Algorithmic Study of Kernel Contraction in **EL**

Amr Dawood, M.Sc. student adawood@sfu.ca

Our Goal

- Investigate contracting knowledge bases represented in Description Logic ££.
- Provide a graph approach to the contraction operation.
- Design heuristics for choosing the "best" set of beliefs to be removed, if there are multiple options.

Outline

- 1. Belief Contraction
- 2. Description Logic **E**L
- 3. Kernels
- 4. Contraction using Graphs
- 5. Incision functions:
 - Localization
 - Specificity

Belief Contraction

- Birds can fly
- Penguins are birds
- Penguins can fly

- Mumble is a penguin
- Mumble can fly

Belief Contraction

- Birds can fly
- Penguins are birds
- Penguins can fly

- Mumble is a penguin
- Mumble can fly

Description Logic **E**L

TBox

- Bird

 □ CanFly
- Penguin

 Bird
- Penguin

 □ CanFly

ABox

- Penguin (Mumble)
- CanFly(Mumble)

Polynomial-time subsumption algorithm: (Tbox \vdash (A \sqsubseteq B))?

A

B: General Concept Inclusion (GCI)

Description Logic **EL**

TBox

- Bird

 □ CanFly
- Penguin

 Bird
- Penguin

 □ Canfly

ABox

- Penguin(Mumble)
- CanFly(Mumble)

Polynomial-time subsumption algorithm: (Tbox \vdash (A \sqsubseteq B))?

A

■ B: General Concept Inclusion (GCI)

Kernels

TBox

Bird
CanFly

Penguin
Bird

Penguin
CanFly

CanFly

Penguin
CanFly

Penguin
CanFly

Smallest subsets of a Tbox that imply a certain belief

Contraction Using Graphs

- Reduce the problem to Network-Flow:
 - Transform the TBox into a Graph.
 - Define source, sink, and capacities.
 - Run Ford-Fulkerson algorithm, and compute maximum flow.
 - Compute minimum cut.
 - Remove the edges forming minimum cut.
 - Transform the Graph into TBox.

Contraction Using Graphs

- Complexity is $O(E^2)$ E is the number of edges
- Applicable only under some settings

Contraction Using Graphs

- Complexity is $O(E^2)$ E is the number of edges
- Applicable only under some settings

Incision Functions

Already have a set of kernels computed – possibly using minimum hitting set algorithm?

Incision Functions: Localization

Intuition:

Ensure change is only applied to smallest portion of the knowledge base by affecting least number of concepts: prefer removing GCIs that share concepts or roles to ones that do not.

Method:

- Compute the number of strongly-connected components in each potential GiveUpSet.
- Choose the GiveUpSet with the minimum such number.

Incision Functions: Localization

Incision Functions: Localization

Incision Functions: Specificity

Intuition:

Ensure the effect of contraction is minimized by removing beliefs related to most specific concepts rather than general ones.

Method:

- Assign a weight to each GCI based on it's position in the subsumption hierarchy.
- Assign a weight to each potential GiveUpSet to be the sum of the GCIs' weights.
- Choose the GiveUpSet with minimum weight.

Incision Functions: Specificity

TBox

- Vertebrate

 Animal weight=2
- Mammal

 Vertebrate weight=1
- Lion

 Mammal weight=0

Summary

- The contributions of this study are:
 - An graph algorithm for kernel contraction.
 - A revised version of Localization algorithm.
 - A Specificity-based incision function.

