Sage Referenzkarte

Michael Mardaus (based on work of W. Stein) GNU-Lizenz für freie Dokumentation

Sage-"Notebook"

Zelle auswerten: (Umschalt-Enter)

Zelle auswerten und neue Zelle einfügen: (Alt-Enter)

Zelle teilen: (Strg-;)

Zellen verbinden: (Strg-Rücktaste)

Math. Zelle einfügen: blaue Linie zwischen Zellen klicken Text/HTML Zelle einfügen: blaue Linie Umschalt-klicken

Zelle löschen: Inhalt löschen, dann Rücktaste

Kommandozeile

Bef (Tab) Befehl vervollständigen
bar? Alle Befehle auflisten, die "bar" enthalten
Befehl? zeigt Dokumentation von Befehl
Befehl?? zeigt Quelltext von Befehl
a. (Tab) zeigt Methoden für Objekt a (mehr: dir(a))
a. (Tab) zeigt versteckte Methoden für Objekt a
search_doc("reg. Ausdr.") Suche in Dokumentation
search_src("reg. Ausdr.") Suche in Quelltext
_ ist die letzte Ausgabe

Zahlen

ganze: $\mathbb{Z} = \text{ZZ} \quad \text{z.B.} - 2 \quad -1 \quad 0 \quad 1 \quad 10^{\circ}100$ rationale: $\mathbb{Q} = \mathbb{Q}\mathbb{Q} \quad \text{z.B.} \quad 1/2 \quad 1/1000 \quad 314/100 \quad -2/1$ reelle: $\mathbb{R} \approx \text{RR} \quad \text{z.B.} \quad .5 \quad 0.001 \quad 3.14 \quad 1.23e10000$ komplexe: $\mathbb{C} \approx \text{CC} \quad \text{z.B.} \quad \text{CC}(1,1) \quad \text{CC}(2.5,-3)$ doppelte Genauigkeit: RDF und CDF \quad z.B. CDF(2.1,3) Modulo $n: \mathbb{Z}/n\mathbb{Z} = \text{Zmod} \quad \text{z.B.} \quad \text{Mod}(2,3) \quad \text{Zmod}(3) (2)$ endliche Körper: $\mathbb{F}_q = \text{GF} \quad \text{z.B.} \quad \text{GF}(3) (2) \quad \text{GF}(9,\text{"a"}) \cdot 0$ Polynome: $K[x,y] \quad \text{z.B.} \quad \text{S.} < \text{x.y.} = \mathbb{Q}\mathbb{Q}[] \quad \text{x+2*y^3}$ Reihen: $R[[t]] \quad \text{z.B.} \quad \text{S.} < \text{t.} = \mathbb{Q}\mathbb{Q}[]] \quad 1/2 + 2 * t + 0 (t^2)$ p-adische Zahlen: $\mathbb{Z}_p \approx \mathbb{Z}p, \quad \mathbb{Q}_p \approx \mathbb{Q}p \quad \text{z.B.} \quad 2 + 3 * 5 + 0 (5^2)$ Algebraische Abschlüsse: $\mathbb{Q} = \mathbb{Q}\text{Qbar} \quad \text{z.B.} \quad \mathbb{Q}\text{Qbar}(2^{\circ}(1/5))$ Intervallarithmetik: RIF \quad z.B. \quad \text{sage:} \quad \text{RIF}((1,1.00001)) \quad \text{Zahlkörper:} \quad R. <\text{x.} < \text{z.} \quad \quad \quad \quad \quad \text{RIF}((1,1.00001)) \quad \qqq \quad \qqq \quad \quad \quad \quad

Arithmetik

$$\begin{array}{lll} ab = \texttt{a*b} & \frac{a}{b} = \texttt{a/b} & a^b = \texttt{a^b} & \sqrt{x} = \texttt{sqrt(x)} \\ \sqrt[n]{x} = \texttt{x^(1/n)} & |x| = \texttt{abs(x)} & \log_b(x) = \log(\texttt{x,b}) \end{array}$$

Summen:
$$\sum_{i=k}^{\infty} f(i) = \text{sum(f(i) for i in (k..n))}$$

Produkte:
$$\prod_{i=k}^{n} f(i) = \operatorname{prod}(f(i) \text{ for i in (k..n)})$$

Konstanten und Funktionen

Konstanten:
$$\pi=\operatorname{pi}\quad e=\operatorname{e}\quad i=\operatorname{i}\quad \infty=\operatorname{oo}$$
 $\phi=\operatorname{golden_ratio}\quad \gamma=\operatorname{euler_gamma}$ Approximieren: $\operatorname{pi.n}(\operatorname{digits=18})=3.14159265358979324$ Funktionen: sin cos tan sec csc cot sinh cosh tanh sech csch coth log ln exp ...

