Algebra Lineare Appunti

Riccardo Mietto

Indice

Chapter 1		Domande di Teoria; Enunciare e dimostrareI	Page 2_
	1.1	L'intersezione di due sottospazi di uno stesso spazio vettoriale è un sottospazio vettoriale	2
	1.2	Formula di Grassmann	2
	1.3	Il nucleo di un'applicazione lineare è sottospazio vettoriale	3
	1.4	L'immagine di un'applicazione lineare è sottospazio vettoriale	3
	1.5	Criterio di iniettività di un'applicazione lineare $(f \text{ iniettiva se e solo se } \text{Ker} f = \{\overrightarrow{0}\}\$	3
	1.6	Teorema di nullità più rango (o teorema delle dimensioni)	4
	1.7	Teorema di Rouché-Capelli	4
	1.8	Matrici simili hanno lo stesso determinante (non vale viceversa)	4
	1.9	Matrici simili hanno lo stesso polinomio caratteristico (non vale viceversa)	5
	1.10	Autospazio relativi ad autovalori distinti sono in somma diretta	5
	1.11	Sia V uno spazio vettoriale finitamente generato. Sia f un endomorfismo di V e sia λ un auto	valore di
		f. Allora $1 \leq m_g(\lambda) \leq m_a(\lambda) \leq \dim V$ (molto probabile che venga chiesto)	6
	1.12	Teorema di diagonalizzabilità di un endomorfismo (importante!)	6
	1.13	Disuguaglianza di Cauchy-Schwarz	7
	1.14	Disuguaglianza triangolare	7
	1.15	L'ortogonale di un sottospazio vettoriale è sottospazio vettoriale	8
	1.16	Se T è un sottospazio vettoriale di \mathbb{R}^n , allora $T \oplus T^{\perp} = \mathbb{R}^n$	8
	1.17	Se A è una matrice quadrata ortogonalmente diagonalizzabile, allora A è simmetrica	9
	1.18	Se A è una matrice quadrata simmetrica, tutte le radici del polinomio caratteristico di A sono	reali 9
	1.19	Se A è una matrice quadrata simmetrica e λ_1, λ_2 sono autovalori distinti di A , allora gli autospa e $E(\lambda_2)$ sono ortogonali tra loro	$E(\lambda_1)$ 10
	1.20	Se A è una matrice quadrata simmetrica e $\lambda_1, \ldots, \lambda_n$ sono autovalori distinti di A , allora $E(\lambda_1, \ldots, \lambda_n)$	$)\oplus\cdots\oplus$
		$E(\lambda_n) = \mathbb{R}^n$	10
	1.21	Teorema spettrale	10

Capitolo 1

Domande di Teoria; Enunciare e dimostrare

1.1 L'intersezione di due sottospazi di uno stesso spazio vettoriale è un sottospazio vettoriale

Theorem 1.1

Sia V un \mathbb{K} -spazo vettoriale e siano U, W due sottospazi vettoriali di V. Allora $U \cap W$ è sottospazio vettoriale di V.

Dimostrazione: Bisogna controllare che $\{0\}$ ∈ $U \cap W$, che è verificata perchè per definizione di sottospazio vettoriali $U \cap W \neq \emptyset$ dato che U e W contengono entrambi il vettore nullo.

Siano v_1 e v_2 due elementi di $U \cap W$.

Quindi se v_1 e v_2 appartengono all'intersezione, allora appartengono anche ai singoli sottospazi e per definizione si ha che $v_1 + v_2 \in U$ e $v_1 + v_2 \in W$, quindi l'intersezione è chiuso per la somma. In modo analogo se $\lambda v \in U \cap W$, allora l'intersezione è chiusa anche per il prodotto per uno scalare.

1.2 Formula di Grassmann

Theorem 1.2

Sia V un \mathbb{K} -spazo vettoriale. Dati comunque due sottospazi vettoriali U, W, si ha:

$$dim(U + W) = dimU + dimW - dim(U \cap W)$$

Dimostrazione: Sia $\{v_1, \ldots, v_k\}$ una base di $U \cap W$. Possiamo estendere tale base ad:

- una base $\{v_1, \ldots, v_k, u_1, \ldots, u_r\}$ di U (da cui dimU = k + r)
- una base $\{v_1, \ldots, v_k, w_1, \ldots, w_t\}$ di W (da cui dimW = k + t)

É immediato verificare che l'insieme

$$\{u_1, \ldots, u_r, v_1, \ldots, v_k, w_1, \ldots, w_t\}$$

genera tutto U+W; affermiamo era che è linearmente indipendente.

