Università degli Studi di Milano

Corso di Laurea Triennale in Fisica Esperienza di Millikan

Misura della carica dell'elettrone

Carlo Moroni, Enco Musa, Matteo Pasolini Turno: LU4

October 14, 2024

Abstract Millikan

1 Introduzione e modalità

2 Esposizione dei risultati

Alcuni valori delle gocce sono stati misurati o calcolati una sola volta e, ove possibile, lasciati invariati per tutta la misurazione della goccia stessa. Per la resistenza, misurata con l'ohmetro, è stato preso come sigma ± 1 sull'ultima cifra significativa (si stavano misurando i $M\Omega$, quindi si parla di ± 1 $k\Omega$), in quanto il valore era molto costante e poco soggetto a fluttuazioni.

Per la temperatura, ottenuta con l'apposita tabella di conversione da $M\Omega$ a °C, si è tenuta un'incertezza di ± 1 °C in quanto, era la minima quantità apprezzabile con la tabella, oltre al fatto che i dati della resistenza ottenuti, molto spesso, non combaciano perfettamente con il valore tabulato, quindi abbiamo approssimato al valore più prossimo.

Anche i valori del voltaggio fornito al sistema, non venivano cambiati durante la raccolta dati per una goccia, inoltre, l'incertezza tenuta per questa misura è stata scelta di $\pm 2~V$ in quanto il generatore di tensione fluttuava leggermente tra diversi valori e se ne è presa una media, tenendo conto dell'escursione massima.

Nella prima tabella di ogni goccia vengono anche riportati differenza di potenziale e campo elettrico. Essi sono di valore postivo in quanto, per ottenere il valore per il capmo elettrico negativo, bisogna semplicemente moltiplicare questi valori per -1.

2.1 Goccia 1

Resistenza $[M\Omega]$	2.058
Temperatura $[{}^{\circ}C]$	24
$\eta \left[\frac{Ns}{m^2} \right]$	1.843E - 05
$\eta_{eff} \left[\frac{Ns}{m^2} \right]$	1.473E - 05
$\Delta V [V]$	348
$E\left[\frac{N}{C}\right]$	46072

Table 1: Tabella dei valori costanti all'interno della misurazione

A 4 [a]	[<i>m</i>]	0 [0]
$\Delta t [s]$	$v\left[\frac{m}{s}\right]$	Q[C]
2.0	2.53E - 04	4.59E - 19
1.5	3.33E - 04	6.14E - 19
1.8	2.75E - 04	5.02E - 19
1.7	2.98E - 04	5.46E - 19
2.1	2.42E - 04	4.38E - 19

Table 3: Tabella dei tempi, velocità e cariche, misurati in presenza di campo elettrico positivo

$\Delta t [s]$	$v\left[\frac{m}{s}\right]$	r[m]
46.4	1.078E - 05	2.878E - 07
46.2	1.083E - 05	2.886E - 07
45.8	1.092E - 05	2.900E - 07
29.1	1.720E - 05	3.731E - 07
29.0	1.725E - 05	3.738E - 07

Table 2: Tabella dei tempi, velocità e raggi, misurati in assenza di campo elettrico

	$\Delta t [s]$	$v\left[\frac{m}{s}\right]$	Q[C]
	2.0	2.50E - 04	5.06E - 19
	2.1	2.40E - 04	4.87E - 19
İ	2.0	2.46E - 04	4.99E - 19
	2.2	2.29E - 04	4.66E - 19
	2.3	2.22E - 04	4.52E - 19

Table 4: Tabella dei tempi, velocità e cariche, misurati in presenza di campo elettrico negativo

2.2 Goccia 2

Resistenza $[M\Omega]$	2.060
Temperatura $[{}^{\circ}C]$	24
$\eta \left[\frac{Ns}{m^2} \right]$	1.843E - 05
$\eta_{eff} \left[\frac{Ns}{m^2} \right]$	1.494E - 05
$\Delta V [V]$	404
$E\left[\frac{N}{C}\right]$	53486

