# Riemannian Geometry

Fall Semseter 2016

Version 0.9, January 17, 2017

Michael Kunzinger Roland Steinbauer

University of Vienna Faculty of Mathematics Oskar-Morgenstern-Platz 1 A-1090 Wien AUSTRIA

## **Preface**

These lecture notes are based on the lecture course "Differentialgeometrie 2" taught by M.K. in the fall semesters of 2008 and 2012. The material has been slightly reorganised to serve as a script for the course "Riemannian geometry" by R.S. in the fall term 2016. It can be considered as a continuation of the lecture notes "Differential Geometry 1" of M.K. [10] and we will extensively refer to these notes.

Basically this is a standard introductory course on Riemannian geometry which is strongly influenced by the textbook "Semi-Riemannian Geometry (With Applications to Relativity)" by Barrett O'Neill [12]. The necessary prerequisites are a good knowledge of basic differential geometry and analysis on manifolds as is traditionally taught in a 3–4 hours course.

A To be extended in due time A

M.K., R.S., September 2016

# Contents

| Preface      |                                                 |  |  | i         |  |
|--------------|-------------------------------------------------|--|--|-----------|--|
| 1            | Semi-Riemannian Manifolds  1.1 Scalar products  |  |  | 9         |  |
| 2            | Geodesics 2.1 Geodesics and the exponential map |  |  |           |  |
| 3            | 3.1 The curvature tensor                        |  |  | <b>62</b> |  |
| Bibliography |                                                 |  |  | 72        |  |

# Chapter 1

## Semi-Riemannian Manifolds

In classical/elementary differential geometry of hypersurfaces in  $\mathbb{R}^n$  and, in particular, of surfaces in  $\mathbb{R}^3$  one finds that all intrinsic properties of the surface ultimately depend on the scalar product induced on the tangent spaces by the standard scalar product of the ambient Euclidean space. Our first goal is to generalise the respective notions of length, angle, curvature and the like to the setting of abstract manifolds. We will, however, allow for nondegenerate bilinear forms which are not necessarily positive definite to include central applications, in particular, general relativity. We will start with an account on such bilinear forms.

## 1.1 Scalar products

Contrary to basic linear algebra where one typically focusses on positive definite scalar products semi-Riemannian geometry uses the more general concept of nondegenerate bilinear forms. In this subsection we develop the necessary algebraic foundations.

**1.1.1 Definition (Bilinear forms).** Let V be a finite dimensional vector space. A bilinear form on V is an  $\mathbb{R}$ -bilinear mapping  $b: V \times V \to \mathbb{R}$ . It is called symmetric if

$$b(v, w) = b(w, v) \quad \text{for all } v, w \in V. \tag{1.1.1}$$

A symmetric bilinear form is called

- (i) Positive (negative) definite, if b(v,v) > 0 (< 0) for all  $0 \neq v \in V$ ,
- (ii) Positive (negative) semidefinite, if  $b(v,v) \geq 0 \ (\leq 0)$  for all  $v \in V$ ,
- (iii) nondegenerate, if b(v, w) = 0 for all  $w \in V$  implies v = 0.

Finally we call b (semi)definite if one of the alternatives in (i) (resp. (ii)) hold true. Otherwise we call b indefinite.

In case b is definite it is semidefinite and nondegenerate and conversely if b is semidefinite and nondegenerate it is already definite. Indeed in the positive case suppose there is  $0 \neq v \in V$  with b(v, v) = 0. Then for arbitrary  $w \in V$  we find that

$$b(v+w,v+w) = \underbrace{b(v,v)}_{0} + 2b(v,w) + b(w,w) \ge 0$$
 (1.1.2)

$$b(v - w, v - w) = \underbrace{b(v, v)}_{0} - 2b(v, w) + b(w, w) \ge 0, \tag{1.1.3}$$

since b is positive semidefinite and so  $2|b(v,w)| \leq b(w,w)$ . But replacing w by  $\lambda w$  with  $\lambda$  some positive number we obtain

$$2|b(v,w)| \le \lambda \ b(w,w) \tag{1.1.4}$$

and since we may choose  $\lambda$  arbitrarily small we have b(v, w) = 0 for all w which by nondegeneracy implies v = 0, a contradiction.

If b is a symmetric bilinear form on V and if W is a subspace of V then clearly the restriction  $b|_W$  (defined as  $b|_{W\times W}$ ) of b to W is again a symmetric bilinear form. Obviously if b is (semi)definite then so is  $b|_W$ .

**1.1.2 Definition (Index).** We define the index r of a symmetric bilinear form b on V by

$$r := \max \{ \dim W | W subspace \ of \ V \ with \ b|_W \ negative \ definite \}.$$
 (1.1.5)

By definition we have  $0 \le r \le \dim V$  and r = 0 iff b is positive definite.

Given a symmetric bilinear form b we call the function

$$q: V \to \mathbb{R}, \quad q(v) = b(v, v)$$
 (1.1.6)

the quadratic form associated with b. Frequently it is more convenient to work with q than with b. Recall that by polarisation b(v, w) = 1/2(q(v+w) - q(v) - q(w)) we can recover b from q and so all the information of b is also encoded in q.

Let  $\mathcal{B} = \{e_1, \dots, e_n\}$  be a basis of V, then

$$(b_{ij}) := (b(e_i, e_j))_{i,j=1}^n \tag{1.1.7}$$

is called the *matrix of b* with respect to  $\mathcal{B}$ . It is clearly symmetric and entirely determines b since  $b(\sum v_i e_i, \sum w_j e_j) = \sum b_{ij} v_i w_j$ . Moreover nondegeneracy of b is characterised by its matrix (w.r.t. any basis):

**1.1.3 Lemma.** A symmetric bilinear form is nondegenerate iff its matrix w.r.t. one (and hence any) basis is invertible.

**Proof.** Let  $\mathcal{B} = \{e_1, \dots, e_n\}$  be a basis of V. Given  $v \in V$  we have b(v, w) = 0 for all w iff  $0 = b(v, e_i) = b(\sum_j v_j e_j, e_i) = \sum_j b_{ij} v_j$  for all  $1 \le i \le n$ . So b is degenerate iff there are  $(v_1, \dots, v_n) \ne (0, \dots, 0)$  with  $\sum_j b_{ij} v_j = 0$  for all i. But this means that the kernel of  $(b_{ij})$  is non trivial and  $(b_{ij})$  is singular.

We now introduce a terminology slightly at odds with linear algebra standards but which reflects our interest in non positive definite symmetric bilinear forms.

1.1.4 Definition (scalar product, inner product). A scalar product g on a vector space V is a nondegenerate symmetric bilinear form. An inner product is a positive definite scalar product.

### 1.1.5 Example.

- (i) The example of an inner product is the standard scalar product of Euclidean space  $\mathbb{R}^n$ :  $v \cdot w = \sum_i v_i w_i$ .
- (ii) The most simple example of a vector space with indefinite scalar product is two-dimensional Minkowski space  $\mathbb{R}^2$  with

$$g = \eta : \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}, \qquad g(v, w) = -v_1 w_1 + v_2 w_2.$$
 (1.1.8)

Obviously g is bilinear and symmetric. To see that it is nondegenerate suppose that g(v, w) = 0 for all  $w \in \mathbb{R}^2$ . Setting w = (1, 0) and w = (0, 1) gives  $v_1 = 0$  and  $v_2 = 0$ , respectively and so v = 0. Hence  $\eta$  is a scalar product but it is not an inner product since it is indefinite:

$$g((1,0),(1,0)) = -1 < 0$$
, but  $g((0,1),(0,1)) = 1 > 0$ . (1.1.9)

The corresponding quadratic form is  $q(v) = -v_1^2 + v_2^2$ .

In the following V will always be a (finite dimensional, real) vector space with a scalar product g in the sense of 1.1.4. A vector  $0 \neq v \in V$  with q(v) = 0 will be called a *null vector*. Such vectors exists iff g is indefinite. Note that the zero vector 0 is *not* a null vector.

**1.1.6 Example.** We consider the lines q = c and q = -c (c > 0) in two-dimensional Minkowski space of Example 1.1.5(ii). They are either hyperbolas or straight lines in case c = 0, see Figure 2.5.

A pair of vectors  $u, w \in V$  is called *orthogonal*,  $u \perp w$ , if g(u, w) = 0. Analogously we call subspaces U, W of V orthogonal, if g(u, w) = 0 for all  $u \in U$  and all  $w \in W$ . Warning: In case of indefinite scalar products vectors that are orthogonal need not to be at right angels to one another as the following example shows.



Figure 1.1: Contours of q in 2-dimensional Minkowski space

**1.1.7 Example.** The following pairs of vectors v, v' are orthogonal in two-dimensional Minkowski space, see Figure 1.2: w = (1,0) and w' = (0,1), u = (1,b) and u' = (b,1) for some b > 0, z = (1,1) = z'.

The example of the vectors z, z' above hints at the fact that null vectors are precisely those vectors that are orthogonal to themselves.

If W is a subspace of V let

$$W^{\perp} := \{ v \in V : v \perp w \text{ for all } w \in W \}.$$
 (1.1.10)

Clearly  $W^{\perp}$  is a subspace of V which we call W perp. Warning: We cannot call  $W^{\perp}$  the orthogonal complement of W since in general  $W + W^{\perp} \neq V$ , e.g. if  $W = \operatorname{span}(z)$  in Example 1.1.7 we even have  $W^{\perp} = W$ . However  $W^{\perp}$  has two familiar properties.

- **1.1.8 Lemma.** Let W be a subspace of V. Then we have
  - (i)  $\dim W + \dim W^{\perp} = \dim V$ ,
  - (ii)  $(W^{\perp})^{\perp} = W$ .

### Proof.

(i) Let  $\{e_1, \ldots, e_k\}$  be a basis of W which we extend to a basis  $\{e_1, \ldots, e_k, e_{k+1}, \ldots, e_n\}$  of V. Then we have

$$v \in W^{\perp} \Leftrightarrow g(v, e_i) = 0$$
 for  $1 \le i \le k \Leftrightarrow \sum_{j=1}^n g_{ij}v_j = 0$  for  $1 \le i \le k$ . (1.1.11)

----- VERSION 0.9 (October 18, 2016) -----



Figure 1.2: Pairs of orthogonal vectors in 2-dimensional Minkowski space

Now by Lemma 1.1.3  $(g_{ij})$  is invertible and hence the rows in the above linear system of equations are linearly independent and its space of solutions has dimension n-k. So dim  $W^{\perp} = n - k$ .

(ii) Let  $w \in W$ , then  $w \perp W^{\perp}$  and  $w \in (W^{\perp})^{\perp}$ , which implies  $W \subseteq (W^{\perp})^{\perp}$ . Moreover, by (i) we have  $\dim W = \dim(W^{\perp})^{\perp} = k$  and so  $W = (W^{\perp})^{\perp}$ .

A scalar product g on V is nondegenerate, iff  $V^{\perp} = \{0\}$ . A subspace W of V is called nondegenerate, if  $g|_W$  is nondegenerate. If g is an inner product, then any subspace W is again an inner product space, hence nondegenerate. If g is indefinite, however, there always exists degenerate subspaces, e.g.  $W = \operatorname{span}(w)$  for any null vector w. Hence a subspace W of a vector space with scalar product in general is not a vector space with scalar product. Indeed W could be degenerate. We now give a simple characterisation of nondegeneracy for subspaces.

1.1.9 Lemma (Nondegenerate subspaces). A subspace W of a vectors space V with scalar product is nondegenerate iff

$$V = W \oplus W^{\perp}. \tag{1.1.12}$$

**Proof.** By linear algebra we know that

$$\dim(W + W^{\perp}) + \dim(W \cap W^{\perp}) = \dim W + \dim W^{\perp} = \dim V. \tag{1.1.13}$$

----- V E R S I O N  $\phantom{-}$  0 . 9 (October 18, 2016)  $\phantom{-}$  -----

So equation (1.1.12) holds iff

$$\dim(W \cap W^{\perp}) = 0 \iff \{0\} = W \cap W^{\perp} = \{w \in W : w \perp W\}$$

which is equivalent to the nondegeneracy of W.

As a simple consequence we obtain by using 1.1.8(ii), i.e.,  $(W^{\perp})^{\perp} = W$ .

1.1.10 Corollary. W is nondegenerate iff  $W^{\perp}$  is nondegenerate.

Our next objective is to deal with  $orthonormal\ bases$  in a vector space with scalar product. To begin with we define unit vectors. However, due to the fact that q takes negative values we have to be a little careful.

**1.1.11 Definition (Norm).** We define the norm of a vector  $v \in V$  by

$$|v| := |g(v, v)|^{\frac{1}{2}}. (1.1.14)$$

A vector  $v \in V$  is called a unit vector if |v| = 1, i.e., if  $g(v, v) = \pm 1$ . A family of pairwise orthogonal unit vectors is called orthonormal.

Observe that an orthonormal system of  $n = \dim V$  elements automatically is a basis. The existence of orthonormal bases (ONB) is guaranteed by the following statement.

**1.1.12 Lemma (Existence of orthonormal bases).** Every vector space  $V \neq \{0\}$  with scalar product possesses an orthonormal basis.

**Proof.** There exists  $v \neq 0$  with  $g(v, v) \neq 0$ , since otherwise by polarisation we would have g(v, w) = 0 for all pairs of vectors v, w, which implies that g is degenerate. Now v/|v| is a unit vector and it suffices to show that any orthonormal system  $\{e_1, \ldots, e_k\}$  can be extended by one vector.

So let  $W = \text{span}\{e_1, \dots, e_k\}$ . Then by lemma 1.1.3 W is nondegenerate and so is  $W^{\perp}$  by corollary 1.1.10. Hence by the argument given above  $W^{\perp}$  contains a unit vector  $e_{k+1}$  which extends  $\{e_1, \dots, e_k\}$ .

The matrix of g w.r.t. any ONB is diagonal, more precisely

$$g(e_i, e_j) = \delta_{ij} \varepsilon_j$$
, where  $\varepsilon_j := g(e_j, e_j) = \pm 1$ . (1.1.15)

In the following we will always order any ONB  $\{e_i, \ldots, e_n\}$  in such a way that in the socalled *signature*  $(\varepsilon_1, \ldots, \varepsilon_n)$  the negative signs come first. Next we give the representation of a vector w.r.t an ONB. Once again we have to be careful about the signs.

----- VERSION 0.9 (October 18, 2016) -----

**1.1.13 Lemma.** Let  $\{e_1, \ldots, e_n\}$  be an ONB for V. Then any  $v \in V$  can be uniquely written as

$$v = \sum_{i=1}^{n} \varepsilon_i g(v, e_i) e_i. \tag{1.1.16}$$

**Proof.** We have that

$$\langle v - \sum_{i} \varepsilon_{i} g(v, e_{i}) e_{i}, e_{j} \rangle = \langle v, e_{j} \rangle - \sum_{i} \varepsilon_{i} \langle v, e_{i} \rangle \underbrace{\langle e_{i}, e_{j} \rangle}_{\varepsilon_{i} \delta_{ij}} = 0$$
 (1.1.17)

for all j and so by nondegeneracy  $v = \sum_i \varepsilon_i g(v, e_i) e_i$ . Uniqueness now simply follows since  $\{e_1, \ldots, e_n\}$  is a basis.

If a subspace W is nondegenerate we have by lemma 1.1.9 that  $V = W \oplus W^{\perp}$ . Let now  $\pi$  be the orthogonal projection of V onto W. Since any ONB  $\{e_1, \ldots, e_k\}$  of W can be extended to an ONB of V (cf. the proof of 1.1.12) we have for any  $v \in V$ 

$$\pi(v) = \sum_{j=1}^{k} \varepsilon_j g(v, e_j) e_j. \tag{1.1.18}$$

Next we give a more vivid description of the index r of g (see definition 1.1.2), which we will also call the index of V and denote it by ind V

**1.1.14 Proposition (Index and signature).** Let  $\{e_1, \ldots, e_n\}$  be any ONB of V. Then the index of V equals the number of negative signs in the signature  $(\varepsilon_1, \ldots, \varepsilon_n)$ .

**Proof.** Let exactly the first m of the  $\varepsilon_i$  be negative. In case g is definite we have m = r = 0 or  $m = r = n = \dim V$  and we are done.

So suppose 0 < m < n. Obviously g is negative definite on  $S = \text{span}\{e_1, \dots, e_m\}$  and so  $m \le r$ .

To show the converse let W be a subspace with  $g|_W$  negative definite and define

$$\pi: W \to S, \quad \pi(w) := -\sum_{i=1}^{m} g(w, e_i) e_i.$$
 (1.1.19)

Then  $\pi$  is obviously linear and we will show below that it is injective. Then clearly  $\dim W \leq \dim S$  and since W was arbitrary  $r \leq \dim S = m$ .

Finally  $\pi$  is injective since if  $\pi(w) = 0$  then by lemma 1.1.13  $w = \sum_{i=m+1}^{n} g(w, e_i) e_i$ . Since  $w \in W$  we also have  $0 \ge g(w, w) = \sum_{i=m+1}^{n} g(w, e_i)^2$  which implies  $g(w, e_j) = 0$  for all j > m. But then w = 0.

The index of a nondegenerate subspace can now easily be related to the index of V.

----- VERSION 0.9 (October 18, 2016) -----

1.1.15 Corollary. Let W be a nondegenerate subspace of V. Then

$$ind V = ind W + ind W^{\perp}. (1.1.20)$$

**Proof.** Let  $\{e_1, \ldots, e_k\}$  be an ONB of W and  $\{e_{k+1}, \ldots, e_n\}$  be an ONB of  $W^{\perp}$  such that  $\{e_1, \ldots, e_n\}$  is an ONB of V, cf. the proof of 1.1.12. Now the assertion follows from proposition 1.1.14.

To end this section we will introduce *linear isometries*. Let  $(V_1, g_1)$  and  $(V_2, g_2)$  be vector spaces with scalar product.

1.1.16 Definition (Linear isometry). A linear map  $T: V_1 \to V_2$  is said to preserve the scalar product if

$$g_2(Tv, Tw) = g_1(v, w).$$
 (1.1.21)

A linear isometry is a linear bijective map that preserves the scalar product.

In case there is no danger of missunderstanding we will write equation (1.1.21) also as

$$\langle Tv, Tw \rangle = \langle v, w \rangle. \tag{1.1.22}$$

If equation (1.1.21) holds true then T automatically preserves the associated quadratic forms, i.e.,  $q_2(Tv) = q_1(v)$  for all  $v \in V$ . The converse assertions clearly holds by polarisation.

A map that preserves the scalar product is automatically *injective* since Tv = 0 by virtue of (1.1.21) implies  $g_1(v, w) = 0$  for all w and so v = 0 by nondegeneracy. Hence a linear mapping is an isometry iff dim  $V_1 = \dim V_2$  and equation (1.1.21) holds. Moreover we have the following characterisation.

- 1.1.17 Proposition (Linear isometries). Let  $(V_1, g_1)$  and  $(V_2, g_2)$  be vector spaces with scalar product. Then the following are equivalent:
  - (i) dim  $V_1$  = dim  $V_2$  and ind  $V_1$  = ind  $V_2$
  - (ii) There exists a linear isometry  $T: V_1 \to V_2$

**Proof.** (i) $\Rightarrow$ (ii): Choose ONBs  $\{e_1, \ldots, e_n\}$  of  $V_1$  and  $\{e'_1, \ldots, e'_n\}$  of  $V_2$ . By proposition 1.1.14 we may assume that  $\langle e_i, e_i \rangle = \langle e'_i, e'_i \rangle$  for all i. Now we define a linear map T via  $Te_i = e'_i$ . Then clearly  $\langle Te_i, Te_j \rangle = \langle e_i, e_j \rangle$  for all i, j and T is an isometry. (ii) $\Rightarrow$ (i): If T is an isometry then dim  $V_1$  = dim  $V_2$  and T maps any ONB of  $V_1$  to an ONB of  $V_2$ . But then equation (1.1.21) and proposition 1.1.14 imply that ind  $V_1$  = ind  $V_2$ .

## 1.2 Semi-Riemannian metrics

In this section we start our program to transfer the setting of elementary differential geometry to abstract manifolds. The key element is to equip each tangent space with a scalar product that varies smoothly on the manifold. We start right out with the central definition.

**1.2.1 Definition (Metric).** A semi-Riemannian metric tensor (or metric, for short) on a smooth manifold  $^1$  M is a smooth, symmetric and nondegenerate (0,2)-tensor field g on M of constant index.

In other words g smoothly assigns to each point  $p \in M$  a symmetric nondegenerate bilinear form  $g(p) \equiv g_p : T_pM \times T_pM \to \mathbb{R}$  such that the index  $r_p$  of  $g_p$  is the same for all p. We call this common value  $r_p$  the index r of the metric g. We clearly have  $0 \le r \le n = \dim M$ . In case r = 0 all  $g_p$  are inner products on  $T_pM$  and we call g a Riemannian metric, cf. [10, 3.1.14]. In case r = 1 and  $n \ge 2$  we call g a Lorentzian metric.

**1.2.2 Definition.** A semi-Riemannian manifold (SRMF) is a pair (M, g), where g is a metric on M. In case g is Riemannian or Lorentzian we call (M, g) a Riemannian manifold (RMF) or Lorentzian manifold (LMF), respectively.

We will often sloppily call just M a (S)RMF or LMF and write  $\langle \, , \, \rangle$  instead of g and use the following convention

- $g_p(v,w) = \langle v,w \rangle \in \mathbb{R}$  for vectors  $v,w \in T_pM$  and  $p \in M$ , and
- $g(X,Y) = \langle X,Y \rangle \in \mathcal{C}^{\infty}(M)$  for vector fields  $X,Y \in \mathfrak{X}(M)$ .

If  $(V, \varphi)$  is a chart of M with coordinates  $\varphi = (x^1, \dots, x^n)$  and natural basis vector fields  $\partial_i \equiv \frac{\partial}{\partial x^i}$  we write

$$g_{ij} = \langle \partial_i, \partial_j \rangle \qquad (1 \le i, j \le n)$$
 (1.2.1)

for the local components of g on V. Denoting the dual basis covector fields of  $\partial_i$  by  $dx^i$  we have

$$g|_{U} = g_{ij} dx^{i} \otimes dx^{j}, (1.2.2)$$

where we have used the summation convention (see [10, p. 54]) which will be in effect from now on.

Since  $g_p$  is nondegenerate for all p the matrix  $(g_{ij}(p))$  is invertible by lemma 1.1.3 and we write  $(g^{ij}(p))$  for its inverse. By the inversion formula for matrices the  $g^{ij}$  are smooth functions on V and by symmetry of g we have  $g^{ij} = g^{ji}$  for all i and j.

<sup>&</sup>lt;sup>1</sup>In accordance with [10] we assume all smooth manifolds to be second countable and Hausdorff. For background material on topological properties of manifolds see [10, Section 2.3].

### 1.2.3 Example.

(i) We consider  $M = \mathbb{R}^n$ . Clearly  $T_pM \cong \mathbb{R}^n$  for all points p and the standard scalar product induces a Riemannian metric on  $\mathbb{R}^n$  which we denote by

$$\langle v_p, w_p \rangle = v \cdot w = \sum_i v^i w^i.$$
 (1.2.3)

We will always consider  $\mathbb{R}^n$  equipped with this Riemannian metric.

(ii) Let  $0 \le r \le n$ . Then

$$\langle v_p, w_p \rangle = -\sum_{i=1}^r v^i w^i + \sum_{j=r+1}^n v^j w^j$$
 (1.2.4)

defines a metric on  $\mathbb{R}^n$  of index r. We will denote  $\mathbb{R}^n$  with this metric tensor by  $\mathbb{R}^n_r$ . Clearly  $\mathbb{R}^n_0$  is  $\mathbb{R}^n$  in the sense of (i). For  $n \geq 2$  the space  $\mathbb{R}^n_1$  is called n-dimensional  $Minkowski\ space$ . In case n=4 this is the simplest spacetime in the sense of Einstein's general relativity. In fact it is the flat spacetime of special relativity.

