*LAB SETUP

- Install Virtualbox
- Acquire and import Metasploitable2 and DVWA
- Set up VM host network addresses:
 - Adapter IP: 10.10.1.1
 - DHCP Server:
 - IP: 10.10.1.2
 - Lower Address Bound: 10.10.1.10Upper Address Bound: 10.10.1.254
 - Subnet Mask: both at 255.255.255.0

*COURSES:

- 1. Planning & Scoping
- 2. Survey the Target
- 3. Select your Attacks
- 4. Select Your Attacks II
- 5. Selecting Pentest Tools
- 6. Using Scripting in Pentesting
- 7. Reporting & Communication

Course 1 - Planning & Scoping

Planning a pentest:

- Get written permission
- Clearly define Scope, know how much work you have to do don't do more than that, STAY IN SCOPE, be aware or scope creep
- Read over PTES http://www.pentest-standard.org/index.php/Main_Page
- Importance of planning
 - Lots of options in each step
 - Each pentest is often conducted differently
 - o Easy to waste time and effort experience helps avoid this
 - Project management skills are important here will keep pentest on track

Rules of engagement:

- Know your target audience
 - Who is sponsoring the pentest?
 - O What is the purpose for the test?
- Rules of engagement (ROE) governs the pentester's activities
 - Schedule start, stop, temporal restrictions
 - Team composition, location, access
- Test scope
 - technical/physical/personnel
 - Target limits (inclusio, invasiveness, etc)
- Communication escalation path

- Risks of pentesting
 - Crashing devices, services, whole servers, etc
 - Corrupting data
 - Degrading performance
 - Terms of service (TOS)/regulation/legislation violation
- Escalation path
 - Who to contact if things go wrong?
 - Communication expectations (content, trigger, frequency)

Resources & budgets

- Resources & requirements
 - What does each party provide?
 - At what point does the engagement begin?
 - Confidentiality of findings
 - o Known vs unknown is the test a secret?
- Budget
 - O How much will each section of the test cost?
 - Every task in the test should have a value
 - Want to add more test? It'll cost more provide the cost
 - One of the most important factors
 - Directly impacts available resources and time

Impact & Constraints

- Set expectations
 - Impact
 - The result of testing
 - Report vulnerabilities
 - Remediation plan/guidance outline how client should respond
 - Disclaimers
 - Point-in-time assessment results only valid now
 - Comprehensiveness
- Technical constraints
 - Any technical limitations that reduce test scope
 - o Production (live) components
 - o out -of-service devices
 - Can't access physical/geographic access limitations
 - legal/regulatory out of scope

Support Resources

- WSDL/WADL web services/application description language
 - XML file with lots of info about web service/application and its interface requirements
 - Check if publically available for target(s)
- SOAP project file(s)
 - Simple object access protocol used to exchange info for web services, being displaced by REST but still in play in many areas
 - Not exposed to public

- Used by developers in development environment
- Project file provides low level web service interface details (input/output/server info)
- SDK documentation
 - Software development kit docs help provide info on tools used to develop software
- Swagger document
 - Popular open-source framework for developing REST services
 - REST is a lightweight API
 - Document can provide internal info on REST services exposed to clients
- XSD
 - XML schema definition defines XML document content
- Look at sample application requests
 - Well-formed requests, generally to web services
 - Useful when testing web services/applications of all types
- Architectural diagrams
 - Diagrams of networks and connected devices
 - Helpful when determining targets to attack

Legal Groundwork

- Legal concepts contracts
 - Statement of work (SOW)
 - Clearly states what tasks are to be accomplished
 - Master service agreement (MSA)
 - Specifies details of the business arrangement
 - Non-disclosure agreement (NDA)
 - Agreement that defines confidentiality, restrictions and/or sharing information
- Environmental differences
 - Export restrictions restrictions on shipments, transfer of technology, or services outside the US
 - National or local restrictions
 - Differ among countries
 - Local customs differ
 - Corporate policies
 - Differ between most organizations
- Written authorization
 - Obtain signature from proper signing authority
 - "Get out of jail free" card
 - Pentests can reveal sensitive or confidential information
 - Activities may be illegal without proper permission
 - Signed permission makes you a white hat hacker
 - Third party authorization when necessary
 - Ex: from a Cloud service provider

Get permission for any outside resources used (cloud, ISP, etc)

