14. Ocean sunfish (Mola mola)

Sensitivity Assessment

Table A11.14. Sensitivity assessment for the ocean sunfish (*Mola mola***).** Associated sectors include activities related to offshore renewable energy (O), Fishing (F), or shipping (S). NR = not relevant, NA = not assessed, NEv = no evidence, H = high, M = medium, L = low, NS = not sensitive.

Pressures		Associated	Resistance				Resilience				Sensitivity				
Classification	Pressure type	sector(s)	Score	QoE	AoE	DoC	Score	QoE	AoE	DoC	Score	QoE	AoE	DoC	References
	Physical loss (to land or freshwater habitat)	О	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	-
	Physical change (to another seabed type)	O, F	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	-
	Physical change (to another sediment type)	O, F	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	-

Pressures		Associated sector(s)	Resistance				Resilience				Sensitivity				References
Classification	Pressure type		Score	QoE	AoE	DoC	Score	QoE	AoE	DoC	Score	QoE	AoE	DoC	
	Habitat structure change-removal of substratum (extraction)	0	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	-
	Abrasion/disturbance of substratum surface or seabed	O, F	NEv	NR	NR	NR	NEv	NR	NR	NR	NEv	NR	NR	NR	-
	Penetration or disturbance of substratum subsurface	O, F	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	-
	Changes in suspended solids (water clarity)	O, F	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	-
Physical	Smothering and siltation changes (light)	О	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	-

Pressures		Associated	Resistance				Resilience				Sensitivity				References
Classification	Pressure type	_sector(s)	Score	QoE	AoE	DoC	Score	QoE	AoE	DoC	Score	QoE	AoE	DoC	, nererences
	Smothering and siltation changes (heavy)	0	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	-
	Underwater noise	O, F, S	NA	NR	NR	NR	NA	NR	NR	NR	NA	NR	NR	NR	-
	Electromagnetic energy	0	NEv	NR	NR	NR	NEv	NR	NR	NR	NEv	NR	NR	NR	-
	Barrier to species movement	O, F	NA	NR	NR	NR	NA	NR	NR	NR	NA	NR	NR	NR	-
	Death or injury by collision	O, F, S	М	М	М	NR	М	М	Н	NR	М	М	Н	NR	6, 14
Hydrological	Water flow changes	0	Н	М	М	M	Н	М	М	М	NS	M	М	М	17,21
Chemical	Transition elements & organo-metal contamination	O, F, S	NEv	L	M	NR	NEv	L	NR	NR	sensitive	L	NR	NR	4,12, 27

Appendix 11 Sensitivity Analyses - 14 Mola mola

Pressures		Associated	Resistance				Resilience			Sensitivity				References	
Classification	Pressure type	sector(s)	Score	QoE	AoE	DoC	Score	QoE	AoE	DoC	Score	QoE	AoE	DoC	
	Hydrocarbon & PAH contamination	O, F, S	NEv	L	М	NR	NEv	L	NR	NR	sensitive	L	NR	NR	4,12, 27
	Synthetic compound contamination	O, F, S	NA	NR	NR	NR	NA	NR	NR	NR	NA	NR	NR	NR	-
	Introduction of other substances	O, F, S	NA	NR	NR	NR	NA	NR	NR	NR	NA	NR	NR	NR	-
	Deoxygenation	0	Н	М	М	NR	Н	М	М	NR	NS	М	М	NR	6
Biological	Introduction or spread of invasive non-indigenous species	O, F, S	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	-
	Removal of target species	F	L	М	Н	Н	L	M	Н	Н	Н	М	Н	Н	3, 7, 11, 14, 15, 20, 23, 26
	Removal of non-target species	F	L	Н	Н	Н	L	Н	Н	Н	Н	Н	Н	Н	1, 3, 5, 7, 10, 12-35

