models with mice

Contents

	1
barplot of demographics	1
Can do something with accept, reject and reluctantly accept.	1
FORMICE DATASET	1
Kahan scale MAR condition and missing data pattern Mifa EFA Pretty Table merging of imputation Kahan Factor scores (mean across all imputations) corelation table Kahan scater plot from EFA scores Alpha test Nuclear: Eco-pol scale MAR condition and missing data pattern Mifa Factor Scores (mean across all imputations) Alpha test Radar map Pretty table: Nuclear EFA	1 1 1 2 4 4 4 4 4 4 4 4 4 4 4 5 6
State Ns before MIFA	8
State Ns after MIFA Nuclear: Ecopol (Mean across imputations) Binding datasets LMs: final imputed datasets	8
correlation table	8
interaction vars tablle	8
Stargazer : all LMs	9
	L 1 1 1

Bar plot: STATE X PDEVELOP

barplot of demographics

Can do something with accept, reject and reluctantly accept.

FORMICE DATASET

Kahan scale

MAR condition and missing data pattern

Mifa

Table 1: Table 1: EFA on adapted Cultural Cognition Scale from Kahan et $\operatorname{al}(2007)$

Code	Items	Egalitarianis@ommunita	ar @oinm unalityUni	queness C	omplexity
K_ERADEQ1	(E)We need to dramatically reduce inequalities between the rich and the poor.	0.653	0.427	0.573	1.002
K_ERADEQ2	(E)We need to dramatically reduce inequalities between men and women	1.0.593	0.352	0.648	1.004
K_EWEALTH	(E)Our society would be better off if the distribution of wealth was more equal.	0.539	0.314	0.686	1.160
K_EDISCRIM	(E)Discrimination against minorities is still a very serious problem in our society.	0.512	0.314	0.686	1.385
K_HEQUAL	(H)We have gone too far in pushing equal rights in this country.	0.434	0.206	0.794	1.192
K_HREVDIS1	(H)Nowadays it seems like there is just as much discrimination against upper castes as there is against Dalits.	0.427	0.185	0.815	1.036
K_IINTRFER	(I)The government interferes far too much in our everyday lives.		0.074	0.926	1.713
K_IPRIVACY	(I)The government should stop telling people how to live their lives.		0.021	0.979	1.317
K_SLIMCHOI	(C)The government should put limits on the choices individuals can mak so they don't get in the way of what's good for society.	e 0.745	0.635	0.365	1.282
K_SPROTECT	(C)The government should do more to advance society's goals, even if that means limiting the freedom and choices of individuals.	0.635	0.457	0.543	1.266
K_SHARM	(C)Sometimes the government needs to make laws that keep people from hurting themselves.	0.466	0.332	0.668	1.829
K_IPROTECT	(I)It's not the government's business to try to protect people from themselves.		0.003	0.997	1.193

Table 2: Table 2: Eigenvalues and Variance Explained for Cultural Cognition Scale

Property	Egalitarianis@om	munitarianism
SS loadings	2.021	1.301
Proportion Var	0.168	0.108
Cumulative Var	0.168	0.277

Table 2: Table 2: Eigenvalues and Variance Explained for Cultural Cognition Scale

Property	Egalitarianis@on	nmunitarianism
Proportion Explained	0.608	0.392
Cumulative Proportion	0.608	1.000

merging of imputation

Kahan Factor scores (mean across all imputations)

corelation table

Kahan scater plot from EFA scores

Alpha test

Nuclear: Eco-pol scale

MAR condition and missing data pattern

Mifa

Factor Scores (mean across all imputations)

Alpha test

Locartional de (nuclear), Pro Public ownership

Community pride(nuclear) 0.0 Environment over Development

Job opportunities(nuclear) 0.2 Pro Localeconomy

Pro Globaleconomy Pro Decentralisation

Limits on Wealth Displacement risk(nuclear)

Pro Large Industries Pollution risk(nuclear)

Pro Centralisation Health risk(nuclear)

Anti Mechanisation of work Spoils Natural Beauty(nuclear)

Anti-Regulations Reliance on government(nuclear)

(qoleveb

Table 3: Table 3: EFA on Eco-Pol Values Scale

code	Items	Ndevelop	Pdevelop	CommunalityUniqu	ueness	Complexity
National development(nuclear)	Nuclear energy pushes forward the country's development	0.681		0.544	0.456	1.338
Local prosperity(nuclear)	Nuclear energy brings economic prosperity to the surrounding regions	0.593		0.407	0.593	1.307
National pride(nuclear)	Nuclear energy is a mark of pride for our nation	0.571	-0.472	0.548	0.452	1.932
Community pride(nuclear)	I would be proud if my community used nuclear energy	0.552	-0.419	0.480	0.520	1.866
Job opportunities(nuclear)	Nuclear energy will bring jobs to the local community	0.505		0.262	0.738	1.050
Pro Globaleconomy	Foreign companies have led to a range of benefits for the Indian people and society	0.481		0.244	0.756	1.108
Limits on Wealth	A limit should be put to how much wealth a person can amass	0.419		0.219	0.781	1.466
Pro Large Industries	Large scale industries are required for the development of the country that will benefit everyone	0.415		0.202	0.798	1.338
Anti Mechanisation of work	Rapid mechanization of work is taking away jobs from workers in this country	0.409		0.258	0.742	1.839
Pro Centralisation	Laws and policies would be implemented more smoothly if more power lay with the central government			0.169	0.831	1.114
Anti Regulations	There is too much red-tape and the government should not interfere with businesses and industries	1		0.159	0.841	1.009
Anti Large Industries	Large corporations are destroying the local industries in India and benefiting only a handful of people			0.224	0.776	1.859
Development over Environment	Economic growth and creating jobs should be prioritized over environmental protection			0.177	0.823	1.639
Pro Private ownership	All businesses and industries should be owned privately			0.122	0.878	1.467
Less Reliance on government(nuclear)	I don't like the idea that I have to rely on the government for electricity from nuclear energy			0.074	0.926	1.008
Health risk(nuclear)	Nuclear energy poses a great risk to the health of people living around it		0.639	0.412	0.588	1.015
Spoils Natural Beauty(nuclear)	Nuclear energy spoils the natural beauty of the landscape		0.639	0.410	0.590	1.005
Pollution risk(nuclear)	Nuclear energy increases pollution of air/water/land		0.602	0.363	0.637	1.000
Displacement risk(nuclear)	Nuclear energy is leading to displacement of people from their land		0.567	0.359	0.641	1.232

