A	Array
Accuracy, 86	spotted, 31, 32
Across-strata shift, 194, 196, 200	Association
Affymetrix, 6, 30–32, 34, 35	disease-genotype, 144
Agreement, 178	gene-disease, 143–168
attributable to chance, 83-84	linear, 88, 104
intraobserver, see Intrarater	nonlinear, 102
reliability	tests, 143–168
interobserver, see Interrater	Autorad, 15
reliability	Average negative agreement, 85
limits of, 96, 98	Average positive agreement, 85
negative, 85, 87	D.
overall, 85	В
perfect, 88, 92, 97, 102	Backbone
positive, 85, 87	Oracle, 24
reversed, 92, 102	Background
Algorithms	adjustment, 32
clustering, 45	intensity, 32
gene-shaving, 39	level, 25
genetic, 46	signal, 18, 27
geometrization, 23–25	threshold, 25, 32
labeling, 23–25	value, 26, 32
quantitation, 23–25	Basepair
spotfinding, 24	sequence, 4, 8, 31
statistical, 18–20	Batch effect, 95
Alignment, 9	Bayesian analysis, 12, 19, 25, 37,
Amino acid, 3, 7	40, 42, 43
Analytical engine, 22	Bias, 12, 96
Angiosarcoma, 194, 196, 199, 200,	constant, 99, 101
201	proportional, 99, 101
ANOVA, 19, 24, 94, 104	Binary tree, 3
robust, 38	Binomial distribution, 194

Bioinformatics, 1, 9 Biological pathway, 4, 5	control selection in, 132 multistrata, 192
Biomarker, 3, 11–13, 81–106 (see	Categorical data, 114
also Marker)	CDF, 194
continuous, 82, 88-104	Central Limit Theorem, 195, 197
definition of, 81	CERM (Cumulative exposure rank
dichotomous, 82-88	months), 200, 201
examples of	
•	Chi-square distribution, 44 Chi-square test, <i>see</i> Tests, chi-square
chronic exposure to heavy metals	
and dioxins/furans, 104	Classification, 40, 41, 65, 76
colon cancer risk, 91, 92	Clinical importance, 96, 98, 174
environmental tobacco smoke	Clinical trials, 2, 11, 12, 106, 170,
exposure, 82, 101, 104	172, 184, 185
exposure to benzene, 96	Clinical utility, 170–172, 184
exposure to toluene, 103	Clustering 20, 40, 41, 42, 65
lung cancer, 82, 83, 86, 87	Clustering, 39, 40, 41, 43, 65
Biometric modeling, 2	algorithm, 45
Biometry, 2	hierarchical, 42–45
Biostatistics, 1, 2	Coefficient of variation, 37, 106
Bland-Altman method, 96, 106	Cohen's kappa, see kappa
BLAST (Basic Local Alignment	College of American Pathologists
Search Tool), 8	(CAP), 171, 183–185
GAPPED, 8	Computational biology, 1, 2, 3, 7, 9,
PSI-BLAST, 8	10, 12, 13
Blinding, 82, 184	academic programs in, 9
Bonferroni adjustment, 152, 160, 180	Computer models, 7
Bootstrapping, 36, 180, 192–196,	Concordance
199, 200	coefficient of, 91, 93, 96, 101, 128
C	Confidence interval, 43, 106
	Conformity, 86
Calibration, 95	Confounding, 95, 191
Cancer, 29, 38	Conditional likelihood, 200
breast, 176–183	Consistency (of agreement), 26, 87, 103
Candidate genes, see Genes, candidate	Consistency (of estimation), 192, 200
CAP, see College of American	Consistent statistical test, 112
Pathologists	Constructionist philosophy, 10
Carcinogenesis, 7	Continuity correction, 196
Case-control study, 104, 132, 134–135,	Convergence in probability, 195
191, 194–196, 198, 200, 201	Convolution, 196

