Multimedia Technology

Lecture 9: Nearest Neighbor Search

Lecturer: Dr. Wan-Lei Zhao

Autumn Semester 2020

Wan-Lei Zhao Multimedia Technology September 13, 2022

1/86

Outline

- Overview and Fundamentals
- 2 KD Tree
- 3 FLANN: fast library for approximate nearest neighbor
- 4 Locality Sensitive Hashing
- 6 Product Quantizer
- 6 Nearest Neighbor Descent
- 7 k-NN Graph Construction
- References

Nearest Neighboor Search: an overview (1)

- The need of Fast Nearest Neighbor Search arises from many contexts
 - 1 Database, e.g. spatial-temporal database
 - 2 Information Retrieval
 - 3 Data mining, K-means, DB-SCAN
 - 4 Image Processing, e.g. segmentation, saliency detection
 - 6 Network, e.g. routing
- In most of the applications, they require instant response
 - Instant response means within second

Nearest Neighboor Search: an overview (2)

- Up-to-now, the problem is not well solved
 - Complexity increases exponentially with the number of dimension
 - 2 Known as "curse of dimensionality"
 - 3 No general-purpose exact solution in high dimensional Euclidean space
 - 4 Polynomial preprocessing and polylogarithmic search time
 - **5** The complexity upper bound is $O(D \cdot N)$
- Linear processing complexity does not meet up with the expectation

Nearest Neighboor Search: an overview (3)

- Both D and N could be very large
 - ullet Photos in Flickr are in billions, >3,000 images uploaded per minutes
 - 120,000,000 videos in YouTube, > 200,000 videos uploaded per day
 - Total duration is more than 600 years
- In all these contexts, it requires instance response to the user
- We would expect $O(D^{1/c} \cdot log N)$, where c > 1

Nearest Neighboor Search: an overview (4)

 Based on the size of D and N, the problem can be partitioned into following sub-problems

- Dense VS Sparse: there is no clear border between them
- ullet Sparse: the number of non-zero dimensions $\leq 10\%$ D
- High VS Low: there is no clear border either
- \geq 10 already very high dimensional
- LD: X-Y, RGB and HSV; LS: Spatial-temporal data, e.g. GIS
- HD: SIFT, VLAD; HS; text document, Bag-of-Visual Word

Nearest Neighboor Search: the problem (1)

- Given a set of points S in a metric space M and a query point $q \in M$
- Task: try to find nearest neighbors from set S for q

• In most of the practices, the algorithm should be able to return k nearest neighbors (at least the top one)

Nearest Neighboor Search: two types of NNS

- KNN Search
 - NNS algorithm should be able to return k nearest neighbors given any query q (k is arbitrary)
- Range Search
 - NNS algorithm should be able to return nearest neighbors within a radius of the query

range search

• In many cases, these two requirements are not necessary and hard to meet

Challenge of Nearest Neighboor Search (1)

- The complexity (measured by the num. of comparisons) increases exponentially when dimension increases
- We look at the upper bound and lower bound of this problem
 - D: dimensionality; N: Size of data items

- Lower bound: $log(D \cdot N)$
- Upper bound: D·N
- Really challenging
- It is clear that there is large space to improve

Challenge of Nearest Neighboor Search (2)

- Performance observations from KD-tree
- Left figure: Num. comparisons VS data size
- Right figure: Num. of comparisons VS num. of dimensions

Distance Measures: the metric spaces

- A metric space consists a pair of (Z, d), Z is a set
- d is a mapping function, which maps $Z \times Z$ (Cartesian product) to R
- d(.,.) is called as a metric or distance function
- Following conditions hold for all x, y, $z \in Z$
 - $\mathbf{0}$ $d(x,y) \geq 0$, known as non-negative
 - **2** d(x, y) = 0 iff x=y
 - 3 d(x,y) = d(y,x), known as symmetric
 - 4 $d(x,z) \le d(x,y) + d(y,z)$, known as triangle inequality

