Universidad Tecnológica Nacional

DOCTORAL THESIS

Tesis de Maestría

Author: CluadioSCastillo

 $Supervisor: \\ {\bf Mat\'ias Gerard/Leandro Vignolo}$

A thesis submitted in fulfillment of the requirements for the degree of Maestría en Minería de Datos

in the

Posgrado Seccional Paraná

Abril, 2024

Declaration of Authorship

- I, CluadioSCastillo, declare that this thesis titled, Tesis de Maestríaand the work presented in it are my own. I confirm that:
 - This work was done wholly or mainly while in candidature for a research degree at this University.
 - Where any part of this thesis has previously been submitted for a degree or any other qualification at this University or any other institution, this has been clearly stated.
 - Where I have consulted the published work of others, this is always clearly attributed.
 - Where I have quoted from the work of others, the source is always given. With the exception of such quotations, this thesis is entirely my own work.
 - I have acknowledged all main sources of help.
 - Where the thesis is based on work done by myself jointly with others, I have made clear exactly what was done by others and what I have contributed myself.

Signed:			
Date:			

"Thanks to my solid academic training, today I can write hundreds of words on virtually any topic without possessing a shred of information, which is how I got a good job in journalism."

Dave Barry

UNIVERSIDAD TECNOLÓGICA NACIONAL

Resumen

Computación Seccional Paraná

Maestría en Minería de Datos

Tesis de Maestría

by CluadioSCastillo

La disponibilidad de datos muestrales afecta a los procesos de selección de características, y resulta particularmente condicionante en escenarios de alta dimensionalidad y bajo número de muestras. En el caso de selección de características mediante AGs la falta de datos muestrales impacta negativamente en la función de aptitud, y de esa forma limita la eficacia del algoritmo. Por eso, la técnica de aumentación de datos mediante AVs plantea una posible solución a este problema, ofreciendo distintas alternativas de implementación en el contexto de los AGs.

Acknowledgements

Integer id risus vel lorem laoreet commodo lobortis quis purus. Cras cursus leo vel dui laoreet pulvinar. Nunc tincidunt metus et ante fermentum lacinia. Proin quam magna, tristique ut viverra at, dapibus eget elit. Quisque eu leo id nisi semper laoreet at ac nulla. Fusce volutpat, metus sed dictum mattis, nisl elit dapibus velit, non porttitor urna urna vel diam. Praesent tortor nulla, rutrum ac magna a, tempor sagittis enim. Praesent pharetra ipsum libero, eu malesuada libero blandit ut. Sed sed venenatis ligula, nec convallis turpis. Nulla iaculis felis eros, eget pharetra lorem cursus quis. Nunc iaculis lobortis magna at malesuada. Nullam elementum elit at urna congue aliquam.

Table of contents

D	eclaration of Authorship	III								
Re	Resumen									
A	cknowledgements	IX								
1.	Introducción	1								
2.	Algoritmos clásicos 2.1. Datos elegidos en nuestro estudio 2.2. Modelos Elegidos 2.3. Configuración de los Modelos 2.4. Resultados Obtenidos	3 3 4 6 6								
3.	Autoencoder Variacional 3.1. Presentación del modelo	9								
4.	Algo	11								
5.	Algo	13								
6.	Algo	15								
Re	eferences	17								
\mathbf{A}_{1}	ppendices	17								
Α.	Frequently Asked Questions A.1. How do I change the colors of links?	19 19								

List of Figures

2.1.	algoritmosclasicos.																7

List of Tables

List of Abbreviations

 $\begin{array}{ll} \mathbf{LAH} & \mathbf{List} \ \mathbf{Abbreviations} \ \mathbf{Here} \\ \mathbf{WSF} & \mathbf{What} \ (\mathrm{it}) \ \mathbf{S} \mathrm{tands} \ \mathbf{For} \end{array}$

XIX

List of Symbols

a distance m

P power $W (J s^1)$

 ω angular frequency rad

For Elsa

Introducción

Algoritmos clásicos

En este capítulo revisaremos el desempeño de algoritmos o modelos clásicos en la solución de los problemas de clasificación planteados en los dataset elegidos para nuestra investigación. A tal fin describiremos brevemente la composición de los conjuntos de datos, los algoritmos seleccionados para su tratamiento y los resultados obtenidos para cada uno. Luego, analizando y comparando dichos resultados, elegiremos los modelos con mejor desempeño en las tareas de clasificación considerando su eficacia, rapidez y consistencia a lo largo de las distintas tareas.

