Identifying, randomizing, canonically analyzing and formulating mixed models for designs for comparative experiments using ${\sf R}$

(with output and solutions)
C. J. Brien and S. Rogers

November 16, 2019

This document describes how to use functions from the R (R Core Team, 2019) packages dae (Brien, 2019) and od (Butler, 2019) to produce layouts for experiments and to check some of their properties.

${\bf Contents}$

1	Installed software	2
2	Programme	2
3	Packages and the functions to be used	2
	3.1 dae	2
	3.2 od	4
4	Notation used for mixed models	4
5	Session 1: Orthogonal experimental design in R	ţ
	5.1 Two potential designs for a 5×5 grid of plots	
	5.1.1 Produce the randomized layout for an RCBD	Ę
	5.1.2 Produce the randomized layout for an LSD	7
	5.1.3 Check the properties of the designs	(
	5.1.4 Questions	1(
	5.2 Split-plot from Yates (1937)	10
	5.2.1 Produce the randomized experimental layout	11
	5.2.2 Questions	13
	5.3 Split-unit design from Mead (1990)	13
	5.3.1 Questions	14
	5.4 A design for the petrol additives experiment	14
	5.4.1 Questions	18
6	Session 2: Nonorthogonal experimental design in R	19
•	6.1 Twenty treatments in an alpha design	19
	6.1.1 Produce the randomized layout for the alpha design and check its properties	19
	6.1.2 Questions	21
	6.2 Balanced incomplete-block design from Joshi (1987)	21
	6.2.1 Load the design and check its of the design	21
	6.2.2 Questions	22
	6.3 A design with rows and columns from Williams (2002)	22
	6.3.1 Input the design and check the properties of the design	23
	6.3.2 Questions	24
	6.4 A resolved design for the wheat experiment that is near-A-optimal under a mixed model	25
	6.4.1 Input the design and check the properties of the design	25
	6.4.2 Search for a near-A-optimal design	27
	6.4.3 Checking the properties of the designs	29
	6.4.4 Questions	30
	6.5 An environmental experiment	30
	6.5.1 Questions	32
-	Constant 2. Illation D. Control and annual a	0.4
7	Session 3: Using R for advanced experimental design	33
	7.1 Athletic examples based on Brien et al. (2011)	33
	7.1.1 A standard single-phase athlete training experiment	33
	7.1.2 A simple two-phase athlete training experiment	35
	7.1.3 Allowing for lab processing order in the athletic training example	39
	7.2 McIntyre's (1955) two-phase example	47
	7.2.1 Check the properties of the randomized layout	49

	7.2.2	Questions
7.3	A p -rej	o design for a field experiment with 576 Lines
	7.3.1	Generate the starting design and check the properties of the design
	7.3.2	Search for a near-A-optimal design
	7.3.3	Questions
7.4	A two-	phase p/q -rep design for a field experiment with 576 Lines
	7.4.1	Select the samples and assign them systematically to the milling phase
	7.4.2	Check the properties of the p/q -rep design
	7.4.3	Substituting a linear Locations term for arbitrary Locations differences 65
	7.4.4	Questions

1 Installed software

The following software should be installed on your computer:

- R (3.5.x or later preferable)
- RStudio
- Packages (you can check the version using the packageVersion function.)
 - dae (Version 3.1-16 or later from CRAN or http://chris.brien.name/rpackages)
 - od (Version 2.0.0 from http://mmade.org)

2 Programme

- **09:00–10:00:** Concepts in experimental design: Experiment description, randomization by permutation based on the nesting an crossing, canonical analysis of a design and formulating allocation-based mixed models for orthogonal designs, including those with multiple errors.
- 10:00-10:45: Orthogonal experimental design in R: participants use dae to generate orthogonal designs for experiments and apply the concepts learned in the previous session.
- 11:15–12:15: Nonorthogonal experimental design: Using the concepts in the context of balanced and unbalanced experiments; canonical efficiency factors and the alphabet of efficiency measures; the effects of covariates, missing observations, systematic allocation and pseudoreplication.
- 12:15–13:00 Nonorthogonal experimental design in R: using dae and od to produce nonorthogonal designs for experiments.
- 13:00-13:45 Lunch
- 13:45-14:15 Nonorthogonal experimental design in R (continued)
- 14:15–15:15 Advanced experimental design: multiphase and p-rep designs.
- 15:45–17:00 Using R for advanced experimental design: more practice in using dae and od to construct experimental designs.

3 Packages and the functions to be used

3.1 dae

The package dae provides functions useful in the design and anova of experiments (Brien, 2019). There are 84 functions that fall into the following categories and those that will be used in this course are described:

1. Data

BIBDWheat.dat Data for a balanced incomplete block experiment.

Cabinet1.des A design for one of the growth cabinets in an experiment with 50 lines and 4 harvests.

Casuarina.dat Data for an experiment with rows and columns from Williams et al. (2002).

Exp249.munit.des Systematic, main-unit design for an experiment to be run in a greenhouse.

Fac4Proc.dat Data for a 2⁴ factorial experiment.

LatticeSquare_t49.des A Lattice square design for 49 treatments.

McIntyreTMV.dat The design and data from McIntyre (1955) two-phase experiment.

Oats.dat Data for an experiment to investigate nitrogen response of 3 oats varieties from Yates (1937).

Sensory3Phase.dat Data for the three-phase sensory evaluation experiment in Brien and Payne (1999).

Sensory3PhaseShort.dat Data for the three-phase sensory evaluation experiment in Brien and Payne (1999), but with short factor names.

SPLGrass.dat Data for an experiment to investigate the effects of grazing patterns on pasture composition.

2. Factor manipulation functions

fac.gen: Generate all combinations of several factors and, optionally, replicate them.

fac.recode: Recodes the levels and values of a factor.

fac.combine: Combines several factors into one.

fac.divide: Divides a factor into several individual factors.

3. Design functions

designAnatomy: Given the layout for a design, obtain its anatomy via the canonical analysis of its projectors to show the confounding and aliasing inherent in the design.

designLatinSqrSys: Generate a systematic plan for a Latin Square design.

designBlocksGGPlot: Adds block boundaries to a plot produced by designGGPlot.

designGGPlot: A graphical representation of an experimental design based on labels stored in a data.frame using ggplot2.

designRandomize: Takes a systematic design and randomizes it according to the nesting (and crossing) relationships between the recipient(unit) factors for the randomization.

no.reps: Computes the number of replicates for an experiment.

summary.pcanon: Summarizes the anatomy of a design, being the decomposition of the sample space based on its canonical analysis, as produced by designAnatomy. The table produced includes the degrees of freedom and summary statistics of the canonical efficiency factors.

efficiencies.pcanon: Extracts the canonical efficiency factors from a **pcanon.object** produced by **designation**.

- 4. ANOVA functions
- 5. Matrix functions
- 6. Projector and canonical efficiency functions
- 7. Miscellaneous functions.

3.2 od

The package od generates optimal experimental designs (Butler, 2019). It does this based on an *anticipated* mixed model and obtains a design that minimizes the average variance of pairwise differences (AVPD). It has 16 functions; those that will be used in this course are as follows:

od: Generates optimal designs for comparative experiments under a general linear mixed model.

od.options: Sets or displays various options that affect the behaviour of od.

Documentation for each of these functions is available from the user manual for the relevant package. In general this can be found in the doc subdirectory of the directory in which the package is installed or from the help for the function once the package has been installed. For the latter, to see the manual for package foo, enter help(package="foo") and click on the link User guides, package vignettes and other documentation.

For dae, the manual is available via vignette("dae-manual", package="dae") and there are some notes that show how to use the functions that are available via vignette("DesignNotes", package="dae").

4 Notation used for mixed models

The general form for a mixed model is:

$$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{Z}\mathbf{u} + \mathbf{e},$$

where β is the vector of fixed parameters, \mathbf{u} is the vector of random effects, and \mathbf{e} is the vector of residuals corresponding to each observation. The matrices \mathbf{X} and \mathbf{Z} are the design matrices for the fixed and random effects, respectively. Generally, \mathbf{X} and $\boldsymbol{\beta}$ are conformably partitioned so that there is a separate submatrix and subvector for each fixed term. Similarly, \mathbf{Z} and \mathbf{u} are conformably partitioned according to the random terms.

A mixed model is expressed in symbolic form by list of the fixed terms, followed by a '|', and then a list of the random terms. Terms contributing to the residual variation are underlined.

5 Session 1: Orthogonal experimental design in R

This class of experiments covers the orthogonal standard or textbook experiments, those that involve a single randomization, in the sense that the randomization can be achieved with a single permutation. Hence there will be two sets of factors, or tiers, an allocated set that is allocated to a recipient set. These two sets are also referred to as the unit and treatment factors, respectively.

Firstly, initialize by loading the dae library. Also check the version that is loaded.

```
library(dae)
## Loading required package: ggplot2
packageVersion("dae")
## [1] '3.1.16'
```

5.1 Two potential designs for a 5×5 grid of plots

Suppose an experiment to investigate five treatments is to be conducted on 25 plots, the 25 plots being arranged in a 5×5 grid. Two possible designs are a randomized complete-block design (RCBD) or a Latin square design (LSD). The factor-allocation diagram (Brien et al., 2011) for the RCBD is in Figure 1 and that for the LSD is in Figure 2.

Figure 1: Factor-allocation diagram for an RCBD: treatments are allocated to units; the arrow indicates that the factor Treatments is randomized to Columns; Columns in R indicates that the Columns are considered to be nested within Rows for this randomization; R = Rows.

Figure 2: Factor-allocation diagram for an LSD: treatments are allocated to units; the arrow indicates that the allocation is randomized; the '①' at the end of the arrow indicates that an orthogonal design is used; the two lines from '①' indicates that the Treatments are allocated to the combinations of Rows and Columns using the design.

5.1.1 Produce the randomized layout for an RCBD

Use designRandomize to randomize the treatments according to an RCBD. The arguments to designRandomize that need to be set are (i) allocated, (ii) recipient, (iii) nested.recipients, and optionally, (iv) seed. The allocated factors are also referred to as treatment factors and the recipient factors as block or unit factors. A systematic arrangement of the allocated factors, corresponding to the values of the recipient factors, needs to be supplied and there are a number of ways of doing this.

Our general approach is to set up a systematic design in a data.frame to separate this aspect of constructing a design from the randomizing of a design. The naming convention used is that the name of the data.frame ends in .sys. This data.frame should contain the values of both the recipient and the allocated factors, the latter in a systematic order that is appropriate for the design. The dae function fac.gen will be used to generate the values of the recipient factors in standard order and often will also be used to generate the values of the allocated factors.

Then the allocated and recipient factors are supplied to designRandomize by subsetting the columns of the data.frames to just the appropriate factors for each argument. Note that the Treatments could also be supplied as a factor and the recipient factors can be specified directly to the recipient argument as a list, e.g. list(Rows=b, Columns=t). A data.frame containing the recipient and randomized allocated factors is produced and, in these notes, the name for the data.frame with the randomized layout will end in .lay.

The randomized layout is obtained by permuting (i) Rows and (ii) Columns within Rows. Then the permuted Rows and Columns and the systematic Treatments are sorted so that Rows and Columns are in standard order.

In this example, the allocated factor is Treatments, with 5 levels, and the recipient factors are Rows and Columns, both with 5 levels. Suppose that Rows are to form the blocks.

Use the following R code to obtain and display the layout:

```
b <- 5
t <- 5
#'## Set up a systematic design
RCBD.sys <- cbind(fac.gen(generate = list(Rows=b, Columns=t)),</pre>
                   fac.gen(generate = list(Treatments = LETTERS[1:t]),
                            times = b)
#'## Obtain the layout
RCBD.lay <- designRandomize(allocated</pre>
                                                  = RCBD.sys["Treatments"],
                              recipient
                                                 = RCBD.sys[c("Rows", "Columns")],
                              nested.recipients = list(Columns = "Rows"),
                                                 = 1134)
#'## Output the layout
RCBD.lay
##
      Rows Columns Treatments
## 1
        1
                 1
                              C
## 2
         1
                  2
                              Ε
## 3
         1
                  3
                              Α
                  4
                              В
## 4
         1
## 5
         1
                  5
                              D
         2
                              С
## 6
                  1
## 7
         2
                  2
                              Α
## 8
         2
                  3
                              Ε
## 9
         2
                  4
                              D
## 10
         2
                  5
                              В
         3
                  1
                              Ε
## 11
         3
                  2
                              C
## 12
## 13
         3
                  3
                              В
         3
## 14
                  4
                              Α
## 15
         3
                  5
                              D
## 16
         4
                  1
                              Ε
## 17
         4
                  2
                              Α
## 18
         4
                  3
                              D
## 19
         4
                  4
                              В
                              С
## 20
         4
                  5
## 21
         5
                  1
                              D
                  2
                              \mathbb{C}
## 22
         5
         5
                  3
                              В
## 23
## 24
         5
                  4
                              Α
## 25
         5
                  5
                              Ε
#'## Plot the layout
designGGPlot(RCBD.lay, labels = "Treatments", cellalpha = 0.75,
```

Plot of Treatments

The function fac.gen is from the package dae and generates the factors in the list in standard order with the specified numbers of levels or the levels in supplied character or numeric vectors. The seed is specified to ensure that the same design is produced whenever designRandomize is run with these arguments.

5.1.2 Produce the randomized layout for an LSD

Use designRandomize to randomize the treatments according to an LSD, having obtained the systematic design using fac.gen and designLatinSqrSys. For this design, Rows and Columns are crossed; there are no nested factors. The layout can be obtained using the following R code:

```
b <- 5
t <- 5
#'## Set up a systematic design
LSD.sys <- cbind(fac.gen(list(Rows=b, Columns=t)),
                 Treatments = factor(designLatinSqrSys(t), labels = LETTERS[1:t]))
#'## Obtain the layout
LSD.lay <- designRandomize(allocated = LSD.sys["Treatments"],
                           recipient = LSD.sys[c("Rows", "Columns")],
                                      = 141)
                            seed
#'## Output the layout
LSD.lay
##
      Rows Columns Treatments
                             С
## 1
         1
                 1
                 2
## 2
         1
                            D
## 3
         1
                 3
                             В
         1
                 4
                             Ε
## 4
## 5
                 5
```

```
## 6
          2
                   2
                               E
## 7
          2
                               С
                   3
## 8
          2
## 9
                   4
                               Α
## 10
          2
                   5
                               В
## 11
          3
                   1
                               Ε
## 12
          3
                   2
                               Α
          3
                   3
                               D
## 13
## 14
          3
                   4
                               В
                               С
## 15
          3
                   5
## 16
          4
                   1
                               Α
                   2
                               В
## 17
          4
                   3
                               Ε
## 18
          4
                               С
## 19
          4
                   4
         4
                  5
                               D
## 20
## 21
         5
                  1
                               В
         5
                   2
                               \mathbb{C}
## 22
## 23
         5
                  3
                               Α
          5
                   4
                               D
## 24
          5
                   5
## 25
                               Ε
#'## Plot the layout
designGGPlot(LSD.lay, labels = "Treatments", cellalpha = 0.75,
              blockdefinition = cbind(1,1))
```

Plot of Treatments

The function fac.gen is from the package dae and generates the factors in the list in standard order with the specified numbers of levels or the levels in supplied character or numeric vectors. The seed is specified to ensure that the same design is produced whenever designRandomize is run with these arguments.

5.1.3 Check the properties of the designs

The properties of the designs can be investigated using designAnatomy.

Because these experiments involve a single randomization, they are two-tiered. That is, there are just two sets of factors involved in the randomization. As we have seen, the first set of factors is the set of allocated (treatment) factors and the second set is the set of recipient (unit) factors. Further there will be a set of projectors associated with each tier and designAnatomy is used to do an eigenanalysis of the relationships between the two sets of projectors. The sets of projectors are specified to designAnatomy via model formulae, the formula for the recipient factors coming first in the list for formulae.

For both the RCBD and LSD the two sets of factors are (i) {Rows, Columns} and (ii) {Treatments}. What differs between the two designs is the nesting/crossing relationship between Rows and Columns and this will be expressed in the formulae.

