

Tema 1: Introducción a la Teoría de Grafos

Tema 1: Introducción a la Teoría de Grafos

Nociones básicas

Subgrafos

Operaciones con grafos

Cómo definir un grafo

Isomorfismo de grafos

Nociones básicas:

Grafo: G = (V,A)

V conjunto de vértices

A conjunto de aristas:

pares *no ordenados* de vértices

$$\{A,B\}=\{B,A\}$$

$$G = (V, A)$$

$$V = \{A, B, C, D, E, F\}$$

$$A = \{\{A, B\}, \{A, D\}, \{A, F\}, \{B, F\}, \{C, E\}, \{D, E\}, \{E, F\}\}$$

Nociones básicas:

Grafo:
$$G = (V,A)$$

$$\begin{cases} V = \{1,2,3,4,5,6\} \\ A = \{\{1,2\},\{1,3\},\{1,5\},\{1,6\},\{2,4\},\{2,6\},\{3,4\},\{3,5\}\} \end{cases}$$

Representación gráfica

Inmersión

Grafo plano

Nociones básicas: Variantes de grafos

Nociones básicas: Variantes de grafos

Grafo dirigido o digrafo

(las aristas son pares ordenados de vértices)

$$(1,2) \neq (2,1)$$

Digrafo múltiple o multigrafo dirigido

(digrafo con aristas múltiples)

Pseudo digrafo o pseudografo dirigido

(digrafo con aristas múltiples y/o lazos)

Nociones básicas: Variantes de grafos

Nociones básicas:

Vértices adyacentes

$$v_1, v_2 \in V \iff e = \{v_1, v_2\} \in A$$

1 es adyacente a 2, pero no a 4

Aristas que inciden en un mismo vértice

{1,2} y {1,3} inciden en un mismo vértice, pero {3,4} no.

Valencia o *grado* de un vértice v, $\delta(v)$

$$\delta(1)=4$$
, $\delta(2)=3$, $\delta(3)=3$,

$$\delta(4)=2, \delta(5)=2, \delta(6)=2$$

Vértices *pares* e *impares* $\delta(v) = 2k \quad \delta(v) = 2k+1$

Vértice <u>aislado</u>: $\delta(v) = 0$

= 0

Nociones básicas: Propiedades de la valencia (grafos simples)

$$G = (V,A)$$
 $n=|V|$

- 1) $0 \le \delta(v) \le n-1$
- 2) Un grafo no puede tener simultáneamente vértices de valencia 0 y de valencia n-1.

3) Lema del apretón de manos:

La suma de las valencias de los vértices es igual al doble del número de aristas:

$$\sum_{\mathbf{v} \in \mathbf{V}} \delta(\mathbf{v}) = 2 |\mathbf{A}|$$

3) Lema del apretón de manos:

La suma de las valencias de los vértices es igual al doble del número de aristas:

$$\sum_{\mathbf{v} \in \mathbf{V}} \delta(\mathbf{v}) = 2 |\mathbf{A}|$$

Conclusión: En un grafo no puede haber un número impar de vértice con valencia impar.

Nociones básicas: Lista de grados

Grados de los vértices:

$$\delta(1)=2, \delta(2)=4, \delta(3)=3, \delta(4)=3, \delta(5)=4$$

Lista de grados (4,4,3,3,2)

Teorema de Havel-Hakimi

La lista decreciente $(a_1,a_2,...,a_p)$ con $a_1 > 0$ es SG \Leftrightarrow también lo es el resultado de:

- 1) Eliminar a₁ de la lista.
- 2) Restar 1 a los primeros a₁ elementos de la nueva lista.
- 3) Ordenar (decreciente).

(a₁,a₂,...,a_p) representa una lista de grados de un grafo si el siguiente algoritmo devuelve una lista de ceros: Secuencia gráfica (SG) = la lista decreciente $(a_1, a_2, ..., a_p)$ que corresponde a lista de grados.

