Course No: 59 Course Title: Information Control and Cyber Security

Course Code: CSE 4101

Credit: 3.00

Credit: 3.00

Total Marks: 100

Contact Hours: 3 Hours/Week

Mark Distribution:

Semester Final Exam: 72 Marks Class Attendance: 08 Marks

Test:

11. 1 Rationale:

The accelerated expansion of security issues in computing products means students need to learn the basics of information security, in both management and technical aspects. Students must understand various types of security incidents and attacks, and learn methods to prevent, detect and react to incidents and attacks. Students also need to learn the basics of application of cryptography which are one of the key technologies to implement security functions.

$\frac{11}{2}$ Objectives:

- 1. Explain various Information security threats and controls for it.
- 2. Analyze security incidents and design countermeasures.
- 3. Apply information security incident response.
- 4. Implement the algorithms of Common Key cryptography and Public Key cryptography.
- 5. Evaluate the mechanism to protect confidentiality and completeness of data.

11. Course Learning Outcomes (CLO)

- 1. Articulate the concepts of Information security
- 2. Detect the security threats in cyber spaces
- 3. Detect the security threats in devices
- 4. Evaluate risk managements of the systems
- 5. Employ security preserving solutions in the information system

	11.4	11.6	11.6	11.7
L	earning Outcomes	Course Content	Teaching learning Strategy	Assessment Strategy
a.	Understand the goal and scope of this course through several examples of security incidents.	Information Security, Examples of Information Security Incidents, Information Security Management	Lecture Case Studies	Quiz Assignment
b.	Learn the three concepts of information security and other basic concepts.	1. The three concepts of Information Security (Confidentiality, Integrity, Availability) 2. Basic terminologies in Information Security 3. Human Aspect of Information Security 4. Social Engineering	Lecture Exercise Case Studies	Quiz Assignment
c.	Explain Security Attacks for Server systems and discuss counter measure for attacks	 Attacks to Server Systems connected to the Internet and countermeasures Attacks to Web Servers and countermeasure Denial of Service Attack Attacks to Network Systems 	Lecture Exercise Demonstration	Quiz Assignment Project Task

d.	Explain Information Security for Client devices	 Attacks for Personal Computers and Smartphones, and countermeasure How the malicious software intrude the device What the malicious software does to the system Stolen and Lost Devices 	Lecture Exercise Demonstration	Quiz Assignment Project Task
e.	Learn Risk Management process for Information Systems	What is Risk Management process Identifying Information Assets Identifying Security Risk and evaluation Risk Treatment	Lecture Case Studies	Quiz Assignment
f.	Learn how an organization manages security risk, including, establishing policy, building organization and internal rules.	 Information Security Governance Information Security Management System (ISMS) Information Security Policy, Standards and Procedures Information Security Evaluation 	Lecture Exercise Demonstration	Quiz Assignment
ø.	Learn organization to handle security incidents and how to react to security incidents through exercise	 What is Security Incident response Computer Security Incident response team Incident response exercise 	Lecture Exercise Demonstration	Quiz Assignment
h.	Learn about basic concept of cryptography	 Requirements for Secure Communication What is Cryptography? Classic Cryptography Modern Cryptography 	Lecture Exercise Demonstration	Quiz Assignment
i.	Apply Common Key Cryptography	 Common Key Cryptography algorithms: DES, Triple DES, AES Encryption modes Exercise on Common Key Cryptography 	Lecture Exercise	Quiz Assignment
j.	Apply Public Key Cryptography and Hybrid encryption.	 Exercise of Public Key Cryptography Exercise of Hybrid encryption 	Lecture Exercise	Quiz Assignment
k.	Detect unauthorized change of data	 Integrity of Data Hash Function Digital Signature Exercise of Hash functions and Digital Signature 	Lecture Exercise	Quiz Assignment

Recommended Books And Periodicals

Authors Book Name

1. Michael E. Whitman Principles of Information Security

and Herbert J. Mattord

Christof Paa and Jan To understand cryptography in depth Pelzl

3. David Jamieson The Social Engineer's Playbook: A Practical Guide to Pretexting

Course No: 60 Course Title: Digital Image Processing

Course Code: CSE-4103
Credit: 3.00
Pre-Requisites: Nil
Total Marks: 100

Contact Hours: 3 Hours/Week

Mark Distribution:

2.

Semester Final Exam: 72 Marks Class Test: 20 Marks Class Attendance: 08 Marks

11.1 Rationale:

This course presents the fundamentals of digital image processing. It covers principles and algorithms for processing images. Topics include data acquisition, imaging, filtering, coding, feature extraction, and modeling. The focus of the course is a series of labs that provide practical experience in processing physiological data, with examples from cardiology, speech processing, and medical imaging. The labs are done on the MIT Server in MATLAB® during weekly lab sessions that take place in an electronic classroom. Lectures cover image processing topics relevant to the lab exercise.

11.2 Objectives:

1. To introduce students to basic image processing techniques.

- 2. To develop the students mathematical, scientific, and computational skills relevant to the field of digital image processing.
- 3. To enhance the students ability in formulating problems and designing analysis tools for digital images.
- 4. To foster effective interaction skills and teamwork communication.

11. Course Learning Outcomes (CLO)

- 1. Illustrate the concepts of digital images
- 2. Illustrate the concepts of digital image representations
- 3. Apply transformation technologies in image
- 4. Identify the application of image processing

11.4 Unit Learning	11.5 Course Content	11.6 Teaching	11.7 Assessment
Outcomes (ULO)		Learning Strategy	Strategy
Explain histograms	Introduction; Point operations;	• Lecture	 Short Answer
Discuss spatial	Line and Edge detection,	Group	 Group
operations	labeling, Histograms; Spatial	Discussion	Exercise
• Illustrate image	operations; Affine		
segmentation, image	transformations; Image		
representation ,Image	Segmentation, Image Representation and Modelling,		
rectification, Image	Image rectification; Interpolation		
interpolation and other	and other transformations;		
transformations	Contrast enhancement;		
• Illustrate edge	Convolution operation,		
detection, boundary	Magnification and Zooming;		
extraction and	Fourier transform; Edge		
representation.	detection; Boundary extraction		
representation.	and representation; Mathematical		
• Describe, apply and	morphology. Point processing; Histogram	• Lecture	Short Answer
	Processing – Normalization,		
analyze different	Matching, Equalization;	• Group	• Group
image filtering	Average Filter, Weighted	Discussion	Exercise
techniques and image	Average Filter, Median Filter,		 Completion
enhancement operators	Gaussian Filters; 1 st and		 Assignment

and algorithms in the spatial domain	2 nd Derivative, Laplacian; Sobel operator		
Describe, apply and analyze different image filtering techniques and image enhancement operators and algorithms in the frequency domain	Frequency domain of an image; Fourier transform, 1D and 2D Discrete Fourier transform, smoothing frequency domain filter - Ideal, Butterworth and Gaussian low pass filters; Sharpening frequency domain filter - Ideal, Butterworth and Gaussian high pass filters;	LectureGroupDiscussion	 Short Answer Group Exercise Completion Assignment
 Discuss different types of pattern recognition techniques Define optical character recognition Explain scene matching and analysis 	Pattern Recognition: Statistical, Structural, Neural and Hybrid Techniques, Document Analysis and Optical Character Recognition, Object Recognition, Scene Matching and Analysis.	LectureGroupDiscussion	 Short Answer Group Exercise Completion Assignment