Use the commands given below to produce the anatomies (skeleton anova tables) for the RCBD and LSD that have been obtained. Note that the 'Mean' source has been omitted from these tables, but can be included using grandMean = TRUE when calling designAnatomy.

```
#'## Get the anatomy for the RCBD
RCBD.canon <- designAnatomy(formulae = list(unit = ~ Rows/Columns,
                                             trt = ~ Treatments),
                             data
                                      = RCBD.lay)
summary(RCBD.canon)
##
##
##
  Summary table of the decomposition for unit & trt
##
##
                  df1 Source.trt df2 aefficiency eefficiency order
    Source.unit
##
                    4
                   20 Treatments
##
   Columns [Rows]
                                    4
                                           1.0000
                                                        1.0000
                                                                   1
##
                      Residual
                                   16
#'## Anatomy for the LSD
LSD.canon <- designAnatomy(formulae = list(unit = ~ Rows*Columns,
                                            trt
                                                 = ~ Treatments),
                            data
                                     = LSD.lay)
summary(LSD.canon)
##
##
  Summary table of the decomposition for unit & trt
##
##
##
    Source.unit df1 Source.trt df2 aefficiency eefficiency order
##
                   4
   Rows
##
    Columns
                   4
   Rows#Columns 16 Treatments
##
                                   4
                                          1.0000
                                                       1.0000
                                                                  1
##
                     Residual
```

Get the mixed-model terms for the analysis by reruning the summary function with the labels.swap argument set to TRUE.

```
#'## Term-based anatomy for the RCBD
summary(RCBD.canon, labels.swap = TRUE)
##
##
```

```
Summary table of the decomposition for unit & trt
##
                  df1 Term.trt
                                  df2 aefficiency eefficiency order
##
    Term.unit
##
    Rows
                    4
##
    Rows:Columns
                   20 Treatments
                                           1.0000
                                                        1.0000
                                                                    1
##
                                   16
                      Residual
#'## Term-based anatomy for the LSD
summary(LSD.canon, labels.swap = TRUE)
##
##
##
   Summary table of the decomposition for unit & trt
##
##
    Term.unit
                  df1 Term.trt
                                  df2 aefficiency eefficiency order
##
    Rows
                    4
                    4
##
    Columns
##
    Rows:Columns
                   16 Treatments
                                    4
                                                        1.0000
                                           1.0000
                                                                    1
##
                      Residual
```

5.1.4 Questions

- What is the advantage of specifying a seed in designRandomize?
 It means that the design can be reproduced in subsequent executions of the R script.
- 2. With what unit source is Treatments confounded in these designs and what is the difference in the interpretation of these sources?

Treatments is confounded with the term Rows:Columns. For the RCBD, Treatments is confounded with the source Columns[Rows]. For the LSD, Treatments is confounded with the source Rows#Columns. The source Columns[Rows] reflects the differences between Rows within Columns; Rows#Columns is the interaction of Rows-and-Columns and reflects how the differences between Rows (Columns) vary between Columns (Rows).

3. What would determine which of these two designs is used for a particular experiment?

In a discussion with the researcher, it needs to be determined whether overall Column differences can be ruled out. If they can, then the RCBD should be used; otherwise, the LSD would be used.

5.2 Split-plot from Yates (1937)

Yates (1937) describes a split-plot experiment that investigates the effects of three varieties of oats and four levels of Nitrogen fertilizer. The varieties are assigned to the main plots using a randomized complete-block design with 6 blocks and the nitrogen levels are randomly assigned to the subplots in each main plot. The factor-allocation diagram for the experiment is in Figure 3.

Figure 3: Factor-allocation diagram for a split-plot design: treatments are allocated to units; the arrows indicates that the factors Variety and Nitrogen are randomized to MPlots and Subplots, respectively; MPlots in B indicates that the MPlots are considered to be nested within Blocks for this randomization; SubPlots in B, M indicates that the Subplots are considered to be nested within Blocks and MPlots for this randomization; B = Blocks, M = MPlots

5.2.1 Produce the randomized experimental layout

Use fac.gen to obtain a systematic layout and then designRandomize to obtain a randomized layout for this experiment. Check the properties of the design, as illustrated in the following R code:

```
Oats.sys <- cbind(fac.gen(list(Blocks=6, MPlots=3, SubPlots=4)),</pre>
                   fac.gen(list(Variety=c("Victory", "Golden Rain", "Marvellous"),
                                 Nitrogen=c(0,0.2,0.4,0.6)), times=6))
                                                 = Oats.sys[c("Variety", "Nitrogen")],
= Oats.sys[c("Blocks", "MPlots", "SubPlots")],
Oats.lay <- designRandomize(allocated</pre>
                              recipient
                              nested.recipients = list(MPlots = "Blocks",
                                                        SubPlots = c("MPlots", "Blocks")),
                              seed
                                                 = 235805)
#'## Plot design produced, first combining Variety and Nitrogen so plot on 2 lines per cell
Oats.lay$Treatments <- with(Oats.lay, fac.combine(list(Variety, Nitrogen),
                                                     combine.levels = TRUE, sep = "\n")
designGGPlot(Oats.lay, labels = "Treatments",
             row.factors = c("Blocks", "MPlots"), column.factors = "SubPlots",
             cellfillcolour.column = "Variety", cellalpha = 0.75,
             blockdefinition = c(1,4))
```

Plot of Treatments

1-	Marvellous	Marvellous	Marvellous	Marvellous							
	0.4	0	0.2	0.6	Blo						
2-	Victory 0	Victory 0,2	Victory 0.6	Victory 0.4	Blocks:						
3-	Golden Rain 0.2	Golden Rain 0.4	Golden Rain 0.6	Golden Rain 0	3: 1						
1-	Marvellous 0.4	Marvellous 0.2	Marvellous 0	Marvellous 0.6							
2-	Victory 0.2	Victory 0	Victory 0.6	Victory 0.4	Blocks:						
3-	Golden Rain 0.6	Golden Rain 0.4	Golden Rain 0.2	Golden Rain 0	s: 2						
1-	Golden Rain 0.2	Golden Rain 0.6	Golden Rain 0.4	Golden Rain 0	四四						
2-	Marvellous 0.4	Marvellous 0.6	Marvellous 0	Marvellous 0.2	Blocks:						
MPlots 2	Victory 0.4	Victory 0.2	Victory 0	Victory 0.6	ω						
⊒ ≥ 1-	Marvellous 0	Marvellous 0.4	Marvellous 0.2	Marvellous 0.6	<u>B</u>						
2-	Golden Rain 0.2	Golden Rain 0.6	Golden Rain 0.4	Golden Rain 0	Blocks:						
3-	Victory 0.4	Victory 0	Victory 0.6	Victory 0.2	4						
1-	Golden Rain 0.2	Golden Rain 0	Golden Rain 0.6	Golden Rain 0.4	B						
2-	Marvellous 0	Marvellous 0.2	Marvellous 0.6	Marvellous 0.4	Blocks:						
3-	Victory 0.4	Victory 0.2	Victory 0.6	Victory 0	5						
1-	Marvellous 0	Marvellous 0.6	Marvellous 0.4	Marvellous 0.2	В						
2-	Victory 0.4	Victory 0.2	Victory 0	Victory 0.6	Blocks:						
3-	Golden Rain 0.6	Golden Rain 0.2	Golden Rain 0.4	Golden Rain 0	6						
'	1	2	3	4							
		Subf	Plots								

#'## Check its properties
Oats.canon <- designAnatomy(formulae = list(unit = ~ Blocks/MPlots/SubPlots,</pre>

```
= ~ Variety*Nitrogen),
                              data
                                       = Oats.lay)
summary(Oats.canon, which.criteria = c("aeff", "order"))
##
##
   Summary table of the decomposition for unit & trt
##
##
##
    Source.unit
                              df1 Source.trt
                                                    df2 aefficiency order
##
    Blocks
                                5
                                                      2
##
    MPlots[Blocks]
                               12 Variety
                                                              1.0000
                                                                          1
##
                                  Residual
                                                     10
##
    SubPlots[Blocks:MPlots]
                              54 Nitrogen
                                                      3
                                                              1.0000
                                                                          1
##
                                                      6
                                  Variety#Nitrogen
                                                              1.0000
                                                                          1
##
                                  Residual
                                                     45
```

5.2.2 Questions

- 1. In what sense does this design involve a single randomization?
 - In the sense that the randomization of both Nitrogen and Variety can be achieved with a single permutation of the units, the subplots.
- 2. What is the initial allocated mixed model for this design? Is it equivalent to a randomization model?

 The initial allocation mixed model is Variety + Nitrogen + Variety:Nitrogen | Blocks + Blocks:MPlots + Blocks:MPlots:SubPlots. The initial allocation model is equivalent to a randomization model because the allocation was a randomization.
- 3. A factorial RCBD would involve randomizing the $3 \times 4 = 12$ treatments to the 12 subplots within each block. What has been achieved in using the split-plot design as compared to a factorial RCBD?

The precision of the Variety differences has been sacrificed to increase the precision of the Nitrogen differences. This is the case because the Residual mean square for MPlots[Blocks] is substantially larger than that for Subplots[Blocks:MPlots]. If a factorial RCBD had been used, the Residual mean square for Plots[Blocks] would be the weighted average of the two Residual mean squares from the split-plot experiment, the weight being the Residual degrees of freedom. That is, the value of the Residual mean square for the factorial RCBD would be between the values for the two Residual mean squares for the split-plot design.

5.3 Split-unit design from Mead (1990)

Mead (1990, Example 14.1) describes an experiment to investigate the effects of grazing patterns on pasture composition. It is available in dae as SPLGrass.dat.

The design for the experiment is a split-unit design. The main units are arranged in 3 Rows \times 3 Columns. Each main unit is split into 2 SubRows x 2 SubColumns.

The factor Period, with levels 3, 9 and 18 days, is assigned to the main units using a 3×3 Latin square. The two-level factors Spring and Summer are assigned to split-units using a criss-cross design that is randomized within each main unit. The levels of each of Spring and Summer are two different grazing patterns in its season. The response variable is Main.Grass.

Use data(SPLGrass.dat) to load the design (and the data) and then investigate the properties of the design using designAnatomy.

```
#'## Load the design
data("SPLGrass.dat")

#'## Check its properties
```

```
Grass.canon <- designAnatomy(formulae = list(unit = ~ (Rows*Columns)/(SubRows*SubColumns),</pre>
                                                trt = ~ Period*Spring*Summer),
                               data
                                         = SPLGrass.dat)
summary(Grass.canon, which.criteria = c("aeff", "order"))
##
##
##
   Summary table of the decomposition for unit & trt
##
    Source.unit
                                                                   df2 aefficiency order
##
                                        df1 Source.trt
##
    Rows
                                          2
##
    Columns
                                          2
                                                                     2
##
    Rows#Columns
                                          4 Period
                                                                             1.0000
                                                                                         1
                                                                     2
##
                                            Residual
##
    SubRows [Rows:Columns]
                                          9 Spring
                                                                     1
                                                                             1.0000
                                                                                         1
##
                                                                     2
                                                                             1.0000
                                            Period#Spring
                                                                                         1
##
                                            Residual
                                                                     6
##
    SubColumns [Rows:Columns]
                                          9 Summer
                                                                     1
                                                                             1.0000
                                                                                         1
                                            Period#Summer
                                                                     2
                                                                             1.0000
##
                                                                                         1
                                            Residual
                                                                     6
##
    SubRows#SubColumns[Rows:Columns]
                                                                             1.0000
##
                                          9 Spring#Summer
                                                                     1
                                                                                         1
##
                                            Period#Spring#Summer
                                                                     2
                                                                             1.0000
                                                                                         1
##
                                            Residual
                                                                     6
```

5.3.1 Questions

1. Describe the confounding that is inherent in this design.

Period is confounded with Rows#Columns; Spring and Period#Spring are confounded with SubRows[Rows:Columns], while Summer and Period#Summer are confounded with SubColumns[Rows:Columns]. Finally Spring#Summer and Period#Spring#Summer are confounded with SubRows#SubColumns[Rows:Columns].

2. Draw a factor-allocation diagram for this experiment.

You should have (i) a treatments panel with 3 Periods, 2 Spring and 2 Summers, (ii) a plots panel with 3 Rows, 3 Columns, 2 SubRows in R, C, 2 SubColumns in R, C. There should be an arrow from Periods to an orthogonal design symbol and two lines from the symbol to Rows and Columns, as well as arrows from Spring to SubRows and Summer to SubColumns.

3. What is the initial allocated mixed model for this design?

The initial allocation mixed model is Period + Spring + Period:Spring + Summer + Period:Summer + Spring:Summer + Spring:Summer | Rows + Columns + Rows:Columns + Rows:Columns:SubRows + Rows:Columns:SubColumns + Rows:Columns:SubRows:SubColumns. The initial allocation model is equivalent to a randomization model because the allocation was a randomization.

5.4 A design for the petrol additives experiment

Box et al. (2005, Section 4.4) describes a car emission experiment that investigates 4 additives. It involves 4 cars being driven by 4 drivers. Here we investigate increasing the replication by repeating the experiment on two occasions. Suppose that the 4 cars differ between occasions.

In a data.frame called LSRepeat.sys, generate a systematic design using two 4×4 Latin squares for allocating the 4 Additives to the 32 tests, being the combinations of the 2 Occasions x 4 Drivers x 4 Cars. Make sure that a Latin square is used for each Occasion.

Now a comparison is made of two different ways of randomizing this design. Firstly, we retain the factors Occasions, Drivers and Cars from the systematic design. The factor-allocation diagram is in Figure 4.

Figure 4: Factor-allocation diagram for repeated LSDs: treatments are allocated to units; the arrow indicates that the allocation is randomized; the '①' at the end of the arrow indicates that an orthogonal design is used; the two lines from '①' indicates that the Additives are allocated to the combinations of Drivers and Cars within Occasions using the design.

Plot of Additives


```
#'## Get the anatomy of the layout
LSRepeat2b.canon <- designAnatomy(formulae = list(unit = ~ (Occasions/Cars)*Drivers,
                                                  trt = ~ Additives),
                                           = LSRepeat2b.lay)
                                  data
summary(LSRepeat2b.canon)
##
##
## Summary table of the decomposition for unit & trt
##
                            df1 Source.trt df2 aefficiency eefficiency order
##
  Source.unit
## Occasions
                              1
## Cars[Occasions]
```

```
## Drivers 3
## Occasions#Drivers 3
## Cars#Drivers[Occasions] 18 Additives 3 1.0000 1.0000 1
## Residual 15
```

Secondly, we use only Drivers and Cars to do the randomization, but still attempt to include Occasions in the analysis. The new factor-allocation diagram is in Figure 5.

Figure 5: Factor-allocation diagram for repeated LSDs: treatments are allocated to units; the arrow indicates that the allocation is randomized; the '①' at the end of the arrow indicates that an orthogonal design is used; the two lines from '①' indicates that the Additives are allocated to the combinations of Drivers and Cars using the design.

Plot of Additives


```
data = LSRepeat2b.D8.lay)
summary(LSRepeat2.D8.canon)
##
## Summary table of the decomposition for unit & trt
## Source.unit df1 Source.trt df2 aefficiency eefficiency order
## Drivers
                3
## Cars
                7
## Drivers#Cars 21 Additives 3
                                   1.0000
                                               1.0000
                                                        1
##
                  Residual
                             18
#'## Add Occasions to the analysis
LSRepeat2b.D8.lay$Occasions <- fac.recode(LSRepeat2b.D8.lay$Cars, rep(1:2, each=4))
LSRepeat2b.D8.lay
     Drivers Cars Additives Occasions
## 1
       1 1
                   C
## 2
          1
              2
                        Α
                                 1
## 3
          1
               3
                        C
                                 1
## 4
          1
              4
                        В
                                 1
## 5
          1 5
                        D
                                 2
## 6
                                 2
         1 6
                        В
## 7
          1 7
                                 2
                        Α
## 8
          1 8
                        D
                                 2
          2 1
## 9
                        В
                                 1
## 10
          2 2
                        D
                                 1
          2 3
## 11
                        В
                                 1
          2 4
## 12
                       Α
                                 1
          2 5
                                 2
## 13
                      C
          2 6
                                 2
## 14
                       Α
          2
                                 2
## 15
              7
                        D
          2 8
                       C
                                 2
## 16
## 17
          3 1
                      Α
                                 1
## 18
         3 2
                      C
                                 1
## 19
          3 3
                        Α
                                 1
         3 4
                       D
## 20
                                 1
## 21
         3 5
                       В
                                 2
## 22
          3 6
                                 2
                        D
## 23
          3 7
                        C
                                 2
          3 8
                                 2
## 24
                        В
## 25
          4 1
                       D
                                 1
          4 2
## 26
                        В
                                 1
## 27
          4 3
                        D
                                 1
## 28
          4 4
                        C
                                 1
## 29
          4 5
                                 2
                       Α
                                 2
## 30
          4
              6
                        C
## 31
          4
              7
                        В
                                 2
## 32
          4
              8
LSRepeat2b.D8.canon <- designAnatomy(formulae = list(unit = ~ (Occasions + Cars)*Drivers,
                                               trt = ~ Additives),
                                         = LSRepeat2b.D8.lay)
                                data
summary(LSRepeat2b.D8.canon)
```

```
##
##
##
   Summary table of the decomposition for unit & trt (based on adjusted quantities)
##
##
    Source.unit
                             df1 Source.trt df2 aefficiency eefficiency order
##
    Occasions
                               6
##
    Cars[Occasions]
                               3
    Drivers
##
                                                      0.1500
                                                                   0.1250
                                                                              2
##
    Occasions#Drivers
                               3 Additives
                                              3
##
    Cars#Drivers[Occasions] 18 Additives
                                              3
                                                      0.8289
                                                                   0.7500
                                                                              2
##
                                 Residual
                                              15
##
## The design is not orthogonal
```

5.4.1 Questions

1. The Residual degrees of freedom for a single 4×4 Latin square are 6. Has the use of two 4×4 Latin squares had the desired effect of increasing the Residual df? What other advantage does the use of two Latin squares have over the use of a single Latin square?

