Билеты по Алгебре и теории чисел 19-... 3 семестр. МОиАИС.

Никита Якунцев, Андрей Сотников, Никита Хатеев, to be continued...

12 января 2014 г.

Содержание

1	Фун	Функции многих переменных															2								
	1.1	Билет 19																							2
	1.2	Билет 20																							3

1 Функции многих переменных

Билет 19 1.1

Евклидово пространство. Простейшие свойства.

E - вещественное линейное пространство называется евклидовым, если задана функция $E \times E \to \mathbb{R}$, называемая скалярным произведением (обозн. $\forall x, y \; \exists (x, y) \in \mathbb{R}$) и выполнено 4 аксиомы:

- 1. $\forall x, y \in E (x, y) = (y, x)$
- 2. $\forall x_1, x_2, y \in E(x_1 + x_2, y) = (x_1, y) + (x_2, y)$
- 3. $\forall \alpha \in \mathbb{R} \ \forall x, y \in E \ (\alpha x, y) = \alpha(x, y)$
- 4. $\forall x \in E (x, x) > 0, x = 0 \Leftrightarrow (x, x) = 0$

Свойства:

- 1. **a)** $(0,y) = 0 \ \forall y \in E$
 - **b)** $(x,0) = 0 \ \forall x \in E$

Доказательство: а) $\overset{3 \ axiom}{\Rightarrow}$ при $\alpha=0 \ (0x,y)=0(x,y)=(0,y)=0, \ \forall y\in E$

2. a) $\forall n \in \mathbb{N} \, \forall \alpha_1 ... \alpha_n \in \mathbb{R} \, \forall x_1 ... x_n, y \in E$

$$\left(\sum_{i=1}^{n} \alpha_{i} x_{i}, y\right) = \sum_{i=1}^{n} \alpha_{i}\left(x_{i}, y\right)$$

Доказательство:

b)

1.2 Билет 20

Неравенство Коши-Буняковского.

Теорема 1 $\forall x,y \in E$ - евклидово пространство; $|(x,y)^2| \leq (x,x)*(y,y) \Leftrightarrow (x,y)^2 \leq (x,x)*(y,y)$

Доказательство

Зафиксируем произвольные $x, y \in E$. Введем отображение:

$$\varphi(\lambda): R \to R; \forall \lambda \ \varphi(\lambda) = (\lambda x + y, \lambda x + y)$$

$$\varphi(\lambda) = (\lambda x + y, \lambda x + y) = \lambda^2(x, x) + \lambda(x, y) + \lambda(y, x) + (y, y) = \lambda^2(x, x) + 2\lambda(x, y) + (y, y)$$

$$\varphi(\lambda) \ge 0 \Leftrightarrow D \le 0$$

$$\frac{D}{4} = (x, y)^2 - (x, x) * (y, y) \le 0$$

$$(x,y)^2 \le (x,x) * (y,y)$$

Теорема 2 Неравенство Коши-Буняковского достигает нуля $\Leftrightarrow x$ и y линейно зависимы.

Доказательство

$$1. \, \Rightarrow x$$
 и y - линейно зависимы $\Leftrightarrow \left[\begin{array}{l} x = 0 \\ y = \lambda x \end{array} \right.$

(a)
$$x = 0$$

 $(0, y) = 0; (0, 0) * (y, y) = 0 * (y, y) = 0 \Rightarrow (x, y)^2 = (x, x) * (y, y)$

(b)
$$y = \lambda x$$

 $(x,y)^2 = (x,\lambda x)^2 = \lambda^2(x,x)^2 = \lambda^2(x,x) * (x,x) = (x,x) * (\lambda x,\lambda x) = (x,x) * (y,y)$

2. \Leftarrow Пусть в неравенстве Коши-Буняковского достигается знак равенства. Объявим функцию $\varphi(\lambda) = (\lambda x + y, \lambda x + y) = \lambda^2(x, x) + 2\lambda(x, y) + (y, y)$

$$(x,y)^2 = (x,x)*(y,y) \Rightarrow \frac{D}{A} = (x,y)^2 - (x,x)*(y,y) = 0$$

 $\exists \lambda_0: \ \varphi(\lambda_0) = (\lambda_0 x + y, \lambda_0 x + y) = 0 \Rightarrow \lambda_0 x + y = 0 \Rightarrow y = -\lambda_0 x$ - линейно зависимы.