DHCP, NAT, DNS

DHCPv4

Manuální alokace

 Správce přiřadí předem přidělené IPv4 adresy klientům, a DHCPv4 sděluje pouze adresy IPv4 zařízení

Automatická alokace

- DHCP server automaticky přiřadí statickou IPv4 adresu permanentně
- Adresa je vybrána z poolu dostupných adres
- Neexistuje žádný pronájem a adresa je pevně přiřazena k zařízení

Komunikace s DHCP

DHCP DISCOVER

- Broadcast
- Zpráva hledání DHCPv4 serveru
- Jelikož klient nemá IP adresu využívá se 2 a 3 vrstva broadcast pro komunikaci

DHCP OFFER

- Unicast
- Po obdržení DISCOVER od klienta server rezervuje volnou IP adresu pro klienta
- Server zároveň vytváří ARP obsahující MAC adresu žádajícího klienta (2. Vrstva)

DHCP REQUEST

- Tato zpráva je použita pro první přijetí IP adresy i pro prodloužení adresy
- DHCP REQUEST slouží jako závazné oznámení o přijetí k vybranému serveru a oznámení pro ostatní servery, které by chtěly přidělovat adresy

DHCP Acknowledgement (DHCPACK)

- Poté server ověří informace o pronájmu adresy s ICMP pingem na danou adresu, pro zjištění, že adresa už není někde použita
- Vytvoří nový ARP
- DHCPACK je duplikát DHCP OFFER až na obsah pole zprávy
- Když klient dostane DHCPACK zaznamená informace o konfiguraci a provádí ARP vyhledávání pro přidělené adresy
- Když se nikdo neozve, IP adresa je validní a začíná ji používat

Obnovení IP adresy

DHCP Request (DHCPREQUEST)

- Po vypršení pronájmu pošle klient REQUEST přímo serveru
- Pokud neobdrží DHCPACK od serveru s dobou přidělení, zas posílá REQUEST broadcastem, aby adresu přidělil jiný server

DHCP Acknowledgement (DHCPACK)

• Odpověď na REQUEST

• Server ověří informace o pronájmu a vrací DHCPACK klientovi

Obsah zprávy

- Operation Code (OP code)
 - Určuje hlavní typ zprávy
 - 1 -> request
 - 2 -> reply

8	16	24	32
OP Code (1)	Hardware Type (1)	Hardware Address Length (1)	Hops (1)
Transaction Identifier			
Seconds - 2 bytes		Flags - 2 bytes	
Client IP Address (CIADDR) - 4 bytes			
Your IP Address (YIADDR) - 4 bytes			
Server IP Address (SIADDR) - 4 bytes			
Gateway IP Address (GIADDR) - 4 bytes			
Client Hardware Address (CHADDR) - 16 bytes			
Server Name (SNAME) - 64 bytes			
Boot Filename - 128 bytes			
DHCP Options - variable			

- Hardware type identifikuje typ HW použití v síti
 - 1 -> ethernet
 - o 15 -> frame delay
 - o 20 -> seriál
- HW Address Length délka adresy
- Hops
 - o kontroluje předávání zprávy
 - Nastavení 0 klientem před posláním request
- Transaction Identifier
 - o Používán klientem pro spojení requestu s odpovědí z DHCP
- Seconds
 - o Počet sekund od doby, kdy se klient začal pokoušet získat nebo obnovit IP adresu
- Flags
 - Užity klientem, který neví, že je to IPv4 adresa když posílá žádost o tuto adresu
- Client IP Address
 - Použita při obnovení adresy
- Your IP Address
 - o Použita serverem k přiřazení IP adresy klientovi
- Server IP Address
 - o Adresa serveru
- Client Hardware Address
 - o Určuje fyzickou vrstvu klienta

- Server Name
 - Nickname
 - o Domain name

Vynechání adres

• Ip dhcp excluded-address 192.168.10.1 192.168.10.15

Nastavení DHCP

```
ip dhcp pool LAN-POOL-1
network 192.168.10.0 255.255.255.0
default-router 192.168.10.1
dns-server 192.168.11.5
domain-name example.com
ip dhcp pool LAN-POOL-2
network 192.168.11.0 255.255.255.0
default-router 192.168.11.1
dns-server 192.168.11.5
domain-name example.com
```

