Lec-23. 正态总体的区间估计

主讲教师: 吴利苏 (wulisu@sdust.edu.cn)

主 页: wulisu.cn

本次课内容

- σ^2 已知, μ 的置信区间
- σ^2 未知, μ 的置信区间
- 其他总体 μ 的置信区间
- μ 未知, σ^2 的置信区间

两个正态总体参数的区间估计

- σ_1^2, σ_2^2 已知, $\mu_1 \mu_2$ 的置信区间
 - $\sigma_1^2 = \sigma_1^2 = \sigma^2 + \mu_1 \mu_2$ 的置信区间
 - μ_1, μ_2 未知, σ_1^2/σ_2^2 的置信区间

正态总体均值 μ 的置信区间 (σ^2 已知时)

设总体 $X \sim N(\mu, \sigma^2)$, X_1, X_2, \dots, X_n 为样本. \bar{X} 和 S^2 分别为样本均值和样本方差. 置信水平为 $1-\alpha$.

• σ^2 已知时, 取枢轴量 $\frac{\overline{X}-\mu}{\sigma/\sqrt{n}} \sim N(0,1)$, 则 μ 的一个置信水平为 $1-\alpha$ 的区间估计为

$$\left(\overline{X}\pm\frac{\sigma}{\sqrt{n}}z_{\alpha/2}\right).$$

 σ^2 已知时, \overline{X} 是 μ 的最大似然估计, 枢轴量

$$\frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim N(0, 1),$$

设常数 a < b 满足:

$$P\{a < \frac{X-\mu}{\sigma/\sqrt{n}} < b\} \ge 1-\alpha$$

$$P\left\{\overline{X} - \frac{\sigma}{\sqrt{n}}b < \mu < \overline{X} - \frac{\sigma}{\sqrt{n}}a\right\} \geq 1 - \alpha$$
 此时区间的长度为 $L = (b-a)\frac{\sigma}{\sqrt{n}}$.

由正态分布的对称性知, 当

$$-a = b = z_{\alpha/2}$$

时,区间的长度达到最短 $L=2z_{\alpha/2}\frac{\sigma}{\sqrt{n}}$. 固定 n, L 变大, $z_{\alpha/2}$ 增大,则 $(1-\alpha)$ 增大,置信水平提高,精确度降低;反之亦然. 所以, μ 的

• 双侧置信区间为:

$$\left(\overline{X} - \frac{\sigma}{\sqrt{n}} z_{\alpha/2}, \overline{X} + \frac{\sigma}{\sqrt{n}} z_{\alpha/2}\right),$$

- 单侧置信下限为 $\overline{X} \frac{\sigma}{\sqrt{n}} z_{\alpha}$,
- 单侧置信上限为 $\overline{X} + \frac{\sigma}{\sqrt{n}} z_{\alpha}$.

正态总体均值 μ 的置信区间 (σ^2 未知时) 设总体 $X \sim N(\mu, \sigma^2)$, X_1, X_2, \cdots, X_n 为样本. \bar{X} 和 S^2 分别为样本均值和样本方差.

• σ^2 未知时, 取枢轴量 $\frac{\overline{X}-\mu}{S/\sqrt{n}} \sim t(n-1)$, 则 μ 的一个置信水平为 $1-\alpha$ 的区间估计为 $\left(\overline{X}\pm\frac{S}{\sqrt{n}}t_{\alpha/2}(n-1)\right).$

 σ^2 未知时, S^2 是 σ^2 的无偏估计, 用 S 替换 σ , 得枢轴量

 行枢轴重
$$\frac{\overline{X} - \mu}{S/\sqrt{n}} \sim t(n-1)$$

由

$$-t_{\alpha/2}(n-1) < \frac{\overline{X} - \mu}{S/\sqrt{n}} < t_{\alpha/2}(n-1)$$

解得,

$$\overline{X} - \frac{S}{\sqrt{n}} t_{\alpha/2}(n-1) < \mu < \overline{X} + \frac{S}{\sqrt{n}} t_{\alpha/2}(n-1)$$

所以μ的

• 置信区间为:

$$\left(\overline{X} - \frac{S}{\sqrt{n}}t_{\alpha/2}(n-1), \overline{X} + \frac{S}{\sqrt{n}}t_{\alpha/2}(n-1)\right)$$

- 单侧置信下限为 $\overline{X} \frac{S}{\sqrt{n}} t_{\alpha}(n-1)$,
- 单侧置信上限为 $\overline{X} + \frac{S}{\sqrt{n}} t_{\alpha}(n-1)$.

