Se tiene una matriz cuadrada M de $n \times n$ con valores en $\{0,1,2\}$. Se quiere determinar una forma de conectar todas las posiciones de M con valor 1 a través de caminos que se muevan en sentido horizontal o vertical y no pasen por posiciones de M con valor 2. El objetivo es minimizar la longitud de todos los caminos en conjunto. Proponer un algoritmo con complejidad temporal $O(kn^2)$ para resolver este problema, donde k es la cantidad de posiciones de M con valor 1. Por ejemplo, en la siguiente matriz la longitud de los caminos en conjunto es 13.

0	1	1	1	0
0	2	2	0	0
0	0	1	2	1
0	0	0	0	0
1	0	1	0	0

	Ps	سطه	-du	. ح								
		ude										