# ACM 常用算法模板

目录 1

# 目录

| 1        | 数据   | 3.              |
|----------|------|-----------------|
|          | 1.1  | 并查集             |
|          | 1.2  | 树状数组            |
|          |      | 1.2.1 一维        |
|          |      | 1.2.2 二维        |
|          |      | 1.2.3 三维        |
|          | 1.3  | 线段树             |
|          | 1.4  | 普通平衡树 6         |
|          |      | 1.4.1 树状数组实现    |
|          | 1.5  | 可持久化线段树         |
|          | 1.6  | st 表            |
|          |      |                 |
| <b>2</b> | 图论   |                 |
|          | 2.1  | 最短路             |
|          |      | 2.1.1 dijkstra  |
|          | 2.2  | 树上问题 10         |
|          |      | 2.2.1 最近公公祖先    |
|          |      | 2.2.2 树链剖分      |
|          | 2.3  | 强连通分量 12        |
|          | 2.4  | 拓扑排序 13         |
| 0        |      |                 |
| 3        | 字符   |                 |
|          |      | kmp             |
|          | 3.2  | 哈希              |
|          | 3.3  | manacher        |
| 4        | 数学   | $\pm$ 16        |
|          | 4.1  | 扩展欧几里得          |
|          | 4.2  | 线性代数 16         |
|          |      | 4.2.1 向量公约数     |
|          | 4.3  |                 |
|          | 4.4  | 分解质因数           |
|          | 4.5  | pollard rho     |
|          | 4.6  | 组合数             |
|          | 4.7  | 数论分块            |
|          | 4.8  | 积性函数            |
|          | 1.0  | 4.8.1 定义        |
|          |      | 4.8.2 例子        |
|          | 4.9  | 秋利克雷卷积          |
|          | 4.3  | 4.9.1 性质        |
|          |      | 4.9.2 例子        |
|          | / 10 | 4.9.2       例亍  |
|          |      |                 |
|          | 4.11 | 莫比乌斯反演          |
|          |      | 4.11.1 草比乌斯函数性质 |

|   |                       | 4.11.2 莫比乌斯变换/反演                      | 21 |
|---|-----------------------|---------------------------------------|----|
|   | 4.12                  | 杜教筛                                   | 21 |
|   |                       | 4.12.1 示例                             | 22 |
|   | 4.13                  | 多项式                                   | 22 |
|   | 4.14                  | 盒子与球                                  | 27 |
|   |                       | 4.14.1 球同, 盒同, 可空                     | 28 |
|   |                       | 4.14.2 球不同, 盒同, 可空                    | 28 |
|   |                       | 4.14.3 球同, 盒不同, 可空                    | 29 |
|   |                       | 4.14.4 球同, 盒不同, 不可空                   | 29 |
|   |                       | 4.14.5 球不同, 盒不同, 可空                   | 29 |
|   |                       | 4.14.6 球不同, 盒不同, 不可空                  | 29 |
|   | 4.15                  | 线性基                                   | 29 |
|   | 4.16                  | 矩阵快速幂                                 | 30 |
| 5 | 计算                    | भारता                                 | 31 |
| J | и <del>я</del><br>5.1 | 整数                                    | 31 |
|   | 5.2                   | <ul><li></li></ul>                    | 36 |
|   |                       | 扫描线                                   | 44 |
|   | 5.5                   | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 44 |
| 6 | 杂项                    |                                       | 46 |
|   | 6.1                   | 快读                                    | 46 |
|   | 6.2                   | 高精度                                   | 46 |
|   | 6.3                   | 离散化                                   | 48 |
|   | 6.4                   | 模运算                                   | 48 |
|   | 6.5                   | 分数                                    | 49 |
|   | 6.6                   | 表达式求值                                 | 49 |
|   | 6.7                   | 日期                                    | 51 |
|   | 6.8                   | builtin 函数                            | 51 |
|   | 6.9                   | 对拍                                    | 52 |
|   | 6.10                  | 编译常用选项                                | 52 |
|   | 6.11                  | 开栈                                    | 52 |
|   |                       | clang-format                          | 53 |

# 1 数据结构

#### 1.1 并查集

```
struct dsu {
1
2
      int n;
3
      vector<int> fa, sz;
4
      dsu(int \_n) : n(\_n), fa(n + 1), sz(n + 1, 1) {
5
          iota(fa.begin(), fa.end(), 0);
6
      }
7
      int find(int x) { return x == fa[x] ? x : fa[x] = find(fa[x]); }
8
      int merge(int x, int y) {
9
          int fax = find(x), fay = find(y);
10
          if (fax == fay) return 0; // 一个集合
11
          sz[fay] += sz[fax];
12
          return fa[fax] = fay; // 合并到哪个集合了
13
14
      int size(int x) { return sz[find(x)]; }
15 };
```

#### 1.2 树状数组

#### 1.2.1 一维

```
template <class T>
2
  struct fenwick {
3
       int n;
4
       vector<T> t;
5
       fenwick(int \_n) : n(\_n), t(n + 1) {}
6
       T query(int 1, int r) {
7
           auto query = [&](int pos) {
8
                T res = 0;
9
                while (pos) {
10
                    res += t[pos];
                    pos -= lowbit(pos);
11
12
13
                return res;
14
15
           return query(r) - query(l - 1);
16
17
       void add(int pos, T num) {
           while (pos <= n) {</pre>
18
19
                t[pos] += num;
                pos += lowbit(pos);
20
21
           }
22
       }
23 };
```

#### 1.2.2 二维

```
template <class T>
2
  struct Fenwick\_tree\_2 {
3
       Fenwick\_tree\_2(int n, int m) : n(n), m(m), tree(n + 1, vector<T>(m + 1)) {}
4
       T query(int 11, int r1, int 12, int r2) {
5
           auto query = [&](int 1, int r) {
6
               T res = 0;
7
               for (int i = 1; i; i -= lowbit(i))
8
                   for (int j = r; j; j -= lowbit(j)) res += tree[i][j];
9
               return res;
10
           };
           return query(12, r2) - query(12, r1 - 1) - query(11 - 1, r2) +
11
12
                  query(11 - 1, r1 - 1);
13
       void update(int x, int y, T num) {
14
15
           for (int i = x; i <= n; i += lowbit(i))</pre>
16
               for (int j = y; j <= m; j += lowbit(j)) tree[i][j] += num;</pre>
17
       }
18
  private:
19
       int n, m;
20
       vector<vector<T>> tree;
21 };
```

#### 1.2.3 三维

```
template <class T>
2
   struct Fenwick\_tree\_3 {
3
       Fenwick\_tree\_3(int n, int m, int k)
 4
           : n(n),
5
             m(m),
6
             k(k),
7
             tree(n + 1, vector<vector<T>>(m + 1, vector<T>(k + 1))) {}
8
       T query(int a, int b, int c, int d, int e, int f) {
9
           auto query = [&](int x, int y, int z) {
10
               T res = 0;
               for (int i = x; i; i -= lowbit(i))
11
12
                    for (int j = y; j; j -= lowbit(j))
13
                        for (int p = z; p; p -= lowbit(p)) res += tree[i][j][p];
14
               return res;
15
           };
16
           T res = query(d, e, f);
17
           res -= query(a - 1, e, f) + query(d, b - 1, f) + query(d, e, c - 1);
           res += query(a - 1, b - 1, f) + query(a - 1, e, c - 1) +
18
19
                  query(d, b - 1, c - 1);
           res -= query(a - 1, b - 1, c - 1);
20
21
           return res;
22
23
       void update(int x, int y, int z, T num) {
           for (int i = x; i <= n; i += lowbit(i))</pre>
24
25
               for (int j = y; j <= m; j += lowbit(j))</pre>
26
                    for (int p = z; p \leftarrow k; p += lowbit(p)) tree[i][j][p] += num;
```

```
27     }
28     private:
29     int n, m, k;
30     vector<vector<T>>> tree;
31     };
```

#### 1.3 线段树

```
template <class Data, class Num>
   struct Segment\_Tree {
3
       inline void update(int 1, int r, Num x) { update(1, 1, r, x); }
 4
       inline Data query(int 1, int r) { return query(1, 1, r); }
5
       Segment\_Tree(vector<Data>& a) {
6
           n = a.size();
7
           tree.assign(n * 4 + 1, {});
8
           build(a, 1, 1, n);
9
       }
10
   private:
11
       int n;
12
       struct Tree {
13
           int 1, r;
14
           Data data;
15
       };
16
       vector<Tree> tree;
17
       inline void pushup(int pos) {
18
           tree[pos].data = tree[pos << 1].data + tree[pos << 1 | 1].data;</pre>
19
20
       inline void pushdown(int pos) {
21
           tree[pos << 1].data = tree[pos << 1].data + tree[pos].data.lazytag;</pre>
22
           tree[pos << 1 | 1].data =
23
               tree[pos << 1 | 1].data + tree[pos].data.lazytag;</pre>
24
           tree[pos].data.lazytag = Num::zero();
25
       }
26
       void build(vector<Data>& a, int pos, int 1, int r) {
27
           tree[pos].l = 1;
28
           tree[pos].r = r;
29
           if (1 == r) {
30
               tree[pos].data = a[l - 1];
31
               return;
32
           }
33
           int mid = (tree[pos].l + tree[pos].r) >> 1;
34
           build(a, pos << 1, 1, mid);</pre>
35
           build(a, pos << 1 | 1, mid + 1, r);
36
           pushup(pos);
37
       void update(int pos, int& 1, int& r, Num& x) {
38
39
           if (1 > tree[pos].r || r < tree[pos].1) return;</pre>
40
           if (1 <= tree[pos].1 && tree[pos].r <= r) {</pre>
41
               tree[pos].data = tree[pos].data + x;
42
               return;
43
```

```
44
           pushdown(pos);
45
           update(pos << 1, 1, r, x);
46
           update(pos << 1 | 1, 1, r, x);
47
           pushup(pos);
48
       }
49
       Data query(int pos, int& 1, int& r) {
50
           if (1 > tree[pos].r || r < tree[pos].l) return Data::zero();</pre>
           if (1 <= tree[pos].1 && tree[pos].r <= r) return tree[pos].data;</pre>
51
52
           pushdown(pos);
           return query(pos << 1, 1, r) + query(pos << 1 | 1, 1, r);</pre>
53
54
       }
55
  };
56
  struct Num {
57
       ll add;
58
       inline static Num zero() { return {0}; }
59
       inline Num operator+(Num b) { return {add + b.add}; }
60
  };
61
  struct Data {
62
       11 sum, len;
63
       Num lazytag;
64
       inline static Data zero() { return {0, 0, Num::zero()}; }
65
       inline Data operator+(Num b) {
66
           return {sum + len * b.add, len, lazytag + b};
67
       }
68
       inline Data operator+(Data b) {
69
           return {sum + b.sum, len + b.len, Num::zero()};
70
       }
71
  };
```

#### 1.4 普通平衡树

#### 1.4.1 树状数组实现

需要预先处理出来所有可能的数。

```
int lowbit(int x) { return x & -x; }
 1
2
3
  template <typename T>
4
  struct treap {
5
       int n, size;
6
       vector<int> t;
7
       vector<T> t2, S;
8
       treap(const vector<T>& a) : S(a) {
9
           sort(S.begin(), S.end());
10
           S.erase(unique(S.begin(), S.end()), S.end());
11
           n = S.size();
12
           size = 0;
13
           t = vector < int > (n + 1);
14
           t2 = vector < T > (n + 1);
15
       }
16
       int pos(T x) { return lower\_bound(S.begin(), S.end(), x) - S.begin() + 1; }
17
       int sum(int pos) {
```

```
18
           int res = 0;
19
           while (pos) {
20
               res += t[pos];
               pos -= lowbit(pos);
21
22
23
           return res;
24
       }
25
26
       // 插入cnt个x
       void insert(T x, int cnt) {
27
28
           size += cnt;
29
           int i = pos(x);
30
           assert(i <= n \&\& S[i - 1] == x);
           for (; i <= n; i += lowbit(i)) {</pre>
31
32
               t[i] += cnt;
33
               t2[i] += cnt * x;
34
           }
       }
35
36
37
       // 删除cnt个x
38
       void erase(T x, int cnt) {
39
           assert(cnt <= count(x));</pre>
40
           insert(x, -cnt);
41
       }
42
43
       // x的排名
       int rank(T x) {
44
45
           assert(count(x));
46
           return sum(pos(x) - 1) + 1;
47
       }
48
       // 统计出现次数
49
50
       int count(T x) { return sum(pos(x)) - sum(pos(x) - 1); }
51
52
       // 第k小
       T kth(int k) {
53
54
           assert(0 < k && k <= size);</pre>
55
           int cnt = 0, x = 0;
56
           for (int i = \_\gray_n); i >= 0; i--) {
57
               x += 1 << i;
58
               if (x >= n \mid | cnt + t[x] >= k) x -= 1 << i;
59
               else cnt += t[x];
60
61
           return S[x];
62
       }
63
64
       // 前k小的数之和
65
       T pre\_sum(int k) {
66
           assert(0 < k && k <= size);</pre>
67
           int cnt = 0, x = 0;
68
           T res = 0;
69
           for (int i = \_\gray_n); i >= 0; i--) {
```

```
70
               x += 1 \ll i;
71
               if (x >= n \mid | cnt + t[x] >= k) x -= 1 << i;
72
73
                   cnt += t[x];
74
                   res += t2[x];
75
               }
76
           }
77
           return res + (k - cnt) * S[x];
78
      }
79
80
      // 小于x, 最大的数
81
      T prev(T x) { return kth(sum(pos(x) - 1)); }
82
83
       // 大于x, 最小的数
      T next(T x) { return kth(sum(pos(x)) + 1); }
84
85
  };
```

