ALUMINUM ELECTROLYTIC CAPACITOR

Patent number:

JP8321442

Publication date:

1996-12-03

Inventor:

NITTA YUKIHIRO; SHIONO KAZUJI

Applicanti

MATSUSHITA ELECTRIC IND CO LTD:: SANYO CHEMICAL IND LTD

Classification:

- International:

H01G9/10; H01G9/035

- european:

Application number: JP19950127843 19950526 Priority number(s): JP19950127843 19950526

Report a data error here

Abstract of JP8321442

PURPOSE: To provide a highly reliable aluminum electrolytic capacitor which can prevent electrolytic solution from leaking to an outside by reducing influence of electrolysis reaction of electrolytic solution during reverse voltage application and improving stability of a sealing part at a high temperature. CONSTITUTION: The title device is provided with a capacitor element which is formed by winding an anode foil and a cathode foil together with a separator and inflitrating driving electrolytic solution therein, a bottomed tubular metallic case for containing the capacitor element and a sealing body for sealing an opening part of the metallic case. As for driving electrolytic solution, electrolytic solution which is formed by dissolving quaternary salt of compound with alkyl displacement amidine group of phthalic acid and/or maleic acid to organic solvent containing &gamma -butylolactone is used, and as for a sealing body, an elastic body which is formed by adding peroxide as a curing agent to butyl rubber polymer comprised of copolymer of isobutylene, isoprene and divinylbenzene is used.

Data supplied from the esp@cenet database - Worldwide

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平8-321442

(43)公開日 平成8年(1996)12月3日

(51) Int.Cl. ⁸		識別記号	庁内整理番号	FI			技術表示箇所
H01G	9/10			H01G	9/10	E	
	9/035				9/02	311	

審査請求 未請求 請求項の数3 OL (全 7 頁)

(21)出讀番号	特顯平7-127843	(71) 出願人	000005821
			松下電器産業株式会社
(22)出頭日	平成7年(1995) 5月26日		大阪府門其市大字門真1006番地
		(71) 出顧人	000002288
			三洋化成工業株式会社
			京都府京都市東山区一播野本町11番地の1
		(72)発明者	新田 幸弘
			大阪府門真市大字門真1006番地 松下電器
			産業株式会社内
		(72)発明者	塩野 和司
			京都府京都市京山区一橋野本町11番地の1
			三年化成工案株式会社内
		(74)代理人	弁理士 確本 智之 (外1名)

(54) 【発明の名称】 アルミ電解コンデンサ

(57)【要約】

【目的】 逆電圧印加時における電解液の電気分解反応の影響を軽減し、封止部の高温での安定性を高めることにより、電解液の外部への過液を防止することができる信頼性の高いアルミ電解コンデンサを提供することを目的とする。

【構成】 陽極箱および陰極箔をセパレータと共に巻回し、かつ駆動用電解液を含浸させてなるコンデンサ索子と、とのコンデンサ索子を収容する有底筒状の金属ケースと、この金属ケースの開口部の封口を行う封口体とを備え、前記駆動用電解液としてャーブチロラクトンを含む有機溶媒にフタル酸および/またはマレイン酸のアルキル置換アミジン基を有する化合物の4級塩を電解質として溶解してなる電解液を用い、かつ前記封口体としてイソブチレンとイソプレンおよびジピニルベンゼンの共重合体からなるブチルゴムポリマーに、加錠剤として過酸化物を添加してなる弾性体を用いたものである。

(2)

特開平8-321442

【特許請求の範囲】

【請求項1】 陽極箔および陰極箔をセパレータと共に 巻回し、かつ駆動用電解液を含没させてなるコンデンサ 繋子と、とのコンデンサ素子を収容する有底筒状の金属 ケースと、との金属ケースの開口部の封口を行う封口体 とを備え、前記駆動用電解液としてァーブチロラクトン を含む有機溶媒にフタル酸および/またはマレイン酸の アルキル置換アミジン基を有する化合物の4級塩を電解 質として溶解してなる電解液を用い、かつ前記封口体と してイソプチレンとイソプレンおよびジビニルベンゼン の共産合体からなるブチルゴムポリマーに、加硫剤とし て過酸化物を添加してなる弾性体を用いたアルミ電解コ ンデンサ。

