Last week in Toric Varieties...

A distinguished point:

Proposition: Let GCN_R be full dimensional. Then the C-algebra homomorphism defined by $C[S_0] \xrightarrow{\varphi} C$ $E^m \longmapsto S1 \quad \text{if} \quad m \in S^{\perp}$ $0 \quad \text{otherwise}$

determines a closed point xx ello which is fixed by the To-action.

Proof: By definition, x_{σ} is the prime ideal $\mathcal{Q}^{1}(0)$ in $\mathbb{C}[S_{\sigma}]$. Since σ is full dimensional, σ^{v} is strongly convex and $\sigma^{+}=\{0\}\subset M_{\mathbb{R}}$. That is, $\mathcal{Q}(z^{o})=1$ while $\mathcal{Q}(z^{m})=0$ for $m\neq 0$, and χ_{σ} is the **maximal** ideal of non-invertible elements in $\mathbb{C}[S_{\sigma}]$ — it is a closed point.

Next, viewed classically as a point in U_{σ} , χ_{σ} is the common vanishing locus of $\{Z^{M}: n\in S\sigma \setminus \{0\}\}$. For $t\in T_{N}$, $m\in S\sigma \setminus \{0\}$, we have $Z^{M}(t\cdot \chi_{\sigma})=Z^{M}(t)Z^{M}(\chi_{\sigma})=Z^{M}(t)\cdot 0=0,$

50 t.x = x0.

Smooth affine toric varieties:

Def: Let X = Spec(R) be an affine scheme and $m \in X$ a closed point. The cotangent space of X at m is m/m^2 .

The idea here is that the ideal m consists of those local functions $f \in O_{X,m}$ which vanish at the point $m \in X$. Each of these fuctions defines a map on the langest space, so an element of the cotangest space. Two such functions define the same may on the langest space if they agree to first order, so m/m^2 . However, this definition applies more generally – e.g. when the langest space is not defined.

Def: Let $X = \operatorname{Spec}(R)$ be an affine scheme. X is **smooth** if for every closed point $m \in X$, we have $\dim(X) = \dim(m/m^2)$.

Example: $T_N = \operatorname{Spec}(\mathbb{C}[M]), \quad M \cong \mathbb{Z}^2. \quad \text{Take } \quad m = (\chi - \alpha, y - b) \quad \text{for some } \alpha, b \in \mathbb{C}^*. \quad \text{Then}$ $m^2 = ((\chi - \alpha)^2, (\chi - \alpha)(y - b), (y - b)^2), \quad \text{and} \quad m/m^2 = \left\{ \lambda_1(\overline{\chi - \alpha}) + \lambda_2(\overline{y - b}) : \lambda_i \in \mathbb{C}^3. \right\}.$ $\dim(T_N) = 2 = \dim(m/m^2).$

Non-example: (Cuspidal cubic plane curve) $X = Spec(C[x,y]/\langle x^3 - y^2 \rangle)$.

Take m=(x,y). Then $m^2=(x^2, xy, y^2)$, and $m/m^2=\{\lambda_0 \overline{x} + \lambda_2 \overline{y} : \lambda_i \in C_2^2\}$, dim(X)=1 but dim $(m/m^2)=2$.

Proposition: U_{σ} is smooth if and only if the set of primitive ray generators $\{E_n\}$ of σ is a subset of some \mathbb{Z} -basis of N.

Proof: First suppose σ is full dimensional. Then U_{σ} has a unique T_{N} -fixed point χ_{σ} .

Denote the associated maximal ideal by m. Recall $m = (z^{m} : m \in S_{\sigma} \setminus \{0\})$. Then $m^{2} = (z^{m+m'} : m, m' \in S_{\sigma} \setminus \{0\})$, and

 $m/m^2 = \{ \sum_i \lambda_i \ \overline{z^n_i} : \lambda_i \in \mathbb{C} \} \ m_i \in \mathbb{S}_0 \setminus \{0\}, \ m_i \neq m+m' \ \text{for some } m, m' \in \mathbb{S}_0 \setminus \{0\}\}.$

The primitive naw generators of σ^V all define basis elements of m/m^Z . But σ^V is a full dimensional strongly convex cone, so smoothness implies there are exactly $dim(U_0)$ of these and they define all basis elements of m/m^Z . That is, these ray generators of σ^V must generate So as a semigroup, and in turn M as a group. They form a Z-basis for M, so $\xi h; \tilde{\beta} - the$ dual basis— is a basis for N.

Similarly, if Eni3 is a 7-basis for N, then

m/n2 = Spon { { Z": m; in the dual basis for M}.

Hence $\dim(u_0) = \dim(m/m^2)$, and x_0 is a smooth point.

As you (hopefully) concluded in the problem set, every other closed point yello is contained in some Up for z a face of o. So, we move on to the case or not full dimensional.

Define $N:= \sigma \cap N + (-\sigma \cap N)$. This is a saturated sublattice of N, so we can find a splitting $N=N= \theta N''$ and write σ as $\sigma' \oplus \delta \circ \delta$, where σ' is full dimensional in No. Decomposing M similarly as $M=M' \oplus M''$, we have $S_{\sigma} = S_{\sigma'} \oplus M''$, and $U_{\sigma} \cong U_{\sigma'} \times T_{N''}$.

But $U_{\sigma'} \times T_{N''}$ is smooth if and only if $U_{\sigma'}$ is. We are back to the case of a full dimensional cone. Using the splitting, we extend a basis for N_{σ} to a basis for N_{σ} .

Fans - building toric varieties with an atlas:

Def: A **scheme** is a locally ringed space (X, ∂_X) such that for each point $p \in X$ there is an open set $U \in X$ containing p with $(U, \partial_X|_U)$ an affine scheme.

Def: A fan Z in N is a collection of strongly convex comes $\sigma \in N_{IR}$ such that:

- · if se Z and T is a face of s, then TEZ.
- · if $\sigma_1, \sigma_2 \in \mathbb{Z}$, then $\sigma_1 \cap \sigma_2$ is a face of both σ_1 and σ_2 .
- there are finitely many ones $\sigma \in \mathbb{Z}$.

Toptional. With this condition, we'll study finite type toric varieties. Without it - locally finite type.

Example: Problem 1.

Def: The toric variety X_Z is the scheme with affine open toric subvarieties U_{σ} for $\sigma \in Z$, and with U_{σ_1} and U_{σ_2} glued by the inclusion of U_{τ} into each if $\tau = \sigma_1 \wedge \sigma_2$.

Example: Problem 1.

Xz is "separated":

Atlases are good for making definitions, but in practice can be a terrible way to construct a space— end result may be very ugly.

Def: Let X be a 5Chame over Spec(C). The diagonal morphism is the unique schame morphism $\Delta: X \longrightarrow X^{\times} spec(C) X$ with $pr_1 \circ \Delta = id_X = pr_2 \circ \Delta$.

X is separated if Δ is a closed immersion. To be defined soon.

Intuition from topology: "Separated" is the algebraic geometry version of "Hausdorff."

Remember, X is Hausdorff if for every pair of points $p_1, p_2 \in X$ there is a pair of open sets U_1 , $U_2 \subset X$ with $p_i \in U_i$ and $U_1 \cap U_2 = \emptyset$.

The standard non-example is the line with 2 origins: Let $U_i = \mathbb{R}$, and $V_i = \mathbb{R} \setminus \mathcal{E} \mathcal{B}$.

construct X by gluing U_i and U_2 along V_1 and V_2 via the identity map on $\mathbb{R} \setminus \mathcal{E} \mathcal{B}$.

Then any open set containing 1 origin must contain the other. (We are replace \mathbb{R} by Chare too.)

Observation: X is Hausdorff if and only if $\Delta(X)$ is closed in $X \times X$.

If X is not Hausdorff, then there is a pair of points $p_1, p_2 \in X$ that cannot be separated by open sets. Then $(p_1, p_2) \in X \times X$ is contained in $\overline{\Delta}(X)$ but not in $\Delta(X)$.

Next week in Toric Varieties:

- · Why is Xz separated?
- · Toric Morphisms