Table 3: Table 3: EFA on Eco-Pol Values Scale

code	Items	Ndevelop	Pdevelop	CommunalityUnio	queness	Complexity
Environment over Development	Polluting industries that spoil the environment should be shut down even if it costs people their jobs	l	0.527	0.288	0.712	1.075
Pro Public ownership	The government should own most large businesses and industries		0.477	0.229	0.771	1.005
Pro Regulations	Regardless of ownership, the government should pass strong regulation and implement them	S		0.284	0.716	1.990
Pro Decentralisation	Local politicians shouldn't have to ask permission from the central government to implement policies			0.080	0.920	1.001
Pro Localeconomy	India would be better off if foreign companies didn't come to here			0.066	0.934	1.019

Table 4: Table 4: Eigenvalues and Variance Explained Eco-Pol Scale $\,$

Property	Ndevelop	Pdevelop
SS loadings	3.393	3.184
Proportion Var	0.141	0.133
Cumulative Var	0.141	0.274
Proportion Explained	0.516	0.484
Cumulative Proportion	0.516	1.000

State Ns before MIFA

State Ns after MIFA

Nuclear: Ecopol (Mean across imputations)

Binding datasets

 ${
m LMs}:$ final imputed datasets

correlation table

interaction vars tablle

Stargazer : all LMs

% Table created by stargazer v.5.2.3 by Marek Hlavac, Social Policy Institute. E-mail: marek.hlavac at gmail.com % Date and time: Sun, Mar 24, 2024 - 13:31:28

	+00000		D = I = I = I = I	5.0
	(1)	(2)	Risky_Nuclear (3)	(4)
$\overline{ ext{U}} ext{ppercaste}$	$0.029 \\ (0.092)$	-0.194^{**} (0.086)	-0.185^{**} (0.086)	-0.178^{**} (0.086)
Male	0.148 (0.093)	$0.116 \\ (0.091)$	0.116 (0.090)	0.113 (0.090)
Hindu	-0.248** (0.105)	-0.081 (0.098)	-0.096 (0.098)	-0.082 (0.097)
urban_ruralUrban	-0.104 (0.090)	$0.108 \\ (0.092)$	0.094 (0.092)	$0.098 \\ (0.092)$
Age	-0.098** (0.038)	-0.150*** (0.036)	-0.151^{***} (0.036)	$-0.149^{***} (0.036)$
StateWest Bengal		1.360*** (0.120)	1.280^{***} (0.126)	$1.228^{***} \\ (0.126)$
StateRajasthan		$0.159 \\ (0.131)$	$0.116 \\ (0.134)$	$0.065 \\ (0.134)$
StateTamil Nadu		-0.025 (0.120)	$-0.105 \\ (0.127)$	-0.059 (0.128)
${\bf State Uttar\ Pradesh}$		-0.066 (0.159)	-0.097 (0.161)	-0.104 (0.162)
Communitarian			-0.030 (0.041)	-0.036 (0.041)
Egalitarian			$0.118^{***} $ (0.040)	$0.091^{**} \\ (0.041)$
Pdevelop				$0.122^{***} \\ (0.038)$
Ndevelop				$0.027 \\ (0.038)$
StateWest Bengal:Communitarian				
StateRajasthan:Communitarian				
StateTamil Nadu:Communitarian				
StateUttar Pradesh:Communitarian				
StateWest Bengal:Egalitarian				
StateRajasthan:Egalitarian				
StateTamil Nadu:Egalitarian				
StateUttar Pradesh:Egalitarian	11			
StateWind Day on I.D. Jamelan				

StateWest Bengal:Ndevelop

StateUttar Pradesh:Pdevelop

StateTamil Nadu:Pdevelop

StateRajasthan:Pdevelop

StateWest Bengal:Pdevelop

Paper 2

NUCLEAR

only charcateristics of tech

Mifa: only charcateristics of tech

```
## Factor Analysis using method = minres
## Call: psych::fa(r = miecopol2$cov_combined, nfactors = 2, rotate = "varimax")
## Standardized loadings (pattern matrix) based upon correlation matrix
                  item
                        MR1
                              MR2
                                     h2
                                          u2 com
                     8 0.80
                              0.651 0.35 1.0
## DEVNUCLEAR
## NPRIDENUCLEAR
                     7 0.71
                                  0.567 0.43 1.2
## PROSPERNUCLEAR
                    9 0.71
                                  0.503 0.50 1.0
## PRIDENUCLEAR
                   6 0.66
                                  0.499 0.50 1.3
## JOBSNUCLEAR
                    4 0.48
                                  0.264 0.74 1.3
                  10
## RELYNUCLEAR
                                   0.071 0.93 1.1
## HEALTHNUCLEAR
                    3
                              0.83 0.686 0.31 1.0
## POLLUTENUCLEAR 2
                             0.78 0.612 0.39 1.0
## BEAUTYNUCLEAR
                   5
                              0.66 0.441 0.56 1.0
                  1
                              0.58 0.342 0.66 1.0
## DISPLACENUCLEAR
##
                         MR1 MR2
##
                        2.40 2.23
## SS loadings
## Proportion Var
                        0.24 0.22
## Cumulative Var
                        0.24 0.46
## Proportion Explained 0.52 0.48
## Cumulative Proportion 0.52 1.00
## Mean item complexity = 1.1
## Test of the hypothesis that 2 factors are sufficient.
## df null model = 45 with the objective function = 3.43
## df of the model are 26 and the objective function was 0.3
##
## The root mean square of the residuals (RMSR) is 0.05
## The df corrected root mean square of the residuals is 0.06
## Fit based upon off diagonal values = 0.98
## Measures of factor score adequacy
                                                    MR1 MR2
## Correlation of (regression) scores with factors
                                                   0.91 0.91
## Multiple R square of scores with factors
                                                   0.84 0.84
## Minimum correlation of possible factor scores
                                                   0.67 0.67
```

