Review of Feedback Control System

Transfer Function for a PID Controller

Ideal PID:
$$G_c(s) = \frac{c(s)}{e(s)} = K_c \left[1 + \frac{1}{\tau_I s} + \tau_D s \right]$$

Real PID:
$$G_c(s) = \frac{c(s)}{e(s)} = K_c \left(1 + \frac{1}{\tau_I s}\right) \left(\frac{\tau_D s}{\beta \tau_D s + 1}\right)$$

Derivative Kick:

To avoid sudden jump of output due to setpoint change, sensor output is used in place of error term, i.e,

$$c(t) = c_0 + K_c \left[e(t) + \frac{1}{\tau_I} \int_0^t e(\zeta) d\zeta - \tau_D \frac{dy_s(t)}{dt} \right]$$

Direct / Reverse acting controller

• What will be the sign of the controller gain?

Guidelines for Selecting Direct and Reverse Acting PID's

- Consider a direct acting final control element to be positive and reverse to be negative.
- If the sign of the product of the final control element and the process gain is positive, use the reverse acting PID algorithm.
- If the sign of the product is negative, use the direct acting PID algorithm
- If control signal goes to a control valve with a valve positioner, the actuator is considered direct acting.

Level Control Example

- Process gain is positive because when flow in is increased, the level increases.
- If the final control element is direct acting, use reverse acting PID.
- For reverse acting final control element, use direct acting PID.

Level Control Example

- Process gain is negative because when flow out is increased, the level decreases.
- If the final control element is direct acting, use direct acting PID.
- For reverse acting final control element, use reverse acting PID.

Characteristic Polynomial : $1 + G_{OL} = 0$ or $1 + G_c(s)G(s) = 0$

Controller actions on feedback dynamics

Process G(s): $\frac{1}{(s+1)^3}$ Controller: Proportional, K_c ;

Matlab:

s=tf('s'); g=1/(s+1)^3;
step(g); hold on
for kc=[0.5:0.5:2],
gcl=feedback(kc*g,1);
step(gcl);
end

Proportional Control

Important points:

- proportional feedback does not change the order of the system
 - started with a first order process
 - closed-loop process also first order
 - order of characteristic polynomial is invariant under proportional feedback
- speed of response of closed-loop process is directly affected by controller gain
 - increasing controller gain reduces the closed-loop time constant
- In general, proportional feedback
 - reduces (does not eliminate) offset
 - speeds up response
 - for oscillatory processes, makes closed-loop process more oscillatory

Controller actions on feedback dynamics

Process G(s): $\frac{1}{(s+1)^3}$ Controller: PI (I varying) $K_c(1+\frac{1}{\tau s})$;

Matlab:

figure; hold on; kc=2; for Ti=[2:1:5], gc=tf(kc*[1,1/Ti],[1,0]); gcl=feedback(gc*g,1); step(gcl); end

Proporional - Integral Control

Important points:

- integral action increases order of the system in closedloop
- integral action eliminates offset
- integral action
 - should be small compared to proportional action
 - tuned to slowly eliminate offset
 - can increase or cause oscillation
 - can be de-stabilizing
- PI controller has two tuning parameters that can independently affect
 - speed of response
 - Nature of response (oscillation)
- PI is the most widely used controller in industry
 - optimal structure for first order processes

Controller actions on feedback dynamics

Process G(s): $\frac{1}{(s+1)^3}$ Controller: PD, $K_c(1+\tau_D s)$;

Matlab:

figure; hold on; kc=2; for Td=[0:0.2:0.8], gc=tf(kc*[Td,1],[1]); gcl=feedback(gc*g,1); step(gcl); end

Proportional Derivative

Important Points:

- derivative action does not increase the order of the system
- Used to compensate for trends in output
 - measure of speed of error signal change
 - provides predictive or anticipatory action
- adding derivative action affects the period of oscillation of the process
 - good for disturbance rejection
 - poor for tracking
- derivative action
 - should be small compared to integral action
 - has a stabilizing influence
 - difficult to use for noisy signals
 - usually modified in practical implementation

PID control (Setpoint Tracking or Servo Control)

Disturbance Rejection: Input dynamics

Closed-loop Stability

Every control problem involves a consideration of closed-loop stability

General concepts:

BIBO Stability:

"An (unconstrained) linear system is said to be stable if the output response is bounded for all bounded inputs. Otherwise it is unstable."

