

Joint ICTP-IAEA Workshop on Monte Carlo Radiation Transport and Associated Data Needs for Medical Applications

28 October – 8 November 2024 ICTP, Trieste, Italy

Lecture 31

Fundamental quantities in dosimetry

Ernesto Mainegra-Hing

Metrology Research Centre National Research Council Canada

Fundamental quantities in dosimetry

- Absorbed Dose ${\cal D}$ mean energy imparted by ionizing radiation to matter
- Total Kerma K
 mean <u>initial</u> Kinetic Energy of charged particles Released in MAtter
- Collission Kerma K $_{\rm col}$ $\underline{\mbox{absorbed Kinetic Energy of charged particles Released in MAtter}$

Basic quantities in dosimetry

Establishing air-kerma and dose-to-water primary standards requires quantities such as:

- mass energy absorption coefficients $\mu_{
 m en}/
 ho$
- average radiative loss fraction, \overline{g}
- particle fluence, $\phi\left(E\right)$
- restricted collision mass stopping powers, $L_{\Delta}/
 ho$

The EGSnrc g application

- calculates \overline{g} , the average kinetic energy fraction lost to radiative events for primary photon interactions (radiative loss fraction)
- radiative yield Y in the case of charged particle beams as they slow down.
- photon beam quantities such as
 - total kerma, K,
 - collision kerma, $K_{\rm col}$
 - energy-fluence-averaged mass energy-transfer coefficient, $\overline{\mu}_{
 m tr}/
 ho$
 - energy-fluence-averaged mass energy-absorption coefficient, $\overline{\mu}_{
 m en}/
 ho$
- Efficient calculation of $\mu_{
 m en}/
 ho$ databases
- No parallel calculations available (yet)!
- Details and input examples in g application reference manual (PIRS-3100)

g application: general aspects

Particle at the center of infinite homogeneous phantom

Particle oriented initially along z-axis (0, 0, 1)

Primary and secondary photons discarded after first interaction

Electrons slow down in the medium until their energy falls below ECUT

g application: photon sources

Score $\overline{E}_{\rm tr} \to {\rm energy\ transferred\ to\ charged\ particles}$

Account for sub-threshold relaxation charged particles (Auger e -)

Calculate

$$\frac{K}{\phi} = \langle \overline{E}_{tr} \cdot \mu / \rho \rangle_{\phi}$$
$$\langle \mu_{tr} / \rho \rangle_{\psi} = \frac{K}{\phi \cdot \langle E \rangle_{\phi}}$$

g application: photon sources

Substract radiative events contributions $\overline{E}_{\mathrm{rad}}$

Include sub-threshold relaxation photons (fluorescent γ 's)

$$\overline{E}_{\rm ab} = \overline{E}_{\rm tr} - \overline{E}_{\rm rad}$$

Calculate

$$\frac{K_{\rm col}}{\phi} = \langle \overline{E}_{\rm ab} \cdot \mu / \rho \rangle_{\phi}$$
$$\langle \mu_{\rm en} / \rho \rangle_{\psi} = \frac{K_{\rm col}}{\phi \cdot \langle E \rangle_{\phi}}$$

g application: photon sources

finally obtain \overline{g}

$$\overline{g} = \frac{\langle \overline{E}_{\text{rad}} \cdot \mu \rangle_{\phi}}{\langle \overline{E}_{\text{tr}} \cdot \mu \rangle_{\phi}}$$

Computing \overline{E}_{rad} is the inefficient part of these calculations as it requires following electrons down to the threshold energy ECUT.

g application: electron sources

radiative yield Y for e $\bar{}$ beam with energy distribution $\phi\left(T\right)$

$$Y = \frac{\left\langle \overline{E}_{\text{rad}} \right\rangle_{\phi}}{\left\langle T \right\rangle_{\phi}}$$

Radiative photons (bremsstrahlung, annihilation photons, fluorescent photons after EII) discarded after scoring their energy

Increasing efficiency for photon sources calculations

If generating tables of $\mu_{\rm en}/\rho\left(E\right)$ is the goal, calculation efficiency can be significantly increased by using

$$\mu_{\rm en}/\rho = \mu_{\rm tr}/\rho \cdot (1-\overline{g})$$
,

taking advantage of the faster convergence of μ_{tr} and 1- \overline{g} (when \overline{g} is small) to a desired statistical precision σ .

Users can request this type of calculation using the inputs

```
calculation type = type # 0 (default), 1
precision = accu # relative precision, defaults to 0.001
precision balance = m # m = 2 recommended for calculations around 1 MeV
```

anywhere in the input file.

