

Instituto Politécnico Nacional Centro de Investigación en Computación

Medidas de Desempeño para Clasificadores

7 de noviembre de 2022

Luis Norberto Zuñiga Morales

Contenido

Medidas de Desempeño

Referencias

La matríz de confusión [1] permite visualizar el desempeño de un algoritmo de clasificación.

		Valor Predicho		
		Clase 1	Clase 2	
Valor	Clase 1	Positivo Verdadero (PV)	Falso Negativo (FN)	
Real	Clase 2	Falso Positivo (FP)	Negativo Verdadero (NV)	

Cuadro: Matriz de confusión para el caso de clasificación binaria.

Se necesita una medida para comparar el desempeño de los clasificadores. Para dos clases se utilizan los siguientes:

 Exactitud: la razón de las instancias clasificadas correctamente y el total de los elementos clasificados.

$$\mathsf{Exactitud} = \frac{VP + NV}{VP + NV + FP + FN}$$

 Precisión: la razón de instancias clasificadas positivamente correctas.

$$Precision = \frac{VP}{VP + FP}$$

 Exhaustividad: efectividad del clasificador para identificar etiquetas positivas.

$$\mathsf{Exhaustividad} = \frac{VP}{VP + FN}$$

 Medida F1: es un promedio ponderado de la precisión y la exhaustividad.

$$F1 = \frac{2 \cdot \text{Exhaustividad} \cdot \text{Precisión}}{\text{Exhaustividad} + \text{Precisión}}$$

Cuadro: Matriz de confusión para el caso de múltiples clases.

		Valor Predicho		
		Clase 1		Clase n
Valor	Clase 1	$a_{1,1}$		$a_{1,n}$
Real	:	:	٠	:
	Clase n	$a_{n,1}$		$a_{n,n}$

Para cada clase C_i se tienen sus valores PV_i , FN_i , FP_i y NV_i . Las medidas de desempeño en el caso multiclase se pueden calcular de dos formas [1]:

- El macro-promedio que calcula el promedio del desemepeño de cada clase C_1, \ldots, C_l (representado con el subíndice M).
- El micro-promedio, que realiza una suma cumulativa para cada valor de PV_i , FN_i , FP_i y NV_i y calcula al final una medida de desempeño (representado con el subíndice μ).

	$\frac{\sum_{i=1}^{l} \frac{VP_i + NV_i}{VP_i + FN_i + FP_i + NV_i}}{l}$
$Precisi\'on_{\mu}$	$\frac{\sum_{i=1}^{l} V P_i}{\sum_{i=1}^{l} (V P_i + F P_i)}$
$Exhaustividad_{\mu}$	$\frac{\sum_{i=1}^{l} V P_i}{\sum_{i=1}^{l} (V P_i + F N_i)}$
$F1_{\mu}$	$\frac{2 \cdot Precisi\acute{on}_{\mu} \cdot Exhaustividad_{\mu}}{Precisi\acute{on}_{\mu} + Exhaustividad_{\mu}}$

Cuadro: Métricas para el caso de clasificación multiclase.

$Precisi\'on_{M}$	$\frac{\sum_{i=1}^{l} \frac{VP_i}{VP_i + FP_i}}{l}$
$Exhaustividad_{M}$	$\frac{\sum_{i=1}^{l} \frac{VP_i}{VP_i + FN_i}}{l}$
$F1_M$	${\scriptstyle \underline{_2}\cdot Precisi\acute{on}_M\cdot Exhaustividad_M \atop Precisi\acute{on}_M + Exhaustividad_M}$

Cuadro: Métricas para el caso de clasificación multiclase.

Referencias I

M. Sokolova and G. Lapalme.

A systematic analysis of performance measures for classification tasks.

Information Processing and Management, 45:427–437, 2009.