SFU SURGE 6 Intro to Data Science and ML We acknowledge that all SFU Surge initiatives, including the opportunity to host this workshop today, takes place on x^wməθk^wəyəm (Musqueam), səlilwətał (Tsleil-Waututh), and Skwxwúymesh (Squamish) nations.

As build the tech community of tomorrow, its important to understand and respect indigenous histories!

Access This File.

It is also available online in the StormHacks discord Server!

I'm Matt!

- I've judged at over 10 hackathons
- Won over 20 hackathons globally
- Worked in the healthcare industry
- Organized 6 hackathons

- © @ermergesh
- in/MatthewWong1129

What we'll cover

Introduction to Data Science

What it is and why it matters

Data Types & Structure

Understanding the different kinds of data

Data Cleaning & Preprocessing

Making messy data ready for use

Exploratory Data Analysis

Finding insights through visualization

Machine Learning Basics

Core ML concepts for a hackathon

Demo: Kaggle Titanic Dataset
Applying what we learned

Why is it so important?

Data Science

Turning raw data into actionable insights using math, coding and storytelling

Data Cleaning

Removing duplicate/missing values and standardizing information

Exploratory Data Analysis

Summarizing and visualizing data

Feature Engineering

Creating useful new variables for models

Modeling

Building mathematical representations of data to make predictions

Types of Data

Structured

Tables/arrays

Numerical

- numbers
 - stock prices

Unstructured

Raw text or images

Categorical

- types
 - product categories (clothing, tech, etc)

Data Science Tools

Pandas

Data manipulation

Scikit-Learn, TensorFlow, Pytorch

Machine learning models

Seaborn + Matplot

Data Visualization

NumPy

Numerical Calculations

Kaggle

Database of datasets

Jupyter Notebook

IDE

Data Visualization Basics

Histogram

Shows data distribution

Scatterplot

Identifies relationships

Data Visualization Basics

Heatmap

Shows correlations

Box Plot

Highlights outliers

Fall location

What's wrong?

Global Search													
0	Name ↑	Status	Temporary Status	Hacker ID	Application Date	Email	Student Number	Major	Enrollment Year	Participant Type	Team Member Names	Dietary Restrictions	PI
0	Aaron Wong	Accepted	Accepted	200	Wed Feb 12 2025 19:40	F. ZEITE CO		Computing Scie	2nd year	Team (4 people	Alex Zeng, Brayden Ch		Υє
	Abhijot Singh S	Accepted	Accepted	236	Wed Feb 12 2025 19:40	as		Computing Scie	2nd year	Team (4 people	Abhijot Singh Sandhu,		Υє
е	Aditya Kulkarni	Accepted	Accepted	88	Wed Feb 12 2025 19:40	-		Computing Scie	4th	Individual			Υє
0	Adrian Crusius	Accepted	Accepted	251	Wed Feb 12 2025 19:41:	arti		Data Science	4th year	Individual looki		Vegetarian	Υє
0	Adriel Adasa	Withdrawn	Accepted	202	Thu Feb 13 2025 22:02	-		Computing Scie	3rd year?	Individual looki			No
0	Ajay Unnikrishn	Accepted	Accepted	188	Wed Feb 12 2025 19:41:	_	-	Engineering	1st	Team (4 people	Shameer Khan, Rushee		Υє
0	Alex Oliver Reyes	Accepted	Accepted	274	Wed Feb 12 2025 19:41:			Computing Scie	1st year	Individual			No
0	Alex Zeng	Accepted	Accepted	164	Wed Feb 12 2025 19:41:	-	-	Computing Scie	2nd	Team (4 people	Arron Wong, Brayden		Υє
	Alexander Chen	Accepted	Accepted	199	Wed Feb 12 2025 19:41:	-		Computing Scie	2nd	Individual looki			Υє
	Alexander Potia	Accepted	Accepted	115	Wed Feb 12 2025 19:41:	anatend	3	Computing Scie	2nd year	Team (4 people	Manan Mehta and Khali		Υє
													•

Machine Learning in 5 minutes

Machine Learning in 5 minutes

Overfitting

Model memorizes the data instead of generalizing it

Underfitting

Model is too simple and misses out on key patterns

Underfitted

Good Fit/Robust

Pro hacker tip: Garbage in, garbage out

Machine Learning in 5 minutes

Regression

Predicts recurring values like housing prices

Classification

Predicts categories such as spam emails

Regression Models

Linear Regression

Line of best fit

$$y = mx + b \longrightarrow y = \beta o + \beta 1x + \epsilon$$

$$\beta$$
o = m, β 1 = b, ϵ = error

kNN (regression vers.)

Predict value by average of 'k' nearest neighbours

Facebook Prophet

A regression model for time series

Breaks data into: Trend + seasonality + special events + error

Classification Models

Random Forests

A bunch of decision trees

TF-IDF + Naive Bayes (Gaussian)

Classification of word weights

kNN (classification vers.)

Labels all closest neighbors.

