School of Mathematical and Computational Sciences

Abstract Algebra

Prof. Pablo Rosero & Christian Chávez Lesson 7

1. Cyclic groups and cyclic subgroups

Definition 1.1. A group H is cyclic if H can be generated by a single element, i.e., there exists $a \in H$ such that

$$H = \{a^n \mid n \in \mathbb{Z}\}.$$

In this case, we denote $H = \langle a \rangle$.

Example 1. In additive notation $\mathbb{Z}/n\mathbb{Z}$ is cyclic and $\mathbb{Z}/n\mathbb{Z} = \langle \overline{1} \rangle$

Remark 1.1.1.

- (i) In additive notation $H = \{na \mid n \in \mathbb{Z}\}.$
- (ii) If $H = \langle x \rangle$ then $H = \langle x^{-1} \rangle$ also. This means x, the generator, is not unique.
- (iii) We could have $x^n = x^m$ even if $n \neq m$. For instance, in the example above, $2 \cdot \overline{1} = (n+2) \cdot \overline{1}$
- (iv) Every cyclic subgroup H is Abelian. For example, if $H = \langle r \rangle$ in $G = D_n$, then H is Abelian, but D_n is not cyclic.
- (v) By convention, $x^0 = 1$ for any element x.

Exercise 1. If $G = D_{2n}$ and $H \leq G$ the subgroup consisting of rotations, then $H = \langle r \rangle$ and $r^k = r^m$ if and only if $k \equiv m \pmod{n}$.

Proposition 1.2. *If* $H = \langle x \rangle$ *then* |H| = |x|. *More specifically:*

- (i) If $|H| = n < \infty$, then $x^n = 1$ and $1, x, \dots, x^{n-1}$ are all distinct elements of H.
- (ii) If $|H| = \infty$, then $x^n \neq 1$ for $n \neq 0$ and $x^a \neq x^b$ for $a \neq b$ in \mathbb{Z} .

Proposition 1.3. *Let* G *be a group,* $x \in G$, *and* $m, n \in \mathbb{Z} \setminus \{0\}$.

- If $x^m = 1$ and $x^n = 1$, then $x^d = 1$ where d = (m, n).
- In particular, if $x^m = 1$, then $x^{|m|} = 1$.

Proof. There exist $r, s \in \mathbb{Z}$ such that d = mr + ns where d = (m, n). Therefore,

$$x^{d} = (x^{m})^{r} \cdot (x^{n})^{s} = 1^{r} \cdot 1^{s} = 1.$$

If $x^m = 1$, let n = |x|. If m = 0, certainly $n \mid m$, so we may assume $m \neq 0$. Since some nonzero power of x is the identity, $n < \infty$. Let d = (m, n) so by the preceding result $x^d = 1$. Since $0 < d \le n$ and n is the smallest positive power of x which gives the identity, we must have d = n, that is, $n \mid m$ as asserted.

Theorem 1.4. Any two cyclic groups of the same order are isomorphic.

Proof. (i) **Finite case.** Let $H_1 = \langle x \rangle$ and $H_2 = \langle y \rangle$ where |x| = |y| = n. Define $\varphi : \langle x \rangle \to \langle y \rangle$ by $\varphi(x^k) = y^k$. Then φ is a well-defined isomorphism. Indeed, If $x^k = x^l$ then $x^{k-l} = 1$, whence $n \mid k - k$. Hence nt = k - l for some $t \in \mathbb{Z}$. Thus $1 = y^{nt} = y^{k-l}$, whence $y^k = y^l$ and it follows that $\varphi(x^k) = \varphi(x^l)$. Note φ is a homomorphism because

$$\varphi(x^k \cdot x^l) = \varphi(x^{k+l}) = y^{k+l} = y^k \cdot y^l = \varphi(x^k) \cdot \varphi(x^l).$$

Moreover, φ is surjective since if $y^k \in \langle y \rangle$ then $\varphi(x^k) = y^k$. Recall that every surjective function between finite sets of the same cardinality is bijective (prove this if you have not seen it).

(ii) **Infinite case.** If $H = \langle x \rangle$ with $|H| = \infty$, then define $\varphi \colon \mathbb{Z} \to \langle x \rangle$ by $\varphi(k) = x^k$. It is clear that φ is an isomorphism. (If it is not clear for you, prove it.)

Remark 1.4.1. The second part of this proof tell us that, up to isomorphism, there exists a unique cyclic group of finite order n, namely $\mathbb{Z}/n\mathbb{Z}$, and a unique cyclic group of infinite order, namely \mathbb{Z} .

