

Details

Ver. Rel. No.	Release Date	Prepared. By	Reviewed By	To be Approved	Remarks/Revision Details
1	11-11- 2020	Amit Das, Aditi Dutta, Smita Senapati			

Contents

Module/s	
Topic and Subtopics	
Objectives & Requirements	
OBJECTIVES	4
REQUIREMENTS	4
Design	5
TEST PLAN	5
Implementation Summary	6
VIDEO EXECUTION	6
Git Link	6
Git Dashboard	
Summary	
- GITINSPECTOR IS NOT TAKING INTO ACCOUNT ALL THE COMMITS. WHILE THERE ARE 37 COMMIT UN	
DNLY FETCH ABOUT 14 COMMITS.	_
Individual Contribution & Highlights	
Challenges faced and how were they overcome	
Future Scope	10
BLE OF FIGURES Figure 5: Python UML	

Miniproject -1 [Team]: SUDOKU SOLVER (VISUALIZING BACKTRACKING)

Module/s

Python and pygame library.

Topic and Subtopics

The various areas covered in this program are as follows

- Object Oriented Programming
- Using the pygame Library
- Event based programming

Objectives & Requirements

OBJECTIVES

The object is to develop an algorithm that can solve any 9x9 sudoku while visualizing the active steps being taken by the algorithm in real time to solve the puzzle.

REQUIREMENTS

HIGH LEVEL REQUIREMENTS

ID	Requirements
HH_01	0 should be used to represent the blank spaces
HH_02	Index of empty spaces should be found out first.
HH_03	Backtracking algorithm is used for checking if any repeated number exists in the row, column or grid.
HH_04	GUI should be developed
HH_05	GUI should get updated at every step.
HH_06	Finally, the solved board should be displayed.

LOW LEVEL REQUIREMENTS

ID	Requirements
HH_01_LL_01	The unsolved board is iterated over by 2 nested loops.
HH_02_LL_01	Index of all zeros are returned
HH_03_TT_01	Validation and backtracking for rows
HH_03_TT_02	Validation and backtracking for columns
HH_03_TT_03	Validation and backtracking for boxes
HH_04_TT_01	Pygame library is used for GUI development
HH_05_TT_01	Execution of program should start only on a keypress (eventbased)

Design

Figure 1: Python UML

Test Plan

Test ID	Test Description	Input	Expected	Result
			Output	
T_1_HL01_01	'0' should be	Unsolved	Displays the	Pass
	used to represent	sudoku puzzle	correct blank space	
	blank space indexes.		indexes.	
HL01_02	'0' should be	Unsolved	Doesn't display	Pass
	used to represent	sudoku puzzle	the non-zero	
	blank space indexes.		element's indexes.	
HL02_01	Algorithm is	Unsolved	No repeated	Pass
	used to check for	sudoku puzzle	elements for a	
	validation in rows		particular row was	
			displayed.	
HL02_02	Algorithm is	Unsolved	No repeated	Pass
	used to check for	sudoku puzzle	elements for a	
	validation in rows		particular column	
			was displayed.	

GENESIS - Learning Outcome and Mini-project Summary Report

HL02_03	Algorithm is	Unsolved	No repeated	Pass
	used to check for	sudoku puzzle	elements for a	
	validation in rows		particular grid was	
			displayed.	

Implementation Summary

The project is programmed in Object oriented style. The GUI.py file imports the Cube.py file as a module and uses its Class and methods to solve the puzzle. The GUI component of the project is contained in the GUI.py file. Entire code documentation generated using pDoc is present in the Documentation directory of the repository. Running the GUI.py file and hitting the SPACE key starts the execution of the program and one can visualize in real time how backtracking algorithm works.

Video Execution

Link to video showing execution

Git Link

https://github.com/99002591/2009MYSEMB03-PYTHON-8

Git Dashboard

Figure 2: Dashboard Python

Summary

Git inspector summary

Figure 3: Gitinspector Python

Build

Figure 4: Build python

Code quality

- Code quality was improved after taking into account the warnings thrown by Codeacy.
- No unused variables
- Use of easily understandable variable names.

Issues

- Gitinspector is not taking into account all the commits. While there are 37 commit until this time, gitinspector can only fetch about 14 commits.

Individual Contribution & Highlights

- Developed the backtracking algorithm.
- Helped in development of UI.

Challenges faced and how were they overcome

- UI development was a bit challenging. We tried to make a full-fledged GUI with pygame and tkinter but due to time constrains had to give up on ktinder.

Future Scope

- Addition of checking mechanism to see if puzzle is solvable before solving it.
- Functionality to play the game manually