Algebra - zpracované příklady ke zkoušce

Karel Velička

16. ledna 2024

Doc. Mgr. et Mgr. Jan Žemlička Ph.D.

Obsah

1	Teo	Teorie čísel						
	1.1	Modulární aritmetika						
		1.1.1 Najděte $u,v\in\mathbb{Z}$, pro která $103u+77v=1.$						
		1.1.2 Vypočítejte poslední číslici 33^{999}						
		1.1.3 Vypočítejte 2023 ^{2022²⁰²¹ mod 101}						
2	Pol	Polynomy						
	2.1	Tělesa, okruhy, obory						
		2.1.1 Vypočítejte 33^{-1} v tělese $(\mathbb{Z}_{37}, +, \cdot -, 0)$						
		2.1.2 Zkostruujte těleso o 125 prvcích						
	2.2	Dělitelnost, UFD						
		2.2.1 Dokažte, že $4x^3 - 15x^2 + 60x + 180$ je ireducibilní v $\mathbb{Q}[x]$ (Eisensteinovo kritérium)						
		2.2.2 V $\mathbb{Z}_2[x]$ najděte všechny ireducibilní polynomy stupně nejvýše 4						
		2.2.3 Napiště $2x^2-6$ jako násobek ireducibilních polynomů v (a) $\mathbb{Z}[x]$, (b) $\mathbb{Q}[x]$, (c) $\mathbb{C}[x]$						
	2.3							
		2.3.1 Show that $m(\alpha) = \alpha^3 + \alpha + 1$ is irreducible in the domain $\mathbb{Z}_7[\alpha]$. Solve the equation						
		$(\alpha^2+3)x+\alpha+4=\alpha^2$ in the feld $\mathbb{Z}_7[\alpha]/(m(\alpha))$						
		2.3.2 Vypočítejte $\gcd(x^5 + x^2 + x + 1, x^3 + x + 1 \in \mathbb{Z}_2[x])$ a určete Bézoutovy koeficienty						
		2.3.3 Vypočítejte $gcd(5-3i,7+i)$ v oboru $\mathbb{Z}[i]$						
	2.4	Aplikace						
	2.4	2.4.1 Reed-Solomonovy kódy						
		2.4.1 Reed-Solomonový kodý						
		2.4.2 Sthem kilcu						
		2.4.5 N.S.A						
3	Gru							
	3.1	Grupy a podgrupy						
		3.1.1						
		$3.1.2 \dots \dots \dots \dots \dots \dots \dots \dots \dots $						
	3.2	Cyklické grupy a						
		3.2.1						
		3.2.2						

1 Teorie čísel

1.1 Modulární aritmetika

1.1.1 Najděte $u, v \in \mathbb{Z}$, pro která 103u + 77v = 1.

Hledáme Bézoutovy koeficienty pro $\gcd(77,103)=1$ podle vzorce $(u_{i+1},v_{i+1})=(u_{i-1},v_{i-1})+q_i(u_i,v_i)$. Pro $i\in\{0,\ldots,4\}:\ a_i=(103,77,26,25,1),\ u_i=(1,0,1,-2,3),\ v_i=(0,1,-1,3,-4),$ takže:

$$103 \cdot 3 - 77 \cdot 4 = 1.$$

1.1.2 Vypočítejte poslední číslici 33⁹⁹⁹.

Počítáme poslední cifru, tedy $33^{999} \mod 10$. Použijeme Eulerovu větu: $\varphi(10) = 4$ a $\gcd(33, 10) = 1$ platí. A také využijeme faktu, že $33 \mod 10 = 3$.

$$33^{999} \equiv 33^{1000} \cdot 3^{-1} \equiv \underbrace{33^{4 \cdot 250}}_{(33^4)^{250} = 1^{250}} \cdot 3^{-1} = 1 \cdot 3^{-1} \equiv 7$$

1.1.3 Vypočítejte 2023^{2022²⁰²¹} mod 101.

Nejprve zmodulíme 2023 (mod 101) = 3 a dosadíme do původní rovnice: $3^{2022^{2021}}$ (mod 101). Dále si můžeme uvědomit, díky Eulerově větě, že: $3^{2022^{2021} \mod n}$ (mod 101), kde $n = \varphi(101) = 100$ (protože 101 je prvočíslo). Tedy spočítáme $a := 2022^{2021}$ (mod 100) a dosadíme do 3^a (mod 101).

