

MAT 3007 — Optimization Algorithms for Unconstrained Optimization Problems

Lecture 16

July 14th

Andre Milzarek

SDS / CUHK-SZ

Repetition

Convexity: Functions, Sets, and Problems

Convex Problems:

- A minimization problem $\min_{x \in \Omega} f(x)$ is called convex if Ω is a convex set and f is convex.
- Convexity/concavity plays a very important role in optimization problems!

Calculus & Rules:

- ▶ A function f is convex on a convex set Ω iff the Hessian $\nabla^2 f(x)$ is positive semidefinite for all $x \in \Omega$.
- ► Rich calculus: sum rule, composition, max-/min-rule.
- ▶ If f is convex, then $L_{\leq c} = \{x : f(x) \leq c\}$ is a convex set \leadsto can be used to check convexity of constraints.
- ▶ $\Omega = \{x : g(x) = 0, h(x) = 0\}$ is convex if all g_i are convex and h is an affine-linear function, i.e., h(x) = Ax b.

Convexity and Optimality

Convexity & Optimality

- ► Every local minimizer of a convex problem is a global minimizer.
- Every stationary point or KKT point of a (unconstrained/ constrained) convex problem is a global minimizer.
- \rightsquigarrow If f is concave, we typically consider $\max_{x \in \Omega} f(x)$ or $\min_{x \in \Omega} -f(x)$.

Algorithms for Unconstrained Problems

Unconstrained Problems

We start with the unconstrained problem:

$$minimize_{x \in \mathbb{R}^n}$$
 $f(x)$

We are going to study the following methods:

- Bisection search and golden section search.
- Gradient descent method.
- Newton's method.

Optimization algorithms are iterative procedures:

- ▶ Starting from an initial point x^0 , a sequence of iterates $\{x^k\}$ is generated.
- ► Goal: reduction of the function values and convergence to an optimal solution.

Problems in ${\mathbb R}$

Single Variable Problem

Assume $f : \mathbb{R} \to \mathbb{R}$ is a single variable function.

Our Objective: find a local minimizer of f.

We introduce two methods:

- Bisection method.
- Golden section method.

Bisection Method

Bisection method uses the idea that the local minimizer must satisfy the first-order necessary conditions: f'(x) = 0.

Therefore, the problem becomes a root-finding problem for

$$g(x)=f'(x)=0.$$

Root Finding Algorithm: Bisection Method

Assume we can find x_ℓ and x_r such that $g(x_\ell) < 0$ and $g(x_r) > 0$.

By the intermediate value theorem, if g is continuous, there must exist a root of g in $[x_{\ell}, x_r]$.

Bisection Method

- 1. Define $x_m = \frac{x_\ell + x_r}{2}$.
- 2. If $g(x_m) = 0$, then output x_m .
- 3. Otherwise:
 - If $g(x_m) > 0$, then let $x_r = x_m$.
 - If $g(x_m) < 0$, then let $x_\ell = x_m$.
- 4. If $|x_r x_\ell| < \epsilon$: stop and output $\frac{x_\ell + x_r}{2}$, otherwise go back to step 1.

One can also set the stopping criterion based on $|g(x)| < \epsilon$.

Bisection Method

In the bisection method, each iteration will divide the search interval to half.

Therefore, to find an ϵ approximation of x^* , we need at most $\log_2 \frac{x_r - x_\ell}{\epsilon}$ many iterations.

Applying the bisection method to f', we can find an approximate stationary point. If f is convex, this is an (approximate) global minimizer of f.

▶ Although simple, the bisection method is very useful in practice because it is easy to implement.

