武汉大学物理科学与技术学院 物理实验報告

物棚 物理专业 2014年5月10日

实验名称	巨级电影	即超巨煤厂	之间			
姓 名	201-A 1	年级 大三	学 号	2043222016	成 绩	

实验报告内容:

一、实验目的

五、数据表格

二、主要实验仪器

六、数据处理及结果表达

三、实验原理

七、实验结果分析

四、实验内容与步骤

八、习题

一、实验目的

- 1、了解GMR效应的原理
- 2、测量GMR模拟传感器的磁电转换特性曲线
- 3、测量GMR的磁阻特性曲线
- 4、测量GMR开关(数字)传感器的磁电转换特性曲线

二、主要实验仪器

巨磁阻实验仪系统,包括电流表电压表和恒流源;基本特性组件,由GMR模拟传感器,螺线管线圈 及比较电路,输入输出插孔组成; 电流测量组件。

三、实验原理

根据导电的微观机理,电子在导电时并不是沿电场直线前进,而是不断和晶格中的原子产生碰撞 (又称散射),每次散射后电子都会改变运动方向,总的运动是电场对电子的定向加速与这种无规散身 运动的叠加。称电子在两次散射之间走过的平均路程为平均自由程,电子散射几率小,则平均自由程 长, 电阻率低。电阻定律 R= p /S中, 把电阻率 视为常数, 与材料的几何尺度无关, 这是因为通常材 料的几何尺度远大于电子的平均自由程(例如铜中电子的平均自由程约34nm),可以忽略边界效应。当 材料的几何尺度小到纳米量级,只有几个原子的厚度时(例如,铜原子的直径约为0.3nm),电子在边 界上的散射几率大大增加,可以明显观察到厚度减小,电阻率增加的现象。

电子除携带电荷外,还具有自旋特性,自旋磁矩有平行或反平行于外磁场两种可能取向。早在1930 年,英国物理学家,诺贝尔奖获得者N. F. Mott指出,在过渡金属中,自旋磁矩与材料的磁场方向平行的 电子, 所受散射几率远小于自旋磁矩与材料的磁场方向反平行的电子。总电流是两类自旋电流之和:总 电阻是两类自旋电流的并联电阻,这就是所谓的两电流模型。

在下图2所示的多层膜结构中,无外磁场时,上下两层磁性材料是反平行(反铁磁)耦合的。施加

1

无外磁场时底层磁场方向 图 2 多层膜 GMR 结构图

图 3 某种 GMR 材料的磁阻特性

足够强的外磁场后,两层铁磁膜的方向都与外磁场方向一致,外磁场使两层铁磁膜从反平行耦合变 成了平行耦合。电流的方向在多数应用中是平行于膜面的。图3是图2结构的某种GMR材料的磁阻特 性。由图可见,随着外磁场增大,电阻逐渐减小, 其间有一段线性区域。当外磁场已使两铁磁膜完 全平行耦合后,继续加大磁场,电阻不再减小,进入磁饱和区域。磁阻变化率 ΔR/R 达百分之十 几,加反向磁场时磁阻特性是对称的。注意到图2中的曲线有两条,分别对应增大磁场和减小磁场时 的磁阻特性, 这是因为铁磁材料都具有磁滞特性。

有两类与自旋相关的散射对巨磁电阻效应有贡献:

其一,界面上的散射。无外磁场时,上下两层铁磁膜的磁场方向相反,无论电子的初始自旋状 态如何,从一层铁磁膜进入另一层铁磁膜时都面临状态改变(平行一反平行,或反平行一平行), 电子在界面上的散射几率很大,对应于高电阻状态。有外磁场时,上下两层铁磁膜的磁场方向一 致, 电子在界面上的散射几率很小, 对应于低电阻状态。

其二,铁磁膜内的散射。即使电流方向平行于膜面,由于无规散射,电子也有一定的几率在上 下两层铁磁膜之间穿行。无外磁场时,上下两层铁磁膜的磁场方向相反,无论电子的初始自旋状态 如何,在穿行过程中都会经历散射几率小(平行)和散射几率大(反平行)两种过程,两类自旋电 流的并联电阻相似两个中等阻值的电阻的并联,对应于高电阻状态。有外磁场时,上下两层铁磁膜 的磁场方向一致,自旋平行的电子散射几率小,自旋反平行的电子散射几率大,两类自旋电流的并 联电阻相似一个小电阻与一个大电阻的并联,对应于低电阻状态。

