ioosonya, oegi

 $\frac{-R^{6}-(CH_{2})_{1}NR^{5}C(NR^{5})N(R^{3})_{2}, \quad \text{including} \quad -O-(CH_{2})_{1}NR^{5}C(NR^{5})N(R^{3})_{2}, \quad -NH-(CH_{2})_{1}NR^{5}C(NR^{5})N(R^{3})_{2}, \quad \text{and} \quad -(CH_{2})_{2}NR^{5}C(NR^{5})N(R^{3})_{2},$

In the Claims:

Please amend claims 3, 4, 14, and 15 as follows:

3. (amended) The compound of claim 1, wherein R^2 is $[-R^6-(CH_2)_tNR^5C(NR^5)(NR^3)_2,]$ $-R^6-(CH_2)_tNR^5C(NR^5)N(R^3)_2$, $-R^6-(CH_2)_tNR^5C(NR^5)N(R^3)_2$, $-R^6-(CH_2)_tN(R^3)_2$, $-R^6-(CH_2)_tN(R^3)_2$, $-R^6-(CH_2)_tN(R^3)_2$, $-(CH_2)_{1-2}-O-(CH_2)_t-N(R_3)_2$,

$$R^{29}$$
 R^{30} , R^{6} $N(R^{3})_{2}$,

$$R^{28}$$
 R^{28}
 R^{28}

(43)

$$\begin{array}{c|c}
R^{28} - R^{28} & (46) \\
R^{8} & N(R^{3})_{2},
\end{array}$$

REISSUE

DOCKET NO.: GLIS-0114

 R^3 is independently -H, -CH₃, -CH₂CH₃, -(CH₂)_w-N(R^{33})₂ or a protecting group, or both R^3 together are a protecting group, or when R^2 is -R⁶-(CH₂)_t-N(R^{33})₂, one R^3 is -H, -CH₃, -CH₂CH₃, a protecting group or -(CH₂)_w-N(R^{33})₂ and the other R^3 is -H, -CH₃, -CH₂CH₃, -(CH₂)_w-N(R^{33})₂, -CH(N(R^{33})₂)-N(R^{33})₂,

R⁵ is independently H or a protecting group;

R⁶ is independently -S-, -NR⁵-, -O- or -CH₂-;

R⁷ is independently linear alkyl having 1, 2, 3 or 4 carbon atoms optionally substituted with one -CH=CH-, -C=C- or -CH₂-O-CH₂- moiety, or R⁷ is cyclic alkyl having 3, 4 or 5 carbon atoms, wherein one of the linear alkyl carbon atoms is optionally substituted with a single -CH₃, -CN, =O, -OH or protected hydroxyl, provided that the carbon atoms in any -CH=CH- or -CH₂-O-CH₂- moiety are not substituted with =O, -OH or protected hydroxyl;

R⁸ is linear alkylene having 1 or 2 carbon atoms wherein one alkylene carbon atom is optionally substituted with a single -CH₃, -CN, =O, -OH or protected hydroxyl, or R⁸ is absent;

R²⁸ is independently -CH₂-, -CH(CH₃)-, -CH(OCH₃)-, -CH(OR⁵)- or -O-, but both are not -O-;

R²⁹ is independently -N-, -N(CH₃)-, -CH-, -C(CH₃)-, but both are not -N(CH₃)-;

 R^{30} is -H or -N(R^3)₂;

R³¹ is the side chain of an amino acid;

R³³ is independently -H, -CH₃, -CH₂CH₃ or a protecting group;

R³⁵ is H, C₁-C₄ alkyl or a protecting group;

R³⁶ is H, -CH₃, -CH₂CH₃, a protecting group or an optionally protected monosaccharide;

t is 1, 2, 3 or 4, but when R⁶ is -O-, -S- or -NR⁵-, t is 2, 3 or 4;

v is independently 0, 1 or 2; and

w is independently 1 or 2.

