Harmful Brain Activity Classification (HMS)

Shirui Li, Falak Pabari, Lydia Yang, Echo Zhang

Background

Purpose:

 Develop a model to accurately detect neurological disorders using EEG and spectrogram patterns.

Vision:

- Early prediction and better treatment of neurological disorders.
- Enhanced accuracy in interpreting EEG imaging.

Problems

Significant Discrepancy:

-> Average seizure prediction by 119 annotators: 18.8%

Collected data visualization

Need for Expert Training!

Motivations

Expertise is Crucial:

- Experts provide more accurate annotations.
- Reducing misclassifications by focusing on expert data.

Current Challenges:

- Manual EEG analysis is labor-intensive and prone to errors.
- Automation can enhance speed and reliability.

Review of Related Works

Hasan et al. (2020): (Deep Learning Techniques for Electroencephalogram (EEG) Signal Analysis: A Review)

Relevance of CNNs for tasks involving image data.

Tabar and Halici (2017): (Deep Learning Approaches for EEG Signal Classification: A Review)

Emphasis on CNNs for capturing spatial dependencies.

Fatourechi et al. (2007): ("EEG-Based Brain-Computer Interface: Active Mental Tasks Classification Using Wavelet Features and Bayesian Approach")

- Classification using wavelet features and Bayesian methods.
- Insights into evaluation metrics and experimental design.

Study	Feature extraction	Decoding problem	Architecture	Accuracy
[35]	EEG motor imagery signals	BCI	CNN+SAE	90.0%
[54]	EEG data	BCI	CDBN	88%
[55]	EEG data	Epileptic Seizure Detection	CNN	90.5

Figure: Taken from Paper 1 specifying the use of CNN models for higher accuracy rate in decoding EEG data for epileptic seizure detection

Dataset Overview and Processing

Dataset - Classifications

6 classifications:

- SZ seizure (sudden, uncontrolled)
- LPD lateralized periodic discharges.
- GPD generalized periodic discharges
- LRDA lateralized rhythmic delta activity
- GRDA generalized rhythmic delta activity
- Other

LPD

Dataset - Expert Consensus

- A portion of dataset has uncertain classifications, rated by experts
- Includes each expert's vote on which disease it is
- Dataset includes the majority vote of expert's opinion on classification
- For greater consideration, should factor in the uncertainty of votes
- For our purposes, we use the majority experts' consensus

Dataset - EEGs vs. Spectrograms

EEGs:

- Measures electrical activity in brain using electrodes attached to scalp
- Electrical impulse from brain activity show up as wavy lines in the
 EEG recording

Spectrograms:

- A frequency-dependent representation of the EEG
- Same data as EEG, represents
 data in a different output

Frequency (Hz)

Time (seconds)

EEG

Amplifier/AD

PDR or Mu

Rhythm

Trimming

Data shape: (timestep, features)

Data Preparation

- Issues loading the entire dataset due to Colab RAM and GPU limits
 - We loaded 30% of the dataset to train on with random sampling
- Unevenly distributed data points in classes:

Seizure	LPD	GPD	LRDA	GRDA	Other
94	158	123	25	76	735
0.078	0.130	0.102	0.021	0.064	0.607

Simple majority classifier accuracy: 0.607

Data Splitting and Standardization

- Divide dataset into training, validation, and test dataset
- Perform a 20-80 split for testing & training set
- Perform a 20-80 split on the training set again for training & validation set
- Standardize data by subtracting by mean and dividing by standard dev.
- Eliminate NaNs data points by changing values to 0's
- One-hot encoding for the Y-label set

Building the Model

Model Selection and Implementation

CNN₁D

- Convolutional Neural Networks (CNNs) are a class of deep learning models extensively used for processing images.
- 1D because EEGs are time-series data, which is sequential in nature.
- We used the same model for both EEG and spectrogram to compare which data is more suitable for training CNN1D model.

CNN1D Block Structure

Model Structure

rate = 0.2 activation = "softmax"

Model Summary

- Trainable Data: 140,000
- Loss Function: Categorical CrossEntropy
 - suitable for multi classification
- Optimization Algorithm: Adam
- Evaluation Matrices: Accuracy
- EarlyStopping: patient = 5

Model: "sequential_3"

Layer (type)	Output Shape	Param #
conv1d_9 (Conv1D)	(None, 9996, 9)	909
<pre>batch_normalization_9 (Bat chNormalization)</pre>	(None, 9996, 9)	36
<pre>max_pooling1d_9 (MaxPoolin g1D)</pre>	(None, 4998, 9)	0
dropout_12 (Dropout)	(None, 4998, 9)	0
conv1d_10 (Conv1D)	(None, 4994, 9)	414
<pre>batch_normalization_10 (Ba tchNormalization)</pre>	(None, 4994, 9)	36
<pre>max_pooling1d_10 (MaxPooli ng1D)</pre>	(None, 2497, 9)	0
dropout_13 (Dropout)	(None, 2497, 9)	0
conv1d_11 (Conv1D)	(None, 2493, 9)	414
<pre>batch_normalization_11 (Ba tchNormalization)</pre>	(None, 2493, 9)	36
<pre>max_pooling1d_11 (MaxPooli ng1D)</pre>	(None, 1246, 9)	0
dropout_14 (Dropout)	(None, 1246, 9)	0
flatten_3 (Flatten)	(None, 11214)	0
dense_6 (Dense)	(None, 128)	1435520
dropout_15 (Dropout)	(None, 128)	0
dense_7 (Dense)	(None, 6)	774

Total params: 1438139 (5.49 MB)
Trainable params: 1438085 (5.49 MB)
Non-trainable params: 54 (216.00 Byte)

Model Evaluation

EEG Training

EEG Results

- Test accuracy: 63.1%
- Balanced accuracy score: 17.7%

	precision	recall	f1-score	support
0 1 2 3 4	0.00 0.00 0.00 0.00 0.14	0.00 0.00 0.00 0.00 0.03	0.00 0.00 0.00 0.00 0.05	25 52 31 7 31
accuracy macro avg weighted avg	0.62 0.13 0.39	0.97 0.17 0.60	0.76 0.60 0.13 0.47	233 379 379 379

Spectrogram Training

Spectrogram Results

- Test accuracy: 55.5%
- Balanced accuracy score: 17.9%

	precision	recall	T1-score	support
0 1 2 3 4 5	0.17 0.29 0.20 0.00 0.00	0.07 0.05 0.05 0.00 0.00	0.10 0.09 0.08 0.00 0.00	27 38 41 15 31
accuracy macro avg reighted avg	0.59 0.21 0.42	0.90 0.18 0.56	0.71 0.56 0.16 0.45	228 380 380 380

Next Steps

- Training on the entire dataset
- After excluding outliers, zero padding remaining data larger than cutoff
- Correct the data distribution by using data augmentation
- Using Scipy packages to convert spectrogram data into images, then use
 Conv2D for training the model to compare with the result of Conv1D
- Using a pretrained model

Conclusion

The final ideas and takeaways

Resources and Acknowledgements

- Thank you to Prof. Molontay and our TA Donát Kölleer
- https://www.kaggle.com/competitions/hms-harmful-brain-activity-classif
 ication/overview
- https://www.researchgate.net/publication/353327259_Deep_Learning_
 Techniques for Classification of Electroencephalogram EEG_Motor_
 Imagery MI Signals A Review_
- https://www.researchgate.net/publication/353327259 Deep Learning
 Techniques for Classification of Electroencephalogram EEG Motor
 Imagery MI Signals A Review
- https://www.researchgate.net/publication/221531473_On_classifiability
 of wavelet features for EEG-based brain-computer interfaces

