

Energiemodelle und Analysen Übung 2 Gruppe 1

Technische Universität Wien Energy Economics Group

Dipl-Ing. Theresia Perger

2. Lineare Programmierung

2.1 Herstellung von Produkten aus Recycling-Materialien

Zur Verfügung stehende Kunststoffarten:

Kunststoffarten	Preis (EUR/kg)	Maximal verfügbare Menge (kg)
K ₁	5	3000
K ₂	6	2000
K ₃	4	4000
K ₄	5	1000

Produkte und Zusammensetzung:

Produkt	K ₁	K ₂	K ₃	K ₄	Preis (EUR/kg)
P ₁	50%	30%	20%		8
P ₂	40%	30%		30%	7.5
P ₃			30%	70%	9

(a) Optimierungsmodell zur Gewinnmaximierung

Es stehen 4 Kunststoffarten zur Produktion von 3 verschiedenen Produkten zur Verfügung. Die Produktion ist jeweils durch die maximal verfügbare Menge begrenzt, siehe (1) – (4) und darf nicht negativ sein (5).

$$0.5 * p_1 + 0.4 * p_2 \le 3000 \tag{1}$$

$$0.3 * p_1 + 0.3 * p_2 \le 2000 \tag{2}$$

$$0.2 * p_1 + 0.3 * p_3 \le 4000 \tag{3}$$

$$0.3 * p_2 + 0.7 * p_3 \le 1000 \tag{4}$$

$$p_1, p_2, p_3 \ge 0$$
 (5)

(1) – (5) sind die jeweiligen Nebenbedingungen.

Der jeweilige Gewinn errechnet sich folgendermaßen:

$$Gp_1 = R - C = Rp_1 - Ck_1 * 0.5 - Ck_2 * 0.3 - Ck_3 * 0.2 = 3.4$$
 (6)

$$Gp_2 = Rp_2 - Ck_1 * 0.4 - Ck_2 * 0.3 - Ck_4 * 0.3 = 2.6$$
 (7)

$$Gp_3 = Rp_3 - Ck_3 * 0.3 - Ck_4 * 0.7 = 4.3$$
 (8)

Die folgende Gewinnfunktion wird all Zielfunktion maximiert:

$$G = 3.4 * p_1 + 2.6 * p_2 + 4.3 * p_3 \tag{9}$$

(b) Lösung des Optimierungsproblems mit Hilfe des Simplex-Algorithmus

Die Nebenbedingungen werden jeweils um eine Schlupfvariable erweitert und in eine Gleichung übertragen damit es mittels Simplexverfahren gelöst werden kann.

$$0.5 * p_1 + 0.4 * p_2 + u_1 = 3000 ag{10}$$

$$0.3 * p_1 + 0.3 * p_2 + u_2 = 2000 (11)$$

$$0.2 * p_1 + 0.3 * p_3 + u_3 = 4000 (12)$$

$$0.3 * p_2 + 0.7 * p_3 + u_4 = 1000 \tag{13}$$

Diese werden dann im nächsten Schritt ins Simplex Tableau eingetragen:

	p_1	p_2	p_3	u_1	u_2	u_3	u_4	b
u_1	0.5	0.4	0	1	0	0	0	3000
u_2	0.3	0.3	0	0	1	0	0	2000
u_3	0.2	0	0.3	0	0	1	0	4000
u_4	0	0.3	0.7	0	0	0	1	1000
	3.4	2.6	4.3	0	0	0	0	

Danach wird in der letzten Zeile der größte Wert gesucht und die Pivotspalte definiert. Die Werte von b werden im nächsten Schritt durch die Werte der Pivotspalte dividiert und der kleinste Wert als Pivotzeile definiert.

	p_1	p_2	p_3	u_1	u_2	u_3	u_4	b	b/Piv.
u_1	0.5	0.4	0	1	0	0	0	3000	8
u_2	0.3	0.3	0	0	1	0	0	2000	∞
u_3	0.2	0	0.3	0	0	1	0	4000	13333.33
u_4	0	0.3	0.7	0	0	0	1	1000	1428.57
	3.4	2.6	4.3	0	0	0	0	0	

