

Introduction to Machine Learning

Module 1

Brian Jalaian, Ph.D.

Associate Professor Intelligent Systems & Robotics Department

Outline

- 1. The General Concept of Machine Learning
- 2. Types of Learning and Basic Terminology
- 3. Supervised Learning
 - Classification
 - Regression
- 4. Unsupervised Learning
 - Dimensionality Reduction for Data Compression
- 5. Reinforcement Learning
 - Example of Chess Program
- 6. The building blocks of successfully designing machine learning systems
- 7. Summary and Conclusion

The General Concept of Machine Learning

Part I

Defining Machine Learning

- Machine learning is a subfield of artificial intelligence that allows computers to learn from data and improve their performance without being explicitly programmed.
- The goal of machine learning is to develop models and algorithms that can make predictions or decisions based on data.
- These models and algorithms can be used for a wide range of applications such as image recognition, natural language processing, and fraud detection.

Figure 1: Machine Learning Workflow - From Andreas Kertez's Medium <u>article</u> 'A Simple Explanation of the Machine Learning Workflow'

Example Daily Applications

- Spam Filter
- Voice recognition software
- Movie recommendation
- Mobile check deposit
- Estimated meal delivery time
- (soon to be added to the list): safe self-driving car
- Medical application: skin cancer detection with near human accuracy, 3D Protein Structure prediction, Predicating oxygen needs of COVID-19 patients up to 4 days in advance

The three types of learning and basic terminology

Part II

Three different types of machine learning

Supervised ML Workflow

- Data collection and preparation:
 Collecting and preparing the data that will be used to train the model. This includes splitting the data into training and test sets.
- Feature extraction: Identifying and extracting relevant features from the data that will be used as inputs to the model.
- Model selection: Selecting the appropriate algorithm and tuning its parameters to best fit the data.
- Evaluation: Evaluating the performance of the model on the test dataset using various evaluation metrics.

Classification vs Regression

- Supervised learning tasks: Two common tasks of supervised learning are classification and regression.
- Classification: In classification, the goal is to predict a categorical label or class for a given input.
- Regression: In regression, the goal is to predict a continuous value for a given input.

Classification

- Classification: a subcategory of supervised machine learning
- Goal: predict the categorical labels of new instances or data points based on past observations
- Class labels: unordered and can be understood as the group membership of data points
- Example: spam filter is a binary classification, where the machine learning algorithm learns to distinguish between two possible classes: spam and non-spam

Regression

- Regression: a subcategory of supervised machine learning
- Goal: predict a continuous outcome based on a set of predictor or explanatory variables
- Inputs: predictor variables (also known as features) and a continuous response or target variable
- Example: stock price prediction, where the goal is to predict the closing price of a stock based on its historical data

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 14, Number 8 (2019) pp. 1931-1934 © Research India Publications. http://www.ripublication.com

Stock Market Prediction

Fig. 2. Stock Prediction of Coca-Cola using Linear Regression

Unsupervised Learning

- Unsupervised learning: a subcategory of machine learning that deals with unlabeled data or data of an unknown structure
- Goal: to explore the structure of the data and extract meaningful information without the guidance of a known outcome variable or reward function
- Inputs: unlabeled data or data of an unknown structure
- Example: clustering, where the goal is to group similar data points together

Dimensionality reduction for data compression

- Dimensionality reduction: a subfield of unsupervised learning
- Goal: to reduce the number of features or dimensions in the data while retaining most of the relevant information
- Inputs: high-dimensional data
- Example: Principal Component Analysis (PCA), a technique used to reduce the dimensionality of the data while retaining most of the relevant information

Reinforcement Learning

- Reinforcement learning: a subcategory of machine learning that deals with learning from an environment through trial and error
- Goal: to develop an agent that improves its performance based on the interaction with the environment
- Inputs: a reward signal that provides information about the current state of the environment
- Reward function: a measure of how well the agent's actions align with the desired outcome
- Example: game playing agents, where the goal is to learn a strategy that maximizes the reward or score

Reinforcement Learning Example: Chess Program

- Reinforcement learning example: chess program
- Agent: a chess program that decides on a series of moves based on the state of the board
- Reward: the outcome of the game, win or lose
- Reward function: a measure of how well the agent's actions align with the desired outcome, which is to win the game
- Learning: the agent learns to choose a series of actions that maximize the total reward, which is the outcome of the game

Typical RL scenario

The building blocks of successfully designing machine learning systems

Part III

ML Workflow for predictive Modeling

Summary of Introduction to Machine Learning

- Recap of the general concept of machine learning, and the three types of learning: supervised, unsupervised, and reinforcement learning
- Overview of the building blocks of successfully designing machine learning systems, including the predictive modeling workflow
- Discussion of the examples of daily applications of machine learning, such as spam filters and medical applications
- Overview of the key terms and concepts discussed in the lecture, including classification, regression and dimensionality reduction
- Additional resources for self-study and further learning.