PRINCIPLES OF ANALYSIS SOLUTIONS TO PROBLEM SET C

PAUL L. BAILEY

Problem 1. Let $f(x) = x^3 - 2x^2 - 22x + 35$.

- (a) Use the Rational Roots Theorem to find one rational root a of f(x).
- (b) Divide f(x) by (x-a) to obtain a quadratic polynomial g(x).
- (c) Find all real roots of f(x).

Solution. Based on the information supplied by the leading and constant coefficients, the set of possible rational roots is $\{\pm 1, \pm 5, \pm 7, \pm 35\}$. Trying these possibilities, we see that f(5) = 0. Polynomial division produces $f(x) = (x-5)(x^2+3x-7)$. Apply the quadratic formula to x^2+3x-7 to find that the entire solution set to f(x) = 0 is $\{5, \frac{-3\pm\sqrt{37}}{2}\}$.

Problem 2. Let (a_n) and (b_n) be bounded sequences of nonnegative real numbers.

Define a sequence (c_n) by $c_n = a_n b_n$.

- (a) Show that (c_n) is a bounded sequence of nonnegative real numbers.
- (b) Show that $\sup\{c_m \mid m \ge n\} \le \sup\{a_m \mid m \ge n\} \cdot \sup\{b_m \mid m \ge n\}$.
- (c) Show that $\limsup c_n \leq \limsup (a_n) \cdot \limsup (b_n)$.
- (d) Show that if (a_n) converges to L and $b_n \leq M$ for every $n \in \mathbb{N}$, then $\limsup c_n \leq LM$.

Solution.

- (a) Since (a_n) and (b_n) are bounded sequences of nonnegative numbers, there exist $A, B \in \mathbb{R}$ such that $0 \le a_n \le A$ and $0 \le b_n \le B$. Thus $0 \le a_n b_n = c_n \le AB$, so (c_n) is a bounded sequence of nonnegative numbers.
- (b) Let $n \in \mathbb{N}$; then for every $m \geq n$, we have $c_m = a_m b_m \leq \sup\{a_m \mid m \geq n\} \cdot \sup\{b_m \mid m \geq n\}$, so the latter product is an upper bound for the set $\{c_m \mid m \geq n\}$. Since the supremum is the least upper bound, we have

$$\sup\{c_m \mid m \ge n\} \le \sup\{a_m \mid m \ge n\} \cdot \sup\{b_m \mid m \ge n\}.$$

(c) Since (a_n) , (b_n) , and (c_n) are bounded, the sequences expressed in the above inequality are also bounded and monotone, so they converge. Taking the limit of both sides gives

$$\limsup c_n = \limsup \{c_m \mid m \ge n\}$$

$$\leq \lim \{\sup \{a_m \mid m \ge n\} \cdot \sup \{b_m \mid m \ge n\}\}$$

$$= \lim \sup \{a_m \mid m \ge n\} \cdot \lim \sup \{b_m \mid m \ge n\}\}$$

$$= \lim \sup (a_n) \cdot \lim \sup (b_n).$$

(d) Suppose that (a_n) converges to L and that $b_n \leq M$ for every $n \in \mathbb{N}$. Then $\limsup(a_n) = L$, and $\limsup(b_n) \leq M$. Thus $\limsup(c_n) \leq LM$.

Date: November 22, 2004.

Problem 3. Let (a_n) and (b_n) be bounded sequences of real numbers. Define a sequence (c_n) by $c_n = a_n b_n$. Show that if $\limsup a_n$ and $\limsup b_n$ are negative,

$$\limsup c_n = \liminf (a_n) \cdot \liminf (b_n).$$

Solution. We know that for any nonempty set $A \subset \mathbb{R}$, we have

$$\sup\{-a \mid a \in A\} = -\inf A.$$

Suppose $\limsup a_n$ and $\limsup b_n$ are negative. Then there exists $N \in \mathbb{N}$ such that $a_n < 0$ and $b_n < 0$ for $n \ge N$. Then $\{-a_m \mid m \ge n\}$, $\{-b_m \mid m \ge n\}$, and $\{c_m \mid m \ge n\}$ are sets of nonnegative numbers, for $n \ge N$. As in the previous problem,

$$\limsup c_n = \lim(\sup\{-a_m \mid m \ge n\}) \lim(\sup\{-b_m \mid m \ge n\})$$

$$= \lim(-\inf\{a_m \mid m \ge n\}) \lim(-\inf\{b_m \mid m \ge n\})$$

$$= (-\lim\inf a_n)(-\liminf b_n)$$

$$= \lim\inf a_n \cdot \liminf b_n.$$

Problem 4. Find statements similar to that of Problem 3 for the following cases:

- (a) $\liminf a_n > 0$ and $\liminf b_n > 0$;
- (b) $\liminf a_n > 0$ and $\limsup b_n < 0$;
- (c) $\liminf a_n < 0$ and $\limsup a_n > 0$ but $\liminf b_n > 0$.

Solution. In each case, assume (a_n) and (b_n) are bounded, and that $c_n = a_n b_n$.

- (a) If $\lim \inf a_n > 0$ and $\lim \inf b_n > 0$, then $\lim \inf c_n \ge \lim \inf a_n \cdot \lim \inf b_n$;
- (b) If $\limsup a_n > 0$ and $\limsup b_n < 0$, then $\limsup c_n \leq \liminf a_n \cdot \liminf b_n$;
- (c) If $\limsup a_n < 0$ and $\limsup a_n > 0$ but $\liminf b_n > 0$, then $\limsup c_n \le \limsup a_n \cdot \limsup b_n$.

Definition 1. A linear fractional transformation is a function of the form

$$f(x) = \frac{ax+b}{cx+d},$$

where $a, b, c, d \in \mathbb{R}$.

Problem 5. Let $a,b,c\in\mathbb{R}$ be positive numbers, and consider the linear fractional transformation

$$f(x) = \frac{ax+b}{cx+a}.$$

Select $x_1 \in \mathbb{R}$, and apply f repeatedly (infinitely many times) to x_1 to create a sequence defined by

$$x_{n+1} = f(x_n).$$

Whether or not the sequence (x_n) clearly depends on a, b, c and x_1 .

Show that if (x_n) converges to a positive number, then

$$\lim_{n \to \infty} x_n = \sqrt{\frac{b}{c}}.$$

Proof. If (x_n) converges to L, then $\lim x_n = \lim x_{n+1} = L$. Taking the limit of both sides of $x_{n+1} = f(x_n)$, we get

$$L = \lim \left(\frac{ax+b}{cx+a}\right) = \frac{aL+b}{cL+a}.$$

Solving for L yields $L = \pm \sqrt{\frac{b}{c}}$. So if L is positive, it must be $\sqrt{\frac{b}{c}}$.

Department of Mathematics & CSci, Southern Arkansas University $E\text{-}mail\ address$: plbailey@saumag.edu