ALGEBRA QUALIFYING EXAM PROBLEMS RING THEORY

Nic Beike

June 29, 2022

Contents

		3
1.1	General Ring Theory	3
	Prime, Maximal, and Primary Ideals	
1.3	Commutative Rings	11
1.4	Domains	12
1.5	Polynomial Rings	14
1.6	Non-commutative Rings	14
1.7	Local Rings, Localization, Rings of Fractions	15
1.8	Chains and Chain Conditions	16

1 Ring Theory

1.1 General Ring Theory

- 1. Give an example of each of the following
 - (a) An irreducible polynomial of degree 3 in $\mathbb{Z}_3[x]$
 - (b) A polynomial in $\mathbb{Z}[x]$ that is not irreducible in $\mathbb{Z}[x]$ but is irreducible in $\mathbb{Q}[x]$
 - (c) A non-commutative ring of characteristic p, p a prime
 - (d) A ring with exactly 6 inverible elements
 - (e) An infinite non-commutative ring with only finitely many ideals.
 - (f) An infinite non-commutative ring with non-zero characteristic.
 - (g) An integral domain which is not a unique factorization domain.
 - (h) A unique factorization domain that is not a principal ideal domain
 - (i) A principal ideal domain that is not a Euclidean domain.
 - (j) A Euclidean domain other than the ring of integers of a field.
 - (k) A finite non-commutative ring.
 - (l) A commutative ring with a sequence $\{P_n\}_{n=1}^{\infty}$ of prime ideals such that P_n is properly contained in P_{n+1} for all n.
 - (m) A non-zero prime ideal of a commutative ring that is not a maximal ideal.
 - (n) An irreducible element of a commutative ring that is not a prime element.
 - (o) An irreducible element of an integral domain that is not a prime element.
 - (p) A commutative ring that has exactly one maximal ideal and is not a field.
 - (q) A non-commutative ring with exactly two maximal ideals.

Proof. (a) $x^4 + x^2 + 1 - 1$

- (b) 2x + 4
- (c) $M_n(\mathbb{Z}_p)$
- (d) \mathbb{Z}_7
- (e) $GL_n(R)$
- (f) $M_n(F)$ where F is the field of fractions of $\mathbb{Z}_p[x]$
- (g) $\{a + b\sqrt{5} \mid a, b \in \mathbb{Z}\}$
- (h) $\mathbb{Z}[x]$
- (i) $\mathbb{Z}\left[\frac{1}{2}(1+\sqrt{(-19)})\right]$ or $\mathbb{Q}[\sqrt{-19}]$
- (j) $\mathbb{Z}[i]$ is a Euclidean domain with norm $N(a+bi)=a^2+b^2$. Also F[x] where F is a field.
- (k) $M_n(\mathbb{Z}_2)$
- (1) Consider $\mathbb{Z}[x]$ and $P_0 = (1), P_1 = (1, x), \dots, P_n = (1, x, x^2, \dots, x^n).$
- (m) $(x) \subseteq \mathbb{Z}[x]$
- (n) Consider $\mathcal{R} \subseteq \mathbb{R}[x]$ consisting of polynomials with whose constant term is in \mathbb{Q} . Then \mathcal{R} is a subring and x is irreducible is \mathcal{R} . Note that $x \mid (\sqrt{2}x)^2$ but $x \nmid \sqrt{2}x$ otherwise $\sqrt{2} \in \mathcal{R}$ which would be a contradiction since $\sqrt{2} \notin \mathbb{Q}$. Thus x is not prime.
- (o) Same as (n)
- (p) \mathbb{Z}_{p^2}
- (q) $M_n(F \times F)$ where F is a field.
- 2. (a) How many units does the ring $\mathbb{Z}/60\mathbb{Z}$ have? Explain your answer.
 - (b) How many ideals does the ring $\mathbb{Z}/60\mathbb{Z}$ have? Explain your answer.

Proof. For (a), we can use the fact that a is a unit if gcd(a, n) = 1. Thus $|U_{60}| = |\{1, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 57, 59\}| = 16.$ For (b) use the fact that $\mathbb{Z}/d\mathbb{Z}$ is an ideal of $\mathbb{Z}/n\mathbb{Z}$ when $d \mid n$. So let $D = \{d \in \mathbb{Z}/60\mathbb{Z} : d \mid 60\} =$ $\{2^x \cdot 3^y \cdot 5^z : 0 \le x \le 2, 0 \le y \le 1, 0 \le z \le 1\}$. Thus the number of ideals is equal to $|D| = 3 \cdot 2 \cdot 2 = 12$ П 3. How many ideals does the ring $\mathbb{Z}/90\mathbb{Z}$ have? Explain your answer. *Proof.* Use the fact that $\mathbb{Z}/d\mathbb{Z}$ is an ideal of $\mathbb{Z}/n\mathbb{Z}$ when $d \mid n$. Let $D = \{d \in \mathbb{Z}/90\mathbb{Z} : d \mid 90\} =$ $\{2^x \cdot 3^y \cdot 5^z : 0 \le x \le 1, 0 \le y \le 2, 0 \le z \le 1\}$. Then the number of ideals is equal to $|D| = 2 \cdot 3 \cdot 2 = 12.$ 4. Denote the set of inverible elements of the ring \mathbb{Z}_n by U_n . (a) List all the elements of U_{18} . (b) Is U_{18} a cyclic group under multiplication? Justify your answer. *Proof.* Use the fact that a is a unit if gcd(a, 18) = 1. So the invertible elements of \mathbb{Z}_{18} are $U_{18} = \{1, 5, 7, 11, 13, 17\}$. Note that $\langle 5 \rangle = \{5, 7, 17, 13, 11, 1\} = U_{18}$. Therefore U_{18} is cyclic. 5. Denote the set of inverible elements of the ring \mathbb{Z}_n by U_n . (a) List all the elements of U_{24} . (b) Is U_{24} a cyclic group under multiplication? Justify your answer. *Proof.* Use the fact that a is a unit if gcd(a, 24) = 1. So the invertible elements of \mathbb{Z}_{18} are $U_{24} = \{1, 5, 7, 11, 13, 17, 19, 23\}$. Note that $x^2 = 1$ for all $x \in U_{24}$. Therefore U_{24} is not cyclic. 6. Find all positive integers n having the property that the group of units of $\mathbb{Z}/n\mathbb{Z}$ is an elementary abelian 2-group. *Proof.* It is well known that the units of $A \times B$ are $U(A) \times U(B)$, and a product is an elementary abelian 2-group if and only if each factor is an elementary abelian 2-group. So by the Chinese Remainder Theorem, we can reduce the problem to the case where n is a prime power. If p is odd, then $U(Z_{p^m})$ is cyclic of order $p^{m-1}(p-1)$. For this to be an abelian 2-group, we must have p=3 and m=1 since the only cyclic abelian 2-group is \mathbb{Z}_2 . If p=2, then $U(\mathbb{Z}_{2^m})$ is trivial if m=1, cyclic of order 2 if m=2, and isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_{2^m-1}$ if $m \geq 3$. But $\mathbb{Z}_2 \times \mathbb{Z}_{2^m-1}$ is an elementary abelian 2-group if and only if $m \leq 3$. Therefore we can conclude that $n=2^a3^b$ for $0 \le a \le 3$ and $0 \le b \le 1$. 7. Let U(R) denote the group of units of a ring R. Prove that if m divides n, then the natural ring homomorphism $\mathbb{Z}_n \to \mathbb{Z}_m$ maps $U(\mathbb{Z}_n)$ onto $U(\mathbb{Z}_m)$. Give an example that shows that U(R) does not have to map onto U(S) under a surjective ring homomorphism $R \to S$. Proof. 8. If p is a prime satisfying $p \equiv 1 \pmod{4}$, then p is a sum of two squares.

- 9. If (\div) denotes the Legendre symbol, prove Euler's Critereon: if p is a prime and a is any integer relatively prime to p, then $a^{(p-1)/2} \equiv \left(\frac{a}{p}\right) \pmod{p}$
- 10. Let R_1 and R_2 be commutative rings with identities and let $R = R_1 \times R_2$. Show that every ideal I of R is of the form $I = I_1 \times I_2$ with I_i an ideal of R_i for i = 1, 2.

Proof. Let I be an ideal fo $R = R_1 \times R_2$. Define $I_1 = \{r \in R_1 : \exists s \in R_2 \text{ where } (r,s) \in I\}$ and $I_2 = \{ s \in R_2 : \exists r \in R_1 \text{ where } (r, s) \in I \}.$ Note that if $r \in I_1$, then there exists $s \in R_2$ such that $(r,s) \in I$. Thus $(a,1_{R_2})(r,s) = (ar,s) \in I$, and so $ar \in I_1$. Thus I_1 is an ideal of R_1 . By a similar argument, we can see that I_2 is an ideal of R_2 . Now it is clear that $I \subseteq I_1 \times I_2$. To show the reverse inclusion, suppose that $r \in I_1$, and $s \in I_2$ such that $(r,s) \in I_1 \times I_2$. Since $r \in I_1$, then there is an $s' \in I_2$ such that $(r, s') \in I$. Also since $s \in I_2$, then there exists an $r' \in I_2$ such that $(r', s) \in I$. Now we see that $(1_R, s)(r, s') = (r, ss') \in I$, and $(1_R, s')(r', s) = (r', ss') \in I$. Thus $(r, ss') - (r', ss') + (r', s) = (r, s) \in I$. Therefore $I_1 \times I_2 \subseteq I$ so $I = I_1 \times I_2$, as desired. 11. Show that a non-zero ring R in which $x^2 = x$ for all $x \in R$ is of characteristic 2 and is commutative. *Proof.* Let $x \in R$ and note that $x + x = (x + x)^2 = x^2 + x^2 + x^2 + x^2 = x + x + x + x$. Thus x + x = 0, so R has characteristic zero. Now let $x, y \in R$. Then $x + y = (x + y)^2 = x^2 + xy + yx + y^2$. Rearranging terms gives 0 = xy + yx. Now xy = xy + xy + yx = (xy + xy) + yx = 0 + yx = yx. Thus we conclude that R is commutative. \Box 12. Let R be a finite commutative ring with more than one element and no zero-divisors. Show that R is a field. *Proof.* Define $\phi: R \to R$ by $\phi(r) = xr$ for all $r \in R$ and a fixed nonzero element $x \in R$. Suppose that for two elements $r, s \in R$, $\phi(r) = phi(s)$. Then we have xr = xs or xr - xs = 0 or x(r - s) = 0. Since x is nonzero and R has no zero divisors, we see that r-s=0, and so r=s. Thus the map ϕ is injective. Since we are mapping from $R \to R$, then ϕ must also be surjective and thus bijective. First we show that R has an identity element. By the surjectivity of ϕ there must be an element $e \in R$ such that $x = \phi(e) = ex$. Now let $b \in R$. Then by the surjectivity of ϕ there is an element $y_b \in R$ such that $b = \phi(y_b) = y_b x$. Now we have $b = y_b x = y_b e x = (y_b x)e = be$. Thus e = 1 since it fixes every element in R.

Now again by the surjectivity of ϕ , we must have some $r \in R$ such that $\phi(r) = rx = 1$. Thus x is a unit and since the choice of x was arbitrary (except for the restriction of x being nonzero), we conclude that R must be a field.

13. Determine for which integers n the ring $\mathbb{Z}/n\mathbb{Z}$ is a direct sum of fields. Prove your answer.

Proof. square-free

14. Let R be a subring of a field F such that for each x in F either $x \in R$ or $x^{-1} \in R$. Prove that if I and J are ideals of R, then either $I \subseteq J$ or $J \subseteq I$.

Proof. Suppose $I \nsubseteq J$. It suffices to show that $J \subseteq I$. Since $I \nsubseteq J$, then there is a nonzero $a \in I \setminus J$. If $b \in J$, we want to show that $b \in I$.

If b=0, then we are done since I is an ideal, and must contain zero. Now suppose $b\neq 0$. Then there is an inverse $b^{-1}\in F$ and so $ab^{-1}\in F$. Thus either $ab^{-1}\in R$ or $ba^{-1}\in R$. If $ab^{-1}\in R$, then $a=ab^{-1}b\in J$, a contradiction.

Thus it must be the case that $ba^{-1} \in R$, and so $b = ba^{-1}a \in I$. Therefore $b \in I$ and $J \subseteq I$, as desired.

15. The Jacobson Radical J(R) of a ring R is defined to be the intersection of all maximal ideals of R. Let R be a commutative ring with 1 and let $x \in R$. Show that $x \in J(R)$ if and only if 1 - xy is a unit for all y in R.

Proof. Suppose that $x \in J(R)$. Then $x \in I_i$ where I_i is a maximal ideal. Then $xy \in I_i$ for all i, and so $xy \in J(R)$. Thus xy is quasiregular and so 1 - xy is a unit for all y in R.

Now suppose that 1-xy is a unit for all $y \in R$ and $x \notin J(R)$. Then there exists a maximal ideal M such that $x \notin M$. Thus $\langle x \rangle + M = R$. So there exists a $y \in R$ and $m \in M$ such that xy + m = 1. Thus $m = 1 - xy \in M$ is a unit. So we must have M = R, but this is a contradiction to the maximality of M.