$$2022^{2021}\pmod{100} \equiv 22^{2021}\pmod{100}, \ spočítáme \ Eulerovu \ funkci \ pro \ \varphi(100):$$

$$\varphi(100) = \varphi(4\cdot 25) = 2\cdot 4\cdot 5 = 40, \ dostaneme \ tak: \ 22^{40} \equiv 1 \pmod{40} \ a \ upravíme \ původní \ výraz: (22^{40})^{50} \cdot 22^{21} \pmod{100} \equiv 1^{50} \cdot 22^{21} \pmod{100} = 22^{21} \pmod{100}$$

Nyní tedy hledáme řešení pro $22^{21} \pmod{100}$, a protože 100 můžeme rozepsat jako $100 = 25 \cdot 4 \implies \gcd(25,4) = 1$, můžeme k tomu použít Čínskou zbytkovou větu:

$$x = 22^{21} \pmod{25} = 22$$

$$x = 22^{21} \pmod{4} = 22^{20} \cdot 22^{1} \pmod{4} \equiv 0 \cdot 22 \pmod{4} = 0$$

Víme, že výsledek by měl být ve formátu $22^{21}\pmod{100}=(a_1\cdot b_1\cdot m_1)+(a_2\cdot b_2\cdot m_2)\mod{100}$, kde už tedy máme $a_1=22$ a $a_2=0$. Ostatní členy s indexem 1 dopočítáme, s indexem 2 nemusíme díky $a_2=0$: $b_1=4$ a $m_1=b_1^{-1}\pmod{25}=4^{-1}\pmod{25}=19$ A dostáváme tak:

$$22^{21} \pmod{100} = 22 \cdot 4 \cdot 19 \pmod{100} = 1672 \pmod{100} \equiv 72$$

Nyní dosadíme do původní rovnice $3^{72} \pmod{101}$ a podle tabulky už určíme mocninu:

3^n	úprava	mod 101
3^{1}	3	3
3^{2}	$3 \cdot 3$	9
3^3	$3 \cdot 9$	27
3^{6}	$(3^3)^2 = 27^2 = 729$	22

Dostáváme $3^{72} = (3^6)^{12} = 22^{12} \pmod{101}$ a opět podle tabulky:

22^n	úprava	mod 101
22^{1}	22	22
22^{2}	$22 \cdot 22 = 484$	80
22^{3}	$22 \cdot 80 = 1760$	43
22^{4}	$22 \cdot 43 = 946$	37
22^{5}	$22 \cdot 37 = 814$	6
22^{6}	$22 \cdot 6 = 132$	31
22^{12}	$(22^6)^2 = 31^2 = 961$	52

Takže $2023^{2022^{2021}} \pmod{101} \equiv 3^{72} \equiv 22^{12} \equiv 52.$

Vyřešte systém kongruencí:

$$x \equiv 1 \pmod{3}$$

$$x \equiv 2 \pmod{5} \implies x = 5k + 2$$

$$x \equiv 1 \pmod{7}$$

$$-------$$

$$5k + 2 \equiv 1 \pmod{7}, \quad (k \in \mathbb{Z})$$

$$5k \equiv -1 \equiv 6 \pmod{7}$$

$$k = 4 \implies$$

$$\implies x = 5 \cdot 4 + 2 = 22 \in \mathbb{Z}_{35}$$

$$------$$

$$22 + 35l \equiv 1 \pmod{3}, \quad (l \in \mathbb{Z})$$

$$35l \equiv -21 \equiv 0 \pmod{3}$$

$$35l \equiv 0 \pmod{3}$$

$$l = 0 \implies$$

$$\implies x = 22 + 35 \cdot 0 = 22 \in \mathbb{Z}_{105}$$

Celkově je řešením množina $\{x = 22 + 35l \mid x < 105, l \in \mathbb{Z}\}, \text{ tedy } x \in \{22, 57, 92\}.$

2 Polynomy

2.1 Tělesa, okruhy, obory

2.1.1 Vypočítejte 33^{-1} v tělese $(\mathbb{Z}_{37}, +, \cdot -, 0)$.

Máme těleso \mathbb{Z}_{37} a hceme vypočítat inverz 33^{-1} . Ověříme nejprve, že $\gcd(33,37)=1$. Dále hledáme Bézoutovy koeficienty u a v takové, že 33u+37v=1:

Pro
$$i \in \{0, ... 3\}$$
: $a_i = (37, 33, 4, 1), u_i = (1, 0, 1, 8), v_i = (0, 1, 1, 9)$
 $\implies 33 \cdot 9 - 37 \cdot 8 = 1$

Takže 33^{-1} v tělese \mathbb{Z}_{37} je 9.

