一、计数过程与泊松过程

在天文,地理,物理,生物,通信,医学, 计算机网络,密码学等许多领域,都有关于随 机事件流的计数问题,如:

盖格记数器上的粒子流;

电话交换机上的呼唤流;

计算机网络上的(图象,声音)流;

编码(密码)中的误码流;

交通中事故流;

细胞中染色体的交换次数,...

均构成以时间顺序出现的事件流 A1,A2,...

定义3.3.1 随机过程{N(t), $t \ge 0$ }称为计数过程(Counting Process),如果N(t)表示在(0, t)内事件A 出现的总次数.

计数过程应满足:

(1) $N(t) \ge 0$;

- (2) N(t) 取非负整数值;
- (3) 如果s < t,则 $N(s) \le N(t)$;
- (4) 对于s < t, N(t) -N(s)表示时间间隔(s, t) 内事件出现的次数.

Poisson过程是一类很重要的计数过程.

Poisson过程数学模型:

电话呼叫过程 设N(t)为[0,t)时间内到达的呼叫次数,其状态空间为

$$E=\{0, 1, 2, ...\}$$

此过程有如下特点:

- 1) 零初值性 N(0)=0;
- 2) 独立增量性任意两个不相重叠的时间间隔内到达的呼叫次数相互独立;

- 3) 齐次性 在(s, t)时间内到达的呼叫次数仅与时间间隔长度t —s 有关,而与起始时间 s 无关;
- 4)普通性 在充分小的时间间隔内到达的呼叫次数最多仅有一次,即对充分小的 Δt ,有

$$P\{N(\Delta t) = 0\} = p_0(\Delta t) = 1 - \lambda \Delta t + o(\Delta t),$$

$$P\{N(\Delta t) = 1\} = p_1(\Delta t) = \lambda \Delta t + o(\Delta t),$$

$$P\{N(\Delta t) \geq 2\} = \sum_{k=2}^{\infty} p_k(\Delta t) = o(\Delta t),$$

其中λ>0.

定义3.3.2 设计数过程 $\{N(t), t \geq 0\}$ 满足:

- (1) N(0)=0;(2) 是平稳独立增量过程;
- (3) $P{N(h)=1}=\lambda h+o(h), \lambda>0;$
- $(4) P{N(h) \ge 2} = o(h).$

称 $\{N(t),t≥0\}$ 是参数(或速率,强度)为λ的 齐次泊松过程.

EX.1 在数字通信中误码率 λ 是重要指标,设{N(t), $t \ge 0$ }为时间段[0, t)内发生的误码次数,{N(t), $t \ge 0$ }是计数过程,而且满足

- (1) 初始时刻不出现误码是必然的, 故N(0)=0;
- (2) 在互不相交的区间 $[0,t_1),[t_1,t_2),\cdots,[t_{n-1},t_n), \quad 0 < t_1 < t_2 < \cdots < t_n$

出现的误码数互不影响, 故N(t)独立增量过程.

在系统稳定运行的条件下,在相同长度区间内出现k个误码概率应相同,故可认为N(t)是增量平稳过程.

${N(t), t≥0}$ 是平稳独立增量过程;

(3)认为At时间内出现一个误码的可能性与区间长度成正比是合理的,即有

$$P{N(\Delta t)=1}=\lambda \Delta t + o(\Delta t), \lambda>0;$$

(4) 假定对足够小的 Δt 时间内,出现两个以上误码的概率是关于 Δt 的高阶无穷小也是合理的,有

$$P\{N(\Delta t)\geq 2\}=o(\Delta t).$$

终上所述,可用Poisson过程数学模型描述通信系统中误码计数问题.

可认为

 ${N(t), t≥0}$ 是强度为 λ 的泊松计数过程.

定理3.3.1 齐次泊松过程 $\{N(t),t\geq 0\}$ 在时间间隔 (t_0,t_0+t) 内事件出现n 次的概率为

$$P\{[N(t_0+t)-N(t_0)]=n\}=\frac{(\lambda t)^n}{n!}e^{-\lambda t}, (n=0,1,2,\cdots)$$

§ 3.3 泊松过程(一)

