8. Sensores de presión y flujo

Julio Vega

julio.vega@urjc.es

Sensores y actuadores

(CC) Julio Vega

Este trabajo se entrega bajo licencia CC BY-NC-SA. Usted es libre de (a) compartir: copiar y redistribuir el material en cualquier medio o formato; y (b) adaptar: remezclar, transformar y crear a partir del material. El licenciador no puede revocar estas libertades mientras cumpla con los términos de la licencia.

Contenidos

- Sensor de presión
- 2 Tipos de sensores de presión según ppio. transducción
- 3 Sensor de flujo
- 4 Tipos de sensores de flujo según ppio. de operación

- Sensor presión: transductor entre fuerza aplicada y señal eléctrica.
 - ullet Por tanto, sensor presión = una aplicación de los sensores de fuerza.
 - La diferencia: sensor de presión incorpora diafragma para medir F.
- Normal/ sensor presión usa presión barométr. como valor referencia.
 - Ud. SI presión = Pa, pero al tratar presión barom. se usa bar o atm.
 - $1bar = 0,9869atm \iff 1atm = 1,01325bar$
 - $1bar = 100000Pa \iff 1mbar = 1hPa(1hPa = 100Pa)$
- Tipos \cong sensor humedad (T.6): absoluto, diferencial y relativo.
 - Presión absoluta: incluyen cámara sellada con $P_{ref} = P_0 = vacio$.
 - P. difer.: funciona por diferencia presiones $P_{ref} = P_1$ y $P_{detectada} = P_2$.
 - P. relativa \cong p. diferencial, con P_{ref} =presión atmosférica.

- Usa el ppio. de transducción resistivo mediante tubo de Bourdon.
 - ullet Cuando \uparrow presión del interior del tubo \Longrightarrow tiende a enderezarse.
 - Y este movimiento se transmite a la parte móvil de un potenciómetro.

$$V = V_S \frac{R}{R_0} \tag{1}$$

 $V\,$: tensión entre terminales del potencióm. por cambio de presión [V]

R : resistencia debida a un cambio en la presión $[\Omega]$

 R_0 : resistencia debida a P_{ref} (vacío, p. atmosf., u otra) $[\Omega]$

 $V_{\mathcal{S}}$: voltaje de alimentación [V]

- Vtjas.: bajo coste, no requiere amplif., robusto y versátil.
- Dvtjas.: presenta ↑ histéresis (H) y es ↑↑ sensitivo a vibraciones.
 - H: tendencia material a conservar alteración en ausencia estímulo.

Figura: Figura extraída de Wikimedia Commons

- En este ppio. de transducción se usan materiales piezorresistivos.
 - Con estos materiales se configura una galga extensiom. cuya labor...
 - ...es detectar cambio de presión y traducirlo en cambio de resistividad.
- Tipos de galgas:
 - Metálicas (Fig.): formada por red resistiva en puente Wheatstone.
 - $+: \downarrow$ coste, resistente vibraciones. $-: \downarrow GF$.
 - Fina película: es el diafragma sensitivo a presión. Grosor = GF.
 - +: ídem metálicas. -: no soporta \tau\tag{cargas eléctricas (fina película).
 - μ Electrónica: la usada para su implementación. Sensor = sustrato.
 - Normal/ silicio monocristalino tipo N + piezorresistencia tipo P.
 - +: \downarrow coste, \uparrow *GF*, $\downarrow \downarrow$ tamaño sensores $\approx 1 mm^2$. -: \uparrow dependencia T.
 - Alambre: que se coloca bien tenso en superficie detectora de presión.
 - Poco usadas por: ↑ sensitividad a vibración y ↑ fragilidad.

- Material piezoeléctrico transforma esfuerzo aplicado a un voltaje.
 - Placa PE de A conocida colocada de manera normal a F ejerce presión.
- Configuraciones:
 - Colocar dos discos de material PE interconectados. Buena resolución.
 - Superponer, con las polaridades opuestas, dos láminas de material PE.
- Ventajas:
 - Facilidad para fabricación en tamaño reducido.
 - Incluso posibilidad de fabricar en proceso de microelectrónica.
 - ↑ ancho de banda.
 - J sensitividad a la vibración.
- Desventajas:
 - \(\gamma\) sensitividad a la temperatura.
 - No apropiado para medir presión estática, pues $\downarrow V$ generado por PE.
 - Requiere de circuitos de acondicionamiento de señal robustos.

