Math 323 Homework 3

Problem 2 (Chapter 2.9)

Show that if D is a domain and F_1 and F_2 are fields such that D is a subring of each and each is generated by D, then there is a unique isomorphism of F_1 onto F_2 that is the identity map on D.

Solution. ff Use the universal property.

Theorem 2.9: Let D be a commutative domain, F its field of fractions. Then any monomorphism η_D of D into a field F' has a unique extension to a monomorphism of η_F of F into F'.

Since D is a subring of F_1 and F_2 , we have the natural embedding of D in F_1 , $\eta_1: D \hookrightarrow F_1$, and the natural embedding of D in F_2 , $\eta_2: D \hookrightarrow F_2$. Since η_1, η_2 are injective, their inverses are

Some Oakley wisdom: when we say the fields such that {Fields $F \supset D$ }, we can't say a smallest field because there is no order on all fields. But if we consider subfields of F_1 , $S = \{K : F_1 \supset K \supset D\}$, then saying F_1 is the smallest is like saying $S = \{F_1\}$.

So we have the commutative diagram, $D \to F$, $D \to K(D)$, $K(D) \to F$ (last arrow unique). But we must have that $K(D) = F_1$, so F_1 is isomorphic to the field of fractions. Both of them are, so we are done.

Also to use theorem, we need D commutative. But since D is in a field, we have $a, b \in D$, and so in F, ab = ba, but in D.

Problem 5 (Chapter 2.9)

Let R be a commutative ring, and S a submonoid of the multiplicative monoid of R. In $R \times S$ define $(a, s) \sim (b, t)$ if there exists a $u \in S$ such that u(at - bs) = 0. Show that this is an equivalence relation in $R \times S$. Denote the equivalence class of (a, s) as a/s and the quotient set consisting of these classes as RS^{-1} . Show that RS^{-1} becomes a ring relative to

$$a/s + b/t = (at + bs)/st$$
$$(a/s)(b/t) = ab/st$$
$$0 = 0/1$$
$$1 = 1/1$$

Show that $a \to a/1$ is a homomorphism of R into RS^{-1} and that this is a monomorphism if and only if no element of S is a zero divisor in R. Show that the elements s/1, $s \in S$, are units in RS^{-1} .

Solution. ff

Problem 2 (Chapter 2.10)

Show that $\sqrt{3} \notin \mathbb{Q}[\sqrt{2}]$ and that the real numbers $1, \sqrt{2}, \sqrt{3}, \sqrt{6}$ are linearly independent over \mathbb{Q} . Show that $u = \sqrt{2} + \sqrt{3}$ is algebraic and determine an ideal I such that $\mathbb{Q}[x]/I \cong \mathbb{Q}[u]$.

Solution. Assume there exists $a_0, a_1, \dots \in \mathbb{Q}$ such that $\sqrt{3} = a_0 + a_1\sqrt{2} + a_2(\sqrt{2})^2 + a_3(\sqrt{2})^3 + \dots$, which clearly is equivalent to there being $a, b \in \mathbb{Q}$ such that $\sqrt{3} = a + b\sqrt{2}$ (since each term is either an element in \mathbb{Q} , or an element in \mathbb{Q} times $\sqrt{2}$). If we square both sides, we get $3 = a^2 + 2b^2 + 2ab\sqrt{2} \implies \sqrt{2} = \frac{3-a^2-2b^2}{2ab} \in \mathbb{Q}$ (since \mathbb{Q} is a field), but by any standard proof, $\sqrt{2} \notin \mathbb{Q}$, a contradiction. Hence, there do not exist $a, b \in \mathbb{Q}$, and so $\sqrt{3} \notin \mathbb{Q}[\sqrt{2}]$.

Recall from linear algebra it is sufficient to show, when $a_0, a_1, a_2, a_3 \in \mathbb{Q}$, that $a_0(1) + a_1\sqrt{2} + a_2\sqrt{3} + a_3\sqrt{6} = 0$ only when $a_0 = a_1 = a_2 = a_3 = 0$. ff

We want to show that there exists an $n \in \mathbb{N}^0$ and nonzero $a_i \in \mathbb{Q}$ such that $a_0 + a_1u + a_2u^2 + \cdots + a_nu^n = 0$. We have

$$1 - 10u^2 + u^4 = 1 - 50 - 20\sqrt{6} + 49 + 20\sqrt{6} = 0$$

Hence, $u = \sqrt{2} + \sqrt{3}$ is algebraic.

We want to find I such that u = x + I. I'm pretty sure this is $1 - 10x^2 + x^4$. ff

Problem 4 (Chapter 2.10)

Let $\Delta = \prod_{i>j} (x_i - x_j)$ in $\mathbb{Z}[x_1, \dots, x_r]$ and let $\zeta(\pi)$ be the automorphism of $\mathbb{Z}[x_1, \dots, x_r]$ which maps $x_i \to x_{\pi(i)}, 1 \le i \le r$. (Every automorphism of the ring $\mathbb{Z}[x_1, \dots, x_r]$ is the identity on \mathbb{Z} . Why?) Verify that if τ is a transposition then $\Delta \to -\Delta$ under $\zeta(\tau)$. Use this to prove the result given in section 1.6 that if π is a product of an even number of transpositions, then every factorization of π as a product of transpositions contains an even number of transpositions. Show that $\Delta^2 \to \Delta^2$ under every $\zeta(\pi)$.

