

ЭТИКЕТКА

СЛКН.431232.033 ЭТ

Микросхема интегральная 564 ИЕ22В Функциональное назначение – Трехдекадный двоично-десятичный счетчик с регистром памяти

12

Климатическое исполнение УХЛ Схема расположения выводов

 Условное графическое обозначение

 С2
 C1
 QG
 3

 C1
 BCD
 0
 9

 WR
 1
 7

10 7 1 11 CE 6 2 13 SR 3 SE 2 1 1 2 15 14 OF

Таблица назначения выводов

№ вывода	Обозначение вывода	Назначение вывода	№ вывода	Обозначение вывода	Назначение вывода
1	SE2	Выход выбора второй декады	9	Q0	Выход нулевого разряда
2	SE1	Выход выбора первой декады	10	WR	Вход записи
3	QG	Выход генератора	11	CE	Вход разрешения такта
4	C2	Тактовый вход для синхронизации выбора декад	12	C1	Тактовый вход счетчика
5	Q3	Выход третьего разряда	13	SR	Вход начальной установки
6	Q2	Выход второго разряда	14	OF	Выход сигнала переполнения
7	Q1	Выход первого разряда	15	SE3	Выход выбора третьей декады
8	OV	Общий	16	U _{cc}	Питание

1 ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ

1.1 Основные электрические параметры (при $t = (25\pm10)$ °C) Таблица 1

11	Буквенное		Норма		
Наименование параметра, единица измерения, режим измерения	обозначение	не менее	не более		
1	2	3	4		
1. Выходное напряжение низкого уровня, B, при: $U_{CC} = 5$ B, $U_{IH} = 5$ B, $U_{IL} = 0$ B $U_{CC} = 10$ B, $U_{IH} = 10$ B, $U_{IL} = 0$ B	U _{OL}	-	0,01 0,01		
2. Выходное напряжение высокого уровня, B, при: $U_{CC} = 5$ B, $U_{IH} = 5$ B, $U_{IL} = 0$ B $U_{CC} = 10$ B, $U_{IH} = 10$ B, $U_{IL} = 0$ B	U _{ОН}	4,99 9,99	- -		
3. Максимальное выходное напряжение низкого уровня, B, при: $U_{CC} = 5$ B, $U_{IL} = 1.5$ B, $U_{IH} = 3.5$ B $U_{CC} = 10$ B, $U_{IL} = 3.0$ B, $U_{IH} = 7.0$ B	U _{OL max}	-	0,8 1,0		
4. Минимальное выходное напряжение высокого уровня, B, при: $U_{CC}=5$ B, $U_{IL}=1,5$ B, $U_{IH}=3,5$ B $U_{CC}=10$ B, $U_{IL}=3,0$ B, $U_{IH}=7,0$ B	U _{OH min}	4,2 9,0	- -		
5. Входной ток низкого уровня, мкА, при: $U_{CC} = 15 \; B, \; U_{IL} = 0 \; B, \; U_{IH} = 15 \; B$	I_{IL}	-	/-0,1/		
6. Входной ток высокого уровня, мкА, при: $U_{CC} = 15 \; B, U_{IL} = 0 \; B, U_{IH} = 15 \; B$	I_{IH}	-	0,1		
7. Входной ток низкого уровня (по выводу 4), мкА, при: $U_{CC} = 15 \; B, U_{IL} = 0 \; B$	$I_{\rm IL1}$	/-10/	-		
8. Входной ток высокого уровня (по выводу 4), мкА, при: $U_{CC}=15~B,U_{IL}=0~B,U_{IH}=15~B$	I_{IH1}	10	-		
9. Выходной ток низкого уровня, мА, при: $U_{CC}=5~B,~U_{IL}=0~B,~U_{IH}=5~B,~U_{O}=0,4~B\\ U_{CC}=10~B,~U_{IL}=0~B,~U_{IH}=10~B,~U_{O}=0,5~B$	I_{OL}	1,8 2,8	-		

