Лаборатория Работа 2.1.1 Измерение удельной теплоёмкости воздуха при постоянном давлении

Сифат Мд Абдуллах Ал Хасиб Физтех школа электроники, фотоники и молекулярной физики Группа Б04-105

3 мая 2022 г.

1 Введение

Цель работы: измерить повышение температуры воздуха в зависимости от мощности подводимого тепла и расхода при стационарном течении через трубу; 2) исключив тепловые потери, по результатам измерений определить теплоёмкость воздуха при постоянном давлении.

В работе используются: теплоизолированная стеклянная трубка; электронагреватель; источник питания постоянного тока; амперметр; вольтметр (цифровые мультиметры); термопара, подключённая к микровольтметру; компрессор; газовый счётчик; секундомер.

2 Теоретическая справка

Измерение теплоёмкости тел обычно производится в калориметрах, т.е. в сосудах, обеспечивающих теплоизоляцию исследуемого тела от внешней среды. При этом регистрируется изменение его температуры δT в зависимости от количества тепла δQ , полученного телом от некоторого нагревательного элемента внутри калориметра. Теплоёмкость тела в некотором процессе определяется как их отношение:

$$C = \frac{\delta Q}{\delta T} \tag{1}$$

Надёжность измерения определяется, в основном, качеством калориметра. Необходимо, чтобы количество тепла, затрачиваемое на нагревание исследуемого тела, существенно превосходило тепло, расходуемое на нагревание самого калориметра, а также на потери тепла из установки. При измерении теплоёмкости газов эти требования выполнить довольно трудно - масса газа в калориметре и, следовательно, количество тепла, идущее на его нагревание, как правило, малы. Для увеличения количества нагреваемого газа при неизменных размерах установки в нашей работе исследуемый газ (воздух) продувается через калориметр, внутри которого установлен нагреватель. При этом измеряются мощность нагревателя, масса воздуха, протекающего в единицу времени (расход), и приращение его температуры.

Рассмотрим газ, протекающий стационарно слева направо через трубу постоянного сечения, в кото-рой установлен нагревательный элемент (см.рис.1). Пусть за некоторое время dt через калориметр прошла малая порция газа массой dm = qdt, где q [кг/с] - массовый расход газа в трубе. Если мощность нагрева равна N, мощность тепловых потерь на обмен с окружающей средой $N_{\text{пот}}$, то порция получила тепло $\delta Q = (N-N_{\text{пот}})dt$. С другой стороны,

Рис. 1: Нагрев газа при течении по трубе

по определению теплоёмкости (1): $\delta Q = cdm\Delta T$, где $\Delta T = T_2 - T_1$ - приращение температуры газа, и c — удельная (на единицу массы) теплоёмкость газа в рассматриваемом процессе. При малых расходах газа и достаточно большом диаметре трубы перепад давления на её концах мал, поэтому можно принять, что $P_1 \approx P_2 = P_0$, где P_0 - атмосферное давление. Следовательно, в условиях опыта измеряется удельная теплоёмкость при постоянном давлении c_P . Таким образом, получаем

$$C_p = \frac{N - N_{\text{пот}}}{q\Delta T} \tag{2}$$

3 Экспериментальная установка

Схема установки изображена на рис. 1. Воздух, нагнетаемый компрессором, прокачивается через калориметр. Калориметр представляет собой стеклянную цилиндрическую трубку с двойными стенками, запаянными с торцов. На внутреннюю поверхность стенок трубки нанесено серебряное покрытие для минимизации потерь тепла за счет излучения. Воздух из пространства между стенками калориметра откачан до высокого вакуума (10⁻⁵ торр) для минимизации потерь тепла, обусловленных теплопроводностью.

Нагреватель в виде намотанной на пенопласт нихромовой проволоки расположен внутри калориметра непосредственно в воздушном потоке. Нагрев проволоки производится от регулируемого источника постоянного тока (ИП). Напряжение U на нагревателе и ток I через него регистрируются цифровыми мультиметрами. Таким образом, мощность нагрева равна

$$N = UI \tag{3}$$

Для измерения разности температур ΔT служит медно-константановая термопара. Один спай термопары расположен в струе воздуха, входящего в калориметр, и находится при комнатной температуре, а второй - в струе выходящего нагретого воздуха. Константановая проволока термопары расположена внутри калориметра, а медные проводники подключены к цифровому вольтметру. Возникающая в термопаре ЭДС ε пропорциональна разности температур ΔT спаев:

$$\varepsilon = \beta \Delta T \tag{4}$$

где $\beta = 40,7\frac{\text{мкB}}{^{\circ}C}$ - чувствительность медно-константановой термопары в рабочем диапазоне температур (20-30 °C). ЭДС регистрируется с помощью микровольтметра.

Объём воздуха, прошедшего через калориметр, измеряется газовым счётчиком Γ С. Для регулировки расхода служит кран К. Время Δt прохождения некоторого объема ΔV воздуха измеряется секундомером. Объёмный расход равен $\Delta V/\Delta t$, массовый расход может быть найден как

$$q = \rho_0 \frac{\Delta V}{\Delta t} \tag{5}$$

где ρ_0 - плотность воздуха при комнатной температуре, которая в свою очередь может быть получена из уравнения Менделеева–Клапейрона: $\rho_0=\frac{\mu P_0}{RT_0}$, где P_0 - атмосферное давление, T_0 - комнатная температура (в Кельвинах), $\mu=29,0$ г/моль - средняя молярная масса (сухого) воздуха.