某袋装食品重量 (单位: 克) $X \sim N(\mu, \sigma^2)$. 现从一大批该产品中随机抽取 16 件, 称得重量为:

506 508 499 503 504 510 497 512 514 505 493 496 506 502 509 496

$$(\overline{x} = 503.75, s = 6.2022,)$$
 求在

- **(1)** $\sigma = 3$;
- (2) σ 未知

两种情况下 μ 的置信水平为 95% 的双侧置信区间.

解: n = 16, n - 1 = 15, $\alpha/2 = 0.025$. 计算得 $\overline{x} = 503.75$, s = 6.2022.

(1)
$$\sigma = 3$$
, 查表得 $z_{0.025} = 1.96$ 所以, μ 的置信水平为 95% 的置信区间为 $(\bar{x} - \frac{3}{\sqrt{16}} z_{0.025}, \bar{x} + \frac{3}{\sqrt{16}} z_{0.025}) = (502.28, 505.22).$

(2)
$$\sigma$$
 未知, 查表得 $t_{0.025}(15) = 2.1315$ 此时, μ 置信水平为 95% 的置信区间为

$$(\overline{x} - \frac{S}{\sqrt{16}}t_{0.025}(15), \overline{x} + \frac{S}{\sqrt{10}}t_{0.025}(15)) = (500.4, 507.1)$$

实际中 σ^2 未知的情况更多.

更多.

8/29

设新生儿体重 (单位: 克) $X \sim N(\mu, \sigma^2)$, μ, σ^2 未知. 现从某妇产医院随机抽查 16 名新生儿, 称得重量为:

3200 3050 3840 4450 2900 4180 2600 3530 2270 2750 3450 3730 3620 2150 2650 2830

求 μ 的置信水平为 95% 的双侧置信区间. $(\bar{x} = 3200, s = 665.48)$

解: n=16, $\alpha=0.05$, σ 未知. 计算得 $\overline{x}=3200$, s=665.48查表得 $t_{0.025}(15)=2.1315$ 所以 μ 的置信水平为 95% 的置信区间为:

$$(\overline{x} - \frac{S}{\sqrt{16}}t_{0.025}(15), \overline{x} + \frac{S}{\sqrt{16}}t_{0.025}(15)) = (2845.4, 3554.6).$$

其他总体均值的区间估计

总体 X 的均值为 μ , 方差为 σ^2 , 非正态分布或不知分布形式. 样本为 X_1, \ldots, X_n . 当 n 充分大 (一般 n > 30) 时, 由中心极限定理知.

$$\frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim N(0, 1).$$

设 \bar{X} 和 S^2 分别为样本均值和样本方差. μ 的置信水平为 $1-\alpha$ 的置信区间

- σ^2 已知时, 置信区间近似为 $(\overline{X} \pm z_{\alpha/2}\sigma/\sqrt{n})$.
- σ^2 未知时, 置信区间近似为 $(\overline{X} \pm z_{\alpha/2} S/\sqrt{n})$.

某市随机抽取 1500 个家庭, 调查知道其中有 375 家拥有私家车. 试根据此调查结果, 求该市 拥有私家车比例 p 的置信水平为 95% 近似置信 区间.

解: $\hat{p} = \bar{x} = \frac{375}{1500} = 0.25, s^2 \approx \hat{p}(1 - \hat{p}) = 0.1875$ 代入近似置信区间

$$(\bar{X} - z_{0.025}S/\sqrt{n}, \quad \bar{X} + z_{0.025}S/\sqrt{n})$$

得近似置信区间为 (0.228, 0.272).

正态总体方差 σ^2 的置信区间 (μ 未知时)

设总体 $X \sim N(\mu, \sigma^2)$, X_1, X_2, \dots, X_n 为样本. \bar{X} 和 S^2 分别为样本均值和样本方差.

