

MP2651

I²C-Controlled 1 to 4S Buck-Boost Charger with Reverse Source Mode

PRELIMINARY SPECIFICATIONS SUBJECT TO CHANGE

DESCRIPTION

The MP2651 is a Buck-Boost Charger IC designed for battery pack with 1 to 4 cells in series. It can accept a wide range (4V to 22V) of input operation voltage for charging the battery. The battery voltage can be either lower or higher than input voltage due to the buck-boost topology.

When the input is present, the MP2651 operates in charge mode. It measures the battery voltage and charges the battery with four phases: constant current trickle charge, constant current pre-charge, constant current fast charge and constant voltage charge. Other features include charge termination and autorecharge.

The MP2651 also integrates the input current limit and input voltage limit to avoid overloading the input power source. This is compliant to the USB and PD specification.

The MP2651 can also supply a wide range (3V to 21V) of voltage at input when Source mode is enabled. It also has output current limit with high resolution in source mode.

With I²C/SMBus interface, the MP2651 can be flexibly programmed the charging and discharge parameters, such as input current limit, input voltage limit, charging current, battery full regulation voltage, output voltage and current in source mode and so on. It can also provide the status and faults in operation through registers.

To guarantee safe operation, the IC limits the die temperature to a programmable threshold. Other safety features include input over-voltage protection, battery over-voltage protection, CFLR over-voltage protection, thermal shutdown, and a programmable timer to prevent prolonged charging of a dead battery.

MP2651 is available in TQFN-30 (4mm x 5mm) package.

FEATURES

- Buck-boost Charger for 1 to 4 Cells in Series Battery Pack
- 4V to 22V Input Operation Voltage
- Up to 26V Sustainable Voltage
- Up to 28V Sustainable Voltage by Using External MOSFET
- Seamless and Smoothly Transition Between Buck and Boost Operation
- Configurable Input Maximum Current Limit and Input Minimum Voltage Limit
- Up to 6A Configurable Charge Current
- Configurable Battery-Full Voltage Up to 4.67V/Cell with 0.5% Accuracy
- Output Compatible with USB PD 3.0 source mode
- Configurable 3V to 21V Output Voltage with 20mV/Step
- Up to 6A Output Current with 50mA/Step
- 500kHz to 1.2MHz Configurable Switching Frequency
- I²C or SMBus Host Control Interface to Support Flexible Parameter Setting
- Input Power Source Status Indicator
- Integrated 10-bit ADC for voltage, current and temperature monitor in both charge mode and source mode
- Analog Output Pin to Monitor Charge Current.
- Input Over Voltage-Protection (OVP)
- Battery Over-Voltage-Protection (OVP)
- Output Short-Circuit-Protection (SCP) in Source Mode
- Battery Missing Detection
- NTC Pin Floating Detection
- Integrated N-channel MOSFET Driver for Input Power Pass Through or OVP
- Configurable JEITA for Battery Temperature Protection
- Thermal Regulation and Thermal Shutdown
- TQFN-30 (4mm x 5mm) Package

PRELIMINARY SPECIFICATIONS SUBJECT TO CHANGE

APPLICATIONS

- Power Banks
- Wireless Speakers
- Drones
- Mobile Printers
- USB PD Multi-Cell Applications

All MPS parts are lead-free, halogen-free, and adhere to the RoHS directive. For MPS green status, please visit the MPS website under Quality Assurance. "MPS", the MPS logo, and "Simple, Easy Solutions" are trademarks of Monolithic Power Systems, Inc. or its subsidiaries.

TYPICAL APPLICATION

PRELIMINARY SPECIFICATIONS SUBJECT TO CHANGE

ORDERING INFORMATION

Part Number*	Package	Top Marking	MSL Rating
MP2651GVT-xxxx**	TQFN-30 (4mm×5mm)	See Below	1
EVKT-MP2651	Evaluation Kit	See Below	

^{*} For Tape & Reel, add suffix –Z (e.g.: MP2651GVT-xxxx-Z).

TOP MARKING

MPSYWW MP2651 LLLLLL

MPS: MPS prefix Y: Year code WW: Week code MP2651: Part number LLLLL: Lot number

EVALUATION KIT EVKT-MP2651

EVKT-MP2651 Kit contents: (Items below can be ordered separately).

#	Part Number	Item	Quantity
1	EV2651-VT-00A	MP2651 Evaluation Board	1
2	EVKT-USBI2C-02- BAG	Includes one USB to I ² C communication interface, one USB cable, and one ribbon cable	1
3	Online resources	Include datasheet, user guide, product brief, and GUI	1

Order direct from MonolithicPower.com or our distributors.

EVKT-MP2651 Evaluation Kit Set-Up

^{**&}quot;xxxx" is the register setting option. The factory default is "0000." This content can be viewed in the I2C register map. Please contact an MPS FAE to obtain an "xxxx" value.

PRELIMINARY SPECIFICATIONS SUBJECT TO CHANGE

PACKAGE REFERENCE

PRELIMINARY SPECIFICATIONS SUBJECT TO CHANGE

PIN FUNCTIONS

Package Pin #	Name	Description
1/30	VCC	VCC LDO Output. Connect 4.7μF ceramic capacitor from this pin to AGND. It can provide 3.6V output for internal circuit and open-drain pin pull-up.
2	AGND	Analog ground. All parameter settings refers to this ground.
3	SDA	I ² C/SMBus Data. Connect SDA to the logic rail through a 10kΩ resistor.
4	SCL	I ² C/SMBus Clock. Connect SCL to the logic rail through a 10kΩ resistor.
5	INT	Interrupt Request Output. This is open-drain structure and is required to pull up to VCC by $10k\Omega$ resistor externally.
6	ADDR	Address Setting. Connect a resistor to AGND to set the IC address.
7	TS/IMON	Temperature Sense/ Current Monitor. This pin can be set as either temperature sense pin or current monitor pin. If it's configured as IMON pin function, which can monitor charge current.
8	VNTC	Battery Temperature Sense Bias. This pin is used for voltage bias of NTC comparator resistive divider.
9/10	NTC	Negative Temperature Coefficient Thermistor Pin. Battery temperature sense input.
11	ACOK	Input Power Good Indication. Open-drain output to indicate the adapter is present or not. Need external pull-up voltage source.
12	BATT	Battery Pin. Battery positive terminal. Connect 22µF ceramic capacitor from BATT to PGND as close as possible to the IC. Connect battery as close as possible to this pin to reduce IR drop.
13	NC	No Connection. Leave this pin floating.
14	SRN	Battery Current Sense Resistor Negative Terminal.
15/16	SRP	Battery Current Sense Resistor Positive Terminal.
17	BST2	Bootstrap. Connect a 100nF bootstrap capacitor between BST2 and SW2 pin to form a floating supply across the power switch driver to drive the power switch's gate above the supply voltage.
18	CFLR	DC/DC Power Stage Output. Connect 2x22µF ceramic filter capacitor from CFLR to PGND as close as possible to the IC.
19	SW2	Switching Node. The middle point of the boost phase half bridge.
20	PGND	Power Ground.
21	SW1	Switching Node. The middle point of the buck phase half bridge.
22	IN	Input Pin. Power input of the IC.
23	BST1	Bootstrap. Connect a 100nF bootstrap capacitor between BST1 and SW1 pin to form a floating supply across the power switch driver to drive the power switch's gate above the supply voltage.
24/25	IAN	Input Current Sense Negative Terminal.
26	IAP	Input Current Sense Positive Terminal.
27	ACGATE	Input N-Channel MOSFET Gate Driver. Used to drive the external pass through N-Channel MOSFET. Recommend connect a $1M\Omega$ resistor between GATE and Source port of the N-Channel MOSFET.
28	ADP	Adapter Voltage Sense. If ADP OVLO is reached, external OVP MOSFET (if used) and power stage are turned off, IC internal bias voltage is also provided through this pin.
29	FB	Feedback Pin. Output voltage feedback pin in Source mode. If the output voltage at IN pin is programmed via register in Source mode, this pin will not be functional. Leave this pin floating or connect it to AGND via $10k\Omega$ resistor.

MPS Confidential - For MPS Use Only

MP2651 - BUCK-BOOST CHARGER FOR 1 TO 4 CELLS IN SERIES

PRELIMINARY SPECIFICATIONS SUBJECT TO CHANGE

ABSOLUTE MAXIMUM RATINGS (1)
ADP, ACGATE to PGND (DC)0.3V to 28V
IAP, IAN, IN to PGND (DC)0.3V to 26V
IAP, IAN, IN to PGND (20ns)0.3V to 28V
IAP to IAN3.6V to 3.6V
SW1, SW2 to PGND (DC)0.3V to 24V
SW1, SW2 to PGND (20ns)2V to 28V
CFLR, BATT to PGND0.3V to 24V
SRP, SRN to PGND0.3V to 24V
SRP to SRN3.6V to 3.6V
BST1 to SW1 0 to 5V
BST2 to SW2
All Others Pins to AGND0.3V to 5V
Junction temperature
Lead temperature
Continuous power dissipation ($T_A = +25^{\circ}C$) (2)
Storage Temperature 65°C to 1150°C
Storage Temperature65°C to +150°C
ESD Ratings
Human Body Model (HBM)2kV
Charge Device Model (CDM)250V
Recommended Operating Conditions (3)
Supply voltage (V _{IN})
Input Current (I _{IN}) Up to 6A
Charge Current (I _{CC}) Up to 6A
Battery Voltage (V _{BATT})Up to 18.68V
Operating junction temp. (T_J) 40°C to +125°C

Thermal Resistance (4)	$oldsymbol{ heta}_{JA}$	$oldsymbol{ heta}$ JC	
TQFN-30 (4mmx5mm)	38	8	.°C/W

Notes:

- 1) Exceeding these ratings may damage the device.
- 2) The maximum allowable power dissipation is a function of the maximum junction temperature T_J (MAX), the junction-to-ambient thermal resistance θ_{JA}, and the ambient temperature T_A. The maximum allowable continuous power dissipation at any ambient temperature is calculated by P_D (MAX) = (T_J (MAX)-T_A)/θ_{JA}. Exceeding the maximum allowable power dissipation produces an excessive die temperature, causing the regulator to go into thermal shutdown. Internal thermal shutdown circuitry protects the device from permanent damage.
- The device is not guaranteed to function outside of its operating conditions.
- 4) Measured on JESD51-7, 4-layer PCB.

PRELIMINARY SPECIFICATIONS SUBJECT TO CHANGE

ELECTRICAL CHARACTERISTICS

 V_{IN} = 5.0V, V_{BATT} = 3.7V/CeII, 2 CeII Setting, T_A = 25°C, unless otherwise noted.

Parameter	Symbol	Condition	Min	Тур	Max	Units
Input Power Characteristic						
Input Voltage Range	V _{IN}		4		22	V
ADP Under Voltage Lockout Threshold	V _{ADP_UVLO}	V _{ADP} falling	2.4	2.6	2.8	٧
ADP Under Voltage Lockout Hysteresis		V _{ADP} rising		1		٧
ADP Over Voltage Lockout Threshold	V _{ADP_OVP}	V _{ADP} rising	23	23.9	24.7	>
ADP Over Voltage Lockout Hysteresis		V _{ADP} falling		500		mV
ADP Over Voltage Protection Recover Deglitch Time		V _{ADP} falling		100		ms
Input Under Voltage Lockout Recovery Degltich Time	t _{INUVLO_DGL}	V _{IN} rising		30		ms
		V _{IN} falling, REG11h, bits [9:8] = 00	2.9	3.2	3.5	V
Input Under Voltage	V _{IN_UVP}	V _{IN} falling, REG11h, bits [9:8] = 01	6	6.4	6.8	٧
Protection		V _{IN} falling, REG11h, bits [9:8] = 10	11.5	12	12.5	٧
		V _{IN} falling, REG11h, bits [9:8] = 11	16.2	16.8	17.4	V
Input Under Voltage		V _{IN} rising, REG11h, bits [9:8] = 01/10/11		328		mV
Protection Threshold Hysteresis		V _{IN} rising, REG11h, bits [9:8] = 00		490		mV
Input Under Voltage Protection Recovery Deglitch Time	tinuvp_dgl	V _{IN} rising		30		ms
		V _{IN} rising, REG11h, bits [7:6] = 00	6.9	7.25	7.6	V
Input Over Voltage	V	V _{IN} rising, REG11h, bits [7:6] = 01	10.8	11.25	11.7	V
Protection Threshold	VIN_OVP	V _{IN} rising, REG11h, bits [7:6] = 10	17	17.65	18.25	V
		V _{IN} rising, REG11h, bits [7:6] = 11	22	22.45	23.15	V
Input Over Voltage	tinovp_dgl	V _{IN} rising, REG11h, bit[10] = 0		1		μs
Protection Deglitch Time	SINOVF_DGL	V _{IN} rising, REG11h, bit[10] = 1		15		ms
Input Over Voltage Protection Hysteresis		V _{IN} falling		320		mV

PRELIMINARY SPECIFICATIONS SUBJECT TO CHANGE

ELECTRICAL CHARACTERISTICS (continued)

 V_{IN} = 5.0V, V_{BATT} = 3.7V/CeII, 2 CeII Setting, T_A = 25°C, unless otherwise noted.