Correlation, 93, 96, 98, 104	Decision tree, 105
inter-pixel, 43	Delta method, 199
Correlation coefficient	Deming regression, 99, 100, 106
intraclass, 89, 90, 92, 93, 95, 101,	weighted, 101
105, 106	Densitometry, 15
Pearson, 88, 89, 92, 93, 101, 102, 104	Detectable level, 34
problems with, 88, 102	DFS, see Disease-free survival
Spearman, 101, 102, 104, 106	Diagnostics, see Statistical
Correspondence analysis, 65	diagnostics
Cost-benefit, 39	Dichotomous data, 114
Cox model, 133, 136, 138, 139, 179	Dichotomization, 191, 192
hazard, 138	Differential equations, 46
hazard ratio, 133, 138	Disagreement, 82, 84, 85, 93, 99, 101
prognostic index and, 138	Discriminant analysis, 41
sample size for, 174, 175	Disease-free survival, 178, 179
survival analysis and, 136	Distribution
Critical value, 194	binomial, 194
Cross-signal comparison, 24	chi-square, 44
Cross-platform	gamma, 37
applications, 22	hypergeometric, 200
independence, 21	logistic, 195
Cumulative distribution function,	multivariate normal, 41
see CDF	normal, 41, 42, 90, 96, 99, 104
Cut-points, 172, 173, 185	statistical, 19
problems with, 173–174	DNA, 3–7, 29, 33, 34, 44, 94, 169
CV, see Coefficient of variation	Dominance, 149–150
D	To.
D	E
Data	Effect size, 116–117, 174
analysis, 17–19	Efficiency, 191
categorical, 114	Electrophoresis, 3, 4, 7, 12, 15, 16,
dichotomous, 114	53–55, 57
exploration, 22	Envelope of imaging, 17, 25, 26
numerical, 114	Environmental effects, 154–155
ordinal, 114	Epistasis, 136, 153–154
storage, 21	Error
structure, 21	measurement, 88
Database, 21, 22	Type I, 173
backbone, 21	Type II, 111

variance, 93, 100, 101	background, 61-62
homogeneity of, 99, 101	gel images, 59
ratio of, 100	Fluorescence, 30, 34
Errors-in-variables model, 100	Fourier transform, 46
EST (expressed sequence tag), 30	
Eugenics, 11	G
Evolutionary biology, 3, 11	Gamma distribution, 37
Exceedance statistics, 196	Gaussian, see Normal
Exchange matrix, 3, 8	Gel, 62–63, 69
Experimental design, 17, 30, 34	electrophoresis, 57
Exponential failure, 175	images of, 70–75
Exposure, 191	master, 76
distribution, 193, 194, 198	preparation, 55–57
index, 199, 200	staining and scanning, 57–58
markers of, 81, 82, 96, 102–104	synthetic, 64–65
occupational, 199, 200	Gel images
rank-ordered, 191, 192, 199, 200	filtering, 59–60
stratum-specific, 192, 194, 198, 201	Gene
Expression profile, 7	blocks, 39
Extensibility, 22	candidate, 132
_	classes
F	discriminatory power of, 42
Factor	latent, 42
analysis, 65	clustering 40, 41
loadings, 40	effects, 46
scores, 39, 40	expression, 6, 12, 15, 16, 26, 29–33,
Factorial experiment, 175	35–37, 39, 41, 42, 46, 160–164
False discovery rate (FDR), 144	differential, 37
Familywise error rate (FER), 144	intensity, 42
FDR, see False discovery rate	pattern, 46
Feature	periodic, 46
geometry, 18	expression profile, 7
imaging, 17	housekeeping, 33
intensity, 35	interaction, 46
with labels, 18	intensity, 42
Feedback	modifier 136
mechanism, 18	networks, 46
FEW, see Familywise error rate	prefiltering of, 44
Filtering	products, 33–35, 42, 44

