

About class projects

- This semester the theme is machine learning for good.
- To be done in groups of 3 people.
- **Deliverables:** Proposal, blog posts, progress report, project presentations (classroom + video presentations), final report and code
- For more details please check the project webpage: http://web.cs.hacettepe.edu.tr/~aykut/classes/fall2019/bbm406/project.html.

Recall from last time... Linear Regression

$$y(x) = w_0 + w_1 x$$
 $\mathbf{w} = (w_0, w_1)$

$$\ell(\mathbf{w}) = \sum_{n=1}^{N} \left[t^{(n)} - (w_0 + w_1 x^{(n)}) \right]^2$$

Gradient Descent Update Rule:

$$\mathbf{w} \leftarrow \mathbf{w} + 2\lambda \left(t^{(n)} - y(x^{(n)}) \right) x^{(n)}$$

Closed Form Solution:

$$\mathbf{w} = \left(\mathbf{X}^T \mathbf{X}\right)^{-1} \mathbf{X}^T \mathbf{t}$$

Recall from last time... Some key concepts

- Data fits is linear model best (model selection)?
 - Simplest models do not capture all the important variations (signal) in the data: underfit
 - More complex model may overfit the training data (fit not only the signal but also the noise in the data), especially if not enough data to constrain model

 test generalization = model's ability to predict the held out data

$$\widetilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2 + \frac{\lambda}{2} ||\mathbf{w}||^2$$

$\ \mathbf{w}\ ^2 \equiv \mathbf{w}^{\mathrm{T}}\mathbf{w} = w_0^2 +$	$w_1^2 + \ldots + w_M^2$
---	--------------------------

w_0	0.35	0.35	0.13
w_1^\star	232.37	4.74	-0.05
w_2^{\star}	-5321.83	-0.77	-0.06
w_3^{\star}	48568.31	-31.97	-0.05
w_4^{\star}	-231639.30	-3.89	-0.03
w_5^{\star}	640042.26	55.28	-0.02
w_6^{\star}	-1061800.52	41.32	-0.01
w_7^{\star}	1042400.18	-45.95	-0.00
w_8^{\star}	-557682.99	-91.53	0.00
w_9^{\star}	125201.43	72.68	0.01
	•		

Today

- Machine Learning Methodology
 - validation
 - cross-validation (k-fold, leave-one-out)
 - model selection

Machine Learning Methodology

Recap: Regression

- In regression, labels y^i are continuous
- Classification/regression are solved very similarly
- Everything we have done so far transfers to classification with very minor changes
- Error: sum of distances from examples to the fitted model

slide by Olga Veksler

Training/Test Data Split

- Talked about splitting data in training/test sets
 - training data is used to fit parameters
 - test data is used to assess how classifier generalizes to new data
- What if classifier has "non-tunable" parameters?
 - a parameter is "non-tunable" if tuning (or training) it on the training data leads to overfitting
 - Examples:
 - k in kNN classifier
 - number of hidden units in MNN
 - number of hidden layers in MNN
 - etc ...

Example of Overfitting

- Want to fit a polynomial machine $f(\mathbf{x}, \mathbf{w})$
- Instead of fixing polynomial degree, make it parameter d
 - learning machine $f(\mathbf{x}, \mathbf{w}, \mathbf{d})$
- Consider just three choices for d
 - degree 1
 - degree 2
 - degree 3

- Training error is a bad measure to choose d
 - degree 3 is the best according to the training error, but overfits the data

Training/Test Data Split

What about test error? Seems appropriate

slide by Olga Veksler

- degree 2 is the best model according to the test error
- Except what do we report as the test error now?
- Test error should be computed on data that was not used for training at all!
- · Here used "test" data for training, i.e. choosing model

slide by Olga Veksler

Validation data

- Same question when choosing among several classifiers
 - our polynomial degree example can be looked at as choosing among 3 classifiers (degree 1, 2, or 3)

