PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5: (11) International Publication Number: WO 94/02112 A1 A61K 7/06 (43) International Publication Date: 3 February 1994 (03.02.94)

(21) International Application Number: PCT/US93/05523 (74) Agent: GENNARO, Jane, E.; National Starch and Chemical Company, P.O. Box 6500, Bridgewater, NJ 08807 (22) International Filing Date: 10 June 1993 (10.06.93) (US).

(81) Designated States: AT, AU, BB, BG, BR, CA, CH, DE, DK, ES, FI, GB, HU, JP, KP, KR, LK, LU, MG, MN, MW, NL, NO, PL, RO, RU, SD, SE, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE). (30) Priority data: 915,488 16 July 1992 (16.07.92) US

(71) Applicant: NATIONAL STARCH AND CHEMICAL IN-VESTMENT HOLDING CORPORATION [US/US];

(72) Inventors: MUDGE, Paul, R.; 23 Mulford Lane, Belle Mead, NJ 08502 (US). LEIGHTON, John, C.; 2 Patriots Way, Flanders, NJ 07836 (US). WANIGATUNGA, Sirisoma; 694 Foothill Road, Bridgewater, NJ 08807 (US). MORAWSKY, Natalie; 26C Cedar Lane, Highland Park, NJ 08904 (US).

501 Silverside Road, Wilmington, DE 19809 (US).

Published With international search report.

(54) Title: EMULSION POLYMERS FOR USE IN HAIR FIXATIVES

(57) Abstract

This invention is an aqueous based emulsified hair fixative composition that comprises by weight (A) 2-15 % of a carboxylated polymer comprising polymerized residues of (a) one or more acidic monomers, each containing one or more available carboxyl groups, present in an amount of 5-35 % by weight of the polymer; (b) one or more water insoluble comonomers present in an amount of 65-95 % by weight of the polymer; (c) optionally, up to 20 % by weight of one or more water soluble monomers; and (B) an effective amount of a cosmetically acceptable organic or inorganic base to neutralize a sufficient proportion of the available carboxyl groups to obtain shampoo removability of the hair fixative composition without destabilizing the emulsion or dissolving the polymer.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	FR	France	MR	Mauritania
AU	Australia	GA	Gabon	MW	Malawi
BB	Barbados	GB	United Kingdom	NE	Niger
		GN	Guinea	NL	Netherlands
BE	Belgium			NO	Norway
BF	Burkina Faso	GR	Grecce		New Zealand
BG	Bulgaria	HU	Hungary	NZ	
BJ	Benin	1E	Ireland	PL	Poland
BR	Brazil .	IT	Italy	PT	Portugal
BY	Belarus	JP	Japan	RO .	Romania .
CA	Canada	KP	Democratic People's Republic	RU	Russian Federation
CF	Central African Republic		of Korea	SD	Sudan
CG	Congo	KR	Republic of Korea	SE	Sweden
CH	Switzerland	KZ	Kazakhstan	SI	Slovenia
Ci	Côte d'Ivoire	LI	Liechtenstein	SK	Slovak Republic
CM	Cameroon	LK	Sri Lanka	SN	Senegal
CN	China	LU	Luxembourg	TD	Chad
CS	Czechoslovakia	ŁV	Latvia	TG	Togo
CZ	Czech Republic	MC	Monaco	UA	Ukraine
	_	MG		US	United States of America
DE	Germany		Madagascar	ŰZ	Uzbekistan
DK	Denmark	ML	Mali		
ES	Spain	MN	Mongolia	VN	Viet Nam
FI	Finland				

EMULSION POLYMERS FOR USE IN HAIR FIXATIVES

Field of the Invention

5

This invention pertains to hair fixative emulsion polymers that include carboxylic acid monomers that are partially or fully neutralized with standard cosmetically acceptable bases.

Background of the Invention

10

Most aerosol hair spray systems in current use comprise a hair fixative polymer that is dissolved in ethanol or isopropanol, and an aerosol propellant that is usually a volatile hydrocarbon. These systems are becoming less acceptable because of consumer perception that alcohol in hair care products can dry or damage the hair, and because of environmental regulations controlling the emission of volatile organic compounds into the atmosphere. These factors have prompted the search for hair fixative delivery systems based on water and for hair fixative polymers dispersible in water.

20

15

United States patents 4,798,721 issued on 17 January 1989, and 4,985,239 issued on 15 January 1991, both assigned to Kao Corporation, Tokyo, Japan, disclose hair cosmetic compositions comprising a particulate latex.polymer of water insoluble polymers that is selected from the group consisting

of polystyrenes, copolymers of styrene with at least one vinyl monomer other than styrene, polyamides, polyurethanes, epoxy resins, and polymethyl methacrylates. It is stated that these polymers can be dispersed in water with a nonionic surfactant that is present in an amount up to 20% by weight of the monomers. Surfactants, however, act as plasticizers and humectants and tend to reduce high humidity curl retention capabilities of the hair fixatives.

5

10

Therefore, there is still a need for water based systems of hair fixative polymers that are alternatives to alcohol based systems and that exhibit all the characteristics of good hair fixatives, namely, holding power, humidity resistance, stiffness, clarity, aesthetics, and easy removability.

Summary of the Invention

This invention is an aqueous based emulsified hair fixative composition that comprises by weight (A) 2%-15% of a carboxylated polymer comprising polymerized residues of (a) one or more acidic monomers, each containing one or more available carboxyl groups, present in an amount of 5%-35% by weight of the polymer; (b) one or more water insoluble comonomers present in an amount of 65%-95% by weight of the polymer; (c) optionally, up to 20% by weight of one or more water soluble monomers; and (B) an effective amount of a cosmetically acceptable organic or inorganic base to neutralize a sufficient proportion of the available carboxyl

groups to obtain shampoo removability of the hair fixative composition without destabilizing the emulsion or dissolving the polymer. Optionally, the emulsion may contain a small amount of suitable surfactant, up to 4% by weight of the polymer solids of the hair fixative formulation.

Detailed Description of the Invention

5

10

15

20

United States patents 3,810,977 and 3,927,199 disclose carboxylated resins, prepared by bulk, suspension or solution polymerization techniques that are suitable for use in hair cosmetics. These polymers are in the form of solid beads or pearls and typically have been formulated into alcohol based hair fixatives. It is now discovered that these and similar polymers can be dispersed in an aqueous emulsion and be effective in hair fixative compositions without the need for alcohol as a solvent.

