

DEPARTEMEN TEKNIK INFORMATIKA

REINFORCEMENT **LEARNING**

Kecerdasan Komputasional

Machine Learning

Supervised

Unsupervised

Semi-Supervised

Reinforcement

Konsep Reinforcement Learning

- Konsep pembelajaran yang melibatkan interaksi Agent dengan lingkungan (environment) untuk mencapai tujuan (goal)
- Agent: mempunyai tugas untuk mencapai tujuan (goal)
- Environment: memberikan umpan balik terhadap aksi yang dilakukan Agen
- State (s) merupakan kondisi atau situasi saat ini berdasarkan persepsi Agen
- Goal: memilih aksi yang memaksimalkan reward
- **Reward** (r) merupakan sebuah nilai untuk mengukur keberhasilan aksi dari Agen
- Action (a) merupakan aksi yang akan dipilih Agen untuk mencapai tujuan

Contoh Reinforcement Learning

Cart-Pole Balancing

- Goal Menyeimbangkan tiang diatas gerobak agar tetap berdiri
- State Sudut tiang, kecepatan sudut, posisi gerobak, kecepatan horisontal
- Actions Gaya horisontal ke gerobak
- Reward setiap step bernilai 1 jika tiang berdiri tegak

Contoh Reinforcement Learning

Bin Packing

- Goal Mengambil barang dalam kotak dan meletakkan ke kontainer
- State Piksel-piksel pada gambar yang tertangkap kamera
- Actions Aksi-aksi yang dilakukan robot, misalnya mengambil atau meletakkan barang
- Reward Bernilai positif jika berhasil menempatkan barang dan bernilai negatif jika sebaliknya

Konsep Reinforcement Learning

- s_t : state pada waktu t
- a_t : aksi pada waktu t
- r_t : reward pada waktu t

Konsep Reinforcement Learning

Total Reward

$$R_t = \sum_{i=t}^{\infty} r_i = r_t + r_{t+1} + \dots + r_{t+n} + \dots$$

Discounted Total Reward

$$R_t = \sum_{i=t}^{\infty} \gamma^i r_i = \gamma^t r_t + \gamma^{t+1} r_{t+1} + \dots + \gamma^{t+n} r_{t+n} + \dots$$

$$\gamma : \text{discount factors, } 0 < \gamma < 1$$

Definisi *Q-function*

Total Reward, R_t , total semua reward dengan diskon dari waktu ${m t}$

$$R_t = r_t + \gamma^1 r_{t+1} + \gamma^2 r_{t+2} + \dots$$

$$\gamma: \text{ discount factors, } 0 < \gamma < 1$$

Q-function menangkap *expected total feature reward* Agen pada state *s*, yang melakukan aksi *a* tertentu

$$Q(s_t, a_t) = E[R_t | s_t, a_t]$$

Bagaimana cara Agen memilih aksi dari Q-function?

$$Q(s_t, a_t) = E[R_t | s_t, a_t]$$

Q-function

Agen memerlukan suatu **policy** $\pi(s)$ untuk memilih **aksi terbaik** pada state **s**

Strategi: memilih aksi yang memaksimalkan future reward

$$\pi^*(s) = \underset{a}{\operatorname{argmax}} Q(s, a)$$

 π^* optimal *policy* π

Pendekatan Reinforcement Learning

- Policy-based RL
 - Memilih secara langsung optimal policy π^*
 - Memilih policy yang mencapai maximum future reward
- Value-based RL
 - Mengestimasi optimal value function $Q^*(s,a)$
 - Maximum value yang tercapai oleh policy
- Model-based RL
 - Membangun transition model pada sebuah environment
 - Perencanaan berbasis model

Desain Algoritma Reinforcement Learning

Policy-based Reinforcement Learning

$$V(s)$$
 or $Q(s, a)$

Generate
Samples
(Run Policy)

Improve the policy

$$\pi^*(s) = \operatorname*{argmax}_{a} Q(s, a)$$

Value-based Reinforcement Learning

Fit Model

$$R_t = \sum_t \gamma^t r(s_t, a_t)$$

Generate
Samples
(Run Policy)

Improve the policy

$$Q_{t+1}(s_t, a_t) = Q_t(s_t, a_t) + \alpha \nabla_Q E[R_t | s_t, a_t]$$

Model-based Reinforcement Learning

Generate
Samples
(Run Policy)

Improve the policy

- a. Menggunakan model (no policy)
 - Monte Carlo tree search
- b. Backpropagate gradients policy
- c. Menggunakan model untuk pembelajaran value function
 - Dynamic programming

Menggunakan *policy* untuk mengestimasi Q yang memaksimalkan *future reward*:

- Aproksimasi Q* (persamaan Bellman optimality)
- Update setiap pasangan (s, a)

Q-Learning: Value Iteration

Learning rate Discount factor $Q_{t+1}(s_t, a_t) = Q_t(s_t, a_t) + \propto \left(R_{t+1} + \gamma \max_a Q_t(s_{t+1}, a_t) - Q_t(s_t, a_t)\right)$ New state Old state Reward

Q-Table

	A1	A2	А3	A4
S1	+1	+2	-1	0
S2	+2	0	+1	-2
S3	-1	+1	0	-2
S4	-2	0	+1	+1

initialize Q[num_states,num_actions] arbitrarily observe initial state s

repeat

select and carry out an action a observe reward r and new state s'

Q[s,a] = Q[s,a] + \alpha(r + \gamma \text{max}_a, Q[s',a'] - Q[s,a]) s = s'

until terminated

Sumber: Lex Fridman, Deep Reinforcement Learning, MIT Course 2018: Introduction to Deep Learning

Cart-Pole Balancing

- Goal Menyeimbangkan tiang diatas gerobak agar tetap berdiri
- State Sudut tiang, kecepatan sudut, posisi gerobak, kecepatan horisontal
- Actions Gaya horisontal ke gerobak
- **Reward** setiap step bernilai 1 jika tiang berdiri tegak

Contoh Penerapan Q-Learning

```
import gym
env = gym.make('CartPole-v0')
for i episode in range(20):
  observation = env.reset()
  for t in range(100):
    env.render()
    print(observation)
    action = env.action_space.sample()
    observation, reward, done, info =
env.step(action)
    if done:
       print("Episode finished after {}
timesteps".format(t+1))
       break
env.close()
```


Kelemahan Q-Learning

Value Iteration tidak praktis:

- State atau action yang terbatas
- Tidak dapat mengeneralisir state yang belum diketahui

Contoh Breakout game

State: screen pixels

- Ukuran gambar: 84×84(resized)
- Consecutive 4 images
- Grayscale with 256 gray level

Solusi pendekatan Deep Q Learning!

its_campus

