

CPT205 Computer Graphics

Transformation Pipeline and Geometric Transformations

Lecture 04 2022-23

Yong Yue

Topics for today

- Transformation pipeline
- Standard transformations
 - Translation
 - Rotation
 - Scaling
 - Reflection
 - Shearing
- Homogeneous co-ordinate transformation matrices
- Composite (arbitrary) transformation matrices from simple transformations
- OpenGL functions for transformations

Transformation pipeline (1)

- ➤ The Transformation Pipeline is the series of transformations (alterations) that must be applied to an object before it can be properly displayed on the screen.
- ➤ The transformations can be thought of as a set of processing stages. If a stage is omitted, very often the object will not look correct. For example if the *projection* stage is skipped then the object will not appear to have any depth to it.
- Once an object has passed through the pipeline it is ready to be displayed as either a wire-frame item or as a solid item.

Transformation pipeline (2)

Transformation pipeline (3)

- Modelling Transformation to place an object into the Virtual World.
- Viewing Transformation to view the object from a different vantage point in the virtual world.
- Projection Transformation to see depth in the object.
- Viewport Transformation to temporarily map the volume defined by the "window of interest" plus the front and rear clipping planes into a unit cube. When this is the case, certain other operations are easier to perform.
- Device Transformation to map the user defined "window of interest" (in the virtual world) to the dimensions of the display area.

Transformation pipeline (4)

- We start when the object is loaded from a file and is ready to be processed.
- We finish when the object is ready to be displayed on the computer screen.
- You should be able to draw a picture of a simple object, say a cuboid, and show visually what happens to it as it passes through each pipeline stage.

Types of geometric transformation

(b) Rotation **Translation** Position of axis (c) (d) Reflection Scaling Axis of reflection (e) Shearing

Viewpoint

2D translation (1)

- \triangleright Translating a point from P(x, y) to P'(x', y') along vector T
- ➤ Importance in computer graphics we need to only transform the two endpoints of a line segment and let the implementation draw the line segment between the transformed endpoints

$$\begin{cases} x' = x + t_x \\ y' = y + t_y \end{cases}$$

2D translation (2)

$$\mathbf{P} = \begin{bmatrix} x \\ y \end{bmatrix}, \qquad \mathbf{P'} = \begin{bmatrix} x' \\ y' \end{bmatrix}, \qquad \mathbf{T} = \begin{bmatrix} t_x \\ t_y \end{bmatrix}$$

where P(x, y) and P'(x', y') are the original and new positions, and **T** is the distance translated.

$$\mathbf{P'} = \mathbf{P} + \mathbf{T} \qquad \text{or} \qquad \begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} t_x \\ t_y \end{bmatrix}$$

2D rotation (1)

Rotating a point from P(x, y) to P'(x', y') about the origin by angle θ - radius stays the same, and angle increases by θ .

2D rotation (2)

$$\begin{cases} x' = r\cos(\phi + \theta) = r\cos\phi\cos\theta - r\sin\phi\sin\theta \\ y' = r\sin(\phi + \theta) = r\cos\phi\sin\theta + r\sin\phi\cos\theta \end{cases}$$

$$\begin{cases} x = r\cos\phi \\ y = r\sin\phi \end{cases}$$

$$\begin{cases} x' = x \cos \theta - y \sin \theta \\ y' = x \sin \theta + y \cos \theta \end{cases}$$

2D rotation (3)

$$P' = R \cdot P$$

$$\mathbf{R} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \quad \text{so} \quad \begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

where θ is the rotation angle and ϕ is the angle between the x-axis and the line from the origin to (x, y).

Notice that the rotation point (or pivot point) is <u>the coordinate origin</u>.

Rotation about a fixed point rather than the origin

- Move the fixed point to the origin
- > Rotate the object
- Move the fixed point back to its initial position
- \rightarrow M = T(p_f) R(θ) T(-p_f)

2D scaling (1)

When an object is scaled, both the size and location change.

2D scaling (2)

$$\begin{cases} x' = x \cdot s_x \\ y' = y \cdot s_y \end{cases}$$

$$\mathbf{P'} = \mathbf{S} \cdot \mathbf{P} \qquad \text{so} \qquad \begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} s_x & 0 \\ 0 & s_y \end{bmatrix} \cdot \begin{bmatrix} x \\ y \end{bmatrix}$$

where **P**, and **P'** are the original and new positions, and s_x and s_y are the scaling factors along the x- and y-axes.

