

Chapter 8.

Optimization for Training Deep Models

2017-08-31

Jinwook Kim

Contents

- 8.1 How Learning Differs from Pure Optimization
- 8.2 Challenges in Neural Networks Optimization
- 8.3 Basic Algorithms
- 8.5 Algorithms with Adaptive Learning Rates
- 8.4 Parameter Initialization Strategies
- 8.6 Approximate Second-order Methods
- 8.7 Optimization Strategies and Meta-algorithms

How Learning Differs from Pure Optimization

Empirical Risk Minimization

- Machine learning usually acts indirectly
- The goal of learning is to reduce the expected generalization error (risk)
- However, learning algorithms reduce cost functions (empirical risk)
 - minimizing the expected loss on the training dataset
 - in the hope that the indirect optimization will improve the performance

Surrogate Loss Functions

Sometimes the loss function is difficult to be optimized

> e.g., 0-1 loss

$$L(h(\mathbf{x}), Y) = \begin{cases} 1 & h(\mathbf{x}) < Y \\ 0 & \text{otherwise} \end{cases}$$

- In the case, we can use a surrogate loss for the optimization
 - ➤ differentiable
 - ➤ improve robustness

P. L. Bartlett, M. I. Jordan, and J. D. McAuliffe, "Convexity, Classification, and Risk Bounds," J. Am. Stat. Assoc., pp. 1–36, 2003.

Minibatch Algorithms

Optimization in machine learning typically computes loss and updates parameters iteratively

```
>e.g., gradient descent
```

- Using the entire training set (batch algorithm) per every iteration is computationally infeasible
- Minibatch algorithm uses only b examples in each iteration
 - $\triangleright m$: the size of entire training examples
 - $\triangleright b$: minibatch size $(1 \le b < m)$

Batch vs. Minibatch

- Each iteration in minibatch algorithm may have poor optimization performance than batch algorithm
- However, after many iterations, the minibatch algorithm generally converges to optimal state

(a) Batch gradient descent optimization

(b) Minibatch gradient descent optimization http://www.holehouse.org/mlclass/17_Large_Scale_Machine_Learning.html

Challenges in Neural Network Optimization

Limitation of Gradient Descent

Issue of local minimum

Objective: $min J(\theta)$

$$\theta_{t+1} = \theta_t - \epsilon \frac{\partial J(\theta)}{\partial \theta}$$
(\epsilon: Learning rate)

 If the starting point for gradient descent was chosen inappropriately, cannot reach global minimum

Saddle Point

For many high-dimensional non-convex functions, local minima are in fact rare cases

n: # of parameters in model

➤ local minima should satisfy,

$$rac{\partial J}{\partial heta_i} = 0$$
 , $i = 1, ... n$ $rac{\partial^2 J}{\partial^2 heta_i} > 0$, $i = 1, ... n$

Most of zero-gradient points in deep neural networks are saddle points

are saddle points

Cliffs and Exploding Gradient

- Cliff is one common issue in the objective functions for deep neural networks
 - resulting from the multiplication of several parameters
- The gradient update step can move the parameter extremely far (exploding gradient)
 - > losing most of optimization works that has been done

Gradient Clipping for Handling Cliffs

$$\Delta\theta_i \leftarrow \Delta\theta_i \frac{\Delta MAX}{max(|\Delta\theta_i|, \Delta MAX)}$$

Basic Algorithms

Forward Propagation (Review)

Back Propagation (Review)

Data (minibatch)

Parameter Update (Review)

Data (minibatch)

Next Iteration

Stochastic Gradient Descent (SGD)

Minibatch of the training set:

data
$$\{x^{(1)}, ..., x^{(m)}\}$$
 with targets $\{y^{(1)}, ..., y^{(m)}\}$

Gradient:

$$\widehat{\boldsymbol{g}} \leftarrow \frac{1}{m} \nabla_{\boldsymbol{\theta}} \sum_{i}^{m} L(f(\boldsymbol{x}^{(i)}; \boldsymbol{\theta}), y^{(i)})$$