Yes, the Residual df have been increased from 6 to 15. Using two Latin squares doubles the replication as compared to a single Latin square, thereby increasing the precision of the experiment by decreasing the standard error of differences between pairs of Additive means.

2. What is the difference between the two randomizations?

For the first randomization, the Additives are randomized to the Cars within Occasions so that each Driver does all 4 Additives in the 4 Cars in an Occasion. The design is said to be resolved. This does not happen with the randomization based on only Drivers and Cars.

3. How do the two anatomies that include Occasions differ?

The first anatomy is orthogonal and does not have any information about Additives confounded with Cars#Drivers[Occasions]. On the other hand, the second anatomy, based on the layout where Occasions was not included in the randomization, is not orthogonal. Additives information is partially confounded with both Occasions#Drivers and Cars#Drivers[Occasions].

4. What effect does including Occasions#Drivers have on the anatomy?

Including Occasions#Drivers reduces the Residual DF by 3 (from 18 to 15).

6 Session 2: Nonorthogonal experimental design in R

This class of experiments covers the nonorthogonal standard or textbook experiments and these experiments must be single phase because they involve a single randomization.

Firstly, initialize by loading the libraries that will be used and setting the output width.

```
library(dae, quietly = TRUE)
library(od)
packageVersion("od")

## [1] '2.0.0'
options(width=100)
```

6.1 Twenty treatments in an alpha design

The following table gives an alpha design for 20 treatments, taken from Williams et al. (2002, p.128). The design has 3 replicates, each of which contains 5 blocks of 4 plots. It is a resolved design in that each replicate contains a complete set of the treatments.

Table 1: Unrandomized alpha design for 20 treatments

	Replicate																			
	1							2							3					
Block	1	2	3	4	5		1	2	3	4	5		1	2	3	4	5			
	1	2	3	4	5		1	2	3	4	5	-	1	2	3	4	5			
	6	7	8	9	10		7	8	9	10	6		8	9	10	6	7			
	11	12	13	14	15		13	14	15	11	12		15	11	12	13	14			
	16	17	18	19	20		19	20	16	17	18		17	18	19	20	16			

The factor-allocation diagram for the experiment is in Figure 6.

Figure 6: Factor-allocation diagram for the alpha design: treatments are allocated to units; the arrow indicates that the allocation is randomized; the 'O' at the end of the arrow indicates that a nonorthogonal design is used; the two lines from 'O' indicate that the Treatments are allocated to the combinations of Blocks and Plots using the design; Blocks in R indicates that the Blocks are considered to be nested within Reps for this randomization; Plots in R, B indicates that the Plots are considered to be nested within Reps and Blocks for this randomization; R = Reps; B = Blocks.

6.1.1 Produce the randomized layout for the alpha design and check its properties

Use designAndomize to obtain the randomized layout and designAnatomy to check its properties.

```
1:5, 8:10,6,7, 15,11:14, 17:20,16)))
#'## Obtain the layout
alpha.lay <- designRandomize(allocated
                                                 = alpha.sys["Treats"],
                                                 = alpha.sys[c("Reps", "Plots", "Blocks")],
                              nested.recipients = list(Blocks = "Reps",
                                                        Plots = c("Reps", "Blocks")),
                                                 = 918508)
                              seed
alpha.lay <- with(alpha.lay, alpha.lay[order(Reps,Blocks,Plots), ])</pre>
#'## Check its properties
alpha.canon <- designAnatomy(formulae</pre>
                                              = list(units = ~ Reps/Blocks/Plots,
                                                     trts = ~ Treats),
                              which.criteria = "all",
                              data
                                              = alpha.lay)
summary(alpha.canon, which.criteria = "all")
##
##
  Summary table of the decomposition for units & trts (based on adjusted quantities)
##
##
                        df1 Source.trts df2 aefficiency eefficiency mefficiency sefficiency xefficiency
##
    Source.units
    Reps
                          2
##
##
    Blocks[Reps]
                         12 Treats
                                         12
                                                  0.2778
                                                               0.1667
                                                                           0.3333
                                                                                        0.0152
                                                                                                     0.4167
##
    Plots[Reps:Blocks]
                         45 Treats
                                          19
                                                  0.7447
                                                               0.5833
                                                                           0.7895
                                                                                        0.0365
                                                                                                     1.0000
##
                            Residual
                                          26
##
    order dforthog
##
        2
                 0
##
##
        3
                 7
##
##
## The design is not orthogonal
```

The summary table shows us a number of summary statistics calculated from the canonical efficiency factors. They are:

aefficiency: the harmonic mean of the nonzero canonical efficiency factors.

mefficiency: the mean of the nonzero canonical efficiency factors.

eefficiency: the minimum of the nonzero canonical efficiency factors.

sefficiency: the variance of the nonzero canonical efficiency factors.

xefficiency: the maximum of the nonzero canonical efficiency factors.

order: the order of balance and is the number of unique nonzero canonical efficiency factors.

dforthog: the number of canonical efficiency factors that are equal to one.

For this example it can be seen that (i) an average 74.47%, as measured by the harmonic mean, or 78.95%, as measured by the arithmetic mean, of the information about Treats is confounded with the differences between plots within the reps-blocks combinations and (ii) there are 3 different efficiency factors associated with the 19 Treats degrees of freedom estimated from Plots[Reps:Blocks], the smallest of which is 0.5833 and 7 of which are one. In this case, where the treatments are equally replicated, it can be concluded that the mean variance of a normalized treatment contrast is inversely proportional to the harmonic mean of the canonical efficiency factors (A), that is, to 0.7447. In particular, AVPD = 2/(rA).

Get the mixed-model terms for the analysis by reruning the summary function with the labels.swap argument set to TRUE.

```
#'## Obtain the terms for the design
summary(alpha.canon, which.criteria = "all", labels.swap = TRUE)
##
##
## Summary table of the decomposition for units & trts (based on adjusted quantities)
##
##
   Term.units
                       df1 Term.trts df2 aefficiency eefficiency mefficiency sefficiency xefficiency
##
   Reps
                         2
##
    Reps:Blocks
                        12 Treats
                                      12
                                               0.2778
                                                           0.1667
                                                                        0.3333
                                                                                     0.0152
                                                                                                 0.4167
   Reps:Blocks:Plots 45 Treats
                                      19
                                               0.7447
                                                           0.5833
                                                                        0.7895
                                                                                     0.0365
                                                                                                 1.0000
##
##
                           Residual
                                      26
##
    order dforthog
##
##
        2
                 \cap
##
        3
                 7
##
##
## The design is not orthogonal
```

6.1.2 Questions

1. What is the randomization-based mixed model for this experiment?

The trts term (Source.trts) provides the fixed term and the units terms (Source.units) provide the random terms. That is, Treats is assumed fixed and Reps, Blocks and Plots are assumed random. Hence, the symbolic mixed model is Treats | Reps + Reps:Blocks + Reps:Blocks:Plots.

2. In a mixed-model analysis, which unit terms might you fit as fixed terms? Why?

Reps is a definite candidate for the following reasons. Firstly, Reps has only two degrees of freedom and it will be difficult to estimate a variance component for it. Secondly, one does not want to estimate Treats from Reps (there is no Treats information between Reps).

6.2 Balanced incomplete-block design from Joshi (1987)

Joshi (1987) gives an experiment to investigate six varieties of wheat that employs a balanced incomplete-block design with 10 blocks, each consisting of three plots. The factor-allocation diagram for the experiment is in Figure 7.

6.2.1 Load the design and check its of the design

Use the following R code to input the data for the experiment and check its properties.

Figure 7: Factor-allocation diagram for the balanced incomplete-block design: treatments are allocated to units; the arrow indicates that the allocation is randomized; the 'O' at the end of the arrow indicates that a nonorthogonal design is used; the two lines from 'O' indicates that the Varieties are allocated to the combinations of Blocks and Plots using the design; Plots in B indicates that the Plots are considered to be nested within Blocks for this randomization; B = Blocks.

```
#'## Input the design and data
data("BIBDWheat.dat")
#'## Check the properties of the design
bibdwheat.canon <- designAnatomy(formulae = list(units = ~ Blocks/Plots,
                                                  trts = ~ Varieties),
                                  data
                                           = BIBDWheat.dat)
summary(bibdwheat.canon)
##
##
  Summary table of the decomposition for units & trts (based on adjusted quantities)
##
##
    Source.units df1 Source.trts df2 aefficiency eefficiency order
##
##
                    9 Varieties
                                     5
                                            0.2000
                                                         0.2000
##
                      Residual
                                     4
   Plots[Blocks] 20 Varieties
                                     5
                                            0.8000
                                                         0.8000
##
                                                                    1
##
                      Residual
                                    15
##
## The design is not orthogonal
```

From this it is clear that 80% of the information about Varieties is available from the Plots[Blocks] source; that is, 80% of the Varieties information is confounded with differences between plots within blocks. Of course, the remaining 20% is confounded with Blocks.

Calculate the AVPD and check that AVPD = 2/(rA)

6.2.2 Questions

- 1. What is the value of xefficiency for Varieties when confounded with Plots[Blocks] for this design? Why?

 It is 0.80 because there is only the one value for the canonical efficiency factor between these two sources.
- How many nonzero eigenvalues does Q_VQ_{BP}Q_V have?
 It has 5 nonzero eigenvalues because there is 5 df of Varieties confounded with Plots[Blocks].

6.3 A design with rows and columns from Williams (2002)

Williams et al. (2002, p.144) provide an example of a tree experiment that investigated differences between 60 provenances of a species of Casuarina tree, these provenances coming from 18 countries; the trees were inoculated

prior to planting at two different times. The design used was a split-unit design comprised of four rectangles each of six rows by ten columns; the rectangles are located next to each other so that they are contiguous along the rows. The two inoculation times were randomized to the rectangles (main units). The provenances were randomized to the subunits using a resolved, latinized, row-column design, the rectangles forming replicates of the Provenances. The latinization was by columns and was necessary because differences between Columns (across Reps) was anticipated; it served to avoid multiple occurrences of a provenance in a column. At 30 months, diameter at breast height (Dbh) was measured.

The factor-allocation diagram for the experiment is in Figure 8.

Figure 8: Factor-allocation diagram for the row-and-column design: treatments are allocated to units; the arrows indicates that the allocations are randomized; the two lines leading to the '•' indicate that it is is the combinations of Countries and Provenances that is allocated; the 'O' at the end of the lower arrow indicates that a nonorthogonal design is used; the two lines from 'O' indicates that the Countries and Provenances are allocated to the combinations of Rows and Columns using the design; Rows in B indicates that the Rows are considered to be nested within Reps for this randomization; R = Reps.

6.3.1 Input the design and check the properties of the design

Use the following R code to input the design and check its properties.

```
#'## Input the design
load("Casuarina.dat.rda")
#'## Check the properties of the design
Casuarina.canon <- designAnatomy(formulae = list(units = ~ (Reps/Rows)*Columns,
                                                      = ~ InocTime*(Countries+Provenances)),
                                          = Casuarina.dat)
                               data
## Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Provenances[Countries]
and Countries are partially aliased in Rows[Reps]
## Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Provenances[Countries]
and Countries are partially aliased in Reps#Columns
## Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Provenances[Countries]
and Countries are partially aliased in Rows#Columns[Reps]
## Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): InocTime#Countries and
Countries are partially aliased in Rows#Columns[Reps]
## Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): InocTime#Countries and
Provenances[Countries] are partially aliased in Rows#Columns[Reps]
## Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): InocTime#Provenances[Countries
and Countries are partially aliased in Rows#Columns[Reps]
## Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): InocTime#Provenances[Countries
and Provenances[Countries] are partially aliased in Rows#Columns[Reps]
## Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): InocTime#Provenances[Countries
and InocTime#Countries are partially aliased in Rows#Columns[Reps]
summary(Casuarina.canon, which = c("aeff", "eeff", "order", "dforth"))
##
##
##
  Summary table of the decomposition for units & trts (based on adjusted quantities)
##
##
   Source.units
                       df1 Source.trts
                                                           df2 aefficiency eefficiency order dforthog
```

##	Reps	3	InocTime			1	1.0000	1.0000	1	
##	торо	O	Residual			2		1.0000	1	
##	Rows[Reps]	20	Countrie	S		17		0.0018	17	
##	we we troped				[Countries]	3		0.1326	3	
##	Columns	9	Countrie			9		0.0028	9	
##	Reps#Columns	27	Countrie	S		17		0.0012	17	
##					[Countries]	10	0.2320	0.1596	10	
##	Rows#Columns[Reps]	180	Countrie			17	0.7611	0.5588	17	
##			Provenan	ces	[Countries]	42	0.6851	0.3429	42	
##			InocTime	#Co	untries	17	0.6808	0.4735	17	
##			InocTime	#Pr	ovenances[Countries]	42	0.5516	0.2009	42	
##			Residual			62				
##										
##	Table of (partial) a	alia	sing betw	een	sources derived from	th	e same formula			
##	-									
##	Source			df	Alias		In	aeffici	ency	
##	Provenances [Countri	ies]		3	Countries		Rows[Reps]	0.1622		
##	Provenances [Countri	ies]		10	Countries		Reps#Columns	0.2320		
##	Provenances [Countri	ies]		42	Countries		Rows#Columns[Reps]	0.6851		
##	InocTime#Countries			17	Countries		Rows#Columns[Reps]	0.	6808	
##	InocTime#Countries			17	Provenances [Countrie	0.	6808			
##	InocTime#Provenance	_	_	- I					5516	
##	InocTime#Provenance	es[C	ountries]	42	Provenances [Countrie	0.	5516			
##				42	InocTime#Countries		Rows#Columns[Reps]	0.	5516	
##	eefficiency order o	dfor	thog							
##	0.1326 3		0							
##	0.1596 10		0							
##	0.3429 42		0							
##	0.4735 17		0							
##	0.4735 17		0							
##	0.2009 42		0							
##	0.2009 42		0							
##	0.2009 42		0							
##										
##	The design is not or	rtho	gonal							

1

Firstly, note that designAnatomy has automatically detected that Provenances is nested within Countries, even though Provenances has 60 unique levels: the sources for these two terms are Countries and Provenances[Countries] and these have 17 and 42 degrees of freedom when estimated from Rows # Columns [Reps], respectively. The total of these degrees of freedom is 59, one less than the number of Provenances, as expected.

Secondly, the partial aliasing evident in this design reflects a lack of (structure) balance between the treatment sources within each units source. This is an undesirable, but unavoidable, feature of the design for this experiment.

6.3.2 Questions

- 1. What is it about the design that makes it resolved for Provenances?

 Each Rep contains all 60 Provenances once and only once, i.e. a complete replicate of the Provenances.
- 2. What is the disadvantage of allocating InocTimes to Reps?

 There are only two Residual degrees of freedom for testing for the main effect for InocTimes.

6.4 A resolved design for the wheat experiment that is near-A-optimal under a mixed model

Gilmour et al. (1995) provides an example of a wheat experiment for 25 Varieties in which a balanced lattice design was employed.

The factor-allocation diagram for the experiment is in Figure 9.

Figure 9: Factor-allocation diagram for the row-and-column design: treatments are allocated to units; the arrows indicates that the allocations are randomized; the 'O' at the end of the lower arrow indicates that a nonorthogonal design is used; the two lines from 'O' indicates that the Lines are allocated to the combinations of Rows and Columns using the design; Rows (Columns) in Sr, Sr indicates that the Rows (Columns) are considered to be nested within Sr and Sr and Sr are Sr are Sr and Sr ar

In the lectures it was stated that, while the design is optimal for a fixed model, it is not optimal for a mixed model. In this exercise, a search will be made for a resolved design that is near-A-optimal under a mixed model.

