1 Grafi come strutture dati

1.1 Introduzione e terminologia

Un grafo è una coppia di elementi (insiemi) G=(V,E) e consiste in:

- un insieme V di **vertici** (o **nodi**)
- un insieme E (E sottoinsieme del prodotto cartesiano $V \times V$) di coppie di vertici, detti **archi** o **spigoli**; ogni arco connette due vertici

I grafi possono essere:

- orientati: relazioni asimmetriche, insieme di coppie ordinate
- non orientati: relazioni simmetriche, insieme di coppie non ordinate

Un arco è **incidente** per i nodi che si toccano.

Il **grado** di un vertice è dato dal numero di archi incidenti.

Un vertice B è adiacente ad A se da B si può percorrere un solo arco e giungere ad A.

Un sottografo è una porzione di grafo (notazione $H \subseteq G$): i vertici di H sono sottoinsieme dei vertici di G e gli archi di H sono sottoinsieme degli archi di G.

Un **cammino** è una sequenza ordinata di archi che collegano due nodi. I cammini devono rispettare l'orientamento degli archi. La **lunghezza** è il numero di archi di cui è composto un cammino.

Un cammino si dice **semplice** se non passa due volte per lo stesso vertice. Se esiste almeno un cammino p tra i vertici v e w, si dice che w è **raggiungibile** da v. Inoltre v è un **antenato** di w e w è un **discendente** di v.

Un cammino tra due nodi v e w si dice **minimo** se tra v e w non esiste nessun altro cammino di lunghezza minore. La lunghezza del cammino minimo è detta **distanza** $(\delta(v, w))$.

Un grafo può essere **pesato**. La funzione peso è definita come $W: E \to \mathbb{R}$; per ogni arco $(v, w) \in E, W(v, w)$ definisce il **peso** di (v, w). In un grafo pesato, la lunghezza/peso di un cammino si calcola sommando i pesi degli archi che contiene.

I grafi non orientati possono essere:

- connessi: esiste un cammino da ogni vertice verso ogni altro vertice
- non connessi

I grafi orientati possono essere:

- fortemente connessi: esiste un cammino da ogni vertice verso ogni altro vertice
- debolmente connessi: ignorando il verso degli archi

Un cammino $\langle w_1, w_2, ..., w_n \rangle$ si dice **chiuso** se $w_1 = w_n$. Un cammino chiuso, semplice, di lunghezza almeno 1 si dice **ciclo**. Se un grafo non contiene cicli, si dice **aciclico**.

Un **grafo completo** è un grafo con un arco per ogni coppia di vertici. Un grafo completo ha numero di archi E pari a $|E| = \frac{|V|(|V|-1)}{2}$.

Un grafo non orientato, connesso e aciclico è definito **albero libero**. Se un vertice è designato ad essere radice, si definisce **albero radicato**. Un grafo non orientato, aciclico ma non connesso è definito **foresta**.

1.2 Rappresentazione

Per valutare un approccio di rapppresentazione, bisogna considerare lo **spazio** occupato dalla struttura dati e il **costo computazionale** delle operazioni da effettuare su di essa.

1.2.1 Lista di archi

Dati n (numero di vertici) e m (numero di archi), lo spazio occupato è $\mathcal{O}(n+m)$: è una rappresentazione inefficiente, in quanto bisogna percorrere tutto il grafo per scandire la lista di archi. Introdurre un vertice o arco ha costo $\mathcal{O}(1)$, ma la rimozione ha costo $\mathcal{O}(m)$.

1.2.2 Liste di adiacenza

Ogni vertice v ha una lista contenente i vertici ad esso adiacenti. Calcolare il grado di un vertice è un'operazione semplice, in quanto basta scorrere la lista di adiacenza. Occupa spazio $\mathcal{O}(n+m)$, ed è adatta per grafi **sparsi** (il numero di archi è molto minore del numero di vertici).

1.2.3 Liste di incidenza

Ogni vertice v ha una lista contenente un riferimento agli archi ad esso incidenti. Occupa spazio $\mathcal{O}(n+m)$.

