DAG Methods

Multiple testing in gene set test analysis: possibilities and pitfalls

Jelle Goeman

Based on joint work with Rosa Meijer, Aldo Solari, Livio Finos, Ulrich Mansmann

Padua, 2015-10-09

Genetic data: two approaches

Single markers

H0: no association between marker and response

Sets of markers: 'gene sets'

- Sets of markers chosen a priori
- Chromosomic regions, genes, pathways, functional groups
- H0: no association between any marker and response

Self-contained approach

Single marker test = test of gene set of size 1

DAG Methods

Multiple testing of gene sets

Structure in gene sets

- Subset relationships
- Large sets, small sets
- Include individual genes in single analysis?

How to use subset relationships

- Interpretation
- Choice of error rate
- Gain power?

Logical relationships

Null hypothesis of gene set A

 $H_A: \theta_i = 0$ for all $i \in A$

Logical relationships: 1-way

If $A \subset B$:

 H_A false implies H_B false

Logical relationships: 2-way

Additionally, if $A = \bigcup A_i$:

 H_A false implies at least one of H_{A_i} false

Note

2-way relationships not relevant in all graphs

Implications: interpretation

Large sets, small sets

If $A \subset B$, rejection of B not informative if A also rejected

Summarizing: defining hypotheses

Relevant rejections: only those with no rejected subset hypotheses

Explaining

Most specific statements that can be made

Defining hypotheses

Defining hypotheses: A, B, CDE

FWER or FDR?

Popular: False Discovery Rate

Controls proportion of false discoveries among discoveries

Implicit assumption

Discoveries are exchangeable:

False discoveries may be compensated by true discoveries elsewhere

FWER or FDR?

Popular: False Discovery Rate

Controls proportion of false discoveries among discoveries

Implicit assumption

Discoveries are exchangeable:

False discoveries may be compensated by true discoveries elsewhere

Subsets problem

Control of FDR does not imply FDR control on subset

FWER or FDR?

Popular: False Discovery Rate

Controls proportion of false discoveries among discoveries

Implicit assumption

Discoveries are exchangeable:

False discoveries may be compensated by true discoveries elsewhere

Subsets problem

Control of FDR does not imply FDR control on subset

Finner and Roters

- FDR control on all subsets = FWER control
- FWER control on all subsets = FWER control

Subsets of the discoveries

Introduction

Sequential procedure

Many FWER control procedures follow this format

- Start testing hypotheses at some significance criterion
- If any hypotheses rejected, set new significance criterion for unrejected hypotheses
- Possibly new rejections...
- Stop if no new rejections occur

Strong control

All have strong control of the FWER

Is there a connection?

All special cases of the same procedure

Romano and Wolf

Introduction

Romano & Wolf (2005)

"an ideal situation would be to proceed at any step without regard to previous rejections, in the sense that once a hypothesis is rejected, the remaining hypotheses are treated as a new family, and testing for this new family proceeds independent of past decisions."

The sequential rejection principle

In fact, past decisions even make the tests in each new family easier

Formal setup

Model

- A statistical model M
- ullet Each $M\in\mathbb{M}$ indexes a probability measure P_M

Null hypotheses

- A collection of null hypotheses \mathcal{H} (possibly infinite)
- Each $H \in \mathcal{H}$ is a submodel $H \subset \mathbb{M}$
- ullet Some hypotheses are true (depends on $M\in\mathbb{M}$)
- True hypotheses: $T(M) = \{H \in \mathcal{H} : M \in H\} \subseteq \mathcal{H}$

Test statistics

- A test statistic S_H for every $H \in \mathcal{H}$
- Reject H for large values of S_H

A general sequentially rejective procedure

The critical value function

- Choose critical value function $\mathbf{c} = \{c_H\}_{H \in \mathcal{H}}$
- Each $c_H: 2^{\mathcal{H}} \to \mathbb{R}$
- $2^{\mathcal{H}}$: collection of all subsets of \mathcal{H}

The general procedure

 $R_i \subseteq \mathcal{H}$: the rejected hypotheses after step *i*

$$R_0 = \varnothing$$

 $R_{i+1} = R_i \cup \{H \in \mathcal{H} : S_H > c_H(R_i)\}.$

DAG Methods

The Sequential Rejection Principle

Theorem

Introduction

If a general sequentially rejective procedure fulfils two conditions

- Monotonicity
- Single step control

Then it strongly controls the FWER

Monotonicity

Introduction

The monotonicity condition

For every $A \subset B \subset \mathcal{H}$ and for every $H \in \mathcal{H} \setminus B$,

$$c_H(A) \geq c_H(B)$$
,

In words

Critical values of unrejected null hypotheses never increase with more rejections

