SubClass, Equivalence, Existential Restrictions

Henriette Harmse

Building Blocks of DLs and OWL

OWL	DL	Semantics	Example
instance or individual	instance or individual	A member of a set.	A person called Mary or a dog called Fido.
class	concept	A set of individuals.	The Person class (concept) consisting of persons or the Dog class (concept) consisting of dogs.
object prop- erty	role	A set of pairs of individuals.	The owns object property (role) can link a pet and its owner: Mary owns Fido (in DL owns(Mary, Fido)).
data property	concrete role	A set of pairs where each pair consists of an individual linked to a data value.	The data property (concrete role) hasAge can link a number representing an age to an individual: hasAge(Mary, 10) (in DL hasAge(Mary, 10))

The semantics of SubClassOf

Syntax

OWL	DL	Semantics
Class: C		
SubClassOf: D	$C \sqsubseteq D$	(D (C)
Class: D		

Semantics

The set C is a subset of the set D. This means every individual of C is necessarily an individual of D, but not every individual of D is necessarily an individual of C.

The semantics of SubClassOf

Example

OWL	DL	Semantics
Class: Dog		
SubClassOf: Pet	$Dog \sqsubseteq Pet$	Pet Dog
Class: Pet		

The semantics of SubClassOf

Guidance - When to use

SubClassOf is used when you want to define a hierarchy from the most general to the most specific. I.e., it is typically what you see in taxonomies.

Guidance - When **not** to use

When not to use	Venn diagram
When there is an individual of \mathcal{C} that is not an individual of \mathcal{D} .	D C
When every individual of D is also an individual of C and every individual of C is also and individual of D , then prefer using EquivalentTo.	D C

The semantics of EquivalentTo

Syntax

OWL	DL	Semantics
Class: C		
EquivalentTo: D	$C \equiv D$	
Class: D	which can be	
which can be seen as shorthand for: Class: C	seen as short- hand for	D C
SubClassOf: D	$C \sqsubseteq D$	
Class: D	$D \sqsubseteq C$	
SubClassOf: C		

Semantics

Every individual of C is an individual of D, **and** every individual of D is an individual of C.

The semantics of EquivalentTo

Example

OWL		DL	Semantics
Class: Person			
EquivalentTo:	Human	$Person \sqsubseteq Human$	(Human Person)
Class: Human			

The semantics of EquivalentTo

Guidance - when to use

EquivalentTo is used for definitions. That is when you want to state the necessary and sufficient conditions for a concept.

Guidance - When not to use

When not to use	Venn diagram
When there is an individual of C that is not in D .	D C
When there is an individual of D that is not in C .	D C

In summary - Using EquivalentTo versus SubClassOf

SubClassOf

SubClassOf is used when you want to define a hierarchy from the most general to the most specific. I.e., it is typically what you see in taxonomies

EquivalentTo

EquivalentTo is used for definitions. That is when you want to state the necessary and sufficient conditions for a concept.

Syntax

OWL	DL	
ObjectProperty: r		
Class: D	$D \equiv \exists r.C$	D_{\bullet} r
EquivalentTo: r some C	$D \equiv \exists I.C$	r
Class: C		7

Semantics

- $(\exists r.C)^{\mathcal{I}} = \{x \in \triangle^{\mathcal{I}} | \text{there is an } y \in \triangle^{\mathcal{I}} \text{ such that } (x,y) \in r^{\mathcal{I}} \text{ and } y \in C^{\mathcal{I}} \}$
- r some C (∃r.C) is the set of individuals such that for each individual x there is at least 1 individual y of type C that is linked to x via the object property (role) r.
- C is called the filler of r, or more succinctly the r-filler.

Example using EquivalentTo

ObjectProperty: owns

Class: PetOwner

EquivalentTo: owns some Pet

Class: Pet

Example using SubClassOf

ObjectProperty: owns

Class: DogOwner

SubClassOf: owns some Pet

Class: Pet

Examples

Assuming we have D EquivalentTo: r some C, which of these individuals will be in r some C and therefore as well in D?

Examples

Which of these individuals will be in ${\tt r}$ some C and therefore as well in D?

Answer

Individuals 2, 3, 5

Variations on existential restrictions

Syntax

Name	OWL	DL
Unqualified	ObjectProperty: owns	
existential	Class: Owner	<i>Owner</i> \equiv ∃ <i>owns</i> \top or
restric-	EquivalentTo:	$Owner \equiv \exists owns$
tions	owns some owl:Thing	
	ObjectProperty: citizenOf	
Value re-	Class: UKCitizen	UKCitizen =
	EquivalentTo:	0.10.0.20.1
SUICUOIIS	citizenOf hasValue UK	$\exists citizenOf.\{UK\}$
	Individual: UK	
Existential	DataProperty: name	
restriction	Class: Person	Person ⊑
on data	SubClassOf:	∃ <i>name</i> .xsd:string
property	name some xsd:string	

Using existential restrictions with SubClassOf vs EquivalentTo

A Person have $\overline{1}$ or more name

DataProperty: name

Class: Person

SubClassOf:

name some xsd:string

Why did we use SubClassOf rather than EquivalentTo?

Using existential restrictions with SubClassOf vs EquivalentTo

A Person have 1 or more name

DataProperty: name

Class: Person

SubClassOf:

name some xsd:string

Why did we use SubClassOf rather than EquivalentTo?

Using existential restrictions with SubClassOf vs EquivalentTo

A DogOwner is a Person that owns a Dog

ObjectProperty: owns

Class: Dog

Class: Person

Class: DogOwner

EquivalentTo:

Person and owns some Dog