Cálculo diferencial e integral I Ayudantía 09

Lema 1. Sean $A \subset \mathbb{R}$ un conjunto no vacío y acotado superiormente, y $\alpha \in \mathbb{R}$. Se cumple que $\alpha = \sup(A)$ si y sólo si α es cota superior de A y para cualquier $\varepsilon > 0$ existe $x \in A$ tal que

$$\alpha - \varepsilon < x \le \alpha$$
.

Demostración. Para la primera implicación supongamos que $\alpha = \sup(A)$. Por hipótesis, α es una cota superior. Para la segunda parte procedemos por contradicción. Supongamos que para toda $x \in A$ se cumple que $x \le \alpha - \varepsilon < \alpha$. Entonces $\alpha - \varepsilon$ es una cota superior de A que es menor que α , pero esto contradice la definición de supremo. Por lo tanto, existe $x \in A$ tal que $\alpha - \varepsilon < x \le \alpha$.

Para la segunda implicación supongamos que α es una cota superior de A y para cualquier $\varepsilon > 0$ existe $x \in A$ tal que $\alpha - \varepsilon < x \le \alpha$. Para ver que $\alpha = \sup(A)$ resta probar que si $y \in \mathbb{R}$ es otra cota superior de A, entonces $\alpha \le y$. Así, sea y otra cota superior de A. Procedemos por contradicción, supongamos que $y < \alpha$, entonces $\varepsilon_0 = \alpha - y > 0$, así que existe $x_0 \in A$ tal que

$$y = \alpha - (\alpha - y) = \alpha - \varepsilon_0 < x_0 \le \alpha$$

de donde $y < x_0$ y $x_0 \in A$, lo que contradice que y es cota superior de A. Por lo tanto, $\alpha \leq y$. Finalmente, por la unicidad del supremo obtenemos que $\sup(A) = \alpha$.

A continuación enunciamos la versión análoga del resultado anterior para el caso del ínfimo. La prueba de este lema queda como ejercicio para el lector.

Lema 2. Sean $B \subset \mathbb{R}$ un conjunto no vacío y acotado inferiormente, y $\beta \in \mathbb{R}$. Se cumple que $\beta = \inf(B)$ si y sólo si β es cota inferior de B y para cualquier $\varepsilon > 0$, existe $x \in B$ tal que

$$\beta \le x < \beta + \varepsilon$$
.

Demostración. Ejercicio.

El siguiente resultado será útil en algunas pruebas.

Lema 3. Si $x \ge 0$ y para toda $\varepsilon > 0$ se cumple que $x \le \varepsilon$, entonces x = 0.

Demostración. Por contradicción. Supongamos que $x \neq 0$. A partir de la hipótesis se obtiene que x > 0. Por la propiedad arquimediana existe $N \in \mathbb{N}$ tal que $\frac{1}{N} < x$, pero esto contradice que $x \leq \varepsilon$ para toda $\varepsilon > 0$. Por lo tanto, x = 0.

Concluimos este sesión con la siguiente proposición.

Proposición 4 (Propiedades del supremo y del ínfimo). Sean $A, B \subset \mathbb{R}$ conjuntos no vacíos y acotados.

- (I) Si $A \subset B$, entonces $\inf(B) < \inf(A) < \sup(A) < \sup(B)$.
- (II) $\sup(A \cup B) = \max\{\sup(A), \sup(B)\}.$
- (III) $\inf(A \cup B) = \min\{\inf(A), \inf(B)\}.$
- (IV) $Si A = \{-a \mid a \in A\}$, entonces $\inf(-A) = -\sup(A)$ $y \sup(-A) = -\inf(A)$.

- (V) $Si\ A + B = \{a + b \mid a \in A, b \in B\}$, entonces $\sup(A + B) = \sup(A) + \sup(B)$ y también $\inf(A + B) = \inf(A) + \inf(B)$.
- (VI) $Si\ b > 0\ y\ bA = \{ba \mid a \in A\},\ entonces\ \sup(bA) = b\sup(A)\ y\ además\ \inf(bA) = b\inf(A).$

Demostración. (I) Es inmediato a partir de las definiciones de supremo e ínfimo.

- (II) Como A y B son no vacíos, se tiene que $A \cup B$ es no vacío. Ya que A y B son acotados (en particular son acotados superiormente), se sigue que $A \cup B$ es acotado superiormente (¿puede dar un argumento completo de este hecho?). Denotemos $\alpha = \max\{\sup(A), \sup(B)\}$. Claramente α es una cota superior de $A \cup B$: si $x \in A \cup B$, entonces $x \in A$ o $x \in B$; si $x \in A$, entonces $x \leq \sup(A) \leq \alpha$, mientras que si $x \in B$, entonces $x \leq \sup(B) \leq \alpha$. Ahora, si y es cota superior de $A \cup B$, en particular es cota superior de A y de B (¿puede demostrar esto?), así que $y \geq \sup(A)$ y $y \geq \sup(B)$ por definición de supremo, y a partir de esto obtenemos que $y \geq \alpha$. Luego, por la unicidad del supremo, obtenemos que $\sup(A \cup B) = \alpha$.
 - (III) La prueba es análoga al inciso anterior.
- (IV) La demostración para el ínfimo se hizo en la prueba del Teorema del ínfimo. La prueba para el supremo es análoga.
- (v) Denotemos $\alpha = \sup(A)$ y $\beta = \sup(B)$. Por definición de supremo se cumple que $a \leq \alpha$ para toda $a \in A$ y $b \leq \beta$ para toda $b \in B$. A partir de esto, $a + b \leq \alpha + \beta$ para cualesquiera $a \in A$ y $b \in B$, lo cual prueba que $\alpha + \beta$ es una cota superior de A + B. Así, $\sup(A + B) \leq \alpha + \beta$.

Veamos que $\sup(A+B)=\alpha+\beta$. Usaremos el Lema 3: probaremos que para toda $\varepsilon>0$ se cumple que $\alpha+\beta\leq\sup(A+B)+\varepsilon$. Sea $\varepsilon>0$. Por el Lema 1, para $\frac{\varepsilon}{2}>0$ existe $x\in A$ tal que $\alpha-\frac{\varepsilon}{2}< x\leq \alpha$ y también existe $y\in B$ tal que $\beta-\frac{\varepsilon}{2}< y\leq \beta$. Esto implica que $\alpha-x<\frac{\varepsilon}{2}$ y $\beta-y<\frac{\varepsilon}{2}$, de donde $\alpha+\beta-x-y<\varepsilon$. Luego, $\alpha+\beta-\varepsilon< x+y\leq\sup(A+B)$, de donde obtenemos que $\alpha+\beta\leq\sup(A+B)+\varepsilon$. Esto prueba que para toda $\varepsilon>0$ se cumple que $\alpha+\beta\leq\sup(A+B)+\varepsilon$, o bien, $\alpha+\beta-\sup(A+B)\leq\varepsilon$ para toda $\varepsilon>0$. Como $\alpha+\beta\geq\sup(A+B)$, entonces $\alpha+\beta-\sup(A+B)\geq0$, así que por el Lema 3, $\alpha+\beta-\sup(A+B)=0$, es decir, $\alpha+\beta=\sup(A+B)$. Esto termina la prueba.

(VI) Ejercicio.