Setting  $\varepsilon_i = -1$  for  $1 \le i \le r$  and  $\varepsilon_i = 1$  for  $r+1 \le i \le n$  the metric of  $\mathbb{R}_r^n$  takes the form

$$g = \varepsilon_i \ dx^i \otimes dx^i = \varepsilon_i \ e^i \otimes e^i. \tag{1.2.5}$$

As is clear from section 1.1 a nonvanishing index allows for the existence of null vectors. Here we further pursue this line of ideas.

- **1.2.4 Definition (Causal character).** Let M be a SRMF,  $p \in M$ . We call  $v \in T_pM$ 
  - (i) spacelike if  $\langle v, v \rangle > 0$  or if v = 0,
  - (ii) null if  $\langle v, v \rangle = 0$  and  $v \neq 0$ ,
- (iii) timelike if  $\langle v, v \rangle < 0$ .

The above notions define the so-called *causal character* of v. The set of null vectors in  $T_pM$  is called the *null cone* at p respectively *light cone* at p in the Lorentzian case. In this case we also refer to null vectors as *lightlike* and call a vector *causal* if it is either timelike or lightlike.

**1.2.5 Example.** Let v be a vector in 2-dimensional Minkowski space  $\mathbb{R}^2$ . Then v is null iff  $v_1^2 = v_2^2$ , i.e., iff  $v_1 = \pm v_2$ , see also figure 1.3.

The above terminology is of course motivated by physics and relativity in particular. Setting the speed of light c=1 then a flash of light emitted at the origin of Minkowski space travels along the light cone. A point is timelike if a signal with speed v<1 can reach it and it is spacelike if it needs superluminal speed to reach it.

------ V E R S I O N -0 . 9 (October 18, 2016) -------



Figure 1.3: The lightcone in 2-dimensional Minkowski space

Let q be the quadratic form associated with g, i.e.,  $q(v) = \langle v, v \rangle$  for all  $v \in T_pM$ . Then by polarisation q determines the metric but it is not a tensor field since for  $X \in \mathfrak{X}(M)$  and  $f \in \mathcal{C}^{\infty}(M)$  we clearly have  $q(fX) = f^2q(X)$  (cf. [10, 2.6.19]). It is nevertheless frequently used in 'classical terminology' where it is called the *line element* and denoted by  $ds^2$ . Locally one writes

$$q = ds^2 = g_{ij} \, dx^i \, dx^j, \tag{1.2.6}$$

where juxtaposition of differentials means multiplication in each tangent space, that is

$$q(X) = g_{ij} dx^{i}(X) dx^{j}(X) = g_{ij} X^{i} X^{j}$$
(1.2.7)

for a vector field locally given by  $X = X^i \partial_i$ . Finally we write for the *norm* of a tangent vector

$$||v|| := |q(v)|^{1/2} = |\langle v, v \rangle|^{1/2}.$$
 (1.2.8)

**1.2.6 Remark.** The origin of the somewhat strange notation  $ds^2$  is the following heuristic consideration: Consider two 'neighbouring points' p and p' with coordinates  $(x^1, \ldots, x^n)$  and  $(x^1 + \Delta x^1, \ldots, x^n + \Delta x^n)$ . Then the 'tangent vector'  $\Delta p = \sum \Delta x^i \partial_i$  at p points approximately to p' and so the 'distance'  $\Delta s$  from p to p' should approximately be given by

$$\triangle s^2 = \|\triangle p\|^2 = \langle \triangle p, \triangle p \rangle = \sum_{i,j} g_{ij}(p) \triangle x^i \triangle x^j.$$
 (1.2.9)

Let N be a submanifold of a RMF M with embedding  $j: N \hookrightarrow M$ . Then the pull back  $j^*g$  of the metric g to the submanifold N is given by (see [10, 2.7.24])

$$(j^*g)(p)(v,w) = g(j(p))(T_p j v, T_p j w) = g(p)(v,w),$$
(1.2.10)

where in the final equality we have identified  $T_p j(T_p N)$  with  $T_p N$ , see [10, 3.4.11].

----- VERSION 0.9 (October 18, 2016) -----

Hence  $j^*g$  is just the restriction of  $g_p$  to the subspace  $T_pN$  of  $T_pM$ . Since g is Riemannian this restriction is positive definite and so  $j^*g$  turns N into a RMF.

However, if M is only a SRMF then the (0,2)-tensor field  $j^*g$  on N need not be a metric. Indeed (cf. section 1.1)  $j^*g$  is a metric and hence  $(N,j^*g)$  a SRMF iff every  $T_pN$  is nondegenerate in  $T_pM$  and the index of  $T_pN$  is the same for all  $p \in N$ . Of course this index can be different from the index of g.

These considertaions lead to the following definition.

1.2.7 Definition (Semi-Riemannian submanifold). A submanifold N of a SRMF M is called a semi-Riemannian submanifold (SRSMF) if  $j^*g$  is a metric on N.

If N is Riemannian or Lorentzian these terms replace semi-Riemannian in the above definition. However, note that while every SRSMF of a RMF is again Riemannian, a LMF can have Lorentzian as well as Riemannian submanifolds.

Finally we turn to isometries, i.e., diffeomorphisms that preserve the metric.

**1.2.8 Definition.** Let  $(M, g_M)$  and  $(N, g_N)$  be SRMF and  $\phi : M \to N$  be a diffeomorphism. We call  $\phi$  an isometry if  $\phi^* g_N = g_M$ .

Recall that the defining property of an isometry by [10, 2.7.24] in some more detail reads

$$\langle T_p \phi(v), T_p \phi(w) \rangle = g_N(\phi(p)) \left( T_p \phi(v), T_p \phi(w) \right) = g_M(p)(v, w) = \langle v, w \rangle \tag{1.2.11}$$

for all  $v, w \in T_pM$  and all  $p \in M$ . Since  $\phi$  is a diffeomorphism, every tangent map  $T_p\phi: T_pM \to T_{\phi(p)}N$  is a linear isometry (cf. 1.1.16). Also note that  $\phi^*g_N = g_M$  is equivalent to  $\phi^*q_N = q_M$  since g is always uniquely determined by q. If there is an isometry between the SRMFs M and N we call them *isometric*.

#### 1.2.9 Remark.

- (i) Clearly  $id_M$  is an isometry. Moreover the inverse of an isometry is an isometry again and if  $\phi_1$  and  $\phi_2$  are isometries so is  $\phi_1 \circ \phi_2$ . Hence the isometries of M form a group, called the *isometry group* of M.
- (ii) Given two vector spaces V and W with scalar product and a local isometry  $\phi: V \to W$ . If we consider V and W as SRMF. Then  $\phi$  is also an isometry of SRMF.
- (iii) If V is a vector space with scalar product and  $\dim V = n$ , ind V = r then V as a SRMF is isometric to  $\mathbb{R}^n_r$ . Just choose an ONB  $\{e_1, \ldots, e_n\}$  of V. Then the coordinate mapping  $V \ni v = \sum v^i e_i \mapsto (v^1, \ldots, v^n) \in \mathbb{R}^n$  is a linear isometry and (ii) proves the claim.

## 1.3 The Levi-Civita Connection

The aim of this chapter is to define on SRMFs a 'directional derivative' of a vector field (or more generally a tensor field) in the direction of another vector field. This will be done by generalising the *covariant derivative* on hypersurfaces of  $\mathbb{R}^n$ , see [10, Section 3.2] to general SRMFs. Recall that for a hypersurface M in  $\mathbb{R}^n$  and two vector fields  $X, Y \in \mathfrak{X}(M)$  the directional derivative  $D_X Y$  of Y in direction of X is given by ([10, (3.2.3), (3.2.4)])

$$D_X Y(p) = (D_{X_p} Y)(p) = (X_p(Y^1), \dots, X_p(Y^n)), \tag{1.3.1}$$

where  $Y^i$  ( $1 \le i \le n$ ) are the components of Y. Although X and Y are supposed to be tangential to M the directional derivative  $D_XY$  need not be tangential. To obtain an intrinsic notion one defines on an oriented hypersurface the covariant derivative  $\nabla_X Y$  of Y in direction of X by the tangential projection of the directional derivative, i.e., ([10, 3.2.2])

$$\nabla_X Y = (D_X Y)^{\text{tan}} = D_X Y - \langle D_X Y, \nu \rangle \nu, \tag{1.3.2}$$

where  $\nu$  is the Gauss map ([10, 3.1.3]) i.e., the unit normal vector field of M such that for all p in the hypersurface  $\det(\nu_p, e^1, \dots, e^{n-1}) > 0$  for all positively oriented bases  $\{e^1, \dots, e^{n-1}\}$  of  $T_pM$ .

This construction clearly uses the structure of the ambient Euclidean space, which in case of a general SRMF is no longer available. Hence we will rather follow a different route and define the covariant derivative as an operation that maps a pair of vector fields to another vector field and has a list of characterising properties. Of course these properties are nothing else but the corresponding properties of the covariant derivative on hypersurfaces, that is we turn the analog of [10, 3.2.4] into a definition.

1.3.1 Definition (Connection). A (linear) connection on a  $C^{\infty}$ -manifold M is a map

$$\nabla: \mathfrak{X}(M) \times \mathfrak{X}(M) \to \mathfrak{X}(M), \qquad (X,Y) \mapsto \nabla_X Y$$
 (1.3.3)

such that the following properties hold

$$(\nabla 1) \ \nabla_X Y \ is \ \mathcal{C}^{\infty}(M) \text{-linear in } X$$

$$(i.e., \ \nabla_{X_1 + fX_2} Y = \nabla_{X_1} Y + f \nabla_{X_2} Y \quad \forall f \in \mathcal{C}^{\infty}(M), X_1, X_2 \in \mathfrak{X}(M)),$$

(
$$\nabla 2$$
)  $\nabla_X Y$  is  $\mathbb{R}$ -linear in  $Y$   
(i.e.,  $\nabla_X (Y_1 + aY_2) = \nabla_X Y_1 + a\nabla_X Y_2 \quad \forall a \in \mathbb{R}, Y_1, Y_2 \in \mathfrak{X}(M)$ ),

$$(\nabla 3) \ \nabla_X(fY) = X(f)Y + f\nabla_X Y \text{ for all } f \in \mathcal{C}^{\infty}(M) \text{ (Leibniz rule)}.$$

We call  $\nabla_X Y$  the covariant derivative of Y in direction X w.r.t. the connection  $\nabla$ .

## 1.3.2 Remark (Properties of $\nabla$ ).

(i) Property ( $\nabla 1$ ) implies that for fixed Y the map  $X \mapsto \nabla_X Y$  is a tensor field. This fact needs some explanation. First recall that by [10, 2.6.19] tensor fields are precisely  $\mathcal{C}^{\infty}(M)$ -multilinear maps that take one forms and vector fields to smooth functions, more precisely  $\mathcal{T}_s^r(M) \cong L^{r+s}_{\mathcal{C}^{\infty}(M)}(\Omega^1(M) \times \cdots \times \mathfrak{X}(M), \mathcal{C}^{\infty}(M))$ . Now for  $Y \in \mathfrak{X}(M)$  fixed,  $A = X \mapsto \nabla_X Y$  is a  $\mathcal{C}^{\infty}(M)$ -multininear map  $A : \mathfrak{X}(M) \to \mathfrak{X}(M)$  which naturally is identified with the mapping

$$\bar{A}: \Omega^1(M) \times \mathfrak{X}(M) \to \mathcal{C}^{\infty}(M), \qquad \bar{A}(\omega, X) = \omega(A(X))$$
 (1.3.4)

which is  $\mathcal{C}^{\infty}(M)$ -multilinear by  $(\nabla 1)$ , hence a (1,1) tensor field.

Hence we can speak of  $(\nabla_X Y)(p)$  for any p in M and moreover given  $v \in T_p M$  we can define  $\nabla_v Y := (\nabla_X Y)(p)$ , where X is any vector field with  $X_p = v$ .

(ii) On the other hand the mapping  $Y \to \nabla_X Y$  for fixed X is *not* a tensor field since  $(\nabla 3)$  merely demands  $\mathbb{R}$ -linearity.

In the following our aim is to show that on any SRMF there is exactly one connection which is compatible with the metric. However, we need a supplementary statement, which is of substantial interest of its own. In any vector space V with scalar product g we have an identification of vectors in V with covectors in  $V^*$  via

$$V \ni v \mapsto v^{\flat} \in V^* \quad \text{where} \quad v^{\flat}(w) := \langle v, w \rangle \quad (w \in V).$$
 (1.3.5)

Indeed this mapping is injective by nondegeneracy of g and hence an isomorphism. We will now show that this construction extends to SRMFs providing a identification of vector fields and one forms.

**1.3.3 Theorem (Musical isomorphism).** Let M be a SRMF. For any  $X \in \mathfrak{X}(M)$  define  $X^{\flat} \in \Omega^{1}(M)$  via

$$X^{\flat}(Y) := \langle X, Y \rangle \qquad \forall Y \in \mathfrak{X}(M).$$
 (1.3.6)

Then the mapping  $X \mapsto X^{\flat}$  is a  $\mathcal{C}^{\infty}(M)$ -linear isomorphism from  $\mathfrak{X}(M)$  to  $\Omega^{1}(M)$ .

**Proof.** First  $X^{\flat}: \mathfrak{X}(M) \to \mathcal{C}^{\infty}(M)$  is obviously  $\mathcal{C}^{\infty}(M)$ -linear, hence in  $\Omega^{1}(M)$ , cf. [10, 2.6.19]. Also the mapping  $\phi: X \mapsto X^{\flat}$  is  $\mathcal{C}^{\infty}(M)$ -linear and we show that it is an isomorphism.

 $\phi$  is injective: Let  $\phi(X) = 0$ , i.e.,  $\langle X, Y \rangle = 0$  for all  $Y \in \mathfrak{X}(M)$  implying  $\langle X_p, Y_p \rangle = 0$  for all  $Y \in \mathfrak{X}(M)$ ,  $p \in M$ . Now let  $v \in T_pM$  and choose a vector field  $Y \in \mathfrak{X}(M)$  with  $Y_p = v$ . But then by nondegeneracy of g(p) we obtain

$$\langle X_p, v \rangle = 0 \quad \Rightarrow \quad X_p = 0,$$
 (1.3.7)

and since p was arbitrary we infer X=0.

 $\phi$  is surjective: Let  $\omega \in \Omega^1(M)$ . We will construct  $X \in \mathfrak{X}(M)$  such that  $\phi(X) = \omega$ . We do so in three steps.

----- VERSION 0.9 (January 17, 2017) -----

(1) The local case: Let  $(\varphi = (x^1, ..., x^n), U)$  be a chart and  $\omega|_U = \omega_i dx^i$ . We set  $X|_U := g^{ij}\omega_i \frac{\partial}{\partial x^j} \in \mathfrak{X}(U)$ . Since  $(g^{ij})$  is the inverse matrix of  $(g_{ij})$  we have

$$\langle X|_{U}, \frac{\partial}{\partial x^{k}} \rangle = g^{ij} \,\omega_{i} \,\langle \frac{\partial}{\partial x^{j}}, \frac{\partial}{\partial x^{k}} \rangle = \omega_{i} \,g^{ij} \,g_{jk} = \omega_{i} \,\delta_{k}^{i} = \omega_{k} = \omega|_{U}(\frac{\partial}{\partial x^{k}}), \qquad (1.3.8)$$

and by  $\mathcal{C}^{\infty}(M)$ -linearity we obtain  $X^{\flat}|_{U} = \omega|_{U}$ .

(2) The change of charts works: We show that for any chart  $(\psi = (y^1, ..., y^n), V)$  with  $U \cap V \neq \emptyset$  we have  $X_U|_{U \cap V} = X_V|_{U \cap V}$ . More precisely with  $\omega|_V = \bar{\omega}_j dy^j$  and  $g|_V = \bar{g}_{ij} dy^i \otimes dy^j$  we show that  $g^{ij} \omega_i \frac{\partial}{\partial x^j} = \bar{g}^{ij} \bar{\omega}_i \frac{\partial}{\partial y^j}$ .

To begin with recall that  $dx^j = \frac{\partial x^j}{\partial y^i} dy^i$  ([10, 2.7.27(ii)]) and so

$$\omega|_{U\cap V} = \omega_j dx^j = \omega_j \frac{\partial x^j}{\partial y^i} dy^i = \bar{\omega}_i dy^i, \text{ implying } \bar{\omega}_i = \omega_m \frac{\partial x^m}{\partial y^i}.$$

Moreover by [10, 2.4.15] we have  $\frac{\partial}{\partial y^i} = \frac{\partial x^k}{\partial y^i} \frac{\partial}{\partial x^k}$  which gives

$$\bar{g}_{ij} = g\left(\frac{\partial}{\partial y^i}, \frac{\partial}{\partial y^j}\right) = g\left(\frac{\partial x^k}{\partial y^i} \frac{\partial}{\partial x^k}, \frac{\partial x^l}{\partial y^j} \frac{\partial}{\partial x^l}\right) = \frac{\partial x^k}{\partial y^i} \frac{\partial x^l}{\partial y^j} g\left(\frac{\partial}{\partial y^k}, \frac{\partial}{\partial y^l}\right) = \frac{\partial x^k}{\partial y^i} \frac{\partial x^l}{\partial y^j} g_{kl},$$

and so by setting  $A = (a_{ki}) = (\frac{\partial x^k}{\partial y^i})$  we obtain

$$(\bar{g}_{ij}) = A^t(g_{ij})A$$
 hence  $(\bar{g}^{ij}) = A^{-1}g^{ij}(A^{-1})^t$  and so  $\bar{g}^{ij} = \frac{\partial y^i}{\partial x^k}g^{kl}\frac{\partial y^j}{\partial x^l}$ .

Finally we obtain

$$\bar{g}^{ij}\,\bar{\omega}_i\,\frac{\partial}{\partial y^j} = \frac{\partial y^i}{\partial x^k}\,g^{kl}\,\frac{\partial y^j}{\partial x^l}\,\omega_m\,\frac{\partial x^m}{\partial y^i}\,\frac{\partial x^n}{\partial y^j}\,\frac{\partial}{\partial x^n} = g^{kl}\,\delta_k^m\,\omega_m\,\delta_l^n\,\frac{\partial}{\partial x^n} = g^{mn}\,\omega_m\,\frac{\partial}{\partial x^n}.$$

(3) Globalisation: By (2)  $X(p) := X|_{U}(p)$  (where U is any chart neighbourhood of p) defines a vector field on M. Now choose a cover  $\mathcal{U} = \{U_i | i \in I\}$  of M by chart neighbourhoods and a subordinate partition of unity  $(\chi_i)_i$  such that  $\operatorname{supp}(\chi_i) \subseteq U_i$  (cf. [10, 2.3.10]). For any  $Y \in \mathfrak{X}(M)$  we then have

$$\langle X, Y \rangle = \langle X, \sum_{i} \chi_{i} Y \rangle = \sum_{i} \langle X, \chi_{i} Y \rangle = \sum_{i} \langle X|_{U_{i}}, \chi_{i}, Y \rangle$$
$$= \sum_{i} \omega|_{U_{i}}(\chi_{i}Y) = \sum_{i} \omega(\chi_{i}Y) = \omega(\sum_{i} \chi_{i}Y) = \omega(Y), \tag{1.3.9}$$

and we are done.  $\Box$ 

----- VERSION 0.9 (January 17, 2017) ------

Hence in semi-Riemannian geometry we can always identify vectors and vector fields with covectors and one forms, respectively: X and  $\phi(X) = X^{\flat}$  contain the same information and are called *metrically equivalent*. One also writes  $\omega^{\sharp} = \phi^{-1}(\omega)$  and this notation is the source of the name 'musical isomorphism'. Especially in the physics literature this isomorphism is often encoded in the notation. If  $X = X^{i}\partial_{i}$  is a (local) vector field then one denotes the metrically equivalent one form by  $X^{\flat} = X_{i}dx^{i}$  and we clearly have  $X_{i} = g_{ij}X^{j}$  and  $X^{i} = g^{ij}X_{j}$ . One also calls these operations the raising and lowering of indices. The musical isomorphism naturally extends to higher order tensors.

The next result is crucial for all the following. It is sometimes called the fundamental Lemma of semi-Riemannian geometry.

**1.3.4 Theorem (Levi Civita connection).** Let (M, g) be a SRMF. Then there exists one and only one connection  $\nabla$  on M such that (besides the defining properties  $(\nabla 1) - (\nabla 3)$  of 1.3.1) we have for all  $X, Y, Z \in \mathfrak{X}(M)$ 

$$(\nabla 4) [X, Y] = \nabla_X Y - \nabla_Y X \text{ (torsion free condition)}$$

$$(\nabla 5)$$
  $Z\langle X, Y \rangle = \langle \nabla_Z X, Y \rangle + \langle X, \nabla_Z Y \rangle$  (metric property).

The map  $\nabla$  is called the Levi-Civita connection of (M,g) and it is uniquely determined by the so-called Koszul-formula

$$2\langle \nabla_X Y, Z \rangle = X\langle Y, Z \rangle + Y\langle Z, X \rangle - Z\langle X, Y \rangle$$

$$-\langle X, [Y, Z] \rangle + \langle Y, [Z, X] \rangle + \langle Z, [X, Y] \rangle.$$
(1.3.10)

**Proof.** Uniqueness: If  $\nabla$  is a connection with the additional properties  $(\nabla 4)$ ,  $(\nabla 5)$  then the Koszul-formula (1.3.10) holds: Indeed denoting the right hand side of (1.3.10) by F(X,Y,Z) we find

$$F(X,Y,Z) = \langle \nabla_X Y, Z \rangle + \langle Y, \nabla_X Z \rangle + \langle \nabla_Y Z, X \rangle + \langle Z, \nabla_Y X \rangle - \langle \nabla_Z X, Y \rangle - \langle X, \nabla_Z Y \rangle - \langle X, \nabla_Y Z \rangle + \langle X, \nabla_Z Y \rangle + \langle Y, \nabla_Z X \rangle - \langle Y, \nabla_X Z \rangle + \langle Z, \nabla_X Y \rangle - \langle Z, \nabla_Y X \rangle = 2\langle \nabla_X Y, Z \rangle.$$

Now by injectivity of  $\phi$  in theorem 1.3.3,  $\nabla_X Y$  is uniquely determined.

Existence: For fixed X, Y the mapping  $Z \mapsto F(X, Y, Z)$  is  $C^{\infty}(M)$ -linear as follows by a straight forward calculation using [10, 2.5.15(iv)]. Hence  $Z \mapsto F(X, Y, Z) \in \Omega^1(M)$  and by 1.3.3 there is a (uniquely defined) vector field which we call  $\nabla_X Y$  such that  $2\langle \nabla_X Y, Z \rangle = F(X, Y, Z)$  for all  $Z \in \mathfrak{X}(M)$ . Now  $\nabla_X Y$  by definition obeys the Koszul-formula and it remains to show that the properties  $(\nabla 1)$ - $(\nabla 5)$  hold.

 $(\nabla 1)$   $\nabla_{X_1+X_2}Y = \nabla_{X_1}Y + \nabla_{X_2}Y$  follows from the fact that  $F(X_1+X_2,Y,Z) = F(X_1,Y,Z) + F(X_2,Y,Z)$ . Now let  $f \in \mathcal{C}^{\infty}(M)$  then we have by [10, 2.5.15(iv)]

$$2\langle \nabla_{fX}Y - f\nabla_XY, Z \rangle = F(X, fY, Z) - fF(X, Y, Z) = \dots = 0, \tag{1.3.11}$$

where we have left the straight forward calculation to the reader. Hence by another appeal to theorem 1.3.3 we have  $\nabla_{fX}Y = f\nabla_XY$ .

