

TEST REPORT

of the accredited test laboratory

TÜV Nr.:M/FG-15/129

Applicant:

AKG Acoustics GmbH

Laxenburger Straße 254

A - 1230 Wien

Tested Product:

Body-worn wireless microphone transmitter

FCC-ID:

V3TDPT800

IC-ID:

N/A

Manufacturer:

AKG Acoustics GmbH Laxenburger Straße 254

A - 1230 Wien

Output power:

50,58mW erp

power supply:

3.0 VDC

Frequency range:

548,1 - 697,9 MHz

Channel separation:

25 kHz

ITU designator:

174KF3E

Declared channel bandwidth: 200 kHz

Standard:

FCC: 47 CFR Part 74 (October 1, 2014 edition)

RSS-123 Issue 2, February, 2011

TÜV AUSTRIA SERVICES GMBH

Test laboratory for EMC

Supervisor of EMC-laboratory:

Ing. Wilhelm Seier

30.01.2015

checked by:

Ing. Michael Emminger

Copy Nbr.:

A publication of this test report is only permitted literally.

Copying or reproduction of partial sections needs a written permission of TÜV AUSTRIA SERVICES GMBH.

The results of this test report only refer to the provided equipment.

30.01.2015

TÜV AUSTRIA SERVICES GMBH

Geschäftsstelle: Deutschstraße 10 1230 Wien Telefon: +43 1 61091-0 Fax: +43 1 61091-6505 emv@tuv.at

Geschäftsbereich: Medizintechnik/ Nachrichtentechnik/ EMV

Fachbereich: Prüfstelle für Nachrichtentechnik / EMV

TÜV ®

Akkreditiert als: Prüfstelle, Inspektionsstelle, Zertifizierungsstelle, Kalibrierstelle, Erst- und Kesselprüfstelle, Verifizierungsstelle

Notified Body 0408 IC 2932K-1

Vorsitzender des Aufsichtsrats: KR Dipl.-Ing. Johann MARIHART

Geschäftsführung: Dipl.-Ing. Dr. Stefan HÁAS Mag. Christoph WENNINGER

Sitz:

Krugerstraße 16 1015 Wien/Österreich

weitere Geschäftsstellen: Dornbirn, Graz, Innsbruck, Klagenfurt, Linz, Salzburg, St. Pölten Wels, Wien, Brixen (I) und Filderstadt (D)

Firmenbuchgericht/ -nummer: Wien / FN 288476 f

Bankverbindungen: UC BA 52949 001 066 IBAN AT131200052949001066 **BIC BKAUATWW** RZB 001-04.093.282 IBAN AT153100000104093282 **BIC RZBAATWW**

UID ATU63240488 DVR 3002476

Relative humidity: 24%

LIST OF MEASUREMENTS

The complete list of measurements called for in 47 CFR 74 and RSS-123 is given below.

SUBCLAUSE	PARAMETER TO BE MEASURED	PAGE
	Intentional Radiators	
	Test object data	3
74.861(e)(1) (6.2)	RF Power Output (erp)	4
74.861(e)(4) (7)	Frequency tolerance	5-6
74.861(e)(5) (6.3)	Operating bandwidth	7-18
74.861(e)(6) (6.3)	Emission mask	19-55
74.861(e)(6)(iii) (6.3)	Spurious emissions	56-58

Relative humidity: 24%

TEST OBJECT DATA

General EUT Description

This digital audio transmitter will be used as a body-worn wireless microphone. It has no antenna connector, so all technical data were measured radiated.

- 2.1033 (c) Technical description
- 2.1033 (4) Type of emission: 174KF3E Channel spacing selectable 25 kHz.
- 2.1033 (5) Frequency range selectable: 548,1 607,9 and 614,1 697,9 MHz
- 2.1033 (6) Power range and Controls: Selectable by software in 4 steps: 10, 20, 30 and 50 mW.
- 2.1033 (7) Maximum output power rating: 50mW erp.
- 2.1033 (8) DC Voltage and Current: 3,0 V nominal 2,3V minimum (2 AA Cells) maximum current consumption: 190 mA
- RSS-135 This standard does not apply to:
 - 1.1.(a) a receiver that scans radio frequencies for the purpose of enabling its associated transmitter to avoid transmitting in an occupied frequency but which does not have the capability of decoding the message (e.g. converting it to audio voice) contained in the radio signal

Tests were performed Jan 21st 2015.

Relative humidity: 24%

Power Output

§ 74.261(e)(1) (6.2)

Radiated Measurement

Rated output power: 50 mW

Test conditions		Transmitter power (mW) (erp)			
		548,1 MHz	623,0 MHz	697,9 MHz	
T _{nom} (24)°C	V _{nom} (3)V	25,82	50,58	32,96	
Maximum deviation from rated output power under normal test conditions (dB)		-2,87	0,05	-1,81	
Measurement uncertainty			<u>+</u> 0,75 dB		

LIMIT

SUBCLAUSE 74.261 (e)(1)(ii) (Table 1 of RSS-123)

Under normal test conditons	250 mW

Test Equipment used: NT-100; NT-110; NT-111; NT-112; NT-125; NT-126; NT-150; NT-207; NT-500; NT-520; NT-550

Relative humidity: 24%

Frequency tolerance

§ 74.261 (e)(4) (7)

Frequency error vs. Supply voltage

DC-Voltage	Frequency Error kHz			Frequency Error ppm		
	548,1 MHz	623,0 MHz	697,9 MHz	548,1 MHz	623,0 MHz	697,9 MHz
3 V	0,0	-1,0	-1,0	0,00	-1,61	-1,43
2,3 V	1,0	-1,0	-1,0	1,82	-1,61	-1,43

Frequency error vs. Temperature

Temperature °C	Frequency Error kHz			Frequency Error ppm		
	548,1 MHz	623,0 MHz	697,9 MHz	548,1 MHz	623,0 MHz	697,9 MHz
-30	0,0	0,0	-2,0	0,00	0,00	-2,87
-20	-0,5	-1,5	-1,5	-0,91	-2,41	-2,15
-10	0,0	-0,5	-0,5	0,00	-0,80	-0,72
<u>+</u> 0	-0,5	-1,0	-1,0	-0,91	-1,61	-1,43
+10	0,0	-0,5	-0,5	0,00	-0,80	-0,72
+20	0,0	-1,0	-1,0	0,00	-1,61	-1,43
+30	0,0	0,0	-0,5	0,00	0,00	-0,72
+40	1,5	0,0	-1,0	2,74	0,00	-1,43
+50	2,0	0,0	-1,0	3,65	0,00	-1,43

LIMIT

SUBCLAUSE 74.261 (e)(4) (Table 1 of RSS-123)

The frequency tolerance of the transmitter shall be 0.005 percent. = 50 ppm

Relative humidity: 24%

Frequency tolerance

§ 74.261 (e)(4) (7)

Test Equipment used: NT-203/1, M-1200

Relative humidity: 24%

OPERATING BANDWIDTH

§ 74.261 (e)(5) (6.3)

The operating Bandwidth was measured at an acoustic input level 16 dB higher than that required for half of the maximum linear input level.

Measurement with audio frequency 1 kHz @ 548,1 MHz

Measured bandwidth is: 166,3 kHz

LIMIT SUBCLAUSE 74.261 (e)(5) (Table 1 RSS-123)

The operating bandwidth shall not exceed 200 kHz.

Relative humidity: 24%

TUV AUSTRIA

OPERATING BANDWIDTH

§ 74.261 (e)(5) (6.3)

The operating Bandwidth was measured at an acoustic input level 16 dB higher than that required for half of the maximum linear input level.

Measurement with audio frequency 7,5 kHz @ 548,1 MHz

Date:

21.JAN.2015 13:58:50

Measured bandwidth is: 168,3 kHz

LIMIT

SUBCLAUSE 74.261 (e)(5) (Table 1 RSS-123)

The operating bandwidth shall not exceed 200 kHz.

OPERATING BANDWIDTH

Relative humidity:

24%

§ 74.261 (e)(5) (6.3)

The operating Bandwidth was measured at an acoustic input level 16 dB higher than that required for half of the maximum linear input level.

Measurement with audio frequency 15 kHz @ 548,1 MHz

Date:

21.JAN.2015 13:59:09

Measured bandwidth is: 162,3 kHz

LIMIT

SUBCLAUSE 74.261 (e)(5) (Table 1 RSS-123)

The operating bandwidth shall not exceed 200 kHz.

Relative humidity: 24%

OPERATING BANDWIDTH

§ 74.261 (e)(5) (6.3)

The operating Bandwidth was measured at an acoustic input level 16 dB higher than that required for half of the maximum linear input level.

Measurement with audio frequency 20 kHz @ 548,1 MHz

Date:

21.JAN.2015 13:59:23

Measured bandwidth is: 166,3 kHz

LIMIT

SUBCLAUSE 74.261 (e)(5) (Table 1 RSS-123)

The operating bandwidth shall not exceed 200 kHz.

Relative humidity: 24%

TUV AUSTRIA

OPERATING BANDWIDTH

§ 74.261 (e)(5) (6.3)

The operating Bandwidth was measured at an acoustic input level 16 dB higher than that required for half of the maximum linear input level.

Measurement with audio frequency 1 kHz @ 623,0 MHz

Date: 21.JAN.2015 13:51:08

Measured bandwidth is: 162,3 kHz

LIMIT SUBCLAUSE 74.261 (e)(5) (Table 1 RSS-123)

The operating bandwidth shall not exceed 200 kHz.

Relative humidity: 24%

OPERATING BANDWIDTH

§ 74.261 (e)(5) (6.3)

The operating Bandwidth was measured at an acoustic input level 16 dB higher than that required for half of the maximum linear input level.

Measurement with audio frequency 7,5 kHz @ 623,0 MHz

Date:

21.JAN.2015 13:45:16

Measured bandwidth is: 162,3 kHz

LIMIT

SUBCLAUSE 74.261 (e)(5) (Table 1 RSS-123)

The operating bandwidth shall not exceed 200 kHz.

Relative humidity: 24%

OPERATING BANDWIDTH

§ 74.261 (e)(5) (6.3)

The operating Bandwidth was measured at an acoustic input level 16 dB higher than that required for half of the maximum linear input level.

Measurement with audio frequency 15 kHz @ 623,0 MHz

Date:

21.JAN.2015 13:46:32

Measured bandwidth is: 162,3 kHz

LIMIT SUBCLAUSE 74.261 (e)(5) (Table 1 RSS-123)

The operating bandwidth shall not exceed 200 kHz.

Relative humidity: 24%

OPERATING BANDWIDTH

§ 74.261 (e)(5) (6.3)

The operating Bandwidth was measured at an acoustic input level 16 dB higher than that required for half of the maximum linear input level.

Measurement with audio frequency 20 kHz @ 623,0 MHz

Date: 21.JAN.2015 13:49:00

Measured bandwidth is: 162,3 kHz

LIMIT SUBCLAUSE 74.261 (e)(5) (Table 1 RSS-123)

The operating bandwidth shall not exceed 200 kHz.

Relative humidity: 24%

OPERATING BANDWIDTH

§ 74.261 (e)(5) (6.3)

The operating Bandwidth was measured at an acoustic input level 16 dB higher than that required for half of the maximum linear input level.

Measurement with audio frequency 1 kHz @ 697,9 MHz

Date:

21.JAN.2015 14:35:02

Measured bandwidth is: 174,3 kHz

LIMIT

SUBCLAUSE 74.261 (e)(5) (Table 1 RSS-123)

The operating bandwidth shall not exceed 200 kHz.

OPERATING BANDWIDTH

Relative humidity: 24%

§ 74.261 (e)(5)

(6.3)

The operating Bandwidth was measured at an acoustic input level 16 dB higher than that required for half of the maximum linear input level.

Measurement with audio frequency 7,5 kHz @ 697,9 MHz

Date:

21.JAN.2015 14:35:24

Measured bandwidth is: 172,3 kHz

SUBCLAUSE 74.261 (e)(5) (Table 1 RSS-123) LIMIT

The operating bandwidth shall not exceed 200 kHz.

Relative humidity: 24%

§ 74.261 (e)(5) (6.3)

OPERATING BANDWIDTH

The operating Bandwidth was measured at an acoustic input level 16 dB higher than that required for half of the maximum linear input level.

Measurement with audio frequency 15 kHz @ 697,9 MHz

Date:

21.JAN.2015 14:35:42

Measured bandwidth is: 172,3 kHz

LIMIT

SUBCLAUSE 74.261 (e)(5) (Table 1 RSS-123)

The operating bandwidth shall not exceed 200 kHz.

Relative humidity: 24%

OPERATING BANDWIDTH

§ 74.261 (e)(5) (6.3)

The operating Bandwidth was measured at an acoustic input level 16 dB higher than that required for half of the maximum linear input level.

Measurement with audio frequency 20 kHz @ 697,9 MHz

Date:

21.JAN.2015 14:35:58

Measured bandwidth is: 172,3 kHz

LIMIT SUBCLAUSE 74.261 (e)(5) (Table 1 RSS-123)

The operating bandwidth shall not exceed 200 kHz.

Relative humidity: 24%

Emissions Mask

§ 74.261 (e)(6) (6.3)

LIMIT

74.261(e)(6)

The mean power of emissions shall be attenuated below the mean output power of the transmitter in accordance with the following schedule:

- (i) On any frequency removed from the operating frequency by more than 50 percent up to and including 100 percent of the authorized bandwidth: at least 25dB;
- (ii) On any frequency removed from the operating frequency by more than 100 percent up to and including 250 percent of the authorized bandwidth: at least 35dB;
- (iii) On any frequency removed from the operating frequency by more than 250 percent of the authorized bandwidth: at least 43+10log₁₀ (mean output power in watts) dB.

In deviation to above (iii) RSS-123 6.3.1 (3) requires: at least 55 + 10 Log10(TP) dB, in any 30 kHz band removed from the centre of the authorized bandwidth by more than 250% of the authorized bandwidth. The search for unwanted emissions shall be from the lowest frequency internally generated or used in the device (local oscillator, intermediate or carrier frequency), or 500 kHz below its lowest assignable frequency, whichever is the lowest frequency, to the 5th harmonic of the

highest frequency generated or used, without exceeding 23 GHz.

All plots were normalised so that 0 dB is equal to the mean output power measured in a bandwidth equal to 5 times the nominal bandwidth of the emission.

Relative humidity: 24%

Emissions Mask

§ 74.261 (e)(6) (6.3)

Operating mode:

Frequency: 548,1 MHz

Modulation: acoustic input level to achieve half of maximum linear input level, audio frequency 1 kHz

DC Voltage: 3 V

Date:

21.JAN.2015 13:59:45

Relative humidity: 24%

Emissions Mask

§ 74.261 (e)(6) (6.3)

Operating mode:

Frequency: 548,1 MHz

Modulation: acoustic input level to achieve half of maximum linear input level, audio frequency 1 kHz

DC Voltage: 2,3 V

Relative humidity: 24%

Emissions Mask

§ 74.261 (e)(6) (6.3)

Operating mode:

Frequency: 548,1 MHz

Modulation: acoustic input level equal to the maximum linear input level, audio frequency 1 kHz

DC Voltage: 3 V

Date:

21.JAN.2015 14:00:44

Relative humidity: 24%

TUV

Emissions Mask

§ 74.261 (e)(6) (6.3)

Operating mode:

Frequency: 548,1 MHz

Modulation: acoustic input level equal to the maximum linear input level, audio frequency 1 kHz

DC Voltage: 2,3 V

Date:

21.JAN.2015 14:00:22

Relative humidity: 24%

Emissions Mask

§ 74.261 (e)(6) (6.3)

Operating mode:

Frequency: 548,1 MHz

Modulation: acoustic input level to achieve half of maximum linear input level, audio frequency 15 kHz

DC Voltage: 3 V

Date:

21.JAN.2015 14:01:52

Relative humidity: 24%

Emissions Mask

§ 74.261 (e)(6) (6.3)

Operating mode:

Frequency: 548,1 MHz

Modulation: acoustic input level to achieve half of maximum linear input level, audio frequency 15 kHz

DC Voltage: 2,3 V

Date:

21.JAN.2015 14:01:34

Relative humidity: 24%

TUV AUSTRIA

Emissions Mask

§ 74.261 (e)(6) (6.3)

Operating mode:

Frequency: 548,1 MHz

Modulation: acoustic input level equal to the maximum linear input level, audio frequency 15 kHz

DC Voltage: 3 V

Date:

21.JAN.2015 14:01:03

Relative humidity: 24%

Emissions Mask

§ 74.261 (e)(6) (6.3)

Operating mode:

Frequency: 548,1 MHz

Modulation: acoustic input level equal to the maximum linear input level, audio frequency 15 kHz

DC Voltage: 2,3 V

Date:

21.JAN.2015 14:01:18

Relative humidity: 24%

Emissions Mask

§ 74.261 (e)(6) (6.3)

Operating mode:

Frequency: 548,1 MHz

Modulation: acoustic input level to achieve half of maximum linear input level, audio frequency 20 kHz

DC Voltage: 3 V

Relative humidity: 24%

TUV AUSTRIA

Emissions Mask

§ 74.261 (e)(6) (6.3)

Operating mode:

Frequency: 548,1 MHz

Modulation: acoustic input level to achieve half of maximum linear input level, audio frequency 20 kHz

DC Voltage: 2,3 V

Date:

21.JAN.2015 14:02:25

Relative humidity: 24%

Emissions Mask

§ 74.261 (e)(6) (6.3)

Operating mode:

Frequency: 548,1 MHz

Modulation: acoustic input level equal to the maximum linear input level, audio frequency 20 kHz

DC Voltage: 3 V

Relative humidity: 24%

Emissions Mask

§ 74.261 (e)(6) (6.3)

Operating mode:

Frequency: 548,1 MHz

Modulation: acoustic input level equal to the maximum linear input level, audio frequency 20 kHz

DC Voltage: 2,3 V

Date:

21.JAN.2015 14:02:39

Relative humidity: 24%

TUV

Emissions Mask

§ 74.261 (e)(6) (6.3)

Operating mode:

Frequency: 623,0 MHz

Modulation: acoustic input level to achieve half of maximum linear input level, audio frequency 1 kHz

DC Voltage: 3 V

Date:

21.JAN.2015 13:44:22

Relative humidity: 24%

TUV

Emissions Mask

§ 74.261 (e)(6) (6.3)

Operating mode:

Frequency: 623,0 MHz

Modulation: acoustic input level to achieve half of maximum linear input level, audio frequency 1 kHz

DC Voltage: 2,3 V

Date:

21.JAN.2015 13:44:51

Relative humidity: 24%

TUV

Emissions Mask

§ 74.261 (e)(6) (6.3)

Operating mode:

Frequency: 623,0 MHz

Modulation: acoustic input level equal to the maximum linear input level, audio frequency 1 kHz

DC Voltage: 3 V

Date:

21.JAN.2015 13:45:45

Relative humidity: 24%

TUV AUSTRIA

Emissions Mask

§ 74.261 (e)(6) (6.3)

Operating mode:

Frequency: 623,0 MHz

Modulation: acoustic input level equal to the maximum linear input level, audio frequency 1 kHz

DC Voltage: 2,3 V

Date:

21.JAN.2015 13:51:41

Relative humidity: 24%

Emissions Mask

§ 74.261 (e)(6) (6.3)

Operating mode:

Frequency: 623,0 MHz

Modulation: acoustic input level to achieve half of maximum linear input level, audio frequency 15 kHz

DC Voltage: 3 V

Date:

21.JAN.2015 13:47:19

Relative humidity: 24%

TUV

Emissions Mask

§ 74.261 (e)(6) (6.3)

Operating mode:

Frequency: 623,0 MHz

Modulation: acoustic input level to achieve half of maximum linear input level, audio frequency 15 kHz

DC Voltage: 2,3 V

Date:

21.JAN.2015 13:46:55

Relative humidity: 24%

TUV

Emissions Mask

§ 74.261 (e)(6) (6.3)

Operating mode:

Frequency: 623,0 MHz

Modulation: acoustic input level equal to the maximum linear input level, audio frequency 15 kHz

DC Voltage: 3 V

Date:

21.JAN.2015 13:46:09

Relative humidity: 24%

TUV

Emissions Mask

§ 74.261 (e)(6) (6.3)

Operating mode:

Frequency: 623,0 MHz

Modulation: acoustic input level equal to the maximum linear input level, audio frequency 15 kHz

DC Voltage: 2,3 V

Date:

21.JAN.2015 13:52:07

Relative humidity: 24%

TUV

Emissions Mask

§ 74.261 (e)(6) (6.3)

Operating mode:

Frequency: 623,0 MHz

Modulation: acoustic input level to achieve half of maximum linear input level, audio frequency 20 kHz

DC Voltage: 3 V

Date:

21.JAN.2015 13:47:50

Relative humidity: 24%

Emissions Mask

§ 74.261 (e)(6) (6.3)

Operating mode:

Frequency: 623,0 MHz

Modulation: acoustic input level to achieve half of maximum linear input level, audio frequency 20 kHz

DC Voltage: 2,3 V

Date:

21.JAN.2015 13:48:21

Relative humidity: 24%

TUV

Emissions Mask

§ 74.261 (e)(6) (6.3)

Operating mode:

Frequency: 623,0 MHz

Modulation: acoustic input level equal to the maximum linear input level, audio frequency 20 kHz

DC Voltage: 3 V

Date:

21.JAN.2015 13:49:30

Relative humidity: 24%

Emissions Mask

§ 74.261 (e)(6) (6.3)

Operating mode:

Frequency: 623,0 MHz

Modulation: acoustic input level equal to the maximum linear input level, audio frequency 20 kHz

DC Voltage: 2,3 V

Date:

21.JAN.2015 13:52:35

Relative humidity: 24%

Emissions Mask § 74.261 (e)(6) (6.3)

Operating mode:

Frequency: 697,9 MHz

Modulation: acoustic input level to achieve half of maximum linear input level, audio frequency 1 kHz

DC Voltage: 3 V

Date:

21.JAN.2015 14:13:19

Relative humidity:

Emissions Mask

§ 74.261 (e)(6) (6.3)

24%

Operating mode:

Frequency: 697,9 MHz

Modulation: acoustic input level to achieve half of maximum linear input level, audio frequency 1 kHz

DC Voltage: 2,3 V

Date:

21.JAN.2015 14:13:45

Relative humidity: 24%

Emissions Mask

§ 74.261 (e)(6) (6.3)

Operating mode:

Frequency: 697,9 MHz

Modulation: acoustic input level equal to the maximum linear input level, audio frequency 1 kHz

DC Voltage: 3 V

Date:

21.JAN.2015 14:14:45

Relative humidity: 24%

Emissions Mask

§ 74.261 (e)(6) (6.3)

Operating mode:

Frequency: 697,9 MHz

Modulation: acoustic input level equal to the maximum linear input level, audio frequency 1 kHz

DC Voltage: 2,3 V

Date:

21.JAN.2015 14:14:16

Relative humidity: 24%

Emissions Mask

§ 74.261 (e)(6) (6.3)

Operating mode:

Frequency: 697,9 MHz

Modulation: acoustic input level to achieve half of maximum linear input level, audio frequency 15 kHz

DC Voltage: 3 V

Date:

21.JAN.2015 14:16:07

Relative humidity: 24%

TÜV

Emissions Mask

§ 74.261 (e)(6) (6.3)

Operating mode:

Frequency: 697,9 MHz

Modulation: acoustic input level to achieve half of maximum linear input level, audio frequency 15 kHz

DC Voltage: 2,3 V

Date:

21.JAN.2015 14:15:49

Relative humidity: 24%

Emissions Mask

§ 74.261 (e)(6) (6.3)

Operating mode:

Frequency: 697,9 MHz

Modulation: acoustic input level equal to the maximum linear input level, audio frequency 15 kHz

DC Voltage: 3 V

Date:

21.JAN.2015 14:15:06

Relative humidity: 24%

Emissions Mask

§ 74.261 (e)(6) (6.3)

Operating mode:

Frequency: 697,9 MHz

Modulation: acoustic input level equal to the maximum linear input level, audio frequency 15 kHz

DC Voltage: 2,3 V

Date:

21.JAN.2015 14:15:27

Relative humidity: 24%

TUV

Emissions Mask

§ 74.261 (e)(6) (6.3)

Operating mode:

Frequency: 697,9 MHz

Modulation: acoustic input level to achieve half of maximum linear input level, audio frequency 20 kHz

DC Voltage: 3 V

Date:

21.JAN.2015 14:16:27

Relative humidity: 24%

Emissions Mask

§ 74.261 (e)(6) (6.3)

Operating mode:

Frequency: 697,9 MHz

Modulation: acoustic input level to achieve half of maximum linear input level, audio frequency 20 kHz

DC Voltage: 2,3 V

Date:

21.JAN.2015 14:16:47

Relative humidity: 24%

Emissions Mask

§ 74.261 (e)(6) (6.3)

Operating mode:

Frequency: 697,9 MHz

Modulation: acoustic input level equal to the maximum linear input level, audio frequency 20 kHz

DC Voltage: 3 V

Date:

21.JAN.2015 14:17:24

Relative humidity: 24%

Emissions Mask

§ 74.261 (e)(6) (6.3)

Operating mode:

Frequency: 697,9 MHz

Modulation: acoustic input level equal to the maximum linear input level, audio frequency 20 kHz

DC Voltage: 2,3 V

Date:

21.JAN.2015 14:17:08

Relative humidity: 24%

Field strength of spurious emissions of the transmitter

§ 74.261 (e)(6)(iii) (6.3)

Operating mode:

Frequency: 548,1 MHz

Modulation: modulated carrier

Test Equipment used: NT-100; NT-110; NT-111; NT-112; NT-125; NT-129; NT-139; NT-207; NT-337

Relative humidity: 24%

Field strength of spurious emissions of the transmitter

§ 74.261 (e)(6)(iii) (6.3)

Operating mode:

Frequency: 623,0 MHz

Modulation: modulated carrier

Test Equipment used: NT-100; NT-110; NT-111; NT-112; NT-125; NT-129; NT-139; NT-207; NT-337

Relative humidity: 24%

Field strength of spurious emissions of the transmitter

§ 74.261 (e)(6)(iii) (6.3)

Operating mode:

Frequency: 697,9 MHz

Modulation: modulated carrier

Test Equipment used: NT-100; NT-110; NT-111; NT-112; NT-125; NT-129; NT-139; NT-207; NT-337

Appendix 1 Test equipment used

Anechoic Chamber with 3m measurement distance	NT-100	Spectrumanalyzer – FSP7 9 kHz – 7 GHz	NT-200
Stripline according to ISO 11452-5	NT-108	ESCI - Test receiver 9 kHz - 7 GHz	NT-203/1
MA4000 - Antenna mast 1 - 4 m height	NT-110/1	ESI26 – Test receiver 20 Hz – 26,5 GHz	NT-207
DS - Turntable 0 - 400 ° Azimuth	NT-111/1	Digital Radio Tester CTS55	NT-208
CO3000 Controller Mast+Turntable	NT-112/1	Noise-gen., ITU-R 559-2 20 Hz – 20 kHz	NT-209
HUF-Z3 - Log. Per. Antenna 200 - 1000 MHz	NT-121	CMTA - Radiocommunication analyzer; 0,1 - 1000 MHz	NT-210
HFH-Z2 - Loop Antenna 9 kHz - 30 MHz	NT-122	3271 - Spectrum analyzer 100 Hz - 26,5 GHz	NT-211
HFH-Z6 - Rod Antenna 9 kHz - 30 MHz	NT-123	Digital Radio Tester Aeroflex 3920	NT-212/1
3121C - Dipole Antenna 28 - 1000 MHz	NT-124	Mixer M28HW 26,5 GHz - 40 GHz	NT-214
3115 - Horn Antenna 1 - 18 GHz (immunity)	NT-125	RubiSource T&M Timing reference	NT-216
3116 - Horn Antenna 18 - 40 GHz	NT-126	Radiocommunicationanalyzer SWR 1180 MD	NT-217
SAS-200/543 - Bicon: Antenna 20 MHz - 300 MHz	NT-127	Mixer M19HWD 40 GHz – 60 GHz	NT-218
AT-1080 - Log. Per. Antenna 80 - 1000 MHz	NT-128	Mixer M12HWD 60 GHz – 90 GHz	NT-219
HK-116 - bicon. Antenna 20 MHz - 300 MHz	NT-129	DSO9104 Digital scope	NT-220/1
HK-116 - bicon. Antenna 20 MHz - 300 MHz	NT-130	TPS 2014 Digital scope	NT-222
3146 - Log. Per. Antenna 200 – 1000 MHz	NT-131	Artificial Ear according to IEC 60318	NT-224
Loop Antenna H-Field	NT-132	1 kHz Sound calibrator	NT-225
Horn Antenna 500 MHz - 2900 MHz	NT-133	B10 - Harmonics and flicker analyzer	NT-232
Horn Antenna 500 MHz - 6000 MHz	NT-133/1	ARS 16/3 – Harmonics- flicker analyzer	NT-232/1
Log. per. Antenna 800 MHz - 2500 MHz	NT-134	SRM-3000 Spectrumanalyzer	NT-233
Log. per. Antenna 800 MHz - 2500 MHz	NT-135	SRM-3006 Spectrumanalyzer	NT-233/1a
BiConiLog Antenna 26 MHz – 2000 MHz	NT-137	E-field probe SRM 75 MHz – 3 GHz	NT-234
Conical Dipol Antenna PCD8250	NT-138	Field Meter NBM-500 incl. E- and H-Field probes	NT-240a-d
HF 906 - Horn Antenna 1 - 18 GHz (emission)	NT-139	Hall-Teslameter ETM-1	NT-241
HZ-1 Antenna tripod	NT-150	EFA-3 H-field- / E-field probe	NT-243
BN 1500 Antenna tripod	NT-151	Field Meter EMR-200 100 kHz – 3 GHz	NT-244
Ant. tripod for EN61000-4-3 Model TP1000A	NT-156	E-field probe 100 kHz – 3 GHz	NT-245
Power quality analyzer Fluke 1760 (complete set)	NT-160 - NT-173	H-field probe 300 kHz – 30 MHz	NT-246

Division Medical Technology/ Communication Technology/ EMC

Department: FG

Test report number: M/FG-15/129

Page: 1 of 3

Date: 30.01.2015

Checked by:

Appendix 1 (continued) Test equipment used

E-field probe 3 MHz – 18 GHz	NT-247	VCS 500-M6 Surge-Generator	NT-326	Division Medical Technology/
H-field probe 27 MHz – 1 GHz	NT-248	Oscillatory Wave Simulator incl. Coupling networks	NT- 328a+b+c	Communication Technology/ EMC
ELT-400 1 Hz – 400 kHz	NT-249	BTA-250 - RF-Amplifier 9 kHz - 220 MHz / 250 W	NT-330	Department: FG
MDS 21 - Absorbing clamp 30 - 1000 MHz	NT-250	T82-50 RF-Amplifier 2 GHz – 8 GHz	NT-331	Test report number: M/FG-15/129
FCC-203I EM Injection clamp	NT-251	500W1000M7 - RF-Amplifier 80 - 1000 MHz / 500 W	NT-332	Page: 2 of 3
FCC-203I-DCN Ferrite decoupling network	NT-252	AS0102-65R - RF-Amplifier 1 GHz - 2 GHz	NT-333	Date: 30.01.2015
PR50 Current Probe	NT-253	APA01 – RF-Amplifier 0,5 GHz – 2,5 GHz	NT-334	Checked by:
i310s Current Probe	NT-254/1	Preamplifier 1 GHz - 4 GHz	NT-335	
Fluke 87 V True RMS Multimeter	NT-260	Preamplifier for GPS MKU 152 A	NT-336	
Model 2000 Digital Multimeter	NT-261	Preamplifier 100 MHz – 23 GHz	NT-337	
Fluke 87 V Digital Multimeter	NT-262/1	DC Block 10 MHz – 18 GHz Model 8048	NT-338	
ESH2-Z5-U1 Artificial mains network 4x25A	NT-300	2-97201 Electronic load	NT-341	
ESH3-Z5-U1 Artificial mains network 2x10A	NT-301	TSX3510P - Power supply 0-30 V / 0 - 10 A	NT-344	
ESH3-Z6-U1 Artificial mains network 1x100A	NT-302	TSX3510P - Power supply 0-30 V / 0 - 10 A	NT-345	
ESH3-Z6-U1 Artificial mains network 1x100A	NT-302a	VDS 200 Mobil-impuls-generator	NT-350	
PHE 4500/B Power amplifier	NT-304	LD 200 Mobil-impuls-generator	NT-351	
PAS 5000 Power amplifier	NT- 304/1a	MPG 200 Mobil-Impuls-Generators	NT-352	
EZ10 T-Artificial Network	NT-305	EFT 200 Mobil-impuls-generator	NT-353	
SMG - Signal generator 0,1 - 1000 MHz	NT- 310	AN 200 S1 Artificial Network	NT-354	
SMA100A - Signal generator 9 kHz - 6 GHz	NT-310/1	FP-EFT 32M 3 ph. Coupling filter (Burst)	NT-400/1	
RefRad Reference generator	NT-312	PHE 4500 - Mains impedance network	NT-401	
SMP 02 Signal generator 10 MHz - 20 GHz	NT-313	IP 6.2 Coupling filter for data lines (Surge)	NT-403	
40 MHz Arbitrary Generator TGA1241	NT-315	TK 9421 High Power Volt. Probe 150 kHz - 30 MHz	NT-409	
Artificial mains network NSLK 8127-PLC	NT-316	ESH2-Z3 - Probe 9 kHz - 30 MHz	NT-410	
Inrush Current Source for PAS 5000	NT-317a	IP 4 - Capacitive clamp (Burst)	NT-411	
Control and measurement device Sycore	NT-318	Highpass-Filter 100 MHz – 3 GHz	NT-412	
PEFT - Burst generator up to 4 kV	NT-320	Highpass-Filter 600 MHz – 4 GHz	NT-413	
ESD 30 System up to 25 kV	NT-321	Highpass-Filter 1250 MHz – 4 GHz	NT-414	
PSURGE 4.1 Surge generator	NT-324	Highpass-Filter 1800 MHz – 16 GHz	NT-415	
TRANSIENT 1000 Immunity test system	NT-325			

Appendix 1 (continued) Test equipment used

Division Medical

Highpass-Filter 3500 MHz – 18 GHz	NT-416	FCC-801-S25 Coupling decoupling network	NT-462	Division Medical Technology/ Communication Technology/ EMC
RF-Attenuator 10 dB DC – 18 GHz / 50 W	NT-417	FCC-801-T4 Coupling decoupling network	NT-463	Department: FG
RF-Attenuator 6 dB DC – 18 GHz / 50 W	NT-418	FCC-801-C1 Coupling decoupling network	NT-464	Test report number: M/FG-15/129
RF-Attenuator 3 dB DC 18 GHz / 50 W	NT-419	F-16A - Current probe 1kHz - 70MHz	NT-465	Page: 3 of 3
RF-Attenuator 20 dB DC - 1000 MHz / 25 W	NT-421	95242-1 – Current probe 1 MHz – 400 MHz	NT-468	Date: 30.01.2015
RF-Attenuator 30 dB DC - 1000 MHz / 1 W	NT-423	94106-1L-1 – Current probe 100 kHz – 450 MHz	NT-471	Checked by:
RF-Attenuator 30 dB	NT-424	GA 1240 Power amplifier according to EN 61000-4-16	NT-480	
RF-Attenuator 6 dB DC - 1000 MHz / 1 W	NT-425	Coupling networks according to EN 61000-4-16	NT-481 - NT-483	
RF-Attenuator 6 dB DC - 1000 MHz / 1 W	NT-426	Van der Hoofden Test Head	NT-484	
RF-Attenuator 6 dB	NT-428	PC P4 3 GHz Test computer	NT-500	
RF-Attenuator 0 dB - 81 dB	NT-429	PC P4 1700 MHz Notebook	NT-505	
WRU 27 - Band blocking 27 MHz	NT-430	Monitoring camera with Monitor	NT-511	
WHJ450C9 AA - High pass 450 MHz	NT-431	ES-K1 Version 1.71 SP2 Test software	NT-520	
WHJ250C9 AA - High pass 250 MHz	NT-432	EMC32 Version 9.15 Test software	NT-520/1	
RF-Load 150 W	NT-433	SRM-TS Version 1.3 software for SRM-3000	NT-522	
Impedance transducer 1:4 ; 1:9 ; 1:16	NT-435	SRM-TS Version 1.3.1 software for SRM-3006	NT-522/1	
RF-Attenuator DC – 18 GHz 6 dB	NT-436	Spitzenberger und Spies Test software V3.4	NT-525	
RF-Attenuator DC – 18 GHz 6 dB	NT-437	Noise power test apparatus according to EN 55014	NT-530	
RF-Attenuator DC – 18 GHz 10 dB	NT-438	(ESD)	NT-531	
RF-Attenuator DC – 18 GHz 20 dB	NT-439	Test cable #4 for EN 61000-4-6	NT-553	
I+P 7780 Directional coupler 100 - 2000 MHz	NT-440	Test cable #3 for conducted emission	NT-554	
ESH3-Z2 - Pulse limiter 9 kHz - 30 MHz	NT-441	Test cable #5+#6 ESD-cable (2x470k)	NT-555 + NT-556	
Power Divider 6 dB/1 W/50 Ohm	NT-443	Test cable #8 Sucoflex 104EA	NT-559	
Directional coupler 0,1 MHz – 70 MHz	NT-444	Test cable #9 (for outdoor measurements)	NT-580	
Directional coupler 0,1 MHz – 70 MHz	NT-445	(for outdoor measurements)	NT-581	
Tube imitations according to EN 55015	NT-450	Test cable #13 Sucoflex 104PE	NT-584	
FCC-801-M3-16A Coupling decoupling network	NT-458	Test cable #21 for SRM-3000	NT-592	
FCC-801-M2-50A Coupling decoupling network	NT-459	Shield chamber	NT-600	
FCC-801-M5-25 Coupling decoupling network	NT-460	Climatic chamber	M-1200	
FCC-801-AF10 Coupling decoupling network	NT-461			

Description: Front view

Division Medical Technology/ Communication Technology/ EMC

Department: FG

Test report reference: M/FG-15/129

Page: 1 of 11

Date: 30.01.2015

checked by:

Description: Backside view / Label placement

Division Medical Technology/ Communication Technology/ EMC

Department: FG

Test report reference: M/FG-15/129

Page: 2 of 11

Date: 30.01.2015

checked by: __

Description: Label

Division Medical Technology/ Communication Technology/ EMC

Department: FG

Test report reference: M/FG-15/129

Page: 3 of 11

Date: 30.01.2015

checked by: ____//

Description: Top view

Division Medical Technology/ Communication Technology/ EMC

Department: FG

Test report reference: M/FG-15/129

Page: 4 of 11

Date: 30.01.2015

checked by: _

Description: Battery compartment opened

Division Medical Technology/ Communication Technology/ EMC

Department: FG

Test report reference: M/FG-15/129

Page: 5 of 11

Date: 30.01.2015

checked by:

Description: Inside view #1

Division Medical Technology/ Communication Technology/ EMC

Department: FG

Test report reference: M/FG-15/129

Page: 6 of 11

Date: 30.01.2015

checked by:

Description: Inside view #2

Division Medical Technology/ Communication Technology/ EMC

Department: FG

Test report reference: M/FG-15/129

Page: 7 of 11

Date: 30.01.2015

checked by: ____

Description: Inside view #3

Division Medical Technology/ Communication Technology/ EMC

Department: FG

Test report reference: M/FG-15/129

Page: 8 of 11

Date: 30.01.2015

checked by: _

Description: RF shielding detached view #1

Division Medical Technology/ Communication Technology/ EMC

Department: FG

Test report reference: M/FG-15/129

Page: 9 of 11

Date: 30.01.2015

checked by:_

Description: RF shielding detached view #2

Division Medical Technology/ Communication Technology/ EMC

Department: FG

Test report reference: M/FG-15/129

Page: 10 of 11

Date: 30.01.2015

checked by: _

Description: Test setup

Division Medical Technology/ Communication Technology/ EMC

Department: FG

Test report reference: M/FG-15/129

Page: 11 of 11

Date: 30.01.2015

checked by: