Docket No.: BA9263 US DIV Page 9

Amendments to Claims

CLAIMS

What is claimed is:

1. (currently amended): A method for controlling arthropods comprising contacting the arthropods or their environment with an arthropodicidally effective amount of a compound of Formula 1, its *N*-oxide or agriculturally suitable salts

wherein

A and B are independently O or S;

each J is independently a phenyl or naphthyl group substituted with 1 to 2 R⁵ and optionally substituted with 1 to 3 R⁶;

or each J is independently a 5- or 6-membered heteroaromatic ring or an aromatic 8-, 9- or 10-membered fused heterobicyclic ring system wherein each ring or ring system is optionally substituted with 1 to 4 R⁷;

n is 1 to 4;

- R¹ is H; or C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl or C₃-C₆ cycloalkyl each optionally substituted with one or more substituents selected from the group consisting of halogen, CN, NO₂, hydroxy, C₁-C₄ alkoxy, C₁-C₄ alkylthio, C₁-C₄ alkylsulfinyl, C₁-C₄ alkylsulfonyl, C₂-C₄ alkoxycarbonyl, C₁-C₄ alkylamino, C₂-C₈ dialkylamino and C₃-C₆ cycloalkylamino; or
- R^1 is C_2 - C_6 alkylcarbonyl, C_2 - C_6 alkoxycarbonyl, C_2 - C_6 alkylaminocarbonyl or C(=A)J;
- R² is H, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃-C₆ cycloalkyl, C₁-C₄ alkoxy, C₁-C₄ alkylamino, C₂-C₈ dialkylamino, C₃-C₆ cycloalkylamino, C₂-C₆ alkoxycarbonyl or C₂-C₆ alkylcarbonyl;
- R³ is H; G; C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃-C₆ cycloalkyl, each optionally substituted with one or more substituents selected from the group consisting of halogen, G, CN, NO₂, hydroxy, C₁-C₄ alkoxy, C₁-C₄ haloalkoxy, C₁-C₄ alkylthio, C₁-C₄ alkylsulfinyl, C₁-C₄ alkylsulfonyl, C₂-C₆ alkoxycarbonyl, C₂-C₆ alkylcarbonyl, C₃-C₆ trialkylsilyl, or and a phenyl, phenoxy or 5- or 6-

Docket No.: BA9263 US DIV Page 10

membered heteroaromatic ring, each ring optionally substituted with one to three substituents independently selected from the group consisting of C_1 - C_4 alkyl, C_2 - C_4 alkenyl, C_2 - C_4 alkynyl, C_3 - C_6 cycloalkyl, C_1 - C_4 haloalkyl, C_2 - C_4 haloalkenyl, C_2 - C_4 haloalkynyl, C_3 - C_6 halocycloalkyl, halogen, C_1 , C_2 - C_4 alkylsulfonyl, C_1 - C_4 alkylsulfonyl, C_1 - C_4 alkylsulfonyl, C_1 - C_4 alkylsulfonyl, C_1 - C_4 alkylamino, C_2 - C_8 dialkylamino, C_3 - C_6 cycloalkylamino, C_3 - C_6 (alkyl)cycloalkylamino, C_2 - C_4 alkylaminocarbonyl, C_2 - C_6 alkoxycarbonyl, C_3 - C_6 trialkylsilyl; C_1 - C_4 alkoxy; C_1 - C_4 alkylamino; C_2 - C_6 dialkylamino; C_3 - C_6 cycloalkylamino; C_2 - C_6 alkoxycarbonyl or C_2 - C_6 alkylcarbonyl; or

- R² and R³ can be taken together with the nitrogen to which they are attached to form a ring containing 2 to 6 atoms of carbon and optionally one additional atom of nitrogen, sulfur or oxygen, said ring may be optionally substituted with 1 to 4 substituents selected from the group consisting of C₁-C₂ alkyl, halogen, CN, NO₂ and C₁-C₂ alkoxy;
- G is a 5- or 6-membered nonaromatic carbocyclic or heterocyclic ring, optionally including one or two ring members selected from the group consisting of C(=O), SO or S(O)₂ and optionally substituted with 1 to 4 substituents selected from the group consisting of C₁-C₂ alkyl, halogen, CN, NO₂ and C₁-C₂ alkoxy;
- each R⁴ is independently H, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃-C₆ cycloalkyl, C₁-C₆ haloalkyl, C₂-C₆ haloalkenyl, C₂-C₆ haloalkynyl, C₃-C₆ halocycloalkyl, halogen, CN, NO₂, hydroxy, C₁-C₄ alkoxy, C₁-C₄ haloalkoxy, C₁-C₄ alkylthio, C₁-C₄ alkylsulfinyl, C₁-C₄ alkylsulfonyl, C₁-C₄ haloalkylthio, C₁-C₄ haloalkylsulfinyl, C₁-C₄ haloalkylsulfonyl, C₁-C₄ alkylamino, C₂-C₈ dialkylamino, C₃-C₆ cycloalkylamino, or C₃-C₆ trialkylsilyl; or
- each R⁴ is independently phenyl, benzyl or phenoxy, each optionally substituted with C₁-C₄ alkyl, C₂-C₄ alkenyl, C₂-C₄ alkynyl, C₃-C₆ cycloalkyl, C₁-C₄ haloalkyl, C₂-C₄ haloalkenyl, C₂-C₄ haloalkynyl, C₃-C₆ halocycloalkyl, halogen, CN, NO₂, C₁-C₄ alkoxy, C₁-C₄ haloalkoxy, C₁-C₄ alkylthio, C₁-C₄ alkylsulfinyl, C₁-C₄ alkylsulfonyl, C₁-C₄ alkylamino, C₂-C₈ dialkylamino, C₃-C₆ cycloalkylamino, C₃-C₆ (alkyl)cycloalkylamino, C₂-C₄ alkylcarbonyl, C₂-C₆ alkoxycarbonyl, C₂-C₆ alkylaminocarbonyl, C₃-C₈ dialkylaminocarbonyl or C₃-C₆ trialkylsilyl;
- each R⁵ is independently C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃-C₆ cycloalkyl, C₁-C₆ haloalkyl, C₂-C₆ haloalkenyl, C₂-C₆ haloalkynyl, C₃-C₆ halocycloalkyl, halogen, CN, CO₂H, CONH₂, NO₂, hydroxy, C₁-C₆ alkoxy, C₁-C₆ haloalkoxy, C₁-C₆ alkylthio, C₁-C₆ alkylsulfinyl, C₁-C₆ alkylsulfonyl, C₁-C₆ haloalkylthio, C₁-C₆ haloalkylsulfinyl, C₁-C₆ haloalkylsulfonyl, C₁-C₆ alkylamino, C₂-C₁₂ dialkylamino, O₂-C₆ cycloalkylamino, C₂-C₆ alkylcarbonyl, C₂-C₆

