CS 3313 Foundations of Computing:

Properties of Regular Languages

http://gw-cs3313.github.io

Properties of Regular Languages

- Closure properties
 - Form new languages/sets by performing operations on regular languages
 - Is the new language regular ?
- Decision properties
 - Ask questions about a language is there an algorithm that answers the question
 - Is the language empty? Is it finite?

Review: Closure Properties

- Regular languages are closed under:
 - Union, concatenation, star closure, complement, intersection, reversal, difference, homomorphisms
- If two languages are regular then resulting language from the operations above is also regular
 - There is a DFA (Reg. Expr.) that accepts the language
- Constructing product DFA.....why ?
 - Provides an algorithm to solve the new problem
- Questions ?

Review: Closure Properties – Product DFA

- If L₁ and L₂ are regular then there are DFAs M₁ and M₂ that accept the languages
 - each "problem" can be solved by the DFAs
- Constructing product DFA.....why?
 - Provides an algorithm to solve the new problem
- What is a product DFA = we simulate both DFAs simultaneously in a new DFA
 - The states are the cartesian product of the states of the two machines
 - The transition function simulates both transition functions

Definition: Product DFA

- "compose" two DFAs using cartesian product of their states
- Let M₁ and M₂ be two DFAs with states Q and R
 - $M_1 = (Q, \Sigma, \delta_1, q_0, F_1)$ and $M_1 = (R, \Sigma, \delta_2, r_0, F_2)$
- Product DFA M_p:
- Product DFA has set of states Q X R
 - i.e., pairs [q,r] with q in Q and r in R
- Start state = $[q_0, r_0]$ (the start states of the two DFA's).
- Transitions: $\delta([q,r], a) = [\delta_1(q,a), \delta_2(r,a)]$
 - δ_1 , δ_2 are the transition functions for the DFA's of M_1 , M_2
 - That is, we simulate the two DFA's in the two state components of the product DFA.
- Note: we have not yet defined the final states of the product DFA

Example: Product DFA

Today's Lab Topics

- Proof of a decision property Subset property
 - Is L₁ a subset of L₂
- Graph algorithms –because a lot of our proofs/algos about decision properties used graph theory (and graph algorithms)...
 - Quick look at a simple algorithm

Decision Properties of Regular Languages

- L is a regular language iff there is a DFA M such that L(M)=L
- Theorem: Testing emptiness of regular languages is decidable
 - Is $L(M) = \emptyset$
- Theorem: Testing equivalence of regular languages is decidable
 - Is $L(M_1) = L(M_2)$
- Theorem: Testing membership of regular language is decidable
 - Is $w \in L(M_1)$
- Theorem: Testing finiteness of regular language is decidable
 - Is L(M₁) finite?
- How do we prove a property is decidable = provide an algorithm

Decision Property: Containment

- Given regular languages L_1 and L_2 , is $L_1 \subseteq L_2$?
- Theorem: Containment property is decidable.
- Proof: will illustrate how we can combine several theorems and properties
- If L_1 and L_2 are regular then we have DFAs M_1 and M_2 such that $L_1 = L(M_1)$ and $L_2 = L(M_2)$
- First question: from definition of subset property if A ⊆ B then:
- Next, if A is not a subset of B then:
- In terms of $L(M_1)$ and $L(M_2)$:

Decision Property: Containment

- Given regular languages L_1 and L_2 , is $L_1 \subseteq L_2$?
- Theorem: Containment property is decidable.
- Proof: will illustrate how we can combine several theorems and properties
- If L_1 and L_2 are regular then we have DFAs M_1 and M_2 such that $L_1 = L(M_1)$ and $L_2 = L(M_2)$
- First question if $A \subseteq B$ then: for every $w \in A$, we have $w \in B$
- Next, if A is not a subset of B then: there is at least one w such that $w \in A$ but $w \in A$ but
- In terms of L(M₁) and L(M₂): there is at least one input w such that w is accepted by M₁ and w is not accepted by M₂

Decision Property: Containment

- Observe: "A is subset of B" is equivalent to NOT (A is not a subset of B)
 - Therefore can we design an algorithm that can check "(A is not a subset of B)" if algorithm returns NO then A is a subset of B
- Can you design a DFA M such that w is accepted by M iff w is accepted by M₁ and w is not accepted by M₂?
 - This is same as $L(M) = L(M_1) L(M_2)$

- Question: What is the implication if L(M) is empty?
- Final question: Is there an algorithm to test if L(M) is empty for a DFA M?