Si noti che, una volta provata l'affermazione, concluderemo la dimostrazione poiché avremo

$$\dim(U + W) = r + k + t = (r + k) + (t + k) - k$$

= \dim(U) + \dim(W) - \dim(U \cap W)

Sia

$$\alpha_1 u_1 + \ldots + \alpha_r u_r + \beta_1 v_1 + \ldots + \beta_k v_k + \gamma_1 w_1 + \ldots + \gamma_t w_t = \vec{0}$$

un'espressione di dipendenza lineare in U+W. Abbiamo allora

$$\alpha_1 u_1 + \ldots + \alpha_r u_r + \beta_1 v_1 + \ldots + \beta_k v_k = -\gamma_1 w_1 - \ldots - \gamma_t w_t$$

i cui membri forniscono un vettore v_0 di $U \cap W$. Ora, dovendosi v_0 scrivere in modo unico come combinazione lineare di $\{v_1, \ldots, v_k\}$, ed essendo gli insiemi $\{v_1, \ldots, v_k, u_1, \ldots, u_r\}$ e $\{v_1, \ldots, v_k, w_1, \ldots, w_t\}$ linearmente indipendenti per costruzione, ricaviamo

$$\alpha_1 = \ldots = \alpha_r = 0 \text{ e } \gamma_1 = \ldots = \gamma_t = 0,$$

da cui $\beta_1 v_1 + \ldots + \beta_k v_k = \vec{0}$, quindi $\beta_1 = \ldots = \beta_k = 0$ per indipendenza lineare dei vettori in $U \cap W$.

1.3 Il nucleo di un'applicazione lineare è sottospazio vettoriale

Definition 1.1

Il nucleo di una funzione lineare $f:V\to W$ è un sottospazio vettoriale di V.

Dimostrazione: Siano $v_1, v_2 \in \text{Ker}(f)$ e consideriamo una combinazione lineare $\lambda_1 v_1 + \lambda_2 v_2$, con $\lambda_1, \lambda_2 \in K$. Dalla linearità di f segue che

$$f(\lambda_1 v_1 + \lambda_2 v_2) = \lambda_1 f(v_1) + \lambda_2 f(v_2) = 0$$

É = 0 perchè v_1 e v_2 appartengono al kernerl, quindi $f(v_1)$ e $f(v_2)$ sono uguali a 0. Quindi $\lambda_1 v_1 + \lambda_2 v_2 \in \text{Ker}(f)$. Questo dimostra che Ker(f) è un sottospazio vettoriale di V.

1.4 L'immagine di un'applicazione lineare è sottospazio vettoriale

Definition 1.2

L'immagine di una funzione lineare $f: V \to W$ è un sottospazio vettoriale di W.

Dimostrazione: Siano $w_1, w_2 \in \text{Im}(f)$ e siano $v_1, v_2 \in V$ tali che $w_1 = f(v_1)$ e $w_2 = f(v_2)$. Dalla linearità di f segue che

$$f(\lambda_1 v_1 + \lambda_2 v_2) = \lambda_1 f(v_1) + \lambda_2 f(v_2) = \lambda_1 w_1 + \lambda_2 w_2$$

Il che significa che $\lambda_1 w_1 + \lambda_2 w_2 \in \text{Im}(f)$, per ogni $\lambda_1, \lambda_2 \in K$. Ciò dimostra che Im(f) è un sottospazio vettoriale di W.

1.5 Criterio di iniettività di un'applicazione lineare (f iniettiva se e solo se $\text{Ker } f = \{\overrightarrow{0}\}\$

Proposition 1.1

Sia $f: V \to W$ una funzione lineare. Allora f è iniettiva se e solo se $Ker(f) = \{0\}$.

Dimostrazione: Supponiamo che f sia iniettiva. Sia $v \in \text{Ker}(f)$: si ha quindi f(v) = 0. Ricordiamo che f(0) = 0, dall'iniettività di f si deduce che v = 0, il che dimostra che $\text{Ker}(f) = \{0\}$. Viceversa, supponiamo che $\text{Ker}(f) = \{0\}$. Siano $v_1, v_2 \in V$ tali che $f(v_1) = f(v_2)$. Dalla linearità di f si ha

$$f(v_1 - v_2) = f(v_1) - f(v_2) = 0$$

Quindi $v_1 - v_2 \in \text{Ker}(f)$. Poiché, per ipotesi, $\text{Ker}(f) = \{0\}$, si ha $v_1 - v_2 = 0$, cioè $v_1 = v_2$. Questo dimostra che è iniettiva.

