

AUDIOVISUAL COMMUNICATIONS LCAV

Mathematical Foundations of Signal Processing

Bases and Least Squares Approximation

Benjamín Haro Béjar Mihailo Kolundžija Reza Parhizkar Martin Vetterli

October 6, 2014

Previous lecture

- Geometry is key to intuition!
 - From finite to infinite dimensional spaces
- Hilbert spaces: Complete inner product spaces
- Linear operators and their adjoints
 - Bounded linear operators, eigenvalues and eigenvectors
- Projection: Oblique and orthogonal
 - · Idempotency and self-adjointness
 - Projection theorem
- Approximation
 - Best/least squares approximation
- Direct sums and decompositions

3

Today

- Basis representation and expansions
 - Riesz bases
 - Orthonormal bases
 - Biorthogonal bases
- Frame representation and expansions
 - Definition
 - Tight frames
 - General frames
- Matrix representation of linear operators
 - Change of basis
 - Matrices
- Gram-Schmidt orthonormalization and polynomial approximation

Readings:

 Section 2.5 of Chapter 2, "From Euclid to Hilbert", of Foundations of Signal Processing

3

Bases

Definition (Basis)

- $\Phi = \{\varphi_k\}_{k \in \mathcal{K}} \subset V$ is a basis when
 - Φ is linearly independent and
 - **2** Φ is complete in V: $V = \overline{span}\{\Phi\}$
- Expansion formula: any $x \in V, x = \sum_{k \in K} \alpha_k \varphi_k$

 $\{\alpha_k\}_{k\in\mathcal{K}}$: is unique

 α_k : expansion coefficients

Example

• The standard basis for \mathbb{R}^N

$$e_k = \begin{bmatrix} 0 & 0 & \cdots & 0 & 1 & 0 & 0 & \cdots & 0 \end{bmatrix}^T, \ k = 0, \ldots, N-1$$

any
$$v \in \mathbb{R}^N$$
 : $v = \sum_{k=0}^{N-1} v_k e_k$

Bases

Examples

Riesz bases

Definition (Riesz Basis)

- In a Hilbert space H, $\Phi = \{\varphi_k\}_{k \in \mathcal{K}}$ is a Riesz basis when
 - Φ is a basis
 - ② There exists $0 < \lambda_{min} \le \lambda_{max} < \infty$ s.t.

for any
$$x = \sum_{k \in \mathcal{K}} \alpha_k \varphi_k \in H$$

$$\lambda_{\min} \|x\|^2 \leqslant \sum_{k \in \mathcal{K}} |\alpha_k|^2 \leqslant \lambda_{\max} \|x\|^2$$

• Numerical stability when $\lambda_{min} pprox \lambda_{max}$

Example

In \mathbb{R}^N

• Let $\Phi = \begin{bmatrix} \varphi_0 & \varphi_1 & \dots & \varphi_{N-1} \end{bmatrix}$ be a Riesz basis and define $G = \Phi^*\Phi$. Then $1/\lambda_{max} =$ minimum eigenvalue of G $1/\lambda_{min} = \text{maximum eigenvalue of } G$

Riesz bases

Example

Eigenvalues of $\Phi_a^*\Phi_a$

Operators associated with Riesz bases

Definition (Basis synthesis operator)

- Synthesis operator
 - $\Phi: \ell^2(\mathcal{K}) \to H$, s.t. $\Phi \alpha = \sum_{k \in \mathcal{K}} \alpha_k \varphi_k$
 - $\|\Phi\| \leqslant 1/\sqrt{\lambda_{\textit{min}}}$ (follows from definition)
 - Adjoint: $y \in H$

$$\langle \Phi \alpha, y \rangle = \langle \sum_{k \in \mathcal{K}} \alpha_k \varphi_k, y \rangle = \sum_{k \in \mathcal{K}} \alpha_k \langle y, \varphi_k \rangle^*$$

Definition (Basis analysis operator)

- Analysis operator
 - $\Phi^*: H \to \ell^2(\mathcal{K})$ $(\Phi^*x)_k = \langle x, \varphi_k \rangle, \quad k \in \mathcal{K}$
 - $\|\Phi^*\| \leqslant 1/\sqrt{\lambda_{min}}$
- Note that the analysis operator is the adjoint of the synthesis operator

Orthonormal bases

Definition (Orthonormal basis)

- $\Phi = {\varphi_k}_{k \in \mathcal{K}} \subset H$ is an orthonormal basis for H when
 - \bullet \bullet is a basis for H and
 - Φ is an orthonormal set

$$\langle \varphi_i, \varphi_k \rangle = \delta_{i-k}$$
 for all $i, k \in \mathcal{K}$

- If Φ is an orthogonal set, then it is linearly independent
- If $\overline{span}\{\Phi\} = H$ and Φ is an orthogonal set, then Φ is an orthogonal basis for H

If we also have $\|\varphi_k\|=1$, then Φ is an orthonormal basis

Orthonormal basis

Example

Consider the Hilbert space $H = \{ f \in \mathcal{L}^2([-\frac{1}{2}, \frac{1}{2}]) : f(-x) = f(x) \}$

Orthonormal basis expansions

Definition (Orthonormal basis expansions)

• $\Phi = \{\varphi_k\}_{k \in \mathcal{K}}$ orthonormal basis for H, then for any $x \in H$:

$$\alpha_k = \langle x, \varphi_k \rangle$$
 for $k \in \mathcal{K}$, or $\alpha = \Phi^* x$, α is unique

• Synthesis:
$$x = \sum_{k \in \mathcal{K}} \langle x, \varphi_k \rangle \varphi_k$$

= $\Phi \alpha = \Phi \Phi^* x$

Example

Orthonormal basis: Parseval's equality

Theorem (Parseval's equalites)

• $\Phi = \{\varphi_k\}_{k \in \mathcal{K}}$ orthonormal basis for H

$$||x||^2 = \sum_{k \in \mathcal{K}} |\langle x, \varphi_k \rangle|^2 = ||\Phi^* x||^2 = ||\alpha||^2$$

In general:

$$\langle x, y \rangle = \langle \Phi^* x, \Phi^* y \rangle = \langle \alpha, \beta \rangle$$
with $\alpha_k = \langle x, \varphi_k \rangle, \ \beta_k = \langle y, \varphi_k \rangle$

Orthonormal bases

- On $\ell^2(\mathcal{K})$: $\Phi^*\Phi = I$
- On $H: \Phi\Phi^* = I$
- Analysis and synthesis operators associated with an orthonormal basis are unitary
- ullet Isometry between any separable Hilbert space H and $\ell^2(\mathbb{Z})$
- How about approximation?

Orthogonal projection and decomposition

Theorem

$$\Phi = \{\varphi_k\}_{k \in \mathcal{I}} \subset H, \quad \mathcal{I} \subset \mathcal{K}$$

$$P_{\mathcal{I}}x = \sum_{k=1}^{\infty} \langle x, \varphi_k \rangle \varphi_k = \Phi_{\mathcal{I}} \Phi_{\mathcal{I}}^* x$$

is the orthogonal projection of x onto $S_{\mathcal{I}} = \overline{\text{span}}(\{\varphi_k\}_{k \in \mathcal{I}})$

Φ induces an orthogonal decomposition

$$H = \bigoplus_{k \in \mathcal{K}} S_{\{k\}}$$
 where $S_{\{k\}} = span(\varphi_k)$

Example

$$S = \{ \begin{bmatrix} x_0 & x_1 & x_2 \end{bmatrix}^T \} \in \mathbb{C}^3 | x_1 = x_0 + x_2 \}$$

$$= span(\{ \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 & 0 \end{bmatrix}^T, \frac{1}{\sqrt{6}} \begin{bmatrix} -1 & 1 & 2 \end{bmatrix}^T \})$$

$$P_{SX} = \sum_{k=0}^{1} \langle x, \varphi_k \rangle \varphi_k = \frac{1}{3} \begin{bmatrix} 2 & 2 & -1 \\ 1 & 1 & 1 \\ -1 & 1 & 2 \end{bmatrix} x$$

Orthogonal projection on $\mathcal{L}^2(\mathbb{R})$

The local averaging operator A and its adjoint A^* are such that $AA^* = I$, so $P = A^*A$ is an orthogonal projection

3.1

16

Best approximation in orthogonal bases

- $\{\varphi_k\}_{k\in\mathcal{K}}$ orthogonal basis
- $\widehat{x}^{(k)} = \text{best approximation of } x \text{ in } \{\varphi_0, \dots, \varphi_{k-1}\}$
- $\widehat{x}^{(0)} = 0$ and $\widehat{x}^{(k+1)} = \widehat{x}^{(k)} + \langle x, \varphi_k \rangle \varphi_k$ for $k = 0, 1, \dots$ successive approximation

Bessel's inequality

Theorem (Bessel's inequality)

• $\Phi = \{\varphi_k\}_{k \in \mathcal{I}} \subset H$, Φ orthonormal set

$$||x||^2 \geqslant \sum_{k \in \mathcal{I}} |\langle x, \varphi_k \rangle|^2$$
$$= ||\Phi_{\mathcal{I}}^* x||^2$$

- Equality when Φ is complete, i.e. an orthonormal basis
- Example: Note that $||x_{01}|| \le ||x||$

Biorthogonal pairs of bases

Definition

Biorthogonal pairs of bases

- $\Phi = \{\varphi_k\}_{k \in \mathcal{K}} \subset H$, and $\widetilde{\Phi} = \{\widetilde{\varphi}_k\}_{k \in \mathcal{K}} \subset H$ is a biorthogonal pair of bases when
 - \bullet \bullet and \bullet are both bases for H

$$\langle \varphi_i, \widetilde{\varphi}_k \rangle = \delta_{i-k} \text{ for all } i, k \in \mathcal{K}$$

• Roles of Φ and $\widetilde{\Phi}$ are interchangeable

Example

$$\varphi_0 = \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \qquad \varphi_1 = \begin{bmatrix} 0\\1\\1 \end{bmatrix}, \qquad \varphi_2 = \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \qquad \Phi = \begin{bmatrix} 1&0&1\\1&1&1\\0&1&1 \end{bmatrix}$$

$$\widetilde{\varphi}_0 = \begin{bmatrix} 0\\1\\-1\\1 \end{bmatrix}, \qquad \widetilde{\varphi}_1 = \begin{bmatrix} -1\\1\\0 \end{bmatrix}, \qquad \widetilde{\varphi}_2 = \begin{bmatrix} 1\\-1\\1 \end{bmatrix}, \qquad \Phi^{-1} = \begin{bmatrix} 0&1&-1\\-1&1&0\\1&-1&1 \end{bmatrix}$$

Biorthogonal basis expansion

Theorem

- $\Phi = \{\varphi_k\}_{k \in \mathcal{K}}, \widetilde{\Phi} = \{\widetilde{\varphi}_k\}_{k \in \mathcal{K}}$ biorthogonal pair of bases for H
- Any $x \in H$ has expansion coefficients

$$\alpha_k = \langle x, \widetilde{\varphi}_k \rangle, \ k \in \mathcal{K}, \ \text{or} \ \alpha = \widetilde{\Phi}^* x$$

• Synthesis:
$$x = \sum_{k \in \mathcal{K}} \langle x, \widetilde{\varphi}_k \rangle \varphi_k$$

= $\Phi \alpha = \Phi \widetilde{\Phi}^* x$

• Also
$$x = \sum_{k \in \mathcal{K}} \langle x, \varphi_k \rangle \widetilde{\varphi}_k$$

Biorthogonal bases: Parseval's equality

Theorem

Parseval's equalities for biorthogonal pairs of bases

•
$$\Phi = \{\varphi_k\}_{k \in \mathcal{K}}, \widetilde{\Phi} = \{\widetilde{\varphi}_k\}_{k \in \mathcal{K}} \text{ biorthogonal pair of bases for } H$$

• In general
$$\langle x, y \rangle = \sum \langle x, \varphi_k \rangle \langle y, \widetilde{\varphi}_k \rangle^*$$

= $\langle \Phi^* x, \widetilde{\Phi}^* y \rangle = \langle \widetilde{\alpha}, \beta \rangle$

• $\widetilde{\Phi}^*$ is the inverse of Φ : $\Phi\widetilde{\Phi}^*=I$ on H and $\widetilde{\Phi}^*\Phi=I \text{ on } \ell^2(\mathcal{K})$

Gram matrix

• $G = \Phi^*\Phi$ is the Gram matrix

$$G_{ik} = \langle \varphi_k, \varphi_i \rangle \quad \text{for every } i, k \in \mathcal{K},$$

$$G = \begin{bmatrix} \vdots & \vdots & \vdots & \vdots \\ \cdots & \langle \varphi_{-1}, \varphi_{-1} \rangle & \langle \varphi_0, \varphi_{-1} \rangle & \langle \varphi_1, \varphi_{-1} \rangle & \cdots \\ \cdots & \langle \varphi_{-1}, \varphi_0 \rangle & \boxed{\langle \varphi_0, \varphi_0 \rangle} & \langle \varphi_1, \varphi_0 \rangle & \cdots \\ \cdots & \langle \varphi_{-1}, \varphi_1 \rangle & \langle \varphi_0, \varphi_1 \rangle & \langle \varphi_1, \varphi_1 \rangle & \cdots \\ \vdots & \vdots & \vdots & \vdots \end{bmatrix}$$

• Assume $x = \Phi \alpha$, $y = \Phi \beta$ then $\langle x, y \rangle = \langle \Phi \alpha, \Phi \beta \rangle = \langle \Phi^* \Phi \alpha, \beta \rangle = \langle G \alpha, \beta \rangle = \beta^* G \alpha$

The inner product in H becomes an inner product in $\ell^2(\mathcal{K})!$

Dual basis

• How to compute the dual basis $\widetilde{\Phi}$?

Theorem (Dual basis)

- Let $A = (\Phi^*\Phi)^{-1}$ be the inverse of the Gram matrix
- Given a Riesz basis $\Phi = \{\varphi_k\}_{k \in \mathcal{K}}$ for Hilbert space H, the set $\widetilde{\Phi} = \{\widetilde{\varphi}_k\}_{k \in \mathcal{K}}$ defined via

$$\widetilde{\varphi}_k = \sum_{\ell \in \mathcal{K}} \mathsf{a}_{\ell,k} \varphi_\ell, \qquad \text{for each } k \in \mathcal{K},$$

$$\widetilde{\Phi} = \Phi A = \Phi (\Phi^* \Phi)^{-1},$$

is a basis for H, called the dual basis, and the sets Φ and $\widetilde{\Phi}$ are a biorthogonal pair of bases

Dual basis of periodic hat functions

Dual basis of periodic hat functions: Computing the dual basis

- Consider the functions in $\mathcal{L}^2([0,3])$ such that $\varphi_0 = \begin{cases} t, & \text{for } t \in [0,1); \\ 2-t & \text{for } t \in (1,2]; \\ 0 & \text{for } t \in (2,3] \end{cases}$ and their circular shifts by 1.
- Let $\Phi = \{\varphi_1, \varphi_2, \varphi_3\}$ be the basis for $span\{\varphi_1, \varphi_2, \varphi_3\} = subspace$ of functions x satisfying x(0) = x(3) and are piecewise linear on [0, 3] with breakpoints at 1 and 2

$$\bullet G = \begin{bmatrix} 2/3 & 1/6 & 1/6 \\ 1/6 & 2/3 & 1/6 \\ 1/6 & 1/6 & 2/3 \end{bmatrix}$$

• We find a dual basis for Φ by using $\widetilde{\Phi} = \Phi A = \Phi G^{-1}$ where

$$G^{-1} = \begin{bmatrix} 5/3 & -1/3 & -1/3 \\ -1/3 & 5/3 & -1/3 \\ -1/3 & -1/3 & 5/3 \end{bmatrix}$$

Dual bases and projection

• How to compute the projection?

Theorem

• Given sets $\Phi_{\mathcal{I}} = \{\varphi_k\}_{k \in \mathcal{I}} \subset H$ and $\widetilde{\Phi}_{\mathcal{I}} = \{\widetilde{\varphi}_k\}_{k \in \mathcal{I}} \subset H$ satisfying

$$\langle \varphi_i, \, \widetilde{\varphi}_k \rangle \ = \ \delta_{i-k} \qquad \text{for every } i, \, k \in \mathcal{I},$$

• Then, for any x in H,

$$P_{\mathcal{I}} x = \sum_{k \in \mathcal{I}} \langle x, \widetilde{\varphi}_k \rangle \varphi_k = \Phi_{\mathcal{I}} \widetilde{\Phi}_{\mathcal{I}}^* x$$

is an oblique projection of x onto $S_{\mathcal{I}} = \overline{\operatorname{span}}(\{\varphi_k\}_{k\in\mathcal{I}})$.

• The residual satisfies $x - P_{\mathcal{I}} \times \bot \widetilde{S}_{\mathcal{I}}$, where $\widetilde{S}_{\mathcal{I}} = \overline{\operatorname{span}}(\{\widetilde{\varphi}_k\}_{k \in \mathcal{I}})$.

Projection onto a subspace

Example (Projection onto a subspace)

Let
$$A = \begin{bmatrix} 1/2 & 1/2 & -1/2 \\ -1/2 & 1/2 & 1/2 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{bmatrix}$.

Since A is a left inverse of B, then

$$P = BA = \begin{bmatrix} 1/2 & 1/2 & -1/2 \\ 0 & 1 & 0 \\ -1/2 & 1/2 & 1/2 \end{bmatrix}$$
 is a projection operator.

We can verify $P^2 = P$. Does $P^* = P$?

Direct sum decomposition

Best approximation & the normal equations

Theorem (Normal equations)

- $x \in H$ and $\{\phi_k\}_{k \in \mathcal{I}}$ a Riesz basis for a closed subspace S
- The closest vector to x in S is

$$\hat{x} = \sum_{k \in \mathcal{I}} \beta_k \phi_k = \Phi \beta$$

where β is the unique solution to:

$$\Phi^*\Phi\beta=\Phi^*x \qquad \text{or} \\ \sum_{k\in\mathcal{I}}\beta_k\langle\phi_k,\phi_i\rangle=\langle x,\phi_i\rangle \text{ for all } i\in\mathcal{I}$$

Normal equations

- $\widehat{x} = \Phi(\Phi^*\Phi)^{-1}\Phi^*x = Px$
 - P is an orthogonal projection
- We can verify that $P^2 = \Phi \underbrace{(\Phi^*\Phi)^{-1}\Phi^*\Phi}_{I}(\Phi^*\Phi)^{-1}\Phi^* = P$ and that $P^* = P$

Frames: Overcomplete representations

Definition

Frame

• $\Phi = \{\varphi_k\}_{k \in \mathcal{J}} \subset H$ is a frame for the Hilbert space H when there exist $0 < \lambda_{min} \leq \lambda_{max} < \infty$ s.t. for any $x \in H$

$$\lambda_{\min} \|x\|^2 \leqslant \sum_{k \in \mathcal{I}} \left| \langle x, \varphi_k \rangle \right|^2 \leqslant \lambda_{\max} \|x\|^2$$

- $\lambda_{min}, \lambda_{max}$: frame bounds
- Synthesis operator: $\Phi: \ell^2(\mathcal{J}) \to H$, $\Phi \alpha = \sum_{k \in \mathcal{J}} \alpha_k \varphi_k$
- Analysis operator: $\Phi^*: H \to \ell^2(\mathcal{J}), \quad (\Phi^*x)_k = \langle x, \varphi_k \rangle, \ k \in \mathcal{J}$
- $\lambda_{min}I \leqslant \Phi\Phi^* \leqslant \lambda_{max}I$

Frames

Example

 \mathbb{R}^2

- $\bullet \ \ \mathsf{Given} \ \ \Phi = \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \end{bmatrix}$
- ullet $\{arphi_0, arphi_1, arphi_2\}$ is a frame for \mathbb{R}^2
- λ_{min} and λ_{max} computed as smallest and largest eighenvalues of $\Phi\Phi^*$

$$\bullet \ \Phi \Phi^* \ = \ \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \ = \ \underbrace{\frac{1}{\sqrt{2}} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}}_{V} \underbrace{\begin{bmatrix} 3 & 0 \\ 0 & 1 \end{bmatrix}}_{\Lambda} \underbrace{\frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}}_{V^{-1}}$$

• $\lambda_{min} = 1$, $\lambda_{max} = 3$

Example: Frame of cosine functions

Tight frames

Definition

- $\Phi = \{\varphi_k\}_{k \in \mathcal{J}} \subset H$ is a tight frame or λ -tight frame for H when $\lambda_{\min} = \lambda_{\max} = \lambda$
- Counterpart of orthonormal basis
- ullet When $\lambda=1$: Parseval tight frame

Tight frames expansions

Theorem (Tight frame expansions)

- $\Phi = \{\varphi_k\}_{k \in \mathcal{J}}$ a 1-tight frame for $H, x \in H$
- Expansion coefficients of x w.r.t. Φ:

$$\alpha_{\mathbf{k}} = \langle \mathbf{x}, \varphi_{\mathbf{k}} \rangle \quad \mathbf{k} \in \mathcal{J}$$
, or $\alpha = \Phi^* \mathbf{x}$

- Expansion $x = \sum_{k \in \mathcal{J}} \langle x, \varphi_k \rangle \varphi_k = \Phi \Phi^* x$
- $\Phi\Phi^* = I$ but (in general) $\Phi^*\Phi \neq I$
- Note: similar to orthonormal basis, but ${\cal J}$ is overcomplete and vectors Φ are linearly dependent

Tight frames Parseval's equality

Theorem (Parseval's equalities for 1-tight frames)

- $\Phi = \{\varphi_k\}_{k \in \mathcal{J}}$ a 1-tight frame for H
- $||x||^2 = \sum_{k \in \mathcal{I}} |\langle x, \varphi_k \rangle|^2 = ||\Phi^* x||^2 = ||x||^2$
- In general: $\langle x,y \rangle = \sum_{k \in \mathcal{J}} \langle x, \varphi_k \rangle \langle y, \varphi_k \rangle^* = \langle \Phi^* x, \Phi^* y \rangle = \langle \alpha, \beta \rangle$

General frames I

Definition (Dual pair of frames)

• Dual frame pairs and expansion

$$\Phi = \{\varphi_k\}_{k \in \mathcal{J}} \in \mathcal{H}, \ \widetilde{\Phi} = \{\widetilde{\varphi}_k\}_{k \in \mathcal{J}} \in \mathcal{H} \text{ form a dual pair of frames when:}$$

- \bullet Each is a frame for H
- \bigcirc for any x in H,

$$x = \sum_{k \in \mathcal{K}} \langle x, \, \widetilde{\varphi}_k \rangle \varphi_k = \Phi \, \widetilde{\Phi}^* \, x$$

General frames II

Example

- Let $\Phi=egin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \end{bmatrix}$ be the frame synthesis operator for \mathbb{R}^2 of rank 2
- Φ has infinitely many right inverses

• Examples:
$$\widetilde{\Phi} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 2 & 1 \end{bmatrix}$$
, $\widetilde{\Phi} = \begin{bmatrix} 0 & -1 & -1 \\ 1 & 2 & 1 \end{bmatrix}$ and
$$\widetilde{\Phi} = \begin{bmatrix} 2/3 & -1/3 & -1/3 \\ -1/3 & 2/3 & -1/3 \end{bmatrix}$$

• Check that $\Phi \widetilde{\Phi}^* = I_2$

General frames: Operators I

- Inner product: Assume $x = \Phi \alpha, y = \Phi \beta$, $\langle x, y \rangle_H = \beta^* G \alpha$
- Oblique projection: $P = \widetilde{\Phi}^* \Phi$

$$P^2 = (\widetilde{\Phi}^* \Phi)(\widetilde{\Phi}^* \Phi) = \widetilde{\Phi}^* \underbrace{(\Phi \widetilde{\Phi}^*)}_{I} \Phi = \widetilde{\Phi}^* \Phi = P$$

Does $P^* = P$?

• Canonical dual: $\widetilde{\Phi} = (\Phi \Phi^*)^{-1} \Phi$

 $P = \widetilde{\Phi}^* \Phi$ is an orthogonal projection

General frames: Operators II

Example

- $\bullet \ \Phi_{\mathcal{I}} \ = \ \begin{bmatrix} 1 & 0 \end{bmatrix}^T, \qquad \widetilde{\Phi}_{\mathcal{I}} \ = \ \begin{bmatrix} 1 & -\cot\theta \end{bmatrix}^T$
- $\bullet \ P_{\mathcal{I}} x = \Phi_{\mathcal{I}} \widetilde{\Phi}_{\mathcal{I}}^* x$

Change of basis: Orthonormal basis

- How are the expansion coefficients in two orthonormal bases related?
- Assume $x = \Phi \alpha = \Psi \beta$. Then $\Psi^* \Phi \alpha = \Psi^* \Psi \beta = \beta$
- The change of basis from Φ to Ψ that maps α to β is the operator

$$C_{\Phi,\Psi}:\ell^2(\mathcal{K})\to\ell^2(\mathcal{K})$$
 s.t. $C_{\Phi,\Psi}=\Psi^*\Phi$ (or $\beta=\Psi^*\Phi\alpha$)

As a matrix

$$C_{\Phi,\Psi} = \begin{bmatrix} \vdots & \vdots & \vdots \\ \cdots & \langle \varphi_{-1}, \psi_{-1} \rangle & \langle \varphi_{0}, \psi_{-1} \rangle & \langle \varphi_{1}, \psi_{-1} \rangle & \cdots \\ \cdots & \langle \varphi_{-1}, \psi_{0} \rangle & \boxed{\langle \varphi_{0}, \psi_{0} \rangle} & \langle \varphi_{1}, \psi_{0} \rangle & \cdots \\ \cdots & \langle \varphi_{-1}, \psi_{1} \rangle & \langle \varphi_{0}, \psi_{1} \rangle & \langle \varphi_{1}, \psi_{1} \rangle & \cdots \\ \vdots & \vdots & \vdots & \end{bmatrix}$$

Change of basis: Biorthogonal basis

- How are the expansion coefficients in two biorthogonal bases related?
- Assume $x = \Phi \alpha = \Psi \beta$. Then $\Psi^{-1} \Phi \alpha = \Psi^{-1} \Psi \beta = \beta$ and $\beta = \Psi^{-1} \Phi \alpha$
- The change of basis from Φ to Ψ that maps α to β is the operator

$$C_{\Phi,\Psi}:\ell^2(\mathcal{K})\to\ell^2(\mathcal{K}) \text{ s.t. } C_{\Phi,\Psi}=\Psi^{-1}\Phi$$

As a matrix

$$C_{\Phi,\Psi} = \begin{bmatrix} \vdots & \vdots & \vdots \\ \cdots & \langle \varphi_{-1}, \widetilde{\psi}_{-1} \rangle & \langle \varphi_{0}, \widetilde{\psi}_{-1} \rangle & \langle \varphi_{1}, \widetilde{\psi}_{-1} \rangle & \cdots \\ \cdots & \langle \varphi_{-1}, \widetilde{\psi}_{0} \rangle & \boxed{\langle \varphi_{0}, \widetilde{\psi}_{0} \rangle} & \langle \varphi_{1}, \widetilde{\psi}_{0} \rangle & \cdots \\ \cdots & \langle \varphi_{-1}, \widetilde{\psi}_{1} \rangle & \langle \varphi_{0}, \widetilde{\psi}_{1} \rangle & \langle \varphi_{1}, \widetilde{\psi}_{1} \rangle & \cdots \\ \vdots & \vdots & \vdots & \vdots \end{bmatrix}$$

Matrix representation: Orthonormal basis

- How are the expansion coefficients of x and y related when $A: H \to H$, s.t. y = Ax?
 - $\{\varphi_k\}_{k\in\mathcal{K}}$ orthonormal basis of H
 - $x = \Phi \alpha, y = \Phi \beta$
- A matrix representation allows A to be computed directly on coefficient sequences

$$\Gamma: \ell^2(\mathcal{K}) \to \ell^2(\mathcal{K}) \text{ s.t. } \beta = \Gamma \alpha$$

As a matrix

$$\Gamma \ = \ \begin{bmatrix} \vdots & \vdots & \vdots \\ \cdots & \langle A\varphi_{-1}, \varphi_{-1} \rangle & \langle A\varphi_{0}, \varphi_{-1} \rangle & \langle A\varphi_{1}, \varphi_{-1} \rangle & \cdots \\ \cdots & \langle A\varphi_{-1}, \varphi_{0} \rangle & \boxed{\langle A\varphi_{0}, \varphi_{0} \rangle} & \langle A\varphi_{1}, \varphi_{0} \rangle & \cdots \\ \cdots & \langle A\varphi_{-1}, \varphi_{1} \rangle & \langle A\varphi_{0}, \varphi_{1} \rangle & \langle A\varphi_{1}, \varphi_{1} \rangle & \cdots \\ \vdots & \vdots & \vdots & \vdots \end{bmatrix}$$

Matrix representation: Orthonormal basis

Matrix representation: Orthonormal basis

- How are the expansion coefficients of x and y related when $A: H_0 \to H_1$, s.t. y = Ax?
 - Φ orthonormal basis of H₀
 - Ψ orthonormal basis of H_1
 - $x = \Phi \alpha, y = \Psi \beta$
- A matrix representation allows A to be computed directly on coefficient sequences

$$\Gamma: \ell^2(\mathcal{K}) \to \ell^2(\mathcal{K}) \text{ s.t. } \beta = \Gamma \alpha$$

As a matrix

$$\Gamma \ = \ \begin{bmatrix} \vdots & \vdots & \vdots \\ \cdots & \langle A\varphi_{-1}, \, \psi_{-1} \rangle & \langle A\varphi_0, \, \psi_{-1} \rangle & \langle A\varphi_1, \, \psi_{-1} \rangle & \cdots \\ \cdots & \langle A\varphi_{-1}, \, \psi_0 \rangle & \boxed{\langle A\varphi_0, \, \psi_0 \rangle} & \langle A\varphi_1, \, \psi_0 \rangle & \cdots \\ \cdots & \langle A\varphi_{-1}, \, \psi_1 \rangle & \boxed{\langle A\varphi_0, \, \psi_1 \rangle} & \langle A\varphi_1, \, \psi_1 \rangle & \cdots \\ \vdots & \vdots & \vdots & \vdots & \end{bmatrix}$$

Example: Averaging Operator I

Example

• Let
$$A: H_0 \to H_1,$$
 $y(t) = Ax(t) = \frac{1}{2} \int_{2\ell}^{2(\ell+1)} x(\tau) d\tau$ for $2\ell \le t < 2(\ell+1), \quad \ell \in \mathbb{Z}$

 \mathcal{H}_0 : space of piecewise-constant, finite-energy functions with breakpoints at integers

 \mathcal{H}_1 : space of piecewise-constant, finite-energy functions with breakpoints at even integers.

• Given
$$\chi_I(t) = \begin{cases} 1, & \text{for } t \in I; \\ 0, & \text{otherwise} \end{cases}$$

Let
$$\Phi = \{\varphi_k(t)\}_{k \in \mathbb{Z}} = \{\chi_{[k,k+1)}(t)\}_{k \in \mathbb{Z}},$$

 $\Psi = \{\psi_i(t)\}_{i \in \mathbb{Z}} = \{\frac{1}{\sqrt{2}}\chi_{[2i,2(i+1))}(t)\}_{i \in \mathbb{Z}},$

be orthogonal bases for H_0, H_1 respectively

Example: Averaging Operator II

Example (Cont.)

•
$$A\varphi_0(t) = \frac{1}{2} \chi_{[0,2)}(t) \implies \langle A\varphi_0, \psi_0 \rangle = \int_0^2 \frac{1}{2} \frac{1}{\sqrt{2}} d\tau = \frac{1}{\sqrt{2}}$$

• Then
$$\Gamma = \frac{1}{\sqrt{2}} \begin{bmatrix} \ddots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \cdots & 1 & 1 & 0 & 0 & 0 & 0 & \cdots \\ \cdots & 0 & 0 & \boxed{1} & 1 & 0 & 0 & \cdots \\ \cdots & 0 & 0 & 0 & 1 & 1 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix}.$$

Matrix representation: Biorthogonal basis

- How are the expansion coefficients of x and y related when $A: H_0 \to H_1$, s.t. y = Ax?
 - Φ , $\widetilde{\Phi}$ biorthogonal pair of bases of H_0
 - $\Psi, \widetilde{\Psi}$ biorthogonal pair of bases of H_1
- A matrix representation is similar to the orthogonal case, but involves the dual bases
- As a matrix

$$\Gamma \ = \ \begin{bmatrix} \vdots & \vdots & \vdots \\ \cdots & \langle A\varphi_{-1}, \, \widetilde{\psi}_{-1} \rangle & \langle A\varphi_0, \, \widetilde{\psi}_{-1} \rangle & \langle A\varphi_1, \, \widetilde{\psi}_{-1} \rangle & \cdots \\ \cdots & \langle A\varphi_{-1}, \, \widetilde{\psi}_0 \rangle & \boxed{\langle A\varphi_0, \, \widetilde{\psi}_0 \rangle} & \langle A\varphi_1, \, \widetilde{\psi}_0 \rangle & \cdots \\ \cdots & \langle A\varphi_{-1}, \, \widetilde{\psi}_1 \rangle & \langle A\varphi_0, \, \widetilde{\psi}_1 \rangle & \langle A\varphi_1, \, \widetilde{\psi}_1 \rangle & \cdots \\ \vdots & \vdots & \vdots & \vdots & \end{bmatrix}$$

Matrix representation: Biorthogonal basis

Example: Derivative Operator I

Example

• Let $A: H_0 \to H_1$ be the derivative operator

 H_0 : space of piecewise-linear, continuous, finite-energy functions with breakpoints at integers

 \mathcal{H}_1 : space of piecewise-constant, finite-energy functions with breakpoints at integers.

- Let $\Phi = \{\varphi_k(t)\}_{k \in \mathbb{Z}} = \{\varphi(t-k)\}_{k \in \mathbb{Z}}, \quad \varphi(t) = \left\{ \begin{array}{c} 1-|t|, & |t| < 1; \\ 0, & \text{otherwise} \end{array} \right.$
- Let $\Psi = \{\psi_i(t)\}_{i \in \mathbb{Z}} = \{\chi_{[i,i+1)}(t)\}_{i \in \mathbb{Z}}$.

Example: Derivative Operator II

Example (Cont.)

• We evaluate $\langle A\varphi_k, \widetilde{\psi}_i \rangle$ for all k and i.

$$A\varphi(t) = \varphi'(t) = \begin{cases} 1, & \text{for } -1 < t < 0; \\ -1, & \text{for } 0 < t < 1; \\ 0, & \text{for } |t| > 1, \end{cases}$$

 $\bullet \ \, \mathsf{Then} \, \, \langle A\varphi_0, \, \widetilde{\psi}_i \rangle = \left\{ \begin{array}{cc} 1, & \mathsf{for} \, \, i = -1; \\ -1, & \mathsf{for} \, \, i = 0; \\ 0, & \mathsf{otherwise}. \end{array} \right. \quad \mathsf{and} \ \, \langle A\varphi_k, \, \widetilde{\psi}_i \rangle = \left\{ \begin{array}{cc} 1, & \mathsf{for} \, \, i = k-1; \\ -1, & \mathsf{for} \, \, i = k; \\ 0, & \mathsf{otherwise}. \end{array} \right.$

and
$$\Gamma = \begin{bmatrix} \ddots & \ddots & \ddots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \cdots & 0 & -1 & 1 & 0 & 0 & 0 & \cdots \\ \cdots & 0 & 0 & \boxed{-1} & 1 & 0 & 0 & \cdots \\ \cdots & 0 & 0 & 0 & -1 & 1 & 0 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots & \ddots & \ddots \end{bmatrix}.$$

Example: Derivative Operator III

Example (Cont.)

Original function x(t)

its decomposition in the basis for H_0

Derivative function x'(t)

(c)

its decomposition in the basis for H_1

(d)

- Expansion in Φ : $x(t) = \varphi(t) \varphi(t-1)$ $\alpha = \begin{bmatrix} \dots & 0 & 1 & -1 & 0 & 0 & \dots \end{bmatrix}^T$
- Expansion of the derivative in Ψ : $x'(t) = \psi(t+1) 2\psi(t) + \psi(t-1)$, $\beta = \begin{bmatrix} \dots & 0 & 1 & -2 & 1 & 0 & \dots \end{bmatrix}^T$
- Check: $\beta = \Gamma \alpha$

Example: Polynomial approximation

- Hilbert space $P_N[-1,1] \subset \mathcal{L}^2[-1,1]$
- a self-evident, naive basis: $\mathbf{s}^{(k)} = t^k, \quad k = 0, 1, \dots, N-1$
- naive basis is not orthonormal
- goal: approximate $\mathbf{x} = \sin t$ over $P_3[-1, 1]$

Building an orthonormal basis

Gram-Schmidt orthonormalization procedure:

$$\{\mathbf{s}^{(k)}\} \longrightarrow \{\mathbf{u}^{(k)}\}$$
 original set orthonormal set

Algorithmic procedure: at each step k

2
$$\mathbf{u}^{(k)} = \mathbf{p}^{(k)} / \|\mathbf{p}^{(k)}\|$$

Building an orthonormal basis

Gram-Schmidt orthonormalization of the naive basis: $\{\mathbf{s}^{(k)}\} o \{\mathbf{u}^{(k)}\}$

•
$$s^{(0)} = 1$$

•
$$\mathbf{p}^{(0)} = \mathbf{s}^{(0)} = 1$$

•
$$\|\mathbf{p}^{(0)}\|^2 = 2$$

•
$$\mathbf{u}^{(0)} = \mathbf{p}^{(0)} / \|\mathbf{p}^{(0)}\| = \sqrt{1/2}$$

•
$$s^{(1)} = t$$

•
$$\langle \mathbf{u}^{(0)}, \mathbf{s}^{(1)} \rangle = \int_{-1}^{1} t / \sqrt{2} = 0$$

•
$$\mathbf{p}^{(1)} = \mathbf{s}^{(1)} = t$$

•
$$\|\mathbf{p}^{(1)}\|^2 = 2/3$$

•
$$\mathbf{u}^{(1)} = \sqrt{3/2} t$$

•
$$s^{(2)} = t^2$$

•
$$\langle \mathbf{u}^{(0)}, \mathbf{s}^{(2)} \rangle = \int_{-1}^{1} t^2 / \sqrt{2} = 2/3\sqrt{2}$$

•
$$\langle \mathbf{u}^{(1)}, \mathbf{s}^{(2)} \rangle = \int_{-1}^{1} t^3 / \sqrt{2} = 0$$

•
$$\mathbf{p}^{(2)} = \mathbf{s}^{(2)} - (2/3\sqrt{2})\mathbf{u}^{(0)} = t^2 - 1/3$$

•
$$\|\mathbf{p}^{(2)}\|^2 = 8/45$$

•
$$\mathbf{u}^{(2)} = \sqrt{5/8}(3t^2 - 1)$$

Legendre polynomials

An orthonormal basis for $P_N([-1,1])$

$$\mathbf{u}^{(0)} = \sqrt{1/2}$$
 $\mathbf{u}^{(1)} = \sqrt{3/2} t$
 $\mathbf{u}^{(2)} = \sqrt{5/8} (3t^2 - 1)$
 $\mathbf{u}^{(3)} = \dots$

Legendre Polynomials

Orthogonal projection over $P_3[-1,1]$

$$\alpha_k = \langle \mathbf{u}^{(k)}, \mathbf{x} \rangle = \int_{-1}^1 u_k(t) \sin t \, dt$$

- $\alpha_0 = \langle \sqrt{1/2}, \sin t \rangle = 0$
- $\alpha_1 = \langle \sqrt{3/2} t, \sin t \rangle \approx 0.7377$
- $\alpha_2 = \langle \sqrt{5/8}(3t^2 1), \sin t \rangle = 0$

Approximation

Using the orthogonal projection over $P_3[-1,1]$:

$$\sin t = \alpha_1 \mathbf{u}^{(1)} \approx 0.9035 t$$

Using Taylor's series:

 $\sin t \approx t$

Sine approximation

Approximation error

Error norm

Orthogonal projection over $P_3[-1,1]$:

$$\|\sin t - \alpha_1 t\| \approx 0.0337$$

Taylor series:

$$\|\sin t - t\| \approx 0.0857$$

- Images of ten women with about 20 facial expressions (213 images in total)*
- Images of size 256 × 256: dimensionality too high (65536)
- Goal: represent images in few dimensions

^{*}Michael J. Lyons, Miyuki Kamachi, Jiro Gyoba. Japanese Female Facial Expressions (JAFFE), Database of digital images (1997). http://www.kasrl.org/jaffe.html

Canonical (usual) basis

Eigenface basis

Reconstruction with eigenfaces

3.4 74

Summary

- Bases
 - Bases span a space S
 - Well behaved bases are Riesz bases (conditioning)
 - Best behaved bases are orthonormal bases
 - Biorthogonal bases have dual bases
 - Parseval's equalities
 - Approximations and normal equations
- Matrix representation of operators
 - Change of basis (orthonormal, biorthogonal)
 - Matrix representations of operators