- Malware
 - Malicious software
 - Gather information
 - Keystrokes
 - Information on screen
 - Participate in a group
 - Controlled over the net and turn into a bot and then be in a bot net
 - Can be controlled and can be used for multiple purposes
 - DDoS
 - Show you advertising
 - Big money
 - Viruses and worms
 - Encrypt your data
 - Ruin your day
- Malware types and methods
 - Viruses
 - Crypto-malware
 - Ransomware
 - Worms
 - Trojan Horse
 - RootKits
 - Keylogger
 - Adware/Spyware
 - Botnet
- How you get malware
 - They tend to work together
 - A worm takes advantage of a vulnerability
 - Installs malware that includes a remote access backdoor
 - Botnet may be installed later
 - Your computer must run a program
 - Email link don't click links
 - Web page pop-up
 - Drive-by download
 - Worm
 - Your computer is vulnerable
 - Keep you OS updated
 - Keep the applications up to date

Virus

- Malware that can reproduce itself
 - It needs you to execute a program
 - Virus needs a human being, whereas a worm can jump from machine without human intervention
 - Reproduces through file systems or the network

- Just running a program can spread a virus
- May or may not cause problems
 - Some viruses are invisible, some are annoying
- Anti-virus is very common
 - Thousands of new viruses every week
 - Is your signature file updated?
- Virus Types
 - Program virus
 - Part of an application
 - Boot sector virus
 - Who needs an OS?
 - Script viruses
 - Operating system and browser based
 - Macro viruses
 - Common in Microsoft Office
 - Fileless virus
 - A stealth attack
 - Does a good job of avoiding antivirus detection
 - Operates in memory
 - But never installed in a file or application
 - Will exploit itself through Flash/Java/Windows vulnerabilities then launches powershell and downloads payload in RAM -> runs powershell scripts, and executables in memory -> adds an auto start to registry (automatically turns on when you boot)
 - Worms
 - Malware that self replicates
 - Doesn't need you to do anything
 - Uses the network as a transmission medium
 - Self-propagates and spreads quickly
 - Worms are pretty bad things
 - Can take over multiple systems at a time
 - Firewalls and IDS/IPS can mitigate many worm infestations
 - Does Not help much once the worm gets in
 - Wannacry worm
 - Started with infected computer -> another vulnerable is exploited with eternalblue

• Personal Data

- Family photos, pictures
- Organization Data
 - Employee personally identifiable information (PII)
 - Financial information
 - Company private data
 - How much is it worth?

Theres always a number

Ransomware

- The want your money and will take your computer in the meantime
- May be fake ransom
 - Locks your computer "by the police"
- A newer generation of ransomware
 - Your data is unavailable until you provide cash
 - Uses cryptography to encrypt your information
 - Your OS remains available, they want you running but not working
 - You must pay the people to obtain the decryption key
 - Untraceable payment system
 - An unfortunate use of public key cryptography
- Protecting against ransomware
 - Always have a good backup
 - An offline backup ideally
 - Keep your OS up to date to patch vulnerabilities
 - Aswell as applications up to date
 - Keep your anti-virus/anti-malware signatures up to date.
 - New attacks every hour
 - Keep everything up to date.

• Trojan Horse

- Software that pretends to be something else
 - So it can conquer your computer
 - Doesn't really are much about replicating
 - Circumvents your existing security
 - Anti-virus may catch it when it runs
 - The better trojans are built to avoid and disable AV
 - Once its inside it has free reign
 - And it may open the gates for other programs

Potentially Unwanted Program (PUP)

- Identified by antivirus/antimalware
- Undesirable software
- o Often installed along with other software
- Overly aggressive browser toolbar
- A backup utility that displays ads
- Browser search engine hijacker

Backdoors

- Why go through normal auth methods?
- o Just walk in the back door
- Often placed on your computer through malware
 - Some malware software can take advantage of backdoors created by other malware
- Some software includes a backdoor

- Old linux kernel included a backdoor
- Bad software can have a backdoor as part of the app.

