解 (1) 光在折射率为 n 的介质中的传播速度为 v, $v = \frac{c}{n}$

则水中的速率:
$$v_W = \frac{c}{n_W} = \frac{2.998 \times 10^8}{1.333} \approx 2.249 \times 10^8 \, m/s$$

冕玻璃中的速率:
$$v_{K_9} = \frac{c}{n_{K_9}} = \frac{2.998 \times 10^8}{1.516} \approx 1.978 \times 10^8 \, m \, / \, s$$

重火石玻璃中的速率:
$$v_{ZF_1} = \frac{c}{n_{ZE}} = \frac{2.998 \times 10^8}{1.648} \approx 1.819 \times 10^8 \, m \, / \, s$$

(2) 由相对折射率公式:

从水到冕玻璃:
$$n_{K_9 \to W} = \frac{n_{K_9}}{n_W} \approx 1.137$$

从水到重火石玻璃:
$$n_{ZF_1 \to W} = \frac{n_{ZF_1}}{n_W} \approx 1.236$$

从冕玻璃到重火石玻璃:
$$n_{ZF_1 \to K_9} = \frac{n_{ZF_1}}{n_{K_9}} \approx 1.087$$

1-3

解 如图,设空气折射率为 n_0 ,AC 界面折射角为 θ 由折射定律得

$$n_g \sin \theta = n_0 \sin i' \tag{1}$$

$$n_g \sin i_c = n \sin 90^0 \tag{2}$$

由内三角行几何关系满足:

$$90^{0} - i_{c} + 90^{0} - \theta + \alpha = 180^{0}$$
 (3)

联立以上方程(1)(2)(3)可解得: $\sin(\alpha-\theta) = \sin i_c = \frac{n}{n_a}$

$$\sin \alpha \cos \theta - \cos \theta \sin \beta = \frac{n}{n_g}$$

$$\sin \alpha \sqrt{1 - \frac{\sin^2 i'}{n_g^2}} - \cos \alpha \frac{\sin^2 i'}{n_g} = \frac{n}{n_g}$$

化简可得:

$$n = \sin \alpha \sqrt{n_g^2 - \sin^2 i'} - \sin^2 i' \cos \alpha$$

证毕

分析:

当 $\alpha < i_c$ 时,如图,由三角几何关系得:

$$\theta' = i_c - \alpha \tag{1}$$

由折射定律得

$$n_g \sin \theta = n_0 \sin i' \tag{2}$$

$$n_g \sin i_c = n \sin 90^0 \tag{3}$$

联立以上方程解得:

$$n = \sin \alpha \sqrt{n_g^2 - \sin^2 i'} - \sin^2 i' \cos \alpha$$

1-5

解

证明:设空气折射率为 n_0 ,介质折射率为n,如图,光线在 DE、BC 处法线交于点 O',得 $\angle O'bc = \angle O'aD = 90^\circ$

在
$$\triangle abO$$
 中, $\angle abO + \angle baO = 180^{\circ} - \angle O = 135^{\circ}$

$$\angle bO'a = 180^{\circ} - \angle O = 135^{\circ}$$

$$\angle O'ba + \angle O'ab = 180^{\circ} - \angle O = 45^{\circ}$$

又由
$$\angle cbO' = \angle O'ba$$
 $\angle caO' = \angle O'ab$

可得
$$\angle cba + \angle cab = 2(\angle O'ba + \angle O'ab) = 90^{\circ}$$

即 $\angle bca = 90^{\circ}$

则,在四边形 AeCd 中, $90^{\circ}+i_{3}+90^{\circ}-i_{4}=360^{\circ}-\angle A-\angle dce=180^{\circ}$

即 $i_3=i_4$

由折射定律

 $n\sin i_3 = n_0\sin i_1$

 $n\sin i_4 = n_0 \sin i_2$

则 $i_1=i_2$

$$\delta = 180^{\circ} - (360^{\circ} - \angle A - 90^{\circ} - i_1 - 90^{\circ} + i_2) = 90^{\circ}$$
 与*i*、*n* 无关

故不论入射角和折射率的大小,偏转角 δ 恒等于 90°

1-7

解 如图,设透镜凸面上的点 P(x,y,z), 根据费马原理,光通过透镜的光程相同:

$$nz + \sqrt{x^2 + y^2 + (f - z)^2} = \sqrt{R^2 + f^2}$$

即为回转双曲面方程式,

也可化简为:

$$(1-n^2)z^2 + 2nz\sqrt{R^2 + f^2} + x^2 + y^2 = R^2$$

1-9 **解**

如图将球面 Σ 视为折射球面,以 0 为顶点,由于球心向左,球面半径为 r=-10cm,s=50-500t (cm)

物方焦距:
$$f = \frac{nr}{n'-n} = 40cm$$

像方焦距:
$$f' = \frac{n'r}{n'-n} = 30cm$$

由成像公式:
$$\frac{f'}{s'} + \frac{f}{s} = 1$$
, 解得 $s' = \frac{150(1-10t)}{1-50t}$ (0 < t < 0.1s)

由牛顿公式:
$$xx' = ff'$$
, $x = s - f$ 解得 $x' = \frac{ff'}{x} = \frac{1200}{x} = \frac{120}{1-50t}$

