Лекция 18. Теорема Римана.

Теория функций комплексного переменного

Теорема Римана об отображении

Теорема 12.1 (теорема Римана об отображении). *Если* $U \subset \mathbb{C}$ — односвязное открытое множество, отличное от всего \mathbb{C} , то U изоморфно единичному кругу $D = \{z : |z| < 1\}$.

- Множества \mathbb{C} и \mathbb{D} конформно неизоморфны.
- Следствие теоремы Римана: любое открытое односвязное подмножество плоскости гомеоморфно диску.
- Если U не односвязно, то U негомеоморфно, а значит, и неизоморфно, диску.

Шаг 1: конформное вложение $U \hookrightarrow \mathbb{D}$

- Пусть $c \in \mathbb{C} \setminus U$. Рассмотрим $f_0(z) = \sqrt{z-c}$ и $W = f_0(U)$.
- Имеем $W \cap -W = \emptyset$.
- Выберем открытый диск в -W и отобразим его в $\{|z|>1\}$.
- Получим конформное вложение $f_1: U \to \mathbb{D}$.
- Пусть \mathcal{F} множество всех таких вложений. Доказано, что $\mathcal{F} \neq \emptyset$.

Шаг 2: оптимизационная задача

• Фиксируем $a \in U$. Рассмотрим такую функцию $f \in \mathcal{F}$, для которой $\|f'(a)\| = \sup_{g \in \mathcal{F}} \|g'(a)\|$

(норма берется в метрике Пуанкаре).

- Если $f(U) \neq \mathbb{D}$, то $\exists \ b \in \mathbb{D}$: $b \notin f(U)$. Будем считать, что b = 0.
- Положим $g(z) = \sqrt{f(z)}$. Тогда $\|g'(a)\| > \|f'(a)\|$ по лемме Шварца (теореме Пика), противоречие.
- Таким образом, f обратимое голоморфное вложение, а значит, конформный изоморфизм.

Шаг 3: существование оптимального отображения

- Семейство \mathcal{F} равностепенно непрерывно: $\forall \varepsilon > 0 \; \exists \delta > 0 \; \forall f \in \mathcal{F} \; \operatorname{dist}(x,y) < \delta \implies \operatorname{dist}(f(x),f(y)) < \varepsilon$.
- Метрику Пуанкаре можно заменить евклидовой, так как $\operatorname{dist}(z,w) \geq |z-w|$
- Рассмотрим последовательность $f_n \in \mathcal{F}$, такую, что $\|f_n'(a)\| \to \sup_{g \in \mathcal{F}} \|g'(a)\|$.
- По теореме Арцела-Асколи, для каждого компакта $K \subset U$ существует подпоследовательность f_{n_m} , равномерно сходящаяся на K.

Теорема Арцела-Асколи

Теорема 12.12 (теорема Арцела́—Асколи). Пусть $K \subset \mathbb{C}$ — компакт, и пусть S — семейство комплекснозначных непрерывных функций на K, удовлетворяющее следующим условиям:

- (1) существует такое число M > 0, что $|f(x)| \le M$ для всех $f \in \mathcal{S}$ и $x \in K$;
- (2) для любого $\varepsilon > 0$ существует такое $\delta > 0$, что из неравенства $|z_1 z_2| \le \delta$, где $z_1, z_2 \in K$, следует неравенство $|f(z_1) f(z_2)| \le \varepsilon$ для всех $f \in \mathcal{S}$.

Тогда любая последовательность функций из \mathscr{S} содержит подпоследовательность, равномерно сходящуюся на K.

Завершение доказательства

- Диагональным методом получаем последовательность $g_n \in \mathcal{F}$, равномерно сходящуюся на компактах и такую, что $\|g_n'(a)\| \to \sup_{g \in \mathcal{F}} \|g'(a)\|$.
- Предел $f = \lim_{n \to \infty} g_n$ является голоморфной функцией (теорема Мореры).
- Также f является вложением (принцип аргумента).

Бернхард Риман (1826 – 1866)

- Немецкий математик, механик и физик.
- Член Берлинской и Парижской академий, Лондонского королевского общества.
- Комплексный анализ, дифференциальная геометрия, математическая физика, арифметика, топология.

Теорема об униформизации

Теорема. Пусть $V \subset \overline{\mathbb{C}}$ открыто, причем $\left|\overline{\mathbb{C}} \setminus V\right| > 2$. Существует голоморфное накрытие $\pi \colon \mathbb{D} \to V$.

Метрика Пуанкаре на $V \subset \overline{\mathbb{C}}, |\overline{\mathbb{C}} \setminus V| > 2$

- Голоморфное накрытие $\pi : \mathbb{D} \to V$ позволяет перенести метрику Пуанкаре на $V : \|\pi_*(v)\| \coloneqq \|v\|.$
- Таким образом, можно говорить про длины кривых и т.д.
- Голоморфное отображение $f: V \to V$ является либо локальной изометрией, либо сжатием в метрике Пуанкаре.
- Проколы выглядят (относительно метрики Пуанкаре) как каспы.

В лекции использованы иллюстрации и материалы из следующих источников:

- С.М. Львовский, «Принципы комплексного анализа». МЦНМО.
- Дж. Милнор, «Голоморфная динамика», РиХД 2000.
- https://wikipedia.org
- https://mathworld.wolfram.com/

НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