106

VENT NUMBER 1065
EARTHQUAKE

Q108

VENT NUMBER 1070
EARTHQUAKE

~~Q110~~

EVENT NUMBER 1066
EARTHQUAKE

Q112

VENT NUMBER 1073
EARTHQUAKE

Q114

VENT NUMBER 1088
EARTHQUAKE

Q116

EVENT NUMBER 1084
EARTHQUAKE

Q118

EVENT NUMBER 1083
EARTHQUAKE

Q120

EVENT NUMBER 1089
EARTHQUAKE

Q122

.VENT NUMBER 1111
EARTHQUAKE

Q124

EVENT NUMBER 1113
EARTHQUAKE

Q126

EVENT NUMBER 1201

EARTHQUAKE

Q128

EVENT NUMBER 1104
EARTHQUAKE

Q130

EVENT NUMBER 1068
EARTHQUAKE

Q132

EVENT NUMBER 1114
EARTHQUAKE

Q134

EVENT NUMBER 1115
EARTHQUAKE

EVENT NUMBER 1116
EARTHQUAKE

Q136

Q138

EVENT NUMBER 1117
EARTHQUAKE

Q140

VENT NUMBER 1118
EARTHQUAKE

Q142

VENT NUMBER 1119
EARTHQUAKE

EVENT NUMBER 1142
EARTHQUAKE

Q144

Q146

EVENT NUMBER 1132
EARTHQUAKE

Q148

EVENT NUMBER 1131
EARTHQUAKE

Q150

EVENT NUMBER 1130
EARTHQUAKE

Q152

EVENT NUMBER 1159
EARTHQUAKE

Q154

EVENT NUMBER 1141

EARTHQUAKE

Q156

EVENT NUMBER 1205

EARTHQUAKE

Q158

EVENT NUMBER 1207
EARTHQUAKE

Q160

EVENT NUMBER 1209
EARTHQUAKE

Q162

EVENT NUMBER 1214

EARTHQUAKE

Q164

VENT NUMBER 1250
EARTHQUAKE

Q166

EVENT NUMBER 1224
EARTHQUAKE

Q168

VENT NUMBER 1223
EARTHQUAKE

Q170

EVENT NUMBER 1222
EARTHQUAKE

Q172

EVENT NUMBER 1035
EARTHQUAKE

Q174

VENT NUMBER 1032
EARTHQUAKE

Q176

VENT NUMBER 1028
EARTHQUAKE

Q178

EVENT NUMBER 1027
EARTHQUAKE

Q180

EVENT NUMBER 1025
EARTHQUAKE

Q182

EVENT NUMBER 1019
EARTHQUAKE

Q184

EVENT NUMBER 1003
EARTHQUAKE

Q186

EVENT NUMBER 1002
EARTHQUAKE

Q188

EVENT NUMBER 1096
EARTHQUAKE

Q190

EVENT NUMBER 1093
EARTHQUAKE

Q192

VENT NUMBER 1092
EARTHQUAKE

Q194

VENT NUMBER 1069
EARTHQUAKE

Q₁₉₆

VENT NUMBER 1051
EARTHQUAKE

Q198

VENT NUMBER 1045
EARTHQUAKE

Q200

VENT NUMBER 1189
EARTHQUAKE

Q202

VENT NUMBER 1197
EARTHQUAKE

Q204

VENT NUMBER 1211
EARTHQUAKE

Q206

EVENT NUMBER 1212
EARTHQUAKE

Q208

EVENT NUMBER 1213
EARTHQUAKE

DCT

WHT

Q210

VENT NUMBER 1228
EARTHQUAKE

Q212

VENT NUMBER 1229
EARTHQUAKE

Q214

VENT NUMBER 1230
EARTHQUAKE

Q216

EVENT NUMBER 1231
EARTHQUAKE

Q218

EVENT NUMBER 1232

EARTHQUAKE

Q220

EVENT NUMBER 1238

EARTHQUAKE

Q222

EVENT NUMBER 1239
EARTHQUAKE

Q224

EVENT NUMBER 1241

EARTHQUAKE

EVENT NUMBER 1533

EXPLOSION

X226

Q228

EVENT NUMBER 1219

EARTHQUAKE

Q230

EVENT NUMBER 1245

EARTHQUAKE

Q232

EVENT NUMBER 1247

EARTHQUAKE

Q234

EVENT NUMBER 1248 EARTHQUAKE

Q236

EVENT NUMBER 1249

EARTHQUAKE

Q238

EVENT NUMBER 1251

EARTHQUAKE

Q240

EVENT NUMBER 1253
EARTHQUAKE

Q242

EVENT NUMBER 1254

EARTHQUAKE

Q244

EVENT NUMBER 1256