2.1.2 Zkostruujte těleso o 125 prvcích.

Potřebujeme najít prvočíslo p a $k \in \mathbb{N}$ tak, aby platil vztah $p^k = 125$. Jednou možností je vzít p = 5 a k = 3, protože $5^3 = 125$. Tímto způsobem získáme těleso se 125 prvky.

2.2 Dělitelnost, UFD

2.2.1 Dokažte, že $4x^3 - 15x^2 + 60x + 180$ je ireducibilní v $\mathbb{Q}[x]$ (Eisensteinovo kritérium)

Pokud $\exists p \in Q$ ireducibilní prvek splňující $p \mid a_0, p \mid a_1, \dots, p \mid a_{n-1}$ a $p^2 \nmid a_0$, pak je polynom ireducibilní v $\mathbb{Q}[x]$. Hledáme proto p, které dělí první až předposlední koeficient. V našem případě je to p = 5. Platí, že 5 je ireducibilní, zároveň platí 5 | 180, 5 | 60, 5 | 15 a dokonce i $5^2 \nmid 180 \equiv 25 \nmid 180$. Eisensteinovým kritériem jsme určili, že polynom $4x^3 - 15x^2 + 60x + 180$ je ireducibilní.

2.2.2 V $\mathbb{Z}_2[x]$ najděte všechny ireducibilní polynomy stupně nejvýše 4.

Budeme postupně zkoušet všechny možnosti s tím, že předem nějaké vyloučíme. Například vyloučíme možnosti bez x^0 - například: $x^2 + x = x(x+1)$, protože pak bychom mohli vytknout x. Ze stejného důvodu vyřadíme všechny x^i a $x^i + 1$ pro i = 2, 3, 4. Obecně řečeno odstraníme všechny polynomy, které jsou nějakým násobkem našeho polynomu.

deg 0: Nic.

deg 1: Pouze x a x + 1 jsou ireducibilní.

deg 2: Pouze $x^2 + x + 1$ je ireducibilní.

deg 3: Pouze $x^3 + x^2 + 1$ a $x^3 + x + 1$ jsou ireducibilní.

deg 4: Pouze $x^4 + x^3 + x^2 + x + 1$, $x^4 + x^3 + 1$, $x^4 + x + 1$

2.2.3 Napiště $2x^2 - 6$ jako násobek ireducibilních polynomů v (a) $\mathbb{Z}[x]$, (b) $\mathbb{Q}[x]$, (c) $\mathbb{C}[x]$

- (a) $\mathbb{Z}[x]$: Vytkneme 2 a dostaneme výsledný polynom $f(x)=2(x^2-3)$, musíme ověřit ireducibilu. Číslo 2 je ireducibilní, protože je prvočíslo. Polynom (x^2-3) je také ireducibilní, protože může být rozloženo pouze na $(x+\sqrt{3})(x-\sqrt{3})$, což ovšem nemá celočíselný kořen $\sqrt{3}\notin\mathbb{Z}[x]$.
- (b) $\mathbb{Q}[x]: 2$ jako polynom stupně nula nad tělesem je invertibilní, jinak také $\sqrt{3} \notin \mathbb{Q}[x]$, takže $2x^2 6$
- (c) $\mathbb{C}[x]$: Podobně jako v $\mathbb{Q}[x]$, akorát $\sqrt{3} \in \mathbb{C}[x] \implies f(x) = (2x + 2\sqrt{3})(x \sqrt{3})$. Stačí určit ireducibilitu $(x \pm \sqrt{3})$. Jsou ireducibilní, protože jsou stupně 1.