Algoritmo de Havel-Hakimi

- P.1 Leer la lista decreciente $(a_1,a_2,...,a_p)$.
- P.2 Mientras el primer elemento sea a₁>0
 - P.3 Eliminar el elemento a₁ de la lista.
 - P.4 Restar 1 a los primeros a₁ elementos de la nueva lista.
 - P.5 Ordenar (decreciente) la nueva lista.
- P.6 Retornar la lista $(a_1,a_2,...)$.

Escuela Técnica Superior de Ingenieria Informática

Algoritmo de Havel-Hakimi

P.1 Leer la lista decreciente $(a_1,a_2,...,a_p)$.

P.2 Mientras el primer elemento sea $a_1>0$

P.3 Eliminar el elemento a_1 de la lista.

P.4 Restar 1 a los primeros a₁ elementos de la nueva lista.

P.5 Ordenar (decreciente) la nueva lista.

P.6 Retornar la lista $(a_1, a_2,...)$.

(5,4,4,4,2,1)
₽.3
(4,4,4,2,1)
₽.4
(3,3,3,1,0)
₽.3
(3,3,1,0)
₽.4
(2,2,0,0)
₽.3
(2,0,0)
₽.4
(1,-1,0)
₽.5
(1,0,-1)
₽.3
(0,-1)
P.4
(-1,-1)

(5,4,4,4,2,1) no es una secuencia gráfica

Nociones básicas: Lista de grados

Algoritmo de Havel-Hakimi

P.1 Leer la lista decreciente $(a_1,a_2,...,a_p)$.

P.2 Mientras el primer elemento sea a₁>0

P.3 Eliminar el elemento a₁ de la lista.

P.4 Restar 1 a los primeros a₁ elementos de la nueva lista.

P.5 Ordenar (decreciente) la nueva lista.

P.6 Retornar la lista $(a_1,a_2,...)$.

(1,2,2,3,4) es una secuencia gráfica

Algoritmo de Havel-Hakimi

P.1 Leer la lista decreciente $(a_1,a_2,...,a_p)$.

P.2 Mientras el primer elemento sea a₁>0

P.3 Eliminar el elemento a_1 de la lista.

P.4 Restar 1 a los primeros a_1 elementos de la nueva lista.

P.5 Ordenar (decreciente) la nueva lista.

P.6 Retornar la lista $(a_1, a_2,...)$.

 $(1,2,2,3,4) \downarrow \\ (4,3,2,2,1) \downarrow P.3 \\ (3,2,2,1) \downarrow P.4 \\ (2,1,1,0) \downarrow P.3 \\ (1,1,0) \downarrow P.4 \\ \hline (0,0,0)$

Algoritmo de Havel-Hakimi

P.1 Leer la lista decreciente $(a_1,a_2,...,a_p)$.

P.2 Mientras el primer elemento sea a₁>0

P.3 Eliminar el elemento a_1 de la lista.

P.4 Restar 1 a los primeros a_1 elementos de la nueva lista.

P.5 Ordenar (decreciente) la nueva lista.

P.6 Retornar la lista $(a_1, a_2,...)$.

Nociones básicas: Lista de grados

Algoritmo de Havel-Hakimi

- P.1 Leer la lista decreciente $(a_1,a_2,...,a_p)$.
- P.2 Mientras el primer elemento sea a₁>0
 - P.3 Eliminar el elemento a_1 de la lista.
 - P.4 Restar 1 a los primeros a_1 elementos de la nueva lista.
 - P.5 Ordenar (decreciente) la nueva lista.
- P.6 Retornar la lista $(a_1, a_2,...)$.

