Max Wisniewski, Alexander Steen

Tutor: not known

Aufgabe 1: Spezielle gleichmäßige Funktionen

Sei $A \subset \mathbb{R}$. Eine Funktion $f: A \to \mathbb{R}$ heißt Hölder stetig mit Exponent $\alpha \in (0,1]$ wenn es eine Konstante C > 0 gibt, so dass für alle $x, y \in A$ die Ungleichung

$$|f(x) - f(y)| \le C |x - y|^{\alpha}$$

gilt. Ist $\alpha = 1$ so nennt man f Lipschitzstetig

a) Sei $A = \{z \in \mathbb{R} \mid z \ge 0\}$ und $F : A \to \mathbb{R}$ gegeben durch $f(z) = \sqrt{z}$. Zeigen Sie dass f Hölderstetig mit $\alpha = \frac{1}{2}$ ist.

Lösung:

tbd

b) Sei $A = \mathbb{R}$ und $f = \arctan$. Zeigen Sie, dass f Lipschitz stetig ist.

Lösung:

tbd

c) Sei $f:A\to\mathbb{R}$ Hölderstetig. Zeigen Sie, dass f gleichmäßig stetig ist.

Lösung:

tbd

Aufgabe 2: Hauptsatz der Differential- und Integralrechnung

Finden Sie die Ableitung der Funktion $f:\mathbb{R}\to\mathbb{R}$ definiert durch die folgenden Ausdrücke.

i)
$$F(x) = \int_0^{x^2} \sin t \, dt$$
.

Lösung:

tbd

ii) $F(x) = \exp\left(\int_0^x p(t) dt\right)$, wobei $p: \mathbb{R} \to \mathbb{R}$

Lösung:

tbd

iii) Es sei $h:\mathbb{R}\to\mathbb{R}$ stetig und f und g auf ganz \mathbb{R} differenzierbar. Setzten Sie dann

$$F(x) = \int_{f(x)}^{g(x)} h(t) dt$$

und berechnen die Ableitung von F.

Lösung:

tbd

Aufgabe 3: Mittelwertsatz der Integralrechnung

i) Es sei f eine auf dem Interval [a,b] integirebare Funktion mit $m \leq f(x) \leq M$ für alle $x \in [a,b]$. Dann gibt es ein $\mu \in [m,M]$ mit Eigenschaft

$$\int_{a}^{b} f(x) dx = (b - a)\mu.$$

Lösung:

tbd

ii) Es sei f stetig auf [a, b]. Zeigen Sie, dass gilt

$$\int_{a}^{b} f(x) dx = (b - a)f(\xi)$$

für ein $\xi \in [a, b]$. Begründen Sie anhand eins Gegenbeispiels, dass die Stetigkeit von f notwendig ist.

Lösung:

tbd

iii) Sei nun f stetig auf [a,b], und g integrierbar und positiv (bzw. negativ) auf [a,b]. Zeigen Sie dass

$$\int_a^b g(x)f(x) dx = f(\xi) \int_a^b g(x) dx$$

für ein $\xi \in [a,b]$ gilt. Man nennt dies den Mittelwertsatz der Intergralrechnung . Begründen Sie anhand eines Gegenbeispiels, dass die Vorzeichenbedingung an g notwendig ist.

Aufgabe 4 : Positivitätseigenschaft des Integrals

i) Sei f integrierbar auf [a, b] und $f \ge 0$ für alle $x \in [a, b]$. Zeigen Sie, dass dann gilt

$$\int_{a}^{b} f(x) \, dx \ge 0.$$

Lösung:

tbd

ii) Geben Sie ein Beispiel einer Funktion f mit folgenden Eigenschaften:

$$f(x) \ge 0$$
 für alle $x \in [a, b], f(x_0) > 0$ für ein $x_0 \in [a, b], \int_a^b f(x) dx = 0.$

Lösung

 tbd

iii) Sei $f(x) \ge 0$ für alle $x \in [a, b]$ und f stetig int $x_0 \in [a, b]$ mit $f(x_0) > 0$. Zeigen Sie, dass dann auch gilt

$$\int_{a}^{b} f(x) \, dx > 0.$$

Lösung:

 tbd

iv) Sei f stetig auf [a, b]. Es gelte

$$\int_{a}^{b} f(x)g(x) \, dx = 0$$

für alle stetigen Funktionen g auf [a,b]. Zeigen Sie, dass $f\equiv 0$