

Cambridge International Examinations

Cambridge International General Certificate of Secondary Education

Opendidates and	over an the Overtion Dance		i nour 15 minutes			
Paper 3 (Exten	ded)	October/November 2015 1 hour 15 minutes				
CHEMISTRY			0620/31			
CENTRE NUMBER		CANDIDATE NUMBER				
CANDIDATE NAME						

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

Electronic calculators may be used.

A copy of the Periodic Table is printed on page 12.

You may lose marks if you do not show your working or if you do not use appropriate units.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The syllabus is approved for use in England, Wales and Northern Ireland as a Cambridge International Level 1/Level 2 Certificate.

(a)	Γhe symbols of six particles are shown below.	
	Na ⁺ Ca ²⁺ Kr P Si O ²⁻	
	Select from the list of particles to answer the following questions. A particle may be select once, more than once or not at all.	tec
(i) Which two ions have the same electronic structure?	[1]
(i) Which ion has the same electronic structure as an atom of argon?	[1]
(i	i) Which atom can form an ion of the type X ³ -?	[1]
(i	Which atom can form a hydride which has a formula of the type XH ₄ ?	[1]
(b)	i) How many protons, neutrons and electrons are there in one copper(II) ion ${}^{64}_{29}\text{Cu}^{2+}$?	
	number of protons	
	number of neutrons	
	number of electrons	[2]
(i) 45/21Sc represents an atom of scandium.	
	How many nucleons and how many charged particles are there in one atom of scandiu	ım?
	number of nucleons	
	number of charged particles	[2]
(c)	Two different atoms of sodium are $^{23}_{11}$ Na and $^{24}_{11}$ Na.	
	i) Explain why these two atoms are isotopes.	
(i) ²⁴₁₁Na is radioactive. It changes into an atom of a different element which has one m proton. 	
	Identify this element.	
		[1]
(i	i) State two uses of radioactive isotopes.	

2

	scribe how to separate the following. In each example, give a description of the procedure used explain why this method works.
(a)	Copper powder from a mixture containing copper and zinc powders.
	procedure
	explanation
	[3]
(b)	Nitrogen from a mixture of nitrogen and oxygen.
	procedure
	explanation
	וביז
	[3]
(c)	Glycine from a mixture of the two amino acids glycine and alanine. Glycine has the lower $R_{\rm f}$ value.
	procedure
	explanation
	[2]
(d)	Magnesium hydroxide from a mixture of magnesium hydroxide and zinc hydroxide.
	procedure
	explanation
	· · · · · · · · · · · · · · · · · · ·
	[3]
	[Total: 11]

Sul	furic	acid is made by the Contact process.	
(a)	Sulf	fur is burned by spraying droplets of molten sulfur into air.	
	Sug	gest and explain an advantage of using this method.	
		[2	2]
(b)	The	e following equation represents the equilibrium in the Contact process.	
		$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$	
		gen is supplied from the air. composition of the reaction mixture is 1 volume of sulfur dioxide to 1 volume of oxygen.	
	Wh	at volume of air contains 1 dm³ of oxygen?	
			1]
(c)	Sulf	fur dioxide is more expensive than air.	
	Wh	at is the advantage of using an excess of air?	
		[ź	2]
(d)		forward reaction is exothermic. The reaction is usually carried out at a temperature between and 450 °C.	n
	(i)	What is the effect on the position of equilibrium of using a temperature above 450 °C? Explain your answer.	
	(ii)	What is the effect on the rate of using a temperature below 400 °C? Explain your answer.	
		[3]

(e)	A lo	ow pressure, 2 atmospheres, is used. At equilibrium, about 98% SO ₃ is present.	
	(i)	What is the effect on the position of equilibrium of using a higher pressure?	
			[1]
	(ii)	Explain why a higher pressure is not used.	
			[1]
(f)	Naı	me the catalyst used in the Contact process.	
			[1]
(g)	Des	scribe how concentrated sulfuric acid is made from sulfur trioxide.	
			[2]
		[Total:	15]

			6	
4	(a)	Syr	nthetic polymers are disposed of in landfill sites and by burning.	
		(i)	Describe two problems caused by the disposal of synthetic polymers in landfill sites	
		(ii)	Describe one problem caused by burning synthetic polymers.	. [2]
		` ,		. [1]
	(b)	Sta	te two uses of synthetic polymers.	
	(c)	The	e structural formulae of two synthetic polymers are given below.	
			$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
			O O O Polymer B	
		(i)	Draw the structural formula of the monomer of polymer A .	
				[2]
		(ii)	Identify the functional group circled in polymer B .	[-]
				[1]
		(iii)	Deduce the two types of organic compound which have reacted to form polymer B .	

