The evolution of the mass functions of active supermassive black holes and their host galaxies out to $z\sim 2$

Andreas Schulze

Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU)

The University of Tokyo

Tsukuba Uchu Forum
CCS, University of Tsukuba,11.11.2015

Black hole - galaxy coevolution

integrated cosmic BH accretion history parallel to SF history

McConnell & Ma (2013)

- ⇒ link between black hole growth and galaxy evolution
- ⇒ how are black holes growing?

Black hole - galaxy coevolution

integrated cosmic BH accretion history parallel to SF history

McConnell & Ma (2013)

- ⇒ link between black hole growth and galaxy evolution
- ⇒ how are black holes growing? => need census

AGN demographics: The AGN LF

AGN Luminosity function is main demographic quantity

optical: Schulze et. al (in prep.)

AGN demographics: The AGN LF

AGN Luminosity function is main demographic quantity

X-ray: Miyaji et. al (2015)

AGN demographics: AGN LF evolution

• space density of bright QSOs peaks at $z \approx 2-3$

Aird et. al (2015)

AGN demographics: AGN LF evolution

- space density of bright QSOs peaks at $z \approx 2-3$
- peak is shifted towards lower z for fainter AGN
- ⇒ AGN cosmic downsizing
- ⇒ implies anti-hierarchical BH growth

Aird et. al (2015)

Constraints on theoretical models

 SAMs & numerical simulations able to reproduce AGN LF and downsizing

Numerical simulations

Hirschmann et al. (2014)

Menci et. al (2014)

How can we trace black hole growth?

Limitation of AGN LF:

Physical quantities of black holes:

- black hole mass M_•
- accretion rate / Eddington ratio $\lambda = L_{\rm bol}/L_{\rm Edd}$

How can we trace black hole growth?

Limitation of AGN LF:

Physical quantities of black holes:

- black hole mass M_•
- accretion rate / Eddington ratio $\lambda = L_{bol}/L_{Edd}$
- $\Rightarrow L \propto \lambda M_{\bullet}$ implies degeneracy between M_{\bullet} and λ
- \Rightarrow additional M_{\bullet} information able to break this degeneracy

How can we trace black hole growth?

Limitation of AGN LF:

Physical quantities of black holes:

- black hole mass M_•
- accretion rate / Eddington ratio $\lambda = L_{bol}/L_{Edd}$
- $\Rightarrow L \propto \lambda M_{\bullet}$ implies degeneracy between M_{\bullet} and λ
- \Rightarrow additional M_{\bullet} information able to break this degeneracy

Active black hole mass function - $\Phi_{\bullet}(M_{\bullet})$ Eddington ratio distribution function - $\Phi_{\lambda}(\lambda)$

- well-defined AGN sample
- black hole mass estimates

for virial motion in BLR:

$$M_{\bullet} = f \frac{R_{\rm BLR} \Delta V^2}{G}$$

for virial motion in BLR:

$$M_{\bullet} = f \frac{R_{\rm BLR} \Delta V^2}{G}$$

 \bullet ΔV from broad line width

for virial motion in BLR:

$$M_{\bullet} = f \frac{R_{\rm BLR} \Delta V^2}{G}$$

- ΔV from broad line width
- scaling relation between BLR size and continuum luminosity (via reverberation mapping)

$$R_{\rm BLR} \propto L_{5100}^{0.5}$$

Bentz et al. (2009)

for virial motion in BLR:

$$M_{\bullet} = f \frac{R_{\rm BLR} \Delta V^2}{G}$$

- △ V from broad line width
- scaling relation between BLR size and continuum luminosity (via reverberation mapping)

$$R_{\rm BLR} \propto L_{5100}^{0.5}$$

estimate M_• from spectrum

$$M_{ullet} \propto L_{5100}^{0.5} \Delta V^2$$

⇒ feasible to estimate M_• for large samples of broad line AGN out to high z

Bentz et al. (2009)

The bivariate distribution function of BH mass and Eddington ratio

- \Rightarrow Black hole mass function (BHMF) and Eddington ratio distribution function (ERDF) determined jointly by fitting probability distribution in $M_{\bullet} \lambda$ -plane
- ⇒ via Maximum likelihood method (Schulze & Wisotzki 2010) or via Bayesian framework (Kelly et al. 2009)
- \Rightarrow active BH: type-1 AGN with log $\lambda > -2$

