

Phylogenetic and Phylogeographic meta-analysis of Cytochrome c Oxidase I barcode sequences of East African arthropods submitted into the Barcode of Life Database

Presented by:

Gilbert Kibet Rono DRIP fellow

Supervisors:

Dr Scott Miller

Dr Jandouwe Villinger

Dr Steven Ger

Collaborators:

Dr Caleb Kipkurui

Dr Jean-Baka Domelevo

Dr Daniel Masiga

<u>Identification and classification of organisms:</u>

Morphology-based identification systems – extensive information (ecology, anatomy, physiology); expensive, slow and needs expertise

Molecular-based system – efficient (fast and effective); dependent on reference libraries of <u>DNA barcode</u> -short and standardized genes or regions thereof used in identification and discovery of species

The Consortium for the Barcode of Life (CBOL), May 2004: To aid <u>rapid</u> and <u>inexpensive identification of millions of species</u> using DNA barcodes

- International Nucleotide Sequence Database Collaborative (INSDC): GenBank, the European Molecular Biology Lab in Europe, and the DNA Data Bank of Japan
- Barcode of Life Database (BOLD): University of Guelph in Ontario

Background

A 658 base-pair 5' region of mitochondrial cytochrome c oxidase subunit I (COI/COXI) gene is the standard the barcode for most animal groups

Problem statement:

Thousands of East African COI sequences from voucher arthropods submitted into the BOLD database and are yet to be analysed comprehensively: *phylogenetic* diversity and phylogeographic distribution

Objectives:

- Improve phylogeographic and *phylogenetic* diversity descriptions of arthropod in East Africa.
- Identify the cryptic species that may not yet be recognized and may be potential crop pests or vectors of human and animal diseases.

Workflow

Data Access

BOLD-Systems via API Over 36,000 sequences

+

10,000 records (5000 sequences) Expected to grow

Seqs from select African countries

Tools

- Git & GitHub
- Linux System
- R & Python

Data Clean-up and sorting

R (tidyverse package)

Awk and bash

Bioinformatics Pipeline Tests:

Alignment

(PASTA, T_coffee, MUSCLE, MAFFT, SATe)

Phylogenetics

(RaxML, FastTree)

Phylogeography

(BASTA/BEAST)

Progress Reports

Manuscript

Thesis

Publications

Run Pipelines

High Performance Computing (HPC) Data analysis

Data Mining and Clean up

Sequence retrival:

BOLD-Systems via API; using specific syntax:

"arthropoda Kenya Uganda Tanzania Rwanda Burundi"

Data clean up:

R (tidyverse package), Awk and Bash

Metadata (80 columns)									
'COI-5P' = 35990 out of 37257 (1 sample)									
#nucleotides / unaligned seqs / #ns									
Over 700 (592)	Under 500 (705)	500 -700 (34693)	650 -660 (21886)	Over 500 (35285)					
1 sample	1 sample	3 samples	2 samples						
Build.fasta: ProcessID order seq_len seq									

Multiple Sequence Alignment

Large dataset:

- Accuracy
- Speed

Algorithms:

- Progressive (mafft/muscle)
- Progressive & transivity (pasta)
- Regressive (T_coffee)

MUSCLE: default	MAFFT: large G-INS-1	T_coffee: -reg	PASTA: default	SATe
Fast speed	Fast speed	Fast speed	Fast speed	***
Low accuracy	High accuracy	High accuracy	High accuracy	***
RefineAlignMerge	AlignAdd sequenceAdd_fragmentsMerge	AlignEvaluate: (CORE index TCS)	AlignAdd fragments	***

Multiple Sequence Alignment evaluation

Evaluation for Accuracy:

T_coffee: **consistency based scoring**

- CORE index (html)
- Transitive Consistency Scores (TSC) (html/ascii)

Purpose:

- Used to select the most suitable alignments.
- TCS ascii to used in applying different weights to columns in phylogenetic analysis

MAFFT

T-COFFEE, Version	n 12	.00
Cedric Notredame		
CPU TIME:0 sec.		
SCORE=961		
*		
DAD 41/0 0000		
BAD AVG GOOD		
*		
GWOSM440-11 Lep		96
AFPHY090-14 Lep		96
GMKMD598-15 Lep	:	95
GMKKC063-15 Lep		96
OHKKC002-T9 Feb		90

aatagtgggaacttctttaagaa
attaattggatcatcaataagaa
agtggtggggacctcattatctt
ggtataatat <mark>taagaa</mark>
<mark>tag</mark> gatcagctttaagaa
tataattaattataaataaatt
tatagttggtttatcaataaqtt
acatcaataagaa
ggaataatactaagaa
tatagtaggaataatactaagaa
cataattananoctoottoanas

MUSCLE

T-COFFEE, Version	n_12	. 00 .
Cedric Notredame		
CPU TIME:0 sec.		
SCORE=958		
*		
*BAD AVG GOOD		
KHYME4676-13 Hy		92
GMKKA202-15 Hem		94
KHYME5358-13 He	:	94
GBMHT509-15 Thy		88
GMKMB150-15 Hym		91

T_coffee

PASTA

T-COFFEE, Version Cedric Notredame CPU TIME:0 sec. SCORE=961	_12	.00.
*BAD AVG GOOD		
GW0SB896-10 Lep	:	96
GWORR141-10 Lep	:	97
GWORR149-10 Lep	:	96
PMANL2056-12 Le	:	96
HCBK055-05 Lepi	:	96

AATAATTGGTACTGCATTAA
------TCAATAAGAA
ACTTATTGGTACTATAAGAA
-----GGTATAATATTAA
-----GGAATAATACTAA
TATAGTAGGAATAATACTAA
CATAATCGGAACATCATTAA
AGTGGTGGGGACCTCATTAA
AATAGTTGGAACTTCTTTAA

Current progress...

- → Build my Data set
- → Setting up a RAxML8 and FastTree pipelines
- → Improve on alignments: translation-alignment-threading of DNA
- → High Performance Computing (HPC) analysis
- → Phylogeographic analysis

Timeline

Activity	Time in months (2018-2019)											
	July	Aug	Sept	Oct	Nov	Dec	Jan	Feb	March	April	May	June
Proposal writing and Literature Review												
Data Mining and Sorting												
Pipeline Development and Testing												
Data Analysis on HPC												
Manuscript Writing and submission												
Thesis writing and Defence												

Acknowledgement

Thank you for enabling a bioinformatics dream