Als nächstes wird die gesamte Pivotzeile durch das Piovotelement (Kreuzung aus Zeile und Spalte) dividiert.

	p_1	p_2	p_3	u_1	u_2	u_3	u_4	b	b/Piv.
u_1	0.5	0.4	0	1	0	0	0	3000	
u_2	0.3	0.3	0	0	1	0	0	2000	
u_3	0.2	0	0.3	0	0	1	0	4000	
p_3	0	0.43	1	0	0	0	1.43	1428.57	
	3.4	2.6	4.3	0	0	0	0	0	

Alle anderen Elemente der Pivoltspalte werden auf 0 gebracht

	p_1	p_2	p_3	u_1	u_2	u_3	u_4	b	
u_1	0.5	0.4	0	1	0	0	0	3000	
u_2	0.3	0.3	0	0	1	0	0	2000	
u_3	0.2	-0,13	0	0	0	1	-0,43	3571.43	Z3-
									Z4*0.3
p_3	0	0.43	1	0	0	0	1.43	1428.57	

3.4	0.75	0	0	0	0	-6.15	-6142.85	Z5-
								Z4*4,3

Das genannte Vorgehen wird so lange wiederholt bis alle Werte in der letzten Zeile negativ sind.

	p_1	p_2	p_3	u_1	u_2	u_3	u_4	b	b/Piv.
p_1	0.5	0.4	0	1	0	0	0	3000	6000
u_2	0.3	0.3	0	0	1	0	0	2000	6666.67
u_3	0.2	-0,13	0	0	0	1	-0,43	3571.43	17857.15
p_3	0	0.43	1	0	0	0	1.43	1428.57	8
	3.4	0.75	0	0	0	0	-6.15	-6142.85	

	p_1	p_2	p_3	u_1	u_2	u_3	u_4	b	
p_1	1	0.8	0	2	0	0	0	6000	
u_2	0.3	0.3	0	0	1	0	0	2000	
u_3	0.2	-0,13	0	0	0	1	-0,43	3571.43	
p_3	0	0.43	1	0	0	0	1.43	1428.57	
	3.4	0.75	0	0	0	0	-6.15	-6142.85	

	p_1	p_2	p_3	u_1	u_2	u_3	u_4	b	
p_1	1	0.8	0	2	0	0	0	6000	
u_2	0	0.06	0	-0.6	1	0	0	200	Z2- Z1*0,3
u_3	0	-0.29	0	-0.4	0	1	-0.43	2371.43	Z3- Z1*0,2
p_3	0	0.43	1	0	0	0	1.43	1428.57	
	0	-1.96	0	-6.8	0	0	-6.15	-26542.9	Z5- Z1*3,4

Da nun alle Werte der Zielfunktion negativ sind kann man folgende Ergebnisse ablesen:

 $P_1 = 6000 \text{ kg}$

 $P_2 = 0 \text{ kg}$

 $P_3 = 1428.57 \text{ kg}$

Mit einem maximalen Gesamtgewinn von 26543 EUR.

Mathematical Formula

Variables

Constraints ¶

x₁ + x₂ + x₃ >= 125

0 <= x₁ <= 30

0 <= x₂ <= 60

0 <= x₃ <= 40

Case (i) Objective Function:

 $Cost = SUM_i (X_i * (VarCost_i + FuelCost_i / \eta_i))$

Case (ii) Objective Function:

 $Emm = SUM_i$ ($X_i * EmmFactor_i / \eta_i$)

