Техническое описание робота команды «кВАНт»

Аннотация

Команда "кВАнт" представляет описание алгоритмов и робота для участия в XIV Региональной олимпиаде по образовательной робототехнике школьников Томской области 2025. Наш робот — модель от Erebus с подключёнными датчиками и моторами, которые позволяют ему исследовать лабиринт, искать и распознавать «метки на стенах». Алгоритм для микроконтроллера написан на языке программирования С++ и обеспечивает безопасное прохождение поля роботом, объезд сложных препятствий и определение координат найденных им знаков.

Команда

Состав команды «кВАНт» Областного государственного бюджетного образовательного учреждения «Томский физико-технический лицей»:

- Гужихин Иван (программирование, создание технического описания, изучение работы датчиков Webots);
- Бан Ангелина (программирование, создание тренировочного лабиринта, создание плаката);

Наш тренер: Косаченко Сергей Викторович

Фото 1. Команда «кВАНт».

Фото 2. Наш тренер – Косаченко Сергей Викторович.

Опыт участия в робототехнических соревнованиях

- 1. Диплом за 2 место, Открытый Российский чемпионат по роототехнике РобоКап Россия 2024 в лиге Роботы-спасатели Симуляция.
- 2. Диплом за 1 место, XII Региональная олимпиада по образовательной робототехнике школьников Томской области 2024 в регламенте RoboCupJunior Rescue Simulation.
- 3. Диплом за 3 место, Кубок Губернатора Томской области по образовательной робототехнике для детей, регламент «Состязания роботов с техническим зрением памяти Виктора Ширшина», 2023г. (команда «кВАНт»)
- 4. Диплом победителя, Всероссийская ярмарка технологических проектов «Ехро-ТЕСН Junior», номинация «Робототехнические и транспортные системы», проект «Работоспособный прототип устройства «Умная теплица «TERRABOT»», 2023г. https://kvantoriumtomsk.ru/tpost/cx6dfridu1-kvantorianets-iz-parabeli-stal-pobeditel (Иван Гужихин)
- 5. Диплом за 3 место, Кубок Губернатора Томской области по образовательной робототехнике для детей, регламент «Лабиринт туда и обратно», 2022г. https://vk.com/wall-112410914 (Иван Гужихин)
- 6. Дипломы за 1 место, Кубок Губернатора Томской области по образовательной робототехнике для детей, 2018г., 2019г. (Иван Гужихин)
- 7. Участник прямого отбора на РобоФинист (Иван Гужихин)
- 8. Диплом 1 степени, Городская программа воспитания и дополнительного образования «Образовательная робототехника» соревнования «Осенний кубок», 2023г. (Ангелина Бан)
- 9. Диплом за 3 место, IX Межрегиональный открытый фестиваль научнотехнического творчества «Робоарт-2023», соревнования «Эстафета», 2023г. (Ангелина Бан)
- 11. Диплом за 3 место, Открытые соревнования по робототехнике «РобоСеверск-Х», регламент «Сортировка», 2023г. (Ангелина Бан)
- 12. Диплом 2 степени, Городская программа воспитания и дополнительного образования «Кубок Робомороза» соревнования «Осенний кубок», 2023г. (Ангелина Бан)
- 10. Диплом 1 степени, Городская программа воспитания и дополнительного образования «Образовательная робототехника» соревнования «Осенний кубок», 2022г. (Ангелина Бан)
- 13. Диплом за 2 место, VII Соревнования по образовательной робототехнике на Кубок Губернатора Томской области для детей, состязание Марафон шагающих роботов, 2021г. (Ангелина Бан)

Ссылка на дипломы:

https://github.com/AngelinaBan/RoboCup-Rescue-Maze-/blob/main/опыт_участи я_в_робототехнических_соревнованиях_кВАНт.pdf

Начало работы

Чтобы разобраться с симулятором Webots: роботом, датчиками, средой программирования, полем — мы обращаемся к следующим источникам информации:

https://www.youtube.com/@KajalGada/videos https://www.youtube.com/@StormingRobots/videos

https://cyberbotics.com/doc/reference/camera?tab-language=c++

Фото 4. Модель робота e-puck.

Фото 5. Самодельный тренировочный лабиринт.

Для тестирования робота мы также создали в симуляторе первое тренировочное поле — самодельный лабиринт.

Конструкция робота

Наш робот обладает множеством различных датчиков, помогающих эффективно исследовать карту. (рис.2)

Фото 6. Датчики и моторы нашего робота.

