Theorem (3.2.7c). Let f be the function defined by $f(x) = \frac{x^4 + x^2 + 1}{x^3 + 1}$. f(x) is $\mathcal{O}(x)$.

Proof. Let g be the function defined by g(x) = x. If $x \ge 1$, then

$$\left(\frac{x^4+x^2+1}{x^3+1}\right) = \left(\frac{x^4}{x^3+1}+1\right) \le \left(\frac{x^4}{x^3}+1\right) = (x+1).$$

If $x \geq 1$, then $x+1 \leq 2 \cdot g(x)$. Thus, $|f(x)| \leq 2|g(x)|$, for all x > 1. Therefore f(x) is $\mathcal{O}(x)$ with constant witnesses C = 2, and k = 1.