	Exercice 1 : Question de cours et preuve (15 min)
6 pt	On considère l'alphabet $\{0,1,\square,\$\}$.
	Q1. Expliquez la différence entre une MT M_D qui décide le langage L et une MT M_R qui reconnaît le langage L .
0.5 pt	Q2. Donnez une MT qui décide le langage $\{0^n \mid n \in \mathbb{N}\}$
0.5 pt	Q3. Donnez une MT qui reconnaît mais ne décide pas le langage $\{0^n \mid n \in \mathbb{N}\}$
$\frac{\boxed{0.5pt}}$	Q4. Donnez une MT qui reconnaît mais ne décide pas le langage $\overline{\{0^n \mid n \in \mathbb{N}\}}$
1.5 pt	 Q5. Considérons un langage L. Si une MT M₁ décide le langage L alors le langage \(\overline{L}\) est décidable. Démontrez ce théorème : (a) Commencez par répondre à la question : Que doit-on montrer? (b) Rédigez la preuve.
2pt	 Q6. Considérons un langage L. Si une MT M₁ reconnaît mais ne décide pas le langage L et si une MT M₂ reconnaît mais ne décide pas le langage \(\overline{L}\) alors on peut conclure que le langage L est décidable. Démontrez ce théorème : (a) Commencez par répondre à la question : Que doit-on montrer? (b) Rédigez la preuve.
$\boxed{\phantom{0000000000000000000000000000000000$	Exercice 2 : Opérations sur les booléens (10 min)
	On considère l'alphabet $\{0,1,\square,\$\}$ et on adopte la convention que 0 représente le booléen $faux$ et 1 représente $vrai$. Un mot binaire $\omega \in \{0,1\}^*$ représente une suite de booléens.
1.25 pt	Q7. Donnez une MT M_{Neg} qui effectue la négation des booléens de ω puis se replace sur le symbole $\$$
	Exemple:
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
1.25 pt	Q9. Exploitez le loi de $DeMorgan \neg (b_1 \lor b_2 \lor \ldots \lor b_n) = \neg b_1 \land \neg b_2 \land \ldots \land \neg b_n$ pour construire à une MT M_{Disj} telle que $M_{Disj}(b_1b_2 \ldots b_n) = b_1 \lor b_2 \lor \ldots \lor b_n$

 M_{Disj} doit effacer le ruban, inscrire le résultat sur le ruban, se replacer sur \$ et terminer dans un état correspond au résultat \bigcirc pour \mathbb{V} , \bigotimes pour \mathbb{F}

Exercice 3: Tableaux et tri en Gamma (10 min)

3.5 pt

$$\mathscr{M} = \{\, \mathsf{T}(0,2), \, \mathsf{T}(1,521), \, \mathsf{T}(2,3), \, \mathsf{T}(3,42), \, \mathsf{T}(4,4), \, \mathsf{T}(5,2) \,\}$$

où les éléments T(indice, valeur) flottent dans la solution chimique.

Q10. Donnez la propriété logique qui caractérise le fait que le tableau t[0..N] est trié dans l'ordre croissant sous la forme d'une formule commençant par \forall .

Donnez le multi-ensemble qui correspond au tableau T trié dans l'ordre croissant. Q11.

Q12. Donnez la/les règle(s) Gamma qui permettent d'obtenir un multi-ensemble d'éléments T(indice, valeur) trié dans l'ordre croissant.

Donnez la propriété logique qui caractérise le fait que le multi-ensemble \mathcal{M} d'élements Q13. T(indice, valeur) est trié dans l'ordre croissant sous la forme d'une formule commençant par \forall .

Q14.

- (a) Donnez l'exécution la plus efficace de cet algorithme sur le multi-ensemble \mathcal{M} de l'exemple.
- (b) Combien d'applications des règles sont nécessaires pour obtenir un multi-ensemble trié;
- (c) Combien d'étapes sont nécessaires pour obtenir le multi-ensemble trié.

Exercice 4 : Codage des Automates à une pile en machines de Turing (25 min)

L'objectif de l'exercice est de simuler un automate à une pile (AUP) par une machine de Turing à deux bandes. Le mot ω à reconnaître sera inscrit sur la bande B_1 et la pile de l'automate sera représentée par la bande B_2 .

Rappelez la définition de l'acceptation sur pile vide. Autrement dit, donnez les conditions Q15. à satisfaire pour qu'un mot ω soit accepté par un AUP.

Autant de 0 que de 1 On considère le langage L formé des mots binaires qui ont autant de 0 que de 1 (sans tenir compte de l'ordre de 0 et des 1).

Donnez trois mots binaires qui appartiennent au langage L et trois mots binaires qui n'appartiennent pas à L. En particulier, que dire du mot ϵ ?

Q17. Donnez un AUP qui reconnaît le langage L. Respectez les notations indiquées ci-après.

Indication : On notera $\mathbf{q} \xrightarrow{\ell} \mathbf{q}'$ une transition d'AUP où ℓ est le symbole lu, γ l'état de la pile avant la transition et γ' l'état de la pile après la transition. Une transition peut effectuer l'une opérations suivantes sur la pile :

- 1. empiler un symbole : $\gamma/\frac{s}{\gamma}$
- 2. lire le sommet de la pile sans modifier la pile : $\frac{s}{\gamma}/\frac{s}{\gamma}$
- 3. dépiler le sommet : $\frac{s}{\gamma}/\gamma$
- 4. lire le sommet et empiler un symbole $\frac{s}{\gamma}/\frac{s'}{\frac{s}{s}}$

Exemples:

- La transition $\mathbf{q}\frac{-\ell}{-\gamma/\frac{s}{\gamma}}\mathbf{q}'$ lit le symbole ℓ et empile le symbole s
- La transition $\mathbf{q} \xrightarrow{\ell \atop \frac{s}{s}/\gamma} \mathbf{q}'$ lit le symbole ℓ et dépile le symbole s à condition que le symbole s soit en sommet de pile.
- La transition $\mathbf{q} = \frac{\ell}{\frac{\ell}{\gamma}/\frac{\ell}{\gamma}} \mathbf{q}'$ lit le symbole ℓ et vérifie que le symbole en sommet de pile est le même que le symbole lu.

Q18. Dessinez la bande B_2 correspondant à une pile vide.

Q19. Donnez la traduction en MT de chacune des trois transitions d'AUP suivantes : 1. $\mathbf{q} \xrightarrow{\ell} \mathbf{q'}$ 2. $\mathbf{q} \xrightarrow{\frac{\ell}{\frac{s}{\gamma}/\gamma}} \mathbf{q'}$ 3. $\mathbf{q} \xrightarrow{\frac{\ell}{\gamma}/\frac{\ell}{\gamma}} \mathbf{q''}$. Respectez les notations indiquées ci-après.

Indication : On notera les transitions de la MT à deux bandes de la manière suivante $\mathbf{q} \xrightarrow{\ell_1/e_1:d_1} \mathbf{q}'$, c'est-à-dire au dessus de la flêche la *lecture*/*écriture :déplacement* sur la bande 1 et sous la flêche la *lecture*/*écriture :déplacement* sur la bande 2.

Q20. Donnez les traductions en MT : (1) d'un état accepteur (Q) de l'AUP, et (2) d'un état non-accepteur (Q) de l'AUP de manière à simuler l'acceptation sur pile vide.

Q21. Expliquez comment une MT peut simuler l'exécution d'un AUP A sur un mot ω de manière à accepter ω si A reconnaît ω .

Indication: Vous pouvez faire référence aux questions précédentes dans vos explications.