greatlearning Power Ahead

Capstone Presentation on Customer Churn

Prepared By:

- Govind Singh Rawat
- PGPDSBA.O.MAY23.A

Business Problem Understanding

Business problem we are trying to solve:

- The challenge is to retain the customers.
- Hence, the company wants to develop a model through which they can do churn prediction
- And provide segmented offers to the potential churners.

Business Problem Understanding

Scope

• Supervised learning classification problem.

The Dataset

- The dataset comprises historical data of customers.
- The time of data collection is not specified.
- There are 11,260 observations in the dataset.
- It consists of 19 columns, including one unique identifier (AccountID).
- Impurities have been detected in the dataset.
- No duplicate observations.

Data Cleaning

Removed Special Characters

• Replaced with null values

Handling Irregular data

like "Regular +" and "Regular Plus"

Missing Value imputation

- KNN imputer for numeric column
- Mode for categorical column

Outlier Treatment

Clipped into IQR

Exploratory Data Analysis

 Only 17% of total customers have churned, indicating an imbalanced dataset.

 If one AccountID has churned, there are 96% chances that we lost more than 1 user.

Exploratory Data Analysis

 4 users associated with 43% of the churned accounts.

Exploratory Data Analysis

City Distribution

65% Users are from tier 1 cities

Payment Preferences

70% Pay bills through credit/debit cards

Service Rating

80% Rated average or below average

Support agent Rating

30% rated support agents below average

Churn distribution

60%

churned customers are from the Regular Plus

Modelling – Preprocessing

Modelling Approach

6 Different Models

- Logistic Regression
- Linear Discriminant Analysis
- K Neighbours Classifier
- Decision Tree Classifier
- Random Forest Classifier
- Bagging Classifier

```
LogisticRegression
LogisticRegression(max iter=10000, n jobs=2, solver='newton-cg', verbose=True)

    LinearDiscriminantAnalysis

LinearDiscriminantAnalysis()
KNeighborsClassifier(weights='distance')
          DecisionTreeClassifier
DecisionTreeClassifier(random state=1)
          RandomForestClassifier
RandomForestClassifier(random_state=1)
          BaggingClassifier
```

BaggingClassifier(random_state=1)

Modelling Results

	Training data(70%)					Test data(30%)				
Model	Accuracy	AUC	Precision	Recall	F1	Accuracy	AUC	Precision	Recall	F1
Logistic Regression	76.18	85.3	40	80	53	88.51	85.6	76	41	58
Logistic Regression(Balanced data)	78.63	86.1	77	82	79	77.8	84.9	76	81	79
LDA	87.99	86.5	77	41	53	87.92	84.6	77	40	53
KNN	100	100	100	100	100	90.08	91.9	76	60	67
Decision Tree	100	100	100	100	100	94.76	91	84	85	85
Random Forest	100	100	100	100	100	97.36	99.3	98	86	92
Bagging Classifier(default parameters)	99.74	100	100	98	99	95.82	97.9	94	80	87
Random Forest(tuned with GridSearch CV)	100	100	100	100_	100	100	100	100	100	100

Modelling Results - Final Model

Results on test data

Best Model
RandomForestClassifier(random_state=1)
Best parameters
{'max depth': None, 'n estimators': 100}

Insights from Analysis

Feature Importance

Tenure (Score: 0.26304)
cashback (Score: 0.07410)
Day_Since_CC_connect (Score: 0.07261)
CC_Contacted_LY (Score: 0.06770)
Complain_ly (Score: 0.06430)
CC_Agent_Score (Score: 0.05910)
rev_per_month (Score: 0.05404)

Insights from Analysis

City Distribution

High concentration in urban areas

Churn Patterns

 Urban areas experience significant churn

Ratings

- 30% Rated CC below average
- Service ratings are below avg 80% of the time

Segment

 Regular Plus segment has high Tendency to churn

Important features

- tenure
- revenue per month
- Cashback
- Variables related to customer satisfaction

Recommendations

Enhance Service Quality and Customer Support:

- Monitor and evaluate
- Improve the performance and quality

Segment-Specific Retention Strategies:

• Different needs and preferences

Urban Market:

- Increasing customer engagement in urban areas
- Target customers with personalized offers and incentives

Customer Engagement and Loyalty Programs:

- Prioritize initiatives aimed at enhancing customer engagement and loyalty.
- Design loyalty programs and special offers

Thank You