rank, 25	HLA, 148
sequence, 7	Hodges-Lehmann estimator, 196–198,
shaving, 39	200
space, 39	Homogeneity, 36
transcription, 5, 46	Human Genome Project, 6
translation, 46	Hybridization, 30-32, 34, 36
variation, 37	differential, 43
Generalized linear model (GLM), 132	Hypergeometric distribution, 200
Genetic epidemiology, 131	Hypothesis testing
association studies in, 131	multiplicity in, 173, 180, 184, 185
Genetics, statistical, 2	•
Genome	I
human, 15	ICC, see Correlation coefficient,
scan, 144, 149, 159–160	intraclass
Genomics, 5, 9, 11	Image
modeling, 11	acquisition, 18
Geometry, 23	alignment, 62-63
characterization, 27	analysis, 2, 20
feature, 18	background, 17
storage, 24	composite, 22
Geometrization,	data, 24
algorithm, 23-25	gel, 59
Gibbs sampling, 12	intensity, 32
Glass slides, 31	master, 64
Glutathione-S-transferase (GST), 131	microarray, 22
Gold standard, 82, 84-87, 89, 104, 173	processing, 22,
Golub et al. data set, 160-164	quantitation, 15-20, 23, 24, 35
Goodness-of-fit, 20, 193	warping, 62
Graphical methods	Imaging, 24, 25
data exploration and, 22	envelope, 17, 18, 20, 25, 26
GST, see Glutathione-S-transferase	methods, 27
	parameters, 25
Н	variability, 25
Hazard ratio, 133, 138, 175	Immunoblotting, 15
Hereditary traits, 11	Independence, 98, 99
Heterogeneity of sample values, 88, 96	Independent variables, 132
Hierarchical clustering, 42-45	confounders, 132
Hierarchical model, 37	covariates, 132
Historical data, 200	factors, 132
<i>'</i>	•

predictors, 139	Limits of agreement, see Agreement,
Index of crude agreement, 83, 84, 105	limits of
Induction level, 39	Linear association, 88, 104
Inference set, 18	Linear regression, 132, 137
Inheritance	Linkage disequilibrium, 143
bleeding, 11	Lin's coefficient, see Concordance,
Intensity	coefficient of
gene-specific, 42	Local alternative, 193
Interaction effect, 90, 94, 173–175,	Locally most powerful test, 193
179, 180	LOE, see Level of evidence
Interchangeability, 82, 98	Logistic distribution, 195
Internal controls, 33, 34	Logistic model, 134
Intraclass correlation coefficient,	conditional, 135
see Correlation coefficient,	logit and, 134
intraclass	log odds ratio and, 135
Isoelectric	odds ratio and, 133, 134
focusing, 7, 16, 54, 56	unconditional, 135
point, 51, 54	Logistic regression, 179, 192, 200
J	ordered, 136–137
	Logistic shift, 191-193, 195, 196,
Jacob-Monod central dogma, 4	199, 200
Java, 22	Log-rank test, 174
applets, 22	
application, 21	M
code, 24	Mapping tables, 22
K	Marginal likelihood, 193
Kaplan-Meier, 179	Marker (see also Biomarker)
Kappa, 83-85, 87, 105, 106	breast cancer, 176–182
_	clinical utility of, 170–172
L	dichotomization of, 178, 179
Labeling algorithms, 23-25	discretization of, 173
Lack-of-fit, 44, 47	molecular, 169–185
Large-sample properties, 195	predictive, 170
Latent class, 40-45, 47	prognostic, 170, 172, 174, 175
Latent variable, 37, 41	studies, 171, 184
Least squares, 35, 36, 40, 46	sample size for, 174
partial, 39, 40	surrogate, 160
Level of evidence (LOE), 171, 172	value of, 173, 185
Level of measurement 82	Markov Chain Monte Carlo (MCMC), 42