Scope Considerations

- Types of assessments
 - Goal-based
 - Goals created up front
 - Tests set up to fulfill goal(s)
 - Objectives-based
 - Define a resource to attack
 - Tests use all angles to attack protected objectives
 - Compliance-based
 - Mandates by standard regulation, or legislation
 - Ex: PCI DSS
 - Red team
 - Typically internal
 - Ongoing
 - A single compromise is success
 - Blue team
 - Defense against the red team
- Special scoping considerations
 - Premerger
 - Part of due diligence prior to mergers
 - Used to harmonize security efforts
 - Supply chain
 - Partners often provide software and/or hardware to interface with an organization
 - Weaknesses in interfaces can provide unauthorized access
- Target selection
 - Internal (on-site vs off-site)
 - External
 - First-party vs third-party hosted
 - Physical
 - Users
 - SSIDs
 - Applications

Project strategy & risk

- Considerations
 - o Whitelisted?
 - No one can access resources unless specifically granted
 - Blacklisted?
 - Everyone can access unless specifically blocked
 - Security exceptions
 - IPS / WAF whitelist
 - NAC (network access control)
 - Certificate pinning (public key pinning)

- Explore company policies to learn about security considerations
- Know which role you are taking
 - Black-Box pentesting
 - Zero prior knowledge
 - Most familiar to real attacker
 - Generally a surprise to internal personnel
 - White-Box pentesting
 - Full access to internal information
 - Gray-box pentesting
 - Some internal information available
 - Consistent with an insider threat with limited access
- Risk acceptance
 - Pentests can be risky service can be interrupted
 - devices/servers can become unresponsive
 - O How much risk is the client willing to accept?
 - Acceptance means = willing to accept risks, based on likelihood & impact
 - Tolerance to impact
 - Is risk is realized, what is client's tolerance to the results?
 - How much disruption is tolerable?

Scope Vulnerabilities

- Scheduling & Scope Creep
 - Scheduling
 - When can/should test be run?
 - Who should be notified?
 - When must tests be completed?
 - Scope creep common in nearly all projects
 - Client requests additional tasks after SOW if signed
 - Many tasks may seem "doable", but always stay in scope
 - Takes resources away from core SOW tasks
 - MUST get authorization for any SOW modifications
 - Threat actors
 - Aversary tier what role should the pentester assume?
 - APT (Advanced Persistent Threat)
 - Script kiddies
 - Hacktivist
 - Insider threat
 - Capabilities
 - What resources does the attacker(s) have?
 - Organized & sponsored attackers have more equipment & sophistication
 - Intent
 - power/revenge
 - status/validation
 - Monetary gain

- Ideology
- Threat model
 - Gather information and identify assets

Course 2 - Survey the Target

Rank assets > rank vulnerabilities > rank exploits

Scanning & Enumeration

- Information gathering
 - Scanning
 - Process of looking at some number of "things" to determine characteristics
 - Commonly used in pentests to uncover target vulnerabilities
 - Many types of scan targets
 - Networks
 - Network devices
 - Computers
- Enumeration
 - Counting the detected instances of some target class
 - Pentesting target classes
 - Hosts
 - Networks
 - Domains
 - Users
 - Groups
 - Network shares
 - Web pages
 - Applications
 - Services
 - Tokens
 - Social networking sites

DEMO: scanning & enumeration demo

- Nmap to scan
 - nmap -sP [IP Address range] = (ping sweep)
- arp-scan [IP Address range] = arp scan
- whois.domaintools.com to look up domains, look for IP Address Ranges

Packet investigation

- Packet crafting
 - Creating specific network packets to gather information or carry out attacks
 - Tools netcat, nc, ncat, hping
 - ncat = newer version of netcat, created by Nmap
- Packet inspection
 - Capturing and analyzing network packets wireshark
- Inspecting targets

- Fingerprinting
 - Determining OS types and version a target is running
- Cryptography
 - Inspecting certificates
- Eavesdropping
 - RF communication monitoring
 - Sniffing intercepting packets and inspecting their contents
 - Wired wireshark and tcpdump
 - Wireless aircrack-ng

Application open-source resources

- Decompilation
 - Compiler translates source code into executable instructions
 - o Decompiler attempts to convert executable instructions back into source code
 - Output is generally awkward to read at best
 - Sometimes a target is not a direct executable (i.e. Java)
- Debugging
 - Running an executable in a controlled manner
 - Debuggers make it easy to stop and examine memory at will
 - Can reveal a program's secrets and weaknesses
 - Tools windbg
- OSINT
 - Open source intelligence gathering
 - Sources of research
 - CERT https://www.us-cert.gov/
 - NIST https://csrc.nist.gov/
 - JPCERT https://www.jpcert.or.jp/english/
 - CAPEC https://capec.mitre.org/
 - Full disclosure mail list https://seclists.org/fulldisclosure/
 - CVE https://cve.mitre.org/
 - CWE https://cwe.mitre.org/index.html

