ИЗЛУЧЕНИЕ В АСТРОФИЗИКЕ 2

АНТОН БИРЮКОВ. МОДУЛЬ «АСТРОФИЗИКА», ОСЕНЬ 2022. ФАКУЛЬТЕТ ФИЗИКИ ВШЭ.

ДОМАШНИЕ ЗАДАНИЯ: РЕЗУЛЬТАТЫ

N	ФИО	Домашнее задание							C	T	Vaurna si waa na 6 a 7 a	Cnarusa	ИТОГ
		1	2	3	4	5	6	7	Среднее	Текущая оценка	Контрольная работа	Среднее	ИТОГ
1	Архипова Антонина	9											
2	Бережной Павел	9											
3	Быкова Дарья	8											
4	Винецкая Полина	10											
5	Горожанкин Вадим	9											
6	Залевский Никита	9											
7	Ипатов Николай	9											
8	Калмыков Михаил	9											
9	Кулаков Пётр	8											
10	Лопатина Софья	9											
11	Никонов Владислав	9											
12	Океанова Анна Мария	10											
13	Осипова Анастасия	10											
14	Павленко Маргарита	6											
15	Парфёнов Максим	10											
16	Полькин Артём	10											
17	Топоркова Анна	8											
18	Усманов Радион	9											
19	Французов Виктор	9											
20	Хабибуллин Альберт	10											
21	Шишкин Максим	9											
22	Щекотихин Евгений	9											

ИЗЛУЧЕНИЕ В АСТРОФИЗИКЕ 2

МЕЖЗВЕЗДНАЯ ПЫЛЬ

ПОГЛОЩЕНИЕ И ОТРАЖЕНИЕ ПЫЛЬЮ

ИЗЛУЧЕНИЕ В АСТРОФИЗИКЕ 2

4

МЕЖЗВЁЗДНОЕ ПОГЛОЩЕНИЕ

$$\Delta m = -2.5 \log \frac{I_0 e^{-\tau}}{I_0} \approx 1.086 \tau$$

Fig. 1. Wavelength dependence of interstellar extinction normalised to 1.8 mag/kpc at λ⁻¹ = 1.8 μm⁻¹. Points are astronomical observations; solid curve is for the grain model proposed here. (♠ average extinction data compiled from many sources by Sapar and Kuusik (1979). ▲ ESA data from Jamar et al. (1976), ■ OAO II data from Bless and Savage (1972).

ДИСПЕРСИЯ РАДИОВОЛН

 $\Delta t_{1,2} = 4.6 \ (\lambda_1^2 - \lambda_2^2) \overline{n_e} \cdot D \ [\text{MKC}]$

$$v_g = c \sqrt{1 - \frac{\omega_p^2}{\omega^2}}$$

$$\omega_p pprox 5.6 \cdot 10^4 \sqrt{n_e}$$
 рад/с

Если длина волны выражается в см, расстояние в пк, а концентрация электронов в см⁻³

ИЗЛУЧЕНИЕ В АСТРОФИЗИКЕ 2

 $\overline{n_e} \cdot D = DM$ -- «Мера дисперсии» [пк/см³]

ДИФРАКЦИЯ РАДИОВОЛН

ДИФРАКЦИЯ РАДИОВОЛН

$$\tau \propto \nu^{-4}$$

АТМОСФЕРА ЗЕМЛИ

АТМОСФЕРА ЗЕМЛИ

СВЕЧЕНИЕ НОЧНОГО НЕБА

ИЗОБРАЖЕНИЕ ЗВЕЗДЫ

АБСОЛЮТНО ЧЕРНОЕ ТЕЛО

Emitted Radiation

Blackbody Radiator

ИЗЛУЧЕНИЕ В АСТРОФИЗИКЕ 2

ПЛАНКОВСКИЙ СПЕКТР

ПЛАНКОВСКИЙ СПЕКТР

- $h\nu \ll kT \to \text{Область Рэлея-}$ Джинса, степенной спектр: $B_{\nu} \propto \nu^2$
- $h \nu \gg k T \to$ Область Вина, экспоненциальный спектр: $B_{
 u} \propto
 u^3 e^{u/
 u_0}$

ЦЕФЕИДЫ

0.0 SUCYG 0.4 8.0 Δ mag 2.0 2.4 3.2 3.6 0.2 0.4 0.6 0.2 0.4 0.6 0.8 0.8 0 Phase

ИЗЛУЧЕНИЕ В АСТРОФИЗИКЕ 2

ТЕМПЕРАТУРА И СПЕКТР СОЛНЦА

 $T_{\rm eff}$, $\odot \approx 5772 \,\mathrm{K}$

Поток F_{ν} на единичный интервал частот.