Table 5: Tabella dei valori costanti all'interno della misurazione

$\Delta t [s]$	$v\left[\frac{m}{s}\right]$	Q[C]
0.8	6.17E - 04	1.10E - 18
0.9	5.81E - 04	1.03E - 18
0.9	5.88E - 04	1.05E - 18
0.9	5.56E - 04	9.86E - 19
0.9	5.81E - 04	1.03E - 18

Table 7: Tabella dei tempi, velocità e cariche, misurati in presenza di campo elettrico positivo

2.3 Goccia 3

Resistenza $[M\Omega]$	2.058
Temperatura $[{}^{\circ}C]$	24
$\eta \left[\frac{Ns}{m^2} \right]$	1.843E - 05
$\eta_{eff} \left[\frac{Ns}{m^2} \right]$	1.499E - 05
$\Delta V [V]$	306
$E\left[\frac{N}{C}\right]$	40512

Table 9: Tabella dei valori costanti all'interno della misurazione

Le misurazioni di questa goccia in presenza di campo elettrico positivo non è stato possibile prenderle in quanto la goccia stessa, dopo aver concluso la misurazione per il campo elettrico negativo, è scomparsa dal piano di osservazione, si suppone che abbia interagito con altre gocce presenti.

2.4 Goccia 4

Resistenza $[M\Omega]$	2.023
Temperatura $[{}^{\circ}C]$	24
$\eta \left[\frac{Ns}{m^2} \right]$	1.843E - 05
$\eta_{eff} \left[\frac{Ns}{m^2} \right]$	1.589E - 05
$\Delta V [V]$	340
$E\left[\frac{N}{C}\right]$	45013

Table 12: Tabella dei valori costanti all'interno della misurazione

$\Delta t [s]$	$v\left[\frac{m}{s}\right]$	Q[C]
3.7	1.35E - 04	3.52E - 19
4.0	1.25E - 04	3.20E - 19
3.9	1.28E - 04	3.27E - 19
3.6	1.41E - 04	3.72E - 19
4.1	1.23E - 04	3.14E - 19

Table 14: Tabella dei tempi, velocità e cariche, misurati in presenza di campo elettrico positivo

$\Delta t [s]$	$v\left[\frac{m}{s}\right]$	r $[m]$
35.0	1.429E - 05	3.369E - 07
36.4	1.375E - 05	3.297E - 07
29.5	1.698E - 05	3.705E - 07
32.3	1.548E - 05	3.521E - 07
33.6	1.489E - 05	3.446E - 07

Table 6: Tabella dei tempi, velocità e raggi, misurati in assenza di campo elettrico

$\Delta t [s]$	$v\left[\frac{m}{s}\right]$	Q[C]
1.0	5.00E - 04	9.39E - 19
1.0	4.95E - 04	9.30E - 19
0.9	5.81E - 04	1.09E - 18
0.9	5.68E - 04	1.06E - 18
0.9	5.81E - 04	1.09E - 18

Table 8: Tabella dei tempi, velocità e cariche, misurati in presenza di campo elettrico negativo

$\Delta t [s]$	$v\left[\frac{m}{s}\right]$	r $[m]$
37.1	1.348E - 05	3.262E - 07
33.5	1.493E - 05	3.451E - 07
27.5	1.817E - 05	3.845E - 07
37.5	1.334E - 05	3.243E - 07
28.0	1.789E - 05	3.812E - 07

Table 10: Tabella dei tempi, velocità e raggi, misurati in assenza di campo elettrico

$\Delta t [s]$	$v\left[\frac{m}{s}\right]$	Q[C]
5.1	9.84E - 05	2.79E - 19
4.6	1.09E - 04	3.06E - 19
4.6	1.08E - 04	3.02E - 19
4.5	1.12E - 04	3.11E - 19
3.6	1.39E - 04	3.78E - 19

Table 11: Tabella dei tempi, velocità e cariche, misurati in presenza di campo elettrico negativo

$\Delta t [s]$	$v\left[\frac{m}{s}\right]$	r [m]
17.0	2.948E - 05	4.999E - 07
16.5	3.023E - 05	5.067E - 07
18.4	2.720E - 05	4.787E - 07
16.2	3.092E - 05	5.129E - 07
15.1	3.311E - 05	5.321E - 07

Table 13: Tabella dei tempi, velocità e raggi, misurati in assenza di campo elettrico

$\Delta t [s]$	$v\left[\frac{m}{s}\right]$	Q[C]
7.3	6.84E - 05	3.32E - 19
7.3	6.89E - 05	3.33E - 19
7.1	7.06E - 05	3.39E - 19
7.2	6.96E - 05	3.36E - 19
7.2	6.98E - 05	3.36E - 19

Table 15: Tabella dei tempi, velocità e cariche, misurati in presenza di campo elettrico negativo

2.5 Goccia 5

Resistenza $[M\Omega]$	2.024
Temperatura $[{}^{\circ}C]$	24
$\eta \left[\frac{Ns}{m^2} \right]$	1.843E - 05
$\eta_{eff} \left[rac{Ns}{m^2} ight]$	1.624E - 05
$\Delta V [V]$	410
$E\left[\frac{N}{C}\right]$	54281

Table 16: Tabella dei valori costanti all'interno della misurazione

$\Delta t [s]$	$v\left[\frac{m}{s}\right]$	Q[C]
1.2	4.17E - 04	1.27E - 18
1.8	2.86E - 04	8.28E - 19
1.7	2.91E - 04	8.45E - 19
1.6	3.13E - 04	9.19E - 19
1.7	3.03E - 04	8.87E - 19

Table 18: Tabella dei tempi, velocità e cariche, misurati in presenza di campo elettrico positivo

$\Delta t [s]$ r [m]12.6 3.978E - 055.868E - 0711.9 4.205E - 056.044E - 0712.2 4.085E - 055.951E - 0711.9 4.216E - 056.052E - 076.175E - 0711.4 4.378E - 05

Table 17: Tabella dei tempi, velocità e raggi, misurati in assenza di campo elettrico

$\Delta t [s]$	$v\left[\frac{m}{s}\right]$	Q[C]
2.1	2.44E - 04	9.69E - 19
2.4	2.07E - 04	8.43E - 19
2.1	2.40E - 04	9.57E - 19
2.7	1.89E - 04	7.82E - 19
2.4	2.08E - 04	8.49E - 19

Table 19: Tabella dei tempi, velocità e cariche, misurati in presenza di campo elettrico negativo

2.6 Goccia 6

Resistenza $[M\Omega]$	2.028
Temperatura $[{}^{\circ}C]$	24
$\eta \left[\frac{Ns}{m^2} \right]$	1.843E - 05
$\eta_{eff} \left[rac{Ns}{m^2} ight]$	1.676E - 05
$\Delta V [V]$	380
$E\left[\frac{N}{C}\right]$	50309

Table 20: Tabella dei valori costanti all'interno della misurazione

$\Delta t [s]$	$v\left[\frac{m}{s}\right]$	Q[C]
1.4	3.50E - 04	1.41E - 18
1.5	3.38E - 04	1.35E - 18
1.7	2.98E - 04	1.14E - 18
1.7	2.98E - 04	1.14E - 18
1.5	3.42E - 04	1.37E - 18

Table 22: Tabella dei tempi, velocità e cariche, misurati in presenza di campo elettrico positivo

$\Delta t [s]$	$v\left[\frac{m}{s}\right]$	r [m]
6.8	7.386E - 05	8.134E - 07
7.2	6.983E - 05	7.899E - 07
6.5	7.692E - 05	8.309E - 07
6.3	7.937E - 05	8.446E - 07
7.2	6.983E - 05	7.899E - 07

Table 21: Tabella dei tempi, velocità e raggi, misurati in assenza di campo elettrico

$\Delta t [s]$	$v\left[\frac{m}{s}\right]$	Q[C]
3.3	1.50E - 04	1.14E - 18
3.3	1.53E - 04	1.16E - 18
2.9	1.74E - 04	1.27E - 18
3.4	1.49E - 04	1.14E - 18
2.7	1.87E - 04	1.33E - 18

Table 23: Tabella dei tempi, velocità e cariche, misurati in presenza di campo elettrico negativo

2.7 Goccia 7

Resistenza $[M\Omega]$	2.028
Temperatura $[{}^{\circ}C]$	24
$\eta \left[\frac{Ns}{m^2} \right]$	1.843E - 05
$\eta_{eff} \left[\frac{Ns}{m^2} \right]$	1.672E - 05
$\Delta V [V]$	380
$E\left[\frac{N}{C}\right]$	50309

Table 24: Tabella dei valori costanti all'interno della misurazione

$\Delta t [s]$	$v\left[\frac{m}{s}\right]$	Q[C]
1.3	3.85E - 04	1.56E - 18
1.6	3.07E - 04	1.17E - 18
1.6	3.23E - 04	1.25E - 18
1.6	3.13E - 04	1.20E - 18
1.5	3.38E - 04	1.33E - 18

Table 26: Tabella dei tempi, velocità e cariche, misurati in presenza di campo elettrico positivo

$\Delta t [s]$	$v\left[\frac{m}{s}\right]$	r[m]
7.6	6.579E - 05	7.655E - 07
7.2	6.944E - 05	7.876E - 07
7.2	6.954E - 05	7.881E - 07
6.6	7.610E - 05	8.263E - 07
7.0	7.184E - 05	8.017E - 07

Table 25: Tabella dei tempi, velocità e raggi, misurati in assenza di campo elettrico

$\Delta t [s]$	$v\left[\frac{m}{s}\right]$	Q[C]
2.7	1.87E - 04	1.28E - 18
2.9	1.74E - 04	1.22E - 18
2.5	2.02E - 04	1.35E - 18
2.8	1.79E - 04	1.24E - 18
2.5	2.04E - 04	1.37E - 18

Table 27: Tabella dei tempi, velocità e cariche, misurati in presenza di campo elettrico negativo

2.8 Goccia 8

Resistenza $[M\Omega]$	2.029
Temperatura $[{}^{\circ}C]$	24
$\eta \left[\frac{Ns}{m^2} \right]$	1.843E - 05
$\eta_{eff} \left[\frac{Ns}{m^2} \right]$	1.633E - 05
$\Delta V [V]$	410
$E\left[\frac{N}{C}\right]$	54281

Table 28: Tabella dei valori costanti all'interno della misurazione

$\Delta t [s]$	$v\left[\frac{m}{s}\right]$	Q[C]
0.9	4.95E - 04	1.60E - 18
0.8	4.95E - 04	1.60E - 18
0.8	4.95E - 04	1.60E - 18
0.9	4.95E - 04	1.60E - 18
0.8	4.95E - 04	1.60E - 18

Table 30: Tabella dei tempi, velocità e cariche, misurati in presenza di campo elettrico positivo

$\Delta t [s]$ r [m]11.44.390E - 056.183E - 0711.7 4.292E - 056.110E - 0710.7 4.686E - 056.401E - 079.55.258E - 056.803E - 0712.0 4.156E - 056.006E - 07

Table 29: Tabella dei tempi, velocità e raggi, misurati in assenza di campo elettrico

$\Delta t [s]$	$v\left[\frac{m}{s}\right]$	Q[C]
1.0	4.95E - 04	1.93E - 18
1.0	4.95E - 04	1.93E - 18
1.0	4.95E - 04	1.93E - 18
1.0	4.95E - 04	1.93E - 18
1.0	4.95E - 04	1.93E - 18

Table 31: Tabella dei tempi, velocità e cariche, misurati in presenza di campo elettrico negativo

2.9 Goccia 9

Resistenza $[M\Omega]$	2.025
Temperatura $[{}^{\circ}C]$	24
$\eta \left[\frac{Ns}{m^2} \right]$	1.843E - 05
$\eta_{eff} \left[rac{Ns}{m^2} ight]$	1.609E - 05
$\Delta V [V]$	306
$E\left[\frac{N}{C}\right]$	40512

Table 32: Tabella dei valori costanti all'interno della misurazione

$\Delta t [s]$	$v\left[\frac{m}{s}\right]$	Q[C]
4.0	1.24E - 04	3.64E - 19
2.5	2.04E - 04	6.98E - 19
3.0	1.67E - 04	5.43E - 19
3.3	1.52E - 04	4.80E - 19
2.6	1.90E - 04	6.40E - 19

Table 34: Tabella dei tempi, velocità e cariche, misurati in presenza di campo elettrico positivo

$\Delta t [s]$	$v\left[\frac{m}{s}\right]$	r [m]
16.8	2.971E - 05	5.020E - 07
12.9	3.891E - 05	5.799E - 07
13.9	3.597E - 05	5.561E - 07
13.0	3.849E - 05	5.766E - 07
13.3	3.754E - 05	5.689E - 07

Table 33: Tabella dei tempi, velocità e raggi, misurati in assenza di campo elettrico

$\Delta t [s]$	$v\left[\frac{m}{s}\right]$	Q[C]
8.8	5.66E - 05	3.85E - 19
3.8	1.31E - 04	6.96E - 19
5.8	8.64E - 05	5.09E - 19
5.3	9.38E - 05	5.40E - 19
3.9	1.28E - 04	6.83E - 19

Table 35: Tabella dei tempi, velocità e cariche, misurati in presenza di campo elettrico negativo

2.10 Goccia 10

Resistenza $[M\Omega]$	2.028
Temperatura $[{}^{\circ}C]$	24
$\eta \left[\frac{Ns}{m^2} \right]$	1.843E - 05
$\eta_{eff} \left[\frac{Ns}{m^2} \right]$	1.661E - 05
$\Delta V [V]$	410
$E\left[\frac{N}{C}\right]$	54281

Table 36: Tabella dei valori costanti all'interno della misurazione

$\Delta t [s]$	$v\left[\frac{m}{s}\right]$	Q[C]
2.1	2.36E - 04	7.42E - 19
1.9	2.70E - 04	8.88E - 19
2.1	2.42E - 04	7.66E - 19
1.7	2.92E - 04	9.82E - 19
2.1	2.40E - 04	7.61E - 19

Table 38: Tabella dei tempi, velocità e cariche, misurati in presenza di campo elettrico positivo

$\Delta t [s]$	$v\left[\frac{m}{s}\right]$	r $[m]$
8.7	5.760E - 05	7.139E - 07
8.5	5.896E - 05	7.227E - 07
7.7	6.468E - 05	7.587E - 07
7.5	6.693E - 05	7.725E - 07
8.5	5.910E - 05	7.236E - 07

Table 37: Tabella dei tempi, velocità e raggi, misurati in assenza di campo elettrico

$\Delta t [s]$	$v\left[\frac{m}{s}\right]$	Q[C]
4.1	1.23E - 04	7.84E - 19
3.9	1.29E - 04	8.11E - 19
3.9	1.27E - 04	8.03E - 19
3.8	1.32E - 04	8.21E - 19
3.9	1.28E - 04	8.07E - 19

Table 39: Tabella dei tempi, velocità e cariche, misurati in presenza di campo elettrico negativo

3 Analisi dei dati

4 Elaborazione dei dati

Durante l'esperienza, si raccoglievano i dati di tempo, resistenza interna al sistema e differenza di potenziale generata. Tutti i dati ottenuti derivano da queste variabili e diverse costanti già conosciute a priori.

Uno dei primi dati ricavati è stata la velocità, che si ottiene dalla formula:

$$v = \frac{\Delta z}{\Delta t} \tag{1}$$

Dove Δz è una costante $(0.5 \cdot 10^{-3} \ m)$ ed è la distanza tra due linee spesse del reticolo visualizzato col microscopio, mentre Δt è l'intervallo di tempo che la goccia ha impiegato per percorrere un Δz .

Per ottenere la relativa incertezza, è bastato compiere la derivata parziale della velocità lungo l'intervallo di tempo $\left(\frac{\partial v}{\partial \Delta t} = -\frac{\Delta z}{(\Delta t)^2}\right)$ per poi utilizzarla¹ nella propagazione degli errori:

$$\sigma_v = v \sqrt{\left(-\frac{\sigma_{\Delta t}}{\Delta t}\right)^2} \tag{2}$$

Dove $\sigma_{\Delta t}$ è l'incertezza sui tempi, stimata di $\pm 0.1~s$, dato che era dovuta ai tempi di reazione per comunicare la partenza della goccia e la ricezione da parte dell'altra persona e la conseguente presa del tempo.

Grazie alla resistenza ed ai valori tabulati, è stato possibile ottenere facilmente la temperatura, la cui σ è stata presa di ± 1 °C in quanto la tabella lasciava apprezzare quelle variazioni di temperatura. Si noti che i valori della resistenza non sono perfetti con quelli della tabella, ma si è deciso di approssimare alla temperatura più prossima, che, con l'incertezza in esame, è una buona approssimazione.

Dalla temperatura è stato ricavato il valore di η , coefficiente di viscosità dell'aria, per mezzo della formula:

$$\eta = [1.800 + (T - 15) \cdot 4.765 \cdot 10^{-3}] \cdot 10^{-5}$$
(3)

Dove l'unica variabile è T della temperatura e tutte le altre sono costanti.

Ne è risultato semplice calcolarne la σ in quanto vi è una sola dipendeza dal valore della temperatura e, facendo la propagazoine degli errori, è possibile ottenere la seguente:

$$\sigma_n = 4.765 \cdot \sigma_T \cdot 10^{-8} \tag{4}$$

Dove σ_T è l'incertezza della temperatura.

Dalla velocità e dal coefficiente di viscosità, è stato possibile calcolare il raggio della goccia per mezzo della relazione:

$$r = \sqrt{\left(\frac{b}{2p}\right) + \frac{9\eta v_o}{2g(\rho_o - \rho_a)}} - \frac{b}{2p} \tag{5}$$

Dove b è la costante di correzione di viscosità, p la pressione atmosferica, g l'accelerazione di gravità a Milano, ρ_o la densità dell'olio, ρ_a la densità dell'aria, mentre v e η sono i due valori ottenuti con le relazioni (1) e (3).

L'incertezza sui raggi è stata calcolata derivando parzialmente lungo le uniche due variabili all'interno dell'equazione che sono v_o e η . Le due derivate sono state ricondotte alla formula per il raggio al fine di semplificare la notazione.

$$\sigma_r = \sqrt{\left(\frac{1}{2} \frac{9v/[2g(\rho_o - \rho_a)]}{r + \frac{b}{2p}} \sigma_\eta\right)^2 + \left(\frac{1}{2} \frac{9\eta/[2g(\rho_o - \rho_a)]}{r + \frac{b}{2p}} \sigma_v\right)^2}$$
(6)

Dove σ_{η} è l'incertezza del coefficiente di viscosità ricavato con la relazione (4) e σ_v è l'incertezza della velocità ricavato con la formula (2).

Siccome la goccia in esame era una sola e non può avere più raggi e più velocità limite, sono stati, pertanto, presi i valori medi tra i raggi e tra le velocità. Pur avendo a disposizione sia le incertezze per le velocità che quelle per i raggi, si è deciso di non compiere una media pesata in quanto tempi² maggiori conducono a incertezze minori e, di conseguenza, pesi maggiori, facendo quindi propendere la media pesata verso questi valori.

Siccome non è stato possibile stabilire se tempi maggiori siano necessariamente valori migliori, si è deciso di condurre una media semplice tra i valori delle velocità e dei raggi, prendendo come incertezza una deviazione standard

¹Nella formula della σ_v è stata usata una formula leggermente diversa, ma equivalente, in quanto si è preferito ricondursi alla velocità, anziché utilizzare il Δz

²Si sta parlando di tempi in quanto sia le velocità che i raggi dipendono da essi, o meglio, le velocità dipendono direttamente dai tempi e i raggi dipendono direttamente dalle velocità quindi, per transitività, anch'essi dipendono dai tempi

sul campione e dividendo per la radice del numero di elementi.

Per ottenere i valori dei raggi per ogni intervallo di tempo, in realtà, è stato utilizzato anche un valore efficace per il coefficiente di viscosità dell'aria η_{eff} calcolato con la seguente formula:

$$\eta_{eff} = \frac{\eta}{1 + \frac{b}{pr}} \tag{7}$$

Dove η è il coefficiente di viscosità dell'aria, p la pressione atmosferica, b il fattore di correzione di viscosità e r è il raggio medio. Per ricavare i valori dei singoli raggi non si poteva conoscere a priori il valore di η_{eff} , pertanto ci si è dovuti ricondurre all'utilizzo di η , ma, come visto nella formula (5), anche dei valori di b e di b.

È stato anche interessante calcolare la variazione percentule di η_{eff} rispetto a η , per comprendere quanto fosse il miglioramento grazie ad un valore raffinato per mezzo della formuala:

$$\frac{\Delta\eta}{\eta} = \frac{(\eta - \eta_{eff})}{\eta} \tag{8}$$

Da questo valore ne è stata semplicemente ricavata la percentuale moltiplicando per un fattore 100.

I valori dei moduli dei campi elettrici sono stati calcolati con la relazione:

$$E = \frac{\Delta V}{d} \tag{9}$$

Dove ΔV è la differenza di potenziale tra i due elettrodi e d è la distanza tra essi.

Siccome ambedue i valori presentano un'incertezza, per calcolare quella del campo è bastato derivare lungo entrambe le variabili e sommarle in quadratura. Le due derivate sono state ricondotte a formule in cui compariva anche il valore E.

$$\sigma_E = E \cdot \sqrt{\left(\frac{\sigma_{\Delta V}}{\Delta V}\right)^2 + \left(-\frac{\sigma_d}{d}\right)^2} \tag{10}$$

Dove $\sigma_{\Delta V}$ è l'incertezza sulla differenza di potenziale e σ_d è l'incertezza sulla distanza tra i due elettrodi.

La distanza tra i due elettrodi d è stata semplicemente ottenuta facendo la media tra i valori misurati con un calibro del separatore dei due elettrodi. Siccome tutte le misure avevano la stessa incertezza, è stato semplice calcolarne la media e come errore è stato preso quello del calibro $(\pm 0.01 \ mm)$.

La quantità di cariche Q presenti su ogni goccia è stata ricavata con la seguente formula che differisce a seconda che la goccia stesse scendendo o risalendo il reticolo.

$$Q_{\downarrow} = -\frac{4}{3}\pi r^3 (\rho_o - \rho_a) \frac{g}{E} \left(1 - \frac{v}{v_o} \right) \tag{11}$$

$$Q_{\uparrow} = -\frac{4}{3}\pi r^3 (\rho_o - \rho_a) \frac{g}{E} \left(1 + \frac{|v|}{v_o} \right) \tag{12}$$

Dove tutte le costanti sono come sopra, ma si sta considerando il valore medio r per i raggi, il valore medio v_o per le velocità, mentre i valori v sono le velocità calcolate sempre con l'equazione (1), ma i tempi si riferiscono a quanto tempo la carica ha impiegato a discendere o risalire il reticolo.

