N-преобразование Адамара квантовое преобразование, реализация с использованием технологий MPI и OpenMP.

Васильев С. М., гр. 323.

make

./main <кол-во потоков> <число кубитов> <eps> <файл ввода> <файл вывода> <кол-во экспериментов>

Если файл ввода «random», случайная генерация в программе. Если файл вывода «null», без вывода в файл.

make rand_gen_complexd ./rand_gen_complexd <число кубитов> <файл вывода>

make print_complexd ./print_complexd <файл ввода>

Кол-во кубитов	Кол-во процессов	Кол-во потоков	Время работы (сек)
28	1	1	46.2445
		2	30.4803
		4	22.3736
		8	18.276
	2	1	51.06
		2	31.55
		4	21.2
		8	17.45
	4	1	30.2509
		2	18.154
		4	12.86
		8	11.1222

Кол-во кубитов	Среднее значение потери точности
24	0.00248792
25	0.00265638
26	0.00271115
27	0.00251372
28	0.00239808

e	Среднее значение потери точности
0.1	0.236882
0.001	0.000027277

