Lecture 24 Many Knapsack Solved All Ways Shortest Path Algorithms

EECS 281: Data Structures & Algorithms

Knapsack Problem Defined

- A thief robbing a safe finds it filled with N items
 - Items have various sizes (or weights)
 - Items have various values
- The thief has a knapsack of capacity M
- Problem: Find maximum value the thief can pack into their knapsack that does not exceed capacity M

Example: Knapsack

- Assume a knapsack with capacity M = 11
- There are N = 5 different items

	0	1	2	3	4
Size	1	2	5	6	7
Value	1	6	18	22	28

 Return maxVal, the maximum value the thief can carry in the knapsack

Variations on a Theme

- Each item is unique (the Standard)
 - Known as the 0-1 Knapsack Problem
 - Must take an item (1) or leave it behind (0)
- Finite amount of each item (explicit list)
- Infinite number of copies of each item
- Fractional amount of item can be taken
- Using weight (w_i) instead of size

Solve Knapsack Problem

Using multiple algorithmic approaches

- Brute-Force
- Greedy
- Divide and Conquer
- Dynamic Programming
- Backtracking
- Branch and Bound

Knapsack: Brute-Force

- Generate possible solution space
 - Given an initial set of N items
 - Consider all possible subsets
- Filter feasible solution set
 - Discard subsets with setSize > M
- Determine optimal solution
 - Find maxVal in feasible solution set

Brute-Force Knapsack:

	0	1	2	3	4
Size	1	2	5	6	7
Value	1	6	18	22	28

0	1	2	3	4	Val
0	0	0	0	0	0
1	0	0	0	0	1
0	1	0	0	0	6
1	1	0	0	0	7
0	0	1	0	0	18
1	0	1	0	0	19
0	1	1	0	0	24
1	1	1	0	0	25
0	0	0	1	0	22
1	0	0	1	0	23
0	1	0	1	0	28
1	1	0	1	0	29
0	0	1	1	0	40
1	0	1	1	0	41
0	1	1	1	0	46
1	1	1	1	0	47

0	1	2	3	4	Val
0	0	0	0	1	28
1	0	0	0	1	29
0	1	0	0	1	34
1	1	0	0	1	35
0	0	1	0	1	46
1	0	1	0	1	47
0	1	1	0	1	52
1	1	1	0	1	53
0	0	0	1	1	50
1	0	0	1	1	51
0	1	0	1	1	56
1	1	0	1	1	57
0	0	1	1	1	68
1	0	1	1	1	69
0	1	1	1	1	74
1	1	1	1	1	75

Brute-Force Pseudocode

```
bool array possSet[1..N] (0:leave,1:take)
maxVal = 0
for i = 1 to 2^N
  possSet[] = genNextPower(N)
  setSize = findSize(possSet[])
  setValue = findValue(possSet[])
  if setSize <= M and setValue > maxVal
    bestSet[] = possSet[]
    maxVal = setValue
return maxVal
```

Brute-Force Efficiency

- Generate possible solution space
 - Given an initial set of N items
 - Consider all possible subsets
 - $O(2^{N})$
- Filter feasible solution set
 - Discard subsets with setSize > M
 - -O(N)
- Determine optimal solution
 - Find maxVal in feasible solution set
 - -O(N)

 $O(N2^N)$

Greedy Approach

Approaches

- Steal highest value items first
 - Might not work if large items have high value
- Steal lowest size (weight) items first
 - Might not work if small items have low value
- Steal highest value density items first
 - Might not work if large items have high value density

If greedy is not optimal, why not?

Example: Greedy Knapsack

- Assume a knapsack with capacity M = 11
- There are N different items, where
 - Items have various sizes
 - Items have various values

	0	1	2	3	4
Size	1	2	5	6	7
Value	1	6	18	22	28
Ratio	1	3	3.6	3.67	4

Greedy Pseudocode

```
Output: integer max value size M knapsack can carry
   maxVal = 0, currentSize = 0
   ratio[] = buildRatio(value[], size[])
   // Sort all three arrays by ratio
   sortRatio(ratio[], value[], size[])
   for i = 1 to N //sorted by ratio
      if size[i] + currSize <= M</pre>
          currSize = currSize + size[i]
         maxVal = maxVal + value[i]
8
9
   return maxVal
```

Input: integers capacity M, size[1..N], val[1..N]

Greedy Efficiency

- Sort items by ratio of value to size
 - $-O(N \log N)$
- Choose item with highest ratio first
 - -O(N)

$$O(N \log N) + O(N) \Rightarrow O(N \log N)$$

Fractional Knapsack: Greedy

- Suppose that thief can steal a portion of an item
- What happens if we apply a Greedy strategy?
- Is it optimal?

