ΘΕΜΑ 4

Μια μικρή σφαίρα (2), μάζας m_2 , είναι ακίνητη στο άκρο της ταράτσας ενός ψηλού κτιρίου (σημείο A), σε ύψος h=20~m από το οριζόντιο έδαφος. Δεύτερη μικρή σφαίρα (1), μάζας m_1 , κινείται ευθύγραμμα ολισθαίνοντας στο παγωμένο δάπεδο της ταράτσας, το οποίο είναι εντελώς λείο, με ταχύτητα \vec{v}_1 , μέτρου $v_1=15~\frac{\rm m}{\rm s}$ και συγκρούεται μετωπικά με την ακίνητη σφαίρα (2).

Μετά τη σύγκρουση η σφαίρα (2) εκτελεί οριζόντια βολή και χτυπάει στο έδαφος σε σημείο Γ, το οποίο απέχει από το A απόσταση $(A\Gamma)=d=25\ m.$

Αν δίνεται ότι για τις μάζες των δύο σφαιρών ισχύει η σχέση $m_2=2\cdot m_1$ και το μέτρο της επιτάχυνσης βαρύτητας δίνεται $g=10~{\rm m\over s^2}$, να υπολογίσετε:

4.1.Τη χρονική διάρκεια της οριζόντιας βολής της σφαίρας (2), από το σημείο Α μέχρι να κτυπήσει στο έδαφος, στο σημείο Γ.

Μονάδες 6

4.2.Το μέτρο της οριζόντιας ταχύτητας \vec{v}_2 που απέκτησε η σφαίρα (2) αμέσως μετά τη κρούση της σφαίρας (1) πάνω της.

Μονάδες 7

4.3.Την ταχύτητα της σφαίρας (1) αμέσως μετά την κρούση.

Μονάδες 6

4.4.Το ποσοστό της κινητικής ενέργειας που είχε η σφαίρα (1) πριν την κρούση, το οποίο μετατράπηκε σε θερμική ενέργεια κατά την κρούση των δύο σφαιρών.

Μονάδες 6