Example: Product DFA for Subset Checking

$$L_2 = L(M_2)$$

 L_1 is not a subset of L_2 iff there is a w such that w accepted by L_1 and not accepted by L_2 So what are the final states of M_p ?

Proof: Containment Property in Regular Languages is decidable

- Given regular languages L_1 and L_2 , is $L_1 \subseteq L_2$?
- Theorem: Containment property is decidable.
- Proof:
- Construct product DFA M_p
- How do you define the final states [q, r] of the product so its language is empty iff $L_1 \subseteq L_2$?
 - i.e., there is no string w, such that $w \in L_1$ and $w \notin L_2$
 - [q,r] is final state if q is final and r is not
- Algorithm: Construct this product DFA and call the emptiness testing algorithm

if product DFA is empty then L₁ is a subset of L₂

Answer: Product DFA for Subset Checking

$$L_2 = L(M_2)$$

 L_1 is subset of L_2 iff no string w such that w accepted by L_1 and not accepted by L_2

Questions?

Graph Algorithms

- Very important and useful body of knowledge (i.e., algorithms/solutions) in Computer Science
 - Graphs are everywhere: network is a graph, social media analytics, even code optimization performed by compilers
 - Lot of useful problems can be formulated as a graph problem
 - Ex: How does a compiler assign variables to registers with the goal of maximizing performance (by minimizing memory accesses)....The register allocation problem = graph coloring problem!
 - Ex: How do I route a message from one network node (computer/ IP address) to another = shortest path in a graph
 - Ex: How do we find all twitter users who follow (or are followed by) Ed
 Sheeran = connected components in a graph

Graph Algorithms – Path finding algorithms

- Path finding algorithms
 - We used these to construct solutions to decision problems about regular languages
- Given graph G=(V,E), find a path from p to q
- Decision version: Is there a path from p to q
- Other questions: is there a cycle in the graph?
- Today: a simple solution to the graph path finding problem
 - You will cover more efficient algorithms in the algorithms course

How to represent a graph -- Data Structures

Adjacency matrix for path: generalize to

$$A[i,j] = 1$$
 if there is a path from v_i to v_j
 $A[i,j] = 0$ if no path

Recall: If there is a path then there is a path of length $\leq = (n-1)$

	v_1	v_2	v_3	v_4	v_5
v_1	0	1	0	1	1
v_2	0	0	0	1	0
v_3	0	0	0	0	1
v_4	0	0	0	0	0
v_5	0	1	0	0	0

How to represent a graph -- Data Structures

- How can we compute paths of length 2?
- If there is a path of length 2 from v_i to v_j then there must be an edge from v_i to v_k and an edge from v_k to v_j for some node v_k
- => in initial adjacency matrix: $A^{1}[i,k] = 1$ and $A^{1}[k,j] = 1$ for some $1 \le k \le n$
- To compute this, check for all k this is multiplication of row i with column j
- To compute paths of length = 2 for all pairs of nodes, this is matrix multiplication: compute $A^2 = A^1 \times A^1$
- What about paths of length <=2 (length 1 or length 2)

$$A^{2'} = A^1 + (A^1 \times A^1)$$

What about paths of length <= k, for any k < n</p>

$$A^{k}=A^{k-1}\times A^{1} \otimes A^{k'}=A^{k-1'}+A^{k}$$

Algorithm: for k=2 to n

at each iteration, multiply A^{k-1} with A¹ and add to A^{k-1'}

time =
$$n(O(n^3)) = O(n^4)$$

Paths of length = 2

	v_1	v_2	v_3	v_4	v_5
v_1	0	1	0	1	1
v_2	0	0	0	1	0
v_3	0	0	0	0	1
v_4	0	0	0	0	0
v_5	0	1	0	0	0