【請求項2】 アルキル置換アミジン基を有する化合物の4級塩が、炭素数1~11のアルキル基またはアリールアルキル基で4級化されたイミダゾリン化合物、イミダゾール化合物、ベンゾイミダゾール化合物、脂環式ビリミジン化合物から選ばれる1種以上である請求項1記載のアルミ電解コンデンサ。

【請求項3】 アルキル置換アミジン基を有する化合物 20 の4 級塩が、1-メチルー1、8-ジアザビシクロ [5,4,0]ウンデセン-7、1-メチルー1、5-ジアザビシクロ [4,3,0]ノネン-5、1、2、3-トリメチルイミダゾリニウム、1,2,3,4-テトラメチルイミダゾリニウム、1,3-ジメチルー2-エチルイミダゾリニウム、1,3-ジメチルー2ーへブチルイミダゾリニウム、1,3-ジメチルー2ー(-3'ヘブチル)イミダゾリニウム、1,3-ジメチルー2ードデシルイミダゾリニウム、1,3-ジメチルー2ードデシルイミダゾリニウム、1,3-ジメチルー2ードデシルイミダゾリニウム、1,2、3-トリメチ 30 ルー1、4、5、8ーテトラヒドロビリミジウム、1、3-ジメチルイミダゾリウム、1、3-ジメチルベンゾイミダゾリウムから選ばれる1種以上である請求項1または2記載のアルミ電解コンデンサ。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は各種電子機器に利用されるアルミ電解コンデンサに関するものである。

[0002]

【従来の技術】従来のアルミ電解コンデンサにおける駆 40 動用電解液としては、ケーブチロラクトンやN, N-ジメチルホルムアミド等の溶媒に有機酸や無機酸またはそれらの塩を電解質として溶解させたものが用いられており、マレイン酸またはシトラコン酸の第4級アンモニウム塩を電解質とした電解液(特公平3-8646号)、 芳香族カルポン酸の第4級アンモニウム塩を電解質とした電解液(特公平3-8082号)等が知られている。 【0003】また封口体としては、硫黄加硫したエチレンプロビレン共重合体やブチルゴムが知られており、熱的な安定性に優れる封口材としては過酸化物加硫された 50

ブチルゴム (特開昭62-278819号) が知られている。

[0004]

【発明が解決しようとする課題】しかしながら、前述した従来のアルミ電解コンデンサでは、コンデンサ素子に 過大な逆電圧が印加された場合に、第4級アンモニウム 塩の電気分解により発生する過剰の水酸化物イオンの影響により、長時間高温下で使用した場合、コンデンサの 内部圧力が上昇し、封口部からの電解液の濡れに至る場合があった。

【0005】本発明は上記従来の問題点を解決するもので、逆電圧印加時における電解液の電気分解反応の影響を軽減し、封止部の高温での安定性を高めることにより、電解液の外部への漏れを防止することができる信頼性の高いアルミ電解コンデンサを提供することを目的とするものである。

[0006]

【課題を解決するための手段】上記目的を達成するために本発明のアルミ電解コンデンサは、隔極箔および陰極箔をセパレータと共に巻回し、かつ駆動用電解液を含浸させてなるコンデンサ素子と、とのコンデンサ素子を収容する有底筒状の金属ケースと、との金属ケースの開口部の封口を行う封口体とを備え、前記駆動用電解液としてイーブチロラクトンを含む有機溶媒にフタル酸および/またはマレイン酸のアルキル置換アミジン基を有する化合物の4級塩を電解質として溶解してなる電解液を用い、かつ前記封口体としてイソブチレンとイソブレンおよびジビニルベンゼンの共重合体からなるブチルゴムボリマーに、加硫剤として過酸化物を添加してなる弾性体を用いたものである。

[0007]