Parameter	Symbol	Condition	Min	Тур	Max	Units
Input Over Voltage Protection Recover Deglitch Time		V _{IN} falling		30		ms
DC/DC Converter						
		V _{IN} =5V, Buck-boost and ACGATE driver are disabled.		550	620	μA
Input Quiescent Current	lin_q	V _{IN_UVLO} <v<sub>IN <v<sub>IN_OVLO, Buckboost is disabled, ACGATE is enabled.</v<sub></v<sub>		1	1.2	mA
VCC LDO Output Voltage	V _{VCC}	V_{IN} = 5V, I_{VCC} = 15mA		3.6		V
VCC LDO Current Limit	Ivcc	$V_{IN} = 5V$, $V_{VCC} = 3.3V$		23		mA
IN to SW1 N-Channel MOSFET (Q1) On Resistance	Ron_Q1			10		mΩ
SW1 to PGND N-Channel MOSFET (Q2) On Resistance	R _{ON_Q2}			8		mΩ
CFLR to SW2 N-Channel MOSFET (Q3) On Resistance	Ron_Q3			8		mΩ
SW2 to PGND N-Channel MOSFET (Q4) On Resistance	R _{ON_Q4}			20		mΩ
		REG0Eh, bits [6:4] = 000	450	500	550	kHz
		REG0Eh, bits [6:4] = 001	540	600	660	kHz
		REG0Eh, bits [6:4] = 010	630	700	770	kHz
Operation Frequency		REG0Eh, bits [6:4] = 100	675	750	825	kHz
Operation Frequency	f _{SW}	REG0Eh, bits [6:4] = 011	720	800	880	kHz
		REG0Eh, bits [6:4] = 101	810	900	990	kHz
		REG0Eh, bits [6:4] = 110	900	1000	1100	kHz
		REG0Eh, bits [6:4] = 111	1070	1200	1280	kHz
Battery Charger						
		1Cell OTP code setting	3.4		4.67	V
Battery Charge Voltage	V2.77 250	2Cell OTP code setting	6.8		9.34	V
Regulation Range	V _{BATT_REG}	3Cell OTP code setting	10.2		14.01	V
		4Cell OTP code setting	13.6		18.68	V
		T_A = 25°C, V_{BATT_REG} = 4.35V, 1 Cell OTP setting	-0.5		+0.5	%
Battery Charge Voltage Regulation Accuracy		T _A = 0 to 70°C, V _{BATT_REG} = 4.35V, 1 Cell OTP setting	-0.7		+0.7	%
(Continued)		T _A = 25°C, V _{BATT_REG} = 8.4V, 2 Cells OTP setting	-0.5		+0.5	%
		T _A = 0 to 70°C, V _{BATT_REG} = 8.4V, 2 Cells OTP setting	-0.7		+0.7	%

PRELIMINARY SPECIFICATIONS SUBJECT TO CHANGE

ELECTRICAL CHARACTERISTICS (continued)

V_{IN} = 5.0V, V_{BATT} = 3.7V/Cell, 2 Cell Setting, T_A = 25°C, unless otherwise noted.

Parameter	Symbol	Condition	Min	Тур	Max	Units
		T _A = 25°C, V _{BATT_REG} = 12.6V, 3 Cells OTP setting	-0.5		+0.5	%
Battery Charge Voltage		T _A = 0 to 70°C, V _{BATT_REG} = 12.6V, 3 Cells OTP setting	-0.7		+0.7	%
Regulation Accuracy		T _A = 25°C, V _{BATT_REG} = 16.8V, 4 Cells OTP setting	-0.5		+0.5	%
		T _A = 0 to 70°C, V _{BATT_REG} = 16.8V, 4 Cells OTP setting	-0.7		+0.7	%
Fast Charge Current Range	Icc	RS2=10m Ω , REG10h, bit 7 = 0.	0		6.35	А
		Icc = 6A, REG14h, bits [13:6] = 0111 1000	5.79	6	6.2	А
Fast Charge Current	laa	I _{CC} = 3A, REG14h, bits [13:6] = 0011 1100	2.84	3.0	3.14	А
Accuracy	Icc_acc	I _{CC} = 2A, REG14h, bits [13:6] = 0010 1000	1.88	2.0	2.13	А
		I _{CC} = 500mA, REG14h, bits [13:6] = 0000 1010	0.4	0.5	0.6	А
Pre-charge to Fast Charge	\/	REG0Bh, bit [12] = 1	2.9	3	3.1	V/Cell
Threshold	V _{BATT_PRE}	REG0Bh, bit [12] = 0	2.45	2.55	2.6	V/Cell
Pre-charge to Fast Charge Deglitch Time				30		ms
		1 Cell		85		mV
Pre-charge to Fast Charge		2 Cells		160		mV
Hysteresis		3 Cells		240		mV
		4 Cells		315		mV
Pre-Charge Current Range	I _{PRE}	RS2=10mOhm, REG10h, bit [7] = 0.	0		1.5	А
Pre-Charge Current		V _{BATT} = 5V, I _{PRE} = 300mA, REG0Fh, bits [7:4] = 0011	-20		20	%
Accuracy		V _{BATT} = 5V, I _{PRE} = 500mA, REG0Fh, bits [7:4] = 0101	-15		15	%
Trickle Charge to Pre- charge Threshold	Maria	V _{BATT} Rising		2		V/Cell
Trickle Charge to Pre- charge Hysteresis	V _{BATT_TC}	V _{BATT} Falling		200		mV/Cell

PRELIMINARY SPECIFICATIONS SUBJECT TO CHANGE

ELECTRICAL CHARACTERISTICS (continued)

 V_{IN} = 5.0V, V_{BATT} = 3.7V/CeII, 2 CeII Setting, T_A = 25°C, unless otherwise noted.

Parameter	Symbol	Condition	Min	Тур	Max	Units
Trickle Charge Current Range	Ітс	RS2=10mOhm, REG10h, bit [7] = 0.	0		750	mA
Trickle Charge Current Accuracy		2 Cell, V _{BATT} =5V, REG0Fh, bits [11:8] = 0010, I _{TC} = 100mA	55	100	155	mA
Auto-recharge Battery Voltage Threshold		Lower than battery charge voltage, REG10h, bit [11] =0		-120		mV/Cell
Battery Over-voltage Protection Threshold	V _{BATT_OVP}	V _{BATT} rising	170	230	285	mV/Cell
Battery Over-voltage Protection Hysteresis		V _{BATT} falling		113		mV/Cell
Battery Over-voltage Protection Deglitch Time				30		ms
TC and Pre Charge Timer			1.8	2	2.2	hours
CC and CV Charge Timer		REG12h, bits [12:11] = 11	18	20	22	hours
		I _{TERM} = 100mA, REG0Fh, bits [3:0] = 0010	60	120	180	mA
Termination Current Accuracy	I _{TERM}	I _{TERM} = 200mA, REG0Fh, bits [3:0] = 0100	160	220	290	mA
		I_{TERM} = 400mA, REG0Fh, bits [3:0] = 1000	360	420	490	mA
Charge Termination Deglitch Time	tTERM_DGL			1		s
Pin Leakage Current						I
SRP, SRN leakage Current	I _{LKG_SRP_SRN}		-0.5		0.5	μA
IAP, IAN leakage Current	ILKG_IAP_IAN		-0.5		0.5	μA
Input Current Limit and Inp	out Voltage I	Limit		l		II.
Input Current Limit Range	I _{IN_LIM}	RS1 = $10m\Omega$, REG10, bit [8] = 0	0		5.8	А
		REG08h, bits [6:0] = 000 1010, I _{IN_LIM} = 0.5A	0.368	0.43	0.5	А
		REG08h, bits [6:0] = 001 0010, I _{IN_LIM} = 0.9A	0.768	0.82	0.9	А
Input Current Limit Accuracy	In_lim_acc	REG08h, bits [6:0] = 001 1110, I_{IN_LIM} = 1.5A	1.32	1.41	1.5	Α
		REG08h, bits [6:0] = 011 1100, I _{IN_LIM} = 3.0A	2.76	2.87	2.98	Α
		REG08h, bits [6:0] = 110 0100, I_{IN_LIM} = 5.0A	4.688	4.836	4.98	Α

PRELIMINARY SPECIFICATIONS SUBJECT TO CHANGE

ELECTRICAL CHARACTERISTICS (continued)

V_{IN} = 5.0V, V_{BATT} = 3.7V/Cell, 2 Cell Setting, T_A = 25°C, unless otherwise noted.

Parameter	Symbol	Condition	Min	Тур	Max	Units
		REG06h, bits [7:0]= 0011 1001, V _{IN_MIN} = 4.56V	4.44	4.58	4.72	V
Input Minimum Voltage	V _{IN MIN}	REG06h, bits [7:0]=1000 0010, V _{IN_MIN} = 10.4V	10.19	10.4	10.61	V
Regulation		REG06h, bits [7:0]=1010 1010, V _{IN_MIN} = 13.6V	13.33	13.6	13.87	V
		REG06h, bits [7:0]=1110 0111, V _{IN_MIN} = 18.48V	18.11	18.48	18.85	V
Thermal Regulation and Pro	otection					
Thermal Shutdown Rising Threshold ⁽⁵⁾	T _{J_SHDN}	T _J rising		150		့
Thermal Shutdown Hysteresis ⁽⁵⁾				20		°C
Thermal Regulation Threshold	T_{J_REG}	REG0Fh, bits [14:12] = 111		120		°C
Battery Temperature Monito	oring					
NTC Floating Threshold	V _{NTC_FLT}	V _{NTC} rising as percentage of V _{VNTC}		95		%
NTC Floating Threshold Hysteresis		V _{NTC} falling as percentage of V _{VNTC}		3		%
NTC Cold Temp Threshold	V _{COLD}	V_{NTC} rising as percentage of V_{VNTC} , REG0Dh, bits [1:0] = 01	73.5	74.5	75.5	%
NTC Cold Temp Threshold Hysteresis		V_{NTC} falling as percentage of V_{NNTC} ,		1.2		%
NTC Cool Temp Threshold	Vcool	V_{NTC} rising as percentage of V_{VNTC} ,REG0Dh, bits [3:2] = 10	64.2	65.2	66.2	%
NTC Cool Temp Threshold Hysteresis		V_{NTC} falling as percentage of V_{NNTC}		1.2		%
NTC Warm Temp Threshold	V_{WARM}	V_{NTC} falling as percentage of V_{VNTC} , REG0Dh, bits [5:4] = 01	32.2	33.2	34.2	%
NTC Warm Temp Threshold Hysteresis		V _{NTC} rising as percentage of V _{VNTC}		1.2		%
NTC Hot Temp Threshold	V _{НОТ}	V_{NTC} falling as percentage of V_{NTC} , REG0Dh, bits [7:6] = 10	22.6	23.6	24.6	%
NTC Hot Temp Threshold Hysteresis		V_{NTC} rising as percentage of V_{NTC}		1.2		%
TS Hot	V_{TS}	REG0Dh, bits [12:10] = 011, T _A = 100°C	12.5	13.5	14.5	%
VNTC	V_{VNTC}		1.26	1.28	1.30	V

PRELIMINARY SPECIFICATIONS SUBJECT TO CHANGE

ELECTRICAL CHARACTERISTICS (continued)

 V_{IN} = 5.0V, V_{BATT} = 3.7V/CeII, 2 CeII Setting, T_A = 25°C, unless otherwise noted.

Parameter	Symbol	Condition	Min	Тур	Max	Units
Source Mode						
		I _{IN_SRC} = 0A, V _{BATT} =7.6V REG09h, bits [9:0] = 00 1111 1010	4.85	5.0	5.15	V
		I _{DSCHG} = 0A, V _{BATT} =7.6V REG09h, bits [9:0] = 01 1100 0010	8.82	9.0	9.18	V
Output Voltage in Source Mode	Vin_src	I _{DSCHG} = 0A, V _{BATT} =7.6V REG09h, bits [9:0] = 10 0101 1000	11.76	12.0	12.24	V
		I _{DSCHG} = 0A, V _{BATT} =7.6V REG09h, bits [9:0] = 10 1110 1110	14.7	15.0	15.3	V
		I _{DSCHG} = 0A, V _{BATT} =7.6V REG09h, bits [9:0] = 11 1110 1000	19.7	20.0	20.3	V
FB Reference Voltage for	V	REG09h, bits [9:0] = 11 1110 1000	1.194	1.206	1.218	V
External Setting	V _{FB}	REG09h, bits [9:0] = 00 1111 1010	0.306	0.313	0.32	V
Output Over Voltage Protection in Source Mode	VIN_SRC_OV	V _{BATT} = 7.4V, V _{IN} rising, percentage of discharge voltage setting. REG11h, bits [14:13] = 11		110		%
Output Over Voltage Protection Hysteresis in Source Mode		V _{IN} falling		5		%
Output Under Voltage Protection in Source Mode	VIN_SRC_UV	REG11h, bits [12:11] = 00		75		%
Output Under Voltage Protection Hysteresis in Source Mode				5		%
Discharge Output Under Voltage Deglitch Time		V _{IN} falling		10		ms
Discharge Output Under Voltage Recover Deglitch Time		V _{IN} rising		30		ms
		REG0Ah, bits [6:0] = 001 1110, V _{BATT} = 7.4V	0.9			Α
Output Current Regulation In Discharge Mode	I _{IN_SRC}	REG0Ah, bits [6:0] = 010 1100, V _{BATT} = 7.4V	1.5			А
		REG0Ah, bits [6:0] =100 1100, V _{BATT} =7.4V	3.0			А
Battery Under Voltage Lockout Threshold	V _{BATT_UVLO}	V _{BATT} falling	2.5	2.6	2.7	V/Cell
Battery Under Voltage Lockout Hysteresis		V _{BATT} rising		280		mV

PRELIMINARY SPECIFICATIONS SUBJECT TO CHANGE

ELECTRICAL CHARACTERISTICS (continued)

V_{IN} = 5.0V, V_{BATT} = 3.7V/Cell, 2 Cell Setting, T_A = 25°C, unless otherwise noted.

Parameter	Symbol	Condition	Min	Тур	Max	Units
Battery Low Voltage Threshold	V _{BATT_LOW}	V _{BATT} falling, REG0Bh, bits [10:9] = 10	3.1	3.2	3.3	V/Cell
Battery Low Voltage Hysteresis		VBATT rising		200		mV/Cell
Battery Low Voltage Deglitch Time		V _{BATT} falling		30		ms
		V _{IN} = 0V, V _{BATT} =8.4V, source mode is disabled, ADC,watchdog timer and ACGATE driver are disabled.		33	39.5	μА
Battery Quiescent Current	I _{BATT_Q}	V_{IN} = 0V, V_{BATT} =8.4V, source mode is disabled, ADC and ACGATE driver are disabled, Watchdog timer is enabled.			0.655	mA
		V _{IN} = 0V, V _{BATT} =8.4V, source mode is disabled. Both ADC and watchdog timer are enabled. ACGATE driver is disabled.			3.2	mA
ACGATE Driver						
ACGATE	V	Higher than V _{ADP} when enabled		6		V
ACGATE	V _{ACGATE}	Higher than V _{ADP} when disabled		0		V
Open-Drain Pin Characteris	tics (INT, A	ACOK)				
Low Logic Voltage Threshold	V_L	Sink 10mA current			0.4	V
ADC						
Sample Rate				50		kHz
ADC Reference				1.28		V
ADC Resolution				10		Bits
SMBus Interface (Note: SMI 1.8V/3.3V/5V logic	Bus should	d cover I ² C spec) And I ² C/SMBus	ilines are	e compati	ble with	
Input High Threshold Level	V _{IH}	V _{PULL UP} = 1.8V, SDA and SCL	1.3			V
Input Low Threshold Level	VIL	V _{PULL_UP} = 1.8V, SDA and SCL			0.4	V
Output Low Threshold Level	V _{OL}	I _{SINK} = 1mA			0.4	V
Input leakage current	I _{LEAK}		-0.2		0.2	μA
SMBus Timing Characterist	cics ⁽⁵⁾					
SMBus Clock Frequency	FscL		10		400	kHz
BUS free time		Between stop and start condition	4.7			μs
Start condition hold time after which first clock is generated			4.0			μs

MPS Confidential - For MPS Use Only

MP2651 - BUCK-BOOST CHARGER FOR 1 TO 4 CELLS IN SERIES

PRELIMINARY SPECIFICATIONS SUBJECT TO CHANGE

ELECTRICAL CHARACTERISTICS (continued)

 V_{IN} = 5.0V, V_{BATT} = 3.7V/CeII, 2 CeII Setting, T_A = 25°C, unless otherwise noted.

