# $MSE5820X\_Project-1\_Johnson$

February 25, 2025

## 1 Project 1

Grant Johnson MSE 5820X

```
[282]: # Import necessary packages
  import math
  import pandas as pd
  import numpy as np
  import matplotlib.pyplot as plt
  import scipy.stats as stats
  from scipy.stats import pearsonr
  import seaborn as sns
  import matplotlib.lines as mlines
```

## 1.1 1 Data Analysis of Gleeble Hardness/Microstructure Data

The Gleeble is a piece of equipment that uses Joule heating to locally heat a sample to introduce changes in the microstructure due to annealing temperature, cooling rate, etc.

#### 1.1.1 1.1 Hardness Profile with Error Bars

The first graphic uses a profile along the gauge length of the specimen using a number of points. Each row corresponds to hardness tests that are 1 mm away from each other along the gauge length. The cell below defines functions for the statistics of this. The error bars in the graphic are the 95% confidence interval.

```
[283]: # Create a function that passes back the z-value from the Student's T<sub>□</sub>

□Distribution for the 95% confidence interval

def Zvalue(n):

z = 0

if n==20:

z = 2.093

elif n == 19:

z = 2.101

elif n == 18:

z = 2.110

elif n == 17:

z = 2.120

elif n == 16:
```

```
z = 2.131
           elif n == 15:
               z = 2.145
           elif n == 14:
               z = 2.160
           elif n == 13:
               z = 2.179
           elif n == 12:
               z = 2.201
           elif n == 11:
               z = 2.228
           elif n == 10:
               z = 2.262
           return z
       # Create a function that performs the necessary statistical functions, namely ...
        →mean, standard deviation, and 95% confidence interval
       def Stats(list):
           n = len(list)
           ave = np.average(list)
           std = np.std(list, ddof=1)
           z = Zvalue(n)
           conf = std * z / np.sqrt(n)
           return ave, conf
[284]: # Import data for Hardness profile
       df21 = pd.read_csv('Gleeble_2101T1_Hardness.csv')
       df21
[284]:
                             3
                                       5
                                             6
                                                  7
                                                                   10
                                                                        11
                                                                              12
             0
                  1
       0
           202
                229
                     229
                           218
                                224
                                     224
                                          210
                                                211
                                                     214
                                                          212
                                                                233.0
                                                                       207
                                                                            221
                228
                           213
                                     223
                                                220
       1
           206
                     225
                                231
                                          223
                                                     196
                                                          200
                                                                205.0
                                                                       216
                                                                            214
       2
           230
                230
                     214
                           232
                                223
                                     224
                                          233
                                                230
                                                     226
                                                          190
                                                                202.0
                                                                       202
                                                                            205
           215
                241
                     221
                           210
                                214
                                     226
                                                216
                                                     219
                                                          221
       3
                                          230
                                                                206.0
                                                                       204
                                                                            198
                221
       4
           217
                     234
                           233
                                227
                                     240
                                          217
                                                230
                                                     213
                                                          217
                                                                201.0
                                                                       199
                                                                            201
       5
           233
                221
                     221
                           221
                                226
                                     233
                                          220
                                                228
                                                     209
                                                          209
                                                                209.0
                                                                       199
                                                                            213
                224
       6
           240
                     220
                           229
                                220
                                     215
                                          231
                                                232
                                                     214
                                                          210
                                                                210.0
                                                                       201
                                                                            195
       7
           228
                241
                     228
                           220
                                231
                                     229
                                          215
                                                203
                                                     208
                                                          209
                                                                198.0
                                                                       207
                                                                            190
           232
                224
                     223
                           232
                                227
                                     220
                                          225
                                                225
                                                          221
                                                                            198
       8
                                                     219
                                                                208.0
                                                                       206
       9
           221
                234
                     229
                           226
                                227
                                     223
                                          232
                                                227
                                                     197
                                                          207
                                                                227.0
                                                                       207
                                                                            203
       10
           224
                226
                     232
                           236
                                237
                                     248
                                          222
                                                234
                                                     191
                                                          204
                                                                205.0
                                                                       212
                                                                            195
                                          234
           218
                236
                     225
                           226
                                215
                                     205
                                                204
                                                     205
                                                          195
                                                                199.0
                                                                       200
                                                                            208
       11
       12
           229
                228
                     217
                           223
                                223
                                     232
                                          231
                                                200
                                                     206
                                                          229
                                                                202.0
                                                                       208
                                                                            194
       13
           229
                225
                     231
                           225
                                235
                                     210
                                          226
                                                205
                                                     228
                                                          209
                                                                202.0
                                                                       211
                                                                            201
       14
           223
                219
                     219
                           227
                                223
                                     224
                                           239
                                                208
                                                     219
                                                          216
                                                                202.0
                                                                       214
                                                                            191
       15
           238
                228
                     235
                           224
                                217
                                     221
                                          213
                                                238
                                                     211
                                                          198
                                                               202.0 200
                                                                            208
```

```
16 227
       225 230
                227
                     231
                         223 231
                                  208
                                       220
                                           202 194.0
                                                      194 192
17 227
       220 221
                230
                     234
                         234 246
                                  215
                                       215 191
                                                206.0
                                                           192
                                                      197
18 220 225 236
                216
                     228
                         235 237
                                  214
                                       198
                                           191 197.0
                                                      196
                                                           215
19 231 226 229
                220
                     212
                         229 222 212
                                       204
                                           204
                                                      196 192
                                                  {\tt NaN}
```

```
[285]: # Initialize lists
       sets = []
       list_ave = []
       list_conf = []
       # For each column, get rid of NaN values and use the Stats
       # function previously defined to get the average and
       # 95% confidence interval and add them both to lists
       for col in df21.columns:
           set_n = pd.to_numeric(df21[col]).dropna().values
           sets.append(set_n)
           ave, conf = Stats(set_n)
           list_ave.append(ave)
           list_conf.append(conf)
       # Plot line plot with error bars added using 95% confidence interval
       plt.errorbar(range(len(list_ave)), list_ave, yerr=list_conf, capsize=5)
       plt.xlabel('Distance from center (mm)')
       plt.ylabel('Hardness ($HV_{0.5}$)')
       plt.tight_layout()
```



