

# Wedges, oil, and vinegar

A new algorithm for UOV in characteristic 2

Lars Ran
May 6, Rump Session Eurocrypt 2025

A new wedge product-based algorithm



Leverages the fact that the polar forms of the UOV public key in characteristic 2 are alternating

## Why should you care?

| Scheme | V   | 0  | m   | q              | o' | Complexity | SL  |
|--------|-----|----|-----|----------------|----|------------|-----|
| UOV    | 68  | 44 | 44  | 2 <sup>8</sup> | 18 | 140        | - 1 |
|        | 96  | 64 | 64  | $2^4$          | 22 | 175        | - 1 |
|        | 112 | 72 | 72  | 2 <sup>8</sup> | 26 | 206        | Ш   |
|        | 148 | 96 | 96  | 2 <sup>8</sup> | 32 | 257        | V   |
| MAYO   | 64  | 17 | 64  | 2 <sup>4</sup> | 13 | 112        | ı   |
| SNOVA  | 74  | 34 | 68  | 2 <sup>4</sup> | 15 | 127        | ı   |
|        | 75  | 24 | 72  | $2^4$          | 14 | 123        | - 1 |
|        | 96  | 20 | 80  | $2^4$          | 19 | 160        | - 1 |
|        | 112 | 50 | 100 | $2^4$          | 20 | 174        | Ш   |
|        | 147 | 33 | 99  | $2^4$          | 31 | 249        | Ш   |
|        | 148 | 32 | 128 | $2^4$          | 26 | 224        | Ш   |
|        | 120 | 25 | 125 | $2^4$          | 19 | 172        | Ш   |
|        | 150 | 66 | 132 | $2^4$          | 26 | 225        | V   |
|        | 198 | 45 | 135 | $2^4$          | 40 | 323        | V   |
|        | 145 | 30 | 150 | $2^4$          | 22 | 200        | V   |

## The UOV public map

Central map:

$$f_k(\mathbf{x}) = \sum_{\substack{i \leq n \ j \leq v}} \alpha_{ij}^{(k)} x_i x_j = \mathbf{x}^{\top} \mathbf{F}_k \mathbf{x}$$

Polar form:

$$\mathbf{F}_k + \mathbf{F}_k^{\top} = \sum \alpha_{ij}^{(k)} \mathbf{e}_i \wedge \mathbf{e}_j$$



### The UOV public map

Central map:

$$f_k(\mathbf{x}) = \sum_{\substack{i \leq n \ j \leq v}} \alpha_{ij}^{(k)} x_i x_j = \mathbf{x}^{\top} \mathbf{F}_k \mathbf{x}$$

Polar form:

$$\mathbf{F}_k + \mathbf{F}_k^{\top} = \sum \alpha_{ij}^{(k)} \mathbf{e}_i \wedge \mathbf{e}_j$$

Similarly, with  $\{\mathbf v_1,\dots,\mathbf v_v\}$  a basis for  $O^\perp$ , the polar form of the public map  $p_k(x)$  is

$$\mathbf{Q}_k = \mathbf{P}_k + \mathbf{P}_k^{ op} = \sum eta_{ij}^{(k)} \mathbf{v}_i \wedge \mathbf{e}_j$$

#### The equations

For  $\{\mathbf v_1,\dots,\mathbf v_{\mathbf v}\}$  a basis for  $O^\perp$  we obtain the following equality

$$\mathbf{v}_1 \wedge \ldots \wedge \mathbf{v}_{v} \wedge \mathbf{Q}_k = \sum eta_{ij}^{(k)} \mathbf{v}_1 \wedge \ldots \wedge \mathbf{v}_{v} \wedge \mathbf{v}_i \wedge \mathbf{e}_j = \mathbf{0}$$