Parameter	Symbol	Condition	Min	Тур	Max	Units
Start condition setup time			4.7			μs
Stop condition setup time			4.0			μs
Data hold time			300			ns
Data setup time			250			ns
Clock low time out			25		35	ms
Clock low period			4.7			μs
Clock high period			4.0		50	μs
Clock/data fall time					300	ns
Clock/data rise time					1000	ns

Notes:

⁵⁾ Guaranteed by design.

PRELIMINARY SPECIFICATIONS SUBJECT TO CHANGE

TYPICAL CHARACTERISTICS

Inductor DCR = $10m\Omega$

Efficiency vs. Charge current in Charge Mode with 3s Battery

Efficiency vs. Source Current in Source Mode with 1s Battery

Efficiency vs. Charge current in **Charge Mode with 2s Battery**

Efficiency vs. Charge current in Charge Mode with 4s Battery

Efficiency vs. Source Current in Source Mode with 2s Battery

PRELIMINARY SPECIFICATIONS SUBJECT TO CHANGE

TYPICAL CHARACTERISTICS (continued)

Inductor DCR = $10m\Omega$

PRELIMINARY SPECIFICATIONS SUBJECT TO CHANGE

TYPICAL PERFORMANCE CHARACTERISTICS

Performance waveforms are tested on the evaluation board in the Design Example section. $C_{IN} = 10 \mu Fx5pcs + 1 \mu F$, $C_{CFLR} = 22 \mu Fx2pcs + 1 \mu F$, $C_{BATT} = 22 \mu Fx2pcs$, $L1 = 1.5 \mu H$, $f_{SW} = 600 kHz$. $I_{IN_LIM} = 3000 mA$, $I_{CC} = 3000 mA$, 2 Cell Application, $V_{BATT_REG} = 8.4 V$.

PRELIMINARY SPECIFICATIONS SUBJECT TO CHANGE

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

Performance waveforms are tested on the evaluation board in the Design Example section. $C_{IN} = 10 \mu Fx5pcs + 1 \mu F, C_{CFLR} = 22 \mu Fx2pcs + 1 \mu F, C_{BATT} = 22 \mu Fx2pcs, L1 = 1.5 \mu H, f_{SW} = 600 kHz.$ I_{IN_LIM} = 3000mA, I_{CC} = 3000mA, 2Cell Application, V_{BATT_REG} = 8.4V.

V_{IN ADP} step from 5V to 20V V_{IN ADP} step from 20V to 5V $V_{BATT} = 7.4V(2Cell)$, $I_{CC} = 3A$, enable charge СН4: Іватт CH4: IRATT CH1: VIN_ADP CH1: VIN_ADP CH3: Vsw₂ CH3: Vsw₂ CH2: Vsw₁ CH2: Vsw₁

PRELIMINARY SPECIFICATIONS SUBJECT TO CHANGE

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

Performance waveforms are tested on the evaluation board in the Design Example section. $C_{IN} = 10 \mu Fx5pcs + 1 \mu F, C_{CFLR} = 22 \mu Fx2pcs + 1 \mu F, C_{BATT} = 22 \mu Fx2pcs, L1 = 1.5 \mu H, f_{SW} = 600 kHz.$ I_{IN} I_{IM} = 3000mA, I_{CC} = 3000mA, 2Cell Application, V_{BATT REG} = 8.4V.

JEITA compatible NTC protection **ADP and IN OV protection** VIN_ADP = 12V, VBATT = 8V, VBATT_REG decreases V_{BATT} = 8V, enable ACGATE dirver with 400mV in warm window, Icc decreases by half external N-channel pass through FET.Ramp up in cool window. and down VADP. CH1: VVNTC CH1: VADP CH2: VNTC CH2: VIN CH3: VBATT СН4: Іватт СН4: Іватт

Source Mode Enable Shutdown through VIN VBATT = 7.4V(2Cell), VIN-SRC = 5V, IIN SRC = VBATT = 7.4V(2Cell), VIN-SRC = 5V, IIN SRC = 2A(CC load) 2A(CC load) CH1: VIN_SRC CH1: VIN_SRC CH4: ILOAD CH4: ILOAD CH2: Vsw₁ CH2: Vsw₁ CH3: Vsw₂ CH3: Vsw₂

CH3: Vsw₁

PRELIMINARY SPECIFICATIONS SUBJECT TO CHANGE

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

Performance waveforms are tested on the evaluation board in the Design Example section. $C_{IN} = 10 \mu Fx5pcs+1 \mu F$, $C_{CFLR} = 22 \mu Fx2pcs+1 \mu F$, $C_{BATT} = 22 \mu Fx2pcs$, $L1 = 1.5 \mu H$, $f_{SW} = 600 kHz$. $I_{IN_LIM} = 3000 mA$, $I_{CC} = 3000 mA$, 2 Cell Application, 2 Cell

PRELIMINARY SPECIFICATIONS SUBJECT TO CHANGE

BLOCK DIAGRAM

Figure 1: Functional Block Diagram

PRELIMINARY SPECIFICATIONS SUBJECT TO CHANGE

OPERATION

Introduction

The MP2651 is a highly integrated Buck-Boost charger IC with 4 switching FETs for battery pack with 1 to 4 cells in series. It also integrates one N-Channel MOSFET driver for higher input over-voltage protection.

The MP2651 also can operate by reverse direction to power the input from battery. Which is compliant to the USB PD Source Mode.

When input power is present, the MP2651 operates at charge mode. The buck-boost converter has three operating modes: boost mode when input voltage is lower than battery voltage; buck mode while input voltage is higher than battery voltage; and buck-boost mode when input voltage is close to battery voltage. The power structure is shown as Figure 2. And the Q1 to Q4 MOSFET state in different operation modes is shown as Table 1.

Figure 2: Power Stage of MP2651

Table 1-a: Q1-Q4 Operation State in Charging Mode

MOSFET	Boost	Buck-Boost	Buck	
Q1	On	Switching	Switching	
Q2	Off	Switching	Switching	
Q3	Switching	Switching	On	
Q4	Q4 Switching		Off	

Table 1-b: Q1-Q4 Operation State in Source Mode

MOSFET	Boost	Buck-Boost	Buck	
Q1	Switching	Switching	On	
Q2	Switching	Switching	Off	
Q3	On	Switching	Switching	
Q4 Off		Switching	Switching	

When the input is absent, IC is able to operate reversely to power the input from the battery by I²C/SMBus control. It can provide 3-21V output voltage with 20mV/step at input. It also has output current limit with 50mA/step in this mode. It's usually called source mode in USB PD.

VCC LDO Output

The MP2651 integrates an LDO to power internal circuit including I2C block, FET driver, bias current and so on.

The VCC is powered by V_{ADP} or V_{BATT}. When the voltage of ADP pin (V_{ADP}) is higher than V_{ADP UVLO} threshold, the VCC is always powered by the V_{ADP} whether in charge mode or source mode. When the input is absent or V_{ADP} is lower than V_{ADP UVLO} the VCC power will be switched from V_{ADP} to V_{BATT} as long as V_{BATT} >V_{BATT} UVLO.

The VCC can provide 3.6V output to supply the power to internal circuit and open-drain pin pullup. It's not recommended to power other circuits any more.

Input Power Status Indication

The MP2651 has both ACOK pin and register to indicate the input power supply status in charge mode. ACOK pin is open-drain structure and it will be pulled to AGND once V_{IN UVP}<V_{IN}<V_{IN OVP}.

At the same time, the status register PG STAT shows power good.

Input Over-Voltage Protection

The MP2651 has two-tier input OVP protection, $V_{\text{ADP OVP}}$ and $V_{\text{IN OVP}}$. The MP2651 has a dedicated ADP pin to sense the input voltage. If $V_{ADP} > V_{ADP OVP}$, the ACGATE will be pulled down to turn off M1 immediately and at the same time the buck-boost of MP2651 is also turned off. The MP2651 will report ADP OVP fault in fault register. It has 100ms deglitch time when recovery from ADP OVP fault.

22

PRELIMINARY SPECIFICATIONS SUBJECT TO CHANGE

Figure 3: ACGATE Driver

When V_{IN OVP}<V_{IN}<V_{ADP OVP}, the M1 will still be turned on and switcher of MP2651 is disabled. A fault will be reported in REG17h bit [13].

Input Current Limit and Input Voltage Limit Regulation

To meet the maximum current limit in the USB specification and avoid overloading the adapter,

the MP2651 has both input current limit and input voltage limit regulation. When either input current limit or input voltage limit is reached, the MP2651 will regulate the duty cycle of Q1 and Q4 to limit the input power according to the setting.

Battery Charge Profile

In charge mode, the IC has 5 control loops to regulate input voltage, input current, charge current, battery-full regulation voltage, and device junction temperature.

The IC provides four main charging phases: constant current trickle charge, constant precharge, constant current fast charge and constant voltage charge.

Figure 4: Charge Profile

Phase 1 (Constant Current Trickle Charge):

When the input power is qualified as a good power supply, the IC checks the battery voltage to decide if trickle-charging is required. If the battery voltage is lower than V_{BATT TC}, a programmable trickle charging current is applied on the battery.

Phase 2 (Constant Current Pre-charge)

When the battery voltage exceeds the V_{BATT TC}, the IC starts to safely pre-charge the deeply depleted battery until the battery voltage reaches "pre-charge to fast charge threshold" V_{BATT PRE}. If V_{BATT PRE} is not reached before precharge timer (2hours) expires, the charge cycle is ceased and a corresponding timeout fault signal is asserted. The Pre-charge current can be programmable via the I2C register REG0Fh, bits [7:4] and V_{BATT_PRE} can be configurable by REG0Bh, bit [12]. There are two options: 2.5V/Cell for LiFePO4 battery and 3.0V/Cell for other chemistry Li-ion battery.

Phase 3 (Constant Current Fast Charge)

When the battery voltage exceeds V_{BATT PRE} set via REG0Bh, bit [12], the IC enters into constant-current charge (fast charge) phase.

PRELIMINARY SPECIFICATIONS SUBJECT TO CHANGE

The fast charge current can be configured via REG14h, bits [13:6].

Phase 4 (Constant Voltage Charge)

When the battery voltage rises to the preprogrammable battery-full voltage V_{BATT_REG} set via REG15h, bits [14:4], the charge current begins to taper off.

The charge cycle is considered as completed when the charge current reaches the termination threshold I_{TERM} set via REG0Fh, bits [3:0], assuming the termination function is enabled. If I_{TERM} is not reached before the safety charge timer expires (**see Safety Timer section**), the charge cycle is ceased and corresponding timeout fault signal is asserted.

Automatic Recharge

When the battery is charged full and the charging is terminated, the battery may be discharged because of the system consumption or self-discharge. When the battery voltage is discharged below recharge threshold (programmable), the IC automatically starts another new charging cycle without the requirement of manually re-starting a charging cycle if the input power is valid. The timer resets when the auto-recharge cycle begins.

A new charge cycle starts when the following conditions are valid:

- The input power is re-plugged.
- Battery charging is enabled by I²C/SMBus.
- No thermistor fault
- No safety timer fault
- No battery over-voltage

It means re-plugging of the input power or toggling of battery charging control bit (REG12h, bit [0]) can restart a charge cycle without any

fault happening. The new charge cycle can start with any phase as previous description depending on V_{BATT}

Battery Over-Voltage Protection

The IC has battery over-voltage protection. If the battery voltage exceeds the battery over voltage threshold (230mV higher than the battery regulation voltage per cell), charging is disabled. The battery OVP has 30ms deglitch time. Under this condition, the switcher will be off.

Junction Thermal Regulation

Thermal regulation loop always monitors the internal junction temperature of the IC. When internal junction temperature exceeds the temperature limit the charge current is reduced to keep the junctional temperature at the regulation point. The multiple thermal regulation thresholds from 80°C to 120°C help system design to meet the thermal requirement in different applications. The junction temperature regulation threshold can be set via REG0Fh, bits [14:12].

Modes Transition Between Buck-Boost and Buck or Boost

The MP2651 always monitors the input voltage and CFLR voltage. It automatically switches between different modes as below figure 5.

When V_{IN} rises higher than 90% x V_{BATT} , the MP2651 transits from Boost mode to Buckboost mode.

When V_{IN} decreases lower than 75% x V_{BATT} , the MP2651 transits from Buck-boost mode to Boost mode.

When V_{IN} decreases lower than 120% x V_{BATT} , the MP2651 transits from Buck mode to Buckboost mode.

When V_{IN} rises higher than 135% x V_{BATT} , the MP2651 transits from Buck-boost mode to Buck mode.

Figure 5: Mode Transition Threshold

PRELIMINARY SPECIFICATIONS SUBJECT TO CHANGE

Pulse Skipping Mode (PSM) Operation

The MP2651 has PSM control to improve the efficiency when the load is light enough. In PSM, the lighter the load is, more pulse width will be skipped.

Cycle-by-Cycle MOSFET Current Limit

MP2651 senses both High-side and Low-side MOSFET current in the loop control, it provides valley current limit in buck mode and peak current limit in boost mode in each cycle-bycycle switching. In buck mode, the next period won't start before IL drops to the valley current limit and IL rises with minimum on time, so it may fold back the frequency when trigger valley current limit.

ADC Conversion and Multiplexer

The MP2651 integrates a 10bit SAR ADC with 50kSPS. A 10-channel multiplexer is used to measure below parameters in Table 2.

Table 2: ADC Channels

Sink Mode	Source Mode	
 Input voltage Input current Battery voltage Charge current Battery temperature (NTC pin voltage ratio) TS pin voltage 	 Source voltage at input Source current at input Battery voltage Battery temperature. TS pin voltage ratio 	
ratio Chip junction	 Chip junction temperature 	
temperature		

Safety Timer

The IC provides both the pre-charge and CC/CV charge safety timer to prevent extended charging cycle due to abnormal battery conditions. The total safety timer for both trickle charge and pre-charge is 2 hours when battery voltage is lower than V_{BATT PRE}.

The CC/CV charge safety timer starts when the battery enters fast charge phase. The user can configure this time via REG12h, bits [12:11]. Above two safety timers can be disabled via REG12h, bit [13]. The safety timer does not operate in the discharge mode.