Docket No.: BA9263 US DIV Page 11

alkoxycarbonyl, C_2 - C_6 alkylaminocarbonyl, C_3 - C_8 dialkylaminocarbonyl, <u>or</u> C_3 - C_6 trialkylsilyl; or

- (R⁵)₂ when attached to adjacent carbon atoms can be taken together as -OCF₂O-, -CF₂CF₂O-, or -OCF₂CF₂O-;
- each R^6 is independently H, halogen, C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_3 - C_6 cycloalkyl, C_1 - C_4 alkoxy or C_2 - C_4 alkoxycarbonyl; or
- each R⁶ is independently a phenyl, benzyl, phenoxy, 5- or 6-membered heteroaromatic ring or an aromatic 8-, 9- or 10-membered fused heterobicyclic ring system, each ring optionally substituted with one to three substituents independently selected from the group consisting of C₁-C₄ alkyl, C₂-C₄ alkenyl, C₂-C₄ alkynyl, C₃-C₆ cycloalkyl, C₁-C₄ haloalkyl, C₂-C₄ haloalkenyl, C₂-C₄ haloalkynyl, C₃-C₆ halocycloalkyl, halogen, CN, NO₂, C₁-C₄ alkoxy, C₁-C₄ haloalkoxy, C₁-C₄ alkylthio, C₁-C₄ alkylsulfinyl, C₁-C₄ alkylsulfonyl, C₁-C₄ alkylamino, C₂-C₈ dialkylamino, C₃-C₆ cycloalkylamino, C₃-C₆ (alkyl)cycloalkylamino, C₂-C₄ alkylaminocarbonyl, C₂-C₆ alkoxycarbonyl, C₂-C₆ alkylaminocarbonyl, C₃-C₈ dialkylaminocarbonyl or and C₃-C₆ trialkylsilyl;
- each R⁷ is independently H, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃-C₆ cycloalkyl, C₁-C₆ haloalkyl, C₂-C₆ haloalkenyl, C₂-C₆ haloalkynyl, C₃-C₆ halocycloalkyl, halogen, CN, CO₂H, CONH₂, NO₂, hydroxy, C₁-C₄ alkoxy, C₁-C₄ haloalkoxy, C₁-C₄ alkylthio, C₁-C₄ alkylsulfinyl, C₁-C₄ alkylsulfonyl, C₁-C₄ haloalkylthio, C₁-C₄ haloalkylsulfinyl, C₁-C₄ haloalkylsulfonyl, C₁-C₄ alkylamino, C₂-C₆ dialkylamino, C₂-C₆ alkylamino, C₂-C₆ alkylaminocarbonyl, C₃-C₆ dialkylaminocarbonyl, or C₃-C₆ trialkylsilyl; or
- each R⁷ is independently a phenyl, benzyl, benzoyl, phenoxy, 5- or 6-membered heteroaromatic ring or an aromatic 8-, 9- or 10-membered fused heterobicyclic ring system, each ring optionally substituted with one to three substituents independently selected from the group consisting of C₁-C₄ alkyl, C₂-C₄ alkenyl, C₂-C₄ alkynyl, C₃-C₆ cycloalkyl, C₁-C₄ haloalkyl, C₂-C₄ haloalkenyl, C₂-C₄ haloalkynyl, C₃-C₆ halocycloalkyl, halogen, CN, NO₂, C₁-C₄ alkoxy, C₁-C₄ haloalkoxy, C₁-C₄ alkylthio, C₁-C₄ alkylsulfinyl, C₁-C₄ alkylsulfonyl, C₁-C₄ alkylamino, C₂-C₈ dialkylamino, C₃-C₆ cycloalkylamino, C₃-C₆ (alkyl)cycloalkylamino, C₂-C₈ dialkylaminocarbonyl, C₂-C₆ alkoxycarbonyl, C₂-C₆ alkylaminocarbonyl, C₃-C₈ dialkylaminocarbonyl of and C₃-C₆ trialkylsilyl; provided that
- (1) when A and B are both O, R^2 is H or C_1 - C_3 alkyl, R^3 is H or C_1 - C_3 alkyl and R^4 is H, halogen, C_1 - C_6 alkyl, phenyl, hydroxy or C_1 - C_6 alkoxy, then one R^5 is other than halogen, C_1 - C_6 alkyl, hydroxy or C_1 - C_6 alkoxy; or

Docket No.: BA9263 US DIV Page 12

(2) J is other than an optionally substituted 1,2,3-thiadiazole.

- (3) when J is an optionally substituted 5-membered heteroaromatic ring, then R² and R³ are taken together with the nitrogen to which they are attached to form a ring containing 2 to 6 atoms of carbon and optionally one additional atom of nitrogen, sulfur or oxygen, said ring may be optionally substituted with 1 to 4 substituents selected from the group consisting of C₁-C₂ alkyl, halogen, CN, NO₂ and C₁-C₂ alkoxy.
- 2. (original): The method of Claim 1 wherein J is a phenyl group substituted with 1 to 2 R⁵ and optionally substituted with 1 to 3 R⁶.
 - 3. (currently amended): The method of Claim 2 wherein A and B are both O;

n is 1 to 2;

