CHORUS HOSTING

INDICE

1	Introduzione	2
2	Protocollo di comunicazione	2
3	Programmazione interfaccia	3
	Struttura frame di comunicazione seriale	
5	Inizio colloquio (enquiry)	5
6	Programmazione dei campioni	6
7	Gestione dei risultati	9
	Applicazione di test	

Rev 6 - data: 22-01-2009

1 INTRODUZIONE

Programmazione campioni

Archiviazione dei risultati

2 PROTOCOLLO DI COMUNICAZIONE

Il seguente documento descrive il protocollo di comunicazione seriale tra il CHORUS, prodotto da Diesse Diagnostica Senese S.p.A., e un Computer, locale o remoto. Per Computer locale intendiamo un personal computer collocato nei pressi del CHORUS. Per Computer remoto intendiamo una macchina in grado di gestire l'accettazione dei pazienti e la maggior parte degli strumenti computerizzati presenti nei vari laboratori. In questo caso si parla spesso di Host.

In generale per *CHORUS Hosting* intendiamo l'interfacciamento tra analizzatore e Computer, al fine di programmare i test da eseguire sullo strumento e ricevere i risultati corrispondenti con l'ausilio di un Computer. In particolare quest'ultimo può implementare una o entrambe le seguenti funzionalità:

- 1. ricevere dal CHORUS la Sample-List e trasmettere al CHORUS la relativa Job-List
- 2. ricevere i risultati dei campioni.

Lo scambio di dati avviene tramite protocollo seriale attraverso una connessione RS-232C.

Rev 6 - data: 22-01-2009

3 PROGRAMMAZIONE INTERFACCIA

La piedinatura del cavo da utilizzare per la connessione ad host è rappresentata nella seguente figura (i piedini rappresentati come non collegati possono essere collegati o meno in quanto non utilizzati):

Standard Serial Cable

Lo scambio dei dati è implementato con interfaccia seriale RS-232C programmata con i seguenti parametri:

bitrate: impostabile da WinChorus++ attraverso il parametro hardware V*ari \ Velocità di hosting* tra i seguenti valori (il bitrate predefinito è 38400 baud):

Bitrate	Parametro
38400 baud	0
19200 baud	1
9600 baud	2
4800 baud	3
2400 baud	4
1200 baud	5
600 baud	6

numero di bit:8 bit di stop: 1 bit parità: no

porta seriale: impostabile da WinChorus++ attraverso il parametro hardware *Vari \ Porta seriale hosting* tra i valori (la porta seriale predefinita è HOST):

Porta	Parametro
HOST	1
EXT-SERV	2

Nota:

L'impostazione **bitrate** ha effetto solo sul connettore *HOST*.

Il bitrate del connettore EXT-SERV è fisso a 38400 baud.

Nota:

l'utilizzo del connettore HOST è possibile solo dalla versione del firmware 2.09 rev10 o superiore.

Nota:

L'ordine dei byte utilizzato è *little-endian*: la memorizzazione inizia dal byte meno significativo per finire col più significativo (ad es. un campo di tipo word dal valore di **258** viene codificato come **0x0201**).

4 STRUTTURA FRAME DI COMUNICAZIONE SERIALE

Nota:

all' interno di ogni frame, i caratteri variabili sono evidenziati in grassetto mentre i caratteri specifici del tipo di frame sono evidenziati in grigio.

La struttura dei frame utilizzati nella comunicazione seriale è la seguente:

Mittente — > Destinatario

STX N	CMD D ₁	D_2		<i>D</i> _{N-1}	CS
-------	--------------------	-------	--	-------------------------	----

Campo	Descrizione	Valore	Tipo di dato	Bytes
STX	Start of Text (carattere di inizio del frame)	0x02	byte	1
Ν	Lunghezza del frame (esclusi i caratteri STX, N, CS)		byte	1
CMD	Comando che si vuole inviare all'interlocutore		byte	1
D_1D_{N-1}	Eventuali caratteri di dati		byte[]	N-1
CS	Check-sum del frame (esclusi i caratteri STX, CS), calcolato come XOR degli N + 1 caratteri contenuti		byte	1

Nota:

nella descrizione dei valori contenuti all'interno dei frame, la notazione esadecimale **0xGH** rappresenta il valore **(G * 16) + H** e viene usata per definire valori non quantitativi.

