Exploring and visualizing data

After imputing the missing values, one should perform an exploratory analysis, which involves using a visualization plot and an aggregation method to summarize the data characteristics. The result helps the user gain a better understanding of the data in use. The following recipe will introduce how to use basic plotting techniques with a view to help the user with exploratory analysis.

Getting ready

This recipe needs the previous recipe to be completed by imputing the missing value in the age and Embarked attribute.

How to do it...

Perform the following steps to explore and visualize data:

- 1. First, you can use a bar plot and histogram to generate descriptive statistics for each attribute, starting with passenger survival:
 - > barplot(table(train.data\$Survived), main="Passenger Survival",
 names= c("Perished", "Survived"))

Passenger survival

- 2. We can generate the bar plot of passenger class:
 - > barplot(table(train.data\$Pclass), main="Passenger Class",
 names= c("first", "second", "third"))

Passenger class

- 3. Next, we outline the gender data with the bar plot:
 - > barplot(table(train.data\$Sex), main="Passenger Gender")

Passenger gender

- 4. We then plot the histogram of the different ages with the hist function:
 - > hist(train.data\$Age, main="Passenger Age", xlab = "Age")

Passenger age

- 5. We can plot the bar plot of sibling passengers to get the following:
 - > barplot(table(train.data\$SibSp), main="Passenger Siblings")

Passenger siblings

- 6. Next, we can get the distribution of the passenger parch:
 - > barplot(table(train.data\$Parch), main="Passenger Parch")

Passenger parch

- 7. Next, we plot the histogram of the passenger fares:
 - > hist(train.data\$Fare, main="Passenger Fare", xlab = "Fare")

Passenger fares

- 8. Finally, one can look at the port of embarkation:
 - > barplot(table(train.data\$Embarked), main="Port of Embarkation")

Port of embarkation

- 9. Use barplot to find out which gender is more likely to perish during shipwrecks:
 - > counts = table(train.data\$Survived, train.data\$Sex)
 - > barplot(counts, col=c("darkblue","red"), legend = c("Perished",
 "Survived"), main = "Passenger Survival by Sex")

Passenger survival by sex

- 10. Next, we should examine whether the Pclass factor of each passenger may affect the survival rate:
 - > counts = table(train.data\$Survived, train.data\$Pclass)
 - > barplot(counts, col=c("darkblue","red"), legend =c("Perished",
 "Survived"), main= "Titanic Class Bar Plot")

Passenger survival by class

- 11. Next, we examine the gender composition of each Pclass:
 - > counts = table(train.data\$Sex, train.data\$Pclass)
 - > barplot(counts, col=c("darkblue","red"), legend =
 rownames(counts), main= "Passenger Gender by Class")

Passenger gender by class

- 12. Furthermore, we examine the histogram of passenger ages:
 - > hist(train.data\$Age[which(train.data\$Survived == "0")], main=
 "Passenger Age Histogram", xlab="Age", ylab="Count", col ="blue",
 breaks=seq(0,80,by=2))
 - > hist(train.data\$Age[which(train.data\$Survived == "1")], col ="red", add = T, breaks=seq(0,80,by=2))

Passenger age histogram

- 13. To examine more details about the relationship between the age and survival rate, one can use a boxplot:
 - > boxplot(train.data\$Age ~ train.data\$Survived,
 - + main="Passenger Survival by Age",
 - + xlab="Survived", ylab="Age")

Passenger survival by age