Prova scritta di Logica Matematica 26 giugno 2019

Cognome Nome Matricola

Indicate su ogni foglio che consegnate cognome, nome e numero di matricola.

Nella prima parte ogni riposta corretta vale 1, ogni risposta sbagliata -1, ogni risposta non data 0. Il punteggio minimo per superare questa parte è 6. Il punteggio che eccede 6 viene sommato al risultato della seconda parte per ottenere il voto dello scritto.

Nella seconda parte per ogni esercizio è indicato il relativo punteggio.

PRIMA PARTE

Barrate la risposta che ritenete corretta. Non dovete giustificare la risposta.

a.	$\neg(\neg p \land q) \equiv (p \land r) \lor q \to (\neg q \lor p).$	\mathbf{V}	\mathbf{F}			
b.	Se $F \vDash G \lor H$ allora $F \vDash G$ oppure $F \vDash H$.	\mathbf{V}	\mathbf{F}			
c.	Se F è una formula proposizionale esiste un'unica formula					
	in forma normale disgiuntiva logicamente equivalente a F .	\mathbf{V}	\mathbf{F}			
d.	Esiste un insieme di Hintikka che contiene le formule $p \vee \neg q$, $p \rightarrow q$ e $p \wedge \neg r$.	\mathbf{V}	\mathbf{F}			
e.	La sostituzione $\{x/f(y,x)\}$ è ammissibile in					
	$\forall u(\forall z r(z, g(x, u)) \to \exists y \forall v(r(f(y, u), v) \to r(g(u, x), y))).$	\mathbf{V}	\mathbf{F}			
f.	Sia I l'interpretazione normale con $D^I = \{0, 1, 2, 3\},\$					
	$f^{I}(0) = 0, f^{I}(1) = 2, f^{I}(2) = 3, f^{I}(3) = 0, p^{I} = \{0, 3\}.$		_			
	Allora $I \vDash \exists z ((p(z) \lor \exists y \ f(y) = z) \land \neg p(f(z))).$	\mathbf{V}	\mathbf{F}			
g.	$\forall x q(x) \to \exists x p(x) \equiv \exists x (\neg q(x) \lor p(x)).$	\mathbf{V}	\mathbf{F}			
h.	Quante delle seguenti formule sono in forma prenessa? $\forall x \exists y (r(x,y) \to p(x)),$					
	$\forall x (\exists y r(x,y) \to p(x)), \forall x \exists y \neg (r(x,y) \to p(x)), \forall x \neg \exists y (r(x,y) \to p(x)). \boxed{0 \boxed{1}}$	$2 \mid 3$	4			
i.	. Se φ è un omomorfismo forte di I in J e $I \vDash p(a) \lor \neg r(a, f(c))$					
	allora $J \vDash p(a) \lor \neg r(a, f(c))$.	\mathbf{V}	\mathbf{F}			
j.	Questo albero rappresenta una deduzione naturale corretta:	\mathbf{V}	\mathbf{F}			
	orall z q(z)					
	$\frac{[p(f(x))]^1 \qquad \overline{q(f(x))}}{q(f(x))}$					
	$\frac{[p(f(x))] q(f(x))}{p(f(x)) \land q(f(x))}$					
	$\exists x p(f(x))$ $\exists y (p(y) \land q(y))$					
	$\exists y (p(y) \land q(y))$					

k. Scrivete nel riquadro cosa significa che l'algoritmo di Fitting per la forma normale congiuntiva gode della proprietà della terminazione forte.

SECONDA PARTE

Usate il retro del foglio per svolgere tutti gli esercizi salvo il numero 2.

1. Usando l'algoritmo di Fitting mettete in forma normale congiuntiva la formula

2pt

$$\neg(\neg p \land (q \lor r) \to \neg s \land t) \lor (\neg u \land w).$$

2. Sia $\mathcal{L} = \{c, d, p, a, b\}$ un linguaggio dove c e d sono simboli di costante, p un simbolo di funzione unario e a e b sono simboli di relazione binari. Interpretando c come "Carla", d come "Dario", p(x) come "il padre di x", a(x, y) come "x è amico di y", b(x, y) come "x è più basso di y", traducete la frase: Tutti i padri degli amici di Carla sono più bassi di qualche amico di Dario di cui sono amici.

3pt

3. Usando il metodo dei tableaux stabilite se

3pt

$$(q \lor r) \land (q \to \neg s \land t) \to (t \land q) \lor (r \land (s \to \neg t))$$

è valida. Se la formula non è valida definite una valutazione che lo testimoni.

4. Mettete in forma prenessa la formula

5. Dimostrate che

2pt

$$\exists y \neg \exists x \neg r(x, f(y)) \rightarrow \neg \exists u \, p(u) \land \forall x \neg \forall z \neg r(f(x), z).$$

 $1\mathrm{pt}$

Se riuscite, usate il minimo numero di quantificatori possibili.

