Stage M2 Physique, parcours SUBA Université de Claude Bernard Lyon 1

Alexia HOCINE

2021-2022

Remerciements

Gérald Grenier Imad Laktineh employés IP2I IP2I CNRS Stéphanie B. Geek Touch

Préambule

Email Gérald Grenier:

Un tutorial de ilcsoft: https://agenda.linearcollider.org/event/9272/

Initialisation ilcsoft:

La documentation et le packet git du format de données LCIO et de la librairie Marlin

- https://github.com/iLCSoft/LCIO
- https://github.com/iLCSoft/Marlin

Pour la deuxième partie du stage :

- le software en développement : https://github.com/key4hep
- et plus particulièrement l'adaptateur ilcsoft vers key4hep: https://github.com/key4hep/k4MarlinWrapper

Table des matières

1		roduction	3
	1.1	Objectifs physiques	3
		1.1.1 Collisions	3
	1.2	SDHCAL (Semi-Digital Hadronic CALorimeter)	3
		iLCSoft	
	1.4	FCC	3
	1.5	Présentation & Objectif du Stage	3
2	ilcs	soft	4
	2.1	Projet nnhAnalysis	4
		Programme processor	
		Programme analysis	
3	FCC		6

Chapitre 1

Introduction

- 1.1 Objectifs physiques
- 1.1.1 Collisions

Au cours, de ce stage, je me concentrerais sur les collisions de type nnh pour neutrino-neutrino-higgs

1.2 SDHCAL (Semi-Digital Hadronic CALorimeter)

tests en Septembre

- 1.3 iLCSoft
- 1.4 FCC
- 1.5 Présentation & Objectif du Stage

Chapitre 2

ilcsoft

2.1 Projet nnhAnalysis

2.2 Programme processor

Données

Initialement, on m'a mis à disposition des fichiers SLCIO rangés par processus dans 66 dossiers (Figure 2.1).

/gridgroup/ilc/nnhAnalysisFiles/AHCAL (base) [AHCAL]\$ ls														
402001										500122				
402002										500124				
402003										500125				
402004										500126				
402005										500127				
402006										500128				

FIGURE 2.1 – Les noms des dossiers qui correspondent aux numéros de processus

Numéro des processus???

Méthodes

On cherche à convertir ces fichiers SLCIO en arbre ROOT par processus.

Résultats

Chaque dossier de fichier de donnée SLCIO produira un fichier ROOT en sortie, c'est-à-dire que l'on obtiendra un arbre ROOT par processus.

Interprétation

2.3 Programme analysis

Données

On récupère les fichiers ${\tt ROOT}$ du programme processor précédent. hadd qui va créer le fichier DATA.root

Méthodes

BDT Entrainement

L'analyse

Résultats

Vérification des résultats Comparaison entre les différents séries d'analyse, basée sur les même fichiers ROOT, mais un autre entraînement de BDT.

Interprétation

Chapitre 3

FCC