Семинар №3

Пространство \mathbb{R}^n

Def. Метрическое пространство \mathbb{R}^n — множество элементов (точек) $x = \underbrace{(x_1, x_2, ..., x_n)}_{x_i$ с заданным расстоянием между ними:

$$\rho(x,y) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$
 (евклидова метрика)

Свойства $\rho(x,y)$:

 $1)\rho(x,y) \geqslant 0$; $\rho(x,y)=0 \Leftrightarrow x=y$;

 $2)\rho(x,y) = \rho(y,x);$

3) $\forall z \in \mathbb{R}^n \hookrightarrow \rho(x,y) \leqslant \rho(x,z) + \rho(z,y)$; (неравенство \triangle)

Замечание. \mathbb{R} можно рассматривать как метрическое пространство \mathbb{R}^n при n=1; в нем $\rho(x,y)=|y-x|$

Def. В \mathbb{R}^n вводятся операции $x+y\stackrel{\text{def}}{=}(x_1+y_1,...,x_n+y_n)$ и $\lambda x\stackrel{\text{def}}{=}(\lambda x_1,...,\lambda x_n)$ \mathbb{R}^n — линейное пространство

Def. (Шаровая) ε — окрестность точки $x^{(0)}$: $U_{\varepsilon}(x^{(0)}) = \{x \mid \rho(x, x^{(0)}) < \varepsilon\}$

Замечание. Аналогично можно ввести прямоугольную, квадратную и другие окрестности.

Def.
$$\mathring{\mathbf{U}}_{\varepsilon}(x^{(0)}) = \mathbf{U}_{\varepsilon}(x^{(0)}) \setminus \{x^{(0)}\}$$

Def. Последовательность $\{x^{(m)}\}$ — отбражение $\mathbb{N} \to \mathbb{R}^n$ ($\forall m \in \mathbb{N}$ поставлена в соответсвие точка)

Def.
$$\lim_{m \to \infty} x^{(m)} = x^{(0)}$$
, если $\forall \varepsilon > 0 \ \exists N \in \mathbb{N} : \forall m \geqslant N \hookrightarrow \rho(x^{(m)}, x^{(0)}) < \varepsilon \ \left(x^{(m)} \in \mathring{\mathbb{U}}_{\varepsilon}(x^{(0)})\right)$

Замечание.
$$\lim_{m \to \infty} x^{(m)} = x^{(0)} \Leftrightarrow \lim_{m \to \infty} \underbrace{\rho(x^{(m)}, x^{(0)})}_{\text{числовая}} = 0 \Leftrightarrow \underbrace{\lim_{m \to \infty} x_i^{(m)} = x_i^{(0)}}_{\text{предель п числовых}}, i = 1, \dots, n$$

Def.
$$\lim_{m\to\infty} x^{(m)} = \infty$$
, если $\rho(x^{(m)},0) = \infty$

Задача. Д-ть:
$$\lim_{m \to \infty} \rho(x^{(m)},0) = \infty \Leftrightarrow \forall a \in \mathbb{R}^n \hookrightarrow \lim_{m \to \infty} \rho(x^{(m)},a) = \infty$$

Доказательство:

"⇒" пусть
$$\lim_{m\to\infty} \rho(x^{(m)},0) = \infty \Rightarrow \forall a \in \mathbb{R}^n \hookrightarrow \rho(x^{(m)},a) + \rho(a,0) \geqslant \rho(x^{(m)},0) \Rightarrow$$
 $\rho(x^{(m)},a) \geqslant \rho(x^{(m)},0) - \rho(a,0) \Rightarrow \rho(x^{(m)},a) \underset{m\to\infty}{\longrightarrow} \infty;$ " \Leftarrow " пусть $\forall a \in \mathbb{R}^n \hookrightarrow \lim_{m\to\infty} \rho(x^{(m)},a) = \infty$. Возьмем $a = 0 \in \mathbb{R}^n \Rightarrow \lim_{m\to\infty} \rho(x^{(m)},0) = \infty;$

Def. $\left\{ x^{(m)} \right\}$ называется ограниченной, если <u>числовая</u> последовательность $\left\{ \rho(x^{(m)},0) \right\}$ ограничена.

Тh (Больцано-Вейерштрасса). Из ∀ ограниченной последовательность можно выделить сходящуюся подпоследовательность.

Th (Критерий Коши сх. посл-ти). $\left\{x^{(m)}\right\}$ сх. $\Leftrightarrow \forall \varepsilon > 0 \ \exists N \in \mathbb{N} : \forall m \geqslant N, \forall p \in \mathbb{N} \hookrightarrow \rho(x^{(m)}, x^{(m+p)}) < \varepsilon$

Классификация множеств в \mathbb{R}^n

П Открытые множества.