#### 1.1.2 1.2 Pearson Correlation Matrix

Analysis of correlation between properties and microstructure. This is used to understand which microstructural features correlate to other microstructural features as well as the hardness.

```
[286]: # Create a Pandas Dataframe with the data

df_original = pd.read_csv('Gleeble_Data.csv')

perimeter = df_original.pop('Perimeter Fraction - Ferrite')

df_original.insert(9, 'Perimeter Fraction - Ferrite', perimeter)

df = df_original.drop(columns=['Sample', 'Distance from center']) # Remove the

columns that can't be used for correlation coefficient measurement

df
```

```
[286]:
           Hardness
                       Area Fraction - Ferrite
                                                  Mean Intercept - Ferrite
       0
             224.500
                                         58.310
                                                                     0.01960
             227.550
       1
                                         59.872
                                                                     0.01944
       2
             225.950
                                         60.905
                                                                     0.01925
             224.400
                                                                     0.01970
       3
                                         60.146
       4
             225.250
                                         61.108
                                                                     0.02110
       5
             225.900
                                         60.462
                                                                     0.02136
       6
             226.850
                                         61.668
                                                                     0.02213
```

| 7  | 218.000           | 60.948              | 0.02317                           |
|----|-------------------|---------------------|-----------------------------------|
| 8  | 210.600           | 62.174              | 0.02820                           |
| 9  | 206.750           | 59.706              | 0.02861                           |
| 10 | 205.684           | 59.036              | 0.03148                           |
| 11 | 203.800           | 55.241              | 0.03011                           |
| 12 | 201.300           | 54.660              | 0.03177                           |
| 13 | 218.050           | 60.419              | 0.02404                           |
| 14 | 222.000           | 62.070              | 0.02505                           |
| 15 | 223.250           | 58.570              | 0.02455                           |
| 16 | 226.700           | 61.242              | 0.02770                           |
| 17 | 229.850           | 58.631              | 0.02638                           |
| 18 | 226.850           | 61.502              | 0.02692                           |
| 19 | 223.000           | 61.062              | 0.02815                           |
| 20 | 221.100           | 62.509              | 0.03107                           |
| 21 | 224.300           | 61.014              | 0.03182                           |
| 22 | 222.050           | 57.874              | 0.03144                           |
| 23 | 216.250           | 54.891              | 0.02927                           |
| 24 | 215.800           | 58.449              | 0.03542                           |
| 25 | 219.700           | 56.196              | 0.03722                           |
| 26 | 240.050           | 78.980              | 0.02332                           |
| 27 | 244.250           | 78.998              | 0.02298                           |
| 28 | 241.400           | 79.751              | 0.02440                           |
| 29 | 241.750           | 78.080              | 0.02351                           |
| 30 | 244.450           | 79.551              | 0.02564                           |
| 31 | 247.250           | 80.040              | 0.02336                           |
| 32 | 248.550           | 78.228              | 0.02308                           |
| 33 | 245.900           | 77.877              | 0.02615                           |
| 34 | 242.450           | 75.459              | 0.02956                           |
| 35 | 248.950           | 73.406              | 0.02828                           |
| 36 | 243.400           | 68.346              | 0.02549                           |
| 37 | 244.200           | 67.463              | 0.02486                           |
| 38 | 245.150           | 67.088              | 0.02393                           |
| 39 | 241.350           | 68.121              | 0.02552                           |
| 40 | 248.300           | 68.297              | 0.02423                           |
| 41 | 246.800           | 70.001              | 0.02453                           |
| 42 | 245.800           | 68.835              | 0.02657                           |
| 43 | 247.600           | 66.115              | 0.02540                           |
| 44 | 251.000           | 68.719              | 0.02529                           |
| 45 | 249.550           | 71.070              | 0.02842                           |
| 46 | 229.600           | 67.000              | 0.02759                           |
| 47 | 227.300           | 64.045              | 0.03120                           |
| 48 | 234.350           | 62.001              | 0.02760                           |
| 40 | 204.000           | 02.001              | 0.02100                           |
|    | Mean Inverse      | Intercept - Ferrite | Mean Nearest Neighbor - Ferrite \ |
| 0  | 110011 1111 01 00 | 153.2538            | 0.00790                           |
| 1  |                   | 154.4899            | 0.00893                           |
| 2  |                   | 153.8796            | 0.00981                           |
| -  |                   | 100.0100            | 0.00001                           |