Nota:

i tipi di dato **string** includono un terminatore rappresentato dal carattere **0x00**.

Es: la stringa testo viene rappresentata con la sequenza 0x74 0x65 0x73 0x74 0x6F 0x00.

5 INIZIO COLLOQUIO (ENQUIRY)

Prima di richiedere la programmazione dei campioni (vedi cap. 6) oppure inviare i risultati (vedi cap. 7), il CHORUS verifica la disponibilità del Computer inviando il seguente frame:

Campo	Descrizione	Valore	Tipo di dato	Bytes
ENQ	Enquiry	0x05	byte	1
InstrID	Codice identificativo dello strumento CHORUS	0x43	byte	1

Il Computer deve rispondere con il seguente frame:

Campo	Descrizione	Valore	Tipo di dato	Bytes
EOT	End of Text	0x04	byte	1

Se, a fronte del comando di inizio colloquio, il Computer non risponde, verrà visualizzato un messaggio di errore di timeout.

Esempio:

6 PROGRAMMAZIONE DEI CAMPIONI

In seguito alla ricezione di ciascun codice campione inserito dall'operatore, il Computer invia al CHORUS la lista dei test da eseguire su ogni campione. Questa tabella prende il nome di Job-List (J-List).

Una volta stabilito il colloquio tra Computer e CHORUS (vedi cap. 5), quest'ultimo invia, per ogni campione inserito, il seguente frame:

Campo	Descrizione	Valore	Tipo di dato	Bytes
JListCmd	Comando di richiesta record della J-List	0xD2	byte	1
StorableRec	Numero di test ancora memorizzabili		byte	1
SampleCode	Codice del campione (incluso il terminatore)		string	19

Il Computer risponde con il frame:

Campo	Descrizione	Valore	Tipo di dato	Bytes
PedFlag	Flag di campione pediatrico (disponibile dalla versione 2.09 rev10 e successive)	01	byte	1
TestID₁TestID _K	Identificativi dei test da eseguire sul campione	1999	word[]	2 * K

Dove K rappresenta il numero di test associati al campione. Se, per un certo campione, occorre eseguire un solo test, il frame conterrà solamente un campo TestID.

Nota:

nel Computer occorre creare una tabella dei test validi abilitati, del tipo Nome test / ID Test, in modo da potere inviare allo strumento gli identificativi dei test da eseguire.

Nota:

il codice campione gestito dal CHORUS deve essere uguale o inferiore a 15 caratteri. Tuttavia, per gestire anche campioni di controllo e calibratori, il codice deve poter contenere fino a 18 caratteri. Quindi il campo SampleCode contiene 19 caratteri (compreso il terminatore).

Nota:

poichè il numero totale di test che il CHORUS può memorizzare ha un limite, il Computer non deve inviare un numero di *TestID* superiore a *StorableRec*. Esiste pertanto la possibilità che non si riescano ad inviare tutti i *TestID* relativi ad un determinato campione. In una richiesta successiva, il Computer dovrà riprendere l'invio dal punto in cui era rimasto.

Dopo aver ricevuto i dati per l'ultimo campione, il CHORUS invia il seguente frame:

Campo	Descrizione	Valore	Tipo di dato	Bytes	
JlistEnd	Comando di fine invio J-List	0xD3	byte	1	

Il Computer termina la conversazione con il seguente frame:

Computer ———			CHORU	S
STX	1		EOT	CS

CHORUS HOSTING

Esempio:

sul campione S1 non deve essere eseguito alcun test;

sul campione S2 deve essere eseguito il test CMV-G (ID 1);

sul campione S3 devono essere eseguiti i test CMV-G (ID 1) e RV-G (ID 2).