Apply update:

$$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \epsilon \widehat{\boldsymbol{g}}$$

 \triangleright learning rate ϵ is a critical hyperparameter for SGD

Momentum

Momentum is designed to accelerate learning

- accumulates an exponentially decaying moving-average of past gradients
- > continues to move in their direction

Comparison of GD and GD with momentum:

SGD with Momentum

Minibatch of the training set:

data
$$\{x^{(1)}, ..., x^{(m)}\}$$
 with targets $\{y^{(1)}, ..., y^{(m)}\}$

Gradient:

$$\widehat{\boldsymbol{g}} \leftarrow \frac{1}{m} \boldsymbol{\nabla}_{\boldsymbol{\theta}} \sum_{i}^{m} L(f(\boldsymbol{x}^{(i)}; \boldsymbol{\theta}), y^{(i)})$$

Accumulate velocity:

$$\boldsymbol{v} \leftarrow \alpha \boldsymbol{v} - \epsilon \hat{\boldsymbol{g}}$$

- $0 < \alpha < 1$, a hyperparameter
- Apply update:

$$\theta \leftarrow \theta + v$$

Nesterov Momentum (Nesterov, 2004)

- With Nesterov momentum, the gradient is evaluated after current velocity is applied
- Comparison of momentum and Nesterov momentum:

SGD with Nesterov Momentum

Minibatch of the training set:

data
$$\{x^{(1)}, \dots, x^{(m)}\}$$
 with targets $\{y^{(1)}, \dots, y^{(m)}\}$

Apply interim update:

$$\widetilde{\boldsymbol{\theta}} \leftarrow \boldsymbol{\theta} + \alpha \boldsymbol{v}$$

Gradient:

$$\widehat{\boldsymbol{g}} \leftarrow \frac{1}{m} \nabla_{\widetilde{\boldsymbol{\theta}}} \sum_{i}^{m} L(f(\boldsymbol{x}^{(i)}; \widetilde{\boldsymbol{\theta}}), y^{(i)})$$

Velocity:

$$v \leftarrow \alpha v - \epsilon \hat{g}$$

Apply update:

$$\theta \leftarrow \theta + v$$

Algorithms with Adaptive Learning Rates

AdaGrad (Duchi et al., 2011)

- Adaptive gradient (AdaGrad) is a modified SGD with per-parameter learning rate
 - ➤ increases the learning rate for parameters having small gradient
 - decreases the learning rate for parameters having large gradient
- Gradient:

$$\widehat{\boldsymbol{g}} \leftarrow \frac{1}{m} \nabla_{\boldsymbol{\theta}} \sum_{i}^{m} L(f(\boldsymbol{x}^{(i)}; \boldsymbol{\theta}), y^{(i)})$$

Accumulate squared gradients:

$$r \leftarrow r + g \odot g$$

⊙: element-wise multiplication

r: initialized to 0

 δ : small constant value (e.g., 10^{-7})

Apply update:

$$oldsymbol{ heta} \leftarrow oldsymbol{ heta} - \overline{\frac{\epsilon}{\delta + \sqrt{r}}} \odot oldsymbol{g}$$

element-wise operation

RMSProp (Hinton, 2012)

- Root mean square propagation (RMSProp) is the modified version of AdaGrad
 - by changing the gradient accumulation into an exponentially weighted moving average
- Gradient:

$$\widehat{\boldsymbol{g}} \leftarrow \frac{1}{m} \nabla_{\boldsymbol{\theta}} \sum_{i}^{m} L(f(\boldsymbol{x}^{(i)}; \boldsymbol{\theta}), y^{(i)})$$

Accumulate squared gradients:

$$r \leftarrow \rho r + (1 - \rho)g \odot g$$

 $0 < \rho < 1$

Apply update:

$$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \frac{\epsilon}{\delta + \sqrt{r}} \odot \boldsymbol{g}$$

Adam (Kingma and Ba, 2014)

- Adaptive moments (Adam) is the combination of RMSProp and momentum
- Accumulate first and second moment estimates:

$$s \leftarrow \rho_1 s + (1 - \rho_1) g$$

$$r \leftarrow \rho_2 r + (1 - \rho_2) g \odot g$$

Correct bias in first and second moments:

$$\hat{\mathbf{s}} \leftarrow \frac{\mathbf{s}}{1 - \rho_1^t}, \qquad \hat{\mathbf{r}} \leftarrow \frac{\mathbf{r}}{1 - \rho_2^t}$$

Apply update:

$$oldsymbol{ heta} \leftarrow oldsymbol{ heta} - \epsilon rac{\hat{oldsymbol{s}}}{\sqrt{\hat{oldsymbol{r}}} + \delta}$$
 t: curren

 ho_1 : decay rate for 1st moment estimate (usually 0.9) ho_2 : decay rate for 2nd moment estimate (usually 0.999) ho_2 : current number of iteration

Example: Beale's Function

Algorithms at Beale's Function

Lecture material in CS231n, "Convolutional Neural Networks for Visual Recognition", Stanford Univ. (Image credit: Alec Radford)

Algorithms at Long Valley

Lecture material in CS231n, "Convolutional Neural Networks for Visual Recognition", Stanford Univ. (Image credit: Alec Radford)

Algorithms at Saddle Point

Hyperparameter Setting in CAFFE

```
net: "svhn/fix2-svhn-3conv-model.prototxt"
test iter: 100
test interval: 1000
max iter: 100000

    Stochastic Gradient Descent (type: "SGD"),

lr policy: "fixed"

    AdaDelta (type: "AdaDelta").

base lr: 0.001
momentum: 0.9

    Adaptive Gradient (type: "AdaGrad"),

weight decay: 0.004

    Adam (type: "Adam"),

    Nesterov's Accelerated Gradient (type: "Nesterov") and

type: "SGD

    RMSprop (type: "RMSProp")

display: 10000
snapshot: 80000
snapshot prefix: "svhn/snapshot/fix2 svhn 3conv"
solver mode: GPU
```


Parameter Initialization

Initial Parameters in Deep Learning

Determining appropriate initial parameters for a deep model is one of the most important part of optimization

- Initial parameters can determine,
 - whether the algorithm converges or not
 - > whether the model converges to a point with a high or low cost
 - how quickly learning converges
- However, the initialization strategies are still heuristic
 - ➤ initial values are drawn randomly from a Gaussian or uniform distribution

Initialization with Appropriate Scale

- If the weights in a network start too small,
 - > the signal shrinks as it passes through each layer
- If the weights in a network start too large,
 - ➤ the signal explodes as it passes through each layer
- Xavier initialization makes the signal keep in a reasonable range of values through many layers
- Xavier algorithm initializes W's with drawing them from a zero mean and $Var(W_i) = \frac{1}{n_{in}}$

Basic Idea of Xavier Initialization

Linear Activation at Each Layer

- $W_i = W_1 X_1 + \dots + W_n X_n$
 - \triangleright input X with n components
 - ➤ linear neuron with random weight W

- $Var(W_iX_i) = E[X_i]^2 Var(W_i) + E[W_i]^2 Var(X_i) + Var(W_i)Var(X_i)$
 - \succ assume, $E[X_i] = 0$ and $E[W_i] = 0$
 - $\therefore Var(W_iX_i) = Var(W_i)Var(X_i)$
- - \triangleright assume, X_i and W_i are i.i.d.

Xavier Initialization Algorithm

- $\operatorname{Var}(Y) = n_{\operatorname{in}} \operatorname{Var}(W_i) \operatorname{Var}(X_i)$
 - The variance of the output Y is the variance of input X scaled by $n_{in}Var(W_i)$
- Ideal case: $Var(Y) = Var(X_i)$ >i.e. $n_{in}Var(W_i) = 1$
- So, for the weight initialization,

$$\operatorname{Var}(W_i) = \frac{1}{n_{\text{in}}}$$
(or $\operatorname{Var}(W_i) = \frac{2}{n_{\text{in}} + n_{\text{out}}}$)

Basic Idea of MSRA Initialization

Initialization for Rectifiers (a.k.a. MSRA)

- $y_l = w_l x_l + b_l$
 - $\triangleright n$: # inputs for current layer
 - > *l*: an index of layer
 - ► b: a bias term

ReLU does not have zero mean

$$\because x_l = max(0, y_{l-1})$$

- - \succ assume, E[w] = 0, but $E[x] \neq 0$
 - $\triangleright x$ and w are i.i.d.

Distribution in *l*-th Layer

$$E[x_{l}^{2}] = \int_{-\infty}^{\infty} max(0, y_{l-1})^{2} p(y) dy$$
$$= \int_{0}^{\infty} y_{l-1}^{2} p(y_{l-1}) dy$$

- $\rightarrow : y_{l-1}^2$ is symmetric around 0
- $p(y_{l-1})$ is assumed to symmetric around 0 (: w_{l-1} is assumed to symmetric around 0)

$$= \frac{1}{2} \int_{-\infty}^{\infty} y_{l-1}^{2} p(y_{l-1}) dy$$

$$= \frac{1}{2} \int_{-\infty}^{\infty} (y_{l-1} - E[y_{l-1}])^{2} p(y_{l-1}) dy$$

$$= \frac{1}{2} Var[y_{l-1}]$$

Variance Propagation for All L Layers

$$E(x_l^2) = \frac{1}{2} Var(y_{l-1})$$
, when f is ReLU

$$Var(y_l) = \frac{1}{2}n_l Var(w_l) Var(y_{l-1})$$

should avoid exponential growth $\rightarrow \frac{1}{2} n_l \text{Var}(w_l) = 1, \forall l$

With L layers put together,

$$Var(y_L) = Var(y_1) \left(\prod_{l=2}^{L} \frac{1}{2} n_l Var(w_l) \right)$$

Initialize W's with drawing them from a zero-mean Gaussian distribution whose $Var(w_l) = \frac{2}{n_{in}}$

Batch Normalization

Covariate Shift (Shimodaira, 2000)

- Training / testing input distributions are different, but target function remains unchanged
 - > causing weak extrapolation

Masashi Sugiyama, "Density Ratio Estimation in Machine Learning", 2012

Solution for Covariate Shift

Internal Covariate Shift in DNN

Solution for Internal Covariate Shift

Batch Normalization (BN)

Normalizing each layer's input of given minibatch

 $\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_{i} \qquad \qquad \text{minibatch mean}$ $\sigma_{\mathcal{B}}^{2} \leftarrow \frac{1}{m} \sum_{i=1}^{m} (x_{i} - \mu_{\mathcal{B}})^{2} \qquad \qquad \text{minibatch variance}$ $\widehat{x}_{i} \leftarrow \frac{x_{i} - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^{2} + \epsilon}} \qquad \qquad \text{normalization}$

m: size of mini-batch $\mathcal{B} = \{x_{1...m}\}$

Two necessary simplifications:

- \triangleright normalize each feature independently, N(0,1)
- > calculate mean and variance only for a current training minibatch

BN Transformation

- Simply normalizing each input of a layer may change what the layer can represent
- Introduce a linear transformation for each activation

$$BN_{\gamma,\beta}(x_{1...m}) = \gamma \widehat{x}_{1...m} + \beta$$

 γ, β : parameters of BN transformation \hat{x}_i : normalized input

- $\triangleright \gamma$ and β are learned (updated) at BP steps
 - γ: scale factor
 - β : shift factor

NN with & without BN

Comparison between neural networks with and without BN.

http://sanghyukchun.github.io/88

Next Chapter: Convolutional Networks

- The Convolution Operation
- Motivation
- Pooling
- Convolution and Pooling as an Infinitely Strong Prior
- Variants of the Basic Convolution Function
- Structured Outputs
- Data Types
- Efficient Convolution Algorithms
- Random or Unsupervised Features
- The Neuroscientific Basis for Convolutional Networks
- Convolutional Networks and the History of Deep Learning

Thank you