4pt

 $\forall x \,\exists y (r(y,x) \land \neg r(x,y)), \forall x \, r(x,x) \nvDash \forall x \, \forall y (r(x,y) \lor r(y,x)).$

6. Dimostrate l'insoddisfacibilità dell'insieme di enunciati

4pt

$$\{\forall x \,\forall y (r(x,y) \to \neg r(y,x)), \exists x \, r(x,f(x)), \forall x (\exists y \, r(x,y) \to \forall z \, r(f(x),z))\}.$$

3pt

7. Sia $\mathcal{L} = \{f, p, r\}$ un linguaggio in cui f è un simbolo di funzione unario, p un simbolo di relazione unario e r un simbolo di relazione binario. Sia I l'interpretazione per \mathcal{L} definita da

 $D^I = \{0, 1, 2, 3, 4, 5, 6\};$ $p^I = \{2, 3, 4, 5, 6\};$

$$f^I(0) = 6; \quad f^I(1) = 6; \quad f^I(2) = 1; \quad f^I(3) = 2; \quad f^I(4) = 2; \quad f^I(5) = 6; \quad f^I(6) = 0;$$

$$r^I = \{(0,2), (0,6), (1,2), (1,6), (3,2), (3,6), (4,2), (4,6), (5,2), (5,6)\}.$$

Definite una relazione di congruenza \sim su I che abbia tre classi d'equivalenza, giustificando la vostra risposta. Descrivete l'interpretazione quoziente I/\sim .

8. Usando il metodo dei tableaux dimostrate che

4pt

$$\exists x \, \forall y \, r(y, x), \forall x \, \forall y \, (r(x, y) \rightarrow p(x) \lor \neg q(y)) \vDash \exists z \, \neg q(z) \lor \forall z \, p(z).$$

9. Dimostrate, usando solo le regole della deduzione naturale predicativa (comprese le sei regole derivate) che

5pt

$$\forall x \exists y \, r(y, f(x)), \forall u (\exists z \, r(u, z) \to \neg p(g(u))) \rhd \exists x \, \neg p(x).$$

Soluzioni

- a. V come si verifica per esempio con le tavole di verità.
- **b.** F se ad esempio F è $p \vee q$, G è p e H è q abbiamo $F \vDash G \vee H$ ma non valgono né $F \vDash G$ né $F \vDash H$.
- **c. F** l'unicità non è garantita, come osservato dopo l'enunciato del Teorema 3.10 delle dispense.
- **d.** V $\{p \vee \neg q, p \rightarrow q, p \wedge \neg r, p, \neg r, q\}$ è un insieme di Hintikka.
- **e.** F perché la seconda occorrenza di x è nel raggio d'azione del quantificatore esistenziale su y e y compare in f(y, x).
- **f.** F perché per nessun $d \in D^I$ si ha $I, \sigma[z/d] \models (p(z) \lor \exists y \ f(y) = z) \land \neg p(f(z))$. Infatti l'unico d tale che $I, \sigma[z/d] \models \neg p(f(z))$ è 1, che però non soddisfa il primo congiunto.
- g. V per i Lemmi 7.74 e 2.24.3 delle dispense.
- h. 2 solo la prima e la terza formula sono in forma prenessa.
- i. V dato che la formula considerata è priva di quantificatori, si può applicare il Lemma 9.9 delle dispense.
- **j.** V in particolare le applicazioni di $(\exists i)$ e $(\exists e)$ rispettano le condizioni.
- **k.** l'algoritmo termina qualunque sia la formula su cui si decide di operare ad ogni singolo passo. (Lemma 3.32 delle dispense).
- 1. Utilizziamo l'Algoritmo 3.18 delle dispense, adottando le semplificazioni suggerite nella Nota 3.30:

$$\langle [\neg (\neg p \land (q \lor r) \to \neg s \land t) \lor (\neg u \land w)] \rangle$$

$$\langle [\neg (\neg p \land (q \lor r) \to \neg s \land t), \neg u \land w] \rangle$$

$$\langle [\neg p \land (q \lor r), \neg u \land w], [\neg (\neg s \land t), \neg u \land w] \rangle$$

$$\langle [\neg p, \neg u \land w], [q \lor r, \neg u \land w], [s, \neg t, \neg u \land w] \rangle$$

$$\langle [\neg p, \neg u], [\neg p, w], [q, r, \neg u \land w], [s, \neg t, \neg u], [s, \neg t, w] \rangle$$

$$\langle [\neg p, \neg u], [\neg p, w], [q, r, \neg u], [q, r, w], [s, \neg t, \neg u], [s, \neg t, w] \rangle$$

La formula in forma normale congiuntiva ottenuta è

$$(\neg p \lor \neg u) \land (\neg p \lor w) \land (q \lor r \lor \neg u) \land (q \lor r \lor w) \land (s \lor \neg t \lor \neg u) \land (s \lor \neg t \lor w).$$

2. $\forall x (a(x,c) \rightarrow \exists y (b(p(x),y) \land a(y,d) \land a(p(x),y))).$

3. Per stabilire se la formula è valida applichiamo l'Algoritmo 4.5 delle dispense alla negazione della formula. In ogni passaggio sottolineiamo la formula su cui agiamo.

