Теоретические ("малые") домашние задания

Математическая логика, ИТМО, МЗ235-МЗ239, весна 2020 года

Домашнее задание №1: «знакомство с исчислением высказываний»

- 1. Укажите про каждое из следующих высказываний, общезначимо, выполнимо, опровержимо или невыполнимо ли оно:
 - (a) $\neg A \lor \neg \neg A$
 - (b) $(A \to \neg B) \lor (B \to \neg C) \lor (C \to \neg A)$
 - (c) $A \to B \vee A$
 - (d) $A \rightarrow B \& B \rightarrow A$
 - (e) $A \to B \to \neg B \to \neg A$.
- 2. Будем говорить, что высказывание α следует из высказываний $\gamma_1, \gamma_2, \ldots, \gamma_n$ (и будем записывать это как $\gamma_1, \gamma_2, \ldots, \gamma_n \models \alpha$), если при любой оценке, такой, что при всех i выполнено $[\![\gamma_i]\!] = \mathbf{H}$, также выполнено и $[\![\alpha]\!] = \mathbf{H}$.

Пусть даны высказывания α и β , причём $\alpha \models \beta$, но $\beta \not\models \alpha$. Придумайте «промежуточное» высказывание γ , такое, что $\alpha \models \gamma, \gamma \models \beta$, причём $\gamma \not\models \alpha$ и $\beta \not\models \gamma$.

- 3. Простые высказывания. Докажите высказывания, построив полный вывод:
 - (a) $\alpha, \beta \vdash \alpha \& \beta$
 - (b) $\alpha, \beta \vdash \alpha \lor \beta$
 - (c) $\neg \alpha, \beta \vdash \alpha \lor \beta$
 - (d) $\alpha, \neg \beta \vdash \alpha \lor \beta$
 - (e) $\gamma \vdash \alpha \rightarrow \gamma$
 - (f) $\neg \alpha \vdash \neg \alpha$
 - (g) $\alpha, \beta \vdash \alpha \rightarrow \beta$
- 4. Ассоциативность и коммутативность.
 - (a) Докажите или опровергните: $\models \alpha \to \beta$ влечёт $\models \beta \to \alpha$.
 - (b) Докажите: $\vdash \alpha \lor \beta \to \beta \lor \alpha$
 - (c) Докажите: $\vdash \alpha \& \beta \rightarrow \beta \& \alpha$
- 5. Контрапозиция. $\vdash (\alpha \to \beta) \to \neg \beta \to \neg \alpha$.
- 6. Докажите следующие высказывания, построив полный вывод:
 - (a) $\neg \alpha, \beta \vdash \neg (\alpha \& \beta)$
 - (b) $\alpha, \neg \beta \vdash \neg (\alpha \& \beta)$
 - (c) $\neg \alpha, \neg \beta \vdash \neg (\alpha \& \beta)$
 - (d) $\neg \alpha, \neg \beta \vdash \neg (\alpha \lor \beta)$
 - (e) $\alpha, \neg \beta \vdash \neg(\alpha \rightarrow \beta)$
 - (f) $\neg \alpha, \beta \vdash \alpha \rightarrow \beta$
 - (g) $\neg \alpha, \neg \beta \vdash \alpha \rightarrow \beta$
 - (h) $\alpha \vdash \neg \neg \alpha$

Домашнее задание №2: «интуиционистское исчисление высказываний»

- 1. Долги по теореме о полноте ИВ. Докажите:
 - (a) $\vdash \alpha \lor \neg \alpha$
 - (b) $\Gamma, \alpha \vdash \phi$ и $\Gamma, \neg \alpha \vdash \phi$ влечёт $\Gamma \vdash \phi$
- 2. Постройте дерево вывода для следующих высказываний интуиционистской логики (в данных примерах $\neg \alpha$ сокращение для $\alpha \to \bot$):
 - (a) $\vdash \alpha \rightarrow \alpha$
 - (b) $\alpha \to \beta \vdash \neg \beta \to \neg \alpha$
 - (c) $\vdash \alpha \lor \beta \to \beta \lor \alpha$
 - (d) $\vdash \alpha \& \beta \rightarrow \beta \& \alpha$
 - (e) $\vdash \neg \neg (\alpha \lor \neg \alpha)$
- 3. Постройте примеры частично упорядоченных множеств:
 - (a) определено a + b, но не $a \cdot b$;
 - (b) определено $a \cdot b$, но не a + b;
 - (с) является решёткой, но не является дистрибутивной решёткой;
 - (d) является дистрибутивной, но не импликативной решёткой;
 - (е) является импликативной, но не имеет нуля;
- 4. Решётки. Покажите, что следующие утверждения выполнены в любой решётке и при любых $a,\,b$ и c:
 - (a) Коммутативность: $a \cdot b = b \cdot a$ и a + b = b + a
 - (b) Ассоциативность: $a \cdot (b \cdot c) = (a \cdot b) \cdot c$ и a + (b + c) = (a + b) + c
 - (c) Законы поглощения: $a \cdot (a + b) = a$ и $a + (a \cdot b) = a$
 - (d) Верно ли, что если $a \sqsubseteq b$, то $a + c \sqsubseteq b + c$ и $a \cdot c \sqsubseteq b \cdot c$?
 - (e) Верно ли, что если $a+c \sqsubseteq b+c$ или $a\cdot c \sqsubseteq b\cdot c$, то $a \sqsubseteq b$?
- 5. В любой дистрибутивной решётке
 - (a) $(a \cdot b) + c = (a + c) \cdot (b + c)$.
 - (b) Нет ∂ иамантов: таких пяти элементов p, q, r, s, t, что $p \sqsubseteq q, r, s \sqsubseteq t,$ и при этом q, r и s несравнимы.

