⑲ 日本国特許庁(JP)

10 特許出願公開

⑫公開特許公報(A) 昭62-14358

@Int Cl.4

識別記号

庁内整理番号

❸公開 昭和62年(1987) 1月22日

G 11 B 15/43

Z-8421-5D

審査請求 未請求 発明の数 1 (全6頁)

公発明の名称 テープ送り装置

> 创特 願 昭60-152470

> > 修

愛出 願 昭60(1985)7月12日

60発明者 長 塚 川崎市高津区下野毛770番地 キャノン株式会社玉川事業

所内

個発 明 者 城 **達** 三

川崎市高津区下野毛770番地 キャノン株式会社玉川事業

所内

キャノン株式会社 勿出 願 人

東京都大田区下丸子3丁目30番2号

20代 理 人 弁理士 丹羽 宏之 外2名

1.発明の名称

テープ送り装置

2.特許請求の範囲

少なくとも一対のリール間でテープの送受給を 行うテープ送り装置において、着取り側リール台 の回転時の負荷を与えるプレーキの切り換えを、 ピンチローラのオン、作動オフと遊動させて行わ せる構成としたことを特徴とするテープ送り装

3. 発明の詳細な説明

(技術分野)

本発明は、テープ送り装置、特に、そのリール 駆動系の改良に関するものである。

(従来技術)

テープ送り装置は磁気配録再生を行う装置に飛 用されている。例えば、最近日ざましい勢いで作 及しているビデオテープレコーダ(以下VTRと 称す)がその好例である。

食来、VTRのリール製動系では、何えば、供

給側リール台に対してはパンドブレーキ方式のパ ックテンションコントローラや、或いは、DD(ダイレクトドライブ)方式のものでは第1図に示 すようなバックテンション検出による電気的なブ レーキサーボが設けられている。図示のものにお いては、テンションレバー31のテンションピン 33に加えられるテープテンションとパネ35と のパランスによる位置を電気的に検出している。 即ち、2つの磁気感応業子37および39は、テ ンションレバー31に係止されたマグネット41 により、テンションピン33の位置を検出し、そ の出力をもとに供給側リール台のDDモータを制 御する。このような構成によって、供給備リール 台15上のリールと巻取り側リール台17上のリ ールとの間で走行するテープTのテンションを高 精度で制御するようにしている。

これに対し、港取り備リール台に対しては斯か るテンションコントローラはあまり考慮されては いなかった。しかし、逆転再生等の機能を備える 場合、着取り側リール台に対しても斯かるパック テンションコントローラは当然必要とされるものである。そして従来、提案されているもの、特に、機械式のものはモードセレクタに連動させる。 保機が比較的複雑であり、装置を大型化IIIつ 重量化してしまうものであった。 (勿論、DD方式の場合は斯かる不都合は除去出来るが、反前、モータの数が増えるため、高価になり、軽量化が能しいものであった。)

(発明の目的)

(実施例)

本発明は、上述した問題点に鑑みて為されたもので、簡単な構成で巻取り側リール台に対する高精度のテンション制御を維持出来、しかも軽量、小型かつ安価に為し得るテーブ送り装置を提供することを目的とする。

また、本発明の他の目的は通常の記録再生と、高速送り (FF, FR, サーチ等)とに応じた巻取り側リール 台に対するブレーキ負荷の切換えを簡単な構成で行い得るようにすることにある。

以下図面に示す実施例に基づいて本発明を詳細

3

に対し、その側方腕73aのボス83により進動する。この第2切換レバー81は、ガイド85aおよび85bに従って、図面上水平方向に可動である。

第3の切換レバー87は、第1切換レバー73 に対して、その尾端の連結点89により連動させ られる。この第3切換レバー87上には、早過き 戻し、早送り用の第2のアイドラギャ91が、レ バー93および95を介して配置されている。第 2のアイドラギャ91の中心輪97は、略三角形 状のカム99の内間にそってレバー87の動きで 移動する。

2つのギャ101および103の間には、スリップ機構が設けられ、ギャ103は巻取り例リール台105にギャ連結している。従って、一方のギャ101によりギャ103を通じてリール台105を駆動するときはトルクリミッターが働き、直接、他方のギャ103より駆動するときはトルクがそのまま加わる。

リール合105に対してもプレーキ機構が配置

に説明する。

第2 図に本発明の一実施例を示す。図において、本発明実施例が搭載された V T R での適常の記録再生状態を示す。ここで、キャプスタン軸 5 1 を回転するモータ部又は影動力伝達部 5 3 に対して回軸にブーリ 5 5 が取り付けられている。タイミングベルト又はゴムベルト 5 7 により第 1 のギヤ 5 9 に駆動力が伝達され、これと回軸的に装着された第 2 のギヤ 6 1 が第 1 のアイドラギャ 6 3 を回転させる。

