CSCE 689: Special Topics in Modern Algorithms for Data Science

Lecture 2

Samson Zhou

Last Time: Class Logistics

• Course materials: https://samsonzhou.github.io/csce689-2023

- LaTeX summary of lectures 20%
- Midterm presentation 35%
- Final project 45%

Last Time: Probability Basics

• Conditional distribution: $\Pr[X = x | Y = y]$ is the probability that X achieves the value x when Y achieves the value y

$$\Pr[X = x | Y = y] = \frac{\Pr[X = x, Y = y]}{\Pr[Y = y]}$$

• Implies Bayes' theorem

• Random variables X and Y are independent if $\Pr[X = x] = \Pr[X = x | Y = y]$ for all possible outcomes $x \in \Omega_X$, $y \in \Omega_Y$

Warm-Up Question

- Suppose S_1 is a "bad" event that occurs with probability $\frac{0}{n}$
- Suppose S_2 is a "bad" event that occurs with probability $\frac{1}{n}$
- Suppose S_3 is a "bad" event that occurs with probability $\frac{2}{n}$

What is the probability that none of the bad events occurs?

Warm-Up Question

- Suppose S_1 is a "bad" event that occurs with probability $\frac{0}{n}$
- Suppose S_2 is a "bad" event that occurs with probability $\frac{1}{n}$
- Suppose S_3 is a "bad" event that occurs with probability $\frac{2}{n}$

 What is a lower bound on the probability that none of the bad events occur?

Warm-Up Question

- Suppose S_1 is a "bad" event that occurs with probability $\frac{0}{n}$
- Suppose S_2 is a "bad" event that occurs with probability $\frac{1}{n}$
- Suppose S_3 is a "bad" event that occurs with probability $\frac{2}{n}$

• What is *a lower bound* on the probability that none of the bad events occur? $1 - \frac{3}{n}$

Last Time: Union Bound (Boole's Inequality)

• Let $S_1,...,S_k$ be a set of events that occur with probability $p_1,...,p_k$

• The probability that at least one of the events $S_1,...,S_k$ occurs is at most $p_1+\cdots+p_k$

• Implication: the probability that NONE of the events $S_1,...,S_k$ occur is at least $1-(p_1+\cdots+p_k)$

Last Time: Union Bound

• $Pr[A \cup B] = Pr[A] + Pr[B] - Pr[A \cap B]$

Proof by induction

Today

- Hashing
- Abstraction: balls-in-bins
- Birthday paradox

Trivia Question #1 (Birthday Paradox)

• Suppose we have a fair n-sided die. "On average", how many times should we roll the die before we see a repeated outcome among the rolls? Example: 1, 5, 2, 4, 5

- $\Theta(1)$
- $\Theta(\log n)$
- $\Theta(\sqrt{n})$
- $\Theta(n)$

Trivia Question #2 (Limits)

- Let c > 0 be a constant. What is $\lim_{n \to \infty} \left(1 \frac{c}{n}\right)^n$?
- 0
- $\cdot \frac{1}{c}$
- \bullet $\frac{1}{2c}$
- $\frac{1}{e^c}$
- 1

0	Anmol Anand
1	Zhitong Chen
2	Lipai Huang
3	Ryan King
4	Ayesha Qamar
5	Shima Salehi
6	
7	
8	
9	Fer NVidvan

	Anmol Anand
4	Zhitong Chen
	Lipai Huang
	Ryan King
4	Ayesha Qamar
	Shima Salehi
	J.K.
	Fer Nidvan

Hash Tables

• We have a set of m items from some large universe that we want to store into a database (images, text documents, IP addresses) with n locations

• Goal: query(x) to check if the database contains x in O(1) time

• Hash function $h: U \to [n]$ maps items from the universe to a location in the database

Collisions

• Hash function $h: U \to [n]$ maps items from the universe to a location in the database

- For $|U| \gg n$, many items map to the same location
- Collision: when multiple items should be stored in the same location

Dealing with Collisions

- Many ways of dealing with collisions
 - Store multiple items in the same location as a linked list
 - Bump item to the next available spot
 - Bump item to the next available spot using another hash function
 - Power-of-two-choices

Dealing with Collisions

• Suppose we store multiple items in the same location as a linked list

• If the maximum number of collisions in a location is *c*, then could traverse a linked list of size *c* for a query

• Query runtime: O(c)

Dealing with Collisions

• Goal: minimize c, the maximum number of collisions in a location

• In the worst case, all items could hash to the same location, c=m

Assume the hash function h is chosen "randomly"

Random Hash Function

• Let $h: U \to [n]$ be a random hash function, so that for each $x \in U$, we have that $\Pr[h(x) = i] = \frac{1}{n}$, for all $i \in [n]$

• Assume independence, i.e., h(x) and h(y) are independent for any $x, y \in U$

• Suppose we insert m elements into a hash table with n locations using a random hash function. How do we analyze the number of pairwise collisions?

• Suppose we have a room with 367 people. What is the probability that two people share the same birthday?

• Suppose we have a room with 367 people. What is the probability that two people share the same birthday?

