Back to rotations:

 $R_{\theta} \colon \mathbb{R}^2 \to \mathbb{R}^2$

Recall:

1) If A is an $m \times n$ matrix then the function

$$T_A \colon \mathbb{R}^n \to \mathbb{R}^m$$

defined by $T_A(\mathbf{v}) = A\mathbf{v}$ is called the matrix transformation associated to A.

2) A function $T: \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation if

- (ii) $T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$
- (ii) $T(c\mathbf{v}) = cT(\mathbf{v})$

3) Every matrix transformation is a linear transformation.

4) Every linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is a matrix transformation:

$$T(\mathbf{v}) = A\mathbf{v}$$

where

$$A = [T(\mathbf{e}_1) \ T(\mathbf{e}_2) \ \dots \ T(\mathbf{e}_n)]$$

The matrix A is called the standard matrix of T.

Composition of linear transformations

Theorem

If $S\colon \mathbb{R}^n \to \mathbb{R}^m$ and $T\colon \mathbb{R}^m \to \mathbb{R}^k$ are linear transformation then the composition

$$T \circ S \colon \mathbb{R}^n \to \mathbb{R}^k$$

is also a linear transformation.

Upshot. The function $T \circ S$ is represented by some matrix C:

$$T \circ S(\mathbf{v}) = C\mathbf{v}$$

Question. Let $S: \mathbb{R}^n \to \mathbb{R}^m$ and $T: \mathbb{R}^m \to \mathbb{R}^k$ be linear transformations, and let

- \bullet *B* is the standard matrix of *S*
- ullet A is the standard matrix of T

What if the standard matrix of $T \circ S \colon \mathbb{R}^n \to \mathbb{R}^k$?

Definition

Let

- A be an $k \times m$ matrix $B = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \dots & \mathbf{v}_n \end{bmatrix}$ be an $m \times n$ matrix

Then $A \cdot B$ is an $k \times n$ matrix given by

$$A \cdot B = \begin{bmatrix} A\mathbf{v}_1 & A\mathbf{v}_2 & \dots & A\mathbf{v}_n \end{bmatrix}$$

Note. The product $A \cdot B$ is defined only if

(number of columns of A) = (number of rows of B)

