Bose-Hubbard Simulators for Gauge Theories

Jesse Osborne

University of Queensland School of Mathematics and Physics

19 March 2024

Introduction

- Gauge theories describe particles interacting via a force.
- Can simulate discretised gauge theories using bosons in an optical lattice.
- Explore unique phenomena, e.g. confinement.

Quantum simulators vs quantum computers

(Digital) quantum computers:

- Programmable qubits.
- Limited by noise.

(Analogue) quantum simulators:

- Specialised to a certain problem.
- Limited by coherence time.

Classical computers (tensor networks):

- No noise.
- Limited by growth of entanglement.

Outline

- Background: Lattice gauge theories.
- 1+1D simulator with spin-1/2 gauge fields.
- Spin-1 gauge fields.
- 2+1D.

Classical electrodynamics

A charged particle in an electromagnetic field experiences the force

$$\mathbf{F} = q(\mathbf{E} + \mathbf{v} \times \mathbf{B}).$$

Can obtain the field by Maxwell's equations.

Classical electrodynamics

Write **E** and **B** in terms of 4-vector potential $A^{\mu} = (\phi, \mathbf{A})$.

Maxwell's equations become

$$\partial_{\mu}F^{\mu\nu}=j^{\nu},$$

where

$$F^{\mu\nu} = \partial^{\mu}A^{\nu} - \partial^{\nu}A^{\mu}, \qquad j^{\mu} = (\rho, \mathbf{j}).$$

Lagrangian:

$$\mathscr{L} = -j^{\mu}A_{\mu} - \frac{1}{4}F^{\mu\nu}F_{\mu\nu}.$$

Quantum electrodynamics

Dirac Lagrangian:

$$\mathcal{L} = \bar{\psi}(i\partial \!\!\!/ - m)\psi.$$

Bispinor field, describing electrons and positrons:

$$\psi = \begin{pmatrix} \psi_{\text{electron}} \\ \psi_{\text{positron}} \end{pmatrix}.$$

Combine to form QED:

$$\mathscr{L} = \bar{\psi}(\mathrm{i}\partial \!\!\!/ - m)\psi - j^{\mu}A_{\mu} - \frac{1}{4}F^{\mu\nu}F_{\mu\nu}, \quad \text{where} \quad j^{\mu} = e\bar{\psi}\gamma^{\mu}\psi.$$

Quantum electrodynamics

In terms of the gauge covariant derivative D_{μ} :

$$\mathcal{L} = \bar{\psi} \left(\mathrm{i} \not\!\!\!D - m \right) \psi - \frac{1}{4} F^{\mu \nu} F_{\mu \nu}, \qquad D_{\mu} = \partial_{\mu} + \mathrm{i} e A_{\mu}.$$

Key points:

- The dynamics of particles is coupled to the gauge field A^{μ} (photons).
- ψ and A^{μ} are invariant under U(1) gauge transformations.

Lattice QED

Discretise onto a lattice:

$$\hat{H}_{\mathrm{QED}} = -\frac{\kappa}{2a} \sum_{\langle i,j \rangle} \left(\hat{\psi}_i^\dagger \hat{U}_{ij} \hat{\psi}_j^\dagger + \mathrm{H.c.} \right) + m \sum_i \hat{\psi}_i^\dagger \hat{\psi}_i + \frac{a}{2} \sum_{\langle i,j \rangle} \hat{E}_{ij}^2.$$

- Lattice spacing *a*.
- Staggered particles: even = matter, odd = antimatter.
- Gauge sites (\hat{U}, \hat{E}) on edges.

Quantum link models

 \hat{U} and \hat{E} must satisfy (g = gauge coupling strength)

$$[\hat{E}, \hat{U}] = -g\hat{U}, \qquad [\hat{U}, \hat{U}^{\dagger}] = 0.$$

Approximate using spin-S operators (quantum link model, QLM):

$$\hat{U} \to \frac{\hat{S}^-}{\sqrt{S(S+1)}}, \qquad \hat{E} \to g\hat{S}^z.$$

Recover QED in the limit $S \rightarrow \infty$.

Gauge invariance

The U(1) gauge symmetry is generated by

$$\hat{G}_i = (-1)^{x_i + y_i} \left[\hat{\psi}_i^{\dagger} \hat{\psi}_i + \sum_{j \text{ next to } i} \hat{S}_{ij}^z \right]$$

We restrict ourselves to gauge-invariant states satisfying $\langle \hat{G}_i \rangle = 0$.

For a given matter configuration, this restricts the allowed configuration for the gauge sites.

1+1D spin-1/2 bosonic simulator

$$\hat{H}_{\mathsf{BHM}} = -J\sum_{j}\left(\hat{b}_{j}^{\dagger}\hat{b}_{j+1} + \mathsf{H.c.}\right) + \frac{U}{2}\sum_{j}\hat{n}_{j}\left(\hat{n}_{j}-1\right) + \sum_{j}\left[(-1)^{j}\frac{\delta}{2} + j\gamma\right]\hat{n}_{j}.$$

BHM: even sites = matter, odd sites = gauge.

B. Yang et al., Nature 587, 392 (2020).

Gauge-invariant hopping

- Corresponds to $\hat{\psi}_i^{\dagger} \hat{S}_{i,i+1}^{-} \hat{\psi}_{i+1}^{\dagger}$.
- Need $\delta \approx U/2$.
- Tilt γ suppresses other processes.

$$\kappa \approx \frac{4\sqrt{6}J^2}{U}, \qquad m \approx \delta - \frac{U}{2}.$$

Gauge-invariant ground states

Experimental results

Gradual ramp from $m = -\infty \rightarrow \infty$:

Red = particle occupation, blue = electric flux.

Data points = experiment, curves = numerics.

B. Yang et al., Nature 587, 392 (2020).

Global quench

Sudden quench $m = -\infty \rightarrow 0$:

Z.-Y. Zhou et al., Science 377, 311 (2022).

Particle collision (numerical proposal)

G.-X. Su, JO, J. C. Halimeh, arXiv:2401.05489 (2024).

Limitations of spin-1/2

- The electric field term is $\hat{E}^2 = (g\hat{S}^z)^2$.
- For spin-1/2, this is just $g^2\hat{I}/4$.
- Could use background field: $(\hat{E} + E_{bg})^2$.
- Otherwise, need to use higher spin.

Upgrading to spin-1

$$\hat{H}_{BHM} = -J \sum_{j} (\hat{b}_{j}^{\dagger} \hat{b}_{j+1} + \text{H.c.}) + \frac{U}{2} \sum_{j} \hat{n}_{j} (\hat{n}_{j} - 1)$$

$$+ \sum_{j} \left[(-1)^{j} \frac{\delta}{2} + j \gamma \right] \hat{n}_{j} + V \sum_{j} \hat{n}_{j} \hat{n}_{j+1} + W \sum_{j \text{ odd}} \hat{n}_{j} \hat{n}_{j+2}.$$

JO, B. Yang, I. P. McCulloch, P. Hauke, J. C. Halimeh, arXiv:2305.06368 (2023).

Gauge-invariant hopping (spin-1)

2 constraints:

$$5U - 2\delta - 4V \approx 0$$
, $U - 2\delta - 4V + 8W \approx 0$.

Using V = 2W to avoid some unwanted resonances, we obtain

$$\hat{E} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}, \quad \hat{U} = \frac{1}{\sqrt{6}} \begin{pmatrix} 0 & 0 & 0 \\ \sqrt{12} & 0 & 0 \\ 0 & \sqrt{2} & 0 \end{pmatrix}, \quad \kappa = \frac{16\sqrt{6}f^2\left(2\delta - 3U\right)}{\left(2\delta - 3U\right)^2 - 16\gamma^2}, \quad m = -\frac{3}{2}U + \delta + 2V - 2W + \frac{16f^2\left(5U - 6\delta\right)}{\left(5U - 6\delta\right)^2 - 16\gamma^2}, \quad g^2 = 4U - 8W.$$

Gauge-invariant ground states

Global quenches (numerics)

JO, B. Yang, I. P. McCulloch, P. Hauke, J. C. Halimeh, arXiv:2305.06368 (2023).

Pair confinement (numerics)

JO, B. Yang, I. P. McCulloch, P. Hauke, J. C. Halimeh, arXiv:2305.06368 (2023).

Extending to 2+1D

$$\begin{split} \hat{H}_{\text{BHM}} &= -J \sum_{\langle i,j \rangle} \left(\hat{b}_i^{\dagger} \hat{b}_j + \text{H.c.} \right) \\ &+ \frac{U_j}{2} \sum_j \hat{n}_j \left(\hat{n}_j - 1 \right) \\ &+ \sum_j \left[\vec{\gamma} \cdot j - \delta_j - \eta_j \right] \hat{n}_j. \end{split}$$

- $U_i = \alpha U$ on matter sites, U elsewhere.
- $\delta_j = \delta$ on gauge sites, 0 elsewhere.
- $\eta_j = \eta$ on 'forbidden' sites, 0 elsewhere.
- Two different tilts for each axis $\vec{\gamma} = (\gamma_x, \gamma_y)$.
- Hardcore bosonic matter.

Gauge-invariant configurations

Gauge-invariant configurations

Global quenches (numerics)

JO, I. P. McCulloch, B. Yang, P. Hauke, J. C. Halimeh, arXiv:2211.01380 (2022).

Conclusion

Thanks to collaborators:

- Ian McCulloch (NTHU, formerly UQ)
- Jad Halimeh (LMU)
- Philipp Hauke (U. Trento)
- Bing Yang (SUSTech)
- Guoxian Su (Heidelberg U.)