1.6 Teorema di nullità più rango (o teorema delle dimensioni)

Proposition 1.2

Sia $f:V\to W$ una funzione lineare. Se V ha dimensione finita, si ha

$$\dim(V) = \dim \operatorname{Ker}(f) + \dim \operatorname{Im}(f)$$

Dove $\dim \operatorname{Im}(f) = \operatorname{rk}(f)$ e $\dim \operatorname{Ker}(f) = \operatorname{null}(f)$. Quindi la proposizione diventa

$$\dim(V) = \operatorname{null}(f) + \operatorname{rk}(f)$$

Dimostrazione: Poniamo $n = \dim(V)$. Sia $\{v_1, \ldots, v_k\}$ una base di $\operatorname{Ker}(f)$ e completiamola ad una base $\{v_1, \ldots, v_k, v_{k+1}, \ldots, v_n\}$ per V. Affermiamo che $\{f(v_{k+1}), \ldots, f(v_n)\}$ è una base per $\operatorname{Im} f$, da cui $\operatorname{rk} f = n - k$ e di qui la conclusione.

Senz'altro i vettori $f(v_{k+1}), \ldots, f(v_n)$ generano Imf (poiché f è completamente determinata dalla sua azione sui vettori di una base di V, ma $f(v_j) = \vec{0}$ per $j = 1, \ldots, k$); vediamo quindi che sono linearmente indipendenti. Sia

$$\alpha_{k+1}f(v_{k+1}) + \ldots + \alpha_n f(v_n) = \vec{0}$$

un'espressione di dipendenza lineare in W. Per linearità,

$$f(\alpha_{k+1}v_{k+1}+\ldots+\alpha_nv_n)=\vec{0}$$

cioè $\alpha_{k+1}v_{k+1} + \ldots + \alpha_nv_n \in \text{Ker}(f)$, pertanto

$$\alpha_{k+1}v_{k+1} + \ldots + \alpha_nv_n = \lambda_1v_1 + \ldots + \lambda_kv_k$$

per unici scalari $\lambda_1, \ldots, \lambda_k \in K$. L'ultima uguaglianza fornisce un'espressione di dipendenza lineare in V tra i vettori di una sua base, per cui ricaviamo $\alpha_{k+1} = \ldots = \alpha_n = 0$, e abbiamo concluso.

1.7 Teorema di Rouché-Capelli

Theorem 1.3

Un sistema lineare Ax = b ha soluzione se e solo se rkA = rk(A|b).

Dimostrazione: Sia al solito $A \in M_{m,n}(\mathbb{K})$. Osserviamo preliminatamente che per ogni $b \in \mathbb{K}$ si ha rk $A \leq \text{rk}(A|b)$. Per definizione, una soluzione $c = (c_1, \ldots, c_n)^T$ del sistema è un vettore le cui coordinate rendono il termine noto b una combinazione lineare delle colonne di A:

$$Ac = b \iff (C_1 \dots C_n)c = b \iff c_1C_1 + \dots c_nC_n = b$$

Le precedenti equivalenze provano che Ax = b è risolubile se e solo se $b \in \langle C_1, \dots, C_n \rangle$; inoltre, essendo il rango il massimo numero di colonne linearmente indipendenti, abbiamo

$$\operatorname{rk}(A|b) = \begin{cases} \operatorname{rk}A + 1 & \text{se } b \notin \langle C_1, \dots, C_n \rangle \\ \operatorname{rk}A & \text{se } b \in \langle C_1, \dots, C_n \rangle \end{cases}$$

⊜

1.8 Matrici simili hanno lo stesso determinante (non vale viceversa)

Lenma 1.1

Matrici simili hanno lo stesso determinate

Dimostrazione: Due matrici $A, B \in M_n(\mathbb{K})$ sono simili se esiste $P \in GL_n(\mathbb{K})$ tale che $A = P^{-1}BP$. Dunque $det P \neq 0$, e per il teorema di Binet otteniamo quanto enunciato.

1.9 Matrici simili hanno lo stesso polinomio caratteristico (non vale viceversa)

Lenma 1.2

Matrici simili hanno lo stesso polinomio caratteristico.

Dimostrazione: É facile provare che le matrici Λ non commutano con ogni matrice M, cioè $M\Lambda = \Lambda M$. Nelle solite notazioni, abbiamo

$$A - \lambda 1_n = P^{-1}BP - \lambda 1_n = P^{-1}BP - \lambda 1_n P^{-1}P = P^{-1}BP - P^{-1}\lambda 1_n P = P^{-1}(B - \lambda 1_n)P$$

☺

e applicando il teorema di Binet concludiamo.

1.10 Autospazio relativi ad autovalori distinti sono in somma diretta

Proposition 1.3

Per ogni endomorfismo $f: V \to V$,

- 1. autovettori relativi ad autovalori distinti sono linearmente indipendenti
- 2. autospazi relativi ad autovalori distinti sono in somma diretta.

Dimostrazione: 2.

Bisogna provare che se $\lambda_1, \ldots, \lambda_r$ sono autovalori per $f: V \to V$, a due a due distinti, allora per ogni $i = 1, \ldots, r$ si ha

$$E(\lambda_i) \cap \sum_{\substack{j=1,\dots,r\\ (j\neq i)}} E(\lambda_i) = E(\lambda_i) \cap \bigoplus_{\substack{j=1,\dots,r\\ (j\neq i)}} E(\lambda_i) = \{\vec{0}\}$$

Induzione su $r \ge 2$. Se esistesse $\vec{0} \ne v \in E(\lambda_1) \cap E(\lambda_2)$, allora avremmo contemporaneamente $\lambda_1 v = \lambda_2 v$, da cui $(\lambda_1 - \lambda_2)v = \vec{0}$ e dunque $\lambda_1 = \lambda_2$ poiché $v \ne \vec{0}$, contraddizione.

Supponiamo ora che ad r-1 autovalori distinti corrispondano autospazi in somma diretta. Siano $\lambda_1, \ldots, \lambda_r$ autovalori distinti; senza perdita di generalità, possiamo dimostrare che

$$E(\lambda_i) \cap \sum_{j=2}^r E(\lambda_i) = E(\lambda_i) \cap \bigoplus_{j=2}^r E(\lambda_i) = \{\vec{0}\}$$

Se per assurdo esistesse $v \neq \vec{0}$ nella precedente intersezione, allora v risulterebbe contemporaneamente autovettore relativo a λ_1 e combinazione lineare di autovettori v_2, \ldots, v_r , ognuno dei quali relativo al corrispondente autovalore λ_i . Pertanto, avremmo

$$v = \alpha_2 v_2 + \dots + \alpha_r v_r$$

cioè

$$v - \alpha_2 v_2 - \dots - \alpha_r v_r = \vec{0}$$

per unici scalari $\alpha_2, \ldots, \alpha_r$ (si ricordi che la somma degli autospazi $E(\lambda_2), \ldots, E(\lambda_r)$ è diretta, per ipotesi induttiva). Abbiamo così ottenuto un'espressione di dipendenza lineare non banale tra vettori che sono linearmente indipendenti per la prima proposizione; contraddizione.

1.11 Sia V uno spazio vettoriale finitamente generato. Sia f un endomorfismo di V e sia λ un autovalore di f. Allora $1 \leq m_g(\lambda) \leq m_g(\lambda) \leq \dim V$ (molto probabile che venga chiesto)

Theorem 1.4

Sia $f: V \to V$ un endomorfismo. Per ogni suo autovalore λ , si ha

$$m_g(\lambda) \leq m_a(\lambda)$$

Dimostrazione: Al solito, sia A la matrice di f rispetto ad una base di V fissata. Posto $r := m_g(\lambda)$, sia $\{v_1, \ldots, v_r\}$ una base dell'autospazio $E(\lambda)$, e completandola ad una base $\{v_1, \ldots, v_r, v_{r+1}, \ldots, v_n\}$ per V. Rispetto a questa base, f si rappresenta come

$$B = \begin{pmatrix} \lambda & 0 & \\ & \ddots & & B' \\ \hline 0 & \lambda & & \\ \hline & 0 & B'' \end{pmatrix} \quad \text{per opportune} \quad \begin{array}{c} B' \in M_{r,n-r}(\mathbb{K}) \\ B'' \in M_{n-r}(\mathbb{K}) \end{array}$$

ed essendo simile ad A (poiché entrambe rappresentano f) avrà il suo stesso polinomio caratteristico. Grazie alla formula dello sviluppo di Laplace, è facile vedere che

$$\det(B - x1_n) = (-1)^r (\lambda - x)^r \det(B'' - x1_{n-r})$$
$$= (-1)^{r+1} (x - \lambda) \det(B'' - x1_{n-r}).$$