RECOMMENDED BOOKS AND PERIODICALS

Text Books:

1. R. A. Plastock& G. Kalley :"Theory and Problems of Computer Graphics"

2. Gonzalez: "Pattern Recognition Principles"

References:

1. Steven Harrington: "Computer Graphics: A Programming Approach"

2. NewmannSprocell: "Principles of Interactive Computer Graphics"

Course No: 61 Course Title: Digital Image Processing Laboratory

Course Code: CSE-4104
Credit: 1.00
Pre-Requisites: Nil
Total Marks: 100

Contact Hours: 2 Hours/Week

Mark Distribution:

Lab Final Exam: 60 Marks **Viva:** 30 Marks **Class Attendance:** 10 Marks

11.1 Rationale:

This course presents the fundamentals of digital image processing. It covers principles and algorithms for processing images. Topics include data acquisition, imaging, filtering, coding, feature extraction, and modeling. The focus of the course is a series of labs that provide practical experience in processing physiological data, with examples from cardiology, speech processing, and medical imaging. The labs are done on the MIT Server in MATLAB® during weekly lab sessions that take place in an electronic classroom. Lectures cover image processing topics relevant to the lab exercise.

11.2 Objectives:

- 1. To introduce students to basic image processing techniques.
- 2. To develop the students mathematical, scientific, and computational skills relevant to the field of digital image processing.
- 3. To enhance the students ability in formulating problems and designing analysis tools for digital images.
- 4. To foster effective interaction skills and teamwork communication.

11.3 Course Learning Outcomes (CLO)

- 1. Implement the image I/O operations
- 2. Implement image normalization
- 3. Exercise the image transformation technologies
- 4. Apply filtering in the digital images

11.4 Unit Learning	11.5 Course Content	11.6 Teaching	11.7 Assessment
Outcomes (ULO)		Learning Strategy	Strategy
	Image conversion – RGB to Binary image	DemonstrationExercise	AssignmentObservation

 Apply & analyze Image Zooming and Shrinking algorithm using C/Java /Python program 	DemonstrationExercise	AssignmentObservation
Apply & analyze Histogram normalization matching, equalization using C/Java /Python program Histogram normalization matching, equalization program	DemonstrationExercise	AssignmentObservation
 Apply and analyze Spatial image Spatial image smoothing algorithms /Python program 	DemonstrationExercise	AssignmentObservation
 Apply and analyze Median filter C/Java /Python program 	DemonstrationExercise	AssignmentObservation
 Apply and analyze Laplacian and Sobel operator using C/Java /Python program Laplacian and Sobel operator 	DemonstrationExercise	AssignmentObservation
 Apply and analyze Frequency domain filters using C/Java/Python program 	DemonstrationExercise	AssignmentObservation

Course No: 62 Course Title: Simulation and Modeling

Course Code: CSE 4105
Credit: 3.00
Pre-Requisites: Nil
Total Marks: 100

Contact Hours: 3 Hours/Week

Mark Distribution:

Semester Final Exam: 72 Marks Class Test: 20 Marks Class Attendance: 08 Marks

11.1 Rationale:

To contribute to the ICT based innovative model, one needs to create a random number, justify randomness and correlations in the system and apply probability distribution in the system.

11.2 Objectives:

- 1. To understand and apply simulations in different systems.
- 2. To create a random number and evaluate the randomness in the system.
- 3. To understand different modeling methods with its applications.

11.3 Course Learning Outcomes (CLO)

- 1. Analyze the primary concepts of simulations
- 2. Evaluate modeling in different systems
- 3.
- 4.

11.4		11.5	11.6	11.7
	Learning Outcomes	Course Content	Teaching Strategy/ Learning Experience	Assessment Strategy
a.	Describe the system.	Introduction: Concepts of a system; System Environment;		
b.	Explain simulation of different systems.	Activities; Continuous and Discrete Systems.	Lecture	Short Answers
a.	Describe model	System Modeling: Introduction to modeling; Types of models –		
b.	Principles of modeling	Static Physical Models, Dynamic Physical Models, Static Mathematical Models,	Lecture Exercise	Exercise

		Dynamical Mathematical		
		Models; Principles used in Modeling.		
a.	Describe study nature of system	System Studies: Subsystem concepts; A corporate model – Environment Segment, Production Segment, Management Segment; Types of System Study – System Analysis, System Design, and System postulation.	Lecture	Short Answer
a.	Introduce various types of simulation.	System Simulation: The Technique of Simulation; Comparison of Simulation and Analytical Methods; Experimental Nature of Simulation; Parallel and Distributed Simulation; Real time Simulation Types of System Simulation.	Lecture Exercise Assignment	Exercise
a.	Describe different distribution	Probability Simulation: Variables; Continuous Functions; Functions; Measures Coefficient Coefficient Generation of Random Variates; Binomial Distribution; Distribution; Distribution; Distribution; The Exponential Distributions; Uniform Distribution; Beta Distribution.	Lecture	Short Answer
a.	Introduce random number.	Random Numbers: Random Numbers Table; Pseudo Random Numbers; Computer Generation		
b.	Generate various types of random number.	of Random Numbers; A Uniform and non-Uniform Continuously Distributed Random Numbers; Qualities of an efficient Random Number Generator.	Lecture	Short Answer
a.	Introduce with queuing system	Arrival Patterns and Service Times: Congestion in Systems; Arrival Patterns; Service Times; Queuing Disciplines, Measure of Queue and Mathematical Solutions of Queuing Problems.	Lecture	Exercise
a.	Introduce with discrete event system simulation	Discrete System Simulation: Discrete Events; Representation of Time; Generation of Arrival Patterns; Simulation of a Telephone System; Simulation.	Lecture Exercise	Assignment
a.	Justify simulation validation Describe criteria to	Analysis of Simulation Output: Nature of the Problem; Verification and Validation of	Lecture	Short Answers.
b.	validate a system.	Simulation; Estimation Methods.		

