Table of Contents

Animation Math Review: Self-assessment

Name:

Trigonometry

Vectors

Matrices

Polynomials

Animation Math Review: Self-assessment

Name:

Due September 9

Use the questions below to identify any topics you should review. See the <u>week 01 notes for background information on these topics</u>.

Trigonometry

Consider the point **p** and angle θ below, where **p** is a distance of 1 unit from the origin and θ is 45 degrees. What is the coordinate of **p**? Hint: what are the values of a and b in terms of θ ?

Consider the point p_1 and angle $heta_1$ below. Suppose $p_1=(2,2,0)^T$. What is the value of $heta_1$? Hint: Use tangent.

Consider the point p_2 and angle θ_2 above. Suppose $p_2=(3,-2,0)^T$. What is the value of θ_2 ? Hint: Use tangent.

Vectors

A **vector** is an n-tuple of real numbers. In this class, we will work with 2D, 3D, and 4D vectors. Suppose we have a vector $\mathbf{u} = (-2, 3, 0)^T$ and $\mathbf{v} = (-1, 4, 0)^T$.

 $\bullet\,$ Draw the vectors \boldsymbol{u} and $\boldsymbol{v},$ with their tails anchored at the origin below.

• What is the length of **u**?

• What is the distance between **u** and **v**?

• Compute and draw $\mathbf{u} + \mathbf{v}$.

• Compute and draw **u** - **v**

ullet Compute the cross product u imes v.

• Normalize the vector \mathbf{u} , e.g. compute $\frac{u}{\|u\|}$.

• Compute the dot product $u \cdot v$.

Matrices

Consider the following matrices

$$A=egin{bmatrix}1&3\-0.5&2\end{bmatrix},\quad B=egin{bmatrix}-3&0\1&2\end{bmatrix},\quad C=egin{bmatrix}1&3\-4&5\3&-7\end{bmatrix}$$

• What are the dimensions of A, B, and C?

• What is the transpose of the matric C?

• Compute the products AB and BA.

• Is it possible to multiply C times itself? Why not? What about CC^T?

ullet What is the product of AA^{-1} ?

Consider the following matrix

$$R = egin{bmatrix} cos(30) & sin(30) & 0 \ -sin(30) & cos(30) & 0 \ 0 & 0 & 1 \end{bmatrix}$$

• Suppose we have a vector $\mathbf{u} = (1,0,0)^T$. Draw \mathbf{u} below. Then multiple \mathbf{u} by \mathbf{R} and draw $\mathbf{R}\mathbf{u}$.

Polynomials

Consider the polynomial $p(t)=9t^3+6t^2$.

ullet What is the degree of p(t)?

• What is the derivative of p(t)?

• What is the value of p(t) when t = -1?

Let
$$B_0(t)=(t-1)^2$$
 and $B_1=t-2$.

- ullet Compute an expression for $p(t)=B_0(t)+B_1(t)$ and re-arrange the terms into standard form
 - 0

Standard form has the following pattern: $a_nt^n+\ldots+a_2t^2+at+a_0$.

Last updated 2021-09-01 18:12:12 -0400