ピンチローラ 6 5 は移動レバー 6 9 の先端に支持され、ソレノイド 6 7 の作動によってレバー 6 9 にはバネ 7 1 の弾性力が作用し、その結果、ピンチローラ 6 5 はキャプスタン軸 5 1 に圧接させられる。このピンチローラ 6 5 の復帰は、戻しバネ 7 2 の弾性力によって行われる。第 1 の切換レバー 7 3 は、レバー 7 5 により、ソレノイド 6 7 の動きに連動して、支点 7 7 を中心に回動する。レバー 7 5 の復帰保持は、バネ 7 9 で行われる。

第2の切換レバー81は、第1切換レバー73

4

されている。 即ち、別な2つのギャ107 および 109 が連結され、ギャ109はギャ107 の回 転方向及びピンチローラ65 のオン、オフによる レバー111 の動きでギャ113と連結、非連結 となる。

して、ピンチローラ65の復帰中、及び復帰保持中には、第1のアイドラギャ63はギャ101か ら離開させられるようになる。

次に、第2回により通常の経再時の動作を説明 する。キャプスタン駆動部53は図中の矢印方向 (反時計方向) に回転し、連動ベルト57を介し てギャ59および61を矢印方向(反時計方向) に回転させる。それに応じて、ギャ59に進薪さ せられたアイドラギヤ63はギャ101の方向へ 移動して、ギヤ101と連結する。従って、ギヤ 101および103の紅で間における不悦示のス リップ機構を介して、リール台105がギャ10 3 により回転させられ、所定のトルクによりテー プの巻取り動作が行なわれる。ギャ比は、空転時 に於てリール台105の所定回転数に対して2~ 3 倍となるように選択されている。なお、このと き、ピンチローラ65がオンとなっているため筋 1の切換レパー73が凶示の位置にあり、レパー 87が第2のアイドラギャ91をカム99のコー ナー部99aによせて、ギヤ91が回転している

7

ため矢印方向(反時計方向)へ回転し、従って、ギャ107の同方向への回転により109が同方向に回動してギャ113と連結する。この状態でギャ109のスリップ機構とギャ113に加えられている負荷トルクの合計のトルクにより、リール台105には逆方向再生時の適正なバックテンションが与えられる。その結果、テープの走行の安定が保たれることとなる。

ここで、供給側のリールはテンションサーボを 行なわずに、所定のトルクでテープを適取ってい る。

続いて、テープの早送り、早巻戻し(FF,FR)状態の動作を説明する。

第5 図はドドの状態を示す。図において、ソレノイド67がオフされることによって、レバー75が矢印方向(下方向)Dへ移動し、第1の切換レバー73が支点77を中心にして矢印(時計方向)へ回動する。これにより回レバー73に連結点89で連結されている第3の切換レバー87が矢印方向(右上方向)RUへ移動する。このと

ギャ 5 9 と連結しないようにしている。また、ギャ 1 0 9 の時計方向の回転により、プレーキトルクを負荷するギャ 1 0 9 はギャ 1 1 3 との連結が断たれ、従って、リール台 1 0 5 は殆んどプレーキ負荷のない状態となる。尚、1 7 0 はこの時のギャ 1 0 9 に対するストッパーである。

ここで、供給側リール台については、直結モータ駆動としており、テープテンション制御は周知の様に電気的に行なわれている。

尚、早送りサーチ又はスロー再生でも、 キャプスタンの回転数が変化するだけであり、 その他の動作は基本的に第2図のままで行なわれる。

第4 図は、 逆方向の再生及び逆サーチの場合を示す。いま、 キャプスタン駆動部 5 3 は第 3 図の場合とは逆に矢印方向(時計方向)へ回転する。これに応じて、ベルト 5 7 を介して、 ギャ 5 9 および 6 1 が矢印方向(時計方向)へ回転するため アイドラギャ 6 3 はギャ 1 0 1 から離開させられる。 そのため、 ギャ 6 3 は空回りすることになる。 一方、 リール台 1 0 5 はテーブが引出される

8

き、レバー95の支点95aは不図示のガイド消により、図中上下に動きを規制されており、そのため、レバー95は矢印方向(上方向) U へ動くので、第2のアイドラギヤ91の輪97はカム99のコーナー第99bの方へ移動し、 阿ギヤ91がギヤ61および103と連結する。この時、リール台105のプレーキ負荷として機能サン131か矢印方向(左下方向)LDへ移動してレバー133を押圧するためギヤ109はギヤ113に連結せず、従って、リール台105にはギヤ109のトルクのみが負荷として加わるだけである。

