WCSP2016

Color Image Encryption in YCbCr Space

Xin Jin¹, Sui Yin¹, Xiaodong Li¹, Geng Zhao¹, Zhaohui Tian², Nan Sun¹, Shuyun Zhu²

¹Beijing Electronic Science and Technology Institute GOCPCCC Key Laboratory of Information Security ²Xidian University Corresponding authors: {jinxin,lxd}@besti.edu.cn

Outline

- 1 Motivation
- 2 Preliminaries
- (3) Color Image Encryption in YCbCr Space
- (4) Results and Security Analysis
- (5) Conclusion and Discussion

Motivation

Motivation

Outline

- 1) Motivation
- 2 Preliminaries
- (3) Color Image Encryption in YCbCr Space
- 4 Results and Security Analysis

(5) Conclusion and Discussion

- RGB→YCbCrr
- 1D Logistic map
- 2D Arnold cat map
- 3D Lu map
- DNA Computing

$$\begin{bmatrix} Y \\ Cb \\ Cr \end{bmatrix} = \begin{bmatrix} 16 \\ 128 \\ 128 \end{bmatrix} + \begin{bmatrix} 0.257 & 0.504 & 0.098 \\ -0.148 & -0.291 & 0.439 \\ 0.439 & -0.368 & -0.071 \end{bmatrix} * \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$

$$\begin{bmatrix} R \\ G \\ B \end{bmatrix} = \begin{bmatrix} 16 \\ 128 \\ 128 \end{bmatrix} + \begin{bmatrix} 1.164 & 0.000 & 1.596 \\ 1.164 & -0.392 & -0.813 \\ 1.164 & 2.0017 & -0.000 \end{bmatrix} * \begin{bmatrix} Y \\ Cb \\ Cr \end{bmatrix}$$

1D Logistic map

$$x_{n+1} = \mu x_n (1 - x_n)$$

 $3.569945672... < \mu \le 4, 0 \le x_n \le 1$
 $n = 0, 1, 2, ...$

2D Arnold cat map

$$\begin{bmatrix} X' \\ Y' \end{bmatrix} = \begin{bmatrix} 1 & p \\ q & p * q + 1 \end{bmatrix} * \begin{bmatrix} X \\ Y \end{bmatrix} \mod 256$$

$$\begin{bmatrix} X \\ Y \end{bmatrix} = \begin{bmatrix} 1 & p \\ q & p * q + 1 \end{bmatrix}^{-1} * \begin{bmatrix} X' \\ Y' \end{bmatrix} \mod 256$$

3D Lu Map

$$\begin{cases} \dot{x} = a(y - x) \\ \dot{y} = -xz + cy \\ \dot{z} = xy - bz \end{cases}$$

$$a = 36, b = 3, c = 20$$

DNA Encoding

8 bit Pixel 00011011

 $00 \quad A \longleftarrow T \quad 11$

 $01 \quad G \longleftarrow C \quad 10$

DNA Computing

+	T	Α	C	G		Τ	Α	C	G
Т	C	G	Т	Α	T	C	G	Т	Α
Α	G	C	Α	Т	Α	Α	C	G	T
С	Т	Α	C	G	С	Т	Α	C	G
G	Α	Т	G	A T G C	G	G	Τ	Α	C

X	Complement(X)
Α	Т
Т	Α
C	G
G	C

北京电子科技学院

Outline

- 1) | Motivation
- 2 Preliminaries
- (3) Color Image Encryption in YCbCr Space
- 4 Results and Security Analysis
- 5 Conclusion and Discussion

Color Image Encryption in YCbCr

Color Image Encryption in YCbCr

The Y Channel

Color Image Encryption in YCbCr

Outline

- 1) Motivation
- (2) Preliminaries
- (3) Color Image Encryption in YCbCr Space
- 4 Results and Security Analysis
- (5) Conclusion and Discussion

The Encryption Results

北京电子科技学院

Key Space

```
\begin{cases} & \text{1D logistic: } 3.569945672... < \mu \leq 4, x_0 \in [0, 1] \\ & \text{2D Arnold: } N_{iteration} > 15, p, q \ are \ positive \ integers \\ & \text{3D Lu:} a = 36, b = 3, c = 20, -40 < x_0 < 50, -100 < y_0 < 80, 0 < z_0 < 140 \end{cases}
```

The precision of 64-bit double data is 10^{-15} The key space is about $(10^{15})^8 = 10^{120} \approx 2^{399}$ The max key space of AES = (2^{256})

Sensitivity of Secret Key

$$\begin{cases} x_0 & \text{from } -6.045 \text{ to} \\ x_0^{a*} & \text{from } 0.62 \text{ to} \\ x_0^{b*} & \text{from } 0.26 \text{ to} \end{cases} -6.045000000000001$$

dubao

Cipher dubao

Decrypted with wrong key

The Histogram Analysis

The Information Entropy

$$\mathbf{H}(m) = -\sum_{l=0}^{L} \mathbf{P}(m_i) \log_2(m_i)$$

YCbCr	H(m)	L*a*b*	H(m)	RGB	H(m)
Y	7.9996	L*	7.9961	R	7.9815
Cb	7.9998	a*	7.9952	G	7.9815
Cr	7.9997	b*	7.9815	В	7.9815

The Correlation Analysis

The Speed of the Encryption and Decryption

The Speed of the Encryption and Decryption

Outline

- 1) Motivation
- 2 Preliminaries
- (3) Color Image Encryption in YCbCr Space
- 4 Results and Security Analysis
- **5** Conclusion and Discussion

Conclusion and Discussion

- A color image encryption algorithm in YCbCr space.
- In future work, we will utilize the fast speed of the YCbCr method and continue to improve the encryption algorithm to have a better and faster way.

WCSP2016

Thanks!

Scan to visit our Victory Team of Besti (WeChat)

