FCC RF Test Report

APPLICANT : Triesan LLC EQUIPMENT : Tablet PC MODEL NAME : SR043KL FCC ID : 2AIP3-8320

STANDARD : FCC Part 15 Subpart E §15.407

CLASSIFICATION : (NII) Unlicensed National Information Infrastructure

The testing was completed on Nov. 15, 2016. We, SPORTON INTERNATIONAL INC., would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC., the test report shall not be reproduced except in full.

Reviewed by: Joseph Lin / Supervisor

Approved by: Jones Tsai / Manager

SPORTON INTERNATIONAL INC.

No. 52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan District, Tao Yuan City, Taiwan, R.O.C.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2AIP3-8320 Page Number : 1 of 29
Report Issued Date : Nov. 15, 2016
Report Version : Rev. 01

1190

Report No.: FR670616-01E

TABLE OF CONTENTS

RE	VISIO	N HISTORY	3
SU	MMAR	RY OF TEST RESULT	4
1	GENE	ERAL DESCRIPTION	5
	1.1 1.2 1.3 1.4 1.5 1.6	Applicant	5 5 5
2	TEST	CONFIGURATION OF EQUIPMENT UNDER TEST	7
	2.1 2.2 2.3 2.4 2.5 2.6	Carrier Frequency and Channel Test Mode Connection Diagram of Test System Support Unit used in test configuration and system EUT Operation Test Setup Measurement Results Explanation Example	
3	TEST	RESULT	10
	3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8	6dB and 26dB and 99% Occupied Bandwidth Measurement Maximum Conducted Output Power Measurement Power Spectral Density Measurement Unwanted Emissions Measurement AC Conducted Emission Measurement Frequency Stability Measurement Automatically Discontinue Transmission Antenna Requirements	
4	LIST	OF MEASURING EQUIPMENT	28
5 AP		ERTAINTY OF EVALUATIONIX A. CONDUCTED TEST RESULTS	29
ΑP	PEND	IX B. RADIATED SPURIOUS EMISSION	
ΑP	PEND	IX C. RADIATED SPURIOUS EMISSION PLOTS	
ΑP	PEND	IX D. DUTY CYCLE PLOTS	

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2AIP3-8320 Page Number : 2 of 29
Report Issued Date : Nov. 15, 2016
Report Version : Rev. 01

Report No. : FR670616-01E

REVISION HISTORY

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FR670616-01E	Rev. 01	Initial issue of report	Nov. 15, 2016

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2AIP3-8320 Page Number : 3 of 29
Report Issued Date : Nov. 15, 2016
Report Version : Rev. 01

Report No. : FR670616-01E

SUMMARY OF TEST RESULT

Report Section	FCC Rule	Description	Limit	Result
3.1	15.403(i)	6dB, 26dB and 99% Occupied Bandwidth	> 500kHz	Pass
3.2	15.407(a)	Maximum Conducted Output Power	≤ 30 dBm	Pass
3.3	15.407(a)	Power Spectral Density	≤ 30 dBm/500kHz	Pass
3.4	15.407(b)	Unwanted Emissions	15.407(b)(4)(i) &15.209(a)	Pass
3.5	15.207	AC Conducted Emission	15.207(a)	Pass
3.6	15.407(g)	Frequency Stability	Within Operation Band	Pass
3.7	15.407(c)	Automatically Discontinue Transmission	Discontinue Transmission	Pass
3.8	15.203 & 15.407(a)	Antenna Requirement	N/A	Pass

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2AIP3-8320 Page Number : 4 of 29
Report Issued Date : Nov. 15, 2016
Report Version : Rev. 01

Report No. : FR670616-01E

1 General Description

1.1 Applicant

Triesan LLC 8201 Peters Rd., Suite 1000 Plantation, Florida 33324

1.2 Product Feature of Equipment Under Test

Product Feature				
Equipment Tablet PC				
Model Name	SR043KL			
FCC ID	2AIP3-8320			
ELIT cumparts Padios application	WLAN 11a/b/g/n HT20/HT40			
EUT supports Radios application	Bluetooth BR/EDR/LE			

Report No. : FR670616-01E

1.3 Product Specification of Equipment Under Test

Standards-related Product Specification				
Tx/Rx Channel Frequency Range 5745 MHz ~ 5825 MHz				
	802.11a: 13.80 dBm / 0.0240 W			
Maximum Output Power	802.11n HT20 : 13.82 dBm / 0.0241 W			
	802.11n HT40 : 13.85 dBm / 0.0243 W			
	802.11a : 17.50 MHz			
99% Occupied Bandwidth	802.11n HT20 : 18.15 MHz			
	802.11n HT40 : 36.30 MHz			
Type of Modulation	OFDM (BPSK / QPSK / 16QAM / 64QAM)			
Antenna Type / Gain	Monopole Antenna with gain 0.19 dBi			

1.4 Modification of EUT

No modifications are made to the EUT during all test items.

 SPORTON INTERNATIONAL INC.
 Page Number
 : 5 of 29

 TEL: 886-3-327-3456
 Report Issued Date
 : Nov. 15, 2016

 FAX: 886-3-328-4978
 Report Version
 : Rev. 01

FCC ID: 2AIP3-8320 Report Template No.: BU5-FR15EWLB4 Version 1.4

1.5 Testing Location

Sporton Lab is accredited to ISO 17025 by Taiwan Accreditation Foundation (TAF code: 1190) and the FCC designation No. TW1022 under the FCC 2.948(e) by Mutual Recognition Agreement (MRA) in FCC Test.

Test Site	SPORTON INTERNATIONAL INC.			
	No. 52, Hwa Ya 1 st Rd., Hwa Ya Technology Park,			
Test Site Location	Kwei-Shan District, Tao Yuan City, Taiwan, R.O.C.			
rest Site Location	TEL: +886-3-327-3456			
	FAX: +886-3-328-4978			
Test Site No.	Sporton Site No.			
rest site No.	TH05-HY	CO05-HY		

Note: The test site complies with ANSI C63.4 2014 requirement.

Test Site	SPORTON INTERNATIONAL INC.		
	No.58, Aly. 75, Ln. 564, Wenhua 3rd Rd. Guishan Dist,		
Toot Site Leastion	Taoyuan City, Taiwan (R.O.C.)		
Test Site Location	TEL: +886-3-327-0868		
	FAX: +886-3-327-0855		
Test Site No.	Sporton Site No.		
Test Site NO.	03CH13-HY		

Note: The test site complies with ANSI C63.4 2014 requirement.

1.6 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart E
- FCC KDB 789033 D02 General UNII Test Procedures New Rules v01r03
- ANSI C63.10-2013

Remark: All test items were verified and recorded according to the standards and without any deviation during the test.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2AIP3-8320 Page Number : 6 of 29
Report Issued Date : Nov. 15, 2016
Report Version : Rev. 01

Report No.: FR670616-01E

2 Test Configuration of Equipment Under Test

The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conducted emission (150 kHz to 30 MHz) and radiated emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, pre-scanned in three orthogonal panels, X, Y, Z. The worst cases (X plane) were recorded in this report.

2.1 Carrier Frequency and Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	149	5745	159*	5795
5725-5850 MHz	151*	5755	161	5805
Band 4 (U-NII-3)	153	5765	165	5825
(0 1411 0)	157	5785		

Note: The above Frequency and Channel in "*" were 802.11n HT40.

2.2 Test Mode

Final test mode of conducted test items and radiated spurious emissions are considering the modulation and worse data rates as below table.

Modulation	Data Rate
802.11a	6 Mbps
802.11n HT20	MCS0
802.11n HT40	MCS0

Test Cases				
AC Conducted Mode 1: WLAN (5GHz) Link + Bluetooth Link + MPEG4 + Earpho				
Emission	Cable (Charging from Adapter) + MicroSD Card			

Ch. #		Band IV:5725-5850 MHz				
	Cn. #	802.11a	802.11n HT20	802.11n HT40		
L	Low	149	149	151		
M	Middle	157	157	-		
Н	High	165	165	159		

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2AIP3-8320 Page Number : 7 of 29
Report Issued Date : Nov. 15, 2016
Report Version : Rev. 01

Report No.: FR670616-01E

2.3 Connection Diagram of Test System

<WLAN Tx Mode>

<AC Conducted Emission Mode>

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2AIP3-8320 Page Number : 8 of 29
Report Issued Date : Nov. 15, 2016
Report Version : Rev. 01

Report No.: FR670616-01E

2.4 Support Unit used in test configuration and system

Item	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	WLAN AP	ASUS	RT-AC66U	MSQ-RTAC66U	N/A	Unshielded, 1.8 m
2.	Notebook	DELL	Latitude E5570	FCC DoC	N/A	AC I/P: Unshielded, 1.2 m DC O/P: Shielded, 1.8 m
3.	Bluetooth Earphone	Sony Ericsson	MW600	PY7DDA-2029	N/A	N/A
4.	SD Card	SanDisk	MicroSD HC	FCC DoC	N/A	N/A
5.	Earphone	N/A	N/A	N/A	Unshielded, 1.15m	N/A

2.5 EUT Operation Test Setup

The programmed RF utility "EngineerMode", is installed in EUT to provide channel selection, power level, data rate and the application type. RF Utility can send transmitting signal for all testing. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product.

