Grundbegriffe der Informatik Aufgabenblatt 7

Matr.nr.:		
Nachname:		
Vorname:		
Tutorium:	Nr.	Name des Tutors:
Ausgabe:	29. November 201	2
Abgabe:	7. Dezember 2012, 12:30 Uhr	
	im Briefkasten im	Untergeschoss
	von Gebäude 50.3	4
Lösungen w	verden nur korrigie	rt, wenn sie
• rechtzei	tig,	
	eigenen Handschri	
	er Seite als Deckbla	
		zusammengeheftet
abgegeben v	veraen.	
Vom Tutor at	uszufüllen:	
erreichte Pu	nkte	
Blatt 7:	/ 20	
Blätter 1 – 7	: / 140	

Aufgabe 7.1 (3+3 Punkte)

Zeichnen Sie jeweils zwei nicht isomorphe ungerichtete Graphen $U_1 = (V_1 = \mathbb{G}_5, E_1)$ und $U_2 = (V_2 = \mathbb{G}_5, E_2)$, so dass $|E_1| = |E_2| = 5$ und

- a) $\forall x \in V_1 : \exists y \in V_2 : d(x) = d(y)$
- b) $\forall x \in V_1 : \exists y \in V_2 : d(x) = d(y) \land \forall y \in V_2 : \exists x \in V_1 : d(x) = d(y)$ und einer der Graphen ist zu keinem der Graphen aus Teilaufgabe a) isomorph.

Aufgabe 7.2 (4+1 Punkte)

Für $n \in \mathbb{N}_+$ sei folgender Graph $U_n = (V_n, E_n)$ gegeben mit $V_n = \mathbb{G}_n \times \mathbb{G}_{n-1}$ $E_n = \{\{(i,j), (i,j+1)\} \mid i \in \mathbb{G}_n, j \in \mathbb{G}_{n-2}\} \cup \{\{(i,j), ((i+1) \bmod n, j)\} \mid i \in \mathbb{G}_n, j \in \mathbb{G}_{n-1}\}$

- a) Zeichnen Sie U_3 .
- b) Geben Sie für U_3 einen Kreis an, der jeden Knoten genau einmal enthält.

Aufgabe 7.3 (4 Punkte)

Christian kommt aus seinem Afrika-Urlaub zurück. Er erzählt, dass es in seinem besuchten Land 7 unterschiedliche Volksstämme gibt. Jeder Volksstamm bewohnt nur ein zusammenhängendes Gebiet, von denen jedes an genau 3 andere Gebiete angrenzt. Kann man ihm Glauben schenken? Begründen Sie Ihre Antwort.

Aufgabe 7.4 (5 Punkte)

Zeigen Sie (z.B. durch einen Widerspruchsbeweis):

In einem schlingenfreien ungerichteten Graphen U=(V,E) mit mindestens 3 Knoten gilt:

$$1 + \max(\{d(x) \mid x \in V\}) + \min(\{d(y) \mid y \in V\}) \geq |V| \ \Rightarrow \ U \text{ ist zusammenhängend}.$$

 $Hinweis: \max(X)$ gibt das größte, $\min(X)$ das kleinste Element einer Menge X zurück.