El propósito de esta etapa del trabajo es doble. Por un lado, identificar los modelos más apropiados para servir de función de fitness en la implementación de nuestro algoritmo genético. Esto permitirá construir una implementación robusta, que cuenta con una función efectiva y computacionalmente conveniente para evaluar cada solución. Por el otro, disponer de métricas acerca del desempeño que logran distintas estrategias de clasificación, a partir de las cuales comparar el resultado de nuestras propias soluciones.

2.1. Datos elegidos en nuestro estudio

El conjunto de datos elegidos en este trabajo incluye:

- 1. Madelon: conjunto artificial de datos con 500 características, donde el objetivo es un XOR multidimensional con 5 características relevantes y 15 características resultantes de combinaciones lineales de aquellas (i.e. 20 características redundantes). Las otras 480 características fueron generadas aleatoreamente (no tienen poder predictivo). Madelon es un problema de clasificación de dos clases con variables de entrada binarias dispersas. Las dos clases están equilibradas, y los datos se dividen en conjuntos de entrenamiento y prueba. Fue creado para el desafío de Selección de Características NIPS_2003, y está disponible en el Repositorio UCI. Los datos están divididos en un conjunto de entrenamiento y un conjunto de testeo.
- 2. Gisette: es un dataset creado para trabajar el problema de reconocimiento de dígitos escritos a mano (Isabelle Guyon 2004). Este conjunto de datos forma parte de los cinco conjuntos utilizados en el desafío de selección de características de NIPS 2003. Tiene 13500 observaciones y 5000 atributos. El desafío radica en diferenciar los dígitos '4' y '9', que suelen ser fácilmente confundibles entre sí. Los dígitos han sido normalizados en tamaño y centrados en una imagen fija de 28x28 píxeles. Además, se crearon características de orden superior como productos de estos píxeles para sumergir el problema en un espacio

de características de mayor dimensión. También se añadieron características distractoras denominadas "sondas", que no tienen poder predictivo. El orden de las características y patrones fue aleatorizado. Los datos están divididos en un conjunto de entrenamiento y un conjunto de testeo.

- 3. Leukemia: El análisis de datos de expresión génica obtenidos de micro-datos de ADN se estudia en Golub (1999) para la clasificación de tipos de cáncer. Construyeron un conjunto de datos con 7129 mediciones de expresión génica en las clases ALL (leucemia linfocítica aguda) y AML (leucemia mielogénica aguda). El problema es distinguir entre estas dos variantes de leucemia (ALL y AML). Los datos se dividen originalmente en dos subconjuntos: un conjunto de entrenamiento y un conjunto de testeo.
- 4. GCM: El conjunto de datos GCM fue compilado en Ramaswamy (2001) y contiene los perfiles de expresión de 198 muestras de tumores que representan 14 clases comunes de cáncer humano. Aquí el enfoque estuvo en 190 muestras de tumores después de excluir 8 muestras de metástasis. Finalmente, cada matriz se estandarizó a una media de 0 y una varianza de 1. El conjunto de datos consta de un total de 190 instancias, con 16063 atributos (biomarcadores) cada una, y distribuidos en 14 clases desequilibradas. Los datos están divididos en un conjunto de entrenamiento y un conjunto de testeo.