2.2 b)

	x1	x2	x3	x4	x5	x6	x7	a1	b
U1		1	1	1	-1	0	0	0	1 125
U2		1	0	0	0	1	0	0	0 30
U3		0	1	0	0	0	1	0	0 60
U4		0	0	1	0	0	0	1	0 40
Z		0	0	0	0	0	0	0 -	1

x1,x2,x3,x4=0 Basislösung a1=125 x5=30 x6=60 x7=40

Punkt 3: Addition aller Zeilen die eine Hilfsvariable enthalten

U1 U2 U3 U4 Z

>	(1)	k2	x3 x4	>	(5)	(6)	x7	a1	b	b/Piv
_	1	1	1	-1	0	0	0	1	125	125
	1	0	0	0	1	0	0	0	30	30
_	0	1	0	0	0	1	0	0	60	#DIV/0!
	0	0	1	0	0	0	1	0	40	#DIV/0!
	1	1	1	-1	0	0	0	0	125	•

Anwenden des Simplex Verfahrens

x1	x2	x3	x4	x5	x6	x7	a1	b	t	/Piv
	0	1	1	-1	-1	0	0	1	95	95
	1	0	0	0	1	0	0	0	30	#DIV/0!
	0	1	0	0	0	1	0	0	60	60
	0	0	1	0	0	0	1	0	40	#DIV/0!
	0	1	1	-1	-1	0	0	0	95	

x1	x2	х3	x4	x5	x6	х7	a1	b	b	/Piv
	0	0	1	-1	-1	-1	0	1	35	35
	1	0	0	0	1	0	0	0	30	#DIV/0!
	0	1	0	0	0	1	0	0	60	#DIV/0!
	0	0	1	0	0	0	1	0	40	40
	0	0	1	-1	-1	-1	0	0	35	

x1	x2	х3	x4	x5	x6	x7	a1	b	b/Piv
	0	0	1	-1	-1	-1	0	1	35
	1	0	0	0	1	0	0	0	30
	0	1	0	0	0	1	0	0	60
	0	0	0	1	1	1	1	-1	5
	0	0	0	0	0	0	0	-1	0

z* ist minimal mit 0 Einsetzen der echten Zielfunktion:

Z

0

0

0

	x1	x2		x3	x4	x5 :	x6	x7	b	b/Piv
U1		0	0	1	-1	-1	-1	0	35	
U2		1	0	0	0	1	0	0	30	
U3		0	1	0	0	0	1	0	60	
U4		0	0	0	1	1	1	1	5	
Z	-24.7	72	-66.92	-77.9	0	0	0	0	0	

Durch Addition eines Vielfachen von geeigneten Zeilen zur Zielfunktionszeile bringen wir alle Einträge der Basisvariablen in der Zielfunktionszeile auf Null.

								ı	
	x1	x2	x3	x4	x5	х6	x7	b	
U1		0	0	1	-1	-1	-1	0	35
U2		1	0	0	0	1	0	0	30
U3		0	1	0	0	0	1	0	60
U4		0	0	0	1	1	1	1	5
Z		0	-66.92	-77.9	0	24.72	0	0	741.6
	x1	x2	х3	x4	x5	x6	x7	b	
U1		0	0	1	-1	-1	-1	0	35
U2		1	0	0	0	1	0	0	30
U3		0	1	0	0	0	1	0	60
U4		0	0	0	1	1	1	1	5
Z		0	0	-77.9	0	24.72	66.92	0	4756.8
	x1	x2	х3	x4	x5	х6	x7	b	
U1	-	0	0	1	-1	-1	-1	0	35
U2		1	0	0	0	1	0	0	30
U3		0	1	0	0	0	1	0	60
U4		0	0	0	1	1	1	1	5

-77.9

-53.18

-10.98

0

7483.3

Aufgabe 2.3 - Schadstoffreduzierung eines Stahlwerks

In [6]: import nyomo environ as nyo

a)

Die Zielfunktion für das Optimierungsproblem ergibt sich zu:

$$min \sum A_{j,i} * x_i * ci$$

wobei A die Matrix für die möglich Emmisionsreduktion pro Technologie und Hochofen dar stellt, x der prozentuelle Einsatz der Technologie ist, um c die jeweiligen Kosten für die Anwendung einer Technologie.

A in 1000 Tonnen:

Schadstoff	Schornsteine 1	Schornsteine 2	Filter 1	Filter 2	Brennstoffe 1	Brennstoffe 2
Staub Ruß	12	9	25	20	17	13
Schwefeloxid	35	42	18	31	56	49
Kohlenwasserstoffe	37	53	28	24	29	30

c in Mio. EUR:

	Schornsteine 1	Schornsteine 2	Filter 1	Filter 2	Brennstoffe 1	Brennstoffe 2
Kosten	8	10	7	6	11	9

x in %:

	Schornsteine 1	Schornsteine 2	Filter 1	Filter 2	Brennstoffe 1	Brennstoffe 2
Prozent	?	?	?	?	?	?

Die Nebenbedingung ist:

$$b <= A_{j,i} * x_i$$

mit b als Paramter der Schadstoffe die mindestens eingespart werden müssen (in 1000 Tonnen):

Staub Russ	Schwefeloxid	Kohlenwasserstoffe			
60	150	125			

Im folgenden wird der Code für das Model bereit gestellt und die Lösung für a), b) und c) dargestellt.

```
In [2]: | # Aufbereiten der Modelleingangsparameter:
        A = [[12, 9, 25, 20, 17, 13],
             [35,42,18,31,56,49],
             [37,53,28,24,29,20]]
        b = [60, 150, 125]
        c = [8, 10, 7, 6, 11, 9]
        Schadstoffe = ["staub_russ", "schwefel", "CH"]
        Masnahmen = ["Schornstein 1", "Schornstein 2",
                     "Filter 1", "Filter 2",
                      "Brennstoff 1", "Brennstoff 2"]
        dictionary = {}
        reduktion = {}
        cost = {}
        for reihe, stoff in enumerate (Schadstoffe):
            reduktion[stoff] = b[reihe]
            for spalte, mas in enumerate(Masnahmen):
                dictionary[(stoff, mas)] = A[reihe][spalte]
        for i, mas in enumerate(Masnahmen):
            cost[mas] = c[i]
In [3]: # erstellen des Models + Lösung b):
        model = pyo.AbstractModel()
        model.schadstoffe = pyo.Set(initialize=Schadstoffe)
        model.masnahmen = pyo.Set(initialize=Masnahmen)
        model.b = pyo.Param(model.schadstoffe, initialize=reduktion)
        model.c = pyo.Param(model.masnahmen, initialize=cost)
```

```
model.A = pyo.Param(model.schadstoffe, model.masnahmen, initialize=dict
model.x = pyo.Var(model.masnahmen, bounds=(0,1), within=pyo.NonNegative
def zielfunktion(model):
    return sum(model.A[j,i] * model.x[i] * model.c[i] for j in model.sd
model.cost = pyo.Objective(rule=zielfunktion, sense=pyo.minimize)
def schadstoff rule(model, j):
        value = sum(model.A[j,i] * model.x[i] for i in model.masnahmen)
        return model.b[j] <= value</pre>
model.Nebenbedingung = pyo.Constraint(model.schadstoffe, rule=schadstof
instance = model.create instance()
opt = pyo.SolverFactory("gurobi")
results = opt.solve(instance)
instance.display()
```

