Module 2: Randomization Inference

Fall 2021

Matthew Blackwell

Gov 2003 (Harvard)

1/ Randomized experiments

Motivation

- · Last time: defining causal effects as counterfactual contrasts.
- · What can we learn about these contrasts in randomized experiments?
 - Message: randomization allows for inference under practically no assumptions.
- · No point estimation yet, just inference via tests and intervals.
- · Useful to have notation for vector of all r.v.s
 - Treatment: $\mathbf{D} = (D_1, D_2, ..., D_n)$.
 - Potential outcomes: $\mathbf{Y}(1) = \{Y_1(1), ..., Y_n(1)\}.$
 - Covariates: $\mathbf{X} = \{\mathbf{X}_1, \dots, \mathbf{X}_n\}$

Randomized Experiments

- Experiment: when the researcher controls the treatment assignment.
 - $p_i = \mathbb{P}[D_i = 1]$ be the probability of treatment assignment probability.
 - p_i is controlled and known by researcher in an experiment.
- · Randomized experiment is an experiment with two properties:
- 1. **Positivity**: assignment is probabilistic: $0 < \mathbb{P}(D_i = 1) < 1$
 - · No deterministic assignment.
- 2. Unconfoundedness: $\mathbb{P}[D_i = 1 | \mathbf{Y}(1), \mathbf{Y}(0)] = \mathbb{P}[D_i = 1]$
 - · Treatment assignment does not depend on any potential outcomes.
 - Sometimes written as $D_i \perp \!\!\! \perp (\mathbf{Y}(1), \mathbf{Y}(0))$

Effect of political information on accountability

- Does information help citizens hold politicians accountable?
 - Difficult with observational studies: having information correlated with lots of stuff!
- · Randomized controlled trial can be helpful.
- · Setup:
 - · Units: villages i
 - Treatment: post information about incumbent corruption in village $(D_i=1)$ or not $(D_i=0)$
 - Outcome: incumbent wins vote in village $(Y_i = 1)$ or not $(Y_i = 0)$
- If information
 → accountability, we should see a difference between
 the treatment and control groups.

Why randomize?

- Randomization makes treated and control groups comparable.
 - · Both groups are random samples from all units in the study.
 - \rightsquigarrow **balanced** on all variables: roughly = men and women, etc.
 - · True for all pretreatment observed and unobserved variables.
 - Most importantly: potential outcomes are comparable by unconfoundedness:

$$\mathbb{P}(Y_i(1) = 1 \mid D_i = 1) = \mathbb{P}(Y_i(1) = 1) = \mathbb{P}(Y_i(1) = 1 \mid D_i = 0)$$

- Note: groups aren't comparable on post-treatment variables.
 - $Y_i(1) \perp \!\!\!\perp D_i$ but not $Y_i \perp \!\!\!\perp D_i$
- Really talking about ideal randomized experiment:
 - · Full compliance, no missing data
 - Important to admit limitations: external validity, sample selection, Hawthorne effect

Types of experiments

- Experiments can be classified their **assignment mechanism**.
 - · What (random) function do we use to assign treatment?
- · Bernoulli randomization (coin flips)
 - Each unit is assigned $D_i = 1$ with prob. p independently.
 - Downside: "bad" randomizations possible (all treated/control)
- · Completely randomized experiment:
 - Randomly sample n_1 units from the population to be treated.
 - Equal probability of any assignment with $\sum_i D_i = n_1$:

$$\mathbb{P}(\mathbf{D} = (d_1, \dots, d_n) \mid \mathbf{Y}(1), \mathbf{Y}(0)) = \begin{cases} \binom{n}{n_1}^{-1} & \text{if } \sum_{i=1}^n d_i = n_1 \\ 0 & \text{otherwise} \end{cases}$$

• For any given i, implies $\mathbb{P}(D_i = 1 \mid \mathbf{Y}(1), \mathbf{Y}(0)) = \frac{n_1}{n}$.

