Team notebook

Universidad Nacional de Colombia

April 5, 2024

${\bf Contents}$

1	Data	a structures	1
	1.1	Centroid decomposition	1
	1.2	Fenwick tree	1
	1.3	Heavy light decomposition	1
	1.4	Iterative Segment Tree	2
	1.5	Mo's	2
	1.6	Order statistics	2
	1.7	Persistent segment tree	2
	1.8	Rmq	3
	1.9	Sack	3
	1.10	Segment tree 2D	3
	1.11	Treap	4
	1.12	lichaor	4
2	Dp (optimization	5
	2.1	Convex hull trick dynamic	5
	2.2	Convex hull trick	5
	2.3	Divide and conquer	6
	2.4	Knuth	6

3	For	mulas	6		6.8
	3.1	Burnside's lemma	6		6.9
	3.2	Combinatorics	6		6.1
	3.3	Law of sines and cosines	6		6.1
	3.4	Pythagorean triples $(a^2 + b^2 = c^2)$	6		6.1
4	Geo	ometry	6		6.1 6.1
	4.1	2DLibrary	6		6.1
	4.2	Bentley-Ottmann	8		0.1
	4.3	Closest Points	8	7	Ne
	4.4	Halfplane Intersection	9	'	7.1
	4.5	Min Circle	9		$7.1 \\ 7.2$
	4.6	Miscellaneous	10		7.3
					7.4
5	Gra	phs	11		$7.4 \\ 7.5$
	5.1	2-satisfiability	11		
	5.2	Erdos–Gallai theorem	11		7.6
	5.3	Eulerian path	11		7.7
	5.4	Number of spanning trees	12	8	Qt.
	5.5	Scc	12		Sti
	5.6	Tarjan tree	12		8.1
					8.2
6	Ma	h	13		8.3
	6.1	Berlekamp-Massey	13		8.4
	6.2	Chinese remainder theorem	14		8.5
	6.3	Constant modular inverse	14		8.6
	6.4	Extended euclides	14		8.7
	6.5	FWHT	14		8.8
	6.6	Fast Fourier transform module	14		8.9
	6.7	Fast fourier transform	15		8.1

	6.8	Gauss jordan	
	6.9	Lagrange Interpolation	
	6.10	Linear diophantine	
	6.11	Matrix multiplication	
	6.12	Miller rabin	
	6.13	Pollard's rho	
	6.14	Simplex	
		Simpson	
7	Net	work flows 18	
	7.1	Blossom	
	7.2	Dinic	
	7.3	Hopcroft karp	
	7.4	Maximum bipartite matching 20	
	7.5	Maximum flow minimum cost 20	
	7.6	Stoer Wagner	
	7.7	Weighted matching 21	
8	Stri	ngs 21	
	8.1	Aho corasick	
	8.2	Hashing	
	8.3	Kmp automaton	
	8.4	Kmp	
	8.5	Manacher	
	8.6	Minimun expression 23	
	8.7	Palindromic Tree 23	
	8.8	Suffix array	
	8.9	Suffix automaton 23	
	8.10	Z algorithm	

9	\mathbf{Util}	lities	${\bf 24}$
	9.1	Makefile	24
	9.2	Pragma optimizations	24
	9.3	Random	24
	9.4	gen	24
	9.5	$\mathrm{test} \ldots \ldots \ldots \ldots \ldots$	24
	9.6	vimrc	25

1 Data structures

1.1 Centroid decomposition

```
namespace decomposition {
 int cnt[N], depth[N], f[N]; // if depth != 0
     means was removed from the tree while
     decomposing
 int dfs (int u, int p = -1) {
   cnt[u] = 1:
   for (int v : g[u])
     if (!depth[v] && v != p)
       cnt[u] += dfs(v, u);
   return cnt[u];
 int get_centroid (int u, int r, int p = -1) {
   for (int v : g[u])
     if (!depth[v] && v != p && cnt[v] > r)
       return get_centroid(v, r, u);
   return u;
 }
 // depth of all tree's centroid is 1 and father
     is 0 (you can set up this when call this)
 int decompose (int u, int d = 1) {
   int centroid = get_centroid(u, dfs(u) >> 1);
   depth[centroid] = d; // remove this node from
       component
   /// add here magic function to count
       properties on paths
   for (int v : g[centroid])
     if (!depth[v])
       f[decompose(v, d + 1)] = centroid;
   return centroid;
```

```
}
int lca (int u, int v) { // lca on centroid tree
  for (; u != v; u = f[u])
    if (depth[v] > depth[u])
      swap(u, v);
  return u;
}
```

1.2 Fenwick tree

1.3 Heavy light decomposition

```
/// Complexity: O(|N|)
int idx; /// top is father of the chain, up is
    father of a node
vector<int> len, depth, in, out, top, up;
int dfs_len( int u, int p, int d ) {
    up[u] = p; depth[u] = d;
    int sz = 1;
    for( auto& v : g[u] ) {
        if( v == p ) continue;
        sz += dfs_len(v, u, d+1);
        if(len[ g[u][0] ] <= len[v]) swap(g[u][0], v);
    }
    return len[u] = sz;</pre>
```

```
void dfs_hld( int u, int p = 0 ) {
 in[u] = idx++;
 narr[ in[u] ] = val[u]; /// to initialize the
      segment tree
 for( auto& v : g[u] ) {
   if( v == p ) continue;
   top[v] = (v == g[u][0] ? top[u] : v);
   dfs_hld(v, u);
 out[u] = idx-1;
void update_hld( int u, int val ) {
 update_DS(in[u], val);
data query_hld( int u, int v ) {
 data val = NULL_DATA;
 while( top[u] != top[v] ) {
   if( depth[ top[u] ] < depth[ top[v] ] )</pre>
       swap(u, v);
   val = val+query_DS(in[ top[u] ], in[u]);
   u = up[ top[u] ];
 if( depth[u] > depth[v] ) swap(u, v);
 val = val+query_DS(in[u], in[v]);
 return val;
/// when updates are on edges use:
/// val[v] is cost_edge(up[v], v), mind root's
/// if(depth[u] == depth[v]) return val;
/// val = val+query_DS(in[u] + 1, in[v]);
}
void build(int n, int root) {
 top = len = in = out = up = depth =
      vector<int>(n+1):
 idx = 1; /// DS index [1, n]
 dfs_len(root, root, 0);
 top[root] = root;
 dfs_hld(root, root);
 /// initialize DS
```

1.4 Iterative Segment Tree

```
/// Complexity: O(|N|*log|N|)
struct info { int val; };
info merge(info &a, info &b) {
 return {a.val + b.val};
info NEUTRAL = {0};
struct segtree { // for point update and range
    queries, supports left to right merge
 int n; /// 0-indexed
 vector<info> t;
 segtree(int n, vector<int> &v) : n(n), t(2*n) {
   for(int i = 0; i < n; i++) t[i+n] = {v[i]};
   for(int i = n-1; i > 0; --i) t[i] =
        merge(t[i<<1], t[i<<1|1]):
 }
 info query(int 1, int r) {
   info ans_1 = NEUTRAL, ans_r = NEUTRAL;
   for(1 += n, r += n+1; 1 < r; 1 >>= 1, r >>=
       1) {
     if(1\&1) ans_1 = merge(ans_1, t[1++]);
     if(r&1) ans_r = merge(t[--r], ans_r);
   return merge(ans_1, ans_r);
 void modify(int p, int x) {
   for(t[p += n] = \{x\}; p >>= 1; ) t[p] =
        merge(t[p<<1], t[p<<1|1]);
 }
};
```

1.5 Mo's

```
/// Complexity: O(|N+Q|*sqrt(|N|)*|ADD/DEL|)
// Requires add(), delete() and get_ans()
struct query {
  int 1, r, idx;
  query (int 1, int r, int idx) : l(l), r(r),
      idx(idx) {}
};
```

```
int S; // s = sqrt(n)
bool cmp (const query &a, const query &b) {
   int A = a.1/S, B = b.1/S;
   if (A != B) return A < B;
   return A & 1 ? a.r > b.r : a.r < b.r;
}
S = sqrt(n); // n = size of array
sort(q.begin(), q.end(), cmp);
int 1 = 0, r = -1;
for (int i = 0; i < q.size(); ++i) {
   while (r < q[i].r) add(++r);
   while (1 > q[i].l) add(--l);
   while (r > q[i].r) del(r--);
   while (1 < q[i].l) del(1++);
   ans[q[i].idx] = get_ans();
}</pre>
```

1.6 Order statistics

```
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
using namespace __gnu_pbds;
typedef tree<int, null_type, less<int>,
    rb_tree_tag,
tree_order_statistics_node_update> ordered_set;
//methods
tree.find_by_order(k) //returns pointer to the
    k-th smallest element
tree.order_of_key(x) //returns how many elements
    are smaller than x
//if element does not exist
tree.end() == tree.find_by_order(k) //true
```

1.7 Persistent segment tree

```
/// Complexity: O(|N|*log|N|)
struct node {
  node *left, *right;
  int v;
  node() : left(this), right(this), v(0) {}
```

3

1.8 Rmq

```
/// Complexity: O(|N|*log|N|)
struct rmq {
 vector<vector<int>> table;
  rmg(vector<int> &v) : table(20,
      vector<int>(v.size())) {
   int n = v.size();
   for (int i = 0; i < n; i++) table[0][i] =</pre>
        v[i]:
   for (int j = 1; (1<<j) <= n; j++)
     for (int i = 0; i + (1 << j-1) < n; i++)
       table[j][i] = min(table[j-1][i],
            table[j-1][i + (1 << j-1)]);
  int query(int a, int b) {
   int j = 31 - __builtin_clz(b-a+1);
   return min(table[j][a], table[j][b-(1<<j)+1]);</pre>
};
```

1.9 Sack

```
/// Complexity: |N|*log(|N|)
int dfs(int u, int p = -1) {
  who[t] = u; fr[u] = t++;
```

```
4
```

```
pii best = \{0, -1\};
  int sz = 1;
 for(auto v : g[u])
   if(v != p) {
     int cur_sz = dfs(v, u);
     sz += cur sz:
     best = max(best, {cur_sz, v});
  to[u] = t-1;
  big[u] = best.second;
 return sz;
void add(int u, int x) { /// x == 1 add, x == -1
    delete
  cnt[u] += x;
void go(int u, int p = -1, bool keep = true) {
 for(auto v : g[u])
   if(v != p && v != big[u])
     go(v, u, 0);
  if(big[u] != -1) go(big[u], u, 1);
 /// add all small
 for(auto v : g[u])
   if(v != p && v != big[u])
     for(int i = fr[v]; i <= to[v]; i++)</pre>
       add(who[i], 1);
  add(u, 1):
  ans[u] = get(u);
  if(!keep)
   for(int i = fr[u]; i <= to[u]; i++)</pre>
      add(who[i], -1);
}
void solve(int root) {
 t = 0;
 dfs(root):
 go(root);
```

1.10 Segment tree 2D

```
/// Complexity: \log(|N|)^2 per operation struct info {
```

```
ll val:
};
info merge(info a, info b) {
 return {a.val > b.val ? a.val : b.val};
info NEUTRAL = {LLONG_MIN};
struct segtree_2d {
 int n, m; /// 0-indexed
 vector<vector<info>> t;
 segtree_2d(int n, int m) : n(n), m(m), t(2*n,
      vector<info>(2*m, NEUTRAL)) {}
  segtree_2d(int n, int m, vector<vector<info>>
      &v): n(n), m(m), t(2*n), vector<info>(2*m)
      NEUTRAL)) {
   for(int i = 0; i < n; i++)</pre>
     for(int j = 0; j < m; j++)</pre>
       t[i+n][j+m] = v[i][j];
   for(int i = 0; i < n; i++)</pre>
     for(int j = m-1; j; j--)
       t[i+n][j] = merge(t[i+n][j<<1],
           t[i+n][j<<1|1]);
   for(int i = n-1; i; i--)
     for(int j = 0; j < 2*m; j++)
       t[i][j] = merge(t[i << 1][j], t[i << 1|1][j]);
 info get(int x1, int y1, int x2, int y2) {
   info ans = NEUTRAL:
   vector<int> pos(2);
   for(x1 += n, x2 += n+1; x1 < x2; x1 >>= 1, x2
        >>= 1) {
     int q = 0;
     if(x1\&1) pos[q++] = x1++;
     if(x2\&1) pos[q++] = --x2;
     for(int i = 0; i < q; i++) {</pre>
       for(int t1 = m+y1, t2 = m+y2+1, id =
           pos[i]; t1 < t2; t1 >>= 1, t2 >>= 1) {
         if(t1\&1) ans = merge(ans, t[id][t1++]);
         if(t2\&1) ans = merge(ans, t[id][--t2]);
     }
   }
   return ans;
  void update(int x, int y, info v) {
```

```
t[x+n][y+m] = v;
for(int j = y+m; j > 1; j >>= 1)
    t[x+n][j>>1] = merge(t[x+n][j], t[x+n][j^1]);
for(int i = x+n; i > 1; i >>= 1)
    for(int j = y+m; j; j >>= 1)
     t[i>>1][j] = merge(t[i][j],t[i^1][j]);
}
};
```

1.11 Treap

```
/// Complexity: log(|N|) per operation
uniform_int_distribution<11> rnd(0, LLONG_MAX);
typedef long long T;
struct treap {
 treap *left, *right, *father;
  ll prior:
  int sz, idx;
 T value, lazy_sum, sum;
  treap(T x) {
   left = right = father = NULL;
   prior = rnd(rng);
   sz = 1;
   value = sum = x;
   lazy_sum = 0;
};
int cnt(treap* t) { return !t ? 0 : t->sz; }
T sum(treap* t) { return !t ? 0 : t->sum; }
T value(treap* t) { return !t ? 0 : t->value; }
void propagate(treap* t) {
 if(t && t->lazy_sum) {
   if(t->left) t->left->lazy_sum += t->lazy_sum;
   if(t->right) t->right->lazy_sum +=
        t->lazy_sum;
   t->sum += cnt(t) * t->lazy_sum;
   t->value += t->lazy_sum;
   t->lazy_sum = 0;
}
void update(treap *t) {
 propagate(t->left);
```

```
propagate(t->right);
 t->sz = cnt(t->left) + cnt(t->right) + 1;
 t->sum = sum(t->left) + sum(t->right) +
      value(t):
 if(t->left) t->left->father = t;
 if(t->right) t->right->father = t;
}
void add_value(treap *t, T v) {
 t->value += v;
 update(t):
void add_lazy_sum(treap *t, T v) {
 t->lazv_sum += v;
 update(t):
pair<treap*, treap*> split(treap* t, int
    left count) {
 if(!t) return {NULL, NULL};
 propagate(t);
 if(cnt(t->left) >= left_count) {
   auto got = split(t->left, left_count);
   t->left = got.second;
   update(t);
   return {got.first, t};
 } else {
   left_count = left_count-cnt(t->left)-1;
   auto got = split(t->right, left_count);
   t->right = got.first;
   update(t):
   return {t, got.second};
 }
}
treap* merge(treap *s, treap *t) {
 if(!s) return t;
 if(!t) return s:
 propagate(s);
 propagate(t);
 if(s->prior <= t->prior) {
   s->right = merge(s->right, t);
   update(s);
   return s;
 } else {
   t->left = merge(s, t->left);
   update(t);
```

```
return t:
 }
};
void print(treap *x) {
 if(!x) return;
 propagate(x);
 print(x->left);
 cout << value(x) << ", ";</pre>
 print(x->right);
int find_left_count(treap* root, treap* x) { ///
    x not inclusive
 if(!x) return 0;
 int ans = cnt(x->left):
 while(x != root) {
   treap *par = x->father;
   if(par->right == x) ans += cnt(par->left)+1;
   x = par;
 }
 return ans;
treap *root = NULL;
```

1.12 lichaor

```
typedef long long type;
struct line {
 type m, b;
 type eval (type x) {
   return m * x + b;
 }
/// M = 4 * (number of updates) * (log R) where R
    is the range of the segtree
/// oo is the max abs value that the function may
    take
const type R = 1e9+5;
const int M = 1e7;
const type oo = 2e18;
struct li chao {
 /// see comments for min
 int nodes;
```

```
line lines[M]:
int lf[M], rg[M];
void ini () {
 nodes = 0:
 memset(lf, -1, sizeof lf);
 memset(rg, -1, sizeof rg);
 lines[0] = \{0, -\infty\}; /// \text{ change to } \{0, \infty\};
int add_line (int node, type 1, type r, line
    nw) {
 if (node == -1) {
   lines[++nodes] = nw;
   return nodes;
 type m = (1 + r) >> 1;
 bool lef = nw.eval(1) > lines[node].eval(1):
      ///change > to <
 bool mid = nw.eval(m) > lines[node].eval(m);
      ///change > to <
 if (mid) swap(nw, lines[node]);
 lines[++nodes] = lines[node];
 lf[nodes] = lf[node];
 rg[nodes] = rg[node];
 int sv = nodes:
 if (r == 1) return sv;
 if (lef != mid) lf[sv] = add_line(lf[node],
      1. m. nw):
 else rg[sv] = add_line(rg[node], m + 1, r,
 return sv;
type get(int node, type 1, type r, type x) {
 if (node == -1) return -oo; //change to oo
 type m = (1 + r) / 2;
 if(1 == r) {
     return lines[node].eval(x);
 else if(x < m) 
     return max(lines[node].eval(x),
         get(lf[node], 1, m, x)); ///change max
         to min
 } else {
     return max(lines[node].eval(x),
         get(rg[node], m + 1, r, x)); ///change
         max to min
```

```
}
}
};
```

2 Dp optimization

2.1 Convex hull trick dynamic

```
/// Complexity: O(|N|*log(|N|))
typedef 11 T;
const T is_query = -(1LL<<62);</pre>
struct line {
       T m. b:
       mutable multiset<line>::iterator it, end;
       bool operator < (const line &rhs) const {</pre>
               if(rhs.b != is_query) return m <</pre>
                   rhs.m:
               auto s = next(it);
               if(s == end) return 0:
               return b - s->b < (long
                   double)(s->m - m) * rhs.m;
       }
};
struct CHT : public multiset<line> {
       bool bad(iterator y) {
               auto z = next(y);
               if(v == begin()) {
                      if(z == end()) return false;
                      return y->m == z->m && y->b
                           \leq z->b:
               auto x = prev(y);
               if(z == end()) return y->m == x->m
                   && y->b == x->b;
               return (long double)(x->b -
                   y->b)*(z->m - y->m) >= (long)
                   double) (y->b - z->b)*(y->m -
                   x->m);
       }
       void add(T m, T b) {
               auto y = insert({m, b});
```

```
y->it = y; y->end = end();
    if(bad(y)) { erase(y); return; }
    while(next(y) != end() &&
        bad(next(y))) erase(next(y));
    while(y != begin() &&
        bad(prev(y)))erase(prev(y));
}
T eval(T x) { /// for maximum
    auto 1 = *lower_bound({x,
        is_query});
    return 1.m*x+1.b;
}
}; // for minimum, you must change (b, m) to (-b,
    -m)
```

2.2 Convex hull trick

```
struct line {
 ll m, b;
 11 eval (11 x) { return m*x + b; }
struct cht {
 vector<line> lines;
 vector<lf> inter;
 int n;
 lf get_inter(line &a, line &b) { return lf(b.b
     -a.b) / (a.m - b.m); }
 inline bool ok(line &a, line &b, line &c) {
   return lf(a.b-c.b) / (c.m-a.m) > lf(a.b-b.b)
       / (b.m-a.m):
 void add(line 1) {
   n = lines.size();
   if(n && lines.back().m == 1.m &&
       lines.back().b >= 1.b) return:
   if(n == 1 && lines.back().m == 1.m &&
       lines.back().b < 1.b) lines.pop_back(),</pre>
   while (n \ge 2 \&\& !ok(lines[n-2], lines[n-1],
       1)) {
     n--:
     lines.pop_back(); inter.pop_back();
```

```
}
lines.push_back(1); n++;
if(n >= 2)
    inter.push_back(get_inter(lines[n-1],
        lines[n-2]));
}
ll get_max(lf x) {
    if(lines.size() == 0) return LLONG_MIN;
    if(lines.size() == 1) return lines[0].eval(x);
    int pos = lower_bound(inter.begin(),
        inter.end(), x) - inter.begin();
    return lines[pos].eval(x);
}
}; // for max: order slops non-decreasing, for
    min: order slops non-descending
```

2.3 Divide and conquer

```
/// Complexity: O(|N|*|K|*log|N|)
/// ****** Theory ******
/// dp[k][i]=min(dp[k1][j]+C[i][j]), j < i
/// opt[k][i] opt[k][i+1].
/// A sufficient (but not necessary) condition
    for above is
/// C[a][c] + C[b][d] C[a][d] + C[b][c]
    where a < b < c < d.
void go(int k, int l, int r, int opl, int opr) {
 if(1 > r) return;
 int mid = (1 + r) / 2, op = -1;
 11 &best = dp[mid][k];
 best = INF;
 for(int i = min(opr, mid); i >= opl; i--) {
   ll cur = dp[i][k-1] + cost(i+1, mid);
   if(best > cur) {
     best = cur;
     op = i;
 }
 go(k, l, mid-1, opl, op);
 go(k, mid+1, r, op, opr);
```

7

2.4 Knuth

```
/// Complexity: O(|N|^2)
/// ****** Theory ******
/// dp[i][j] = min(dp[i][k]+dp[k][j])+C[i][j],
    i<k<i
/// where opt[i][j1]
                          opt[i][i] opt[i+1][i].
/// sufficient (but not necessary) condition for
    above is
/// C[a][c] + C[b][d]
                            C[a][d] + C [b][c]
    and C[b][c] C[a][d] where
                abcd
for(int i = 1; i <= n; i++) {</pre>
 opt[i][i] = i;
 dp[i][i] = sum[i] - sum[i-1];
for(int len = 2; len <= n; len++)</pre>
 for(int l = 1; l+len-1 <= n; l++) {</pre>
   int r = 1 + len - 1:
   dp[1][r] = oo;
   for(int i = opt[1][r-1]; i <= opt[1+1][r];</pre>
        i++) {
     ll cur = dp[l][i-1] + dp[i+1][r] + sum[r] -
          sum[1-1];
     if(cur < dp[l][r]) {</pre>
       dp[1][r] = cur;
       opt[1][r] = i;
     }
   }
 }
```

3 Formulas

3.1 Burnside's lemma

$$\#orbitas = \frac{1}{|G|} \sum_{g \in G} |fix(g)|$$

1. **G**: Las acciones que se pueden aplicar sobre un elemento, incluyendo la identidad, eg. Shift 0 veces, Shift 1 veces...

- 2. **Fix(g)**: Es el número de elementos que al aplicar *g* vuelven a ser ser ellos mismos
- 3. Órbita: El conjunto de elementos que pueden ser iguales entre si al aplicar alguna de las acciones de G

3.2 Combinatorics

• Hockey-stick identity $\sum_{i=r}^{n} {i \choose r} = {n+1 \choose r+1}$

3.3 Law of sines and cosines

- a, b, c: lenghts, A, B, C: opposite angles, d: circumcircle
- $\frac{a}{\sin(A)} = \frac{b}{\sin(B)} = \frac{c}{\sin(C)} = d$
- $c^2 = a^2 + b^2 2ab\cos(C)$

3.4 Pythagorean triples $(a^2 + b^2 = c^2)$

- Given an arbitrary pair of integers m and n with m > n > 0: $a = m^2 n^2, b = 2mn, c = m^2 + n^2$
- The triple generated by Euclid's formula is primitive if and only if m and n are coprime and not both odd.
- To generate all Pythagorean triples uniquely: $a = k(m^2 n^2), b = k(2mn), c = k(m^2 + n^2)$

4 Geometry

4.1 2DLibrary

```
typedef long double lf;
const lf EPS = 1e-8L, INF = 5e9;
```

```
const lf E0 = 0.0L;//Keep = 0 for integer
    coordinates, otherwise = EPS
enum {OUT,IN,ON};
struct pt {
 lf x,y;
 pt(){}
 pt(lf a, lf b): x(a), y(b){}
  pt operator - (const pt &q ) const {
   return \{x - q.x, y - q.y\};
  pt operator + (const pt &q ) const {
   return \{x + q.x, y + q.y\};
  pt operator * (const lf &t ) const {
   return {x * t , y * t };
  pt operator / (const lf &t ) const {
   return {x / t , y / t };
  bool operator < ( const pt & q ) const {</pre>
   if (fabsl(x - q.x) > E0) return x < q.x;
   return y < q.y;</pre>
  }
  void normalize() {
   lf norm = hypotl( x, y );
   if( fabsl( norm ) > EPS )
     x /= norm, y /= norm;
 }
}:
pt rot90( pt p ) { return { -p.y, p.x }; }
pt rot( pt p, lf w ) {
 return { cosl(w) * p.x - sinl(w) * p.y,
      sinl(w) * p.x + cosl(w) * p.v };
lf norm2 ( pt p ) { return p.x * p.x + p.y * p.y;
lf dis2 ( pt p, pt q ) { return norm2(p-q); }
lf norm ( pt p ) { return hypotl ( p.x, p.y ); }
lf dis( pt p, pt q ) { return norm( p - q ); }
lf dot( pt p, pt q ) { return p.x * q.x + p.y *
    q.v; }
lf cross( pt p, pt q ) { return p.x * q.y - q.x *
    p.y ; }
```

```
lf orient( pt a, pt b, pt c ) { return cross( b -
    a, c - a); };
bool in_angle( pt a, pt b, pt c, pt p ) {
 //assert( fabsl( orient( a, b, c ) ) > E0 );
 if( orient( a, b, c ) < -E0 )</pre>
   return orient( a, b, p ) >= -E0 || orient( a,
        c, p) \leq E0;
 return orient(a, b, p) >= -E0 && orient(a,
      c, p) \le E0;
}
struct line {
 pt nv;
 lf c;
 line( pt _nv, lf _c ) : nv( _nv ), c( _c ) {}
 line (pt p, pt q) {
   nv = \{ p.y - q.y, q.x - p.x \};
   c = -dot(p, nv);
 lf eval( pt p ) { return dot( nv, p ) + c; }
 lf distance2( pt p ) {
   return eval( p ) / norm2( nv ) * eval( p );
 lf distance( pt p ) {
   return fabsl( eval( p ) ) / norm( nv );
 pt projection( pt p ) {
   return p - nv * ( eval( p ) / norm2( nv ) );
 }
}:
pt lines_intersection( line a, line b ) {
 lf d = cross( a.nv, b.nv );
 //assert( fabsl( d ) > E0 );
 lf dx = a.nv.v * b.c - a.c * b.nv.v;
 lf dy = a.c * b.nv.x - a.nv.x * b.c;
 return { dx / d, dy / d };
}
line bisector( pt a, pt b ) {
 pt nv = (b - a), p = (a + b) * 0.5L;
 lf c = -dot(nv, p);
 return line( nv, c );
struct Circle {
 pt center;
 lf r;
```

```
Circle( pt p, lf rad ) : center( p ), r( rad )
 Circle( pt p, pt q ) {
   center = (p + q) * 0.5L;
   r = dis(p, q) * 0.5L;
 Circle( pt a, pt b, pt c ) {
   line lb = bisector(a, b), lc = bisector(a,
       c ):
   center = lines_intersection( lb, lc );
   r = dis(a, center);
 int contains( pt &p ) {
   lf det = r * r - dis2(center, p);
   if( fabsl( det ) <= E0 ) return ON;</pre>
   return ( det > E0 ? IN : OUT );
 }
vector< pt > circle_line_intersection( Circle c,
    line 1) {
 lf h2 = c.r * c.r - 1.distance2(c.center);
 if( fabsl( h2 ) < EPS ) return { 1.projection(</pre>
      c.center ) };
 if( h2 < 0.0L ) return {};</pre>
 pt dir = rot90( 1.nv );
 pt p = 1.projection( c.center );
 lf t = sqrtl( h2 / norm2( dir ) );
 return { p + dir * t, p - dir * t };
vector< pt > circle_circle_intersection( Circle
    c1, Circle c2 ) {
 pt dir = c2.center - c1.center;
 lf d2 = dis2( c1.center, c2.center );
 if( d2 <= E0 ) { //assert( fabsl( c1.r - c2.r )</pre>
      > E0 ):
   return {};
 1f td = 0.5L * (d2 + c1.r * c1.r - c2.r * c2.r
      );
 1f h2 = c1.r * c1.r - td / d2 * td:
 pt p = c1.center + dir * (td / d2);
 if( fabsl( h2 ) < EPS ) return { p };</pre>
 if( h2 < 0.0L ) return {};</pre>
 pt dir_h = rot90(dir) * sqrtl( h2 / d2 );
```

```
return { p + dir_h, p - dir_h };
vector< pt > convex_hull( vector< pt > v ) {
 sort( v.begin(), v.end() );//remove repeated
      points if needed
 const int n = v.size();
 if(n < 3) return v;
 vector< pt > ch(2 * n);
 int k = 0:
 for( int i = 0; i < n; ++ i ) {</pre>
   while (k > 1 \&\& orient(ch[k-2], ch[k-1],
       v[i] ) <= E0 )
     --k:
   ch[k++] = v[i]:
 const int t = k:
 for( int i = n - 2; i >= 0; -- i ) {
   while (k > t \&\& orient(ch[k-2], ch[k-1],
       v[i] ) <= E0 )
     --k;
   ch[k++] = v[i];
 ch.resize( k - 1 );
 return ch:
vector<pt> minkowski( vector<pt> P, vector<pt> Q
    ) {
 rotate( P.begin(), min_element( P.begin(),
      P.end() ), P.end() ):
 rotate( Q.begin(), min_element( Q.begin(),
      Q.end() ), Q.end() );
 P.push_back(P[0]), P.push_back(P[1]);
 Q.push_back(Q[0]), Q.push_back(Q[1]);
 vector<pt> ans;
 size_t i = 0, j = 0;
 while(i < P.size() - 2 || j < Q.size() - 2) {</pre>
     ans.push_back(P[i] + Q[j]);
     lf dt = cross(P[i + 1] - P[i], Q[j + 1] -
          Q[i]);
     if(dt >= E0 && i < P.size() - 2) ++i;</pre>
     if(dt <= E0 && j < Q.size() - 2) ++j;</pre>
 return ans;
```

```
vector< pt > cut( const vector< pt > &pol, line 1
    ) {
 vector< pt > ans;
 for( int i = 0, n = pol.size(); i < n; ++ i ) {</pre>
   lf s1 = 1.eval( pol[i] ), s2 = 1.eval(
        pol[(i+1)%n]);
   if( s1 >= -EPS ) ans.push_back( pol[i] );
   if( ( s1 < -EPS && s2 > EPS ) || ( s1 > EPS
        && s2 < -EPS ) ) {
     line li = line( pol[i], pol[(i+1)%n]);
     ans.push_back( lines_intersection( 1, li ) );
 }
 return ans:
int point_in_polygon( const vector< pt > &pol,
    const pt &p ) {
 int wn = 0;
 for( int i = 0, n = pol.size(); i < n; ++ i ) {</pre>
   lf c = orient(p, pol[i], pol[(i+1)\%n]);
   if( fabsl( c ) <= E0 && dot( pol[i] - p,</pre>
        pol[(i+1)\%n] - p) \le E0) return ON;
   if( c > 0 && pol[i].y <= p.y + E0 &&</pre>
        pol[(i+1)\%n].y - p.y > E0) ++wn;
   if(c < 0 \&\& pol[(i+1)\%n].y \le p.y + E0 \&\&
        pol[i].y - p.y > E0 ) --wn;
 return wn ? IN : OUT;
int point_in_convex_polygon( const vector < pt >
    &pol, const pt &p ) {
 int low = 1, high = pol.size() - 1;
 while( high - low > 1 ) {
   int mid = ( low + high ) / 2;
   if( orient( pol[0], pol[mid], p ) >= -E0 )
       low = mid;
   else high = mid;
 if( orient( pol[0], pol[low], p ) < -E0 )</pre>
      return OUT;
 if( orient( pol[low], pol[high], p ) < -E0 )</pre>
      return OUT:
 if( orient( pol[high], pol[0], p ) < -E0 )</pre>
      return OUT;
```

```
if( low == 1 && orient( pol[0], pol[low], p )
        <= E0 ) return ON;
if( orient( pol[low], pol[high], p ) <= E0 )
        return ON;
if( high == (int) pol.size() -1 && orient(
        pol[high], pol[0], p ) <= E0 ) return ON;
return IN;
}</pre>
```

4.2 Bentley-Ottmann

```
struct seg {
   pt p, q;
   int id;
   lf get_y(double x) const {
       if (fabsl (p.x - q.x) < EPS) return p.y;</pre>
       return p.y + (q.y - p.y) * (x - p.x) /
            (q.x - p.x);
   }
};
bool operator<(const seg& a, const seg& b) {</pre>
   If x = max(min(a.p.x, a.q.x), min(b.p.x,
        b.q.x));
   return a.get_y(x) < b.get_y(x) - EPS;</pre>
} //Use where[id] = s.insert(nxt, a[id]) &
    s.erase(where[id]);
set<seg> s;
vector<set<seg>::iterator> where;
```

4.3 Closest Points

```
int mid = (1 + r) / 2;
  lf x_mid = v[mid].x;
  solve( 1, mid ):
  solve(mid + 1, r);
  vector< pt > aux;
  int p1 = 1, p2 = mid + 1;
  while ( p1 <= mid && p2 <= r ) {</pre>
   if( v[p1].y < v[p2].y ) aux.push_back(</pre>
        v[p1++]);
   else aux.push_back( v[p2++] );
  while( p1 <= mid ) aux.push_back( v[p1++] );</pre>
  while( p2 <= r ) aux.push_back( v[p2++] );</pre>
  vector < pt > nb;
  for( int i = 1; i <= r; ++ i ) {</pre>
   v[i] = aux[i-1];
   lf dx = (x_mid - v[i].x);
   if(dx * dx < d2)
     nb.push_back( v[i] );
 for( int i = 0; i < (int) nb.size(); ++ i ) {</pre>
   for( int k = i + 1; k < (int) nb.size(); ++</pre>
        k ) {
     lf dy = (nb[k].y - nb[i].y);
     if( dy * dy > d2 ) break;
     lf nd2 = dis2( nb[i], nb[k] );
     if( nd2 < d2 ) d2 = nd2, ans = {nb[i],}
          nb[k]}:
   }
 }
}:
solve( 0, v.size() -1 );
return ans;
```

4.4 Halfplane Intersection

```
struct Halfplane {
```

```
pt p, pq;
 lf angle;
 Halfplane() {}
 Halfplane(const pt& a, const pt& b) : p(a),
      pq(b - a) {
   angle = atan21(pq.y, pq.x);
  bool out(const pt& r) {
   return cross(pq, r - p) < -EPS;</pre>
 }
  bool operator < (const Halfplane& e) const {</pre>
   return angle < e.angle;</pre>
 friend pt inter(const Halfplane& s, const
      Halfplane& t) {
     lf alpha = cross((t.p - s.p), t.pq) /
          cross(s.pq, t.pq);
     return s.p + (s.pq * alpha);
 }
};
vector<pt> hp_intersect(vector<Halfplane>& H) {
 pt box[4] = { pt(INF, INF), pt(-INF, INF),
      pt(-INF, -INF), pt(INF, -INF) };
 for(int i = 0; i < 4; ++i) {
   Halfplane aux(box[i], box[(i+1) % 4]);
   H.push_back(aux);
  sort(H.begin(), H.end());
 deque<Halfplane> dq;
  int len = 0;
 for(int i = 0; i < int(H.size()); ++i ) {</pre>
   while (len > 1 && H[i].out(inter(dq[len-1],
        dq[len-2]))) {
     dq.pop_back();
     --len:
   while (len > 1 && H[i].out(inter(dq[0],
        dq[1]))) {
     dq.pop_front();
     --len:
   if (len > 0 && fabsl(cross(H[i].pq,
        dq[len-1].pq)) < EPS ) {
     if (dot(H[i].pq, dq[len-1].pq) < 0.0)</pre>
```

```
return vector<pt>();
   if (H[i].out(dq[len-1].p)) {
     dq.pop_back();
     --len:
    else continue:
  dq.push_back(H[i]);
 ++len:
}
while (len > 2 && dq[0].out(inter(dq[len-1],
    dq[len-2]))) {
 dq.pop_back();
  --len:
while (len > 2 && dq[len-1].out(inter(dq[0],
    dq[1]))) {
 dq.pop_front();
  --len:
if (len < 3) return vector<pt>();
vector<pt> ret(len);
for(int i = 0; i+1 < len; ++i )</pre>
 ret[i] = inter(dq[i], dq[i+1]);
ret.back() = inter(dq[len-1], dq[0]);
//remove repeated points if needed
return ret:
```

4.5 Min Circle

```
Circle min_circle( vector< pt > v ) {
  random_shuffle( v.begin(), v.end() );
  auto f2 = [&]( int a, int b ){
    Circle ans( v[a], v[b] );
    for( int i = 0; i < a; ++ i )
      if( ans.contains( v[i] ) == OUT )
      ans = Circle( v[i], v[a], v[b] );
  return ans;
};
auto f1 = [&]( int a ){</pre>
```

```
Circle ans( v[a], 0.0L );
  for( int i = 0; i < a; ++ i )
    if( ans.contains( v[i] ) == OUT )
      ans = f2( i, a );
  return ans;
};

Circle ans( v[0], 0.0L );
  for( int i = 1; i < (int) v.size(); ++ i )
    if( ans.contains( v[i] ) == OUT )
      ans = f1( i );

return ans;
}</pre>
```

4.6 Miscellaneous

```
lf part(pt a, pt b, T r) {
 lf l = abs(a-b);
 pt p = (b-a)/1;
 If c = dot(a, p), d = 4.0 * (c*c - dot(a, a) +
 if (d < eps) return angle(a, b) * r * r * 0.5;
 d = sqrt(d) * 0.5;
 lf s = -c - d, t = -c + d;
 if (s < 0.0) s = 0.0; else if (s > 1) s = 1;
 if (t < 0.0) t = 0.0; else if (t > 1) t = 1;
 pt u = a + p*s, v = a + p*t;
 return (cross(u, v) + (angle(a, u) + angle(v,
      b)) * r * r) * 0.5;
lf inter_cp(circle c, polygon p) {
 lf ans = 0;
 int n = p.p.size();
 for (int i = 0; i < n; i++) {</pre>
   ans += part(p[i]-c.c, p[(i+1)%4]-c.c, c.r);
 return abs(ans);
bool circumcircle_contains( triangle tr, pt D )
    {//triange CCW
```

```
pt A = tr.vert[0] - D, B = tr.vert[1] - D, C =
      tr.vert[2] - D;
 lf norm_a = norm2( tr.vert[0] ) - norm2( D );
 lf norm_b = norm2( tr.vert[1] ) - norm2( D );
 lf norm_c = norm2( tr.vert[2] ) - norm2( D );
 lf det1 = A.x * (B.y * norm_c - norm_b * C.y);
 lf det2 = B.x * (C.y * norm_a - norm_c * A.y);
 lf det3 = C.x * (A.y * norm_b - norm_a * B.y);
 return det1 + det2 + det3 > E0;
}
lf areaOfIntersectionOfTwoCircles( lf r1, lf r2,
    lf d ) {
 if(d >= r1 + r2)
   return 0.0L:
 if( d <= fabsl( r2 - r1 ) )</pre>
   return PI * ( r1 < r2 ? r1 * r1 : r2 * r2 ):
 lf alpha = safeAcos( ( r1 * r1 - r2 * r2 + d *
      d)/(2.0L * d * r1));
 lf betha = safeAcos( ( r2 * r2 - r1 * r1 + d *
      d) / (2.0L * d * r2 ));
 lf a1 = r1 * r1 * ( alpha - sinl( alpha ) *
      cosl( alpha ) );
 lf a2 = r2 * r2 * (betha - sinl(betha) *
      cosl( betha ) );
 return a1 + a2;
};
bool half(pt p) { /// true if is in (0, 180]
 assert(p.x != 0 || p.y != 0); /// the argument
      of (0.0) is undefined
 return p.y > 0 || (p.y == 0 && p.x < 0);
bool half_from(pt p, pt v = {1, 0}) {
 return cross(v,p) < 0 \mid \mid (cross(v,p) == 0 \&\&
      dot(v,p) < 0);
bool polar_cmp(const pt &a, const pt &b) {
 return make_tuple(half(a), 0) <</pre>
      make_tuple(half(b), cross(a,b));
bool in_disk(pt a, pt b, pt p) {
 return dot(a-p, b-p) <= 0;</pre>
bool on_segment(pt a, pt b, pt p) {
 return orient(a,b,p) == 0 && in_disk(a,b,p);
```

```
bool proper_inter(pt a, pt b, pt c, pt d, pt
    &out) {
 T oa = orient(c,d,a), ob = orient(c,d,b),
   oc = orient(a,b,c), od = orient(a,b,d);
 if (oa*ob < 0 && oc*od < 0) {
   out = (a*ob - b*oa) / (ob-oa);
   return true:
 return false:
set<pt> inter_ss(pt a, pt b, pt c, pt d) {
 pt out;
 if (proper_inter(a,b,c,d,out)) return {out};
 set<pt> s;
 if (on_segment(c,d,a)) s.insert(a);
 if (on_segment(c,d,b)) s.insert(b);
 if (on_segment(a,b,c)) s.insert(c);
 if (on_segment(a,b,d)) s.insert(d);
 return s;
lf pt_to_seg(pt a, pt b, pt p) {
 if(a != b) {
   line 1(a,b);
   if (1.cmp_proj(a,p) && 1.cmp_proj(p,b)) ///
        if closest to projection
     return l.dist(p); /// output distance to line
 return min(abs(p-a), abs(p-b)); /// otherwise
      distance to A or B
lf seg_to_seg(pt a, pt b, pt c, pt d) {
 pt dummy;
 if (proper_inter(a,b,c,d,dummy)) return 0;
 return min({pt_to_seg(a,b,c), pt_to_seg(a,b,d),
            pt_to_seg(c,d,a), pt_to_seg(c,d,b)});
enum {IN, OUT, ON};
struct polygon {
 vector<pt> p;
 polygon(int n) : p(n) {}
 pt centroid() {
   pt c{0, 0};
   lf scale = 6. * area(true);
```

```
for(int i = 0, n = p.size(); i < n; ++i) {</pre>
     int j = (i+1 == n ? 0 : i+1);
     c = c + (p[i] + p[j]) * cross(p[i], p[j]);
   return c / scale;
 }
 ll pick() {
   11 boundary = 0;
   for(int i = 0, n = p.size(); i < n; i++) {</pre>
     int j = (i+1 == n ? 0 : i+1);
     boundary += _{gcd}((ll)abs(p[i].x - p[j].x),
          (ll)abs(p[i].y - p[j].y));
   return area() + 1 - boundary/2;
 pt& operator[] (int i){ return p[i]; }
};
int tangents(circle c1, circle c2, bool inner,
    vector<pair<pt,pt>> &out) {
 if(inner) c2.r = -c2.r;
 pt d = c2.c-c1.c;
 double dr = c1.r-c2.r, d2 = norm(d), h2 =
      d2-dr*dr:
 if(d2 == 0 || h2 < 0) { assert(h2 != 0); return</pre>
      0; }
 for(double s : {-1,1}) {
   pt v = (d*dr + rot90ccw(d)*sqrt(h2)*s)/d2;
   out.push_back({c1.c + v*c1.r, c2.c + v*c2.r});
 return 1 + (h2 > 0);
int tangent_through_pt(pt p, circle c, pair<pt,</pre>
    pt> &out) {
 double d = abs(p - c.c);
       if(d < c.r) return 0;</pre>
 pt base = c.c-p;
 double w = sqrt(norm(base) - c.r*c.r);
 pt a = \{w, c.r\}, b = \{w, -c.r\};
 pt s = p + base*a/norm(base)*w;
 pt t = p + base*b/norm(base)*w;
 out = {s, t};
 return 1 + (abs(c.c-p) == c.r);
/// cross product 3D (VxW)
```

```
{ v.y*w.z - v.z*w.y, v.z*w.x - v.x*w.z, v.x*w.y - v.y*w.x };
```

5 Graphs

5.1 2-satisfiability

```
/// Complexity: O(|N|)
struct sat2 {
 int n:
 vector<vector<int>>> g;
 vector<int> tag;
 vector<bool> seen, value;
 stack<int> st;
 sat2(int n) : n(n), g(2,
      vector<vector<int>>(2*n)), tag(2*n),
      seen(2*n), value(2*n) { }
 int neg(int x) { return 2*n-x-1; }
 void add_or(int u, int v) { implication(neg(u),
      v); }
 void make_true(int u) { add_edge(neg(u), u); }
 void make_false(int u) { make_true(neg(u)); }
 void eq(int u, int v) {
   implication(u, v);
   implication(v, u);
 void diff(int u, int v) { eq(u, neg(v)); }
 void implication(int u, int v) {
   add_edge(u, v);
   add_edge(neg(v), neg(u));
 void add_edge(int u, int v) {
   g[0][u].push_back(v);
   g[1][v].push_back(u);
 void dfs(int id, int u, int t = 0) {
   seen[u] = true;
   for(auto& v : g[id][u])
     if(!seen[v])
       dfs(id, v, t);
   if(id == 0) st.push(u);
```

```
else tag[u] = t;
 }
 void kosaraju() {
   for(int u = 0; u < n; u++) {</pre>
     if(!seen[u]) dfs(0, u);
     if(!seen[neg(u)]) dfs(0, neg(u));
   fill(seen.begin(), seen.end(), false);
   int t = 0;
   while(!st.empty()) {
     int u = st.top(); st.pop();
     if(!seen[u]) dfs(1, u, t++);
   }
 }
 bool satisfiable() {
   kosaraju():
   for(int i = 0; i < n; i++) {</pre>
     if(tag[i] == tag[neg(i)]) return false;
     value[i] = tag[i] > tag[neg(i)];
   }
   return true;
 }
};
```

5.2 Erdos–Gallai theorem

```
/// Complexity: O(|N|*log|N|)
/// Theorem: it gives a necessary and sufficient
    condition for a finite sequence
111
            of natural numbers to be the degree
    sequence of a simple graph
bool erdos(vector<int> &d) {
 11 \text{ sum} = 0:
  for(int i = 0; i < d.size(); ++i) sum += d[i];</pre>
  if(sum & 1) return false;
  sort(d.rbegin(), d.rend());
 11 1 = 0, r = 0;
  for(int k = 1, i = d.size() - 1; k <= d.size();</pre>
      ++k) {
   1 += d[k-1]:
   if(k > i) r = d[++i];
   while (i >= k && d[i] < k+1) r += d[i--];
```

```
if(1 > 111*k*(k-1) + 111*k*(i-k+1) + r)
    return false;
}
return true;
}
```

5.3 Eulerian path

```
/// Complexity: O(|N|)
struct edge {
 int v; //list<edge>::iterator rev;
 edge(int v) : v(v) {}
void add_edge(int a, int b) {
 g[a].push_front(edge(b)); // auto ia =
      g[a].begin();
       g[b].push_front(edge(a)); // auto ib =
           g[b].begin();
       //ia->rev=ib; ib->rev=ia;
}
/// for undirected uncomment and check for path
    existance
bool eulerian(vector<int> &tour) { /// directed
  int one_in = 0, one_out = 0, start = -1;
 bool ok = true;
  for (int i = 0; i < n; i++) {</pre>
   if(out[i] && start == -1) start = i;
   if(out[i] - in[i] == 1) one_out++, start = i;
   else if(in[i] - out[i] == 1) one in++;
   else ok &= in[i] == out[i];
  ok &= one_in == one_out && one_in <= 1;
  if (ok) {
   function<void(int)> go = [&](int u) {
     while(g[u].size()) {
       int v = g[u].front().v;
       g[v].erase(g[u].front().rev);
       g[u].pop_front();
       go(v, tour);
     tour.push_back(u);
```

```
};
go(start);
reverse(tour.begin(), tour.end());
if(tour.size() == edges + 1) return true;
}
return false;
```

5.4 Number of spanning trees

```
///A -> adjacency matrix
///It is necessary to compute the D-A matrix,
    where D is a diagonal matrix
///that contains the degree of each node.
///To compute the number of spanning trees it's
    necessary to compute any
///D-A cofactor
///C(i, j) = (-1)^(i+j) * Mij
///Where Mij is the matrix determinant after
    removing row i and column j
double mat[MAX][MAX]:
///call determinant(n - 1)
double determinant(int n) {
 double det = 1.0;
 for(int k = 0; k < n; k++) {
   for(int i = k+1; i < n; i++) {</pre>
     assert(mat[k][k] != 0):
     long double factor = mat[i][k]/mat[k][k];
     for(int j = 0; j < n; j++) {</pre>
       mat[i][j] = mat[i][j] - factor*mat[k][j];
     }
    det *= mat[k][k];
 return round(det);
```

5.5 Scc

```
/// Complexity: O(|N|)
int scc(int n) {
 vector<int> dfn(n+1), low(n+1), in_stack(n+1);
 stack<int> st:
 int tag = 0;
 function<void(int, int&)> dfs = [&](int u, int
     &t) {
   dfn[u] = low[u] = ++t:
   st.push(u);
   in_stack[u] = true;
   for(auto &v : g[u]) {
     if(!dfn[v]) {
       dfs(v, t);
       low[u] = min(low[u], low[v]);
     } else if(in_stack[v])
       low[u] = min(low[u], dfn[v]);
   if (low[u] == dfn[u]) {
     int v:
     do {
       v = st.top(); st.pop();
        id[v] = tag;
      in_stack[v] = false;
     } while (v != u);
     tag++;
   }
 for(int u = 1, t; u <= n; ++u) {</pre>
   if(!dfn[u]) dfs(u, t = 0):
 return tag;
```

5.6 Tarjan tree

```
/// Complexity: O(|N|)
struct tarjan_tree {
  int n;
  vector<vector<int>> g, comps;
  vector<pii>> bridge;
  vector<int> id, art;
```

```
tarjan_tree(int n) : n(n), g(n+1), id(n+1),
    art(n+1) {}
void add_edge(vector<vector<int>> &g, int u,
    int v) { /// nodes from [1, n]
 g[u].push_back(v);
 g[v].push_back(u);
void add_edge(int u, int v) { add_edge(g, u,
    v): }
void tarjan(bool with_bridge) {
 vector<int> dfn(n+1), low(n+1);
 stack<int> st;
 comps.clear();
 function<void(int, int, int&)> dfs = [&](int
      u, int p, int &t) {
   dfn[u] = low[u] = ++t:
   st.push(u);
   int cntp = 0;
   for(int v : g[u]) {
     cntp += v == p;
     if(!dfn[v]) {
       dfs(v, u, t);
       low[u] = min(low[u], low[v]);
       if(with_bridge && low[v] > dfn[u]) {
        bridge.push_back({min(u,v), max(u,v)});
         comps.push_back({});
        for(int w = -1; w != v; )
           comps.back().push_back(w =
               st.top()), st.pop();
       if(!with_bridge && low[v] >= dfn[u]) {
         art[u] = (dfn[u] > 1 || dfn[v] > 2);
         comps.push_back({u});
         for(int w = -1; w != v; )
           comps.back().push_back(w =
               st.top()), st.pop();
      }
     else if(v != p \mid \mid cntp > 1) low[u] =
         min(low[u], dfn[v]);
   if(p == -1 && ( with_bridge || g[u].size()
       == 0 )) {
     comps.push_back({});
```

```
for(int w = -1: w != u:)
         comps.back().push_back(w = st.top()),
             st.pop();
     }
   };
   for(int u = 1, t; u \le n; ++u)
     if(!dfn[u]) dfs(u, -1, t = 0);
  vector<vector<int>> build_block_cut_tree() {
   tarjan(false);
   int t = 0;
   for(int u = 1; u \le n; ++u)
     if(art[u]) id[u] = t++;
   vector<vector<int>> tree(t+comps.size());
   for(int i = 0; i < comps.size(); ++i)</pre>
     for(int u : comps[i]) {
       if(!art[u]) id[u] = i+t;
       else add_edge(tree, i+t, id[u]);
     }
   return tree;
  vector<vector<int>> build_bridge_tree() {
   tarjan(true);
   vector<vector<int>> tree(comps.size());
   for(int i = 0; i < comps.size(); ++i)</pre>
     for(int u : comps[i]) id[u] = i;
   for(auto &b : bridge)
     add_edge(tree, id[b.first], id[b.second]);
   return tree:
 }
};
```

6 Math

6.1 Berlekamp-Massey

```
namespace linear_seq {
  int m; // a = first m terms
  vector < int > p, a;// p = recurrence, length
    is m
```

```
inline vector < int > BM(vector < int > x) { //
    finds shortest linear recurrence given
    first x terms in O(x^2)
 vector < int > ls, cur;
 int lf, ld;
 for (int i = 0; i < (int) x.size(); ++i) {</pre>
   int t = 0;
   for (int j = 0; j < (int) cur.size(); ++j)</pre>
     t = (t + 1 LL * x[i - j - 1] * cur[j]) %
          mod:
   if ((t - x[i]) \% \text{ mod} == 0) continue;
   if (!cur.size()) {
     cur.resize(i + 1);
     lf = i:
     1d = (t - x[i]) \% mod;
     continue:
   int k = 1 LL * (t - x[i]) * pw(ld, mod - 2)
        % mod:
   vector < int > c(i - lf - 1);
    c.push_back(k);
   for (int j = 0; j < (int) ls.size(); ++j)</pre>
     c.push_back(-1 LL * ls[j] * k % mod);
   if (c.size() < cur.size())</pre>
        c.resize(cur.size());
   for (int j = 0; j < (int) cur.size(); ++j)</pre>
     c[i] = (c[i] + cur[i]) \% mod;
   if (i + lf + (int) ls.size() >= (int)
        cur.size())
     ls = cur, lf = i, ld = (t - x[i]) \% mod;
    cur = c;
 }
 for (int i = 0; i < (int) cur.size(); ++i)</pre>
    cur[i] = (cur[i] % mod + mod) % mod;
 m = cur.size():
 p.resize(m), a.resize(m);
 for (int i = 0; i < m; ++i)</pre>
   p[i] = cur[i], a[i] = x[i];
 return cur;
inline vector < int > mul(vector < int > & a,
    vector < int > & b) {
 vector < int > r(2 * m);
 for (int i = 0; i < m; ++i)</pre>
```

```
if (a[i])
       for (int j = 0; j < m; ++j)
         r[i + j] = (r[i + j] + 1 LL * a[i] *
             b[i]) % mod:
   for (int i = 2 * m - 1; i >= m; --i)
     if (r[i])
       for (int j = m - 1; j \ge 0; ---j)
        r[i - j - 1] = (r[i - j - 1] + 1 LL *
             p[j] * r[i]) % mod;
   r.resize(m):
   return r;
 inline int calc(long long k) { // O(m*m*log(k))
   if (m == 0) return 0:
   vector < int > bs(m), r(m);
   if (m == 1) bs[0] = p[0];
   else bs[1] = 1:
   r[0] = 1;
   while (k) {
     if (k \& 1) r = mul(r, bs);
     bs = mul(bs, bs);
     k >>= 1;
   }
   int res = 0;
   for (int i = 0; i < m; ++i)</pre>
     res = (res + 1 LL * r[i] * a[i]) % mod;
   return res:
}
```

14

6.2 Chinese remainder theorem

```
/// Complexity: |N|*log(|N|)
/// finds a suitable x that meets: x is congruent
    to a_i mod n_i
/** Works for non-coprime moduli.
Returns {-1,-1} if solution does not exist or
    input is invalid.
Otherwise, returns {x,L}, where x is the
    solution unique to mod L = LCM of mods
*/
```

```
pair<int, int> chinese_remainder_theorem(
    vector<int> A, vector<int> M ) {
 int n = A.size(), a1 = A[0], m1 = M[0];
 for(int i = 1: i < n: i++) {</pre>
   int a2 = A[i], m2 = M[i];
   int g = __gcd(m1, m2);
   if( a1 % g != a2 % g ) return {-1,-1};
   int p, q;
   eea(m1/g, m2/g, &p, &q);
   int mod = m1 / g * m2;
   q %= mod; p %= mod;
   int x = ((111*(a1\%mod)*(m2/g))\%mod*q +
        (111*(a2%mod)*(m1/g))%mod*p) % mod; // if
        WA there is overflow
   a1 = x:
   if (a1 < 0) a1 += mod:
   m1 = mod:
 return {a1, m1};
```

6.3 Constant modular inverse

6.4 Extended euclides

```
/// Complexity: O(log(|N|))
ll eea(ll a, ll b, ll& x, ll& y) {
    ll xx = y = 0; ll yy = x = 1;
    while (b) {
        ll q = a / b; ll t = b; b = a % b; a = t;
        t = xx; xx = x - q * xx; x = t;
        t = yy; yy = y - q * yy; y = t;
```

```
}
return a;
}
ll inverse(ll a, ll n) {
    ll x, y;
    ll g = eea(a, n, x, y);
    if(g > 1)
        return -1;
    return (x % n + n) % n;
}
```

6.5 FWHT

```
vector< long long > haddamard( vector< long long</pre>
    > a, bool inverse ) {
 const int n = (int) a.size();
 for( int k = 1; k < n; k <<= 1 ) {</pre>
   for( int i = 0; i < n; i += 2 * k ) {</pre>
     for( int j = 0; j < k; ++ j ) {</pre>
       long long u = a[i+j], v = a[i+j+k];
       a[i+j] = u + v;
       a[i+j+k] = u - v;
     }
   }
   if( inverse )
     for( auto &x : a )
       x >>= 1;
 }
 return a:
vector< long long > FWHT( vector< long long > a,
    vector< long long > b ) {
 auto h_a = haddamard( a, false ), h_b =
     haddamard( b, false );
 vector< long long > h_c( a.size() );
 for( int i = 0; i < (int) a.size(); ++ i )</pre>
   h_c[i] = 1LL * h_a[i] * h_b[i];
 return haddamard( h_c, true );
```

6.6 Fast Fourier transform module

```
struct FFT {
 int mod, root, root_1, root_pw;
 void fft(vector<int> & a, bool invert) {
     int n = a.size();
     for (int i = 1, j = 0; i < n; ++i) {
         int bit = n \gg 1:
         for (; j & bit; bit >>= 1)
            j ^= bit;
         j ^= bit;
         if (i < j) swap(a[i], a[j]);</pre>
     for (int len = 2; len <= n; len <<= 1) {
         int wlen = invert ? root_1 : root;
         for (int i = len; i < root_pw; i <<= 1)</pre>
             wlen = 1LL * wlen * wlen % mod;
         for (int i = 0: i < n: i += len) {
            int w = 1;
            for (int j = 0; j < len / 2; ++j) {
                int u = a[i+j], v = 1LL *
                    a[i+j+len/2] * w % mod;
                a[i+j] = u + v < mod ? u + v : u
                    + v - mod;
                a[i+j+len/2] = u - v >= 0 ? u - v
                     : u - v + mod;
                w = 1LL * w * wlen % mod;
            }
         }
     if (invert) {
         int n_1 = pw(n, mod-2, mod);
         for (int & x : a)
            x = 1LL * x * n_1 \% mod;
     }
 vector<int> multiply(vector<int> const& a,
      vector<int> const& b) {
     vector<int> fa(a.begin(), a.end()),
         fb(b.begin(), b.end());
     int n = 1:
     while (n < a.size() + b.size())</pre>
         n <<= 1;
```

```
fa.resize(n);
fb.resize(n);
fft(fa, false);
fft(fb, false);
for (int i = 0; i < n; i++)
     fa[i] = 1LL * fa[i] * fb[i] % mod;
fft(fa, true);
   return fa;
}
};
FFT A = { 998244353, 15311432, 469870224, 1<<23 };</pre>
```

6.7 Fast fourier transform

```
///Complexity: O(N log N)
#define rep(i, a, b) for(int i = a; i < (b); ++i)
#define sz(v) ((int)v.size())
#define trav(a, x) for(auto& a : x)
#define all(v) v.begin(),v.end()
typedef vector<ll> v1;
typedef vector<int> vi;
typedef complex<double> C;
typedef vector<double> vd;
void fft(vector<C>& a) {
       int n = sz(a), L = 31 - \_builtin\_clz(n);
       static vector<complex<long double>> R(2,
           1):
       static vector<C> rt(2, 1); // (^ 10%
           faster if double)
      for (static int k = 2: k < n: k *= 2) {
              R.resize(n); rt.resize(n);
              auto x = polar(1.0L, acos(-1.0L) /
                  k);
              rep(i,k,2*k) rt[i] = R[i] = i&1 ?
                  R[i/2] * x : R[i/2];
       }
       vi rev(n);
       rep(i,0,n) rev[i] = (rev[i / 2] | (i & 1)
           << L) / 2;
       rep(i,0,n) if (i < rev[i]) swap(a[i],
           a[rev[i]]):
       for (int k = 1; k < n; k *= 2)
```

```
for (int i = 0; i < n; i += 2 * k)
                  rep(j,0,k) {
                     // C z = rt[j+k] *
                          a[i+i+k]: // (25%
                          faster if hand-rolled)
                          /// include-line
                      auto x = (double)
                          *)&rt[j+k], y = (double)
                          *)&a[i+j+k]; ///
                          exclude-line
                     C z(x[0]*y[0] - x[1]*y[1],
                          x[0]*v[1] + x[1]*v[0]);
                              /// exclude-line
                      a[i + j + k] = a[i + j] - z;
                      a[i + j] += z;
              }
vl conv(const vl& a, const vl& b) {
       if (a.empty() || b.empty()) return {};
       vd res(sz(a) + sz(b) - 1);
       int L = 32 - __builtin_clz(sz(res)), n = 1
           << L:
       vector<C> in(n), out(n);
       copy(all(a), begin(in));
       rep(i,0,sz(b)) in[i].imag(b[i]);
       fft(in);
       trav(x, in) x *= x:
       rep(i,0,n) out[i] = in[-i & (n - 1)] -
           conj(in[i]);
       fft(out);
       vector<ll> resp(sz(res));
       rep(i,0,sz(res)) resp[i] =
           round(imag(out[i]) / (4.0 * n));
       return resp;
}
```

6.8 Gauss jordan

```
/// Complexity: O(|N|^3)
const int EPS = 1;
int gauss (vector<vector<int>> a, vector<int>
    &ans) {
```

```
int n = a.size(), m = a[0].size()-1:
vector<int> where(m, -1);
for(int col = 0, row = 0; col < m && row < n;</pre>
    ++col) {
  int sel = row;
 for(int i = row: i < n: ++i)</pre>
   if(abs(a[i][col]) > abs(a[sel][col])) sel =
  if(abs(a[sel][col]) < EPS) continue;</pre>
  swap(a[sel], a[row]);
  where [col] = row;
  for(int i = 0; i < n; ++i)</pre>
   if(i != row) {
     int c = divide(a[i][col], a[row][col]);
          /// precalc inverses
     for(int j = col; j <= m; ++j)</pre>
       a[i][j] = sub(a[i][j], mul(a[row][j],
            c));
   }
  ++row;
ans.assign(m, 0);
for(int i = 0; i < m; ++i)</pre>
 if(where[i] != -1) ans[i] =
      divide(a[where[i]][m], a[where[i]][i]);
for(int i = 0; i < n; ++i) {</pre>
  int sum = 0:
 for(int j = 0; j < m; ++j)
   sum = add(sum, mul(ans[j], a[i][j]));
 if(sum != a[i][m]) return 0;
for(int i = 0; i < m; ++i)</pre>
 if(where[i] == -1) return -1; /// infinite
      solutions
return 1:
```

16

6.9 Lagrange Interpolation

```
/// Complexity: O(|N|^2)
vector<lf> X, F;
lf f(lf x) {
```

```
17
```

```
lf answer = 0:
 for(int i = 0; i < (int)X.size(); i++) {</pre>
   lf prod = F[i];
   for(int j = 0; j < (int)X.size(); j++) {</pre>
     if(i == j) continue;
     prod = mul(prod, divide(sub(x, X[j]),
          sub(X[i], X[i])));
   answer = add(answer, prod);
 return answer;
//given y=f(x) for x [0,degree]
vector< int > interpolation( vector< int > &y ) {
 int n = (int) y.size();
 vector \leq int > u = y, ans (n), sum (n);
 ans[0] = u[0], sum[0] = 1;
 for( int i = 1; i < n; ++i ) {</pre>
   int inv = modpow( i, mod - 2 );
   for( int j = n - 1; j >= i; --j)
     u[j] = 1LL * (u[j] - u[j - 1] + mod) * inv %
   for( int j = i; j > 0; --j ) {
     sum[j] = (sum[j - 1] - 1LL * (i - 1) *
         sum[j] % mod + mod) % mod;
     ans[i] = (ans[i] + 1LL * sum[i] * u[i]) %
         mod:
   sum[0] = 1LL * (i - 1) * (mod - sum[0]) % mod:
   ans[0] = (ans[0] + 1LL * sum[0] * u[i]) % mod;
 }
 return ans;
```

6.10 Linear diophantine

```
g = eea(abs(a), abs(b), x, y);
 if(c % g) return false;
 a /= g; b /= g; c /= g;
 if(a < 0) x *= -1:
 x = (x \% b) * (c \% b) \% b;
 if(x < 0) x += b:
 y = (c - a*x) / b;
 return true:
///finds the first k \mid x + b * k / gcd(a, b) >=
ll greater_or_equal_than(ll a, ll b, ll x, ll
    val, 11 g) {
 lf got = 1.0 * (val - x) * g / b;
 return b > 0 ? ceil(got) : floor(got);
}
void get_xy (ll a, ll b, ll &x, ll &y, ll k, ll
    g) { /// if for y, change the order to b,a y,x
 x = x + b / g * k;
 y = y - a / g * k;
```

6.11 Matrix multiplication

```
const int MOD = 1e9+7;
struct matrix {
 const int N = 2:
 int m[N][N], r, c;
 matrix(int r = N, int c = N, bool iden = false)
      : r(r), c(c) {
   memset(m, 0, sizeof m);
   if (iden)
     for(int i = 0; i < r; i++) m[i][i] = 1;
 matrix operator * (const matrix &o) const {
   matrix ret(r, o.c);
   for(int i = 0; i < r; ++i)</pre>
     for(int j = 0; j < o.c; ++j) {</pre>
       ll &r = ret.m[i][j];
      for(int k = 0; k < c; ++k)
        r = (r + 111*m[i][k]*o.m[k][j]) % MOD;
```

```
return ret;
}
```

6.12 Miller rabin

```
11 mul (11 a. 11 b. 11 mod) {
 11 \text{ ret} = 0;
 for(a %= mod, b %= mod; b != 0:
   b >>= 1, a <<= 1, a = a >= mod ? a - mod : a)
   if (b & 1) {
     ret += a;
     if (ret >= mod) ret -= mod;
 return ret:
11 fpow (11 a, 11 b, 11 mod) {
 ll ans = 1:
 for (; b; b >>= 1, a = mul(a, a, mod))
   if (b & 1)
     ans = mul(ans, a, mod);
 return ans;
bool witness (ll a, ll s, ll d, ll n) {
 11 x = fpow(a, d, n);
 if (x == 1 \mid | x == n - 1) return false;
 for (int i = 0; i < s - 1; i++) {
   x = mul(x, x, n):
   if (x == 1) return true;
   if (x == n - 1) return false;
 return true;
11 \text{ test}[] = \{2, 3, 5, 7, 11, 13, 17, 19, 23, 0\};
bool is_prime (ll n) {
 if (n < 2) return false;
 if (n == 2) return true;
 if (n % 2 == 0) return false;
 11 d = n - 1, s = 0;
  while (d \% 2 == 0) ++s, d /= 2;
```

```
for (int i = 0; test[i] && test[i] < n; ++i)
  if (witness(test[i], s, d, n))
    return false;
return true;
}</pre>
```

6.13 Pollard's rho

```
11 pollard_rho(ll n, ll c) {
 11 x = 2, y = 2, i = 1, k = 2, d;
 while (true) {
   x = (mul(x, x, n) + c);
   if (x \ge n) x -= n;
   d = \_gcd(x - y, n);
   if (d > 1) return d;
   if (++i == k) y = x, k <<= 1;
 }
 return n;
void factorize(ll n, vector<ll> &f) {
 if (n == 1) return:
 if (is_prime(n)) {
   f.push_back(n);
   return:
 }
 11 d = n;
 for (int i = 2; d == n; i++)
   d = pollard_rho(n, i);
 factorize(d, f):
 factorize(n/d, f);
```

6.14 Simplex

```
/// Complexity: O(|N|^2 * |M|) N variables, N
    restrictions
const double EPS = 1e-6;
typedef vector<double> vec;
namespace simplex {
  vector<int> X, Y;
```

```
vector<vec> a:
vec b, c;
double z;
int n, m;
void pivot(int x, int y) {
  swap(X[y], Y[x]);
  b[x] /= a[x][y];
  for(int i = 0; i < m; i++)</pre>
   if(i != y)
     a[x][i] /= a[x][v];
  a[x][y] = 1 / a[x][y];
  for(int i = 0; i < n; i++)</pre>
   if(i != x && abs(a[i][v]) > EPS) {
   b[i] -= a[i][y] * b[x];
   for(int j = 0; j < m; j++)
     if(i != v)
       a[i][j] = a[i][y] * a[x][j];
   a[i][y] = -a[i][y] * a[x][y];
  }
  z += c[v] * b[x];
 for(int i = 0; i < m; i++)</pre>
   if(i != y)
     c[i] -= c[v] * a[x][i];
  c[y] = -c[y] * a[x][y];
/// A is a vector of 1 and 0. B is the limit
    restriction. C is the factors of O.F.
pair<double, vec> simplex(vector<vec> &A, vec
    &B, vec &C) {
  a = A; b = B; c = C;
  n = b.size(); m = c.size(); z = 0.0;
  X = vector<int>(m):
  Y = vector<int>(n);
 for(int i = 0; i < m; i++) X[i] = i;</pre>
  for(int i = 0; i < n; i++) Y[i] = i + m;
  while(1) {
   int x = -1, y = -1;
   double mn = -EPS;
   for(int i = 0; i < n; i++)</pre>
     if(b[i] < mn)
       mn = b[i], x = i;
   if(x < 0) break:
   for(int i = 0; i < m; i++)</pre>
     if(a[x][i] < -EPS) { y = i; break; }</pre>
```

```
assert(v \ge 0): // no sol
     pivot(x, y);
   }
    while(1) {
     double mx = EPS;
     int x = -1, y = -1;
     for(int i = 0; i < m; i++)</pre>
      if(c[i] > mx)
         mx = c[i], y = i;
     if(v < 0) break;
     double mn = 1e200;
     for(int i = 0; i < n; i++)</pre>
       if(a[i][v] > EPS && b[i] / a[i][v] < mn)</pre>
         mn = b[i] / a[i][y], x = i;
     assert(x >= 0); // unbound
     pivot(x, v):
    vec r(m);
   for(int i = 0; i < n; i++)</pre>
     if(Y[i] < m)
       r[Y[i]] = b[i];
   return make_pair(z, r);
}
```

6.15 Simpson

```
inline lf simpson(lf fl, lf fr, lf fmid, lf l, lf
    r) {
    return (fl + fr + 4.0 * fmid) * (r - 1) / 6.0;
}
lf rsimpson (lf slr, lf fl, lf fr, lf fmid, lf l,
    lf r) {
        lf mid = (l + r) * 0.5;
        lf fml = f((l + mid) * 0.5);
        lf fmr = f((mid + r) * 0.5);
        lf slm = simpson(fl, fmid, fml, l, mid);
        lf smr = simpson(fmid, fr, fmr, mid, r);
        if (fabs(slr - slm - smr) < eps) return
            slm + smr;
    return rsimpson(slm, fl, fmid, fml, l,
            mid) + rsimpson(smr, fmid, fr, fmr,</pre>
```

```
mid, r);
}

If integrate(lf l,lf r) {
    lf mid = (l + r) * .5, fl = f(l), fr =
        f(r), fmid = f(mid);
    return rsimpson(simpson(fl, fr, fmid, l,
        r), fl, fr, fmid, l, r);
}
```

7 Network flows

7.1 Blossom

```
/// Complexity: O(|E||V|^2)
struct network {
 struct struct_edge { int v; struct_edge * n; };
 typedef struct_edge* edge;
 struct_edge pool[MAXE]; ///2*n*n;
 edge top;
 vector<edge> adj;
 queue<int> q;
 vector<int> f, base, inq, inb, inp, match;
 vector<vector<int>> ed;
 network(int n) : n(n), match(n, -1), adj(n),
      top(pool), f(n), base(n),
                 inq(n), inb(n), inp(n), ed(n)
                     vector<int>(n)) {}
 void add_edge(int u, int v) {
   if(ed[u][v]) return;
   ed[u][v] = 1;
   top->v = v, top->n = adj[u], adj[u] = top++;
   top->v = u, top->n = adj[v], adj[v] = top++;
 int get_lca(int root, int u, int v) {
   fill(inp.begin(), inp.end(), 0);
   while(1) {
     inp[u = base[u]] = 1;
     if(u == root) break;
     u = f[match[u]];
```

```
while(1) {
   if(inp[v = base[v]]) return v;
   else v = f[ match[v] ];
 }
void mark(int lca, int u) {
 while(base[u] != lca) {
   int v = match[u]:
   inb[ base[u ]] = 1;
   inb[ base[v] ] = 1;
   u = f[v]:
   if(base[u] != lca) f[u] = v;
 }
}
void blossom_contraction(int s, int u, int v) {
 int lca = get_lca(s, u, v);
 fill(inb.begin(), inb.end(), 0);
 mark(lca, u); mark(lca, v);
 if(base[u] != lca) f[u] = v;
 if(base[v] != lca) f[v] = u;
 for(int u = 0; u < n; u++)
   if(inb[base[u]]) {
     base[u] = lca;
     if(!inq[u]) {
         inq[u] = 1;
         q.push(u);
     }
   }
}
int bfs(int s) {
 fill(inq.begin(), inq.end(), 0);
 fill(f.begin(), f.end(), -1);
 for(int i = 0; i < n; i++) base[i] = i;</pre>
 q = queue<int>();
 q.push(s);
 inq[s] = 1;
 while(q.size()) {
   int u = q.front(); q.pop();
   for(edge e = adi[u]; e; e = e->n) {
     int v = e \rightarrow v:
     if(base[u] != base[v] && match[u] != v) {
       if((v == s) \mid | (match[v] != -1 &&
           f[match[v]] != -1)
         blossom_contraction(s, u, v);
```

```
else if(f[v] == -1) {
          f[v] = u:
          if(match[v] == -1) return v;
          else if(!ing[match[v]]) {
            inq[match[v]] = 1;
            q.push(match[v]);
        }
   return -1;
 int doit(int u) {
   if(u == -1) return 0;
   int v = f[u]:
   doit(match[v]):
   match[v] = u; match[u] = v;
   return u != -1:
 /// (i < net.match[i]) => means match
 int maximum matching() {
   int ans = 0;
   for(int u = 0; u < n; u++)
     ans += (match[u] == -1) && doit(bfs(u));
   return ans;
 }
};
```

7.2 Dinic

```
/// Complexity: O(|E|*|V|^2)
struct edge { int v, cap, inv, flow; };
struct network {
  int n, s, t;
  vector<int> lvl;
  vector<vector<edge>> g;
  network(int n) : n(n), lvl(n), g(n) {}
  void add_edge(int u, int v, int c) {
    g[u].push_back({v, c, g[v].size(), 0});
    g[v].push_back({u, 0, g[u].size()-1, c});
}
```

```
bool bfs() {
   fill(lvl.begin(), lvl.end(), -1);
   queue<int> q;
   lvl[s] = 0:
   for(q.push(s); q.size(); q.pop()) {
     int u = q.front();
     for(auto &e : g[u]) {
      if(e.cap > 0 \&\& lvl[e.v] == -1) {
        lvl[e.v] = lvl[u]+1;
        q.push(e.v):
      }
    }
   return lvl[t] != -1:
 int dfs(int u, int nf) {
   if(u == t) return nf;
   int res = 0;
   for(auto &e : g[u]) {
     if(e.cap > 0 && lvl[e.v] == lvl[u]+1) {
       int tf = dfs(e.v, min(nf, e.cap));
      res += tf; nf -= tf; e.cap -= tf;
       g[e.v][e.inv].cap += tf;
      g[e.v][e.inv].flow -= tf;
       e.flow += tf;
       if(nf == 0) return res;
    }
   if(!res) lvl[u] = -1:
   return res;
 int max_flow(int so, int si, int res = 0) {
   s = so; t = si;
   while(bfs()) res += dfs(s, INT_MAX);
   return res:
 }
};
```

7.3 Hopcroft karp

```
/// Complexity: O(|E|*sqrt(|V|))
struct mbm {
```

```
vector<vector<int>> g;
vector<int> d, match;
int nil, l, r;
/// u \rightarrow 0 \text{ to } 1. v \rightarrow 0 \text{ to } r
mbm(int 1, int r) : 1(1), r(r), nil(1+r),
    g(1+r).
                   d(1+l+r, INF), match(l+r,
                       1+r) {}
void add_edge(int a, int b) {
  g[a].push_back(1+b);
  g[l+b].push_back(a);
bool bfs() {
  queue<int> q:
  for(int u = 0; u < 1; u++) {</pre>
   if(match[u] == nil) {
     d[u] = 0:
     q.push(u);
   } else d[u] = INF;
  }
  d[nil] = INF;
  while(q.size()) {
   int u = q.front(); q.pop();
   if(u == nil) continue;
   for(auto v : g[u]) {
     if(d[ match[v] ] == INF) {
       d[match[v]] = d[u]+1;
       q.push(match[v]);
   }
  return d[nil] != INF;
bool dfs(int u) {
  if(u == nil) return true;
  for(int v : g[u]) {
    if(d[ match[v] ] == d[u]+1 && dfs(match[v]))
     match[v] = u; match[u] = v;
     return true;
  }
  d[u] = INF;
  return false;
```

```
}
int max_matching() {
  int ans = 0;
  while(bfs()) {
    for(int u = 0; u < 1; u++) {
        ans += (match[u] == nil && dfs(u));
     }
  }
  return ans;
}</pre>
```

7.4 Maximum bipartite matching

```
/// Complexity: O(|E|*|V|)
struct mbm {
 int 1. r:
 vector<vector<int>> g;
 vector<int> match, seen;
 mbm(int l, int r) : l(l), r(r), seen(r),
      match(r), g(1) {}
 void add_edge(int 1, int r) {
      g[l].push_back(r); }
 bool dfs(int u) {
   for(auto v : g[u]) {
     if(seen[v]++) continue;
     if(match[v] == -1 || dfs(match[v])) {
       match[v] = u;
       return true;
     }
   return false;
 int max_matching() {
   int ans = 0;
   fill(match.begin(), match.end(), -1);
   for(int u = 0; u < 1; ++u) {
     fill(seen.begin(), seen.end(), 0);
     ans += dfs(u);
   return ans;
```

};

7.5 Maximum flow minimum cost

```
/// Complexity: O(|V|*|E|^2*log(|E|))
template <class type>
struct mcmf {
 struct edge { int u, v, cap, flow; type cost; };
 int n:
 vector<edge> ed;
 vector<vector<int>> g;
 vector<int> p;
 vector<type> d, phi;
 mcmf(int n) : n(n), g(n), p(n), d(n), phi(n) {}
 void add_edge(int u, int v, int cap, type cost)
   g[u].push_back(ed.size());
   ed.push_back({u, v, cap, 0, cost});
   g[v].push_back(ed.size());
   ed.push_back({v, u, 0, 0, -cost});
 bool dijkstra(int s, int t) {
   fill(d.begin(), d.end(), INF_TYPE);
   fill(p.begin(), p.end(), -1);
   set<pair<type, int>> q;
   d[s] = 0;
   for(q.insert({d[s], s}); q.size();) {
     int u = (*q.begin()).second;
         q.erase(q.begin());
     for(auto v : g[u]) {
       auto &e = ed[v];
       type nd = d[e.u]+e.cost+phi[e.u]-phi[e.v];
       if(0 < (e.cap-e.flow) && nd < d[e.v]) {
         q.erase({d[e.v], e.v});
         d[e.v] = nd; p[e.v] = v;
         q.insert({d[e.v], e.v});
       }
     }
   for(int i = 0; i < n; i++) phi[i] =</pre>
        min(INF_TYPE, phi[i]+d[i]);
   return d[t] != INF_TYPE;
```

```
pair<int, type> max_flow(int s, int t) {
   type mc = 0;
   int mf = 0:
   fill(phi.begin(), phi.end(), 0);
   while(dijkstra(s, t)) {
     int flow = INF;
     for(int v = p[t]; v != -1; v = p[ ed[v].u ])
       flow = min(flow, ed[v].cap-ed[v].flow);
     for(int v = p[t]; v != -1; v = p[ed[v].u])
       edge &e1 = ed[v];
       edge &e2 = ed[v^1];
       mc += e1.cost*flow:
       e1.flow += flow;
       e2.flow -= flow:
     }
     mf += flow;
   }
   return {mf, mc};
 }
};
```

7.6 Stoer Wagner

```
/// Complexity: O(|V|^3)
/// Tested: https://tinyurl.com/y8eu433d
struct stoer_wagner {
 int n;
 vector<vector<int>> g;
 stoer_wagner(int n) : n(n), g(n,
      vector<int>(n)) {}
 void add_edge(int a, int b, int w) { g[a][b] =
     g[b][a] = w; }
 pair<int, vector<int>> min_cut() {
   vector<int> used(n);
   vector<int> cut, best_cut;
   int best_weight = -1;
   for(int p = n-1; p >= 0; --p) {
     vector < int > w = g[0];
     vector<int> added = used;
     int prv, lst = 0;
```

```
for(int i = 0; i < p; ++i) {</pre>
      prv = lst; lst = -1;
      for(int j = 1; j < n; ++j)
        if(!added[j] && (lst == -1 || w[j] >
            w[lst]))
          lst = i:
      if(i == p-1) {
        for(int j = 0; j < n; j++)</pre>
          g[prv][i] += g[lst][i];
        for(int j = 0; j < n; j++)
          g[j][prv] = g[prv][j];
        used[lst] = true;
        cut.push_back(lst);
        if(best_weight == -1 || w[lst] <</pre>
            best_weight) {
          best_cut = cut;
          best_weight = w[lst];
      } else {
        for(int j = 0; j < n; j++)
          w[i] += g[lst][i];
        added[lst] = true;
    }
  return {best_weight, best_cut}; /// best_cut
       contains all nodes in the same set
}
}:
```

7.7 Weighted matching

```
/// Complexity: O(|V|^3)
typedef int type;
struct matching_weighted {
  int 1, r;
  vector<vector<type>> c;
  matching_weighted(int 1, int r) : 1(1), r(r),
        c(1, vector<type>(r)) {
    assert(1 <= r);
}</pre>
```

```
void add_edge(int a, int b, type cost) {
    c[a][b] = cost; }
type matching() {
  vector<type> v(r), d(r); // v: potential
  vector\langle int \rangle ml(1, -1), mr(r, -1); // matching
      pairs
  vector<int> idx(r), prev(r);
  iota(idx.begin(), idx.end(), 0);
  auto residue = [&](int i, int j) { return
      c[i][i]-v[i]; };
  for(int f = 0; f < 1; ++f) {</pre>
   for(int j = 0; j < r; ++j) {
     d[j] = residue(f, j);
     prev[j] = f;
   type w;
    int j, 1;
   for (int s = 0, t = 0;;) {
     if(s == t) {
       1 = s;
       w = d[idx[t++]];
       for(int k = t: k < r: ++k) {
         j = idx[k];
         type h = d[j];
         if (h <= w) {</pre>
           if (h < w) t = s, w = h;
           idx[k] = idx[t]:
           idx[t++] = j;
         }
       for (int k = s; k < t; ++k) {
         j = idx[k];
         if (mr[j] < 0) goto aug;</pre>
       }
     }
     int q = idx[s++], i = mr[q];
     for (int k = t; k < r; ++k) {
       j = idx[k];
       type h = residue(i, j) - residue(i, q) +
       if (h < d[i]) {</pre>
         d[j] = h;
         prev[j] = i;
         if(h == w) {
```

```
if(mr[j] < 0) goto aug;</pre>
             idx[k] = idx[t];
             idx[t++] = j;
           }
        }
       }
     aug: for (int k = 0; k < 1; ++k)
       v[idx[k]] += d[idx[k]] - w;
     int i:
     do {
       mr[j] = i = prev[j];
       swap(j, ml[i]);
     } while (i != f):
   type opt = 0;
   for (int i = 0; i < 1; ++i)</pre>
     opt += c[i][ml[i]]; // (i, ml[i]) is a
          solution
   return opt;
 }
};
```

8 Strings

8.1 Aho corasick

```
/// Complexity: O(|text|+SUM(|pattern_i|)+matches)
const static int alpha = 26;
int trie[N][alpha], fail[N], nodes;
void add(string &s, int i) {
  int cur = 0;
  for(char c : s) {
    int x = c-'a';
    if(!trie[cur][x]) trie[cur][x] = ++nodes;
    cur = trie[cur][x];
  }
  //cnt_word[cur]++;
  //end_word[cur] = i; // for i > 0
}
void build() {
```

```
queue<int> q; q.push(0);
 while(q.size()) {
   int u = q.front(); q.pop();
   for(int i = 0; i < alpha; ++i) {</pre>
     int v = trie[u][i];
     if(!v) trie[u][i] = trie[ fail[u] ][i]; //
         construir automata
     else q.push(v);
     if(!u || !v) continue;
     fail[v] = trie[ fail[u] ][i];
     //fail_out[v] = end_word[ fail[v] ] ?
         fail[v] : fail_out[ fail[v] ];
     //cnt_word[v] += cnt_word[ fail[v] ]; //
         obtener informacion del fail_padre
   }
 }
}
```

8.2 Hashing

```
/// 1000234999, 1000567999, 1000111997, 1000777121
const int MODS[] = { 1001864327, 1001265673 };
const mint BASE(256, 256), ZERO(0, 0), ONE(1, 1);
inline int add(int a, int b, const int& mod) {
    return a+b >= mod ? a+b-mod : a+b; }
inline int sbt(int a, int b, const int& mod) {
    return a-b < 0 ? a-b+mod : a-b; }</pre>
inline int mul(int a, int b, const int& mod) {
    return 1ll*a*b%mod: }
inline 11 operator ! (const mint a) { return
    (ll(a.first)<<32)|ll(a.second); }
inline mint operator + (const mint a, const mint
    b) {
 return {add(a.first, b.first, MODS[0]),
      add(a.second, b.second, MODS[1]));
inline mint operator - (const mint a, const mint
 return {sbt(a.first, b.first, MODS[0]),
      sbt(a.second, b.second, MODS[1]));
}
```

```
inline mint operator * (const mint a, const mint
    b) {
 return {mul(a.first, b.first, MODS[0]),
      mul(a.second, b.second, MODS[1])};
mint base[MAXN]:
void prepare() {
 base[0] = ONE:
 for(int i = 1; i < MAXN; i++) base[i] =</pre>
      base[i-1]*BASE:
template <class type>
struct hashing {
 vector<mint> code:
 hashing(type &t) {
   code.resize(t.size()+1);
   code[0] = ZER0:
   for (int i = 1; i < code.size(); ++i)</pre>
     code[i] = code[i-1]*BASE + mint{t[i-1],}
         t[i-1]};
 }
 mint query(int 1, int r) {
   return code[r+1] - code[1]*base[r-1+1];
 }
};
```

8.3 Kmp automaton

}

8.4 Kmp

```
/// Complexity: O(|N|)
vector<int> get_phi(string &p) {
 vector<int> phi(p.size());
 phi[0] = 0;
 for(int i = 1, j = 0; i < p.size(); ++i ) {</pre>
   while(j > 0 && p[i] != p[j] ) j = phi[j-1];
   if(p[i] == p[j]) ++j;
   phi[i] = j;
 return phi;
int get_matches(string &t, string &p) {
 vector<int> phi = get_phi(p);
 int matches = 0;
 for(int i = 0, j = 0; i < t.size(); ++i ) {</pre>
   while(j > 0 && t[i] != p[j] ) j = phi[j-1];
   if(t[i] == p[j]) ++j;
   if(j == p.size()) {
     matches++:
     j = phi[j-1];
 return matches;
```

8.5 Manacher

```
/// Complexity: O(|N|)
///to = i - from[i];
///len = to - from[i] + 1 = i - 2 * from[i] + 1;
vector<int> manacher(string &s) {
  int n = s.size(), p = 0, pr = -1;
  vector<int> from(2*n-1);
  for(int i = 0; i < 2*n-1; ++i) {
   int r = i <= 2*pr ? min(p - from[2*p - i],
        pr) : i/2;</pre>
```

8.6 Minimun expression

```
/// Complexity: O(|N|)
int minimum_expression(string s) {
    s = s+s;
    int len = s.size(), i = 0, j = 1, k = 0;
    while(i+k < len && j+k < len) {
        if(s[i+k] == s[j+k]) k++;
        else if(s[i+k] > s[j+k]) i = i+k+1, k = 0;
        else j = j+k+1, k = 0;
        if(i == j) j++;
    }
    return min(i, j);
}
```

8.7 Palindromic Tree

```
/// Complexity: O(|N|*log(|alphabet|))
struct palindromic_tree {
   struct node{
     int len, link;
     map <char,int> next;
   };
   vector <node> pt;
   int last, it;
   string s;
   palindromic_tree (string str = "") {
      pt.reserve ( s.size()+2 );
   }
}
```

```
s = '#', it = 1, last = 1: //# isn't used in
        string
   add_node (), add_node();
   pt[1].len = -1, pt[0].link = 1;
   for ( char &c: str ) add_letter ( c );
 }
 int add_node () {
   pt.push_back({});
   return pt.size()-1;
 }
 int get_link ( int v ) {
   while (s[it-pt[v].len-2] != s[it-1]) v =
       pt[v].link;
   return v:
 }
 void add letter ( char c ) {
   s += c, ++it;
   last = get_link ( last );
   if ( !pt[last].next.count (c) ) {
     int curr = add_node ();
     pt[curr].len = pt[last].len+2;
     pt[curr].link =
         pt[get_link(pt[last].link)].next[c];
     pt[last].next[c] = curr;
   last = pt[last].next[c];
 node& operator[](int i) { return pt[i]; }
 int size() { return pt.size(); }
};
```

8.8 Suffix array

```
/// Complexity: O(|N|*log(|N|))
const int alpha = 400;
struct suffix_array { // s MUST not have 0 value
  vector<int> sa, pos, lcp;
  suffix_array(string s) {
    s.push_back('$'); // always add something
       less to input, so it stays in pos 0
    int n = s.size(), mx = max(alpha, n)+2;
```

```
vector\langle int \rangle a(n), a1(n), c(n+1), c1(n+1),
        head(mx), cnt(mx);
   pos = 1cp = a;
   for(int i = 0; i < n; i++) c[i] = s[i], a[i]
        = i, cnt[c[i]]++;
   for(int i = 0; i < mx-1; i++) head[i+1] =</pre>
        head[i] + cnt[i];
   for(int k = 0; k < n; k = max(1, k << 1)) {
     for(int i = 0; i < n; i++) {</pre>
       int j = (a[i] - k + n) \% n;
       a1[head[c[i]]++]=i;
     swap(a1, a);
     for(int i = 0, x = a[0], y, col = 0; i < n;
          i++, x = a[i], y = a[i-1]) {
       c1[x] = (i \&\& c[x] == c[y] \&\& c[x+k] ==
            c[y+k]) ? col : ++col;
       if(!i || c1[x] != c1[v]) head[col] = i;
      swap(c1, c);
     if(c[ a[n-1] ] == n) break;
   }
    swap(sa, a);
   for(int i = 0; i < n; i++) pos[ sa[i] ] = i;</pre>
   for(int i = 0, k = 0, j; i < n; lcp[ pos[i++]</pre>
        ] = k) { /// lcp[i, i+1]}
     if(pos[i] == n-1) continue;
     for(k = max(0, k-1), j = sa[pos[i]+1];
          s[i+k] == s[i+k]: k++):
   }
  int& operator[] ( int i ){ return sa[i]; }
};
```

8.9 Suffix automaton

```
/// Complexity: O(|N|*log(|alphabet|))
struct suffix_automaton {
   struct node {
    int len, link, cnt, first_pos; bool end; ///
        cnt is endpos size, first_pos is minimum
        of endpos
```

```
map<char. int> next:
}:
vector<node> sa:
int last:
suffix_automaton() {}
suffix_automaton(string &s) {
 sa.reserve(s.size()*2);
 last = add node():
 sa[last].len = sa[last].cnt =
      sa[last].first_pos = sa[last].end = 0;
 sa[last].link = -1;
 for(char c : s) sa_append(c);
 mark_suffixes();
 build cnt():
int add node() {
 sa.push_back({});
 return sa.size()-1;
void mark_suffixes() {
 ///t0 is not suffix
 for(int cur = last; cur; cur = sa[cur].link)
   sa[cur].end = 1;
/// This is O(N*log(N)). Can be done O(N) by
    doing dfs and counting paths to terminal
    nodes.
void build_cnt() {
 vector<int> order(sa.size()-1):
 iota(order.begin(), order.end(), 1);
 sort(order.begin(), order.end(), [&](int a,
      int b) { return sa[a].len > sa[b].len; });
 for(auto &i : order) sa[ sa[i].link ].cnt +=
      sa[i].cnt;
 sa[0].cnt = 0; /// t0 is empty string
void sa_append(char c) {
 int cur = add_node();
 sa[cur].len = sa[last].len + 1;
 sa[cur].end = 0; sa[cur].cnt = 1;
 sa[cur].first_pos = sa[cur].len-1;
 int p = last;
 while(p != -1 && !sa[p].next[c] ){
   sa[p].next[c] = cur;
```

```
p = sa[p].link;
   if(p == -1) sa[cur].link = 0;
   else {
     int q = sa[p].next[c];
     if(sa[q].len == sa[p].len+1) sa[cur].link =
     else {
       int clone = add_node();
       sa[clone] = sa[q];
       sa[clone].len = sa[p].len+1;
       sa[clone].cnt = 0;
       sa[q].link = sa[cur].link = clone;
       while(p != -1 && sa[p].next[c] == q) {
         sa[p].next[c] = clone;
        p = sa[p].link;
     }
   }
   last = cur;
 node& operator[](int i) { return sa[i]; }
};
```

8.10 Z algorithm

```
/// Complexity: 0(|N|)
vector<int> z_algorithm (string &s) {
  int n = s.size();
  vector<int> z(n);
  int l = 0, r = 0;
  for(int i = 1; i < n; ++i) {
    z[i] = max(0, min(z[i-1], r-i+1));
    while (i+z[i] < n && s[z[i]] == s[i+z[i]])
    l = i, r = i+z[i], ++z[i];</pre>
```

```
}
return z;
```

9 Utilities

9.1 Makefile

```
compile:
    g++ -std=c++17 -static -DLOCAL -02 -Wall
         -Wshadow -Wno-unused-result -o sol
         sol.cpp
```

9.2 Pragma optimizations

```
#pragma GCC optimize ("03")
#pragma GCC target ("sse4")
#pragma GCC target ("avx,tune=native")
```

9.3 Random

```
uniform_int_distribution<T> /
    uniform_real_distribution<T> dis(fr, to);
dis(rng)
```

25

9.4 gen

```
int main(int argv, char * argc[]) {
  srand( atoi( argc[1] ) );
}
```

9.5 test

```
g++ -std=c++17 gen.cpp -o gen
for((i = 0; ;++i));do
  echo $i
   ./gen $i > int
done
```

9.6 vimrc