• Initial setup

When keeping the prism for multiple readings, keep it with the distance of 4 cm from the previous one. This is to optimize the space of the paper

	0	2,	22	d
Ī	60°	30°	76°	48°
	50°	40°	58°	40°
Ī	45°	450	52°	37°
	40°	50°	490	40°
	30°	60°	40°	410
	20°	700	35°	45°

$$V_1+V_2=A$$
 $i_1+i_2=d+A-2$

At minimum deviation

 $i=i_1=i_2$, $Y_1=V_2=Y$

(1) \Rightarrow $Y+Y=A$ (2) \Rightarrow $2i=D+A$
 $2Y=A$
 $Y=A$
 $Y=A$

Important point

• Why should we use an equilateral prism for this experiment?

Otherwise, we won't be able to see the refraction as above

• Why can we get 2 pairs of readings by just measuring the i1 and i2 for one angle?

Because we can take the initial i1 as the i2 for a second pair by interchanging the direction of light entering the prism. This is due to the principle or reversibility of light.

• Why should we keep the pins P1 and P2 with maximum distance apart?

To reduce the error when drawing the lines

• When comparing 2 prisms, if the prism angle changes, what are the factors that will change with it?

Mimimum deviation will change - if A is higher, the D will be higher, when A is lower, D will be relatively lower

The way the graph of d and i is drawn changes. I.e when A = 60 the graph will start from i = 30 (becuase any incident angle before 30 degrees will result in total internal reflection) but if the A = 30, the graph for i will start from 0 as no total internal reflection will happen.

 $A-Prism\ Angle$

D-Diviation

 $A \propto D$