2.2. Modelos Elegidos

Para disponer de métricas de base para la comparación de nuestra solución y, al mismo tiempo, evaluar el grado de complejidad que presentan los datos incluidos en nuestro estudio hemos seleccionado una serie de modelos ampliamente usados el campo del aprendizaje automático. A fin de estandarizar la implementación de estos algoritmos hemos empleado la librería scikit-learn que provee abstracciones convenientes para nuestro entorno de experimentación. Los modelos elegidos son:

Modelos lineales

Los modelos lineales son un conjunto de algoritmos que predicen la salida en función de una combinación lineal de características de entrada. Son particularmente útiles cuando se espera que haya una relación lineal entre variables.

- LDA: Análisis Discriminante Lineal, empleado para dimensiones reducidas y asumiendo distribuciones gaussianas.
- QDA: Análisis Discriminante Cuadrático, similar a LDA pero con covarianzas distintas por clase.
- Ridge: Regresión de Cresta, empleado para tratar con multicolinealidad mediante regularización L2.
- SGD: Descenso de Gradiente Estocástico, estrategia central del aprendizaje automático, empleado para optimizar modelos lineales.

Modelos basados en árboles

Los modelos basados en árboles implican la segmentación del espacio de características en regiones simples dentro de las cuales las predicciones son más o menos uniformes. Son potentes y flexibles, capaces de capturar relaciones no lineales y complejas en los datos.

- AdaBoost: Estrategia que entrena modelos débiles secuencialmente, enfocándose en las instancias u observaciones previamente difíciles de clasificar.
- Bagging: Estrategia que combina predicciones de múltiples modelos para reducir la varianza.
- Extra Trees Ensemble: Estrategia que construye múltiples árboles con splits aleatorios de características y umbrales.
- Gradient Boosting: Estrategia que mejora modelos de forma secuencial minimizando el error residual.
- Random Forest: Estrategia basada en conjunto de árboles de decisión, cada uno entrenado con subconjuntos aleatorios de datos.
- DTC: Árbol de Decisión Clásico, modelo intuitivo que divide el espacio de características.
- ETC: Árboles Extremadamente Aleatorizados, variante de Random Forest con más aleatoriedad.

Modelos de Naive Bayes

Los modelos de Naive Bayes son clasificadores probabilísticos basados en el teorema de Bayes que presupone independencia entre las características. Son modelos de rápida ejecución y eficientes.

- BNB: Naive Bayes Bernoulli, se emplea para características de variables binarias.
- GNB: Naive Bayes Gaussiano, se emplea para distribución normal de los datos.

Modelos de vecinos más cercanos

KNN es un método de clasificación no paramétrico que clasifica una muestra basándose en cómo están clasificadas las muestras más cercanas en el espacio de características. Es simple y efectivo, particularmente para datos donde las relaciones entre características son complejas o desconocidas.

■ KNN: K-Vecinos más Cercanos, clasifica según la mayoría de votos de los vecinos.

Modelos de redes neuronales

El Perceptrón Multicapa es un tipo de red neuronal que consiste en múltiples capas de neuronas con funciones de activación no lineales. Puede modelar relaciones complejas y no lineales entre entradas y salidas, y es altamente adaptable a la estructura de los datos.

• MLP: Perceptrón Multicapa, red neuronal con una o más capas ocultas.

Modelos de Máquinas de Vectores de Soporte

Las Máquinas de Soporte Vectorial son un conjunto de algoritmos supervisados que buscan la mejor frontera de decisión que puede separar diferentes clases en el espacio de características. Ofrecen alta precisión y son muy efectivos en espacios de alta dimensión y en casos donde el número de dimensiones supera al número de muestras.

- LSVC: Máquina de Vectores de Soporte Lineal, se emplea en espacios de alta dimensión.
- NuSVC: SVC con parámetro Nu, que controla el número de vectores de soporte.
- SVC: Máquina de Vectores de Soporte, se emplea para espacios de dimensiones intermedias y altas.

Finalmente, es preciso destacar que para el dataset GCM, que contiene 14 clases en la variable objetivo, hemos excluido modelos no compatibles o ineficientes para problemas de clasificación multiclases.