16. Let R be any ring with identity, and n any positive integer. If $M_n(R)$ denotes the ring or $n \times n$ matrices with entries in R, prove that $M_n(I)$ is an ideal of $M_n(R)$ whenever I is an ideal of R, and that every ideal of $M_n(R)$ has this form.

П

- 17. Let m, n be positive integers such that m divides n. Then the natural map $\phi : \mathbb{Z}_n \to \mathbb{Z}_m$ given by $a + (n) \mapsto a + (m)$ is a surjective ring homomorphism. If U_n, U_m are the units of \mathbb{Z}_n and \mathbb{Z}_m , respectively, show that $\phi : U_n \to U_m$ is a surjective group homomorphism.
- 18. Let R be a ring with the ideals A and B. Let $R/A \times R/B$ be the ring with coordinate-wise addition and multiplication. Show the following.
 - (a) The map $R \to R/A \times R/B$ given by $r \mapsto (r+A, r+B)$ is a ring homomorphism.
 - (b) The homomorphism is part (a) is surjective if and only if A + B = R.
- 19. Let m and n be relatively prime integers.
 - (a) Show that if c and d are any integers, then there is an integer x such that $x \equiv c \pmod{m}$ and $x \equiv d \pmod{n}$.
 - (b) Show that \mathbb{Z}_{mn} and $\mathbb{Z}_m \times \mathbb{Z}_n$ are isomorphic as rings.
- 20. Let R be a commutative ring with 1 and let I and J be ideals of R such that I + J = R. Show that $R/(I \cap J) \cong R/I \oplus R/J$.
- 21. Let R be a commutative ring with identity and let I_1, I_2, \dots, I_n be pairwise co-maximal ideals of R (i.e, $I_i + I_j = R$ if $i \neq j$). Show that $I_i + \bigcap_{j \neq i} I_j = R$ for all i.

Proof. pick an element in R. Then it can be written as $i_1 + i_2$ and $i_1 + i_3$ and so on. So the result follows since the element is in $I_i + \bigcap_{i \neq i}$.

22. Let R be a commutative ring, not necessarily with identity, and assume there is some fixed positive integer n such that nr = 0 for all $r \in R$. Prove that R embeds in a ring S with identity so that R is an ideal of S and $S/R \cong \mathbb{Z}/n\mathbb{Z}$.

Proof. Use $\mathbb{Z} \times R$ or $\mathbb{Z}_n \times R$ to embed R into a ring with unity.

- 23. Let R be a ring with identity 1 and $a, b \in R$ such that ab = 1. Denote $X = \{x \in R \mid ax = 1\}$. Show the following.
 - (a) If $x \in X$, then $b + (1 x) \in X$.
 - (b) If $\phi: X \to X$ is the mapping given by $\phi(x) = b + (1 xa)$, then ϕ is one-to-one.
 - (c) If X has more than one element, then X is an infinite set.

Proof. (a) multiply on the left by a

- (b) $-x_1a = -x_2a \Rightarrow -x_1ab = -x_2ab \Rightarrow x_1 = x_2$
- (c) Suppose that X is finite. Then ϕ is a bijection. So there exists some x such that $b = b + 1 xa \Rightarrow xa = 1$. Then x = xab = b. Now take the other element in the set say $y \neq x$. Then x = xay = y. Which is a contradiction.

24. Let R be a commutative ring with identity and define $U_2(R) = \left\{ \begin{bmatrix} a & b \\ 0 & c \end{bmatrix} \mid a, b, c \in R \right\}$. Prove that every R-automorphism of $U_2(R)$ is inner.

25. Let \mathbb{R} be the field of real numbers and let F be the set of all 2×2 matrices of the form $\begin{bmatrix} a & b \\ -3b & a \end{bmatrix}$, where $a, b \in \mathbb{R}$ Show that F is a field under the usual matrix operations.

Proof.
$$\begin{bmatrix} a & b \\ -3b & a \end{bmatrix}^{-1} = \frac{1}{a^2 + 3b^2} \begin{bmatrix} a & b \\ -3b & a \end{bmatrix} \text{ and } \begin{bmatrix} a & b \\ -3b & a \end{bmatrix} \begin{bmatrix} x & y \\ -3y & x \end{bmatrix} = \begin{bmatrix} ax - 3by & ay + bx \\ -3(ay + bx) & ax - 3by \end{bmatrix}.$$
 Addition follows trivially. \Box

26. Let R be the ring of all 2×2 matrices of the form $\begin{bmatrix} a & b \\ -b & a \end{bmatrix}$ where a and b are real numbers. Prove that R is isomorphic to \mathbb{C} , the field of complex numbers.

Proof. Let \mathcal{M} be our set of matrices. Then define $\phi : \mathcal{M} \to \mathbb{C}$ by $\phi(M) = a + bi$. Then show that this is a ring isomorphism.

27. Let p be a prime and let R be the ring of all 2×2 matrices of the form $\begin{bmatrix} a & b \\ pb & a \end{bmatrix}$, where $a, b \in \mathbb{Z}$. Prove that R is isomorphic to $\mathbb{Z}[\sqrt{p}]$.

Proof. Let \mathcal{M} be the set of matrices. Define $\phi: \mathcal{M} \to \mathbb{Z}[\sqrt{p}]$ by $\phi(M) = a + b\sqrt{(P)}$.

- 28. Let p be a prime and F_p the set of all 2×2 matrices of the form $\begin{bmatrix} a & b \\ -b & a \end{bmatrix}$, where $a, b \in \mathbb{Z}_p$.
 - (a) Show that F_p is a commutative ring with identity.
 - (b) Show that F_7 is a field.
 - (c) Show that F_{13} is not a field.

Proof. (a) trivial

- (b) .
- (c) note that $2^2 + 3^2 = 13$

29. Let $I \subseteq J$ be right ideals of a ring R such that $J/I \cong R$ as right R-modules. Prove that there exists a right ideal K such that $I \cap K = (0)$ and I + K = J.

30. A ring R is called simple if $R^2 \neq 0$ and 0 and R are its only ideals. Show that the center of a simple ring is 0 or a field.

31. Give an example of a field F and a one-to-one ring homomorphism $\phi: F \to F$ which is not onto. Verify your example.

32. Let D be an integral domain and let $D[x_1, x_2, \ldots, x_n]$ be the polynomial ring over D in the n indeterminates x_1, x_2, \ldots, x_n . Let

$$V = \begin{bmatrix} x_1^{n-1} & \dots & x_1^2 & x_1 & 1 \\ x_2^{n-1} & \dots & x_2^2 & x_2 & 1 \\ \vdots & & \vdots & \vdots & \vdots \\ x_n^{n-1} & \dots & x_n^2 & x_n & 1 \end{bmatrix}.$$

Prove that the determinant of V is $\prod_{1 \le i \le j \le n} (x_i - x_j)$.

