Преподаватель: Курашова Светлана Александровна

Рабочий протокол и отчёт по лабораторной работе №3.01

Изучение электростатического поля методом моделирования

1. Введение

Цель работы

Построение сечений эквипотенциальных поверхностей и силовых линий электростатического поля на основе экспериментального моделирования распределения потенциала в слабопроводящей среде.

2. Ход работы

Задание 1. эквипотенциальные линии

Перенесли точки с миллеметровой бумаги (См. Рис. 1) в компьютер и построили рисунки эквипотенциальные линии на рисунках (См. Рис. 2)

Рис. 1. Результаты моделирования на миллиметровой бумаге

Рис. 2. Эквипотенциальные линии

Задание 2. Система линий поля

Изобразили на рисунках систему линий поля (См. Рис. 3)

Рис. 3. Система линий поля

Задание 3. Напряженность в центре ванны и поверхностная плотность заряда

По формуле (7) величина напряженности в центре электролитической ванны (между линиями с $\varphi=4$ и $\varphi=5$)

$$\langle E_{\text{\tiny II}} \rangle \approxeq \frac{\varphi_5 - \varphi_4}{l_{45}} = \frac{7.65 - 5.65}{(164 - 117) \times 10^{-3}} = 42.553 \text{ B/m}$$

В окрестности одного из электродов

Аналогично в окрестности правого электрода (между лииниями с $\varphi=11.65$ и $\varphi=9.65$)

$$\langle E_{\rm b} \rangle \approxeq \frac{11.65 - 9.65}{(258 - 211) \times 10^{-3}} = 42.553$$

Поверхностная плотность

$$\sigma' \approxeq -\varepsilon_0 \frac{\Delta \varphi}{\Delta l_n} = -\varepsilon_0 \frac{-2.0}{(258-211)\times 10^{-3}} = 3.766\times 10^{-10}~\mathrm{K}\mathrm{J}/\mathrm{M}^2$$

Задание 4. Минимальная и максимальная напряженность

Для второй конфигурации определили максимальную и минимальную напряженность (См. Рис. 4)

Рис. 4. Положение мимальной и максимальной напряженности

Задание 5. Зависимость потенциала от координаты

Построили графики зависисимости $\varphi=\varphi(X)$ для двух исследований, для координаты Y=10 см.

Рис. 5. Зависимость φ потенциала от координаты X

3. Полученные Результаты

- Рисунки и графики 1–5
- Поверхностная плонтность зарядов в первом эксперименте $\sigma' = 3.766 \times 10^{-10} \ {\rm Kp/m^2}$
- Напряженность в центре ванны в первом эксперименте $\langle E_{_{\rm II}} \rangle = 4.553~{
 m B/m}$
- Напряженность у электрода в первом эксперименте $\langle E_{\scriptscriptstyle 9} \rangle = 4.553 \,\, \mathrm{B/m}$
- Максимальная напряженность в эксперименте с кольцом $E_{max} = 83.333 \,\, \mathrm{B/m}$
- Минимальная напряженность в эксперименте с кольцом $E_{max} = 33.333 \,\, \mathrm{B/m}$