00-credit-risk-model-without-feast

September 22, 2025

1 Bank Customer Credit Risk Model Development (Without FEAST)

1.1 Model

We develop a model that predicts if a credit loan customer can be a bad credit loan using the credit risk dataset.

1.2 Dataset

Use the trimmed Bank Customer Credit Risk dataset to have only:

Age (numeric) Sex (text: male, female) Job (numeric: 0 - unskilled and non-resident, 1 - unskilled and resident, 2 - skilled, 3 - highly skilled) Housing (text: own, rent, or free) Saving accounts (text - little, moderate, quite rich, rich) Checking account (numeric, in DM - Deutsch Mark) Credit amount (numeric, in DM) Duration (numeric, in month) Purpose(text: car, furniture/equipment, radio/TV, domestic appliances, repairs, education, business, vacation/others Risk (Value target - Good or Bad Risk)

See german-credit-data-with-risk to see the data in Kaggle.

2 Setup

3 Raw Data (Bank Customer Credit Risk)

<class 'pandas.core.frame.DataFrame'>
Index: 1000 entries, 0 to 999

Data columns (total 10 columns):

#	Column	Non-Null Count	Dtype
0	Age	1000 non-null	int64
1	Sex	1000 non-null	object
2	Job	1000 non-null	int64
3	Housing	1000 non-null	object
4	Saving accounts	817 non-null	object
5	Checking account	606 non-null	object
6	Credit amount	1000 non-null	int64

7 Duration 1000 non-null int64 8 Purpose 1000 non-null object 9 Risk 1000 non-null float64

dtypes: float64(1), int64(4), object(5)

memory usage: 85.9+ KB

None

	Age	Sex	Job I	Housing S	aving accounts	Checking account	Credit amount
Dur	atio	n		Purpose	Risk		
0	67	male	2	own	NaN	little	1169
6		r	adio/1	0.0			
1	22	female	2	own	little	moderate	5951
48			radio	TV 1.0			
2	49	male	1	own	little	NaN	2096
12		е	ducati	ion 0.0			
3	45	male	2	free	little	little	7882
42	fur	niture/e	quipme	ent 0.0			
4	53	male	2	free	little	little	4870
24			(car 1.0			

3.0.1 Column Types

3.0.2 Unique Categorical Values

Sex : [male, female]

Job : [2, 1, 3, 0]

Housing : [own, free, rent]

Saving accounts : [little, quite rich, rich, moderate]

Checking account : [little, moderate, rich]

Purpose : [radio/TV, education, furniture/equipment, car, business,

domestic appliances, repairs, vacation/others]

4 EDA

4.1 Target label (Risk) and imbalance

Age Sex Job Housing Saving accounts Checking account Credit amount

Duration Purpose Risk Generation Amount

O 67 male 2 own NaN little 1169

6 radio/TV 0.0 Senior <5K

Non Risky data is [2.33] more than Risky.

4.2 Risk by Credit Amount

Higher the amount, higher the risk.

5 Risk Correlation

6 Featur Engineering

Supposing the EDA has been done and concluded:

- 1. Not to use Duration column.
- 2. Convert all other columns to categorical.
- 3. One Hot Encode all the categorical columns.

7 Features for Model Consumption

Verify the features to be consumed by the Model Training

<class 'pandas.core.frame.DataFrame'>

Index: 1000 entries, 0 to 999
Data columns (total 36 columns):

#	Column	Non-Null Count	Dtype
0	risk	1000 non-null	float64
1	gender_female	1000 non-null	float32
2	gender_male	1000 non-null	float32
3	job_0	1000 non-null	float32
4	job_1	1000 non-null	float32
5	job_2	1000 non-null	float32
6	job_3	1000 non-null	float32
7	housing_free	1000 non-null	float32
8	housing_own	1000 non-null	float32
9	housing_rent	1000 non-null	float32
10	saving_accounts_little	1000 non-null	float32
11	saving_accounts_moderate	1000 non-null	float32
12	saving_accounts_no_inf	1000 non-null	float32
13	saving_accounts_quite_rich	1000 non-null	float32
14	saving_accounts_rich	1000 non-null	float32
15	<pre>checking_account_little</pre>	1000 non-null	float32
16	<pre>checking_account_moderate</pre>	1000 non-null	float32
17	<pre>checking_account_no_inf</pre>	1000 non-null	float32
18	<pre>checking_account_rich</pre>	1000 non-null	float32
19	purpose_business	1000 non-null	float32
20	purpose_car	1000 non-null	float32
21	<pre>purpose_domestic_appliances</pre>	1000 non-null	float32
22	purpose_education	1000 non-null	float32
23	purpose_furniture_equipment	1000 non-null	float32
24	purpose_radio_tv	1000 non-null	float32
25	purpose_repairs	1000 non-null	float32
26	purpose_vacation_others	1000 non-null	float32