Factor Scores (mean across all imputations)

LMs: characteristics of tech

Stargazer: characteristics of tech

% Table created by stargazer v.5.2.3 by Marek Hlavac, Social Policy Institute. E-mail: marek.hlavac at gmail.com % Date and time: Sun, Mar 24, 2024 - 13:41:01

١ 1	1 1	1	0
 • I	n	Δ	6

	18	able b:	
		Dependent variable:	37.1
	Risky_Nuclear	Ben_Nuclear	Netben_Nuclear
TT	(1)	$ \begin{array}{c} (2) \\ -0.234^{***} \end{array} $	(3)
Uppercaste	-0.163*		-0.102 (0.125)
	(0.086)	(0.077)	(0.125)
Male	0.096	-0.018	-0.091
111610	(0.090)	(0.080)	(0.132)
	,	, ,	` ,
Hindu	-0.093	0.279^{***}	0.422^{***}
	(0.097)	(0.088)	(0.141)
A	-0.139***	0.059*	0.166***
Age		0.000	
	(0.036)	(0.032)	(0.053)
urban ruralUrban	0.097	0.061	-0.063
	(0.092)	(0.086)	(0.133)
	,	,	, ,
StateRajasthan	-0.022	-0.252^{**}	-0.197
	(0.138)	(0.122)	(0.200)
StateTamil Nadu	-0.078	0.059	0.073
State Faim Trade	(0.130)	(0.120)	(0.190)
	(0.190)	` '	,
StateUttar Pradesh	-0.148	-0.555***	-0.461^{*}
	(0.161)	(0.153)	(0.237)
CtataWest Dansel	1.169***	-0.869***	-2.025^{***}
StateWest Bengal	(0.129)	-0.809 (0.121)	-2.025 (0.188)
	(0.129)	(0.121)	(0.166)
DevPride	0.131***	0.020	-0.105^*
	(0.039)	(0.036)	(0.056)
0 10	0.0=0#	0.04.04944	0.1.101/1
SocialCosts	0.070*	0.212***	0.140**
	(0.040)	(0.037)	(0.058)
Egalitarian	0.096**	0.365^{***}	0.260***
<u> </u>	(0.041)	(0.036)	(0.059)
	,	, ,	,
Communitarian	-0.049	0.091**	0.108^{*}
	(0.041)	(0.038)	(0.060)
Constant	3.545***	3.292***	-0.237
Ollstallt	(0.143)	(0.131)	(0.208)
	(0.149)	(0.131)	(0.208)
Observations	839	898	790
\mathbb{R}^2	0.215	0.247	0.248
Adjusted R ²	0.203	0.236	0.235
Residual Std. Error	1.088 (df = 825)	1.015 (df = 884)	1.537 (df = 776)
F Statistic	$17.375^{***} (df = 13; 825)$	$22.266^{***} (df = 13; 884)$	$19.691^{***} (df = 13; 776)$
\overline{Note} :	, , ,	*p<	<0.1; **p<0.05; ***p<0.01
		P	, r (5.55, r (5.62

LMs: Nuclear all eco-pol

Solar

Solar: MAR condition and missing data pattern

Solar : EFA Mifa all eco-pol

Solar 2: EFA dataset: only charcateristics of tech

SOLAR2: EFA Mifa: chaaracteristics of tech

only tech characters : Factor Scores (mean across all imputations)

LMs: only characteristics of technology

${\bf Stargazer: EFA\ characteristics\ of\ technology}$

% Table created by stargazer v.5.2.3 by Marek Hlavac, Social Policy Institute. E-mail: marek.hlavac at gmail.com % Date and time: Sun, Mar 24, 2024 - 13:48:52

Table 7:

	T	able 7:	
		Dependent variable:	
	Risky_Solar	Ben_Solar	Netben_Solar
	(1)	(2)	(3)
Uppercaste	-0.069	-0.066	-0.005
	(0.058)	(0.058)	(0.082)
Male	-0.048	-0.005	0.060
	(0.061)	(0.061)	(0.088)
Hindu	-0.052	0.235***	0.308^{***}
	(0.069)	(0.069)	(0.098)
Age	0.012	-0.009	-0.022
0	(0.025)	(0.025)	(0.036)
urban ruralUrban	-0.140^{**}	0.074	0.228**
	(0.069)	(0.070)	(0.099)
StateRajasthan	-1.507^{***}	0.556^{***}	2.078***
v	(0.093)	(0.094)	(0.133)
StateTamil Nadu	-1.568***	0.395***	2.038***
	(0.096)	(0.095)	(0.137)
StateUttar Pradesh	-1.221^{***}	0.211^{*}	1.435***
	(0.118)	(0.120)	(0.169)
StateWest Bengal	-1.151^{***}	0.350***	1.519***
	(0.095)	(0.097)	(0.136)
DevPride	-0.019	0.032	0.050
	(0.029)	(0.029)	(0.041)
SocialCosts	0.058^{*}	0.150***	0.090**
	(0.029)	(0.030)	(0.042)
Egalitarian	-0.065^{**}	0.106***	0.185***
	(0.029)	(0.029)	(0.041)
Communitarian	-0.001	-0.008	-0.006
	(0.029)	(0.029)	(0.041)
Constant	2.854***	3.332***	0.448***
	(0.104)	(0.104)	(0.149)
Observations	1,040	1,067	1,028
\mathbb{R}^2	0.382	0.144	0.394
Adjusted R ²	0.374	0.133	0.386
Residual Std. Error F Statistic	$\begin{array}{c} 0.844 \text{ (df} = 1026) \\ 48.811^{***} \text{ (df} = 13; 1026) \end{array}$	0.855 (df = 1053) 13.625*** (df = 13; 1053)	$ \begin{array}{l} 1.196 \text{ (df} = 1014) \\ 50.661^{***} \text{ (df} = 13; 1014) \end{array} $
Note:	(41 10, 1020)		0<0.1; **p<0.05; ***p<0.01
11000.		ŀ	5 CO.1, P CO.00, P CO.01