Python Funktionen: def f(x): return x^2

Interaktive Funktionen

Mit @interact (Parameter steuern die Kontrolle) @interact

Symbolische Ausdrücke

Neue symbolische Variablen definieren: var("t u v y z") Symbolische Funktionen: z.B. $f(x) = x^2$ $f(x) = x^2$ Relationen: f == g f <= g f >= g f <= g f >= g Löse f = g: solve(f(x) == g(x), x) solve([f(x,y) == 0, g(x,y) == 0], x,y) factor(...) expand(...) (...). $simplify_{...}$

find_root(f(x), a, b) finde $x \in [a, b]$ mit $f(x) \approx 0$

Analysis

$$\begin{split} &\lim_{x\to a} f(x) = \operatorname{limit}(\mathbf{f}(\mathbf{x}), \ \mathbf{x=a}) \\ &\frac{d}{dx}(f(x)) = \operatorname{diff}(\mathbf{f}(\mathbf{x}), \mathbf{x}) \\ &\frac{\partial}{\partial x}(f(x,y)) = \operatorname{diff}(\mathbf{f}(\mathbf{x},\mathbf{y}), \mathbf{x}) \\ &\operatorname{diff} = \operatorname{differentiate} = \operatorname{derivative} \\ &\int f(x) dx = \operatorname{integral}(\mathbf{f}(\mathbf{x}), \mathbf{x}) \\ &\int_a^b f(x) dx = \operatorname{integral}(\mathbf{f}(\mathbf{x}), \mathbf{x}, \mathbf{a}, \mathbf{b}) \\ &\int_a^b f(x) dx \approx \operatorname{numerical_integral}(\mathbf{f}(\mathbf{x}), \mathbf{a}, \mathbf{b}) \\ &\operatorname{Taylor-Polynom}, \ \operatorname{Grad} \ n \ \operatorname{bei} \ a : \operatorname{taylor}(\mathbf{f}(\mathbf{x}), \mathbf{x}, a, n) \end{split}$$

2D Grafiken

line([(x_1,y_1),...,(x_n,y_n)], Optionen)
polygon([(x_1,y_1),...,(x_n,y_n)], Optionen)
circle(((x,y),r, Optionen)
text("txt",(x,y), Optionen)
Optionen wie in plot.options, z.B. thickness=Pixel,
rgbcolor=(r,g,b), hue=h mit $0 \le r,b,g,h \le 1$ show(Grafik, Optionen)
Größe ändern: figsize=[w,h]
Seitenverhältnis ändern: aspect_ratio=Zahl
plot(f(x),(x,x_{\min},x_{\max}), Optionen)
parametric_plot((f(t),g(t)),(t,t_{\min},t_{\max}), Optionen)
polar_plot(f(t),(t,t_{\min},t_{\max}), Optionen)
Vereinigen: circle((1,1),1)+line([(0,0),(2,2)])
animate(Liste von Grafiken, Optionen).show(delay=20)

3D Grafiken

line3d([(x_1,y_1,z_1),...,(x_n,y_n,z_n)], Optionen) sphere((x,y,z),r, Optionen) text3d("txt", (x,y,z), Optionen) tetrahedron((x,y,z), Größe, Optionen) cube((x,y,z), Größe, Optionen) octahedron((x,y,z), Größe, Optionen) dodecahedron((x,y,z), Größe, Optionen) icosahedron((x,y,z), Größe, Optionen) plot3d(f(x,y),(x,x_b,x_e), (y,y_b,y_e), Optionen) parametric_plot3d((f,g,h),(t,t_b,t_e), Optionen) parametric_plot3d((f(u,v),g(u,v),h(u,v)), (u,u_b,u_e),(v,v_b,v_e), Optionen)

Optionen: aspect_ratio=[1,1,1], color="red" opacity=0.5, figsize=6, viewer="tachyon"

Diskrete Mathematik

|x| = floor(x) [x] = ceil(x)

Rest von n geteilt durch k = n%k k|n falls n%k==0

n! = factorial(n) $\binom{x}{m} = \text{binomial(x,m)}$

 $\phi(n) = \mathtt{euler_phi}(n)$

Zeichenketten: z.B. s = "Hallo" = "Ha"+'llo'

s[0]="H" s[-1]="o" s[1:3]="al" s[3:]="lo"

Listen: z.B. [1,"Hallo",x] = []+[1,"Hallo"]+[x]

Tupel: z.B. (1,"Hallo",x) (unveränderbar)

 ${\it Mengen: z.B. } \{1,2,1,a\} = {\tt Set([1,2,1,"a"])} (= \{1,2,a\})$

Sprechweise \approx Mengenschreibweise, z.B.

