

Quadrotor Motors

Prof. Venki Muthukumar, Ph.D.

Types of Motors

- DC Motors
- Stepper Motors
- Servo Motors

DC motor

Stepper motor

DC motor

DC motors (brushed and brushless)

Figure 3: 4 pole and 8 pole - Permanent magnet rotor

BDC & BLDC motors

Comparing the DEWALT Brushless motor to a standard motor.

BRUSHED MOTOR

"Red" Indicates friction caused by brushes on conventional motors. This slows the motor down and generates heat.

More motors

OUTRUNNER COMPONENTS

Stepper

Brushed DC

Advantages:

- · Easy to drive
- Low cost

Disadvantages:

- High construction complexity
- High maintenance (brushes)
- · Terrible EMI (brushes)

Stepper

Advantages:

- · Precise positioning
- Low cost
- Simple control I/F

Disadvantages:

- · Noise/resonance
- · Heat/inefficient

Induction

Advantages:

- Low cost
- · Easy to spin

Disadvantages:

- · Heat/inefficient
- · High voltage solution
- Large physical construction

BLDC/PMSM

Advantages:

- · No brushes, low EMI
- · High efficiency
- Medium construction complexity

Disadvantages:

- Requires electronic control
- · Complex drive design

Working of DC & BLDC Motors

UAV Workshop

Unidirectional DC Motor Control

DC Motor Control

Quad-copter components

Electronic Speed Controller (ESC)

Signal output from MCU to ESC

ESC handle (1-2 ms) pulse width but we use output signal frequency 300Hz not 500Hz.

Signal output from ESC to motor

The frequency of output signal from ESC to motors 10-30KHz.

Brushless Motors

- Electromagnets are stationary
- Permanent magnets on the axis (either inside or outside)
- Three coils (or more)
- No brushes (less maintenance, higher efficiency)

https://www.hobbyking.com/hobbyking/store/ 25556 AX 2810Q 750KV Brushless Quadcopter Motor.html

Brushless Controllers

- Typically one microcontroller per motor
- Generates PWM signal for the three motor phases
- AC signal converter (MOSFET) to convert PWM to analogue output
- Measure motor position/speed using back-EMF

Inside look of ESC

Example: Parrot Ardrone

(MOSFET)

http://droneflyers.com/category/ar_drone/

How to select the motor?

- https://www.omnicalculator.com/other/dronemotor
- https://oscarliang.com/quadcopter-motorpropeller/