- R¹ is H, C₁-C₄ alkyl, C₂-C₄ alkenyl, C₂-C₆ alkynyl, C₃-C₆ cycloalkyl, C₂-C₆ alkylcarbonyl or C₂-C₆ alkoxycarbonyl;
- R² is H, C₁-C₄ alkyl, C₂-C₄ alkenyl, C₂-C₆ alkynyl, C₃-C₆ cycloalkyl, C₂-C₆ alkylcarbonyl or C₂-C₆ alkoxycarbonyl;
- R^3 is C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl or C_3 - C_6 cycloalkyl each optionally substituted with one or more substituents selected from the group consisting of halogen, CN, C_1 - C_2 alkoxy, C_1 - C_2 alkylthio, C_1 - C_2 alkylsulfinyl and C_1 - C_2 alkylsulfonyl;
- one of the R^4 groups is attached to the phenyl ring at the 2-position or 5-position, and said R^4 is C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, halogen, CN, NO₂, C_1 - C_4 alkoxy, C_1 - C_4 haloalkoxy, C_1 - C_4 alkylthio, C_1 - C_4 alkylsulfinyl, C_1 - C_4 haloalkylthio, C_1 - C_4 haloalkylsulfinyl, or C_1 - C_4 haloalkylsulfonyl;
- each R^5 is independently C_1 - C_4 haloalkyl, CN, NO_2 , C_1 - C_4 haloalkoxy, C_1 - C_4 alkylsulfinyl, C_1 - C_4 alkylsulfonyl, C_1 - C_4 haloalkylsulfinyl, C_1 - C_4 haloalkylsulfonyl or C_2 - C_4 alkoxycarbonyl; or
- $(R^5)_2$ when attached to adjacent carbon atoms can be taken together as -OCF₂O-, -CF₂CF₂O- or -OCF₂CF₂O-; and
- each R^6 is independently H, halogen, C_1 - C_4 alkyl, C_1 - C_2 alkoxy or C_2 - C_4 alkoxycarbonyl, or
- each R⁶ is independently a phenyl or a 5- or 6-membered heteroaromatic ring, each ring optionally substituted with C₁-C₄ alkyl, C₂-C₄ alkenyl, C₂-C₄ alkynyl, C₃-C₆ cycloalkyl, C₁-C₄ haloalkyl, C₂-C₄ haloalkenyl, C₂-C₄ haloalkynyl, C₃-C₆ halocycloalkyl, halogen, CN, NO₂, C₁-C₄ alkoxy, C₁-C₄ haloalkoxy, C₁-C₄ alkylthio, C₁-C₄ alkylsulfinyl, C₁-C₄ alkylsulfonyl, C₁-C₄ alkylamino, C₂-C₈ dialkylamino, C₃-C₆ cycloalkylamino, C₃-C₆ (alkyl)cycloalkylamino, C₂-C₄

Docket No.: BA9263 US DIV Page 13

alkylcarbonyl, C_2 - C_6 alkoxycarbonyl, C_2 - C_6 alkylaminocarbonyl, C_3 - C_8 dialkylaminocarbonyl or C_3 - C_6 trialkylsilyl.

4. (currently amended): The method of Claim 3 wherein

R¹ and R² are both H;

R³ is C₁-C₄ alkyl optionally substituted with halogen, CN, OCH₃, or S(O)_pCH₃; each R⁴ is independently H, CH₃, CF₃, OCF₃, OCHF₂, S(O)_pCF₃, S(O)_pCHF₂, CN or halogen;

each R⁵ is independently CF₃, OCF₃, OCHF₂, S(O)_pCF₃, S(O)_pCHF₂, OCH₂CF₃, OCF₂CHF₂, S(O)_pCH₂CF₃ or S(O)_pCF₂CHF₂;

each R⁶ is independently H, halogen or methyl; or phenyl, pyrazole, imidazole, triazole, pyridine or pyrimidine, each ring optionally substituted with C₁-C₄ alkyl, C₁-C₄ haloalkyl, halogen or CN; and

p is 0, 1 or 2.

- 5. (original): The method of Claim 4 wherein R³ is *i*-propyl or *t*-butyl.
- 6. (original): The method of Claim 1 wherein J is a 5- or 6-membered heteroaromatic ring optionally substituted with 1 to 4 R⁷.
 - 7. (currently amended): The method of Claim 6 wherein

J is a 5- or 6-membered heteroaromatic ring selected from the group consisting of J-1, J-2, J-3, J-4 and J-5, each wherein J J-1 and J-2 are optionally substituted with 1 to 3 R⁷ and J-3, J-4 and J-5 are substituted with R⁷

Q is O, S or NR⁷; and

W, X, Y and Z are independently N or CR⁷, provided that in J-4 and J-5 at least one of W, X, Y or Z is N.

;

8. (original): The method of Claim 6 or 7 wherein A and B are O;

Docket No.: BA9263 US DIV Page 14

n is 1 to 2;

R¹ is H, C₁-C₄ alkyl, C₂-C₄ alkenyl, C₂-C₆ alkylcarbonyl or C₂-C₆ alkoxycarbonyl;

- R² is H, C₁-C₄ alkyl, C₂-C₄ alkenyl, C₂-C₆ alkynyl, C₃-C₆ cycloalkyl, C₂-C₆ alkylcarbonyl or C₂-C₆ alkoxycarbonyl;
- R^3 is H; or C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl or C_3 - C_6 cycloalkyl each optionally substituted with one or more substituents selected from the group consisting of halogen, CN, C_1 - C_2 alkoxy, C_1 - C_2 alkylthio, C_1 - C_2 alkylsulfinyl and C_1 - C_2 alkylsulfonyl;
- one of the R^4 groups is attached to the phenyl ring at the 2-position, and said R^4 is C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, halogen, CN, NO₂, C_1 - C_4 alkoxy, C_1 - C_4 haloalkylthio, C_1 - C_4 alkylsulfinyl, C_1 - C_4 alkylsulfinyl, C_1 - C_4 haloalkylsulfinyl or C_1 - C_4 haloalkylsulfonyl, and
- each R⁷ is independently H, C₁-C₄ alkyl, C₁-C₄ haloalkyl, halogen, CN, NO₂, C₁-C₄ haloalkoxy, C₁-C₄ alkylthio, C₁-C₄ alkylsulfinyl, C₁-C₄ alkylsulfonyl, C₁-C₄ haloalkylthio, C₁-C₄ haloalkylsulfinyl, C₁-C₄ haloalkylsulfonyl or C₂-C₄ alkoxycarbonyl; or a phenyl or a 5- or 6-membered heteroaromatic ring, each ring optionally substituted with C₁-C₄ alkyl, C₂-C₄ alkenyl, C₂-C₄ alkynyl, C₃-C₆ cycloalkyl, C₁-C₄ haloalkyl, C₂-C₄ haloalkenyl, C₂-C₄ haloalkynyl, C₃-C₆ halocycloalkyl, halogen, CN, NO₂, C₁-C₄ alkoxy, C₁-C₄ haloalkoxy, C₁-C₄ alkylthio, C₁-C₄ alkylsulfinyl, C₁-C₄ alkylsulfonyl, C₁-C₄ alkylamino, C₂-C₈ dialkylamino, C₃-C₆ cycloalkylamino, C₃-C₆ (alkyl)cycloalkylamino, C₃-C₈ dialkylaminocarbonyl or C₃-C₆ trialkylsilyl.
- 9. (currently amended): The method of Claim 8 wherein J is selected from the group consisting of pyridine, <u>and pyrimidine</u>, <u>pyrazole</u>, <u>imidazole</u>, <u>triazole</u>, <u>thiophene</u>, <u>thiazole</u>, and <u>oxazole</u>, <u>furan</u>, <u>isothiazole</u> and <u>isoxazole</u>, each optionally substituted with 1 to 3 R⁷.
 - 10. (currently amended): The method of Claim 9 wherein
 - J is selected from the group consisting of pyridine, and pyrimidine, pyrazole, thiophene and thiazole, each optionally substituted with 1 to 3 R⁷;

