Inferência Estatística com Abordagem Bayesiana

Rosangela Helena Loschi 1

¹Departamento de Estatística Universidade Federal de Minas Gerais

25 de outubro de 2021

MÉTODOS DE CONSTRUÇÃO DA DISTRIBUIÇÃO *A PRIORI*

- Distribuições conjugadas naturais
- Distribuições de referências: Métodos Bayes-Laplace e Jeffreys

Distribuições Conjugadas

Quando decidimos fazer uma **análise conjugada** dos dados estamos buscando por

- (1) Simplicidade na derivação da distribuição a posteriori.
- (2) Parâmetros interpretáveis a posteriori

sem perdermos a versatilidade em acomodar opiniões *a priori* de diferentes pessoas que, eventualmente, têm informações iniciais muito distintas.

Conjugação é uma propriedade de famílias de distribuições.

Se dois individuos decidem fazer uma análise conjugada do mesmo problema,

- suas distribuições a priori pertencerão à mesma família;
- no entanto, estas distribuições podem ser diferentes, dependendo do conhecimento inicial que têm.

Distribuições Conjugadas

Definição de Conjugação natural: Seja \mathcal{F} uma família de distribuições amostrais indexadas pelo parâmetro θ , isto é,

$$\mathcal{F} = \{ f(x \mid \theta) : \theta \in \Theta, x \in \mathcal{X} \}.$$

Seja ${\mathcal P}$ uma família de distribuções de probabilidade definida no espaço paramétrico Θ ,

$$\mathcal{P} = \{ \pi(\theta \mid a) : a \in \mathcal{A} \},\$$

onde $\mathcal A$ é um conjunto de hiperparâmetros. Dizemos que as famílias $\mathcal F$ e $\mathcal P$ são famílias conjugadas naturais se

- (i) \mathcal{P} é fechada sob a amostragem de \mathcal{F} , ou seja, se $f(x \mid \theta) \in \mathcal{F}$ é proporcional a um membro de \mathcal{P} , para cada $x \in \mathcal{X}$.
- (ii) \mathcal{P} é fechada com respeito ao produto, ou seja, para todo $a_0, a_1 \in \mathcal{A}$, existe a_2 tal que

$$\pi(\theta \mid a_0)\pi(\theta \mid a_1) = \pi(\theta \mid a_2) \in \mathcal{P}.$$

Distribuições Conjugadas

Como consequência, se estamos fazendo uma análise conjugada

- ightharpoonup a verosimilhança, se a vemos como uma função de heta, é proporcional à distribuição *a priori*
- as distribuições a priori e a posteriori pertencem à mesma família de distribuições.

A subjetividade na especificação da distribuição *a priori* ainda existe. Perceba que para um mesmo problema

- A família de distribuição *a priori* é a mesma para todos aqueles que fazem a análise conjugada.
- ➤ A subjetividade está na especificação dos hiperparâmetros a, que dependerá do conhecimento prévio cada um tem sobre o parâmetro.

Se X_1, \ldots, X_n , dado θ , são i.i.d com distribuição Bernoulli(θ) e se, a priori, $\theta \sim \mathrm{Beta}(\alpha, \beta)$, então a posteriori, $\theta \mid \mathbf{x} \sim \mathrm{Beta}(\alpha + \sum_{i=1}^n x_i, \beta + n - \sum_{i=1}^n x_i)$.

Solução: Iniciemos encontrando a função de verossimilhança. Como, dado θ , X_1,\ldots,X_n são i.i.d temos que, para todo $x_i \in \{0,1\}, i=1,\ldots,n$,

$$f(x_1,...,x_n \mid \theta) = \prod_{i=1}^n f(x_i \mid \theta) = \prod_{i=1}^n \theta^{x_i} (1-\theta)^{1-x_i}$$

= $\theta^{\sum_{i=1}^n x_i} (1-\theta)^{n-\sum_{i=1}^n x_i}$

A distribuição preditiva a priori

$$f(\mathbf{x}) = f(x_{1}, \dots, x_{n}) = \int_{0}^{1} f(\mathbf{x} \mid \theta) \pi(\theta) d\theta$$

$$= \int_{0}^{1} \theta^{\sum_{i=1}^{n} x_{i}} (1 - \theta)^{n - \sum_{i=1}^{n} x_{i}} \times \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \theta^{\alpha - 1} (1 - \theta)^{\beta - 1} d\theta$$

$$= \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \int_{0}^{1} \theta^{\alpha + \sum_{i=1}^{n} x_{i} - 1} (1 - \theta)^{\beta + n - \sum_{i=1}^{n} x_{i} - 1} d\theta$$

$$= \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \frac{\Gamma(\alpha + \sum_{i=1}^{n} x_{i})\Gamma(\beta + n - \sum_{i=1}^{n} x_{i})}{\Gamma(\alpha + \beta + n)}$$
(1)

para todo $x_i \in \{0, 1\}, i = 1, ..., n$.

A distribuição *a posteriori* para $heta \in (0,1)$

$$f(\theta \mid x_{1},...,x_{n}) = \frac{f(\mathbf{x} \mid \theta)\pi(\theta)}{f(\mathbf{x})}$$

$$= \frac{\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}\theta^{\alpha+\sum_{i=1}^{n}x_{i}-1}(1-\theta)^{\beta+n-\sum_{i=1}^{n}x_{i}-1}d\theta}{\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}\frac{\Gamma(\alpha+\sum_{i=1}^{n}x_{i})\Gamma(\beta+n-\sum_{i=1}^{n}x_{i})}{\Gamma(\alpha+\beta+n)}}$$

$$= \frac{\Gamma(\alpha+\beta+n)}{\Gamma(\alpha+\sum_{i=1}^{n}x_{i})\Gamma(\beta+n-\sum_{i=1}^{n}x_{i})}$$

$$\times \theta^{\alpha+\sum_{i=1}^{n}x_{i}-1}(1-\theta)^{\beta+n-\sum_{i=1}^{n}x_{i}-1}$$

Logo,
$$\theta \mid \mathbf{x} \sim \mathrm{Beta}(\alpha + \sum_{i=1}^{n} x_i, \beta + n - \sum_{i=1}^{n} x_i)$$
.

Assumindo que $heta \sim \textit{Unif}(0,1) \equiv \textit{Beta}(1,1)$ e observando as amostras (0,1) e (1,1) temos

Neste caso,

- ightharpoonup a distribuição *a priori* é não informativa: não discrimina nenhum valor que θ .
- ▶ a verossimilhança discrimina valores de θ próximos de 1 se a amostra observada é (1,1) e discrimina valores próximos de 0,5 se a amostra observada é (0,1).
- a informação dada pela distribuição a posteriori concorda com a informação dada pela verossimilhança: Os valores de θ mais prováveis a posteriori são valores acima de 0.7 se a amostra observada é (1, 1) e estao entre 0.3 e 0.7 se a amostra observada é (0, 1)
- ▶ A priori, $E(\theta) = 1/2$ e $Var(\theta) = 1/12$. Se observamos a amostra (0,1) então $\theta \mid x_1 = 0, x_2 = 1 \sim Beta(2,2)$. Assim, temos

$$E(\theta \mid x_1 = 0, x_2 = 1) = 1/2$$

 $Var(\theta \mid x_1 = 0, x_2 = 1) = 1/20$

Assumindo que $heta \sim \textit{Beta}(1,2)$ e observando as amostras (0,1) e (1,1) temos

Neste caso,

- ightharpoonup a distribuição *a priori* coloca mais massa probabilística para valores de heta próximos de zero.
- ▶ a verossimilhança discrimina valores de θ próximos de 1 se a amostra observada é (1,1) e discrimina valores proximos de 0,5 se a amostra observada é (0,1).
- ▶ a distribuição *a priori* e a função de verossimilhança fornecem informaçãos conflitantes sobre θ , principalmente, se a amostra observada é (1,1).
- Neste caso, quando misturamos as informações *a priori* e amostral sobre θ , obtemos uma informação *a posteriori* sobre θ bem modificada.
- a distribuição a posteriori sobre θ tende a estar mais próxima da informação trazida pelos dados pois a distribuição a priori é fraca (tem uma variância grande)

- Neste exemplo, se pode perceber o processo de atualização da informação sobre θ mais claramente.
- $lackbox{ Como } heta \mid {\it x} \sim {
 m Beta}(lpha + \sum_{i=1}^n x_i, eta + n \sum_{i=1}^n x_i)$, a média *a posteriori* é

$$E(\theta \mid x) = \frac{\alpha + \sum_{i=1}^{n} x_i}{(\alpha + \sum_{i=1}^{n} x_i) + (\beta + n - \sum_{i=1}^{n} x_i)}$$
$$= \frac{\alpha + \sum_{i=1}^{n} x_i}{\alpha + \beta + n}$$
$$= \frac{\alpha + \beta}{\alpha + \beta + n} E(\theta) + \frac{n}{\alpha + \beta + n} \bar{X}$$

 \triangleright $E(\theta \mid x)$ é uma combinação linear convexa da média *a priori* e do estimador de máxima verosimilhança para θ .

Perceba que

- Se $n \to \infty \Rightarrow E(\theta \mid x) \to \bar{X}$: informação amostral é forte e domina a informação *a priori*.
- Se $\alpha \to 0$ e $\beta \to 0 \Rightarrow E(\theta \mid x) \to \bar{X}$: informação *a priori* fraca e "qualquer"que seja a informação amostral ela dominará a distribuição *a priori*.

Denote por $\omega=\frac{n}{\alpha+\beta+n}$ o peso que se atribui à informação dos dados.

Efeito do tamanho amostral Suponha que o verdadeiro valor de θ é 0.6 e que *a priori* assimimos que $\theta \sim \text{Beta}(5,45)$. Note que nos sa inferência *a priori* está muito longe do verdadeiro θ pois $E(\theta) = 0.1$. Suponha também que tenhamos gerado amostras de diferentes tamanhos (n = 5, 100, 1000, 10000) de uma Bernoulli(0.6) e que ob servamos 60% de sucessos em todas as amostras geradas

Table: Médias a posteriori

n	Distr. Post	$E(\theta)$	l	1	(, ,	$V(\theta \mid x)$
5	Beta(8, 47)	0.1				2.22×10^{-3}
100	Beta(65, 85)			0.6667	0.4334	1.63×10^{-3}
1000	Beta(605, 445)					2.32×10^{-4}
10000	Beta(6005, 4045)			0.9950	0.5975	2.39×10^{-5}

Quando maior o tamanho da amostra, menor é a influência da distribuição *a priori* na inferência *a posteriori*.

Figure: Distribuciones a posteriori

Efeito da distribuição a priori 1: Assuma que o verdadeiro valor de θ é 0.6 e que eliciamos distintas distribuições a priori para θ . Suponha que geramos uma amostra de tamanho n=5 de uma Bernoulli(0.6) e que observamos 60% de sucessos na amostra gerada.

Table: Médias a posteriori

Dist Priori	Dist Post	$E(\theta)$	$V(\theta)$	EMV	$1-\omega$	$E(\theta x)$	$V(\theta \mathbf{x})$
Beta(1,1) - vaga	Beta(4, 3)	0.5	0,0833	0.6	0.2857	0.5714	0,0306
Beta(5, 5)	Beta(8,7)	0.5	0,0227		0.6667	0.5333	0,0156
Beta(5, 45)	Beta(8, 47)	0.1	0,0015		0.9091	0.1454	0,0022
Beta(1,9) - vaga	Beta(4, 11)	0.1	0,0082		0.6667	0.2666	0,0122

Neste caso,

- ightharpoonup a informação dos dados estimam heta perfeitamente.
- ightharpoonup Todas as distribuições *a priori* subestimam $\theta = 0.6$.
- ightharpoonup melhor inferência *a posteriori* é obtida se *a priori* $\theta \sim Unif(0,1)$.
- Quando as informações amostral e a priori são discordantes ocorre um aumento na variância a posteriori se comparado com a variância a priori. Se são informações concordantes, a variância a posteriori diminui.

Figure: Distribuciones a posteriori

Sempre devemos utilizar distribuições a priori vagas ou não informativas?

Efeito da distribuição a priori **2:** Se o verdadeiro valor de θ é 0.5 e se eliciamos distintas distribuições a priori para θ . Suponha que geramos uma amostra de tamanho n=10 de uma Bernoulli(0.5) e que observamos 60% de sucessos na amostra gerada.

Table: Médias a posteriori

Distr. Priori	Distr. Post.	$E(\theta)$	EMV	$1-\omega$	$E(\theta \mid x)$
$\mathrm{Beta}(1,1)$ -vaga	Beta(7,5)	0.5	0.6	0.1667	0.5833
Beta(50,50)	Beta (56, 54)			0.9091	0.5090
$\mathrm{Beta}(1,9)$ -vaga	Beta(6.1, 6.4)	0.1		0.0909	0.5545
Beta(5,45)	Beta(11,49)			0.8334	0.1833

Note que

- ightharpoonup a informação dos dados levam a superestimação de heta
- ▶ as distribuições *a priori Beta*(1,1) (vaga) e Beta(50,50) (muito informativa) levam a estimativas (Médias *a priori*) perfeitas de θ .
- Sob tais distribuições a priori, a distribuição mais informativa leva a melhor estimativa a posteriori
- lacktriangle No caso de distribuições *a priori* que subestimam $heta_{eta}$ a melhor
- n estimativa a posteriori é obtida sob a distribuição mais yaga utubro de 2021

DISCUSSÕES IMPORTANTES: Obviamente,

- a distribuição a priori influencia a inferência a posteriori.
- Assim, ela deve traduzir adequadamente o seu conhecimento inicial sobre θ .
- as distribuições a priori pouco informativas nem sempre conduzem às melhores inferências.
- a distribuição a priori é dominada pelos dados se
 - + a amostra é grande.
 - + a distribuição a priori é pouco informativa.

DISCUSSÕES IMPORTANTES:

Na construção da verossimilhança utilizamoos o conceito de independência condicional, isto é, assumimos que X₁ é inde pendente de X₂, dado θ, isto é,

$$f(X_1, X_2 \mid \theta) = f(X_1 \mid \theta) f(X_2 \mid \theta)$$

- . Podemos dizer que X_1 é independente de X_2 ?
- ▶ Dado θ , X_1 e X_2 são independentes $\Rightarrow Cov(X_1, X_2 \mid \theta) = 0$. Além disto, $E(X_i \mid \theta) = \theta$, i = 1, 2. Daí, usando propriedades de covariância condicional, temos

$$Cov(X_1, X_2) = E(Cov(X_1, X_2 \mid \theta)) + COV(E(X_1 \mid \theta), E(X_2 \mid \theta))$$

= $E(0) + Cov(\theta, \theta) = Var(\theta).$ (2)

 $ightharpoonup X_1$ e X_2 são correlacionadas $\Rightarrow X_1$ e X_2 não são independentes.

Moda da distribuição $Beta(\alpha, \beta)$: Consideremos o logaritmo da densidade de θ

$$\ln \pi(\theta) = \ln \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} + (\alpha - 1)\ln \theta + (\beta - 1)\ln(1 - \theta)$$

Se θ é um ponto no interior do intervalo (0,1), derivando com respeito a θ e igualando a zero, temos

$$\frac{d \ln \pi(\theta)}{d\theta} = \frac{(\alpha - 1)}{\theta} + \frac{(\beta - 1)}{1 - \theta} = 0$$

$$\Rightarrow (\alpha - 1) = \theta(\alpha + \beta - 2)$$

Se $\alpha + \beta \neq 2 \Rightarrow \hat{\theta} = \frac{(\alpha - 1)}{(\alpha + \beta - 2)} \leftarrow \text{candidato a Máximo.}$ Considerando a segunda derivada com respeito a θ , temos

$$\frac{d^2 \ln \pi(\theta)}{d\theta^2} = -\frac{(\alpha - 1)}{\theta^2} - \frac{(\beta - 1)}{(1 - \theta)^2}$$

(3)

Avaliando a segunda derivada em $\hat{ heta}$ temos

$$\frac{d^2 \ln \pi(\theta)}{d\theta^2} = -\left[\frac{(\alpha + \beta - 2)^2}{\alpha - 1} + \frac{(\alpha + \beta - 2)^2}{\beta - 1}\right]$$

- > se $\alpha \leq 1$ e $\beta \leq 1 \Rightarrow \frac{d^2 \ln \pi(\theta)}{d\theta^2} > 0 \Rightarrow$ não há ponto de máximo (moda)
- ightharpoonup se lpha>1 e eta>1 $\Rightarrow rac{d^2 \ln \pi(heta)}{d heta^2}<0$ \Rightarrow há moda e ela é

$$\hat{\theta} = \frac{(\alpha - 1)}{(\alpha + \beta - 2)}$$

- Para os demais valores de α e β caso tem-se que fazer a análise. Pode ou não haver moda.
- A moda pode estar nos extremos. Por exemplo, se $\alpha=2$ e $\beta=1$ então $\pi(\theta)=2\theta \leftarrow$ função estritamente crescente com moda (máximo em) $\hat{\theta}=1$.

25 de outubro de 2021

Exemplo: Se X_1, \ldots, X_n , dado μ , são variáveis aleatórias i.i.d com distribuição Normal (μ, σ^2) , em que a variância σ^2 é conhecida. Construa a famíla conjugada para o parâmetro μ . Temos que

- * o espaço paramétrico é \mathbb{R} .
- * a função de verossimilhança é

$$f(\mathbf{x} \mid \mu) = (2\pi\sigma^{2})^{-n/2} \exp\left\{\frac{-1}{2\sigma^{2}} \left(\sum_{i=1}^{n} x_{i}^{2} - 2\mu \sum_{i=1}^{n} x_{i} + n\mu^{2}\right)\right\}$$

$$= (2\pi\sigma^{2})^{-n/2} \exp\left\{\frac{-1}{2\sigma^{2}} \sum_{i=1}^{n} x_{i}^{2}\right\}$$

$$\times \exp\left\{\frac{-1}{2\sigma^{2}} \left(-2\mu \sum_{i=1}^{n} x_{i} + n\mu^{2}\right)\right\}$$

$$\propto \exp\left\{-\frac{n}{2\sigma^{2}} \left(\mu^{2} - 2\mu \bar{x}\right)\right\}$$

$$\propto \exp\left\{-\frac{n}{2\sigma^{2}} \left(\mu - \bar{x}\right)^{2}\right\}$$
(4)

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ り へ ②

O fechamento por amostragem:

▶ Olhando para a verossimilhança como uma função de μ nos sugere que o núcleo da família de distribuições sobre μ que é fechada sob a amostragem da família normal com σ^2 conhecido deve ser

$$\pi(\mu) \propto \exp\left\{-rac{1}{2V}(\mu-M)^2
ight\}$$

- Por construção, temos que a família $\mu \sim \text{Normal}(M, V)$ de distribuições sobre μ é fechada sob a amostragem da família amostral normal com variância conhecida.
- Esta família é fechada por produto?

O fechamento por produto:

Assuma que, a priori $\mu \sim \text{Normal}(M, V)$. Assim,

$$\pi(\mu) \propto \exp\left\{-\frac{1}{2V}(\mu-M)^2\right\} = \exp\left\{-\frac{1}{2V}(\mu^2-2\mu M)\right\} \exp\left\{-\frac{1}{2V}M^2\right\}$$

Misturando esta informação a priori com a verossimilhança em (4) temos que o núcleo da distribuição a posteriori para μ é

$$\pi(\mu \mid \mathbf{x}) \propto \exp\left\{-\frac{1}{2V}(\mu^2 - 2\mu M)\right\} \exp\left\{-\frac{n}{2\sigma^2}(\mu^2 - 2\mu \bar{\mathbf{x}})\right\}$$

$$\propto \exp\left\{-\frac{1}{2}\left[\mu^2\left(\frac{1}{V} + \frac{n}{\sigma^2}\right) - 2\mu\left(\frac{M}{V} + \frac{n\bar{\mathbf{x}}}{\sigma^2}\right)\right]\right\}$$

$$\propto \exp\left\{-\frac{1}{2}\left[\mu^2\left(\frac{\sigma^2 + nV}{V\sigma^2}\right) - 2\mu\left(\frac{M\sigma^2 + nV\bar{\mathbf{x}}}{V\sigma^2}\right)\right]\right\}$$

$$\propto \exp\left\{-\left(\frac{\sigma^2 + nV}{2V\sigma^2}\right)\left[\mu^2 - 2\mu\left(\frac{M\sigma^2 + nV\bar{\mathbf{x}}}{\sigma^2 + nV}\right)\right]\right\}$$
(5)

Ou seja,

▶ a distribuição *a posteriori*

$$\mu \mid \mathsf{x} \sim \text{Normal}\left(\frac{M\sigma^2 + nV\bar{\mathsf{x}}}{\sigma^2 + nV}; \frac{V\sigma^2}{\sigma^2 + nV}\right)$$
 (6)

- A família de distribuições para μ dada em (5) é fechada por produto.
- Temos conjugação natural.

Dist. Conjugadas: Caso Normal com variância conhecida IMPORTANTE:

 A média a posteriori é uma combinação linear convexa da média a priori com o EMV de μ

$$E(\mu \mid \mathbf{x}) = M \frac{\sigma^2}{\sigma^2 + nV} + \bar{\mathbf{x}} \frac{nV}{\sigma^2 + nV}$$
 (7)

- ightharpoonup Perceba que se $n \to \infty$
 - $ightharpoonup E(\mu \mid x)
 ightharpoonup ar{X}$: informação amostral é forte e domina a informação *a priori*.
 - $ightharpoonup Var(\mu \mid x) \rightarrow 0$
 - Ou seja, a distribuição *a posteriori* de μ converge para uma distribuição degenerada tal que $P(\mu = \bar{x} \mid x) = 1$
- ightharpoonup Perceba que Se $V o \infty$
 - $E(\mu \mid x) \rightarrow \bar{X}$: a informação *a priori* fraca e "qualquer" que seja a informação amostral ela dominará a distribuição *a priori* temos uma distribuição *a priori* vaga.
 - ► $Var(\mu \mid \mathbf{x}) \rightarrow \sigma^2/n$
 - Ou seja, a distribuição *a posteriori* de μ converge para uma distribuição Normal $(\bar{x}, \sigma^2/n)$.

IMPORTANTE:

- Perceba que se $V=0 \Rightarrow \mu \sim \mathrm{Normal}(M,0)$, que é uma distribuição degenerada em M.
- Voce, a priori, está completamente convencido que o valor real de μ é M.
 - A posteriori, tem-se $E(\mu \mid x) = M$ e $Var(\mu \mid x) = 0$
 - ▶ A distribuição *a posteriori* de μ é μ | $x \sim \text{Normal}(M, 0)$
 - os dados não modificam o seu conhecimento inicial

Lei de Cromwell: Atribua probabilidade zero apenas para eventos que você sabe que não podem numca ocorrer pois os dados, por mais forte que seja a informação que trazem, não são capazes de modificar/atualizar uma probabilidade nula.

IMPORTANTE: Se X_1 e X_2 , dado μ , são variáveis aleatórias i.i.d com distribuição Normal (μ, σ^2) e se, a priori, você estabeleceu que $\mu \sim \text{Normal}(M, V)$, podemos dizer que X_1 é independente de X_2 ?

Como X_1 e X_2 , dado μ , são variáveis aleatórias independentes temos que $Cov(X_1, X_2 \mid \mu) = 0$.

$$Cov(X_1, X_2) = E(Cov(X_1, X_2 \mid \mu)) + COV(E(X_1 \mid \mu), E(X_2 \mid \mu))$$

= $E(0) + Cov(\mu, \mu) = Var(\mu) = V.$ (8)

Note que a variância a priori para μ mensura a correlação entre X_1 e X_2 a priori.

Dist. Conjugadas: Família Exponencial (\mathcal{FE})

Definição de Família Exponencial (\mathcal{FE} **):** Dizemos que uma distribuição de probabilidade $f(x \mid \theta)$, $\theta \in \Theta \subseteq \mathbb{R}^k$ e $x \in \mathcal{X}$, pertence à **Família Exponencial** se assume a seguinte forma:

$$f(\mathbf{x} \mid \theta) = c(\theta)h(\mathbf{x}) \exp\{R(\theta)^t T(\mathbf{x})\},\tag{9}$$

onde c(.) e h(.) são funções não-negativas e R(.) e T(.) são funções vetoriais k-dimensionais.

Exemplo 1: Se $X|\lambda \sim Poisson(\lambda)$, temos que

$$f(x \mid \lambda) = \frac{e^{-\lambda} \lambda^{x}}{x!} = (x!)^{-1} e^{-\lambda} \exp\{x \ln(\lambda)\}.$$
 (10)

- Pertence à família exponencial basta fazer $h(x) = (x!)^{-1}$, $c(\theta) = e^{-\lambda}$, T(x) = x e $R(\theta) = \ln(\lambda)$.
- ightharpoonup T(x) = x é a Estatítica Suficiente para λ .

Dist. Conjugadas: Família Exponencial (\mathcal{FE})

Exemplo 2:Se $X|\theta \sim Uniforme(a, b)$, temos que

$$f(x \mid \lambda) = \frac{1}{b-a} 1\{x \in (a,b)\} = \frac{1}{b-a} \exp\{\ln(1\{x \in (a,b)\})\}(11)$$

Não pertence à família exponencial.

Exemplo 3: Se $X|\theta \sim Normal(\mu, \sigma^2)$, onde μ e σ^2 são desconhecidos. Neste caso, temos que

$$f(x \mid \mu, \sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{\frac{-1}{2\sigma^2} (x^2 - 2x\mu + \mu^2)\right\}$$
$$= \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{\frac{-\mu^2}{2\sigma^2}\right\} \exp\left\{\left(\frac{-1}{2\sigma^2}, \frac{\mu}{\sigma^2}\right) . (x^2, 2x)\right\}$$

- Pertence à família exponencial. Basta considerar h(x)=1, $c(\theta)=\frac{1}{\sqrt{2\pi}\sigma}\exp\left\{\frac{-\mu^2}{2\sigma^2}\right\}$, $T(x)=(x^2,2x)$ e $R(\theta)=\left(\frac{-1}{2\sigma^2},\frac{\mu}{\sigma^2}\right)$.
- T(x) = $(x^2, 2x)$ é a Estatítica Suficiente para (σ^2, μ) .

Dist. Conjugadas: Família Exponencial (\mathcal{FE})

Conjugação na Família Exponencial (\mathcal{FE}): Seja

$$\mathcal{F} = \{ f(\mathbf{x} \mid \theta) : \theta \in \Theta \subseteq \mathbb{R}^k, \mathbf{x} \in \mathcal{X} \},$$

a Família Exponencial de distribuições amostrais indexadas pelo parâmetro θ tal que

$$f(x \mid \theta) = c(\theta)h(x)\exp\{R(\theta)^{t}T(x)\},\tag{12}$$

onde c(.) e h(.) são funções não-negativas e R(.) e T(.) são funções vetoriais k-dimensionais. Então, a família de distribuições de probabilidade definida no espaço paramétrico Θ , $\mathcal{P} = \{\pi(\theta \mid a) : a \in \mathcal{A}\}$ tal que

$$\pi(\theta \mid a) = \frac{c(\theta)^{\alpha} \exp\{R(\theta)^{t} \beta\}}{\int_{\Theta} c(\theta)^{\alpha} \exp\{R(\theta)^{t} \beta\} d\theta}$$
(13)

é conjugada natural da familia \mathcal{F} .

Distribuições Conjugadas: Família Exponencial

Se X_1, \ldots, X_n , dado θ , são condicionalmente independentes e identicamente com distribuição na família exponencial em (12) e, a priori, $\pi(\theta) \in \mathcal{P}$ dada em (13), então a distribuição a posteriori é

$$\pi(\theta \mid x_1, \dots, x_n, a) = \frac{c(\theta)^{\alpha+n} \exp\{R(\theta)^t (\beta + T(x_1, \dots, x_n))\}}{\int_{\Theta} c(\theta)^{\alpha+n} \exp\{R(\theta)^t (\beta + T(x_1, \dots, x_n))\} d\theta}$$

A distribuição preditiva *a priori* é

$$f(x_1,\ldots,x_n) = \left[\prod_{i=1}^n h(x_i)\right] \frac{\int_{\Theta} c(\theta)^{\alpha+n} \exp\{R(\theta)^t (\beta + T(x_1,\ldots,x_n))\} d\theta}{\int_{\Theta} c(\theta)^{\alpha} \exp\{R(\theta)^t \beta\} d\theta}$$

Distribuições Conjugadas: Família Exponencial

Exemplo (Caso Poisson-Gamma): Se X_1, \ldots, X_n , dado θ , são i.i.d com distribuição Poisson (θ) , então a verosimilhança

$$f(\mathbf{x} \mid \theta) = \left[\prod_{i=1}^{n} \frac{1}{x_{i}!} \right] \exp \left\{ \log(\theta) \sum_{i=1}^{n} x_{i} \right\} \exp \left\{ -n\theta \right\}$$

pertence à Família Exponencial em que

$$c(\theta)^n = [\exp\{-\theta\}]^n, \qquad h(\mathbf{x}) = \left[\prod_{i=1}^n \frac{1}{x_i!}\right]$$
$$T(\mathbf{x}) = \sum_{i=1}^n x_i, \qquad R(\theta) = \log(\theta)$$

()

Distribuições Conjugadas: Família Exponencial

Como consequência do teorema anterior,

 a família de distribuições de probabilidade definida em Θ, que é conjugada natural família amostral Poisson, tem forma

$$\pi(\theta) \propto \exp \{\log(\theta)\beta\} \exp \{\alpha\theta\}$$

$$\propto \theta^{\beta} \exp \{-\alpha\theta\}, \qquad (14)$$

que é o núcleo de uma distribução $\operatorname{Gama}(\beta-1,\alpha)$ com média $(\beta-1)/\alpha$.

a distribuição a posteriori é

$$\pi(\theta \mid \mathbf{x}) \propto \exp\left\{\log(\theta)(\beta + \sum_{i=1}^{n} x_i)\right\} \exp\left\{(\alpha + n)\theta\right\}$$

$$\propto \theta^{\beta + \sum_{i=1}^{n} x_i} \exp\left\{-(\alpha + n)\theta\right\}, \tag{15}$$

ightharpoonup \Rightarrow A posteriori, $\theta \mid \mathbf{x} \sim \mathsf{Gama}(\beta + \sum_{i=1}^n x_i - 1, \alpha + n)$

Distribuições Conjugadas: Família Exponencial

No caso Poisson-Gama, também se observa que a média a posteriori é uma combinação linear convexa do EMV para θ e a média a priori

$$E(\theta \mid x) = \frac{\beta + \sum_{i=1}^{n} x_i - 1}{\alpha + n}$$

$$= \frac{\beta - 1}{\alpha + n} + \frac{\sum_{i=1}^{n} x_i}{\alpha + n}$$

$$= \frac{\alpha}{\alpha + n} E(\theta) + \frac{n}{\alpha + n} \bar{X}$$
(16)

Perceba que

- * Se $n \to \infty \Rightarrow E(\theta \mid x) \to \bar{X}$: a informação amostral sobre θ é forte e domina a informação a priori.
- * Se $\alpha \to 0$ e $\beta \to 1 \Rightarrow E(\theta \mid x) \to \bar{X}$: a informação a priori é fraca e é dominada pela informação amostral qualquer que seja n.

Distribuições Conjugadas: Família Exponencial

Exemplo (Modelo Linear): Denote o vector de covariáveis para o k-ésimo elemento da amostra por $X_k \in \mathbb{R}^l$ dado por $(1, X_{k,1}, \ldots, X_{k,l-1}), \ k = 1, \ldots, n$, e por $\beta \in \mathbb{R}^l$ o vetor fixos $(\beta_0, \ldots, \beta_{l-1})^t$. Assuma que (X_k, Y_k) segue a estrutura de um modelo linear

$$Y_k = X_k \beta + e_k \quad e \quad e_k \stackrel{\text{iid}}{\sim} \mathcal{N}(0, \sigma^2)$$
 (17)

Assim, as variáveis Y_1,\ldots,Y_n são independentes e

$$Y_k|X_k,\beta,\sigma^2 \stackrel{\text{ind}}{\sim} \mathcal{N}(X_k\beta,\sigma^2).$$
 (18)

Na análise conjugada do modelo de regressão assume-se, a priori que

$$\beta | \sigma^2 \sim \mathcal{N}_I(\mathsf{m}, \sigma^2 \mathsf{V}), \tag{19}$$

$$\sigma^2 \sim \mathcal{IG}(\nu/2, d/2),$$
 (20)

onde ν e d são valores reais positivos, m é um vetor real $I \times 1$ e V é uma matrix $I \times I$, positiva definida.

Distribuições Conjugadas: Família Exponencial

Exemplo (Modelo Linear, cont.): Consequentemente, *a posteriori* a inferência é

$$\beta \mid \sigma^2, y, x \sim \mathcal{N}_I(m^*, \sigma^2 V^*),$$
 (21)

$$\sigma^2 \mid \sigma^2, \mathsf{y}, \mathsf{x} \sim \mathcal{IG}(\nu^*/2, d^*/2),$$
 (22)

onde

$$m^* = V^* (V^{-1}m + x^t x),$$
 (23)

$$V^* = (V^{-1} + x^t x)^{-1}, (24)$$

$$\nu^* = \nu + (\mathsf{m})^t \mathsf{V}^{-1} \mathsf{m} + \mathsf{y}^t \mathsf{y} - (\mathsf{m}^*)^t (\mathsf{V}^*)^{-1} \mathsf{m}^*, \qquad (25)$$

$$d^* = d + j - i. (26)$$

Conjugação fora da \mathcal{FE}

Se a família de distribuições amostrais \mathcal{F} é a $\mathrm{Uniforme}(0,\theta)$, então a família Pareto de distribuições de probabilidade para θ é conjugada natural da família \mathcal{F} .

Prova: Seja X_1, \ldots, X_n uma amostra que, dado, θ é i.i.d. tal que $X_i \mid \theta \stackrel{iid}{\sim} \mathrm{Uniforme}(0, \theta)$. Então a função de verossimilhança é

$$f(\mathbf{x} \mid \theta) = \prod_{i=1}^{n} \frac{1}{\theta} 1(x_i \in (0, \theta))$$
$$= (\theta)^{-n} 1(\max\{x_1, \dots, x_n\} < \theta)$$

Construindo uma família fechada por amostragem com respeito a \mathcal{F} : Para que isto ocorra a família de distribuições \mathcal{P} sobre θ tem que ter núcleo proporcional ao núcleo da verossimilhança, isto é,

$$\pi(heta) \propto \mathit{Kernell}(f(oldsymbol{x} \mid heta)) = \left(rac{1}{ heta}
ight)^{??} 1(heta > ??)$$

Conjugação fora da \mathcal{FE}

Incluindo parâmetros pra torná-la flexivel: A familia $\mathcal P$ sobre θ candidata a família conjugada natural de $\mathcal F$ tem a seguinte fdp

$$\pi(\theta) = \beta \alpha^{\beta} (\theta)^{-(\beta+1)} 1(\theta > \alpha),$$

ou seja, $\theta \sim Pareto(\alpha, \beta)$.

Provando o fechamento por produto: Tomemos a distribuição a priori para θ pertencente à família Parto, i.é, $\theta \sim Pareto(\alpha, \beta)$. Daí, a distribuição a posteriori é

$$\pi(\theta \mid \mathbf{x}) = \frac{(\theta)^{-n} 1(\max\{x_1, \dots, x_n\} < \theta) * \beta \alpha^{\beta} (\theta)^{-(\beta-1)} 1(\theta > \alpha)}{\int (\theta)^{-n} 1(\max\{x_1, \dots, x_n\} < \theta) * \beta \alpha^{\beta} (\theta)^{-(\beta-1)} 1(\theta > \alpha) d\theta}$$
$$= \frac{\theta^{-(n+\beta+1)} 1(\theta > \max[\max\{x_1, \dots, x_n\}, \alpha])}{\int_{\theta > \max[\max\{x_1, \dots, x_n\}, \alpha]} \theta^{-(n+\beta+1)} d\theta}$$

Conjugação fora da \mathcal{FE}

Note que, no denominador, estamos integrando o núcleo de uma distribuição $Pareto(\alpha^*, \beta + n)$ onde $\alpha^* = max[max\{x_1, \dots, x_n\}, \alpha]$.

A integral do denominator é $[(\alpha^*)^{\beta+n}(\beta+n)]^{-1}$.

A distribuição a posteriori para θ é

$$\theta \sim Pareto(\alpha^*, \beta + n)$$

onde $\alpha^* = \max[\max\{x_1, \dots, x_n\}, \alpha].$

Como a família \mathcal{P} é fechada sob a amostragem de \mathcal{F} e \mathcal{P} é fechada por produto, provamos que as famílias $Uniforme(0,\theta)$ e $Pareto(\alpha,\beta)$ são conjugadas naturais.

Seja ${\mathcal F}$ uma família de distribuições amostrais indexadas pelo parâmetro ${\theta}$, isto é,

$$\mathcal{F} = \{ f(x \mid \theta) : \theta \in \Theta, x \in \mathcal{X} \}.$$

Se a distribuição *a priori* para θ é uma mistura finita de distribuições, ou seja, se $\pi(\theta) = \sum_{i=1}^k \omega_i \pi_i(\theta)$, $\omega_i \in (0,1)$, $\sum_{i=1}^k \omega_i = 1$, e $\pi_i(\theta)$ é uma função densidade ou função de probabilidade, então

 a distribuição preditiva a priori f(x) é também uma mistura finita de distribuições dada por

$$f(\mathbf{x}) = \sum_{i=1}^k \omega_i f_i(\mathbf{x}),$$

 $f_i(\mathbf{x}) = \int_{\Theta} f(\mathbf{x} \mid \theta) \pi_i(\theta) d\theta$ é a distribuição preditiva *a priori* com respeito ao componente $\pi_i(\theta)$ da mistura.

Prova: Da definição de distribuição preditiva a priori segue que

$$f(\mathbf{x}) = \int_{\Theta} f(\mathbf{x} \mid \theta) \pi(\theta) d\theta$$

$$= \int_{\Theta} f(\mathbf{x} \mid \theta) \sum_{i=1}^{k} \omega_{i} \pi_{i}(\theta) d\theta$$

$$= \sum_{i=1}^{k} \omega_{i} \int_{\Theta} f(\mathbf{x} \mid \theta) \pi_{i}(\theta) d\theta$$

$$= \sum_{i=1}^{k} \omega_{i} f_{i}(\mathbf{x})$$

(27)

a distribuição a posteriori é uma mistura finita tal que

$$\pi(\theta \mid \mathsf{x}) = \sum_{i=1}^k \omega_i^* \pi_i(\theta \mid \mathsf{x})$$

onde $\omega_i^* = \frac{\omega_i f_i(\mathbf{x})}{\sum_{i=1}^k \omega_i f_i(\mathbf{x})}$ e $f_i(\mathbf{x}) = \int_{\Theta} f(\mathbf{x} \mid \theta) \pi_i(\theta) d\theta$ é a distribuição preditiva *a priori* com respeito ao componente $\pi_i(\theta)$ da mistura.

Prova: usando o teorema de Bayes temos que

$$\pi(\theta \mid \mathbf{x}) = \frac{f(\mathbf{x} \mid \theta)\pi(\theta)}{\int_{\Theta} f(\mathbf{x} \mid \theta)\pi(\theta)d\theta}$$

$$= \frac{f(\mathbf{x} \mid \theta)\sum_{i=1}^{k} \omega_{i}\pi_{i}(\theta)}{\int_{\Theta} f(\mathbf{x} \mid \theta)\sum_{i=1}^{k} \omega_{i}\pi_{i}(\theta)d\theta}$$

$$= \frac{\sum_{i=1}^{k} \omega_{i}f(\mathbf{x} \mid \theta)\pi_{i}(\theta)}{\sum_{i=1}^{k} \omega_{i}f_{i}(\mathbf{x})}$$

$$= \sum_{i=1}^{k} \frac{\omega_{i}}{\sum_{i=1}^{k} \omega_{i}f_{i}(\mathbf{x})} f(\mathbf{x} \mid \theta)\pi_{i}(\theta)$$

$$= \sum_{i=1}^{k} \frac{\omega_{i}}{\sum_{i=1}^{k} \omega_{i}f_{i}(\mathbf{x})} \frac{f(\mathbf{x} \mid \theta)\pi_{i}(\theta)}{\int_{\Theta} f(\mathbf{x} \mid \theta)\pi_{i}(\theta)d\theta}$$

$$= \sum_{i=1}^{k} \frac{\omega_{i}f_{i}(\mathbf{x})}{\sum_{i=1}^{k} \omega_{i}f_{i}(\mathbf{x})} \pi_{i}(\theta \mid \mathbf{x})$$

Exemplo: Se X_1, \ldots, X_n , dado θ , são i.i.d com distribuição Poisson (θ) . Assuma que a distribuição *a priori* para θ é a seguinte mistura finita de distribuições gama:

$$\pi(\theta) = pF_{G_1}(\alpha_1, \beta_1) + (1-p)F_{G_2}(\alpha_2, \beta_2),$$

onde $F_{G_i}(\alpha_i, \beta_i)$ representa a densidade de uma distribuição $Gama(\alpha_i, \beta_i), \ p \in (0,1), \ \alpha_i > 0$ e $\beta_i > 0, \ i = 1,2$. Encontre (a) a distribuição preditiva a priori e (b) a distribuição a posteriori de θ .

Solução: Considerando o resultado anterior precisamos encontra as distribuições *a posteriori* e preditiva *a priori* para cada componente da mistura.

a) Dist. preditiva a priori:

Dist. preditiva a priori para o componente j:

$$\begin{split} f_{j}(\mathbf{x}) &= \int_{0}^{\infty} (\prod_{i=1}^{n} 1/x_{i}!) \exp\{-n\theta\} \theta^{\sum_{i=1}^{n} x_{i}} \frac{\beta_{j}^{\alpha_{j}}}{\Gamma(\alpha_{j})} \theta^{\alpha_{j}-1} \exp\{-\beta_{j}\theta\} d\theta \\ &= \left(\prod_{i=1}^{n} 1/x_{i}!\right) \frac{\beta_{j}^{\alpha_{j}}}{\Gamma(\alpha_{j})} \int_{0}^{\infty} \theta^{\sum_{i=1}^{n} x_{i}+\alpha_{j}-1} \exp\{-(\beta_{j}+n)\theta\} d\theta \\ &= \left(\prod_{i=1}^{n} 1/x_{i}!\right) \frac{\beta_{j}^{\alpha_{j}}}{\Gamma(\alpha_{j})} \frac{\Gamma(\sum_{i=1}^{n} x_{i}+\alpha_{j})}{(\beta_{j}+n)^{\sum_{i=1}^{n} x_{i}+\alpha_{j}}}, \ x_{i} = 0, 1, \dots, i = 1, \dots, n. \end{split}$$

Dist preditiva a priori

$$f(\mathbf{x}) = \left(\prod_{i=1}^{n} 1/x_i!\right) \left\{ p \frac{\beta_1^{\alpha_1}}{\Gamma(\alpha_1)} \frac{\Gamma(\sum_{i=1}^{n} x_i + \alpha_1)}{(\beta_i + n)^{\sum_{i=1}^{n} x_i + \alpha_1}} + (1-p) \frac{\beta_2^{\alpha_2}}{\Gamma(\alpha_2)} \frac{\Gamma(\sum_{i=1}^{n} x_i + \alpha_2)}{(\beta_2 + n)^{\sum_{i=1}^{n} x_i + \alpha_2}} \right\}$$

para todo $x_i = 0, 1, ..., i = 1, ..., n$.

b) Dist. a posteriori:

Distribuição *a posteriori* para cada componente da mistura: Como as distribuições Gama e Poisson são conjugadas naturais temos que para cada componente da mistura

$$\pi_j(\theta|\mathbf{x}) \propto \theta^{\sum_{i=1}^n x_i + \alpha_j - 1} \exp\{-(\beta_j + n)\theta\}.$$

Assim, a posteriori, cada componente j da mistura é uma $Gama(\sum_{i=1}^{n} x_i + \alpha_j, \beta_j + n)$

A distribuição a posteriori para θ é uma mistura finita das distribuições $Gama(\sum_{i=1}^n x_i + \alpha_1, \beta_1 + n)$ e $Gama(\sum_{i=1}^n x_i + \alpha_2, \beta_2 + n)$ onde o peso da primeira componente da mistura é

$$p^* = \frac{p \frac{\beta_1^{\alpha_1}}{\Gamma(\alpha_1)} \frac{\Gamma(\sum_{i=1}^n x_i + \alpha_1)}{(\beta_i + n) \sum_{i=1}^n x_i + \alpha_1}}{\left\{p \frac{\beta_1^{\alpha_1}}{\Gamma(\alpha_1)} \frac{\Gamma(\sum_{i=1}^n x_i + \alpha_1)}{(\beta_i + n) \sum_{i=1}^n x_i + \alpha_1} + (1 - p) \frac{\beta_2^{\alpha_2}}{\Gamma(\alpha_2)} \frac{\Gamma(\sum_{i=1}^n x_i + \alpha_2)}{(\beta_2 + n) \sum_{i=1}^n x_i + \alpha_2}\right\}}$$

25 de outubro de 2021