Package 'BayesERtools'

February 12, 2025

Type Package

```
Title Bayesian Exposure-Response Analysis Tools
Version 0.2.1
Maintainer Kenta Yoshida < yoshida.kenta.6@gmail.com>
Description Suite of tools that facilitate
      exposure-response analysis using Bayesian methods. The package
      provides a streamlined workflow for fitting types of models that are
      commonly used in exposure-response analysis - linear and Emax for continuous
      endpoints, logistic linear and logistic Emax for binary endpoints, as well
      as performing simulation and visualization. Learn more about the workflow
      at <https://genentech.github.io/BayesERbook/>.
License Apache License 2.0
Encoding UTF-8
LazyData true
Depends R (>= 4.1)
URL https://genentech.github.io/BayesERtools/,
      https://genentech.github.io/BayesERbook/
Config/testthat/edition 3
RoxygenNote 7.3.2
Imports dplyr, tidyr, purrr, ggplot2, gt, cli, rlang, rstanarm,
      rstanemax (>= 0.1.8), loo, tidybayes, bayestestR, posterior
Suggests testthat (>= 3.0.0), covr, knitr, rmarkdown, rstan,
      htmltools, digest, ggforce, xgxr, scales, readr, patchwork,
      projpred, rsample, yardstick
VignetteBuilder knitr
NeedsCompilation no
Author Kenta Yoshida [aut, cre] (<a href="https://orcid.org/0000-0003-4967-3831">https://orcid.org/0000-0003-4967-3831</a>),
      François Mercier [aut] (<a href="https://orcid.org/0000-0002-5685-1408">https://orcid.org/0000-0002-5685-1408</a>),
      Genentech, Inc. [cph]
Repository CRAN
Date/Publication 2025-02-12 11:40:22 UTC
```

2 as_draws

Contents

	raws Transform to draws objects	
dex		45
_	Sim_or_new_exp_inarg	
	sim_er_new_exp_marg	42
	-	39
		38
	sim_coveff	37
	p_direction	36 36
	print_coveff	33 34
	plot_er_gof	31
	plot_er_exp_sel	30
	plot_er	27
	plot_cov_sel	26
	plot_coveff	25
	loo	24
	extract_method	23
	extract_coef_exp_ci	23
	eval_ermod	21
	ersim_method	21
	ermod_method	20
	ermod_exp_sel_method	19
	ermod_cov_sel_method	19
	edit_spec_coveff	17
	d_sim_lin	16
	d_sim_binom_cov	15
	dev_ermod_emax_exp_sel	13
	dev_ermod_emax	11
	dev_ermod_bin_exp_sel	9
	dev_ermod_bin_cov_sel	7
	dev_ermod_bin	6
	calc_ersim_med_qi	5
	build_spec_coveff	3
	as_draws	

Description

See posterior::as_draws() for details.

build_spec_coveff 3

Usage

```
as_draws(x, ...)
as_draws_list(x, ...)
as_draws_array(x, ...)
as_draws_df(x, ...)
as_draws_matrix(x, ...)
as_draws_rvars(x, ...)
## S3 method for class 'ermod'
as_draws(x, ...)
## S3 method for class 'ermod'
as_draws_list(x, ...)
## S3 method for class 'ermod'
as_draws_array(x, ...)
## S3 method for class 'ermod'
as_draws_df(x, ...)
## S3 method for class 'ermod'
as_draws_matrix(x, ...)
## S3 method for class 'ermod'
as_draws_rvars(x, ...)
```

Arguments

x An object of class ermod

. . . Arguments passed to individual methods (if applicable).

Value

A draws object from the posterior package.

build_spec_coveff

Build specifications for covariate effect simulation/visualization

Description

Build specifications for covariate effect simulation/visualization

4 build_spec_coveff

Usage

```
build_spec_coveff(
  ermod,
  data = NULL,
  qi_width_cov = 0.9,
  n_sigfig = 3,
  use_seps = TRUE,
  drop_trailing_dec_mark = TRUE
)
```

Arguments

an object of class ermod ermod an optional data frame to derive the covariate values for forest plots. If NULL data (default), the data used to fit the model is used. qi_width_cov the width of the quantile interval for continuous covariates in the forest plot. Default is 0.9 (i.e. visualize effect of covariate effect at their 5th and 95th percentile values). n_sigfig Number of significant figures to form value label of continuous variables. See gt::vec_fmt_number() for details. Whether to use separators for thousands in printing numbers. See gt::vec_fmt_number() use_seps for details. drop_trailing_dec_mark Whether to drop the trailing decimal mark (".") in value_label of continuous variables. See gt::vec_fmt_number() for details.

Value

spec_coveff (return object) is a data frame for the specification of the covariate effects to be visualized. This is internally generated by build_spec_coveff() if you run sim_coveff() or plot_coveff() directly. Alternatively, you can develop your own or modify the one generated by build_spec_coveff() and supply it to sim_coveff() or plot_coveff(). The data frame should have the following columns (but it's probably easier to try build_spec_coveff() and see the structure):

- var_order: The order of the covariate in the forest plot. The exposure variable is always the first one and the covariates are ordered by the order they are supplied in the var_cov argument of the dev_ermod_* function. If you used a model from dev_ermod_bin_cov_sel(), then the order is determined by the variable selection process.
- var_name: The name of the variable.
- var_label: The label of the variable to be used for plot. This is the same as var_name by default.
- value_order: The order of the value of the variable to be evaluated.
- value_annot: The annotation of the value of the variable to be evaluated. This appears on the right hand side of the forest plot.
- value_label: The label of the value of the variable to be evaluated.

calc_ersim_med_qi 5

- value_cont: The value for continuous variables.
- value_cat: The value for categorical variables.
- is_ref_value: Whether the value is the reference value.
- show_ref_value: Whether to show the reference value in the plot and table. This is TRUE by default for is_ref_value == TRUE, otherwise NA (and ignored).
- is_covariate: Whether the variable is a covariate (TRUE) or exposure variable (FALSE).

Examples

```
data(d_sim_binom_cov_hgly2)

ermod_bin <- dev_ermod_bin(
   data = d_sim_binom_cov_hgly2,
   var_resp = "AEFLAG",
   var_exposure = "AUCss_1000",
   var_cov = c("BHBA1C_5", "RACE"),
)

spec_coveff <- build_spec_coveff(ermod_bin)
plot_coveff(ermod_bin, spec_coveff = spec_coveff)</pre>
```

calc_ersim_med_qi

Calculate median and quantile intervals from ersim object

Description

This is useful when you performed simulation with output_type = "draws" and want to calculate median and quantile intervals without re-simulating.

Usage

```
calc_ersim_med_qi(x, qi_width = 0.95)
```

Arguments

x An object of class ersim or ersim_margqi_width Width of the quantile interval

Value

An object of class ersim_med_qi or ersim_marg_med_qi

6 dev_ermod_bin

dev_ermod_bin

Develop linear ER model for binary or continuous endpoint

Description

These functions are used to develop an linear ER model with binary (dev_ermod_bin()) or continuous (dev_ermod_lin()) endpoint. You can also specify covariates to be included in the model.

Usage

```
dev_ermod_bin(
  data,
  var_resp,
 var_exposure,
  var_cov = NULL,
  verbosity_level = 1,
  chains = 4,
  iter = 2000
)
dev_ermod_lin(
  data,
 var_resp,
  var_exposure,
  var_cov = NULL,
 verbosity_level = 1,
  chains = 4,
  iter = 2000
)
```

Arguments

data	Input data for E-R analysis
var_resp	Response variable name in character
var_exposure	Exposure variable names in character
var_cov	Covariate variable names in character vector
verbosity_leve	
	Verbosity level. 0: No output, 1: Display steps, 2: Display progress in each step, 3: Display MCMC sampling.
chains	Number of chains for Stan.
iter	Number of iterations for Stan.