【作用】上記手段によれば、(1) 駆動用電解液として アープチロラクトンを含む有機溶媒にフタル酸および/ またはマレイン酸のアルキル置換アミジン基を有する化 合物の4級塩を電解質として溶解してなる電解液を用い ているため、電解液中での電気分解反応により水酸化物 イオンが生じた場合にも、水酸化物イオンとNICIN のアミジン基との反応、分解開環により速やかに電解生 成物が消失するととになり、これにより、テトラアルキ ルアンモニウム塩を電解質として用いた場合と比較し て、過大な逆電圧印加時等に生じ易い電気分解反応の影 響を軽減することができるため、コンデンサの封口性能 を高めることができる。(2)封口体に用いる過酸化物 加碇ブチルゴムは熱的な安定性に優れているため、硫黄 加硫処理したブチルゴムなどと比較して、アルミ電解コ ンデンサを高温下で長時間使用した場合にも封止力(ゴ ム弾性)の低下が少なく、長期にわたって安定な封止性 能を得ることができ、これにより、内圧上昇時に生じ易 い封口部からの電解液の漏れを抑制することができる。 【0008】 このように上記(1) および(2) の項目

(3)

特闘平8-321442

の相乗効果により、コンデンサに逆電圧が印加された際 に生じ易い電解液の電気分解反応の影響を少なくすると とができると共に、高温下でも安定な封止力を維持する ことができて電解液の外部への漏液を防止することがで きる。

[0009]

【実施例】以下、本発明の一実施例について説明する。 【0010】本発明の基本は、陽極箔および陰極箔をセ パレータと共に巻回し、かつ駆動用電解液を含浸させて なるコンデンサ素子と、このコンデンサ素子を収容する 10 有底筒状の金属ケースと、この金属ケースの開口部の封 □を行う封□体とを備え、前記駆動用電解液としてャー ブチロラクトンを含む有機溶媒にフタル酸および/また はマレイン酸のアルキル置換アミジン器を有する化合物 の4級塩を電解費として溶解してなる電解液を用い、か つ前記封口体としてイソプチレンとイソプレンおよびジ ピニルベンゼンの共重合体からなるブチルゴムポリマー に、加硫剤として過酸化物を添加してなる弾性体を用い たアルミ電解コンデンサである。

解液に用いられるアルキル置換アミシン基を有する化合 物の4級塩の例としては、炭素数1~11のアルキル基 またはアリールアルキル基で4級化されたイミダゾリン 化合物、イミダゾール化合物、ベンゾイミダゾール化合 物、脂類式ビリミジン化合物が挙げられる。具体的に は、電導度が高く、低損失のアルミ電解コンデンサを提 供することができる 1 ーメチルー 1, 8 ージアザビシク ロ[5.4.0] ウンデセン-7、1-メチル-1.5 ージアザビシクロ[4,3,0]ノネンー5、1,2, トラメチルイミダブリニウム、1、3-ジメチル-2-エチルーイミダゾリニウム、1、3、4-トリメチルー 1 2-エチルイミダゾリニウム、1,3~ジメチル-2-ヘプチルイミダゾリニウム、1,3-ジメチル-2-(-3' ヘプチル) イミダゾリニウム、1, 3ージメチ ルー2-ドデシルイミダブリニウム、1、2、3-トリ メチルー1,4.5.8ーテトラヒドロピリミジウム、 1. 3-ジメチルイミダゾリウム、1,3-ジメチルベ ンゾイミダゾリウムが好ましい。

動用電解液の溶媒としては、電気化学的に安定なイーブ チロラクトンを主溶媒とすることが望ましい。またこれ に加えて、低温特性の改善や、放電電圧の向上を目的に γ-ブチロラクトンと相溶する他の有機溶媒を副溶媒と して混合しても良い。

【0013】副溶媒としては、多価アルコール系溶媒: エチレングリコール、プロピレングリコール、ジエチレ ングリコール、1, 4ーブタンジオール、グリセリン、 ポリオキシアルキレンポリオール、ラクトン系溶媒:ケ ーパレロラクトン、8ーパレロラクトン、3-メチルー 50 してなる弾性体がפましい。過酸化物としては、十分な

