9 octobre L1 FDV

TD3: Fonctions

Exercice 1:

(a) Les fonctions suivantes sont elles injectives, surjectives, bijectives?

i

$$f_1: \mathbb{Z} \to \mathbb{Z}$$

 $n \mapsto 2n$

Solution:

— Injectivité : Soit $(x, y) \in \mathbb{Z}^2$. On suppose $f_1(x) = f_1(y)$. On a donc 2x = 2y. Donc x = y. Donc f_1 est injective.

— Surjectivité : On constate que pour tout $n \in \mathbb{Z}$, $f_1(n)$ est pair. Donc l'équation $f_1(n) = 1$ n'a pas de solution. Donc f_1 n'est pas surjective.

— Bijectivité : Comme f_1 n'est pas surjective, elle n'est pas bijective.

ii.

$$f_2: \mathbb{Z} \to \mathbb{Z}$$

 $n \mapsto -n$

Solution:

— Injectivité : Soit $(x,y) \in \mathbb{Z}^2$. On suppose $f_2(x) = f_2(y)$. On a donc -x = -y. Donc x = y. Donc f_2 est injective.

— Surjectivité : Soit $n \in \mathbb{Z}$. On cherche à résoudre $f_2(m) = n$ en m. C'est à dire -m = n. Donc m = -n. La solution existe. Donc la fonction est surjective.

— Bijectivité : f_2 est surjective et injective, donc bijective. D'autre part, on aurait pu se contenter de remarquer $f_2(m) = n$ n'a qu'une solution en m.

iii.

$$f_3: \mathbb{R} \to \mathbb{R}$$
$$x \mapsto x^2$$

Solution:

— Injectivité : $f_3(-1) = 1 = f_3(1)$ donc f_3 n'est pas injective.

— Surjectivité : L'équation $f_3(x) = -1$ n'a pas de solution. Donc f_3 n'est pas surjective.

— Bijectivité : f_3 n'est ni injective, ni surjective, donc sûrement pas bijective.

iv.

$$f_4: \mathbb{R} \to \mathbb{R}^+$$
$$x \mapsto x^2$$

Solution:

- Injectivité : cf. supra.
- Surjectivité : Tous les éléments de \mathbb{R}^+ sont atteint. Plus formellement, soit $y \in \mathbb{R}^+$. On cherche la solution en x de $f_4(x) = y$. Une solution (non unique) est $x = \sqrt{y}$ (qui existe forcément). Donc f_4 est surjective.
- Bijectivité: La fonction n'est pas injective donc pas bijective.

v.

$$f_5: \mathbb{C} \to \mathbb{C}$$

 $x \mapsto x^2$

Solution:

- Injectivité : Même chose que précédemment.
- Surjectivité : Soit $y \in \mathbb{C}$. y peut s'écrire sous sa forme exponentielle : $y = \rho e^{i\theta}$. On pose $x = \sqrt{\rho} e^{i\frac{\theta}{2}}$. On a $f_5(x) = y$. Donc pour tout $y \in \mathbb{C}$, l'équation $f_5(x) = y$ a une solution en x, donc f_5 est surjective.
- Bijectivité : La fonction n'est pas injective donc pas bijective.
- (b) Les fonctions suivantes sont elles injectives, surjectives, bijectives?

i.

$$f_1: \mathbb{N} \to \mathbb{N}$$

$$n \mapsto n+1$$

Solution:

- Injectivité : Soit $(x, y) \in \mathbb{N}^2$. On suppose $f_1(x) = f_1(y)$. On a donc x + 1 = y + 1. Donc x = y. Donc f_1 est injective.
- Surjectivité : $f_1(x) = 0$ n'a pas de solution, donc f_1 n'est pas surjective.
- Bijectivité : Comme f_1 n'est pas surjective, elle n'est pas bijective.

ii.

$$f_2: \mathbb{Z} \to \mathbb{Z}$$

 $n \mapsto n+1$

Solution:

- Injectivité : Soit $(x,y) \in \mathbb{Z}^2$. On suppose $f_2(x) = f_2(y)$. On a donc x+1 = y+1. Donc x=y. Donc f_1 est injective.
- Surjectivité : Soit $y \in \mathbb{Z}$. On cherche une solution à $f_2(x) = y$. Une solution est x = y 1. Donc f_2 est surjective
- Bijectivité : Comme f_2 est injective et surjective, f_2 est bijective.

$$f_3: \mathbb{R}^2 \to \mathbb{R}^2$$

 $(x,y) \mapsto (x+y, x-y)$

Solution:

— Injectivité : Soit $((a,b),(c,d)) \in \mathbb{R}^2 \times \mathbb{R}^2$. On suppose $f_3((a,b)) = f_3((c,d))$. Autrement dit (a+b,a-b) = (c+d,c-d), donc a+b=c+d et a-b=c-d. On résout le système

$$\begin{cases}
a + b = c + d \\
a - b = c - d
\end{cases}$$

Soit

$$\left\{\begin{array}{ccccc} a & + & b & = & c & + & d \\ 2a & & & = & 2c \end{array}\right.$$

Donc

$$\begin{cases}
 b = d \\
 a = c
\end{cases}$$

Donc (a,b) = (c,d), donc f_3 est injective.

— Surjectivité : Soit $(c,d) \in \mathbb{R}^2$. On cherche à résoudre $f_3((a,b)) = (c,d)$ en (a,b).

$$\left\{ \begin{array}{cccc} a & + & b & = & c \\ a & - & b & = & & d \end{array} \right.$$

Donc

$$\left\{ \begin{array}{ccccc} a & + & b & = & c \\ 2a & & = & c & + & d \end{array} \right.$$

par conséquent

$$\begin{cases} a & b = \frac{1}{2}c - \frac{1}{2}d \\ a & = \frac{1}{2}c + \frac{1}{2}d \end{cases}$$

Donc il existe une solution, donc f_3 est surjective

— Bijectivité : f_3 est injective et surjective, donc bijective.

Exercice 2:

Soit f et g des applications de \mathbb{N} dans \mathbb{N} définies par

$$f: \mathbb{N} \to \mathbb{N}$$
$$n \mapsto 2n$$

$$g: \mathbb{N} \to \mathbb{N}$$

$$n \mapsto \begin{cases} \frac{n}{2} & \text{si } n \text{ est pair} \\ 0 & \text{sinon} \end{cases}$$

Déterminer si $f, g, f \circ g$ et $g \circ f$ sont injectives, surjectives ou bijectives.

Solution:

- f est évidemment injective. f n'atteint jamais 1, donc f n'est pas bijective.
- g n'est pas injective car g(1) = 0 = g(3). g est surjective car tout $g \in \mathbb{N}$ est atteint, en effet g(2y) = y. g n'est pas bijective.
- Soit $x \in \mathbb{N}$. $g \circ f(x) = g(2x)$. Or 2x est toujours pair, donc g(2x) = x. Donc $g \circ f = Id$. Donc $g \circ f$ est bijective.
- On a $f \circ g(0) = 0 = f \circ g(1)$ donc $f \circ g$ n'est pas injective. On a également $f \circ g(x) = 2g(x)$. Donc $f \circ g(x)$ est toujours pair, donc $f \circ g$ n'est pas surjective. Donc $f \circ g$ n'est pas bijective.

Exercice 3:

Démontrer que la fonction f définie par

$$f: \mathbb{R} \to \mathbb{R}^{+*}$$

$$x \mapsto \frac{e^x + 2}{e^{-x}}$$

est bijective. Calculer sa bijection réciproque. On pourra utiliser le changement de variable $X=e^x$.