横向放大率:
$$\beta = -\frac{f}{x}$$
 解得 $\beta = -\frac{4}{1-50t}$

纵向放大率:
$$\alpha = -\frac{x'}{x} = -\frac{ff'}{x^2} = -\beta^2 \frac{f'}{f}$$
解得 $\alpha = \frac{12}{(1-50t)^2}$

像的平移速度:
$$v' = \frac{ds'}{dt} = \frac{6000}{(1-50t)^2}$$

像的纵向增长速率:
$$v_{\alpha}' = \frac{d\alpha}{dt} = -\frac{1200}{(1-50t)^3}$$

像的横向增长速率:
$$v_{\beta}' = \frac{d\beta}{dt} = -\frac{200}{(1-50t)^2}$$

当 t=0 时, x=(1/4)f=10cm , x'=4f'=120cm , $\beta=-4$, $\alpha=12$,像的平移速度 v'=60m/s ,像纵向增长速率为 $v_{\alpha}'=-12m/s$,像横向增长速率为 $v_{\beta}'=-2m/s$,鱼成倒立放大的实像;

当0 < t < 0.02s时,0 < x < 10cm,人眼中鱼成倒立放大的实像,且鱼像在增大;

当t = 0.02s 时,x = 0, $x' = \infty$,5 处于物方焦点处,鱼在人眼中无法成像;

当 0.02 < t < 0.1s 时,-40cm < x < 0 ,人眼中鱼成正立放大的虚像,且鱼像在减小; 其中,当 t = 0.04s 时,x = -(1/4) f = -10cm ,x' = -4 f' = -120cm , $\beta = 4$, $\alpha = 12$,v' = 60 m/s , $v_{\alpha}' = 12$ m/s , $v_{\beta}' = -2$ m/s ,鱼成正立放大 4 倍的虚像,像的平移速度为60 m/s;

当 t=0.06s 时,x=-(1/2) f=-20cm,x'=-2f'=-60cm, $\beta=2$, $\alpha=3$,v'=15m/s, $v_{\alpha}'=1.5m/s$, $v_{\beta}'=-0.5m/s$ 鱼成正立放大 2 倍的虚像,像的平移速度为 15m/s;

当 t=0.08s 时, x=-(3/4)f=-30cm, x'=-(4/3)f'=-40cm, $\beta=4/3$, $\alpha=4/3$, v'=(4/3)v=(20/3)m/s, $v_{\alpha}'=(4/9)m/s$, $v_{\beta}'=-(2/9)m/s$, 鱼成正立放大 4/3 倍的虚像,像的平移速度为 20/3 m/s;

当 t=0.1s 时 , x=-f=-40cm , x'=-f'=-30cm , $\beta=1$, $\alpha=3/4$, v'=(3/4)v=(15/4)m/s , $v_{\alpha}'=(3/16)m/s$, $v_{\beta}'=-(1/8)m/s$ 鱼成正立等大的虚像,像的平移速度为15/4 m/s;

时间t	鱼的位	像的位置 x'	横向放	纵向放	像的平	像的纵向增	像的横向增
(s)	置 x	(cm)	大倍率	大倍率	移速度	 长速率 v _a '	长速率 v _g '
	(cm)		β	α	v'	$ \mathcal{K} + \mathcal{V}_{\alpha} $	$\mathcal{L} \stackrel{\mathcal{L}}{=} \mathcal{L}_{\beta}$
					(m/s)	(m/s)	(m/s)
0	10	120 (实)	-4	-12	60	12	-2
0.02	0	8	\	\	\	\	\
0.04	-10	-120(虚)	+4	-12	60	-12	-2
0.06	-20	-60 (虚)	+2	-3	15	-1.5	-0.5
0.08	-30	-40 (虚)	+4/3	-4/3	20/3	-4/9	-(2/9)
1	-40	-30(虚)	+1	-3/4	15/4	-3/16	-(1/8)

1-11

解

(1) 根据题意,字在玻璃球面 O1 点处,如图,左半球面对字无成像作用,只考虑右半球对字的成像作用。由题可知:s = 20cm 曲率半径 r = -10cm , n = 1.5 n' = 1

由高斯公式:
$$\frac{n}{s} + \frac{n'}{s'} = \frac{n'-n}{r}$$
 得 $s' = -40cm$

$$\beta = -\frac{ns'}{n's} = -\frac{1.5 \times (-40)}{1 \times 20} = 3$$

故,看到的字在距离左球面顶点向左 20cm 处,垂轴放大率为 3,为正立放大的虚像。

(2) 当半球的平面放在字典上时,字在球心上,从球心发出的光线经过球面,光线方向与球面法线方向一致,所以字与像重合,均处于球心;

$$s = 10cm$$
 $s' = -10cm$ $\beta = -\frac{ns'}{n's} = -\frac{1.5 \times (-10)}{1 \times 10} = 1.5$

