An Optimized Overview of Optimization Software

Heather Gaddy, Heather Hardeman, Jesse Patsolic, and Rebecca Waldrip

Department of Mathematics

11 April 2013

Contents

- Open Source Software
- Proprietary Software
- Freeware
- 4 Models

Open Source Software

Definition

- Software that can be downloaded and used at no cost.
- Readily available code that can be read, redistributed, and modified by users.
- Software evolves as people improve upon, adapt, and fix bugs in code.

Examples of Open Source Software

- ADMB
- COIN-OR SYMPHONY
- IPOPT
- JOptimizer
- OpenSolver

OpenSolver

- An open source optimization program
- Designed to work with Microsoft Excel
- Compatible with built-in Excel solver, but more powerful
- Linear and integer programming optimizer

OpenSolver

- Developed and maintained by Andrew Mason and students from the Engineering Science department at the University of Auckland in New Zealand.
- Released under GNU General Public License.

Solving a Problem

- OpenSolver runs the open source COIN-OR CBC optimization engine.
- COIN-OR CBC is an open-source integer programming solver written in C++.
- Written by John J. Forrest and maintained by Ted Ralphs.

Solving a Problem

- Can be used alone or as the library code that runs another program, such as in the case of OpenSolver.
- OpenSolver analyzes Excel spreadsheet, builds model, passes it to the CBC engine.
- CBC then solves problem and result is read back into
 OpenSolver and loaded into the Excel spreadsheet.

QuickSolve Feature

- Often, user needs to solve a model after making only small changes to the model.
- Building a model can be tedious.
- QuickSolve allows small changes to be easily made in the model without having to reconstruct the entire model.

QuickSolve Feature (cont.)

- User can define the cells that will be changed as 'parameter' cells.
- User can then change the parameters and select QuickSolve to quickly solve the slightly modified model.

Other Advantages

- Includes a built-in model visualizer that highlights model's decision variables, objective functions, and constraints, making each piece clearly visible on a spreadsheet.
- No set limits on problem size.
- Useful in solve the linear relaxation of a non-linear model.

Potential Improvements

- A way to check that the objective function value and constraint values found by CBC match those calculated in the spreadsheet once optimal solution is entered in.
- Method to identify any non-linearities to the user.
- Benefit of open source software = individuals are free to work to try to improve the code in these ways.

Maple
Features
Functionality
Add-on Products and App

Proprietary Software

Definition

Proprietary software is software that is owned by an individual or a company (usually the one that developed it). There are almost always major restrictions on its use, and its source code is almost always kept secret.

Examples of Proprietary Software

- LIONsolver
- Maple
- Mathematica
- Matlab
- OptimJ

Maple Features Functionality Add-on Products and Apps

Mathematics • Modeling • Simulation

A Cybernet Group Company

How many languages do you speak?

- C
- C#
- Java
- Matlab
- Visual Basic
- Excel

More Features

- Side panel to aid in typing functions
- Easy interface
- Handwritten symbol recognition
- Math equation editor
- Multiple packages and toolboxes

Functionality

- Math:
 - Integral Calculus
 - Solving Systems of Equations
 - Differential Equations (ODEs and PDEs)
 - Optimization
- Engineering
- Physics
- Statistical Modeling
- Financial Modeling
- Operations Research

Add-on Products and Apps

- Add-ons
 - Maple Global Optimization Toolbox
 - Maple Player (+ for iPad)
 - Teaching Calculus with Maple: A Complete Kit
- Apps
 - Interpolation and Smoothing
 - Grayscale Image Steganography
 - Diet Optimization

Features How It Works Solvers Optimization Program NEOS Statistics

Freeware

Definition

Freeware is software which has no monetary cost but is often more restricted than the professional version.

Examples of Optimization Freeware

- AIMMS
- AMPI
- Galahad library
- LIONsolver
- MINTO
- OptimJ
- SCIP

Features How It Works Solvers Optimization Program NEOS Statistics

AMPL: A Mathematical Programming Language

AMPL Language Features

- can work with a wide variety of sets and set operators
- syntax is organic and familiar
- Nonlinear programming features
- Convenient alternative notations

AMPL Environment Features

- interactive command environment
- new looping and if-then-else commands
- separation of model and data
- interfaces to a variety of solvers

How AMPL Works

Solvers

For linear programming:

- Continuous: BPMPD, CPLEX, LAMPS, LOQO, Ip_solve,
 MINOS, MOSEK, OSL, SOPT, XA, Xpress-MP
- Integer: CPLEX, LAMPS, Ip_solve, MINTO, MOSEK, OSL, SOPT, XA, Xpress-MP
- Network: CPLEX, OSL

Solvers

For nonlinear programming:

Quadratic: CPLEX, MOSEK, OSL

Convex: MOSEK, SOPT

 General continuous: CONOPT, DONLP2, FILTER, FSQP, IPOPT, KNITRO, LANCELOT, LOQO, MINOS, NPSOL, PENNON, SNOPT

General integer: MINLP

Programming

- Linear programming
- Quadratic programming
- Nonlinear programming
- Mixed-integer programming
- Mixed-integer quadratic programming with or without convex quadratic constraints

