KomAn - Opgavesæt B

Tim Sehested Poulsen - tpw705

Opgave 1

a)

Vi har at både e^z er holomorf på \mathbb{C} og z^2+4 er holomorf på $\mathbb{C}\setminus\{\pm 2i\}$. Vi kan så konkludere at $f(z)=\frac{e^z}{z^2+4}$ er holomorf på $\mathbb{C}\setminus\{\pm 2i\}$. Så giver sætning 4.8 fra [1] at tayolorrækken for f(z) omkring $z_0=0$ er konvergent i den største åbne skive omkring 0 som er indehold i $\mathbb{C}\setminus\{\pm 2i\}$. Det må altså være K(0,2). Så konkluderer vi at $\rho=2$.

b)

Det kan umiddelbart ses at $(f(z)\cdot(z^2+4))^{(n)}=e^z$ da $(e^z)'=e^z$. Jeg vil starte med at vise at

$$(f(z)\cdot(z^2+4))^{(n)} = f^{(n)}(z)\cdot(z^2+4) + 2nzf^{(n-1)}(z) + \sum_{i=1}^{n-1} 2jf^{(n-2)}(z)$$

Jeg vil vise det per induktion så for n=1 har vi at venstresiden bliver

$$f'(z) \cdot (z^2 + 4) + 2zf(z)$$

og ligeledes bliver højresiden også

$$f'(z) \cdot (z^2 + 4) + 2zf(z)$$

Så formlen holder for n=1. Og antag per induktion at formlen holder for et $n\in\mathbb{N}$, så har vi at

$$\begin{split} & \left(f(z) \cdot (z^2 + 4) \right)^{(n+1)} \\ &= \left(f^{(n)}(z) \cdot (z^2 + 4) + 2nzf^{(n-1)}(z) + \sum_{j=1}^{n-1} 2jf^{(n-2)}(z) \right)' \\ &= f^{(n+1)}(z) \cdot (z^2 + 4) + 2zf^{(n)}(z) + 2nzf^{(n)}(z) + 2nf^{(n-1)} + \sum_{j=1}^{n-1} 2jf^{(n-1)}(z) \\ &= f^{(n+1)}(z) \cdot (z^2 + 4) + 2(n+1)zf^{(n)}(z) + \sum_{j=1}^{n} 2jf^{(n-1)}(z) \end{split}$$

hvorfra vi nu kan se at formlen også holder for n+1 og derfor har vi vist at formlen holder for alle $n \in \mathbb{N}$. Jeg bruger nu at $\sum_{j=1}^{n-1} 2j = n(n-1)$ og evaluerer formlen i z=0 og får at

$$f^{(n)}(z) \cdot (z^{2} + 4) + 2nzf^{(n-1)}(z) + \sum_{j=1}^{n-1} 2jf^{(n-2)}(z) = e^{z}$$

$$\implies f^{(n)}(0) \cdot (0^{2} + 4) + 2n \cdot 0 \cdot f^{(n-1)}(0) + n(n-1)f^{(n-2)}(0) = e^{0}$$

$$\iff 4f^{(n)}(0) + n(n-1)f^{(n-2)}(0) = 1$$

$$\iff f^{(n)}(0) = \frac{1}{4} - \frac{n(n-1)f^{(n-2)}(0)}{4}$$

Vi har så fra sætning 4.8 [1] at $a_k = \frac{f^{(k)}(0)}{k!}$ for taylorrækken med udviklingspunkt 0. Så vi konkluderer at

$$a_k = \frac{\frac{1}{4} - \frac{k(k-1)f^{(k-2)}(0)}{4}}{k!} = \frac{1}{4k!} - \frac{\frac{f^{(k-2)}(0)}{(k-2)!}}{4} = \frac{1}{4k!} - \frac{a_{k-2}}{4}$$

hvilket holder for $k \ge 2$ og for k = 0, 1 kan man udregne $a_0 = a_1 = \frac{1}{4}$. For at udregne $f^{(5)}(0)$ skal jeg først udregne a_3

$$a_3 = \frac{1}{4 \cdot 3!} - \frac{a_1}{4} = \frac{1}{4 \cdot 6} - \frac{1}{16} = \frac{1}{24} - \frac{1}{16} = -\frac{1}{48}$$

$$f^{(5)}(0) = a_5 \cdot 5! = \frac{5!}{4 \cdot 5!} - \frac{a_3 \cdot 5!}{4} = \frac{1}{4} - \frac{-\frac{1}{48} \cdot 120}{4} = \frac{1}{4} + \frac{\frac{5}{2}}{4} = \frac{7}{8}$$

c)

Jeg started med at omskrive integralet

$$\frac{1}{2\pi i} \cdot \int_{\partial K(\frac{1}{2},1)} \frac{e^z}{z^8 - 4z^6} dz$$

$$= \frac{1}{2\pi i} \cdot \int_{\partial K(\frac{1}{2},1)} \frac{f(z)}{(z-0)^6} dz$$

Herfra bemærker jeg at $\overline{K(\frac{1}{2},1)} \subseteq \mathbb{C} \setminus \{\pm 2i\}$ og at $0 \in K(\frac{1}{2},1)$. Da kan vi bruge formel (2) fra sætning 4.8 i [1] til at konkludere

$$\frac{1}{2\pi i} \cdot \int_{\partial K(\frac{1}{2},1)} \frac{f(z)}{(z-0)^6} = \frac{f^{(5)}(0)}{5!} = \frac{\frac{7}{8}}{120} = \frac{7}{960}$$

