Lecture 21 Sparse Matrix Algorithms

MIT 18.335J / 6.337J

Introduction to Numerical Methods

Per-Olof Persson

November 28, 2006

Sparse vs. Dense Matrices

 A sparse matrix is a matrix with enough zeros that it is worth taking advantage of them [Wilkinson]

• A *structured matrix* has enough structure that it is worthwhile to use it (e.g. Toeplitz)

• A dense matrix is neither sparse nor structured

MATLAB Sparse Matrices: Design Principles

- Most operations should give the same results for sparse and full matrices
- Sparse matrices are never created automatically, but once created they propagate
- Performance is important but usability, simplicity, completeness, and robustness are more important
- Storage for a sparse matrix should be O(nonzeros)
- ullet Time for a sparse operation should be close to $O(\mathrm{flops})$

Data Structures for Matrices

Full:

- Storage: Array of real (or complex) numbers
- Memory: nrows*ncols

31	0	53
0	59	0
41	26	0

double *A

Sparse:

- Compressed column storage
- Memory: About

1.5*nnz+.5*ncols

Compressed Column Format - Observations

- Element look-up: $O(\log \# \text{elements in column})$ time
- Insertion of new nonzero very expensive
- Sparse vector = Column vector (not Row vector)

Graphs and Sparsity: Cholesky Factorization

Permutations of the 2-D Model Problem

- ullet 2-D Model Problem: Poisson's Equation on n imes n finite difference grid
- ullet Total number of unknowns $n^2=N$
- Theoretical results for the fill-in:
 - With natural permutation: $O(N^{3/2})$ fill
 - With any permutation: $\Omega(N \log N)$ fill
 - With a *nested dissection* permutation: $O(N \log N)$ fill

Nested Dissection Ordering

- ullet A separator in a graph G is a set S of vertices whose removal leaves at least two connected components
- ullet A nested dissection ordering for an N-vertex graph G numbers its vertices from 1 to N as follows:
 - Find a separator S, whose removal leaves connected components T_1, T_2, \ldots, T_k
 - Number the vertices of S from $N-\left|S\right|+1$ to N
 - Recursively, number the vertices of each component: T_1 from 1 to $|T_1|$, T_2 from $|T_1|+1$ to $|T_1|+|T_2|$, etc
 - If a component is small enough, number it arbitrarily
- It all boils down to finding good separators!

Heuristic Fill-Reducing Matrix Permutations

- Banded orderings (Reverse Cuthill-McKee, Sloan, etc):
 - Try to keep all nonzeros close to the diagonal
 - Theory, practice: Often wins for "long, thin" problems
- Minimum degree:
 - Eliminate row/col with fewest nonzeros, add fill, repeat
 - Hard to implement efficiently current champion is "Approximate
 Minimum Degree" [Amestoy, Davis, Duff]
 - Theory: Can be suboptimal even on 2-D model problem
 - Practice: Often wins for medium-sized problems

Heuristic Fill-Reducing Matrix Permutations

- Nested dissection:
 - Find a separator, number it *last*, proceed recursively

 - Practice: Often wins for very large problems
- The best modern general-purpose orderings are ND/MD hybrids

Fill-Reducing Permutations in Matlab

- Reverse Cuthill-McKee:
 - p=symrcm(A);
 - Symmetric permutation: A(p,p) often has smaller bandwidth than A
- Symmetric approximate minimum degree:
 - p=symamd(A);
 - Symmetric permutation: chol(A(p,p)) sparser than chol(A)
- Nonsymmetric approximate minimum degree:
 - p=colamd(A);
 - Column permutation: lu(A(:,p)) sparser than lu(A)
- Symmetric nested dissection:
 - Not built into MATLAB, several versions in the MESHPART toolbox

Complexity of Direct Methods

 \bullet Time and space to solve any problem on any well-shaped finite element mesh with N nodes:

	1-D	2-D	3-D
Space (fill):	O(N)	$O(N \log N)$	$O(N^{4/3})$
Time (flops):	O(N)	$O(N^{3/2})$	$O(N^2)$