Validation data

- Same question when choosing among several classifiers
 - our polynomial degree example can be looked at as choosing among 3 classifiers (degree 1, 2, or 3)
- Solution: split the labeled data into three parts

labeled data

Training
 ≈ 60%

* 20%

train other
 parameters w

train other
 parameters, or to select
 classifier

Test
 ≈ 20%

train other
 parameters, or to select
 classifier

slide by Olga Veksler

Training/Validation

labeled data

Training ≈ 60%

Validation ≈ 20%

Test ≈ 20%

Training error: computed on training example

Validation
error:
computed on
validation
examples

Test error:
computed
on
test
examples

Training/Validation/Test Data

validation error: 3.3

validation error: 1.8

validation error: 3.4

- Training Data
- Validation Data
 - d = 2 is chosen
- Test Data
 - 1.3 test error computed for d = 2

Choosing Parameters: Example

- Need to choose number of hidden units for a MNN
 - The more hidden units, the better can fit training data
 - But at some point we overfit the data

Diagnosing Underfitting/Overfitting

Underfitting

- large training error
- large validation error

Just Right

- small training error
- small validation error

Overfitting

- small training error
- large validation error

Fixing Underfitting/Overfitting

- Fixing Underfitting
 - getting more training examples will not help
 - get more features
 - try more complex classifier
 - if using MLP, try more hidden units
- Fixing Overfitting
 - getting more training examples might help
 - try smaller set of features
 - Try less complex classifier
 - If using MLP, try less hidden units

Train/Test/Validation Method

- Good news
 - Very simple
- Bad news:
 - Wastes data
 - in general, the more data we have, the better are the estimated parameters
 - we estimate parameters on 40% less data, since 20% removed for test and 20% for validation data
 - If we have a small dataset our test (validation) set might just be lucky or unlucky
- Cross Validation is a method for performance evaluation that wastes less data

Small Dataset

Linear Model:

Quadratic Model:

Join the dots Model:

Mean Squared Error = 2.4

Mean Squared Error = 0.9

Mean Squared Error = 2.2

For k=1 to n

1. Let $(\mathbf{x}^k, \mathbf{y}^k)$ be the k^{th} example

For k=1 to n

- 1. Let $(\mathbf{x}^k, \mathbf{y}^k)$ be the k^{th} example
- 2. Temporarily remove $(\mathbf{x}^k, \mathbf{y}^k)$ from the dataset

For k=1 to n

- 1. Let $(\mathbf{x}^k, \mathbf{y}^k)$ be the k^{th} example
- 2. Temporarily remove $(\mathbf{x}^k, \mathbf{y}^k)$ from the dataset
- 3. Train on the remaining n-1 examples

For k=1 to n

- 1. Let $(\mathbf{x}^k, \mathbf{y}^k)$ be the k^{th} example
- 2. Temporarily remove $(\mathbf{x}^k, \mathbf{y}^k)$ from the dataset
- 3. Train on the remaining n-1 examples
- 4. Note your error on $(\mathbf{x}^k, \mathbf{y}^k)$

For k=1 to n

- 1. Let $(\mathbf{x}^k, \mathbf{y}^k)$ be the k^{th} example
- 2. Temporarily remove $(\mathbf{x}^k, \mathbf{y}^k)$ from the dataset
- 3. Train on the remaining n-1 examples
- 4. Note your error on $(\mathbf{x}^k, \mathbf{y}^k)$

When you've done all points, report the mean error

LOOCV for Quadratic Regression

LOOCV for Joint The Dots

slide by Olga Veksler

Which kind of Cross Validation?

	Downside	Upside
Test-set	may give unreliable estimate of future performance	cheap
Leave-one- out	expensive	doesn't waste data

Can we get the best of both worlds?

- Randomly break the dataset into k partitions
- In this example, we have k=3 partitions colored red green and blue

- Randomly break the dataset into k partitions
- In this example, we have k=3 partitions colored red green and blue
- For the blue partition: train on all points not in the blue partition. Find test-set sum of errors on blue points

- Randomly break the dataset into k partitions
- In this example, we have k=3 partitions colored red green and blue
- For the blue partition: train on all points not in the blue partition. Find test-set sum of errors on blue points
- For the green partition: train on all points not in green partition. Find test-set sum of errors on green points

- Randomly break the dataset into k partitions
- In this example, we have k=3 partitions colored red green and blue
- For the blue partition: train on all points not in the blue partition. Find test-set sum of errors on blue points
- For the green partition: train on all points not in green partition. Find test-set sum of errors on green points
- For the red partition: train on all points not in red partition. Find the test-set sum of errors on red points

Linear Regression MSE_{3FOLD} = 2.05

- Randomly break the dataset into k partitions
- In this example, we have k=3 partitions colored red green and blue
- For the blue partition: train on all points not in the blue partition. Find test-set sum of errors on blue points
- For the green partition: train on all points not in green partition. Find test-set sum of errors on green points
- For the red partition: train on all points not in red partition. Find the test-set sum of errors on red points
- Report the mean error

Quadratic Regression MSE_{3FOLD} = 1.1

- Randomly break the dataset into k partitions
- In this example, we have k=3 partitions colored red green and blue
- For the blue partition: train on all points not in the blue partition. Find test-set sum of errors on blue points
- For the green partition: train on all points not in green partition. Find test-set sum of errors on green points
- For the red partition: train on all points not in red partition. Find the test-set sum of errors on red points
- Report the mean error

slide by Olga Veksler

Join the dots $MSE_{3FOLD} = 2.93$

- Randomly break the dataset into k partitions
- In this example, we have k=3 partitions colored red green and blue
- For the blue partition: train on all points not in the blue partition. Find test-set sum of errors on blue points
- For the green partition: train on all points not in green partition. Find test-set sum of errors on green points
- For the red partition: train on all points not in red partition. Find the test-set sum of errors on red points
- Report the mean error

Which kind of Cross Validation?

	Downside	Upside
Test-set	may give unreliable estimate of future performance	cheap
Leave- one-out	expensive	doesn't waste data
10-fold	wastes 10% of the data,10 times more expensive than test set	only wastes 10%, only 10 times more expensive instead of n times
3-fold	wastes more data than 10- fold, more expensive than test set	slightly better than test-set
N-fold	Identical to Leave-one-out	

 Instead of computing the sum squared errors on a test set, you should compute...

 Instead of computing the sum squared errors on a test set, you should compute...

The total number of misclassifications on a test set

 Instead of computing the sum squared errors on a test set, you should compute...

The total number of misclassifications on a test set

- What's LOOCV of 1-NN?
- What's LOOCV of 3-NN?
 - What's LOOCV of 22-NN?

- Choosing k for k-nearest neighbors
- Choosing Kernel parameters for SVM
- Any other "free" parameter of a classifier
- Choosing Features to use
- Choosing which classifier to use

- We're trying to decide which algorithm to use.
- We train each machine and make a table...

f i	Training Error	
f_1		
f ₂		
f ₃		
f ₄		
f ₅		
f ₆		

- We're trying to decide which algorithm to use.
- We train each machine and make a table...

fi	Training Error	10-FOLD-CV Error	
f_1			
f ₂			
f ₃			
f ₄			
f ₅			
f ₆			

- We're trying to decide which algorithm to use.
- We train each machine and make a table...

f i	Training Error	10-FOLD-CV Error	Choice
\mathbf{f}_1			
f ₂			
f ₃			V
f ₄			
f ₅			
f ₆			

- · Example: Choosing "k" for a k-nearest-neighbor regression.
- Step 1: Compute LOOCV error for six different model classes:

- · Step 2: Choose model that gave the best CV score
- · Train with all the data, and that's the final model you'll use

C

- Why stop at k=6?
 - No good reason, except it looked like things were getting worse as K was increasing
- Are we guaranteed that a local optimum of K vs LOOCV will be the global optimum?
 - No, in fact the relationship can be very bumpy
- What should we do if we are depressed at the expense of doing LOOCV for k = 1 through 1000?
 - Try: k=1, 2, 4, 8, 16, 32, 64, ..., 1024
 - Then do hillclimbing from an initial guess at k

Next Lecture: Learning Theory & Probability Review