The use of these polymers in a stabilized emulsion permits the achievement of high solids at low viscosity. A high solids content supplies an effective amount of polymer to the hair in a minimum amount of water to obtain good holding power. Low viscosity permits effective atomization of the emulsion at the spray nozzle. Thus, a hair fixative product suitable for use in either aerosol or nonaerosol formulations is achieved by controlling the solids content, viscosity, and particle size of the emulsion.

5

10

15

20

25

The polymers of this inventic comprise monomers that contain one or more available carboxyl groups and that are present in an amount of 5%-35% by weight of the polymer, one or more water insoluble comonomers that are present in an amount of 65%-95% by weight of the polymer, and optionally one or more water soluble comonomers that are present in an amount up to 20% by weight of the polymer.

Monomers that contain one or more available carboxyl groups and that are suitable for use in the polymers of this invention are the C_3 - C_{12} mono- or dicarboxylic acids, such as, acrylic acid, methacrylic acid, crotonic acid, itaconic acid, maleic acid, fumaric acid, and the C_1 - C_8 alkyl half esters of maleic and fumaric acids, such as methyl hydrogen maleate and butyl hydrogen fumarate, any other acidic monomers that are capable of being copolymerized with the particular desired interpolymer system, and combinations of those. The preferred carboxyl containing monomers are acrylic acid, crotonic acid, and monoisopropyl maleate.

The water insoluble comonomers suitable for use with the carboxyl containing monomers are C_3-C_{12} acrylates and methacrylates; C_1-C_8 alkyl substituted acrylamides and methacrylamides; vinyl esters of C_3-C_{12} carboxylic acids, styrene, and combinations of them. The preferred water insoluble comonomers are vinyl acetate, vinyl pivalate, vinyl neodecanoate, methyl methacrylate and t-octyl acrylamide.

The nonionic water soluble comonomers suitable for use in the polymers are water soluble hydroxyalkyl esters of acrylic and methacrylic acids, (C_1-C_4) alkyl (C_2-C_4) aminoalkyl esters of acrylic and methacrylic acids, acrylamide, dimethyl acrylamide, and N-vinyl pyrrolidone. The preferred water soluble comonomers are hydroxypropyl methacrylate and hydroxyethyl methacrylate.

5

10

15

20

25

The emulsions may be prepared directly via emulsion polymerization or by post-emulsification of solvent-borne polymer solutions. Suitable surfactants, such as Triton X 305 and Triton X 301, products of Rohm and Haas, Philadelphia, PA, and Abex 18S and Abex 26S, products of Alcolac, Baltimore, MD, and Sipon WD, a product of Rhone-Poulenc, Cranbury, NJ, are commercially available and can be used in these systems. When utilized, the surfactant may be present in amounts up to 4% by weight of the polymer solids.

The hair fixative formulations of this invention are prepared by diluting the polymer emulsions with water to 2%-15% solids content by weight, preferably 5%-10% by weight, and neutralizing a percentage of the free acidity of the carboxyl groups with a cosmetically acceptable organic or inorganic base, or a combination of those bases, to stabilize the emulsion and to make the polymer easily removable from the hair with shampoo. The amount of base used for neutralization is dependent on the hydrophobicity of the hair fixative

5

10

15

20

25

The higher the carboxylic acid content of the polymer, the less the degree of neutralization required to impart water solubility. Conversely, the lower the carboxylic acid content, the greater the degree of neutralization required for water solubility. Nevertheless, if the polymer is neutralized to too great an extent, it may dissolve and destabilize the emulsion. Therefore, the degree of water solubility desired must be balanced against stabilization of the emulsion. This balance is achieved for the hair fixative polymers of this invention by neutralizing the available carboxyl groups present on the polymer to the equivalent on a about 25%-100%. molar basis of Suitable for bases neutralization of the polymer and stabilization of the polymer emulsion are the standard cosmetically acceptable bases known and used in the art. The preferred bases are sodium hydroxide, potassium hydroxide, 2-amino-2-methyl-1-propanol, histidine. tris(hydroxymethyl)aminomethane, triethanolamine. The choice of the base and the degree of neutralization also affect the flexibility of the resultant hair fixative when sprayed on the hair, giving a soft or a hard hold. The choice of which base to utilize and the degree of neutralization required to achieve flexibility is within the expertise of one skilled in the art.

Although the hair fixative formulations of this invention are designed to be aqueous systems without the need for any

5

10

15

20

25

organic solvent, an organic solvent may be admixed with the formulation if a quicker drying formulation is desired. The amount and choice of organic solvent used will depend on the desired end product formulation and is within the expertise of one skilled in the art. A propellant may also be used when it is desired to deliver the hair fixative formulation in an aerosol delivery system. In some instances, the propellant may also function as a solvent. Suitable solvents are alcohols and ketones, such as, ethanol, isopropanol, acetone, and methyl ethyl ketone, and combinations of those. Suitable propellants are ethers, compressed gases, halogenated hydrocarbons and hydrocarbons.

The following examples illustrate representative emulsification procedures for suitable carboxylated hair fixative polymers, and formulations for hair fixatives prepared from those polymers. Each of the emulsions was prepared into an aerosol and a nonaerosol formulation to determine its stability in those formulations. All of the nonaerosols were tested for curl retention, and the aerosols from the emulsions of Examples 1, 2, 3, and 6 were independently and variously tested for subjective qualities. Emulsification Procedures

EXAMPLE 1: This example describes the post-emulsification of a hair fixative polymer containing residues of crotonic acid, vinyl acetate, and vinyl neodecanoate that is

commercially available as Resyn= 28-2930 from National Starch and Chemical Company, Bridgewater, New Jersey. (The preparation of this polymer is discussed in U.S. patent 3,810,977.)

1. Equipment: A 5-liter, 4-neck round bottom flask equipped with steam injector, stainless steel stirrer, condenser, Dean Stark tube, and thermometer, and water baths for heating and cooling.

2. Material Charges:

5

25

10	Initial Charge (IC)	<u>Gram</u>	<u>s</u>
	Resyn® 28-2930	600	
	Ethyl acetate	300	
	Post Add-1 (PA-1)		
	Water (Deionized)		975
15	Potassium hydroxide solution (25% w/v)		78.4
-	Resyn® 28-2930	12	
	Post Add-2 (PA-2)		
	Dow Corning Antifoam 1510-US (10.0% solids)		15
20	Post Add-3 (PA-3)		
	Dow Corning Antifoam 1510-US (10.0% solids)		7.5

3. Procedure: IC was placed in the reaction vessel and heated to reflux (78°C). PA-1 was added all at once. When reflux was established, PA-2 was added all at once. When the reaction temperature reached 95.5°C, PA-3 was added all at once. Subsurface steam injection was started and the ethyl

acetate was azeotropically removed. The contents were held at 100°C for 15 minutes, cooled to 40°C and filtered through 2 layers of cheese cloth.