	Authors	Book Name
1.	Byron J. T. Morgan	Elements of Simulation
2.	Law, Keltan	Simulation Modeling and Analysis
3.	D.S.Hira	System Simulation
4.	GeoferryGoedon	System Simulation
5.	R. S. Lehman	Computer Simulation and Modeling
6.	J. A. Spriet	Computer Aided Modeling & Simulation

Course No: 63 Course Title: Robotics and Machine Vision

Course Code: CSE 4107
Credit: 3.00
Credit: 3.00
Total Marks: 100

Contact Hours: 3 Hours/Week

Mark Distribution:

Semester Final Exam: 72 Marks Class Test: 20 Marks Class Attendance: 08 Marks COURSE OBJECTIVES:

❖ To familiarize students with the concepts and techniques of robot manipulator, itskinematics, programming and build confidence to evaluate, choose and incorporate robots in engineering systems.

COURSE OUTCOMES:

The students will be able to

- Explain the basic concepts like various configurations, classification and parts of robots.
- > Explain the concept of kinematics, degeneracy, dexterity and trajectory planning.
- > Compare various end effectors (grippers and tools) and sensors used in robots.
- ➤ Analyze the concept of Artificial Intelligence in robots, various types of robot programming and its applications.
- > Demonstrate the image processing and image analysis techniques by machine vision system.

	Learning Outcomes	Course Content	Teaching Strategy/ Learning Experience	Assessment Strategy
a.	Define robotic and identify its uses			
С	Typical robots applications, laws of robotics	Robotics, Introduction, Basic		
d.	About representation of robot function; Typical designs	structure, Classification of robot and Robotic systems, laws of robotics, work space, precision movement. Drives and Controls systems: Hydraulic systems, power supply, servo valve, hydraulic motor, DC servo motors, stepper motors, control system,	Lecture Exercise Demonstration	QuizAssignm ent
e.	About drives and Controls systems: Hydraulic systems, power supply, servo valve			
f.	About drives and Controls systems:hydraulic motor, DC servo motors, stepper motors, control system, servo control	servo control		
a.	About robot kinematics	Kinematics of Robot: Introduction, Matrix	Lecture	Quiz
b.	About Spatial descriptions and transformations;	Representation, homogeneous transformation, forward and	Exercise Demonstration	Assignment Presentation

c. d. e.	Homogeneous transformations The theory of forward and inverse kinematics, Inverse kinematics Programming About Degeneracy, dexterity, velocity and static forces Knowledge about the Basics of trajectory planning	inverse kinematics, Inverse kinematics Programming, Degeneracy, dexterity, velocity and static forces, Basics of trajectory planning.		
a.	About the end effectors of Robot: Types, Features, Mechanisms	Robot end effectors: Types of end effectors, Mechanical		
b.	About the interfacing of effectors with robot	grippers, Types of Gripper mechanisms, Grippers force analysis, Other types of grippers, Vacuum cups, Magnetic grippers, Adhesive		
c.	About Sensors and Actuators in Robotics: Position sensors, Potentiometers, encoders, LVDT, Velocity sensors, Acceleration Sensors: Force, Pressure and Torque sensors, Touch and Tactile sensors, Proximity, Range and sniff sensors.	grippers, Robot end effectors interface. Sensors: Position sensors, Potentiometers, encoders, LVDT, Velocity sensors, Acceleration Sensors, Force, Pressure and Torque sensors, Touch and Tactile sensors, Proximity, Range and sniff sensors.	Lecture Exercise Demonstration	Quiz Assignment Presentation
d.	About Sensors and Actuators in Robotics			
a.	Knowledge of programming languages used in robotics Sample program for	Types of programming, programming languages sample program for different types of		
b.	different types of robots Industrial Applications: Application of robots in	robots, Industrial Applications: Application of robots in processing operations, Assembly and	Lecture Exercise Demonstration	Quiz Assignment Practical
d.	processing operations About the Assembly and inspections of robots	inspections, Material handling, Loading and unloading ,AI and Robotics.		exam
e.	Material handling, Loading and unloading			
a.	Introduction to image processing, Classification of images, image acquisition, digital images	Introduction, image processing vs image analysis, image acquisition, digital images, sampling and quantization, image definition, levels of		
b.	About image sampling and quantization, image definition, levels of computation	computation. Image processing Techniques: Data reduction, Windowing, digital conversion. Segmentation, Thresholding,	Lecture Exercise Demonstration	Quiz Assignment Presentation Practical
c.	Techniques of image processing: Data reduction, Windowing, digital conversion. Segmentation	Connectivity, Noise reduction, Edge detection, Segmentation, Region growing and Region splitting, Binary morphology and grey morphology operation, feature extraction		exam

	Techniques of image
	processing: Thresholding,
a	Connectivity, Noise
d.	reduction, Edge
	detection, Segmentation,
	Region growing
	Techniques of image
	processing: Region
	splitting, Binary
e.	morphology and grey
	morphology operation,
	feature extraction

TEXT BOOKS

- 1. Saeed B.Niku, Introduction to Robotics: Analysis, Systems, Applications, 2nd edition, Pearson Education India, PHI 2003 (ISBN 81-7808-677-8)
- 2. M.P.Groover, Industrial Robotics Technology, Programming and Applications, McGraw-Hill, USA, 1986

REFERENCE BOOKS

- 1. Janakiraman P.A., Robotics and image processing, Tata McGraw Hill, 1995.
- 2. YoremKoren, Robotics for Engineers, McGraw-Hill, USA, 1992.
- 3. Richard D.Klafter, Thomas A.Chmielewski and Michael Negin, Robotic Engineering An Integrated Approach, Prentice Hall Inc, Englewoods Cliffs, NJ, USA, 1989. Ramesh Jam, Rangachari Kasturi, Brain G.Schunck, Machine Vision, Tata McGraw Hill

Course No: 64 Course Title: Robotics and Machine Vision Lab

Course Code: CSE 4112

Contact Hours: 3 Hours/Week

Pre-Requisites: Nil
Total Marks: 100

Mark Distribution:

Lab Final Exam: 60 Marks Viva: 30 Marks Class Attendance: 10 Marks

COURSE OBJECTIVES:

❖ To familiarize students about robotics programming and build confidence to develop, evaluate, test and incorporate robots in engineering systems.

