

DBMS PROJECT

Title: Online Pharmeasy Application

Content:

• BCNF prove or disprove

Group No: 1

Team_ID: G1-T3

Instructor: PM Jat

Group Members:

- 1. Shivam Patel (202301033)
- 2. Kartik Vyas (202301003)
- 3. Viraj Mehta (202301008)
- 4. Tirth Patel (202301023)
- 5. Krishna Kanodia (202301038)

Functional Dependencies (FDs), Minimal set & BCNF prove or disprove for each relation in database

1. Customers:

Customers	
◆cust_id	int
•email	text
•name	text
•phone_no	int
•password	varchar(10)

Functional Dependencies (FDs):

```
cust_id → email

cust_id → name

cust_id → phone_no

cust_id → password

phone_no → email

phone_no → password

phone no → name
```

Minimal FD Set:

```
cust_id → phone_no
phone no → email, password, name
```

KEY: cust id

BCNF Analysis:

The relation is not in BCNF, as cust_id is a key, but there exists a non-trivial dependency in minimal set (phone_no → email, password, name) where phone_no is not a key.

Decomposition is not feasible in this case without losing important functional dependencies.

2. Address:

Address	
cust_id	int
*street/area	text
city	varchar(30)
•pin	int
•house	text

Functional Dependencies (FDs):

```
cust_id, pin \rightarrow street
cust_id, pin \rightarrow city
cust_id, pin \rightarrow pin
cust_id, pin \rightarrow house
```

Minimal Set of FDs:

```
cust_id, pin \rightarrow city, street, house
```

KEY: {cust_id, pin}

BCNF Analysis:

The relation Address is in BCNF.

3. Members:

Functional Dependencies (FDs):

```
cust_id, purchase_date → type
cust_id, purchase_date → expiry_date
cust_id, purchase_date → membership_type_id
```

Minimal FD Set:

```
{cust_id, purchase_date} → type, expiry_date, membership_type_id
```

Key:

```
{cust_id,purchase_date}
```

BCNF Analysis:

• The relation Members is in **BCNF**.

4. Order:

Order	
◆order_id	int
cust_id	int
*order_date	date
order_status	varchar(10)
*delivery_fee	numeric
*estimated_delivery_date	date

Functional Dependencies (FDs):

```
order_id → cust_id

order_id → order_date

order_id → order_status

order_id → delivery_fees

order_id → estimated_delivery_date
```

Minimal FD Set:

```
order_id → {cust_id, order_date, order_status, delivery_fees, estimated_delivery_date}
```

KEY: order_id

BCNF Analysis:

The relation Order is in BCNF.

5. Doctor:

Functional Dependencies (FDs):

```
emp_id → license_id
license_id → emp_id
```

Minimal FD Set:

KEY:

emp_id or license_id

BCNF Analysis:

The relation Doctor is in BCNF.

6. Purchased items:

```
purchased_items

med_id int
quantity int
total_price int
net_price int
order id int
```

Functional Dependencies (FDs):

```
order_id, med_id → quantity
order_id, med_id → total_price
order_id, med_id → net_price
```

Minimal FD Set:

```
order_id, med_id → quantity, total_price, net_price
```

KEY:

```
{order id,med id}
```

BCNF Analysis:

The relation purchased_items is in BCNF.

7. Staff:

Functional Dependencies (FDs):

Minimal FD Set:

$$emp_id \rightarrow working_hours$$

KEY: emp_id

BCNF Analysis:

The relation Staff is in BCNF.

8. Membership_Type:

Membership_Type	
membership_type_id	int
·validity	varchar(10)
•price	numeric

Functional Dependencies (FDs):

```
membership_type_id → validity
membership_type_id → price
```

Minimal FD Set:

membership_type_id → validity, price

KEY: membership_type_id

BCNF Status:

The relation membership_type is in BCNF.

9. Query:

Functional Dependencies (FDs):

```
query_id → status
query_id → query_date
query_id → cust_id
query_id → emp_id
```

Minimal FD Set:

```
query_id → status, query_date, cust_id, emp_id
```

KEY: query_id

BCNF Analysis:

The relation Query is in BCNF.

10. Delivery:

	Delivery	
ł	•emp id	int
	·vehicle_no	varchar(15)
	<pre>*driving_license_no</pre>	varchar(20)
	*area_code	int
	°experience	varchar(10)

Functional Dependencies (FDs):

```
emp_id → driving_license_no
emp_id → area_code
emp_id → vehicle_no
emp_id → experience
```

Minimal FD Set:

```
emp_id → driving_license_no, area_code, vehicle_no, experience
```

KEY: emp_id

BCNF Analysis:

The relation Delivery is in BCNF.