Appendix 11 Sensitivity Analyses - 14 Mola mola

References for sensitivity assessment

- Palsson, J., & Astthorsson, O.S. (2017). New and historical records of the ocean sunfish *Mola mola* in Icelandic waters. *Journal of Fish Biology*, 90, 1126-1132. https://doi.org/10.1111/jfb.13237
- Thys, T. & Williams, R. (2013). Ocean sunfish in Canadian Pacific waters: Summer hotspot for a jelly-eating giant? *OCEANS Conference* - San Diego, San Diego, CA, USA: 1-5. https://doi.org/10.1016/j.cub.2017.09.027
- Pope, E.C., Hays, G.C., Thys, T.M., Doyle, T.K., Sims, D. W., Queiroz, N., Hobson, V.J., Kubicel. L., & Houghton, J.D. (2010). The biology and ecology of the ocean sunfish *Mola mola*: a review of current knowledge and future research perspectives. *Reviews in Fish Biology and Fisheries*, 20, 471-487. https://doi.org/10.1007/s11160-009-9155-9
- Perrault, J.R., Buchweitz, J.P., & Lehner, A.F. (2014). Essential, trace and toxic element concentrations in the liver of the world's largest bony fish, the ocean sunfish (*Mola mola*).
 Marine Pollution Bulletin, 15, 348-53. https://doi.org/10.1016/j.marpolbul.2013.11.026
- Erguden, D. & Ayas, D. (2021). Confirmed Occurrence of *Mola mola* (Linnaeus, 1758) from Mersin Bay (Northeastern Mediterranean). *Aquatic Sciences and Engineering*, 36, 11-14. https://doi.org/10.26650/ASE2020679865
- Thys, T. M., Ryan, J. P., Dewar, H., Perle, C. R., Lyons, K., O'Sullivan, J., Farwell, H., Howard, M.J., Weng, K.C., Lavaniegos, B.E., Gaxiola-Castro., G., Bojorquez, L.E.M., Hazen, E.L., & Bograd, S. J. (2015). Ecology of the ocean sunfish, *Mola mola*, in the southern California Current System. *Journal of Experimental Marine Biology and Ecology*, 471, 64-76. https://doi.org/10.1016/j.jembe.2015.05.005
- 7. Hinrichsen, H.H., Barz, K., Lehmann, A., & Moritz, T. (2022). Can sporadic records of ocean sunfish (*Mola mola*) in the western Baltic Sea be linked to saline inflow events? *Journal of Marine Systems*, 236. https://doi.org/10.1016/j.jmarsys.2022.103802
- 8. Potter, I.F. & Howell, W.H. (2011). Vertical movement and behaviour of the ocean sunfish, *Mola mola*, in the northwest Atlantic. *Journal of Experimental Marine Biology and Ecology*, 396, 138–146. https://doi.org/10.1016/j.jembe.2010.10.014

- Potter, I.F., Galuardi, B. & Howell, W.H. (2011). Horizontal movement of ocean sunfish, *Mola mola*, in the northwest Atlantic. *Marine Biology*, 158, 531–540.
 https://doi.org/10.1007/s00227-010-1578-2
- 10. Sousa, L. L., Xavier, R., Costa, V., Humphries, N. E., Trueman, C., Rosa, R., Sims, D.W., & Queiroz, N. (2016). DNA barcoding identifies a cosmopolitan diet in the ocean sunfish. *Scientific Reports*, *6*(1), 28762. https://doi.org/10.1038/srep28762
- Nakamura, I., Goto, Y., & Sato, K. (2015). Ocean sunfish rewarm at the surface after deep excursions to forage for siphonophores. *Journal of Animal Ecology*, 84, 590-603. https://doi.org/10.1111/1365-2656.12346
- 12. Baptista, M., Azevedo, O., Figueiredo, C., Paula, J.R., Santos, M.T., Queiroz, N., Rosa, R., & Raimundo, J. (2019). Body size and season influence elemental composition of tissues in ocean sunfish *Mola mola* juveniles. *Chemosphere*, 223, 714-722. https://doi.org/10.1016/j.chemosphere.2019.02.061
- Cartamil, D.P. & Lowe, C.G. (2004). Diel movement patterns of ocean sunfish *Mola mola* off southern California. *Marine Ecology Progress Series*, 266, 245-253.
 https://doi.org/10.3354/meps266245
- 14. Sawai, E., & Nyegaard, M. (2022). A review of giants: Examining the species identities of the world's heaviest extant bony fishes (ocean sunfishes, family Molidae). *Journal of Fish Biology*, 100, 1345-1364. https://doi.org/10.1111/jfb.15039
- 15. Frafjord, K., Kubicek, B.L., Ronning, A.H., & Syvertsen, P.O. (2017). Records of ocean sunfish *Mola mola* along the Norwegian coast spanning two centuries, 1801–2015. *Journal of Fish Biology*, 91, 1365-1377. https://doi.org/10.1111/jfb.13456
- Nyegaard, M., Loneragan, N., Hall, S., Andrew, J., Sawai, E., & Nyegaard, M. (2018). Giant jelly eaters on the line: Species distribution and bycatch of three dominant sunfishes in the Southwest Pacific. *Estuarine, Coastal and Shelf Science*, 207, 1-15.
 https://doi.org/10.1111/jfb.13456
- 17. Hahlbeck, N., Scales, K.L, Dewar, H., Maxwell, S.M., Bograd, S.J., & Hazen, E.L. (2017).
 Oceanographic determinants of ocean sunfish (*Mola mola*) and bluefin tuna (*Thunnus orientalis*) bycatch patterns in the California large mesh drift gillnet fishery. *Fisheries Research*, 191, 154-163. https://doi.org/10.1016/j.fishres.2017.03.011

