Homework 7 for Math 2370

Zhen Yao

Problem 1. Let A_k , $1 \le k \le K$ be $n \times n$ matrices satisfying

$$A_i A_j = A_j A_i$$
 for any $1 \le i, j \le k$.

Show the existence of a basis of \mathbb{C}^n which consists of eigenvector and generalized eigenvectors of A_k for each $1 \leq k \leq K$.

Proof. Let $\{\lambda_j\}_{j=1}^J$ be J distinct eigenvalues of A_1 , and then we have

$$\mathbb{C}^n = \bigoplus_{j=1}^J N_j$$

where $N_j = N_{(A_1 - \lambda_j I)^{d_j}}$, d_j is index of jth eigenvalue λ_j . For $\forall x \in \mathbb{C}^n$, since $A_1 A_i = A_i A_1, 2 \leq i \leq K$, then we have $(A_1 - \lambda_j I)^{d_j} A_i = A_i (A_1 - \lambda_j I)^{d_j}$. Thus, if $x \in N_k$

$$(A_1 - \lambda_i I)^{d_j} A_i x = A_i (A_1 - \lambda_i I)^{d_j} x = 0$$

which means $A_i x \in N_j$. Thus, A_i is a mapping from N_j to N_j . Now we apply Spectral Theorem to the linear mapping A_i and we know that N_j has a basis consisting of eigenvectors and generalized eigenvectors of A_i . And it is true for all $A_i, 2 \le i \le K$. Thus, a basis of \mathbb{C}^n consists of eigenvectors and generalized eigenvectors of A_j for each $1 \le j \le K$. The proof is complete.

Problem 2. Let λ be an eigenvalue of an $n \times n$ matrix A. Suppose that

$$\dim N_1(\lambda) = 2, \dim N_2(\lambda) = 4$$

and
$$\dim N_3(\lambda) = \dim N_4(\lambda) = 5,$$

Find the Jordan blocks of A corresponding to λ .

Proof. Since dim $N_3(\lambda) = \dim N_4(\lambda) = 5$, then we can know that the index $d(\lambda) = 3$, then we can know the Jordan blocks of A corresponding to λ is

$$J = \left(\begin{array}{ccccc} \lambda & 1 & 0 & 0 & 0 \\ 0 & \lambda & 1 & 0 & 0 \\ 0 & 0 & \lambda & 0 & 0 \\ 0 & 0 & 0 & \lambda & 1 \\ 0 & 0 & 0 & 0 & \lambda \end{array}\right)$$

We can verify that this is the Jordan blocks we want. We can compute $N_{(J-\lambda I)}$, $N_{(J-\lambda I)^2}$, $N_{(J-\lambda I)^3}$ and $N_{(J-\lambda I)^4}$. We have

and it is obvious that dim $N_{(J-\lambda I)}=2$, since there are two 0 column vectors. Similarly, we have

and we can know that dim $N_{(J-\lambda I)^2}=4$ and dim $N_{(J-\lambda I)^3}=\dim N_{(J-\lambda I)^3}=5$. The proof is complete.

Problem 3. Let A be a 5×5 rank one matrix, find all possible Jordan canonical forms of A. The order of Jordan blocks should be ignored.

Proof. Since A is rank one matrix, then there exists two column vectors a, b such that $A = ab^T$, also we know that the minimal polynomial for A is $m_A(\lambda) = \lambda^2 - \alpha \lambda$. So A has eigenvalue 0 with multiplicity 4 and α with multiplicity 1. There are several possible Jordan forms for eigenvalue 0, which are

and

Since the null space of A - 0I has dimension 4 and one of them is generated by eigenvalue α . Thus, dim $N_{A-0I} = 3$, which means that there are 3 blocks corresponding to eigenvalue 0. Thus, we can know that all possible Jordan canonical forms of A are

Problem 4. Let

$$A = \left(\begin{array}{rrr} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right).$$

Find its eigenvectors and generalized eigenvectors. Find its Jordan canonical form J and the corresponding matrix S so that

$$A = SJS^{-1}$$
.

Proof. Taking $A - \lambda I = 0$, we can have characteristic polynomial $p_A(\lambda) = (1 - \lambda)^3$, which gives us eigenvalues 1. Now we determine the null space of $A - 1 \dots I$

$$A - I = \left(\begin{array}{ccc} 0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right)$$

So this eigenspace is dimensional-2. Hence there are two Jordan blocks corresponding to the eigenvalue 1 in the Jordan form. So we have its Jordan canonical form

$$J = \left(\begin{array}{ccc} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right)$$

Then we can know the eigenvectors corresponding to 1 are

$$v_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$
 and $v_2 = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}$

Each of these will give Jordan chain and we compute $(A - I)w_1 = v_1$ and $(A - I)w_2 = v_2$. The second equation does not have solution, so we can know that

$$w_1 = \left(\begin{array}{c} 1\\1\\0 \end{array}\right)$$

Then we have the engenvectors and generalized engenvectors, which are

$$\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \text{and} \quad \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}$$

Thus, we can find S, such that AS = JS, and we have

$$S = \left(\begin{array}{ccc} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & -1 \end{array}\right).$$

Problem 5. Let P be the linear space of polynomials with real coefficients equipped with the scalar product

$$(f,g) = \int_0^1 f(x) g(x) dx.$$

- (a) Using Gram-Schmidt process to generate an orthonormal basis of the span of vectors $\{1, x^2\}$.
- (b) Find the projection of polynomial x on the span of vectors $\{1, x^2\}$.

Proof. (a) Set $y_1 = 1$ and $y_2 = x^2$, using Gram-Schmidt process, we can have

$$x_1 = \frac{y_1}{\|y_1\|} = \frac{1}{\sqrt{\int_0^1 1 dx}} = 1$$

$$x_2 = \frac{y_2 - (y_2, x_1)x_1}{\|y_2 - (y_2, x_1)x_1\|} = \frac{x^2 - \frac{1}{3}}{\sqrt{\int_0^1 (x^2 - 1/3)^2 dx}} = \frac{3\sqrt{5}x^2 - \sqrt{5}}{2}$$

(b) Finding the projection of polynomial x on the span of vectors $\{1, x^2\}$ is equivalent to finding the solution for a, b in the equations

$$(1, x - (a + bx^2)) = 0$$
$$(x^2, x - (a + bx^2)) = 0$$

which gives us $b = \frac{15}{16}$, $a = \frac{3}{16}$. Thus, the projection is $\left(\frac{3}{16}, \frac{15}{16}\right)$.

Problem 6. Find the least squares solution to the over-determined system

$$3x - y = 1,$$
$$x + y = 1,$$
$$2x + 3y = 2.$$

Proof. Writing these equations into AX = b, where $A = \begin{pmatrix} 3 & -1 \\ 1 & 1 \\ 2 & 3 \end{pmatrix}$, $X = \begin{pmatrix} x \\ y \end{pmatrix}$, and

$$b = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$$
, then the least square least solution can be determined by $z = (A^T A)^{-1} A^T b = \begin{pmatrix} 0.4638 \\ 0.3768 \end{pmatrix}$.