Cálculo 1

Mais derivadas

Neste texto vamos apresentar mais alguns exemplos importantes de funções deriváveis. Até o momento, temos a seguinte tabela de derivadas:

função	derivada	
$f(x) \pm g(x)$	$f'(x) \pm g'(x)$	
$(f \cdot g)(x)$	f(x)g'(x) + f(x)g'(x)	
$(f/g)(x)$, se $g(x) \neq 0$	$\frac{g(x)f'(x) - f(x)g'(x)}{g(x)^2}$	
$cf(x)$, com $c \in \mathbb{R}$	cf'(x)	
x^r , com $r \in \mathbb{R}$	rx^{r-1}	
$\operatorname{sen}(x)$	$\cos(x)$	

Vamos começar completando a tabela com as demais funções trigonométricas. Lembre que a derivada do seno foi calculada em um texto anterior, a partir dos limites abaixo

$$\lim_{h \to 0} \frac{\text{sen}(h)}{h} = 1, \qquad \lim_{h \to 0} \frac{\cos(h) - 1}{h} = 0,$$

e da fórmula do seno da soma de dois arcos. Um argumento análogo àquele nos permite derivar a função cosseno:

$$(\cos(x))' = \lim_{h \to 0} \frac{\cos(x+h) - \cos(x)}{h}$$

$$= \lim_{h \to 0} \frac{\cos(x)\cos(h) - \sin(x)\sin(h) - \cos(x)}{h}$$

$$= \lim_{h \to 0} \left[\cos(x)\left(\frac{\cos(h) - 1}{h}\right) - \sin(x)\left(\frac{\sin(h)}{h}\right)\right]$$

$$= \cos(x) \cdot 0 - \sin(x) \cdot 1 = -\sin(x).$$

Assim, as duas funções trigonométricas principais têm suas derivadas dadas por

$$\frac{d}{dx}\operatorname{sen}(x) = \cos(x), \qquad \frac{d}{dx}\cos(x) = -\sin(x).$$

A partir das duas derivadas acima podemos facilmente calcular a derivada das demais funções trigonométricas, utilizando a regra para derivação de quocientes.

$$\frac{d}{dx}\tan(x) = \frac{d}{dx}\left(\frac{\sin(x)}{\cos(x)}\right) = \frac{\cos(x)(\sin(x))' - \sin(x)(\cos(x))'}{\cos^2(x)}$$
$$= \frac{\cos^2(x) + \sin^2(x)}{\cos^2(x)} = \frac{1}{\cos^2(x)} = \sec^2(x).$$

Procedendo de maneira análoga para as três funções trignométricas restantes, o leitor não terá dificuldade em verificar que o quadro completo é como abaixo:

função	derivada	função	derivada
sen(x)	$\cos(x)$	$\cos(x)$	$-\operatorname{sen}(x)$
tan(x)	$\sec^2(x)$	sec(x)	$\sec(x)\tan(x)$
$\csc(x)$	$-\csc(x)\cot(x)$	$\cot(x)$	$-\csc^2(x)$

Nunca é demais lembrar que somente a primeira linha da tabela acima precisa ser memorizada, pois daí as demais serão consequências simples da regra do quociente.

Exemplo 1. Vamos calcular a derivada das funções abaixo.

$$f(x) = \frac{1 + \tan(x)}{\cos(x)}, \qquad g(x) = \sqrt{x} \left(\frac{\sin(x)}{x} - \cos(x) \right).$$

Para a primeira, usamos a regra do quociente para obter

$$f'(x) = \frac{\cos(x)(1 + \tan(x))' - (1 + \tan(x))(\cos(x))'}{\cos^2(x)}$$

$$= \frac{\cos(x)\sec^2(x) + (1 + \tan(x))\sin(x)}{\cos^2(x)}$$

$$= \sec^3(x) + (1 + \tan(x))\sec(x)\tan(x).$$

Para derivar a função q, temos que aplicar primeiro a regra do produto:

$$g'(x) = (\sqrt{x})' \left(\frac{\sin(x)}{x} - \cos(x) \right) + \sqrt{x} \left(\frac{\sin(x)}{x} - \cos(x) \right)'$$

$$= \frac{1}{2\sqrt{x}} \left(\frac{\sin(x)}{x} - \cos(x) \right) + \sqrt{x} \left(\frac{d}{dx} \left(\frac{\sin(x)}{x} \right) + \sin(x) \right). \tag{1}$$

