深度学习原理论文笔记

Leoeon

2016年10月20日

Contents

1	神经	网络拟合哈密顿量	3
	1.1	伸经网络有效性	3
		1.1.1 理论目标	3
		1.1.2 任意精度拟合	3
		1.1.3 高效	
	1.2	分层	4
	arepsilon误差		5
	2.1	信论	5
		单变量函数上限	
	2.3	下限	5
3	机器	5. 习展亚茨型	7

Chapter 1

神经网络拟合哈密顿量

Why does deep and cheap learning work so well? $(2016.08.29)^{[1]}$

1.1 神经网络有效性

1.1.1 理论目标

多层网络可写为

$$f(\vec{y}) = \hat{\sigma}_n \hat{W}_n \cdots \hat{\sigma}_1 \hat{W}_1 \vec{y}$$

令:

$$H_x(\vec{y}) \stackrel{def}{=} -\ln p(\vec{y}|x)$$

$$\mu_x \stackrel{def}{=} -\ln p(x)$$

则:

$$p(x|\vec{y}) = \frac{1}{Z(\vec{y})} e^{-(H_x(\vec{y}) + \mu_x)} = \hat{\sigma}(-(H_x(\vec{y}) + \mu_x)) \left(Z(\vec{y}) = \int e^{-(H_x(\vec{y}) + \mu_x)} dx \right)$$

故只要多层网络能估计 $-(H_x(\vec{y}) + \mu_x)$,则再加一层神经元为softmax即可

1.1.2 任意精度拟合

由
$$\sigma(x) = \sigma + \sigma' x + \sigma'' x^2 + O(u^3)$$
 得:

$$\frac{1}{8\sigma''\lambda^2}[\sigma(\lambda u + \lambda v) + \sigma(-\lambda u - \lambda v) - \sigma(\lambda u - \lambda v) - \sigma(-\lambda u + \lambda v)] = uv(1 + O(\lambda^2u^2 + \lambda^2v^2))$$

故理论上可用神经网络以任意精度表示乘积

微扰项

$$H_x(\vec{y}) = H + \sum_i H_i' y_i + \sum_{ij} H_{ij}'' y_i y_j + \sum_{ijk} H_{ijk}''' y_i y_j y_k + \cdots$$

故理论上可用神经网络表示任意 $H_x(\vec{y})$

1.1.3 高效

以下限制使得参数数量有限

- *低阶项 $H_x(\vec{y})$ 只需展开到有限项, 无需太高阶项
- *局域性 只有短程作用,很多 $H^{(k)}$ 为0
- *对称性 很多 $H^{(k)}$ 不独立,相互依赖

1.2 分层

类似重整化群理论,从低层次信息中抽象出(近似)统计充分量作为高层次信息,逐层提取直至所需。

Chapter 2

ε 误差估计

Why Deep Neural Networks? (2016.10.13) [2] 神经网络 $\tilde{f}(x)$ 拟合函数f(x),满足 $|f(x)-\tilde{f}(x)|\leq \varepsilon$

2.1 结论

以 ε 的误差拟合函数:

- 分段光滑函数, $\Theta(\log \frac{1}{\varepsilon})$ 层, $\mathcal{O}(polylog(\frac{1}{\varepsilon})$ 个神经元
- 分段光滑函数, $o(\log \frac{1}{\epsilon})$ 层, $\Omega(poly(\frac{1}{\epsilon})$ 个神经元
- 可微凸函数, $\Omega(\log \frac{1}{\varepsilon})$ 个神经元

2.2 单变量函数上限

2.3 下限

对强凸函数 $(\langle \nabla f(x) - \nabla f(y), x - y \rangle \geq \lambda ||x - y||_2^2)$, $(x \in [0, 1])$, 要求 $N \geq L(\frac{\mu}{16\varepsilon})^{\frac{1}{2L}}$

Table 2.1: 单变量函数

拟合函数	层数	神经元个数		
$f(x) = x^2 \ (x \in [0, 1])$	$O(\log \frac{1}{\varepsilon})$	$O(\log \frac{1}{\varepsilon})$		
$f(x) = \sum_{i=0}^{p} a_i x^i \ (x \in [0, 1], \sum_{i=0}^{p} a_i \le 1)$	$O(p + \log \frac{p}{\varepsilon})$	$O(p\log rac{p}{arepsilon})$		
$f(x) \ (x \in [0,1]) \ (\forall \forall n \in [\lceil \log \frac{2}{\varepsilon} \rceil + 1], \ f^{(n)} _{\infty} \le n!)$	$O(\log \frac{1}{\varepsilon})$	$O((\log \frac{1}{\varepsilon})^2)$		
$f = \prod_{i=1}^{k} h_i \ (x \in [0,1])$ $(\forall \forall n \in [\lceil 4k \log 4k + 4k + 2\log \frac{2}{\varepsilon} \rceil + 1], \ h_i^{(n)} _{\infty} \le n!)$	$O(k\log k + \log\frac{1}{\varepsilon})$	$O((k\log k)^2 + (\log \frac{1}{\varepsilon})^2)$		
$f(x) = h_1(h_2(\cdots(h_k(x)))) \ (x \in [0,1])$ $(\forall \forall n \in [\lceil \log \frac{2}{\varepsilon} \rceil + 1], \ h_i^{(n)} _{\infty} \le n!, \ h_i : [0,1] \to [0,1])$	$O(k\log k\log\frac{1}{\varepsilon} + \log k(\log\frac{1}{\varepsilon})^2)$	$O(k \log k \log \frac{1}{\varepsilon} + k^2 (\log \frac{1}{\varepsilon})^2 + (\log \frac{1}{\varepsilon})^4)$		

Chapter 3

机器学习展平流型

Why Deep Learning Works: A Manifold Disentanglement Perspective (2014.11.07)[3]

原始数据为嵌在高维空间中的低维流型,且该流型很可能非常复杂。机器学习提取出特征,实质为将流型尽可能在低维空间中展平。

深度学习能自动提取特征,即为自动适应各类复杂流型,自动进行展平。优于传统机器学习中人工设计特征,局限于有限的流型。

流型展平程度判断依据:

- 流型上任意两点间测地线长度与两点间欧几里得空间长度比较, 越接近则流型越平。
- 由流型上每个点切空间与周围点切空间求得该点曲率, 曲率越小则流型越平。

Bibliography

- [1] Henry W Lin and Max Tegmark. Why does deep and cheap learning work so well? arXiv:1608.08225, 2016.
- [2] Shiyu Liang and R Srikant. Why deep neural networks? arXiv preprint arXiv:1610.04161, 2016.
- [3] Pratik Prabhanjan Brahma, Dapeng Wu, and Yiyuan She. Why deep learning works: A manifold disentanglement perspective. 2015.