Centro de Educação Superior a Distância do Estado do Rio de Janeiro – CEDERJ

Curso de Tecnologia em Sistemas de Computação – TSC EAD-05.009 Fundamentos de Programação

Caderno de Exercícios Aula 5

(Vetor, Matriz, String (Cadeia de Caracteres) e Tuplas)

Professores

Dante Corbucci Filho Leandro A. F. Fernandes

Instruções

- Utilize Python 3 e a IDE PyCharm na elaboração de soluções para os problemas propostos;
- A entrada de cada problema deve ser lida da entrada padrão (teclado);
- A saída de cada problema deve ser escrita na saída padrão (tela);
- Siga o formato apresentado na descrição da saída, caso contrário não é garantido que a saída emitida será considerada correta;
- Na saída, toda linha deve terminar com o caractere '\n';
- Utilize o URI Online Judge (http://www.urionlinejudge.com.br) e submeta sua solução para correção automática.

Referências Autorais

Os exercícios apresentados nesta lista foram extraídos do URI Online Judge (http://www.urionlinejudge.com.br). Acesse a URL apresentada abaixo do título de cada problema para proceder com a correção automática de sua solução e, também, para consultar a autoria do enunciado.

Problema A: Combinador

https://www.urionlinejudge.com.br/judge/pt/problems/view/1238

Implemente um programa denominado combinador, que recebe duas strings e deve combiná-las, alternando as letras de cada string, começando com a primeira letra da primeira string, seguido pela primeira letra da segunda string, em seguida pela segunda letra da primeira string, e assim sucessivamente. As letras restantes da cadeia mais longa devem ser adicionadas ao fim da string resultante e retornada.

Entrada

A entrada contém vários casos de teste. A primeira linha contém um inteiro N que indica a quantidade de casos de teste que vem a seguir. Cada caso de teste é composto por uma linha que contém duas cadeias de caracteres, cada cadeia de caracteres contém entre 1 e 50 caracteres inclusive.

Saída

Combine as duas cadeias de caracteres da entrada como mostrado no exemplo abaixo e exiba a cadeia resultante.

Entrada	Saída
2	TopCoder
Tpo oCder	abab
aa bb	

Problema B: Mensagem Oculta

https://www.urionlinejudge.com.br/judge/pt/problems/view/1272

Textos podem conter mensagens ocultas. Neste problema a mensagem oculta em um texto é composto pelas primeiras letras de cada palavra do texto, na ordem em que aparecem.

É dado um texto composto apenas por letras minúsculas ou espaços. Pode haver mais de um espaço entre as palavras. O texto pode iniciar ou terminar em espaços, ou mesmo conter somente espaços.

Entrada

A entrada contém vários casos de testes. A primeira linha de entrada contém um inteiro N que indica a quantidade de casos de teste que vem a seguir. Cada caso de teste consiste de uma única linha contendo de um a 50 caracteres, formado por letras minúsculas ('a'-'z') ou espaços (' '). Atenção para possíveis espaços no início ou no final do texto!

Nota: No exemplo de entrada os espaços foram substituídos por pequenos pontos ('·') para facilitar o entendimento dos exemplos.

Saída

Para cada caso de teste imprima a mensagem oculta no texto de entrada.

Entrada	Saída
4	coder
compete ·online ·design ·event ·rating ··u ····r ·i ··o ····n ·l ··i ····n ··e ···	urionline
	redoc
round · · elimination · during · · onsite · · contest	

Problema C: Frequência de Letras

https://www.urionlinejudge.com.br/judge/pt/problems/view/1255

Neste problema estamos interessados na frequência das letras em uma dada linha de texto.

Especificamente, deseja-se saber qual(is) a(s) letra(s) de maior frequência do texto, ignorando o "case sensitive", ou seja maiúsculas ou minúsculas (sendo mais claro, "letras" referem-se precisamente às 26 letras do alfabeto).

Entrada

A entrada contém vários casos de teste. A primeira linha contém um inteiro N que indica a quantidade de casos de teste. Cada caso de teste consiste de uma única linha de texto. A linha pode conter caracteres "não letras", mas é garantido que tenha ao menos uma letra e que tenha no máximo 200 caracteres no total.

Saída

Para cada caso de teste, imprima uma linha contendo a(s) letra(s) que mais ocorreu(ocorreram) no texto em minúsculas (se houver empate, imprima as letras em ordem alfabética).

Entrada	Saída
3	СО
Computers account for only	inptu
5% of the country's	е
commercial electricity	
consumption.	
Input	
frequency letters	

Problema D: Quadrados

https://www.urionlinejudge.com.br/judge/pt/problems/view/2327

Chama-se de quadrado mágico um arranjo, na forma de um quadrado, de $N \times N$ números inteiros tal que todas as linhas, colunas e diagonais têm a mesma soma.

Por exemplo, o quadrado abaixo

276 951 438

é um quadrado mágico de soma 15, pois todas as linhas (2 + 7 + 6 = 15, 9 + 5 + 1 = 15 e 4 + 3 + 8 = 15), colunas (2 + 9 + 4 = 15, 7 + 5 + 3 = 15 e 6 + 1 + 8 = 15) e diagonais (2 + 5 + 8 = 15 e 6 + 5 + 4 = 15) têm a mesma soma (15).

Escreva um programa que, dado um quadrado, determine se ele é magico ou não e qual a soma dele (caso seja mágico).

Entrada

A entrada contém um único conjunto de testes, que deve ser lido do dispositivo de entrada padrão (normalmente o teclado). A primeira linha da entrada de cada caso de teste contém um inteiro N (2 < N < 10). As N linhas seguintes contêm N inteiros cada, separados por

exatamente um espaço em branco. Os inteiros dentro do quadrado são todos maiores que 0 (zero) e menores que 1.000.

Saída

Seu programa deve imprimir, na saída padrão, uma única linha com um inteiro representando a soma do quadrado mágico ou -1 caso o quadrado não seja mágico.

Entrada	Saída
3	15
2 7 6	
9 5 1	
4 3 8	
3	-1
1 2 3	
4 5 6	
7 8 9	
4	34
16 3 2 13	
5 10 11 8	
9 6 7 12	
4 15 14 1	

Problema E: Justificador

https://www.urionlinejudge.com.br/judge/pt/problems/view/1273

Nós temos algumas palavras e queremos justificá-las à direita, ou seja, alinhar todas elas à direita. Crie um programa que, após ler várias palavras, reimprima estas palavras com suas linhas justificadas à direita.

Entrada

A entrada contém diversos casos de testes. A primeira linha de cada caso de teste conterá um inteiro N ($1 \le N \le 50$), que indicará o número de palavras que virão a seguir. Cada uma das N palavras contém no mínimo uma letra e no máximo 50 letras maiúsculas ('A'-'Z'). O fim da entrada é indicado por N = 0.

Saída

Para cada caso de teste imprima as palavras inserindo tantos espaços quanto forem necessários à esquerda de cada palavra, para que elas apareçam todas alinhadas à direita e na mesma ordem da entrada. Deixe uma linha em branco entre os casos de teste. Não deixe espaços sobrando no final de cada linha nem imprima espaços desnecessários à esquerda, de modo que pelo menos uma das linhas impressa em cada texto inicie com uma letra.

Entrada	Saída
3	вов
вов	TOMMY
TOMMY	JIM
JIM	
4	JOHN
JOHN	
JAKE	JAKE
ALAN	ALAN
BLUE	BLUE
4	
LONGEST	LONGEST
A	A
LONGER	
SHORT	LONGER
0	SHORT

Problema F: Sudoku

https://www.urionlinejudge.com.br/judge/pt/problems/view/1383

O jogo de Sudoku espalhou-se rapidamente por todo o mundo, tornando-se hoje o passatempo mais popular em todo o planeta. Muitas pessoas, entretanto, preenchem a matriz de forma incorreta, desrespeitando as restrições do jogo.

Sua tarefa neste problema é escrever um programa que verifica se uma matriz preenchida é ou não uma solução para o problema.

A matriz do jogo é uma matriz de inteiros 9 x 9. Para ser uma solução do problema, cada linha e coluna deve conter todos os números de 1 a 9. Além disso, se dividirmos a matriz em 9 regiões 3 x 3, cada uma destas regiões também deve conter os números de 1 a 9. O exemplo abaixo mostra uma matriz que é uma solução do problema.

$$\begin{pmatrix} 1 & 3 & 2 & 5 & 7 & 9 & 4 & 6 & 8 \\ 4 & 9 & 8 & 2 & 6 & 1 & 3 & 7 & 5 \\ 7 & 5 & 6 & 3 & 8 & 4 & 2 & 1 & 9 \\ \hline 6 & 4 & 3 & 1 & 5 & 8 & 7 & 9 & 2 \\ 5 & 2 & 1 & 7 & 9 & 3 & 8 & 4 & 6 \\ 9 & 8 & 7 & 4 & 2 & 6 & 5 & 3 & 1 \\ \hline 2 & 1 & 4 & 9 & 3 & 5 & 6 & 8 & 7 \\ 3 & 6 & 5 & 8 & 1 & 7 & 9 & 2 & 4 \\ 8 & 7 & 9 & 6 & 4 & 2 & 1 & 5 & 3 \end{pmatrix}$$

Entrada

São dadas várias instâncias. O primeiro dado é o número **n** > 0 de matrizes na entrada. Nas linhas seguintes são dadas as **n** matrizes. Cada matriz é dada em 9 linhas, em que cada linha contém 9 números inteiros.

Saída

Para cada instância seu programa deverá imprimir uma linha dizendo "Instancia \mathbf{k} ", onde \mathbf{k} é o número da instância atual. Na segunda linha, seu programa deverá imprimir

"SIM" se a matriz for a solução de um problema de Sudoku, e "NAO" caso contrário. Imprima uma linha em branco após cada instância.

Entrada	Saída
2	Instancia 1
1 3 2 5 7 9 4 6 8	SIM
4 9 8 2 6 1 3 7 5	
7 5 6 3 8 4 2 1 9	Instancia 2
6 4 3 1 5 8 7 9 2	NAO
5 2 1 7 9 3 8 4 6	
9 8 7 4 2 6 5 3 1	
2 1 4 9 3 5 6 8 7	
3 6 5 8 1 7 9 2 4	
8 7 9 6 4 2 1 5 3	
1 3 2 5 7 9 4 6 8	
4 9 8 2 6 1 3 7 5	
7 5 6 3 8 4 2 1 9	
6 4 3 1 5 8 7 9 2	
5 2 1 7 9 3 8 4 6	
9 8 7 4 2 6 5 3 1	
2 1 4 9 3 5 6 8 7	
3 6 5 8 1 7 9 2 4	
8 7 9 6 4 2 1 3 5	