Master Plan - Isak Hammer - Solving Cahn-Hilliard Equation using CutCIP

Version: January 22, 2023

	Phase 1	Phase 2	Phase 3	Phase 4	Report
Estimated time	2-3 Weeks	4-5 Weeks	2 Weeks	3 Weeks	
Problem	CutDG for $-\Delta u = f$	CutCIP for $\Delta^2 u = f$	$\partial_t u + \Delta^2 u = g$	$\partial_t u + \Delta^2 u + f(u) = g$	
Goals	 Analysis ☐ Coercivity ☐ Boundedness Implementation ☐ L² convergence ☐ H¹ convergence 	• Analysis \square Coercivity \square Boundedness \square A priori estimates \square Condition number \dagger • Implementation \square L^2 convergence \square H^1 convergence	 Analysis □ BDF analysis • Implementation □ L²L² convergence □ L²H¹ convergence 	• Implementation \Box Fixed point method \Box L^2L^2 convergence \Box L^2H^1 convergence	□ Introduction □ CutDG $-\Delta u = f$ □ Formulation □ Closed and bounded □ Numerical exp. □ CutCIP for $\Delta^2 u = f$ □ Formulation □ Closed and bounded □ A priori Estimates □ Numerical experiments □ CutCIP for $\partial_t u + \Delta^2 u = g$ □ Time discretization □ Numerical experiments □ CutCIP for $\partial_t u + \Delta^2 u + f(u) = g$ □ Fixed point methods □ Numerical experiments □ Conclusion
Comments	Mostly based on (Gürkan and Massing, 2019)	† Not prioritized			
Digression		2nd order mixed formulation	2nd order mixed formulation	2nd order mixed formulation	Solve $\partial_t u + \kappa(u)\Delta^2 u = g$

	Master Plan																					
	January		February			March			April			May				June						
Introduction																						
Phase 1								:					<u>.</u>	:						: : : :		
Phase 2												: : :		:	: : :	:	:	<u>;</u>		: :		: : :
Phase 3								: :				:	:	j	: : :							
Phase 4															:	:	j					
Final															:			:	:	:	::	

References

Gürkan, Ceren and André Massing (2019). "A stabilized cut discontinuous Galerkin framework for elliptic boundary value and interface problems". In: Computer Methods in Applied Mechanics and Engineering 348, pp. 466–499.