

1 Decay Scheme

Po-216 decays (100%) by alpha emission to the Pb-212 fundamental level. Le polonium 216 se désintègre (100%) par émission alpha vers le niveau fondamental de plomb 212.

2 Nuclear Data

2.1 α Transitions

	Energy keV	Probability × 100	F
$lpha_{0,1} lpha_{0,0}$	6101,6 (10)	0,0019 (3)	34,7
	6906,52 (50)	99,9981 (3)	1

2.2 Gamma Transitions and Internal Conversion Coefficients

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_K$	$lpha_L$	$lpha_M+$	$lpha_T$
$\gamma_{1,0}(\mathrm{Pb})$	804,9 (5)	0,0019 (3)	[E2]	0,0081 (2)	0,00180 (4)	0,00050 (1)	0,0104 (2)

3 Atomic Data

3.1 Pb

 $\begin{array}{ccccc} \omega_K & : & 0.963 & (4) \\ \bar{\omega}_L & : & 0.379 & (15) \\ n_{KL} & : & 0.811 & (5) \end{array}$

3.1.1 X Radiations

		Energy keV		Relative probability
$ m X_{K}$				
11	$K\alpha_2$	72,8049		59
	$K\alpha_1$	74,97		100
	$K\beta_3$	84,451	}	
	$K\beta_1$	84,937	} }	
	$\mathrm{K}eta_5^{\prime\prime}$	85,47	}	34
	$\mathrm{K}eta_2$	87,238	}	
	$K\beta_4$	87,58	ĺ	10,3
	$\mathrm{KO}_{2,3}$	87,911	} } }	,
$ m X_L$				
	$\mathrm{L}\ell$	$9{,}184$		
	$L\alpha$	$10,\!45-10,\!551$		
	$\mathrm{L}\eta$	11,349		
	$L\beta$	$12{,}142-13{,}015$		
	${ m L}\gamma$	14,765 - 15,216		

3.1.2 Auger Electrons

	Energy keV	Relative probability
Auger K KLL	56,03 - 61,67	100
KLX KXY Auger L	68,18 - 74,97 $80,3 - 88,0$ $5,26 - 10,40$	54 7,7 3060

4 α Emissions

	Energy keV	Probability × 100
$lpha_{0,1} lpha_{0,0}$	5988,6 (10) 6778,6 (5)	0,0019 (3) 99,9981 (3)

5 Electron Emissions

		Energy keV	Electrons per 100 disint.
$\mathrm{e_{AL}}$	(Pb)	5,26 - 10,40	0,0000107 (10)
e _{AK}	(Pb) KLL KLX KXY	56,03 - 61,67 68,18 - 74,97 80,3 - 88,0	0,00000057 (11) } } }

6 Photon Emissions

6.1 X-Ray Emissions

		Energy keV		Photons per 100 disint.	
XL	(Pb)	9,184 — 15,216		0,0000060 (6)	
$XK\alpha_2 XK\alpha_1$	(Pb) (Pb)	$72,8049 \\ 74,97$		0,0000043 (7) 0,0000073 (12)	$K\alpha$
$\begin{array}{c} XK\beta_3 \\ XK\beta_1 \\ XK\beta_5^{\prime\prime} \end{array}$	(Pb) (Pb) (Pb)	84,451 84,937 85,47	} } }	0,0000025 (4)	${ m K}'eta_1$
$\begin{array}{c} XK\beta_2 \\ XK\beta_4 \\ XKO_{2,3} \end{array}$	(Pb) (Pb) (Pb)	87,238 87,58 87,911	} } }	0,00000075 (13)	$K'\beta_2$

6.2 Gamma Emissions

	Energy keV	Photons per 100 disint.
$\gamma_{1,0}(\mathrm{Pb})$	804,9 (5)	0,0019 (3)

7 Main Production Modes

Bi $- 216(\beta^{-})$ Po - 216Th $- 228 \alpha$ decays

8 References

- H.G.J. MOSELEY, K. FAJANS. Phil. Mag. 22 (1911) 629 (Half-life)
- A.G. WARD. Proc. Roy. Soc. (London) 181A (1942) 183 (Half-life)
- H.V. BUTTLAR. Naturwissenschaften 39 (1952) 575 (Half-life)
- P. MARIN, G.R. BISHOP, H. HALBAN. Proc. Phys. Soc. (London) 66A (1953) 608 (Half-life)
- J. TOBAILEM, J. ROBERT. J. Phys. Radium 16 (1955) 115 (Half-life)
- R.J. WALEN. Comp. Rend. Acad. Sci. (Paris) 255 (1962) 1604 (Alpha emission energies, Alpha emission probabilities)
- H. DIAMOND, J.E. GINDLER. J. Inorg. Nucl. Chem. 25 (1963) 143 (Half-life)
- W. KURCEWICZ, N. KAFFRELL, N. TRAUTMANN, A. PLOCHOCKI, J. ZYLICZ, M. MATUL, K. STRYCZNIEWICZ. Nucl. Phys. A289 (1977) 1 (Gamma-ray energies, Gamma-ray emission probabilities)
- F. RÖSEL, H.M. FRIES, K. ALDER, H.C. PAULI. At. Data Nucl. Data Tables 21 (1978) 291 (Internal conversion coefficients)
- A. ARTNA-COHEN. Nucl. Data Sheets 66 (1992) 171 (Nuclear structure, energies)
- G. AUDI, A.H. WAPSTRA. Nucl. Phys. A595 (1995) 409 (Q value)
- E. SCHÖNFELD, H. JANSSEN. Nucl. Instrum. Methods Phys. Res. A369 (1996) 527 (K-x ray, L-x ray, Auger electrons)
- E. SCHÖNFELD, G. RODLOFF. Report PTB-6.11-98-1 (1998) (Auger electrons)
- E. SCHÖNFELD, G. RODLOFF. Report PTB-6.11-1999 (1999) (K-x ray)