Remote Access Trojans (RATs)

- Remote Administration Tool
- The ultimate backdoor
- Administrative control of a device
- Malware installs the server/service/host
 - Can be connected with a client software
- Control a device
 - Key logging
 - Screen recording / screenshots
 - Copy files
 - Embed more malware
- DarkComet Rat
- Don't run unknown software
- Keep AV/AM up to date
- Always have a backup

Rootkits

- Originally a Unix Technique
 - The "root" in rootkit
- Modified core system files
 - Part of the kernel
- Can be invisible to the operating system
 - Won't see it in task manager
- Also invisible to traditional antivirus utilities
 - If you cant see it, you can't stop it
- Kernel drivers
 - Zeus/ZBot malware
 - Famous for cleaning out bank accounts
 - Now combined with Necurs rootkit
 - Necurs is a kernel level driver
 - Necurs makes you cant delete Zbot
 - Access denied
 - Trying to stop the software
 - Access denied
 - Use a remover specific to the rootkit
 - Usually built after the rootkit is discovered
 - Secure boot with UEFI
 - Security in the BIOS

Adware

- Your computer is one big advertisement
- Pop ups with pop ups

- May cause performance issues
 - Especially over the network
- Installed accidentally
 - May be included with other software
- Be careful of software that claims to remove adware
- Spyware
 - Malware that spies on you
 - Advertising, identity theft, affiliate fraud
 - Can trick you into installing
 - Peer to peer, fake security software
 - Browser monitoring
 - Capture surfing habits
 - Keylogger
 - Capture every keystroke
- Why is there so much adware and spyware
 - o Money, your eyeballs are incredibly valuable
 - Your computer time and bandwidth is valuable
 - Your bank account is valuable.
- Protecting against adware/spyware
 - Maintain your antivirus / antimalware
 - Always know what you're installing
 - Owner of the owner own
 - Run some scans

Bots

- Once your machine is infected, it becomes a bot
- How does it get on your computer
 - Trojan Horse, or running a program that you thought was legitimate
 - OS or application vulnerabilities
- Sit round and check in with C2-Command and Control server and wait for instructions.
- A group of bots working together
- Distributed Denial of Service (DDoS)
 - The power of many
- Relay spam, proxy network traffic, distributed computing tasks
- Botnets are for sale
 - Rent time from bad guys
 - Not a long term business proposition
- Stopping the bot
 - Prevent initial infections
 - OS and application patches
- Identify an existing infection
 - On demand scans
- Prevent C2

- Block at the firewall
- Identify the workstation with a host based firewall or host based IPS (intrusion prevention system)

Logic bomb

- Waits for a predefined event
- Disgruntled employees.
- Time bomb
 - Time or date
- User event
 - Logic Bomb
- Difficult to identify
 - Difficult to recover if it goes off
 - Hard to find evidence because they'll delete themselves

Real World logic bombs

- o March 19, south korea
- Email with malicious attachment sent to organizations
 - Posed as ban
 - Trojan installs malware
- o March 20
 - Malware time based logic bomb activities
 - Storage and master boot record deleted, system reboots
- Boot device not found
- Please install OS on your hard disk
- Kiev, Ukraine high voltage substation
 - Logic bomb begins disabling electrical circuits
 - Malware mapped out of the control network
- Began disabling power at a predetermined time
- Customized for SCADA networks
 - Supervisory Control and Data Acquisition

Preventing a logic bomb

- Difficult to recognize
 - Each is unique
 - No predefined signatures
- Process and procedures
 - Formal change control
- Electronic monitoring
 - Alert on changes
 - Host based intrusion detection, Tripwire
- Constant audisting
 - An administrator can circumvent these existing systems

