Entity-Relationship Model

Information Management

- A database can be modeled as:
 - a collection of entities,
 - relationship among entities.
- An entity is an object that exists and is distinguishable from other objects.
 - Example: specific person, company, event, plant
- Entities have attributes
 - Example: people have *names* and *addresses*
- An entity set is a set of entities of the same type that share the same properties.
 - Example: set of all persons, companies, trees, holidays

Entity Sets instructor and student STUDIES

instructor ID instructor name

76766	Crick
45565	Katz
10101	Srinivasan
98345	Kim
76543	Singh
22222	Einstein

instructor

student-ID student_name

98988	Tanaka
12345	Shankar
00128	Zhang
76543	Brown
76653	Aoi
23121	Chavez
44553	Peltier

student

COLLEGE OF

COMPUTER

STUDIES

Relationship Sets

• A relationship is an association among several entities

Example: 44553 (Peltier) <u>advisor</u> 22222 (<u>Einstein</u>) student entity relationship set <u>instructor</u> entity

• A **relationship set** is a mathematical relation among $n \ge 2$ entities, each taken from entity sets

$$\{(e_1, e_2, \dots e_n) \mid e_1 \in E_1, e_2 \in E_2, \dots, e_n \in E_n\}$$

where $(e_1, e_2, ..., e_n)$ is a relationship

Example:

 $(44553,22222) \in advisor$

COLLEGE OF COMPUTER STUDIES

Relationship Set advisor

Relationship Sets

- An attribute can also be property of a relationship set.
- For instance, the *advisor* relationship set between entity sets *instructor* and student may have the attribute *date* which tracks when the student started being associated with the advisor

Degree of a Relationship Set

- binary relationship
 - involve two entity sets (or degree two).
 - most relationship sets in a database system are binary.
- Relationships between more than two entity sets are rare. Most relationships are binary.
 - Example: students work on research projects under the guidance of an instructor.
 - relationship proj_guide is a ternary relationship between instructor, student, and project

- An entity is represented by a set of attributes, that is descriptive properties possessed by all members of an entity set.
 - Example:

```
instructor = (ID, name, street, city, salary )
course= (course_id, title, credits)
```

- Domain the set of permitted values for each attribute
- Attribute types:
 - Simple and composite attributes.
 - Single-valued and multivalued attributes
 - 4 Example: multivalued attribute: *phone_numbers*
 - Derived attributes
 - 4 Can be computed from other attributes
 - 4 Example: age, given date_of_birth

Composite Attributes

Mapping Cardinality Constraints OLLEGE OF STUDIES

- Express the number of entities to which another entity can be associated via a relationship set.
- Most useful in describing binary relationship sets.
- For a binary relationship set the mapping cardinality must be one of the following types:
 - One to one
 - One to many
 - Many to one
 - Many to many

COLLEGE OF COMPUTER STUDIES

Mapping Cardinalities

One to one

One to many

Note: Some elements in A and B may not be mapped to any elements in the other set

Mapping Cardinalities

Many to

Many to

Note: Some elements in A and B may not be mapped to any elements in the other set

- A super key of an entity set is a set of one or more attributes whose values uniquely determine each entity.
- A candidate key of an entity set is a minimal super key
 - ID is candidate key of instructor
 - course_id is candidate key of course
- Although several candidate keys may exist, one of the candidate keys is selected to be the primary key.

Keys for Relationship Sets

- The combination of primary keys of the participating entity sets forms a super key of a relationship set.
 - (s_id, i_id) is the super key of advisor
 - NOTE: this means a pair of entity sets can have at most one relationship in a particular relationship set.
 - 4 Example: if we wish to track multiple meeting dates between a student and her advisor, we cannot assume a relationship for each meeting. We can use a multivalued attribute though
- Must consider the mapping cardinality of the relationship set when deciding what are the candidate keys
- Need to consider semantics of relationship set in selecting the primary key in case of more than one candidate key

Redundant Attributes

- Suppose we have entity sets
 - instructor, with attributes including dept_name
 - department and a relationship
 - inst_dept relating instructor and department
- Attribute dept_name in entity instructor is redundant since there is an explicit relationship inst_dept which relates instructors to departments
 - The attribute replicates information present in the relationship, and should be removed from instructor
 - BUT: when converting back to tables, in some cases the attribute gets reintroduced, as we will see.

E-R Diagrams

- Rectangles represent entity sets.
- Diamonds represent relationship sets.
- Attributes listed inside entity rectangle
- Underline indicates primary key attributes

Entity With Composite, Multivalued, and DerivedLege of COMPUTER STUDIES

instructor IDname first_name middle initial last name address street street number street name apt_number city state zip { phone_number }

date_of_birth

age()

Relationship Sets with Attribute SOLLEGE OF STUDIES

Cardinality Constraints

- We express cardinality constraints by drawing either a directed line (→), signifying "one," or an undirected line (—), signifying "many," between the relationship set and the entity set.
- One-to-one relationship:
 - A student is associated with at most one instructor via the relationship advisor
 - A student is associated with at most one department via stud_dept

One-to-One Relationship

- one-to-one relationship between an instructor and a student
 - an instructor is associated with at most one student via advisor
 - and a student is associated with at most one instructor via advisor

One-to-Many Relationship

- one-to-many relationship between an instructor and a student
 - an instructor is associated with several (including 0) students via advisor
 - a student is associated with at most one instructor via advisor,

Many-to-One Relationships

- In a many-to-one relationship between an instructor and a student,
 - an instructor is associated with at most one student via advisor,
 - and a student is associated with several (including 0)
 instructors via advisor

Many-to-Many Relationship

- An instructor is associated with several (possibly 0) students via advisor
- A student is associated with several (possibly 0) instructors via advisor

