Erzeugendensysteme

Sei V ein K-Vektorraum und $S \subset V$. Ist $\mathrm{Span}(S) = V$, so heißt S ein **Erzeugendensystem von** V.

Ist also S ein Erzeugendensystem, dann gibt es zu jedem $v \in V$ ein $m \in \mathbb{N}$ sowie Elemente $v_1, \ldots, v_m \in S$, $\lambda_1,\ldots,\lambda_m\in K$, mit $v=\lambda_1v_1+\cdots+\lambda_mv_m$ Wenn V eine endliche Teilmenge $S=\{v_1,\ldots,v_n\}$ als Erzeugendensystem besitzt, so heißt V endlich erzeugt. Es ist dann

$$V = \{\lambda_1 v_1 + \dots + \lambda_n v_n \mid \lambda_1, \dots, \lambda_n \in K\}$$

Zum Beispiel

$$\mathbb{R}^2 = \{ \lambda_1(1,0) + \lambda_2(0,1) \mid \lambda_1, \lambda_2 \in \mathbb{R} \}$$

Seien $V = \mathbb{R}^2$, $U_1 = \{0\} \times \mathbb{R}$ und $U_2 = \mathbb{R} \times \{0\}$. Dann sind U_1 und U_2 Teilräume von \mathbb{R}^2 , aber $U_1 \cup U_2$ ist kein Vektorraum, denn $(1,0) \in U_1$, $(0,1) \in U_2$ aber $(1,0) + (0,1) = (1,1) \neq U_1 \cup U_2$.

Der von $S = U_1 \cup U_2$ aufgespannte Teilraum von \mathbb{R}^2 ist die Summe

 $U_1 + U_2 := \{u_1 + u_2 \mid u_1 \in U_1, u_2 \in U_2\}$

Hier gilt zusätzlich noch $U_1 + U_2 = \mathbb{R}^2$.

Sei
$$a,b \in \mathbb{R}$$
 mit $a \neq 0, b \neq 0$, dann bilden $v_1 = (a,0), v_2 = (0,b)$ und $v_3 = (3,5)$ ein Erzeugendensystem von \mathbb{R}^2 .
Sei $v \in \mathbb{R}^2$ beliebig. Dann ist $v = (x,y)$ mit $x,y \in \mathbb{R}$. Es folgt
$$v = (x,y) = \frac{x}{a}(a,0) + \frac{y}{b}(0,b) + 0(3,5) = \lambda_1 v_1 + \lambda_2 v_2 + \lambda_3 v_3$$

mit $\lambda_1 = \frac{x}{a}$, $\lambda_2 = \frac{y}{b}$ und $\lambda_3 = 0$.

Man sight insbesondere, dass $v_3 = (3,5)$ entbehrlich ist.

Bilden $v_1 = (1,1), v_2 = (1,-1)$ ein Erzeugendensystem von \mathbb{R}^2 ?

Ansatz:

$$(x,y) \stackrel{!}{=} \lambda_1(1,1) + \lambda_2(1,-1) = (\lambda_1,\lambda_1) + (\lambda_2,-\lambda_2) = (\lambda_1 + \lambda_2,\lambda_1 - \lambda_2)$$

also

$$\begin{vmatrix} \lambda_1 + \lambda_2 = x \\ \lambda_1 - \lambda_2 = y \end{vmatrix} \implies \lambda_1 = \frac{x+y}{2} \quad \text{und} \quad \lambda_2 = \frac{x-y}{2}$$

Die Vektoren (1,1) und (1,-1) bilden also ein Erzeugendensystem, da

$$(x,y) = \lambda_1(1,1) + \lambda_2(1,-1)$$

mit $\lambda_1 = \frac{x+y}{2}, \lambda_2 = \frac{x-y}{2} \quad \forall (x,y) \in \mathbb{R}^2$ gilt.

Bilden $v_1 = (-3,3), v_2 = (1,-1)$ ein Erzeugendensystem von \mathbb{R}^2 ?

Ansatz:

$$(x,y) \stackrel{!}{=} \lambda_1(-3,3) + \lambda_2(1,-1) = (-3\lambda_1, 3\lambda_1) + (\lambda_2, -\lambda_2)$$
$$= (-3\lambda_1 + \lambda_2, 3\lambda_1 - \lambda_2)$$

also

$$-3\lambda_1 + \lambda_2 = x$$
$$3\lambda_1 - \lambda_2 = y$$

Dieses Gleichungssystem ist aber nicht für alle $(x,y) \in \mathbb{R}^2$ lösbar, denn setze z.B. (x,y) = (0,1), dann ist das System

$$\begin{array}{ccc} -3\lambda_1 + \lambda_2 = 0 \\ 3\lambda_1 - \lambda_2 = 1 \end{array} \iff \begin{array}{c} 3\lambda_1 - \lambda_2 = 0 \\ 3\lambda_1 - \lambda_2 = 1 \end{array}$$

nicht lösbar. Insbesondere ist v = (0,1) keine Linearkombination von v_1 und v_2 .

Quelle: https://lp.uni-goettingen.de/get/text/825

Erstellt für: Gast