33. Let R = C[0,1] be the set of all continuous real-valued functions on [0,1]. Define addition and multiplication on R as follows. For $f,g \in R$ and $x \in [0,1]$,

$$(f+g)(x) = f(x) + g(x)$$
 and $(fg)(x) = f(x)g(x)$.

- (a) Show that R with these operations is a commutative ring with identity.
- (b) Find the units of R.
- (c) If $f \in R$ and $f^2 = f$, then $f = 0_R$ of $f = 1_R$.
- (d) If n is a positive integer and $f \in R$ is such that $f^n = 0_R$, then $f = 0_R$

- 34. Let S be the ring of all bounded, continuous functions $f: \mathbb{R} \to \mathbb{R}$, where \mathbb{R} is the set of real numbers. Let I be the set of functions f in S such that $f(t) \to 0$ as $|t| \to \infty$.
 - (a) Show that I is an ideal of S.
 - (b) Suppose $x \in S$ is such that there is an $i \in I$ with ix = x. Show that x(t) = 0 for all sufficiently large |t|.
- 35. Let \mathbb{Q} be the field of rational numbers and $D = \{a + b\sqrt{2} \mid a, b \in \mathbb{Q}\}.$
 - (a) Show that D is a subring of the field of real numbers.
 - (b) Show that D is a principal ideal domain.
 - (c) show that $\sqrt{3}$ is not an element of D.
- 36. Show that if p is a prime such that $p \equiv 1 \pmod{4}$, then $x^2 + 1$ is not irreducible in $\mathbb{Z}_p[x]$.
- 37. Show that if p is a prime such that $p \equiv 4 \pmod{4}$, then $x^2 + 1$ is irreducible in $\mathbb{Z}_p[x]$.
- 38. Show that if p is a prime such that $p \equiv 1 \pmod{6}$, then $x^3 + 1$ splits in $\mathbb{Z}_p[x]$.

1.2 Prime, Maximal, and Primary Ideals

39. Let R be a non-zero commutative ring with 1. Show that an ideal M of R is maximal if and only if R/M is a field.

Proof. By the correspondence theorem, M is a maximal ideal of R if and only if 0 is a maximal ideal of R/M. Also, it is known that a commutative ring is a field if and only if 0 is a maximal ideal. Thus the result follows.

40. Let R be a commutative ring with 1. Show that an ideal P of R is prime if and only if R/P is an integral domain.

Proof. First let P be a prime ideal of R. Then R/P is a prime ring. Let $a,b \in R/P$ such that ab=0. Then we can say that (a)(b)=0 where (a) and (b) are ideals generated by a and b respectively in R/P. But then we know that either (a)=0 or (b)=0 since R/P is a prime ring. Therefore, we must have a=0 or b=0 and so R/P is an integral domain.

Now suppose that R/P is an integral domain. Suppose A and B are ideals such that AB = 0. Then pick $a_1 \in A$. Then, since R/P is an integral domain, we have $a_1b_i = 0$ for all $b_i \in B$ or $a_1 = 0$. Continuing in this way, we must have either A = 0 or B = 0. Thus R/P is prime so P is a prime ideal

- 41. (a) Let R be a commutative ring with 1. Show that if M is a maximal ideal of R then M is a prime ideal of R.
 - (b) Give an example of a non-zero prime ideal in a ring R that is not a maximal ideal.

Proof. For (a) since M is a maximal ideal then R/M is a field and thus an integral domain. Since R/M is an integral domain, then M is a prime ideal of R.

For (b) note that $\mathbb{Z}[x]/(x) \cong \mathbb{Z}$ so (x) is a prime ideal of $\mathbb{Z}[x]$ but (x) is not maximal in $\mathbb{Z}[x]$ since \mathbb{Z} is not a field.

42. Let R be a non-zero ring with identity. Show that every proper ideal of R is contained in an maximal idea.

Proof. Let $I \subseteq R$ be a proper ideal. Define the set $P = \{A \mid I \subseteq A \subseteq R \text{ is an ideal of } R\}$. Let \mathcal{C} be a chain of ideals in P. Then $U_{\mathcal{C}} = \bigcup_{A \in \mathcal{C}} A$ is an ideal of R containing I and is an upper bound for \mathcal{C} . Notice that $1 \notin U_{\mathcal{C}}$ since 1 was not in any of the ideals from \mathcal{C} as the ideals in \mathcal{C} are proper in R. Thus we have that $U_{\mathcal{C}} \in P$. Now we can apply Zorn's Lemma. So there exists a maximal element \mathscr{A} of the set P. It follows that $I \subseteq \mathscr{A} \subseteq R$ and so I is contained in the maximal ideal \mathscr{A} .

43. Let R be a commutative ring with 1 and P a prime ideal of R. Show that if I and J are ideals of R such that $I \cap J \subseteq P$ and $J \nsubseteq P$, then $I \subseteq P$.

Proof. Suppose that I and J are ideals of R such that $I \cap J \subseteq R$ but Jnsubseteq P. Then there is some element $x \in J$ such that $x \notin P$.

Let $y \in I$, then $xy \in I$ and $xy \in J$. Thus $xy \in P$. Since P is prime, we must have $x \in P$ or $y \in P$. We know that $x \notin P$ so it must be the case that $y \in P$. Since $y \in I$ was arbitrary, it follows that $I \subseteq R$.

- 44. Let $M_1 \neq M_2$ be two maximal ideals in the commutative ring R and let $I = M_1 \cap M_2$. Prove that R/I is isomorphic to the direct sum of two fields.
- 45. Let R be a non-zero commutative ring with 1. Show that if I is an ideal of R such that 1 + a is a unit in R for all $a \in I$, then I is contained in every maximal ideal of R.

Proof. Let I be an ideal of R such that 1+a is a unit in R for all $a \in I$. If $a \in I$ the we know that $-a \in I$. Thus 1-a is a unit in R for all $a \in I$. It follows that every element of I is quasiregular. It is known that the Jacobson Radical, J(R), is maximal with respect to every element being quasiregular. Thus $I \subseteq J(R) \subseteq \bigcap_{\{M|M \text{ is maximal in } R\}} M$, as desired.

- 46. Let R be a commutative ring with identity. Suppose R contains an idempotent element a other that 0 or 1. Show that every prime ideal of R contains an idempotent element other that 0 or 1. (An element $a \in R$ is idempotent if $a^2 = a$)
- 47. Let R be a commutative ring with 1.
 - (a) Prove that (x) is a prime ideal in R[x] if and only if R is an integral domain.
 - (b) Prove that (x) is a maximal ideal in R[x] if and only if R is a field.

