Assignment 2

1. Very Busy Expressions

Un espressione è *very busy* in un punto se è valutata in tutti i percorsi uscenti dal punto e entranti in *EXIT* e non c'è una definizione di almeno un operando lungo tali percorsi. Nel punto indicato, che corrisponde al *BB2* ci sono solo due espressione (a != b e b-a), le quali non sono *very busy*, poiché non è vero che qualsiasi sia il percorso intrapreso gli operandi a e b non sono mai stati definito prima (seconda condizione) infatti a viene definita in *BB6*. In aggiunta, in entrambi i CF l'espressione viene valutata (prima condizione) essendo il *BB2* predecessore di entrambi i rami entranti rispettivamente in *BB3* e *BB5* ed essendo *b-a* valutata in *BB3* e *BB5*.

Derivazione per il Dataflow Analysis

	Data flow problem
Domain	Set di espressioni
Direction	Backward: $ in[b] = f_b(out[b]) $ $ out[b] = \land in[succ(b)] $
Transfer function	$f_{b(x)} = Gen[B] \cup (x - Kill[b])$
Meet Operation	Λ
Boundary Condition	$in[EXIT] = \emptyset$
Initial interior points	$in[B] = \emptyset$

Iterazioni dell'algoritmo

	1		2	
	IN	OUT	IN	OUT
BB1	Ø	$\{(b-a)\}$	Ø	$\{(b-a)\}$
BB2	$\{(b-a)\}$	$\{(b-a); (a - b)\} \cap \{(b - a)\}$ = $\{(b-a)\}$	$\{(b-a)\}$	$\{(b-a); (a-b)\} $ $\cap \{(b-a)\} $ $= \{(b-a)\} $
BB3	$\{(b-a); (a - b)\}$	$\{(a-b)\}$	$\{(b-a);\ (a-b)\}$	$\{(a-b)\}$
BB4	$\{(a - b)\}\$	Ø	$\{(a-b)\}$	Ø
BB5	$\{(b-a)\}$	Ø	$\{(b-a)\}$	Ø
BB6	Ø	$\{(a-b)\}$	Ø	$\{(a-b)\}$
BB7	$\{(a - b)\}\$	Ø	$\{(a - b)\}$	Ø
BB8	Ø	Ø	Ø	Ø

2. Dominator Analysis

Derivazione per il Dataflow Analysis

	Data flow problem
Domain	Set di Basic Blocks

Direction	Forward: $out[b] = f_b(in[b])$ $in[b] = \land out[pred(b)]$
Transfer function	$f_{b(x)} = Gen[B] \cup x$
Meet Operation	Π
Boundary Condition	$out[entry] = \emptyset$
Initial interior	out[B] = u (Universal set)
points	

Iterazioni dell'algoritmo

	1		2	
	IN	OUT	IN	OUT
Α	Ø	<i>{A}</i>	Ø	<i>{A}</i>
В	<i>{A}</i>	{ <i>A</i> , <i>B</i> }	<i>{A}</i>	{ <i>A</i> , <i>B</i> }
С	<i>{A}</i>	{ <i>A</i> , <i>C</i> }	<i>{A}</i>	{ <i>A</i> , <i>C</i> }
D	{ <i>A</i> , <i>C</i> }	{ <i>A</i> , <i>C</i> , <i>D</i> }	{ <i>A</i> , <i>C</i> }	$\{A,C,D\}$
E	{ <i>A</i> , <i>C</i> }	$\{A,C,E\}$	{ <i>A</i> , <i>C</i> }	$\{A,C,E\}$
F	{ <i>A</i> , <i>C</i> }	$\{A,C,F\}$	{ <i>A</i> , <i>C</i> }	$\{A,C,F\}$
G	<i>{A}</i>	{ <i>A</i> , <i>G</i> }	<i>{A}</i>	{ <i>A</i> , <i>C</i> }

