Selected constants:

$$N_{\rm A} = 6.022 \times 10^{23}$$

R = 8.314 J/mol·K

=
$$8.314 \text{ J/mol}\cdot\text{K}$$

 $0.08206 \text{ atm} \cdot\text{L/mol}\cdot\text{K}$

 $e = -1.602 \times 10^{-19} \,\mathrm{C}$

 $m_{\rm e} = 9.109{\times}10^{-31}~kg$

 $h = 6.626 \times 10^{-34} \, \text{J}_{\Box} \text{s}$

 $c = 2.998 \times 10^8 \text{ m/s}$

$$R_y = 2.180 \times 10^{-18} \, J$$
 1313 kJ/mol

Selected unit conversion factors and helpful values:

$$4.184 J = 1 cal$$

 $0.00^{\circ}C = 273.15 \text{ K}$

$$1 \text{ atm} = 760 \text{ torr} = 101325 \text{ Pa}$$

 $101.325 J = 1 atm_{\square}L$

Selected constants for water:

specific heat of
$$H_2O(s)$$
 at -5°C, $c_s = 2.09 \text{ J/g} \cdot ^{\circ}\text{C}$

specific heat of
$$\rm H_2O(I)$$
 at 25°C, $\rm c_s$ = 4.18 J/g°C

specific heat of
$$\rm H_2O(g)$$
 at $105^{\circ}C$ $c_s = 2.01 \, J/g \cdot {^{\circ}C}$

heat of fusion of
$$H_2O(s)$$
 at 0°C, $\Delta H_{fus} = 6.009$ kJ/mol

heat of vap. of
$$\rm H_2O(I)$$
 at 100°C, $\Delta H_{\rm vap}$ = 40.67 kJ/mol

heat of vap. of $H_2O(I)$ at 25°C, $\Delta H_{vap} = 44.01$ kJ/mol

Density and Vapor Pressure Data for Water 20°C 25°C 40°C 30°C 10°C $0.9922~\mathrm{g/mL}$ 0.9970 g/mL 0.9982 g/mL $0.9997 \, \mathrm{g/mL}$ 0.9998 g/mL 0.9957 g/mL 55.3 torr23.8 torr 17.5 torr 9.2 torr4.6 torr

Selected formulas

$$PV = nRT \qquad \left[P + a \left(\frac{n}{V} \right)^2 \right] (V - nb) = nRT$$

$$KE = \frac{1}{2}mv^2$$

$$V = \sqrt{\frac{3RT}{3RT}}$$

$$KE_{ave} = \frac{3}{2}RT$$

$$\int_{-\infty}^{\infty} (v - ii0) - iiK1$$
RT $KE_{mp} = \frac{1}{2}RT$

$$v_{\rm rms} = \sqrt{\frac{3{
m RT}}{M}}$$

$$v_{
m mp} = \sqrt{\frac{2{
m RT}}{M}}$$

$$v_{\text{ave}} = \sqrt{\frac{8RT}{pM}}$$

$$\frac{\text{rate } 1}{\text{rate } 2} = \sqrt{\frac{M_2}{M_1}}$$

$$v_{\rm rms} = \sqrt{\frac{3RT}{M}}$$
 $c = v\lambda$

$$V_{\rm mp} = \sqrt{\frac{2133}{M}}$$

$$v_{\rm mp} = \sqrt{\frac{2RT}{M}}$$
 $v_{\rm ave} = \sqrt{\frac{8RT}{pM}}$

$$_{\rm ave} = \sqrt{\frac{8RT}{pM}}$$

$$\frac{1}{M}$$
 rate $\frac{1}{2}$ =

$$E = h_V$$

$$\lambda = \frac{h}{\text{mv}}$$

$$\Delta x \cdot \Delta p = \Delta x (m \Delta v) \geqslant \frac{h}{4 \pi}$$

$$E = -R_y \left(\frac{Z^2}{n^2}\right)$$
 $E = R_y Z^2 \left(\frac{1}{n_1^2} - \frac{1}{n_2^2}\right)$

$$y\left(\frac{L}{p_2}\right)$$

$$=R_{y}Z^{2}(\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}})$$

$$\Delta E = q + w$$

$$q=mc_{\rm s}\Delta T$$

$$w_{\mathrm{PV}} = - \mathrm{P}_{\mathrm{ext}} \Delta \mathrm{V}$$

$$\Delta H = \Delta E + RT\Delta n_{gas}$$

$$K_{
m p}=K_{
m c}({
m RT})^{\Delta n}$$

$$pH = \text{-log}[H^+]$$

$$K_{\rm w} = [{\rm H}^+][{\rm OH}^-] = 1.0 \times 10^{-14} \text{ (at } 25^{\circ}{\rm C)}$$

Selected Solubility Information

	excluding the ions you are required to know,	required to know)
Compounds	and this cation,	and this cation,
containing	are soluble .	are insoluble .
 this anion		
Cl-	most cations	Ag^{+} , Pb^{2+} , Hg_{2}^{2+}
Br ⁻ , I ⁻	most cations	Ag ⁺ , Pb ²⁺ , Hg ²⁺ , Hg ₂ ²⁺
SO ₄ ²⁻	most cations	Ag ⁺ , Pb ²⁺ , Hg ₂ ²⁺ , Ca ²⁺ , Sr ²⁺ , Ba ²⁺
CO ₃ ²⁻ , PO ₄ ³⁻	only a few cations	most cations
0H ⁻	$oxed{Ba}^{2^+}$ and a few others	most cations
S^{2-}	Mg ²⁺ , Ca ²⁺ , Sr ²⁺ , Ba ²⁺	most cations
C	$\mid (\text{group IIA}), a \text{ few others} \mid$	וווטפר כמנוטווט