故,看到的字为正立放大的虚像,垂轴放大率为1.5。

当半球的球面放在字典上,球面对字无成像作用,只考虑平面对字的成像作用,平面的半径为无穷大,因此其光焦度为零:

$$\phi = \frac{n' - n}{r} = 0 \qquad s = 10cm \qquad n = 1.5 \qquad n' = 1$$

$$\frac{n}{s} + \frac{n'}{s'} = 0 \qquad \text{aff} \quad s' = -6.7cm$$

$$\beta = -\frac{ns'}{n's} = -\frac{1.5 \times (-6.7)}{1 \times 10} = 1$$

所以看到的字在平面左侧 6.7cm 处,垂轴放大率为 1,为正立等大的虚像。

设题中情况如图所示,光线在左半球发生折射现象,在右半球发生反射现象,然后一部分光 发生折射,一部分光发生反射现象。

在近轴情况下,

第一次发生折射现象:以A'为顶点

物方焦点:
$$f_1 = \frac{nR}{n'-n} = 2R$$

像方焦点:
$$f_1' = \frac{n'R}{n'-n} = 3R$$

由高斯定理:
$$\frac{f_1}{s_1} + \frac{f_1'}{s_1'} = 1$$
, 解得, $s_1' = 3R$

故光线经过第一次折射后,像位于 F'处,且|AF'|=R

第二次发生反射现象:由图可知,以 A 为项点, $s_2 = -R$

$$f_2 = \frac{R}{2}$$
,由高斯定理: $\frac{1}{s_2} + \frac{1}{s_2} = \frac{1}{f_2}$,解得 $s_2' = \frac{R}{3}$,

故光线经过反射后,会聚于 B 处,且 $|AB|=\frac{R}{3}$,

第三次,光线会聚于 B 处后,在近轴情况下,光发生折射,以图中 A'为顶点, $s_4 = \frac{5R}{3}$,

$$f_1 = 2R$$
, $f_1' = 3R$, 由高斯定理: $\frac{f_1}{s_4} + \frac{f_1'}{s_4'} = 1$,解得, $s_4' = -15R$, 光线发散;

而人眼在图中左侧看到的像为虚像,像位于球外距镀铝面顶点 R处,即为 F'处

在离轴情况下一部分光发生折射,如上所述情况,另一部分光发生反射,由图可知,以 A

为顶点,
$$s_3 = \frac{R}{3}$$
, $f_3 = \frac{R}{2}$, 由高斯定理: $\frac{1}{s_3} + \frac{1}{s_3'} = \frac{1}{f_3}$, 解得 $s_3' = -R$

故最后所成的像为虚像,像位于球外距镀铝面顶点 R 处,即为 F'处。

讨论:在离轴情况下,光线不会会聚在一点,而是会有像差,如下模拟图所示。

1-15

$$x' = 1cm \qquad \beta = -\frac{f}{x} = -0.5$$

所成像的焦距为 1cm,为倒立缩小的实像。

(2) 如图,由牛顿公式 xx'=ff'

$$x' = 2cm \qquad \beta = -\frac{f}{x} = -1$$

所成像的焦距为2cm,为倒立等大的实像。

(3) 如图,由牛顿公式 xx'=ff'

$$x' = 3cm \qquad \beta = -\frac{f}{x} = -1.5$$

所成像的焦距为3cm,为倒立放大的实像。

(4) 如图, x = 0 $x' = \pm \infty$ 物方焦点与像方无限远共轭

$$\beta = -\frac{x'}{f'} = \mp \infty$$

所成的像在无穷远处。

(5) 如图,
$$x = -\frac{f}{3} = -1cm$$
 由牛顿公式 $xx' = ff'$

$$x' = -6cm \qquad \beta = -\frac{f}{x} = 3$$

所成像的焦距为-6cm,为正立放大的虚像。

(6) 如图,
$$x = -2f = -6cm$$
 由牛顿公式 $xx' = ff'$

$$x' = -1cm \qquad \beta = -\frac{f}{x} = 0.5$$

所成像的焦距为 -1cm, 为正立缩小的实像。

(7) 如图,
$$x = -2f = 6cm$$
 由牛顿公式 $xx' = ff'$

$$x' = 1cm \qquad \beta = -\frac{f}{x} = 0.5$$

所成像的焦距为 1cm,为正立缩小的虚像。

(8) 如图, x = 0 $x' = \pm \infty$ 物方焦点与像方无限远共轭

$$\beta = -\frac{x'}{f'} = \pm \infty$$

所成的像在无穷远处。

(9) 如图, x = f = -3cm

由牛顿公式 xx'=ff'

$$x' = -2cm \qquad \beta = -\frac{f}{x} = -1$$

所成像的焦距为 -2cm, 为倒立等大的虚像。

1-17

解:

由题意可知,第一次成像中 $f_1 = 4cm$, $s_1 = 6cm$,由高斯公式得:

$$\frac{1}{s_1} + \frac{1}{s_1} = \frac{1}{f_1}$$
, 解得 $s_1' = 12cm$

第二次成像: $f_2 = -4cm$, $s_2 = -(12-d)cm$, $s_2' = -(d+4)cm$, 由高斯公式得:

$$\frac{1}{s_2} + \frac{1}{s_2} = \frac{1}{f_2}$$
, 解得 $d = 4cm$

1-19

解: 由题意可知,薄透镜 L_1 为凸透镜,设对 L_1 有焦距 f_1 , f_1 ',系统的物距 s,像距 s',对 L_2 有 焦距 f_2 , f_2 ',系统的物距 $s_2=s_1$, 像距 s_2 '=(s'-20)mm,由 $\beta=-1$, 可知所成像为倒立等大实像。

$$s = 2f_1$$
, $\beta = -\frac{s'}{s} = -1$ $s = s'$

$$\beta = -\frac{s_2'}{s_2} = -\frac{s'-20}{s} = -\frac{3}{4}$$

解得 s = 80mm 由 $s = 2f_1$ $f_1 = f_1' = 40mm$

对透镜 L_2 ,物距 $s_3 = -s$ ′,像距 s_3 ′= s_2 ′=s′-20

由高斯公式
$$\frac{f_2'}{s_3} + \frac{f_2'}{s_3'} = 1$$
, $f_2 = f_2' = 240mm$

所以薄透镜 $L_{\rm l}$ 的焦距为 40mm, $L_{\rm 2}$ 的焦距为 240mm。

1-21

解: (1) 如图, 其中x' = -1cm 牛顿公式 xx' = ff', 成立;

(2) 如图, 其中x'=1cm 满足牛顿公式 xx'=ff';

(3) 如图, 其中x' = -3cm 满足牛顿公式 xx' = ff';

(4) 如图,其中x'=1cm 满足牛顿公式 xx'=ff';

1-23

解:作图法

计算法:
$$\Delta = F_1'F_2 = -(4/3)a$$
 $d = (f_1' + f_2)/3 = (2/3)a$

设第一个透镜主点为 H_1 ,第二个透镜主点为 H_2

$$H_1H = f_1'\frac{d}{\Delta} = -\frac{1}{2}a$$

$$H_2H' = f_2' \frac{d}{\Delta} = -\frac{1}{2}a$$

所以目镜的主点H在第一个透镜右边a/2处,主点H'在第二个透镜的左边a/2处,

$$f' = -\frac{f_1'f_2'}{\Delta} = \frac{3}{4}a$$

$$f = -\frac{f_1 f_2}{\Delta} = \frac{3}{4}a$$

所以目镜的物方焦点在第一透镜左边a/4,像方焦点在第二透镜右边边a/4

解: (1) 由题意可知, $r_1 = \infty$, $r_2 = 26cm$, $n_1 = n_2' = 1$, $n_1' = n_2 = n = 1.52$,

则组合系统的光焦度为 $\Phi_1 = \frac{n_1' - n_1}{r_1} = 0$, $\Phi_2 = \frac{n_2' - n_2}{r_2} = 2$

组合系统的矩阵为:

$$S = R_2 T_{21} R_1 = \begin{pmatrix} 1 & \Phi_2 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -\frac{d}{n_1} & 1 \end{pmatrix} \begin{pmatrix} 1 & \Phi_1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -\frac{1}{50} & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} \frac{24}{25} & 2 \\ -\frac{1}{50} & 1 \end{pmatrix}$$

验证 $\det S = \frac{24}{25} + \frac{1}{25} = 1$,计算无误;

则顶主距
$$l_H = \frac{n_1(s_{11}-1)}{s_{12}} = -2cm$$
, $l'_{H'} = \frac{n_2'(s_{22}-1)}{s_{12}} = 0$,

$$f = \frac{n_1}{s_{12}} = 0.5m$$
, $f' = \frac{n'_2}{s_{12}} = 0.5m$,

故,主点距平面 2cm,在其右方 2cm 处,主点 2 在球面处,焦距为 50cm;

(2) 作图法:

计算法:

由(1)可得顶焦距为:
$$l_F = \frac{n_1 s_{11}}{s_{12}} = 48 cm$$
 , $l'_{F'} = \frac{n'_2 s_{22}}{s_{12}} = 50 cm$,

由题可知, 物距为: s = 75 + 2 = 77cm, $x = s - l'_{F'} = 77 - 50 = 27cm$,

由高斯定理:
$$\frac{1}{s} + \frac{1}{s'} = \frac{1}{f}$$
, 解得: $s' = \frac{3850}{27} = 142.6cm$

横向放大倍率:
$$\beta = \frac{-s'}{s} = -\frac{50}{27} = -1.85$$

由牛顿公式:
$$xx' = ff'$$
, 解得 $x' = \frac{ff'}{x} = \frac{50 \times 50}{27} = 92.6cm$

故,物体成像与距离 H' 142.6cm 处,为放大倒立的像,横向放大率为 1.85;像距为 92.6cm。

1-26 薄透镜 L_1 和 L_2 共轴放在空气中,焦距分别为 f_1 '=20cm, f_2 '=30cm,两者相距 10cm,物在 L_1 左侧 10cm 处,试用矩阵方法求:

- (1) 像的位置、虚实和放大率;组合系统的主点、焦点,并用作图法验证之;
- (2) 若物在 L₁ 左侧 100cm 处,情况会怎样?