Solar: Mifa with CFA (Pdevelop and Ndevelop)

Pretty Table: CFA solar

Table 8: Confirmatory Factor Analysis(CFA) on eco-pol scale (Solar Energy)

Scale	Items	Loadings	Standard Error	zvalue	pvalue	ci.lower	ci.upper	std.lv	std.all
People Centered Development	Solar energy pushes forward the country's development	0.439	0.067	6.596	0.0000000	0.3085364	0.5694354	0.4389859	0.9758843
People Centered Development	I would be proud if my community used Solar energy	0.441	0.067	6.527	0.0000000	0.3082200	0.5727821	0.4405011	0.9705365
People Centered Development	Solar energy is a mark of pride for our nation	0.426	0.066	6.497	0.0000000	0.2973648	0.5543043	0.4258345	0.9681746
People Centered Development	Solar energy brings economic prosperity to the surrounding regions	0.395	0.063	6.278	0.0000000	0.2719976	0.5189325	0.3954651	0.9505951
People Centered Development	Solar energy will bring jobs to the local community	0.221	0.067	3.299	0.0009711	0.0898747	0.3530208	0.2214478	0.6111127
Nationalist Development	Solar energy poses a great risk to the health of people living around it	0.397	0.060	6.610	0.0000000	0.2794652	0.5150271	0.3972461	0.9779440
Nationalist Development	Solar energy spoils the natural beauty of the landscape	0.365	0.064	5.712	0.0000000	0.2396025	0.4899127	0.3647576	0.9016447
Nationalist Development	Solar energy is leading to displacement of people from their land	0.344	0.064	5.343	0.0000001	0.2177435	0.4700364	0.3438900	0.8660703
Nationalist Development	Solar energy increases pollution of air/water/land	0.445	0.067	6.592	0.0000000	0.3126520	0.5772436	0.4449478	0.9765035
Nationalist Development	Polluting industries that spoil the environment should be shut down even if it costs people their jobs	-0.176	0.089	-1.966	0.0493382	-0.3507843	-0.0005087	-0.1756465	-0.3892770

CFA SCORES (mean across all imputations)

CFA LMs: Risk, Ben, Net Ben X Pdevelop Ndevelop

Stargazer: CFA Pdevelop Ndevelop

% Table created by stargazer v.5.2.3 by Marek Hlavac, Social Policy Institute. E-mail: marek.hlavac at gmail.com % Date and time: Sun, Mar 24, 2024 - 13:55:06

Table 9:

	T	able 9:			
	Dependent variable:				
	Risky Solar	Ben_Solar	Netben Solar		
	$(\overline{1})$	$\overline{(2)}$	$\overline{(3)}$		
Uppercaste	-0.067	-0.100^*	-0.038		
11	(0.057)	(0.057)	(0.081)		
Male	-0.036	-0.015	0.044		
	(0.061)	(0.060)	(0.087)		
Hindu	-0.056	0.226***	0.296***		
	(0.068)	(0.067)	(0.096)		
urban ruralUrban	-0.149**	0.059	0.220**		
	(0.069)	(0.068)	(0.098)		
Age	0.016	0.011	-0.012		
0*	(0.025)	(0.024)	(0.035)		
StateRajasthan	-1.436^{***}	0.367***	1.826***		
a control of the cont	(0.098)	(0.097)	(0.139)		
StateTamil Nadu	-1.398***	0.366***	1.816***		
	(0.107)	(0.104)	(0.151)		
StateUttar Pradesh	-1.160***	0.009	1.182***		
	(0.122)	(0.122)	(0.173)		
StateWest Bengal	-1.055***	0.243**	1.326***		
O	(0.098)	(0.098)	(0.140)		
Communitarian	-0.016	-0.009	0.007		
	(0.029)	(0.028)	(0.041)		
Egalitarian	-0.052^{*}	0.111***	0.171***		
	(0.028)	(0.028)	(0.040)		
Pdevelop	0.052***	-0.010	-0.061^{***}		
•	(0.014)	(0.013)	(0.019)		
Ndevelop	0.034**	0.115***	0.079***		
•	(0.014)	(0.013)	(0.020)		
Constant	2.266***	2.513***	0.240		
	(0.180)	(0.176)	(0.254)		
Observations	1,040	1,067	1,028		
\mathbb{R}^2	0.390	0.184	0.409		
Adjusted R ²	0.382	0.174	0.401		
Residual Std. Error	0.839 (df = 1026)	0.834 (df = 1053)	1.181 (df = 1014)		
F Statistic	$50.430^{***} (df = 13; 1026)$	18.305^{***} (df = 13; 1053)	53.912^{***} (df = 13; 1014)		
\overline{Note} :	, , , , , ,	, ,	<0.1; **p<0.05; ***p<0.01		
		P	, P, P		

COAL

Coal:MAR condition and missing data pattern

Mifa: EFA all ecopol

Dataset: only tech characters
EFA Mifa: only tech characters
CFA Mifa: Pdevelop n Ndevelop