COURSE OUTCOMES:

The students will be able to

- > Assemble robot parts like body, hand, sensors etc.
- > Implement programs for controlling robots using programming languages.
- > Inspect and analysis robot actions.

	Learning Outcomes	Course Content	Teaching Strategy/ Learning Experience	Assessment Strategy
a.	Assemble robot body	Application of robots in processing operations, Assembly	Demonstration Exercise	Assignment Observation
a.	Integrate sensor modules	Position sensors, Potentiometers, encoders, LVDT, Velocity sensors, Acceleration Sensors, Force, Pressure and Torque sensors, Touch and Tactile sensors, Proximity, Range and sniff sensors.	Demonstration Exercise	Assignment Observation
a.	Develop programs for robot	Programming languages: sample program for different types of robots	Demonstration Exercise	Assignment Observation Practical Exam
a.	Analyze robot actions	Programming languages: sample program for different types of robots	Demonstration Exercise	Assignment Observation

				Practical
				Exam
a.	Apply & analyze Image Processing techniques	Image processing Techniques: Data reduction, Windowing, digital conversion. Segmentation, Thresholding, Connectivity, Noise reduction, Edge detection, Segmentation, Region growing and Region splitting, Binary morphology and grey morphology operation, feature extraction	Demonstration Exercise	Assignment Observation Practical Exam

TEXT BOOKS

- 1. Saeed B.Niku, Introduction to Robotics: Analysis, Systems, Applications, 2nd edition, Pearson Education India, PHI 2003 (ISBN 81-7808-677-8)
- 2. M.P.Groover, Industrial Robotics Technology, Programming and Applications, McGraw-Hill, USA, 1986

REFERENCE BOOKS

- 1. Janakiraman P.A., Robotics and image processing, Tata McGraw Hill, 1995.
- 2. YoremKoren, Robotics for Engineers, McGraw-Hill, USA, 1992.
- 3. Richard D.Klafter, Thomas A.Chmielewski and Michael Negin, Robotic Engineering An Integrated Approach, Prentice Hall Inc, Englewoods Cliffs, NJ, USA, 1989. Ramesh Jam, Rangachari Kasturi, Brain G.Schunck, Machine Vision, Tata McGraw Hill

Course No: 63 Course Title: Data Mining and Warehousing

Course Code: CSE-4113
Credit: 3.00
Pre-Requisites: Nil
Total Marks: 100

Contact Hours: 3 Hours/Week

Mark Distribution:

Semester Final Exam: 72 Marks Class Test: 20 Marks Class Attendance: 08 Marks

11.1 Rationale:

The amount of data collected across a wide variety of domains far exceeds our ability to reduce and analyze without the use of smart and intelligent analysis techniques. It is becoming a challenging task to obtain information from the massive collection of data. Data Science is a set of principles that support and guide the extraction of information and insight from data. Machine learning, on the other hand, is a branch of Artificial Intelligence that deals with the idea that systems can learn from data, identify patterns, and make decisions with minimal human interaction. This course presents the fundamentals of Data Science and Machine Learning. The concept of Data Science will help students to acquire knowledge on various data processing methods, approaches, tools and techniques. The section of Machine Learning will help the students to learn about different algorithms and approaches in order to build models in such a way that the models, when exposed to new data, will be able to produce reliable, repeatable decisions and results by learning from previous computation.

11.2 Objectives:

- 1. To introduce students to data collection and extraction techniques.
- 2. To develop the mathematical and logical skill sets for data preprocessing.
- 3. To develop and enhance data visualization techniques.
- 4. To understand the concepts of machine learning approaches and algorithms.
- 5. To acquire the skill for building machine learning problems.

11.3 Learning Outcomes	11.4 Course Content	11.5 Teaching Learning Strategy	11.6 Assessment
 To become familiar with data science and its applications To learn different data types in data science 	Introduction to data science: history of data science, aims and objectives of data science, data, categorize of data, data sources, data collection and extraction	LectureGroupDiscussion	Strategy □ Short Answer □ Group Exercise □ Completion
☐ To know the techniques of dealing with missing and noisy values	Data preprocessing: data quality, data cleaning techniques, dealing with missing values, handling noisy	Lecture Group Discussion	☐ Assignment ☐ Short Answer ☐ Group Exercise

☐To know other data	data, linear regression and non-linear		☐ Completion
preprocessing techniques	regression.		☐Assignment
☐ Describe, apply and	Redundancy and correlation	 Lecture 	□Short
analyze different image	analysis, tuple duplication, conflict	• Group	Answer
filtering techniques and	detection and resolution,	Discussion	\square Group
image enhancement			Exercise
operators and algorithms in			\square Completion
the spatial domain			☐Assignment
\Box To understand why is data	Data reduction: wavelet	 Lecture 	\square Short
reduction necessary	transformation, principal component	 Group 	Answer
\Box To become familiar with	analysis, attribute subset selection,	Discussion	\square Group
data reduction techniques			Exercise
			\Box Completion
			☐Assignment
☐To learn data	Data transformation, and	 Lecture 	□Short
transformation techniques	discretization and visualization:	• Group	Answer
☐To know data	overview, normalization, binning,	Discussion	\square Group
visualization tools and	histogram analysis, data		Exercise
techniques	visualization tools and techniques.		\Box Completion
			☐Assignment
\Box To become familiar with	Introduction to machine learning,	 Lecture 	\square Short
machine learning and its	goals and applications of machine	• Group	Answer
scope	learning, aspects of developing	Discussion	\square Group
☐To learn different	learning systems, supervised,		Exercise
categories of learning	unsupervised and reinforcement		\Box Completion
	learning.		☐Assignment
☐ To obtain the fundamental	Regression and classification	 Lecture 	\square Short
understanding of regression	analysis: linear regression, logistic	• Group	Answer
and classification analysis	regression, maximum likelihood and	Discussion	□Group
	least square, Bias variance		Exercise
	decomposition, over fitting and under filling problems and solutions.		\Box Completion
		_	☐Assignment
☐To learn the basic	Classification: Decision tree	• Lecture	□Short
concepts and techniques of	classifiers, Naïve Bayes classifiers,	• Group	Answer
classification.	Neural networks, Support vector	Discussion	\square Group
☐ To understand the	machine, Random forest, Nearest		Exercise
mechanism of different	neighbor. Evaluation of classifiers. Ensemble methods.		☐ Completion
classifiers	Ensemble methods.		☐Assignment
☐ To learn how to evaluate			
and compare different classifiers			
☐ To learn basic concepts	Clustering and reinforcement	Lecture	Short
and methods of cluster	learning: cluster analysis, partition	• Group	Answer
analysis.	method, hierarchical method,	Discussion	Group
☐ To learn fundamental	density based clustering, evaluation		Exercise
clustering techniques	of clustering, reinforcement analysis		☐ Completion
☐ To learn how to evaluate	and approaches, model evaluation		☐Assignment
models	techniques.		
1			