Vulnerability scanning

- Vulnerability scan
 - Structured approach to examining targets to identify know weaknesses
 - Many different types
 - Determine if any known weaknesses exist
- Credentialed vs non-credentialed
 - Credentialed (authenticated) accessing resources using valid credentials
 - More detailed, accurate information
 - Non-credentialed (non-authenticated) anonymous access to exposed resources
 - Fewer details, often used in early phases of attacks/tests
- Types of scans
 - Discovery san used to find potential targets
 - identity/info gathering early on
 - Nmap ping sweep [nmap -sP target]

- Full scan scans ports, services, and vulnerabilities
 - Full scan with fingerprinting
 - Nmap -A <target> (very noisy)
 - perl nikto.pl -h <target>
 - OpenVAS
 - Open-source version of nessus
- Port scan
 - Nmap -p <ports> <target>
- Stealth scan attempt to avoid tripping defensive control thresholds
 - nmap -sS <target>
- Compliance scan for specific known vulnerabilities that would make a system non-compliant

DEMO - vulnerability scanning

- Nmap stealth scan: nmap -sS <target>
- Nmap port fingerprinting: nmap -p <port> -A <target>
- Nikto vulnerability scan: nikto -h <target>
- Install OpenVAS in Kali
 - o apt update
 - apt install openvas
 - Openvas-setup
 - Don't forget to copy down password at end of setup!
 - OpenVAS runs on port 9392
 - Access web gui = 127.0.0.1:9332
 - Username = admin
 - Create targets > create tasks > start scanning > observe results for info

Target considerations

- Container
 - Lightweight instance of a VM
 - Runs on top of host OS
 - Docker, puppet, vagrant
- Applications
 - Application scan
 - Dynamic analysis
 - Target environment is running and responds to queries
 - Static analysis
 - Scan input consists of post-execution data stores
- Scanning considerations
 - Time to run scans approved schedule (planning)
 - Protocols used largely dependent on target selection
 - Network topology network layout (diagram of test targets)
 - Bandwidth limitations tolerance to impact (affects availability)
 - Query throttling slow down test iterations to avoid exceeding bandwidth
 - Nmap -T
 - Fragile systems/non-traditional assets

- Analyze scan results
 - Asset categorization
 - Identify and rank assets by relative value
 - Vulnerable assets with little value could be a waste of time
 - Adjudication
 - Determine which results are valid
 - Filter out False positives
 - Prioritize vulnerabilities
 - Highest impact vulnerabilities ease of exploit vs payoff
 - Common themes
 - Vulnerabilities
 - Observations
 - Lack of best practices

NMAP timing and performance options

- Cheatsheet: https://www.stationx.net/nmap-cheat-sheet/
- Utilize -T for either stealthy or rapid depending on situation
- Learn NMAP!

Prioritization of vulnerabilities

- Leverage information
 - Leveraging info to prepare for exploitation
- Map vulnerabilities to potential exploits
 - Look up vulnerabilities found for possible exploits
 - Nmap vulners and vulscan scripts
 - Metasploit (search vulnerability)
- Prioritize activities to prepare for pentest
 - Will standard exploits work?
 - Will exploits need to be "tweaked"?
 - Additional steps to prepare test?
- Install NMAP scripts
 - cd /usr/share/nmap/scripts (from / directory)
 - o Git clone https://github.com/vulnersCom/nmap-vulners.git
 - Git clone https://github.com/scipag/vulscan.git
 - Use scripts
 - nmap --script nmap-vulners -sV <Target>
 - Quicker, only uses 1 database
 - nmap --script vulscan -sV <Target>
 - Longer, uses ALL databases
 - nmap --script vulscan --script-args vulscandb=exploitdb.csv -sV <Target>
 - Telling nmap to use the specified db file instead of all

Common attack techniques

- Some Windows exploits can be run in Linux
- Cross-compiling code
 - Compile exploit for another OS

- https://www.hackingtutorials.org/exploit-tutorials/mingw-w64-how-to-compile-windows-exploits-on-kali-linux/
- o Changing exploit code can change the fingerprint of the exploit
- Exploit modification
 - May need to modify for success of evasion
- Exploit chaining
 - o Compromise one device/system to gain access to another
- Proof-of-concept development
 - Exploit development
- Social engineering
 - o Help me, urgent, deceptive
 - Credential brute forcing
 - Enlightened attacks
 - Dictionary (wordlist) for online attacks
 - For offline, get the password file(s), hashes
 - Rainbow table(s)

Credential attacks

- Hydra
 - Hydra -L <usernamelist.txt -P passwordlist.txt> <target>
 - Example: hydra -L usernamelist.txt -P passwordlist.txt ftp://10.10.1.11
- Get username list & password list, feed hydra both
 - Google common usernames > create custom list
 - You can search for password lists, utilize seclists
 - https://github.com/danielmiessler/seclists
 - The quality of your attack will depend on quality of the lists
- Start with good online resources and modify for your own purposes