$$\begin{array}{c} \neg((q\vee r)\wedge (q\to\neg s\wedge t)\to (t\wedge q)\vee (r\wedge (s\to\neg t)))\\ & \downarrow \\ (q\vee r)\wedge (q\to\neg s\wedge t), \neg((t\wedge q)\vee (r\wedge (s\to\neg t)))\\ & \downarrow \\ q\vee r, q\to\neg s\wedge t, \neg((t\wedge q)\vee (r\wedge (s\to\neg t)))\\ & \downarrow \\ q\vee r, q\to\neg s\wedge t, \neg((t\wedge q)\vee (r\wedge (s\to\neg t)))\\ & \downarrow \\ q, \neg q, \neg(t\wedge q), \neg(r\wedge (s\to\neg t))\\ & \downarrow \\ q, \neg s, t, \neg(t\wedge q), \neg(r\wedge (s\to\neg t))\\ & \downarrow \\ q, \neg s, t, \neg(t\wedge q), \neg(r\wedge (s\to\neg t))\\ & \downarrow \\ r, q\to\neg s\wedge t, \neg(t\wedge q), \neg(r\wedge (s\to\neg t))\\ & \downarrow \\ r, q\to\neg s\wedge t, \neg(t\wedge q), \neg(r\wedge (s\to\neg t))\\ & \downarrow \\ r, q\to\neg s\wedge t, \neg(t\wedge q), \neg(r\wedge (s\to\neg t))\\ & \downarrow \\ r, q\to\neg s\wedge t, \neg(t\wedge q), \neg(r\wedge (s\to\neg t))\\ & \downarrow \\ r, q\to\neg s\wedge t, \neg(t\wedge q), \neg(r\wedge (s\to\neg t))\\ & \downarrow \\ r, q\to\neg s\wedge t, \neg(t\wedge q), \neg(r\wedge (s\to\neg t))\\ & \downarrow \\ r, q\to\neg s\wedge t, \neg(t\wedge q), \neg(r\wedge (s\to\neg t))\\ & \downarrow \\ r, q\to\neg s\wedge t, \neg(t\wedge q), \neg(r\wedge (s\to\neg t))\\ & \downarrow \\ r, q\to\neg s\wedge t, \neg(t\wedge q), \neg(r\wedge (s\to\neg t))\\ & \downarrow \\ r, q\to\neg s\wedge t, \neg(t\wedge q), \neg(r\wedge (s\to\neg t))\\ & \downarrow \\ r, q\to\neg s\wedge t, \neg(t\wedge q), \neg(r\wedge (s\to\neg t))\\ & \downarrow \\ r, q\to\neg s\wedge t, \neg(t\wedge q), \neg(r\wedge (s\to\neg t))\\ & \downarrow \\ r, q\to\neg s\wedge t, \neg(t\wedge q), \neg(r\wedge (s\to\neg t))\\ & \downarrow \\ r, q\to\neg s\wedge t, \neg(t\wedge q), \neg(r\wedge (s\to\neg t))\\ & \downarrow \\ r, q\to\neg s\wedge t, \neg(t\wedge q), \neg(r\wedge (s\to\neg t))\\ & \downarrow \\ r, q\to\neg s\wedge t, \neg(t\wedge q), \neg(r\wedge (s\to\neg t))\\ & \downarrow \\ r, q\to\neg s\wedge t, \neg(t\wedge q), \neg(r\wedge (s\to\neg t))\\ & \downarrow \\ r, q\to\neg s\wedge t, \neg(t\wedge q), \neg(r\wedge (s\to\neg t))\\ & \downarrow \\ r, q\to\neg s\wedge t, \neg(t\wedge q), \neg(r\wedge (s\to\neg t))\\ & \downarrow \\ r, q\to\neg s\wedge t, \neg(t\wedge q), \neg(r\wedge (s\to\neg t))\\ & \downarrow \\ r, q\to\neg s\wedge t, \neg(t\wedge q), \neg(r\wedge (s\to\neg t))\\ & \downarrow \\ r, q\to\neg s\wedge t, \neg(t\wedge q), \neg(r\wedge (s\to\neg t))\\ & \downarrow \\ r, q\to\neg s\wedge t, \neg(t\wedge q), \neg(r\wedge (s\to\neg t))\\ & \downarrow \\ r, q\to\neg s\wedge t, \neg(t\wedge q), \neg(r\wedge (s\to\neg t))\\ & \downarrow \\ r, q\to\neg s\wedge t, \neg(t\wedge q), \neg(r\wedge (s\to\neg t))\\ & \downarrow \\ r, q\to\neg s\wedge t, \neg(t\wedge q), \neg(r\wedge (s\to\neg t))\\ & \downarrow \\ r, q\to\neg s\wedge t, \neg(t\wedge q), \neg(r\wedge (s\to\neg t))\\ & \downarrow \\ r, q\to\neg s\wedge t, \neg(t\wedge q), \neg(r\wedge (s\to\neg t))\\ & \downarrow \\ r, q\to\neg s\wedge t, \neg(t\wedge q), \neg(r\wedge (s\to\neg t))\\ & \downarrow \\ r, q\to\neg s\wedge t, \neg(t\wedge q), \neg(r\wedge (s\to\neg t))\\ & \downarrow \\ r, q\to\neg s\wedge t, \neg(t\wedge q), \neg(r\wedge (s\to\neg t))\\ & \downarrow \\ r, q\to\neg s\wedge t, \neg(t\wedge q), \neg(r\wedge (s\to\neg t))\\ & \downarrow \\ r, q\to\neg s\wedge t, \neg(t\wedge q), \neg(r\wedge (s\to\neg t))\\ & \downarrow \\ r, q\to\neg s\wedge t, \neg(t\wedge q), \neg(r\wedge (s\to\neg t))\\ & \downarrow \\ r, q\to\neg s\wedge t, \neg(t\wedge q), \neg(r\wedge (s\to\neg t))\\ & \downarrow \\ r, q\to\neg s\wedge t, \neg(t\wedge q), \neg(t\wedge q$$

