Quantum simulation on a random tensor network

February 1, 2022

1 Differentiating single step time evolution

The m site Rydberg Hamiltonian is

$$H_{\text{Rydberg}} = \sum_{i,j=1,i>j}^{m} \frac{C}{|r_i - r_j|^6} n_i n_j + \Omega(t) \sum_{i=1}^{m} \frac{1}{2} \sigma_i^x + \Delta(t) \sum_{i=1}^{m} n_i$$
 (1)

For simplicity, we consider the following general representation of a time-space dependent Hamiltonian with k terms

$$H = \sum_{k=1}^{K} c_k O_k \tag{2}$$

where c_k can be dependent on a set of parameters like locations r_1, r_2, \ldots, r_m , and pulses $\Omega(t)$ and $\Delta(t)$.

1.1 The ODE version

In each step of the ODE solver, it performs the following update

$$|\psi'\rangle = (1 - iH\Delta t)|\psi\rangle \tag{3}$$

We derive the backward rules for the gradients by inspecting the following equations

$$\overline{\mathcal{L}}\delta\mathcal{L} = \overline{|\psi'\rangle} \circ \delta|\psi'\rangle
= \sum_{k} \overline{c_k} \delta c_k + \overline{|\psi\rangle} \circ \delta|\psi\rangle + \overline{\Delta t} \delta \Delta t$$
(4)

where \circ is the Hadamard product applied on real numbers, note a complex number in computer is composed of two real numbers. The above equations has a more elegant linear algebra version as the following.

$$\overline{\mathcal{L}}\delta\mathcal{L} = \overline{\langle \psi' | \delta | \psi' \rangle}
= \sum_{k} \overline{c_k} \delta c_k + \overline{\langle \psi | \delta | \psi \rangle} + \overline{\Delta t} \delta \Delta t$$
(5)

where we have used $\langle \psi |$ to represent the hermitian conjugate of $|\psi \rangle$.

$$\delta|\psi'\rangle = -i\sum_{k}\delta c_{k}O_{k}\Delta t|\psi\rangle - iH\delta\Delta t|\psi\rangle + (1 - iH\Delta t)\delta|\psi\rangle$$
 (6)

By observing Eq. (5) and Eq. (6), one can see

$$\overline{\langle \psi |} = \overline{\langle \psi' |} (1 - iH\Delta t) \tag{7}$$

$$\overline{c_k} = \Re \left[-i\Delta t \overline{\langle \psi' | O_k | \psi \rangle} \right] \tag{8}$$

$$\overline{\Delta t} = \Re \left[-i \overline{\langle \psi' | H | \psi \rangle} \right] \tag{9}$$

After a step, a normalization procedure might be called on the wave functions, this is trivial so that we do not discuss it at this stage.

1.2 The expmv version

To differentiate the time evolution directly, one can use the Taylor expansion

$$|\psi'\rangle = e^{-iHt}|\psi\rangle$$

$$= \sum_{n=0}^{\infty} \frac{(-it)^n H^n}{n!} |\psi\rangle$$
(10)

Similarly, we have

$$\delta|\psi'\rangle = e^{-iHt}\delta|\psi\rangle + \sum_{n=0}^{\infty} \frac{(-it)^n \delta(H^n)}{n!} |\psi\rangle + \left(e^{-iH(t+\delta t)} - e^{-iHt}\right) |\psi\rangle \qquad (11)$$

$$\overline{\langle \psi |} = \overline{\langle \psi |} e^{-iHt} \delta \tag{12}$$

$$\bar{t} = \overline{\langle \psi' | - iHe^{-iHt} | \psi \rangle} \tag{13}$$

$$\overline{c_k} = \sum_n \frac{(-it)^n}{n!} \sum_{p=0}^{n-1} \overline{\langle \psi' |} H^p O_k H^{n-p-1} | \psi \rangle$$
 (14)

2 How to reverse the time evolution

- 1. Since the time evolution of a Hamiltonian is sympletic, one can reverse it by doing inverse time evolution.
- 2. For the cases reversibility is not guarented, one can use treeverse algorithm.

References