UNIVERSIDAD AUTÓNOMA DE MÉXICO Facultad de Ciencias

Autores:

Fernanda Villafán Flores Fernando Alvarado Palacios Adrián Aguilera Moreno

Gráficas y Juegos

Reposioción

1. [Ejercicio 3 de la Tarea 02] Sea G una gráfica conexa. Demuestre que si G no es completa, entonces contiente a P_3 como subgráfica inducida.

Demostración: Para este ejercicio necesitamos que $|V_G| \ge 3$, para las gráficas que no cumplan esto se tendrá la demostración por vacuidad. Nótese que el hecho de que G no sea completa implica que para al menos $x, y \in V_G$ se tiene que $xy \notin E_G$.

Previo a la demostración, provemos que en una gráfica conexa siempre podemos construir una trayectoria con exactamente 3 vértices:

Sea $x \in V_G$, por definición de conexidad y como $|V_G| \ge 3$, tenemos ha $x, y \in V_G$ tales que $xy \in E_G$, luego x es vecino a algún vértice distinto a y (o y es vecino de algún vértice distinto de x), pues en caso contrario xy sería una componente conexa contenida en G y $xy \ne G!!$ lo que contradice la hipótesis de que G es conexa. Supongamos, sin pérdida de generalidad, que z es vecino de x y $z \ne y$, luego zxy es una trayectoria de orden exactamente 3.

Para este ejercicio basta analizar 2 posibles casos¹:

Caso 1: Si G + e es completa, donde e = xy-arista para $x, y \in V_G$. Por **Prop. 1.64** y por hipótesis sabemos que existe un xy-camino en G, luego por **Prop. 1.62** sabemos que hay, en particular, una xy-trayectoria en G, luego hay alguna xy-trayectoria de orden 3 (esto lo sabemos gracias al resultado mostrado previamente) y supongamos, sin pérdida de generalidad, que ésta es T = (x, z, y), para $z \in V_G$, notemos que T tiene tamaño igual a 2, pues existen las aristas zx, zy pero no xy (por como definimos este caso), luego T es P_3 y concluimos que P_3 es subgráfica inducida de G.

Caso 2: Si G es un árbol, esto nos indica que G es 1—conexa, y es por eso que se considera este caso como el mínimo para el que se cumplirá la condición a demostrar. Sabemos por el teorema de caracterización de árboles que cada arista en G será un puente, y por el resultado previamente mostrado sabemos que existe una trayectoria T en G de orden exactamente 3, así T es claramente P_3 y concluimos P_3 es subgáfica inducida de G.

De los casos anteriores concluimos que el enunciado es verdadero.

QED

2. [Ejercicio 1 extra de la Tarea 02] Sea G una gráfica. Demuestre que G es k-partita completa si y sólo si no contiene a K_{k+1} ni a $\overline{P_3}$ como subgráficas inducidas.

Demostración: En este ejercicio analizaremos 2 casos posibles:

- \Rightarrow) Procedamos reducción al absurdo .
 - ·) Supongamos que $\overline{P_3}$ es subgráfica inducida de G, por definición de k-partita completa $\overline{P_3}$ no está en la misma parte (pues, en caso de estarlo hay una adyacencia en 2 vértices de la misma parte). Luego $\overline{P_3}$ está en 2 o 3 partes distintas y habrá un $x \in \overline{P_3}$ que no se relacionará con al menos 1 vértice en algunas de las partes y por tanto, G no es k-partita completa!! (lo que no cumple es ser completa bajo el supuesto tomado) y he aquí una contradicción de suponer que $\overline{P_3}$ es subgráfica inducida de G. Por lo tanto, concluimos que $\overline{P_3}$ no es subgráfica inducida de G.

¹Se analizan los casos "extremos", pues los casos intermedios son combinaciones de estos.

·) Supongamos que K_{k+1} es subgráfica inducida de G, entonces hay 1 vértice de K_{k+1} en cada una de las partes (lo que suma k vértices) y un $x \in K_{k+1}$ en alguna parte tal que se relaciona con exactamente un vértice en esa parte y por tanto, G no es k-partita completa!! (no cumple el ser k-partita) y he aquí una contradicción de suponer que K_{k+1} es subgráfica inducida de G. Por lo tanto, concluimos que K_{k+1} no es subgráfica inducida de G.

 \Leftarrow)

De los casos anterior concluimos que G es k-partita completa si y sólo si no contiene a K_{k+1} ni a $\overline{P_3}$ como subgráficas inducidas. QED

Ejercicio de la Tarea 4

- ► Ejercicio extra 3
- 3. Sea \mathcal{T} una familia de subárboles de un árbol T. Deduzca, por inducción sobre $|\mathcal{T}|$, que si cualesquiera dos elementos de \mathcal{T} tienen un vértice en común, entonces hay un vértice de T que está en todos los elementos de \mathcal{T} .