4. Emulsion properties: 31.0% solids, 29.5mPa.s (cps) Brookfield viscosity, 149-157nm particle size, pH 6.5, 0.001% grit.

EXAMPLE 2: This example describes the post-emulsification of a hair fixative polymer containing residues of methyl methacrylate, t-octyl acrylamide, hydroxypropyl methacrylate, t-butyl aminoethyl methacrylate, and acrylic acid that is commercially available as Amphomer® LV-71 from National Starch and Chemical Company, Bridgewater, New Jersey. (The preparation of this polymer is discussed in U.S. patent 3,927,199).

1. Equipment: A 3-liter, 4-neck round bottom flask equipped with steam injector, stainless steel stirrer, condenser, Dean Stark tube, and thermometer, and water baths for heating and cooling.

2. Material Charges:

5

20	<u>Initial Charge (IC)</u>	Grams
	Amphomer® LV-71	200
	Isopropyl acetate	88.3
	Ethanol	85.7
	Post Add-1 (PA-1)	
25	Water (Deionized)	400

Potassium hydroxide solution (25% w/v) 14.8

Post Add-2 (PA-2)

Hydrolabs (NJ) Burst RSD10, defoamer 6.0
(11.5% solids)

- 3. Procedure: IC was placed in the reaction vessel and heated to reflux (78°C). PA-1 was added all at once. When the reaction temperature reached 90-92°C, PA-2 was added all at once. Subsurface steam injection was started and the isopropyl acetate and ethanol were azeotropically removed.

 When the temperature reached 100°C, the contents were cooled to 40°C and passed through a 400 mesh stainless steel screen.
 - 4. Emulsion properties: 20.8% solids, 20.0mPa.s (CPS)
 Brookfield viscosity, 158-166nm particle size, pH 6.1, 0.001%
 grit.
- EXAMPLE 3: This example describes the preparation of a hair fixative polymer emulsion from methyl methacrylate, butyl acrylate, methacrylic acid, and hydroxyethyl methacrylate by solution polymerization and subsequent post-emulsification.

 (Preparation of this polymer via emulsion polymerization is described in Example 4.)

A. Solution Polymer

25

1. Equipment: A 2-liter, 4-neck round bottom flask equipped with steam injector, stainless steel stirrer, condenser, Dean Stark tube, addition funnels, and a thermometer, and water baths for heating and cooling.

2. Material Charges:

		Monomer Mix		Grams
		Butyl acrylate		50
		Methyl methacrylate		94
5	,	Hydroxyethyl methacrylate		20
		Methacrylic acid		36
		Ethanol		53.3
		Initial Charge (IC)		
		Benzoyl peroxide (78%)		2
10		Monomer mix		38
		Isopropyl acetate	.8	42
		Slow Add-1 (SA-1)		
		Monomer mix		215
	****	Slow Add-2 (SA-2)		
15	•	Ethanol		39
		Benzoyl peroxide solution	(78 w/v%)	1
		Slow Add-3 (SA-3)		
		Isopropyl acetate		41.4
		Benzoyl peroxide solution	(78 w/v%)	1.5
20		Diluent		
		Ethanol		18
		Isopropyl acetate		2
		Post Add (PA)	·	
		Water (deionized)		326
25		Sodium hydroxide solution	(25% W/V)	5

Procedure: The monomer mix was prepared first and charged to an addition funnel. IC was added to the reaction vessel, the contents heated to reflux (78°C) and held at reflux for 15 minutes. SA-1 was added over 4 hours. SA-1 had been added for 2 hours, SA-2 was started and added over 2 hours. When SA-1 and SA-2 were complete, the reaction contents were held at reflux for 30 minutes. SA-3 was started and added over 3 hours. At the completion of SA-3, the contents were held for 5 hours and then cooled to 60°C. diluent was added and the contents heated to reflux. added all at once. Solvent was distilled off until the reaction temperature reached 90°C. Subsurface steam injection started and the ethanol isopropyl and acetate azeotropically removed to give the polymer in bead form. The polymer slurry was held at 100°C for 15 minutes, cooled to 40°C, filtered and washed. The beads were dried at 60°C.

B. Post-Emulsion

5

10

15

20

1. Equipment: A 3-liter, 4-neck round bottom flask equipped with steam injector, stainless steel stirrer, condenser, Dean Stark tube and thermometer, and water baths for heating and cooling.

2. Material Charges:

	<u>Initial Charge (IC)</u>	<u>Grams</u>
	Polymer (prepared in A.3 above)	100
25	Isopropyl acetate	44

•	Ethanol		43
	Post Add-1 (PA-1)		
•	Water (deionized)	2	00
	Potassium hydroxide solution (25% w/v)		12.5
5 (Post Add-2 (PA-2)		
	<pre>Hydrolabs Burst RSD-10, defoamer (11.5% solids)</pre>		1.6
	Post Add-3 (PA-3)		
	Hydrolabs Burst RSD-10, defoamer		1.6

- 3. Procedure: IC was placed in the reaction vessel and heated to reflux (78°C). PA-1 was added all at once. When the reaction temperature reached 90°C, subsurface steam injection was started. At 93°C, PA-2 was added all at once. The subsurface steam injection was continued until the reaction temperature reached 100°C. PA-3 was added all at once and the contents held at 100°C for 15 minutes. The contents were cooled to 60°C, and filtered through a 400 mesh stainless steel screen.
- 4. Emulsion properties: 22.8% solids, 143-151nm particle size, pH 6.8, 0.008% grit.

25

EXAMPLE 4: This example describes the preparation of a hair fixative polymer from methyl methacrylate, butyl acrylate, hydroxyethyl methacrylate and methacrylic acid by emulsion polymerization using a procedure given in U.S. patent 4,196,190 issued to Gehman et al. and assigned to Rohm and Haas Company, Philadelphia, PA. The preparation of this

polymer emulsion by solution polymerization and postemulsification is described in Example 3.

1. Equipment: A 2-liter, 4-neck round bottom flask equipped with addition pump, condenser, stirrer, thermometer, addition funnels, nitrogen sparge, and water baths for heating and cooling.

