Теортест-1 (Вариант 21)

Тема – определенный интеграл

Задача 1

Выберите все верные утверждения:

- 1. первообразная дробно-рациональной функции является дробно-рациональной функцией;
- 2. если первообразная дробно-рациональной функции f(x) выражается через логарифм, то знаменатель f(x) имеет только простые вещественные корни;
- 3. если все корни знаменателя дробно-рациональной функции кратные, то ее первообразная является дробно-рациональной функцией;
- 4. первообразная дробно-рациональной функции выражается через элементарные функции;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 2

Пусть f(x) определена на отрезке [a,b]. Выберите все верные утверждения:

- 1. Если f интегрируема на [a, b], то она непрерывна на [a, b];
- 2. Если f имеет конечное число точек разрыва типа скачок на [a,b], то она интегрируема на [a,b];
- 3. Если f интегрируема на [a, b], то она имеет первообразную на [a, b];
- 4. Если f монотонна на [a,b], то она интегрируема на [a,b];

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 3

Пусть f(x) – дифференцируемая функция. Выберите все верные утверждения:

- 1. $2 \int x f(x) dx = x^2 f'(x) \int x f'(x) dx$;
- 2. $\int f(x) \sin x dx = \cos x \cdot f(x) \int f'(x) \cos x dx$;
- 3. $\int f'(x)e^x dx = e^x f(x) \int f(x)e^x dx;$
- 4. $\int f(x) \ln x dx = \ln x \cdot f'(x) \int \frac{f'(x)}{x} dx;$

Задача 4

Пусть f интегрируема и $f \geq 0$ на [a,b]. Выберите все достаточные условия для того, чтобы $\int_a^b f(x) dx > 0$:

- 1. f > 0 на [a, b];
- 2. f возрастает (нестрого) на [a, b] и f(b) = 1;
- 3. f((a+b)/2) = 1;
- 4. f непрерывна в точке a и f(a) = 1;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 5

Пусть функция u=u(t) – первообразная для функции v=v(t) на [a,b]. Выберите все верные на [a,b] утверждения (C – произвольная постоянная):

- 1. u = dv + C;
- 2. vdt = u'dt;
- 3. v = du + C;
- 4. du = v;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 6

Выберите все верные утверждения:

- 1. Спрямляемы только кусочно-гладкие кривые;
- 2. Длины противоположных путей равны;
- 3. Длина любой кривой конечна;
- 4. Длина кривой определяется как супремум длин всевозможных параметризаций кривой;
- 5. Длина любого пути не меньше длины вписанной в его носитель ломаной;

Задача 7

Функция $f \in R[0,10]$ и $-1 \le f(x) \le 10$ на [0,10]. Выберите отрезки, содержащие значение интеграла $\int_0^3 x^2 f(x) dx$:

- 1. [-9;100];
- 2. [-3; 90];
- 3. [0; 100];
- 4. [9; 100];

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 8

Выберите все верные утверждения для данной функции, заданной на отрезке [a,b]:

- 1. При измельчении разбиения нижняя сумма Дарбу увеличивается или не изменяется;
- 2. Нижняя сумма Дарбу не больше любой интегральной суммы для данного разбиения;
- 3. При измельчении разбиения нижняя сумма Дарбу увеличивается;
- 4. При измельчении разбиения нижняя сумма Дарбу уменьшается;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 9

Пусть $f \in R[a,b], F(x) = \int_a^x f(t)dt$. Выберите все верные утверждения:

- 1. F ограничена на [a, b];
- 2. F имеет разрывы в точках разрыва функции f;
- 3. $\int_a^b f(x)dx = F(b) F(a);$
- 4. F дифференцируема на [a,b];

Задача 10

Выберите все верные утверждения (тела А и В имеют объем):

- 1. объем любого сечения тела A равен нулю;
- 2. объем A всегда неотрицателен;
- 3. объем треугольника равен нулю;
- 4. объем A всегда положителен;