Izrek o invarianci odprtih množic

Tom Gornik

mentor: izr. prof. dr. Jaka Smrekar

16. junij 2020

Struktura dela

- Pomožna lema
- Poincaré-Mirandov izrek
- Izrek o invarianci odprtih množic

Izvedba dokaza

Poincaré-Mirandov izrek

Definicija:

Naj bo število a > 0. Za hiperkocko $\mathbb{I}^n = [-a, a]^n$ definiramo:

- $\mathbb{I}_{i}^{-} = \{(x_1, x_2, \dots, x_n) \in \mathbb{I}^n | x_i = -a\}$ in
- $\mathbb{I}_{i}^{+} = \{(x_{1}, x_{2}, \dots, x_{n}) \in \mathbb{I}^{n} | x_{i} = a\}$

Poincaré-Mirandov izrek

Poincaré-Mirandov izrek:

Naj bo $f=(f_1,f_2,\ldots,f_n):\mathbb{I}^n o\mathbb{R}^n$ taka zvezna preslikava, da je

- $f_i(\mathbb{I}_i^-) \subset (-\infty, 0]$ in
- $f_i(\mathbb{I}_i^+) \subset [0,\infty)$, za vsak $i \in (1,\ldots,n)$.

Potem obstaja točka $x \in \mathbb{I}^n$, da je f(x) = 0.

Poincaré Mirandov izrek v dveh dimenzijah

Pomožna lema

Lema:

Naj bo X kompaktna podmnožica evklidskega prostora \mathbb{R}^n in $f: X \to \mathbb{R}^n \setminus \{0\}$ zvezna preslikava. Potem za vsak $\varepsilon > 0$ in za vsako kompaktno množico s prazno notranjostjo $Y \subset \mathbb{R}^n$ obstaja zvezna preslikava $g: X \cup Y \to \mathbb{R}^n \setminus \{0\}$, da velja:

$$||g(x) - f(x)|| < \varepsilon$$
 za vsak $x \in X$

Izrek o invarianco odprtih množic

Izrek o invarianco odprtih množic

Naj bo U odprta množica v evklidskem prostoru \mathbb{R}^n in naj bo $h:U\to\mathbb{R}^n$ zvezna injekcija. Potem je tudi slika h(U) odprta množica v \mathbb{R}^n

Pomožna lema

Lema:

Naj bo X kompaktna podmnožica evklidskega prostora \mathbb{R}^n in $f: X \to \mathbb{R}^n \setminus \{0\}$ zvezna preslikava. Potem za vsak $\varepsilon > 0$ in za vsako kompaktno množico s prazno notranjostjo $Y \subset \mathbb{R}^n$ obstaja zvezna preslikava $g: X \cup Y \to \mathbb{R}^n \setminus \{0\}$, da velja:

$$||g(x) - f(x)|| < \varepsilon$$
 za vsak $x \in X$

Poincaré-Mirandov izrek

Poincaré-Mirandov izrek:

Naj bo $f=(f_1,f_2,\ldots,f_n):\mathbb{I}^n o\mathbb{R}^n$ taka zvezna preslikava, da je

- $f_i(\mathbb{I}_i^-) \subset (-\infty, 0]$ in
- $f_i(\mathbb{I}_i^+) \subset [0,\infty)$, za vsak $i \in (1,\ldots,n)$.

Potem obstaja točka $z \in \mathbb{I}^n$, da je f(z) = 0.