Funktionen mehrerer Variablen

FS 2024 Prof. Dr. Bernhard Zgraggen Autoren:

Laurin Heitzer, Flurin Brechbühler

Version:

0.1.20240628

 $\underline{https://github.com/P4ntomime/funktionen-mehrerer-variablen}$

Inhaltsverzeichnis

Dim	ensionen, Schnitte und Kontouren	2		5.3 2D Transformation Polar zu Kartesisch
1.1	Dimensionen	2		5.4 Derivative, Ableitung
1.2	Schnitte	2		5.5 Anwendungsformeln Doppelintegral
1.3	Kontouren, Levelsets, Niveaulinien, Höhenlinen,	2		
			6	Integration (multi-variat)
Abl	eitungen, DGL und Gradienten (bi-variat)	3		6.1 Dreidimensionale Koordinatensysteme
2.1	Partielle Ableitung	3		6.2 Längenintegrale
2.2	Gradient (Nabla-Operator)	3		6.3 Flächenintegrale
2.3	Totale Ableitung	3		6.4 Volumenintegrale
2.4	Linearapproximation (Tangential approximation)	3		6.5 Anwendungen Trippel-Integrale
2.5	DGL	3		
2.6	Richtungselement (Tangentiallinie an Kontouren)	3	7	Differenziation und Integration von Kurven
2.7	Gradientenfeld \(\text{Kontouren} \)	3		7.1 Kurvenintegral 1. Art
2.8	?Wie heisst dieser Abschnitt?	3		7.2 Kurvenintegral 2. Art
2.9	Richtungs-Ableitung	3	0	(Ohan)Flächanintagnala
		3	8	(Ober-)Flächenintegrale
	rema von Funktionen finden	3 4	8	8.1 Allgemeine Wendelfläche
		3 4 4	8	8.1 Allgemeine Wendelfläche
Ext	rema von Funktionen finden Extrema von Funktionen zweier Variablen finden	3 4 4 4	8	8.1 Allgemeine Wendelfläche
Ext 3.1	rema von Funktionen finden Extrema von Funktionen zweier Variablen finden	3 4 4 4 4		8.1 Allgemeine Wendelfläche 8.2 Freie Fläche 8.3 1. metrischer Tensor
Ext. 3.1 3.2	rema von Funktionen finden Extrema von Funktionen zweier Variablen finden	4	9	8.1 Allgemeine Wendelfläche
3.1 3.2 3.3	rema von Funktionen finden Extrema von Funktionen zweier Variablen finden Extrema von Funktionen mehrerer Variablen finden Lokales oder Globales Extremum	4 4		8.1 Allgemeine Wendelfläche 8.2 Freie Fläche 8.3 1. metrischer Tensor Vektoranalysis 9.1 Vektorfelder
3.1 3.2 3.3 3.4	rema von Funktionen finden Extrema von Funktionen zweier Variablen finden Extrema von Funktionen mehrerer Variablen finden Lokales oder Globales Extremum Extrema von Funktionen zweier Variablen mit NB finden	4 4		8.1 Allgemeine Wendelfläche
Extr 3.1 3.2 3.3 3.4 3.5	rema von Funktionen finden Extrema von Funktionen zweier Variablen finden Extrema von Funktionen mehrerer Variablen finden Lokales oder Globales Extremum Extrema von Funktionen zweier Variablen mit NB finden	4 4		8.1 Allgemeine Wendelfläche 8.2 Freie Fläche 8.3 1. metrischer Tensor Vektoranalysis 9.1 Vektorfelder 9.2 Divergenz (Volumenableitung) 9.3 Integralsatz von Gauss
Extr 3.1 3.2 3.3 3.4 3.5	rema von Funktionen finden Extrema von Funktionen zweier Variablen finden Extrema von Funktionen mehrerer Variablen finden Lokales oder Globales Extremum Extrema von Funktionen zweier Variablen mit NB finden Extrema von Funktionen mehrerer Variablen mit NB finden	4 4 4 4		8.1 Allgemeine Wendelfläche 8.2 Freie Fläche 8.3 1. metrischer Tensor Vektoranalysis 9.1 Vektorfelder 9.2 Divergenz (Volumenableitung) 9.3 Integralsatz von Gauss 9.4 Poisson-Gleichung (Laplace-Gleichung)
3.1 3.2 3.3 3.4 3.5 Sup	Extrema von Funktionen finden Extrema von Funktionen zweier Variablen finden Extrema von Funktionen mehrerer Variablen finden Lokales oder Globales Extremum Extrema von Funktionen zweier Variablen mit NB finden Extrema von Funktionen mehrerer Variablen mit NB finden port Vector Machine (SVM) Lineare Trennbarkeit von Daten	4 4 4 4		8.1 Allgemeine Wendelfläche 8.2 Freie Fläche 8.3 1. metrischer Tensor Vektoranalysis 9.1 Vektorfelder 9.2 Divergenz (Volumenableitung) 9.3 Integralsatz von Gauss 9.4 Poisson-Gleichung (Laplace-Gleichung) 9.5 Rotation eines Vektorfelds (rot(), curl())
3.1 3.2 3.3 3.4 3.5 Sup	rema von Funktionen finden Extrema von Funktionen zweier Variablen finden Extrema von Funktionen mehrerer Variablen finden Lokales oder Globales Extremum Extrema von Funktionen zweier Variablen mit NB finden Extrema von Funktionen mehrerer Variablen mit NB finden port Vector Machine (SVM)	4 4 4 4		8.1 Allgemeine Wendelfläche 8.2 Freie Fläche 8.3 1. metrischer Tensor Vektoranalysis 9.1 Vektorfelder 9.2 Divergenz (Volumenableitung) 9.3 Integralsatz von Gauss 9.4 Poisson-Gleichung (Laplace-Gleichung)
3.1 3.2 3.3 3.4 3.5 Sup	Extrema von Funktionen finden Extrema von Funktionen zweier Variablen finden Extrema von Funktionen mehrerer Variablen finden Lokales oder Globales Extremum Extrema von Funktionen zweier Variablen mit NB finden Extrema von Funktionen mehrerer Variablen mit NB finden port Vector Machine (SVM) Lineare Trennbarkeit von Daten	4 4 4 4 5 5		8.1 Allgemeine Wendelfläche 8.2 Freie Fläche 8.3 1. metrischer Tensor Vektoranalysis 9.1 Vektorfelder 9.2 Divergenz (Volumenableitung) 9.3 Integralsatz von Gauss 9.4 Poisson-Gleichung (Laplace-Gleichung) 9.5 Rotation eines Vektorfelds (rot(), curl())

1 Dimensionen, Schnitte und Kontouren

1.1 Dimensionen

$$f: \mathbb{D}_f(\subseteq \mathbb{R}^m) \longrightarrow \mathbb{W}_f(\subseteq \mathbb{R}^n)$$

m Anzahl Dimensionen von \mathbb{D}_f , wobei $\mathbf{m} \in \mathbb{N}$

n Anzahl Dimensionen von \mathbb{W}_f , wobei $n \in \mathbb{N}$

 \vec{f} wenn Output vektoriell

\triangle Variablen sind abhängig von einander!

Multi-Variat:

f ist "Multi-Variat", wenn:

ti-Variat", wenn: f ist nicht

• Input mehrdimensional ist

· Output mehrdimensional ist

 Input und Output mehrdimensional sind f ist nicht "Multi-Variat", wenn:Input und Output Skalare sind

1.1.1 Raumzeit

Raum 3D
$$(x; y; z) \mathbb{R}^3$$

Zeit 1D $(t) \mathbb{R}^1$ $\mathbb{R}^1 \times \mathbb{R}^3 = \text{Raumzeit 4D } (t; x; y; z)$

1.1.2 Stationärer Fall

$$t \to \infty \to \text{Stationär}$$

$$T(x; y; z) \frac{\Delta T}{\Delta t} \to 0$$

1.1.3 Einheitsvektoren (Koordinatenvektoren)

$$\hat{x} = \vec{i} = \hat{i} = \vec{e_1} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

$$\hat{y} = \vec{j} = \hat{j} = \vec{e_2} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

$$\hat{z} = \vec{k} = \hat{k} = \vec{e}_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

1.2 Schnitte

 ${\sf Schnitt} = {\sf Restriktion} \to {\sf Teilmenge} \ {\sf vom} \ {\sf Definitionsbereich} \ \mathbb{D}_f$

1.2.1 Partielle Funktion

- Nur eine Variable ist frei! (wählbar)
- Alle anderen Variablen sind fix!

 \(\Delta \) \(\mathbb{W}_f \) Analyse!

Beispiel: Schnitte

x-Linien

- Fläche wird geschnitten mit Ebene, die parallel zur x,z-Ebene liegt
- Bestehen aus den (x; y; z) Punkten $(x; y_0; f(x; y_0))$
- x-Wert ist variabel
- y-Wert ist fixiert \Leftrightarrow $y_0 = 2$

y-Linien

- Fläche wird geschnitten mit Ebene, die parallel zur y,z-Ebene liegt.
- Bestehen aus den (x; y; z) Punkten (x₀; y; f(x₀; y))
- x-Wert ist fixiert $\Leftrightarrow x_0 = 3$
- y-Wert ist variabel

1.2.2 Bedingungen

Initial $bedingungen \rightarrow Beziehen sich auf die Zeit$

Randbedingungen → Beziehen sich auf räumliche Ebenen

1.3 Kontouren, Levelsets, Niveaulinien, Höhenlinen, ...

Bei Kontouren, Levelsets, Niveaulinien oder Höhenlinien ist der Output der Funktion f konstant.

$$\vec{y} = \vec{f}(\vec{x}) = \text{const. wobei } \vec{x} \subset \mathbb{D}_f$$

Beispiel: Höhenlinien

Kontouren (Höhenlinien)

- Fläche wird geschnitten mit einer Ebene, die parallel zur x,y-Ebene liegt
- Bestehen aus den (x; y; z) Punkten $(x; y; f(x; y) = z_0)$
- x-Wert ist variabel
- y-Wert ist variabel
- z-Wert ist fixiert $\Leftrightarrow z_0 = 3$

2 Ableitungen, DGL und Gradienten (bi-variat)

$$f: \mathbb{D}_f \subseteq \mathbb{R}^2 \to \mathbb{W}_f \subseteq \mathbb{R}$$
 skalar

2.1 Partielle Ableitung

Ableitung einer Partiellen Funktion.

Beispiel: Bi-Variate Funktion

f(x, y): y fixieren = const. = y_0 ; x einzige freie Variable

Notationen

1. Ordnung:
$$f(x; y_0) \Rightarrow \frac{\partial f}{\partial x} = f_x(x; y_0)$$
2. Ordnung:
$$\frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial^2 f}{\partial x^2} = f_{xx}$$

$$\frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial^2 f}{\partial y \partial x} = f_{xy}$$

2.1.1 Schwarz-Symmetrie

Wenn f_{xx} , f_{yy} , f_{xy} & f_{yx} stetig (sprungfrei) sind, dann gilt:

$$f_{xy} \stackrel{!}{=} f_{yx}$$

2.2 Gradient (Nabla-Operator)

Spaltenvektor mit partiellen Ableitungen

2.3 Totale Ableitung

Für Fehlerrechnung benützt, da man hierbei die Abstände von (x; y; z) zu einem festen Punkt $(x_0; y_0; z_0)$ erhält. (relative Koordinaten)

$$D(f; (x_0, y_0, \ldots)) : \mathbb{R}^2 \xrightarrow{\longrightarrow} \mathbb{R}^1;$$
 "gute Approximation"

$$f(x = x_0 + \Delta x; y = y_0 + \Delta y; \dots) = (D_{11}; D_{12}) \cdot \begin{pmatrix} \Delta x \\ \Delta y \end{pmatrix} + f(x_0; y_0) + R_1$$

Wobei R_1 dem "Rest" entspricht. (Ähnlich wie bei Taylorreihe

$$\frac{R_1}{d = \sqrt{\Delta x^2 + \Delta y^2}} \rightarrow 0 \text{ ("gut", "schneller gegen 0 als } d")$$

$$D(f;(x_0;y_0)) = \left(D_{11} = \frac{\partial f}{\partial x}(x_0;y_0); D_{12} = \frac{\partial f}{\partial y}(x_0;y_0)\right)$$
$$= (\nabla f)^{\text{tr}} \text{ wenn } \frac{\partial f}{\partial x}; \frac{\partial f}{\partial y} \text{ stetig bei } A$$

2.4 Linearapproximation (Tangential approximation)

$$f(x; y) \approx f(x_0; y_0) + D(f; (x_0; y_0)) \cdot \begin{pmatrix} \Delta x \\ \Delta y \end{pmatrix}$$
 linear in Δx und Δy

2.4.1 Tangentialebene

$$g(x;y) = f(x_0; y_0) + D(f; (x_0; y_0)) \cdot \begin{pmatrix} x - x_0 \\ y - y_0 \end{pmatrix}$$

$$g(x; y) = f(x_0; y_0) + f_x(x_0; y_0) \cdot (x - x_0) + f_y(x_0; y_0) \cdot (y - y_0)$$

2.4.2 Tangentialer Anstieg (Totale Differential)

$$\mathrm{d}f \stackrel{!}{=} \frac{\partial f}{\partial x} \, \mathrm{d}x + \frac{\partial f}{\partial y} \, \mathrm{d}y \quad \text{bezüglich } A = \underbrace{(x_0; y_0)}$$

2.4.3 Differential-Trick (df Trick)

$$\begin{cases} f = c = \text{const.} & |d(\dots)| \\ df = dc \stackrel{!}{=} 0 \end{cases} \qquad f_x dx + f_y dy = 0 \quad \text{für Kontourlinien}$$

2.4.4 Implizite (Steigungs-)Funktion

$$y'(x) = \frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{f_x}{f_y \neq 0} \lor x'(y) = \frac{\mathrm{d}x}{\mathrm{d}y} = -\frac{f_y}{f_x \neq 0}$$
 $y_0 = -\frac{P_0}{y'} \to 0$

2.5 DGL

$$y' = \left(-\frac{f_x}{f_y}\right); \ y(x_0) = y_0$$

right-hand-side (r.h.s.) Funktion

2.6 Richtungselement (Tangentiallinie an Kontouren)

$$\vec{r} = \left(dx = h; dy = y' dx = -\frac{f_x}{f_y} dx \right)^{tt}$$

2.7 Gradientenfeld \(\perp \) Kontouren

Skalarprodukt
$$\nabla f \cdot \begin{pmatrix} dx \\ dy = y' dx \end{pmatrix} \stackrel{!}{=} 0$$

2.8 ?Wie heisst dieser Abschnitt?

$$s(t): P_0 + t \cdot \hat{v} \mid t \in \mathbb{R}$$

$$s(t): f(x_0 + t \cdot \hat{v}_1; y_0 + t \cdot \hat{v}_2)$$

$$\frac{ds(t)}{dt} = \dot{s}(t): \qquad t \mapsto \overbrace{\begin{pmatrix} x_0 + t \cdot v_1 \\ y_0 + t \cdot v_2 \end{pmatrix}}^{\left(x_0 + t \cdot v_1\right)} \mapsto f(x, y)$$

2.9 Richtungs-Ableitung

$$\frac{\partial f}{\partial \hat{v}} \stackrel{!}{=} D(f; (x_0; y_0)) \cdot \hat{v} \stackrel{\mathrm{Def.}}{\Leftrightarrow} \mathrm{grad}(f)^{\mathrm{tr}} \cdot \hat{v} = f_x \cdot v_1 + f_y \cdot v_2$$

Beispiel: Richtungs-Ableitung

$$\vec{x}: \vec{v} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \hat{e}_1 \quad \Rightarrow \quad \frac{\partial f}{\partial \hat{e}_1} = f_x \cdot 1 + f_y \cdot 0 = \underline{f_x}$$

2.9.1 Spezialfälle

• $\alpha = \frac{\pi}{2} \Rightarrow \text{rechter Winkel}$ • $\frac{\partial f}{\partial \hat{v}}$ extremal - $\alpha = 0 \text{ (max)}$: $\nabla f \cdot \hat{v} > 0 \Rightarrow \text{grad}(f) \text{ liegt auf } \hat{v}$ - $\alpha = \pi \text{ (min)}$: $\nabla f \cdot \hat{v} < 0 \Rightarrow \text{grad}(f) \text{ liegt invers auf } \hat{v}$

Trigo: $\nabla f \cdot \hat{v} \wedge \frac{\partial f}{\partial \hat{v}} \implies \cos(\alpha) \cdot |\nabla f|$

3 Extrema von Funktionen finden

Stationäritätsbedingung: $\nabla f \stackrel{!}{=} \vec{0}$

3.1 Extrema von Funktionen zweier Variablen finden

1. Gradient von f Null-setzten und kritische Stellen finden:

$$\nabla f = \begin{pmatrix} f_x \\ f_y \end{pmatrix} \stackrel{!}{=} \begin{pmatrix} 0 \\ 0 \end{pmatrix} \quad \Rightarrow \begin{cases} f_x = 0 \\ f_y = 0 \end{cases} \Rightarrow x_0 \text{ und } y_0 \text{ bestimmen}$$

2. Zweite Partielle Ableitungen bestimmen:

$$f_{xx} = \dots$$
 $f_{xy} = f_{yx} = \dots$ $f_{yy} = \dots$

3. Determinante Δ der Hesse-Matrix H bestimmen:

 $\Delta = f_{xx}(x_0; y_0) \cdot f_{yy}(x_0; y_0) - \left(f_{xy}(x_0; y_0)\right)^2$

4. Auswertung:

$\Delta > 0$	AND	$f_{xx}(x_0;y_0)<0$	\Longrightarrow	lokales Maximum
$\Delta > 0$	AND	$f_{yy}(x_0;y_0)<0$	\Rightarrow	lokales Maximum
$\Delta > 0$	AND	$f_{xx}(x_0;y_0) > 0$	\Rightarrow	lokales Minimum
$\Delta > 0$	AND	$f_{yy}(x_0; y_0) > 0$	\Rightarrow	lokales Minimum
$\Delta < 0$			\Longrightarrow	Sattelpunkt
$\Delta = 0$?	Multi-variate-Taylor-logik

3.2 Extrema von Funktionen mehrerer Variablen finden

1. Gradient von f Null-setzten und kritische Stellen finden:

$$\nabla f = \begin{pmatrix} f_x \\ f_y \\ \vdots \\ f_t \end{pmatrix} \stackrel{!}{=} \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \Rightarrow x_0, y_0, \dots, t_0 \text{ bestimmer}$$

2. Zweite Partielle Ableitungen für Hesse-Matrix H bestimmen:

$$\mathbf{H} = \begin{pmatrix} f_{xx} & f_{xy} & \cdots & f_{xt} \\ f_{yx} & f_{yy} & \cdots & f_{yt} \\ \vdots & \vdots & \ddots & \vdots \\ f_{tx} & f_{ty} & \cdots & f_{tt} \end{pmatrix}$$

- Symmetrien beachten!
- Nicht doppelt rechnen! $\Rightarrow f_{xt} = f_{tx}$
- $\Rightarrow \int xt$

3. Hesse-Matrix H mit gefundenen Stellen füllen:

$$\mathbf{H}(x_0, y_0, \dots t_0) = \begin{pmatrix} f_{xx}(x_0, y_0, \dots t_0) & f_{xy}(x_0, y_0, \dots t_0) & \cdots & f_{xt}(x_0, y_0, \dots t_0) \\ f_{yx}(x_0, y_0, \dots t_0) & f_{yy}(x_0, y_0, \dots t_0) & \cdots & f_{yt}(x_0, y_0, \dots t_0) \\ \vdots & \vdots & \ddots & \vdots \\ f_{tx}(x_0, y_0, \dots t_0) & f_{ty}(x_0, y_0, \dots t_0) & \cdots & f_{tt}(x_0, y_0, \dots t_0) \end{pmatrix}$$

4. Eigenwerte λ_i der Hesse-Matrix bestimmen:

det $(\mathbf{H}(x_0, y_0, \dots t_0) - \lambda \cdot \mathbf{E}) = 0$ Nullstellen λ_i finden \rightarrow Eigenwerte

Zur Erinnerung:

$$\mathbf{E} = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & & 1 \end{pmatrix}, \quad \lambda \cdot \mathbf{E} = \begin{pmatrix} \lambda & 0 & \dots & 0 \\ 0 & \lambda & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & & \lambda \end{pmatrix}$$

$$\mathbf{H}(x_0, y_0, \dots t_0) - \lambda \cdot \mathbf{E} = \dots$$

$$\dots = \begin{cases} f_{xx}(x_0, y_0, \dots t_0) - \lambda & f_{xy}(x_0, y_0, \dots t_0) & \dots & f_{xt}(x_0, y_0, \dots t_0) \\ f_{yx}(x_0, y_0, \dots t_0) & f_{yy}(x_0, y_0, \dots t_0) - \lambda & \dots & f_{yt}(x_0, y_0, \dots t_0) \\ \vdots & \vdots & \ddots & \vdots \\ f_{tx}(x_0, y_0, \dots t_0) & f_{ty}(x_0, y_0, \dots t_0) & \dots & f_{tt}(x_0, y_0, \dots t_0) - \lambda \end{cases}$$

5. Auswertung:

$\lambda_i < 0 \ \forall i$	\Longrightarrow	lokales Maximum
$\lambda_i > 0 \ \forall i$	\Longrightarrow	lokales Minimum
$\lambda_i > 0$ und $\lambda_i < 0$	\Longrightarrow	Sattelpunkt

Erklärung

- $\lambda_i < 0 \ \forall i \Leftrightarrow \text{Alle } \lambda_i \text{ sind negativ}$
- $\lambda_i > 0 \ \forall i \Leftrightarrow \text{Alle } \lambda_i \text{ sind positiv}$

3.3 Lokales oder Globales Extremum

Für eine beliebige die Funktion f(x, y, ..., t) gilt:

$f(x, y, \dots, t) \le M_{\text{max}}$	$\forall (x, y, \dots, t) \in \mathbb{D}_f$	\Rightarrow	globales Maxinum
$f(x, y, \dots, t) > M_{\text{max}}$	$\exists (x,y,\ldots,t)\in \mathbb{D}_f$	\Rightarrow	kein globales Maximum
$f(x, y, \dots, t) \ge M_{\min}$	$\forall (x, y, \dots, t) \in \mathbb{D}_f$	\Rightarrow	globales Minimum
$f(x, y, \dots, t) < M_{\min}$	$\exists (x, y, \dots, t) \in \mathbb{D}_f$	\Rightarrow	kein globales Minimum

 M_{max} : grösstes lokales Maximum M_{min} : kleinstes lokales Minimum

3.4 Extrema von Funktionen zweier Variablen mit NB finden

1. Nebenbedingung (NB) in Standartform bringen:

Standartform: $n(x, y) \stackrel{!}{=} 0$

 $\stackrel{!}{=} 0$ Nebenbedingung: x + y = 1

Standartform der Nebenbedingung: x + y - 1 = 0

2. Lagrancge-Funktion $\mathcal L$ aufstellen:

 $\mathcal{L}(x, y, \lambda) = f(x, y) + \lambda \cdot n(x, y)$ Am besten gleich ausmultiplizieren

3. Gradient der Lagrancge-Funktion $\mathcal L$ Null-setzten und kritische Stellen finden:

$$\nabla \mathcal{L} = \begin{pmatrix} \mathcal{L}_x \\ \mathcal{L}_y \\ \mathcal{L}_A \end{pmatrix} \stackrel{!}{=} \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \quad \Rightarrow x_0 \text{ und } y_0 \text{ bestimmen}$$

4. Zweite Partielle Ableitungen bestimmen:

$$\mathcal{L}_{\lambda\lambda} \stackrel{!}{=} 0 \qquad \qquad \mathcal{L}_{\lambda x} = \mathcal{L}_{x\lambda} = n_x = \dots$$

$$\mathcal{L}_{xx} = \dots \qquad \qquad \mathcal{L}_{\lambda y} = \mathcal{L}_{y\lambda} = n_y = \dots$$

$$\mathcal{L}_{yy} = \dots \qquad \qquad \mathcal{L}_{xy} = \mathcal{L}_{yx} = \dots$$

5. Geränderte Hesse Matrix $\overline{\mathbf{H}}$ aufstellen und kritische Stellen einsetzen:

$$\overline{\mathbf{H}}(x_0, y_0) = \begin{pmatrix}
\mathcal{L}_{\lambda\lambda}(x_0, y_0) & \mathcal{L}_{\lambda x}(x_0, y_0) & \mathcal{L}_{\lambda y}(x_0, y_0) \\
\mathcal{L}_{x\lambda}(x_0, y_0) & \mathcal{L}_{xx}(x_0, y_0) & \mathcal{L}_{xy}(x_0, y_0) \\
\mathcal{L}_{y\lambda}(x_0, y_0) & \mathcal{L}_{yx}(x_0, y_0) & \mathcal{L}_{yy}(x_0, y_0)
\end{pmatrix}$$

$$= \begin{pmatrix}
0 & n_x(x_0, y_0) & n_y(x_0, y_0) \\
n_x(x_0, y_0) & \mathcal{L}_{xx}(x_0, y_0) & \mathcal{L}_{xy}(x_0, y_0) \\
n_y(x_0, y_0) & \mathcal{L}_{yx}(x_0, y_0) & \mathcal{L}_{yy}(x_0, y_0)
\end{pmatrix}$$

6. Determinante der geränderten Hesse Matrix bestimmen:

 $\det\left(\overline{\mathbf{H}}\right) = \dots$

7. Auswertung

$\det\left(\overline{\mathbf{H}}\right) > 0$	\Longrightarrow	lokales Maximum	
$\det\left(\overline{\mathbf{H}}\right) < 0$	\Longrightarrow	lokales Minimum	
$det(\overline{\mathbf{H}}) = 0$	\Longrightarrow	keine Aussage möglich	

3.5 Extrema von Funktionen mehrerer Variablen mit NB finden

1. Nebenbedingung (NB) in Standartform bringen:

Standartform: $n(x, y, ..., t) \stackrel{!}{=} 0$

2. Lagrancge-Funktion \mathcal{L} aufstellen:

 $\mathcal{L}(x, y, ..., t, \lambda) = f(x, y, ..., t) + \lambda \cdot n(x, y, ..., t)$ Am besten gleich ausmultiplizieren

3. Gradient der Lagrancge-Funktion \mathcal{L} Null-setzten und kritische Stellen finden:

$$\nabla \mathcal{L} = \begin{pmatrix} \mathcal{L}_{x} \\ \mathcal{L}_{y} \\ \vdots \\ \mathcal{L}_{t} \\ \mathcal{L}_{\lambda} \end{pmatrix} \stackrel{!}{=} \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 0 \end{pmatrix} \Rightarrow x_{0}, y_{0}, ..., t_{0} \text{ bestimmen}$$

4. Zweite Partielle Ableitungen bestimmen:

$$\mathcal{L}_{\lambda\lambda} \stackrel{!}{=} 0 \\
\mathcal{L}_{xx} = \dots \\
\mathcal{L}_{yy} = \dots \\
\vdots \\
\mathcal{L}_{tt} = \mathcal{L}_{x\lambda} = n_x = \dots \\
\mathcal{L}_{\lambda y} = \mathcal{L}_{y\lambda} = n_y = \dots \\
\mathcal{L}_{xt} = \mathcal{L}_{tx} \\
\mathcal{L}_{yt} = \mathcal{L}_{ty} \\
\vdots \\
\mathcal{L}_{\lambda t} = \mathcal{L}_{t\lambda} = n_t = \dots$$

$$\mathcal{L}_{xy} = \mathcal{L}_{yx} \\
\mathcal{L}_{xt} = \mathcal{L}_{tx} \\
\mathcal{L}_{yt} = \mathcal{L}_{ty} \\
\vdots \\
\vdots \\
\vdots$$

5. Geränderte Hesse Matrix $\overline{\mathbf{H}}$ aufstellen und kritische Stellen einsetzen:

$$\overline{\mathbf{H}}(x_0, y_0, \dots t_0) = \begin{pmatrix} \mathcal{L}_{\lambda l}(\dots) & \mathcal{L}_{\lambda l}(\dots) & \mathcal{L}_{\lambda l}(\dots) & \dots & \mathcal{L}_{\lambda l}(\dots) \\ \mathcal{L}_{x l}(\dots) & \mathcal{L}_{x x}(\dots) & \mathcal{L}_{x y}(\dots) & \dots & \mathcal{L}_{x l}(\dots) \\ \mathcal{L}_{y l}(\dots) & \mathcal{L}_{y x}(\dots) & \mathcal{L}_{y y}(\dots) & \dots & \mathcal{L}_{y l}(\dots) \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \mathcal{L}_{t l}(\dots) & \mathcal{L}_{t x}(\dots) & \mathcal{L}_{t y}(\dots) & \dots & \mathcal{L}_{t l}(\dots) \\ n_{x}(\dots) & \mathcal{L}_{x x}(\dots) & \mathcal{L}_{t y}(\dots) & \dots & \mathcal{L}_{x l}(\dots) \\ n_{y}(\dots) & \mathcal{L}_{y x}(\dots) & \mathcal{L}_{y y}(\dots) & \dots & \mathcal{L}_{y l}(\dots) \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ n_{t}(\dots) & \mathcal{L}_{t x}(\dots) & \mathcal{L}_{t y}(\dots) & \dots & \mathcal{L}_{t l}(\dots) \end{pmatrix}$$

6. Determinante der geränderten Hesse Matrix bestimmen:

 $\det(\overline{\mathbf{H}}) = ...$

7. Auswertung

$\det\left(\overline{\mathbf{H}}\right) > 0$	\Longrightarrow	lokales Maximum	
$\det\left(\overline{\mathbf{H}}\right) < 0$	\Rightarrow	lokales Minimum	
$det(\overline{\mathbf{H}}) = 0$	\Rightarrow	keine Aussage möglich	

4 Support Vector Machine (SVM)

4.1 Lineare Trennbarkeit von Daten

4.1.1 Allgemeines

Datenpunkte: (2D Beispiel)

$$A: (\underbrace{(x_1, x_2)}_{\vec{x_1}}; y_1), \quad B: (\underbrace{(x_1, x_2)}_{\vec{x_2}}; y_2), \quad C: (\underbrace{(x_1, x_2)}_{\vec{x_3}}; y_3), \quad \cdots, \quad N: (\underbrace{(x_1, x_2)}_{\vec{x_n}}; y_n)$$

 \vec{x}_j sind Datenvektoren

 $y_i \in \{\pm 1\}$ klassifiziert die jeweiligen Datenvektoren

<u>Hyperebenen:</u>

$$\vec{w}^{tr} \cdot \vec{x} + b = 0$$

 \overrightarrow{w} : Normalenvektor, $\overrightarrow{w} \in \mathbb{R}^d$ und $\overrightarrow{w} \neq 0$

b: Konstante, $b \in \mathbb{R}$

Dimmension der Hyperebene = d - 1

Abstand der Hyperebene zum Ursprung: $\frac{|b|}{|\vec{w}|}$

y = -1

Klassifizierung:

$$\overrightarrow{w}^{tr} \cdot \overrightarrow{x} + b > 0$$

$$\overrightarrow{w}^{tr} \cdot \overrightarrow{x} + b < 0$$

$$\Rightarrow \overrightarrow{x} \text{ gehört zur Klasse } y = +1$$

$$\Rightarrow \overrightarrow{x} \text{ gehört zur Klasse } y = -1$$

Klassifizierung der Trainigsdaten:

$$|\vec{w}^{tr} \cdot \vec{x}_j + b| \ge 0$$
 $\Rightarrow \vec{x}_j$ gehört zur Klasse $y = +1$ $|\vec{w}^{tr} \cdot \vec{x}_j + b| \le 0$ $\Rightarrow \vec{x}_j$ gehört zur Klasse $y = -1$

Zielfunktion:

$$\left| \frac{2}{|\vec{w}|} = \frac{2}{w} \right|$$

4.1.2 Das primale Optimierungsproblem

$$\frac{1}{2}\vec{w}^{tr}\cdot\vec{w} = \frac{1}{2}\left|\vec{w}\right|^2 = \frac{1}{2}w^2 \rightarrow \min! \quad \text{s.t.} \quad \left(\vec{w}^{tr}\cdot\vec{x}_j + b\right)y_j \ge 1 \quad (j = 1, \dots, N)$$

4.1.3 Das duale Optimierungsproblem

Nebenbedingung:

$$\underbrace{1 - \left(\vec{w}^{tr} \cdot \vec{x}_j + b\right) y}_{g_j(\vec{w}^{tr}, b)} \leq 0 \Leftrightarrow g_j(\vec{w}^{tr}, b) \leq 0 \quad (j = 1, \dots, N)$$

Lagrange-Funktion:

Zusammengesetzt aus dem primalen Problem und den Nebenbedingungen.

L(
$$\vec{w}^{tr}, b, \vec{a}$$
) = $L(w_1, w_2, ..., w_d, b, \alpha_1, \alpha_2, ..., \alpha_N)$
= $\frac{1}{2}\vec{w}^{tr} \cdot \vec{w} + \sum_{j=1}^{N} \alpha_j \underbrace{\left(1 - \left(\vec{w}^{tr} \cdot \vec{x}_j + b\right) y_j\right)}_{g_j(\vec{w}^{tr}, b)}$

Stationaritätsbedingungen:

Aus der Bedingung, dass grad(L) = 0 sein muss, lassen sich folgende Formeln ableiten:

Das duale Problem:

Die oben erhaltenen Summen können nun in die Lagrange-Fkt. eingesetzt werden. Daraus entsteht

$$L(\vec{\alpha}) = \sum_{j=1}^{N} \alpha_j - \underbrace{\frac{1}{2} \sum_{j,j'=1}^{N} \alpha_j \alpha_{j'} y_j y_{j'} \vec{x}_j^{t'} \cdot \vec{x}_{j'}}_{=\frac{1}{2} \vec{w}^{t''} \cdot \vec{w}} \quad \rightarrow \quad \text{max!} \quad \text{s.t.} \quad \alpha_j \ge 0 \land \sum_{j=1}^{N} \alpha_j y_j = 0$$

Vorgehen zum lösen des dualen Optimierungsproblems:

1. Skizze mit Datenpunkten erstellen:

- Einzelne Datenpunkte klassenweise farblich hervorheben
- Falls ein Datenpunkt der gleichen Klasse weit weg von den anderen ist
 - \Rightarrow diesen vergessen, da sein $\alpha = 0$ sein wird

2. Nebenbedingungen, Es muss gelten:

 $\alpha_i \geq 0$

$$\mathbf{b:} \quad \sum_{j=1}^{N} \alpha_j \cdot y_j = 0$$

Nach einem α unstellen und anschliessend jenes α

(damit die Nebenbedingung miteinbezogen wird) in der Lagrange-Funktion ersetzen

3. Kernel-Matrix aufstellen:

$$K(\vec{x}^{tr}; \vec{x}) = \vec{x}^{tr} \bullet \vec{x}$$

• Einträge sind die Ergebnisse der Skalarprodukte

4. Lagrange-Funktion aufstellen:

$$L(\vec{\alpha}) = \sum_{j=1}^N \alpha_j - \frac{1}{2} \sum_{j,j'=1}^N \alpha_j \cdot \alpha_{j'} \cdot y_j \cdot y_{j'} \cdot \vec{x}_j^{tr} \bullet \vec{x}_{j'} \quad \rightarrow \quad \max!$$

• 2. b und 3 brauchen

5. Alle α finden durch Stationaritätsbedingung

$$\nabla L = \vec{0}$$

 \Rightarrow ersetztes α mit gefundenen α berechnen

6. ₩ berechnen:

$$\vec{\vec{w}} = \sum_{j=1}^{N} \alpha_j y_j \vec{x}_j$$

7. Konstante b berechnen:

Datenpunkte mit der Klasse y = 1 oder y = -1 wählen und einsetzen

• **Variante 1:** Stützvektor-Datenpunkt mit
$$y = +1$$

$$\vec{w}^{tr} \cdot \vec{x}_{...} + b = 1 \Leftrightarrow b = 1 - \vec{w}^{tr} \cdot \vec{x}_{...} = ...$$

• **Variante 2:** Stützvektor-Datenpunkt mit
$$y = -1$$

$$\vec{w}^{tr} \cdot \vec{x}_{...} + b = -1 \Leftrightarrow b = -1 - \vec{w}^{tr} \cdot \vec{x}_{...} = ...$$

5 Integration (bi-variat)

Als bi-variate Integrale versteht man Integrale, die siech über zwei unabhängige Variablen erstrecken. Sie haben die Form

$$\iint\limits_{\Omega} f(\omega) \cdot d\omega = \int\limits_{Y} \int\limits_{Y} f(x; y) \cdot dy \cdot dx$$

wobei $\Omega \subset \mathbb{R}^2$, $X \subset \mathbb{R}$ und $Y \subset \mathbb{R}$ ist. Es gilt dabei das Fubini-Theorem:

$$\int_{X} \left(\int_{Y} f(x; y) \cdot dy \right) \cdot dx = \int_{Y} \left(\int_{X} f(x; y) \cdot dx \right) \cdot dy$$

5.1 Normalbereich

Ein schlichtes Gebiet, auch Normalbereich, zeichnet sich dadurch aus, dass die Integration darüber besonders einfach ist. Dies ist der Fall, wenn die Integralgrenzen nicht von der jeweilig anderen variable abhängig ist.

Der Normalbereich eines bivariaten Integrals in kartesischen Koordinaten ist so ein Recht-

In Polaren koordinaten stellt der Normalbereich einen Kreissektor oder einen Sektor eines Rings dar.

5.2 Zweidimensionale Koordinatensysteme

Neben den Kartesischen Koordinatensystemen kommen in zweidimensionalen Räumen auch Polare Koordinatensysteme zum Einsatz. Die beiden Systeme können mit Hilfe der Trigonometrie in einander überführt werden.

5.2.1 Umrechnung Kartesisch ↔ Polar

Polar zu Kartesisch

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} r * \cos \varphi \\ r * \sin \varphi \end{pmatrix}$$

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} r * \cos \varphi \\ r * \sin \varphi \end{pmatrix} \qquad \qquad \begin{pmatrix} r \\ \varphi \end{pmatrix} = \begin{pmatrix} \sqrt{x^2 + y^2} \\ \tan^{-1} \frac{y}{x} \end{pmatrix}$$

Dabei ist zu beachten, dass \tan^{-1} nur werte von $-\frac{\pi}{2}$ bis $\frac{\pi}{2}$ liefert, für φ jedoch $\varphi \in [0, \pi]$ gelten soll. φ wird also, je nach dem in welchem Quadranten sich \vec{p} befindet, nach folgendem Schema berechnet:

$$\frac{\pi + \tan^{-1} \frac{y}{x}}{\pi + \tan^{-1} \frac{y}{x}} = \frac{\tan^{-1} \frac{y}{x}}{2\pi + \tan^{-1} \frac{y}{x}}$$

5.2.2 Transformation verschiedener Elemente

Um eine ganzes Integral vom einen Koordinatensystem ins andere zu überführen, muss zum einen die Funktion f(x, y) zu $f(r, \varphi)$ (oder umgekehrt) umgeschrieben, sowie die differentiale angepasst werden. Hier dafür einige gängige Elemente:

	Kartesisch	Polar
x-Achsenelement	$\mathrm{d}x$	$dx = \cos\varphi dr - r\sin\varphi d\varphi$
y-Achsenelement	dy	$dx = \sin \varphi dr + r \cos \varphi d\varphi$
Linienelement	$ds^2 = dx^2 dy^2$	$\mathrm{d}s^2 = \mathrm{d}r^2 + r^2 \mathrm{d}\varphi^2$
Flächenelement	dA = dx dy	$dA = r dr d\varphi$

5.3 2D Transformation Polar zu Kartesisch

TODO: Das isch ja ds gliiche wie obe beschribe, oder? Wänn da no meh ane sött wüsstich nöd was... -Flurin T = Transformation

Polar
$$(r, \varphi) \xrightarrow{T} (x, y)$$
 Kartesisch

$$\begin{pmatrix} x = r \cdot \cos(\varphi) \mathbb{R} \\ y = r \cdot \sin(\varphi) \mathbb{R} \end{pmatrix} \text{ 2D}$$

Die Funktionen für x und y sind skalare Funktion.

$$x = x(r; \varphi)$$
 $y = y(r; \varphi)$

5.4 Derivative, Ableitung

TODO: Idk was da ane söll -Flurin

5.5 Anwendungsformeln Doppelintegral

5.5 Anwendungstormen Doppenntegraf					
Allgemein	Kartesische Koordinaten	Polarkoordinaten			
Flächeninhalt e					
$A = \iint_F \mathrm{d}a$	$= \int\limits_X \int\limits_Y \mathrm{d}y \mathrm{d}x$	$= \int_{\Phi} \int_{R} r \mathrm{d}r \mathrm{d}\varphi$			
Oberfläche eine	r Ebene in drei Dimensionen				
		$= \iint_{\Phi} \sqrt{r^2 + r^2 \left(\frac{\partial z}{\partial r}\right)^2 + \left(\frac{\partial z}{\partial \varphi}\right)^2} dr d\varphi$			
Volumen eines 2					
$V = \iint_A z \mathrm{d}a$	$= \int\limits_X \int\limits_Y z \mathrm{d}y \mathrm{d}x$	$= \int_{\Phi} \int_{R} z r \mathrm{d}r \mathrm{d}\varphi$			
Trägheitsmome	nt einer ebenen Figur F , bezogen ϵ	nuf die x-Achse			
$I_x = \iint_F y^2 \mathrm{d}a$	$= \int\limits_X \int\limits_Y (y^2) \mathrm{d}y \mathrm{d}x$	$= \int_{\Phi} \int_{R} (r^2 \sin^2 \varphi) r dr d\varphi$			
Trägheitsmome	nt einer ebenen Figur F, bezogen a	auf den Pol (0,0)			
$I_x = \iint_F r^2 \mathrm{d}a$	$= \int\limits_X \int\limits_Y (x^2 + y^2) \mathrm{d}y \mathrm{d}x$	$= \int_{\Phi} \int_{R} (r^2) r \mathrm{d}r \mathrm{d}\varphi$			
Masse einer ebe	enen Figur F mit Dichtefunktion ϱ				
$m = \iint_F \varrho \mathrm{d}a$	$= \int\limits_X \int\limits_Y \varrho(x,y) \mathrm{d}y \mathrm{d}x$	$= \int_{\Phi} \int_{R} \varrho(r,\varphi) r \mathrm{d}r \mathrm{d}\varphi$			
	Koordinaten des Schwerpunkts S einer homogenen, ebenen Figur F				
$x_S = \frac{\iint\limits_F x \mathrm{d}a}{A}$	$= \frac{\iint\limits_{X} x dy dx}{\iint \int dy dx}$	$= \frac{\int \int \int r^2 \cos \varphi dr d\varphi}{\int \int \int r dr d\varphi}$			
$y_S = \frac{\iint\limits_F y \mathrm{d}a}{A}$		$= \frac{\int\limits_{\Phi}^{\Phi} \int\limits_{R}^{R} r^{2} \sin \varphi dr d\varphi}{\int\int \int r dr d\varphi}$			
	X Y	ΦŘ			
Tinweis: Damit die Flächenelemente leichter erkennbar und die Formeln entsprechend					

Hinweis: Damit die Flächenelemente leichter erkennbar und die Formeln entsprechend besser nachvollziebar sind, wurden sie teilweise nicht vollständig vereinfacht.

6 Integration (multi-variat)

6.1 Dreidimensionale Koordinatensysteme

6.1.1 Umrechnen zwischen Koordinatensystemen

Beim Umrechnen zwischen den Koordinatensystemen gelten im Grunde genommen die obigen Formeln. Dabei muss jedoch in einigen Fällen auf die Wertebereiche von den trigonometrischen Funktionen rücksicht genommen werden.

$\underline{Zylindrisch} \rightarrow Kartesisch:$

<u>Sphärisch</u> \rightarrow Kartesisch:

Keine weiteren Berücksichtigungen nötig, die Berechnung erfolgt nach der Formel oben.

Kartesisch \rightarrow Zylindrisch:

Der Parameter ϕ wird analog zum zweidimensionalen Fall, je nach dem in welchem Quadranten sich P befindet, nach dem Schema rechts berechnet.

$$\frac{\pi + \tan^{-1} \frac{y}{x}}{1 + \tan^{-1} \frac{y}{x}}$$

$$\frac{\tan^{-1} \frac{y}{x}}{2\pi + \tan^{-1} \frac{y}{x}}$$

$\underline{Sph\"{a}risch} \rightarrow \underline{Zylindrisch} :$

Kartesisch → Sphärisch:

Keine weiteren Berücksichtigungen nötig, die Berechnung erfolgt nach der Formel oben.

Zylindrisch → Sphärisch:

Auch hier macht der \tan^{-1} Probleme, da er Werte von $-\frac{\pi}{2}$ bis $\frac{\pi}{2}$ liefert, für θ jedoch $\theta \in [0,\pi]$ gelten soll. Je nach dem, ob P sich oberhalb oder unterhalb der xy-Ebene befindet, wird θ wie rechts berechnet.

6.2 Längenintegrale

6.2.1 Längenelemente

$$\mathrm{d}s^2 = \underbrace{\mathrm{d}x^2 + \mathrm{d}y^2 + \mathrm{d}z^2}_{\text{Kartesisch}} = \underbrace{\mathrm{d}r^2 + r^2\,\mathrm{d}\theta^2 + \mathrm{d}z^2}_{\text{Zylindrisch}} = \underbrace{\mathrm{d}r^2 + r^2\,\mathrm{d}\theta^2 + r^2\,\sin^2\theta\,\mathrm{d}\phi^2}_{\text{Sphärisch}}$$

6.2.2 Länge einer Funktion

Die Bestimmung der Länge einer Kurve kann in folgende Schritte unterteilt werden:

1. Funktion in die Parameterdarstellung überführen (sofern nicht gegeben):

Dafür wird einer der Parameter (z R. x oder θ) = t gesetzt und die anderen Pa

Dafür wird einer der Parameter (z.B. x oder θ) = t gesetzt und die anderen Parameter ebenfals als Funktion von t ausgedrückt.

2. Integral aufstellen:

Das Integral in der Form $\iiint ds$ wird mit $\frac{dt}{dt}$ erweitert.

3. <u>Das Integral lösen</u>

6.2.3 Beispiel

Es soll die Länge der Kurve $\vec{v}(t) = \begin{pmatrix} x(t) \\ y(t) \\ z(t) \end{pmatrix}$ auf dem Interval $[t_1, t_2]$ bestimmt werden. Dazu

werden die oben genannten Schritte abgearbeitet:

1. Funktion in die Parameterdarstellung überführen

Hier nicht nötig.

2. Integral aufstellen

$$\iiint ds = \iiint \sqrt{\mathrm{d}x^2 + \mathrm{d}y^2 + \mathrm{d}z^2} = \int_{t_1}^{t_2} \sqrt{\left(\frac{\mathrm{d}x}{\mathrm{d}t}\right)^2 + \left(\frac{\mathrm{d}y}{\mathrm{d}t}\right)^2 + \left(\frac{\mathrm{d}z}{\mathrm{d}t}\right)^2} \, \mathrm{d}t$$

3. Integral löse

 $\frac{dx}{dt}$, $\frac{dy}{dt}$ und $\frac{dz}{dt}$ ausrechnen, einsetzen, integrieren.

6.3 Flächenintegrale

6.3.1 Flächenelemente

Das Bestimmen der Flächenelemente ist in drei Dimensionen nicht wie bei den Längenund Volumenelementen pauschal möglich. Dies, da jeweils nur über zwei der drei Koordinaten integriert werden muss. Ein einfaches Verfahren für das Berechnen von Flächeninhalten schafft jedoch abhilfe.

6.3.2 Flächeninhalt einer Oberfläche

Für das Berechnen der Oberflächen von Funktionen des Typs f(a,b) in 3D kann die Formel

$$S = \int_{B} \int_{A} \sqrt{(f_a)^2 + (f_b)^2 + 1} \, da \, db$$

verwendet werden. Dabei repräsentieren a und b die beiden Koordinatenrichtungen, in denen sich die Fläche erstreckt. f_a und f_b sind die partiellen Ableitungen der Funktion f(a,b) nach a bzw. b.

Beispiele zur Veranschaulichung:

Es soll die Oberfläche der Funktion f(x, y) im Bereich $x \in [x_1, x_2], y \in [y_1, y - 2]$ bestimmt werden. Das entsprechende integral lautet:

$$S = \int_{y_2}^{y_2} \int_{x_2}^{x_2} \sqrt{(f_x)^2 + (f_y)^2 + 1} \, dx \, dy$$

Wäre die Funktion f stat in kartesischen in polaren oder sphärischen Koordinaten formuliert, ändern sich lediglich die Namen der Variablen. Folglich ist das zu einer in sphärischen Koordinaten definierten Fkt. $f(\theta, \phi)$ gehörende Integral

$$S = \int_{\theta_{1}}^{\phi_{2}} \int_{\theta_{2}}^{\theta_{2}} \sqrt{(f_{\theta})^{2} + (f_{\phi})^{2} + 1} \, d\theta \, d\phi$$

sehr leicht aufzustellen.

6.4 Volumenintegrale

6.4.1 Volumenelemente

$$dV = \underbrace{dx \, dy \, dz}_{\text{Kartesisch}} = \underbrace{r \, dr \, d\phi \, dz}_{\text{Zylindrisch}} = \underbrace{r^2 \sin \theta \, d\theta \, d\phi \, dr}_{\text{Sphärisch}}$$

6.5 Anwendungen Trippel-Integrale

Allgemein	Kartesische Koordinaten	Zylinderkoordinaten	Kugelkoordinaten			
Volumen eines Körpers K						
$V = \iiint_K dV$	$= \iiint \mathrm{d}x\mathrm{d}y\mathrm{d}z$	$= \iiint r \mathrm{d}r \mathrm{d}\phi \mathrm{d}z$	$= \iiint r^2 \sin\theta \mathrm{d}\theta \mathrm{d}\phi \mathrm{d}r$			
Trägheitsmom	ent eines Körpers K , bezogen	auf die Z-Achse				
$I_z = \iiint_K r^2 \mathrm{d}V$	$= \iiint (x^2 + y^2) \mathrm{d}x \mathrm{d}y \mathrm{d}z$	$= \iiint (r^2) r \mathrm{d}r \mathrm{d}\phi \mathrm{d}z$	$= \iiint (r^2 \sin^2 \theta) r^2 \sin \theta d\theta d\phi dr$			
Masse eines Kö	örpers K mit der Dichtefunkt	ion ϱ				
$M = \iiint_K \varrho \mathrm{d}V$	$= \iiint \varrho(x, y, z) \mathrm{d}x \mathrm{d}y \mathrm{d}z$	$= \iiint \varrho(r,\phi,z) r \mathrm{d}r \mathrm{d}\phi \mathrm{d}z$	$= \iiint \varrho(r,\theta,\phi)r^2 \sin\theta d\theta d\phi dr$			
Koordinaten de	es Schwerpunktes S eines ho	mogenen Körpers K				
$x_S = \frac{\iint\limits_K x dV}{gggV}$	$= \frac{\iiint(x) \mathrm{d}x \mathrm{d}y \mathrm{d}z}{V}$	$= \frac{\iiint (r\cos\phi)r\mathrm{d}r\mathrm{d}\phi\mathrm{d}z}{V}$	$= \frac{\iiint (r \sin \theta \cos \phi) r^2 \sin \theta d\theta d\phi dr}{V}$			
	$= \frac{\iiint(y) \mathrm{d}x \mathrm{d}y \mathrm{d}z}{V}$	$= \frac{\iiint (r\sin\phi)r\mathrm{d}r\mathrm{d}\phi\mathrm{d}z}{V}$	$= \frac{\iiint (r\sin\theta\sin\phi)r^2\sin\theta\mathrm{d}\theta\mathrm{d}\phi\mathrm{d}r}{V}$			
$z_S = \frac{\iint\limits_K z \mathrm{d}V}{V}$	$= \frac{\iiint(z) \mathrm{d}x \mathrm{d}y \mathrm{d}z}{V}$	$= \frac{\iiint(z)r\mathrm{d}r\mathrm{d}\phi\mathrm{d}z}{V}$	$= \frac{\iiint (r\cos\theta)r^2\sin\theta\mathrm{d}\theta\mathrm{d}\phi\mathrm{d}r}{V}$			

Hinweis: Damit die Volumenelemente leichter erkennbar und die Formeln entsprechend

besser nachvollziebar sind, wurden sie teilweise nicht vollständig vereinfacht.

7 Differenziation und Integration von Kurven

7.1 Kurvenintegral 1. Art

Mit dem Kurvenintegral 1. Art wird die Länge einer Kurve in einer Ebene oder im Raum bestimmt.

7.1.1 Zweidimensional

Um die Länge einer Kurve K, die durch f(x, y) beschrieben wird, in der Ebene zu bestimmen, wird über das Linienelement ds integriert:

$$\iint\limits_K ds = \int_{x_1}^{x_2} \int_{y_1}^{y_2} \sqrt{dx^2 + dy^2}$$

Dabei ist es nötig, die Funktion f(x) in die Parameterdarstellung f(x(t), y(t)) zu bringen, da der Ausdurck $\sqrt{dx^2 + dy^2}$ problematisch ist. Es folgt

$$\int_{x_1}^{x_2} \int_{y_1}^{y_2} f(x, y) \sqrt{dx^2 + dy^2} \frac{dt}{dt} = \int_{t_0}^T \sqrt{(\frac{dx}{dt})^2 + (\frac{dy}{dt})^2} dt,$$

wobei $\frac{dx}{dt}$ und $\frac{dy}{dt}$ Funktionen sind, die durch Ableiten von x(t) bzw. y(t) nach t berechnet

7.1.2 Dreidimensional

Das Kurvenintegral 1. Art in drei Dimensionen wurde bereits in Kapitel 6.2.2 beschrieben.

7.2 Kurvenintegral 2. Art

Beim Kurvenintegral 2. Art wird nicht die tatsächliche Länge einer Funktion, sondern die Länge deren Projektion auf eine Achse bestimmt. Dazu wird stat über alle Koordinatenrichtungen nur über eine der Koordinaten integriert.

Es folgen einige Paare von Kurvenintegralen 2. Art entlang einer Kontur *K* für Funktionen in expliziter Form und in Parameterdarstellung.

2D, Projektion auf x:

$$\int\limits_K f(x,y)dx = \int_{t_0}^T f(x(t),y(t)) \cdot x\prime(t) \cdot dt$$

3D, Projektion auf x:

$$\int\limits_{K} f(x,y,z) dx = \int_{t_0}^{T} f(x(t),y(t),z(t)) \cdot x \prime(t) \cdot dt$$

7.2.1 Anwendungen

TODO: Für was wird das gebraucht?!

8 (Ober-)Flächenintegrale

8.1 Allgemeine Wendelfläche

$$\vec{S}(t,\varphi) = \left(\begin{pmatrix} \cos(\varphi) & -\sin(\varphi) \\ \sin(\varphi) & \cos(\varphi) \end{pmatrix} \cdot \begin{pmatrix} x(t) \\ y(t) \end{pmatrix} \right)$$

$$z(t) + c \cdot \varphi$$

Bei c = 1 \Rightarrow Voller Meter bei einer Kurve

8.2 Freie Fläche

8.3 1. metrischer Tensor

9 Vektoranalysis

9.1 Vektorfelder

- Jedem Punkt P im Raum ist ein Vektor \vec{V} zugeordnet
- Kann als $\vec{V}(\vec{r})$ geschrieben werden, wobei \vec{r} ein Ortsvektor mit fixem Ursprung $\vec{0}$ ist

9.2 Divergenz (Volumenableitung)

- Beschreibt, wie stark sich ein Vektorfeld in einem Punkt ausbreitet oder zusammenzieht
- Beispiel: Vektorfeld das die Geschwindigkeit von Wasser in eineem Fluss beschreibt
 - An Punkten mit positiver Divergenz fliesst Wasser hinaus (Quelle)
 - An Punkten mit negativer Divergenz fliesst Wasser hinein (Senke)

$$\nabla \cdot \vec{V} = \text{div } \vec{V} = \lim_{\Delta V \to 0} \frac{\oint_{(S)} \vec{V} \cdot \text{d} \vec{S}}{\Delta V}$$

9.2.1 Kartesisch

$$\operatorname{div} \vec{V} = \nabla \cdot \vec{V} = \underbrace{\left(\frac{\partial}{\partial x}; \frac{\partial}{\partial y}; \frac{\partial}{\partial z}\right)}_{\nabla} \cdot \underbrace{\begin{pmatrix} V_x \\ V_y \\ V_z \end{pmatrix}}_{} = \frac{\partial V_x}{\partial x} + \frac{\partial V_y}{\partial y} + \frac{\partial V_z}{\partial z}$$

9.2.2 Zylinderkoordinaten

$$\operatorname{div} \vec{V} = \frac{1}{r} \frac{\partial}{\partial r} (rV_r) + \frac{1}{r} \frac{\partial V_{\varphi}}{\partial \varphi} + \frac{\partial V_z}{\partial z}$$

9.3 Integralsatz von Gauss

$$\int_{(V)} \operatorname{div} \vec{A} \, dV = \oint_{(S) = \partial V} \vec{A} \cdot d\vec{S}$$

Fluss durch eingeschlossenen Körper = Gesamter Fluss durch geschlossenen Rand des Körpers

9.4 Poisson-Gleichung (Laplace-Gleichung)

$$\Delta \phi = \operatorname{div} \left(\operatorname{grad}(\phi) \right) = \nabla^2 \phi = \frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} + \frac{\partial^2 \phi}{\partial z^2} = f(\vec{r})$$

$$\phi : f(\vec{r})$$

 Δ : Laplace-Operator ϕ : Potentialfeld

 ϕ : Potentialield $f(\vec{r})$: Quellfunktion

9.4.1 Laplace-Gleichung

 $\Delta \phi = f = 0$ \Rightarrow Spezialfall der Poisson-Gleichung ohne äussere Quellfunktion

9.5 Rotation eines Vektorfelds (rot(), curl())

Beschreibt, wie stark und in welche Richtung sich ein Vektorfeld an einem Punkt rotiert. Wobei der Vektor selbst die Rotationsachse beschreibt und dessen Betrag proportional zur Rotationsgeschwindigkeit ist. Beispiel: Wirbelfelder

$$\operatorname{rot} \vec{A} = \nabla \times \vec{A} = \begin{bmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \\ \frac{\partial}{\partial z} \end{bmatrix} \times \begin{bmatrix} A_x \\ A_y \\ A_z \end{bmatrix} = \begin{bmatrix} \frac{\partial A_z}{\partial y} - \frac{\partial A_y}{\partial z} \\ \frac{\partial A_z}{\partial z} - \frac{\partial A_z}{\partial x} \\ \frac{\partial A_z}{\partial x} - \frac{\partial A_z}{\partial x} \end{bmatrix}$$

- $|\operatorname{rot} \vec{A}| < 0$: Uhrzeigersinn
- $|\operatorname{rot} \vec{A}| = 0$: Wirbelfrei
- $|\operatorname{rot} \vec{A}| > 0$: Gegenuhrzeigersinn

Gauss: div $(rot(\vec{A})) \stackrel{!}{=} 0$

9.6 Rechenregeln mit ∇

Gradient:

$$\begin{split} \nabla(\nabla \cdot \vec{A}) &= \nabla \times \nabla \times \vec{A} + \nabla^2 \vec{A} \\ \nabla(f \cdot g) &= (\nabla f) \cdot g + f \cdot (\nabla g) \\ \nabla(\vec{A} \cdot \vec{B}) &= (\vec{A} \cdot \nabla) \vec{B} + (\vec{B} \cdot \nabla) \vec{A} + \vec{A} \times (\nabla \times \vec{B}) + \vec{B} \times (\nabla \times \vec{A}) \end{split}$$

Divergenz:

$$\begin{split} \nabla \cdot (\nabla f) &= \nabla^2 f \\ \nabla \cdot (\nabla \times \vec{A}) &= 0 \\ \nabla \cdot (f \cdot \vec{A}) &= (\nabla f) \cdot \vec{A} + f \cdot (\nabla \cdot \vec{A}) \\ \nabla \cdot (\vec{A} \times \vec{B}) &= (\nabla \times \vec{A}) \cdot \vec{B} - \vec{A} \cdot (\nabla \times \vec{B}) \end{split}$$

Curl:

$$\nabla \times (\nabla f) = 0$$

$$\nabla \times (\nabla \times \vec{A}) = \nabla(\nabla \cdot \vec{A}) - \nabla^2 \vec{A}$$

$$\nabla \times (\nabla^2 \vec{A}) = \nabla^2 (\nabla \times \vec{A})$$

$$\nabla \times (f \cdot \vec{A}) = (\nabla f) \times \vec{A} + f \cdot \nabla \times \vec{A}$$

$$\nabla \times (\vec{A} \times \vec{B}) = (\vec{A} \cdot \nabla) \vec{A} - (\vec{A} \cdot \nabla) \vec{B} + \vec{A} \cdot (\nabla \cdot \vec{B}) - \vec{B} \cdot (\nabla \cdot \vec{A})$$

9.7 Integralsatz von Stokes

$$\oint_{(C)=\partial S} \vec{A} \cdot d\vec{r} = \int_{(S)} \operatorname{rot} \vec{A} \cdot d\vec{S}$$

 ∂S muss anhand Rechter-Hand-Regel orientiert sein.

Stokes sagt aus, dass die Summe der Verwirbelungen in einer Fläche, der Summe der Vektoren dessen Randes entsprechen.

9.8 Anwendungen: Maxwell-Gleichungen

-TBD-