Inférence statistique

Cours 4 : Méthode de Moments

Michal W. Urdanivia*

*UGA, Faculté d'Économie, GAEL, e-mail : michal.wong-urdanivia@univ-grenoble-alpes.fr

19 septembre 2022

Plan

1. Introduction

2. Méthode des Moments

Plan

1. Introduction

2. Méthode des Moment

1. Introduction

Théorème d'approximation de Weierstrass

Théorème

- Soit f une fonction continue sur l'intervalle [a,b], alors, pour tout $\epsilon > 0$, il existe $a_0,a_1,\ldots,a_d \in \mathbb{R}$ tels que,

$$\max_{x \in [a,b]} \left| f(x) - \sum_{k=1}^{d} a_k x^k \right| < \epsilon.$$

- Autrement dit : les fonctions continues peuvent être approchées arbitrairement par des polynômes.

Application statistique

- Soit un échantillon de v.a. i.i.d., X₁, X₂,..., X_n associé à un modèle statistique qu'on suppose identifié, (ε, F, (P_θ)_{θ∈Θ}).
- On note θ^* le vrai paramètre.
- Supposons que pour tout θ , la loi P_{θ} a la fonction de densité f_{θ} .
- Si nous trouvons un θ tel que,

$$\int h(x)f_{\theta^*}(x)\mathrm{d}x = \int h(x)f_{\theta}(x)\mathrm{d}x$$

pour toutes les fonctions (continues et bornées) h, alors $\theta = \theta^*$.

• En remplaçant les espérances par des moyennes : il s'agit de trouver un estimateur $\hat{\theta}$ tel que,

$$\frac{1}{n}\sum_{i=1}^n h(X_i) = \int h(x)f_{\hat{\theta}}(x)dx$$

pout toutes les fonctions continues et bornées h.

• **Problème**: il y a une **infinité** de fonctions de la sort(infaisable).

Application statistique

Par application du TAW, il suffit de considérer des polynômes :

$$\frac{1}{n}\sum_{i=1}^{n}\sum_{k=0}^{d}a_{k}X_{i}^{k}=\int\sum_{k=0}^{d}a_{k}x^{k}f_{\hat{\theta}}(x)dx, \ \forall a_{0},a_{1},\ldots,a_{d}\in\mathbb{R}.$$

Soit encore une infinité d'équations :

• Pour sa part, il suffit de considérer,

$$\frac{1}{n}\sum_{i=1}^{n}X_{i}^{k}=\int x^{k}f_{\hat{\theta}(x)}\mathrm{d}x, \forall k=1,2,\ldots,d,$$

(seulement d + 1 équations).

- La quantité $m_k(\theta) := \int x^k f_{\theta}(x) dx$ est le moment d'ordre k(ou k-ième moment) de P_{θ} .
- On peut aussi l'écrire $m_k(\theta) = \mathsf{E}_{\theta}(X^k)$.

- L'approximation de Weierstrass présente un certain nombre de limitations :
 - i) ne s'applique qu'à des fonctions continues(ceci peut être réglé),
 - ii) ne s'applique que sur des intervalles [a, b],
 - iii) ne nous dit pas ce que *d* doit être(i.e., # de moments).
- Qu'en est-il pour \mathcal{E} discret(cas où à P_{θ} on associe une fonction de masse et non de densité)?

- Supposons que $\mathcal{E} = \{x_1, x_2, \dots, x_r\}$ est fini avec r valeurs possibles.
- La fonction de masse est alors caractérisée par r-1 paramètres,

$$p(x_1), p(x_2), \ldots, p(x_{r-1}),$$

car le dernier est donné par les premiers r-1 paramètres,

$$p_r = 1 - \sum_{j=1}^{r-1} p(x_j).$$

• Avec un peu de chance, il ne faudra pas plus que d = r - 1 paramètres pour obtenir la fonction de masse $p(\cdot)$.

