$1. \langle \forall \exists \exists \exists \exists f(t)$ 의 함수 f(t)에 대한 라플라스 변환 F(s)는?

- ① $\frac{1}{s} \frac{3}{s}e^{-s} + \frac{4}{s}e^{-2s} \frac{1}{s}e^{-5s}$
- ② $\frac{1}{s} \frac{3}{s^2}e^{-s} + \frac{4}{s}e^{-2s} + \frac{2}{s}e^{-5s}$

- 2. \langle 보기 \rangle 의 회로에 직류가 공급되고 있을 때 커패시터에 저장된 에너지 (w_C) 와 인덕터에 저장된 에너지 (w_L) 의 값[J]은?

- $\begin{array}{ccc}
 & \underline{w_C} & \underline{w_L} \\
 & 72 & 4
 \end{array}$
- ② 36 8
- 3 8 36
- 4
- $3. \langle \pm 1 \rangle$ 의 이상적인 연산증폭기를 이용한 회로에서 $v_1 = -1[V], \ v_2 = 3[V]$ 일 때, 전압 v_o 의 값[V]은?

① -4

② **-**2

3 2

4

4. 〈보기〉의 이상적인 변압기 회로에서 전류 I,의 값[A]은?

- ① $6 \angle -180^{\circ}$
- ② $6 \angle -90^{\circ}$
- ③ 6∠0°
- **④** 6∠90°
- 5. $\langle 보기 \rangle$ 의 회로에서 t > 0일 때, i(t)[A]는?

- ① $2e^{-\frac{4}{9}t}$
- $2 4e^{-\frac{4}{9}t}$
- $3 2e^{-\frac{9}{4}t}$
- $4e^{-\frac{9}{4}t}$
- 6. $\langle \pm 1 \rangle$ 와 같이 주기가 있는 파형의 전류가 인가된 $10[\Omega]$ 의 저항에서 소비되는 평균전력의 값[W]은?

① 10

20 20

30

- 40
- 7. \langle 보기 \rangle 의 회로에서 $4[\Omega]$ 의 저항이 소비하는 전력의 $\text{$

1 4

2 8

3 12

4 16

8. $\langle \pm 1 \rangle$ 의 이상적인 연산증폭기 회로에서 t>0일 때, 전압 v(t)[V]는? (단, u(t)는 단위 계단 함수이다.)

- ① $-5(e^{-t}-1)$
- ② $5(e^{-t}-1)$
- $3 -5(e^{-t}+1)$
- $4 5(e^{-t}+1)$
- 9. 〈보기〉의 회로에서 전압 V_x 의 값[V]은?

10. 〈보기〉의 대역통과 필터 회로에서 $R=200[\Omega]$, $C=5[\mu F]$, L=2[mH]일 때, 회로의 대역폭의 값[rad/s]은?

10

- 2 100
- 3 1,000
- 4 10,000
- 11. \langle 보기 \rangle 의 회로에서 전압 V_1 의 값[V]은?

12. 〈보기〉의 회로에서 t=0[s]일 때, $I_x=-1[A]$ 이고 $V_x=5[V]$ 이다. $V_1(t)[V]$ 는? (단, u(t)는 단위 계단 함수 이다.)

- ① $(45e^{-t} 35e^{-2t})u(t)$
- $2 (35e^{-t} 30e^{-2t})u(t)$
- $3 (25e^{-t} 20e^{-2t})u(t)$
- $(4) (15e^{-t} 10e^{-2t})u(t)$
- 13. 〈보기〉의 회로에서 노드 1에서의 전압 V_1 과 노드 2에서의 전압 V_2 의 합[V]은?

14. $\langle \pm 1 \rangle$ 의 함수 F(s)에 대한 라플라스 역변환 $f(t) = \pounds^{-1} \{ F(s) \} 는 ? \ (단, \ u(t) 는 단위 계단 함수이다.)$

$$F(s) = \frac{5}{s} + \frac{7}{s+2} + \frac{6}{s^2+4}$$

- ① $[5t + 7e^{-2t} + 6\sin 2t]u(t)$
- ② $[5 + 7e^{-2t} + 3\sin 2t]u(t)$
- $3 \left[5 + 7e^{-2t} + 3\cos 2t\right]u(t)$
- $(4) [5 + 7e^{-2t} + 6 \sin 2t]u(t)$
- 15. \langle 보기 \rangle 의 회로에서 등가 커패시턴스 C_{eq} 의 값[F]은?

1 2

2 4

3 6

4 8

16. \langle 보기 \rangle 의 회로에서 $v_s(t)$ 를 입력, $v_o(t)$ 를 출력이라 할 때, 전달함수 H(s)는?

- $2 \frac{3s+1}{3s^2+3s+1}$

- 17. 〈보기〉의 회로에서 가변 저항 *R*에 전달될 수 있는 최대 전력의 값[W]은?

① 5

2 10

3 15

- **4** 20
- 18. \langle 보기 \rangle 의 회로에서 z 파라미터를 옳게 표현한 것은?

- $\bigcirc \begin{pmatrix} 15 & 25 \\ 10 & 12 \end{pmatrix} [\ \Omega\]$

- $\stackrel{\text{\tiny 4}}{\text{\tiny 4}} \begin{pmatrix} 25 & 15 \\ 12 & 10 \end{pmatrix} [\ \Omega\]$

19. \langle 보기〉의 회로에서 공진주파수 w_0 의 값[rad/s]은?

- ① $\sqrt{\frac{1}{LC R_2^2 C^2}}$
- ② $\sqrt{\frac{1}{LC R_1^2 C^2}}$

20. \langle 보기 \rangle 의 무전원 RLC 병렬 회로에서 v(0)=10[V], i(0)=0[A]일 때, t>0에서 v(t)[V]는?

- ① $(10+200t)e^{-20t}$
- ② $(10-200t)e^{-20t}$
- $(3) (10+400t) e^{-20t}$
- $(10-400t)e^{-20t}$

이 면은 여백입니다.