Ora, il polinomio caratteristico di B'' potrebbe contenere altri fattori del tipo $x - \lambda$, pertanto $r \leq m_a(\lambda)$, come voluto.

1.12 Teorema di diagonalizzabilità di un endomorfismo (importante!)

Theorem 1.5

Sia V un \mathbb{K} -spazio vettoriale. Un endomorfismo $f:V\to V$ è diagonalizzabile su \mathbb{K} se e solo se

- 1. tutti gli autovalori di f appartengono al campo $\mathbb K$
- 2. per ogni autovalore λ di f si ha $m_g(\lambda) = m_a(\lambda)$.

Dimostrazione: Supponiamo che $A = A_f$ sia diagonalizzabile, quindi simile ad una matrice diagonale a blocchi

ed m_k è la molteplicità algebrica $m_a(\lambda_k)$ di λ_k , per ogni $k=1,\ldots,r$, da cui $m_1+m_2+\cdots+m_r=n$. Per definizione delle matrici D_k , la condizione (1) è verificata.

(2) Per ipotesi di diagonalizzabilità e cioè per l'esitenza di una base per V composta di autovettori per f, grazie alla precedente proposizione abbiamo $V = \bigoplus_{k=1}^r E(\lambda_k)$. Passando al calcolo delle dimensioni, per il precedente teorema otteniamo

da cui

(

1.13 Disuguaglianza di Cauchy-Schwarz

Theorem 1.6

Per ogni coppia di vettori $v_1, v_2 \in \mathbb{R}$ si ha

$$|(v_1|v_2)| \le ||v_1|| ||v_2||$$

(Il primo membro è il modulo del prodotto scalare.) Inoltre, vale l'uguaglianza se e solo se v_1 e v_2 sono linearmente dipendenti.

Dimostrazione: Se uno tra v_1 e v_2 è nullo, allora la disuguaglianza è verificata. Supponiamo quindi $v_1, v_2 \neq \vec{0}$. Consideriamo il vettore $v := v_1 + \alpha v_2$, al variare di α in \mathbb{R} . Abbiamo

$$||v||^{2} = (v|v) = (v_{1} + \alpha v_{2}|v_{1} + \alpha v_{2})$$

$$= (v_{1}|v_{1} + \alpha v_{2}) + \alpha(v_{2}|v_{1} + \alpha v_{2})$$

$$= (v_{1}|v_{1}) + \alpha(v_{1}|v_{2}) + \alpha(v_{2}|v_{1}) + \alpha^{2}(v_{2}|v_{2})$$

$$= ||v_{2}||^{2}\alpha^{2} + 2(v_{1}|v_{2})\alpha + ||v_{1}||^{2}.$$
(1.2)

Poichè $||v||^2 \ge 0$ per ogni v, il precedente polinomio di secondo grado in α deve avere discriminante non positivo (altrimenti ammetterebbe due radici reali distinte), da cui $(v_1|v_2)^2 - ||v_1||^2 ||v_2||^2 \le 0$, e passando ai moduli in $\mathbb R$ concludiamo.

Proviamo ora la seconda affermazione. Supponiamo che v_1 e v_2 siano linearmente dipendenti, e proviamo che la disuguaglianza di Cauchy-Schwarz diventa un'uguaglianza. Posto $v_2 = \lambda v_1$ per qualche scalare $\lambda \in \mathbb{R}$, allora abbiamo $||v_2|| = |\lambda|||v_1||$, e quindi

$$|(v_1|v_2)| = |(v_1|\lambda v_1)| = |\lambda|||v_1||^2 = ||v_1||||v_2||.$$

Viceversa, supponiamo che sia $|(v_1|v_2)| = ||v_1|| ||v_2||$ e dimostriamo che $v_2 = \lambda v_1$ per qualche $\lambda \in \mathbb{R}$. Senza perdita di generalità potremo supporre $v_1, v_2 \neq 0$. Dalla precedente uguaglianza ricaviamo $(v_1|v_2) = \pm ||v_1|| ||v_2||$, e posto