| 3  | 156.9621 | 0.00821 |
|----|----------|---------|
| 4  | 147.8884 | 0.01037 |
| 5  | 144.4656 | 0.00899 |
| 6  | 149.5963 | 0.00846 |
| 7  | 151.2930 | 0.01007 |
| 8  | 145.4572 | 0.00984 |
| 9  | 145.0801 | 0.00995 |
| 10 | 138.7236 | 0.00980 |
| 11 | 139.7309 | 0.01094 |
| 12 | 124.1582 | 0.01138 |
| 13 | 160.8898 | 0.01485 |
| 14 | 159.1685 | 0.01352 |
| 15 | 170.9181 | 0.01251 |
| 16 | 151.8022 | 0.01411 |
| 17 | 160.8095 | 0.01115 |
| 18 | 150.9376 | 0.01070 |
| 19 | 155.7744 | 0.01275 |
| 20 | 143.2028 | 0.01153 |
| 21 | 139.2476 | 0.01224 |
| 22 | 149.0552 | 0.01104 |
| 23 | 150.3371 | 0.01083 |
| 24 | 126.9429 | 0.01253 |
| 25 | 129.8316 | 0.01048 |
| 26 | 148.3800 | 0.01007 |
| 27 | 152.7000 | 0.01136 |
| 28 | 144.8700 | 0.01311 |
| 29 | 146.9300 | 0.01516 |
| 30 | 133.0800 | 0.01449 |
| 31 | 167.6000 | 0.00924 |
| 32 | 177.6800 | 0.00904 |
| 33 | 166.9700 | 0.00936 |
| 34 | 154.6500 | 0.00897 |
| 35 | 149.5900 | 0.00937 |
| 36 | 126.6443 | 0.00745 |
| 37 | 136.4853 | 0.00679 |
| 38 | 129.8744 | 0.00735 |
| 39 | 119.8798 | 0.00763 |
| 40 | 127.1412 | 0.00708 |
| 41 | 131.6589 | 0.00765 |
| 42 | 116.8838 | 0.00838 |
| 43 | 124.7735 | 0.00814 |
| 44 | 133.4531 | 0.00614 |
| 45 | 119.5470 | 0.00040 |
| 46 | 117.8363 | 0.00733 |
| 47 | 113.4243 | 0.00630 |
| 48 | 108.3189 | 0.00630 |
| 10 | 100.0103 | 0.00044 |

