Rare and Non-Standard Model Decays of the Higgs Boson

Ashish Sehrawat MSc. Physics IIT Indore

Outline

- Basics of pp Collider Physics.
- Particles Produced at the pp collider.
- Rare and Non-Standard Model decays of Higgs Boson.
- Charged Higgs Boson Decay in SUSY Models.
- Conclusions.

- hard scattering
- (QED) initial/final state radiation
- ullet partonic decays, e.g. t
 ightarrow bW
- parton shower evolution
- nonperturbative gluon splitting
- colour singlets
- colourless clusters
- cluster fission
- cluster → hadrons
- hadronic decays

pp collisions

cross- sectional area σ.

n is the number of particle per unit volume of the target, A is the geometrical area of the target Probability of scattering from the target is

$$dp = \frac{n(Adx)\sigma}{A} = n\sigma dx$$

Number of particles hitting on the target be N_t Number of scattered particles $N_s = N_t dp = n\sigma dx N_t$

Cross sectional area
$$\sigma = \frac{N_s}{ndxN_t}$$

Differential cross section
$$\frac{d\sigma}{d\Omega} = \frac{1}{ndxN_t} \frac{dN_s}{d\Omega}$$

Inclusive cross section $\sigma(H) = \frac{N(pp->H+others)}{T}$

Exclusive cross section $\sigma(H) = \frac{N(pp->ppH)}{ndxN_t}$

Unit of cross section area $1b=10^{-24}$ cm² = 10^{-28} cm²

Some common cross sectional area are

Proton-proton inelastic collision at LHC 50 mb at 7 TeV

Higgs Boson production at Large Hadron Collider (LHC) 20 pb

Heavy nuclei cross section 1 b

W/Z boson production at LHC 50 nb

Collider luminosity

$$L = \frac{N_1 N_2}{A} f cm^{-2} s^{-1}$$

Integrated Luminosity $\int Ldt$

$$\int Ldt$$
 b^{-}

Bunch crossing frequency f

Number of particles in beam 1 and 2 are $\,N_1^{}\,$ and $\,N_2^{}\,$

A is the geometrical area of the beam.

$$Y = \frac{1}{2} \ln(\frac{E + p_z}{E - p_z})$$

Rapidity for massless particles

$$Y = -\ln[\tan(\theta/2)]$$

Pseudorapidity

$$\eta = -\ln[\tan(\theta/2)]$$

Particles after collision

```
neutrinos
electron
muon
tau
u, d, s, c, b quarks and gluons hadronizes to give
jets of colorless bound states, hadrons which are
\pi, K^+, K^-, K_L, proton, neutron
top quark decays before it hadronizes
W, Z, H decays instantly
```

Basics of Statistics at LHC

Signal strength µ

Test statistic q

Excess quantification

p-value

Significance

Best fit value of μ or \hat{u}

Lack of excess quantification

CL_s value and CL

Limit on μ

Expected background rate b, expected signal rate s₀, observed events n_{obs}

$p=P(n \ge n_{obs} | b)$ is the p-value

p-value	0.16	0.023	1.3 ×10 ⁻³	3.2 ×10 ⁻⁵	2.9 ×10 ⁻⁷
Z	1	2	3	4	5

Standard model Higgs boson event rate s_0 , higgs boson event rate $s=\mu s_0$, μ is the signal strength modifier, L likelihood of observation

Likelihood of observation

$$L = \frac{(b + \mu s_0)n_{obs}}{n_{obs}!} e^{-b - \mu s_0} CL_s = \frac{P(n \le n_{obs} \mid b + \mu s_0)}{P(n \le n_{obs} \mid b)} = 1 - CL$$