 R^1 and R^2 are both H;

- R³ is C₁-C₄ alkyl optionally substituted with halogen, CN, OCH₃, or S(O)_pCH₃; each R⁴ is independently H, CH₃, CF₃, OCF₃, OCHF₂, S(O)_pCF₃, S(O)_pCHF₂, CN or halogen;
- each R⁷ is independently H, halogen, CH₃, CF₃, OCHF₂, S(O)_pCF₃, S(O)_pCHF₂, OCH₂CF₃, OCF₂CHF₂, S(O)_pCH₂CF₃, S(O)_pCF₂CHF₂; or phenyl, pyrazole, imidazole, triazole, pyridine or pyrimidine, each ring optionally substituted with

Docket No.: BA9263 US DIV Page 15

 C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_4 alkoxy, C_1 - C_4 haloalkoxy, C_1 - C_4 alkylsulfinyl, C_1 - C_4 alkylsulfonyl, halogen or CN; and p is 0, 1 or 2.

- 11. (original): The method of Claim 10 wherein J is a pyridine optionally substituted with 1 to 3 R⁷.
- 12. (original): The method of Claim 11 wherein one \mathbb{R}^7 is a phenyl optionally substituted with \mathbb{C}_1 - \mathbb{C}_4 alkyl, \mathbb{C}_1 - \mathbb{C}_4 haloalkyl, halogen or $\mathbb{C}\mathbb{N}$.
- 13. (original): The method of Claim 11 wherein one R^7 is a pyrazole, imidazole, triazole, pyridine or pyrimidine, each ring optionally substituted with C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, halogen or CN.
- 14. (original): The method of Claim 10 wherein J is a pyrimidine optionally substituted with 1 to $3 R^7$.
- 15. (original): The method of Claim 14 wherein one \mathbb{R}^7 is a phenyl optionally substituted with \mathbb{C}_1 - \mathbb{C}_4 alkyl, \mathbb{C}_1 - \mathbb{C}_4 haloalkyl, halogen or $\mathbb{C}\mathbb{N}$.
- 16. (original): The method of Claim 14 wherein one \mathbb{R}^7 is a pyrazole, imidazole, triazole, pyridine or pyrimidine, each ring optionally substituted with C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, halogen or CN.
- 17. (canceled): The method of Claim 10 wherein J is a pyrazole optionally substituted with 1 to 3 R⁷.
- 18. (canceled): The method of Claim 17 wherein one \mathbb{R}^7 is a phenyl optionally substituted with \mathbb{C}_1 - \mathbb{C}_4 alkyl, \mathbb{C}_1 - \mathbb{C}_4 haloalkyl, halogen or $\mathbb{C}\mathbb{N}$.
- 19. (canceled): The method of Claim 17 wherein one R^7 is a pyrazole, imidazole, triazole, pyridine or pyrimidine, each ring optionally substituted with C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, halogen or CN.
- 20. (canceled): The method of Claim 19 wherein \mathbb{R}^7 is a pyridine optionally substituted with \mathbb{C}_1 - \mathbb{C}_4 alkyl, \mathbb{C}_1 - \mathbb{C}_4 haloalkyl, halogen or $\mathbb{C}\mathbb{N}$.
- 21. (currently amended): The method of Claim 1 comprising a compound of Formula 1 selected from the group consisting of:

3-methyl- N- (1-methylethyl)-2-[[4-(trifluoromethyl)benzoyl] a mino]-benzamide,

2-methyl-N-[2-methyl-6-[[(1-methylethyl)amino]carbonyl]phenyl]-4-

(trifluoromethyl)benzamide, and

2-methyl-*N*-[2-methyl-6-[[(1-methylethyl)amino]carbonyl]phenyl]-6-(trifluoromethyl)-3-pyridinecarboxamide[[,]].

1-ethyl N [2-methyl-6-[[(1-methylethyl)amino]carbonyl]phenyl]-3 (trifluoromethyl)-1H-pyrazole-5-carboxamide,

1-(2-fluorophenyl)-N-[2-methyl-6-[[(1-methylethyl)amino)carbonyl]phenyl]-3-(trifluoromethyl)-1H-pyrazole-5-carboxamide,

Docket No.: BA9263 US DIV Page 16

1-(3-chloro-2-pyridinyl) N-[2-methyl-6-[[(1-methylethyl)amino]carbonyl]phenyl]3-(trifluoromethyl) 1H-pyrazole-5-carboxamide,

N [2 chloro 6 [[(1-methylethyl)amino]carbonyl]phenyl] 1 (3 chloro 2 pyridinyl) 3 (trifluoromethyl) 1H pyrazole 5 carboxamide,

3-bromo-1-(2-chlorophenyl) N-[2-methyl-6-[[(1-

methylethyl)amino]carbonyl]phenyl]-1H-pyrazole-5-carboxamide, and

3-brome N [2-chlore 6-[[(1-methylethyl)amine]carbonyl]phenyl]-1-(2-chlorephenyl)-1H-pyrazole-5-carboxamide.

