EECS 168 Introduction to VLSI Design

Dr. Sheldon Tan

www.ece.ucr.edu/~stan

Email: stan@ece.ucr.edu

Topics

- Basic fabrication steps.
- Transistor structures.
- Basic transistor behavior.
- Latch up.

Our technology

- We will study a generic 180 nm technology.
 - Assume 1.2V supply voltage.
 - $-\lambda = 90nm$ (half of the minimum feature)
- Parameters are typical values.
- Parameter sets/Spice models are often available for 180 nm, harder to find for 90 nm.
- For labs, we have both 90nm and 28nm physical design kit (PDK) from Synopsys.

Fabrication services

- Educational services:
 - U.S.: MOSIS (MOS Implementation Service)
 - EC: EuroPractice
 - Taiwan: CIC
 - Japan: VDEC
- Foundry = fabrication line for hire.
 - Foundries are major source of fab capacity today.

Fabrication processes

- IC built on silicon substrate:
 - some structures diffused into substrate;
 - other structures built on top of substrate.
- Substrate regions are doped with n-type and p-type impurities. (n+= heavily doped)
- Wires made of polycrystalline silicon (poly), multiple layers of aluminum or copper (metal).
- \blacksquare Silicon dioxide (SiO₂) is insulator.

The MOS Transistor

Simple cross section

Modern VLSI Design 4e: Chapter 2

Photolithography

Mask patterns are put on wafer using photosensitive material:

Process steps

First place tubs to provide properly-doped substrate for n-type, p-type transistors:

Process steps, cont' d.

Pattern polysilicon before diffusion regions:

Process steps, cont' d

Add diffusions, performing self-masking:

Process steps, cont' d

Start adding metal layers:

MOSFET

MOSFET

metal-oxide-semiconductor field transistor

■ N-type MOSFET (NMOS)

- Carrier: electrons (negative charge)
- Carriers flow from source to drain
- Current direction: drain to source

P-type MOSFET (PMOS)

- Carrier: holes (positive charge)
- Carriers flow from source to drain
- Current direction: source to drain

MOSFET showing gate (G), body (B), source (S) and drain (D) terminals. The gate is separated from the body by an insulating layer (white)

Transistor structure

n-type transistor:

Threshold Voltage: Concept

MOSFE Functioning

Linear operating region (ohmic mode)

MOS Transistors -Types and Symbols

NMOS Enhancement

NMOS Depletion

PMOS Enhancement

NMOS with Bulk Contact

0.25 micron transistor (Bell Labs)

Modern VLSI Design 4e: Chapter 2

Example: Intel 0.25 micron Process

5 metal layers Ti/Al - Cu/Ti/TiN Polysilicon dielectric

LAYER	PITCH	THICK	A.R.
Isolation	0.67	0.40	-
Polysilicon	0.64	0.25	-
Metal 1	0.64	0.48	1.5
Metal 2	0.93	0.90	1.9
Metal 3	0.93	0.90	1.9
Metal 4	1.60	1.33	1.7
Metal 5	2.56	1.90	1.5
	μm	μm	

Layer pitch, thickness and aspect ratio

Transistor layout

n-type (tubs may vary):

Drain Current Characteristics

NMOS

- Linear region $(V_{ds} < V_{gs} V_t)$:
 - $I_d = k' (W/L)[(V_{gs} V_t) V_{ds} 0.5 V_{ds}^2]$

- Saturation region $(V_{ds} \ge V_{gs} V_t)$:
 - $I_d = 0.5k' (W/L)(V_{gs} V_t)^2$
 - Drain current independent of V_{ds}

PMOS: Similar to NMOS, but Vgs, Vds, Vth, Id in the opposite direction (for example, Vgs_pmos = -Vgs_nmos)

Drain current

$$-I_d = k' (W/L)((V_{gs} - V_t)V_{ds} - 0.5 V_{ds}^2)$$

■ Saturation region $(V_{ds} \ge V_{gs} - V_t)$:

$$-I_d = 0.5k' (W/L)(V_{gs} - V_t)^2$$

180 nm transconductances

Typical values:

n-type:

$$-k_n' = 170 \ \mu A/V^2$$

$$-V_{tn} = 0.5 \text{ V}$$

- Minimum transistor W = 3λ , L= 2λ

p-type:

$$-k_p' = -30 \mu A/V^2$$

$$-V_{tp} = -0.5 V$$

- Minimum transistor W = 3λ , L= 2λ

Current through a transistor

Use 180 nm parameters. Let W/L = 3/2. Measure at boundary between linear and saturation regions.

$$V_{gs} = 0.7V$$
:
 $I_d = 0.5k' (W/L)(V_{gs}-V_t)^2 = 5.3 \mu A$

$$V_{gs} = 1.2V$$
:
 $I_d = 62 \mu A$

Basic transistor parasitics

- Gate to substrate, also gate to source/drain.
- Source/drain capacitance, resistance.

Basic transistor parasitics, cont' d

- Gate capacitance C_g . Determined by active area.
- Source/drain overlap capacitances C_{gs} , C_{gd} . Determined by source/gate and drain/gate overlaps. Independent of transistor L.

$$-C_{gs} = C_{ol} W$$

Gate/bulk overlap capacitance.

Latch-up

- CMOS ICs have parastic silicon-controlled rectifiers (SCRs).
- When powered up, SCRs can turn on, creating low-resistance path from power to ground. Current can destroy chip.
- Early CMOS problem. Can be solved with proper circuit/layout structures.

Parasitic SCR

PNP and NPN Bipolar transistors

Parasitic SCR structure

Solution to latch-up

Use tub ties to connect tub to power rail. Use enough to create low-voltage connection.

Tub tie layout

In lecture exercise

Draw cross section of

- (a) metal-1 to metal 2 by a via
- (b) a poly to n-diffusion by a via
- (c) A PMOS FET transistor and indicate source, drain and gate

In lecture exercise

- The minimum width definition
 - In this class, $W = 3\lambda$, $L=2\lambda$, so W/L = 3/2
 - NMOS, $k_n = 170 \mu A/V^2$
 - PMOS, $k_p = -30\mu A/V^2$
- Plot the V_{ds} versus I_{ds} curve for a minimum PMOS transistor for $V_{gs} = -0.6V$, -0.9V, -1.2V (assume $V_t = -0.5$)
- What is the W/L is required to make drain current of a PMOS is twice of minimum NMOS (assume that both transistors have the same terminal voltages, but PMOS have opposite V_{gs}, V_{ds}, V_t of NMOS)? Assume that both transistors work in the linear region.