Demostración: Demostración por induccion sobre el numero de subarboles

Paso base: $\mathcal{T} = 3$

Sean T_1, T_2, T_3 subarboles de T

Pd Existe un vértice x que pertenece a T tal que $T_1 \cap T_2 = x \to T_1 \cap T_2 \cap T_3 = x$

Dem (Reduccion al absurdo)

Supongamos que $T_1 \cap T_2 \cap T_3 = \emptyset$ (algo que no puede pasar es que $T_1 \cap T_2 = T_1 \cap T_3 = T_2 \cap T_3 = \emptyset$ por hipotesis T es conexa y tambien por hipotesis $T_1 \cap T_2$ diferente del vacio) \rightarrow existe x_1 tal que x_1 pertenece a $T_1 \cap T_2$ y x_1 no pertenece a T_3 , existe x_2 tal que x_2 pertenece a $T_1 \cap T_3$ y x_2 no pertenece a T_2 , existe x_3 tal que x_3 pertenece a $T_2 \cap T_3$ y x_3 no pertenece a $T_1 \cap T_3$ y T_3 son vértices diferentes $T_3 \cap T_3$ pertenece a $T_3 \cap T_3$ y T_3 podemos formar un ciclo $T_3 \cap T_3$ pertenece a $T_3 \cap T_3$ pertenece a $T_4 \cap T_3$ pertenece a $T_5 \cap T_5$ p

Por lo tanto $T_1 \cap T_2 \cap T_3 \neq \emptyset \rightarrow$ existe un vértice compartido para los 3 subárboles

Hipótesis de inducción: supongamos para $\mathcal{T} = k$

Supongamos que si $\mathcal{T}=k$ tal que existen i,j tal que $i\neq j$ e i,j pertenezen a $\{1,...,k\}$ donde $T_i\cap T_j\neq\emptyset\to\bigcap_{r=1}^kT_r\neq\emptyset$

Paso inductivo: Pd para $\mathcal{T} = k + 1$

Pd si existen i,j tal que $i \neq j$ e i,j pertenezen a $\{1, ..., k+1\}$ donde $T_i \cap T_j \neq \emptyset \rightarrow \bigcap_{r=1}^{k+1} T_r \neq \emptyset$ Dem (Reducción al absurdo)

Supongamos $\bigcap_{r=1}^{k+1} T_r = \emptyset$ y existen i,j pertenezen a $\{1,...,k+1\}$ donde $T_i \cap T_j \neq \emptyset \to \text{consideremos}$ a T' como el subárbol formado por la unión de todos los subárboles de $T_1, T_2, ...; T_{k+1}$ menos los subárboles T_i y T_j . Es decir T'= $\bigcup_{r=1,r\neq i,r\neq j}^{k+1} T_r \to T' \cap T_i \cap T_j = \emptyset$, pero por paso base esto es una contradicción \to existe un x tal que x pertenece a $\bigcap_{r=1}^{k+1} T_r$

Por lo tanto la porposición es verdadera.

QED

Ejercicios de la tarea 5

▶ Pregunta 1

4. Demuestre que si G es simple y 3-regular, entonces $\kappa = \kappa'$.

Demostración: Sea G 3-regular $\rightarrow d(v) = 3$ para todo v que pertenece a V \rightarrow sea v' un vertice de G \rightarrow para desconectar a v' de G, solo basta con "cortar" las 3 aristas de $v' \rightarrow k'=3$ Por lo tanto k=k'

▶ Pregunta 2

5. Demuestre que una gráfica es 2-conexa por aristas si y sólo si cualesquiera dos vértices están conectados por al menos dos trayectorias ajenas por aristas.

Demostración: \Longrightarrow) Sea G una gráfica 2-conexa \to por teorema visto en clase en G existe un cliclo C que contendra 2 vertices v y u donde u y v pertenecen a G \to podemos tener la trayectoria P=(v,C,u) pero como C es un ciclo \to tambien existira la trayectoria P'=(u,V,v)

Por lo tanto existen 2 trayectorias ajenas por aristas en una gráfica 2-conexa

 \Leftarrow) Sean u y v cualesquiera vértices de una gráfica G y si u y v están conectados por dos trayectorias ajenas por aristas P y P' \rightarrow si unimos uPv y vP'v obtendremos un ciclo C que ira de uPvP'u \rightarrow sea G' una gráfica igual al ciclo C, si borramos una arista a G' \rightarrow G' seguira siendo conexa \rightarrow G' es 2-conexa \rightarrow G será 2-conexa ya que para todo v y u que pertenecen G existen 2 trayectorias ajenas por vertices

QED

- 6.
- 7.
- 8.
- 9.
- 10.
- 11.
- 12.