

Face-Swapping for Movie Industry

陈炫宏 汇报人:

Email: chenxuanhongzju@outlook.com

Github: https://github.com/neuralchen

2023/9/26

课题背景

AI Generated Content (AIGC)

Face Swapping

换脸任务目标是将源人脸(提供ID信息)自然的迁移到目标人脸(提供ID以外的所有信息)

SimSwap¹系列模型是目前开源换脸模型中最为流行的模型之一,其首次以极简架构实现了One-Shot换脸。

低清直播/视频处理

面向电影产业的换脸,存在超高分辨率、复杂光影、时序一致、高细节 **纹理**的挑战,电影换脸将会极大地降低电影的**拍摄成本**与拍摄复杂度

- https://github.com/neuralchen/SimSwap
- https://github.com/neuralchen/SimSwapPlus

课程项目

面向电影工业的高清人脸数据集

- 超高清数据采集,采集1024*1024的人脸数据集
- 利用**人脸自动标注工具集**²来实现人脸的截取、对齐、 分类
- 数据形式: 单个人多张不同姿势或场景的图片
- 数据来源: 4K或者8K电影,数据源由助教小组提供
- 采用数据完成度作为评分依据

换脸模型

- 熟悉换脸模型的原理、训练、架构设计
- 采用课程中所有同学采集的数据集训练模型,模型分辨率视条件而定

• 训练ABC:

https://colab.research.google.com/github/neuralchen/SimSwap/blob/main/train.ipynb

- 采用代码+项目报告作为评分依据
- 鼓励同学创新设计

数据获取工作流

电影工业中的高清换脸工作流

人脸对齐

Face alignment

人脸对齐

人脸捕获软件

处理结果

人脸粗分类软件

添加人脸处理结果文件夹

人脸分类文件夹,每 个视频应该单独建立 一个文件夹

开始处理按钮

日志窗口

人脸初始类别数目

处理结果

- **人脸对齐失败**: 另外可接受的图片可以以两眼关键点的连线为参考,如若连线显著性倾斜,例如:水平轴与两眼中心点连线超过+/-30度以上即可认定为显著性倾斜,即可抛弃。
- **人脸放缩失败**: 人脸过小,例如: 人脸只占图像40%面积以下即可认定为过小,即可抛弃。
- •**大幅度侧脸**: 完全侧脸, 人脸朝向与镜头呈90度, 只要不违背上述两条即可留下。完全背过

ICC/

正常图片样例: ∂

图像模糊,包括运动失焦、失焦: 🖉

五官不全,无法辨认主体身份: 🔗

数据提交

数据上传:数据统一保存在交大云盘中,请将数据上传至与自己<mark>组别一致</mark>的文件夹中,请将文件压缩为.zip上传,请注意上传的为清洗后的数据。

最后的数据将作为下一阶段全体同学训练模型的源数据, 所以大家一定要把 控质量

Github工程

所有课程相关信息都会及时发布在github项目网站中,同学们一定要及时查看

https://github.com/neuralchen/FaceDatasetTools/tree/main/2023AICourse

课程指南(持续更新中,请同学们多关注)』

课程目的及意义 ≥

目前换脸算法已经成为人脸编辑/重演领域应用最为广泛的算法,其已经广泛的应用于视频直播、短视频制作、电子商务,甚至电影等场景。换脸算法目前主要有DeepFacelab式、simswap式两种类型的算法路线。Deepfacelab需要针对每一个目标人物训练模型,其特点是效果好,训练代价大。SimSwap不需要针对目标人物训练,它是一种One-shot式的换脸算法,模型一旦训练后可以实现任意人脸不经训练即可实现换脸,其特点是应用方便简单,不依赖特定人物的训练,但其效果相较Deepfacelab逊色。目前,已经发展出大量后续的框架以取代前面两者,例如:应用于直播的deepface live,one-shot界面友好的roop/ROPE/facefusion等。这些算法,他们具有相同的通病,只能处理低清的图片(也即224*224/256/112),光影效果差,需要依赖人脸超分来提示质量,即使通过超分提升分辨率,其人脸质量、光影等等属性与电影级别的应用场景仍有不小的差距。

SimSwap++(TPAMI)的效果 ∂

Source ID: Scarlett Johansson Target ID: Iron Man (1080p on YouTube)

项目内容 ∂

SimSwap

SimSwap: An Efficient Framework for High Fidelity Face Swapping²

Project Page: https://github.com/neuralchen/SimSwap

Deepfake

Original DeepFakes Architecture

The DeepFakes Model can only process one single face within One model

One-Shot Face-Swapping

Our model can process arbitrary face within one single model

Weak Feature Matching Loss

Face attributes preserving

Previous SOTA method can not preserve the motion of source face.

Results

Video Results

Video Results of SimSwap++

模型训练

SimSwap工程提供了完善的教程与样例训练demo

https://github.com/neuralchen/SimSwap

可以利用Colab中的免费GPU来训练模型,也可以上传数据,注意此方法存在连接稳定性风险! 建议同学在本地训练模型,SimSwap对于硬件要求并不高

评判SimSwap存在的问题

SimSwap作为早期的换脸模型,存在诸多问题

每个小组可以通过深入了解SimSwap探索此种模型存在的缺陷与不足

课程评分项:

在最终提交的报告中论述SimSwap存在的缺陷与不足,给出详细的论述过程,并可以辅以实例以说明。给出小组讨论的改进方式(不要给出代码),给出改进的理由及预期。

提示:

- 结果的身份相似性
- 结果的属性保留度
- 脸型相似度
- 侧脸处理
- 结果鲁棒性
- 学术道德及安全性
- 从stable diffusion角度改进
- 从stylegan角度改进

- 引入3DMM或者FLAME
- 引入Nerf
- 改进arcface id loss
- 引入mask辅助loss
- 改进unet跳接
- 改进输出方式,参考stylegan2,引入多尺 度输出方式

成绩评定

- 每个阶段提交结果,独立评分,互不影响
 - 数据收集与清洗: 十月中旬提交数据(评分占比40%)
 - 模型训练与测试: 十二月底提交代码与模型(评分占比30%)
 - 项目报告: 期末提交(评分占比30%)