Фото 7. Слева — подсветка ColorSensor, перед роботом дополнительный DistanseSensor.

Особенностью нашего робота явдяется наличие дополнительного датчика расстояния DistanceSensor (он расположен спереди под острым углом к горизонту), с помощью которого робот замечает яму спереди. А также мы добавили ColorSensor в качестве подсветки для лучше работы камеры (рис.3).

Программное обеспечение

Общее устройство програмного обеспечения

Для написания алгоритма мы выбрали язык программирования С++, потому что он выигрывает у Руthоп в производительности и скорости. До функции таіп мы подключаем библиотеки, в том числе от Webots и OpenCV, инициализируем команды, объявляем основные костанты. В таіп инициализируем необходимые датчики и моторы и привязываем их работу к шагу времени. В бесконечном цикле while (robot->step(timeStep) != -1 вначале идёт проверка переехал ли робот в новую зону, если переехал, то вносятся начальные показания для некоторых переменных, далее идёт проверка на отсутствие прогресса: если это обнаруживается, то робот проезжает вперёд; назад — для проверки своей ориентации в пространстве посредством датчика gps и гироскопа. После идёт блок, предназначенный для передвижения робота и, напоследок, проверка на антизалипание, чтобы если робот застрял, он отъезжал назад...

Навигация

Алгоритм навигации робота построен на карте, изначально, робот высчитывает координаты gps передней и левой зоны, отдавая предпочтения поворота на неисследованную территорию, если же все доступные пути уже исследованы, робот двигается по алгоритму действующей руки.

Распознавание "меток на стенах"

С помощью камеры Erebus и библиотеки OpenCV 4 происходит обнаружение и распознавание "знаков опасности" и "жертв". Жертвы и Hazmat signs мы обнаруживаем с помощью датчика камеры и библиотеки OpenCV 4. Для начала настраивается бинаризация для 1 из 3 цветов: красного, жёлтого и чёрного. После бинаризации определяем контуры и проверяем самые большие контуры, подходят ли они. Далее если нашлись подходящие контуры для жёлтой бинаризации, то мы определили Hazmat sign- Organic Peroxide, если же не найдены подходящие жёлтые, но есть подходящие красные, то это Flammable Gas, если же обнаружены чёрные контуры, подходящего размера, то вычисляем 3 точки прямоугольника этого контура: верхнюю срединную, среднюю срединную и нижнюю срединную, с помощью них мы и определяем, какая это буква, и ищем в них контур на чёрной бинаризации: если верхний, средний и нижний - чёрные, то это s, если нижний и верхний - не чёрные, а средний - чёрный, то это H, а если нижний - чёрный, а средний и верхний - нет, то это U;

Фото 7. Распознавание роботом меток на стенках.

Проблемы

- В некоторых случаях робот мог остановаться на стенке, стоящей торцом к роботу, так как робот иногда поворачивал не под прямым углом. Для решения этой проблемы, мы добавили гироскоп, чтобы было возможно фиксировать угол поворота.
- Также накладываются ограничения на использование других циклов while, for и рекурсивных функций, так как основным циклом симулятора является цикл while (robot->step(timeStep) != -1) и симулятор требует вернуться к началу timeStep за один внутренний тик. Для решения данной проблемы нам пришлось скорректировать алгоритм без использования внутренних циклов.
- Появлялась ошибка, если помимо main мы прописывали какие-либо другие аналогичные функции (например, отвечающие за распознавание)
- Составляло сложность определиться со способом распознавания меток (алгоритм бинаризации и поиска контуров не всегда работает стабильно). Мы рассмотрели несколько вариантов, которые применимы в библиотеке OpenCV: функцию MatchTemplate и Blob но с помощью первой невозможно обрабатывать видеопоток и определять меру идентичности шаблона, а Blob не позволяет вычислять вытянутые пятна сложной формы (например, букву "S" одну из "жертв").

Планы

- Обучить нейронную сеть на основе модели YOLOv8 для более эффективного распознавания жертв и знаков опасности.
- Освоить принцип алгоритма А* и применить его в программе для робота.

Благодарности

Команда «кВАНт» благодарит нашего тренера — Косаченко Сергея Викторовича, а также ОГБОУ «Томский физико-технический лицей» за предоставленные ноутбуки.

Ham Githab: https://github.com/AngelinaBan/RoboCup-Rescue-Maze-