При этом, если на данной диаграмме выполнено какое-то вычисление (например, q+r=t), то оно должно быть выполнено и в исходной дистрибутивной решётке.

(c) Нет nenmazonos: таких пяти элементов $p,\,q,\,r,\,s,\,t,$ что $p\sqsubseteq q,r,s\sqsubseteq t,$ также $r\sqsubseteq s,$ элемент же q не сравним с r и s.

При этом, если на данной диаграмме выполнено какое-то вычисление (например, q+r=t), то оно должно быть выполнено и в исходной дистрибутивной решётке.

- 6. Покажите, что в импликативной решётке
 - (а) выполнена дистрибутивность;
 - (b) Из $a \sqsubseteq b$ следует $b \to c \sqsubseteq a \to c$ и $c \to a \sqsubseteq c \to b$;
 - (c) Из $a \sqsubseteq b \rightarrow c$ следует $a \cdot b \sqsubseteq c$;
 - (d) $a \sqsubseteq b$ выполнено тогда и только тогда, когда $a \to b = 1$;
 - (e) $b \sqsubseteq a \rightarrow b$;
 - (f) $a \to b \sqsubseteq ((a \to (b \to c)) \to (a \to c));$
 - (g) $a \sqsubseteq b \rightarrow a \cdot b$;
 - (h) $a \to c \sqsubset (b \to c) \to (a + b \to c)$
- 7. Рассмотрим топологию $\langle X,\Omega \rangle$ (напомним, что здесь Ω множество всех открытых подмножеств множества X). Рассмотрим множество Ω , частично упорядоченное отношением «быть подмножеством». Покажите, что получившаяся конструкция:
 - (а) решётка;
 - (b) дистрибутивная решётка;
 - (с) импликативная решётка;
 - (d) псевдобулева алгебра;
 - (е) не является булевой алгеброй.
- 8. Покажите, что булева алгебра булева алгебра.
- 9. Покажите, что подмножества некоторого множества, упорядоченные отношением «быть подмножеством» булева алгебра.
- 10. Покажите недоказуемость следующих высказываний интуиционистской логики, построив *конечные* псевдобулевы алгебры (т.е. частично упорядоченные множества с конечным количеством элементов), в которых следующие высказывания не истинны:
 - (a) $A \vee \neg A$
 - (b) $(((A \rightarrow B) \rightarrow A) \rightarrow A)$
 - (c) $(A \to (B \lor \neg B)) \lor (\neg A \to (B \lor \neg B))$
 - (d) $\neg A \lor \neg \neg A$
- 11. Теорема о полноте алгебр Гейтинга как моделей для интуиционистского исчисления высказываний. Уточним определения, данные на лекции:
 - (a) Будем писать $\alpha \sqsubseteq \beta$, если $\alpha \vdash \beta$.
 - (b) Будем писать $\alpha \approx \beta$, если имеет место $\alpha \sqsubseteq \beta$ и $\beta \sqsubseteq \alpha$.
 - (c) Будем писать $[\alpha]$ для класса эквивалентности, порождённого по формуле α : $[\alpha] = \{\phi \mid \phi \approx \alpha\}$

Интуиция здесь такая: высказывание тем ближе к 0 (к лжи), чем меньше ситуаций, в которых оно истинно. Поэтому если $\alpha \vdash \beta$, то α не больше β : возможно, β истинно ещё в каких-то ситуациях, в которых ложно α (но не наоборот).

Тогда докажите следующие утверждения:

- (a) (\approx) есть действительно отношение эквивалентности.
- (b) $[\alpha \& \beta]$ наибольшая нижняя грань $[\alpha]$ и $[\beta]$ в алгебре Линденбаума. То есть, $\alpha \& \beta \sqsubseteq \alpha$, $\alpha \& \beta \sqsubseteq \beta$, и из $\tau \sqsubseteq \alpha$ и $\tau \sqsubseteq \beta$ следует $\tau \sqsubseteq \alpha \& \beta$. Также поясните, почему нам достаточно доказать эти утверждения для отдельных представителей, чтобы доказать свойства для классов эквивалентности.
- (c) $[\alpha \vee \beta]$ наименьшая верхняя грань $[\alpha]$ и $[\beta]$.
- (d) $[\alpha \to \beta]$ псевдополнение $[\alpha] \to [\beta]$.
- (e) $[\bot]$ ноль.
- (f) $[\neg \alpha]$ псевдодополнение до нуля $\sim [\alpha]$.