Contents

Flujos: Greedy.		1
notación $g(A, B)$		1
Propiedad:		1
Criterio simple para maximalidad		2
Propiedad:		2
Existencia		2
flujo sea "entero",		2
entonces,		
Greedy		2
Algoritmo		2
Conclusiones sobre Greedy		3
Not Greedy		3
Definición de Corte		3
Capacidad de un Corte		3
Definición:		

Flujos: Greedy.

notación g(A, B)

g es una función sobre los lados y A, B \subseteq V

$$g(A, B) = \sum_{x,y} [x \in A][y \in B][\overrightarrow{xy} \in E]g(\overrightarrow{xy})$$

$$g(A,\,B) = \ x,y[x \in A][y \in B][\, - \to xy \in E]g(\, - \to xy \,\,)$$

Propiedad:

Sean f, g funciones sobre los lados tales que

g(
$$- \rightarrow xy$$
) \leq f($- \rightarrow xy$) \forall $- \rightarrow xy \in E$

$$g(\overrightarrow{xy}) \leq f(\overrightarrow{xy}) \quad \forall \overrightarrow{xy} \in E$$

Entonces

$$g(A,\,B) \leq f(A,\,B) \,\,\forall\,\,A,\,B \subseteq V$$

Criterio simple para maximalidad

Propiedad:

Sea f flujo en un network N tal que $v(f) = c(\{s\}, V)$. Entonces f es maximal.

Existencia

de la definición no es claro que EXISTA un flujo maximal.

flujo sea "entero",

es decir que las capacidades y el flujo en cada lado deben ser números enteros,

entonces,

como hay una cantidad finita de flujos enteros, es claro que existe un flujo entero maximal.

Greedy

Algoritmo

$$f(\overrightarrow{xy}) = 0 \forall \overrightarrow{xy} \in E$$

Comenzar con f = 0 (es decir, f($-\to xy$) = 0 \forall $-\to xy \in E).$

Buscar un camino dirigido s = x0, x1, ..., xr = t, con

$$\overrightarrow{x_i x_{i+1}} \in E$$

$$\overrightarrow{f(x_i x_{i+1})} < c(x_i x_{i+1})$$

 $-\to xixi+1\in E$ tal que f
($-\to xixi+1)< c($ $-\to xixi+1)$ para todo
 $\in i=0,$..., r-1.

(llamaremos a un tal camino un camino dirigido "no saturado" .)

$$\varepsilon = \min\{c(x_i \overrightarrow{x_{i+1}}) - f(x_i x_{i+1})\}.$$

Calcular $\epsilon = \min\{c(- \to xixi+1) - f(xixi+1)\}.$

Aumentar f a lo largo del camino de 2. en ϵ , como se explicó antes.

Repetir 2 hasta que no se puedan hallar mas caminos con esas condiciones.

Conclusiones sobre Greedy

este Greedy no necesariamente va a encontrar un flujo maximal.

eligiendo inteligentemente los caminos encontramos un flujo maximal.

el Greedy de caminos puede ser modificado para encontrar un flujo maximal en tiempo polinomial

Not Greedy

En el caso de flujos, se puede construir un algoritmo que corre Greedy y cuando llega a un cierto punto, "SE DA CUENTA" que se equivocó en la elección de los caminos y CORREGIR los errores.

Definición de Corte

Un Corte es un subconjunto de los vertices que tiene a s pero no tiene a t.

Capacidad de un Corte

La capacidad de un corte es cap(S) = c(S, S), donde S = V - S

Definición:

Un corte es MINIMAL si su capacidad es la menor de las capacidades de todos los cortes.