Comprehensive and Reliable Crowd Assessment Algorithms

Manas Joglekar, Hector Garcia-Molina, Aditya Parameswaran

Introduction

- Crowdsourcing: Using human workers to perform tasks that are hard for computers. E.g. Image tagging
- Our Problem: Measure worker accuracy, and compute calibrated confidence intervals.
- General Setting: Any number of workers. May or may not have attempted every task. Non-binary questions. No gold standard data
- Need for confidence Intervals: Worker one makes 1 error in 3 tasks, worker two makes 10 errors in 30 tasks
 - Equal expected error rates (1/3), but worker 2 is more likely to be very bad

	T1	T2	T3	T4	T5
W1	Υ	Y	_	N	N
W2	N	_	Υ	N	N
W3	_	Y	Υ	N	Υ
True	N	Y	Υ	N	N

2/3 Agreements $E[q_{12}] = 2/3$

Compute Agreements

- $\bullet q_{ij} \sim p_i p_j + (1-p_i)(1-p_j)$
- Solve to get p_i

Compute Variances

- Cov(q_{ij},q_{ik})Cov(q_{ij},q_{ij})

Compute Derivatives

- $\bullet dp_i/dq_{ij}$
- •dp_i/dq_{ik}

Compute Intervals

- •p_i mean
- p_i variance
- Confidence interval size

For N > 3 workers, form N^2 groups of 3 workers

Find group-wise estimates, variances. Inter-group covariances

Combine group estimates using optimized weights

Calibration Results:

