Primeira prova de Geometria Riemanniana

10/5/2021

Em toda a prova, $M = (M^n, g)$ denotara uma variedade Riemanniana conexa, e $K = K_M$ sua curvatura seccional. Justifique devidamente todas as afirmações que faça, isto é, prove.

- 1) Seja $p \in M$ e B uma bola normal centrada em p. Prove que existe uma métrica Riemanniana completa em B conforme à métrica original (isto é, existe uma função diferenciável $\rho: B \to \mathbb{R}_{>0}$ tal que $\rho g|_B$ é uma métrica completa em B).
- 2) Sejam $M=I\times\mathbb{S}^n$, onde $I\subset\mathbb{R}$, e $\varphi:I\to\mathbb{R}_{>0}$ diferenciável. Seja g a métrica de M definida por $g=dr^2+\varphi^2h$, onde h é a métrica canônica de \mathbb{S}^n . Achar a condição necessária e suficiente para que (M,g) tenha curvatura escalar nula.
- 3) Seja $M^n \subset \mathbb{R}^{n+1}$ uma hipersuperfície Euclideana. Prove que:
 - i) K > 0 em $p \in M$ se e só se o operador de forma de M é definido (> 0 ou < 0) em p.
 - ii) Se M é compacta um tal ponto sempre existe (Sug.: Use a função norma de \mathbb{R}^{n+1} restrita a M).
 - iii) Se $n \geq 3$ não existe nenhum ponto em M com K < 0.
- 4) Suponha que para todo $p \in M$ existe uma isometria T de M tal que T(p) = p e $T_{*p} = -Id$. Prove que M é um espaço homogêneo, isto é, as isometrias de M agem transitivamente em M.
- 5) Seja f uma isometria de M. Mostre que cada componente conexa do conjunto

$$F := \{ p \in M : f(p) = p \}$$

de pontos fixos de f é uma subvariedade mergulhada de M cuja segunda forma fundamental se anula.

6) Sejam N e N' subvariedades de uma variedade Riemanniana completa M. Se N é compacta e N' é fechada, prove que existe uma geodésica minimizante de M unindo N e N'. Encontre contraexemplo se M não for completa. Encontre contraexemplo se N for também apenas fechada.