Dynamic Programming

- Enumeration with DP
 - Examples: Fibonacci, Binomial Coefficient,
 Knight Moves
 - These are constraint satisfaction problems
- Optimization with DP
 - Examples: Knapsack, Longest Increasing
 Subsequence, Weighted Independent Subset
- Both can be solved top-down or bottom-up, optimizations often favor bottom-up

DP Knapsack Approach

- A master thief prepares job for apprentice
 - Alarm code, safe combination, and knapsack
 - List of items in safe
 - Table of items to put in knapsacks, $0 < x \le M$
- Apprentice finds one extra item in safe
 - Take it or leave it?
 - Remove just enough to fit the new item
 - Q: What should be removed?
 - Q: When should the new item be included?

DP Knapsack Generalization

- Each item will either be taken or left behind
 - If it is too large it is left behind
 - If room can be made to include it, it will be taken only when it improves the haul
- Bottom-Up uses two nested loops
 - Look at items one a time
 - Look at knapsacks from size 0 up to M
 - Build and use a 2D memo

Safe

	0	1	2	3	4
Size	1	2	5	6	7
Value	1	6	18	22	28

Knapsack Size

D		0	1	2	3	4	5	6	7	8	9	10	11
X O	0	0	0	0	0	0	0	0	0	0	0	0	0
Sic	1	0	1	1	1	1	1	1	1	1	1	1	1
	2	0	1	6	7	7	7	7	7	7	7	7	7
ΠS	3	0	1	6	7	7	18	19	24	25	25	25	25
ie.	4	0	1	6	7	7	18	22	24	28	29	29	40
<u> </u>	5	0	1	6	7	7	18	22	28	29	34	35	40

Dynamic Programming: Knapsack

```
uint32_t knapsackDP(const vector<Item> &items, const size_t m) {
     const size t n = items.size();
     vector<vector<uint32 t>>
       memo(n + 1, vector<uint32_t>(m + 1, 0)); // +1, +1
     for (size_t i = 0; i < n; ++i) {
        for (size_t j = 0; j < m + 1; ++j) { // +1 for memo[][m]</pre>
          if (j < items[i].size)</pre>
8
           memo[i + 1][j] = memo[i][j];
         else
10
           memo[i + 1][j] = max(memo[i][j],
11
               memo[i][j - items[i].size] + items[i].value);
12
  } // for j
13
14 } // for i
return memo[n][m];
                                          Run time is O(MN)
16 } // knapsackDP()
```

Reconstructing the Solution

- Included items improve a smaller solution, excluded items do not
- If a smaller solution plus an item is greater than or equal to a full solution without the item it is included, otherwise it is excluded
- Use completed memo to determine the items taken
- Work backward from (n, m) to (0, 0)

Safe

	0	1	2	3	4
Size	1	2	5	6	7
Value	1	6	18	22	28

Knapsack Size

þ		0	1	2	3	4	5	6	7	8	9	10	11	
Xe Ke	0	0,	0	0	0	0	0	0	0	0	0	0	0	
Signal	1	0	4 1	1	1	1	1	1	1	1	1	1	1	
<u>С</u>	2	0	₹ 1	6	7	7	7	7	7	7	7	7	7	
ms	3	0	1	6	7	7	18	√ 19	24	25	25	25	25	
fel	4	0	1	6	7	7	18	22	24	28	29	29	40	•
	5	0	1	6	7	7	18	22	28	29	34	35	40	

Knapsack DP Reconstruction

```
vector<bool> knapDPReconstruct(const vector<Item> &items,
18
                 const vector<vector<uint32 t>> &memo, const size t m) {
19
      const size_t n = items.size();
20
      size_t c = m; // current capacity
21
      vector<bool> taken(n, false); // included items
22
23
      for (int i = n - 1; i \ge 0; --i) { // use int for -1 loop exit
24
        if (items[i].size <= c) {</pre>
25
          if (memo[i][c - items[i].size] + items[i].value >= memo[i][c]) {
26
            taken[i] = true;
27
            c -= items[i].size;
28
         } // if ..item added
29
       } // if ..item fits
30
31 } // for i..0
32 return taken;
                                           Run time is O(N)
   } // knapDPReconstruct()
33
```

Knapsack Branch and Bound

- The Knapsack Problem is an optimization problem
- Branch and Bound can be used to solve optimization problems
 - Knapsack is a maximization
 - Initial estimate and current best solution are a "lower bound"
 - Calculate partial solution, remainder is an "upper bound" estimate

Knapsack B&B Elements

- promising(): total weight of items < M
- solution(): any collection that is promising
- lower_bound: starts with highest possible underestimate, ends with maximum value taken
 - Can start w/ Greedy 0-1 Knapsack (by value density)
- upper_bound: sum of value of included items, plus an "overestimate" of value that can fit in remaining space
 - Prune if upper_bound < lower_bound</p>
 - Can use Greedy Fractional Knapsack
- Don't need permutations only combinations

Shortest Path Algorithms

EECS 281: Data Structures & Algorithms

Shortest Path Examples

- Highway system
 - Distance
 - Travel time
 - Number of stoplights
 - Krispy Kreme locations
- Network of airports
 - Travel time
 - Fares
 - Actual distance

Weighted Path Length

- Consider an edge-weighted graph
 G = (V, E).
- Let $C(v_i, v_j)$ be the weight on the edge connecting v_i to v_j .
- A path in G is a non-empty sequence of vertices $P = \{v_1, v_2, v_3, ..., v_k\}$.
- The weighted path length is given by

$$\sum_{i=1}^{k-1} C(v_i, v_{i+1})$$

The Shortest Path Problem

Given an edge-weighted graph G = (V, E) and two vertices, $v_s \in V$ and $v_d \in V$, find the path that starts at v_s and ends at v_d that has the smallest weighted path length

Single-Source Shortest Path

• Given an edge-weighted graph G = (V, E) and a vertex, $v_s \in V$, find the shortest path from v_s to every other vertex in V

• To find the shortest path from v_s to v_d , we must find the shortest path from v_s to all other vertexes in G

The shortest weighted path

The shortest weighted path from b to f: a {b, a, c, e, f} A shortest unweighted path from b to f: {b, c, e, f}

Dijkstra's Algorithm

- Greedy algorithm for solving shortest path problem
- Assume non-negative weights
- Find shortest path from v_s to every other vertex

Dijkstra's Algorithm

For each vertex *v*, need to know:

- k_v: Is the shortest path from v_s to v known? (initially false for all v ∈ V)
- d_v : What is the length of the shortest path from v_s to v? (initially ∞ for all $v \in V$, except $v_s = 0$)
- p_v : What vertex precedes (is parent of) v on the shortest path from v_s to v? (initially unknown for all $v \in V$)

V	k _v	d_{v}	p_{v}
а	F	8	
b	F	0	
С	F	8	
d	F	8	
е	F	8	
f	F	8	

Find shortest paths to b

V	k _v	d_{v}	p_{v}
а	F	3	b
b	T	0	
С	F	5	b
d	F	8	
е	F	8	
f	F	8	

V	k _v	d_{v}	p_{v}
а	T	3	b
b	T	0	
С	F	4	a
d	F	8	a
е	F	8	
f	F	8	

V	k _v	d_{v}	p_{v}
а	T	3	b
b	T	0	
С	T	4	а
d	F	6	С
е	F	8	С
f	F	8	

V	k _v	d_{v}	p_{v}
а	T	3	b
b	T	0	
С	T	4	а
d	T	6	С
е	F	8	С
f	F	11	d

V	k _v	d_{v}	p_{v}
а	T	3	b
b	T	0	
С	T	4	а
d	T	6	С
е	T	8	С
f	F	9	е

V	k _v	d_{v}	p_{v}
а	T	3	b
b	T	0	
С	T	4	а
d	T	6	С
е	T	8	С
f	T	9	е

V	k _v	d_{v}	p_{v}
а	T	3	b
b	T	0	
С	T	4	а
d	T	6	С
е	T	8	С
f	T	9	е

Dijkstra Complexity

- $O(V^2)$ for a simple nested loop implementation, a lot like Prim's
 - Intuition: for each vertex, find the min using linear search
- O(E log V) for sparse graphs, using heaps
 - E for considering every edge
 - $-\log E = O(\log V^2) = O(\log V)$ for finding the shortest edge in heap

Dijkstra's Algorithm

Dijkstra's Algorithm (cont.)

```
while (!pq.isempty)
                                                    O(E)
                                                    O(\log E)
     v0 = getMin() //heap top() & pop()
                                                    O(1)
     if (!table[v0].k) //not known
3
                                                    O(1)
       table[v0].k = true
4
                                                    O(1 + E/V)
       for each vi \in Adj[v0]
5
                                                    O(1)
         d = table[v0].d + distance(vi, v0)
6
                                                    O(1)
          if (d < table[vi].d)</pre>
                                                    O(1)
            table[vi].d = d
8
            table[vi].p = v0
                                                    O(1)
9
                                                    O(\log E)
            insert pq(d, vi)
10
11
                                                    O( V)
   for each v \in G(V,E)
12
          //build edge set in T
13
                                                    O(1)
          (v, table[v].p) \in T(V, E')
14
```

Exercise

Find the shortest path from O to T

	k _v	d_{v}	p _v
0			
Α			
В			
С			
D			
E			
F			
T			

All-pairs shortest path problem

Given an edge-weighted graph
 G = (V, E), for each pair of vertices in V
 find the length of the shortest weighted
 path between the two vertices

Solution 1: Run Dijkstra V times

Other solutions:

Use Floyd's Algorithm (dense graphs)
Use Johnson's Algorithm (sparse graphs)

NOTE!

- We usually end up stopping here for lecture material
- You don't need to know Floyd-Warshall for the exam, but it seems a shame to delete perfectly good slides
- If you ever need it for a reference, you've got it!

Solution 2: Floyd's Algorithm

- Floyd-Warshall Algorithm
- Dynamic programming method for solving all-pairs shortest path problem on a <u>dense</u> graph
- Uses an adjacency matrix
- O(V³) (best, worst, average)

Weighted path length

- Consider an edge-weighted graph G = (V,E), where C(v,w) is the weight on the edge (v,w).
- Vertices numbered from 1 to |V| (i.e. $V = \{v_1, v_2, v_3, ..., v_{|V|}\}$)

Weighted path length

- Consider the set $V_k = \{v_1, v_2, v_3, ..., v_k\}$ for $0 \le k \le |V|$
- $P_k(i,j)$ is the shortest path from i to j that passes only through vertices in V_k if such a path exists
- $D_k(i,j)$ is the length of $P_k(i,j)$

$$D_k(i,j) = \begin{cases} |P_k(i,j)| & if P_k(i,j) \text{ exists} \\ \infty & otherwise \end{cases}$$

Suppose k = 0

• $V_0 = \emptyset$, so P_0 paths are the edges in G:

$$P_0(i,j) = \begin{cases} \{i,j\} & if (i,j) \in E \\ undefined otherwise \end{cases}$$

• Therefore D_0 path lengths are:

$$D_0(i,j) = \begin{cases} |C(i,j)| & if (i,j) \in E \\ \infty & otherwise \end{cases}$$

to b d a е a ∞ ∞ ∞ ∞ ∞ b 3 5 ∞ ∞ ∞ ∞ 2 4 ∞ ∞ ∞ ∞ from 5 5 d ∞ ∞ ∞ ∞ е ∞ ∞

Floyd's Algorithm

- Add vertices to V_k one at a time
- For each new vertex v_k , consider whether it improves each possible path
 - Compute $D_k(i,j)$ for each i,j in V
 - Minimum of:
 - $D_{k-1}(i,j)$
 - $\bullet \ D_{k-1}(i,k) + D_{k-1}(k,j)$

$$D_k(i,j) = min(D_{k-1}(i,j), D_{k-1}(i,k) + D_{k-1}(k,j))$$

$$V_0 = \{\}$$

V_1	=	{ <i>a</i> }
1		

D_0	а	b	С	d	е	f
а	8	∞	1	∞	∞	8
b	3	∞	5	∞	8	8
С	8	∞	8	2	4	8
d	5	∞	∞	∞	∞	5
е	8	∞	8	∞	8	1
f	8	8	8	∞	8	8

D_1	а	b	С	d	Ф	f
а	8	8	1	8	8	8
b	3	8	4	8	8	8
С	8	8	8	2	4	8
d	5	8	6	8	8	5
е	8	8	8	8	8	1
f	8	8	8	8	8	8

$$D_k(i,j) = min(D_{k-1}(i,j), D_{k-1}(i,k) + D_{k-1}(k,j))$$

$$V_l = \{a\}$$

 $V_2 = \{a, b\}$

D_1	а	b	С	d	е	f
а	8	∞	1	∞	∞	8
b	3	∞	4	∞	8	8
С	8	∞	∞	2	4	8
d	5	∞	6	∞	8	5
е	8	∞	8	∞	8	1
f	8	8	8	8	8	8

D_2	а	b	С	d	е	f
а	8	8	1	∞	8	∞
b	3	8	4	∞	8	8
С	8	8	8	2	4	∞
d	5	8	6	∞	8	5
е	8	8	8	∞	8	1
f	8	8	8	∞	8	∞

$$D_k(i,j) = min(D_{k-1}(i,j), D_{k-1}(i,k) + D_{k-1}(k,j))$$

$$V_2 = \{a, b\}$$

 $V_3 = \{a, b, c\}$

D_2	а	b	С	d	е	f
а	8	8	1	∞	∞	8
b	3	8	4	∞	∞	8
С	8	8	8	2	4	8
d	5	8	6	∞	8	5
е	8	8	8	∞	8	1
f	8	8	8	∞	8	∞

D_3	а	b	С	d	е	f
а	8	8	1	3	5	8
b	3	8	4	6	8	8
С	8	8	8	2	4	8
d	5	8	6	8	10	5
е	8	8	8	8	∞	1
f	8	8	8	8	∞	8

$$D_k(i,j) = min(D_{k-1}(i,j), D_{k-1}(i,k) + D_{k-1}(k,j))$$

$$V_3 = \{a, b, c\}$$

$$V_4 = \{a, b, c, d\}$$

D_3	а	b	С	d	е	f
а	8	∞	1	3	5	∞
b	3	∞	4	6	8	∞
С	8	∞	∞	2	4	∞
d	5	∞	6	∞	10	5
е	8	∞	∞	∞	8	1
f	8	8	8	8	8	∞

D_4	а	b	С	d	е	f
а	8	8	1	3	5	8
b	3	8	4	6	8	11
С	7	8	8	2	4	7
d	5	8	6	∞	10	5
е	8	8	8	∞	8	1
f	8	8	8	∞	8	8

$$D_k(i,j) = min(D_{k-1}(i,j), D_{k-1}(i,k) + D_{k-1}(k,j))$$

$$V_4 = \{a, b, c, d\}$$

$$V_4 = \{a, b, c, d\}$$
 $V_5 = \{a, b, c, d, e\}$

D_4	а	b	С	d	е	f
а	8	8	1	3	5	8
b	3	8	4	6	8	11
С	7	8	∞	2	4	7
d	5	8	6	∞	10	5
е	8	8	8	∞	8	1
f	8	8	8	8	8	8

D_5	а	b	С	d	е	f
а	8	8	1	3	5	6
b	3	8	4	6	8	9
С	7	8	8	2	4	5
d	5	8	6	∞	10	5
е	8	8	∞	∞	8	1
f	8	8	8	8	8	8

$$D_k(i,j) = min(D_{k-1}(i,j), D_{k-1}(i,k) + D_{k-1}(k,j))$$

$$V_5 = \{a, b, c, d, e\}$$
 $V_6 = \{a, b, c, d, e, f\}$

D_5	а	b	С	d	е	f
а	8	8	1	3	5	8
b	3	8	4	6	8	11
С	7	8	8	2	4	7
d	5	8	6	8	10	5
е	8	8	8	8	8	1
f	8	8	8	8	8	∞

D_6	а	b	С	d	е	f
а	8	8	1	3	5	6
b	3	8	4	6	8	9
С	7	8	8	2	4	5
d	5	8	6	∞	10	5
е	8	8	∞	∞	8	1
f	8	8	∞	∞	8	8

Floyd's Algorithm

```
Floyd(G) {
     // Initialize
                                                           O()
     n = |V|;
3
     for (k = 0; k \le n; k++)
       for (i = 0; i < n; i++)
         for (j = 0; j < n; j++)
6
                                                           O()
            d[k][i][j] = infinity;
8
     for (all (v,w) \in E)
9
                                                           O()
       d[0][v][w] = C(v,w)
10
```

Floyd's Algorithm

```
// Compute next distance matrix

for (k = 1; k <= n; k++)

for (i = 0; i < n; i++)

for (j = 0; j < n; j++)

d[k][i][j] = min(d[k-1][i][j], O()

d[k-1][i][k] + d[k-1][k][j]);

7
```

What About the Paths?

- Can't simply reconstruct them at end
- Add initialization:

```
for (i = 0; i < n; i++)
for (j = 0; j < n; j++)

// If edge doesn't exist, no path
if (C(i,j) == infinity)

p[0][i][j] = NIL;
else

p[0][i][j] = j;</pre>
```

Updating Paths

- When going through the triple-nested loop of the algorithm, if you ever update a weight, you must also update the path
- See code next page

to

P_0	а	b	С	d	е	f
а	•	-	c	-	-	-
b	a	-	c	-	-	-
С	-	-	-	d	e	-
d	a	-	-	-	-	f
е	-	-	-	-	-	f
f	•	-	-	-	-	-

 $V_1 = \{a\}$

P ₁	а	b	С	d	е	f
а	-	-	c	-	-	-
b	a	•	a	-	-	-
С	-	•	-	d	e	-
d	a	•	a	-	-	f
е	-	-	-	-	-	f
f	-	•	-	-	-	-

Paths: Primary Loops

```
for (k = 1; k < n; k++)
       for (i = 0; i < n; i++)
3
         for (j = 0; j < n; j++)
           // Compute next distance matrix
                                                        O()
           d[k][i][j] = min(d[k-1][i][j],
6
                             d[k-1][i][k] + d[k-1][k][j]);
           // Compute next paths matrix
8
           if (d[k-1][i][j]
9
               <= d[k-1][i][k] + d[k-1][k][j])
10
             p[k][i][j] = p[k-1][i][j];
                                                        O()
11
           else
12
             p[k][i][j] = p[k-1][k][j];
```

- Add vertices to V_k one at a time
 - Outer loop executes |V| times
- For each new vertex, consider whether it improves each possible path
 - Inner loops execute $|V|^2$ times
- Overall $O(|V|^3)$
- Better than running Dijkstra |V| times?

- Add vertices to V_k one at a time
 - Outer loop executes |V| times
- For each new vertex, consider whether it improves each possible path
 - Inner loops execute $|V|^2$ times
- Overall $O(|V|^3)$
- Better than running Dijkstra |V| times?

- Add vertices to V_k one at a time
 - Outer loop executes |V| times
- For each new vertex, consider whether it improves each possible path
 - Inner loops execute $|V|^2$ times
- Overall $O(|V|^3)$
- Better than running Dijkstra |V| times?

- Add vertices to V_k one at a time
 - Outer loop executes |V| times
- For each new vertex, consider whether it improves each possible path
 - Inner loops execute $|V|^2$ times
- Overall $O(|V|^3)$
- Better than running Dijkstra |V| times?

- Add vertices to V_k one at a time
 - Outer loop executes |V| times
- For each new vertex, consider whether it improves each possible path
 - Inner loops execute $|V|^2$ times
- Overall $O(|V|^3)$
- Better than running Dijkstra |V| times?

- Add vertices to V_k one at a time
 - Outer loop executes |V| times
- For each new vertex, consider whether it improves each possible path
 - Inner loops execute $|V|^2$ times
- Overall $O(|V|^3)$
- Better than running Dijkstra |V| times?

- Add vertices to V_k one at a time
 - Outer loop executes |V| times
- For each new vertex, consider whether it improves each possible path
 - Inner loops execute $|V|^2$ times
- Overall $O(|V|^3)$
- Better than running Dijkstra |V| times?