Weaknesses in specialized systems

- ICS (industrial control systems)
 - Environmental conditions
 - Exposure to real world (live) events
- SCADA (supervisory control and data acquisition)
 - SCADA is the control system that interfaces with industrial processes
 - PLC (programmable logic controller) the electronic board(s) that power the manufacturer's processes
- Mobile lack of updates, compromised settings, dangerous apps, etc.
- IoT (internet of things) default (weak) security (wide open)
- Embedded devices
- Point-of-sale system
 - Attractive due to connection to payment devices (cash, readers, etc.)
- Biometrics accuracy is still evolving
 - What if primary reader fails to detect?
 - What is the backup manual process?
- Application containers
 - Container and VMs are not foolproof sandboxes

- Compromising (breaking out) may allow access to external resources
- RTOS (real-time operating system)
 - Designed to provide fast, lightweight services, not security -- usually designed for sensory environments

Course 3 - Select Your Attacks

Social engineering

- Tricking or coercing people into violating security policy
- Depends on willingness to be helpful
- Human weaknesses can be leveraged
- May rely on technical aspects
- Phishing people are contacted by a seemingly legitimate imposter in an attempt to extract sensitive information
 - Spear phishing specific target(s)
 - SMS phishing
 - Voice phishing
 - Whatling going after the 'whales'

DEMO - Spear Phishing

- SET social engineering toolkit
- Setup sendmail to have a relay available:
 - Apt install sendmail
 - Sendmailconfig
- SET > social engineering > spear phishing > mass email attack > choose attack
 - #6 example: RTF (rich text format file)
 - Select #2 > loads msf on machine through meterpreter and reverse shell back to us
 - Set LHOST > (internal virtual IP address)
 - Payload created into RTF file
 - Rename file
 - Choose single or mass mailer > #1
 - Choose predefined template of one-time use > #2
 - Create subject line, HTML, and body message
 - Ctrl + C when done
 - Choose who to send email to
 - Select gmail or own server/relay > #2
 - Create desired email to use & name
 - Select relay IP address & final options

In-person social engineering

- Elicitation
 - Gathering info about a system from authorized users
- Interrogation
 - Informal interviews with crafted questions to extract info

- Impersonation
 - Pretending to be someone with authority
- Motivation techniques
 - Authority
 - Scarcity
 - Social proof
 - Urgency
 - Likeness
 - Fear

Network based exploits

- NETBIOS name service (NBNS)
 - Part of NetBIOS-over-TCP
- LLMNR (link-local multicast name resolution)
 - Protocol based on DNS packet format
 - Allows IPv4 and IPv6 name resolution on the same local link
- SMB (server message block) exploits
 - Protocol used in Windows to provide file and printer access, and remote service access (SAMBA in linux)
 - TCP ports 139 and 445
 - o Some ransomware (eternalblue, wannacry, use SMB to propagate
- SNMP (simple network management protocol) exploits
 - Query and manage IP devices
 - Multiple versions SNMPv1 is not secure
- SMTP (simple mail transfer protocol) exploits
 - Standard protocol for transmitting mail
 - Open relay, local relay, phishing, spam, etc.
- FTP (file transfer protocol) exploits
 - Overall insecure protocol for transferring files
 - No encryption for transfers and credentials
 - o Easy for attackers to use for data exfiltration if FTP is available

DEMO - ftp exploit

- Use nmap to find FTP vulnerabilities on metasploitable
 - o nmap --script vulscan --script-args vulscandb=exploitdb.csv -sV -p 21 <target>
- Choose which vulnerability to exploit, this example we will do the backdoor
- Open metasploit -- msfconsole
 - Select exploit || use exploits/unix/ftp/vsftpd 234 backdoor
 - > info (to verify details) > set RHOST > run

Man-in-the-middle exploits

- Additional network exploits
 - o MiTM
 - Family of attacks where the attack intercepts messages between a sender and receiver
 - Attack may modify, regenerate, or forward intercepted messages

- o DNS Cache Poisoning
- ARP Spoofing
 - Similar to DNS poisoning, but with local MAC addresses
- Pass the hash
 - Attacker intercepts an NTLM hash (user credential) and reuses it to appear as an authenticated user to Windows
- Replay attack
- Relay attack
- SSL stripping
- Downgrade
- DoS / stress test
- NAC (network access control) bypass
- VLAN hopping