Def. х называется внутренней точкой м-ва $E \subset \mathbb{R}^n$, если $\exists U_\varepsilon(x) \subset E$.

Def. Внутренность мн-ва $E \subset \mathbb{R}^n$: $intE = \{x | x$ — внутренняя т. $E\}$.

Пример: int[1;2] = (1;2) (внутренность отрезка — интервал)

Def. Mн-во $E \subset \mathbb{R}^n$ называется открытым, если $\forall x \in E$ является внутренней т. Е, т.е. intE = E

Замечание. \emptyset , \mathbb{R}^n — пустые множества. !

ВСТАВИТЬ ПРИМЕРЫ С РИСУНКАМИ!!!

Th. A, B — открытые мн-ва \Rightarrow $\underbrace{A \cup B}_{a}$ открытое и $\underbrace{A \cap B}_{6}$ открытое.

Доказательство:

а) пусть $x \in A \cup B \Rightarrow x \in a$ или $x \in B$. Если $x \in A$, то $\exists U_{\varepsilon}(x) \subset A \subset A \cup B \Rightarrow x$ — внутренняя точка $A \cup B$. Аналогично при $x \in B$.

б) если $A \cap B = \emptyset$ очев. Пусть $A \cap B \neq \emptyset$. Пусть $x \in A \cap B \to x \in A$ и $x \in B$.

x — внутр. для $A \Rightarrow \exists U_{\varepsilon_A}(x) \subset A$; x — внутр. для $B \Rightarrow \exists U_{\varepsilon_B}(x) \subset B$. Возьмем $\varepsilon = min\{\varepsilon_A, \varepsilon_B\}$.

Тогда $U_{\varepsilon}(x)$ ⊂ $A \cap B \Rightarrow x$ — внутренняя для $A \cap B$.

ВСТАВИТЬ ПРИМЕРЫ С РИСУНКАМИ!!!

Следствие. ∪ любого числа открытых множеств — открытое множество.

 \cap конечного числа открытых множеств — открытое множество *

Замечание. Для бесконечного числа открытых множеств *) выполняется не всегда.

Def. \forall открытое мн-во, содержащее т.х, называется окрестностью т.х и обозн. U(x). Аналогично $\mathring{U}(x)$.

II Замкнутые множества.

Def. $x \in \mathbb{R}^n$ — т. прикосновения мн-ва $E \subset \mathbb{R}^n$, если $\forall U(x) \cap E \neq \emptyset$.

Def. Замыкание множества $E \subset \mathbb{R}^n : \overline{E} = \{x | x - \mathtt{т}.$ прикосновения $E\}$

ВСТАВИТЬ ПРИМЕРЫ С РИСУНКАМИ!!!

Def. MH-во $E \subset \mathbb{R}^n$ называется замкнутым, если $\overline{E} = E$

Замечание. \emptyset , \mathbb{R}^n — замкнутые множества (и одновременно открытые) $|\cdot|$

Def. $\mathbb{R}^n \setminus E$ называется дополнением множества E.

Th. Е открыто $\Leftrightarrow \mathbb{R}^n \backslash E$ замкнуто. (Е замкнуто $\Leftrightarrow \mathbb{R}^n \backslash E$ открыто)

Th (законы де Моргана).

$$\mathbb{R}^{n} \setminus \left(\bigcup_{i} E_{i} \right) = \bigcap_{i} \left(R^{n} \setminus E_{i} \right)$$
$$\mathbb{R}^{n} \setminus \left(\bigcap_{i} E_{i} \right) = \bigcup_{i} \left(R^{n} \setminus E_{i} \right)$$

Следствие. A,B — замкнутые множества $\Rightarrow A \cap B$ замкнуто и $A \cup B$ замкнуто.

Следствие. \cap <u>любого</u> числа замкнутых множеств — замкнутое множество.

∪ конечного числа замкнутых множеств — замкнутое множество*

Замечание. Для бесконечного числа замкнутых множеств * выполняется не всегда.

Пример
$$\bigcup_{n=1}^{\infty} \left[-1 + \frac{1}{n}, 1 - \frac{1}{n} \right] = \underbrace{(-1, 1)}_{\text{He зам.}}$$

III Изолированные и предельные точки.

Def. $x \in E$ — изолированная точка множества $E \subset \mathbb{R}^n$, если $\exists \mathring{\mathbb{U}}_{\varepsilon}(x) : \mathring{\mathbb{U}}_{\varepsilon}(x) \cap E = \emptyset$.

