Exercises (4) March 12, 2024

- 1. (8 points) Let (M, d) be a metric spaces and $A \subseteq M$ be compact. Assume that $B \subseteq C(A, \mathbb{R}^n)$ is equicontinuous and pointwise bounded. Show that every sequence in B has a uniformly convergent subsequence.
- 2. (6 points) Let $B = \{ f \in C([0,1], \mathbb{R}) : f' \text{ is continuous on } (0,1), f(0) = 0, \text{ and } |f'(x)| \leq 1 \}$. Show that the closure of B is compact.
- 3. (8 points) Let $f_k: K \subseteq \mathbb{R}^n \to \mathbb{R}^m$ be a sequence of equicontinuous functions on a compact set K converging pointwise. Prove that the convergence is uniform.
- 4. (8 points) Let \mathfrak{F} be a bounded and equicontinuous collection of functions on $D \subseteq \mathbb{R}^n$ to \mathbb{R} and let f^* be defined on $D \to \mathbb{R}$ by

$$f^*(x) = \sup\{f(x) : f \in \mathfrak{F}\}.$$

Show that f^* is continuous on $D \to \mathbb{R}$.