|                      | Mara Assarana Najabban Bassita | Mara Barrian lant Diameter Brandta V |   |
|----------------------|--------------------------------|--------------------------------------|---|
| 0                    |                                | Mean Equivalent Diameter - Ferrite   | \ |
| 0                    | 0.02884                        | 0.00308                              |   |
| 1                    | 0.03280                        | 0.00297                              |   |
| 2                    | 0.03172                        | 0.00298                              |   |
| 3                    | 0.02914                        | 0.00287                              |   |
| 4                    | 0.03446                        | 0.00362                              |   |
| 5                    | 0.03242                        | 0.00335                              |   |
| 6                    | 0.03020                        | 0.00343                              |   |
| 7                    | 0.03363                        | 0.00443                              |   |
| 8                    | 0.03307                        | 0.00417                              |   |
| 9                    | 0.03162                        | 0.00347                              |   |
| 10                   | 0.02905                        | 0.00372                              |   |
| 11                   | 0.03303                        | 0.00396                              |   |
| 12                   | 0.03328                        | 0.00383                              |   |
| 13                   | 0.04517                        | 0.00585                              |   |
| 14                   | 0.04235                        | 0.00531                              |   |
| 15                   | 0.03728                        | 0.00503                              |   |
| 16                   | 0.04445                        | 0.00538                              |   |
| 17                   | 0.03355                        | 0.00515                              |   |
| 18                   | 0.03480                        | 0.00515                              |   |
| 19                   | 0.03817                        | 0.00432                              |   |
| 20                   | 0.03889                        | 0.00436                              |   |
| 21                   | 0.03863                        | 0.00458                              |   |
| 22                   | 0.03320                        | 0.00451                              |   |
| 23                   | 0.03250                        | 0.00431                              |   |
| 23<br>24             | 0.03230                        | 0.00473                              |   |
| 2 <del>4</del><br>25 | 0.03761                        | 0.00482                              |   |
| 26                   | 0.0336                         | 0.00436                              |   |
|                      |                                |                                      |   |
| 27                   | 0.03839                        | 0.00307                              |   |
| 28                   | 0.04115                        | 0.00318                              |   |
| 29                   | 0.04308                        | 0.00364                              |   |
| 30                   | 0.04580                        | 0.00389                              |   |
| 31                   | 0.03008                        | 0.00288                              |   |
| 32                   | 0.02851                        | 0.00296                              |   |
| 33                   | 0.03166                        | 0.00340                              |   |
| 34                   | 0.02966                        | 0.00348                              |   |
| 35                   | 0.02966                        | 0.00353                              |   |
| 36                   | 0.02431                        | 0.00297                              |   |
| 37                   | 0.02115                        | 0.00334                              |   |
| 38                   | 0.02400                        | 0.00363                              |   |
| 39                   | 0.02421                        | 0.00336                              |   |
| 40                   | 0.02187                        | 0.00332                              |   |
| 41                   | 0.02059                        | 0.00278                              |   |
| 42                   | 0.02843                        | 0.00376                              |   |
| 43                   | 0.02527                        | 0.00401                              |   |
| 44                   | 0.01972                        | 0.00281                              |   |
| 45                   | 0.02356                        | 0.00288                              |   |
|                      |                                |                                      |   |

| 46 | 0.020                        | 25                         | 0.00284 |
|----|------------------------------|----------------------------|---------|
| 47 | 0.01958                      |                            |         |
| 48 | 0.02170                      |                            | 0.00256 |
|    |                              |                            |         |
|    | Perimeter Fraction - Ferrite | Mean Roundness - Ferrite \ |         |
| 0  | 105.84209                    | 0.67292                    |         |
| 1  | 108.05757                    | 0.66591                    |         |
| 2  | 109.67937                    | 0.66170                    |         |
| 3  | 104.56396                    | 0.66158                    |         |
| 4  | 103.00866                    | 0.65383                    |         |
| 5  | 97.59301                     | 0.66888                    |         |
| 6  | 98.57366                     | 0.66595                    |         |
| 7  | 90.52619                     | 0.65565                    |         |
| 8  | 78.02542                     | 0.65286                    |         |
| 9  | 72.71754                     | 0.65415                    |         |
| 10 | 66.79651                     | 0.64864                    |         |
| 11 | 65.38474                     | 0.66998                    |         |
| 12 | 59.46019                     | 0.66812                    |         |
| 13 | 86.78765                     | 0.61765                    |         |
| 14 | 82.42330                     | 0.63325                    |         |
| 15 | 79.54571                     | 0.62601                    |         |
| 16 | 78.51186                     | 0.62512                    |         |
| 17 | 72.24089                     | 0.62817                    |         |
| 18 | 74.63544                     | 0.64772                    |         |
| 19 | 77.26384                     | 0.63652                    |         |
| 20 | 72.19610                     | 0.64017                    |         |
| 21 | 70.56164                     | 0.63644                    |         |
| 22 | 65.41272                     | 0.63576                    |         |
| 23 | 67.78556                     | 0.63630                    |         |
| 24 | 61.87719                     | 0.65924                    |         |
| 25 | 51.47358                     | 0.65990                    |         |
| 26 | 140.04188                    | 0.69279                    |         |
| 27 | 141.38577                    | 0.69779                    |         |
| 28 | 128.91032                    | 0.69045                    |         |
| 29 | 131.69406                    | 0.68622                    |         |
| 30 | 126.30851                    | 0.69010                    |         |
| 31 | 136.88990                    | 0.69438                    |         |
| 32 | 138.89600                    | 0.69723                    |         |
| 33 | 118.14263                    | 0.70343                    |         |
| 34 | 100.85276                    | 0.70359                    |         |
| 35 | 97.91358                     | 0.70774                    |         |
| 36 | 113.21703                    | 0.69779                    |         |
| 37 | 113.67964                    | 0.69753                    |         |
| 38 | 114.81712                    | 0.69608                    |         |
| 39 | 108.93672                    | 0.70356                    |         |
| 40 | 116.92546                    | 0.70293                    |         |
| 41 | 119.73931                    | 0.70264                    |         |
|    | 2200001                      | 00201                      |         |

