Sınıflandırma Problemleri (İktisatçılar İçin) Makine Öğrenmesi (TEK-ES-2020)

Hüseyin Taştan Yıldız Teknik Üniversitesi

Plan

- Sınıflandırma problemleri
- Lojistik regresyon
- Doğrusal Diskriminant Analizi (LDA)
- Karesel Diskriminant Analizi (QDA)
- Sınıflandırma performansının ölçümü
- ROC eğrisi ve AUC

Sınıflandırma Problemi

- Regresyon analizinde Y tepki değişkeni niceldir.
- Y kategorik bir değişken = sınıflandırma problemi
- Sınıflandırıcı: verilmiş bir X değişken seti için Y'nin kategorisini kestiren yöntem.
- İkili ya da çoklu olabilir.
- Örnek: bir banka kredi başvuru sahibinin özelliklerinden hareketle kişinin geri ödeyememe olasılığını hesaplamak isteyebilir. Kişinin sınıflandırıldığı gruba göre başvurusu red ya da kabul edilir.
- Veri seti: default (Yes/No), X değişkenleri: kredi kartı bakiyesi (balance), gelir (income), öğrenci kuklası (student)

Sınıflandırma: Örnek

Mavi: Default=NO, Kavuniçi: Default=YES (ISLR Fig-4.1, p.129)

Regresyon kullanabilir miyiz?

• Standart regresyon analizi ile gözlemleri sınıflandırabilir miyiz? Burada iki sınıf olduğunu varsayıyoruz. Örneğin

$$default = \beta_0 + \beta_1 income + \beta_2 balance + \epsilon$$

Burada default ikili (0/1) değerler almaktadır.

- Sınıflandırma kuralı: OLS tahmin değeri 0.5'den büyükse default=YES (1) grubuna değilse default=NO (0) grubuna sınıflandırma yapabiliriz.
- Ancak kestirim değerlerinin 0 ile 1 arasında olmasının garantisi yoktur. Herhangi bir değeri alabilirler hatta negatif olabilirler.
- Ayrıca doğrusal olasılık modelinde hata terimi sabit varyanslı değildir.
- Tepki değişkeni ikiden fazla gruba sahipse uygulanamaz.

Lojistik Regresyon

• Doğrudan tepki değişkenini modellemek yerine sınıflandırma olasılığını modelleyebiliriz.

$$p(X) = \beta_0 + \beta_1 X$$

Burada p(X) = Pr(Y = 1|X) tepki değişkeninin grup=1 olarak sınıflandırılma (koşullu) olasılığıdır.

• Tanım gereği $0 \le p(X) \le 1$. Örneğin, lojistik fonksiyon

$$p(X) = rac{e^{eta_0 + eta_1 X}}{1 + e^{eta_0 + eta_1 X}}$$

• Logit modeli

$$\logigg(rac{p(X)}{1-p(X)}igg)=eta_0+eta_1X$$

Lojistik vs. Doğrusal Olasılık Modeli

Sol: doğrusal regresyon ile tahmin edilen koşullu olasılıklar, **Sağ**: Lojistik regresyon ile tahmin edilen koşullu olasılıklar (ISLR Fig-4.2, p.131)

Lojistik Regresyonun Tahmini

- Modelin tahmininde OLS kullanılamaz.
- En Yüksek Olabilirlik (Maximum Likelihood) yöntemi tutarlı ve etkin tahminciler verir.
- Katsayılar hesaplandıktan sonra koşullu olasılıklar hesaplanabilir.
- Sınıflandırma işlemi koşullu olasılık tahminlerine göre yapılabilir.

Çoklu Lojistik Regresyon

• Çok sayıda nicel ya da nitel kestirim değişkeni için model kolayca genelleştirilebilir:

$$p(X) = rac{e^{eta_0 + eta_1 X_1 + \ldots + eta_p X_p}}{1 + e^{eta_0 + eta_1 X_1 + \ldots + eta_p X_p}}$$

- Modelin doğrusal olmayan yapısından dolayı katsayılar koşullu olasılıklardaki değişim olarak yorumlanamaz. Ancak işaretleri yorumlanabilir.
- $\hat{\beta}_j$ 'lar bulunduktan sonra X_j değerleri birlikte yukarıdaki denklemde yerlerine yazılarak koşullu olasılıklar tahmin edilir.

