

FÍSICA 2 – PRIMER PARCIAL – Z2051 – 01/08/2022

Apellido/s, Nombre/s: e-mail:

Legajo:

3 4 5 6	7	Calificación
Calificación: número d		- Same and a

Calificación: número de respuestas correctas + 1

1) La pared de la figura transfiere calor en régimen estacionario, la superficie del lado izquierdo está a temperatura T₁ y la del lado derecho a temperatura T₂. El aire del lado izquierdo de la pared está a temperatura θ₁ = 48 °C y del lado derecho a temperatura θ₂ = 5 °C. El espesor la temperatura T₂. Considere h₁ = 3,5 W/(m².K) del lado izquierdo y h₂ = 5,6 W/(m².K) del lado derecho.

- 2) Un gas ideal ($c_P = 5R/2$) es llevado desde el estado de equilibrio A (con $P_A = 100$ kPa y $V_A = 40 \ \ell$) hasta el estado de equilibrio B (con $P_B = 300$ kPa), en forma adiabática reversible. Calcule la variación de energía interna ΔU_{AB} entre los estados A y B. [R = 8,314 J/(mol.K)]
- 3) Una máquina frigorífica trabaja entre una fuente fría formada por una mezcla de hielo en equilibrio con agua líquida a presión normal y otra fuente a 150 °C.
 El calor latente de fusión del hielo es L_F = 334 kJ/kg
 - a) Justifique si es posible que la eficiencia de la máquina mencionada sea 3/2.
 - b) Calcule qué masa de agua se solidificaría por ciclo en la fuente fría si la máquina fuese reversible y entregara 45 kJ de calor por ciclo a la fuente caliente.
- 4) Un sistema formado por dos moles de un gas ideal tiene una presión de 60 kPa en el estado de equilibrio A y otra de 200 kPa en el estado de equilibrio B. Tenga en cuenta que en ambos estados el sistema tiene la misma temperatura. Calcule la variación de entropía $S_B S_A$. [R = 8,314 J/(mol.K)] $C_V = \frac{3}{2} R$
- La figura representa una superficie cilíndrica y cinco cargas puntuales ubicadas en un plano de simetría de dicha superficie cilíndrica. El flujo del campo electrostático a través de la superficie cilíndrica es Φ_E = 3,24 kV.m. Calcule la carga q₃.
 Datos: q₁ = 25 nC; q₂ = 32 nC; q₄ = −18 x; q₅ = 60 nC; ε₀ = 8,85×10⁻¹² C/(V.m).

- 6) El segmento resaltado de la figura tiene carga Q = -20 nC distribuidos uniformemente en toda su extensión y está ubicado en el vacío. Determine:
 - a) el potencial electrostático en el punto P = (0; 0,8 m), respecto del infinito;
 - b) el sentido de cada componente del vector campo electrostático en el punto P (sin calcularlo).

Datos:
$$K_0 = 9 \times 10^9 \frac{\text{V.m}}{\text{C}}$$
; $\int \frac{du}{\sqrt{u^2 + a^2}} = \ln|x + \sqrt{x^2 + a^2}| + C$

7) El circuito de la figura se encuentra en régimen estacionario y las fuentes son ideales. Calcule la potencia que intercambia la batería E₃ con el resto del circuito (indique si cede o recibe energía)

Datos: $E_1 = 18 \text{ V}$; $E_2 = 8 \text{ V}$; $E_3 = 10 \text{ V}$; $R_1 = 8 \Omega$; $R_2 = 2 \Omega$

