UGANDA MARTYRS UNIVERSITY - NKOZI

END OF SEMISTER ONE 2023/2024 EXAMINATIONS

HECB 1103: Foundation Physical and Inorganic chemistry

Time: 2 hours 30 minutes.

Name Reg. no.

2.00 PM - 5:00 Pm

Answer all questions in section A and B, and only two from section C.

SECTION A (Choose the correct alternative).

- 1. In the modern periodic table, the period indicates the value of:
 - A. atomic number
 - B. atomic mass
 - C. principal quantum number
 - D. azimuthal quantum number
- 2. The atomic number of sodium is 11 and its mass number is 23. It has
 - A. 11 neutrons and 12 protons.
 - B. 12 protons and 11 electrons.
 - C. 11 electrons and 12 neutrons.
 - D. 12 electrons and 11 neutrons.
- 3. The following sets of quantum numbers define electrons in an atom of Beryllium except

A.
$$n=1$$
, $\ell=0$, $m_{\ell}=0$, $m_{s}=+\frac{1}{2}$

B.
$$n=2$$
, $t=1$, $m_t=0$, $m_s=+\frac{1}{2}$

C.
$$n=2$$
, $\ell=0$, $m_{\ell}=0$, $m_{s}=+\frac{1}{2}$

D.
$$n=2$$
, $\ell=0$, $m_{\ell}=0$, $m_{s}=-\frac{1}{2}$

- 4. Which of the following is an ionic hydride?
 - A. PH₃
 - B. H₂S
 - C. HI
 - D. KH
- 5. With regard to the species ¹⁶O²⁻, ¹⁹F⁻ and ²⁰Ne, which of the following statements is **correct**?
 - A. All three species contain 10 electrons.
 - B. The sum of the neutrons in all three species is 27.
 - C. The sum of the protons in all three species is 28.
 - D. Both ¹⁹F⁻ and ²⁰Ne contain 20 neutrons.
- 6. In the Lewis structure for the OF₂ molecule, the number of lone pairs of electrons around the central oxygen atom is
 - A. 0
 - B. 1
 - C. 2
 - D. 3

5marks

1mark

 7. Choose the molecule that is incorrectly matched with the electronic geometry about the atom. A. CF₄ - tetrahedral B. BeCl₂ - linear C. H₂O - tetrahedral D. NH₃ - pyramidal 	central
 8. Which of the following elements does not form hydride by direct heating with dihydrogen A. Be B. Mg C. Sr D. Ba 	?
 9. In which of the following substances will hydrogen bond be strongest? A. HCI B. H₂O C. HI D. H₂S 	
 10. Amongst the following elements whose electronic configurations are given below, the on the highest ionisation enthalpy is A. [Ne]3s²3p¹ B. [Ne]3s²3p³ C. [Ne]3s²3p² D. [Ar]3d¹⁰4s²4p³ 	e having
SECTION B (Write in the spaces provided on the question paper)	
11(a). What is atomic orbital?	1mark
b). Describe the shape of orbitals associated with the following quantum numbers. (i) $n=2, \ell=1$	
(ii) n=1, t=0	

12(a). What is the meaning of the term isoelectronic species?

	tion, write the electronic	c configurations of the	following species	
(i) Al ³				
(ii) O ² -				
(iii) Na				3mar
om the followine i	st, Identify the largest and	f the smallest species in	terms of radius.	
	O ² , F, and F			2mar
Femiliain who is write	er molecule adopts a v-sha	Contamona han		2mark
CAPABILI MILIN & MEC	el li Oecule accipio a visito	rec secured to		2111011
ing the VSEPR theo	ry, predict and sketch the	shape of		
ammonia molecu	ie NH3).			2mark
phosphorus pent	achionide molecule (PCIs).			2marks
e table shows some	properties of one of the g	roups in the periodic tal	ble.	
Element	Melting point	Boiling point	Electron struct	1156
P	-220	-188	2, 7	are
Q	-101	-35	2, 8, 7	THE SAME STREET, STREE
				-
R	-7	-7 58	2, 8, 18, 7	1

2marks

4marks

group you have named.

(b). Describe and explain the trend in reactivity of the elements in this group.

15(a). State Hund's rule of maximum multiplicity and illustrate it using an oxygen atom.

- (b). write the possible sets of quantum numbers that can be used to define the electrons in the 2p subshell of a Nitrogen atom.

 2 marks
- (c). what is the significance of magnetic quantum number?

1 mark

SECTION C

(<u>Choose only two questions from this section and write your answers in the separate answer booklet provided</u>).

16(a). Define the term ionisation energy.

2marks

2marks

2marks

3marks

Table shows the first ionization energies of period 3 elements.

Element	Na	Mg	Al	Si	Р	S	CI	Ar
I.E/ kJ mol ⁻	495	745	587	791	1060	1000	1260	1530

(b). Plot a graph to show variation of first ionization energy with atomic number fo	r period 3			
elements.	4marks			
(c). State and explain the general trend of 1st I.E across period 3.	3marks			
(d). Explain the anomalies observed between				
i) Mg and Al	3marks			
ii) P and S	3marks			
17(a). Explain with examples the meaning of the terms:	3			
i. Hydrogen bonding	3marks			
ii. Coordinate bonding	3marks			
(b). Describe using lewis symbols how a carbondioxide molecule is formed from atoms of it	s constituent			
elements.	3marks			
(c). Explain how the particles in a piece of aluminium metal are held together and why the	shape of the			
metal can be changed without it breaking.	4marks			
(d). Give two differences between covalent and ionic compounds.	2marks			
18(a)(i). Beryllium is a group 2 element but is not an alkaline earth metal. Explain.	3marks			
(ii). Write equation(s) showing the reaction of Calcium with air.				
(b)(i). What is a transition element?	2marks			

(c). Give any 3 characteristic properties of transition elements. END

(iii). Explain why Zn is not considered a transition element?

(ii). Write the electronic configurations of Cr (z=24) and Zn (z=30).