

- Model assessment and selection
 - Measures of predictive accuracy
 - Model selection
- Cross-validation
 - When is LOO applicable
 - PSIS-I OO and Too
 - K-fold cross-validation
 - Comparison and selection
 - Additional reading
- Information criteria
- Model averaging
- Summary

Bayesian Statistics and Data Analysis Lecture 8b

Måns Magnusson Department of Statistics, Uppsala University Thanks to Aki Vehtari, Aalto University

- Measures of predictive accuracy
- Model selection
- Cross-validation
 - When is LOO applicable
 - PSIS-LOO and loo
 K-fold cross-validation
 - Comparison and selection
 - Additional reading
- Information criteria
- Model averaging
- Summary

Section 1

- Measures of predictive accuracy
- Model selection
- _ . . .

Cross-validation

- When is LOO applicable
- PSIS-LOO and loo
- K-fold cross-validation
- Comparison and selection
- Additional reading
- Information criteria
- Model averaging
- Summary

Predictive performance

Modeling complex phenomena with models that are simplified

All models are wrong... but some are useful.

- Measures of predictive accuracy
- Model selection

Cross-validation

- When is LOO applicable
- PSIS-I OO and 100
- K-fold cross-validation
- Comparison and selection
- Additional reading
- Information criteria
- Model averaging
- Summary

Predictive performance

- Modeling complex phenomena with models that are simplified
 - All models are wrong... but some are useful.
- True predictive performance is found out by using it to make predictions and comparing predictions to true observations
 - external validation

- Measures of predictive accuracy
- Model selection
- Iviodei selection
- Cross-validation
 When is LOO applicable
 - PSIS-I OO and Too.
 - PSIS-LOO and 100
 - K-fold cross-validation
 - Comparison and selection
 - Additional reading
- Information criteria
- Model averaging
- Summary

Predictive performance

- Modeling complex phenomena with models that are simplified
 - All models are wrong... but some are useful.
- True predictive performance is found out by using it to make predictions and comparing predictions to true observations
 - external validation
- Expected predictive performance
 - approximates the external validation

- Measures of predictive accuracy
- Model selection
- _____
- Cross-validation
 - When is LOO applicable
 - PSIS-LOO and loo
 - K-fold cross-validation
 - Comparison and selection
 - Additional reading
- Information criteria
- · Model averaging
- Summary

Goal of model evaluation

• Model choice is a (model-)decision-theoretic problem

- Measures of predictive accuracy
- Model selection
- Cross-validation
 - Cross-validation
 When is LOO applicable
 - PSIS-I OO and Too.
 - PSIS-LOO and 100
 - K-fold cross-validation
 - Comparison and selection
 - Additional reading
- Information criteria
- · Model averaging
- Summary

Goal of model evaluation

- Model choice is a (model-)decision-theoretic problem
- Evaluate the utility of a model M for new unseen data \tilde{y} :

$$U = \int u(\tilde{y}) p_{\mathsf{true}}(\tilde{y}) d\tilde{y} \,,$$

where \tilde{y} is an unseen observation generated from the true data generating process $p_{\text{text}}(\tilde{y})$, and y are observed data and $u(\tilde{y})$ is a utility function.

- Measures of predictive accuracy
- Model selection
- _____
- Cross-validation
 - When is LOO applicable
 - PSIS-LOO and loo
 - K-fold cross-validation
 - Comparison and selection
 - Additional reading
- Information criteria
- Model averaging
- Summary

Goal of model evaluation

- Model choice is a (model-)decision-theoretic problem
- Evaluate the utility of a model M for new unseen data \tilde{y} :

$$U = \int u(\tilde{y}) p_{\mathsf{true}}(\tilde{y}) d\tilde{y} \,,$$

where \tilde{y} is an unseen observation generated from the true data generating process $p_{\text{text}}(\tilde{y})$, and y are observed data and $u(\tilde{y})$ is a utility function.

• The expectation is with respect to p_{true} (f in BDA3)

- Measures of predictive
- Model selection
- model selection
- Cross-validation
 - When is LOO applicable
 - PSIS-LOO and loo
 - K-fold cross-validation
 - Comparison and selection
 - Additional reading
- Information criteria
- · Model averaging
- Summary

Goal of model evaluation

- Model choice is a (model-)decision-theoretic problem
- Evaluate the utility of a model M for new unseen data \tilde{y} :

$$U = \int u(\tilde{y}) p_{\mathsf{true}}(\tilde{y}) d\tilde{y} \,,$$

where \tilde{y} is an unseen observation generated from the true data generating process $p_{\text{text}}(\tilde{y})$, and y are observed data and $u(\tilde{y})$ is a utility function.

- The expectation is with respect to p_{true} (f in BDA3)
- Choose the model function to maximize our utility

- Model assessment and selection
 - Measures of predictive accuracy
 - Model selection
- Cross-validation
 - When is LOO applicable
 - PSIS-LOO and loo
 - K-fold cross-validation
 - Comparison and selection
 - Additional reading
- Information criteria
- Model averaging
- Summary

Model choice utility

- Application specific utility/cost functions are important
 - eg. money, life years, quality adjusted life years, etc.

- Model assessment and selection
 - Measures of predictive accuracy
 - Model selection
- Cross-validation
 - When is LOO applicable
 - PSIS-I OO and Too.
 - K-fold cross-validation
 - Comparison and selection
 - Additional reading
 -
- Information criteria
- Model averaging
- Summary

Model choice utility

- Application specific utility/cost functions are important
 - eg. money, life years, quality adjusted life years, etc.
- General utility: overall in the goodness of the predictive distribution
 - we don't know (yet) the application specific utility then good information theoretically justified choice is log-score for model M

 $\log p_M(y^{\mathsf{rep}}|y)$

- Model assessment and selection
 - Measures of predictive accuracy
 - Model selection
- Cross-validation
 - When is LOO applicable
 - PSIS-I OO and Too
 - K-fold cross-validation
 - Comparison and selection
 - Additional reading
- Information criteria
- Model averaging
- Summary

Model choice utility

- Application specific utility/cost functions are important
 - eg. money, life years, quality adjusted life years, etc.
- General utility: overall in the goodness of the predictive distribution
 - we don't know (yet) the application specific utility then good information theoretically justified choice is log-score for model M

$$\log p_M(y^{\text{rep}}|y)$$

• We want the "best" model to explain the data

- · Model assessment and selection
 - Measures of predictive accuracy
 - Model selection
- Cross-validation - When is LOO applicable

 - PSIS-LOO and loo K-fold cross-validation
 - Comparison and selection
 - Additional reading
- Information criteria
- · Model averaging
- Summary

Subsection 1

Measures of predictive accuracy

- Model assessment and selection
 - Measures of predictive accuracy
 - Model selection
 -
- Cross-validation
 When is LOO applicable
 - PSIS-I OO and Too.
 - K-fold cross-validation
 - Comparison and selection
 - Additional reading
- Information criteria
- Model averaging
- Summary

(Bayesian) Points Prediction Accuracy

Point residuals

$$e_i = y_i - E(\tilde{y}_i|y)$$
,

where

$$E(\tilde{y}|y) = \int \tilde{y}_i p(\tilde{y}_i|y) d\tilde{y},$$

i.e. the expected predicted value

- Model assessment and selection
 - Measures of predictive accuracy
 - Model selection
- Cross-validation
 - When is LOO applicable
 - PSIS-I OO and Too.
 - K-fold cross-validation
 - Comparison and selection
 - Additional reading
- Information criteria
- Model averaging
- Summary

(Bayesian) Points Prediction Accuracy

Point residuals

$$e_i = y_i - E(\tilde{y}_i|y)$$
,

where

$$E(\tilde{y}|y) = \int \tilde{y}_i p(\tilde{y}_i|y) d\tilde{y},$$

i.e. the expected predicted value

Mean squared (prediction) error (MSE)

$$MSE = \frac{1}{n} \sum_{i=1}^{n} [y_i - E(\tilde{y}_i|y)]^2.$$

7/63

- Model assessment and selection
 - Measures of predictive accuracy
 - Model selection
- Cross-validation
 - When is LOO applicable
 - PSIS-LOO and loo
 - K-fold cross-validation
 - Comparison and selection
 - Additional reading
- Information criteria
- · Model averaging
- Summary

Probabilistic predictions

• The log score (a local and proper scoring rule)* $\log p(y|\theta)$

- Measures of predictive accuracy
- accuracy
- Model selection
- Cross-validation
 - When is LOO applicable
 - PSIS-LOO and loo
 - K-fold cross-validation
 - Comparison and selection
 - Additional reading
- Information criteria
- Model averaging
- Summary

Probabilistic predictions

The log score (a local and proper scoring rule)*

$$\log p(y|\theta)$$

• The log predictive density (lpd)

$$lpd = log p(y|y)$$

$$= log \int p(y|\theta)p(\theta|y)d\theta$$

- Model assessment and selection
 - Measures of predictive accuracy
 - Model selection
 -
- Cross-validation
 When is LOO applicable
 - PSIS-I OO and Too.
 - K-fold cross-validation
 - Comparison and selection
 - Additional reading
- Information criteria
- Model averaging
- Summary

Probabilistic predictions

 The lpd is usually approximated with the log point predictive density (lppd or just lpd)

$$\mathsf{lppd} = \sum_{i}^{n} \mathsf{log} \; p(y_{i}|y)$$
 $\approx \mathsf{log} \; p(y|y)$

- Model assessment and selection
 - Measures of predictive accuracy
 - Model selection
- Cross-validation
 - When is LOO applicable
 - PSIS-I OO and Too.
 - K-fold cross-validation
 - Comparison and selection
 - Additional reading
- Information criteria
- Model averaging
- Summary

Probabilistic predictions

 The lpd is usually approximated with the log point predictive density (lppd or just lpd)

$$\mathsf{lppd} = \sum_{i}^{n} \log p(y_{i}|y)$$

$$\approx \log p(y|y)$$

Estimation using MCMC

$$\mathsf{lppd} = \sum_{i}^{n} \log \left(\frac{1}{S} \sum_{s}^{S} p(y_{i} | \theta_{s})) \right)$$

- Model assessment and selection
 - Measures of predictive accuracy
 - Model selection
- Cross-validation
 - When is LOO applicable
 - PSIS-LOO and loo
 - K-fold cross-validation
 Comparison and selection
 - Additional reading
- Information criteria
- Model averaging
- Summary

Subsection 2

Model selection

- Model assessment and selection
 - Measures of predictive accuracy
 - Model selection
- Cross-validation
 - When is LOO applicable
 - PSIS-LOO and loo
 - K-fold cross-validation
 - Comparison and selection
 - Additional reading
- Information criteria
- Model averaging
- Summary

• Evaluate how model M generalizes to unseen data \tilde{y} (the expected log predictive density):

$$\mathsf{elpd}_{M} = \int \mathsf{log}\, p_{M}(\tilde{oldsymbol{y}}|oldsymbol{y}) p_{\mathsf{true}}(\tilde{oldsymbol{y}}) d\tilde{oldsymbol{y}}\,,$$

where \tilde{y} is an unseen observation generated from the true data generating process $p_{\text{true}}(\tilde{y})$, and y are observed data.

