

COMPREHENSIVE ANALYSIS OF THERA BANK LIABILITY CUSTOMERS

Charles Bryant

CONTEXT

This case is about a bank (Thera Bank) whose management wants to explore ways of converting its liability customers to personal loan customers (while retaining them as depositors). A campaign that the bank ran last year for liability customers showed a healthy conversion rate of over 9% success. This has encouraged the retail marketing department to devise campaigns with better target marketing to increase the success ratio with minimal budget.

DEFINING THE PROBLEM

In a recent conversion campaign, 9% of liability customers transitioned to personal loan customers. Despite a broad demographic approach, the campaign achieved its goals. To better serve our customers, we require a more targeted strategy to enhance customer satisfaction and improve conversion efficiency.

DATASET INFORMATION

- Available on Kaggle
- Contains 5000 customers
- Includes demographic information, the customer's relationship with the bank, and the customer response to the last campaign

DATASET ATTRIBUTES

- 1. ID: Customer ID
- 2. Age: Customer's age in completed years
- 3. Experience: Years of professional experience
- 4. Income: Annual income of the customer (\$000)
- 5. ZIP Code: Home Address ZIP code
- 6. Family: Family size of the customer
- 7. CCAvg: Average spending on credit cards per month (\$000)
- Education Level
 - 1: Undergrad
 - 2: Graduate
 - 3: Advanced/Professional
- 9. Mortgage: Value of house mortgage if any (\$000)
- 10. Personal Loan: Did this customer accept the personal loan offered in the last campaign?
- 11. Securities Account: Does the customer have a securities account with the bank?
- 12. CD Account: Does the customer have a certificate of deposit (CD) account with the bank?
- 13. Online: Does the customer use internet banking facilities?
- 14. Credit card: Does the customer use a credit card issued by the bank?

DATA ANALYSIS METHODOLOGIES

Feature Selection

Identified the most predictive variables using variance inflation factor (VIF) and feature importance rankings.

Threshold Adjustment

Refined decision thresholds to better distinguish between majority and minority classes.

Evaluation Metrics

Prioritized precision and recall to capture positive instances effectively while minimizing false positives.

Ensemble Learning

Leveraged ensemble learning methods to boost overall model performance.

Interpretability

Used partial dependence plots to analyze nonlinear relationships between variables.

DATA PRE-PROCESSING

DATA VIEW BEFORE PROCESSING

	ID	Age	Experience	Income	ZIP Code	Family	CCAvg	Education	Mortgage	Personal Loan	Securities Account	CD Account	Online	CreditCard
0	1	25	1	49	91107	4	1.6	1	0	0	1	0	0	0
1	2	45	19	34	90089	3	1.5	1	0	0	1	0	0	0
2	3	39	15	11	94720	1	1.0	1	0	0	0	0	0	0
3	4	35	9	100	94112	1	2.7	2	0	0	0	0	0	0
4	5	35	8	45	91330	4	1.0	2	0	0	0	0	0	1

PRE-PROCESSING

Dropping Irrelevant Columns

- Removed the ID column to ensure the data focuses on meaningful attributes.
- The ID column served as a unique identifier.

Handling Anomalies in Experience Column

 Removed negative values in the experience column and transformed into positive values to ensure data integrity and alignment with expectations.

Standardizing Scales

 Converted CCAvg to an annual scale to ensure consistency with income data.

DATA VIEW AFTER INITIAL PROCESSING

	Age	Experience	Income	ZIP Code	Family	CCAvg	Education	Mortgage	Personal Loan	Securities Account	CD Account	Online	CreditCard
0	25	1	49	91107	4	19.2	1	0	0	1	0	0	0
1	45	19	34	90089	3	18.0	1	0	0	1	0	0	0
2	39	15	11	94720	1	12.0	1	0	0	0	0	0	0
3	35	9	100	94112	1	32.4	2	0	0	0	0	0	0
4	35	8	45	91330	4	12.0	2	0	0	0	0	0	1

BOXPLOTS BEFORE OUTLIER REMOVAL

BOXPLOTS AFTER OUTLIER REMOVAL

Income, CCAvg, and Mortgage exhibit significant outliers. Using the IQR method, we removed these outliers and analyzed the summary statistics to evaluate their impact on the dataset. This approach allowed us to understand how outliers influence key metrics and ensure a more reliable foundation for modeling.

OUTLIERS COMPARISON

Removing outliers significantly reduced the standard deviations for Mortgage, CCAvg, and Income, indicating less variability in these features. This improvement highlights a more consistent data distribution, which contributes to building a more robust and precise predictive model. Additionally, the removal of outliers decreased the maximum values of these features, aligning them more closely with typical observations and reducing the impact of extreme values.

Summary with outliers								
	Age	Experience	Income	CCAvg	Mortgage			
count	5000.000000	5000.000000	5000.000000	5000.000000	5000.000000			
mean	45.338400	20.134600	73.774200	23.255256	56.498800			
std	11.463166	11.415189	46.033729	20.971908	101.713802			
min	23.000000	0.000000	8.000000	0.000000	0.000000			
25%	35.000000	10.000000	39.000000	8.400000	0.000000			
50%	45.000000	20.000000	64.000000	18.000000	0.000000			
75%	55.000000	30.000000	98.000000	30.000000	101.000000			
max	67.000000	43.000000	224.000000	120.000000	635.000000			
Summar	y without out	liers						
	Age	Experience	Income	CCAvg	Mortgage			
count	4398.000000	4398.000000	4398.000000	4398.000000	4398.000000			
mean	45.536608	20.309004	64.084584	18.613752	38.490678			
std	11.490289	11.458770	38.024646	13.890412	68.108115			
min	23.000000	0.000000	8.000000	0.000000	0.000000			
25%	35.000000	10.000000	35.000000	7.200000	0.000000			
50%	46.000000	20.000000	58.000000	16.800000	0.000000			
75%	56.000000	30.000000	83.000000	26.400000	83.000000			
max	67.000000	43.000000	185.000000	62.400000	252.000000			
Percentage of outliers								
8.8 %								

CORRELATION HEAT MAP BEFORE REMOVAL OF

INSIGNIFICANT FEATURES

CORRELATION HEAT MAP AFTER REMOVAL OF INSIGNIFICANT FEATURES

Age, Experience, and Zip Code had correlation coefficients below 0.1, indicating negligible predictive power; these features were removed. Several predictors showed high correlations, suggesting potential multicollinearity. To confirm this, the Variance Inflation Factor (VIF) was calculated to quantify and address multicollinearity among the features.

FINALIZE FEATURE SPACE

Income, CCAvg, and Education were identified as the most predictive features. Reducing the feature space improved the model's ability to distinguish between classes effectively.

Feature	RF Feature Importance			
Income	0.44			
CCAvg	0.06			
Education	0.5			
Family	0.0			
Mortgage	0.0			
Personal Loan	0.0			
Securities Account	0.0			
CD Account	0.0			
Online	0.0			

Output from Random Forest Feature Importance

DATA VISUALIZATION

INSIGHTS FROM DATA VISUALIZATION

Income Dominance

 Personal loan usage is significantly higher among individuals with higher income levels.

Credit Card Usage

Higher CCAvg levels strongly correlate with personal loan usage.

DATA MODELING

LOGISTIC REGRESSION

Adjusted Threshold

	precision	recall	f1-score	support
0	0.99 0.41	0.89 0.94	0.94 0.57	1220 100
accuracy macro avg weighted avg	0.70 0.95	0.91 0.89	0.89 0.75 0.91	1320 1320 1320

Positive class: High recall (0.94), low precision $(0.41) \rightarrow$ many false positives.

Negative class: Strong performance with precision (0.99) and recall (0.89).

Optimal decision threshold: .793

	precision	recall	f1-score	support
0	0.98	0.94	0.96	1220
1	0.53	0.81	0.64	100
1				
accuracy			0.93	1320
macro avg	0.76	0.88	0.80	1320
weighted avg	0.95	0.93	0.94	1320

Positive class: Greater balance with lower recall (0.81) and higher precision (0.53)

Negative class: Strong performance with precision (0.98) and recall (0.94).

RANDOM FOREST

	precision	recall	f1-score	support
0	0.99	0.99	0.99	1220
1	0.83	0.82	0.82	100
accuracy			0.97	1320
macro avg	0.91	0.90	0.90	1320
weighted avg	0.97	0.97	0.97	1320

Positive class: Optimal balance with high recall (0.82) and high precision (0.83)

Negative class: Strong performance with precision (0.99) and recall (0.99).

Income and credit card spending are the most influential predictors

PARTIAL DEPENDENCE PLOTS

PARTIAL DEPENDENCE PLOTS INSIGHTS

Income:

Loan acceptance probability increases significantly for higher-income individuals, particularly in income levels three and four.

High-income earners are far more likely to accept personal loans, highlighting a strong correlation between income, higher spending habits, and loan acceptance.

CCAvg (Credit Card Usage):

Loan acceptance probability remains stable at lower usage levels but rises sharply for individuals with high credit card usage (levels three and four).

This suggests a link between spending patterns and the likelihood of accepting a loan.

Education:

Loan acceptance probability shows minor increases for individuals in higher education categories, likely due to the association between education, income, and financial engagement.

CONCLUSION

Income is the most significant driver of loan acceptance, with high-income individuals more likely to spend more and accept personal loans. This relationship underscores the importance of targeting high-income borrowers to increase conversion efficiency and enhance customer satisfaction.

THANK YOU

Charles Bryant