Gleichstrommotor

Datum	Uhrzeit	Versuchsleiter					
Name	Vorname	MatrNr.	Teilnahmetestat	Protokollabnahme			
Name	Vorname	MatrNr.	Teilnahmetestat				
Name	Vorname	MatrNr.	Teilnahmetestat				

Ziel des Versuchs

Untersuchung des Betriebsverhaltens eines fremderregten Gleichstrommotors.

Drehzahlverstellung: - durch Ändern der Ankerspannung

- durch Änderung des Feldstroms

Vorbemerkungen

Siehe auch Vorlesungsskript "Grundlagen elektrischer Maschinen" ("Grundlagen der Elektrotechnik 3")S. 43-58!

Für Gleichstrommotoren ist kennzeichnend, dass sie einen zeitlich konstanten magnetischen Fluss führen, der nur in relativ geringen Grenzen verändert werden kann. Insbesondere ist eine nennenswerte Steigerung des Flusses wegen der Sättigung des magnetischen Kreises nicht möglich. Der magnetische Fluss kann auf unterschiedliche Weise erzeugt werden durch

- die Erregerwicklung E1 E2 (Nebenschlusserregung), wenn der Erregerkreis an der Klemmenspannung des Ankerkreises liegt,
- 2. die Erregerwicklung D1 D2 (Reihenschlusserregung), wenn der Erregerkreis und der Ankerkreis in Reihe liegen,
- 3. die Erregerwicklung F1 F2 (Fremderregung), wenn der Erregerkreis eine eigene unabhängige Spannungsquelle hat,
- 4. Permanentmagnete (konstanter Fluss), üblich bei Kleinstmotoren und Sondermotoren, beispielsweise Scheibenläufermotoren.

Das Betriebsverhalten eines Gleichstrommotors lässt sich durch folgende Beziehungen beschreiben:

Stationäres Ersatzschaltbild der Gleichstrommaschine

$$U_{E} = C_{E} \cdot \Phi \cdot \omega \tag{1}$$

$$M = C_{M} \cdot \Phi \cdot I_{A} \qquad (2)$$

$$U_{A} = U_{F} + I_{A} \cdot R_{A} \qquad (3)$$

 $\begin{array}{lll} R_A & & Ankerwider stand \\ U_A & & Klemmen spannung \\ C_E, \, C_M & Maschinenkon stanten \\ U_E \sim \Phi \, n & Quell spannung \\ M \sim \Phi \, I_A & vom \, Anker \, erzeugtes \\ & (inneres) \, Drehmoment \end{array}$

Das Betriebsverhalten, d.h. die Kennlinie n = f(M), hängt einerseits von der angelegten Klemmenspannung U, andererseits von der im Motor verwendeten Art der Erregung ab. An der Welle wird dabei die Leistung

$$P_{mech} = \omega \cdot M = 2 \cdot \pi \cdot n \cdot M$$

abgegeben.

Aus den oben angegebenen Gleichungen (1) bis (3), die das Betriebsverhalten aller Gleichstrommaschinen beschreiben, geht nach einfacher Umformung hervor:

$$n = \frac{U}{2\pi \cdot C_{E} \cdot \Phi} - \frac{R_{A}}{2\pi \cdot C_{F} \cdot C_{M} \cdot \Phi^{2}} \cdot M = n_{0} - \Delta n$$
 (4)

mit

 n_0 = Leerlaufdrehzahl für M = 0

 $\Delta n = \ddot{A}$ nderung der Drehzahl bei Belastung mit M

Aus dieser Gleichung kann man ablesen, dass es grundsätzlich zwei Möglichkeiten gibt, bei festem Wert R_A unabhängig vom Drehmoment M die Drehzahl n zu verstellen:

- a) durch Änderung der Ankerspannung U_A bei konstanter Erregung (I_E konstant), oder
- b) durch Änderung (Schwächung, d.h. I_{E} verringern) des Feldes bei konstanter Ankerspannung U_{A} .

Aufgabenstellung und Durchführung des Versuchs

- 1. Versuch nach Schaltbild aufbauen.
- 2. Es wird zunächst die Leerlaufkennlinie des Motors aufgenommen. Im Ankerkreis des Belastungsgenerators wird der Belastungswiderstand abgeklemmt (Leerlauf: $I_{A \text{ GEN}} = 0$).
- 3. Bei drei unterschiedlichen, aber konstant zu haltenden Ankerspannungen, wird der Motor belastet und die Kennlinie n = f (M) ermittelt. Zweckmäßigerweise geht man bei diesen Messreihen von den Leerlaufdrehzahlen (Ankerstrom des Belastungsgenerators I_{A GEN} noch Null) 1750 min⁻¹, 1500 min⁻¹, 1250 min⁻¹ aus.
- 4. Der Erregerstrom I_{E MOT} des Motors wird verringert und damit ebenfalls der magnetische Fluss Φ im Motorerregerkreis. Dadurch steigt die Leerlaufdrehzahl n₀ (siehe Gleichung (4)). Es wird eine Leerlaufdrehzahl von 1500 min⁻¹ eingestellt und der Motor anschließend belastetet.