• $\log p_M(\tilde{y}|y)$ is the log score (the utility of the model)

- Model assessment and selection
 - Measures of predictive accuracy
 - Model selection
- Cross-validation
 - When is LOO applicable
 - PSIS-LOO and loo
 - K-fold cross-validation
 - Comparison and selection
 - Additional reading
- Information criteria
- Model averaging
- Summary

 Evaluate how model M generalizes to unseen data ỹ (the expected log predictive density):

$$\mathsf{elpd}_{M} = \int \mathsf{log}\, p_{M}(\boldsymbol{ ilde{y}}|y) p_{\mathsf{true}}(\boldsymbol{ ilde{y}}) d\boldsymbol{ ilde{y}}\,,$$

where \tilde{y} is an unseen observation generated from the true data generating process $p_{\text{true}}(\tilde{y})$, and y are observed data.

- $\log p_M(\tilde{y}|y)$ is the log score (the utility of the model)
- The expectation is with respect to p_{true}

- Model assessment and selection
 - Measures of predictive accuracy
 - Model selection
- Cross-validation
 - When is LOO applicable
 - PSIS-I OO and Too
 - K-fold cross-validation
 - Comparison and selection
 - Additional reading
- Information criteria
- Model averaging
- Summary

 Evaluate how model M generalizes to unseen data ỹ (the expected log predictive density):

$$\mathsf{elpd}_{M} = \int \mathsf{log}\, p_{M}(\tilde{oldsymbol{y}}|oldsymbol{y}) p_{\mathsf{true}}(\tilde{oldsymbol{y}}) d\tilde{oldsymbol{y}}\,,$$

where \tilde{y} is an unseen observation generated from the true data generating process $p_{\text{true}}(\tilde{y})$, and y are observed data.

- $\log p_M(\tilde{y}|y)$ is the log score (the utility of the model)
- The expectation is with respect to p_{true}
- p_{true} is (almost always) unknown

- Model assessment and selection
 - Measures of predictive accuracy
 - Model selection
- Cross-validation
 - When is LOO applicable
 - PSIS-I OO and Too.
 - K-fold cross-validation
 - Comparison and selection
 - Additional reading
- Information criteria
- Model averaging
- Summary

 Evaluate how model M generalizes to unseen data ỹ (the expected log predictive density):

$$\mathsf{elpd}_{M} = \int \mathsf{log}\, p_{M}(\tilde{oldsymbol{y}}|oldsymbol{y}) p_{\mathsf{true}}(\tilde{oldsymbol{y}}) d ilde{oldsymbol{y}}\,,$$

where \tilde{y} is an unseen observation generated from the true data generating process $p_{\text{true}}(\tilde{y})$, and y are observed data.

- $\log p_M(\tilde{y}|y)$ is the log score (the utility of the model)
- The expectation is with respect to p_{true}
- p_{true} is (almost always) unknown
- The utility function is the log scoring rule.

- Model assessment and selection
 - Measures of predictive accuracy
 - Model selection
- Cross-validation
 - When is LOO applicable
 - PSIS-LOO and loo
 - K-fold cross-validation
 - Comparison and selection
 - Additional reading
- Information criteria
- Model averaging
- Summary

Section 2

Cross-validation

- Measures of predictive accuracy
- Model selection

Cross-validation

- When is LOO applicable
- PSIS-I OO and Too.
- PSIS-LOO and 100
- K-fold cross-validation
- Comparison and selection
- Additional reading
- Information criteria
- Model averaging
- Summary

Leave-one-out cross-validation (LOO-CV)

 Evaluate how model M generalizes to unseen data (the expected log predictive density):

$$\mathsf{elpd}_M = \int \mathsf{log}\, p_M(\tilde{y}_i|y) p_\mathsf{true}(\tilde{y}_i) d\tilde{y}_i \,,$$

where \tilde{y}_i is an unseen observation generated from the true data generating process $p_{\text{true}}(\tilde{y}_i)$, and y are observed data.

- Measures of predictive accuracy
- Model selection
- Iviodel selection
- Cross-validation
 - When is LOO applicable
 - PSIS-LOO and loo
 - K-fold cross-validation
 - Comparison and selection
 - Additional reading
- Information criteria
- Model averaging
- Summary

Leave-one-out cross-validation (LOO-CV)

 Evaluate how model M generalizes to unseen data (the expected log predictive density):

$$\mathsf{elpd}_M = \int \mathsf{log}\, p_M(\tilde{y}_i|y) p_\mathsf{true}(\tilde{y}_i) d\tilde{y}_i \,,$$

where \tilde{y}_i is an unseen observation generated from the true data generating process $p_{\text{true}}(\tilde{y}_i)$, and y are observed data.

• Can we approximate $p_{\text{true}}(\tilde{y}_i)$?

- Measures of predictive accuracy
- Model selection

Cross-validation

- When is LOO applicable
- PSIS-LOO and loo
- K-fold cross-validation
- Comparison and selection
- Additional reading
- Information criteria
- · Model averaging
- Summary

Leave-one-out cross-validation (LOO-CV)

• Approximate $p_{\mathsf{true}}(\tilde{y}_i)$ with data y

- Model assessment and selection
 - Measures of predictive accuracy
 - Model selection
- Cross-validation
 - When is LOO applicable
 - PSIS-LOO and loo
 - K-fold cross-validation
 - Comparison and selection
 - Additional reading
- Information criteria
- Model averaging
- Summary

Leave-one-out cross-validation (LOO-CV)

- Approximate $p_{\text{true}}(\tilde{y}_i)$ with data y
- Hold out observation i and try to predict y_i based on y_{-i}
- Estimation of elpd_M using leave-one-out cross-validation

$$\begin{aligned} \mathsf{elpd}_{\mathsf{loo}} &= \sum_{i=1}^{n} \mathsf{log} \, p_{M}(y_{i} | \mathbf{y}_{-i}) \\ &= \sum_{i=1}^{n} \mathsf{log} \int p_{M}(y_{i} | \theta) p(\theta | \mathbf{y}_{-i}) d\theta \end{aligned}$$

- Model assessment and selection
 - Measures of predictive accuracy
 - Model selection
- Cross-validation
 - When is LOO applicable
 - PSIS-I OO and Too
 - K-fold cross-validation
 - Comparison and selection
 - Additional reading
- Information criteria
- Model averaging
- Summary

Leave-one-out cross-validation (LOO-CV)

- Approximate $p_{\text{true}}(\tilde{y}_i)$ with data y
- Hold out observation i and try to predict y_i based on \mathbf{y}_{-i}
- Estimation of elpd_M using leave-one-out cross-validation

$$\begin{aligned} \mathsf{elpd}_{\mathsf{loo}} &= \sum_{i=1}^{n} \mathsf{log} \, p_{\mathsf{M}}(y_{i} | \mathbf{y}_{-i}) \\ &= \sum_{i=1}^{n} \mathsf{log} \int p_{\mathsf{M}}(y_{i} | \theta) p(\theta | \mathbf{y}_{-i}) d\theta \end{aligned}$$

- Analogy: Monte Carlo approximation using our data
- Similar to jack-knife resampling

- Model assessment and selection
 - Measures of predictive accuracy
 - Model selection
- Cross-validation
 - When is LOO applicable
 - PSIS-LOO and loo
 - K-fold cross-validation
 - Comparison and selection
 - Additional reading
- Information criteria
- Model averaging
- Summary

Leave-one-out cross-validation (LOO-CV)

- Approximate $p_{\text{true}}(\tilde{y}_i)$ with data y
- Hold out observation i and try to predict y_i based on \mathbf{y}_{-i}
- Estimation of elpd_M using leave-one-out cross-validation

$$\begin{aligned} \mathsf{elpd}_{\mathsf{loo}} &= \sum_{i=1}^{n} \mathsf{log} \, p_{M}(y_{i} | \mathbf{y}_{-i}) \\ &= \sum_{i=1}^{n} \mathsf{log} \int p_{M}(y_{i} | \theta) p(\theta | \mathbf{y}_{-i}) d\theta \end{aligned}$$

- Analogy: Monte Carlo approximation using our data
- Similar to jack-knife resampling
- The elpd, lpd and efficient number of parameters (p_{loo})

$$elpd_{loo} = lpd + p_{loo}$$

- Measures of predictive accuracy
- Model selection
- Cross-validation
 - When is LOO applicable
 - PSIS-LOO and loo
 - K-fold cross-validation
 - Comparison and selection
 - Additional reading
- Information criteria
- Model averaging
- Summary