证 记
$$P_n(t) = P\{N(t) = n\} = P\{[N(t) - N(0)] = n\}$$

$$= P\{N(t_0 + t) - N(t_0) = n\} \quad (1)$$

10 由条件(2)~(4), 得:

$$P_0(t+h)=P\{N(t+h)=0\}=P\{N(t)=0,N(t+h)-N(t)=0\}$$

$$= P{N(t)=0} P{N(t+h) -N(t)=0}$$

 $=P_0(t)[1-\lambda h+o(h)]$

$$\Rightarrow \frac{P_0(t+h)-P_0(t)}{h} = -\lambda P_0(t) + \frac{o(h)}{h}$$

§ 3.3 泊松过程(一)

$$\diamondsuit h \to 0$$
,得

$$\begin{cases} \frac{dP_0(t)}{dt} = -P_0(t)\lambda \\ P_0(0) = 1, \quad (\$#(1) N(0) = 0) \end{cases}$$

解得

$$p_0(t) = e^{-\lambda t}, \quad t \ge 0.$$

2° 当n≥1,根据全概率公式有

$$p_n(t+h) = p_n(t)p_0(h) + p_{n-1}(t)p_1(h) + o(h)$$

$$p_n(t+h) = (1-\lambda h)p_n(t) + \lambda hp_{n-1}(t) + o(h)$$

$$\Rightarrow \frac{P_n(t+h) - P_n(t)}{h} = -\lambda P_n(t) + \lambda P_{n-1}(t) + \frac{o(h)}{h}$$

两边同乘以elt后移项整理得

$$\frac{d[e^{\lambda t}P_n(t)]}{dt} = \lambda e^{\lambda t}p_{n-1}(t)$$
 (2)

$$\begin{cases} \frac{d[e^{\lambda t}P_1(t)]}{dt} = \lambda e^{\lambda t}P_0(t) = \lambda e^{\lambda t}e^{-\lambda t} = \lambda \\ P_1(0) = 0 \end{cases}$$

解得

$$p_1(t) = \lambda t e^{-\lambda t}$$

假设
$$P_{n-1}(t) = \frac{(\lambda t)^{n-1}}{(n-1)!} e^{-\lambda t}$$
 成立

代入(2)式有

$$\frac{d[e^{\lambda t}P_n(t)]}{dt} = \lambda e^{\lambda t}p_{n-1}(t) = \frac{\lambda(\lambda t)^{n-1}}{(n-1)!}$$

$$\Rightarrow e^{\lambda t} P_n(t) = \frac{(\lambda t)^n}{n!} + C$$

利用初始条件 $P_n(0) = 0$,可证得

$$P_n(t) = \frac{(\lambda t)^n}{n!} e^{-\lambda t}$$

对一切n ≥ 0均成立.

定理证明反之亦然, 得泊松过程的等价定义:

定义3.3.2 '设计数过程 $\{N(t), t \geq 0\}$ 满足下述条件:

(1)
$$N(0)=0$$
;

(2) N(t)是独立增量过程;

(3) 对一切0
$$\leq s < t$$
, $N(t)$ $-N(s)$ $\sim P(\lambda(t-s))$, 即
$$P\{[N(t)-N(s)]=k\} = \frac{[\lambda(t-s)]^k}{k!} e^{-\lambda(t-s)},$$

$$(k = 0,1,2,\cdots)$$

注

有
$$P{N(t)=k}=P{[N(t)-N(0)]=k}$$

$$=\frac{\left[\lambda t\right]^k}{k!}e^{-\lambda t},$$

问题 若N(t)的一维分布是泊 $(k = 0,1,2,\cdots)$ 松分布,能否推出第(3)条成立?

EX.2 设{N(t), $t \ge 0$ }是参数为λ的泊松过程,事件A在(0, τ)时间区间内出现n次,试求:

$$P{N(s)=k | N(\tau)=n}, 0 < k < n, 0 < s < \tau$$

解
$$\mathbb{R} = \frac{P\{N(s) = k, N(\tau) = n\}}{P\{N(\tau) = n\}}$$

$$= P\{N(s) = k, N(\tau) - N(s) = n - k\} \cdot n! e^{\lambda \tau} (\lambda \tau)^{-n}$$

$$=e^{-\lambda s}\frac{(\lambda s)^k}{k!}e^{-\lambda(\tau-s)}\frac{[\lambda(\tau-s)]^{n-k}}{(n-k)!}n!e^{\lambda\tau}(\lambda\tau)^{-n}$$

$$= \frac{n!}{k!(n-k)!} \left(\frac{s}{\tau}\right)^k \left(1 - \frac{s}{\tau}\right)^{n-k}$$

$$= C_n^k \left(\frac{s}{\tau}\right)^k \left(1 - \frac{s}{\tau}\right)^{n-k}, \quad k = 0,1,2,\dots,n.$$

二、齐次泊松过程的有关结论

1. 数字特征

因对 $\forall t > 0$, $N(t) \sim P(\lambda t)$.