6.4.1 Input the design and check the properties of the design

Use the following R code to input the design, plot it and check its properties.

```
#'## Get the design
library(asremlPlus)
## ASReml-R needs to be loaded if the mixed-model functions are to be used.
##
## ASReml-R is available from VSNi. Please visit http://www.vsni.co.uk/ for more information.
data(Wheat.dat)
latt.lay <- cbind(fac.gen(list(ARows = 10, AColumns = 15)),</pre>
                  fac.gen(list(SRows = 2, Rows = 5, SColumns = 3, Columns = 5)),
                  Wheat.dat["Variety"])
#'## Plot the design
#+ "LattDesign"
library(scales)
cell.colours <- hue_pal()(25)</pre>
designGGPlot(latt.lay, labels = "Variety",
             row.factors = c("SRows", "Rows"), column.factors = c("SColumns", "Columns"),
             colour.values = cell.colours, cellalpha = 0.75, size = 6,
             blockdefinition = cbind(5,5))
```

Plot of Variety

SColumns: 1						;	SCo	lumı	ns: 2	2	SColumns: 3						
,	1 -	1	2	4	3	5	19	23	2	6	15	18	25	9	11	2	
4	2-	6	7	9	8	10	8	12	16	25	4	5	7	16	23	14	<u>S</u>
4	3 - 2	21	22	24	23	25	11	20	24	3	7	6	13	22	4	20	SRows:
4	4-	11	12	14	13	15	22	1	10	14	18	24	1	15	17	8	
NS ,	5-	16	17	19	18	20	5	9	13	17	21	12	19	3	10	21	
Rows	1 -	3	18	8	13	23	16	24	10	13	2	10	4	17	11	23	
4	2-	1	16	6	11	21	12	20	1	9	23	12	6	24	18	5	<u>S</u>
4	3-	5	20	10	15	25	4	7	18	21	15	19	13	1	25	7	SRows:
4	4-	2	17	7	12	22	25	3	14	17	6	21	20	8	2	14	2
	5-	4	19	9	14	24	8	11	22	5	19	3	22	15	9	16	
		1	2	3	4	5	1	2 Cc	ვ lum	4 ns	5	1	2	3	4	5	•

```
#'## Check the properties of the design
latt.canon <- designAnatomy(formulae = list(units = ~ (SRows:SColumns)/(Rows*Columns),</pre>
                                         trt = ~ Variety),
                          data = latt.lay)
summary(latt.canon, which.criteria = c("aeff", "order"))
##
##
\#\# Summary table of the decomposition for units & trt (based on adjusted quantities)
##
## Source.units
                               df1 Source.trt df2 aefficiency order
## SRows:SColumns
                                5
## Rows[SRows:SColumns]
                                24 Variety 24
                                                      0.1667
```

```
## Columns[SRows:SColumns] 24 Variety 24 0.1667 1
## Rows#Columns[SRows:SColumns] 96 Variety 24 0.6667 1
## Residual 72
##
## The design is not orthogonal
```

6.4.2 Search for a near-A-optimal design

Use od to search for a near-A-optimal design under a mixed model. In this case the "tabu+rw" search method is to be used. Further, the od options are to be set to values that I have found by trail-and-error to be successful. The options are

P: the probability of accepting a non-improving design; the default is P=0.005.

localSearch: the number of steps in the random walk local search strategy of the "tabu+rw" search option; the default is 10000.

tabuStop: if the number of consecutive tabu loops with no change in the objective function exceeds tabuStop, then tabu optimization terminates (the default is 4).

```
#'## Set od options
maxit <- 50
search <- "tabu+rw"</pre>
od.options(P = 0.10, localSearch = 10000, tabuStop = 100)
#'## Set up the values of the variance components and autocorrelation for the random terms
params \leftarrow c(2.5, 1, 0.1, 0.1, 0.5, 1, 0.6, 0.4)
names(params) <- c("g.sRR", "g.sCC", "g.sRsCR", "g.sRsCC", "g.u", "g.aRaC", "rho.R", "rho.C")</pre>
#'### Set the values in od
                           = ~ SRows*SColumns + Variety,
Wheat.start <- od(fixed
                  random = ~ SRows:Rows + SColumns:Columns +
                                   SRows:SColumns:(Rows + Columns) + units,
                  residual = ~ ar1(ARows):ar1(AColumns),
                  permute = ~ Variety, swap = ~ SRows:SColumns,
                           = latt.lay, start.values = TRUE)
vp.table <- Wheat.start$vparameters.table</pre>
vp.table$Value <- params</pre>
print(vp.table)
##
                       Component Value
## 1
                      SRows:Rows
                                  2.5
## 2
                SColumns:Columns
                                   1.0
## 3
             SRows:SColumns:Rows
                                   0.1
## 4
          SRows:SColumns:Columns 0.1
## 5
                            units
                                 0.5
## 6
                ARows: AColumns!R 1.0
## 7
        ARows: AColumns! ARows! cor
                                    0.6
## 8 ARows:AColumns!AColumns!cor
#'### Generate the near-A-optimal design
Wheat.od <- od(fixed
                        = ~ SRows*SColumns + Variety,
                        = ~ SRows:Rows + SColumns:Columns +
               random
                             SRows:SColumns:(Rows + Columns) + units,
               residual = ~ ar1(ARows):ar1(AColumns),
               permute = " Variety, swap = " SRows:SColumns,
```

```
G.param = vp.table, R.param = vp.table,
                        = maxit, search = search,
                        = latt.lay)
               data
## Sat Nov 16 18:11:21 2019
## Initial A-value = 0.383558 (25 A-equations; rank C 24)
## A-value after tabu loop 1 is 0.372533
## A-value after tabu loop 2 is 0.372171
## A-value after tabu loop 3 is 0.372171
## A-value after tabu loop 4 is 0.372171
## A-value after tabu loop 5 is 0.372171
## A-value after tabu loop 6 is 0.372171
## A-value after tabu loop 7 is 0.371968
## A-value after tabu loop 8 is 0.371968
## A-value after tabu loop 9 is 0.371968
## A-value after tabu loop 10 is 0.371599
## A-value after tabu loop 11 is 0.371599
## A-value after tabu loop 12 is 0.371214
## A-value after tabu loop 13 is 0.371214
## A-value after tabu loop 14 is 0.371214
## A-value after tabu loop 15 is 0.371214
## A-value after tabu loop 16 is 0.371214
## A-value after tabu loop 17 is 0.371214
## A-value after tabu loop 18 is 0.370891
## A-value after tabu loop 19 is 0.370891
## A-value after tabu loop 20 is 0.370771
## A-value after tabu loop 21 is 0.370771
## A-value after tabu loop 22 is 0.370517
## A-value after tabu loop 23 is 0.370517
## A-value after tabu loop 24 is 0.370424
## A-value after tabu loop 25 is 0.370341
## A-value after tabu loop 26 is 0.370341
## A-value after tabu loop 27 is 0.370341
## A-value after tabu loop 28 is 0.370341
## A-value after tabu loop 29 is 0.370341
## A-value after tabu loop 30 is 0.370341
## A-value after tabu loop 31 is 0.370311
## A-value after tabu loop 32 is 0.370311
## A-value after tabu loop 33 is 0.370311
## A-value after tabu loop 34 is 0.370311
## A-value after tabu loop 35 is 0.370311
## A-value after tabu loop 36 is 0.370311
## A-value after tabu loop 37 is 0.370311
## A-value after tabu loop 38 is 0.370311
## A-value after tabu loop 39 is 0.370071
## A-value after tabu loop 40 is 0.370071
## A-value after tabu loop 41 is 0.370071
## A-value after tabu loop 42 is 0.370071
## A-value after tabu loop 43 is 0.370071
## A-value after tabu loop 44 is 0.370071
## A-value after tabu loop 45 is 0.370071
## A-value after tabu loop 46 is 0.370071
## A-value after tabu loop 47 is 0.370071
## A-value after tabu loop 48 is 0.370071
```

```
## A-value after tabu loop 49 is 0.370071
## A-value after tabu loop 50 is 0.370071
## Hash table size 770
## Final A-value after 50 iterations: 0.370071

Wheat.lay <- Wheat.od$design
Wheat.lay$unit <- factor(1:nrow(Wheat.lay))</pre>
```

6.4.3 Checking the properties of the designs

Now calculate the A-measure for the original lattice design and the near-optimal design produce by od. Also, produce the anatomy for the near-optimal design.

```
#'### Calculate the A-measure for the lattice design under a mixed model
latt.lay$unit <- factor(1:nrow(latt.lay))</pre>
(A.latt <- designAmeasures(mat.Vpredicts(target = ~ Variety - 1,
                                         fixed = ~ SRows*SColumns - 1,
                                         random = ~ SRows:Rows + SColumns:Columns +
                                                     SRows:SColumns:(Rows + Columns) + unit - 1,
                                                 = as.list(params[1:5]),
                                                 = kronecker(mat.ar1(params["rho.R"], 10),
                                                        mat.ar1(params["rho.C"], 15)),
                                         design = latt.lay))[[1]])
## [1] 0.3835578
#'### Check the A-value for the near-optimal design
(A.wht <- designAmeasures(mat.Vpredicts(target = ~ Variety - 1,
                                        fixed = ~ SRows*SColumns - 1,
                                        random = ~ SRows:Rows + SColumns:Columns +
                                                   SRows: SColumns: (Rows + Columns) + unit - 1,
                                        G
                                               = as.list(params[1:5]),
                                               = kronecker(mat.ar1(params["rho.R"], 10),
                                                       mat.ar1(params["rho.C"], 15)),
                                        design = Wheat.lay))[[1]])
## [1] 0.3700712
(A.wht/A.latt)
## [1] 0.964838
#'## Check the properties of the design
Wheat.canon <- designAnatomy(formulae = list(unit = ~ (SRows:SColumns)/(Rows*Columns),
                                             trt = ~ Variety),
                                      = Wheat.lay)
                             data
summary(Wheat.canon, which.criteria = c("aeff", "meff", "xeff", "eeff", "order"))
##
##
## Summary table of the decomposition for unit & trt (based on adjusted quantities)
##
## Source.unit
                                 df1 Source.trt df2 aefficiency mefficiency xefficiency eefficiency
## SRows:SColumns
                                   5
## Rows[SRows:SColumns]
                                                          0.0018
                                                                      0.1667
                                  24 Variety
                                                 24
                                                                                  0.4925
                                                                                              0.0001
```

```
Columns [SRows: SColumns]
                                                               0.0065
                                                                             0.1667
                                                                                          0.4833
                                                                                                        0.0004
                                      24 Variety
    Rows#Columns[SRows:SColumns]
                                                      24
                                                               0.6347
                                                                             0.6667
                                                                                          0.9394
                                                                                                        0.4005
##
                                      96 Variety
##
                                         Residual
                                                      72
##
    order
##
##
       24
##
       24
##
        24
##
##
## The design is not orthogonal
```

6.4.4 Questions

1. How do the AVPD values calculated by od and those calculated using designAmeasures and mat. Vpredicts compare?

They are the same.

2. Summarize the differences between the original balanced lattice design and the od design. Is the increased precision of the od design worthwhile?

The AVPD has decreased by around 3% and so the increase in precision is small. The lattice design is balanced, the order of Lines always being one, and so all contrasts have equal variance. On the other hand, for the od design, Lines has order 24, the same as the number of degrees of freedom. The values of the efficiencies range from 0.4249 to 0.9335 so that the variances of the contrast will vary. It seems that the balance of the lattice design is not worth sacrificing for the minor increase in precision. However, this is for the values of the variance parameters used in the call to od. It would be safest to conduct a study of the value obtained for a range of values for the variance parameters.

6.5 An environmental experiment

Suppose an environmental scientist wants to investigate the effect on the biomass of burning areas of natural vegetation. There are available two areas separated by several kilometres for use in the investigation. It is only possible to either burn or not burn an entire area. The area to be burnt is randomly selected and the other area is to be left unburnt as a control. Further, 30 locations in each area are to be randomly sampled and the biomass measured at each location. The factor-allocation diagram for the experiment is in Figure 10.

Figure 10: Factor-allocation diagram for the environmental experiment: treatments are allocated to locations; the arrow indicates that the factor Burning is randomized to Areas; Locations in A indicates that the Locations are considered to be nested within Areas; A = Areas.

Obtain the randomized layout for this experiment and check its properties.

```
seed = 872159)

#'## plot the design
designGGPlot(Burn.lay, labels = "Burn", row.factors = "Locations", column.factors = "Areas")
```

Plot of Burn


```
##
##
  Summary table of the decomposition for unit & trt
##
##
   Source.unit
                      df1 Source.trt df2 aefficiency eefficiency order
##
    Areas
                        1 Burn
                                        1
                                               1.0000
                                                            1.0000
##
    Locations [Areas]
                      58
```

6.5.1 Questions

- 1. How is the pseudo-replication involved in this experiment manifested in the skeleton anova table?
 - Because (i) Areas and Burn are alongside each other in the anova table, (ii) they both have 1 degree of freedom, and (iii) the single canonical efficiency factor is one, then Areas and Burn are completely confounded. That is, the pseudoreplication has resulted in differences between Areas and between Burns being inextricably mixed up.
- 2. The randomization-based mixed model for the experiment is Burn | Areas + <u>Areas:Locations</u>. What difficulties do you anticipate in attempting to fit this model? How could the model be modified so that a fit can be obtained? Brien and Demétrio (2009) call models formed by removing terms to enable a fit to be achieved 'models of convenience'. What dangers do you foresee in basing conclusions on the fitted model of convenience?

There will be a singularity in the model because Areas is confounded with Burn. A fit could be obtained by removing Areas from the random model. The problem is that a test of Burn would then be based on the ratio of variability in Burn differences to an estimate of the variance of Locations-within-Areas variability. This does not include Areas variability and so the denominator is likely to be underestimated; p-values based from this test are likely to be too small and significant differences are more likely to be declared where there are none as compared to when an estimate of Areas variability is included in the denominator of the F-statistic.

7 Session 3: Using R for advanced experimental design

Firstly, initialize by loading the libraries that will be used and setting the output width.

```
library(dae)
library(od)
options(width=100)
```

7.1 Athletic examples based on Brien et al. (2011)

Brien et al. (2011) give several designs for an athletic experiment that illustrate the basic principles to be employed in designing multiphase experiments. Here designs for two different multiphase scenarios are considered, both being based on a first-phase that is the testing phase and employs a split-unit design.

7.1.1 A standard single-phase athlete training experiment

First, a split-unit design is generated for an experiment in which the performance of an athlete when subject to nine different training conditions is tested. The nine training conditions are the combinations of three surfaces and three intensities of training. Also, assume that the prime interest is in surface differences, with intensities included to observe the surfaces over a range of intensities. The experiment is to involve 12 athletes, three per month for four consecutive months; each athlete undergoes three tests. The heart rate of the athlete is to be taken immediately upon completion of a test.

A split-plot design is to be employed for the experiment: the three intensities are randomized to the three athletes in each month and the three surfaces are randomized to the three tests that each athlete is to undergo. The factor-allocation diagram is shown in Figure 11. Generate a randomized layout for the experiment.

Figure 11: Factor-allocation diagram for the standard athlete training experiment: training conditions are randomized to tests; the two left-hand arrows indicate that the levels of Intensities and Surfaces are randomized to Athletes and Tests, respectively; M = Months; A = Athletes.

```
#'## Phase 1: Construct a systematic layout and generate a randomized layout for the first phase
split.sys <- cbind(fac.gen(list(Months = 4, Athletes = 3, Tests = 3)),</pre>
                    fac.gen(list(Intensities = LETTERS[1:3], Surfaces = 3),
                            times = 4))
                                                 = split.sys[c("Intensities", "Surfaces")],
split.lay <- designRandomize(allocated</pre>
                              recipient
                                                 = split.sys[c("Months", "Athletes", "Tests")],
                              nested.recipients = list(Athletes = "Months",
                                                        Tests = c("Months", "Athletes")),
                              seed = 2598)
#'## Plot the design
#+ "SplitDes_v2"
split.lay <- within(split.lay,</pre>
                     Conditions <- fac.combine(list(Intensities, Surfaces),</pre>
                                                combine.levels = TRUE))
plt <- designGGPlot(split.lay, labels = "Conditions",</pre>
                     row.factors = "Tests", column.factors = c("Months", "Athletes"),
```

Plot of Conditions


```
##
##
   Summary table of the decomposition for tests & cond
##
##
    Source.tests
                             df1 Source.cond
                                                         df2
##
    Months
                               3
                                                           2
##
    Athletes [Months]
                                8 Intensities
                                                           6
##
                                  Residual
##
                              24 Surfaces
                                                           2
    Tests [Months: Athletes]
                                                           4
##
                                  Intensities#Surfaces
##
                                  Residual
                                                          18
```

Question

1. Why was a split-plot design chosen for this experiment?

Because it is likely that variation between tests within an athlete will be smaller than variation between athletes within a month. Hence, because the prime interest is in Surfaces, they are assigned to tests within an athlete and will have better precision than Intensities, which have been assigned to the more variable athletes within a month.