(d)	Explain the either addition			condensation	polymers.	Classify	Α	and	В	as
		 								••••
		 				• • • • • • • • • • • • • • • • • • • •				 [31
		 	 							[0]
								[Tota	al: 1	[2]

5

(a) A c	ompound, X , contains 55.85% carbon, 6.97% hydrogen and 37.18% oxygen.	
(i)	How does this prove that compound X contains only carbon, hydrogen and oxygen?	[1]
(ii)	Use the above percentages to calculate the empirical formula of compound X .	[.,]
(iii)	The M_r of X is 86.	[2]
(111)	What is its molecular formula?	
		[2]
(b) (i)	Bromine water changes from brown to colourless when added to X .	
	What does this tell you about the structure of X?	[1]
(ii)	Magnesium powder reacts with an aqueous solution of X . Hydrogen is evolved.	
	What does this tell you about the structure of X ?	[1]
(iii)	X contains two different functional groups.	
	Draw a structural formula of X .	

[1]

[Total: 8]

Carbon and silicon are elements in Group IV. They both form oxides of the type XO₂.

(a) S	ilicon(IV) oxide, SiO ₂ , has a macromolecular structure.
(i) Describe the structure of silicon(IV) oxide.
	[3]
(ii) State three properties which silicon(IV) oxide and diamond have in common.
	[3]
(iii) How could you show that silicon(IV) oxide is acidic and not basic or amphoteric?
	[2]
	xplain why the physical properties of carbon dioxide are different from those of diamond and flicon (IV) oxide.
	[Total: 9

7 The rate of a photochemical reaction is affected by ligh	7	The rate	of a	photoch	nemical	reaction	is	affected	bv	' lia	h
--	---	----------	------	---------	---------	----------	----	----------	----	-------	---

/-\	The decom		£ -:	la .a a .a a : al a	:- 41	h : -	- t t:1		L., Th:-	:! -	
121	I DE GECOM	inneitinn n	T CIIVAL	nromine	IS THE	nacie	OT TIIM	nnotogran	nv ine	ie a renn	v reaction
141	THE GEORIE	ibosition o		DIUITIUC	13 1110	Dasis	OI 111111	Dilotodiab	110. 11113	13 a 1 C u U	A I CACHOII.

$$2AgBr \rightarrow 2Ag + Br_2$$
 cream black

$$\textbf{step 1} \quad 2\text{Br}^- \rightarrow \text{Br}_2 \, + \, 2\text{e}^-$$

step 2 Ag
$$^+$$
 + e $^ \rightarrow$ Ag

(i)	Which step	o is	reduction?	Explain	your	answer.

[1]

(ii) Which ion is the oxidising agent? Explain your answer.

(b) A piece of white paper was coated with silver bromide and exposed to the light. Sections of the paper were covered as shown in the diagram.

paper coated with silver bromide

Predict the appearance of the different sections of the paper after exposure to the light and the removal of the card. Explain your predictions.

ra:	

(c) Photosynthesis is another example of a photochemical reaction. Green plants can make simple

	bohydrates, such as glucose. These can polymerise to make more complex carbohydrates, th as starch.
(i)	Write a word equation for photosynthesis.
	[2]
(ii)	Name the substance which is responsible for the colour in green plants and is essential for photosynthesis.
	[1]
(iii)	The structural formula of glucose can be represented by H—O——O—H.
	Draw part of the structural formula of starch which contains two glucose units.
	101
	[2]
(iv)	Living organisms need carbohydrates for respiration.
	What is meant by respiration?
	[1]
	[Total: 12]

The Periodic Table of the Elements **DATA SHEET**

Group	0	1	11	27 28 31 32 40 A1 Silcon Phosphous I Sulfur 17 Chlorine 18 Argon	Gemanlum 2 Arsenic Selentum	91 93 Modelum TC Rub Rh Pd Ag Cdm/um Influm Tn Ag Tn Ag Ag	178 181 184 186 190 192 195 197 201 204 207 209 209 At Rhalium Tantalum Tantal		140 141 144 Pm 150 152 157 159 162 165 167 169 173 175 175 Cerum Nacodymium Promethium Samarium Europium Gaddinium Terbium Dysprosium Hominum Erbitum Thirdum Tritorbium Ludethum 58 59 60 61 62 63 64 65 66 67 68 69 70 71	mass 232 238
					52 Cr Chromium	96 Mo Molybdenum 42	184 W Tungsten 77	-	Pr Praseodymium 59	232 Th Pa
					48 Hanium	89 91 7 Zr (ttrium Zirconium 41 40	178 Hf lafnium 7:	227 Ac Actinium †	86	a = relative atomic mass
	=		Be Beryllium	24 Magnesium 12	Caldium	88 St Strontium	137 Ba Barium 56	226 Ra Radium	*58-71 Lanthanoid series 190-103 Actinoid series	a = z = x
	_		Lithium	23 Na Sodium	39 X Potassium	Rb Rubidium 37	Caesium 55	Francium 87	*58-71 190-103	30

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.