Problem Set 5 Zack Garza

- ① We'll proceed by induction on $n = \deg f$. The n = 1 case follows immediately since $\deg f = 1 \Rightarrow f(x) = x \alpha \in K[x]$, so $\alpha \in K$ and $\alpha \in K[x] = 1$ which divides $\alpha \in K[x] = 1$.

 If now $\deg f = n$, we have $\alpha \in K[x] = \prod_{i=1}^{m} (x u_i)^{n_i}$ for some $m_i \ge 1$, $\alpha \in K[x] = 1$.
 - It now deg $t = n_1$ we have $t(x) = \prod_{i=1}^{n} (x u_i)$ for some $m_i \ge 1$, $1 \le l \le n$. Suppose f is irreducible over K
 - Then we can write $f(x) = (x-u_1)^m g(x)$ in $K(u_1)[x]$ where $\deg g \leq n-1$. So let F_g be its splitting field, so $[F_g: Kuu_1]$ divides (n-1)! by hypothesis. But $[K(u_1): K] = n$, so F_g is the splitting field of F_g and $[F_g: K] = [F_g: K(u_1)][K(u_1): K] = p \cdot n$ where p(n-1)!, so pn[n!]. Suppose F_g is reducible, then f(x) = g(x)h(x) where $\deg g = r$, $\deg h = s$, r+s = n, and in particular, $(wlog) r \leq s(n)$. So g splits in some $F_g \geq K$ where $[F_g: K]$ divides r!; so considering now $h(x) \in F_g[x]$, there is some splitting field $F_h \geq F_g$ where h splits as well with $[F_h: F_g][s!]$. But then F_h is the splitting field for f(x), and $[F_h: K] = [F_h: F_g][F_g: K] := ab$ where a|s! & $b|r! \Rightarrow ab|r!s!$, but r!s! |(r+s)! = n! since $\frac{(r+s)!}{r!s!} = (r+s) \in \mathbb{N}$.
- a) If u is separable in K, then $F(x):=\min(u, K)$ has distinct roots in its splitting field L. But since $K \subseteq E$, we have $g(x):=\min(u, E) | F(x)$. But then g must also have distinct roots in L, otherwise F would have a multiple root, so u is separable over E.
 - b) Since F/K is separable & $E\subseteq F$, we immediately have E/K separable. To see that F/E is separable, we have: F/K is separable if F/K u is separable over F/K is separable if F/K u is separable over F/K (defin) if F/K is separable. (defin)

3 Defn: $F \ge K$ is <u>Galois</u> iff F is a separable splitting field, or $[K:F] = \{K:F\} = |Gal(K/F)|$.

1 \Rightarrow 2: Immediate from defn.

2=3: Since F splits some f(x) & F is separable, f(x) has distinct roots in F. But then any irreducible factor of f(x) can not have a multiple root, so they are all separable as well.

3 \Rightarrow 2: Let $1g_i(x)$ be the irreducible factors of f(x), then F is the splitting field of $p(x) := T_i Tg_i(x)$, which is separable. Now letting x be a root of p, we have F/K(x) as a splitting field of a separable polynomial (some q(x)|p(x)) and so F/K(x) is Galois & [F:K(x)] = F:K(x) = |Gal(F/K(x))|.

Since F is a splitting field of q(x), any $\sigma \in Gal(F/K)$ permutes the roots of q(x). Suppose there are d roots, which are distinct, then $[K(\alpha):K]=d$. Since $Gal(F/K) \xrightarrow{} X:=\{roots of q\}$ transitively, we have $|X|=|[Gal(F/K):Stab_X]|$ by Orbit-stabilizer for any $x \in X$. So pick $x=\alpha$, then

 $Stab_X = Gal(K(\alpha)/K) \implies [Gal(F/K): Gal(F/K(\alpha))] = |X| = d.$

But then

 $[F:K] = [F:K\omega][K(\omega):K]$

= {F: K(a)}[K(a):K] Since F/K(a) is Galois

= {F: K(a)}. d Since K(a)/K is splits a separable q(x)

= {F: K(2)} [Gal(F/K): Gal(F/K(a))] by Orbit-Stabilizer

= |Gal(F/Kld)) · [Gal(F/K): Gal(F/K(d))] Since F/K(d) is Galois

= |Gal(F/K)|, since HEG =>

So F/K is Galois. [8]

