CSCI 5352

Network Analysis and Modeling Prof. Daniel Larremore

Problem Set 1

Fall 2020

Student: Alex Book; Collaborators: None

1. (12 pts) Consider the following two networks:

(a) (3 pts) Give the adjacency matrix for network (A).

$$\begin{pmatrix} 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 \end{pmatrix}$$

(b) (3 pts) Give adjacency list for network (A).

1	2, 5
2	3
3	1
4	1, 5
5	3, 4

(c) (6 pts) Give adjacency matrices for both one-mode projections of network (B).

B-Top:

$$\begin{pmatrix} 0 & 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \end{pmatrix} \quad \begin{pmatrix} 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \end{pmatrix}$$

- 2. (15 pts) Let **A** be the adjacency matrix of a simple graph (unweighted, undirected edges with no self-loops) and **1** be the column vector whose elements are all 1. In terms of these quantities, multiplicative constants and simple matrix operations like transpose and trace, write expressions for
 - (a) (3 pts) the vector \mathbf{k} whose elements are the degrees k_i of the vertices $\mathbf{A} \mathbf{1}$

You need to sum all rows, so multiply A and 1.

(b) (3 pts) the number m of edges in the network $\frac{\mathbf{1}^T \mathbf{A} \mathbf{1}}{2}$

You need the sum of all matrix entries divided by 2 (because each edge e_{ij} is repeated as edge e_{ji}), so multiply $\mathbf{1}^T$ and \mathbf{A} to sum the columns, then multiply the resultant row vector by $\mathbf{1}$ to sum it. Finally divide by 2 to take care of the duplication.

(c) (5 pts) the matrix **N** whose elements \mathbf{N}_{ij} is equal to the number of common neighbors of vertices i and j \mathbf{A}^2

Book section 6.11 talks about walks and "common neighbors" can be thought of as walks of length two (i \rightarrow k \rightarrow j, nodes i and j have common neighbor k). It is explained that $\mathbf{A}_{ik} \ \mathbf{A}_{kj}$ is equal to 1 if there is a walk along those edges. To get the total paths from i to j (different k's), we need to sum over all values of k: $\sum_{k=1}^{n} (\mathbf{A}_{ik} * \mathbf{A}_{kj}) = [\mathbf{A}^2]_{ij}$. So the matrix \mathbf{A}^2 holds this information for all node combinations.

(d) (4 pts) the total number of triangles in the network, where a triangle means three vertices, each connected by edges to both of the others. $\frac{\text{Tr}(\mathbf{A}^3)}{c}$

Section 6.11 generalizes r-length walks as being held by \mathbf{A}^r . Triangles are represented by walks of length three that start and end at the same point. So for triangles starting/ending on vertex i, look at $[\mathbf{A}^3]_{ii}$. To get all triangles you would sum $[\mathbf{A}^3]_{ii}$ across all values of i, which is equal to $\text{Tr}(\mathbf{A}^3)$. However, this counts each triangle 6 times (i.e. Triangle a-b-c is counted as: a-b-c, b-c-a, c-a-b, c-b-a, a-c-b, and b-a-c, once for each starting vertex and each direction around the triangle), so the quantity must be divided by 6 to give us the desired answer.

3. (10 pts) Consider a bipartite network, with its two types of vertices, and suppose there are n_1 vertices of type 1 and n_2 vertices of type 2. Show that the mean degrees c_1 and c_2 of the two types are given by

$$c_2 = \frac{n_1}{n_2} c_1 \ .$$

The mean degree of a set of nodes multiplied by the number of nodes in the set gives the sum of degrees in the set. In a bipartite graph, all edges connect nodes from opposite sets. Therefore, the sum of degrees of one set must equal the sum of degrees of the other. We have the following:

$$c_1 n_1 = c_2 n_2 \to c_2 = \frac{n_1}{n_2} c_1$$