一维瞬态热传导问题的分析与数值求解

(请在此处填写您的姓名)

2025年6月20日

目录

1	代码	9实现与功能综述	2
	1.1	数值方法	2
	1.2	稳定性分析功能	2
	1.3	代码验证 (MMS)	2
	1.4	并行化	2
	1.5	重启功能 (HDF5)	2
	1.6	可视化	2
2	实验	结果与分析	3
	2.1	数值稳定性验证	3
	2.2	代码收敛阶验证	3
		2.2.1 空间收敛阶	3
		2.2.2 时间收敛阶	4
	2.3	并行性能测试	4
		2.3.1 强扩展性测试 (Fixed-size Scalability)	4
		2.3.2 弱扩展性测试 (Isogranular Scalability)	5
	2.4	后处理与物理过程模拟	5

1 代码实现与功能综述

本部分简要介绍求解器在代码层面的具体实现方法与核心功能。

1.1 数值方法

- 有限差分: 通过 PETSc 的 DMDA (Distributed Mesh Data Management) 对象实现,并使用 DMDACreate1d 来创建一维网格。
- 显式/隐式欧拉法: 通过 ts_type 枚举和 -ts_type 命令行选项实现了两种方法的切换。
 - **隐式法**: 构建了 $(I \Delta t \cdot \alpha \cdot \text{Laplacian})$ 对应的三对角矩阵 A, 并使用 PETSc 的 KSP (Krylov Subspace Package) 求解器来求解线性系统。
 - 显式法: 构建了拉普拉斯算子矩阵 L, 并通过矩阵向量乘法和 VecAXPY 来更新解向量。

1.2 稳定性分析功能

代码中为显式法显式地计算并打印了稳定性因子 $\alpha \cdot \Delta t/(\Delta x)^2$ 。当该因子大于 0.5 时,程序会输出警告信息,这为用户验证理论稳定性提供了便利。

1.3 代码验证 (MMS)

- 通过 run_type 枚举和 -run_type 命令行选项,代码支持制造解方法(Method of Manufactured Solutions) 模式。
- 在 MMS 模式下,代码能够根据预设的解析解,自动计算所需的源项 f_{source} 。
- 在求解结束后,程序会计算精确解 u_{exact} ,并通过 VecNorm 计算数值解与精确解之间的无穷 范数 $(L_{\infty} \text{ error})$,该误差定义与项目要求一致。

1.4 并行化

基于 PETSc 的 DMDA 实现,代码原生支持并行计算。矩阵组装循环 for (PetscInt i = info.xs; i < info.xs + info.xm; i++)采用了域分解思想,确保每个处理器只负责组装其所拥有的那部分矩阵行。KSP 和 Vec 等 PETSc 对象的操作也都是并行的。

1.5 重启功能 (HDF5)

- 用户可通过 -restart 命令行标志启用重启功能。
- 程序会根据 checkpoint_interval 的设定,定期将解向量 u 和当前的步数 step 写入 HDF5 文件 (checkpoint.h5)。
- 若启用重启,程序会从检查点文件中读取数据,并从中断处继续计算。

1.6 可视化

代码实现了对 VTK 格式文件的定期输出 (solution-%04ld.vts)。这些文件可由 ParaView 等后处理软件进行读取和可视化。

2 实验结果与分析

2.1 数值稳定性验证

对于隐式方法,由于其无条件稳定性,我们采用了一个较大的时间步长 $\Delta t = 0.006s$ 进行测试,结果如图 1 所示,计算过程收敛,符合理论预期。

图 1: 隐式格式在大时间步长下的稳定结果

对于显式方法,理论上保证收敛的最大时间步长约为 0.005s 。我们分别测试了 $\Delta t = 0.0049s, 0.005s, 0.0051s$ 三种情况,结果如图 2 所示。

图 2: 显式格式在临界稳定点附近的表现 (左: 0.0049s, 中: 0.005s, 右: 0.0051s)

从图中可以明显看出,在 $\Delta t = 0.005s$ 时系统仍处于收敛状态,而当 $\Delta t = 0.0051s$ 时系统发散,这与理论推导结果完全吻合。

