2.3 Newton's Method

Idea: Approximate f by a linear function at each iteration

Suppose $f \in C^1[a,b]$ and $p \in [a,b]$ is a root of f.

Let $p_0 \in (a, b)$ be an approximation to p such that $f(p) \neq 0$ and $|p-p_0|$ is small. Then $f(p) = f(p_0) + f'(p_0)(p-p_0) + f''(S(p)) \cdot \frac{(p-p_0)^2}{2}$

where S(p) is between p. and p.

$$f(p)=0 \rightarrow 0 \approx f(p_0) + f'(p_0)(p-p_0)$$

$$\rightarrow p \approx p_0 - \frac{f(p_0)}{f'(p_0)} = p_1$$

Newton iteration:

Geometrically:

If po is not close enough to p, Newton's Method might diverge.

Ex. Let $f(x)=x^2-3$. Use Newton's Method to find a root of f with accuracy $\xi=10^8$, with $p_0=1.5$.

501.
$$p_n = p_{n-1} - \frac{f(p_{n-1})}{f'(p_{n-1})} = p_{n-1} - \frac{p_{n-1}^{-1} - 3}{2p_{n-1}}$$

By direct computation, we get $p_3=1.7320581$, $f(p_3)<10^{-8}$, $|p_3-p|<10^{-8}$

Rmk. O equivalent fixed point iteration to Newton:

$$p_n = g(p_{n-1})$$
 where $g(x) = x - \frac{f(x)}{f'(x)}$, $f'(p) \neq 0$.
Also, $g'(x) = 1 - \frac{(f'(x))^2 - f(x)f''(x)}{(f'(x))^2}$

If p is a zero of f, then gip=0!

2 two shortcomings of Newton's Method:

1 - need f'(pn) at each iteration (can be very expensive in high dimensions)

We could approximate f' by $f'(p_{n-1}) = \frac{f(p_{n-1}) - f(p_{n-2})}{p_{n-1} - p_{n-2}}$ (secant method) 2- need to start "close" to the root po≈p

Rmk. need 2 initial conditions po, p.

Geometrically:

Note Newton's and Secant methods are NOT root-bracketing (p may not be between pn and pn-1)

Method of False Position (MFP)

Idea: use Secant Method with root-bracketing (pe[pn-1, pn])

1) Initialize po, p. s.t. fcpo)·fcpo)<0

$$\Rightarrow p.e[p., p.]$$

Let
$$p_2 = p_1 - \frac{f(p_1)(p_1 - p_2)}{f(p_1) - f(p_2)}$$

(pz is root of line passing through (po, f(pa)), (pa, f(pa)))

2) While nemax Iter

- if sign(
$$f(p_1)$$
) sign($f(p_2)$)<0, \rightarrow $p \in [p_1, p_2]$

set $p_2 = p_2 - \frac{f(p_2)(p_2 - p_1)}{f(p_1) - f(p_1)}$

-if sign(
$$f(p_1)$$
)·sign($f(p_2)$)>0, \rightarrow p&[p₁, p₂] $\stackrel{\text{Fr}}{p_2}$ set $p_2 = p_2 - \frac{f(p_2)(p_2 - p_2)}{f(p_1) - f(p_2)}$ (note: pE[p₀, p₂]

In general, Pn=ps, pn-1=pz, pn-2=p1, pn-3=po.

Note: may require 3 previous points.