The safety timer is reset at the beginning of a new charging cycle. The following actions restart the safety timer,

- Auto-recharge
- Charge enable toggling
- Input power togaling
- Safety timer enable toggling
- Thermal shutdown Recovery

The IC will automatically suspend the timer when NTC hot or cold fault.

The IC will automatically extend remain time by 2 times when any of below action happens.

- Input current limit loop kicks in.
- Input voltage limit loop kicks in. •
- Thermal regulation loop kicks in.

Once the IC exits from previous events, the rest of time becomes half again. This function can be disabled via REG12h, bit [10].

Watchdog Timer

The MP2651 has a watchdog timer to monitor action of the I2C interface. If the watchdog timer is enabled, the host needs to periodically reset the watchdog timer reset bit before watchdog timer expires. If the watchdog timer expires, some of the registers will reset its value to default. Please refer to the register map to check which registers will be reset after watchdog timer expires.

The following actions will reset the watchdog timer and make the IC recover from watchdog timer fault.

- Write to watchdog timer reset bit
- Write to the charge current register (REG14h)
- Write to the battery regulation voltage register. (REG15h)

The watchdog timer can be disabled via REG12h, bits [9:8].

Temperature Monitor Battery by NTC (Negative **Temperature** Coefficient) **Thermistor**

"Thermistor" is the generic name given to thermally sensitive resistors. Negative temperature coefficient thermistor is generally called as thermistor. Depending on manufacturing method and the structure, there

PRELIMINARY SPECIFICATIONS SUBJECT TO CHANGE

are many shapes and characteristic for various purposes. The thermistor resistance values, unless otherwise specified, are classified at a standard temperature of 25°C. The resistance of a temperature is solely a function of its absolute temperature.

Refer to datasheet of the thermistor, the mathematic expression which relates the resistance and the absolute temperature of a thermistor is as follows.

$$\boldsymbol{R}_1 = \boldsymbol{R}_2 \cdot \boldsymbol{e}^{\beta \cdot \left(\frac{1}{T1} - \frac{1}{T2}\right)}$$

Where: R1 is the resistance at absolute temperature T1, R2 is the resistance at absolute temperature T2 and β is a constant which depends on the material of the thermistor.

The MP2651 continuously monitors battery's temperature by measuring the voltage at the NTC pin. This voltage is determined by the resistive divider whose ratio produced by different resistance of the NTC thermistor under different ambient temperature of the battery.

Figure 6: NTC Protection Circuit

MP2651 internally sets a pre-determined upper and lower bound of the range. If the voltage at the NTC pin goes out of this range which means the temperature is outside safe operating limit, the charging is ceased unless the operating temperature returns into the safe range.

To satisfy the JEITA requirement, the MP2651 has four temperature thresholds, the cold battery threshold (0°C by default), the cool battery threshold (10°C by default), the warm battery threshold (45°C by default), and the hot battery threshold (60°C by default). For given NTC thermistor, these temperatures correspond to the $V_{\text{COLD}}, V_{\text{COOL}}, V_{\text{WARM}}$, and V_{HOT} , which can be programmable by REG0Dh, bits [7:0]. When

 $V_{NTC} < V_{HOT}$ or $V_{NTC} > V_{COLD}$, the charging is suspended and timers are suspended. When $V_{HOT} < V_{NTC} < V_{WARM}$ or when $V_{COOL} < V_{NTC} < V_{COLD}$, the charging behavior is programmable via REG0Ch, bits [14:4]. Figure 7 shows the JEITA control profile.

Figure 7: NTC Window

MP2651 also monitors the battery temperature in discharge mode. It only sends out NTC fault indication when battery temperature is out of range between V_{COLD} and V_{HOT} .

NTC Floating Detection

If NTC voltage is higher than 95%, NTC float is detected, an INT is asserted the corresponding status register is changed. When the NTC is floating the switcher will be off.

Battery Missing Detection

The MP2651 will count the times of charge termination every 10s, if charge termination repeats more than three times in 10s, the MP2651 will report that the battery is missing in status register and initiate an INT signal.

TS/IMON Pin Function

The MP2651 has a pin either used for temperature monitoring or current monitoring. When REG10h, bit [12] = 0, this pin is configured for temperature monitoring. When REG10h, bit[12] = 1, this pin will be used for charge current monitoring.

TS Function

When TS function is enabled. TS pin can be used for sensing input connector temperature by setting REG0Dh, bits [12:10].

PRELIMINARY SPECIFICATIONS SUBJECT TO CHANGE

When TS pin is configured to sense input connector temperature, when $V_{\text{TS_HOT}}$ is reached, an INT is asserted to indicate TS fault happens. In charging mode, the input current limit is reduced to 500mA with 50mA/Step every 62.5ms. When IC recovers from TS fault, the input current limit will rise to setting value with 50mA/Step every 62.5ms.

The triggered INT is masked by REG18h as default.

IMON Function

When IMON function is used, the IMON pin can represent battery charge current with gain of 0.1V/A.

Thermal Shutdown

The IC continuously monitors the internal junction temperature to maximize power delivery and avoid overheating the chip. When the junction temperature reaches 150°C, the PWM converter is shutdown. It will not resume normal operation until the junction temperature drops below 120°C.

Host Mode and Default Mode

The IC is host-controlled device. After power on reset, the IC starts in the watchdog timer expiration state, or default mode. All the registers are in the default settings.

Any write to the IC transits it to host mode. All the device parameters are programmable by the host. To keep the device in host mode, the host has to reset the watchdog timer regularly by writing 1 to REG01h Bit [6] before the Watchdog Timer expires. Once the watchdog timer expires, the IC goes back into default mode.

Impedance Compensation to Accelerate Charging

In the whole charging cycle, the constant-voltage charging stage occupies larger ratios. To accelerate the charging cycle, it's better to have the charging stay at constant-current charge stage as long as possible.

The IC allows the user to compensate the intrinsic resistance of the battery by adjusting the battery regulation voltage according to the charge current and internal resistance. In

addition, a maximum allowed regulated voltage is also set for the sake of the safety condition.

 $V_{BATT_REG_ACT} = V_{BATT_REG} + Min (V_{CLAMP}, I_{CHG_ACT} \times R_{BATT})$ Where, $V_{BATT_REG_ACT}$ is the real battery regulation voltage, V_{BATT_REG} is the battery regulation voltage set via the I²C REG15h, bits [14:4]. I_{CHG_ACT} is the real-time charge current during the operation.

Source Mode Operation

MP2651 can work in source Mode to supply IN pin from battery. The IC will not enter this mode if the battery is below the configurable battery low threshold to ensure that battery is not drained. The source mode operation can be enabled when REG12h, bit [3] = 1. When both charging and discharge are enabled, the discharge operation takes higher priority.

In source mode, the IC employs a fixed frequency (500k to 1.2MHz configurable) switching regulator. And it switches from PWM operation to pulse-skipping operation at light load.

The output voltage is compliant with USB PD specification, including 5V, 9V, 12V, 15V and 20V, with 20mV step by either register programmable DAC or external FB pin.The output current limit is configurable via I²C/SMBus up to 5A with 50mA/step to be compliant.

As a conclusion only when the following conditions are valid the discharge operation will be enabled

- V_{BATT} > V_{BATT LOW}
- REG12h, bit [3] =1

To meet PD timing spec, output voltage should be settled within 275ms.

In source mode, the switcher can work in buck mode, boost mode or buck-boost mode according to the battery voltage and the discharge voltage.

Over-Voltage Protection in Source Mode

The MP2651 also features output over voltage protection in Source mode. The IC continuously monitor the voltage at V_{IN} pin in Source mode, when $V_{\text{IN}} > V_{\text{IN_SRC_OV}}$, the PWM will be disabled and OV fault will be asserted in status and fault register. And the PWM will recover

PRELIMINARY SPECIFICATIONS SUBJECT TO CHANGE

until the V_{IN} is lower than $V_{\text{IN_SRC_OV}}$ by a hysteresis which is shown in EC table.

Short-Circuit Protection in Source Mode

And the IC also features the output short circuit protection and output over voltage protection. When the load current reaches to the output current limit, V_{IN} will start falling. When it falls below $V_{\text{IN_SRC_UV}}$ for more than 10ms, the discharge fault will be asserted and the discharge is disabled and restart after 30ms.

Battery Standby Mode

If only the battery is connected and the input source is absent (and the discharge function is disabled), VCC LDO stays on. The maximum quiescent current of the IC is $35\mu A$. The low quiescent current help to extend the running time of the battery.

Battery Under Voltage Protection

The MP2651 has two-level battery under voltage protection. In source mode, when $V_{BATT} < V_{BATT_LOW}$ for 30ms the MP2651 will generate an INT to report the battery voltage is low, then source mode is stopped. The user can configure the source mode behavior via REG0Bh bit [11]. When REG0Bh bit [11] = 0, source mode will restart automatically when VBATT recovery to higher than 6.4V; when REG0Bh bit [11] = 1, source mode is latched and only re-toggling the SRC-EN bit can restart source mode.

SMBus and I²C Compatibility

The MP2651 has SCL/SDA interface which is compatible with SMBus and I²C.

The MP2651 registers are 16bits, so it's compatible with both SMBus and 16 bits I²C.

The System Management Bus (SMBus) is a two-wire. bidirectional serial interface. consisting of a data line (SDA) and a clock line (SCL). The lines are externally pulled to a bus voltage when they are idle. Connecting to the line, a master device generates the SCL signal and device address and arranges the communication sequence. It is based on the principles of operation of I²C. MP2651 interface is a SMBus slave which will support both the standard mode (100kHz) and Fast mode (400kHz). The SMBus address is 0001 001x, where x is the read/write bit, receiving control

inputs from the master device, like a micro controller or a digital signal processor.

START and STOP Conditions

All the transactions begin with a START (S) and can be terminated by a STOP (P). A high to low transition on the SDA line while the SCL line is high defines a START condition. A low to high transition on the SDA line when the SCL line is high defines a STOP condition.

START and STOP conditions are always generated by the master. The bus is considered busy after the START condition; it is considered free after the STOP condition.

Figure 8: START and STOP Conditions

Data Validity

The Data on the SDA line must be stable during the HIGH period of the clock. The HIGH or LOW state of the data line can only change when the clock signal on the SCL line is LOW. One clock pulse is generated for each data bit transferred.

When the bus is free, both lines are HIGH. The SDA and SCL pins are open drain.

Figure 9: Data Validity

Interrupt to Host (INT)

The IC also has an alert mechanism which can output an interrupt signal via INT pin to notice the system on the operation by outputting a 256µs low state INT pulse. The INT output is designed as open-drain structure, need an external pull-up voltage source in real operation. Please refer to the interrupt table to note which event will generate INT pulse. The INT can be shielded by via mask setting register REG18h-19h.

PRELIMINARY SPECIFICATIONS SUBJECT TO CHANGE

Address Pin

To avoid being same address as other device on the I²C Bus. the address of MP2651 can be configured via one-time program memory after they are assembled.

To support multiple ICs of MP2760 connected on the same I2C/SMBUS lines, the device address can also be adjusted by register together with ADDR pin as the other option.

The address is 7 bits long, followed by the 8th bit as a data direction bit (bit R/W). A zero indicates a transmission (WRITE), and a one indicates a request for data (READ). The address bit arrangement is shown below.

Figure 10: 7-Bit Addressing

The highest 4 bits of the address REG05h, bits [6:3] are configured via OTP.

The lowest 3 bits of the address REG05h, bits [2:0] are configured via two ways. It is controlled by the ADDR CFG bit REG05h, bit

If REG05h, bit [7] =1, the lowest 3 bits of address REG05h, bits [2:0] are fixed as 001.

If REG05h, bit [7] = 0, the ADDR pin programs the lowest 3 bits of IC address. There is a 10µA current flowing out of the ADDR pin. Connecting a resistor between ADDR pin and AGND to set different device address.

Table 3 shows the I2C/SMBus address for different resistor values from ADDR pin to AGND. This address is 7 bits long, followed by x, the 8th bit as a data direction bit (bit R/W).

Table 3: Address Setting

R _{ADDR} (kΩ)	Slave Address
0 to 1k	0001 000b
4.34k to 5.87k	0001 001b
9.35k to 12.65k	0001 010b
16.92k to 22.89k	0001 011b
Not recommend	0001 100b
Not recommend	(Reserved)
41.4k to 56.01k	0001 101b
59.33k to 80.27k	0001 110b
85k to 115k	0001 111b

SMBus Alert Response Address (ARA)

The SMBus alert response address (ARA) is a special address that can be used by the bus host.

In case more than one slave-only devices are connected on the bus and all INT lines are connected together. A slave-only device can signal the host through INT that it wants to talk. The host processes the interrupt simultaneously accesses all INT devices through the Alert Response Address (ARA). Only the device(s) which pulled INT low will acknowledge the Alert Response Address.

The host performs a modified Receive Byte operation. The 7bit device address provided by the slave transmit device is placed in the 7 most significant bits of the byte. The eighth bit can be a zero or one.

The SMBus Alert Response Address is 0001 100b.

Byte Format

Each byte on the SDA line must be 8 bits long. The number of bytes to be transmitted per transfer is unrestricted. Each byte has to be followed by an acknowledge bit. Data is transferred with the most significant bit (MSB) first.

The acknowledge takes place after every byte. The acknowledge bit allows the receiver to signal the transmitter that the byte was successfully received, so another byte may be ΑII clock pulses, including acknowledge pulse (9th clock pulse), generated by the master.

MPS Confidential - For MPS Use Only

MP2651 - BUCK-BOOST CHARGER FOR 1 TO 4 CELLS IN SERIES

PRELIMINARY SPECIFICATIONS SUBJECT TO CHANGE

Figure 11: Acknowledge Bit

The transmitter releases the SDA line during the acknowledge clock pulse, so the receiver can pull the SDA line low. It remains high during the 9th clock pulse; this is the "not acknowledge" signal. The master can then generate either a STOP to abort the transfer or a repeated START to start a transfer.

After the START, a slave address is sent. This address is 7 bits long followed by an 8th bit, a data direction bit (bit R/W). A zero indicates a transmission (WRITE), and a one indicates a request for data (READ). The complete data transfer is shown in

Figure 12: Byte Format

If the register address is not defined, the charger IC sends back NACK and returns to an idle state.