Scale	Items	Loadings	Standard Error	zvalue	pvalue	ci.lower	ci.upper	std.lv	std.all
People Centered Development	I would be proud if my community used Coal powered plants	0.249	0.063	3.975	0.0000705	0.1260006	0.3711722	0.2485864	0.6933988
People Centered Development	Coal powered plants is a mark of pride for our nation	0.359	0.073	4.939	0.0000008	0.2165086	0.5013960	0.3589523	0.8168640
People Centered Development	Economic growth and creating jobs should be prioritized over environmental protection	0.456	0.088	5.156	0.0000003	0.2823868	0.6287326	0.4555597	0.8415124
People Centered Development	Laws and policies would be implemented more smoothly if more power lay with the central government	0.117	0.050	2.341	0.0192232	0.0191005	0.2155088	0.1173047	0.4372091
People Centered Development	All businesses and industries should be owned privately	0.307	0.067	4.607	0.0000041	0.1762722	0.4372870	0.3067796	0.7769176
People Centered Development	There is too much red-tape and the government should not interfere with businesses and industries	0.129	0.055	2.350	0.0187653	0.0213952	0.2363311	0.1288631	0.4387603
People Centered Development	Coal powered plants pushes forward the country's development	0.068	0.047	1.453	0.1462622	-0.0238392	0.1604390	0.0682999	0.2777834
People Centered Development	Coal powered plants brings economic prosperity to the surrounding regions	0.007	0.035	0.208	0.8353726	-0.0607738	0.0751901	0.0072082	0.0403279
Nationalist Development	Coal powered plants spoils the natural beauty of the landscape	0.116	0.038	3.022	0.0025113	0.0406816	0.1908392	0.1157604	0.5469770
Nationalist Development	Coal powered plants increases pollution of air/water/land	0.121	0.032	3.774	0.0001607	0.0581224	0.1837261	0.1209242	0.6624265
Nationalist Development	Coal powered plants poses a great risk to the health of people living around it	0.079	0.038	2.049	0.0404461	0.0034312	0.1542172	0.0788242	0.3821878
Nationalist Development	The government should own most large businesses and industries	0.302	0.066	4.608	0.0000041	0.1735667	0.4304725	0.3020196	0.7758598
Nationalist Development	Polluting industries that spoil the environment should be shut down even if it costs people their jobs	0.333	0.072	4.601	0.0000042	0.1912410	0.4751224	0.3331817	0.7749022
Nationalist Development	Coal powered plants is leading to displacement of people from their land	0.347	0.067	5.152	0.0000003	0.2149050	0.4788563	0.3468807	0.8404556

Alpha test

EFA Scores: only tech characteristics

LMs : EFA only tech characs

CFA SCORES (mean across all imputations)

CFA LMs : Pdevelop Ndevelop

Stargazer: risk and benefit X all ecopol

% Table created by stargazer v.5.2.3 by Marek Hlavac, Social Policy Institute. E-mail: marek.hlavac at gmail.com % Date and time: Sun, Mar 24, 2024 - 14:24:49

Table 11: Perceived risk and Perceived benefit(Nuclear, Solar, Coal)

	Table 11: Perceived risk and Perceived benefit(Nuclear, Solar, Coal) Dependent variable:					
	Risky_Nuclear	Risky_Solar	Risky Coal	Ben_Nuclear	Ben_Solar	Ben_Coal
	(1)	(2)	(3)	(4)	(5)	(6)
ppercaste	-0.178^{**}	-0.067	-0.041	-0.248***	-0.100^*	-0.169^{***}
	(0.086)	(0.057)	(0.071)	(0.078)	(0.057)	(0.065)
Iale	0.113	-0.036	-0.011	-0.017	-0.015	0.018
	(0.090)	(0.061)	(0.075)	(0.081)	(0.060)	(0.071)
indu	-0.082	-0.056	0.094	0.271***	0.226***	0.147^{*}
	(0.097)	(0.068)	(0.082)	(0.090)	(0.067)	(0.077)
rban ruralUrban	0.098	-0.149^{**}	0.099	0.100	0.059	0.014
	(0.092)	(0.069)	(0.083)	(0.087)	(0.068)	(0.079)
L ge	-0.149^{***}	0.016	0.040	0.059^{*}	0.011	0.054^{*}
.80	(0.036)	(0.025)	(0.031)	(0.032)	(0.024)	(0.030)
tateWest Bengal	1.228***	-1.055***	-0.062	-0.818***	0.243**	-0.701***
acc (rest Bengar	(0.126)	(0.098)	(0.115)	(0.121)	(0.098)	(0.109)
tateRajasthan	0.065	-1.436***	-0.231**	-0.128	0.367***	0.041
	(0.134)	(0.098)	(0.108)	(0.120)	(0.097)	(0.101)
tateTamil Nadu	-0.059	-1.398***	-1.741***	-0.087	0.366***	0.293**
	(0.128)	(0.107)	(0.146)	(0.120)	(0.104)	(0.138)
tateUttar Pradesh	-0.104	-1.160***	-0.782***	-0.555***	0.009	-0.745^{***}
	(0.162)	(0.122)	(0.142)	(0.156)	(0.122)	(0.135)
Communitarian	-0.036	-0.016	-0.005	0.127***	-0.009	0.137***
	(0.041)	(0.029)	(0.035)	(0.038)	(0.028)	(0.033)
galitarian	0.091**	-0.052^{*}	0.100***	0.398***	0.111***	0.265***
O	(0.041)	(0.028)	(0.038)	(0.037)	(0.028)	(0.035)
develop	0.122***	0.052***	0.039***	-0.002	-0.010	-0.072^{***}
•	(0.038)	(0.014)	(0.012)	(0.036)	(0.013)	(0.011)
develop	0.027	0.034**	-0.080***	0.038	0.115***	0.032***
•	(0.038)	(0.014)	(0.012)	(0.036)	(0.013)	(0.011)
onstant	3.510***	2.266***	1.974***	3.275***	2.513***	2.053***
	(0.143)	(0.180)	(0.294)	(0.133)	(0.176)	(0.273)
bservations	839	1,040	966	898	1,067	956
2	0.213	0.390	0.208	0.219	0.184	0.279
djusted R^2	0.200	0.382	0.197	0.208	0.174	0.269
esidual Std. Error	1.089 (df = 825)	0.839 (df = 1026)	0.986 (df = 952)	1.033 (df = 884)	0.834 (df = 1053)	0.917 (df = 94)
		$50.430^{***} (df = 13; 1026)$			$18.305^{***} (df = 13; 1053)$	

Note:

Stargazer : benefit X all ecopol

% Table created by stargazer v.5.2.3 by Marek Hlavac, Social Policy Institute. E-mail: marek.hlavac at gmail.com % Date and time: Sun, Mar 24, 2024 - 14:24:49

Table 12.

	Tε	able 12:			
	Dependent variable:				
	Ben_Nuclear	Ben_Solar	Ben Coal		
	(1)	$\overline{(2)}$	$\overline{(3)}$		
Uppercaste	-0.248***	-0.100^*	-0.169^{***}		
	(0.078)	(0.057)	(0.065)		
Male	-0.017	-0.015	0.018		
	(0.081)	(0.060)	(0.071)		
Hindu	0.271***	0.226***	0.147^{*}		
	(0.090)	(0.067)	(0.077)		
urban ruralUrban	0.100	0.059	0.014		
_	(0.087)	(0.068)	(0.079)		
Age	0.059^{*}	0.011	0.054^{*}		
O	(0.032)	(0.024)	(0.030)		
StateWest Bengal	-0.818***	0.243**	-0.701^{***}		
O	(0.121)	(0.098)	(0.109)		
StateRajasthan	-0.128	0.367***	0.041		
3	(0.120)	(0.097)	(0.101)		
StateTamil Nadu	-0.087	0.366***	0.293**		
	(0.120)	(0.104)	(0.138)		
StateUttar Pradesh	-0.555***	0.009	-0.745^{***}		
	(0.156)	(0.122)	(0.135)		
Communitarian	0.127***	-0.009	0.137***		
	(0.038)	(0.028)	(0.033)		
Egalitarian	0.398***	0.111***	0.265***		
0	(0.037)	(0.028)	(0.035)		
Pdevelop	-0.002	-0.010	-0.072^{***}		
•	(0.036)	(0.013)	(0.011)		
Ndevelop	0.038	0.115***	0.032***		
1	(0.036)	(0.013)	(0.011)		
Constant	3.275***	2.513***	2.053***		
	(0.133)	(0.176)	(0.273)		
Observations	898	1,067	956		
R^2	0.219	0.184	0.279		
Adjusted R ²	0.208	0.174	0.269		
Residual Std. Error	1.033 (df = 884)	0.834 (df = 1053)	0.917 (df = 942)		
F Statistic	$19.122^{***} (df = 13; 884)$	$18.305^{***} (df = 13; 1053)$	$28.066^{***} (df = 13; 942)$		
Note:		*n<	(0.1) **n<0.05; ***n<0.01		

Note: *p<0.1; **p<0.05; ***p<0.01

Stargazer : net benefit X all ecopol

% Table created by stargazer v.5.2.3 by Marek Hlavac, Social Policy Institute. E-mail: marek.hlavac at gmail.com % Date and time: Sun, Mar 24, 2024 - 14:24:50

Table 13:

	T	able 13:			
	Dependent variable:				
	Netben Nuclear	Netben Solar	Netben Coal		
	$\overline{(1)}$	(2)	(3)		
Uppercaste	-0.098	-0.038	-0.140		
11	(0.125)	(0.081)	(0.097)		
	,	, ,	` ,		
Male	-0.082	0.044	0.037		
	(0.132)	(0.087)	(0.105)		
Hindu	0.411***	0.296***	0.021		
IIIIdu	(0.141)	(0.096)	(0.112)		
	(0.141)	(0.090)	(0.112)		
urban ruralUrban	-0.030	0.220^{**}	-0.057		
_	(0.133)	(0.098)	(0.116)		
	, ,	` ,	` ,		
Age	0.171^{***}	-0.012	-0.030		
	(0.053)	(0.035)	(0.045)		
CtataWest Dansel	-2.034^{***}	1.326***	-0.564^{***}		
StateWest Bengal					
	(0.185)	(0.140)	(0.159)		
StateRajasthan	-0.185	1.826***	0.303**		
Staterajastriari	(0.195)	(0.139)	(0.149)		
	,	,	,		
StateTamil Nadu	-0.094	1.816***	1.954^{***}		
	(0.187)	(0.151)	(0.208)		
C II D. 1.1	0.504**	1 100***	0.051		
StateUttar Pradesh	-0.504**	1.182***	0.051		
	(0.239)	(0.173)	(0.198)		
Communitarian	0.130^{**}	0.007	0.139^{***}		
Communicarian	(0.059)	(0.041)	(0.049)		
	,	, ,	,		
Egalitarian	0.303^{***}	0.171***	0.153^{***}		
	(0.059)	(0.040)	(0.052)		
D.1 . 1	0.100**	0.061***	0.111***		
Pdevelop	-0.122^{**}	-0.061^{***}	-0.111^{***}		
	(0.055)	(0.019)	(0.016)		
Ndevelop	-0.014	0.079***	0.118***		
racvelop	(0.055)	(0.020)	(0.017)		
	(0.000)	(0.020)	(0.011)		
Constant	-0.231	0.240	0.300		
	(0.209)	(0.254)	(0.402)		
Observations	790	1,028	909		
\mathbb{R}^2	0.242	0.409	0.214		
Adjusted R ²	0.229	0.401	0.202		
Residual Std. Error	1.543 (df = 776)	1.181 (df = 1014)	1.325 (df = 895)		
F Statistic	$19.066^{***} (df = 13; 776)$		$18.696^{***} (df = 13; 895)$		
Note:		*p<	(0.1; **p<0.05; ***p<0.01		
		•	, .		