$$\lambda := \begin{cases} -\|v_1\|/\|v_2\| & \text{se } (v_1|v_2) = \|v_1\|\|v_2\| \\ \|v_1\|/\|v_2\| & \text{se } (v_1|v_2) = -\|v_1\|\|v_2\| \end{cases}$$

vediamo che per il vettore $v := v_1 + \lambda v_2$ abbiamo

$$||v||^{2} = (v|v) = (v_{1} + \lambda v_{2}|v_{1} + \lambda v_{2})$$

$$= ||v_{1}||^{2} + 2\lambda(v_{1}|v_{2}) + \lambda^{2}||v_{2}||^{2}$$

$$= ||v_{1}||^{2} \pm 2\lambda||v_{1}||||v_{2}|| + \lambda^{2}||v_{2}||^{2}$$

$$= (||v_{1}|| \pm \lambda||v_{2}||)^{2} = (||v_{1}|| - \frac{||v_{1}||}{||v_{2}||}||v_{2}||)^{2} = 0.$$
(1.3)

Poichè l'unico vettore di modulo è $\vec{0}$, otteniamo $v_1 + \lambda v_2 = \vec{0}$ e cioè la linea di dipendenza di v_1 e v_2 .

1.14 Disuguaglianza triangolare

Theorem 1.7

Per ogni coppia di vettori $v_1, v_2 \in \mathbb{R}$ si ha

$$||v_1 + v_2|| \le ||v_1|| + ||v_2||.$$

Dimostrazione: Calcoliamo:

$$||v_{1} + v_{2}||^{2} = (v_{1} + v_{2}|v_{1} + v_{2})$$

$$= ||v_{1}||^{2} + 2(v_{1}|v_{2}) + ||v_{2}||^{2}$$

$$\leq ||v_{1}||^{2} + 2|(v_{1}|v_{2})| + ||v_{2}||^{2}$$

$$\leq ||v_{1}||^{2} + 2||v_{1}|| ||v_{2}|| + ||v_{2}||^{2} = (||v_{1}|| + ||v_{2}||)^{2}.$$
(1.4)

Estraendo la radice quadrata dai membri esterni di queste disuguaglianze, concludiamo.

⊜

1.15 L'ortogonale di un sottospazio vettoriale è sottospazio vettoriale

Lenma 1.3

Sia S un sottoinsieme di $\mathbb{R}^n.$ Allora

• S^{\perp} è sottospazio vettoriale di \mathbb{R}^n

Dimostrazione: Segue dalla linearità dell'applicazione parziale (x|-), per ogni $x \in S$. Infatti, dati comunque $v_1, v_2 \in S^{\perp}$ ed una loro combinazione lineare $\lambda_1 v_1 + \lambda_2 v_2$, si ha

$$(x|\lambda_1 v_1 + \lambda_2 v_2) = \lambda_1(x|v_1) + \lambda_2(x|v_2) = 0$$

☺

1.16 Se T è un sottospazio vettoriale di \mathbb{R}^n , allora $T \oplus T^{\perp} = \mathbb{R}^n$

Nota:-

Se S = U è un sottospazio vettoriale di \mathbb{R}^n , diciamone $\{u_1, \ldots, u_r\}$ una base, allora, in forza della bilinearità di (-|-), è immediato vedere che

$$U^{\perp} = \{ v \in \mathbb{R}^n : (u_i | v) = 0 \ \forall i = 1, \dots, r \}$$

= $\{ v \in \mathbb{R}^n : (v | u_i) = 0 \ \forall i = 1, \dots, r \}$ (1.5)

e che i precendenti membri sono la forma cartesiana di U^{\perp} . Infatti, posto $v=(x_1,\ldots,x_n)^T$ ed $u_i=(a_{1i},\ldots,a_{ni})^T$ per ogni i, abbiamo

$$(v|u_i) = (x_1 \dots x_n) \begin{pmatrix} a_{1,i} \\ \vdots \\ a_{n,i} \end{pmatrix} = a_{1i}x_1 + \dots + a_{ni}x_n = 0$$

Questo ci dice che per descrivere completamente U^{\perp} è sufficiente determinare i vettori di \mathbb{R}^n che sono ortogonali ai vettori di una base di U. Inoltre, U^{\perp} è descritto da $r=\dim U$ equazioni cartesiane, dunque $n=\dim U+\dim U^{\perp}$ e di conseguenza $\mathbb{R}^n=U+U^{\perp}$. Riassumiamo quanto detto nel seguente risultato.

