TD de physiologie animale 1 SV4

Exercice 1 : molarité, molalité

- a) Donner la définition de la molarité d'une solution.
- b) Calculer la molarité d'une solution aqueuse contenant 585 mg de NaCl par litre d'eau.

(Na : PM = 23 ; Cl : PM = 35,45).

c) Quelle est la différence entre molarité et molalité ?

Exercice 2 : osmolarité, coefficient osmotique

- a) Qu'est-ce l'osmolarité d'une solution ?
- **b**) Calculer l'osmolarité de la solution précédente, en admettant que la totalité du NaCL est sous forme ionisée.
- c) En réalité, le coefficient osmotique (Φ) du NaCl est de 0,93. Quelle la valeur réelle de l'osmolarité de la solution précédente ?

$$n(osm) = n(mol).i.\Phi$$

n(mol) = nombre de mol de substance non ionisée.

i = nombre d'ions formés)

d) On dispose maintenant d'une solution contenant 952 mg de MgCl2 par litre. Calculer l'osmolarité de la solution, sachant que le coefficient osmotique (Φ) du MgCl2 est de 0,89. (Mg : PM = 24,32)

Exercice 3 : osmolarité d'une solution contenant plusieurs solutés

a) On rajoute à la solution de NaCl précédente (exercice 2 c) (600 mg d'urée (PM = 60). L'osmolarité est-elle modifiée ? Si la valeur est modifiée, calculer la nouvelle.

exercice 4: osmose, pression osmotique

On place la solution précédente de NaCl (exercice 2 c) dans le compartiment de gauche (compartiment A) du récipient représenté ci-dessous. Le compartiment de droite (compartiment B), qui contient uniquement de l'eau, est séparé de l'autre par une membraneperméable à l'eau et à l'urée mais imperméable aux ions.

- a) Dans quel sens le flux d'eau va-t-il se faire ? Pourquoi ? Comment appelle-t-on ce mouvement d'eau ?
- **b)** Qu'est ce que la pression osmotique ?
- c) En appliquant la loi de van't Hoff, $\pi = \mathbf{RT/V(ni\Phi)}$ déterminer la valeur de la pression osmotique de la solution (on prendra R = 8,314 et T = 310 K, pour exprimer la pression osmotique dans l'unité internationale de pression, le Pascal (Pa). NB : l'unité internationale de volume est le m3, et non le litre).

Calculer la valeur de la pression osmotique en Pa et en atmosphères, sachant qu'une atm = 101,3 kPa.

- **d**) Si on exerce sur le piston du compartiment A une pression P égale à la pression osmotique, dans quel sens se fera le mouvement d'eau ?
- e) Si la pression P exercée sur le piston est supérieure à la pression osmotique, dans quel sens se fera le mouvement d'eau ?

Exercice 5 : osmolarité efficace

On place maintenant dans le compartiment A la solution précédente NaCl + urée (exercice 3) et dans le compartiment B celle de MgCl2 (exercice 2 d).

- a) Quelle est l'osmolarité de la solution du compartiment A? Du compartiment B?
- b) Quelle est l'osmolarité efficace de la solution du compartiment A? Du compartiment B?
- c) Dans quel sens va se faire le mouvement d'eau?

Exercice 6 : osmolarité et volume cellulaire

La valeur moyenne de l'osmolarité du plasma et du LIC est de 290 mosm/l.

- a) On dispose d'une solution de NaCl à 156 mM. Cette solution est-elle isosmotique par rapport au LIC?
- b) On place des hématies dans cette solution. La membrane plasmique des globules rouges est perméable à l'eau et à l'urée mais imperméable aux ions. Comment va varier le volume cellulaire ? La solution est-elle isotonique ?
- c) On rajoute à la solution initiale de l'urée à la concentration de 50 mM. Comment va varier le volume des hématies dans cette solution ? Quelle est son osmolarité efficace ? La solution est-elle isotonique ?

Exercice 7: pression oncotique

- a) La concentration sanguine moyenne en albumine (PM = 69~000) est de 45~g/l. Calculer la pression oncotique « vraie » à partir de l'équation de van't Hoff.
- **b**) En réalité, la pression oncotique mesurée est d'environ 30 mmHg, soit 4 kPa. Comment peut-on expliquer cette différence ?
- c) Le liquide interstitiel contient peu de protéine, et sa pression oncotique est de 12 mmHg, soit 1,6 kPa. Dans quel sens va s'effectuer le flux d'eau dû à la pression oncotique entre le secteur sanguin et le secteur interstitiel ?
- d) On prépare une solution de perfusion contenant 156 mM de NaCl et 0,65 mM de Dextran, colloïde neutre. D'un point de vue osmotique (y compris oncotique), cette solution de perfusion est-elle analogue au plasma sanguin ?