Introduction au Binaire

Le Système Binaire

- Système de numération de base 2
- Utilise uniquement 0 et 1
- Pour avoir un nombre en binaire il suffit de le décomposer en puissance de 2

n	185							
2 n	7	6	5	4	3	2	1	0
valeur	128	64	32	16	8	4	2	1
binaire	1	0	1	1	1	0	0	1
calcul	128 + 32 + 16 +8 +1							

Le binaire en Informatique

Composant fondamental: le bit

- Représenté par 0 (absence de courant) ou 1 (présence de courant)
- Base de toutes les opérations informatiques
- Utilisé pour le stockage des données
- Un octet est un groupe de 8 bits, il représente des nombres de 0 à 255

Introduction à l'Hexadécimal

- Le Système Binaire
- Système de numération de base 16
- 0123456789ABCDEF
- A = 10 B = 11 C = 12 D = 13 E = 14 F = 15
- Pour avoir un nombre en binaire il suffit de le décomposer en puissance de 16

nombre	158						
16 ⁿ	3	2	1	0			
valeur	4096	256	16	1			
calcul	158 = 9 * 16 ¹ + 14 * 16 ⁰ 158 = 9 * 16 + 14 * 1 = 9E						

L'Hexadécimal en Informatique

Comme 16² = 256 l'héxadecimal permet de stocker l'information de manière plus compacte que les octets

Un nombre hexadécimal ne representant que 4 bits contre 8 pour un octet

On notera le nombre ainsi :

Ox : préfixe signifiant que le nombre est dans le format hexa

Suivit par 4 chiffres représentant un nombre entre 0 et 256

158 = 0x09E0 on rajoute des 0 devant et derrière afin de respecter le format

Les couleurs en informatique

- La couleur se représente par une valeur de rouge, de vert et de bleu
- Ces trois couleurs primaires se représente ainsi :
- R = [255,0,0] G = [0,255,0] B = [0,0,255]
- La somme de ces couleurs est le blanc = [255,255,255] et leur absence est le noir [0,0,0]
- Les couleurs sont représentées sous forme hexadécimal dans une optique d'optimisation
- Pour les créer il suffit convertir chacune de leur valeur décimale puis d'assembler le tout :
- Magenta = $[255,0,255] -> 255 = 15*16^1 + 15*16^0 = FF \text{ et } 0 = 00 -> FF00FF$

Interpolation linéaire et Taylor-Young

- L'interpolation linéaire permet d'estimer une valeur entre deux points connus.
- Basée sur le développement limité de Taylor-Young :
 - \circ f(x)=f(a)+f'(a)(x-a)+o(x-a)
- En négligeant les termes d'ordre supérieur, on obtient :
 - $f(x)\approx f(a)+f'(a)(x-a)$
- Pour deux points (x₀,y₀) et (x₁,y₁), la formule d'interpolation linéaire est :
 - $\circ y = y_0 + x x_0/x_1 x_0 \times (y_1 y_0)$
- Utilisé pour approximer des valeurs dans divers domaines (graphisme, physique, machine learning...).

Application à l'interpolation des couleurs

- Objectif: Mapper une température T à une couleur C (format RGB).
- Utilisation de l'interpolation linéaire :
 - Cout=*T*-*T*min / *T*max-*T*min×(*C*max-*C*min)+*C*min
- Explication de la formule :
 - Tmin et Tmax sont les bornes de température.
 - Cmax et Cmin sont les couleurs associées.
 - La fraction T-Tmin / Tmax-Tmin normalise T entre 0 et 1
- Pourquoi utiliser cette approche?
 - Permet une transition fluide entre les couleurs en fonction de la température.
 - Simple à implémenter et rapide en calcul.
 - Utilisé pour la visualisation thermique (ex : images thermiques, cartes météo).