Phương pháp nhánh cận

Nguyễn Chí Bằng

Ngày 3 tháng 11 năm 2023

NỘI DUNG

- Quy hoạch nguyên
 - Quy hoạch nguyên hoàn toàn
 - Quy hoạch nguyên bộ phận
- Phương pháp nhánh cận
 - Mở rộng ràng buộc

- ullet Trong đó $c^T=(c_1\ c_2\ \dots\ c_n)$, A là ma trận m imes n, $b=egin{pmatrix} \dot{b_2} \\ \vdots \\ b_m \end{pmatrix}$, và $x\in Z^n$.
- Bài toán (H) gọi là bài toán quy hoạch nguyên hoàn toàn.
- Tập $S_h:=\{x\in Z^n_+: Ax\leq b\}$ là tập nghiệm của bài toán quy hoạch nguyên hoàn toàn.

$$\left\{ \begin{aligned} f(x) &= cx + hy &\longrightarrow Max \\ \begin{cases} Ax + Gy \leq b \\ x \geq 0, \text{ nguyên} \\ y \geq 0, \end{aligned} \right.$$

- Trong đó $c^T=(c_1\ c_2\ \dots\ c_n),\ h^T=(c_{n+1}\dots c_p),\ A$ là ma trận $m\times n,\ G$ là ma trận $m\times p,\ b=\begin{pmatrix}b_1\\\dots\\b_m\end{pmatrix}$, với $x\in Z^n$ và $y\in R^p.$
- Bài toán (B) gọi là bài toán quy hoạch nguyên bộ phân.
- Tập $S_b := \{(x,y) \in Z_+^n \times R_+^p : Ax + Gy \le b\}$ là tập nghiệm của bài toán quy hoạch nguyên bộ phận.

Ta sẽ xử lý bài toán (B) thông qua bài toán (B_0) sau:

$$(B_0) \quad f(x) = cx + hy \longrightarrow Max$$

$$\begin{cases} Ax + Gy \le b \\ x, y > 0. \end{cases}$$

• Tập $S_0:=\{(x,y)\in R^n_+\times R^p_+: Ax+Gy\leq b\}$ là tập nghiệm của bài toán (B_0)

Mở rộng ràng buộc