

# Weather vs. Flights

Impact of Weather Events on Flight Performance

gl\_below\_zero: Paul, Olena, Riya

## **Project Description:**

This project analyzes the impact of a historical weather event on flight performance, focusing on delays and cancellations. By combining flight and weather data, we aim to uncover how weather conditions affect air travel.

## **Objectives:**

- Identify a significant weather event and gather flight and weather data.
- Formulate hypotheses on weather impacts on flights.
- Analyze how precipitation and temperature influence delays and cancellations.



## Snowzilla Blizzard

January 22 - January 24, 2016

impacted the Mid-Atlantic and Northeast





- 40 inches of snow in some regions
- 85 million people were injured and
- over 300,000 power outages
- almost 12,000 flights cancelled
- at least 48 people died



## **Data Selection**

Flight Data January 2016 to March 2016

Weather data Meteostat API (daily & hourly data)

**Airports** 

New York's JFK (JFK)

Dulles International (IAD)
Philadelphia International (PHIL)

LaGuardia (LGA)

Boston Logan (BOS)

Pittsburgh International (PIT)

## Hypotheses





#### **Hypothesis 1:**

Temperature below zero has no significant effect on flight cancellations.



#### **Hypothesis 2:**

Precipitation above 15 mm has no significant effect on flight cancellations.



#### **Hypothesis 3:**

Precipitation above 15 mm has no significant effect on flight delays.



# Cancelled flights (%) and average flight delays (min) by mostly affected airports (22-24 Jan 2016)



### **Temperature**



### Maximum Snow Depth



### Average cancelled flights



### Average On-Time Performance



### Comparison of the number of flights and precipitation



## Correlation between Weather and Delays and Cancellations



#### Distribution of the number of flights in different weather conditions



#### Distribution of average Delays in different weather conditions



## **Hypotheses Results**





#### **Hypothesis 1:**

H0 - Temperature below zero have no impact on Flight

**Cancellations** 

P-value: 0.002 therefore we reject the Null Hypothesis



#### **Hypothesis 2:**

HO – Extreme precipitations <u>have no</u> impact on Flight Cancellations

P-value: 0.0028 therefore we reject the Null Hypothesis



#### **Hypothesis 3:**

H0 - Extreme precipitations <u>have no impact on Flight Delays</u> P-value: 0.01 therefore we reject the Null Hypothesis

## Our 3 Key Findings

- Precipitation above 15 mm are associated with longer flight delays.
- Precipitation above 15 mm increases the likelihood of flight cancellations.
- Temperatures below zero have a measurable impact on flight cancellations.

# Thanks!

Do you have any questions?