1. What is the open-circuit output voltage of the following arrangement?

- 2. An amplifier has a voltage gain of 20, an input resistance of 500 ohms and an output resistance of 50 ohms. The amplifier is connected to a voltage source that produces an output voltage of 1 V and has an output resistance of 75 ohms, and to a load resistance of 800 ohms. What will be the voltage across the load resistor?
 - a) 20 V

a) V_i

- b) 16.4 V
- c) 18.8 V
- d) 17.4 V
- 3. An amplifier has a voltage gain of 20, an input resistance of 500 ohms and an output resistance of 50 ohms. The amplifier is connected to a voltage source that produces an output voltage of 1 V and has an output resistance of 75 ohms, and to a load resistance of 800 ohms. What is the voltage gain of this amplifier? (This is the same amplifier as in the previous question.)
 - a) 18.9
- b) 20
- c) 17.4
- d) 16.4
- 4. An amplifier has an input resistance of 1 kilohms and an output resistance of 25 ohms. The amplifier is connected to a load resistance of 100 ohms. What is the power gain of the amplifier if the input voltage is 3 V and the output voltage is 30 V?
 - a) 100
- b) 1000
- c) 400
- d) 4000
- 5. What is the gain in dB corresponding to a power gain ratio of 300?
 - a) -24.8 dB
- b) 24.8 dB
- c) 49.5 dB
- d) 14.8 dB

6. Differential amplifiers are designed to amplify common-mode signals while rejecting differential mode signals.

a) True

b) False

- 7. Which of the following correctly described the characteristics of a good operational amplifier?
 - a) A very high voltage gain, a very low input resistance and a very high output resistance.
 - b) A very high voltage gain, a very high input resistance and a very high output resistance.
 - c) A very low voltage gain, a very high input resistance and a very high output resistance.
 - d) A very high voltage gain, a very high input resistance and a very low output resistance.
- 8. What is the voltage gain of the following arrangement?

- a) (1+AB)/B
- b) B/(1+AB)
- c) A/(1+AB)
- d) (1+AB)/A
- 9. Under what conditions does the gain of a feedback system approximate to 1/B?
 - a) The loop gain AB >> 1.
- b) The feedback path gain B >> 1.
- c) The loop gain AB << 1.
- d) The forward path gain A >> 1.
- 10. What is the gain of the following passive attenuator?

a) 0.1

b) 0.11

c) 9

d) 10

11. What is the effect of negative feedback on the gain of an amplifier?

- a) It increases the gain by a factor of 1/B.
- b) It reduces the gain by a factor of 1/B.
- c) It increases the gain by a factor of (1 + AB).
- d) It reduces the gain by a factor of (1 + AB).

12. What is the effect of negative feedback on the bandwidth of an amplifier?

- a) It increases the bandwidth, often by a factor of 1/B.
- b) It reduces the bandwidth, often by a factor of (1 + AB).
- c) It reduces the bandwidth, often by a factor of 1/B.
- d) It increases the bandwidth, often by a factor of (1 + AB).

13. What are the effects of negative feedback on the input and output resistance of an amplifier?

- a) It either increases or decreases the input and output resistance depending on how it is applied.
- b) It increases input resistance and decreases output resistance.
- c) It decreases input resistance and increases output resistance.
- d) It increases both input and output resistance.

14. Negative feedback reduces the noise corrupting a signal by a factor of (1 + AB).

a) True

b) False

15. What signal corresponds to pin 3 of this operational amplifier?

- a) The non-inverting output.
- c) The inverting input.
- b) The positive supply voltage.
- d) The non-inverting input.

16. What characteristics would characterize an ideal operational amplifier?

- a) An infinite voltage gain, zero input resistance and an infinite output resistance.
- b) An infinite voltage gain, an infinite input resistance and an infinite output resistance.
- c) An infinite voltage gain, zero input resistance and zero output resistance.
- d) An infinite voltage gain, an infinite input resistance and zero output resistance.

17. The graphs below show the input and output waveforms of an amplifier. What is the gain of this circuit?

- a) -0.4
- b) 2.5
- c) 0.4
- d) -2.5

18. What is the voltage gain of this circuit?

- a) 0.091
- b) 0.1
- c) 10
- d) 11

19. In the following circuit, what value of R_1 is required to give a voltage gain of -50?

a) $50 \text{ k}\Omega$

b) -50 $k\Omega$

c) -49 $k\Omega$

d) 49 k Ω

20. What are the characteristics of the following circuit?

- a) It has a voltage gain of unity, a low input resistance and a low output resistance.
- b) It has a voltage gain of unity, a high input resistance and a high output resistance.
- c) It has a voltage gain of unity, a low input resistance and a high output resistance.
- d) It has a voltage gain of unity, a high input resistance and a low output resistance.

21. In the following circuit, the use of negative feedback decreases the output resistance.

a) True

b) False

22. Which of the following statements is incorrect?

- a) Conduction within pure semiconductors is termed intrinsic conduction.
- b) The dominant charge carriers within a doped semiconductor are called majority charge carriers.
- c) Doping pure semiconductor material with small amounts of donor impurities produces an *n*-type semiconductor.
- d) At room temperatures, pure semiconductors make excellent conductors.

23. What is a typical conduction voltage for a silicon diode?

- a) 0.25 V
- b) 0.5 V
- c) 0.7 V
- d) 1.1 V

24. What would be a typical magnitude for the reverse current in a general-purpose silicon diode?

- a) <10 picoamps
- b) <10 nanoamps
- c) <10 microamps
- d) <10 milliamps

25. Estimate the peak ripple voltage in the following arrangement.

26. Estimate the peak ripple voltage in the following arrangement.

27. Estimate the maximum positive voltage produced by the following arrangement.

- 28. Which terminal represents the control input of a FET?
 - a) The drain.

a) 4.3 V

- b) The source.
- c) The base.
- d) The gate.

29. What form of FET is shown here?

- a) An *n*-channel MOSFET.
- c) A p-channel JFET.
- b) An n-channel JFET.
- d) A p-channel MOSFET.

30. What form of FET is shown here?

- a) An *n*-channel JFET.
- b) A p-channel MOSFET.
- c) A *p*-channel JFET.
- d) An n-channel MOSFET.

31. In the FET output characteristics shown below, what region is represented by the symbol 'X'?

- a) The operating region.
- c) The saturation region.
- b) The space-charge region.
- d) The ohmic region.

32. Determine the cut-off frequency of the following circuit.

33. What are the characteristics of the following circuit?

- a) A voltage gain of 1, a low input resistance and a high output resistance.
- b) A high voltage gain, a high input resistance and a low output resistance.
- c) A high voltage gain, a low input resistance and a high output resistance.
- d) A voltage gain of 1, a high input resistance and a low output resistance.

34. FETs may be used as both analogue and logical switches.

a) True b) False