Value

An object of class ermod_bin or ermod_lin.

Examples

```
data(d_sim_binom_cov_hgly2)
ermod_bin <- dev_ermod_bin(
   data = d_sim_binom_cov_hgly2,
   var_resp = "AEFLAG",
   var_exposure = "AUCss_1000",
   var_cov = "BHBA1C_5",
)
ermod_bin

data(d_sim_lin)
ermod_lin <- dev_ermod_lin(
   data = d_sim_lin,
   var_resp = "response",
   var_exposure = "AUCss",
   var_cov = c("SEX", "BAGE")
)
ermod_lin</pre>
```

dev_ermod_bin_cov_sel Perform covariate selection for linear ER model

Description

This functions is used to develop an ER model with covariates for binary and continuous endpoints. projpred package is used for variable selection.

```
dev_ermod_bin_cov_sel(
  data,
  var_resp,
  var_exposure,
  var_cov_candidates,
  cv_method = c("L00", "kfold"),
  k = 5,
  validate_search = FALSE,
  nterms_max = NULL,
  .reduce_obj_size = TRUE,
  verbosity_level = 1,
```

```
chains = 4,
  iter = 2000
)
dev_ermod_lin_cov_sel(
  data,
  var_resp,
  var_exposure,
  var_cov_candidates,
  cv_method = c("L00", "kfold"),
  k = 5,
  validate_search = FALSE,
  nterms_max = NULL,
  .reduce_obj_size = TRUE,
  verbosity_level = 1,
  chains = 4,
  iter = 2000
)
```

Arguments

data Input data for E-R analysis

Response variable name in character var_resp var_exposure Exposure variable names in character

var_cov_candidates

Candidate covariate names in character vector

Cross-validation method. Default is "LOO" (recommended). Use "kfold" if you cv_method

see warnings on Pareto k estimates.

Number of folds for kfold CV. Only used if cv_method is "kfold".

validate_search

Whether to validate the search. Default is FALSE. Recommend to set to TRUE for kfold CV. Do not use for LOO (run time would become too long).

Maximum number of terms to consider in the model. Default is NULL (all terms

are considered).

.reduce_obj_size

nterms_max

Whether to reduce object size by removing some elements from projpred outputs that are not necessary for the functionality of this package.

verbosity_level

Verbosity level. 0: No output, 1: Display steps, 2: Display progress in each step,

3: Display MCMC sampling.

chains Number of chains for Stan. iter Number of iterations for Stan.

Value

An object of class ermod_bin_cov_sel or ermod_lin_cov_sel.

Examples

```
data(d_sim_binom_cov_hgly2)
er_binary_cov_model <- dev_ermod_bin_cov_sel(</pre>
  data = d_sim_binom_cov_hgly2,
  var_resp = "AEFLAG",
  var_exposure = "AUCss_1000",
  var_cov_candidates = c(
    "BAGE_10", "BWT_10", "BGLUC", 
"BHBA1C_5", "RACE", "VISC"
  )
)
er_binary_cov_model
data(d_sim_lin)
ermod_lin_cov_sel <- dev_ermod_lin_cov_sel(</pre>
  data = d_sim_lin,
  var_resp = "response",
  var_exposure = "AUCss";
  var_cov_candidates = c("BAGE", "SEX")
)
ermod_lin_cov_sel
```

dev_ermod_bin_exp_sel Exposure metrics selection for linear ER models

Description

This functions is used to develop an linear ER model with binary and continuous endpoint, using various exposure metrics and selecting the best one.

```
dev_ermod_bin_exp_sel(
  data,
  var_resp,
  var_exp_candidates,
  verbosity_level = 1,
  chains = 4,
  iter = 2000
```

```
dev_ermod_lin_exp_sel(
  data,
  var_resp,
  var_exp_candidates,
  verbosity_level = 1,
  chains = 4,
  iter = 2000
)
```

Arguments

Value

An object of class ermod_bin_exp_sel.or ermod_lin_exp_sel

```
data(d_sim_binom_cov_hgly2)
ermod_bin_exp_sel <-
    dev_ermod_bin_exp_sel(
    data = d_sim_binom_cov_hgly2,
    var_resp = "AEFLAG",
    var_exp_candidates = c("AUCss_1000", "Cmaxss", "Cminss")
)
ermod_bin_exp_sel

data(d_sim_lin)
ermod_lin_exp_sel <- dev_ermod_lin_exp_sel(
    data = d_sim_lin,
    var_resp = "response",
    var_exp_candidates = c("AUCss", "Cmaxss")
)</pre>
```

dev_ermod_emax 11

```
ermod_lin_exp_sel
```

dev_ermod_emax

Develop Emax model for continuous and binary endpoint

Description

These functions are used to develop an Emax model with continuous or binary endpoint. You can also specify covariates to be included in the model; note that only categorical covariates are allowed.

Usage

```
dev_ermod_emax(
  data,
  var_resp,
  var_exposure,
  1_var_cov = NULL,
  gamma_fix = 1,
  e0_fix = NULL,
  emax_fix = NULL,
  priors = NULL,
  verbosity_level = 1,
  chains = 4,
  iter = 2000
  seed = sample.int(.Machine$integer.max, 1)
)
dev_ermod_bin_emax(
  data,
  var_resp,
  var_exposure,
  1_var_cov = NULL,
  gamma_fix = 1,
  e0_fix = NULL,
  emax_fix = NULL,
  priors = NULL,
  verbosity_level = 1,
  chains = 4,
  iter = 2000.
  seed = sample.int(.Machine$integer.max, 1)
)
```

Arguments

data

Input data for E-R analysis

12 dev_ermod_emax

```
Response variable name in character
var_resp
var_exposure
                 Exposure variable names in character
                 a names list of categorical covariate variables in character vector. See details in
1_var_cov
                 the param.cov argument of rstanemax::stan_emax() or rstanemax::stan_emax_binary()
                 Hill coefficient, default fixed to 1. See details in rstanemax::stan_emax() or
gamma_fix
                 rstanemax::stan_emax_binary()
e0_fix
                 See details in rstanemax::stan_emax() or rstanemax::stan_emax_binary()
emax_fix
                 See details in rstanemax::stan_emax() or rstanemax::stan_emax_binary()
priors
                 See details in rstanemax::stan_emax() or rstanemax::stan_emax_binary()
verbosity_level
                 Verbosity level. 0: No output, 1: Display steps, 2: Display progress in each step,
                 3: Display MCMC sampling.
chains
                 Number of chains for Stan.
iter
                 Number of iterations for Stan.
seed
                 Random seed for Stan model execution, see details in rstan::sampling()
                 which is used in rstanemax::stan_emax() or rstanemax::stan_emax_binary()
```