解:

(1) 由题意可知,薄透镜组位于空气中, $n_1' = n_2 = n_1 = n_2' = n = 1$,而薄透镜的光焦度为

$$Φ1 = \frac{n}{f_1}, Φ_2 = \frac{n}{f_2}$$
 组合系统的矩阵为:

$$S = R_2 T_{21} R_1 = \begin{pmatrix} 1 & \Phi_2 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -\frac{d}{n_1} & 1 \end{pmatrix} \begin{pmatrix} 1 & \Phi_1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & \frac{1}{30} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -10 & 1 \end{pmatrix} \begin{pmatrix} 1 & \frac{1}{20} \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} \frac{2}{3} & \frac{1}{15} \\ -10 & \frac{1}{2} \end{pmatrix}$$

验证
$$\det S = \frac{1}{3} + \frac{2}{3} = 1$$
,计算无误;

则顶主距
$$l_H = \frac{n_1(s_{11}-1)}{s_{12}} = -5cm$$
, $l'_{H'} = \frac{n_2'(s_{22}-1)}{s_{12}} = -7.5cm$,

焦距:
$$f = \frac{n_1}{s_{12}} = 15cm$$
, $f' = \frac{n'_2}{s_{12}} = 15cm$,

像距:
$$l' = n_N' \frac{s_{21} - \left(\frac{l}{n_1}\right) s_{22}}{s_{11} - \left(\frac{l}{n_1}\right) s_{12}} = \frac{-10 - (10)?\frac{1}{2}}{\frac{2}{3} - \left(\frac{10}{1}\right).\frac{1}{15}} = \frac{-15}{0} = \infty$$

横向放大率:
$$\beta = \frac{1}{s_{11} - \left(\frac{l}{n_1}\right) s_{12}} = \frac{1}{\frac{2}{3} - \left(\frac{10}{1}\right) \times \frac{1}{15}} = \frac{1}{0} = \infty$$

故,主点 H 距透镜 L_1 5cm,在其右侧 5cm 处,主点 H'在透镜 L_2 左侧 7.5cm 处,焦距为 15cm;物恰好位于物方焦点处,故像距为无穷远处,横向放大率也为无穷远大。

作图如下:

(2) 若物在 L₁ 左侧 100cm 处,

像距:
$$l' = n_N' \frac{s_{21} - \left(\frac{l}{n_1}\right) s_{22}}{s_{11} - \left(\frac{l}{n_1}\right) s_{12}} = \frac{-10 - (100) \times \frac{1}{2}}{\frac{2}{3} - \left(\frac{100}{1}\right) \times \frac{1}{15}} = 10cm$$

横向放大率:
$$\beta = \frac{1}{s_{11} - \left(\frac{l}{n_1}\right) s_{12}} = \frac{1}{\frac{2}{3} - \left(\frac{100}{1}\right) \cdot \frac{1}{15}} = -\frac{1}{6}$$

故像位于透镜 L_2 右侧 10cm 处,横向放大率为-1/6,成倒立缩小的实像。

作图如下:

解: 由球面光焦度公式: $\Phi = \frac{n'-n}{r}$, 得

$$\Phi_1 = \frac{n_L - 1}{R} = 12.5D$$
, $\Phi_2 = \frac{1 - n_L}{-R} = 12.5D$, $d = 2R = 0.08m$

$$S = R_2 T_{21} R_1 = \begin{bmatrix} 1 & \Phi_2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -\frac{d}{n_L} & 1 \end{bmatrix} \begin{bmatrix} 1 & \Phi_1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 12.5 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -\frac{4}{75} & 1 \end{bmatrix} \begin{bmatrix} 1 & 12.5 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{3} & \frac{50}{3} \\ -\frac{4}{75} & \frac{1}{3} \end{bmatrix}$$

验证:
$$detS = \frac{1}{9} + \frac{50}{3} \times \frac{4}{75} = 1$$
 , 无误;

项主距: 项主距
$$l_H = \frac{n_1(s_{11}-1)}{s_{12}} = -4cm$$
, $l'_{H'} = \frac{n_2'(s_{22}-1)}{s_{12}} = -4cm$,

焦距:
$$f = \frac{n_1}{s_{12}} = 6cm$$
, $f' = \frac{n'_2}{s_{12}} = 6cm$,

横向放大率:
$$\beta = \frac{1}{s_{11} - \left(\frac{l}{n_1}\right) s_{12}} = -1.5$$
,成放大的实像。

作图法如下:

1-29

解

(1)由于 P_1P_2 是 D_1D_2 对 L 的物方共轭,则 s'=10mm , f=f'=30mm ,由高斯公式:

$$\frac{1}{s} + \frac{1}{s'} = \frac{1}{f}$$
 解得 $s = -15mm$,即 P_2P_2 在透镜右侧 15mm 处;

横轴放大率:
$$\beta = -\frac{fs'}{f's} = -\frac{10}{-15} = \frac{2}{3}$$
,则 P_2P_2 孔径为 $D=24\times3/2=36$ mm

设 P₂P₂与光轴交点为 A1, D2D2 的交点为 A2, 由几何关系得:

$$\frac{A_1 P_2}{A_0 A_1} = -\frac{A_1 P_2 - D_1 D_1 / 2}{O A_1}$$

其中 A_1P_2 = P_2P_2 / 2,解得 A_0A_1 =90mm ,即 A0 在透镜左侧 75mm 处;

此时,对成像光束起限制作用的是 D_1D_1 , D_1D_1 在物像方共轭均为本身,系统孔径光阑,入瞳,出瞳均为 D_1D_1 ,并且,入瞳中心为 D_2P_2 即为入窗, D_2D_2 是 P_2P_2 对 D_2 的像方共轭,故 D_2D_2 为出窗和视场光阑。

