Théorie des bases de données et de connaissances (HAI933I) Contrôle n°1

Durée: 45 mn. Sans documents.

Exercice 1

```
Soient 2 ensembles d'atomes, où a est la seule constante A_1 = \{p(x_1, y_1), q(y_1, u_1), p(x_1, z_1), q(v_1, z_1)\} A_2 = \{p(a, x_2), p(a, y_2), q(y_2, u_2), q(x_2, x_2)\}
```

Question 1. Dessinez les graphes associés à ces ensembles d'atomes (les prédicats étant binaires, choissez une représentation simple).

Correction: On représente chaque ensemble d'atomes par un graphe orienté étiqueté, où les sommets correspondent aux termes et les arcs aux atomes.

Question 2. Donnez tous les homomorphismes de A_1 dans A_2 et de A_2 dans A_1 . Il peut n'y en avoir aucun (dire pourquoi), un ou plusieurs (les énumérer).

```
Correction: Il y a 2 homomorphismes de A_1 dans A_2:
```

```
h_1 = \{x_1 \mapsto a, y_1 \mapsto x_2, u_1 \mapsto x_2, z_1 \mapsto x_2, v_1 \mapsto x_2\}
h_2 = \{x_1 \mapsto a, y_1 \mapsto y_2, u_1 \mapsto u_2, z_1 \mapsto x_2, v_1 \mapsto x_2\}
```

Il n'y a pas d'homomorphisme de A_2 dans A_1 (car A_2 a une constante mais pas A_1 , car A_2 a une boucle mais pas A_1 , ...).

Question 3. A tout ensemble d'atomes A_i , on associe une formule conjonctive fermée existentiellement (qu'on note f_i). Quels sont les liens de conséquence logique (\models) entre f_1 et f_2 ?

Correction: Puisqu'il y a un homomorphisme de A_1 dans A_2 , on a $f_2 \models f_1$. Puisqu'il n'y a pas d'homomorphisme de A_1 dans A_2 , on n'a pas $f_1 \models f_2$.

Question 4. A_1 et A_2 sont-ils des *cores*? Quand votre réponse est non, justifiez-la par un homomorphisme. On rappelle qu'un ensemble d'atomes A est un core s'il n'existe pas d'homomorphisme de A dans $A' \subset A$.

Correction: A_1 est un core, mais pas A_2 : l'homomorphisme $h = \{x_2 \mapsto x_2, y_2 \mapsto x_2, u_2 \mapsto x_2\}$ envoie A_2 dans l'un de ses sous-ensembles stricts (c'est-à-dire $h(A_2) \subsetneq A_2$).

Exercice 2

Soient deux requêtes conjonctives booléennes Q_1 et Q_2 . On note $Q_1 \sqsubseteq Q_2$ si toute base de faits qui répond oui à Q_1 répond aussi oui à Q_2 . Montrez que : si $Q_1 \sqsubseteq Q_2$ alors il existe un homomorphisme de Q_2 dans Q_1 .

Correction: Voir le corrigé de cet exercice sur moodle.

Exercice 3

Question 1. Qu'est-ce qu'un modèle universel d'une base de connaissances K?

Correction: C'est un modèle de \mathcal{K} qui s'envoie par homomorphisme dans tout modèle de \mathcal{K} .

Question 2. Quel est l'intérêt de cette notion pour répondre à des requêtes conjonctives (disons : booléennes pour simplifier)?

Correction: Une base de connaissances \mathcal{K} répond oui à une CQ booléenne q si et seulement si $\mathcal{K} \models q$, c'est-à-dire tout modèle de \mathcal{K} est un modèle de q. Si \mathcal{K} a un modèle universel, il suffit de tester si ce modèle (appelons-le M_K) est un modèle de q au lieu de considérer tous les modèles de \mathcal{K} : en effet, si M_K est un modèle de q, alors tout modèle de \mathcal{K} dans lequel M_K s'envoie par homomorphisme est aussi un modèle de q.

Question 3. Soit la base de connaissances $\mathcal{K} = (F, \mathcal{R})$ où $F = \{p(a, b)\}$ et $\mathcal{R} = \{R_1, R_2\}$ avec :

```
R_1: p(x,y) \to \exists z \ q(y,z)
```

 $R_2: q(x,y) \to p(x,y)$

K admet-elle un modèle universel? Si oui, donner un tel modèle (sous forme d'interprétation ou sous forme d'ensemble d'atomes). Si non, pourquoi?

Correction: Oui, et on peut calculer ce modèle universel par le chase. Ici :

Chase(\mathcal{K}) = { $p(a,b), q(b,z_0), p(b,z_0)$ } \cup { $q(z_i, z_{i+1}), p(z_i, z_{i+1}) | i \ge 0$ }.

Remarque : Toutes les variantes de chase que nous avons vues donnent le même résultat sur cette base de connaissances. Puisque c'est aussi le résultat du core chase, on en conclut que \mathcal{K} n'a pas de modèle universel fini.

Question 4. L'ensemble d'atomes $M_1 = \{p(a,b), q(b,a)\}$ correspond-il à un modèle de \mathcal{K} ? À un modèle universel de \mathcal{K} ? Justifiez vos réponses.

Correction: M_1 n'est pas un modèle de \mathcal{K} car il ne satisfait pas R_2 : on a $q(b,a) \in M_1$ mais $p(b,a) \notin M_1$.

Question 5 Mêmes questions avec $M_2 = \{p(a,b), p(b,b), q(b,b)\}.$

Correction: M_2 est un modèle de \mathcal{K} : il satisfait F ($F \subseteq M_2$), R_1 (pour (x,y) = (a,b), on a $p(a,b) \in M_2$, et en prenant z = b on a bien $q(b,b) \in M_2$, et pour (x,y) = (b,b) on a $p(b,b) \in M_2$, et en prenant z = b, on a bien $p(b,b) \in M_2$ et R_2 (pour (x,y) = (a,b), on a $q(a,b) \in M_2$, et on a bien $p(a,b) \in M_2$). Mais M_2 n'est pas un modèle universel de \mathcal{K} car il ne s'envoie pas par homomorphisme dans $Chase(\mathcal{K})$ qui est un modèle de \mathcal{K} .