Principio de Inducción matemática

Prof. Jhon Fredy Tavera Bucurú

2025

Prerequisitos

 $PIM \rightarrow PBO$

Teorema (Algoritmo de la división)

 $PBO \rightarrow PIF$

 $PIF \rightarrow PIM$

Equivalencias, Principio de inducción matemática

Definición (Relación de Orden en N)

Dado $m, n \in \mathbb{N}$, decimos que:

$$m \le n$$
 si existe un $p \in \mathbb{N}$ tal que $n = m + p$.

Si $p \neq 0$ decimos que m < n.

Nota: Esta relación \leq cumple ser reflexiva, antisimetrica y transitiva por tanto define una relación de orden sobre el conjunto de los números naturales \mathbb{N} .

Propiedades:

- 1. Reflexiva: Si $n \in \mathbb{N}$ entonces $n \leq n$.
- 2. Transitiva Si $m, n, r \in \mathbb{N}$ con $m \le n$ y $n \le r$, entonces $m \le r$.
- 3. Ley de la tricotomía: Dados $m, n \in \mathbb{N}$, una y solo una de las siguientes afirmaciones es verdadera:

$$m < n, \quad m = n, \quad n < m.$$

- 4. Compatibilidad con la Suma: Si $m \in \mathbb{N}$ con $m \le n$, entonces para todo $p \in \mathbb{N}$, $m + p \le n + p$.
- 5. Compatibilidad con el Producto: Si $m \in \mathbb{N}$ con $m \le n$, entonces para todo $p \ne 0$, $mp \le np$.
- 6. Si $m, n \in \mathbb{N}$ son tales que m < n, entonces $m^+ \le n$.
- 7. Si $m, n \in \mathbb{N}$ son tales que $m < n^+$, entonces $m \le n$.
- 8. Propiedad Cancelativa: Si $m, n, k \in \mathbb{N}$ son tales que mk = nk y $k \neq 0$, entonces m = n.

Definición: Mínimo de un Conjunto

Definición

Sea S un subconjunto no vacío de números naturales. Decimos que un elemento m es el **mínimo** de S si y solo si se cumplen las siguientes condiciones:

- 1. $m \in S$
- 2. $m \le s$ para todo $s \in S$

Corolario

Si $S \subset \mathbb{N}$ entonces Min(S) es único.

. **Demostración:** Suponga que r = Min(S) y r' = Min(S), entonces $r \le s$, $\forall s \in S$, en particular $r \le r'$, por un argumento similar $r' \le r$, ahora por la ley de la tricotomia r = r'.

Teorema

Todo subconjunto no vacío S de números naturales posee un mínimo. Es decir, existe $m \in S$ tal que para todo $s \in S$, $m \le s$.

Teorema

Todo subconjunto no vacío S de números naturales posee un mínimo. Es decir, existe $m \in S$ tal que para todo $s \in S$, $m \le s$.

Demostración: Si $0 \in S$, entonces el Min(S) = 0. Si $0 \notin S$ entonces Sea

$$T = \{ n \in \mathbb{N} \mid n \le s \text{ para todo } s \in S \}.$$

Como $S \neq \emptyset$, tenemos que $T \neq \mathbb{N}$, Consideremos la propiedad pertenecer al conjunto T, es decir P(n) es verdadera sii $n \in T$ y apliquemos PIM.

Base de Inducción como $0 \in T$ entonces P(0) es verdadera.

Paso Inductivo (falla) Note que si el paso inductivo se cumpliera entonces P(n) seria verdadera $\forall n \in \mathbb{N}$, es decir $T = \mathbb{N}$, cosa que no es verdad, por tanto existe $m \in T$ tal que $m+1 \notin T$.

Paso Inductivo (falla) Note que si el paso inductivo se cumpliera entonces P(n) seria verdadera $\forall n \in \mathbb{N}$, es decir $T = \mathbb{N}$, cosa que no es verdad, por tanto existe $m \in T$ tal que $m+1 \notin T$. Ahora

- ▶ $m \in T$ entonces por definición de T, tenemos $m \leq s$, $\forall s \in S$.
- ▶ $m \le s$ para todo $s \in S$, entonces m es igual a algún elemento de S o m < s para todo $s \in S$. Si m < s entonces $m+1 \le s$ y en consecuencia $m+1 \in T$, lo cual es absurdo. Por lo tanto, $m \in S$.

Por lo tanto,
$$m = \min S$$
.

Teorema (Algoritmo de la división)

Teorema

Sean a, b enteros con b>0. Entonces existen enteros únicos q, r tales que

$$a = bq + r$$
 con $0 \le r < b$.