キャプスタン駆動部53は、第2図と同様に矢 印方向(反時計方向)へ回転することによって、 各々の連結ギャがそれぞれに示す矢印方向へ回転 し、FF状態となる。ここで、第1の切換レバー 73に連動する第2の切換レバー81の動きによ り、第3図で示したレバー121の先端123 よびレバー81の先端125とが圧接し、 該レバ ー121の動きが規制される。そのため、第1の アイドラギャ 6 3 の回転に基づくギャ 6 1 からギャ 1 0 3 への駅動伝達は行なわれることはない。

第6 図にFR状態を示す。なお、基本的なレバーの動きは第5 図と全く回様である。しかし、ギャ5 9 が逆方向(時計方向)に回転し、第2 ののイドラギャ9 1 の動り7 はカム9 9 のコーナー部9 9 c 内方へ移動し、従って、同ギャ9 1 はギャ1 0 9 のトルクがブレーキ負荷となるのみで回転する。このギャ1 0 9 のブレーキトルクにより、早巻戻し(FR)から停止(STOP)にお行する際のテープたるみ又はテープの繰り一ルにの防止が関られる。このとき、供給側リールは、迎方向のサーチと同様にテープの告取りを所定の回転数で行なっている。

第7 図は、第2 図に示した巻取り側リール 介と これに同軸に構成されたギャ等を示す。図におい て、先端にキャップ部材152を打するリール駆動軸151に対して前述のリール介105および ギャ107が一体的に係合しており、キャップ部

1 1

05の回転信号として使用する。尚、この場合の 回転信号はテープ走行量、巻取り量の算出等に利 用される。

又、リール台の回転のみで簡単に通常記録再生及びサーチ時にはFF側でトルクリミッターが働き、一方、逆送り時にはテープ安定のための所定のプレーキトルクが巻取りリール台に加わることになる。

また、リール台のブレーキ負荷用の鉄板を回転

材152とリール台105との間にはリール彫動 スピンドル153及びコイルばね154が配置さ れている。ギヤ109は首振りレバー157上の 頼159に軸支されている。このレバー157は 磁性材料を混入したプラスチック製で、リール軸 151方向に多極着磁されている。一方、このレ パー157と対向するように鉄板155がリール 台105のドに装着されており、放鉄板155と レバー157との間にはフェルト等の緩衝材15 6が挿入されており、鉄板155及びレバー15 7間の磁気吸引に伴なうこの部分の摩擦でブレー キ動作が行なわれる。更に、鉄板155の緩衝材 156との対向面を外れた位置にはリール台回転 信号形成用の明暗のパターンが設けられている。 ギャ113は軸162に軸支されており、周定台 164との間にフェルト等の緩衝材163が挿入 され、ばね165により摩擦負荷が与えられるよ うになっている。リール台105の下に反射型フ ォトセンサー158がおかれ、鉄板155上に設 けられた明晴のパターンを検知して、リール台1

12

信号の発生に兼用した構成としたため、リール回 転信号発生手段が極めて安価な構成となる。

なお、上述した実施例にあってはVTRに搭載された場合について説明したが、他の記録再生を行うテープの走行をなすための装置にも広く適用できることは勿論である。

また、本発明は記録再生を行うテープに限らず、少なくとも一対の送り偶と受取り偶との間で送受給される長いテープ状の物の走行を行う装置に応用可能である。

(発明の効果)

以上詳述した如く本発明によれば、簡単な構成で 地取り側リール台に対する高精度なテープテン ションの制御を行えると共に、小型で安価なテー プ送り装置を実現することができる。

4. 図面の簡単な説明

第1 図は従来のテープ送り装置の構成を示す平面図、第2 図は本発明の一実施例によるテープ送り装置の構成を示す平面図、第3 図は第2 図における一部の拡大図、第4 図、第5 図および第8 図

は水発明実施例装置を搭載したVTRにおける逆再生、早港取り(FF)および早港戻し(FR)のときの動作状態を示す構成平面図、第7回は第2回に示すリール台およびそれに連結するギャ等の構成状態を示す側面図である。

- 5 1 ……キャプスタン輪
- 53……キャプスタン斟動部
- 5 5 …… 伝達ベルト
- 59,61……伝達ギャ
- 67……ピンチソレノイド
- 73,81,87,111……切換レバー
- 105……リール台
- 107 * *
- 109……伝達ギャ
- 113 ブレーキギャ
- 155 ··· ··· 吸引用FG 鉄板
- 158……反射形ホトセンサ

1 5

第 2 图

第 **3** 🛭

