

Lecture 5

Network meta-analysis: statistical methods in a full network

Georgia Salanti

Estimate summary effects for each one of the B basic comparisons: technicalities

- In a star-shaped network easy!
 - Think about the assumptions in heterogeneity
- What if we don't have a star-shaped network? How do non-basic comparisons enter the model?
 - Meta-regression
 - Multivariate meta-analysis
 - Hierarchical model

Implementing network meta-analyses with closed loops

- Subgroup analyses won't work
 - The consistency equations aren't built in
 - Although we can do this with flexible software that allows us to force the consistency equations to hold
 - e.g. WinBUGS in a Bayesian framework= this is the hierarchical model!
- Meta-regression can be used
 - CAUTION! Covariates need to be coded cleverly
 - Works only if every study has exactly two intervention arms
- Multivariate meta-analysis is preferable
 - It allows us to include studies with three or more arms

Insulin monotherapy versus combinations of insulin with oral hypoglycaemic agents in patients with type 2 diabetes mellitus

Run meta-regression to estimate summary effects for each one of the B basic comparisons

$$MD_i = \alpha + \theta_1 AB + \theta_2 AC$$

 α : the direct estimate AD μ_{AD}

 $\alpha + \beta_1$: the direct estimate AB μ_{AB}

 $\alpha +$ θ_2 : the direct estimate AC μ_{AC}

 θ_1 : the indirect estimate DB

 θ_2 : the indirect estimate DC

 β_2 - β_1 : the indirect estimate BC

Because BC = AC - AB

Author	comp	AB	AC	AD
Bastyr 1999	AB	1	0	0
Wolffenbuttel 1996	AC	0	1	0
Fvnyi 1997	AC	0	1	0
Yki-Jrvinen 1999	AC	0	1	0
Chow 1995	AC	0	1	0
Lotz 1988	AC	0	1	0
Wolffenbuttel 1991	AC	0	1	0
Sun 1995	AD	0	0	1
Riddle 1998	AD	0	0	1
Riddle 1992	AD	0	0	1
Shank 1995	AD	0	0	1
Du 2001	AD	0	0	1
Yki-Jrvinen 1992	BC	-1	1	0

Results from meta-regression to estimate summary effects for each one of the B basic

comparisons $MD_i = \alpha + \beta_1 AB + \beta_2 AC$

 α : the direct estimate AD μ_{AD}

 $\alpha + \beta_1$: the direct estimate AB μ_{AB}

 $\alpha + \beta_2$: the direct estimate AC μ_{AC}

 θ_1 : the indirect estimate DB

 θ_2 : the indirect estimate DC

 β_2 - β_1 : the indirect estimate BC

AB -0.1116 [-1.0390; 0.8158]

AC -0.2009 [-0.7374; 0.3355]

AD 0.4790 [-0.1807; 1.1387]

estimate se zval pval ci.lb ci.ub intrcpt -0.4107 0.3246 -1.2654 0.2057 -1.0469 0.2254 AB 0.3663 0.5234 0.6999 0.4840 -0.6595 1.3921 AC 0.6506 0.4495 1.4474 0.1478 -0.2304 1.5317

Run meta-regression to estimate summary effects for each one of the B basic comparisons

 $\textbf{\textit{y}}_{\textit{i}} = \mu_{\textit{tPA}-\textit{S}} \text{tPA}_{\textit{i}} + \mu_{\textit{Anist}-\textit{S}} \text{Anist}_{\textit{i}} + \mu_{\textit{AcctPA}-\textit{S}} \text{AcctPA}_{\textit{i}} + \mu_{\textit{Ang}-\textit{S}} \text{Ang}_{\textit{i}} + \mu_{\textit{Ret}-\textit{S}} \text{Ret}_{\textit{i}} + \delta_{\textit{i}} + e_{\textit{i}}$

			Use as	'covariates'		
No. studies	Streptokinase	t-PA	Anistreplase	Acc t-PA	Angioplasty	Reteplase
3	Ref	1	0	0	0	0
1	Ref	0	1	0	0	0
1	Ref	0	0	1	0	0
3	Ref	0	0	0	1	0
1	Ref	0	0	0	0	1
t	-PA					

We have ignored some studies

Run meta-regression to estimate summary effects for each one of the B basic comparisons

$$y_i = \mu_{tPA-S} \mathsf{tPA}_i + \mu_{Anist-S} \mathsf{Anist}_i + \mu_{AcctPA-S} \mathsf{AcctPA}_i + \mu_{Ang-S} \mathsf{Ang}_i + \mu_{Ret-S} \mathsf{Ret}_i + \delta_i + e_i$$

Use as 'covariates'

	_					
No. studies	Streptokinase	t-PA	Anistreplase	Acc t-PA	Angioplasty	Reteplase
3	Ref	1	0	0	0	0
1	Ref	0	1	0	0	0
1	Ref	0	0	1	0	0
3	Ref	0	0	0	1	0
1	Ref	0	0	0	0	1
1	Ref	-1	1	0	0	0
2	Ref	-1	0	0	1	0
2	Ref	0	0	-1	1	0
2	Ref	0	0	-1	0	1

All studies are now included

Design matrix

The consistency equations are built into the design matrix

This minimizes the number of parameters and allows us to gain precision

$$\mu = \delta \cdot e + \delta \sim N(\mathbf{0}, \operatorname{diag}\{\tau^2\})$$

$$e \sim N(\mathbf{0}, \operatorname{diag}\{v_i\})$$

$$X = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ -1 & 1 & 0 & 0 & 0 \\ -1 & 0 & 0 & 1 & 0 \\ -1 & 0 & 0 & 1 & 0 \\ 0 & 0 & -1 & 1 & 0 \\ 0 & 0 & -1 & 0 & 1 \\ 0 & 0 & -1 & 0 & 1 \end{pmatrix}$$

$$\mathbf{\mu} = \begin{pmatrix} \mu_{tPA-S} \\ \mu_{Anist-S} \\ \mu_{AcctPA-S} \\ \mu_{Ang-S} \\ \mu_{Ret-S} \end{pmatrix}$$

Results from meta-regression

Treatments for MI versus Streptokinase

Regression coefficients	μ lnOR (SE)
μ _{Str vs tPA}	-0.02 (0.03)
μ _{Str vs Anistr}	-0.00 (0.03)
μ _{Str vs Accelerated t-PA}	-0.15 (0.05)
μ _{Str vs Angioplasty}	-0.43 (0.20)
$\mu_{StrvsReta}$	-0.11 (0.06)

We obtain other comparisons by computing linear combinations of these, taking into account their variance-covariance matrix

10 consistency equations

$$\mu_{\text{tPA vs Anistr}} = \mu_{\text{Str vs Anistr}} - \mu_{\text{Str vs tPA}}$$

$$\mu_{\text{tPA vs Reta}} = \mu_{\text{Str vs Reta}} - \mu_{\text{Str vs tPA}}$$
.....

Run meta-regression to estimate summary effects for each one of the B basic comparisons

- Each basic parameter can be seen as a different 'outcome'
- We have 3 'outcomes': AB, AC, AD
- A study comparing BC does not provide information on any outcome
- We impute an A arm!
 - Using minimum information
 - This is what is implemented in Stata

But what about studies that don't have any of these basic parameters?

- Studies that don't include the basic parameters require a little 'trick'
- In the current example, this means the study that does not have treatment A

		TREAT							
Study (name)	TREAT1	2	m1	sd1	n1	m2	sd2	n2	comp
Yki-Jrvinen 1992	В	С	-1.6	1.6	30	-1.8	1.6	29	ВС

We recode this as

Study (name)	TREAT1	TREAT2	m1	sd1	n1	m2	sd2	n2	comp
Yki-Jrvinen 1992	Α	В	0	500	0.01	-1.6	1.6	30	AB
Yki-Jrvinen 1992	A	C	0	500	0.01	-1.8	1.6	29	AC
				-					

- This is a tiny arm for intervention A (0.01 people)
- It looks odd! But it works, and is safe. It's called data augmentation

Impute an A arm for the BC comparison

TREA	T	TRE	ΔT
	`		

Study (name)	1	2	y1	sd1	n1	y2	sd2	n2	comp
Bastyr 1999	A	В	-1.21	1.21	135	-1.4	1.46	149	AB
Wolffenbuttel 1996	A	C	-2.52	1.17	33	-2.9	1.21	34	AC
Fvnyi 1997	A	C	-2.23	1.18	141	-1.4	1.11	145	AC
Yki-Jrvinen 1999	A	C	-2.1	1.4	23	-2	1.5	24	AC
Chow 1995	A	C	-1.4	1.22	27	-2.16	1.74	26	AC
Lotz 1988	A	C	-0.75	1.73	8	-1.72	1.6	8	AC
Wolffenbuttel 1991	A	C	-2.42	1.31	25	-3.1	1.26	22	AC
Sun 1995	A	D	-5.5	4.82	12	-3	3.53	11	AD
Riddle 1998	A	D	-2.2	1	72	-2.1	1	73	AD
Riddle 1992	A	D	-1.3	0.33	11	-0.8	0.63	10	AD
Shank 1995	A	D	-1.8	1.92	9	-0.7	1.74	9	AD
Du 2001	A	D	-1.7	1.57	45	-1.3	1.55	45	AD
Yki-Jrvinen 1992	В	C	-1.6	1.6	30	-1.8	1.6	29	BC

Impute an A arm for the BC comparison

	TREAT	TREAT							
Study (name)	1	2	y1	sd1	n1	y2	sd2	n2	comp
Bastyr 1999	A	В	-1.21	1.21	135	-1.4	1.46	149	AB
Wolffenbuttel 1996	A	C	-2.52	1.17	33	-2.9	1.21	34	AC
Fvnyi 1997	A	C	-2.23	1.18	141	-1.4	1.11	145	AC
Yki-Jrvinen 1999	A	C	-2.1	1.4	23	-2	1.5	24	AC
Chow 1995	A	C	-1.4	1.22	27	-2.16	1.74	26	AC
Lotz 1988	A	C	-0.75	1.73	8	-1.72	1.6	8	AC
Wolffenbuttel 1991	A	C	-2.42	1.31	25	-3.1	1.26	22	AC
Sun 1995	A	D	-5.5	4.82	12	-3	3.53	11	AD
Riddle 1998	A	D	-2.2	1	72	-2.1	1	73	AD
Riddle 1992	A	D	-1.3	0.33	11	-0.8	0.63	10	AD
Shank 1995	A	D	-1.8	1.92	9	-0.7	1.74	9	AD
Du 2001	A	D	-1.7	1.57	45	-1.3	1.55	45	AD
Yki-Jrvinen 1992	A	В	0	500	0.01	-1.6	1.6	30	AB
Yki-Jrvinen 1992	A	C	0	500	0.01	-1.8	1.6	29	AC
Yki-Jrvinen 1992	В	C	-1.6	1.6	30	-1.8	1.6	29	BC

Impute an A arm for the BC comparison

	TREAT	TREAT	Γ						
Study (name)	1	2	y1	sd1	n1	y2	sd2	n2	comp
Bastyr 1999	A	В	-1.21	1.21	135	-1.4	1.46	149	AB
Wolffenbuttel 1996	A	C	-2.52	1.17	33	-2.9	1.21	34	AC
Fvnyi 1997	A	C	-2.23	1.18	141	-1.4	1.11	145	AC
Yki-Jrvinen 1999	A	C	-2.1	1.4	23	-2	1.5	24	AC
Chow 1995	A	C	-1.4	1.22	27	-2.16	1.74	26	AC
Lotz 1988	A	C	-0.75	1.73	8	-1.72	1.6	8	AC
Wolffenbuttel 1991	A	C	-2.42	1.31	25	-3.1	1.26	22	AC
Sun 1995	A	D	-5.5	4.82	12	-3	3.53	11	AD
Riddle 1998	A	D	-2.2	1	72	-2.1	1	73	AD
Riddle 1992	A	D	-1.3	0.33	11	-0.8	0.63	10	AD
Shank 1995	A	D	-1.8	1.92	9	-0.7	1.74	9	AD
Du 2001	A	D	-1.7	1.57	45	-1.3	1.55	45	AD
Yki-Jrvinen 1992	A	В	0	500	0.01	-1.6	1.6	30	AB
Yki-Jrvinen 1992	Α	C	0	500	0.01	-1.8	1.6	29	AC

Then estimate the basic parameters!... But.......

You cannot simply do pairwise meta-analyses as in star network to estimate the basic parameters....

Complication: multi-arm studies

- When a study has more than 2 arms, it contributes 2 or more comparisons
- This complication occurs not only when we 'impute' an arm, but also when the study has multiple arms
- Such data are correlated and we need to employ more sophisticated statistical methodology: multivariate meta-analysis (mvmeta)

Yki-Jrvinen 1992 A B 0 500 0.01 -1.6 1.6 30 AB
Yki-Jrvinen 1992 A C 0 500 0.01 -1.8 1.6 29 AC
$$MD_{i} = \mu_{AB} \times AB_{i} + \mu_{AC} \times AC_{i} + \mu_{AD} \times AD_{i} + \delta_{i} + e_{i}$$

 $\delta_i \sim MVN(0, \Delta^2)$ $e_i \sim MVN(0, V)$ The residuals e and the random effects δ are correlated for the last two observations

Multivariate meta-analysis

- Multivariate means we are interested in multiple effect sizes (or dependent variables) at the same time
- Not the same as using multiple predictors (or covariates) in a regression

Multiple variables on the **right** of the regression equation = **multiple regression** (or multi-variable regression)

Multiple variables on the **left** of the regression equation = **multivariate analysis**

Study	No. arms	#	Data	Contrast
i=1	T ₁ =2	1	$y_{1,1}, v_{1,1}$	AB
i=2	T ₂ =2	1	$y_{2,1}, v_{2,1}$	AC
i=3	T ₃ =2	1	<i>y</i> _{3,1} , <i>v</i> _{3,1}	AD
i=4	T ₄ =3	2	$y_{4,1}, v_{4,1}$ $y_{4,2}, v_{4,2}$ $cov(y_{4,1}, y_{4,2})$	AB AC

Study	No. arms	#	Data	Contrast
i=1	T ₁ =2	1	$y_{1,1}, v_{1,1}$	AB
i=2	T ₂ =2	1	<i>y</i> _{2,1} , <i>v</i> _{2,1}	AC
i=3	T ₃ =2	1	<i>y</i> _{3,1} , <i>v</i> _{3,1}	AD
i=4	T ₄ =3	2	$y_{4,1}, v_{4,1}$ $y_{4,2}, v_{4,2}$ $cov(y_{4,1}, y_{4,2})$	AB AC

Meta-regression

$$\begin{pmatrix} y_{1,1} \\ y_{2,1} \\ y_{3,1} \\ y_{4,1} \\ y_{4,2} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} \mu_{AB} \\ \mu_{AC} \\ \mu_{AD} \end{pmatrix} + \begin{pmatrix} \delta_{1,1} \\ \delta_{2,1} \\ \delta_{3,1} \\ \delta_{4,1} \\ \delta_{4,2} \end{pmatrix} + \begin{pmatrix} e_{1,1} \\ e_{2,1} \\ e_{3,1} \\ e_{4,1} \\ e_{4,2} \end{pmatrix}$$

$$\begin{pmatrix} e_{1,1} \\ e_{2,1} \\ e_{3,1} \\ e_{4,1} \\ e_{4,2} \end{pmatrix} \sim N \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} v_{1,1} & 0 & 0 & 0 & 0 \\ 0 & v_{2,1} & 0 & 0 & 0 \\ 0 & 0 & v_{3,1} & 0 & 0 \\ 0 & 0 & 0 & v_{4,1} & cov \\ 0 & 0 & 0 & cov & v_{4,2} \end{pmatrix}$$

Study	No. arms	#	Data	Contrast
i=1	T ₁ =2	1	$y_{1,1}, v_{1,1}$	AB
i=2	T ₂ =2	1	$y_{2,1}, v_{2,1}$	AC
i=3	T ₃ =2	1	<i>y</i> _{3,1} , <i>v</i> _{3,1}	AD
i=4	T ₄ =3	2	$y_{4,1}, v_{4,1}$ $y_{4,2}, v_{4,2}$ $cov(y_{4,1}, y_{4,2})$	AB AC

$$\begin{pmatrix} y_{1,1} \\ y_{2,1} \\ y_{4,1} \\ y_{4,2} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} \mu_{AB} \\ \mu_{AC} \\ \mu_{AD} \end{pmatrix} + \begin{pmatrix} \delta_{1,1} \\ \delta_{2,1} \\ \delta_{4,1} \\ \delta_{4,2} \end{pmatrix} + \begin{pmatrix} e_{1,1} \\ e_{2,1} \\ e_{3,1} \\ e_{4,2} \\ \delta_{3,1} \\ \delta_{3,1} \\ \delta_{4,1} \\ \delta_{4,2} \end{pmatrix} \sim N \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} \tau^2 & 0 & 0 & 0 & 0 \\ 0 & \tau^2 & 0 & 0 & 0 \\ 0 & 0 & \tau^2 & 0 & 0 \\ 0 & 0 & 0 & \tau^2 & \kappa \\ 0 & 0 & 0 & \kappa & \tau^2 \end{pmatrix}$$

$$\begin{pmatrix} \delta_{1,1} \\ \delta_{2,1} \\ \delta_{3,1} \\ \delta_{4,1} \\ \delta_{4,2} \end{pmatrix} \sim N \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} \tau^2 & 0 & 0 & 0 & 0 \\ 0 & \tau^2 & 0 & 0 & 0 \\ 0 & 0 & \tau^2 & 0 & 0 \\ 0 & 0 & 0 & \tau^2 & \kappa \\ 0 & 0 & 0 & \kappa & \tau^2 \end{pmatrix}$$

How to fit such a model?

- The challenge lies in the estimation of matrix Δ
- The covariance of two random effects is a function of the heterogeneities. Taking the variance on a consistency equation results:

second moments
$$Cov(\delta_{iAC}, \delta_{iBC}) = (\tau_{AB}^2 - \tau_{AC}^2 - \tau_{BC}^2)/2$$

often we assume equal $\tau \Rightarrow Cov(\delta_{iAC}, \delta_{iBC}) = \tau^2/2$

Simplified var-covariance matrix

The matrix Δ is easier to estimate

$$\Delta = egin{bmatrix} au^2 & 0 & 0 & 0 \ 0 & \Box & 0 & 0 \ 0 & 0 & au^2 & au/2 \ 0 & 0 & au/2 & au^2 \end{bmatrix}$$

A general multivariate meta-analysis would not model the data properly, not even in this simpler case

Design matrix

$$X = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ -1 & 1 & 0 & 0 & 0 \\ -1 & 0 & 0 & 1 & 0 \\ 0 & 0 & -1 & 1 & 0 \\ 0 & 0 & -1 & 1 & 0 \\ 0 & 0 & -1 & 0 & 1 \end{pmatrix}$$

$$\mathbf{\mu} = \begin{pmatrix} \mu_{tPA-S} \\ \mu_{Anist-S} \\ \mu_{AcctPA-S} \\ \mu_{Ang-S} \\ \mu_{Ret-S} \end{pmatrix}$$

Hierarchical model to estimate each one of the B basic comparisons

- Do a meta-analysis in every comparison for which data is available
- The meta-analysis of the *non-basic* comparison (μ_{CD}) is estimated under the constraint that

$$\mu_{BC} = \mu_{AC} - \mu_{AB}$$

Implementation

- Bayesian approach
 - WinBUGS/ OpenBUGS
 - GeMTC / BUGS / JAGS (van Valkenhoef et al., 2012)
- Frequentist approach: Multivariate Meta-Analysis
 - Stata: network (White, 2015) network_graphs (Chaimani, 2015)
 - SAS (Jones et al., 2011; Piepho, 2014)
 - R package netmeta (Rücker et al., 2017)
 - Overview to R packages (Neupane et al., 2014)

Method used in R netmeta

Based on electrical network methodology

- Similar to (multivariate) meta-regression (with dummy covariates, design matrix)
- Adjustment for multi-arm studies is done by reducing the weights of all comparisons (Rücker, 2012; Rücker and Schwarzer, 2014)

Given a four-arm study with six comparisons,

we may cut off three of six comparisons: or reduce all weights by 1/2 (on average):