2.3 GCD a Modulo polynom

- **2.3.1** Show that $m(\alpha) = \alpha^3 + \alpha + 1$ is irreducible in the domain $\mathbb{Z}_7[\alpha]$. Solve the equation $(\alpha^2 + 3)x + \alpha + 4 = \alpha^2$ in the feld $\mathbb{Z}_7[\alpha]/(m(\alpha))$.
- **2.3.2** Vypočítejte $gcd(x^5 + x^2 + x + 1, x^3 + x + 1 \in \mathbb{Z}_2[x])$ a určete Bézoutovy koeficienty.
- 2.3.3 Vypočítejte gcd(5-3i,7+i) v oboru $\mathbb{Z}[i]$

Budeme řešit za pomoci Eukleidova algoritmu v oboru $\mathbb{Z}[i] = \{a + bi \mid a, b \in \mathbb{Z}\}.$

Abychom věděli, co čím dělit, musíme určit normy: V(a) = ||7 + i|| = 50 > 34 = ||5 - 3i|| = V(b). Dělíme:

$$\frac{7+i}{5-3i} = \frac{(7+i)(5+3i)}{(5-3i)(5+3i)} = \frac{35+21i+5i-3}{25+9} = \frac{16}{17} + \frac{13}{17}i$$

Nyní zvolím vhodné q, r takové, aby $\mathcal{V}(r) < \mathcal{V}(5-3i)$. Protože $\frac{16}{17} + \frac{13}{17}i = \frac{1}{17}(16+13i) = \frac{13}{17}(\approx 1+i)$, zvolíme jako q = 1+i a dopočítáme r.

$$(7+i) - (5-3i)(1+i) = 7+i-5-5i+3i-3 = -1-i = r$$

Vidíme, že zjevně platí $\mathcal{V}(-1-i) = ||-1-i|| = 2 < 34 = \mathcal{V}(5-3i)$. Budeme proto pokračovat v algoritmu:

$$\frac{5-3i}{-1-i} = \frac{-5+3i}{1+i} = \frac{(-5+3i)(1-i)}{(1-i)(1+i)} = \frac{-5+5i+3i+3}{2} = \frac{-2+8i}{2} = -1+4i$$

Vidíme, že zbytek po dělení je 0, proto gcd(5-3i,7+i)=-1-i.

2.4 Aplikace

2.4.1 Reed-Solomonovy kódy

Mějme těleso $T := \mathbb{F}_8 = \mathbb{Z}_2[\alpha]/(\alpha^3 + \alpha + 1)$ a Reed-Solomonův (2,4)-kód nad abecedou T pro

$$u_1 = 1$$
, $u_2 = \alpha$, $u_3 = \alpha^2$ a $u_4 = \alpha + 1$.

Tento kód může opravit jednu chybu.

- (a) Zakóduj $(0, \alpha)$.
- (b) Obdrželi jsme kód $(\alpha, \alpha^2, \alpha + 1, \alpha^2)$. Co bylo původní slovo?
- (c) Obdrželi jsme slovo w = (0, 0, 1, 1), ale kanál byl nespolehlivý. Ukažte, že toto slovo nelze dekódovat. Explicitně se po vás chce, abyste:
 - ukázali, že neexistuje kód c s Hammingovou vzdáleností $\delta(c, w) \leq 1$.
 - nalezli dva kódy c_1, c_2 takové, že $\delta(c_1, w) = \delta(c_2, w) = 2$.
- (a) Zprávu $(0, \alpha)$ rozepíšeme jako polynom $f(x) = \sum \alpha_i x^i \implies f(x) = 0x^0 + \alpha x^1 \implies f(x) = \alpha x$. A dopočítáme kód $(f(u_1), f(u_2), f(u_3), f(u_4))$:
 - $f(u_1) = \alpha \cdot u_1 = 1 \cdot \alpha = \alpha$
 - $f(u_2) = \alpha \cdot u_2 = \alpha \cdot \alpha = \alpha^2$
 - $f(u_3) = \alpha \cdot u_3 = \alpha^2 \cdot \alpha = \alpha^3 = -\alpha 1 = \alpha + 1$
 - $f(u_4) = \alpha \cdot u_4 = (\alpha + 1) \cdot \alpha = \alpha^2 + \alpha$

Takže po zakódování dostaneme výsledný kód: $(\alpha, \alpha^2, \alpha + 1, \alpha^2 + \alpha)$.

- (b) Máme kód $c = (c_1, c_2, c_3, c_4) = (\alpha, \alpha^2, \alpha + 1, \alpha^2)$ s maximálně jednou chybou a víme, že $c_i = f(u_i)$, pro $i \in \{1, 2, 3, 4\}$. Potřebujeme určit polynom, z kterého odvodíme původní zprávu, což je zjevně opět $f(x) = \alpha x$. Naše obdržená zpráva splňuje podmínku jedné chyby se zprávou z (a), protože nesedí pouze c_4 . Původní slovo tak je opět $(0, \alpha)$.
- (c) Slovo nejde dekódovat, protože Hammingova vzdálenost pro w je nejméně 2. Víme, že lze opravit nejvýše $\lfloor \frac{d-1}{2} \rfloor$ chyb $\implies d \geq n-k+1 \implies d \geq 4-2+1 \implies d \geq 3$.

Celkem proto platí, že můžeme opravit nejvýše $\lfloor \frac{3-1}{2} \rfloor = 1$ chybu, takže 3 výstupy musí být správné:

- Buď dvě 0 a jedna 1 $\implies f(x) = 0 \implies (0,0,0,0)$, takže $\delta(c,w) > 1$, protože u_3, u_4 neodpovídá
- Nebo dvě 1 a jedna $0 \implies f(x) = 1 \implies (1, 1, 1, 1)$, takže $\delta(c, w) > 1$, protože u_1, u_2 neodpovídá

Slovo proto nelze dekódovat, protože v něm máme více než 2 chyby, tedy $\delta(c, w) \ge 2$ Dva kódy c_1, c_2 s $\delta(c_1, w) = \delta(c_2, w) = 2$:

- $(0,0) \rightsquigarrow f(x) = 0 \rightsquigarrow c_1 = (0,0,0,0)$ a tedy $\delta((0,0,0,0),(0,0,1,1)) = 2$.
- $(1,0) \rightsquigarrow f(x) = 1 \rightsquigarrow c_2 = (1,1,1,1)$ a tedy $\delta((1,1,1,1),(0,0,1,1)) = 2$.

2.4.2 Sdílení klíčů

Navrhněte schéma sdílení tajemství pro sedm účastníků - dva králové a pět eforů tak, že tajemství mohou rekonstruovat buď oba králové, nebo jeden král a všech pět eforů.

- (a) Tajemstvím je konkrétní prvek tělesa T. Volba tělesa je na vás a výběr tajemství je na vás.
- (b) Pravděpodobnost, že někdo náhodně uhodne tajemství, je menší než 2%.
- 1. Inspiroval jsem se učebnicovým příkladem, konkrétně Shamirovým protokolem a zvolil jsem těleso $T = \mathbb{Z}_{2^m}$ s pravděpodobností $\frac{1}{|T|} = (\frac{1}{2})^m$. Aby pravděpodobnost byla < 2%, musíme volit $m \ge 6$. Já jsem se rozhodl pro $\mathbb{Z}_{2^{256}}$. Tajemství je schováno v absolutním členu polynomu, t = f(0).
- 2. Počet klíčů pro 2 krále musí být stejný jako počet klíčů pro 1 krále a 5 eforů.

$$2k = k + 5 \implies k = 5$$

Což by znamenalo 5 klíčů pro krále a 1 klíč pro každého z 5 eforů, tedy celkem 10/15 klíčů pro odhalení tajemství. Vytváříme proto (10, 15)—schéma a volíme tak polynom stupně < 10:

$$f(x) = t + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 + a_5 x^5 + a_6 x^5 + a_7 x^7 + a_8 x^8 + a_9 x^9$$

- 3. Vygenerujeme 15 náhodných hodnot $\alpha_1\dots\alpha_{15}\in\mathbb{Z}_{2^8}$ a ty rozdáme po 5 králům a po 1 eforům.
 - První král dostane vygenerované klíče $f(\alpha_i)$, kde $i \in \{1, \dots, 5\}$
 - Druhý král dostane vygenerované klíče $f(\alpha_i)$, kde $i \in \{6, \dots, 10\}$
 - Každý efor e_j dostane vygenerované klíče: $f(\alpha_i)$, kde $j \in \{1, \dots, 5\}$ a i = 10 + j

Jakmile se sejdou 2 králové, nebo 1 král a 5 eforů, interpolují dokud jim nevyjde polynom < 10. Ve chvíli kdy se tak stane, vezmou absolutní člen, což je tajemství.

Pokud se sejdou v jiném počtu a dají dohromady < 10 klíčů, vyjde jim polynomů stupně < 10 mnoho a pravděpodobnost, že klíč uhodnou bude $\frac{1}{2^8} = 0.4\%$.

2.4.3 RSA

Mějme systém RSA s veřejným klíčem (N, e) = (91, 5).

- (a) Zašifrujte zprávu x = 4 za pomoci klíče (91, 5).
- (b) Protože jsme si vybrali malé N, je možné dešifrovat zprávu bez veřejného klíče. Dešifrujte zprávu y=61. Co bylo původní zprávou?
- (c) Mějme jiný veřejný klíč (N, e) = (169, 5). Najděte d a číslo 0 < x < 169 takové, že po dešifrování veřejným klíčem (169, 5) vrátí RSA hodnotu různou od x.
- (a) Zašifrování probíhá způsobem $y=(x^e) \mod N$. V našem případě pro $x=4,\ e=5,\ N=91$:

$$y = (4^5) \mod 91$$

 $y = 1024 \pmod{91}$
 $y = 23 \pmod{91}$

(b) Pokud chceme zprávu dešifrovat, musíme použít $x = y^d \pmod{N}$, kde d je tajný klíč.

Ten sice neznáme, můžeme ho ale získat vztahem $de \equiv 1 \pmod{\varphi(N)}$, kde $\varphi(N) = (p-1)(q-1)$.

Máme N=91, tedy jediná varianta pro prvočísla jsou p=7, q=13 (a naopak). Proto $\varphi(N)=12\cdot 6=72$

Dosadíme do $de \equiv 1 \pmod{\varphi(N)}$ a dostáváme $5d \equiv 1 \pmod{72}$. A protože $\gcd(5,72) = 1$, můžeme d určit za pomoci euklidova algoritmu:

$$5d \equiv 1 \pmod{72} \quad // \quad 5 \cdot 29 = 145 \equiv 1$$
$$145d \equiv 29 \pmod{72}$$
$$d \equiv 29 \pmod{72} \implies d = 29 + 72k \ (\forall k \in \mathbb{Z})$$

Stačí nám už jen dopočítat x, to uděláme za pomoci $x = (y^d) \mod N$:

$$x = (y^d) \mod N$$
 // $y = 61$, $N = 91$, $d = 29$
 $x = (61^{29}) \mod 91$
 $x = 3$

(c) Máme zadáno N=169 a e=5. A lehce si odvodíme $p=q=13 \implies \varphi(N)=(p-1)^2=12^2=144$. Hledáme d a číslo $x\in(0,169)$ takové, že po dešifrování dostaneme hodnotu různou od x.

Nejprve si určíme d a to opět za pomoci $d \cdot e \equiv 1 \pmod{\varphi(N)}$, kde e = 5 a $\varphi(N) = 144$:

$$5d \equiv 1 \pmod{144} \quad // \quad 5 \cdot 29 = 145 \equiv 1$$

 $145d \equiv 29 \pmod{144}$
 $d \equiv 29 \pmod{144} \implies d = 29 + 144k \ (\forall k \in \mathbb{Z})$

Nyní už stačí jen najít $x \in (0, 169)$ takové, že $x \neq \operatorname{dec}(\operatorname{enc}(x))$:

$$y = (x^e) \mod N$$
 // $x = 2, e = 5, N = 169$
 $y = (2^5) \mod 169$
 $y = 32 \pmod 169$

$$x = (y^d) \mod N$$
 // $y = 32$, $N = 169$, $d = 29$
 $x = (32^{29}) \mod 169$
 $x = 93 \pmod 169 \neq 2$

Takových čísel najdeme hodně, protože RSA nefunguje - kvůli špatně vypočítanému $\varphi(N)$:

Z Eulerovy funkce $\varphi(pq)$ pro prvočísla $p \neq q$ se dá jednoduše odvodit, že $\varphi(pq) = (p-1)(q-1)$.

Pokud ale p=q, tak určujeme $\varphi(p^2)$, což není $(p-1)^2$, ale $\varphi(p^2)=p(p-1)$.

Aby RSA fungovalo pro p=q, museli bychom přepočítat $\varphi(N)=13\cdot 12=156$ a tím pádem i přepočítat d.

3 Grupy

- 3.1 Grupy a podgrupy
- 3.1.1
- 3.1.2
- 3.2 Cyklické grupy a
- 3.2.1
- 3.2.2 .