Figure 14: Single Word Read

PRELIMINARY SPECIFICATIONS SUBJECT TO CHANGE

APPLICATION INFORMATION

Selecting the Input Capacitor

The input capacitor absorbs the maximum ripple current from the PWM converter. In the buck mode operation, the input current is discontinuous. The RMS ripple current of input cap is calculated by the equation (1):

$$I_{\text{CIN_RMS}} = I_{\text{CHG}} x \frac{\sqrt{V_{\text{BATT}} x (V_{\text{IN}} - V_{\text{BATT}})}}{V_{\text{IN}}}$$

The worst-case RMS ripple current occurs at 50% duty cycle condition. The battery voltage is approximately 6V to 9V for the 2s battery configuration, so the worst case is when input is 12V to 20V

Low-ESR ceramic capacitors with X7R or X5R dielectrics are recommended to be the input decoupling capacitor, and should be placed as close as possible to IN and PGND pins of the IC. Their voltage rating must exceed the normal input voltage level. A capacitor with 25V or higher voltage rating is preferred for up to 20V input voltage. 1*1µF + 5*10µF capacitors are suggested for up to 3A input current limit.

Ceramic capacitors show a DC-bias effect. This effect reduces the effective capacitor of a charger. The effect may lead to a significant capacitance drop, especially for high input voltages and small capacitor packages. It's necessary to choose a higher voltage rating or nominal capacitance value in order to get the required value at the operation point.

VCC Decoupling Capacitor

VCC is an internal LDO output. An external 4.7μF decoupling capacitor must be placed between VCC and AGND as close as possible.

Selecting the Inductor

The MP2651 might be either operated in the buck mode or the boost mode, so the inductor current is equal to either the charging current or the input current. The inductor saturation current should be higher than the larger value of the input current (IIN) or the charging current (ICHG) plus half the ripple current. The inductor current ripples for buck mode and boost mode are calculated with equations (2) and (3), respectively.

$$I_{RIPPLE_BUCK} = \frac{V_{BATT} x (V_{IN} - V_{BATT})}{V_{IN} x f_{SW} x L}$$

$$I_{RIPPLE_BOOST} = \frac{V_{IN} x (V_{BATT} - V_{IN})}{V_{BATT} x f_{SW} x L}$$

The inductor ripple current (I_{RIPPLE}) depends on the input voltage (V_{IN}), the output voltage (V_{CFLR}), the switching frequency (f_{SW}) and the inductance (L).

The inductance in buck operation can be estimated with Equation (4):

$$L = \frac{V_{BATT}X(V_{IN}-V_{BATT})}{I_{RIPPLE\ BUCK}XV_{IN}Xf_{SW}}$$

The required inductance in Boost operation can be estimated with Equation (5):

$$L = \frac{V_{IN}x(V_{BATT} - V_{IN})}{V_{BATT}xf_{SW}xI_{RIPPLE BOOST}}$$

The MP2651 has configurable switching frequency from 500kHz to 1.2MHz. Higher switching frequency allows the use of smaller inductor values. Inductor saturation current should be higher than the charging current plus half ripple current.

The maximum input ripple current happens with D = 0.5. For example, the battery charging voltage ranges from 6V to 9V for 2-cell battery pack. For 15V adapter voltage, 7.5V battery voltage gives the maximum inductor ripple current. Another example is 3-cell battery the battery voltage range is from 9V to 13.2V, for 20V adapter voltage, 10V battery voltage gives the maximum inductor ripple current.

Usually inductor ripple is designed in the range of 20% to 40% maximum charging current as a trade-off between inductor size and efficiency for a practical design.

Selecting the Output Capacitor

The output capacitor (C_{BATT}) should have enough ripple current rating to absorb the output AC current.

In the boost mode operation, the output current is discontinuous and dominates the output RMS

31

PRELIMINARY SPECIFICATIONS SUBJECT TO CHANGE

ripple current, which can be calculated by the equation (6)

$$I_{\text{CBATT_BOOST}} = I_{\text{CHG}} x \frac{\sqrt{V_{\text{IN}} \times (V_{\text{BATT}} - V_{\text{IN}})}}{V_{\text{IN}}}$$

The worst case output RMS ripple current occurs at the lowest VBUS input voltage. The CFLR voltage is approximately 8V for the 2s battery configuration, so the worst case is 5V source mode condition. Low ESR ceramic capacitor such as X7R or X5R is preferred for the output decoupling capacitor and should be placed close to the CFLR and PGND pins of the IC.

The voltage rating of the capacitor must be higher than the normal battery voltage level. The capacitor with 16V or higher voltage rating is preferred for the 2-cell battery configuration.

Current Sense

The MP2651 has current loops to limit the current and improve the current accuracy and loop stability. An external current-sense resistor is required to sense the average current. Figure 15 shows a recommended connection.

Figure 15: Input or output current sense circuit

- 1. The input current loop to limit the current drawn from the USB port or adapter. The input current is sensed through IAP and IAN pins.
- 2. The battery current loop to limit the charge current or discharge current. The battery current is sensed through SRP and SRN

Selecting the Resistive Divider for NTC **Thermistor Temperature**

In real applications, an external thermistor (negative temperature coefficient) is placed close to the battery to sense the battery's temperature. The MP2651 measures the battery temperature by monitoring the voltage ratio between the NTC and VNTC pins (see Figure 6). Every temperature corresponds to a MP2651 voltage ratio. The has **JEITA** temperature thresholds to satisfy requirements.

For a given NTC thermistor, the NTC hot and cold temperature points can be calculated with Equation (7) and Equation (8), respectively:

$$\frac{R_{T2} + R_{NTC_HOT}}{R_{T1} + R_{T2} + R_{NTC_HOT}} = \frac{V_{HOT}}{V_{VNTC}}$$
(7)

$$\frac{R_{T2} + R_{NTC_COLD}}{R_{T1} + R_{T2} + R_{NTC_COLD}} = \frac{V_{COLD}}{V_{VNTC}}$$
(8)

Where $R_{\text{NTC HOT}}$ is the thermistor value at the expected hot temperature protection point, and $R_{\text{NTC COLD}}$ is the thermistor value at the expected cold temperature protection point. V_{HOT} / V_{VNTC} and V_{COLD} / V_{VNTC} are 23.6% and 74.5%, respectively.

Assume the expected hot and cold temperature thresholds are 60°C and 0°C. Using a 103AT thermistor as an example, the thermistor values

- $R_{NTC\ HOT} = 2.981k\Omega$
- $R_{NTC COLD} = 28.704k\Omega$

 R_{T1} and R_{T2} can be calculated with Equation (7) or Equation (8). $R_{T1} = 9.845kΩ$, $R_{T2} = 60Ω$.

To be simplified a $10k\Omega$ R_{T1} can be used and R_{T2} can be replaced with a wire.

PCB Layout Guidelines

Efficient PCB layout is critical for specified noise, efficiency, and stability requirements. A 4-layer PCB is recommended. For the best performance, refer to Figure 16 and follow the guidelines below:

PRELIMINARY SPECIFICATIONS SUBJECT TO CHANGE

- 1. Place the output capacitors as close to CFLR and PGND as possible. Place a $1\mu F$ small size (such as 0603) capacitor closer than the other $22\mu F$ capacitors. Ground connections need to be tied to the IC ground with a short copper trace connection or PGND plane.
- Place the input capacitors as close to IN and PGND as possible. Place a 1μF small size (such as 0603) capacitor closer than the other 10μF capacitors. Ground connections need to be tied to the IC ground with a short copper trace connection or PGND plane.
- 3. The connection from CFLR/IN to the 1µF has to be routed on the same layer with the IC, the returning back to PGND also has to be on the same layer with the IC. Keep the whole routing loop as small as possible.
- 4. Connect AGND to PGND to each decoupling capacitor via a single-point connection.
- 5. Place the VCC decoupling capacitor and the bootstrap capacitors next to the IC and

- make trace connections as short as possible.
- 6. A Kelvin connection is required for the current-sense resistor.
- 7. Route current sense wires (IAP and IAN, SRP and SRN) away from switching nodes such as SW1 and SW2.

Figure 16: Recommended PCB Layout

PRELIMINARY SPECIFICATIONS SUBJECT TO CHANGE

Typical Application Circuits

Figure 17: Typical Application Circuit

Table 4: Key BOM for Figure 17

Qty	Ref	Value	Description	Package	Manufacturer
5	C1, C11, C12, C13, C14	10μF	Ceramic capacitor, 25V, X7S	0805	Any
4	C2, C3,C7, C10	22µF	Ceramic capacitor, 25V, X5R or X7R	0805	Any
1	C4	4.7µF	Ceramic capacitor, 10V, X5R or X7R	0603	Any
2	C5, C6	100nF	Ceramic capacitor, 25V, X5R or X7R	0603	Any
1	L1	1.5µH	Inductor, 1.5µH, low DCR, I _{SAT} >14A	SMD	Any
2	RS1, RS2	10mΩ	Film resistor, 1%	2512	Any

PRELIMINARY SPECIFICATIONS SUBJECT TO CHANGE

TYPICAL APPLICATION CIRCUITS (continued)

Figure 18: Typical Application Circuit

Table 5: Key BOM for Figure 18

Qty	Ref	Value	Description	Package	Manufacturer
5	C1, C11, C12, C13, C14	10μF	Ceramic capacitor, 25V, X7S	0805	Any
4	C2, C3, C7, C10	22µF	Ceramic capacitor, 25V, X5R or X7R	0805	Any
1	C4	4.7µF	Ceramic capacitor, 10V, X5R or X7R	0603	Any
2	C5, C6	100nF	Ceramic capacitor, 25V, X5R or X7R	0603	Any
1	L1	1.5µH	Inductor, 1.5µH, low DCR, I _{SAT} >14A	SMD	Any
2	RS1, RS2	10mΩ	Film resistor, 1%	2512	Any
2	RA	5ΜΩ	Film resistor, 5%	0603	Any
2	AFET1, AFET2,	SISA14DN- T1-GE3	N-Channel MOSFET; 30V; 5.1mΩ; 20A	Power PAK 1212-8	Vishay

MPS Confidential - For MPS Use Only

MP2651 - BUCK-BOOST CHARGER FOR 1 TO 4 CELLS IN SERIES

PRELIMINARY SPECIFICATIONS SUBJECT TO CHANGE

REGISTER MAP

Register Name	Register Address	ОТР	r/w	Description	
REG05h	0x05	Yes	r/w	Device Address Setting	
REG06h	0x06	Yes	r/w	Input Minimum Voltage Limit Setting	
REG08h	0x08	Yes	r/w	Input Current Limit Setting	
REG09h	0x09	No	r/w	Output Voltage Setting in Source Mode	
REG0Ah	0x0A	No	r/w	Battery Impedance Compensation and Output Current Limit Setting in Source Mode	
REG0Bh	0x0B	Yes	r/w	Battery Low Voltage Threshold and Battery Discharge Current Regulation in Source Mode	
REG0Ch	0x0C	No	r/w	JEITA Action Setting	
REG0Dh	0x0D	Yes	r/w	Temperature Protection Setting	
REG0Eh	0x0E	Yes	r/w	Configuration Register0	
REG0Fh	0x0F	Yes	r/w	Configuration Register1	
REG10h	0x10	Yes	r/w	Configuration Register2	
REG11h	0x11	Yes	r/w	Configuration Register3	
REG12h	0x12	Yes	r/w	Configuration Register4	
REG14h	0x14	Yes	r/w	Charge Current Setting	
REG15h	0x15	Yes	r/w	Battery-Regulation Voltage Setting	
REG16h	0x16	No	r	Status and Fault Register 0	
REG17h	0x17	No	r	Status and Fault Register 1	
REG18h	0x18	No	r/w	INT Mask Setting Register 0	
REG19h	0x19	No	r/w	INT Mask Setting Register 1	
REG22h	0x22	No	r	Internal DAC Output of Input Current Limit Setting	
REG23h	0x23	No	r	ADC Result of Input Voltage	
REG24h	0x24	No	r	ADC Result of Input Current	
REG25h	0x25	No	r	ADC Result of Battery Voltage	
REG27h	0x27	No	r	ADC Result of Battery Current	
REG28h	0x28	No	r	ADC Result of NTC Voltage Ratio	
REG29h	0x29	No	r	ADC Result of TS Voltage Ratio	
REG2Ah	0x2A	No	r	ADC Result of Junction Temperature	
REG2Bh	0x2B	No	r	ADC Result of Battery Discharge Current	
REG2Ch	0x2C	No	r	ADC Result of Input Voltage In Discharge Mode	
REG2 Dh	0x2D	No	r	ADC Result of Output Current In Discharge Mode	

NOTES:

⁶⁾ The default Device Address is 08h by Address pin connected to AGND. Refer to the section "Address Pin" to get the new device address if REG05h or Address pin connection is modified.

⁷⁾ OTP in this section means one-time programmable memory.

MP2651 - BUCK-BOOST CHARGER FOR 1 TO 4 CELLS IN SERIES

PRELIMINARY SPECIFICATIONS SUBJECT TO CHANGE

REGISTER MAP

REG05h: Device Address Setting

Bit	Name	Default	Reset by WTD	r/w	Description	Comment
15-10	RESERVED	0	NA	NA	Reserved	Reserved
9	WD_SET	1	N	r/w	0: Disable 1: Enable	When this bit is 0, the watchdog timer will be disabled automatically when VIN is absent.
8	TLOW_EN	0	Z	r	0: Disable(I2C) 1: Enable(SMBus)	To be compliant to SMBus , a 25ms timer is required to release SCL and SDA (reset the communication) if the timer expired. This bit is set to 0 as default. It can be configurable via OTP.
7	ADDR_CFG	0	N	r	0: ADDR [2:0] is decided by ADDR Pin 1: ADDR [2:0] is decided by OTP	This bit is used to decide the way of configuring the device address. It has 0 as default. It can be configurable via OTP.
6	ADDR[6]	0	N	r		
5	ADDR[5]	0	N	r		These bits are highest 4 bits of device
4	ADDR[4]	0	N	r		address. It has 0b0001 as default. It can be configurable via OTP.
3	ADDR[3]	1	N	r		
2	ADDR[2]	0	N	r		If ADDR_CFG = 0, ADDR [2:0] are programmed by ADDR pin resistor. If ADDR_CFG=1, ADDR [2:0] are fixed
1	ADDR[1]	0	N	r		
0	ADDR[0]	1	N	r		as 0b001.

