HEART DISEASE PREDICTION USING PYSPARK

TECHZEE TEAM
BIG DATA PROJECT

Problem Statement

- **Objective:** Develop machine learning models to classify the presence or absence of heart disease from clinical features such as age, cholesterol levels, blood pressure, and maximum heart rate.
- Models: Train and compare three classification models: Logistic Regression, Random Forest, Support Vector Machine (SVM)
- **Data:** Use a dataset from the UCI Machine Learning Repository with 14 clinical attributes, along with a target attribute signifying whether a patient is suffering from heart disease.
- Evaluation: Assess model performance based on measures such as accuracy, precision, recall, F1-score, and Auc. Choose the top-performing model for making predictions.
- **Prediction:** Allow predictions on new patient data where the user selects a trained model and enters the clinical features and gets a prediction of the presence of heart disease.

Literature Review

Study Title	Authors	Techniques Used	Best Accuracy (%)	Dataset	Inspiration for Our Work
Heart Disease Prediction using Machine Learning Algorithms	M. Anbarasi et al.	Decision Tree, Naïve Bayes, SVM	83.2	UCI Heart Disease	Model selection approach and performance benchmarking
Comparative Study of Classification Algorithms for Heart Disease	J. D. Kaur & M. Kaur	KNN, Logistic Regression, Random Forest	81.5	UCI Repository	Inclusion of multiple ML algorithms for comparison
Heart Disease Prediction using Hybrid Ensemble Learning	S. Sharma et al.	Random Forest, XGBoost (Ensemble)	85.0	Cleveland Heart Dataset	Use of ensemble techniques for better accuracy
Prediction of Heart Disease using Deep Learning	R. Gupta et al.	ANN, CNN	78.6	UCI Heart Dataset	Inclusion of ANN in model experimentation
Predictive Analysis on Heart Disease using Data Mining Techniques	K. Srinivas et al.	Naïve Bayes, Decision Tree	75.2	Public Health Records	Focus on simplicity and interpretability of models

Project Plan

Phase 1: Data Collection & Cleaning

Phase 2: Exploratory Data Analysis (EDA)

Phase 3: Feature Engineering

Phase 4: Model Training & Evaluation

Phase 5: Results Interpretation

Dataset Description - 14 clinical attributes

- 1. age: age in years
- **2. sex:** sex (1 = male; 0 = female)
- 3. cp: chest pain type -Value 1: typical angina -Value 2: atypical angina -Value 3: non-anginal pain -Value 4: asymptomatic
- 4. **trestbps:** resting blood pressure (in mm Hg on admission to the hospital)
- 5. chol: serum cholestoral in mg/dl
- **6. fbs:** (fasting blood sugar > 120 mg/dl) (1 = true; 0 = false)
- 7. restecg: resting electrocardiographic results Value 0: normal
- Value 1: having ST-T wave abnormality (T wave inversions and/or ST elevation or depression of > 0.05 mV)
 - Value 2: showing probable or definite left ventricular hypertrophy by Estes' criteria
- 8. thalach: maximum heart rate achieved
- 9. exang: exercise induced angina (1 = yes; 0 = no)
- 10. oldpeak : ST depression induced by exercise relative to rest
- 11. slope: the slope of the peak exercise ST segment -Value 1: upsloping, Value 2: flat, Value 3: downsloping
- 12. ca: number of major vessels (0-3) colored by flourosopy
- **13.** thal: 3 = normal; 6 = fixed defect; 7 = reversable defect
- 14. num: diagnosis of heart disease (angiographic disease status)
 - Value 0: < 50% diameter narrowing
 - Value 1: > 50% diameter narrowing

Phase 1: Data Collection & Cleaning

Data Import:

Loaded UCI Heart Disease dataset using ucimlrepo.

Data Cleaning:

- Removed duplicate records.
- Checked for nulls and schema consistency.

Data Splitting:

Performed train-test split (80% training, 20% testing).

Phase 1: Data Collection & Cleaning

```
# Initialize PySpark
spark = SparkSession.builder.appName("HeartDiseasePrediction").getOrCreate()
# Fetch dataset from UCI repository
heart disease = fetch ucirepo(id=45)
# Convert to Pandas DataFrame and then to Spark DataFrame
X = heart disease.data.features
v = heart disease.data.targets
df = spark.createDataFrame(pd.concat([X, y], axis=1))
from pyspark.sql.functions import col, count, when, isnull
from pyspark.sql.types import DoubleType
# Show initial schema and data
print("Initial Schema:")
df.printSchema()
print("\nFirst 5 rows:")
df.show(5)
# Check for missing values
print("\nMissing values count:")
df.select([count(when(isnull(c), c)).alias(c) for c in df.columns]).show()
```

Phase 1: Data Collection & Cleaning

```
# Check for duplicates
print("\nDuplicate rows count:", df.count() - df.dropDuplicates().count())
# Convert target to binary (0 = no disease, 1 = disease)
df = df.withColumn("target", when(col("num") > 0, 1).otherwise(0)).drop("num")
# Data Splitting (80% train, 20% test)
train df, test df = df.randomSplit([0.8, 0.2], seed=42)
print(f"\nTraining set count: {train df.count()}")
print(f"Test set count: {test df.count()}")
```

```
Initial Schema:
 |-- age: long (nullable = true)
 |-- sex: long (nullable = true)
 |-- cp: long (nullable = true)
 |-- trestbps: long (nullable = true)
 |-- chol: long (nullable = true)
 |-- fbs: long (nullable = true)
 |-- restecg: long (nullable = true)
 |-- thalach: long (nullable = true)
 |-- exang: long (nullable = true)
 |-- oldpeak: double (nullable = true)
 -- slope: long (nullable = true)
 |-- ca: double (nullable = true)
 |-- thal: double (nullable = true)
 |-- num: long (nullable = true)
```

Duplicate rows count: 0

Training set count: 246 Test set count: 51

```
First 5 rows:
|age|sex| cp|trestbps|chol|fbs|restecg|thalach|exang|oldpeak|slope| ca|thal|num|
             145 | 233 | 1 |
                                150
                                                3 0.0 6.0
    1 4
             160 286 0
                                108
                                          1.5
                                                2 3.0 3.0
                                                          2
             120 229 0
                             129 1
                                        2.6 2 2 2 .0 7.0 1
 67 1 4
 37
             130 | 250 | 0 |
                               187
                                          3.5
                                                3|0.0| 3.0|
                                172
             130 | 204 | 0 |
                                          1.4
                                                1 0.0 3.0
only showing top 5 rows
Missing values count:
|age|sex| cp|trestbps|chol|fbs|restecg|thalach|exang|oldpeak|slope| ca|thal|num|
  0 0 0
```

Phase 2: Exploratory Data Analysis (EDA)

Descriptive Statistics:

Computed summary statistics: mean, std, min, max, etc.

Target Variable Analysis:

Analyzed distribution of heart disease (target = 0 or 1).

correlation and statistical overview.

Phase 2: Exploratory Data Analysis (EDA)

Phase 2: Exploratory Data Analysis (EDA)

```
[ ] # Descriptive Statistics
    print("\nDescriptive Statistics for Numerical Features:")
    train df.describe().show()
    # Target Variable Analysis
    print("\nTarget Class Distribution:")
    train df.groupBy("target").count().show()
    # Correlation Analysis (using Pandas for visualization)
    numeric cols = [f.name for f in train df.schema.fields if isinstance(f.dataType, DoubleType)]
    corr matrix = train df.select(numeric cols).toPandas().corr()
    import matplotlib.pyplot as plt
    import seaborn as sns
    plt.figure(figsize=(12, 10))
    sns.heatmap(corr_matrix, annot=True, cmap="coolwarm", center=0)
    plt.title("Feature Correlation Matrix")
    plt.show()
```

Phase 2: Exploratory Data Analysis (EDA)

	 	 			+		+-
restec	fbs	chol	trestbps	cp	sex	age	summary
24	246	246	246	246	246	246	count
1.040650406504065	0.15853658536585366	249.47154471544715	132.4349593495935	3.1463414634146343	0.6869918699186992	4.89837398373984	mean 5
0.993023615920258	0.3659880290823157	53.34857650924998	17.525545128159546	0.9829811120262173	0.4646630290284314	.943464002593617	stddev 8
	0	126	100	1	0	29	min
	1	564	200	4	1	77	max

