Subject Category: METALLURGY AND CERAMICS

UNITED STATES ATOMIC ENERGY COMMISSION

THE TENSILE PROPERTIES OF ZIRCONIUM AT ELEVATED TEMPERATURES

Ву

D. R. Brunstetter

H. P. Kling

B. H. Alexander

Approved by public releases

Destribution Unland

April 4, 1950

Sylvania Electric Products, Inc. Bayside, New York

Technical Information Service, Oak Ridge, Tennessee

19950811 124

UNCLASSIFIED

DTIC QUALITY INSPECTED 5

Date Declassified: December 5, 1955.

This report was prepared as a scientific account of Government-sponsored work and is made available without review or examination by the Government. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission makes any warranty or representation, express or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights. The Commission assumes no liability with respect to the use of, or for damages resulting with respect to the use of any information, apparatus, method, or process disclosed in this report.

This report has been reproduced directly from the best available copy.

Issuance of this document does not constitute authority for declassification of classified material of the same or similar content and title by the same authors.

Printed in USA, Price 20 cents. Available from the Office of Technical Services, Department of Commerce, Washington 25, D. C.

NYO-1126

THE TENSILE PROPERTIES OF ZIRCONIUM AT ELEVATED TEMPERATURES

Вy

D. R. Brunstetter

H. P. Kling
B. H. Alexander

April 4, 1950

20	000	insi i	ৈয়	ngaran gengapapapapapapapapapa	
81		arti.	SP Z		
	TO I		r		*
,		inor Levi		أسا	averators was value
) ಕುಪಿಸಿ 	in braine	na kanana		MA - LAKE ALTON THE AL	s . ranna Britis
					man t t for his
153			15	*	and more reposite
5	-1327	e VIII	i di y	G erteil	
7 -55.00	د العدد المسلود الا الاست				
100		ý. ··	្ន	V.	
	.)				
W	()		ŧ		

Sylvania Electric Products, Inc.

Bayside, New York

ABSTRACT

Values of yield strength, tensile strength, elongation, and Young's Modulus have been determined on 0.015* diameter zirconium wire at temperatures ranging from 70° F. to 1000° F.

INTRODUCTION:

In view of the fact that possible applications of zirconium metal involve its use at elevated temperatures, a knowledge of its elevated temperature mechanical properties will be of value. Although the mechanical properties of zirconium have been investigated rather thoroughly at room temperature, a relatively small amount of work has been done at elevated temperatures. Boulger(1) summarizes the available short time tensile properties of zirconium. These are given in Table I.

TABLE I

Material	Atmosphere	Test Temp., oc	Elong.	Red. in Area, %	Tensile Strength,psi
Iodide (extruded)	air argon argon argon helium nitrogen helium nitrogen	20 250 500 750 500 500 700	23.7 32.7 39.7 99.6	39.7 55.1 68.0 97.8	65,000 40,000 28,500 8,000 24,000 15,000 10,000
	helium nitrogen	800 800			6,600 500

Elevated temperature hardness values for zirconium produced by reduction of the chloride by magnesium have been reported by Hayes, et al⁽²⁾. Values of Brinell hardness taken from a plot of hardness versus temperature are as follows:

TABLE II

Test	Brinell Hardness of		
Temp., oC	Cast Zr	Rolled Zr	
20 100 200 250 300 400 500 600	120 95 55 45 40 35 25	200 180 125 110 95 75 50 30	

Boulger⁽¹⁾ gives the following data on the room temperature tensile properties of zirconium:

TABLE III

	A	В	С
Yield strength (0.2% offset) (psi)	15,000	69,000	ग्र _° 200
Ultimate strength (psi)	34,500	86 ,000	39,,500
Reduction in area, %	26	34	35
Elongation, % (four diameter gage length)	28	17	33
Rockwell hardness	B-25 F-70	B-87 F-105	B-42 F-83

Note: A - 0.25 diameter rod machined from asdeposited bars

B - 0.125* diameter rod, reduced from above by cold swaging 65%

C - Same as $B_{\mathfrak{p}}$ annealed at $705^{\scriptsize O}$ C. in vacuo

Material C, which has been cold worked and annealed has higher tensile strength, as well as higher elongation and reduction in area, than has the material in the as-deposited condition. This effect is usually noted in material worked down to small sizes.

Table IV shows the effect of annealing temperature on tensile strength and elongation; very marked changes in the curves of tensile strength and elongation versus tempering temperature occur between 400° C. and 500° C., indicating that the recrystallization temperature lies in this range.

TABLE IV

	Elong.	Ultimate Strength, psi
0.02* wire, cold swaged **	3 2-1/2 12 12-1/2 12-1/2 11 15-1/2 15	115,000 101,000 56,000 51,000 14,000 13,500 13,000
0.02* wire*, hard drawn tempered 455° C. annealed 790° C.	2 5-1/2 14	128 ,80 0 93,500 61,000

Note: Elongation values for 5.9% gage length.
All materials processed from iodide crystal bar.