Comments:

- Stability is much easier to prove than instability
- This is just one type of stability

Closed-loop Stability

General Stability criterion:

- "A closed-loop feedback control system is stable if and only if all roots of the characteristic polynomial (1+ G_{OL} =0) are negative or have negative real parts. Otherwise, the system is unstable."
- Unstable region is the right half plane of the complex plane.
- Valid for any *linear systems*.
- Underlying system is *almost always nonlinear* so stability holds only locally. Moving away from the point of *linearization may cause instability*

Stability Analysis Methods

Problem reduces to finding roots of a polynomial

Traditional:

- 1. Routh array:
 - Test for positivity of roots of a polynomial
- 2. Direct substitution
 - Complex axis separates stable and unstable regions
 - Find controller gain that yields purely complex roots
- 3. Root locus diagram
 - Vary location of poles as controller gain is varied
 - Of limited use
- Bode stability criteria
- Niquist Stability criteria

Closed-loop stability

Routh array for a polynomial equation

$$a_n s^n + a_{n-1} s^{n-1} + \dots + a_1 s + a_0 = 0$$

is

where

$$b_1 = \frac{a_{n-1}a_{n-2} - a_{n-3}a_n}{a_{n-1}}, b_2 = \frac{a_{n-1}a_{n-4} - a_{n-5}a_n}{a_{n-1}}, \dots$$

$$c_1 = \frac{b_1a_{n-3} - b_2a_{n-1}}{b_1}, c_2 = \frac{b_1a_{n-5} - b_3a_{n-1}}{b_1}, \dots$$

Elements of left column must be positive to have roots with negative real parts

Example: Routh Array

Characteristic polynomial

$$2.36s^5 + 1.49s^4 - 0.58s^3 + 1.21s^2 + 0.42s + 0.78 = 0$$

Polynomial Coefficients

$$a_5 = 2.36, a_4 = 1.49, a_3 = -0.58, a_2 = 1.21, a_1 = 0.42, a_0 = 0.78$$

Routh Array

• Closed-loop system is unstable

Direct Substitution

- Technique to find gain value that de-stabilizes the system.
- Observation:

Process becomes unstable when poles appear on right half plane

 \longrightarrow Find value of K_c that yields purely complex poles

- Strategy:
 - Start with characteristic polynomial

$$1 + K_c G_a(s) G_p(s) G_s(s) = 1 + K_c \frac{r(s)}{q(s)}$$

• Write characteristic equation:

$$q(s) + K_c r(s) = 0$$

• Substitute for complex pole ($s=j\omega$)

$$q(j\omega) + K_c r(j\omega) = 0$$

• Solve for K_c and ω

Example: Direct Substitution

Characteristic equation

$$1 + K_c \frac{s+1}{s^3 + 0.5s^2 - 0.5s - 0.75} = 0$$

$$s^3 + 0.5s^2 - 0.5s - 0.75 + K_c s + K_c = 0$$

$$s^3 + 0.5s^2 + (K_c - 0.5)s + (K_c - 0.75) = 0$$

Substitution for $s=j\omega$

$$(j\omega)^3 + 0.5(j\omega)^2 + (K_c - 0.5)j\omega + (K_c - 0.75) = 0$$
$$-j\omega^3 - 0.5\omega^2 + (K_c - 0.5)j\omega + (K_c - 0.75) = 0$$

Real Part:
$$-0.5\omega^{2} + K_{c} - 0.75 = 0$$
 Complex Part: $(K_{c} - 0.5)\omega - \omega^{3} = 0$
∴ $K_{c} = 0.5\omega^{2} + 0.75 \Rightarrow (0.5\omega^{2} + 0.75 - 0.5)\omega - \omega^{3} = 0$
⇒ $-0.5\omega^{2} + 0.25 = 0$
⇒ $\omega = \pm \sqrt{2}/2$, $K_{c} = 1$

• System is unstable if $K_c > 1$

Root Locus Diagram

• Old method that consists in plotting roots of characteristic polynomial (closed loop poles) as controller gain is changed.

Matlab

s=tf('s');
G1=1/(s+1);
G2=1/(s+2);
G3=1/(s+3);
G=G1*G2*G3;
rlocus(G);
rlocfind(G);

Frequency Response

Amplitude Ratio (AR) = \hat{A}/A Phase lag (ϕ) = $-\Delta t/P*180$

The process acts as a "filter" or "amplifier" that attenuates or amplifies the input at frequency ω .