#		+			·+	+
thalach	exang	oldpeak	slope	са	thal	target
246	246	246	246	246	246	246
150.0040650406504	0.3252032520325203	1.0760162601626018	1.6422764227642277	0.6991869918699187	4.772357723577236	0.483739837398374
23.30971558279626	0.4694057895410828	1.1820917052980822	0.6341323019211401	0.9513467090444417	1.9412304456040512	0.500754367051142
71	0	0.0	1	0.0	3.0	0
202	1	6.2	3	3.0	7.0	1
 					++	+

Target Class Distribution:
+----+
|target|count|
+----+
| 1| 119|
| 0| 127|
+----+

Phase 2: Exploratory Data Analysis (EDA)

Phase 3: Feature Engineering

Feature Selection:

• Selected relevant features for model input (based on correlation and domain knowledge).

Feature Transformation:

- Used VectorAssembler to combine features.
- Applied StandardScaler to normalize numerical features.

Phase 3: Feature Engineering

Phase 3: Feature Engineering

```
from pyspark.ml.feature import VectorAssembler, StandardScaler
from pyspark.ml import Pipeline
# Select important features based on EDA
selected features = ['age', 'sex', 'cp', 'trestbps', 'chol', 'thalach',
                   'exang', 'oldpeak', 'slope', 'ca', 'thal', 'fbs', 'restecg']
# Create feature pipeline
assembler = VectorAssembler(inputCols=selected features, outputCol="rawFeatures")
scaler = StandardScaler(inputCol="rawFeatures", outputCol="features")
feature pipeline = Pipeline(stages=[assembler, scaler])
feature model = feature pipeline.fit(train df)
# Transform datasets
train df = feature model.transform(train df)
test df = feature model.transform(test df)
# Cache DataFrames for better performance
train df.cache()
test df.cache()
```

Phase 4: Model Training and Evaluation

Model Selection:

Trained the following classification models:

- Logistic Regression
- Random Forest
- Support Vector Machine (SVM)

Model Training:

Built pipelines for each model using PySpark's MLlib.

Model Evaluation:

Evaluated models using:

- Accuracy
 - Precision
- Recall
- F1 Score
- Area Under ROC Curve (AUC)

Model Comparison:

- Compared model performance based on evaluation metrics.
- Identified the best model.

Phase 4: Model Training and Evaluation

Phase 4: Model Training & Evaluation

```
[ ] from pyspark.ml.classification import LogisticRegression, RandomForestClassifier, LinearSVC
    from pyspark.ml.evaluation import BinaryClassificationEvaluator, MulticlassClassificationEvaluator
    from pyspark.ml.tuning import ParamGridBuilder, CrossValidator

# Initialize models
lr = LogisticRegression(featuresCol="features", labelCol="target")
    rf = RandomForestClassifier(featuresCol="features", labelCol="target")
    svm = LinearSVC(featuresCol="features", labelCol="target")

# Set up evaluators
binary_evaluator = BinaryClassificationEvaluator(labelCol="target")
multi_evaluator = MulticlassClassificationEvaluator(labelCol="target")
```

```
# Create parameter grids for tuning
lr paramGrid = (ParamGridBuilder()
               .addGrid(lr.regParam, [0.01, 0.1, 1.0])
               .addGrid(lr.elasticNetParam, [0.0, 0.5, 1.0])
               .build())
rf_paramGrid = (ParamGridBuilder()
               .addGrid(rf.numTrees, [10, 50, 100])
               .addGrid(rf.maxDepth, [5, 10, 20])
               .build())
svm paramGrid = (ParamGridBuilder()
                .addGrid(svm.regParam, [0.01, 0.1, 1.0])
                .build())
# Set up cross-validation
cv = CrossValidator(estimator=lr,
                  estimatorParamMaps=lr_paramGrid,
                  evaluator=multi evaluator,
                  numFolds=5,
                  seed=42)
```