Matching, 192, 198, 200	Molecular function and information
Match-mismatch, 34, 35	flow, 4
MCMC, see Markov Chain Monte	Molecular marker, see Marker
Carlo	Molecular mass, 51
Mean square, 90, 91	Monotonic relationship, 102, 104
Measurement	Monte Carlo, 147
error, 37, 88	Morphology
level of, 82	mathematical, 61, 62
scale of, 88, 96	Motifs
Median, 198, 199	sequence, 12
Meta-analysis, 19, 20, 22, 25, 26,	MULTTEST, PROC, 143–168
172, 176	closed Fisher combination
Metastasis, 29	method and, 148
Method comparison studies, 93, 95	closed MinP-based Algorithm and
Micelle, 54	146
Microarray, 6, 13, 24, 25, 29–48, 169	closed Simes-Hommel method
analysis, 15–17	and, 147
chip, 18, 31	syntax for, 151, 154–156, 158, 165
data, 32, 38, 40, 42, 46, 47, 160–164	Multimedia data, 22
visualization of, 47	Multiple testing, 143–168, 173, 180,
experiment, 42	184, 185
image, 22, 31	Multiplicity, see Multiple testing
instance, 29, 31, 33–36, 38, 41–43, 47	Multiplicity-adjusted p-values, 143–168
outliers in, 35	Multiresolution analysis, 66-68, 69
slide, 42	Mutation, 3, 8
spotted, 36	
studies, 23	N
MIDAS (Mathematical-Modeling of	National Surgical Adjuvant Breast
Image Data Across the	and Bowel Project (NSABP),
Sciences), 20–22, 24, 25, 27	177-179, 181, 183
Minimum risk, 36	Negative agreement, index of (p_{neg}) ,
Missing data, 185	85, 87, 105
Model	Negative binomial regression, 133,
statistical, 20	136, 137
Modifier genes, see Genes, modifier	rate ratio (irr) and, 133, 136, 137
Molecular biology, 1–4, 10–13, 15,	Neural network, 10
24, 48, 173	Noise
training in, 6	removal, 75-76
Molecular fingerprinting, 3, 13	Nonlinear association, 102

Nonparametric analysis, 36, 196 Normal approximation, 195, 196, 200 Normal distribution, 41, 42, 90, 96, 99, 104 multivariate, 41 Normal model, 42, 43 Northern blot, 4, 5, 15, 29 NSABP, see National Surgical Adjuvant Breast and Bowel Project Numerical data, 114	Penetrance, 157–159 Peptide, 3 Permutation test, 146, 147 Phenotype, 2–4 Phenotyping, 3, 7 Photolithography, 30 Pilot studies, 124–125 Pixel, 18, 33 correlation, 24, 43 intensity, 23, 25 kurtosis, 23
O	principal components of, 24 variance, 23
Odds ratio, 191	Plot
Oligoneucleotide, see oligos	diagnostic, 48
Oligos, 30, 32, 34–36	PLSR, see Regression, partial least
intensity of, 36	squares
match-mismatch, 34	Poisson regression, see Regression
One-way analysis, 41–42	analysis, Poisson
Oracle, 22, 24 Ordinal data, 114	Polyacrylamide gel electrophoresis,
Ordinal exposure, 191, 192, 194	see 2D-PAGE
Outcome, 135–137	Population stratification, see
Outliers, 35, 96, 164, 196	Stratification, population Positive agreement index of (p.)
Overdispersion, 44, 138	Positive agreement, index of (p _{pos}), 85, 87, 105
P	Power, see Statistical power
	Predictive factor, 182
P_{neg} , see Negative agreement, index of P_{pos} , see Positive agreement, index of	definition of, 170
PABAK, see Prevalence-adjusted	Prefiltering, 44
and bias-adjusted kappa	Prevalence-adjusted and bias-adjusted
Parameters	kappa (PABAK), 84, 85, 87,
gene-specific, 35	105, 106
Pattern recognition, 65	Principal components analysis
PCA, see Principal components	(PCA), 24, 38, 39, 47, 48
analysis	Probe, 30, 34–36
PCC, see Correlation coefficient,	weights, 35, 36
Pearson	Problem domain, 21
PCR, see Regression, principal	PROC MULTTEST, see
components	MULTTEST, PROC

