a convenient form, and apply $\mathbb{E}[f(\pi')] \leq s+1$, to get

$$\begin{split} N(s) & \geq & 1 + \sum_{n+1 \geq s' \geq s} (N(s') - n - 2 + s') \mathbb{P}\{f(\pi') = s'\} \\ & + \sum_{n+1 \geq s' \geq s} (n + 2 - s') \mathbb{P}\{f(\pi') = s'\} \\ & = & 1 + \sum_{n+1 \geq s' \geq s} (N(s') - n - 2 + s') \mathbb{P}\{f(\pi') = s'\} \\ & + n + 2 - \sum_{n+1 \geq s' \geq s} s' \mathbb{P}\{f(\pi') = s'\} \\ & = & \sum_{n+1 \geq s' \geq s} (N(s') - n - 2 + s') \mathbb{P}\{f(\pi') = s'\} \\ & + n + 3 - \mathbb{E}[f(\pi')] \\ & \geq & \sum_{n+1 \geq s' \geq s} (N(s') - n - 2 + s') \mathbb{P}\{f(\pi') = s'\} \\ & + n + 2 - s. \end{split}$$

By the induction hypothesis, N(s') - n - 2 + s' is non-negative for s' > s. Therefore, after removing terms corresponding to s' > s, we get

$$N(s) \ge n + 2 - s + (N(s) - n - 2 + s) \mathbb{P}\{f(\pi') = s\},\$$

which rearranges into

$$(N(s) - n - 2 + s)(1 - \mathbb{P}\{f(\pi') = s\}) \ge 0.$$

Now, $\mathbb{P}\{f(\pi')=s\}$ cannot be 1 because there is a policy $\pi''=\mathsf{modify}(\pi,\{(s,a)\})\in\Pi,$ where $a\in\{0,1\}$ and $a\neq\pi(s),$ such that $\mathbb{P}\{\pi'=\pi''\}>0$ and $f(\pi'')>s$ (since s is not switchable in π''). Hence, we must have $N(s)\geq n+2-s.$

At this point, Theorem 9 follows as a corollary; the statement of the theorem is reproduced below.

Corollary 17. Starting from $\pi^0 = 0^n$, the expected number of policies RPI evaluates on M_n before terminating is at least $\frac{n+1}{2}$.

Proof. For
$$\pi^0 = 0^n$$
, $f(\pi^0) = 1$. Thus

$$L(\pi^0) \ge N(1) \ge n + 2 - 1 = n + 1.$$

In other words, RPI1 evaluates at least n+1 policies in expectation, which implies RPI evaluates at least half that number of policies in expectation.