Distance Measures: the norms

- **Norm** is a function defined on a vector space, mapping $v \rightarrow R$, where $v \in R^n$
- Given scalar a and vector u, v, norm has following properties:
 - 1 p(av) = |a|p(v), known as scale invariance
 - 2 $p(u+v) \le p(v) + p(u)$, known as triangle inequality
 - 3 p(v) = 0 when v=0
- Given $p \ge 1$, I_p -norm is defined as

$$||v||_p = (\sum_{i=1}^n |v_i^p|)^{1/p}$$

• Notice that when p = 2, it becomes l_2 -norm

Euclidean Distance and Euclidean Space

Euclidean distance:

$$d(x,y) = (\sum_{i=1}^{n} (x_i - y_i)^2)^{1/2}$$

• Notice that when p = 2, it becomes l_2 -norm

It is scale & translation invariant

$$2 d(cx, cy) = |c|d(x, y)$$

• Check yourself about I₁-norm

Cosine Distance

• Cosine distance: $d(x,y) = \frac{x^T y}{\|x\|_2 \|y\|_2}$

 If x and y are l₂ normalized in advance, Cosine distance is equivalent to Euclidean distance (Law of Cosine)

$$d(x,y) = x^{T}x + y^{T}y - 2 \cdot x^{T}y \cdot \cos\theta \tag{1}$$

Mahalanobis distance (1)

- For two points in red, do they hold the same distances in Figure a and b?
- Due to the intrinsic data distribution, distances calculation can be biased towards certain data dimension(s)
- Normalize the data distribution can alleviate this issue

Mahalanobis distance (2)

- Given a group of data, the covariance matrix can be estimated
- The eigenvectors coincide with the axis of ellipse, the eigenvalues are treated as normalizing factors
- Mahalanobis distance:

$$d(x,y) = \sqrt{(x-\mu)^T \Sigma^{-1}(y-\mu)}$$

- Mahalanobis measure is used not as frequently as I₂
- One can think of doing PCA before applying l₂ to achieve similar effect

Wan-Lei Zhao Multimedia Technology September 13, 2022 16 / 86

Other Distance Spaces

- Euclidean distance cannot reveal the real topology of the spaces shown above
- Currently, there is no effective distance measure for these non Euclidean spaces
- It is hard to work out a universal distance measure
- It is a latent issue in NNS
- l_1 and l_2 are mainly considered in the literature

Hamming Distance

• Hamming distance: d(x, y) = XOR(x, y)

- Distance measure for binary numbers and strings
- It measures how many substitutions it takes from one string change to another
- The smaller the similar
- It is very efficient
- The distance space is much much smaller

A Spectrum of NNS History

- In the whole 90s and early 00s, researchers were working on "trees"
- The introduction of SIFT and Web 2.0 changes the culture

B-Tree file: a review

- Leaf node keeps all the data items, non-leaf nodes are used for indexing
- For one dimensional data, B-Tree is best solution

- Online query complexity is log(N)
- Does this simplicity still hold when it is extended to $D \ge 2$?

Outline

- Overview and Fundamentals
- 2 KD Tree
- 3 FLANN: fast library for approximate nearest neighbor
- 4 Locality Sensitive Hashing
- 6 Product Quantizer
- 6 Nearest Neighbor Descent
- 7 k-NN Graph Construction
- 8 References

KD Tree: a space partition approach

- K-D Tree means Tree for K-dimensional data points
 - It is a binary tree
 - Designed to index data in multiple dimensions
 - The space complexity is O(N)
 - the time complexity for online search is O(logN) if it is balanced
 - It supports range search and top-k search
- K-D Tree construction procedure:
 - 1 Choose one of the coordinate as basis to split all rest points into two parts (left child and right child)
 - 2 Do Step 1 recursively on left and right child until there are no two points in the same node

KD-Tree: construction (1)

KD-Tree: construction (2)

KD-Tree: construction (3)

KD-Tree: construction (4)

KD-Tree: construction (5)

KD-Tree: construction (6)

KD-Tree: query (1)

KD-Tree: query (2)

KD-Tree: query (3)

- The retrieval cannot be as efficient as it is supposed to
- It may nearly traverse the whole tree in the worst case
- Balanced KD tree may alleviate the issue
- The reference data is partitioned according to axis differences each time, while NN is measured by l_1 or l_2 norms NN is not necessarily located in the same branch
- Improvement over K-D tree: R-Trees try to group candidate points close to each other (not only in terms of one dimension)

Outline

- Overview and Fundamentals
- 2 KD Tree
- § FLANN: fast library for approximate nearest neighbor
- 4 Locality Sensitive Hashing
- Open Product Quantizer
- 6 Nearest Neighbor Descent
- 7 k-NN Graph Construction
- 8 References