PRELIMINARY SPECIFICATIONS SUBJECT TO CHANGE

REG06h: Input Minimum Voltage Limit Setting

Bit	Name	Default	Reset by WTD	r/w	Description	Comment
15-8	RESERVED	0	NA	NA	Reserved	Reserved
7	VIN_MIN[6]	0	Y	r/w	10240mV	
6	VIN_MIN[6]	0	Y	r/w	5120mV	
5	Vіn_міn[5]	1	Y	r/w	2560mV	
4	VIN_MIN[4]	1	Y	r/w	1280mV	These bits are used to set the input
3	Vin_min[3]	1	Y	r/w	640mV	minimum voltage limit. It has a 4.56V default and up to 20.4V range. It can be configurable via OTP.
2	VIN_MIN[2]	0	Y	r/w	320mV	it can be configurable via OTF.
1	Vin_min[1]	0	Y	r/w	160mV	
0	Vin_min[0]	1	Y	r/w	80mV	

REG08h: Input Current Limit Setting

Bit	Name	Default	Reset by WTD	r/w	Description	Comment
15-7	RESERVED	0	NA	NA	Reserved	Reserved
6	I _{IN_LIM} [6]	0	Y	r/w	3200mA	
5	I _{IN_LIM} [5]	0	Y	r/w	1600mA	
4	I _{IN_LIM} [4]	0	Y	r/w	800mA	These bits are used to set the input current limit. It has a 500mA default and up to 5A range.
3	I _{IN_LIM} [3]	1	Y	r/w	400mA	It can be configurable via OTP.
2	I _{IN_LIM} [2]	0	Y	r/w	200mA	Notes: When RS1 changes to 5mΩ, internal gain should also be changed via REG10h, bit [8] and then LSB will keep
1	I _{IN_LIM} [1]	1	Y	r/w	100mA	unchanged.
0	I _{IN_LIM} [0]	0	Y	r/w	50mA	

PRELIMINARY SPECIFICATIONS SUBJECT TO CHANGE

REG09h: Output Voltage Setting in Source Mode

Bit	Name	Default	Reset by WTD	r/w	Description	Comment	
15-12	RESERVED	0	NA	r/w	Reserved	Reserved	
11	V _{IN_SRC_OS}	0	N	r/w	0: 0V 1: 0.64V	When this bit is enabled, the V _{IN_SRC} is DEC (Bit [9:0])+0.64V Default: 0	
10	Vin_src_cfg	0	N	r/w	O: Configured by register bit. 1: Configured by FB pin.	This bit is used to decide the way of configuring the output voltage in source mode. Default: 0	
9	V _{IN_SRC} [9]	0	N	r/w	10240mV		
8	V _{IN_SRC} [8]	0	N	r/w	5120mV		
7	V _{IN_SRC} [7]	1	N	r/w	2560mV		
6	V _{IN_SRC} [6]	1	N	r/w	1280mV		
5	V _{IN_SRC} [5]	1	N	r/w	640mV	These bits are used to set the output	
4	V _{IN_SRC} [4]	1	N	r/w	320mV	voltage in source mode. It has a 4.98V default and up to 20.46V range.	
3	V _{IN_SRC} [3]	1	N	r/w	160mV		
2	V _{IN_SRC} [2]	0	N	r/w	80mV		
1	Vin_src[1]	0	N	r/w	40mV		
0	Vin_src[0]	1	N	r/w	20mV		

PRELIMINARY SPECIFICATIONS SUBJECT TO CHANGE

REG0Ah: Battery Impedance Compensation and Output Current Limit Setting in Source Mode

Bit	Name	Default	Reset by WTD	r/w	Description	Comment
15	RESERVED	0	NA	NA	Reserved	Reserved
14	RESERVED	0	NA	NA	Reserved	Reserved
13	BATTR [2]	0	Υ	r/w	200mΩ/ Cell	These bits are used to input predicted
12	BATTR [1]	0	Υ	r/w	100mΩ/ Cell	battery internal impedance and cable impedance. It has a 0 default and 0 to
11	BATTR [0]	0	Y	r/w	50mΩ/ Cell	350mΩ/Cell range.
10	Vclamp[2]	0	Y	r/w	240mV/ Cell	These bits are used to set the maximum compensation voltage which should be
9	Vclamp[1]	0	Y	r/w	120mV/ Cell	added to original battery-full regulation voltage if IR compensation function is
8	Vclamp[0]	0	Y	r/w	60mV/ Cell	used. It has a 0mV default and a 0 to 420mV/Cell range.
7	RESERVED	0	NA	NA	Reserved	Reserved
6	IIN_SRC [6]	0	Υ	r/w	3200mA	
5	IIN_SRC [5]	1	Υ	r/w	1600mA	
4	IIN_SRC [4]	0	Υ	r/w	800mA	These bits are used to set the output current limit of source mode. It has a 2A
3	IIN_SRC [3]	1	Υ	r/w	400mA	default and a 0 to 5.5A range.
2	IIN_SRC [2]	0	Y	r/w	200mA	Notes: When RS1 changes to 5mΩ, internal gain should be also changed via REG10h, bit [8] and then LSB will keep
1	In_src [1]	0	Y	r/w	100mA	unchanged.
0	IIN_SRC [0]	0	Y	r/w	50mA	

PRELIMINARY SPECIFICATIONS SUBJECT TO CHANGE

REG0Bh: Battery Low Voltage Setting and Battery Discharge Current Regulation in Source Mode

Bit	Name	Default	Reset by WTD	r/w	Description	Comment
15-14	RESERVED	NA	NA	NA	Reserved	Reserved
13	VBATT_LOW_EN	1	Y	r/w	0: Disable 1: Enable	This bit is used to enable the battery low-voltage protection. It is enabled as default. It can be configurable via OTP.
12	Vbatt_pre	1	N	r/w	0: 2.5V/Cell 1: 3.0V/Cell	This bit is used to set Pre-charge to CC charge threshold. It has a 3.0V/Cell default.
11	BATTLOW_A CT	0	Y	r/w	0: Only generate INT 1: Generate INT and Latch off DC/DC	This bit is used to decide the behavior of battery low voltage protection when REG0Bh, bit [13] is set to 1. When VBATT < VBATT_LOW which is set via REG0Bh, bits [10:9], and INT will be asserted to inform the host and DC/DC can also be latched off optionally. It has a 0 default. It can be configurable via OTP. Notes: Either charging the battery or toggling SRC_EN bit will clear DSCHG_FLT bit. Then the source can be enabled again. When Source Mode is disabled, BATTLOW comparator
						doesn't operate.
10	V _{BATT_LOW} [1]	0	N	r/w	00: 3.0V/Cell 01: 3.1V/Cell	These bits are used to set the low battery voltage threshold for battery
9	VBATT_LOW [0]	0	N	r/w	10: 3.2V/Cell 11: 3.3V/Cell	low-voltage protection. It has a 3.0V/Cell default.
8	IBATT_DSCHG EN	0	N	r/w	0: disable 1: enable	This bit is used to enable the battery discharge current regulation in source mode. It's disabled as default.
7	IBATT_DSCHG[7]	1	N	r/w	6400mA	
6	IBATT_DSCHG[6]	0	N	r/w	3200mA	
5	IBATT_DSCHG[5]	0	N	r/w	1600mA	
4	IBATT_DSCHG[4]	0	N	r/w	800mA	These bits are used to set the battery discharge current in source mode. It
3	IBATT_DSCHG[3]	0	N	r/w	400mA	has 6.4A default and up to 12.75A
2	IBATT_DSCHG[2]	0	N	r/w	200mA	range.
1	IBATT_DSCHG[1]	0	N	r/w	100mA	
0	IBATT_DSCHG[0]	0	N	r/w	50mA	

MP2651 - BUCK-BOOST CHARGER FOR 1 TO 4 CELLS IN SERIES

PRELIMINARY SPECIFICATIONS SUBJECT TO CHANGE

REG0Ch: JEITA Action Setting

Bit	Name	Default	Reset by WTD	r/w	Description	Comment
15	RESERVED	0	NA	NA	Reserved	
14	WARM_ACT [1]	0	Y	r/w	00: No Action; 01: Only reduce VBATT_REG 10: Only reduce Icc	These bits are used to decide the
13	WARM_ACT [0]	1	Y	r/w	11: Reduce both V _{BATT_REG} and I _{CC}	behavior when NTC warm protection.
12	COOL_ACT [1]	1	Y	r/w	00: No Action 01: Only reduce VBATT_REG 10: Only reduce Icc	These bits are used to decide the
11	COOL_ACT [0]	0	Y	r/w	11: Reduce both V _{BATT_REG} and I _{CC} when NTC cool	behavior when NTC cool protection.
10	JEITA_VSET[4]	1	Y	r/w	320mV/Cell	These bits are used to set the
9	JEITA_VSET[3]	0	Y	r/w	160mV/Cell	decrease value of the battery-full voltage when NTC cool and warm protection. It has a 320mV/Cell default and up to 620mV/Cell range.
8	JEITA_VSET[2]	0	Y	r/w	80mV/Cell	
7	JEITA_VSET[1]	0	Y	r/w	40mV/Cell	The battery-full voltage can be set
6	JEITA_VSET[0]	0	Y	r/w	20mV/Cell	via REG15h.
5	JEITA_ISET[1]	0	Y	r/w	00: 1/2 times 01: 1/4 times	These bits are used to set the scaling value of the constant current charge current. It has 01 default.
4	JEITA_ISET[0]	1	Y	r/w	10: 1/8 times 11: 1/16 times	The constant current charge current can be set via REG14h.
3-0	RESERVED	0	NA	NA	Reserved	

PRELIMINARY SPECIFICATIONS SUBJECT TO CHANGE

REG0Dh: Temperature Protection Setting

Bit	Name	Default	Reset by WTD	r/w	Description	Comment
15	TS_EN	1	N	r/w	0: Disable 1: Enable	This bit is used to enable the external temperature sense function. It's enabled as default.
14	RESERVED	0	NA	NA	Reserved	Don't change this bit value.
13	13 TS_ACT	1	Y	r/w	0: Only deliver INT when reach TS threshold 1: Deliver INT and take TS action	This bit is used to decide the behavior when TS over-temperature protection happens. An INT will be asserted after TS over-temperature protection and an additional input current regulation can be taken optionally.
						It has a 1 default.
						It can be configurable via OTP.
12	Vтs_нот[2]	1	N	r/w	000: 9%; (100°C) 001: 10%; (95°C) 010: 11.3%; (90°C)	These bits are used to set TS over-
11	Vтs_нот[1]	0	N	r/w	011: 12.7%; (85°C) 100: 14.3%; (80°C)	temperature threshold. It has a 14.3% (As a percentage of VNTC) defaut.
10	Vтs_нот[0]	0	N	r/w	7 101: 16.1%; (75°C) 110: 18.2%; (70°C) 111: 20.6%; (65°C)	Notes: Assuming the thermistor is 103AT, pull up resistor is $10k\Omega$.
9	NTC_EN	1	N	r/w	0: Disable 1: Enable	This bit is used to enable NTC protection. It is enabled as default.
8	NTC_ACT	1	Ν	r/w	0: Only deliver INT when reach NTC threshold 1: Deliver INT and take JEITA action	This bit is used to decide the behavior when NTC protection. An INT will be asserted when NTC protection and addition actions can be taken optionally. It has a 1 default value. It can be configurable via OTP.
7	V _{НОТ} [1]	1	N	r/w	00: 29.1%; (50°C) 01: 25.9%; (55°C)	These bits are used to set the "Hot" temperature threshold which is marked as
6	Vнот[0]	0	N	r/w	10: 23.0%; (60°C) 11: 20.4%; (65°C)	percentage of V _{NTC} . It has a 23% default. Notes: Assuming the thermistor is 103AT
5	V _{WARM} [1]	0	N	r/w	00: 36.5%; (40°C) 01: 32.6%; (45°C)	These bits are used to set the "Warm" temperature threshold. It has a 32.6%
4	Vwarm[0]	1	N	r/w	10: 29.1%; (50°C) 11: 25.9%; (55°C)	default. Notes: Assuming the thermistor is 103AT
3	V _{COOL} [1]	1	N	r/w	00: 74.2%; (0°C) 01: 69.6%; (5°C)	These bits are used to set the "Cool" temperature threshold. It has a 64.8%
2	V _{COOL} [0]	0	N	r/w	10: 64.8%; (10°C) 11: 59.9%; (15°C)	default. Notes: Assuming the thermistor is 103AT
1	V _{COLD} [1]	0	N	r/w	00: 78.4%; (-5°C) 01: 74.2%; (0°C)	These bits are used to set the "Cold" temperature threshold. It has a 74.2%
0	Vcold[0]	1	N	r/w	10: 69.6%; (5°C) 11: 64.8%; (10°C)	default. Notes: Assuming the thermistor is 103AT

MP2651 - BUCK-BOOST CHARGER FOR 1 TO 4 CELLS IN SERIES

PRELIMINARY SPECIFICATIONS SUBJECT TO CHANGE

REG0Eh: Configuration Register 0

Bit	Name	Default	Reset by WTD	r/w	Description	Comment
15:9	RESERVED	0	NA	NA	Reserved	Reserved
8	ADC_START	0	N	r/w	0: Disable ADC 1: Enable ADC	This bit is the enable bit for ADC when it is set to one-shot conversion mode via REG0Eh, bit [7]. At this mode this bit will be back to 0 after conversion done. When DC/DC is enabled, this bit will be always 1 to enable ADC. This bit is read-only when ADC_CONV=1. The bit stays high during ADC conversion.
7	ADC_CONV	0	N	r/w	0: one shot conversion 1: continuous conversion	This bit is used to decide the behavior of ADC conversion.
6	SW_FREQ[2]	0	Y	r/w	000: 500k 001: 600k	
5	SW_FREQ[1]	0	Y	r/w	010: 700k 011: 800k 100: 750k 101: 900k 110: 1000k 111: 1200k	These bits are used to set the switching frequency of buck-boost converter. It has a 600k default. It can be configurable via OTP.
4	SW_FREQ[0]	1	Y	r/w		it can be configurable via OTT.
3-0	RESERVED	0	NA	NA	Reserved	Don't change this bit value.

PRELIMINARY SPECIFICATIONS SUBJECT TO CHANGE

REG0Fh: Configuration Register 1

Bit	Name	Default	Reset by WTD	r/w	Description	Comment
15	TJ_REG EN	1	Y	r/w	0: Disable 1: Enable	This bit is used to enable the junctional over-temperature regulation. It's enabled as default It can be configurable via OTP.
14	T _{J_REG} [2]	1	Y	r/w	000: 80°C 001: 90°C	
13	T _{J_REG} [1]	1	Y	r/w	010: 95°C 011: 100°C 100: 105°C 101: 110°C	These bits are used to set the junction temperature regulation point. It has a 120°C default.
12	T _{J_REG} [0]	1	Y	r/w	110: 115°C 111: 120°C	
11	I _{TC} [3]	0	Υ	r/w	400mA	
10	I _{TC} [2]	0	Y	r/w	200mA	These bits are set the trickle-charge current. It has a 100mA default and a
9	Ітс[1]	1	Y	r/w	100mA	0 to 750mA range. It can be configurable via OTP.
8	Ітс[0]	0	Y	r/w	50mA	
7	I _{PRE} [7]	0	Y	r/w	800mA	
6	I _{PRE} [6]	1	Y	r/w	400mA	These bits are set the pre-charge current. It has a 400mA default and
5	I _{PRE} [5]	0	Y	r/w	200mA	up to 1.5A range. It can be configurable via OTP.
4	I _{PRE} [4]	0	Y	r/w	100mA	
3	I _{TERM} [3]	0	Y	r/w	400mA	
2	I _{TERM} [2]	1	Y	r/w	200mA	These bits are set the termination current. It has a 200mA default and
1	I _{TERM} [1]	0	Y	r/w	100mA	up to 750mA range. It can be configurable via OTP.
0	I _{TERM} [0]	0	Υ	r/w	50mA	The configurable via OTF.

PRELIMINARY SPECIFICATIONS SUBJECT TO CHANGE

REG10h: Configuration Register 2

Bit	Name	Default	Reset by WTD	r/w	Description	Comment	
15	RESERVED	0	NA	NA	Reserved	Reserved	
14	ACGATE_C TRL	0	N	r/w	0: Not force ACGATE on 1: Force ACGATE on	This bit is used to control the ACGATE. It can force ACGATE to turn on external MOSFET when it's set to 1. It has a 0 default and ACGATE state depends ADP voltage.	
13	RESERVED	0	NA	NA	Reserved	Don't change this bit	
12	TS/IMON	0	Y	r/w	0: TS/IMON pin act as TS 1: TS/IMON pin act as IMON	This bit is used to configure the function of the TS/IMON. It's configured to TS function as default. It can be configurable via OTP.	
11	VRECH	1	N	r/w	0: -100mV/cell 1: -200mV/cell	This bit is used to set automatic recharge threshold which is comparing to battery-full voltage. It has a -200mV/Cell default. It can be configurable via OTP	
10	BAT_NUM[1]	0	N	r/w	00: 1 cell; 01: 2 cell;	This bit is used to set the battery cells in series. It has a 2cell default.	
9	BAT_NUM[0]	1	N	r/w	10: 3 cell; 11: 4 cell;	It can be configurable via OTP.	
8	IN_RSNS	0	N	r/w	0: 10mΩ 1: 5mΩ	This bit is used to set the input current sense gain. It should be set according to external sense resistor RS1. It assumes $10m\Omega$ sense FET is used as default. It can be configurable via OTP.	
7	IBATT_RSN S	0	N	r/w	0: 10mΩ 1: 5mΩ	This bit is used to set the battery current sense gain. It should be set according to external sense resistor RS2. It assumes $10m\Omega$ sense FET is used as default. It can be configurable via OTP.	
6	ACGATE_E N	1	N	r/w	0: Disable the ACGAET driver (External ACFET will be off mandatorily) 1: Enable ACGATE driver	This bit is used to enable ACGATE driver. It's enabled by default.	
5	RESERVED	0	NA	NA	Reserved		
4	RESERVED	0	NA	NA	Reserved		
3	RESERVED	0	NA	NA	Reserved	Don't change those hits value	
2	RESERVED	0	NA	NA	Reserved	Don't change these bits value.	
1	RESERVED	0	NA	NA	Reserved		
0	RESERVED	0	NA	NA	Reserved		

PRELIMINARY SPECIFICATIONS SUBJECT TO CHANGE

REG11h: Configuration Register 3

Bit	Name	Default	Reset by WTD	r/w	Description	Comment
15	Reserved	0	NA	NA	Reserved	Reserved
14	V _{IN_SRC_OV}	1	N	r/w	00: 106%; 01: 120%;	These bits are used to set the over-voltage
13	V _{IN_SRC_OV}	1	Ν	r/w	10: 115%; 11: 110%	threshold of source output voltage. It has a 110% default.
12	V _{IN_SRC_UV} [1]	0	N	r/w	00: 75%; 01: 80%;	These bits are used to set the under-voltage threshold of source output voltage. It has a
11	V _{IN_SRC_UV} [0]	0	N	r/w	10: 85%; 11: 30%;	75% default.
10	VIN_OVP_ DGL	0	Ν	r/w	0: 1µs 1: 15ms	This bit is used to set deglitch time of input OVP in charging mode. It has a 1µs default
9	VIN_UVP [1]	0	N	r/w	00: 3.2V 01: 6.4V	These bits are used to set the input undervoltage protection threshold.
8	VIN_UVP [0]	0	N	r/w	10: 12V 11: 16.8V	It has a 3.2V default. It can be configurable via OTP.
7	V _{IN_OVP} [1]	1	N	r/w	00: 7.2V 01: 11.2V	These bits are used to set the Input overvoltage protection threshold.
6	VIN_OVP [0]	1	N	r/w	10: 17.6V 11: 22.4V	It has a 22.4V default. It can be configurable via OTP.
5	RESERVED	1	NA	NA	Reserved	Don't change this bit value.
4	RESERVED	0	NA	NA	Reserved	Don't change this bit value.
3	BATTOVP_ EN	1	N	r/w	0: Disable BATT OVP 1: Enable BATT OVP	This bit is used to enable BATT OVP. Default. It's enabled by default.
2	RESERVED	0	NA	r/w	Reserved	Don't change this bit value.
1	RESERVED	0	NA	r/w	Reserved	Don't change this bit value.
0	RESERVED	0	NA	r/w	Reserved	Don't change this bit value.

PRELIMINARY SPECIFICATIONS SUBJECT TO CHANGE

REG12h: Configuration Register 4

Bit	Name	Default	Reset by WTD	r/w	Description	Comment
15	RESERVED	0	NA	NA	Reserved	Don't change this bit value.
14	RESERVED	0	NA	NA	Reserved	Don't change this bit value.
13	TMR_EN	1	Y	r/w	0: Disable 1: Enable	This bit enables the charging safety timer (both TC/Pre-charge timer and CC/CV charge timer). It is set to 1 by default. It can be configurable via the OTP.
12	CHG_TMR[1]	1	Y	r/w	00: 5hours 01: 8hours	This bit sets the CC/CV timer. They are set
11	CHG_TMR[0]	1	Y	r/w	10: 12hours 11: 20hours	to 11 by default.
10	TMR2X_EN	1	Y	r/w	0: The safety timer is not doubled during input DPM or thermal regulation. 1: The safety timer is doubled during input DMP and thermal regulation.	This bit sets the safety timer during DPM and thermal regulation. It is set to 1 by default.
9	WTD_RST	0	Y	r/w	0: Normal 1: Reset	This I ² C Watchdog Timer Reset Default: (0) Back to 0 after timer is reset.
8	WTD[1]	0	Y	r/w	00: Disable Timer 01: 40s	This bit sets the I ² C watchdog timer. They are set to 00 by default.
7	WTD[0]	0	Y	r/w	10: 80s 11: 175s	It can be configurable via the OTP.
6	DC/DC_EN	1	Y	r/w	0: Disable 1: Enable	This bit is used to enable DC/DC. It is set to 1 by default. It can be configurable via OTP.
5	RESERVED	0	NA	NA	Reserved	Don't change this bit value.
4	TERM_EN	1	Y	r/w	0: Disable 1: Enable	This bit is used to enable charge termination. It is set to 1 by default via OTP.
3	SRC_EN	0	Y	r/w	0: Disable source mode 1: Enable source mode	This bit is used to enable source mode configuration. It is set to 0 by default. SRC_EN will over-ride charge enable function.
2	REG_RST	0	Y	r/w	0: Keep current register setting 1: Reset to default register value and reset safety timer	This bit sets the register reset setting. It is set to 0 by default. It resets to 0 after the register is reset.
1	IINLIM_EN	1	Y	r/w	0: IIN_LIM Disable 1: IIN_LIM Enable	This bit is used to enable the input current limit loop. It is set to 1 by default.
0	CHG_EN	1	Y	r/w	0: Charge Disable 1: Charge Enable	This bit configures the charge mode. It is set to 1 by default. SRC_EN overrides the CHG_EN enable function. It can be configurable via the OTP.

MP2651 - BUCK-BOOST CHARGER FOR 1 TO 4 CELLS IN SERIES

PRELIMINARY SPECIFICATIONS SUBJECT TO CHANGE

REG14h: Charge Current Setting

Bit	Name	Default	Reset by WTD	r/w	Description	Comment
15-14	Reserved	0	NA	NA	Reserved	
13	I _{CC} [7]	0	Y	r/w	6400mA	
12	I _{CC} [6]	0	Y	r/w	3200mA	
11	Icc[5]	1	Y	r/w	1600mA	The second with the second second with the second s
10	Icc[4]	0	Υ	r/w	800mA	These bits set the charge current. It has a 0A offset, 0A to 6A range, and is set to 2A
9	Icc[3]	1	Υ	r/w	400mA	by default.
8	Icc[2]	0	Υ	r/w	200mA	It can be configurable via the OTP.
7	Icc[1]	0	Υ	r/w	100mA	
6	Icc[0]	0	Υ	r/w	50mA	
5-0	Reserved	0	NA	NA	Reserved	Reserved

MP2651 - BUCK-BOOST CHARGER FOR 1 TO 4 CELLS IN SERIES

PRELIMINARY SPECIFICATIONS SUBJECT TO CHANGE

REG15h: Battery Regulation Voltage Setting

Bit	Name	Default	Reset by WTD	r/w	Description	Comment
15	RESERVED	0	NA	NA	Reserved	Reserved
14	VBATT_REG[10]	0	Y	r/w	10240mV	
13	VBATT_REG[9]	1	Y	r/w	5120mV	
12	VBATT_REG[8]	1	Y	r/w	2560mV	
11	VBATT_REG[7]	0	Y	r/w	1280mV	
10	VBATT_REG[6]	1	Y	r/w	640mV	These bits set the charge-full voltage. It has a
9	VBATT_REG[5]	0	Y	r/w	320mV	3.4V/Cell to 4.67V/Cell range for different cell count setting. It is set to 8.4V absolute voltage by default.
8	VBATT_REG[4]	0	Y	r/w	160mV	It can be configurable via the OTP.
7	VBATT_REG[3]	1	Y	r/w	80mV	
6	V _{BATT_REG} [2]	0	Y	r/w	40mV	
5	V _{BATT_REG} [1]	0	Y	r/w	20mV	
4	V _{BATT_REG} [0]	0	Υ	r/w	10mV	
3-0	RESERVED	0	NA	r/w	Reserved	Reserved

PRELIMINARY SPECIFICATIONS SUBJECT TO CHANGE

REG16h: Status and Fault Register 0

Bit	Name	Default	Reset by WTD	r/w	Description	Comment
15	MD_STAT[1]	0	N	r	00: Shipping 01/11: Operation	These bits indicate the DC/DC operation status. It asserts INT when
14	MD_STAT[0]	0	N	r	10: Standby	state changes.
13	PG_STAT	0	N	r	0: V _{IN} not power good 1: V _{IN} power good	This bit indicates the power good status. It is set to 0 by default. It asserts INT when state changes.
12	SWITCH_STA T[1]	0	N	r	00: IDLE 01: BUCK	These bits indicate the DC/DC operation mode. It is set to 00 by
11	SWITCH_STA T[0]	0	N	r	10: BUCK-BOOST 11: BOOST	default.
10	BATT MISS_STAT	0	N	r	0: Normal 1: Battery Missing	This bit indicates the battery is missing or not. It is set to 0 by default.
9	RESERVED	0	NA	NA	Reserved	Reserved
8	CHG_STAT [2]	0	N	r	000: No Charging 001: Trickle charge	These bits indicate the charging
7	CHG_STAT [1]	0	N	r	010: Pre-charge 011: CC charge 100: CV charge	status. They are set to 000 by default.
6	CHG_STAT [0]	0	N	r	101: Charge termination	It asserts INT when state changes.
5	VIN_MIN_STA T	0	N	r	0: Not in input voltage limit 1: In input voltage limit	This bit indicates whether the IC stays in the input voltage loop. It is set to 0 by default. It asserts INT when state changes.
4	IIN_LIM_STAT	0	N	r	0: Not in input current limit 1: In input current limit	This bit indicates whether the IC stays in the input current loop. It is set to 0 by default. It asserts INT when state changes.
3	TJREG_STAT	0	N	r	0: Not in thermal regulation loop 1: In thermal regulation loop	This bit indicates whether the IC stays in the thermal regulation loop. It is set to 0 by default. It asserts INT when state changes.
2	RESERVED	0	NA	NA	Reserved	Reserved
1	TS Fault	0	N	r	0: Normal 1: TS Hot	This bit indicates a TS related fault happens. It asserts INT when fault happens.
0	RESERVED	0	NA	NA	Reserved	Reserved
	l .		I	l .	l .	

PRELIMINARY SPECIFICATIONS SUBJECT TO CHANGE

REG17h: Status and Fault Register 1

Bit	Name	Default	Reset by WTD	r/w	Description	Comment
15	VIN_SRC _OV	0	N	r	0: Normal 1: OVP at VIN in source mode.	This bit indicates output OVP happens in source mode.
	_				mode.	It asserts INT when fault happens.
14	VIN_SRC _UV	0	N	r	0: Normal 1: UVP at VIN in source mode	This bit indicates output UVP happens in source mode.
	_				mode	It asserts INT when fault happens.
13	VIN_OV	0	N	r	0: Normal; 1: Input OVP in charge	This bit indicates input OVP happens in charging mode.
					mode	It asserts INT when fault happens.
12	VADP_OV	0	N	r	0: Normal 1: VADP OVP	This bit indicates ADP OVP happens in charging mode.
						It asserts INT when fault happens.
11	RESERVED	0	NA	NA	Reserved	Reserved
10	RESERVED	0	NA	NA	Reserved	Reserved
9	RESERVED	0	NA	NA	Reserved	Reserved
8	VBATT_OV	0	N	r	0: Normal 1: Battery OVP	This bit indicates battery OVP happens in charging mode.
					, ,	It asserts INT when fault happens.
7	VBATT LOW	0	N	r	0: Normal 1: Discharge stop due	This bit indicates low battery voltage in source mode.
					to BATT_LOW	It asserts INT when fault happens.
6	WTD_EXP	0	N	r	0: Normal; 1: Watchdog timer	This bit indicates the watchdog timer expires.
					expiration	It asserts INT when fault happens.
5	CHG TMR_EXP	0	N	r	0: Normal; 1: Charge Safety timer expiration	This bit indicates the charge safety timer expires.
4	THERM_SH DN	0	N	r	0: Normal 1: Thermal Shutdown	This bit indicates the thermal shutdown happens.
						It asserts INT when fault happens.
3	RESERVED	0	NA	r/w	Reserved	Reserved

MP2651 - BUCK-BOOST CHARGER FOR 1 TO 4 CELLS IN SERIES

PRELIMINARY SPECIFICATIONS SUBJECT TO CHANGE

2	NTC_FAUL T[2]	0	N	r	Charge Mode: 000: Normal	Source Mode: 000: Normal	
1	NTC_FAUL T[1]	0	Ν	R	001: NTC Cold 010: NTC Cool	001: NTC Cold 100: NTC Hot	These bits indicate the NTC faults happens in charging mode.
0	NTC_FAUL T[0]	0	N	R	011: NTC Warm 100: NTC Hot 111: NTC Float	111: NTC Float	It asserts INT when fault happens.