Profiling, 3	Rank of exposure, 191, 192, 199
Prognostic factor, 172–174, 176,	Rare disease, 191–193
179, 182, 184, 185	Recessivity, 151–152
definition of, 170	Recombination, 159
phase I-III, 184	Reductionist philosophy, 10
ranking of, 171	Reference method, 99
studies, 184	Region of interest (ROI), 16
Prognostic value, 173	Regression analysis, 24, 34, 39, 96,
Proportional hazards model, see Cox	101, 184
model	negative binomial, 133, 136–138
Protein, 4, 6, 8, 13, 16, 51, 54, 56	partial least-squares, 39, 40
Data Bank, 8	Poisson, 137, 138
expression 15	principal components, 39, 40
folding, 7, 12	Relative frequency, 84, 85
labels, 23	Reliability, 172, 178, 184
sequence, 4	assessment of, 82–86, 89–93,
structure, 7, 8	100, 104, 106
taxonomy, 3	definition of, 81
STAT, 5	intrarater, 81–83, 90, 91
Proteome, 6, 16, 51	interrater, 81–86, 90, 91
Proteomics, 6, 9, 16–18, 23, 24, 51–80	Repeatability (see also Reliability)
Publication guidelines, 185	within subject, 96, 98
P-values	Repeated measures, 41
adjustment of, 143-168, 174, 180	Replicates, 90, 93, 94, 101
0	Reproducibility, see Reliability
Q	Residuals, 44
QTL, see Quantitative trait loci	analysis of, 44
Quality control, 24, 35, 47	overdispersion of, 44
Quantitation, 25	plot, 44
algorithms, 23–25	Residue exchange matrix, 3, 8
quality control and, 35,	Retrospective study, 172–174, 183
results, 24	Risk, 132, 135-138
Quantitative trait loci (QTL), 144	factor, 191
R	RNA, 4, 6, 7, 12, 15, 16, 29, 30, 34,
Random effects model, 90, 94, 95	42, 46
Random sample, 90, 95	Robustness, 47, 196, 200
Random variation, 93	S
Randomization, 174	SAGE (Statistical Analysis for
Ranked data, 101, 102	Genetic Epidemiology), 11
	r ====================================

Sample preparation, 57	threshold, 18, 27
Sample size, 93, 111-130, 171, 174,	variability, 23
175, 191, 192, 194, 196, 200	Signal-to-noise ratio, 17, 18
calculation of, 117–119	Significance level, 194
formulas, 120	Simulation
grant applications and, 125	computer, 123, 195, 196, 200
interaction effects and, 175	Slice, 77–78
marker studies and, 174, 184	SNP, 143, 144, 149, 159
nomograms, 122	Software, 138
simulation and, 123	HERMeS, 59
software, 121	MELANIE, 59
tables, 122	MINISNAP, 99, 101, 106
too large, 119	Oracle, 22, 24
too small, 120	PEPI, 106
Scalability, 22	sample size, 121
Scale of measurement, 191	SAS, 106, 143-168
Scatterplot, 48, 88, 96, 98, 99, 101	S-Plus, 22, 24
SCC, see Correlation coefficient,	Stata, 133, 136, 139
Spearman	statistical, 18
SDS-PAGE, 7, 16, 18	stepwise selection of predictors
Selection bias, 185	and, 139
Sensitivity and specificity, 85, 86,	Southern blot, 4
173, 178	Spatial modeling, 32
Sequence	Spectroscopy, mass, 58
alignment, 9, 12	Spike, 34
motifs, 12	Splines, 174
pairs	Spline smoother, 46
high-scoring, 8	Spot, 33
searching, 9	characterization, 32
Shift, 196, 199, 201 (see also	detection, 60
Logistic shift)	identification, 58
percentile, 199, 201	intensity, 34, 37, 42
Shrinkage estimator, 37	matching, 63-64
Signal	quantification, 62
background, 18	Spotfinding algorithm, 24
comparison, 24	Spotted array, 31, 32
intensity, 37	Spotters, ink-jet, 31
location, 24	Spotting, 30
primary, 23	doughnut, 32