 $\{f(x): x \in X, x > 0\} = Set([f(x) \text{ for x in X if x>0}])$

Graphentheorie

Graphen: $G = Graph(\{0:[1,2,3], 2:[4]\})$

Gerichtete Graphen: DiGraph(Ausrichtung)

Graphenfamilien: graphs. (Tab)

Invarianten: G.chromatic_polynomial(), G.is_planar()

Pfade: G.shortest_path()

Zeichnen: G.plot(), G.plot3d()

Automorphismen: G.automorphism_group(),

G1.is_isomorphic(G2), G1.is_subgraph(G2)

Kombinatorik

Folgen: $sloane_find(Liste)$, $sloane.\langle Tab \rangle$

Partitionen: P=Partitions(n) P.count()

Kombinationen: C=Combinations(Liste) C.list()

Kartesisches Produkt: CartesianProduct(P,C)

Tableau: Tableau([[1,2,3],[4,5]])

Wörter: W=Words("abc"); W("aabca")

Teilgeordnete Mengen: Poset([[1,2],[4],[3],[4],[]])

Wurzelsysteme: RootSystem(["A",3])

Kristalle: CrystalOfTableaux(["A",3], shape=[3,2]) Verbände/Polytope: A=random_matrix(ZZ,3,6,x=7)

L=LatticePolytope(A) L.npoints() L.plot3d

Matrixalgebra

$$egin{pmatrix} 1 \ 2 \end{pmatrix} = exttt{vector([1,2])}$$

$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} = \mathtt{matrix}(\mathtt{QQ}, \texttt{[[1,2],[3,4]]}, \ \mathtt{sparse=False})$$

$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} = matrix(QQ,2,3,[1,2,3,4,5,6])$$

$$\begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix} = \det(\operatorname{matrix}(QQ,[[1,2],[3,4]]))$$

$$Av = A*v \quad A^{-1} = A^{-1} \quad A^t = A.transpose()$$

Löse Ax = v: A\v oder A.solve_right(v)

Löse xA = v: A.solve_left(v)

reduzierte Stufenform: A.echelon_form()

Rang und Defekt: A.rank() A.nullity()

Hessenberg-Form: A.hessenberg_form()

Charakteristisches Polynom: A.charpoly()

Eigenwerte: A.eigenvalues()

Eigenvektoren: A.eigenvectors_right() (auch left)

Gram-Schmidt-Orthogonalisierung: A.gram_schmidt()

Zeichnen: A.plot()

LLL Reduktion: matrix(ZZ,...).LLL()

Hermite Normalform: matrix(ZZ,...).hermite_form()

Lineare Algebra

Vektorraum $K^n = \text{K^n e.g. QQ^3} \quad \text{RR^2} \quad \text{CC^4}$

Unterraum: span(Vektoren, Körper)

Z.B., span([[1,2,3], [2,3,5]], QQ)

Kern: A.right_kernel() (auch left_kernel())

Vereinigung und Schnitt: U + V and U.intersection(V)

Basis: U.basis()

Basismatrix: U.basis_matrix()

Einschränkung auf den Unterraum: A.restrict(U)

Vektor in Basisdarstellung: U.coordinates(Vektor)

Numerik

L.plot3d() Pakete: import numpy, scipy, cvxopt

Minimalisierung: var("x y z")

minimize($x^2+x*y^3+(1-z)^2-1$, [1,1,1])

Zahlentheorie

 $Primzahlen: \verb"prime_range(n,m)", is_prime", next_prime"$

Faktorisierung: factor(n), qsieve(n), ecm.factor(n)

Kronecker Symbol: $\left(\frac{a}{b}\right) = \text{kronecker_symbol}(a, b)$

Kettenbrüche: continued_fraction(x)

Bernoulli-Zahlen: bernoulli(n), bernoulli_mod_p(p)

Elliptische Kurven: EllipticCurve($[a_1, a_2, a_3, a_4, a_6]$)

Dirichlet-Charaktere: DirichletGroup(N)

Modulformen: ModularForms (Level, Gewicht)

Modulsymbole: ModularSymbols (Level, Gewicht, Zeichen)

Brandt Moduln: BrandtModule(Level, Gewicht)

Abelsche Varietäten: J0(N), J1(N)

Gruppentheorie

G = PermutationGroup([[(1,2,3),(4,5)],[(3,4)]])

 ${\tt SymmetricGroup(\it n)},\, {\tt AlternatingGroup(\it n)}$

Abelsche Gruppen: AbelianGroup([3,15])

Matrixgruppen: GL, SL, Sp, SU, GU, SO, GO

Funktionen: G.sylow_subgroup(p), G.character_table(),

G.normal_subgroups(), G.cayley_graph()

Nichtkommutative Ringe

Quaternionen: Q.<i,j,k> = QuaternionAlgebra(a,b)

Freie Algebren: R. <a,b,c> = FreeAlgebra(QQ, 3)

Python Module

 $\verb"import" Modul_Name"$

 $Modul_Name.\langle Tab \rangle \text{ und help(Modul_Name)}$

Laufzeitanalyse

time befehl: Zeigt Laufzeitinformationen

timeit("befehl"): genaue Zeitmessung von befehl

t = cputime(); cputime(t): vergangene CPU Zeit

t = walltime(); walltime(t): vergangene Echtzeit

%pdb: Interaktiven Debugger anschalten (Kommandozeile)

%prun befehl: Analysiere befehl (Kommandozeile)