CHORUS -> Computer

0x02	0x15	0xD2	0x3A	0x53	0x31	0x00	0x00	0x00	0x00	0x00	0x00
0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x9F
Computer -> CHORUS											

Computer

| 0x02 | 0x15 | 0x04 | 0x53 | 0x31 | 0x00 |
|------|------|------|------|------|------|------|------|------|------|------|------|
| 0x00 | 0x73 |

CHORUS ---> Computer

0x02	0x15	0xD2	0x3A	0x53	0x32	0x00	0x00	0x00	0x00	0x00	0x00
0x00	0x9C										

Computer -**CHORUS**

| 0x02 | 0x17 | 0x04 | 0x53 | 0x32 | 0x00 |
|------|------|------|------|------|------|------|------|------|------|------|------|------|
| 0x00 | 0x01 | 0x00 | 0x73 |

CHORUS \longrightarrow Computer

0x02	0x15	0xD2	0x3A	0x53	0x33	0x00	0x00	0x00	0x00	0x00	0x00
0x00	0x9D										

Computer -> **CHORUS**

| 0x02 | 0x19 | 0x04 | 0x53 | 0x33 | 0x00 |
|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| 0x00 | 0x01 | 0x00 | 0x02 | 0x00 | 0x7E |

CHORUS -> Computer 0x02 0x02 0xD3 0x43 0x92

CHORUS Computer -0x02 0x01 0x04 0x05

7 GESTIONE DEI RISULTATI

Al termine di un ciclo, dalla finstra dei risultati, oppure in un qualsiasi momento dall'archivio sessioni, il CHORUS può inviare al Computer i risultati associati a ciascun campione, con lo scopo di archiviarli ed eventualmente elaborarli.

Una volta stabilito il colloquio tra Computer e CHORUS (vedi cap. 5), quest'ultimo invia, per ogni campione presente nella sessione, il seguente frame:

CHORUS ---> Computer

STX	50	ResFrame	SampleCode	TestDesc	Report	Titre	MeasUnit	CS
-----	----	----------	------------	----------	--------	-------	----------	----

Campo	Descrizione	Valore	Tipo di dato	Bytes
ResFrame	Frame contentente la stringa del risultato	0xD7	byte	1
TestDesc	Descrizione del test (incluso il terminatore)		string	7
Report	Referto (P = positivo, N = negativo, D = dubbio)		char	1
Titre	Titolo (incluso il terminatore)		string	12
MeasUnit	Unità di misura (incluso il terminatore)		string	10

Il Computer risponde con il seguente frame:

Terminato l'invio di tutti i frame dei risultati, il CHORUS invia il seguente frame di chiusura:

Campo	Descrizione	Valore	Tipo di dato	Bytes
ResEnd	Comando di fine invio dei risultati	0xD8	byte	1

Il Computer termina la comunicazione con il seguente frame:

Compu	iter —	>	Cl	HORUS
STX	1	EC	DΤ	CS

Esempio:

sul campione S2 è stato eseguito il test CMV-G (con esito negativo e titolo 0.1 IU/ml); sul campione S3 sono stati eseguiti i test CMV-G (con esito negativo e titolo 0.2 IU/ml) e RV-G (con esito positivo e titolo 20.0 IU/ml).

