Department of Mathematics & Statistics, Texas Tech University

Closed *p*-elastic curves in spheres of Lorentz-Minkowski space

Tesax A&M University, College Station, Texas. Texas Analysis and Mathematical Physics Symposium

> Miraj Samarakkody Miraj.Samarakkody@ttu.edu

> > February 10, 2024

Content

p–Elastic Functionals

Euler-Lagrange Equation

Results

Applications

References

p–elastic Functionals

p-elastic functional defined by

$$\Theta_p(\gamma) = \int_{\gamma} \kappa^p \, ds \tag{1}$$

Historical Context:

During the classical era of mathematics, D. Bernoulli and L. Euler embarked on a significant endeavor, namely, the pursuit of extrema for the total squared curvature functional.

In a letter exchanged between D. Bernoulli and L. Euler, the idea of exploring extrema for *p*-elastic functionals, also known as generalized curves, was introduced.

Some Interesting Cases

- ightharpoonup p = 0 length functional and geodesics
- ▶ p = 2 bending/elastic energy
- ightharpoonup p = 1/2 Blaschke and catenaries
- ightharpoonup p = 1/3 Blaschke, parabolas equi-affine length
- ightharpoonup p = 1 total curvature and topological invariant
- ▶ p > 2 for $p \in \mathbb{N}$ generating curves of Willmore-Chen submanifolds
- Some $p \in \mathbb{Q} \cap (0,1)$ generating curves of biconservative hyper-surfaces.
- ▶ p = -1 cycloids and brachistochrone problem.

Motivation

There are plenty of papers studying the p-elastic curves in several special cases. Among them, in the year 2022, Anthony Gruber, Alvaro Pampano, and Magdalena Toda authored a paper titled "Instability of Closed p-Elastic Curves in \mathbb{S}^2 ." This research delves into the analysis of p-elastic curves within the context of \mathbb{S}^2 , with a focus on values of p falling within the open interval (0, 1).

Are there closed p-elastic curves in $p \in \mathbb{R} \setminus (0, 1)$?

Spaces

The Lorentz-Minkowski Space

The Lorentz-Minkowski 3-space \mathbb{L}^3 is \mathbb{R}^3 endowed with the metric $g \equiv \langle \cdot, \cdot \rangle = dx^2 + dy^2 - dz^2$

Hyperbolic Plane

The hyperbolic plane, denoted as $\mathbb{H}^2_0(\rho)$ where $\rho < 0$, is the space-like surface of \mathbb{L}^3 and is represented by the top part of the hyperboloid of two sheets.

$$\mathbb{H}_0^2(\rho) = \{(x, y, z) | \langle (x, y, z), (x, y, z) \rangle = x^2 + y^2 - z^2 = 1/\rho, \ z > 0 \}$$

The de-Sitter 2-space

The de-Sitter space, denoted by $\mathbb{H}^2_1(\rho)$, where $\rho > 0$, is the time-like surface of \mathbb{L}^3 and is represented by

$$\mathbb{H}_{1}^{2}(\rho) = \{(x, y, z) \in \mathbb{R}^{3} | \langle (x, y, z), (x, y, z) \rangle = 1/\rho \}$$

Spaces

For visualization purposes, we identify \mathbb{H}_0^2 with the disk $\mathbb{D} \subset \mathbb{R}^2$ centered at the origin and endowed with the Poincaré metric by means of the isometry

$$(x,y,z) \in \mathbb{H}_0^2 \to \frac{1}{1+z}(x,y) \in \mathbb{D}.$$

This is the Poincaré disk model for \mathbb{H}_0^2 .