Value

An object of class ermod_emax.or ermod_bin_emax.

```
data_er_cont <- rstanemax::exposure.response.sample

ermod_emax <-
    dev_ermod_emax(
    data = data_er_cont,
    var_exposure = "exposure",
    var_resp = "response"
)

plot_er(ermod_emax, show_orig_data = TRUE)

data_er_cont_cov <- rstanemax::exposure.response.sample.with.cov

ermod_emax_w_cov <-
    dev_ermod_emax(
    data = data_er_cont_cov,
    var_exposure = "conc",
    var_resp = "resp",
    l_var_cov = list(emax = "cov2", ec50 = "cov3", e0 = "cov1")
)</pre>
```

```
data_er_bin <- rstanemax::exposure.response.sample.binary
ermod_bin_emax <-
    dev_ermod_bin_emax(
    data = data_er_bin,
    var_exposure = "conc",
    var_resp = "y"
)

plot_er(ermod_bin_emax, show_orig_data = TRUE)

ermod_bin_emax_w_cov <-
    dev_ermod_bin_emax(
    data = data_er_bin,
    var_exposure = "conc",
    var_resp = "y_cov",
    l_var_cov = list(emax = "sex")
)</pre>
```

dev_ermod_emax_exp_sel

Exposure metrics selection for Emax models

Description

This functions is used to develop an Emax model with binary and continuous endpoint, using various exposure metrics and selecting the best one.

```
dev_ermod_emax_exp_sel(
   data,
   var_resp,
   var_exp_candidates,
   verbosity_level = 1,
   chains = 4,
   iter = 2000,
   gamma_fix = 1,
   e0_fix = NULL,
   emax_fix = NULL,
   priors = NULL,
   seed = sample.int(.Machine$integer.max, 1)
)

dev_ermod_bin_emax_exp_sel(
   data,
```

```
var_resp,
var_exp_candidates,
verbosity_level = 1,
chains = 4,
iter = 2000,
gamma_fix = 1,
e0_fix = NULL,
emax_fix = NULL,
priors = NULL,
seed = sample.int(.Machine$integer.max, 1)
```

Arguments

data	Input data for E-R analysis
var_resp	Response variable name in character
var_exp_candid	lates
	Candidate exposure variable names in character vector
verbosity_leve	1
	Verbosity level. 0: No output, 1: Display steps, 2: Display progress in each step, 3: Display MCMC sampling.
chains	Number of chains for Stan.
iter	Number of iterations for Stan.
gamma_fix	Hill coefficient, default fixed to 1. See details in rstanemax::stan_emax() or rstanemax::stan_emax_binary()
e0_fix	See details in rstanemax::stan_emax() or rstanemax::stan_emax_binary()
emax_fix	See details in rstanemax::stan_emax() or rstanemax::stan_emax_binary()
priors	See details in rstanemax::stan_emax() or rstanemax::stan_emax_binary()
seed	Random seed for Stan model execution, see details in rstan::sampling() which is used in rstanemax::stan_emax() or rstanemax::stan_emax_binary()

Value

An object of class ermod_emax_exp_sel or ermod_bin_emax_exp_sel.

```
data_er_cont <- rstanemax::exposure.response.sample
noise <- 1 + 0.5 * stats::rnorm(length(data_er_cont$exposure))
data_er_cont$exposure2 <- data_er_cont$exposure * noise
# Replace exposure < 0 with 0
data_er_cont$exposure2[data_er_cont$exposure2 < 0] <- 0

ermod_emax_exp_sel <-
    dev_ermod_emax_exp_sel(
    data = data_er_cont,
    var_resp = "response",</pre>
```

d_sim_binom_cov

```
var_exp_candidates = c("exposure", "exposure2")
)
ermod_emax_exp_sel

data_er_bin <- rstanemax::exposure.response.sample.binary
noise <- 1 + 0.5 * stats::rnorm(length(data_er_bin$conc))
data_er_bin$conc2 <- data_er_bin$conc * noise
data_er_bin$conc2[data_er_bin$conc2 < 0] <- 0
ermod_bin_emax_exp_sel <-
    dev_ermod_bin_emax_exp_sel(
    data = data_er_bin,
    var_resp = "y",
    var_exp_candidates = c("conc", "conc2")
)</pre>
```

d_sim_binom_cov

Sample simulated data for exposure-response with binary endpoint.

Description

Sample simulated data for exposure-response with binary endpoint.

Usage

```
d_sim_binom_cov
d_sim_binom_cov_hgly2
```

Format

A data frame with columns:

ID Subject ID

AETYPE Adverse event type: hgly2 (Gr2+ hyperglycemia), dr2 (Gr2+ Diarrhea), ae_covsel_test (hypothetical AE for covariate selection function test)

AEFLAG Adverse event flag: 0 - no event, 1 - event

Dose_mg Dose in mg: 200, 400

AUCss Steady-state area under the curve

Cmaxss Steady-state maximum (peak) concentration

Cminss Steady-state minimum (trough) concentration

d_sim_lin

BAGE Baseline age in years

BWT Baseline weight in kg

BGLUC Baseline glucose in mmol/L

BHBA1C Baseline HbA1c in percentage

RACE Race: White, Black, Asian

VISC Visceral disease: No, Yes

AUCss_1000 AUCss/1000

BAGE_10 BAGE/10

BWT_10 BWT/10

BHBA1C_5 BHBA1C/5

An object of class tbl_df (inherits from tbl, data.frame) with 500 rows and 17 columns.

Details

This simulated dataset is very loosely inspired by ER analysis of ipatasertib by Kotani (2022) at: https://doi.org/10.1007/s00280-022-04488-2

You can find the data generating code in the package source code, under data-raw/d_sim_binom_cov.R.

d_sim_binom_cov_hgly2 is a subset of this dataset with only hgly2 AE type and some columns added for testing.

Examples

```
d_sim_binom_cov
d_sim_binom_cov_hgly2
```

d_sim_lin

Sample simulated data for exposure-response with continuous endpoint using linear model.

Description

Sample simulated data for exposure-response with continuous endpoint using linear model.

Usage

d_sim_lin

edit_spec_coveff 17

Format

```
A data frame with columns:
```

ID Subject ID

AUCss Steady-state area under the curve

Cmaxss Steady-state maximum (peak) concentration

BAGE Baseline age in years

SEX M or F

response Response

Details

True model is defined as 0.5 * AUCss + 0.5 * BAGE + 5 * SEX, with variability added with standard deviation of 10. You can find the data generating code in the package source code, under data-raw/d_sim_lin.R.

Examples

```
d_sim_lin
```

```
edit_spec_coveff Customize specifications for covariate effect simula-
tions/visualizations
```

Description

- build_spec_coveff_one_variable() is a helper function to create a new specification for a single variable. This is useful when you want to customize the specification for a single variable.
- replace_spec_coveff() is used to replace the specification for some (or all) variables in the original specification data frame. If you want to replace multiple variables, you can just stack the specifications together.

```
build_spec_coveff_one_variable(
  var_name,
  values_vec,
  qi_width_cov = 0.9,
  n_sigfig = 3,
  use_seps = TRUE,
  drop_trailing_dec_mark = TRUE,
  show_ref_value = TRUE
)

replace_spec_coveff(spec_orig, spec_new, replace_ref_value = FALSE)
```

18 edit_spec_coveff

Arguments

var_name The name of the variable for which a new spec is to be created. values_vec The vector of the values for creating a new spec. the width of the quantile interval for continuous covariates in the forest plot. Deqi_width_cov fault is 0.9 (i.e. visualize effect of covariate effect at their 5th and 95th percentile values). n_sigfig Number of significant figures to form value_label of continuous variables. See gt::vec_fmt_number() for details. use_seps Whether to use separators for thousands in printing numbers. See gt::vec_fmt_number() for details. drop_trailing_dec_mark Whether to drop the trailing decimal mark (".") in value label of continuous variables. See gt::vec_fmt_number() for details. show_ref_value Whether to show the reference value in the plot and table. Setting this results in the show_ref_value column in the specification data frame. Original specification data frame. spec_orig spec_new New specification data frame. It can be generated by build_spec_coveff_one_variable() or manually crafting with the following variables: var_name, var_label, value_order, value_annot, value_label, value_cont or value_cat, is_ref_value, show_ref_value. You can have multiple variables stacked together.

replace_ref_value

Whether to replace the reference values from the original specification data frame. Default is FALSE; in this case, show_ref_value is set to FALSE as it can be confusing. If you set replace_ref_value to TRUE, the reference calculation for the forest plot is also done with the one in spec_new.