CHORUS — Computer

0x02	0x32	0xD7	0x53	0x32	0x00								
0x00	0x43	0x4D	0x56	0x2D	0x47	0x00							
0x00	0x4E	0x30	0x2E	0x31	0x00								
0x49	0x55	0x2F	0x6D	0x6C	0x00	0x00	0x00	0x00	0x00	0xE5			

 Computer
 →
 CHORUS

 0x02
 0x01
 0x04
 0x05

CHORUS -> Computer

0x02	0x32	0xD7	0x53	0x33	0x00								
0x00	0x43	0x4D	0x56	0x2D	0x47	0x00							
0x00	0x4E	0x30	0x2E	0x32	0x00								
0x49	0x55	0x2F	0x6D	0x6C	0x00	0x00	0x00	0x00	0x00	0xE7			

 Computer
 →
 CHORUS

 0x02
 0x01
 0x04
 0x05

CHORUS -> Computer

0x02	0x32	0xD7	0x53	0x33	0x00								
0x00	0x52	0x56	0x2D	0x47	0x00	0x00							
0x00	0x50	0x32	0x30	0x2E	0x30	0x00							
0x49	0x55	0x2F	0x6D	0x6C	0x00	0x00	0x00	0x00	0x00	0x95			

 Computer
 →
 CHORUS

 0x02
 0x01
 0x04
 0x05

 CHORUS
 →
 Computer

 0x02
 0x02
 0xD8
 0x43
 0x99

 Computer
 CHORUS

 0x02
 0x01
 0x04
 0x05

8 APPLICAZIONE DI TEST

L'applicazione di test allegata a questa documentazione consente di verificare sia il corretto funzionamento di un Chorus sia il corretto funzionamento di un Computer.

Procedura per verificare un Chorus:

- accendere il Chorus;
- verificare che la C-List non sia piena e contenga almeno un campione;
- verificare che nell'archivio sia presente almeno una sessione;
- collegare un'estremità del cavo seriale al connettore HOST o EXT-SERV del Chorus (vedi capitolo 3);
- collegare l'altra estremità del cavo seriale al PC sul quale si intende utilizzare l'applicazione di test;
- eseguire l'applicazione di test e selezionare Chorus nel campo Target;
- indicare nel campo Serial port l'indirizzo della porta seriale a cui è stata collegata un'estremità del cavo seriale;
- selezionare nel campo Serial speed la velocità di connessione del Chorus (vedi capitolo 3);
- configurare come si desidera i campi nel gruppo Sample Programming;
- selezionare *Begin test* e seguire le indicazioni sulla barra di stato.

Durante il test verranno mostrate tutte le informazioni ricevute dal Chorus all'interno dell'area di testo presente nella parte inferiore dell'applicazione. Al termine del test verrà riportato un messaggio di errore nel caso in cui non sia stato possibile comunicare con il Chorus oppure siano state rilevate anomalie nei dati ricevuti. É possibile ripetere il test, eventualmente modificando uno o più campi, selezionando *Restart test*.

Procedura per verificare un Computer:

- configurare opportunamente il Computer e verificare che sia pronto ad accettare connessioni;
- collegare un'estremità del cavo seriale al Computer;
- collegare l'altra estremità del cavo seriale al PC sul quale si intende utilizzare l'applicazione di test;
- eseguire l'applicazione di test e selezionare Host nel campo Target;
- indicare nel campo Serial port l'indirizzo della porta seriale a cui è stata collegata un'estremità del cavo seriale;
- selezionare nel campo *Serial speed* la velocità di connessione del Computer;
- configurare come si desidera i campi nei gruppi Sample Info e Sample Result;
- selezionare Begin test.

Durante il test verranno mostrate tutte le informazioni ricevute dal Computer all'interno dell'area di testo presente nella parte inferiore dell'applicazione. Al termine del test verrà riportato un messaggio di errore nel caso in cui non sia stato possibile comunicare con il Computer oppure siano state rilevate anomalie nei dati ricevuti. É possibile ripetere il test, eventualmente modificando uno o più campi, selezionando *Restart test*.

Assieme all'applicazione sono presenti anche i sorgenti, scritti in linguaggio C_{++} , e i file di progetto, creati utilizzando l'ambiente di sviluppo Turbo C_{++} (http://www.turboexplorer.com/cpp).

Rev 6 - data: 22-01-2009