Motivic Zeta Function

Maximilian Rath

Geboren am 2. Januar 1995 in Reutlingen 2.2.2016

Bachelorarbeit Mathematik Prof. Dr. Daniel Huybrechts

Mathematisches Institut

Mathematisch-Naturwissenschaftliche Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn

Definiton 1. In the following the term k-variety always means a separated, integral scheme of finite type over a field k. Denote by \mathcal{V}_k the category of k-varieties.

Definiton 2. Let k be a Field. Consider the group of formal linear combinations of isomorphism-classes in \mathcal{V}_k . Setting $[X] \times [Y] := [X \times Y]$ makes this into a ring. The *Grothendieck ring of varieties* $K_0[\mathcal{V}_k]$ is then obtained by modding out relations of the form

$$[X] - [Y] = [X \setminus Y]$$

Where Y is closed in X.

A *motivic measure* is a ringhomomorphism $\mu : K_0[\mathcal{V}_k] \to A$ into a ring A. The identity function $id : K_0[\mathcal{V}_k] \to K_0[\mathcal{V}_k]$ is called the *universal motivic measure*.

Let us now make some remarks about this ring.

Remark 1. The Grothendieck ring of varieties is commutative as $X \times Y \cong Y \times X$ for two schemes X and Y.

Remark 2. By [Har77, Proposition 10.1 (d)] the product of two smooth varieties over k is again smooth. Hence the isomorphism classes of smooth irreducible complete varieties form a multiplicative monoid, in the following denoted by \mathfrak{M} .

Example 1. Using the decomposition $\mathbb{P}^n_k = \mathbb{P}^{n-1}_k \coprod \mathbb{A}^n_k$ where \mathbb{P}^{n-1}_k is closed in \mathbb{P}^n_k we get $[\mathbb{P}^n_k] = [\mathbb{P}^{n-1}_k] + [\mathbb{A}^n_k]$ in the Grothendieck ring. Inductively this yields the identity

$$[\mathbb{P}^n_k] = \sum_{k=0}^n [\mathbb{A}^1_k]^k$$

We also denote the isomorphism class of the affine line as \mathbb{L} .

In their paper [LL03] Larsen and Lunts prove the following result:

Theorem 1. Assume that $k=\mathbb{C}$. There exists a field \mathfrak{H} and a motivic measure $\mu: K_0[\mathcal{V}_k] \to \mathfrak{H}$ with the following property: if X is a smooth complex projective surface such that $P_g(X) = h^{2,0}(X) \geqslant 2$, then the zeta-function $\zeta_{\mu}(X,t)$ is not rational.

The first important theorem on the way to prove this result is this:

Theorem 2. Set $k = \mathbb{C}$. Let G be an abelian commutative monoid and $\mathbb{Z}[G]$ be the corresponding monoid ring. As above, denote by M the multiplicative monoid of irreducible smooth complete varieties. Let

$$\psi: \mathcal{M} \to G$$

be a homomorphism of monoids such that

(i) $\psi([X]) = \psi([Y])$ if X and Y are birational;

(ii) $\psi([\mathbb{P}^n]) = 1$ for all $n \geqslant 0$.

Then ψ can be uniquely extended to a ring homomorphism

$$\varphi: K_0[\mathcal{V}_\mathbb{C}] \to \mathbb{Z}[G]$$

To prove this result we will use a result by Bittner (see [Bit04, Theorem 3.1]).

Theorem 3. The Grothendieck group $K_0[\mathcal{V}_\mathbb{C}]$ is generated by classes of smooth complete varieties subject to relations of the form

$$[X] - [f^{-1}(Z)] = [Y] - [Z]$$

where X,Y are smooth complete varieties and $f: X \to Y$ is a morphism which is a blowup with a smooth center $Z \subset Y$.

Proof of theorem 2. We have to check that ψ preserves the above relations, i.e. that $\psi([X]) - \psi[f^{-1}(Z)] = \psi([Y]) - \psi([Z])$. But [X] and [Y] are birational since f is a blowup. (WHY?) Now $f^{-1}(Z)$ is birational to $Z \times \mathbb{P}^n$ (WHY??) and thus

$$\psi([f^{-1}(Z)])=\psi([Z\times\mathbb{P}^n])=\psi([Z][\mathbb{P}^n])=\psi([Z])\psi([\mathbb{P}^n)=\psi([Z])$$

Hence we can linearly extend ψ to define the morphism $\varphi: K_0[\mathcal{V}_{\mathbb{C}}] \to \mathbb{Z}[G]$

References

- [Bit04] Franziska Bittner. The universal Euler characteristic for varieties of characteristic zero. *Compos. Math.*, 140(4):1011–1032, 2004.
- [Har77] Robin Hartshorne. *Algebraic geometry*. Springer-Verlag, New York-Heidelberg, 1977. Graduate Texts in Mathematics, No. 52.
- [LL03] Michael Larsen and Valery A. Lunts. Motivic measures and stable birational geometry. *Mosc. Math. J.*, 3(1):85–95, 259, 2003.