Statistical Learning and Computational Finance Lab. Department of Industrial Engineering http://slcf.snu.ac.kr

Lecture 5: 선형대수 및 다변량 해석학 연습

1. Linear Equations

Overview

1. Linear Equations

Matrix Multiplication

 $A: m \times p, B: p \times n$

 $AB = C : m \times n$

예시

$$A = \begin{bmatrix} 2 & 4 \\ 2 & 5 \end{bmatrix}, B = \begin{bmatrix} 1 & 0 \\ 3 & 1 \end{bmatrix} = AB = \begin{bmatrix} 2*1+4*3 & 2*0+4*1 \\ 2*1+5*3 & 2*0+5*1 \end{bmatrix}$$

주의할 점 : AB ≠ BA

LU Decomposition

A = LU를 하는 이유: Ax=b 를 효율적으로 풀기 위하여 A를 L과 U로 분해

L : lower triangular matrix, U : upper triangular matrix

A를 U의 형태로 바꾸기 위해

 $E_n ... E_3 E_2 E_1 A = U$ 형태로 바꿔주어야 함

A = LU를 구하고 나면 LUx = b 를 푸는 것은 쉬움

LU Decomposition

다음 행렬을 LU 분해하라.

$$A = \begin{bmatrix} 2 & -1 & 3 \\ 4 & 6 & 1 \\ -8 & -4 & -2 \end{bmatrix}$$

LU Decomposition

Ax = b 를 만족하는 x를 구하시오.

$$A = \begin{bmatrix} 2 & -1 & 3 \\ 4 & 6 & 1 \\ -8 & -4 & -2 \end{bmatrix}, b = \begin{bmatrix} 6 \\ 15 \\ -22 \end{bmatrix}$$

Matrix Multiplication

 $A: m \times p, B: p \times n$

 $AB = C : m \times n$

예시

$$A = \begin{bmatrix} 2 & 4 \\ 2 & 5 \end{bmatrix}, B = \begin{bmatrix} 1 & 0 \\ 3 & 1 \end{bmatrix} = AB = \begin{bmatrix} 2*1+4*3 & 2*0+4*1 \\ 2*1+5*3 & 2*0+5*1 \end{bmatrix}$$

주의할 점 : AB ≠ BA

Positive Definite Matrix

행렬 A에 대해 모든 nonzero vector $x \in R^n$ 에 대해 $x^T Ax > 0$ 이면 Positive Definite

Test for P.D matrix (하나만 체크하면 됨)

 $x^T Ax > 0$ 을 직접 확인

모든 eigenvalue에 대해 $\lambda_i > 0$

행렬 A의 upper left submatrices A_k 의 determinant 들이 모두 0보다 크다

Positive Definite Matrix

$$A = \begin{bmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{bmatrix}$$
 가 positive definite 임을 보이시오.

Positive Definite Matrix

$$A = \begin{bmatrix} a & 2 & 2 \\ 2 & a & 2 \\ 2 & 2 & a \end{bmatrix}$$
 가 positive definite 이기 위한 a의 조건을 구하시오.

Cholesky Factorization

행렬 $A = (a_{ij} \in R^{n \times n})$ 가 symmetric positive definite라면,

$$A = R^T R(r_{ij} > 0)$$
 를 만족하는 Upper Triangular R이 존재한다.

$$A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$
일 때, A를 Cholesky 분해하시오.

Linear Independence

벡터 $v_1, ..., v_k$ 에 대하여 , $c_1v_1+c_2v_2+\cdots+c_kv_k=0$ 의 해가 오직 $c_1=c_2=\cdots=0$ 이라면, $v_1, v_2, ... v_k$ 를 linearly independent 라고 한다.

따라서 벡터들이 서로 linearly independent 하다는 것은 나머지 벡터들의 선형조합으로 자기자신을 만들어낼 수 없다는 것이다.

Linear Independence

$$x_1 = \begin{bmatrix} 2 \\ 2 \\ 1 \end{bmatrix}, x_2 = \begin{bmatrix} -4 \\ 6 \\ 5 \end{bmatrix}, x_3 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$
의 linear independence를 검증하시오.

Norm 의 정의

S가 x를 원소로 하는 Vector space 라면, real-valued function ||x|| 가 다음 성질을 만족

 $||x|| \ge 0$, for any $x \in S$

||x|| = 0, if and only if x = 0

 $\|\alpha x\| = |\alpha| \|x\|$, $\alpha = |\alpha| \|x\|$

 $||x + y|| \le ||x|| + ||y||$ (triangular inequality)

Vector p-Norm

$$||x||_p = (\sum_{i=1}^n |x_i|^p)^{1/p}$$

$$||x||_1 = \sum_{i=1}^n |x_i|$$

$$||x||_{\infty} = \max_{1 \le i \le n} |x_i|$$

$$x_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, y = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
일 때, $||x||_1$, $||x||_2$, $||x||_\infty$, $||x + y||_2$ 를 구하시오.

Projection Matrix

b를 a에 projection 시킨 vector p

p는 a와 같은 방향

b-p는 a와 수직

$$p = \frac{aa^T}{a^Ta}b$$

Projection matrix : $P_a = \frac{aa^T}{a^Ta}$

 $a_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $a_2 = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$ 일 때, a_2 를 a_1 에 projection시킨 벡터 p와 이 때의 projection matrix P_{a_-1} 을 구하시오.

Projection Matrix

Projection Matrix의 정의

행렬 P 가 $P^2 = P$ 을 만족하면 projection matrix다.

Projection의 성질 (P:nxn)

P가 projection이고, $P = P^T$ 이면, P를 orthogonal projection matrix 라고 한다.

P가 projection이면, I – P도 projection이다.

P가 orthogonal projection이라면, I - P도 orthogonal projection이다.

Least Squares Problem

Ax = b 의 해가 존재하지 않는 경우가 있다.

⇔A의 column vector들로 b를 만들어낼 수 없다.

⇔b가 A의 column space에 존재하지 않는다.

$$P = A(A^T A)^{-1} A^T$$

$$A = \begin{bmatrix} 1 & 2 \\ 1 & 3 \\ 0 & 0 \end{bmatrix}$$
, $B = \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix}$ 일 때, $Ax = b$ 의 해가 있는지 조사하고 없으면 $min||Ax - b||$ 의 해 x 와 orthogonal projection matrix P를 구하시오.

Orthogonal Matrix

Orthogonal Matrix의 정의

행렬 Q가 square matrix이며 모든 column과 row가 서로 orthogonal한 unit vector들이라면 Q는 orthogonal matrix라고 한다.

$$Q^T Q = Q Q^T = I$$

길이, 내적, 각도 보존

Gram-Schmidt

n개의 independent한 벡터를 서로 수직이고 길이가 1인 n개의 벡터로 바꾸는 과정

QR 분해에 사용

Q는 orthogonal, R은 upper triangular matrix

QR Factorization

$$A = \begin{bmatrix} 1 & 2 \\ 1 & 3 \\ 0 & 0 \end{bmatrix} \stackrel{\text{def}}{=} QR \text{ 분해하시오.}$$

Eigenvalue

 $(A \in \mathbb{R}^{n \times n}, x \neq 0)$ $Ax = \lambda x$ 에서 x, λ 를 각각 eigenvector, eigenvalue라고 함

 $A = S\Lambda S^{-1}$ (S는 eigenvector로 이루어졌고, Λ 는 eigenvalue로 이루어진 행렬)

Spectral Theorem

A가 대칭행렬 => $A = V \Lambda V^T$ 로 분해 가능

V: orthogonal matrix, Λ: eigenvalue로 이루어진 대각행렬

특성 방정식

$$\det(A - \lambda I) = 0$$

Eigenvalue

$$A = \begin{bmatrix} 2 & 0 & -2 \\ 1 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix}$$
 에 대한 고유값과 고유벡터를 구하시오.

고유값과 고유벡터를 활용해 A⁵를 구하시오.

SVD Decomposition

임의의 $m \times n$ 행렬 A는 다음과 같이 분해될 수 있다.

 $A = U\Sigma V^T$

U,V 는 orthogonal matrix, Σ는 diagonal matrix

Σ의 대각 성분을 singular value 라고 함

 AA^T or A^TA 의 고유값 분해를 했을 때 AA^T 의 $\sqrt{\lambda_i}$ 가 Σ 가 된다.

Eigenvalue

$$A = \begin{bmatrix} -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix}$$
의 특이값과 특이벡터 (left, right)를 구하시오.

