MATERI 2

TUJUAN INSTRUKSIONAL KHUSUS

Setelah menyelesaikan pertemuan ini mahasiswa diharapkan :

- Mengetahui definisi Matriks
- Dapat mencari invers dan transpos matriks
- Dapat menyelesaikan Sistem Persamaan Linier dengan menggunakan invers matriks

Matriks & Operasinya

Bab 1.3

Matriks:

- Suatu kumpulan nilai bentuk empat-persegi-panjang
- 2. Terdiri dari baris-baris dan kolom-kolom
- Tiap nilai dalam matriks disebut entri; cara menyebutkan entri **3.** adalah dengan subskrip / indeks (baris, kolom)

Contoh:

$$\mathbf{Matriks A} = \begin{bmatrix} 1 & 5 & 9 \\ 7 & 3 & 0 \end{bmatrix}$$

semua entri: real

Matriks A terdiri dari 2 baris dan 3 kolom

$$A_{1,1} = 1$$

$$A_{1,2} = 5$$

$$A_{1.2} = 9$$

$$A_{1,1} = 1$$
 $A_{2,1} = 7$

$$A_{2,2} = 3$$

$$A_{1,2} = 5$$
 $A_{1,2} = 9$ $A_{2,3} = 0$

Definisi-definisi:

- 1. Matriks A = matriks B jika ukuran baris A & baris B dan ukuran kolom A & kolom B sama; dan entri $A_{i,j} = entri B_{i,j}$
- 2. $C = A \pm B$, maka $C_{i,j} = A_{i,j} \pm B_{i,j}$
- 3. $M = cA (c = real / skalar), maka M_{i,j} = cA_{i,j}$
- 4. Jika $A_1, A_2, ..., A_n$ adalah matriks-matriks berukuran sama, dan $c_1, c_2, ..., c_n$ adalah bilangan-bilangan skalar, maka $c_1 A_1 + c_2 A_2 + ... + c_n A_n$ disebut kombinasi linier dari $A_1, A_2, ..., A_n$ dengan koefisien $c_1, c_2, ..., c_n$.
- 5. Suatu matriks dapat di-partisi menjadi beberapa submatriks dengan "menarik" garis horisontal dan/atau garis vertikal.

Contoh:

Definisi-definisi (lanjutan):

Matriks A dikalikan dengan matriks B; syaratnya adalah banyaknya kolom A = banyaknya baris B.

Catatan: perhatikan bahwa perkalian matriks (kedua matriks bujursangkar dengan ukuran sama) tidak komutatif ($AB \neq BA$)

Contoh:
$$A = \begin{bmatrix} -1 & 0 \\ 2 & 3 \end{bmatrix}$$
 $B = \begin{bmatrix} 1 & 2 \\ 3 & 0 \end{bmatrix}$

$$\mathbf{B} = \left[\begin{array}{cc} \mathbf{1} & \mathbf{2} \\ \mathbf{3} & \mathbf{0} \end{array} \right]$$

$$AB = \begin{bmatrix} -1 & -2 \\ 11 & 4 \end{bmatrix} \qquad BA = \begin{bmatrix} 3 & 6 \\ -3 & 0 \end{bmatrix}$$

$$\mathbf{BA} = \begin{bmatrix} 3 & 6 \\ -3 & 0 \end{bmatrix}$$

kesimpulan : $AB \neq BA$

- 7. Transpos(A) = matriks A dengan baris-kolom ditukar tempatnya
- Trace(A) = jumlah semua entri diagonal $A = A_{11} + A_{22} + ... + A_{nn}$ 8.

Sifat perkalian matriks:

A matriks bujur sangkar, maka

1.
$$(A^r)(A^s) = A^{(r+s)}$$

2.
$$(A^r)^s = A^{(rs)}$$

Sifat-sifat matriks transpos:

1.
$$(A^T)^T = A$$

2.
$$(kA)^T = k (A^T)$$

3.
$$(A \pm B)^T = A^T \pm B^T$$

4.
$$(AB)^T = B^T A^T$$

- 1. Matriks O = matriks nol; semua entrinya nol
- 2. Matriks I_n = matriks identitas berukuran (n x n); semua entri diagonalnya = 1, entri lain = 0
- 3. Matriks (vektor) baris adalah matriks dengan 1 baris.
- 4. Matriks (vektor) kolom adalah matriks dengan 1 kolom.