- Measures of predictive accuracy
- Model selection
- Cross-validation
 - When is LOO applicable
 - PSIS-LOO and loo
 - K-fold cross-validation
 - Comparison and selection
 - Additional reading
- Information criteria
- Model averaging
- Summary

- Measures of predictive accuracy
- Model selection
- Cross-validation
 - When is LOO applicable
 - PSIS-LOO and loo
 - K-fold cross-validation
 - Comparison and selection
 Additional reading
- Information criteria
- Model averaging
- Summary

- Measures of predictive accuracy
- Model selection
- Cross-validation
 - When is LOO applicable
 - PSIS-LOO and loo
 - K-fold cross-validation
 - Comparison and selection
 Additional reading
- Information criteria
- Model averaging
- Summary

- Measures of predictive accuracy
- Model selection
- Cross-validation
 - When is LOO applicable
 - PSIS-LOO and loo
 - K-fold cross-validation
 - Comparison and selection
 Additional reading
- Information criteria
- Model averaging
- Summary

- Measures of predictive accuracy
- Model selection
- Cross-validation
 - When is LOO applicable
 - PSIS-LOO and loo
 - K-fold cross-validation
 - Comparison and selection
 - Additional reading
- Information criteria
- Model averaging
- Summary

- Measures of predictive accuracy
- Model selection
- Cross-validation
 - When is LOO applicable
 - PSIS-LOO and loo
 - K-fold cross-validation
 - Comparison and selection
 - Additional reading
- Information criteria
- Model averaging
- Summary

- Measures of predictive accuracy
- Model selection
- Cross-validation
 - When is LOO applicable
 - PSIS-LOO and loo
 - K-fold cross-validation
 - Comparison and selection
 - Additional reading
- Information criteria
- Model averaging
- Summary

- Measures of predictive accuracy
- Model selection
- Cross-validation
 - When is LOO applicable
 - PSIS-LOO and loo
 - K-fold cross-validation
 - Comparison and selection
 Additional reading
- Information criteria
- Model averaging
- Summary

Posterior predictive distribution

$$p(\tilde{y}|\tilde{x}=18,x,y) = \int p(\tilde{y}|\tilde{x}=18,\theta)p(\theta|x,y)d\theta$$

- Measures of predictive accuracy
- Model selection
- Cross-validation
 - When is LOO applicable
 - PSIS-LOO and loo
 - K-fold cross-validation
 Comparison and selection
 - Additional reading
- Information criteria
- Model averaging
- Summary

- Measures of predictive accuracy
- Model selection
- Cross-validation
 - When is LOO applicable
 - PSIS-LOO and loo
 - K-fold cross-validation
 - Comparison and selection
 Additional reading
- Information criteria
- Model averaging
- Summary

- Measures of predictive accuracy
- Model selection
- Cross-validation
 - When is LOO applicable
 - PSIS-LOO and loo
 - K-fold cross-validation
 - Comparison and selection
 - Additional reading
- Information criteria
- Model averaging
- Summary

- Measures of predictive accuracy
- Model selection
- Cross-validation
 - When is LOO applicable
 - PSIS-LOO and loo
 - K-fold cross-validation
 - Comparison and selection
 - Additional reading
- Information criteria
- Model averaging
- Summary

- Measures of predictive accuracy
- Model selection

- When is LOO applicable
- PSIS-LOO and loo
- K-fold cross-validation
- Comparison and selection
 Additional reading
-
- Information criteria
- Model averaging
- Summary

$$y_{18} - E[p(\tilde{y}|\tilde{x}=18, x_{-18}, y_{-18})]$$

- Measures of predictive accuracy
- Model selection
- Cross-validation
 - When is LOO applicable
 - PSIS-LOO and loo
 - K-fold cross-validation
 Comparison and selection
 - Additional reading
- Information criteria
- Model averaging
- Summary

$$y_{18} - E[p(\tilde{y}|\tilde{x}=18, x_{-18}, y_{-18})]$$

Can be use to compute, e.g., RMSE, R², 90% error

- Measures of predictive accuracy
- Model selection
- Cross-validation
 - When is LOO applicable
 - PSIS-LOO and loo
 - K-fold cross-validation
 - Comparison and selection
 - Additional reading
- Information criteria
- Model averaging
- Summary

- Measures of predictive accuracy
- Model selection
- Cross-validation
 - When is LOO applicable
 - PSIS-LOO and loo
 - K-fold cross-validation
 - Comparison and selection
 - Additional reading
- Information criteria
- Model averaging
- Summary

$$p(\tilde{y}|\tilde{x} = 18, x_{-18}, y_{-18}) = \int p(\tilde{y}|\tilde{x} = 18, \theta)p(\theta|x_{-18}, y_{-18})d\theta$$

- Measures of predictive accuracy
- Model selection

- When is LOO applicable
- PSIS-LOO and loo
- K-fold cross-validation
- Comparison and selection
 Additional reading
- Information criteria
- Model averaging
- Summary

- Measures of predictive accuracy
- Model selection

- When is LOO applicable
- PSIS-LOO and 100
- K-fold cross-validation
- Comparison and selection
- Additional reading
- Information criteria
- Model averaging
- Summary

$$p(\tilde{y} = y_{18}|\tilde{x} = 18, x, y) \approx 0.07$$

- Measures of predictive accuracy
- Model selection

- When is LOO applicable
- PSIS-LOO and loo
- K-fold cross-validation
- Comparison and selection
- Additional reading
- Information criteria
- Model averaging
- Summary

$$p(\tilde{y} = y_{18}|\tilde{x} = 18, x, y) \approx 0.07$$

$$p(\tilde{y} = y_{18}|\tilde{x} = 18, x_{-18}, y_{-18}) \approx 0.03$$

- Measures of predictive accuracy
- Model selection

Cross-validation

- When is LOO applicable
- PSIS-LOO and loo
- K-fold cross-validation
- Comparison and selection
- Additional reading
- Information criteria
- · Model averaging
- Summary

Leave-one-out predictive densities

$$p(y_i|x_i,x_{-i},y_{-i}), \quad i=1,\ldots,20$$

- Measures of predictive accuracy
- Model selection

Cross-validation

- When is LOO applicable
- PSIS-LOO and loo
 K-fold cross-validation
- Comparison and selection
- Additional reading
- Information criteria
- Model averaging
- Summary

Leave-one-out log predictive densities

$$\log p(y_i|x_i,x_{-i},y_{-i}), \quad i=1,\ldots,20$$

- Measures of predictive accuracy
- Model selection

Cross-validation

- When is LOO applicable
- PSIS-LOO and Too.
- K-fold cross-validation
- Comparison and selection
- Additional reading
- Information criteria
- · Model averaging
- Summary

Leave-one-out log predictive densities

 $\sum_{i=1}^{20} \log p(y_i|x_i, x_{-i}, y_{-i}) \approx -29.5$

- Measures of predictive accuracy
- Model selection
- Cross-validation
 When is LOO applicable
 - When is LOO applications
 - PSIS-LOO and loo
 K-fold cross-validation
 - Comparison and selection
 - Additional reading
- Information criteria
- Model averaging
- Summary

Leave-one-out log predictive densities

elpd_loo = $\sum_{i=1}^{20} \log p(y_i|x_i, x_{-i}, y_{-i}) \approx -29.5$

- Measures of predictive accuracy
- Model selection
- Cross-validation
 - When is LOO applicable
 - PSIS-LOO and loo
 K-fold cross-validation
 - Comparison and selection
 - Additional reading
- Information criteria
- Model averaging
- Summary

Leave-one-out log predictive densities

elpd_loo = $\sum_{i=1}^{20} \log p(y_i|x_i,x_{-i},y_{-i}) \approx -29.5$ unbiased estimate of log posterior pred. density for new data

UPPSALA UNIVERSITET

- Model assessment and selection
 - Measures of predictive accuracy
 - Model selection
- Cross-validation
 When is LOO applicable
 - PSIS-I OO and 100
 - PSIS-LOO and 100
 K-fold cross-validation
 - Comparison and selection
 - Additional reading
- Information criteria
- · Model averaging
- Summary

Leave-one-out log predictive densities

elpd_loo =
$$\sum_{i=1}^{20} \log p(y_i|x_i, x_{-i}, y_{-i}) \approx -29.5$$

$$lpd = \sum_{i=1}^{20} log p(y_i|x_i, x, y) \approx -26.8$$

- Measures of predictive accuracy
- Model selection

Cross-validation

- When is LOO applicable
- PSIS-I OO and 100
- K-fold cross-validation
- Comparison and selection
- Additional reading
- Information criteria
- Model averaging
- Summary

Leave-one-out log predictive densities

elpd_loo =
$$\sum_{i=1}^{20} \log p(y_i|x_i, x_{-i}, y_{-i}) \approx -29.5$$

lpd = $\sum_{i=1}^{20} \log p(y_i|x_i, x, y) \approx -26.8$
p_loo = lpd - elpd_loo ≈ 2.7

uppsala universitet

- Model assessment and selection
 - Measures of predictive accuracy
 - Model selection
- Cross-validation
 - When is LOO applicable
 - PSIS-LOO and loo
 - K-fold cross-validation
 - Comparison and selection
 Additional reading
- Information criteria
- Model averaging
- Summary

Leave-one-out log predictive densities

elpd_loo = $\sum_{i=1}^{20} \log p(y_i|x_i, x_{-i}, y_{-i}) \approx -29.5$

 $\mathsf{SE} = \mathsf{sd}(\log p(y_i|x_i, x_{-i}, y_{-i})) \cdot \sqrt{20} \approx 3.3$

Model assessment and

- selection

 Measures of predictive
- accuracy
- Model selection
- Cross-validation
 When is LOO applicable
 - PSIS-I OO and Too
 - PSIS-LOO and 100
 K-fold cross-validation

 - Comparison and selection
- Additional reading
 Information criteria
-
- Model averaging
- Summary

Stan and loo package

Computed from 4000 by 20 log-likelihood matrix

 $\begin{array}{ccc} & \text{Estimate} & \text{SE} \\ \text{elpd_loo} & -29.5 & 3.3 \\ \text{p_loo} & 2.7 & 1.0 \end{array}$

Monte Carlo SE of elpd_loo is 0.1.