Doğrusal Diskriminant Analizi

- Doğrusal diskriminant analizinde (LDA Linear Discriminant Analysis) her grup için ayrı ayrı olmak üzere *X* değişkenlerinin dağılımı modellenir.
- Daha sonra Bayes Teoremi'nden hareketle asıl ilgilendiğimiz Pr(Y=k|X=x) olasılıkları tahmin edilir.
- Sınıfların birbirinden çok ayrık olduğu durumlarda lojistik regresyon istikrarsız olabilir. LDA'nde böyle bir problem yoktur.
- n küçük olsa da değişkenler yaklaşık olarak normal dağılıyorsa LDA daha istikrarlı.
- LDA ikiden daha fazla grup olduğunda da uygulanabilir.

Sınıflandırmada Bayes Teoreminin Kullanımı

- Gözlemleri $K \geq 2$ sınıfa ayırmak istediğimizi düşünelim. Çıktı değişkeni $Y_i = k, \ k = 1, 2, \dots, K$ değerlerini almaktadır (sıralama önemsiz)
- Önsel olasılık (prior): π_k , rassal çekilmiş bir gözlemin k sınıfına ait olma olasılığı
- k sınıfı için X değişkeninin yoğunluk fonksiyonu: $f_k(x) \equiv Pr(X=x|Y=k)$ (basitlik için X 'in kesikli bir değişken olduğunu varsaydık)
- $f_k(x)$ 'in yorumu: X'in k sınıfından çekilme olasılığı yükseldikçe daha büyük değerler alır.
- Şimdi Bayes teoremini uygulayabiliriz:

$$p_k(X) \equiv \Pr(Y = k \mid X = x) = rac{\pi_k f_k(x)}{\sum_{l=1}^K \pi_l f_l(x)}$$

• $p_k(X)$ 'i doğrudan tahmin etmek yerine bileşenleri tahmin edebiliriz.

Sınıflandırmada Bayes Teoreminin Kullanımı

Ardıl (posterior) olasılık dağılımı:

$$p_k(X) \equiv \Pr(Y = k \mid X = x) = rac{\pi_k f_k(x)}{\sum_{l=1}^K \pi_l f_l(x)}$$

- π_k verilerden kolayca tahmin edilebilir. k grubunun örneklemdeki oranını hesaplamak yeterli.
- Ancak $f_k(x)$ 'in tahmini daha zor. Dağılımsal varsayımlar yapmamız gerekir.
- LDA: normal dağılım. Örneğin, p=1 için

$$f_k(x) = rac{1}{\sqrt{2\pi}\sigma_k} \mathrm{exp}igg(-rac{1}{2\sigma_k^2}(x-\mu_k)^2igg)$$

Normal Dağılım

Farklı ortalamalar, varyans aynı

Farklı varyanslar, ortalama aynı

LDA, p=1 için koşullu olasılıklar

• Tek kestirim değişkeni p=1 için normal dağılım ve her grup için aynı varyans (σ^2) varsayımları altında koşullu olasılıklar

$$p_k(x) = rac{\pi_k rac{1}{\sqrt{2\pi}\sigma} \mathrm{exp} \Big(-rac{1}{2\sigma^2} (x - \mu_k)^2 \Big)}{\sum_{l=1}^K \pi_l rac{1}{\sqrt{2\pi}\sigma} \mathrm{exp} \Big(-rac{1}{2\sigma^2} (x - \mu_l)^2 \Big)}$$

- Bayes sınıflandırıcısı verilmiş bir X=x gözlemini $p_k(x)$ 'in en yüksek olduğu gruba atar.
- $p_k(x)$ 'in doğal logaritmasını alırsak **diskriminant** fonksiyonunu elde ederiz:

$$\delta_k(x) = x \cdot rac{\mu_k}{\sigma^2} - rac{\mu_k^2}{2\sigma^2} + \log(\pi_k)$$

kategori kestirimlerini en yüksek $\delta_k(x)$ değerine göre yapabiliriz.