Bernoulli assignment

Completely randomized design

- Start with N=6 and say we want to have $N_t=3$
- Randomly pick 3 from {1, 2, 3, 4, 5, 6}: 2, 4, 5
- Fixed number of treated units induces dependence between D_i and D_i
 - Knowing 2 is treated
 → 3 is less likely to be treated.
 - Makes variance calculations tricky (we'll come back to this)
- We can also randomize within groups (block/stratified randomization).
 - · When blocks are of size 2, this is a pair-matched design.

Example data from information RCT

	Information	Incumbent Won?		
Village	D_i	Y_{i}	$Y_i(0)$	$Y_i(1)$
1	1	0	?	0
2	1	0	?	0
3	0	1	1	?
4	1	0	?	0
5	1	1	?	1
6	0	1	1	?
7	0	0	0	?
8	1	1	?	1
9	0	1	1	?
10	0	0	0	?

- Incumbent won 2/5 treated villages vs 3/5 control villages.
- Very small sample size → can we learn anything from this data?

2/ Randomization inference

What is randomization inference?

- Randomization inference: inference based on different possible randomizations of treatment.
 - · Fisher: randomization is the "reasoned basis for inference."
 - We can generate exact p-values for tests of a "sharp" null hypothesis.
 - Also called: design-based inference.
- Null hypothesis of no effect for any unit → very strong.
- Allows us to make exact, distribution-free inferences.
 - · No reliance on normality, etc.
 - · No reliance on large-sample approximations.
 - \rightsquigarrow truly nonparametric, but less flexible.

Brief review of hypothesis testing

RI focuses on hypothesis testing, so it's helpful to review.

- 1. Choose a null hypothesis:
 - $H_0: \beta_1 = 0 \text{ or } H_0: \tau = 0.$
 - · No average treatment effect.
 - · Claim we would like to reject.
- 2. Choose a test statistic.
 - $Z_i = (X_i \bar{X})/(s/\sqrt{n})$
- 3. Determine the distribution of the test statistic under the null.
 - Statistical thought experiment: we know the truth, what data should we expect?
- 4. Calculate the probability of the test statistics under the null.
 - What is this called? p-value

Sharp null hypothesis of no effect

Sharp null hypothesis:

$$H_0: \tau_i = Y_i(1) - Y_i(0) = 0 \quad \forall i$$

- · What if treatment affected no one at all?
- Implies no average treatment effect, but no ATE

 ⇒ sharp null.
 - Take a simple example with two units: $\tau_1 = 1$ $\tau_2 = -1$
 - Here, $\tau = 0$ but the sharp null is violated.
- If the sharp null is true, we know all the potential outcomes:

$$Y_i(1) = Y_i(0) = Y_i$$

Life under the sharp null

We can use the sharp null $(Y_i(1) - Y_i(0) = 0)$ to fill in the missing potential outcomes:

	Information	Incumbent Won?		
Village	D_i	Y_{i}	$Y_i(0)$	$Y_i(1)$
1	1	0	?	0
2	1	0	?	0
3	0	1	1	?
4	1	0	?	0
5	1	1	?	1
6	0	1	1	?
7	0	0	0	?
8	1	1	?	1
9	0	1	1	?
10	0	0	0	?

Life under the sharp null

We can use the sharp null $(Y_i(1) - Y_i(0) = 0)$ to fill in the missing potential outcomes:

	Information	Incumbent Won?		
Village	D_i	Y_{i}	$Y_i(0)$	$Y_i(1)$
1	1	0	0	0
2	1	0	0	0
3	0	1	1	1
4	1	0	0	0
5	1	1	1	1
6	0	1	1	1
7	0	0	0	0
8	1	1	1	1
9	0	1	1	1
10	0	0	0	0

Test statistic

Test statistic

A test statistic is a known, scalar quantity calculated from the treatment assignments, observed outcomes, and possibly covariates: $T(\mathbf{D}, \mathbf{Y}, \mathbf{X})$

- Typically measures the relationship between two variables.
- Test statistics measure how unusual the data is under the null.
- · Want a test statistic with high statistical power:
 - · Has large values when the null is false
 - These large values are unlikely when then null is true.
- These will help us perform a test of the sharp null.
- Many possible tests to choose from!