11. Medicine:

Medicine	3
*med_id	<u>int</u>
*name	text
·company	text
*discount	int
*manufacturing_data	date
expiry_date	date
*price	int
category id	int[]

Medicine_Details	
*name	varchar (20)
*company	varchar (20)
discount	int
*manufacturing date	date
expiry date	date
'category_id	int[]
*price	int

Functional Dependencies (FDs):

```
med_id → name

med_id → company

med_id → discount

med_id → manufacturing_date

med_id → expiry_date

med_id → price

med_id → category_id

name, company → discount

name, company → manufacturing_date

name, company → expiry_date
```

```
name, company → price
name, company → category_id
```

Minimal FD Set:

```
med_id → name, company
name, company → discount, manufacturing_date, expiry_date,
price, category_id
```

KEY: med_id

BCNF Analysis:

The relation Medicine is not in BCNF, as {name, company} form a determinant that is not a key.

So, we need to decompose in order to make BCNF, the relation Medicine should be decomposed into two relations:

- 1. (med_id, name, company)
- 2. (name, company, discount, manufacturing_date, expiry_date, price, category_id)

12. Drug Composition:

Functional Dependencies (FDs):

 $med_id, composition \rightarrow power$

Minimal FD Set:

 med_id , composition \rightarrow power

KEY: {med_id, composition}

BCNF Analysis:

The relation Drug_composition is in BCNF.

13. Category:

Category *category_id int *category_name varchar(20) *description text

Functional Dependencies (FDs):

```
category_id → category_name
category_id → description
```

Minimal FD Set:

```
category_id → category_name, description
```

KEY: category_id

BCNF Analysis:

The relation Category is in BCNF.

14. Add to Cart:

Functional Dependencies (FDs):

 $cust_id$, $med_id \rightarrow quantity$

Minimal FD Set:

 $cust_id$, $med_id \rightarrow quantity$

KEY: {cust_id, med_id}

BCNF Analysis:

The relation Add_to_cart is in BCNF.

15. Delivered by:

Delivered by		
[♦] emp id		int
*order_id		int
<pre>*delivery</pre>	status	varchar(10)

Functional Dependencies (FDs):

```
emp_id, order_id → delivery_status
```

Minimal FD Set:

KEY: {emp_id, order_id}

BCNF Analysis:

The relation Delivered_By is in BCNF.

16. Employee:

Employe	е
•emp_id	int
°name	text
°salary	int
°contact_no	int

Functional Dependencies (FDs):

```
emp_id → name

emp_id → salary

emp_id → contact_no

contact_no → name
```

Minimal FD Set:

```
emp\_id \rightarrow contact\_no, salary

contact\_no \rightarrow name
```

KEY: emp_id

BCNF Analysis:

The relation Employee is not in BCNF, as contact_no is a determinant but not a key.

Decomposition is not feasible without losing essential dependencies, so the relation is in Second Normal Form (2NF).

17. Prescription Status:

Prescription status	
order id	int
*status	varchar(10)
verified	varchar(10)
emp id	int

Functional Dependencies (FDs):

```
order_id → status
order_id → verified
order_id → emp_id
```

Minimal FD Set:

```
order_id → status, verified, emp_id
```

KEY: order_id

BCNF Analysis:

The relation Prescription_Status is in BCNF.

18. Payment:

Payment	
trans_id	varchar(20)
order_id	int
<pre>•payment_date</pre>	date
*amount	numeric
•status	varchar(10)
<pre>•payment_type</pre>	varchar(10)

Functional Dependencies (FDs):

```
trans_id → amount

trans_id → status

trans_id → payment_type

trans_id → order_id

trans_id → payment_date

order_id → trans_id

order_id → payment_date

order_id → amount

order_id → status

order_id → payment_type
```

Minimal FD Set:

```
order_id → trans_id, payment_date, amount, status, payment_type

trans_id → order_id
```

KEY: trans_id or order_id can serve as keys under the given conditions

BCNF Analysis:

The relation Payment is in BCNF.

Assumptions:

There are no partial or multiple payments associated with a single order.

In case of a payment failure, the order is cancelled and a new order ID is generated for any subsequent payment attempt.