# First-order Decision-theoretic Planning in Structured Relational Environments

Scott Sanner University of Toronto

ssanner@cs.toronto.edu

# Why First-order DT Planning?

■ Relational planning problem in (P)PDDL:



(:action load-box-on-truck-in-city :parameters (?b - box ?t - truck ?c - city) :precondition (and (Bln ?b ?c) (Tln ?t ?c)) :effect (prob .9 (and (On ?b ?t) (not (Bln ?b ?c))))

- Can solve *ground MDP* for *each* domain instance:
  - ♦ 3 trucks: 
    ♣ ♣ ₽ 2 planes: 
    ★ ★ 3 boxes: 
     ● ●
- Or solve first-order MDP for all domains at once!
  - ◆ Lift PPDDL problem to first-order MDP (FOMDP)
  - Solution makes value distinctions for all domains!

# **Talk Outline**

- 1) FOMDP Introduction
  - Original definition, solution (BoutReiPr, IJCAI-01)
- 2) Exploiting structure
  - First-order decision diagrams
- 3) Linear value approximation
- 4) Practical issues & results
- 5) Related work and conclusions

# FOMDP Introduction

## **Markov Decision Processes**

- <5,A,T,R>
  - ♦ S: finite set of states
  - ◆ A: finite set of actions
  - **♦** T:  $S \times A \times S \rightarrow [0,1]$  transition function
  - $\bullet$  R: S  $\to$  R reward function
- Policy  $\pi$ :  $S \rightarrow A$
- Value function:  $V(s) = E_{\pi} [\sum_{t=0}^{\infty} \gamma^t r^t | s]$
- $\blacksquare B^{\alpha}[V(s)] = R(s) + \sum_{s' \in S} T(s,\alpha,s')V(s')$ 
  - $\bullet$  Q<sup>V</sup>(s,a) = B<sup>a</sup>[V(s)]
- $V^*(s) = \max_{a \in A} B^a[V^*(s)]$

# **Building Blocks of FOMDPs**

- Case: Assign value to first-order state abstraction
  - ◆ E.g., express reward in BoxWorld FOMDP as...

- Operators: Define unary, binary case operations
  - ◆ E.g., can take "cross-sum" ⊕ (or ⊗, ⊖) of cases...

|          |    | -            |                               |   | - | $\exists x. A(x) \land \exists y. A(y) \land B(y)$           | 13 |
|----------|----|--------------|-------------------------------|---|---|--------------------------------------------------------------|----|
| ∃x.A(x)  | 10 |              | ∃y. <i>A</i> (y)∧B(y)         | 3 | _ | $\exists x. A(x) \land \neg \exists y. A(y) \land B(y)$      | 14 |
| ¬∃x.A(x) | 20 | $  \oplus  $ | <b>¬∃у.</b> <i>A</i> (у)∧В(у) | 4 | - | <del>¬∃x.A(x) ∧ ∃y.A(y)∧B(y)</del>                           | 23 |
|          |    |              |                               |   |   | $\neg \exists x. A(x) \land \neg \exists y. A(y) \land B(y)$ | 24 |

Can remove inconsistent elements, simplify

# FOMDP Foundation: SitCalc

- Deterministic Actions: loadS(b,t), unloadS(b,t), ...
- Fluents (situated): BIn(b,c,s), TIn(t,c,s), On(b,t,s)
- Successor-state axioms (SSAs):
  - Describe how actions affect fluents
  - ★ Ex: BIn(b,c, after action a in situation s) =
     (1) for some t: TIn(t,c,s) AND On(b,t,s)
     AND a = unloadS(b,t)
     OR (2) Bin(b,c,s) AND a ≠ loadS(b,t)
- Regression Operator: Regr[ $\varphi$ ] =  $\varphi'$ 
  - Takes a formula φ describing a post-action state
  - Uses SSAs to build φ' describing pre-action state

#### **Stochastic Actions & FODTR**

#### ■ Stochastic actions using deterministic SitCalc:

- ♦ User's stochastic action: A(x) = load(b,t)
- Nature's choice: n(x)∈{loadS(b,t), loadF(b,t)}
- ◆ Probability distribution over Nature's choice:

$$P(loadS(b,t) \mid load(b,t)) = \begin{cases} snow(s) & .1 \\ \neg snow(s) & .6 \end{cases}$$

$$P(loadF(b,t) \mid load(b,t)) = \begin{cases} snow(s) & .9 \\ \neg snow(s) & .4 \end{cases}$$

#### First-order decision-theoretic regression

◆ FODTR = expectation of regression:

FODTR[vCase(s),A(x)] = 
$$\mathbf{E}_{P(n(x)|A(x))}$$
[Regr[vCase(s),n(x)]]

# **Q-functions and Backups**

#### **■ FODTR almost gives us a Q-function**

FODTR[vCase(s),unload(b,t)] = 
$$\frac{O(b,t,s)}{\neg O(b,t,s)} = \frac{O(b,t,s)}{\neg O(b,t,s)} = \frac{O(b,t,s)}{$$

- ◆ FODTR specific to action variables
- ◆ Also need to add reward, discount

#### Specify a backup operator for this

$$B^{\text{unload}}[vCase(s)] = rCase(s) \oplus \gamma$$

$$\exists b,t. On(b,t,s) \quad 5$$

$$\exists b,t. On(b,t,s) \quad 0$$

Yields a first-order Q-function

# Symbolic Dynamic Programming

- What value if 0-stages-to-go?
  - ♦ Obviously  $V^0(s) = rCase(s)$
- What value if 1-stage-to-go?
  - We know value for each action



- Now just need max for every state
- Value iteration: (BoutReiPr, IJCAI-01)
  - ♦ Obtain  $V^{n+1}$  from  $V^n$  until  $(V^{n+1} \ominus V^n) < \varepsilon$

# **Exploiting Structure**

# **Exploiting Redundancy**

■ Many case operations in solutions



| $\exists x \ A(x) \ (\exists y \ A(y))$           | 11 |
|---------------------------------------------------|----|
| $\exists x \ A(x) \hat{\ } \neg \exists y \ A(y)$ | 12 |
| <del></del>                                       | 21 |
| $\neg \exists x \ A(x) \ \neg \exists y \ A(y)$   | 22 |

- Still have redundant formulae!
- Extract propositional structure

| Prop<br>Var | FOL<br>Mapping |  |  |  |  |  |
|-------------|----------------|--|--|--|--|--|
| а           | ∃x A(x)        |  |  |  |  |  |
| b           | ∃x B(x)        |  |  |  |  |  |





| а  | 11 |
|----|----|
| ¬a | 22 |

# **Exploiting CSI**

- **First-order ADDs** 
  - ◆ Exploit (FO) context-specific independence

| Prop<br>Var | FOL Mapping             |    | a  | $\bigoplus$ | ار | <u>.</u> | = | •  | a  |    |
|-------------|-------------------------|----|----|-------------|----|----------|---|----|----|----|
| а           | ∃x A(x)                 |    |    | $\bigcirc$  | 2  | 1        | - | þ  | t  |    |
| Ь           | $\exists x \ A(x)^B(x)$ | 20 | 10 |             |    |          |   | 22 | 11 | 18 |

- Some decision paths are unreachable
  - ◆ Track implications
  - Avoid inconsistent paths
- Use FOADDs to replace case & operations

# **Exploiting Affine Structure**

- Replace ADDs with affine ADDs (SanMc,IJCAI-05)
  - ◆ Best case: exp→linear reduction; never worse!
- **Example 1:** Additive reward/utility functions

**■ Example 2:** Multiplicative value functions

# Linear Value Approximation

# **First-order Basis Functions**

#### Approximate value with basis functions:

$$V(s) = w_1 \cdot \begin{bmatrix} \exists b,c \text{ BIn}(b,c,s) & 1 \\ \neg \exists b,c \text{ BIn}(b,c,s) & 0 \end{bmatrix} \oplus w_2 \cdot \begin{bmatrix} \exists t,c \text{ TIn}(t,c,s) & 1 \\ \neg \exists t,c \text{ TIn}(t,c,s) & 0 \end{bmatrix}$$

#### Reduces solution to finding good weights

- ♦ Weight projection ⇒ no need for simplification
- Only need to do consistency checking!

#### How to find weights?

Formulate as optimization of LP

# **Approximate Linear Programming**

 (SanBout, UAI-05) FOALP: Generalize approximate LP solution of van Roy, GKP, SP

♦ Define:  $V(s) = \bigoplus_{i=1,...k} w_i \cdot bCase_i(s)$ 

Vars:  $w_i$ ;  $i \le k$ 

Minimize:  $\sum_{i=1..k} c_i \cdot w_i$ 

Subject to:  $V(s) \ge B^{\alpha}[V(s)]$ ;  $\forall \alpha \in A, s$ 



# First-order Constraints

**Technically** ∞ constraints

: ∀s

**Example constraint:** 

$$0 \ge w_1$$
  $0 \ge w_1$   $0 \ge w_1$   $0 \ge w_2$   $0 \ge w_2$ 

| ∃t,c TIn(t,c,s)  |  |  |  |
|------------------|--|--|--|
| ¬∃t,c TIn(t,c,s) |  |  |  |

Only finite *distinct* constraints



- Solve via constraint generation
  - Efficiently find max violated constraints
  - Generalize variable elimination to first-order

# **Policy Construction**

■ Derive greedy policy  $\pi$  from V(s):



■ Now build  $\pi Case_a(s)$  for  $a \in \{unload, load\}$ :

$$\pi Case_{unload}(s) =$$

$$\exists b, t \varphi_1 \qquad \qquad 9$$

$$\neg \exists b, t \varphi_1 \land \neg \exists b, t \varphi_3 \qquad 0$$

$$\land \neg \exists b, t \varphi_4 \land \exists b, t \varphi_2 \qquad \qquad$$

$$\pi Case_{load}(s) =$$

$$\neg \exists b, t \varphi_1 \land \exists b, t \varphi_3 \qquad 3$$

$$\neg \exists b, t \varphi_1 \land \neg \exists b, t \varphi_3 \qquad 1$$

$$\land \exists b, t \varphi_4 \qquad \qquad b$$

# **Approximate Policy Iteration**

#### Basic Algorithm

- Define  $V^{(j)}(s) = \bigoplus_{i=1..k} w_i^{(j)} \cdot bCase_i(s)$ , Initialize j=0,  $\pi$ ={any policy}
- Given policy  $\pi^{j}$ , find Bellman-error minimizing  $w_i^{(j)}$  for  $V^{(j)}(s)$ 3) Derive greedy policy  $\pi^{j+1}$  from  $V^{(j)}(s)$ 

  - If  $\pi^{j+1} \neq \pi^{j}$  then let j=j+1 and go to step 2

### ■ LP for Bellman-error minimizing w<sub>i</sub>(j):

Vars:  $w_i^{(j)}$ ;  $i \le k$ 

Minimize:  $\phi$ 

Subject to:  $\phi \geq |\pi Case^{(j)}a(s) \oplus V^{(j)}(s) \ominus B^{\alpha}[V^{(j)}(s)]|$ ;  $\forall \alpha \in A, s$ 

■ Use  $\pi C$ ase<sub>a</sub>(s) to enforce  $B^{\pi}$  (gkpv, Jair-02)

# Practical Issues & Results

# **Generating Basis Functions**

#### Where do basis functions come from?

- Major question for automation
- Systematically build from FOL components?
- Candidate space too large!

#### ■ Idea (Gretton & Thiebaux, UAI-04):

- Regressions from goal make good candidates
- Guaranteed to have some value
- Building blocks of value iteration

#### Iteratively solve FOMDP

- Retain basis functions with weight > threshold
- Generate new basis functions from retained set

### **Problems w/ Universal Reward**

- Universal rewards are difficult for FOMDPs, e.g.,
  - Given reward:

Exact n-stage-to-go value function has form:

$$vCase^{n}(s) = \begin{cases} \forall b,c. \ Dest(b,c) \Rightarrow BIn(b,c,s) & 1 \\ 1 \ box \ not \ at \ dest & \gamma \\ \hline n-1 \ boxes \ not \ at \ dest & \gamma^{n-1} \end{cases}$$

- Exact value function has infinitely many values!
- No compact representation (using piecewise-constant case statement)

# **Additive Goal Decomposition**

#### ■ Off-line solution for universal rewards:

- ♦ Given goal  $\forall b,c. Dest(b,c) \Rightarrow BIn(b,c,s)$
- ◆ Solve FOMDP for goal BIn(b\*,c\*,s) to get V(b\*,c\*,s)

