3 B Mains

ai24btech11020 - Rishika Kotha

24)	The equation $e^{\sin x} - e^{-\sin x} - 4 = 0$ has:		(2012)	
	a. infinite number of real roots			
	b. no real roots			
	c. exactly one real root			
d. exactly four roots				
25)	The real number k for which the equation, $2x^3$ (<i>JEEM</i> 2013)	$x^{2} + 3x + 4 = 0$ has two	distinct real roots in [0, 1]	
	a. lies between 1 and 2			
	b. lies between 2 and 3			
	c. lies between -1 and 0			
	d. does not exist.			
26)	26) The number of values of k , for which the system of equations:			
	(k+1)x + 8y = 4k			
	kx + (k+3)y = 3k - 1 has no solution, is		(<i>JEEM</i> 2013)	
	has no solution, is		(JEEM 2013)	
	a. infinite	c. 2		
	b. 1	d. 3		
27) If the equations $x^2 + 2x + 3 = 0$ and $ax^2 + bx + c = 0$, $a, b, c \in \mathbb{R}$, have a common root, then $a : b : a = 0$				
21)	is $x + 2x + 3 = 0$ and $ax + bx + c$	$-0,u,v,c\in\mathbb{R}$, have a c	(JEEM2013)	
			(22112010)	
	a. 1:2:3	c. 1:3:2		
	b. 3:2:1	d. 3:1:2		
28) If $a \in \mathbb{R}$ and the equation $-3(x - [x])^2 + 2(x - [x]) + a^2 = 0$ (where [x] denotes the greatest integer				
	$\leq x$) has no integral solution, then all possible values of a lie in the interval: (JEEM2014)			
	a. $(-2, -1)$	c. $(-1,0) \cup 0,1$		
	b. $(-\infty, 2) \cup (2, \infty)$	d. (1,2)		
29)	29) Let α and β be the roots of equation $px^2 + qx + r = 0$, $p \neq 0$. If p, q, r are in $A.P.$ and $\frac{1}{\alpha} + \frac{1}{\beta} = \frac{1}{\alpha}$			
	then the value of $ \alpha - \beta $ is		(JEEM2014)	
	a. $\frac{\sqrt{34}}{9}$	c. $\frac{\sqrt{61}}{9}$		
	b. $\frac{2\sqrt{13}}{9}$	d. $\frac{2\sqrt{17}}{9}$		
	9	9		
30) Let α and β be the roots of the equation $x^2 - 6x - 2 = 0$. If $a_n = \alpha^n - \beta^n$, for $n \ge 1$, then			ⁿ , for $n \ge 1$, then the value	
	of $\frac{a_{10}-2a_8}{2a_9}$ is equal to:		(<i>JEEM</i> 2015)	
	a. 3 b3	c. 6	d6	

31) The sum of all real values of x satisfying the equation $(x^2 - 5x + 5)^{x^2 + 4x + 60} = 1$ is: (*JEEM*2016)

a. 6

b. 5

c. 3

d. -4

32) If $\alpha, \beta \in \mathbb{C}$ are the distinct roots, of the equation $x^2 - x + 1 = 0$, then $\alpha^{101} + \beta^{107}$ is equal to : (JEEM2018)

a. 0

b. 1

c. 2

d. -1

33) Let $p, q \in \mathbb{R}$. If $2 - \sqrt{3}$ is a root of the quadratic equation, $x^2 + px + q = 0$, then: (JEEM2019 - 9April(M))

a.
$$p^2 - 4q + 12 = 0$$

c.
$$q^2 + 4p + 14 = 0$$

a.
$$p^2 - 4q + 12 = 0$$

b. $q^2 - 4p - 16 = 0$

c.
$$q^2 + 4p + 14 = 0$$

d. $p^2 - 4q - 12 = 0$