Single step control

The single step condition

For every $A \subset \mathcal{H}$ and for every $M \in \mathbb{M}$ for which $T(M) = \mathcal{H} \setminus A$,

$$P_M\left(\bigcup_{H\in\mathcal{T}(M)}\{S_H>c_H(A)\}\right)\leq \alpha.$$

In words

Weak FWER control at each single step

But only partially (weaker than weak control)

It may be assumed that all previous rejections were correct rejections

Three methods for DAGs

Goeman and Mansmann (2009)

Focus level method: starts in the 'middle'

Meijer and Goeman (2015a)

Generalized Meinshausen (2008) to DAG: start at the top

Meijer and Goeman (2015b)

Structured Holm (Shaffer variant): simultaneous method

First, a Bonferroni correction is applied. Each hypothesis is tested on $\alpha/9$.

Two hypotheses have been rejected (denoted by the crosses). Holm's procedure would test the remaining hypotheses on $\alpha/7$

However, using the one-way relations shows that two hypotheses can no longer be true. The remaining hypotheses can be tested on $\alpha/5$.

Using the two-way relations, we furthermore know that one of the hypotheses corresponding to gene C, D or E, and one of the hypotheses corresponding to gene A or B have to be false as well. Maximally 3 hypotheses can be simultaneously true.

Start at the top on level α (all weight goes there)

If rejected: weight goes to ABC and CDE

weight C equally split gives this

implication ABCDE: congruent set ≥ 1 unrejected leaf $\Rightarrow /(5-1)$

If both rejected, weight flows to AB, C, D and E

Weights are added

Implications ABC and CDE, only implies 1 rejection (C): /(5-1)

If AB rejected: all leafs weight 1

Implications AB and CDE, no overlap: 2 rejections: /(5-2)

If A rejected: nothing changes (2 rejected leaves for congruent set)

If B gets rejected as well: /(5-3)

The focus level procedure

Start somewhere in the middle: choose a "focus level"

The focus level procedure

Find the focus level node with smallest p-value ($\leq \alpha/3$), say *DEF* Call *DEF* significant

The focus level procedure

Use the bottom-up procedure to propagate significance upwards

Expand the graph below DEF

Call all ancestors of significant nodes significant

Expand subgraphs when necessary

Go on until no more significant sets can be found

Discussion

Any subgraph completely significant

 \rightarrow recalibrate significance criterion ($\alpha/2$)

Number of associated genes in a set

Set ABCDE contains with 95% confidence at least 3 non-null genes

Number of associated genes in a set

Set BCDE contains with 95% confidence at least 2 non-null genes

Number of associated genes in a set

These confidence statements are simultaneous for all sets

Algorithms and software

Algorithms

Introduction

Finding the correct alpha-levels requires sophisticated algorithms

- exact: integer linear programming (NP-hard)
- approximate: linear programming (polynomial)

globaltest package (Bioconductor)

Focus level method

```
cherry package (cran)
```

Top down method and structured Holm

Which method to use when?

Power against what alternative?

Huge complexity in possible alternatives

Best method

Intuitively: put most alpha immediately on test with most power

- Top down: widespread weak effects
- Focus level: effects concentrated in a branch
- Structured Holm: best guess if no information available

Is this true in practice?

Difficult to simulate or check

Comparison: VDX data

Comparison: Mainz data

Summary: testing in DAGs

DAGs are not exchangeable

Difficult to work with FDR or FDP over a DAG

The sequential rejection principle

- Facilitates formulation of FWER controlling procedures
- Facilitates proof of FWER control
- Allows use of logical relationships
- Easy to formulate multiple testing methods for graph-structured hypotheses

Many options for procedures

Difficult to decide which procedure is best for which situation?

Read more?

Goeman and Mansmann (2008).

Multiple testing in the DAG of gene ontology *Bioinformatics*, **24** (4), 537-544.

Goeman and Solari (2010).

The Sequential Rejection Principle of Familywise Error Control. *Annals of Statistics* 38 (6) 3782-3810.

Meijer and Goeman (2015a).

A multiple testing method for hypotheses structured in a DAG *Biometrical Journal*, **57** (1), 123–143.

Meijer and Goeman (2015b).

Multiple testing of gene sets from Gene Ontology *Briefings in Bioinformatics*, in press.