| 42 | 103.847           | 28 0.70393                 |   |
|----|-------------------|----------------------------|---|
| 43 | 103.84728 0.70393 |                            |   |
| 44 | 112.73474 0.70566 |                            |   |
| 45 | 102.824           |                            |   |
| 46 | 101.613           |                            |   |
| 47 | 84.858            |                            |   |
| 48 | 89.064            |                            |   |
|    |                   |                            |   |
|    |                   | Mean Intercept - Austenite | \ |
| 0  | 41.690            | 0.01269                    |   |
| 1  | 40.128            | 0.01220                    |   |
| 2  | 39.095            | 0.01161                    |   |
| 3  | 39.854            | 0.01206                    |   |
| 4  | 38.892            | 0.01240                    |   |
| 5  | 39.538            | 0.01294                    |   |
| 6  | 38.332            | 0.01243                    |   |
| 7  | 39.052            | 0.01350                    |   |
| 8  | 37.826            | 0.01574                    |   |
| 9  | 40.294            | 0.01774                    |   |
| 10 | 40.964            | 0.02000                    |   |
| 11 | 44.759            | 0.02406                    |   |
| 12 | 45.340            | 0.02685                    |   |
| 13 | 39.581            | 0.01546                    |   |
| 14 | 37.930            | 0.01466                    |   |
| 15 | 41.430            | 0.01631                    |   |
| 16 | 38.758            | 0.01567                    |   |
| 17 | 41.369            | 0.01735                    |   |
| 18 | 38.498            | 0.01666                    |   |
| 19 | 38.938            | 0.01717                    |   |
| 20 | 37.491            | 0.01802                    |   |
| 21 | 38.986            | 0.01930                    |   |
| 22 | 42.126            | 0.02230                    |   |
| 23 | 45.109            | 0.02314                    |   |
| 24 | 41.551            | 0.02437                    |   |
| 25 | 43.804            | 0.02949                    |   |
| 26 | 21.020            | 0.00673                    |   |
| 27 | 21.002            | 0.00668                    |   |
| 28 | 20.249            | 0.00697                    |   |
| 29 | 21.920            | 0.00741                    |   |
| 30 | 20.449            | 0.00730                    |   |
| 31 | 19.960            | 0.00646                    |   |
| 32 | 21.772            | 0.00701                    |   |
| 33 | 22.123            | 0.00858                    |   |
| 34 | 24.541            | 0.01124                    |   |
| 35 | 26.594            | 0.01241                    |   |
| 36 | 31.654            | 0.01092                    |   |
| 37 | 32.537            | 0.01105                    |   |
|    |                   |                            |   |

| 38 | 32.912                             | 0.01107 |
|----|------------------------------------|---------|
| 39 | 31.879                             | 0.01121 |
|    |                                    | 0.01065 |
| 40 | 31.703                             |         |
| 41 | 29.999                             | 0.00986 |
| 42 | 31.165                             | 0.01192 |
| 43 | 33.885                             | 0.01243 |
| 44 | 31.281                             | 0.01102 |
| 45 | 28.930                             | 0.01153 |
| 46 | 33.000                             | 0.01280 |
| 47 | 35.955                             | 0.01660 |
| 48 |                                    |         |
| 48 | 37.999                             | 0.01584 |
|    |                                    |         |
|    | Mean Inverse Intercept - Austenite |         |
| 0  | 139.7774                           | 0.01634 |
| 1  | 143.4454                           | 0.01598 |
| 2  | 150.1647                           | 0.01413 |
| 3  | 144.5700                           | 0.01576 |
| 4  | 142.9964                           | 0.01605 |
| 5  | 137.6376                           | 0.01721 |
|    |                                    |         |
| 6  | 144.3766                           | 0.01634 |
| 7  | 142.0857                           | 0.01677 |
| 8  | 140.1642                           | 0.01627 |
| 9  | 141.6000                           | 0.01471 |
| 10 | 137.0224                           | 0.01438 |
| 11 | 125.9825                           | 0.01344 |
| 12 | 105.6388                           | 0.01578 |
| 13 |                                    |         |
|    | 140.8495                           | 0.01498 |
| 14 | 144.4057                           | 0.01490 |
| 15 | 143.1647                           | 0.01478 |
| 16 | 140.7715                           | 0.01700 |
| 17 | 134.6026                           | 0.01588 |
| 18 | 142.0102                           | 0.01596 |
| 19 | 145.1660                           | 0.01495 |
| 20 | 148.3932                           | 0.01490 |
| 21 | 144.9996                           | 0.01571 |
|    |                                    |         |
| 22 | 134.4456                           | 0.01639 |
| 23 | 129.2328                           | 0.01556 |
| 24 | 125.2627                           | 0.01631 |
| 25 | 106.6900                           | 0.01722 |
| 26 | 226.8800                           | 0.00717 |
| 27 | 227.4400                           | 0.00707 |
| 28 | 220.5400                           | 0.00764 |
| 29 |                                    |         |
|    | 214.5800                           | 0.00824 |
| 30 | 214.5400                           | 0.00842 |
| 31 | 241.1100                           | 0.00695 |
| 32 | 237.2500                           | 0.00677 |
| 33 | 225.7600                           | 0.00705 |
|    |                                    |         |