- Fuelle encargado de captar presión, que traduce en vibración oscilador.
- Para evitar cambios de P por T.^a, incluyen normal/ sensor de T^a.
- Bobina excitadora: induce campo en oscil. y este en bob. medición.
 - Requiere que oscilador esté fabricado en material ferromagnético.
 - Vibración depende del material, densidad, mód. Young, longitud, etc.
- Circuito amplif.: transforma señal bobina medición en señal de voltaje.

$$f = \frac{1}{2L} \sqrt{\frac{F}{A\rho}} \tag{2}$$

f: frecuencia de vibración del oscilador $[Hz = \frac{1}{s}]$, L: longitud [m]

F: fuerza que le imprime el fuelle $[N = \frac{kg \cdot m}{s^2}]$

ho : densidad $(=\frac{m}{V})$ del oscilador $[\frac{kg}{m^3}]$, A : área de arnothing transversal $[m^2]$

- Transducción entre fuerza ejercida sobre diafragma de A conocida...
 - ...y dpzmto. de uno de los electrodos que forman capacitor variable.
- Recordar: condensador, formado por 2 placas separadas por el vacío.
 - Si se introduce dieléctrico entre placas, capacitancia $\uparrow 1$ factor: ε_r .

$$C = \frac{\varepsilon_0 A}{d} \implies + dielectrico \implies C = \frac{\varepsilon_0 \varepsilon_r A}{d}$$
 (3)

C : capacitancia del capacitor según su geometría [F, Faradio]

d: distancia entre electrodos $[m^2]$

 ε_0 : permitividad del vacío $\left[\frac{F}{m}\right]$

 ε_r : permitividad relativa del medio $\left[\frac{F}{m}\right]$

A: área de solape $[m^2]$

Julio Vega (GSvC, URJC)

Figura: Figura extraída de Wikipedia

- Funciona calculando la diferencia de presión fluido vs. atmosférica.
 - Presión líquido en recipiente (hidrostática) $p = \rho \cdot g \cdot h$. Demo:

$$p = \frac{F}{S} = \frac{P}{S} = \frac{m \cdot g}{S} = \frac{\rho \cdot V \cdot g}{S} = \frac{\rho \cdot S \cdot h \cdot g}{S} \implies p = \rho \cdot g \cdot h \quad (4)$$

- Confg. básica: tubo de vidrio en U con líquido (T.ª vasos comunic.).
 - $p_A = p_B \implies \rho_A \cdot g \cdot h_A = \rho_B \cdot g \cdot h_B \implies \rho_A \cdot h_A = \rho_B \cdot h_B$.
- 1 rama abierta a atmósfera; otra, a depósito con fluido cuya p medir.
 - Fluido contacta con líquido y se alcanza equilibrio \Longrightarrow deducir p:

$$p = p_{atm} + \rho_m gh - \rho gd \implies (si\rho \ll \rho_m)p = p_{atm} + \rho_m gh$$
 (5)

 ρ_m : densidad líquido del manómetro (agua, aceite, mercurio) $\left[\frac{kg}{m^3}\right]$: densidad fluido del depósito cuya presión se quiere medir $\left[\frac{kg}{m_0^2}\right]$ 8. Sensores de presión y flujo

Figura: Figuras extraídas de Wikimedia Commons

- Ya vimos en Sec. 1 el uso de este tubo curvado como elem. sensitivo.
 - Un extremo está cerrado \Longrightarrow la presión se aplica por el otro extremo.
 - Cuando †presión, tubo tiende a adquirir sección circular y enderezarse.
- En este caso, elem. móvil conectado a aguja (en vez de potencióm.).
 - El mvto. de esa aguja refleja la presión ejercida sobre una escala.

[Ejercicio: cálculo de presión en manómetro con resorte como indicador]

Figura: Figura extraída de Wikimedia Commons

- Flujo: cantidad de sustancia que pasa por una sección en un instante.
- Tipos detección líquido/gas: flujo volumétrico, vectorial, flujo másico.
- F. volum. se calcula conociendo área del conducto y velocidad fluido:

$$Q = \frac{volumen}{t} = \frac{A \cdot \Delta s}{t} \implies (v = \frac{\Delta s}{t}) \implies Q = A \cdot v$$
 (6)

Q : flujo volumétrico $\left[\frac{m^3}{s}\right]$

v: velocidad de la sustancia $\left[\frac{m}{s}\right]$

A: área del conducto $[m^2]$

8. Sensores de presión y flujo

Figura: Extraídas de Wikimedia Commons. (1) Ec. general Bernoulli; (2) $h_1 = h_2$

- Conocida Δp en conducto \Longrightarrow se puede saber dirección flujo.
 - El flujo siempre irá de la zona de mayor presión a la de menor.
- Con Δp + ec. Bernoulli \Longrightarrow se puede conocer las velocidades.
 - Ppio./Ec. Bernoulli: describe comportamiento fluido en corriente.
 - Para conocer relación entre presiones y velocidades, se supone $h_1 = h_2$.

$$\frac{v^2\rho}{2} + p + \rho gh = cte. \implies \frac{v_1^2\rho}{2} + p_1 + \rho gh_1 = \frac{v_2^2\rho}{2} + p_2 + \rho gh_2 \implies (7)$$

$$\implies (h_1 = h_2) \implies \frac{v_1^2 \rho}{2} + p_1 = \frac{v_2^2 \rho}{2} + p_2$$
 (8)

 p_x : presiones [Pa]; h_x : alturas [m]; ρ : densidad $\left[\frac{kg}{m^3}\right]$; v_x : vel. $\left[\frac{m}{s}\right]$

- Lo anterior solo válido cuando la sección en ambos puntos es igual.
- ullet Si sección conducto \sim \Longrightarrow necesario recurrir a ecuación continuidad:
 - $\bullet \ \, \forall \text{flujo incompresible fluye en conducto de } \mathcal{S} \sim \implies \forall \textit{pto.}, \dot{\textit{m}} = \textit{cte}.$
- F. másico (\dot{m}) : cantidad masa que pasa por sección en un instante:

$$\dot{m} = \rho \cdot v \cdot S \implies \rho \cdot v_1 \cdot S_1 = \rho \cdot v_2 \cdot S_2 \implies v_1 \cdot S_1 = v_2 \cdot S_2$$
 (9)

 ρ : densidad $[\frac{kg}{m^3}]$; v : velocidad $[\frac{m}{s}]$; S : sección m^2

- Corolario: si $S_2 < S_1 \implies v_2 > v_1 \implies (\text{Ec. 8}) \implies p_2 < p_1$
- Al aplicar Ec. 9 en Ec. 8 se obtiene v en un pto. según Δp :

$$p_1 - p_2 = \frac{v_2^2 \rho}{2} - \frac{v_1^2 \rho}{2} \implies (Ec.9) \implies p_1 - p_2 = \frac{v_2^2 \rho}{2} - \frac{\left(\frac{v_2 \cdot S_2}{S_1}\right)^2 \rho}{2} \quad (10)$$

Figura: de cairoinstrumentation.com (1), Wikipedia (2,3,4)

- Medir p antes/después de obstructor conocido para calcular flujo.
- Tipos:
 - Placa de orificio (1): el +sencillo y +barato. Variante: tobera (2).
 - Tubo Venturi (3): $\varnothing_{garganta} \ll \varnothing_{in} = \varnothing_{out} = \varnothing_{conducto}$.
 - Tubo Dall: similar al Venturi, pero \emptyset_{in} sufre reducción drástica.
 - T. Prandtl (4): combina tubo Pitot(mide p_{total})+manómetro($p_{estatica}$).
 - Mide Δp =presión dinámica = $p_t p_e \implies$ (Ec.Bernoulli) saber v y Q.