7.1.2 A simple two-phase athlete training experiment

Multiphase experiments differ from those previously presented in that they employ two or more randomizations or allocations, each to a different type of unit. As a result, there will be three or more sets of factors, or tiers, to deal with; further, when there are three sets of factors, three formula will need to be supplied to designAnatomy.

Suppose that, in addition to heart rate taken immediately upon completion of a test, the free haemoglobin is to be measured using blood specimens taken from the athletes after each test and transported to the laboratory for analysis. That is, a second laboratory phase is required to obtain the new response. In this phase, because the specimens become available monthly, the batch of specimens for one month are to be processed, in a random order, before those for the next month are available. The factor-allocation diagram for this experiment is in Figure 12, the dashed line indicating that Months are systematically allocated to Batches. The randomizations in this diagram are composed (Brien and Bailey, 2006) and is one of the two types of randomizations in a chain (Bailey and Brien, 2015). This means that the second-phase randomization only need to consider how the tests factors are to be assigned to locations; training conditions can be ignored in determining the second-phase design.

Figure 12: Factor-allocation diagram for the two-phase athlete training experiment: training conditions are randomized to tests and tests are allocated to locations; the two left-hand arrows indicate that the levels of Intensities and Surfaces are randomized to Athletes and Tests, respectively; the dashed arrow indicates that Months are systematically allocated to Batches; the ${}^{\bullet}$ indicates that the combinations of the levels of Athletes and Tests are randomized to the Locations; M = Months; A = Athletes; B = Batches.

Using the following R code, obtain a layout for the second phase and check the properties of the layout. In doing this, the first-phase layout is randomized. However, because Months is not randomized to Batches, the argument except in designRandomize is used to effect the systematic allocation.

```
#'# Generate a layout for a simple two-phase athlete training experiment
#'
#'## Phase 1 - the split-plot design that has already been generated.
#'## Phase 2 - randomize tests (and training conditions) to locations,
but Months assigned systematically to Batches
```

```
#'## so except Batches from the randomization
nested.recipients = list(Locations = "Batches"),
                 except = "Batches",
                             = 71230)
                 seed
eg1.lay
   Batches Locations Months Athletes Tests Intensities Surfaces Conditions
     1 1 1 2 3 C 3
                                                 C,3
                                          2
## 2
             2
                             2
                                    В
                                                B,2
       1
                   1
                        1
       1
             3
## 3
                  1
                        2
                            2
                                   С
                                          1
                                                C,1
## 4
       1
             4
                  1
                       3
                            1
                                          1
                                                A,1
                                   A
             5
                                          2
## 5
       1
                  1
                        3
                            2
                                   A
                                                A,2
       1
             6
                                   В
## 6
                        1
                                          3
                  1
                            1
                                                В,3
                                   C
       1
## 7
             7
                  1
                        2
                            1
                                          2
                                                C,2
## 8
       1
            8
                  1
                        1
                            3
                                   В
                                         1
                                                B,1
      1 9 2 1 2 2 2 2 3 4
## 9
                  1
                        3
                            3
                                   A
                                          3
                                                А,З
                                   C
A
B
## 10
                  2
                        3
                                          1
                            1
                                                C,1
## 11
                   2
                       2 2
                                          2
                                                A,2
                 2
                            3
                                          3
## 12
                       1
                                                В,3
                       1
## 13
                   2
                            2
                                   В
                                          2
                                                B,2
          5 2
6 2
## 14
       2
                        3
                            2
                                    C
                                          3
                                                C,3
                                   A
## 15
       2
                        2 1
                                          3
                                                А,З
          7
8
9
1
2
       2
                  2
                        2
## 16
                           3
                                   A
                                          1
                                                A,1
       2
                   2
                            3
                                   C
                                          2
## 17
                        3
                                                C,2
       2
                   2
## 18
                        1
                            1
                                   В
                                          1
                                                B,1
       3
                       1
## 19
                   3
                            1
                                   В
                                          1
                                                B,1
## 20
       3
                  3
                        3
                                          2
                            1
                                   A
                                                A,2
       3
             3
## 21
                  3
                        2
                            3
                                   C
                                          1
                                                C,1
            4 3
5 3
                                   C
       3
                        2
                            2
                                          3
                                                С,3
## 22
       3
                                   C
                                          2
## 23
                   3
                        2
                           1
                                                C,2
             6
## 24
       3
                  3
                        3 3
                                          1
                                   A
                                                A,1
      3 6 3
3 7 3
3 8 3
3 9 3
4 1 4
4 2 4
4 3 4
4 4 4
## 25
                        3
                           2
                                   A
                                          3
                                                А,З
                                   В
                                          3
## 26
                       1
                            2
                                                В,3
## 27
                       1
                            3
                                   В
                                          2
                                                В,2
## 28
                        2
                            3
                                   В
                                          3
                                                В,3
## 29
                        2
                                    В
                            1
                                          1
                                                B,1
## 30
                        1 1
                                   A
                                          3
                                                А,З
                            2
                                          2
## 31
                 4
                       1
                                   A
                                                A,2
       4 5
4 6
4 7
                       1
                                   A
## 32
       4
                  4
                            3
                                          1
                                                A,1
                       3
## 33
                   4
                            1
                                   C
                                          1
                                                C,1
                                   В
## 34
                       2 2
                                          2
                 4
                                                B,2
## 35
             8
                       3
                            2
                                   C
                                          3
                                                С,3
## 36
       4
                  4
                       3
                            3
                                   C
                                          2
                                                C,2
#'## Plot the layout
#+ Athlete_eq1lay
eg1.lay$Conditions <- with(eg1.lay, fac.combine(list(Intensities, Surfaces),
                               combine=TRUE, sep=","))
designGGPlot(eg1.lay, labels = "Conditions",
        row.factors = "Locations", column.factors = "Batches",
        cellfillcolour.column = "Athletes", cellalpha = 0.75, size = 6,
        title = "Randomized Intensities-Surfaces combinations",
```

Randomized Intensities-Surfaces combinations

Check the properties of the design.

```
#'## Check properties of the design
eg1.canon <- designAnatomy(formulae = list(locs</pre>
                                                  = " Batches/Locations,
                                             tests = ~ Months/Athletes/Tests,
                                             cond = ~ Intensities*Surfaces),
                            data
                                      = eg1.lay)
summary(eg1.canon, which.criteria="none")
##
##
##
   Summary table of the decomposition for locs, tests & cond
##
##
    Source.locs
                        df1 Source.tests
                                                    df2 Source.cond
                                                                               df3
##
    Batches
                          3 Months
                                                       3
    Locations[Batches] 32 Athletes[Months]
                                                       8 Intensities
                                                                                 2
##
##
                                                         Residual
                                                                                 6
                            Tests [Months: Athletes]
##
                                                      24 Surfaces
                                                                                 2
##
                                                         Intensities#Surfaces
                                                                                 4
##
                                                         Residual
                                                                                18
```

Questions

1. What would be the allocation-based mixed model for this experiment, an allocation-based mixed model having the same terms as the randomization-based mixed model that would apply if all the allocations had been made by randomizing. Do you anticipate any problem in fitting it?

The allocation-based mixed model is formed by treating all training-conditions factors as fixed and the remaining factors as random. Hence, the symbolic mixed model is Intensities + Surfaces + Intensities:Surfaces + Months:Athletes + Months:Athletes:Tests + Batches + Batches:Locations. The problem in fitting it would be that Months and Batches are confounded so that the variance model is singular.

2. Compare the units for the two phases in this experiment?

A unit in the first phase is a test conducted on an athlete in a particular month; in the second phase, a unit is a location of a test within a batch. That is, the unit in the first phase is an athlete's test and in the second phase is a blood specimen in a lab location.

3. What are the outcomes for the two phases for this experiment?

The outcome for the first phase is the heart rate for a test and a blood specimen from the test; the outcome for the second phase, is the free haemglobin measured at a location.

7.1.3 Allowing for lab processing order in the athletic training example

Brien (2017) discusses a design, and its properties, that differs in the second phase from that described in Section 7.1.2: it assumes that lab processing order within a batch is important and so the second phase now requires a row-column design. However, one cannot consider a design for just Months, Athletes and Tests and ignore Intensities and Surfaces, as was done in the previous design. Indeed prime consideration needs to be given to Intensities and Surfaces. That is, a suitable cross-phase design for allocating Intensities and Surfaces to Batches and Locations is needed. However, the second-phase design that allocates Months, Athletes and Tests to Batches and Locations has to be considered in that it must account for the split-unit nature of the first-phase design.

For the second-phase design, the Months are associated with Batches. Then each triple of consecutive locations in a batch are associated with a single athlete, one of those for the month associated with the batch. This leaves tests to be assigned to locations within triples. Thus, the cross-phase design will need to allocate efficiently an intensity to a location triple and surface to the locations within a triple.

The cross-phase design is a balanced factorial design (Hinkelmann and Kempthorne, 2005, Section 12.5) and can be constructed using two extended Latin squares (ELS) as follows:

- 1. a 3×4 ELS, formed from a 3×3 Latin square by repeating one of its columns, will be used to allocate Intensities to the 3 Locations triples \times 4 Months.
- 2. A 3×4 ELS will be used to allocate Surfaces to the 3 Locations \times 4 Months within a triple; the same ELS is used for the three triples.
- 3. To ensure no repeat Intensities-Surfaces combinations for a Location, the two Batches to which the repeated columns of the ELS for Intensities are assigned must be different from the two Batches to which repeated columns of the ELS for Surfaces are assigned.

The factor-allocation diagram, for this design, is in Figure 13. In this diagram, the training conditions and tests panels are surrounded by a dashed rectangle and lines go from the training conditions sources to the lines from the test sources. This indicates that the result of the allocation in the first phase needs to be explicitly taken into account in the second-phase allocation. The randomizations involved have been called randomized-inclusive randomizations (Brien and Bailey, 2006) and are one of the two types of randomizations in a chain (Bailey and Brien, 2015). Because Batches and Locations are crossed, the second phase randomization is achieved by independently permuting the Batches and Locations. A design with the same properties had been previously constructed by Rosemary Bailey (pers. comm.).

Figure 13: Factor-allocation diagram for the two-phase athlete training experiment with a row-column design for the second phase: training conditions are randomized to tests, then training conditions and tests are randomized to locations; the 'O' indicates that the observed combinations of the levels of Intensities, Surfaces, Athletes and Tests are randomized to locations; the 'O' indicates that a nonorthogonal design was used in this randomization to the combinations of the levels of Batches and Locations; the dashed arrow indicates that Months were systematically allocated to Batches; the dashed oval indicates that all factors from the first phase form a pseudotier and all are actively involved in determining the allocation to locations; M = Months and A = Athletes.

Use the following R code to obtain a layout for the new second phase design.

```
#'## Generate a systematic cross-phase design for Intensities and Surfaces
#' It is based on (i) an extended Latin square (ELS) for allocating Intensities to
#' Locations triples x Batches and (ii) the same ELS for each triple, the ELSD being used to
#' allocate Surfaces to the three Locations within each triple by four Batches.
#' The Batches to which the repeated columns of the ELSD for Intensities are assigned must be
#' different from the Batches to which repeated columns of the ELSD for Surfaces are assigned.
#+ Athlete_eq2sys_v3
eg2.phx.sys <- cbind(fac.gen(list(Batches = 4, Locations = 9)),
                     data.frame(Intensities = factor(rep(c(designLatinSqrSys(3), c(3,2,1)),
                                                         each = 3), labels = LETTERS[1:3]),
                                Surfaces = factor(c(rep(1:3, times = 3),
                                                    rep(1:3, times = 3),
                                                    rep(c(2,3,1), times = 3),
                                                    rep(c(3,1,2), times = 3)))))
eg2.phx.sys$Conditions <- with(eg2.phx.sys, fac.combine(list(Intensities, Surfaces),
                                                        combine.levels = TRUE))
designGGPlot(eg2.phx.sys, labels = "Conditions",
             row.factors = "Locations", column.factors = "Batches",
             cellfillcolour.column = "Intensities", cellalpha = 0.75, size = 6,
             title = "Intensities-Surfaces for systematic cross-phase design",
             blockdefinition = rbind(c(9,1)),
```

Intensities-Surfaces for systematic cross-phase design

Intensities-Surfaces for systematic two-phase design

#'## Allocate the second phase
eg2.lay <- designRandomize(allocated = eg2.sys[c("Months", "Athletes", "Tests",</pre>

```
"Intensities", "Surfaces")],
                        recipient = eg2.sys[c("Batches", "Locations")],
                        except = "Batches",
                        seed = 243526)
head(eg2.lay)
## Batches Locations Months Athletes Tests Intensities Surfaces
## 1 1 1 1 3 2 A 2
## 2
                 2
                        1
                               2
                                                C
         1
                                     1
## 3 1 3 1 3 3
## 4 1 4 1 2 2
## 5 1 5 1 3 1
## 6 1 6 1 1 2
                                               A
                                               C
                                                        1
                                                A
                                                        1
                                                В
                                                         2
#'## Plot the layout
#+ Athlete_eg2lay_v3
eg2.lay$Conditions <- with(eg2.lay, fac.combine(list(Intensities, Surfaces),
                                         combine=TRUE, sep=","))
designGGPlot(eg2.lay, labels = "Conditions",
           row.factors = "Locations", column.factors = "Batches",
           cellfillcolour.column = "Athletes", cellalpha = 0.75, size = 6,
           title = "Randomized Intensities-Surfaces combinations",
           blockdefinition = rbind(c(9,1)),
           ggplotFuncs = list(xlab("Batches (Months)"),
                     theme(legend.position = "right")))
```

Randomized Intensities-Surfaces combinations

Check the properties of the design.

```
#'## Check properties of the design
eg2.canon <- designAnatomy(formulae = list(locs = ~ Batches*Locations,
                                             tests = ~ Months/Athletes/Tests,
                                             cond = ~ Intensities*Surfaces),
                            data
                                     = eg2.lay)
summary(eg2.canon, which.criteria =c("aefficiency", "order"))
##
##
   Summary table of the decomposition for locs, tests & cond (based on adjusted quantities)
##
##
##
    Source.locs
                       df1 Source.tests
                                                   df2 Source.cond
                                                                             df3 aefficiency order
##
    Batches
                         3 Months
                                                     3
                                                                                       1.0000
                                                                                                  1
    Locations
                         8 Athletes [Months]
                                                     2 Intensities
                                                                               2
                                                                                       0.0625
                                                                                                  1
##
                           Tests[Months:Athletes]
                                                     6 Surfaces
                                                                               2
##
                                                                                       0.0625
                                                                                                  1
##
                                                       Intensities#Surfaces
                                                                               4
                                                                                       0.2500
                                                                               2
##
    Batches#Locations 24 Athletes[Months]
                                                     6 Intensities
                                                                                       0.9375
                                                                                                  1
##
                                                       Residual
                                                                               4
                                                                                       1.0000
                                                                                                  1
##
                           Tests[Months:Athletes]
                                                                               2
                                                    18 Surfaces
                                                                                       0.9375
                                                                                                  1
##
                                                       Intensities#Surfaces
                                                                               4
                                                                                       0.7500
                                                                                                  1
##
                                                       Residual
                                                                              12
                                                                                       1.0000
                                                                                                  1
##
## The design is not orthogonal
```

It is clear that Athletes [Months] and Tests [Months: Athletes] are not orthogonal to Locations and Batches #Locations, because the former sources are confounded with both of the latter sources. To examine the nature of the nonorthogonality, the skeleton anova for just the tests and locations tiers is obtained.

```
#"### Examine the nonorthogonality between locations and tests
eg2.locstests.canon <- designAnatomy(formulae = list(locs = ~ Batches*Locations,
                                                       tests = ~ Months/Athletes/Tests),
                                      data
                                                = eg2.lay)
summary(eg2.locstests.canon, which.criteria =c("aefficiency", "order"))
##
##
##
  Summary table of the decomposition for locs & tests
##
##
    Source.locs
                       df1 Source.tests
                                                   df2 aefficiency order
##
    Batches
                         3 Months
                                                     3
                                                            1.0000
                                                     2
##
    Locations
                         8 Athletes [Months]
                                                            1.0000
                                                                        1
##
                           Tests [Months: Athletes]
                                                     6
                                                            1.0000
                                                                        1
##
    Batches#Locations 24 Athletes[Months]
                                                     6
                                                            1.0000
                                                                        1
##
                          Tests[Months:Athletes] 18
                                                            1.0000
```

Questions

1. What do you conclude about the confounding of Athletes[Months] and Tests[Months:Athletes] with Locations?

Since all efficiency factors are one, it is concluded that the 8 degrees of freedom for Athletes[Months] has been split into two orthogonal parts, one with 2 degrees of freedom which is confounded with Batches and the other with 6 degrees of freedom which is confounded with Batches:Locations. The source Tests[Months:Athletes] has been similarly partitioned.