2D reflection

Special case of scaling - corresponding to negative scale factors.

2D shearing (1)

Equivalent to pulling faces in opposite directions.

2D shearing (2)

Consider simple shearing along the x axis.

$$x' = x + y \cot \theta$$
$$y' = y$$
$$z' = z$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 1 & \cot \theta \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \end{bmatrix}$$

2D homogeneous co-ordinates

- ➤ By expanding 2x2 matrices to 3x3 matrices, homogeneous co-ordinates are used.
- A homogeneous parameter is applied so that each 2D position is represented with homogeneous co-ordinates $(h \cdot x, h \cdot y, h)$.
- The homogeneous parameter has a non-zero value, and can be set to 1 for convenient use.

2D homogeneous matrices (1)

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$
 (2D translation)

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$
 (2D rotation)

2D homogeneous matrices (2)

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$
 (2D scaling)

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & \cot \theta & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$
 (2D shearing)

2D composite transformation

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} rs_{xx} & rs_{xy} & trs_x \\ rs_{yx} & rs_{yy} & trs_y \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

where elements *rs* are the multiplicative rotation-scaling terms in the transformation (which involve only rotation angles and scaling factors);

elements *trs* are the translation terms, containing combination of translation distances, pivot-point and fixed-point co-ordinates, rotation angles and scaling parameters.

3D translation

3D translations and scaling can be simply extended from the corresponding 2D methods.

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & t_x \\ 0 & 1 & 0 & t_y \\ 0 & 0 & 1 & t_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

3D co-ordinate axis rotations (1)

- ➤ The extension from 2D rotation methods to 3D rotation is less straightforward (because this is about an arbitrary axis instead of an arbitrary point).
- \triangleright Equivalent to rotation in two dimensions in planes of constant z (i.e. about the origin).

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta & 0 & 0 \\ \sin \theta & \cos \theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$
 (About z-axis)

3D co-ordinate axis rotations (2)

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} \cos \theta & 0 & \sin \theta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin \theta & 0 & \cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$
 (About y-axis)

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta & 0 \\ 0 & \sin\theta & \cos\theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$
 (About x-axis)

General rotation about the origin

A rotation by q about an arbitrary axis can be decomposed into the concatenation of rotations about the x, y, and z axes.

$$\mathbf{R}(\mathbf{q}) = \mathbf{R}_{z}(\mathbf{q}_{z}) \; \mathbf{R}_{y}(\mathbf{q}_{y}) \; \mathbf{R}_{x}(\mathbf{q}_{x})$$

where q_x , q_y and q_z are called the Euler angles.

Note that rotations do not commute though we can use rotations in another order but with different angles.

3D scaling

$$x' = s_x x$$

$$y' = s_y y$$

$$z' = s_z z$$

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} s_x & 0 & 0 & 0 \\ 0 & s_y & 0 & 0 \\ 0 & 0 & s_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

3D composite transformation (1)

- As with 2D transformation, a composite 3D transformation can be formed by multiplying the matrix representations for the individual operations in the transformation sequence.
- ➤ There are other forms of transformation, namely reflection and shearing which can be implemented with the other three transformations.
- Translation, scaling, rotation, reflection and shearing are all <u>affine</u> transformations in that transformed point P'(x',y',z') is a linear combination of the original point P(x,y,z).

3D composite transformation (2)

- Matrix multiplication is associative
- \rightarrow M3·M2·M1 = (M3·M2)·M1 = M3·(M2·M1)

Transformation products are not always commutative

$$A \cdot B \neq B \cdot A$$

Instancing

- In modelling, we often start with a simple object centred at the origin, oriented with an axis, and of a standard size.
- > We apply an instance transformation to its vertices to
 - Scale
 - Orient
 - Locate

OpenGL matrices

- > In OpenGL matrices are part of the state.
- Multiple types
 - Model-View (GL_MODELVIEW)
 - Projection (GL_PROJECTION)
 - Texture (GL_TEXTURE)
 - Color (GL_COLOR)
- Single set of functions for manipulation
- > Select which to be manipulated by
 - glMatrixMode(GL_MODELVIEW);
 - glMatrixMode(GL_PROJECTION);