1.2.4 Matrici di adiacenza

Il grafo è rappresentato tramite una matrice di interi di grandezza $n \times n$ (spazio occupato $\mathcal{O}(n^2)$); è adatta per grafi **densi**. Calcolare il grado e archi incidenti ha costo $\mathcal{O}(n)$ (basta scorrere la matrice). La modifica dei vertici ha costo $\mathcal{O}(n^2)$ in quanto bisogna ricostruire completamente la matrice. Una matrice di adiacenza rappresenta anche la presenza di un cammino di lunghezza 1 tra ogni coppia di vertici v e w. In particolare, $v \to_1 w$ se e solo se $M[v, w] \neq 0$: moltiplicando la matrice per sè stessa, il risultato è diverso da 0 solo se esiste un cammino di lunghezza 2 (e via dicendo).

1.2.5 Matrici di incidenza

Il grafo è rappresentato tramite una matrice di interi di grandezza $n \times m$ (spazio occupato $\mathcal{O}(n \times m)$), in cui le righe indicizzano i vertici e le colonne indicizzano gli archi.

2 Visite

2.1 Visita generica

Una **visita** di un grafo G permette di esaminare i nodi e gli archi in maniera sistematica, senza passare due volte per lo stesso nodo.

2.1.1 Inizializzazione

Una tattica per evitare di visitare un nodo più volte è quella di mappare lo stato della visita ad un colore:

- bianco (o nodi inesplorati): vertice non ancora esplorato
- grigio (o nodi aperti): vertice visitato, ma con nodi adiacenti ancora inesplorati
- nero (o nodi chiusi): vertice visitato, con adiacenti esplorati

Dati n nodi, si utilizza un vettore color di colori, di grandezza n: all'inizio della visita, tutte le celle del vettore color sono impostate a white.

Algoritmo 1 INIZIALIZZA(G)

 $color \leftarrow vettore di lunghezza n$

for ogni $u \in V$ do

```
\operatorname{color}[u] \leftarrow \text{white}
end for
```

La visita parte da un nodo s, detto **nodo sorgente**.

Algoritmo 2 VISITA(G,s)

Il cambiamento di colore è **monotono** (bianco \rightarrow grigio \rightarrow nero).

2.1.2 Invarianti

Un'invariante è una condizione che è verificabile come vera sia all'inizio sia alla fine di un ciclo:

- Invariante 1: se esiste un arco $(u, v) \in E$ ed u è nero, allora v è grigio o nero
- Invariante 2: tutti i vertici grigi o neri sono raggiungibili dalla sorgente
- Invariante 3: qualunque cammino dalla sorgente ad un vertice bianco deve contenere almeno un vertice grigio

Teorema. Al termine dell'algoritmo di visita, v è nero se e solo se v è raggiungibile dalla sorgente.

Dimostrazione. Per l'invariante 2, all'uscita dal ciclo tutti i vertici neri sono raggiungibili da s. Dall'invariante 3 si ricava che tra s e v esiste almeno un vertice grigio, oppure v non è bianco. Dato che la condizione di uscita dal ciclo è quella che non esistano più vertici grigi, si ricava che v non è bianco (cambiamento monotono) e non può essere grigio. Quindi, all'uscita dal ciclo, tutti i vertici raggiungibili dalla sorgente sono neri.

2.1.3 Predecessori

L'algoritmo può essere modificato in modo da ricordare, per ogni vertice che viene scoperto, quale vertice grigio ha permesso di scoprirlo, ossia ricordare l'arco percorso. Ad ogni vertice u si associa un attributo $\pi[u]$ che rappresenta il vertice che ha permesso di scoprirlo.