(2)同理可得
$$\frac{D_1O}{OA_0} = \frac{D_1O - D_2D_2/2}{OA_2}$$
,

解得 OA₀'=50mm,即 AO 在透镜右侧 50mm 处;

此时,对成像光束起限制作用的是 D_2D_2 , D_2D_2 为系统孔径光阑、出瞳,入瞳为 P_2P_2 ,并且,出瞳中心为 O', D_1D_1 为出窗, D_1D_1 在系统的物方共轭为本身,故系统入窗、出窗、视场光阑均为 D_1D_1 。

1-31

解:

由题意有: f = f' = 4cm, s' = 12cm 高斯公式有: $\frac{1}{s_1} + \frac{1}{s_1'} = \frac{1}{f}$, 解得 s = 6cm, 如图, 光

阑 D1D1'相对于薄透镜 L1 的物方共轭为 P1'P,故 P1'P1 在距 L1 左侧 6cm 处,L1 对自身成像,与自身完全重合。

连接光阑 L1 与 P1'P1 的边缘,分别交光轴于 HH',可看出:

当物点在光轴 H 和 H'之间时,物点对光阑 L1 的张角比 P1'P1 小,所以系统的孔径光阑、入瞳、出瞳均为 L1,此时入瞳中心为 O, O 对 P1'P1 的张角比 L1 小,所以系统的入窗为 P1'P1, 出窗和视场光阑为 D1'D;

当物点在光轴 HH'以外时,物点对 P1'P1 的张角比光阑 L1 小,所以系统的孔径光阑、出瞳。入瞳为 P1'P1,此时入瞳中心为 P, P 对 L1 的张角比 P1'P1 小,所以系统的入窗和视场光阑为 L1,出窗为 L1'。

(2) 如图连接入瞳和入窗边缘,交物平面于 E1,E2,能看到的范围为|E1E2|

设瞳孔孔径为 D'
$$x'=12-4=8cm$$
 放大倍率为: $\beta=-\frac{x'}{f'}=-2$

设 P1'P1 孔径为 D",
$$|\beta| = \frac{D'}{D"} = 2$$
,

利用三角形相似:
$$\frac{\left|E_1E_1\right|'}{\frac{D}{2}-\frac{D"}{2}}=\frac{6-4}{6} \ \ \text{,} \ \ \left|E_2E_2\right|'=\left|E_1E_1\right|'=1-D'/12$$

解得: $|E_1E_2|=2|E_1E_1|+D"=(2+D'/3)$ cm ,所以,能观察到直径为(2+D'/3)cm 的圆形范围。若忽略瞳孔孔径的影响,能观察到的是直径为2cm 的圆形范围。

1-33

解: 薄透镜的焦距为:

$$f = \frac{n}{(n_L - n)\frac{1}{r_1} + (n' - n_L)\frac{1}{r_2}} \qquad f' = \frac{n'}{(n_L - n)\frac{1}{r_1} + (n' - n_L)\frac{1}{r_2}}$$

薄透镜在空气中使用:

$$f = f' = \left(\left(\frac{n_L}{n} - 1 \right) \left(\frac{1}{r_1} - \frac{1}{r_2} \right) \right)^{-1}$$

带入 n_L =1.51390, n_D =1.51630, n_F =1.52196,

可得 f_{C} '= 972.95194mm , f_{D} '= 968.42921mm , f_{F} '= 957.927811mm

轴向色差: ΔL_{CF} '= f_C '- f_F '=15.024126mm。

1-35

解: (1) f_D '=10cm > 0,正透镜用冕玻璃,负透镜用火石玻璃,故 v_1 = 64.1, v_2 = 36.3,

$$n_{1D} = 1.5163$$
, $n_{2D} = 1.6199$

$$f_{1D}' = \frac{v_1 - v_2}{v_1} f_D' = 4.3370cm$$
, $f_{2D}' = -\frac{v_1 - v_2}{v_2} f_D' = -7.6584cm$

$$K_1 = \frac{1}{f_{1D}'(n_{1D} - 1)} = 0.446$$
, $K_2 = \frac{1}{f_{2D}'(n_{2D} - 1)} = -0.2106$

由题意有: $r_3 = \infty$, $k_1 = \frac{1}{r_1} - \frac{1}{r_2}$, $k_2 = \frac{1}{r_2}$, 解得: $r_1 = 4.24cm$, $r_2 = -4.75cm$

(2) $f_{_D}$ '=-10cm<0,正透镜用火石玻璃,负透镜用冕玻璃,故 $v_{_1}$ =36.3, $v_{_2}$ =64.1,

$$n_{1D} = 1.6199$$
, $n_{2D} = 1.5163$

$$f_{1D}' = \frac{v_1 - v_2}{v_1} f_D' = 7.6584cm$$
, $f_{2D}' = -\frac{v_1 - v_2}{v_2} f_D' = -4.3370cm$

$$K_1 = \frac{1}{f_{1D}'(n_{1D} - 1)} = 0.21$$
, $K_2 = \frac{1}{f_{2D}'(n_{2D} - 1)} = -0.45$