Pareto k diagnostic values:

		Count	Pct.	Min.	n_eff
(-Inf, 0.5]	(good)	18	90.0%	899	
(0.5, 0.7]	(ok)	2	10.0%	459	
(0.7, 1	(bad)	0	0.0%	<NA $>$	
(1, Inf)	(verý bad)	0	0.0%	<NA $>$	

All Pareto k estimates are ok (k < 0.7). See help('pareto-k-diagnostic') for details.

- Measures of predictive accuracy
- Model selection
- model selection

Cross-validation

- When is LOO applicable
- PSIS-LOO and loo
- K-fold cross-validation
- Comparison and selection
- Additional reading
- Information criteria
- · Model averaging
- Summary

Pro and cons with LOO-CV

- + Intuitive
- + Robust
- + Good theoretical properties

- Measures of predictive accuracy
- Model selection
- Cross-validation
 - When is LOO applicable
 - PSIS-I OO and Too.
 - K-fold cross-validation
 - Comparison and selection
 - Additional reading
- Information criteria
- Model averaging
- Summary

Pro and cons with LOO-CV

- + Intuitive
- + Robust
- + Good theoretical properties
- Can be costly (naive LOO-CV mean n posterior computations)

- Model assessment and selection
 - Measures of predictive accuracy
 - Model selection
- Cross-validation
 - When is LOO applicable
 - PSIS-LOO and 100
 - K-fold cross-validation
 - Comparison and selection
 - Additional reading
- Information criteria
- · Model averaging
- Summary

Sometimes cross-validation is not needed

Posterior predictive checking can be sufficient

Predicting the yields of mesquite bushes.

Gelman, Hill & Vehtari (2020): Regression and Other Stories, Chapter 11.

- Measures of predictive accuracy
- Model selection
- Cross-validation
 - When is LOO applicable
 - PSIS-I OO and 100.
 - K-fold cross-validation
 - Comparison and selection
 - Additional reading
- Information criteria
- Model averaging
- Summary

Sometimes cross-validation is not needed

Posterior predictive checking can be sufficient

Predicting the yields of mesquite bushes.

Gelman, Hill & Vehtari (2020): Regression and Other Stories,

Chapter 11 case, often easier and more accurate to analyse posterior distribution of more complex model directly

- Model assessment and selection
 - Measures of predictive accuracy
 - Model selection
- Cross-validation
 - When is LOO applicable
 - PSIS-LOO and loo
 - K-fold cross-validation
 - Comparison and selection
 - Additional reading
- Information criteria
- · Model averaging
- Summary

Subsection 1

When is LOO applicable

- Model assessment and selection
 - Measures of predictive accuracy
 - Model selection
- Cross-validation
 - When is LOO applicable
 - PSIS-LOO and loo
 - K-fold cross-validation
 - Comparison and selection
 - Additional reading
- Information criteria
- Model averaging
- Summary

Summary of data generating mechanisms and prediction tasks

- You have to make some assumptions on data generating mechanism
- 2. Use the knowledge of the prediction task if available
- 3. Cross-validation can be used to analyse different parts, even if there is no clear prediction task

- Measures of predictive accuracy
- Model selection

Cross-validation When is LOO applicable

- PSIS-I OO and 100
- K-fold cross-validation
- Comparison and selection
- Additional reading
- Information criteria
- Model averaging
- Summary

LOO is ok for fixed / designed x. SE is uncertainty about y|x.

- Measures of predictive accuracy
- Model selection

Cross-validation

- When is LOO applicable
- PSIS-LOO and loo
- K-fold cross-validation
- Comparison and selection
- Additional reading
- Information criteria
- Model averaging
- Summary

LOO is ok for random x. SE is uncertainty about y|x and x.

- Measures of predictive accuracy
- Model selection
- Cross-validation
 - When is LOO applicable
 - PSIS-LOO and loo
 - K-fold cross-validation
 Comparison and selection
 - Additional reading
- Information criteria
- Model averaging
- Summary

LOO is ok for random x. SE is uncertainty about y|x and x. Covariate shift can be handled with importance weighting or modelling

- Measures of predictive accuracy
- Model selection

- When is LOO applicable
- PSIS-LOO and loo
- K-fold cross-validation
- Comparison and selection
- Additional reading
- Information criteria
- Model averaging
- Summary

- Measures of predictive accuracy
- Model selection

- When is LOO applicable
- PSIS-LOO and loo
- K-fold cross-validation
- Comparison and selection
- Additional reading
- Information criteria
- Model averaging
- Summary

- Measures of predictive
- accuracy

 Model selection
-
- Cross-validation
 - When is LOO applicable
 - PSIS-LOO and loo
 - K-fold cross-validation
 - Comparison and selection
 - Additional reading
- Information criteria
- · Model averaging
- Summary

Nonlinear model fit + new data

- Measures of predictive accuracy
- Model selection
- Cross-validation
 - When is LOO applicable
 - PSIS-LOO and loo
 - K-fold cross-validation
 - Comparison and selection
 Additional reading
- Information criteria
- Model averaging
- Summary

Extrapolation is more difficult

- Measures of predictive accuracy
- Model selection
- Cross-validation
 - When is LOO applicable
 - PSIS-LOO and loo
 - K-fold cross-validation
 - Comparison and selection
 - Additional reading
- Information criteria
- Model averaging
- Summary

Can LOO or other cross-validation be used with time series?

- Measures of predictive accuracy
- Model selection
- Cross-validation
 - When is LOO applicable
 - PSIS-LOO and loo
 - K-fold cross-validation
 - Comparison and selection
 - Additional reading
- Information criteria
- Model averaging
- Summary

Leave-one-out cross-validation is ok for assessing conditional model

- Measures of predictive accuracy
- Model selection
- Cross-validation
 - When is LOO applicable
 - PSIS-I OO and Too.
 - K-fold cross-validation
 - Comparison and selection
 - Additional reading
- Information criteria
- Model averaging
- Summary

Leave-future-out cross-validation is better for predicting future

- Measures of predictive accuracy
- Model selection

Cross-validation

- When is LOO applicable
- PSIS-LOO and loo
- K-fold cross-validation
- Comparison and selection
- Additional reading
- Information criteria
- Model averaging
- Summary

 $\emph{m}\text{-step-ahead}$ cross-validation is better for predicting further future

- Measures of predictive accuracy
- Model selection
- Cross-validation
 - Cross-validation
 When is LOO applicable
 - when is LOO applic
 - PSIS-LOO and loo
 - K-fold cross-validation
 - Comparison and selection
 - Additional reading
- Information criteria
- Model averaging
- Summary

m-step-ahead leave-a-block-out cross-validation

- Measures of predictive accuracy
- Model selection
- Cross-validation
 - When is LOO applicable
 - PSIS-LOO and loo
 - K-fold cross-validation
 - Comparison and selection
 - Additional reading
- Information criteria
- Model averaging
- Summary

Can LOO or other cross-validation be used with hierarchical data?

- Measures of predictive accuracy
- Model selection
- Cross-validation
 - When is LOO applicable
 - PSIS-LOO and loo
 - K-fold cross-validation
 - Comparison and selection
 - Additional reading
- Information criteria
- · Model averaging
- Summary

- Measures of predictive accuracy
- Model selection
- Cross-validation
 - When is LOO applicable
 - PSIS-LOO and loo
 - K-fold cross-validation
 - Comparison and selection
 - Additional reading
- Information criteria
- · Model averaging
- Summary

- Measures of predictive accuracy
- Model selection
- Cross-validation
 - When is LOO applicable
 - PSIS-LOO and loo
 - K-fold cross-validation
 - Comparison and selection
 - Additional reading
- Information criteria
- · Model averaging
- Summary

- Measures of predictive accuracy
- Model selection
- Cross-validation
 - When is LOO applicable
 - which is 200 applic
 - PSIS-LOO and loo
 K-fold cross-validation
 - Comparison and selection
 - Additional reading
- Information criteria
- Model averaging
- Summary

- Measures of predictive accuracy
- Model selection
- Cross-validation
 - When is LOO applicable
 - PSIS-LOO and loo
 - K-fold cross-validation
 - Comparison and selection
 - Additional reading
- Information criteria
- Model averaging
- Summary

- Model assessment and selection
 - Measures of predictive accuracy
 - Model selection
 - ...
- Cross-validation
 When is LOO applicable
 - PSIS-I OO and Too.
 - K-fold cross-validation
 - Comparison and selection
 - Additional reading
- Information criteria
- Model averaging
- Summary

Fast cross-validation

- 1. Pareto smoothed importance sampling LOO (PSIS-LOO)
- 2. K-fold cross-validation

see Vehtari, Gelman & Gabry (2017a) and mc-stan.org/loo/

- Measures of predictive accuracy
- Model selection
- Cross-validation
 - When is LOO applicable
 - PSIS-LOO and loo
 - K-fold cross-validation
 - Comparison and selection
 Additional reading
 - •
- Information criteria
- Model averaging
- Summary

- Measures of predictive accuracy
- Model selection
- Cross-validation
 When is LOO applicable
 - PSIS-LOO and loo
 - K-fold cross-validation
 - Comparison and selection
 - Additional reading
- Information criteria
- Model averaging
- Summary

$$\theta^{(s)} \sim p(\theta|x,y)$$

- Measures of predictive accuracy
- Model selection
- Cross-validation
 - When is LOO applicable
 - PSIS-LOO and loo
 - K-fold cross-validation
 Comparison and selection
 - Additional reading
- Information criteria
- Model averaging
- Summary

$$\theta^{(s)} \sim p(\theta|x,y), \quad p(\tilde{y}|\tilde{x},x,y) \approx \frac{1}{S} \sum_{s=1}^{S} p(\tilde{y}|\tilde{x},\theta^{(s)})$$

