<u>Course</u> > <u>Midterm Exam 2</u> > <u>Midterm Exam 2</u> > Problem 3

Problem 3

Setup: Let $X_1,\ldots,X_n\stackrel{i.i.d.}{\sim} \mathsf{Unif}\left([\theta,\theta^2]\right)$ for some unknown $\theta>1$. That is, the pdf of X_i is

$$f_{ heta}\left(x
ight)=C\mathbf{1}_{\left[heta, heta^{2}
ight]}\left(x
ight).$$

where $C=rac{1}{ heta^2- heta}$.

(a)

1/1 point (graded)

Is the parameter $oldsymbol{ heta}$ identifiable?

- True
- False

Solution:

Yes, θ is identifiable as the minimum of the support of the $f_{\theta}(x)$.

Submit

You have used 1 of 3 attempts

• Answers are displayed within the problem

(b)

1/1 point (graded)

Which of the following statements are true regarding the samples? Note that $X_{(i)}$ denote the order statistics, i.e. $X_{(i)}$ represents the $i^{(th)}$ smallest value of the sample. For example, $X_{(1)}$ is the smallest and $X_{(n)}$ is the greatest of a sample of size n. (Check all that apply.)

$$olimits X_{(2)} \geq X_{(1)}
olimits$$

- $\quad \square \quad X_{(2)} \geq X_{(3)}$
- $otin X_{(1)}^2 \geq X_{(n)}
 otin
 o$

Grading note: Partial credits are given.

Solution:

Since $X_{(i)}$ are the order statistics of the data X_1,\ldots,X_n , $X_{(i)}$ are the rearrangement of X_1,\ldots,X_n such that $X_{(1)} \leq X_{(2)} \leq \ldots \leq X_{(n)}$. Hence, the first choice is true while the second is not.

For the third choice, the key point is that since $\theta>1$, we have $\theta^2>\theta$, and therefore $X_{(1)}\geq \theta$ and $X_{(n)}\leq \theta^2$. Therefore $X_{(1)}^2\geq X_{(n)}$.

The fourth choice is false, since $X_3> heta>1,\ X_{(3)}^2>X_{(3)}>X_{(2)}.$

Submit

You have used 2 of 3 attempts

Answers are displayed within the problem

(c)

1/1 point (graded)

Compute the maximum likelihood estimator $\hat{m{ heta}}^{ ext{MLE}}$ of $m{ heta}$.

(If applicable, enter **m** for the minimum $\min_i (X_i)$ of the X_i , **M** for the maximum $\max_i (X_i)$ of the X_i , and **barX_n** for

$$ar{X_n} = rac{\sum_{i=1}^n X_i}{n}.$$

$$\hat{\boldsymbol{\theta}}^{\mathrm{MLE}} = \boxed{\mathrm{sqrt(M)}}$$
 \checkmark Answer: $\mathrm{sqrt(M)}$

STANDARD NOTATION

Solution:

Note that the likelihood of X_1,\ldots,X_n is

$$L\left(X_{1}, \ldots, X_{n}; heta
ight) \; = \; \left(rac{1}{ heta\left(heta-1
ight)}
ight)^{n} \mathbf{1}\left(heta \leq X_{(1)} < X_{(n)} \leq heta^{2}
ight)$$

In the $\frac{1}{(\theta(\theta-1))^n}$ is strictly decreasing, so $\hat{\theta}^{\text{MLE}}$ is the smallest possible θ that can lead to the given data, i.e. a greatest lower bound on θ . Since $X_{(n)} < \theta^2$ can be arbitrarily close θ^2 , we have $\sqrt{X_{(n)}} < \theta$. Therefore, the MLE is so $\hat{\theta}^{\text{MLE}} = \sqrt{X_{(n)}}$

Submit

You have used 1 of 3 attempts

Answers are displayed within the problem

(d)

1/2 points (graded)

Suppose that $X_{(1)}=2.01$ and n=18. Design a test for the hypotheses

$$H_0: \theta = 2 \text{ vs. } H_1: \theta < 2.$$

that uses $T_n = X_{(1)}$ as the test statistic.

这个test是怎么想出来的呢? 我觉得唯一的原因就在这句话了 但是这里没法解释的是一些波动的可能

Compute the p-value of this test.

(Enter a numerical value accurate to at least 3 decimal places.)

p-value: 0.47210 **★ Answer:** 0.086

Do we reject the null hypothesis at the level 5%?

Yes

STANDARD NOTATION

Correction Note (added May 5):. An earlier version of the problem statement was "Design a test for the hypotheses

$$H_0: \theta = 2 \text{ vs. } H_1: \theta < 2.$$

that uses $X_{\left(1\right)}$ as the test statistic."

Solution:

The test for the given hypotheses

$$H_0: \theta = 2 \text{ vs. } H_1: \theta < 2.$$

and the estimator $X_{(1)} = \min_i \{X_i\}$, is

$$\psi = \mathbf{1} \left(\frac{X_{(1)} < C}{} \right)$$

for some threshold $m{C}$. Hence, the $m{p}$ -value of this test is

Since the p-value is greater than 0.05, we fail to reject the null hypothesis.

Submit

You have used 2 of 3 attempts

1 Answers are displayed within the problem

(e)

0/1 point (graded)

Again, $X_{\left(1\right)}=2.01$ and n=18, and consider the same hypotheses as above:

$$H_0: \theta = 2 \text{ vs. } H_1: \theta < 2$$

Now, design a test using the test statistic $T_n = X_{(n)}$. What is the largest value of $X_{(n)}$ that would lead to a rejection of H_0 at level 5%?

(Enter a numerical answer accurate to at least 2 decimal places.)

To reject H_0 at level 5%,

$$X_{(n)} \le 3.1066$$
 X Answer: 3.69

Solution:

The test for the given hypotheses

$$H_0: heta=2 ext{ vs. } H_1: heta<2.$$

using the given test statistic $T_n = X_{(n)} = \max_i \{X_i\}$, is

$$\psi = \mathbf{1}\left(X_{(n)} < C
ight)$$

for some threshold $oldsymbol{C}$. We want $oldsymbol{C}$ such that

$$\mathbf{P}_{ heta=2}\left(X_{(n)} < C
ight) \ = \ 0.05$$
 $\iff \prod_{i=1}^n \mathbf{P}_{ heta=2}\left(X_i < C
ight) \ = \ 0.05$
 $\iff \left(rac{C-2}{4-2}
ight)^{18} \ = \ 0.05$
 $\iff C \ = \ 2+2(0.05)^{rac{1}{18}} pprox 3.69.$

This C is the largest value of $X_{(n)}$ so that H_0 will be rejected at 5% by this test.

Submit

You have used 1 of 3 attempts

• Answers are displayed within the problem

Error and Bug Reports/Technical Issues

Topic: Midterm Exam 2:Midterm Exam 2 / Problem 3

Show Discussion

© All Rights Reserved