COMUNICACIONES K4051 AÑO 2020 – VIRTUAL

GUIA TRABAJO PRACTICO NRO 3 PARTE PRACTICA

Cálculo de enlaces, unidades de medida

NOTA: Las preguntas en azul son las obligatorias que deben contestarse para la presentación del Trabajo Practico

- Dado un canal de transmisión de datos coaxil con una atenuación a la frecuencia de operación de 0,9 dB/100 metros y donde la sensibilidad del receptor es -15 dBm. Calcular la potencia mínima que deberá tener el transmisor si la longitud del coaxil es de 1200 metros.
- 2. Calcular la potencia de salida de una línea de transmisión de 100 metros donde la atenuación del cable coaxil es de 5 dB/100m y la potencia del transmisor que excita a la línea es de 0 dBm, se pierde en conectores y empalmes 2dB.
- 3. Que sensibilidad mínima (expresada en mW) deberá tener un receptor para un enlace a través de una línea de transmisión de 1800 metros, donde la atenuación del cable coaxil empleado es de 0,5 db/100m. La potencia del transmisor que excita la línea es de 2 watts.
- 4. Para el siguiente enlace; a) Calcular la ganancia y la sensibilidad del amplificador necesario para que el enlace funcione correctamente.

PTx = -3 dBm, SRx = 1 mW

L1=500m, L2=1000m

Conector At=0.25 dB c/u

At F.O. = 1.0 dB/1000 m

Obtener: GA(Ganancia del Amp) y SA(Sensibilidad del Amp)

- b) Si se consiguen amplificadores de 3, 6 y 9dB, ¿Cuál elegiría?, ¿Qué consecuencias trae para el circuito la elección que acaba de realizar?
- 5. Dado un enlace de fibra óptica entre un emisor y un receptor con los siguientes parámetros:

Atenuación de la FO = 3 dB/km Atenuación del conector = 0,6 db Potencia de transmisión = 3 dbm Sensibilidad del receptor = - 10 dBm

Calcular la distancia máxima entre receptor y transmisor suponiendo un factor de diseño FD = 10 dB (margen de diseño), empleándose un conector en el transmisor y otro en el receptor. Repetir el cálculo para una FO cuya atenuación es de 0,2 dB/km.

- 6. Dos dispositivos de transmisión de datos se encuentran vinculados por un enlace de comunicaciones construido por cable coaxil de atenuación igual a 0,8 dB/100 m. La distancia que separa a estos equipos es de 5000 metros. Calcular la potencia mínima que debe aplicarse en el extremo transmisor, si la sensibilidad del dispositivo receptor es de –10 dbm, considerando un FD de 3 dB.
- 7. Se requiere montar un enlace de fibra óptica uniendo dos equipos separados 30000 metros uno de otro. La potencia del transmisor es de 2 mW y la sensibilidad del receptor es de 60 dBm. Cuál será la especificación de atenuación máxima a requerir de la fibra que se debe emplear, expresada en dB/Km.
- 8. Si se tiene un enlace de 1000 m entre un transmisor que entrega una potencia de 100w y un receptor con una sensibilidad de 1w y se pretende utilizar las siguientes líneas de transmisión, indicar cuándo se deberá utilizar amplificadores.

Considerar en ambos casos dos conectores de 0,5 dB c/u.

a. Usando coaxil fino RG 58 con At = 5 dB/100 m

GA(Ganancia del Amp) = 5 dB.

b. Usando coaxil grueso RG 218 con At = 0,8 dB/100 m.

En caso necesario calcular la ganancia del amplificador correspondiente. Calcular el FD cuando lo hubiere.

9. Para el siguiente enlace calcular la Potencia del transmisor para que el enlace funcione correctamente. La potencia a la salida del amplificador es de 1mW. ¿Cuál es la atenuación del medio?

NOTA: Las preguntas en azul son las obligatorias que deben contestarse para la presentación del Trabajo Practico