Proof. Note that (x) is an ideal of R[x] and $R[x]/(x) \cong R$. Then (a) and (b) follow trivially. \square

48. Find all values of a in \mathbb{Z}_3 such that the quotient ring

$$\mathbb{Z}_3[x]/(x^3+x^2+ax+1)$$

is a field. Justify your answer.

49. Find all values of a in \mathbb{Z}_5 such that the quotient ring

$$\mathbb{Z}_5[x]/(x^3+2x^2+ax+3)$$

is a field. Justify your answer.

- 50. Let R be a commutative ring with identity and let U be maximal among non-finitely generalted ideals of R. Prove U is a prime ideal.
- 51. Let R be a commutative ring with identity and let U be a maximal among non-principal ideals of R. Prove U is a prime ideal.

Proof. Let $U \subseteq R$ be maximal among non-principal ideals. Suppose U is not prime. Then there exists $a, b \in R \setminus U$ such that their product $ab \in U$. Then we have that $U \subsetneq U + (a)$. Since U is properly contained in U + (a), then U + (a) is principal. So U + (a) = (c) for some $c \in R$.

Now define the set $V = \{x \in R \mid cx \in U\}$. Clearly we have $U \subseteq V$. Also we can say u + ra = c for some $u \in U$ and $r \in R$. Then b(u + ra) = bu + r(ab) = bc. So it follows that $bc \in U$ since $bu \in U$ and $r(ab) \in U$. Thus $b \in V$ and we can conclude that $U \subsetneq V$. Now we can say that V = (d) for some $d \in R$.

Let $u \in U$. Then u = cy for some $y \in R$. Then $y \in V$. So we can say that y = dz for some $z \in R$. Thus u = c(dz) and so $u \in (cd)$. Hence $U \subseteq (cd)$. Also since $d \in V$ then $cd \in U$ and so $(cd) \subseteq U$. But then we have U = (cd), a contradiction and so U is a prime ideal.

52. Let R be a non-zero commutative ring with 1 and S a multiplicative subset of R not containing 0. Show that if P is maximal in the set of ideals of R not intersecting S, then P is a prime ideal.

Proof. Let S be a multiplicative set not containing 0. Let $P \subseteq R \setminus S$ be maximal. Suppose that P is not a prime ideal. Then there exists elements $a, b \in R \setminus P$ such that $ab \in P$. Then $P+(a) \cap S \neq \emptyset$ and $P+(b) \cap S \neq \emptyset$. So there exists elements $p, q \in P$ and $s, t \in R$ such that $p+as \in S$ and $q+bt \in S$. Thus we can say that $(p+as)(q+bt)=(pq)+as(q)+(p)bt+(ab)st \in P \cap S=\emptyset$, a contradiction.

- 53. Let R be a non-zero commutative ring with 1.
 - (a) Let S be a multiplicative subset of R not containing 0 and let P be maximal in the set of ideals of R not intersecting S. Show that P is a prime ideal.
 - (b) Show that the set of nilpotent elements of R is the intersection of all prime ideals.

Proof. For (a), let S be a multiplicative set not containing 0. Let $P \subseteq R \setminus S$ be maximal. Suppose that P is not a prime ideal. Then there exists elements $a, b \in R \setminus P$ such that $ab \in P$. Then $P + (a) \cap S \neq \emptyset$ and $P + (b) \cap S \neq \emptyset$. So there exists elements $p, q \in P$ and $s, t \in R$ such that $p + as \in S$ and $q + bt \in S$. Thus we can say that $(p + as)(q + bt) = (pq) + as(q) + (p)bt + (ab)st \in P \cap S = \emptyset$, a contradiction.

For (b), let $r \in R$ be nilpotent. Then $r^n = 0$ for some $n \in \mathbb{N}$. Since $r^n = 0 \in P$ for all prime ideals $P \subseteq R$, then $r \in P$ for all prime ideals. Therefore $r \in \bigcap_{\{P \mid P \subseteq R \text{ is a prime ideal}\}} P$.

Now suppose $r \in \bigcap_{\{P|P \subseteq R \text{ is a prime ideal}\}} P$. Suppose r is not nilpotent.

Then we can define $\mathcal{R} = \{r^n \mid n \in \mathbb{N}\}$. Now define $\mathcal{M} = \{I \subseteq R \setminus \mathcal{R} \mid I \text{ is an ideal of } R\}$. Now let \mathcal{C} be a chain of ideals of \mathcal{M} . Then note that $U = \bigcup_{\{U_c \in \mathcal{C}\}} U_c$ is an ideal, an upper bound for \mathcal{C} and $U \cap \mathcal{R} = \emptyset$ since $U_c \cap \mathcal{R} = \emptyset$ for all $U_c \in \mathcal{C}$. Thus $U \in \mathcal{M}$ and by Zorn's lemma \mathcal{M} has a maximal element say M.

Now we want to show that M is a prime ideal and arrive at a contradiction. Suppose $a, b \in R \setminus M$. Then $M \subsetneq M + (a)$ and $M \subsetneq M + (b)$. So $M + (a) \notin \mathcal{M}$ and $M + (b) \notin \mathcal{M}$. So there exists $m, n \in \mathbb{N}$ such that $r^n \in M + (a)$ and $r^m \in M + (b)$. Then $r^{m+n} \in M + (ab) \notin \mathcal{M}$. Therefore $ab \notin M$ and so M is prime, a contradiction to r being contained in all prime ideals of R.

54. Let R be a commutative ring with identity and let $x \in R$ be a non-nilpotent element. Prove that there exists a prime ideal P of R such that $x \notin P$.

55. Let R be a commutative ring with identity and let S be the set of all elements of R that are not zero-divisors. Show that there is a prime ideal P such that $P \cap S$ is empty. (Hint: Use Zorn's Lemma)

- 56. Let R be a commutative ring with identity and let C be a chain of prime ideals of R. Show that $\bigcup_{P \in C} P$ and $\bigcap_{P \in C} P$ are prime ideals of R.
- 57. Let R be a commutative ring and P be an prime ideal of R. Show that there is a prime ideal $P_0 \subseteq P$ that does not properly contain any prime ideal.
- 58. Let R be a commutative ring with 1 such that every x in R there is an integer n > 1 (depending on x) such that $x^n = x$. Show that every prime ideal of R is maximal.
- 59. Let R be a commutative ring with 1 in which every ideal is a prime ideal. Prove that R is a field. (Hint: For $a \neq 0$ consider the ideals (a) and (a^2) .)
- 60. Let D be a principal ideal domain. Prove that every nonzero prime ideal of D is a maximal ideal.
- 61. Show that if R is a finite commutative ring with identity, then every prime ideal of R us a maximal ideal.

