Metody Numeryczne Praca domowa 1.

Hubert Michalski hm438596

6 lutego 2024

Zadanie 1.1

Dla silnie diagonalnie dominującej macierzy $A \in R^{N \times N}$ w postaci Hessenberga, tzn. takiej, że $a_{ij}=0$ dla i>j+1:

sformuluj:

- (a) algorytm wyznaczający kosztem $O(N^2)$ jej rozkład LU;
- (b) algorytm wyznaczający dla zadanego $b \in R^N$ rozwiązanie x układu równań Ax = b kosztem $O(N^2)$.

Rozwiązanie a)

Do rozkładu macierzy A można użyć zmodyfikowanego algorytmu GEPP. Warto jednak na początku zaznaczyć, że rozważana macierz A jest silnie diagonalnie dominująca tzn.

$$\forall_k |a_{k,k}| > \sum_{i \neq k} |a_{k,i}|$$

więc nie ma konieczności wykorzystywania zamiany wierszy. Gdyby jednak zadana macierz nie miała tej własności, to można by dodatkowo zaobserwować, że dla k-tego elementu diagonali mamy jedynie dwie możliwe wartości tzn. $a_{k,k}$ lub $a_{k+1,k}$ ponieważ wszystkie elementy $a_{i,k}$, dla i>k+1 są zerami z definicji. Zatem gdyby $|a_{k+1,k}|>|a_{k,k}|$ to byśmy zmieniali wiersze k i k+1. Teraz jednak ten krok może zostać pominiety.

W przypadku standardowego algorytmu GEPP kolejnym krokiem byłoby wyznaczenie k-tej kolumny macierzy L, w tym celu podzielilibyśmy jej elementy pod diagonalą przez $a_{k,k}$. Jednak dla naszego specjalnego przypadku wystarczy jedynie zmodyfikować wartość $a_{k+1,k}$, ponieważ (ponownie z definicji) reszta elementów tej kolumny to zera.

Następnie należy zaktualizować pozostałą część macierzy, biorąc pod uwagę poprzednie modyfikacje. Z poprzedniego kroku wiadomo, że zmieniła się tylko wartość $a_{k+1,k}$, co oznacza, że wystarczy zaktualizować wyłącznie k+1-szy wiersz macierzy A. Powyższe kroki powtarzamy dla k=1:N-1.

Algorithm 1 LU decomposition for Hessenberg matrix

- 1: **for** k = 1 : N 1 **do**
- 2: $a_{k+1,k} \leftarrow a_{k+1,k}/a_{k,k}$
- 3: **for** i = k + 1 : N do
- 4: $a_{k+1,i} \leftarrow a_{k+1,i} a_{k+1,k} a_{k,i}$

Szacowany koszt:

• liczba iteracji: $\mathcal{O}(N)$

 \bullet aktualizacja wiersza w k-tej iteracji: O(N)

Ostatecznie otrzymujemy: $O(N^2)$

Rozwiązanie b)

Aby wyznaczyć rozwiązanie zadanego układu równań skorzystajmy z wyżej wymienionego algorytmu do przedstawienia macierzy A jako iloczynu macierzy L oraz U. Dodatkowo wiemy, że równania z macierzami trójkątnymi można rozwiązać w czasie $O(N^2)$. Wystarczy zatem dwukrotnie zastosować ten fakt do rozłożonej poprzednio macierzy i otrzymujemy rozwiązanie zadania:

Algorithm 2 Solve equation Ax = b for Hessenberg matrix

- 1: $L, U \leftarrow decompose(A) // \mathcal{O}(N^2)$ z poprzedniego zadania, dla uproszczenia zapisu jako dwie macierze lecz nie zmienia to złożoności rozwiązania
- 2: $y \leftarrow L^{-1}b$ // Rozwiąż Ly=b, czas $\mathbb{O}(N^2)$ 3: $x \leftarrow U^{-1}y$ // Rozwiąż Ux=y, czas $\mathbb{O}(N^2)$

Każdy krok ma złożoność $\mathcal{O}(N^2)$ zatem złożoność całego algorytmu to $\mathcal{O}(N^2)$.