

Mathematics Methods Year 12 Test 2 2016

Section 1 Calculator Free Exponential Function, Fundamental Theorem

STUDENT'S NAME		S NAME	SOLUTIONS	
DATE : Friday 1 st April		lay 1 st April	TIME: 33 minutes	MARKS: 33
	TRUCT ard Items		drawing templates, eraser	
Quest	ions or pa	arts of questions worth mo	re than 2 marks require working to be shown to receive full n	narks.
1.	(7 ma	arks)		
	Deter	rmine $\frac{dy}{dx}$ for each of	the following. Do not simplify.	
	(a)	$y = e^{\sqrt{x}}$	$y = e^{x^{\frac{1}{2}}}$ $y' = \pm x^{-\frac{1}{2}} e^{x^{\frac{1}{2}}}$	[2]
	(b)	$y = \sin\left(e^{2x}\right)$	y = cone 2x . 2e 2x	[2]
	(c)	$y = (\cos x) e^{\cos x}$	$y' = -\sin x e + \cos x(-\sin x)$	e (3)

2. (10 marks)

(a) Evaluate exactly
$$\int_0^2 x e^{4-x^2} dx$$

$$= -\frac{1}{2} \int_0^2 -2x e^{4-x^2} dx$$

$$= -\frac{1}{2} \int_0^2 e^{4-x^2} dx$$

(b) Determine
$$\int \frac{4e^{2x} + 4x}{(e^{2x} + x^2)^3} dx$$
 [3]
$$= \int 2(2e^{2x} + 2x)(e^{2x} + x^2)^{-3} dx$$

$$= 2(e^{2x} - x^2)^{-2} + C$$

$$= -(e^{-2x} - x^2)^{-2} + C$$

(c) Determine
$$\int_{\pi}^{x^2} \left(\frac{d}{dt} e^{e^{-t}} \right) dt$$

$$= \int_{\pi}^{x^2} \left(-e^{-t} e^{e^{-t}} \right) dt$$

$$= \left[e^{e^{-t}} \right]_{\pi}^{x^2}$$

$$= e^{e^{-x^2}} - e^{e^{-\pi}}$$

3. (4 marks)

Given
$$y = \frac{e^x}{3 + e^x}$$

(a) determine
$$\frac{dy}{dx}$$

$$y' = e^{x} (3+e^{x}) - e^{x} e^{x}$$

$$= 3e^{x} + e^{x} - e^{x}$$

$$(3+e^{x})^{2}$$

$$= (3+e^{x})^{2}$$

(b) explain why
$$\frac{dy}{dx} \neq 0$$
 $3e^{x} > 0$ [2]
$$(3 + e^{x})^{2} > 0$$

$$\therefore \frac{dy}{dx} \neq 0$$

4. (5 marks)

(a) Determine
$$\frac{dy}{dx}$$
 given $y = xe^x$ $y = e^x + xe^x$ [2]

(b) Hence determine
$$\int x e^x dx$$

$$\int (e^{x} + xe^{x}) dx = xe^{x}$$

$$\int e^{x} dx + \int xe^{x} dx = xe^{x}$$

$$\int xe^{x} dx = xe^{x} - \int e^{x} dx$$

$$= xe^{x} - e^{x} + c$$

[3]

5. (4 marks)

Given $y = \int_{-3}^{x} \frac{t^2 - 2}{\sqrt{t}} dt$, use the incremental formula $\delta y \approx \frac{dy}{dx} \times \delta x$ to determine the change in y if x changes from 4 to 4.02.

$$y' = \frac{d}{dn} \int_{-3}^{x} \frac{t^{2}-2}{\sqrt{t}} dt$$

$$= \frac{x^{2}-2}{\sqrt{x}}$$

$$\delta y \simeq \frac{x^2 - 2}{5x} \times \delta_{5k}$$

$$\delta_{5k} = 0.02$$

$$x = 4$$

$$\approx \frac{16 - 2}{54} \times 0.02$$

$$= 7 \times 0.02$$

$$= 0.14$$

Mathematics Methods Year 12 Test 2 2016

Section 2 Calculator Assumed Exponential Function, Fundamental Theorem

STUDENT'S NA					
DATE: Friday 1 st April		TIME: 20 minutes	MARKS : 21		
INSTRUCTION	S:				
Standard Items:	Pens, pencils, drawing templates, eraser				
Special Items: Three calculators, notes on one side of a single A4 page (these notes to be handed assessment)					

Questions or parts of questions worth more than 2 marks require working to be shown to receive full marks.

6. (4 marks)

Determine the value of x for which $\int_{x}^{-1} (1-t^2) dt$ has a relative minimum. Justify it is a minimum value.

$$\frac{d}{dx} \int_{x}^{1} (1-t^{2}) dt$$

$$= -\frac{d}{dx} \int_{-1}^{x} (1-t^{2}) dt$$

$$= -(1-x^{2})$$

$$-\left(1-x^2\right) = 0$$

$$1-x^2 = 0$$

$$x = \pm 1$$

$$\frac{d^2}{dn^2} = 2x$$

$$\frac{d^2}{dn^2} = 2 \quad \text{i. MIN}$$

$$x=1 \qquad \frac{d^2}{dn^2} = -2 \quad \text{i. MAX}$$

$$\frac{d^2}{dn^2} = -2 \quad \text{i. MAX}$$

[4]

7. (4 marks)

Sugar is being dissolved in a solution at a rate given by $\frac{dS}{dt} = -20e^{-0.1t}$ where S is the amount, in grams, of undissolved sugar after t seconds.

(a) how much sugar is initially in the solution $\frac{ds}{dt} = -0.1 (200) e^{-0.1}$ [2]

-: 50 = 200

(b) how long does it take for half the sugar to dissolve.

[2]

t = 6.9 secs

8. (5 marks)

A particular rock is dropped into a swimming pool and it sinks vertically to the bottom. Due to water resistance, the rock does not have a constant velocity on the way to the bottom. Its velocity, ν centimetres per second, t seconds after it hits the surface of the water is given by

$$v = 8(2 - e^{-0.8t})$$
 for $0 \le t \le 7$

(a) What is the initial velocity of the rock in the water?

$$v_0 = 8(2 - e^0)$$
= 8

(b) What is the acceleration of the rock after 4 seconds?

$$v = 16 - 8e^{-0.8t}$$

$$a = 6.4e^{-0.8t}$$

$$(t=4) = 0.26 \text{ m/s}$$

(c) Terminal velocity is an expression used to describe the velocity that is approached but never exceeded. Determine the terminal velocity reached by the rock in the water. [2]

[1]

[2]

9. (8 marks)

The amount A of a drug (in milligrams) in the bloodstream will decline at a rate proportional to the current amount . That is $\frac{dA}{dt} = -\left(\frac{1}{k}\right)A$.

where k hours is a constant called the elimination time and time t is measured in hours.

(a) Write down the formula for A(t), the amount of the drug in the bloodstream after t hours, in terms of t, k and the initial amount A_0 . [2]

$$A = A_0 e^{-\frac{t}{R}}$$

(b) What proportion of the drug remains in the bloodstream after k hours? [3]

$$A = A_0 e^{-\frac{R}{R}}$$

$$= A_0 e^{-1}$$

$$= A_0$$

The drug sodium pentobarbitol can be used to tranquilize animals. A dog is tranquilized if its bloodstream contains at least 45 milligrams of the drug for each kilogram of the dog's weight. The elimination time for the drug is 6 hours.

(c) What single dose of this drug should be given in order to tranquilize a 12 kilogram dog for 1 hour?