Sistemas Digitais e Microprocessadores

Álgebra Booleana e Simplificação

Propriedades

Leis básicas da álgebra booleana

Comutativa:

 $A + B = B + A e A \cdot B = B \cdot A$

Associativa:

A+(B+C)=(A+B)+C e $A\cdot(B\cdot C)=(A\cdot B)\cdot C$

Distributiva:

 $A \cdot (B+C) = A \cdot B + A \cdot C$

Regras da álgebra booleana

1:
$$A + 0 = A$$

5:
$$A + A = A$$

9:
$$\frac{=}{A} = A$$

2:
$$A+1=1$$

6:
$$A + \overline{A} = 1$$

10:
$$A + A \cdot B = A$$

3:
$$A \cdot 0 = 0$$

7:
$$A \cdot A = A$$

11:
$$A + \overline{A} \cdot B = A + B$$

4:
$$A \cdot 1 = A$$

8:
$$A \cdot \overline{A} = 0$$

12:
$$(A+B)\cdot (A+C) = A+B\cdot C$$

Adição Booleana Multip. Booleana

$$0 + 0 = 0$$

$$0.0 = 0$$

$$0 + 1 = 1$$

$$0.1 = 0$$

$$1 + 0 = 1$$

$$\overline{\underline{0}} = 1$$

Complemento

Simplificação por Propriedade

Α	В	С	S
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Colocando os termos AB e AC em evidência:

$$S=\overline{A}B(\overline{C}+C)+AC(\overline{B}+B)$$

E usando as regras 6 e 4:

$$S=\overline{A}B.1+AC.1$$

 $S=\overline{A}.B+A.C$

4:
$$A \cdot 1 = A$$

6:
$$A + A = 1$$

1. Prove que os circuitos são equivalentes utilizando manipulação algébrica.

Obs: outra forma de provar a equivalência lógica seria através das tabelas verdade

2. Simplifique o circuito. Para observar que os circuitos original e simplificado são realmente equivalentes, obtenha as tabelas verdade de cada um. As tabelas verdades devem ser iguais.

Original

			3
АВС	AB	\overline{B} \overline{C}	ABB+C
0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1	1 1 1 1 1 0 0	1 0 0 0 1 0 0 0	1 0 0 0 1 0 0 0

Simplif.

$$Y = \overline{A \cdot B} \cdot \overline{B + C}$$

$$(\overline{A} + \overline{B}) \cdot \overline{B} \cdot \overline{C}$$

$$\overline{A} \cdot \overline{B} \cdot \overline{C} + \overline{B} \cdot \overline{B} \cdot \overline{C}$$

$$\overline{B} \cdot \overline{C} \cdot (\overline{A} + 1)$$

$$\overline{B} \cdot \overline{C}$$

3. Simplifique as equações lógicas

3. Simplifique as equações lógicas

c)
$$Y = (A+\overline{B})(A+C)$$

$$AA + AC + A\overline{B} + \overline{B}C$$

$$A + AC + A\overline{B} + \overline{B}C$$

$$A(1+C+\overline{B}) + \overline{B}C$$

d)
$$Y = AB + \overline{AB}C + A$$

$$(AB + \overline{AB})(AB + C) + A$$

$$1(AB + C) + A$$

$$AB + C + A$$

$$A(1+B) + C$$

$$A1 + C$$

$$A + C$$

3. Simplifique as equações lógicas

e)
$$Y = \overline{ABC} + \overline{A+B+\overline{C}} + \overline{AB\overline{C}D}$$

$$\overline{A}\overline{B}C + \overline{A}\overline{B}\overline{\overline{C}} + \overline{A}\overline{B}\overline{C}D$$

$$\overline{ABC} + \overline{ABC} + \overline{ABCD}$$

$$\bar{A}\bar{B}(C + \bar{C}D)$$

$$\overline{A}\overline{B}((C+\overline{C})(C+D))$$

DATASHEET ou FOLHA DE DADOS:

Documento do qual se verifica as características de um componente eletrônico. Em sistemas digitais, em sua maioria, os CI (Circuitos Integrados)

Para familiarizar vamos verificar a família 74XX

7432

7401

7421

7400

7400 Datasheet, PDF - Alldatasheet