Wireless Exploits

- Wireless & RF vulnerabilities
 - o Broadcast is wide open
 - Aircrack-ng
- Evil twin roque WAP used to eavesdrop
 - Karma attack (karma attacks radio machines automatically)
 - Downgrade attack attempt to negotiate a more insecure protocol
- Deauthentication attacks
- Fragmentation attacks
 - DoS attack, floods a network with datagram fragments
- Credential harvesting
 - Process of capturing or discovering valid login
 - Social engineering, etc.
- WPS implementation weaknesses
 - Several consumer grade WAPs could allow an attacker to learn the WPS PIN
- Bluejacking
 - Unsolicited messages to a bluetooth-enabled device
- Bluesnarfing
 - Stealing info from bluetooth-enabled device
- RFID (radio frequency identification)
 - o RFID cloning unauthorized copy of device's RF signal
 - Jamming DoS attack, disabled communication among devices
- Repeating
 - Receiving and re-transmitting a signal to increase range

Application Exploits

- Injection attack
 - Inserting additional data into application beyond what is expected
 - SQLi (structured query language injection)
 - Adding specially crafted SQL input to extract/modify data or execute commands
 - o HTML injection

- Adding HTML code/submitting data to change how a page works or the data is handled
- Command injection
 - Adding command line options that change the way commands operate
- Code injections
 - A generalization of SQLi adding code in any language to change a program's behavior

DEMO - SQLi

- Set security to low
- SQLmap
 - sqlmap -u <"website"> --cookie=<"cookie">
 - Get cookie from developers tools > network > headers > Cookie
 - Automates tried sqli and presents what is working
 - Can utilize metasploit as well
- Authentication:
 - Credential brute force
 - Offline cracking (hydra)
 - Session hijacking
 - -intercepting and using a session token (generally_ to take over a valid distributed (web) session
 - Redirect
 - Sending the user to a different site from what they expected (phishing)
 - Default credentials
 - Out of the box artifacts (you have to clean these up!)
 - Weak credentials
 - This is why password cracking works
 - Kerberos exploits
 - Forged tickets to allow unauthorized access to resources
- Authorization
 - Parameter pollution providing custom input parameters to alter service/API operation
 - Insecure direct object reference
 - Programming mistake that can allow an attacker to bypass access controls and access resources or data
- Cross-site scripting (XSS)
 - Injection attack in which an attacker sends malicious code (client-side script) to a web application that a subsequent client runs
 - stored/persistent
 - Attack data (script) stored discreetly on the server
 - Reflected
 - Non-persistent attack in which attack code is sent to another client
 - DOM (document object model)
 - XSS attack that uses XML, not HTML, to transport attack code
- Cross-site request forgery (CSRF/XSRF)

- o Similar to XSS; occurs within an authenticated session
- CSRFXSRF attacks the user, XSS attacks the server
- Attacker can cause authorized user to take some action by clicking a link
- Clickjacking
 - Tricking user into clicking a different link or object that was intended
 - Attackers can use transparent or opaque layers to embed attack links
- Security misconfiguration
 - Directory traversal
 - Allows users to navigate outside a web server's root directory
 - Cookie manipulation
 - Access to cookies can allow an attacker to change the way in which a web application operates in general, or just for a specific user/session
 - File inclusion
 - Related to directory traversal
 - Attacker is allowed to build path to .exe file or a file to access
 - File can be local or remote

Course 4 - Select Your Attacks II

DEMO - XSS

- DVWA > XSS Reflected > Ivan <script>alert("XSS")</script>
 - Try injecting HTML: Ivan <body onload=alert("XSS")>
- XSS can allow an attacker to run almost any script code
- If successful, XSS attacks can compromise many client computers and devices
- Compromise can include remote control, data exfil, and setup for further attacks

Code vulnerabilities

- Unsecure code practices
 - o Comments in source code
 - Good for developers and technical personnel
 - Bad for keeping secrets
 - Lack of error handling
 - Bad things happen developers don't think of everything
 - Overly verbose error handling
 - Error messages can give too much info
 - Bad error message
 - "Password invalid for this user"
 - Better error message:
 - "User ID or password is invalid"
 - Hard-coded credentials
 - Happens often 0 compiled and interpreted (strings command)
 - Race conditions
 - Resource should be validated before it's used
 - E.g. checking a file is in place

- TOC (time of check) / TOU (time of use)
 - Gap between checking a condition and using that resource
 - Attackers can influence other events and affect operation
- Unauthorized use of functions/unprotected APIs
 - Unintended API usage
- Hidden elements
 - HIDDEN attribute in XML and HTML (doesn't hide data in the source code)
 - Sensitive information in the DOM
- Code signing
 - Certificates can authenticate author's identity, ensure integrity
- Lack of code signing
 - Lack of signing allows attackers to modify code between deployment and execution