Current transformation matrix

- ➤ Conceptually there is a 4x4 homogeneous coordinate matrix, the *current transformation matrix* (CTM) that is part of the state and is applied to all vertices that pass down the pipeline.
- ➤ The CTM is defined in the user program and loaded into a transformation unit.
- > The CTM can be altered either by loading a new CTM or by postmutiplication.
- ➤ OpenGL has a model-view and a projection matrix in the pipeline which are concatenated together to form the CTM.
- The CTM can manipulate each by first setting the correct matrix mode.

CTM operations

The CTM can be altered either by loading a new CTM or by postmutiplication

```
Load an identity matrix: \mathbf{C} \leftarrow \mathbf{I}
```

Load an arbitrary matrix: $\mathbf{C} \leftarrow \mathbf{M}$

Load a translation matrix: $\mathbf{C} \leftarrow \mathbf{T}$

Load a rotation matrix: $\mathbf{C} \leftarrow \mathbf{R}$

Load a scaling matrix: $\mathbf{C} \leftarrow \mathbf{S}$

Postmultiply by an arbitrary matrix: $\mathbf{C} \leftarrow \mathbf{CM}$

Postmultiply by a translation matrix: $\mathbf{C} \leftarrow \mathbf{CT}$

Postmultiply by a rotation matrix: $\mathbf{C} \leftarrow \mathbf{CR}$

Postmultiply by a scaling matrix: $\mathbf{C} \leftarrow \mathbf{CS}$

Arbitrary Matrices

- We can load and multiply by matrices defined in the application program
 - glLoadMatrixf(m)
 - glMultMatrixf(m)
- ➤ Matrix **m** is a one-dimension array of 16 elements which are the components of the desired 4 x 4 matrix stored by <u>columns</u>.
- In glMultMatrixf, m multiplies the existing matrix on the right.

Matrix stacks

- > CTM is not just one matrix but a matrix stack with the "current" at top.
- ➤ In many situations we want to save transformation matrices for use later
 - Traversing hierarchical data structures
 - Avoiding state changes when executing display lists
- Pre 3.1 OpenGL maintains stacks for each type of matrix
 - Access present type (as set by glMatrixMode) by glPushMatrix()
 glPopMatrix()
- Right now just 1-level CTM.

Matrix stacks

- ➤ We can also access matrices (and other parts of the state) with *query* functions
 - glGetIntegerv
 - glGetFloatv
 - glGetBooleanv
 - glGetDoublev
 - glIsEnabled
- > For matrices, we use as
 - double m[16];
 - glGetFloatv(GL_MODELVIEW, m);

OpenGL transformation functions (1)

- > glTranslate*
 Specify translation parameters
- Specify rotation parameters for rotation about any axis through the origin
- > glscale*
 Specify scaling parameters with respect to the co-ordinate origin
- Specify current matrix for geometric-viewing, projection, texture or colour transformations
- > glLoadIdentity
 Set current matrix to identity
- > glLoadMatrix*(elems)
 Set elements of current matrix

OpenGL transformation functions (2)

- Post-multiply the current matrix by the specified matrix
- glGetIntegerv
 Get max stack depth or current number of matrices in the stack for selected matrix mode
- glPushMatrix
 Copy the top matrix in the stack and store copy in the second stack position
- Frase top matrix in stack and move second matrix to top stack
- > glPixelZoom
 Specify 2D scaling parameters for raster operations

Example of rotation

 \triangleright Rotation about the z axis by 30 degrees with a fixed point of (1.0, 2.0, 3.0)

```
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glTranslatef(1.0, 2.0, 3.0);
glRotatef(30.0, 0.0, 0.0, 1.0);
glTranslatef(-1.0, -2.0, -3.0);
```

➤ Note that the last matrix specified in the program is the first applied.

Summary

- > Transformation pipeline
- Standard transformations
 - Rotation
 - Translation
 - Scaling
 - Reflection
 - Shearing
- Homogeneous co-ordinate transformation matrices
- Composite (arbitrary) transformation matrices from simple transformations
- OpenGL functions for transformations