Null/randomization disitribution

- · What is the distribution of the test statistic under the sharp null?
 - If there was no effect, what test statistics would we expect over different randomizations?
- Key insight of RI: sharp null \leadsto treatment assignment doesn't matter.
 - · Shuffling treatment vector won't change outcomes.
 - $Y_i(1) = Y_i(0) = Y_i$
- Randomization distribution: distribution of T if the sharp null were true.

Calculate p-values

- How often would we get a test statistic this big or bigger if the sharp null holds?
 - Let $T^{\text{obs}} = T(\mathbf{D}, \mathbf{Y}, \mathbf{Z})$ be the observed value of the test statistic.
 - $\Omega = \text{set of } 2^N \text{ assignment vectors (any } N\text{-vector of 0s and 1s)}$
 - We can also define the set of feasible assignments under the design:

$$\Omega_0 = \{ \mathbf{d} : \mathbb{P}(\mathbf{D} = \mathbf{d}) > 0 \}$$

· Exact p-values:

$$\Pr(\mathcal{T} \geq \mathcal{T}^{\text{obs}} \mid \mathbf{Y}(1), \mathbf{Y}(0), \mathbf{X}, H_0) = \frac{1}{|\Omega_0|} \sum_{\mathbf{d} \in \Omega_0} \mathbb{I}(\mathcal{T}(\mathbf{d}, \mathbf{Y}, \mathbf{X}) \geq \mathcal{T}^{\text{obs}})$$

- How often T is larger than the observed divided by total number of randomizations.
- p-values will be below α exactly $100\alpha\%$ of the time

Randomization inference step-by-step

- 1. Choose a sharp null hypothesis and a test statistic,
- 2. Calculate observed test statistic: $T^{obs} = T(\mathbf{D}, \mathbf{Y}, \mathbf{X})$.
- 3. Randomly select different treatment vector $\tilde{\mathbf{D}}_1$ from Ω_0
- 4. Calculate $\widetilde{T}_1 = T(\widetilde{\mathbf{D}}_1, \mathbf{Y}, \mathbf{X})$.
- 5. Repeat steps 3-4 for all Ω_0 to get $\widetilde{\mathcal{T}}=\{\widetilde{\mathcal{T}}_1,\ldots,\widetilde{\mathcal{T}}_K\}.$
- 6. Calculate the p-value: $p = \frac{1}{K} \sum_{k=1}^K \mathbb{I}(\widetilde{T}_k \geq T)$

Difference in means

- · Many different types of test statistics with different strengths.
- Natural (if not optimal): absolute difference in means estimator

$$T_{\text{diff}} = \left| \frac{1}{n_1} \sum_{i=1}^{N} D_i Y_i - \frac{1}{n_0} \sum_{i=1}^{N} (1 - D_i) Y_i \right|$$

- ullet Larger values of $T_{
 m diff}$ are evidence against the sharp null.
- Good estimator for constant, additive treatment effects and relatively few outliers in the the potential outcomes.

Example

- Suppose we are targeting 6 people for donations to Harvard.
- As an encouragement, we send 3 of them a mailer with inspirational stories of learning from our graduate students.
- Afterwards, we observe them giving between \$0 and \$5.
- Simple example to show the steps of RI in a concrete case.

Randomization distribution

	Mailer Contr.			
Unit	D_i	Y_{i}	$Y_i(0)$	$Y_i(1)$
Jon	1	3	(3)	3
Sansa	1	5	(5)	5
Arya	1	0	(0)	0
Robb	0	4	4	(4)
Bran	0	0	0	(0)
Rickon	0	1	1	(1)

$$T_{\rm diff} = |8/3 - 5/3| = 1$$

Randomization distribution

	Mailer	Contr.		
Unit	\widetilde{D}_i	Y_{i}	$Y_i(0)$	$Y_i(1)$
Jon	1	3	(3)	3
Sansa	1	5	(5)	5
Arya	0	0	(0)	0
Robb	1	4	4	(4)
Bran	1	0	0	(0)
Rickon	1	1	1	(1)

$$\widetilde{T}_{\text{diff}} = |12/3 - 1/3| = 3.67$$

$$\widetilde{T}_{\text{diff}} = |8/3 - 5/3| = 1$$

$$\widetilde{T}_{\text{diff}} = |9/3 - 4/3| = 1.67$$

Randomization distribution

D_1	D_2	D_3	D_4	D_5	D_6	Diff in means
1	1	1	0	0	0	1.00
1	1	0	1	0	0	3.67
1	1	0	0	1	0	1.00
1	1	0	0	0	1	1.67
1	0	1	1	0	0	0.33
1	0	1	0	1	0	2.33
1	0	1	0	0	1	1.67
1	0	0	1	1	0	0.33
1	0	0	1	0	1	1.00
1	0	0	0	1	1	1.67
0	1	1	1	0	0	1.67
0	1	1	0	1	0	1.00
0	1	1	0	0	1	0.33
0	1	0	1	1	0	1.67
0	1	0	1	0	1	2.33
0	1	0	0	1	1	0.33
0	0	1	1	1	0	1.67
0	0	1	1	0	1	1.00
0	0	1	0	1	1	3.67
0	0	0	1	1	1	3.67
						1

In R

```
library(ri)
y <- c(3, 5, 0, 4, 0, 1)
D <- c(1, 1, 1, 0, 0, 0)
T_obs <- abs(mean(y[D == 1]) - mean(y[D == 0]))
D_bold <- ri::genperms(D)
D_bold[, 1:7]</pre>
```

```
##
    [,1] [,2] [,3] [,4] [,5] [,6] [,7]
## 1
                     1
## 2
                     1
                                    0
                     0 1 1
                                    1
##
                                    0
## 4
## 5
                     0
                                    0
                                    1
            0
                     1
                          0
## 6
```

Calculate means

```
rdist <- rep(NA, times = ncol(D_bold))
for (i in seq_len(ncol(D_bold))) {
   D_tilde <- D_bold[, i]
   rdist[i] <- abs(mean(y[D_tilde == 1]) - mean(y[D_tilde == 0]))
}
rdist</pre>
```

```
## [1] 1.000 3.667 1.000 1.667 0.333 2.333 1.667 0.333
## [9] 1.000 1.667 1.667 1.000 0.333 1.667 2.333 0.333
## [17] 1.667 1.000 3.667 1.000
```

p-value


```
# p-value
mean(rdist >= T_obs)
```

[1] 0.8

Computation

Computing the exact randomization distribution not always feasible:

- n = 6 and $n_1 = 3 \rightsquigarrow 20$ assignment vectors.
- n = 10 and $n_1 = 5 \rightsquigarrow 252$ vectors.
- n = 100 and $n_1 = 50 \rightsquigarrow 1.009 \times 10^{29}$ vectors.
- · Workaround: simulation!
 - take K samples from the treatment assignment space, Ω_0 .
 - calculate the randomization distribution in the K samples.
 - tests no longer exact, but bias is under your control! (increase K)

CA recall election

- Ho & Imai (2006): 135 candidates in 2003 CA Gov. recall election.
- Ballot order randomly assigned so not all candidates were on 1st page
- Effect of being on the first page on the vote share for a candidate?

CA recall election

- · Randomization process:
 - 1. Choose a random ordering of all 26 letters:

- 2. Order candidates on ballot by this in the 1st assembly district.
- 3. In the next district, rotate ordering by 1 letter and order names by this.

4. Continue rotating for each district.

CA recall election with RI

- 1. Pick another possible letter ordering.
- 2. Assign 1st page/not first page based on this new ordering as was done in the election.
- 3. Calculate diff-in-means for this new treatment.
- 4. Lather, rinse, repeat.

Other test statistics

- The difference in means is great for when effects are:
 - · constant and additive
 - · few outliers in the data
- · What about alternative test statistics?

Transformations

- What if there was a constant multiplicative effect: $Y_i(1)/Y_i(0) = C$?
- T_{diff} will have low power in this case.
- → transform the observed outcome using the natural logarithm:

$$T_{\log} = \left| \frac{1}{n_1} \sum_{i=1}^{n} D_i \log(Y_i) - \frac{1}{n_0} \sum_{i=1}^{n} (1 - D_i) \log(Y_i) \right|$$

· Useful for skewed distributions of outcomes.

Difference in median/quantiles

- To further protect against outliers: quantiles .
- Let use $\mathbf{Y}_t = \{Y_i; i : D_i = 1\}$ and $\mathbf{Y}_c = \{Y_i; i : D_i = 0\}$.
- · Differences in medians:

$$T_{\text{med}} = |\text{med}(\mathbf{Y}_t) - \text{med}(\mathbf{Y}_c)|$$

- · Remember that the median is the 0.5 quantile.
- Could use other quantiles (the 0.25 quantile or the 0.75 quantile).

Rank statistics

- Rank statistics transform outcomes to ranks and then analyze those.
- Useful for situations
 - · with continuous outcomes,
 - small datasets, and/or
 - · many outliers
- · Basic idea:
 - rank the outcomes (higher values of Y_i are assigned higher ranks)
 - compare the average rank of the treated and control groups

Rank statistics formally

· Calculate ranks of the outcomes:

$$\tilde{R}_i = \tilde{R}_i(Y_1, \dots, Y_n) = \sum_{j=1}^N \mathbb{I}(Y_j \le Y_j)$$

• Normalize the ranks to have mean 0:

$$\dot{R}_i = \tilde{R}_i(Y_1, \dots, Y_n) - \frac{n+1}{2}$$

- Minor adjustment for ties yields R_i .
- Calculate the absolute difference in average ranks:

$$T_{\mathsf{rank}} = |\bar{R}_t - \bar{R}_c| = \left| \frac{\sum_{i:D_i = 1} R_i}{n_1} - \frac{\sum_{i:D_i = 0} R_i}{n_0} \right|$$

Randomization distribution

	Mailer	Contr.				
Unit	D_i	Y_{i}	$Y_i(0)$	$Y_i(1)$	Rank	R_i
Jon	1	3	(3)	3	4	0.5
Sansa	1	5	(5)	5	6	2.5
Arya	1	0	(0)	0	1.5	-2
Robb	0	4	4	(4)	5	1.5
Bran	0	0	0	(0)	1.5	-2
Rickon	0	1	1	(1)	3	-0.5

$$T_{\mathsf{rank}} = |1/3 - -1/3| = 0.67$$

Effects on outcome distributions

- · Focused so far on "average" differences between groups.
- What about differences in the distribution of outcomes?
 Kolmogorov-Smirnov test
- Define the empirical cumulative distribution function:

$$\widehat{F}_0(y) = \frac{1}{n_0} \sum_{i:D_i=0} \mathbb{1}(Y_i \le y) \qquad \widehat{F}_1(y) = \frac{1}{n_1} \sum_{i:D_i=1} \mathbb{1}(Y_i \le y)$$

- Proportion of observed ouctomes below a chosen value for treated and control separately.
- If two distributions are the same, then $\widehat{F}_0(y) = \widehat{F}_1(y)$

Kolmogorov-Smirnov statistic

- · eCDFs are functions, but we need a scalar test statistic.
- · Use the maximum discrepancy between the two eCDFs:

$$T_{\mathrm{KS}} = \max_{i} |\widehat{F}_{1}(Y_{i}) - \widehat{F}_{0}(Y_{i})|$$

- · Summary of how different the two distributions are.
- · Useful in many contexts!

KS statistic, similar

KS statistic, different

Two-sided or one-sided?

- · So far, we have defined all test statistics as absolute values.
- \rightsquigarrow testing against a two-sided alternative hypothesis:

$$H_0: \tau_i = 0 \ \forall i$$
 $H_1: \tau_i \neq 0 \ \text{for some } i$

What about a one-sided alternative?

$$H_0: \tau_i = 0 \ \forall i$$
 $H_1: \tau_i > 0 \ \text{for some } i$

• For these, use a test statistic that is bigger under the alternative:

$$T_{\mathsf{diff}}^* = \bar{Y}_t - \bar{Y}_c$$

3/ Confidence intervals in randomization inference

Other sharp nulls

- · Sharp null of no effect is not the only sharp null of no effect.
- Sharp null in general is one of a constant additive effect: $H_0: \tau_i = 0.2$.
 - Implies that $Y_i(1) = Y_i(0) + 0.2$.
 - · Can still calculate all the potential outcomes!
- More generally, we could have $H_0: au_i = au_0$ for a fixed au_0
- · Complications: why constant and additive?

Confidence intervals via test inversion

- CIs usually justified using Normal distributions and approximations.
- Can calculate CIs here using the duality of tests and Cis:
 - A $100(1-\alpha)\%$ confidence interval is equivalent to the set of null hypotheses that **would not be rejected** at the α significance level.
- 95% CI: find all values τ_0 such that $H_0: \tau = \tau_0$ is not rejected at the 0.05 level.
 - Choose grid across space of τ : -0.9, -0.8, -0.7, ..., 0.7, 0.8, 0.9.
 - For each value, use RI to test sharp null of $H_0: \tau_i = \tau_m$ at 0.05 level.
 - · Collect all values that you cannot reject as the 95% CI.

Testing non-zero sharp nulls

• Suppose that we had: $H_0: \tau_i = Y_i(1) - Y_i(0) = 1$

	Mailer	Contr.			Adjusted
Unit	D_i	Y_{i}	$Y_i(0)$	$Y_i(1)$	$Y_i - D_i \tau_0$
Jon	1	3	(2)?	3	2
Sansa	1	5	(4)?	5	4
Arya	1	0	(-1)?	0	-1
Robb	0	4	4	(5)?	4
Bran	0	0	0	(1)?	0
Rickon	0	1	1	(2)?	1

- Assignments will now affect Y_i.
- Solution: use **adjusted outcomes**, $Y_i^* = Y_i D_i \tau_0$.
- Now, just test sharp null of no effect for Y_i^* .
 - $Y_i^*(1) = Y_i(1) 1 \times 1 = Y_i(0)$
 - $Y_i^*(0) = Y_i(0) 0 \times 1 = Y_i(0)$
 - $\tau_i^* = Y_i^*(1) Y_i^*(0) = 0$

Notes on RI CIs

- Cls are correct, but might have overcoverage.
- With RI, p-values are discrete and depend on n and n_1 .
 - With n and n_1 , the lowest p-value is 1/20.
 - Next lowest p-value is 2/20 = 0.10.
- If the p-value of 0.05 falls "between" two of these discrete points, a 95% CI will cover the true value more than 95% of the time.

Point estimates

- · Is it possible to get point estimates?
- Not really the point of RI, but still possible:
 - 1. Create a grid of possible sharp null hypotheses.
 - 2. Calculate p-values for each sharp null.
 - 3. Pick the value that is "least surprising" under the null.
- Usually this means selecting the value with the highest p-value.

Including covariate information

- Let X_i be a pretreatment measure of the outcome.
- One way is to use this is as a **gain score**: $Y'_i(d) = Y_i(d) X_i$.
- Causal effects are the same: $Y_i'(1) Y_i'(0) = Y_i(1) Y_i(0)$.
- · But the test statistic is different:

$$T_{\mathrm{gain}} = \left| (\bar{Y}_t - \bar{Y}_c) - (\bar{X}_t - \bar{X}_c) \right|$$

- If X_i is strongly predictive of $Y_i(0)$, then this could have higher power:
 - T_{gain} will have lower variance under the null.
 - → easier to detect smaller effects.

Using regression in RI

- We can extend this to use covariates in more complicated ways.
- · For instance, we can use an OLS regression:

$$(\hat{\beta}_0, \hat{\beta}_D, \hat{\beta}_X) = \underset{\beta_0, \beta_D, \beta_X}{\arg\min} \sum_{i=1}^n (Y_i - \beta_0 - \beta_D \cdot D_i - \beta_X \cdot X_i)^2.$$

- Then, our test statistic could be $T_{\text{ols}} = \hat{\beta}_D$.
- · RI is justified even if the model is wrong!
 - · OLS is just another way to generate a test statistic.
 - If the model is "right" (read: predictive of $Y_i(0)$), then $T_{\rm ols}$ will have higher power.