^{*} Different investigation.

The potent hardening effect of small amounts of impurities (probably mainly oxygen and nitrogen) is shown in Table V. The tensile strength of magnesium-reduced zirconium is about 75% higher than that of iodide zirconium; this is probably due to the greater amount of impurities present in the magnesium reduced material.

TABLE V

Material	Processing Treatment	Red. in Area, %	Elong.	Yield Strength	Ultimate Strength
Iodide Zr (Rockwell B-38)	As recid	40.0	13.6	18,750	40,750
	Vacuum melted in graphite, cast, extruded at 800°C.	39.7	23.7		64,750
	As above, extruded at 1060° C.	46.2	21.5	35,250	56,5(10
Mg-reduced Zr Rockwell B-84	As rec'd	31.4	13.7	43,500	68,500
	As record metal canned, extruded at 800° C.	43.8	15.3	42,750	80,250
	As above, extruded at 1060° C.	43.7	19.9	47,750	79,500

EXPERIMENTAL:

A sketch of the furnace designed for these tests is shown in Fig. 1. The furnace proper consisted of a one inch diameter stainless steel tube having an insulating layer of asbestos paper scaked in water glass on the outer surface. On this was wound a nichrome heating element. Over this winding was applied a coating of alundum cement. Rather than attempting to remove temperature gradients by taper winding the furnace, the required constant temperature was obtained by applying varying thicknesses of alundum cement. By this method, a central zone six inches long was obtained which varied $\stackrel{\cdot}{}$ 2° F. The protective atmosphere, in this case argon, was preheated to the testing temperature by passing it through the gas heating furnace shown in the lower right of the figure.

The tank argon used as protective atmosphere was purified by passing it through two drying towers filled with magnesium perchlorate and over uranium chips maintained at $650^{\circ}-700^{\circ}$ C.

The testing furnace was gas-tight at all points except where the upper grip passed loosely through the top of the furnace. The argon was exhausted under positive pressure through this annular hole at a flow rate of approximately 3 to 5 cubic feet per hour, preventing entrance of air. The specimens were slightly darkened after testing, indicating that a small amount of oxidation occurred probably just after the furnace was closed after mounting a new specimen.

The material tested was 0.015 inch diameter zirconium wire produced from iodide crystal bar by Foote Mineral Co. (Lot No. 910-65). Its processing history was as follows:

TABLE VI

- 1. Crystal bar cold rolled to 0.125 inch
- 2. Vacuum annealed at 1250° F. for 1 minute
- 3. Cold swaged through 0.125 inch die
- 4. Sheathed in brass
- 5. Swaged to 0.086 inch
- 6. Sheathed wire drawn to 0.0253 inch
- 7. Brass sheath removed in HNO3
- 8. Vacuum annealed on spools at 1300° F. for 45 minutes.

Room temperature tensile properties of this material are (average of six values):

Yield Strength - 22,000 psi Tensile Strength - 45,000 m Elongation (4m gage) - 18%

These are about the values to be expected from a study of the data in Table IV, showing 0.02 inch wire annealed at 700° C. (cur material annealed at 704° C.) to have a tensile strength of 44,000 psi and an elongation in 5.9% gage length of 12-1/2%. The material used in this investigation, therefore, appears to be about fully annealed. It is known that this material represents part of a low hafnium content lot.

The tensile testing machine used in this investigation was a Tinius Olsen model developed for Sylvania Electric Products for use in testing wire. Its low load ranges (1000 and 2500 grams full scale) and high elongation magnification (10 to 20 times) were designed for precise measurements.

Special arrangements had to be made to grip this small diameter wire, inasmuch as the standard wire grips were too large to fit inside the furnace. This difficulty was overcome by using collets of one inch lengths of copper tubing approximately 0.080% C.D. and 0.020% I.D.; these were crimped on the ends of the specimens and in turn were clamped into a 3/32% diameter hole in the grips by means of set screws.

Four inch gage length specimens were used for determination of tensile strength, yield strength (0.2% offset), and elongation, while five inch gage length specimens were used for the determination of Young's Modulus. Testing procedure was as follows: The furnace (at the desired temperature) was raised so that the grips were exposed. The specimen was clamped in the grips as quickly as possible, and the furnace was lowered so that the taper joints formed an air tight seal. (These joints were lubricated with a silicone stop-cock grease which remained quite viscous throughout the tests). When the temperature, as read on the chromelslumel thermocouple near the center of the test specimen, showed the temperature to be constant at the desired level for five minutes, the test was run. Tests made to determine tensile strength, yield strength, and elongation were made at head rates of 0.2, 0.5, and 2.0 inches per minute, corresponding to strain rates on four inch specimens of 0.05, 0.125, and 0.50 inch/inch/minute. Tests made to determine Young's Modulus were made at a head rate of 0.025 inch per minute, corresponding to a strain rate on a five inch specimen of 0.005 inch/inch/minute. The tests for this determination were made in much the same manner as the others. However, the specimens were not run to fracture, and four determinations were made on each specimen.