由题意有:
$$r_3 = \infty$$
, $k_1 = \frac{1}{r_1} - \frac{1}{r_2}$, $k_2 = \frac{1}{r_2}$, 解得: $r_1 = -4.24cm$, $r_2 = -2.24cm$

1-37

解:

简易图像为:

其中, D 为入瞳直径, d 为底片上斑点直径, S1'、S2'分别为 S1=10m, S2=-8m,由高斯公式:

$$\frac{1}{s_1} + \frac{1}{s_1'} = \frac{1}{f}, \quad \frac{1}{s_2} + \frac{1}{s_2'} = \frac{1}{f}$$

由几何关系有:

$$\frac{d}{D} = \frac{s_1' - s_2'}{s_2'}$$

联立以上公式可得: $s_1 = \frac{10}{99}m$, $s_2 = \frac{8}{81}m$, D = 4.4mm, 则 $\frac{D}{f} = \frac{4.4}{100} = \frac{1}{22.73} < \frac{1}{2.8}$,

故应取光圈 2.8。

1-39

解: 查询书中表 1-7-3 XJ-16 金相显微镜的惠更斯目镜 可知,三种目镜的线视场为 L1=19, L2=13.6, L3=9.3;

设三种目镜对应的显微镜的线视场为 D1,D2,D3, 物镜的放大倍数为 $\left|oldsymbol{eta}_{
m ob}
ight|$, $\left|oldsymbol{eta}_{
m ob}
ight|$ =45,

 $\pm \left| eta_{
m ob} \right| = L / D$,

解得: D_1 = L_1 / $|\beta_{ob}|$ =0.42mm , D_2 = L_2 / $|\beta_{ob}|$ =0.30*mm* , D_3 = L_3 / $|\beta_{ob}|$ =0.21mm 所以这三种目镜分别与 45 倍的消色差物镜配合使用,显微物镜的线视场分别为 0.42mm, 0.30mm, 0.21mm.

1-41

解:

设入射光线与水平轴夹角,相对于物镜为 ω ,其对目镜的夹角为 $-\omega$ '望远系统的目镜的物方焦点与物镜的像方焦点几乎重合,且 ω 很小,由旁轴近似:

$$\omega = -y / f_{ob}', -\omega' = -y / f_{oc}',$$

且由角放大率公式有: $1/\gamma = \omega/\omega' = -f_{oc}'/f_{ob}'$

如图,由相似三角形得: $l_0 / l_E = -f_{ob} ' / f_{oc} '$

则
$$\beta=l_E/l_0=-f_{oc}$$
 '/ f_{ob} '

故
$$\beta$$
=1 / γ = $-f_{oc}$ '/ f_{ob} ' 得证

1-43

解:

证明:由几何关系得: $i_2+i_3=60^\circ$, $\delta=i_1-i_4+60^\circ$

$$\frac{d\delta}{di_1} = 1 - \frac{di_4}{di_1}$$
,可以证明, $\frac{d^2\delta}{di_1^2} = \frac{d^2i_4}{di_1^2} > 0$

所以产生最小偏向角的充要条件是 $\frac{d\delta}{di_1}$ =0,即 $\frac{di_4}{di_1}$ =1,

按折射定律: $n\sin i_2 = \sin i_1$, $n\sin i_3 = \sin i_4$

取微分后得: $n\cos i_2 di_2 = \cos i_1 di_1$, $n\cos i_3 di_3 = \cos i_4 di_4$

由上述两式得:
$$\frac{di_4}{di_1} = \frac{\cos i_1 \cos i_3}{\cos i_2 \cos i_4} \frac{di_3}{di_2}$$
,

又
$$i_2+i_3=60^\circ$$
, $di_3=-di_2$,所以 $\frac{di_4}{di_1}=\frac{\cos i_1\cos i_3}{\cos i_2\cos i_4}$,

故产生最小偏向角的条件为
$$\frac{\cos i_1\cos i_3}{\cos i_2\cos i_4}$$
=-1,写成 $\frac{\cos i_1}{\cos i_2}$ =- $\frac{\cos i_4}{\cos i_3}$,

左右平方得到:
$$\frac{1-\sin^2 i_1}{\mathrm{n}^2-\sin^2 i_1} = -\frac{1-\sin^2 i_4}{\mathrm{n}^2-\sin^2 i_4}$$
 , 等式只有 $i_1=i_4$ 时才成立,故

$$\delta_{\text{max}} = i_1 - i_4 + 60^{\circ} = 60^{\circ}$$

又因
$$\sin i_4 = n \sin i_3 = n \sin \left(60^\circ - i_2\right) = \frac{\sqrt{3}}{2} \sqrt{n^2 - \sin^2 i_1} - \frac{1}{2} \sin i_1$$

所以
$$\sin i_1 = \sin i_4 = \frac{\sqrt{3}}{2} \sqrt{n^2 - \sin^2 i_1} - \frac{1}{2} \sin i_1$$
,解得 $i_1 = \arcsin \frac{n}{2}$

故,当入射角 i_1 与材料折射率 n 满足 i_1 =arcsin $\frac{n}{2}$ 时,对于不同波长的光线(对应材料折射率 n 不同),棱镜最小偏角横为 60° 。