RECOMMENDED BOOKS AND PERIODICALS

Text Books:

1. Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani. "An introduction to statistical learning with application in R"

Pre-Requisites: Nil

Total Marks: 100

2. Trevor Hastie, Robert Tibshirani, Jerome Friedman "The elements of statistical learning".

3. Christopher Bishop "Pattern Recognition and Machine Learning"

Course No: 64 Course Title: Data Mining and Warehousing Lab

Course Code: CSE-4108 Credit: 1.50

Contact Hours: 3 Hours/Week

Mark Distribution:

Lab Final Exam: 60 Marks Viva: 30 Marks Class Attendance: 10 Marks

11.1 Rationale:

The amount of data collected across a wide variety of domains far exceeds our ability to reduce and analyze without the use of smart and intelligent analysis techniques. It is becoming a challenging task to obtain information from the massive collection of data. Data Science is a set of principles that support and guide the extraction of information and insight from data. Machine learning, on the other hand, is a branch of Artificial Intelligence that deals with the idea that systems can learn from data, identify patterns, and make decisions with minimal human interaction. This course presents the fundaments of Data Science and Machine Learning. The concept of Data Science will help students to acquire knowledge on various data processing methods, approaches, tools and techniques. The section of Machine Learning will help the students to learn about different algorithms and approaches in order to build models in such a way that the models, when expose to new data, will be able to produce reliable, repeatable decisions and results by learning from previous computation.

11.2 Objectives:

- 1. To introduce students to data collection and extraction techniques.
- 2. To develop the mathematical and logical skill sets for data preprocessing.
- 3. To develop and enhance data visualization techniques.
- 4. To understand the concepts of machine learning approaches and algorithms.
- 5. To acquire the skill for building machine learning problems.

11.3 Learning Outcomes	11.4 Course Content	11.5 Teaching Learning Strategy	11.6 Assessment Strategy
To learn data preprocessing	processing	DemonstrationExercise	AssignmentObservation
To learn data visualization techniques	Data visualization techniques	DemonstrationExercise	AssignmentObservation
☐To learn linear and logistics regression	Linear and logistics regression	DemonstrationExercise	AssignmentObservation
To learn data classification	Data classification	DemonstrationExercise	AssignmentObservation
☐To learn data clustering	Data clustering	DemonstrationExercise	AssignmentObservation

Course No: 63 Course Title: Software Testing & Quality Assurance

Course Code: CSE 4115
Credit: 3.00
Contact Hours: 3 Hours/Week
Pre-Requisites: Nil
Total Marks: 100

Mark Distribution:

Semester Final Exam: 72 Marks Class Test: 20 Marks Class Attendance: 08 Marks

11.1 Rationale:

This course provides an elementary introduction to software quality assurance and test. Upon completion of this course, students will have the ability to:

- Design comprehensive test plans.
- Apply software inspection techniques.
- Apply a wide variety of testing techniques.
- Demonstrate knowledge of key techniques and tools in software testing.
- Assess and evaluate software quality.
- Work as a team leader/member of a software testing team

11.2 Objectives:

1. Present effective testing techniques (both black-box and white box) for ensuring high quality software

- 2. Learn metrics for managing quality assurance
- 3. Understand capabilities of test tools
- 4. Establish a testing group and manage the whole testing project;
- 5. Clearly and correctly report the software defectives;
- 6. Asses the software product correctly;
- 7. Distinguish relationship between the software testing and the quality assurance.

	11.3	11.4	11.5	11.6
	Learning Outcomes	Course Content	Teaching learning Strategy	Assessment Strategy
a.	Know the basic concepts of Software Testing	Basic Testing Vocabulary Quality Assurance versus Quality Control The Cost of Quality Software Quality Factors How Quality is Defined Why Do We Test Software? What is a Defect? The Multiple Roles of the Software Tester(People Relationships) Scope of Testing When Should Testing Occur? Testing Constraints Life Cycle Testing Independent Testing What is a QA Process? Levels of Testing The "V" Concept of Testing	Lecture Exercise Demonstration	Quiz Assignment
a.	Apply Testing Techniques	Structural versus Functional Technique Categories Verification versus Validation Static versus Dynamic Testing Examples of Specific Testing Techniques	Lecture Exercise Demonstration	Quiz Assignment Project Task
a.	Know Test Administration	Test Planning Customization of the Test Process Budgeting Scheduling	Lecture Exercise Demonstration	Quiz Assignment
a.	Create the Test Plan	Prerequisites to test planning Understand the Characteristics of the Software Being Developed Build the Test Plan Write the Test Plan	Lecture Case Studies	Project Task Report Writing
a.	Understand Test Metrics – Guidelines and usage	Test Cases: Test case Design Building test cases Test data mining Test execution Test Reporting Defect Management Test Coverage – Traceability matrix	Lecture Demonstration	Quiz Assignment
a.	Apply Test reporting	Guidelines for writing test reports Test Tools used to Build Test Reports	Lecture Demonstration	Assignment

a.	Learn how to Manage Change	Software Configuration Management Change Management	Lecture Demonstration	Assignment
a.	Learn Risk Analysis and Management, User Acceptance testing	Risks – Risk Analysis and Management with examples User Acceptance testing – in detail explanation with details	Lecture	Case Study

Rec	Recommended Books And Periodicals					
	Authors	Book Name				
1.	R. Wirfs-Brock et.al.	Designing Object-oriented				
2.	Ian Sommerville	Software engineering				
3.	R.S. Pressman	Software Engineering: A Practitioners Approach				
4.	Robert C. Martin	Writing Effective Use Cases				
5.	Alistair Cockburn	Writing Effective Use Cases				
6.	Karl E. Wiegers	Software Requirements				
7.	KshirasagarNaik, PriyadarshiTripathy	Software Testing and Quality Assurance: Theory and Practice 1st Edition,				
8.	Ivan Mistrik, Richard M Soley, Nour Ali, John	Software Quality Assurance: In Large				
	Grundy, BedirTekinerdogan	Scale and Complex Software-intensive Systems 1st Edition				
9.	Ron Patton.	Software Testing (2nd Edition) 2nd Edition,				

Course No: 64 Course Title: Software Testing & Quality Assurance Lab

Course Code: CSE 4116
Credit: 1.50
Pre-Requisites: Nil
Total Marks: 100

Contact Hours: 3 Hours/Week

Mark Distribution:

11.1 Rationale:

This course provides a practical experience on manual and automated software testing.

