Udine, 21 settembre 2020

- 1. Sia $\mathcal{F} = \mathcal{F}(2, t, e_{\max}, e_{\min})$ l'insieme di numeri di macchina con l'arrotondamento.
 - Determina gli interi $t, e_{\text{max}}, e_{\text{min}}$ in modo che realmin = 1/32, realmax = 31, e Nu = 10, dove N è ilnumero degli elementi di ${\mathcal F}$ diversi da 0 e u è la pressione di macchina.
 - Siano dati $x=(1.\overline{101})_2$ e $y=(10.\overline{101})_2$. Determina $\tilde{x}=fl(x)\in\mathcal{F},\,\tilde{y}=fl(y)\in\mathcal{F}$ e $\tilde{z}=\tilde{y}fl(-)\tilde{x}\in\mathcal{F}$.
 - * Scrivi $x, y \in \tilde{x}, \tilde{y}$ come frazioni di numeri interi in base 10.
 - Determina l'esponente intero e tale che $\tilde{z} 2^e realmin = 2u$ Giustifica la risposta.
- 2. Si vuole calcolare la funzione $y = F(x) \operatorname{con} F(x) = f(g(x))$.
 - Scrivi il numero di condizionamento di F in funzione di quello di f e g.
 - Siano $f(x) = \sqrt{x}$ e $g(x) = x^4 1$. Studia il condizionamento della funzione F con x che varia nel suo campo
 - Supponi che la funzione \sqrt{x} fornisca un approssimazione il cui errore relativo è maggiorato dalla precisione di macchina u. Studia la stabilitá in avanti dell'algoritmo che calcola la funzione F definita al punto precedente con x numero di macchina.
- 3. Sia $f(x) = \frac{1}{2}x^3 + x^2 2x 4$.
 - Disegna il grafico di f. Determina le radici α, β , con $\alpha < \beta$.
 - Studia la convergenza del metodo di Newton a α e β .
 - Considera le successioni ottenute con il metodo di Newton con i seguenti valori iniziali
 - (a) $x_0 = -3$
 - (b) $x_0 = -1$
 - (c) $x_0 = -2/3$
 - (d) $x_0 = 3$
 - (e) $x_0 = 1$
 - (f) $x_0 = 2/3$

Sono convergenti? Se convergenti, convergono ad α o a β ? Qual è l'ordine di convergenza? Giustifica tutte le

Sia $g(x) = x - \frac{f(x)}{m}$. Verifica che α, β sono punti fissi di g e considera il metodo iterativo $x_{k+1} = g(x_k), k = 1$

- Determina m in modo che il metodo sia localmente convergente in maniera monotona a β con fattore asintotico di convergenza pari a $\frac{1}{5}$. La successione ottenuta con $x_0 = 1$ è convergente? Giustifica la risposta.
- \star Determina m in modo che il metodo sia localmente convergente ad β con ordine di convergenza quadratico. La successione ottenuta con $x_0 = 1$ è convergente? Giustifica la risposta.
- Sia m=-3. Studia la convergenza locale ad α del metodo. La successione ottenuta con $x_0=-1$ è convergente? Se convergente, qual è l'ordine di convergenza? Giustifica la risposta.
- 4. Sia data la matrice

$$A = \begin{pmatrix} \alpha - 3 & 2 & 6 - \alpha \\ 2 & 1 & -2 \\ 6 - \alpha & -2 & -12 \end{pmatrix}.$$

- Calcola la fattorizzazione LU di A. Per quale scelta del parametri α esiste tale fattorizzazione?
- Studia al variare di α il comportamento del metodo di Gauss con il pivot parziale al primo passo.
- Sia $\alpha = 4$. Calcola la fattorizzazione PA = LU con la tecnica del pivot parziale.
- \star Proponi un algoritmo per risolvere il sistema Lx=b. Scrivi la sua pseudocodifica e analizzane la complessità computazionale.
- 5. Sia $f(x) = \log_3(1+2x^2)$. Dati i punti $P_0 = (-1, f(1)), P_1 = (1, f(1))$ e $P_2 = (2, f(2))$.
 - Determina il polinomio p che interpola i tre punti nella forma di Newton.
 - Determina il polinomio \tilde{p} che interpola i tre punti e $P_3=(-2,f(-2))$ nella forma di Newton.
 - Determina il polinomio q di primo grado di miglior approssimazione dei quattro punti P_0, P_1, P_2 e P_3 nel senso dei minimi quadrati.
- \star Sia data una matrice A di dimensione n che ammette la fattorizzazione LU. Scrivi la pseudocodifica che calcola L e Umediante l'algoritmo di eliminazione di Gauss gestendo in maniera efficiente la memoria.