- 2. Are the designs proposed for this experiment first-order balanced?

 The design is first-order balanced, because the order of the efficiency factors is one for all confounded sources.
- 3. What has been the cost of allowing for order of processing in the lab? Is the cost acceptable? Why?

 The cost has been that some information about Athletes[Months], along with Intensities, and some information about Tests[Months:Athletes], along with Surfaces and Intensities#Surfaces, has been confounded with Locations. The cost is acceptable, because the amount of information lost on the main effects is only 6.25% and on the interaction is 25%. The latter will be recovered in a REML-based mixed model analysis. However, the Residual degrees of freedom for Athletes[Months] has been reduced from 6 to 4 and for Tests[Months:Athletes] from 18 to 14. While the latter is unlikely to be seriously deleterious, the former is of concern.

7.2 McIntyre's (1955) two-phase example

McIntyre (1955) reports an investigation of the effect of four light intensities on the synthesis of tobacco mosaic virus in leaves of tobacco *Nicotiana tabacum* var. Hickory Pryor. It is a two-phase experiment: the first phase is a treatment phase, in which the four light treatments are randomized to the tobacco leaves, and the second phase is an assay phase, in which the tobacco leaves are randomized to the half-leaves of assay plants.

In the first phase, four successive leaves at defined positions on the stem were taken from each of eight plants of comparable age and vigour that had been inoculated with the virus. Arbitrarily grouping the plants into two sets of four, the four treatments were applied to the leaves, which had been separated from the plants and were sustained by flotation on distilled water, in a Latin square design for each set with tobacco plants as columns and leaf positions as rows; see Figure 15.

In the second phase, virus content of each to bacco leaf was assayed by expressing sap and inoculating half leaves of the assay plants, $Datura\ stramonium$, on which countable lesions would appear. Lots of eight sap samples were formed from pairs of to bacco plants, the pairs being comprised of a plant from each set in the treatment phase. The eight samples from a lot were assigned to four assay plants using one of four 4×4 Graeco-Latin square designs, with the leaves from a single to bacco plant assigned using one of the alphabets and the second to bacco plant using the other (see Figure 16). Actually, this design is a semi-Latin square (Bailey, 1992).

The factor-allocation diagram for the experiment is in Figure 14. Unfortunately, the randomization for this experiment was not described by McIntyre (1955). Because there are multiple squares in both phases, there are several possible randomizations depending on the effects anticipated as possible in the experiment. As shown by the nesting relations in the factor-allocation diagram, I have assumed that randomization to NicPlant was within Sets and to Posn was across Sets. Similarly, I have assumed that randomization to DatPlant was within Lot and to AssPosn across Lot. In the factor-allocation diagram, N_1 is a factor for the pairs of tobacco plants formed by taking a plant from each set in the first phase.

Figure 14: Factor-allocation diagram for McIntyre's (1955) two-phase experiment: treatments are randomized to tobacco leaves and tobacco leaves are randomized to Datura half-leaves; the arrow to the ' \bigcirc ', the ' \bigcirc ' and the two lines from the ' \bigcirc ' indicate that Treat is randomized to the combinations of NicPlant and Posn using an orthogonal design; N_1 is a pseudofactor indexing the pairs of tobacco plants formed by taking a plant from each set in the first phase and N_2 is a pseudofactor indexing the tobacco plants within the pairs formed by taking a plant from each set in the first phase; N_1 is randomized to Lot in the second phase; the combinations of N_2 and Posn is randomized to the combinations of HalfLeaf, DatPlant and AssPosn using a nonorthogonal design, the latter indicated by the ' \bigcirc '; S = Set; L = Lot; D = DatPlant; A = AssPosn.

Figure 15: Layout for the first phase of McIntyre's (1955) experiment[†]

	Nicotiana Plants								
	1	2	3	4		1	2	3	4
Leaf					Leaf				
Position					Position				
1	a	b	c	d		a	b	c	d
	1	5	9	13		17	21	25	29
2	b	a	d	c		С	d	a	b
	2	6	10	14		18	22	26	30
3	С	d	a	b		d	С	b	a
	3	7	11	15		19	23	27	31
4	d	c	b	a		b	a	d	c
	4	8	12	16		20	24	28	32

 $^{^{\}dagger}$ The letter in each cell refers to the light intensity to be applied to the unit and the number to the unit.

Figure 16: Layout for the second phase of McIntyre's (1955) experiment[†]

					Datura Plants				
	1	2	3	4		5	6	7	8
Assay Leaf					Assay Leaf				
Position					Position				
1	1	2	3	4	[5	6	7	8
	17	20	18	19		23	22	24	21
2	2	1	4	3		8	7	6	5
	18	19	17	20		22	23	21	24
3	3	4	1	2		7	8	5	6
	19	18	20	17		21	24	22	23
4	4	3	2	1		6	5	8	7
	20	17	19	18		24	21	23	22
					Datura Plants				
	9	10	11	12		13	14	15	16
Assay Leaf					Assay Leaf				
Position					Position				
1	9	10	11	12		13	14	15	16
	28	25	27	26		30	31	29	32
2	10	9	12	11		16	15	14	13
	27	26	28	25		31	30	32	29
3	11	12	9	10		15	16	13	14
	26	27	25	28		32	29	31	30
4	12	11	10	9		14	13	16	15
	25	28	26	27		29	32	30	31
† CD1 1 .	.1 11	С .	. 1	C 1		1	\ , 1		.1 .

[†]The numbers in the cell refer to the units from the first phase (tobacco leaves) to be assigned to the two half-leaves of the assay plant; they are in standard order for Set, then NicPlant followed by Position.

7.2.1 Check the properties of the randomized layout

Load the data and use designTwophaseAnatomies to check the properties of the design.

```
#'## Load data
data(McIntyreTMV.dat)
#'## Check properties of the design
designTwophaseAnatomies(formulae = list(assay = ~ ((Lot/DatPlant)*AssPosn)/HalfLeaf,
                                        test = ~ (Set/NicPlant)*Posn,
                                         trt = ~ Treat),
                        which.criteria=c("aeff", "ord"), data=McIntyreTMV.dat)
## ### Anatomy for full two-phase design
##
##
## Summary table of the decomposition for assay, test & trt (based on adjusted quantities)
##
   Source.assay
                                   df1 Source.test
                                                           df2 Source.trt df3 aefficiency order
##
                                     3 NicPlant[Set]
                                                                                    1.0000
##
  Lot
                                                             3
                                                                                               1
##
  DatPlant[Lot]
                                    12
  AssPosn
                                     3
##
##
   Lot#AssPosn
                                     9
   DatPlant#AssPosn[Lot]
                                    36 Posn
                                                             3
                                                                                    0.5000
##
                                                                                               1
                                                             3
##
                                        Set#Posn
                                                                                    0.5000
                                                                                               1
##
                                        NicPlant#Posn[Set] 18 Treat
                                                                             3
                                                                                    0.5000
                                                                                               1
##
                                                               Residual
                                                                            15
                                                                                    0.5000
                                                                                               1
##
                                        Residual
                                                            12
##
   HalfLeaf[Lot:DatPlant:AssPosn] 64 Set
                                                                                    1.0000
                                                                                               1
                                                             1
##
                                        NicPlant[Set]
                                                             3
                                                                                    1.0000
##
                                        Posn
                                                                                    0.5000
                                                             3
                                                                                               1
##
                                        Set#Posn
                                                             3
                                                                                    0.5000
                                                                                               1
##
                                        NicPlant#Posn[Set] 18 Treat
                                                                             3
                                                                                    0.5000
                                                                                               1
##
                                                               Residual
                                                                            15
                                                                                    0.5000
                                                                                               1
##
                                        Residual
                                                            36
## The design is not orthogonal
##
##
## ### Anatomy for first-phase design
##
##
## Summary table of the decomposition for test & trt
##
##
  Source.test
                       df1 Source.trt df2 aefficiency order
## Set
                         1
                         6
## NicPlant[Set]
## Posn
                         3
                         3
## Set#Posn
## NicPlant#Posn[Set] 18 Treat
                                         3
                                                1.0000
                           Residual
                                        15
## Warning in print.summary.pcanon(summary(twoph1.lay.canon, which.criteria = which.criteria)):
The combined dimensions of the sources from the first formula are less than the number of rows
in data
```

```
##
##
  ### Anatomy for cross-phase design
##
##
##
   Summary table of the decomposition for assay & trt (based on adjusted quantities)
##
                                    df1 Source.trt df2 aefficiency order
##
    Source.assay
                                      3
##
   Lot
   DatPlant[Lot]
                                     12
##
   AssPosn
                                      3
##
##
   Lot#AssPosn
                                      9
   DatPlant#AssPosn[Lot]
                                     36 Treat
                                                      3
##
                                                             0.5000
                                                                         1
##
                                        Residual
                                                     33
   HalfLeaf [Lot:DatPlant:AssPosn]
                                                      3
##
                                     64 Treat
                                                             0.5000
##
                                        Residual
                                                     61
##
##
  The design is not orthogonal
##
##
  ### Anatomy for second-phase design
##
##
##
   Summary table of the decomposition for assay & test (based on adjusted quantities)
##
##
##
    Source.assay
                                    df1 Source.test
                                                            df2 aefficiency order
                                      3 NicPlant[Set]
##
                                                               3
                                                                      1.0000
   Lot
##
   DatPlant[Lot]
                                     12
   AssPosn
                                      3
##
##
   Lot#AssPosn
                                      9
##
   DatPlant#AssPosn[Lot]
                                     36 Posn
                                                               3
                                                                      0.5000
                                                                                  1
##
                                        Set#Posn
                                                               3
                                                                      0.5000
                                                                                  1
##
                                        NicPlant#Posn[Set]
                                                             18
                                                                      0.5000
                                                                                  1
##
                                        Residual
                                                             12
##
   HalfLeaf [Lot:DatPlant:AssPosn]
                                    64 Set
                                                              1
                                                                      1.0000
                                                               3
##
                                        NicPlant[Set]
                                                                      1.0000
                                                                                  1
##
                                        Posn
                                                               3
                                                                      0.5000
##
                                         Set#Posn
                                                               3
                                                                      0.5000
                                                                                  1
##
                                         NicPlant#Posn[Set] 18
                                                                      0.5000
                                                                                  1
##
                                         Residual
                                                             36
## The design is not orthogonal
```

7.2.2 Questions

1. Summarize the properties of the four design species for this example.

The first phase design is orthogonal. However, the other three designs are nonorthogonal, but balanced. Clearly, the lack of orthogonality is introduced in the second phase.

2. Is the variance matrix for this experiment based on two sets of terms that are orthogonal?

The variance matrix for this experiment is based on the factors in the tobacco leaves and Datura half-leaves tiers. The terms derived from the factors in these two tiers are not orthogonal. In particu-

 $lar, Set\#Posn \ and \ NicPlant\#Posn[Set] \ are \ partially \ confounded \ with \ both \ DatPlant\#AssPosn[Lot] \ and \ HalfLeaf[Lot:DatPlant:AssPosn].$

3. What are the advantages and disadvantages of a mixed-model analysis of the data from this experiment, as opposed to an anova?

The advantage of a mixed-model analysis is that combined estimates will be provided for Set#Posn, NicPlant#Posn[Set], and Treat. The disadvantages are (i) that not all random terms are well-estimated, some having small degrees of freedom, and cause problems in fitting the model, and (ii) the Wald F-statistics are only approximately distributed as F-distributions. On the other hand, an anova is not applicable because of the nonorthogonality between the sets of terms making up the variance matrix; at least some F-ratios will not be independently distributed.

7.3 A p-rep design for a field experiment with 576 Lines

A field experiment is to be conducted on a grid of $60 \text{ rows} \times 12 \text{ columns}$. Of the 576 Lines, 144 are to be duplicated and the remaining 432 are to be unreplicated. In the lecture, a lattice design was used as a starting design. Here a randomized complete-block design will be used. The factor-allocation diagram is in Figure 17.

Figure 17: Factor-allocation diagram for the *p*-rep design for a field experiment with 576 Lines: genotypes are allocated to plots; the dashed arrow on the left indicates that the allocation of Genotypes is not randomized; the '②' at the end of the arrow indicates that Genotypes are allocated to combinations of the levels of Blocks, Rows and Columns, using a design that takes into account correlation between plots; B = Blocks.

7.3.1 Generate the starting design and check the properties of the design

Use the following R code to generate a randomized complete-block design and to check its properties.

```
#'# This script generates a p-rep design for 576 lines, 144 of which are replicated and Lines are rando
#'### It is the first-phase design of a two-phase design a la Smith et al. (2006)
#'## Set up constants
g <- 576
           # no. genotypes
ndup <- 144 # no. duplicated genotypes
b <- 2
            # no. blocks
r < -60
            # no. rows
c <- 12
            # no. columns
n <- r*c
            # no. plots
#'## Generate an RCBD
#' 1:144 are replicated twice 145:g are replicated once
blk1.lines <- sample((ndup+1):g, (g-ndup)/2) #randomly select half undup Lines for Block 1
blk2.lines <- ((ndup+1):g)[!((ndup+1):g %in% blk1.lines)] #rest in Block 2
rcbd.sys <- cbind(fac.gen(list(Blocks = 2, Plots = 360)),</pre>
                  Lines = factor(c(1:ndup, blk1.lines,
                                    1:ndup, blk2.lines)))
rcbd.lay <- designRandomize(allocated</pre>
                                               = rcbd.sys["Lines"],
                                               = rcbd.sys[c("Blocks", "Plots")],
                            nested.recipients = list(Plots = "Blocks"),
```

```
seed
rcbd.lay <- cbind(fac.gen(list(Rows = 60, Columns = 12)),</pre>
                 rcbd.lay)
rcbd.lay <- within(rcbd.lay, WRows <- fac.recode(Rows, rep(1:30, times=2), levels=1:30))
#'### Check properties
rcbd.canon <- designAnatomy(formulae = list(plot = ~ (Blocks + Rows)*Columns,
                                           trt = ~ Lines),
                           data
                                    = rcbd.lay)
summary(rcbd.canon, which.criteria = c("aeff", "meff", "eeff", "order", "dfor"))
##
##
## Summary table of the decomposition for plot & trt (based on adjusted quantities)
##
## Source.plot
                        df1 Source.trt df2 aefficiency mefficiency eefficiency order dforthog
## Blocks
                          1 Lines
                                        1
                                                0.6000
                                                            0.6000
                                                                        0.6000
                                                                                  1
                                                                                           0
## Rows[Blocks]
                         58 Lines
                                        58
                                                0.7810
                                                            0.8000
                                                                        0.5431
                                                                                 58
                                                                                           0
## Columns
                         11 Lines
                                       11
                                                0.7900
                                                            0.7939
                                                                        0.7059
                                                                                 11
                                                                                           0
## Blocks#Columns
                        11 Lines
                                        11
                                                0.8027
                                                            0.8061
                                                                        0.7023
                                                                                           0
                                                                                  11
## Rows#Columns[Blocks] 638 Lines
                                                0.4292
                                                            0.8877
                                                                        0.0153
                                                                                  82
                                                                                          494
                                     575
                            Residual 63
##
##
## The design is not orthogonal
```