----- VERSION 0.9 (January 17, 2017) -----

- $(\nabla 2)$  follows since obviously  $Y \mapsto F(X,Y,Z)$  is  $\mathbb{R}$ -linear.
- $(\nabla 3)$  Again by [10, 2.5.15(iv)] we find

$$2\langle \nabla_X fY, Z \rangle = F(X, fY, Z)$$

$$= X(f)\langle Y, Z \rangle - \underline{Z(f)\langle X, Y \rangle} + \underline{Z(f)\langle X, Y \rangle} + X(f)\langle Z, Y \rangle + fF(X, Y, Z)$$

$$= 2\langle X(f)Y + f\nabla_X Y, Z \rangle, \qquad (1.3.12)$$

and the claim again follows by 1.3.3.

 $(\nabla 4)$  We calculate

$$2\langle \nabla_X Y - \nabla_Y X, Z \rangle = F(X, Y, Z) - F(Y, X, Z)$$
  
= \(\ldots = \langle Z, [X, Y] \rangle - \langle Z, [Y, X] \rangle = 2\langle [X, Y], Z \rangle \tag{1.3.13}

and onother appeal to 1.3.3 gives the statement.

 $(\nabla 5)$  We calculate

$$2(\langle \nabla_Z X, Y \rangle + \langle X, \nabla_Z Y \rangle) = F(Z, X, Y) + F(Z, Y, X) = \dots = 2Z(\langle X, Y \rangle). \quad \Box$$

**1.3.5 Remark.** In the case of M being an oriented hypersurface of  $\mathbb{R}^n$  the covariant derivative is given by (1.3.2). By [10, 3.2.4, 3.2.5]  $\nabla$  satisfies  $(\nabla 1)$ – $(\nabla 5)$  and hence is the Levi-Civita connection of M (with the induced metric).

Next we make sure that  $\nabla$  is local in both slots, a result of utter importance.

**1.3.6 Lemma (Localisation of**  $\nabla$ ). Let  $U \subseteq M$  be open and let  $X, Y, X_1, X_2, Y_1, Y_2 \in \mathfrak{X}(M)$ . Then we have

(i) If 
$$X_1|_U = X_2|_U$$
 then  $(\nabla_{X_1}Y)|_U = (\nabla_{X_2}Y)|_U$ , and

(ii) If 
$$Y_1|_U = Y_2|_U$$
 then  $(\nabla_X Y_1)|_U = (\nabla_X Y_2)|_U$ .

### Proof.

- (i) By remark 1.3.2(i):  $X \mapsto \nabla_X Y$  is a tensor field hence we even have that  $X_1|_p = X_2|_p$  at any point  $p \in M$  implying  $(\nabla_{X_1} Y)|_p = (\nabla_{X_2} Y)|_p$ .
- (ii) It suffices to show that  $Y|_U = 0$  implies  $(\nabla_X Y)|_U = 0$ . So let  $p \in U$  and  $\chi \in \mathcal{C}^{\infty}(M)$  with supp $(\chi) \subseteq U$  and  $\chi \equiv 1$  on a neighbourhood of p. By  $(\nabla 3)$  we then have

$$0 = (\nabla_X \underbrace{\chi Y}_{=0})|_p = \underbrace{X(\chi)}_{=0}|_p Y_p + \underbrace{\chi(p)}_{=1}(\nabla_X Y)|_p \text{ and so } (\nabla_X Y)|_U = 0.$$
 (1.3.14)

----- VERSION 0.9 (January 17, 2017) -----

- **1.3.7 Remark.** Lemma 1.3.6 allows us to restrict  $\nabla$  to  $\mathfrak{X}(U) \times \mathfrak{X}(U)$ : Let  $X, Y \in \mathfrak{X}(U)$  and  $V \subseteq \bar{V} \subseteq U$  (cf. [10, 2.3.12]) and extend X, Y by vector fields  $\tilde{X}, \tilde{Y} \in \mathfrak{X}(M)$  such that  $\tilde{X}|_{V} = X|_{V}$  and  $\tilde{Y}|_{V} = Y|_{V}$ . (This can be easily done using a partition of unity subordinate to the cover  $U, M \setminus \bar{V}$ , cf. [10, 2.3.14].) Now we may set  $(\nabla_{X}Y)|_{V} := (\nabla_{\tilde{X}}\tilde{Y})|_{V}$  since by 1.3.6 this definition is independent of the choice of the extensions  $\tilde{X}, \tilde{Y}$ . Moreover we may write U as the union of such V's and so  $\nabla_{X}Y$  is a well-defined element of  $\mathfrak{X}(U)$ . In particular, this allows to insert the local basis vector fields  $\partial_{i}$  into  $\nabla$ , which will be extensively used in the following.
- **1.3.8 Definition (Christoffel symbols).** Let  $(\varphi = (x^1, ..., x^n), U)$  be a chart of the SRMF M. The Christoffel symbols (of the second kind) with respect to  $\varphi$  are the  $\mathcal{C}^{\infty}$ -functions  $\Gamma^i_{jk}: U \to \mathbb{R}$  defined by

$$\nabla_{\partial_i} \partial_j =: \Gamma^k_{ij} \partial_k \qquad (1 \le i, j \le n). \tag{1.3.15}$$

Since  $[\partial_i, \partial_j] = 0$ , property ( $\nabla 4$ ) immediately gives the symmetry of the Christoffel symbols in the lower pair of indices, i.e.,  $\Gamma^k_{ij} = \Gamma^k_{ji}$ . Observe that  $\Gamma$  is not a tensor and so the Christoffel symbols do not exhibit the usual transformation behaviour of a tensor field under the change of charts. The next statement, in particular, shows how to calculate the Christoffel symbols from the metric.

**1.3.9 Proposition (Christoffel symbols explicitly).** Let  $(\varphi = (x^1, ..., x^n), U)$  be a chart of the SRMF (M, q) and let  $Z = Z^i \partial_i \in \mathfrak{X}(U)$ . Then we have

(i) 
$$\Gamma^k_{ij} =: \frac{1}{2} g^{km} \Gamma_{kij} = \frac{1}{2} g^{km} \left( \frac{\partial g_{jm}}{\partial x^i} + \frac{\partial g_{im}}{\partial x^j} - \frac{\partial g_{ij}}{\partial x^m} \right),$$

(ii) 
$$\nabla_{\partial_i} Z^j \partial_j = \left( \frac{\partial Z^k}{\partial x^i} + \Gamma^k_{ij} Z^j \right) \partial_k.$$

The  $C^{\infty}(M)$ -functions  $\Gamma_{kij}$  are sometimes called the Christoffel symbols of the first kind. **Proof.** 

(i) Set  $X = \partial_i$ ,  $Y = \partial_j$  and  $Z = \partial_m$  in the Koszul formula (1.3.10). Since all Lie-brackets vanish we obtain

$$2\langle \nabla_{\partial_i} \partial_i, \partial_m \rangle = \partial_i g_{im} + \partial_i g_{im} - \partial_m g_{ij}, \tag{1.3.16}$$

which upon multiplying with  $g^{km}$  gives the result.

(ii) follows immediately from  $(\nabla 3)$  and 1.3.6.

----- VERSION 0.9 (January 17, 2017) -----

**1.3.10 Lemma (The connection of flat space).** For  $X,Y \in \mathfrak{X}(\mathbb{R}^n_r)$  with  $Y = (Y^1,\ldots,Y^n) = Y^i\partial_i$  let

$$\nabla_X Y = X(Y^i)\partial_i. \tag{1.3.17}$$

Then  $\nabla$  is the Levi-Civita connection on  $\mathbb{R}^n_r$  and in natural coordinates (i.e., using id as a global chart) we have

(i) 
$$g_{ij} = \delta_{ij}\varepsilon_j$$
 (with  $\varepsilon_i = -1$  for  $1 \le j \le r$  and  $\varepsilon_j = +1$  for  $r < j \le n$ ),

(ii) 
$$\Gamma^{i}_{ik} = 0$$
 for all  $1 \leq i, j, k \leq n$ .

**Proof.** Recall that in the terminology of [10, Sec. 3.2] we have  $\nabla_X Y = D_X Y = p \mapsto DY(p) X_p$  which coincides with (1.3.17). The validity of  $(\nabla 1)$ – $(\nabla 5)$  has been checked in [10, 3.2.4,5] and hence  $\nabla$  is the Levi-Civita connection. Moreover we have

(i) 
$$g_{ij} = \langle \partial_i, \partial_j \rangle = \langle e_i, e_j \rangle = \varepsilon_i \delta_{ij}$$
, and

(ii) 
$$\Gamma^{i}_{ik} = 0$$
 by (i) and 1.3.9(i).

Next we consider vector fields with vanishing covariant derivatives.

- **1.3.11 Definition (Parallel vector field).** A vector field X on a SRMF M is called parallel if  $\nabla_Y X = 0$  for all  $Y \in \mathfrak{X}(M)$ .
- **1.3.12 Example.** The coordinate vector fields in  $\mathbb{R}_r^n$  are parallel: Let  $Y = Y^j \partial_j$  then by 1.3.10(ii)  $\nabla_Y \partial_i = Y^j \nabla_{\partial_j} \partial_i = 0$ . More generally on  $\mathbb{R}_r^n$  the constant vector fields are precisely the parallel ones, since

$$\nabla_Y X = 0 \ \forall Y \Leftrightarrow DX(p)Y(p) = 0 \ \forall Y \ \forall p \Leftrightarrow DX = 0 \Leftrightarrow X = \text{const.}$$
 (1.3.18)

In light of this example the notion of a parallel vector field generalises the notion of a constant vector field. We now present an explicit example.

**1.3.13 Example (Cylindrical coordinates on**  $\mathbb{R}^3$ ). Let  $(r, \varphi, z)$  be cylindrical coordinates on  $\mathbb{R}^3$ , i.e.,  $(x, y, z) = (r \cos \varphi, r \sin \varphi, z)$ , see figure 1.4. This clearly is a chart on  $\mathbb{R}^3 \setminus \{x \geq 0, y = 0\}$ . Its inverse  $(r, \varphi, z) \mapsto (r \cos \varphi, r \sin \varphi, z)$  is a parametrisation, hence we have (cf. [10, below 2.4.11] or directly [10, 2.4.15])

$$\partial_r = \cos \varphi \partial_x + \sin \varphi \partial_y,$$
  
 $\partial_\varphi = rX \quad \text{with } X = -\sin \varphi \partial_x + \cos \varphi \partial_y,$   
 $\partial_z = \partial_z.$ 

Setting  $y^1 = r$ ,  $y^2 = \varphi$ ,  $y^3 = z$  we obtain

$$g_{11} = \langle \partial_r, \partial_r \rangle = 1,$$
  

$$g_{22} = \langle \partial_{\varphi}, \partial_{\varphi} \rangle = r^2(\cos^2 \varphi + \sin^2 \varphi) = r^2,$$
  

$$g_{33} = \langle \partial_z, \partial_z \rangle = 1,$$
  

$$g_{ij} = 0 \text{ for all } i \neq j.$$



Figure 1.4: Cylindrical coordinates fix notation

So we have

$$(g_{ij}) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & r^2 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad (g^{ij}) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{r^2} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
(1.3.19)

and hence

$$g = g_{ij}dx^{i} \otimes dx^{j} = dr \otimes dr + r^{2}d\varphi \otimes d\varphi + dz \otimes dz =: dr^{2} + r^{2}d\varphi^{2} + dz^{2}.$$

By (1.3.19)  $\{\partial_r, \partial_{\varphi}, \partial_z\}$  is orthogonal and hence  $(r, \varphi, z)$  is an orthogonal coordinate system. For the Christoffel symbols we find (by 1.3.9(i))

$$\Gamma_{22}^{1} = \frac{1}{2}g^{1l}\Gamma_{l22} = \frac{1}{2}g^{11}\Gamma_{122} = \frac{1}{2}1\underbrace{(g_{12,2} + g_{21,2} - g_{22,1})}_{=0} = \frac{-1}{2}2r = -r,$$

$$\Gamma_{12}^{2} = \Gamma_{21}^{2} = \frac{1}{2}g^{2l}\Gamma_{l21} = \frac{1}{2}g^{22}\Gamma_{221} = \frac{1}{2}\frac{1}{r^{2}}(g_{22,1} + g_{12,2} - g_{21,2}) = \frac{1}{2r^{2}}2r = \frac{1}{r},$$

and all other  $\Gamma^i_{jk} = 0$ . Hence we have  $\nabla_{\partial_i} \partial_j = 0$  for all i, j with the exception of

$$\nabla_{\partial_{\varphi}}\partial_{\varphi} = -r\partial_{r}$$
, and  $\nabla_{\partial_{\varphi}}\partial_{r} = \nabla_{\partial_{r}}\partial_{\varphi} = \frac{1}{r}\partial_{\varphi} = X$ .

By figure 1.4 we see that  $\partial_r$  and  $\partial_{\varphi}$  are parallel if one moves in the z-direction. We hence expect that  $\nabla_{\partial_z}\partial_{\varphi} = 0 = \nabla_{\partial_z}\partial_r$  which also results from our calculations. Moreover  $\partial_z$  is parallel since it is a coordinate vector field in the natural basis of  $\mathbb{R}^3$ , cf. 1.3.12.

Our next aim is to extend the covariant derivative to tensor fields of general rank. We will start with a slight detour introducing the notion of a tensor derivation and its basic properties and then use this machinery to extend the covariant derivative to the space  $\mathcal{T}_s^r(M)$  of tensor fields of rank (r, s).

## Interlude: Tensor derivations

In this brief interlude we introduce some basic operations on tensor fields which will be essential in the following. We recall (for more information on tensor fields see e.g. [10, Sec. 2.6]) that a tensor field  $A \in \mathcal{T}_s^r(M) = \Gamma(M, T_s^r(M))$  is a (smooth) section of the (r,s)-tensor bundle  $T_s^r(M)$  of M. That is to say that for any point  $p \in M$ , the value of the tensor field A(p) is a multilinear map

$$A(p): \underbrace{T_p M^* \times \dots \times T_p M^*}_{r \text{ times}} \times \underbrace{T_p M \times \dots \times T_p M}_{s \text{ times}} \to \mathbb{R}.$$
 (1.3.20)

Locally in a chart  $(\psi = (x^1, \dots, x^n), V)$  we have

$$A|_{V} = A^{i_{1}\dots i_{r}}_{j_{1}\dots j_{s}} \partial_{i_{1}} \otimes \cdots \otimes \partial_{i_{r}} \otimes dx^{j_{1}} \otimes \cdots \otimes dx^{j_{s}}, \tag{1.3.21}$$

where the coefficient functions are given for  $q \in V$  by

$$A_{j_1...j_s}^{i_1...i_r}(q) = A(q)(dx^{i_1}|_q, \dots, dx^{i_r}|_q, \partial_{j_1}|_q, \dots, \partial_{j_s}|_q).$$
(1.3.22)

The space  $\mathcal{T}_s^r(M)$  of can be identified with the space

$$L_{\mathcal{C}^{\infty}(M)}^{r+s}(\underbrace{\Omega^{1}(M) \times \cdots \times \Omega^{1}(M)}_{r\text{-times}} \times \underbrace{\mathfrak{X}(M) \times \cdots \times \mathfrak{X}(M)}_{s\text{-times}}, \mathcal{C}^{\infty}(M))$$

$$(1.3.23)$$

of  $\mathcal{C}^{\infty}(M)$ -multilinear maps form one-forms and vector fields to smooth functions. Recall also the special cases  $\mathcal{T}^0_0(M) = \mathcal{C}^{\infty}(M)$ ,  $\mathcal{T}^1_0(M) = \mathfrak{X}(M)$ , and  $\mathcal{T}^1_1(M) = \Omega^1(M)$ .

Additionally will also frequently deal with the following situation, which generalises the one of 1.3.2(i): If  $A: \mathfrak{X}(M)^s \to \mathfrak{X}(M)$  is a  $\mathcal{C}^{\infty}(M)$ -multilinear mapping then we define

$$\bar{A}: \Omega^1(M) \times \mathfrak{X}(M)^s \to \mathcal{C}^{\infty}(M)$$
$$\bar{A}(\omega, X_1, \dots, X_s) := \omega(A(X_1, \dots, X_s)). \tag{1.3.24}$$

Clearly  $\bar{A}$  is  $C^{\infty}(M)$ -multilinear and hence a (1, s)-tensor field and we will frequently and tacitly identify  $\bar{A}$  and A.

We start by introducing a basic operation on tensor fields that shrinks their rank from (r, s) to (r - 1, s - 1). The general definition is based on the following special case.

**1.3.14 Lemma (**(1,1)**-contraction).** There is a unique  $C^{\infty}(M)$ -linear map  $C: \mathcal{T}_1^1(M) \to C^{\infty}(M)$  called the (1,1)-contraction such that

$$C(X,\omega) = \omega(X)$$
 for all  $X \in \mathfrak{X}(M)$  and  $\omega \in \Omega^1(M)$ . (1.3.25)

**Proof.** Since  $\mathcal{C}$  is to be  $\mathcal{C}^{\infty}(M)$ -linear it is a pointwise operation, cf. [10, 2.6.19] and we start by giving a local definition. For the natural basis fields of a chart  $(\varphi = (x^1, \dots, x^n), V)$ 

$$-----$$
 VERSION 0.9 (January 17, 2017)  $------$ 

we necessarily have  $C(\partial_j, dx^i) = dx^i(\partial_j) = \delta^i_j$  and so for  $\mathcal{T}^1_1 \ni A = \sum A^i_j \partial_i \otimes dx^j$  we are forced to define

$$C(A) = \sum_{i} A_i^i = \sum_{i} A(dx^i, \partial_j). \tag{1.3.26}$$

It remains to show that the definition is independent of the chosen chart. Let  $(\psi = (y^1, \ldots, y^n), V)$  be another chart then we have using [10, 2.7.27(iii)] as well as the summation convention

$$A(dy^m, \partial_m) = A\left(\frac{\partial y^m}{\partial x^i} dx^i, \frac{\partial x^j}{\partial y^m} \partial x_j\right) = \underbrace{\frac{\partial y^m}{\partial x^i} \frac{\partial x^j}{\partial y^m}}_{\delta_j^i} A(dx^i, \partial x_j) = A(dx^i, \partial x_i). \quad (1.3.27)$$

To define the contraction for general rank tensors let  $A \in \mathcal{T}_s^r(M)$ , fix  $1 \leq i \leq r$ ,  $1 \leq j \leq s$  and let  $\omega^1, \ldots, \omega^{r-1} \in \Omega^1(M)$  and  $X_1, \ldots, X_{s-1} \in \mathfrak{X}(M)$ . Then the map

$$\Omega(M) \times \mathfrak{X}(M) \ni (\omega, X) \mapsto A(\omega^1, \dots, \omega_i, \dots, \omega^{r-1}, X_1, \dots, X_j, \dots, X_{s-1})$$
 (1.3.28)

is a (1,1)-tensor. We now apply the (1,1)-contraction  $\mathcal{C}$  of 1.3.14 to (1.3.28) to obtain a  $\mathcal{C}^{\infty}(M)$ -function denoted by

$$(C_i^i A)(\omega^1, \dots, \omega^{n-1}, X_1, \dots, X_{s-1}).$$
 (1.3.29)

Obviously  $C_j^i A$  is  $C^{\infty}(M)$ -linear in all its slots, hence it is a tensor field in  $\mathcal{T}_{s-1}^{r-1}(M)$  which we call the (i,j)-contraction of A. We illustrate this concept by the following examples.

### 1.3.15 Examples (Contraction).

(i) Let  $A \in \mathcal{T}_3^2(M)$  then  $\mathcal{C}_3^1 A \in \mathcal{T}_2^1$  is given by

$$C_3^1 A(\omega, X, Y) = \mathcal{C}(A(., \omega, X, Y, .))$$

$$(1.3.30)$$

which locally takes the form

$$(\mathcal{C}_3^1 A)_{ij}^k = (\mathcal{C}_3^1 (A)(dx^k, \partial_i, \partial_j)) = \mathcal{C} \left( A(., dx^k, \partial_i, \partial_j, .) \right) = A(dx^m, dx^k, \partial_i, \partial_j, \partial_m) = A_{ijm}^{mk},$$
 where of course we again have applied the summation convention.

(ii) More generally the components of  $C_l^k A$  of  $A \in \mathcal{T}_s^r(M)$  in local coordinates take the form  $A_{j_1...m...j_s}^{i_1...k}$ .

Now we may define the notion of a tensor derivation announced above as map on tensor fields that satisfies a product rule and commutes with contractions.

1.3.16 Definition (Tensor derivation). A tensor derivation  $\mathcal{D}$  on a smooth manifold M is a family of  $\mathbb{R}$ -linear maps

$$\mathcal{D} = \mathcal{D}_s^r: \ \mathcal{T}_s^r(M) \to \mathcal{T}_s^r(M) \quad (r, s \ge 0)$$
(1.3.31)

such that for any pair A, B of tensor fields we have

- (i)  $\mathcal{D}(A \otimes B) = \mathcal{D}A \otimes B + A \otimes \mathcal{D}B$
- (ii)  $\mathcal{D}(\mathcal{C}A) = \mathcal{C}(\mathcal{D}A)$  for any contraction  $\mathcal{C}$ .

The product rule in the special case  $f \in \mathcal{C}^{\infty}(M) = \mathcal{T}_0^0(M)$  and  $A \in \mathcal{T}_s^r(M)$  takes the form

$$\mathcal{D}(f \otimes A) = \mathcal{D}(fA) = (\mathcal{D}f)A + f\mathcal{D}A. \tag{1.3.32}$$

Moreover for r = 0 = s the tensor derivation  $\mathcal{D}_0^0$  is a derivation on  $\mathcal{C}^{\infty}(M)$  (cf. [10, 2.5.12]) and so by [10, 2.5.13] there exists a unique vector field  $X \in \mathfrak{X}(M)$  such that

$$\mathcal{D}f = X(f) \quad \text{for all } f \in \mathcal{C}^{\infty}(M).$$
 (1.3.33)

Despite the fact that tensor derivations are not  $C^{\infty}(M)$ -linear and hence not pointwise defined<sup>2</sup> (cf. [10, 2.6.19]) they are local operators in the following sense.

1.3.17 Proposition (Tensor derivations are local). Let  $\mathcal{D}$  be a tensor derivation on M and let  $U \subseteq M$  be open. Then there exists a unique tensor derivation  $\mathcal{D}_U$  on U, called the restriction of  $\mathcal{D}$  to U statisfying

$$\mathcal{D}_U(A|_U) = (\mathcal{D}A)|_U \tag{1.3.34}$$

for all tensor fields A on M.

**Proof.** Let  $B \in \mathcal{T}_s^r(U)$  and  $p \in U$ . Choose a cut-off function  $\chi \in \mathcal{C}_0^{\infty}(U)$  with  $\chi \equiv 1$  in a neighbourhood of p. Then  $\chi B \in \mathcal{T}_s^r(M)$  and we define

$$(\mathcal{D}_U B)(p) := \mathcal{D}(\chi B)(p). \tag{1.3.35}$$

We have to check that this definition is valid and leads to the asserted properties.

(1) The definition is independent of  $\chi$ : choose another cut-off function  $\tilde{\chi}$  at p and set  $f = \chi - \tilde{\chi}$ . Then choosing a function  $\varphi \in \mathcal{C}_0^{\infty}(U)$  with  $\varphi \equiv 1$  on supp(f) we obtain

$$\mathcal{D}(fB)(p) = \mathcal{D}(f\varphi B)(p) = \mathcal{D}(f)|_{p}(\varphi B)(p) + \underbrace{f(p)}_{=0}\mathcal{D}(\varphi B)(p) = 0, \qquad (1.3.36)$$

since we have with a vector field X as in (1.3.33) that  $\mathcal{D}f(p) = X(f)(p) = 0$  by the fact that  $f \equiv 0$  near the point p.

 $<sup>^{2}</sup>$ Recall from analysis that taking a derivative of a function is *not* a pointwise operation: It depends on the values of the function in a neighbourhood.