Bei allen Messreihen werden gemessen:

→ am Motor: U_{A MOT}, I_{A MOT}, U_{E MOT}, I_{E MOT}, n
→ am Generator: U_{A GEN}, I_{A GEN}, U_{E GEN}, I_{E GEN}

Auswertung, Darstellung der Ergebnisse

1. Zu jedem Messpunkt werden die folgenden Größen ausgerechnet:

$$\begin{array}{l} P_1 = P_{zu} = U_{AMOT} \cdot I_{AMOT} + U_{EMOT} \cdot I_{EMOT} + U_{EGEN} \cdot I_{EGEN} \\ P_2 = P_{ab} = P_{mech} = U_{AGEN} \cdot I_{AGEN} \quad (unter \ Vernachlässigung \ der \ Reibungsverluste) \\ \eta_{ges} = P_2 \ / \ P_1 \end{array}$$

Für den zu untersuchenden Maschinensatz gilt $\eta_{ges} = \eta_{MOT} \cdot \eta_{GEN}$. Es ist zu überlegen, wie aus η_{ges} der Wirkungsgrad des Motors η_{MOT} zu ermitteln ist. Dabei kann wegen der Baugleichheit von Motor und Generator vereinfachend $\eta_{MOT} = \eta_{GEN}$ angenommen werden!

2. Für den Gleichstrommotor sind drei Diagramme graphisch darzustellen:

a)	Leerlaufkennlinie	$n = f(U_A)$	(Werte aus Tabelle 1)
b)	Belastungskennlinien	n = f(M)	(Werte aus Tabellen 2 bis 5)
c)	Wirkungsgrad	$\eta = f(I_{AMOT})$	(Werte aus Tabellen 2 bis 5)

Schaltbild:

Die Drehzahl wird mittels eines an der Generatorwelle angebrachten Tachogenerators ermittelt. Dazu wird die gemessene Spannung mit

$$n = \frac{1000}{30} \cdot U_{\text{Tacho}} \,, \qquad \text{wobei } \left[n \right] = \text{min}^{-1} \,\, \text{und} \,\, \left[U_{\text{Tacho}} \right] = V \,\,, \label{eq:normalization}$$

umgerechnet (vergl. Typenschild des Tachos).

1. Le	1. Leerlaufkennlinie														
		Ве	lastung	sgenera	ator	Wirk	ungsgr	ad, Mor	nent						
U _A	I _A	UE	Ι _Ε	n	U_A	I _A	U _E	Ι _Ε	P ₁	P_2	η_{MOT}	М			
V	mA	V	mΑ	min ⁻¹	V	mA	V	mA	W	W	%	Nm			
25			300			0	207	130		0	0	0			
50			300			0	207	130		0	0	0			
75			300			0	207	130		0	0	0			
100			300			0	207	130		0	0	0			
125			300			0	207	130		0	0	0			
150			300			0	207	130		0	0	0			
175			300			0	207	130		0	0	0			
200			300			0	207	130	·	0	0	0			
220			300			0	207	130		0	0	0			

2. Dr	ehzahls	tellung	durch	Änderu	ng der	zugefü	hrten N	Netzspa	nnung				
Arbeitsmotor						lastung	sgenera	ator	Wirkungsgrad, Moment				
U_A	I _A	UE	Ι _Ε	n	U_A	I _A	UE	Ι _Ε	P ₁	P_2	η_{MOT}	М	
V	mA	V	mA	min ⁻¹	V	mA	V	mA	W	W	%	Nm	
			300	1750		0	207	130					
"	300		300				207	130					
"	500		300				207	130					
"	600		300				207	130					
"	700		300				207	130					
"	800		300				207	130					
"	900		300				207	130					
"	1000		300				207	130					
"	1100		300				207	130					

3. Dr	3. Drehzahlstellung durch Änderung der zugeführten Netzspannung														
	Ark	peitsmo	tor		Ве	lastung	sgenera	ator	Wirk	ungsgr	ad, Mor	nent			
U _A	I _A	U _E	Ι _Ε	n	U_A	I _A	U _E	Ι _Ε	P ₁	P_2	η_{MOT}	М			
V	mA	V	mA	min ⁻¹	V	mA	V	mA	W	W	%	Nm			
			300	1500		0	207	130							
II .	250		300				207	130							
"	500		300				207	130							
"	600		300				207	130							
"	700		300				207	130							
"	800		300				207	130							
"	900		300				207	130							
"	1000		300				207	130							
"	1100	-	300				207	130							

4. Dr	4. Drehzahlstellung durch Feldschwächung														
Arbeitsmotor						lastung	sgenera	ator	Wirk	ungsgr	ad, Mor	nent			
U_A	I _A	U_E	Ι _Ε	n	U_A	I _A	U _E	Ι _Ε	P ₁	P ₂	η_{MOT}	М			
V	mA	V	mA	min ⁻¹	V	mA	V	mA	W	W	%	Nm			
			200	1500		0	207	130							
"	300		200				207	130							
"	400		200				207	130							
"	500		200				207	130							
"	600		200				207	130							
"	700		200				207	130							
"	800		200				207	130							
"	900		200		·		207	130							
"	1000		200				207	130							

5. Dre	5. Drehzahlstellung durch Änderung der zugeführten Netzspannung														
Arbeitsmotor						lastung	sgenera	ator	Wirkungsgrad, Moment						
U_A	I _A	UE	Ι _Ε	n	U_A	I _A	UE	Ι _Ε	P ₁	P ₂	η_{MOT}	М			
V	mA	V	mA	min ⁻¹	V	mA	V	mA	W	W	%	Nm			
			300	1250		0	207	130							
"	300		300				207	130							
"	400		300				207	130							
"	500		300				207	130							
"	600		300				207	130							
"	700		300				207	130							
"	800		300				207	130							
II.	900		300				207	130							
II .	1000		300				207	130							

Motornenndaten:

Tragen Sie die Daten des Motortypenschildes ein:

