tooth-growth-analysis

Mephistopheles-0

A Basic Statistical Analysis of the ToothGrowth Dataset (The Effect of Vitamin C on Tooth Growth in Guinea Pigs)

Overview

We're going to analyze the ToothGrowth data in the R datasets package by:

- Load the ToothGrowth data and perform some basic exploratory data analyses
- Provide a basic summary of the data.
- Use confidence intervals and/or hypothesis tests to compare tooth growth by supp and dose. (Only use the techniques from class, even if there's other approaches worth considering)
- State your conclusions and the assumptions needed for your conclusions.

About the data

The response is the length of odontoblasts (cells responsible for tooth growth) in 60 guinea pigs. Each animal received one of three dose levels of vitamin C (0.5, 1, and 2 mg/day) by one of two delivery methods, orange juice or ascorbic acid (a form of vitamin C and coded as VC).

Loading the dataset and the ggplot library

```
# Loading the ToothGrowth dataset
data(ToothGrowth)
library(ggplot2)
```

Basic infos

```
# Printing the structure of the dataset
  str(ToothGrowth)
'data.frame': 60 obs. of 3 variables:
$ len : num 4.2 11.5 7.3 5.8 6.4 10 11.2 11.2 5.2 7 ...
$ supp: Factor w/ 2 levels "OJ", "VC": 2 2 2 2 2 2 2 2 2 2 ...
# summary for the Supplement type
  summary(ToothGrowth$supp)
OJ VC
30 30
  # summary for the Dose
  summary(ToothGrowth$dose)
  Min. 1st Qu. Median
                      Mean 3rd Qu.
                                     Max.
 0.500 0.500 1.000
                              2.000
                                     2.000
                     1.167
  # Displaying the first few rows of the dataset
  head(ToothGrowth)
  len supp dose
1 4.2
       VC 0.5
2 11.5
       VC 0.5
3 7.3
       VC 0.5
4 5.8
       VC 0.5
5 6.4
       VC 0.5
6 10.0
       VC 0.5
  # Basic statistics summary
  summary(ToothGrowth)
```

len		supp	dose	
Min.	: 4.20	OJ:30	Min.	:0.500
1st Qu.	:13.07	VC:30	1st Qu.	:0.500
Median	:19.25		Median	:1.000
Mean	:18.81		Mean	:1.167
3rd Qu.	:25.27		3rd Qu.	:2.000
Max.	:33.90		Max.	:2.000

Some DataViz

Boxplot of Length

Supplement

```
hist(ToothGrowth$len,
    main="Histogram of Length",
```

```
xlab="Length",
ylab="Frequency",
col="skyblue")
```

Histogram of Length


```
plot(density(ToothGrowth$len),
    main="Density Plot of Length",
    xlab="Length",
    ylab="Density",
    col="red")
```

Density Plot of Length

Q-Q Plot of Length

cor(ToothGrowth[sapply(ToothGrowth, is.numeric)])

len dose len 1.0000000 0.8026913 dose 0.8026913 1.0000000

We can see that the length of the tooth and the dose of vitamin C have a high correlation.

```
plot1 <- ggplot(ToothGrowth, aes(x = factor(dose), y = len, fill = factor(dose)))
plot1 + geom_boxplot() + xlab("dosage") + ylab("length")</pre>
```


again, the boxplot clearly shows that as the dosage of vitamin C increases the length increases also.

Compare Tooth Growth by Dose and Supplement Type using Confidence Intervals and Testing.

The 95% Confidence Interval of Tooth Growth

```
# The mean of the tooth length
mu <- mean(ToothGrowth$len)

# The standard deviation of the tooth length
sigma <- sd(ToothGrowth$len)

# the 95% confidence interval
interval <- mu + c(-1,1) * qnorm(0.975) * sigma / sqrt(length(ToothGrowth))
interval</pre>
```

[1] 10.15748 27.46919

The T-Test by dose and supp

thus, we can't reject the null hypothesis .

T-Test of the Dose level.

```
# create subsets of small, medium, and large dosage
dose1 <- subset(ToothGrowth, dose == 0.5)
dose2 <- subset(ToothGrowth, dose == 1)
dose3 <- subset(ToothGrowth, dose == 2)</pre>
```

T-Test for small dasage

```
t.test(len~supp, data = dose1)

Welch Two Sample t-test

data: len by supp
t = 3.1697, df = 14.969, p-value = 0.006359
alternative hypothesis: true difference in means between group OJ and group VC is not equal 95 percent confidence interval:
1.719057 8.780943
sample estimates:
```

```
mean in group OJ mean in group VC 13.23 7.98
```

T-Test for medium dosage

T-Test for large dosage

- for the 1st and the 2nd tests we have quietly small p-value, so we can reject the null hypothesis.
- for the 3rd test, we have a high p-value of 0. 9639, thus we cannot reject the null hypothesis.

Conclusion

- The tooth length growth has nothing to do with the supplements.
- for the 0.5 and 1 dosages, Orange Juice (OJ) has a higher effect on the tooth length comparing the Vitamin C (VC).
- for the dosage 2, there is no such difference between the OJ and VC supplements effect.