Example: Use bisection method to minimize:

$$f(x) = -\frac{xe^{-x}}{1 + e^{-x}} \quad \leadsto \quad f'(x) = -\frac{e^{-x}(1 - x + e^{-x})}{(1 + e^{-x})^2}$$


```
1
    function [x,gx] = bisection(g,xl,xr,options)
 3
    % Compute intial function values
4
    gr = g(xr); gl = g(xl); sl = sign(gl);
5
6
    if ql*qr > 0
        fprintf(1, 'The input data not suitable!');
8
        x = []; gx = []; return
9
    end
11
    for i = 1:options.maxit
        xm = (xl + xr)/2; qm = q(xm);
13
14
        if abs(gm) < options.tol || abs(xl-xr) < options.tol</pre>
15
            x = xm: ax = am: return
16
        end
17
18
        if qm > 0
19
            if sl < 0, xr = xm; else, xl = xm; end
        else
21
            if sl < 0, xl = xm: else, xr = xm: end
        end
    end
```

Golden Section Method

Drawback of the bisection method: When solving (single variable, unconstrained) optimization problems, we require the knowledge (and computation) of f'.

► Sometimes, f' is not available. For example, f sometimes is only a black box, which does not admit an analytical form (thus, the derivative is hard to compute)

However, if we know that f has a unique local minimum x^* in the range $[x_{\ell}, x_r]$, then we still have a very efficient way to find x^* :

- ▶ We call f unimodal if it only has one single stationary point (on \mathbb{R}).
- Unimodal functions have the property that the local minimum is already global. (Similarly, if the stationary point is a local maximum).

Example of a Unimodal Function

Consider
$$f(x) = -\frac{xe^{-x}}{1+e^{-x}}$$
:

This is a unimodal function, but not a concave function.

Golden Section Method

Golden Section Method

Assume we start with $[x_{\ell}, x_r]$. Assume $0 < \phi < 0.5$.

- 1. Set $x'_{\ell} = \phi x_r + (1 \phi)x_{\ell}$ and $x'_r = (1 \phi)x_r + \phi x_{\ell}$.
- 2. If $f(x'_{\ell}) < f(x'_{r})$, then the minimizer must lie in $[x_{\ell}, x'_{r}]$, so set $x_{r} = x'_{r}$.
- 3. Otherwise, the minimizer must lie in $[x'_{\ell}, x_r]$, so set $x_{\ell} = x'_{\ell}$.
- 4. If $x_r x_\ell < \epsilon$, output $\frac{x_\ell + x_r}{2}$, otherwise go back to step 1.
- ▶ Suppose we update $x_r = x'_r$. We want to choose ϕ such that x'_r of the new iteration coincides with x'_ℓ of the old iteration.
- → This allows to save one function evaluation!
 - ► This is true when

$$\phi = \frac{3 - \sqrt{5}}{2}$$
 and $1 - \phi = \frac{\sqrt{5} - 1}{2} = 0.618$.

Illustration and Example

Both the bisection and golden section method can be easily adapted for maximization problems. (Just adjust the comparison).

Example Revisited: Use the Golden section method to maximize:

$$f(x) = \frac{xe^{-x}}{1 + e^{-x}}$$

Higher-Dimensional Problems

Higher Dimensional Problems

Next, we consider the *n*-dimensional problem:

$$minimize_{x \in \mathbb{R}^n}$$
 $f(x)$

▶ There is no clear bisection or golden section in that case.

Solution and General Idea:

- ► Each time, we first find a search direction.
- ► Then, we search for a good next step along that direction (which reduces to a one-dimensional problem).

General Framework for High Dimensional Search

Starting from the initial point x^0 , we generate a sequence of points:

$$x^{k+1} = x^k + \alpha_k d^k.$$

We call d^k the search direction (a vector) and α_k the step size (a scalar).

- ▶ The key is to choose a proper direction d^k at each iteration.
- $ightharpoonup d^k$ typically depends on x^k .
- ▶ The step size α_k may be chosen in accordance with some line (one-dimensional) search rules (later).

We will study two such methods:

Gradient descent method and Newton's method.

Descent Directions

In the following, we assume that f is continuously differentiable.

Definition: Descent Direction

A vector $d \in \mathbb{R}^n$ is a descent direction of f at x if $\nabla f(x)^{\top} d < 0$.