Increasing efficiency for photon sources calculations

- calculation finishes as soon as a user-requested relative uncertainty σ is reached
- · the number of histories input entry is ignored
- photon-only $\mu_{
 m tr}$ calculation
- Efficiency balancing scheme:

$$\sigma(\mu_{\rm tr}) = \sigma/\sqrt{m}$$

$$\sigma(1 - \overline{g}) = \sigma/\sqrt{m/(m-1)}$$

• Default: $\mu_{\rm tr}$ calculated to a precision of $\sigma/\sqrt{4/3}$ and $(1-\overline{g})$ of $\sigma/2$

Efficiency gain of calculation type 1 over type 0 in air

The EGSnrc "RZ" applications

- Specific to right-cylindrical symmetric geometries such as
 - ion chambers
 - brachytherapy sources

• Long history at the NRC and extensively used in the Medical Physics community.

The EGSnrc "RZ" applications

DOSRZnrc:

- dose vs depth, dose vs radius
- kerma vs depth, kerma vs radius
- pulse height distribution

CAVRZnrc:

- dose in cavity
- A_{att}, A_{scat} and A_{wall}

• FLURZnrc:

- total and differential fluence in regions
- fluence vs depth, fluence vs radius
- separate photons, electrons and positrons
- primaries and secondaries contributions

SPRRZnrc:

- SA collision stopping power ratios (SPR) in regions
- SPR vs depth, SPR vs radius (also dose)

RZ and SPH apps user manual (PIRS-702)

The EGSnrc "RZ" applications

DOSRZnrc:

- dose vs depth, dose vs radius
- kerma vs depth, kerma vs radius
- pulse height distribution

CAVRZnrc:

- dose in cavity
- A_{att} , A_{scat} and A_{wall}

• FLURZnrc:

- total and differential fluence in regions
- fluence vs depth, fluence vs radius
- separate photons, electrons and positrons
- primaries and secondaries contributions

SPRRZnrc:

- SA collision stopping power ratios (SPR) in regions
- SPR vs depth, SPR vs radius (also dose)

RZ and SPH apps user manual (PIRS-702)

Excellent validation tools!

Unique!

The egs_inprz graphical user interface

FLURZnrc SPRRZnrc DOSRZnrc CAVRZnrc

FLURZnrc fluence calculation

Fluence for different particle types is calculated as the total pathlength divided by the region's volume V, i.e.:

$$\Phi = \frac{\sum l_i}{V}$$

TVSTEP is the total curved path through the voxel.

Differential fluence: photons

Differential fluence: electrons

FLURZnrc SPRRZnrc DOSRZnrc CAVRZnrc

SPRRZnrc: stopping power ratios calculations

SPRRZnrc calculates Spencer-Attix spectrum averaged restricted collision stopping power ratios in two media. TG-51 protocol is based on SPR calculations by this code.

$$\left(\frac{\overline{L}}{\rho}\right)_{g}^{m} = \frac{\int_{\Delta}^{E_{max}} \frac{d\Phi_{T}}{dE} \left(\frac{L}{\rho}\right)_{m} dE + TE_{m}}{\int_{\Delta}^{E_{max}} \frac{d\Phi_{T}}{dE} \left(\frac{L}{\rho}\right)_{g} dE + TE_{g}}$$

The energy deposition in a condensed history code can take four distinct forms:

- lpha. energy deposition over a step with initial and final energy above Δ
- eta . energy deposition by particles created with kinetic energy below Δ
- γ . energy deposition over a step that initiates above Δ and that crosses Δ
- δ . energy deposition by stoppers, i.e., particles whose energy has fallen below Δ

SPRRZnrc: stopping power ratio calculation (cont'd)

$$\alpha$$
. $E_{dep} \frac{\left(\frac{L(E_{mid})}{
ho}\right)_g}{\left(\frac{L(E_{mid})}{
ho}\right)_m}$

 β . not included

$$\delta. \ E_{dep} rac{\left(rac{S(\Delta)}{
ho}
ight)_g}{\left(rac{S(\Delta)}{
ho}
ight)_m} \equiv$$
 track-end term.

 γ . Combination of α and δ

Summation in the numerator of the integral over the energy deposited E_{dep} in medium m, while as in medium g, the energy deposited is evaluated acording to the different cases above. Case β is not included in the calculation.

Joint ICTP-IAEA Workshop on Monte Carlo Radiation Transport and Associated Data Needs for Medical Applications

28 October – 8 November 2024 ICTP, Trieste, Italy

Lecture 31

Fundamental quantities in dosimetry

Ernesto Mainegra-Hing

Metrology Research Centre National Research Council Canada

