Bonding in coordination compounds

- Alfred Werner
- **VBT**
- Crystal Field Theory (CFT)
- Modified CFT, known as Ligand Field Theory
- MOT

Nobel prize 1913

How & Why?

Valance Bond Model

Ligand = Lewis base

Metal = Lewis acid

s, p and d orbitals give hybrid orbitals with specific geometries

Number and type of M-L hybrid orbitals determines geometry of the complex

Octahedral Complex e.g. $[Cr(NH_3)_6]^{3+}$

Tetrahedral e.g. [Zn(OH)₄]²-

Square Planar e.g. $[Ni(CN)_4]^{2-}$

Limitations of VB theory

Can not account for colour of complexes

May predict magnetism wrongly

Can not account for spectrochemical series

Crystal Field Model

- A purely ionic model for transition metal complexes.
- Ligands are considered as point charge.
- Predicts the pattern of splitting of d-orbitals.
- Used to rationalize spectroscopic and magnetic properties.

d-orbitals: look attentively along the axis

Octahedral Field

- We assume an octahedral array of negative charges placed around the metal ion (which is positive).
- The ligand and orbitals lie on the same axes as negative charges.
 - Therefore, there is a large, unfavorable interaction between ligand (-) and these orbitals.
 - These orbitals form the degenerate high energy pair of energy levels.
- The d_{xy} , d_{yz} , and d_{xz} orbitals bisect the negative charges.
 - Therefore, there is a smaller repulsion between ligand and metal for these orbitals.
 - These orbitals form the degenerate low energy set of energy levels.

In Octahedral Field

In Tetrahedral Field

Crystal Field Splitting Energy (CFSE)

- In Octahedral field, configuration is: $t_{2g}^{x} e_{g}^{y}$
- Net energy of the configuration relative to the average energy of the orbitals is:

$$= (-0.4x + 0.6y)\Delta_{O}$$

BEYOND d³

- In weak field: $\Delta_O < P$, => $t_{2g}^3 e_g^1$
- In strong field $\Delta_O > P$, => t_{2g}^4
- P paring energy

Magnitude of Δ

Oxidation state of the metal ion

$$[Ru(H_2O)_6]^{2+}$$

19800 cm⁻¹

$$[Ru(H_2O)_6]^{3+}$$

28600 cm⁻¹

Nature of the metal ion

Number and geometry of the ligand

$$\Delta_{\rm t} < \Delta_{\rm o}$$

Nature of the ligand

Ground-state Electronic Configuration, Magnetic Properties and Colour

Ground-state Electronic Configuration, Magnetic Properties and Colour

 $[Mn(H_2O)_6]^{3+}$ Weak Field Complex
the total spin is $4 \times \frac{1}{2} = 2$ High Spin Complex

[Mn(CN)₆]³⁻ **Strong field Complex**total spin is $2 \times \frac{1}{2} = 1$ **Low Spin Complex**

Ground-state Electronic Configuration, Magnetic Properties and Colour

What is the CFSE of $[Fe(CN)_6]^{3-}$?

 $C.N. = 6 : O_h$

Fe(III) : d^5

h.s.

I.s. $CN^- = s.f.l.$

CFSE =
$$5 \times -0.4 \Delta_{oct} + 2P = -2.0 \Delta_{oct} + 2P$$

If the CFSE of $[Co(H_2O)_6]^{2+}$ is -0.8 Δ_{oct} , what spin state is it in?

 $C.N. = 6 :: O_h \qquad Co(II) :: d^7$

I.s. $\begin{array}{c} & & \\$

CFSE =
$$(6 \text{ x} - 0.4 \Delta_{\text{oct}})$$

+ $(0.6 \Delta_{\text{oct}})$ + P= - $1.8 \Delta_{\text{oct}}$ + P

Magnetism

Each electron has a magnetic moment owing to its:

spin angular momentum

orbital angular momentum

Orbital motion of e generates current and magnetic field

Spin motion of e about its own Axis also generates a magnetic field

- The magnetic moment μ of a complex with total spin quantum number S is:
- $\mu = 2\{S(S+1)\}^{1/2} \mu_B$ (μ_B is the Bohr magneton)
- $\mu_B = eh/4\pi m_e = 9.274 \times 10^{-24} J T^{-1}$
- Since each unpaired electron has a spin ½,
- $S = (\frac{1}{2})n$, where n = no. of unpaired electrons
- $\mu = \{n(n+2)\}^{1/2} \mu_B$
- In d⁴, d⁵, d⁶, and d⁷ octahedral complexes, magnetic measurements can very easily predict weak versus strong field.
- Tetrahedral complexes only high spin complexes result, for $\Delta_t \ll \Delta_O$.

n = no. of unpaired electrons

$$\mu = \{n(n+2)\}^{1/2} \mu_B$$

Ion	n	S	$\mu/\mu_{ m B}$	Experimental
			Calculate	
			d	
Ti ³⁺	1	1/2	1.73	1.7 - 1.8
\mathbf{V}^{3+}	2	1	2.83	2.7 - 2.9
Cr ³⁺	3	3/2	3.87	3.8
Mn ³⁺	4	2	4.90	4.8 – 4.9
Fe ³⁺	5	5/2	5.92	5.3

Similar Calculation can be done for Low-spin Complex

Gouy balance to measure the magnetic susceptibilities

- We can measure the magnetic properties of a sample by hanging a vial of material from a balance so that it sits partly in a magnetic field
 - The sample will be pulled down into the magnet if it contains unpaired electrons (said to be paramagnetic)
 - It will tend to be pushed out of the field if it contains no unpaired electrons (diamagnetic)
- The amount of material in the vial along with the extent to which the sample is pulled into the magnet allows us to calculate the magnetic susceptibility of the sample
 - Sample with a high magnetic susceptibility is strongly pulled into the magnetic field

The origin of the color of the transition metal compounds

$$\Delta E = E_2 - E_1 = h\nu$$

Ligands influence Δ_0 , therefore the colour

The colour can change depending on a number of factors e.g.

- 1. Metal charge
- 2. Ligand strength

The optical absorption spectrum of $[Ti(H_2O)_6]^{3+}$

Assigned transition:

$$e_g \longrightarrow t_{2g}$$

This corresponds to

$$\Delta_0 = 243 \text{ kJ mol}^{-1}$$

• Spectrochemical Series: An order of ligand field strength based on experiment:

Weak Field I- < Br-< S²⁻< SCN-< Cl-< NO $_3$ -< F- < C $_2$ O $_4$ -< H $_2$ O< NCS-< CH $_3$ CN< NH $_3$ < en < bipy< phen< NO $_2$ -< PPh $_3$ < CN-< CO Strong Field

Ethylenediamine (en)

2,2'-bipyridine (bipy)

1.10 - penanthroline (phen)

As Cr^{3+} goes from being attached to a weak field ligand to a strong field ligand, Δ increases and the color of the complex changes from green to yellow.

Limitations of CFT

Considers Ligand as Point charge/dipole only
Does not take into account overlap between ligand and
metal orbitals

Consequence

e.g. Fails to explain why CO is stronger ligand than CN⁻ in complexes having metal in low oxidation state

Summary of ligand effects on Δ_o

Metals in Low Oxidation States

- In low oxidation states, the electron density on the metal ion is very high.
- To stabilize low oxidation states, we require ligands, which can simultaneously bind the metal center and also withdraw electron density from it.

Stabilizing Low Oxidation State: CO Can Do the Job

Stabilizing Low Oxidation State: CO Can Do the Job

 $Ni(CO)_4$], $[Fe(CO)_5]$, $[Cr(CO)_6]$, $[Mn_2(CO)_{10}]$, $[Co_2(CO)_8]$, $Na_2[Fe(CO)_4]$, $Na[Mn(CO)_5]$

σ orbital serves as a very weak donor to a metal atom

copyright Nick Kim http://strangematter.sci.waikato.ac.nz/