Phase 4: Model Training and Evaluation

```
# Train Random Forest
print("\nTraining Random Forest...")
cv.setEstimator(rf)
cv.setEstimatorParamMaps(rf_paramGrid)
rf_model = cv.fit(train_df)
# Train SVM
print("\nTraining SVM...")
cv.setEstimator(svm)
cv.setEstimatorParamMaps(svm paramGrid)
svm_model = cv.fit(train_df)
# Function to evaluate models
def evaluate model(model, df):
   predictions = model.transform(df)
    # Calculate metrics
    results = {
        "Accuracy": multi_evaluator.evaluate(predictions, {multi_evaluator.metricName: "accuracy"}),
        "Precision": multi evaluator.evaluate(predictions, {multi evaluator.metricName: "weightedPrecision"}),
        "Recall": multi evaluator.evaluate(predictions, {multi evaluator.metricName: "weightedRecall"}),
        "F1": multi_evaluator.evaluate(predictions, {multi_evaluator.metricName: "f1"}),
        "AUC": binary_evaluator.evaluate(predictions)
   return results
```

```
# Evaluate models
print("\nLogistic Regression Performance:")
lr metrics = evaluate model(lr model.bestModel, test df)
print(lr metrics)
print("\nRandom Forest Performance:")
rf metrics = evaluate model(rf model.bestModel, test df)
print(rf metrics)
print("\nSVM Performance:")
svm metrics = evaluate model(svm model.bestModel, test df)
print(svm metrics)
# Compare models
import pandas as pd
metrics comparison = pd.DataFrame({
    "Logistic Regression": lr metrics,
    "Random Forest": rf metrics,
    "SVM": svm metrics
}).T
print("\nModel Comparison:")
print(metrics comparison)
```

```
# Plot feature importance for Random Forest
rf_feature_importance = rf_model.bestModel.featureImportances.toArray()
importance_df = pd.DataFrame({
        "Feature": selected_features,
        "Importance": rf_feature_importance
}).sort_values("Importance", ascending=False)

plt.figure(figsize=(10, 6))
sns.barplot(x="Importance", y="Feature", data=importance_df)
plt.title("Random Forest Feature Importance")
plt.show()

# Stop Spark session
spark.stop()
```

Phase 5: Results Interpretation RESULTS

```
Training Logistic Regression...
Training Random Forest...
Training SVM...
Logistic Regression Performance:
{'Accuracy': 0.8431372549019608, 'Precision': 0.8431372549019608, 'Recall': 0.8431372549019608, 'F1': 0.8431372549019608, 'AUC': 0.9124579124579123}
Random Forest Performance:
{'Accuracy': 0.8627450980392157, 'Precision': 0.86159169550173, 'Recall': 0.8627450980392157, 'F1': 0.8618086040386304, 'AUC': 0.8855218855218854}
SVM Performance:
{'Accuracy': 0.8431372549019608, 'Precision': 0.8431372549019608, 'Recall': 0.8431372549019608, 'F1': 0.8431372549019608, 'AUC': 0.9040404040404039}
Model Comparison:
                   Accuracy Precision
                                         Recall
Logistic Regression 0.843137 0.843137 0.843137 0.843137 0.912458
Random Forest
                   0.862745   0.861592   0.862745   0.861809   0.885522
SVM
```

Model Comparison Table

Model	Accuracy	Precision	Recall	F1 Score	AUC
Logistic Regression	84.31%	84.31%	84.31%	84.31%	0.912
Random Forest	86.27%	86.16%	86.27%	86.18%	0.885
SVM	84.31%	84.31%	84.31%	84.31%	0.904

Phase 5: Results Interpretation

RESULTS

Best Model Identified: Random Forest Classifier

Model	Accuracy	Precision	Recall	F1 Score	AUC
Random Forest	86.27%	86.16%	86.27%	86.18%	0.885

Contribution of each Member

Team Member	Contribution
Member 1	Data Collection & Cleaning (UCI Heart Disease Dataset)
	Data Preprocessing (Handling missing values, encoding categorical features, scaling)
	Exploratory Data Analysis (EDA) including descriptive statistics,
Member 2	Model Training
	Model Evaluation
	Result Interpretation (Comparing models, deciding on the best-performing model)
	Final Presentation Preparation

THANK YOU!

A PRESENTATION BY DHARSHINI M 24MSP3070