Matrix Project EE-1390

Sunny Manne Aditya Singh MS18BTECH11015 CS18BTECH11048

February 14, 2019

Geometrical Question

question 22

If an equilateral triangle, having centroid at the origin, has a side along the line x + y = 2, then find the area of this triangle.

Matrix Transformation

• A line can be written in the form

$$\mathbf{n}\cdot(\mathbf{r}-\mathbf{a})=0$$

 where n is normal vector, r is position vector of points on the line, and a is position vector of any known point lying on the line

Matrix Transformation

contd...

- In our case \mathbf{n} is $\begin{pmatrix} 1 & 1 \end{pmatrix}$ and \mathbf{r} is $\begin{pmatrix} x \\ y \end{pmatrix}$
- and $\mathbf{n} \cdot \mathbf{a} = 2$
- hence equation in terms of matrix is: $(1 \ 1) \cdot \mathbf{r} = 2$

Solution in terms of Matrix

- let the centroid(origin) be $G=(\begin{array}{cc} 0 & 0 \end{array})$, and the point of intersection of median with given base be X
- To find X following system of equation needs to be solved:

$$n1 \cdot r = n1 \cdot a$$
 and $n2 \cdot r = n2 \cdot G$

ullet where $\mathbf{n1}=(egin{array}{ccc}1&1\end{array})$, and

$$\mathbf{n2} = (\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}) (\begin{array}{cc} 1 & 1 \end{array})^T$$

Solution contd...

- Therefore the sysytem of the equation can be written as:
 X = inv(N)*C
- Here N = ($\frac{\mathbf{n1}}{\mathbf{n2}}$) or N = ($\frac{1}{1}$ $\frac{1}{-1}$) , and
- Here C = $\begin{pmatrix} \mathbf{n1} \cdot \mathbf{a} \\ \mathbf{n2} \cdot \mathbf{G} \end{pmatrix}$ or $C = \begin{pmatrix} 2 \\ 0 \end{pmatrix}$
- solving the equations we get $X = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$

Graph

