Step-1

Consider the following equation

$$||b_1 \sin x - \cos x||^2 = \int_0^{2\pi} (b_1 \sin x - \cos x)^2 dx$$
 $\hat{a} \in \hat{a} \in [\hat{a} \in [1, 1]]$

By taking derivative of both sides, we get

$$\begin{aligned} \frac{\partial}{\partial b_1} \left(\left\| b_1 \sin x - \cos x \right\|^2 \right) &= \frac{\partial}{\partial b_1} \left(\int_0^{2\pi} \left(b_1 \sin x - \cos x \right)^2 dx \right) \\ &= \frac{\partial}{\partial b_1} \left(\int_0^{2\pi} \left(b_1^2 \sin^2 x + \cos^2 x - 2b_1 \sin x \cos x \right) dx \right) \\ &= \frac{\partial}{\partial b_1} \left(b_1^2 \int_0^{2\pi} \sin^2 x dx + \int_0^{2\pi} \cos^2 x dx - 2b_1 \int_0^{2\pi} \sin x \cos x dx \right) \end{aligned}$$

Step-2

By integrating we get:

$$\begin{split} \frac{\partial}{\partial b_{1}} \left(\left\| b_{1} \sin x - \cos x \right\|^{2} \right) &= \frac{\partial}{\partial b_{1}} \left(b_{1}^{2} \left[\frac{x}{2} - \frac{1}{4} \sin 2x \right]_{0}^{2\pi} + \left[\frac{x}{2} + \frac{1}{4} \sin 2x \right]_{0}^{2\pi} \right) \\ &= \frac{\partial}{\partial b_{1}} \left(b_{1}^{2} \left[\frac{x}{2} - \frac{1}{4} \sin 2x \right]_{0}^{2\pi} + \left[\frac{x}{2} + \frac{1}{4} \sin 2x \right]_{0}^{2\pi} \right) \\ &= \frac{\partial}{\partial b_{1}} \left(b_{1}^{2} \left[\frac{x}{2} - \frac{1}{4} \sin 2x \right]_{0}^{2\pi} + \left[\frac{x}{2} + \frac{1}{4} \sin 2x \right]_{0}^{2\pi} \right) \\ &= \frac{\partial}{\partial b_{1}} \left(b_{1}^{2} \left[\frac{2\pi}{2} - \frac{1}{4} \sin (4\pi) \right] + \left[\frac{2\pi}{2} + \frac{1}{4} \sin (4\pi) \right] \right) \\ &+ b_{1} \left[\cos^{2} (2\pi) - \cos^{2} (0) \right] \\ &= \frac{\partial}{\partial b_{1}} \left(b_{1}^{2} \pi + \pi \right) \end{split}$$

Step-3

By integrating we get:

$$\frac{\partial}{\partial b_1} \left(\left\| b_1 \sin x - \cos x \right\|^2 \right) = \frac{\partial}{\partial b_1} \left(b_1^2 \pi + \pi \right)$$
$$= 2b_1 \pi$$

To find the value of b_1 that minimizes the equation (1), setting the above derivative equal to 0.

$$\frac{\partial}{\partial b_i} \left(\left\| b_i \sin x - \cos x \right\|^2 \right) = 0$$
$$2b_i \pi = 0$$
$$b_i = 0$$

Therefore, $b_i = 0$ minimizes the equation (1).

Step-4

We know that the fourier coefficient b_1 is as follows:

$$b_1 = \frac{\int_0^{2\pi} f(x) \sin x dx}{\int_0^{2\pi} (\sin x)^2 dx}$$
$$= \frac{(f, \sin x)}{(\sin x, \sin x)}$$

Since $b_1 \sin x - \cos x$ is the vector between the function and the basis $(\sin x)$, so we get

$$f(x) = \cos x$$

Step-5

Substitute $f(x) = \cos x$ in the following equation:

$$b_{1} = \frac{\int_{0}^{2\pi} f(x) \sin x dx}{\int_{0}^{2\pi} (\sin x)^{2} dx}$$

$$= \frac{\int_{0}^{2\pi} (\cos x) \sin x dx}{\int_{0}^{2\pi} (\sin x)^{2} dx}$$

$$= \frac{\left[\frac{1}{2} (\cos^{2} x)\right]_{0}^{2\pi}}{\left[\frac{x}{2} - \frac{1}{4} \sin(2x)\right]_{0}^{2\pi}}$$

By simplifying we get:

$$b_{1} = \frac{\frac{1}{2} \left[\cos^{2}(2\pi) - \cos^{2}(0) \right]}{\left[\frac{2\pi}{2} - \frac{1}{4} \sin(4\pi) - 0 \right]}$$
$$= \frac{\frac{1}{2} (1 - 1)}{\pi}$$
$$= \frac{0}{\pi}$$
$$= 0$$

By using the Fourier coefficient, we are getting $b_1 = 0$.

Therefore, $b_1 = 0$ minimizes the equation (1).