四、数据处理与误差分析

微波频率测量

微波信号源频率 (GHz)	9.000	9.200	9.400
功率 (mV)	14.3	13.8	16.4

驻波比测量

微波信号频率 (GHz)		9.000		$ar{S}$		9.200		$ar{S}$		9.400		$ar{S}$
$U_{ m max}(\mu{ m V})$	92.1	91.0	91.5		85.0	85.1	85.1		83.1	83.6	83.5	
$U_{ m min}(\mu{ m V})$	75.0	75.1	76.1		70.0	70.2	70.1		63.0	64.0	63.2	
$S = \sqrt{U_{ m max}/U_{ m min}}$	1.11	1.10	1.10	1.100	1.10	1.10	1.10	1.100	1.15	1.14	1.15	1.147

测量驻波比实验中,微波信号频率为 $9.000~\mathrm{GHz}$ 和 $9.200~\mathrm{GHz}$ 时驻波比基本稳定在 $1.10~\mathrm{M近}$,但 $9.400~\mathrm{GHz}$ 频率时测得驻 波比为 1.147,与 $1.10~\mathrm{f}$ 一定偏差。可能由以下几方面误差引起:

可能由以下几方面误差引起:

电压表精度有限:本实验所用电压表的最小刻度为 $0.01~\mu {
m V}$,对于驻波比接近 1.1 的情况, $U_{
m max}$ 与 $U_{
m min}$ 仅相差十几微伏,微小误差会被驻波比放大。

频率源不稳定: 微波源频率在微小波动时,会影响驻波的干涉条纹,导致最大/最小点位置发生偏移。

探针定位不精确:在寻找 U_{max} 与 U_{min} 时,滑轨精度及操作者主观判断可能造成误判。

电磁干扰:实验环境可能存在手机等电子设备工作,干扰微波信号,造成测得信号不稳定。

改进建议

提高电压测量精度,选用更高分辨率仪器;多次重复测量并取平均,排除偶然误差;校准频率源,确保其输出稳定。

波长表测频率

微波信号名义频率(GHz)	9.000	9.200	9.400
波长表读数(mm)	6.220	4.759	3.385
对应频率 (GHz)	9.163	9.348	9.549

利用波长表测频率实验中,波长表用于间接测定微波频率。通过读取波长值,再从波长表中找到对应的微波信号频率。通过波长表测得的微波信号频率与名义频率存在一定偏差,造成误差的主要因素可能包括:

波长表读数误差:波长表的刻度读数精度有限,直接影响频率计算结果;

仪器系统误差:如滑轨松动、波导不清洁等可能影响测量准确性。

改进建议

使用高精度波长表,减小机械误差;多次测量同一频点波长值,取平均减小偶然误差;检查波导连接与设备状态,确保系统稳定。

间接法测频率

名义频率 (GHz)	$l_1 \ m (mm)$	$\begin{array}{c} l_2 \\ (\text{mm}) \end{array}$	D_1 (mm)	$l_3 \ m (mm)$	$\begin{array}{c} l_4 \\ (\text{mm}) \end{array}$	$D_2 \ m (mm)$	$\lambda_g \ m (mm)$	$\lambda \ m (mm)$	f (GHz)
9.400	102.8	107.9	105.35	124.6	129.7	127.15	43.6	31.55	9.508
9.200	118.9	114.0	116.45	96.3	91.4	93.85	45.2	32.14	9.333
9.000	101.9	106.8	104.35	125.8	130.5	128.15	47.6	32.97	9.098

在 $9.000~\mathrm{GHz}$ 名义频率点,间接法测得的频率与名义频率偏差较小,在 $9.200~\mathrm{GHz}$ 和 $9.400~\mathrm{GHz}$ 频率点,间接法测得的频率与名义频率偏差较大。误差可能来源于:

测量误差:使用游标卡尺测量驻波腹间距 l_1, l_2 以及各差值 D_1, D_2 时,存在人为读数误差和仪器分辨率限制;

波导系统误差:波导内可能存在不均匀性、接头接触不良等问题,这些都会导致驻波分布不稳定,影响腹点位置判断;

环境误差:温度变化可能引起波导膨胀,进而影响波长的测量。

改进建议

增加重复测量,取平均值以减小系统误差;使用更高精度的测量仪器;做实验前让实验仪器预热足够长的时间。

五、思考题

如何用这套实验装置测量光速?

先由直接法测出微波频率 ν ,再由间接法测波导波长 λ_g ,最后根据公式 $\nu=c\sqrt{\left(1/\lambda_g\right)^2+\left(1/\lambda_c\right)^2}\Longrightarrow c=
u\sqrt{\sqrt{\left(1/\lambda_g\right)^2+\left(1/\lambda_c\right)^2}}$ 测得光速 c.