Table des matières

1	$\operatorname{Int}\epsilon$	erférences à deux ondes en optique	2
	I	Interférences à deux ondes	3
		I.1 Superposition de deux ondes	3
		I.2 Conditions d'interférence, notion de cohérence	3
	II	Exemple d'interféromètre : les trous d'Young	4
	III	Effet de largeur de la source : cohérence spatiale	4
		III.1 Présentation du problème	4
		III.2 Cône de cohérence	
	IV	Conclusion	$\frac{1}{2}$

Leçon 1

Interférences à deux ondes en optique

Bibliographie de la leçon :						
Titre	Auteurs	Editeur (année)	ISBN			
Physique Spé MP-MP*	Olivier, Gié, Sarmant	Tec & Doc				
Sextant		Hermann				
Tout-en-un, MP	MN. Sanz.	Dunod				
Optique	S. Houard	de Boeck				
Optique Physique	R. Taillet	de Boeck (2006)				

Commentaires des années précédentes :

- **2016**: Les approximations mises en oeuvre dans les calculs de différence de marche doivent être justifiées a priori,
- 2015 : L'exposé doit permettre de préciser clairement les contraintes particulières que l'optique impose aux dispositifs interférentiels par rapport à d'autres domaines,
- **2014**: Un interféromètre comportant une lame séparatrice n'est pas obligatoirement utilisé en diviseur d'amplitude. La notion de cohérence et ses limites doivent être discutées.

Plan détaillé

Niveau choisi pour la leçon : CPGE

Prérequis : Modèle scalaire d'une onde, chemin optique, différence de marche,

intensité lumineuse, formules trigonométriques

Déroulé détaillé de la leçon :

Manip introductive : si on superpose deux lasers, il ne se passe rien. Si on les fait passer à travers un dispositif qui élargit le faisceau + une fente source + une bifente : on voit une figure d'interférence.

I Interférences à deux ondes

Définition : cf Taillet Dictionnaire de physique. Phénomène ondulatoire qui résulte d'une interaction entre deux ondes (lumineuses) qui produit une intensité totale qui diffère de la somme des intensités individuelles.

I.1 Superposition de deux ondes

On considère deux sources ponctuelles S_1 et S_2 et des amplitudes vibratoires $a_i(M,t) = A_i \cos\left(\omega_i t - \phi_{S_i} - \frac{2\pi[S_iM]}{\lambda_0 i}\right)$. L'amplitude totale est : $a(M,t) = a_1(M,t) + a_2(M,t)$. L'intensité est : $I(M,t) = \langle a^2(M,t) \rangle$.

En développant, on obtient :

$$I = I_1 + I_2 + I_{1,2} (1.1)$$

avec $I_{1,2} = 2A_1A_2\cos(\omega_1 t - \phi_1(M))\cos(\omega_2 t - \phi_2(M))$

I.2 Conditions d'interférence, notion de cohérence

- $I_{1,2} \neq$, dans ce cas on dit que les ondes sont cohérentes,
- si $\omega_1 \neq \omega_2, I_{1,2} = 0$

Condition 1 : deux ondes de pulsations différentes sont incohérentes.

Présentation du modèle du train d'onde : paquet d'onde séparés par un temps τ . Comme ϕ_{S1} et ϕ_{S2} varient aléatoirement, on obtient $I_{1,2}$ non nulles sur le détecteur si :

Condition 2 : Il faut que les deux ondes soient issus du même train d'onde.

On obtient alors la formule de Fresnel:

$$I = I_1 + I_2 + 2\sqrt{I_1 I_2} \cos \Delta \phi(M)$$
 (1.2)

où
$$\Delta\phi(M) = \frac{2\pi([S_2M]-[S_1M])}{\lambda_0}$$

II Exemple d'interféromètre : les trous d'Young

$$I = 2I_0 \left[1 + \cos \left(\frac{2\pi ax}{\lambda D} \right) \right] \tag{1.3}$$

Succesion de franges brillantes et de franges sombres. La distance entre deux franges brillantes est appelée interfrange notée i qui vaut ici : $i = \frac{\lambda_0 D}{a}$. Manipulation quantitative : Mesure de l'interfrange de la figure d'interférences pour en déduire a. Pour cela on a besoin :

- barette CCD + logiciel MHTEX + filtre de densité
- double fentes d'Young dont la longueur entre les fentes est donnée

. On mesure $a=0.16\pm0.04\mathrm{mm}$ à comparer avec la valeur $a_{fabricant}=0.2\mathrm{mm}$.