Figura: Figuras extraídas de Wikipedia

- Igual que ppio. anterior, usa obstructor, pero se varía área y p = cte.
- Se llaman caudalímetros de área variable: el +usado es el rotámetro.
- ullet Tubo cónico con flotador empujado hacia arriba por $F_{arrastre}...$
 - ullet ...y hacia abajo por $F_{gravedad}$, hasta alcanzar un punto equilibrio.
- Tubo suele ser vidrio: permite escala y leer directa/ mvto. flotador.
 - Para $p \uparrow \uparrow$ se usa metal, y mvto. medido por otro sensor.
- Es el mecanismo usado tb. en los respiradores de medicina (Fig. 3).

- Se basa en ley inducción Faraday (ver T.1 y T.3, tacogenerador).
 - Conductor se mueve \perp a campo magnét. $\implies V_{inducido} \propto v_{conductor}$.
- En este caso, conductor = fluido \Longrightarrow necesario medir v_{fluio} .
 - Vemos que $V_{inducido}$ es independiente de p, T. o viscosidad fluido.
 - Pero sí es necesario que fluido a medir tenga una conductividad alta.
- Compuesto por 2 sistemas: generar campo magnét. (1) y medir (2).
 - 1: bobina + fuente de excitación (CC o CA).
 - 2: 2 electrodos (\perp eje bobina) que miden $V_{inducido}$ + amplificador.
 - Y aislante, para evitar que $V_{inducido}$ se disipe en tubería (conductor).

- Basado en efecto Doppler: medir atenuación frec. emitida-recibida.
 - Ya lo estudiamos en T.1, para piezoeléctricos, y en T.5 con detalle.
 - Emisor/receptor US, cuya onda ($\approx 1 MHz$) no \perp dirección flujo.
 - Sensor US mide $v_{fluido} \implies (Ec.Bernoulli) \implies$ conocer Q.
- ullet Basado ppio. tiempo de tránsito: medir t_{onda} entre emisor-receptor.
 - Emisor/receptor se encuentran diametralmente opuestos (θ , Fig. 2).
 - Pros: $v_s = cte. \implies \Delta t \propto v \implies \text{cálculos sencillos}.$
 - Contras: $\Delta t \downarrow \downarrow \implies$ dificil implementación.

$$\Delta t = \frac{2lv\cos\theta}{v_{\varepsilon}^2} \tag{11}$$

 v_s : vel. sonido $\left[\frac{m}{s}\right]$; v: vel. fluido $\left[\frac{m}{s}\right]$; l: dist. emisor-receptor m

Figura: modificada de original extraída de instrumentationtoolbox.com

- Basado <u>efectos fuerzas de Coriolis</u> presentes en mvto. rotacional.
 - Objeto se acelera al moverse sobre radio de disco en rotación (T.3).
- Permite medir directa/ flujo másico (importante industria química).
- Son precisos y poco sensitivos a factores externos, pero son caros.
- Fcto.: pasar flujo por manguera flexible que oscila continua/.
 - Generándose f_{Coriolis} que actúan sobre partículas del fluido...
 - ...y estas provocan que manguera se tuerza respecto a ptos. anclaje.
- Se usan sensores proximidad cuyo $\Delta t_{registro}$ y \dot{m} se relacionan así:

$$\dot{m} = \frac{k_s}{8r^2} \Delta t \tag{12}$$

 k_s : rigidez del sistema; r: radio manguera [m]

Figura: extraídas de (1) fruugo.es; (2) omega.com

- ullet Sensor de turbina (1): fluido f pasa por turbina $t \implies \omega_t pprox v_f$
 - Y se mide ω_t (vel. angular turbina) normal/ con encoder magnét.
- ullet Sensor dpzmto. positivo: mide Q desplazando $V's_{fluido}$ conocidos.
 - Flujo continuo mueve las poleas ⇒ cámaras llenan/vacían de fluido.
 - $V_{camaras}$ es conocido \Longrightarrow conociendo rpm poleas \Longrightarrow saber Q.
 - Es el mecanismo usado, p.ej., en los contadores de casa (Fig. 2).
- Sensor de vórtice: tras pasar fluido por objeto genera vórt. Karman.
 - La frecuencia con que aparecen estos vórtices es $\propto v_{fluido} \propto Q$.
 - Contar vórtices: sensor presión, capacitivo, piezoeléctrico o US.

8. Sensores de presión y flujo

Julio Vega

julio.vega@urjc.es

Sensores y actuadores