Programming

- Mixed-integer nonlinear programming
- Second-order cone programming
- Global optimization
- Semidefinite programming problems with bilinear matrix inequalities
- Complementarity problems in discrete or continuous variables
- Constraint programming

NEOS Statistics

Maple vs. AMPL

AMPL and Rosenbrock

```
roseShort.mod 💥
 # Rosenbrock function
3 var x{1..2};
4 \text{ var f1} = 100*(x[2] - x[1]^2)^2;
5 \text{ var } f2 = (1 - x[1])^2;
 minimize f:
      f1 + f2;
🛭 data;
 var x:=
               100
                100;
              Plain Text V Tab Width: 4 V
                                      Ln 1, Col 1
                                                   INS
```

AMPL Output

```
ampl: model rose100.mod:
ampl: solve:
MINOS 5.5: optimal solution found.
59 iterations, objective 3.219657877e-17
Nonlin evals: obi = 166, grad = 165.
ampl: display x;
x [*] :=
1 1
2 1;
ampl: model rose0.mod:
ampl: solve:
MINOS 5.5: optimal solution found.
17 iterations, objective 9.247040366e-19
Nonlin evals: obj = 47, grad = 46.
ampl: display x;
x [*] :=
1 1
2 1:
```

```
ampl: model rose10.mod:
ampl: solve:
MINOS 5.5: optimal solution found.
34 iterations, objective 9.099872342e-19
Nonlin evals: obi = 87, grad = 86.
ampl: display x;
x [*] :=
1 1
2 1;
ampl: model rose1 2.mod:
ampl: solve:
MINOS 5.5: optimal solution found.
8 iterations, objective 6.361071927e-19
Nonlin evals: obj = 24, grad = 23.
ampl: display x;
x [*] :=
1 1
```


2 1;

param: FOOD:	cost	f_min	f_max :=	/ param	: NUTR:	n_min	n_max :=
"CikFLA"	3.88			-	Cal	2000	
"ChefBoy"	0.88		1		Carbo	350	375
"ChunkLightTuna"	2.38				Protein	55	
"ThaiKitchen"	1.98				VitA	100	
"MarieCalBeef"	2.50				VitC	100	
"EasyMac"	1.88				Calc	100	
"AngusBaconCheese"	6.19				Iron	100	. ;
"QuarterPounderwCheese"	5.75						
"Big_Mac"	5.89						
"Filet-O-Fish"	5.45						
"Classic_Chicken"	6.19						
"Fries_small"	1.00						
"Sausage_McMuffin"	3.99						
"2%_Lowfat Milk"	0.60		3				
"Orange_Juice"	1.00		. ;				

param amt (tr):

	Cal	Carbo	Protein	VitA	VitC	Calc	Iron :=
"CikFLA"	440	42	30	2	2	15	15
"ChefBoy"	220	31	7	4	0	2	10
"ChunkLightTuna"	120	0	13	0	0	0	4
"ThaiKitchen"	450	100	7	8	2	2	8
"MarieCalBeef"	370	50	21	2	8	4	8
"EasyMac"	188	31	7	4	0	10	0
"QuarterPounderwCheese"	520	41	30	15	6	30	20
"AngusBaconCheese"	790	63	45	10	4	30	35
"Big_Mac"	550	46	25	6	2	25	20
"Filet-O-Fish"	390	39	15	2	0	15	10
"Classic_Chicken"	510	55	24	4	6	15	20
"Fries_small"	230	29	3	0	0	2	4
"Sausage_McMuffin"	450	32	21	6	0	25	10
"2%_Lowfat Milk"	112	12	7	10	3	26	0
"Orange_Juice"	150	34	2	5	142	15	2;

Shopping list model

```
# From http://ampl.com/EXAMPLES/MCDONALDS/diet1.mod
set NUTR ordered:
set FOOD ordered;
param cost {FOOD} >= 0;
param f_min {FOOD} >= 0, default 0;
param f max {i in FOOD} >= f min[i], default Infinity:
param n_min {NUTR} >= 0, default 0;
param n max {i in NUTR} >= n min[i], default Infinity:
param amt {NUTR,FOOD} >= 0;
var Buv {i in FOOD} integer >= f min[i]. <= f max[i]:</pre>
# -----
minimize Total_Cost: sum {j in FOOD} cost[j] * Buy[j];
minimize Nutr_Amt {i in NUTR}: sum {j in FOOD} amt[i,j] * Buy[j];
subject to Diet {i in NUTR}:
  n min[i] <= sum {i in FOOD} amt[i.i] * Buv[i] <= n max[i]:
```



```
ampl: solve;
MINOS 5.5: ignoring integrality of 15 variables
MINOS 5.5: optimal solution found.
10 iterations, objective 26,38241406
Objective = Total_Cost
ampl: display Buy;
Buv [*] :=
              CikFLA 0
             ChefBoy 1
       ChunkLightTuna
         ThaiKitchen 0
        MarieCalBeef 0
             EasyMac 0
    AngusBaconCheese 1.048
QuarterPounderwCheese 2.2223
             Big_Mac 0
        Filet-O-Fish 0
     Classic Chicken 0
         Fries_small 0
     Sausage_McMuffin
     '2% Lowfat Milk'
        Orange_Juice 4.43712;
```


Figure: We have reached (1,1).