Value

See build_spec_coveff() for the structure of the return object. build_spec_coveff_one_variable() returns a data frame corresponding to the specification for a single variable, which can be used as an input to replace_spec_coveff().

```
set.seed(1234)
data(d_sim_binom_cov_hgly2)

ermod_bin <- suppressWarnings(dev_ermod_bin(
    data = d_sim_binom_cov_hgly2, var_resp = "AEFLAG",
    var_exposure = "AUCss_1000", var_cov = c("BGLUC", "RACE"),
    verbosity_level = 0,
    # Below option to make the example run fast
    chains = 2, iter = 1000
))

spec_coveff <- build_spec_coveff(ermod_bin)</pre>
```

ermod_cov_sel_method 19

```
spec_new_bgluc <- build_spec_coveff_one_variable(
   "BGLUC", seq(4, 8, by = 0.1),
   qi_width_cov = 0.8, show_ref_value = FALSE
)
spec_coveff_new <- replace_spec_coveff(spec_coveff, spec_new_bgluc)
plot_coveff(ermod_bin, spec_coveff = spec_coveff_new)</pre>
```

ermod_cov_sel_method S3 methods for the classes ermod_bin_cov_sel

Description

S3 methods for the classes ermod_bin_cov_sel

Usage

```
## S3 method for class 'ermod_cov_sel'
print(x, digits = 2, ...)
## S3 method for class 'ermod_cov_sel'
plot(x, ...)
```

Arguments

x An object of class ermod_bin_cov_seldigits Number of digits to print... Additional arguments passed to functions

Value

No return value, called for print or plot side effects

```
ermod_exp_sel_method S3 methods for the classes ermod_exp_sel
```

Description

S3 methods for the classes ermod_exp_sel

```
## S3 method for class 'ermod_exp_sel'
print(x, digits = 2, ...)
## S3 method for class 'ermod_exp_sel'
plot(x, ...)
```

20 ermod_method

Arguments

x An object of class ermod_bin_exp_sel

digits Number of digits to print

... Additional arguments passed to functions

Value

No return value, called for print or plot side effects

 ${\sf ermod_method}$

S3 methods for the classes ermod_*

Description

S3 methods for the classes ermod_*

Usage

```
## S3 method for class 'ermod'
print(x, digits = 2, ...)

## S3 method for class 'ermod_bin'
plot(x, show_orig_data = FALSE, ...)

## S3 method for class 'ermod'
coef(object, ...)

## S3 method for class 'ermod'
summary(object, ...)
```

Arguments

x An object of class ermod_*
digits Number of digits to print

... Additional arguments passed to functions

show_orig_data logical, whether to show the data points in the model development dataset. Default is FALSE. Only support plotting with data that was used in the model development. If you want to use other data, consider adding geom_point() to the plot

manually.

object An object of class ermod_*

Value

- print() and plot(): No return value, called for side effects
- coef(): Coefficients of the model
- summary(): Summary of the model

ersim_method 21

ersim_method

S3 methods for the classes ersim_* and ersim_med_qi_*

Description

S3 methods for the classes ersim_* and ersim_med_qi_*

Usage

```
## S3 method for class 'ersim'
plot(x, show_orig_data = FALSE, ...)
## S3 method for class 'ersim_med_qi'
plot(x, show_orig_data = FALSE, ...)
```

Arguments

x An object of the classes ersim_* or ersim_med_qi_*
show_orig_data logical, whether to show the data points in the model development dataset. Default is FALSE. Only support plotting with data that was used in the model development. If you want to use other data, consider adding geom_point() to the plot manually.

... Additional arguments passed to functions

Value

No return value, called for print or plot side effects

eval_ermod

Evaluate exposure-response model prediction performance

Description

This function evaluates the performance of an exposure-response model using various metrics.

```
eval_ermod(
  ermod,
  eval_type = c("training", "kfold", "test"),
  newdata = NULL,
  summary_method = c("median", "mean"),
  k = 5,
  seed_kfold = NULL
)
```

22 eval_ermod

Arguments

ermod An object of class ermod.

eval_type A character string specifying the evaluation dataset. Options are:

• training: Use the training dataset.

• test: Use a new dataset for evaluation.

• kfold: Perform k-fold cross-validation (uses newdata if provided, otherwise uses the training dataset).

newdata A data frame containing new data for evaluation when eval_type is set to test or kfold.

summary_method A character string specifying how to summarize the simulation draws. Default is median.

The number of folds for cross-validation. Default is 5.

seed_kfold Random seed for k-fold cross-validation.

Value

A tibble with calculated performance metrics, such as AUROC or RMSE, depending on the model type.

```
data(d_sim_binom_cov_hgly2)
d_split <- rsample::initial_split(d_sim_binom_cov_hgly2)</pre>
d_train <- rsample::training(d_split)</pre>
d_test <- rsample::testing(d_split)</pre>
ermod_bin <- dev_ermod_bin(</pre>
  data = d_train,
  var_resp = "AEFLAG",
  var_exposure = "AUCss_1000",
  var\_cov = "BHBA1C\_5",
  # Settings to make the example run faster
  chains = 2,
  iter = 1000
)
metrics_training <- eval_ermod(ermod_bin, eval_type = "training")</pre>
metrics_test <- eval_ermod(ermod_bin, eval_type = "test", newdata = d_test)</pre>
metrics_kfold <- eval_ermod(ermod_bin, eval_type = "kfold", k = 3)</pre>
print(metrics_training)
print(metrics_test)
print(metrics_kfold)
```

extract_coef_exp_ci 23

Extract credible interval of the exposure coefficient

Description

Extract credible interval of the exposure coefficient

Usage

```
extract_coef_exp_ci(x, ci_width = 0.95)
```

Arguments

x An object of class ermod_bin or ermod_lin

ci_width Width of the credible interval

Value

A named vector of length 2 with the lower and upper bounds of the credible interval (.lower, .upper)

extract_method

Extract elements from S3 objects

Description

S3 methods are defined for ermod_* (see extract_ermod) and ersim_* (see extract_ersim) classes.

```
extract_data(x)
extract_mod(x)
extract_var_resp(x)
extract_var_exposure(x)
extract_var_cov(x)
extract_exp_sel_list_model(x)
extract_exp_sel_comp(x)
extract_var_selected(x)
```

24 loo

Arguments

Χ

An object to extract elements from

Value

- extract_data() extracts data used for the model fit.
- extract_mod() extracts the model fit object.
- extract_var_resp() extracts the response variable name
- extract_var_exposure() extracts the exposure metric name
- extract_var_cov() extracts the covariates name
- extract_exp_sel_list_model() extracts the list of fitted models for each exposure metrics.
- extract_exp_sel_comp() extracts the comparison results of the exposure metrics.
- extract_var_selected() extracts the selected variables (both exposure and covariates)in the final model after covariate selection.

