**1-a)** Sinyalin  $10^{-3}$  saniye zaman aralığında 10 defa tamamlandığı görülüyor, bu yüzden

$$10*T=10^{-3}s$$
 , sinyalin periyodu  $T=10^{-4}$  saniye, sinyalin frekansı  $f=\frac{1}{T}=10^4$  Hz = 10 kHz bulunur.

Sinyalin sinüs fonksiyonu:  $2 * \sin(2\pi f t)$ , kosinüs fonksiyonu:  $2 * \cos(2\pi f t - \frac{\pi}{2})$ 

# **1-b)** Sinyal: $2 * \sin(2\pi f t + \frac{\pi}{6})$



```
Fs = 1000000
                                     % örnekleme frekansı (Hz)
Ts = 1/Fs;
                                   % örnekleme periyodu (s)
tlen = 1;
                                   % sinyal uzunluğu (s)
A = 2;
                                   % sinyal genliği
f0 = 10000;
                                  % sinyalin frekansı (Hz)
theta = pi/6;
                                  % sinyalin faz farkı (rad)
X0 = 0;
                                   % sinyalin offset'i
t = (0:round(tlen*Fs)-1)/Fs;
y = X0 + A*sin(2*pi*f0*t + theta);
td1 = 0;
                                  % görüntüleme başlangıcı
plot(t(ix),y(ix),'-b')

"goruntuleme bitişi
% görüntüleme indeksi
% arafik o'''
td2 = 10^-3;
                                 % görüntüleme bitişi
```

## 2-a)





2 Hz frekanslı kare dalga





 $x(t) = e^{j2t} + e^{-j2t} = \cos(2t) + j\sin(2t) + \cos(2t) - j\sin(2t) = 2\cos(2t)$ 

**2-b)** Tek olma kuralı: f(x) = -f(x) Çift olma kuralı: f(x) = f(-x)

Periyodik olma kuralı: f(x) = f(x + P), ( P = temel periyot )

- $x(t) = 5e^{\frac{t}{6}}$  fonksiyonu ne tek ne de çifttir, ayrıca periyodik değildir.
- 2 Hz frekanslı kare dalganın Fourier açılımına göre sinüs dalgalarından oluşur, bu yüzden tekdir ve periyodiktir
- $x(t)=2sin(t/2+\pi/6)$ ,  $x(-t)=-2sin(t/2+\pi/6)$  olduğundan dolayı tekdir.  $x(t)=2sin(\frac{t}{2}+\frac{\pi}{6}+2\pi)$ , fonksiyon periyodiktir, temel periyodu  $2\pi'$ dir
- $x(t) = e^{j2t} + e^{-j2t} = \cos(2t) + j\sin(2t) + \cos(2t) j\sin(2t) = 2\cos(2t)$  $x(-t) = 2\cos(-2t) = 2\cos(2t)$  olduğundan dolayı çift,  $x(t) = 2\cos(2t + P)$ ,  $P = 2\pi$  olduğundan dolayı periyodiktir
- **2-c)** Nyquist teoremine göre örnekleme frekansı, örneklenen sinyalin frekansının en az iki katı olmalı.

$$x(t) = 2sin(t/2 + \pi/6)$$
, frekans  $\cong 1$  Hz f= 1 Hz ile örneklenirse:



### f= 2 Hz ile örneklenirse:



```
Fs = 2;
Ts = 1/Fs;
tlen = 10;
A = 2;

t = (0:round(tlen*Fs)-1)/Fs;
y = 2*sin(t/2 + pi/6);

td1 = 0;
td2 = 10;
ix = find(t>=td1&t<td2);
plot(t(ix),y1(ix),'-b')</pre>
```

- % örnekleme frekansı (Hz)
  % örnekleme periyodu (s)
  % sinyal uzunluğu (s)
  % sinyal genliği
- % görüntüleme başlangıcı
  % görüntüleme bitişi
  % görüntüleme indeksi
  % grafik çizimi

$$x(t) = e^{j2t} + e^{-j2t} = 2\cos(2t)$$
, frekans  $\cong$  3 Hz f = 3 Hz ile örneklenirse:

#### f= 6 Hz ile örneklenirse:



% grafik çizimi

### 3) 0 numaralı zamanlayıcı kütük adresleri aşağıdaki gibidir.

plot(t(ix), y(ix), '-b')

| Adres | Kütük   | Açıklama                  | Yerleştirilecek içerik |
|-------|---------|---------------------------|------------------------|
| 1810h | TCR     | Kontrol kütüğü (32 bit)   | 0x8032h                |
| 1812h | TIMPRD1 | Periyot kütüğü 1 (16 bit) | (98304000 / 4096U)*10  |
| 1813h | TIMPRD2 | Periyot kütüğü 2 (16 bit) | 0                      |
| 1814h | TIMCNT1 | Sayaç kütüğü 1 (16 bit)   | 0                      |
| 1815h | TIMCNT2 | Sayaç kütüğü 2 (16 bit)   | 0                      |

ix = find(t>=td1&t<td2); % görüntüleme indeksi</pre>

Prescaler en büyük değeri (8192) için TCR kütüğünün 5-2 bitleri arasına 1100 yerleştirilir. Autoreload, start ve enable bitleri 1 verildiği için TCR kütüğüne 8032 hex sayısı yazılır. Verilen prescaler ile frekans yaklaşık 100MHz/8192 = 12.2 kHz elde edilir.

$$f=1/10Hz$$
 için periyot  $T=\frac{1}{1/10Hz}=10$  saniye bulunur. Kesmenin 10 saniyede bir çalışması için periyot kütüğüne (98304000 / 4096U)\*10 = 122000 yazılır. (  $\frac{122000}{12.2kHz}=10$  saniye )