ВСТАВИТЬ ПРИМЕРЫ С РИСУНКАМИ!!!

Def. x — предельная точка множества $E \subset \mathbb{R}^n$, если $\forall \mathring{\mathbb{U}}(x) \cap E \neq \emptyset$

Замечание. х — предельная точка $E \Leftrightarrow \exists$ последовательность Гейне $x^{(m)} \subset E$, сходящаяся к х.

Замечание. \forall мн-ва $E \subset \mathbb{R}^n \hookrightarrow \{\text{т-ки прикосновения}\} = \{\text{предельные т-ки}\} \cup \{\text{изолированные т-ки}\}$ причем $\{\text{предельные т-ки}\} \cap \{\text{изолированные т-ки}\} = \emptyset$.

IV Границы множеств.

Def. х — граничная точка множества $E \subset \mathbb{R}^n$, если $\forall U(x)$ содержит как точки из E, так и из $\mathbb{R}^n \setminus E$.

Def. Граница множества $E \subset \mathbb{R}^n$: $\partial E = \{x \mid x$ — граничная точка $E\}$.

ВСТАВИТЬ ПРИМЕРЫ С РИСУНКАМИ!!!

Примеры. Е-? : 1)
$$\partial E \subset \mathsf{u} \ \partial E \neq E$$
 — замкнутый круг 2) $\partial E = E$ — окружность, точка 3) $\partial E \cap E = \varnothing$ — открытый круг 4) $\partial E = \varnothing - \mathbb{R}^n$ 5) $\partial E \supset E \ \mathsf{u} \ \partial E \neq E - \mathbb{Q}$,

V Связность множества. Области и компакты.

Напоминание. Непрерывная (параметрически заданная) кривая $\Gamma \subset \mathbb{R}^n$ – множество точек, заданное как непрерывное отображение отрезка $\alpha \leqslant t \leqslant \beta$:

$$\Gamma = \{x(t) = (x_1(t), \dots, x_n(t)) | t \in [\alpha, \beta] \}$$

Def. Множество $E \subset \mathbb{R}^n$ называется <u>линейно связным,</u> если \forall его 2 точки можно соединить непрерывной кривой $\Gamma \subset E$.

Замечание. Множество, состоящее из 1 точки, считается линейно связным.

ВСТАВИТЬ ПРИМЕРЫ С РИСУНКАМИ!!!

Def. Множество $E \subset \mathbb{R}^n$ называется областью, если оно открыто и линейно связно.

Def. Множество $E \subset \mathbb{R}^n$: $E \neq \emptyset$, называется компактом, если оно замкнуто и ограничено.

Примеры. интервал – область, отрезок — компакт.

Дополнение к множествам в \mathbb{R}^n

I Def. Множество $E \subset \mathbb{R}^n$ называется <u>связным,</u> если \forall его разбиения $E = A \cup B, A \cap B = \emptyset \hookrightarrow A \cap \overline{B} \neq \emptyset$.

Пример связного, но не линейно связного множества : $E = \left\{ (x,y) | x \geqslant 0, y = \begin{cases} \sin \frac{1}{x}, x \neq 0 \\ 0, x = 0 \end{cases} \right\}$.

Е — график функции, имеющей точки разыва II рода ⇒ не линейно связное;

но $\{(0,0)\}$ ∩ $\overline{E\setminus\{(0,0)\}}$ = $\{(0,0)\}\neq\emptyset\Rightarrow$ Е связно.

Замечание. Е линейно связно ⇒ Е связно.

$$K \subset \bigcup_{k=1}^{\infty} G_k$$

II Тh (лемма Гейне-Бореля). Пусть $K \subset \mathbb{R}^n$ — компакт и $\{G_k\}_{k=1}^\infty$ — его покрытие открытыми ми-ми. Торго че $\{G_k\}_{k=1}^\infty$

открытыми мн-ми. Тогда из $\left\{G_k\right\}_{k=1}^\infty$ можно выделить конечное подпокрытие $\left\{G_k\right\}_{k=1}^m$ компакта К.

Доказательство: для \mathbb{R} и случая K = [a, b]

Предположим обратное \Rightarrow одну из половин $\left[a,\frac{a+b}{2}\right],\left[\frac{a+b}{2},a\right]$ нельзя покрыть

конечным подпокрытием. Делим этот отрезок пополам и т.д. Получаем CBO с длиной \rightarrow 0,

стягивающуюся к $x_0 \in [a,b]$. $x_0 \in$ одному из $G_k \Rightarrow$ начиная с некоторого шага деления отрезок целиком $\subset G_k$?!