2.2 代码收敛阶验证

我们使用 MMS 模式来验证代码的收敛精度。

2.2.1 空间收敛阶

我们采用隐式欧拉法,固定一个极小的时间步长 $\Delta t = 0.0005s$ 以屏蔽时间误差,然后不断改变网格数量 Δx 。 log(e) 与 $log(\Delta x)$ 的关系如图 3 所示。

线性拟合得到的斜率为 1.9029, 这与我们使用的二阶中心差分格式的理论精度 2 非常接近, 验证了代码空间离散的准确性。

图 3: 空间收敛阶测试结果

2.2.2 时间收敛阶

我们同样采用隐式欧拉法,固定一个极密的空间网格(nx=5001)以屏蔽空间误差,然后改变时间步长 Δt 。log(e) 与 $log(\Delta t)$ 的关系如图 4 所示。

图 4: 时间收敛阶测试结果

线性拟合得到的斜率为 0.9939,这与一阶精度的欧拉时间格式的理论值 1 非常接近,验证了代码时间离散的准确性。

2.3 并行性能测试

2.3.1 强扩展性测试 (Fixed-size Scalability)

我们固定问题总规模 nx = 2,000,000,然后逐渐增加处理器核心数,测试结果如表 1 所示。

1	2	3	4
12.01	15.31	6.906	9.99
6.55×10^{-2}	5.20×10^{-2}	3.78×10^{-2}	3.74×10^{-2}
9.84	13.64	5.33	8.60
1.00	0.72	1.85	1.14
100%	36%	61.6%	28.6%
	6.55×10^{-2} 9.84 1.00	$\begin{array}{c cc} 12.01 & 15.31 \\ 6.55 \times 10^{-2} & 5.20 \times 10^{-2} \\ 9.84 & 13.64 \\ 1.00 & 0.72 \end{array}$	12.01 15.31 6.906 6.55×10^{-2} 5.20×10^{-2} 3.78×10^{-2} 9.84 13.64 5.33 1.00 0.72 1.85

表 1: 强扩展性测试结果 (nx = 2,000,000)

测试结果表明,性能并非随核心数增加而线性变好。在 2 核时性能下降, 3 核时达到最佳, 4 核时再次下降。这说明对于该问题规模, 3 核是在计算和通信开销之间的一个最佳平衡点,提供了 1.85 倍的加速比。当核心数过多时(如 4 核),对于一维问题简单的计算任务,通信开销剧增,反而压制了性能。

2.3.2 弱扩展性测试 (Isogranular Scalability)

我们保持每个处理器的计算负载不变 (nx/Nprocs = 500,000),然后增加处理器数量,测试结果如表 2 所示。

Nprocs	1	2	3	4
Total Time (s)	3.53	5.83	5.15	9.99
Matrix Assemble (s)	1.63×10^{-2}	2.84×10^{-2}	3.53×10^{-2}	3.74×10^{-2}
Solve (s)	2.84	4.96	4.00	8.60

表 2: 弱扩展性测试结果 (每个核心负载 nx = 500,000)

理想情况下,弱扩展性测试的总时间应保持恒定。然而,数据显示总时间随核心数增加而显著增长。其中,求解器(Solve)耗时是主要瓶颈。这主要是因为尽管每个处理器的计算量不变,但随着问题总规模和处理器数量的增加,求解器在每次迭代中所需的全局通信(如全局归约操作)开销显著增大,导致性能下降。

2.4 后处理与物理过程模拟

我们模拟了一个长为1米的金属杆的冷却过程。

- **物理设定**: 热扩散率为 0.01 。
- 初始条件: 杆的中心区域 $(x \in [0.4, 0.6])$ 被瞬间加热到 100° C,其余部分为 0° C。
- **边界条件**: 杆的两端 (x = 0 和 x = 1) 始终保持在 0° C 。

图 5 展示了从初始时刻 T=0 到 T=1T 不同时刻下温度随位置变化的曲线。 从图中可以清晰地观察到物理过程:

- 初始状态 (T=0 橙色曲线): 温度分布在中心呈现一个高而窄的峰值,符合初始热点的设定。
- **热量扩散** (T > 0): 随着时间推移,峰值逐渐降低变宽,热量从中心向两端传导,这与热力学第二定律一致。
- 边界影响: 两端温度始终为 0, 表明热量通过边界持续散失。

图 5: 不同时刻下温度随位置变化曲线