VLP for Object Detection

Pengchuan Zhang

Recent Advances in Vision-and-Language Pre-training

Object Detection in the wild

Thermal Dogs and People

(https://public.roboflow.com/object-detection)

Aquarium (fish. jellyfish. penguin. puffin. shark. starfish. stingray)

Main challenges

- 1) Open vocabulary: unseen concepts
- **2) zero/few-shot transfer**: zero or very few task-specific annotations
- **3) Domain adaption**: data (images) in various domains/environments

Vision-Language Pre-training for Object Detection

- 1) Object detection as a vision-language grounding task
- 2) Pre-train the grounding model with both regionlevel annotated data (detection, grounding) and weakly image-text paired data

An overview of existing works

VLP for regionlevel classification VLP for end-to-end detection

Generic box proposals

ViLD (ICLR2022)

RegionCLIP (CVPR2022)

X-Detr (Arxiv)

Text-guided box proposals

MDetr (ICCV2021)

GLIP (CVPR2022) GLIPv2 (Arxiv)

FIBER (Arxiv) FindIt (Arxiv)

Related topics

- Zero-shot object detection: Bansal et al (ECCV2018), Rahman et al (AAAI2020), ...
- Open-vocabulary object detection: OV-Det (CVPR2021)
- Phrase grounding, Referring Expression Comprehension
- General Purpose Vision System: UniT, GPV, Florence, Gato, CoCa

An overview of existing works

VLP for regionlevel classification VLP for end-to-end detection

Generic box proposals

ViLD (ICLR2022)

RegionCLIP (CVPR2022)

X-Detr (Arxiv)

Text-guided box proposals

MDetr (ICCV2021)

GLIP (CVPR2022) GLIPv2 (Arxiv)

FIBER (Arxiv) FindIt (Arxiv)

Related topics

- Zero-shot object detection: Bansal et al (ECCV2018), Rahman et al (AAAI2020), ...
- Open-vocabulary object detection: OV-Det (CVPR2021)
- Phrase grounding, Referring Expression Comprehension
- General Purpose Vision System: UniT, GPV, Florence, Gato, CoCa

MDETR - Modulated Detection for End-to-End Multi-Modal Understanding

Aishwarya Kamath NYU

Mannat Singh FAIR

Yann LeCun NYU/FAIR

Gabriel Synnaeve FAIR

Ishan Misra FAIR

Nicolas Carion NYU

What is "modulated detection"?

- Free-form text conditioned detection
- End-to-end training
- Leverage compositionality of language

Output of MDETR for the query "A pink elephant"

DETR - Detection transformer

- End-to-end detection
- Encoder-decoder architecture

Loss = Box Regression + Label Prediction

MDETR: Architecture

Loss = Box Regression + Soft Token Prediction

MDETR: Pre-training

- Flicker30k-Entities, RefCOCO, RefCOCO+, RefCOCOg, Visual Genome Dense Captions, GQA with boxes
- Results in 1.3m aligned image-text pairs with box annotations (only 0.2m unique images)

Toy example:

"the person in the grey shirt with a watch on their wrist, the other person wearing a blue sweater, the third person in a gray coat and scarf."

Phrase grounding on Flickr30k

"One small boy climbing a pole with the help of another boy on the ground"

"A man talking on his cellphone next to a jewelry store"

"A man in a white t-shirt does a trick with a bronze colored yo-yo"

Phrase grounding on Flickr30k - Quantitative results

Method		Val			Test	
	R@1	R@5	R@10	R@1	R@5	R@10
	ANY-BOX-PROTOCOL					
BAN [21]	-	-	-	69.7	84.2	86.4
VisualBert[25]	68.1	84.0	86.2	-	-	-
VisualBert†[25]	70.4	84.5	86.3	71.3	85.0	86.5
MDETR-R101	78.9	88.8	90.8	-	-	-
MDETR-R101†*	82.5	92.9	94.9	83.4	93.5	95.3
MDETR-ENB3†*	82.9	93.2	95.2	84.0	93.8	95.6
MDETR-ENB5†*	83.6	93.4	95.1	84.3	93.9	95.8
	MERGED-BOXES-PROTOCOL					
CITE [43]	-	-	_	61.9	-	-
FAOG [66]	-	-	-	68.7	-	-
SimNet-CCA [45]	-	-	-	71.9	-	-
MDETR-R101†*	82.4	92.6	94.5	83.3	92.1	93.8

