5705.25 - Hagfrøðilig læring H25

October 28, 2025

Contents

	pervised Learning: A First Approach
2.1	From Traditional Programming to Machine Learning
2.2	Learning from Data
	2.2.1 Example: ECG Data
	2.2.2 Defining Learning
2.3	Supervised Datasets
2.4	Types of Supervised Problems
2.5	The Hypothesis Space
2.6	Loss Function and Model Selection
	2.6.1 Expected Loss
	2.6.2 No Free Lunch Theorem
2.7	Supervised Learning Workflow
2.8	Underfitting and Overfitting
2.9	k-Nearest Neighbors (k-NN)
	2.9.1 Normalization
2.1	

1 Introduction

2 Supervised Learning: A First Approach

2.1 From Traditional Programming to Machine Learning

In traditional computer science, a program is explicitly written to map inputs to outputs:

$$Data + Program \rightarrow Computer \rightarrow Output$$

Here, the program defines deterministic rules, such as if-else statements.

Machine learning inverts this paradigm:

$$Data + Output \rightarrow Computer \rightarrow Program (Model)$$

The computer now learns the mapping from examples rather than explicit programming. The more representative the data, the better the learned model.

Traditional Programming: Rules are explicitly coded.

Machine Learning: The computer learns the program from data.

2.2 Learning from Data

2.2.1 Example: ECG Data

Electrocardiogram (ECG) signals vary in time and across individuals. Each signal segment can be labeled as one of several heartbeat types:

$$y = egin{cases} {
m NA} & {
m Normal\ Activity} \\ {
m AF} & {
m Atrial\ Fibrillation} \\ {
m RB} & {
m Resting\ Beat} \\ \end{cases}$$

The task is to learn a model that maps input signals to the correct label.

2.2.2 Defining Learning

An **agent** learns from experience E with respect to a task T and a performance measure P if its performance on T, measured by P, improves with experience E.

2.3 Supervised Datasets

A supervised dataset consists of labeled examples:

$$T = \{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}\$$

where x_i is a feature vector and y_i is the known output.

Examples:

- Housing Prices: $y_i = \text{price}, x_i = \text{location}, \text{ size}, \text{ year}, \text{ etc.}$
- Stock Prediction: $y_i = \text{up/down}, x_i = \text{time-based features}.$

2.4 Types of Supervised Problems

- Binary Classification: $y \in \{0, 1\}$
- Multiclass Classification: $y \in \{1, 2, ..., K\}$
- Regression: $y \in \mathbb{R}$

The goal is to find a function h(x) that approximates y:

$$h(x_i) \approx y_i, \quad \forall i = 1, \dots, n$$

2.5 The Hypothesis Space

Let \mathcal{H} denote the set of candidate functions (hypotheses). Each $h \in \mathcal{H}$ represents one possible model:

$$h(x) = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p$$

The objective is to select the hypothesis that best fits the data.

2.6 Loss Function and Model Selection

The **loss function** quantifies how well a hypothesis performs:

$$L_{\text{MSE}}(h,T) = \frac{1}{n} \sum_{i=1}^{n} (h(x_i) - y_i)^2$$

$$L_{\text{MAE}}(h, T) = \frac{1}{n} \sum_{i=1}^{n} |h(x_i) - y_i|$$

A perfect fit (L=0) may indicate overfitting — the model memorizes the training data and fails to generalize.

2.6.1 Expected Loss

We aim to minimize the expected loss:

$$\mathbb{E}_{(x,y)\sim P}[L(h(x),y)]$$

Since the population distribution P is unknown, we approximate it with train/validation/test splits:

80% train, 10% validation, 10% test.

2.6.2 No Free Lunch Theorem

No single model works for every problem — each dataset has its own structure. Model choice must depend on the problem context.

2.7 Supervised Learning Workflow

2.8 Underfitting and Overfitting

- Underfitting: Model too simple; fails to capture structure.
- Overfitting: Model too complex; captures noise.

Balancing bias and variance is crucial for generalization.

2.9 k-Nearest Neighbors (k-NN)

In k-NN, predictions are based on the labels of the k closest data points to a query x_* :

$$||x_i - x_*|| = \sqrt{\sum_{j=1}^p (x_{ij} - x_{*j})^2}$$

Hyperparameter: k

- Low k: possible overfitting.
- High k: possible underfitting.

Input: Training set $T = \{(x_1, y_1), \dots, (x_n, y_n)\}$, query x_* , number of neighbors k

Output: Predicted label \hat{y}_*

foreach $(x_i, y_i) \in T$ do

| Compute distance $d_i = ||x_i - x_*||$ (e.g., Euclidean)

end

Sort d_i in ascending order;

Select k nearest neighbors;

if classification then

 $\hat{y}_* \leftarrow \text{majority label among } k \text{ neighbors}$

else

$$\hat{y}_* \leftarrow \frac{1}{k} \sum_{i=1}^k y_i$$
 (mean for regression) end

Algorithm 1: k-Nearest Neighbors Algorithm

2.9.1 Normalization

Since distances depend on scale, normalize each feature:

$$x_j' = \frac{x_j - \mu_j}{\sigma_j}$$

where μ_j and σ_j are the mean and standard deviation of feature j.

2.10 Summary

Supervised learning aims to infer a mapping from inputs to outputs based on labeled data. The process involves:

- 1. Defining the hypothesis space \mathcal{H}
- 2. Choosing a suitable loss function L
- 3. Optimizing $h \in \mathcal{H}$ to minimize L
- 4. Validating and testing to ensure generalization

A good model balances complexity and performance, avoiding both underfitting and overfitting.

3 Linear Regression