Forecasting Stock Volatility

A Model Comparison for Louis, Quantitative Trader

Project Overview & Data Description

Goal: Predict realized stock volatility from high-frequency data.

Data Used: First 500 time_id sessions from stock_1.csv

Key Features Created:

- WAP (Weighted Average Price): Combines bid/ask prices & sizes.
- Bid-Ask Spread: Relative measure of liquidity.
- Log Returns: Calculated per second from WAP.

Target Variable:

Realized Volatility:
 Square root of the sum of squared log returns, computed in 20-second buckets.

Data Split for Model Training

- Each time series (per time_id) was split chronologically into:
 - First 80% → used for training
 - Last 20% → held out for validation
- Ensures models are evaluated on unseen future data, simulating real-world forecasting.
- Prevents information leakage by maintaining the temporal order of volatility data.

Candidate Models

- 1. Linear Regression
- 2. HAV-RV
- 3. eXtreme Gradient Boosting (XGBoost Tree-Based)

Model 1 – Linear Regression

Call:

Objective:

Predict realized volatility using:

- WAP (Weighted Average Price) proxy for execution price
- Order Size total liquidity
- **Bid-Ask Spread** market friction indicator

Uses **exponential weighting** to emphasize recent time buckets.

Built one model per time_id to capture local patterns.

Performance Summary (time_id 162):

lm(formula = volatility ~ price + order + BidAskSpread, data = list.reg[[i]],

• Adjusted R²: 0.497

weights = $0.8^{(((len.train - 2):0)/2))}$

Model 2 – HAV-RV Model

- Designed specifically for high-frequency financial data, the HAV-RV model forecasts volatility using past volatility patterns.
- Predictors:
 - vol_1: volatility at time t-1
 - mean_vol_5: average volatility over past5 buckets
- Equation:

$$\hat{v}_t = \beta_0 + \beta_1 \cdot v_{t-1} + \beta_2 \cdot \overline{v}_{t-5:t-1}$$

- Also apply Weighted Least Squares (WLS)
 using quarticity to adjust for
 heteroskedasticity i.e., varying levels of
 volatility uncertainty.
- At time_id 162:
 - a. WLS Adjusted R²: 0.4002
 - b. Unweighted Adjusted R²: 0.0293

Call:

```
lm(formula = vol ~ vol_1 + mean_vol_5, data = list.HAV[[i]])
```

Model 3 – XGBoost Model: Non-Linear Tree-Based Regression

- Tree-based regression model
- Predicts volatility using market microstructure features
- Captures nonlinear patterns, outliers, and interactions
- No assumptions of stationarity/normality

Feature Engineering

- Computed log_return = log(WAP / lag(WAP)) to measure price movement.
- Aggregated features per time_id:
 - WAP_mean, WAP_sd
 - BidAskSpread_mean, BidAskSpread_sd
 - log_return_sd

Target Variable

Realized volatility = sqrt(sum(log_return²))

Model Evaluation

Evaluation Framework:

- **Data Split:** 80% training, 20% testing on time_id-level features.
- Validation: First 100 time_ids used for out-of-sample predictions for Linear, HAV-RV, and ARMA-GARCH. XGBoost evaluated on test set.

Metrics:

- MAE / RMSE: Measure average and squared error.
- R²: Captures goodness-of-fit.
- QLIKE: Financially motivated loss for volatility accuracy.

Performance Results & Selection

```
MAE RMSE R2 QLIKE Linear 0.000315 0.000435 0.622229 0.168665 HAV_RV 0.000312 0.000444 0.601385 0.191400 XGBoost 0.000463 0.000728 0.953548 0.008318
```

Model Results & Selection

Final Model Selection: XGBoost

Why XGBoost was selected:

Best overall performance

• $R^2 = 0.95$, QLIKE = 0.0083

Strengths:

- Captures non-linear patterns, no distributional assumptions
- Robust to outliers and noise
- log_return_sd = most important feature

Limitations

- It can overfit on noisy features if not regularized well
- Less interpretable than linear models

Model Design:

- 80/20 split by time_id
- Engineered per time_id:
 - WAP, BidAskSpread, log_return (mean + sd)
- Target:
 - Realized volatility = $\sqrt{\sum log_return^2}$
- Trained using:
 - 100 boosting rounds
 - reg:squarederror objective
 - Feature selection via xgb.importance()

Thank You For Listening Any Questions?