August - 2019

Exercise (Opgave 1).

Vi betragter det elektrostatiske arrangement vist på Figur 1. En kugleskal med indre radius *a* og ydre radius *b* bærer en sfærisk symmetrisk ladningsfordeling, hvis volumensladningstæthed er givet ved.

$$\rho(r) = \begin{cases} 0 & (r < a) \\ \alpha r^2 & (a < r < b) \\ 0 & (r > b) \end{cases}$$

hvor r er afstanden fra origo er α er en positiv konstant. Den dielektriske permittivitet lig ϵ_0 overalt.

Subexercise (a).

Bestem den totale ladning Q båret af kugleskallen. Bestem retningen og størrelsen af det elektriske felt i områderne r < a, a < r < b og r > b.

Solution:

Subexercise (b).

Angiv det elektriske potential i området r>b. Bestem det arbejde der kræves for at flytte en punktladning $q\left(q>0\right)$ langsomt fra uendelig

langt væk $(r = \infty)$ til den ydre skal (r = b).

Solution:

Exercise (Opgave 2).

Vi betragter det elektriske kredsløb vist på Figur 2. Kredsløbet består af en ideel emf kilde \mathcal{E} , to spoler med selvinduktans L og tre modstande med modstand R, som indikeret på figuren. Efter at have været åben i lang tid sluttes kontakten til tiden t=0. Vi ser bort fra fælles induktans effekter.

Subexercise (a).

Bestem værdien af strømmen i, som løber i kredsløbet,

- til tiden t = 0, lige efter kontakten sluttes
- ullet til tiden $t o \infty$

Solution:

Exercise (Opgave 3).

Punktladninger med ladning q>0 bevæger sig med konstant hastighed $\vec{\mathbf{v}}$ langs symmetriaksen (z-aksen) af en uendelig lang metalcylinder med radius R, som vist på figuren. Ladningernes volumentæthed n(r) er givet ved

$$n(r) = \begin{cases} n_0 (1 - r/R) & (r < R) \\ 0 & (r > R) \end{cases},$$

Hvor n_0 er en positiv konstant og r er afstand til z-aksen. Den magnetiske permeabilitet er μ_0 overalt.

Z

Subexercise (a).

Angiv strømtætheden $\vec{\mathbf{J}}$ og bestem den strøm I som løber gennem cylinderen.

Bestem retningen og størrelsen af det magnetiske felt i områderne r > R og r < R.

Solution:

Exercise (Opgave 4).

En stationært halvbue-formet sløjfe med radius a ligger i (xy)-planen, som vist på Figur 4, og er påsat et unifornyt magnetisk felt $\vec{\mathbf{B}}_0 = B_0\left(\vec{\mathbf{j}} + \vec{\mathbf{k}}\right)/\sqrt{2}$ hvor B_0 er en positiv konstant. Der løber ingen strøm i sløjfen til tiden t < 0. Efter t = 0 aftager det eksterne magnetiske felts størrelse exponentialt, ifølge

$$B_0(t) = B_0 e^{-t/\tau}$$
 $(t \ge 0)$,

hvor au er en positiv konstant. Sløjfens modstand er R og vi ser bort fra dens selvinduktans. Den magnetiske permeabilitet er lig μ_0 overalt

Subexercise (a).

Bestem retningen og størrelsen af den inducerede strøm i sløjfen til tiden $t \geq 0$.

Solution:

\frac{\frac{133}{23}}{23}

Exercise (Opgave 5).

E-feltets størrelse og retning i en elektromagnetisk planbølge der udbreder sig i vacuum er givet ved $\vec{\mathbf{E}}(x,t) = \vec{\mathbf{j}}E_i\cos(kx-\omega t)$. Der indsættes nu et dielektrika med brydningsindex n=2 i den halvdel af rummet der er givet ved x<0. $\mu=\mu_0$ i hele rummet.

Subexercise (a).

En del af den indkommende bølge reflekteres ved overgangen mellem vacuum og dielektrikaet som angivet i formel 35.16. Bestem amplituderne af det elektriske og magnetiske felt i den reflekterede bølge, E_r og B_r , udtrykt ved E_i . Bestem intensiteten af den indkommende og den reflekterede bølge og vis at intensiteten af den totale elektromagnetiske bølge for x < o er $I_{tot} = \frac{1}{2} \epsilon_0 c \frac{8}{9} E_i^2$. (b) Opskriv udtryk for det elektriske og magnetiske felt for den transmit

Solution:

!}}