1. Introduction

For the dog bone fatigue, find the safety factor and the number of repetitive loads before fatigue failure (Life) for the following four cases. For cases 1, 2, and 3, compare the analytical results with the Goodman theory. In this case, a new SS400 material is created and used for the analysis (E=200GPa, v=0.3, tensile strength 400MPa, yield strength 250MPa, endurance limit at laboratory condition Se=200MPa at 100 cycles) Apply the fatigue strength factor = 0.50 considering $C_f C_r C_s C_t$ values at the service condition.

2. Geometry Design (CATIA)

Figure 1. Dog-bone Geometry

3. Material (SS400)

Figure 2. Material Settings

4. Experimental Condition

Used Material	SS400		
Mesh	0.5mm		
Pressure	25Mpa		
Solution	Total Deformation		
	Equivalent (Von-mises) Stress		
	Stress Tool	Safety Factor	
	Fatigue Tool	Fatigue Strength Factor	$K_f = 0.5$
		Loading Scale	1.0
		Analysis Type	Stress Life
		Loading Type	 Fully Reversed, Zero-based, Ratio (-0.5 based) History data
		Mean Stress Theory	Good-man Equivalent Von-mises

Table 1. Simulation Conditions

5. Result

Figure 3. Total Deformation

Figure 4. Equivalent Von-Mises Stress

Figure 5. Safety Factor

6. Investigation on Fatigue Type (Goodman)

① Fully Reversed / Fatigue Safety Factor for 10⁶ Cycles / 10⁶ Cycles for Infinite Life

Figure 6-1. Fully Reversed Load Curve

Figure 6-2. Life

Figure 6-3. Safety Factor

Zero-Based / Fatigue Safety Factor for 10⁶ Cycles / 10⁶ Cycles for Infinite Life

Figure 7-1. Zero-Based Load Curve

Figure 7-2. Life

Figure 7-3. Safety Factor

3 Ratio / -0.5 Based / Fatigue Safety Factor for 10⁶ Cycles / 10⁶ Cycles for Infinite Life

Figure 8-1. Ratio Load Curve

Figure 8-2. Life

Figure 8-3. Safety Factor

History Data / SAE Bracket History / 10⁹ Cycles for Infinite Life / 100 Blocks

Figure 9-1. History Data Load Curve

Figure 9-2. Life

Figure 9-3. Safety Factor

7. Theroical Result (Goodman)

Figure 10.1 Various Load Curve

$$\frac{\sigma_a}{\sigma_e} + \frac{\sigma_m}{\sigma_{ut}} = \frac{1}{N}$$

$$\sigma_e = C_f C_r C_s C_t \left(\frac{1}{K_f}\right) \sigma'_e = 0.5 \times 0.5 \times \sigma_{ut} = 100 \ [Mpa]$$

Figure 10-1. Stress Concentration Factor Curve

$$\frac{w}{h} = 3.0, \qquad \frac{r}{h} = 0.6, \quad K = 1.38$$

$$\sigma_{avg} = \frac{\sigma \times A'}{A} = \frac{25 \times 10^6 \times 0.75 \times 15 \times 10^{-6}}{0.75 \times 5 \times 10^{-6}} = 75[Mpa]$$

$$\sigma_{max} = K \times \sigma_{avg} = 103.5 [Mpa]$$

1. Fully Reversed

$$\frac{\sigma_a}{\sigma_e} + \frac{\sigma_m}{\sigma_{ut}} = \frac{103.5}{100} + \frac{0}{400} = 1.035$$

$$Safety\ factor = 0.966$$

2. Zero-Based

$$\frac{\sigma_a}{\sigma_e} + \frac{\sigma_m}{\sigma_{ut}} = \frac{103.5/2}{100} + \frac{103.5/2}{400} = 0.647$$

$$Safety\ factor = 1.546$$

3. Ratio-Based

$$R = \frac{\sigma_{min}}{\sigma_{max}} = -0.5$$

$$\sigma_{min} = -0.5 \times 103.5 \times 10^{6} = -51.75 \ [Mpa]$$

$$\sigma_{m} = \frac{\sigma_{max} + \sigma_{min}}{2} = \frac{103.5 - 51.75}{2} = 25.875 \ [Mpa]$$

$$\sigma_{a} = 103.5 - 25.875 = 77.625 \ [Mpa]$$

$$\frac{\sigma_{a}}{\sigma_{e}} + \frac{\sigma_{m}}{\sigma_{ut}} = \frac{77.625}{100} + \frac{25.875}{400} = 0.841$$

$$Safety \ factor = 1.189$$

8. Comparison of Theory and Simulation Values

SF	Simulation (Ansys)	Theory
Fully Reversed	0.92215	0.966
Zero Based	1.4754	1.546
Ratio Based	1.135	1.189
History Data	1.7761E-3	X

Table 2. Results of Ansys and Theory