Примеры использования: 1) доказательство Th Кантора о PH f(x) на [a,b]

2)задача: доказать, что
$$\bigcup_{k=1}^{\infty} U_{\frac{1}{2^k}}(q_k) \neq \mathbb{R}$$

Задача (&2 9.2). Является ли область определения $f(x,y) = \sqrt{x \sin y}$ замкнутым? открытым? областью?

ВСТАВИТЬ ПРИМЕРЫ С РИСУНКАМИ!!!

Утверждение. $\overline{E} = intE \cap \partial E$

Доказательство: Пусть $x \in \overline{E} \Rightarrow \forall U(x)$ содержит $x_1 \in E$. Либо $\exists U^{(1)}(x)$, целиком $\subset E$, либо

 $\forall U(x)$ содержит $x_2 \notin E$. В первом случае $x \in intE$, во втором $x \in \partial E$

Следствие.
$$\partial E \subset E \Rightarrow \overline{E} = E.\left(\overline{E} = \underbrace{intE}_{\widehat{E}} \cup \partial E\right)$$

Обозначим область определения $D.\ \partial D = \{(0,y) \mid y \in \mathbb{R}\} \cup \{(x,2\pi n) \mid x \in \mathbb{R}, n \in \mathbb{Z}\} \subset D \Rightarrow \overline{D} = D \Rightarrow$

 $\Rightarrow D$ замкнуто.

 $\int D = D$ не является открытым $\Rightarrow D$ не область. Замечание. D линейно связно

Задача (&1 13). $f \in \mathbb{C}(\mathbb{R}), y_0 \in \mathbb{R}$. Доказать: $S = \{x \mid f(x) > y_0\}$ открыто.

План: берем $x_0 \in S$, берем $\varepsilon = \frac{f(x_0) - y_0}{2}$, показываем, что $x_0 \in intS$.

Функции многих переменных

Def. $y = f(x) = f(x_1, ..., x_n)$ — отображение $X \to \mathbb{R}$, где $X \subset \mathbb{R}^n$ — множество определения.

Рассмотрим f(x) на множестве $E \subset X$; пусть $x^{(0)}$ — предельная точка E.

Def. (предел
$$f(x)$$
 в точке $x^{(0)}$ по множеству E)
$$\lim_{\substack{x \to x^{(0)} \\ x \in E}} f(x) = a, \text{ если} \begin{bmatrix} \text{по Гейне: } \forall \, \{x^{(m)}\} \subset E \setminus \{x^{(0)}\} : \lim_{\substack{m \to \infty \\ x \in S}} x^{(m)} = x^{(0)} \hookrightarrow \lim_{\substack{m \to \infty \\ x \in S}} f(x^{(m)}) = a \end{bmatrix}$$

Обозначения:
$$\lim_{\substack{x \to x^{(0)} \\ x \in E}} f(x) = \lim_{\substack{\rho(x, x^{(0)}) \to 0 \\ x \in E}} f(x) = \lim_{\substack{x_1 \to x_1^{(0)} \\ \vdots \\ x_n \to x_n^{(0)} \\ (x_1, \dots, x_n) \in E}} f(x).$$

Пример функция Дирихле
$$D(x) = \begin{cases} 1, x \in \mathbb{Q} & \lim_{\substack{x \to 0 \\ x \in \mathbb{Q}}} D(x) = 1, \lim_{\substack{x \to 0 \\ x \in \mathbb{Q}}} D(x) = 0. \end{cases}$$

Замечание. в \mathbb{R}^n сохраняются основные свойства пределов (**Th** об арифметический действиях, свойства, связанные с неравенствами, понятия бесконечно малых и бесконечно больших функций).

Def. (предел f(x) в точке $x^{(0)}$)

Пусть
$$f(x)$$
 определена в некоторой $\mathring{\mathrm{U}}(x^{(0)})$. $\lim_{x \to x^{(0)}} f(x) \stackrel{\mathrm{def}}{=} \lim_{\substack{x \to x^{(0)} \\ x \in \mathring{\mathrm{U}}(x^{(0)})}} f(x)$.

Тh. Пусть f(x) определена в некоторой $\mathring{\mathrm{U}}(x^{(0)})$. $\lim_{x\to x^{(0)}} f(x)=a \Leftrightarrow \forall E\subset X:$ $x^{(0)}$ — предельная точка $E\hookrightarrow \lim_{\substack{x\to x^{(0)}\\x\in E}} f(x)=a$