#### The equations

For  $\{\mathbf v_1,\dots,\mathbf v_{\mathbf v}\}$  a basis for  $O^\perp$  we obtain the following equality

$$\mathbf{v}_1 \wedge \ldots \wedge \mathbf{v}_v \wedge \mathbf{Q}_k = \sum \beta_{ij}^{(k)} \mathbf{v}_1 \wedge \ldots \wedge \mathbf{v}_v \wedge \mathbf{v}_i \wedge \mathbf{e}_j = \mathbf{0}$$

And thus we construct a map with  $\mathbf{v}_1 \wedge \ldots \wedge \mathbf{v}_{\nu}$  in the kernel

$$egin{aligned} (-) \wedge \mathbf{Q} : \mathbb{F}_q^{inom{r}{v}} &
ightarrow \mathbb{F}_q^{minom{r}{v+2}} \ \mathcal{V} &
ightarrow (\mathcal{V} \wedge \mathbf{Q}_1, \dots, \mathcal{V} \wedge \mathbf{Q}_m) \end{aligned}$$



#### The equations

For  $\{\mathbf v_1,\dots,\mathbf v_v\}$  a basis for  $O^\perp$  we obtain the following equality

$$\mathbf{v}_1 \wedge \ldots \wedge \mathbf{v}_v \wedge \mathbf{Q}_k = \sum \beta_{ij}^{(k)} \mathbf{v}_1 \wedge \ldots \wedge \mathbf{v}_v \wedge \mathbf{v}_i \wedge \mathbf{e}_j = \mathbf{0}$$

And thus we construct a map with  $\mathbf{v}_1 \wedge \ldots \wedge \mathbf{v}_{\nu}$  in the kernel

$$(-) \wedge \mathbf{Q} : \mathbb{F}_q^{\binom{n}{2}} o \mathbb{F}_q^{m\binom{n}{n-2}} \ \mathcal{V} \mapsto (\mathcal{V} \wedge \mathbf{Q}_1, \dots, \mathcal{V} \wedge \mathbf{Q}_m)$$

If the kernel is of dimension 1, we can find it using sparse linear algebra, and hence retrieve the oil space!

### **Experimental evidence**

Tested the rank prediction for 3188 different (non-trivial) parameter sets (v, o, m)

Only 7 notable exceptions corresponding to  $v \ge 2m$ 

After further analysis these can be accounted for with a single rule

Perfect prediction for all 3188 instances



## Thanks for listening!

| Scheme | V   | 0  | m   | q              | o' | Complexity | SL  |
|--------|-----|----|-----|----------------|----|------------|-----|
| UOV    | 68  | 44 | 44  | 2 <sup>8</sup> | 18 | 140        | - 1 |
|        | 96  | 64 | 64  | 2 <sup>4</sup> | 22 | 175        | 1   |
|        | 112 | 72 | 72  | 2 <sup>8</sup> | 26 | 206        | Ш   |
|        | 148 | 96 | 96  | 2 <sup>8</sup> | 32 | 257        | V   |
| MAYO   | 64  | 17 | 64  | 2 <sup>4</sup> | 13 | 112        | 1   |
| SNOVA  | 74  | 34 | 68  | 2 <sup>4</sup> | 15 | 127        | - 1 |
|        | 75  | 24 | 72  | 2 <sup>4</sup> | 14 | 123        | - 1 |
|        | 96  | 20 | 80  | 2 <sup>4</sup> | 19 | 160        | - 1 |
|        | 112 | 50 | 100 | 2 <sup>4</sup> | 20 | 174        | Ш   |
|        | 147 | 33 | 99  | 2 <sup>4</sup> | 31 | 249        | Ш   |
|        | 148 | 32 | 128 | 2 <sup>4</sup> | 26 | 224        | Ш   |
|        | 120 | 25 | 125 | 2 <sup>4</sup> | 19 | 172        | Ш   |
|        | 150 | 66 | 132 | 2 <sup>4</sup> | 26 | 225        | V   |
|        | 198 | 45 | 135 | 2 <sup>4</sup> | 40 | 323        | V   |
|        | 145 | 30 | 150 | 2 <sup>4</sup> | 22 | 200        | V   |

