争取未来开挖掘机

姜圣的追随者 2024.7.12

摘要

沉迷游戏的我无意间看见关于姜圣的新闻。深感愧疚,幼儿班的我就已经熟练的掌握 了的九九乘法表。而现在我却每天沉迷于提瓦特大陆,天天只知道打丘丘人。

从今天开始我也要努力学习数学,希望姜圣以后当上院士的时候能带我一起开发挖掘机。

(本书内容: 仅有公式, 定理及证明)

(作者文凭:中专学历,混的文凭,简单理解就是初中学历(-。-)!)

(公式及证明出处:公式及证明都是在别的书里参考过来的,极个别公式证明是我自己瞎写的。)

目录

1	三角	函数																								6
	1.1	三角恒	等式																	 						6
	1.2	双曲函	数 .						•		•					•				 						(
2	不等	式																								7
3	排列	组合																								8
	3.1	定义 .																		 						8
	3.2	运算 .							•		•					•				 						8
4	区间与映射															ę										
	4.1	区间定	义 .																	 						Ć
	4.2	领域定	义 .																	 						Ć
	4.3	映射定	义 .						•		٠						•			 						Ć
5	函数	与图像																								11
	5.1	函数的	定义																	 						11
	5.2	函数的	类型																	 						11
	5.3	函数的	性质																	 						12
		5.3.1	函数	的有	界性															 						12
		5.3.2	函数	的单	调性															 						12
		5.3.3	函数	的奇	偶性															 						12
		5.3.4	周期	性.							•					•										12
6	并集,交集 6.1 定义															14										
	6.1	定义 .																		 						14
	6.2	运算 .																		 						14
	6.3	性质 .																		 						14
	6.4	gustus	De M	Iorga	an 定	理														 						15
	6.5	德摩根	律 定	理				•	•		٠						•					•	•		•	15
7	群,	环,域																								16
	7.1	群																								
		7.1.1	M1 .								٠									 						16
		7.1.2	M2 .																	 						16

		7.1.3 M3	16
		7.1.4 M4	16
		7.1.5 sdas	16
	7.2	环	16
	7.3	域	16
8	极限		17
G	8.1	数列极限	17
	0.1	8.1.1 数列的定义	17
		8.1.2 数列极限的定义	17 17
		8.1.3 极限的唯一性	17
		8.1.4 有界数列	17
		8.1.5 收敛数列的有界性	17
		8.1.6 收敛数列的保号性	17
		8.1.7 收敛数列和子数列	18
	8.2	函数极限	18
		8.2.1 极限的定义	18
		8.2.2 极限的性质	18
	8.3	无穷小与无穷大	19
		8.3.1 定义	19
	8.4	运算	19
		8.4.1 夹逼定理 (三明治定理)	19
9	导数		20
	9.1	幂数,指数,对数	20
	9.2	三角函数	20
	9.3	倒数运算	21
10	积分		22
		幂数,指数,对数	22
		三角函数	22
		积分运算	22
			<i>4</i> 4
11	零散	的一些	23

2	2 证明	25
	12.1 1.2.1	25
	12.2 1.2.2	25
	12.3 1.2.3	25
	12.4 1.2.4	25
	12.5 8.1.2	26
	12.6 8.1.3	26
	12.7 8.1.4	26
	12.8 8.1.1	27
	12.9 8.2.1	27
	12.108.3.1	28
	12.118.4.4	28

1 三角函数

1.1 三角恒等式

$$\sin(A + B) = \sin A \cos B + \cos A \sin B$$

$$\sin(A - B) = \sin A \cos B - \cos A \sin B$$

$$\cos(A + B) = \cos A \cos B - \sin A \sin B$$

$$\cos(A - B) = \cos A \cos B + \sin A \sin B$$

1.2 双曲函数

定义

$$\sinh x = \frac{e^x - e^{-x}}{2} \qquad \cosh x = \frac{e^x + e^{-x}}{2}$$
$$\tanh x = \frac{e^x - e^{-x}}{e^x + e^{-x}} \qquad \coth x = \frac{e^x + e^{-x}}{e^x - e^{-x}}$$

恒等式

$$\sinh(2x) = 2\sinh x \cosh x \tag{1.2.1}$$

$$\cosh^2 x - \sinh^2 x = 1 \tag{1.2.2}$$

$$\cosh^2 x + \sinh^2 x = \cosh(2x) \tag{1.2.3}$$

$$\cosh x = 1 + 2\sinh^2 \frac{x}{2} \tag{1.2.4}$$

2 不等式

$$\frac{x_1 + x_2 + \dots + x_n}{n} \geqslant \sqrt[n]{x_1 + x_2 + \dots + x_n}$$
 (2.0.1)

$$|x+y| < |x| + |y| \tag{2.0.2}$$

$$\sin x < x < \tan x \tag{2.0.3}$$

伯努利不等式

$$(1+x)^n \leqslant 1 + nx \tag{2.0.4}$$

3 排列组合

3.1 定义

$$\mathbb{A}_n^k = \frac{n!}{(n-k)!} \tag{3.1.1}$$

$$\mathbb{C}_n^k = \frac{\mathbb{A}_n^k}{k!} = \frac{n!}{k!(n-k)!}$$
 (3.1.2)

3.2 运算

4 区间与映射

4.1 区间定义

区间定义
$$\begin{cases} (a,b) = \{x | a < x < b\} \\ [a,b] = \{x | a \leqslant x \leqslant b\} \\ (a,b] = \{x | a < x \leqslant b\} \\ (a,+\infty) = \{x | a < x\} \end{cases}$$

4.2 领域定义

点a的领域

$$U(a,\delta) = \begin{cases} \{x|a-\delta < x < a+\delta\} & a \\ \{x| |x-a| < \delta\} & a+\delta \end{cases}$$

点 a 的去心领域

$$\mathring{U}(a,\delta) = \begin{cases} \{x|a - \delta < x < a + \delta \land x \neq 0\} & a \\ \{x|0 < |x - a| < \delta\} & a + \delta \end{cases}$$

点 a 的左领域
$$(a - \delta, a)$$

点 a 的右领域 $(a, a + \delta)$

4.3 映射定义

定义:X 与 Y 是两个非空集合, 如果存在一个法则对任一 $x \in X$, 都有确定的 y 与之对应。则称 f 为从 X 到 Y 的一个映射。

5 函数与图像

5.1 函数的定义

设数集 $D \in R$ 的映射

$$f:D\to R$$

称 f 为定义在 D 上的函数, 记为

$$y = f(x) \ \{x \in D\}$$

5.2 函数的类型

$$f(x) = sgn \ x = \begin{cases} 1 & x > 0 \\ 0 & x = 0 \\ -1 & x < 0 \end{cases}$$

图 1: |x| = x sgnx

图 $2: \sin x$

图 3: $\arcsin x$

图 $4: \cos x$

5.3 函数的性质

5.3.1 函数的有界性

$$f: D \to R\{D \subset R\} \begin{cases} \text{有上界} \left\{ \exists k_1, \ \text{使} f(x) \leqslant k_1, \ \forall x \in D \right. \\ \text{有下界} \left\{ \exists k_1, \ \text{使} f(x) \geqslant k_1, \ \forall x \in D \right. \end{cases} \\ \left\{ \begin{array}{l} \text{无上界} \left\{ \forall K_1, \ \exists x \in D \ \text{使}, \ f(x) \geqslant k_1 \right. \\ \text{无下界} \left\{ \forall K_1, \ \exists x \in D \ \text{使}, \ f(x) \leqslant k_1 \right. \end{array} \right. \end{cases}$$

5.3.2 函数的单调性

单调增加 若
$$\{x_1, x_2 \in D\}$$
 $x_1 < x_2 \Rightarrow \begin{cases} f(x_1) < f(x_2)$ 称 $f(x)$ 在 D 上单调增加
$$f(x_1) > f(x_2)$$
称 $f(x)$ 在 D 上单调减少
$$f(x_1) \leqslant f(x_2)$$
称 $f(x)$ 在 D 上单调非降
$$f(x_1) \geqslant f(x_2)$$
称 $f(x)$ 在 D 上单调非增

5.3.3 函数的奇偶性

定义域

$$\forall x \in D$$
 $f(-x) = \begin{cases} f(x) &$ 偶函数
$$-f(x) &$$
 奇函数

奇偶性运算

奇函数
$$\times$$
 奇函数 = 偶函数 $(5.3.1)$

奇函数
$$\times$$
 偶函数 $=$ 奇函数 (5.3.2)

偶函数
$$\times$$
 偶函数 = 偶函数 (5.3.3)

5.3.4 周期性

$$Def: f(x+L) = f(x)\{L > 0$$
常数, $\forall x \in D\} \Rightarrow f(x)$ 为 L 的周期函数

图 5: $\arccos x$

图 6: tan x

图 7: arctan x

6 并集,交集

6.1 定义

$$(\lor 或, \land 与)$$
$$A \cup B = \{x \in A \lor x \in B\}$$
$$A \cap B = \{x \in A \land x \in B\}$$

6.2 运算

6.3 性质

性质 1.

$$A \subset (A \cup B)$$
 $A \supset (A \cap B)$ (6.3.1)

性质 2.

$$A \cup B = B \Leftrightarrow A \subset B \tag{6.3.2}$$

性质 3.

$$A \cap B = A \Leftrightarrow A \subset B \tag{6.3.3}$$

性质 $4.(n \in N)$

$$A \cup (B_1 \cap B_2 \cap \dots \cap B_n) = (A \cup B_1) \cap (A \cup B_2) \cap \dots \cap (A \cup B_n)$$

$$(6.3.4)$$

性质 $5. (n \in N)$

$$A \cap (B_1 \cup B_2 \cup \dots \cup B_n) = (A \cap B_1) \cup (A \cap B_2) \cup \dots \cup (A \cap B_n)$$

$$(6.3.5)$$

6.4 gustus De Morgan 定理

$$\neg (A \lor B) \Leftrightarrow (\neg A) \land (\neg B)$$
$$\neg (A \land B) \Leftrightarrow (\neg A) \lor (\neg B)$$

6.5 德摩根律 定理

$$\left(\bigcup_{\alpha} E_{\alpha}\right)^{C} = \bigcap_{\alpha} (E_{\alpha}^{C})$$
$$\left(\bigcap_{\alpha} E_{\alpha}\right)^{C} = \bigcup_{\alpha} (E_{\alpha}^{C})$$

7 群,环,域

- 7.1 群
- 7.1.1 M1
- 7.1.2 M2
- 7.1.3 M3
- 7.1.4 M4
- 7.1.5 sdas
- 7.2 琢
- 7.3 域

8 极限

8.1 数列极限

8.1.1 数列的定义

 $Def: \{x_n\}: N^+ \to R$

$$x_n = f(n)$$

8.1.2 数列极限的定义

 $Def: \{x_n\}, \ n \in N^+, \exists a, \ \forall \varepsilon > 0, \exists N, \ n > N \Rightarrow |x_n - a| < \varepsilon$ $\lim_{n \to \infty} x_n = a$ 极限存在,为收敛,不存在为发散

8.1.3 极限的唯一性

数列收敛,极限的唯一性

(8.1.1)

8.1.4 有界数列

若∃M > 0, { $M \in \text{正数}$ } 使得 $\forall n$, $|x_n| \leq M$ 则称数列 { x_n } 为有界数列

8.1.5 收敛数列的有界性

收敛数列必有界

(8.1.2)

8.1.6 收敛数列的保号性

如果 $\lim_{n\to\infty} x_n = a$ 存在,且 a>0,则 $\exists N>0\{N\in N^+\}$ 当 n>N 时, $\Leftrightarrow x_n>0$

(8.1.3)

(8.1.4)

$$\lim_{n \to \infty} x_n = a, \lim_{n \to \infty} b_n = b, a < b, \ \exists N, n > N, a_n < b_n$$

8.1.7 收敛数列和子数列

$$\{x_n\}, \lim_{n\to\infty} x_n = a, \ \{x_{n_k}\} \subset \{x_n\} \Rightarrow \lim_{n\to\infty} x_{n_k} = a$$
 证明 $K = N$ $k > K$
$$n_k > n_K \geqslant N$$

$$|x_{n_k} - a| < \varepsilon$$

$$\lim_{n\to\infty} x_{n_k} = a$$

8.2 函数极限

8.2.1 极限的定义

$$Def: \forall \varepsilon > 0 \begin{cases} \exists x > X & \text{时都有} \quad |f(x) - A| < \varepsilon \Leftrightarrow \lim_{x \to +\infty} f(x) = A \\ \exists x < -X & \text{时都有} \quad |f(x) - A| < \varepsilon \Leftrightarrow \lim_{x \to -\infty} f(x) = A \\ \exists |x| > X & \text{时都有} \quad |f(x) - A| < \varepsilon \Leftrightarrow \lim_{x \to \infty} f(x) = A \end{cases}$$
$$\exists \delta > 0 \begin{cases} \exists x_0 < x < x_0 + \delta, \text{时} \quad |f(x) - A| < \varepsilon \Leftrightarrow \lim_{x \to x_0^+} f(x) = A \\ \exists x_0 < x < x_0 + \delta, \text{H} \quad |f(x) - A| < \varepsilon \Leftrightarrow \lim_{x \to x_0^-} f(x) = A \end{cases}$$
$$\exists \delta > 0 \begin{cases} \exists x_0 < x < x_0, \text{H} \quad |f(x) - A| < \varepsilon \Leftrightarrow \lim_{x \to x_0^-} f(x) = A \\ \exists 0 < |x - x_0| < \delta, \text{H} \quad |f(x) - A| < \varepsilon \Leftrightarrow \lim_{x \to x_0} f(x) = A \end{cases}$$

注意 1

定义中 $0 < |x - x_0|$ 表示 $x \neq x_0$ 讨论 $x \rightarrow x_0$, 只考虑 $x \neq x_0$ 注意 2

 $\lim_{x\to x_0} f(x)$ 是否存在与 $f(x_0)$ 是否有定义取什么值无关。

$$\lim_{x \to x_0} f(x)$$
 存在 $\Leftrightarrow \lim_{x \to x_0^+} f(x) = \lim_{x \to x_0^-} f(x)$ (8.2.1)

冬

8.2.2 极限的性质

- 1 函数的极限的唯一性
- 如果 $\lim f(x)$ 存在必唯一。
- 2 局部有界性

$$\lim_{x \to x_0} f(x) = A \Rightarrow \exists M > 0, \delta > 0 \oplus 0 < |x - x_0| < \delta, |f(x)| \leqslant M$$

3 保号性

4 函数极限与数列极限的关系

如果 $\lim_{x\to x_0} f(x)$ 存在, $\{x_n\}$ 为 f(x) 定义域的任一收敛于 x_0 的数列,则满足 $x_n\neq x_0$ $\lim_{n \to \infty} f(x_n) = \lim_{x \to x_0} f(x), \ x_n \to x_0$

无穷小与无穷大 8.3

定义 8.3.1

一 无穷小

$$Def:$$
 如果 $\lim_{x\to x_0} f(x) = 0$ 则称 $f(x)$ 为 $x\to x_0$ 时的无穷小

二 函数极限与无穷小的关系

在自变量的同一变化中。其中 α 为无穷小。 $\lim f(x) = A \Leftrightarrow f(x) = A + \alpha$ (8.3.1)

8.4 运算

$$\lim_{n \to \infty} (x_n \pm y_n) = \lim_{n \to \infty} x_n \pm \lim_{n \to \infty} y_n$$
(8.4.1)

$$\lim_{n \to \infty} (x_n y_n) = \lim_{n \to \infty} (x_n) \lim_{n \to \infty} (y_n)$$
(8.4.2)

$$\lim_{n \to \infty} (x_n y_n) = \lim_{n \to \infty} (x_n) \lim_{n \to \infty} (y_n)$$

$$\lim_{n \to \infty} \frac{x_n}{y_n} = \frac{\lim_{n \to \infty} x_n}{\lim_{n \to \infty} y_n}$$
(8.4.2)

夹逼定理(三明治定理) 8.4.1

9 导数

9.1 幂数,指数,对数

$$\frac{d}{\mathrm{d}x}x^a = ax^{a-1} \tag{9.1.1}$$

$$\frac{d}{dx}b^x = b^x \ln b \tag{9.1.2}$$

$$\frac{d}{\mathrm{d}x}e^x = e^x \tag{9.1.3}$$

$$\frac{d}{\mathrm{d}x}\ln x = \frac{1}{x} \tag{9.1.4}$$

$$x$$
 (9.1.5)

9.2 三角函数

$$\frac{d}{dx}\sin x = \cos x\tag{9.2.1}$$

$$\frac{d}{\mathrm{d}x}\arcsin x = \frac{1}{\sqrt{1-x^2}}\tag{9.2.2}$$

$$\frac{d}{dx}\csc x = -\csc x \cot x$$

$$\frac{d}{dx}\cos x = -\sin x$$

$$\frac{d}{dx}\sec x = \sec x \tan x$$

$$\frac{d}{\mathrm{d}x}\operatorname{arcsec} x = \frac{1}{|x|\sqrt{x^2 - 1}}$$

$$\frac{d}{dx}\tan x = \sec^2 x$$

$$\frac{d}{\mathrm{d}x}\arctan = \frac{1}{1+x^2}$$

$$\frac{d}{\mathrm{d}x}\cot x = -\csc^2 x$$

$$\frac{d}{\mathrm{d}x}\sinh x = \cosh x$$

$$\frac{d}{\mathrm{d}x}\cosh x = \sinh x$$

9.3 倒数运算

$$A = B$$

$$(9.3.1-1)$$

$$C = D$$

(10.1.1)

(10.2.10)

(10.2.11)

10 积分

10.2

10.1 幂数,指数,对数

三角函数

$$\int x^{a} dx = \frac{1}{a-1} x^{a-1} + C$$

$$\int b^{x} dx = \frac{b^{x}}{\ln b} + C$$

$$\int e^{x} dx = e^{x} + C$$

$$\int \frac{1}{x} dx = \ln x + C$$

$$(10.1.2)$$

$$(10.1.3)$$

$$(10.1.4)$$

$$\int \frac{1}{\sqrt{1-x^2}} dx = \arcsin x + C \qquad (10.2.2)$$

$$\int \csc x \cot x dx = -\csc x + C \qquad (10.2.3)$$

$$\int \cos x dx = \sin x + C \qquad (10.2.4)$$

$$\int \sec x \tan x dx = \sec x + C \qquad (10.2.5)$$

$$\int \sec^2 x dx = \tan x + C \qquad (10.2.6)$$

$$\int \csc^2 x dx = -\cot x + C \qquad (10.2.7)$$

$$\int \frac{1}{|x|\sqrt{x^2-1}} dx = \operatorname{arcsec} x + C \qquad (10.2.8)$$

$$\int \frac{1}{1+x^2} dx = \tan x + C \qquad (10.2.9)$$

积分运算 10.3

 $\int \sinh x dx = \cosh x + C$

 $\int \cosh x \, \mathrm{d}x = \sinh x + C$

11 零散的一些

$$\sum_{k=0}^{n} q^k = \frac{1 - q^{n+1}}{1 - q} \tag{11.0.1}$$

$$A_N = \sum_{k=0}^n q^k \qquad qA_N = \sum_{k=1}^{n+1} q^k$$

$$A_N - qA_N = \sum_{k=0}^n q^k - \sum_{k=1}^{n+1} q^k = 1 - q^{n+1}$$

$$A_N = \frac{1 - q^{n+1}}{1 - q}$$

$$\log_{10} x = \lg_x \tag{11.0.2}$$

$$\log_e x = \ln_x \tag{11.0.3}$$

$$\log_b xy = \log_b x + \log_b y \tag{11.0.4}$$

$$\log_{(b^n)} x = \frac{1}{n} \log_b x \tag{11.0.5}$$

$$\log_b x^n = n \log_b x \tag{11.0.6}$$

$$\log_b x = n \log_b x \tag{11.0.0}$$

$$\log_b x = \frac{\log_c x}{\log b} \tag{11.0.7}$$

$$b^n = x$$
 $b^m = y$

$$b^{n+m} = xy$$

$$\log_b xy = n + m = \log_b x + \log_b y$$

$$b^n=x$$

$$\log_b x = n$$

$$\frac{1}{n}\log_b x = 1 = \log_{(b^n)} x$$

$$b^{1} = x^{n} \qquad b^{\frac{1}{n}} = x$$

$$n \log_{b} x = 1 = \log_{b} x^{n}$$

$$\log_b x = \log_{c^{(\log_c b)}} c^{(\log_c x)} = \frac{\log_c x}{\log_c b}$$

12 证明

$12.1 \quad 1.2.1$

$$\sinh x \cosh x = \left(\frac{e^x - e^{-x}}{2}\right) \left(\frac{e^x + e^{-x}}{2}\right)$$
$$= \left(\frac{1}{2}\right) \left(\frac{e^{2x} - e^{-2x}}{2}\right)$$
$$= \frac{1}{2} \sinh(2x)$$
$$\sinh(2x) = 2 \sinh x \cosh x$$

12.2 1.2.2

$$\cosh^{2} x - \sinh^{2} x = \left(\frac{e^{x} + e^{-x}}{2} + \frac{e^{x} - e^{-x}}{2}\right) \left(\frac{e^{x} + e^{-x}}{2} - \frac{e^{x} - e^{-x}}{2}\right)$$

$$= e^{x} \times e^{-x}$$

$$= 1$$

$12.3 \quad 1.2.3$

$$\cosh^{2} x + \sinh^{2} x = \left(\frac{e^{x} + e^{-x}}{2}\right)^{2} + \left(\frac{e^{x} - e^{-x}}{2}\right)^{2}$$

$$= \frac{2e^{2x} + 2e^{-2x}}{4}$$

$$= \frac{e^{2x} + e^{-2x}}{2}$$

$$= \cosh(2x)$$

12.4 1.2.4

$$\cosh(2x) = \cosh^2 x + \sinh^2 x$$

$$= \sinh^2 x + 1 + \sinh^2 x$$

$$= 2\sinh^2 x + 1$$

$$\cosh x = 2\sinh^2 \frac{x}{2} + 1$$

12.5 8.1.2 12 证明

12.5 8.1.2

12.6 8.1.3

1

由于
$$\lim_{n \to \infty} x_n = a$$
, 且 $a > 0$
 $\varepsilon = \frac{a}{2}$, $\exists N > 0$, $n > N$
 $|x_n - a| < \varepsilon$
 $|x_n - a| < \frac{a}{2}$
 $-\frac{a}{2} < x_n - a < \frac{a}{2}$
 $\frac{a}{2} < x_n < 1$

2

用反证法, 反设 a < 0. 从某项起 $x_n < 0$ 矛盾

12.7 8.1.4

$$x_n = b_n - a_n$$

$$\lim_{n \to \infty} x_n = \lim_{n \to \infty} b_n - \lim_{n \to \infty} a_n$$

$$\lim_{n \to \infty} x_n = b - a > 0$$

$$\lim_{n \to \infty} x_n > 0$$

$$b_n - a_n = x_n > 0$$

$$b_n > a_n$$

12.8 8.1.1 12 证明

12.8 8.1.1

反设
$$\lim_{n \to \infty} x_n = a$$
, $\lim_{n \to \infty} x_n = b$, $\exists a < b$

$$\varepsilon = \frac{b - a}{3} \begin{cases} \exists N_1, \ n > N_1, \ |x_n - a| < \frac{b - a}{3} \\ \exists N_2, \ n > N_2, \ |x_n - b| < \frac{b - a}{3} \end{cases}$$

$$N = \max\{N_1, N_2\}, \ n > N \Rightarrow \begin{cases} n > N_1 \\ n > N_2 \end{cases}$$

$$b - a = |(x_n - a) - (x_n - b)|$$

$$\leqslant |x_n - a| + |x_n - b|$$

$$< \frac{b - a}{3} + \frac{b - a}{3}$$

$$< \frac{2(b - a)}{3}$$

12.9 8.2.1

12.10 8.3.1 12 证明

12.10 8.3.1

设
$$\lim_{x \to x_o} f(x) = A$$
, 记 $f(x) - A = \alpha$ 只需证 α 为无穷小。
$$\forall \varepsilon > 0, \exists \delta > 0, \exists 0 < |x - x_0| < \delta, \text{时} |f(x) - A| < \varepsilon$$
 即 $|\alpha - 0| < \varepsilon$ α 为 $x \to x_0$ 时的无穷小

12.11 8.4.4