

A Schlumberger Company

IRF440-443/IRF840-843 MTM7N45/7N50 N-Channel Power MOSFETs, 8 A, 450 V/500 V

Power And Discrete Division

T-39-11

Description

These devices are n-channel, enhancement mode, power MOSFETs designed especially for high voltage, high speed applications, such as off-line switching power supplies, UPS, AC and DC motor controls, relay and solenoid drivers.

- V_{GS} Rated at ±20 V
- Silicon Gate for Fast Switching Speeds
- I_{DSS}, V_{DS(on)}, SOA and V_{GS(th)} Specified at Elevated Temperature
- Rugged

TO-204AA

TO-220AB

IRF441 IRF442 IRF443 MTM7N45 MTM7N50

IRF442/443

IRF440

IRF840 IRF841 IRF842 IRF843

MTM7N45

Maximum Ratings

Symbol	Characteristic	Rating IRF440/442 IRF840/842 MTM7N50	Rating IRF441/443 IRF841/843 MTM7N45	Unit
V _{DSS}	Drain to Source Voltage	500	450	V
V _{DGR}	Drain to Gate Voltage $R_{GS} = 20 \text{ k}\Omega$	500	450	٧
V _{GS}	Gate to Source Voltage	± 20	± 20	V
T _J , T _{stg}	Operating Junction and Storage Temperature	-55 to +150	-55 to +150	°C
TL	Maximum Lead Temperature for Soldering Purposes, 1/8" From Case for 5 s	275	275	°C

Maximum On-State Characteristics

		IRF840/841	IRF842/843	MTM7N50	
R _{DS(on)}	Static Drain-to-Source On Resistance	0.85	1.1	0.8	Ω
I _D	Drain Current Continuous Pulsed	8 32	7 28	7 40	A
Maximum	Thermal Characteristics				
$R_{ heta JC}$	Thermal Resistance, Junction to Case	1.0	1.0	0.83	°C/W
$R_{ heta JA}$	Thermal Resistance, Junction to Ambient	60	60	60	°C/W
P _D	Total Power Dissipation at T _C = 25°C	125	125	150	W

IRF440/441

For information concerning connection diagram and package outline, refer to Section 7.

IRF440-443/IRF840-843

T-39-11

Electrical Characteristics	$T_{\rm C} = 25^{\circ}{\rm C}$	unless	otherwise	noted)
-----------------------------------	---------------------------------	--------	-----------	--------

Symbol	Characteristic	Min	Max	Unit	Test Conditions
Off Charac	teristics				
V _{(BR)DSS}	Drain Source Breakdown Voltage ¹			V	$V_{GS} = 0 \text{ V, } I_D = 250 \mu A$
(7	IRF440/442/840/842	500			
	IRF441/443/842/843	450			
loss	Zero Gate Voltage Drain Current		250	μΑ	$V_{DS} = Rated V_{DSS}, V_{GS} = 0 V$
			1000	μΑ	$V_{DS} = 0.8 \times \text{Rated } V_{DSS},$ $V_{GS} = 0 \text{ V}, T_C = 125^{\circ}\text{C}$
lgss	Gate-Body Leakage Current			nA	$V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$
	IRF440-443		± 100		
	IRF840-843		± 500		
On Charac	teristics				
V _{GS(th)}	Gate Threshold Voltage	2.0	4.0	V	$I_D = 250 \mu A, V_{DS} = V_{GS}$
R _{DS(on)}	Static Drain-Source On-Resistance ²			Ω	$V_{GS} = 10 \text{ V}, I_D = 4.0 \text{ A}$
- •	IRF440/441/840/841		0.85		
	IRF442/443/842/843		1.10		
9fs	Forward Transconductance	4.0		s (හ)	$V_{DS} = 10 \text{ V}, I_D = 4.0 \text{ A}$
Dynamic C	Characteristics				
C _{iss}	Input Capacitance		1600	pF	V _{DS} = 25 V, V _{GS} = 0 V
Coss	Output Capacitance		350	pF	f = 1.0 MHz
C _{rss}	Reverse Transfer Capacitance		150	pF	
Switching	Characteristics (T _C = 25°C, Figures 9,	10)			
t _{d(on)}	Turn-On Delay Time		35	ns	V _{DD} = 220 V, I _D = 4.0 A
t _r	Rise Time		15	ns	$V_{GS} = 10 \text{ V}, R_{GEN} = 4.7 \Omega$ $R_{GS} = 4.7 \Omega$
t _{d(off)}	Turn-Off Delay Time		90	ns	- 1 rus - 111 - 12
t _f	Fall Time		30	ns	7
Q_g	Total Gate Charge		60	nC	V _{GS} = 10 V, I _D = 12 A V _{DD} = 400 V
Symbol	Characteristic	Тур	Max	Unit	Test Conditions
Source-Dra	ain Diode Characteristics				
V _{SD}	Diode Forward Voltage IRF440/441/840/841		2.0	V	I _S = 8.0 A; V _{GS} = 0 V
	IRF442/443/842/843		1.9	٧	I _S = 7.0 A; V _{GS} = 0 V
t _{rr}	Reverse Recovery Time	700		ns	$I_S = 8.0 \text{ A; } dI_S/dt = 100 \text{ A}/\mu\text{S}$

Notes $1.~T_J=+25^{\circ}C~to~+150^{\circ}C$ 2. Pulse test: Pulse width $\leq 80~\mu s,~Duty~cycle \leqslant 1\%$

MTM7N45/7N50

T-39-11

Symbol	Characteristic	Min	Max	Unit	Test Conditions	
Off Charac	teristics					
V _{(BR)DSS}	Drain Source Breakdown Voltage ¹			٧	$V_{GS} = 0 \text{ V}, I_D = 5.0 \text{ mA}$	
	MTM7N50	500				
	MTM7N45	450				
I _{DSS}	Zero Gate Voltage Drain Current		0.25	mA	$V_{DS} = 0.85 \times \text{Rated } V_{DSS},$ $V_{GS} = 0 \text{ V}$	
			2.5	mA	$V_{DS} = 0.85 \times \text{Rated } V_{DSS},$ $V_{GS} = 0 \text{ V}, T_C = 100^{\circ}\text{C}$	
I _{GSS}	Gate-Body Leakage Current		± 500	nA	$V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$	
On Charac	teristics	·				
V _{GS(th)}	Gate Threshold Voltage	2.0	4.5	V	$I_D = 1.0$ mA, $V_{DS} = V_{GS}$	
		1.5	4.0	٧	$I_D = 1.0 \text{ mA}, V_{DS} = V_{GS}$ $T_C = 100^{\circ}\text{C}$	
R _{DS(on)}	Static Drain-Source On-Resistance ²		0.8	Ω	V _{GS} = 10 V, I _D = 3.5 A	
V _{DS(on)}	Drain-Source On-Voltage ²		2.8	٧	V _{GS} = 10 V, I _D = 3.5 A	
			7.0	V	V _{GS} = 10 V, I _D = 7.0 A	
			5.6	V	$V_{GS} = 10 \text{ V}, I_D = 3.5 \text{ A}$ $T_C = 100^{\circ}\text{C}$	
9fs	Forward Transconductance	4.0		S (U)	$V_{DS} = 10 \text{ V, } I_{D} = 4.0 \text{ A}$	
Dynamic C	haracteristics					
Ciss	Input Capacitance		1800	pF	V _{DS} = 25 V, V _{GS} = 0 V	
Coss	Output Capacitance		350	pF	f = 1.0 MHz	
C _{rss}	Reverse Transfer Capacitance		150	рF		
Switching	Characteristics (T _C = 25°C, Figures 9,	10) ³				
t _{d(on)}	Turn-On Delay Time		60	ns	V _{DD} = 25 V, I _D = 3.5 A	
t _r	Rise Time		150	ns	$V_{GS} = 10 \text{ V}, R_{GEN} = 50 \Omega$ $R_{GS} = 50 \Omega$	
t _{d(off)}	Turn-Off Delay Time		200	ns		
t _f	Fall Time		120	ns		
Qg	Total Gate Charge		60	nC	V _{GS} = 10 V, I _D = 12 A V _{DD} = 400 V	

Notes 1. T_J = +25°C to +150°C 2. Pulse test: Pulse width \leq 80 μ s, Duty cycle \leq 1% 3. Switching time measurements performed on LEM TR-58 test equipment

Typical Performance Curves

Figure 1 Output Characteristics

Figure 3 Transfer Characteristics

Ì

Figure 5 Capacitance vs Drain to Source Voltage

Figure 2 Static Drain to Source Resistance vs Drain Current

Figure 4 Temperature Variation of Gate to Source Threshold Voltage

Figure 6 Gate to Source Voltage vs Total Gate Charge

IRF440-443/IRF840-843 MTM7N45/7N50

T-39-11

Typical Performance Curves (Cont.)

Figure 7 Forward Biased Safe Operating Area Curves

Typical Electrical Characteristics

Figure 9 Switching Test Circuit

Figure 8 Transient Thermal Resistance vs Time

Figure 10 Switching Waveforms