- Measures of predictive accuracy
- Model selection
- Cross-validation

 When is LOO applicable
 - vvnen is LOO applic
 - PSIS-LOO and loo
 - K-fold cross-validation
 Comparison and selection
 - Additional reading
- Information criteria
- Model averaging
- Summary

$$\theta^{(s)} \sim p(\theta|x,y), \quad p(\tilde{y}|\tilde{x},x,y) \approx \frac{1}{S} \sum_{s=1}^{S} p(\tilde{y}|\tilde{x},\theta^{(s)})$$

- Measures of predictive accuracy
- Model selection
- Cross-validation
 - When is LOO applicable
 - PSIS-LOO and loo
 - K-fold cross-validation
 - Comparison and selection
 - Additional reading
- Information criteria
- Model averaging
- Summary

PSIS-LOO weighted draws

$$\theta^{(s)} \sim p(\theta|x, y)$$

$$r_i^{(s)} = p(\theta^{(s)}|x_{-i}, y_{-i})/p(\theta^{(s)}|x, y)$$

- Measures of predictive accuracy
- Model selection
- Cross-validation
 - When is LOO applicable
 - PSIS-LOO and loo
 - K-fold cross-validation
 Comparison and selection
 - Additional reading
- Information criteria
- Model averaging
- Summary

$$\theta^{(s)} \sim p(\theta|x, y)$$

$$r_i^{(s)} = p(\theta^{(s)}|x_{-i}, y_{-i})/p(\theta^{(s)}|x, y) \propto 1/p(y_i|x_i, \theta^{(s)})$$

- Measures of predictive accuracy
- Model selection
-
- Cross-validation
 When is LOO applicable
 - PSIS-LOO and Too.
 - K-fold cross-validation
 - Comparison and selection
 - Additional reading
- Information criteria
- Model averaging
- Summary

PSIS-LOO weighted draws

$$\theta^{(s)} \sim p(\theta|x, y)$$

$$r_i^{(s)} = p(\theta^{(s)}|x_{-i}, y_{-i})/p(\theta^{(s)}|x, y) \propto 1/p(y_i|x_i, \theta^{(s)})$$

$$\log(1/p(y_i|x_i, \theta^{(s)})) = -\log_{-1} \operatorname{lik}[i]$$

- Measures of predictive accuracy
- Model selection
- Cross-validation
 - When is LOO applicable
 - PSIS-LOO and loo
 - K-fold cross-validation
 Comparison and selection
 - Additional reading
- Information criteria
- Model averaging
- Summary

$$\theta^{(s)} \sim p(\theta|x, y)$$

$$r_i^{(s)} = p(\theta^{(s)}|x_{-i}, y_{-i})/p(\theta^{(s)}|x, y) \propto 1/p(y_i|x_i, \theta^{(s)})$$

- Measures of predictive accuracy
- Model selection
- Cross-validation
 - When is LOO applicable
 - PSIS-LOO and loo
 - K-fold cross-validation
 - Comparison and selection
 - Additional reading
- Information criteria
- Model averaging
- Summary

PSIS-LOO weighted predictive distribution

$$\theta^{(s)} \sim p(\theta|x, y) r_i^{(s)} = p(\theta^{(s)}|x_{-i}, y_{-i})/p(\theta^{(s)}|x, y) \propto 1/p(y_i|x_i, \theta^{(s)}) p(y_i|x_i, x_{-i}, y_{-i}) \approx \sum_{s=1}^{S} [w_i^{(s)} p(y_i|x_i, \theta^{(s)})]$$

- Measures of predictive accuracy
- Model selection
- Cross-validation
 - When is LOO applicable
 - PSIS-LOO and loo
 - K-fold cross-validation
 - Comparison and selection
 Additional reading
- Information criteria
- Model averaging
- Summary

PSIS-LOO weighted predictive distribution

$$\begin{aligned} &\theta^{(s)} \sim p(\theta|x,y) \\ &r_i^{(s)} = p(\theta^{(s)}|x_{-i},y_{-i})/p(\theta^{(s)}|x,y) \propto 1/p(y_i|x_i,\theta^{(s)}) \\ &p(y_i|x_i,x_{-i},y_{-i}) \approx \sum_{s=1}^{S} [w_i^{(s)}p(y_i|x_i,\theta^{(s)})], \text{ where } \\ &w \leftarrow \mathsf{PSIS}(r) \end{aligned}$$

- Measures of predictive
- accuracy
- Model selection
- Cross-validation
 - When is LOO applicable
 - PSIS-LOO and loo
 - K-fold cross-validation
 Comparison and selection
 - Companson and se
 - Additional reading
- Information criteria
- · Model averaging
- Summary

400 importance weights for leave-18th-out

- Model assessment and selection
 - Measures of predictive accuracy
 - Model selection
- Cross-validation
 - When is LOO applicable
 - PSIS-LOO and loo
 - K-fold cross-validation
 - Comparison and selection
 - Additional reading
- Information criteria
- · Model averaging
- Summary

4000 importance weights for leave-18th-out

- Model assessment and selection
 - Measures of predictive accuracy
 - Model selection
- Cross-validation
 - When is LOO applicable
 - PSIS-LOO and loo
 - K-fold cross-validation
 - Comparison and selection
 - Additional reading
- Information criteria
- · Model averaging
- Summary

see Vehtari, Gelman & Gabry (2017b)

- Model assessment and selection
 - Measures of predictive accuracy
 - Model selection
- Cross-validation
 - When is LOO applicable
 - PSIS-LOO and loo
 - K-fold cross-validation
 - Comparison and selection
 - Additional reading
- Information criteria
- · Model averaging
- Summary

4000 importance weights for leave-18th-out

 $n_eff \approx 459$

Pareto $\hat{k} \approx 0.52$

1. Pareto \hat{k} estimates the tail shape which determines the convergence rate of PSIS. Less than 0.7 is ok.

see Vehtari, Gelman & Gabry (2017b)

- Measures of predictive accuracy
- Model selection
- Cross-validation
 - When is LOO applicable
 - PSIS-LOO and 100
 - PSIS-LOO and 100

 K-fold cross-validation
 - Comparison and selection
 - Additional reading
- Information criteria
- · Model averaging
- Summary

PSIS-LOO diagnostics

- Measures of predictive accuracy
- Model selection
- Cross-validation
 When is LOO applicable
 - vvnen is LOO applica
 - PSIS-LOO and loo
 - K-fold cross-validation
 Comparison and selection
 - Additional reading
- Information criteria
- Model averaging
- Summary

PSIS-LOO diagnostics

Pareto k diagnostic values:

		Count	Pct.	Min.	n_eff
(-Inf, 0.5]	(good)	18	90.0%	899	
(0.5, 0.7]	(ok)	2	10.0%	459	
(0.7, 1]	(bad)	0	0.0%	<NA $>$	
(1 Inf)	(verv bad)	0	0.0%	<na></na>	

- Measures of predictive accuracy
- Model selection
- Cross-validation
 - When is LOO applicable
 - PSIS-LOO and loo
 - K-fold cross-validation
 - Comparison and selection
 - Additional reading
- Information criteria
- Model averaging
- Summary

PSIS-LOO diagnostics

Pareto k diagnostic values:

		Count	Pct.	Min.	n_eff
(-Inf, 0.5]	(good)	18	90.0%	899	
(0.5, 0.7]	(ok)	2	10.0%	459	
(0.7, 1]	(bad)	0	0.0%	<NA $>$	
(1, Inf)	(very bad)	0 (0.0%	<NA $>$	

uppsala universitet

- Model assessment and selection
 - Measures of predictive accuracy
 - Model selection

Cross-validation

- When is LOO applicable
- PSIS-LOO and Too.
- K-fold cross-validation
- Comparison and selection
- Additional reading
- Information criteria
- Model averaging
- Summary

loo package

Computed from 4000 by 20 log-likelihood matrix

$$\begin{array}{ccc} & \text{Estimate} & \text{SE} \\ \text{elpd_loo} & -29.5 & 3.3 \\ \text{p_loo} & 2.7 & 1.0 \end{array}$$

Monte Carlo SE of elpd_loo is 0.1.

Pareto k diagnostic values:

		Count	Pct.	Min.	n_eff
(-Inf, 0.5]	(good)	18	90.0%	899	
(0.5, 0.7]	(ok)	2	10.0%	459	
(0.7, 1]	(bad)	0	0.0%	<NA $>$	
(1, Inf)	(verý bad)	0	0.0%	<NA $>$	

All Pareto k estimates are ok (k < 0.7). See help('pareto-k-diagnostic') for details.

see more in Vehtari, Gelman & Gabry (2017b)

UPPSALA UNIVERSITET

- Model assessment and selection
 - Measures of predictive accuracy
 - Model selection
- Cross-validation
 - When is LOO applicable
 - PSIS-LOO and loo
 - K-fold cross-validation
 - Comparison and selection
- Additional reading
 Information criteria
-
- Model averaging
- Summary

Stan and loo package

Computed from 4000 by 20 log-likelihood matrix

$$\begin{array}{ccc} & \text{Estimate} & \text{SE} \\ \text{elpd_loo} & -29.5 & 3.3 \\ \text{p_loo} & 2.7 & 1.0 \end{array}$$

Monte Carlo SE of elpd_loo is 0.1.

Pareto k diagnostic values:

		Count	Pct.	Min.	n_eff
(-Inf, 0.5]	(good)	18	90.0%	899	
(0.5, 0.7]	(ok)	2	10.0%	459	
(0.7, 1]	(bad)	0	0.0%	<NA $>$	
(1, Inf)	(verý bad)	0	0.0%	<NA $>$	

All Pareto k estimates are ok (k < 0.7). See help('pareto-k-diagnostic') for details.