Il tableau è aperto e quindi la formula di partenza non è valida. La foglia aperta ci permette di definire un'interpretazione che non la soddisfa: $v(q) = \mathbf{F}, \ v(r) = \mathbf{V}, \ v(s) = \mathbf{V}, \ v(t) = \mathbf{V}.$

4. Una soluzione in cui si usa il minimo numero di quantificatori è:

$$\exists y \, \neg \exists x \, \neg r(x, f(y)) \, \to \, \neg \exists u \, p(u) \, \land \, \forall x \, \neg \forall z \, \neg r(f(x), z)$$

$$\exists y \, \forall x \, r(x, f(y)) \, \to \, \forall u \, \neg p(u) \, \land \, \forall x \, \exists z \, r(f(x), z)$$

$$\exists y \, \forall x \, r(x, f(y)) \, \to \, \forall u \, (\neg p(u) \, \land \, \exists z \, r(f(u), z))$$

$$\exists y \, \forall x \, r(x, f(y)) \, \to \, \forall u \, \exists z \, (\neg p(u) \, \land \, r(f(u), z))$$

$$\forall y \, \forall u \, (\forall x \, r(x, f(y)) \, \to \, \exists z \, (\neg p(u) \, \land \, r(f(u), z)))$$

$$\forall y \, \forall u \, \exists x \, (r(x, f(y)) \, \to \, \neg p(u) \, \land \, r(f(u), x))$$

5. Dobbiamo definire un'interpretazione che soddisfa i due enunciati a sinistra del simbolo di conseguenza logica, ma non quello a destra. Due interpretazioni con queste caratteristiche sono definite da

$$D^{I} = \{0, 1, 2, 3\}, \qquad r^{I} = \{(0, 0), (0, 3), (1, 0), (1, 1), (2, 1), (2, 2), (3, 2), (3, 3)\};$$
$$D^{J} = \mathbb{N}, \qquad r^{J} = \{(n, m) : n \text{ è un multiplo di } m\}.$$

6. Sia I sia un'interpretazione: dobbiamo dimostrare che I non soddisfa i tre enunciati dell'insieme, che indichiamo con F, G e H. Supponiamo quindi per assurdo che valga $I \models F, G, H$.

Dato che $I \vDash G$ esiste $d_0 \in D^I$ tale che $(d_0, f^I(d_0)) \in r^I$. Da $I \vDash H$ segue in particolare che $I, \sigma[x/d_0] \vDash \exists y \, r(x,y) \to \forall z \, r(f(x),z)$. Dato che $I, \sigma[x/d_0] \vDash \exists y \, r(x,y)$ segue da quanto ottenuto in precedenza, deve essere vero anche $I, \sigma[x/d_0] \vDash \forall z \, r(f(x),z)$. Questo significa che per ogni $d \in D^I$ si ha $(f^I(d_0), d) \in r^I$. In particolare si ha $(f^I(d_0), d_0) \in r^I$.

Quest'ultima osservazione, insieme a $(d_0, f^I(d_0)) \in r^I$, mostra che non può essere $I \models F$ in quanto $I, \sigma[x/d_0, y/f^I(d_0)] \nvDash r(x, y) \to \neg r(y, x)$.

7. Dobbiamo partizionare D^I in tre insiemi in modo da rispettare la Definizione 9.19 delle dispense. Osservando p^I notiamo che 0 può essere congruente solo a 1 (sono gli unici elementi non appartenenti a p^I) mentre gli altri cinque elementi potrebbero essere congruenti tra loro. Prendendo ora in considerazione r^I notiamo che 3, 4 e 5 non compaiono al secondo posto di nessuna coppia appartenente a r^I , a differenza di 2 e 6. I primi tre elementi non possono quindi essere congruenti con i secondi due.

Queste osservazioni ci portano a concludere che le tre classi d'equivalenza rispetto a \sim non possono che essere $\{0,1\}$ $\{2,6\}$ e $\{3,4,5\}$. Inoltre \sim verifica anche la condizione che riguarda f, perché $f^I(0) \sim f^I(1)$, $f^I(2) \sim f^I(6)$ e $f^I(3) \sim f^I(4) \sim f^I(5)$.