22. (currently amended): A compound of Formula 1, its N-oxides and agriculturally suitable salts

wherein

A and B are independently O or S;

each J is independently a phenyl or naphthyl group substituted with 1 to 2 R⁵ and optionally substituted with 1 to 3 R⁶;

or each J is independently a 5- or 6-membered heteroaromatic ring or an aromatic 8-, 9- or 10-membered fused heterobicyclic ring system wherein each ring or ring system is optionally substituted with 1 to 4 R⁷;

n is 1 to 4;

- R¹ is H; or C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl or C₃-C₆ cycloalkyl each optionally substituted with one or more substituents selected from the group consisting of halogen, CN, NO₂, hydroxy, C₁-C₄ alkoxy, C₁-C₄ alkylthio, C₁-C₄ alkylsulfinyl, C₁-C₄ alkylsulfonyl, C₂-C₆ alkoxycarbonyl, C₁-C₄ alkylamino, C₂-C₈ dialkylamino and C₃-C₆ cycloalkylamino; or
- R¹ is C₂-C₆ alkylcarbonyl, C₂-C₆ alkoxycarbonyl, C₂-C₆ alkylaminocarbonyl, C₃-C₈ dialkylaminocarbonyl or C(=A)J;
- R² is H, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃-C₆ cycloalkyl, C₁-C₄ alkoxy, C₁-C₄ alkylamino, C₂-C₈ dialkylamino, C₃-C₆ cycloalkylamino, C₂-C₆ alkoxycarbonyl or C₂-C₆ alkylcarbonyl;

Docket No.: BA9263 US DIV Page 17

R³ is H; C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃-C₆ cycloalkyl, each optionally substituted with one or more substituents selected from the group consisting of halogen, CN, NO₂, hydroxy, C₁-C₄ alkoxy, C₁-C₄ haloalkoxy, C₁-C₄ alkylthio, C₁-C₄ alkylsulfinyl, C₁-C₄ alkylsulfonyl, C₂-C₆ alkoxycarbonyl, C₂-C₆ alkylcarbonyl, C₃-C₆ trialkylsilyl, off and a phenoxy ring optionally substituted with one to three substituents independently selected from the group consisting of C₁-C₄ alkyl, C₂-C₄ alkenyl, C₂-C₄ alkynyl, C₃-C₆ cycloalkyl, C₁-C₄ haloalkyl, C₂-C₄ haloalkenyl, C₂-C₄ haloalkynyl, C₃-C₆ halocycloalkyl, halogen, CN, NO₂, C₁-C₄ alkoxy, C₁-C₄ haloalkoxy, C₁-C₄ alkylthio, C₁-C₄ alkylsulfinyl, C₁-C₄ alkylsulfonyl, C₁-C₄ alkylamino, C₂-C₆ dialkylamino, C₃-C₆ cycloalkylamino, C₃-C₆ (alkyl)cycloalkylamino, C₂-C₆ dialkylamino, C₂-C₆ alkoxycarbonyl, C₂-C₆ alkylaminocarbonyl, C₃-C₆ dialkylamino; C₃-C₆ dialkylamino; C₃-C₆ dialkylamino; C₃-C₆ alkoxycarbonyl or C₂-C₆ alkylamino; C₃-C₆ alkylamino; C₃-C₆ alkoxycarbonyl or C₂-C₆ alkylcarbonyl; or

- R² and R³ can be taken together with the nitrogen to which they are attached to form a ring containing 2 to 6 atoms of carbon and optionally one additional atom of nitrogen, sulfur or oxygen, said ring may be optionally substituted with 1 to 4 substituents selected from the group consisting of C₁-C₂ alkyl, halogen, CN, NO₂ and C₁-C₂ alkoxy;
- each R⁴ is independently H, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃-C₆ cycloalkyl, C₁-C₆ haloalkyl, C₂-C₆ haloalkenyl, C₂-C₆ haloalkynyl, C₃-C₆ halocycloalkyl, halogen, CN, NO₂, hydroxy, C₁-C₄ alkoxy, C₁-C₄ haloalkoxy, C₁-C₄ alkylthio, C₁-C₄ alkylsulfinyl, C₁-C₄ alkylsulfonyl, C₁-C₄ haloalkylthio, C₁-C₄ haloalkylsulfinyl, C₁-C₄ haloalkylsulfonyl, C₁-C₄ alkylamino, C₂-C₈ dialkylamino, C₃-C₆ cycloalkylamino, or C₃-C₆ trialkylsilyl; or
- each R⁴ is independently phenyl, benzyl or phenoxy, each optionally substituted with C₁-C₄ alkyl, C₂-C₄ alkenyl, C₂-C₄ alkynyl, C₃-C₆ cycloalkyl, C₁-C₄ haloalkyl, C₂-C₄ haloalkenyl, C₂-C₄ haloalkynyl, C₃-C₆ halocycloalkyl, halogen, CN, NO₂, C₁-C₄ alkoxy, C₁-C₄ haloalkoxy, C₁-C₄ alkylthio, C₁-C₄ alkylsulfinyl, C₁-C₄ alkylsulfonyl, C₁-C₄ alkylamino, C₂-C₈ dialkylamino, C₃-C₆ cycloalkylamino, C₃-C₆ (alkyl)cycloalkylamino, C₂-C₄ alkylcarbonyl, C₂-C₆ alkoxycarbonyl, C₂-C₆ alkylaminocarbonyl, C₃-C₈ dialkylaminocarbonyl or C₃-C₆ trialkylsilyl;
- each R⁵ is independently C₁-C₆ haloalkyl, C₂-C₆ haloalkenyl, C₂-C₆ haloalkynyl, C₃-C₆ halocycloalkyl, C₁-C₄ haloalkoxy, C₁-C₄ alkylthio, C₁-C₄ alkylsulfinyl, C₁-C₄ alkylsulfonyl, C₁-C₄ haloalkylthio, C₁-C₄ haloalkylsulfinyl, C₁-C₄ haloalkylsulfonyl, CN, NO₂, C₁-C₄ alkoxycarbonyl, C₁-C₄ alkylamino, C₂-C₈ dialkylamino, C₃-C₆ cycloalkylamino, C₂-C₆ alkylcarbonyl, C₂-C₆ alkylaminocarbonyl, or C₃-C₈ dialkylaminocarbonyl; or