62. Let R = C[0,1] be the ring of all continuous real-valued functions on [0,1], with addition and multiplication defined as follows. For $f, g \in R$ and $x \in [0,1]$,

$$(f+g)(x) = f(x) + g(x)$$

$$(fg)(x) = f(x)g(x).$$

Prove that if M is a maximal ideal of R, then there is a real number $x_0 \in [0,1]$ such that $M = \{f \in R \mid f(x_0) = 0\}.$

- 63. Let R be a commutative ring with identity, and let $P \subset Q$ be prime ideals of R. Prove there exists prime ideals P^*, Q^* satisfying $P \subseteq P^* \subset Q^* \subseteq Q$, such that there are no prime ideals strictly between P^* and Q^* . (Hint: Fix $x \in Q \setminus P$ and show that there exists a prime ideal P^* containing P, contained in Q and maximal with respect to not containing x.)
- 64. Let R be a commutative ring eith 1. An ideal I of R is called a *primary* ideal if $I \neq R$ and for all $x, y \in R$ with $xy \in I$, either $x \in R$ or $y^n \in R$ for some integer $n \ge 1$.
 - (a) Show that an ideal I of R is primary if and only if $R/I \neq 0$ and every zero-divisor in R/I is nilpotent.
 - (b) Show that if I is a primary ideal of R then the radical $\operatorname{Rad}(I)$ of I is a prime ideal. (Recall that $\operatorname{Rad}(I) = \{x \in R \mid x^n \in I \text{ for some } n\}$.)

1.3 Commutative Rings

- 65. Let R be a commutative ring with identity. Show that R is an integral domain if and only if R is a subring of a field.
- 66. Let R be a commutative ring with identity. Show that if x and y are nilpotent elements of R then x + y is nilpotent and the set of all nillpotent elements is an ideal in R.
- 67. Let R be a commutative ring with identity. An ideal I of R is *irreducible* if it cannot be expressed as the intersection of two ideals of R neither of which is contained in the other. Show the following.
 - (a) If P is a prime ideal then P is irreducible.
 - (b) If x is a non-zero element of R, then there is an ideal I_x , maximal with respect to the property that $x \notin I_x$, and I_x is irreducible.
 - (c) If every irreducible ideal of R is a prime ideal, then 0 is the only nilpotent element of R.
- 68. Let R be a commutative ring with 1 and let I be an ideal of R satisfying $I^2 = \{0\}$. Show that if $a + I \in R/I$ is an idempotent element of R/I, then the coset a + I contains an idempotent element of R.
- 69. Let R be a commutative ring with identity that has exactly one prime ideal P. Prove the following
 - (a) R/P is a field.
 - (b) R is isomorphic to R_p , the ring of quotients of R with respect to the multiplicative set $R \setminus P = \{s \in R \mid s \notin P\}$
- 70. Let R be a commutative ring with identity and $\sigma: R \to R$ a ring automorphism.
 - (a) Show that $F = \{r \in R \mid \sigma(R) = r\}$ is a subring of R and the identity of R is in F.
 - (b) Show that if σ^2 is the identity map on R, then each element of R is the root of a monic polynomial of degree two in F[x].
- 71. Let R be a commutative ring with identity that has exactly three ideals $\{0\}$, I, and R.
 - (a) Show that if $a \notin I$, then a is a unit of R.
 - (b) Show that if $a, b \in I$ then ab = 0

- 72. Let R be a commutative ring with 1. Show that if u is a unit in R and n is nilpotent, then u + n is a unit.
- 73. Let R be a commutative ring with identity. Suppose that for every $a \in R$, either a or 1 a is invertible. Prove that $N = \{a \in R \mid a \text{ is not invertible}\}$ is an ideal of R.
- 74. Let R be a commutative ring with 1. Show that the sum of any two principal ideals of R is principal if and only if every finitely generated ideal of R is principal.
- 75. Let R be a commutative ring with identity such that not every ideal is a principal ideal.
 - (a) Show that there is an ideal I maximal with respect to the property that I is not a principal ideal.
 - (b) If I is the ideal of part (a), show that R/I is a principal ideal ring.
- 76. Recall that if $R \subseteq S$ is an inclusion of commutative rings (with the same identity) then an element $s \in S$ is integral over R if s satisfies some monic polynomial with coefficients in R. Prove the equivalence of the following statements.
 - (a) s is integral over R.
 - (b) R[s] is finitely generated as an R-module.
 - (c) There exists a faithful R[s] module which is finitely generated as an R-module.
- 77. Recall that if $R \subseteq S$ is an inclusion of commmutative rings (with the same identity) then S is an integral extension of R if every element of S satisfies some monic polynomial with coefficients in R. Prove that if $R \subseteq S \subseteq T$ are commutative rings with the same identity, then S is integral over R and T if and only if T is integral over R.
- 78. Let $R \subseteq S$ be commutative domains with the same identity, and assime that S is an integral Extension of R. Let I be a nonzero ideal of S. Prove the $I \cap R$ is a nonzero ideal of R.

1.4 Domains

79. Suppose R is a domain and I and J are ideals of R such that IJ is principal. Show that I (and by symmetry J) is finitely generated.

[Hint: If IJ = (a), then $\sum_{i=1}^{n} x_i y_i$ for some $x_i \in I$ and $y_i \in J$. Show the x_i generate I.]

- 80. Prove that if D is a Euclidean Domain, then D is a Principal Ideal Domain.
- 81. Show that if p is a prime such that there is an integer b with $p = b^2 + 4$, then $\mathbb{Z}[\sqrt{p}]$ is not a unique factorization domain.
- 82. Show that if p is a prime such that $p \equiv 1 \pmod{4}$, then $\mathbb{Z}[\sqrt{p}]$ is not a unique factorization domain.
- 83. Let $D = \mathbb{Z}(\sqrt{5}) = \{m + n\sqrt{5} \mid m, n \in \mathbb{Z}\}$ a subring of the field of real numbers and necessarily an integral domain (you need not show this) and $F = \mathbb{Q}(\sqrt{5})$ its field of fractions. Show the following:
 - (a) $x^2 + x 1$ is irreducible in D[x] but not in F[x].
 - (b) D is not a unique factorization domain.
- 84. Let $D = \mathbb{Z}(\sqrt{21}) = \{m + n\sqrt{21} \mid m, n \in \mathbb{Z}\}$ and $F = \mathbb{Q}(\sqrt{21})$, the field of fractions. Show the following:
 - (a) $x^2 x 5$ is irreducible in D[x] but not in F[x].
 - (b) D is not a unique factorization domain.
- 85. Let $D = \mathbb{Z}(\sqrt{-11}) = \{m + n\sqrt{-11} \mid m, n \in \mathbb{Z}\}$ and $F = \mathbb{Q}(\sqrt{-11})$, the field of fractions. Show the following:

- (a) $x^2 x + 3$ is irreducible in D[x] but not in F[x].
- (b) D is not a unique factorization domain.
- 86. Let $D = \mathbb{Z}(\sqrt{13}) = \{m + n\sqrt{13} \mid m, n \in \mathbb{Z}\}$ and $F = \mathbb{Q}(\sqrt{13})$, the field of fractions. Show the following:
 - (a) $x^2 + 3x 1$ is irreducible in D[x] but not in F[x].
 - (b) D is not a unique factorization domain.
- 87. Let D be an integral domain and F a subring of D that is a field. Show that if each element of D is algebraic over F, then D is a field.
- 88. Let R be an integral domain containing the subfield F and assume that R is finite dimensional over F when viewed as a vector space over F. Prove that R is a field.
- 89. Let D be an integral domain.
 - (a) For $a, b \in D$ define a greatest common divisor of a and b.
 - (b) For $x \in D$ denote $(x) = \{dx \mid d \in D\}$. Prove that if (a) + (b) = (d), then d is a greatest common divisor of a and b.
- 90. Let D be a principal ideal domain.
 - (a) For $a, b \in D$, define a least common multiple of a and b.
 - (b) Show that $d \in D$ is a least common multiple of a and b if and only if $(a) \cap (b) = (d)$.
- 91. Let D be a principal ideal domain and let $a, b \in D$.
 - (a) Show that there is an element $d \in D$ that satisfies the properties
 - i. $d \mid a$ and $d \mid b$ and
 - ii. if $e \mid a$ and $e \mid b$ then $e \mid d$
 - (b) Show that there is an element $m \in D$ that satisfies the properties
 - i. $a \mid m$ and $b \mid m$ and
 - ii. if $a \mid e$ and $b \mid e$ then $m \mid e$.
- 92. Let R be a principal ideal domain. Show that if (a) is a nonzero ideal in R, then here are only finitely many ideals in R containing (a).
- 93. Let D be a unique factorization domain and F its field of fractions. Prove that if d is an irreducible element in D, then there are no $x \in F$ such that $x^2 = d$.
- 94. Let D be a Euclidean domain. Prove that every non-zero prime ideal is a maximal ideal.
- 95. Let π be an irreducible element of a principal ideal domain R. Prove that π is a prime element (that is, $\pi \mid ab$ implies $\pi \mid a$ or $\pi \mid b$).
- 96. Let D with $\phi: D \setminus \{0\} \to \mathbb{N}$ be a Euclidean domain. Suppose $\phi(a+b) \leq \max\{\phi(a), \phi(b)\}$ for all $a, b \in D$. Prove that D is either a field or isomorphic to a polynomial ring over a field.
- 97. Let D be an integral domain and F its field of fractions. Show that if g is an isomorphism of D onto itself, then there is a unique isomorphism h of F onto F such that h(d) = g(d) for all $d \in D$. $(h \mid_{D} = g)$.
- 98. Let D be a unique factorization domain such that if p and q are irreducible elements of D, then p and q are associates. Show that if A and B are ideals of D, then either $A \subseteq B$ or $B \subseteq A$.
- 99. Let D be a unique factorization domain and p a fixed irreducible element of D such that if q is any irreducible element of D, then q is an associate of p. Show the following.
 - (a) If d is a nonzero element of D, then d is uniquely expressible in the form up^n , where u is a unit of D and n is a non-negative integer.

- (b) D is a Euclidean domain.
- 100. Prove that $\mathbb{Z}[\sqrt{-2}] = \{a + b\sqrt{-2} \mid a, b \in \mathbb{Z}\}\$ is a Euclidean domain.
- 101. Show that the ring $\mathbb{Z}[i]$ of Gaussian integers is a Euclidean ring and compute the greatest common divisor of 5 + i and 13 using the Euclidean algorithm.

1.5 Polynomial Rings

- 102. Show that the polynomial $f(x) = x^4 + 5x^2 + 3x + 2$ is irreducible over the field of rational numbers.
- 103. Let D be an integral domain and D[x] the polynomial ring over D. Suppose $\phi:D[x]\to D$ is an isomorphism such that $\phi(d)=d$ for all $d\in D$. Show that $\phi(x)=ax+b$ for some $a,b\in D$ and that a is a unit of D.
- 104. Let $f(x) = a_0 + a_1 x + \ldots + a_k x^k + \ldots + a_n x^n \in \mathbb{Z}[x]$ and p a prime such that $p \mid a_i$ for $i = 1, \ldots, k-1$, $p \nmid a_k, p \nmid a_n$, and $p^2 \nmid a_0$. Show that f(x) has an irreducible factor in $\mathbb{Z}[x]$ of degree at least k.
- 105. Let D be an integral domain and D[x] the polynomial ring over D in the indeterminate x. Show that if every nonzero prime ideal of D[x] is a maximal ideal, then D is a field.
- 106. Let R be a commutative ring with 1 and let $f(x) \in R[x]$ be nilpotent. Show that the coefficients of f are nilpotent.
- 107. Show that if R is an integral domain and f(x) is a unit in the polynomial ring R[x], then f(x) is in R.
- 108. Let D be a unique factorization domain and F its field of fractions. Prove that if f(x) is a monic polynomial in D[x] and $\alpha \in F$ is a root of f, then $\alpha \in D$.
- 109. (a) Show that $x^4 + x^3 + x^2 + x + 1$ is irreducible in $\mathbb{Z}_3[x]$.
 - (b) Show that $x^4 + 1$ is not irreducible in $\mathbb{Z}_3[x]$.
- 110. Let F[x, y] be the polynomial ring over a field F in two indeterminates x, y. Show that the ideal generated by $\{x, y\}$ is not a principal ideal.
- 111. Let F be a field. Prove that the polynomial ring F[x] is a PID and that F[x, y] is not a PID.
- 112. Let D be an integral domain and let c be an irreducible element in D. Show that the ideal (x, c) generated by x and c in the polynomial ring D[x] is not a principal ideal.
- 113. Show that if R is a commutative ring with 1 that is not a field, then R[x] is not a principal ideal domain.
- 114. (a) Let $\mathbb{Z}[\frac{1}{2}] = \{\frac{a}{2^n} \mid a, n \in \mathbb{Z}, n \geq 0\}$, the smallest subring of \mathbb{Q} containing \mathbb{Z} and $\frac{1}{2}$. Let (2x-1) be the ideal of $\mathbb{Z}[x]$ generated by the polynomial 2x-1. Show that $\mathbb{Z}[x]/(2x-1) \cong \mathbb{Z}[\frac{1}{2}]$.
 - (b) Find an ideal I of $\mathbb{Z}[x]$ such that $(2x-1) \subsetneq I \subsetneq \mathbb{Z}[x]$

1.6 Non-commutative Rings

- 115. Let R be a ring with identity such that the identity map is the only ring automorphism of R. Prove that the set N of all nilpotent elements of R is an ideal of R.
- 116. Let p be a prime. A ring S is called a p-ring if the characteristic of S is a power of p. Show that if R is a ring with identity of finite characteristic, then R is isomorphic to a finite direct product of p-rings for distinct primes.
- 117. If R is any ring with identity, let J(R) denote the Jacobson radical of R. Show that if e is any idempotent of R, then J(eRe) = eJ(R)e.
- 118. If n is a positive integer and F is any field, let $M_n(F)$ denote the ring of $n \times n$ matrices with entries in F. Prove that $M_n(F)$ is a simple ring. Equivalently, $\operatorname{End}_F(V)$ is a simple ring if V is a finite dimensional vector space over F.