- (2)  $\mathcal{D}_U B \in \mathcal{T}_s^r(U)$  since for all  $V \subseteq U$  open we have  $\mathcal{D}_U B | V = \mathcal{D}(\chi B) |_V$  by definition if  $\chi \equiv 1$  on V. Now observe that  $\chi B \in \mathcal{T}_s^r(M)$ .
- (3) Clearly  $\mathcal{D}_U$  is a tensor derivation on U since  $\mathcal{D}$  is a tensor derivation on M.
- (4)  $\mathcal{D}_U$  has the restriction property (1.3.34) since if  $B \in \mathcal{T}_s^r(M)$  we find for all  $p \in U$  that  $\mathcal{D}_U(B|_U)(p) = \mathcal{D}(\chi B|_U)(p) = \mathcal{D}(\chi B)(p)$  and  $\mathcal{D}(\chi B)(p) = \mathcal{D}(B)(p)$  since  $\mathcal{D}((1-\chi)B)(p) = 0$  by the same argument as used in (1.3.36).
- (5) Finally  $\mathcal{D}_U$  is uniquely determined: Let  $\tilde{\mathcal{D}}_u$  be another tensor derivation that satisfies (1.3.34) then for  $B \in \mathcal{T}_s^r(U)$  we again have  $\tilde{\mathcal{D}}_u((1-\chi)B)(p) = 0$  and so by (4)

$$\tilde{\mathcal{D}}_U(B)(p) = \tilde{\mathcal{D}}_U(\chi B)(p) = \mathcal{D}(\chi B)(p) = \mathcal{D}_U(B)(p)$$

for all  $p \in U$ .

We next state and prove a product rule for tensor derivations.

**1.3.18 Proposition (Product rule).** Let  $\mathcal{D}$  be a tensor derivation on M. Then we have for  $A \in \mathcal{T}_s^r(M)$ ,  $\omega^1, \ldots, \omega^r \in \Omega(M)$ , and  $X_1, \ldots, X_s \in \mathfrak{X}(M)$ 

$$\mathcal{D}\left(A(\omega^{1},\ldots,\omega^{r},X_{1},\ldots,X_{s})\right) = (\mathcal{D}A)(\omega^{1},\ldots,\omega^{r},X_{1},\ldots,X_{s})$$

$$+\sum_{i=1}^{r}A(\omega^{1},\ldots,\mathcal{D}\omega^{i},\ldots,\omega^{r},X_{1},\ldots,X_{s})$$

$$+\sum_{i=1}^{s}A(\omega^{1},\ldots,\omega^{r},X_{1},\ldots,\mathcal{D}X_{j},\ldots,X_{s}).$$

$$(1.3.37)$$

**Proof.** We only show the case r=1=s since the general case follows in complete analogy. We have  $A(\omega,X)=\bar{\mathcal{C}}(A\otimes\omega\otimes X)$  where  $\bar{\mathcal{C}}$  is a composition of two contractions. Indeed in local coordinates  $A\otimes\omega\otimes X$  has components  $A_j^i\omega_kX^l$  and  $A(\omega,X)=A(\omega_idx^i,X^j\partial_j)=\omega_iX^jA(dx^i,\partial_j)=A_j^i\omega_iX^j$  and the claim follows from 1.3.15(ii). By 1.3.16(i)–(ii) we hence have

$$\mathcal{D}(A(\omega, X)) = \mathcal{D}(\bar{\mathcal{C}}(A \otimes \omega \otimes X)) = \bar{\mathcal{C}}\mathcal{D}(A \otimes \omega \otimes X)$$

$$= \bar{\mathcal{C}}(\mathcal{D}A \otimes \omega \otimes X) + \bar{\mathcal{C}}(A \otimes \mathcal{D}\omega \otimes X) + \bar{\mathcal{C}}(A \otimes \omega \otimes \mathcal{D}X)$$

$$= \mathcal{D}A(\omega, X) + A(\mathcal{D}\omega, X) + A(\omega, \mathcal{D}X).$$
(1.3.38)

The product rule (1.3.37) can obviously be solved for the term involving  $\mathcal{D}A$  resulting in a formula for the tensor derivation of a general tensor field A in terms of  $\mathcal{D}$  only acting on functions, vector fields, and one-forms. Moreover for a one form  $\omega$  we have by (1.3.37)

$$(\mathcal{D}\omega)(X) = \mathcal{D}(\omega(X)) - \omega(\mathcal{D}X) \tag{1.3.39}$$

----- VERSION 0.9 (January 17, 2017) ------

and so the action of a tensor derivation is determined by its action on functions and vector fields alone, a fact which we state as follows.

**1.3.19 Corollary.** If two tensor derivations  $\mathcal{D}_1$  and  $\mathcal{D}_2$  agree on functions  $\mathcal{C}^{\infty}(M)$  and on vector fields  $\mathfrak{X}(M)$  then they agree on all tensor fields, i.e.,  $\mathcal{D}_1 = \mathcal{D}_2$ .

More importantly a tensor derivation can be constructed from its action on just functions and vector fields in the following sense.

1.3.20 Theorem (Constructing tensor derivations). Given a vector field  $V \in \mathfrak{X}(M)$  and an  $\mathbb{R}$ -linear mapping  $\delta : \mathfrak{X}(M) \to \mathfrak{X}(M)$  obeying the product rule

$$\delta(fX) = V(f)X + f\delta(X) \quad \text{for all } f \in \mathcal{C}^{\infty}(M), \ \mathfrak{X} \in \mathfrak{X}(M). \tag{1.3.40}$$

Then there exists a unique tesor derivation  $\mathcal{D}$  on M such that  $\mathcal{D}_0^0 = V : \mathcal{C}^{\infty}(M) \to \mathcal{C}^{\infty}(M)$  and  $\mathcal{D}_0^1 = \delta : \mathfrak{X}(M) \to \mathfrak{X}(M)$ .

**Proof.** Uniqueness is a consequence of 1.3.19 and we are left with constructing  $\mathcal{D}$  using the product rule.

To begin with, by (1.3.39) we necessarily have for any one-form  $\omega$ 

$$(\mathcal{D}\omega)(X) \equiv (\mathcal{D}_1^0\omega)(X) = V(\omega(X)) - \omega(\delta(X)), \tag{1.3.41}$$

which obviously is  $\mathbb{R}$ -linear. Moreover,  $\mathcal{D}\omega$  is  $\mathcal{C}^{\infty}(M)$ -linear hence a one-form since

$$\mathcal{D}\omega(fX) = V(\omega(fX)) - \omega(\delta(fX)) = V(f\omega(X)) - \omega(V(f)X) - \omega(f\delta(X))$$

$$= fV(\omega(X)) + \underline{V(f)}\omega(X) - \underline{V(f)}\omega(X) - f\omega(\delta(X))$$

$$= f(V(\omega(X)) - \omega(\delta(X)) = f\mathcal{D}\omega(X).$$
(1.3.42)

Similarly for higher ranks  $r + s \geq 2$  we have to define  $\mathcal{D}_s^r$  by the product rule (1.3.37): Again it is easy to see that  $\mathcal{D}_s^r$  is  $\mathbb{R}$ -linear and that  $\mathcal{D}_s^r A$  is  $\mathcal{C}^{\infty}(M)$ -multilinear hence in  $\mathcal{T}_s^r(M)$ .

We now have to verify (i), (ii) of definition 1.3.16. We only show  $\mathcal{D}(A \otimes B) = \mathcal{D}A \otimes B + B \otimes \mathcal{D}A$  in case  $A, B \in \mathcal{T}_1^1(M)$ , the general case being completely analogous:

$$(\mathcal{D}(A \otimes B))(\omega^{1}, \omega^{2}, X_{1}, X_{2}) = V(A(\omega^{1}, X_{1}) \cdot B(\omega^{2}, X_{2}))$$

$$- \left(A(\mathcal{D}\omega^{1}, X_{1})B(\omega^{2}, X_{2}) + A(\omega^{1}, X_{1})B(\mathcal{D}\omega^{2}, X_{2})\right)$$

$$- \left(A(\omega^{1}, \mathcal{D}X_{1})B(\omega^{2}, X_{2}) + A(\omega^{1}, X_{1})B(\omega^{2}, \mathcal{D}X_{2})\right)$$

$$= \left(V(A(\omega^{1}, X_{1})) - A(\mathcal{D}\omega^{1}, X_{1}) - A(\omega^{1}, \mathcal{D}X_{1})\right)B(\omega^{2}, X_{2})$$

$$+ A(\omega^{1}, X_{1})\left(V(B(\omega^{2}, X_{2})) - B(\mathcal{D}\omega^{2}, X_{2}) - B(\omega^{2}, \mathcal{D}X_{2})\right)$$

$$= (\mathcal{D}A \otimes B + A \otimes \mathcal{D}B)(\omega^{1}, \omega^{2}, X_{1}, X_{2}).$$

----- VERSION 0.9 (January 17, 2017) ------

Finally, we show that  $\mathcal{D}$  commutes with contractions. We start by considering  $\mathcal{C}: \mathcal{T}_1^1(M) \to \mathcal{C}^{\infty}(M)$ . Let  $A = X \otimes \omega \in \mathcal{T}_1^1(M)$ , then we have by (1.3.41)

$$\mathcal{D}(\mathcal{C}(X \otimes \omega)) = \mathcal{D}(\omega(X)) = V(\omega(X)) = \omega(\delta(X)) + \mathcal{D}(\omega)(X), \tag{1.3.43}$$

which agrees with

$$C(\mathcal{D}(X \otimes \omega)) = C(\mathcal{D}X \otimes \omega + X \otimes \mathcal{D}\omega) = \omega(\mathcal{D}X) + (\mathcal{D}\omega)(X). \tag{1.3.44}$$

Obviously the same holds true for (finite) sums of terms of the form  $\omega^i \otimes X_i$ . Since  $\mathcal{D}$  is local (proposition 1.3.17) and  $\mathcal{C}$  is even pointwise it suffices to prove the statement in local coordinates. But there each (1,1)-tensor is a sum as mentioned above. The extension to the general case is now straight forward. We only explicitly check it for  $A \in \mathcal{T}_2^1(M)$ :

$$\begin{split} \left(\mathcal{D}_{1}^{0}(\mathcal{C}_{2}^{1}A)\right)&(X) = \mathcal{D}_{0}^{0}\left((\mathcal{C}_{2}^{1}A)(X)\right) - (\mathcal{C}_{2}^{1}A)(\mathcal{D}_{0}^{1}X) = \mathcal{D}_{0}^{0}\left(\mathcal{C}(A(.,X,.))\right) - \mathcal{C}\left(A(.,\mathcal{D}X,.)\right) \\ &= \mathcal{C}\left(\mathcal{D}_{1}^{1}\left(A(.,X,.)\right) - A(.,\mathcal{D}X,.)\right) \\ &= \mathcal{C}\left((\omega,Y) \mapsto \mathcal{D}\left(A(\omega,X,Y)\right) - A(\mathcal{D}\omega,X,Y) - A(\omega,X,\mathcal{D}Y) - A(\omega,\mathcal{D}X,Y)\right) \\ &= \mathcal{C}\left((\omega,Y) \mapsto (\mathcal{D}A)(\omega,X,Y)\right) = \left(\mathcal{C}_{2}^{1}(\mathcal{D}A)\right)(X). \end{split}$$

As a first important example of a tensor derivation we discuss the Lie derivative.

**1.3.21 Example (Lie derivative on**  $\mathcal{T}_s^r$ ). Let  $X \in \mathfrak{X}(M)$ . Then we define the tensor derivative  $L_X$ , called the *Lie derivative* with respect to X by setting

$$L_X(f) = X(f)$$
 for all  $f \in \mathcal{C}^{\infty}(M)$ , and  $L_X(Y) = [X, Y]$  for all vector fields  $Y \in \mathfrak{X}(M)$ .

Indeed this definition generalises the Lie derivative or Lie bracket of vector fields to general tensors in  $\mathcal{T}_s^r(M)$  since by theorem 1.3.20 we only have to check that  $\delta(Y) = L_X(Y) = [X, Y]$  satisfies the product rule (1.3.40). But this follows immediately form the corresponding property of the Lie bracket, see [10, 2.5.15(iv)].

Finally we return to the Levi-Civita covariant derivative on a SRMF (M, g), cf. 1.3.4. We want to extend it from vector fields to arbitrary tensor fields using theorem 1.3.20. A brief glance at the assumptions of the latter theorem reveals that the defining properties  $(\nabla 2)$  and  $(\nabla 3)$  are all we need. So the following definition is valid.

**1.3.22 Definition (Covariant derivative for tensors).** Let M be a SRMF and  $X \in \mathfrak{X}(M)$ . The (Levi-Civita) covariant derivative  $\nabla_X$  is the uniquely determined tensor derivation on M such that

- (i)  $\nabla_X f = X(f)$  for all  $f \in \mathcal{C}^{\infty}(M)$ , and
- (ii)  $\nabla_X Y$  is the Levi-Civita covariant derivative of Y w.r.t. X as given by 1.3.4.

The covariant derivative w.r.t. a vector field X is a generalisation of the directional derivative. Similar to the case of multi-dimensional calculus in  $\mathbb{R}^n$  we may collect all such directional derivatives into one differential. To do so we need to take one more technical step.

**1.3.23 Lemma.** Let  $A \in \mathcal{T}_s^r(M)$ , then the mapping

$$\mathfrak{X}(M) \ni X \mapsto \nabla_X A \in \mathcal{T}_s^r(M)$$

is  $C^{\infty}(M)$ -linear.

**Proof.** We have to show that for  $X_1, X_2 \in \mathfrak{X}(M)$  and  $f \in \mathcal{C}^{\infty}(M)$  we have

$$\nabla_{X_1 + fX_2} A = \nabla_{X_1} A + f \nabla_{X_2} A \quad \text{for all } A \in \mathcal{T}_s^r(M). \tag{1.3.45}$$

However, by 1.3.20 we only have to show this for  $A \in \mathcal{T}_0^0(M) = \mathcal{C}^{\infty}(M)$  and  $A \in \mathcal{T}_0^1(M) = \mathfrak{X}(M)$ . But for  $A \in \mathcal{C}^{\infty}(M)$  equation (1.3.45) holds by definition and for  $A \in \mathfrak{X}(M)$  this is just property  $(\nabla 1)$ .

**1.3.24 Definition (Covariant differential).** For  $A \in \mathcal{T}_s^r(M)$  we define the covariant differential  $\nabla A \in \mathcal{T}_{s+1}^r$  of A as

$$\nabla A(\omega^1, \dots, \omega^r, X_1, \dots, X_s, X) := (\nabla_X A)(\omega^1, \dots, \omega^r, X_1, \dots, X_s)$$
(1.3.46)

for all  $\omega^1, \ldots, \omega^r \in \Omega^1(M)$  and  $X_1, \ldots, X_s \in \mathfrak{X}(M)$ .

#### 1.3.25 Remark.

(i) In case r = 0 = s the covariant differential is just the exterior derivative since for  $f \in \mathcal{C}^{\infty}(M)$  and  $X \in \mathfrak{X}(M)$  we have

$$(\nabla f)(X) = \nabla_X f = X(f) = df(X). \tag{1.3.47}$$

- (ii)  $\nabla A$  is a 'collection' all the covariant derivatives  $\nabla_X A$  into one object. The fact that the covariant rank is raised by one, i.e., that  $\nabla A \in \mathcal{T}^r_{s+1}(M)$  for  $A \in \mathcal{T}^r_s(M)$  is the source of the name *covariant* derivative/differential.
- (iii) In complete analogy with vector fields (cf. definition 1.3.11) we call  $A \in \mathcal{T}_s^r(M)$  parallel if  $\nabla_X A = 0$  for all  $X \in \mathfrak{X}(M)$  which we can now simply write as  $\nabla A = 0$ .

(iv) The metric condition ( $\nabla 5$ ) just says that g itself is parallel since by the product rule 1.3.18 we have for all  $X, Y, Z \in \mathfrak{X}(M)$ 

$$(\nabla_Z g)(X,Y) = \nabla_Z(g(X,Y)) - g(\nabla_Z X,Y) - g(X,\nabla_Z,Y) \tag{1.3.48}$$

which vanishes by  $(\nabla 5)$ .

(v) If in a local chart the tensor field  $A \in \mathcal{T}^r_s(M)$  has components  $A^{i_1...i_r}_{j_1...j_s}$  the components of its covariant differential  $\nabla A \in \mathcal{T}^r_{s+1}(M)$  are denoted by  $A^{i_1...i_r}_{j_1...j_s;k}$  and take the form

$$A_{j_1...j_s;k}^{i_1...i_r} = \frac{\partial A_{j_1...j_s}^{i_1...i_r}}{\partial x^k} + \sum_{l=1}^r \Gamma_{km}^{i_l} A_{j_1......j_s}^{i_1...m...i_r} - \sum_{l=1}^s \Gamma_{kj_l}^m A_{j_1...m...j_s}^{i_1....i_r}.$$
(1.3.49)

Our next topic is the notion of a covariant derivative of vector fields which are not defined on all of M but just, say on (the image of) a curve. Of course then we can only expect to be able to define a derivative of the vector field in the direction of the curve. Intuitively such a notion corresponds to the rate of change of the vector field as we go along the curve. We begin by making precise the notion of such vector fields but do not restrict ourselves to the case of curves.

**1.3.26 Definition (Vector field along a mapping).** Let N, M be smooth manifolds and let  $f \in C^{\infty}(N, M)$ . A vector field along f is a smooth mapping

$$Z: N \to TM \quad such that \pi \circ Z = f,$$
 (1.3.50)

where  $\pi: TM \to M$  is the vector bundle projection. We denote the  $\mathcal{C}^{\infty}(N)$ -module of all vector fields along f by  $\mathfrak{X}(f)$ .

The definition hence says that  $Z(p) \in T_{f(p)}M$  for all points  $p \in N$ . In the special case of  $N = I \subseteq \mathbb{R}$  a real interval and  $f = c : I \to M$  a  $\mathcal{C}^{\infty}$ -curve we call  $\mathfrak{X}(c)$  the space of vector fields along the curve c. In particular, in this case  $t \mapsto \dot{c}(t) \equiv c'(t) \in \mathfrak{X}(c)$ . More precisely we have (cf. [10, below (2.5.3)])  $c'(t) = T_t c(1) = T_t c(\frac{\partial}{\partial t}|_t) \in T_{c(t)}M$ . Also recall for later use that for any  $f \in \mathcal{C}^{\infty}(M)$  we have  $c'(t)(f) = T_t c(\frac{d}{dt}|_t)(f) = \frac{d}{dt}|_t(f \circ c)$  and consequently in coordinates  $\varphi = (x^1, \ldots, x^n)$  the local expression of the velocity vector takes the form  $c'(t) = c'(t)(x^i)\partial_i|_{c(t)} = \frac{d}{dt}|_t(x^i \circ c)\partial_i|_{c(t)}$ . (For more details see e.g. [12, 1.17 and below].) In case M is a SRMF we may use the Levi-Civita covariant derivative to define the derivative Z' of  $Z \in \mathfrak{X}(c)$  along the curve c.

1.3.27 Proposition (Induced covariant derivative). Let  $c: I \to M$  be a smooth curve into the SRMF M. Then there exists a unique mapping  $\mathfrak{X}(c) \to \mathfrak{X}(c)$ 

$$Z \mapsto Z' \equiv \frac{\nabla Z}{dt} \tag{1.3.51}$$

called the induced covariant derivative such that

----- VERSION 0.9 (January 17, 2017) -----

(i) 
$$(Z_1 + \lambda Z_2)' = Z_1' + \lambda Z_2'$$
  $(\lambda \in \mathbb{R})$ 

(ii) 
$$(hZ)'(t) = \frac{dh}{dt} Z + h Z'$$
  $(h \in \mathcal{C}^{\infty}(I, \mathbb{R})),$ 

(iii) 
$$(X \circ c)'(t) = \nabla_{c'(t)}X$$
  $(t \in I, X \in \mathfrak{X}(M)).$ 

In addition we have

(iv) 
$$\frac{d}{dt}\langle Z_1, Z_2\rangle = \langle Z_1', Z_2\rangle + \langle Z_1, Z_2'\rangle.$$

Observe that in 1.3.27(iii) we have  $X \circ c \in \mathfrak{X}(c)$  and since by 1.3.2(i) we have  $\nabla_{c'(t)}X \in T_{c(t)}M$  also the right hand side makes sense.

**Proof.** (Local) uniqueness: Let  $Z \mapsto Z'$  be a mapping as above that satisfies (i)–(iii) and let  $(\phi = (x^1, \dots, x^n), U)$  be a chart and let  $c: I \to U$  be a smooth curve. For  $Z \in \mathfrak{X}(c)$  we then have

$$Z(t) = \sum_{i} Z(t)(x^{i})\partial_{i}|_{c(t)} =: \sum_{i} Z^{i}(t)\partial_{i}|_{c(t)} \equiv Z^{i}(t)\partial_{i}|_{c(t)}.$$

$$(1.3.52)$$

By (i)-(iii) we then obtain

$$Z'(t) = \frac{dZ^i}{dt} \partial_i|_{c(t)} + Z^i(t)(\partial_i \circ c)' = \frac{dZ^i}{dt} \partial_i|_{c(t)} + Z^i(t) \nabla_{c'(t)} \partial_i.$$
 (1.3.53)

So Z' is completely determined by the Levi-Civita connection  $\nabla$  and hence unique.

Existence: For any  $J \subseteq I$  such that c(J) is contained in a chart domain U we define the mapping  $Z \mapsto Z'$  by equation (1.3.53). Then properties (i)–(iii) hold. Indeed (i) is obvious. Property (ii) follows from the following straight forward calculation

$$(hZ)'(t) = \frac{d(hZ^i)}{dt} \partial_i|_{c(t)} + h(t)Z^i(t)\nabla_{c'(t)}\partial_i = h(t)Z'(t) + \frac{dh}{dt}Z^i(t)\partial_i|_{c(t)}.$$

Finally to prove (iii) let  $X \in \mathfrak{X}(M)$ ,  $X|_U = X^i \partial_i$ . Then (as explained prior to the proposition)  $\frac{d}{dt}(X^i \circ c) = c'(t)(X^i)$  and so by  $(\nabla_3)$ 

$$\nabla_{c'(t)}X = \nabla_{c'(t)}(X^{i}\partial_{i}) = c'(t)(X^{i})\partial_{i}|_{c(t)} + X^{i}(c(t))\nabla_{c'(t)}\partial_{i}$$

$$= \frac{d(X^{i} \circ c)}{dt} \partial_{i}|_{c(t)} + X^{i} \circ c(t)\nabla_{c'(t)}\partial_{i} = (X \circ c)'(t). \tag{1.3.54}$$

Now suppose  $J_1$ ,  $J_2$  are two subintervals of I with corresponding maps  $F_i: Z \mapsto Z'$ . Then on  $J_1 \cap J_2$  both  $F_i$  satisfy properties (i)–(iii) hence coincide by the uniqueness argument from above and we obtain a well-defined map on the whole of I.

Finally we obtain (iv) since we have using the chart  $(\varphi, U)$ 

$$\langle Z_1', Z_2 \rangle + \langle Z_1, Z_2' \rangle = \frac{dZ_1^i}{dt} Z_2^j \langle \partial_i, \partial_j \rangle + Z_1^i Z_2^j \langle \nabla_{c'} \partial_i, \partial_j \rangle + Z_1^i \frac{dZ_2^j}{dt} \langle \partial_i, \partial_j \rangle + Z_1^i Z_2^j \langle \partial_i, \nabla_{c'} \partial_j \rangle$$

$$-----$$
 V E R S I O N  $\phantom{-}$  0 . 9  $\phantom{-}$  (January 17, 2017)  $\phantom{-}$   $-----$ 

and on the other hand

$$\frac{d}{dt}\langle Z_1, Z_2\rangle = \frac{d}{dt} \left( Z_1^i Z_2^j \langle \partial_i, \partial_j \rangle \right) = \frac{dZ_1^i}{dt} Z_2^j \langle \partial_i, \partial_j \rangle + Z_1^i \frac{dZ_2^j}{dt} \langle \partial_i, \partial_j \rangle + Z_1^i Z_2^j \frac{d}{dt} \langle \partial_i, \partial_j \rangle.$$

The result now follows from from differentiating  $\langle \partial_i, \partial_i \rangle$  (actually  $\langle \partial_i, \partial_i \rangle \circ c$ ):

$$\frac{d}{dt} \langle \partial_i, \partial_j \rangle = c'(t) \langle \partial_i, \partial_j \rangle = \langle \nabla_{c'} \partial_i, \partial_j \rangle + \langle \partial_i, \nabla_{c'} \partial_j \rangle,$$

where we have used  $(\nabla 5)$ .