Demostración.

1 Existencia. Sea

$$S = \{a - bx \mid x \in \mathbb{Z} \text{ y } a - bx \ge 0\}$$

Veamos que $S \neq \emptyset$. Si $a \geq 0$, $a - b0 = a \in S$. Si a < 0, como $b \geq 1$ tenemos que $a - ab = a(1 - b) \geq 0$ y así $a - ab \in S$. Luego $S \neq \emptyset$.

Teorema (Algoritmo de la división)

Ahora, por el PBO, S tiene un mínimo r y en consecuencia existe un entero q tal que

$$a - bq = r \quad \text{con} \quad 0 \le r.$$

Por otra parte

$$r - b = (a - bq) - b = a - (q + 1)b,$$

Ya que a - qb es el menor entero positivo y a - (q+1)b < a - qb, entonces a - (q+1)b < 0, por tanto r - b < 0 es decir r < b.

Teorema (Algoritmo de la división)

2 Unicidad. Supongamos que a = bq + r = bq' + r' como el minimo de un conjunto es único, se tiene que r = r' = Min(S) y por tanto q = q'.

Ejemplo

Sea a = 17 y b = 5.

Ejemplo

Sea a = 17 y b = 5. Como a > b, tenemos que:

$$17 = 5 \cdot 3 + 2, \ 0 \le 2 < 5$$

Ejemplo

Sea
$$a = 3 y b = 5$$
.

Ejemplo

Sea a = 17 y b = 5. Como a > b, tenemos que:

$$17 = 5 \cdot 3 + 2, \ 0 \le 2 < 5$$

Ejemplo

Sea a = 3 y b = 5. Como a < b, tenemos que:

$$3 = 5 \cdot 0 + 3, \ 0 \le 3 < 5$$

Ejemplo

Sea a = -7 y b = 5.

Ejemplo

Sea a = 17 y b = 5. Como a > b, tenemos que:

$$17 = 5 \cdot 3 + 2, \ 0 \le 2 < 5$$

Ejemplo

Sea a = 3 y b = 5. Como a < b, tenemos que:

$$3 = 5 \cdot 0 + 3, \ 0 \le 3 < 5$$

Ejemplo

Sea a = -7 y b = 5. Como a es negativo, tenemos que:

$$-7 = 5 \cdot (-2) + 3, \ 0 \le 3 < 5$$

$PBO \rightarrow PIF$

Teorema

Sea a un número natural. Sea S un subconjunto de $\{k \in \mathbb{N} \mid k \geq a\}$ que satisface:

- 1. $a \in S$.
- 2. (Principio de Inducción del PIF) Para cada n > a, $n \in S$ siempre que $k \in S$ para todo $k \in \mathbb{N}$ tal que $a \le k < n$.

Entonces

$$S = \{k \in \mathbb{N} \mid k \ge a\}.$$

$PBO \rightarrow PIF$

Demostración: La demostración es por contradicción.

Supongamos que $S
eq \{k \in \mathbb{N} \mid k \geq a\}$ y sea

 $T = \{k \in \mathbb{N} \mid k \geq a\} - S$. Luego $T \neq \emptyset$ y por el PBO tiene un mínimo m.

Además, puesto que $a \in S$ entonces m > a y para todo k tal que $a \le k < m$, la minimalidad de m nos garantiza que $k \in S$, y por la condición 2 concluimos que $m \in S$ lo cual es una contradicción. \square

$PIF \rightarrow PIM$

Teorema

Sea S un subconjunto que satisface:

- 1. $a \in S$.
- 2. (Principio de Inducción del PIM) Si $n \ge a$ y $n \in S$ entonces $n+1 \in S$.

Entonces

$$S = \{n \in \mathbb{N} \mid n \ge a\}.$$

Nota: La propiedad P(n) es verdadera sii $n \in S$.

$PIF \rightarrow PIM$

Demostración: Lo demostraremos buscando que se cumplan las dos condiciones para poder aplicar el PIF, note que el enciso 1 de la hipotesis es justamente la Base de Inducción del PIF, solo nos falta ver que se cumpla el Paso Inductivo del PIF. Paso inductivo PIF: Sea k talque $a \le k \le n$ donde P(k) es verdadero, en particular P(n) es verdadero, ahora por el paso inductivo del PIM (enciso 2 hipotesis), se tiene que P(n+1) es verdadera, por tanto se cumple el Paso inductivo del PIF. Por PIF, P(n) es verdadera para todo $n \ge a$, es decir $S = \{n \in \mathbb{N} \mid n > a\}$.