#### 1.5 可持久化线段树

```
constexpr int MAXN = 200000;
  vector<int> root(MAXN << 5);</pre>
3
  struct Persistent\ seg {
4
       int n;
5
       struct Data {
6
           int ls, rs;
7
           int val;
8
       };
9
       vector<Data> tree;
10
       Persistent\_seg(int n, vector<int>& a) : n(n) { root[0] = build(1, n, a); }
11
       int build(int 1, int r, vector<int>& a) {
12
           if (1 == r) {
13
               tree.push\_back({0, 0, a[1]});
14
               return tree.size() - 1;
15
           }
16
           int mid = 1 + r \gg 1;
17
           int ls = build(l, mid, a), rs = build(mid + 1, r, a);
18
           tree.push\_back({ls, rs, tree[ls].val + tree[rs].val});
19
           return tree.size() - 1;
20
       }
21
       int update(int rt, const int& idx, const int& val, int l, int r) {
22
           if (1 == r) {
23
               tree.push\_back({0, 0, tree[rt].val + val});
               return tree.size() - 1;
24
25
           }
26
           int mid = l + r >> 1, ls = tree[rt].ls, rs = tree[rt].rs;
27
           if (idx <= mid) ls = update(ls, idx, val, l, mid);</pre>
28
           else rs = update(rs, idx, val, mid + 1, r);
29
           tree.push\_back({ls, rs, tree[ls].val + tree[rs].val});
30
           return tree.size() - 1;
31
       }
32
       int query(int rt1, int rt2, int k, int l, int r) {
```

```
if (1 == r) return 1;
int mid = 1 + r >> 1;
int lcnt = tree[tree[rt2].ls].val - tree[tree[rt1].ls].val;
if (k <= lcnt) return query(tree[rt1].ls, tree[rt2].ls, k, l, mid);
else return query(tree[rt1].rs, tree[rt2].rs, k - lcnt, mid + 1, r);
}
}
</pre>
```

#### 1.6 st 表

```
auto lg = []() {
       array<int, 10000001> lg;
3
       lg[1] = 0;
       for (int i = 2; i <= 10000000; i++) lg[i] = lg[i >> 1] + 1;
4
5
       return lg;
6
  }();
7
  template <typename T>
8
  struct st {
9
       int n;
10
       vector<vector<T>> a;
11
       st(vector<T>\& \_a) : n(\_a.size()) {
12
           a.assign(lg[n] + 1, vector<int>(n));
13
           for (int i = 0; i < n; i++) a[0][i] = \_a[i];</pre>
14
           for (int j = 1; j <= lg[n]; j++)</pre>
15
               for (int i = 0; i + (1 << j) - 1 < n; i++)
16
                    a[j][i] = max(a[j - 1][i], a[j - 1][i + (1 << (j - 1))]);
17
       }
18
       T query(int 1, int r) {
19
           int k = lg[r - l + 1];
20
           return max(a[k][1], a[k][r - (1 << k) + 1]);</pre>
21
       }
22 };
```

# 2 图论

存图

```
1
  struct Graph {
2
       int n;
3
       struct Edge {
           int to, w;
 4
5
       };
 6
       vector<vector<Edge>> graph;
 7
       Graph(int \_n) {
8
           n = \_n;
9
           graph.assign(n + 1, vector<Edge>());
10
11
       void add(int u, int v, int w) { graph[u].push\_back({v, w}); }
12 };
```

## 2.1 最短路

#### 2.1.1 dijkstra

```
void dij(Graph& graph, vector<int>& dis, int t) {
 1
2
       vector<int> visit(graph.n + 1, 0);
3
       priority\_queue<pair<int, int>> que;
4
       dis[t] = 0;
5
       que.emplace(0, t);
6
       while (!que.empty()) {
7
           int u = que.top().second;
8
           que.pop();
9
           if (visit[u]) continue;
10
           visit[u] = 1;
           for (auto& [to, w] : graph.graph[u]) {
11
12
               if (dis[to] > dis[u] + w) {
13
                   dis[to] = dis[u] + w;
14
                   que.emplace(-dis[to], to);
15
               }
16
           }
17
       }
18
```

#### 2.2 树上问题

#### 2.2.1 最近公公祖先

倍增法

```
vector<int> dep;
vector<array<int, 21>> fa;
dep.assign(n + 1, 0);
fa.assign(n + 1, array<int, 21>{});
void binary\_jump(int root) {
 function<void(int)> dfs = [&](int t) {
```

```
7
           dep[t] = dep[fa[t][0]] + 1;
8
           for (auto& [to] : graph[t]) {
9
               if (to == fa[t][0]) continue;
10
               fa[to][0] = t;
               dfs(to);
11
12
           }
13
       };
       dfs(root);
14
15
       for (int j = 1; j <= 20; j++)
16
           for (int i = 1; i <= n; i++) fa[i][j] = fa[fa[i][j - 1]][j - 1];</pre>
17
  int lca(int x, int y) {
18
19
       if (dep[x] < dep[y]) swap(x, y);</pre>
       for (int i = 20; i >= 0; i--)
20
21
           if (dep[fa[x][i]] >= dep[y]) x = fa[x][i];
       if (x == y) return x;
22
23
       for (int i = 20; i >= 0; i--) {
           if (fa[x][i] != fa[y][i]) {
24
25
               x = fa[x][i];
26
               y = fa[y][i];
27
           }
28
29
       return fa[x][0];
30 }
```

树剖

```
int lca(int x, int y) {
    while (top[x] != top[y]) {
        if (dep[top[x]] < dep[top[y]]) swap(x, y);
        x = fa[top[x]];
    }
    if (dep[x] < dep[y]) swap(x, y);
    return y;
}</pre>
```

#### 2.2.2 树链剖分

```
1 vector<int> fa, siz, dep, son, dfn, rnk, top;
2 fa.assign(n + 1, 0);
3 | siz.assign(n + 1, 0);
 4 dep.assign(n + 1, 0);
5
  son.assign(n + 1, 0);
6 dfn.assign(n + 1, 0);
7
  rnk.assign(n + 1, 0);
8
  top.assign(n + 1, 0);
9
  void hld(int root) {
10
       function<void(int)> dfs1 = [&](int t) {
           dep[t] = dep[fa[t]] + 1;
11
12
           siz[t] = 1;
13
           for (auto& [to, w] : graph[t]) {
14
               if (to == fa[t]) continue;
```

```
15
                fa[to] = t;
16
                dfs1(to);
17
                if (siz[son[t]] < siz[to]) son[t] = to;</pre>
                siz[t] += siz[to];
18
19
           }
20
       };
       dfs1(root);
21
22
       int dfn\_tail = 0;
23
       for (int i = 1; i <= n; i++) top[i] = i;</pre>
       function<void(int)> dfs2 = [&](int t) {
24
25
           dfn[t] = ++dfn\_tail;
           rnk[dfn\_tail] = t;
26
27
           if (!son[t]) return;
28
           top[son[t]] = top[t];
29
           dfs2(son[t]);
           for (auto& [to, w] : graph[t]) {
30
31
                if (to == fa[t] || to == son[t]) continue;
32
33
           }
34
       };
35
       dfs2(root);
36 }
```

#### 2.3 强连通分量

```
void tarjan(Graph& g1, Graph& g2) {
2
       int dfn\_tail = 0, cnt = 0;
3
       vector\langle int \rangle dfn(g1.n + 1, 0), low(g1.n + 1, 0), exist(g1.n + 1, 0),
4
           belong(g1.n + 1, 0);
5
       stack<int> sta;
6
       function<void(int)> dfs = [&](int t) {
7
           dfn[t] = low[t] = ++dfn\_tail;
8
           sta.push(t);
9
           exist[t] = 1;
10
           for (auto& [to] : g1.graph[t])
11
                if (!dfn[to]) {
12
                    dfs(to);
13
                    low[t] = min(low[t], low[to]);
                } else if (exist[to]) low[t] = min(low[t], dfn[to]);
14
15
           if (dfn[t] == low[t]) {
16
                cnt++;
17
                while (int temp = sta.top()) {
                    belong[temp] = cnt;
18
19
                    exist[temp] = 0;
20
                    sta.pop();
21
                    if (temp == t) break;
22
                }
23
           }
24
       };
25
       for (int i = 1; i <= g1.n; i++)</pre>
26
           if (!dfn[i]) dfs(i);
```

#### 2.4 拓扑排序

```
void toposort(Graph& g, vector<int>& dis) {
2
      vector<int> in(g.n + 1, 0);
3
      for (int i = 1; i <= g.n; i++)
4
           for (auto& [to] : g.graph[i]) in[to]++;
5
      queue<int> que;
6
      for (int i = 1; i <= g.n; i++)
7
           if (!in[i]) {
8
               que.push(i);
9
               dis[i] = g.w[i]; // dp
10
11
      while (!que.empty()) {
12
           int u = que.front();
13
           que.pop();
14
           for (auto& [to] : g.graph[u]) {
15
               in[to]--;
16
               dis[to] = max(dis[to], dis[u] + g.w[to]); // dp
17
               if (!in[to]) que.push(to);
18
           }
19
      }
20 }
```

3 字符串 14

# 3 字符串

#### 3.1 kmp

```
auto kmp(string& s) {
 1
2
       vector next(s.size(), -1);
3
       for (int i = 1, j = -1; i < s.size(); i++) {</pre>
4
           while (j \ge 0 \&\& s[i] != s[j + 1]) j = next[j];
5
           if (s[i] == s[j + 1]) j++;
6
           next[i] = j;
7
       }
8
       // next 意为长度
9
       for (auto& i : next) i++;
10
       return next;
11
```

#### 3.2 哈希

```
1 constexpr int N = 1e6;
2 int pow\_base[N + 1][2];
3
  constexpr 11 \mod [2] = {(int)2e9 + 11, (int)2e9 + 33},
                 base[2] = {(int)2e5 + 11, (int)2e5 + 33};
4
5
6
  struct Hash {
7
       int size;
8
       vector<array<int, 2>> a;
9
       Hash() {}
10
       Hash(const string& s) {
11
           size = s.size();
12
           a.resize(size);
13
           a[0][0] = a[0][1] = s[0];
           for (int i = 1; i < size; i++) {</pre>
14
               a[i][0] = (a[i - 1][0] * base[0] + s[i]) % mod[0];
15
               a[i][1] = (a[i - 1][1] * base[1] + s[i]) % mod[1];
16
17
           }
18
       }
19
       array<int, 2> get(int 1, int r) const {
20
           if (1 == 0) return a[r];
21
           auto getone = [&](bool f) {
22
               int x =
                    (a[r][f] - 111 * a[1 - 1][f] * pow\_base[r - 1 + 1][f]) % mod[f];
23
24
               if (x < 0) x += mod[f];
25
               return x;
26
           };
27
           return {getone(0), getone(1)};
28
       }
29 };
30
31 | auto \setminus = []() {
       pow\_base[0][0] = pow\_base[0][1] = 1;
32
33
       for (int i = 1; i <= N; i++) {
```

3 字符串 15

```
pow\_base[i][0] = pow\_base[i - 1][0] * base[0] % mod[0];

pow\_base[i][1] = pow\_base[i - 1][1] * base[1] % mod[1];

return true;

}();
```

#### 3.3 manacher

```
1
  auto manacher(const string& \_s) {
2
       string s(\_s.size() * 2 + 1, '$');
3
       for (int i = 0; i < \_s.size(); i++) s[2 * i + 1] = \_s[i];
4
       vector r(s.size(), 0);
5
       for (int i = 0, maxr = 0, mid = 0; i < s.size(); i++) {</pre>
6
           if (i < maxr) r[i] = min(r[mid * 2 - i], maxr - i);</pre>
7
           while (i - r[i] - 1 >= 0 \&\& i + r[i] + 1 < s.size() \&\&
8
                  s[i - r[i] - 1] == s[i + r[i] + 1])
9
               ++r[i];
10
           if (i + r[i] > maxr) maxr = i + r[i], mid = i;
11
12
       return r;
13 }
```

# 4 数学

#### 4.1 扩展欧几里得

```
需保证 a,b>=0 x=x+k*dx, y=y-k*dy 若要求 x\geq p,\ k\geq \left\lceil\frac{p-x}{dx}\right\rceil 若要求 x\leq q,\ k\leq \left\lfloor\frac{q-x}{dx}\right\rfloor 若要求 y\geq p,\ k\leq \left\lfloor\frac{y-p}{dy}\right\rfloor 若要求 y\leq q,\ k\geq \left\lceil\frac{y-q}{dy}\right\rceil
```

```
int \_\exgcd(int a, int b, int& x, int& y) {
    2
                                       if (!b) {
    3
                                                               x = 1;
    4
                                                               y = 0;
    5
                                                               return a;
    6
    7
                                       int g = \_\ensuremath{\ } -\ensuremath{\ } -\ensuremath
    8
                                       y -= a / b * x;
    9
                                       return g;
10
11
12
              array<int, 2> exgcd(int a, int b, int c) {
13
                                      int x, y;
14
                                       int g = \_\_exgcd(a, b, x, y);
15
                                       if (c % g) return {INT\_MAX, INT\_MAX};
16
                                       int dx = b / g;
17
                                      int dy = a / g;
18
                                       x = c / g % dx * x % dx;
19
                                      if (x < 0) x += dx;
20
                                       y = (c - a * x) / b;
21
                                       return {x, y};
22 }
```

#### 4.2 线性代数

#### 4.2.1 向量公约数

```
// 将这两个向量组转化为b.y=0的形式
  array<vec, 2> gcd(vec a, vec b) {
3
      while (b.y != 0) {
4
          int t = a.y / b.y;
5
          a = a - b * t;
6
          swap(a, b);
7
8
      return {a, b};
9
10
  array<vec, 2> gcd(array<vec, 2> g, vec a) {
11
12
      auto [b, c] = gcd(g[0], a);
13
      g[0] = b;
```

```
g[1] = vec(gcd(g[1].x, c.x), 0);
if (g[1].x != 0) g[0].x %= g[1].x;
return g;
}
```

# 4.3 线性筛法

```
1 constexpr int N = 10000000;
  array<int, N + 1> min\_prime;
  vector<int> primes;
4
  bool ok = []() {
5
       for (int i = 2; i <= N; i++) {
6
           if (min\_prime[i] == 0) {
7
               min\_prime[i] = i;
8
               primes.push\_back(i);
9
10
           for (auto& j : primes) {
11
               if (j > min\_prime[i] || j > N / i) break;
12
               min\prime[j * i] = j;
13
           }
14
15
       return 1;
16 }();
```

# 4.4 分解质因数

```
auto getprimes(int n) {
 1
2
       vector<array<int, 2>> res;
3
       for (auto& i : primes) {
4
           if (i > n / i) break;
5
           if (n % i == 0) {
6
               res.push\_back({i, 0});
7
               while (n % i == 0) {
8
                    n /= i;
9
                    res.back()[1]++;
10
               }
           }
11
12
13
       if (n > 1) res.push\_back({n, 1});
14
       return res;
15 }
```

#### 4.5 pollard rho

```
using LL = \_\_int128\_t;

random\_device rd;

mt19937 seed(rd());
```

```
6 | 11 power(11 a, 11 b, 11 mod) {
7
       11 \text{ res} = 1;
8
       while (b) {
9
           if (b & 1) res = (LL)res * a % mod;
10
           a = (LL)a * a % mod;
11
           b >>= 1;
12
13
       return res;
14
15
16
  bool isprime(ll n) {
17
       static array primes{2, 3, 5, 7, 11, 13, 17, 19, 23};
18
       static unordered\_map<11, bool> S;
       if (n < 2) return 0;</pre>
19
20
       if (S.count(n)) return S[n];
       11 d = n - 1, r = 0;
21
22
       while (!(d & 1)) {
23
           r++;
24
           d >>= 1;
25
26
       for (auto& a : primes) {
27
           if (a == n) return S[n] = 1;
28
           11 x = power(a, d, n);
29
           if (x == 1 || x == n - 1) continue;
30
           for (int i = 0; i < r - 1; i++) {
31
                x = (LL)x * x % n;
               if (x == n - 1) break;
32
33
34
           if (x != n - 1) return S[n] = 0;
35
36
       return S[n] = 1;
37
38
39
  11 pollard\_rho(11 n) {
40
       11 s = 0, t = 0;
       11 c = seed() % (n - 1) + 1;
41
42
       11 \text{ val} = 1;
43
       for (int goal = 1;; goal *= 2, s = t, val = 1) {
44
           for (int step = 1; step <= goal; step++) {</pre>
45
                t = ((LL)t * t + c) % n;
46
                val = (LL)val * abs(t - s) % n;
47
                if (step % 127 == 0) {
48
                    11 g = gcd(val, n);
49
                    if (g > 1) return g;
50
                }
51
           }
52
           ll g = gcd(val, n);
53
           if (g > 1) return g;
54
       }
55
  }
56
  auto getprimes(ll n) {
57
       unordered\_set<ll> S;
```

```
58
       auto get = [&](auto self, ll n) {
59
           if (n < 2) return;</pre>
60
           if (isprime(n)) {
61
                S.insert(n);
                return;
62
63
64
           11 mx = pollard\_rho(n);
            self(self, n / mx);
65
66
           self(self, mx);
67
       };
       get(get, n);
68
69
       return S;
70 }
```

#### 4.6 组合数

```
1 constexpr int N = 1e6;
  array<modint, N + 1> fac, ifac;
3
  modint C(int n, int m) {
4
5
       if (n < m) return 0;</pre>
6
       if (n <= mod) return fac[n] * ifac[m] * ifac[n - m];</pre>
7
       // n >= mod 时需要这个
8
       return C(n % mod, m % mod) * C(n / mod, m / mod);
9
10
11
  auto \_ = []() {
12
       fac[0] = 1;
13
       for (int i = 1; i <= N; i++) fac[i] = fac[i - 1] * i;</pre>
14
       ifac[N] = fac[N].inv();
       for (int i = N - 1; i >= 0; i--) ifac[i] = ifac[i + 1] * (i + 1);
15
16
       return true;
17
  }();
```

#### 4.7 数论分块

```
求解形如 \sum_{i=1}^{n} f(i)g(\lfloor \frac{n}{i} \rfloor) 的合式 s(n) = \sum_{i=1}^{n} f(i)
```

```
modint sqrt\_decomposition(int n) {
1
2
       auto s = [\&](int x) \{ return x; \};
3
       auto g = [&](int x) { return x; };
4
       modint res = 0;
5
       while (1 <= R) {
6
           int r = n / (n / 1);
7
           res = res + (s(r) - s(l - 1)) * g(n / 1);
8
           1 = r + 1;
9
       }
10
       return res;
11 }
```

#### 4.8 积性函数

#### 4.8.1 定义

函数 f(n) 满足 f(1) = 1 且  $\forall x, y \in \mathbf{N}^*$ , gcd(x, y) = 1 都有 f(xy) = f(x)f(y), 则 f(n) 为积性函数。 函数 f(n) 满足 f(1) = 1 且  $\forall x, y \in \mathbf{N}^*$  都有 f(xy) = f(x)f(y), 则 f(n) 为完全积性函数。

#### 4.8.2 例子

- 单位函数:  $\varepsilon(n) = [n = 1]$ 。(完全积性)
- 恒等函数: id  $k(n) = n^k$ 。(完全积性)
- 常数函数: 1(n) = 1。(完全积性)
- 除数函数:  $\sigma_k(n) = \sum_{n=0}^\infty d \mid nd^k \circ \sigma_k(n)$  通常简记作 d(n) 或  $\tau(n)$ ,  $\sigma_k(n)$  通常简记作  $\sigma(n)$
- 欧拉函数:  $\varphi(n) = \sum_{i=1}^{n} [\gcd(i, n) = 1]$ .

# 4.9 狄利克雷卷积

对于两个数论函数 f(x) 和 g(x),则它们的狄利克雷卷积得到的结果 h(x) 定义为:  $h(x) = \sum_{} d \mid x f(d) g\left(\frac{x}{d}\right) = \sum_{} ab = x f(a) g(b)$  可以简记为: h = f \* g。

#### 4.9.1 性质

**交換律:** f \* g = g \* f。

**结合律:** (f \* g) \* h = f \* (g \* h)。

**分配律:** (f+g)\*h = f\*h+g\*h.

等式的性质: f = g 的充要条件是 f \* h = g \* h,其中数论函数 h(x) 要满足  $h(1) \neq 0$ 。

#### 4.9.2 例子

- $\varepsilon = \mu * 1 \iff \varepsilon(n) = \sum_{n} d \mid n\mu(d)$
- $id = \varphi * 1 \iff id(n) = \sum_{n} d \mid n\varphi(d)$
- $d = 1 * 1 \iff d(n) = \sum_{n=1}^{\infty} d \mid n1$
- $\sigma = id *1 \iff \sigma(n) = \sum_{n} d \mid nd$
- $\varphi = \mu * id \iff \varphi(n) = \sum_{n} d \mid nd \cdot \mu(\frac{n}{d})$

#### 4.10 欧拉函数

```
constexpr int N = 1e6;
array<int, N + 1> phi;
auto \_ = []() {
    iota(phi.begin() + 1, phi.end(), 1);
    for (int i = 2; i <= N; i++) {
        if (phi[i] == i)
            for (int j = i; j <= N; j += i) phi[j] = phi[j] / i * (i - 1);
    }
    return true;
}
</pre>
```

#### 4.11 莫比乌斯反演

#### 4.11.1 莫比乌斯函数性质

```
• \sum_{-}d\mid n\mu(d)=\begin{cases} 1 & n=1\\ 0 & n\neq 1 \end{cases}, \mathbb{P}\sum_{-}d\mid n\mu(d)=\varepsilon(n),\ \mu*1=\varepsilon(n)
```

```
• [\gcd(i,j) = 1] = \sum_{} d \mid \gcd(i,j)\mu(d)
```

```
1 constexpr int N = 1e6;
 2 | array < int, N + 1 > miu;
 3 array<bool, N + 1> ispr;
5
  auto \_ = []() {
 6
       miu.fill(1);
 7
       ispr.fill(1);
8
       for (int i = 2; i <= N; i++) {
9
           if (!ispr[i]) continue;
10
           miu[i] = -1;
11
           for (int j = 2 * i; j <= N; j += i) {
12
               ispr[j] = 0;
               if ((j / i) % i == 0) miu[j] = 0;
13
14
               else miu[j] *= -1;
15
           }
16
17
       return true;
18 }();
```

#### 4.11.2 莫比乌斯变换/反演

```
f(n) = \sum_{-d} |ng(d)|,那么有 g(n) = \sum_{-d} |n\mu(d)f(\frac{n}{d})| = \sum_{-d} |n\mu(\frac{d}{n})f(d)|。
用狄利克雷卷积表示则为 f = g*1,有 g = f*\mu。
f \to g 称为莫比乌斯反演,g \to f 称为莫比乌斯反演。
```

#### 4.12 杜教筛

杜教筛被用于处理一类数论函数的前缀和问题。对于数论函数 f,杜教筛可以在低于线性时间的复杂 度內计算  $S(n) = \sum_i i = 1^n f(i)$ 。

$$S(n) = \frac{\sum_{i} = 1^{n} (f * g)(i) - \sum_{i} = 2^{n} g(i) S\left(\left\lfloor \frac{n}{i} \right\rfloor\right)}{g(1)}$$

可以构造恰当的数论函数 g 使得:

- 可以快速计算  $\sum_i = 1^n (f * g)(i)$ .
- 可以快速计算 g 的单点值,用数论分块求解  $\sum_i i = 2^n g(i) S\left(\left|\frac{n}{i}\right|\right)$ 。

#### 4.12.1 示例

```
11 sum\ phi(11 n) {
2
       if (n <= N) return sp[n];</pre>
3
       if (sp2.count(n)) return sp2[n];
4
       11 \text{ res} = 0, 1 = 2;
5
       while (1 <= n) {
6
            11 r = n / (n / 1);
7
            res = res + (r - l + 1) * sum \neq nhi(n / l);
8
            1 = r + 1;
9
       }
10
        return sp2[n] = (11)n * (n + 1) / 2 - res;
11
12
13 \mid 11 \quad sum \setminus miu(11 \quad n)  {
       if (n <= N) return sm[n];</pre>
14
15
       if (sm2.count(n)) return sm2[n];
       11 \text{ res} = 0, 1 = 2;
16
17
       while (1 <= n) {
            11 r = n / (n / 1);
18
            res = res + (r - l + 1) * sum \setminus miu(n / l);
19
20
            l = r + 1;
21
22
        return sm2[n] = 1 - res;
23 }
```

#### 4.13 多项式

```
1 #define countr\_zero(n) \_\_builtin\_ctz(n)
  constexpr int N = 1e6;
3
  array<int, N + 1> inv;
5
  int power(int a, int b) {
6
      int res = 1;
7
      while (b) {
8
           if (b & 1) res = 1ll * res * a % mod;
9
           a = 111 * a * a % mod;
10
           b >>= 1;
11
12
       return res;
13 }
14
```

```
15 namespace NFTS {
16 | int g = 3;
17
  vector<int> rev, roots{0, 1};
   void dft(vector<int> &a) {
18
19
       int n = a.size();
20
       if (rev.size() != n) {
21
           int k = countr \leq zero(n) - 1;
22
           rev.resize(n);
23
           for (int i = 0; i < n; ++i) rev[i] = rev[i >> 1] >> 1 | (i & 1) << k;
24
       if (roots.size() < n) {</pre>
25
26
           int k = countr\_zero(roots.size());
27
           roots.resize(n);
28
           while ((1 << k) < n) {
29
               int e = power(g, (mod - 1) >> (k + 1));
               for (int i = 1 \iff (k - 1); i \iff (1 \iff k); ++i) {
30
31
                    roots[2 * i] = roots[i];
                    roots[2 * i + 1] = 1ll * roots[i] * e % mod;
32
33
               }
34
               ++k;
35
           }
36
37
       for (int i = 0; i < n; ++i)
38
           if (rev[i] < i) swap(a[i], a[rev[i]]);</pre>
39
       for (int k = 1; k < n; k *= 2) {
           for (int i = 0; i < n; i += 2 * k) {
40
41
               for (int j = 0; j < k; ++j) {
42
                    int u = a[i + j];
43
                    int v = 1ll * a[i + j + k] * roots[k + j] % mod;
44
                    int x = u + v, y = u - v;
45
                    if (x >= mod) x -= mod;
46
                    if (y < 0) y += mod;
47
                    a[i + j] = x;
48
                    a[i + j + k] = y;
49
               }
50
           }
51
       }
52
   void idft(vector<int> &a) {
53
54
       int n = a.size();
55
       reverse(a.begin() + 1, a.end());
56
       dft(a);
57
       int inv\_n = power(n, mod - 2);
       for (int i = 0; i < n; ++i) a[i] = 111 * a[i] * inv\_n % mod;
58
59
60
     // namespace NFTS
61
62
   struct poly {
63
       poly &format() {
64
           while (!a.empty() && a.back() == 0) a.pop\_back();
65
           return *this;
66
```

```
poly &reverse() {
67
68
             ::reverse(a.begin(), a.end());
69
            return *this;
70
71
        vector<int> a;
72
        poly() {}
73
        poly(int x) {
74
            if (x) a = \{x\};
75
76
        poly(const vector<int> &\_a) : a(\_a) {}
77
        int size() const { return a.size(); }
        int &operator[](int id) { return a[id]; }
78
79
        int at(int id) const {
            if (id < 0 || id >= (int)a.size()) return 0;
80
81
            return a[id];
82
83
        poly operator-() const {
84
            auto A = *this;
85
            for (auto &x : A.a) x = (x == 0 ? 0 : mod - x);
86
            return A;
87
        }
88
        poly mulXn(int n) const {
89
            auto b = a;
90
            b.insert(b.begin(), n, 0);
91
            return poly(b);
92
93
        poly modXn(int n) const {
94
            if (n > size()) return *this;
95
            return poly({a.begin(), a.begin() + n});
96
97
        poly divXn(int n) const {
98
            if (size() <= n) return poly();</pre>
99
            return poly({a.begin() + n, a.end()});
100
101
        poly &operator+=(const poly &rhs) {
102
            if (size() < rhs.size()) a.resize(rhs.size());</pre>
103
            for (int i = 0; i < rhs.size(); ++i)</pre>
104
                 if ((a[i] += rhs.a[i]) >= mod) a[i] -= mod;
105
            return *this;
106
107
        poly &operator -= (const poly &rhs) {
108
            if (size() < rhs.size()) a.resize(rhs.size());</pre>
109
            for (int i = 0; i < rhs.size(); ++i)</pre>
110
                 if ((a[i] -= rhs.a[i]) < 0) a[i] += mod;</pre>
111
            return *this;
112
113
        poly &operator*=(poly rhs) {
114
            int n = size(), m = rhs.size(), tot = max(1, n + m - 1);
115
            int sz = 1 << \_\lg(tot * 2 - 1);</pre>
116
            a.resize(sz);
117
            rhs.a.resize(sz);
118
            NFTS::dft(a);
```

```
119
            NFTS::dft(rhs.a);
120
            for (int i = 0; i < sz; ++i) a[i] = 1ll * a[i] * rhs.a[i] % mod;
121
            NFTS::idft(a);
            return *this;
122
123
124
        poly &operator/=(poly rhs) {
125
            int n = size(), m = rhs.size();
            if (n < m) return (*this) = poly();</pre>
126
127
            reverse();
128
            rhs.reverse();
129
            (*this) *= rhs.inv(n - m + 1);
130
            a.resize(n - m + 1);
131
            reverse();
132
            return *this;
133
        poly &operator%=(poly rhs) { return (*this) -= (*this) / rhs * rhs; }
134
135
        poly operator+(const poly &rhs) const { return poly(*this) += rhs; }
136
        poly operator-(const poly &rhs) const { return poly(*this) -= rhs; }
137
        poly operator*(poly rhs) const { return poly(*this) *= rhs; }
        poly operator/(poly rhs) const { return poly(*this) /= rhs; }
138
139
        poly operator%(poly rhs) const { return poly(*this) %= rhs; }
140
        poly powModPoly(int n, poly p) {
141
            poly r(1), x(*this);
142
            while (n) {
143
                if (n & 1) (r *= x) %= p;
144
                (x *= x) %= p;
145
                n >>= 1;
146
147
            return r;
148
149
        int inner(const poly &rhs) {
            int r = 0, n = min(size(), rhs.size());
150
151
            for (int i = 0; i < n; ++i) r = (r + 111 * a[i] * rhs.a[i]) % mod;
152
            return r;
153
154
        poly derivation() const {
155
            if (a.empty()) return poly();
156
            int n = size();
157
            vector<int> r(n - 1);
            for (int i = 1; i < n; ++i) r[i - 1] = 1ll * a[i] * i % mod;
158
159
            return poly(r);
160
161
        poly integral() const {
162
            if (a.empty()) return poly();
163
            int n = size();
164
            vector < int > r(n + 1);
            for (int i = 0; i < n; ++i) r[i + 1] = 111 * a[i] * ::inv[i + 1] % mod;
165
166
            return poly(r);
167
168
        poly inv(int n) const {
169
            assert(a[0] != 0);
170
            poly x(power(a[0], mod - 2));
```

```
171
           int k = 1;
172
           while (k < n) {
173
                k *= 2;
               x *= (poly(2) - modXn(k) * x).modXn(k);
174
175
176
           return x.modXn(n);
177
       }
       // 需要保证首项为 1
178
179
       poly log(int n) const {
           return (derivation() * inv(n)).integral().modXn(n);
180
181
       // 需要保证首项为 0
182
183
       poly exp(int n) const {
184
           poly x(1);
185
           int k = 1;
186
           while (k < n) {
187
               k *= 2;
188
               x = (x * (poly(1) - x.log(k) + modXn(k))).modXn(k);
189
190
           return x.modXn(n);
191
       }
       // 需要保证首项为 1, 开任意次方可以先 1n 再 exp 实现。
192
193
       poly sqrt(int n) const {
194
           poly x(1);
195
           int k = 1;
196
           while (k < n) {
197
                k *= 2;
               x += modXn(k) * x.inv(k);
198
199
               x = x.modXn(k) * inv2;
200
201
           return x.modXn(n);
202
203
       // 减法卷积, 也称转置卷积 {\rm MULT}(F(x),G(x))=\sum\_{i\ge0}(\sum\_{j\ge
204
       // 0f\_{i+j}g\_j)x^i
205
       poly mulT(poly rhs) const {
206
           if (rhs.size() == 0) return poly();
207
           int n = rhs.size();
208
           ::reverse(rhs.a.begin(), rhs.a.end());
209
           return ((*this) * rhs).divXn(n - 1);
210
211
       int eval(int x) {
212
           int r = 0, t = 1;
213
           for (int i = 0, n = size(); i < n; ++i) {
               r = (r + 111 * a[i] * t) % mod;
214
215
               t = 111 * t * x % mod;
216
217
           return r;
218
219
       // 多点求值新科技: https://jkloverdcoi.github.io/2020/08/04/转置原理及其应用/
220
       // 模板例题: https://www.luogu.com.cn/problem/P5050
221
       auto evals(vector<int> &x) const {
222
           if (size() == 0) return vector(x.size(), 0);
```

```
223
            int n = x.size();
224
            vector ans(n, 0);
            vector<poly> g(4 * n);
225
            auto build = [&](auto self, int 1, int r, int p) -> void {
226
                if (r - 1 == 1) {
227
                    g[p] = poly({1, x[1] ? mod - x[1] : 0});
228
229
                } else {
                    int m = (1 + r) / 2;
230
231
                    self(self, 1, m, 2 * p);
                    self(self, m, r, 2 * p + 1);
232
                    g[p] = g[2 * p] * g[2 * p + 1];
233
                }
234
235
            };
            build(build, 0, n, 1);
236
237
            auto solve = [&](auto self, int l, int r, int p, poly f) -> void {
                if (r - 1 == 1) {
238
239
                    ans[1] = f[0];
240
                } else {
241
                    int m = (1 + r) / 2;
                    self(self, 1, m, 2 * p, f.mulT(g[2 * p + 1]).modXn(m - 1));
242
243
                    self(self, m, r, 2 * p + 1, f.mulT(g[2 * p]).modXn(r - m));
                }
244
245
            };
246
            solve(solve, 0, n, 1, mulT(g[1].inv(size())).modXn(n));
247
            return ans;
248
       }
   }; // 全家桶测试: https://www.luogu.com.cn/training/3015#information
249
250
   auto \_ = []() {
251
252
        inv[0] = inv[1] = 1;
253
        for (int i = 2; i < inv.size(); i++)</pre>
            inv[i] = 111 * (mod - mod / i) * inv[mod % i] % mod;
254
255
        return true;
256 }();
```

#### 4.14 盒子与球

n 个球, m 个盒

| 球同       | 盒同       | 可空       | 公式                                                                                                        |
|----------|----------|----------|-----------------------------------------------------------------------------------------------------------|
| <b>√</b> | <b>√</b> | <b>√</b> | $f_{n,m}=f_{n,m-1}+f_{n-m,m}$ 或 $[x^n]e^{\sum\limits_{i=1}^{m}\sum\limits_{j=1}^{\infty}rac{x^{ij}}{j}}$ |
| <b>√</b> | <b>√</b> | ×        | $f_{n-m,m}$                                                                                               |
| ×        | <b>√</b> | <b>√</b> | $\Sigma_{i=1}^m g_{n,i}$ 或 $\sum_{i=1}^m \sum_{j=0}^i rac{j^n}{j!} rac{(-1)^{i-j}}{(i-j)!}$             |
| ×        | <b>√</b> | ×        | $g_{n,m} = g_{n-1,m-1} + m * g_{n-1,m}$ 或 $rac{1}{m!} \sum_{i=0}^m (-1)^i inom{m}{i} (m-i)^n$            |
| <b>√</b> | ×        | <b>√</b> | $C_{n+m-1}^{m-1}$                                                                                         |
|          | ×        |          | $C_{n-1}^{m-1}$                                                                                           |
| ×        | ×        | <b>√</b> | $m^n$                                                                                                     |
| ×        | ×        | ×        | $m!*g_{n,m}$ 或 $\sum\limits_{i=0}^{m}(-1)^iinom{m}{i}(m-i)^n$                                             |

#### 4.14.1 球同, 盒同, 可空

```
int solve(int n, int m) {
   vector a(n + 1, 0);
   for (int i = 1; i <= m; i++)
        for (int j = i, k = 1; j <= n; j += i, k++)
        a[j] = (a[j] + inv[k]) % mod;
   auto p = poly(a).exp(n + 1);
   return (p.a[n] + mod) % mod;
}</pre>
```

若要求不超过 k 个,答案为  $[x^ny^m]\prod\_i=0^k\left(\sum\_j=0^mx^{ij}y^j\right)$ 。

# 4.14.2 球不同, 盒同, 可空

```
1 int solve(int n, int m) {
2
       vector a(n + 1, 0);
3
       vector b(n + 1, 0);
4
       for (int i = 0; i <= n; i++) {</pre>
5
           a[i] = ifac[i];
6
           if (i & 1) a[i] = -a[i];
7
           b[i] = 1ll * power(i, n) * ifac[i] % mod;
8
       }
       auto p = poly(a) * poly(b);
9
10
       int ans = 0;
       for (int i = 1; i \leftarrow min(n, m); i++) ans = (ans + p.a[i]) % mod;
11
12
       return (ans + mod) % mod;
```

13 }

若要求不超过 k 个,答案为  $m! \cdot [x^n y^m] \prod_i j = 0^k \left( \sum_j j = 0^n \frac{1}{i!j} x^{ij} y^j \right)$ 。

#### 4.14.3 球同, 盒不同, 可空

若要求不超过 k 个,答案为  $\left[x^n\right]\left(\sum_{i=0}^{k} i^n\right)^m = \left[x^n\right] \frac{(x^{k+1}-1)^m}{(x-1)^m}$ 。 也可以考虑容斥,令 f(i) 表示至少有 i 个盒子装了 > k 个球方案数, $f(i) = {m \choose i} {n-(k+1)i+m-1 \choose m-1}$ 。 总方案数则为  $\sum_{i=0}^{m} i^m i^m i^m i^m$ 。

#### 4.14.4 球同, 盒不同, 不可空

若要求不超过 k 个,答案为  $\left[x^n\right]\left(\sum_i i=1^k x^i\right)^m=\left[x^n\right]\frac{(x^k-1)^m x^m}{(x-1)^m}$ 。 也可以考虑容斥,令 f(i) 表示至少有 i 个盒子装了 > k 个球方案数, $f(i)=\binom{m}{i}\binom{n-ki-1}{m-1}$ 。 总方案数则为  $\sum_i i=0^m(-1)^i f(i)$ 。

#### 4.14.5 球不同, 盒不同, 可空

若要求不超过 k 个,答案为  $m! \cdot [x^n] \left( \sum_i = 0^k \frac{1}{i!} x^i \right)^m$ 。

#### 4.14.6 球不同,盒不同,不可空

若要求不超过 k 个,答案为  $m! \cdot [x^n] \left( \sum_{i=1}^{n} 1^k \frac{1}{i!} x^i \right)^m$ 。

#### 4.15 线性基

```
// 线性基
  struct basis {
      int rnk = 0;
4
      array<ull, 64> p{};
5
6
      // 将×插入此线性基中
7
      void insert(ull x) {
8
          for (int i = 63; i >= 0; i--) {
9
               if (!(x >> i & 1)) continue;
10
               if (p[i]) x ^= p[i];
11
               else {
12
                   p[i] = x;
13
                   rnk++;
14
                   break;
15
               }
16
          }
17
      }
18
      // 将另一个线性基插入此线性基中
19
20
      void insert(basis other) {
21
          for (int i = 0; i <= 63; i++) {
22
               if (!other.p[i]) continue;
23
               insert(other.p[i]);
24
          }
25
      }
26
```

#### 4.16 矩阵快速幂

```
constexpr 11 mod = 2147493647;
2
   struct Mat {
3
       int n, m;
4
       vector<vector<ll>> mat;
5
       Mat(int n, int m) : n(n), m(n), mat(n, vector<ll>(m, 0)) {}
6
       Mat(vector<vector<1l>> mat) : n(mat.size()), m(mat[0].size()), mat(mat) {}
7
       Mat operator*(const Mat& other) {
8
           assert(m == other.n);
9
           Mat res(n, other.m);
10
           for (int i = 0; i < res.n; i++)</pre>
11
               for (int j = 0; j < res.m; j++)</pre>
12
                    for (int k = 0; k < m; k++)
13
                        res.mat[i][j] =
                             (res.mat[i][j] + mat[i][k] * other.mat[k][j] % mod) % \\
14
15
                             mod;
16
           return res;
17
       }
18
  };
19
  Mat ksm(Mat a, ll b) {
20
       assert(a.n == a.m);
21
       Mat res(a.n, a.m);
22
       for (int i = 0; i < res.n; i++) res.mat[i][i] = 1;</pre>
23
       while (b) {
24
           if (b & 1) res = res * a;
25
           b >>= 1;
26
           a = a * a;
27
28
       return res;
29 }
```

# 5 计算几何

#### 5.1 整数

```
1
  constexpr double inf = 1e100;
2
3 // 向量
4
  struct vec {
5
      static bool cmp(const vec &a, const vec &b) {
6
          return tie(a.x, a.y) < tie(b.x, b.y);</pre>
7
      }
8
9
      11 x, y;
10
      vec() : x(0), y(0) \{ \}
      vec(11 \x, 11 \y) : x(\x), y(\y) {}
11
12
13
      // 模
14
      11 len2() const { return x * x + y * y; }
15
      double len() const { return sqrt(x * x + y * y); }
16
17
      // 是否在上半轴
18
      bool up() const { return y > 0 \mid | y == 0 && x >= 0; }
19
20
      bool operator==(const vec &b) const { return tie(x, y) == tie(b.x, b.y); }
21
      // 极角排序
22
      bool operator<(const vec &b) const {</pre>
23
          if (up() != b.up()) return up() > b.up();
24
          11 tmp = (*this) ^ b;
25
          return tmp ? tmp > 0 : cmp(*this, b);
26
      }
27
28
      vec operator+(const vec &b) const { return {x + b.x, y + b.y}; }
29
      vec operator-() const { return {-x, -y}; }
30
      vec operator-(const vec &b) const { return -b + (*this); }
31
      vec operator*(11 b) const { return {x * b, y * b}; }
32
      11 operator*(const vec &b) const { return x * b.x + y * b.y; }
33
34
      // 叉积 结果大于0, a到b为逆时针, 小于0, a到b顺时针,
35
      // 等于0共线,可能同向或反向,结果绝对值表示 a b 形成的平行四边行的面积
36
      11 operator^(const vec &b) const { return x * b.y - y * b.x; }
37
      friend istream &operator>>(istream &in, vec &data) {
38
39
          in >> data.x >> data.y;
40
          return in;
41
42
      friend ostream &operator<<(ostream &out, const vec &data) {</pre>
43
          out << fixed << setprecision(6);</pre>
          out << data.x << " " << data.y;</pre>
44
45
          return out;
46
      }
47 };
48
```

```
49 11 cross(const vec &a, const vec &b, const vec &c) { return (a - c) ^ (b - c); }
50
51
   // 多边形的面积a
52 double polygon\_area(vector<vec> &p) {
53
       11 \text{ area} = 0;
54
       for (int i = 1; i < p.size(); i++) area += p[i - 1] ^ p[i];
55
       area += p.back() ^ p[0];
56
       return abs(area / 2.0);
57
58
59
   // 多边形的周长
60
   double polygon\_len(vector<vec> &p) {
61
       double len = 0;
62
       for (int i = 1; i < p.size(); i++) len += (p[i - 1] - p[i]).len();</pre>
63
       len += (p.back() - p[0]).len();
64
       return len;
65
66
67
   // 以整点为顶点的线段上的整点个数
68
   11 count(const vec &a, const vec &b) {
69
       vec c = a - b;
70
       return gcd(abs(c.x), abs(c.y)) + 1;
71
72
73
   // 以整点为顶点的多边形边上整点个数
74
   11 count(vector<vec> &p) {
75
       11 cnt = 0;
76
       for (int i = 1; i < p.size(); i++) cnt += count(p[i - 1], p[i]);</pre>
77
       cnt += count(p.back(), p[0]);
78
       return cnt - p.size();
79
80
81
   // 判断点是否在凸包内, 凸包必须为逆时针顺序
82
   bool in\_polygon(const vec &a, vector<vec> &p) {
83
       int n = p.size();
84
       if (n == 0) return 0;
85
       if (n == 1) return a == p[0];
86
       if (n == 2)
87
           return cross(a, p[1], p[0]) == 0 && (p[0] - a) * (p[1] - a) <= 0;
88
       if (cross(a, p[1], p[0]) > 0 || cross(p.back(), a, p[0]) > 0) return 0;
89
       auto cmp = [\&](\text{vec }\&x, \text{const vec }\&y) \{ \text{return } ((x - p[0]) ^ y) >= 0; \};
90
       int i =
91
           lower_bound(p.begin() + 2, p.end() - 1, a - p[0], cmp) - p.begin() - 1;
92
       return cross(p[(i + 1) % n], a, p[i]) >= 0;
93 }
94
95
   // 凸包直径的两个端点
96
   auto polygon\_dia(vector<vec> &p) {
97
       int n = p.size();
98
       array<vec, 2> res{};
99
       if (n == 1) return res;
100
       if (n == 2) return res = {p[0], p[1]};
```

```
101
        11 mx = 0;
102
        for (int i = 0, j = 2; i < n; i++) {
103
            while (abs(cross(p[i], p[(i + 1) % n], p[j])) <=</pre>
                    abs(cross(p[i], p[(i + 1) % n], p[(j + 1) % n])))
104
105
                j = (j + 1) \% n;
106
            11 \text{ tmp} = (p[i] - p[j]).len2();
107
            if (tmp > mx) {
108
                mx = tmp;
109
                res = \{p[i], p[j]\};
110
            tmp = (p[(i + 1) % n] - p[j]).len2();
111
112
            if (tmp > mx) {
113
                mx = tmp;
114
                res = \{p[(i + 1) \% n], p[j]\};
115
            }
116
117
        return res;
118
119
   // 凸包
120
121
   auto convex\_hull(vector<vec> &p) {
122
        sort(p.begin(), p.end(), vec::cmp);
123
        int n = p.size();
124
        vector sta(n + 1, 0);
125
        vector v(n, false);
126
        int tp = -1;
127
        sta[++tp] = 0;
128
        auto update = [&](int lim, int i) {
129
            while (tp > lim \&\& cross(p[i], p[sta[tp]], p[sta[tp - 1]]) >= 0)
130
                v[sta[tp--]] = 0;
131
            sta[++tp] = i;
132
            v[i] = 1;
133
        };
134
        for (int i = 1; i < n; i++) update(0, i);</pre>
135
        int cnt = tp;
136
        for (int i = n - 1; i >= 0; i--) {
137
            if (v[i]) continue;
138
            update(cnt, i);
139
140
        vector<vec> res(tp);
141
        for (int i = 0; i < tp; i++) res[i] = p[sta[i]];</pre>
142
        return res;
143
   }
144
145
   // 闵可夫斯基和,两个点集的和构成一个凸包
146
   auto minkowski(vector<vec> &a, vector<vec> &b) {
147
        rotate(a.begin(), min\_element(a.begin(), a.end(), vec::cmp), a.end());
        rotate(b.begin(), min\_element(b.begin(), b.end(), vec::cmp), b.end());
148
149
        int n = a.size(), m = b.size();
150
        vector<vec> c{a[0] + b[0]};
        c.reserve(n + m);
151
152
        int i = 0, j = 0;
```

```
153
       while (i < n && j < m) {
           vec x = a[(i + 1) \% n] - a[i];
154
155
           vec y = b[(j + 1) \% m] - b[j];
           c.push\_back(c.back() + ((x ^ y) >= 0 ? (i++, x) : (j++, y)));
156
157
       }
158
       while (i + 1 < n) {
159
           c.push\_back(c.back() + a[(i + 1) % n] - a[i]);
160
           i++;
161
       }
       while (j + 1 < m) {
162
163
           c.push\_back(c.back() + b[(j + 1) \% m] - b[j]);
           j++;
164
165
       }
166
       return c;
167
168
169
   // 过凸多边形外一点求凸多边形的切线,返回切点下标
170
   auto tangent(const vec &a, vector<vec> &p) {
171
       int n = p.size();
       int l = -1, r = -1;
172
173
       for (int i = 0; i < n; i++) {</pre>
174
           ll tmp1 = cross(p[i], p[(i - 1 + n) % n], a);
175
           11 \text{ tmp2} = \text{cross}(p[i], p[(i + 1) \% n], a);
           if (1 == -1 \&\& tmp1 <= 0 \&\& tmp2 <= 0) l = i;
176
177
           else if (r == -1 \&\& tmp1 >= 0 \&\& tmp2 >= 0) r = i;
178
       }
179
       return array{1, r};
180
181
182 // 直线
183 struct line {
184
       vec p, d;
185
       line() : p(vec()), d(vec()) {}
186
       line(const vec \&\_p, const vec \&\_d) : p(\_p), d(\_d) {}
187 };
188
189 // 点到直线距离
190
   double dis(const vec &a, const line &b) {
191
       return abs((b.p - a) ^ (b.p + b.d - a)) / b.d.len();
192
193
   // 点在直线哪边,大于0在左边,等于0在线上,小于0在右边
194
195 | 11 side \ line(const vec &a, const line &b) { return b.d ^ (a - b.p); }
196
197
   // 两直线是否垂直
198 bool perpen(const line &a, const line &b) { return a.d * b.d == 0; }
199
   // 两直线是否平行
200
201 bool parallel(const line &a, const line &b) { return (a.d ^ b.d) == 0; }
202
203 // 点的垂线是否与线段有交点
204 bool perpen(const vec &a, const line &b) {
```

```
205
        vec p(-b.d.y, b.d.x);
206
        bool cross1 = (p \land (b.p - a)) > 0;
207
        bool cross2 = (p ^ (b.p + b.d - a)) > 0;
        return cross1 != cross2;
208
209
210
211
   // 点到线段距离
   double dis\_seg(const vec &a, const line &b) {
212
213
       if (perpen(a, b)) return dis(a, b);
        return min((b.p - a).len(), (b.p + b.d - a).len());
214
215
216
217
   // 点到凸包距离
218
   double dis(const vec &a, vector<vec> &p) {
219
       double res = inf;
        for (int i = 1; i < p.size(); i++)</pre>
220
221
            res = min(dis \setminus seg(a, line(p[i - 1], p[i] - p[i - 1])), res);
222
        res = min(dis\_seg(a, line(p.back(), p[0] - p.back())), res);
223
        return res;
224
225
226
   // 两直线交点
227
   vec intersection(11 A, 11 B, 11 C, 11 D, 11 E, 11 F) {
228
        return {(B * F - C * E) / (A * E - B * D),
229
                (C * D - A * F) / (A * E - B * D);
230
231
232
   // 两直线交点
233
   vec intersection(const line &a, const line &b) {
234
        return intersection(a.d.y, -a.d.x, a.d.x * a.p.y - a.d.y * a.p.x, b.d.y,
235
                             -b.d.x, b.d.x * b.p.y - b.d.y * b.p.x);
236
```

三维

```
1
  // 向量
2
  struct vec3 {
3
       static bool cmp(const vec3 &a, const vec3 &b) {
 4
           return tie(a.x, a.y, a.z) < tie(b.x, b.y, b.z);</pre>
5
       }
 6
7
      11 x, y, z;
 8
      vec3() : x(0), y(0), z(0) {}
9
       vec3(11 \x, 11 \y, 11 \z) : x(\x), y(\y), z(\z) {}
10
       // 模
11
12
       11 len2() const { return x * x + y * y + z * z; }
13
       double len() const { return hypot(x, y, z); }
14
15
      bool operator==(const vec3 &b) const {
16
           return tie(x, y, z) == tie(b.x, b.y, b.z);
17
       }
18
      bool operator!=(const vec3 &b) const { return !(*this == b); }
```

```
19
20
      vec3 operator+(const vec3 &b) const { return \{x + b.x, y + b.y, z + b.z\}; }
      vec3 operator-() const { return {-x, -y, -z}; }
21
22
      vec3 operator-(const vec3 &b) const { return -b + (*this); }
      vec3 operator*(ll b) const { return {b * x, b * y, b * z}; }
23
24
      11 operator*(const vec3 &b) const { return x * b.x + y * b.y + z * b.z; }
25
      // 叉积 结果大于0, a到b为逆时针, 小于0, a到b顺时针,
26
27
      // 等于O共线,可能同向或反向,结果绝对值表示 a b 形成的平行四边行的面积
28
      vec3 operator^(const vec3 &b) const {
29
          return \{y * b.z - z * b.y, z * b.x - x * b.z, x * b.y - y * b.x\};
30
      }
31
32
      friend istream &operator>>(istream &in, vec3 &data) {
33
          in >> data.x >> data.y >> data.z;
34
          return in;
35
36
      friend ostream &operator<<(ostream &out, const vec3 &data) {</pre>
37
          out << fixed << setprecision(6);</pre>
          out << data.x << " " << data.y << " " << data.z;
38
39
          return out;
40
      }
41
  };
42
43
  struct line3 {
44
      vec3 p, d;
45
      line3() {}
46
      line3(const vec3 &a, const vec3 &b) : p(a), d(b - a) {}
47
  };
48
49
  struct plane {
50
      vec3 p, d;
51
      plane() {}
52
      plane(const vec3 &a, const vec3 &b, const vec3 &c) : p(a) {
53
          d = (b - a) ^ (c - a);
54
          assert(d != vec3());
55
      }
56
  };
57
  // 线面是否垂直
58
59 bool perpen(const line3 &a, const plane &b) { return (a.d ^ b.d) == vec3(); }
61 // 线面是否平行
62 bool parallel(const line3 &a, const plane &b) { return a.d * b.d == 0; }
```

#### 5.2 浮点数

```
using lf = double;

constexpr lf eps = 1e-8;
constexpr lf inf = 1e100;
```

```
5 const lf PI = acos(-1);
6
7
  int sgn(lf a, lf b) {
8
      If c = a - b;
9
      return c < -eps ? -1 : c < eps ? 0 : 1;
10
11
12
  // 向量
13 struct vec {
14
       static bool cmp(const vec &a, const vec &b) {
15
           return sgn(a.x, b.x) ? a.x < b.x : sgn(a.y, b.y) < 0;
16
      }
17
      If x, y;
18
19
      vec() : x(0), y(0) {}
      vec(1f \x, 1f \y) : x(\x), y(\y) {}
20
21
22
      // 模
23
      1f len2() const { return x * x + y * y; }
      lf len() const { return sqrt(x * x + y * y); }
24
25
      // 与×轴正方向的夹角
26
27
      lf angle() const {
28
           If angle = atan2(y, x);
29
           if (angle < 0) angle += 2 * PI;</pre>
30
           return angle;
31
      }
32
33
      // 逆时针旋转
34
       vec rotate(const 1f &theta) const {
35
           return {x * cos(theta) - y * sin(theta),
36
                   y * cos(theta) + x * sin(theta)};
37
      }
38
39
      vec e() const {
40
           lf tmp = len();
41
           return {x / tmp, y / tmp};
42
       }
43
      // 是否在上半轴
44
45
      bool up() const {
46
           return sgn(y, 0) > 0 \mid | sgn(y, 0) == 0 && sgn(x, 0) >= 0;
47
      }
48
49
      bool operator==(const vec &other) const {
50
           return sgn(x, other.x) == 0 && sgn(y, other.y) == 0;
51
       }
      // 极角排序
52
53
      bool operator<(const vec &b) const {</pre>
54
           if (up() != b.up()) return up() > b.up();
55
           lf tmp = (*this) ^ b;
56
           return sgn(tmp, 0) ? tmp > 0 : cmp(*this, b);
```

```
57
       }
58
59
       vec operator+(const vec &b) const { return {x + b.x, y + b.y}; }
60
       vec operator-() const { return {-x, -y}; }
61
       vec operator-(const vec &b) const { return -b + (*this); }
62
       vec operator*(lf b) const { return {x * b, y * b}; }
       vec operator/(lf b) const { return {x / b, y / b}; }
63
       lf operator*(const vec &b) const { return x * b.x + y * b.y; }
64
65
       // 叉积 结果大于0, a到b为逆时针, 小于0, a到b顺时针,
66
67
       // 等于O共线, 可能同向或反向, 结果绝对值表示 a b 形成的平行四边行的面积
       lf operator^(const vec &b) const { return x * b.y - y * b.x; }
68
69
70
       friend istream &operator>>(istream &in, vec &data) {
71
           in >> data.x >> data.y;
72
           return in;
73
74
       friend ostream &operator<<(ostream &out, const vec &data) {</pre>
75
           out << fixed << setprecision(6);</pre>
           out << data.x << " " << data.y;
76
77
           return out;
78
       }
79
   };
80
81 If cross(const vec &a, const vec &b, const vec &c) { return (a - c) ^ (b - c); }
82
83 If angle(const vec &a, const vec &b) { return atan2(abs(a ^ b), a * b); }
84
85
   // 多边形的面积
86
   lf polygon\_area(vector<vec> &p) {
87
       If area = 0;
88
       for (int i = 1; i < p.size(); i++) area += p[i - 1] ^ p[i];</pre>
89
       area += p.back() ^ p[0];
90
       return abs(area / 2.0);
91 }
92
93
   // 多边形的周长
94 | 1f polygon\_len(vector<vec> &p) {
95
       If len = 0;
96
       for (int i = 1; i < p.size(); i++) len += (p[i - 1] - p[i]).len();</pre>
97
       len += (p.back() - p[0]).len();
       return len;
98
99 }
100
101
   // 判断点是否在凸包内, 凸包必须为逆时针顺序
102
   bool in\_polygon(const vec &a, vector<vec> &p) {
103
       int n = p.size();
104
       if (n == 0) return 0;
105
       if (n == 1) return a == p[0];
106
       if (n == 2)
107
           return sgn(cross(a, p[1], p[0]), 0) == 0 &&
108
                  sgn((p[0] - a) * (p[1] - a), 0) <= 0;
```

```
109
        if (sgn(cross(a, p[1], p[0]), 0) > 0 ||
110
            sgn(cross(p.back(), a, p[0]), 0) > 0)
111
            return 0;
        auto cmp = [&](vec &x, const vec &y) {
112
113
            return sgn((x - p[0]) ^ y, 0) >= 0;
114
        };
        int i =
115
            lower_bound(p.begin() + 2, p.end() - 1, a - p[0], cmp) - p.begin() - 1;
116
117
        return sgn(cross(p[(i + 1) % n], a, p[i]), 0) >= 0;
118
119
120
   // 凸包直径的两个端点
121
   auto polygon\_dia(vector<vec> &p) {
122
        int n = p.size();
123
        array<vec, 2> res{};
124
        if (n == 1) return res;
125
        if (n == 2) return res = {p[0], p[1]};
126
        If mx = 0;
127
        for (int i = 0, j = 2; i < n; i++) {
128
            while (sgn(abs(cross(p[i], p[(i + 1) % n], p[j])),
129
                        abs(cross(p[i], p[(i + 1) % n], p[(j + 1) % n])) <= 0)
130
                j = (j + 1) \% n;
131
            lf tmp = (p[i] - p[j]).len();
132
            if (tmp > mx) {
133
                mx = tmp;
134
                res = \{p[i], p[j]\};
135
136
            tmp = (p[(i + 1) % n] - p[j]).len();
137
            if (tmp > mx) {
138
                mx = tmp;
139
                res = {p[(i + 1) \% n], p[j]};
140
            }
141
142
        return res;
143
144
145
   // 凸包
146
   auto convex\_hull(vector<vec> &p) {
147
        sort(p.begin(), p.end(), vec::cmp);
        int n = p.size();
148
149
        vector sta(n + 1, 0);
150
        vector v(n, false);
151
        int tp = -1;
152
        sta[++tp] = 0;
153
        auto update = [&](int lim, int i) {
154
            while (tp > lim \& sgn(cross(p[i], p[sta[tp]], p[sta[tp - 1]]), 0) >= 0)
                v[sta[tp--]] = 0;
155
156
            sta[++tp] = i;
157
            v[i] = 1;
158
        };
159
        for (int i = 1; i < n; i++) update(0, i);</pre>
160
        int cnt = tp;
```

```
161
        for (int i = n - 1; i >= 0; i--) {
162
            if (v[i]) continue;
163
            update(cnt, i);
164
165
        vector<vec> res(tp);
166
        for (int i = 0; i < tp; i++) res[i] = p[sta[i]];</pre>
167
        return res;
168
169
   // 闵可夫斯基和,两个点集的和构成一个凸包
170
   auto minkowski(vector<vec> &a, vector<vec> &b) {
171
172
        rotate(a.begin(), min\_element(a.begin(), a.end(), vec::cmp), a.end());
173
        rotate(b.begin(), min\_element(b.begin(), b.end(), vec::cmp), b.end());
174
        int n = a.size(), m = b.size();
        vector<vec> c{a[0] + b[0]};
175
176
        c.reserve(n + m);
177
        int i = 0, j = 0;
178
        while (i < n && j < m) {</pre>
179
            vec x = a[(i + 1) \% n] - a[i];
            vec y = b[(j + 1) \% m] - b[j];
180
181
            c.push\_back(c.back() + (sgn(x ^ y, 0) >= 0 ? (i++, x) : (j++, y)));
182
        }
183
        while (i + 1 < n) {
184
            c.push\_back(c.back() + a[(i + 1) % n] - a[i]);
185
            i++;
186
        }
187
        while (j + 1 < m) {
188
            c.push\_back(c.back() + b[(j + 1) % m] - b[j]);
189
            j++;
190
        }
191
        return c;
192
193
194
   // 过凸多边形外一点求凸多边形的切线,返回切点下标
195
   auto tangent(const vec &a, vector<vec> &p) {
196
        int n = p.size();
197
        int l = -1, r = -1;
198
        for (int i = 0; i < n; i++) {
199
            If tmp1 = cross(p[i], p[(i - 1 + n) \% n], a);
200
            lf tmp2 = cross(p[i], p[(i + 1) % n], a);
201
            if (1 == -1 \&\& sgn(tmp1, 0) <= 0 \&\& sgn(tmp2, 0) <= 0) 1 = i;
202
            else if (r == -1 \&\& sgn(tmp1, 0) >= 0 \&\& sgn(tmp2, 0) >= 0) r = i;
203
        }
204
        return array{1, r};
205 }
206
207
   // 直线
208
   struct line {
209
       vec p, d;
210
        line() : p(vec()), d(vec()) {}
211
        line(const vec \_p, const vec \_d) : p(\_p), d(\_d) {}
212 };
```

```
213
214
   // 点到直线距离
215
   lf dis(const vec &a, const line &b) {
       return abs((b.p - a) ^ (b.p + b.d - a)) / b.d.len();
216
217
218
219
   // 点在直线哪边,大于0在左边,等于0在线上,小于0在右边
   int side\_line(const vec &a, const line &b) { return sgn(b.d ^ (a - b.p), 0); }
220
221
   // 两直线是否垂直
222
   bool perpen(const line &a, const line &b) { return sgn(a.d * b.d, 0) == 0; }
223
224
225
   // 两直线是否平行
226
   bool parallel(const line &a, const line &b) { return sgn(a.d ^ b.d, 0) == 0; }
227
228
   // 点的垂线是否与线段有交点
229
   bool perpen(const vec &a, const line &b) {
230
       vec p(-b.d.y, b.d.x);
231
       bool cross1 = sgn(p ^ (b.p - a), 0) > 0;
232
       bool cross2 = sgn(p \land (b.p + b.d - a), 0) > 0;
233
       return cross1 != cross2;
234
235
   // 点到线段距离
236
237
   lf dis\ seg(const vec &a, const line &b) {
238
       if (perpen(a, b)) return dis(a, b);
239
       return min((b.p - a).len(), (b.p + b.d - a).len());
240
241
242
   // 点到凸包距离
243
   lf dis(const vec &a, vector<vec> &p) {
244
       lf res = inf;
245
       for (int i = 1; i < p.size(); i++)</pre>
246
           res = min(dis\_seg(a, line(p[i - 1], p[i] - p[i - 1])), res);
247
       res = min(dis\_seg(a, line(p.back(), p[0] - p.back())), res);
248
       return res;
249 }
250
251
   // 两直线交点
   vec intersection(lf A, lf B, lf C, lf D, lf E, lf F) {
252
253
       return {(B * F - C * E) / (A * E - B * D),
                (C * D - A * F) / (A * E - B * D);
254
255
   }
256
257
   // 两直线交点
258
   vec intersection(const line &a, const line &b) {
       return intersection(a.d.y, -a.d.x, a.d.x * a.p.y - a.d.y * a.p.x, b.d.y,
259
260
                            -b.d.x, b.d.x * b.p.y - b.d.y * b.p.x);
261
   }
262
263
   struct circle {
264
       vec o;
```

```
265
       lf r;
266
       circle(const vec \_0, lf \_r) : o(\_0), r(\_r){};
267
       // 点与圆的关系 -1在圆内, 0在圆上, 1在圆外
268
269
       int relation(const vec &a) const { return sgn((a - o).len(), r); }
270
271
       // 圆与圆的关系 -3包含, -2内切, -1相交, 0外切, 1相离
272
       int relation(const circle &a) const {
273
            lf l = (a.o - o).len();
            if (sgn(1, abs(r - a.r)) < 0) return -3;
274
            if (sgn(1, abs(r - a.r)) == 0) return -2;
275
276
            if (sgn(l, abs(r + a.r)) < 0) return -1;</pre>
277
            if (sgn(1, abs(r + a.r)) == 0) return 0;
278
            return 1;
279
       }
280
281
       lf area() { return PI * r * r; }
282
   };
283
284
   // 圆与直线交点
285
   auto intersection(const circle &c, const line &l) {
286
       lf d = dis(c.o, 1);
287
       vector<vec> res;
       vec mid = 1.p + 1.d.e() * ((c.o - 1.p) * 1.d / 1.d.len());
288
289
       if (sgn(d, c.r) == 0) res.push\ back(mid);
290
       else if (sgn(d, c.r) < 0) {
291
            d = sqrt(c.r * c.r - d * d);
292
            res.push\_back(mid + 1.d.e() * d);
293
            res.push\ back(mid - l.d.e() * d);
294
       }
295
       return res;
296
297
298
   // oab三角形与圆相交的面积
299
   lf area(const circle &c, const vec &a, const vec &b) {
300
       if (sgn(cross(a, b, c.o), 0) == 0) return 0;
301
       vector<vec> p;
302
       p.push\_back(a);
303
       line l(a, b - a);
       auto tmp = intersection(c, 1);
304
305
       if (tmp.size() == 2) {
306
            for (auto &i : tmp)
307
                if (sgn((a - i) * (b - i), 0) < 0) p.push\ back(i);</pre>
308
309
       p.push\_back(b);
310
       if (p.size() == 4 \&\& sgn((p[0] - p[1]) * (p[2] - p[1]), 0) > 0)
311
            swap(p[1], p[2]);
       If res = 0;
312
313
       for (int i = 1; i < p.size(); i++)</pre>
314
            if (c.relation(p[i - 1]) == 1 || c.relation(p[i]) == 1) {
315
                lf ang = angle(p[i - 1] - c.o, p[i] - c.o);
316
                res += c.r * c.r * ang / 2;
```

```
} else res += abs(cross(p[i - 1], p[i], c.o)) / 2.0;
317
318
        return res;
319 }
320
321
   // 多边形与圆相交的面积
322 If area(vector<vec> &p, circle c) {
323
       If res = 0;
        for (int i = 0; i < p.size(); i++) {</pre>
324
325
            int j = i + 1 == p.size() ? 0 : i + 1;
326
            if (sgn(cross(p[i], p[j], c.o), 0) <= 0) res += area(c, p[i], p[j]);</pre>
327
            else res -= area(c, p[i], p[j]);
328
329
        return abs(res);
330 }
```

#### 三维

```
constexpr lf eps = 1e-8;
1
2
3
  int sgn(lf a, lf b) {
4
      lf c = a - b;
5
      return c < -eps ? -1 : c < eps ? 0 : 1;
6
  }
7
8
  // 向量
9
  struct vec3 {
10
      If x, y, z;
11
      vec3() : x(0), y(0), z(0) {}
12
      vec3(1f \x, 1f \y, 1f \z) : x(\x), y(\y), z(\z) {}
13
14
      // 模
15
      lf len2() const { return x * x + y * y + z * z; }
16
      lf len() const { return hypot(x, y, z); }
17
18
      bool operator==(const vec3 &b) const {
19
          return sgn(x, b.x) == 0 \&\& sgn(y, b.y) == 0 \&\& sgn(z, b.z) == 0;
20
      bool operator!=(const vec3 &b) const { return !(*this == b); }
21
22
23
      vec3 operator+(const vec3 &b) const { return \{x + b.x, y + b.y, z + b.z\}; }
24
      vec3 operator-() const { return {-x, -y, -z}; }
25
      vec3 operator-(const vec3 &b) const { return -b + (*this); }
      vec3 operator*(lf b) const { return {b * x, b * y, b * z}; }
26
27
      lf operator*(const vec3 &b) const { return x * b.x + y * b.y + z * b.z; }
28
29
      // 叉积 结果大于0, a到b为逆时针, 小于0, a到b顺时针,
30
      // 等于O共线, 可能同向或反向, 结果绝对值表示 a b 形成的平行四边行的面积
31
      vec3 operator^(const vec3 &b) const {
32
          return {y * b.z - z * b.y, z * b.x - x * b.z, x * b.y - y * b.x};
33
      }
34
35
      friend istream &operator>>(istream &in, vec3 &a) {
          in >> a.x >> a.y >> a.z;
36
```

```
37
           return in;
38
       }
       friend ostream &operator<<(ostream &out, const vec3 &a) {</pre>
39
           out << fixed << setprecision(6);</pre>
40
           out << a.x << " " << a.y << " " << a.z;
41
42
           return out;
43
       }
44
  };
45
46
  struct line3 {
47
       vec3 p, d;
48
       line3() {}
49
       line3(const vec3 &a, const vec3 &b) : p(a), d(b - a) {}
50
  };
51
52
  struct plane {
53
      vec3 p, d;
54
       plane() {}
55
       plane(const vec3 &a, const vec3 &b, const vec3 &c) : p(a) {
56
           d = (b - a) ^ (c - a);
57
           assert(d != vec3());
58
       }
59 };
60
61 // 线面是否垂直
62 bool perpen(const line3 &a, const plane &b) { return (a.d ^ b.d) == vec3(); }
63
64
  // 线面是否平行
65 bool parallel(const line3 &a, const plane &b) { return sgn(a.d * b.d, 0) == 0; }
66
67
  // 线面交点
68
  vec3 intersection(const line3 &a, const plane &b) {
69
       assert(!parallel(a, b));
70
       double t = (b.p - a.p) * b.d / (a.d * b.d);
71
       return a.p + a.d * t;
72 }
```

## 5.3 扫描线

```
1 #define ls (pos << 1)
2
  #define rs (ls | 1)
3 #define mid ((tree[pos].l + tree[pos].r) >> 1)
4
  struct Rectangle {
5
      ll x\_l, y\_l, x\_r, y\_r;
6
  };
7
  11 area(vector<Rectangle>& rec) {
       struct Line {
8
9
           11 x, y\_up, y\_down;
10
           int pd;
11
       };
       vector<Line> line(rec.size() * 2);
12
```

```
13
       vector<ll> y\_set(rec.size() * 2);
14
       for (int i = 0; i < rec.size(); i++) {</pre>
15
           y\_set[i * 2] = rec[i].y\_l;
           y\_set[i * 2 + 1] = rec[i].y\_r;
16
17
           line[i * 2] = \{rec[i].x \setminus 1, rec[i].y \setminus r, rec[i].y \setminus 1, 1\};
           line[i * 2 + 1] = \{rec[i].x \setminus r, rec[i].y \setminus r, rec[i].y \setminus 1, -1\};
18
19
20
       sort(y\_set.begin(), y\_set.end());
21
       y\_set.erase(unique(y\_set.begin(), y\_set.end()), y\_set.end());
       sort(line.begin(), line.end(), [](Line a, Line b) { return a.x < b.x; });</pre>
22
23
       struct Data {
           int 1, r;
24
25
           11 len, cnt, raw\_len;
26
       };
27
       vector<Data> tree(4 * y\_set.size());
28
       function<void(int, int, int)> build = [&](int pos, int 1, int r) {
29
           tree[pos].l = 1;
30
           tree[pos].r = r;
31
           if (1 == r) {
32
                tree[pos].raw\_len = y\_set[r + 1] - y\_set[l];
33
                tree[pos].cnt = tree[pos].len = 0;
34
                return;
35
           }
36
           build(ls, 1, mid);
37
           build(rs, mid + 1, r);
38
           tree[pos].raw\_len = tree[ls].raw\_len + tree[rs].raw\_len;
39
       };
       function<void(int, int, int, int)> update = [&](int pos, int 1, int r,
40
41
                                                            int num) {
42
           if (1 <= tree[pos].1 && tree[pos].r <= r) {</pre>
43
                tree[pos].cnt += num;
44
                tree[pos].len = tree[pos].cnt ? tree[pos].raw\_len
45
                                  : tree[pos].1 == tree[pos].r
46
47
                                      : tree[ls].len + tree[rs].len;
48
                return;
49
           }
50
           if (1 <= mid) update(ls, 1, r, num);</pre>
51
           if (r > mid) update(rs, l, r, num);
           tree[pos].len =
52
53
                tree[pos].cnt ? tree[pos].raw\_len : tree[ls].len + tree[rs].len;
54
       };
55
       build(1, 0, y\_set.size() - 2);
56
       auto find\_pos = [\&](11 num) {
57
           return lower\_bound(y\_set.begin(), y\_set.end(), num) - y\_set.begin();
58
       };
59
       11 \text{ res} = 0;
60
       for (int i = 0; i < line.size() - 1; i++) {</pre>
61
           update(1, find\pos(line[i].y\q), find\pos(line[i].y\q) - 1,
62
                   line[i].pd);
63
           res += (line[i + 1].x - line[i].x) * tree[1].len;
64
```

```
65 return res;
66 }
```

# 6 杂项

## 6.1 快读

```
1 namespace IO {
2
  constexpr int N = (1 \leftrightarrow 20) + 1;
3
  char Buffer[N];
4
  int p = N;
5
6
  char& get() {
7
       if (p == N) {
8
           fread(Buffer, 1, N, stdin);
9
           p = 0;
10
       }
11
       return Buffer[p++];
12
13
14
  template <typename T = int>
15
  T read() {
16
       T x = 0;
17
       bool f = 1;
18
       char c = get();
19
       while (!isdigit(c)) {
           f = c != '-';
20
21
           c = get();
22
23
       while (isdigit(c)) {
24
           x = x * 10 + c - '0';
25
           c = get();
26
27
       return f ? x : -x;
28
29 } // namespace IO
30 using IO::read;
```

## 6.2 高精度

```
struct bignum {
 1
2
       string num;
3
4
      bignum() : num("0") {}
5
      bignum(const string& num) : num(num) {
6
           reverse(this->num.begin(), this->num.end());
7
8
      bignum(ll num) : num(to\_string(num)) {
9
           reverse(this->num.begin(), this->num.end());
10
      }
11
12
      bignum operator+(const bignum& other) {
13
           bignum res;
14
           res.num.pop\_back();
```

```
15
           res.num.reserve(max(num.size(), other.num.size()) + 1);
16
           for (int i = 0, j = 0, x; i < num.size() || i < other.num.size() || j;
17
                 i++) {
                x = j;
18
19
                j = 0;
20
                if (i < num.size()) x += num[i] - '0';</pre>
21
                if (i < other.num.size()) x += other.num[i] - '0';</pre>
                if (x >= 10) j = 1, x -= 10;
22
23
                res.num.push\_back(x + '0');
24
           }
25
           res.num.capacity();
26
           return res;
27
       }
28
29
       bignum operator*(const bignum& other) {
30
           vector<int> res(num.size() + other.num.size() - 1, 0);
31
           for (int i = 0; i < num.size(); i++)</pre>
32
                for (int j = 0; j < other.num.size(); j++)</pre>
                    res[i + j] += (num[i] - '0') * (other.num[j] - '0');
33
34
           int g = 0;
35
           for (int i = 0; i < res.size(); i++) {</pre>
36
                res[i] += g;
37
                g = res[i] / 10;
38
                res[i] %= 10;
39
40
           while (g) {
41
                res.push\_back(g % 10);
42
                g /= 10;
43
44
           int lim = res.size();
45
           while (lim > 1 && res[lim - 1] == 0) lim--;
46
           bignum res2;
47
           res2.num.resize(lim);
           for (int i = 0; i < lim; i++) res2.num[i] = res[i] + '0';</pre>
48
49
           return res2;
50
       }
51
52
       bool operator<(const bignum& other) {</pre>
53
           if (num.size() == other.num.size())
                for (int i = num.size() - 1; i >= 0; i--)
54
55
                    if (num[i] == other.num[i]) continue;
56
                    else return num[i] < other.num[i];</pre>
57
           return num.size() < other.num.size();</pre>
58
       }
59
60
       friend istream& operator>>(istream& in, bignum& a) {
61
           in >> a.num;
62
           reverse(a.num.begin(), a.num.end());
63
           return in;
64
65
       friend ostream& operator<<(ostream& out, bignum a) {</pre>
66
           reverse(a.num.begin(), a.num.end());
```

## 6.3 离散化

```
template <typename T>
  struct Hash {
3
       vector<int> S;
 4
       vector<T> a;
5
       Hash(const vector<int>& b) : S(b) {
 6
           sort(S.begin(), S.end());
7
           S.erase(unique(S.begin(), S.end()), S.end());
8
           a = vector<T>(S.size());
9
       }
10
       T& operator[](int i) const {
11
           auto pos = lower\_bound(S.begin(), S.end(), i) - S.begin();
12
           assert(pos != S.size() && S[pos] == i);
13
           return a[pos];
14
       }
15 };
```

#### 6.4 模运算

```
constexpr int mod = 998244353;
3
  template <typename T>
  T power(T a, int b) {
4
      T res = 1;
5
6
       while (b) {
7
           if (b & 1) res = res * a;
8
           a = a * a;
9
           b >>= 1;
10
11
       return res;
12
13
14
  struct modint {
15
       int x;
16
       modint(int \setminus x = 0) : x(\setminus x) {
17
           if (x < 0) x += mod;
18
           else if (x >= mod) x -= mod;
19
       }
20
       modint inv() const { return power(*this, mod - 2); }
21
       modint operator+(const modint& b) { return x + b.x; }
22
       modint operator-() const { return {-x}; }
23
       modint operator-(const modint& b) { return -b + *this; }
       modint operator*(const modint& b) { return int((11)x * b.x % mod); }
24
25
       modint operator/(const modint& b) { return *this * b.inv(); }
26
       friend istream& operator>>(istream& is, modint& other) {
```

```
27
             11 \_x;
28
             is \rightarrow \_x;
29
             other = modint(\_x);
30
             return is;
31
        }
32
        friend ostream& operator<<(ostream& os, modint other) {</pre>
33
             return os << other.x;</pre>
34
        }
35 };
```

## 6.5 分数

```
1
       struct frac {
  2
                   11 a, b;
  3
                   frac() : a(0), b(1) {}
  4
                   frac(ll \alpha_a, ll \begin{aligned} \begi
  5
                              assert(b);
  6
                              if (a) {
  7
                                          int tmp = gcd(a, b);
  8
                                          a /= tmp;
  9
                                           b /= tmp;
10
                              } else *this = frac();
11
12
                   frac operator+(const frac& other) {
13
                              return frac(a * other.b + other.a * b, b * other.b);
14
                   }
15
                   frac operator-() const {
16
                              frac res = *this;
17
                               res.a = -res.a;
18
                              return res;
19
                   }
20
                   frac operator-(const frac& other) const { return -other + *this; }
21
                   frac operator*(const frac& other) const {
22
                              return frac(a * other.a, b * other.b);
23
24
                   frac operator/(const frac& other) const {
25
                              assert(other.a);
26
                              return *this * frac(other.b, other.a);
27
                   }
28
                   bool operator<(const frac& other) const { return (*this - other).a < 0; }</pre>
29
                   bool operator<=(const frac& other) const { return (*this - other).a <= 0; }</pre>
30
                   bool operator>=(const frac& other) const { return (*this - other).a >= 0; }
31
                   bool operator>(const frac& other) const { return (*this - other).a > 0; }
32
                   bool operator==(const frac& other) const {
33
                              return a == other.a && b == other.b;
34
35
                   bool operator!=(const frac& other) const { return !(*this == other); }
36 };
```

#### 6.6 表达式求值

```
// 格式化表达式
 1
2
  string format(const string& s1) {
3
       stringstream ss(s1);
4
       string s2;
5
       char ch;
6
       while ((ch = ss.get()) != EOF) {
           if (ch == ' ') continue;
7
8
           if (isdigit(ch)) s2 += ch;
9
           else {
10
               if (s2.back() != ' ') s2 += ' ';
11
               s2 += ch;
12
               s2 += ' ';
13
           }
14
       }
15
       return s2;
16 }
17
18
  // 中缀表达式转后缀表达式
19
  string convert(const string& s1) {
20
       unordered\_map<char, int> rank{
21
           {'+', 2}, {'-', 2}, {'*', 1}, {'/', 1}, {'^', 0}};
22
       stringstream ss(s1);
23
       string s2, temp;
24
       stack<char> op;
25
       while (ss >> temp) {
26
           if (isdigit(temp[0])) s2 += temp + ' ';
27
           else if (temp[0] == '(') op.push('(');
           else if (temp[0] == ')') {
28
29
               while (op.top() != '(') {
30
                   s2 += op.top();
                   s2 += ' ';
31
32
                   op.pop();
33
               }
               op.pop();
34
35
           } else {
               while (!op.empty() && op.top() != '(' &&
36
37
                       (temp[0] != '^' && rank[op.top()] <= rank[temp[0]] ||</pre>
38
                        rank[op.top()] < rank[temp[0]])) {</pre>
39
                   s2 += op.top();
                   s2 += ' ';
40
41
                   op.pop();
42
43
               op.push(temp[0]);
           }
44
45
       }
       while (!op.empty()) {
46
47
           s2 += op.top();
           s2 += ' ';
48
49
           op.pop();
50
```

```
51
       return s2;
52
53
  // 计算后缀表达式
54
55
  int calc(const string& s) {
56
       stack<int> num;
57
       stringstream ss(s);
58
       string temp;
59
       while (ss >> temp) {
           if (isdigit(temp[0])) num.push(stoi(temp));
60
61
           else {
62
               int b = num.top();
63
               num.pop();
64
               int a = num.top();
65
               num.pop();
               if (temp[0] == '+') a += b;
66
67
               else if (temp[0] == '-') a -= b;
               else if (temp[0] == '*') a *= b;
68
69
               else if (temp[0] == '/') a /= b;
               else if (temp[0] == '^') a = ksm(a, b);
70
71
               num.push(a);
72
           }
73
74
       return num.top();
75 }
```

### 6.7 日期

```
int month[] = {0, 31, 28, 31, 30, 31, 30, 31, 30, 31, 30, 31};
  int pre[13];
3
  vector<int> leap;
 4
  struct Date {
5
       int y, m, d;
6
       bool operator<(const Date& other) const {</pre>
7
           return array<int, 3>{y, m, d} <</pre>
8
                  array<int, 3>{other.y, other.m, other.d};
9
       }
10
       Date(const string& s) {
11
           stringstream ss(s);
12
           char ch;
13
           ss >> y >> ch >> m >> ch >> d;
14
       }
15
       int dis() const {
16
           int yd = (y - 1) * 365 +
17
                    (upper\_bound(leap.begin(), leap.end(), y - 1) - leap.begin());
18
19
               pre[m - 1] + (m > 2 && (y % 4 == 0 && y % 100 || y % 400 == 0));
20
           return yd + md + d;
21
22
       int dis(const Date& other) const { return other.dis() - dis(); }
23 };
```

```
24 for (int i = 1; i <= 12; i++) pre[i] = pre[i - 1] + month[2];
25 for (int i = 1; i <= 1000000; i++)
26 if (i % 4 == 0 && i % 100 || i % 400 == 0) leap.push\_back(i);
```

#### 6.8 \_\_\_builtin 函数

如果是 long long 型,记得函数后多加个 ll。

- \_\_builtin\_ctz, 从最低位连续的 0 的个数, 如果传入 0 则行为未定义。
- \_\_\_builtin\_clz, 从最高位连续的 0 的个数, 如果传入 0 则行为未定义。
- \_\_\_bulitin\_popcount, 二进制 1 的个数。
- \_\_\_builtin\_parity, 二进制 1 的个数奇偶性。

#### 6.9 对拍

linux/Mac

```
#!/bin/bash
3
  g++ $1 -o a -02
  g++ $2 -o b -02
5
  g++ random.cpp -o random -02
7
  cnt=0
8
  while true; do
9
      let cnt++
10
       echo TEST:$cnt
11
       ./random > in
12
       ./a < in > out.a
13
       ./b < in > out.b
      if ! diff out.a out.b; then break; fi
14
15
  done
```

windows

```
@echo off
 1
2
3
  g++ %1 -o a -02
  g++ %2 -o b -02
  g++ random.cpp -o random -02
 6
 7
  set cnt=0
8
9
  :again
10
      set /a cnt=cnt+1
11
       echo TEST:%cnt%
12
       .\random > in
13
       .\a < in > out.a
       .\b < in > out.b
14
15
       fc out.a out.b > nul
16 if not errorlevel 1 goto again
```

# 6.10 编译常用选项

-Wall -Woverflow -Wextra -Wpedantic -Wfloat-equal -Wshadow -fsanitize=address,undefined

# 6.11 开栈

不同的系统/编译器可能命令不一样

```
ulimit -s
-Wl,--stack=0x10000000
-Wl,-stack\_size -Wl,0x10000000
-Wl,-z,stack-size=0x10000000
```

# 6.12 clang-format

转储配置

```
clang-format -style=Google -dump-config > ./.clang-format
```

 $. \\ clang-format$ 

```
BasedOnStyle: Google
IndentWidth: 4
AllowShortIfStatementsOnASingleLine: AllIfsAndElse
ColumnLimit: 100
```