100

Efficient approximate leave-one-out cross-validation (LOO)

Description

```
See loo::loo() for details.
```

Usage

```
loo(x, ...)
## S3 method for class 'ermod'
loo(x, ...)
## S3 method for class 'ermod_emax'
loo(x, ...)
## S3 method for class 'ermod_bin_emax'
loo(x, ...)
```

Arguments

```
x An object of class ermod
```

... Additional arguments passed to loo::loo()

Value

An object of class loo

plot_coveff 25

plot_coveff

Visualize the covariate effects for ER model

Description

Visualize the covariate effects for ER model

Usage

```
plot_coveff(x, ...)
## S3 method for class 'ermod'
plot_coveff(
    x,
    data = NULL,
    spec_coveff = NULL,
    qi_width = 0.9,
    qi_width_cov = 0.9,
    ...
)
## S3 method for class 'coveffsim'
plot_coveff(x, ...)
```

Arguments

x	an object of class ermod, coveffsim, or their subclasses
	currently not used
data	an optional data frame to derive the covariate values for forest plots. If NULL (default), the data used to fit the model is used.
spec_coveff	you can supply spec_coveff to sim_coveff() or plot_coveff(), if you have already built it manually or with build_spec_coveff(). See build_spec_coveff() for detail.
qi_width	the width of the credible interval on the covariate effect. This translate to the width of the error bars in the forest plot.
qi_width_cov	the width of the quantile interval for continuous covariates in the forest plot. Default is 0.9 (i.e. visualize effect of covariate effect at their 5th and 95th percentile values).

Value

A ggplot object

26 plot_cov_sel

Examples

```
data(d_sim_binom_cov_hgly2)
ermod_bin <- dev_ermod_bin(
  data = d_sim_binom_cov_hgly2,
  var_resp = "AEFLAG",
  var_exposure = "AUCss_1000",
  var_cov = "BHBA1C_5",
)
plot_coveff(ermod_bin)</pre>
```

plot_cov_sel

Plot variable selection performance

Description

Plot variable selection performance

Usage

```
plot_submod_performance(x)
plot_var_ranking(x)
```

Arguments

Х

An object of class ermod_bin_cov_sel

Details

plot_submod_performance() plots the performance of submodels evaluated during variable selection.

plot_var_ranking() plots the variable ranking evaluated during variable selection.

Value

No return value, called for plotting side effect.

plot_er 27

Examples

```
data(d_sim_binom_cov_hgly2)
er_binary_cov_model_kfold <- dev_ermod_bin_cov_sel(
    data = d_sim_binom_cov_hgly2,
    var_resp = "AEFLAG",
    var_exposure = "AUCss_1000",
    var_cov_candidate = c(
        "BAGE_10", "BWT_10", "BGLUC",
        "BHBA1C_5", "RACE", "VISC"
    ),
    cv_method = "kfold",
    k = 3, # Choose 3 to make the example go fast
    validate_search = TRUE,
)

plot_submod_performance(er_binary_cov_model_kfold)
plot_var_ranking(er_binary_cov_model_kfold)</pre>
```

plot_er

Plot ER model simulations

Description

Plot ER model simulations

```
plot_er(x, ...)

## S3 method for class 'ersim_med_qi'
plot_er(
    x,
    show_orig_data = FALSE,
    show_coef_exp = FALSE,
    show_caption = FALSE,
    options_orig_data = list(),
    options_coef_exp = list(),
    options_caption = list(),
    ...
)

## S3 method for class 'ersim'
plot_er(
    x,
```

28 plot_er

```
show_orig_data = FALSE,
  show_coef_exp = FALSE,
  show_caption = FALSE,
  options_orig_data = list(),
  options_coef_exp = list(),
  options_caption = list(),
  qi_width_sim = 0.95,
)
## S3 method for class 'ermod'
plot_er(
  Х,
  show_orig_data = FALSE,
  show_coef_exp = FALSE,
  show_caption = FALSE,
  options_orig_data = list(),
  options_coef_exp = list(),
  options_caption = list(),
  n_draws_sim = if (marginal) 200 else NULL,
  seed_sample_draws = NULL,
 marginal = FALSE,
  exposure_range = NULL,
  num_{exposures} = 51,
 qi_width_sim = 0.95,
)
```

Arguments

x an object of class ermod, ersim,ersim_med_qi, or their subclasses

... currently not used

show_orig_data logical, whether to show the data points in the model development dataset. Default is FALSE. Only support plotting with data that was used in the model development. If you want to use other data, consider adding geom_point() to the plot manually.

show_coef_exp logical, whether to show the credible interval of the exposure coefficient. Default is FALSE. This is only available for linear and linear logistic regression models.

show_caption logical, whether to show the caption note for the plot. Default is FALSE. options_orig_data

List of options for configuring how original data is displayed. Possible options include:

- add_boxplot: Logical, whether to add a boxplot of exposure values. Default is FALSE.
- boxplot_height: Height of the boxplot relative to the main plot. Default is 0.15.

29 plot_er

- show_boxplot_y_title: Logical, whether to show the y-axis title for the boxplot. Default is TRUE.
- var_group: The column to use for grouping data for plotting. If specified, observed data points and boxplot will be grouped and colored by this column. Default is NULL.
- n_bins: Number of bins to use for observed probability summary. Only relevant for binary models. Default is 4.
- qi_width: Width of the quantile interval (confidence interval) for the observed probability summary. Only relevant for binary models. Default is 0.95.

options_coef_exp

List of options for configuring how the exposure coefficient credible interval is displayed. Possible options include:

- qi_width: Width of the quantile interval (credible interval) for the exposure coefficient. Default is 0.95.
- n_sigfig: Number of significant figures to display. Default is 3.
- pos_x: x-coordinate of the text label. If NULL (default), it is set to the minimum value for the exposure variable.
- pos_y: y-coordinate of the text label. If NULL (default), it is set to 0.9 for logistic regression models and the maximum value of the response variable in the original data for linear regression models.
- size: Size of the text label. Default is 4.

options_caption

List of options for configuring the caption note. Possible options include:

- orig_data: Logical, whether to show the caption note for the observed data. Default is FALSE.
- orig_data_summary: Logical, whether to show the caption note for the observed data summary. Default is FALSE. Only relevant for binary models.
- coef_exp: Logical, whether to show the caption note for the exposure coefficient credible interval. Default is FALSE.

qi_width_sim

Width of the quantile interval to summarize simulated draws.

n_draws_sim Number of draws to simulate response for each exposure value. Set to NULL to use all draws in the model object. Default is NULL unless marginal is set to

TRUE (in that case 200 by default to reduce computation time).

seed_sample_draws

Seed for sampling draws. Default is NULL.

logical, whether to use marginal ER simulation. Default to FALSE. Need to set marginal

to TRUE if the model has covariates for the plot to work.

Only relevant when the input x is an ermod object. Range of exposure values to exposure_range

simulate. If NULL (default), it is set to the range of the exposure variable in the

original data for model development.

Only relevant as with exposure_range. Number of exposure values to simulate. num exposures

Details

Plotting with ermod is done with some default values. If they are not suitable, you can always perform the simulation manually and use plot_er() on the simulated data.

30 plot_er_exp_sel

Value

A ggplot object

Examples

```
data(d_sim_binom_cov_hgly2)
ermod_bin <- dev_ermod_bin(
  data = d_sim_binom_cov_hgly2,
  var_resp = "AEFLAG",
  var_exposure = "AUCss_1000"
)

ersim_med_qi <- sim_er_curve(
  ermod_bin,
  output_type = "median_qi"
)

plot_er(ersim_med_qi, show_orig_data = TRUE) +
  xgxr::xgx_scale_x_log10()</pre>
```

plot_er_exp_sel

Plot exposure metric selection comparison

Description

Plot ER curve for each exposure metric and compare them.