| 34 | 204.8500                          | 0.00744                                |
|----|-----------------------------------|----------------------------------------|
| 35 | 188.7400                          | 0.00728                                |
| 36 | 161.9437                          | 0.01301                                |
| 37 | 166.1110                          | 0.01202                                |
| 38 | 164.5542                          | 0.01312                                |
| 39 | 160.2694                          | 0.01326                                |
| 40 | 168.6409                          | 0.01169                                |
| 41 | 176.8403                          | 0.01111                                |
| 42 | 157.1459                          | 0.01196                                |
| 43 | 162.3956                          | 0.01109                                |
| 44 | 180.6860                          | 0.01079                                |
| 45 | 184.5539                          | 0.00996                                |
| 46 | 178.9364                          | 0.00971                                |
| 47 | 167.9322                          | 0.01050                                |
| 48 | 173.5860                          | 0.01098                                |
|    |                                   |                                        |
|    | Mean Average Neighbor - Austenite | Mean Equivalent Diameter - Austenite \ |
| 0  | 0.03784                           | 0.01446                                |
| 1  | 0.03686                           | 0.01361                                |
| 2  | 0.03297                           | 0.01182                                |
| 3  | 0.03650                           | 0.01367                                |
| 4  | 0.03707                           | 0.01381                                |
| 5  | 0.03859                           | 0.01457                                |
| 6  | 0.03717                           | 0.01304                                |
| 7  | 0.04102                           | 0.01292                                |
| 8  | 0.04082                           | 0.01154                                |
| 9  | 0.03945                           | 0.01047                                |
| 10 | 0.04172                           | 0.01085                                |
| 11 | 0.04157                           | 0.01023                                |
| 12 | 0.04794                           | 0.01182                                |
| 13 | 0.03797                           | 0.01156                                |
| 14 | 0.03749                           | 0.01147                                |
| 15 | 0.03705                           | 0.01051                                |
| 16 | 0.04044                           | 0.01262                                |
| 17 | 0.04104                           | 0.01086                                |
| 18 | 0.03945                           | 0.01081                                |
| 19 | 0.03829                           | 0.01104                                |
| 20 | 0.03969                           | 0.01048                                |
| 21 | 0.04338                           | 0.01089                                |
| 22 | 0.04313                           | 0.01047                                |
| 23 | 0.04589                           | 0.01021                                |
| 24 | 0.04628                           | 0.01139                                |
| 25 | 0.05296                           | 0.01241                                |
| 26 | 0.01771                           | 0.00513                                |
| 27 | 0.01717                           | 0.00502                                |
| 28 | 0.01878                           | 0.00550                                |
| 29 | 0.02017                           | 0.00572                                |

| 30 | 0.02049 | 0.00570 |
|----|---------|---------|
| 31 | 0.01797 | 0.00494 |
| 32 | 0.01776 | 0.00482 |
| 33 | 0.01947 | 0.00463 |
| 34 | 0.02183 | 0.00478 |
| 35 | 0.02187 | 0.00464 |
| 36 | 0.03057 | 0.00869 |
| 37 | 0.03026 | 0.00671 |
| 38 | 0.03290 | 0.00810 |
| 39 | 0.03158 | 0.00809 |
| 40 | 0.02759 | 0.00643 |
| 41 | 0.02723 | 0.00659 |
| 42 | 0.02935 | 0.00700 |
| 43 | 0.02832 | 0.00640 |
| 44 | 0.02680 | 0.00581 |
| 45 | 0.02449 | 0.00512 |
| 46 | 0.02431 | 0.00478 |
| 47 | 0.02760 | 0.00504 |
| 48 | 0.02948 | 0.00584 |
|    |         |         |
|    |         |         |