Overview about FLANN

- It becomes popular since 2009
- Proposed by Prof. David G. Lowe and his student
- It achieves 20 100 speed-up on high dim. features, e.g. SIFT
- It only returns approximate NNs, say 40 60%

Idea of FLANN: hierarchical quantization

- The hierarchical vocabulary is built by k-means
- Two parameters are there, fanout and depth

FLANN: offline indexing

- Each sample is quantized to the closest word in each hierarchy
- Each sample is quantized along one path (from one root to one leaf)

FLANN: online search

- 1 Query is compared with words of each level
- 3 Expand the search to words of next level covered by these closest candidates

FLANN: comments and suggestions

- The paper has been well cited
- A lot of memories are required to maintain this indexing tree
- It is fast but not precise
- It is OK if you do not require precise NN search

Outline

- Overview and Fundamentals
- 2 KD Tree
- 3 FLANN: fast library for approximate nearest neighbor
- 4 Locality Sensitive Hashing
- 6 Product Quantizer
- 6 Nearest Neighbor Descent
- k-NN Graph Construction
- References

Randomized NNS approach: the idea

- Idea: generate Hash codes for all data items
- Based on hash function F or hash functions F
- Similar points will have same (or similar) Hash codes
- Key issue: how to define the Hash function(s)

Randomized NNS approach: the procedure

- The steps of producing Hash functions
 - 1 Draw a random vector a
 - 2 Join h to H, which keeps the set of hash functions
 - 3 Repeat steps 1-2 for L times
- The steps of producing Hash codes
 - $\mathbf{0}$ foreach $h \in H$

$$c = \left[\frac{f^T h + b}{W}\right] \quad 0 < b < W$$

2 Concatenate all generated c into a binary code

Randomized NNS approach: the query process

- The steps of query
 - 1 Encode query similarly as before
 - 2 Compare hash code to all hash codes in reference set
 - 3 Keep the same one or similar ones as candidate
 - Compute real distance between query and these candidates
 - Output the top-k ranked candidates

Randomized NNS approach: the procedure

- Two types of errors: Mismatch and false match
 - 1 Alleviate mismatch by multiple-probe LSH
 - 2 Alleviate false match by using more Hash functions (it is a trade-off)
 - 3 It does not support exact range search and top k search
 - 4 If your problem doesn't require 100% NN, LSH is an option

Outline

- Overview and Fundamentals
- 2 KD Tree
- 3 FLANN: fast library for approximate nearest neighbo
- 4 Locality Sensitive Hashing
- 6 Product Quantizer
- 6 Nearest Neighbor Descent
- 7 k-NN Graph Construction
- 8 References

General criticism on KD-Tree, R-Tree and LSH

- For the approaches discussed so far
- The original data have to be loaded into memory
- This will be a huge burden when we have billions of data items
- We are going to discuss one approach which performs the query on compressed data

Overview about vector quantization

- Let's think about vector quantization first
- Given a 2D points, the vector quantization assigns this point to a Voronoi cell

- As a result, a 2-dimensional point is deconstructed as a Voronoi cell ID (1D)
- The same thing happens when $VQ(x) \rightarrow k$, $dim(x) \ge 2$

Wan-Lei Zhao Multimedia Technology September 13, 2022 46 / 86

Overview about scalar quantization

- Now look at another different thing
- The idea is to represent 1D continuous signal with few digital numbers
- Similar thing happens to R, G and B
- Notice that we use 0 255 to digitize R, G and B

• This is another case of quantization: scalar quantization

Overview about product quantization (1)

- Product quantizer quantizes segments of one vector
- A D-dimensional vector is partitioned into m segments

This is something in between scalar quantization and vector quantization

Overview about product quantization (2)

Quantization is conducted on each segments

- This results in m integers to represent the original vector
- This is something in between scalar quantization and VQ

Overview about product quantization (3)

- Scalar quantization and VQ can be viewed as special cases of product quantization
- Comparing with original vector, the vector has been compressed
- To perform product quantization, we should build m vocabularies for m sub-spaces

How we calculate the distance between PQ vectors $[v_1, v_2, \cdots, v_m]$??