L'incertezza per le varie Q è stata calcolata nel seguente modo³:

$$\sigma_{Q_{\downarrow}} = \sqrt{\left(\frac{3Q_{\downarrow}}{r}\sigma_{r}\right)^{2} + \left(-\frac{Q_{\downarrow}}{E}\sigma_{E}\right)^{2} + \left(\frac{Q_{\downarrow}}{1 - v/v_{o}}\left(-\frac{1}{v_{o}}\right)\sigma_{v}\right)^{2} + \left(\frac{Q_{\downarrow}}{1 - v/v_{o}}\left(\frac{v}{v_{o}^{2}}\right)\sigma_{v_{o}}\right)^{2}}$$

$$(13)$$

$$\sigma_{Q_{\uparrow}} = \sqrt{\left(\frac{3Q_{\uparrow}}{r}\sigma_{r}\right)^{2} + \left(-\frac{Q_{\uparrow}}{E}\sigma_{E}\right)^{2} + \left(\frac{Q_{\uparrow}}{1 + |v|/v_{o}}\left(+\frac{1}{v_{o}} \cdot sgn(v)\right)\sigma_{v}\right)^{2} + \left(\frac{Q_{\uparrow}}{1 + |v|/v_{o}}\left(-\frac{|v|}{v_{o}^{2}}\right)\sigma_{v_{o}}\right)^{2}}$$
(14)

Dove le varie σ sono le relative incertezze alle variabili a pedice.

Per calcolare il valore effettivo della carica dell'elettrone si ha fatto uso di un programma scritto nel linguaggio C++ e della libreria ROOT sviluppata dal CERN per rappresentare il grafico. Si può trovare l'intero codice al seguente indirizzo

 $^{^3{\}rm Sono}$ state direttamente ricondotte le derivate alla formula che includesse la Q

Per ricavare il grafico, si è dovuto calcolare lo scarto quadratico medio per ogni carica di prova, che sono state prese nell'invervallo $[1.4 \cdot 10^{-19}; 1.8 \cdot 10^{-19}]$, ma, prima di calcolarlo, si è dovuto calcolare il rapporto intero tra la carica misurata e la carica di prova in esame secondo la relazione:

$$k_i(q_\alpha) = \left[\frac{Q_i}{q_\alpha + 0.5}\right] \tag{15}$$

Dove l'operatore $[\cdot]$ restituisce la parte intera del valore, Q_i sono le cariche calcolate con le relazioni (11) e (12), mentre le q_{α} sono le cariche di prova.

Successivamente è stato calcolato lo scarto quadratico medio S(q) per ogni carica di prova con la formula:

$$S(q) = \sum_{i=1}^{N} \left(\frac{Q_i}{k_i(q)} - q \right)^2 \tag{16}$$

Dove q è il valore della carica di prova, Q_i rappresenta tutte le cariche ottenute dall'esperienza e k_i il valore calcolato su una determinata q della relativa Q_i .

Per ottenere il valore della carica dell'elettrone con questo esperimento, si è dovuta derivare rispetto a q la relazione (16), ottenendo così la seguente:

$$q_e = \frac{1}{N} \sum_{i=1}^{N} \frac{Q_i}{k_i}$$
 (17)

Dove le k_i sono state calcolate sempre allo stesso modo, ma il valore della carica di prova è stato ottenuto graficamente cercando il minimo tra tutte le S(q).

Il valore dell'incertezza statistica sulla carica dell'elettrone è stato calcolato nel seguente modo:

$$\sigma_{q_e} = \sqrt{\frac{S(q_e)}{N(N-1)}} \tag{18}$$

Vi è tuttavia anche un errore sistematico che è stato ottenuto prendendo il 2% della carica. Questo valore e quello ottenuto dalla formula (??) sono stati combinati in quadratura secondo la formula:

$$\sigma_{tot_q} = \sqrt{\sigma_{2\%}^2 + \sigma_{q_e}^2} \tag{19}$$

- 5 Confronto con valore atteso
- 6 Conclusione
- 7 Grafici, tabelle e immagini