Note que ainda é necessário calcular a derivada do quociente sen(x)/x. Esta conta pode ser feita usando-se, novamente, a regra do quociente

$$\frac{d}{dx}\left(\frac{\operatorname{sen}(x)}{x}\right) = \frac{x(\operatorname{sen}(x))' - \operatorname{sen}(x)(x)'}{x^2} = \frac{x\operatorname{cos}(x) - \operatorname{sen}(x)}{x^2}.$$

Basta agora substituir a expressão acima em (1) para obter g'(x). \square

Exemplo 2. Vamos determinar a equação da reta tangente ao gráfico de f(x) = sen(2x) no ponto $P_0 = (0, f(0))$. Lembre que ela é a (única) reta que passa pelo ponto P_0 e tem inclinação igual a f'(0).

O primeiro passo é calcular a derivada de sen(2x). Em um primero momento, essa tarefa parece complicada pois, apesar de sabermos que (sen(x))' = cos(x), a função que queremos derivar agora é sen(2x) e não sen(x). Porém, usando a fómula para o seno da soma de dois arcos, podemos escrever

$$f(x) = \operatorname{sen}(2x) = (\operatorname{sen}(x)\cos(x) + \operatorname{sen}(x)\cos(x)) = 2\operatorname{sen}(x)\cos(x),$$

de modo que a regra do produto nos fornece

$$f'(x) = 2\left(\cos(x)\frac{d}{dx}\sin(x) + \sin(x)\frac{d}{dx}\cos(x)\right) = 2(\cos^2(x) - \sin^2(x)) = 2\cos(2x).$$

Como a função f tem derivada em todos os pontos, a reta tangente também existe em qualquer ponto do gráfico. Para o ponto (0, f(0)), essa reta tem equação dada por y - f(0) = f'(0)(x - 0). Uma vez que f(0) = 0 e $f'(0) = 2\cos(0) = 2$, concluímos que a reta tangente ao gráfico de f no ponto (0, f(0)) tem equação y = 2x. \square

Daqui em diante vamos nos concentrar em calcular a derivada da função exponencial. A primeira observação é que, como $e^{x+h} = e^x e^h$, temos

$$\frac{d}{dx}e^x = \lim_{h \to 0} \frac{e^{x+h} - e^x}{h} = e^x \lim_{h \to 0} \frac{e^h - 1}{h},\tag{2}$$

de modo que o cálculo da derivada pode ser feito desde que possamos calcular o último limite acima. O problema é que esta é uma indeterminação do tipo 0/0 particularmente complicada, pois não há nenhum tipo de manipulação algébrica aparente que nos permite eliminar a indeterminação. Vamos então voltar aos primórdios e calcular a fração para valores de h próximos de zero.

h	1	-0, 1	0,01	-0,001	0,0001
$(e^h-1)/h$	1,71828	0,951626	1,00502	0,995	1,00005

Os dados apresentados na tabela acima parecem indicar que a fração se aproxima de 1. De fato, é possível mostrar que o limite em questão existe e que

$$\lim_{h \to 0} \frac{e^h - 1}{h} = 1.$$

Lembrando agora da igualdade em (2), concluímos que

$$\frac{d}{dx}e^x = e^x.$$

Em outras palavras, a derivada da função exponencial é a própria função exponencial. Conforme veremos algumas vezes nos textos posteriores, essa é uma propriedade que fornece uma característica extremamente importante da função exponencial.