7.3.2 Search for a near-A-optimal design

Use od to search for a near-A-optimal design under a mixed model.

```
#'## Set od options
maxit <- 25
search <- "tabu+rw"</pre>
od.options(P = 0.10, localSearch = 10000, tabuStop = 100)
#'## Set up variance parameters (based on Smith et al (2006, p.405))
g.L <- 1
g.BR <- 0.5
g.C < -0.1
g.BC <- 0.05
g.u <- 0.5
g.BRC <- 1.0
rho.R <- 0.6
rho.C <- 0.4
params <- c(g.L, g.BR, g.C, g.BC, g.u, g.BRC, rho.R, rho.C)
names(params) <- c("g.L", "g.BR", "g.C", "g.BC", "g.u", "g.BRC", "rho.R", "rho.C")</pre>
\#'\# Use od to generate the p-rep starting with the RCBD - with units and autocorrelation
prepuar1.rcbd.od<- od(fixed = ~ Blocks,</pre>
                      random
                                 = ~ Lines + Rows + Columns/Blocks + units,
                                 = ~ ar1(Rows):ar1(Columns),
                      residual
                                  = ~ Lines, swap = ~ Blocks,
                      permute
                      start.values = TRUE,
                                   = rcbd.lay)
vp.table <- prepuar1.rcbd.od$vparameters.table</pre>
```

```
vp.table$Value <- params</pre>
vp.table
                    Component Value
## 1
                       Lines 1.00
## 2
                        Rows 0.50
## 3
                      Columns 0.10
## 4
               Columns:Blocks 0.05
                        units 0.50
## 5
## 6
               Rows:Columns!R 1.00
## 7
        Rows:Columns!Rows!cor 0.60
## 8 Rows:Columns!Columns!cor 0.40
prepuar1.rcbd.od<- od(fixed = " Blocks,</pre>
                     random = ~ Lines + Rows + Columns/Blocks + units,
                     residual = ~ ar1(Rows):ar1(Columns),
                     permute = ~ Lines, swap = ~ Blocks,
                     G.param = vp.table, R.param = vp.table,
                     maxit
                            = maxit, search = search,
                     data
                              = rcbd.lay)
## Sat Nov 16 18:11:45 2019
## Initial A-value = 1.019458 (576 A-equations; rank C 576)
## A-value after tabu loop 1 is 1.016713
## A-value after tabu loop 2 is 1.016547
## A-value after tabu loop 3 is 1.016505
## A-value after tabu loop 4 is 1.016446
## A-value after tabu loop 5 is 1.016395
## A-value after tabu loop 6 is 1.016386
## A-value after tabu loop 7 is 1.016369
## A-value after tabu loop 8 is 1.016363
## A-value after tabu loop 9 is 1.016363
## A-value after tabu loop 10 is 1.016355
## A-value after tabu loop 11 is 1.016334
## A-value after tabu loop 12 is 1.016310
## A-value after tabu loop 13 is 1.016295
## A-value after tabu loop 14 is 1.016283
## A-value after tabu loop 15 is 1.016283
## A-value after tabu loop 16 is 1.016283
## A-value after tabu loop 17 is 1.016283
## A-value after tabu loop 18 is 1.016283
## A-value after tabu loop 19 is 1.016270
## A-value after tabu loop 20 is 1.016270
## A-value after tabu loop 21 is 1.016255
## A-value after tabu loop 22 is 1.016255
## A-value after tabu loop 23 is 1.016255
## A-value after tabu loop 24 is 1.016253
## A-value after tabu loop 25 is 1.016231
## Hash table size 1607
## Final A-value after 25 iterations: 1.016231
prepuar1.rcbd.lay <- prepuar1.rcbd.od$design</pre>
#'### Plot the design
#+ Breed576opt
```



```
data = prepuar1.rcbd.lay)
summary(prepuar1.rcbd.canon, which.criteria = c("aeff", "meff", "eeff", "order", "dfor"))
##
##
## Summary table of the decomposition for plot & trt (based on adjusted quantities)
##
                         df1 Source.trt df2 aefficiency mefficiency eefficiency order dforthog
##
   Source.plot
##
  Blocks
                           1 Lines
                                          1
                                                  0.6000
                                                              0.6000
                                                                           0.6000
                                                                                     1
                                                                                               0
                                                  0.7866
                                                              0.8000
##
  Rows[Blocks]
                          58 Lines
                                          58
                                                                           0.5258
                                                                                     58
                                                                                               0
## Columns
                          11 Lines
                                          11
                                                  0.7732
                                                              0.7818
                                                                           0.5982
                                                                                     11
                                                                                               0
##
  Blocks#Columns
                          11 Lines
                                         11
                                                  0.8134
                                                              0.8182
                                                                           0.6967
                                                                                     11
                                                                                               0
  Rows#Columns[Blocks] 638 Lines
                                         575
                                                  0.4237
                                                              0.8877
                                                                           0.0084
                                                                                     82
                                                                                             494
##
                             Residual
                                          63
##
## The design is not orthogonal
```

In the values for the variance parameters, $\gamma_{\rm BC}$ was set to 0.05, thus indicating that it was thought to be small. The question then arises as to what would be the effect of leaving out the term. To check this recalculate the AVPD without it and redo the anatomy with the source omitted.

```
prepuar1.rcbd.lay$unit <- factor(1:nrow(prepuar1.rcbd.lay)) #factor for ASReml units
(designAmeasures(mat.Vpredicts(target = ~ Lines -1,
                                      = 1,
                                Gt
                                fixed = ~ Blocks,
                                random = " Rows + Columns + unit - 1,
                                      = as.list(params[c("g.BR", "g.C", "g.u")]),
                                       = kronecker(mat.ar1(params["rho.R"], r),
                                                   mat.ar1(params["rho.C"], c)),
                                design = prepuar1.rcbd.lay)))[[1]]
## [1] 1.013845
prepBCout.canon <- designAnatomy(formulae = list(plot = ~ (Blocks + Rows) + Columns +</pre>
                                                                   Blocks:Rows:Columns,
                                                  trt = ~ Lines),
                                           = prepuar1.rcbd.lay)
                                  data
summary(prepBCout.canon, which.criteria = c("aeff", "meff", "eeff", "order", "dfor"))
##
##
## Summary table of the decomposition for plot & trt (based on adjusted quantities)
##
   Source.plot
                        df1 Source.trt df2 aefficiency mefficiency eefficiency order dforthog
##
##
   Blocks
                          1 Lines
                                          1
                                                 0.6000
                                                             0.6000
                                                                          0.6000
                                                                                     1
                                                                                               0
##
  Rows[Blocks]
                         58 Lines
                                         58
                                                 0.7866
                                                             0.8000
                                                                          0.5258
                                                                                    58
                                                                                               0
   Columns
                         11 Lines
                                         11
                                                 0.7732
                                                              0.7818
                                                                          0.5982
                                                                                    11
                                                                                               0
  Blocks#Rows#Columns 649 Lines
                                                 0.5060
                                                              0.9033
                                                                          0.0119
                                                                                    71
                                                                                             505
##
                                        575
                            Residual
##
                                         74
##
## The design is not orthogonal
```

7.3.3 Questions

- 1. How do the plots of the p-rep designs obtained from the balanced lattice and randomized complete-block designs compare?
 - It would appear the duplicated and unduplicated lines are better dispersed when the randomized complete-block design is used.
- 2. The A-value for the design obtained from the balanced lattice was 1.016146. How does the design generated from the randomized complete-block design compare?
 - They are very similar, the value from the randomized complete-block being about 1.016183.
- 3. Summarize the differences between the original balanced lattice design and the od design. Is the increased precision of the od design worthwhile?
 - The AVPD has only decreased by a very small amount (1.013803 vs 1.016146). However, the Residual df has increased from 63 to 74, the aefficiency and the number of orthogonal degrees of freedom have increased and the order has decreased. However, the amount of information confounded with Blocks and Rows[Blocks] has not changed.
- 4. Is this design connected under a fixed model? How can you tell?
 - Yes, it is because all 575 df for Lines are at least partially confounded with the residual (or identity) term, namely Rows#Columns[Blocks].

7.4 A two-phase p/q-rep design for a field experiment with 576 Lines

In Section 7.3, a design was constructed for a field experiment to be conducted on a grid of $60 \text{ rows} \times 12 \text{ columns}$. Of the 576 Lines, 144 were duplicated and the remaining 432 were unreplicated. This field experiment is the first-phase of the experiment, the second phase being a milling phase in which samples of grain are taken from the plots to be milled so that quality characteristics of the grain can be ascertained.

The factor-allocation diagram for the two-phase experiment is in Figure 18.

Figure 18: Factor-allocation diagram for a two-phase p/q-rep design for a field experiment with 576 Lines: genotypes are allocated to plots, plots are selected to produce samples and samples are allocated to locations; the dashed arrow on the left indicates that the allocation of Genotypes is not randomized; the ' \bigcirc ' at the end of the arrow indicates that Genotypes are allocated to combinations of the levels of Blocks, Rows and Columns, using a design that takes into account correlation between plots; the ' \bigcirc ' indicates the selection of a fraction of the levels of Blocks, Rows and Columns; the dashed lines signify that the selection is purposeful; the dashed oval encircling the three panels on the left indicates that a pseudotier of all factors is formed in allocating samples to locations because it uses all the information about the first-phase factors; the levels of the pseudofactor S_1 groups together the samples that are to be assigned to the same interval; the pseudofactor P_1 indexes the Plots that are to occur within the same interval; the dashed arrow ending at the ' \bigcirc ' indicates that Plots within P_1 are systematically allocated, the ' \bigcirc ' indicates that the design is nonorthogonal and the two lines leaving it indicate that the Plots are assigned to the combinations of the levels of Days and Locations within an Interval; P_1 Blocks; P_2 Plots; P_1 Intervals; P_2 Days.

7.4.1 Select the samples and assign them systematically to the milling phase

Use the following R code to select the samples from the field experiment for the milling phase, plot it and check its properties.

```
#'# This script systematically assigns sampled plots from the first-phase.
#'### It is based on an example from Smith et al. (2006)
#'### Select lines for milling phase
samplines <- c(sample(1:ndup, 37),</pre>
                                            #select the 37 duplicated field lines
              sample((ndup+1):g, 333)) #select the 333 unduplicated field lines
milldup <- sample(samplines[38:370], 41) #and from them Select the 41 plots to duplicate in milling ph
#'### Construct revised data.frame
ph2samp.lay <- with(prepuar1.rcbd.lay, prepuar1.rcbd.lay[Lines %in% samplines, ])
ph2samp.lay <- rbind(ph2samp.lay, prepuar1.rcbd.lay[prepuar1.rcbd.lay$Lines %in% milldup, ])
rownames(ph2samp.lay) <- NULL</pre>
ph2samp.lay <- within(ph2samp.lay,</pre>
                         Samples \leftarrow factor(rep(1:2, c(407, 41)))
                         Lines <- factor(Lines)</pre>
                       })
ph2samp.lay <- with(ph2samp.lay, ph2samp.lay[order(Samples, Rows, Columns), ])</pre>
#'## Construct line numbers for different types of duplication
ph2lines <- levels(ph2samp.lay$Lines)</pre>
n2 <- length(ph2lines)</pre>
undup <- ph2lines[!(ph2lines %in% c(1:37, milldup))]</pre>
groups <- list(flddup = c(1:n2)[samplines %in% c(1:37)],
               milldup = c(1:n2)[samplines %in% milldup],
               undup = c(1:n2)[samplines %in% undup])
#'## Plot the sampled plots
#+ "Samples_v6"
fullgrid <- merge(fac.gen(list(Blocks = 2, WRows = 30, Columns = 12)),</pre>
                   ph2samp.lay, all.x = TRUE)
fullgrid$Replication <- 1</pre>
fullgrid$Replication[as.numfac(fullgrid$Lines) < 145 ] <- 2</pre>
fullgrid$Replication[is.na(fullgrid$Lines)] <- 0</pre>
fullgrid$Replication <- factor(fullgrid$Replication)</pre>
designGGPlot(fullgrid, labels = "Lines",
             row.factors = c("Blocks","WRows"), column.factors = "Columns",
             cellfillcolour.column = "Replication",
             colour.values = c("grey50","lightcyan","lightgreen"),
             axis.text.size = 10, blockdefinition = cbind(30,12),
             title = NULL,
             ggplotFuncs = list(theme(legend.position = "right")))
## Warning: Removed 313 rows containing missing values (geom_text).
```



```
#'## Check properties of sampled subset
ph1.canon <- designAnatomy(formulae = list(plot = ~ ((Blocks/WRows)*Columns)/Samples,
                                           trt = ~ Lines),
                           data
                                    = ph2samp.lay)
print(summary(ph1.canon, which.criteria = c("ae", "me", "ee", "dfor")))
##
##
## Summary table of the decomposition for plot & trt (based on adjusted quantities)
##
   Source.plot
                                  df1 Source.trt df2 aefficiency mefficiency eefficiency dforthog
##
##
    Blocks
                                    1 Lines
                                                  1
                                                          0.8345
                                                                      0.8345
                                                                                  0.8345
                                                                                                0
  WRows[Blocks]
                                   58 Lines
                                                          0.8961
                                                                      0.9158
                                                                                  0.4332
```

```
## Columns
                                    11 Lines
                                                    11
                                                            0.9001
                                                                         0.9055
                                                                                     0.7591
## Blocks#Columns
                                    11 Lines
                                                            0.9152
                                                                         0.9181
                                                                                     0.8042
                                                                                                    0
                                                    11
## WRows#Columns[Blocks]
                                   325 Lines
                                                   325
                                                            0.4926
                                                                         0.9077
                                                                                     0.0165
                                                                                                  288
## Samples[Blocks:WRows:Columns]
                                   41
## Table of (partial) aliasing between sources derived from the same formula
##
                   df Alias
                                          aefficiency mefficiency eefficiency dforthog
## Source
                                     In
## Columns
                   11 Blocks
                                                0.9983
                                                            0.9984
                                                                         0.9819
                                     plot
## Columns
                   11 WRows[Blocks] plot
                                                0.9226
                                                            0.9240
                                                                         0.8469
                                                                                       0
## Blocks#Columns 22 WRows[Blocks] plot
                                                0.9202
                                                            0.9228
                                                                         0.8334
                                                                                        0
##
## The design is not orthogonal
#'## Allocate samples systematically - confounds field and milling dups
ph2sys.lay <- ph2samp.lay
ph2sys.lay$Intervals <- ph2sys.lay$Samples
ph2sys.lay[!(ph2sys.lay$Lines %in% milldup), "Intervals"][184:366] <- 2
ph2sys.lay <- with(ph2sys.lay, ph2sys.lay[order(Intervals, Rows, Columns), ])</pre>
ph2sys.lay <- cbind(ph2sys.lay, fac.gen(list(Days=8, Locations=28), times = 2))</pre>
ph2sys.lay <- within(ph2sys.lay,</pre>
                        xLocn <- as.numeric(Locations)</pre>
                        xLocn <- xLocn - mean(unique(xLocn))</pre>
```