均值函数
$$m(t) = E\{N(t)\} = \lambda t$$

方差函数
$$D(t) = \lambda t$$

有
$$\lambda = \frac{E\{N(t)\}}{t}$$
 称λ为事件的 到达率

λ是单位时间内事件出现的平均次数.

协方差函数 $C(s,t)=\lambda \min(s,t)$,

相关函数 $R(s,t)=\lambda \min(s,t)+\lambda^2 st$.

§ 3.3 泊松过程(一)

2. 时间间隔与等待时间的分布

用 T_n 表示事件A第n-1次出现与第n次出现的时间间隔.

 W_n 为事件A第n次出现的等待时间(到达时间).

有
$$W_n = \sum_{i=1}^n T_i$$
 和 $T_i = W_{i+1} - W_i$

定理3.3.2 设{ T_n , $n \ge 1$ }是参数为 λ 的泊松过程{N(t), $t \ge 0$ }的时间间隔序列,则{ T_n , $n \ge 1$ }相互独立同服从指数分布,且 $E\{T\}=1/\lambda$.

证 (1) 因 $\{T_1 > t\} = \{(0, t)$ 内事件A不出现}

$$P\{T_1>t\}=P\{N(t)=0\}=e^{-\lambda t}$$

$$F_{T_1}(t) = 1 - P\{T > t\} = 1 - e^{-\lambda t}, \qquad t \ge 0$$

即 T_1 服从均值为 $1/\lambda$ 的指数分布.

(2) 取 $s_k, h_k, k=1,2,...,n$ 满足如下大小关系

$$s_{1} \quad s_{1} + h_{1} \quad s_{2} \quad s_{2} + h_{2} \quad s_{k-1} + h_{k-1} \quad s_{k} \quad s_{k} + h_{k}$$

$$P\{s_{k} < W_{k} < s_{k} + h_{k}, k = 1, 2, ..., n\}$$

$$= P\{N(s_{1}) = 0, N(s_{1} + h_{1}) - N(s_{1}) = 1,$$

$$N(s_{2}) - N(s_{1} + h_{1}) = 0, N(s_{2} + h_{2}) - N(s_{2}) = 1,,$$

$$N(s_{n}) - N(s_{n-1} + h_{n-1}) = 0, N(s_{n} + h_{n}) - N(s_{n}) = 1\}$$

$$= e^{-\lambda s_1} \lambda h_1 e^{-\lambda h_1} e^{-\lambda (s_2 - s_1 - h_1)} \lambda h_2 e^{-\lambda h_2} \cdots e^{-\lambda (s_n - s_{n-1} - h_{n-1})} \lambda h_n e^{-\lambda h_n}$$

$$= e^{-\lambda s_n} \lambda^n \prod_{k=1}^n h_k$$

由此得到 $(W_1, W_2, ..., W_n)$ 的联合概率密度函数

$$f_{W_1, W_2, \dots, W_n}(s_1, s_2, \dots, s_n) = \begin{cases} \lambda^n e^{-\lambda s_n}, & 0 < s_1 < s_2 < \dots < s_n, \\ 0, & others. \end{cases}$$

由 $T_k = W_k - W_{k-1}$, k=1,2,...,n, ($W_0 = 0$),可得 $(T_1, T_2, ..., T_n)$ 的联合概率密度函数

$$f_{T_{1},T_{2},\cdots,T_{n}}(t_{1},t_{2},\cdots,t_{n}) = \begin{cases} \prod_{k=1}^{n} \lambda e^{-\lambda t_{k}}, & t_{k} > 0, k = 1,2,\cdots,n \\ 0, t_{k} = 1,2,\cdots,n \end{cases}$$
others.

定理3.3.3 参数为 λ 的泊松过程{ $N(t),t \ge 0$ },事件A第n 次出现的等待时间服从 Γ 分布,其概率密度为:

$$f_{w_n}(t) = \begin{cases} \lambda e^{-\lambda t} \frac{(\lambda t)^{n-1}}{(n-1)!}, & t \ge 0; \\ 0, & t < 0 \end{cases}$$

注: 在排队论中称 W_n 服从n阶爱尔朗分布.