• μ 未知, 取枢轴量 $\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$, 则 μ 的一个置信水平为 $1-\alpha$ 的区间估计为

$$\left(\frac{(n-1)S^2}{\chi^2_{\alpha/2}(n-1)}, \frac{(n-1)S^2}{\chi^2_{1-\alpha/2}(n-1)}\right).$$

 S^2 为 σ^2 的无偏估计, 故取枢轴量

$$\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$$

$$P\left\{\chi_{1-\alpha/2}^{2}(n-1) < \frac{(n-1)S^{2}}{\sigma^{2}} < \chi_{\alpha/2}^{2}(n-1)\right\} = 1 - \alpha$$

等价的.

$$P\left\{\frac{(n-1)S^2}{\chi_{\alpha/2}^2(n-1)} < \sigma^2 < \frac{(n-1)S^2}{\chi_{1-\alpha/2}^2(n-1)}\right\} = 1 - \alpha$$

正态总体标准差 σ 的置信区间 (μ 未知时) 设总体 $X \sim N(\mu, \sigma^2)$, X_1, X_2, \cdots, X_n 为样本. \bar{X} 和 S^2 分别为样本均值和样本方差.

• μ 未知, 取枢轴量 $\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$, 则 μ 的一个置信水平为 $1-\alpha$ 的区间估计为 $\left(\frac{\sqrt{(n-1)}S}{\sqrt{\chi^2_{\alpha/2}(n-1)}}, \frac{\sqrt{(n-1)}S}{\sqrt{\chi^2_{1-\alpha/2}(n-1)}}\right).$

15/29

某袋装食品重量 (单位: 克) $X \sim N(\mu, \sigma^2)$, μ 未知. 现从一大批该产品中随机抽取 16 件, 称得重量为:

506 508 499 503 504 510 497 512 514 505 493 496 506 502 509 496

求标准差 σ 的置信度为 95% 置信区间.

一个园艺科学家正在培养一个新品种的苹果,这种苹果除了口感好和颜色鲜艳以外,另一个重要特征是单个重量差异不大.为了评估新苹果,她随机挑选了 25 个测试重量 (单位: 克),其样本方差为 $s^2=4.25$. 试求 σ^2 的置信水平为 95% 置信区间.

解: n = 25, $s^2 = 4.25$, $\alpha = 0.05$ 查表得: $\chi^2_{0.025}(24) = 39.4$, $\chi^2_{0.075}(24) = 12.4$;

$$\chi^2_{0.95}(24) = 13.85,$$

 σ^2 的双侧置信区间为

$$\left(\frac{(n-1)s^2}{\chi_{\alpha/2}^2(n-1)}, \frac{(n-1)s^2}{\chi_{1-\alpha/2}^2(n-1)}\right) = (2.59, 8.23).$$

两个正态总体均值差 $\mu_1 - \mu_2$ 的置信区间

设总体 $X \sim N(\mu_1, \sigma_1^2)$, $Y \sim N(\mu_2, \sigma_2^2)$, σ_1^2, σ_2^2 已知. X_1, \dots, X_{n_1} 和 Y_1, \dots, Y_{n_2} 分别为来自总体 X, Y 的样本, 这两个样本相互独立. \bar{X}, \bar{Y} 分别为 X, Y 的样本均值, S_1^2, S_2^2 分别为 X, Y 的样本方差. 取枢轴量

$$\frac{(\bar{X} - \bar{Y}) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \sim N(0, 1),$$

• 则 $\mu_1 - \mu_2$ 的一个置信水平为 $1 - \alpha$ 的区间估计为

$$\left(\bar{X} - \bar{Y} \pm z_{\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}\right).$$

19/29

 $ar{X}$ 和 $ar{Y}$ 分别为 μ_1, μ_2 的无偏估计, 故 $ar{X} - ar{Y}$ 是 $\mu_1 - \mu_2$ 的无偏估计. $ar{X}, ar{Y}$ 相互独立, $ar{X} \sim N(\mu_1, rac{\sigma_1^2}{n_1})$, $ar{Y} \sim N(\mu_2, rac{\sigma_2^2}{n_2})$.

$$\bar{X} - \bar{Y} \sim N \left(\mu_1 - \mu_2, \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2} \right),$$

$$G = \frac{(\bar{X} - \bar{Y}) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \sim N(0, 1),$$

$$P\{-z_{\alpha/2} < G < z_{\alpha/2}\} = 1 - \alpha$$

解得置信区间为 $\left(\bar{X} - \bar{Y} \pm z_{\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}\right)$.

