H4: Arbeid 4.1 het begrip arbeid				
tekenconventie W	Positieve arbeid: arbeid verricht op het systeem -> verplaatsing en uitwendige kracht zelfde zin Negatieve arbeid: arbeid verricht door het systeem -> verpl. en uitw. kracht in tegengestelde zin			
4.2 arbeid bij volumeverandering				
differentiaal van arbeid in thermodyn.	Beschouw een fluïdum in een cilinder met beweegbare zuiger met doorsnede A > het gas oefent een kracht PA uit op de zuiger > stel dat we een kracht iets groter dan PA vanbuiten uitoefenen op de zuiger, dan: $dW = Fdx = -PAdx,$ of dus, met Adx = dV: $dW = -PdV.$			
arbeid ve systeem	In een eindig quasistatisch proces van volume V_i naar V_f wordt de arbeid gegeven door: $W = -\int_{V_i}^{V_f} P dV.$ >> aangezien we een quasistatisch proces hebben, kan P uitgedrukt worden ifv T en V Als we eenzelfde pad doorlopen geldt: $W_{if} = -W_{fi},$			
kringproces / cyclus	In wijzerzin wordt er negatieve arbeid verricht, in tegenw.zin wordt er pos. arbeid verricht > herhaal het proces in cycli P Opp < 0 2 Figuur 4.2: PV-diagram voor (a) een expansie, (b) een compressie en (c) een cyclus.			
4.3 afhankelijkheid van de arbeid van de afgelegde weg				
afhankelijkheid vd weg	Bekijk de netto arbeid in de cyclus: $W_{cyclus} = W_{12}(I) + W_{21}(II) = - W_{12}(I) + W_{21}(II) < 0,$ waaruit: $ W_{12}(I) > W_{21}(II) .$ als we nu proces II van 1 naar 2 voorlopen geldt: $W_{12}(II) = -W_{21}(II) < 0,$ of: $ W_{12}(II) = W_{21}(II) .$ waarbij we nu hebben: $ W_{12}(I) > W_{12}(II) ,$ dus we vinden, aangezien beide negatief zijn: $W_{12}(I) < W_{12}(II),$ >> de arbeid hangt af van de afgelegde weg			
vb: arbeid afh v proces	bekijk verschillende manieren om van toestand 1 naar toestand 2 te gaan I: eerst isobaar, dan isochoor > isochoor wordt geen arbeid verricht dus we hebben gewoon: $W_{12}(I) = -2P_0V_0$. III: eerst isochoor, dan isobaar: $W_{12}(II) = -P_0V_0$. $W_{12}(III) = -\frac{3}{2}P_0V_0.$			
dW als differentiaal	Uit vorige besluiten we dus dat dW geen totale differentiaal is nl: ze is geen functie van thermodynamische coords > als we de arbeid willen berekenen, moeten we ook het proces kennen			

4.3.1 isobare compressie of expansie van een gas

P is constant, dus we hebben: $W = -P(V_f - V_i)$. isobare compr/expansie

4.3.2 isotherme compressie of expansie van een ideaal gas

isotherme compressie

Voor een ideaal gas geldt PV = nRT, dus:

$$W = -\int_{V_i}^{V_f} \frac{nRT}{V} dV,$$

met T cte in een isotherm proces dus:

$$W = -nRT \ln \frac{V_f}{V_i}.$$

4.3.3 isotherme toename van de druk op een vaste stof

druk op vaste stof

Voor infin. volumeverandering geldt: $dV = \left(\frac{\partial V}{\partial P}\right)_T dP + \left(\frac{\partial V}{\partial T}\right)_P dT$.

en dus bij cte T:

$$dV = -\kappa V dP,$$

wat ons geeft:
$$W = \int_{P_i}^{P_f} \, \kappa V P dP.$$

aangezien vaste stoffen niet echt samendrukbaar zijn, kunnen we V en κ cte nemen:

$$W \approx \frac{\kappa V}{2} (P_f^2 - P_i^2),$$

4.3.4 lengteverandering van een gespannen snaar

arbeid in snaar

Als een snaar onder spanning F veranderd van L naar L+dL dan is de infin. arbeid:

$$dW = FdL$$
.

als de krachten op elk ogenblik weinig verschillen van de spanning

> dan is het proces quasistatisch en kan men een toestandsvgl gebruiken

> in het elastisch gebied geldt:

$$W = \int_{L_i}^{L_f} const.(L - L_o)dL,$$

dus:

$$W = \frac{const.}{2} \left[(L_f - L_o)^2 - (L_i - L_o)^2 \right].$$

4.3.5 verandering van de oppervlakte van een oppervlaktefilm

oppervlaktefilm

Beschouw een vloeistoffilm in een U-vormig raam met beweegbare draad van lengte I > als we de draad bewegen over een afstand dx hebben we:

$$dW = Fdx = 2fldx,$$

nu geldt er: dA = 2ldx, dus:

$$dW = f dA$$
.

voor een eindige oppervlakteverandering van Ai naar Af hebben we:

$$W = \int_{A_f}^{A_f} f \, dA.$$

4.3.6 verandering van de lading van een omkeerbare elektrische cel

Arbeid in Daniellcel

We hebben een omkeerbare Daniellcel aangesloten met een potentiometer

> schakel een extern potentiaalverschil infinitesimaal kleiner dan de ems V_E

> er zal een hoeveelheid lading dZ overgedragen worden

> arbeid wordt geleverd door de cel

de arbeid is dan: $\,dW=V_{arepsilon}\,dZ.$

of dus:

$$W = \int_{Z_i}^{Z_f} V_{\varepsilon} dZ.$$

4.3.7 verandering van de polarisatie van een diëlektricum

diëlektricum

voor een diëlektrisch materiaal tss 2 parallelle condensatorplaten met opp A en afstand I

- > potentiaal V_{ϵ} geleverd door een batterij
- > elektrisch veld met veldsterkte E gegeven door: $E=rac{V_{arepsilon}}{r}.$

er is een lading +Z aanwezig op de ene plaat en -Z op de andere

- > verander deze nu met een infin. hoeveelheid dZ
- > de verandering in arbeid is: $dW=V_{arepsilon}dZ=EldZ.$

de lading op de platen is gegeven door Z=DA met D=diëlektrische verplaatsing:

$$dW = AlEdD$$

= $VEdD$.

met V de volumeverandering vh diëlektrisch materiaal

> beschouw V als constant, dan: $dD = \varepsilon_0 dE + \frac{d\Pi}{V}$

dus nu is de weerstand: $dW = V arepsilon_0 E dE + E d\Pi$.

- > zou ook nodig zijn moest er een vacuum tss de platen zitten
- > ie: is onafh van het diëlektrisch materiaal
- de tweede term is de arbeid verricht door het diëlektricum
- > we vinden dus:

$$dW = Ed\Pi$$
.

4.3.8 verandering van de magnetisatie van een magnetisch materiaal

arbeid in magn. materiaal

beschouw een magnetisch materiaal in een toroïde

- > deze heeft doorsnede A, omtrek L en N windingen
- > de stroom in de toroïde induceert een magnetisch veld:

$$V_{\varepsilon} = -\frac{d\phi}{dt} = -NA\frac{dB}{dt}.$$

gedurende een tijd dt zal een hoeveelheid lading dZ in het circuit gebracht worden:

$$\begin{split} dW &= -V_{\varepsilon}dZ = NA\frac{dB}{dt}dZ \\ &= NA\frac{dZ}{dt}dB = NAidB, \end{split}$$

de magnetische veldsterkte teweeggebracht door de stroom is:

$$H = \frac{Ni}{L} = \frac{NAi}{AL} = \frac{NAi}{V},$$

dus we hebben: NAi = VH

waarvoor we een uitdrukking voor dW hebben: dW = VHdB.

als we B differentiëren bekomen we:

$$dB = \mu_o dH + \mu_0 \frac{dM}{V},$$

voor zelfde reden als bij E is de arbeid geleverd door het magnetisch materiaal dus gegeven door:

$$dW = \mu_0 H dM.$$

overzicht

Eenvoudig systeem	Intensieve grootheid (veralg. kracht)	Extensieve grootheid (veralg. verplaatsing)	Arbeid (in J)
Hydrostat. systeem	P (in Pa)	V (in m ³)	-P dV
Gespannen draad	F (in N)	L (in m)	F dL
Oppervlaktefilm	f (in N/m)	$A ext{ (in } m^2)$	f dA
Omkeerbare cel	V_{ε} (in V)	Z (in C)	$V_{\varepsilon} dZ$
Diëlektricum	E (in V/m)	Π (in C.m)	$E \ d\Pi$
Magnetische stof	H (in A/m)	$M~({\rm in~A.m^2})$	$\mu_o H \ dM$

4.4 samengestelde systemen

arbeid in samengesteld systeem

In de figuur hebben we twee fluïda gescheiden door een diathermische wand

> zijn op eenzelfde temperatuur, door aanbrenging warmtereservoir

> 5 coords: P, V, P', V', T en 2 toestandsvergelijkingen

Nu is de arbeid:

$$dW = -PdV - P'dV'.$$

>> bij elke temp T zijn er twee onafh variabelen > stel deze voor in een 3D figuur:

We bsluiten: dW kunnen we optellen om de samengestelde te vinden