MRAC e I&I

Lorenzo Rossi Matricola: 0301285

May 20, 2022

- Introduzione
- Modello teorico
- Implementazione Simulink
 - Reference Model
 - Controllo Adattativo I&I
 - ullet eta quadratic
 - ullet eta logarithmic
 - Controllore MRAC
 - Sistema complessivo

- Analisi
 - MRAC Parametri stazionari
 - MRAC Parametri stazionari + rumore
 - MRAC parametri non stazionari
 - MRAC parametri non stazionari + rumore
 - I&I parametri stazionari
 - I&I parametri stazionari + rumore
 - I&I parametri non stazionari
 - I&I parametri non stazionari + rumore

Assignment 4

Considerato il sistema:

$$\dot{x} = ax + u$$
 a non noto

Effettua le simulazioni con a=1e $a_m=1$ e implementa un controllore adattativo MRAC e l&I per risolvere il problema di regolazione adattativa. Inoltre, confronta le performance dei due controllori in presenza di rumore additivo

$$x+d \quad d(t)=0.1\sin\frac{1}{5}$$

Infine, contronta le performance nel caso in cui il parametro a del sistema è del tipo:

$$a = 1 + \frac{1}{10}\sin 10t$$
 $a = 1 + 10\sin \frac{t}{10}$

Modello teorico

- Modello di riferimento: $\dot{x_m} = -a_m x_m$;
- Sistema: $\dot{x} = ax + u$;
- Controllore adattativo I&I:
 - β quadratic: $\dot{x} = -a_m x xz$, $\dot{z} = -x^2 z$, $\dot{\hat{a}} = a_m x^2$, $a_{est} = \hat{a} + \frac{x^2}{2}$
 - β logarithmic: $\dot{x} = -a_m x xz$, $\dot{z} = -\frac{a_m x^2}{1+x^2}$, $\dot{\hat{a}} = a_m \frac{x^2}{1+x^2}$, $a_{\text{est}} = \hat{a} + \frac{1}{2} \log (1+x^2)$
- Controllore MRAC: $\dot{\tilde{k}} = \gamma \varepsilon_1 x, u = -\tilde{k}x, \varepsilon_1 = x \hat{x}$

• Reference Model:

Sistema:

• I&I β quadratic:

• I&I β logarithmic:

MRAC:

MRAC Parametri stazionari

$$\gamma = 1$$

$$\gamma = 5$$

Al variare del parametro γ del controllore adattativo MRAC si nota che il tempo di convergenza per stimare lo stato rimane invariato a circa 5s. Per valore di γ maggiori, si nota che l'errore presenta una sottoelongazione e la stima di k una leggera sovraelongazione.

MRAC Parametri stazionari con rumore

L'errore in entrambi i casi rimane limitato, tuttavia a causa del disturbo sinusoidale l'andamento degli stati variano.

MRAC parametri non stazionari

$$\gamma=1$$
 $a=1+rac{1}{10}\sin\left(10t
ight)$ $\gamma=1$ $a=1+10\sin\left(rac{t}{10}
ight)$

$$\gamma = 1$$
 $a = 1 + 10\sin\left(\frac{t}{10}\right)$

MRAC parametri non stazionari con rumore

$$\gamma=1$$
 $a=1+rac{1}{10}\sin\left(10t
ight)$ $\gamma=1$ $a=1+10\sin\left(rac{t}{10}
ight)$

$$\gamma = 1 \quad a = 1 + 10\sin\left(\frac{t}{10}\right)$$

I&I parametri stazionari

I&I parametri stazionari con rumore

I&I parametri non stazionari

I&I parametri non stazionari con rumore

Conclusioni