Lost Curve (Cryptographie - 200 points)

Énoncé

J'ai perdu l'équation de ma courbe elliptique : pouvez-vous m'aider à la retrouver ?

nc challenges1.france-cybersecurity-challenge.fr 6002

Résolution

A l'ouverture du fichier joint au challenge (lost_curve.py), on observe le déroulement du challenge :

- 1. Le programme tire des nombres entiers aléatoires p, a, b, xP puis nous fournit 2 points P et Q sur la courbe d'équation $y^{**2} = x^{**3} + a^*x + b \% p$.
- 2. Nous devons déteminer a, b, p et les retourner au serveur.

Le point o n'est pas tiré au hasard, en effet il est généré par la relation 2*P = 0.

N'étant pas particulièrement spécialiste des courbes elliptiques, j'ai récupéré sur Wikipédia les formules d'opérations sur les points :

- Pour calculer R = 2*P, on pose s = (3*xP**2 + a)/(2*yP), et ainsi:
 - xR = s**2 2*xP % p
 - o yR = -yP + s*(xP xR) % p
- Pour calculer R = P + Q, on pose s = (yP + yQ) / (xP xQ) et ainsi :
 - o xR = s**2 xP xQ % p
 - yR = -yP + s*(xP xR) % p
- Pour calculer R = -P :
 - o xR = xP
 - o yR = -yP

Fort de ce savoir, je commence à construire les équations qui découlent de la relation Q = 2*P afin de déterminer des relations qui pourraient m'aider à trouver un ou plusieurs paramètres :

- yQ + yP = s*(xP xQ) % p
 - Cette formule nous fournit s si on connait p . En effet, s = (yQ + yP) * modinv(xP xQ, p) % p
- xQ + 2xP = s**2 % p
- a*xP + b = yP**2 xP**3 % p
 - Grâce à cette équation, si je connais p et a , je connais b simplement : b = yP**2 xP**3 a*xP % p (en effet, 0 < b < p)

En remarquant $2*P = Q \iff Q - P = P \iff P + Q = P$, j'ai pu ajouter l'équation suivante qui a étonnamment débloqué ma situation (je ne pensais pas gagner de l'information en effectuant cette transformation) :

- (yQ + yP)**2 / (xQ xP)**2 xP xQ = xP % p Qui est équivalente à :
- (2*xP + xQ) * (xQ xP)**2 + (yQ + yP)**2 = 0 % p

C'est à dire qu'il existe k un entier tel que (2*xP + xQ) * (xQ - xP)**2 + (yQ + yP)**2 = k*p

Ainsi, en calculant A = (2*xP + xQ) * (xQ - xP)**2 + (yQ + yP)**2 (toutes les variables présentes sont données dans le challenge), puis en factorisant A en facteurs premiers, p apparaît (il est reconnaissable par sa taille >= 80 bits).

Par la relation précédemment évoquée s = (yQ + yP) * modinv(xP - xQ, p) % p, j'obtiens ainsi <math>s. Il en découle a = s*2*yP - 3*xP**2 % p par définition de s

Enfin, $b = yP^{**}2 - xP^{**}3 - a^*xP \% p$.

Je dispose maintenant de tous les paramètres, je peux les envoyer au challenge et récupérer le flag.