Applied Machine Learning

- Overview
- Agglomerative Clustering
- Divisive Clustering

The Curse of Dimensionality

- Data in high-dimensions
 - as d increases, distances increase
 - mean and covariance
 - computational cost grows
 - need more data to get accurate estimations

- Group similar data into Clusters of Blobs
 - Highlight underlying patterns
 - Pre-processing step
- Cluster parameters
 - Cluster representation
 - Assignment of data items to cluster
 - Number of clusters
 - Evaluation of clusters

Types of Clustering Algorithms

- Divisive Clustering
 - start with a cluster for the whole dataset
 - repetitive split of clusters
- Agglomerative Clustering
 - start with a cluster per item
 - repetitive merging of clusters

Divisive Clustering

- Splitting criteria
 - What cluster to split
 - Where to split the selected cluster
 - Application dependent

Agglomerative Clustering: Distances

- Computation of inter-cluster distance for clusters A and B
 - single-link clustering

$$d(A,B) = \min_{a \in A, b \in B} d(a,b)$$

complete-link clustering

$$d(A,B) = \max_{a \in A, b \in B} d(a,b)$$

group average clustering

$$d(A,B) = \frac{\sum_{a \in A, b \in B} d(a,b)}{|A| |B|}$$

Agglomerative Clustering: Feature scale

- Scale to unit variance
 - ullet original dataset X
 - new dataset Y:

$$\mathbf{y}_i = \frac{\mathbf{x}_i - mean(X)}{\sigma_X^2}$$

- De-correlation
 - ullet original dataset X
 - $\Sigma = \operatorname{Covmat}(X)$: compute eigenvectors U and eigenvalues Λ
 - new dataset Y:

•
$$\mathbf{y}_i = (\Lambda^{\frac{1}{2}})^{-1} U^{\mathsf{T}} \left(\mathbf{x}_i - mean(X) \right)$$

Dendogram

- hierarchy of clusters
- x: data items
- y: inter-cluster distance
- Useful to select level of clustering

- Overview
- Agglomerative Clustering
- Divisive Clustering

Applied Machine Learning