1. 3-オキサゾリジン-2-オン、3-エチル-1, 3-オキサゾリジン-2-オン、水、アミド系溶媒;N -メチルホルムアミド、N. N - ジメチルホルムアミ ド、Nーメチルアセトアミド、エーテル系溶媒;メチラ ール、1.2~ジメトキシエタン、1-エトキシ-2~ メトキシエタン、1、2-ジエトキシエタン、ニトリル 系溶媒:アセトニトリル、3-メトキシブロビオニトリ ル、フラン系溶媒:2.5-ジメトキシテトラヒドロフ ラン、2 - イミダゾリジノン系溶媒:1, 3 - ジメチル -2-イミダゾリジノンの単独もしくは2種以上の混合 裕媒が挙げられる。混合溶媒系の場合、副溶媒の含有量 はィープチロラクトン100部に対して40部以下であ ることが望ましい。副溶媒の含有量が40部を越える と、駆動用電解液の電気化学的安定性が低下するため、 逆電圧印加時のコンデンサ内圧上昇も大きくなって、十 分な効果が得られない。

【0014】電解質塩としては、電気化学的に安定なフ タル酸および/またはマレイン酸のアルキル置換アミジ ン基を有する化合物の塩を用いることが望ましい。フタ 【0011】本発明のアルミ電解コンデンサの駆動用電 20 ル酸、マレイン酸以外の電解質では逆電圧印加時のガス 発生量が大きく、そしてこの時のコンデンサ内圧上昇に より十分な効果が得られない。

> 【0015】本発明のアルミ電解コンデンサにおけるコ ンデンサ素子の含水率は、含浸された電解液の重量に基 づいて通常10%未満である。水の含有量が10%以上 では電気分解反応が促進されて、コンデンサの内圧が上 昇するため十分な効果が得られない。

【0016】本発明のアルミ電解コンデンサの駆動用電 解液には必要により、種々の添加剤を混合しても良い。 3ートリメチルイミダゾリニウム、1,2,3,4-テ 30 添加剤としては、リン系化合物 [リン酸、リン酸エステ ルなど]、ホウ酸系化合物 [ホウ酸、ホウ酸と多糖類 (マンニット、ソルビット、など) との錯化合物、ホウ 酸と多価アルコール(エチレングリコール、グリセリ ン、など)]との錯化合物、ニトロ化合物[pーニトロ 安息香酸、p-ニトロフェノール、など〕が挙げられ る。とれら添加剤の混合によりアルミ酸化皮膜の修復性 を改善できる。その結果、電解液の電気分解反応を抑制 でき、封口性能をより高めることができる。

[0017] 本発明のアルミ電解コンデンサの熾子部棒 【0012】本発明のアルミ電解コンデンサにおける駆 40 状体に防食処理を施したものを用いても良い。棒状体に 防食処理を施すととにより、電気分解電流を抑制できる ため、封口性能をより高めるととができる。棒状体への 防食処理は、陽極側、陰極側の両端止部に施すことが望 ましいが、いずれか一方のみの処理でも良い。また、防 食処理の手段としては、水溶液中での陽極酸化処理が簡 便であり好ましい。

> 【0018】封口体としては、イソプチレンとイソプレ ンおよびジビニルベンゼンの共重合体からなるプチルゴ ムポリマーに、加硫剤として過酸化物を1~20部添加

特開平8-321442 (4) ゴム弾性が得られ、高温下での封止性能の安定した封口 *【0019】以下、実施例により本発明を更に詳細に説 体を提供できるジクミルバーオキシドが望ましい。ま 明するが、本発明はとれに限定されるものではない。 【0020】実施例で使用した駆助用電解液の組成は以 た、過酸化物加硫以外の加硫方法では、商温下で長時間 放置したときのゴム弾性の低下が著しいため、十分な封 下の通りである。 止性が得られない。 電解液A;ァープチロラクトン 100部 フタル酸モノ1-メチル-1,8-ジアザビシクロ [5, 4, 0] ウンデセンー7 30部 p-二トロ安息香酸 1部 以上の化合物を混合、溶解したもの。 **%10%** [0021] 100部 電解液B: ャープチロラクトン フタル酸モノ1-メチル-1,5-ジアザビシクロ 30部 [4、3、0] ノネンー5 モノブチルリン酸エステル 1部 * * [0022] 以上の化合物を混合、溶解したもの。 100部 電解液C:ャープチロラクトン マレイン酸モノ1、2、3-トリメチルイミダゾリニウム 30部 p -ニトロ安息香酸 1部 ☆20☆【0023】 以上の化合物を混合、溶解したもの。 100部 電解液D: ァープチロラクトン フタル酸モノ1, 2, 3, 4ーテトラメチルイミダゾリニウム 30部 1部 pーニトロ安息番酸 1部 モノブチルリン酸エステル 以上の化合物を混合、溶解したもの。 ♦ [0024]. 電解液E:ァーブチロラクトン 90部 エチレングリコール 10部 フタル酸モノ1、3ージメチルー2-エチルイミダゾリニウム 30部 pーニトロ安息香酸 1部 以上の化合物を混合、溶解したもの。 * * [0025] 電解液F;ャープチロラクトン 100部 フタル酸モノ1.3.4-トリメチルー2-エチル イミダゾリニウム 30部 1部 ホウ酸 2部 マンニット 以上の化合物を混合、溶解したもの。 **※ ※ (0026)** 電解液G:ァープチロラクトン 100部 フタル酸モノ1、3-ジメチル-2-ヘプチル イミダゾリニウム 30部 ホウ酸]部 2部 グリセリン \star \star [0027] 以上の化合物を混合、溶解したもの。 100部 電解液H;ャープチロラクトン フタル酸モノ1.3-ジメチル-(-3'ヘブチル) イミダゾリニウム 30部 pーニトロフェノール 1部 ☆ ☆[0028]