Si ha allora

$$\begin{split} D^I/\sim &= \{[0], [2], [3]\};\\ f^{I/\sim}([0]) = [2], \quad f^{I/\sim}([2]) = [0], \quad f^{I/\sim}([3]) = [2];\\ p^{I/\sim} &= \{[2], [3]\}, \qquad r^{I/\sim} = \{([0], [2]), ([3], [2])\}. \end{split}$$

8. Per mostrare la conseguenza logica dobbiamo costruire (utilizzando l'Algoritmo 10.51 e le Convenzioni 10.21 e 10.23 delle dispense) un tableau chiuso con la radice etichettata dagli enunciati a sinistra del simbolo di conseguenza logica e la negazione dell'enunciato a destra. Indichiamo con F, G, H e K le γ -formule $\forall x \forall y (r(x,y) \rightarrow p(x) \vee \neg q(y)),$ $\neg \exists z \neg q(z), \forall y \, r(y, a) \in \forall y \, (r(b, y) \rightarrow p(b) \vee \neg q(y)).$ In ogni passaggio sottolineiamo le formule su cui agiamo.

$$\exists x \, \forall y \, r(y,x), F, \underline{\neg(\exists z \, \neg q(z) \, \vee \, \forall z \, p(z))}$$

$$\exists x \, \forall y \, r(y,x), F, G, \neg \forall z \, p(z)$$

$$H, F, G, \neg \forall z \, p(z)$$

$$H, F, G, \neg p(b)$$

$$H, F, K, \underline{\neg(b, a) \rightarrow p(b) \, \vee \neg q(a), G, \neg p(b)}$$

$$H, F, K, \underline{\neg(b, a), G, \neg p(b)}$$

$$H, F, K, \underline{\neg(a), G, \neg p(b)}$$

$$H, F, K, \underline{\neg(a), G, q(a), \neg p(b)}$$

altre scelte il tableau cresce rapidamente di dimensione).

9. Ecco una deduzione naturale che mostra quanto richiesto:

$$\frac{ [r(y,f(x))]^1}{\exists z \, r(y,z)} \qquad \frac{\forall u (\exists z \, r(u,z) \to \neg p(g(u)))}{\exists z \, r(y,z) \to \neg p(g(y))}$$

$$\frac{\forall x \, \exists y \, r(y,f(x))}{\exists y \, r(y,f(x))} \qquad \frac{\neg p(g(y))}{\exists x \, \neg p(x)}$$

$$\exists x \, \neg p(x)$$

Prova scritta di Logica Matematica 26 giugno 2019

Cognome Nome Matricola

Indicate su ogni foglio che consegnate cognome, nome e numero di matricola.

Nella prima parte ogni riposta corretta vale 1, ogni risposta sbagliata -1, ogni risposta non data 0. Il punteggio minimo per superare questa parte è 6. Il punteggio che eccede 6 viene sommato al risultato della seconda parte per ottenere il voto dello scritto.

Nella seconda parte per ogni esercizio è indicato il relativo punteggio.

PRIMA PARTE

Barrate la risposta che ritenete corretta. Non dovete giustificare la risposta.

	Darrate la lisposta che litenete corretta. Non dovete giustificare la lisposta	•						
a.	Se $F \vDash G \lor H$ allora $F \vDash G$ oppure $F \vDash H$.	\mathbf{V}	I	7				
b.	$(p \wedge q) \vee r \to (\neg r \vee p) \equiv \neg (\neg p \wedge r).$	\mathbf{V}	I	7				
c.	. Se F è una formula proposizionale esiste un'unica formula							
	in forma normale congiuntiva logicamente equivalente a F .	\mathbf{V}	I	7				
$\mathbf{d}.$	Quante delle seguenti formule sono in forma prenessa? $\forall x(\exists y r(x,y) \to p(x)),$							
	$\forall x \exists y (r(x,y) \to p(x)), \forall x \neg \exists y (r(x,y) \to p(x)), \forall x \exists y \neg (r(x,y) \to p(x)). $	$2 \mid 3$	} 4	4				
e.	Sia I l'interpretazione normale con $D^I = \{0, 1, 2, 3\},\$							
	$f^{I}(0) = 2, f^{I}(1) = 0, f^{I}(2) = 2, f^{I}(3) = 1, p^{I} = \{0, 2\}.$							
	Allora $I \vDash \exists u ((\exists x f(x) = u \lor p(u)) \land \neg p(f(u))).$	\mathbf{V}	I	7				
f.	La sostituzione $\{x/g(x,y)\}$ è ammissibile in							
	$\forall u(\forall z r(z, f(x, u)) \to \exists y \forall v(r(f(v, u), y) \to r(g(x, u), y))).$	\mathbf{V}	I	7				
g.	$\forall x p(x) \to \exists x q(x) \equiv \exists x (\neg p(x) \lor q(x)).$	\mathbf{V}	I	7				
h.	1. Esiste un insieme di Hintikka che contiene le formule $p \to \neg q$, $p \land \neg r$ e $p \lor q$.							
i.	. Se φ è un omomorfismo forte di I in J e $J \models p(c) \land \neg r(a, f(c))$							
	allora $I \vDash p(c) \land \neg r(a, f(c))$.	\mathbf{V}	I	7				
j.	Questo albero rappresenta una deduzione naturale corretta:	\mathbf{V}	I	7				
	$rac{orall z p(z)}{ z }$							
	$\overline{[p(g(x))]} \qquad [q(g(x))]^1$							
	$\frac{p(g(x)) \wedge q(g(x))}{p(g(x))}$							
	$\frac{\exists x q(g(x))}{\exists y (p(y) \land q(y))} \frac{\exists y (p(y) \land q(y))}{\exists y (p(y) \land q(y))} _{1}$							
	$\neg y(p(y) \land q(y))$							

k. Scrivete nel riquadro cosa significa che il metodo dei tableaux proposizionali gode della proprietà della terminazione forte.

