[4]

	iii.	Draw and explain the circuit diagram of a half wave rectifier. Explain its working and disadvantages as compare to full wave rectifier.	5
OR	iv.	Draw the typical output characteristics of a p-n-p transistor in CB configuration. Label all variable and indicate active, cut-off and saturation region.	5
Q.6	i. State and explain De-Morgan's theorem. ii. Convert the following numbers into the respective index given (a) (1101011010.101) ₂ = () ₁₆ (b) (35.726) ₁₀ = () ₁₆ (c) (206) ₈ = () ₁₀		2 3
	iii.		5
OR	iv.	Explain universal gates and implementation of AND gates using universal gates.	5

Total No. of Questions: 6

Total No. of Printed Pages:4

Enrollment No.....

Faculty of Engineering

End Sem (Odd) Examination Dec-2019

EN3ES04 Basic Electrical and Electronics Engineering
Programme: B.Tech. Branch/Specialisation: All

Duration: 3 Hrs. Maximum Marks: 60

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of O.1 (MCOs) should be written in full instead of only a, b, c or d.

.1 (M	ICQs)	should be written in full instead	of only a, b, c	or d.	
2.1	i.	An ideal voltage source has internal resistance		1	
		(a) Zero ohm (b) 10 ohm ((c) 3.33 ohm	(d) Infinite	
	ii.	The circuit whose properties ar	re same in eith	er direction is known as	1
		(a) Unilateral circuit ((b) Bilateral cir	rcuit	
		(c) Irreversible circuit ((d) Reversible	circuit	
	iii.	Power factor of a series RL circ	cuit is		1
		(a) Leading (b) Lagging ((c) Unity	(d) None of these	
	iv.	What happens to the MMF when the magnetic flux decreases?		1	
		(a) Increases ((b) Decreases		
		(c) Remains constant ((d) Becomes ze	ero	
v.		Open circuit test is performed to determine		1	
		· ·	(b) Copper loss		
		` ' 1	(d) None of the		
	vi.	Which of the following rule	is used to det	termine the direction of	1
		rotation of D.C. motor?			
		(a) Coulomb's Law			
		(b) Lenz's Law			
		(c) Fleming's Right-hand Rule	;		
		(d) Fleming's Left-hand Rule			
	vii.	If the PIV rating of a diode is e		•••••	1
		(a) The diode conducts poorly			
		(b) The diode is destroyed			
		(c) The diode behaves like a ze	ener diode		
		(d) None of these			

P.T.O.

viii. The emitter of a transistor is 1 (a) Lightly doped (b) Highly doped (c) Moderately doped (d) Not doped at all 2's complement of 11001011 is 1 (a) 01010111 (b) 11010100 (c) 00110101 (d) 11100010 How many AND, OR and EXOR gates are required for the 1 configuration of full adder? (a) 1, 2, 2 (b) 2, 1, 2 (c) 3, 1, 2 (d) 4, 0, 1Define and explain active and passive elements. 2 Q.2 i. ii. State and explain Thevenin's theorem as applicable to electrical 3 circuit. Calculate the current in each branch of the network shown in Fig.1 5 iii. using mesh current method. \sim 10 Ω

 $\begin{array}{c|ccccc}
R4 & & & & & & \\
10 \Omega & & & & & & \\
R2 & & & & & & \\
2 \Omega & & & & & & \\
\hline
+ V1 & & & & & & \\
- 50 V & & & & & \\
\hline
Fig. 1$

OR iv. Use superposition theorem to find current (I) in the network given in 5 Fig.2

Q.3 i. Compare the magnetic circuit with electric circuit in tabular form. 2 Define the following terms: ii. (a) Flux (b) mmf (c) Flux density (d) Permeability (f) Form factor (e) rms value A series circuit has $R=10\Omega$, L=50mh, and $C=100\mu f$ and is supplied 5 with 200V, 50Hz. Find: (a) Impedance (b) Current (d) Power factor (c) Active power (e) Voltage drops across capacitance. OR A series R-C circuit takes a power of 7kW when connected to 200V, 5 50Hz supply. The voltage across the resistor is 130V. Calculate: (a) Resistance (b) Current (c) Power factor (d) Capacitance (e) Impedance. O.4 i. Why rotor of a three phase induction motor does not rotate with 2 synchronous speed? What are the different losses in a transformer? Distinguish between 3 constant losses and variable losses. Draw and explain phasor diagram of single phase transformer at 5 leading power factor load. A 5kVA, 400/200V, 50Hz. Single phase transformer gave the 5 OR following results during no load and short circuit test. No load: 400V, 1A, 60W (HV side) Short-circuit: 15V, 12.5A, 50W (HV side) Calculate: (a) No load parameters (b) Short-circuit parameters (c) Full load efficiency at 0.8 p.f. lagging (d) Regulation at full load and 0.8 p.f. lagging (e) Iron and copper loss at full load Explain zener diode as a voltage regulator. Q.5 i. 2

Draw and explain voltage-current characteristics of P-N diode.