Model unknown

Variables:

```
x : Size=6, Index=masnahmen
               Key : Lower : Value : Upper : Fixed
        : Stale : Domain
               Brennstoff 1: 0: 0.04757281553398047: 1: False
        : False : NonNegativeReals
               Brennstoff_2: 0:
                                                     1.0:
                                                              1 : False
        : False : NonNegativeReals
                   Filter 1 : 0 : 0.34347940173182906 :
                                                             1 : False
        : False : NonNegativeReals
                    Filter 2 : 0 :
                                                     1.0 : 1 : False
        : False : NonNegativeReals
              Schornstein 1 : 0 :
                                                     1.0:
                                                             1 : False
        : False : NonNegativeReals
               Schornstein_2 : 0 : 0.6226974547362896 : 1 : False
        : False : NonNegativeReals
         Objectives:
           cost : Size=1, Index=None, Active=True
               Key : Active : Value
               None: True: 2731.691314615586
         Constraints:
           Nebenbedingung : Size=3
                      : Lower : Body : Upper
                      CH : 125.0 : 125.0 : None
                 schwefel : 150.0 : 150.0 : None
               staub russ : 60.0 : 60.0 : None
In [4]: # erstellen des Models + Lösung c):
       model = pyo.AbstractModel()
       model.schadstoffe = pyo.Set(initialize=Schadstoffe)
       model.masnahmen = pyo.Set(initialize=Masnahmen)
       model.A = pyo.Param(model.schadstoffe, model.masnahmen, initialize=dict
       model.b = pyo.Param(model.schadstoffe, initialize=reduktion)
       model.c = pyo.Param(model.masnahmen, initialize=cost)
       model.x = pyo.Var(model.masnahmen, bounds=(0,1), within=pyo.Binary)
       def zielfunktion(model):
           return sum(model.A[j,i] * model.x[i] * model.c[i] for j in model.sc
       model.cost = pyo.Objective(rule=zielfunktion, sense=pyo.minimize)
       def schadstoff rule(model, j):
               value = sum(model.A[j,i] * model.x[i] for i in model.masnahmen)
               return model.b[j] <= value</pre>
       model.Nebenbedingung = pyo.Constraint(model.schadstoffe, rule=schadstof
       instance 2 = model.create instance()
       opt = pyo.SolverFactory("gurobi")
       results = opt.solve(instance 2)
```

```
instance 2 display()
Model unknown
  Variables:
    x : Size=6, Index=masnahmen
                      : Lower : Value : Upper : Fixed : Stale : Doma
in
         Brennstoff 1 :
                            0:
                                 1.0:
                                            1 : False : False : Bina
rу
         Brennstoff 2 :
                            0:
                                -0.0:
                                            1 : False : False : Bina
ry
             Filter 1 :
                            0:
                                1.0:
                                            1 : False : False : Bina
ry
             Filter 2 :
                            0 : -0.0 :
                                            1 : False : False : Bina
ry
        Schornstein 1 :
                            0:
                                 1.0:
                                            1 : False : False : Bina
ry
        Schornstein 2:
                            0:
                                 1.0:
                                            1 : False : False : Bina
ry
  Objectives:
    cost : Size=1, Index=None, Active=True
        Key : Active : Value
                 True : 3331.0
        None :
  Constraints:
    Nebenbedingung: Size=3
                   : Lower : Body : Upper
                CH : 125.0 : 147.0 :
          schwefel : 150.0 : 151.0 :
                                     None
        staub russ : 60.0 :
                              63.0:
```

Damit ergeben sich für Aufgabe 2.3.3 b) und c):

b) x_b in %:

	Schornsteine 1	Schornsteine 2	Filter 1	Filter 2	Brennstoffe 1	Brennstoffe 2
Prozent	100	62.27	34.35	100	4.75	100

c) x_c in %:

```
Schornsteine 1Schornsteine 2Filter 1Filter 2Brennstoffe 1Brennstoffe 2Prozent10010001000
```

