Collision Avoidance Project

To create this project we will follow System Architecting\design Sequence as shown below:

lets begin with Case study of the Project

Case study

Specification (from the client):

- A system to stop the car from hitting an object while driving it System Assumption:
 - The car has an ulta sonic sensor
 - The car is driven by 1 motor
 - The sensor never fails
 - The motor never faces power cut

Now we will choose method

Method

In this project we will use V MODEL as shown below:

Now lets use requirements nodes to define our requirements for this project

Requirements

Space Exploration\Partitioning

In this project the most optimal way is to use Stm32

System Analysis

System analysis has 3 Analysis methods:

- 1- System boundary and main function --> Use case diagram
- 2- Relation between main functions --> Activity Diagram
- 3- Communications between main system entities and actors --> Sequence diagram

Let's begin with Use case diagram:

Activity diagram:

Sequence Diagram:

The last thing before implementation is to create System design

System Design

Block diagram for our system:

State machine for US_Sensor:

State machine for DC_Motor:

State machine for CA:

System Design Logic:

Finally, now we implement our code but is this project we can't simulate so we just run the project on Eclipse

The project files is uploaded here on github rep:

https://github.com/mgtera200/Master-Embedded-System/tree/main/System.Architecting_Unit_4/Assignments/Collision%20Avoidance

This is what the final result looks like:

