清华大学本科生考试试题专用纸

	考试课程	线性代数(1)	2018年1月14日	(A卷)
系	、班	姓名	学号	
一、填空题(每空4分,共36分,请直接填在试卷的横线上)				
1. 已知直角系中一点 $A(1,0,1)$,以及一个平面 $\pi: 2x-y+3=0$,则 A 关于 π 的对称点 A '的				
坐	标为			
2.	三个矩阵 $A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \\ 0 & 0 \end{pmatrix}$	$\begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 1 \end{bmatrix}, B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$	$, C = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & 1 \end{pmatrix} + \Box F$	† 满足相抵、相似、
相	合的矩阵有		·	
3.	在 $R_2[x] = \{a_1x + a_0\}$	$ a_i \in R\}$ 中定义内积 $\langle f(x) \rangle$	$\langle x \rangle, g(x) \rangle = \int_0^1 f(x)g(x)dx$,用施密特正交化
方	法将 $R_2[x]$ 中的基1,	x 化为一组标准正交基		
4.	设 A 为 n 阶负定矩阵	车, $lpha$ 为非零的 n 维实向量	a ,则矩阵 $\begin{pmatrix} 0 & \alpha^T \\ \alpha & A \end{pmatrix}$ 的秩为	1
5.	已知三阶复矩阵 A =	$= \begin{pmatrix} b & a & a \\ a & b & a \\ a & a & b \end{pmatrix}, $	个特征值分别为 <u></u>	
6.	设线性空间 V 上的4	线性变换 σ 在基 $lpha_{_{\! 1}},lpha_{_{\! 2}},lpha_{_{\! 3}}$	下的矩阵为 $A = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$) ,写出所有包含)
向		不变的子空间		
7.	设 $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 线性	生无关,则向量组 $\alpha_1+\alpha_2$,	$\alpha_1 + \alpha_4$, $\alpha_2 + \alpha_3$, $\alpha_3 + \alpha_4$	$+lpha_{\scriptscriptstyle 4}$ 的秩为

8. 两个平面
$$\pi_1$$
: $x+2y+z=0$, π_2 : $2x+y+3z-2=0$ 交线的标准方程为_

9. 三维向量
$$\alpha = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}$$
 在基 $\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$, $\alpha_2 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ 下的坐标为_____.

- 二、计算和证明题(共64分,请写在答题纸上)
- **10.** (18 分)设四维线性空间V上的线性变换 σ 在基 $\alpha_1,\alpha_2,\alpha_3,\alpha_4$ 下的矩阵为

$$A = \begin{pmatrix} 1 & 2 & 0 & 1 \\ 2 & 0 & -2 & 1 \\ 1 & 1 & 2 & 1 \\ 1 & 2 & 1 & 1 \end{pmatrix}.$$

- (1) 求 σ 在基 α_1 , $\alpha_1+\alpha_2$, $\alpha_1+\alpha_2-\alpha_3$, $\alpha_1+\alpha_2+\alpha_3-\alpha_4$ 下的矩阵.
- (2) 设向量 γ 在基 $\alpha_1,\alpha_2,\alpha_3,\alpha_4$ 下的坐标为 $(1,2,3,4)^T$,求 $\sigma(\gamma)$ 在基 α_1 , $\alpha_1+\alpha_2$, $\alpha_1+\alpha_2-\alpha_3$, $\alpha_1+\alpha_2+\alpha_3-\alpha_4$ 下的坐标.
- 11. (16 分)设 $\alpha_1,\alpha_2,\alpha_3$ 为线性空间 V 的基,线性变换 σ 在基 $\alpha_1,\alpha_2,\alpha_3$ 下的矩阵为

- (1) 求λ的值
- (2) 分别求 $\ker \sigma$, $\operatorname{Im} \sigma$ 的基.

12.(16 分)已知实二次型
$$Q(x_1,x_2,x_3)=x^TAx$$
,其中 $A=\begin{pmatrix} 1 & 1 & 2 \\ 1 & 0 & 3 \\ 2 & 3 & 1 \end{pmatrix}$,求可逆线性替换将二

次型 $Q(x_1,x_2,x_3)$ 化成规范形.

- **13.** $(8\, eta)$ 设V 为欧几里得空间, V_1 和 V_2 为V 的子空间,满足 $V=V_1\oplus V_2$,证明 $V=V_1^\perp\oplus V_2^\perp$.
- **14.** (6 分) 设 A, B 都是 n 阶正定矩阵,证明 AB 的特征值都大于零.