Tutorial 6 - Variable Elimination

COMP9418 – Advanced Topics in Statistical Machine Learning

Lecturer: Gustavo Batista

Lecture: Variable Elimination

Topic: Questions from lecture topics

Last revision: Sunday $4^{\rm th}$ October, 2020 at 13:00

Question 1

Consider the following Bayesian network.

Use variable elimination to computer the marginals P(Q,e) and P(Q|e) where $\mathbf{Q} = \{E\}$ and $\mathbf{e} : D = false$. Use the min-degree heuristic for determining the elimination order breaking ties by choosing variables that come first in the alphabet.

Use the following algorithm for min-degree order:

```
Data: PGM: probabilistic grahical model
  Data: X: variables in the PGM
  Result: an ordering \pi of variables X
  begin
1
      G \leftarrow \text{induced graph of the factors in } PGM;
\mathbf{2}
      for i = 1 to number of variables in X do
3
          \pi(i) \leftarrow a variable in X with smallest number of neighbours in G;
4
          add an edge between every pair of non-adjacent neighbours of \pi(i) in G;
5
          delete variable \pi(i) from G and from X;
6
7
      end
  \mathbf{end}
8
  \mathbf{return} \,\, \pi
```

Question 2

Consider a chain network $C_0 \to C_1 \to \ldots \to C_n$. Suppose that variable C_t , for $t \geq 0$, denotes the health state of a component at time t. In particular, let each C_t take on states ok and faulty. Let C_0 denote component birth where $P(C_0 = ok) = 1$ and $P(C_0 = faulty) = 0$. For each t > 0, let the CPT of C_t be $P(C_t = ok | C_{t-1} = ok) = \lambda$ and $P(C_t = faulty | C_{t-1} = faulty) = 1$. That is, if a component is healty at time t - 1, then it remains healthy at time t with probability λ . If a component is faulty at time t - 1, then it remains faulty at time t with probability 1.

- a. Using variable elimination with variable ordering C_0, C_1 compute $P(C_2)$.
- b. Using variable elimination with variable ordering $C_0, C_1, \ldots, C_{n-1}$ compute $P(C_n)$.

Question 3

Consider a Naive Bayes structure with edges $X \to Y_1, \dots, X \to Y_n$.

- a. What is the size of the largest factor of variable elimination order Y_1, \ldots, Y_n, X ?
- b. What is the size of the largest factor of variable elimination order X, \ldots, Y_n ?

Question 4

For the Bayesian network below, all variables are binary. Assume we run variable elimination to compute the answer to the query P(A, E|+c), with the following elimination order: B, D, G, F.

- a. What is the size of the largest computed factor?b. Can the min-degree heuristic help to find an ordering that generates a smaller largest factor?