ML approach

BHMF

- + ERDF
- + survey selection function
- = probability distribution

The local active black hole mass function and Eddington ratio distribution function

Local (z < 0.3) BHMF and ERDF from the Hamburg/ESO Survey

Eddington ratio distribution function

Schulze & Wisotzki (2010)

⇒ No evidence for downturn at low black hole mass or at low Eddington ratio

Active fraction of local black holes

compare to quiescent BHMF of Marconi et al. 2004

Active fraction of local black holes

compare to quiescent BHMF of Marconi et al. 2004

- significant decrease of active fraction toward higher M_•
- indication for cosmic downsizing in black hole mass

Active BHMF and ERDF at higher redshifts

at z > 0.4 BHMF and ERDF determined from SDSS QSO sample

- ⇒ evidence for black hole mass downsizing
- \Rightarrow only high mass end of BHMF, high λ end of ERDF

Kelly & Shen (2013)

combine bright, large area surveys (SDSS) with deep, small area AGN surveys (VVDS, zCOSMOS)

SDSS: i < 19.1 $\Omega_{\rm eff} = 6248 \ {\rm deg^2}$

color selection

VVDS: wide: $I_{AB} < 22.5$ $\Omega_{eff} = 4.5 \text{ deg}^2$

deep: $I_{AB} < 24.0$ $\Omega_{eff} = 0.6 \text{ deg}^2$

random selection

zCOSMOS: $I_{AB} < 22.5$ $\Omega_{eff} = 1.6 \text{ deg}^2$

random + X-ray selection

- $\Rightarrow 1.1 < z < 2.1$
- ⇒ use MgII BH masses

- ⇒ 1.1<7<2.1
- ⇒ use MgII BH masses

 \Rightarrow SDSS: \sim 28000 AGN

 \Rightarrow VVDS: 86 + 61 AGN

- ⇒ 1.1<z<2.1
- ⇒ use MgII BH masses

⇒ **SDSS**: ~ 28000 AGN

 \Rightarrow VVDS: 86 + 61 AGN

⇒ zCOSMOS: 145 AGN

Bivariate distribution function of M_{\bullet} and λ at

active black hole mass function

$$\Phi_{\bullet}(M_{\bullet}, z) = \int \Psi(M_{\bullet}, \lambda, z) \, \mathrm{d} \log \lambda$$

Eddington ratio distribution function

$$\Phi_{\lambda}(\lambda,z) = \int \Psi(M_{\bullet},\lambda,z) d \log M_{\bullet}$$

Active black hole demographics at 1 < z < 2

active black hole mass function

Eddington ratio distribution function

Schulze et al. (2015)

Evolution of the active black hole mass function and Eddington ratio distribution function

- $z\sim0.0$ Schulze & Wisotzki (2010)
- ⇒ strong downsizing in the active
- BHMF
- \Rightarrow decrease of average Eddington ratio towards z = 0

Evolution of the AGN space density

- ⇒ strong downsizing in the active BHMF
- ⇒ moderate evolution in ERDF

Active black hole fraction at $z \sim 1.5$

compare to quiescent BHMF derived from stellar mass function

at $z \approx 1.5$ broad line AGN active fraction almost independent of M_{\bullet}

The evolution of the active black hole fraction

week evolution at $\sim 10^7 M_{\bullet}$

strong evolution at $> 10^9 M_{\bullet}$

 \Rightarrow witness shutoff of black hole growth at the high mass end between z=2 and z=0

Constraints on theoretical models

- comparison with galaxy evolution models
- discriminate between different models of galaxy evolution, AGN feedback, . . .
 - comparison with numerical simulation from Hirschmann et al. (2014)
- \Rightarrow good match at z > 1 and $M_{\bullet} < 10^{9.5}$
- ⇒ disagreement at low-z and high M_• => caused by radio-mode AGN feedback implementation

Schulze et al. (2015)

Constraints on SMBH seeds

- ⇒ comparison with models of merger-driven black hole growth
- ⇒ discriminate between different models of SMBH seeds

Natarajan & Volonteri (2012)

⇒ massive seed model preferred

The relevance of AGN feedback

Schawinski et. al (2014)

- AGN Feedback required to shut off SF in massive galaxies
- transition of galaxies from SF main sequence to passive red galaxies via SF quenching

The relevance of AGN feedback

Moster et al. (2010)

Schawinski et. al (2014)

- AGN Feedback required to shut off SF in massive galaxies
- transition of galaxies from SF main sequence to passive red galaxies via SF quenching

⇒ can AGN do it?