11.2 Objectives:

- 1. Understand the effectively strategies of testing, the methods and technologies of software testing;
- 2. Design test plan and test cases;
- 3. Do automatic testing;
- 4. Establish a testing group and manage the whole testing project;
- 5. Clearly and correctly report the software defectives;
- 6. Asses the software product correctly;
- 7. Distinguish relationship between the software testing and the quality assurance.

	11.3	11.4	11.5	11.6
Lea	rning Outcomes	Course Content	Teaching learning Strategy	Assessment Strategy
a.	Demonstrate Manual Testing	Manual Testing Concepts, Types, Tool	Lecture Exercise Demonstration	Quiz Assignment
b.	Apply Automated Testing Techniques	Automation Testing: Process, Benefits & Tools	Lecture Exercise Demonstration	Quiz Assignment Project Task
c.	Apply Unit Testing	Unit Testing: What is, Types, Tools, Example	Lecture Exercise Demonstration	Quiz Assignment
d.	Apply Integration Testing, Smoke Testing, Regression Testing	Integration Testing: What is, Types, Top Down & Bottom Up Example System Testing: Types & Definition with Example Sanity Testing Vs Smoke Testing: Introduction & Differences Regression Testing: Definition, Test Cases (Example)	Lecture Case Studies	Project Task Report Writing
e.	Identify and apply Non Functional Testing	Non Functional Testing: Types with Example	Lecture Demonstration	Quiz Assignment
f.	Develop Test Cases	Test Documentation Test Scenario Write Test Cases Test Analysis (Test Basis) in Software Testing	Lecture Exercise Demonstration	Quiz Assignment

		Requirements Traceability Matrix (RTM) Test Data Generation: What is, How to, Example, Tools		
g.	Use Test Management & Control Tool	Software Test Estimation Techniques	Lecture Exercise Demonstration	Quiz Assignment

Rec	Recommended Books And Periodicals					
	Authors	Book Name				
1.	R. Wirfs-Brock et.al.	Designing Object-oriented				
2.	Ian Sommerville	Software engineering				
3.	R.S. Pressman	Software Engineering: A Practitioners Approach				
4.	Robert C. Martin	Writing Effective Use Cases				
5.	Alistair Cockburn	Writing Effective Use Cases				
6.	Karl E. Wiegers	Software Requirements				
7.	KshirasagarNaik, PriyadarshiTripathy	Software Testing and Quality Assurance: Theory and Practice 1st Edition,				
8.	Ivan Mistrik, Richard M Soley, Nour Ali, John Grundy, BedirTekinerdogan	Software Quality Assurance: In Large Scale and Complex Software-intensive Systems 1st Edition				
9.	Ron Patton.	Software Testing (2nd Edition) 2nd Edition,				

Course No:
Course Title: Fault Tolerant System

Course Code: CSE 4121 Pre-Requisites:

Credit: 3.00 Nil

Contact Hours: 3 Hours/Week Total Marks: 100

Mark Distribution:

Semester Final 72 Class Test: 20 Marks Class Attendance: 08 Marks

Exam: Marks Class Test: 20 Marks Class Attendance: 08 Marks

11.1 Rationale:

Fault-tolerant systems are used in applications that require high dependability, such as safety-critical control systems in vehicles and airplanes, or business-critical systems for e-commerce, automatic teller machines and financial transactions. This is an introductory course that covers basic techniques for design and analysis of fault-tolerant systems, as well as project management and development processes for safety-critical systems. The course covers techniques for tolerating hardware and software faults, analysis of fault-tolerant systems, project management and development processes for safety-critical systems. The content can be divided into five areas: 1. Terminology and definitions. 2. Design techniques for fault-tolerance. 3. Analysis of fault-tolerant system. 4. Project management and development processes. 5. System examples.

11.2 Objectives:

- 1. Understand the effectively strategies of testing, the methods and technologies of software testing;
- 2. Design test plan and test cases;
- 3. Do automatic testing;
- 4. Establish a testing group and manage the whole testing project;
- 5. Clearly and correctly report the software defectives;
- 6. Asses the software product correctly;
- 7. Distinguish relationship between the software testing and the quality assurance.

	11.3	11.4	11.5	11.6
L	earning Outcomes	Course Content	Teaching learni ng Strategy	Assessment Strategy
1	Understand the fault tolerance basics and applications	Definition of fault tolerance, Redundancy, Applications of fault-tolerance, Fundamentals of dependability	Lecture Exercise Demonstration	Quiz Assignment
2	Understand fault tolerant system attributes like reliability, safety, errors etc	UNIT II- ATTRIBUTES Reliability, availability, safety, Impairments: faults, errors and failures, Means: fault prevention, removal and forecasting	Lecture Exercise Demonstration	Quiz Assignment Project Task
3.	Ability to design and develop dependable systems for mission critical applications	UNIT III- DEPENDABILITY EVALUATION Common measures: failures rate, mean time to failure, mean time to repair, etc. Reliability block diagrams, Markov processes	Lecture Exercise Demonstration	Quiz Assignment
4.	Ability to know about the faults of various systems	UNIT IV- HARDWARE FAULT TOLERANCE Canonical and Resilient Structures; Reliability Evaluation Techniques and Models; Processor-level Fault Tolerance; Byzantine Failures and Agreements.	Lecture Exercise	Quiz
5.	Ability to know about different types of codes	UNIT V- INFORMATION REDUNDANCY and CHECKPOINTS Error Detection/Correction Codes (Hamming, Parity, Checksum, Berger, Cyclic, Arithmetic); Encoding/Decoding circuits; Resilient Disk Systems (RAID) Various checkpoints and shared memory systems.	Lecture Exercise	Spot test
6.	Apply Fault Tolerant in various design	UNIT VI- APPLICATIONS Fault tolerant circuit design: Adder, subtractor, multiplicator etc. Defect-tolerance in VLSI Designs; Fault Detection in Cryptographic Systems.	Lecture Exercise Demonstration	Project

Re	Recommended Books And Periodicals				
	Authors	Book Name			
1.	<u>Israel</u> <u>Koren</u>	Fault-Tolerant Systems;			
2.	Elena Dubrova	Fault Tolerant Design;			
3.	Martin L. Shooman	Reliability of Computer Systems and Networks: Fault Tolerance, Analysis, and Design			

Course No: 65 Course Title: Introduction to DNA Computing

Course Code: CSE-4123
Credit: 3.00
Total Marks: 100

Contact Hours: 3 Hours/Week

Mark Distribution:

Semester Final Exam: 72 Marks Class Test: 20 Marks Class Attendance: 08 Marks

11.1 Rationale:

This course is designed to introduce bioinformatics tools and analysis methods. Upon completion of the course, students should be more comfortable working with the vast amounts of biomedical and genomic data and online tools that will be relevant to their work in future.

