

planetmath.org

Math for the people, by the people.

integrality is transitive

Canonical name IntegralityIsTransitive
Date of creation 2013-03-22 17:01:25
Last modified on 2013-03-22 17:01:25

Owner rm50 (10146)Last modified by rm50 (10146)

Numerical id 6

Author rm50 (10146) Entry type Theorem Classification msc 13B21 Let $C \subset B \subset A$ be rings. If B is integral over C and A is integral over B, then A is integral over C.

Proof. Choose $u \in A$. Then $u^n + b_1 u^{n-1} + \cdots + b_n = 0, b_i \in B$. Thus $C[b_1, \ldots, b_n, u]$ is integral and thus module-finite over $C[b_1, \ldots, b_n]$. Each b_i is integral over C, so $C[b_1, \ldots, b_n]$ is integral hence module-finite over C. Thus $C[b_1, \ldots, b_n, u]$ is module-finite, hence integral, over C, so u is integral over C.