Docket No.: BA9263 US DIV Page 18

(R⁵)₂ attached to adjacent carbon atoms can be taken together as -OCF₂O-, -CF₂CF₂O-, or -OCF₂CF₂O-;

- each R^6 is independently H, halogen, C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_3 - C_6 cycloalkyl, C_1 - C_4 alkoxy or C_2 - C_4 alkoxycarbonyl; or
- each R⁶ is independently a phenyl, benzyl, phenoxy, 5- or 6-membered heteroaromatic ring or an aromatic 8-, 9- or 10-membered fused heterobicyclic ring system, each ring optionally substituted with one to three substituents independently selected from the group consisting of C₁-C₄ alkyl, C₂-C₄ alkenyl, C₂-C₄ alkynyl, C₃-C₆ cycloalkyl, C₁-C₄ haloalkyl, C₂-C₄ haloalkenyl, C₂-C₄ haloalkynyl, C₃-C₆ halocycloalkyl, halogen, CN, NO₂, C₁-C₄ alkoxy, C₁-C₄ haloalkoxy, C₁-C₄ alkylthio, C₁-C₄ alkylsulfinyl, C₁-C₄ alkylsulfonyl, C₁-C₄ alkylamino, C₂-C₈ dialkylamino, C₃-C₆ cycloalkylamino, C₃-C₆ (alkyl)cycloalkylamino, C₂-C₄ alkylcarbonyl, C₂-C₆ alkoxycarbonyl, C₂-C₆ alkylaminocarbonyl, C₃-C₈ dialkylaminocarbonyl or and C₃-C₆ trialkylsilyl;
- each R⁷ is independently H, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃-C₆ cycloalkyl, C₁-C₆ haloalkyl, C₂-C₆ haloalkenyl, C₂-C₆ haloalkynyl, C₃-C₆ halocycloalkyl, halogen, CN, CO₂H, CONH₂, NO₂, hydroxy, C₁-C₄ alkoxy, C₁-C₄ haloalkoxy, C₁-C₄ alkylthio, C₁-C₄ alkylsulfinyl, C₁-C₄ alkylsulfonyl, C₁-C₄ haloalkylthio, C₁-C₄ haloalkylsulfinyl, C₁-C₄ haloalkylsulfonyl, C₁-C₄ alkylamino, C₂-C₆ dialkylamino, C₂-C₆ alkylamino, C₂-C₆ alkylaminocarbonyl, C₂-C₆ alkylaminocarbonyl, C₃-C₆ trialkylsilyl; or
- each R⁷ is independently a phenyl, benzyl, benzoyl, phenoxy or 5- or 6-membered heteroaromatic ring or an 8-, 9- or 10-membered fused heterobicyclic ring system, each ring optionally substituted with one to three substituents independently selected from the group consisting of C₁-C₄ alkyl, C₂-C₄ alkenyl, C₂-C₄ alkynyl, C₃-C₆ cycloalkyl, C₁-C₄ haloalkyl, C₂-C₄ haloalkenyl, C₂-C₄ haloalkynyl, C₃-C₆ halocycloalkyl, halogen, CN, NO₂, C₁-C₄ alkoxy, C₁-C₄ haloalkoxy, C₁-C₄ alkylthio, C₁-C₄ alkylsulfinyl, C₁-C₄ alkylsulfonyl, C₁-C₄ alkylamino, C₂-C₈ dialkylamino, C₃-C₆ cycloalkylamino, C₃-C₆ (alkyl)cycloalkylamino, C₂-C₄ alkylcarbonyl, C₂-C₆ alkoxycarbonyl, C₂-C₆ alkylaminocarbonyl, C₃-C₈ dialkylaminocarbonyl or and C₃-C₆ trialkylsilyl;

provided that

- (i) at least one R⁴ and at least one R⁷, when R⁷ is present, are other than H;
- (ii) J is other than an optionally substituted 1,2,3-thiadiazole;
- (iii) when J is an optionally substituted pyridine and R² is H, R³ is other than H or CH₃;
- (iv) when J is an optionally substituted pyridine, then R⁷ cannot be CONH₂, C₂-C₆ alkylaminocarbonyl or C₃-C₈ dialkylaminocarbonyl;

Docket No.: BA9263 US DIV Page 19

(v) when J is an optionally substituted pyrazole, tetrazole or pyrimidine, then R² and R³ cannot both be hydrogen[[.]]; and

- (vi) when J is an optionally substituted 5-membered heteroaromatic ring, then R² and R³ are taken together with the nitrogen to which they are attached to form a ring containing 2 to 6 atoms of carbon and optionally one additional atom of nitrogen, sulfur or oxygen, said ring may be optionally substituted with 1 to 4 substituents selected from the group consisting of C₁-C₂ alkyl, halogen, CN, NO₂ and C₁-C₂ alkoxy.
 - 23. (original): The compound of Claim 22 wherein J is a phenyl group substituted with 1 to 2 R⁵ and optionally substituted with 1 to 3 R⁶.
- 24. (currently amended): The compound of Claim 25 23 wherein A and B are both O;

n is 1 to 2;

- R¹ is H, C₁-C₄ alkyl, C₂-C₄ alkenyl, C₂-C₆ alkynyl, C₃-C₆ cycloalkyl, C₂-C₆ alkylcarbonyl or C₂-C₆ alkoxycarbonyl;
- R² is H, C₁-C₄ alkyl, C₂-C₄ alkenyl, C₂-C₄ alkynyl, C₃-C₆ cycloalkyl, C₂-C₆ alkylcarbonyl or C₂-C₆ alkoxycarbonyl;
- R^3 is C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl or C_3 - C_6 cycloalkyl each optionally substituted with one or more substituents selected from the group consisting of halogen, CN, C_1 - C_2 alkoxy, C_1 - C_2 alkylthio, C_1 - C_2 alkylsulfinyl and C_1 - C_2 alkylsulfonyl;
- one of the R^4 groups is attached to the phenyl ring at the 2-position or 5-position, and said R^4 is C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, halogen, CN, NO₂, C_1 - C_4 alkoxy, C_1 - C_4 haloalkoxy, C_1 - C_4 alkylthio, C_1 - C_4 alkylsulfinyl, C_1 - C_4 alkylsulfonyl, C_1 - C_4 haloalkylthio, C_1 - C_4 haloalkylsulfinyl or C_1 - C_4 haloalkylsulfonyl;
- each R^5 is independently C_1 - C_4 haloalkyl, CN, NO_2 , C_1 - C_4 haloalkoxy, C_1 - C_4 alkylsulfinyl, C_1 - C_4 alkylsulfonyl, C_1 - C_4 haloalkylsulfinyl, C_1 - C_4 haloalkylsulfonyl or C_2 - C_4 alkoxycarbonyl; or
- $(R^5)_2$ when attached to adjacent carbon atoms can be taken together as -OCF₂O-, -CF₂CF₂O- or -OCF₂CF₂O-; and
- each R^6 is independently H, halogen, C_1 - C_4 alkyl, C_1 - C_2 alkoxy or C_2 - C_4 alkoxycarbonyl, or
- each R⁶ is independently a phenyl or a 5- or 6-membered heteroaromatic ring, each ring optionally substituted with C₁-C₄ alkyl, C₂-C₄ alkenyl, C₂-C₄ alkynyl, C₃-C₆ cycloalkyl, C₁-C₄ haloalkyl, C₂-C₄ haloalkenyl, C₂-C₄ haloalkynyl, C₃-C₆ halocycloalkyl, halogen, CN, NO₂, C₁-C₄ alkoxy, C₁-C₄ haloalkoxy, C₁-C₄ alkylthio, C₁-C₄ alkylsulfinyl, C₁-C₄ alkylsulfonyl, C₁-C₄ alkylamino, C₂-C₈ dialkylamino, C₃-C₆ cycloalkylamino, C₃-C₆ (alkyl)cycloalkylamino, C₂-C₄

Docket No.: BA9263 US DIV Page 20

alkylcarbonyl, C_2 - C_6 alkoxycarbonyl, C_2 - C_6 alkylaminocarbonyl, C_3 - C_8 dialkylaminocarbonyl or C_3 - C_6 trialkylsilyl.

25. (currently amended): The compound of Claim $\frac{26}{24}$ wherein R^1 and R^2 are both H;

R³ is C₁-C₄ alkyl optionally substituted with halogen, CN, OCH₃, S(O)_pCH₃; each R⁴ is independently H, CH₃, CF₃, OCF₃, OCHF₂, S(O)_pCF₃, S(O)_pCHF₂, CN or halogen;

each R^5 is independently CF_3 , OCF_3 , $OCHF_2$, $S(O)_pCF_3$, $S(O)_pCHF_2$, OCH_2CF_3 , OCF_2CHF_2 , $S(O)_pCH_2CF_3$ or $S(O)_pCF_2CHF_2$;

each R^6 is independently H, halogen or methyl; or phenyl, pyrazole, imidazole, triazole, pyridine or pyrimidine, each ring optionally substituted with C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, halogen or CN; and

p is 0, 1 or 2.

- 26. (original): The compound of Claim 25 wherein R³ is *i*-propyl or *t*-butyl.
- 27. (currently amended): The compound of Claim $\frac{26}{22}$ wherein J is a 5- or 6-membered heteroaromatic ring optionally substituted with 1 to 4 \mathbb{R}^7 .
 - 28. (currently amended): The compound of Claim 27 wherein

 J is a 5- or 6-membered heteroaromatic ring selected from the group consisting of J-1, J-2, J-3, J-4 and J-5, each J J-1 and J-2 optionally substituted with 1 to 3 R⁷ and J-3, J-4 and J-5 substituted with R⁷

$$\begin{array}{c|ccccc}
Q - X & X = Y & X = Y \\
Y & Z & N & Z & R^7
\end{array}$$

$$\begin{array}{c|ccccc}
Y & X = Y & X = Y & X = Y & X = Y & X = Y & X = Y & X = Y & X = Y & X = X &$$

Q is O, S or NR⁷; and

W, X, Y and Z are independently N or CR⁷, provided that in J-4 and J-5 at least one of W, X, Y or Z is N.

29. (original): The compound of Claim 27 or Claim 28 wherein A and B are O; n is 1 to 2;

Docket No.: BA9263 US DIV Page 21

R¹ is H, C₁-C₄ alkyl, C₂-C₄ alkenyl, C₂-C₆ alkylcarbonyl or C₂-C₆ alkoxycarbonyl;