|    | Mean Roundness - Austenite | Perimeter Fraction - Austenite |
|----|----------------------------|--------------------------------|
| 0  | 0.61706                    | 110.09240                      |
| 1  | 0.61043                    | 111.36840                      |
| 2  | 0.61591                    | 112.33990                      |
| 3  | 0.61524                    | 107.72711                      |
| 4  | 0.60052                    | 105.46279                      |
| 5  | 0.60926                    | 99.72018                       |
| 6  | 0.62318                    | 101.95247                      |
| 7  | 0.62418                    | 92.62049                       |
| 8  | 0.61795                    | 79.45474                       |
| 9  | 0.61741                    | 74.51297                       |
| 10 | 0.61789                    | 68.47362                       |
| 11 | 0.63400                    | 67.41116                       |
| 12 | 0.63554                    | 60.56054                       |
| 13 | 0.61307                    | 89.04080                       |
| 14 | 0.61854                    | 83.66781                       |
| 15 | 0.62247                    | 82.45415                       |
| 16 | 0.62135                    | 81.55681                       |
| 17 | 0.62174                    | 73.79129                       |
| 18 | 0.62284                    | 75.11709                       |
| 19 | 0.61286                    | 78.68125                       |
| 20 | 0.61315                    | 72.66786                       |
| 21 | 0.61119                    | 71.54017                       |
| 22 | 0.61858                    | 66.91269                       |
| 23 | 0.61016                    | 70.28938                       |
| 24 | 0.60588                    | 63.18054                       |
| 25 | 0.61784                    | 53.20667                       |

```
26
                         0.62046
                                                         132.96804
27
                         0.62838
                                                         134.83625
28
                         0.62362
                                                         123.15026
29
                         0.61919
                                                         125.63513
30
                         0.61812
                                                         119.99902
31
                         0.62568
                                                         130.42571
32
                         0.62267
                                                         132.80770
33
                         0.62864
                                                         111.93677
34
                         0.62871
                                                          96.08251
35
                         0.62842
                                                          92.30758
                         0.65383
                                                         113.96244
36
37
                         0.66714
                                                         116.31294
38
                         0.65080
                                                         115.85799
39
                         0.65840
                                                         109.74235
40
                         0.66456
                                                         117.63661
41
                         0.65997
                                                         121.45707
42
                         0.67511
                                                         102.15824
43
                         0.67218
                                                         107.29663
44
                         0.66759
                                                         114.49442
45
                         0.67932
                                                         100.53219
46
                         0.68626
                                                         102.12388
47
                         0.68500
                                                          87.33570
48
                         0.66459
                                                          91.35140
```

```
[287]: # Creating a correlation coefficient matrix
       pearson_corr = df.corr(method='pearson')
       # Calculating correlation and p-values for variables of interest
       r_value, p_value = pearsonr(df['Hardness'],df['Perimeter Fraction - Austenite'])
       r_value1, p_value1 = pearsonr(df['Hardness'],df['Area Fraction - Ferrite'])
       # Plot the heatmap using the seaborn package
       ax = sns.heatmap(
           pearson_corr,
           annot=True,
           cmap='coolwarm',
           fmt='.2f',
           linewidths=0.5,
           annot_kws={"size":6}
       plt.title('Pearson Correlation Matrix Heatmap')
       plt.xticks(fontsize=8)
       ax.set yticks(range(len(pearson corr)))
       ax.set_yticklabels(pearson_corr.index, rotation=0, fontsize=8)
       plt.show()
```



#### 1.1.3 1.3 Subplots of Microstructure/Property Relationships

Using the Pearson correlation matrix, we can plot a few of the relationships that we have seen. Specifically, the phase fraction, the phase sizes, and the phase boundary perimeter fraction.

```
[288]: df0 = df_original

# Create a dictionary for what the color and shape of each scatter plot point
marker_map = {
    '2101T1': 's',
    '2101T2': 'o',
    '2205T1': '^',
    '2205T2': 'v'
}
color_map = {
    '2101T1': 'k',
    '2101T2': 'k',
```

```
'2205T1': 'r',
    '2205T2': 'r'
}
# Create a 2x2 plot matrix
fig, ((ax0, ax1), (ax2, ax3)) = plt.subplots(2, 2, sharey=True, figsize=(10,8))
\#fig.text(0.05, 0.5, r'Hardness (\$HV_{0.5}\$)', va='center', rotation=90, 
 \rightarrow fontsize=12)
fig.suptitle('Microstructure-Property Relationships',fontsize=14)
for _, row in df0.iterrows():
    # Use the previous dictionary to assign a color and a shape based on the \Box
 ⇔sample column
   ax0.scatter(row['Area Fraction - Ferrite'], row['Hardness'],
               marker=marker_map[row['Sample']],
               color=color_map[row['Sample']], s=40)
   ax1.scatter(row['Perimeter Fraction - Ferrite'], row['Hardness'],
               marker=marker_map[row['Sample']],
               color=color_map[row['Sample']], s=40)
   ax2.scatter(row['Mean Intercept - Ferrite'], row['Hardness'],
               marker=marker_map[row['Sample']],
               color=color_map[row['Sample']], s=40)
   ax3.scatter(row['Mean Intercept - Austenite'], row['Hardness'],
               marker=marker_map[row['Sample']],
               color=color_map[row['Sample']], s=40)
#ax0.set_title('Hardness vs. Ferrite Fraction', fontsize=11)
ax0.set xlabel('Ferrite Fraction (%)')
ax0.set_ylabel(r'Hardness ($HV_{0.5}$)')
#ax1.set_title('Hardness vs. Phase Boundary Fraction', fontsize=11)
ax1.set_xlabel('Phase Boundary Area Density ($mm^{-1}$)')
ax1.set_ylabel(r'Hardness ($HV_{0.5}$)')
#ax2.set_title('Hardness vs. Ferrite Mean Intercept', fontsize=11)
ax2.set_xlabel('Mean Intercept (mm)')
ax2.set ylabel(r'Hardness ($HV {0.5}$)')
#ax3.set_title('Hardness vs. Austenite Mean Intercept', fontsize=11)
ax3.set_xlabel('Mean Intercept (mm)')
ax3.set_ylabel(r'Hardness ($HV_{0.5}$)')
# Create a legend
black_square = mlines.
 →Line2D([],[],color='k',marker='s',linestyle='None',markersize=10,label='2101T1')
black circle = mlines.
 →Line2D([],[],color='k',marker='o',linestyle='None',markersize=10,label='2101T2')
red up = mlines.Line2D([],[],
 red_down = mlines.Line2D([],[],__
 color='r',marker='v',linestyle='None',markersize=10,label='2205T1')
```



