CDI-II

Regra da cadeia

Exercícios

1. Dadas as funções abaixo, calcule as derivadas parciais:

(a)
$$f(x;y) = xy^2$$
; $u = x^2 + y$; $u = x^2 - y^2$; $\frac{\partial f}{\partial x}(u,v)$

(b)
$$f(x;y) = 2x^2 + 3y^2$$
; $u = x + y + z$; $v = \frac{1}{x^2yz}$; $\frac{\partial f}{\partial z}(u,v)$

(c)
$$f(x; y; z) = \frac{x^2 \cdot z}{y^2 + 1}; u = x^2; v = x^2 + y^2$$

 $\frac{\partial f}{\partial y}(u, v)$

(d)
$$f(x;y) = x^2 + yx; u = t + \frac{1}{t}; v = t^2;$$

 $\frac{df}{dt}(u;v)$

(e)
$$f(x; y; z) = \frac{1}{x^2 + y^2 + z^2}$$
; $u = \cos t$; $v = \sin t$; $w = t$ $\frac{df}{dt}(u; v; w)$

(f)
$$f(t) = t^2 - t^3; \quad u = x^2 y$$

$$\frac{\partial f}{\partial y}(u)$$

(g)
$$f(t) = \sqrt{t^2 + 1}$$
; $u = x^2 + y^2 + z^2$
 $\frac{\partial f}{\partial x}(u)$; $\frac{\partial f}{\partial y}(u)$; $\frac{\partial f}{\partial z}(u)$;

2. Seja f(x;y) uma função derivavel e considere $F(x,y)=f\left(\frac{x}{y};\frac{y}{x}\right)$. Mostre que $x\frac{\partial F}{\partial x}+y\frac{\partial F}{\partial x}=0$