Билет 22

Aвтор1, ..., AвторN

20 июня 2020 г.

Содержание

0.1	Билет 22:	Покрытия.	Компактность.	Компактность	В	пространстве	и в	подпро-	
	странстве.	Простейши	е свойства комп	актных множес	ств				1

Билет 22 СОДЕРЖАНИЕ

0.1. Билет 22: Покрытия. Компактность. Компактность в пространстве и в подпространстве. Простейшие свойства компактных множеств.

Определение 0.1.

Пусть $\langle X, \rho \rangle$ - метрическое пространство.

Семейство множеств $U_{\alpha} \subset X$ называется открытым покрытием множества A (покрытием A открытыми множествами), если

- 1. $A \subset \bigcup_{\alpha \in I} U_{\alpha}$
- 2. $\forall \alpha \in I \quad U_{\alpha}$ открытое.

Определение 0.2.

Пусть $\langle X, \rho \rangle$ - метрическое пространство.

 $K \subset X$ называется компактом, если из любого отркытого покрытия можно выбрать конечное открытое покрытие.

Теорема 0.1.

Пусть $\langle X, \rho \rangle$ - метрическое пространтсво, $Y \subset X$ - подпространство.

Тогда компактность $K\subset Y$ в Y и в X равносильны.

Доказательство.

 $Y \implies X$:

Пусть $G_{\alpha} \subset X$ - открытое покрытие K в X.

Тогда $U_{\alpha} = G_{\alpha} \cap Y$ - открытое покрытие K в Y.

Можем выбрать конечное U_{α_k} .

 $U_{\alpha_k} \subset G_{\alpha_k} \implies G_{\alpha_k}$ - конечное открытое покрытие.

 $X \implies Y$:

Пусть $U_{\alpha} \subset Y$ - открытое покрытие K в Y.

Тогда $\exists G_{\alpha}$ открытое в X $U_{\alpha} = G_{\alpha} \cap Y$.

 $U_{\alpha} \subset G_{\alpha} \implies G_{\alpha}$ - открытое покрытие K в X.

Значит, можем выбрать конечное G_{α_k} . Тогда

$$\bigcup_{k=1}^{n} U_{\alpha_k} = \bigcup_{k=1}^{n} (G_{\alpha_k} \subset Y) = Y \cap \bigcup_{k=1}^{n} G_{\alpha_k} \supset Y \cap K = K.$$

Значит, U_{α_k} - конечное покрытие K в Y.

Теорема 0.2.

Пусть $\langle X, \rho \rangle$ - метрическое пространство, K - компакт. Тогда

1. K - замкнуто

Доказательство.

Возьмём $a \in X \setminus K$.

Заметим, что $\forall x \in K \quad B_{\frac{\rho(x,a)}{2}} \cap B_{\frac{\rho(x,a)}{2}}(x) = \varnothing.$

Билет 22 COДЕРЖАНИЕ

Возьмём открытое покрытие $K\colon K\subset \bigcup_{x\in K}B_{\frac{\rho(x,a)}{2}}(x).$

Выберем конечное:
$$K \subset \bigcup_{k=1}^n B_{\frac{\rho(a,x_k)}{2}}(x_k)$$
.

Тогда, при
$$r:=\min_{k}\{\frac{\rho(x_{k},a)}{2}\},\ B_{r}(a)\cap K=\varnothing\implies B_{r}(a)\subset X\setminus K\implies a\in \mathrm{Int}(X\setminus K)\implies X\setminus K$$
 открыто $\Longrightarrow K$ замкнуто.

$2. \ K$ - ограничено

Доказательство.

Возьмём $a \in K$.

Тогда $\bigcup_{n=1}^{\infty} B_n(a)$ - открытое покрытие.

Выберем конечное:
$$K \subset \bigcup_{k=1}^m B_{n_k}(a) = B_r(a), r := \max_k \{n_k\}.$$

Следствие.

Если K - компакт и $\tilde{K}\subset K$ - замкнуто, то \tilde{K} - компакт.

Доказательство.

Пусть U_{α} - открытое покрытие \tilde{K} .

Тогда, если добавить к нему $X\setminus \tilde{K}$ (которое открыто так-как \tilde{K} замкнуто), получится открытое покрытие K. Выберем конечное.

$$\bigcup_{k=1}^{n} U_{\alpha_{k}} \cup (X \setminus \tilde{K}) \supset K \supset \tilde{K} \implies \bigcup_{k=1}^{n} U_{\alpha_{k}} \supset \tilde{K} \qquad \Box.$$