Experiment No. - 7

Asm: Building a 2bit comparator using lagic gates.

Component Required: Digital trainer kit, XOR Gate, OR Gate, AND Gate,
NOT Gate and Copper Wires.

Theory: A comparator is a combinational logic circuit which compares

2 binary numbers (NI and N2) and determines if NI is losser than (LT)/

equals to (OFQ) / greater than (GT) N2.

A 2bit comparator has two input lines for each of the 2-bit binary humbers, with three distinct output lines, which denotes LT, EQ and GT respectively. If one of three outputs, is a 1, then rest are 0.

Because two numbers can attain only one state from the following—

i) A (B, 1;)A=B, 1;;)A>B. Here Binary numbers are represented as

N1 = AARO and N2 = BBO (A;BO and BDO being the bit of the two numbers respectively.

Block Diagram:

Truth Table:

INPUTS				OUTPUTS		
A	AD	B'	Ro	GT (A>B)	EQ (A=B)	LT (A <b)< td=""></b)<>
0	0	0	0		1	1001
		0	1	0	0	1
		1	0	0	0	1
		1	1	D 1 1	(C) (C) (C)	1.
			0	1 1) (0)	0
0	1	0	1	. 9 61	1 .77	
(1	٥	O	0 ,	
i i	N. F	7	1	0	0	1
	7-K.)	0	0	1	0	0
1	0			1	٥	0 4
		1	0	U	1	O
	4,	0		D	O	A CL
	J	0	0	1	0	0
1	1	1	1	-		0
			0	1	0	000
		1	1	0	1	0

Equation for GT, EQ, LT obtained from the truth table are

EQ -
$$(A_0 \oplus B_0)'(A_1 \oplus B_1)'$$

EQ -
$$(A_0 \oplus B_0)'(A_1 \oplus B_1)'$$

LT - $A_1'B_1 + A_0'B_1B_0 + A_1'A_0'B_0$

Circuit Diagrams:

A, A_o B, B_o

Result: 2 bit comparator circuit was made and its touth take is

verefied.

1 2M/2