DISCUSSION OF RESULTS:

The results of our tests are tabulated below:

TABLE VII

	STRAIN RATE = 0.05 INCH/INCH/MINUTE		
Test Temp. of	Tensile Strength	Yield Strength	Elongation % in 4"
remp. or	psi	psi	76 LN 4"
70	45100	20700	19.3
	45100	20700	18.0
200	40800	21900	16.8
	41400	21300	16.3
400	32400	18300	15.3
	33200	18800	15.0
600	25700	15200	14.3
	25800	15400	13.6
800	19100	13500	13.6
	18600	13600	13.9
1000	10100	9400	32.8
	10500	9000	44.5
	STRAIN RATE	= 0.125 INCH/INCH/M	INUTE
70	45500	22500	19.9
	45400	2111400	18.3
200	38800	20400	17.9
	40600	21700	18.3
400	33500	18900	16.5
	33600	19000	16.5
600	268 00	15800	14.0
	26200	15500	14.5
800	20400	14000	14.3
	20200	14500	15.8
1000	11600	9600	28.8
	11500	10700	214.8

TABLE VII (cent d)

	STRAIN RATE = 0.50 INCH/INCH/MINUTE		
Test	Tensile Strength	Yield Stre ngth	Elongation
Temp. of	psi	psi	% in 4°
70	46300	23800	17.8
	46300	20100	17.3
200	41400	21900	17.3
	42000	23800	17.8
400	34000	19800	15.5
	34100	19700	15.8
600	27200	19600	12 . 4
	28200	20600	14.9
800	20400	15400	12.4
	20800	15800	13.1
1000	1l,000	11300	23.3
	1l,100	11600	22.3

TABLE VIII

STRAIN RATE = 0.005 INCH/INCH/MINUTE

Test Temp. °F	Young's Modulus psi
70	9.3 x 10 ⁶
200	7.9 x 10 ⁶
400	5.9 x 10 ⁶
600	5.6 x 10 ⁶
800	5.6 x 10 ⁶
1000	4.2 x 10 ⁶

These data are shown graphically in Figures 2 through 4, plotting tensile strength and yield strength (Fig. 2), elongation (Fig. 3), and Young's Modulus (Fig. 4) versus temperature. Both tensile strength and yield strength decrease with increasing temperature, with a more or less linear relationship appearing between the strength value and temperature. It is interesting to note in Fig. 2 that the tensile strength decreases much more rapidly with increasing temperature than does yield strength, until at 1000° F. the values are almost the same. The lack of strain hardening, that is, little or no difference between yield and tensile strengths, indicates that the material is recrystallizing at the same time that it is being strained. It should also be noted that increasing the strain rate appears to increase the strength values, although the effect is not marked in the ranges of strain rates investigated.

Elongation may be seen to decrease with increasing temperature, at least up to the range $800^{\circ}-1000^{\circ}$ F. There the elongation increased very rapidly with increasing temperature; the variation in elongation values at 1000° F. indicates that the material is in a somewhat unstable condition, which may be associated with the recrystallization phenomenon discussed in the previous paragraph.

The graph of Young's Modulus versus temperature again shows a decrease with increasing temperature. Our value for Young's Modulus at room temperature (9.3 x 10^6 psi) is somewhat lower than previously reported values, which range from 11 to 14×10^6 psi. Battelle has reported a linear decrease in Young's Modulus from 13.2 x 10^6 psi at 70° F. to 10.6×10^6 psi at 600° F.

CONCLUSIONS:

Tensile tests on 0.015 inch diameter annealed zirconium wire in the temperature range 70° - 1000° F, show that:

- 1. Tensile strength decreases linearly from approximately 45,000 psi at 70° F. to 10,000 psi at 1000° F.
- 2. Yield strength decreases from about 20,000 psi at 70° F. to 9000 psi at 1000° F.
- 3. Elongation decreases slightly from its room temperature value of 18% as temperature increases. In the range $800^{\circ} 1000^{\circ}$ F, the elongation increases to about 30%.
- 4. Young's Modulus decreases in a curvilinear manner from 9.3 x 10° at 70° F. to 4.2 x 10° at 1000° F.

The effect of degree of preferred orientation on Young's Modulus is being studied at present; a metallographic study of recrystallization during testing at 1000° F. is also being made. Results will be reported as they are available.

REFERENCES

- F. Boulger, "The Properties of Zirconium", BMI T-10, March 15, 1949.
- 2. E.T. Hayes, E.D. Dilling and A.H. Roberson, "Fabrication and Mechanical Properties of Ductile Zirconium", American Society for Metals preprint No. 32, 1949.

FIG-1.