		2. Material Charges	Grams
		Emulsion Premix	
		Deionized water	106.0
10		Rhone-Poulenc Sipon WD	3.8 (at 29% solids)
		Butyl acrylate	93.8
		Methyl methacrylate	176.0
		Hydroxyethyl methacrylate	37.5
15	3	Bromotrichloromethane	7.0
	.	Methacrylic acid	67.5
		Initial Charge-1 (IC-1)	-
		Deionized water	439.0
		Rhone-Poulenc Sipon WD	2.8
20		Initial Charge-2 (IC-2)	
		Emulsion premix	32.5
		Initial Charge-3 (IC-3)	
		Ammonium persulfate	0.75
		Deionized water	12.5
25		Slow Add	
		Emulsion premix	459.1

	Post Add-1 (PA-1)	
	t-Butyl hydroperoxide (70% solids)	0.17
	Deionized water	12.5
	Post Add-2 (PA-2)	
5	iso-Ascorbic acid	0.22
	Deionized water	12.5

10

15

20

3. Procedure: The emulsion premix was prepared first. The Sipon WD was added to the water, and the remaining ingredients were sequentially added and emulsified after each addition.

IC-1 was charged to the reaction vessel and placed under nitrogen sparge. The system was stirred and heated to 83°C. IC-2 was added and the system stirred for 5 minutes. IC-3 was added, the system reached 85.5°C, and was held at this temperature for 15 minutes. The system was cooled to 85°C and held at that temperature during the remainder of the reaction. SA was added over 30 minutes and the system held for 1.5 hours. PA-1 and PA-2 were added, and the system held at 85°C for 45 minutes. The reaction contents were cooled to 25°C and filtered.

4. Emulsion properties: 39.2% solids, 272-280nm particle size, 0.003% grit, and 11mPa.s Brookfield viscosity.

EXAMPLE 5: This example describes the preparation of a hair fixative polymer from methyl methacrylate, t-octyl

acrylamide, hydroxypropyl methacrylate, and acrylic acid by emulsion polymerization.

1. Equipment: A 1-liter 4-neck round bottom flask equipped with stainless steel stirrer, condenser, thermometer, addition funnels, nitrogen sparge, and a water bath.

2. Material Charges:

	Initial Charge-1 (IC-1)	Grams
	Water	219
	Rhone-Poulenc Sipon WD (29%)	1.4
10	Initial Charge-2 (IC-2)	
	t-octyl acrylamide	5.0
	Methyl methacrylate	3.9
÷	<pre>Initial Charge=3 (IC=3)</pre>	
	Ammonium persulfate	0.38
15	Water	6.3
	Slow Add-1 (SA-1)	
	t-octyl acrylamide	70
	Methyl methacrylate	54.3
	Hydroxypropyl methacrylate	9.4
20	Acrylic acid	37.5
	Bromotrichloromethane	1.9
	Slow Add-2 (SA-2)	
•	Water	48.0
	Rhone-Poulenc Sipon WD (29%)	1.9
25	Alcolac Abex 18 S (35%)	20.5

Post Add-1 (PA-1)	
t-Butyl hydroperoxide	0.12
Water	6.3
Post Add-2 (PA-2)	
Iso-ascorbic Acid	0.11

5 Iso-ascorbic Acid
Water

10

20

25

6.25

- 3. Procedure: IC-1 was charged to the reaction vessel, heated to 83°C, and sparged with nitrogen. IC-2 was added, the reaction temperature rose to 85°C, and the contents were held at this temperature for 15 minutes. SA-1 and SA-2 simultaneously were added over 100 minutes, and the contents held at 85°C for 1 hour. PA-1 and PA-2 were added, and the contents held at 85°C for 15 minutes, cooled and filtered through two layers of cheese cloth.
- 4. Emulsion properties: 39.0% solids, 0.299 intrinsic viscosity, 18mPa.s Brookfield viscosity, 236-244nm particle size, pH 1.83, and 0.004% grit.

EXAMPLE 6: This example describes the preparation of a solution polymer from vinyl neodecanoate, vinyl acetate, and monoisopropyl maleate, and subsequent post emulsification.

A. Solution Polymer

1. Equipment: A 2-liter, 4-neck round bottom flask equipped with steam injector, addition funnels, stainless steel stirrer, condenser, thermometer, and Dean Stark tube, and water baths for heating and cooling.

2. Material Charges:

	Monomer Mix	<u>Grams</u>
	Vinyl neodecanoate	80
	Vinyl acetate	60
5 ,	Monoisopropyl maleate	60
	Initial Charge (IC)	
	Monomer mix	2.0
	Ethyl acetate	80
	t-Butyl peroctoate solution (50% w/v)	1.70
10	Slow Add-1 (SA-1)	
	Monomer mix	180
	Slow Add-2 (SA-2)	
	Ethyl acetate	80
	t-Butyl peroctoate solution (50% w/v)	5.2
15	Slow Add-3 (SA-3)	
- 100 25	Ethyl acetate	30
	t-Butyl peroctoate solution (50% w/v)	i.70
m v zakon engles	<u>Diluent</u>	
	Ethyl acetate	10
20	Post Add (PA)	
	Water	200
	Polyvinyl alcohol	0.32

3. Procedure: The monomer mix was prepared and charged to an addition funnel. IC was added to the reaction vessel and the contents heated at reflux (78°C) for 15 minutes. SA-1

was started and added over 4 hours, and SA-2 was started and added over 4.5 hours. When SA-1 and SA-2 were complete, the contents were held at reflux for 2 hours. SA-3 was started and added over 1 hour. At the completion of SA-3, the contents were held for 2 hours and then cooled to 60°C. The diluent was added and the contents heated to reflux. PA was added all at once. The solvent was distilled off until the reaction temperature reached 90°C. Subsurface steam injection was started and the ethyl acetate azeotropically removed to give the polymer in bead form. The polymer slurry was held at 100°C for 15 minutes, cooled to 40°C, filtered and washed. The beads were dried at 60°C.

B. Post-Emulsion

5

10

15

20

- 1. Equipment: A 1-liter round bottom flask equipped with stainless steel stirrer.
- 2. Procedure: The polymer beads (5 grams) were dissolved in 94.1 grams of water and 0.9 gram of 2-amino-2-methyl-1-propanol with stirring until emulsified.
- EXAMPLE 7: This example describes the preparation of a hair fixative polymer from styrene by emulsion polymerization using a procedure given in U.S. patent 4,798,721 issued to Yahagi et al. and assigned to Kao Corporation of Japan.
- 1. Equipment: A 2-liter round bottom flask equipped with a stainless steel stirrer, condenser, thermometer, addition funnels, nitrogen sparge, and water bath.