Local host vulnerabilities

- Once fingerprinting is done and OS info is gathered, research vulnerabilities on CVE database for target(s) OS(s).
- Every OS has its own specific vulnerabilities
- Online vulnerability repositories make it easy to determine which vulnerabilities apply to a specific target

Privilege escalation - LINUX

- Linux specific priv esc
 - SUID/SGID programs
 - Permissions to execute a program as executable's owner/group
 - Ls shows 's' in executable bit or permissions
 - -r-sr-sr-x (SUID and SGID set)
 - o Unsecure SUDO
 - Authorized users execute commands as if logged in a root
 - Ret2libc
 - stack/buffer overflow attack
 - Replaces current stack return address with attacker-chosen address of another subroutine
 - Libc includes useful calls, such as 'system'
 - Sticky bits
 - Directory permission
 - Multiple users can create, read, and write files, but only the owner can delete
- SUID/SGID and sudo make systems easier to use, but can make them easier to compromise
- Ret2libc is a potential attack vector for hijacking processes
- Sticky bit directories can allow attackers to write files and executables

Privilege escalation - WINDOWS

- Cpassword group policy preference attribute that contains passwords
 - SYSVOL folder of the DC (encrypted XML)

- Clear text credentials in LDAP (lightweight Directory Access Protocol)
- Kerberoasting domain users can query Kerberos tickets for other users
- Credentials in LSASS (local security authority subsystem service)
 - Enforces security policy
- Unattended installation
 - PXE (preboot execution environment) credentials
- SAM database (security account manager)
 - Database that contains user passwords
- DLL hijacking (dynamic link library)
 - Forcing a loader to load a malicious DLL
- Cpassword and LDAP creds may contain valuable creds
- PXE creds can be used to access system as an authorized user
- DLL hijacking is an attack vector that could allow an attacker to load malware

Miscellaneous privilege escalation

- Exploitable services
 - Unquoted service paths
 - Allow abbreviated attack paths (without spaces)
 - Writable services
 - Allow attacker to replace services with malicious programs
- Unsecure file/folder permissions root installs allow read/write by any user
- Keylogger records keystrokes
- Scheduled tasks
 - Attacker may add new task to run persistently with elevated privileges
- Kernel exploits
 - Unpatched systems are vulnerable
- Unquoted service paths and writable services can allow for service exploits
- Look for files and folders that allow excessive read/write permissions
- Footprinting can provide information on kernel vulnerabilities

Miscellaneous local host vulnerabilities

- Default account settings disable accounts that are not being used
- Sandbox escape
 - Shell upgrade gaining access to a shell with higher privilege
 - VM escaping a VM may allow access to underlying environment
 - Container similar to VM escape (i.e. Docker)
- Physical device security
 - Cold boot attack
 - Ability to physically reboot a system (can allow access to encryption keys)
 - JTAG debug (joint test action group)
 - Can allow attacker to interact with chips
 - Serial console
 - If not disabled, provides direct access to servers
- Look for easy attack paths admins may have overlooked something

Physical security

- piggybacking/tailgating unauthorized person following an authorized person through a physical control
- Fence jumping physically bypassing a control
- Dumpster diving looking through trash for useful information
- Lock picking opening a lock without a proper key
- Lock bypass
 - Defeating a lock mechanism without picking (i.e. bolt cutter, remove hinges)
- Egress sensor
 - Senses a person approaching a door to leave a facility
- Badge cloning
 - Copying an RFID badge

Post-exploitation techniques

- What do you do once you're in
 - Make it easier next time
- Lateral movement
 - o RPC/DCOM (remote procedure call / distributed component object model)
 - PsExec utility that supports executing processes on other systems (e.e. telnet)
 - WMI (windows management instrumentation) managing devices and applications from remote computers
 - Scheduled tasks
- Ps remoting / WinRM
 - Powershell remoting / windows remote management
- SMB (server message block)
 - Protocol for exposing shares to remote computers (Linux too)
- RDP
 - Ability to access a desktop from a remote computer
- Apple remote desktop
 - Apples RDP
- VNC (virtual network computing)
- X-server forwarding
 - X-windows access to Linux desktop
- Telnet
 - Unsecure remote access (everything in cleartext)
- SSH (secure shell)
 - More secure remote access to shell
- RSH / Rlogin (remote shell / remote login)
 - Legacy secure remote access
- Enable remote access if possible
- Use remote access to move laterally within a network