1-45

解:

(1)光通量:
$$\Phi_{\lambda} = KmV(\lambda)\Psi = 683 \times 0.240 \times 3 \times 10^{-3} = 0.49176[lm]$$

立体角: $\Delta\Omega \approx \pi(\Delta\theta)^2$

发光强度:
$$I = \frac{\Delta \Phi_{\lambda}}{\Delta \Omega} = \frac{0.49176}{\pi (10^{-3})^2} = 1.565 \times 10^5 [cd]$$

沿轴线方向亮度:
$$L = \frac{\mathrm{d}I}{\mathrm{ds}\,\cos\theta} = \frac{\mathrm{d}I}{\frac{\pi}{4}(D)^2 \times 1} = \frac{1.565 \times 10^5}{\frac{\pi}{4}(10^{-3})^2 \times 1} = 1.993 \times 10^{11} [cd \cdot m^{-2}]$$

(2)

$$E = \frac{I\cos\theta}{I^2}, \quad \theta \approx 0^0$$

$$E = \frac{I}{l^2} = \frac{1.565 \times 10^5}{10^2} = 1.565 \times 10^3 (1x)$$

故照度为 $1.565 \times 10^3 (lx)$ 。

(3)
$$L' = \tau L \left(\frac{n'}{n}\right)^2$$
, 根据题意, $n' = n$, 故 $\tau = \frac{L'}{L} = \frac{1}{1.993 \times 10^{11}} = 5.02 \times 10^{12}$

解:

(1) 太阳的视角为 32',接近于平行光, 故: $x' \approx f' = 12.5cm$

$$\frac{d}{2} = x' \cdot \tan 16' = 0.0582cm$$

解得: *d* ≈ 1.16*mm*

故太阳像的直径为 1.16mm。

(2)当物距 x 为无穷大时,辐照度:

$$E_{\rm v} = \frac{\pi \tau B_{\rm e}}{4} \left(\frac{D}{f}\right)^2 = \frac{\pi 0.85 \times 3 \times 10^6}{4} \left(\frac{0.1}{0.125}\right)^2 = 1.28 \times 10^6 \text{ w/m}^2$$

辐通量:
$$\Phi = E_v S = E_v \times \pi \times \left(\frac{d}{2}\right)^2 = 1.35W$$

(3) 我们知道太阳在一定程度上可以看成余弦辐射体,故满足:

$$E' = \pi B_e \sin^2 \mathbf{u}' \approx \pi B_e (\frac{d}{2f})^2$$

$$N = \frac{E}{E'} = \frac{\pi \tau B_e \left(D / 2f \right)^2}{B_e \pi \left(d / 2f \right)^2} = \left(\frac{D}{d} \right)^2 \cdot \tau$$

故:
$$N = \left(\frac{D}{d}\right)^2 \cdot \tau = \left(\frac{100}{1.16}\right)^2 \cdot 0.85 = 6.32 \times 10^3$$

即太阳像的辐照度是太阳直接正射地面时辐照度的6.32×10³倍。

1-49

解:太阳为余弦发光体:

$$E = \iint_{S} \frac{Bds \cos \theta \cos \theta'}{r^2}$$

$$ds = \frac{4\pi D^2}{2}\sin\theta d\theta$$

由于太阳光垂直照射地面, $\cos\theta'=1$,太阳余弦发光体可等效亮度均匀的圆盘:

$$E = \iint_{S} \frac{2\pi D^2 B \sin \theta \cos \theta}{r^2} d\theta = \frac{2\pi D^2 B}{r^2} \int_{0}^{\frac{\pi}{2}} \sin \theta \cos \theta d\theta = \frac{4\pi D^2 B}{r^2}$$

故,
$$B = \frac{Er^2}{4\pi D^2} = \frac{10^5 (1.5 \times 10^{11})^2}{4\pi (1.4 \times 10^9)^2} = 1.5 \times 10^9 \text{ (cd/m}^2)$$

1-51

解: 设录像管的像面照度为 Ev,天空亮度为 L,录像机镜头的入瞳直径为 D,物方焦距为 f, $Ev_{min}=20lx$, $L=0.25cd/cm^2$,光圈数值 N=f/D, 远距离摄影时,

$$E\mathbf{v} = \frac{T\pi L}{4} \left(\frac{D}{f}\right)^2 = \frac{T\pi L}{4} \left(\frac{1}{N}\right)^2$$

取 Ev= Evmin 时,解得 N=8.29, D/f=0.12,

故录像机镜头的光圈应选镜头上刻度的光圈数标记值为 8 的档位,即使用相对孔径大于等于 0.12 的摄影物镜;因为像面照度 Ev 与相对孔径 D/f 成正相关,因此录像管要求的最低像面照度为 20lx 时,对应录像机镜头的最低相对孔径应为 0.12。

1-53

解: 由题意知: 当光圈由 f2 变为 f2.8 时,快门时间需增加:

$$(1/100) \times 2 = (1/50)s$$

此时原底片在光度方面能达到满意,由于底片由 21°DIN 变成 18°DIN,因此快门时间应变成为:

$$(1/50) \times 2 = (1/25)s$$

故快门时间用 0.04s。