Math 5601 Homework 9

Jacob Hauck

November 15, 2023

Problem 1.

Let A be a nonsingular matrix, and let $A^{(2)}$ be the matrix from the lecture slides in the second step of Gaussian elimination. Then there exists $s \geq 2$ such that $a_{2s}^{(2)} \neq 0$.

Proof. Suppose on the contrary. By the Gaussian elimination process, we know that $a_{21}^{(2)}=0$. If there is no $s\geq 2$ such that $a_{2s}^{(2)}\neq 0$, then the whole second row of $A^{(2)}$ is zero. Hence, expanding by cofactors along the second row, we see that the determinant of $A^{(2)}$ is

$$\det\left(A^{(2)}\right) = 0 \cdot \det(B_1) + 0 \cdot \det(B_2) + \dots + 0 \cdot \det(B_n) = 0, \tag{1}$$

where B_i is the cofactor corresponding to $a_{2i}^{(2)}$. Then $A^{(2)}$ is singular.

This is a contradiction because $A^{(2)}$ was obtained from A by elementary row operations, and A was nonsingular, and applying row operations to a nonsingular matrix must result in a nonsingular matrix.

Problem 2.

Let $A = \{a_{ij}\}\$, and consider the SOR iteration for solving Ax = b:

$$x_i^{(k+1)} = (1 - \sigma)x_i^{(k)} + \frac{\sigma}{a_{ii}} \left[b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k+1)} - \sum_{j=i}^n a_{ij} x_j^{(k)} \right], \qquad i = 1, 2, \dots, n.$$
 (2)

If L is the lower-triangular part of A and U is the upper-triangular part, and D is the diagonal, so that A = L + U + D, then the SOR iteration becomes

$$x^{(k+1)} = (1 - \sigma)x^{(k)} + \sigma D^{-1} \left[b - Lx^{(k+1)} - Ux^{(k)} \right]$$
(3)

$$\implies (D + \sigma L)x^{(k+1)} = ((1 - \sigma)D - \sigma U)x^{(k)} + \sigma b \tag{4}$$

$$\implies x^{(k+1)} = \left(L + \frac{1}{\sigma}D\right)^{-1} \left(\frac{1}{\sigma}D - D - U\right) x^{(k)} + \left(L + \frac{1}{\sigma}D\right)^{-1} b \tag{5}$$

$$= -\left(L + \frac{1}{\sigma}D\right)^{-1} \left(D - \frac{1}{\sigma}D + U\right)x^{(k)} + \left(L + \frac{1}{\sigma}D\right)^{-1}b. \tag{6}$$

Define $M = L + \frac{1}{\sigma}D$, and $N = -\left(D - \frac{1}{\sigma}D + U\right)$. Then

$$x^{(k+1)} = M^{-1}Nx^{(k)} + M^{-1}b, (7)$$

and

$$A = L + D + U = \left(L + \frac{1}{\sigma}D\right) + \left(D - \frac{1}{\sigma}D + U\right) = M - N. \tag{8}$$

Therefore, SOR is an iterative method that uses the M and N defined above.