CM201 - Cálculo Diferencial e Integral I Lista de Exercícios 5

- 1. Faça o gráfico da função $f(x) = 1/(x-1)^2$ e identifique para quais valores de x a função f(x) é crescente, e para quais valores f(x) é decrescente.
- 2. Encontre o domínio de cada uma das funções abaixo. Lembre-se que só existe raiz quadrada real de números maiores ou iguais a zero e que não existe divisão por zero.

(a)
$$g(x) = \frac{1}{2x+5}$$
 (b) $\beta(x) = \frac{13}{x^2 - 2x - 8}$ (c) $k(x) = \frac{1}{\sqrt{x}-1}$ (d) $\lambda(z) = \frac{1}{\sqrt{z}(z+2)}$

3. Determine, a partir do gráfico, se as seguintes funções são injetoras e/ou contínuas:

(a)
$$f(x) = \begin{cases} 2x+6, & x \le -3 \\ x+4, & x > -3 \end{cases}$$
 (b) $f(x) = \begin{cases} 2-x^2, & x \le 1 \\ x^2, & x > 1 \end{cases}$

- 4. Expresse $\ln(3\sqrt{2})$ e $\ln(4/9)$ em função de $\ln 2$ e $\ln 3$.
- 5. Use as propriedades dos logaritmos para simplificar as seguintes expressões:

(a)
$$\ln(3x^2 - 9x) + \ln(\frac{1}{3x})$$
 (b) $e^{\ln(x^2 + y^2)}$ (c) $e^{\ln(\pi x) - \ln 2}$ (d) $\ln(e^{2\ln x})$

- 6. Sabendo que $\ln(y-1) \ln 2 = x + \ln x$, encontre y em função de x.
- 7. Sem o uso de calculadora, encontre o valor dos logaritmos abaixo.
 - (a) $\log_2 8$ (b) $\log_2 \frac{1}{4}$ (c) $\log_{\frac{1}{3}} 9$ (d) $\log_{\frac{1}{4}} 2$ (e) $\log_{16} 2$ (f) $\log_8 32$ (g) $\log_8 \frac{1}{4}$ (h) $\log_9 \frac{1}{27}$ (i) $\log_5 \frac{1}{125}$ (j) $\log_{125} \frac{1}{5}$ (k) $\log_{16} 64$ (l) $\log_{\frac{1}{9}} \frac{1}{3}$
- 8. Utilizando uma calculadora, encontre o valor aproximado dos logaritmos abaixo com 3 casas decimais.

(a)
$$\log_3 5$$
 (b) $\log_3 \frac{1}{5}$ (c) $\log_{\frac{1}{3}} 5$ (d) $\log_5 3$ (e) $\log_2 10$ (f) $\ln 5$ (g) $\ln \frac{1}{2}$

9. Encontre as soluções das equações abaixo.

(a)
$$2^x = 16$$
 (b) $2^{2x+1} = 16$ (c) $2 \cdot 3^{x+5} = 5$ (d) $5^{2x+1} = 2^x$ (e) $4^{3x-2} = 2^{3x}$ (f) $2 \cdot 3^x = 3 \cdot 2^x$ (g) $2 \cdot 3^x = 3 \cdot 2^{x+1}$ (h) $2^{x^2} = 2^x$ (i) $2^{x^2} = 3$ (j) $5^{3+x} = \frac{1}{125}$

- 10. A população de uma cidade é de 375.000 habitantes, e cresce exponencialmente à taxa de 2,25% ao ano. Após quantos anos a população chegará a um milhão ?
- 11. O pH de um líquido é dado pela fórmula

$$pH = -\log_{10}(x),$$

sendo x a concentração do íon hidrônio $[H_3O+]$ em mol/l.

(a) A concentração de $[H_3O+]$ em água destilada é de 10^{-7} mol/l. Calcule o pH da água destilada. **OBS:** concentrações acima e abaixo deste valor são denominadas *alcalinas* e *ácidas*, respectivamente.

- (b) Sabendo que o pH do sangue humano varia de 7.37 a 7.44, encontre as quantidades mínima e máxima esperadas de [H₃O+] no sangue humano.
- 12. A taxa de reprodução da mosca Drosophila melanogaster cai drasticamente quando a densidade populacional aumenta. Se x é o número de moscas em uma garrafa e y é a prole por fêmea por dia, foi verificado empiricamente (Strehler, 1963, p. 74) que

$$y = 34.53e^{-0.018x}x^{-0.658}$$

Calcule a prole y quando o número de moscas na garrafa for x = 4 e x = 30.

Respostas:

1. Crescente para x < 1 e decrescente para x > 1.

- 2. (a) $D(g) = \left\{ x \in \mathbb{R} \mid x \neq -\frac{5}{2} \right\}$ (b) $D(\beta) = \left\{ x \in \mathbb{R} \mid x \neq -2 \text{ e } x \neq 4 \right\}$
 - (c) $D(k) = \left\{ x \in \mathbb{R} \mid x \ge 0 \text{ e } x \ne 1 \right\}$ (d) $D(\lambda) =]0, \infty[$
- 3. (a): é injetora, não é contínua; (b): não é injetora, é contínua.

- 4. (a) $\ln 3 + \frac{1}{2} \ln 2$ (b) $2 \ln 2 2 \ln 3$

5. (a) $\ln(x-3)$ (b) $x^2 + y^2$ (c) $\pi x/2$ (d) $2 \ln x$

6. $y = 2xe^x + 1$

7. (a) 3 (b) -2 (c) -2 (d) $-\frac{1}{2}$ (e) $\frac{1}{4}$ (f) $\frac{5}{3}$ (g) $-\frac{2}{3}$ (h) $-\frac{3}{2}$ (i) -3 (j) $-\frac{1}{3}$ (k) $\frac{3}{2}$ (l) $\frac{1}{2}$

8. (a) 1,465 (b) -1,465 (c) -1,465 (d) 0,683 (e) 3,322 (f) 1,609 (g) -0,693

9. (a) x = 4 (b) $x = \frac{3}{2}$ (c) $x = \log_3\left(\frac{5}{2}\right) - 5$ (d) $x = \frac{1}{\log_5 2 - 2}$ (e) $x = \frac{4}{3}$

(f) x = 1 (g) $x = \frac{1}{1 - \log_3 2}$ (h) x = 0 ou x = 1 (i) $x = \pm \sqrt{\log_2 3}$ (j) x = -6

10. $t = \frac{\ln(1000/375)}{\ln(1.0225)} \approx 44, 1 \text{ anos.}$

11. (a) pH = 7 (b) máxima: $10^{-7.37} \approx 4.3 \times 10^{-8} \text{ mol/L}$; mínima: $10^{-7.44} \approx 3.6 \times 10^{-8} \text{ mol/L}$

12. Se x = 4, $y = 12,905... \approx 13$; se x = 30, $y = 4,146... \approx 2$