2. Material Charges:

5

10

<u>Initial Charge (IC)</u>	Grams
Distilled water	500
Polyoxyethylene (30) nonylphenyl ether	25
ammonium persulfate	1.2
Slow Add (SA)	
styrene	125

- 3. Procedure: IC was charged to the reaction flask and the flask was sparged with nitrogen. The contents were heated to 62°C and held at that temperature for the remainder of the reaction. SA was added over 2 hours, and the reaction was held for an additional 6 hours.
- 4. Emulsion properties: 22% solids, 106-114nm particle size, pH 2.12, 0.002% grit.

EXAMPLE 8: This example describes the preparation of a hair fixative polymer from styrene and sodium styrene sulfonate by emulsion polymerization using a procedure given in U.S. patent 4,798,721 issued to Yahagi et al. and assigned to Kao Corporation of Japan.

- 1. Equipment: A 2-liter round bottom flask equipped with a stainless steel stirrer, condenser, thermometer, addition funnel, nitrogen sparge, and water bath.
 - 2. Material Charges:

25	<u>Initial Charge (IC)</u>	<u>Grams</u>
	Distilled water	500
	Polyoxyethylene (30) nonvlphenyl ether	25

Ammonium persulfate 1.2

Slow Add (SA)

Styrene 117.5

Sodium styrene sulfonate 7.5

5

15

20

- 3. Procedure: IC was charged to the reaction flask and the flask was sparged with nitrogen. The contents were heated to 62°C and held at that temperature for the remainder of the reaction. SA was added over 2 hours, and the reaction was held for an additional 6 hours.
- 4. Emulsion properties: 22.3% solids, 32-40nm particle size, 0.000% grit.

EXAMPLE 9: This example describes the preparation of a hair fixative polymer containing residues of styrene, trimethylaminoethyl methacrylate chloride, and polyoxyethylene nonylphenyl ether (average 30 addition moles of ethylene oxide) by emulsion polymerization using a procedure given in U.S. patent 4,798,721 issued to <u>Yahagi et al.</u> and assigned to Kao Corporation of Japan.

1. Equipment: A 2-liter round bottom flask equipped with a stainless steel stirrer, condenser, thermometer, addition funnels, nitrogen sparge, and water bath.

2. Material Charges:

	<u> Initial Charge (IC)</u>	Grams
	Distilled water	500
25	Polyoxyethylene (30) nonylphenyl ether	25
	Ammonium persulfate	1.2

Slow Add (SA)

5

10

15

20

Styrene 117.5

Trimethylaminoethyl methacrylate chloride

7.5

3. Procedure: IC was charged to the reaction flask and the flask was sparged with nitrogen. The contents were heated to 62°C and held at that temperature for the remainder of the reaction. SA was added over 2 hours, and the reaction was held for an additional 6 hours.

4. Emulsion properties: 21.8% solids, 75-83nm particle size, 0.002% grit.

Non-aerosol Formulations

The emulsions from Examples 1-9 were diluted with water to 10% polymer solids by weight and a percentage of the free acidity neutralized to prepare nonaerosol hairspray formulations. The percentage neutralization was determined on the basis of the carboxylic acid monomer content of the polymer. Example 6 was neutralized to 100% with 2-amino-2-methyl-1-propanol and remained stable as an emulsion. The percentage neutralization and the neutralizing agent for each of the Examples are shown in Table 1.

TABLE 1
NON-AEROSOL FORMULATIONS

		Example	% Free Acidity Neutralized	Neutralizing Agent
		1	50	histidine
5		2	60	histidine
	* \	. 3	60	histidine
		4	44	КОН
			33.6	histidine
		5	50	кон
		6	100	2-amino-2-methyl-1- propanol
10		7	none	
		8	none	
		9	none	

Curl Retention of Nonaerosol Formulations

15

Each of the nonaerosol formulations prepared from the emulsions of Examples 1 to 9 was tested on nine swatches of strands of Remi Blue String European Brown hair for curl retention at 90% relative humidity, 22°C (72°F), and the results pooled and averaged. The testing procedure was as follows:

The hair was separated into swatches of approximately 2 grams in weight and bound at one end with cotton thread and epoxy glue. Each swatch was then washed in a 10% solution of shampoo, and rinsed in warm tap water. The hair was cut into 6 inch lengths from the secured end and dried at 49°C (120°F).

It was wet again and combed, and the excess water squeezed out. The hair swatch was then rolled and secured onto a 1/2

5

10

15

20

25

inch diameter Teflon mandrel, and dried at 49°C (120°F). When dried, it was removed from the mandrel and the resulting curl suspended by its bound end. For each swatch, the curl height was measured, and then the curl was sprayed uniformly with four sprays of nonaerosol formulation. The curl was laid on a horizontal surface and allowed to air dry for one hour. The dried curl was then resuspended and set into a chamber at 22°C (72°F), 90% relative humidity, and the curl height measured immediately, and at 15, 30, 60 minute, and 2, and 5 hour intervals.

The percentage curl retention was calculated by the formula $(L-L^t)/(L-L^o)$ X 100, where L is the length of hair fully extended, L° is the length of hair before spray and exposure, and L^t is the length of hair after spray and exposure.

The percentage loss in curl retention was calculated by the formula $(T^0-T^t)/T^t \times 100$, where T^0 is the percent curl retention at 15 minutes and T^t is the percent curl retention at 5 hours.

The results are set out in Table 2 and show that the hair fixative polymers and the nonaerosol formulations prepared from the polymers according to the methods of Examples 1, 2, 3, 4, and 5 effectively retained curl, showing only between 4%-8% loss of curl retention after five hours under the test conditions. These Examples contained less than 4% surfactant by weight of polymer solids.

The emulsion from Example 6 would also be expected to exhibit effective curl retention; however, the free acidity of the polymer was neutralized to 100% to test the stability of the emulsion at the extreme of neutralization. While the emulsion remained stable, the lack of effective curl retention at 100% neutralization demonstrates that the degree of neutralization must be balanced to achieve stability, shampoo removability, and also effective hair fixative properties.

5

10

15

The nonaerosol formulations prepared from the emulsions of Examples 7, 8, and 9 did not effectively retain curl, showing a loss of curl retention of 15%-29% after five hours under the test conditions. These emulsions contained approximately 16%-17% surfactant by weight of polymer solids. Inasmuch as surfactants act as humectants, the loss of curl retention in these Examples is thought to be a result of the level of surfactant needed to prepare the emulsions of these Examples, demonstrating that this level can be detrimental to the properties needed for a good hair fixative formulation.