7.4.2 Check the properties of the p/q-rep design

```
#'## Look at properties of the design
layout <- ph2sys.lay</pre>
names(layout)[match(c("Intervals", "Locations", "Columns", "Samples"), names(layout))] <-</pre>
  c("Int", "Locn", "Cols", "Samp")
designTwophaseAnatomies(formulae = list(lab = ~ (Int/Days)*Locn,
                                        plot = ~ ((Blocks/WRows)*Cols)/Samp,
                                        trt = ~ Lines),
                        which.criteria = c("ae", "me", "ee", "dfor"),
                        keep.order = TRUE, data = layout)
## Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): WRows[Blocks] and Blocks
are partially aliased in Days[Int]
## Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): WRows[Blocks] and Blocks
are partially aliased in Locn
## Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): WRows[Blocks] and Blocks
are partially aliased in Int#Locn
## Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): WRows[Blocks] and Blocks
are partially aliased in Days#Locn[Int]
## Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Cols and Blocks are partially
aliased in Days#Locn[Int]
## Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Cols and WRows[Blocks]
are partially aliased in Days#Locn[Int]
## Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Blocks#Cols and Blocks
are partially aliased in Days#Locn[Int]
```

```
## Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Blocks#Cols and WRows[Blocks]
are partially aliased in Days#Locn[Int]
## Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Blocks#Cols and Cols
are partially aliased in Days#Locn[Int]
## Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): WRows#Cols[Blocks] and
Blocks are partially aliased in Days#Locn[Int]
## Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): WRows#Cols[Blocks] and
WRows[Blocks] are partially aliased in Days#Locn[Int]
## Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): WRows#Cols[Blocks] and
Cols are partially aliased in Days#Locn[Int]
## Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): WRows#Cols[Blocks] and
Blocks#Cols are partially aliased in Days#Locn[Int]
##
## ### Anatomy for full two-phase design
##
##
   Summary table of the decomposition for lab, plot & trt (based on adjusted quantities)
##
    Source.lab
                    df1 Source.plot
                                            df2 Source.trt df3 aefficiency mefficiency eefficiency
##
##
    Int
                     1 Blocks
                                              1 Lines
                                                             1
                                                                     0.6607
                                                                                 0.6607
                                                                                              0.6607
    Days[Int]
                    14 Blocks
                                              1 Lines
                                                             1
                                                                     0.6448
                                                                                 0.6448
                                                                                              0.6448
##
                                                            13
##
                        WRows [Blocks]
                                             13 Lines
                                                                     0.8323
                                                                                 0.8419
                                                                                              0.6156
##
    Locn
                    27 Blocks
                                              1 Lines
                                                             1
                                                                     0.7998
                                                                                 0.7998
                                                                                              0.7998
##
                        WRows[Blocks]
                                            26 Lines
                                                            26
                                                                                 0.8202
                                                                     0.8125
                                                                                              0.6669
##
    Int#Locn
                    27 Blocks
                                             1 Lines
                                                             1
                                                                     0.8328
                                                                                 0.8328
                                                                                              0.8328
                                             26 Lines
##
                        WRows[Blocks]
                                                            26
                                                                     0.8248
                                                                                 0.8320
                                                                                              0.6809
##
    Days#Locn[Int] 378 Blocks
                                              1 Lines
                                                             1
                                                                     0.7519
                                                                                 0.7519
                                                                                              0.7519
##
                        WRows [Blocks]
                                             58 Lines
                                                            58
                                                                     0.8142
                                                                                 0.8498
                                                                                              0.4191
##
                        Cols
                                             11 Lines
                                                                     0.8788
                                                                                 0.8840
                                                                                              0.7399
                                                            11
##
                        Blocks#Cols
                                             11 Lines
                                                            11
                                                                     0.8911
                                                                                 0.8940
                                                                                              0.7867
##
                        WRows#Cols[Blocks] 297 Lines
                                                           297
                                                                     0.3273
                                                                                 0.8167
                                                                                              0.0127
##
    dforthog
##
           0
##
           0
##
           0
##
           0
           0
##
           0
##
           0
##
           0
##
           0
##
           0
##
           0
##
##
         219
##
##
   Table of (partial) aliasing between sources derived from the same formula
##
                        df Alias
##
    Source
                                           In
                                                          aefficiency mefficiency eefficiency dforthog
##
    Cols
                         11 Blocks
                                           plot
                                                                0.9983
                                                                            0.9984
                                                                                         0.9819
                                                                                                       10
## Cols
                         11 WRows[Blocks]
                                          plot
                                                                0.9226
                                                                            0.9240
                                                                                         0.8469
                                                                                                       0
## Blocks#Cols
                         22 WRows[Blocks] plot
                                                                0.9202
                                                                            0.9228
                                                                                         0.8334
                                                                                                       0
## WRows[Blocks]
                         13 Blocks
                                           Days[Int]
                                                                0.7485
                                                                            0.7885
                                                                                         0.3804
                                                                                                       0
## WRows[Blocks]
                         26 Blocks
                                                                0.0110
                                                                            0.0910
                                                                                         0.0012
                                           Loch
```

```
WRows[Blocks]
                         26 Blocks
                                           Int#Locn
                                                                0.0117
                                                                            0.0931
                                                                                         0.0014
##
   WRows[Blocks]
                         58 Blocks
                                           Days#Locn[Int]
                                                                0.3059
                                                                            0.7106
                                                                                         0.0371
##
   Cols
                         11 Blocks
                                           Days#Locn[Int]
                                                                0.8375
                                                                            0.8424
                                                                                         0.7303
## Cols
                         11 WRows[Blocks] Days#Locn[Int]
                                                                0.8375
                                                                            0.8424
                                                                                         0.7303
##
  Blocks#Cols
                         11 Blocks
                                           Days#Locn[Int]
                                                                0.8258
                                                                            0.8320
                                                                                         0.7067
                         11 WRows[Blocks] Days#Locn[Int]
##
    Blocks#Cols
                                                                0.8258
                                                                            0.8320
                                                                                         0.7067
##
    Blocks#Cols
                         11 Cols
                                           Days#Locn[Int]
                                                                0.8258
                                                                            0.8320
                                                                                         0.7067
##
   WRows#Cols[Blocks] 297 Blocks
                                           Days#Locn[Int]
                                                                0.5266
                                                                            0.8998
                                                                                         0.0273
##
  WRows#Cols[Blocks] 297 WRows[Blocks] Days#Locn[Int]
                                                                0.5266
                                                                            0.8998
                                                                                         0.0273
  WRows#Cols[Blocks] 297 Cols
                                           Days#Locn[Int]
                                                                0.5266
                                                                            0.8998
                                                                                         0.0273
  WRows#Cols[Blocks] 297 Blocks#Cols
                                          Days#Locn[Int]
##
                                                                0.5266
                                                                            0.8998
                                                                                         0.0273
## The design is not orthogonal
##
##
## ### Anatomy for first-phase design
##
##
##
   Summary table of the decomposition for plot & trt (based on adjusted quantities)
##
##
    Source.plot
                             df1 Source.trt df2 aefficiency mefficiency eefficiency dforthog
##
    Blocks
                                                      0.8345
                                                                   0.8345
                                                                               0.8345
                                                                                              0
                               1 Lines
                                              1
                                                                                             22
##
   WRows[Blocks]
                              58 Lines
                                              58
                                                      0.8961
                                                                   0.9158
                                                                               0.4332
                                                                               0.7591
                                                                                              0
## Cols
                              11 Lines
                                              11
                                                      0.9001
                                                                   0.9055
##
   Blocks#Cols
                              11 Lines
                                              11
                                                      0.9152
                                                                   0.9181
                                                                               0.8042
                                                                                              0
##
  WRows#Cols[Blocks]
                             325 Lines
                                             325
                                                      0.4926
                                                                   0.9077
                                                                               0.0165
                                                                                            288
   Samp[Blocks:WRows:Cols]
                             41
##
## Table of (partial) aliasing between sources derived from the same formula
##
                df Alias
                                       aefficiency mefficiency eefficiency dforthog
##
    Source
                                  In
                                                         0.9984
##
    Cols
                11 Blocks
                                  plot
                                             0.9983
                                                                      0.9819
                                                                                    10
##
                11 WRows[Blocks] plot
                                             0.9226
                                                         0.9240
                                                                      0.8469
                                                                                     \cap
    Blocks#Cols 22 WRows[Blocks] plot
                                             0.9202
                                                         0.9228
                                                                      0.8334
                                                                                     \cap
##
##
  The design is not orthogonal
##
##
##
  ### Anatomy for cross-phase design
##
##
##
## Summary table of the decomposition for lab & trt (based on adjusted quantities)
##
##
   Source.lab
                    df1 Source.trt df2 aefficiency mefficiency eefficiency dforthog
##
   Int
                     1 Lines
                                     1
                                             0.6607
                                                         0.6607
                                                                      0.6607
                                                                                     0
   Days[Int]
                    14 Lines
                                    14
                                             0.8121
                                                         0.8278
                                                                      0.5425
                                                                                     0
   Locn
                                    27
                                             0.8115
                                                         0.8194
                                                                      0.6653
                                                                                     0
##
                    27 Lines
    Int#Locn
                                    27
                                             0.8246
                                                         0.8320
                                                                      0.6805
                                                                                     0
##
                    27 Lines
   Days#Locn[Int] 378 Lines
                                                         0.8506
                                                                      0.0016
##
                                   367
                                             0.1613
                                                                                  300
##
                        Residual
                                    11
##
## The design is not orthogonal
```

0

0

0

0

0

0

0

256

256

256

256

Warning in projs.2canon(CombinedSets\$Q[[ntiers]], struct[[ktier]]\$Q): WRows[Blocks] and Blocks

```
are partially aliased in Days[Int]
## Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): WRows[Blocks] and Blocks
are partially aliased in Locn
## Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): WRows[Blocks] and Blocks
are partially aliased in Int#Locn
## Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): WRows[Blocks] and Blocks
are partially aliased in Days#Locn[Int]
## Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Cols and Blocks are partially
aliased in Days#Locn[Int]
## Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Cols and WRows[Blocks]
are partially aliased in Days#Locn[Int]
## Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Blocks#Cols and Blocks
are partially aliased in Days#Locn[Int]
## Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Blocks#Cols and WRows[Blocks]
are partially aliased in Days#Locn[Int]
## Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Blocks#Cols and Cols
are partially aliased in Days#Locn[Int]
## Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): WRows#Cols[Blocks] and
Blocks are partially aliased in Days#Locn[Int]
## Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): WRows#Cols[Blocks] and
WRows[Blocks] are partially aliased in Days#Locn[Int]
## Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): WRows#Cols[Blocks] and
Cols are partially aliased in Days#Locn[Int]
## Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): WRows#Cols[Blocks] and
Blocks#Cols are partially aliased in Days#Locn[Int]
```

##	WRows[Blocks]	26	Blocks	Locn	0.0110	0.0910	0.0012	0
##	WRows[Blocks]	26	Blocks	Int#Locn	0.0117	0.0931	0.0014	0
##	WRows[Blocks]	58	Blocks	Days#Locn[Int]	0.3059	0.7106	0.0371	0
##	Cols	11	Blocks	Days#Locn[Int]	0.8375	0.8424	0.7303	0
##	Cols	11	WRows[Blocks]	Days#Locn[Int]	0.8375	0.8424	0.7303	0
##	Blocks#Cols	11	Blocks	Days#Locn[Int]	0.8258	0.8320	0.7067	0
##	Blocks#Cols	11	WRows[Blocks]	Days#Locn[Int]	0.8258	0.8320	0.7067	0
##	Blocks#Cols	11	Cols	Days#Locn[Int]	0.8258	0.8320	0.7067	0
##	WRows#Cols[Blocks]	297	Blocks	Days#Locn[Int]	0.5266	0.8998	0.0273	256
##	WRows#Cols[Blocks]	297	WRows[Blocks]	Days#Locn[Int]	0.5266	0.8998	0.0273	256
##	WRows#Cols[Blocks]	297	Cols	Days#Locn[Int]	0.5266	0.8998	0.0273	256
##	WRows#Cols[Blocks]	297	Blocks#Cols	Days#Locn[Int]	0.5266	0.8998	0.0273	256
##								
##	The design is not or	rtho	gonal					

7.4.3 Substituting a linear Locations term for arbitrary Locations differences

```
#'## Substituting xLocn for Locations (and pooling Blocks and WRows to reduce the table)
ph2sys.lin.canon <- designAnatomy(formulae = list(lab = ~ Int/Days + xLocn +
                                                              Int:Days:Locn,
                                                    plot = ~ (Rows*Cols)/Samp,
                                                    trt = ~ Lines),
                                  keep.order = TRUE,
                                             = lavout)
## Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Cols and Rows are partially
aliased in Int#Days#Locn
## Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Rows#Cols and Rows are
partially aliased in Int#Days#Locn
## Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Rows#Cols and Cols are
partially aliased in Int#Days#Locn
## Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Samp[Rows:Cols] and Rows
are partially aliased in Int#Days#Locn
## Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Samp[Rows:Cols] and Cols
are partially aliased in Int#Days#Locn
## Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Samp[Rows:Cols] and Rows#Cols
are partially aliased in Int#Days#Locn
print(summary(ph2sys.lin.canon, which.criteria = c("ae", "me", "ee", "dfor")))
##
##
## Summary table of the decomposition for lab, plot & trt (based on adjusted quantities)
##
## Source.lab
                  df1 Source.plot
                                      df2 Source.trt df3 aefficiency mefficiency eefficiency dforthog
##
  Int
                    1 Rows
                                        1 Lines
                                                      1
                                                              0.6607
                                                                          0.6607
                                                                                       0.6607
                                                                                                     0
  Days[Int]
                   14 Rows
                                       14 Lines
                                                              0.8121
                                                                          0.8278
                                                                                      0.5425
                                                                                                     0
                                                      14
                                                                                      0.7755
                                                                                                     0
##
  xLocn
                   1 Rows
                                        1 Lines
                                                       1
                                                              0.7755
                                                                          0.7755
##
   Int#Days#Locn 431 Rows
                                       59 Lines
                                                      59
                                                              0.8176
                                                                          0.8560
                                                                                      0.4070
                                                                                                     7
##
                      Cols
                                                              0.8894
                                                                          0.8950
                                                                                      0.7470
                                                                                                     0
                                       11 Lines
                                                      11
##
                      Rows#Cols
                                      336 Lines
                                                     336
                                                              0.3393
                                                                          0.8798
                                                                                      0.0060
                                                                                                   283
##
                      Samp[Rows:Cols] 25
                                                              1.0000
                                                                          1.0000
                                                                                       1.0000
                                                                                                    25
##
```

##	Table of (partial	1) a	liasing be	tween sources	derived from	the same for	rmula			
##	Source	df	Alias	In	aefficiency	mefficiency	eefficiency	dforthog		
##	Cols	11	Rows	plot	0.9210	0.9225	0.8469	0		
##	Cols	11	Rows	Int#Days#Locn	0.9714	0.9720	0.9188	0		
##	Rows#Cols	336	Rows	Int#Days#Locn	0.8315	0.9694	0.0342	320		
##	Rows#Cols	336	Cols	Int#Days#Locn	0.8315	0.9694	0.0342	320		
##	Samp[Rows:Cols]	25	Rows	Int#Days#Locn	1.0000	1.0000	1.0000	25		
##	Samp[Rows:Cols]	25	Cols	Int#Days#Locn	1.0000	1.0000	1.0000	25		
##	Samp[Rows:Cols]	25	Rows#Cols	Int#Days#Locn	1.0000	1.0000	1.0000	25		
##										
## The design is not orthogonal										

7.4.4 Questions

- 1. Where is most of the information about Rows confounded in the two-phase design?
 - From the anatomy for the second-phase design, the largest amount of information (64.7%) about Blocks is confounded with Intervals and a further 28.5% is confounded with Days[Intervals]. Also, a large amount (74.5%) of the information about WRows[Blocks] is confounded Days[Intervals]. There is not much information about Blocks and WRows[Blocks] confounded with other milling phase sources.
- 2. What are the effects on the analysis of being able to describe the Locations differences in terms of a linear trend term instead of arbitrary differences between Locations?
 - From the anatomy in which xLocn is substituted for Locations, the df for Lines estimable from Rows#Cols has increased substantially from 297 to 335. Also the mefficiency for Lines estimable from Rows#Cols has increased from 0.8192 to 0.8825. That is the amount of information about all Lines information confounded with Rows#Cols has increased from 0.6594 (= 0.8192*297/369) to 0.8012 (= 0.8825*335/369). Also, there is now available 25 df for Samples[Rows 'Cols] when combined with Intervals#Days#Locations, i.e. 25 Error df.

References

- Bailey, R. A. (1992) Efficient semi-latin squares. Statistica Sinica, 2, 413–437.
- Bailey, R. A. and C. J. Brien (2015) Randomization-based models for multitiered experiments: I. A chain of randomizations. accepted for the Annals of Statistics.
- Box, G. E. P., W. G. Hunter, and J. S. Hunter (2005) Statistics for Experimenters. (2nd ed.) New York: Wiley.
- Brien, C. J. (2017) Multiphase experiments in practice: A look back. Australian & New Zealand Journal of Statistics, 59(4), 327–352.
- Brien, C. J. (2019) dae: functions useful in the design and ANOVA of experiments. URL http://CRAN. R-project.org/package=dae, (R package version 3.1-16, accessed November 15, 2019).
- Brien, C. J. and R. A. Bailey (2006) Multiple randomizations (with discussion). *Journal of the Royal Statistical Society, Series B (Statistical Methodology)*, 68, 571–609.
- Brien, C. J. and C. G. B. Demétrio (2009) Formulating mixed models for experiments, including longitudinal experiments. The Journal of Agricultural, Biological and Environmental Statistics, 14, 253–280.
- Brien, C. J., B. D. Harch, R. L. Correll, and R. A. Bailey (2011) Multiphase experiments with at least one later laboratory phase. I. Orthogonal designs. *Journal of Agricultural, Biological and Environmental Statistics*, 16, 422–450.
- Brien, C. J. and R. W. Payne (1999) Tiers, structure formulae and the analysis of complicated experiments. *The Statistician*, 48, 41–52.
- Butler, D. G. (2019) od: generate optimal experimental designs. URL https://mmade.org/, (R package version 2.0.0, to be made available).
- Gilmour, A. R., R. Thompson, and B. R. Cullis (1995) Average information reml: An efficient algorithm for variance parameter estimation in linear mixed models. *Biometrics*, 51, 1440–1450.
- Hinkelmann, K. and O. Kempthorne (2005) Design and Analysis of Experiments, Volume 2. of Wiley Series in Probability and Statistics. Hoboken, N.J.: Wiley-Interscience.
- Joshi, D. D. (1987) Linear Estimation and Design of Experiments. New Delhi: Wiley Eastern.
- McIntyre, G. A. (1955) Design and analysis of two phase experiments. *Biometrics*, 11, 324–334.
- Mead, R. (1990) The Design of Experiments. Cambridge: Cambridge University Press.
- R Core Team (2019) R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. URL: http://www.r-project.org.
- Williams, E. R., A. C. Matheson, and C. E. Harwood (2002) Experimental Design and Analysis for Tree Improvement. (2nd ed.) Melbourne, Australia: CSIRO.
- Yates, F. (1937) The design and analysis of factorial experiments. *Imperial Bureau of Soil Science Technical Communication*, 35.