Solution: Soit $y \in \mathbb{R}^{+*}$. On veut résoudre f(x) = y en x. On veut donc résoudre $\frac{e^x + 2}{e^{-x}} = y$. En utilisant le changement de variable suggéré : $\frac{X+2}{\frac{1}{y}} = y$.

$$\begin{array}{ll} \frac{X+2}{\frac{1}{X}} = y & \Leftrightarrow & X(X+2) = y \\ & \Leftrightarrow & X^2 + 2X = y \\ & \Leftrightarrow & X^2 + 2X - y = 0 \end{array}$$

 $\Delta = 4 - 4 \cdot (-y) = 4(1+y)$. Les racines sont donc

$$X = -1 \pm \sqrt{1+y}$$

Mais $X=e^x$. Donc X>0. Donc $e^x=X=-1+\sqrt{1+y}$. On en déduit $x=\ln\left(-1+\sqrt{1+y}\right)$. Il existe donc au plus une solution. Il faut encore vérifier que $\ln\left(-1+\sqrt{1+y}\right)$ est bien défini. On a y>0, donc $\sqrt{1+y}>1$, donc $-1+\sqrt{1+y}>0$, donc la solution est toujours bien définie. Donc la fonction est bijective, de réciproque :

$$f^{-1}: \mathbb{R}^{+*} \to \mathbb{R}$$

 $y \mapsto \ln\left(-1 + \sqrt{1+y}\right)$

Exercice 4:

(a) Soit f

$$f: \mathbb{N} \to \mathfrak{P}$$
$$n \mapsto 2n$$

où $\mathfrak P$ est l'ensemble des entiers naturels pairs. Soit g

$$g: \mathbb{Z}^{-*} \to \mathfrak{I}$$
$$n \mapsto -2n - 1$$

où $\mathfrak I$ est l'ensemble des entiers naturels impairs. Prouver que f et g sont des bijections.

Solution:

- Soit $(x,y) \in \mathbb{N}^2$. On suppose f(x) = f(y) donc 2x = 2y donc x = y, donc f est injective. D'autre part pour tout nombre pair n, il existe une solution en m à $f(m) = n : \frac{n}{2} = m$. Donc f est surjective, donc bijective.
- Soit $(x,y) \in \mathbb{Z}^{-*2}$. On suppose g(x) = g(y) donc -2x + 3 = -2y + 3 donc x = y, donc g est injective.

Soit n=2k+1 un nombre impair. On cherche à résoudre g(x)=n en x. $-2x-1=2k+1, \ -2x-2=2k, \ \mathrm{donc}\ -x-1=k \ \mathrm{donc}\ x=-k-1.$ Donc g est surjective donc bijective.

(b) On pose h

$$h: \mathbb{Z} \to \mathbb{N}$$

$$n \mapsto \begin{cases} f(n) & \text{si } n \geqslant 0 \\ g(n) & \text{sinon} \end{cases}$$

Montrer que h est une bijection.

Solution:

- Injectivité : Soit $(x,y) \in \mathbb{Z}^2$. On suppose h(x) = h(y). On distingue 3 cas :
 - x et y sont positifs. On a donc f(x) = h(x) = h(y) = f(y). Donc x = y par injectivité de f.
 - x et y sont strictement négatifs. On a donc g(x) = h(x) = h(y) = g(y). Donc x = y par injectivité de g.
 - x et y sont de signes différents. Donc h(x) est pair et h(y) est impair ou inversement. Donc on ne peux pas voir h(x) = h(y). Ce cas est donc impossible.

Dans tous ces cas, h est injective.

- Surjectivité : Soit $y \in \mathbb{N}$. On distingue 2 cas :
 - y est pair : il existe $x\in\mathbb{N}$ tel que f(x)=y, par surjectivité de f. Donc h(x)=y a une solution.
 - y est impair : il existe $x \in \mathbb{Z}^{-*}$ tel que g(x) = y, par surjectivité de g. Donc h(x) = y a une solution.

Donc h est surjectif.

— Donc h est bijective.

Exercice 5:

Soit

$$f: \mathbb{R} \to \mathbb{C}$$

$$t \mapsto e^{it}$$

Trouver des sous ensembles de \mathbb{R} et \mathbb{C} tel que f est une bijection.