Important Observation:

- ► Taking a small enough step along a descent direction reduces the objective function value.
- ▶ By Taylor: there exists $\epsilon > 0$ such that

$$f(x + \alpha d) < f(x) \quad \forall \ \alpha \in (0, \epsilon].$$

Abstract Descent Method: A First Scheme

Schematic Descent Directions Method

1. Initialization: Select an initial point $x^0 \in \mathbb{R}^n$.

For k = 0, 1, ...:

- 2. Pick a descent direction d^k .
- 3. Find a stepsize α_k satisfying $f(x^k + \alpha_k d^k) < f(x^k)$.
- 4. Set $x^{k+1} = x^k + \alpha_k d^k$.
- 5. If a stopping criterion is satisfied, then STOP and x^{k+1} is the output.

Open questions and missing details:

- ▶ What is the initial point x^0 ?
- ► How to choose the descent direction? What step size should be taken?
- What is the stopping criterion?

Gradient Descent and Stopping Criterion

Gradient Descent:

▶ One simple and possible descent direction is $d^k = -\nabla f(x^k)$. This direction satisfies:

$$\nabla f(x^k)^{\top} d^k = -\|\nabla f(x^k)\|^2 < 0$$

as long as $\nabla f(x^k) \neq 0$.

▶ Choosing $d^k = -\nabla f(x^k)$, the abstract descent method becomes the gradient descent method.

Stopping Criterion:

- ▶ A popular stopping criterion is: $\|\nabla f(x^{k+1})\| \le \epsilon$ with tolerance $\epsilon > 0$.
- \rightsquigarrow We stop if x^{k+1} is an approximate stationary point.

Step Sizes

Constant Step Size:

▶ Choose $\alpha_k = \bar{\alpha}$ for all k.

Exact Line Search:

▶ An intuitive idea is to choose α_k to achieve the largest descent

That is, choose α_k such that:

$$\alpha_k = \operatorname{argmin}_{\alpha \ge 0} f(x^k + \alpha d^k). \tag{1}$$

- ▶ If we get the exact α_k in (1), we say we used an exact line search method to find the step size.
- ▶ We can use the golden section method to perform the exact line search.
- ▶ In some situations, we can even find the exact α analytically.

Example: Exact Line Search

Consider

$$f(x) = b^{\top}x + \frac{1}{2}x^{\top}Ax$$
 (A positive definite)

At x^k , the gradient descent method will choose:

$$d^k = -\nabla f(x^k) = -(b + Ax^k).$$

To choose the step size, notice that we can explicitly compute

$$f(x^k + \alpha d^k) = b^\top (x^k + \alpha d^k) + \frac{1}{2} (x^k + \alpha d^k)^\top A (x^k + \alpha d^k)$$
$$= \frac{1}{2} \alpha^2 (d^k)^\top A d^k + \alpha (b^\top d^k + (x^k)^\top A d^k) + f(x^k)$$

This is a quadratic function of α with positive second-order term! We can find the optimal $\alpha \geq 0$ minimizing $\phi(\alpha) = f(x^k + \alpha d^k)$:

$$\alpha_k = \frac{(d^k)^\top d^k}{(d^k)^\top A d^k}.$$


```
function [x,obj] = qm_quadratic(A,b,x0,eps)
   x = x0; iter = 0;
   q = A*x + b; nq = norm(q);
5
6
   fprintf(1, '-- grad. method ; n = %g\n', length(b));
   fprintf(1, 'ITER ; OBJ.VAL ; G.NORM ; STEP.SIZE\n');
8
9
   while ng > eps && iter < 10000
10
    iter = iter + 1:
11
   alpha = ng^2 / (g'*A*g);
12
    x = x - alpha*q;
13
    g = A*x + b:
14
    nq = norm(q);
15
    obj = 0.5*x'*A*x + b'*x;
16
   fprintf(1, '[%4i]; %2.6f; %2.6f; %1.2f\n', iter, obj, ng,
        alpha);
17
   end
```

Example: A Quadratic Problem

We now want to test the method and solve the problem:

$$\min_{x} f(x) = x_1^2 + 2x_2^2 = \frac{1}{2}x^{\top} \begin{pmatrix} 2 & 0 \\ 0 & 4 \end{pmatrix} x.$$

We use the initial point $x^0 = (2,1)^{\top}$ and the tolerance $\varepsilon = 10^{-5}$.