2.6 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example:

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 4.2 dB and 10dB attenuator.

Offset(dB) = RF cable loss(dB) + attenuator factor(dB). = 4.2 + 10 = 14.2 (dB) Report No.: FR670616-01E

3 Test Result

3.1 6dB and 26dB and 99% Occupied Bandwidth Measurement

3.1.1 Description of 6dB and 26dB and 99% Occupied Bandwidth

The minimum 6 dB bandwidth shall be at least 500 kHz. 26dB and 99% Occupied bandwidth are reporting only.

3.1.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.1.3 Test Procedures

- The testing follows FCC KDB 789033 D02 General UNII Test Procedures New Rules v01r03.
 Section C) Emission bandwidth for the band 5.725-5.85GHz
- 2. Set RBW = 100kHz.
- 3. Set the VBW \geq 3 x RBW.
- 4. Detector = Peak.
- 5. Trace mode = max hold
- 6. Measure the maximum width of the emission that is 6 dB down from the peak of the emission.
- 7. Measure and record the results in the test report.

3.1.4 Test Setup

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2AIP3-8320 Page Number : 10 of 29
Report Issued Date : Nov. 15, 2016
Report Version : Rev. 01

Report No.: FR670616-01E

3.1.5 Test Result of 6dB Bandwidth

Please refer to Appendix A.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2AIP3-8320 Page Number : 11 of 29
Report Issued Date : Nov. 15, 2016
Report Version : Rev. 01

Report No.: FR670616-01E

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2AIP3-8320 Page Number : 12 of 29
Report Issued Date : Nov. 15, 2016
Report Version : Rev. 01

Report No. : FR670616-01E

3.2 Maximum Conducted Output Power Measurement

3.2.1 Limit of Maximum Conducted Output Power

For the band 5.725–5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W.

If transmitting antennas of directional gain greater than 6 dBi are used, the peak output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

3.2.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.2.3 Test Procedures

The testing follows Method PM of FCC KDB 789033 D02 General UNII Test Procedures New Rules v01r03.

Method PM (Measurement using an RF average power meter):

- 1. Measurement is performed using a wideband RF power meter.
- 2. The EUT is configured to transmit continuously with a consistent duty cycle at its maximum power control level.
- 3. Measure the average power of the transmitter, and the average power is corrected with duty factor, 10 log(1/x), where x is the duty cycle.

3.2.4 Test Setup

3.2.5 Test Result of Maximum Conducted Output Power

Please refer to Appendix A.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2AIP3-8320 Page Number : 13 of 29
Report Issued Date : Nov. 15, 2016
Report Version : Rev. 01

Report No.: FR670616-01E

3.3 Power Spectral Density Measurement

3.3.1 Limit of Power Spectral Density

For the band 5.725–5.85 GHz, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band.

If transmitting antennas of directional gain greater than 6 dBi are used, the peak output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

3.3.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.3.3 Test Procedures

The testing follows FCC KDB 789033 D02 General UNII Test Procedures New Rules v01r03. Section F) Maximum power spectral density.

Method SA-2

(trace averaging across on and off times of the EUT transmissions, followed by duty cycle correction).

- Measure the duty cycle.
- Set span to encompass the entire emission bandwidth (EBW) of the signal.
- Set RBW = 300 kHz.
- Set VBW ≥ 1 MHz.
- Number of points in sweep ≥ 2 Span / RBW.
- Sweep time = auto.
- Detector = RMS
- Trace average at least 100 traces in power averaging mode.
- Add 10 log(500kHz/RBW) to the test result.
- Add 10 log(1/x), where x is the duty cycle, to the measured power in order to compute the
 average power during the actual transmission times. For example, add 10 log(1/0.25) = 6
 dB if the duty cycle is 25 percent.
- 1. The RF output of EUT was connected to the spectrum analyzer by a low loss cable.
- 2. Each plot has already offset with cable loss, and attenuator loss. Measure the PPSD and record it.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2AIP3-8320 Page Number : 14 of 29
Report Issued Date : Nov. 15, 2016
Report Version : Rev. 01

Report No.: FR670616-01E

3.3.4 Test Setup

3.3.5 Test Result of Power Spectral Density

Please refer to Appendix A.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2AIP3-8320 Page Number : 15 of 29
Report Issued Date : Nov. 15, 2016
Report Version : Rev. 01

Report No. : FR670616-01E

3.4 Unwanted Emissions Measurement

This section as specified in FCC Part 15.407(b) is to measure unwanted emissions through radiated measurement for band edge spurious emissions and out of band emissions measurement. The unwanted emissions shall comply with 15.407(b)(1) to (6), and restricted bands per FCC Part15.205.

3.4.1 Limit of Unwanted Emissions

- (1) For transmitters operating in the 5.725-5.85 GHz band: 15.407(b)(4)(i) All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.
- (2) Unwanted spurious emissions fallen in restricted bands per FCC Part15.205 shall comply with the general field strength limits set forth in § 15.209 as below table,

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

Note: The following formula is used to convert the EIRP to field strength.

$$E = \frac{1000000\sqrt{30P}}{3}$$
 µV/m, where P is the eirp (Watts)

EIRP (dBm)	Field Strength at 3m (dBµV/m)
-17	78.3
- 27	68.3

SPORTON INTERNATIONAL INC.
TEL: 886-3-327-3456

FAX: 886-3-328-4978 FCC ID: 2AIP3-8320 Page Number : 16 of 29
Report Issued Date : Nov. 15, 2016
Report Version : Rev. 01

Report No.: FR670616-01E

(3) KDB 789033 D02 General UNII Test Procedures New Rules v01r03 G)2)c) As specified in 15.407(b), emissions above 1000 MHz that are outside of the restricted bands are subject to a peak emission limit of -27 dBm/MHz (or -17 dBm/MHz as specified in 15.407(b)(4)). However, an out-of-band emission that complies with both the average and peak limits of 15.209 is not required to satisfy the -27 dBm/MHz or -17 dBm/MHz peak emission limit.

Report No.: FR670616-01E

3.4.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.4.3 **Test Procedures**

- The testing follows FCC KDB 789033 D02 General UNII Test Procedures New Rules v01r03. Section G) Unwanted emissions measurement.
 - (1) Procedure for Unwanted Emissions Measurements Below 1000MHz
 - RBW = 120 kHz
 - VBW = 300 kHz
 - Detector = Peak
 - Trace mode = max hold
 - (2) Procedure for Peak Unwanted Emissions Measurements Above 1000 MHz
 - RBW = 1 MHz
 - VBW ≥ 3 MHz
 - Detector = Peak
 - Sweep time = auto
 - Trace mode = max hold
 - (3) Procedures for Average Unwanted Emissions Measurements Above 1000MHz
 - RBW = 1 MHz
 - VBW = 10 Hz, when duty cycle is no less than 98 percent.
 - VBW \geq 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.
- The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.
- The EUT was set 3 meters from the interference receiving antenna which was mounted on the top of a variable height antenna tower.
- The antenna is a broadband antenna and its height is adjusted between one meter and four meters above ground to find the maximum value of the field strength for both horizontal polarization and vertical polarization of the antenna.

SPORTON INTERNATIONAL INC.

Page Number : 17 of 29 TEL: 886-3-327-3456 Report Issued Date: Nov. 15, 2016 FAX: 886-3-328-4978 Report Version : Rev. 01

FCC ID: 2AIP3-8320 Report Template No.: BU5-FR15EWLB4 Version 1.4

- 5. For each suspected emission, the EUT was arranged to its worst case and then adjust the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading.
- 6. For testing below 1GHz, if the emission level of the EUT in peak mode was 3 dB lower than the limit specified, then peak values of EUT will be reported, otherwise, the emissions will be repeated one by one using the CISPR quasi-peak method and reported.
- 7. For testing above 1GHz, the emission level of the EUT in peak mode was 20dB lower than average limit (that means the emission level in average mode also complies with the limit in average mode), then peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.

3.4.4 Test Setup

For radiated emissions below 30MHz

For radiated emissions from 30MHz to 1GHz

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2AIP3-8320 Page Number : 18 of 29
Report Issued Date : Nov. 15, 2016
Report Version : Rev. 01

Report No.: FR670616-01E

For radiated emissions above 1GHz

3.4.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported.

3.4.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix B and C.

3.4.7 Duty Cycle

Please refer to Appendix D.

3.4.8 Test Result of Radiated Spurious Emissions (30MHz ~ 10th Harmonic)

Please refer to Appendix B and C.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2AIP3-8320 Page Number : 19 of 29
Report Issued Date : Nov. 15, 2016
Report Version : Rev. 01

Report No.: FR670616-01E

3.5 AC Conducted Emission Measurement

3.5.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Frequency of emission (MHz)	Conducted limit (dBμV)				
Frequency of emission (MHZ)	Quasi-peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			

^{*}Decreases with the logarithm of the frequency.

3.5.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.5.3 Test Procedures

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- Connect EUT to the power mains through a line impedance stabilization network (LISN). 2.
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- Both sides of AC line were checked for maximum conducted interference. 6.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth with Maximum Hold Mode.

SPORTON INTERNATIONAL INC. Page Number TEL: 886-3-327-3456

Report Issued Date: Nov. 15, 2016 FAX: 886-3-328-4978 Report Version : Rev. 01 FCC ID: 2AIP3-8320

Report Template No.: BU5-FR15EWLB4 Version 1.4

: 20 of 29

Report No.: FR670616-01E

3.5.4 Test Setup

AMN = Artificial mains network (LISN)

AE = Associated equipment

EUT = Equipment under test

ISN = Impedance stabilization network

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2AIP3-8320 Page Number : 21 of 29
Report Issued Date : Nov. 15, 2016
Report Version : Rev. 01

Report No.: FR670616-01E

3.5.5 Test Result of AC Conducted Emission

Test Mode :	Mode 1	Temperature :	24~25℃			
Test Engineer :	Kai-Chun Chu	Relative Humidity :	52~53%			
Test Voltage :	120Vac / 60Hz	Phase :	Line			
Function Type	WLAN (5GHz) Link + Bluetooth Link + MPEG4 + Earphone + USB Cable					
Function Type :						

Final Result : QuasiPeak

Frequency (MHz)	QuasiPeak (dBµV)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.150000	43.2	Off	L1	19.6	22.8	66.0
0.182000	42.7	Off	L1	19.6	21.7	64.4
0.206000	39.5	Off	L1	19.6	23.9	63.4
0.246000	37.7	Off	L1	19.6	24.2	61.9
0.342000	32.2	Off	L1	19.6	27.0	59.2
0.454000	31.7	Off	L1	19.6	25.1	56.8
0.558000	32.7	Off	L1	19.6	23.3	56.0
0.766000	28.9	Off	L1	19.6	27.1	56.0

Final Result : Average

Frequency (MHz)	Average (dBµV)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.150000	26.2	Off	L1	19.6	29.8	56.0
0.182000	30.0	Off	L1	19.6	24.4	54.4
0.206000	27.2	Off	L1	19.6	26.2	53.4
0.246000	24.4	Off	L1	19.6	27.5	51.9
0.342000	23.7	Off	L1	19.6	25.5	49.2
0.454000	22.4	Off	L1	19.6	24.4	46.8
0.558000	29.1	Off	L1	19.6	16.9	46.0
0.766000	24.3	Off	L1	19.6	21.7	46.0

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2AIP3-8320 Page Number : 22 of 29
Report Issued Date : Nov. 15, 2016
Report Version : Rev. 01

Report No. : FR670616-01E

Test Mode :	Mode 1	Temperature :	24~25℃			
Test Engineer :	Kai-Chun Chu	Relative Humidity :	52~53%			
Test Voltage :	120Vac / 60Hz	Phase :	Neutral			
Function Type	WLAN (5GHz) Link + Bluetooth Link + MPEG4 + Earphone + USB Cable					
Function Type :	Charging from Adapter) + MicroSD Card					

Final Result : QuasiPeak

Frequency (MHz)	QuasiPeak (dBµV)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.150000	47.7	Off	N	19.6	18.3	66.0
0.190000	37.3	Off	N	19.6	26.7	64.0
0.270000	36.2	Off	N	19.6	24.9	61.1
0.318000	31.0	Off	N	19.6	28.8	59.8
0.446000	28.9	Off	N	19.6	28.0	56.9
0.518000	29.7	Off	N	19.6	26.3	56.0
0.574000	30.6	Off	N	19.6	25.4	56.0
0.678000	24.7	Off	N	19.6	31.3	56.0

Final Result : Average

Frequency	Average	Filter	Line	Corr.	Margin	Limit
(MHz)	(dBµV)	Filter	Line	(dB)	(dB)	(dBµV)
0.150000	27.2	Off	N	19.6	28.8	56.0
0.190000	23.4	Off	N	19.6	30.6	54.0
0.270000	23.1	Off	N	19.6	28.0	51.1
0.318000	19.6	Off	N	19.6	30.2	49.8
0.446000	19.8	Off	N	19.6	27.1	46.9
0.518000	20.2	Off	N	19.6	25.8	46.0
0.574000	20.7	Off	N	19.6	25.3	46.0
0.678000	17.7	Off	N	19.6	28.3	46.0

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2AIP3-8320 Page Number : 23 of 29
Report Issued Date : Nov. 15, 2016
Report Version : Rev. 01

Report No. : FR670616-01E

3.6 Frequency Stability Measurement

3.6.1 Limit of Frequency Stability

Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.

3.6.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.6.3 Test Procedures

- To ensure emission at the band edge is maintained within the authorized band, those values shall
 be measured by radiation emissions at upper and lower frequency points, and finally
 compensated by frequency deviation as procedures below.
- 2. The EUT was operated at the maximum output power, and connected to the spectrum analyzer, which is set to maximum hold function and peak detector. The peak value of the power envelope was measured and noted. The upper and lower frequency points were respectively measured relatively 10dB lower than the measured peak value.
- The frequency deviation was calculated by adding the upper frequency point and the lower frequency point divided by two. Those detailed values of frequency deviation are provided in table below.

3.6.4 Test Setup

3.6.5 Test Result of Frequency Stability

Please refer to Appendix A.

Report No.: FR670616-01E

3.7 Automatically Discontinue Transmission

3.7.1 Limit of Automatically Discontinue Transmission

The device shall automatically discontinue transmission in case of either absence of information to transmit or operational failure. These provisions are not intended to preclude the transmission of control or signaling information or the use of repetitive codes used by certain digital technologies to complete frame or burst intervals. Applicants shall include in their application for equipment authorization to describe how this requirement is met.

3.7.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.7.3 Test Result of Automatically Discontinue Transmission

EUT is verified this characteristic during the function check of normal sample associated with an access point:

- A. Information start: make EUT supply information to the access point.
- B. Information stop: stop supplying information to the access point.
 While the EUT is not transmitting any information, the EUT can automatically discontinue transmission and become standby mode for power saving.
- C. Information start: make EUT supply information to the access point again.
 The EUT can detect the controlling signal of ACK message transmitting from remote device and verify whether it shall resend or discontinue transmission.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2AIP3-8320 Page Number : 25 of 29
Report Issued Date : Nov. 15, 2016
Report Version : Rev. 01

Report No.: FR670616-01E

Note: The control / signalling information during the period B is precluded.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2AIP3-8320

Page Number : 26 of 29 Report Issued Date: Nov. 15, 2016 Report Version : Rev. 01

Report No.: FR670616-01E

3.8 Antenna Requirements

3.8.1 Standard Applicable

According to FCC 47 CFR Section 15.407(a)(1)(2) ,if transmitting antenna directional gain is greater than 6 dBi, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

3.8.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.8.3 Antenna Gain

The antenna gain is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2AIP3-8320 Page Number : 27 of 29
Report Issued Date : Nov. 15, 2016
Report Version : Rev. 01

Report No.: FR670616-01E

4 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Power Meter	Anritsu	ML2495A	0932001	300MHz~40GHz	Sep. 29, 2016	Oct. 24, 2016 ~ Nov. 15, 2016	Sep. 28, 2017	Conducted (TH05-HY)
Power Sensor	Anritsu	MA2411B	0846202	300MHz~40GHz	Sep. 29, 2016	Oct. 24, 2016 ~ Nov. 15, 2016	Sep. 28, 2017	Conducted (TH05-HY)
Spectrum Analyzer	Rohde & Schwarz	FSP40	100057	9kHz-40GHz	Nov. 23, 2015	Oct. 24, 2016 ~ Nov. 15, 2016	Nov. 22, 2016	Conducted (TH05-HY)
Temperature Chamber	ESPEC	SH-641	92013720	-40°C ~90°C	Sep. 01, 2016	Oct. 24, 2016 ~ Nov. 15, 2016	Aug. 31, 2017	Conducted (TH05-HY)
Programmable Power Supply	GW Instek	PSS-2005	EL890094	1V~20V 0.5A~5A	Oct. 11, 2016	Oct. 24, 2016 ~ Nov. 15, 2016	Oct. 10, 2017	Conducted (TH05-HY)
AC Power Source	ChainTek	APC-1000W	N/A	N/A	N/A	Nov. 01, 2016	N/A	Conduction (CO05-HY)
EMI Test Receiver	Rohde & Schwarz	ESCI 7	100724	9kHz~7GHz	Aug. 30, 2016	Nov. 01, 2016	Aug. 29, 2017	Conduction (CO05-HY)
LISN	Rohde & Schwarz	ENV216	100080	9kHz~30MHz	Dec. 02, 2015	Nov. 01, 2016	Dec. 01, 2016	Conduction (CO05-HY)
Loop Antenna	Rohde & Schwarz	HFH2-Z2	100315	9 kHz~30 MHz	Sep. 02, 2015	Oct. 27, 2016 ~ Oct. 29, 2016	Sep. 01, 2017	Radiation (03CH13-HY)
Amplifier	Sonoma-Instru ment	310 N	187282	10MHz~1GHz	Dec. 31, 2015	Oct. 27, 2016 ~ Oct. 29, 2016	Dec. 30, 2016	Radiation (03CH13-HY)
Bilog Antenna	TESEQ	CBL 6111D&00800 N1D01N-06	40103&04	30MHz to 1GHz	Jan. 13, 2016	Oct. 27, 2016 ~ Oct. 29, 2016	Jan. 12, 2017	Radiation (03CH13-HY)
EMI Test Receiver	Keysight	N9038A(MXE)	MY55420170	N/A	Mar. 10, 2016	Oct. 27, 2016 ~ Oct. 29, 2016	Mar. 09, 2017	Radiation (03CH13-HY)
Horn Antenna	SCHWARZBE CK	BBHA 9120 D	9120D-1241	1GHz ~ 18GHz	Apr. 25, 2016	Oct. 27, 2016 ~ Oct. 29, 2016	Apr. 24, 2017	Radiation (03CH13-HY)
Preamplifier	MITEQ	AMF-7D-0010 1800-30-10P	1590074	1GHz~18GHz	Jun. 27, 2016	Oct. 27, 2016 ~ Oct. 29, 2016	Jun. 26, 2017	Radiation (03CH13-HY)
Preamplifier	MITEQ	JS44-1800400 0-33-8P	1840917	18GHz ~ 40GHz	Jun. 14, 2016	Oct. 27, 2016 ~ Oct. 29, 2016	Jun. 13, 2017	Radiation (03CH13-HY)
Preamplifier	Keysight	83017A	MY53270147	1GHz~26.5GHz	Jan. 30, 2016	Oct. 27, 2016 ~ Oct. 29, 2016	Jan. 29, 2017	Radiation (03CH13-HY)
Spectrum Analyzer	Keysight	N9010A	MY55370526	N/A	Mar. 14, 2016	Oct. 27, 2016 ~ Oct. 29, 2016	Mar. 13, 2017	Radiation (03CH13-HY)
Antenna Mast	EMEC	AM-BS-4500-B	N/A	1m~4m	N/A	Oct. 27, 2016 ~ Oct. 29, 2016	N/A	Radiation (03CH13-HY)
Turn Table	EMEC	TT2000	N/A	0~360 Degree	N/A	Oct. 27, 2016 ~ Oct. 29, 2016	N/A	Radiation (03CH13-HY)
SHF-EHF Horn Antenna	SCHWARZBE CK	BBHA 9170	BBHA917058 4	18GHz- 40GHz	Nov. 02, 2015	Oct. 27, 2016 ~ Oct. 29, 2016	Nov. 01, 2016	Radiation (03CH13-HY)

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2AIP3-8320 Page Number : 28 of 29
Report Issued Date : Nov. 15, 2016
Report Version : Rev. 01

Report No. : FR670616-01E

5 Uncertainty of Evaluation

Uncertainty of Conducted Emission Measurement (150kHz ~ 30MHz)

	
Measuring Uncertainty for a Level of Confidence	2.7
of 95% (U = 2Uc(y))	2.1

Report No. : FR670616-01E

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	4.0
of 95% (U = 2Uc(y))	4.9

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence	5.4
of 95% (U = 2Uc(y))	5.4

<u>Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)</u>

Measuring Uncertainty for a Level of Confidence	4.2
of 95% (U = 2Uc(y))	4.3

 SPORTON INTERNATIONAL INC.
 Page Number
 : 29 of 29

 TEL: 886-3-327-3456
 Report Issued Date
 : Nov. 15, 2016

 FAX: 886-3-328-4978
 Report Version
 : Rev. 01

FCC ID : 2AIP3-8320 Report Template No.: BU5-FR15EWLB4 Version 1.4

Appendix A. Conducted Test Results

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2AIP3-8320 Page Number : A1 of A1
Report Issued Date : Nov. 15, 2016
Report Version : Rev. 01

Report Template No.: BU5-FR15EWLB4 Version 1.4

Report No. : FR670616-01E

Test Engineer:	Derek Hsu	Temperature:	21~25	°C
Test Date:	2016/10/24~2016/11/03	Relative Humidity:	51~54	%

<u>TEST RESULTS DATA</u> 6dB and 26dB EBW and 99% OBW

	Band IV												
Mod.	Rate		CH.	Freq. (MHz)	99% Bandwidth (MHz)	26 dB Bandwidth (MHz)	6 dB Bandwidth (MHz)	6dB Bandwidth min. Limit (MHz)	Pass/Fail				
11a	6M bps	1	149	5745	17.50	21.36	16.32	0.5	Pass				
11a	6Mbps	1	157	5785	17.30	21.43	16.34	0.5	Pass				
11a	6Mbps	1	165	5825	17.35	21.12	16.32	0.5	Pass				
HT20	MCS 0	1	149	5745	18.15	23.33	17.60	0.5	Pass				
HT20	MCS 0	1	157	5785	18.15	21.67	17.60	0.5	Pass				
HT20	MCS 0	1	165	5825	18.10	23.40	17.60	0.5	Pass				
HT40	MCS 0	1	151	5755	36.30	41.10	36.32	0.5	Pass				
HT40	MCS 0	1	159	5795	36.30	44.64	36.32	0.5	Pass				

TEST RESULTS DATA Average Power Table

	Band IV											
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Duty Factor (dB)	Average FCC Conducted Conducted DG Power Power Limit (dBm) (dBm)		_		Pass/Fail		
11a	6M bps	1	149	5745	0.00	13.80	30.00	0.19		Pass		
11a	6Mbps	1	157	5785	0.00	13.75	30.00	0.19		Pass		
11a	6Mbps	1	165	5825	0.00	13.74	30.00	0.19		Pass		
HT20	MCS 0	1	149	5745	0.00	13.82	30.00	0.19		Pass		
HT20	MCS 0	1	157	5785	0.00	13.81	30.00	0.19		Pass		
HT20	MCS 0	1	165	5825	0.00	13.74	30.00	0.19		Pass		
HT40	MCS 0	1	151	5755	0.00	13.85	30.00	0.19		Pass		
HT40	MCS 0	1	159	5795	0.00	13.82	30.00	0.19		Pass		

TEST RESULTS DATA Power Spectral Density

	Band IV												
Mod.	Rate		CH.	Freq. (MHz)	Duty Factor (dB)	10log (500kHz /RBW) Factor (dB)	Average Power Density (dBm/500kHz)	Average PSD Limit (dBm/500kHz)	DG (dBi)	Pass/Fail			
11a	6M bps	1	149	5745	0.00	2.22	-0.32	30.00	0.19	Pass			
11a	6Mbps	1	157	5785	0.00	2.22	-0.67	30.00	0.19	Pass			
11a	6Mbps	1	165	5825	0.00	2.22	-0.69	30.00	0.19	Pass			
HT20	MCS 0	1	149	5745	0.00	2.22	-0.23	30.00	0.19	Pass			
HT20	MCS 0	1	157	5785	0.00	2.22	-0.81	30.00	0.19	Pass			
HT20	MCS 0	1	165	5825	0.00	2.22	-1.28	30.00	0.19	Pass			
HT40	MCS 0	1	151	5755	0.00	2.22	-4.44	30.00	0.19	Pass			
HT40	MCS 0	1	159	5795	0.00	2.22	-4.88	30.00	0.19	Pass			

TEST RESULTS DATA Frequency Stability

	Band IV											
Mod.	Mod. Data Rate NTX CH. Freq. (MHz)		Center Frequency (MHz)	requency Deviation		Temperature (°C)	Voltage (V)	Note				
11a	6M bps	1	149	5745	5745.000	0.000	0.00	20	3.6			
11a	6M bps	1	149	5745	5745.000	0.000	0.00	20	4.2			
11a	6M bps	1	149	5745	5745.050	0.050	8.70	20	3.8			
11a	6M bps	1	149	5745	5745.000	0.000	0.00	0	3.8			
11a	6M bps	1	149	5745	5745.000	0.000	0.00	35	3.8			

Appendix B. Radiated Spurious Emission

L	Foot Engineer .	Alox Ibong Bill Chang and Wilson Wu	Temperature :	24~26°C
	rest Engineer:	Alex Jheng, Bill Chang, and Wilson Wu	Relative Humidity :	47~51%

Band 4 - 5725~5850MHz

WIFI 802.11a (Band Edge @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		5640.8	52.07	-16.13	68.2	40.05	32.09	10.94	31.01	100	83	Р	Н
		5693.2	53.67	-46.52	100.19	41.51	32.17	11.02	31.03	100	83	Р	Н
		5707.8	54.92	-52.47	107.39	42.72	32.19	11.05	31.04	100	83	Р	Н
		5723.6	61.28	-57.73	119.01	49.04	32.21	11.07	31.04	100	83	Р	Н
	*	5745	105.1	-	-	92.81	32.24	11.1	31.05	100	83	Р	Н
	*	5745	96.76	-	-	84.47	32.24	11.1	31.05	100	83	Α	Н
000 44 -													Н
802.11a													Н
CH 149 5745MHz		5634.6	52.28	-15.92	68.2	40.26	32.09	10.94	31.01	306	99	Р	٧
37 43WII 12		5689.8	54.14	-43.54	97.68	41.98	32.17	11.02	31.03	306	99	Р	٧
		5716.6	55.67	-54.18	109.85	43.47	32.19	11.05	31.04	306	99	Р	٧
		5724.6	66.61	-54.68	121.29	54.37	32.21	11.07	31.04	306	99	Р	٧
	*	5745	108.53	-	-	96.24	32.24	11.1	31.05	306	99	Р	V
	*	5745	99.95	-	-	87.66	32.24	11.1	31.05	306	99	Α	V
													V
													V

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 Page Number

: B1 of B14

Report No. : FR670616-01E

WIFI Limit Antenna Table Peak Pol. Note Frequency Level Over Read Cable Preamp Ant Ant. Limit Line Level **Factor** Loss Factor Pos Pos Avg. (dBµV/m) (deg) (P/A) (H/V) (MHz) (dB) (dBµV/m) (dB_µV) (dB/m) (dB) (dB) (cm) 5604 51.26 -16.94 68.2 39.33 32.04 10.89 100 82 Η 31 52.37 Ρ 5677 -35.85 88.22 40.25 32.14 11 31.02 100 82 Н 5716.6 53.29 -56.56 109.85 41.09 32.19 11.05 31.04 100 82 Ρ Н Ρ 5724 52.81 -67.11 119.92 40.57 32.21 11.07 31.04 100 82 Н 5785 105.24 92.87 32.29 31.07 100 Ρ _ 11.15 82 Η * 5785 97.13 84.76 32.29 31.07 100 82 Α Н 11.15 5851 52.25 -67.67 119.92 39.69 32.38 11.27 31.09 100 82 Р Н 5874.6 52.34 -52.97 105.31 39.68 32.43 11.33 31.1 100 82 Ρ Н 5883.4 53.26 -45.7 98.96 40.62 32.43 11.33 31.12 100 82 Ρ Н Р Н 5932.2 52.55 -15.65 68.2 39.77 32.5 11.41 31.13 100 82 Н 802.11a Н **CH 157** 32.09 31.01 287 Ρ V 5645.6 51.86 -16.34 68.2 39.84 10.94 99 5785MHz Ρ ٧ 5695.2 52.75 -48.91 101.66 40.59 32.17 11.02 31.03 287 99 5718.2 53.03 -57.27 110.3 40.79 32.21 11.07 31.04 287 99 Ρ ٧ 5722.6 53.92 -62.81 116.73 41.68 32.21 11.07 31.04 287 99 Ρ ٧ 32.29 Ρ ٧ 5785 109.79 97.42 31.07 287 11.15 99 * 32.29 ٧ 5785 101.28 88.91 11.15 31.07 287 99 Α 5853.6 55.21 -58.78 113.99 42.59 32.41 11.3 31.09 287 99 Ρ ٧ Ρ ٧ 5860.4 55.17 -54.12 109.29 42.56 32.41 11.3 31.1 287 99 Ρ ٧ 5905.6 55.42 -27.1 82.52 42.68 32.48 11.38 31.12 287 99 5946.2 40.19 32.53 Р ٧ 53.02 -15.18 68.2 11.44 31.14 287 99 V ٧

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant. 1		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)	(H/V
	*	5825	105.02	-	-	92.5	32.36	11.24	31.08	100	82	Р	Н
	*	5825	96.62	-	-	84.1	32.36	11.24	31.08	100	82	Α	Н
		5855	55.71	-55.09	110.8	43.09	32.41	11.3	31.09	100	82	Р	Н
		5855	55.71	-55.09	110.8	43.09	32.41	11.3	31.09	100	82	Р	Н
		5886	53.26	-43.77	97.03	40.62	32.43	11.33	31.12	100	82	Р	Н
		5925.8	53.23	-14.97	68.2	40.45	32.5	11.41	31.13	100	82	Р	Н
													Н
802.11a													Н
CH 165	*	5825	109.68	-	-	97.16	32.36	11.24	31.08	284	99	Р	V
5825MHz	*	5825	101.17	-	-	88.65	32.36	11.24	31.08	284	99	Α	V
		5854.2	56.7	-55.92	112.62	44.08	32.41	11.3	31.09	284	99	Р	V
		5856	56.8	-53.72	110.52	44.18	32.41	11.3	31.09	284	99	Р	V
		5890.2	56.29	-37.63	93.92	43.6	32.46	11.35	31.12	284	99	Р	V
		5936	52.78	-15.42	68.2	40.01	32.5	11.41	31.14	284	99	Р	V
													V
													V
													٧

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978

Band 4 5725~5850MHz

WIFI 802.11a (Harmonic @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V
		11490	54.39	-19.61	74	55.19	40.3	15.2	56.3	100	302	Р	Н
		11490	43.72	-10.28	54	44.52	40.3	15.2	56.3	100	302	Α	Н
000.44		17235	46.67	-21.53	68.2	41.79	41.09	19.52	55.73	100	0	Р	Н
802.11a													Н
CH 149		11490	57.47	-16.53	74	58.27	40.3	15.2	56.3	100	61	Р	V
5745MHz		11490	46.46	-7.54	54	47.26	40.3	15.2	56.3	100	61	Α	V
		17235	47.33	-20.87	68.2	42.45	41.09	19.52	55.73	100	0	Р	V
													V
		11570	48.68	-25.32	74	49.63	40.12	15.22	56.29			Р	Н
		17355	46.45	-21.75	68.2	41.19	41.53	19.62	55.89	100	0	Р	Н
													Н
802.11a													Н
CH 157		11570	56.49	-17.51	74	57.44	40.12	15.22	56.29	100	62	Р	V
5785MHz		11570	44.82	-9.18	54	45.77	40.12	15.22	56.29	100	62	Α	V
		17355	46.89	-21.31	68.2	41.63	41.53	19.62	55.89	100	0	Р	V
													V
		11650	49.15	-24.85	74	50.25	39.94	15.23	56.27	100	0	Р	Н
		17475	46.26	-21.94	68.2	40.63	41.97	19.71	56.05	100	0	Р	Н
222.44													Н
802.11a													Н
CH 165		11650	49.01	-24.99	74	50.11	39.94	15.23	56.27	100	0	Р	٧
5825MHz		17475	48.81	-19.39	68.2	43.18	41.97	19.71	56.05	100	0	Р	V
													V
													V

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 Page Number

: B4 of B14

Band 4 5725~5850MHz

Report No. : FR670616-01E

WIFI 802.11n HT20 (Band Edge @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant. 1		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)	(H/V)
		5615.2	51.5	-16.7	68.2	39.57	32.04	10.89	31	100	75	Р	Н
		5682.8	53.41	-39.1	92.51	41.3	32.14	11	31.03	100	75	Р	Н
		5719.2	57.78	-52.8	110.58	45.54	32.21	11.07	31.04	100	75	Р	Н
		5725	65.39	-56.81	122.2	53.15	32.21	11.07	31.04	100	75	Р	Н
	*	5745	105.2	-	-	92.91	32.24	11.1	31.05	100	75	Р	Н
	*	5745	96.9	-	-	84.61	32.24	11.1	31.05	100	75	Α	Н
802.11n													Н
HT20													Н
CH 149		5638.8	51.9	-16.3	68.2	39.88	32.09	10.94	31.01	262	97	Р	٧
5745MHz		5697.4	54.72	-48.56	103.28	42.56	32.17	11.02	31.03	262	97	Р	٧
		5714.2	59.34	-49.84	109.18	47.14	32.19	11.05	31.04	262	97	Р	٧
		5723.4	71.62	-46.93	118.55	59.38	32.21	11.07	31.04	262	97	Р	٧
	*	5745	109.54	-	-	97.25	32.24	11.1	31.05	262	97	Р	٧
	*	5745	100.92	-	-	88.63	32.24	11.1	31.05	262	97	Α	٧
													٧
													٧

SPORTON INTERNATIONAL INC. Page Number : B5 of B14

WIFI Over Limit Antenna Table Peak Pol. Note **Frequency** Level Read Cable Preamp Ant Ant. Limit Line Level **Factor** Loss Factor Pos Pos Avg. (dBµV/m) (deg) (P/A) (H/V) (MHz) (dB) (dBµV/m) (dB_µV) (dB/m) (dB) (dB) (cm) 5627.2 50.73 -17.4768.2 38.74 32.07 10.92 100 83 Η 31 51.58 Ρ 5697.4 -51.7 103.28 39.42 32.17 11.02 31.03 100 83 Н 5703.6 53.18 -53.03 106.21 40.97 32.19 11.05 31.03 100 83 Ρ Н Ρ 5725 53.81 -68.39 122.2 41.57 32.21 11.07 31.04 100 83 Н 5785 105.05 92.68 32.29 31.07 100 Ρ _ 11.15 83 Η * 5785 96.76 84.39 32.29 31.07 100 83 Α Н 11.15 5854.6 52.82 -58.89 111.71 40.2 32.41 11.3 31.09 100 83 Р Н 5874.4 51.92 -53.45 105.37 39.26 32.43 11.33 31.1 100 83 Ρ Н 5882 51.78 -48.22 100 39.12 32.43 11.33 31.1 100 83 Н Р Н 5937.8 52.28 -15.92 68.2 39.51 32.5 11.41 31.14 100 83 Н 802.11n Н HT20 CH 157 32.09 31.01 Ρ V 5647 52.36 -15.84 68.2 40.34 10.94 289 98 5785MHz Ρ ٧ 5697.6 52.9 -50.53 103.43 40.74 32.17 11.02 31.03 289 98 5705 53.64 -52.96 106.6 41.44 32.19 11.05 31.04 289 98 Ρ ٧ 5723.6 53.29 -65.72 119.01 41.05 32.21 11.07 31.04 289 98 Ρ ٧ 32.29 Ρ ٧ 5785 109.19 96.82 31.07 289 11.15 98 * 100.83 32.29 31.07 289 ٧ 5785 -88.46 11.15 98 Α 5851.8 55 -63.1 118.1 42.44 32.38 11.27 31.09 289 98 Ρ ٧ Ρ ٧ 5864.6 54.44 -53.67 108.11 41.83 32.41 11.3 31.1 289 98 Ρ ٧ 5879.6 54.18 -47.6 101.78 41.52 32.43 11.33 31.1 289 98 32.5 289 Р ٧ 5930.2 52.17 -16.03 68.2 39.39 11.41 31.13 98 V ٧

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978

			Limit									
	(MHz)	(dBµV/m)	(dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)	(H/V
*	5825	104.79	-	-	92.27	32.36	11.24	31.08	100	79	Р	Н
*	5825	96.52	-	-	84	32.36	11.24	31.08	100	79	Α	Н
	5851.6	53.49	-65.06	118.55	40.93	32.38	11.27	31.09	100	79	Р	Н
	5863.4	53.52	-54.93	108.45	40.91	32.41	11.3	31.1	100	79	Р	Н
	5902.6	52.83	-31.91	84.74	40.14	32.46	11.35	31.12	100	79	Р	Н
	5937	51.64	-16.56	68.2	38.87	32.5	11.41	31.14	100	79	Р	Н
												Н
												Н
*	5825	109.33	-	-	96.81	32.36	11.24	31.08	268	99	Р	V
*	5825	100.87	-	-	88.35	32.36	11.24	31.08	268	99	Α	V
	5853	58.44	-56.92	115.36	45.88	32.38	11.27	31.09	268	99	Р	V
	5857.6	57.26	-52.81	110.07	44.64	32.41	11.3	31.09	268	99	Р	V
	5889.4	56.23	-38.28	94.51	43.54	32.46	11.35	31.12	268	99	Р	V
	5925	53.85	-14.35	68.2	41.07	32.5	11.41	31.13	268	99	Р	V
												V
												V
	*	* 5825 5851.6 5863.4 5902.6 5937 * 5825 * 5825 * 5853 5857.6 5889.4	* 5825 96.52 5851.6 53.49 5863.4 53.52 5902.6 52.83 5937 51.64 * 5825 109.33 * 5825 100.87 5853 58.44 5857.6 57.26 5889.4 56.23	* 5825 96.52 - 5851.6 53.49 -65.06 5863.4 53.52 -54.93 5902.6 52.83 -31.91 5937 51.64 -16.56 * 5825 109.33 - * 5825 100.87 - 5853 58.44 -56.92 5857.6 57.26 -52.81 5889.4 56.23 -38.28	* 5825 96.52 5851.6 53.49 -65.06 118.55 5863.4 53.52 -54.93 108.45 5902.6 52.83 -31.91 84.74 5937 51.64 -16.56 68.2 * 5825 100.87 5853 58.44 -56.92 115.36 5857.6 57.26 -52.81 110.07 5889.4 56.23 -38.28 94.51	* 5825 96.52 - 84 5851.6 53.49 -65.06 118.55 40.93 5863.4 53.52 -54.93 108.45 40.91 5902.6 52.83 -31.91 84.74 40.14 5937 51.64 -16.56 68.2 38.87 * 5825 100.87 - 96.81 * 5825 5853 58.44 -56.92 115.36 45.88 5857.6 57.26 -52.81 110.07 44.64 5889.4 56.23 -38.28 94.51 43.54	* 5825 96.52 - - 84 32.36 5851.6 53.49 -65.06 118.55 40.93 32.38 5863.4 53.52 -54.93 108.45 40.91 32.41 5902.6 52.83 -31.91 84.74 40.14 32.46 5937 51.64 -16.56 68.2 38.87 32.5 * 5825 100.87 - - 96.81 32.36 * 5853 58.44 -56.92 115.36 45.88 32.38 5857.6 57.26 -52.81 110.07 44.64 32.41 5889.4 56.23 -38.28 94.51 43.54 32.46	* 5825 96.52 - - 84 32.36 11.24 5851.6 53.49 -65.06 118.55 40.93 32.38 11.27 5863.4 53.52 -54.93 108.45 40.91 32.41 11.3 5902.6 52.83 -31.91 84.74 40.14 32.46 11.35 5937 51.64 -16.56 68.2 38.87 32.5 11.41 * 5825 109.33 - - 96.81 32.36 11.24 * 5825 100.87 - - 88.35 32.36 11.24 5853 58.44 -56.92 115.36 45.88 32.38 11.27 5857.6 57.26 -52.81 110.07 44.64 32.41 11.3 5889.4 56.23 -38.28 94.51 43.54 32.46 11.35	* 5825 104.79 - - 92.27 32.36 11.24 31.08 * 5825 96.52 - - 84 32.36 11.24 31.08 5851.6 53.49 -65.06 118.55 40.93 32.38 11.27 31.09 5863.4 53.52 -54.93 108.45 40.91 32.41 11.3 31.1 5902.6 52.83 -31.91 84.74 40.14 32.46 11.35 31.12 5937 51.64 -16.56 68.2 38.87 32.5 11.41 31.14 * 5825 109.33 - - 96.81 32.36 11.24 31.08 * 5825 100.87 - - 88.35 32.36 11.24 31.08 * 5853 58.44 -56.92 115.36 45.88 32.38 11.27 31.09 5857.6 57.26 -52.81 110.07 44.64 32.41 11.3 31.12 5889.4 56.23 -38.28 94.51 43.	* 5825 96.52 - - 84 32.36 11.24 31.08 100 5851.6 53.49 -65.06 118.55 40.93 32.38 11.27 31.09 100 5863.4 53.52 -54.93 108.45 40.91 32.41 11.3 31.1 100 5902.6 52.83 -31.91 84.74 40.14 32.46 11.35 31.12 100 5937 51.64 -16.56 68.2 38.87 32.5 11.41 31.14 100 * 5825 109.33 - - 96.81 32.36 11.24 31.08 268 * 5825 100.87 - - 88.35 32.36 11.24 31.08 268 5853 58.44 -56.92 115.36 45.88 32.38 11.27 31.09 268 5857.6 57.26 -52.81 110.07 44.64 32.41 11.35 31.12 268 5889.4 56.23 -38.28 94.51 43.54 32.46 11	* 5825 104.73 - - 84 32.36 11.24 31.08 100 79 5851.6 53.49 -65.06 118.55 40.93 32.38 11.27 31.09 100 79 5863.4 53.52 -54.93 108.45 40.91 32.41 11.3 31.1 100 79 5902.6 52.83 -31.91 84.74 40.14 32.46 11.35 31.12 100 79 5937 51.64 -16.56 68.2 38.87 32.5 11.41 31.14 100 79 * 5825 109.33 - - 96.81 32.36 11.24 31.08 268 99 * 5825 100.87 - - 88.35 32.36 11.24 31.08 268 99 5853 58.44 -56.92 115.36 45.88 32.38 11.27 31.09 268 99 5857.6 57.26 -52.81 110.07 44.64 32.41 11.35 31.12 268 99 </td <td>* 5825 96.52 84 32.36 11.24 31.08 100 79 A 5851.6 53.49 -65.06 118.55 40.93 32.38 11.27 31.09 100 79 P 5863.4 53.52 -54.93 108.45 40.91 32.41 11.3 31.1 100 79 P 5902.6 52.83 -31.91 84.74 40.14 32.46 11.35 31.12 100 79 P 5937 51.64 -16.56 68.2 38.87 32.5 11.41 31.14 100 79 P * 5825 109.33 96.81 32.36 11.24 31.08 268 99 P * 5825 100.87 - 88.35 32.36 11.24 31.08 268 99 A 5853 58.44 -56.92 115.36 45.88 32.38 11.27 31.09 268 99 P 5857.6 57.26 -52.81 110.07 44.64 32.41 11.3 31.09 268 99 P 5889.4 56.23 -38.28 94.51 43.54 32.46 11.35 31.12 268 99 P</td>	* 5825 96.52 84 32.36 11.24 31.08 100 79 A 5851.6 53.49 -65.06 118.55 40.93 32.38 11.27 31.09 100 79 P 5863.4 53.52 -54.93 108.45 40.91 32.41 11.3 31.1 100 79 P 5902.6 52.83 -31.91 84.74 40.14 32.46 11.35 31.12 100 79 P 5937 51.64 -16.56 68.2 38.87 32.5 11.41 31.14 100 79 P * 5825 109.33 96.81 32.36 11.24 31.08 268 99 P * 5825 100.87 - 88.35 32.36 11.24 31.08 268 99 A 5853 58.44 -56.92 115.36 45.88 32.38 11.27 31.09 268 99 P 5857.6 57.26 -52.81 110.07 44.64 32.41 11.3 31.09 268 99 P 5889.4 56.23 -38.28 94.51 43.54 32.46 11.35 31.12 268 99 P

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978

Band 4 5725~5850MHz

WIFI 802.11n HT20 (Harmonic @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/\
		11490	49.8	-24.2	74	50.6	40.3	15.2	56.3	100	0	Р	Н
		17235	46.62	-21.58	68.2	41.74	41.09	19.52	55.73	100	0	Р	Н
802.11n													Н
HT20													Н
CH 149		11490	57.32	-16.68	74	58.12	40.3	15.2	56.3	100	62	Р	V
5745MHz		11490	46.86	-7.14	54	47.66	40.3	15.2	56.3	100	62	Α	V
		17235	50	-18.2	68.2	45.12	41.09	19.52	55.73	100	0	Р	V
													V
		11570	52.68	-21.32	74	53.63	40.12	15.22	56.29	101	302	Р	Н
		11570	42.63	-11.37	54	43.58	40.12	15.22	56.29	101	302	Α	Н
802.11n		17355	46.68	-21.52	68.2	41.42	41.53	19.62	55.89	100	0	Р	Н
HT20													Н
CH 157		11570	55.54	-18.46	74	56.49	40.12	15.22	56.29	101	62	Р	V
5785MHz		11570	45.35	-8.65	54	46.3	40.12	15.22	56.29	101	62	Α	٧
		17355	50.15	-18.05	68.2	44.89	41.53	19.62	55.89	100	0	Р	V
													V
		11650	48.62	-25.38	74	49.72	39.94	15.23	56.27	100	0	Р	Н
		17475	46.86	-21.34	68.2	41.23	41.97	19.71	56.05	100	0	Р	Н
802.11n													Н
HT20													Н
CH 165		11650	54.37	-19.63	74	55.47	39.94	15.23	56.27	102	85	Р	V
5825MHz		11650	43.83	-10.17	54	44.93	39.94	15.23	56.27	102	85	Α	V
		17475	47.92	-20.28	68.2	42.29	41.97	19.71	56.05	100	0	Р	V
													V

Remark

- . No other spurious found.
- 2. All results are PASS against Peak and Average limit line.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 Page Number

: B8 of B14

Band 4 5725~5850MHz

WIFI 802.11n HT40 (Band Edge @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	` '	(dBµV/m)	(dB _µ V)	(dB/m)	(dB)	(dB)	(cm)	(deg)		
		5635	51.47	-16.73	68.2	39.45	32.09	10.94	31.01	100	82	Р	Н
		5699	54.86	-49.6	104.46	42.7	32.17	11.02	31.03	100	82	Р	Н
		5720	68.56	-42.24	110.8	56.32	32.21	11.07	31.04	100	82	Р	Н
		5720.4	69.69	-42.02	111.71	57.45	32.21	11.07	31.04	100	82	Р	Н
	*	5755	102.44	-	-	90.1	32.26	11.13	31.05	100	82	Р	Н
	*	5755	94.32	-	-	81.98	32.26	11.13	31.05	100	82	Α	Н
		5854.2	51.76	-60.86	112.62	39.14	32.41	11.3	31.09	100	82	Р	Н
		5857.6	52.48	-57.59	110.07	39.86	32.41	11.3	31.09	100	82	Р	Н
		5884.2	51.96	-46.41	98.37	39.32	32.43	11.33	31.12	100	82	Р	Н
		5931.4	50.86	-17.34	68.2	38.08	32.5	11.41	31.13	100	82	Р	Η
802.11n													Н
HT40													Н
CH 151		5605.6	52.91	-15.29	68.2	40.98	32.04	10.89	31	289	99	Р	V
5755MHz		5699.2	55.03	-49.58	104.61	42.87	32.17	11.02	31.03	289	99	Р	٧
		5720	71.69	-39.11	110.8	59.45	32.21	11.07	31.04	289	99	Р	٧
		5720.4	73.83	-37.88	111.71	61.59	32.21	11.07	31.04	289	99	Р	٧
	*	5755	105.81	-	-	93.47	32.26	11.13	31.05	289	99	Р	V
	*	5755	97.42	-	-	85.08	32.26	11.13	31.05	289	99	Α	V
		5854.4	51.65	-60.52	112.17	39.03	32.41	11.3	31.09	289	99	Р	٧
		5857.2	53.31	-56.87	110.18	40.69	32.41	11.3	31.09	289	99	Р	V
		5875.8	54.37	-50.24	104.61	41.71	32.43	11.33	31.1	289	99	Р	V
		5932.8	52.79	-15.41	68.2	40.01	32.5	11.41	31.13	289	99	Р	٧
													V
													V
													<u> </u>

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant. 1		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)	(H/V)
		5649.4	51.84	-16.36	68.2	39.82	32.09	10.94	31.01	100	81	Р	Н
		5700	52.66	-52.54	105.2	40.5	32.17	11.02	31.03	100	81	Р	Н
		5700	52.66	-52.54	105.2	40.5	32.17	11.02	31.03	100	81	Р	Н
		5723.4	51.52	-67.03	118.55	39.28	32.21	11.07	31.04	100	81	Р	Н
	*	5795	102.67	-	-	90.25	32.31	11.18	31.07	100	81	Р	Н
	*	5795	94.25	-	-	81.83	32.31	11.18	31.07	100	81	Α	Н
		5853.8	56.14	-57.4	113.54	43.52	32.41	11.3	31.09	100	81	Р	Н
		5856.4	52.92	-57.49	110.41	40.3	32.41	11.3	31.09	100	81	Р	Н
		5878.4	52.5	-50.17	102.67	39.84	32.43	11.33	31.1	100	81	Р	Н
		5938.6	53.32	-14.88	68.2	40.49	32.53	11.44	31.14	100	81	Р	Н
802.11n													Н
HT40													Н
CH 159		5642.2	52.41	-15.79	68.2	40.39	32.09	10.94	31.01	283	99	Р	V
5795MHz		5698.2	52.2	-51.67	103.87	40.04	32.17	11.02	31.03	283	99	Р	V
		5712.2	53.78	-54.84	108.62	41.58	32.19	11.05	31.04	283	99	Р	V
		5724.8	54.91	-66.83	121.74	42.67	32.21	11.07	31.04	283	99	Р	V
	*	5795	106.56	-	-	94.14	32.31	11.18	31.07	283	99	Р	V
	*	5795	97.85	-	-	85.43	32.31	11.18	31.07	283	99	Α	V
		5850	62.52	-59.68	122.2	49.96	32.38	11.27	31.09	283	99	Р	V
		5855.2	58.28	-52.46	110.74	45.66	32.41	11.3	31.09	283	99	Р	V
		5912.6	53.56	-23.79	77.35	40.83	32.48	11.38	31.13	283	99	Р	V
		5925.8	53.61	-14.59	68.2	40.83	32.5	11.41	31.13	283	99	Р	V
													V
													V

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978

Band 4 5725~5850MHz

WIFI 802.11n HT40 (Harmonic @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol
Ant. 1		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)		Avg. (P/A)	(H/V
		11510	48.64	-25.36	74	49.43	40.3	15.21	56.3	100	0	Р	Н
		17265	45.32	-22.88	68.2	40.33	41.21	19.55	55.77	100	0	Р	Н
802.11n													Н
HT40													Н
CH 151		11510	49.94	-24.06	74	50.73	40.3	15.21	56.3	100	0	Р	V
5755MHz		17265	45.43	-22.77	68.2	40.44	41.21	19.55	55.77	100	0	Р	V
													V
													V
		11590	45.25	-28.75	74	46.23	40.08	15.22	56.28	100	0	Р	Н
		17385	45.47	-22.73	68.2	40.11	41.66	19.64	55.94	100	0	Р	Н
802.11n													Н
HT40													Н
CH 159		11590	47.5	-26.5	74	48.48	40.08	15.22	56.28	100	0	Р	V
5795MHz		17385	46.2	-22	68.2	40.84	41.66	19.64	55.94	100	0	Р	V
													V
													V

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 Page Number

: B11 of B14

Band 4 5725~5850MHz

Emission below 1GHz

5GHz WIFI 802.11n HT20 (LF @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)		
		52.14	26.99	-13.01	40	43.91	14.2	0.8	31.92	100	0	Р	Н
		93.45	26.82	-16.68	43.5	42.5	15.19	1.02	31.89	-	-	Р	Н
		273.27	25.62	-20.38	46	36.47	19.16	1.76	31.77	-	-	Р	Н
		440.7	28.66	-17.34	46	35.35	22.77	2.34	31.8	-	-	Р	Н
		772.5	29.89	-16.11	46	31.07	27.58	3.19	31.95	-	-	Р	Н
		949.6	32.18	-13.82	46	29.76	30.1	3.44	31.12	-	-	Р	Н
													Н
													Н
													Н
													Н
5GHz													Н
802.11n													Н
HT20		42.96	32.45	-7.55	40	45.21	18.52	0.65	31.93	100	25	Р	V
LF		117.48	27.36	-16.14	43.5	40.71	17.39	1.14	31.88	-	-	Р	٧
		217.92	25.41	-20.59	46	39.61	16.02	1.58	31.8	-	-	Р	V
		516.3	24.92	-21.08	46	30.15	24.09	2.55	31.87	-	-	Р	V
		749.4	29.4	-16.6	46	30.86	27.4	3.12	31.98	-	-	Р	V
		955.9	32.24	-13.76	46	29.72	30.13	3.46	31.07	-	-	Р	V
													V
													V
													V
													٧
													V
													V

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 Page Number

: B12 of B14

Emission below 1GHz

Report No. : FR670616-01E

Note symbol

*	Fundamental Frequency which can be ignored. However, the level of any unwanted emissions shall not
	exceed the level of the fundamental frequency.
!	Test result is over limit line.
P/A	Peak or Average
H/V	Horizontal or Vertical

SPORTON INTERNATIONAL INC. Page Number : B13 of B14

A calculation example for radiated spurious emission is shown as below:

Report No.: FR670616-01E

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
802.11b		2390	55.45	-18.55	74	54.51	32.22	4.58	35.86	103	308	Р	Н
CH 01													
2412MHz		2390	43.54	-10.46	54	42.6	32.22	4.58	35.86	103	308	Α	Н

1. Level($dB\mu V/m$) =

Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) - Preamp Factor(dB)

2. Over Limit(dB) = Level(dB μ V/m) – Limit Line(dB μ V/m)

For Peak Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 54.51(dB\mu V) 35.86 (dB)$
- $= 55.45 (dB\mu V/m)$
- 2. Over Limit(dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 55.45(dB\mu V/m) 74(dB\mu V/m)$
- = -18.55(dB)

For Average Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dB μ V) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 42.6(dB\mu V) 35.86 (dB)$
- $= 43.54 (dB\mu V/m)$
- 2. Over Limit(dB)
- = Level($dB\mu V/m$) Limit Line($dB\mu V/m$)
- $=43.54(dB\mu V/m) 54(dB\mu V/m)$
- = -10.46(dB)

Both peak and average measured complies with the limit line, so test result is "PASS".

SPORTON INTERNATIONAL INC. Page Number : B14 of B14

Appendix C. Radiated Spurious Emission Plots

Tool Engineer	Alex Jheng, Bill Chang, and Wilson Wu	Temperature :	24~26°C
rest Engineer :	Alex Trieng, Bill Chang, and Wilson Wu	Relative Humidity :	47~51%

Band 4 - 5725~5850MHz WIFI 802.11a (Band Edge @ 3m)

TEL: 886-3-327-3456 FAX: 886-3-328-4978

Band 4 5725~5850MHz WIFI 802.11n HT20 (Band Edge @ 3m)

TEL: 886-3-327-3456 FAX: 886-3-328-4978

Report No. : FR670616-01E

Report No. : FR670616-01E

Band 4 5725~5850MHz WIFI 802.11n HT40 (Band Edge @ 3m)

TEL: 886-3-327-3456 FAX: 886-3-328-4978

FCC RF Test Report

TEL: 886-3-327-3456 FAX: 886-3-328-4978

Band 4 - 5725~5850MHz

WIFI 802.11a (Harmonic @ 3m)

TEL: 886-3-327-3456 FAX: 886-3-328-4978

Band 4 5725~5850MHz WIFI 802.11n HT20 (Harmonic @ 3m)

TEL: 886-3-327-3456 FAX: 886-3-328-4978

Band 4 5725~5850MHz WIFI 802.11n HT40 (Harmonic @ 3m)

TEL: 886-3-327-3456 FAX: 886-3-328-4978

Band 4 5725~5850MHz

Emission below 1GHz

5GHz WIFI 802.11n HT20 (LF)

TEL: 886-3-327-3456 FAX: 886-3-328-4978

Report No.: FR670616-01E

Appendix D. Duty Cycle Plots

Band	Duty Cycle(%)	T(us)	1/T(kHz)	VBW Setting
802.11a	100	-	-	10Hz
5GHz 802.11n HT20	100	-	-	10Hz
5GHz 802.11n HT40	100	-	-	10Hz

802.11a

Date: 24.OCT.2016 23:28:18

Report No. : FR670616-01E

Date: 24.OCT.2016 23:30:08

802.11n HT40

Date: 24.OCT.2016 23:34:15