The frequency response of a process G(s) at a specific frequency ω is a complex number and can be obtained by substituting $s = j\omega$

Frequency Response

- $G(j\omega) = Re(\omega) + j Im(\omega) = \rho(\omega)e^{j\phi(\omega)}$
- $\rho(\omega) = AR = \sqrt{Re^2(\omega) + Im^2(\omega)} = |G(j\omega)|$
- $\phi = phase \ difference = arc \tan \left(\frac{Im(\omega)}{Re(\omega)}\right) = \angle G(j\omega)$
- Two ways of representing the frequency response
 - Bode Plot
 - Log-Log plot of AR vs ω and semi-log plot ϕ vs ω
 - Nyquist Plot
 - Plot of $Re(\omega)$ vs $Im(\omega)$ for various values of ω .
 - Frequency does not appear explicitly in this plot.

Bode Plot

Steady state gain: $K = \rho(0)e^{j\phi(0)}$

Bandwidth, ω_b , defines the highest frequency at which the process displays no attenuation. It is calculated based on the frequency when amplitude reaches 0.707 K.
Roll-off is slope of decaying AR at high frequencies.

Bode Stability Criterion

D(s)

Consider open-loop control system

Open-loop Response to $Y_{SP}(s)$

- 1. Introduce sinusoidal input in setpoint (D(s)=0) and observe sinusoidal output
- 2. Fix gain such AR=1 and input frequency such that $\phi=-180$
- 3. At same time, connect close the loop and set $Y_{SP}(s)=0$

Q: What happens if AR < 1, 1 and > 1?

Bode Stability Criterion

A closed-loop system is unstable if the frequency of the response of the open-loop G_{OL} has an amplitude ratio greater than one at the critical frequency. Otherwise it is stable.

Strategy:

1. Solve for
$$\omega$$
 in $\arg(G_{OL}(j\omega)) = -\pi$

2. Calculate AR
$$AR = G_{OL}(j\omega)$$

Bode Stability Criterion

To check for stability:

- 1. Compute open-loop transfer function
- 2. Solve for ω in $\phi = -\pi$
- 3. Evaluate AR at ω
- 4. If AR>1 then process is unstable

Find ultimate gain:

- 1. Compute open-loop transfer function without controller gain
- 2. Solve for ω in $\phi = -\pi$
- 3. Evaluate AR at ω
- 4. Let $K_{cu} = \frac{1}{AR}$

Bode Criterion

Consider the transfer function and controller

$$G(s) = \frac{5e^{-0.1s}}{(s+1)(0.5s+1)} \qquad G_{\mathcal{C}}(s) = 0.4\left(1 + \frac{1}{0.1s}\right)$$

- Open-loop transfer function

$$G_{OL}(s) = \frac{5e^{-0.1s}}{(s+1)(0.5s+1)} \cdot 0.4 \left(1 + \frac{1}{0.1s}\right)$$

- Amplitude ratio and phase shift

$$AR = \frac{5}{\sqrt{1 + \omega^2}} \frac{1}{\sqrt{1 + 0.25\omega^2}} 0.4 \sqrt{1 + \frac{1}{0.01\omega^2}}$$
$$\phi = -0.1\omega - \tan^{-1}(\omega) - \tan^{-1}(0.5\omega) - \tan^{-1}(\frac{1}{0.1\omega})$$

- At
$$\phi = -\pi$$
, $\omega = 1.4128$, AR=6.746

Bode Stability

- Phase Crossover frequency (ω_{gc}) is the frequency at which phase lag is 180° .
- Gain Crossover frequency (ω_{pc}) is the frequency at which AR = 1
- Gain Margin (GM) is the amount of gain required for the AR to reach 1 at phase crossover frequency.

 GM=1/AR_C, where AR_C is the Amplitude ratio at gain crossover frequency.
- Phase Margin (PM) is the amount of phase difference required for phase lag to reach 180° at gain crossover frequency. PM= $180+\phi_{pc}$ where ϕ_{pc} is phase lag at phase crossover frequency.

Gain Margin and Phase Margin

Wcg is the frequency where the gain margin is measured, which is a -180° phase crossing frequency.

Wcp is the frequency where the phase margin is measured, which is a 0-dB gain crossing frequency.

Nyquist Stability Criterion

If N is the number of times that the Nyquist plot encircles the point (-1,0) in the complex plane in the clockwise direction, and P is the number of open-loop poles of G_{OL} that lie in the right-half plane, then Z=N+P is the number of unstable roots of the closed-loop characteristic equation.

Strategy

- 1. Substitute $s=j\omega$ in $G_{OL}(s)$
- 2. Plot $G_{OL}(j\omega)$ in the complex plane
- 3. Count encirclements of (-1,0) in the clockwise direction

Nyquist Criterion

Consider the transfer function
$$G(s) = \frac{5e^{-0.1s}}{(s+1)(0.5s+1)}$$

and the P controller $G_c(s) = 3.2$