We now write Z' in terms of the Christoffel symbols. In a chart  $(\varphi = (x^1, \dots x^n), V)$  we have

$$\nabla_{c'(t)}\partial_i = \nabla_{\frac{d(x^j \circ c)}{dt}\partial_i}\partial_i = \frac{d(x^j \circ c)}{dt} \nabla_{\partial_j}\partial_i = \frac{d(x^j \circ c)}{dt} \Gamma^k_{ij}\partial_k \tag{1.3.55}$$

and hence

$$Z'(t) = \left(\frac{dZ^k}{dt}(t) + \Gamma^k_{ij}(c(t)) \frac{d(x^j \circ c)}{dt}(t) Z^i(t)\right) \partial_k|_{c(t)}.$$
 (1.3.56)

In the special case that Z = c' we call Z' = c'' the acceleration of c. Also we call a vector field  $Z \in \mathfrak{X}(c)$  parallel if Z' = 0. The above formula (1.3.56) shows that this condition actually is expressed by a system of linear ODEs of first order implying the following result.

**1.3.28 Proposition (Parallel vector fields).** Let  $c: I \to M$  be a smooth curve into a SRMF M. Let  $a \in I$  and  $z \in T_{c(a)}M$ . Then there exists an unique parallel vector field  $Z \in \mathfrak{X}(c)$  with Z(a) = z.

**Proof.** As noted above locally Z obeys (1.3.56), which is a system of linear first order ODEs. Given an initial condition such an equation possesses a unique solution defined on the whole interval where the coefficient functions are given. Hence the claim follows from covering c(I) by chart neighbourhoods.

This result gives rise to the following notion.

**1.3.29 Definition (Parallel transport).** Let  $c: I \to M$  be a smooth curve into a SRMF M. Let  $a, b \in I$  and write c(a) = p and c(b) = q. For  $z \in T_pM$  let  $Z_z$  be as in 1.3.28 with Z(a) = z. Then we call the mapping

$$P = P_a^b(c) : T_p M \ni z \mapsto Z_z(b) \in T_q M$$

$$\tag{1.3.57}$$

the parallel transport (or parallel translation) along c from p to q.

Finally we have the following crucial property of parallel translation.

----- VERSION 0.9 (January 17, 2017) -----

### **1.3.30 Proposition.** Parallel transport is a linear isometry.

**Proof.** Let  $z, y \in T_pM$  with parallel vector fields  $Z_z$ ,  $Z_y$ . Since then also  $Z_y + Z_y$  and  $\lambda Z_z$  (for  $\lambda \in \mathbb{R}$ ) are parallel we have  $P(z+y) = Z_z(b) + Z_y(b) = P(z) + P(y)$  and  $P(\lambda z) = \lambda Z_z(b) = \lambda P(z)$  so that P is linear.

Let P(z) = 0 then by uniqueness  $Z_z = 0$  hence also z = 0. So P is injective hence bijective. Finally  $\langle Z_z, Z_y \rangle$  is constant along c since

$$\frac{d}{dt} \langle Z_z, Z_y \rangle = \langle Z_z', Z_y \rangle + \langle Z_z, Z_y' \rangle = 0$$
(1.3.58)

and so

$$\langle P(z), P(y) \rangle = \langle Z_z(b), Z_y(b) \rangle = \langle Z_z(a), Z_y(a) \rangle = \langle z, y \rangle.$$
 (1.3.59)

## Chapter 2

## Geodesics

In Euclidean space  $\mathbb{R}^n$  the shortest path between to arbitrary points is uniquely given by the straight line connecting these two points. That is, straight lines have two decisive properties: they are parallel, i.e., their velocity vector is parallely transported and they globally minimise length. Already in spherical geometry matters become more involved. The curves which possess a parallel velocity vector are the great circles (e.g. the meridians). Intuitively they are the 'straightest possible' lines on the sphere in the sense that their curvature equals the curvature of the sphere and so is the smallest possible. Also they minimize length but only locally. Indeed a great circle starting in a point p is initially minimising but stops to be minimising after it passes through the antipodal point -p. Also between antipodal points (e.g. the north and the south pole) there are infinitely many great circles which all have the same length.

In this section we study geodesics on SRMFs that is curves with parallel velocity vector and their respective properties. We introduce the exponential map, a main tool of SR geometry, which maps straight lines through the origin in the tangent space  $T_nM$  to so-called radial geodesics of the manifold thorough p. It is in turn used to define normal neighbourhoods of a point which have the property that any other point can be reached by a unique radial geodesic. Also the exponential map allows to introduce normal coordinates, that is charts which are well adapted to the geometry of the manifold. We prove the Gauss lemma which states that the exponential map is a radial isometry, i.e., it preserves angles with radial directions. We introduce the length functional and then turn to the Riemannian case. We define the Riemannian distance function d as the minimal length of all curves connecting two points, which defines a metric in the topological sense on M. Now the Gauss lemma can be seen to say that small distance spheres centered at a point are perpendicular to radial geodesics and that radial geodesics minimise length. We prove the Hopf-Rinow theorem which says that the Riemannian distance function encodes the topology of the manifold. As a consequence in a complete Riemannian manifold every pair of points can be joined by a minimising geodesic. We finally remark the differences to the Lorentzian case which indeed is much more involved.

♣ convex ngbhds! sup statt min! ♣

## 2.1 Geodesics and the exponential map

In this subsection we generalise the notion of a straight line in Euclidean space. As in [10, Sec. 3.3] we define a *geodesic* to be a curve c such that its tangent vector c' is parallel along c. Equivalently we have for the acceleration c'' = 0. Locally this condition translates into a system of nonlinear ODEs of second order. More precisely we have.

**2.1.1 Proposition (Geodesic equation).** Let  $(\varphi = (x^1, ..., x^n), U)$  be a chart of the SRMF M and let  $c: I \to U$  be a smooth curve. Then c is a geodesic iff the local coordinate expressions  $x^k \circ c$  of c obey the geodesic equation,

$$\frac{d^2(x^k \circ c)}{dt} + \Gamma_{ij}^k \circ c \frac{d(x^i \circ c)}{dt} \frac{d(x^j \circ c)}{dt} = 0 \qquad (1 \le k \le n). \tag{2.1.1}$$

**Proof.** The curve c is a geodesic iff (c')' = 0. We have  $c'(t) = \frac{d(x^k \circ c)}{dt} \partial_k|_{c(t)}$  and inserting  $\frac{d(x^k \circ c)}{dt}$  for  $Z^k$  in (1.3.56) we obtain (2.1.1).

It is most common to abbreviate the local expressions  $x^k \circ c$  of c by  $c^k$ . Using this notation the geodesic equation (2.1.1) takes the form

$$\frac{d^2c^k}{dt} + \Gamma^k_{ij} \frac{dc^i}{dt} \frac{dc^j}{dt} = 0 \quad \text{or even shorter} \quad \ddot{c}^k + \Gamma^i_{jk} \dot{c}^j \dot{c}^k = 0 \qquad (1 \le k \le n). \tag{2.1.2}$$

Obviously the geodesic equation is a system of nonlinear ODEs of second order and so by basic ODE-theory we obtain the following result on existence and uniqueness of geodesics.

**2.1.2 Lemma (Existence of geodesics).** Let  $p \in (M, g)$  and let  $v \in T_pM$ . Then there exists a real interval I around 0 and a unique geodesic  $c: I \to M$  with c(0) = p and c'(0) = v.

We call c as in 2.1.2 (irrespectively of the interval I) the geodesic starting a p with initial velocity v.

- **2.1.3 Examples (Geodesics of flat space).** The geodesic equations in  $\mathbb{R}^n_r$  are trivial, i.e., they take the form  $\frac{d^2c^k}{dt^2}=0$  since all Christoffel symbols  $\Gamma^k_{ij}$  vanish. Hence the geodesics are the straight lines c(t)=p+tv.
- **2.1.4 Examples (Geodesic on the cylinder).** Let  $M \in \mathbb{R}^3$  be the cylinder of radius 1 and  $\psi$  the chart  $(\cos \varphi, \sin \varphi, z) \mapsto (\varphi, z)$   $(\varphi \in (0, 2\pi))$ . The natural basis of  $T_pM$  with  $(p = (\cos \varphi, \sin \varphi))$  w.r.t.  $\psi$  is then given by (cf. [10, 2.4.11])

$$\partial_{\varphi} = \begin{pmatrix} -\sin\varphi\\\cos\varphi\\0 \end{pmatrix}, \quad \partial_{z} = \begin{pmatrix} 0\\0\\1 \end{pmatrix}.$$
 (2.1.3)

------ V E R S I O N - 0 . 9 (January 17, 2017) -------

Also we have  $g_{11}=\langle \partial_{\varphi}, \partial_{\varphi} \rangle=1, \ g_{12}=g_{21}=\langle \partial_{\varphi}, \partial_{z} \rangle=0, \ g_{22}=\langle \partial_{z}, \partial_{z} \rangle=1$  and so

$$(g_{ij}) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 and  $(g^{ij}) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ , (2.1.4)

which immediately implies that  $\Gamma^i_{jk} = 0$  for all i, j, k. Hence the geodesic equations for a curve  $c(t) = (\cos \varphi(t), \sin \varphi(t), z(t))$  using the notation  $c^1(t) = x^1 \circ c(t) = \varphi(t)$ ,  $c^2(t) = x^2 \circ c(t) = z(t)$  take the form

$$\ddot{\varphi}(t) = 0, \qquad \ddot{z}(t) = 0, \tag{2.1.5}$$

which are readily solved to obtain  $\varphi(t) = a_1 t + a_0$ ,  $z(t) = b_1 t + b_0$ . So we find

$$c(t) = \left(\cos(a_1t + a_0), \sin(a_1t + a_0), b_1t + b_0\right)$$
(2.1.6)

revealing that the geodesics of the cylinder are helices with initial point and speed given by the  $a_i$ ,  $b_i$ , see figure 2.1, left. This also includes the extreme cases of circles of latitude z = c ( $b_1 = 0$ ,  $b_0 = c$ ) and generators ( $a_1 = 0$ ). Another way to see that these are the



Figure 2.1: Geodesics on the cylinder

geodesics of the cylinder is by 'unwrapping' the cylinder to the plain, see Figure 2.1, right. This of course amounts to applying the chart  $\psi$ , which in this case is an isometry since  $g_{ij} = \delta_{ij}$ . Now the geodesics of  $\mathbb{R}^2$  are straight lines which via  $\psi^{-1}$  are wrapped as helices onto the cylinder.

We now return to the general study of geodesics. Being solutions of a nonlinear ODE geodesics will in general not be defined for all values of their parameter. However, ODE theory provides us with unique maximal(ly extended) solutions. To begin with we have.

**2.1.5 Lemma (Uniqueness of geodesics).** Let  $c_1, c_2 : I \to M$  geodesics. If there is  $a \in I$  such that  $c_1(a) = c_2(a)$  and  $\dot{c}_1(a) = \dot{c}_2(a)$  then we already have  $c_1 = c_2$ .

**Proof.** Suppose under the hypothesis of the lemma there is  $t_0 \in I$  such that  $c_1(t_0) \neq c_2(t_0)$ . Without loss of generality we may assume  $t_0 > a$  and set  $b = \inf\{t \in I : t > a \text{ and } c_1(t) \neq c_2(t)\}$ . We now argue that  $c_1(b) = c_2(b)$  and  $\dot{c}_1(b) = \dot{c}_2(b)$ . Indeed if b = a this follows by assumption. Also in case b > a we have that  $c_1 = c_2$  on (a, b) and the claim follows by continuity.

Now since also  $t \mapsto c_i(b+t)$  are geodesics (i=1,2) lemma 2.1.2 implies that  $c_1$  and  $c_2$  agree on a neighbourhood of b which contradicts the definition of b.

- **2.1.6 Proposition (Maximal geodesics).** Let  $v \in T_pM$ . Then there exists a unique geodesic  $c_v$  such that
  - (i)  $c_v(0) = p \text{ and } c'_v(t) = v$
  - (ii) the domain of  $c_v$  is maximal, that is if  $c: J \to M$ ,  $0 \in J$  is any geodesic with c(0) = p and c'(0) = v then  $J \subseteq I$  and  $c_v|_{J} = c$ .

**Proof.** Let  $G := \{c : I_c \to M \text{ a geodesic: } 0 \in I_c, c(0) = p, c'(0) = v\}$ , then by 2.1.2  $G \neq \emptyset$  and by 2.1.5 we have for any pair  $c_1, c_2 \in G$  that  $c_1|_{I_{c_1} \cap I_{c_2}} = c_2|_{I_{c_1} \cap I_{c_2}}$ . So the geodesics in G define a unique geodesic satisfying the assertions of the statement.  $\square$ 

**2.1.7 Definition (Completeness).** We call a geodesic  $c_v$  as in 2.1.5 maximal. If in a SRMF M all maximal geodesics are defined on the whole of  $\mathbb{R}$  we call M geodesically complete.

#### 2.1.8 Examples (Complete manifolds).

- (i)  $\mathbb{R}^n_r$  is geodesically complete as well as the cylinder of 2.1.4.
- (ii)  $\mathbb{R}_r^n \setminus \{0\}$  is not geodesically complete since all geodesics of the form  $t \mapsto tv$  are defined either on  $\mathbb{R}^+$  or  $\mathbb{R}^-$  only.

We next turn to the study of the causal character of geodesics. We begin with the following definition.

**2.1.9 Definition (Causal character of curves).** A curve c into a SRMF M is called spaceliek, timelike or null if for all t its velocity vector c'(t) is spacelike, timelike or null, respectively. We call c causal if it is timelike or null. These properties of c are commonly referred to as its causal character.

In general a curve need not to have a causal character, i.e., its velocity vector could change its causal character along the curve. However, geodesics do have a causal character: Indeed if c is a geodesic then by definition c' is parallel along c. But parallel transport by 1.3.28 is

an isometry so that  $\langle c'(t), c'(t) \rangle = \langle c'(t_0), c'(t_0) \rangle$  for all t. This fact can also be seen directly by the following simple calculation

$$\frac{d}{dt} \langle c'(t), c'(t) \rangle = 2 \langle c''(t), c'(t) \rangle = 0. \tag{2.1.7}$$

Moreover we also clearly have that the speed of a geodesic is constant, i.e.,  $||c'(t)|| = ||c(t_0)||$  for all t. The following technical result is significant.

**2.1.10 Lemma (Geodesic parametrisation).** Let  $c: I \to M$  be a nonconstant geodesic. A reparametrisation  $c \circ h: J \to M$  of c is a geodesic iff h is of the form h(t) = at + b with  $a, b \in \mathbb{R}$ .

**Proof.** To begin with note that  $(c \circ h)'(t) = c'(h(t))h'(t)$  since  $(c \circ h)'(t) = T_t(c \circ h)(\frac{d}{dt}|_t) = T_{h(t)}c(T_th(\frac{d}{dt}|_t)) = T_{h(t)}c(h'(t)\frac{d}{dt}|_t)) = h'(t)T_{h(t)}c(\frac{d}{dt}|_t) = h'(t)c'(h(t)).$  Now, if  $Z \in \mathfrak{X}(c)$  then  $Z \circ h \in \mathfrak{X}(c \circ h)$  and from (1.3.56) we have  $(Z \circ h)'(t) = Z'(h(t))h'(t)$ . Applying this to Z = c', we obtain with 1.3.27(ii)

$$(c \circ h)''(t) = \left(c'(h(t))h'(t)\right)' = h''(t)c'(h(t)) + h'(t)^2 \underbrace{c''(h(t))}_{=0}. \tag{2.1.8}$$

Now since c is nonconstant we have  $c'(t) \neq 0$  and we obtain

$$c \circ h$$
 is a geodesic  $\Leftrightarrow (c \circ h)'' = 0 \Leftrightarrow h'' = 0 \Leftrightarrow h(t) = at + b$ .

This result shows that the parametrisation of a geodesic has a geometric meaning. More generally a curve that has a reparametrisation as a geodesic is called a *pregeodesic*.

Next we turn to a deeper analysis of the geodesic equations as a system of second order ODEs. The first result is concerned with the dependence of a geodesic on its initial speed and is basically a consequence of smooth dependence of solutions of ODEs on the data.

**2.1.11 Lemma (Dependence on the initial speed).** Let  $v \in T_pM$  then there exists a neighbourhood  $\mathcal{N}$  of v in TM and an interval I around 0 such that the mapping

$$\mathcal{N} \times I \ni (w, s) \mapsto c_w(s) \in M \tag{2.1.9}$$

is smooth.

**Proof.**  $c_w$  is the solution of the second order ODE (2.1.1) which depends smoothly on t as well as on  $c_w(0) =: p$  and  $c'_w(0) = w$ . This follows from ODE theory e.g. by rewriting (2.1.1) as a first order system as in [10, 2.5.16].

Our next aim is to make the rewriting of the geodesic equations as a first order system explicit. To this end let  $(\psi = (x^1, \dots x^n), V)$  be a chart. Then  $T\psi : TV \to \psi(V) \times \mathbb{R}^n$ ,

 $T\psi=(x^1,\ldots,x^n,y^1,\ldots,y^n)$  is a chart of TM. Now  $c:I\to M$  is a geodesic iff  $t\mapsto (c^1(t),\ldots,c^n(t),y^1(t),\ldots,y^n(t))$  solves the following first order system

$$\frac{dc^k}{dt} = y^k(t)$$

$$\frac{dy^k}{dt} = -\Gamma_{ij}^k(x(t)) y^i(t) y^j(t) \qquad (1 \le k \le n).$$
(2.1.10)

Locally (2.1.10) is an ODE on TM since its right hand side is a vector field on TV, i.e., an element of  $\mathfrak{X}(TV)$ . The geodesics hence correspond to the flow lines of such a vector field. More precisely we have.

**2.1.12 Theorem (Geodesic flow).** There exists a uniquely defined vector field  $G \in \mathfrak{X}(TM)$ , the so-called geodesic field or geodesic spray with the following property: The projection  $\pi:TM\to M$  establishes a one-to-one correspondence between (maximal) integral curves of G and (maximal) geodesics of M.

**Proof.** Given  $v \in TM$  the mapping  $s \mapsto c'_v(s)$  is a smooth curve in TM. Let  $G_v := G(v)$  be the initial speed of this curve, i.e.,  $G_v := \frac{d}{ds}|_{0}(c'_v(s)) \in T_v(TM)$  (since  $c'_v(0) = v$ ). Now by 2.1.11  $G \in \mathfrak{X}(TM)$ . We now prove the following two statements:

- (i) If c is a geodesic of M then c' is an integral curve of G. Indeed let  $\alpha(s) := c'(s)$  and for any fixed t set w := c'(t) and  $\beta(s) := c'_w(s)$ . By 2.1.5 we have  $c(t+s) = c_w(s)$  (since  $c_w(0) = c(t)$  and  $c'_w(0) = w = c'(t)$ ). Differentiation w.r.t. s yields  $\alpha(s+t) = c'_w(s) = \beta(s)$ . So we have in T(TM) that  $\alpha'(t+s) = \beta'(s)$ . In particular,  $\alpha'(t) = \beta'(0) = G_w = G_{\alpha(t)}$  and hence  $\alpha$  is an integral curve of G.
- (ii) If  $\alpha$  is an integral curve of G then  $\pi \circ \alpha$  is a geodesic of M. Let  $\alpha: I \to TM$  and  $t \in I$ . Since  $\alpha(t) \in TM$  we have by (i) that the map  $s \mapsto c'_{\alpha(t)}(s)$  an integral curve of G. For s=0 both integral curves  $c'_{\alpha(t)}(s)$  and  $s \mapsto \alpha(s+t)$  attain the value  $\alpha(t)$ . Hence by [10, 2.5.17] they coincide on their entire domain. So we obtain for all s that

$$\alpha(s+t) = c'_{\alpha(t)}(s) \implies \pi(\alpha(s+t)) = c_{\alpha(t)}(s) \implies \pi \circ \alpha$$
 is a geodesis of  $M$ .

Finally we have  $\pi \circ c' = c$  and  $(\pi \alpha)'(t) = \frac{d}{ds}|_{0}\pi(\alpha(t+s)) = \frac{d}{ds}|_{0}c_{\alpha(t)}(s) = c'_{\alpha(t)}(0) = \alpha(t)$  and so the maps  $c \mapsto c'$  and  $\alpha \mapsto \pi \circ \alpha$  are inverse to each other. Also G is unique since its integral curves are prescribed.

The flow of the vector field G in the above Theorem is called the geodesic flow of M. Next we will introduce the exponential map which is one of the essential tools of semi-Riemannian geometry.



Figure 2.2:  $\exp_p$  maps straight lines through  $0 \in T_pM$  to geodesics through p.  $\clubsuit$  Also indicate U and  $\tilde{U}$ .  $\clubsuit$ 

**2.1.13 Definition (Exponential map).** Let p be a point in the SRMF M and set  $\mathcal{D}_p := \{v \in T_p M : c_v \text{ is at least defined on } [0,1]\}$ . The exponential map of M at p is defined as

$$\exp_p : \mathcal{D}_p \to M, \qquad \exp_p(v) := c_v(1). \tag{2.1.11}$$

Observe that  $\mathcal{D}_p$  is the maximal domain of  $\exp_p$ . In case M is geodesically complete we have  $\mathcal{D}_p = T_p M$  for all p.

Let now  $v \in T_pM$  and fix  $t \in \mathbb{R}$ . The geodesic  $s \mapsto c_v(ts)$  (cf. 2.1.10) has initial speed  $tc'_v(0) = tv$  and so we have

$$c_{tv}(s) = c_v(ts) (2.1.12)$$

for all t, s for which one and hence both sides of (2.1.12) are defined. This implies for the exponential map that

$$\exp_p(tv) = c_{tv}(1) = c_v(t) \tag{2.1.13}$$

which has the following immediate geometric interpretation: the exponential map  $\exp_p$  maps straight lines  $t \mapsto tv$  through the origin in  $T_pM$  to geodesics  $c_v(t)$  through p in M, see Figure 2.2. This is actually done in a diffeomorphic way.

**2.1.14 Theorem (Exponential map).** Let p be a point in a SRMF M. Then there exist neighbourhoods  $\tilde{U}$  of 0 in  $T_pM$  and U of p in M such that the exponential map  $\exp_p: \tilde{U} \to U$  is a diffeomorphism.

**Proof.** The plan of the proof is to first show that  $\exp_p$  is smooth on a suitable neighbourhood of  $0 \in T_pM$  and then to apply the inverse function theorem.

To begin with we recall that by 2.1.11 the mapping  $(w,s) \mapsto c_w(s)$  is smooth on  $\mathcal{N} \times I$ , where  $\mathcal{N}$  is an open neighbourhood in TM and I is an interval around 0 which we assume w.l.o.g. to be I = (-a, a). Now set  $\mathcal{N}_p := \{\frac{v}{a'} : v \in \mathcal{N} \cap T_pM\}$ , where a' is a fixed number with a' > 1/a. By (2.1.12) the map  $(w,s) \mapsto c_w(s)$  is then defined on  $\mathcal{N}_p \times I$  where  $I \supseteq [0,1]$ . Indeed for  $w = v/a' \in \mathcal{N}_p$  we have  $c_w(s) = c_{v/a'}(s) = c_v(s/a')$  with  $s/a' \in I = (-a, a)$  and so  $s \in a'I \supseteq [0, 1]$ . So in total  $\exp_p : \mathcal{N}_p \to M$  is smooth.

