Lecture 8

Michael Brodskiy

Professor: M. Onabajo

September 25, 2024

• PN-Junction Diodes

- Shockley Equation ("Diode Equation")
 - * More realistic model for the I-V characteristics (for FB and RB regions)
 - * Based on semiconductor physics

$$i_D = I_s e^{V_D/(nV_T)} + 1$$

- I_s is the saturation current (10⁻⁶ to 10⁻¹⁸[A])
- n= diode ideality factor, also called emissions coefficient, and can range from 1 to 2
- $-V_T = (kT)/q$ is the thermal voltage ($\approx 26 [\mathrm{mV}]$ at $T = 300 [\mathrm{K}]$ room temperature)
 - * k= Boltzmann's constant (1.38 · 10⁻²³[J/K]), q= electron charge (1.6 · 10⁻¹⁹[C])

• Temperature Dependence

- At a constant current, the voltage drop decreases approximately 2[mV] for every $1[^{\circ}C]$ increase in temperature
- Solving Circuits using the Junction Diode Model
 - Iterative Approach
 - * Pro: accurate hand calculations
 - * Con: tedious (time-consuming)
 - Graphical Approach
 - * Pro: fast
 - * Con: inaccurate (unless done numerically with a computer program)
 - Simulation
 - * Pro: most accurate
 - * Con: limited insights into the trade-offs