 $\label{eq:model_comparison:} \begin{tabular}{ll} Model & comparison: \\ (negative 'elpd_diff' favors 1st model, positive favors 2nd) \\ \end{tabular}$

$$elpd_diff$$
 se -0.2 0.1

- Measures of predictive accuracy
- Model selection

Cross-validation

- When is LOO applicable
- PSIS-I OO and Too.
- K-fold cross-validation
- Comparison and selection
- Companson and selection
- Additional reading
 Information criteria
-
- Model averaging
- Summary

loo package

Computed from 4000 by 20 log-likelihood matrix

 $\begin{array}{ccc} & \text{Estimate} & \text{SE} \\ \text{elpd_loo} & -29.5 & 3.3 \\ \text{p_loo} & 2.7 & 1.0 \\ \end{array}$

Monte Carlo SE of elpd_loo is 0.1.

Pareto k diagnostic values:

		Count	Pct.	Min. n	_ett
(-Inf, 0.5]	(good)	18	90.0%	899	
(0.5, 0.7]	(ok)	2	10.0%	459	
(0.7, 1]	(bad)	0	0.0%	<NA $>$	
(1, Inf)	(very bad)	0	0.0%	<NA $>$	

All Pareto k estimates are ok (k < 0.7). See help('pareto-k-diagnostic') for details.

- Model assessment and selection
 - Measures of predictive accuracy
 - Model selection
- Cross-validation
 When is LOO applicable
 - 0000100 13--
 - PSIS-LOO and 100
 - K-fold cross-validation
 - Comparison and selection
 - Additional reading
- Information criteria
- Model averaging
- Summary

Importance sampling

• Having samples θ^s from $p(\theta^s|D)$

$$p(\tilde{y}_i|x_i, D_{-i}) \approx \frac{\sum_{s=1}^{S} p(\tilde{y}_i|\theta^s)w_i^s}{\sum_{s=1}^{S} w_i^s},$$

where w_i^s are importance weights and

$$w_i^s = \frac{p(\theta^s|x_i, D_{-i})}{p(\theta^s|D)} \propto \frac{1}{p(y_i|\theta^s)}.$$

- Model assessment and selection
 - Measures of predictive accuracy
 - Model selection
- Cross-validation
 - When is LOO applicable
 - PSIS-LOO and loo
 - K-fold cross-validation
 - Comparison and selection
 - Additional reading
- Information criteria
- Model averaging
- Summary

Importance sampling

• Having samples θ^s from $p(\theta^s|D)$

$$p(\tilde{y}_i|x_i,D_{-i}) \approx \frac{\sum_{s=1}^{S} p(\tilde{y}_i|\theta^s)w_i^s}{\sum_{s=1}^{S} w_i^s},$$

where w_i^s are importance weights and

$$w_i^s = \frac{p(\theta^s|x_i, D_{-i})}{p(\theta^s|D)} \propto \frac{1}{p(y_i|\theta^s)}.$$

• If evaluated with $\tilde{y}_i = y_i$

$$p(y_i|x_i, D_{-i}) \approx \frac{1}{\sum_{s=1}^{S} \frac{1}{p(y_i|\theta^s)}},$$

- Model assessment and selection
 - Measures of predictive accuracy
 - Model selection

Cross-validation

- When is LOO applicable
- PSIS-LOO and loo
- K-fold cross-validation
- Comparison and selection
- Additional reading
- Information criteria
- Model averaging
- Summary

Stan code

$$\log(r_i^{(s)}) = \log(1/p(y_i|x_i,\theta^{(s)})) = -\log_{-}\operatorname{lik}[i]$$

- Model assessment and selection
 - Measures of predictive accuracy
 - Model selection
- Cross-validation
 - When is LOO applicable
 - PSIS-I OO and Too.
 - K-fold cross-validation
 - Comparison and selection
 - Additional reading
- Information criteria
- Model averaging
- Summary

Stan code

```
\log(r_i^{(s)}) = \log(1/p(y_i|x_i, \theta^{(s)})) = -\log_{-1}[ik[i]]
model {
  alpha ~ normal(pmualpha, psalpha);
  beta ~ normal(pmubeta, psbeta);
  v ~ normal(mu, sigma);
generated quantities {
  vector[N] log_lik;
  for (i in 1:N)
    log_lik[i] = normal_lpdf(y[i] | mu[i], sigma);
```


- Model assessment and selection
 - Measures of predictive accuracy
 - Model selection
- Cross-validation
 When is LOO applicable
 - PSIS-I OO and Too.
 - K-fold cross-validation

 - Comparison and selection
 - Additional reading
- Information criteria
- Model averaging
- Summary

Pareto smoothed importance sampling LOO

- 1. PSIS-LOO for hierarchical models
 - 1.1 leave-one-group out is challenging for PSIS-LOO see Merkel, Furr and Rabe-Hesketh (2018) for an approach using quadrature integration

- Model assessment and selection
 - Measures of predictive accuracy
 - Model selection
- Cross-validation
 When is LOO applicable
 - PSIS-I OO and Too.
 - K-fold cross-validation

 - Comparison and selection
- Additional reading
 Information criteria
-
- Model averaging
- Summary

Pareto smoothed importance sampling LOO

- 1. PSIS-LOO for hierarchical models
 - 1.1 leave-one-group out is challenging for PSIS-LOO see Merkel, Furr and Rabe-Hesketh (2018) for an approach using quadrature integration
- 2. PSIS-LOO for non-factorizable models
 - 2.1 mc-stan.org/loo/articles/loo2-non-factorizable.
 html

- Measures of predictive
- accuracy

 Model selection
- Cross-validation
 When is LOO applicable
 - PSIS-I OO and Too.
 - K-fold cross-validation

 - Comparison and selection
- Additional reading
 Information criteria
-
- Model averaging
- Summary

Pareto smoothed importance sampling LOO

- 1. PSIS-LOO for hierarchical models
 - 1.1 leave-one-group out is challenging for PSIS-LOO see Merkel, Furr and Rabe-Hesketh (2018) for an approach using quadrature integration
- 2. PSIS-LOO for non-factorizable models
 - 2.1 mc-stan.org/loo/articles/loo2-non-factorizable.
 html
- PSIS-LOO for time series
 - 3.1 Approximate leave-future-out cross-validation mc-stan.org/loo/articles/loo2-lfo.html

40/63

- Model assessment and selection
 - Measures of predictive accuracy
 - Model selection
- Cross-validation
 - When is LOO applicable
 - PSIS-LOO and loo
 - K-fold cross-validation
 - Comparison and selection
 - Additional reading
- Information criteria
- · Model averaging
- Summary

PSIS-LOO for time series

- Measures of predictive accuracy
- Model selection
- Cross-validation
 - When is LOO applicable
 - PSIS-LOO and loo
 - K-fold cross-validation
 - Comparison and selection
 - Additional reading
- Information criteria
- · Model averaging
- Summary

PSIS-LOO for time series

- Measures of predictive accuracy
- Model selection
- Iviodel selection
- Cross-validation
 When is LOO applicable
 - PSIS-LOO and loo
 - K-fold cross-validation
 - Comparison and selection
 - Additional reading
- Information criteria
- Model averaging
- Summary

PSIS-LOO for time series

mc-stan.org/loo/articles/loo2-lfo.html

- Measures of predictive accuracy
- Model selection
- Wiodel Selection
- Cross-validation
 When is LOO applicable
 - PSIS-I OO and 100
 - K-fold cross-validation
 - K-Ioid Cross-validation
 - Comparison and selection
 - Additional reading
- Information criteria
- Model averaging
- Summary

K-fold cross-validation

- 1. K-fold cross-validation can approximate LOO
 - 1.1 all uses for LOO
- 2. K-fold cross-validation can be used for hierarchical models
 - 2.1 good for leave-one-group-out
- 3. K-fold cross-validation can be used for time series
 - 3.1 with leave-block-out

- Measures of predictive accuracy
- Model selection
- Cross-validation
 - When is LOO applicable
 - PSIS-LOO and loo
 - K-fold cross-validation
 - Comparison and selection
 - Additional reading
- Information criteria
- · Model averaging
- Summary

- Measures of predictive accuracy
- Model selection
- Cross-validation
 - When is LOO applicable
 - PSIS-LOO and loo
 - K-fold cross-validation
 - Comparison and selection
 - Additional reading
- Information criteria
- · Model averaging
- Summary

- Measures of predictive accuracy
- Model selection
- Cross-validation
 - When is LOO applicable
 - PSIS-LOO and loo
 - K-fold cross-validation
 - Comparison and selection
 - Additional reading
- Information criteria
- · Model averaging
- Summary

- Measures of predictive accuracy
- Model selection
- iviodei selection
- Cross-validation
 When is LOO applicable
 - PSIS-LOO and loo
 - K-fold cross-validation
 - Comparison and selection
 - Additional reading
- Information criteria
- · Model averaging
- Summary

- Measures of predictive accuracy
- Model selection
- Iviodel selection
- Cross-validation
 When is LOO applicable
 - PSIS-LOO and loo
 - K-fold cross-validation
 - Comparison and selection
 - Additional reading
- Information criteria
- · Model averaging
- Summary

- Model assessment and selection
 - Measures of predictive accuracy
 - Model selection
- Cross-validation
 When is LOO applicable
 - PSIS-LOO and loo
 - K-fold cross-validation
 - Comparison and selection
 - Additional reading
- Information criteria
- · Model averaging
- Summary

kfold_split_random()
kfold_split_balanced()
kfold_split_stratified()

- Measures of predictive accuracy
- Model selection
- Cross-validation
 - When is LOO applicable
 - PSIS-I OO and 100
 - K-fold cross-validation
 - Comparison and selection
 - Additional reading
- Information criteria
- Model averaging
- Summary

Cross-validation for model assessment

- CV is good for model assessment when application specific utility/cost functions are used
 - 1.1 e.g. 90% absolute error