Stargazer: risk X characteristics of tech

% Table created by stargazer v.5.2.3 by Marek Hlavac, Social Policy Institute. E-mail: marek.hlavac at gmail.com % Date and time: Sun, Mar 24, 2024 - 14:24:50

			Table 14:			
	Risky_Nuclear (1)	Risky_Solar (2)	$\frac{Dependen}{\text{Risky_Coal}}$ (3)	t variable: Ben_Nuclear (4)	Ben_Solar (5)	Ben_Coal (6)
Jppercaste	-0.163* (0.086)	-0.069 (0.058)	$ \begin{array}{c} -0.051 \\ (0.071) \end{array} $	$-0.\overline{234}^{***}$ (0.077)	-0.066 (0.058)	-0.155** (0.065)
Male	$0.096 \\ (0.090)$	-0.048 (0.061)	-0.010 (0.076)	-0.018 (0.080)	$-0.005 \\ (0.061)$	$0.0001 \\ (0.071)$
Iindu	-0.093 (0.097)	-0.052 (0.069)	$0.128 \\ (0.083)$	$0.279^{***} \ (0.088)$	$0.235^{***} \ (0.069)$	$0.142^* \ (0.076)$
A ge	$-0.139^{***} $ (0.036)	$0.012 \\ (0.025)$	$ \begin{array}{c} 0.021 \\ (0.031) \end{array} $	$0.059^* \ (0.032)$	$-0.009 \\ (0.025)$	$0.100^{***} $ (0.030)
rban_ruralUrban	$0.097 \\ (0.092)$	$-0.140^{**} $ (0.069)	$0.104 \\ (0.084)$	$0.061 \\ (0.086)$	$0.074 \\ (0.070)$	-0.037 (0.080)
tateRajasthan	-0.022 (0.138)	$-1.507^{***} \ (0.093)$	$-0.249^{**} \ (0.108)$	$-0.252^{**} \ (0.122)$	$0.556*** \\ (0.094)$	$0.095 \\ (0.100)$
tateTamil Nadu	-0.078 (0.130)	$-1.568^{***} \ (0.096)$	$-1.117^{***} \ (0.121)$	$0.059 \\ (0.120)$	$0.395^{***} \ (0.095)$	-0.032 (0.112)
tateUttar Pradesh	-0.148 (0.161)	$-1.221^{***} $ (0.118)	$-0.775^{***} $ (0.143)	$-0.555^{***} $ (0.153)	$0.211^* \ (0.120)$	$-0.710^{***} $ (0.135)
stateWest Bengal	$1.169^{***} \\ (0.129)$	$-1.151^{***} $ (0.095)	$0.081 \\ (0.114)$	$-0.869^{***} $ (0.121)	0.350*** (0.097)	$-0.806^{***} $ (0.106)
)evPride	$0.131^{***} \ (0.039)$	-0.019 (0.029)	$0.181^{***} \ (0.034)$	$0.020 \\ (0.036)$	$0.032 \\ (0.029)$	-0.018 (0.032)
ocialCosts	$0.070^* \ (0.040)$	$0.058^* \ (0.029)$	$0.092^{***} \ (0.034)$	$0.212^{***} (0.037)$	0.150*** (0.030)	$0.223^{***} \ (0.032)$
Egalitarian	$0.096^{**} \ (0.041)$	$-0.065^{**} $ (0.029)	$0.099^{***} \\ (0.038)$	$0.365^{***} \ (0.036)$	0.106*** (0.029)	$0.282^{***} \ (0.035)$
ommunitarian	-0.049 (0.041)	-0.001 (0.029)	-0.023 (0.035)	$0.091^{**} \ (0.038)$	-0.008 (0.029)	$0.151^{***} \ (0.033)$
constant	$3.545^{***} $ (0.143)	$2.854^{***} $ (0.104)	$3.248^{***} $ (0.126)	$3.292^{***} \ (0.131)$	$3.332^{***} $ (0.104)	3.271*** (0.117)
djusted R ² desidual Std. Error Statistic	839 0.215 0.203 1.088 (df = 825)	1,040 0.382 0.374 0.844 (df = 1026)	$ \begin{array}{r} 966 \\ 0.193 \\ 0.182 \\ 0.995 \text{ (df} = 952) \end{array} $	898 0.247 0.236 1.015 (df = 884)	$ \begin{array}{r} 1,067 \\ 0.144 \\ 0.133 \\ 0.855 \text{ (df} = 1053) \\ 13.625*** \text{ (df} = 13; 1053) \end{array} $	956 0.278 0.268 0.918 (df = 942)

 \overline{Note} : *p<0.1; **p<0.05; ***p<0.01

Stargazer : ben X characteristics of tech

% Table created by stargazer v.5.2.3 by Marek Hlavac, Social Policy Institute. E-mail: marek.hlavac at gmail.com % Date and time: Sun, Mar 24, 2024 - 14:24:50

Table 15:

	Ta	ıble 15:			
	Dependent variable:				
	Ben Nuclear	Ben_Solar	Ben Coal		
	(1)	(2)	(3)		
Uppercaste	-0.234***	-0.066	-0.155**		
	(0.077)	(0.058)	(0.065)		
Male	-0.018	-0.005	0.0001		
	(0.080)	(0.061)	(0.071)		
Hindu	0.279***	0.235***	0.142^{*}		
	(0.088)	(0.069)	(0.076)		
Age	0.059*	-0.009	0.100***		
1180	(0.032)	(0.025)	(0.030)		
urban ruralUrban	0.061	0.074	-0.037		
	(0.086)	(0.070)	(0.080)		
StateRajasthan	-0.252**	0.556***	0.095		
,	(0.122)	(0.094)	(0.100)		
StateTamil Nadu	0.059	0.395***	-0.032		
	(0.120)	(0.095)	(0.112)		
StateUttar Pradesh	-0.555***	0.211^{*}	-0.710***		
State of that I radiotif	(0.153)	(0.120)	(0.135)		
StateWest Bengal	-0.869^{***}	0.350***	-0.806***		
	(0.121)	(0.097)	(0.106)		
DevPride	0.020	0.032	-0.018		
	(0.036)	(0.029)	(0.032)		
SocialCosts	0.212***	0.150***	0.223***		
	(0.037)	(0.030)	(0.032)		
Egalitarian	0.365***	0.106***	0.282***		
280000000000000000000000000000000000000	(0.036)	(0.029)	(0.035)		
Communitarian	0.091**	-0.008	0.151***		
	(0.038)	(0.029)	(0.033)		
Constant	3.292***	3.332***	3.271***		
Constant	(0.131)	(0.104)	(0.117)		
Observations	898	1,067	956		
R^2	0.247	0.144	0.278		
Adjusted R^2	0.247 0.236	0.144 0.133	0.268		
Residual Std. Error	1.015 (df = 884)	0.855 (df = 1053)	0.208 $0.918 (df = 942)$		
F Statistic	22.266^{***} (df = 13; 884)	$13.625^{***} (df = 13; 1053)$			
Note:	- (, , ,	(0.1; **p<0.05; ***p<0.01		
- 77-		P	, r, r		