Учитывая особенности устройства калориметра, следует ожидать, что мощность нагревателя расходуется не только на нагрев массы прокачиваемого воздуха, но и частично теряется за счет нагрева внутренних стенок термостата и рассеяния тепла через торцы термостата. Можно предположить, что при небольшом нагреве ($\Delta T << T_0$) мощность потерь тепла $N_{\text{пот}}$ прямо пропорциональна разности температур:

$$N_{\text{not}} = \alpha \Delta T \tag{6}$$

где α — некоторая константа. При этом условии основное соотношение (2) принимает вид

$$N = (c_p q + \alpha) \Delta T \tag{7}$$

Следовательно, при фиксированном расходе воздуха (q=const) подводимая мощность и разность температур связаны прямой пропорциональностью $(\Delta T(N)$ — линейная функция).

4 Ход работы

P_0 , MM. pt. ct.	T_{κ}, K	$\varphi,\%$	$\Delta t_{max}, c$	ΔV_{max} , дм 3	$P_{\scriptscriptstyle \mathrm{H.H.}}$, к Π а
749.5 ± 0.5	294 ± 1	81 ± 1	26.0 ± 0.5	5 ± 0.1	2.48

Объёмный расход для каждого из опытов вычислим по формуле:

$$q = \rho_0 \frac{\Delta V}{\Delta t}$$

$$\rho_0 = \frac{\mu \left(P_0 - \varphi P_{\text{\tiny H. II.}}\right)}{RT_{\text{\tiny K}}} = 1.18 \pm 0.01 \frac{\text{\tiny K}\Gamma}{\text{\tiny M}^3};$$

$$\sigma$$

$\Delta t_1, c$	ΔV_1 , дм 3	$q_1, rac{\Gamma}{c}$	$\Delta t_2, c$	ΔV_2 , дм 3	$q_2, \frac{\Gamma}{c}$
26.0 ± 0.5	5 ± 0.1	0.2 ± 0.03	44.8 ± 0.5	5 ± 0.1	0.135 ± 0.03

Посчитаем мощность нагрева N и разность температур ΔT по формулам:

$$N = UI;$$
$$\Delta T = \frac{\mathcal{E}}{\beta}.$$

При расходе q_1 :

	\mathcal{E} , мк B	$U_{\scriptscriptstyle \mathrm{H}},\mathrm{B}$	$I_{\scriptscriptstyle \mathrm{H}}$, м A	$\Delta t, K$	N, BT	$R_{\scriptscriptstyle \mathrm{H}},~\mathrm{Om}$
1	67	3.58	120.7	1.91	0.43	35
2	86	4.03	136.69	2.45	0.55	35.4
3	99	4.53	153.37	2.83	0.69	35.3
4	120	5.05	170.68	3.42	0.86	35.3
5	149	5.525	187.31	4.26	1.03	35.3
6	178	5.980	210.10	5.09	1.26	35.3

При расходе q_2 :

	\mathcal{E} , мкВ	$U_{\scriptscriptstyle \mathrm{H}},\mathrm{B}$	$I_{\scriptscriptstyle \mathrm{H}},{\scriptscriptstyle \mathrm{M}}\mathrm{A}$	$\Delta t, K$	$N, B_{\rm T}$	$R_{\scriptscriptstyle \mathrm{H}},~\mathrm{Om}$
1	48	3.479	118.26	1.37	0.41	35.6
2	89	4.005	136.16	2.54	0.54	35.3
3	114	4.531	153.97	3.26	0.69	35.3
4	155	5.033	170.85	4.42	0.859	35.3
5	188	5.39	188.05	5.37	1.041	35.3
6	232	6.039	211.9	6.63	1.279	35.3

Построим графики зависимости $\Delta T(N)$ для каждого объёмного расхода воздуха q и найдём угловые коэффициенты наклона графиков:

Рис. 2: График зависимости $\Delta T(N)$ при объёмном расходе q_1

Рис. 3: График зависимости $\Delta T(N)$ при объёмном расходе q_2

Полученные зависиомсти из графиков:

$$y_1 = k_1 x_1 + b_1;$$
 $y_2 = k_2 x_2 + b_2;$
 $k_1 = 3.36 \pm 0.03;$ $b_1 = 0.19 \pm 0.04;$
 $k_2 = 4.66 \pm 0.04;$ $b_2 = -0.13 \pm 0.03;$

Найдем α и c_P , решив систему уравнений:

$$\begin{cases} c_P q_1 + \alpha = \frac{1}{k_1} \\ c_P q_2 + \alpha = \frac{1}{k_2} \end{cases}$$

Путем математических преобразований получаем:

$$c_P = \frac{k_2 - k_1}{(q_1 - q_2) k_1 k_2};$$
 $\alpha = \frac{k_2 - k_1 - c_P(q_1 + q_2)}{2 k_1 k_2}.$ $c_P = 1038 \frac{\text{Дж}}{\text{кг K}};$ $\alpha = 0.098 \frac{\text{Дж}}{K}$

Оценим погрешности:

$$\sigma_{k_1} = 0.03; \qquad \sigma_{k_1} = 0.04;$$

$$\sigma_{c_P} \approx c_P \sqrt{\left(\frac{\sigma_{k_1}}{k_1}\right)^2 + \left(\frac{\sigma_{k_2}}{k_2}\right)^2} = 13$$

$$c_P = 1038 \pm 13 \frac{\text{Дж}}{\text{кг K}}$$

$$\alpha = 0.098 \pm 0.001 \frac{\text{Дж}}{K}$$

Вывод

Найденное значение молярной темлоёмкости c_P с учётом погрешности и потерь тепла совпадает с табличным значением $c_{P_{\text{табл}}}=1003~\frac{\mathcal{A}_{\text{ж}}}{\text{кг K}}.$ Мощность потерь тепла в единицу изменения температуры равна $N_{\text{пот}}=0.098~\mathcal{J}_{\text{ж}}.$