2. Eigenschaften von Transistoren

Wie bei der Diode lassen sich auch die Eigenschaften von Transistoren anhand von Kennlinien beschreiben.

Die **Eingangskennlinie** beschreibt den Zusammenhang zwischen der Basisspannung U_{BE} und dem Basisstrom I_B , also $I_B = f(U_{BE})$. Sie ist der Diodenkennlinie ähnlich.

Die Ausgangskennlinie beschreibt den Zusammenhang zwischen der Kollektorspannung U_{CE} und dem Kollektorstrom I_C , also $I_C = f(U_{CE})$. Charakteristisch ist, dass sich mit zunehmender Spannung U_{CE} der Kollektorstrom einem Maximalwert I_C nähert, dem Sättigungsstrom I_{Cs} .

Die Höhe von I_{Cs} ist praktisch proportional zu I_B :

 $I_C = \beta I_B$, man spricht vom Verstärkungsfaktor β .

Bauen Sie die folgende Schaltung mit dem Transistor BC550 auf³; achten Sie dabei unbedingt darauf, den Strombegrenzungswiderstand R_1 =10 k Ω in der Basisleitung einzusetzen. Für die Speisung von U_{CE} (das Netzteil U_2) können Sie bei Aufnahme der Eingangskennlinie⁴ 5 V einstellen. Bei Aufnahme der Ausgangskennlinie variieren Sie U_2 zwischen 0 und 10 V.

Messen Sie die folgenden Zusammenhänge und stellen Sie diese graphisch dar:

- Eingangskennlinie: $I_B = f(U_{BE})$
- Ausgangskennlinie: $I_C = f(U_{CE})$
- Stromverstärkung $I_C = f(I_B)$, hier sollte etwa gelten: $I_C = \beta I_B$. Bestimmen Sie β .

3. Spannungsverstärkung mit Transistoren

Die Verstärkung kleiner (Wechsel-)spannungen gelingt, wenn die Eingangsspannung in einen proportionalen Basisstrom I_B umgewandelt wird, der dann als verstärkter Strom I_C über einen Kollektorwiderstand R_C wieder in eine Spannung umgesetzt wird.

Mit R_2 und R_3 wird ein Arbeitspunkt eingestellt (d.h. damit sich am Kollektor etwa die halbe Versorgungsspannung einstellt). Zur Kontrolle des Arbeitspunktes schließen Sie das Oszilloskop (Ch2) direkt am Kollektor an. Achten Sie darauf, daß es im Modus DC (und nicht AC) steht. (Warum?)

Über R_1 (Strombegrenzung) und C_1 wird das Eingangssignal auf die Basis gegeben. Die Frequenz darf dabei nicht zu klein sein: Berechnen Sie die Grenzfrequenz für C_1R_1 . Stellen Sie am Funktionsgenerator ein Sinussignal mit mindestens der 10fachen Frequenz ein.

Die kleinen Änderungen des Basisstroms dI_B werden durch den Verstärkungsfaktor β zu großen Änderungen des Kollektorstroms $dI_C = \beta \ dI_B$.

³Im Steckelement kann auch der elektrisch gleichwertige BC547 sein

 $^{^4}$ Messen Sie immer nur kurz mit $U_2=5$ V und lassen Sie die Spannung sonst auf 0 V (U_2 abstöpseln). Der Grund ist, daß bei $U_{CE}=5$ V und $I_C=50$ mA eine Verlustleistung von 250 mW am Transistor entsteht, wodurch er sich deutlich erwärmt und dadurch sinkt U_{BE} ab.