• Notons que pour tout $k = 1, 2, ..., r_1$,

$$m_k := \mathsf{E}(X^k) = \sum_{j=1}^r \mathsf{p}(x_j) x_j^k,$$

et,

$$\sum_{j=1}^r p(x_j) = 1$$

- Ceci est un système d'équations linéaires avec les inconnues, $p(x_1), p(x_2), \dots, p(x_r)$.
- Il est peut être écrit sous une forme compacte(matricielle) :

$$\begin{pmatrix} 1 & 1 & \dots & 1 \\ x_1^1 & x_2^1 & \dots & x_r^1 \\ x_1^2 & x_2^2 & \dots & x_r^2 \\ \vdots & & \ddots & \vdots \\ x_1^{r-1} & x_2^{r-1} & \dots & x_r^{r-1} \end{pmatrix} \cdot \begin{pmatrix} p(x_1) \\ p(x_2) \\ \vdots \\ p(x_{r-1}) \\ p(x_r) \end{pmatrix} = \begin{pmatrix} 1 \\ m_1 \\ m_2 \\ \vdots \\ m_{r-1} \end{pmatrix}$$

• Il faut vérifier que l'inversibilité : déterminant de Vandermonde

$$\det\begin{pmatrix} 1 & 1 & \dots & 1 \\ x_1^1 & x_2^1 & \dots & x_r^1 \\ x_1^2 & x_2^2 & \dots & x_r^2 \\ \vdots & & \ddots & \vdots \\ x_1^{r-1} & x_2^{r-1} & \dots & x_r^{r-1} \end{pmatrix} = \prod_{1 < j < k < r} (x_j - x_k) \neq 0$$

• Donc, si nous avons les moments $m_1, m_2, \ldots, m_{r-1}$, il y a une seule fonction de masse avec ces moments. Et elle est donnée par,

$$\begin{pmatrix} p(x_1) \\ p(x_2) \\ \vdots \\ p(x_{r-1}) \end{pmatrix} = \begin{pmatrix} 1 & 1 & \dots & 1 \\ x_1^1 & x_2^1 & \dots & x_r^1 \\ x_1^2 & x_2^2 & \dots & x_r^2 \\ \vdots & & \ddots & \vdots \\ x_1^{r-1} & x_2^{r-1} & \dots & x_r^{r-1} \end{pmatrix}^{-1} \cdot \begin{pmatrix} 1 \\ m_1 \\ m_2 \\ \vdots \\ m_{r-1} \end{pmatrix}$$

Conclusion à partir du TAW et de la quadrature de Gauss

- Les moments d'une v.a., fournissent une information importante sur la fonction de densité ou de masse.
- En estimant avec précision ces moments on devrait être capables de récupérer/retrouver la loi génératrice des données.
- Dans un cadre paramétrique où la loi des observations P_{θ} est connue aux paramètres θ près, il est fréquent de n'avoir besoin que d'un petit nombre de moments pour obtenir(estimer) θ , ceci variant d'un cas à l'autre.
- Règle basique : quand $\theta \in \Theta \subseteq \mathbb{R}^d$, on a besoin de *d* moments.

Plan

Introduction

2. Méthode des Moments

2. Méthode des Moments

Principe d'estimation de la MM

- Soit X_1, X_2, \ldots, X_n un échantillon i.i.d. pour le modèle statistique $(\mathcal{E}, \mathcal{F}, (P_\theta)_{\theta \in \Theta})$.
- On suppose $\Theta \subseteq \mathbb{R}^d$, pour un $d \ge 1$.
 - Moments théorique(ou de Population) :

$$m_k(\theta) := \mathsf{E}_{\theta}(X^k), \quad 1 \leq k \leq d.$$

- Moments empiriques :

