Note Title

26/09/2023

P= (1,2)

e R3

- 1 Greometria analitica
- 2 Sisteri Dineani
- 3 Spazi vettoriali e applicazioni Diveani

4 - Rodotti scalari

MATRICI

[Vettori geometrici] Idea: pensare ai p.ti nel piano cartesiano

_ 0 _ 0 _

$$\mathbb{R}^2 = p.$$
 cou due coordinate (x, y)

(×,५,२) 42

(X1, X2, ..., X37)

Ou p to la posso indicare con una lettera singola

$$P = (1,2)$$
 $Q = (3,-2,\sqrt{5})$ $\vec{U} = (1,2,7)$

€ R3 e IR2

Operazioni tra vettori

· SOMMA (componente per componente)

$$(1,2,3)+(2,-4,5)=(3,-2,8)$$

· PRODOTTO TRA UN VETTORE E UN NUMERO

$$7(1,2,3) = (7,14,21)$$

numero vettore vettore

· PRODOTTO SCALARE TRA DUE VETTORI

$$\vec{\mathcal{U}} = (\times_4, ..., \times_m) \qquad \vec{\mathcal{C}} = (y_1, ..., y_m)$$

Escurpio In
$$\mathbb{R}^4$$
: $\vec{u} = (1,0,-1,2)$
 $\vec{v} = (2,1,1,3)$
 $\vec{v} = (2,1,1,3)$

**Salan " & si conium di numero

**NORMA DI UN VETTORE

Dato $\vec{u} = (x_1,...,x_m)$ si pone

 $\|\vec{u}\|\| = |\vec{u}\| = \sqrt{x_1^2 + x_2^2 + ... + x_m^2} = \Omega_{unglesses a del vettore}$

**Pitagoro a m variabili

**DISTANZA TRA DUE UETTORI \vec{u} e \vec{v} come prima

dist $(\vec{u},\vec{v}) = \sqrt{(y_1-x_1)^2 + ... + (y_n - x_m)^2}$

**Relaxion outie

**In $\vec{u} = \sqrt{(\vec{u},\vec{u})^2} + (y_1-x_1)^2 + ... + (y_n - x_m)^2$

**Pelaxion outie

**In $\vec{u} = \sqrt{(\vec{u},\vec{u})^2} + (y_1-x_1)^2 + ... + (y_n - x_m)^2$

**Odist $(\vec{u},\vec{v}) = ||\vec{v}-\vec{u}|| = ||\vec{u}-\vec{v}||$

**Escurpi in \mathbb{R}^2 $\vec{u} = (1,2)$
 $\vec{v} = (-1,1)$

**In $\vec{v} = (0,3)$

Somma = regula del parallelogrammo

 $2\vec{u} = (2,4)$ raddoppio il vettore $-2\vec{u} = (-2,-4)$ capovego se il seguo è negativo

$$\vec{u} - \vec{v} = (2, 1)$$
 - vettore du parte da

té e arrivo a ti

Significato germetrico del prodotto scalare

angolo compreso

$$\vec{\mathcal{U}} = (1,2) \quad \vec{\mathcal{G}} = (-1,1) \quad ||\vec{\mathcal{U}}|| = \sqrt{5} \quad ||\vec{\mathcal{U}}|| = \sqrt{2}$$

$$\langle \vec{\mathcal{U}}, \vec{\mathcal{G}} \rangle = -1 + 2 = 1$$

Dalla formula preceselute

$$1 = \sqrt{5} \cdot \sqrt{2} \cdot \cos \alpha$$
 and $\cos \alpha = \frac{1}{\sqrt{10}}$

$$\langle \vec{u}, \vec{U} \rangle = 0$$
 \Leftrightarrow $\cos d = 0$ \Leftrightarrow $d = \frac{\pi}{2}$ cioè i vettori souv perpeudicoloni

Proprietà del prodotto scalare Siano ii, i, ii tre vettori di R^ Sia 2 un numero. Allora < 元, ジ> = < ご, 元> < \\di, \vec{v} > < \(\lambda \tilde{\alpha} , \vec{v} > \) < (>x1, ..., >xn), (y1, ..., ym)> = >x1y1+...+>xnyn = > (x,y,+...+ xnyn) $\langle \vec{u}, \vec{v} + \vec{w} \rangle = \langle \vec{u}, \vec{v} \rangle + \langle \vec{u}, \vec{w} \rangle$ $\|\vec{u} + \vec{v}\|^2 = \langle \vec{u} + \vec{v}, \vec{u} + \vec{v} \rangle$ = < \vec{u}, \vec{u} > + < \vec{u}, \vec{v} > + < \vec{v}, \vec{u} > + < \vec{v}, \vec{v} > = $\|\vec{u}\|^2 + \|\vec{v}\|^2 + 2\langle \vec{u}, \vec{v} \rangle$ [Fare la verifica usando le componenti]