Билет 10: Сформулируйте теоремы о пределе суммы, произведения и частного сходящихся последовательностей. Докажите две из них.

Арифметические действия над сходящимися последовательностями

Теорема. Пусть $\lim_{n\to\infty}a_n=a$ и $\lim_{n\to\infty}b_n=b$. Тогда последовательность $\left\{c_n\right\}=\left\{a_n+b_n\right\}$ также будет сходящейся, причем $\lim c_n=a+b$.

причем γ_n - бесконечно малая последовательность (как сумма бесконечно малых).

Теорема. Пусть $\lim_{n\to\infty}a_n=a$ и $\lim_{n\to\infty}b_n=b$. Тогда последовательность $\left\{c_n\right\}=\left\{a_n\cdot b_n\right\}$ также будет сходящейся, причем $\lim_{n\to\infty}c_n=a\cdot b$.

Доказательство. \blacktriangleright Из условия теоремы вытекает, что $a_n = a + \alpha_n$, а $b_n = b + \beta_n$ $(n \in \mathbb{N})$, где $\{\alpha_n\}$ и $\{\beta_n\}$ - бесконечно малые последовательности. Поэтому $c_n - (a \cdot b) = (a + \alpha_n)(b + \beta_n) - ab = \alpha_n b + \beta_n a + \alpha_n \beta_n = \gamma_n$.

Последовательности $\alpha_n b$, $\beta_n a$, $\alpha_n \beta_n$ бесконечно малые как произведение бесконечно малой на ограниченную и произведение бесконечно малых последовательностей. Тогда $\{\gamma_n\}$ бесконечно малая как сумма бесконечно малых..

Теорема. Пусть $\lim_{n\to\infty}a_n=a$ и $\lim_{n\to\infty}b_n=b$ ($b\neq 0$). Тогда последовательность $\left\{c_n\right\}=\left\{\dfrac{a_n}{b_n}\right\}$ также будет сходящейся, причем $\lim_{n\to\infty}c_n=\dfrac{a}{b}$.

Доказательство см. в лекциях: 1 модуль (PDF), с. 19