REPORT

Logistic Regression Assignment

과목명	딥러닝
담당교수	정우환 교수님
학생이름	박준우
학과	인공지능학과
학번	2021006253
제출일	2023.09.18

HANYANG UNIVERSITY

Source code for model

```
//로지스틱 회귀 클래스정의
class logistic_regression_model():
   def __init__(self):
                                           //생성자 함수
                                           // 가중치값 랜덤으로 초기화
       self.w=np.random.rand(2)
       self.b=np.random.rand()
                                           // 편향값 랜덤으로 초기화
   def sigmoid(self,z):
                                           //0~1 사이 값으로 변환해주는 시그모이드 함수 정의
       return 1/(1+\exp(-z))
   def predict(self,x):
       z = self.w[0]*x[0] + self.w[1]*x[1] + self.b
                                           //선형합 계산
       a=self.sigmoid(z)
                                           //선형합 z 를 시그모이드 활성화 함수에 적용
       return a
```

Source code for training

```
//train 함수 정의
def train(X,Y,model,lr=0.1):
                                     //각 가중치와 편향값의 초기 미분값 설정
   dw0 = 0.0
   dw1 = 0.0
   db = 0.0
                                     //데이터셋의 샘플 수 m
   m=len(X)
   cost=0.0
                                     //손실값 초기화
   for x,y in zip(X,Y):
                                     //동일 인덱스의 항목들을 튜플로 묶어주는 zip 함수
      a=model.predict(x)
                                     //각 회차별로 현 샘플에 대한 예측 값 a 계산
                                     //손실값 계산
      if y==1:
          cost-=log(a)
      else:
          cost-=log(1-a)
      dw0 + = (a-y)*x[0]
                                     //그라디언트 계산 위한 누적값 업데이트
                                     //a-y 는 오차+x[0], x[1]을 곱해 가중치의 기울기 구함
      dw1 + = (a-y)*x[1]
                                     //편향에 대한 그라디언트
      db + = (a-y)
   cost/=m
                                     //각 값에 대한 평균을 계산
   model.w[0]-=lr*dw0/m
   model.w[1]-=lr*dw1/m
   model.b-=lr*db/m
```

Loss Plot for each Operator and Predicted results

AND Operator Predicted Results					
lr/X	(0,0)	(0,1)	(1,0)	(1,1)	
0.01	0.008028247332553976	0.14854035088737033	0.14760558581277883	0.788703372826593	
0.1	1.2452383273319209e-05	0.02024092111217243	0.020240926617013745	0.971650468899914	
1	1.1499636165542483e-08	0.002013058209431526	0.002013058209432753	0.9971816467062707	

OR Operator Predicted Results				
lr/X	(0,0)	(0,1)	(1,0)	(1,1)
0.01	0.18768618841998422	0.9269479445225197	0.9274048509974209	0.9985766712388302
0.1	0.02056816502783776	0.9917844252381735	0.9917861423733217	0.9999985593101065
1	0.0020109480541161025	0.9991957314788877	0.999195728032163	0.9999999986944967

XOR Operator Predicted Results				
lr/X	(0,0)	(0,1)	(1,0)	(1,1)
0.01	0.5007538199136131	0.5001057311609569	0.5001308624988382	0.4994827733641003
0.1	0.5	0.5	0.5	0.5
1	0.5	0.5	0.5	0.5