## Geological Time Scale

| Eons                                                       | Era                                                                   | Period                                                           | Epoch                                                    | Age/Years<br>Before Present                                                                                                | Life/ Major Events                                                                                                                                                               |  |
|------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Present                                                    |                                                                       | Quaternary                                                       | Holocene<br>Pleistocene                                  | 0 - 10,000<br>10,000 - 2 million                                                                                           | Modern Man<br>Homo Sapiens                                                                                                                                                       |  |
| Phanerozoic                                                | Cainozoic<br>(From 65<br>million years<br>to the<br>present<br>times) | Tertiary                                                         | Pliocene<br>Miocene<br>Oligocene<br>Eocene<br>Palaeocene | 2 - 5 million<br>5 - 24 million<br>24 - 37 Ma<br>37 - 58 Million<br>57 - 65 Million                                        | Early Human Ancestor<br>Ape: Flowering Plants<br>and Trees<br>Anthropoid Ape<br>Rabbits and Hare<br>Small Mammals:<br>Rats – Mice                                                |  |
|                                                            | Mesozoic<br>65 - 245<br>Million<br>Mammals                            | Cretaceous<br>Jurassic<br>Triassic                               |                                                          | 65 - 144 Million<br>144 - 208 Million<br>208 - 245 Million                                                                 | Extinction of Dinosaurs<br>Age of Dinosaurs<br>Frogs and turtles                                                                                                                 |  |
|                                                            | Palaeozoic<br>245 - 570<br>Million                                    | Permian  Carboniferous  Devonian  Silurian  Ordovician  Cambrian |                                                          | 245 - 286 Million<br>286 - 360 Million<br>360 - 408 Million<br>408 - 438 Million<br>438 - 505 Million<br>505 - 570 Million | Reptile dominate-replace<br>amphibians<br>First Reptiles:<br>Vertebrates: Coal beds<br>Amphibians<br>First trace of life on land<br>Plants<br>First Fish<br>No terrestrial Life; |  |
| 570<br>Proterozoic<br>Archean<br>4000<br>Hadean<br>4800MYA | 2500<br>Pre-<br>Cambrian<br>570 Million<br>- 4.800<br>Million         |                                                                  |                                                          | 570 - 2,500 Million<br>2,500 - 3,800 Million<br>3,800 - 4,800 Million                                                      | Marine Invertebrate Soft-bodied arthropods Blue green Algae: Unicellular bacteria Oceans and Continents form - Ocean and Atmosphere are rich in Carbon dioxide                   |  |
| Origin of<br>Stars<br>Supernova<br>Big Bang                | 5,000 -<br>13,700<br>Million                                          |                                                                  |                                                          | 5,000 Million<br>12,000 Million<br>13,700 Million                                                                          | Origin of the sun Origin of the universe                                                                                                                                         |  |

## Geography Class 08

## REVISION OF THE PREVIOUS CLASS (9:20 AM):

- · We see eclipses when one heavenly body moves into the shadow of another.
- Solar Eclipse happens when the moon blocks the light coming from the sun to the Earth.
- We can have total, partial, and annular solar eclipses.
- Lunar Eclipse happens when the earth comes between the sun and the moon blocking the light from the sun which was supposed to be reflected by the moon.
- · We can have total, partial, and penumbral lunar eclipses.
- Super Moon is a phenomenon of a full moon that coincides with the perigee of the moon.
- The Blood Moon is the full moon during the lunar eclipse.
- The Blue Moon is the second full moon of the month.

#### **Evolution of the Earth:**

- The planet Earth was totally barren and rocky at its origin.
- There was a thin atmosphere of hydrogen and helium.
- The early atmosphere with hydrogen and helium was stripped off due to solar winds.

## Geological Time Scale of the Earth:

- Features of the earth, as we see it today, were not the same originally- Aravallis
  were at one point in time higher than the Himalayas.
- The earth is 4800 million years old.
- As animals, we have evolved in the last two million years.
- The cultural evolution( humans residing in community habitations) is around 10,000 years old.
- The survival and eventual dominance of the Homo Sapiens is believed to be an accident by many researchers.
- This is because the Homo Neanderthals had a bigger brain than us, despite having a shorter size.
- The evolution of our thumb was a very major turning point in evolutional history.
- Our thumb helps us in holding objects, which is seen in very few other mammals like Orang Utans.
- Dinosaurs ruled the earth for more than 100 million years.

## Time Scale divisions:

- Eon-Era-Period-Epoch-Age.
- Every Eon is made up of around one billion years.





- Hadean Eon saw the early evolution of the earth- early atmosphere, and hydrosphere.
- Archaean Eon saw the evolution of life as blue-green algae
- Proterozoic Eon saw changes in the earth as per the changes in oxygen levels.
- · This eon saw the coming up of soft-bodied marine multicellular organisms.

#### Paleozoic Era:

The Paleozoic Era is a sub-division of the Phanerozoic eon

### Paleozoic Era:

• The Paleozoic Era is a sub-division of the Phanerozoic eon

|   | Eon         | Era       | P          | eriod         | Epoch       |                                  |  |
|---|-------------|-----------|------------|---------------|-------------|----------------------------------|--|
|   | Phanerozoic | Cenozoic  | Quaternary |               | Holocene    | — Today<br>— 11.8 K              |  |
|   |             |           |            |               | Pleistocene |                                  |  |
|   |             |           | Neogene    |               | Pliocene    |                                  |  |
|   |             |           |            |               | Miocene     |                                  |  |
|   |             |           | Paleogene  |               | Oligocene   |                                  |  |
|   |             |           |            |               | Eocene      | → 66 Ma<br>→ 252 M               |  |
|   |             |           |            |               | Paleocene   |                                  |  |
|   |             | Mesozoic  | Cretaceous |               | ~           |                                  |  |
|   |             |           | Jurassic   |               | i           |                                  |  |
|   |             |           | Triassic   |               | ~           |                                  |  |
|   |             | Paleozoic | Permian    |               | <b>7</b> .1 |                                  |  |
|   |             |           | Carboni-   | Pennsylvanian | î           |                                  |  |
|   |             |           | ferous     | Mississippian | ω.          |                                  |  |
|   |             |           | Devonian   |               | ~:          |                                  |  |
|   |             |           | Silurian   |               | ~           | → 541 Ma<br>→ 2.5 Ga<br>→ 4.0 Ga |  |
|   |             |           | Ordovician |               | ~           |                                  |  |
|   |             |           | Cambrian   |               | <b>∞</b> :  |                                  |  |
|   | Proterozoic | 2         |            |               | 7           |                                  |  |
|   | Archean     | ~ ~       |            | 2             | ~           |                                  |  |
| - | Hadean      | 2         |            |               | ~           | 4.54                             |  |

- The Paleozoic Era is divided into six periods:
- I. We see sudden explosion of life during the Cambrian Period.
- II. Ordovician Period saw the evolution of the first vertebrates which were primitive fish.
- Life was still in water only and the land was still barren.
- · This period saw the first mass extinction.

- III. Silurian Period saw the evolution of life on the surface of the land.
- Plants were the first life on the land.
- These plants were non-flowering plants.
- IV. Devonian Period saw the rise of amphibians.
- The Devonian period ended with another mass extinction which was driven by global climatic changes.
- V. Carboniferous Period saw the rise of the first reptiles.
- VI. Permian Period saw the reptiles dominate and replace the amphibians.
- The Permian period ended with another mass extinction.
- Corals are some remnants of the Paleozoic era.

## MESOZOIC ERA (10:15 AM):

- · This era is divided into three periods:
- I. Triassic period saw the diversification of reptiles.
- This period also ended with a mass extinction.
- II. Jurassic period( 200 million years ago) is named after the Jura mountains of Europe(Switzerland, France, etc.) where pieces of evidence of the period were found.
- The age saw the evolution of dinosaurs which were the most dominant creatures on the earth.
- The age also had some mammals.
- Jabalpur, Jaisalmer, etc are some places in India where dinosaur pieces of evidence have been found.
- III. Cretaceous period saw dinosaurs rising to their peak.
- This period also ended with a mass extinction.
- Global warming had also reached its peak.
- As per most of the evidence, this mass extinction was caused due to an impact of a huge meteorite that happened near the Yucatan Peninsula near the Gulf of Mexico.

- · The impact resulted in large tsunamis and volcanic eruptions all over the earth.
- Around 95% of the dinosaurs were wiped out.
- · Some dinosaurs that were capable of flying, live in water were able to survive.
- Some mammals also survived this event.

#### Cenozoic Era:

- The Mesozoic era was followed by the Cenozoic era.
- 65-2 million years- Tertiary Cenozoic era:
- Major events were an evolution of flowering plants, and alpine mountains(Himalayas, Rockies, etc).
- The most important event was the evolution of apes which eventually saw the rise of Homo Sapiens
- 2 million years to present- Quaternary Cenozoic era:
- Humans evolved along with lions and cheetahs from the Savannah grasslands of Africa.
- The Pleistocene epoch saw the biological evolution of humans.
- The Holocene epoch saw the social evolution of humans.

## HOLOCENE EPOCH (10:45 AM):



 Stalagmite analysis can give very vital information- as one deposited layer takes around 100 years to form.  Stalagmite analysis can give very vital information- as one deposited layer takes around 100 years to form.



- · Time analysis of different layers can point to droughts for specific time periods.
- · It might also help in discovering if long droughts had wiped out civilizations.
- Stalagmite analysis in 2017 from Mawmluh caves of Meghalaya gave us information about what is now known as the Meghalayan age.

# SOURCES OF INFORMATION ON THE INTERIOR OF THE EARTH (11:15 AM): Direct Sources:

- Direct sources provide limited observation as we lack the technology to reach the deep interiors of the earth.
- · Two sources of direct information are mining and volcanism.

## Mining:

- The deep mine and drilling projects have provided a good amount of information such as the increase in pressure, density, and temperature with the depth.
- The maximum depth achieved through mining is about 4 km Mponeng gold mine in South Africa.

## Kola Deep Ocean drilling mission:

- The project in 1970 attempted to drill as deeply as possible into the earth's crust.
- It could reach up to 12 km (6300km is the earth's radius).



- The Kolar Gold Mines was the deepest gold mine in India (3 km deep) and one of the deepest in the world.
- Mining provides us with limited information through the materials extracted.

#### Volcanism:

- The cooling of magma after eruptions and other materials released provide information regarding the earth's interior.
- This is one of the major sources of direct information.
- Eruptions give a clear picture of the constituents, temperature, and density.
- So the need for indirect sources rose.

#### Indirect sources:

## Density study:

- The average density of the earth is 5.5gm/cm<sup>3</sup>.
- But the surface continental crust exhibits an average density of 2.7 gm/cm<sup>3</sup> which is almost half of the total average.
- So to attain the average, it is evident that there is an increase in the density with the depth.
- The density is a maximum of 13gm/cm<sup>3</sup> at the center.
- · We could also conclude that the crust is lighter and the core is heavier.





#### Seismic Studies

- Through the analysis of different types of earthquake waves, their speed and direction while passing through the earth's interior.
- These are the waves generated during the earthquake that results in the shaking of the lithosphere which is primarily due to the energy released in the form of waves.
- This energy gets transformed into the following types of waves:
- Body waves:
- A body wave is a seismic wave that moves through the interior of the earth, as
  opposed to surface waves that travel near the earth's surface.
- Surface waves:
- They move across the surface of the earth.

## TEMPERATURE & PRESSURE STUDIES (11:45 AM):

- The temperature increases by 1 degree Celsius for every 32 meters as we go deep into the earth.
- However, with the increase in depth, higher pressure increases the melting point of tricks causing variations in the rate of change of temperature.
- Also if we go by the same rate( 1 degree/32 meters), the temperature of Earth's center must have been more than Sun's temperature, which is not the case

#### Meteorites:

 By analyzing the structure, mineralogy, etc. we can conclude about the earth's interior as meteorites are the remnants of the planets.



## Crust:

- It is the uppermost layer of the earth.
- It is divided into continental and oceanic crusts.
- The crust is the lightest and thinnest layer.
- The crust is majorly made up of Silica, Aluminium, Sodium, Magnesium, etc.
- The continental crust has continents over it & the Oceanic crust has oceans above
  it.
- Continental Crust and Oceanic crust are next to each other, and no one floats above the other.



### Mantle:

- · This is the thickest layer of the earth.
- It covers 83% of the Earth's volume and 63 % of the Earth's mass.
- · It is denser than the crust and lighter than the core.
- it is divided into upper & lower mantle.
- As we go from crust to mantle, the amount of silica & aluminum decreases, and iron & magnesium increase.

#### Core:

- · This is the innermost and densest layer.
- It is almost twice as dense as the mantle.
- It is mainly composed of nickel and iron.
- So it is also called the **Nife** layer.
  it is divided into the cores & inner core.
- The outer core is liquid (molten rocks)and the inner core is solid.
- As the pressure increases, even the melting point increases.
- . The pressure at the inner core is very high and hence, the melting point of the rocks there gets too high.

The topics for the next class are a continuation of the earth's interior, types of discontinuities, types of rocks, etc.