The group G is isomorphic to the group labelled by [8,4] in the Small Groups library. Ordinary character table of $G \cong \mathbb{Q}8$:

	1a	2a	4a	4b	4c
χ_1	1	1	1	1	1
χ_2	1	1	1	-1	-1
<i>χ</i> ₃	1	1	-1	1	-1
χ_4	1	1	-1	-1	1
χ_5	2	-2	0	0	0

Trivial source character table of $G \cong Q8$ at p = 2:

 $P_1 = Group([()]) \cong 1$

Normalisers N_i		N_2	N_3	N_4	N_5	N_6
p-subgroups of G up to conjugacy in G		P_2	P_3	P_4	P_5	P_6
Representatives $n_j \in N_i$		1a	1a	1a	1a	1a
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 2 \cdot \chi_5$		0	0	0	0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5$		4	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5$		2	2	0	0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5$	2	2	0	2	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5$		2	0	0	2	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5$		1	1	1	1	1

$$\begin{array}{l} P_2 = Group([(1,4)(2,6)(3,7)(5,8)]) \cong C2 \\ P_3 = Group([(1,4)(2,6)(3,7)(5,8),(1,3,4,7)(2,5,6,8)]) \cong C4 \\ P_4 = Group([(1,4)(2,6)(3,7)(5,8),(1,2,4,6)(3,8,7,5)]) \cong C4 \\ P_5 = Group([(1,4)(2,6)(3,7)(5,8),(1,8,4,5)(2,3,6,7)]) \cong C4 \\ P_6 = Group([(1,4)(2,6)(3,7)(5,8),(1,3,4,7)(2,5,6,8),(1,2,4,6)(3,8,7,5)]) \cong Q8 \end{array}$$

 $N_1 = Group([(1,2,4,6)(3,8,7,5),(1,3,4,7)(2,5,6,8),(1,4)(2,6)(3,7)(5,8)]) \cong \mathbf{Q8}$

 $N_2 = Group([(1,2,4,6)(3,8,7,5),(1,3,4,7)(2,5,6,8),(1,4)(2,6)(3,7)(5,8)]) \cong Q8$ $N_3 = Group([(1,3,4,7)(2,5,6,8),(1,4)(2,6)(3,7)(5,8),(1,2,4,6)(3,8,7,5)]) \cong Q8$

 $N_4 = Group([(1,2,4,6)(3,8,7,5),(1,4)(2,6)(3,7)(5,8),(1,3,4,7)(2,5,6,8)]) \cong Q8$ $N_5 = Group([(1,8,4,5)(2,3,6,7),(1,4)(2,6)(3,7)(5,8),(1,2,4,6)(3,8,7,5)]) \cong Q8$

 $N_5 = Group([(1, 8, 4, 5)(2, 3, 6, 7), (1, 4)(2, 6)(3, 7)(5, 8), (1, 2, 4, 6)(3, 8, 7, 5)]) \cong Q8$ $N_6 = Group([(1, 2, 4, 6)(3, 8, 7, 5), (1, 3, 4, 7)(2, 5, 6, 8), (1, 4)(2, 6)(3, 7)(5, 8)]) \cong Q8$