LDA katsayılarının tahmini

$$\hat{\mu}_k = rac{1}{n_k} \sum_{i:y_i=k} x_i$$
 $\hat{\sigma}^2 = rac{1}{n-K} \sum_{k=1}^K \sum_{i:y_i=k} (x_i - \hat{\mu}_k)^2$ $\hat{\pi}_k = n_k/n$

Bu tahminleri diskriminant fonksiyonu içine yazarsak:

$$\hat{\delta}_k(x) = x \cdot rac{\hat{\mu}_k}{\hat{\sigma}^2} - rac{\hat{\mu}_k^2}{2\hat{\sigma}^2} + \log(\hat{\pi}_k) \, .$$

LDA: Örnek

İki grup için farklı normal dağılım yoğunluk fonksiyonları (sol) ve verilerden hareketle oluşturulan histogramlar:

Not: (Sol) dikey kesikli çizgi Bayes karar sınırıdır (simülasyonla oluşturulduğu için biliniyor), (sağ) Dikey çizgi eğitim verisiyle tahmin edilen LDA karar sınırıdır. (ISLR, Fig. 4.4, p.140)

Çok değişkenli LDA

- Kestirim değişkenleri: $\mathbf{X} = (X_1, X_2, \dots, X_p)$
- Dağılımsal varsayım (Çok değişkenli Normal Gaussian dağılım): $\mathbf{X} \sim N(\mu, \; \mathbf{\Sigma})$

Sol: X_1 ve X_2 ilişkisiz, Sağ: ilişkili, kovaryans = 0.7

Çok değişkenli LDA

Çoklu Gaussian yoğunluk fonksiyonu.

$$f(x) = rac{1}{(2\pi)^{p/2} |\mathbf{\Sigma}|^{1/2}} \mathrm{exp}igg(-rac{1}{2}(x-\mu)^T \mathbf{\Sigma}^{-1}(x-\mu)igg)$$

p=1 durumundakine benzer adımları takip ederek sınıflandırmada kullanacağımız diskriminant fonksiyonunu elde ederiz:

$$egin{aligned} \delta_k(x) &= x^T oldsymbol{\Sigma}^{-1} \mu_k - rac{1}{2} \mu_k^T oldsymbol{\Sigma}^{-1} \mu_k + \log \pi_k \end{aligned}$$

Verilmiş bir x gözlemi $\delta_k(x)$ 'in en büyük olduğu gruba atanır.

Örnek

- 2 kestirim değişkeni X_1, X_2
- Grup sayısı K=3
- Her gruptaki gözlem sayısı 20
- Kesikli çizgiler LDA sınıflandırma sınırları
- Düz çizgiler Bayes sınırları
- LDA hata oran1 = 0.0770
- Bayes hata oranı = 0.0746

Örnek: Borç ödememe (default) verileri

•	default [‡]	student [‡]	balance [‡]	income ‡
1	No	No	729.52650	44361.625
2	No	Yes	817.18041	12106.135
3	No	No	1073.54916	31767.139
4	No	No	529.25060	35704.494
5	No	No	785.65588	38463.496
6	No	Yes	919.58853	7491.559
7	No	No	825.51333	24905.227
8	No	Yes	808.66750	17600.451
9	No	No	1161.05785	37468.529
10	No	No	0.00000	29275.268
11	No	Yes	0.00000	21871.073

- n=10000
- Balance = kredi kartı bakiyesi
- income = gelir düzeyi
- Student = öğrenci kuklası
- default = borç ödeyememe ikili değişken
 (Yes=borçlu, No= borçlu değil)

Örnek

- Kredi kartı bakiyesi ve öğrenci kuklası değişkenleri ile LDA tahmin ettiğimizde eğitim seti hata oranı %2.75. Bu oldukça düşük bir hata oranı gibi görünüyor.
- Verilerde borcunu ödeyemeyenlerin oranı (default=YES) %3.33. Bir gözlemi kredi kartı bakiyesinden ve öğrenci olup olmadığından bağımsız olarak "borçlu değil" (default=NO) diye sınıflandırsak (null classifier) yapacağımız hata oranı %3.33 olur.
- Bu açıdan baktığımızda LDA hata oranı aslında çok da başarılı değil.