Transition :Pour l'instant, on est resté sur le fait qu'on avait deux sources cohérentes produisant des interférences non localisées. Que se passe-t'il si on élargi la source?

III Effet de largeur de la source : cohérence spatiale

III.1 Présentation du problème

Voir Dunod p733 en **prenant bien un élargissement de la source dans une direction parallèle à** S_1S_2 , sinon ça ne change rien à la différence de marche. Effet de la largeur de la source en reprenant le problème avec deux

sources séparées par une distance b (voir Dunod 2022 p733). On somme leur intensité. On obtient à l'aide des formules obtenues dans la partie précédente :

$$I_{tot} = 4I_0 \left[1 + \cos\left(\frac{\pi ab}{\lambda D}\right) \cos\left(\frac{2\pi ax}{\lambda D} + \frac{2\pi ab}{\lambda D}\right) \right]$$
 (1.4)

III.2 Cône de cohérence

Voir Dunod p738-739. Expérience de Grimaldi qui voulait voir des interférences par deux trous de la lumière du soleil.

IV Conclusion

Ouverture sur les dispositifs à division d'amplitude ui permettent de ne pas avoir de problème de cohérence spatiale mais dont le prix à payer est la localisation des franges d'interférences.

Questions posées par l'enseignant (avec réponses)

C: D'autres phénomènes d'interférences autres que lumineuses? Oui, exemple de la cuve à onde. Qu'est-ce qui fait la spécificité des interférences des ondes lumineuses? On peut faire des mesures super précises.

C : Conditions de cohérence pour l'eau? On somme directement les amplitudes, il n'y a pas de notion de cohérence pour une onde mécanique.

C : Dépendence de la durée d'intégration? Odg temps de réponse d'un détecteur? Période de la lumière : 10^{-15} s, œuil : 10^{-2} s, photorésistance 10^{-2} s, photodiode (standard) : 10^{-6} s, thermopile : 1s

C: lien entre intensité I et éclairement ϵ ? On a $\epsilon = KI = K < s^2(M,t) >$, où < ... > représente la valeur moyenne temporelle, K est une constante qui dépend du détecteur et s(M,t) représente une composante du champ électrique de la lumière par rapport à un axe perpendiculaire à sa direction de propagation. L'éclairement est la puissance surfacique moyenne de l'onde lumineuse (autrement dit la valeur moyenne temporelle du vecteur de Poynting).

C : Pourquoi il faut un vide entre deux trains d'ondes? Lié à la désexcitation de l'atome, la durée de vie d'un niveau d'énergie. Un train d'onde c'est un photon du coup? C'est l'aspect ondulatoire du photon.

C : C'est quoi la cause de l'incohérence spatiale? Emission de trains d'onde de phase à l'origine aléatoire suivant l'atome émetteur.

C: Différences/avantages interférométrie à division d'amplitude/division du front d'onde? Division du front d'onde : on fait interférer de la lumière provenant de deux sources différentes. Les interférences ne sont pas localisées mais il y a un problème de brouillage du fait de la cohérence spatiale des sources. Division d'amplitude : on fait interférer de la lumière provenant d'un même faisceau incident dont on a séparé en deux (au moins) l'amplitude. Il n'y a pas de problème lié à la cohérence spatiale de la source mais le prix à payer est la localisation des interférences (à l'infini pour une lame d'air, à distance finie pour un coin d'air). L'avantage est de pouvoir utiliser des sources de lumière très étendues, on gagne en luminosité.

C: Stratégies à mettre en œuvre pour éviter 20% d'erreur sur les mesures? Caméra CCD, mettre une lentille pour agrandir l'image Ca change quoi avec une lentille? On remplace D par f' dans la formule de I_{tot} . C'est mieux du coup? On peut mesurer f' de façon assez précise Quoi d'autre? Pied à coulisse, banc optique, ...