Formal Analysis: Maths Refresher

Centre for Experimental Social Sciences

January 20, 2021

Preliminaries: set theory

A set is a collection of elements. $x \in A$, $y \in [0,1]$ For discrete elements, a set $s_1 = \{1,3,8\}$, for continuous elements, $s_2 = [0,100]$ or $s_3 = (0,100)$. Set properties:

- Finite or infinite
- Countable or uncountable
- Bounded or unbounded
- Open or closed

Sets can contain or be contained in other sets as (proper) subsets, i.e. $A \subset B$, $A \subseteq B$

Preliminaries: set theory II

 $A \setminus B$ is the difference between two sets, i.e. $x \in A \setminus B$ if $x \in A, x \notin B$ A^c is the complement of set A (i.e. difference between universal set and A Intersection $A \cap B$, i.e. $x \in A \cap B$ if $x \in A$ and $x \in B$ Union $A \cup B$, i.e. $x \in A \cup B$ if $x \in A$ or $x \in B$

Preliminaries: set theory III

Figure: https://www.researchgate.net/figure/
A-Venn-diagram-of-unions-and-intersections-for-two-sets-A-and-E
fig1_332453167

Preliminaries: Functions I

A function is a mapping (transformation) between sets A and B. It maps an element of A (domain) onto an element of B (range), i.e. define f as $f(x): A \to B$

Assigns one element of the domain to each element of the range, such that y = f(x).

A function is bijective if it is

- surjective (onto), i.e. every value in the range is produced by some value in the domain
- ▶ injective (1-to-1), i.e. each value in the range is produced by only one value in the domain

Bijective function are invertible, i.e. have an inverse:

$$f^{-1}(x): B \to A$$

Preliminaries: Functions II

Limits, sequences and series

A sequence is an ordered list of numbers, $\{x_i\}_{i=1}^N$ A series is the sum of a sequence, $\sum_{i=1}^N x_i$ (payoff streams, discounting future payoffs,...) Limits of

- ightharpoonup sequences: $\lim_{i\to\infty} x_i = L$
- ightharpoonup series: $\lim_{N\to\infty}\sum_{i=1}^N x_i=S$
- ▶ functions: $\lim_{x\to c} f(x) = L$

Differential calculus

Consider the slope of the secant

$$m = \frac{f(x_2) - f(x_1)}{x_2 - x_1} \tag{1}$$

Substituting $h = x_2 - x_1$, we can write the slope as

$$m = \frac{f(x_1 + h) - f(x_1)}{h} \tag{2}$$

What happens as $h \rightarrow 0$?

$$\lim_{h\to 0}\frac{f(x+h)-f(x)}{h}=f'(x)=\frac{d}{dx}f(x)=\frac{dy}{dx} \tag{3}$$

Extrema in one dimension I

Extrema in one dimension II

First-order derivative = instantaneous rate of change

Second-order derivative = rate of change of the instantaneous rate of change

How exactly?

A function is concave if for any points x_1, x_2 in its domain and any weight $\lambda \in [0,1]$

$$f(\lambda x_1 + (1-\lambda)x_2) \ge \lambda f(x_1) + (1-\lambda)f(x_2) \tag{4}$$

A function is convex if for any points x_1, x_2 in its domain and any weight $\lambda \in [0,1]$

$$f(\lambda x_1 + (1 - \lambda)x_2 \le \lambda f(x_1) + (1 - \lambda)f(x_2) \tag{5}$$

Extrema in one dimension III

Extrema in one dimension IV

```
First-order condition (FOC): f'(x*) = 0
Second-order condition (SOC): f''(x*) < 0 \rightarrow \text{local maximum at } x*
f''(x*) > 0 \rightarrow \text{local minimum at } x*
f''(x*) = 0 \rightarrow \text{inflection point at } x*?
Global extremum? (1) substitute local extremum into f(x); (2) substitute lower and upper bounds of domain into f(x); (3) find smallest and largest value
```

Extrema in one dimension V

Campaign donation: choose x amount to donate Benefit: same amount x Opportunity cost: x^2 The general maximization problem is $\max_x u(x)$ where $u(x) = x - x^2$ Find u'(x) = 1 - 2x; solve for $x*: 1 - 2x* = 0 \Rightarrow x* = \frac{1}{2}$ Find $u''(x) = -2 < 0 \rightarrow$ local maximum Check $u(\frac{1}{2} = \frac{1}{4}, u(0) = u(1) = 0 \rightarrow$ global maximum

Extrema in one dimension V

Extrema in one dimension VI

Restaurant pricing decision (from Gelman, Hill and Vehtari 2020)

Cost per dinner: \$11

Net profit per customer: x - 11

Expected number of customers (per night): $5000/x^2$

Expected net profit is then $u(x) = (5000/x^2) * (x - 11)$