Product quantization: symmetric product quantizer (1)

- Product quantizer vocabularies are known
- Distance between two product quantized vectors is $\sum d_i$

We can build lookup table for each product quantizer vocabulary

51/86

Product quantization: symmetric product quantizer (2)

- Distance estimated product quantizer is not precise
- However it is efficient

We can product quantize all data items in advance

52 / 86

Product quantization: asymmetric product quantizer

- A more precise way is to encode (product-quantizing) the reference side only
- However, it is slower
- $d(.,.) = \sum d_i$

Outline

- Overview and Fundamentals
- 2 KD Tree
- 3 FLANN: fast library for approximate nearest neighbor
- 4 Locality Sensitive Hashing
- 6 Product Quantizer
- Mearest Neighbor Descent
- 7 k-NN Graph Construction
- 8 References

General criticism on KD-Tree, R-Tree, LSH and PQ

- KD-Tree, R-Tree and LSH are in general slow
- A lot of extra memories are required
- The precision is far below our expectation in the large-scale and high dim. scenario
- PQ is memory efficient, however only return approximate results
- Its precision is not much better than FLANN

NN-Descent: the idea

- candidates
- query
- active point

- Given query and the candidate set
- Sample a candidate point randomly
- Climb to the query as much as we can

NN-Descent: the procedure (1)

NN-Descent: the procedure (2)

NN-Descent: a brief summary (1)

- Query sample
- Seed
- Sample being visited
- Sample not visited

- The starting point (seed) is selected at random
- Scanning the neighborhood of visited point
- Routing towards the query point greedily

NN-Descent: a brief summary (2)

- Query sample
- Seed
- Sample being visited
 Sample not visited
- Vertex r
 - k-neighborhood of r

- The starting point (seed) is selected at random
- Scanning the neighborhood of visited point
- Routing towards the query point greedily

NN-Descent: a brief summary (3)

- The starting point (seed) is selected at random
- Scanning the neighborhood of visited point
- Routing towards the query point greedily
- What's more? We need a k-NN graph

NN-Descent: how well it works? (1)

Table: Summary on Datasets used for Evaluation

Name	n	d	# Qry	$m(\cdot)$	Туре
SIFT1M	1×10 ⁶	128	1×10 ⁴	l ₂	SIFT
SIFT10M	1×10 ⁷	128	1×10 ⁴	<i>l</i> ₂	SIFT
GIST1M	1×10^6	960	1×10^3	<i>l</i> ₂	GIST
GloVe1M	1×10^6	100	1×10^3	Cosine	Text
NUSW	22,660	500	1×10^3	<i>l</i> ₂	BoVW
NUSW	22,660	500	1×10^3	κ^2	BoVW
YFCC1M	1×10^6	128	1×10 ⁴	<i>l</i> ₂	Deep Feat.
Rand1M	1×10^6	100	1×10^3	<i>l</i> ₂	synthetic

They are all on million level

NN-Descent: how well it works? (2)

Figure: Performance of NN Descent Variants

NN-Descent: how well it works? (3)

Figure: Performance of NN Descent Variants

NN-Descent: how well it works? (4)

Figure: Performance of NN Descent Variants

NN-Descent: how well it works? (5)

Figure: Performance of NN Descent Variants

NN-Descent: how well it works? (6)

Figure: Performance of NN Descent Variants

NN-Descent: why it works? (1)

Think about the idea of "small world"

NN-Descent: why it works? (2)

Think about the idea of "small world"

Figure: Illustration of smallworld.

NN-Descent: why it works? (3)

Think about the idea of "small world"

Figure: The wide existence of subspace in realworld.

NN-Descent: why it works? (4)

Figure: 2D sub-space embedded in 3D

• Climbing in the sub-space is much easier than exploring the whole

Intrinsic Dimension of Datasets Considered

Table: Dimension and Intrinsic Dimension of 8 Datasets

Name	n	d	Intrinsic Dim.	$m(\cdot)$	Туре
SIFT1M	1×10 ⁶	128	18.7	<i>I</i> ₂	SIFT
SIFT10M	1×10 ⁷	128	18.7	<i>l</i> ₂	SIFT
GIST1M	1×10^6	960	38.1	<i>l</i> ₂	GIST
GloVe1M	1×10 ⁶	100	39.5	Cosine	Text
NUSW	22,660	500	57.1	<i>l</i> ₂	BoVW
NUSW	22,660	500	N.A.	κ^2	BoVW
YFCC1M	1×10^{6}	128	25.3	<i>l</i> ₂	Deep Feat.
Rand1M	1×10^6	100	48.9	<i>l</i> ₂	synthetic