Teorema: A, B, C merepresentasikan matriks

a, b merepresentasikan bilangan skalar

1.
$$A + B = B + A$$

2.
$$A + (B + C) = (A + B) + C$$

$$3. \quad A(BC) = (AB)C$$

4.
$$A(B \pm C) = AB \pm AC$$

5.
$$(B \pm C)A = BA \pm CA$$

6.
$$a(B \pm C) = aB \pm aC$$

7.
$$(a \pm b)C = aC \pm bC$$

8.
$$a(bC) = (ab)C$$

9.
$$a(BC) = (aB)C = B(aC)$$

200

Teorema: A, O merepresentasikan matriks

O adalah matriks nol (semua entrinya = nol)

1.
$$A + O = O + A = A$$

2.
$$A - A = 0$$

3.
$$Q - A = -A$$

4.
$$AO = O$$
; $OA = O$

Teorema:

A adalah matriks bujur sangkar berukuran (n x n)

R adalah bentuk eselon-baris-tereduksi dari A.

Maka R berisi (satu/lebih) baris dengan entri nol seluruhnya, atau R adalah matriks identitas I_n .

Contoh:
$$A = \begin{bmatrix} 2 & 3 & 4 \\ 1 & 6 & 7 \\ 8 & 0 & 9 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 3/2 & 2 \\ 1 & 6 & 7 \\ 1 & 0 & 9/8 \end{bmatrix}$$

baris-1 x (1/2); baris-3 x (1/8)

Matriks Invers

Bab 1.4-1.6

Invers dari sebuah matriks:

A adalah matriks bujur sangkar

Jika AB = BA = I maka B adalah invers dari A dan A adalah invers dari B. (invers matriks A dinotasikan dengan A^{-1})

Jika B invers dari A dan C juga invers dari A maka B = C

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
 dan $D = ad - bc \neq 0$, maka invers A

$$\mathbf{A}^{-1} = (1/\mathbf{D}) \left[\begin{array}{cc} \mathbf{d} & -\mathbf{b} \\ -\mathbf{c} & \mathbf{a} \end{array} \right]$$

M

Sifat-sifat matriks Invers:

Matriks A, B adalah matriks-matriks invertibel

1.
$$(A^{-1})^{-1} = A$$

- 2. A^n invertibel dan $(A^n)^{-1} = (A^{-1})^n$
- 3. (kA) adalah matriks invertibel dan (kA) $^{-1}$ = (1/k) A^{-1}
- 4. A^{T} invertibel dan $(A^{T})^{-1} = (A^{-1})^{T}$
- 5. A dan B keduanya matriks invertibel, maka AB invertibel dan $(AB)^{-1} = B^{-1}A^{-1}$

Algoritma untuk mencari invers sebuah matriks A (n x n) ubah menjadi matrix identitas dengan menggunakan OBE.

	4	•
\mathbf{Co}	nta	h•
	иш	11.

1	2	3	1	0	0
2	5	3	0	1	0
1	0	8	0	0	1

matriks A

matriks identitas I

matriks A

 1
 2
 3
 1
 0
 0

 2
 5
 3
 0
 1
 0

 1
 0
 8
 0
 0
 1

dengan OBE dihasilkan

MATRIKS

invers A

matriks A invers A 1 2 3 -40 16 9 2 5 3 13 -5 -3 1 0 8 5 -2 -1

jika kedua matriks ini dikalikan, akan didapat

$$\begin{bmatrix} -40 + 26 + 15 & 16 - 10 - 6 & 9 - 6 - 3 \\ -80 + 65 + 15 & 32 - 25 - 6 & 18 - 15 - 3 \\ -40 + 0 + 40 & 16 - 0 - 16 & 9 - 0 - 8 \end{bmatrix}$$

