COMP30026 Models of Computation

Lecture 13: Proving Languages Non-Regular

Mak Nazecic-Andrlon and William Umboh

Semester 2, 2024

The Pumping Lemma for Regular Languages

Lemma

If A is a regular language over Σ , then there is some integer p such that, for all $s \in A$ of length at least p, there exist $x, y, z \in \Sigma^*$ such that s = xyz and

- ① $xy^iz \in A$ for all $i \ge 0$, and
- **2** |y| > 0, and
- $|xy| \leq p$.

A Symbolic View of the Pumping Lemma

The pumping lemma says:

A regular
$$\Rightarrow \exists p \forall s \in A(|s| \geq p \rightarrow \exists x, y, z \in \Sigma^*(s = xyz \land \ldots))$$

Equivalently, its contrapositive says:

$$\forall p \exists s \in A(|s| \geq p \land \forall x, y, z \in \Sigma^*(s = xyz \rightarrow \ldots)) \Rightarrow A \text{ not regular}$$

Quantifier order is critical!!!

Pumping Example 1

Theorem. $B = \{0^n 1^n \mid n \ge 0\}$ is not regular.

Proof. Suppose to the contrary that it is. Let p be the pumping length and let $s = 0^p 1^p$.

Since $s \in B$ by definition and $|s| \ge p$, there exist x, y, z such that s = xyz, $xy^iz \in B$ for all $i \ge 0$, |y| > 0, $|xy| \le p$.

In particular, we have $xyyz \in B$.

Now, since $|xy| \le p$ and xyz starts with p 0s, we have $xy = 0^{|xy|}$ and $z = 0^{p-|xy|}1^p$.

Thus $xyyz = 0^{p+|y|}1^p$. Since |y| > 0, we have p + |y| > p, so $xyyz \notin B$ by definition.

Contradiction! Hence *B* is not regular.

Pumping Example 2

Theorem. $C = \{w \mid w \text{ has an equal number of 0s and 1s} \}$ is not regular.

Proof. Assume it is, and let p be the pumping length.

Consider $0^p 1^p \in C$ with length greater than p.

By the pumping lemma, $0^p1^p = xyz$ for some x, y, z, with xy^iz in C for all $i \ge 0$, $y \ne \epsilon$, and $|xy| \le p$. Since $|xy| \le p$, y consists entirely of 0s.

But then $xyyz \notin C$, a contradiction.

A simpler alternative proof: If C were regular, then also B from before would be regular, since $B=C\cap L(0^*1^*)$ and regular languages are closed under intersection.

Pumping Example 3

Theorem. $D = \{ww \mid w \in \{0,1\}^*\}$ is not regular.

Proof. Assume it is, and let *p* be the pumping length.

Consider $0^p 10^p 1 \in D$ with length greater than p.

By the pumping lemma, $0^p10^p1 = xyz$ for some x, y, z, with xy^iz in D for all $i \ge 0$, $y \ne \epsilon$, and $|xy| \le p$.

Since $|xy| \le p$, y consists entirely of 0s.

But then $xyyz \notin D$, a contradiction.

Example 4 – Pumping Down

Theorem. $E = \{0^i 1^j \mid i > j\}$ is not regular.

Proof. Assume it is, and let p be the pumping length.

Consider $0^{p+1}1^p \in E$.

By the pumping lemma, $0^{p+1}1^p = xyz$ for some x, y, z, with xy^iz in E for all $i \ge 0$, $y \ne \epsilon$, and $|xy| \le p$.

Since $|xy| \le p$, y consists entirely of 0s.

But then $xz \notin E$, a contradiction.