BEST AVAILABLE COPY

電解液 1; ァーブチロラクトン

100部

以上の化合物を混合、溶解したもの。

(5)

特開平8-321442

7

フタル酸モノ1,2.3ートリメチルー

1.4.5.6ーテトラヒドロビリミジウム 30部

pーニトロ安息香酸

沿部

以上の化合物を混合、溶解したもの。

* * [0029]

電解液J:ケーブチロラクトン

100部

フタル酸モノ1、3-ジメチルイミダブリウム

160 色

pーニトロ安息香酸

1部

以上の化合物を混合、溶解したもの。

※ ※ 【0030】

電解液K;ァーブチロラクトン

100部

マレイン酸モノ1,3-ジメチルベンゾイミダゾリウム

30部

p -ニトロ安息香酸

1部

以上の化合物を混合、溶解したもの。

* *[0031]

電解液し; ァーブチロラクトン

100部

フタル酸モノテトラメチルアンモニウム

160 8

pーニトロ安息香酸

1部

) 以上の化合物を混合、溶解したもの。

[0032] 実施例で使用したブチルゴム封口体の配合は以下の通りである。

封口体A:[過酸化物加硫]

イソプチレンとイソプレンおよびジビニルベンゼンとの 共食合体からなるプチルゴムポリマー100部に対し て、加硫剤としてジクミルパーオキサイド5部を添加し たもの。

[0033]封口体B;[硫黄加硫]

イソプチレンとイソプレンの共重合体からなるブチルゴムポリマー100部に対して、加硫剤として硫賞2部を添加したもの。

「0034」(実施例1)陽極箱と陰極額との間にマニ 対繊維のセパレータを介在させて巻回することにより構 30 施例1と間様にした。成した巻回形のコンデンサ素子に、電解液Aを含浸させ、そしてとのコンデンサ素子を封口体Aと共に有底円筒状のアルミ製の金属ケース内に封入した後、金属ケースの開口部をカーリング処理により封止して、定格電圧 35Vー節電容量2200μFのアルミ電解コンデンサ そ後た。 (実施例11)電解 20040 (比較例2)封口体とを得た。 (0041)実施例1を存た。 ここには 20041)実施例1を存た。 (20041)実施例1を存た。 ここに 20041) 20041