Usage

```
plot_er_exp_sel(x, n_draws_sim = NULL)
```

Arguments

x An object of class ermod_bin_exp_sel

n_draws_sim Number of draws to simulate response for each exposure value. Default is

NULL (use all draws in the model object)

Value

No return value, called for plotting side effect.

plot_er_gof 31

Examples

```
data(d_sim_binom_cov_hgly2)
ermod_bin_exp_sel <-
    dev_ermod_bin_exp_sel(
    data = d_sim_binom_cov_hgly2,
    var_resp = "AEFLAG",
    var_exp_candidates = c("AUCss_1000", "Cmaxss", "Cminss")
)
plot_er_exp_sel(ermod_bin_exp_sel) + xgxr::xgx_scale_x_log10()</pre>
```

plot_er_gof

Default GOF plot for ER model

Description

This is a wrapper function for plot_er() with default options for goodness-of-fit (GOF) plots for ER models.

Usage

```
plot_er_gof(
    x,
    add_boxplot = !is.null(var_group),
    boxplot_height = 0.15,
    show_boxplot_y_title = FALSE,
    var_group = NULL,
    n_bins = 4,
    qi_width_obs = 0.95,
    show_coef_exp = FALSE,
    coef_pos_x = NULL,
    coef_pos_y = NULL,
    coef_size = 4,
    qi_width_coef = 0.95,
    qi_width_sim = 0.95,
    show_caption = TRUE
)
```

Arguments

x an object of class ermod, ersim,ersim_med_qi, or their subclasses

add_boxplot Logical, whether to add a boxplot of exposure values. Default is TRUE if var_group is specified, otherwise FALSE.

32 plot_er_gof

```
boxplot_height Height of the boxplot relative to the main plot. Default is 0.15.
show_boxplot_y_title
                  Logical, whether to show the y-axis title for the boxplot. Default is FALSE.
                  The column to use for grouping data for plotting. If specified, observed data
var_group
                  points and boxplot will be grouped and colored by this column. Default is NULL.
n_bins
                  Number of bins to use for observed probability summary. Only relevant for
                  binary models. Default is 4.
qi_width_obs
                  Confidence level for the observed probability summary. Default is 0.95.
show_coef_exp
                  Logical, whether to show the credible interval of the exposure coefficient. De-
                  fault is FALSE. This is only available for linear and linear logistic regression
coef_pos_x
                  x-coordinate of the text label. If NULL (default), it is set to the minimum value
                   for the exposure variable.
coef_pos_y
                   y-coordinate of the text label. If NULL (default), it is set to 0.9 for logistic re-
                   gression models and the maximum value of the response variable in the original
                   data for linear regression models.
coef_size
                  Size of the text label. Default is 4.
                  Width of the credible interval for the exposure coefficient. Default is 0.95.
qi_width_coef
                   Width of the quantile interval to summarize simulated draws. Default is 0.95.
qi_width_sim
                  Logical, whether to show the caption note for the plot. Default is TRUE.
show_caption
```

Details

The following code will generate the same plot:

```
plot_er(
  show_orig_data = TRUE,
  show_coef_exp = show_coef_exp,
  show_caption = show_caption,
  options_orig_data = list(
    add_boxplot = add_boxplot, boxplot_height = boxplot_height,
    show_boxplot_y_title = show_boxplot_y_title,
    var_group = var_group,
    n_bins = n_bins, qi_width = qi_width_obs
  options_coef_exp = list(
    qi_width = qi_width_coef, pos_x = coef_pos_x, pos_y = coef_pos_y,
    size = coef_size
  ),
  options_caption = list(
    orig_data_summary = TRUE, coef_exp = show_coef_exp
  qi_width_sim = qi_width_sim
)
```

print_coveff 33

Value

A ggplot object

Examples

```
data(d_sim_binom_cov_hgly2)

ermod_bin <- dev_ermod_bin(
   data = d_sim_binom_cov_hgly2,
   var_resp = "AEFLAG",
   var_exposure = "AUCss_1000"
)

plot_er_gof(ermod_bin, var_group = "Dose_mg", show_coef_exp = TRUE)</pre>
```

print_coveff

Format the covariate effect simulation results for printing

Description

Format the covariate effect simulation results for printing

Usage

```
print_coveff(
  coveffsim,
  n_sigfig = 3,
  use_seps = TRUE,
  drop_trailing_dec_mark = TRUE)
```

Arguments

coveffsim an object of class coveffsim

n_sigfig Number of significant figures to form value_label of continuous variables. See gt::vec_fmt_number() for details.

use_seps Whether to use separators for thousands in printing numbers. See gt::vec_fmt_number() for details.

drop_trailing_dec_mark

Whether to drop the trailing decimal mark (".") in value_label of continuous

Whether to drop the trailing decimal mark (".") in value_label of continuous variables. See gt::vec_fmt_number() for details.

p_direction

Details

Note that n_sigfig, use_seps, and drop_trailing_dec_mark are only applied to the odds ratio and 95% CI columns; value_label column was already generated in an earlier step in build_spec_coveff() or sim_coveff().

Value

A data frame with the formatted covariate effect simulation results with the following columns:

- var_label: the label of the covariate
- value_label: the label of the covariate value
- value annot: the annotation of the covariate value
- Odds ratio: the odds ratio of the covariate effect
- 95% CI: the 95% credible interval of the covariate effect

Examples

```
data(d_sim_binom_cov_hgly2)
ermod_bin <- dev_ermod_bin(
  data = d_sim_binom_cov_hgly2,
  var_resp = "AEFLAG",
  var_exposure = "AUCss_1000",
  var_cov = "BHBA1C_5",
)
print_coveff(sim_coveff(ermod_bin))</pre>
```

p_direction

Probability of Direction (pd)

Description

Compute the **Probability of Direction** (**pd**). Although differently expressed, this index is fairly similar (*i.e.*, is strongly correlated) to the frequentist **p-value**. See bayestestR::p_direction() and vignette("overview_of_vignettes", package = "bayestestR") > "Probability of Direction (pd)" page for details. For converting **pd** to a frequentist **p-value**, see bayestestR::pd_to_p().

```
p_direction(x, ...)
## S3 method for class 'ermod_bin'
p_direction(
```

p_direction 35

```
x,
null = 0,
as_p = FALSE,
as_num = FALSE,
direction = "two-sided",
...
)
```

Arguments

Х	An object of class ermod_bin_*
	Additional arguments passed to bayestestR::p_direction().
null	The null hypothesis value. Default is 0.
as_p	If TRUE, the p-direction (pd) values are converted to a frequentist p-value using bayestestR::pd_to_p(). Only works when as_num = TRUE.
as_num	If TRUE, the output is converted to a numeric value.
direction	What type of p-value is requested or provided with as_p = TRUE. Can be "two-sided" (default, two tailed) or "one-sided" (one tailed).

Details

For the class ermod_bin_*, it only calculates the **pd** for the exposure variable.

Value

See bayestestR::p_direction() for details.

```
df_er_dr2 <-
    d_sim_binom_cov |>
    dplyr::filter(
        AETYPE == "dr2",
        ID %in% seq(1, 500, by = 5)
    ) |>
    dplyr::mutate(AUCss_1000 = AUCss / 1000, BHBA1C_5 = BHBA1C / 5)

ermod_bin <- dev_ermod_bin(
    data = df_er_dr2,
    var_resp = "AEFLAG",
    var_exposure = "AUCss_1000",
    var_cov = "BHBA1C_5"
)

p_direction(ermod_bin, as_num = TRUE, as_p = TRUE)</pre>
```

run_kfold_cv

run_kfold_cv

Run k-fold cross-validation

Description

This function performs k-fold cross-validation using the appropriate model development function based on the class of the ermod object.

Usage

```
run_kfold_cv(ermod, newdata = NULL, k = 5, seed = NULL)
```

Arguments

ermod An ermod object containing the model and data.

newdata Optional new dataset to use instead of the original data. Default is NULL.

k The number of folds for cross-validation. Default is 5. seed Random seed for reproducibility. Default is NULL.

Value

A kfold_cv_ermod class object containing the fitted models and holdout predictions for each fold.

```
data(d_sim_binom_cov_hgly2)

ermod_bin <- dev_ermod_bin(
   data = d_sim_binom_cov_hgly2,
   var_resp = "AEFLAG",
   var_exposure = "AUCss_1000",
   var_cov = "BHBA1C_5",
   # Settings to make the example run faster
   chains = 2,
   iter = 1000
)

cv_results <- run_kfold_cv(ermod_bin, k = 3, seed = 123)

print(cv_results)</pre>
```

sim_coveff 37

sim_coveff	Perform simulation of covariate effects for ER model	

Description

Perform simulation of covariate effects for ER model

Usage

```
sim_coveff(
  ermod,
  data = NULL,
  spec_coveff = NULL,
  output_type = "median_qi",
  qi_width = 0.9,
  qi_width_cov = 0.9
)
```

Arguments

ermod	an object of class ermod
data	an optional data frame to derive the covariate values for forest plots. If NULL (default), the data used to fit the model is used.
spec_coveff	you can supply spec_coveff to sim_coveff() or plot_coveff(), if you have already built it manually or with build_spec_coveff(). See build_spec_coveff() for detail.
output_type	Type of output. Currently only supports "median_qi" which returns the median and quantile interval.
qi_width	the width of the credible interval on the covariate effect. This translate to the width of the error bars in the forest plot.
qi_width_cov	the width of the quantile interval for continuous covariates in the forest plot. Default is 0.9 (i.e. visualize effect of covariate effect at their 5th and 95th percentile values).

Value

A data frame with class coveffsim containing the median and quantile interval of the covariate effects.

```
data(d_sim_binom_cov_hgly2)
ermod_bin <- dev_ermod_bin(
  data = d_sim_binom_cov_hgly2,</pre>
```

sim_er

```
var_resp = "AEFLAG",
var_exposure = "AUCss_1000",
var_cov = "BHBA1C_5",
)
sim_coveff(ermod_bin)
```

sim_er

Simulate from ER model

Description

Simulate from ER model

Usage

```
sim_er(
  ermod,
  newdata = NULL,
  n_draws_sim = NULL,
  seed_sample_draws = NULL,
  output_type = c("draws", "median_qi"),
  qi_width = 0.95,
   .nrow_cov_data = NULL
)
```

Arguments

ermod An object of class ermod

newdata New data to use for simulation. Default is NULL (use the data in the model

object).

n_draws_sim Number of draws for simulation. If NULL (default), all draws in the model

object are used.

seed_sample_draws

Seed for sampling draws. Default is NULL.

output_type Type of output. "draws" returns the raw draws from the simulation, and "me-

dian_qi" returns the median and quantile interval.

qi_width Width of the quantile interval. Default is 0.95. Only used when output_type =

"median_qi".

 $.\,nrow_cov_data\quad Number\ of\ rows\ in\ the\ covariate\ data,\ used\ for\ internal\ purposes.\ Users\ should$

not set this argument.

sim_er_new_exp 39

Value

ersim object, which is a tibble with the simulated responses with some additional information in object attributes. It has three types of predictions - .linpred, .epred, .prediction. .linpred and .epred are similar in a way that they both represent "expected response", i.e. without residual variability. They are the same for models with continuous endpoits (Emax model). For models with binary endpoints, .linpred is the linear predictor (i.e. on the logit scale) and .epred is on the probability scale. .prediction is the predicted response with residual variability (or in case of binary endpoint, the predicted yes (1) or no (0) for event occurrence). See tidybayes::add_epred_draws() for more details.

In case of output_type = "median_qi", it returns ersim_med_qi object.

See Also

calc_ersim_med_qi() for calculating median and quantile interval from ersim object (generated
with output_type = "draws").

```
data(d_sim_binom_cov_hgly2)
ermod_bin <- dev_ermod_bin(</pre>
  data = d_sim_binom_cov_hgly2,
  var_resp = "AEFLAG",
  var_exposure = "AUCss_1000",
  var\_cov = "BHBA1C\_5",
)
ersim <- sim_er(
  ermod_bin,
  n_draws_sim = 500, # This is set to make the example run faster
  output_type = "draws"
)
ersim_med_qi <- sim_er(</pre>
  ermod_bin,
  n_draws_sim = 500, # This is set to make the example run faster
  output_type = "median_qi"
)
ersim
ersim_med_qi
```

40 sim_er_new_exp

Description

Simulate from ER model at specified exposure values

Usage

```
sim_er_new_exp(
  ermod,
  exposure_to_sim_vec = NULL,
 data_cov = NULL,
 n_draws_sim = NULL,
  seed_sample_draws = NULL,
 output_type = c("draws", "median_qi"),
  qi_width = 0.95
)
sim_er_curve(
  ermod,
  exposure_range = NULL,
 num_{exposures} = 51,
  data_cov = NULL,
  n_draws_sim = NULL,
  seed_sample_draws = NULL,
 output_type = c("draws", "median_qi"),
  qi_width = 0.95
)
```

Arguments

An object of class ermod ermod exposure_to_sim_vec Vector of exposure values to simulate. data_cov Data frame containing covariates to use for simulation, see details below. Number of draws for simulation. If NULL (default), all draws in the model n_draws_sim object are used. seed_sample_draws Seed for sampling draws. Default is NULL. Type of output. "draws" returns the raw draws from the simulation, and "meoutput_type dian_qi" returns the median and quantile interval. Width of the quantile interval. Default is 0.95. Only used when output_type = qi_width "median_qi". exposure_range Range of exposure values to simulate. If NULL (default), it is set to the range of the exposure variable in the original data for model development. Number of exposure values to simulate. num_exposures

sim_er_new_exp 41

Details

Simulation dataset will be all combinations of covariates in data_cov and exposure values in exposure_to_sim_vec, so the run time can become very long if data_cov has many rows.

data_cov has to be supplied if ermod is a model with covariates. It is recommended that data_cov contains subject identifiers such as ID for post-processing.

Exposure values in data_cov will be ignored.

sim_er_curve() is a wrapper function for sim_er_new_exp() that use a range of exposure values to simulate the expected responses. Particularly useful for plotting the exposure-response curve.

Value

ersim object, which is a tibble with the simulated responses with some additional information in object attributes. It has three types of predictions - .linpred, .epred, .prediction. .linpred and .epred are similar in a way that they both represent "expected response", i.e. without residual variability. They are the same for models with continuous endpoits (Emax model). For models with binary endpoints, .linpred is the linear predictor (i.e. on the logit scale) and .epred is on the probability scale. .prediction is the predicted response with residual variability (or in case of binary endpoint, the predicted yes (1) or no (0) for event occurrence). See tidybayes::add_epred_draws() for more details.

In case of output_type = "median_qi", it returns ersim_med_qi object.

See Also

calc_ersim_med_qi() for calculating median and quantile interval from ersim object (generated
with output_type = "draws").

```
data(d_sim_binom_cov_hgly2)

ermod_bin <- dev_ermod_bin(
    data = d_sim_binom_cov_hgly2,
    var_resp = "AEFLAG",
    var_exposure = "AUCss_1000",
    var_cov = "BHBA1C_5",
)

ersim_new_exp_med_qi <- sim_er_new_exp(
    ermod_bin,
    exposure_to_sim_vec = seq(2, 6, by = 0.2),
    data_cov = dplyr::tibble(BHBA1C_5 = 4:10),
    n_draws_sim = 500, # This is set to make the example run faster
    output_type = "median_qi"
)

ersim_new_exp_med_qi</pre>
```

sim_er_new_exp_marg

Calculate marginal expected response for specified exposure values

Description

Responses at specified exposure values are calculated for n_subj_sim subjects with different covariates (sampled from newdata), and the predicted responses are "marginalized" (averaged), resulting in marginal expected response on the population of interest.

Usage

```
sim_er_new_exp_marg(
  ermod,
  exposure_to_sim_vec = NULL,
  data_cov = extract_data(ermod),
  n_subj_sim = 100,
  n_draws_sim = 500,
  seed_sample_draws = NULL,
  output_type = c("draws", "median_qi"),
  qi_width = 0.95
)
sim_er_curve_marg(
  ermod,
  exposure_range = NULL,
  num_exposures = 51,
  data_cov = extract_data(ermod),
  n_subj_sim = 100,
  n_draws_sim = 500,
  seed_sample_draws = NULL,
  output_type = c("draws", "median_qi"),
  qi_width = 0.95
)
```

Arguments

ermod An object of class ermod exposure_to_sim_vec

Vector of exposure values to simulate.

data_cov

Data frame containing covariates to use for simulation. Different from sim_er_new_exp(), data_cov can be large as long as n_subj_sim is set to a reasonable number. Default is set to extract_data(ermod) which is the full data used to fit the model.

n_subj_sim

Maximum number of subjects to simulate. Default of 100 should be sufficient in many cases, as it's only used for marginal response calculation. Set to NULL to use all subjects in data_cov without resampling; in this case, be mindful of the computation time.

sim_er_new_exp_marg 43

num_exposures Number of exposure values to simulate.

Details

sim_er_new_exp_marg() returns a tibble with the marginal expected response for each exposure
value in exposure_to_sim_vec.

sim_er_curve_marg() is a wrapper function for sim_er_new_exp_marg() that use a range of exposure values to simulate the marginal expected responses. Particularly useful for plotting the exposure-response curve.

Value

ersim_marg object, which is a tibble with the simulated marginal expected response with some additional information in object attributes. In case of output_type = "median_qi", it returns ersim_marg_med_qi object.

See Also

calc_ersim_med_qi() for calculating median and quantile interval from ersim_marg object (generated with output_type = "draws").

```
data(d_sim_binom_cov_hgly2)

ermod_bin <- dev_ermod_bin(
   data = d_sim_binom_cov_hgly2,
   var_resp = "AEFLAG",
   var_exposure = "AUCss_1000",
   var_cov = "BHBA1C_5",
)

ersim_new_exp_marg_med_qi <- sim_er_new_exp_marg(
   ermod_bin,
   exposure_to_sim_vec = seq(2, 6, by = 0.2),
   data_cov = dplyr::tibble(BHBA1C_5 = 4:10),
   n_subj_sim = NULL,
   n_draws_sim = 500, # This is set to make the example run faster
   output_type = "median_qi"</pre>
```

Index

* datasets	dev_ermod_lin_cov_sel
d_sim_binom_cov, 15	<pre>(dev_ermod_bin_cov_sel), 7</pre>
d_sim_lin, 16	dev_ermod_lin_exp_sel
	<pre>(dev_ermod_bin_exp_sel), 9</pre>
as_draws, 2	
as_draws_array(as_draws),2	edit_spec_coveff, 17
as_draws_df(as_draws), 2	ermod_cov_sel_method, 19
as_draws_list(as_draws),2	ermod_exp_sel_method, 19
as_draws_matrix(as_draws),2	ermod_method, 20
as_draws_rvars(as_draws),2	ersim_method, 21
	eval_ermod, 21
bayestestR::p_direction(), 34, 35	<pre>extract_coef_exp_ci, 23</pre>
bayestestR::pd_to_p(), <i>34</i> , <i>35</i>	<pre>extract_data(extract_method), 23</pre>
<pre>build_spec_coveff, 3</pre>	extract_data(), 24
build_spec_coveff(), 4, 18, 25, 34, 37	extract_ermod, 23
<pre>build_spec_coveff_one_variable</pre>	extract_ersim, 23
<pre>(edit_spec_coveff), 17</pre>	<pre>extract_exp_sel_comp (extract_method),</pre>
<pre>build_spec_coveff_one_variable(), 17,</pre>	23
18	extract_exp_sel_comp(), 24
	extract_exp_sel_list_model
<pre>calc_ersim_med_qi, 5</pre>	(extract_method), 23
$calc_ersim_med_qi(), 39, 41, 43$	<pre>extract_exp_sel_list_model(), 24</pre>
coef.ermod(ermod_method), 20	extract_method, 23
1.	<pre>extract_mod (extract_method), 23</pre>
d_sim_binom_cov, 15	extract_mod(), 24
d_sim_binom_cov_hgly2	<pre>extract_var_cov (extract_method), 23</pre>
(d_sim_binom_cov), 15	extract_var_cov(), 24
d_sim_lin, 16	<pre>extract_var_exposure (extract_method),</pre>
dev_ermod_bin, 6	23
dev_ermod_bin(), 6	extract_var_exposure(), 24
dev_ermod_bin_cov_sel,7	<pre>extract_var_resp (extract_method), 23</pre>
dev_ermod_bin_cov_sel(), 4	extract_var_resp(), 24
<pre>dev_ermod_bin_emax (dev_ermod_emax), 11 dev_ermod_bin_emax_exp_sel</pre>	<pre>extract_var_selected(extract_method),</pre>
<pre>(dev_ermod_emax_exp_sel), 13 dev_ermod_bin_exp_sel, 9</pre>	<pre>extract_var_selected(), 24</pre>
dev_ermod_emax, 11	gt::vec_fmt_number(), 4, 18, 33
dev_ermod_emax_exp_sel, 13	50
dev_ermod_lin (dev_ermod_bin), 6	100, 24
dev_ermod_lin(), 6	loo::loo(), 24

46 INDEX

```
tidybayes::add_epred_draws(), 39, 41
p_direction, 34
plot.ermod_bin(ermod_method), 20
plot.ermod_cov_sel
        (ermod_cov_sel_method), 19
plot.ermod_exp_sel
        (ermod_exp_sel_method), 19
plot.ersim(ersim_method), 21
plot.ersim_med_qi (ersim_method), 21
plot_cov_sel, 26
plot_coveff, 25
plot_coveff(), 4, 25, 37
plot_er, 27
plot_er(), 31
plot_er_exp_sel, 30
plot_er_gof, 31
plot_submod_performance (plot_cov_sel),
        26
plot_submod_performance(), 26
plot_var_ranking (plot_cov_sel), 26
plot_var_ranking(), 26
posterior::as_draws(), 2
print.ermod(ermod_method), 20
print.ermod_cov_sel
        (ermod_cov_sel_method), 19
print.ermod_exp_sel
        (ermod_exp_sel_method), 19
print_coveff, 33
replace_spec_coveff(edit_spec_coveff),
replace_spec_coveff(), 17, 18
rstan::sampling(), 12, 14
rstanemax::stan_emax(), 12, 14
rstanemax::stan_emax_binary(), 12, 14
run_kfold_cv, 36
sim_coveff, 37
sim_coveff(), 4, 25, 34, 37
sim_er, 38
sim_er_curve (sim_er_new_exp), 39
sim_er_curve(), 41
sim_er_curve_marg
        (sim_er_new_exp_marg), 42
sim_er_curve_marg(), 43
sim_er_new_exp, 39
sim_er_new_exp(), 41, 42
sim_er_new_exp_marg, 42
sim_er_new_exp_marg(), 43
summary.ermod(ermod_method), 20
```