Project: Predictive Analytics Capstone

Complete each section. When you are ready, save your file as a PDF document and submit it here: https://coco.udacity.com/nanodegrees/nd008/locale/en-us/versions/1.0.0/parts/7271/project

Task 1: Determine Store Formats for Existing Stores

1. What is the optimal number of store formats? How did you arrive at that number?

Considering the K-means report, Adjusted Rand and Calinski-Harabasz indices as depicted below, the optimal number of store formats is **3**.

Both AR and CH indices have highest median value at 3 clusters. So this corresponds to 3 store formats.

Adjusted Rand Indices:

Adjusted Rand Indices:					
	2	3	4	5	6
Minimum	-0.020389	0.239844	0.249378	0.23877	0.242775
1st Quartile	0.330947	0.670953	0.433115	0.407205	0.40884
Median	0.526643	0.73086	0.503177	0.482974	0.473038
Mean	0.509387	0.733178	0.518939	0.496709	0.480252
3rd Quartile	0.765541	0.890728	0.589026	0.57659	0.542087
Maximum	1	0.969034	0.771325	0.763451	0.700831
Calinski-Harabasz Indices:					
	2	3	4	5	6
Minimum	15.51614	17.70848	19.13188	19.04008	19.15572
1st Quartile	28.30265	30.17119	25.22623	23.11716	21.58487
Median	29.43624	31.11787	26.45934	24.43743	22.55169
Mean	28.26098	30.48014	26.25722	23.9628	22.4256
3rd Quartile	30.09819	32.23284	27.59305	25.21002	23.29452
Maximum	31.71569	33.63781	30.1583	26.89461	25.80254

2. How many stores fall into each store format?

This is as below:

Cluster Information:				
Cluster	Size	Ave Distance	Max Distance	Separation
1	23	2.320539	3.55145	1.874243
2	29	2.540085	4.475132	2.118708
3	33	2.115045	4.9262	1.702843

3. Based on the results of the clustering model, what is one way that the clusters differ from one another?::

Basis the below graph, the below can be inferred:

- Cluster 1 stores:
 - o Sold more General Merchandise in terms of percentage
 - Has highest medial total sales

- o Range is also highest in Cluster 1
- Cluster 2
 - Sold more Produce in terms of percentage
- Cluster 3:
 - Most similar- most compact range

Cluster 1 stores have highest medial total sales when compared to the other 2. Its range of total sales and most of other categorical sales are also the largest. Cluster 3 stores are the most similar in terms of sales due to more compact range.

4. Please provide a Tableau visualization (saved as a Tableau Public file) that shows the location of the stores, uses color to show cluster, and size to show total sales.

This is as below:

The Tableau links are as below:

https://public.tableau.com/profile/siddharth3961#!/vizhome/Task1 15540608764730/VizualizationbyCluster

Task 2: Formats for New Stores

1. What methodology did you use to predict the best store format for the new stores? Why did you choose that methodology? (Remember to Use a 20% validation sample with Random Seed = 3 to test differences in models.)

Below is the model comparison report. I have compared three models:

- a. Boosted Model
- b. Forest Model
- c. Decision Tree

I have chosen the **Boosted Model** since it is highest in both Accuracy and F1 score.

Model Comparison Report						
Fit and error measures						
Model	Accuracy	F1	Accuracy_1	Accuracy_2	Accuracy_3	
BM_P8	0.8235	0.8889	1.0000	1.0000	0.6667	
FM_8	0.8235	0.8426	0.7500	1.0000	0.7778	
DT_17	0.7059	0.7685	0.7500	1.0000	0.5556	
Model: model names in the current comparison. Accuracy: overall accuracy, number of correct predictions of all classes divided by total sample number. Accuracy_class name]: accuracy of Class (class name) is defined as the number of cases that are correctly predicted to be Class (class name) divided by the total number of cases that actually belong to Class (class name), this measure is also known as recall. AUC: area under the ROC curve, only available for two-class classification. F1: F1 score, 2 * precision * recall / (precision + recall). The precision measure is the percentage of actual members of a class that were predicted to be in that class divided by the total number of cases or or the correction of the correc						

The confusion matrix is as below:

Confusion matrix of BM_P8					
	Actual_1	Actual_2	Actual_3		
Predicted_1	4	0	1		
Predicted_2	0	4	2		
Predicted_3	0	0	6		
Confusion matrix of DT_17					
	Actual_1	Actual_2	Actual_3		
Predicted_1	3	0	2		
Predicted_2	0	4	2		
Predicted_3	1	0	5		
Confusion matrix of FM_8					
	Actual_1	Actual_2	Actual_3		
Predicted_1	3	0	1		
Predicted_2	0	4	1		
Predicted_3	1	0	7		

The most important factors are as below:

Variable Importance Plot

2. What format do each of the 10 new stores fall into? Please fill in the table below.

Basis the score tool, the segments for the new stores have been predicted as below:

Store Number	Segment
S0086	3
S0087	2
S0088	1
S0089	2
S0090	2
S0091	1
S0092	2

S0093	1
S0094	2
S0095	2

Task 3: Predicting Produce Sales

1. What type of ETS or ARIMA model did you use for each forecast? Use ETS(a,m,n) or ARIMA(ar, i, ma) notation. How did you come to that decision?

I have used the TS Plot tool to generate the below graphs.

Considering the ETS plot:

- 1. Seasonality: Is increasing and hence applied multiplicatively
- 2. Trend: No clear trend and hence not taken
- 3. Error: Error is applied multiplicatively

Considering the ARIMA Plot:

ARIMA models are displayed in the terms (p,d,q). These are explained as below:

- p periods to lag for
- d number of transformations used to make the data stationary
- q lags of the error component

I have re-plotted the ACF and PACF graphs after taking 1 seasonal difference. Even after this, the ACF still shows high co-relation.

I have re-plotted the ACF and PACF graphs after taking the 1st difference. There is no significant co-relation now.

The accuracy of ETS model is higher compared to ARIMA model. I have used a holdout sample of 6 months data.

- 1. The RMSE of ETS is 1,020,597, which is lower than ARIMA's 1,429,296
- 2. MASE of ETS is 0.45 compared to ARIMA's 0.53

The in-sample error measure for ETS Time Series are as below:

Method: ETS(M,N,M)

Information criteria:

For ARIMA the details are as below:

Call: Arima(Sum_Sum_Produce, order = c(0, 1, 2), seasonal = list(order = c(0, 1, 0), period = 12))

sigma^2 estimated as 3268620648750.65: log likelihood = -426.38872

In-sample error measures:

ME	RMSE	MAE	MPE	MAPE	MASE	ACF1
170664.0518584	1429296.2972978	951432.2539369	0.6151859	4.2022854	0.531117	-0.0260961

The forecast using TS forecast using the ETS series is as below. The actual and forecast values are with 80% & 95% confidence level intervals.

Period	Sub_Period	forecast	forecast_high_95	forecast_high_80	forecast_low_80	forecast_low_95
2016	1	21539936.024422	23479964.572212	22808452.508517	20271419.540327	19599907.476632
2016	2	20413770.627697	22357792.727867	21684898.355338	19142642.900056	18469748.527526
2016	3	24325953.115009	26761721.228203	25918616.277899	22733289.952119	21890185.001815
2016	4	22993466.36092	25403233.835366	24569128.619938	21417804.101902	20583698.886474
2016	5	26691951.437625	29608731.688798	28599131.532119	24784771.34313	23775171.186451
2016	6	26989964.034783	30055322.51904	28994294.214032	24985633.855534	23924605.550526

2. Please provide a table of your forecasts for existing and new stores. Also, provide visualization of your forecasts that includes historical data, existing stores forecasts, and new stores forecasts.

The forecast table is as below having forecasts from both existing and new stores: This is for the year 2016.

Month	Existing Stores	New Stores	Total
Jan-16	21539936	2587451	24127387
Feb-16	20413771	2477353	22891124
Mar-16	24325953	2913185	27239138
Apr-16	22993466	2775746	25769212
May-16	26691951	3150867	29842818
Jun-16	26989964	3188922	30178886
Jul-16	26948631	3214746	30163376
Aug-16	24091579	2866349	26957928
Sep-16	20523492	2538727	23062219
Oct-16	20011749	2488148	22499897
Nov-16	21177436	2595270	23772706
Dec-16	20855799	2573397	23429196

The Tableau graph is as below:

https://public.tableau.com/profile/siddharth3961#!/vizhome/Task3 15540600989490/TotalProduceSalesForecast?publish=yes

Task 1: Workflow

Task 2: Workflow

Task 3 Workflows:

a) Time Series Analysis using TS Plot

b) Forecast from existing stores

c) Forecast from New stores

Cont..