2.3. Configuración de los Modelos

Para evaluar los modelos clásicos hemos decidido su configuración a partir de la búsqueda de la mejor combinación de parámetros. A tal fin, hemos seleccionado aquellos parámetros más importantes en cada modelo y respecto de cada uno establecimos una búsqueda en grilla de sus respectivos valores. Hemos seleccionado para parámetros numéricos un mínimo de 3 valores y máximo de 20, y para no numéricos hemos decidido la configuración estándar según cada modelo. El espacio de búsqueda resultante para cada modelo puede verse en el siguiente link.

2.4. Resultados Obtenidos

En la siguiente tabla resumimos los resultos obtenidos del entrenamiento de los modelos en los dataset estudiados.

	Leukemia	Leukemia	Madelon	Madelon	Gisette	Gisette	GCM	GCM
Models	Train	Test	Train	Test	Train	Test	Train	Test
LDA	0.93	0.85	0.82	0.6	1.0	0.96	_	_
QDA	1.0	0.5	1.0	0.66	1.0	0.7	-	-
Ridge	1.0	0.99	0.82	0.6	1.0	0.97	-	-
SGD	1.0	0.98	0.63	0.64	1.0	0.99	1.0	0.71
AdaBoost	1.0	0.91	0.89	0.84	1.0	0.99	-	-
Bagging	1.0	1.0	0.97	0.91	-	-	-	-
DTC	1.0	0.72	0.77	0.64	0.95	0.92	0.95	0.53
ETC	1.0	0.54	0.62	0.57	0.95	0.94	0.98	0.48
Ext.Trees.I	Enls0	1.0	1.0	0.71	0.99	0.99	1.0	0.57
Gradient	1.0	0.99	1.0	0.82	1.0	1.0	1.0	0.58
Boost.								
Random	1.0	1.0	1.0	0.78	0.99	0.99	1.0	0.62
Forest								
BNB	1.0	0.89	0.73	0.63	0.95	0.94	-	-
GNB	1.0	0.91	0.81	0.65	0.91	0.85	-	-
KNN	0.86	0.86	0.74	0.65	0.99	0.99	-	-
LSVC	1.0	0.99	0.78	0.62	1.0	0.99	1.0	0.62
NuSVC	1.0	1.0	1.0	0.61	1.0	0.99	0.99	0.58
SVC	1.0	1.0	1.0	0.61	1.0	0.99	1.0	0.58
MLP	1.0	0.96	1.0	0.58	1.0	0.99	1.0	0.68

Estos valores dan forma a la siguiente representación:

Figure 2.1: algoritmosclasicos

Autoencoder Variacional

En este capítulos presentaremos la arquitectura de nuestro modelo de Autoencoder Variacional (VAE). Expondremos brevemente los pasos seguidos en su construcción y los resultados obtenidos en distintas evaluaciones de desempeño.

3.1. Presentación del modelo

Algo

Algo

Algo

References

- Golub, T. R., D. K. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J. P. Mesirov, H. Coller, et al. 1999. "Molecular Classification of Cancer: Class Discovery and Class Prediction by Gene Expression Monitoring." Science 286 (5439): 531–37. https://doi.org/10.1126/science.286.5439.531.
- Isabelle Guyon, Steve Gunn. 2004. "Gisette." UCI Machine Learning Repository. https://doi.org/10.24432/C5HP5B.
- Ramaswamy, Sridhar, Pablo Tamayo, Ryan Rifkin, Sayan Mukherjee, Chen-Hsiang Yeang, Michael Angelo, Christine Ladd, et al. 2001. "Multiclass Cancer Diagnosis Using Tumor Gene Expression Signatures." *Proceedings of the National Academy of Sciences* 98 (26): 15149–54. https://doi.org/10.1073/pnas.211566398.

Apéndice A

Frequently Asked Questions

A.1. How do I change the colors of links?

Pass in urlcolor: in yaml. Or set these in the include-in-header file.

If you want to completely hide the links, you can use:

{\hypersetup{allcolors=.}}, or even better:

 ${\hypersetup{hidelinks}}.$

If you want to have obvious links in the PDF but not the printed text, use:

{\hypersetup{colorlinks=false}}.