27	generation_student	1000 non-null	float32
28	<pre>generation_young</pre>	1000 non-null	float32
29	generation_adult	1000 non-null	float32
30	generation_senior	1000 non-null	float32
31	amount_0	1000 non-null	float32
32	amount_1	1000 non-null	float32
33	amount_2	1000 non-null	float32
34	amount_3	1000 non-null	float32
35	amount_4	1000 non-null	float32

dtypes: float32(35), float64(1)

memory usage: 152.3 KB

risk gender_female gender_male job_0 job_1 job_2 job_3 housing_free housing_own housing_rent saving_accounts_little saving_accounts_moderate saving_accounts_no_inf saving_accounts_quite_rich saving_accounts_rich checking_account_little checking_account_moderate checking_account_no_inf checking_account_rich purpose_business purpose_car purpose_domestic_appliances purpose_education purpose_furniture_equipment purpose_radio_tv purpose_repairs purpose_vacation_others generation_student generation_young generation_adult generation_senior amount_0 amount_1 amount_2 amount_3 amount_4
0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 0.0
1.0 0.0 0.0 0.0 0.0 0.0 0.0
1.0 0.0 0.0 0.0 0.0 0.0 0.0
1.0 0.0 0.0 0.0 0.0 0.0 0.0
1.0 0.0 0.0 0.0 0.0 0.0 0.0
1.0 0.0 0.0 0.0 0.0 0.0 0.0

1.0	0.0		0.0			0.0	
1.0		0.0		0.	0		1.0
0.0	0.	0		0.0		0.0	
0.0		0.0		0.0			0.0
1.0	0.0		0.	0		0.0	
0.0	0.0		1.0	1.0	0.0	0.0	0.0
0.0							
1 1.0	1.0	0.0	0.0	0.0	1.0 0	.0	0.0
1.0	0.0		1.0			0.0	
0.0		0.0		0.	0		0.0
1.0	0.	0		0.0		0.0	
0.0		0.0		0.0			0.0
1.0	0.0		0.	0		1.0	
0.0	0.0		0.0	0.0	1.0	0.0	0.0
0.0							
2 0.0	0.0	1.0	0.0	1.0	0.0 0	.0	0.0
1.0	0.0		1.0			0.0	
0.0		0.0		0.	0		0.0
0.0	1.	0		0.0		0.0	
0.0		0.0		1.0			0.0
0.0	0.0		0.	0		0.0	
0.0	1.0		0.0	1.0	0.0	0.0	0.0
0.0							
3 0.0	0.0	1.0	0.0	0.0	1.0 0	.0	1.0
0.0	0.0		1.0			0.0	

0.0		0.0		0.	. 0		1.0
0.0	0.	0		0.0		0.0	
0.0		0.0		0.0			1.0
0.0	0.0		0.	0	0	.0	
0.0	1.0		0.0	0.0	1.0	0.0	0.0
0.0							
4 1.0	0.0	1.0	0.0	0.0	1.0 0.0		1.0
0.0	0.0		1.0			0.0	
0.0		0.0		0.	. 0		1.0
0.0	0.	0		0.0		0.0	
1.0		0.0		0.0			0.0
0.0	0.0		0.	0	0	.0	
0.0	1.0		0.0	1.0	0.0	0.0	0.0
0.0							

8 Model Training

gender_female gender_male job_0 job_1 job_2 job_3 housing_free housing_own housing_rent saving_accounts_little saving_accounts_moderate saving_accounts_no_inf saving_accounts_quite_rich saving_accounts_rich checking_account_little checking_account_moderate checking_account_no_inf checking_account_rich purpose_business purpose_car purpose_domestic_appliances purpose_education purpose_furniture_equipment purpose_radio_tv purpose_repairs purpose_vacation_others generation_student generation_young generation_adult generation_senior amount_0 amount_1 amount_2 amount_3 amount_4 0.0 1.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 0.0 1.0 0.0 0.0 1 0.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 2 0.0 1.0 0.0 1.0 0.0 0.0 0.0 1.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0

0.0		1.0			0.0		0.0	
0.0		0.0	0		1.0			0.0
0.0	0.0			0.0			0.0	
0.0	1.0			0.0	1.0	0.0	0.0	0.0
0.0								
3	0.0	1.0	0.0	0.0	1.0	0.0	1.0	
0.0	0.0			1.0			0.0	
0.0		0.0			0.0)		1.0
0.0		0.0			0.0		0.0	
0.0		0.0	0		0.0			1.0
0.0	0.0			0.0			0.0	
0.0	1.0			0.0	0.0	1.0	0.0	0.0
0.0								
4	0.0	1.0	0.0	0.0	1.0	0.0	1.0	
0.0	0.0			1.0			0.0	
0.0		0.0			0.0)		1.0
0.0		0.0			0.0		0.0	
1.0		0.0	0		0.0			0.0
0.0	0.0			0.0			0.0	
0.0	1.0			0.0	1.0	0.0	0.0	0.0
0.0								

8.1 Algorithsm Comparision

XGB: 0.485379 (0.095631)

Gaussian Naive Bayes: 0.525474 (0.082965) Logistic Regression: 0.599749 (0.080013)

Algorithm Comparison

9 Train Models

9.1 Logistic Regression

```
Fitting 5 folds for each of 10 candidates, totalling 50 fits
GridSearchCV(cv=5,
              estimator=LogisticRegression(class_weight='balanced',
                                           max_iter=1000, random_state=42,
                                            solver='liblinear'),
              n_{jobs}=-1,
              param_grid={'C': [0.01, 0.1, 1, 10, 100],
                          'class_weight': ['balanced', None],
                          'penalty': ['12']},
              scoring='f1', verbose=2)
Logistic regression best score: 0.5894372219310449
{
    "C": 0.01,
    "class_weight": "balanced",
    "penalty": "12"
Best parameters: {'C': 0.01, 'class_weight': 'balanced', 'penalty': '12'}
Best ROC: 0.5894372219310449
Logistic Regression Results:
Confusion Matrix
[[115 63]
 [ 21 51]]
Accuracy: 0.6640
Recall: 0.7083
Precision: 0.4474
F1: 0.5484
AUC: 0.7365
classification report
              precision
                           recall f1-score
                                               support
                   0.85
                              0.65
                                        0.73
         0.0
                                                   178
         1.0
                   0.45
                              0.71
                                        0.55
                                                    72
                                        0.66
                                                   250
    accuracy
   macro avg
                   0.65
                              0.68
                                        0.64
                                                   250
weighted avg
                   0.73
                              0.66
                                        0.68
                                                   250
```


NOTE: SKLearn Confusion Matrix format:

[[TN FP] [FN TP]]

9.2 GNB

• Scikit-Learn GridSearchCV GaussianNB

0.69466666666668

```
'logistic__var_smoothing': [1e-09, 1e-08, 1e-07,
                                                       1e-06]},
             scoring='f1')
GNB best score: 0.5516661003209277
{
    "feature_union__pca__n_components": 3,
    "feature_union__select_best__k": 4,
    "logistic__var_smoothing": 1e-09
}
Gaussian NB Results:
Confusion Matrix
[[128 50]
[ 27 45]]
Accuracy: 0.6920
Recall: 0.6250
Precision: 0.4737
F1: 0.5389
AUC: 0.7239
classification report
              precision
                           recall f1-score
                                               support
         0.0
                   0.83
                             0.72
                                       0.77
                                                   178
         1.0
                   0.47
                             0.62
                                       0.54
                                                    72
                                       0.69
                                                   250
    accuracy
   macro avg
                   0.65
                             0.67
                                       0.65
                                                   250
weighted avg
                   0.72
                             0.69
                                       0.70
                                                   250
```


9.3 XGB

```
GridSearchCV(cv=5,
```

estimator=XGBClassifier(base_score=None, booster=None, callbacks=None, colsample_bylevel=None, colsample_bynode=None, colsample_bytree=None, device=None, early_stopping_rounds=None, enable_categorical=False, eval_metric='auc', feature_types=None, feature_weights=None, gamma=None, grow_policy=None, importance_type=None, interaction_constraints=No...

max_delta_step=None, max_depth=None, max_leaves=None, min_child_weight=None, missing=nan, monotone_constraints=None, multi_strategy=None, n_estimators=None, n_jobs=-1, num_parallel_tree=None, ...),

param_grid={'gamma': [0.1, 0.2],

```
'learning_rate': [0.005, 0.01, 0.015],
                          'max_depth': [3, 4], 'min_child_weight': [8, 12],
                          'n_estimators': [100, 200, 300],
                          'scale_pos_weight': [2.3333333333333333]},
             scoring='f1')
stage1 grid_xb.best_score_:0.5782563728585046
stage1 best params:{
    "gamma": 0.1,
    "learning_rate": 0.01,
    "max_depth": 3,
    "min_child_weight": 12,
    "n_estimators": 200,
    "scale_pos_weight": 2.3333333333333333
}
XGBoost Results:
Confusion Matrix
[[110 68]
 [ 17 55]]
Accuracy: 0.6600
Recall: 0.7639
Precision: 0.4472
F1: 0.5641
AUC: 0.7231
classification report
              precision
                           recall f1-score
                                               support
                             0.62
         0.0
                   0.87
                                       0.72
                                                   178
         1.0
                   0.45
                             0.76
                                       0.56
                                                    72
                                       0.66
    accuracy
                                                   250
   macro avg
                   0.66
                             0.69
                                       0.64
                                                   250
weighted avg
                             0.66
                                       0.68
                   0.75
                                                   250
```


9.3.1 Stage2

```
GridSearchCV(cv=5,
```

```
estimator=XGBClassifier(base_score=None, booster=None,
                        callbacks=None, colsample_bylevel=None,
                        colsample_bynode=None,
                        colsample_bytree=None, device=None,
                        early_stopping_rounds=None,
                        enable_categorical=False,
                        eval_metric='auc', feature_types=None,
                        feature_weights=None, gamma=None,
                        grow_policy=None, importance_type=None,
                        interaction_constraints=No...
                        max_leaves=None, min_child_weight=None,
                        missing=nan, monotone_constraints=None,
                        multi_strategy=None, n_estimators=None,
                        n_jobs=-1, num_parallel_tree=None, ...),
param_grid={'gamma': [0, 0.1, 0.2], 'learning_rate': [0.01],
            'max_depth': [3], 'min_child_weight': [12],
```

```
'n_estimators': [200], 'reg_alpha': [0, 0.1, 0.5],
                          'reg_lambda': [0.1, 1.0, 2.0],
                          'scale_pos_weight': [2.3333333333333333]},
              scoring='f1')
stage2 grid_xb.best_score_:0.5782563728585046
stage2 best params:{
    "gamma": 0,
    "learning_rate": 0.01,
    "max_depth": 3,
    "min_child_weight": 12,
    "n_estimators": 200,
    "reg_alpha": 0.1,
    "reg_lambda": 1.0,
    "scale_pos_weight": 2.3333333333333333
}
XGBoost Results:
Confusion Matrix
[[110 68]
 [ 17 55]]
Accuracy: 0.6600
Recall: 0.7639
Precision: 0.4472
F1: 0.5641
AUC: 0.7215
classification report
              precision
                           recall f1-score
                                               support
         0.0
                   0.87
                             0.62
                                       0.72
                                                   178
         1.0
                   0.45
                             0.76
                                       0.56
                                                    72
                                       0.66
                                                   250
    accuracy
                             0.69
                                       0.64
   macro avg
                   0.66
                                                   250
weighted avg
                   0.75
                             0.66
                                       0.68
                                                   250
```


feature	importance
checking_account_no_inf	0.279368
checking_account_rich	0.063518
saving_accounts_moderate	0.057739
job_3	0.056073
<pre>checking_account_little</pre>	0.047422
generation_student	0.046623
saving_accounts_no_inf	0.045262
${\tt generation_adult}$	0.044990
housing_own	0.042318
amount_0	0.036817
	checking_account_no_inf checking_account_rich saving_accounts_moderate