$$\hat{m}_k := \frac{1}{n} \sum_{i=1}^n X_i^k, \quad 1 \le k \le d.$$

Principe d'estimation de la MM

Soit,

$$\psi: \Theta \subseteq \mathbb{R}^d \to \mathbb{R}^d$$

$$\theta \mapsto (m_1(\theta), m_2(\theta), \dots, m_d(\theta)).$$

Supposons ψ bijective, alors,

$$\theta = \psi^{-1}(m_1(\theta), m_2(\theta), \dots, m_d(\theta)).$$

• **Définition**: un estimateur des moments de θ est défini par,

$$\hat{\theta}_{n}^{MM} = \psi^{-1}(\hat{m}_{1}, \hat{m}_{2}, \dots, \hat{m}_{d}),$$

dès lors qu'il existe.

Analyse de $\hat{\theta}_n^{MM}$

Notons:

$$egin{align*} M(heta) &:= \left(m_1(heta), m_2(heta), \dots, m_d(heta)
ight), \\ \hat{M} &= \left(\hat{m}_1, \hat{m}_2, \dots, \hat{m}_d\right), \\ V(heta) &= \underbrace{Var_{ heta}\left(X, X^2, \dots, X^d\right)}_{ ext{Matrice des variances-covariances de }\left(X, X^2, \dots, X^d\right), ext{ quand } X \sim P_{ heta}. \end{aligned}$$

• Supposons ψ^{-1} continûment dérivable en $M(\theta)$. Notons $\nabla \psi_{M(\theta)}^{-1}$ la matrice $d \times d$ du gradient en ce point.

Analyse de $\hat{\theta}_n^{MM}$

- **LGN** : $\hat{\theta}_{n}^{\textit{MM}}$ est faiblement/fortement convergent.
- TCL :

$$\sqrt{n}(\hat{M} - M(\theta)) \stackrel{d}{\to} \mathcal{N}(0, V(\theta))$$
 par rapport à P_{θ} .

et en utilisant la méthode du delta(voir diapos suivantes),

Analyse de $\hat{\theta}_n^{MM}$

• Théorème :

$$\sqrt{n}\left(\hat{\theta}_n^{MM} - \theta\right) \stackrel{d}{\to} \mathcal{N}(0, \Gamma(\theta))$$
 par rapport à P_{θ} ,

οù

$$\Gamma(\theta)) = \left(\nabla \psi_{M(\theta)}^{-1}\right)^{\mathsf{T}} \mathsf{V}(\theta) \left(\nabla \psi_{M(\theta)}^{-1}\right).$$

Méthode du Delta dans le cas multivarié

• Soit $(T_n)_{n\geq 1}$ une suite de vecteurs aléatoires dans \mathbb{R}^p (pour $p\geq 1$) telle que,

$$\sqrt{n}(T_n-\theta)\stackrel{d}{\to} \mathcal{N}(0,V),$$

pour un $\theta \in \mathbb{R}^p$ et une matrice symétrique et semi-définie positive $V \in \mathbb{R}^p \times p$.

- Soit $g: \mathbb{R}^p \to \mathbb{R}^k$ (pour $k \ge 1$) une fonction continûment dérivable en θ .
- Alors,

$$\sqrt{n}\left(g(T_n)-g(\theta)\right) \stackrel{d}{\to} \mathcal{N}\left(0,\nabla g(\theta)^\top \vee \nabla g(\theta)\right),$$

οù,

$$\nabla g(\theta) := \left(\frac{\partial g_j}{\partial \theta_i}\right)_{1 \leq i \leq d, 1 \leq j \leq k} \in \mathbb{R}^{k \times d}.$$

MV vs MM

- Risque quadratique : en général l'estimateur du MV est plus précis.
- Problème de calcul : l'estimateur du MV ne peut pas être obtenu en forme analytique :
 - Quand la vraisemblance est concave, on peut utiliser des algorithmes d'optimisation numérique(méthodes du point intérieur, gradient descendant, etc).
 - Si la vraisemblance n'est pas concave : démarche heuristique, maxima locaux.