Solution: La fonction g

$$g:[0;2\pi[\to \mathbb{U}$$
 $t\mapsto e^{it}$

est bijective où $\mathbb U$ est le cercle unité.

g est injective :

$$\begin{split} g(x) &= g(y) \Leftrightarrow e^{ix} = e^{iy} \\ &\Leftrightarrow x = y + 2k\pi \\ &\Leftrightarrow x = y \text{ car } t, t' \in [0, 2\pi[\text{ et donc } k = 0] \end{split}$$

g est surjective car tout nombre complexe de $\mathbb U$ s'écrit sous la forme polaire $e^{i\theta}$, et l'on peut choisir $\theta \in [0, 2\pi[$.

Exercice 6:

Soit

$$f: [1, +\infty[\to [0, +\infty[$$
$$x \mapsto x^2 - 1$$

Déterminer si f est injective, surjective, bijective...

Solution:

- Soit $(x,y) \in [1, +\infty[^2$. On suppose f(x) = f(y). Donc $x^2 1 = y^2 1$ so $x^2 = y^2$ et $x = \pm y$. Mais x, y > 1. Donc x = y. Donc f est injective.
- Soit $y \in [0, +\infty[$. On cherche à résoudre f(x) = y en x dans $[1, +\infty[$. On a $x^2 1 = y$, $x^2 = y + 1$ donc $x = \pm \sqrt{y + 1}$. Mais x > 0. Donc $x = \sqrt{y + 1}$. Donc f est surjective.
- Donc f est injective et surjective donc bijective.

Exercice 7: Des curiosités plus difficiles

(a) Trouver une bijection entre \mathbb{N}^2 et \mathbb{N} .

Solution:

$$f: \mathbb{N}^2 \to \mathbb{N}$$
$$(m,n) \mapsto 2^m (2n+1) - 1$$

fait l'affaire. En effet, on peut montrer que

$$g: \mathbb{N}^2 \to \mathbb{N}^*$$

 $(m,n) \mapsto 2^m (2n+1)$

est une bijection.

— Soit $((a,b),(c,d) \in \mathbb{N}^2 \times \mathbb{N}^2$. On suppose g((a,b)) = g((c,d)). On a donc $2^a(2b+1) = 2^c(2d+1)$. 2^a et 2^c sont pairs et 2b+1 et 2d+1 sont impairs. On a donc $2^a = 2^c$ et 2b+1 = 2d+1. Donc (a,b) = (c,d). Donc g est injective.

- Soit $y \in \mathbb{N}$. Soit 2^k la plus grande puissance de 2 qui divise y. Il existe donc l tel que $y = 2^k l$ avec l impair. En effet, si l est pair, on pourrait diviser y par 2^{k+1} , ce qui contredit le choix de k. Puisque l est impair, il existe n tel que l = 2n + 1. Donc x = (k, n) est une solution de g(x) = y. On en déduit que g est surjective.
- g est donc bijective.

On en déduit facilement que f est bijective également.

(b) Trouver une bijection entre $\mathcal{P}(\mathbb{N})$ et \mathbb{R} .

Solution: Plein d'étapes!

- Montrer que $\mathcal{P}\left(\mathbb{N}\right)$ est en bijection avec l'ensemble des fonctions caractéristiques de \mathbb{N}
- Montrer que ces fonctions sont en bijection avec les suites infinies à valeur dans $\{0,1\}$.
- Montrer que ces suites sont en bijection avec les décompositions binaires des nombres de [0,1]. Pour ce faire, construire tout d'abord une surjection, déterminer les éléments atteints plusieurs fois (exactement 2 en fait). Faire une suite en listant les antécédents de ces valeurs et sauter un indice sur deux.
- Construire une bijection entre [0,1] et]0,1[. Construire une bijection entre]0,1[et \mathbb{R} .
- Pfiou fini!