Computer Vision Final Project

Binary Stereo Matching

B05901062 阮明皓 B05901182 潘彥銘

Cost Computation

BRIEF descriptor:

$$B(x) = \sum_{1 \le i \le n} 2^{i-1} \tau(p_i, q_i)$$
 (1)

Each pair (p_i, q_i) is sampled by Gaussian distribution in an S × S window, which is centered on pixel x.

•

Cost Computation

- And τ (p_i, q_i) is a binary function which is defined as:

$$\tau(p_i, q_i) = \begin{cases} 1 : I(p_i) > I(q_i) \\ 0 : I(p_i) \le I(q_i) \end{cases}$$
 (2)

- I(x) denotes the intensity of pixel x.

Cost Computation

Cost volume:

$$C(x,d) = || B(x) \text{ XOR } B(x_d) ||_1$$
 (3)

- x_d is the corresponding pixel of x with disparity d in another view
- C(x, d) measures the hamming distance between two binary strings.

- Binary mask:

$$\Phi(x) = \sum_{1 \le i \le n} 2^{i-1} \delta(x, p_i, q_i)$$
 (6)

- Bitwise mask function for a given pair (p_i, q_i):

$$\delta(x, p_i, q_i) = \begin{cases} 1 : w(x, p_i, q_i) \le T \\ 0 : w(x, p_i, q_i) > T \end{cases}$$
 (5)

where T is set to be the quarter smallest value in the sequence w(x, p₁, q₁), w(x, p₂, q₂), ..., w(x, p_n, q_n).

- Weight function for pixel pair (p_i, q_i) as:

$$w(x, p_i, q_i) = \max(SAD(x, p_i), SAD(x, q_i))$$
(4)

- SAD(x, y) = $\sum_{c \in [L,A,B]} |I_c(x) - I_c(y)|$ is the sum of absolute difference between two pixels in the CIELAB color space.

Incorporating the binary mask into (3), the new cost volume:

$$C(x,d) = ||B(x) \mathbf{XOR} B(x_d) \mathbf{AND} \Phi(x)||_1 \quad (7)$$

Disparity Optimization

 We implemented the Winner-Take-All(WTA) method mentioned in class.

•

Disparity Refinement

- Apply a left/right consistency check
- Classify depth results into two categories: valid and invalid.
- For an invalidated pixel p, we search its closest valid pixel to the left and to the right. We select the lower of the two as p's refined disparity.

Disparity Refinement

 Last, we apply 5x5 median and bilateral filter to get our final disparity map.

Result

- Synthetic

Result

- Real

Reference

- [1] Kang Zhang, Jiyang Li, Yijing Li, WeiDong Hu, Lifeng Sun, and Shiqiang Yang. Binary stereo matching. CoRR, abs/1402.2020, 2014.
- [2] Michael Bleyer, Christoph Rhemann, and Carsten Rother.
- Patchmatch stereo stereo matching with slanted support windows. In BMVC, January 2011.
- [3] J. Zbontar and Y. LeCun, "Stereo matching by training a convolutional neural

Thank you for your listening!