Elementos de Sistema - **Simulado** Prova "10" - Prática

Nome completo:		
Pontos de:	HW	SW
/ 30		<i>l</i> 55

Instruções:

- 1. A avaliação tem duração total de 120 minutos.
- 2. Você não pode consultar a internet, apenas seu repositório LOCAL
- **3.** Você deve editar esse documento.
- **4.** Assim como nos projetos, os códigos fontes estão em: *Isrc/rtl/ src/nasm* e o arquivo de configuração dos testes em *Itest/config.txt*

1) (4 HW, 4 SW) Conceitos

a) [2 HW, 2 SW) Qual o papel do Program Counter na execução de um programa?
L	
h) /	2 HW 2 SW) Explique como um programa executa no computador (PAM/POM/CDII)
b) (2 HW, 2 SW) Explique como um programa executa no computador (RAM/ROM/CPU)
b) (2 HW, 2 SW) Explique como um programa executa no computador (RAM/ROM/CPU)
b) (2 HW, 2 SW) Explique como um programa executa no computador (RAM/ROM/CPU)
b) (2 HW, 2 SW) Explique como um programa executa no computador (RAM/ROM/CPU)
b) (2 HW, 2 SW) Explique como um programa executa no computador (RAM/ROM/CPU)
b) (2 HW, 2 SW) Explique como um programa executa no computador (RAM/ROM/CPU)
b) (2 HW, 2 SW) Explique como um programa executa no computador (RAM/ROM/CPU)
b) (2 HW, 2 SW) Explique como um programa executa no computador (RAM/ROM/CPU)
b) (2 HW, 2 SW) Explique como um programa executa no computador (RAM/ROM/CPU)
b) (2 HW, 2 SW) Explique como um programa executa no computador (RAM/ROM/CPU)
b) (2 HW, 2 SW) Explique como um programa executa no computador (RAM/ROM/CPU)

2) (0 HW, 15 SW) pseudocódigo

Arquivo:	Projetos/F-Assembly/src/nasm/p3Q2.vhd
Teste:	SIM, simulação
Output:	Código p3Q2.vhd

Transcreva o pseudocódigo a seguir para assembly do Z01.1:.

• Para testar, descomentar linha do F-Assemblt/tests/config.txt

```
o p3Q2.nasm 2 1000
```

3) (0 HW, 35 SW) Pisca LED

Arquivo:	Projetos/F-Assembly/src/nasm/p3Q3.vhd
Teste:	Gravar no Hardware e ver LEDs piscarem
Output:	Vídeo dos LEDs piscando no repositório

Considerando que nosso hardware opera com um clock de 50.000.000 Hz, um código em assembly que faz com que os LEDs da placa a aproximadamente 1s.

(Piscar = tudo por aceso por um segundo e depois tudo apagado por um segundo)

- Para testar:
 - ./programFPGA
 - ./programSoftware.py -n src/nasm/p3Q3.nasm

4) (6 HW, 6 SW) Engenharia reversa

Teste: Output:			
		n equipamento para entender o que um prograr sua equipe percebeu que o produto faz uso do	
	stado das memórias como a se	guir (extraído do chip via leitura do JTAG):	
0 : 00 1 : 10 2 : 00 3 : 10	NT BEGIN 0000000000000000011 00101100000010000 00101001011000000 00000011010010000	CONTENT BEGIN 0 : 000000000000001 1 : 0101100000010000 2 : 0101001011000000 3 : 0000001000000000 4 : 0000011000001000 END;	
ROM		RAM	
) (6 HW, 3 SV	N) Faça o dissasembly do cód	digo (transcreva o programa para nasm)	

5) (20 HW, 5 SW) Mudando o HW

Um colega do seu grupo responsável por desenvolver a CPU achou muito mais interessante utilizar um único MUX (muxAMD) de quatro entradas (que já tinha sido desenvolvido na entrega C) no lugar dos dois mux: muxA/M, e muxAM/D

a) (5 HW, 0 SW) Faça a modificação no Hardware do Z01.1 para incorporar esse novo Mux.

Arquivo:	Projeto/G-CPU/
Teste:	Gerar RTL e analisar novo componente
Output:	RTL da nova CPU

 Ao realizar essa modificação, você deve realizar um commit com a mensagem: "muxAMD na CPU"

COLAR RTL AQUI

b) (5 HW, 0 SW) Com essa modificação, será necessário alterar o ControlUnit que era responsável por controlar os muxA/M e, muxAM/D para controlar o novo seletor do muxAMD.

Arquivo:	Projetos/G-CPU/
Teste:	testeHW.py e testeAssemblyMyCPU.py
Output:	Código modificado

- Para isso será necessário remover as duas saídas muxAM e muxAMD da entidade do ControlUnit e adicionar o novo sinal muxAMD
- Ao realizar essa modificação, você deve realizar um commit com a mensagem: "corrigido ControlUnit para controlar novo muxAMD"

Seu colega teve outra ideia! Inserir o display de sete segmentos como periférico do MemoryIO, como ilustrado a seguir:

c) (5 HW, 0 SW) Realize essa modificação no hardware do Z01.1

Arquivo:	Projetos/G-CPU/
Teste:	testeHW.py e testeAssemblyMyCPU.py

- Você deve adicionar a entidade do MemorylO a seguinte porta:
 - SSEG: out std_logic_vector(6 downto 0);
- Você deve substituir o arquivo /Projetos/G-Computador/src/rtl/Computador.vhd com o arquivo Computador_NEW.vhd que está na mesma pasta.

d) (5 HW, 5 SW) Escreva um código em assembly que demonstre que escreva o digito 7 no display de sete segmentos e prove que o novo hardware está funcionando.

Arquivo:	Projetos/F-Assembly/p3Q5.nasm
Teste:	testeAssemblyMyCPU.py -g (waveform)
Output:	Waveform

COLAR AQUI O WAVEFORM AQUI QUE DEMONSTRA O SEVEN SEG FUNCIONANDO

- Para testar deixar só a linha a seguir descomentanda no F-Assembly/tests/config.txt
 p3Q5.nasm 1 1000
- Na pasta do projeto G, executar teste: ./testeAssemblyMyCPU -g