• Suppose we have a room with 23 people. What is the probability that two people share the same birthday?

$$\left(1-\frac{0}{n}\right)$$

$$\left(1-\frac{0}{n}\right)\left(1-\frac{1}{n}\right)$$

$$\left(1 - \frac{0}{n}\right) \left(1 - \frac{1}{n}\right) \left(1 - \frac{2}{n}\right)$$

$$\left(1-\frac{0}{n}\right)\left(1-\frac{1}{n}\right)...\left(1-\frac{k-1}{n}\right)$$

$$\left(1 - \frac{0}{n}\right) \left(1 - \frac{1}{n}\right) \dots \left(1 - \frac{k-1}{n}\right) < \frac{1}{2}$$
 for $k = O(\sqrt{n})$

• Suppose we have a fair n-sided die. "On average", how many times should we roll the die before we see a repeated outcome among the rolls?

• $O(\sqrt{n})$

• But is it $\Theta(\sqrt{n})$?

• Suppose we have a fair n-sided die that we roll k=1,2,3,4,... times. What is the probability we see a repeated outcome among the rolls?

• Let S_i be the event that the i-th roll is a repeated outcome, conditioned on the previous rolls not being a repeated outcome

•
$$\Pr[S_i] = \frac{i-1}{n}$$

• $\Pr[S_1 \cup \cdots \cup S_k] \leq ???$

• Suppose we have a fair n-sided die that we roll k=1,2,3,4,... times. What is the probability we see a repeated outcome among the rolls?

• Let S_i be the event that the i-th roll is a repeated outcome, conditioned on the previous rolls not being a repeated outcome

•
$$\Pr[S_i] = \frac{i-1}{n}$$

•
$$\Pr[S_1 \cup \dots \cup S_k] \le \frac{0}{n} + \dots + \frac{k-1}{n} \le \frac{k^2}{n}$$

• Suppose we have a fair n-sided die that we roll k=1,2,3,4,... times. What is the probability we see a repeated outcome among the rolls?

• Let S_i be the event that the i-th roll is a repeated outcome, conditioned on the previous rolls not being a repeated outcome

•
$$\Pr[S_i] = \frac{i-1}{n}$$

•
$$\Pr[S_1 \cup \dots \cup S_k] \le \frac{0}{n} + \dots + \frac{k-1}{n} \le \frac{k^2}{n}$$

Union Bound

• Suppose we have a fair n-sided die. "On average", how many times should we roll the die before we see a repeated outcome among the rolls?

• $\Theta(\sqrt{n})$

Trivia Question #1 (Birthday Paradox)

• Suppose we have a fair n-sided die. "On average", how many times should we roll the die before we see a repeated outcome among the rolls? Example: 1, 5, 2, 4, 5

- $\Theta(1)$
- $\Theta(\log n)$
- $\Theta(\sqrt{n})$
- $\Theta(n)$

Trivia Question #2 (Limits)

- Let c > 0 be a constant. What is $\lim_{n \to \infty} \left(1 \frac{c}{n}\right)^n$?
- 0
- $\cdot \frac{1}{c}$
- \bullet $\frac{1}{2c}$
- $\frac{1}{e^c}$
- 1

CSCE 689: Special Topics in Modern Algorithms for Data Science

Lecture 3

Samson Zhou

Trivia Question #3 (Coupon Collector)

• Suppose we have a fair n-sided die. "On average", how many times should we roll the die before we all possible outcomes among the rolls? Example: 1, 5, 2, 4, 1, 3, 1, 6 for n = 6

- $\bullet \Theta(n)$
- $\Theta(n \log n)$
- $\Theta(n\sqrt{n})$
- $\Theta(n^2)$

Trivia Question #4 (Max Load)

• Suppose we have a fair n-sided die that we roll n times. "On average", what is the largest number of times any outcome is rolled? Example: 1, 5, 2, 4, 1, 3, 1 for n = 7

- $\Theta(1)$
- $\widetilde{\Theta}(\log n)$
- $\widetilde{\Theta}(\sqrt{n})$
- $\widetilde{\Theta}(n)$

Expected Value

• The expected value of a random variable X over Ω is:

$$E[X] = \sum_{x \in \Omega} \Pr[X = x] \cdot x$$

The "average value of the random variable"

• Linearity of expectation: E[X + Y] = E[X] + E[Y]

Expected Value

• Suppose we roll a 6-sided die

• Let X be the outcome of the roll

• What is E[X]?

Moments

• For p > 0, the p-th moment of a random variable X over Ω is:

$$E[X^p] = \sum_{x \in \Omega} \Pr[X = x] \cdot x^p$$

Variance

• The variance of a random variable X over Ω is:

$$Var[X] = E[X^2] - (E[X])^2$$

• Linearity of variance for *independent* random variables: Var[X + Y] = Var[X] + Var[Y]

• "How far numbers are from the average"

Variance

• Suppose X takes the value 1 with probability $\frac{1}{2}$ and takes the value -1 with probability $\frac{1}{2}$

• What is **E**[*X*]?

What is Var[X]?

Variance

- Suppose Y takes the value $\frac{100}{2}$ with probability $\frac{1}{2}$ and takes the value
 - -100 with probability $\frac{1}{2}$
- What is E[Y]?

What is Var[Y]?

Chebyshev's Inequality

• Let X be a random variable with expected value $\mu \coloneqq \mathrm{E}[X]$ and variance $\sigma^2 \coloneqq \mathrm{Var}[X]$ $\mathrm{Pr}[|X - \mu| \ge k\sigma] \le \frac{1}{k^2}$

 "What is the probability a random variable is far away from its average?"