Продолжение таблицы 1			
1	2	3	4
$10.$ Выходной ток низкого уровня (по выводу 3), мА, при: $U_{\rm CC}=5$ B, $U_{\rm IL}=0$ B, $U_{\rm IH}=5$ B, $U_{\rm O}=0.4$ B $U_{\rm CC}=10$ B, $U_{\rm IL}=0$ B, $U_{\rm IH}=10$ B, $U_{\rm O}=0.5$ B	I_{OL1}	0,51 1,3	- -
$11.$ Выходной ток высокого уровня, мА, при: $U_{CC}=5$ B, $U_{IL}=0$ B, $U_{IH}=5$ B, $U_{O}=4,6$ B $U_{CC}=10$ B, $U_{IL}=0$ B, $U_{IH}=10$ B, $U_{O}=9,5$ B	I_{OH}	/-0,51/ /-1,3/	- -
12 . Ток потребления, мкА, при: $U_{CC} = 5$ B, $U_{IL} = 0$ B, $U_{IH} = 5$ B $U_{CC} = 10$ B, $U_{IL} = 0$ B, $U_{IH} = 10$ B $U_{CC} = 15$ B, $U_{IL} = 0$ B, $U_{IH} = 15$ B	$I_{\rm CC}$	- - -	5,0 10,0 20,0
13. Максимальная частота следования импульсов тактовых сигналов, м Γ ц, при: U_{CC} = 5 B, U_{IL} = 0 B, U_{IH} = 5 B U_{CC} = 10 B, U_{IL} = 0 B, U_{IH} = 10 B	f _{c max}	1,5 3,0	-
14. Время задержки распространения при включении (от входа SR к выходу Q2), нС, при: $U_{CC}=5~B,~U_{IL}=0~B,~U_{IH}=5~B,~C_L=50~\pi\Phi$ $U_{CC}=10~B,~U_{IL}=0~B,~U_{IH}=10~B,~C_L=50~\pi\Phi$	t _{PHLSR}	- -	1800 1000
15. Время задержки распространения при включении (выключении) от входа $C1$ к выходу $Q3$, н C , при: $U_{CC} = 5 \; B, \; U_{IL} = 0 \; B, U_{IH} = 5 \; B, \; C_L = 50 \; п\Phi$ $U_{CC} = 10 \; B, \; U_{IL} = 0 \; B, \; U_{IH} = 10 \; B, \; C_L = 50 \; n\Phi$	$t_{\mathrm{PHL1}} \ (t_{\mathrm{PLH1}})$	- -	1800 1000
16. Время задержки распространения при включении (от входа С1к выходу ОF), нС, при: U_{CC} = 5 B, U_{IL} = 0 B, U_{IH} = 5 B, C_L = 50 пФ U_{CC} = 10 B, U_{IL} = 0 B, U_{IH} = 10 B, C_L = 50 пФ	t _{PHL2}	- -	800 400
17. Время перехода при выключении, нС, при: $U_{CC} = 5 \; B, \; U_{IL} = 0 \; B, U_{IH} = 5 \; B \\ U_{CC} = 10 \; B, U_{IL} = 0 \; B, U_{IH} = 10 \; B$	t _{TLH}	-	360 180
$18.$ Время перехода при включении, нС, при: $U_{CC} = 5~B,~~U_{IL} = 0~B,~U_{IH} = 5~B$ $U_{CC} = 10~B,~U_{IL} = 0~B,~U_{IH} = 10~B$	$t_{ m THL}$	<u>-</u>	200 100

1.2 Содержание драгоценных металлов в 1000 шт. микросхем:

 Γ , серебро Γ ,

30лото г/мм на 16 выводах, длиной мм.

Цветных металлов не содержится.

2 НАДЕЖНОСТЬ

в том числе:

 $2.1\,$ Минимальная наработка (Тнм) микросхем в режимах и условиях эксплуатации, допускаемых стандартом ОСТ В $11\,0398-2000\,$ и ТУ, при температуре окружающей среды (температуре эксплуатации) не более $65\,^{\circ}$ С не менее $100000\,$ ч., а в облегченных режимах, которые приводят в ТУ при $U_{CC}=5B\pm10\%$ - не менее $120000\,$ ч.

 Γ амма — процентный ресурс $(T_{p\gamma})$ микросхем устанавливают в ТУ при γ = 95% и приводят в разделе " Справочные данные" ТУ.

2.2 Минимальный срок сохраняемости микросхем (Т см) при их хранении в отапливаемом хранилище или в хранилище с регулируемыми влажностью и температурой или местах хранения микросхем, вмонтированных в защищенную аппаратуру, или находящихся в защищенном комплекте ЗИП, должен быть 25 лет.

. Минимальный срок сохраняемости микросхем в условиях, отличающихся от указанных,- в соответствии с разделом 4 ОСТ В 11 0398 – 2000.

- 2.3 Срок сохраняемости исчисляют с даты изготовления, указанной на микросхеме.
- 3 ГАРАНТИИ ПРЕДПРИЯТИЯ ИЗГОТОВИТЕЛЯ
- 3.1 <u>Гарантии предприятия изготовителя по ОСТ В 11 0398 2000:</u>

Предприятие-изготовитель гарантирует соответствие поставляемой микросхемы всем требованиям ТУ в течение срока сохраняемости и минимальной наработки в пределах срока сохраняемости при соблюдении потребителем режимов и условий эксплуатации, правил хранения и транспортирования, а также указаний по применению, установленных ТУ.

Срок гарантии исчисляют с даты изготовления, нанесенной на микросхеме.

4 СВЕДЕНИЯ О ПРИЕМКІ	4	СВЕД	ЕНИЯ	O	ПРИЕ	MKE
----------------------	---	------	------	---	------	-----

Микросхемы 564 ИЕ22В соответст	вуют техническим условия:	и бК0.347.064 - 38ТУ/0	2 и признаны	годными для эксплуатации.

Приняты по	OT	
(извещение, акт и др.)	(дата)	_
Место для штампа ОТК		Место для штампа ВП
Место для штампа «Перепроверка г	произведена	(дата) »
Приняты по (извещение, акт и др.)	от(дата)	_
Место для штампа ОТК		Место для штампа ВП

Цена договорная

- 5 УКАЗАНИЯ ПО ПРИМЕНЕНИЮ И ЭКСПЛУАТАЦИИ
- 5.1 При работе с микросхемами и монтаже их в аппаратуре должны быть приняты меры по защите их от воздействия электростатических зарядов. Допустимое значение статического потенциала 500 В. Наиболее чувствительные к статическому электричеству последовательности (пары выводов): вход общая точка, выход общая точка. Остальные указания по применению и эксплуатации в соответствии с бК0.347.064 ТУ/02.