Solution. First, note that every automorphism of $\mathbb{Z}[x_1,\ldots,x_r]$ is the identity on \mathbb{Z} , since ff

Let $\tau=(mn)$ be a transposition, where $1\leq m,n\leq r,\ m\neq n$. Without loss of generality, let n>m. Since ζ is an automorphism, we have $\zeta(\tau)(\Delta)=\prod_{i>j}\zeta(\tau)(x_i-x_j)=\prod_{i>j}(x_{\tau(i)}-x_{\tau(j)})$. Consider each factor, $(x_{\tau(i)}-x_{\tau(j)})$. If $\tau(i)=i$ and $\tau(j)=j$, then $(x_{\tau(i)}-x_{\tau(j)})=(x_i-x_j)$. If $\tau(i)=k$ and $\tau(j)=j$, we have that $(x_{\tau(i)}-x_{\tau(j)})=(x_j-x_k)$, but we must have then $\tau(k)=i$ and there is some other factor $(x_{\tau(j)}-x_{\tau(k)})=(x_j-x_i)$, and multiplication of polynomials is commutative, so we can swap these two terms and nothing changes. If $\tau(i)=j$ so $\tau(j)=i$, we have $(x_{\tau(j)}-x_{\tau(j)})=(x_i-x_j)=-(x_j-x_i)$. This covers all the possible case in the product of Δ , and so, since there is only one factor that changes, specifically by picking up a negative, we have $\zeta(\tau)(\Delta)=-\Delta$. The result from 1.6 then follows, since ff (negative sign)

Recall that every π can be decomposed as a product of transpositions. Hence, if $\pi = \tau_n \circ \tau_{n-1} \circ \cdots \circ \tau_1$, we have $\zeta(\pi) = \zeta(\tau_n) \circ \zeta(\tau_{n-1}) \circ \cdots \circ \zeta(\tau_1)$. Since $\zeta(\pi)$ is an automorphism, we have $\zeta(\pi)(\Delta^2) = (\zeta(\pi)(\Delta))^2$. So

$$\zeta(\pi)(\Delta^2) = ((\zeta(\tau_n) \circ \zeta(\tau_{n-1}) \circ \cdots \zeta(\tau_1))(\Delta))^2 = (\pm \Delta)^2 = \Delta$$

where the second to last equality is from the fact $\zeta(\tau)(\Delta) = -\Delta$.

Problem 7 (Chapter 2.10)

Let R[[x]] denote the set of unrestricted sequences (a_0, a_1, \ldots) , $a_i \in R$. Show that one gets a ring from R[[x]] if one defines $+, \cdot, 0, 1$ as in the polynomial ring. This is called the ring of formal power series in one indeterminate.

Solution. ff just copy book

Problem 1 (Chapter 2.11)

Let $f(x) = x^n + a_1 x^{n-1} + \dots + a_n$, $a_i \in F$, a field, n > 0 and let u = x + (f(x)) in F[x]/(f(x)). Show that every element of F[u] can be written in one and only one way in the form $b_0 + b_1 u + \dots + b_{n-1} u^{n-1}$, $b_j \in F$.

Solution. ff

Problem 2 (Chapter 2.11)

Take $F = \mathbb{Q}$, $f(x) = x^3 + 3x - 2$ in exercise 1. Show that F[u] is a field and express the elements

$$(2u^2 + u - 3)(3u^2 - 4u + 1),$$
 $(u^2 - u + 4)^{-1}$

as polynomials of degree ≤ 2 in u.

Solution. ff

Problem 3 (Chapter 2.11)

- (a). Show that $\mathbb{Q}[\sqrt{2}]$ and $\mathbb{Q}[\sqrt{3}]$ are not isomorphic.
- (b). Let $\mathbb{F}_p = \mathbb{Z}/(p)$, p a prime, and let $R_1 = \mathbb{F}_p[x]/(x^2-2)$, $R_2 = \mathbb{F}_p[x]/(x^2-3)$. Determine whether $R_1 \cong R_2$ in each of the cases in which p = 2, 5, or 11.

- (a). Solution. ff
- (b). Solution. ff

Problem 4 (Chapter 2.11)

Show that $x^3 + x^2 + 1$ is irreducible in $(\mathbb{Z}/(2))[x]$ and that $(\mathbb{Z}/(2))[x]/(x^3 + x^2 + 1)$ is a field with eight elements.

Solution. Recall $I_1 + I_2 := (I_1 \cup I_2)$. If $a_1 \in I_1$ and $a_2 \in I_2$, then a = 0 works. If $a_1 \in I_1$ but $a_2 \notin I_2$ (and so $a_2 \in I_1$ since $a_2 = i_1 + i_2$ and ff hmm now this seems a lot more trivial, we have $a = a_2$ works, since $a_1 - a_2 \in I_1$ since I is a subgroup with respect to addition, and $a_2 - a_2 = 0 \in I_2$ since I_2 must contain the zero since it is a group with respect to addition. The same works when $a_1 \notin I_1$ and $a_2 \in I_2$, i.e. $a = a_1$. If