TABLE 2
Percentage Curl Retention at 90% Relative Humidity
22°C (72°F)

FOR NON-AEROSOL HAIRSPRA	V	c
--------------------------	---	---

5	SAMPLE	15 MIN	30 MIN	60 MIN	2 HR	5 HR	LOSS	% र
	1	90.0	84.6	83.6	83.6	82.8	8	<u></u>
	· 2	95.2	92.2	89.4	87.6	87.6	7	
	3	95.7	94.9	93.4	92.6	91.1	4	
	4	96.4	95.6	93.3	93.3	91.9	4	
10	5	94.4	92.2	91.4	89.0	88.2	6	
	6	88.3	86.6	80.1	78.6	70.8	19	
	7	73.3	64.9	57.5	53.3	51.4	29	
	8	89.3	83.7	79.6	78.8	71.3	20	
	9	89.6	80.9	79.9	75.8	75.8	15	

15 Aerosol Formulations

The emulsions from Examples 1-9 were diluted with water to 5%-10% solids content by weight, and a percentage of the free acidity was neutralized to prepare aerosol hairspray formulations. Dimethyl ether (DME) was added to make a final concentration of 30% DME by weight. The percentage solids content, the percentage neutralization, and the neutralizing base are shown in Table 3.

TABLE 3
AEROSOL FORMULATIONS

	Example	% Solids Content	% Free Acidity Neutralized	Neutralizing Base
	1	10	50	histidine
5	2	10	.60	histidine
	<u> </u>	7	60	histidine
	3	5	60	histidine
	4	5 .	4 4	кон
			33.6	histidine
	5	7	50	кон
10	6	10	100 .	2-amino-2- methyl-1- propanol
	7	Not stable in w	ater and dimethyl	ether
	8	0.2		
	9	Not stable in w	ater and dimethyl	ether

Subjective Properties of Aerosol Formulations

15

20

25

evaluated on 10 inch long, 2 gram swatches of brown hair by a panel of 8 persons. Each panel member evaluated a test swatch treated with one of the example formulations and a control swatch treated with a control formulation for each of the characteristics of stiffness, resistance to combing, flake accumulation, gloss, static, length of time of initial tackiness, drying time, and shampoo removability. The panel member rated both the test swatch and the control swatch by a numerical performance rating, and equivalent ratings were not permitted. In the evaluations, stiffness was superior to

5

10

15

softness; no resistance to combing was superior to resistance; no flake accumulation on hair and comb was superior to flake accumulation; gloss was superior to lack of gloss; no static flyaway after combing was superior to static flyaway; a shorter time of tackiness was superior to a longer time; a shorter drying time was superior to a longer drying time; and complete removal after two shampoos was superior to incomplete removal needing more washings. A total of 8 repeats per sample were made. The panel results were statistically and summarized comparing the test swatch as superior to, equivalent to, or inferior to, the control swatch. The results of the panel evaluations are set out in Table 2 and show that the aqueous aerosol formulations perform for most properties comparably to the ethanol based systems and are effective alternatives to ethanol based systems.

S

25

20

SUBJECTIVE PROPERTIES OF AEROSOL HAIRSPRAY FORMULATIONS

			COCCEC++41 +	ENOF BILL THO	OF DEATH	7000 44114				
	Expl. solids	Control	Stiff- ness	Comb. Ease	Flake	Gloss	Static	Tack Time	Drying Time	Shampoo Removabil.
OI.	1 10%	2ª	+	II	ı	II	II			п
	1 10%	1 ^b	t	+	11	ı	1	+	+	
	2 10%	2ª	11	11	t	Ħ	1			11
	2 10%	2 ^b	i .	+	+	1	t	+	+	
	2 7%	2ª	+	11	II	11	IĮ	II	II	
0	2 7%	2 ^b	ŧI	+	+	1	1	11	1	
	ა 5%	ယ္ခ	11	11	+	11	11			
	6 5%	2.	II	11	II.	11	11	ı	1	
	6 7.5%	2 -	Н	⊕ ų́	il .	n ×	II	ı	1	
01	+ sample	e superior	to control	1	sample infe	inferior to	control =		no significant difference	fference
	Control 1 ^b : at 5% poly neutralized (80% isobut	ia i	The polymer beads of Examper solids by weight in a with 2-amino-2-methyl-1-pnne/20% propane) was added	ds of Exa eight in methyl-1- was adde	Example 1, ber in anhydrous -1-propanol, dded as prope	ole 1, before post- inhydrous alcohol, copanol, and 30% by as propellant.	-emuls 90% y weig	ification, were dissolved of the free acidity was ht of a hydrocarbon blend	fication, were dissolved of the free acidity was t of a hydrocarbon blend	issolved (lity was on blend
J	Control 2 ^b :		The polymer beads of Example 2, before post-emulsi	ds of Exa	mple 2, 1	before po	st-emuls	ification	fication, were dissolved	issolved

10

15

by weight dimethyl ether was added as propellant. at 5% polymer solids by weight in water, 90% of the free acidity was neutralized with Control 2ª: The polymer beads of Example 2, before post-emulsification, were dissolved 2-amino-2-methyl-1-propanol, 0.5% by weight of a commercial defoamer was added, and 33% neutralized with 2-amino-2-methyl-1-propanol, and 30% by weight of a hydrocarbon blend (80% isobutane/20% propane) was added as propellant. 5% polymer solids by weight in anhydrous alcohol, 90% of the free acidity was

Control 3": The polymer beads of Example 3, before post-emulsification, were dissolved at 5% polymer solids by weight in water, 90% of the free acidity was neutralized with 2-amino-2-methyl-1-propanol, and 30% by weight dimethyl ether was added as propellant.

Stability

5

10

15

Neutralization of the polymers of this invention is necessary in order to (1) form the emulsion, and (2) impart shampoo removability. The degree of neutralization required is a function of the carboxylic acid content of the polymer and, in general, the polymers of this invention have a carboxylic acid content that will require neutralization from about 25% to 100% of the available carboxyl groups. Two samples of Example 2 at 10% polymer solids by weight were neutralized, one neutralized 60% with histidine, and the second neutralized 25% with NaOH, and the pH of these two samples monitored over a period of weeks at 49°C (120°F) and at room temperature. The results are set out in Table 4 and show that overall the pH of the samples remained relatively constant, indicating that the Example 2 emulsion was stable over time.

