Tutorial 5: Vector Spaces

- Q1. Are the following sets vector subspaces of the given real vector spaces? If so, prove your answer carefully. Otherwise find a counter example to show why not.
 - (a) In \mathbb{R}^2 , $M = \{(t, t^2) : t \in \mathbb{R}\}.$
 - (b) In \mathbb{R}^2 , $N = \{(x, y) \in \mathbb{R}^2 : x \ge 0\}$.
 - (c) In \mathbb{R}^3 , $P = \{(x, y, z) \in \mathbb{R}^3 : x 4y + 3z = 0\}.$
 - (d) In $M_{3,3}$, Q the set of all 3×3 matrices with zero entries along the main diagonal.
 - (e) In \mathcal{P}_2 , $S = \{a_0 + a_1x + a_2x^2 \in \mathcal{P}_2 : a_1a_2 = 0\}.$
 - (f) In $\mathcal{F}(\mathbb{R}, \mathbb{R})$, T, the set of all functions $f: \mathbb{R} \to \mathbb{R}$ that satisfy f(4) = 0.
- **Q2**. Are the following sets vector subspaces of the given vector spaces (with scalars as indicated)? If so, prove your answer carefully. Otherwise find a counter example to show why not.
 - (a) In \mathbb{R}^2 (over \mathbb{R}), $W_1 = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 0\}$.
 - (b) In \mathbb{F}_2^2 (over \mathbb{F}_2), $W_2 = \{(x, y) \in \mathbb{F}_2^2 : x^2 + y^2 = 0\}$.
 - (c) In \mathbb{C}^2 (over \mathbb{C}), $W_3 = \{(x, y) \in \mathbb{C}^2 : x^2 + y^2 = 0\}$.
 - (d) In \mathbb{C}^2 (over \mathbb{C}), $W_4 = \{(x, y) \in \mathbb{C}^2 : \text{Im}(x) = \text{Im}(y) = 0\} = \mathbb{R}^2$.
- Q3. For each of the following, determine whether the vectors (i) span the given vector space, (ii) are linearly independent, (iii) form a basis for the given vector space.
 - (a) $\{(1,3,0,2,\pi),(-2,1,0,-\pi,1)\}\subset\mathbb{R}^5$
 - (b) $\{(1,1,0),(1,0,1),(0,1,1)\}\subseteq \mathbb{R}^3$
 - (c) $\{(1,1,0),(1,0,1),(0,1,1)\}\subseteq \mathbb{Z}_2^3$
- **Q4**. (a) Determine whether $\mathcal{B} = \{2 x, x^4, 3x^3 7x + 1, x^2, 1 x^4, 2 + x^3 x^4\}$ forms a basis for \mathcal{P}_4 .
 - (b) Determine whether $\mathcal{B}' = \left\{ \begin{bmatrix} 1 & -2 \\ -2 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 2 & 3 \\ 3 & 5 \end{bmatrix} \right\}$ forms a basis for the vector space of all symmetric 2×2 matrices:

$$S = \left\{ \begin{bmatrix} a & b \\ b & c \end{bmatrix} : a, b, c \in \mathbb{R} \right\} \subseteq M_{2,2}$$

- (c) Is the set $\{(1+i, 3+i), (3-i, 5-5i)\}$ a basis for \mathbb{C}^2 ?
- **Q5**. Consider the vector space $\mathcal{F}(\mathbb{R},\mathbb{R})$ of all functions from the real numbers to the real numbers.

Vectors $\mathbf{f}_1, \mathbf{f}_2, \dots, \mathbf{f}_n \in \mathcal{F}(\mathbb{R}, \mathbb{R})$ are linearly dependent if there exist $\alpha_1, \alpha_2, \dots, \alpha_n \in \mathbb{R}$ such that for all $x \in \mathbb{R}$

$$\alpha_1 \mathbf{f}_1(x) + \alpha_2 \mathbf{f}_2(x) + \dots + \alpha_n \mathbf{f}_n(x) = \mathbf{0}(x) = 0 \tag{1}$$

where at least one of α_i is not zero.

Are the following sets of vectors in $\mathcal{F}(\mathbb{R},\mathbb{R})$ linearly dependent or independent?

- (a) $\{\cos x, \sin x\}$ (Hint: Choose two different values of x and solve equation (1).)
- (b) $\{\cos x, \sin x, 1\}$
- (c) $\{\cos^2 x, \sin^2 x, 1\}$