CHAPTER 4: GENERAL VECTOR SPACES

4.1 Real Vector Spaces

- 1. (a) $\mathbf{u} + \mathbf{v} = (-1+3, 2+4) = (2, 6);$ $k\mathbf{u} = (0, 3 \cdot 2) = (0, 6)$
 - **(b)** For any $\mathbf{u} = (u_1, u_2)$ and $\mathbf{v} = (v_1, v_2)$ in V, $\mathbf{u} + \mathbf{v} = (u_1 + v_1, u_2 + v_2)$ is an ordered pair of real numbers, therefore $\mathbf{u} + \mathbf{v}$ is in V. Consequently, V is closed under addition.

For any $\mathbf{u} = (u_1, u_2)$ in V and for any scalar k, $k\mathbf{u} = (0, ku_2)$. is an ordered pair of real numbers, therefore $k\mathbf{u}$ is in V. Consequently, V is closed under scalar multiplication.

- (c) Axioms 1-5 hold for V because they are known to hold for R^2 .
- (d) Axiom 7: $k((u_1, u_2) + (v_1, v_2)) = k(u_1 + v_1, u_2 + v_2) = (0, k(u_2 + v_2)) = (0, ku_2) + (0, kv_2)$ = $k(u_1, u_2) + k(v_1, v_2)$ for all real k, u_1 , u_2 , v_1 , and v_2 ;

Axiom 8:
$$(k+m)(u_1,u_2) = (0,(k+m)u_2) = (0,ku_2+mu_2) = (0,ku_2) + (0,mu_2)$$

= $k(u_1,u_2) + m(u_1,u_2)$ for all real k , m , u_1 , and u_2 ;

Axiom 9:
$$k(m(u_1,u_2)) = k(0,mu_2) = (0,kmu_2) = (km)(u_1,u_2)$$
 for all real k , m , u_1 , and u_2 ;

- (e) Axiom 10 fails to hold: $1(u_1, u_2) = (0, u_2)$ does not generally equal (u_1, u_2) . Consequently, V is not a vector space.
- 2. (a) $\mathbf{u} + \mathbf{v} = (0+1+1, 4-3+1) = (2,2); k\mathbf{u} = (2\cdot 0, 2\cdot 4) = (0,8)$
 - **(b)** $(0,0) + (u_1, u_2) = (0 + u_1 + 1, 0 + u_2 + 1) = (u_1 + 1, u_2 + 1) \neq (u_1, u_2)$ therefore (0,0) is not the zero vector **0** required by Axiom 4
 - (c) For all real numbers u_1 and u_2 , we have $(-1,-1)+(u_1,u_2)=(-1+u_1+1,-1+u_2+1)=(u_1,u_2)$ and $(u_1,u_2)+(-1,-1)=(u_1-1+1,u_2-1+1)=(u_1,u_2)$ therefore Axiom 4 holds for $\mathbf{0}=(-1,-1)$
- d) For any pair of real numbers $\mathbf{u} = (u_1, u_2)$, letting $-\mathbf{u} = (-2 u_1, -2 u_2)$ yields $\mathbf{u} + (-\mathbf{u}) = (u_1 + (-2 u_1) + 1, u_2 + (-2 u_2) + 1) = (-1, -1) = \mathbf{0};$ Since $(-\mathbf{u}) + \mathbf{u} = \mathbf{0}$ holds as well, Axiom 5 holds.
 - (e) Axiom 7 fails to hold: $k(\mathbf{u} + \mathbf{v}) = k(u_1 + v_1 + 1, u_2 + v_2 + 1) = (ku_1 + kv_1 + k, ku_2 + kv_2 + k)$

$$k\mathbf{u} + k\mathbf{v} = (ku_1, ku_2) + (kv_1, kv_2) = (ku_1 + kv_1 + 1, ku_2 + kv_2 + 1)$$

therefore in general $k(\mathbf{u} + \mathbf{v}) \neq k\mathbf{u} + k\mathbf{v}$

Axiom 8 fails to hold:

$$(k+m)\mathbf{u} = ((k+m)u_1, (k+m)u_2) = (ku_1 + mu_1, ku_2 + mu_2)$$

$$k\mathbf{u} + m\mathbf{u} = (ku_1, ku_2) + (mu_1, mu_2) = (ku_1 + mu_1 + 1, ku_2 + mu_2 + 1)$$
therefore in general $(k+m)\mathbf{u} \neq k\mathbf{u} + m\mathbf{u}$

3. Let V denote the set of all real numbers.

Axiom 1:
$$x+y$$
 is in V for all real x and y ;

Axiom 2:
$$x+y=y+x$$
 for all real x and y;

Axiom 3:
$$x + (y+z) = (x+y)+z$$
 for all real x , y , and z ;

Axiom 4: taking
$$0 = 0$$
, we have $0 + x = x + 0 = x$ for all real x ;

Axiom 5: for each
$$\mathbf{u} = x$$
, let $-\mathbf{u} = -x$; then $x + (-x) = (-x) + x = 0$

Axiom 6:
$$kx$$
 is in V for all real k and x ;

Axiom 7:
$$k(x+y) = kx + ky$$
 for all real k , x , and y ;

Axiom 8:
$$(k+m)x = kx + mx$$
 for all real k , m , and x ;

Axiom 9:
$$k(mx) = (km)x$$
 for all real k , m , and x ;

Axiom 10:
$$1x = x$$
 for all real x .

This is a vector space – all axioms hold.

4. Let V denote the set of all pairs of real numbers of the form (x,0).

Axiom 1:
$$(x,0)+(y,0)=(x+y,0)$$
 is in V for all real x and y;

Axiom 2:
$$(x,0)+(y,0)=(x+y,0)=(y+x,0)=(y,0)+(x,0)$$
 for all real x and y;

Axiom 3:
$$(x,0)+((y,0)+(z,0))=(x,0)+(y+z,0)=(x+y+z,0)=(x+y,0)+(z,0)$$

= $((x,0)+(y,0))+(z,0)$ for all real x , y , and z ;

Axiom 4: taking
$$\mathbf{0} = (0,0)$$
, we have $(0,0) + (x,0) = (x,0)$ and $(x,0) + (0,0) = (x,0)$ for all real x ;

Axiom 5: for each
$$\mathbf{u} = (x,0)$$
, let $-\mathbf{u} = (-x,0)$;
then $(x,0) + (-x,0) = (0,0)$ and $(-x,0) + (x,0) = (0,0)$;

Axiom 6:
$$k(x,0) = (kx,0)$$
 is in V for all real k and x;

Axiom 7:
$$k((x,0)+(y,0))=k(x+y,0)=(kx+ky,0)=k(x,0)+k(y,0)$$

for all real k , x , and y ;

Axiom 8:
$$(k+m)(x,0) = ((k+m)x,0) = (kx+mx,0) = k(x,0) + m(x,0)$$

for all real k , m , and x ;

Axiom 9:
$$k(m(x,0)) = k(mx,0) = (kmx,0) = (km)(x,0)$$
 for all real k , m , and x ;

Axiom 10:
$$1(x,0) = (x,0)$$
 for all real x.

This is a vector space – all axioms hold.

5. Axiom 5 fails whenever $x \neq 0$ since it is then impossible to find (x',y') satisfying $x' \geq 0$ for which (x,y)+(x',y')=(0,0). (The zero vector from axiom 4 must be $\mathbf{0}=(0,0)$.)

Axiom 6 fails whenever k < 0 and $x \ne 0$.

This is not a vector space.

6. Let V denote the set of all n-tuples of real numbers of the form (x, x, ..., x).

Axiom 1:
$$(x,x,...,x)+(y,y,...,y)=(x+y,x+y,...,x+y)$$
 is in V for all real x and y;

Axiom 2:
$$(x,x,...,x) + (y,y,...,y) = (x+y,x+y,...,x+y) = (y+x,y+x,...,y+x)$$

= $(y,y,...,y) + (x,x,...,x)$ for all real x and y ;

Axiom 3:
$$(x,x,...,x) + ((y,y,...,y) + (z,z,...,z)) = (x,x,...,x) + (y+z,y+z,...,y+z)$$

$$= (x+y+z,x+y+z,...,x+y+z) = (x+y,x+y,...,x+y) + (z,z,...,z)$$

$$= ((x,x,...,x) + (y,y,...,y)) + (z,z,...,z) \text{ for all real } x, y, \text{ and } z;$$

Axiom 4: taking
$$\mathbf{0} = (0,0,...,0)$$
, we have $(0,0,...,0) + (x,x,...,x) = (x,x,...,x)$ and $(x,x,...,x) + (0,0,...,0) = (x,x,...,x)$ for all real x ;

Axiom 5: for each
$$\mathbf{u} = (x, x, ..., x)$$
, let $-\mathbf{u} = (-x, -x, ..., -x)$;
then $(x, x, ..., x) + (-x, -x, ..., -x) = (0, 0, ..., 0)$ and $(-x, -x, ..., -x) + (x, x, ..., x) = (0, 0, ..., 0)$;

Axiom 6:
$$k(x,x,...,x) = (kx,kx,...,kx)$$
 is in V for all real k and x ;

Axiom 7:
$$k((x,x,...,x)+(y,y,...,y))=k(x+y,x+y,...,x+y)=(kx+ky,kx+ky,...,kx+ky)$$

= $k(x,x,...,x)+k(y,y,...,y)$ for all real k , x , and y ;

Axiom 8:
$$(k+m)(x,x,...,x) = ((k+m)x,(k+m)x,...,(k+m)x)$$

= $(kx+mx,kx+mx,...,kx+mx) = k(x,x,...,x) + m(x,x,...,x)$
for all real k , m , and x ;

Axiom 9:
$$k(m(x,x,...,x)) = k(mx,mx,...,mx) = (kmx,kmx,...,kmx) = (km)(x,x,...,x)$$

for all real k , m , and x ;

Axiom 10:
$$1(x,x,...,x) = (x,x,...,x)$$
 for all real x .

This is a vector space – all axioms hold.

7. Axiom 8 fails to hold:

$$(k+m)\mathbf{u} = ((k+m)^{2} x, (k+m)^{2} y, (k+m)^{2} z)$$

$$k\mathbf{u} + m\mathbf{u} = (k^{2}x, k^{2}y, k^{2}z) + (m^{2}x, m^{2}y, m^{2}z) = ((k^{2} + m^{2})x, (k^{2} + m^{2})y, (k^{2} + m^{2})z)$$
therefore in general $(k+m)\mathbf{u} \neq k\mathbf{u} + m\mathbf{u}$.

This is not a vector space.

8. Axiom 1 fails since a sum of two 2×2 invertible matrices may or may not be invertible, e.g. both $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

and
$$\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$$
 are invertible, but $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ is not invertible.

Axiom 6 fails whenever k = 0.

9. Let V be the set of all 2×2 matrices of the form $\begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$ (i.e., all diagonal 2×2 matrices)

Axiom 1: the sum of two diagonal 2×2 matrices is also a diagonal 2×2 matrix.

Axiom 2: follows from part (a) of Theorem 1.4.1.

Axiom 3: follows from part (b) of Theorem 1.4.1.

Axiom 4: taking $0 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$; follows from part (a) of Theorem 1.4.2.

Axiom 5: let the negative of $\begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$ be $\begin{bmatrix} -a & 0 \\ 0 & -b \end{bmatrix}$; follows from part (c) of Theorem 1.4.2 and Axiom 2.

Axiom 6: the scalar multiple of a diagonal 2×2 matrix is also a diagonal 2×2 matrix.

Axiom 7: follows from part (h) of Theorem 1.4.1.

Axiom 8: follows from part (j) of Theorem 1.4.1.

Axiom 9: follows from part (l) of Theorem 1.4.1.

Axiom 10: $1\begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$ for all real a and b.

This is a vector space – all axioms hold.

10. Let V be the set of all real-valued functions f defined for all real numbers and such that f(1) = 0.

Axiom 1: If f and g are in V then f+g is a function defined for all real numbers and (f+g)(1)=f(1)+g(1)=0 therefore V is closed under the operation of addition defined by Formula (2).

Axiom 6: If k is a scalar and f is in V then kf is a function defined for all real numbers and (kf)(1) = k(f(1)) = 0 therefore V is closed under the operation of scalar multiplication defined by Formula (3).

Verification of the eight remaining axioms proceeds analogously to Example 6.

This is a vector space – all axioms hold.

11. Let V denote the set of all pairs of real numbers of the form (1,x).

Axiom 1: (1,y)+(1,y')=(1,y+y') is in *V* for all real *y* and *y*';

Axiom 2: (1,y)+(1,y')=(1,y+y')=(1,y'+y)=(1,y')+(1,y) for all real y and y';

Axiom 3: (1,y)+((1,y')+(1,y''))=(1,y)+(1,y'+y'')=(1,y+y'+y'')=(1,y+y')+(1,y'')=((1,y)+(1,y'))+(1,y'') for all real y, y', and y'';

Axiom 4: taking $\mathbf{0} = (1,0)$, we have (1,0) + (1,y) = (1,y) and (1,y) + (1,0) = (1,y) for all real y;

Axiom 5: for each $\mathbf{u} = (1, y)$, let $-\mathbf{u} = (1, -y)$; then (1, y) + (1, -y) = (1, 0) and (1, -y) + (1, y) = (1, 0);

Axiom 6: k(1,y) = (1,ky) is in V for all real k and y;

Axiom 7: k((1,y)+(1,y'))=k(1,y+y')=(1,ky+ky')=(1,ky)+(1,ky')=k(1,y)+k(1,y') for all real k, y, and y';

Axiom 8: (k+m)(1,y) = (1,(k+m)y) = (1,ky+my) = (1,ky)+(1,my) = k(1,y)+m(1,y)for all real k, m, and y;

Axiom 9: k(m(1,y)) = k(1,my) = (1,kmy) = (km)(1,y) for all real k, m, and y;

Axiom 10: 1(1,y) = (1,y) for all real y.

This is a vector space – all axioms hold.

12. Let V be the set of polynomials of the form a + bx.

Axiom 1:
$$(a_0 + b_0 x) + (a_1 + b_1 x) = (a_0 + a_1) + (b_0 + b_1) x$$
 is in V for all real a_0 , a_1 , b_0 , and b_1 ;

Axiom 2:
$$(a_0 + b_0 x) + (a_1 + b_1 x) = (a_0 + a_1) + (b_0 + b_1) x = (a_1 + a_0) + (b_1 + b_0) x$$

= $(a_1 + b_1 x) + (a_0 + b_0 x)$ for all real a_0 , a_1 , b_0 , and b_1 ;

Axiom 3:
$$(a_0 + b_0 x) + ((a_1 + b_1 x) + (a_2 + b_2 x)) = (a_0 + a_1 + a_2) + (b_0 + b_1 + b_2) x$$

 $((a_0 + b_0 x) + (a_1 + b_1 x)) + (a_2 + b_2 x)$ for all real a_0 , a_1 , a_2 , b_0 , b_1 , and b_2 ;

Axiom 4: taking
$$\mathbf{0} = 0 + 0x$$
, we have $(0 + 0x) + (a + bx) = a + bx$ and $(a + bx) + (0 + 0x) = a + bx$ for all real a and b ;

Axiom 5: for each
$$\mathbf{u} = a + bx$$
, let $-\mathbf{u} = -a - bx$;
then $(a + bx) + (-a - bx) = 0 + 0x = (-a - bx) + (a + bx)$ for all real a and b ;

Axiom 6:
$$k(a+bx) = ka + (kb)x$$
 is in V for all real a, b, and k;

Axiom 7:
$$k((a_0 + b_0 x) + (a_1 + b_1 x)) = k((a_0 + a_1) + (b_0 + b_1)x) = k(a_0 + b_0 x) + k(a_1 + b_1 x)$$
 for all real a_0 , a_1 , b_0 , b_1 , and k ;

Axiom 8:
$$(k+m)(a+bx) = (k+m)a + (k+m)bx = k(a+bx) + m(a+bx)$$

for all real a , b , k , and m ;

Axiom 9:
$$k(m(a+bx)) = k(ma+mbx) = kma+kmbx = (km)(a+bx)$$

for all real a , b , k , and m ;

Axiom 10:
$$1(a+bx) = a+bx$$
 for all real a and b .

This is a vector space – all axioms hold.

13. Axiom 3: follows from part (b) of Theorem 1.4.1 since

$$\mathbf{u} + (\mathbf{v} + \mathbf{w}) = \begin{bmatrix} u_{11} & u_{12} \\ u_{21} & u_{22} \end{bmatrix} + \begin{bmatrix} v_{11} & v_{12} \\ v_{21} & v_{22} \end{bmatrix} + \begin{bmatrix} w_{11} & w_{12} \\ w_{21} & w_{22} \end{bmatrix}$$

$$= \begin{bmatrix} \begin{bmatrix} u_{11} & u_{12} \\ u_{21} & u_{22} \end{bmatrix} + \begin{bmatrix} v_{11} & v_{12} \\ v_{21} & v_{22} \end{bmatrix} + \begin{bmatrix} w_{11} & w_{12} \\ w_{21} & w_{22} \end{bmatrix} = (\mathbf{u} + \mathbf{v}) + \mathbf{w}$$

Axiom 7: follows from part (h) of Theorem 1.4.1 since

$$k(\mathbf{u} + \mathbf{v}) = k \left(\begin{bmatrix} u_{11} & u_{12} \\ u_{21} & u_{22} \end{bmatrix} + \begin{bmatrix} v_{11} & v_{12} \\ v_{21} & v_{22} \end{bmatrix} \right) = k \begin{bmatrix} u_{11} & u_{12} \\ u_{21} & u_{22} \end{bmatrix} + k \begin{bmatrix} v_{11} & v_{12} \\ v_{21} & v_{22} \end{bmatrix} = k\mathbf{u} + k\mathbf{v}$$