	v_1	v_2	v_3	v_4	v_5
v_1	0	1	0	1	0
v_2	0	0	0	0	0
v_3	0	1	0	0	0
v_4	0	0	0	0	0
v_5	0	0	0	1	0

$$A[3,2]=A[3,k]*A[k,2]$$

Paths of length <= 2

	v_1	v_2	v_3	v_4	v_5
v_1	0	1	0	1	0
v_2	0	0	0	0	0
v_3	0	1	0	0	0
v_4	0	0	0	0	0
v_5	0	0	0	1	0

	v_1	v_2	v_3	v_4	v_5
v_1	0	1	0	1	1
v_2	0	0	0	1	0
v_3	0	0	0	0	1
v_4	0	0	0	0	0
v_5	0	1	0	0	0

	v_1	v_2	v_3	v_4	v_5
v_1	0	1	0	1	1
v_2	0	0	0	1	0
v_3	0	1	0	0	1
v_4	0	0	0	0	0
v_5	0	1	0	1	0

$$G=(V,E)$$

Adjacency matrix A¹[i,j]

	v_1	v_2	v_3	v_4	v_5
v_1	0	1	1	0	0
v_2	0	0	0	1	1
v_3	0	0	0	0	1
v_4	0	0	1	0	0
v_5	0	0	0	1	0

$$G=(V,E)$$

Adjacency matrix A²[i,j] for paths length 2

	v_1	v_2	v_3	v_4	v_5
v_1	0	0	0	1	2
v_2	0	0	1	1	0
v_3	0	0	0	1	0
v_4	0	0	0	0	1
v_5	0	0	1	0	0

Adjacency matrix A^2 [i,j] for paths length ≤ 2

	v_1	v_2	v_3	v_4	v_5
v_1	0	1	1	1	2
v_2	0	0	1	2	1
v_3	0	0	0	1	1
v_4	0	0	1	0	1
v_5	0	0	1	1	0

$$G=(V,E)$$

Adjacency matrix A³'[i,j] for paths length <= 3

	v_1	v_2	v_3	v_4	v_5
v_1	0	1	2	3	2
v_2	0	0	2	2	2
v_3	0	0	1	1	1
v_4	0	0	1	1	1
v_5	0	0	1	1	1

$$G=(V,E)$$

Adjacency matrix $A^{4'}[i,j]$ for paths length ≤ 4

	v_1	v_2	v_3	v_4	v_5
v_1	0	1	4	3	3
v_2	0	0	2	3	3
v_3	0	0	1	1	2
v_4	0	0	2	1	1
v_5	0	0	1	2	1

Question 1: Is there a path from v_1 to v_5 ?

Question 2: Is there a path from v_3 to v_2 ?

Question 3: Is there a cycle in the graph?

Graph Algorithms....

- So is this how graph algorithms are implemented...NO!
- Data structures options: represent graph as linked list
- Much faster algorithms exist G=(V,E) with n vertices
 - Djikstra's algorithm shortest path between a pair of vertices: O(n2)
 - O((E+V) log V) can be quicker if |E| is much less than O(n2)
 - All pairs shortest path Floyd Warshall is O(n³)
 - Very similar to the algorithm for generating Reg. Expr. from a DFA

Putting it all together: Closure Properties and Decision Properties

Is the following problem decidable:

"If L₁ and L₂ are regular, then is L₁ intersection L₂ empty?"

- Proof: (we use multiple results)
 - From the definition of regular languages, If L_1 and L_2 are regular then they are accepted by DFAs M_1 and M_2
 - From closure properties, intersection is regular.
 - To design algorithm, for any two DFAs M_1 and M_2 we construct the product DFA $(M_1 \times M_2)$ and set its final states = $(F_1 \times F_2)$
 - Since checking emptiness of a regular language is decidable, we check for emptiness of $(M_1 \times M_2)$
 - Input to algorithm is the product DFA
 - Intersection is empty iff product DFA is empty.