119. Let R be a ring.

- (a) Show that there is a unique smallest (with respect to inclusion) ideal A such that R/A is a commutative ring.
- (b) Give an example of a ring R such that for every proper ideal I, R/I is not commutative. Verify your example.
- (c) For the ring $R = \left\{ \begin{bmatrix} a & b \\ 0 & c \end{bmatrix} \mid a,b,c \in \mathbb{Z} \right\}$ with the usual matrix operations, find the ideal of A of part (a).
- 120. A ring R is nilpotent-free if $a^n = 0$ for $a \in R$ and some positive integer n implies a = 0.
 - (a) Suppose there is an ideal I such that R/I is nilpotent-free. Show there is a unique smallest (with respect to inclusion) ideal A such that R/A is nilpotent-free.
 - (b) Give an example of a ring R such that for every proper ideal I, R/I is not nilpotent-free. Verify your example.
 - (c) Show that if R is a commutative ring with identity, then there is a proper ideal I of R such that R/I is nilpotent-free, and find the ideal A of part (a).

1.7 Local Rings, Localization, Rings of Fractions

- 121. Let R be an integral domain. Construct the field of fractions F of R by defining the set F and the two binary operations, and show that the two operations are well-defined. Show that F has a multiplicative identity element and that every nonzero element of F has a multiplicative inverse.
- 122. A *local* ring is a commutative ring with 1 that has a unique maximal ideal. Show that a ring R is local if and only if the set of non-units in R is an ideal.
- 123. Let R be a commutative ring with $1 \neq 0$ in which the set of nonunits is closed under addition. Prove that R is local, i.e., has a unique maximal ideal.
- 124. Let D be an integral domain and F its field of fractions. Let P be a prime ideal in D and $D_P = \{ab^{-1} \mid a, b \in D, b \notin P\} \subseteq F$. Show that D_P has a unique maximal ideal.
- 125. Let R he a commutative ring with identity and M a maximal ideal of R. Let R_M be the ring of quotients of R with respect of the multiplicative set $R \setminus M = \{s \in R \mid s \notin M\}$. Show the following.
 - (a) $M_M = \left\{ \frac{a}{s} \mid a \in M, s \notin M \right\}$ is the unique maximal ideal of R_M .
 - (b) The fields R/M and R_M/M_M are isomorphic.
- 126. Let R be an integral domain, S a multiplicative set, and let $S^{-1}R = \left\{\frac{r}{s} \mid r \in R, s \in S\right\}$ (contained in the field of fractions of R). Show that if P is a prime ideal of R, then $S^{-1}P$ is either a prime ideal of $S^{-1}R$ or else equals $S^{-1}R$.
- 127. Let R be a commutative ring with identity and P a prime ideal of R. Let R_P be the ring of quotients of R with respect to the set $R \setminus P = \{s \in R \mid s \notin P\}$. Show that R_P/P_P is the field of fractions of the integral domain R/P.
- 128. Let D be an integral domain and F its field of fractions. Denote by \mathcal{M} the set of all maximal ideals of D. For $M \in \mathcal{M}$, let $D_M = \left\{ \frac{a}{s} \mid a, s \in D, s \notin M \right\} \subset F$. Show that $\bigcap_{M \in \mathcal{M}} D_M = D$.
- 129. Let R be a commutative ring with 1 and D a multiplicative subset of R containing 1. Let J be an ideal in the ring of fractions $D^{-1}R$ and let

$$I = \left\{ a \in R \mid \frac{a}{d} \in J \text{ for some } d \in D \right\}.$$

Show that I is an ideal of R.

130. Let D be a principal ideal domain and let P be a non-zero prime ideal. Show that D_P , the localization of D at P, is a principal ideal domain and has a unique irreducible element, up to associates.

15

1.8 Chains and Chain Conditions

- 131. Let R be a commutative ring with identity. Prove that any non-empty set of prime ideals of R contains maximal and minimal elements.
- 132. Let R be a commutative ring with 1. We say R satisfies the ascending chain condition if whenever $I_1 \subseteq I_2 \subseteq I_3 \subseteq \ldots$ is an ascending chain of ideals, there is an integer N such that $I_k = I_N$ for all $k \geq N$. Show that R satisfies the ascending chain condition if and only if every ideal of R is finitely generated.
- 133. Define Noetherian ring and prove that if R is Noetherian, then R[x] is Noetherian.
- 134. Let R be a commutative Noetherian ring with identity. Prove that there are only finitely many minimal prime ideals of R.
- 135. Let R be a commutative Noetherian ring in which every 2-generated ideal is principal. Prove that R is a Principal Ideal Domain.
- 136. Let R be a commutative Noetherian ring with identity and let I be an ideal in R. Let J = Rad(I). Prove that there exists a positive integer n such that $j^n \in I$ for all $j \in J$.
- 137. Let R be a commutative Noetherian domain with identity. Prove that every nonzero ideal of R conatains a product of nonzero prime ideals of R.
- 138. Let R be a ring satisfying the descending chain condition on right ideals. If J(R) denotes the Jacobson radical of R, prove that J(R) is nilpotent.
- 139. Show that if R is a commutative Noetherian ring with identity, then the polynomial ring R[x] is also Noetherian.
- 140. Let P be a nonzero prime ideal of the commutative Noetherian domain R. Assume P is principal. Prove that there does not exist a prime ideal Q satisfying (0) < Q < P.
- 141. Let R be a commutative Noetherian ring. Prove that every nonzero ideal A of R contains a product of prime ideals (not necessarily distinct) each of which contains A.
- 142. Let R be a commutative ring with 1 and let M be an R-module that is not Artinian (Noetherian, of finite composition length). Let \mathcal{I} be the set of ideals I of R such that there exists and R-submodule N of M with the property that N/NI is not Artinian (Noetherian, of finite composition length, respectively). Show that if $A \in \mathcal{I}$ is a maximal element of \mathcal{I} , then A is a prime ideal of R.