Standardization, 33, 36, 47, 200 Standard method, 82, 86, 87, 99 STAT (signal transducers and activators of transcription), 5 Statistical algorithm, 18–20 Statistical diagnostics, 22 Statistical genetics, 2 history of, 10–11 Statistical models, 20 Statistical power, 12, 111–130, 171, 173-175, 184, 185, 192, 194, 195 achieved, 123, 200, 201 conventional values of, 113 ethics and, 113 grant applications and, 125 local, 193 post-hoc, 124 Statistical tests, see Tests Stratification, 154–156, 175, 184, 191, 199, 200 population, 139 Stratum-specific statistic, 192, 193, 196, 199 Strike's method, 99–101, 106 Study design, 184–185 Supergenes, 39 Supervised methods, 33 Surrogate marker, 106 Survival analysis alternatives to, 176 Susceptibility, 132–135 SVD, 40 Symmetry, 198 T TDT, see Transmission disequilibrium test	chi-square, 131, 134, 149 closed permutation, 160 closed minP method, 145–147 Cochran-Armitage, 155, 157 Fisher combination, 148 Fisher's exact, 104, 149, 155 Kruskal-Wallis, 104 Mann-Whitney-Wilcoxon test, 104 Mantel-Haenszel, 154 permutation, 146, 149–151 Sidak, 160 significance, 100, 105, 106 Simes-Hommel, 147 stepdown, 151–152, 157, 159 Student's t, 104 Tests for epistatic effects, 153-154 gene-disease association, 143-168 microarray data, 160-164 Ties, 194 TMUGS, see Tumor Marker Utility Grading System Tolerance parameters, 25 Top-hat transform, 61 Transcriptomics, 6, 9 Transformation, 42, 47, 96 Translation alternatives, 192 Transmission disequilibrium test (TDT), 139 Treatment effect, 193, 199, 200 Truth table, 86 Tumor Marker Utility Grading System (TMUGS), 171 Two-way analysis, 42 2×2 Table, 82, 83, 85-87 2D-PAGE, 51, 52, 55
Test method, 99	Type I error, see Error, Type I
Tests	Type II error, see Error, Type II

\mathbf{U}	sources of, 58-59
Unbiased estimation, 198	unrecognized, 26
User interface, 21	within rater, 82
U-statistic, 195	within specimen, 89, 90
V	Variable selection stepwise, 139
Validity, 85, 93, 172, 173, 184	Variance, 93, 99–101
assessment of, 86–88, 95–104, 106	Variance components, 90, 94
concurrent, 104	Variance-inflation factor, 175
construct, 104	Vinyl chloride, 200, 201
criterion, 103	W
definition of, 81	
predictive, 103, 104	WADP, see Weighted average
Variability, 19, 24	discrepant pairs statistic
analytical, 81, 93, 94	Wavelets, 66–69, 75–76
between rater, 82	Weighted average discrepant pairs
between specimen, 89, 90	statistic (WADP), 45
inter-laboratory, 173, 184	Weighted statistic, 193
inter-observer, 12	Weighted sum, 35
inter-subject, 81, 93–95	Weights
intra-laboratory, 184	oligo-specific, 36
intra-observer, 12	probe-specific, 35, 36
intra-subject, 81, 93-95	Wilcoxon statistic, 192
laboratory, see Variability,	stratum specific, 193, 199
analytical	Workflow, 18
measurement, 81, 93, 94	diagram, 18, 19
signal, 23	Work history, 200