- a) Noting that g(x) f(x) and f splits in F, g must split in F as well. (Otherwise, g would have an irreducible nonlinear factor in F and thus f would as well.)
- b) The irreducible factors of g are separable in E and F/E is a splitting field for g, so by (3.3) above, F/E is Galois.
- c) $K \subseteq E \Rightarrow Aut(F/E) \subseteq Aut(F/K)$, and to see $Aut(F/K) \subseteq Aut(F/E)$, letting $\sigma \in Aut(F/K)$ we must have $\sigma \in Sym(Ru_1, \dots, u_n)$ and so $\sigma(g(x)) = g(\sigma(x)) = T(\sigma(x) u_i) = \sum v_i \sigma(x)^i$ $\sigma(\sum_{i=1}^{n} v_i x^i)$ $\sum_{i=1}^{n} c(v_i) \sigma(x)^i$ so $\sigma(v_i) = v_i$ & $\sigma \in Aut(F/E)$.

(vi)=vi & σeAut(F/E)

$$5)$$
 $f(x) = x^4 - 5$ over

- · Q · Q(V5') · D(iV5')

Let $\omega = 5^{1/4}$, $Z = e^{2\pi i/4}$, then f splits in $F := \mathcal{O}(\omega, Z)$ as $f(x) = \frac{4}{17}(x - \omega Z^{j})$. We can embed these roots in ${\Bbb C}$ to find some automorphisms of ${\Bbb F}/{\Bbb Q}$:

$$r_2$$
 r_4 where $r_j = \omega z^j$, so we can define $r_5 = \omega z^j$, so we can define $r_6 = \omega z^j$.

Then Υ corresponds to the cycle (1,3) in Sym($\{r_j\}$) \cong S₄, which has order2, and σ corresponds to (1,2,3,4), which has order 4; thus $G:=\langle \Upsilon, \sigma \rangle \Rightarrow |G|=8$.

Claim:
$$G = Gal(F/Q) \& G \cong D_4 = \langle s,r | s^2 = r^4 = e, (sr)^2 = e \rangle$$
.

Since F splits f(x) by construction, F/Q is separable, and since (claim) $[F:Q]=8<\infty$, it is also normal & thus a Galois extension, so we have $[F:Q]=\{F:Q\}=\#Gal(F/Q)=8$.

Since $(7,\sigma) \leq Gal(F/B)$, it must be the entire group. To see that [F:B] = 8, we can note that $[\mathbb{Q}(\omega,\zeta)] = [\mathbb{Q}(\omega,\zeta)] [\mathbb{Q}(\omega)] [\mathbb{Q}(\omega)] [\mathbb{Q}(\omega)]$

$$(3, 2) \cdot (3) \cdot ($$

We can immediately note that $\gamma \sigma = (13)(1234) = (12)(34) \neq (14)(23) = \sigma \gamma$, so G is non-abelian.

Moreover, G contains 2 elts of order 2, namely $\gamma \& \sigma \gamma$, so $G \not\cong \mathbb{Q}_8$, so we must have $G \cong \mathbb{D}_4$.

(This follows since they have the same # of generators, satisfy the same relations, & are the same size.)

So $Gal(F/Q) \cong D_4$.

(w)

$$\omega = 5^{1/4} \Rightarrow \omega^2 = \sqrt{5}$$

$$(min(\sqrt{5}, Q) = \chi^2 - 5)$$

Noting that $[Q(w^2):Q]=2$, by the Galois correspondence, [Gal(F/Q):Gal(F/Q(w))]=4, so we are looking for an index 4 subgroup of $\langle \tau, \sigma \rangle$ that fixes $\mathcal{Q}(\omega)$. Noting that τ corresponds to

Complex conjugation and order(τ)=2, we have $\langle \tau \rangle \subseteq G$. We also find that σ^2 fixes $\mathbb{Q}(\omega^2)$, since $\sigma^2(a+b\omega^2)=a+b\,\sigma(\sigma(\omega)^2)=a+b\,\sigma\big((i\omega^2)=a+b\,\sigma\big(-\omega^2\big)=a-b\,\sigma(\omega)^2=a-b\,(i\omega)^2=a+b\omega^2$

and since order $(\sigma^2)=2$, we have $|\langle \gamma, \sigma^2 \rangle|=4$, so $G:=\langle \gamma, \sigma \rangle$ has index 2 & fixes $G(\omega)$, so we must have

Q(iw)

Gal(F/Q(
$$\omega$$
)= $\langle \Upsilon, \sigma^2 \rangle$.
($\cong \mathbb{Z}_2 \times \mathbb{Z}_2$)

Noting that [Q(iw):Q] = 4 since min(iw, Q) = X^4-5 , we look for a subgroup of Gal(F/Q) of index 4 (& thus order 2) that fixes Q(iw). The subgroup (702) does the trick, since Thus $G_{al}(F/Q(i\omega)) = \langle \tau \sigma^2 \rangle \cong \mathbb{Z}_2$

$f'(x) = x^3 - 2$ over Q $\omega = 2^{\sqrt{3}}$

$$\omega = 2^{\sqrt{3}}$$

Factor $f(x)=(x-\omega)(x-3\omega)(x-3\omega)$ where $z_3=e^{2\pi i/3}$, then $F:=Q(\omega,z_3)$ is the splitting field of f(x), and $[F:Q]=[F:Q\omega)[Q(\omega):Q]$

- $[Q(\omega), Q] = 3$, since min $(\omega, Q) = x^3 2$.
- · $[F: D(\omega)] = 2$ since $min(Z_3, D(\omega)) = \overline{\Phi}_3 = \cancel{\chi} + x + 1$.
- So $[F:Q] = 6 = |G| := |G_0|(F/Q)| \Rightarrow G \in \{Z_6, S_3\}.$

 $\sigma: \begin{cases} \omega \mapsto \zeta_s \omega & \sim \\ \zeta_s \mapsto \zeta_s' \end{cases}$ (123)

We can produce at least two automorphisms fixing $(0,) \rightarrow (12)$

And we can check

$$(12)(123) = (1)(23)$$

$$(123)(12) = (13)(2) \neq (12)(123)$$

So G contains a non-abelian subgroup $\langle \tau, \sigma \rangle$ & thus $G \cong S_3$

$f(x) = (x^2 - 2)(x^2 - 5) / Q$

Noting that $\chi^2-5=(\chi+\omega_5)(\chi-\omega_5)$ where $\omega_5=5^{1/2}$, the splitting field of fix will be $L := \mathbb{Q}(\omega, \mathcal{Z}_3, \omega_5) = \mathbb{Q}(2^{3}, e^{2\pi i/5})(\sqrt{5}).$

Claim: [L:0]=[L:0($\omega_1 Z_3$)][0($\omega_1 Z_3$).0]=2.6=12.

The only new content is that $[L: \mathbb{Q}(\omega, Z_3)] = 2$, i.e. $\min(\sqrt{5}, \mathbb{Q}(\omega, Z_3)) = x^2 - 5$.

The degree could not be higher, since $E \subseteq F \Rightarrow \min(d,F) \mid \min(a,E) \mid$ and $\min(\sqrt{5},Q) = x^2 - 5$. But it could not be 1, since $\sqrt{5} \in Q(3^3, \mathbb{Z}_3)$.

So $G:=G_{al}(L/Q) \ge S_3$ as a subgroup by the previous problem, and is thus a nonabelian group of order 12. We can produce a new automorphism $\gamma: \begin{cases} \sqrt{5} & \mapsto -\sqrt{5} \\ 3_4 & \mapsto & 3_4 \\ \omega & \mapsto & \omega \end{cases}$

Thus $\langle \gamma \rangle$ is a subgroup of order 2, $\langle \gamma \rangle \cap \langle \tau, \sigma \rangle = \{e\}$, and $|\langle \gamma \rangle| \cdot |\langle \sigma, \tau \rangle| = 2 \cdot 6 = 12 = 161$, and $G = \langle \gamma \rangle \langle \tau, \sigma \rangle \implies G = \langle \gamma \rangle \times \langle \tau, \sigma \rangle$ Product of subgroups $\cong \mathbb{Z}_2 \times S_3$

