# Does Knowledge Distillation Really Work?

Samuel Stanton, Pavel Izmailov, Polina Kirichenko, Alexander A. Alemi, Andrew Gordon Wilson, NeurIPS 2021

### Дистилляция: лосс-функция

$$\mathcal{L}_{s} := \alpha \mathcal{L}_{NLL} + (1 - \alpha) \mathcal{L}_{KD}, \ \alpha \in [0, 1)$$

$$\mathcal{L}_{NLL}(\mathbf{z}_{s}, \mathbf{y}) := -\sum_{j=1}^{c} y_{j} \log \sigma_{j}(\mathbf{z}_{s})$$

$$\mathcal{L}_{KD}(\mathbf{z}_{s}, \mathbf{z}_{t}) := -\tau^{2} \sum_{j=1}^{c} \sigma_{j} \left(\frac{\mathbf{z}_{t}}{\tau}\right) \log \sigma_{j} \left(\frac{\mathbf{z}_{s}}{\tau}\right)$$

$$\sigma_{i}(\mathbf{z}) = \frac{exp(z_{i})}{\sum_{i,j} exp(z_{j})}, \ \mathbf{z} := f(\mathbf{x}, \theta) - logits$$

### $\mathscr{L}_{ ext{KD}}(\mathbf{z}_s, \mathbf{z}_t) := - au^2 \sum_{j=1}^c \sigma_j \left( rac{\mathbf{z}_t}{ au} ight) \log \sigma_j \left( rac{\mathbf{z}_s}{ au} ight)$

#### Температура



#### Мотивация

- Улучшение обобщающей способности ученика: часто увеличить верность учителю == увеличить обобщающую способность.
- **Интерпретируемость**: возможность интерпретировать структуру данных, замеченную моделью-учителем.
- Понимание: разделение обобщающей способности ученика и его верности учителю поможет понять, как работает дистилляция.

### Дистилляция ResNet-56 в ResNet-56



#### • Архитектура

Дистилляция 5-компонентного ансамбля VGG-16 в VGG-16 с разными аугментациями.



- Низкая способность ученика к обобщению
  - Низкая верность
     учителю наблюдается
     даже при
     дистилляции в такую
     же сеть.

- Слишком простой/маленький датасет.
- Специфика области, из которой взяты данные. Дистилляция ансамбля BiLSTM в BiLSTM и ансамбля ResNet-56 в ResNet-56 на разных

| Dataset  | Teach. Size | Teach. Acc. (†) | Stud. Acc. (†) | Agree. (†)     | KL (↓)        |
|----------|-------------|-----------------|----------------|----------------|---------------|
|          | 1           | 79.361 (0.132)  | 80.353 (0.198) | 86.488 (0.521) | 0.124 (0.012) |
| IMDB     | 3           | 81.807 (0.129)  | 81.129 (0.057) | 89.832 (0.349) | 0.064 (0.003) |
|          | 5           | 82.216 (0.207)  | 81.167 (0.196) | 90.793 (0.180) | 0.052 (0.001) |
| ImageNet | 1           | 0.748 (0.001)   | 0.753 (0.001)  | 0.855 (0.001)  | 0.217 (0.002) |
|          | 3           | 0.764 (0.001)   | 0.755 (0.001)  | 0.878 (0.001)  | 0.157 (0.001) |
|          | 5           | 0.767 (0.001)   | 0.756 (0.001)  | 0.884 (0.001)  | 0.142 (0.001) |

• Используем неправильные данные для дистилляции: добиться высокой верности на тренировочных данных недостаточно, чтобы иметь высокую верность на тестовых данных.

### Правильные ли данные мы используем?

Дистилляция 5-компонентного ансамбля ResNet-56 в ResNet-56 с разными аугментациями.



#### Правильные ли данные мы используем?

- Может быть, мы показываем ученику не те данные?
  - Из-за аугментаций распределение обучающих данных для ученика и для учителя не совпадают.
  - Повторное использование данных, на которых обучался учитель, для обучения ученика, означает, что данные больше не являются независимыми случайно выбранными из одного распределения.

### Правильные ли данные мы используем?

Дистилляция ансамбля ResNet-56 в ResNet-56. В верхней строке: температура=4, меняется размер ансамбля, в нижней: размер ансамбля = 3, меняется температура.



#### • Сложности оптимизации:

ученик не согласен с учителем даже на тренировочном датасете.

### Может ли ученик быть согласен с учителем на тренировочных данных?

Согласие с учителем на тренировочном датасете для предыдущих экспериментов.



### Почему ученик не согласен с учителем на тренировочных данных?

Дистилляция ResNet-20 в ResNet-20.







(b) Initialization effect

(c) Loss Visualization

#### Итого

- Высокая доля верных ответов ученика на тестовых данных не означает высокую верность учителю.
- Оптимизационная задача в дистилляции сложная.
- Увеличение датасета для дистилляции за пределы тренировочного датасета учителя увеличивает долю верных ответов ученика, но делает оптимизационную задачу сложнее.