Proposition 1.5. *Let* G *be a group, let* $x \in G$ *, and let* $a \in \mathbb{Z} \setminus \{0\}$ *.*

- (i) If $|x| = \infty$, then $|x^a| = \infty$.
- (ii) If $|x| = n < \infty$, then $|x^a| = \frac{n}{(n,a)}$.
- (iii) If $|x| = n < \infty$ and a > 0 is such that $a \mid n$, then $|x^a| = \frac{n}{a}$.

Proof. (i) By way of contradiction assume $|x| = \infty$ but $|x^a| = m < \infty$. By definition of order

$$1 = (x^a)^m = x^{am}.$$

Also,

$$x^{-am} = (x^a m)^{-1} = 1^{-1} = 1.$$

Now one of am or -am is positive (since neither a nor m is 0) so some positive power of x is the identity. This contradicts the hypothesis $|x| = \infty$, so the assumption $|x^a| < \infty$ must be false. The result is is established.

(ii) Let

$$y = x^a$$
, $(n, a) = d$ and write $n = db$, $a = dc$,

for suitable $b, c \in \mathbb{Z}$ with b > 0. Since d is the greatest common divisor of n and a, the integers b and c are relatively prime, (b, c) = 1. We must show |y| = b. First note that

$$y^b = x^{ab} = x^{dcb} = (x^{dc})^b = (x^n)^c = 1^c = 1$$

so, we see that |y| divides b. Let k = |y|. Then

$$x^{ak}=y^k=1,$$

so $n \mid ak$, i.e., $db \mid dck$. Thus $b \mid ck$. Since b and c have no factors in common, b must divide k. Since b and k are positive integers which divide each other, b = k.

(iii) This is a special case of the last item.

Proposition 1.6. *Let* $H = \langle x \rangle$.

- (i) Assume $|x| = \infty$. Then $H = \langle x^a \rangle$ if and only if $a = \pm 1$.
- (ii) Assume $|x| = n < \infty$. Then $H = \langle x^a \rangle$ if and only if (a, n) = 1. In particular, the number of generators of H is $\phi(n)$ (where ϕ is Euler's ϕ -function).

Proof. We leave (i) as an exercise. In (ii) if $|x| = n < \infty$, note x^a generates a subgroup of H of order $|x^a|$. This subgroup equals all of H if and only if $|x^a| = |x|$. Thus

$$|x^a| = |x|$$
 if and only if $\frac{n}{(a,n)} = n$, i.e. if and only if $(a,n) = 1$.

Since $\phi(n)$ is, by definition, the number of a in $\{1,2,\ldots,n\}$ such that (a,n)=1, this is the number of generators of H.

Theorem 1.7 (Complete structure of a cyclic group). *Let* $H = \langle x \rangle$ *be a cyclic group.*

- 1. Every subgroup of H is cyclic. More precisely, if $K \leq H$, then either $K = \{1\}$ or $K = \langle x^d \rangle$, where d is the smallest positive integer such that $x^d \in K$.
- 2. If $|H| = \infty$, then for any distinct nonnegative integers a and b, $x^a \neq x^b$. Furthermore, for every integer m, $x^m = x^{|m|}$, where |m| denotes the absolute value of m, so that the nontrivial subgroups of H correspond bijectively with the integers $1, 2, 3, \ldots$
- 3. If $|H| = n < \infty$, then for each positive integer a dividing n there is a unique subgroup of H of order a. This subgroup is the cyclic group $\langle x^d \rangle$, where $d = \frac{n}{a}$. Furthermore, for every integer m, $x^m = x^{(n,m)}$, so that the subgroups of H correspond bijectively with the positive divisors of n.

Proof. Classwork.

Remark 1.7.1. In $\mathbb{Z}/n\mathbb{Z}$,

- (i) $\mathbb{Z}/n\mathbb{Z} = \langle \overline{1} \rangle = \langle \overline{m} \rangle$ if and only if (m, n) = 1 for $m \in \mathbb{Z}$.
- (ii) $\langle \overline{s} \rangle \leq \langle (\overline{s}, \overline{m}) \rangle$.
- (iii) $\langle \overline{a} \rangle \leq \langle \overline{b} \rangle$ if and only if $(b, n) \mid (a, n)$ where $1 \leq a, b \leq n$.

Exercise 2. Find $a \in \mathbb{Z}$ such that $\mathbb{Z}/48\mathbb{Z} = \langle \overline{a} \rangle$. Find the order of \overline{a} and the inclusion between the subgroups of $\mathbb{Z}/48\mathbb{Z}$. Notice that $48 = 2^4 \cdot 3$ and $\varphi(48) = 16$.