- Chang, C.T., Lin, S.J., Chiang, W.C., Musyl, M.K., Lam, C.H., Hsu, H.H., Chang, Y.C., Ho, Y.S., & Tseng, C.T. (2019). Horizontal and vertical movement patterns of sunfish off eastern Taiwan. Deep Sea Research Part II Topical Studies in Oceanography, 175, 104683. https://doi.org/10.1016/j.dsr2.2019.104683
- Nakamura, I. & Yamada, M (2022). Thermoregulation of ocean sunfish in a warmer sea suggests their ability to prevent heat loss in deep, cold foraging grounds. *Journal of Experimental Marine Biology Ecology*, 546, 151651. https://doi.org/10.1016/j.jembe.2021.151651
- 20. Breen, P., Cañadas, A., Cadhla, O.Ó., Mackey, M., Scheidat, M., Geelhoed, S.C., Rogan, E., & Jessopp, M. (2017). New insights into ocean sunfish (*Mola mola*) abundance and seasonal distribution in the northeast Atlantic. *Scientific reports*, 7(1), 2025. https://doi.org/10.1038/s41598-017-02103-6
- 21. Arostegui, M.C., Braun, C.D., Woodworth-Jefcoats, P.A., Kobayashi, D.R., & Gaube, P. (2020). Spatiotemporal segregation of ocean sunfish species (Molidae) in the eastern North Pacific. Marine Ecology Progress Series, 654, 109-125. https://doi.org/10.3354/meps13514
- 22. Baptista, M., Couto, A., Paula, J.R., Raimundo, J., Queiroz, N., & Rosa, R. (2019). Seasonal variations in the abundance and body size distribution of the ocean sunfish *Mola mola* in coastal waters off southern Portugal. *Journal of the Marine Biological Association of the United Kingdom*, 99, 1197–1203. https://doi.org/10.1017/S002531541800111X
- 23. Dewar, H., Thys, T., Teo, S.L.H., Farwell, C., O'Sullivan, J., Tobayama, T., Sochi, M., Nakatsubo, T., Kondo, Y., Okada, Y., Lindsay, D.J., Hays, G.C., Walli, A., Weng, K., Streelman, J.T., & Karl, S. A. (2010). Satellite tracking the world's largest jelly predator, the ocean sunfish, *Mola mola*, in the Western Pacific. *Journal of Experimental Marine Biology and Ecology*, 393(1-2), 32-42. https://doi.org/10.1016/j.jembe.2010.06.023
- 24. Corsini-Foka, M. (2009). Uncommon fishes from Rhodes and nearby marine region (SE Aegean Sea, Greece). *Journal of Biological Research*, 12, 125–133.
- 25. Phillips, N., Nyegaard, M., Sawai, E., Chang, C.-T., Baptista, M., & Thys, T. (2023). The ocean sunfishes (family Molidea): Recommendations from the IUCN Molidae review panel. *Marine Policy*, 155. https://doi.org/10.1016/j.marpol.2023.105760