3 P.T.O.

Marking Scheme

EN3ES04 Basic Electrical and Electronics Engineering

Q.1	i.	An ideal voltage source has internal resistance		
	ii.	(a) Zero ohm The circuit whose properties are same in either directions.	raction is known as	1
	11.	(b) Bilateral circuit	rection is known as	1
	iii.	Power factor of a series RL circuit is		1
	111.	(b) Lagging		1
	iv.	What happens to the MMF when the magnetic flu (b) Decreases	x decreases?	1
	v.	Open circuit test is performed to determine		1
	* •	(a) Core losses		•
	vi.	Which of the following rule is used to determi	ne the direction of	1
		rotation of D.C. motor?		
		(d) Fleming's Left-hand Rule		
	vii.	If the PIV rating of a diode is exceeded,		1
		(b) The diode is destroyed		
	viii.	The emitter of a transistor is		1
		(b) Highly doped		
	ix.	2's complement of 11001011 is		1
		(c) 00110101		
	х.	How many AND, OR and EXOR gates are	e required for the	1
		configuration of full adder?		
		(b) 2, 1, 2		
Q.2	i.	Definition of active elements	1 mark	2
		Definition of passive elements	1 mark	
	ii.	Thevenin's theorem as applicable to electrical circ	cuit	3
		Statement	1 mark	
		Explanation	2 marks	
	iii.	Calculate the current in each branch of the networ	k shown	5
		Mesh current	3 marks	
		Branch current	2 marks	
OR	iv.	Use superposition theorem to find current (I) in the		5
		1.5 mark for each response (1.5 marks * 3)	4.5 marks	
		For sum	0.5 mark	
Q.3	i.	Compare the magnetic circuit with electric circuit	in tabular form.	2
=		0.5 mark for each point	(0.5 mark *4)	

	ii.	Define the following terms:		3	
		0.5 mark for each term	(0.5 mark * 6)		
	iii.	A series circuit has $R=10\Omega$, $L=50mh$, and $C=10$	Oμf and is supplied	5	
		with 200V, 50Hz. Find:			
		1 mark for each	(1 mark * 5)		
OR	iv.	A series R-C circuit takes a power of 7kW when	R-C circuit takes a power of 7kW when connected to 200V, 5		
		50Hz supply. The voltage across the resistor is 13	0V. Calculate:		
		1 mark for each	(1 mark * 5)		
Q.4	i.	Why rotor of a three phase induction motor does not rotate with synchronous speed			
	ii.	Different losses in a transformer	2 marks	3	
		Distinguish b/w constant losses and variable losse	es 1 mark		
	iii.	Phasor diagram of single phase transformer at le	eading power factor	5	
		load.			
		Drawing	3 marks		
		Explanation	2 marks		
OR	iv.	Single phase transformer gave the following res	ults during no load	5	
		and short circuit test. Calculate: 1 mark for each	(1 mark * 5)		
Q.5	i.	Zener diode as a voltage regulator.		2	
	ii.	Voltage-current characteristics of P-N diode		3	
		Drawing	1 mark		
		Explanation	2 marks		
	iii.	Draw the circuit diagram of a half wave rectifier	1 mark	5	
		Its working	2 marks		
		Disadvantages as compare to full wave rectifier	2 marks		
OR	iv.	Typical output characteristics of a p-n-p configuration.	transistor in CB	5	
		Diagram	1 mark		
		Explanation	2 marks		
		Label all variable and indicate active, cut-off and			
		,	2 marks		
Q.6	i.	De-Morgan's theorem.		2	
		Statement	1 mark		
		Explanation	1 mark		
	ii.	e index given:	3		
		1 mark for each	(1 mark * 3)		

	iii.	Full adder with its truth table		5
		Diagram	1 mark	
		Explanation	2 marks	
		Derivation the logic expression for sum and carry	2 marks	
OR	iv.	Explanation of universal gates	3 marks	5
		Implementation of AND gates	2 marks	
		Implementation of AND gates	2 marks	