DHCP Relay

- Používá se v situaci, kdy existují dvě nebo více sítí oddělené směrovačem a jen jedna síť obsahuje DHCP server
- V takovém případě správce na směrovači zapne relay agenta a nastaví jej tak, aby všesměrové (broadcast) DHCP dotazy ze sítí bez DHCP serveru přeposílal DHCP serveru
- Agent k přeposílanému dotazu přidá číslo sítě a masku sítě, na kterém klienta zaslechl, aby DHCP server poznal, ze kterého adresního rozsahu má klientovi adresu přiřadit
- Ip helper address 192.168.10.6

SLAAC

- Stateless Address Autovonfiguration
- SLAAC je metoda, při které může zařízení získat IPv6 globální unicast adresy bez služeb serveru DHCPv6
- Využívá DHCPv6

Router Solicitation

- Je-li klient nakonfigurován tak, aby o jeho adresování probíhalo automaticky pomocí SLAAC, klient odešle zprávu RS k routeru
- Zpráva RS je odeslána na IPv6 všem směrovačům adresy multicast FF02::2

Router Advertisement (RA) message

- Poslány routerem pro poskytnutí informací o adresování
- Zpráva obsahuje prefix logického segmentu

- Klient využívá těchto informací pro vytvoření vlastní IPv6 adresy
- Router posílá tuto zprávu v periodě (200s) nebo jako odpověď na RS

DHCPv6

Stateless DHCP client

- Klient pošle DHCP INFORMATION REQUEST žádající pouze o konfigurační parametry, jako DNS
- Klient vygeneruje jeho vlastní IPv6 adresu využívající prefix z RA zprávy

Stateful DHCPv6 Address

 Klient pošle DHCP REQUEST pro získání adresy a všech ostatních konfiguračních parametrů od serveru

NAT (Network Address Translation)

- Jelikož zde není dostatek veřejných IPv4 adres, tak se v síti využívají soukromé adresy definované v RFC (viz třídy adres), které nemohou být cílovou adresou z internetu
- NAT převádí soukromé adresy na veřejné
- Výhodou je, že na jednu veřejnou adresu může být použito více zařízení
- Jeden router může používat více veřejných adres pro NAT (NAT pool)
- V IPv6 není NAT zapotřebí dostatek adres

Inside

Adresa zařízení, která je přeložena pomocí NAT

Outside

Adresa cílového zařízení

Local

Je to jakákoliv adresa, která se objeví ve vnitřní části sítě

Global

• Je to jakákoliv adresa, která se objeví ve globální části sítě

Statická NAT

- Mapování jedná adresy na jinou jenu adresu mezi globální a lokální
- Jsou konstantní
- Používá se pro web servery nebo pro zařízení co musí mít stejnou adresu
- Statický NAT vyžaduje dostatek veřejných adres pro uspokojení celkového počtu souběžných uživatelských relací

Dynamická NAT

- Mapování více na více adres
- Používá pool veřejných adres a přiřadí jednu tomu, kdo první přijde je první obsloužen

PAT

- Více soukromých na jednu veřejnou adresu
- Používá se v domácnostech
- Možné používat za pomoci portů ke každé soukromé adrese
- Pokud je již port zabrán. NAT použije následující možný

Konfigurace statické NAT

Configure the static translation with an inside local address of 192.168.11.99 and an inside global address of 209.165.201.15.

```
R2(config) # ip nat inside source static 192.168.11.99 209.165.201.15
```

Configure the proper inside NAT interface.

```
R2(config) # interface Serial0/0/0
R2(config-if) # ip nat inside
```

Configure the proper outside NAT interface.

```
R2(config) # interface Serial0/1/0
R2(config-if) # ip nat outside
```

You successfully configured static NAT.

Konfigurace dynamické NAT

Note: The font size is slightly reduced to account for command lengths.

Define a pool of public IPv4 addresses 209.165.200.241 to 209.165.200.250 with pool name PUBLIC-POOL.

```
R2(config) # ip nat pool PUBLIC-POOL 209.165.200.241 209.165.200.250 netmask 255.255.255.224
```

Configure ACL 2 to permit devices from 192.168.10.0/24 network to be translated by NAT.

```
R2 (config) # access-list 2 permit 192.168.10.0 0.0.0.255

Bind PUBLIC-POOL with ACL 2.
```

R2 (config) # ip nat inside source list 2 pool PUBLIC-POOL Configure the proper inside NAT interface.

R2(config)# interface Serial0/0/0

R2(config-if)# ip nat inside

Configure the proper outside NAT interface.

R2(config) # interface Serial0/1/0

R2(config-if)# ip nat outside

You successfully configured dynamic NAT.