Proposition 1.4

Sia U un sottospazio vettoriale di \mathbb{R}^n . Allora, dim $U^{\perp} = n - \dim U$, e

$$\mathbb{R}^n = U \oplus U^{\perp}$$

Dimostrazione: Per quanto appena osservato, resta da dimostrare che $U \cap U^{\perp} = \{\vec{0}\}$. Ciò segue dal fatto che l'unico vettore ortogonale a se stesso è quello nullo.

1.17 Se A è una matrice quadrata ortogonalmente diagonalizzabile, allora A è simmetrica

Questo teorema si basa su alcune definizioni:

Definition 1.3

Sue matrici $A, A' \in M_n(\mathbb{R})$ si dicono **ortogonalmente simili** se sono simili attraverso una matrice ortogonale, cioè esiste una matrice ortogonale P tale che $A = PA'P^T$.

Definition 1.4

Una matrice $A \in M_n(\mathbb{R})$ si dice **ortogonalmente diagonalizzabile** se è ortogonalmente simile ad una matrice diagonale.

Dimostrazione: Si osserva subito che se A è una matrice ortogonalmente diagonalizzabile, senz'altro è simmetrica: basta trasporre $A = PDP^T$ per concludere.

1.18 Se A è una matrice quadrata simmetrica, tutte le radici del polinomio caratteristico di A sono reali

Lenma 1.4

Gli autovalori di una matrice simmetrica sono reali.

Dimostrazione: Sia $A \in M_n(\mathbb{R})$ una matrice simmetrica. I suoi autovalori sono le radici del suo polinomio caratteristico $p_A(x)$, e quest'ultimo si fattorizza al più su \mathbb{C} nel prodotto di fattori lineari. L'idea è quindi quella di dimostrare che dato comunque un autovalore λ di A, si ha $\lambda = \bar{\lambda}$, uguaglianza che in \mathbb{C} forza λ ad essere un numero reale (si ricordi che anche $\bar{\lambda}$ è autovalore di A, poiché radice di $p_A(x)$). Per ogni autovettore $v = (x_1, \dots, x_n) \in \mathbb{C}$ relativo a λ , denotiamo con $\bar{v} = (\bar{x}_1, \dots, \bar{x}_n)$ il suo vettore coniugato. Osserviamo che, in questa notazione, abbiamo $A = \bar{A}$ (le entrate di A sono reali). Calcoliamo l'immagine di (\bar{v}, v) rispetto alla forma bilineare di A: abbiamo, in \mathbb{C} ,

$$\bar{v}^T A v = \bar{v}^T \lambda v = \lambda \bar{v}^T v = \lambda (\bar{v} | v)_{\mathbf{C}}$$

Per la simmetria di A, abbiamo $A = A^T = \bar{A}^T = \bar{A}^T$, da cui

$$\bar{v}^T A v = \bar{v}^T A^T v = \bar{v} A^T v$$

$$= \bar{\lambda} \bar{v}^T v = \bar{\lambda} \bar{v}^T v = \bar{\lambda} (\bar{v} | v)_C$$
(1.6)

Quindi

$$\lambda(\bar{v}|v)_{\mathbb{C}}=\bar{\lambda}(\bar{v}|v)_{\mathbb{C}},$$

da cui $(\bar{v}|v)_{\mathbb{C}} = 0$ oppure $\lambda = \bar{\lambda}$. Il primo caso significa

$$\sum_{i=1}^{n} \bar{x_i} x_i = \sum_{i=1}^{n} \|x_i\|_{\mathbb{C}}^2 = \|v\|_{\mathbb{C}n_{\mathbb{D}}}^2 = 0$$

, che non può verificarsi poichè v è autovettore e come tale non nullo. Pertanto, $\lambda=\bar{\lambda}$

1.19 Se A è una matrice quadrata simmetrica e λ_1, λ_2 sono autovalori distinti di A, allora gli autospazi $E(\lambda_1)$ e $E(\lambda_2)$ sono ortogonali tra loro

Lenma 1.5

Sia $A \in M_n(\mathbb{R})$ una matrice simmetrica, e siano $\lambda_1, \ldots, \lambda_r \in \mathbb{R}$ i suoi autovalori a due a due distinti. Allora i relativi autospazi sono ortogonali, cioè

$$E_A(\lambda_i) \subseteq E_A(\lambda_j)^{\perp}$$
 per ogni $1 \le i, j \le r$.

