進捗報告

1 今週行ったこと

• VGG16のモデルを転移学習させて,猫に耳カットがあるか否かの識別を行った.

2 耳カットの実験

VGG16 を転移学習させて、猫の耳カットを識別させるモデルを作った。表 1 にモデルのパラメータを示す。クラスとしては、耳カットなし、あり、不明の 3 クラスとなる。画像の中から一番少ない noncut のデータ枚数に合わせて実験を行った。また、バッチサイズは 16 とした。図 1、図 2 に各クラス 39 枚の時の accuracy,loss を、図 3、図 4 に各クラス 110 枚の時の accuracy,loss をそれぞれ示す。

表 1: 耳カット識別のモデル

クラス	3クラス分類
訓練データ数	各クラス 39 枚/110 枚
input	$image(224 \times 224 \times 3)$
output	class(3)
ベースモデル	VGG16
optimizer	adam
学習率	0.001
損失関数	categorical_crossentropy
train:validation	2:1
初期重み	ImageNet
batch_size	16
epochs	30

図 1: 耳カット識別の accuracy の推移(各クラス 39 枚)

図 2: 耳カット識別の loss の推移(各クラス 39 枚)

図 3: 耳カット識別の accuracy の推移 (各クラス 110 枚)

図 4: 耳カット識別の loss の推移(各クラス 110 枚) 訓練枚数を増やすと識別率は多少上がった.

3 次回行うこと

- アノテーションの続き
- 猫の耳を検出できるか実験