Nociones básicas: Adyacencias en digrafos

Valencia o grado de entrada, δ_e(v)

$$\delta_{\rm e}(1)=2$$

$$\delta_{\rm e}(2)=1$$

$$\delta_{\rm e}(3)=1$$

$$\delta_{\rm e}(4)=2$$

$$\delta_{\rm e}(5)=1$$

Valencia o grado de salida, $\delta_s(v)$

$$\delta_{\rm s}(1)=2$$

$$\delta_{\rm s}(2)=1$$

$$\delta_{\rm s}(3)=2$$

$$\delta_{\rm s}(4)=2$$

$$\delta_{s}(5)=0$$

Grafo trivial:

No tiene ninguna arista.

Sin ciclos

Árbol:

 T_1 : camino simple P_4

Bosque de 2 árboles:

 T_2 : árbol enraizado

 T_3 : estrella de 5 puntas

Nociones básicas: Grafos especiales

Grafo ciclo: C_n 2-regular

Grafo regular

k-valente = k-regular

Todos los vértices con igual valencia: $\delta(v)=k$ $(\forall v \in V)$

Grafo completo: K_n (n-1)-regular

Todos los vértices con máxima valencia: $\delta(v) = n-1 \ (\forall v \in V, \text{ con } |V| = n)$

Nociones básicas: Grafos especiales

Grafo bipartito:

$$G = (V,A) \begin{cases} V = V_1 \cup V_2, V_1 \cap V_2 = \emptyset \\ \forall e \in A : e = \{v_1, v_2\}, v_1 \in V_1, v_2 \in V_2 \end{cases}$$

Grafo bipartito completo: $(K_{n,m})$

Tema 1: Introducción a la Teoría de Grafos

Nociones básicas

Subgrafos

Operaciones con grafos

Cómo definir un grafo

Isomorfismo de grafos

Subgrafo

$$G = (V,A)$$

$$G'=(V',A')$$

G' es subgrafo de G

$$G' \subseteq G \iff \begin{cases} V' \subseteq V \\ A' \subseteq A \end{cases}$$

Escuela Técnica Superior de Ingenieria Informática

Subgrafo inducido por un conjunto de vértices

$$G = (V,A)$$

$$S \subseteq V$$

G(S): subgrafo inducido por S

Escuela Técnica Superior de Ingenieria Informática

Subgrafo inducido por un conjunto de aristas

$$G = (V,A)$$

$$X \subseteq A$$

G(X): subgrafo inducido por X

Subgrafo recubridor

$$G = (V,A)$$

$$G' = (V', A')$$
 un subgrafo de G

G' subgrafo recubridor de G si V'=V

Tema 1: Introducción a la Teoría de Grafos

Nociones básicas

Subgrafos

Operaciones con grafos

Cómo definir un grafo

Isomorfismo de grafos

Operaciones con grafos:

Eliminación de vértice

$$G = (V,A), v \in V$$

$$G-\mathbf{v} = G(V-\{\mathbf{v}\})$$

Eliminación de arista

$$G = (V,A), e \in A$$

$$G$$
-e $\supseteq G(A - \{e\})$

Operaciones con grafos:

$$G = (V,A)$$
 $G' = (V',A')$

$$G^{\prime\prime\prime} = (V^{\prime\prime\prime}, A^{\prime\prime\prime})$$

$$G'' = (V'',A'')$$
 $G''' = (V''',A''')$

Unión de grafos

$$G \cup G' = (V \cup V', A \cup A')$$

Intersección de grafos

$$G \cap G' = (V \cap V', A \cap A')$$

Operaciones con grafos: Suma de grafos disjuntos

$$G = (V,A)$$
 $G' = (V',A')$

grafos disjuntos $(V \cap V' = \phi)$

Suma de grafos:

$$G + G'$$

Vértices: $V \cup V$

Aristas:

 $A \cup A' \cup \{\{v,v'\} / v \in V, v' \in V'\}$

Operaciones con grafos: Suma de grafos disjuntos

Ejemplo: Grafo rueda $W_n = K_1 + C_n$

Operaciones con grafos:

Grafo complementario

$$\overline{G} = (V, \overline{A})$$

$$K_n = G \cup \overline{G}$$

Operaciones con grafos: Grafo de línea

Dado
$$G = (V,A)$$
 $\begin{cases} V = \{v_1, v_2, \dots, v_n\} \\ A = \{a_1, a_2, \dots, a_m\} \end{cases}$

$$G$$
 a_1
 a_2
 a_4
 a_3

$$L(G) = (L(V), L(A))$$

Vértices: $L(V) = A = \{a_1, a_2, ..., a_m\}$

Aristas: L(A)

 ${a_i,a_j} \in L(A)$ si, en el grafo G, las aristas a_i y a_j son incidentes en un vértice.

Tema 1: Introducción a la Teoría de Grafos

Nociones básicas

Subgrafos

Operaciones con grafos

Cómo definir un grafo

Isomorfismo de grafos

Formas de definir un grafo:

$$G = (V,A) \left\{ \begin{cases} V = \{1,2,3,4,5,6\} \\ A = \{\{1,2\},\{1,3\},\{1,5\},\{1,6\},\{2,4\},\{2,6\},\{3,4\},\{3,5\}\} \end{cases} \right.$$

Realización gráfica

Lista de adyacencias o lista de listas

Lista formada por n_v listas: Para cada vértice, una lista de vértices a adyacentes él.

 $\{\{2,3,5,6\},\{1,4,6\},\{1,4,5\},\{2,3\},\{1,3\},\{1,2\}\}$

Formas de definir un grafo:

Ingenieria Informática

$$G = (V_A)$$
 $n_v = número de vértices$

Matriz de adyacencia

Ad: Matriz de orden $n_v \times n_v$

$$\mathbf{a_{ij}} = \begin{cases} 1 \text{ si } v_i \text{ es adyacente a } v_j \\ 0 \text{ en caso contrario} \end{cases}$$

$$\mathbf{Ad} = \begin{pmatrix} 0 & 1 & 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 \end{pmatrix}$$

Propiedades:

Cuadrada y simétrica

Suma de cada fila (o columna) = grado del vértice correspondiente

Diagonal nula

Formas de definir un grafo:

Ingenieria Informática

$$G = (V,A)$$
 $n_v = n$ úmero de vértices $n_a = n$ úmero de aristas

Matriz de incidencia

In: Matriz de orden $n_v \times n_a$

$$\mathbf{b_{ij}} = \begin{cases} 1 \text{ si } v_i \text{ es v\'ertice de la arista } a_j & \mathbf{In} = \\ 0 \text{ en caso contrario} \end{cases}$$

$In = \begin{pmatrix} 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 5 \\ 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 6 \end{pmatrix}$

Propiedades:

No tiene por qué ser ni cuadrada ni simétrica

Suma de cada fila = grado del vértice correspondiente

Suma de cada columna = 2

Formas de definir un digrafo:

$$G = (V,A) \left\{ \begin{array}{l} V = \{1,2,3,4,5\} \\ A = \{(1,2),(1,4),(2,3),(3,1), \\ (3,4),(4,1),(4,5)\} \end{array} \right.$$

Matriz de adyacencia de digrafo

Ad: Matriz de orden $n_v \times n_v$

$$\mathbf{a_{ij}} = \begin{cases} 1 \text{ si } (\mathbf{v_i}, \mathbf{v_j}) \text{ es una arista} \\ 0 \text{ en caso contrario} \end{cases}$$

$$\mathbf{Ad} = \begin{pmatrix} 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

Propiedades:

Cuadrada, pero no tiene por qué ser simétrica

Suma de cada fila = grado de salida del vértice correspondiente

Suma de cada columna = grado de entrada del vértice correspondiente

Diagonal nula

Formas de definir un pseudografo:

$$G = (V,A) \begin{cases} V = \{1,2,3,4\} \\ A = \{\{1,2\},\{1,3\},\{2,4\},\{2,4\}, \{3,3\},\{3,3\},\{3,4\},\{4,4\}\} \end{cases}$$

Matriz de adyacencia de pseudografo

Ad: Matriz de orden $n_v \times n_v$

Ad: Matriz de orden
$$\mathbf{n_v} \times \mathbf{n_v}$$

$$\mathbf{a_{ij}} = \begin{cases} i \neq j & \text{número de veces que aparece la arista } \{v_i, v_j\} \\ i = j & \text{doble de veces que aparece el lazo } \{v_i, v_i\} \end{cases}$$

$$\mathbf{Ad} = \begin{cases} 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 2 \\ 1 & 0 & 4 & 1 \\ 0 & 2 & 1 & 2 \end{cases}$$

$$\mathbf{Ad} = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 2 \\ 1 & 0 & 4 & 1 \\ 0 & 2 & 1 & 2 \end{bmatrix}$$

Propiedades:

Cuadrada y simétrica

Suma de cada fila (o columna) = grado del vértice correspondiente

Diagonal, no tiene por qué ser nula

Formas de definir un grafo:

Matriz de adyacencia de grafo ponderado

Ad: Matriz de orden $n_v \times n_v$ a_{ij} = peso de la arista $\{v_i, v_j\}$

$$\mathbf{Ad} = \begin{bmatrix} 0 & 7 & 3 & 0 & 9 & 7 \\ 7 & 0 & 0 & 5 & 0 & 8 \\ 3 & 0 & 0 & 3 & 7 & 0 \\ 0 & 5 & 3 & 0 & 0 & 0 \\ 9 & 0 & 7 & 0 & 0 & 0 \\ 7 & 8 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Propiedades:

Cuadrada, simétrica

Diagonal nula

Tema 1: Introducción a la Teoría de Grafos

Nociones básicas

Subgrafos

Operaciones con grafos

Cómo definir un grafo

Isomorfismo de grafos

$$G = (V,A)$$
 $G' = (V',A')$ $(G \sim G')$ isomorfos

 $f: V \longrightarrow V$ 'biyectiva | $\{u,v\} \in A \iff \{f(u),f(v)\} \in A$ '

Escuela Técnica Superior de Ingenieria Informática

Si $G \sim G'$, deben tener en común:

Número de vértices

Número de aristas

Grados de los vértices

Número de ciclos de igual longitud

Número de componentes conexas

Etc.

Encontrar una característica diferente en G y G'

Propiedad de grafos isomorfos

$$G \sim G' \iff G \sim G'$$
isomorfos isomorfos

Dem:

$$G \sim G' \iff \exists \ f: V \longrightarrow V' \ \text{biyectiva} \ | \ \{u,v\} \in A \iff \{f(u),f(v)\} \in A'$$
 $\iff \{u,v\} \notin A \iff \{f(u),f(v)\} \notin A'$

$$\Leftrightarrow \{u,v\} \in \overline{A} \iff \{f(u),f(v)\} \in \overline{A}'$$

$$\iff$$
 $G \sim G'$ isomorfos

 $\frac{\mathcal{C}_{\mathsf{g}}}{\overline{G}_{\mathsf{1}}}$

g

Pb 12 boletín

CONCLUSIÓN: 5, 4 52 => 6,462

Escuela Técnica Superior de Ingenieria Informática

Probar que los dos grafos siguientes no son isomorfos:

$$G_1 = (V_1, A_1)$$

$$V_1 = \{1, 2, 3, 4, 5, 6\}$$

$$V_2 = \{a, b, c, d, e, f\}$$

$$A_1 = \{\{1, 2\}, \{1, 3\}, \{1, 4\}, \{2, 3\}, \{2, 6\}, \{3, 5\}, \{4, 5\}, \{4, 6\}, \{5, 6\}\}\}$$

$$A_2 = \{\{a, b\}, \{a, d\}, \{a, f\}, \{b, c\}, \{b, e\}, \{c, d\}, \{c, f\}, \{d, e\}, \{e, f\}\}$$