SECONDA PARTE

Usate il retro del foglio per svolgere tutti gli esercizi salvo il numero 2.

1. Usando l'algoritmo di Fitting mettete in forma normale congiuntiva la formula

2pt

$$(\neg p \land q) \lor \neg (\neg r \land (s \lor w) \to t \land \neg u).$$

2. Sia $\mathcal{L} = \{c, d, m, a, b\}$ un linguaggio dove c e d sono simboli di costante, m un simbolo di funzione unario e a e b sono simboli di relazione binari. Interpretando c come "Claudia", d come "Dario", m(x) come "la madre di x", a(x,y) come "x è amico di y", b(x,y) come "x è più basso di y", traducete la frase: Tutte le madri degli amici di Dario sono più basse di qualche amico di Claudia di cui sono amiche.

3pt

3. Usando il metodo dei tableaux stabilite se

3pt

$$(p \to \neg q \land r) \land (p \lor s) \to (s \land (q \to \neg r)) \lor (r \land p)$$

è valida. Se la formula non è valida definite una valutazione che lo testimoni.

4. Mettete in forma prenessa la formula

6. Dimostrate che

2pt

$$\exists x \, \neg \exists y \, \neg r(x, f(y)) \to \forall y \, \neg \forall z \, \neg r(f(y), z) \, \land \, \neg \exists v \, p(v).$$

1pt

Se riuscite, usate il minimo numero di quantificatori possibili. 5. Dimostrate l'insoddisfacibilità dell'insieme di enunciati

4pt

 $\{\forall x \,\forall y (r(x,y) \to \neg r(y,x)), \forall x (\exists y \, r(y,x) \to \forall z \, r(z,f(x))), \exists x \, r(f(x),x)\}.$

4pt

$$\forall x \, r(x, x), \forall x \, \exists y (r(x, y) \land \neg r(y, x)) \not\vDash \forall x \, \forall y (r(x, y) \lor r(y, x)).$$

7. Sia $\mathcal{L} = \{f, p, r\}$ un linguaggio in cui f è un simbolo di funzione unario, p un simbolo di relazione unario e r un simbolo di relazione binario. Sia I l'interpretazione per \mathcal{L} definita da

3pt

$$D^{I} = \{0, 1, 2, 3, 4, 5, 6\};$$
 $p^{I} = \{0, 1, 2, 4, 5\};$

$$f^{I}(0) = 2;$$
 $f^{I}(1) = 4;$ $f^{I}(2) = 6;$ $f^{I}(3) = 4;$ $f^{I}(4) = 3;$ $f^{I}(5) = 2;$ $f^{I}(6) = 4;$ $r^{I} = \{(0, 2), (0, 4), (1, 2), (1, 4), (3, 2), (3, 4), (5, 2), (5, 4), (6, 2), (6, 4)\}.$

Definite una relazione di congruenza \sim su I che abbia tre classi d'equivalenza, giustificando la vostra risposta. Descrivete l'interpretazione quoziente I/\sim .

8. Usando il metodo dei tableaux dimostrate che

4pt

$$\exists x \, \forall y \, r(x,y), \forall x \, \forall y \, (r(x,y) \to \neg p(x) \lor q(y)) \vDash \forall z \, q(z) \lor \exists z \, \neg p(z).$$

9. Dimostrate, usando solo le regole della deduzione naturale predicativa (comprese le sei regole derivate) che

5pt

$$\forall z (\exists u \, r(u, z) \to \neg p(g(z))), \forall x \, \exists y \, r(f(x), y) \rhd \exists x \, \neg p(x).$$

Soluzioni

- **a.** F se ad esempio F è $p \vee q$, G è p e H è q abbiamo $F \vDash G \vee H$ ma non valgono né $F \vDash G$ né $F \vDash H$.
- b. V come si verifica per esempio con le tavole di verità.
- **c. F** l'unicità non è garantita, come osservato dopo l'enunciato del Teorema 3.10 delle dispense.
- d. 2 solo la seconda e la quarta formula sono in forma prenessa.
- **e.** F perché per nessun $d \in D^I$ si ha $I, \sigma[u/d] \models (\exists x \, f(x) = u \lor p(u)) \land \neg p(f(u))$. Infatti l'unico d tale che $I, \sigma[u/d] \models \neg p(f(u))$ è 3, che però non soddisfa il primo congiunto.
- **f.** F perché la seconda occorrenza di x è nel raggio d'azione del quantificatore esistenziale su y e y compare in g(x, y).
- g. V per i Lemmi 7.74 e 2.24.3 delle dispense.
- **h.** V $\{p \to \neg q, p \land \neg r, p \lor q, p, \neg r, \neg q\}$ è un insieme di Hintikka.
- i. V dato che la formula considerata è priva di quantificatori, si può applicare il Lemma 9.9 delle dispense.
- **j.** V in particolare le applicazioni di $(\exists i)$ e $(\exists e)$ rispettano le condizioni.
- **k.** l'algoritmo termina qualunque siano il nodo e la formula su cui si decide di operare ad ogni singolo passo. (Lemma 4.11 delle dispense).
- 1. Utilizziamo l'Algoritmo 3.18 delle dispense, adottando le semplificazioni suggerite nella Nota 3.30:

$$\langle [(\neg p \land q) \lor \neg (\neg r \land (s \lor w) \to t \land \neg u)] \rangle$$

$$\langle [\neg p \land q, \neg (\neg r \land (s \lor w) \to t \land \neg u)] \rangle$$

$$\langle [\neg p, \neg (\neg r \land (s \lor w) \to t \land \neg u)], [q, \neg (r \land (s \lor w) \to t \land \neg u)] \rangle$$

$$\langle [\neg p, \neg r \land (s \lor w)], [\neg p, \neg (t \land \neg u)], [q, \neg r \land (s \lor w)], [q, \neg (t \land \neg u)] \rangle$$

$$\langle [\neg p, \neg r], [\neg p, s \lor w], [\neg p, \neg t, u], [q, \neg r], [q, s \lor w], [q, \neg t, u] \rangle$$

$$\langle [\neg p, \neg r], [\neg p, s, w], [\neg p, \neg t, u], [q, \neg r], [q, s, w], [q, \neg t, u] \rangle$$

La formula in forma normale congiuntiva ottenuta è

$$(\neg p \vee \neg r) \wedge (\neg p \vee s \vee w) \wedge (\neg p \vee \neg t \vee u) \wedge (q \vee \neg r) \wedge (q \vee s \vee w) \wedge (q \vee \neg t \vee u).$$

2. $\forall x (a(x,d) \rightarrow \exists y (b(m(x),y) \land a(y,c) \land a(m(x),y))).$

3. Per stabilire se la formula è valida applichiamo l'Algoritmo 4.5 delle dispense alla negazione della formula. In ogni passaggio sottolineiamo la formula su cui agiamo.

$$\begin{array}{c} -((p \rightarrow \neg q \land r) \land (p \lor s) \rightarrow (s \land (q \rightarrow \neg r)) \lor (r \land p)) \\ & | \\ (p \rightarrow \neg q \land r) \land (p \lor s), \neg ((s \land (q \rightarrow \neg r)) \lor (r \land p)) \\ & | \\ p \rightarrow \neg q \land r, p \lor s, \neg ((s \land (q \rightarrow \neg r)), \neg (r \land p)) \\ & | \\ p \rightarrow \neg q \land r, p, \neg (s \land (q \rightarrow \neg r)), \neg (r \land p) \\ & | \\ p \rightarrow \neg q \land r, p, \neg (s \land (q \rightarrow \neg r)), \neg (r \land p) \\ & | \\ \neg q, r, p, \neg (s \land (q \rightarrow \neg r)), \neg (r \land p) \\ & | \\ \neg q, r, p, \neg (s \land (q \rightarrow \neg r)), \neg (r \land p) \\ & | \\ \neg q, r, p, \neg (s \land (q \rightarrow \neg r)), \neg (r \land p) \\ & | \\ p \rightarrow \neg q \land r, s, \neg (r \land p) \\ & | \\ p \rightarrow \neg q \land r, s, \neg (r \land p) \\ & | \\ p \rightarrow \neg q \land r, s, q, r, \neg (r \land p) \\ & | \\ p \rightarrow \neg q \land r, s, q, r, \neg r \\ & | \\ p \rightarrow \neg q \land r, s, q, r, \neg r \\ & | \\ \neg q, r, s, q, r, \neg p \\ & | \\ \neg q, r, s, q, r, \neg p \\ & | \\ \hline \end{array} \right]$$

$$\text{Il tableau è aperto e quindi la formula di partenza non è valida. La foglia aperta}$$

Il tableau è aperto e quindi la formula di partenza non è valida. La foglia aperta ci permette di definire un'interpretazione che non la soddisfa: $v(p) = \mathbf{F}$, $v(q) = \mathbf{V}$, $v(r) = \mathbf{V}$, $v(s) = \mathbf{V}$.

4. Una soluzione in cui si usa il minimo numero di quantificatori è:

$$\exists x \, \neg \exists y \, \neg r(x, f(y)) \to \forall y \, \neg \forall z \, \neg r(f(y), z) \land \neg \exists v \, p(v)$$

$$\exists x \, \forall y \, r(x, f(y)) \to \forall y \, \exists z \, r(f(y), z) \land \forall v \, \neg p(v)$$

$$\exists x \, \forall y \, r(x, f(y)) \to \forall y (\exists z \, r(f(y), z) \land \neg p(y))$$

$$\forall x \, \forall y (\forall y \, r(x, f(y)) \to \exists z \, r(f(y), z) \land \neg p(y))$$

$$\forall x \, \forall y \, \exists z (r(x, f(z)) \to r(f(y), z) \land \neg p(y))$$

5. Sia I sia un'interpretazione: dobbiamo dimostrare che I non soddisfa i tre enunciati dell'insieme, che indichiamo con F, G e H. Supponiamo quindi per assurdo che valga $I \models F, G, H$.

