

Solving in Excel

- Algorithms for solving nonlinear programming models can be very complex
- Most algorithms can only guarantee that they find a local optimizer rather than a global one
- Excel Solver uses an algorithm called Generalized Reduced Gradient (GRG) to solve nonlinear problems
- This algorithm is designed to find a local optimizer within a certain "tolerance" level, and it can sometimes get "stuck"
- In problems not guaranteed to have a unique interior optimal solution, it is a good idea to run the GRG algorithm starting at several initial points

Solving in Excel

- Download NonlinearProfit.xlsx from link Sheet 1 on course website
- Inspect the spreadsheet and Solver

Solution is for price ceiling of \$40

Solving in Excel

- Q: What happens if you adjust the price ceiling to \$20?
- Q: Is your answer consistent with what we have previously seen?

• Q: What happens if you completely drop the constraint?

- This company makes and sells clay bowls and clay mugs
- Model profit as a nonlinear function for maximization
- Examine the following relationships for the profit for bowls (x) and mugs (y)

$$Profit\ per\ Bowl = 4 - 0.1x$$

 $Profit\ per\ Mug = 5 - 0.2y$

• Assume that there is only one constraint pertaining to labor x + 2y = 40

New optimization problem

Maximize
$$(4 - 0.1x)x + (5 - 0.2y)y$$
 Subject to
$$x + 2y = 40$$

$$x, y \ge 0$$

- Download BeaverCreekNonlinear.xlsx from link Sheet 2 on course website
- Inspect the spreadsheet and the nonlinear objective function

	Α	В	С	D	Е	F	
1	Beaver Creek Pottery Company (nonlinear)						
2							
3	Variables:						
4	Bowls (x)	0					
5	Mugs (y)	0					
6							
7	Profit:	0	=(4-0.1*B4)*I	B4+(5-0.2*B5)*	B5		
8							
9	Constraint	x	у	Used	Constraint	Allowed	
10	Labor	1	2	0	=		40

- Run Excel Solver using algorithm Simplex LP and observe what happens
- Run Excel Solver using GRG Nonlinear and select the sensitivity report

- Solution is to produce 18.3 bowls and 10.8 mugs for a profit of \$70.42
- Inspect the sensitivity report

۷á	Variable Cells					
			Final	Reduced		
	Cell	Name	Value	Gradient		
	\$B\$4	Bowls (x)	18.33333327	0		
	\$B\$5	Mugs (y)	10.83333337	0		
Cd	Constraints					
			Final	Lagrange		
	Cell	Name	Value	Multiplier		
	\$D\$10	Labor Used	40	0.333332151		

• The Lagrange multiplier is analogous to the shadow price from before

- Company produces two types of jeans
 - Designer
 - Straight-leg
- Demand for designer jeans (x_1) and demand for straight-leg jeans (x_2) are functions of the corresponding prices, and follow the relations:

$$x_1 = 1500 - 24.6p_1$$

 $x_2 = 2700 - 63.8p_2$

- Designer jeans cost \$12 per pair and straight-leg jeans cost \$9 per pair
- Each pair of jeans requires the following:

	Cloth (yd)	Cutting time (min)	Sewing time (min)
Designer	2	3.6	7.2
Straight-leg	2.7	2.9	8.5

- 6,000 yards of cloth
- 8,5000 minutes of cutting time
- 15,000 minutes of sewing time
- Decision variables
 - x_1 = Number of designer jeans to produce
 - x_2 = Number of straight leg jeans to produce
- Objective function for profit (revenue-cost)

$$Z = (p_1x_1 + p_2x_2) - (12x_1 + 9x_2) = (p_1 - 12)x_1 + (p_2 - 9)x_2$$

• Goal is to find out how many jeans to produce so we need to use the relationships between the price and the number of each type to produce

$$Z = (p_1 - 12)x_1 + (p_2 - 9)x_2$$

= $\left(\frac{1500 - x_1}{24.6} - 12\right)x_1 + \left(\frac{2700 - x_2}{63.8} - 9\right)x_2$

Constraints based on limited resources

$$2x_1 + 2.7x_2 \le 6,000$$
 (Cloth)
 $3.6x_1 + 2.9x_2 \le 8,500$ (Cutting Time)
 $7.2x_1 + 8.5x_2 \le 15,000$ (Sewing Time)

Nonnegativity constraints

$$x_1 \ge 0$$
 and integer (if possible) $x_2 \ge 0$ and integer (if possible)

Download WesternClothing.xlsx from link Sheet 3 on course website

٧	Variable Cells					
L			Final	Reduced		
L	Cell	Name	Value	Gradient		
L	\$B\$4	Designer jeans (x1)	602.3995467	0		
L	\$B\$5 Straight-leg jeans (x2)		1062.900112	0		
L						
С	Constraints					
L			Final	Lagrange		
L	Cell	Name	Value	Multiplier		
	\$D\$10	Cloth Used	4074.629395	0		
	\$D\$11	Cutting time Used	5251.048693	0		
	\$D\$12	Sewing time Used	13371.92769	0		

• Add integer constraints and run Excel Solver (Sensitivity not available)

Ex: Facility Location

- Clayton County Rescue Squad and Ambulance Service wants to build a centralized facility to service five rural towns
 - Abbeville
 - Benton
 - Clayton
 - Dunning
 - Eden
- Let (x, y) denote the location of the proposed facility
- Let (x_i, y_i) denote the location of town i
- Distance between the proposed facility and a town i $d_i = \sqrt{(x_i x)^2 + (y_i y)^2}$

Ex: Facility Location

	Coo	rdinates	
Town	x_i	y_i	Annual trips (t_i)
Abbeville	20	20	75
Benton	10	35	105
Clayton	25	9	135
Dunning	32	15	60
Eden	10	8	90

- Two ideas to consider
 - The facility should be placed closed to the center of all these towns
 - The facility should be placed closed to towns that are visited more often

Ex: Facility Location

- Q: In which location should we place the facility that minimizes the distance to each of the towns, prioritizing those that are visited more often?
- Nonlinear program (Unconstrained or constrained)

Minimize
$$\sum d_i t_i = \sum t_i \sqrt{(x_i - x)^2 + (y_i - y)^2}$$

Subject to

$$x, y \ge 0$$
 Is this necessary?

- Download FacilityLocation.xlsx from link Sheet 4 on course website
- Run Excel Solver both with and without positive constraint
- Q: Did going from constrained to unconstrained get you an error?

The End