We next show that  $T_0(\exp_p): T_0(T_pM) \to T_pM$  is a linear isomorphism. To this end let  $v \in T_0(T_pM)$  which we may identify with  $T_pM$  (cf. [10, 2.4.10]). Set  $\rho(t) = tv$ . Then  $v = \rho'(0) = T_0\rho(\frac{d}{dt}|_0)$  and so

$$T_0(\exp_p)(v) = T_0(\exp_p)(\rho'(0)) = T_0(\exp_p \circ \rho)(\frac{d}{dt}|_0) = T_0(c_v)(\frac{d}{dt}|_0) = c_v'(0) = v. \quad (2.1.14)$$

Hence  $T_0 \exp_p = \mathrm{id}_{T_p M}$  and the claim now follows from the inverse function theorem, see e.g. [10, 1.1.5].

A subset S of a vector space is called  $star\ shaped$  (around 0) if  $v \in S$  and  $t \in [0,1]$  implies that  $tv \in S$ .  $\clubsuit$  Insert figure!  $\clubsuit$  If U and  $\tilde{U}$  are as in 2.1.14 and  $\tilde{U}$  is star shaped then we call U a  $normal\ neighbourhood$  of p. In this case U is star shaped in the following sense.

**2.1.15 Proposition (Radial geodesics).** Let U be a normal neighbourhood of p. Then for each  $q \in U$  there exists a unique geodesic  $\sigma : [0,1] \to U$  from p to q called the radial geodesic from p to q. Moreover we have  $\sigma'(0) = \exp_p^{-1}(q) \in \tilde{U}$ .

**Proof.** By assumption  $\tilde{U} \subseteq T_pM$  is star shaped and  $\exp_p : \tilde{U} \to U$  is a diffeomorphisms. Let  $q \in U$  and set  $v := \exp_p^{-1}(q) \in \tilde{U}$ . Since  $\tilde{U}$  is star shaped we have that  $\rho(t) = tv \in \tilde{U}$  for  $t \in [0,1]$ . Hence  $\sigma = \exp_p \circ \rho$  which by (2.1.13) is a geodesic and connects p with q is contained in U. Moreover we have by (2.1.14)

$$\sigma'(0) = T_0(\exp_n)(\rho'(0)) = T_0 \exp_n(v) = v = \exp_n^{-1}(q).$$
(2.1.15)

♣ Insert figure of radial geodesic ♣ Let now  $\tau:[0,1] \to U$  be an arbitrary geodesic in U connecting p with q. Set  $w:=\tau'(0)$ . Then the geodesics  $\tau$  and  $t\mapsto \exp_p(tw)$  both have the same velocity vector at p hence coincide by 2.1.5.

We show that  $w \in \tilde{U}$ . Suppose to the contrary that  $w \notin \tilde{U}$  and set  $\tilde{t} := \sup\{t \in [0,1] : tw \in \tilde{U}\}$ . Then  $\tilde{t}w \in \partial \tilde{U}$ . Now  $\tau([0,1]) \subseteq U$  is compact and so is  $(\exp_p |\tilde{U})^{-1}(\tau([0,1]))$  in  $\tilde{U}$  and hence it has a positive distance to  $\partial \tilde{U}$  and hence to  $\tilde{t}w$ . Now by the definition of the supremum there is  $t_0 < \tilde{t}$  arbitrarily close to  $\tilde{t}$  such that  $\tilde{U} \ni t_0 w \notin (\exp_p |\tilde{U})^{-1}(\tau([0,1]))$ .

But then  $\exp_p(t_0 w) \notin \tau([0,1])$ , which contradicts the fact that  $\tau = t \mapsto \exp_p(tw)$  and so  $w \in \tilde{U}^1$ .

Finally we have  $\exp_p(w) = \tau(1) = q = \exp_p(v)$  and by injectivity of the exponential map v = w. But this implies that  $\sigma = \tau$ .

By a *broken geodesic* we mean a piecewise smooth curve whose smooth parts are geodesics. In  $\mathbb{R}_r^n$  these are just the polygons. We now can prove the following criterion for connectedness.

**2.1.16** Lemma (Connectedness via broken geodesics). A SRMF is connected iff every pair of points may be joined by a broken geodesic.

**Proof.** The condition is obviously sufficient. Let now M be connected and choose  $p \in M$ . Set  $C := \{q \in M : q \text{ can be connected to } p \text{ by a broken geodesic}\}$ . Let now  $q \in M$  and U be a normal neighbourhood of q. If  $q \in C$  then by 2.1.15  $U \subseteq C$  hence C is open. Also in  $q \notin M$  then  $U \subseteq M \setminus C$  and so C is also closed. Hence C = M.

Normal neighbourhoods are particularly useful in constructing special coordinate systems, called Riemannian normal coordinates (RNC) which are of great importance for explicit calculations. Let  $p \in M$  with  $U = \exp_p(\tilde{U})$  a normal neighbourhood of p and let  $\mathcal{B} = \{e_1, \ldots, e_n\}$  be an orthonormal basis of  $T_pM$ . The Riemannian normal coordinate system  $(\varphi = (x^1, \ldots, x^n), U)$  around p defined by  $\mathcal{B}$  assigns to any point  $q \in U$  the coordinates of  $\exp_p^{-1}(q) \in \tilde{U} \subseteq T_pM$  w.r.t.  $\mathcal{B}$ , i.e.,

$$\exp_p^{-1}(q) = x^i(q)e_i. (2.1.16)$$

If  $\mathcal{B}' = \{f^1, \dots, f^n\}$  is the dual basis of  $\mathcal{B}$  then we have

$$x^i \circ \exp_p = f^i \quad \text{on } \tilde{U}.$$
 (2.1.17)

Indeed set  $q = \exp_p(w)$  in (2.1.16) then  $w = x^i(\exp_p(w))e_i$ .

The most important properties of RNCs around p are that in this coordinates the metric at p is precisely the flat metric and also at p all Christoffel symbols vanish. It is essential to point out that these properties only hold at the point in which the coordinates are centered and in general fail already arbitrarily near to p. However, tensor fields are defined pointwise and so in many situations it is very beneficial to check certain tensorial identities in (the center point of) RNCs. More precisely we have.

**2.1.17 Proposition (Normal coordinates).** Let  $x^1, \ldots, x^n$  be RNC around p. Then we have for all i, j, k

<sup>&</sup>lt;sup>1</sup>Observe that this argument even shows that the entire segment  $\{tw|t\in[0,1]\}$  lies in  $\tilde{U}$ . Just replace w by some  $\tilde{w}=sw$  for  $s\in[0,1]$ . This fact will be used in  $\clubsuit$  ref!  $\clubsuit$ , below.

(i) 
$$g_{ij}(p) = \delta_{ij}\varepsilon_j$$
, and

(ii) 
$$\Gamma^{i}_{jk}(p) = 0$$
.

**Proof.** We first show that  $\partial_i|_p = e_i$ . Let  $v \in \tilde{U} \subseteq T_pM$ ,  $v = a^i e_i$ . By (2.1.13), (2.1.17) we have

$$x^{i}(c_{v}(t)) = x^{i}(\exp_{n}(tv)) = f^{i}(tv) = ta^{i}$$
 (2.1.18)

and so by (2.1.16),  $\exp_p^{-1} \circ c_v(t) = (a^1t, \dots, a^nt)$ . Hence we have  $T_p \exp_p^{-1}(c_v'(0)) = (a^1, \dots a^n)$  which gives  $v = c_v'(0) = a^i \partial_i|_p$ . Since  $v = a^i e_i$  was arbitrary we obtain  $\partial_i|_p = e_i$  which immediately gives (i).

Now since  $x^i \circ c_v(t) = ta^i$  the geodesic equation for  $c_v$  reduces to  $\Gamma^k_{ij}(c_v(t))a^ia^j = 0$  for all k. Inserting t = 0 we have  $\Gamma^k_{ij}(p)a^ja^i = 0$  for all  $a = (a^1, \dots a^n) \in \mathbb{R}^n$ . So for fixed k the quadratic form  $a \mapsto \Gamma^k_{ij}(p)a^ia^j$  vanishes and by polarisation we find  $(a,b) \mapsto \Gamma^k_{ij}(p)a^ib^j = 0$  and so  $\Gamma^k_{ij}(p) = 0$ , hence (ii) holds.

**2.1.18 Examples (Exponential map of**  $\mathbb{R}_r^n$ ). Let  $v \in T_p(\mathbb{R}_r^n)$ , then the geodesic  $c_v$  starting at p is just  $t \mapsto p + tv$ . Hence we have  $\exp_p : v \mapsto c_v(1) = p + v$ . This is a global diffeomorphism and even an isometry.

Our next goal is to prove an essential result that goes by the name of Gauss lemma and states that the exponential map is a 'radial isometry'. This means that the orthogonality to radial directions is preserved. We first need some preparations.

**2.1.19 Definition (Two-parameter mappings).** Let  $\mathcal{D} \subseteq \mathbb{R}^2$  be open and such that vertical and horizontal straight lines intersect  $\mathcal{D}$  in intervals. A two-parameter mapping on  $\mathcal{D}$  is a smooth map  $f: \mathcal{D} \to M$ .





Figure 2.3: Sets  $\mathcal{D}$  that (fail) to have the property of 2.1.19

For examples of sets that obey respectively lack the above property see Figure 2.3. Two-parameter maps are also often called  $singular\ surfaces$  since there is no condition on the rank of f.

Denoting the coordinates in  $\mathbb{R}^2$  by (t,s) then a two-parameter map f defines two families of smooth curves, the t-parameter curves  $s=s_0:t\mapsto f(t,s_0)$  and the s-parameter

curves  $t = t_0$ :  $s \mapsto f(t_0, s)$ . By definition all such curves are defined on intervals. The corresponding partial derivatives

$$f_t(t,s) := T_{(t,s)}f(\partial_t) \text{ and } f_s(t,s) := T_{(t,s)}f(\partial_s)$$
 (2.1.19)

are then vector fields along f in the sense of definition 1.3.26. Observe that  $f_t(t_0, s_0)$  is the velocity of the t-parameter curve  $s = s_0$  at  $t_0$  and analogous for  $f_s(t_0, s_0)$ .

If the image of f is contained in a chart  $((x^1, \ldots, x^n), V)$  of M then we denote the coordinate functions  $x^i \circ f$  of f by  $f^i$   $(1 \le i \le n)$ . We then have  $f^i = x^i \circ f : \mathcal{D} \to \mathbb{R}$  and by [10, 2.4.14]

$$f_t = \frac{\partial f^i}{\partial t} \partial_i \quad \text{and} \quad f_s = \frac{\partial f^i}{\partial s} \partial_i.$$
 (2.1.20)

Now let M be a SRMF and  $Z \in \mathfrak{X}(f)$ . Then  $t \mapsto Z(t, s_0)$  and  $s \mapsto Z(t_0, s)$  are vector fields along the t- and s-parameter curves  $t \mapsto f(t, s_0)$  and  $s \mapsto f(t_0, s)$ , respectively. We denote the corresponding induced covariant derivatives by

$$Z_t = \frac{\nabla Z}{\nabla t} = \nabla_{\partial_t} Z$$
 and  $Z_s = \frac{\nabla Z}{\nabla s} = \nabla_{\partial_s} Z,$  (2.1.21)

respectively. By (1.3.53) we have

$$\nabla \partial_t Z(t,s) = Z_t(t,s) = \left(\frac{\partial Z^k}{\partial t}(t,s) + \Gamma_{ij}^k(f(t,s)) Z^i(t,s) \frac{\partial f^j}{\partial t}(t,s)\right) \partial_k \qquad (2.1.22)$$

and analogously for  $Z_s$ . In particular, for  $Z = f_t$  we call  $Z_t = f_{tt}$  the acceleration of the t-parameter curve and analogously for  $f_{ss}$ . We now note the following essential fact.

**2.1.20** Lemma (Mixed second derivatives of 2-parameter maps commute). Let M be a SRMF and  $f: \mathcal{D} \to M$  a 2-parameter map. Then we have  $\nabla_{\partial_t}(\partial_s f) = \nabla_{\partial_s}(\partial_t f)$  or for short  $f_{ts} = f_{st}$ .

**Proof.** By (2.1.22) we have

$$f_{ts} = \left(\frac{\partial^2 f^k}{\partial t \,\partial s} + \Gamma^k_{ij} \circ f \,\frac{\partial f^i}{\partial t} \,\frac{\partial f^j}{\partial s}\right) \,\partial_k,\tag{2.1.23}$$

which by the symmetry of the Christoffel symbols is symmetric in i and j.

As a final preparation we consider  $x \in T_pM$ . Since  $T_p$  is a finite dimensional vector space we may identify  $T_x(T_pM)$  with  $T_p$  itself, cf. [10, 2.4.10]. Hence if  $v_x \in T_x(T_pM)$  we will view  $v_x$  also as an element of  $T_pM$ . We call  $v_x$  radial if is a multiple of x. Now we finally may state and prove the following result.

**2.1.21 Theorem (Gauss lemma).** Let M be a SRMF and let  $p \in M$ ,  $0 \neq x \in \mathcal{D}_p \subseteq T_pM$ . Then for any  $v_x$ ,  $w_x \in T_x(T_pM)$  with  $v_x$  radial we have

$$\langle (T_x \exp_p)(v_x), (T_x \exp_p)(w_x) \rangle = \langle v_x, w_x \rangle. \tag{2.1.24}$$

**Proof.** Since  $v_x$  is radial and (2.1.24) is linear we may suppose w.l.o.g. that  $v_x = x$  and to simplify notations we choose to denote this vector by v. Also we write w instead of  $w_x$ . Let now

$$f(t,s) := \exp_{p}(t(v+sw)).$$
 (2.1.25)

The mapping  $(t, s) \mapsto t(v + sw)$  is continuous and maps  $[0, 1] \times \{0\}$  into the set  $\mathcal{D}_p$ , the domain of  $\exp_p$  in  $T_pM$ . By 2.2.3, below  $\mathcal{D}_p$  is open and so there is  $\varepsilon, \delta > 0$  such that f is defined on the square  $\mathcal{D} := \{(t, s) : -\delta < t < 1 + \delta, -\varepsilon < s < \varepsilon\}$  (see figure 2.4) and so f is a 2-parameter ma



Figure 2.4: The shape of  $h(\mathcal{D})$  with h(t,s) = t(v+sw)).  $\clubsuit$  correct figure  $\clubsuit$ 

We now have  $f_t(1,0) = T_v \exp_p(v)$  and  $f_s(1,0) = T_v \exp_p(w)$  and so we have to show that  $\langle f_t(1,0), f_s(1,0) \rangle = \langle v, w \rangle$ .

The curves  $t \mapsto f(t, s)$  are geodesics with initial speed v + sw. Hence  $f_{tt} = 0$  and so  $\langle f_t, f_t \rangle = \text{const} = \langle v + sw, v + sw \rangle$  since  $f_t(0, s) = T_0 \exp_p(v + sw) = v + sw$ . Moreover by 2.1.20  $f_{st} = f_{ts}$  and so we have

$$\frac{\partial}{\partial t} \langle f_s, f_t \rangle = \langle f_{st}, f_t \rangle + \langle f_s, \underbrace{f_{tt}} \rangle = \langle f_{ts}, f_t \rangle 
= \frac{1}{2} \frac{\partial}{\partial s} \langle f_t, f_t \rangle = \frac{1}{2} \frac{\partial}{\partial s} \langle v + sw, v + sw \rangle = \langle v, w \rangle + s \langle w, w \rangle$$
(2.1.26)

which implies

$$\left(\frac{\partial}{\partial t}\langle f_s, f_t \rangle\right)(t, 0) = \langle v, w \rangle \quad \text{for all } t. \tag{2.1.27}$$

Now  $f(0,s) = \exp_p(0) = p$  for all s and so  $f_s(0,0) = 0$  which gives  $\langle f_s, f_t \rangle (0,0) = 0$ . Now integrating (2.1.27) yields  $\langle f_s, f_t \rangle (t,0) = t \langle v, w \rangle$ . Finally setting t = 1 we obtain  $\langle f_t(1,0), f_s(1,0) \rangle = \langle v, w \rangle$ .

### 2.2 Geodesic convexity

Geodesically convex sets, which sometimes are also called totally normal, are normal neighbourhoods of all of their points. In this section we are going to prove existence of such sets around each point in a SRMF. The arguments will rest on global properties of the exponential map. To formulate these we need to introduce product manifolds as a preparation. We skip the obvious proof of the following lemma.

**2.2.1 Definition & Lemma (Product manifold).** Let  $M^m$  and  $N^n$  be smooth manifolds of dimension m and n respectively. Let  $(p,q) \in M \times N$  and let  $(\varphi = (x^1, \ldots, x^m), U)$  and  $(\psi = (y^1, \ldots, y^n), V)$  be charts of M around p and of N around q, respectively. Then we call  $(\varphi \times \psi, U \times V)$  a product chart of  $M \times N$ . The family of all product charts defines a  $C^{\infty}$ -structure on  $M \times N$  and we call the resulting smooth manifold the product manifold of M with N. The dimension of  $M \times N$  is m + n.

**2.2.2 Remark (Properties of product manifolds).** Let  $M^m$  and  $M^n$  be  $\mathcal{C}^{\infty}$ -manifolds.

- (i) The natural manifold topology of  $M \times N$  is precisely the product topology of M and N since the  $\varphi \times \psi$  are homeomorphism by definition.
- (ii) The projections  $\pi_1: M \times N \to M$ ,  $\pi_1(p,q) = p$  and  $\pi_2: M \times N \to N$ ,  $\pi_2(p,q) = q$  are smooth since  $\varphi \circ \pi_1 \circ (\varphi \times \psi)^{-1} = \operatorname{pr}_1: \varphi(U) \times \psi(V) \to \varphi(U)$  and similarly for  $\pi_2$ . From this local representation we even have that  $\pi_1$ ,  $\pi_2$  are surjective submersions. By  $\P$  properly cite Cor. 1.1.23 in submanifold part of ANAMF  $\P$  if follows that for  $(p,q) \in M \times N$  the sets  $M \times \{q\} = \pi_2^{-1}(\{q\})$  and  $\{p\} \times N = \pi_1^{-1}(\{p\})$  are closed submanifolds of  $M \times N$  of dimension m and n, respectively. Moreover the bijection  $\pi_1|_{M \times \{q\}}: M \times \{q\} \to M$  is a diffeomorphism by  $\P$  properly cite Thm. 1.1.5 in submanifold part of ANAMF  $\P$  and analogously for  $\pi_2|_{\{p\} \times N}$ .
- (iii) A mapping  $f: P \to M \times N$  from a smooth manifold P into the product is smooth iff  $\pi_1 \circ f$  and  $\pi_2 \circ f$  are smooth. This fact is easily seen from the chart representations.
- (iv) By (ii) we may identify  $T_{(p,q)}(M \times \{q\})$  with  $T_pM$  and likewise for  $T_{(p,q)}(\{q\} \times N)$  and  $T_qN$ . We now show that (using this identification)

$$T_{(p,q)}M \times N = T_pM \oplus T_qN. \tag{2.2.1}$$

Since  $\dim T_pM=m$  and  $\dim T_qN=n$  it suffices to show that  $T_{(p,q)}(M\times\{q\})\cap T_{(p,q)}(\{p\}\times N)=0$ . Suppose v is in this intersection. Now since  $\pi_1|_{\{p\}\times N}\equiv p$  we have  $T_{(p,q)}\pi_1|_{T_{(p,q)}(\{p\}\times N)}=0$  and so  $T_{(p,q)}\pi_1(v)=0$ . But by (ii)  $T_{(p,q)}\pi_1|_{T_{(p,q)}(M\times\{q\})}$  is bijective and hence v=0. In most cases one identifies  $T_pM\oplus T_qn$  with  $T_pM\times T_qN$  and hence writes  $T_{(p,q)}(M\times N)\cong T_pM\times T_qN$ .

(v) If  $(M, g_M)$  and  $(N, g_N)$  are SRMFs then  $M \times N$  is again a SRMF with metric

$$g := \pi_1^*(g_M) + \pi_2^*(g_n), \quad \text{i.e., cf. [10, 2.7.24]}),$$

$$g_{(p,q)}(v, w) = g_M(p) \left( T_{(p,q)} \pi_1(v), T_{(p,q)} \pi_1(w) \right) + g_N(q) \left( T_{(p,q)} \pi_2(v), T_{(p,q)} \pi_2(v) \right).$$
(2.2.2)

Indeed g is obviously symmetric and it is nondegenerate since suppose g(v, w) = 0 for all  $w \in T_{(p,q)}(M \times N)$ . Now choosing  $w \in T_{(p,q)}(M \times \{q\}) \cong T_pM$  we obtain by  $T_{(p,q)}\pi_2(w) = 0$  that

$$g_m(p)\left(T_{(p,q)}\pi_1(v), \underbrace{T_{(p,q)}\pi_1(w)}_{(*)}\right) = 0.$$
 (2.2.3)

Now since  $T_{(p,q)}\pi_1$  is bijective the term (\*) attains all values in  $T_pM$  hence by nondegeneracy of  $g_M$ ,  $T_{(p,q)}\pi_1(v) = 0$  and analogously  $T_{(p,q)}\pi_2(v) = 0$ . Since  $v = v_M + v_N$  where  $v_M \in T_pM$  and  $v_N \in T_qN$  we finally obtain v = 0.

The SRMF  $(M \times N, g)$  is called the *semi-Riemannian product* of M with N.

Now we are in a position to collect together the maps  $\exp_p : T_pM \supseteq \mathcal{D}_p \to M \ (p \in M)$  to a single mapping. To begin with we assume M to be complete, i.e., we assume that  $\exp_p$  is defined on all of  $T_pM$  for all  $p \in M$ . Let  $\pi : TM \to M$  the projection and define the mapping

$$E: TM \to M \times M, \quad E(v) = (\pi(v), \exp_{\pi(v)} v),$$
 (2.2.4)

that is for  $v \in T_pM \subseteq TM$  we have  $E(v) = (p, \exp_p(v))$ . In case M is not complete the maximal domain of E is given by

$$\mathcal{D} := \{ v \in TM : c_v \text{ exists at least on } [0, 1] \}. \tag{2.2.5}$$

Now for each p we have that the maximal domain  $\mathcal{D}_p$  of  $\exp_p$  is  $\mathcal{D}_p = \mathcal{D} \cap T_pM$ . Observe that  $\mathcal{D}$  also is the maximal domain of

$$\exp := \Pi_2 \circ E : v_p \mapsto \exp_p(v_p) = c_{v_p}(1).$$
 (2.2.6)

We now have the following result which we have already used in the proof of the Gauss lemma 2.1.21.

**2.2.3 Proposition (The domain of** exp). The domain  $\mathcal{D}$  of E is open in TM and the domain  $\mathcal{D}_p$  of  $\exp_p$  is open and star shaped around 0 in  $T_pM$ .

**Proof.** Let  $G \in \mathfrak{X}(TM)$  be the geodesic spray as in 2.1.12. Then as proven there the flow lines of G are the derivatives of geodesics, i.e.,  $Fl_t^G(v) = c_v'(t)$ . The maximal domain  $\tilde{\mathcal{D}}$  of  $Fl^G$  is open in  $\mathbb{R} \times TM$  by [10, 2.5.17(iii)].

Clearly  $\tilde{\mathcal{D}}$  also is the maximal domain of  $\pi \circ \text{Fl}^G : (t, v) \mapsto c_v(t)$ . Now let  $\Phi : TM \to TM \times \mathbb{R}$ ,  $\Phi(v) = (1, v)$ . Then  $\Phi$  is smooth and we have  $\mathcal{D} = \{v \in TM : \exists c_v(1)\} = \{v \in TM : (1, v) \in \tilde{\mathcal{D}}\} = \Phi^{-1}(\tilde{\mathcal{D}})$ , hence open. But then also  $\mathcal{D}_p = \mathcal{D} \cap T_pM$  is open in  $T_pM$ .

Let finally  $v \in \mathcal{D}_p$  then  $c_v$  is defined on [0,1] and by (2.1.12) we have  $c_{tv}(1) = c_v(t)$ . So  $tv \in \mathcal{D}_p$  for all  $t \in [0,1]$  and hence  $\mathcal{D}_p$  is star shaped.

We now introduce sets which generalise the notion of convex subsets of Euclidean space.

**2.2.4 Definition (Convex sets).** An open subset  $C \subseteq M$  of a SRMF is called (geodesically) convex if C is a normal neighbourhood of all of its points.

By 2.1.15 for any pair p, q of points in a convex set C there hence exists a unique geodesic called  $c_{pq}: [0,1] \to M$  which connects p to q and stays entirely in C. Observe that there also might be other geodesics in M that connect p and q. They, however, have to leave C, as is depicted in the case of the sphere in Figure 2.2.



Figure 2.5: The unique geodesic connecting p and q within the convex set C is the shorter great circle arc between p and q.

To study further properties of the mapping E we need some further preparations.

**2.2.5 Definition (Diagonal, null section).** Let M be a smooth manifold. The diagonal  $\Delta_M \subseteq M \times M$  is defined by  $\Delta_M := \{(p,p) : p \in M\}$ . The zero section  $TM_0$  of TM is defined as  $TM_0 := \{0_p : p \in M\}$ .

Observe that in a chart  $(\varphi, U)$  around p we have that the map  $f: U \times U \ni (p, p') \mapsto \varphi(p) - \varphi(p')$  is a submersion and we locally have that  $\Delta_M = f^{-1}(0)$  and so  $\Delta_M$  is a submanifold of M, cf.  $\clubsuit$  properly cite 1.1.22 of submf.pdf  $\clubsuit$ . Moreover the mapping  $p \mapsto (p, p)$  is a diffeomorphism from M to  $\Delta_M$ . Finally by [10, 2.5.6] the zero section is precisely the base of the vector bundle  $TM \to M$  and so it is also diffeomorphic to M. We now have.

- **2.2.6 Theorem (Properties of** E). The mapping E is a diffeomorphism from a neighbourhood of the zero section  $TM_0$  of TM to a neighbourhood of the diagonal  $\triangle_M \subseteq M \times M$ .
- A insert figure (see notes on draft version) A

**Proof.** We first show that every  $x \in TM_0$  possesses a neighbourhood where E is a diffeomorphism. To begin with observe that we have  $E(x) = (\pi(x), \exp_p(0)) = (p, p)$ . We aim at applying the inverse function theorem (see eg.  $\clubsuit$  properly cite 1.1.5 of submf.pdf  $\clubsuit$ ) and so we have to show that  $T_xE:T_x(TM)\to T_{E(x)}(M\times M)$  is bijective. But since dim  $TM=\dim(M\times M)=2\dim M$  it suffices to establishes injectivity at every point  $x\in TM_0$ . So let  $x=0_p\in TM_0$  and suppose  $T_xE(v)=0$  for  $v\in T_x(TM)$ . We have to show that v=0.

Denoting by  $\pi: TM \to M$  the bundle projection and by  $\pi_1: M \times M \to M$  the projection onto the first factor we have  $\pi = \pi_1 \circ E$ . So  $T_x \pi(v) = T_{E(x)} \pi_1(T_x E(v)) = 0$  hence  $v \in T_x(T_p M)$  since  $\ker(T_x \pi) = T_x(T_p M)$  (cf.  $\P$  properly cite 1.1.26 of submf.pdf  $\P$ ). Now  $E|_{T_p M} = \exp_p$  (identifying  $\{p\} \times M$  with M) and so by (2.1.14)

$$0 = T_x E(v) = T_x(E|_{T_p M})(v) = T_{0_p} \exp_p(v) = v$$
(2.2.7)

as claimed.

In a second step we show that E is a diffeomorphism on a suitable domain. First we observe that for U in a basis of neighbourhoods of p and  $\varepsilon > 0$  the sets of the form

$$W_{U,\varepsilon} := (T\psi)^{-1} (\psi(U) \times B_{\varepsilon}(0))$$
(2.2.8)

form a basis of neighbourhoods of  $v \in TM_0$  with  $\psi$  a chart of M around  $\pi(v) = p$ . Now cover  $TM_0$  by such neighbourhoods  $W_{U_i,\varepsilon_i}$  such that  $E|_{W_{U_i,\varepsilon_i}}$  is a diffeomorphism for all i. Then  $W = \cup_i W_{U_i,\varepsilon_i}$  is a neighbourhood as claimed. Indeed E is a local diffeomorphism on W and we only have to show that it is also injective. To this end let  $w_1, w_2 \in W$ ,  $w_i \in W_{U_i,\varepsilon_i}$  (i = 1,2) with  $E(w_1) = E(w_2)$ . But then  $\pi(w_1) = \pi(w_2) =: p \in U_1 \cap U_2$  and supposing w.l.o.g. that  $\varepsilon_1 \leq \varepsilon_2$  we have  $w_1, w_2 \in W_{U_2,\varepsilon_2}$ . But then  $w_1 = w_2$  by the fact that  $E|_{W_{U_2,\varepsilon_2}}$  is a diffeomorphism.

Now we are ready to state and prove the main result of this section. A insert figure A

**2.2.7** Theorem (Existence of convex sets). Every point p in a SRMF M possesses a basis of neighbourhoods consisting of convex sets.

**Proof.** Let V be a normal neighbourhood of p with Riemannian normal coordinates  $\psi = (x^1, \ldots, x^n)$  and define on V the function  $N(q) = \sum_i (x^i(q))^2$ . Then the sets  $V(\delta) := \{q \in V : N(q) < \delta\}$  are diffeomorphic via  $\psi$  to the open balls  $B_{\sqrt{\delta}}(0)$  in  $\mathbb{R}^n$ , hence they form a basis of neighbourhoods of p in M.

By 2.2.6 choosing  $\delta$  small enough the map E is a diffeomorphism of an open neighbourhood W of  $0_p \in TM$  to  $V(\delta) \times V(\delta)$ . We may choose W in such a way that  $[0,1]W \subseteq W$  (e.g. by setting  $W = T\varphi^{-1}(\varphi(U) \times B(0))$  with  $\varphi$  a chart of M and B(0) is a suitable Euclidean ball).

Let now  $B \in \mathcal{T}_2^0(V)$  be the symmetric tensor field with

$$B_{ij}(q) = \delta_{ij} - \sum_{l} \Gamma^{l}_{ij}(q) x^{l}(q).$$
 (2.2.9)

B by 2.1.17 is positive definite at p and hence if we further shrink  $\delta$  and W it is positive definite on  $V(\delta)$ . We now claim that  $V(\delta)$  is a normal neighbourhood of each of its points. Let  $q \in V(\delta)$  and set  $W_q = W \cap T_q M$  then by construction  $E|_{W_q}$  is a diffeomorphism onto  $\{q\} \times V(\delta)$  and so is  $\exp_q|_{W_q}$  onto  $V(\delta)$ .

It remains to show that  $W_q$  is star shaped. For  $q \neq \tilde{q} \in V(\delta)$  we set  $v := E^{-1}(q, \tilde{q}) = \exp_q^{-1}(\tilde{q}) \in W_q$ . Then  $\sigma : [0,1] \to M$ ,  $\sigma(t) = c_v(t)$  is a geodesic joining q with  $\tilde{q}$ . If we can show that  $\sigma$  lies in  $V(\delta)$  then the proof of 2.1.15 (see the footnote) shows that  $tv \in W_q$  for all  $t \in [0,1]$  and we are done since any  $v \in W_q$  is of the form  $E^{-1}(q,\tilde{q})$ .

Hence we assume by contradiction that  $\sigma$  leaves  $V(\delta)$ . Then there is a  $t \in (0,1)$  with  $N(\sigma(t)) \geq \delta$ .  $\clubsuit$  insert figure (see draft notes)  $\clubsuit$  Since  $N(q), N(\tilde{q}) < \delta$  there is  $t_0 \in (0,1)$  such that  $t \mapsto N \circ \sigma$  takes a maximum in  $t_0$ . Then for  $\sigma^i = x^i \circ \sigma$  we find by the geodesic equation

$$\frac{d^2(N \circ \sigma)}{dt^2} = 2\sum_i \left( \left( \frac{d\sigma^i}{dt} \right)^2 + \sigma^i \frac{d^2(\sigma^i)}{dt^2} \right) = 2\sum_{ik} \left( \delta_{jk} - \sum_i \Gamma^i_{jk} \sigma^i \right) \frac{d\sigma^j}{dt} \frac{d\sigma^k}{dt}$$
(2.2.10)

and so

$$\frac{d^2(N \circ \sigma)}{dt^2}(t_0) = 2B(\sigma'(t_0), \sigma'(t_0)) > 0, \tag{2.2.11}$$

since  $\sigma' \neq 0$ . But this contradicts the fact that  $N \circ \sigma(t_0)$  is maximal.

Convex neighbourhoods are of great technical significance as we can see e.g. in the following statement.

**2.2.8 Corollary (Extendability of geodesics).** Let  $c : [0,b) \to M$  be a geodesic. Then c is continuously extendible (as a curve) to [0,b] iff it is extendible to [0,b] as a geodesic.

**Proof.** The 'only if' part of the assertion is clear. Let now  $\tilde{c}:[0,b]\to M$  be a continuous extension of c. By 2.2.7,  $\tilde{c}(b)$  has a convex neighbourhood C. Let now  $a\in[0,b)$  be such that  $\tilde{c}([a,b])\subseteq C$ . Then C is also a normal neighbourhood of p:=c(a) and  $c|_{[a,b)}$  is a radial geodesic by 2.1.15 and can hence be extended until it reaches  $\partial C$  or to  $[a,\infty)$ . But since  $\tilde{c}(b)\in C$  (and hence  $\not\in\partial C$ ) c can be extended as a geodesic beyond b.

Let now C be a convex open set in a SRMF M and let  $p, q \in C$ . We denote by  $\sigma_{pq}$  the unique geodesic in C such that  $\sigma_{pq}(0) = p$  and  $\sigma_{pq}(1) = q$ , cf. 2.1.15. Then we write  $\overrightarrow{pq} := \sigma'_{pq}(0) = \exp_p^{-1}(q) \in T_pM$  for the displacement vector of p and q. We then have

**2.2.9** Lemma (Displacement vector). Let  $C \subseteq M$  be convex. Then the mapping

$$\Phi: C \times C \to TM, \quad (p,q) \mapsto \vec{pq}$$
 (2.2.12)

is smooth and a diffeomorphism onto its image  $\Phi(C \times C)$  in TM.

**Proof.** Let  $(p_0, q_0) \in C \times C$ , then  $T_{q_0} \exp_{p_0}$  is regular. Also we have  $\Phi(p, q) = \exp_p^{-1}(q)$  is the solution to the equation  $\exp_p(f(p, q)) = q$  and so  $\Phi$  is smooth by the implicit function theorem (see e.g. [10, 2.1.2]).

Moreover  $E(\Phi(p,q))=(p,q)$  and E is invertible at  $\Phi(p,q)$  for all  $(p,q)\in C\times C$  since  $T_{\Phi(p,q)}E=\begin{pmatrix} \mathrm{id} & 0 \\ * & T_q\exp_p \end{pmatrix}$  is nonsingular. So locally  $\Phi=E^{-1}$  and so  $\Phi$  is a local diffeomorphism and, in particular,  $\Phi(C\times C)$  is open.

Finally  $\Phi$  is injective and hence it is a diffeomorphism with inverse  $E^{-1}|_{\Phi(C\times C)}$ .

In Euclidean space the intersection of convex sets is convex. This statement fails to hold on SRMFs already in simple situations as the following conounterexample shows.

**2.2.10 Examples (Convex sets on**  $S^1$ ). Let  $M = S^1$ . Then the exponential function is a diffeomorphism from  $(-\pi, \pi) \in T_p S^1$  to  $S^1 \setminus \{\bar{p}\}$ , where  $\bar{p}$  is the antipodal point of p, see  $\clubsuit$  insert figure (see draft notes)  $\clubsuit$ . The sets  $C = S^1 \setminus \{p\}$  and  $C' = S^1 \setminus \{\bar{p}\}$  are convex but their intersection  $C \cap C'$  is not even connected hence, in particular, not convex.

However, we have the following result in a special case.

**2.2.11 Lemma (Intersection of convex sets).** Let  $C_1, C_2 \subseteq M$  be convex and suppose  $C_1$  and  $C_2$  are contained in a convex set  $D \subseteq M$ . Then the intersection  $C_1 \cap C_2$  is convex

**Proof.** Let  $p \in C_1 \cap C_2$ . We show that  $C_1 \cap C_2$  is a normal neighbourhood of p. To begin with  $\exp_p : \tilde{D} \to D$  is a diffeomorphism. Set  $\tilde{C}_i := \exp_p^{-1}(C_i)$  (i = 1, 2), then  $\exp_p : \tilde{C}_1 \cap \tilde{C}_2 \to C_1 \cap C_2$  is a diffeomorphism. Hence it only remains to show that  $\tilde{C}_1 \cap \tilde{C}_2$  is star shaped.

Indeed let  $v \in \tilde{C}_1 \cap \tilde{C}_2$  then  $q := \exp_p(v) \in C_1 \cap C_2$  and so  $\sigma_{pq}(t) = \exp_p(tv)$  is the unique geodesic in D that joins p and q. By convexity of the  $C_i$  we have that  $\sigma_{pq}(t) = \exp_p(tv) \in C_1 \cap C_2$  for all  $t \in [0,1]$  and so  $tv \in \tilde{C}_1 \cap \tilde{C}_2$  and we are done.

The above lemma allows to prove the existence of a convex refinement of any open cover of a SRMF M. To be more precise we call a covering  $\mathcal{C}$  of M by open and convex sets a convex covering if all non trivial intersections  $C \cap C'$  of sets in  $\mathcal{C}$  are convex. Then one can show that for any given open covering  $\mathcal{O}$  of M there exists a convex covering  $\mathcal{C}$  such that any set of  $\mathcal{C}$  is contained in some element of  $\mathcal{O}$ , see [12, Lemma 5.10].

# 2.3 Arc length and Riemannian distance

In this section we define the  $arc\ length$  of (piecewise smooth) curves. This notion in turn on Riemannian manifolds allows to define a notion of distance between two points p and q as the infimum of the arc length of all curves connecting p and q. We will show that this  $Riemannian\ distance\ function\ encodes$  the topology of the manifold.

To begin with we introduce some notions on curves.  $\clubsuit$  maybe move prior to 2.1.16  $\clubsuit$  If I = [a, b] is a closed interval we call a continuous curve  $\alpha : [a, b] \to M$  piecewise smooth if there is a finite partition  $a = t_0 < t_1 < \cdots < t_k = b$  of the interval [a, b] such that all the restrictions  $\alpha|_{[t_i, t_{i+1}]}$  are smooth. Thus at each of the so-called break points  $a = t_i$  the curve may well have two distinct velocity vectors  $a'(t_i)$  and  $a'(t_k)$ , representing the left-resp. right-sided derivative at  $a = t_i$ . If  $a = t_i$  is an arbitrary interval we call  $a = t_i$  in  $a = t_i$  in  $a = t_i$  is piecewise smooth (in the previous sense). In particular, the break points have no cluster point in  $a = t_i$ .

**2.3.1 Definition (Arc length).** Let  $\alpha : [a,b] \to M$  be a piecewise smooth curve into a SRMF M. We define the arc length (or length, for short) of  $\alpha$  by

$$L(\alpha) := \int_{a}^{b} \|\alpha'(s)\| \, ds. \tag{2.3.1}$$

We recall that  $\|\alpha'(s)\| = |\langle \alpha'(t), \alpha'(t) \rangle|^{1/2}$  and in coordinates  $\|\alpha'(s)\| = |g_{ij}(\alpha(s))|^{\frac{d(x^i \circ \alpha)}{ds}}(s)|^{1/2}$ .

On Riemannian manifolds the arc length behaves much as in the Euclidean setting, cf. [10, Ch. 1]. However in the semi-Riemannian case with an indefinite metric there are new effects. For example null curves always have vanishing arc length.

A reparametrisation of a piecewise smooth curve  $\alpha$  is a piecewise smooth function h:  $[c,d] \to [a,b]$  such that h(c)=a and h(d)=b (orientation preserving) or h(c)=b and h(d)=a (orientation reversing). If h'(t) does not change sign then h is monotone and precisely as in [10, 1.1.2, 1.1.3] we have.

**2.3.2 Lemma (Parametrisations).** Let  $\alpha: I \to M$  be a piecewise smooth curve. Then we have:

- (i) The arc length 2.3.1 of  $\alpha$  is invariant under monotonous reparametrisations.
- (ii) If  $\|\alpha'(t)\| > 0$  for all t then  $\alpha$  possesses a strictly monotonous reparametrisation h such that for  $\beta := \alpha \circ h$  we have  $\|\beta'(s)\| = 1$  for all s. Such a parametrisation is called parametrisation by arc length.

Let now  $p \in M$  and let U be a normal neighbourhood of p. The function

$$r: U \to \mathbb{R}^+, \quad r(q) := \|\exp_p^{-1}(q)\|$$
 (2.3.2)

----- V E R S I O N  $\phantom{-}$  0 . 9  $\phantom{-}$  (January 17, 2017)  $\phantom{-}$  -----

<sup>&</sup>lt;sup>2</sup>We follow the widespread custom to call both the  $t_i$  as well as the  $\alpha(t_i)$  breakpoints.

is called the radius function of M at p. In Riemannian normal coordinates we have

$$r(q) = \left| -\sum_{i=1}^{r} (x^i)^2(q) + \sum_{j=r+1}^{n} (x^j)^2(q) \right|^{1/2}.$$
 (2.3.3)

Hence r is smooth except at its zeroes, hence off p as well as off the local null cone at p. In a normal neighbourhood the radius is given exactly by the length of radial geodesics as we prove next.

**2.3.3 Lemma (Radius in normal neighbourhoods).** Let r be the radius in a normal neighbourhood U of a point p in a SRMF M. If  $\sigma$  is the radial geodesic form p to some  $q \in U$  the we have

$$L(\sigma) = r(q). \tag{2.3.4}$$

**Proof.** Let  $v = \sigma'(0)$  then by 2.1.15  $v = \exp_p^{-1}(q)$ . Now since  $\sigma$  is a geodesic,  $\|\sigma'\|$  is constant and we have

$$L(\sigma) = \int_0^1 \|\sigma'(s)\| \, ds = \int_0^1 \|v\| \, ds = \|v\| = \|\exp_p^{-1}(q)\| = r(q). \tag{2.3.5}$$

From now on we will until the end of this chapter exclusively deal with Riemannian manifolds. Indeed it is only in the Riemannian case that the topology of the manifold is completely encoded in the metric.

**2.3.4 Proposition (Radial geodesics are locally minimal).** Let M be a Riemannian manifold and let U be a normal neighbourhood of a point  $p \in M$ . If  $q \in U$ , then the radial geodesic  $\sigma : [0,1] \to M$  from p to q is the unique shortest piecewise smooth curve in U from p to q, where uniqueness holds up to monotone reparametrisations.

**Proof.** Let  $c:[0,1] \to U$  be a piecewise smooth curve from p to q and set s(t) = r(c(t)), with r the radius function of (2.3.2). Since  $\exp_p$  is a diffeomorphism we may for  $t \neq 0$  uniquely write c in the form

$$c(t) = \exp_{p}(s(t)v(t)) =: f(s(t), t),$$
 (2.3.6)

where v is a curve in  $T_pM$  with ||v(t)|| = 1 for all t. (This amounts to using polar coordinates in  $T_pM$ .) Here  $f(s,t) = \exp_p(sv(t))$  is a two-parameter map on a suitable domain and the function  $s:(0,1] \to \mathbb{R}^+$  is piecewise smooth. (Indeed we may suppose w.l.o.g. that  $s(t) \neq 0$ , i.e.,  $c(t) \neq p$  for all  $t \in (0,1]$  since otherwise we may define  $t_0$  to be the last parameter value when  $c(t_0) = p$  and replace c by  $c|_{[t_0,1]}$ .)

----- VERSION 0.9 (January 17, 2017) -----

Now except for possibly finitely many values of t we have (cf. (2.1.19) and below)

$$\frac{dc(t)}{dt} = \frac{\partial f}{\partial s} (s(t), t) s'(t) + \frac{\partial f}{\partial t} (s(t), t). \tag{2.3.7}$$

From  $f(s,t) = \exp_{p}(sv(t))$  we have

$$\frac{\partial f}{\partial s} = (T_{sv(t)} \exp_p)(v(t)) \quad \text{and} \quad \frac{\partial f}{\partial t} = (T_{sv(t)} \exp_p)(sv'(t)) \tag{2.3.8}$$

and by the Gauss lemma 2.1.21 we find (since  $(T_{sv(t)} \exp_p)(v(t))$  is radial)

$$\langle \frac{\partial f}{\partial s}, \frac{\partial f}{\partial t} \rangle (s, t) = s \langle v(t), v'(t) \rangle = s \frac{1}{2} \frac{\partial}{\partial t} \underbrace{\|v(t)\|^2}_{=1} = 0$$
 (2.3.9)

and so  $\frac{\partial f}{\partial s} \perp \frac{\partial f}{\partial t}$ . Similarly we obtain via the Gauss lemma that  $\|\frac{\partial f}{\partial s}\|^2 = \langle v(t), v(t) \rangle = 1$  which using (2.3.7) implies  $\|\frac{dc}{dt}\|^2 = |s'(t)|^2 + \|\frac{\partial f}{\partial t}\|^2 \geq s'(t)^2$ . This now gives for all  $\varepsilon > 0$  that

$$\int_{\varepsilon}^{1} \|c'(t)\| dt \ge \int_{\varepsilon}^{1} |s'(t)| dt \ge \int_{\varepsilon}^{1} s'(t) dt = s(1) - s(\varepsilon)$$
 (2.3.10)

and hence in the limit  $\varepsilon \to 0$  we find  $L(c) \ge s(1) = r(q) = L(\sigma)$ , where the final equality is due to 2.3.3.

Let now  $L(c) = L(\sigma)$  then in the estimate (2.3.10) we have to have equality everywhere which enforces  $\frac{\partial f}{\partial t}(s(t),t) = 0$  for all t. But since  $T_{sv(t)} \exp_p$  is bijective this implies  $v' \equiv 0$  and hence v has to be constant.

Moreover we need to have |s'(t)| = s'(t) > 0 and hence  $c(t) = \exp_p(s(t)v)$  is a monotonous reparametrisation of  $\sigma(t)$ : Indeed by 2.1.15 we have  $\sigma(t) = \exp_p(t \exp_p^{-1}(q))$  and moreover  $\exp_p^{-1}(q) = \exp_p^{-1}(c(1)) = s(1)v$  and so  $\sigma(t) = \exp_p(ts(1)v)$ . Now with  $h(t) := \frac{s(t)}{s(1)}$  we have  $\sigma(h(t)) = \exp_p(\frac{s(t)}{s(1)}s(1)v) = \exp_p(s(t)v) = c(t)$ .

In  $\mathbb{R}^n$  the distance between two points d(p,q) = ||p-q|| is at the same time the length of the shortest curve between these two points, i.e., the straight line segment from p to q. But this ceases to be true even in the simple case of  $\mathbb{R}^2 \setminus \{(0,0)\}$ . Here there is no shortest path between the two points p = (-1,0) and q = (1,0). However, the infimum of the arc length of all paths connecting theses two points clearly equals the Euclidean distance 2 between p and q.  $\clubsuit$  insert Figure  $\clubsuit$  This idea woks also on general Riemannian manifolds and we start with the following definition.

