Correction

d'après CCP PC 1997

Partie I

- 1.a g est k lipschitzienne donc continue.
- 1.b Posons $h: x \mapsto g(x) x$ définie sur [a,b].

h est continue, $h(a) = g(a) - a \ge 0$ et $h(b) = g(b) - b \le 0$ donc h s'annule en vertu du TVI.

Par suite l'équation g(x) = x possède au moins une solution.

Notons α et β deux solutions de l'équation g(x) = x.

On a
$$|g(\alpha) - g(\beta)| \le k|\alpha - \beta|$$
 donc $|\alpha - \beta| \le k|\alpha - \beta|$ or $k < 1$ donc $\alpha = \beta$.

Finalement l'équation g(x) = x possède une solution unique.

2.a Par récurrence sur $n \in \mathbb{N}$:

Pour n = 0: ok

Supposons la propriété établie au rang $n \ge 0$

$$\left|x_{n+1} - \alpha\right| = \left|g(x_n) - g(\alpha)\right| \le k \left|x_n - \alpha\right| \le k^{n+1} \left|u - \alpha\right|.$$

Récurrence établie.

 $k \in [0,1[$ donc $k^n \to 0$ et donc $x_n \to \alpha$ par comparaison.

2.b 1^{ère} méthode :

$$\left| x_{n+p} - x_n \right| \le \left| (x_{n+p} - x_{n+p-1}) + (x_{n+p-1} - x_{n+p-2}) + \dots + (x_{n+1} - x_n) \right|,$$

$$\left| x_{n+p} - x_n \right| \leq \left| x_{n+p} - x_{n+p-1} \right| + \left| x_{n+p-1} - x_{n+p-2} \right| + \dots + \left| x_{n+1} - x_n \right|,$$

$$\left| x_{n+p} - x_n \right| \le k^{p-1} \left| x_{n+1} - x_n \right| + k^{p-2} \left| x_{n+1} - x_n \right| + \dots + k^0 \left| x_{n+1} - x_n \right| = \frac{1 - k^p}{1 - k} \left| x_{n+1} - x_n \right|$$

2^{ème} méthode :

Par récurrence sur $p \in \mathbb{N}$ en exploitant :

$$\left| x_{n+p+1} - x_n \right| \leq \left| x_{n+p+1} - x_{n+p} \right| + \left| x_{n+p} - x_n \right| \leq k^p \left| x_{n+1} - x_n \right| + \frac{1 - k^p}{1 - k} \left| x_{n+1} - x_n \right|.$$

 $\text{2.c} \qquad \text{Quand} \ \ p \to +\infty \ \ \text{dans l'inégalité précédente} : \left|\alpha - x_n\right| \leq \frac{1}{1-L} \left|x_{n+1} - x_n\right|.$

$$\text{Or } \left| x_{n+1} - x_n \right| \leq k^n \left| x_1 - x_0 \right| \text{ donc } \left| x_n - \alpha \right| \leq \frac{k^n}{1 - k} \left| x_1 - x_0 \right|.$$

3.a $g'(\alpha) = \lim_{h \to 0} \frac{g(\alpha+h) - g(\alpha)}{h}$ or $|g(\alpha+h) - g(\alpha)| \le k |\alpha+h| - \alpha = k |h|$

donc
$$\left| \frac{g(\alpha+h) - g(\alpha)}{h} \right| \le k$$
 puis à la limite quand $h \to 0 : |g'(\alpha)| \le k$.

3.b $x_n \to \alpha$ et $\frac{g(x) - g(\alpha)}{x - \alpha} \xrightarrow{x \to \alpha} g'(\alpha)$ donc par composition de limite :

$$\frac{x_{n+1} - \alpha}{x_n - \alpha} = \frac{g(x_n) - g(\alpha)}{x_n - \alpha} \xrightarrow{n \infty} g'(\alpha).$$

Partie II

1.a f est continue, f(a) < 0 et f(b) > 0 donc en vertu du TVI l'équation f(x) = 0 possède au moins une solution dans]a,b[. D'autre part f est strictement croissante (donc injective) car $\forall x \in [a,b], f'(x) > 0$, par suite l'équation f(x) = 0 ne peut avoir plus d'une solution. Finalement l'équation f(x) = 0 possède une unique solution $\alpha \in [a,b[$.

- 1.b L'équation de la tangente à f en x_0 est $y=f'(x_0)(x-x_0)+f(x_0)$. Cette droite coupe l'axe des abscisses (y=0) en un point d'abscisse $x=x_0-\frac{f(x_0)}{f'(x_0)}$.
- 2.a f est f' sont C^1 donc g l'est aussi par opérations.

2.b
$$g(\alpha) = \alpha$$
 et $g'(\alpha) = \frac{f(\alpha)f''(\alpha)}{(f'(\alpha))^2} = 0$.

3.a Par récurrence sur $n \in \mathbb{N}$ montrons que x_n existe et $x_n \in [a, \alpha]$.

Pour n = 0: ok

Supposons la propriété établie au rang $n \ge 0$.

Puisque, par HR, x_n existe et $x_n \in [a, \alpha]$, $x_{n+1} = g(x_n)$ est bien définie.

 x_{n+1} est l'abscisse du point d'intersection de la tangente à f en x_n et de l'axe des abscisses.

La fonction f étant concave, sa représentation est en dessous de cette tangente, donc $f(x_{n+1}) \le 0$ et puisque f est strictement croissante : $x_{n+1} \le \alpha$.

D'autre part
$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} \ge x_n$$
 car $f(x_n) \le 0$ et donc $x_{n+1} \ge x_n$.

Ainsi $x_{n+1} \in [x_n, \alpha] \subset [a, \alpha]$. Récurrence établie.

On a vu ci-dessus $x_{n+1} \ge x_n$, la suite (x_n) est croissante.

3.b (x_n) est croissante et majorée donc elle converge vers une limite ℓ .

 $x_n \in [a, \alpha]$ donne à la limite $\ell \in [a, \alpha]$.

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$
 donne à la limite $\ell = \ell - \frac{f(\ell)}{f'(\ell)}$ car f est \mathcal{C}^1 . Par suite $f(\ell) = 0$ et donc $\ell = \alpha$.

4.a On a $g'(\alpha) = 0$ et g' continue car g est de classe C^1 .

Puisque $g'(x) \xrightarrow[x \to \alpha]{} 0 < 1$, il existe h > 0 tel que $\forall x \in I = [\alpha - h, \alpha + h], |g'(x)| < 1$ quitte à prendre h suffisamment petit pour que $I \subset [a,b]$.

4.b Par l'inégalité des accroissements finis :

 $\forall x \in I, |g(x) - g(\alpha)| \le 1 \times |x - \alpha| \text{ donc } |g(x) - \alpha| \le h \text{ d'où } g(x) \in I.$

4.c |g'| est continue sur le segment $I = [\alpha - h, \alpha + h]$, elle y admet donc un maximum en un point $c \in I$.

Posons k = |g'(c)|. On a $k \in [0,1[$ car $\forall x \in I, |g'(x)| < 1$.

De plus $\forall x \in I, |g'(x)| \le |g'(c)| = k$ donc l'inégalité des accroissements finis assure que g est k lipschitzienne.

- 4.d Les propriétés sont réunies pour exploiter la partie I et conclure.
- 5. Par la formule de Taylor-Young :

$$g(x) = g(\alpha) + g'(\alpha)(x - \alpha) + \frac{g''(\alpha)}{2}(x - \alpha)^2 + o((x - \alpha)^2)$$
 au voisinage de α .

Puisque $x_n \to \alpha$ on peut écrire : $g(x_n) = g(\alpha) + g'(\alpha)(x_n - \alpha) + \frac{g''(\alpha)}{2}(x_n - \alpha)^2 + o((x_n - \alpha)^2)$

i.e. :
$$x_{n+1} = \alpha + \frac{g''(\alpha)}{2}(x_n - \alpha)^2 + o((x_n - \alpha)^2)$$
 d'où $\lim_{n \to +\infty} \frac{x_{n+1} - \alpha}{(x_n - \alpha)^2} = \frac{g''(\alpha)}{2}$.