Algoritmo 3 VISITA(G,s)

```
\begin{aligned} &\text{INIZIALIZZA}(\mathbf{G}) \\ &\text{color} \leftarrow \text{gray} \\ &\{\text{visita } s\} \\ &\text{\mathbf{while}} \ \text{ci sono vertici grigi } \mathbf{do} \end{aligned}
```

```
u \leftarrow \text{scegli un vertice grigio}
if esiste v bianco adiacente ad u then
\operatorname{color}[v] \leftarrow \operatorname{gray}
\pi[v] \leftarrow u
\{ \text{visita } v \}
else \operatorname{color}[v] \leftarrow \operatorname{black}
end if
end while
```

Proprietà. Al termine dell'esecuzione di VISITA(G,s), tutti e soli i vertici neri diversi da s hanno predecessore diverso da NULL.

Il sottografo dei predecessori è un albero (albero dei predecessori) di radice s. Se il grafo non è connesso:

Algoritmo 4 VISITA TUTTI I VERTICI(G)

2.1.4 Gestione dei vertici grigi

Per gestire i nodi grigi si usa una struttura dati ordinata D (**frangia**). Sulla frangia è possibile eseguire le seguenti operazioni:

- Create(): restituisce una D vuota
- Add(D,x): aggiunge un elemento x a D
- First(D): restituisce il primo elemento di D
- RemoveFirst(D): elimina il primo elemento di D
- NotEmpty(D): restituisce vero se D contiene almeno un elemento, falso altrimenti

D è una **coda** se Add(D,x) aggiunge l'elemento in coda a D, uno **stack** se Add(D,x) aggiunge l'elemento in testa a D.

Algoritmo 5 VISITA(G,s)

```
INIZIALIZZA(G)
Create()
color[s] \leftarrow gray
\{visita \ s\}
Add(D,s)
\mathbf{while} \ NotEmpty(D) \ \mathbf{do}
u \leftarrow First(D)
\mathbf{if} \ esiste \ v \ bianco \ adiacente \ ad \ u \ \mathbf{then}
color[v] \leftarrow gray
```

```
\pi[v] \leftarrow u
\{ \text{visita } v \}
\text{Add}(D,v)
\mathbf{else}
\text{color}[v] \leftarrow \text{black}
\text{RemoveFirst}(D)
\mathbf{end if}
\mathbf{end while}
```

2.1.5 Complessità

Il costo di visita è $\mathcal{O}(n+adj)$: adj è il tempo impiegato a controllare se esiste un nodo v bianco adiacente ad u, e dipende dalla rappresentazione; n è il numero di vertici, che vengono inseriti e rimossi da D. Il costo di adj è:

- con lista di archi: bisogna scandire l'intera lista $(\mathcal{O}(m))$ per n volte $(\mathcal{O}(n))$, quindi $\mathcal{O}(n) + \mathcal{O}(n*m) = \mathcal{O}(mn)$
- con matrice di adiacenza: bisogna scandire l'intera riga della matrice $(\mathcal{O}(n))$, quindi $\mathcal{O}(n) + \mathcal{O}(n * n) = \mathcal{O}(n^2)$
- con liste di adiacenza: si possono ottimizzare le prestazioni utilizzando dei puntatori che puntano all'inizio delle liste di adiacenza. Se l'elemento è grigio, il puntatore è spostato all'elemento successivo; quando il puntatore giunge alla fine della lista, il primo elemento è colorato di nero. Ogni lista è percorsa una volta sola, in tutte le iterazioni del ciclo. Complessità: $\mathcal{O}(n+m)$.

2.2 Visita in ampiezza

2.2.1 Inizializzazione

La **visita in ampiezza** (**BFS**, Breadth First Search), esamina i vertici del grafo in un ordine ben preciso, costruendo un albero di visita chiamato **albero BFS**. Nell'albero BFS, ogni vertice si trova il più vicino possibile alla radice. La visita è realizzata usando la frangia come coda: quando un nodo grigio ha tutti gli adiacenti grigi, esso è rimosso dalla cosa (il vertice in testa rimane nella coda finchè non diventa nero).