Plaintext / unencrypted passwords

- Some applications store passwords "in the clear"
 - No encryption. You can read the stored password.
 - This is rare, thankfully
- Do not store passwords as plaintext
 - Anyone with access to the password file or database has every credential
- What to do if your application saves passwords as plaintext:
 - Get a better application
- Hashing a password
 - o Hashres represent data as a fixed length string of text
 - A message digest or "fingerprint"
 - Will not have a collision
 - Different inputs will not have the same hash
 - One way trip
 - Impossible to recover the original message from the digest
 - A common way to store passwords

Examples:

- SHA-256 Hash algorithm
- The password file
 - Different across operating systems and applications
- Spraying attack
 - Try to login with an incorrect password
 - Eventually you're locked out
 - Using common passwords
 - Attack with an account with the top three passwords
 - If they dont work, move to the next account
 - No lockouts no alarms, no alerts
- Brute force
 - o Try every possible password combination until the hash is matched.
 - This might take some time
 - A strong hashing algorithm slows things down
 - It is solvable through bruteforce by comparing all letters to the hash of the original password
 - Brute force attacks online
 - Keep trying the login process
 - Very slow
 - Most accounts will lockout after a number of failed attempts
 - Brute force the hash offline
 - Obtain the list of users and hashes
 - Calculate a password hash
 - Compare it to a stored hash
 - Large computational resource requirement

- Dictionary attacks
 - Use a dictionary to find common words
 - Password are created by humans
 - Many common wordlists available on the net
 - Some are customized by language or line of work
 - The password crackers can sub letters
 - This takes time, distributed cracking and GPU cracking is common
 - Discover passwords for common words
 - This won't discover random passwords
- Rainbow tables
 - An optimized, pre built set of hashes
 - Saves time and storage
 - Does Not need to contain every hash
 - Contains pre calculated hash chains
 - Remarkable speed increase
 - Especially with longer password lengths
 - Challenge; needs different tables for different hashing methods
 - Windows is different than MySQL
- Salt
 - Random data added to a password when hashing
 - Every user gets their own random salt
 - The salt is commonly stored with the password
 - Rainbow tables wont work with salted hashes
 - Additional random value added to their original password
 - This slows things down the brute force process
 - It doesn't completely stop the revers engineering
- Salting the hash
 - Each user gets a different random hash with each letter that is random
- When the hashes get out
 - Collection #1
 - A collection of email addresses and passwords
 - 12k files and 87 gb of data
 - 1.1 bil unique emails and passwords
 - 772k unique usernames
 - 773 million people
 - 21 unique passwords
 - You really need a password manager

Malicious USB Cable

- o It looks like a normal cable
- Has additional electronics
- Operating system identified it as a HID
 - Human interface device
 - It looks like you've connected a keyboard or mouse

- Once connected, the cable takes over
- o Downloads and installs malicious software
- Dont plug in any USB cable
 - Always use trusted hardware
- Malicious flash drive
 - Plug it in and see whats on it
- Older operating systems would automatically run files
 - This has now been disabled or removed by default
- Could still act as a HID (Human Interface Device)/ keyboard
 - Start a command prompt and type anything without your intervention
- Attackers can load malware in documents
 - PDF files, spreadsheet virus
- Can be configured as a boot device
 - Infect the computer after a reboot
- Acts as an ethernet adapter
 - Redirects or modified internet traffic requests
 - Never connect an untrusted USB device

Skimming

- Stealing CC info usually during a normal transaction
 - Copying data from the magnetic stripe: card number, expiration date, card holders name
- o ATM skimming
 - Includes a small camera to also watch your pin
- Use the card information for other financial transactions
- Always check before using card readers

Card cloning

- Get card details from a skimmer
 - The clone needs an original
- Create a duplicate of a card
 - Often included the CVC (card validation code)
- Can be used with magnetic cards
 - The chips cant be cloned
- Cloned gift cards are common
 - A magnetic stripe tech