Stargazer : netben $\mathbf X$ characteristics of tech

% Table created by stargazer v.5.2.3 by Marek Hlavac, Social Policy Institute. E-mail: marek.hlavac at gmail.com % Date and time: Sun, Mar 24, 2024 - 14:24:51

Table 16:

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Tε	able 16:			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Netben Nuclear	Netben Solar	Netben Coal		
$\begin{array}{c} \text{Male} & \begin{array}{c} -0.025 \\ 0.132 \end{array}) & \begin{array}{c} (0.082) \\ 0.088 \end{array}) & \begin{array}{c} (0.098) \\ 0.006 \\ 0.132 \end{array}) & \begin{array}{c} 0.060 \\ 0.088 \end{array}) & \begin{array}{c} 0.006 \\ 0.107 \end{array} \\ \end{array}$			(2)	(3)		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Uppercaste	-0.102	-0.005	-0.107		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		(0.125)	(0.082)	(0.098)		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Mala	0.001	0.060	0.006		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Male					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		(0.132)	(0.088)	(0.107)		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Hindu	0.422^{***}	0.308***	-0.019		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		(0.141)	(0.098)	(0.113)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	A	` '	, , ,	0.040		
$\begin{array}{c} \text{urban_ruralUrban} & -0.063 & 0.228^{**} & -0.108 \\ (0.133) & (0.099) & (0.118) \\ \text{StateRajasthan} & -0.197 & 2.078^{***} & 0.367^{**} \\ (0.200) & (0.133) & (0.149) \\ \text{StateTamil Nadu} & 0.073 & 2.038^{***} & 1.015^{***} \\ (0.190) & (0.137) & (0.174) \\ \text{StateUttar Pradesh} & -0.461^* & 1.435^{***} & 0.073 \\ (0.237) & (0.169) & (0.200) \\ \text{StateWest Bengal} & -2.025^{***} & 1.519^{***} & -0.844^{***} \\ (0.188) & (0.136) & (0.158) \\ \text{DevPride} & -0.105^* & 0.050 & -0.199^{***} \\ (0.056) & (0.041) & (0.047) \\ \text{SocialCosts} & 0.140^{**} & 0.090^{**} & 0.130^{***} \\ (0.058) & (0.042) & (0.048) \\ \text{Egalitarian} & 0.260^{***} & 0.185^{***} & 0.166^{***} \\ (0.059) & (0.041) & (0.053) \\ \text{Communitarian} & 0.108^* & -0.006 & 0.175^{***} \\ (0.060) & (0.041) & (0.049) \\ \text{Constant} & -0.237 & 0.448^{***} & 0.096 \\ (0.208) & (0.149) & (0.175) \\ \hline{Observations} & 790 & 1,028 & 909 \\ R^2 & 0.248 & 0.394 & 0.191 \\ Adjusted R^2 & 0.235 & 0.386 & 0.179 \\ \text{Residual Std. Error} & 1.537^* (df = 776) & 1.196 (df = 1014) & 1.344 (df = 895) \\ \text{F Statistic} & 19.691^{***} (df = 13; 776) & 50.661^{***} (df = 13; 1014) & 16.261^{***} (df = 13; 895) \\ \hline \end{array}$	Age					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		(0.053)	(0.036)	(0.045)		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	urban ruralUrban	-0.063	0.228**	-0.108		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
		, ,	, ,	` ,		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	StateRajasthan	00.				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		(0.200)	(0.133)	(0.149)		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	StateTamil Nadu	0.073	2 038***	1 015***		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	State faim fracti					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,	,	(0.111)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	StateUttar Pradesh		1.435^{***}			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		(0.237)	(0.169)	(0.200)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	StateWest Bongsl	2 025***	1 510***	0.844***		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	State West Deligar					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		(0.188)	(0.130)	(0.198)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	DevPride	-0.105^*	0.050	-0.199^{***}		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		(0.056)	(0.041)	(0.047)		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Casial Casts	0.140**	0.000**	0.120***		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	SocialCosts					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		(0.058)	(0.042)	(0.048)		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Egalitarian	0.260***	0.185***	0.166^{***}		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		(0.059)	(0.041)	(0.053)		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C	0.100*	0.006	0.175***		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Communitarian					
		(0.000)	(0.041)	(0.049)		
	Constant	-0.237	0.448^{***}	0.096		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		(0.208)	(0.149)	(0.175)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,	` '	` ,		
$\begin{array}{llllllllllllllllllllllllllllllllllll$						
Residual Std. Error 1.537 (df = 776) 1.196 (df = 1014) 1.344 (df = 895) F Statistic 19.691*** (df = 13; 776) 50.661*** (df = 13; 1014) 16.261*** (df = 13; 895)						
F Statistic 19.691*** (df = 13; $\acute{7}76$) 50.661*** (df = 13; $\acute{1}014$) 16.261*** (df = 13; $\acute{8}95$)						
		1.537 (df = 776)		1.344 (df = 895)		
Note: *p<0.1; **p<0.05; ***p<0.01		$19.691^{***} (df = 13; 776)$				
	Note:		*p<	(0.1; **p<0.05; ***p<0.01		