Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

Факультет Программной Инженерии и Компьютерной Техники

Лабораторная работа №5 «Интерполяция функции»

по дисциплине «Вычислительная математика»

Вариант: 14

Преподаватель: Наумова Надежда Александровна

Выполнил:

Федоров Евгений Константинович

Группа: Р3210

<u>Цель работы</u>: решить задачу интерполяции, найти значения функции при заданных значениях аргумента, отличных от узловых точек.

1. Вычислительная реализация задачи

1. Выбрать таблицу y = f(x):

	X	у	N варианта	X_1	X_2
Таблица 1.4	1.05	0.1213	14	1.112	1.319
	1.15	1.1316			
	1.25	2.1459			
	1.35	3.1565			
	1.45	4.1571			
	1.55	5.1819			
	1.65	6.1969			

2. Построить таблицу конечных разностей:

№	Xi	Уi	Δy_i	$\Delta^2 \mathbf{y}_{i}$	$\Delta^3 y_i$	$\Delta^4 y_i$	$\Delta^5 y_i$	Δ^6 y $_{ m i}$
0.	1.05	0.1213	1.0103	0.0040	-0.0077	0.0014	0.0391	-0.1478
1.	1.15	1.1316	1.0143	-0.0037	-0.0063	0.0405	-0.1087	
2.	1.25	2.1459	1.0106	-0.0100	0.0342	-0.0682		
3.	1.35	3.1565	1.0006	0.0242	-0.0340			
4.	1.45	4.1571	1.0248	-0.0098				
5.	1.55	5.1819	1.0150					
6.	1.65	6.1969						

3. Вычислить значения функции для аргумента *X*₁, используя первую или вторую интерполяционную формулу **Ньютона**:

Воспользуемся формулой Ньютона для интерполирования **вперед**, так как $X_1 = 1.112$ лежит в левой половине отрезка.

Для
$$X_1=1.112$$
: $t=\frac{(x-x_n)}{h}=\frac{(1.112-1.05)}{0.05}=1.24$
$$N_6(x)=y_0+t\Delta y_0+\frac{t(t-1)}{2!}\Delta^2 y_0+\frac{t(t-1)(t-2)}{3!}\Delta^3 y_0+\frac{t(t-1)(t-2)(t-3)}{4!}\Delta^4 y_0+\frac{t(t-1)(t-2)(t-3)(t-4)}{5!}\Delta^5 y_0+\frac{t(t-1)(t-2)(t-3)(t-4)(t-5)}{6!}\Delta^6 y_0$$

$$y(1.112) \approx 0.1213 + 1.24 * 1.0103 + \frac{1.24(1.24 - 1)}{2} * 0.0040 + \frac{1.24(1.24 - 1)(1.24 - 2)}{6}$$

$$* (-0.0077) + \frac{1.24(1.24 - 1)(1.24 - 2)(1.24 - 3)}{24} * (-0.0014)$$

$$+ \frac{1.24(1.24 - 1)(1.24 - 2)(1.24 - 3)(1.24 - 4)}{120} * 0.0391$$

$$+ \frac{1.24(1.24 - 1)(1.24 - 2)(1.24 - 3)(1.24 - 4)(1.24 - 5)}{720} * (-0.1478)$$

$$y(1.112) = 0.749956$$

4. Вычислить значения функции для аргумента X_2 , используя первую или вторую интерполяционную формулу Гаусса:

Центральная точка a = 1.35, $X_2 = 1.319 < 1.35$, то есть $x < a \rightarrow$ используем **вторую** интерполяционную формулу Гаусса.

$$t = \frac{(x - x_0)}{h} = \frac{(1.319 - 1.35)}{0.05} = -0.62$$

$$\begin{split} P_6(x) &= y_0 + t\Delta y_{-1} + \frac{t(t+1)}{2!}\Delta^2 y_{-1} + \frac{(t+1)t(t-1)}{3!}\Delta^3 y_{-2} \\ &\quad + \frac{(t+2)(t+1)t(t-1)}{4!}\Delta^4 y_{-2} + \frac{(t+2)(t+1)t(t-1)(t-2)}{5!}\Delta^5 y_{-3} \\ &\quad + \frac{(t+3)(t+2)(t+1)t(t-1)(t-2)}{6!}\Delta^6 y_{-3} \end{split}$$

$$y(1.319) \approx 3.1565 + (-0.62) * 1.0106 + \frac{-0.62(-0.62 + 1)}{2} * (-0.0100)$$

$$+ \frac{(-0.62 + 1)(-0.62)(-0.62 - 1)}{6} * (-0.0063)$$

$$+ \frac{(-0.62 + 2)(-0.62 + 1)(-0.62)(-0.62 - 1)}{24} * (0.0405)$$

$$+ \frac{(-0.62 + 2)(-0.62 + 1)(-0.62)(-0.62 - 1)(-0.62 - 2)}{120} * (0.0391)$$

$$+ \frac{(-0.62 + 3)(-0.62 + 2)(-0.62 + 1)(-0.62)(-0.62 - 1)(-0.62 - 2)}{720}$$

$$* (-0.1478)$$

$$y(1.319) \approx -0.422524$$

2. Программная реализация задачи

Результаты выполнения программы при различных исходных данных:

Выберите метод ввода данных (1 – файл, 2 – консоль, 3 - функции на выбор): 2

Команда (solve / exit): solve

Вводите значения Х и У через пробел. Например:

X: 1 2 3 Y: 4 5 6

Введите значения Х: 1 2 3 Введите значения Y: 2 4 8

Введите аргумент для интерполяции: 2.5

Результат:

y: 2.0000 4.0000 8.0000

Δy: 2.0000 4.0000

 $\Delta \Delta y$: 2.0000

Ньютон(2.5) = 5.75Лагранж(2.5) = 5.75

Хотите выйти из приложения? Напишите exit:

Выберите метод ввода данных (1 – файл, 2 – консоль, 3 - функции на выбор): 1								
Введите путь к файлу: рара								
Результат:								
y:	0.1213	1.1316	2.1459	3.1565	4.1571			
5.1819	6.1969							
Δy:	1.0103	1.0143	1.0106	1.0006	1.0248			
1.0150								
ΔΔy:	0.0040	-0.0037	-0.0100	0.0242	-0.0098			
ΔΔΔy:	-0.0077	-0.0063	0.0342	-0.0340				
ΔΔΔΔy:	0.0014	0.0405	-0.0682					
ΔΔΔΔΔy:	0.0391	-0.1087						
ΔΔΔΔΔΔγ:	-0.1478)						
Ньютон(None) = -0.42252480468749903								
Лагранж(None) = -0.422524804687493								

Блок схемы

Вывод

В ходе выполнения лабораторной работы разобрался, в чем заключается основная задача интерполяции. Научился вычислять интерполяционные многочлены различными методами.