Opgave 2

a)

Kigger vi på $|f^{(n)}(0)|$ ved brug af sætning 4.8 fra [1] vil vi se at

$$|f^{(n)}(0)| = \left| \frac{n!}{2\pi i} \int_{\partial K(0,r)} \frac{f(z)}{z^{n+1}} dz \right|$$

for ethvert r>0 da f er hel. Bruger vi så sætning 2.8 får vi at

$$\left|\frac{n!}{2\pi i} \int_{\partial K(0,r)} \frac{f(z)}{z^{n+1}} dz\right| \leq \left|\frac{n!}{2\pi i} \max_{z \in \partial K(0,r)} \frac{f(z)}{z^{n+1}} \cdot 2\pi\right| = \leq n! \left|\max_{z \in \partial K(0,r)} \frac{f(z)}{z^{n+1}}\right|$$

Det vil være klart at så snart $r \geq 10$ så vil

$$n! \left| \max_{z \in \partial K(0,r)} \frac{f(z)}{z^{n+1}} \right| = n! \cdot \frac{\ln(r)^{2023}}{r^{n+1}}$$

og da r^{n+1} "vokser hurtigere" end $\ln(r)^{2023}$ for alle $n \in \mathbb{N}$ vil $\lim_{r \to \infty} \frac{\ln(r)^{2023}}{r^{n+1}} = 0$. Observerer vi så taylorrækken som givet i sætning 4.8 [1] får vi at

$$f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} (z - 0)^n = f(0)$$

da hvert led i taylorrækken er 0 for $n \ge 1$. Så i konklusion får vi at f(z) er konstant for $z \in \mathbb{C}$ da taylorrækken er konvergent for alle $z \in \mathbb{C}$ eftersom f(z) er hel.

Opgave 3

Da Ω er et område er det altså åbent. Da må vi for hvert $z_0 \in \Omega$ kunne konstruere en kugle $K(z_0, r_0)$ således at $K(z_0, r_0) \subseteq \Omega$. Denne kugle er enkelt sammenhængende vi har fra sætning 4.10 [1] at der eksisterer en $f \in \mathcal{H}(K(z_0, r_0))$ så $\mathcal{R}f = u$. Vi kan da bruge korollar 3.9 til at sige

$$f(z_0) = \frac{1}{2\pi} \int_0^{2\pi} f(z_0 + re^{it}) dt$$

for ethvert $0 \le r < r_0$. Vi ved per definition af integraler af komplekse funktioner at

$$\frac{1}{2\pi} \int_0^{2\pi} f(z_0 + re^{it}) dt = \frac{1}{2\pi} \int_0^{2\pi} \mathcal{R}f(z_0 + re^{it}) dt + i \frac{1}{2\pi} \int_0^{2\pi} \mathcal{C}f(z_0 + re^{it}) dt$$

Da $\mathcal{R}f = u$ observerer vi da at

$$u(z_0) = \mathcal{R}f(z_0) = \frac{1}{2\pi} \int_0^{2\pi} \mathcal{R}f(z_0 + re^{it})dt = \frac{1}{2\pi} \int_0^{2\pi} u(z_0 + re^{it})dt$$

for alle $0 \le r < r_0$. Hvilket givet det ønskede resultat.

a)

b)

Lad $r_0 > 0$ være givet som fra forrige opgave. Altså at for z_0 (hvor der er lokalt maksimum) har vi

$$u(z_0) = \frac{1}{2\pi} \int_0^{2\pi} u(z_0 + re^{it}) dt$$

så længe $0 < r < r_0$. Jeg kan omskrive dette til

$$u(z_0) = \frac{1}{2\pi} \int_0^{2\pi} u(z_0 + re^{it}) dt$$

$$\iff 0 = \frac{1}{2\pi} \int_0^{2\pi} u(z_0 + re^{it}) - u(z_0) dt$$

$$\iff 0 = \frac{1}{2\pi} \int_0^{2\pi} u(z_0 + re^{it}) - \frac{1}{2\pi} \int_0^{2\pi} u(z_0) dt$$

$$\iff 0 = \int_0^{2\pi} u(z_0 + re^{it}) - u(z_0) dt$$

Lad nu $u(z_0)$ være et maksimum i kuglen $K(z_0, r_1)$ så vil vi have at for alle $r < \min(r_0, r_1)$ vil vi have at $u(z_0 + re^{it}) \le u(z_0)$ for alle $t \in \mathbb{R}$. Altså er $u(z_0 + re^{it}) - u(z_0) \le 0$ og hvis integralet af denne funktion skal være 0 mens den aldrig er positiv og samtidig med at den er kontinuert (da u(z) er det), kan vi konkludere at $u(z_0 + re^{it}) - u(z_0) = 0$ for alle $t \in \mathbb{R}$ og $0 < r < \min(r_0, r_1)$. Det giver os at $u(z) = u(z_0)$ for $z \in K(z_0, \min(r_0, r_1))$ og altså er u(z) konstant i kugle omkring z_0 .

Referencer

[1] Christian Berg, Complex Analysis. Lecture Notes, 2016, ISBN 9 788770 786195,