Exemplo 3. Vamos determinar a taxa de variação da função

$$f(x) = \frac{2\cos(x) - 5x^3}{3e^x}$$

no ponto x = 0. O primeiro passo é usar a regra do quociente para derivar f:

$$f'(x) = \frac{3e^x(-2\sin(x) - 15x^2) - (2\cos(x) - 5x^3)3e^x}{(3e^x)^2}$$
$$= \frac{3e^x(-2\sin(x) - 15x^2 - 2\cos(x) + 5x^3)}{(3e^x)^2}$$
$$= \frac{-2\sin(x) - 15x^2 - 2\cos(x) + 5x^3}{3e^x}.$$

Como $e^0=1$, concluímos que a taxa de variação em x=0 é f'(0)=-2/3. \square

Exemplo 4. Vimos que a derivada da exponencial é a própria exponencial. Um erro comum no início dos estudos sobre derivada é escrever $(e^{kx})' = e^{kx}$. Vamos ver neste exemplo que essa igualdade é falsa para para todo $k \neq 1$. Para isso, vamos calcular a derivada da função e^{kx} , onde $k \in \mathbb{R}$ é um número que não depende de x. Temos que

$$\frac{d}{dx}e^{kx} = \lim_{h \to 0} \frac{e^{k(x+h)} - e^{kx}}{h} = e^{kx} \lim_{h \to 0} \frac{e^{kh} - 1}{h} = ke^{kx} \lim_{h \to 0} \frac{e^{kh} - 1}{kh}.$$

Fazendo a mudança de variáveis z = kh no último limite acima, obtemos

$$\frac{d}{dx}e^{kx} = ke^{kx} \lim_{z \to 0} \frac{e^z - 1}{z} = ke^{kx}.$$

Logo,

$$\frac{d}{dx}e^{kx} = ke^{kx},$$

qualquer que seja $k \in \mathbb{R}$. \square

Exemplo 5. É sabido que, quando lidamos com materiais radioativos, os núcleos atômicos instáveis emitem partículas e radiações eletromagnéticas, se transformando em núcleos mais estáveis. Por conta disso, a massa do material diminui com o passar do tempo. Esse fenômeno é conhecido como *decaimento radioativo*.

Se denotarmos por Q(t) a massa de material no instante t > 0, pode-se provar que a taxa de variação da massa é proporcional à essa mesma quantidade. Desse modo, para alguma constante k > 0 (que depende do material em questão), vale a equação

$$Q'(t) = -kQ(t) \qquad t > 0. \tag{3}$$

É importante entender a razão do sinal negativo do lado direito da igualdade. Como a massa diminui com o tempo, a taxa de variação da função Q é negativa. Uma vez que a massa é positiva, o sinal de menos garante que a derivada é negativa.

Observe que a função Q tem a propriedade de que a sua derivada é um múltiplo dela mesma. Se olharmos então para o último exemplo, somos tentados a inferir que a expressão de Q deve envolver uma função exponencial. De fato, dada qualquer constante $c \in \mathbb{R}$, um cálculo simples mostra que a função $Q(t) = ce^{-kt}$ é tal que

$$Q'(t) = (ce^{-kt})' = c(e^{-kt})' = c(-k)e^{-kt} = -k(ce^{-kt}) = -kQ(t).$$

Deste modo, a equação (3) possui uma família de soluções dada por $Q(t) = ce^{-kt}$.

O fato de termos encontrado muitas soluções para um problema pode parecer estranho em um primeiro momento. Observe porém que, da maneira como foi colocado o problema, não temos elementos suficientes para determinar a expressão exata de Q(t). É claro que ela depende de quanto material tínhamos no início do experimento, e esse dado não nos foi fornecido. A solução completa do problema ficará a cargo do leitor, na tarefa seguinte.

Tarefa

Suponha que uma quantidade $Q_0 > 0$ de material radioativo comece a decair. Nestas condições, para alguma constante k > 0, a massa Q(t) de material no instante $t \ge 0$ satisfaz

$$\begin{cases} Q'(t) = -kQ(t), & t > 0, \\ Q(0) = Q_0. \end{cases}$$

- 1. Verifique que, para todo $c \in \mathbb{R}$, a função $Q(t) = ce^{-kt}$ verifica a primeira equação acima.
- 2. Determine a valor de c para que a função Q definida no item anterior satisfaça a condição inicial $Q(0) = Q_0$.
- 3. A meia-vida do material é o tempo necessário para que a massa se reduza à matade da massa inicial. Mostre que esse tempo é igual a $\ln(2)/k$, de modo que ele não depende da quantidade inicial.
- 4. O que acontece com Q(t) quanto $t \to +\infty$?