TABLE 4
EMULSION STABILITY

	Example 2 at	: 10% polymer so	olids - pH vs. time	at 49°C (120°F)
20	Time	Starting emulsion pH	60% Neutralized with Histidine	25% Neutralized with NaOH
	Initial	6.10	6.55	6.58
	2 weeks	6.10	6.32	6.34
	4 weeks	6.10	6.30	6.32
	6 weeks	6.09	6.30	6.30
25	8 weeks	6.09	6.30	6.30
	9 weeks	6.05	*6.27	**6.26
	11 weeks	6.06	6.30	6.26

	19 weeks	6.06	6.42	6.48
	Initial	6.10	6.55	6.58
5	Example 2 at temperature	10% polymer solids	- pH vs. time at room	
	19 weeks	6.02	6.25	6.26
	18 weeks	6.02	6.26	6.26
	14 weeks	6.02	6.26	6.26
	12 weeks	6.03	6.27	6.26

*** turned from opaque white to golden yellow
** turned from opaque white to translucent white

10

15

Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments of the invention described specifically above. Such equivalents are intended to be encompassed in the scope of the following claims.

We claim:

5

15

20

1. An aqueous emulsified hair fixative composition comprising by weight:

- (A) 2% 15% of a polymer comprising polymerized residues of
 - (a) one or more acidic monomers, each containing one or more available carboxyl groups, present in an amount of 5% 35% by weight of the polymer; and
- (b) one or more water insoluble comonomers present

 in an amount of 65% 95% by weight of the polymer; and
 - (B) an effective amount of a cosmetically acceptable organic or inorganic base, or combination of those bases, to neutralize a sufficient proportion of the available carboxyl groups to obtain shampoo removability of the hair fixative composition without destabilizing the emulsion or dissolving the polymer.
 - 2. The hair fixative composition of claim 1 in which the acidic monomers of the polymer are selected from the group consisting of C_3 - C_{12} mono- and di-carboxylic acids and the C_1 - C_8 alkyl half esters of maleic and fumaric acids, and combinations of those.
 - 3. The hair fixative composition of claim 1 in which the acidic monomers of the polymer are selected from the group

consisting of acrylic acid, methacrylic acid, crotonic acid, itaconic acid, maleic acid, fumaric acid, and the C_1 - C_8 alkyl half esters of maleic and fumaric acids, and combinations of those.

5

4. The hair fixative composition of claim 3 in which the acidic monomers of the polymer are acrylic acid, monoisopropyl maleate, and crotonic acid.

10

5. The hair fixative composition of claim 1 in which the water insoluble comonomers of the polymer are selected from the group consisting of C_3 - C_{12} acrylates and methacrylates, C_1 - C_8 alkyl substituted acrylamides and methacrylamides, vinyl esters of C_3 - C_{12} carboxylic acids, styrene, and combinations of those.

15

6. The hair fixative composition of claim 5 in which the water insoluble comonomers of the polymer are methyl methacrylate, t-octyl acrylamide, vinyl neodecanoate, and vinyl acetate.

20 .

7. The hair fixative composition of claim 1 in which the cosmetically acceptable base for neutralization is selected from the group consisting of sodium hydroxide, potassium hydroxide, 2-amino-2-methyl-1-propanol, histidine,

tris(hydroxymethyl)aminomethane, and triethanol amine, and combinations of those.

8. The hair fixative composition of claim 1 in which the effective amount of base is an amount to neutralize from about 25%-100% of the available carboxyl groups on the polymer.

5

- 9. The hair fixative composition of claim 1 further comprising a surfactant present in an amount up to 4% by weight of the polymer solids.
- 10. The hair fixative composition of claim 1 further comprising a water miscible solvent.
 - 11. The hair fixative composition of claim 10 in which the water miscible solvent is selected from the group consisting of ethanol, isopropanol, acetone, and methyl ethyl ketone, and combinations of those.
 - 12. The hair fixative composition of claim 1 further comprising a propellant selected from the group consisting of ethers, compressed gases, halogenated hydrocarbons and hydrocarbons.

5

10

15

13. The hair fixative composition of claim 1 in which the polymer further comprises up to 20% by weight of polymerized residues of water soluble comonomers.

- 14. The hair fixative composition of claim 13 in which the water soluble comonomers are selected from the group consisting of water soluble hydroxyalkyl esters of acrylic and methacrylic acids, C_1 - C_4 alkyl C_2 C_4 aminoalkyl esters of acrylic and methacrylic acids, acrylamide and methacrylamide, dimethyl acrylamide and methacrylamide, N-vinyl pyrrolidone, vinyl caprolactam, and combinations of those.
- 15. The hair fixative composition of claim 14 in which the nonionic water soluble comonomers are hydroxypropyl methacrylate and hydroxyethyl methacrylate.
- 16. The hair fixative composition of claim 13 further comprising a surfactant present in an amount up to 4% by weight of the hair fixative composition.
 - 17. The hair fixative composition of claim 13 further comprising a water miscible solvent.
- 18. The hair fixative composition of claim 13 in which
 the water miscible solvent is selected from the group
 consisting of ethanol, isopropanol, acetone, and methyl ethyl
 ketone, and combinations of those.

19. The hair fixative composition of claim 13 further comprising a propellant selected from the group consisting of ethers, compressed gases, halogenated hydrocarbons and hydrocarbons.

5

- 20. A process for the preparation of an aqueous emulsified hair fixative composition prepared by the process comprising the steps of
- (A) preparing an aqueous emulsion polymer having a solids content of 2%-15% by weight and comprising polymerized residues of
 - (a) one or more acidic monomers, each containing one or more available carboxyl groups, present in an amount of 5% - 35% by weight of the polymer; and

15

10

(b) one or more water insoluble comonomers present in an amount of 65% - 95% by weight of the polymer; and

20

- (c) optionally, one or more nonionic water soluble comonomers present in an amount up to 20% by weight of the polymer; and
 - (d) optionally, a surfactant present in an amount up
 to 4% by weight; and
 - (B) adding an effective amount of a cosmetically acceptable organic or inorganic base, or combination of those bases, to neutralize a sufficient proportion of the available carboxyl groups to obtain shampoo removability of the hair

fixative composition without destabilizing the emulsion or dissolving the polymer; and

(C) optionally, adding a water miscible solvent.