d) Wenn nur ein Typ für jede Maßnahme eingesetzt werden kann ist das Problem unlösbar, da die Nebenbedingung (erforderlichen Reduktionen) nicht erreicht werden kann: Das Programm gibt die Fehlermeldung: "message from solver: Model was proven to be infeasible" aus.

```
In [5]: # erstellen des Models + Lösung d):
    model = pyo.AbstractModel()
```

```
model.schadstoffe = pyo.Set(initialize=Schadstoffe)
model.masnahmen = pyo.Set(initialize=Masnahmen)
model.A = pyo.Param(model.schadstoffe, model.masnahmen, initialize=dict
model.b = pyo.Param(model.schadstoffe, initialize=reduktion)
model.c = pyo.Param(model.masnahmen, initialize=cost)
model.x = pyo.Var(model.masnahmen, bounds=(0,1), within=pyo.Binary)
def zielfunktion(model):
   return sum(model.A[j,i] * model.x[i] * model.c[i] for j in model.sd
model.cost = pyo.Objective(rule=zielfunktion, sense=pyo.minimize)
def schadstoff rule(model, j):
       value = sum(model.A[j,i] * model.x[i] for i in model.masnahmen)
       return model.b[j] <= value</pre>
model.Nebenbedingung = pyo.Constraint(model.schadstoffe, rule=schadstof
def extra nebenbedingung schornstein(model):
   return model.x["Schornstein 1"] + model.x["Schornstein 2"] <= 1</pre>
model.extra NB schornstein = pyo.Constraint(rule=extra nebenbedingung s
def extra nebenbedingung filter(model):
   return model.x["Filter 1"] + model.x["Filter 2"] <= 1</pre>
model.extra NB filter = pyo.Constraint(rule=extra nebenbedingung filter
def extra nebenbedingung brennstoff(model):
   return model.x["Brennstoff_1"] + model.x["Brennstoff_2"] <= 1</pre>
model.extra NB brennstoff = pyo.Constraint(rule=extra nebenbedingung br
instance_2 = model.create_instance()
opt = pyo.SolverFactory("gurobi")
results = opt.solve(instance_2)
WARNING? Lodding 4'solverResults object with a warning status into
    model.name="unknown";
      - termination condition: infeasible
      - message from solver: Model was proven to be infeasible.
Model unknown
  Variables:
    x : Size=6, Index=masnahmen
                    : Lower : Value : Upper : Fixed : Stale : Doma
in
        Brennstoff 1: 0: None: 1: False: True: Bina
ry
        Brennstoff 2: 0: None: 1: False: True: Bina
ry
            Filter 1: 0: None: 1: False: True: Bina
ry
             Filter 2: 0: None: 1: False: True: Bina
ry
        Schornstein_1: 0: None: 1: False: True: Bina
```

```
ry
       Schornstein 2: 0: None: 1: False: True: Bina
ry
 Objectives:
   cost : Size=1, Index=None, Active=True
ERROR: evaluating object as numeric value: x[Schornstein 1]
        (object: <class 'pyomo.core.base.var. GeneralVarData'>)
   No value for uninitialized NumericValue object x[Schornstein 1]
ERROR: evaluating object as numeric value: cost
        (object: <class 'pyomo.core.base.objective.SimpleObjective'</pre>
>)
   No value for uninitialized NumericValue object x[Schornstein_1]
       Key : Active : Value
       None: None: None
 Constraints:
   Nebenbedingung : Size=3
ERROR: evaluating object as numeric value: x[Schornstein 1]
        (object: <class 'pyomo.core.base.var. GeneralVarData'>)
   No value for uninitialized NumericValue object x[Schornstein 1]
ERROR: evaluating object as numeric value: x[Schornstein 1]
        (object: <class 'pyomo.core.base.var. GeneralVarData'>)
   No value for uninitialized NumericValue object x[Schornstein 1]
ERROR: evaluating object as numeric value: x[Schornstein_1]
        (object: <class 'pyomo.core.base.var. GeneralVarData'>)
   No value for uninitialized NumericValue object x[Schornstein 1]
       Key : Lower : Body : Upper
        CH : None : None
       schwefel : None : None : None
       staub russ : None : None : None
   extra NB schornstein : Size=1
ERROR: evaluating object as numeric value: x[Schornstein 1]
        (object: <class 'pyomo.core.base.var. GeneralVarData'>)
   No value for uninitialized NumericValue object x[Schornstein 1]
       Key : Lower : Body : Upper
       None: None: None
   extra NB filter : Size=1
ERROR: evaluating object as numeric value: x[Filter 1]
        (object: <class 'pyomo.core.base.var._GeneralVarData'>)
   No value for uninitialized NumericValue object x[Filter 1]
       Key : Lower : Body : Upper
       None : None : None
   extra NB brennstoff : Size=1
ERROR: evaluating object as numeric value: x[Brennstoff 1]
        (object: <class 'pyomo.core.base.var._GeneralVarData'>)
   No value for uninitialized NumericValue object x[Brennstoff 1]
       Key : Lower : Body : Upper
       None: None: None
```