PRELIMINARY SPECIFICATIONS SUBJECT TO CHANGE

REG18h: INT Mask Setting Register 0

Bit	Name	Default	Reset by WTD	r/w	Description	Comment
15	RESERVED	0	NA	NA	Reserved	Reserved
14	RESERVED	0	NA	NA	Reserved	Reserved
13	VIN_SRC_F AULT	0	Υ	r/w	0: Masked 1: Not masked	
12	VIN_OV_FA ULT	0	Y	r/w	0: Masked 1: Not masked	For any fault which is masked, the INT will
11	PG_STAT	0	Y	r/w	0: Masked 1: Not masked	not be asserted when fault happens. But the fault bit will still shows.
10	BATT_OV_ FAULT	0	Y	r/w	0: Masked 1: Not masked	
9	RESERVED	0	NA	NA	Reserved	Reserved
8	WTD_FAUL T	0	Y	r/w	0: Masked 1: Not masked	
7	BATT LOW_FAUL T	0	Y	r/w	0: Masked 1: Not masked	
6	BATT MISS_STA T	0	Y	r/w	0: Masked 1: Not masked	
5	THERM_SH DN	0	Υ	r/w	0: Masked 1: Not masked	
4	TS Fault	0	Y	r/w	0: Masked 1: Not masked	For any fault which is masked, the INT will not be asserted when fault happens. But the fault bit will still shows.
3	NTC FAULT	0	Y	r/w	0: Masked 1: Not masked	
2	CHG TMR_FAUL T	0	Y	r/w	0: Masked 1: Not masked	
1	MD_STAT	0	Y	r/w	0: Masked 1: Not masked	
0	CHG_STAT	0	Y	r/w	0: Masked 1: Not masked	

MP2651 - BUCK-BOOST CHARGER FOR 1 TO 4 CELLS IN SERIES

PRELIMINARY SPECIFICATIONS SUBJECT TO CHANGE

REG19h: INT Mask Setting Register 1

Bit	Name	Default	Reset by WTD	r/w	Description	Comment
15-3	RESERVED	0	NA	NA	Reserved	Reserved
2	TJREG_STAT	0	Y	r/w	0: Masked 1: Not masked	
1	VIN_MIN_STA T	0	Y	r/w	0: Masked 1: Not masked	For any fault which is masked, the INT will not be asserted when fault happens. But the fault bit will still shows.
0	IIN_LIM_STAT	0	Y	r/w	0: Masked 1: Not masked	rault bit wiii stiii sriows.

REG22h: Internal DAC Output of Input Current Limit

Bit	Name	Default	Reset by WTD	r/w	Description	Comment
15-7	Reserved	0	NA	NA	Reserved	Reserved
6	IIN_DPM[6]	0	N	r	3200mA	
5	I _{IN_DPM} [5]	0	N	r	1600mA	
4	I _{IN_DPM} [4]	0	N	r	800mA	
3	I _{IN_DPM} [3]	0	N	r	400mA	These bits only indicate the real input current limit value, which is read-only.
2	I _{IN_DPM} [2]	0	N	r	200mA	,
1	I _{IN_DPM} [1]	0	N	r	100mA	
0	I _{IN_DPM} [0]	0	N	r	50mA	

PRELIMINARY SPECIFICATIONS SUBJECT TO CHANGE

REG23h: ADC Result of Input Voltage

Bit	Name	Default	Reset by WTD	r/w	Description	Comment
15-10	Reserved	NA	NA	NA	Reserved	Reserved
9	V _{IN} [9]	NA	NA	r	10240mV	
8	V _{IN} [8]	NA	NA	r	5120mV	
7	V _{IN} [7]	NA	NA	r	2560mV	
6	V _{IN} [6]	NA	NA	r	1280mV	
5	V _{IN} [5]	NA	NA	r	640mV	These bits indicate the ADC conversion
4	V _{IN} [4]	NA	NA	r	320mV	of the input voltage
3	V _{IN} [3]	NA	NA	r	160mV	
2	V _{IN} [2]	NA	NA	r	80mV	
1	V _{IN} [1]	NA	NA	r	40mV	
0	V _{IN} [0]	NA	NA	r	20mV	

REG24h: ADC Result of Input Current

Bit	Name	Default	Reset by WTD	r/w	Description	Comment
15-10	Reserved	NA	NA	NA	Reserved	Reserved
9	I _{IN} [9]	NA	NA	r	3200mA	
8	I _{IN} [8]	NA	NA	r	1600mA	
7	I _{IN} [7]	NA	NA	r	800mA	
6	I _{IN} [6]	NA	NA	r	400mA	
5	I _{IN} [5]	NA	NA	r	200mA	These bits indicate the ADC conversion
4	I _{IN} [4]	NA	NA	r	100mA	of the input current.
3	I _{IN} [3]	NA	NA	r	50mA	
2	I _{IN} [2]	NA	NA	r	25mA	
1	I _{IN} [1]	NA	NA	r	12.5mA	
0	I _{IN} [0]	NA	NA	r	6.25mA	

PRELIMINARY SPECIFICATIONS SUBJECT TO CHANGE

REG25h: ADC Result of Battery Voltage Per Cell

Bit	Name	Default	Reset by WTD	r/w	Description	Comment
15-10	Reserved	NA	NA	NA	Reserved	Reserved
9	V _{BATT} [9]	NA	NA	r	2560 mV/Cell	
8	V _{BATT} [8]	NA	NA	r	1280 mV/Cell	
7	V _{BATT} [7]	NA	NA	r	640 mV/Cell	
6	Vватт[6]	NA	NA	r	320 mV/Cell	These bits indicate the ADC conversion of
5	V _{BATT} [5]	NA	NA	r	160 mV/Cell	the battery voltage per Cell.
4	V _{BATT} [4]	NA	NA	r	80 mV/Cell	The real battery voltage should be the value read times cell numbers.
3	V _{BATT} [3]	NA	NA	r	40 mV/Cell	
2	V _{BATT} [2]	NA	NA	r	20 mV/Cell	
1	V _{BATT} [1]	NA	NA	r	10 mV/Cell	
0	VBATT[0]	NA	NA	r	5 mV/Cell	

REG27h: ADC Result of Battery Charge Current

Bit	Name	Default	Reset by WTD	r/w	Description	Comment			
15-10	Reserved	NA	NA	NA	Reserved	Reserved			
9	I _{BATT} [9]	NA	NA	r	6400mA				
8	Іватт[8]	NA	NA	r	3200mA				
7	I _{BATT} [7]	NA	NA	r	1600mA				
6	Іватт[6]	NA	NA	r	800mA				
5	I _{BATT} [5]	NA	NA	r	400mA	ADC conversion of Charge Current			
4	I _{BATT} [4]	NA	NA	r	200mA	external $10m\Omega$ sense resistor.			
3	Іватт[3]	NA	NA	r	100mA				
2	Іватт[2]	NA	NA	r	50mA				
1	I _{BATT} [1]	NA	NA	r	25mA				
0	I _{BATT} [0]	NA	NA	r	12.5mA				

PRELIMINARY SPECIFICATIONS SUBJECT TO CHANGE

REG28h: ADC Result of NTC Sense Ratio

Bit	Name	Default	Reset by WTD	r/w	Description	Comment				
15-10	Reserved	NA	NA	NA	Reserved	Reserved				
9	NTC[9]	NA	NA	r	512/1024					
8	NTC[8]	NA	NA	r	256/1024					
7	NTC[7]	NA	NA	r	128/1024					
6	NTC[6]	NA	NA	r	64/1024	These hits indicate the ADC conversion of				
5	NTC[5]	NA	NA	r	32/1024	These bits indicate the ADC conversion NTC voltage percentage of VNTC. The re				
4	NTC[4]	NA	NA	r	16/1024	battery temperature can be recalculated according to external divider and thermistor				
3	NTC[3]	NA	NA	r	8/1024	datasheet.				
2	NTC[2]	NA	NA	r	4/1024					
1	NTC[1]	NA	NA	r	2/1024					
0	NTC[0]	NA	NA	r	1/1024					

REG29h: ADC Result of TS Sense Ratio

Bit	Name	Default	Reset by WTD	r/w	Description	Comment			
15-8	Reserved	NA	NA	NA	Reserved	Reserved			
9	TS[9]	NA	NA	r	512/1024				
8	TS[8]	NA	NA	r	256/1024				
7	TS[7]	NA	NA	r	128/1024				
6	TS[6]	NA	NA	r	64/1024				
5	TS[5]	NA	NA	r	32/1024	These bits indicate the ADC conversion of			
4	TS[4]	NA	NA	r	16/1024	TS voltage percentage of VNTC.			
3	TS[3]	NA	NA	r	8/1024				
2	TS[2]	NA	NA	r	4/1024				
1	TS[1]	NA	NA	r	2/1024				
0	TS[0]	NA	NA	r	1/1024				

PRELIMINARY SPECIFICATIONS SUBJECT TO CHANGE

REG2Ah: ADC Result of Junction Temperature

Bit	Name	Default	Reset by WTD	r/w	Description	Comment				
15-10	Reserved	NA	NA	NA	Reserved	Reserved				
9	TJ[9]	NA	NA	r	512					
8	TJ[8]	NA	NA	r	256					
7	TJ[7]	NA	NA	r	128					
6	TJ[6]	NA	NA	r	64					
5	TJ[5]	NA	NA	r	32	These bits indicate the ADC conversion of Junction Temperature T _J =314 – 0.5703 x REG2A[9:0]				
4	TJ[4]	NA	NA	r	16					
3	TJ[3]	NA	NA	r	8					
2	TJ[2]	NA	NA	r	4					
1	TJ[1]	NA	NA	r	2					
0	TJ[0]	NA	NA	r	1					

REG2Bh: ADC Result of Battery Discharge Current

Bit	Name	Default	Reset by WTD	r/w	Description	Comment			
15-8	Reserved	NA	NA	NA	Reserved	Reserved			
9	I _{BATT_DIS} [9]	NA	NA	r	6400mA				
8	IBATT_DIS[8]	NA	NA	r	3200mA				
7	IBATT_DIS[7]	NA	NA	r	1600mA	These bits indicate the ADC conversion of battery discharge charge current.			
6	IBATT_DIS[6]	NA	NA	r	800mA				
5	I _{BATT_DIS} [5]	NA	NA	r	400mA				
4	I _{BATT_DIS} [4]	NA	NA	r	200mA				
3	IBATT_DIS[3]	NA	NA	r	100mA				
2	IBATT_DIS[2]	NA	NA	r	50mA				
1	IBATT_DIS[1]	NA	NA	r	25mA				
0	I _{BATT_DIS} [0]	NA	NA	r	12.5mA				

MP2651 Rev. 0.8

PRELIMINARY SPECIFICATIONS SUBJECT TO CHANGE

REG2Ch: ADC Result of Input Voltage in Source Mode

Bit	Name	Default	Reset by WTD	r/w	Description	Comment				
15-10	Reserved	NA	NA	NA	Reserved	Reserved				
9	V _{IN_SRC} [9]	NA	NA	r	10240mV					
8	V _{IN_SRC} [8]	NA	NA	r	5120mV					
7	V _{IN_SRC} [7]	NA	NA	r	2560mV					
6	V _{IN_SRC} [6]	NA	NA	r	1280mV					
5	V _{IN_SRC} [5]	NA	NA	r	640mV	These bits indicate the ADC conversion of				
4	V _{IN_SRC} [4]	NA	NA	r	320mV	the output voltage at IN pin in source mode				
3	V _{IN_SRC} [3]	NA	NA	r	160mV					
2	V _{IN_SRC} [2]	NA	NA	r	80mV					
1	VIN_SRC[1]	NA	NA	r	40mV					
0	V _{IN_SRC} [0]	NA	NA	r	20mV					

REG2Dh: ADC Result of Output Current in Source Mode

Bit	Name	Default	Reset by WTD r/w Description		Description	Comment			
15-8	Reserved	NA	NA	NA	Reserved	Reserved			
9	I _{IN_SRC} [9]	NA	NA	r	3200mA	These bits indicate the ADC conversion of the output current in source mode.			
8	I _{IN_SRC} [8]	NA	NA	r	1600mA				
7	I _{IN_SRC} [7]	NA	NA	r	800mA				
6	I _{IN_SRC} [6]	NA	NA	r	400mA				
5	I _{IN_SRC} [5]	NA	NA	r	200mA				
4	I _{IN_SRC} [4]	NA	NA	r	100mA				
3	I _{IN_SRC} [3]	NA	NA	r	50mA				
2	I _{IN_SRC} [2]	NA	NA	r	25mA				
1	I _{IN_SRC} [1]	NA	NA	r	12.5mA				
0	I _{IN_SRC} [0]	NA	NA	r	6.25mA				

PRELIMINARY SPECIFICATIONS SUBJECT TO CHANGE

PACKAGE INFORMATION

TQFN-30 (4mm×5mm)

TOP VIEW

BOTTOM VIEW

SIDE VIEW

RECOMMENDED LAND PATTERN

NOTE:

- 1) ALL DIMENSIONS ARE IN MILLIMETERS.
- 2) LEAD COPLANARITY SHALL BE 0.08
- MILLIMETERS MAX.
- 3) JEDEC REFERENCE IS MO-220.
- 4) DRAWING IS NOT TO SCALE.

PRELIMINARY SPECIFICATIONS SUBJECT TO CHANGE

CARRIER INFORMATION

Part Number	Package Description	Quantity/ Reel	Quantity/ Tube	Quantiy/ Tray	Reel Diameter	Carrier Tape Width	Carrier Tape Pitch
MP2651GVT- xxxx-Z	TQFN-30 (4mm×5mm)	5000	N/A	N/A	13 in.	12 mm	8 mm

NOTICE: The information in this document is subject to change without notice. Please contact MPS for current specifications. Users should warrant and guarantee that third party Intellectual Property rights are not infringed upon when integrating MPS products into any application. MPS will not assume any legal responsibility for any said applications.