EARTHQUAKE

Q246

EVENT NUMBER 1267
EARTHQUAKE

Q248

EVENT NUMBER 1258
EARTHQUAKE

Q250

EVENT NUMBER 1259
EARTHQUAKE

Q252

EVENT NUMBER 1260
EARTHQUAKE

Q254

EVENT NUMBER 1261

EARTHQUAKE

Q256

EVENT NUMBER 1262
EARTHQUAKE

Q258

EVENT NUMBER 1264
EARTHQUAKE

Q260

EVENT NUMBER 1263
EARTHQUAKE

Q262

VENT NUMBER 1269
EARTHQUAKE

0264

EVENT NUMBER 1268
EARTHQUAKE

Q266

EVENT NUMBER 1270
EARTHQUAKE

Q268

EVENT NUMBER 1271
EARTHQUAKE

Q270

EVENT NUMBER 1266
EARTHQUAKE

Q212

EVENT NUMBER 1272

EARTHQUAKE

Q274

EVENT NUMBER 1273
EARTHQUAKE

x276

EVENT NUMBER 1516
EXPLOSION

Q278

EVENT NUMBER 1543
EARTHQUAKE

x280

EVENT NUMBER 1510
EXPLOSION

Q282

EVENT NUMBER 2021
EARTHQUAKE

Q284

EVENT NUMBER 2013
EARTHQUAKE

Q286

1ST MURDER 2000
2nd MURDER 2002.

EDTITUDE

x288

EVENT NUMBER 1505
EXPLOSION

X290

EVENT NUMBER 1503
EXPLOSION

Q292

EVENT NUMBER 2004 EARTHQUAKE

Q294

EVENT NUMBER 2007

EARTHQUAKE

Q296

EVENT NUMBER 2015

EARTHQUAKE

Q298

EVENT NUMBER 1300
EARTHQUAKE

EVENT NUMBER 1301
EARTHQUAKE

Q300

X302

EVENT NUMBER 1535

EXPLOSION

X304

EVENT NUMBER 1506
EXPLOSION

Q306

EVENT NUMBER 2022

EARTHQUAKE

EVENT NUMBER 1310
EARTHQUAKE

Q308

X310

EVENT NUMBER 1542

EXPLOSION

X312

EVENT NUMBER 1541

EXPLOSION

Q314

EVENT NUMBER 1304
EARTHQUAKE

x316

EVENT NUMBER 1501
EXPLOSION

X318

EVENT NUMBER 1508
EXPLOSION

X320

EVENT NUMBER 1523
EXPLOSION

X322

EVENT NUMBER 1529

EXPLOSION

X324

EVENT NUMBER 1534

EXPLOSION

Q326

EVENT NUMBER 1313
EARTHQUAKE

Q328

EVENT NUMBER 1314
EARTHQUAKE

Q330

EVENT NUMBER 1316

EARTHQUAKE

Q332

EVENT NUMBER 1318

EARTHQUAKE

Q334

EVENT NUMBER 1319
EARTHQUAKE

Q336

EVENT NUMBER 1320
EARTHQUAKE

Q338

EVENT NUMBER 1321
EARTHQUAKE

Q340

EVENT NUMBER 1322

EARTHQUAKE

Q342

EVENT NUMBER 1275
EARTHQUAKE

Q344

EVENT NUMBER 1278
EARTHQUAKE

Q346

EVENT NUMBER 2000
EARTHQUAKE

Q348

EVENT NUMBER 1058
EARTHQUAKE

Q350

EVENT NUMBER 1311
EARTHQUAKE

Q352

EVENT NUMBER 1307

EARTHQUAKE

Q354

EVENT NUMBER 1306

EARTHQUAKE

Q356

EVENT NUMBER 1276
EARTHQUAKE

Q358

EVENT NUMBER 1277
EARTHQUAKE

Q360

EVENT NUMBER 1324

EARTHQUAKE

362
Q362

EVENT NUMBER 1325

EARTHQUAKE

³⁶⁴
Q102

EVENT NUMBER 1326

EARTHQUAKE

³⁶⁶
Q109

EVENT NUMBER 1328

EARTHQUAKE

³⁶⁸
Q184

VENT NUMBER 1329
EARTHQUAKE

370
Q345

EVENT NUMBER 1330

EARTHQUAKE

372
Q106

EVENT NUMBER 1331
EARTHQUAKE

374
Q187

EVENT NUMBER 1332

EARTHQUAKE

376
Q168

VENT NUMBER 1327

ARTHQUAKE

378
Q389

EVENT NUMBER 1552

EXPLOSION

380
x190

EVENT NUMBER 1550

EXPLOSION

