Álgebra lineal

Trabajo práctico N°2 - 2022

Coordenadas, cambio de base, transformaciones lineales I

- 1. Sea $B = \{1 + x, 1 + x^2, x + x^2\}.$
 - a) Probar que B es una base para $\mathbb{R}_2[x]$.
 - b) Encontrar las coordenadas de $p(x) = 3x^2 + 2x 1$ en la base B.
 - c) Hallar las coordenadas de los elementos de B en la base canónica de $\mathbb{R}_2[x]$.
 - d) Escribir a los vectores de la base canónica de $\mathbb{R}_2[x]$ como combinación lineal de los elementos de B.
- 2. Sean $\mathcal E$ la base canónica de $\mathbb R^3$ y $B=\{(1,1,0),\,(1,1,1),\,(0,1,1)\}.$
 - a) Hallar la matriz $P_{\mathcal{E},B}$ de cambio de base de B en $\mathcal{E}.$
 - b) Hallar la matriz $P_{B,\mathcal{E}}$ de cambio de base de \mathcal{E} en B.
 - c) Comprobar que la matriz hallada en el ítem a) es la inversa de la del ítem b).
 - d) Comprobar que $P_{B,\mathcal{E}}[(1,2,0)]_{\mathcal{E}} = [(1,2,0)]_{B}$.
- 3. Sea $\mathcal{E} = \{e_1, \dots, e_n\}$ la base canónica de \mathbb{R}^n (como \mathbb{R} -EV) y sean

$$u_1 = e_2 - e_1$$
, $u_2 = e_3 - e_2$, ..., $u_{n-1} = e_n - e_{n-1}$, $u_n = e_n$.

- a) Probar que $B = \{u_1, \dots, u_n\}$ es una base de \mathbb{R}^n .
- b) Hallar las matrices de cambio de base $P_{\mathcal{E},B}$ y $P_{B,\mathcal{E}}$ para n=3.
- c) Probar que para todo $v \in \mathbb{R}^3$, se tiene que $[v]_B = P_{B,\mathcal{E}}[v]_{\mathcal{E}}$.
- 4. a) Hallar una base de $\mathbb{C}_3[x]$ que no sea la canónica.
 - b) Hallar la matriz de cambio de base de $B = \{1 x, x x^2, x^2 x^3, x^3\}$ en la base hallada en el ítem anterior.
 - c) ¿Cuáles son las coordenadas de $3x^3 x + 2$ en la base B?
- 5. Considerar los siguientes subconjuntos de $\mathbb{R}^{2\times 2}$:
 - $\bullet B_1 = \left\{ \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}.$
 - $B_2 = \left\{ \begin{pmatrix} -1 & 0 \\ 1 & -1 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} -1 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \right\}.$

- a) Probar que B_1 y B_2 son bases para $\mathbb{R}^{2\times 2}$.
- b) Hallar la matriz de cambio de base de B_2 en la base B_1 .
- c) ¿Cuáles son las coordenadas de $\begin{pmatrix} 0 & 1 \\ 1 & -2 \end{pmatrix}$ en la base B_2 ?¿Y en la base B_1 ?
- 6. Hallar las matrices de cambio de base P_{B_1,B_2} y P_{B_2,B_1} para cada uno de los siguientes casos.
 - a) En \mathbb{R}^3 , $B_1 = \{(5,3,1), (1,-3,-2), (1,2,1)\}$ y $B_2 = \{(-2,1,0), (-1,-3,0), (-2,-3,1)\}$.
 - b) En $\mathbb{C}_3[x]$, $B_1 = \{1, x 1, x^2 x, x^3\}$ y $B_2 = \{x, x 1, x^2, x^3 + 1\}$.
- 7. Sea $B_1 = \{(1,0,1), (1,1,0), (0,0,1)\}$ una base de \mathbb{R}^3 . Si

$$P_{B_2,B_1} = \begin{pmatrix} 1 & 1 & 2 \\ 2 & 1 & 1 \\ -1 & -1 & 1 \end{pmatrix}.$$

Hallar los vectores de la base B_2 .

- 8. Determinar si las siguientes aplicaciones son transformaciones lineales.
 - a) $T: \mathbb{R}^3 \to \mathbb{R}^3$ dada por $T(x, y, z) = (x y, x^2, 2z)$.
 - b) $T: \mathbb{R}^{3\times 1} \to \mathbb{R}^{3\times 1}$ dada por $T \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2x 3y \\ 3y 2z \\ 2z \end{pmatrix}$.
 - c) $T: \mathbb{R}^4 \to \mathbb{R}^2$ dada por $T(x_1, x_2, x_3, x_4) = (0, 0)$.
 - d) $T: \mathbb{C} \to \mathbb{C}$ dada por $T(z) = \bar{z}$
 - e) La función traza tr: $\mathbb{C}^{n\times n} \to \mathbb{C}$ dada por $\operatorname{tr}(A) = \sum_{i=1}^{n} a_{ii}$.
 - f) La función determinante det : $\mathbb{C}^{n \times n} \to \mathbb{C}$.

Sugerencia: Considerar primero el caso n=2.