Probar que los dos grafos siguientes no son isomorfos:

$$G_{1} = (V_{1}, A_{1}) \qquad G_{2} = (V_{2}, A_{2})$$

$$V_{1} = \{1, 2, 3, 4, 5, 6\} \qquad V_{2} = \{a, b, c, d, e, f\}$$

$$A_{1} = \{\{1, 2\}, \{1, 3\}, \{1, 4\}, \{2, 3\}, \{2, 6\}, \{3, 5\}, \{4, 5\}, \{4, 6\}, \{5, 6\}\} \}$$

$$A_{2} = \{\{a, b\}, \{a, d\}, \{a, f\}, \{b, c\}, \{b, e\}, \{c, d\}, \{c, f\}, \{d, e\}, \{e, f\}\} \}$$

Probar que los dos grafos siguientes no son isomorfos:

$$G_1 = (V_1, A_1) \qquad G_2 = (V_2, A_2)$$

$$V_1 = \{1, 2, 3, 4, 5, 6\} \qquad V_2 = \{a, b, c, d, e, f\}$$

$$A_1 = \{\{1, 2\}, \{1, 3\}, \{1, 4\}, \{2, 3\}, \{2, 6\}, \{3, 5\}, \{4, 5\}, \{4, 6\}, \{5, 6\}\} \}$$

$$A_2 = \{\{a, b\}, \{a, d\}, \{a, f\}, \{b, c\}, \{b, e\}, \{c, d\}, \{c, f\}, \{d, e\}, \{e, f\}\} \}$$

Listas de grados (3,3,3,3,3,3)

Probar que los dos grafos siguientes no son isomorfos:

$$G_{1} = (V_{1}, A_{1}) \qquad G_{2} = (V_{2}, A_{2})$$

$$V_{1} = \{1, 2, 3, 4, 5, 6\} \qquad V_{2} = \{a, b, c, d, e, f\}$$

$$A_{1} = \{\{1, 2\}, \{1, 3\}, \{1, 4\}, \{2, 3\}, \{2, 6\}, \{3, 5\}, \{4, 5\}, \{4, 6\}, \{5, 6\}\}\}$$

$$A_{2} = \{\{a, b\}, \{a, d\}, \{a, f\}, \{b, c\}, \{b, e\}, \{c, d\}, \{c, f\}, \{d, e\}, \{e, f\}\}$$

Listas de grados (3,3,3,3,3,3)

No son isomorfos. El primer grafo contiene 3-ciclos y el segundo no: {1, 2, 3, 1}

Probar que los dos grafos siguientes no son isomorfos:

$$G_1 = (V_1, A_1)$$

$$G_2 = (V_2, A_2)$$

$$V_1$$
={1,2,3,4,5,6}

$$V_2$$
={a,b,c,d,e,f}

$$A_1 = \big\{ \{1,2\}, \{1,3\}, \{1,4\}, \{2,3\}, \{2,6\}, \{3,5\}, \{4,5\}, \{4,6\}, \{5,6\} \big\}$$

$$A_2 = \{ \{a, b\}, \{a, d\}, \{a, f\}, \{b, c\}, \{b, e\}, \{c, d\}, \{c, f\}, \{d, e\}, \{e, f\} \} \}$$

(o ciertas características comunes)

y no ser isomorfos

lista de grados

Listas de grados (3,3,3,3,3,3)

No son isomorfos. El primer grafo contiene 3-ciclos y el segundo no: {1, 2, 3, 1}

Grafo autocomplementario: Si G $\sim \overline{G}$

Grafo autocomplementario: Si G $\sim \bar{G}$

<u>Grafo autocomplementario</u>: Si G $\sim \overline{G}$

Grafo autocomplementario: Si G $\sim \bar{G}$

$$f(1)=a, f(2)=b, f(8)=h$$