

Dated:

6.
$$v_1 = 3i - 2j + k$$
 $v_2 = i + 3j - k$

a)
$$\vec{n} = 3 - 2 \cdot 1 = i - 2 \cdot 1 - j \cdot 3 \cdot 1 + k \cdot 3 \cdot - 2 \cdot 1 +$$

1		-1	KI	12 11 11 3	1
	1	3	-	= 1 4 11 - 1 - 2 11 + 1 - 2 11	
	-2	4	IL		

a vector that = 35; -9j -2k

b) normal vetor to a place does not lie on the place
so: $\vec{n} = -2i + 7j + 11k$

c)
$$\vec{w} \cdot \vec{n} = (2)(-2) + (-1)(4) + (3)(11)$$

= -4 - -4 + -4 + -4 + -4 = -4 = -4 + -4 = -4 = -4 + -4 =

is does not lie on the plane.

Dated: Homework 3 8. a) this set cannot be linearly independent because there are four vectors and only three variables. even by three of them were linearly independent, at least one of them is redundant, and can therefore be expressed as a linear combination of the others. b) 9. $3x^2 + 2x + 3$, 3x + 4, $5x^2 + 2 - 1$, $-2x^2 + 1$. $3x + 4 = a(3x^2 + 2x + 3) + b(5x^2 + x - 1) + c(-2x^2 + 1)$. $0x^2 + 3x + 4 = 3ax^2 + 2ax + 3a + 3x^2 + 5bx^2 + bx - 5b - 2cx^2 + c$ 0 = 3a + 5b - 2c 3 = 2a + bx 4 = 3a - bx

Dated:

0 = 3a + 5b-2c

8 = 6a - 2b + 2c

8 = 90 +35

. 3 = 2a+b.

4 b = 3-2a

8 = 9a + 3 (3-2a)

8 = 9a + 9 - 6a

8 = 3 = 49

 $\begin{bmatrix} a = -\frac{1}{3} \\ 3 \end{bmatrix}$

b = 3-2a

= 3-2(-1/3)

b = "13"

4 = 3a - b + c

C = 4 - 3a + b

 $= \frac{4}{3} - 3\left(\frac{-1}{3}\right) + \frac{11}{3}$

= 4 +1 + 11

3

C = 26

 $3x+9=-\frac{1}{3}(3x^2+2x+3)+\frac{11}{3}(5x^2+2-1)+\frac{26}{3}(-2x^2+1)$

Dated:
10. a) the vector [i) is the only one whose x_2 and x_n values are
non-zero. this means that the x, and xn values of any linear commismation of these vectors must be will be dependent on one another. Here is
non-zero. this means that the x, and xy values of any linear commismation of these vectors must be will be dependent on one another. Here is no way for $x_2 = 1$ and $x_3 = 2$, for example. So the vectors cannot span R^n
b) the vector [2] is a multiple of the vector [5] so it is redundant. excluding
that, there are three vectors and four variables so at least two of them will be dependent on one another. therefore the vectors cannot span R"
them will be dependent on one another. therefore the vectors cannot span R"
11. Section 3.3.
7. x, x2 =x3 - all independent.
$y_1 = x_2 - x_1$
y2 = 23 - 22
$y_3 = x_3 - x_1$
93 = (X3 - X2) - (X2 - X3)
- *
$y_3 = \chi_3 - \chi_1$
$= (\chi_3 - \chi_2) - (\chi_2 - \chi_1)$
ys = y2 - y1
since y, can be written as a linear combination of y, andy,
y, ye, and y, are not linearly independent.

Dated:	
15. if a set of vectors {v, vevn} is linearly independent, then c,v, + c2v2+ cnvn =0 has only one solution, such that	
are a subset of c, = C2 = cn = 0. Since the only value in the	hat whole.
set is 0, that is there can be no other solution for the retherefore the subset will also be linearly independent.	
19. since VEV, there exist ecolor values such that	
since v can be represented as a linear combination of the set,	
v, v, v, v, must be linearly dependent.	
26. assume that vzvn span V. since v, EV, there exists exists a linear combination such	- that
v. = C2 V2 + Cy Vn sine v. can be represented as a liver combination of the v. v. v.,, vn cannot be linearly independent.	
this is a contradiction, so our assumption and must be	ncorrect