

MODULE TITLE	Nature Inspired Computation	CREDIT VALUE	15
MODULE CODE	ECM3412	MODULE CONVENER	Dr Zeliang Wang (Coordinator)
DURATION: TERM	1	2	3
DURATION: WEEKS	11 weeks	0	0
Number of Students Takin	g Module (anticipated)	40	

DESCRIPTION - summary of the module content

There are a wide range of tasks, including product design, decision making, logistics and scheduling, pattern recognition and problem solving, which traditional computation finds it either difficult or impossible to perform. However, nature has proven to be highly adept at solving problems, making it possible to take inspiration from these methods and to create computing techniques based on natural systems. This module will provide you with the knowledge to create and apply techniques based on evolution, the intelligence of swarms of insects and flocks of animals, and the way the human brain is thought to process information. This module is appropriate for any student with an interest in natural systems, optimisation and data analysis who has some programming and mathematical experience.

Prerequisite module: ECM1410 and ECM1414 or equivalent

AIMS - intentions of the module

This module aims to provide you with the necessary expertise to create, experiment with and analyse modern nature-inspired algorithms and techniques as applied to problems in industry and industrially motivated research fields such as operations research.

The module also aims to provide you with knowledge of the limitations and advantages of each algorithm and the expertise to determine the appropriate algorithm

INTENDED LEARNING OUTCOMES (ILOs) (see assessment section below for how ILOs will be assessed)

On successful completion of this module, you should be able to:

Module Specific Skills and Knowledge:

- 1 demonstrate a clear understanding of the difficulties associated with certain intelligence-related tasks that we would wish to program computers to do;
- 2 describe in broad terms, the execution of each nature-inspired algorithm; 3 discuss the circumstances and environments in which each algorithm is best employed;
- 4 define the different underlying natural mechanisms of each algorithm and explain how this leads to improved computational performance;
- 5 evaluate a difficult problem and determine the likely best algorithm selection.

Discipline Specific Skills and Knowledge:

6 implement software for addressing real-world optimisation problems with nature-inspired methods;

7 create software for addressing certain complex real-world pattern recognition problems

Personal and Key Transferable / Employment Skills and Knowledge

8 choose appropriate techniques for given problems from a very diverse toolbox of methods;

9 explain how new ideas in science and engineering can emerge from lateral thinking and ideas from other disciplines;

10 digest and communicate succinctly information from publications in the field to individuals unfamiliar with the material.

SYLLABUS PLAN - summary of the structure and academic content of the module

- classical vs. nature-inspired computation;
- evolutionary algorithms (including genetic programming and multi-objective evolutionary algorithms);
- ant colony optimisation;
- particle swarm optimisation;
- swarm intelligence:
- neural computation (including multi-layer perceptrons and self-organising maps);
- artificial life;
- cellular automata;
- immune system methods.

LEARNING AND TEACHING							
LEARNING ACTIVITIES AND TEACHING METHODS (given in hours of study time)							
Scheduled Learning & Teaching Activities	21.00	Guided Independent Study	129.00	Placement / Study Abroad	0.00		
DETAILS OF LEARNING ACTIVITIES AND TEACHING METHODS							
Category		Hours of study time	De	scription			
Scheduled learning and teaching activities		18	Le	ctures			
Scheduled learning and teaching activities		3	Wo	orkshops/tutorials			
Scheduled learning and teaching activities		30	Inc	lividual assessed work			
Guided independent study		99	Gu	ided independent study			

ASSESSMENT					
FORMATIVE ASSESSMENT - for feedback and development purposes; does not count towards module grade					
Form of Assessment	Size of Assessment (e.g. duration/length)	ILOs Assessed	Feedback Method		

SUMMATIVE ASSESSMENT (% of credit)								
Coursework	40 Wr	ritten Exams 60	Practical Exams					
DETAILS OF SUMMATIVE ASSESSMENT								
Form of Assessment	% of Cred	lit Size of Assessment (e.g. duration/length)	ILOs Assessed	Feedback Method				
Written exam – closed book Coursework – programming & report	60 40	2 hours - Summer Exam Period 30 hours	1, 2, 3, 4, 5, 8, 9 1, 5, 10 and one of 6, 7	Oral, on request Written				

DETAILS OF RE-ASSESSMENT (where required by referral or deferral)						
Original Form of Assessment	Form of Re-assessment	ILOs Re-assessed	Time Scale for Re-reassessment			
Written exam – closed book (60%) Coursework – programming & report (40%)	Written exam (60%) (2 hrs) Coursework – programming & report (40%)	1, 2, 3, 4, 5, 8, 9 1, 5, 10 and one of 6, 7	August Ref/Def August Ref/Def			

RE-ASSESSMENT NOTES

Reassessment will be by coursework and/or written exam in the failed or deferred element only. For referred candidates, the module mark will be capped at 40%. For deferred candidates, the module mark will be uncapped.

RESOURCES

INDICATIVE LEARNING RESOURCES - The following list is offered as an indication of the type & level of information that you are expected to consult. Further guidance will be provided by the Module Convener

ELE - http://vle.exeter.ac.uk

Reading list for this module:

Туре	Author	Title		Edition	Publisher	Year	ISBN	Search
Set	Eberhart, R. Shui, Y. and Kenne J.	dy, Swarm Intelligence			Morgan Kaufmann	2001		[Library]
Set	Bishop, C	Neural Networks for Pattern Recog	nition		Clarendon Press	1995		[Library]
Set	Mitchell, M	An Introduction to Genetic Algorith	nms		MIT Press	1998		[Library]
Set	Dorigo, M and Stutzle, T	Ant Colony Optimization			Bradford Book	2004		[Library]
Extende	d Corne, D., Bentley, P. (eds.)	Creative Evolutionary Systems			Morgan Kaufmann	2002	1558606734	[Library]
Extended Goldberg, D Genetic Algorithms in Search, Optimization ar Learning		imization and Machine		Addison Wesley	1989		[Library]	
Extende	d Wolfram; S.	Cellular Automata and Complexity			Perseus Publishing	2002	978020162664	3 [Library]
CREDI	ΓVALUE	15	ECTS VALUE		7.5			
PRE-RI	EQUISITE MODULES	ECM1410, ECM1414						
	QUISITE MODULES							
CO-KL	QUISITE MODULES							
NQF LI	EVEL (FHEQ)	3 (NQF Level 6)	evel 6) AVAILABLE AS DISTANCE LEARNING No					
ORIGIN	I DATE	Tuesday 10 July 2018	LAST REVISION DATE Friday 11 February 2022					
KEY W	KEY WORDS SEARCH Evolutionary computation; neural networks; swarm intelligence; ant colony optimisation; particle swarm optimisation; artifici immune systems.						n; artificial	