【0035】(実施例2)電解液として電解液Bを用いた以外は実施例1と同様にした。

(実施例3)電解液として電解液Cを用いた以外は実施例1と同様にした。

[0036] (実施例4)電解液として電解液Dを用いた以外は実施例1と同様にした。

(実施例5)電解液として電解液Eを用いた以外は実施例1と同様にした。

【0037】(実施例6)電解液として電解液Fを用い 20 た以外は実施例1と同様にした。

(実施例7)電解液として電解液Gを用いた以外は実施例1と同様にした。

【0038】(実施例8)電解液として電解液Hを用いた以外は実施例1と同様にした。

(実施例8)電解液として電解液 1を用いた以外は実施例1と間様にした。

[0038] (実施例10) 電解液として電解液 Jを用いた以外は実施例1と同様にした。

(実施例11)電解液として電解液Kを用いた以外は実

【0040】(比較例1)電解液として電解液しを用いた以外は実施例1と同様にした。

(比較例2)封口体として封口体Bを用いた以外は実施例1と同様にした。

【0041】実施例1~11 および比較例1~2のアルミ電解コンデンサに逆電圧-2.0 Vを印加し、125℃で2000時間の高温負荷試験を行った。その試験結果を(表1).(表2)に示した。なお、試験数は各実施例および比較例とも20個ずつである。

40 [0042]

【表1】

(6)

特開平8-321442

	- 高級負荷試験(- 2。 0 V)時の封口頭の様子					
	2 5 0 h	5 0 0 h	1000h	2000h		
实施例1	会数異常なし	全数異常なし	全数異常なし	全数異常なし		
突施例 2	全盤異常なし	金数異常なし	全数異常なし	金飲料常なし		
夾獎例 3	企会異常なし	金数異家なし	金数異常なし	会数異常なし		
实施的4	会数異常なし	金駄異常なし	金数異常なし	金数典常なし		
实施例 5	全数長常なし	全数典帯なし	金数異常なし	全数異常なし		
実施例 6	全数異常なし	金数異常なし	会数異常なし	会数異常なし		
实施例7	会数異常なし	全数異常なし	全数異常なし	金数典常なし		
突旋例 8	全飲異常なし	金数與布なし	全盤異常なし	全数異常なし		
異粒例 9	全般異常なし	会数無常なし	全世級幸なし	金数異常なし		
奥施伊10	全数異常なし	金数異常なし	全数異常なし	全歓典常なし		
法加绍11	全数異常なし	全数異常なし	全数異常なし	全数異常なし		

[0043]

* * 【表2】

	高磁負荷試験(- 2. 0 V)時の針白面の様子					
	2 5 0 h	500h	1000h	2000h		
上較例 1	金数異常なし	按鄰れ2個	推動机6個	独落れ7個		
比較例 2	会数異常なし	金数異常なし	欲にじみ1個	舷にじみ2個		

[0044] この(表1), (表2)から明らかなように、本発明の実施例1~11の構成によるアルミ電解コンデンサは、比較例1~2のアルミ電解コンデンサと比較して、過大な逆電圧印加時の漏液の抑制に対して有効なものである。すなわち、アルキル置換アミジン基を有する化合物の4級塩を電解費として用いた電解液と、ブチルゴムボリマーに、加硫剤として過酸化物を添加してなる封口体との組み合わせにより、過大な逆電圧印加時にも信頼性の高いアルミ電解コンデンサを得ることができた。

[0045]

【発明の効果】以上のように本発明のアルミ電解コンデンサは、(1)駆動用電解液としてアーブチロラクトンを含む有機溶媒にフタル酸および/またはマレイン酸のアルキル置換アミジン基を有する化合物の4級塩を電解質として溶解してなる電解液を用いているため、電解液中での電気分解反応により水酸化物イオンが生じた場合にも、水酸化物イオンとN-C-Nのアミジン基との反応、分解開環により速やかに電解生成物が消失することになり、これにより、テトラアルキルアンモニウム塩を

(7)

特開平8-321442

12

電解質として用いた場合と比較して、過大な逆電圧印加時等に生じ易い電気分解反応の影響を軽減することができるため、コンデンサの封口性能を高めることができる。(2)封口体に用いる過酸化物加硫ブチルゴムは熱的な安定性に優れているため、硫黄加硫処理したブチルゴムなどと比較して、アルミ電解コンデンサを高温下で長時間使用した場合にも封止力(ゴム弾性)の低下が少なく、長期にわたって安定な封止性能を得ることがで

き、これにより、内圧上昇時に生じ易い封口部からの電 解液の漏液を抑制することができる。

【0046】このように上記(1)および(2)の項目の相乗効果により、コンデンサに逆電圧が印加された際に生じ易い電解液の電気分解反応の影響を少なくすることができると共に、高温下でも安定な封止力を維持することができて電解液の外部への漏液を防止することができるものである。