云南大学数学与统计学院 《算法图论实验》上机实践报告

课程名称: 算法图论实验	年级: 2015 级	上机实践成绩:
指导教师: 李建平	姓名: 刘鹏	专业: 信息与计算科学
上机实践名称: 有向图的弧连通度	学号: 20151910042	上机实践日期: 2018-11-21
上机实践编号: 6	组号:	

一、 实验目的

- 1. 了解图的点连通度和弧连通度的定义;
- 2. 了解 Menger 定理的描述以及证明。

二、 实验内容

- 1. 写出求图的弧连通度的算法:
- 2. 用 C 语言实现上述算法。

三、 实验平台

Windows 10 Pro 1803:

MacOS Mojave.

四、 算法设计

4.1 预备知识

为了刻画图的连通程度,引入图的连通度的概念。设连通图G不是完全图,如果 $V_1 \subset V$,使得 $G - V_1$ 是不连通的,则称 V_1 是图G的**点截集**(vertex-cut)。如果 $|V_1| = k$,也称之为k-点截集。给定图G的两个顶点u和v,假如点截集 V_1 使得顶点u和v彼此不可到达,那么称点截集 V_1 是图G中**分离**u,v**的点截集**(vertex-cut separating u and v)。

定义图G的点连通度(vertex-connectivity),记为 $\kappa(G)$,

$$\kappa(G) \begin{cases} \min\{|V_1||V_1 \text{ is } \mathbf{vertex} \text{ } \mathbf{cut}\}, & \text{ if } G \neq K_n \\ n-1, & \text{ if } G = K_n \end{cases}$$

对于非负整数k,若 $\kappa(G) \ge k$,则称 $G \in \mathbb{R}_k$ -点连通图(k-vertex-connected Graph),简称k-连通图。

类似地可以定义边截集。给定连通图G,如果 $E_1 \subset E$,使得 $G - E_1$ 是不连通的,则称 E_1 是图G的**边截集**(edge-cut)。如果 $|E_1| = k$,也称之为k-边截集。类似地定义**分离**u,v**的边截集**(edge-cut separating u and v)。定义图G的边连通度(edge-connectivity),记为 $\lambda(G)$,

$$\lambda(G) \begin{cases} \min\{|E_1||E_1 \text{ is edge cut}\}, & \text{ if } G \neq K_1 \\ 0, & \text{ if } G = K_1 \end{cases}$$

设G = (V, E)是一个图,X和Y是V的任意两个非空真子集。给定一个链,如果它的两个端点分别属于X和Y,而且链上的其他点都不属于 $X \cup Y$,则称这个链是(X, Y)-链((X, Y)-chain)。特别地,若 $v \in X \cap Y$,则v本身就是一个(X, Y)-链。若 $Z \subset V$,且任何一个(X, Y)-链都与Z相交,则称Z是一个(X, Y)-**分离**

集((X, Y)-separator), X与Y也是(X, Y)-分离集。

Menger 定理 X和Y是V的任意两个子集,则G中存在k ($k \in \mathbb{Z}^+$)个点不交的(X, Y)-链,当且仅当每个 (X, Y)-分离集至少包含k个点。

Menger 推论 1 设 $x, y \in V(G)$, $xy \notin E$, 则G中存在 $k (k \in \mathbb{Z}^+)$ 个点不交的(x, y)-链,当且仅当G中的每个分离x, y的点截集至少包含k个点。

Menger 推论 2 设 $x, y \in V(G)$, $xy \notin E$, 则G中存在 $k (k \in \mathbb{Z}^+)$ 个边不交的(x, y)-链,当且仅当G中的每个分离x, y的边截集至少包含k个边。

(**该推论的证明比较有启发性**,可以利用图G的线图L(G)来证明,线图必然满足 Menger 定理,所以根据这个观察结果,直接证明本推论。)

关于点的 Menger 型极大极小定理 设x, y是G的两个不相邻的点,则内点不交的(x, y)-链的最大个数等于局部点连通度 $\kappa(x, y)$ 。

关于边的 Menger 型极大极小定理 设x, y是G的两个不相邻的点,则内边不交的(x, y)-链的最大个数等于局部点边通度 $\lambda(x, y)$ 。

4.2 算法解析

有了 Menger 定理的铺垫,就可以很顺利地写出求图的点连通度的算法,其核心思想是网络流算法。因为有点不交这个限制条件,所以不能单纯地讲所有边的容量设置为 1。这直接导致了网络流算法中出现了节点的流量限制,但是 Edmonds-Karp 算法中并没有对于节点进行限制,所以需要对原图进行一定的变换。 (s,t)-链集合如图(a)所示,对于其中的蓝色节点v来说, $d_G(v)$ 一定是偶数,可以将之拆分为两个节点,中间加一个边,且该边的容量设置为1,这样就可以解除节点容量限制,直接在原图中进行网络最大流算法。(a) 图是原先的,(b)图是经过变换之后的图。这样就可以解决点连通度的求解问题。对于边连通度问题而言要简单一点,直接在原图上采取网络流算法即可,通过遍历所有的点对,找出最小值即可。

4.3 求有向图的弧连通度的算法

假设已经有 Edmonds-Karp 算法,可以用来求解有向图D的项点s与t之间的最大网络流f,且记这个形式为f = MAXFLOW(D; s, t),这个算法是下面这个算法的子算法。

Algorithm 求有图的弧连通度,记此算法为AC

Input 连通的有向图D = (V, A)

Output 图D的一个弧连通度C,记C = AC(D)

Begin

Step 1 // 初始化一个空的列表

 $L = \emptyset$

Step 2 // 初始化弧的容量

for each edge $e \in A$:

 $e. \mathbf{capacity} = 1$

Step 3 // 寻找任意有序点对之间的最大流量

 $\textbf{for each} \ \text{vertex} \ \ v_1 \in A \text{:}$

for each vertex $v_2 \in A$ and $v_2 \neq v_1$:

 $L.\, \mathrm{append}(\mathrm{MAXFLOW}(D;\; v_1,\; v_2))$

Step 4 C = MIN(L)

output C

End

五、 程序代码

六、 参考文献

[1] 林锐. 高质量 C++/C 编程指南 [M]. 1.0 ed., 2001.

[2]