Maximizing the likehood

$$\hat{\mu} = \frac{n_{obs} - b}{s_0}$$

CL: Confidence level when no excess found

Test statistics for Higgs searches

$$q_0 = 2 \ln \frac{L(data; b + \hat{\mu}s)}{L(data; b)}$$

$$Z = \sqrt{q_0^{obs}}$$

$$q_0 = 2 \ln \frac{\frac{(b + \hat{\mu}s)^{n_{obs}} e^{-b - \hat{\mu}s}}{n_{obs}!}}{\frac{b^{n_{obs}} e^{-b}}{n_{obs}!}} = 2n_{obs} \ln(\frac{n_{obs}}{b}) - 2(n_{obs} - b)$$

CMS Experiment Trigger Table

Trigger	Theshold Energy (GeV)	Rate (kHz)
Single μ	14	7
Single e/y	20	13
e/y+μ	12,3.5	3
Single jet	128	1.5
Quad jet	36	5
E _T miss	40	8

Particle	Transverse momentum and trigger frequency
μ	p _T >24 (44 Hz)
е	p _T >27 (72 Hz)
ee	p _T >17/8 (15 Hz)
eμ/μe	p _T >17/8 (15 Hz)
уу	p _T >48 (7 Hz)
Single jet	p _T >400 (3 Hz)

$H-> b\overline{b}$ with W or Z boson

Higgs boson production in association with a vector boson V (a W or Z particle), a weak interaction process known as VH(bb)

$H-> b\bar{b}$ with W or Z boson

H->ZZ*->*lllll*

Η->ττ

Mass estimator on x-axis with events on y-axis

H->My H: Higgs Boson, M is meson and y is photon

Direct Decay

Indirect Decay

Meson	Branching ratio(BR _{SM}) (H->M y)	Decay mode of meson
ρ	1.7 × 10 ⁻⁵	ρ-> π ⁺ π ⁻
ф	2.3 ×10 ⁻⁶	φ -> μ+μ-
J/Ψ	2.8 ×10 ⁻⁶	J/Ψ ->μ ⁺ μ ⁻
Y(1S,2S,3S)	6.1,2.0,2.4 × 10 ⁻¹⁰	Υ -> μ ⁺ μ ⁻

$H->a^0a^0$ and $Z_dZ_d-> llll$

Higgs pair production and decay HH-> $b\bar{b}b\bar{b}$, HH->b \bar{b} $\gamma\gamma$, HH->WW* $\gamma\gamma$

Higgs pair production using gluon-gluon fusion

Heavy quark loop

Higgs self-coupling in standard model

Intermediate resonance X

$HH \rightarrow b\bar{b}b\bar{b}$

Invariant mass of two $b\bar{b}$ split by b-tags

$HH \rightarrow b\bar{b}$ yy

Non-resonant production

Resonant production

HH -> WW* yy

Charged Higgs Boson Decay

Leading order Feynman Diagram for Charged Higgs Boson decay to top and anti-bottom quark

Conclusions

- Higgs Boson decay to meson and a photon is vital to be probed at HL-LHC for H-> J/Ψ γ.
- Cross –section of H-> J/ Ψ γ will be 15 σ_{SM} at HL-LHC.
- Cross section of SM Higgs pair production is 33.41 fb at 13 TeV with decay modes HH-> $b\bar{b}b\bar{b}$ HH-> $b\bar{b}\gamma\gamma$, HH->WW* $\gamma\gamma$.
- The limit on non-resonant Higgs boson pair cross section is 0.223 pb at 95 % CL which is 6.7 σ_{SM} and Higgs boson self-coupling to SM coupling at 95 % CL is $-5 < \kappa_{\lambda} < 12$.

• Higgs boson can decay to bb pair and it can be produced with W or Z boson at 13 TeV, 79.8 fb⁻¹ significance 4.9 standard deviation, signal strength $\mu_{VH}^{bb} = 1.16 \pm 0.16 (stat.)_{-0.19}^{+0.21} (syst.)$

• Higgs Boson can decay to bottom quarks H->bb, H-> $\tau\tau$ leptons, H-> $b\bar{h}$ and H->ZZ*->41.

 Mass estimates of positively charged Higgs Boson is 40-100 GeV for LEP, 80-150 GeV for CDF DØ and 180-600 GeV for CMS.

The End

Thank you!