证 因 W_n 是事件A 第 n次出现的等待时间,故

 ${W_n \le t} = {N(t) \ge n} = {(0, t) 内 A 至少出现n次}$

电子科技大学

$$F_{w_n}(t) = P\{W_n \le t\} = \sum_{k=n}^{\infty} \frac{(\lambda t)^k}{k!} e^{-\lambda t}, t \ge 0$$

$$f_{w_n}(t) = F'_{W_n}(t) = \left[\sum_{k=n}^{\infty} \frac{\lambda (\lambda t)^{k-1}}{(k-1)!} - \sum_{k=n}^{\infty} \lambda \frac{(\lambda t)^k}{k!}\right] e^{-\lambda t},$$

$$=\lambda e^{-\lambda t}\,\frac{(\lambda t)^{n-1}}{(n-1)!},\qquad t\geq 0.$$

3. 到达时间的条件分布

§ 3.3 泊松过程(一)

引理3.3.1 设总体X有概率密度f(x), $X_{(1)}$, $X_{(2)}$,… $X_{(n)}$ 是X的简单随机样本生成的顺序统计量(order statistics),其概率密度为

$$p(x_1, x_2, \dots, x_n) = n! f(x_1) f(x_2) \dots f(x_n)$$

$$\stackrel{\text{def}}{=} x_1 < x_2 < \dots < x_n.$$

定理3.3.4 设 $\{N(t),t\geq 0\}$ 是Poisson过程,已知在(0,t]时间内A出现n次,这n次到达时间 $W_1,W_2,...,W_n$ 的联合条件分布密度为

$$f(t_1,t_2,\dots,t_n|N(t)=n) = \begin{cases} \frac{n!}{t^n}, & 0 < t_1 < \dots < t_n \\ 0, & 其他. \end{cases}$$

注 1 在N(t)=n的条件下, $W_1, W_2, ..., W_n$ 的条件分布与n个相互独立同服从[0, t]上均匀分布随机变量 $U_1, U_2, ..., U_n$ 的顺序统计量 $U_{(1)}, U_{(2)}, ..., U_{(n)}$ 有相同分布,即 $\{(W_1, W_2, ..., W_n) | N(t) = n\} \stackrel{d}{=} (U_{(1)}, U_{(2)}, ..., U_{(n)})$

 $W_1, W_2, ..., W_n$ 可视为由相互独立在(0, t)上均匀分布随机变量 $U_1, U_2, ..., U_n$ 所得的顺序统计量.

注2
$$\sum_{k=1}^{n} U_{(k)} = \sum_{k=1}^{n} U_{k}$$

Ex.4 设到达电影院的观众组成强度为 λ 的 Possion流,如果电影从t时刻开演,计算(0,t]内 到达电影院的观众等待时间总和的数学期望.

解 设 W_k 是第k名观众到达时刻,在(0,t)内 到达的观众数为N(t),则总等待时间为

$$\sum_{k=1}^{N(t)} (t - W_k)$$

根据全数学期望公式

$$E[\sum_{k=1}^{N(t)} (t - W_k)] = E\{E[\sum_{k=1}^{N(t)} (t - W_k) | N(t)]\}$$

对 $\forall n \geq 1$,

$$E[\sum_{k=1}^{N(t)} (t - W_k) | N(t) = n] = nt - E[\sum_{k=1}^{N(t)} W_k | N(t) = n]$$

由定理3.4.3 知 $W_1, W_2, ..., W_n$ 与 [0, t]上 均匀分布相互独立随机变量的顺序统计量 $U_{(1)}, U_{(2)}, ..., U_{(n)}$ 有相同的分布函数.

$$E[\sum_{k=1}^{N(t)} W_k | N(t) = n]$$

随机变量函数的条件期望公式

$$= \int_{0 < t_1 < t_2 < \cdots < t_n < t} (\sum_{k=1}^n t_k) f(t_1, t_2, \cdots t_n | N(t) = n) dt_1 dt_2 \cdots dt_n$$

$$= E\left(\sum_{k=1}^{n} U_{(k)}\right) = E\left(\sum_{k=1}^{n} U_{k}\right) = \sum_{k=1}^{n} E(U_{k}) = \frac{nt}{2}$$

$$\Rightarrow E\left[\sum_{k=1}^{N(t)} (t - W_k) \middle| N(t) = n\right] = nt - \frac{nt}{2} = \frac{nt}{2}$$

$$\Rightarrow E\left[\sum_{k=1}^{N(t)} (t - W_k) \middle| N(t)\right] = \frac{t}{2} N(t)$$

$$\Rightarrow E[\sum_{k=1}^{N(t)} (t - W_k)] = E\{E[\sum_{k=1}^{N(t)} (t - W_k) | N(t)]\}$$

$$=E\left[\frac{t}{2}N(t)\right]=\frac{\lambda t^2}{2}.$$

电子科技大学