Anexă

$$\begin{split} \log_a b^c &= c \log_a b \,, \, a \in \mathbb{R}_+^* \setminus \{1\}, \, b \in \mathbb{R}_+^*, c \in \mathbb{R} \\ \log_{a^c} b &= \frac{1}{c} \log_a b \,, \, a \in \mathbb{R}_+^* \setminus \{1\}, \, b \in \mathbb{R}_+^*, c \neq 0 \\ &\quad (x^\alpha)' = \alpha \, x^{\alpha - 1}, \quad \alpha \in \mathbb{R} \\ V &= \pi \int_a^s f^2(x) dx \\ \int x^\alpha dx &= \frac{x^{\alpha + 1}}{\alpha + 1} + C, \quad \alpha \in \mathbb{R} \setminus \{-1\} \\ &\quad \cos(2\alpha) = \cos^2 \alpha - \sin^2 \alpha \\ c^2 &= a^2 + b^2 - 2ab \cos \gamma \\ &\quad \frac{a}{\sin \alpha} = \frac{b}{\sin \beta} = \frac{c}{\sin \gamma} \\ &\quad \mathcal{A}_{lat.con} = \pi RG \\ &\quad \mathcal{A}_\Delta = \frac{1}{2} a h_a \\ V_{pir.} &= \frac{1}{3} \mathcal{A}_b H \\ (a + b)^n &= C_n^0 a^n + C_n^1 a^{n - 1} b + C_n^2 a^{n - 2} b^2 + \dots + C_n^k a^{n - k} b^k + \dots + C_n^n b^n \\ T_{k + 1} &= C_n^k a^{n - k} b^k, k \in \{0, 1, 2, \dots, n\} \\ C_n^m &= \frac{n!}{m! (n - m)!}, \qquad 0 \leq m \leq n \end{split}$$

Nr.	Item	Pun	ctaj
	ALGEBRĂ	1	
1.	Calculați valoarea expresiei $1.5 + \log_2 \sqrt{8}$. Rezolvare:	L 0 1 2 3 4 5	L 0 1 2 3 4 5
	Răspuns:		
2.	Rezolvați în $\mathbb C$ ecuația $(2+i)z=5$. Rezolvare:	L 0 1 2 3 4 5	L 0 1 2 3 4 5
	Răspuns:		
3.	Fie $D(x) = \begin{vmatrix} 2^{x-1} & 4 \\ 8 & 4^x \end{vmatrix}$. Rezolvați în $\mathbb R$ ecuația $D(x) = 0$. Rezolvare:	L 0 1 2 3 4 5 6 7 8	L 0 1 2 3 4 5 6 7 8
	Răspuns:		

4.	Fie expresia $E(\alpha)=(\cos\alpha+1)^2+(\cos\alpha-1)^2-3$. Arătați că valoarea expresiei $2\sqrt{3}\cdot E(15^\circ)$ este un număr natural. <i>Rezolvare</i> :	L 0 1 2 3 4 5 6 7 8	L 0 1 2 3 4 5 6 7 8
5.	Rezolvați în \mathbb{R} inecuația $\frac{ x }{\log_{0,2}(2x+3)} \geq 0$. Rezolvare:	L 0 1 2 3 4 5 6 7 8	L 0 1 2 3 4 5 6 7 8
	Răspuns:		

	GEOMETRIE			
6.	Secțiunea axială a unui con circular drept este un triunghi dreptunghic cu catetele de √2 cm. Determinați aria laterală a conului. *Rezolvare:* *Răspuns:*	L 0 1 2 3 4 5	L 0 1 2 3 4 5	
7.	Baza piramidei VABC este triunghiul dreptunghic ABC, în care m(∠A) = 90°, AB = 6 cm, AC = 8 cm. Muchia VA este perpendiculară pe planul bazei piramidei şi este congruentă cu mediana triunghiului ABC dusă din vârful A. Determinați volumul piramidei VABC. Rezolvare:	L 0 1 2 3 4 5 6 7 8	L 0 1 2 3 4 5 6 7 8	

8.	În triunghiul ABC , $m(\angle A)=60^\circ$, iar bisectoarea AD determină pe latura BC segmentele $BD=2$ cm și $CD=4$ cm. Determinați măsura unghiului C . $Rezolvare$:	L 0 1 2 3 4 5 6 7 8	L 0 1 2 3 4 5 6 7 8
	ANALIZĂ MATEMATICĂ		
9.	Fie funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \left(\frac{e}{3}\right)^x$. Stabiliți monotonia funcției f . <i>Rezolvare</i> :	L 0 1 2 3 4 5	L 0 1 2 3 4 5
	Răspuns:		

10.	Fie funcția $f: [-2; 6] \to \mathbb{R}$, $f(x) = \sqrt{x+3} + 2$.		
	a) Comparați: $f'(5)$ și $\frac{\sqrt{2}}{3} - \frac{\sqrt{2}}{4}$. Rezolvare:	L 0 1 2 3 4 5 6 7 8	L 0 1 2 3 4 5 6 7 8
	b) Calculați $\lim_{x \to 1} \frac{f(x)(\sqrt{x+3}-2)}{1-x^2}$. Rezolvare: Răspuns:	L 0 1 2 3 4 5 6 7 8	L 0 1 2 3 4 5 6 7 8
	c) Determinați valoarea numerică a volumului corpului obținut prin rotirea subgraficului funcției f în jurul axei Ox . Rezolvare:	L 0 1 2 3 4 5 6 7 8	L 0 1 2 3 4 5 6 7 8
	Răspuns:		

ELEMENTE DE COMBINATORICĂ. BINOMUL LUI NEWTON.
ELEMENTE DE TEORIA PROBABILITĂȚILOR ȘI STATISTICĂ MATEMATICĂ

11.	Literele A, P, O, L, L, O sunt scrise câte una pe șase fișe identice. Patru fișe se extrag aleatoriu consecutiv. Determinați probabilitatea că, în ordinea extragerii, se obține cuvântul POLO. **Rezolvare:** **Răspuns:*	L 0 1 2 3 4 5 6 7 8	L 0 1 2 3 4 5 6 7 8
12.	Determinați termenul care nu-l conține pe x în dezvoltarea la putere a binomului $\left(x\sqrt{x}+\frac{1}{x}\right)^{10}$. Rezolvare:	L 0 1 2 3 4 5 6 7 8	L 0 1 2 3 4 5 6 7 8