Referring expressions

"brown bear"

"zebra facing away"

"The man in the red shirt carrying baseball bats"

RefCOCOg

RefCOCO RefCOCO+

Results for referring expressions on RefCOCO

Method	Detection	Pre-training	Pre-training RefCOCO		RefCOCO+			RefCOCOg		
	backbone	image data	val	testA	testB	val	testA	testB	val	test
MAttNet[69]	R101	None	76.65	81.14	69.99	65.33	71.62	56.02	66.58	67.27
ViLBERT[34]	R101	CC (3.3M)	-	-	-	72.34	78.52	62.61	-	-
VL-BERT_L [54]	R101	CC (3.3M)	-	-	-	72.59	78.57	62.30	-	-
UNITER_L[6]*	R101	CC, SBU, COCO, VG (4.6M)	81.41	87.04	74.17	75.90	81.45	66.70	74.86	75.77
VILLA_L[9]*	R101	CC, SBU, COCO, VG (4.6M)	82.39	87.48	74.84	76.17	81.54	66.84	76.18	76.71
ERNIE-ViL_L[68]	R101	CC, SBU (4.3M)	-	-	-	75.95	82.07	66.88	-	-
MDETR	R101	COCO, VG, Flickr30k (200k)	86.75	89.64	81.47	79.52	84.72	69.76	81.64	80.98
MDETR	ENB3	COCO, VG, Flickr30k (200k)	87.51	90.38	82.90	81.13	85.52	72.96	83.35	83.45

Few-shot detection on LVIS

- Performs well with as low as 1 sample/class
- Due to overlaps between COCO/LVIS/..., we report results on the subset of 5k validation images (mini-val) that our model has never seen during training.

Method	Data	AP	AP50	$AP_{\rm r}$	$AP_{\rm c}$	AP_{f}
Mask R-CNN	100%	33.3	51.1	26.3	34.0	33.9
DETR	1%	4.2	7.0	1.9	1.1	7.3
DETR	10%	13.7	21.7	4.1	13.2	15.9
DETR	100%	17.8	27.5	3.2	12.9	24.8
MDETR	1%	16.7	25.8	11.2	14.6	19.5
MDETR	10%	24.2	38.0	20.9	24.9	24.3
MDETR	100%	22.5	35.2	7.4	22.7	25.0

Limits of MDETR

Not for zero-shot detection

Training data has no "negative examples" - i.e. when the text does not correspond to any object in the image. Model will always try to find something (usually salient objects in the image)

Pre-training data does not scale up

All pre-training data are aligned image-text pairs with box annotations

GLIP: Grounded Language-Image Pre-Training

Liunian Harold Li^{*}, Pengchuan Zhang^{*}, Haotian Zhang^{*}, Jianwei Yang, Chunyuan Li, Yiwu Zhong, Lijuan Wang, Lu Yuan, Lei Zhang, Jenq-Neng Hwang, Kai-Wei Chang, Jianfeng Gao

Unify Object Detection and Phrase Grounding

Phrase grounding data: 0.08M images, 0.8M image-text-boxes triplets

Object detection data: Objects365 + OpenImages + VisualGenome, 2.5M image-text-boxes triplets

Self-training on massive image-text paired data

person battles with person in the production sedans

Two syringes and a small vial of vaccine.

playa esmeralda in holguin, cuba. the view from the top of the beach. beautiful caribbean sea turquoise

Self-training on massive image-text paired data

person battles with person in the production sedans

Two syringes and a small vial of vaccine.

playa esmeralda in holguin, cuba. the view from the top of the beach. beautiful caribbean sea turquoise

From 24M image-text paired data:

- 78.1M high-confidence (> 0.5) phrase-box pseudo annotations
- 58.4M unique noun phrases

Compared with traditional object detection self-training:

- Visual concepts are significantly scaled up, from ~2k to ~60m; massive visual attributes and relationships
- More accurate bounding boxes thanks to the text clues

Object Detection / Text Grounding in the Wild

Results on Benchmarks

	Backbone	COCO 2017 val Zero-Shot / Fine-Tune	LVIS Minival APr	
MDETR	R101	-	20.9	
Mask RCNN	R101	-	26.3	
Faster RCNN	R101	- / 42.0	-	
DyHead-T	Swin-T	- / 49.7	-	
GLIP-T	Swin-T	46.3 / 54.9	20.8	
GLIP-L	Swin-L	49.8 / 61.5*	28.2	

Zero-shot

Fine-tuned/supervised

Zero-shot GLIP rivales with **supervised** models (No COCO images seen during pre-training)

- COCO: GLIP-T (46.3 AP, zero-shot) v.s. Faster RCNN (42.0 AP, supervised)
- LVIS: GLIP-T (20.8 APr, zero-shot) v.s. MDETR (20.9 APr, supervised)

Strong **fine-tuning** performance

- GLIP-T outperforms DyHead-T (same backbone) by 5 AP on COCO
- GLIP-L achieves 61.5 AP on COCO (SOTA when released)

Object Detection in the Wild (13 real world detection tasks)

Wildfire Smoke Dataset

Aquarium Dataset (fish. jellyfish. penguin. puffin. shark. starfish. stingray)

Thermal Dogs and People Dataset

Mask Wearing

Packages

Pistols

Potholes

Object Detection in the Wild: Data Efficiency

0-shot GLIP-T ~= 5-shot DyHead-T

1-shot GLIP-T / 0-shot GLIP-L ~= 10-shot DyHead-T

1-shot GLIP-L ~= Fully-supervised DyHead-T

One Model for All Tasks: Prompt Tuning

58.8

Table 1. AP (evaluated with COCO-API) of one GLIP-L model on 14 tasks with prompt tuning – tuning only the embedding of each task's prompt. Thus, one set of GLIP model weights can simultaneously serve many tasks. For PascalVOC (2012 Val), we report AP/AP50.

Prompt Tuning is Comparable with Full-model Finetuning

Figure 5. Effectiveness of prompt tuning. Solid lines are full-model tuning performance; dashed lines are prompt/linear probing performance. By only tuning the prompt embeddings, GLIP-T and GLIP-L can achieve performance close to full-model tuning, allowing for efficient deployment.

An overview of existing works

VLP for regionlevel classification VLP for end-to-end detection

Generic box proposals

ViLD (ICLR2022)

RegionCLIP (CVPR2022)

X-Detr (Arxiv)

Text-guided box proposals

MDetr (ICCV2021)

GLIP (CVPR2022) GLIPv2 (Arxiv)

FIBER (Arxiv) FindIt (Arxiv)

Related topics

- Zero-shot object detection: Bansal et al (ECCV2018), Rahman et al (AAAI2020), ...
- Open-vocabulary object detection: OV-Det (CVPR2021)
- Phrase grounding, Referring Expression Comprehension
- General Purpose Vision System: UniT, GPV, Florence, Gato, CoCa

GLIPv2: Unifying Localization and Vision-Language Understanding

umbrellas.

Haotian Zhang*, Pengchuan Zhang*, et al, Arxiv 2022

Localization + VL understanding = grounded VL understanding

Localization tasks Understanding tasks Visual Question Instance <u>Object</u> **Image Caption** Grounding Answering Detection Segmentation A green umbrella. Bike. Car. What is the left A pink striped A picture of Umbrella. Umbrella. girl holding? [MASK] umbrella. A plain Bike... Dog ... white umbrella. ↓ image input text input Image Encoder Text Encoder Deep Fusion Block GLIPv2 **Unified Outputs** Answer: umbrella Decode: girls holding

Inter-image region-word level contrastive loss

FIBER: Coarse-to-Fine Vision-Language Pre-training with Fusion in the Backbone

Zi-Yi Dou*, Aishwarya Kamath*, Zhe Gan*, et al, Arxiv 2022

Two-stage coarse-to-fine pre-training framework

Fusion In the **B**ackbone Transform**ER** (FIBER)

Several Future Directions

- 1) Large scale region-aware pre-training for object detection
 - How to better use weakly supervised data, e.g., image-text pairs
 - Scalable object detection model architecture
- 2) Zero-shot and few-shot object detection
 - More data-efficient
 - More training efficient, e.g., full-finetune -> prompt tuning
 - More efficient/compact model on device
- 3) Computer vision in the wild
 - More tasks: segmentation, action recognition, human-object interaction, ...
 - More modalities: video, audio, IMU, ...
 - A true multimodal foundation model

Wildfire Smoke

Amount of training data

Thanks!