- Measures of predictive accuracy
- Model selection
- Cross-validation
 - When is LOO applicable
 - PSIS-LOO and loo
 - K-fold cross-validation
 - Comparison and selection
 - Additional reading
- Information criteria
- Model averaging
- Summary

Cross-validation for model assessment

- CV is good for model assessment when application specific utility/cost functions are used
 - 1.1 e.g. 90% absolute error
- Also useful in model checking in similar way as posterior predictive checking (PPC)
 - 2.1 model misspecification diagnostics (e.g. Pareto-*k* and p_loo)
 - 2.2 checking calibration of leave-one-out predictive posteriors (ppc_loo_pit in bayesplot)

see demos avehtari.github.io/modelselection/

- Model assessment and selection
 - Measures of predictive accuracy
 - Model selection
- Cross-validation
 - When is LOO applicable
 - PSIS-LOO and loo
 - K-fold cross-validation
 Comparison and selection
 - Additional reading
- Information criteria
- Model averaging
- Summary

Model comparison

- "A popular hypothesis has it that primates with larger brains produce more energetic milk, so that brains can grow quickly" (from Statistical Rethinking)
 - 1.1 Model 1: formula = kcal.per.g \sim neocortex
 - 1.2 Model 2: formula = kcal.per.g \sim neocortex + log(mass)

mc-stan.org/loo/articles/loo2-example.html

- Measures of predictive accuracy
- Model selection
-
- Cross-validation
 When is LOO applicable
 - PSIS-LOO and 100
 - K-fold cross-validation
 - Comparison and selection
 - Additional reading
- Information criteria
- · Model averaging
- Summary

uppsala universitet

- Model assessment and selection
 - Measures of predictive accuracy
 - Model selection
- Cross-validation
 - When is LOO applicable
 - PSIS-I OO and Too.
 - K-fold cross-validation
 - Comparison and selection
 - Additional reading
- Information criteria
- Model averaging
- Summary

Pointwise comparison LOO models: Model 1

Model 1 elpd_loo \approx 3.7, SE=1.8 Model 2 elpd_loo \approx 8.4, SE=2.8

uppsala universitet

- Model assessment and selection
 - Measures of predictive accuracy
 - Model selection
- Cross-validation
 - When is LOO applicable
 - $-\,\,$ PSIS-LOO and loo
 - K-fold cross-validation
 Comparison and selection
 - Additional reading
- Information criteria
- Model averaging
- Summary

Pointwise comparison LOO models: Model 1

Model 1 elpd_loo \approx 3.7, SE=1.8 Model 2 elpd_loo \approx 8.4, SE=2.8

- Model assessment and selection
 - Measures of predictive accuracy
 - Model selection
- Cross-validation
 When is LOO applicable
 - PSIS-LOO and loo
 - K-fold cross-validation
 - Comparison and selection
 - Additional reading
- Information criteria
- Model averaging
- Summary

(negative 'elpd_diff' favors 1st model, positive favors 2nd)

elpd_diff se
4.7 2.7

- Model assessment and selection
 - Measures of predictive accuracy
 - Model selection
- Cross-validation
 - When is LOO applicable
 - PSIS-LOO and loo
 - K-fold cross-validation
 - Comparison and selection
 - Additional reading
- Information criteria
- Model averaging
- Summary

Arsenic well example – Model comparison

An estimated difference in $\mathrm{elpd}_{\mathrm{loo}}$ of 16.4 with SE of 4.4.

see Vehtari, Gelman & Gabry (2017a)

UPPSALA UNIVERSITET

- Model assessment and selection
 - Measures of predictive accuracy
 - Model selection
- Cross-validation
 When is LOO applicable
 - vviien is 200 appin
 - PSIS-LOO and loo
 - K-fold cross-validation
 - Comparison and selection
 - Additional reading
- Information criteria
- Model averaging
- Summary

Arsenic well example – Model comparison

- Probability of switching well with high arsenic level in rural Bangladesh
 - 1.1 Model 1 covariates: log(arsenic) and distance
 - 1.2 Model 2 covariates: log(arsenic), distance and education level

Gelman, Hill & Vehtari (2020): Regression and Other Stories, Chapter 13.

- Measures of predictive
- accuracy

 Model selection
- Woder Selection
- Cross-validation
 When is LOO applicable
 - PSIS-I OO and 100
 - K-fold cross-validation
 - Comparison and selection
 - Additional reading
- Information criteria
- Model averaging
- Summary

Arsenic well example – Model comparison

Model 1 elpd_loo \approx -1952, SE=16 Model 2 elpd_loo \approx -1938, SE=17

- Measures of predictive accuracy
- Model selection
- Cross-validation
 - When is LOO applicable
 - PSIS-I QQ and 100
 - K-fold cross-validation
 - Comparison and selection
 - Additional reading
- Information criteria
- Model averaging
- Summary

Arsenic well example – Model comparison

Model 1 vs Model 2

model2 0.0 0.0 model1 -14.4 6.1

see Vehtari, Gelman & Gabry

(2017a)

- Measures of predictive accuracy
- Model selection
- Cross-validation
 - When is LOO applicable
 - PSIS-I OO and 100
 - PSIS-LOO and 100
 - K-fold cross-validation
 Comparison and selection
 - Comparison and se
- Additional reading
 Information criteria
-
- Model averaging
- Summary

Arsenic well example – Model comparison

```
> loo_compare(model1, model2)
elpd_diff se_diff
model2 0.0 0.0
model1 -14.4 6.1
```

se_diff and normal approximation for the uncertainty in the difference is good only if models are well specified and the number of observations is relatively big (more details in a forthcoming article).

- Measures of predictive
- accuracy
- Model selection
- Cross-validation
 - When is LOO applicable
 - PSIS-LOO and loo
 - K-fold cross-validation
 - Comparison and selection
 - Additional reading
- Information criteria
- · Model averaging
- Summary

- Model assessment and selection
 - Measures of predictive accuracy
 - Model selection
- Cross-validation
 When is LOO applicable
 - PSIS-I OO and Too
 - PSIS-LOO and 100
 - K-fold cross-validation
 - Comparison and selection
 - Additional reading
- Information criteria
- Model averaging
- Summary

- 1. Continuous expansion including all models?
 - 1.1 and then analyse the posterior distribution directly avehtari.github.io/modelselection/betablockers. html
 - 1.2 sparse priors like regularized horseshoe prior instead of variable selection video, refs and demos at avehtari.github.io/modelselection/

- Model assessment and selection
 - Measures of predictive accuracy
 - Model selection
- Cross-validation
 When is LOO applicable
 - when is LOO applical
 - PSIS-LOO and loo
 - K-fold cross-validation
 - Comparison and selection
- Additional reading
 Information criteria
-
- Model averaging
- Summary

- 1. Continuous expansion including all models?
 - 1.1 and then analyse the posterior distribution directly avehtari.github.io/modelselection/betablockers. html
 - 1.2 sparse priors like regularized horseshoe prior instead of variable selection video, refs and demos at avehtari.github.io/modelselection/
- Model averaging with BMA or Bayesian stacking? mc-stan.org/loo/articles/loo2-example.html

- Model assessment and selection
 - Measures of predictive accuracy
 - Model selection
- Cross-validation
 - When is LOO applicable
 - PSIS-LOO and Too
 - K-fold cross-validation
 - Comparison and selection
 - Additional reading
- Information criteria
- Model averaging
- Summary

- 1. Continuous expansion including all models?
 - 1.1 and then analyse the posterior distribution directly avehtari.github.io/modelselection/betablockers. html
 - 1.2 sparse priors like regularized horseshoe prior instead of variable selection video, refs and demos at avehtari.github.io/modelselection/
- Model averaging with BMA or Bayesian stacking? mc-stan.org/loo/articles/loo2-example.html
- 3. In a nested case choose simpler if assuming some cost for extra parts?

```
andrewgelman.com/2018/07/26/
parsimonious-principle-vs-integration-uncertainties/
```


- Model assessment and selection
 - Measures of predictive accuracy
 - Model selection
- Cross-validation
 - When is LOO applicable
 - PSIS-LOO and Too.
 - K-fold cross-validation
 - Comparison and selection
 - Additional reading
- Information criteria

Model averaging Summary

What if one is not clearly better than others?

- 1. Continuous expansion including all models?
 - 1.1 and then analyse the posterior distribution directly avehtari.github.io/modelselection/betablockers. html
 - 1.2 sparse priors like regularized horseshoe prior instead of variable selection video, refs and demos at avehtari.github.io/modelselection/
- 2. Model averaging with BMA or Bayesian stacking? mc-stan.org/loo/articles/loo2-example.html
- 3. In a nested case choose simpler if assuming some cost for extra parts?

```
andrewgelman.com/2018/07/26/
parsimonious-principle-vs-integration-uncertainties/
```

4. In a nested case choose more complex if you want to take into account all the uncertainties.

```
andrewgelman.com/2018/07/26/
parsimonious-principle-vs-integration-uncertainties/
```


- Measures of predictive
- accuracy
- Model selection
- Cross-validation
 - When is LOO applicable
 - PSIS-I OO and 100
 - K-fold cross-validation
 - Comparison and selection
 - Additional reading
- Information criteria
- Model averaging
- Summary

Cross-validation and model selection

- 1. Cross-validation can be used for model selection if
 - 1.1 small number of models
 - 1.2 the difference between models is clear

- Measures of predictive
- accuracy

 Model selection
- Cross-validation
 - When is LOO applicable
 PSIS-LOO and loo
 - PSIS-LOO and 100
 - K-fold cross-validation
 - Comparison and selection
 Additional reading
- Information criteria
- Model averaging
- Summary

Cross-validation and model selection

- 1. Cross-validation can be used for model selection if
 - 1.1 small number of models
 - 1.2 the difference between models is clear
- Do not use cross-validation to choose from a large set of models
 - 2.1 selection process leads to overfitting