Dato che $I \vDash H$ esiste $d_0 \in D^I$ tale che $(f^I(d_0), d_0) \in r^I$. Da $I \vDash G$ segue in particolare che $I, \sigma[x/d_0] \vDash \exists y \, r(y, x) \to \forall z \, r(z, f(x))$. Dato che $I, \sigma[x/d_0] \vDash \exists y \, r(y, x)$ segue da quanto ottenuto in precedenza, deve essere vero anche $I, \sigma[x/d_0] \vDash \forall z \, r(z, f(x))$. Questo significa che per ogni $d \in D^I$ si ha $(d, f^I(d_0)) \in r^I$. In particolare si ha $(d_0, f^I(d_0)) \in r^I$.

Quest'ultima osservazione, insieme a $(f^I(d_0), d_0) \in r^I$, mostra che non può essere $I \models F$ in quanto $I, \sigma[x/d_0, y/f^I(d_0)] \nvDash r(x, y) \to \neg r(y, x)$.

6. Dobbiamo definire un'interpretazione che soddisfa i due enunciati a sinistra del simbolo di conseguenza logica, ma non quello a destra. Due interpretazioni con queste caratteristiche sono definite da

$$\begin{split} D^I &= \{0,1,2,3\}, \qquad r^I = \{(0,0),(0,1),(1,1),(1,2),(2,2),(2,3),(3,0),(3,3)\}; \\ D^J &= \mathbb{N}, \qquad r^J = \{\,(n,m)\,:\, n \text{ è un divisore di }m\,\}\,. \end{split}$$

7. Dobbiamo partizionare D^I in tre insiemi in modo da rispettare la Definizione 9.19 delle dispense. Osservando p^I notiamo che 3 può essere congruente solo a 6 (sono gli unici elementi non appartenenti a p^I) mentre gli altri cinque elementi potrebbero essere congruenti tra loro. Prendendo ora in considerazione r^I notiamo che 0, 1 e 5 non compaiono al secondo posto di nessuna coppia appartenente a r^I , a differenza di 2 e 4. I primi tre elementi non possono quindi essere congruenti con i secondi due.

Queste osservazioni ci portano a concludere che le tre classi d'equivalenza rispetto a \sim non possono che essere $\{0,1,5\}$ $\{2,4\}$ e $\{3,6\}$. Inoltre \sim verifica anche la condizione che riguarda f, perché $f^I(0) \sim f^I(1) \sim f^I(5)$, $f^I(2) \sim f^I(4)$ e $f^I(3) \sim f^I(6)$.

Si ha allora

$$D^{I}/\sim = \{[0], [2], [3]\};$$

$$f^{I/\sim}([0]) = [2], \quad f^{I/\sim}([2]) = [3], \quad f^{I/\sim}([3]) = [2];$$

$$p^{I/\sim} = \{[0], [2]\}, \qquad r^{I/\sim} = \{([0], [2]), ([3], [2])\}.$$

8. Per mostrare la conseguenza logica dobbiamo costruire (utilizzando l'Algoritmo 10.51 e le Convenzioni 10.21 e 10.23 delle dispense) un tableau chiuso con la radice etichettata dagli enunciati a sinistra del simbolo di conseguenza logica e la negazione dell'enunciato a destra. Indichiamo con F, G, H e K le γ -formule $\forall x \forall y (r(x,y) \rightarrow \neg p(x) \lor q(y))$, $\neg \exists z \neg p(z), \forall y \, r(a,y) \in \forall y \, (r(a,y) \rightarrow \neg p(a) \lor q(y))$. In ogni passaggio sottolineiamo le formule su cui agiamo.

$$\exists x \, \forall y \, r(x,y), F, \frac{\neg(\forall z \, q(z) \, \vee \, \exists z \, \neg p(z))}{|}$$

$$\exists x \, \forall y \, r(x,y), F, \neg \forall z \, q(z), G$$

$$|$$

$$|$$

$$H, F, \frac{\neg \forall z \, q(z)}{|}, G$$

$$|$$

$$H, F, \underline{K}, \neg q(b), G$$

$$|$$

$$H, F, K, \underline{r(a,b) \rightarrow \neg p(a) \, \vee \, q(b)}, \neg q(b), G$$

$$|$$

$$H, F, K, \neg r(a,b), \neg q(b), G$$

$$|$$

$$H, F, K, \neg p(a) \, \vee \, q(b), \neg q(b), G$$

$$|$$

$$H, F, K, \neg p(a), \neg q(b), \underline{G}$$

$$|$$

$$H, F, K, q(b), \neg q(b), G$$

$$|$$

$$H, F, K, \neg p(a), \neg q(b), G, p(a)$$

$$|$$

$$H, F, K, \neg p(a), \neg q(b), G, p(a)$$

Si noti l'importanza di scegliere in modo opportuno le istanze delle γ -formule (con altre scelte il tableau cresce rapidamente di dimensione).

9. Ecco una deduzione naturale che mostra quanto richiesto:

$$\frac{[r(f(x),y)]^1}{\exists u \, r(u,y)} \qquad \frac{\forall z(\exists u \, r(u,z) \to \neg p(g(z)))}{\exists u \, r(u,y) \to \neg p(g(y))}$$

$$\frac{\forall x \, \exists y \, r(f(x),y)}{\exists y \, r(f(x),y)} \qquad \frac{\neg p(g(y))}{\exists x \, \neg p(x)}$$

$$\exists x \, \neg p(x)$$