Sınıflandırma Performansının Ölçümü

Hata Matrisi (Confusion Matrix)

		GERÇEK	GERÇEK	
		_	+	Toplam
TAHMİN	_	A	В	A + B
TAHMİN	+	C	D	C + D
	Toplam	A + C	B+D	A + B + C + D

- Tablo hücreleri gözlem sayılarıdır
- A = Doğru tahmin edilen gerçek negatif sayısı
- D = Doğru tahmin edilen gerçek pozitif sayısı
- C = Yanlış pozitif sayısı
- B = Yanlış negatif sayısı
- Yanlış pozitif oranı (false positive rate): FP = C/(A+C)
- Doğru pozitif oranı. TP = D/(B+D) (duyarlılık sensitivity)
- Doğru negatif oranı. A/(A+C) (özgüllük specificity)
- Pozitif kestirimsel değer: PP = D/(C+D), Negatif kestirimsel değer: NP = A/(A+B)

Sınıflandırma Performansının Ölçümü

Hata Matrisi (Confusion Matrix)

		True default status		
		No	Yes	Total
Predicted	No	9,644	252	9,896
$default\ status$	Yes	23	81	104
	Total	9,667	333	10,000

- Default = YES (Pozitif grup borcunu ödemeyenler)
- Default = NO (Negatif grup borcunu zamanında ödeyenler)
- Bu örnekte Doğru tahmin edilen gözlem sayısı 9644+81=9725'dir. Toplamdaki payı ise %97.25'dir.
- Yanlış sınıflanan gözlem sayısı ise 252+23=275. Yanlış sınıflama oranı ya da hata oranı % 2.75'dir.
- Gerçekte borçlu olmadığı halde yanlışlıkla borçlu olarak sınıflandırılanların oranı 23/9667 = 0.00238, yani %0.238 gibi çok küçük bir orandır.
- Ancak Gerçekte borçlu olanlar içinde %75.7'si yanlışlıkla borçlu değil grubundadır (252/333)

Sınıflandırma Performansının Ölçümü

Hata Matrisi (Confusion Matrix)

		True default status		
		No	Yes	Total
Predicted	No	9,644	252	9,896
$default\ status$	Yes	23	81	104
	Total	9,667	333	10,000

- Default = YES (Pozitif grup borcunu ödemeyenler)
- Default = NO (Negatif grup borcunu zamanında ödeyenler)
- Özgüllük (specificity): $(1 23/9667) \times 100 = \% 99.8$
- Genel hata oranı düşük olsa da Default (YES) grubu içindeki hata oranı çok yüksek.
- Doğru pozitif oranı ya da duyarlılık (sensitivity) % 24.3 (= $100 \times 81/333$)
- Yanlış negatif oranı = $\%75.7 = 100 \times 252/333 = 1 duyarlılık$. Yüksek risk grubundaki bireyleri tahmin etmek isteyen bir banka için bu oldukça yüksek.
- Yukarıdaki sınıflamada 0.5 eşik değerini kullandık. Yani koşullu olasılık 0.5'den büyükse default = YES grubuna atandı.

Farklı Eşik Değeri

$$Pr(default = YES|X) > 0.2$$

		True default status		
		No	Yes	Total
Predicted	No	9,432	138	9,570
$default\ status$	Yes	235	195	430
	Total	9,667	333	10,000

- Duyarlılık = $100 \times 195/333 = \%58.6$
- Yanlış pozitif oranı ise $\%41.44 = 100 \times 138/333$ (=1-duyarlılık)
- Duyarlılık beklendiği gibi yükseldi ancak Borçlu olmadıkları halde yanlışlıkla borçlu olarak sınıflandırılanların oranı da yükseldi, $\%2.43 = 100 \times 235/9667$.
- Genel hata orani: %3.73
- Borcunu ödemeyecek müşterileri öngörmek isteyen bir banka 0.5 yerine yukarıdaki gibi daha düşük bir eşik değeri kullanabilir.
- Eşik değerini artırınca duyarlılık yükseldi (yanlış negatif oranı düştü) ancak genel hata oranı arttı. Bu ikisi arasındaki ödünüm izleyen grafikte verilmiştir.