- Measures of predictive
- accuracy

 Model selection
- Cross-validation
 - When is LOO applicable
 - PSIS-LOO and loo
 - K-fold cross-validation
 - Comparison and selection
 - Additional reading
- Information criteria
- Model averaging
- Summary

Cross-validation and model selection

- 1. Cross-validation can be used for model selection if
 - 1.1 small number of models
 - 1.2 the difference between models is clear
- Do not use cross-validation to choose from a large set of models
 - 2.1 selection process leads to overfitting
- Overfitting in selection process is not unique for cross-validation

- Model assessment and selection
 - Measures of predictive accuracy
 - Model selection
 - _ ...
- Cross-validation
 When is LOO applicable
 - PSIS-I OO and Too.
 - K-fold cross-validation
 - Comparison and selection
 - Additional reading
- Information criteria
- Model averaging
- Summary

Selection induced bias and overfitting

- Selection induced bias in cross-validation
 - same data is used to assess the performance and make the selection
 - the selected model fits more to the data
 - the CV estimate for the selected model is biased
 - recognized already, e.g., by Stone (1974)

- Model assessment and selection
 - Measures of predictive accuracy
 - Model selection
- Cross-validation
 When is LOO applicable
 - PSIS-I OO and 100
 - K-fold cross-validation
 - Comparison and selection
 - Additional reading
- Information criteria
- Model averaging
- Summary

Selection induced bias and overfitting

- Selection induced bias in cross-validation
 - same data is used to assess the performance and make the selection
 - the selected model fits more to the data
 - the CV estimate for the selected model is biased
 - recognized already, e.g., by Stone (1974)
- Performance of the selection process itself can be assessed using two level cross-validation, but it does not help choosing better models

- Measures of predictive accuracy
- Model selection
-
- Cross-validation
 When is LOO applicable
 - PSIS-I OO and Too.
 - PSIS-LOO and 100
 - K-fold cross-validation
 - Comparison and selection
 - Additional reading
- Information criteria
- Model averaging
- Summary

Selection induced bias and overfitting

- Selection induced bias in cross-validation
 - same data is used to assess the performance and make the selection
 - the selected model fits more to the data
 - the CV estimate for the selected model is biased
 - recognized already, e.g., by Stone (1974)
- Performance of the selection process itself can be assessed using two level cross-validation, but it does not help choosing better models
- Bigger problem if there is a large number of models as in covariate selection

- Measures of predictive
- accuracy

 Model selection
-
- Cross-validation
 - When is LOO applicable
 - PSIS-LOO and loo
 - K-fold cross-validation
 - Comparison and selection
 - Additional reading
- Information criteria
- Model averaging
- Summary

Selection induced bias in variable selection

UPPSALA UNIVERSITET

- Model assessment and selection
 - Measures of predictive accuracy
 - Model selection
 - _
- Cross-validation
 When is LOO applicable
 - PSIS-I OO and Too.
 - K-fold cross-validation
 - Comparison and selection
 - Additional reading
- Information criteria
- Model averaging
- Summary

Selection induced bias in variable selection

- Model assessment and selection
 - Measures of predictive accuracy
 - Model selection
- Cross-validation
 When is LOO applicable
 - PSIS-LOO and loo
 - PSIS-LOO and 100
 K-fold cross-validation
 - Comparison and selection
 - Additional reading
- Information criteria
- · Model averaging
- Summary

Section 3

Information criteria

WAIC vs PSIS-LOO

- Model assessment and selection
 - Measures of predictive accuracy
 - Model selection
- Cross-validation
 - When is LOO applicable
 - PSIS-LOO and loo
 - K-fold cross-validation
 - Comparison and selection
 - Additional reading
- Information criteria
- · Model averaging
- Summary

WAIC vs PSIS-LOO

1. WAIC has same assumptions as LOO

- Model assessment and selection
 - Measures of predictive accuracy
 - Model selection
- Cross-validation
 - When is LOO applicable
 - PSIS-LOO and loo
 - K-fold cross-validation
 - Comparison and selection
 - Additional reading
- Information criteria
- · Model averaging
- Summary

- Measures of predictive accuracy
- Model selection
- Cross-validation
 - When is LOO applicable
 - PSIS-LOO and Too.
 - K-fold cross-validation
 - Comparison and selection
 - Additional reading
- Information criteria
- Model averaging
- Summary

WAIC vs PSIS-LOO

- 1. WAIC has same assumptions as LOO
- 2. PSIS-LOO is more accurate

- Measures of predictive accuracy
- Model selection
- Cross-validation
 - When is LOO applicable
 - PSIS-LOO and loo
 - K-fold cross-validation
 - Comparison and selection
 - Additional reading
- Information criteria
- Model averaging
- Summary

WAIC vs PSIS-LOO

- 1. WAIC has same assumptions as LOO
- 2. PSIS-LOO is more accurate
- 3. PSIS-LOO has much better diagnostics

- Measures of predictive accuracy
- Model selection
- Cross-validation
 - When is LOO applicable
 - PSIS-I OO and Too.
 - K-fold cross-validation
 - Comparison and selection
 - Additional reading
- Information criteria
- Model averaging
- Summary

WAIC vs PSIS-LOO

- 1. WAIC has same assumptions as LOO
- 2. PSIS-LOO is more accurate
- 3. PSIS-LOO has much better diagnostics
- 4. LOO makes the prediction assumption more clear, which helps if K-fold-CV is needed instead

- Model assessment and selection
 - Measures of predictive accuracy
 - Model selection
- Cross-validation
 - When is LOO applicable
 - PSIS-LOO and loo
 - K-fold cross-validation
 - Comparison and selection
 - Additional reading
- Information criteria
- Model averaging
- Summary

WAIC vs PSIS-LOO

- 1. WAIC has same assumptions as LOO
- 2. PSIS-LOO is more accurate
- 3. PSIS-LOO has much better diagnostics
- 4. LOO makes the prediction assumption more clear, which helps if K-fold-CV is needed instead
- 5. Multiplying by -2 doesn't give any benefit (Watanabe didn't multiply by -2)

- Model assessment and selection
 - Measures of predictive accuracy
 - Model selection
- Cross-validation
 - When is LOO applicable
 - PSIS-LOO and loo
 - K-fold cross-validation
 - Comparison and selection
 - Additional reading
- Information criteria
- Model averaging
- Summary

- 1. AIC uses maximum likelihood estimate for prediction
- 2. DIC uses posterior mean for prediction
- 3. BIC is an approximation for marginal likelihood
- 4. TIC, NIC, RIC, PIC, BPIC, QIC, AICc, ...

- Model assessment and selection
 - Measures of predictive accuracy
 - Model selection
- Cross-validation
 When is LOO applicable
 - PSIS-LOO and loo
 - K-fold cross-validation
 - Comparison and selection
 - Additional reading
- Information criteria
- Model averaging
- Summary

Section 4

Model averaging

- Model assessment and selection
 - Measures of predictive accuracy
 - Model selection
- Cross-validation
 - When is LOO applicable
 - PSIS-LOO and loo
 - K-fold cross-validation
 Comparison and selection
 - Additional reading
- Information criteria
- Model averaging
- Summary

Section 5

Summary

- Measures of predictive accuracy
- Model selection

Cross-validation

- When is LOO applicable
- PSIS-LOO and loo
- K-fold cross-validation
- Comparison and selection
- Additional reading
- Information criteria
- Model averaging
- Summary

- 1. It's good to think predictions of observables, because observables are the only ones we can observe
- Cross-validation can simulate predicting and observing new data
- 3. Cross-validation is good if you don't trust your model
- Different variants of cross-validation are useful in different scenarios
- 5. Cross-validation has high variance, and **if** you trust your model you can beat cross-validation in accuracy

- Measures of predictive accuracy
- Model selection
- Cross-validation
 - When is LOO applicable
 - PSIS-LOO and loo
 - K-fold cross-validation
 - Comparison and selection
 - Additional reading
- Information criteria
- · Model averaging
- Summary

- 1. It's good to think predictions of observables, because observables are the only ones we can observe
- Cross-validation can simulate predicting and observing new data
- 3. Cross-validation is good if you don't trust your model
- Different variants of cross-validation are useful in different scenarios
- 5. Cross-validation has high variance, and **if** you trust your model you can beat cross-validation in accuracy

- Measures of predictive accuracy
- Model selection
- Cross-validation
 - When is LOO applicable
 - PSIS-LOO and loo
 - K-fold cross-validation
 - Comparison and selection
 - Additional reading
- Information criteria
- · Model averaging
- Summary

- 1. It's good to think predictions of observables, because observables are the only ones we can observe
- Cross-validation can simulate predicting and observing new data
- 3. Cross-validation is good if you don't trust your model
- Different variants of cross-validation are useful in different scenarios
- 5. Cross-validation has high variance, and **if** you trust your model you can beat cross-validation in accuracy

- Measures of predictive accuracy
- Model selection
- Cross-validation
 - When is LOO applicable
 - PSIS-LOO and loo
 - K-fold cross-validation
 - Comparison and selection
 - Additional reading
- Information criteria
- Model averaging
- Summary

- 1. It's good to think predictions of observables, because observables are the only ones we can observe
- Cross-validation can simulate predicting and observing new data
- 3. Cross-validation is good if you don't trust your model
- Different variants of cross-validation are useful in different scenarios
- 5. Cross-validation has high variance, and **if** you trust your model you can beat cross-validation in accuracy

- Model assessment and selection
 - Measures of predictive
 - accuracy
 Model selection
- Cross-validation
- When is LOO applicable
 - PSIS-I OO and 100
 - K-fold cross-validation
 - Comparison and selection
 - Additional reading
- Information criteria
- Model averaging
- Summary

- It's good to think predictions of observables, because observables are the only ones we can observe
- Cross-validation can simulate predicting and observing new data
- 3. Cross-validation is good if you don't trust your model
- Different variants of cross-validation are useful in different scenarios
- 5. Cross-validation has high variance, and **if** you trust your model you can beat cross-validation in accuracy