Outline

- Overview and Fundamentals
- 2 KD Tree
- 3 FLANN: fast library for approximate nearest neighbo
- 4 Locality Sensitive Hashing
- Product Quantizer
- Nearest Neighbor Descent
- k-NN Graph Construction
- References

- NN-Descent Search is built upon a k-NN graph
- How to build the k-NN graph is a problem
- The k-NN graph should be in high quality
- The construction should be efficient
- The time complexity for exhaustive construction is $O(d \cdot n^2)$

NN-Descent for Graph Construction: the idea

- Based on the principle: neighbor's neighbor is likely the neighbor
- Samples in the neighborhood are iteratively compared

NN-Descent: the procedure (1)

Figure: Approx. k-NN graph construction for a fixed dataset.

- Given a set of samples $x_{1...n} \in R^d$
- We want to build a k-NN graph based on metric $m(\cdot, \cdot)$
- The time complexity is $O(d \cdot n^2)$

NN-Descent: the procedure (2)

Figure: Step 1. Initialize a random 3-NN graph.

1 Initialize a 3-NN graph.

NN-Descent: the procedure (3)

Figure: Step 2. cross-match on each 3-NN list.

2 Perform cross-matching on each 3-NN list.

NN-Descent: the procedure (4)

Figure: Step 2.1. join pairs into NN list.

- 2 Perform cross-matching on each 3-NN list.
 - 1 Join pairs into NN list.

Cross matching only happens between new and old samples, and within new samples

NN-Descent: the procedure (5)

Figure: Step 2.1. join pairs into NN list.

- Perform cross-matching on each 3-NN list.
 - 1 Join pairs into NN list.
- 3 Repeat above steps until it converges

NN-Descent: comments (1)

Table: Scanning rate

$n = 10^5, d =$	I_1	l ₂
2	0.0040	0.0034
5	0.0057	0.0047
10	0.0088	0.0075
20	0.0213	0.0209
50	0.1037	0.1014
100	0.1390	0.1370

- 1 NN-Descent is a batchful version hill-climbing
- 2 It is generic and efficient particularly on low dimensional data
- 3 It suffers from "curse of dimensionality" as well

A Summary

Low & Dense KD-tree	Low & Sparse KD-tree, Inverted file	
High & Low ID & Dense PQ, NN-Desc.	Inverted file	
High & High ID & Dense <u>PQ, NN-Desc.</u>		

Available toolkits in the web

- ANN: approximate nearest neighbor search library
 - Based on KD-Tree
 - By Arya et. al from University of Maryland
- E2LSH: http://www.mit.edu/~andoni/LSH/
 - Based on LSH
 - By Alexandr Andoni and Piotr Indyk from MIT
- FLANN: http://www.cs.ubc.ca/research/flann/
 - Based on hierarchical k-means
 - By Marius Muja and David G. Lowe from University of British Columnbia
- KGraph: https://github.com/erikbern/ann-benchmarks
 - Based on NN Descent Alglrithm
 - By Wei Dong from Princeton University

References

- 1 R-Trees: A Dynamic Index Structure for Spatial Searching, A. Guttman, SIGMOD'84
- 2 Product Quantization for Nearest Neighbor Search, H. Jegou, M. Douze and C. Schmid, TPAMI'12
- Similarity Search in High Dimensions via Hashing, A. Gionis, P. Indyk, R. Motwani, VLDB'99
- 4 Scalable Nearest Neighbor Algorithms for High Dimensional Data, M. Muja and D. G. Lowe. TPAMI'14
 - URL: http://www.cs.ubc.ca/research/flann/
 - Comments: built by hierarchical k-means
- Efficient k-Nearest Neighbor Graph Construction for Generic Similarity Measures, W. Dong, et. al, WWW'11
- 6 Fast k-Nearest Neighbor Graph Construction: a generic online approach, W.-L. Zhao, https://arxiv.org/abs/1804.03032

Q & A

85 / 86

Thanks for your attention!