SE2003

Formal Methods in Software Engineering

Spring-2024

Introduction

- Safety critical systems
 - Software controllers
 - Hands free driving
 - Pacemaker
 - Airplane controller software
 - ATM
 - Traffic light controller
- Reliability of software controllers?
 - Does controller satisfy requirements?
 - Software testing
 - Large number of inputs
 - · Exhaustive software testing

- Mathematic model
- Formal notations
- Does mathematical model satisfy formal notation?
 - Automated tools
 - Model checking
 - Turing award

Introduction

- Mathematical Model
 - Extensions of finite sate machines
- Formal notations
 - Specify software requirements

Course Outline

Book: Principles of Model Checking by Christel Baier and Joost Pieter Katoen

Marks Distribution:

Introduction

- Reliable
 - Decision making is correct?
 - All possible scenarios are considered?
 - Traditional software testing is insufficient.
- Verification and Validation

- Intel's Pentium II processor
 - 1994
 - Error in floating point division code
 - \$475 million
- Ariane 5 rocket
 - 1996
 - Crashed in 36 seconds
- Therac 25 radiation therapy machine
 - 1985
 - Death of 6 patients due to radiation overdose

Model Checking

• Finite states machine

• ATM example

• ATM example

Transition System

- State
- Action
- Transitions
- Initial state

Vending Machine

Common Terminology

- Terminal state
- Execution
 - Sequence of transition
 - Represents behavior of a code
 - Finite
 - Ends on a terminal state
 - Infinite
 - Examples

(Non)Deterministic Examples

Non-deterministic transition system

- More than one initial state
- More than one transition on an action

• Model of ATM machine

Variables: nwater, ncola, max

Variables: nwater, ncola, max

Program graph

max = 1

refill

refill Variables: Initial conditions W get_water **IDLE** coin **SELECT** ncola = 0 && nwater = 0 cola water ncola > 0 get_cola Program graph coin **IDLE SELECT** get_water **IDLE** coin **SELECT** cola ret_coin water coin **IDLE SELECT** get_cola refill + = ncola = 1

Transition system corresponding to max =1

* = nwater = 1

s1 while (x > 0)

if
$$(x \mod 2 = 0)$$

$$x = x - 2$$

S2

else

$$x = x - 1$$

Trnsition system with initial condition x = 3

Program graph

S3

$$S2$$

$$x = 3$$

$$x = 2$$

$$x = 0$$

$$x = 0$$