4. (amended) The compound of claim 3 wherein R^2 is $-CH_2$ -(CH_2)_t $N(R^3)_2$, $-NR^5$ -(CH_2)_t $N(R^3)_2$, -S-(CH_2)_t $N(R^3)_2$, -O-(CH_2)_t $N(R^3)_2$, [-O-(CH_2)_t NR^5 C(NR^5)(NR^3)₂,] -O-(CH_2)_t NR^5 C(NR^5) $N(R^3)_2$, $-(CH_2)_{1-2}$ -O-(CH_2)_t $N(R^3)_2$, $-R^6$ - CH_2 - CHR^{31} - $N(R^3)_2$, $-R^6$ -(R^7)_v- $N(R^3)_2$, $[-R^6$ -(CH_2)_t- NR^5 C(NR^5)(NR^3)₂,] $-R^6$ -(CH_2)_t- NR^5 C(NR^5) $N(R^3)_2$, or $[-CH_2$ -(CH_2)_t NR^5 C(NR^5)(NR^3)₂,] $-CH_2$ -(CH_2)_t NR^5 C(NR^5) $N(R^3)_2$.

14. (amended) The compound of claim 1, wherein R^2 is $[-R^6-(CH_2)_tNR^5C(NR^5)(NR^3)_2,]$ $-R^6-(CH_2)_tNR^5C(NR^5)N(R^3)_2$, $-R^6-CH_2-CHR^{31}-N(R^3)_2$, $-R^6-(R^7)_v-N(R^3)_2$, $-R^6-(CH_2)_t-N(R^3)_2$, $-(CH_2)_{1-2}-O-(CH_2)_t-N(R_3)_2$,

 R^3 is independently -H, -CH₃, -CH₂CH₃, -(CH₂)_w-N(R^{33})₂ or a protecting group, or both R^3 together are a protecting group, or when R^2 is -R⁶-(CH₂)_t-N(R^{33})₂, one R^3 is -H, -CH₃, -CH₂CH₃, a protecting group or -(CH₂)_w-N(R^{33})₂ and the other R^3 is -H, -CH₃, -CH₂CH₃, -(CH₂)_w-N(R^{33})₂, -CH(N(R^{33})₂)-N(R^{33})₂,

$$\begin{array}{c}
\mathbb{R}^{35} \\
\mathbb{N} \\
\mathbb{N}
\end{array}$$
or
$$\mathbb{N} - \mathbb{R}^{36} \\
\mathbb{N} = \mathbb{N} - \mathbb{N}^{36} \\
\mathbb{N} = \mathbb{N}^{36} \\
\mathbb{N}^{36} \\
\mathbb{N}^{36} \\
\mathbb{N}^{36} \\
\mathbb{N}^{3$$

R⁵ is independently H or a protecting group;

R⁶ is independently -S-, -NR⁵-, -O- or -CH₂-;

R⁷ is independently linear alkyl having 1, 2, 3 or 4 carbon atoms optionally substituted with one -CH=CH-, -C=C- or -CH₂-O-CH₂- moiety, or R⁷ is cyclic alkyl having 3, 4 or 5 carbon atoms, wherein one of the linear alkyl carbon atoms is optionally substituted with a single -CH₃, -CN, =O, -OH or protected hydroxyl, provided that the carbon atoms in any -CH=CH- or -CH₂-O-CH₂- moiety are not substituted with =O, -OH or protected hydroxyl;

R⁸ is linear alkylene having 1 or 2 carbon atoms wherein one alkylene carbon atom is optionally substituted with a single -CH₃, -CN, =O, -OH or protected hydroxyl, or R⁸ is absent;

 R^{28} is independently -CH₂-, -CH(CH₃)-, -CH(OCH₃)-, -CH(OR⁵)- or -O-, but both are not -O-;

 R^{29} is independently -N-, -N(CH₃)-, -CH-, -C(CH₃)-, but both are not -N(CH₃)-;

 R^{30} is -H or -N(R^3)₂;

R³¹ is the side chain of an amino acid;

R³³ is independently -H, -CH₃, -CH₂CH₃ or a protecting group;

R³⁵ is H, C₁-C₄ alkyl or a protecting group;

R³⁶ is H, -CH₃, -CH₂CH₃, a protecting group or an optionally protected monosaccharide;

t is 1, 2, 3 or 4, but when R^6 is -O-, -S- or -NR⁵-, t is 2, 3 or 4;

v is independently 0, 1 or 2; and

w is independently 1 or 2.