Persistence & stealth

- Persistence
 - Scheduled jobs
 - Cron or Task Manager

- Scheduled task
 - Same as above
- Daemons
 - Background processes or services
- Backdoors
 - Bypass standard security controls
- Trojan
 - Malware that looks like it does something useful
- New user creation
 - Makes later logins easier
- Stealth
 - Clean up files, including tools installed
 - Hiding files that you need to leave
 - Sanitizing log files (remove entries or entire logs)
 - Remove any traces of activity while accessing the environment
- Set up persistent processes to maintain a presence
- Install low profile tools and malware to make your job easier
- Leave artifacts that keep the attack going and make it easier to get back in
- Once the attack is over, clean up to avoid post-mortem detection

Course 5 - Selecting Pentesting Tools

Nmap scoping & output options

- One of the most common and most useful tools for reconnaissance
- Cheatsheet: https://www.stationx.net/nmap-cheat-sheet/
- SYN (stealth) scan
 - Sends SYN packet and examines response (SYN/ACK means the port is open)
 - o If SYN/ACK received, nmap sends RST to terminate the connection request
- Full connect scan
 - nmap -sT target
 - Completes the handshake steps to establish a connection (more reliable)
- Service identification (-sV)
 - Nmap -sV <target>
 - Attempts to determine services running info
- OS fingerprinting (-O)
 - Detects target OS
 - Nmap -O <target>
- Disabling ping (-Pn)
 - Skips host discovery (assumes all are online)
 - nmap -Pn <target>
- Target input file (-iL)
 - Uses a text file that contains a list of targets
 - Nmap -iL <input file name>

Pentesting toolbox

- Use case: reconnaissance
 - Nmap
 - o Whois
 - Nslookup
 - Theharvester
 - Shodan
 - o recon-NG
 - Censys
- Use case: enumeration
 - Nmap
 - Nslookup
 - Wireshark
 - Hping
- Use case: vulnerability scanning
 - Nmap
 - Nikto
 - o openVAS
 - SQLmap
- Use case: credential attacks
 - Offline cracking:
 - Hashcas
 - JtR
 - Cain and abel
 - Mimikatz
 - Aircrack-ng
 - Brute forcing services (online approach)
 - o SET
 - o BeEF
 - o SSH
 - NCAT
 - NETCAT

- aircrack-NG
- Kismet
- o Wifite
- o SET
- o Wireshark
- o Hping
- MSF

- Nessus
- W3AF
- o OWASP ZAP
- o MSF
 - SQLmap
 - Medusa
 - Hydra
 - Cain and abel
 - Mimikatz
 - Patator
 - W3AF
 - Aircrack-ng
- Use case: persistence (once you have exploited a target, use these to make sure you can get back in
 - Drozer
 - Powersploit
 - o Empire
 - o MSF
- Use case: configuration compliance (to evaluate a config to determine if it's compliant with a standard of regulation):
 - Nmap
 - Nikto
 - OpenVAS
 - SQLmap
 - Nessus
- Use case: evasion
 - SET

- Proxychains
- MSF
- Use case: decompilation (to decompile executables)
 - o Immunity debugger
 - o APKX
 - APK studio
- Use case: debugging
 - OLLYDBG
 - Immunity debugger
 - o GDB
 - o Win DBG
 - o IDA
- Use case: software assurance:
 - Findsecbugs
 - Sonarqube
 - YASCA
- Use case: fuzzing
 - o Peach
 - o AFL

Scanners and credential tools

- Scanners are "meta" tools that provide several levels of output
- Scanners are powerful, but very noisy and using them risks being detected
- Credential cracking tools run either in online or offline modes
- Effective dictionary attacks depend on good user/password lists

Code cracking tools

- Debuggers are advanced tools and can reveal how a program works
- Debuggers can also allow testers to modify data as the program is running
- Software assurance tools can help to identify vulnerabilities in applications

Open source research tools (OSINT)

- Whois domain details (contacts, name servers, etc)
- Nslookup DNS info
- Foca fingerprinting organizations with collected archives
- Theharvester gathers info from many sources (email, hosts, open ports, etc)
- Shodan finds internet connected devices
- Maltego data mining for investigations
- Recon-NG web recon
- Censys similar to shodan

Web pentesting tools

- Web proxies
 - OWASP ZAP zed attack proxy web app security scanner
 - Burp Suite graphical tool for testing web app security

Remote access tools

- SSH secure shell
- NCAT similar to nc, but from Nmap devs

- NETCAT same as nc
- Proxychains forces TCP connections through a proxy
- Bind shell, reverse shell
- Remote access is often followed by priv esc attacks and/or preceded by credential attacks

Other pentesting tools

- Powersploit post exploitation framework (PS PowerShell)
- Responder microsoft network poisoner
- Impacket python classes for working with network protocols
- Empire powershell/python post-exploitation agent

