

At the 58th IEEE/ACM International Symposium on Microarchitecture (MICRO 2025)

DiffTest-H: Toward Semantic-Aware Communication in Hardware-Accelerated Processor Verification

Kunlin You^{1,2}, Yinan Xu¹, Kehan Feng³, Luoshan Cai^{1,2}, Yaoyang Zhou³ and Yungang Bao^{1,2}

¹ State Key Lab of Processors, Institute of Computing Technology, Chinese Academy of Sciences

² University of Chinese Academy of Sciences

³ Beijing Institute of Open Source Chip

October 21, 2025

XiangShan: Open-source High Performance Processors

Top-Performing Open-Source Processor

Vision: "Linux of Processors" for Industry & Academia

Research on XiangShan

XiangShan has been used by researchers as the underlying platform for their evaluations. We appreciate their contributions to enhancing XiangShan and strengthening the community

- Imprecise Store Exceptions, EPFL, ISCA'23
- TEESec: Pre-Silicon Vulnerability Discovery for Trusted Execution Environments, OSU &

Research Platform

of CPU, ICT-CAS, ICCAD'23

- A Distributed ATPG System Combining Test Compaction Based on Pure MaxSAT, ICT-CAS,
- REMU: Enabling Cost-Effective Checkpointing and Deterministic Replay in FPGA-based
- Asynchronous Memory Access Unit: Exploiting Massive Parallelism for Far Memory Access,
- Single-Address-Space FaaS with Jord, EPFL, ISCA'25

21.69

14.72 15.73

XiangShan: Powering Desktop, GPU SoC, Server ...

1st Gen XiangShan Chip

Fedora on XiangShan

@Fedora-V Force

Open-source Demands Agile Verification

- Highly configurable ISA
- Rapid code iterations
- 1,400+ bugs uncovered in XiangShan (2025)

The Era of Verification

Covering 56% bugs of XiangShan

Checking under real-world cases

This Work: Fast & Debug-friendly System Test

13.8 MHz@FPGA

Hardware-Accelerated RTL Simulation

Instruction-level Checking

Per-Instruction Comparison with Reference Model

Practical & Effective

151 bugs uncovered in XiangShan

Co-simulation: Instruction-level Debugging

• DiffTest^[1]: Instr-by-Instr Comparison of Architectural State (DUT vs. REF)

Well debugging, but what about speed?

Software-based Co-simulation

- Based on RTL Simulator:
 - Verilator, VCS: only KHz-scale speed (limited by RTL simulation)
 - Even with optimizations^[1,2,3], still limited at **KHz-scale**

^[1] Chen et al. GSIM: Accelerating RTL Simulation for Large-Scale Designs. (DAC 2025)

^[2] Wang et al. Repcut: Superlinear parallel rtl simulation with replication-aided partitioning. (ASPLOS 2023)

^[3] Zhou et al. Khronos: Fusing memory access for improved hardware RTL simulation. (MICRO 2023)

Hardware-accelerated Co-simulation

- Based on Emulator/FPGA:
 - Emulator/FPGA: DUT at 1~100 MHz, up to 10,000× speedup
 - Reference Model (software): ~100 MHz

Speed GAP: HW/SW Communication

Ideal: DUT Speed

Up to 10,000× Speedup

Reality: Co-sim Speed

Less than 20× Speedup

Fmulator: 1 MHz

FPGA: 100 MHz

GAP: HW/SW

Communication

Emulator: < 10 KHz

FPGA: < 100 KHz

98%~99.8% of co-sim time

What is HW/SW Communication?

- 32 types of architectural events
- 1 event trigger 1 communication
- ~15 communications, ~1.2 KB data per cycle

How to optimize 3-stage communication?

Focus on **Startup & Transfer**

Process latency is hidden by Async Transmission

Toward Fast & Debug-friendly Communication

- Challenge 1: Packing Under Structural Diversity
 - 170× Length Diversity + Per-cycle Event Variation

Toward Fast & Debug-friendly Communication

- Challenge 1: Packing Under Structural Diversity
 - 170× Length Diversity + Per-cycle Event Variation
- Challenge 2: Fusion Under Order Constraints
 - Same-type Fusion vs. Cross-type Ordering?

Toward Fast & Debug-friendly Communication

Cycle 1
Cycle 2
Cycle 3

Fusion

Where is the Bug?

- Challenge 1: Packing Under Structural Diversity
 - 170× Length Diversity + Per-cycle Event Variation
- Challenge 2: Fusion Under Order Constraints
 - Same-type Fusion vs. Cross-type Ordering?
- *Challenge 3:* Debugging after Fusion
 - Instr-level Debugging vs. Fusion Detail Loss?

DiffTest-H Overview

A Semantic-aware, Hardware-accelerated Framework Toward Fast & Debug-friendly Communication

Challenge 1 (Frequency)
Packing Under Structural Diversity

Batch: Structure-wise Packing

Challenge 2 (Data Volume)
Fusion Under Order Constraints

Squash: Order-decoupling Fusion

Challenge 3 (Debuggability)
Debugging after Fusion

Replay: Instruction-level Debugging

Batch: Packing under Structural Diversity

Prior: Fixed Space

Padding invalid space with bubbles 60% Bubbles, 1.67× Frequency

Now: Structure-wise Packing

Packing with length & type No bubble, Less frequency

No bubble

18

Squash: Order-decoupling Fusion

Prior: Order Constraints

e.g. Exception after specific instrs Frequent Fusion Breaks

Now: Order-decoupling Fusion

Decouple fusion & checking order Better fusion ratio, Less Data

Replay: Instruction-level Debugging

DiffTest-H Workflow

Accelerated Co-simulation:

- ①Monitor: Capture DUT events
- ③ Squash: Fusion for less data
- (4) Batch: Packing for less frequency
- **(5) Nonblock:** Overlap SW latency
- **6** Check: Compare DUT vs. REF

Debugging on Error:

- 2 Buffering: Backup unfused events
- **7 Replay**: Recheck unfused events
- **Report**: Bug localization

Performance Evaluation

XiangShan: 13.8 MHz@FPGA, 2,300× faster than Verilator

Optimization Breakdown

- Frequency: Batch reduces by 43x
- Process Latency: NonBlock overlaps with async
- Data Volume: Squash reduces by 47x

Optimization Breakdown

- Frequency: Batch reduces by 43x
- Process Latency: NonBlock overlaps with async
- Data Volume: Squash reduces by 47x

74 ×-138 × speedup, 98.0%-99.8% overhead reduction

Comparison: Fast & Debug-friendly

- 13.8× faster than FPGA SOTA
- 32 verification event with 1.2KB size, Instruction-level Debugging

Platform	Work	Checking Types	Checking Size B/cycle	Co-sim Speed
Emulator	IBI-Check ^[1]	2	7	80 KHz
	This work	32	1200	478 KHz
FPGA	Fromajo ^[2]	7	24	1 MHz
	This work	32	1200	13.8 MHz

^[1] Chatterjee et al. Checking architectural outputs instruction-by-instruction on acceleration platforms. (DAC'12)

^[2] Zhang et al. Integrating a High-Performance Instruction Set Simulator with FireSim to Co-simulate Operating System Boots. (ASPLOS '23 Workshops)

Bug Discovery: 151 Bugs Uncovered in XiangShan

- In the past 6 months, uncover **151 Bugs** in XiangShan
- Over **780+ lines** change with 19 Pull Request

DiffTest-H Summary

- DiffTest-H: Semantic-Aware, Hardware-Accelerated Framework
 - 13.8 MHz@FPGA, Instruction-level Debugging
 - Deployed in XiangShan, with 151 bugs uncovered
 - **Open-Source** @github/OpenXiangShan/difftest

GitHub Repo DiffTest-H

BatchStructure-wise Packing

SquashOrder-decoupling Fusion

ReplayInstruction-level Debugging

Thanks for Your Attention