- R^2 is H, C_1 - C_4 alkyl, C_2 - C_4 alkenyl, C_2 - C_6 alkylcarbonyl or C_2 - C_6 alkoxycarbonyl;
- R^3 is H; or C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl or C_3 - C_6 cycloalkyl each optionally substituted with one or more substituents selected from the group consisting of halogen, CN, C_1 - C_2 alkoxy, C_1 - C_2 alkylthio, C_1 - C_2 alkylsulfinyl and C_1 - C_2 alkylsulfonyl;
- one of the R^4 groups is attached to the phenyl ring at the 2-position, and said R^4 is C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, halogen, CN, NO₂, C_1 - C_4 alkoxy, C_1 - C_4 haloalkylthio, C_1 - C_4 alkylsulfinyl, C_1 - C_4 alkylsulfinyl, C_1 - C_4 haloalkylsulfinyl or C_1 - C_4 haloalkylsulfinyl; and
- each R⁷ is independently H, C₁-C₄ alkyl, C₁-C₄ haloalkyl, halogen, CN, NO₂, C₁-C₄ haloalkoxy, C₁-C₄ alkylthio, C₁-C₄ alkylsulfinyl, C₁-C₄ alkylsulfonyl, C₁-C₄ haloalkylthio, C₁-C₄ haloalkylsulfinyl, C₁-C₄ haloalkylsulfonyl or C₂-C₄ alkoxycarbonyl; or a phenyl or a 5- or 6-membered heteroaromatic ring, each ring optionally substituted with C₁-C₄ alkyl, C₂-C₄ alkenyl, C₂-C₄ alkynyl, C₃-C₆ cycloalkyl, C₁-C₄ haloalkyl, C₂-C₄ haloalkenyl, C₂-C₄ haloalkynyl, C₃-C₆ halocycloalkyl, halogen, CN, NO₂, C₁-C₄ alkoxy, C₁-C₄ haloalkoxy, C₁-C₄ alkylsulfinyl, C₁-C₄ alkylsulfonyl, C₁-C₄ alkylamino, C₂-C₈ dialkylamino, C₃-C₆ cycloalkylamino, C₃-C₆ (alkyl)cycloalkylamino, C₃-C₆ alkoxycarbonyl, C₂-C₆ alkylaminocarbonyl, C₃-C₈ dialkylaminocarbonyl or C₃-C₆ trialkylsilyl.
- 30. (currently amended): The compound of Claim 29 wherein J is selected from the group consisting of pyridine, <u>and pyrimidine</u>, <u>pyrazole</u>, <u>imidazole</u>, <u>triazole</u>, <u>thiophene</u>, thiazole and oxazole, furan, isothiazole and isoxazole</u>, each optionally substituted with 1 to 3 R⁷.
 - 31. (currently amended): The compound of Claim 30 wherein
 - J is selected from the group consisting of pyridine, <u>and</u> pyrimidine, pyrazole, thiophene and thiazole, each optionally substituted with 1 to 3 R⁷;
 - R^1 and R^2 are both H;
 - R³ is C₁-C₄ alkyl optionally substituted with halogen, CN, OCH₃, or S(O)_pCH₃; each R⁴ is independently H, CH₃, CF₃, OCF₃, OCHF₂, S(O)_pCF₃, S(O)_pCHF₂, CN or halogen;
 - each R⁷ is independently H, halogen, CH₃, CF₃, OCHF₂, S(O)_pCF₃, S(O)_pCHF₂, OCH₂CF₃, OCF₂CHF₂, S(O)_pCH₂CF₃, or S(O)_pCF₂CHF₂; or phenyl, pyrazole, imidazole, triazole, pyridine or pyrimidine, each ring optionally substituted with

Docket No.: BA9263 US DIV Page 22

 C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_4 alkoxy, C_1 - C_4 haloalkoxy, C_1 - C_4 alkylsulfinyl, C_1 - C_4 alkylsulfonyl, halogen or CN; and p is 0, 1 or 2.

- 32. (original): The compound of Claim 31 wherein J is a pyridine optionally substituted with 1 to $3 R^7$.
- 33. (original): The compound of Claim 32 wherein one \mathbb{R}^7 is a phenyl optionally substituted with \mathbb{C}_1 - \mathbb{C}_4 alkyl, \mathbb{C}_1 - \mathbb{C}_4 haloalkyl, halogen or $\mathbb{C}\mathbb{N}$.
- 34. (original): The compound of Claim 32 wherein one R^7 is a pyrazole, imidazole, triazole, pyridine or pyrimidine, each ring optionally substituted with C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, halogen or CN.
- 35. (original): The compound of Claim 31 wherein J is a pyrimidine optionally substituted with 1 to $3 R^7$.
- 36. (original): The compound of Claim 35 wherein one \mathbb{R}^7 is a phenyl optionally substituted with \mathbb{C}_1 - \mathbb{C}_4 alkyl, \mathbb{C}_1 - \mathbb{C}_4 haloalkyl, halogen or CN.
- 37. (original): The compound of Claim 35 wherein one R^7 is a pyrazole, imidazole, triazole, pyridine or pyrimidine, each ring optionally substituted with C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, halogen or CN.
- 38. (canceled): The compound of Claim $\frac{32}{31}$ wherein J is a pyrazole optionally substituted with 1 to 3 \mathbb{R}^7 .
- 39. (canceled): The compound of Claim 38 wherein one \mathbb{R}^7 is a phenyl optionally substituted with \mathbb{C}_1 - \mathbb{C}_4 alkyl, \mathbb{C}_1 - \mathbb{C}_4 haloalkyl, halogen or $\mathbb{C}\mathbb{N}$.
- 40. (canceled): The compound of Claim 38 wherein one R^7 is a pyrazole, imidazole, triazole, pyridine or pyrimidine, each ring optionally substituted with C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, halogen or CN.
- 41. (canceled): The compound of Claim 38 wherein wherein R^7 is a pyridine optionally substituted with C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, halogen or CN.
- 42. (currently amended): The compound of Claim 22 selected from the group consisting of:

3-methyl- N- (1-methylethyl)-2-[[4-(trifluoromethyl)benzoyl] a mino]-benzamide,

2-methyl-*N*-[2-methyl-6-[[(1-methylethyl)amino]carbonyl]phenyl]-4-(trifluoromethyl)benzamide, and

2-methyl-*N*-[2-methyl-6-[[(1-methylethyl)amino]carbonyl]phenyl]-6-(trifluoromethyl)-3-pyridinecarboxamide[[,]].

1-ethyl-N-[2-methyl-6-[[(1-methylethyl)amino]carbonyl]phenyl]-3 (trifluoromethyl)-1H-pyrazole-5-carboxamide,

1-(2-fluorophenyl) N [2-methyl 6-[[(1-methylethyl)amino)carbonyl]phenyl] 3-(trifluoromethyl) 1H-pyrazole-5-carboxamide,

(

Docket No.: BA9263 US DIV Page 23

1 (3 chloro 2 pyridinyl) N [2 methyl 6 [[(1 methylethyl)amino]carbonyl]phenyl]3-(trifluoromethyl) 1H-pyrazole-5 carboxamide,
N [2 chloro 6 [[(1 methylethyl)amino]carbonyl]phenyl]-1 (3 chloro-2 pyridinyl)-3-(trifluoromethyl) 1H-pyrazole-5 carboxamide,
3 bromo-1 (2 chlorophenyl) N [2 methyl-6 [[(1 methylethyl)amino]carbonyl]phenyl]-1H-pyrazole-5 carboxamide, and
3 bromo-N [2 chloro-6 [[(1 methylethyl)amino]carbonyl]phenyl]-1 (2-chlorophenyl)-1H-pyrazole-5 carboxamide.

43. (original): An arthropodicidal composition comprising an arthropodicidally effective amount of a compound of Formula 1 as described in Claim 1 and at least one additional component selected from the group consisting of surfactants, solid diluents and liquid diluents.