

Ateliers CREPP

Les servomoteurs

Nicolas Le Guerroué

.TABLE DES MATIÈRES

1	Préa	mbul	e					
Ι	Les	serv	vomoteur	4				
2	Prés	esentation						
		2.0.1	Asservissement					
		2.0.2	Architecture					
		2.0.3	Domaines d'application					
		2.0.4	Commande des servo-moteurs					
	2.1	Princi	pe de la PWM					
		2.1.1	Applications de la PWM					
	,	2.1.2	Code Arduino					
		2.1.3	Trame de commande servomoteurs					
		2.1.4	Branchement d'un servo-moteur					
		2.1.5	Code Arduino					
	2.2	Caract	téristiques					
		2.2.1	Electriques					
		2.2.2	Mécaniques					

SECTION 1	
l	
	<u>,</u>
	PRÉAMBULE

- ▶ Document réalisé en L⁴TEX par Nicolas Le Guerroué pour le Club de Robotique et d'Electronique Programmable de Ploemeur (CREPP)
- ▶ Permission vous est donnée de copier, distribuer et/ou modifier ce document sous quelque forme et de quelque manière que ce soit.
- ▶ Version du 6 février 2022
- ► Taille de police : 11pt
- **6** 06.20.88.75.12
- ▼ nicolasleguerroue@gmail.com
- ▶ Dans la mesure du possible, évitez d'imprimer ce document si ce n'est pas nécessaire. Il est optimisé pour une visualisation sur un ordinateur et contient beaucoup d'images.

Versions

octobre 2021	Fusion des supports d'ateliers
novembre 2021	Ajout de l'atelier sur les servomoteurs
décembre 2021	Ajout de l'atelier sur les moteurs pas-à-pas
janvier 2022	Ajout de l'annexe pour l'installation des bibliothèques ESP8266
février 2022	Ajout de l'annexe pour le serveur Web ESP8266 NodeMCU

Première partie Les servomoteur

Théorie sur les servo-moteur et applications pratiques avec Arduino

SECTION 2	
	PRÉSENTATION

Les servo-moteurs sont utilisés lorsqu'on souhaite un asservissement en position d'un axe de rotation 1

Asservissement

Un asservissement est un processus de correction pour maintenir une consigne. Par exemple, un régulateur de vitesse dans une voiture est un système asservi car la vitesse doit être constante quelle que soit la pente.

Architecture

Figure 2.1 – Constitution d'un servo-moteur

Domaines d'application

^{1.} Pulse Width Modulation: Modulation par Largeur d'Impulsion

- Modélisme
- Robotique

Commande des servo-moteurs

Les servo-moteurs ont besoins d'être controlés via un signal PWM.

Principe de la PWM

La PWM est la création d'un signal numérique dont le temps à l'état haut est variable. On fait varier le rapport cyclique (appelé r) qui est compris entre 0 et 1.

FIGURE 2.2 – Différents rapports cycliques

Applications de la PWM

En faisant varier la tension de sortie dans le temps rapidement (ξ 50Hz), on peut simuler une tension analogique. Quelques applications :

- Controle de la luminosté d'une LED
- Controle de servo-moteurs

Code Arduino

Voici un code d'exemple pour faire varier la luminosité d'une LED.

```
const int pin_led = 11; //Selection d'une broche PWM

float duty_cyle[11] = {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0};//
    Création d'un tableau avec les différents rapports cycliques

void setup() {
    pinMode(pin_led, OUTPUT); //Mise en sortie de la broche LED

}//Fin setup

void loop() {
    for(int i=0;i<11;i++)
    {
        int value_r = duty_cyle[i]*255.0; //Conversion d'une valeur entre 0 et
1 en une valeur entre 0 et 255
        analogWrite(pin_led, value_r); //Change le rapport cyclique pendant 3 s
        delay(600); //Attend 0.6s
    }

}//Fin loop</pre>
```

Variation de la luminosité d'une LED

Trame de commande servomoteurs

Branchement d'un servo-moteur

• Câble noir ou marron : GND

• Câble rouge : +5V

• Câble blanc ou jaune : Signal Arduino (11)

Code Arduino

Variation de la position d'un servo-moteurs

Caractéristiques

Electriques

 \bullet Tension de commande et d'alimentation : $\tilde{5}V$

Mécaniques

- Couple de sortie (Nm)
- Vitesse de rotation (degré/temps)