Machine Learning

- Our computers are getting smarter
- This recognizes a lot of training data
 - Face recognition requires analyzing a lot of faces.
- This requires a lot of training data
 - Face recognition requires analyzing a lot of faces
 - Driving a car requires a lot of road time
- In use everyday
 - Stop spam

- Recommend products
- What movie would you like to see
- Prevent car accidents
- Poisoning the training data
 - Confuse the Ai
 - Attackers send modified training data that causes the Ai to behave incorrectly
 - Microsoft Al Chatter Bot named Tay
 - March 23, 2016
 - Interacted with twitter users, didnt program anti offensive behavior or anti offensive behavior algo
 - Tay quickly became racist, sexist and inappropriate bot.
 - Evasion attacks
 - The Ai is only as good as the training
 - Attackers find the holes and limitations
 - Change the number of good and bad words in the message
- Securing the learning algo
 - Check the training data
 - Cross check and verify
 - Constantly retrain with new data
 - More data and better data
 - Train the Ai with possible poisoning

Supply Chain

- The chain contains moving parts
 - Raw materials, supplies, manufacturers
- Attackers can infect any step along the way
 - Infect different parts of the chain without suspicion
- One exploit can infect the entire chain
- Target supply chain
 - 40 million credit card stolen
 - Heating and AC firm in Penn was infected and they worked for target and VPN Credentials for HVAC techs was stolen.
 - Email with malware
 - Used to infect every cash register at 1,800 stores.

Supply Chain Security

- Can you trust your new server/router/switch/software
- Use a small supplier base
- Strict c ontrols over policies and procedures
- Ensure proper security is in place
- Security should be part of the overall design
 - There's no limit to security

Attacks can happen anywhere

- Two categories for IT security
 - The on premises data is more secure
 - The cloud based data is more secure
- Cloud based security is centralized and costs less
 - No dedicated hardware, no data center to secure
 - On premises puts the security burden on the client
 - Data center security and infrastructure costs
- On-premises security
 - Customize your security posture
 - Full control
 - On site IT team can manage security better
 - The local team can ensure everything is secure
 - A local team can be expensive and difficult to staff
 - Local team maintains uptime and available
 - System checks can occur at any time
 - No phone call for support
 - Security changes can take time
 - New equipment, configs, and additional costs
- Security in the cloud
 - Data is in a secure environment
 - No physical access to the data center
 - Cloud providers are managing large scale security
 - Automated signature security updates
 - Users must follow security best practices
 - Limited downtime
 - Extensive fault tolerance and 24/7/365 monitoring
 - Scale security options
 - One click security developments
 - This may not be as customizable as necessary

Cryptographic Attacks

- You've encrypted data and send it to another person
 - Is it really secure?
 - How do you know?
- The bad guy doesnt have the combination (the key)
 - So they break the safe (the cryptography)
- Finding ways to undo the security
 - There are many potential cryptographic shortcomings
 - The problem is often the implementation

Birthday Attack

 In a classroom of 23 students, what is the chance of two students share a birthday

- About 50%
- For a class of 30, the chance is about 70%
- o In the digital world, this is a hash collision
 - A hash collision is the same hash value for different plaintexts
 - Find a collision through brute force
- The attacker will generate multiple versions of plaintext to match the hashes
 - Protect yourself with a large hash output size

Collisions

- Hash digests are supposed to be unique
- Different input data should never create the same hash
- MD5 hash
 - Message digest algorithm 5
 - First published in april 1992
 - Collision identified in 1996
- Researchers created a CA certificate that appeared legitimate when MD5 was checked.
 - Built other certificates that appeared to be legit and issued by RapidSSL

Downgrade Attack

- o Instead of using perfectly good encryption, use somethings thats not so great
- Force the systems to downgrade their security
 - 2014 TLS vulnerability
 - POODLE (padding oracle on downgraded legacy encryption)
 - On path attack
 - Force clients to fallback to SSL 3.0
 - SSL 3.0 has significant cryptographic vulnerabilities
 - Because of POODle, modern browsers wont fallback to SSL 3.0