11.2 Objectives:

- 1. Define computational genomics and phylogenetics concepts.
- 2. Apply common bioinformatics tools and techniques effectively.
- 3. Implement basic algorithms such as sequence alignment.
- 4. Perform independent genome comparisons and assemblies using gained knowledge.
- 5. Evaluate on your own the promise and challenges for computing on biological datasets.

11.3	11.4	11.5	11.6
Learning Outcomes	Course Content	Teaching Strategy/ Learning Experience	Assessment Strategy
Explain introductory concepts of bioinformatics	DNA, genes and the genome.	Lecture Exercise	Short Answer Essay
Knowledge about Sequence statistics	Sequence statistics.	Lecture Assignment	Short Answer Essay
Implement basic algorithms on Sequence alignment	Sequence alignment.	Lecture Assignment	Short Answer Essay
Learn about variation and natural selection	Variation and natural selection	Lecture Assignment	Short Answer Essay
Learn and apply Hidden Markov Models	Hidden Markov Models	Lecture Assignment	Short Answer Essay
Learn gene finding	Ab initio gene finding	Lecture Assignment	Short Answer Essay
Perform independent genome comparisons and assemblies using gainedknowledge	Whole genome comparisons	Lecture Assignment	Short Answer Essay
Learn about Genome assembly and validation	Genome assembly and validation	Lecture Assignment	Short Answer Essay
Define phylogenetics concepts	Phylogenetic analysis	Project	Demostration

Recommended Books And Periodicals

Authors Book Name

 W. Ewens and G. Grant
 C.H. Wu
 Neural Networks and Genome Informatics
 Pierre Baldi and SÿrenBrunak
 Bioinformatics; The Machine Learning Approach

Course No: 65 Course Title: Software Project Management and

Maintenance

Course Code: CSE 4125
Credit: 1.50
Credit: 1.50
Total Marks: 100

Contact Hours: 3 Hours/Week

Mark Distribution:

Continuous 60 Evaluation: Marks Lab Final: 30 Marks Class Attendance: 10 Marks

11.1 Rationale:

This course provides a practical experience on manual and automated software testing.

11.2	Objectives:	
1.	Understand the effectively strategies of testing, the methods and technologies of software testing;	
2.	Design test plan and test cases;	
3. Do automatic testing;		
4.	Establish a testing group and manage the whole testing project;	
5.	Clearly and correctly report the software defectives;	
6.	Asses the software product correctly;	
7.	Distinguish relationship between the software testing and the quality	

7. assurance.				and the quality
11.3		11.4	11.5	11.6
Learning Outcomes		Course Content	Teaching learning Strategy	Assessment Strategy
a.	Learn Introduction to System Analysis	Introduction to System Analysis: a. What is a System? b. System Fundamentals c. Types of Systems d. The Study of Systems Analysis e. Advantages of Systems Analysis f. Limitations of Systems Analysis	Lecture Exercise Demonstration	Quiz Assignment
a.	Learn duties of System Analyst	The Systems Analyst: a. The Duties of the Systems Analyst b. Communications and the Organization c. Job Description d. Skills, Knowledge and Training e. Preparing for a Career in Systems Analysis f. The Future of the Systems Analyst g. Formal Organization Structure	Lecture Exercise Demonstration	Quiz Assignment Project Task
a.	Demonstrate the tools of the Systems Analysist	a. System Modeling b. Advantages of Design Diagrams c. Traditional Design Tools d. The Gantt Chart e. Decision Trees f. Decision Tables g. Flowcharts h. Structured Design Tools i. Data Dictionary j. Data Flow Diagrams k. Hierarchy Plus Input- Process-Output (HIPO) l. Structured English (Pseudocode) m. Warnier-Orr Diagrams n. Nassi-Shneiderman Charts o. Presentation Graphs	Lecture Exercise Demonstration	Quiz Assignment
a.	Learn Project Management Skills	a. Project Concepts b. Need for Project Management c. Why Projects Fail? d. Managing Projects	Lecture Case Studies	Project Task Report Writing

		e. Traditional Project		
		Management Troject		
		f. Computer Project		
		Management		
		g. Microcomputer Project		
		Management Software		
a.	Learn basics of design and analysis phase	a. Systems Design b. Logical and Physical Designs c. Prototype Designs d. Computerized System Design e. Design Principles f. The Data Cycle g. Systems Design Task List	Lecture Demonstration	Quiz Assignment
a.	Learn basics of development phase	a. The Task of Systems Development b. Lead Time Schedules c. Contract Terms d. Hardware Performance e. Software Performance f. Communication Equipment Performance g. Prototype Installation h. Benchmark Testing	Lecture Exercise Demonstration	Quiz Assignment
a.	Learn basics of implementation phase	a. How to Undertake Systems Implementation b. The Changeover Timetable c. The Human Element d. Training and In-Service Education e. Implementation Trouble Spots f. Assistance during Implementation	Lecture Exercise Demonstration	Quiz Assignment
a.	Systems Evaluation and Optimization	a. Need for Documentation b. Guidelines for Preparing Documentation c. Major Systems Documentation d. Distribution of Documentation e. Revision of Documentation	Lecture Exercise Demonstration	Quiz Assignment

Recommended Books And Periodicals

	Authors	Book Name
1.	R. Wirfs-Brock et.al.	Designing Object-oriented
2.	Ian Sommerville	Software engineering
3.	R.S. Pressman	Software Engineering: A Practitioners Approach
4.	Gerald A. Silver and Myrna L. Silver	Systems Analysis and Design

Course No: 65 Course Title: Distributed System and Cloud Computing

Pre-Requisites: Nil

Total Marks: 100

Course Code: CSE 4125

Credit: 1.50

Contact Hours: 3 Hours/Week

Mark Distribution:

Continuous 60 Lab 30 Marks **Class Attendance:** 10 Marks **Evaluation:** Marks Final:

Course No: 66 **Course Title: E-commerce and Management Information Systems**

Course Code: BUS 4101 Pre-Requisites: Nil Credit: 3.00 **Total Marks: 100**

Contact Hours: 3 Hours/Week

Mark Distribution:

Semester Final 72 Marks **Class Test:** 20 Marks **Class Attendance:** 08 Marks Exam:

COURSE OBJECTIVES: The students will be able

- To evaluate the role of information systems in transforming business and their relationship to globalization.
- To know about the significance of systems in improving organizational performance.
- To understand ethical, social, and political issues are raised by information systems.
- To know the principal tools and technologies for accessing information from databases to improve business performance and decision making.
- To know the functions of Internet and Internet technology and their support in communication, e-commerce and e-business.