PCT/US 93/05523

International Application No

I. CLASSIFI	CATION OF SUBJE	CT MATTER (if several classification	symbols apply, indicate all) ⁶	
_		Classification (IPC) or to both National	Classification and IPC	
Int.Cl.	5 A61K7/06			
II. FIELDS	SEARCHED			
		Minimum Docu	mentation Searched ⁷	
Classification	on System		Classification Symbols	
Int.Cl.	5	A61K	•	
		Documentation Searched oth to the Extent that such Documen	er than Minimum Documentation ts are Included in the Fields Searched ⁸	·
III. DOCUM	MENTS CONSIDERE	D TO BE RELEVANT ⁹		
Category °	Citation of D	ocument, 11 with indication, where appro	priate, of the relevant passages 12	Relevant to Claim No.13
X	EP,A,O COMPANY 11 Sept	445 714 (BRISTOL MYER		1-10, 12-14, 16,19,20
X	KOMMÁND 13 July	274 086 (HENKEL ITGESELLSCHAFT AUF AK 1988 umn 6; example 2	TIEN)	1-12, 16-20
X	vol. 11 pages 4 GUTH J. America	OELE. FETTE. WACHSE. 7, no. 13, 28 August 64 - 467 , XP236657 ET AL 'Addressing th n Trend Toward Low VO e 465; table 3	e North	1-8, 10-15, 17-20
1			* * , -/	Ť
"A" docording to the color of t	nsidered to be of parti- rlier document but pul- ing date cument which may thr ich is cited to establis ation or other special scument referring to a ther means	eneral state of the art which is not cular relevance blished on or after the international ow doubts on priority claim(s) or the publication date of another reason (as specified) on oral disclosure, use, exhibition or to the international filing date but	"T" later document published after the intern or priority date and not in conflict with the cited to understand the principle or theorinvention "X" document of particular relevance; the class cannot be considered novel or cannot be involve an inventive step "Y" document of particular relevance; the class cannot be considered to involve an inventive step cannot be considered to involve an inventive step in the combination being obvious to in the art. "&" document member of the same patent far	he application but ry underlying the imed invention considered to timed invention tive step when the other such docu- to a person skilled mily
Date of the	Actual Completion of	f the International Search	Date of Mailing of this International Sea	arch Report
		GUST 1993	1 8. 08.	93
Internation	al Searching Authorit	y	Signature of Authorized Officer	
	EUROP	EAN PATENT OFFICE	BOULOIS D.	

INTERNATIONAL SEARCH REPORT

International Application No.

PCT/US 93/05523

	International Application No	
ш. росиме	NTS CONSIDERED TO BE RELEVANT (CONTINUED FROM THE SECOND SHEET)	
Category °	Citation of Document, with indication, where appropriate, of the relevant passages	Relevant to Claim No.
х	BE,A,677 267 (L'OREAL)	1-13,
^	2 September 1966	16-20
	see page 14; example 9	
	see page 20 - page 21; example m	
P,X	US,A,5 176 898 (GOLDBERG M. ET AL)	1-20
	5 January 1993	
	see column 4 - column 5; example 3	
.		1.0
X	SEIFEN-OELE-FETTE-WACHSE	1-8,
	vol. 108, no. 13, 12 August 1982, AUGSBURG	10-15, 17-20
	pages 393 - 395	17-20
	H. BRONNSACK ET AL 'Moderne Haarsprays	
	Marketings , Trends und Formulierungstechnik'	
Υ	see page 395; table 5	9,16
'	see page 333, table 3	-,
Υ	US,A,5 094 838 (BENSON A.B. ET AL)	9,16
.	10 March 1992	-,
	see column 3 - column 4; example 3	
x	EP,A,O 418 676 (NATIONAL STARCH AND	1-8,
	CHEMICAL INVESTMENT HOLDING CORPORATION)	12-15,
	27 March 1991	19,20
	see page 3, line 26 - line 27	
	see page 3 - page 5; examples 1,2	•
A	GB,A,2 098 226 (L'OREAL)	9,16
	17 November 1982	
	see page 14; example 12	
	OD A 2 126 600 (LIODEAL)	
A	GB,A,2 136 689 (L'OREAL)	
	26 September 1984	
ا ا	FR,A,2 424 738 (NATIONAL STARCH AND	
^	CHEMICAL CORPORATION)	
	30 November 1979	
1		
		-
		·
	·	
		γ,
 		

ANNEX TO THE INTERNATIONAL SEARCH REPORT ON INTERNATIONAL PATENT APPLICATION NO.

US 9305523 SA 75701

This annex lists the patent family members relating to the patent documents cited in the above-mentioned international search report. The members are as contained in the European Patent Office EDP file on

The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

03/0

03/08/93

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
EP-A-0445714	11-09-91	US-A- 5030443 AU-B- 636458 AU-A- 7275591	09-07-91 29-04-93 12-09-91
EP-A-0274086	13-07-88	DE-A- 3643897 DE-A- 3772540	30-06-88 02-10-91
BE-A-677267	02-09-66	CH-A- 461109 CH-A- 466504 DE-A,B,C 1794367 DE-A- 1645082 FR-E- 92221 FR-A- 1472926 GB-A- 1103284 NL-A- 6602661	19-04-73 16-07-70 05-09-66
US-A-5176898	05-01-93	None	
US-A-5094838	10-03-92	None	
EP-A-0418676	27-03-91	US-A- 5021238 AU-B- 621007 AU-A- 6206990 CA-A- 2024985 JP-A- 3112918	04-06-91 27-02-92 06-06-91 19-03-91 14-05-91
GB-A-2098226	17-11-82	LU-A- 83350 BE-A- 893113 CA-A- 1179268 CH-A- 652920 DE-A- 3216687 FR-A,B 2505179 JP-C- 1714093 JP-B- 4000961 JP-A- 57198800 NL-A- 8201877 SE-A- 8202843 US-A- 4842849	24-03-83 08-11-82 11-12-84 13-12-85 02-12-82 12-11-82 27-11-92 09-01-92 06-12-82 01-12-82 09-11-82 27-06-89
GB-A-2136689	26-09-84	LU-A- 84708	14-11-84

ANNEX TO THE INTERNATIONAL SEARCH REPORT ON INTERNATIONAL PATENT APPLICATION NO.

US 9305523 SA 75701

This annex lists the patent family members relating to the patent documents cited in the above-mentioned international search report.

The members are as contained in the European Patent Office EDP file on

The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

03/08/93

2

Page

03-09-81

06-12-79

Patent family Publication Publication Patent document member(s) date cited in search report date 899237 24-09-84 GB-A-2136689 BE-A-10-06-86 1205749 CA-A-659389 30-01-87 CH-A-3410842 27-09-84 DE-A,C 2542997 28-09-84 FR-A,B JP-B-25-09-92 4060082 25-12-84 JP-A-59231008 8400929 16-10-84 NL-A-24-09-84 8401602 SE-A-27-05-86 4591610 US-A-11-03-80 4192861 FR-A-2424738 30-11-79 US-A-DE-A,B,C 2917504 08-11-79

GB-A-

JP-A-

1597289