20/29

两个正态总体均值差 $\mu_1 - \mu_2$ 的置信区间

设总体
$$X \sim N(\mu_1, \sigma_1^2)$$
, $Y \sim N(\mu_2, \sigma_2^2)$, $\sigma_1^2 = \sigma_1^2 = \sigma^2$ 未知 取枢轴量

$$\frac{(\bar{X} - \bar{Y}) - (\mu_1 - \mu_2)}{S_W \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t(n_1 + n_2 - 2),$$

• 则
$$\mu_1 - \mu_2$$
 的一个置信水平为 $1 - \alpha$ 的区间估计为
$$\left(\bar{X} - \bar{Y} \pm t_{\alpha/2} (n_1 + n_2 - 2) S_W \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} \right).$$

其中
$$S_W = \frac{(n_1-1)S_1^2 + (n_2-1)S_2^2}{n_1+n_2-2}$$
, $S_W = \sqrt{S_W^2}$.

两个正态总体中,方差未知且相等. 设样本独立且

 $n_1 = 10$, $\overline{x}_1 = 500$, $s_1 = 1.10$;

 $n_2 = 20$, $\overline{x}_2 = 496$, $s_2 = 1.20$.

求 $\mu_1 - \mu_2$ 的一个置信水平为 0.95 的置信区间.

两个正态总体中,方差未知且相等.设样本独立且

 $n_1 = 10$, $\overline{x}_1 = 500$, $s_1 = 1.10$;

 $n_2 = 20$, $\overline{x}_2 = 496$, $s_2 = 1.20$.

求 $\mu_1 - \mu_2$ 的一个置信水平为 0.95 的置信区间.

得到的置信区间的下限大于零,则推断 $\mu_1 > \mu_2$.

两个正态总体中, 方差未知且相等. 设样本独立且

 $n_1 = 8$, $\overline{x}_1 = 91.73$, $s_1^2 = 3.89$; $n_2 = 8$, $\overline{x}_2 = 93.75$, $s_2^2 = 4.02$.

求 $\mu_1 - \mu_2$ 的一个置信水平为 0.95 的置信区间.

两个正态总体中, 方差未知且相等. 设样本独立且

 $n_1 = 8$, $\bar{x}_1 = 91.73$, $s_1^2 = 3.89$; $n_2 = 8$, $\bar{x}_2 = 93.75$, $s_2^2 = 4.02$. 求 $\mu_1 - \mu_2$ 的一个置信水平为 0.95 的置信区间.

得到的置信区间的包含零,则推断 μ_1 和 μ_2 没有显著差别.

设两个正态总体均值差 $\mu_1 - \mu_2$ 的置信区间为 $(\underline{\theta}, \overline{\theta})$,

• $\dot{\Xi} 0 \in (\underline{\theta}, \overline{\theta}), \text{ 则推断 } \mu_1 = \mu_2;$

$$\underline{\theta} < 0 < \overline{\theta} \xrightarrow{\text{$\rlap/$\mu b}} \mu_1 = \mu_2$$

• 若 $(\underline{\theta}, \overline{\theta})$ 在 0 的右侧, 则推断 $\mu_1 > \mu_2$; $0 < \theta \xrightarrow{\text{μ}} \mu_1 > \mu_2$

•
$$\dot{B}$$
 $(\underline{\theta}, \theta)$ \dot{B} 0 \dot{B} \dot{B} $\mu_1 < \mu_2$.
$$\overline{\theta} < 0 \xrightarrow{\text{μ}} \mu_1 < \mu_2.$$

两个正态总体方差 σ_1^2/σ_2^2 的置信区间

设总体 $X \sim N(\mu_1, \sigma_1^2)$, $Y \sim N(\mu_2, \sigma_2^2)$, μ_1, μ_2 未知. 取枢轴量

$$\frac{S_1^2/S_2^2}{\sigma_1^2/\sigma_2^2} \sim F(n_1 - 1, n_2 - 1)$$

• 则 σ_1^2/σ_2^2 的一个置信水平为 $1-\alpha$ 的区间估计为

$$\left(\frac{S_1^2}{S_2^2} \frac{1}{F_{\alpha/2}(n_1-1, n_2-1)}, \frac{S_1^2}{S_2^2} \frac{1}{F_{1-\alpha/2}(n_1-1, n_2-1)}\right).$$

两个正态总体中, 均值方差均未知. 设样本独立且 $n_1 = 18$, $s_1^2 = 0.34$; $n_2 = 13$, $s_2^2 = 0.29$. 求 σ_1^2/σ_2^2 的一个置信水平为 0.90 的置信区间.

