

COMPUTER NETWORKS LAB SIX REPORT

DONE BY - S. SHIVAPRASATH (RA2211003050157)

B. TECH COMPUTER SCIENCE AND ENGINEERING (SEC-C 3RD YEAR, 5TH SEMESTER) (FROM SRM INSTITUTE OF SCIENCE AND TECHNOLOGY – TRICHY)

Objective

This lab focuses on configuring Network Address Translation (NAT) on a router to enable internal devices with private IP addresses to communicate with external networks using a public IP address. NAT facilitates secure communication by hiding internal addresses from external networks. This experiment demonstrates how to set up NAT using Cisco Packet Tracer.

Procedure

Network Design:

- Router1 connected to the ISP Router.
- PC0 connected to Router1.
- PC1 connected to Router1.

IP Addressing Scheme:

- Inside Network (LAN): 192.168.10.0/24
- Outside Network (ISP): 200.0.0.0/30

Step 1: Configure Network Addresses

- 1. Inside Network (LAN):
 - Network Address: 192.168.10.0/24
- 2. Outside Network (ISP):
 - Network Address: 200.0.0.0/30

Step 2: Configuring Router1

- 1. Access CLI of Router1:
 - Press ENTER to start configuration.

2. Activate Privileged Mode:

• Type enable.

3. Access Configuration Mode:

• Type config t.

4. Configure Interfaces:

- FastEthernet0/0 (connected to LAN):
 - Command: interface FastEthernet0/0

• IP: 192.168.10.1

Subnet Mask: 255.255.255.0

- Serial0/0/0 (connected to ISP Router):
 - Command: interface Serial0/0/0

■ IP: 200.0.0.1

Subnet Mask: 255.255.255.252

5. Activate Interfaces:

Command: no shutdown

Step 3: Configuring ISP Router

- 1. Access CLI of ISP Router:
 - Press ENTER to start configuration.

2. Activate Privileged Mode:

Type enable.

3. Access Configuration Mode:

Type config t.

4. Configure Interfaces:

- Serial0/0/0 (connected to Router1):
 - Command: interface Serial0/0/0
 - IP: 200.0.0.2
 - Subnet Mask: 255.255.255.252

5. Activate Interfaces:

• Command: no shutdown

Step 4: Configuring PCs

1. PC0 Configuration:

- Go to the desktop of PC0, select IP Configuration, and assign:
 - IP Address: 192.168.10.2
 - Subnet Mask: 255.255.255.0
 - Default Gateway: 192.168.10.1

2. PC1 Configuration:

- Go to the desktop of PC1, select **IP Configuration**, and assign:
 - IP Address: 192.168.10.3
 - Subnet Mask: 255.255.255.0
 - Default Gateway: 192.168.10.1

Step 5: Configuring NAT on Router1

1. Define Inside and Outside Interfaces:

• Command:

interface FastEthernet0/0

ip nat inside

exit

interface Serial0/0/0

exit

2. Configure a Standard Access List to Permit the Internal Network:

Command:

access-list 1 permit 192.168.10.0 0.0.0.255

3. Configure NAT Overload (PAT) for the Internal Network:

Command:

ip nat inside source list 1 interface Serial0/0/0 overload

Step 6: Verify NAT Configuration

1. Test Connectivity by Pinging from PC0 to ISP Router:

- Open the command prompt on PC0.
- o Type ping 200.0.0.2 and observe the response.

2. Check NAT Translation Table on Router1:

 On Router1 CLI, type show ip nat translations to see the NAT entries.

Step 7: Verify External Connectivity

1. Test External Connectivity by Pinging a Simulated Public IP:

- On PC0, type ping 8.8.8.8 (replace with an actual reachable IP in Packet Tracer).
- On PC1, type ping 8.8.8.8.

Simulation of Designed Network Topology

1. Sending a PDU from PC0 to an External Network:

- Open Simulation Mode in Packet Tracer.
- Send a PDU from PC0 to a simulated external IP (e.g., 8.8.8.8).
- Observe the packet traveling from PC0 to Router1, where NAT translation occurs, then to the ISP Router and external network.

2. Acknowledgment Packet:

• Observe the acknowledgment packet traveling back from the external network to PCO, confirming successful NAT configuration and communication.

Screenshots

```
Physical Config Desktop Programming Attributes

Command Prompt

Cisco Packet Tracer PC Command Line 1.0
C:\>ping 8.8.8.8

Pinging 8.8.8.8 with 32 bytes of data:

Request timed out.
Reply from 8.8.8.8: bytes=32 time=29ms TTL=126
Reply from 8.8.8.8: bytes=32 time=22ms TTL=126
Reply from 8.8.8.8: bytes=32 time=1ms TTL=126
Ping statistics for 8.8.8.8:
Packets: Sent = 4, Received = 3, Lost = 1 (25% loss),
Approximate round trip times in milli-seconds:
Minimum = 1ms, Maximum = 29ms, Average = 17ms

C:\>
```

```
C:\>tracert 8.8.8.8
Tracing route to 8.8.8.8 over a maximum of 30 hops:
                           0 ms
      0 ms
                0 ms
                                     192.168.10.1
  1
      0 ms
  2
                 1 ms
                           0 ms
                                     200.0.0.2
                0 ms
  3
      1 ms
                           1 ms
                                     8.8.8.8
Trace complete.
```



```
Cisco Packet Tracer PC Command Line 1.0
C:\>ping 8.8.8.8

Pinging 8.8.8.8 with 32 bytes of data:

Reply from 8.8.8.8: bytes=32 time=1ms TTL=126
Reply from 8.8.8.8: bytes=32 time=1ms TTL=126
Reply from 8.8.8.8: bytes=32 time=1ms TTL=126
Reply from 8.8.8.8: bytes=32 time=31ms TTL=126
Reply from 8.8.8.8: bytes=32 time=31ms TTL=126

Ping statistics for 8.8.8.8:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 1ms, Maximum = 31ms, Average = 8ms
```


Rout	er(config)#do sh i	ip nat translations		
Pro	Inside global	Inside local	Outside local	Outside global
icmp	200.0.0.1:10	192.168.10.2:10	8.8.8.8:10	8.8.8.8:10
icmp	200.0.0.1:11	192.168.10.2:11	8.8.8.8:11	8.8.8.8:11
icmp	200.0.0.1:12	192.168.10.2:12	8.8.8.8:12	8.8.8.8:12
icmp	200.0.0.1:13	192.168.10.2:13	8.8.8.8:13	8.8.8.8:13
icmp	200.0.0.1:1	192.168.10.2:1	8.8.8.8:1	8.8.8.8:1
icmp	200.0.0.1:2	192.168.10.2:2	8.8.8.8:2	8.8.8.8:2
icmp	200.0.0.1:3	192.168.10.2:3	8.8.8.8:3	8.8.8.8:3
icmp	200.0.0.1:4	192.168.10.2:4	8.8.8.8:4	8.8.8.8:4
icmp	200.0.0.1:8	192.168.10.2:8	8.8.8.8:8	8.8.8.8:8
icmp	200.0.0.1:9	192.168.10.2:9	8.8.8.8:9	8.8.8.8:9
	200.0.0.1	192.168.10.2		