自旋阀结构的SV-GMR(Spin valve GMR)由钉扎层,被钉扎层,中间导电层和自由层构成。 中, 钉扎层使用反铁磁材料, 被钉扎层使用硬铁磁材料, 铁磁和反铁磁材料在交换耦合作用下形成 一个偏转场,此偏转场将被钉扎层的磁化方向固定,不随外磁场改变。自由层使用软铁磁材料,它 的磁化方向易于随外磁场转动。这样, 很弱的外磁场就会改变自由层与被钉扎层磁场的相对取向, 对应于很高的灵敏度。制造时,使自由层的初始磁化方向与被钉扎层垂直,磁记录材料的磁化方向 与被钉扎层的方向相同或相反(对应于0或1), 当感应到磁记录材料的磁场时, 自由层的磁化方向 就向与被钉扎层磁化方向相同(低电阻)或相反(高电阻)的方向偏转, 检测出电阻的变化,就可 确定记录材料所记录的信息,硬盘所用的GMR磁头就采用这种结构。

四、实验内容与步骤

- 一.GMR模拟传染器的颜色彩换特性测量
- ① 动能切换按钮为"作感器"测量"似电压沉接至"巨弱电阻供电",恒流流接至"熔线管 电流输入,基本特性组件"核拟倍等输出"接至实验仪电压表
- ② 词节后为弦电;红从 (00~~~100) 记载本雕辑出电压到"城小石森碣"一列中
- ③ 再从一一一个一个的中流,记录相后输出电压到"始大弦场"一引中。
- 二、GMR就阻舒性测量
- の其を该欠多義3至一保持一致把 功能切换为"飞旅阻沟量"
- D从(00~~100调节电流, 犯录相应 超阻电流在"戏水磁场"-到中
- ② 从 -100-100 调节电流, 记录 柳色 B新见电流在"增大器场"—列中
- 图再利用欧特和 R= 呈即对计算出磁阻
- 三、GMR开新住感器的轮轮转换特性别量
- ① 其它欲与实金——孩但本特性组件"开关信号输出"接至实验仪电压表
- ⑦从电流的mA→ -50mA, 并记录开表动作到"戏小弦场—到"
- ①/~ -50 mA →50 mA, 在记录开关动作到"增大路场-3小"
- D、同GMR挨批作感象测量电流
- ①偏置磁铁区岛作总器、使输出物的ShA
- 图 100~~100烟地流、沉柔数据于"浏览器"一行,反珠调笔流、记录数据于横地流一行
- ① 偏置了為铁蟲所任惠然 使新出的为 bomA 重复等了聚②

五 数据数格

裏-老二見下表:

70-	\mathcal{N}						
A(X)	B(Y)	C(Y)	D(Y)	E(Y)	F(Y)	G(Y) 🚉	H(Y)
励磁电流	磁感应强度	输出电压	输出电压	磁阻电流	磁阻电流	磁阻	磁阻
mA	Gs	mV	mV	mA	mA	kΩ	kΩ
1	В	减小磁场	增大磁场	减小磁场	增大磁场	减小磁场	增大磁场
100-(i-1)*10	24000*10*4*3.14*10^(-7)*Col(A)					4/Col(E)	4/Col(F)
100	30.144	267	263	1.696	1.695	2.35849	2.35988
90	27.1296	266	261	1.695	1.692	2.35988	2.36407
80	24.1152	266	258	1.694	1.689	2.36128	2.36827
70	21.1008	263	251	1.69	1.683	2.36686	2.37671
60	18.0864	248	232	1.677	1.666	2.38521	2.40096
50	15.072	213	195.3	1.648	1.634	2.42718	2.44798
40	12.0576	169.9	151.5	1.612	1.597	2.48139	2.5047
30	9.0432	124.5	108.8	1.575	1.562	2.53968	2.56082
20	6.0288	80.7	68.5	1.54	1.529	2.5974	2.61609
10	3.0144	41.1	29.2	1.509	1.498	2.65076	2.67023
0	0	6.6	11.9	1.482	1.485	2.69906	2.6936
-10	-3.0144	34.7	48.4	1.503	1.514	2.66134	2.64201
-20	-6.0288	74.1	88	1.535	1.545	2.60586	2.589
-30	-9.0432	115.8	130	1.568	1.581	2.55102	2.53004
-40	-12.0576	160.6	175	1.604	1.627	2.49377	2.45851
-50	-15.072	207	217	1.642	1.653	2.43605	2.41984
-60	-18.0864	241	249	1.671	1.68	2.39378	2.38095
-70	-21.1008	256	260	1.685	1.691	2.37389	2.36546
-80	-24.1152	261	263	1.69	1.694	2.36686	2.36128
-90	-27.1296	263	264	1.693	1.695	2.36267	2.35988
-100	-30.144	265	265	1.695	1.695	2.35988	2.35988