Aplikasi:

jika A = matrix (nxn) yang punya invers (invertible / dapat dibalik), maka dalam sebuah Sistem Persamaan Linier:

$$Ax = B \rightarrow x = A^{-1}B$$

Contoh:

dalam mendapatkan solusi dari Sistem Persamaan Linier

$$x_1 + 2x_2 + 3x_3 = 1$$
 $2x_1 + 5x_2 + 3x_3 = 1$
 $x_1 + 8x_3 = 1$

matriks A berisi koefisien-koefisien dari x₁, x₂, x₃

vektor
$$\mathbf{x} = (\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3)$$
 yang dicari
vektor $\mathbf{B} = (1, 1, 1)^{\text{MATRIKS}}$

Contoh:

Akan dicari solusi dari Ax = b, di mana

$$\mathbf{b} = \left(\begin{array}{c} 1 \\ 1 \\ 1 \end{array} \right)$$

$$\mathbf{x} = \mathbf{A}^{-1} \mathbf{b} = \begin{pmatrix} -40 & 16 & 9 \\ 13 & -5 & -3 \\ 5 & -2 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} -15 \\ 5 \\ 2 \end{pmatrix}$$

Solusi dari Ax = b adalah x sbb.:

$$\mathbf{b} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

$$\mathbf{x} = \begin{pmatrix} -15 \\ 5 \\ 2 \end{pmatrix}$$

<u>Cek:</u> apakah benar Ax = b?

$$x = \begin{pmatrix} -15 \\ 5 \\ 2 \end{pmatrix}$$
Cek: apakah benar $Ax = 1$

$$\begin{pmatrix} -15 + 10 + 6 \\ -30 + 25 + 6 \\ -15 + 0 + 16 \end{pmatrix}$$

Matriks Elementer:

Matriks A(nxn) disebut elementer jika A dihasilkan dari matriks identitas I_n dengan <u>satu</u> Operasi Baris Elementer.

Contoh:

$$I_3 = \left(\begin{array}{cccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right)$$

$$A_1 = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$A_1 = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 $A_1 = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 6 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

Teorema:

A (nxn) matriks bujur sangkar.

Maka yang berikut ini ekivalen (semuanya benar, atau semuanya salah)

- 1. A invertibel
- 2. Ax = 0 punya solusi trivial saja
- 3. Bentuk eselon baris tereduksi dari A adalah I_n
- 4. A dapat dinyatakan dalam perkalian matriksmatriks elementer

Matriks-matriks dengan bentuk khusus Bab 1.7

Ŋ.

Matriks A(n × n) bujur sangkar, artinya banyaknya baris A sama dengan banyaknya kolom A.

Bentuk-bentuk khusus sebuah matriks bujur sangkar a. l.:

- 1. Matriks diagonal D
- 2. Matriks segi-3 atas
- 3. Matriks segi-3 bawah
- 4. Matriks simetrik

1. Matriks diagonal D: $a_{ij} = 0$ untuk $i \neq j$

2. Matriks segi-3 atas: $a_{ij} = 0$ untuk i > j

3. Matriks segi-3 bawah: $a_{ij} = 0$ untuk i < j

4. Matriks simetrik: $a_{ij} = a_{ji}$

Teorema:

- 1. Transpos dari matriks segi-3 bawah adalah matriks segi-3 atas; transpos dari matriks segi-3 atas adalah matriks segi-3 bawah.
- 2. Perkalian dua matriks segi-3 bawah menghasilkan matriks segi-3 bawah; perkalian dua matriks segi-3 atas menghasilkan matriks segi-3 atas.
- 3. Matriks segi-3 invertibel jika dan hanya jika semua entri diagonalnya <u>tidak</u> nol.
- 4. Invers dari matriks segi-3 bawah adalah matriks segi-3 bawah.
- 5. Invers dari matriks segi-3 atas adalah matriks segi-3 atas.

 MATRIKS

 MATRIKS

Teorema:

A dan B matriks simetrik, k adalah skalar

- 6. A^T simetrik
- 7. A + B simetrik dan A B simetrik
- 8. Matriks kA simetrik
- 9. Jika A invertibel, maka A⁻¹ simetrik

Teorema:

10. Jika A matriks invertibel, maka AA^T dan A^TA juga invertibel.