Деревья уѕ линейные методы

Skillbox

Елена Кантонистова

Елена Кантонистова

- Кандидат физикоматематических наук
- Выпускница Школы Анализа
 Данных (ШАД) Яндекса
- Доцент факультета
 компьютерных наук ВШЭ
- Академический руководитель магистратуры «Машинное обучение и высоконагруженные системы» ФКН ВШЭ

Предыдущий индустриальный опыт:

- Data scientist в Raxel
 Telematics
- Data scientist в United
 Consulting Group

В этом модуле вы...

- Узнаете, в каких задачах лучше использовать линейные модели, а в каких лучше себя показывают решающие деревья
- У Изучите, как справляться с переобучением решающих деревьев
- Узнаете, что такое кросс-валидация и чем она может быть лучше, чем подход с отложенной выборкой
- У Изучите модели бэггинга и случайного леса для решения задач классификации и регрессии
- Узнаете, как можно в полуавтоматическом режиме настраивать гиперпараметры моделей

Деревья

Автор: Кантонистова Елена, Дерево для регрессии

Деревья переобучаются

Если никак не ограничивать построение дерева, то оно идеально подгонится под данные и в большинстве случаев даст нулевую ошибку на обучающих данных и, значит, сильно переобучится.

Решение №1

Можно задавать ограничения на структуру дерева до его обучения.

Некоторые регулируемые гиперпараметры:

- max_depth
- min_samples_split
- min_samples_leaf
- max_features

Решение №1

Можно задавать ограничения на структуру дерева до его обучения.

Некоторые регулируемые гиперпараметры:

- max_depth максимальная глубина, больше которой дерево не строится
- min_samples_leaf минимальное число объектов, которое должно находиться в листе
- min_samples_split минимальное число объектов, которое должно находиться в вершине, чтобы её можно было дальше разбивать
- max_features максимальное количество признаков, из которых на каждом шаге выбирается оптимальное разбиение вершины

max_depth

Изображение: Max depth

Другие гиперпараметры

Изображение: Другие гиперпараметры

Решение №2: стрижка

Можно сначала построить дерево без ограничений — оно получится громоздким и максимально переобученным, а уже затем его регуляризовать. Этот подход называется стрижкой дерева (или pruning).

Автор: Елена Кантонистова

Решение №2: стрижка

Алгоритм стрижки:

- строится дерево без ограничений на гиперпараметры
- производится оптимизация его структуры с целью уменьшения переобучения

Оптимизируется регуляризованный функционал:

$$Q_{\alpha}(T) = Q(T) + \alpha |T|$$

Вы узнали

- У Что в зависимости от данных задачи, иногда лучшее качество показывают решающие деревья, а иногда линейные модели
- Как снизить переобучение у решающего дерева
 (или заданием гиперпараметров, или стрижкой)