- Silvani, L., Gazo, M., & Aguilar, A. (1999). Spanish driftnet fishing and incidental catches in the western Mediterranean. *Biological Conservation*, 90, 79–85.
 https://doi.org/10.1016/S0006-3207(98)00079-2
- 27. Baptista, M., Figueiredo, C., Azevedo, O.M., Pina Rodrigues, M.T., Costa, T., Santos, M.T., Queiroz, N., Rosa, R., & Raimundo, J. (2021). Tissue and gender-related differences in the elemental composition of juvenile ocean sunfish (*Mola* spp.). *Chemosphere*, 272. https://doi.org/10.1016/j.chemosphere.2020.129131
- 28. Akyol, O., Erdem, M., Ünal, V., & Ceyhan, T. (2005). Investigations on drift-net fishery for swordfish (*Xiphias gladius* L.) in the Aegean sea. *Turkish Journal of Veterinary & Animal Sciences*, 29, 1225–1231. Available from: https://journals.tubitak.gov.tr/veterinary/vol29/iss6/2
- Phillips, N.D., Reid, N., Thys, T., Harrod, C., Payne, N.L., Morgan, C.A., White, H.J., Porter, S., and Houghton, J.D.R. (2017). Applying species distribution modelling to a data poor, pelagic fish complex: the ocean sunfishes. *Journal of Biogeography*, 44, 2176–2187. https://doi.org/10.1111/jbi.13033
- 30. Phillips, N.D., Kubicek, L., Payne, N.L., Harrod, C., Eagling, L.E., Carson, C.D., Cappanera, V., & Houghton, J.D.R. (2018). Isometric growth in the world's largest bony fishes (genus *Mola*)? Morphological insights from fisheries bycatch data. *Journal of Morphology*, 279, 1312–1320. https://doi.org/10.1002/jmor.20872
- 31. Nyegaard, M., Karmy, J., McBride, L., Thys, T.M., Welly, M., & Djohani, R. (2023). Rapid physiological colouration change is a challenge-but not a hindrance-to successful photo identification of giant sunfish (*Mola alexandrini*, Molidae). *Frontiers in Marine Science*, 10. https://doi.org/10.3389/fmars.2023.1179467
- 32. Reed, J., Kerwath, S., & Attwood, C. (2017). Analysis of bycatch in the South African midwater trawl fishery for horse mackerel *Trachurus capensis* based on observer data. *African Journal of Marine Science*, 39:279–291. https://doi.org/10.2989/1814232X.2017.1366365
- 33. Duffy, L., Lennert-Cody, C., Olson, R., Minte-Vera, C., and Griffiths, S. (2019). Assessing vulnerability of bycatch species in the tuna purse-seine fisheries of the eastern Pacific Ocean. *Fisheries Research* 219. https://doi.org/10.1016/j.fishres.2019.105316

34. Sousa, L.L., López-Castejón, F., Gilabert, J., Relvas, P., Couto, A., Queiroz, N., & Rajan, K. (2016). Integrated monitoring of *Mola mola* behaviour in space and time. *PLOS one*, *11*(8), e0160404. https://doi.org/10.1371/journal.pone.0160404.

Literature Search

Web of Science search terms

AB=("ocean sunfish" OR "Mola mola" OR "M. mola" OR "Poisson lune" OR "Poisson-lune" OR "Pesce mola" OR "Pesce luna" OR "Pez luna" AND "angl*" OR "beam" OR "bottom trawl*" OR "by-catch" OR "dredge*" OR "fish*" OR "gear" OR "gillnet*" OR "hook*" OR "injury" OR "net*" OR "otter trawl*" OR "remov*" OR "aggregate*" OR "anchor*" OR "ballast" OR "barrier*"OR "beach*" OR "launch*" OR "moor*" OR "noise" OR "ship*" OR "steaming" OR "collision*" OR "construction" OR "electro*" OR "turbine*"OR "renewable*" OR "wave" OR "wind" OR "wind farm*" OR "anoxia" OR "copper" OR "current*" OR "disease*" OR "disturbance" OR "endocrine disru*" OR "eutrophication" OR "exposure" OR "heavy metals" OR "hydrocarbon" OR "hypoxia" OR "litter" OR "nitrate*" OR "nitrite*" OR "noise" OR "radionuclide" OR "nutrient*" OR "oil" OR "oil" OR "PAH*" OR "pathogen*" OR "PCB*" OR "plastic*" OR "regime" OR "salinity" OR "sedimentation" OR "silt*" OR "temperatur*" OR "translocation" OR "tributyltin" OR "turbid*" OR "visual" OR "warm*"

Database

ISI Web of Science

Search date

20th February 2024 – 98 results

The term 'sunfish' was removed from the search as it produced 1,185 results.

https://www.webofscience.com/wos/woscc/summary/f7d0a5cf-61e2-4d0f-9482-87764abb1af2-cd57b731/relevance/1

Search output and screening process

Abstracts screened for relevance i.e. must describe ocean sunfish and mention of one of the listed sectors and/or pressures from MARESA. Workflow follows the Rapid Evidence Assessment approach. The title and all auxiliary information (including abstract) were downloaded from ISI Web of Science

in a .ris and excel format. In Excel, abstracts were read and listed to either pass or fail the initial screening process with a reason provided.

Outcome from screening

Forty-eight (49%) abstracts passed initial screening. Of these, 11 (23%) did not pass secondary screening (i.e., on further reading were determined as not relevant), three (6%) could not be accessed and therefore applicability could not be determined, and 33 (69%) passed secondary screening and were accessible. Sensitivity assessments were therefore made based on evidence provided by the resultant 33 papers.