We can identify the bottom half of \mathbb{H}^2_1 as $\mathbb{H}^2_{10}=\mathbb{H}^2_1\cap\{z<0\}$ with the once-punctured unit disk

 $\mathring{\mathbb{D}}=\{\dot(x,y)\in\mathbb{R}^2\mid x^2+y^2<1\text{ and }x^2+y^2\neq 0\}$ via the diffeomorphism

$$(x, y, z) \in \mathbb{H}^2_{10} \to \frac{1}{x^2 + y^2}(x, y) \in \mathring{\mathbb{D}}.$$

Euler-Lagrange Equation

The critical points for Θ_p must satisfy the Euler-Lagrange equation:

$$p\frac{d^2}{ds^2}\kappa^{p-1} + \epsilon_1\epsilon_2(p-1)\kappa^{p+1} - \epsilon_2p\kappa^{p-1} = 0,$$

where ϵ_1, ϵ_2 are the causal characters of the Frenet frame associated with the critical points. This implies that $\kappa(s)$ is a solution to the first-order ordinary differential equation:

$$p^{2}(p-1)^{2}\kappa^{2(p-2)}(\kappa')^{2} + \epsilon_{1}\epsilon_{2}(p-1)^{2}\kappa^{2p} - \epsilon_{2}p^{2}\kappa^{2(p-1)} = a,$$

where $a \in \mathbb{R}$ is a constant of integration.

Results

Theorem [A. Pámpano, M. Samarakkody, H. Tran (2024)]

Let γ be a closed p-elastic curve in \mathbb{H}^2_ϵ with non-constant curvature. Then γ is a space-like curve with

$$0 > a > a_* := -((-1)^{\epsilon} p)^p ((-1)^{\epsilon} (p-1))^{1-p}$$
. Moreover,

- ▶ if it is a hyperbolic curve, then p > 1.
- ▶ if it is a pseudo-hyperbolic curve, then p < 0.

Conversely, assume the above restrictions on p for each ambient space and let (n, m) relatively prime, such that $m < 2n < \sqrt{2}m$, then there exist a closed space-like p-elastic curve in \mathbb{H}^2_{ϵ} .

Results

Three hyperbolic p-elastic curves for p=3/2 in \mathbb{H}_0^2 corresponding to the values $q=2/3, \ q=3/5, \ \text{and} \ q=4/7.$ They are represented in the Poincare disk model.

Three pseudo-hyperbolic p-elastic curves for p=-1 in \mathbb{H}^2_1 corresponding to the values q=2/3, q=3/5, and q=4/7. They are represented in the once punctured unit disk.

Results

This figure is evolution of closed p-elastic curve of type $\gamma_{2,3}$. In black, the p-elastic curve $\gamma_{2,3}$ for p=2 immersed in \mathbb{H}^2_0 ; in yellow, the p-elastic curve $\gamma_{2,3}$ for p=0.2 immersed in \mathbb{S}^2 ; and, in green the p-elastic curve $\gamma_{2,3}$ for p=-1 immersed in \mathbb{H}^2_1 . The red point is the pole $(0,0,1)\in\mathbb{R}^3$ and the red circle is the equator.

Applications

Generalized elastic curves find practical applications in various fields, including:

- Structural engineering
- Deformable objects in computer graphics
- Significantly, biophysics

Applications

Figure: Beta Sheets of a protein

Applications

Figure: Protein Structure

References

- J. Arroyo, M. Barros and O.J. Garay, Closed Free Hyperelastic Curves in the Hyperbolic Plane and Chen-Willmore Rotational Hypersufaces, Isr. J. Math 138(2003), 171-187.
- ► A. Gruber, A. Pàmpano and M. Toda, *Instability of Closed* p—*Elastic Curves in* S², Anal. Appl. 21-6(2023), 1533-1559.
- A. Pámpano, M. Samarakkody, H. Tran, Closed p-Elastic Curves in Spheres of L³, preprint (2024).
- M. Toda, F. Zhang, B. Athulorallage, Elastic Surface Model for Beta-Barrels: Geometric, Computational, and Statical Analysis. Proteins. 2018 Jan;86(1):35-42. doi: 10.1002/prot.25400. Epub 2017 Oct 24. PMID: 29024050.

Figure References

- De Meulenaere, Evelien and de Wergifosse, Marc and Botek, Edith and Spaepen, Stijn and Champagne, Benoît and Vanderleyden, Jos and Clays, Koen, *Nonlinear optical* properties of mStrawberry and mCherry for second harmonic imaging, Journal of Nonlinear Optical Physics & Materials19(2010), 1.
- Charlotte Schubert, University of Washington study: Deep learning reveals 3D models of protein machines, GeekWire

