Course Plan

Dr. Odelu Vanga

Department of Computer Science and Engineering Indian Institute of Information Technology Sri City - 517646, Chittoor, AP, India

odelu.vanga@iiits.in

https://sites.google.com/site/odeluvanga/home

Monsoon-2020

Course Title : Database Management Systems

Textbook : Database System Concepts, Silberschatz, H.

Korth and S. Sudarshan, McGraw-Hill Educa-

tion, 6th edition, 2010.

Course Title : Database Management Systems

Textbook : Database System Concepts, Silberschatz, H.

Korth and S. Sudarshan, McGraw-Hill Educa-

tion, 6th edition, 2010.

Reference books:

- R1. **Fundamentals of Database Systems**, R. Elmasri and S. B. Navathe, Pearson Education, 6th edition, 2010.
- R2. **An Introduction to Database Systems**,C. J. Date, A. Kannan, S. Swamynathan, 8th edition, Pearson Education, 2006.
- R3. **Principles of Database Systems**, J. D. Ullman, 2nd edition, Galgotia Publications, 1999.
- R4. **Database Management Systems**, R. Ramakrishnan and J. Gehrke, 3rd edition, McGraw Hill Education, 2014.

University Data Files

STUDENT

Name	S₋number	Class	Major		
Smith	17	1	CSE		
Brown	8	2	CSE		

COURSE

C₋name	C₋number	Credits	Dept
ICS	CS1310	4	CSE
DS	CS3320	4	CSE
DM	MATH2410	3	MATH
DB	CS3380	3	CSE

SECTION

Section_ID	C_number	Sem	Year	Instructor
85	MATH2410	Fall	07	King
92	CS1310	Fall	07	Anderson
102	CS3320	Spring	08	Knuth
112	MATH2410	Fall	08	Chang
119	CS1310	Fall	08	Anderson
135	CS3380	Fall	08	Stone

GRADE_REPORT

GRADE_REPORT				
S_number	Section_ID	Grade		
17	112	В		
17	119	С		
8	85	Α		
8	92	Α		
8	102	В		
8	135	Α		

PREREQUISITE

11121124010112			
C_number	Prerequisite_no.		
CS3380	CS3320		
CS3380	MATH2410		
CS3320	CS1310		

- Simple to operate
- Better local control

Course Outline

- Database System Concepts and Architecture
 - Data Models, Schemas, and Instances
 - Programming Languages
 - Three-Schema Architecture
 - Data Independence
 - Database Languages and Interfaces
 - Centralized and Client/Server Architectures for DBMS.

Course Outline

Database System Concepts and Architecture

- Data Models, Schemas, and Instances
- Programming Languages
- Three-Schema Architecture
- Data Independence
- Database Languages and Interfaces
- Centralized and Client/Server Architectures for DBMS.

Data Modeling

- Entity-Relationship Diagram
- Super key, Candidate key, Primary key, Aggregation
- Reducing ER diagrams to tables
- Extended ER model

Course Outline

Database System Concepts and Architecture

- Data Models, Schemas, and Instances
- Programming Languages
- Three-Schema Architecture
- Data Independence
- Database Languages and Interfaces
- Centralized and Client/Server Architectures for DBMS.

Data Modeling

- Entity-Relationship Diagram
- Super key, Candidate key, Primary key, Aggregation
- Reducing ER diagrams to tables
- Extended ER model

Relational Model

- Constraints, Languages, Design, and Programming
- Relational Database Schemas
- Update Operations and Dealing with Constraint Violations
- Relational Algebra and Relational Calculus

- SQL (Structured Query Language)
 - Data Definition and Data Types
 - Constraints, Queries, Insert, Delete, and Update Statements
 - Views, Stored Procedures and Functions
 - Database Triggers, SQL Injection.

SQL (Structured Query Language)

- Data Definition and Data Types
- Constraints, Queries, Insert, Delete, and Update Statements
- Views, Stored Procedures and Functions
- Database Triggers, SQL Injection.

Normalization for Relational Databases

- Functional Dependencies and Normalization
- Algorithms for Query Processing and Optimization
- Transaction Processing, Concurrency Control Techniques
- Database Recovery Techniques
- Object and Object-Relational Databases
- Database Security and Authorization

Component	Duration	Weightage(%)	Date &	Nature of
			Time	Component
MidSem-I	90 min (?)	15%	_	Closed Book (?)
MidSem-II	90 min (?)	15%	_	Closed Book (?)
Lab Assignments*	*	40%	_	Open Book
EndSem	3 Hrs (?)	30%	_	Close Book (?)

Component	Duration	Weightage(%)	Date &	Nature of
			Time	Component
MidSem-I	90 min (?)	15%	_	Closed Book (?)
MidSem-II	90 min (?)	15%	_	Closed Book (?)
Lab Assignments*	*	40%	_	Open Book
EndSem	3 Hrs (?)	30%	_	Close Book (?)

* Lab Assignments [40%]

Planned Labs : 10 to 12

Lab Participation (10%)

Lab-Based-Quizzes: 3 (each - 10 %)

No Makeup for LBQ

Component	Duration	Weightage(%)	Date &	Nature of
			Time	Component
MidSem-I	90 min (?)	15%	_	Closed Book (?)
MidSem-II	90 min (?)	15%	_	Closed Book (?)
Lab Assignments*	*	40%	_	Open Book
EndSem	3 Hrs (?)	30%	_	Close Book (?)

* Lab Assignments [40%]

Planned Labs: 10 to 12

Lab Participation (10%)

Lab-Based-Quizzes: 3 (each - 10 %)

No Makeup for LBQ

Evaluation

- Online Quizzes
- MCQ or Yes/No answer

Component	Duration	Weightage(%)	Date &	Nature of
			Time	Component
MidSem-I	90 min (?)	15%	_	Closed Book (?)
MidSem-II	90 min (?)	15%	_	Closed Book (?)
Lab Assignments*	*	40%	_	Open Book
EndSem	3 Hrs (?)	30%	_	Close Book (?)

* Lab Assignments [40%]

Planned Labs : 10 to 12

Lab Participation (10%)

Lab-Based-Quizzes : 3 (each - 10 %)

No Makeup for LBQ

* Evaluation

- Online Quizzes
- MCQ or Yes/No answer

Remark

Evaluation method may change according to the institute guidelines.

Thank You