表三:

24	小品和好	>	t能大品物			
报礼作	I/mA	B/G5	开关30作	2/mA	B/G5	
y K	10.3	3.105	关	-(0.2	-3.075	
Ą	-12.5	-3.768	Ħ	13.1	3.949	

為好IV 低好OV

表四:

A(X)	B(Y)	C(Y)	D(Y)	E(Y)	
待测电流	输出电压	输出电压	输出电压	输出电压	
mA	mV	mV	mV	mV	
	低磁偏置减小电流	低磁偏置增大电流	适当偏置减小电流	适当偏置增大电流	
-300	19.7	19.7	145.7	145.7	
-200	21.7	21.3	147.4	147.3	
-100	23.5	22.9	148.9	148.9	
0	25.1	24.5	150.5	150.5	
100	26.6	26.1	152	152	
200	28.1	27.7	153.5	153.6	
300	29.6	29.3	154.9	155.2	

六、数据处理及结果表达

利用 Origin 处积数据·给制得到 强电联联特性和强阻特性和图-=. 根据基三作出联特性曲线增量三 再由来四作出四个 I- V 围线,并用最小二乘法拟各得到斜叠。

*夏四中已招、烟批多彩车以及R2

C.集.经经验析:

从图一、二、三可看出GMR有网里的磁滴效应、格汰、磁场等效的特性的纤维的里的不同。 另外,图一、二指示了GMR的磁阻曲线类似于一个高其可函数、实际结果与理论分析的 容符较招、最后、图四、表示适当磁偏置下,尺较高即级性较短,加且斜等较高 极更数度也较高。

八.习殿.

无.

武汉大学物理实验数据记录单

学院:**物理科学与**拔专业:**物理学**类 姓名: **派**夫/科·几学号:____

	实验名称:				实验仪	器台号:
磁应应	强逐周斯	翰出电压小	۸٧	石料	1/12	
历城中化	磁感应强度高新	城外路	外大不新物	冰水	数加	地的大阪地
100		266 2.6	3	1.696	Amt	1.695
90		266 25	8	1.694	4	1,692
70.		263.25		1.690	A	\$1.683
60		248 2B -213 195		1.648		1.634
50		169.9. 157,	5	1:612		1.597
30		1245 108	. S	1.540		1.92529
		41.1 29	,2	1.509		1.9498
0		6.6 11.34.7	. 4	1.482		1.485
-10 -20	17	14.1 88	,0	.568		1.545
-30 -40	1	160.6		604		1.627
- 50		207 217		.642		1.680
-60		256 26	10 1.	685		1.691
-7° -8°		261 26	3 1	.690		1.694
- 80 - 90 - 100		25 26 26 26 26 26 26 2	65 1.	695		1.695
- 1 0O		1				

3					
•	滋小疏粉:			地大磁地:	11 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
开关动作	后故中海/mA	磁感应强度高斯	形物作	厅方线电影/mA	磁感应强度/高新
类	+ 10.3	3: 1048	关	- 10.2	3.0747
Ŧĵ	- 12.5 定 -	3.7680	Ħ.	+ 13.1	3.9489

往脚电流/MA			300;	200	100	-100	-200	300
输	低锅桶置	流小电栅.	29.6	28.1.	26.6.25.1	23.5	2年21.7	19.7
虫 虫	(55) 25mV)	大中流,	29.3	27.7	26.1. 24.5	229	21.3	19.7
	适当稀留	减小电流	154.9	1:232	152.0: 150.5	148.9	14-7.4	145.7
/mY	(47 (50 M)	地上中南流	135.2	153,6	1520:5	148.9	14-7.3	145.7
	}	P IN This		•				

2 4, 30