COURSE OUTCOMES: On successful completion of this course, students will be able to:

- Understand management information systems and their role in today's organizations.
- identify how MIS shapes and controls current business world and improve the performances of organizations.
- Become familiar with the major trends in MIS infrastructures and how these evolutions will affect workplaces and business strategies.
- Understand the different ethical issues raised by information systems and their remedy.

	Learning Outcomes	Course Content	Teaching Strategy/ Learning Experience	Assessment Strategy
	Define Management Information System			
b.	Mention Characteristics and Limitations of MIS, Classify MIS	Definition-Characteristics- MIS services-Limitations- Types of MIS-importance-	Lecture Visual Presentation, Group Discussion, Assignment, Exercise etc.	Quiz, Short Essay, Q/A method, Assignment, Oral Presentation
С	Describe importance, Potential risks of information systems	Potential risks of information systems-data and Information-Difference between data and		
d.	Differentiate between data and information, Quality of good information	information-Quality of good information-The process of converting data into information.		
e.	Explain the process of converting data into information.	iniormation.		
	Define Information Systems	System concepts-Information systems-Information	Lecture	Quiz, Short Essay, Q/A

b. c.	Differentiate between IS and IT Explain activities of information systems, Information systems resources Classify information systems	technology-Differences between IS and IT-The expanding role of information systems- Activities of information systems-Information systems resources-Classifications of information systems	Visual Presentation, Group Discussion, Assignment, Exercise etc.	method, Assi gnment, Oral Presentation
b.	Describe Information systems and organizational structure Mention roles of IT and IS in organizational decision making Explain a system approach to problem solving	Information systems and organizational structure-Roles of IT and IS in organizational decision making-A system approach to problem solving	Lecture Visual Presentation, Group Discussion, Assignment, Exercise etc.	Quiz, Short Essay, Q/A method, Assi gnment, Oral Presentation
b.	Define Telecommunication, Information superhighway Describe components of telecommunications network-Network, protocol- Types of telecommunication signal Define Communication channel, Communication processor, Communication processor, Communication software, Network topology, Communication channel characteristics Classify and describe telecommunication network, Telecommunication carriers, Business value of telecommunications	Telecommunications- Information superhighway- Components of telecommunications network-Network, protocol- Types of telecommunication signal-Communication channel-Communication processor-Communication software-Network topology- Communication channel characteristics-Types of telecommunication network- Telecommunication carriers- Business value of telecommunications	Lecture Visual Presentation, Group Discussion, Assignment, Exercise etc.	Quiz, Short Essay, Q/A method, Assi gnment, Oral Presentation
a. b. c. d.	Define management, Mention roles of management information Describe the levels of management, Information and decision making Explain types of managerial decision making, Functions, Components and Applications of DSS, GDSS Executive information systems, functions of an EIS, Rationale for EIS, Characteristics of DSS and EIS Describe critical success factors for DSS/EIS-Difference between TPS, MIS, DSS and EIS	Information and the roles of management information and the levels of management-Information and decision making-Decision support systems-Different types of business problems-Different types of managerial decision making-Functions, Components and Applications of DSS-GDSS-Executive information systems-functions of an EIS-Rationale for EIS-Characteristics of DSS and EIS-Critical success factors for DSS/EIS-Difference between TPS, MIS, DSS and EIS.	Lecture Visual Presentation, Group Discussion, Assignment, Exercise etc.	Quiz, Short Essay, Q/A method, Assi gnment, Oral Presentation

a.	Define Information systems in business, Marketing information systems, Manufacturing information systems	Information systems in business-Marketing information systems-Manufacturing information systems-Human resource		
b.	Describe Human resource information system, Accounting information systems, Financial information systems, Strategic information system	information system- Accounting information systems-Financial information systems- Strategic information system. Information systems security and control: Computer	Lecture Visual Presentation, Group Discussion, Assignment, Exercise etc.	Quiz, Short Essay, Q/A method, Assi gnment, Oral Presentation
c.	Define computer security, Reasons of computer systems vulnerability, Types of computer security breaches, Security controls, Audit of information systems	security-Reasons of computer systems vulnerability-Types of computer security breaches-Security controls-Audit of information systems.		

TEXT BOOKS

1. James A. O'Brien : Management Information Systems: Managing Information

Technology in the Networked Enterprise

2. Kenneth C. Laudon and : Management Information Systems: Organization and Technology

Jane P. Laudon

3. Kenneth C. Laudon and : Management Information Systems: Managing the Digital Firm

Jane P. Laudon

4. Uma G. Gupta : Management Information Systems: A Managerial Perspective

Course No: 67 Course Title: Internship

Course Code: CSE 4210
Credit: 9.00
Contact Hours:

Pre-Requisites: Nil
Total Marks: 100

Mark Distribution:

Evaluation Committee 60 **Industry** 40

Course No: 68 Course Title: Industrial Tour

Course Code: CSE 4212
Credit: 1.00
Contact Hours:

Pre-Requisites: Nil
Total Marks: 100

Mark Distribution:

Report: 30 Presentation: 50 Industry Visit: 20

Course No:69 Course Title: Thesis/Project

Course Code: CSE 4000
Credit: 6.00
Credit: 6.00
Total Marks: 100

Contact Hours: 3 Hours/Week

Mark Distribution:

Supervisor/External Examiner 60 Defense 40

Course No:70 Course Title: Viva Voce

Course Code: CSE 4200
Credit: 1.00
Contact Hours:

Pre-Requisites: Nil
Total Marks: 100

Mark Distribution:

Total Marks 100