#### At run-time:

- ◆ Given concrete domain: {Dest(b₁,c₁), Dest(b₂,c₂)}
- "Score" actions additively w.r.t. each goal

# **Optimizations**

- **■** Enforce disjointness in basis functions:
  - ◆ Can reduce search of 2<sup>|B|</sup> case partitions to |B|
- Exploiting implicit max in constraint generation
  - Don't always need to enforce disjointness
  - Max-sum does this automatically
- **FOADDs for formulae simplification**
- Huge cache of proved/unproved theorems
  - ◆ Store FOL formulae in canonical format
- Structural optimization in CNF transformation
  - Introduce propositional literals to exploit DPLL in Vampire
- Join-order optimizations in policy matcher

# Results – ICAPS-06, Elevators



# Results – ICAPS-06, Tire World



# Results – ICAPS-06, Blocks World



#### **Related Work**

- Direct "first-order" value iteration:
  - ◆ ReBel algorithm for RMDPs (KvOdR, 2004)
  - ◆ FOVIA algorithm for fluent calculus (KS, 2005)
  - ◆ First-order decision diagrams (JKW, 2007)
  - → all disallow ∀ quant., e.g., universal cond. effects
- Sampling and/or inductive techniques:
  - ◆ Approx. linear programming for RMDPs (GKGK, 2003)
  - Inductive policy selection using FO regression (GT, 2004)
  - Approximate policy iteration (FYG, 2004)
  - → sampled domain instantiations do not ensure generalization across all possible worlds
  - → must restrict to "small" domain instances

### **Conclusions and Future Work**

#### **■** Conclusions:

- Managing structure in FOMDP solutions
- Approximation techniques for FOMDPs
- Range of practical implementation issues
- Only completely first-order planner to date
  - → 2<sup>nd</sup> place in ICAPS 2006 IPPC by # problems solved

#### Current & future work:

- ♦ Sum aggregator:  $\Sigma_c \exists c BIn(b,c,s)$ : 1; factored actions
- Program constraints
- ◆ Handling real-valued quantities, arithmetic
- Exploiting topological structure
- ◆ Integration with RL? First-order POMDPs?

# **Bibliography**

- (BRP, 2001) C. Boutilier, R. Reiter, and B. Price. (2001). *Symbolic Dynamic Programming for First-order MDPs.* IJCAI-01.
- (SP, 2001) Dale Schuurmans and Relu Patrascu. (2001) Direct value approximation for factored MDPs. NIPS-2001.
- (SM, 2005) S. Sanner and D. McAllester. (2005). Affine Algebraic Decision Diagrams (AADDs) and their Application to Structured Probabilistic Inference. IJCAI-05.
- (SB, 2005) S. Sanner and C. Boutilier. (2005). *Approximate Linear Programming for First-order MDPs*. UAI-05.
- (GKGK, 2003) C. Guestrin, D. Koller, C. Gearhart, and N. Kanodia. (2003). Generalizing Plans to New Environments in Relational MDPs. IJCAI-03.
- (GT, 2004) C. Gretton and S. Thiebaux. (2004). Exploiting first-order regression in inductive policy selection. UAI-04.
- (GKPV, 2002) C. Guestrin, D. Koller, R. Parr, and S. Venktaraman. Efficient solution methods for factored MDPs. JAIR, 2002.

# Extra: Language Extensions

# Sum & Product Aggregators

Often, reward scales with domain size:

- Beyond expressive power of current FOMDP
- Need language extension for sum/product aggregators
  - Functional as opposed to truth semantics
  - ◆ Like a quantifier (but indefinite ⊕)
- Can extend symbolic dynamic programming, approximate solutions
  - But tricky

# **Factored Actions**

What if action has indefinite number of independent outcomes?

Then we get an indefinitely large joint distribution:

$$P(lost(b_1) \circ ... \circ lost(b_n) \mid a) = \prod_b \begin{array}{c} large(b) & .0001 \\ medium(b) & .0005 \\ small(b) & .001 \end{array}$$

- Have to exploit (FO) independence in solutions
  - Then most of product will marginalize