Computational Linear Algebra, Module 7 $\,$

Maya Shende

Due: April 11th, 2018

1. output:

2. c_3 is not included in the linear combination because it is linearly dependent on the other two columns.

If I increase the range, I get a y vector that is a bit closer, in the sense that it is the same as b, but without the z component.

need to insert drawing!

3. We need to show that AB < AC for all AC. We know that

$$AB^{2} + BC^{2} = AC^{2}$$

$$AB^{2} = AC^{2} - BC^{2}$$

$$AB^{2} < AC^{2}$$

$$AB < AC$$

So, the shortest distance from the point to the plane is on the perpendicular to the plane.

- 4. Both c_1 and c_2 are in the xy-plane, with z components of 0. So, the closest linear combination of them to b will be the projection of b on the xy-plane. Therefore, if we look at \mathbf{z} , the vector form y to b, since it is orthogonal to the projection, it is orthogonal to both c_1 and c_2 .
- 5. Using the data in the example above and taking the dot product, the equations for α and β are

$$42 - 40\alpha - 30\beta = 0$$
$$38 - 30\alpha - 25\beta = 0$$

and by solving these equations, we get $\alpha = \frac{-27}{30}$ and $\beta = \frac{13}{5}$.

- 6. This works because of how matrix multiplication works. By have the c's as rows, we are going to multiply each c_i with z_i .
- 7. B is the transpose of A.

9. $A \to (m \times n), A^T \to (n \times m), A^T A \to (n \times n)$. So,

$$(A^T A)^{-1} A^T b \rightarrow (n \times n)(n \times m)(m \times 1)$$

$$\rightarrow (n \times m)(m \times 1)$$

$$\rightarrow (n \times 1)$$

$$(A^{T}A)^{-1} = A^{-1}(A^{T})^{-1}$$

$$(A^{T}A)^{-1}A^{T} = A^{-1}(A^{T})^{-1}A^{T}$$

$$= A^{-1}$$

$$(A^{T}A)^{-1}A^{T}b = A^{-1}b$$

- 11. If \mathbf{A}^{-1} exists, the dimension and the column rank are equal. Since those two are equal, the row rank is also equal to the other two. This means that is \mathbf{A}^{-1} exists, then $\left(\mathbf{A}^{T}\right)^{-1}$ must also exist.
- 12. We have $AB^{-1} = B^{-1}A^{-1}$. Now, in exercise 10, if we replace A^T with A and A with B, then we can use the same proof to prove Theorem 7.1.
- 13. Matrix (2x2):
 0.250 -0.300
 -0.300 0.400
 x[0]=-0.9000000000000004 x[1]=2.6000000000000014

- 14. The columns is not linearly independent because no inverse exists.

After:

16. Before:

After:

17. Before:

After:

18. Before change of basis:

meanX = 4.462, meanY = 4.575 varX = 5.846, varY = 6.505 covariance = 49.260

After change of basis:

 $\mathrm{meanX}{=}4.519,\;\mathrm{meanY}{=}0.056\;\mathrm{varX}{=}6.166,\;\mathrm{varY}{=}0.009\;\mathrm{covariance}{=}1.319$

19.

Coordinates after change of basis:

- (1.050, -0.050)
- (2.000, -0.100)
- (2.850, 0.050)
- (3.950, 0.150)
- (5.150, 0.050)
- (5.950, 0.150)(7.250, 0.050)
- (7.950, 0.150)

$$\alpha = \frac{\mathbf{w} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}} = \frac{(4)(6) + (3)(2)}{(6)(6) + (2)(2)} = \frac{30}{40} = \frac{3}{4}$$
$$\mathbf{z} = \begin{bmatrix} 4\\3 \end{bmatrix} - \frac{3}{4} \begin{bmatrix} 6\\2 \end{bmatrix} = \begin{bmatrix} -0.5\\1.5 \end{bmatrix}$$
$$\mathbf{z} \cdot \mathbf{v} = (-0.5)(6) + (1.5)(2) = 0$$

21.

alpha =
$$1.5$$

z= $(-0.5,1.5)$
z dot v = 0.0

The additional arrow is ${f z}.$

22. before:

after:

z dot v1 = -2.6645352591003757E-

15 z dot v2 = 8.881784197001252E-16

23. •
$$\mathbf{v}_1 \cdot \mathbf{v}_2 = (6)(-1) + (2)(3) = 0$$

•
$$\alpha_1 = \frac{(4)(6)+(2)(3)}{(6)(6)+(2)(2)} = .75$$
 and $\alpha_2 = \frac{(4)(-1)+(3)(3)}{(-1)(-1)+(3)(3)} = .5$

•
$$\mathbf{v}_1 \cdot \mathbf{v}_2 = (6)(-1) + (2)(3) = 0$$

• $\alpha_1 = \frac{(4)(6) + (2)(3)}{(6)(6) + (2)(2)} = .75$ and $\alpha_2 = \frac{(4)(-1) + (3)(3)}{(-1)(-1) + (3)(3)} = .5$
• $\operatorname{proj}_{v_1} = .75 \begin{bmatrix} 6 \\ 2 \end{bmatrix} = \begin{bmatrix} \frac{9}{3} \\ \frac{3}{2} \end{bmatrix}$ and $\operatorname{proj}_{v_2} = .5 \begin{bmatrix} -1 \\ 3 \end{bmatrix} = \begin{bmatrix} -\frac{1}{2} \\ \frac{3}{2} \end{bmatrix}$

•
$$\mathbf{w} = \begin{bmatrix} \frac{9}{2} \\ \frac{3}{2} \end{bmatrix} + \begin{bmatrix} -\frac{1}{2} \\ \frac{3}{2} \end{bmatrix} = \begin{bmatrix} 4 \\ 3 \end{bmatrix}$$

24.

26. v1 dot v2 = 3.552713678800501E-15 v1 dot v3 = 5.329070518200751E-15 v2 dot v3 = -3.552713678800501E-15