3. Constant Propagation

Derivazione per il Dataflow Analysis

	Data flow problem	
Domain	Set di coppie < <i>variabile</i> , <i>valore</i> costante>	
Direction	Forward:	
	$out[b] = f_b(in[b])$	
	$in[b] = \wedge out[pred(b)]$	
Transfer function	$f_{b(x)} = Gen[B] \cup (x - Kill[b])$	
Meet Operation	n	
Boundary Condition	$out[entry] = \emptyset$	
Initial interior	out[B] = u (Universal set)	
points		

Il *meet operator* di intersezione deve essere "aumentato" con una proprietà che rileva se al nodo analizzato la variabile è garantita assumere sempre lo stesso valore ad ogni iterazione.

Iterazioni dell'algoritmo

Per motivi di spazio nella seguente tabella le coppie verranno dichiarate utilizzando la notazione {variabile, valore} e non <variabile, valore>.

	1	
	IN	OUT
k=2	{k, 2}	{k, 2}
if	{ <i>k</i> , 2}	<i>{k, 2}</i>
a=k+2	{ <i>k</i> , 2}	$\{k, 2\}, \{a, 4\}$
x=5	$\{k, 2\}, \{a, 4\}$	$\{k,2\},\{a,4\},\{x,5\}$
a=k*2	{ <i>k</i> , 2}	$\{k, 2\}, \{a, 4\}$
x=8	$\{k, 2\}, \{a, 4\}$	$\{k, 2\}, \{a, 4\}, \{x, 8\}$
k=a	$\{k, 2\}, \{a, 4\}$	$\{k,4\},\{a,4\}$
while	$\{k, 4\}, \{a, 4\}$	$\{k,4\},\{a,4\}$
b=2	$\{k, 4\}, \{a, 4\}$	$\{k,4\},\{a,4\},\{b,2\}$
x=a+k	$\{k, 4\}, \{a, 4\}, \{b, 2\}$	$\{k,4\},\{a,4\},\{b,2\},\{x,8\}$
y=a*b	$\{k,4\},\{a,4\},\{b,2\},\{x,8\}$	${k, 4}, {a, 4}, {b, 2}, {x, 8}, {y, 8}$
k++	$\{k, 4\}, \{a, 4\}, \{b, 2\}, \{x, 8\}, \{y, 8\}$	$\{k, 5\}, \{a, 4\}, \{b, 2\}, \{x, 8\}, \{y, 8\}$
print(a+x)	$\{k,4\},\{a,4\}$	$\{k,4\},\{a,4\}$

	2	
	IN	OUT
k=2	{ <i>k</i> , 2}	{ <i>k</i> , 2}
if	<i>{k, 2}</i>	{ <i>k</i> , 2}
a=k+2	{ <i>k</i> , 2}	$\{k, 2\}, \{a, 4\}$
x=5	$\{k, 2\}, \{a, 4\}$	$\{k, 2\}, \{a, 4\}, \{x, 5\}$
a=k*2	{ <i>k</i> , 2}	$\{k, 2\}, \{a, 4\}$
x=8	$\{k, 2\}, \{a, 4\}$	$\{k, 2\}, \{a, 4\}, \{x, 8\}$
k=a	$\{k, 2\}, \{a, 4\}$	$\{k,4\},\{a,4\}$
while	${a,4},{b,2},{x,8},{y,8}$	${a,4},{b,2},{x,8},{y,8}$
b=2	${a,4},{b,2},{x,8},{y,8}$	${a,4},{b,2},{x,8},{y,8}$
x=a+k	${a,4},{b,2},{y,8}$	${a,4},{b,2},{y,8}$
y=a*b	${a,4},{b,2},{y,8}$	{ <i>a</i> , 4}, { <i>b</i> , 2}
k++	${a,4},{b,2}$	${a,4},{b,2}$
print(a+x)	${a,4},{b,2}$	${a,4},{b,2}$