Алгоритъм на Божозовски за строене на хубав* автомат

Иво Стратев

9 юни 2020 г.

1 Да си припомним някои неща

Със Σ означавахме крайната азбука, над която работим. Това беше просто крайно и непразно множество. Множеството на всички думи над азбуката Σ бележихме със Σ^* . Език над азбуката Σ за нас беше всяко подмножество на Σ^* . Значи множеството на всички езици над азбуката Σ е степенното множество на Σ^* , тоест $\mathcal{P}(\Sigma^*)$. Празният език е \emptyset , независимо от азбуката. Езикът на празната дума е $\{\varepsilon\}$, независимо от азбуката. Ако $u \in \Sigma$, то $\{u\}$ е езикът на думата с единствена буква u и $\{u\}$ е език над Σ . Ако A и B са езици над Σ , то конкатенацията на A и B беше $A \cdot B = \{\alpha.\beta \mid \alpha \in A \& \beta \in B\}$ и също е език над същата азбука Σ . Ако A и B са езици над Σ , то $A \cup B$ също е език над Σ .

Нека
$$L$$
 е език над Σ . Тогава $L^0=\{\varepsilon\}$ и ако $n\in\mathbb{N},$ то $L^{n+1}=L\cdot L^n$ и $L^*=\bigcup_{k\in\mathbb{N}}L^k$ и $L^+=L\cdot L^*=\bigcup_{k\in\mathbb{N}}L^{k+1}.$ Очевидно L^* и L^+ са езици над $\Sigma.$

1.1 Примери (Сметки)

Имаме
$$\{a\}^* = \bigcup_{n \in \mathbb{N}} \{a\}^n = \bigcup_{n \in \mathbb{N}} \{a^n\} = \{a^n \mid n \in \mathbb{N}\}$$
 и $\{a\}^+ = \{a\} \cdot \{a\}^*$. Значи $\{a\}^* = \{a^0\} \cup \{a^n \mid n \in \mathbb{N}_+\} = \{\varepsilon\} \cup \{a\}^+ = \{\varepsilon\} \cup \{a\} \cdot \{a\}^*$.

Да направим една по-голяма сметка:

$$L$$

$$= \{a, b\}^* \cdot \{c\}^* = (\{\varepsilon\} \cup \{a, b\}^+) \cdot \{c\}^*$$

$$= (\{\varepsilon\} \cup (\{a, b\} \cdot \{a, b\}^*) \cdot \{c\}^*$$

$$= (\{\varepsilon\} \cup (\{a\} \cup \{b\}) \cdot \{a, b\}^*) \cdot \{c\}^*$$

$$= (\{\varepsilon\} \cup \{a\} \cdot \{a, b\}^* \cup \{b\} \cdot \{a, b\}^*) \cdot \{c\}^*$$

$$= \{\varepsilon\} \cdot \{c\}^* \cup \{a\} \cdot \{a, b\}^* \cdot \{c\}^* \cup \{b\} \cdot \{a, b\}^* \cdot \{c\}^*$$

$$= \{c\}^* \cup \{a\} \cdot L \cup \{b\} \cdot L$$

$$= \{\varepsilon\} \cup \{c\} \cdot \{c\}^* \cup \{a\} \cdot L \cup \{b\} \cdot L$$

Следователно L може да бъде представен като обединение на езици започващи с конкретна буква или на празната дума. Нещо, което ще ни бъде полезно за алгоритъма, който ще разгледаме.

2 Операцията, която ще ни трябва

Нека Σ е крайна азбука.

Дефинириме операция $remove_{\Sigma}: \Sigma \times \mathcal{P}(\Sigma^*) \to \mathcal{P}(\Sigma^*)$ по следния начин $remove_{\Sigma}(x,L) = \{\alpha \in \Sigma^* \mid x.\alpha \in L\}$. Очевидно тя е коректно дефинирана операция, тоест пресмятайки я върху конкретна буква x от Σ и конкретен език L над Σ получаваме друг език над Σ $\{\alpha \in \Sigma^* \mid x.\alpha \in L\}$, защото отделяме от Σ^* . Идеята зад дефинираната операция е все едно да махнем буквата x от думите започващи с x от L и като резултат да получаваме остатъците от думите след махането. Като под махан разбираме прочитане на буквата.

2.1 Примерни сметки:

Очевидно $remove_{\Sigma}(x,\emptyset)=\emptyset$ понеже в празният език няма думи. Също $remove_{\Sigma}(x,\{\varepsilon\})=\{\alpha\in\Sigma^*\mid x.\alpha\in\{\varepsilon\}\}=\emptyset$ понеже $\{\varepsilon\}$ има единствена дума, която няма букви, тоест няма какво да махнем от нея. Ако $x\in\Sigma$, то $remove_{\Sigma}(x,\{x\})=\{\alpha\in\Sigma^*\mid x.\alpha\in\{x.\varepsilon\}\}=\{\varepsilon\}$, понеже $\{x\}=\{x.\varepsilon\}$.

Ако x и y са различни букви от Σ , то $remove_{\Sigma}(x,\{y\}) = \{\alpha \in \Sigma^* \mid x.\alpha \in \{y\}\} = \emptyset.$

За момента фиксираме азбуката $\Sigma = \{a, b, c\}$ и за това вместо $remove_{\{a,b,c\}}$ ще пишем просто rem. Нека направим няколко сметки:

$$rem(a,\{aa\}) = \{a\} \quad rem(a,\{ba\}) = \emptyset$$

$$rem(a,\{aa,ba\}) = rem(a,\{aa\} \cup \{ba\}) = rem(a,\{aa\}) \cup rem(a,\{ba\}) = \{a\} \cup \emptyset = \{a\}$$

$$rem(a,\{a\}^+) = rem(a,\{a\}^+) = rem(a,\{a\}^*) = \{a\}^*$$

$$rem(a,\{a\}^*) = rem(a,\{aa\}^*) = rem(a,\{aa\}^*) = \{a\}^*$$

$$rem(a,\{aa\}^+) = rem(a,\{aa\} \cdot \{aa\}^*) = \{a\} \cdot \{aa\}^*$$

$$Heka\ L = \{a\}^* \cdot \{b\}^+ = (\{\varepsilon\} \cup \{a\} \cdot \{a\}^*) \cdot \{b\}^+ = \{b\}^+ \cup \{a\} \cdot \{a\}^* \cdot \{b\}^+ = \{b\}^+ \cup \{a\} \cdot L.$$
 Тогава

$$\begin{split} rem(a,L) &= rem(a,\{b\} \cdot \{b\}^* \cup \{a\} \cdot L) = L \\ rem(b,L) &= rem(b,\{b\} \cdot \{b\}^* \cup \{a\} \cdot L) = \{b\}^* \\ rem(c,L) &= rem(c,\{b\} \cdot \{b\}^* \cup \{a\} \cdot L) = \emptyset \\ rem(a,\{b\}^*) &= \emptyset \\ rem(b,\{b\}^*) &= \{b\}^* \\ rem(a,\{b\}^*) &= \emptyset \\ rem(a,\{b\}^*) &= \emptyset \end{split}$$

Значи

$$rem(a, L) = L$$

$$rem(b, L) = \{b\}^*$$

$$rem(c, L) = \emptyset$$

$$rem(a, \{b\}^*) = \emptyset$$

$$rem(b, \{b\}^*) = \{b\}^*$$

$$rem(c, \{b\}^*) = \emptyset$$

$$rem(a, \emptyset) = \emptyset$$

$$rem(b, \emptyset) = \emptyset$$

$$rem(c, \emptyset) = \emptyset$$

Ако "навържем" сметките от преди малко получаваме следния автомат:

Така констуирания автомат няма нито едно финално състояние, тоест той разпознава празният език. На нас ни се иска, той да разпознава езикът $L=\{a\}^*\cdot\{b\}^+$. За целта финални са всички състояния, които съдържат празната дума ε . Имаме:

$$L=\{b\}\cdot\{b\}^*\cup\{a\}\cdot L\quad \text{не съдържа празната дума}$$

$$\{b\}^*=\{\varepsilon\}\cup\{b\}^+\quad \text{съдържа празната дума}$$

$$\emptyset\quad \text{не съдържа празната дума}$$

Така само $\{b\}^*$ става финално състояние и получаваме следния автомат

Лесно се съобразява, че този автомат разпознава $L = \{a\}^* \cdot \{b\}^+.$

3 Алгоритъм на Божозовски

Това, което може да забележим е, че постройхме автомат пресмятайки операцията *rem* върху различни езици, започвайки от езика, за който искаме да конструираме автомат, докато получаваме нови езици с всяка буква на азбуката. Състоянията бяха различните езици, началното, езика за който конструираме автомат, а финални са състоянията, които съдържат празната дума. Така готови сме да представим чрез псевдо код алгоритъма на Божозовкси.

```
function bojoAlgorithm(language) {
      const Sigma = alphabet(language);
      let languages = [language];
      let notVisited = [language];
      let transitions = [];
      let finals = [];
      while(!notVisited.isEmpty()) {
          const current = notVisited.pop();
          for(let letter in Sigma) {
               const result = rem(letter, current);
10
              transitions.insert([current, letter, result]);
11
               if(!languages.isMember(result)) {
12
                   notVisited.push(result);
13
                   languages.push(result);
              }
16
          if(includesEmptyWord(current)) {
17
              finals.insert(current);
18
          }
19
      }
20
      return [Sigma, languages, transitions, language, finals];
21
_{22}|\}
```

3.1 Няколко практически съвета

- Преди да тръгнем да смятаме най-добре е да представим езика, от който махаме букви като **обединие** на празния език или езици започващи с конкретна буква.
- След като се сметне rem(x, M) трябва **много внимателно** да се провери, дали е **нов език**.
- Резултата от сметката rem(x, M) е добре да **подчертаем** ако е **нов език** (такъв какъвто не сме срещали досега) и е добре да **заградим**, ако видим, че **съдържа празната дума**.
- Добре е поватрарящи се езици, участващи като изрази ако не са крайни и не са кратки за писане да означаваме по някакъв начин с цел съкращаване.

4 Пример 1

Нека постройм по разгледания алгоритъм автомат за езикът $L = \{a,b\}^* \cdot \{c\}^*$. В началото видяхме, че $L = \{\varepsilon\} \cup \{c\} \cdot \{c\}^* \cup \{a\} \cdot L \cup \{b\} \cdot L$. (направихме една по-голяма сметка) Понеже L съдържа празната дума и за нас е нов език, то следвайки съветите $\underline{\underline{L}}$. Започваме да смятаме:

$$rem(a, L) = rem(a, \{\varepsilon\} \cup \{c\} \cdot \{c\}^* \cup \{a\} \cdot L \cup \{b\} \cdot L) = L$$

$$rem(b, L) = rem(b, \{\varepsilon\} \cup \{c\} \cdot \{c\}^* \cup \{a\} \cdot L \cup \{b\} \cdot L) = L$$

$$rem(c, L) = rem(c, \{\varepsilon\} \cup \{c\} \cdot \{c\}^* \cup \{a\} \cdot L \cup \{b\} \cdot L) = \boxed{\{c\}^*}$$

$$rem(a, \{c\}^*) = \boxed{\emptyset}$$

$$rem(b, \{c\}^*) = \emptyset$$

$$rem(c, \{c\}^*) = \emptyset$$

$$rem(b, \emptyset) = \emptyset$$

$$rem(c, \emptyset) = \emptyset$$

Така получаваме следния автомат

5 Пример 2

Нека постройм по разгледания алгоритъм автомат за един познат за нас език.

$$L = \{ \omega \in \{a, b\}^* \mid \mathcal{N}_a(\omega) \equiv 0 \pmod{3} \}$$

Очевидно сменяме и азбуката вече $\Sigma = \{a, b\}$, но продължаваме да пишем просто rem. Нека изразим L в **удобен за смятане вид**, тоест като **обединие на езици започващи с фиксирана буква** или празната дума.

$$L = \{\varepsilon\} \cup \{\omega \in \{a,b\}^* \mid \mathcal{N}_a(\omega) \equiv 0 \pmod{3} \ \& \ |\omega| > 0\}$$
 = $\{\varepsilon\} \cup \{a\} \cdot \{\omega \in \{a,b\}^* \mid \mathcal{N}_a(\omega) \equiv 2 \pmod{3}\} \cup \{b\} \cdot \{\omega \in \{a,b\}^* \mid \mathcal{N}_a(\omega) \equiv 0 \pmod{3}\}$ Да означим $\{\omega \in \{a,b\}^* \mid \mathcal{N}_a(\omega) \equiv 2 \pmod{3}\}$ с L_2 . Тогава $L = \{\varepsilon\} \cup \{a\} \cdot L_2 \cup \{b\} \cdot L$. Следвайки съветите \underline{L} .

Пресмятаме

$$rem(a, L) = rem(a, \{\varepsilon\} \cup \{a\} \cdot L_2 \cup \{b\} \cdot L) = \underline{L_2} = \{\omega \in \{a, b\}^* \mid \mathcal{N}_a(\omega) \equiv 2 \pmod{3}\}$$

 $rem(b, L) = rem(b, \{\varepsilon\} \cup \{a\} \cdot L_2 \cup \{b\} \cdot L) = L$

Изразяваме L_2 като обединение:

$$L_2 = \{\omega \in \{a,b\}^* \mid \mathcal{N}_a(\omega) \equiv 2 \pmod{3}\}$$

$$= \{a\} \cdot \{\omega \in \{a,b\}^* \mid \mathcal{N}_a(\omega) \equiv 1 \pmod{3}\} \cup \{b\} \cdot \{\omega \in \{a,b\}^* \mid \mathcal{N}_a(\omega) \equiv 2 \pmod{3}\}$$
Да означим $\{\omega \in \{a,b\}^* \mid \mathcal{N}_a(\omega) \equiv 1 \pmod{3}\}$ с L_1 . Тогава $L_2 = \{a\} \cdot L_1 \cup \{b\} \cdot L_2$.

Правим още пресмятания

$$rem(a, L_2) = rem(a, \{a\} \cdot L_1 \cup \{b\} \cdot L_2) = \underline{L_1} = \{\omega \in \{a, b\}^* \mid \mathcal{N}_a(\omega) \equiv 1 \pmod{3}\}$$

$$rem(b, L_2) = rem(b, \{a\} \cdot L_1 \cup \{b\} \cdot L_2) = L_2$$

Изразяваме L_1 като обединение:

$$L_1 = \{\omega \in \{a, b\}^* \mid \mathcal{N}_a(\omega) \equiv 1 \pmod{3}\}$$

$$= \{a\} \cdot \{\omega \in \{a, b\}^* \mid \mathcal{N}_a(\omega) \equiv 0 \pmod{3}\} \cup \{b\} \cdot \{\omega \in \{a, b\}^* \mid \mathcal{N}_a(\omega) \equiv 1 \pmod{3}\}$$

$$= \{a\} \cdot L \cup \{b\} \cdot L_1$$

Правим още две пресмятания:

$$rem(a, L_1) = rem(a, \{a\} \cdot L \cup \{b\} \cdot L_1) = L$$

 $rem(b, L_1) = rem(a, \{a\} \cdot L \cup \{b\} \cdot L_1) = L_1$

Така всички сметки са:

$$rem(a, L) = L_2$$

 $rem(b, L) = L$
 $rem(a, L_2) = L_1$
 $rem(b, L_2) = L_2$
 $rem(a, L_1) = L$
 $rem(b, L_1) = L_1$

В хода на пресмятанията единствено сме подчертали L_2 и L_1 и в началото оградихме L. С други думи само L съдържа празната дума, значи то ще единственото финално състояние. Така автомата разпонзаващ $L = \{\omega \in \{a,b\}^* \mid \mathcal{N}_a(\omega) \equiv 0 \pmod 3\}$ е

6 Задачи за упражнение

Постройте автомат по алгоритъма на Божозовски за езиците:

- 1. $\{a\} \cdot \{a,b\}^* \cdot \{b\}$
- 2. $(\{a,b\}^+ \cdot \{a\})^*$
- 3. $\{\omega \in \{a,b\}^* \mid \mathcal{N}_a(\omega) \equiv 0 \pmod{2} \& \mathcal{N}_b(\omega) \equiv 1 \pmod{2}\}$