The relevance of AGN feedback

Moster et al. (2010)

Schawinski et. al (2014)

- AGN Feedback required to shut off SF in massive galaxies
- transition of galaxies from SF main sequence to passive red galaxies via SF quenching
- \Rightarrow can AGN do it? \Rightarrow does their number density work out?

Linking AGN to the quenching of star formation

massive outflows in ionized and molecular gas observed in many AGN host galaxies

Cresci et al. (2015)

Bundy et al. (2008): demographic argument

AGN trigger rate matches star formation quenching rate

The specific accretion rate distribution of AGN

 $p(L_X/M_{\star}|M_{\star},z)$

Aird et al. (2012): 0.2 < z < 1.0

 \Rightarrow distribution of accretion rates follows power law, independent of M_{\star}

Bongiorno et al. (2012):

 \Rightarrow confirmed trend out to $z \sim 2.5$

AGN host galaxy mass function in COSMOS

- \Rightarrow 877 hard X-ray selected AGN from XMM-COSMOS at 0.3 < z < 2.5
- $\Rightarrow M_{\star}$ from SED fitting
- \Rightarrow define: $\lambda_{\text{SAR}} = L_{[2-10\text{keV}]}/M_{\star}$
- \Rightarrow define AGN by cut in specific accretion rate $\lambda_{SAR} > 32$
- \Rightarrow determine bivariate distribution function of M_{\star} and $\lambda_{\rm SAR}$

Bongiorno, AS et al. (submitted)

Bivariate distribution function of M_{\star} and $\lambda_{\rm SAR}$

host galaxy mass function (HGMF)

$$\Phi_*(\textit{M}_*, \textit{z}) = \int \Psi(\textit{M}_*, \lambda_{SAR}, \textit{z}) d \log \lambda_{SAR}$$

Specific accretion rate distribution function (SARDF)

$$\Phi_{\lambda_{SAR}}(\lambda_{SAR}, z) = \int \Psi(M_*, \lambda_{SAR}, z) d \log M_*$$

Specific accretion rate distribution function

Bongiorno, AS et al. (submitted)

- \Rightarrow low λ_{SAR} slope of double power law flattens with z
- ⇒ normalization increases with z

Host galaxy mass function

Bongiorno, AS et al. (submitted)

- ⇒ low mass slope of Schechter function flattens with z
- ⇒ density ratio compared to SF galaxies ~constant with mass
- ⇒ active fraction shows z dependent mass dependence

Downsizing in M_{\star} and $\lambda_{\rm SAR}$

- \Rightarrow downsizing in $\Phi_{\lambda_{SAR}}(\lambda_{SAR}, z)$
- \Rightarrow moderate downsizing in $\Phi_*(M_*, z)$

AGN as driver for mass quenching of galaxies?

mass function of galaxies in the process of being mass-quenched, based on Peng et al. (2010) model (blue), $\tau_{trans} = 10^6 - 10^7$ yr

AGN as driver for mass quenching of galaxies?

mass function of galaxies in the process of being mass-quenched, based on Peng et al. (2010) model (blue), $\tau_{\rm trans}=10^6-10^7$ yr vs.

AGN host galaxy mass function of luminous AGN, log $L_X > 44$ (red)

⇒ at high mass, the HGMF of Lx>43.5-44.5 AGN can reproduce well the model prediction for the transition population

Conclusions

- active BHMF and ERDF provide additional observational constraints on BH growth and galaxy evolution
- established at z < 2
- ⇒ downsizing in AGN LF mainly driven by downsizing in the BHMF
- \Rightarrow shutoff of black hole growth at the high mass end from z=2 to z=0
- ⇒ new observational constraints for theoretical models of galaxy formation and BH growth
 Schulze et al. (2015)
- determined AGN host galaxy mass function and specific accretion rate distribution function at 0.3 < z < 2.5
- ⇒ luminous AGN population consistent with quenching of star formation in massive galaxies
 Bongiorno, Schulze et al. (2015)