

Calculate the equivalent OX (Radial) spoke length:

Calculate final spoke length:

Angle C = 720 *
$$\square$$
 cross pattern number of spokes = $\square\square$

Length² = F² + R² - 2FR cos(C)

Length =
$$\sqrt{\square\square\square \square^2 + \square\square\square \square^2} - 2x\square\square\square \square\square\square\square\square\square\square\square\square\square\square\square\square\square\square$$

Now repeat for the other side! or use a spreadsheet.

www.wheelpro.co.uk/spokecalc

Spoke tension in a dished wheel (Static force vectors):

Since the rim is centred and static, and in absence of external forces, \textbf{F}_{H} must be balanced on both sides.

$$\therefore F_{HL} = F_{HR}$$

Spoke	Tension	T_{S}
Spoke	Force	F_{S}
Horizo	ontal Component	$\tilde{\mathrm{FH}}$
Vertic	cal Component	F_{V}

$$F_s = T_s$$

$$F_{H} = F_{s} \sin \theta$$

 $F_{V} = F_{s} \cos \theta$

Take some typical bracing angles:

$$\varphi = 7.4^{\circ} \\ \theta = 3.5^{\circ}$$

$$F_{HL} = F_{HR}$$

$$F_{SL}\sin\varphi = F_{SR}\sin\theta$$

 $F_{SL}\sin7.4 = F_{SR}\sin3.5$
 $\frac{\sin7.4}{\sin3.5}$ $F_{SL} = F_{SR}$

$$2.1F_{SL} = F_{SR}$$

Spoke tension can be **twice** as much on the drive side as on the non-drive side!

