```
12. Basis Step: f_1^2=f_1*f_2 f_1=1 \text{ and } f_2=1 f_1^2=1*1=f_1*f_2 \text{ so the basis step checks out.}
```

Recursive Step:

Assume that $f_1^2 + f_2^2 + \dots + f_n^2 = f_n * f_{n+1}$ Prove: $f_1^2 + f_2^2 + \dots + f_n^2 + f_{n+1} = f_n * f_{n+1} * f_{n+2}$ Rewriting the assumption:

 $(f_1^2 + f_2^2 + \dots + f_n^2) + f_{n+1}^2$ where $(f_1^2 + f_2^2 + \dots + f_n^2)$ is our hypothesis. We can rewrite as $f_n * f_{n+1} + f_{n+1}^2$ and factor to get $f_{n+1} * (f_n + f_{n+1})$ which is the definition of a Fibonacci number $f_{n+1}f_{n+2}$ and proves our hypothesis.

26 c) Basis step: The basis $\{0,0\}$ is still valid since $5|\{0,0\}=0$

Recursive Step: Suppose that a+b=5k. Then $5|\{a+2,b+3\}$ which is a+b+5=5k+5=5(k+1) where k+1 is also an integer. The same is true for $5|\{a+3,b+2\}$ which is a+b+5=5k+5=5(k+1) This completes the proof.

43.

Base Case:

n(T) = 1 then the height is h(T) = 0 and $1 \ge 2 * 0 + 1$

Assume that the hypothesis holds for trees smaller than T. We will make a new tree from subtrees T_1 and T_2 . Since the hypothesis is still true we know that $n(T_1) \geq 2 * h(T_1) + 1$ and the same applies for T_2 . The new tree is then $n(T_n) = 1 + n(T_1) + (T_2)$ accounting for the top node.

Rewriting is equal to:

$$n(T_n) = 1 + 2 * h(T_1) + 1 + 2 * h(T_2) + 1$$

1 + 2(h(T_1) + h(T_2) + 1)

1+2*h(T) the height of both trees+1 is the height of the larger tree. This completes the proof.

44.

Base Case:

n=1 so l(T)=1 since a single node tree has no internal vertices the base case is true.

Recursive Case:

Assuming that the hypothesis holds for smaller trees we will make a new tree out of two smaller trees T_1 and T_2 . The number of leaves in the new tree is: $l(T) = l(T_1) + l(T_2)$.

Substituting the definition of i(T) gives:

$$l(T) = i(T_1) + 1 + i(T_2) + 1$$

i(T)+1 which is the definition of a full

binary tree. This completes the proof.

58.

Basis Case: The empty string λ has the same number of left and right parentheses so the base case is true.

Recursive Case:

Assume: $x, y \in B$

Let the number of left parentheses for x,y be l_x and l_y , and the number of right parentheses be r_x and r_y . The number of left and right parentheses for $(x) \in B$ will be one greater on each side. $l_x + 1$ and $r_x + 1$. Since both l_x and r_x are still equal the hypothesis is true for this case.

For the $xy \in B$ case: the number of left parentheses will be $l_x + l_y$ and the number of right parentheses will be $r_x + r_y$ by the hypothesis we know that $l_x + l_y = r_x + r_y$ and so there will be the same number of parentheses. This completes the proof.