

SOLUTIONS

Module Three

- **1.)** Consider the line defined by $\mathbf{w}\cdot\mathbf{x}=b$ where $\mathbf{w}=\left(\begin{array}{c} 3\\4 \end{array}\right)$ and b=12 .
 - a.) Does the line go through the origin? Explain.
 - ☐ Yes
 - **₩** No

Because $b \neq 0$

b.) Find two possible points on the line.

There are infinitely many correct answers. The condition for $P=(p_1,p_2)$ to be on the line is that $\mathbf{w}\cdot\mathbf{p}=3p_1+4p_2=12$.

For example, the points P=(4,0) and Q=(0,3) are on the line.

c.) Are the points $P_1=(-1,4)$ and $P_2=(1,4)$ on the same side of that line?

We have
$$\mathbf{w} \cdot \mathbf{p}_1 = 3 \cdot (-1) + 4 \cdot 4 = -3 + 16 = 13$$
 and $\mathbf{w} \cdot \mathbf{p}_2 = 3 \cdot 1 + 4 \cdot 4 = 3 + 16 = 19$.

Since both ${\bf w}\cdot{\bf p}_1>12~$ and ${\bf w}\cdot{\bf p}_2>12~$, the two points are on the same side of the line.

2.) Consider the line $\mathbf{w}\cdot\mathbf{x}=b$ for $\mathbf{w}=\begin{pmatrix} -1\\2 \end{pmatrix}$ and b=-4.

Are
$$P_1=(5,-5)$$
 and $P_2=(0,-1)$ on the same side of the line?

We have
$$\mathbf{w} \cdot \mathbf{p}_1 = (-1) \cdot \dots + 2 \cdot (-5) = -5 - 10 = -15$$
 and $\mathbf{w} \cdot \mathbf{p}_2 = (-1) \cdot 0 + 2 \cdot -1 = -2$.

Since $~{f w}\cdot{f p}_1<-4$ and $~{f w}\cdot{f p}_2>-4$, the two points are not on the same side of the line.

3.) Consider a vector \mathbf{V} whose length is 3. Compute $\mathbf{V} \cdot \mathbf{V}$.

Remember that $\mathbf{v}\cdot\mathbf{v}=||\mathbf{v}||^2$. Therefore, $\mathbf{v}\cdot\mathbf{v}=3^2=9$.