**2.3.5 Definition (Riemannian distance).** Let M be a Riemannian manifold and let  $p, q \in M$ . We define the set of 'permissible' paths connecting p and q by

$$\Omega(p,q) := \{\alpha : \alpha \text{ is a piecewise smooth curve from } p \text{ to } q\}. \tag{2.3.11}$$

The Riemannian distance d(p,q) between p and q is then defined to be

$$d(p,q) := \inf_{\alpha \in \Omega(p,q)} L(\alpha). \tag{2.3.12}$$

Furthermore we define just as in  $\mathbb{R}^n$  the  $\varepsilon$ -neighbourhood of a point p in a RMF M for all  $\varepsilon > 0$  by

$$U_{\varepsilon}(p) := \{ q \in M : \ d(p,q) < \varepsilon \}. \tag{2.3.13}$$

Now in  $\varepsilon$ -neighbourhoods the usual Euclidean behaviour of geodesics holds true, more precisely we have:

- **2.3.6 Proposition** ( $\varepsilon$ -neighbourhoods). Let M be a RMF and let  $p \in M$ . Then for  $\varepsilon$  sufficiently small we have:
  - (i)  $U_{\varepsilon}(p)$  is a normal neighbourhood,
  - (ii) The radial geodesic  $\sigma$  from p to any  $q \in U_{\varepsilon}(p)$  is the unique shortest piecewise smooth curve in M connecting p with q. In particular, we have  $L(\sigma) = r(q) = d(p,q)$ .

Note the fact that the radial geodesic in 2.3.6(ii) is globally the shortest curve from p to q and moreover that it is smooth.

**Proof.** Let U be a normal neighbourhood of p and denote by  $\tilde{U}$  the corresponding neighbourhood of  $0 \in T_pM$ . Then for  $\varepsilon$  sufficiently small  $\tilde{U}$  contains the star shaped open set  $\tilde{N} = \tilde{N}_{\varepsilon}(0) := \{v \in T_pM : ||v|| < \varepsilon\}$ . Therefore  $N := \exp_p(\tilde{N})$  is also a normal neighbourhood.

By 2.3.4 for any  $q \in N$  the radial geodesic  $\sigma$  from p to q is the unique shortest piecewise smooth curve in N from p to q. Moreover by 2.3.3 we have  $L(\sigma) = r(q)$ . Since  $\sigma'(0) = \exp_p^{-1}(q) \in \tilde{N}$  we have  $r(q) = \|\exp_p^{-1}(q)\| < \varepsilon$ .

To finish the proof is suffices to show the following assertion:

Any piecewise  $C^{\infty}$ -curve  $\alpha$  in M starting in p and leaving N satisfies  $L(\alpha) \geq \varepsilon$ . (2.3.14)

Indeed then  $\sigma$  is the unique shortest piecewise smooth curve in M connecting p and q. But this implies that  $r(q) = L(\sigma) = d(p,q)$  and we have shown (ii) but also  $d(p,q) < \varepsilon$ . Moreover for  $q \notin N$  by (2.3.14) we have  $d(p,q) \ge \varepsilon$ . So in total  $N = U_{\varepsilon}(p)$  implying (i). So it only remains to prove (2.3.14).

To begin with let  $0 < a < \varepsilon$ . We then have  $\tilde{N}_a(0) \subseteq \tilde{N}$  and hence  $\exp_p(\tilde{N}_a(0)) \subseteq N$ . Now since  $\alpha$  leaves N is also has to leave  $\exp_p(\tilde{N}_a(0))$ . Let  $t_0 = \sup\{t : \alpha(t) \in \exp_p(\tilde{N}_a(0))\}$ . Then  $\alpha|_{[0,t_0]}$  is a curve connecting p with a point  $q \in \partial \exp_p(\tilde{N}_a(0))$  which stays entirely in the slightly bigger normal neighbourhood  $\exp_p(\tilde{N}_{a+\delta}(0))$  of p where  $\delta$  is chosen such that  $a + \delta < \varepsilon$ . Now by 2.3.3 and 2.3.4 we have  $L(\alpha) \ge L(\alpha|_{[0,t_0]} \ge r(q) = a$ . Finally for  $a \to \varepsilon$  we obtain  $L(\alpha) \ge \varepsilon$ .

- **2.3.7 Remark (Normal**  $\varepsilon$ -neighbourhoods). Observe that the above proof also shows that any normal neighbourhood around p contains an  $\varepsilon$ -neighbourhood  $U_{\varepsilon}(p)$  which itself is normal. Moreover it is open since  $U_{\varepsilon}(p) = N = \exp_{p}(\tilde{N}_{\varepsilon}(0))$ .
- **2.3.8 Example (Cylinder).** Let M be the cylinder of 2.1.4 and denote by L any vertical line in M. Hence if  $p \in M \setminus L$  then  $M \setminus L$  is a normal neighbourhood of p and so  $M \setminus L$  is convex. By 2.1.15 the radial geodesic  $\sigma$  (cf. Figure 2.6) is the unique shortest piecewise smooth curve from p to q in  $M \setminus L$ . However, the curve  $\tau$  is obviously a shorter curve from p to q in M. But  $\tau$  leaves  $M \setminus L$ .



Figure 2.6: Convex neighbourhood on the cylinder. A improve figure A

If p in M is arbitrary then the largest normal  $\varepsilon$ -neighbourhood of p is  $U_{\pi}(p)$ . This fact is most vividly seen from the (isometric hence equivalent) picture of the unwinded cylinder, see Figure 2.7. If  $q \in U_{\pi}(p)$  then the radial geodesic  $\sigma$  form p to q is the unique shortest curve from p to q in all of M. If r is a point in  $M \setminus U_{\pi}(p)$  there is still a shortest curve from p to r in M. If, however, r lies on the line L through the antipodal point p' of p then this curve is non-unique.

**2.3.9 Theorem (Riemannian distance).** Let M be a connected RMF. Then the Riemannian distance function  $d: M \times M \to \mathbb{R}$  is a metric (in the topological sense) on M. Furthermore the topology induced by d on M coincides with the manifold topology of M.

**Proof.** First of all note that d is finite: let  $p, q \in M$  then by connectedness there exists a piecewise  $C^1$ -curve  $\alpha$  from connecting p and q (cf. 2.1.16) and so  $d(p,q) \leq L(\alpha) < \infty$ . Now we show that d actually is a metric on M.

Positive definiteness: Clearly d(p,q) > 0 for all p,q. Now assume d(p,q) = 0. We have to show that p = q. Suppose to the contrary that  $p \neq q$ . Then by the Hausdorff property of M there exists a normal neighbourhood U of p not containing q. But then by 2.3.7 U contains a normal  $\varepsilon$ -neighbourhood  $U_{\varepsilon}(p)$  and so by (2.3.14)  $d(p,q) \geq \varepsilon > 0$ .



Figure 2.7: The largest normal  $\varepsilon$ -neighbourhood on the cylinder.  $\clubsuit$  improve figure  $\clubsuit$ 

Symmetry: d(p,q) = d(q,p) since  $L(\alpha) = L(t \mapsto \alpha(-t))$ .

Triangle inequality: Let  $p, q, r \in M$ . For  $\varepsilon > 0$  let  $\alpha \in \Omega(p, q)$ ,  $\beta \in \Omega(q, r)$  such that  $L(\alpha) < d(p, q) + \varepsilon$  and  $L(\beta) < d(q, r) + \varepsilon$ . Now define  $\gamma = \alpha \cup \beta$ . Then  $\gamma$  connects p with r and we have

$$d(p,r) \le L(\gamma) = L(\alpha) + L(\beta) < d(p,q) + d(q,r) + 2\varepsilon \tag{2.3.15}$$

and since  $\varepsilon$  was arbitrary we conclude  $d(p,r) \leq d(p,q) + d(q,r)$ .

Finally by 2.2.7 the normal neighbourhoods provide a basis of neighbourhoods of p and by 2.3.7 every normal neighbourhood contains some  $U_{\varepsilon}(p)$ . Conversely by 2.3.7 every sufficiently small  $\varepsilon$ -neighbourhood of p is open and so d generates the manifold topology of M.

We remark that there is also a proof which does not suppose the Riemannian metric to be smooth and the statement of the theorem remains true also for Riemannian metrics that are merely continuous.

**2.3.10 Remark (Minimising curves).** By the definition of the Riemannian distance function a piecewise smooth curve  $\sigma$  from p to q is a curve of minimal distance between these points if  $L(\sigma) = d(p,q)$ . In this case we call  $\sigma$  a minimising curve. In general there can be several such curves between a given pair of points; just consider the meridians running from the north pole to the south pole of the sphere.

Observe that every segment of a minimising curve form p to q is itself minimising (between its respective end points). Otherwise there would be a shorter curve between p and q.  $\clubsuit$  insert figure  $\clubsuit$ .

We finally complete our picture concerning the relation between geodesics and minimising curves. By 2.1.15 radial geodesics are the unique minimising curves which connect the center of a normal neighbourhood U to any point  $q \in U$  and stay within U. Moreover by making U smaller, more precisely by considering a normal  $\varepsilon$ -neighbourhood, radial geodesics become globally minimising curves, cf. 2.3.6. On the other hand geodesics that become too long, e.g. after leaving a normal neighbourhood of its starting point need no longer be minimising; just again think of the sphere. However, if a curve is minimising it has to be a geodesic and hence it is even smooth and not merely piecewise smooth, as the following statement says.

**2.3.11 Corollary (Minimising curves are geodesics).** Let p and q be points in a RMF M. Let  $\alpha$  be a minimising curve from p to q then  $\alpha$  is (up to monotone reparametrisations) a geodesic from p to q.

**Proof.** Let  $\alpha:[0,1]\to M$  a minimising piecewise smooth curve between  $\alpha(0)=p$  and  $\alpha(1)=q$ . We may now find a finite partition  $I=\cup_{i=1}^k I_i$  such that each segment  $\alpha_i:=\alpha|_{I_i}$  is contained in a convex set. We may also suppose w.o.l.g. that every  $\alpha_i$  is non constant since otherwise we can leave out the interval  $I_i$ . By 2.3.10 every  $\alpha_i$  is minimising and hence by 2.1.15 a monotone reparametrisation of a geodesics. Hence by patching together these reparametrisations we obtain a possibly broken geodesic  $\sigma$  with break points at the end points of the  $I_i$ . We have  $L(\sigma)=L(\alpha)=d(p,q)$ . So the corollary follows from the following statement which shows that there are actually no break points.

If a geodesic segment  $c_1$  ending at r and a geodesic segment  $c_2$  starting at r combine to give a minimising curve segment c, then c is an (unbroken) geodesic. (2.3.16)

Observe that the intuitive idea behind this statement is that rounding off a corner of  $\gamma$  near r would make  $\gamma$  shorter  $\clubsuit$  insert figure  $\clubsuit$ .

To formally prove (2.3.16) we once again choose a convex neighborhood U around r. Then the end part of  $c_1$  and the starting part of  $c_2$  combine to a minimising curve  $\bar{c}$  in U. Since U is normal for each of its points and particular for some  $r' \neq r$  on  $\bar{c}$  it follows by 2.1.15 that  $\bar{c}$  is a radial geodesic. So  $\bar{c}$  and hence c has no break point at r.

## 2.4 The Hopf-Rinow theorem

In this section we state and prove the main result on *complete Riemannian manifolds* which links the geodesics of the manifold to its structure as a metric space. The technical core of this result is contained in the following lemma.

**2.4.1 Lemma (Globally defined**  $exp_p$ .). Let M be a connected RMF and let  $p \in M$  such that the exponential map  $exp_p$  at p is defined on all of  $T_pM$  (i.e.,  $\mathcal{D}_p = T_pM$ ). Then for each  $q \in M$  there is a minimising geodesic from p to q.

**Proof.** Let  $U_{\varepsilon}(p)$  be a normal  $\varepsilon$ -neighborhood of p, cf. 2.3.7. If  $q \in U_{\varepsilon}(p)$  then the claim follows from 2.3.6(ii). So let  $q \notin U_{\varepsilon}(p)$  and denote by r the radius function at p, see (2.3.2). Now for  $\delta > 0$  sufficiently small (i.e.,  $\delta < \varepsilon$ ) the 'sphere'  $S_{\delta} := \{m \in M : r(m) = \delta\} = \exp_p(\{v \in T_pM : ||v|| = \delta\})$  lies within  $U_{\varepsilon}(p)$ . Since  $S_{\delta}$  is compact the continuous function  $S_{\delta} \ni s \mapsto d(s,q)$  attains its minimum in some point  $m \in S_{\delta}$ . We now show that

$$d(p,m) + d(m,q) = d(p,q). (2.4.1)$$

Clearly we have  $\geq$  in (2.4.1) by the triangle inequality. Conversely let  $\alpha:[0,b]\to M$  be any curve from p to q and let  $a\in(0,b)$  be any value of the parameter such that  $\alpha(a)\in S_{\delta}$ . (Clearly  $\alpha$  initially lies inside  $S_{\delta}$  and then has to leave it, Figure  $\clubsuit$  insert figure  $\clubsuit$ ). Write  $\alpha_1 = \alpha|_{[0,a]}$  and  $\alpha_2 = \alpha|_{[a,b]}$ . Then by 2.3.6(ii) and the definition of m we have

$$L(\alpha) = L(\alpha_1) + L(\alpha_2) \ge \delta + L(\alpha_2) \ge \delta + d(m, q). \tag{2.4.2}$$

Again appealing to 2.3.6(ii) this implies

$$d(p,q) \ge \delta + d(m,q) = d(p,m) + d(m,q)$$
(2.4.3)

and we have proven (2.4.1).

Recalling that by assumption  $\mathcal{D}_p = T_p M$  let now  $c : [0, \infty) \to M$  be the unit speed geodesic whose initial piece is the radial geodesic form p to m. We show that c is the asserted minimising geodesic from p to q. To begin with set d := d(p, q) and

$$T := \{ t \in [0, d] : t + d(c(t), q) = d \}.$$
(2.4.4)

It suffices to show that  $d \in T$  since in this case we have d(c(d), q) = 0 hence c(d) = q. Moreover we then have  $L(c|_{[0,d]}) = d = d(p,q)$  and so c is minimising.

Now to show that  $d \in T$  we first observe that  $c_{[0,t]}$  is minimising for any  $t \in T$ . Clearly we have  $t = L(c|_{[0,t]}) \ge d(p,c(t))$ . Conversely by definition of T it holds that  $d \le d(p,c(t)) + d(c(t),q) = d(p,c(t)) + d - t$  and so  $t = L(c|_{[0,t]}) \le d(p,c(t))$ . Hence in total we have  $L(c|_{[0,t]}) = d(p,c(t))$ .

Now let  $\tilde{t}$  such that  $c(\tilde{t}) = m$ . Then by (2.4.1) we have  $d = d(p,q) = d(c(0),c(\tilde{t})) + d(c(\tilde{d}),q) = \tilde{t} + d(c(\tilde{d}),q)$  and so  $\tilde{t} \in T$ .

So T is non-empty, closed and contained in [0, d], hence compact. Writing  $t_0 := \max T \le d$  it remains to show that  $t_0 = d$ .

We assume to the contrary that  $t_0 < d$ . Then let  $U_{\varepsilon'}(c(t_0))$  be a normal  $\varepsilon$ -neighbourhood of  $c(t_0)$  which does not contain q, see Figure  $\clubsuit$  insert figure  $\clubsuit$ . The same argument as in the beginning of the proof shows that there exists a radial unit speed geodesic  $\sigma$ :  $[0, \delta'] \to U_{\varepsilon'}(c(t_0))$  that joins  $c(t_0)$  with some point  $m' \in S_{\delta'}$  with d(m', q) minimal on  $S_{\delta'}$ . As in (2.4.1) we obtain

$$d(c(t_0), m') + d(m', q) = d(c(t_0), q).$$
(2.4.5)

Now observing that  $d(c(t_0), m') = L(\sigma|_{[0,\delta']}) = \delta'$  we obtain from the fact that  $t_0 \in T$  and (2.4.5)

$$d = t_0 + d(c(t_0), q) = t_0 + \delta' + d(m', q).$$
(2.4.6)

Also  $d = d(p,q) \le d(p,m') + d(m',q)$  and so  $d - d(m',q) = t_0 + \delta' \le d(p,m')$ . But this implies that the concatenation  $\tilde{c}$  of  $c|_{[0,t_0]}$  and  $\sigma$  is a curve joining p with m' which satisfies

$$d(p, m') \le L(\tilde{c}) = t_0 + \delta' \le d(p, m').$$

Hence  $\tilde{c}$  is minimising and so by 2.3.11 an (unbroken) geodesic which implies that  $\tilde{c} = c$ . This immediately gives  $m' = \sigma(\delta') = c(t_0 + \delta')$  and further by (2.4.6) we obtain

$$d - t_0 = \delta' + d(m', q) = \delta' + d(c(t_0 + \delta'), q).$$

But this means that  $t_0 + \delta' \in T$  which contradicts the fact that  $t_0 = \max T$ .

We may now head on to the main result of this section.

- **2.4.2 Theorem (Hopf-Rinow).** Let (M,g) be a connected RMF, then the following conditions are equivalent:
- (MC) The metric space (M,d) is complete (i.e., every Cauchy sequence converges).
- (GC') There is  $p \in M$  such that M is geodesically complete at p, i.e.,  $\exp_p$  is defined on all of  $T_pM$ .
- (GC) (M,g) is geodesically complete.
- (HB) M possesses the Heine-Borel property, i.e., every closed and bounded subset of M is compact.

The Hopf-Rinow theorem hence, in particular, guarantees that for connected Riemannian manifolds geodesic completeness coincides with completeness as a metric space. Therefore the term *complete Riemannian manifold* is unambiguous in the connected case and we will use it from now on. The theorem together with the previous Lemma 2.4.1 has the following immediate and mayor consequence.

**2.4.3 Corollary (Geodesic connectedness).** In a connected complete Riemannian manifold any pair of points can be joined by a minimising geodesic.

The converse of this result is obviously wrong; just consider the open unit disc in  $\mathbb{R}^2$ . Form the point of view of semi-Riemannian geometry the striking fact of the corollary is that in a complete RMF two arbitrary points can be connected by a geodesic *at all*. This property called *geodesic connectedness* fails to hold in complete connected Lorentzian manifolds. The great benefit of the corollary, of course, is that it allows to use geodesic constructions globally.

We now proceed to the proof of the Hopf-Rinow theorem.

#### Proof of 2.4.2.

 $(MC)\Rightarrow (GC)$ : Let  $c:[0,b)\to M$  be a unit speed geodesic. We have to show that c can be extended beyond b as a geodesic. By 2.2.8 is suffices to show that c can be extended continuously (as a curve) to b. To this end let  $(t_n)_n$  be a sequence in [0,b) with  $t_n\to b$ . Then  $d(c(t_n),c(t_m))\leq |t_n-t_m|$  and so  $(c(t_n))_n$  is a Cauchy sequence in M, which by (MC) is convergent to a point called c(b). If  $(t'_n)_n$  is another such sequence then since  $d(c(t_n),c(t'_n))\leq |t_n-t'_n|$  we find that  $(c(t'_n)_n$  also converges to c(b). Hence we have c extended continuously to [0,b].

 $(GC) \Rightarrow (GC')$  is clear.

(GC') $\Rightarrow$ (HB): Let  $A \subseteq M$  be closed and bounded. For any  $q \in A$ , by 2.4.1 there is a minimising geodesic  $\sigma_q : [0,1] \to M$  from p to q. As in (2.3.5) we have  $\|\sigma'_q(0)\| = L(\sigma_q) = d(p,q)$ .

Now since A is bounded there is R > 0 such that  $d(p,q) \leq R$  for all  $q \in A$ . So  $\sigma'_q(0) \in \overline{B_R(0)} = \{v \in T_pM : ||v|| \leq R\}$  which clearly is compact. But then  $A \subseteq \exp_p(\overline{B_R(0)})$  hence is contained in a compact set and thus is compact itself.

 $(HB)\Rightarrow (MC)^3$ : The point set of every Cauchy sequence is bounded hence its closure is compact by (HB). So the sequence possesses a convergent subsequence and being Chauchy it is convergent itself.

Next we prove that any smooth manifold M (which, recall our convention, is assumed to be Hausdorff and second countable) can be equipped with a Riemannian metric g. Indeed g can simply be constructed by glueing the Euclidean metrics in the charts of an atlas as is done in the proof below.

In fact much more is true. The Theorem of Numizo and Ozeki (see e.g. [8, 62.12]) guarantees that on every smooth manifold there exists a *complete* Riemannian metric.

**2.4.4 Theorem (Existence of Riemannian metrics).** Let M be a smooth manifold then there exists a Riemannian metric g on M.

| <br>VERSION | 0.9 | (January 17, 2017) |  |
|-------------|-----|--------------------|--|

<sup>3</sup>Observe that this part of the proof is purely topological.

**Proof.** Cover M by charts  $((x_{\alpha}^1, \dots, x_{\alpha}^n), U_{\alpha})$  and let  $(\chi_{\alpha})_{\alpha}$  be a partition of unity subordinate to this cover with  $\operatorname{supp}(\chi_{\alpha}) \subseteq U_{\alpha}$ , cf. [10, 2.3.14]. Then on  $U_{\alpha}$  set

$$g_{\alpha} := \sum_{i} dx_{\alpha}^{i} \otimes dx_{\alpha}^{i}$$
 and finally define  $g := \sum_{\alpha} \chi_{\alpha} g_{\alpha}$  on  $M$ . (2.4.7)

Since a linear combination of positive definite scalar products with positive coefficients again is positive definite, g indeed is a Riemannian metric on M.

This result has the following immediate topological consequence.

### **2.4.5** Corollary (Metrisability). Every smooth manifold is metrisable.

**Proof.** In case M is connected this is immediate from 2.4.4 and 2.3.9. In the general case we have  $M = \overset{\circ}{\cup} M_i$  with all (countably many)  $M_i$  connected. On each  $M_i$  we have a metric  $d_i$  for which we may assume w.l.o.g.  $d_i < 1$  (otherwise replace  $d_i$  by  $\frac{d_i}{1+d_i}$ ). Then

$$d(x,y) := \begin{cases} d_i(x,y) & \text{if } x,y \in M_i \\ 1 & \text{else} \end{cases}$$
 (2.4.8)

clearly is a metric on M.

The construction used in the proof can also be employed to draw the following conclusion from general topology.

**2.4.6** Corollary. Every compact Riemannian manifold is complete.

**Proof.** We first construct a metric on M from the distance functions in each of the (countably many) connected components as in (2.4.8). Then we just use the fact that any compact metric space is complete. In fact this follows from the proof of (HB) $\Rightarrow$ (MC) in 2.4.2 by noting that the Heine-Borel property (HB) holds trivially in any compact metric space.

To finish this section we remark that the Lorentzian situation is much more complicated, somewhat more precisely we have

- **2.4.7 Remark (Lorentzian analogs).** On Lorentzian manifolds the above results are wrong in general! In some more detail we have the following.
  - (i) There does not exist a Lorentzian metric on any smooth manifold M. Observe that the above proof fails since linear combinations of nondegenerate scalar products need not be nondegenerate. In fact, there exist topological obstructions to the existence of Lorentzian metrics: M can be equipped with a Lorentzian metric iff there exists a nowhere vanishing vector field hence iff M is non compact or compact with Euler characteristic 0.

- (ii) The Lorentzian analog to 2.3.4 is the following: Let U be a normal neighborhood of p. If there is a timelike curve form p to some point  $q \in U$  then the radial geodesic from p to q is the *longest* curve from p to q.
- (iii) There is no Lorentzian analog of the Hopf Rinow theorem 2.4.2. If a Lorentzian manifold is connected and geodesically complete it need not even be geodesically connected. For a counterexample see e.g. [12, p. 150].