Eşik değeri ve hata oranı

- Yandaki grafikte yatay eksende sınıflamada kullanılan eşik değeri
- Dikey eksen, siyah: genel hata oranı, kavuniçi nokta: yanlış pozitif oranı
- Mavi kesikli çizgi: Yanlış negatif oranı (bocunu ödemedikleri halde yanlışlıkla "borçlu değil" olarak sınıflandırma oranı)
- Eşik değeri 0.5 alındığında genel hata oranı en düşüktür. Ancak yanlış negatif oranı da en yüksektir.
- Eşik değeri azaldıkça, borcunu ödemeyenler içinde yanlış sınıflananların oranı (yanlış negatif oranı) azalmaktadır.
- Diğer taraftan, borcunu ödeyenler içinde yanlış sınıflananların oranı da artmaktadır.
- Hangi eşik değerini kullanacağımıza nasıl karar verebiliriz?

ROC Eğrisi

Bu amaçla literatürde ROC eğrisi olarak bilinen "Karar Değerlendirme Eğrisi" kullanılabilir.

- Yatay eksen: yanlış pozitif oranı
- Dikey eksen: doğru pozitif oranı
- Tüm eşik değerleri için bu oranlar hesaplanıp grafik çizilir.
- Genel performans ölçütü = AUC
- AUC = Area Under the Curve (Eğrinin altındaki alan)
- Maks. AUC = 1, yüksek AUC tercih edilir.
- Default verileri için AUC = 0.95

Hata Matrisi: Özet

		TAHMİN EDİLEN		
		_	+	Toplam
		Doğru Negatif	Yanlış Pozitif	
	_	(DN)	(YP)	N
GERÇEK			Tip I Hata	
DURUM		Yanlış Negatif	Doğru Pozitif	
	+	(YN)	(DP)	P
		Tip II Hata		
Toplam		N*	P*	N+P=N*+P*

 H_0 : — (hastalık yok)

 H_a : + (hastalık var)

Yanlış Pozitif Oranı = YP/N = Tip I hata Oranı = 1 – Özgüllük (specificity)

Doğru Pozitif Oranı = DP/P = Duyarlılık (sensitivity) = 1 – Tip II Hata Oranı

Tip I Hata: H0 Doğru iken RED (gerçekte hasta olmadıkları halde hasta olarak sınıflandırma)

Tip II Hata: H0 Yanlış iken KABUL (gerçekte hasta oldukları halde "hasta değil" diye sınıflandırma

Karesel Diskriminant Analizi (QDA)

- LDA her grupta varyansın aynı olduğu varsayımını yapıyordu.
- Ancak bu varsayım sağlanmıyorsa LDA performansı kötüleşebilir.
- QDA (quadratic discriminant analysis) yöntemi LDA yöntemine benzer. Ortak varyans varsayımı yerine grup varyanslarının farklı olduğu varsayımını yapar.
- Farklı varyans varsayımı altında ortaya çıkan diskriminant fonksiyonu doğrusal değil kareseldir.
- Varyansların çok farklı olduğu verilerde QDA daha iyi bir başarıma sahip olabilir. Ancak her grupta yeterli gözlemlerin olması gerekir.
- Grup varyansları aynı ise LDA tercih edilebilir.

LDA vs. QDA

Sol: gerçek modelde varyans-kovaryans matrisi her iki grup için aynı. LDA (siyah kesikli) QDA (yeşil) yöntemine göre daha başarılı (mor kesikli: Bayes sınırı); **Sağ**: Grup varyansları farklı, QDA daha başarılı (kaynak: James et al., ISLR, Fig-4.9, p.150)