- 9. Sean U y V dos \mathbb{K} -espacios vectoriales, y sea L(U,V) el conjunto de todas las transformaciones lineales de U en V. Probar que L(U,V) es un \mathbb{K} -EV con las operaciones dadas por:
 - (S+T)(u) = S(u) + T(u) para $S, T \in L(U, V)$ y $u \in U$.
 - $(\alpha T)(u) = \alpha \cdot T(u)$ para $T \in L(U, V), \alpha \in \mathbb{K}$ y $u \in U$.
- 10. Sobre la homogeneidad y aditividad de las transformaciones lineales.
 - a) Dar un ejemplo de una función $f:\mathbb{R}^2 \to \mathbb{R}$ tal que

$$f(\alpha v) = \alpha f(v) \quad \forall v \in \mathbb{R}^2, \ \alpha \in \mathbb{R},$$

pero que f no sea lineal.

b) Dar un ejemplo de una función $g: \mathbb{C} \to \mathbb{C}$ tal que

$$g(u+v) = g(u) + g(v) \quad \forall u, v \in \mathbb{C},$$

pero que q no sea lineal.

11. a) Sea $R_{\alpha}: \mathbb{R}^2 \to \mathbb{R}^2$ la función que define la rotación en un ángulo α (fijo) en sentido antihorario, es decir

$$R_{\alpha}(x,y) = (x \cos(\alpha) - y \sin(\alpha), x \sin(\alpha) + y \cos(\alpha)) \quad \forall (x,y) \in \mathbb{R}^2.$$

- 1) Probar que R_{α} es una transformación lineal para cualquier valor del ángulo α fijo.
- 2) Determinar la imagen por $R_{\frac{\pi}{2}}$ de P=(0,3), Q=(3,1) y S=(1,-1). Graficar el triángulo PQS y su transformado en el mismo sistema de coordenadas.
- b) Sea $S_Y: \mathbb{R}^2 \to \mathbb{R}^2$ la función simetría respecto del eje y, es decir

$$S_Y(x,y) = (-x,y) \quad \forall (x,y) \in \mathbb{R}^2$$
.

- 1) Probar que S_Y es una transformación lineal.
- 2) Determinar la imagen por S_Y de A = (0,1), B = (2,4), C = (4,3) y D(2,0). Graficar el rectángulo ABCD y su transformado en el mismo sistema de coordenadas.
- c) Sea $H_k: \mathbb{R}^2 \to \mathbb{R}^2$ la función homotecia de razón $k \in \mathbb{R}$ (fijo), es decir

$$H_k(x,y) = (kx,ky) \quad \forall (x,y) \in \mathbb{R}^2.$$

- 1) Probar que H_k es una transformación lineal para cualquier valor de $k \in \mathbb{R}$ fijo.
- 2) Determinar la imagen por H_2 de A = (0, -1), B = (1, 2) y C = (3, 1). Graficar el triángulo ABC y su transformado en el mismo sistema de coordenadas.
- d) Sea $P_X: \mathbb{R}^2 \to \mathbb{R}^2$ la función proyección sobre el eje x.
 - 1) Hallar una expresión analítica para P_X y probar que es una transformación lineal.
 - 2) Determinar la imagen por P_X de A = (0,1), B = (2,4), C = (4,3) y D(2,0). Graficar el rectángulo ABCD y su transformado, en el mismo sistema de coordenadas.
- 12. Se dice que una transformación $T:\mathbb{R}^n\to\mathbb{R}^n$ es una isometría si preserva distancias, es decir

$$\operatorname{dist}(P,Q) = \operatorname{dist}(T(P),T(Q)) \quad \forall P,Q \in \mathbb{R}^n.$$

Analizar cuáles de las transformaciones del ejercicio anterior, son isometrías.

13. a) Probar que existe una única transformación lineal $T: \mathbb{R}^2 \to \mathbb{R}^2$ tal que T(1,1) = (-5,3) y T(-1,1) = (5,2). Determinar T(5,3) y T(-1,2).

Algebra lineal 2022

b) Determinar si existe una transformación lineal $T: \mathbb{R}^2 \to \mathbb{R}^2$ tal que T(1,1)=(2,6), T(-1,1)=(2,5) y T(2,7)=(5,3).

Optativos

- 1. Sea $V = \{ p \in \mathbb{Z}_2[x] : \operatorname{gr}(p) \leq 3 \}.$
 - a) Probar que V es un \mathbb{Z}_2 -subespacio vectorial de $\mathbb{Z}_2[x]$.
 - b) Probar que $B_1 = \{1, 1+x, x^2, x^3+1\}$ y $B_2 = \{1, 1+x, 1+x+x^2, x^3\}$ son bases de V.
 - c) Hallar las coordenadas de $p=x+x^2+x^3$ en cada una de las bases del ítem anterior.
- 2. Analizar si $T: \mathbb{Z}_2 \times \mathbb{Z}_2 \to \mathbb{Z}_2 \times \mathbb{Z}_2$ dada por $T(a,b) = (a,b) \odot (0,1)$ (pensando a $\mathbb{Z}_2 \times \mathbb{Z}_2$ como \mathbb{Z}_2 -EV) es una transformación lineal, donde

$$(a,b) \odot (c,d) = (ac+bd,ad+bc+bd)$$
 para todo $(a,b), (c,d) \in \mathbb{Z}_2 \times \mathbb{Z}_2$.