两个正态总体中, 均值方差均未知. 设样本独立且 $n_1 = 18$, $s_1^2 = 0.34$; $n_2 = 13$, $s_2^2 = 0.29$. 求 σ_1^2/σ_2^2 的一个置信水平为 0.90 的置信区间.

得到的置信区间的包含 1, 则推断 σ_1^2 和 σ_2^2 没有显著差别.

设两个正态总体方差商 σ_1^2/σ_2^2 的置信区间为 $(\underline{\theta}, \overline{\theta})$,

• 若 $1 \in (\underline{\theta}, \overline{\theta})$, 则推断 $\underline{\theta} = \overline{\theta}$;

$$\underline{\theta} < 1 < \overline{\theta} \xrightarrow{\text{\sharp b}} \sigma_1^2 = \sigma_2^2$$

• 若 $(\underline{\theta}, \overline{\theta})$ 在 1 的右侧, 则推断 $\sigma_1^2 > \sigma_2^2$; $\underline{\theta} > 1 \xrightarrow{\text{$\underline{\mu}$}} \sigma_1^2 > \sigma_2^2$

• 若
$$(\underline{\theta}, \overline{\theta})$$
 在 1 的左侧, 则推断 $\sigma_1^2 < \sigma_2^2$.
$$0 < \overline{\theta} < 1 \xrightarrow{\text{μm}} \sigma_1^2 < \sigma_2^2$$

单个正态总体参数的区间估计

待 估 参数	其他参数	枢轴量	置信区间
μ	σ^2 已知	$\frac{\overline{X}-\mu}{\sigma/\sqrt{n}} \sim N(0,1)$	$\left(\overline{X}\pm rac{\sigma}{\sqrt{n}}z_{lpha/2} ight)$
μ	σ^2 未知	$\frac{\overline{X}-\mu}{S/\sqrt{n}} \sim t(n-1)$	$\left(\overline{X} \pm \frac{S}{\sqrt{n}} t_{\alpha/2}(n-1)\right)$
σ^2	μ未知	$\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$	$\left(\frac{(n-1)S^2}{\chi^2_{\alpha/2}(n-1)}, \frac{(n-1)S^2}{\chi^2_{1-\alpha/2}(n-1)}\right)$

两个正态总体参数的区间估计

待估参数	其他参数	枢轴量	置信区间
$\mu_1 - \mu_2$	σ_1^2, σ_2^2 已知	$\frac{(\bar{X} - \bar{Y}) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \sim$	$\left(\bar{X} - \bar{Y} \pm z_{\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}\right)$
$\mu_1 - \mu_2$	$ \sigma_1^2 = \sigma_2^2 = \\ \sigma^2 $	$N(0,1),$ $\frac{(\bar{X}-\bar{Y})-(\mu_1-\mu_2)}{S_W\sqrt{\frac{1}{n_1}+\frac{1}{n_2}}} \sim$	$(\bar{X} - \bar{Y} \pm t_{\alpha/2}(n_1 + n_2 - 2)S_W \sqrt{\frac{1}{n_1} + \frac{1}{n_2}})$
σ_1^2/σ_2^2	μ_1, μ_2 未知	$t(n_1 + n_2 - 2),$ $\frac{S_1^2/S_2^2}{\sigma_1^2/\sigma_2^2} \sim F(n_1 - 2)$	$\left(\frac{S_1^2}{S_2^2} \frac{1}{F_{\alpha/2}(n_1-1,n_2-1)}, \frac{S_1^2}{S_2^2} \frac{1}{F_{1-\alpha/2}(n_1-1,n_2-1)}\right)$
		$(1, n_2 - 1)$	