Course 6 - Using Scripting

Using Scripting in Pentesting

- Automate tasks, repeatable
- What is a script?
 - Interpreted sequence of commands
 - Written in a specific language with its own syntax
 - Easy to code
- Resources:
 - Bash
 - https://github.com/awesome-lists/awesome-bash
 - https://www.commonexploits.com/penetration-testing-scripts/
 - https://github.com/averagesecurityguy/scripts
 - https://github.com/bitvijays/Pentest-Scripts
 - Powershell
 - https://www.businessnewsdaily.com/10760-best-free-powershell-training-resources.html
 - https://blog.netwrix.com/2018/02/21/windows-powershell-scriptingtutorial-for-beginners/
 - Ruby
 - https://learnrubythehardway.org/book/
 - http://ruby-for-beginners.rubymonstas.org/index.html
 - Python
 - https://lectures.guantecon.org/py/
- Need to know for scripting
 - Variables
 - Temporary data storage
 - Substitutions
 - Input parameters and environment variables
 - Common operations
 - Strings and comparisons
 - Logic

- Looping and flow control
- o Basic I/O
 - Read input and write output (file, terminal, and network)
- Error handling
 - When things don't work
- Arrays
 - Simple data structure
- Encoding/decoding
 - Handling special characters

Bash Scripting

- Bash is the default shell in Linux
- Bash makes it easy to combine multiple commands that can react to input
- Learn basic loops and conditional logic
- A few lines of a bash script can automatically execute many commands, such as scans

Powershell Scripting

 SetExecutionPolicy Unrestricted (allows you to run powershell scripts on machine, disabled by default)

Ruby Scripting

- Powerful object-oriented language that can do far more than just scripting
- Ruby's popularity is related to the Ruby on Rails server-side web app framework written in Ruby
- Ruby treats everything as an object and relies heavily on methods and attributes

Python Scripting

- Python is a popular language because it's easy to write very powerful programs in just a few lines of code
- Unlike many other languages, python depends on indentation to define blocks

Scripting Languages Comparison

	Bash	PowerShell	Ruby	Python
Comments	#	# or <# #>	# or =begin =end	#
Variables – assign	varName=value	<pre>\$varName=value</pre>	varName=value	varName=value
Variables – display	echo \$varName	Write-Host \$varName	puts varName	print(varName)
Substitution – environment variables	\$envVarName	Get-item Env:varName	ENV['varName']	Os.environ['varName']

	Bash	PowerShell	Ruby	Python
String length	\${#string}	(string).Length	string.length	len(string)
String – substring	\${string:position}	(string).Substring(start,end)	string[13]	string[start:end+1]
String – replace substring	\${string/substring/replacement}	(string).Replace(substr,replStr)	string[13] = replStr	string.replace(old, new, count)
AND/OR	-a / -o	-and, -or, -not!	and &&, or , not !	and, or, not
Comparisons	-eq (==), -ne (!=), -lt (<), -le (<=), -gt (>), -ge (>=)	-eq, -ne, -gt, -ge, -lt, -le	==,!=,>,>=,<,<=	==,!=(<>),>,>=,<, <=

	Bash	PowerShell	Ruby	Python
Looping	For	For, While, Do-While, Do-Until	while, until, for	for, while
Flow control	if condition then commands elif commands else commands fi	<pre>if (condition) { statements } elseif (condition) { statements } else { statements }</pre>	If condition then statements elsif statements else statements end	if condition: statements elif condition: statements else: statemenst

Course 7 - Reporting & Communication

Writing reports

- Communicate findings AND recommendations
- Primary deliverable
- Only chance to make your points
- Digest of all activities and conclusions
 - Some conclusions are drawn during tests
 - Some result from post-test analysis
- Sample resource reports:
 - o <u>www.pentest-standard.org</u>
 - https://github.com/juliocesarfort/public-pentesting-reports
 - https://www.offensive-security.com/reports/penetration-testing-sample-report-2013.pdf
- TIPS:
 - Tell your story
 - Know your audience(s)
 - Technical, management?
 - Leave the reader with a call to action
 - Includes steps to fix issues

- Try to answer these questions
 - What did you?
 - Why did you make the choices you made?
 - What did you find, and how did your findings affect your conclusions?

Post report activities

- Remove all test activity artifacts
- Get formal client acceptance
- Conduct "lessons learned" sessions with client and capture the findings
- Follow up on client add-on requests

Mitigation strategies

- Recommend mitigation activities for each identified vulnerability
- Suggest different classes of mitigations (technical, administrative, etc)

Communication

- Good communication is critical to pentest project success
- Managing communication expectations, including frequency, reduces conflict
- Define triggers that initiate communication