Algoritmo 6 VISITA BFS(G,s)

```
INIZIALIZZA(G)
queue()
color[s] \leftarrow gray
\{visita s\}
enqueue(D,s)
while NotEmpty(D) do
u \leftarrow head(D)
if esiste v bianco adiacente ad u then
color[v] \leftarrow gray
\pi[v] \leftarrow u
\{visita v\}
enqueue(D,v)
```

```
\begin{aligned} \mathbf{else} \\ & \operatorname{color}[v] \leftarrow \operatorname{black} \\ & \operatorname{dequeue}(D) \\ & \mathbf{end if} \\ & \mathbf{end while} \end{aligned}
```

2.2.2 Albero di visita

L'albero BFS viene costruito a livelli; l'albero rappresenta i cammini minimi. Anche se le liste di adiacenza vengono invertite, i nodi per livello non cambiano. Si può inizializzare un **vettore di distanze** (stimate) d, inizializzato ad infinito: se un determinato vertice non è stato trovato (distanza ∞ a fine BFS), allora non è raggiungibile da s.

2.2.3 Proprietà

Proprietà (1). In D ci sono tutti e soli i vertici grigi.

Proprietà (2). Se $\langle v_1, v_2, \dots, v_n \rangle$ è il contenuto di D, allora:

 $i \ d[v_i] \leq d[v_{i+1}]$: $i \ vertici \ sono \ ordinati \ per \ livelli \ nella \ coda$

 $ii \ d[v_n] \leq d[v_1] + 1$: la coda contiene al massimo due livelli

Dimostrazione. Nel caso base, in D è presente solo la sorgente. La proprietà 2 è vera. Il passo ha due casi:

- dequeue(D): o D rimane vuota (banalmente vera), o rimangono $\langle v_2, \ldots, v_n \rangle$, e
 - i. le disuguaglianze sono ancora vere e quindi
 - ii. anche $d[v_n] \le d[v_1] + 1 \le d[v_2] + 1$
- enqueue(D,v): v è reso figlio di v_1 e accodato, quindi $d[v] = d[v_1] + 1$ e
 - i. $d[v_n] \le d[v_1] + 1 = d[v]$
 - ii. $d[v] = d[v_1] + 1 \le d[v_1] + 1$

2.2.4 Dimostrazione $d[v] = \delta(s, v)$

Lemma (Invariante 4). $d[v] = \delta(s, v)$ per tutti i vertici grigi o neri.

Dimostrazione $d[v] \geq \delta(s, v)$. Dato che l'albero dei predecessori π contiene solo archi appartenenti a G, il cammino da s a v è un cammino che appartiene anche a G, quindi la lunghezza del cammino da s a v nell'albero è maggiore o uguale alla distanza tra s e v.

Dimostrazione $d[v] \leq \delta(s, v)$. Definiamo l'insieme dei vertici a distanza k dalla sorgente nel grafo come $V_k = v \in V | \delta(s, v) = k$ (v_0 contiene solo la sorgente).

Nel caso base, $d[v_0] \leq \delta(s, v)$ (distanza di s da sè stesso: $0 \leq 0$). Sia $v \in V_k$: allora $\delta(s, v) = k$ (per definizione).

Con k > 0 (passo), esisterà almeno un vertice w tale che $\delta(s, w) = k - 1$ e $(w, v) \in E$, ovvero un arco che va da v a w. Definiamo l'insieme dei vertici appartenenti a V_{k-1} con arco entrante in v come $U_{k-1} = w \in V_{k-1} | (w, v) \in E$. Tra questi, sia u il primo vertice di U_{k-1} ad essere scoperto ed inserito nella coda: per politica FIFO, u sarà anche il primo ad essere estratto dalla coda. Quando guarderò i vertici adiacenti a u, v sarà ancora bianco (perchè più lontano), e v verrà inserito nell'albero come figlio di u,

con d[v]=d[u]+1. Inoltre, per ipotesi induttiva, $d[u]\leq k-1$. Quindi, quando inseriremo v nell'albero:

- $\bullet \ d[v] = d[u] + 1$
- ma $d[u] \le k-1$, quindi $d[v] \le (k-1)+1$
- $\bullet \ d[v] \le k$