#### 1.2 2 Data Analysis of Porosity in L-DED Sample

20.228864

21.914603

0

1

1938

2343

A separate dataset, this data includes information about defects within a laser directed energy deposition build of 2205 duplex stainless steel. The information includes the location, the size, and the shape of the defects.

```
[289]: df1 = pd.read_csv('Pre-S1_Porosity.csv')
    df1 = df1.drop(['Unnamed: 10','Unnamed: 11','avg','st dev'], axis=1)
    df1

[289]: Feature Area (um^2) Roundness CentroidX (um) CentroidY (um) \
```

1.073835

1.068422

7532.205622

8990.169230

1271.324358

2247.136570

```
2
         3017
                  21.914603
                               1.068422
                                            11214.259910
                                                               4423.187930
3
         3605
                  21.914603
                                            13646.737370
                                                               3895.404590
                               1.068422
4
         1872
                  21.493168
                               1.058099
                                             7307.539222
                                                               1188.304896
                               0.156178
                                                               7122.672042
3892
           87
                1517.164821
                                             1164.103625
                 206.924424
                                                               5703.856783
         1293
                               0.151512
                                             5298.580717
3893
3894
         1213
                 271.403929
                               0.136949
                                             5092.539888
                                                               5485.956073
3895
         1249
                 297.111444
                               0.121646
                                             5208.686982
                                                               6838.742971
                               0.108585
3896
         1510
                 131.909052
                                             6158.218961
                                                               4062.039555
      First Moment of Area (um<sup>3</sup>)
                                     Eccentricity
                                                     Equivalent Diameter (um)
0
                          34.211366
                                          0.104211
                                                                      5.075056
1
                          38.458722
                                          0.00000
                                                                      5.282285
2
                          38.458722
                                          0.00000
                                                                      5.282285
3
                          38.458722
                                          0.000000
                                                                      5.282285
4
                          37.405651
                                          0.260868
                                                                      5.231248
3892
                      97337.013720
                                          0.993401
                                                                     43.951271
3893
                       5083.596222
                                          0.999510
                                                                     16.231585
3894
                                                                     18.589304
                       8683.724579
                                          0.998557
3895
                      13695.897910
                                          0.981735
                                                                     19.449783
3896
                       4125.912918
                                          0.995060
                                                                     12.959623
      Nearest Neighbor Distance (um)
                                         Average Neighbor Distance (um)
0
                             96.337506
                                                               240.048939
1
                            107.661792
                                                               220.165750
2
                            147.851573
                                                               298.032672
3
                             92.825953
                                                               155.324208
4
                             93.983282
                                                               292.442586
                             95.234881
3892
                                                               150.218060
3893
                             52.467702
                                                               109.163800
3894
                             95.184914
                                                               193.835165
3895
                             19.095491
                                                                61.437162
                            161.462618
                                                               259.043767
3896
```

[3897 rows x 10 columns]

#### 1.2.1 2.1 Location and Size Graphical Representation

This graphic shows where the defects occur and how large each defect is as a bubble. The defects are concentrated in lines along the layers of the build.

```
[290]: # Flip and translate data in y-direction to represent it in the correct

→ orientation relative to original figure.

df1['CentroidY_new'] = -df1['CentroidY (um)'] + 7700
```



#### 1.2.2 2.2 Defect Size Histogram

To see the size distribution of the defects, a histogram of the defect sizes is shown.

```
[291]: plt.hist(df1['Equivalent Diameter (um)'], bins=48,rwidth=0.95)
    plt.xlim(0,100)
    plt.xlabel(r'Equivalent Diameter ($\mu$m)')
    plt.ylabel('Count')

    plt.show()
```



### 1.2.3 2.3 Equivalent Diameter vs. Roundness

One way to distinguish between lack of fusion defects (defects between layers due to insufficient energy that lack remelting) and spherical porosity (from gas entrapment or keyhole) can be seen by using the roundness (a measure of the perimeter to the area where 1 is a perfect circle. 0.9 is used as a threshold above which the defect is labeled as spherical porosity.



[]: