السلسلة رقم 2 تحضيرا لبكالوريا 2011

(إعداد الأستاذ بو اب نور الدين)

(Bac Pondichéry Avril 2010): التمرين الأول

نعتبر المتتالية (u_n) المعرفة على IN كما يلى:

. $u_{n+1} = \frac{1}{2}u_n + n - 2$ ، $u_{n+1} = \frac{1}{2}u_n + n - 2$ ومن أجل كل عدد طبيعي $u_0 = 1$

 $u_3 = u_2, u_1 = 1$

. $u_n \ge 0$ ، $n \ge 4$ عدد طبیعی کا عدد أثبت أنه ، من أجل كل عدد طبیعی أ

 $u_n \ge n-3$ ، $n \ge 5$ ب- استنتج أنه ، من أجل كل عدد طبيعي

 (u_n) استنتج نهایة المتتالیه

 $v_n = -2u_n + 3n - \frac{21}{2}$: بالمتتالية المعرفة على المعرفة عل

أ- أثبت أن (v_n) متتالية هندسية يطلب تعيين أساسها وحدّها الأول .

 $u_n = \frac{25}{4} \left(\frac{1}{3}\right)^n + \frac{3}{2}n - \frac{21}{4}$ ، n عدد طبیعی عدد طبیعی ب استنتج أنه ، من أجل كل عدد طبیعی

. $S_n = u_0 + u_1 + \dots + u_n$: حيث S_n حيث ، المجموع S_n المجموع

(Bac Polynésie Juin 2010 S): التمرين الثاني

: نعتبر ، ($O; \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k}$) نعتبر نعتبر ، نعتبر الفضاء المنسوب إلى معلم متعامِد ومتجانس النقطتين A(1;1;1) و B(3;2;0) ؛ A(1;1;1) المستوي P(1) المار بالنقطة P(1) و P(1) شعاع ناظمي له ؛

المستوى (*O*) الذي معادلة له x - y + 2z + 4 = 0 ؛

AB التي مركزها A ونصف قطرها التي مركزها

2x + y - z - 8 = 0: هي المستوي المستوي (P) هي المعادلة ديكارتية للمستوي المستوي الم

(S) اكتب معادلة ديكارتية لسطح الكرة (S)

(O) أـ احسب المسافة بين النقطة A و المستوى

- استنتج أن المستوي (Q) مماس لسطح الكرة (S) .

(S) مماس لسطح الكرة (P) عماس بسطح الكرة

. (Q) المسقط العمودي للنقطة A على المستوي C(0;2;-1)

أ- بيّن أن المستويين (P) و (Q) متقاطعان .

. (Q) و (P) بـ ليكن (D) مستقيم تقاطع المستويين

 $\begin{cases} x=t \\ y=12-5t \ (t\in\mathbb{R}) : y=12-5t \ (t\in\mathbb{R}) \end{cases}$ هو (D) هو المستقيم z=4-3t

(D) بنتمى إلى المستقيم (D) .

(D) المستوي المعرف بالنقطة A والمستقيم د- نسمى

هل الجملة الآتية صحيحة أو خاطئة ؟ علل إجابتك .

(R) متساوية المسافة عن النقطتين (R) و (R) » «

(Bac Métropole Juin 2010 STL): التمرين الثالث

. $(O; \overrightarrow{u}, \overrightarrow{v})$ المستوي المركب منسوب إلى معلم متعامد ومتجانس

- . $z^2 4z + 16 = 0$: (E) المعادلة ${\Bbb C}$ المعادلة الأعداد المركبة على مجموعة الأعداد المركبة
- . $z_B = 2 + 2i\sqrt{3}$ و B اللتين لاحقتاهما $z_A = 2 2i\sqrt{3}$ و B اللتين لاحقتاهما $z_A = 2 2i\sqrt{3}$
 - . Z_B و Z_A . عين الطويلة و عمدة لكل من العددين المركبين
 - $z_C = -2\sqrt{3} 2i$ لتكن C النقطة ذات اللاحقة 3

أ- بيّن أن النقط A ، B و C تنتمي إلى نفس الدائرة C يطلب تعيين مركز ها ونصف قطر ها . C و النقط C و النقط C و النقط C . C و النقط C .

- . $z_D = 4i$ لتكن D النقطة ذات اللاحقة D
- . $\frac{2\pi}{3}$ بيّن أن النقطة C هي صورة النقطة D بالدوران الذي مركزه C وزاويته
- . (c) بيّن أن النقطة E صورة النقطة A بالانسحاب الذي شعاعه OB تنتمي إلى الدائرة E الشكل .

(Bac Liban Juin 2010 S) : التمرين الرابع

الجزء الأول:

 $g(x)=x^2-2+\ln x$: باكن g الدالة العددية المعرفة على $g(x)=x^2-2+\ln x$

- $[0;+\infty[$ ادرس تغيرات الدالة [g] على المجال ا
- α بيّن أن المعادلة α وتقبل حلا وحيدا α حيث α عند α عند المعادلة α
 - . g(x) استنتج ، حسب قیم x ، اشاره 3

الجزء الثاني:

نعتبر الدالة العددية f المعرفة على المجال $]0;+\infty$ ب :

$$f(x)=x^2+(2-\ln x)^2$$

- . $f'(x) = \frac{2g(x)}{x}$ ، $]0; +\infty[$ من أجل كل x من أجل كل أثبت أنه ، من أجل كل أ
 - . $]0\,;+\infty[$ استنتج اتجاه تغیّر الدالهٔ f علی المجال @

الجزء الثالث:

 (Γ) المنحني الممثل للدالة الدالة الدالة المنحني الممثل الدالة اللوغاريتمية النيبيرية) . ((i,j) الدالة اللوغاريتمية النيبيرية) .

X لَتُكن X النقطة ذات الإحداثيين X النقطة من X و X نقطة من X ذات الفاصلة

- . $AM = \sqrt{f(x)}$ أثبت أن المسافة AM تعطى بالعبارة $\boxed{\mathbf{1}}$
- . $h(x) = \sqrt{f(x)}$: $h(x) = \sqrt{f(x)}$: $h(x) = \sqrt{f(x)}$ الدالة المعرفة على $h(x) = \sqrt{f(x)}$
 - أ- بيّن أن للدالتين f و h نفس اتجاه التغيّر على المجال $]\infty+0$.

ب- عيّن إحداثيي النقطة P من Γ بحيث تكون المسافة AM أصغر ما يمكن .

. $AP = \alpha \sqrt{1 + \alpha^2}$: جـ- بيّن أن

. (T) مماس للمنحني (Γ) في النقطة P . بيّن أن (AP) عمودي على (T)