The method stops after 13 iterations with a solution that is already very close the optimal value $x = 10^{-5} \cdot (0.1254, -0.0627)^{\top}$.

Line Search Methods

In general, we can not expect that

$$\alpha_k = \operatorname{argmin}_{\alpha > 0} f(x^k + \alpha d^k) \tag{2}$$

can be solved explicitly. It can be very time-consuming!

- ▶ Computing α_k is an optimization problem on its own!
- ▶ It is also not clear how much benefit there is when solving (2) exactly. After all, it is just one iteration and it does not imply that $x^k + \alpha_k d^k$ is optimal.

Agenda: Let us consider approximate and cheaper techniques!

► There are multiple ways to do it, here we introduce the backtracking line search technique.

Backtracking / Armijo Line Search

Assume we have found a descent direction d^k and we want to choose step size α_k .

Let $\sigma,\gamma\in(0,1)$ be given. Choose α_k as the largest element in $\{1,\sigma,\sigma^2,\sigma^3,\ldots\}$ such that

$$f(x^k + \alpha_k d^k) - f(x^k) \le \gamma \alpha_k \cdot \nabla f(x^k)^{\top} d^k.$$

- ► This condition is called Armijo condition.
- $ightharpoonup lpha_k$ can be determined after finitely many steps if d^k is a descent direction.

Procedure:

- 1. Start with $\alpha = 1$.
- 2. If $f(x^k + \alpha d^k) \leq f(x^k) + \gamma \alpha \cdot \nabla f(x^k)^{\top} d^k$, choose $\alpha_k = \alpha$. Otherwise, set $\alpha = \sigma \alpha$ and repeat this step.

Armijo Line Search: Discussion

Why does this work?

 \blacktriangleright By Taylor expansion, if α is sufficiently small, we have

$$f(x^k + \alpha d^k) \approx f(x^k) + \alpha \nabla f(x^k)^{\top} d^k < f(x^k) + \gamma \alpha \cdot \nabla f(x^k)^{\top} d^k.$$

Therefore, as long as α is small enough, the Armijo condition must be satisfied (recall $\nabla f(x^k)^{\top} d^k = -\|\nabla f(x^k)\|^2 < 0$).

Illustration:

- ▶ Define $\phi_k(\alpha) := f(x^k + \alpha d^k) f(x^k)$. Then, we have $\phi_k'(\alpha) = \nabla f(x^k + \alpha d^k)^\top d^k, \quad \phi_k'(0) = \nabla f(x^k)^\top d^k.$
- ► The Armijo condition is then equivalent to: find α with $\phi_k(\alpha) \leq \gamma \alpha \cdot \phi_k'(0)$.
- Notice that $\phi'_k(0) < 0$ (since d^k is a descent direction).

Armijo Line Search: Visualization

The Gradient Descent Algorithm

Gradient Descent Method

1. Initialization: Select an initial point $x^0 \in \mathbb{R}^n$.

For k = 0, 1, ...:

2. Pick a stepsize α^k by a line search procedure (exact line search or backtracking) on the function

$$\phi(\alpha) = f(x^k - \alpha \nabla f(x^k)).$$

- 3. Set $x^{k+1} = x^k \alpha_k \nabla f(x^k)$.
- 4. If $\|\nabla f(x^{k+1})\| \le \varepsilon$, then STOP and x^{k+1} is the output.

Illustration

Minimize

$$f(x) = \exp(x_1 + x_2) + x_1^2 + 3x_2^2 - x_1x_2$$

using the gradient method with Armijo line search.

Questions?