Dimostrazione: Dobbiamo dimostrare che per ogni $v \in E_A(\lambda_i)$ e per ogni $w \in E_A(\lambda_j)$ si ha (v|w) = 0. Abbiamo contemporaneamente

$$v^T A w = v^T (\lambda_j w) = \lambda_j v^T w = \lambda_j (v|w)$$

e, per simmetria,

$$v^T A w = v^T A^T w = (Av)^T w = \lambda_i(v|w)$$

☺

da cui $\lambda_i(v|w) = \lambda_i(v|w)$. Poichè $\lambda_i \neq \lambda_i$ per ipotesi, segue necessariamente (v|w) = 0.

1.20 Se A è una matrice quadrata simmetrica e $\lambda_1, \ldots, \lambda_n$ sono autovalori distinti di A, allora $E(\lambda_1) \oplus \cdots \oplus E(\lambda_n) = \mathbb{R}^n$

1.21 Teorema spettrale

Theorem 1.8

Una matrice $A \in M_n(\mathbb{R})$ è ortogonalmente diagonalizzabile se e solo se è simmetrica.

Si basa sul lemma 1.18.

Dimostrazione: Induzione sull'ordine n della matrice simmetrica. Se n = 1 non c'è nulla da dimostrare poiché $A \in \mathbb{R}$. Supponiamo ora che le matrici simmetriche si ordine n - 1 siano ortogonalmente diagonalizzabili. Sia $A \in M_n(\mathbb{R})$ una matrice simmetrica. Dato un autovalore λ di A (è $\lambda \in \mathbb{R}$, grazie al precedente lemma), sia $v_1 \in \mathbb{R}^n$ un suo autovettore; senza perdita di generalità, possiamo assumere che sia $||v_1|| = 1$. Sia ora $\{v_1, v'_2, \ldots, v'_n\}$ una base di \mathbb{R}^n contenente v_1 . Applichiando il procedimento di Gram-Schmidt, ricaviamo una base ortonormale $\{v_1, v_2, \ldots, v_n\}$ (contenente v_1). Consideriamo ora la matrice ortogonale $Q = (v_1 \ v_2 \ \ldots \ v_n)$, e proviamo che

$$B := Q^T A Q$$

(simile ad A, e la rappresenta nella base canonica di \mathbb{R}^n) è ortogonalmente diagonalizzabile. Da ciò seguirà la conclusione del teorema, per transitività. Osserviamo che B è simmetrica; inoltre, poiché la sua prima colonna è il vettore

$$Be_1 = Q^TAQe_1 = Q^TAv_1 = Q^T\lambda v_1 = \lambda Q^Tv_1 = \lambda e_1$$

allora, per simmetria, B è della forma

$$B = \begin{pmatrix} \lambda & 0 & \dots & 0 \\ \hline 0 & & & \\ \vdots & & B' \\ 0 & & & \end{pmatrix}$$

con $B' \in M_{n-1}(\mathbb{R})$ pure simmetrica.

(si osservi, in particolare, che e_1 è autovettore per B.) Per ipotesi induttiva, B' è ortogonalmente diagonalizzabile, dunque esiste una base ortonormale $\{u_2, \ldots, u_n\}$ di \mathbb{R}^{n-1} che la diagonalizza. È subito visto che l'insieme

$$\left\{e_1, \begin{pmatrix} 0 \\ u_2 \end{pmatrix}, \dots, \begin{pmatrix} 0 \\ u_n \end{pmatrix}\right\} \subseteq \mathbb{R}^n$$

è base ortonormale di autovettori di B, dunque B è ortogonalmente simile ad una matrice diagonale D, come affermato. Detta P la matrice di tali autovettori, complessivamente abbiamo:

$$A = QBQ^{T} = QPDP^{T}Q^{T} = (QP)D(QP)^{T}$$

⊜

dove
$$QP\in O_n(\mathbb{R}^n)$$
 poiché P e Q sono entrambe matrici ortogonali.