ФОН ИЗЛУЧЕНИЯ

КОМПТОНОВСКОЕ РАССЕЯНИЕ

Артур Комптон (1892 – 1962)

$$\lambda_c = \frac{h}{m_e c} \approx 2.4 \times 10^{-10} \text{ cm}$$

(Комптоновская длина волны)

$$\lambda' - \lambda_0 = \frac{h}{m_e c} (1 - \cos \theta)$$

(В предположении, что в начале электрон покоился)

ОБРАТНЫЙ КОМПТОН-ЭФФЕКТ

Энергия электрона очень велика: $\gamma \gg 1$. И она передаётся фотону так, что его энергия увеличивается: $\mathcal{E}'_{\gamma} \sim \gamma^2 \mathcal{E}_{\gamma}$

$$\dot{E}_{IC} = \frac{4}{3}\sigma_T c \beta^2 \gamma^2 U_{ph}$$

СЛАЙД-ДЕЖАВЮ: ТАКИЕ РАЗНЫЕ СПЕКТРЫ

ИЗЛУЧЕНИЕ В АСТРОФИЗИКЕ ₂ 22

ЭФФЕКТ СЮНЯЕВА-ЗЕЛЬДОВИЧА

$$\frac{\Delta T}{T_{CMB}} \propto \sigma_T \int n_e(l) \frac{k T_e(l)}{m_e c^2} dl$$

ИЗЛУЧЕНИЕ В АСТРОФИЗИКЕ 2

АБЕРРАЦИЯ СВЕТА

Ground Reference Frame

$$v_x = \frac{dx}{dt} = \frac{dx' + V \cdot dt'}{dt' + \frac{V}{c^2} \cdot dx'} \Rightarrow v_x = \frac{v_x' + V}{1 + \frac{V \cdot v_x'}{c^2}}$$

$$v_{y} = \frac{dy}{dt} = \frac{dy'}{\Gamma \cdot \left(dt' + \frac{V}{c^{2}} \cdot dx'\right)} \Rightarrow v_{y} = \frac{v'_{y}}{\Gamma \cdot \left(1 + \frac{V \cdot v'_{x}}{c^{2}}\right)}$$

$$v = (v_x', v_y') = (0, c) \Rightarrow \frac{v_x}{v_y} = \tan \theta = \frac{1}{\Gamma \beta}$$
 или $\theta \approx \frac{1}{\Gamma}$ при $V \sim c$

ИЗЛУЧЕНИЕ ЗАРЯЖЕННЫМИ ЧАСТИЦАМИ

– свободно-свободные переходы, нем. Bremsstrahlung – «излучение торможения» или «тормозное излучение»

$$\frac{dE}{dt} = -\frac{2q^2}{3c^3} a^2$$

- темп потерь энергии на излучение зарядом q, двигающимся с ускорением a. Здесь с - скорость света)

СИНХРОТРОННОЕ ИЗЛУЧЕНИЕ

$$\dot{E}_{sync} = \frac{4}{3}\sigma_T c\beta^2 \gamma^2 U_B$$

ИЗЛУЧЕНИЕ В АСТРОФИЗИКЕ 2

26

СИНХРОТРОННОЕ ИЗЛУЧЕНИЕ

ЯРКОСТНАЯ ТЕМПЕРАТУРА

νW (GHz s)

ИЗЛУЧЕНИЕ В АСТРОФИЗИКЕ 2

РЕЛЯТИВИСТСКИЙ ЭФФЕКТ ДОПЛЕРА

$$v = v_0 \frac{\sqrt{1 - \frac{v^2}{c^2}}}{1 - \frac{v}{c} \cos \theta}$$

Если $\theta=90^\circ$, то всё равно $\nu_0<\nu$ – это т.н. «поперечный эффект Доплера»

ДОМАШНЕЕ ЗАДАНИЕ

Реликтовое излучение представляет собой изотропный фон теплового излучения со средней температурой $T_{CMB}=2.73~{\rm K}.$

- а) Определите скорость Солнечной системы (её барицентра) относительно реликтового фона, если амплитуда дипольной составляющей в неоднородности его температуры составляет $\Delta T \approx 6.7 \times 10^{-3} \; \mathrm{K}$
- б) С какой скоростью должна была бы двигаться Солнечная система, чтобы $\Delta T = T_{CMB}$?

ИЗЛУЧЕНИЕ В АСТРОФИЗИКЕ 2

ОСНОВНАЯ ЛИТЕРАТУРА К ТЕМЕ

- G. Rybicki & A. Lightman, «Radiative processes in astrophysics», chapters 1.1-1.5, 5.1, 6.1-6.2, 7.2
- А. Засов, К. Постнов, «Курс общей астрофизики», Глава 2.

ИЗЛУЧЕНИЕ В АСТРОФИЗИКЕ 2

ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА К ТЕМЕ

- К.В. Бычков, «Основные понятия теории излучения»
 - http://heritage.sai.msu.ru/ucheb/Bychkov/Intensity.htm
- Astronomical magnitude systems
 - https://lweb.cfa.harvard.edu/~dfabricant/huchra/ay I 45/mags.html
- Kramm & Molders «Planck's blackbody radiation law: Presentation in different domains and determination of the related dimensional constants»
 - https://arxiv.org/abs/0901.1863
- «The derivation of Planck formula»
 - https://edisciplinas.usp.br/pluginfile.php/48089/course/section/16461/qsp_chapter10-plank.pdf