EE655: Computer Vision & Deep Learning

Lecture 02

Koteswar Rao Jerripothula, PhD Department of Electrical Engineering IIT Kanpur

Lecture Outline

Image Formation (

Image Filtering

How is a digital image formed?

- A part of energy from an illumination (light) source is reflected by the scene.
- The imaging system collects the incoming energy and focuses it onto an image plane.
- A sensor array produces outputs proportional to the integral of the light received at each sensor.
- Digital and analog circuitry produces the output of final digital image.

We will be referring to a "digital image" simply as an "image" in this course.

An image can be denoted as a 2D function:

Amount of light incident
$$f(x,y) = i(x,y)r(x,y)$$
 Fraction of light reflected

where

$$0 \le i(x, y) < \infty$$

and

$$0 \le r(x, y) \le 1$$

Thus,
$$0 \le f(x, y) < \infty$$

Typical values of illumination

	Illumination (lm/m²)
Clear day	90,000
Cloudy Day	10,000
Full moon (clear evening)	0.1
Commercial Office	1,000

Typical values of reflectance

	Reflectance
Black velvet	0.01
Stainless Steel	0.65
Flat white wall paint	0.8
Silver plated metal	0.9
Snow	0.93

In we assume intensity of an image at coordinates (x,y) to be I

$$\ell = f(x, y)$$

$$L_{\min} \le \ell \le L_{\max}$$

 $[L_{\min}, L_{\max}]$ is called the *intensity* (or gray) scale

$$L_{\min} = i_{\min} r_{\min}$$
 and $L_{\max} = i_{\max} r_{\max}$

Real Numbers

Whole Numbers

The intensity scale is shifted to either [0,1] or [0,C]

$$\ell = 0$$
 represents Pure Black

$$\ell = 1$$
 (or C) represents Pure White

Any value in-between represents a particular shade of gray

Quantization & Sampling

Quantization: Digitizing Amplitude

Sampling: Digitizing Coordinate Values

Pixels

- Camera stores the projection in the form of an 2D-array of pixels.
- A pixel is a tiny dot or square of color that is part of a digital image.
- A digital image (picture) consists of millions of these pixels or picture elements, which store color values.
- The word Pixel is a twist on the words "picture" and "element" combined.

The more the pixels, the clearer it looks.

What all a pixel can store:

- A binary number to form a logical image
- An 8-bit integer to form a grayscale image
- Three 8-bit integers to form a color image

C=1

C = 255

RGB Image

Green Channel

The color is determined using the different wavelengths present in the light received by the sensor.

Lecture Outline

Image Formation

Image Filtering

IMAGE FILTERING

$$f(I) = I_f$$

IMAGE FILTERING

$$I(x_1) = (212, 200, 221)$$

$$f(I(x_1)) = f(212,200,221)$$

= (242,152,135)

IMAGE FILTERING (PIXEL-WISE FILTERING)

 $I_f = 255 - I$

 $I_f = I - 100$

 $I_r > 100 \& I_g < 100 \& I_b < 100$

$$I_f(x) = f(I(y \in N_x))$$

Local patch around x N_x : Neighboring pixels of x

Range of i & j is [1,5] Range of k & l is [-1,1]

$$I_f(i,j) = \sum_{k,l} I(i+k, j+l)z(k,l)$$

_					
7	2	1	4	4	7
	1	2	2	3	6
	3	3	5	8	9
925	5	2	2	6	7
	8	3	2	1	3

a	b	С
d	е	f
g	h	i

Image

Filter

Filtered image

$$y = 2a + b + 4c + d + 2e + 2f + 3g + 3h + 5i$$

$I_f(i,j) =$	$\sum I(i+k,j+l)z(k,l)$
	k,l

2	1	4	4	7
1	2	2	3	6
3	3	5	8	9
5	2	2	6	7
8	3	2	1	3

а	b	С	
d	е	f	_
g	h	i	

Image

Filter

Filtered image

$$y = a + 4b + 4c + 2d + 2e + 3f + 3g + 5h + 8i$$

$I_f(i,j) =$	$\sum I(i+k,j+l)z(k,l)$
	k,l

2	1	4	4	7
1	2	2	3	6
3	3	5	8	9
5	2	2	6	7
8	3	2	1	3

a	b	С
d	е	f
g	h	i

Image

Filter

Filtered image

$$y = 5a + 8b + 9c + 2d + 6e + 7f + 2g + h + 3i$$

IDENTITY

$$I_f(i,j) = \sum_{k,l} I(i+k,j+l)z(k,l)$$

1	4	4	7
2	2	3	6
3	5	8	9
2	2	6	7
3	2	1	3
	3	2 2 3 5 2 2	2 2 3 3 5 8 2 2 6

$$\otimes$$

IDENTITY

$$I_f(i,j) = \sum_{k,l} I(i+k,j+l)z(k,l)$$

2	1	4	4	7
1	2	2	3	6
3	3	5	8	9
5	2	2	6	7
8	3	2	1	3

$$\otimes$$

0	0	0
0	1	0
0	0	0

2	3
3	8
2	6

SHIFTING

$$I_f(i,j) = \sum_{k,l} I(i+k,j+l)z(k,l)$$

2	1	4	4	7
1	2	2	3	6
3	3	5	8	9
5	2	2	6	7
8	3	2	1	3

	0	0	0
)	1	0	0
	0	0	0

SHIFTING

$$I_f(i,j) = \sum_{k,l} I(i+k, j+l)z(k,l)$$

2	1	4	4	7
1	2	2	3	6
3	3	5	8	9
5	2	2	6	7
8	3	2	1	3

$$\otimes$$

0	0	0
1	0	0
0	0	0

-	_
-	_

1	2	2
3	3	5
5	2	2

Box Filter (Moving Averaging)

$$I_f(i,j) = \sum_{k,l} I(i+k, j+l)z(k,l)$$

\otimes	1	1	1	1
	-	1	1	1
	9	1	1	1

Box Filter (Moving Averaging)

$$I_f(i, j) = \sum_{k,l} I(i + k, j + l)z(k, l)$$

=

2	1	4	4	7
1	2	2	3	6
3	3	5	8	9
5	2	2	6	7
8	3	2	1	3

$$\otimes \ \frac{1}{9} \left[\begin{array}{c|c} 1 & 1 & 1 \\ \hline 1 & 1 & 1 \\ \hline 1 & 1 & 1 \end{array} \right]$$

Average

DIRECTIONAL BLUR

$$I_f(i,j) = \sum_{k,l} I(i+k,j+l)z(k,l)$$

	1
	ı
П	
9	
-	
- 1	

	1	0	0	0
\otimes	-	1	1	1
	3	0	0	0

DIRECTIONAL BLUR

$$I_f(i,j) = \sum_{k,l} I(i+k,j+l)z(k,l)$$

=

2	1	4	4	7
1	2	2	3	6
3	3	5	8	9
5	2	2	6	7
8	3	2	1	3

$$\otimes \begin{array}{c|c} \frac{1}{3} & 0 & 0 & 0 \\ \hline 1 & 1 & 1 \\ \hline 0 & 0 & 0 \end{array}$$

Horizontal blur

DIRECTIONAL BLUR

$$I_f(i,j) = \sum_{k,l} I(i+k,j+l)z(k,l)$$

=

2	1	4	4	7
1	2	2	3	6
3	3	5	8	9
5	2	2	6	7
8	3	2	1	3

Vertical blur

Box Filter (Moving Averaging)

Pixel averaging

Gaussian Blurring (Moving Weighted Average)

$$z(k,l) = \frac{1}{2\pi\sigma^2} e^{-\frac{k^2 + l^2}{2\sigma^2}}$$

GAUSSIAN BLURRING (MOVING WEIGHTED AVERAGE)

8

$$z(k,l) = \frac{1}{2\pi\sigma^2} e^{-\frac{k^2 + l^2}{2\sigma^2}}$$

Gaussian blur

GAUSSIAN BLURRING

$$z(k,l) = \frac{1}{2\pi\sigma^2} e^{-\frac{k^2 + l^2}{2\sigma^2}}$$

$$\sigma = 1$$
 $\sigma = 4$ $\sigma = 7$

IMAGE SPATIAL FILTERING

```
function im f = Filtering(im, filter)
% filtered image initialization
im f = zeros(size(im));
center k = floor(size(filter, 1)/2)+1;
center 1 = floor(size(filter,2)/2)+1;
for i = 1 : size(im, 1)
     for j = 1 : size(im, 2)
          % filtering
         v = 0;
          for k = 1 : size(filter,1)
               for 1 = 1 : size(filter, 2)
                    i1 = i + k - center k;
                   j1 = j + 1 - center 1;
                    if i1 <= 0 || i1 > size(im_f,1) || j1 <= 0 || j1 > size(im_f,2)
                         continue;
                    end
                   \mathbf{v} = \mathbf{v} + \mathrm{im}(\mathrm{i}\mathbf{1}, \mathrm{j}\mathbf{1}) * \mathrm{filter}(\mathbf{k}, \mathbf{1}); \qquad \qquad \mathbf{I}_f(i, j) = \sum_{l, j} I(i + k, j + l) z(k, l)
               end
          end
          im f(i,j) = v;
     end
end
```


Equivalence in 1D

High response at edge

IMAGE SHARPENING

[Note: Need to add the original image to get the sharpened image, so the filter is 2*identity - box]

-

+ve or -ve spikes are observed at edges

In discrete domain such as an image, h=1 (the smallest change)

 $\frac{df}{du} = \lim_{h \to 0} \frac{f(u+h) - f(u-h)}{2h} \longrightarrow$

So, 0.5*f(u+1)+0*f(u)+(-0.5)*f(u-1). The filter turns out to be [-0.5,0,0.5]

IMAGE DIFFERENTIATION

$$I \otimes z = \frac{\partial I}{\partial u}$$

Differentiation

IMAGE DIFFERENTIATION

$$I \otimes z = \frac{\partial I}{\partial v}$$

Differentiation