- **Example 1**: Show that $p \to q$ and $\neg p \lor q$ are logically equivalent.
- **Example 2**: Show that $p \lor (q \land r)$ and $(p \lor q) \land (p \lor r)$ are logically equivalent. This is the *distributive law* of disjunction over conjunction.
- **Example 3**: Show that $\neg(p \rightarrow q)$ and $p \land \neg q$ are logically equivalent.
- **Example 4**: Show that $p \to q \equiv \neg q \to \neg p$; that is, an implication is logically equivalent to its contrapositive.

1. Equivalent or not?

$$(p \land q) \rightarrow r$$
 vs $(p \rightarrow r) \land (q \rightarrow r)$

2. Prove $(\neg a \rightarrow b) \land (\neg b \lor (\neg a \lor \neg b))$ is equivalent to $\neg (a \leftrightarrow b)$, using logical equivalences.