

### جامعة الزقازيق - كلية الهندسة - قسم هندسة الحاسبات والمنظومات



## الحاسبات والبرمجة 1

### د/ محمد نور عبدالجواد

mnahmed@eng.zu.edu.eg

https://mnourgwad.github.io/CSE100

### المحاضرة 4: مقدمه لقوالب بناء الحاسب



### Quiz

حاسب رقمي صغير يتكون فيه عنصر تسجيل العنوان MAR من 16 خانه ثنائية و عنصر تسجيل العنوان MAR من 16 خانه ثنائية و عنصر تسجيل البيانات MDR من 8 خانات ، فكم تبلغ سعة ذاكرة هذا الحاسب ( RAM ) و ما هو أكبر عدد ( بالنظام العشري ) بمكن تخزينه في أي موقع بالذاكرة ؟

و أكبر عدد (بالنظام العشري) يمكن تغزينه هو :  $1-2^8=255$  (حيث أكبر رقم ثناني 11111111)

### الأهداف لليوم

المحاضرة الرابعه

مقدمه لقوالب بناء الحاسب

البوابات المنطقية

الجبر البولي وقواعده

الدوائر المنطقية

### **Binary Logic**

- Definition of Binary Logic
  - Binary logic consists of binary variables and a set of logical operations.
  - The variables are designated by letters of the alphabet, such as A, B, C, x, y,
    z, etc, with each variable having two and only two distinct possible values: 1
    and 0,
  - Three basic logical operations: AND, OR, and NOT.
  - 1. AND: This operation is represented by a dot or by the absence of an operator. For example,  $x \cdot y = z$  or xy = z is read "x AND y is equal to z," The logical operation AND is interpreted to mean that z = 1 if only x = 1 and y = 1; otherwise z = 0. (Remember that x, y, and z are binary variables and can be equal either to 1 or 0, and nothing else.)
  - 2. OR: This operation is represented by a plus sign. For example, x + y = z is read "x OR y is equal to z," meaning that z = 1 if x = 1 or y = 1 or if both x = 1 and y = 1. If both x = 0 and y = 0, then z = 0.
  - 3. NOT: This operation is represented by a prime (sometimes by an overbar). For example, x' = z (or  $\overline{x} = z$ ) is read "not x is equal to z," meaning that z is what z is not. In other words, if x = 1, then z = 0, but if x = 0, then z = 1, The NOT operation is also referred to as the complement operation, since it changes a 1 to 0 and a 0 to 1.

### **Switching Circuits**



### القوالب الرئيسيه لبناء الحاسب

#### **AND**

$$z \leftarrow Logic Gates$$
 البوابات المنطقية (1

2) جدول الحقيقه Truth Table

| الدخل |   | الخرج |
|-------|---|-------|
| X     | у | Z     |
| 0     | 0 | 0     |
| 0     | 1 | 0     |
| 1     | 0 | 0     |
| 1     | 1 | 1     |

3) التعبير البولي Boolean Expressions

$$z = x \cdot y = x y$$

### القوالب الرئيسيه لبناء الحاسب

**AND** 

| الدخل |   | الخرج |
|-------|---|-------|
| X     | У | Z     |
| 0     | 0 | 0     |
| 0     | 1 | 0     |
| 1     | 0 | 0     |
| 1     | 1 | 1     |

OR

| الدخل |   | الخرج |
|-------|---|-------|
| X     | У | Z     |
| 0     | 0 | 0     |
| 0     | 1 | 1     |
| 1     | 0 | 1     |
| 1     | 1 | 1     |

**NOT** 

| X | Z |  |
|---|---|--|
| 0 | 1 |  |
| 1 | 0 |  |

$$z = x \cdot y = x y$$

$$z = x + y$$

$$z = \overline{x} = x'$$

$$X \longrightarrow Z$$

### المنطق الثنائي (Binary Logic)

• البوابات المنطقيه :Logic gates



- (a) Three-input AND gate
- (b) Four-input OR gate

### القوالب الرئيسيه لبناء الحاسب



| الدخل |     | الخرج |
|-------|-----|-------|
| X     | y   | Z     |
| 0     | 0   | 1     |
| 0     | 0 1 |       |
| 1     | 0   | 1     |
| 1     | 1   | 0     |

$$Z = \overline{x \cdot y}$$



| الدخل |   | الخرج |
|-------|---|-------|
| X     | y | Z     |
| 0     | 0 | 1     |
| 0     | 1 | 0     |
| 1     | 0 | 0     |
| 1     | 1 | 0     |

$$Z = \overline{x + y}$$



| الدخل |   | الخرج |
|-------|---|-------|
| X     | y | Z     |
| 0     | 0 | 0     |
| 0     | 1 | 1     |
| 1     | 0 | 1     |
| 1     | 1 | 0     |

$$Z = x \oplus y$$

### Summary

| Logical Gates | Symbol | Truth Table                             |  |
|---------------|--------|-----------------------------------------|--|
| AND           |        | A B AB 0 0 0 0 1 0 1 0 0 1 1 1          |  |
| OR            |        | A B A+B 0 0 0 0 1 1 1 0 1 1 1 1         |  |
| NOT           |        | A A A O O O O O O O O O O O O O O O O O |  |
| NAND          |        | A B AB 0 0 1 0 1 1 1 0 1 1 1 0          |  |
| NOR           |        | A B A+B 0 0 1 0 1 0 1 0 0 1 1 0         |  |
| XOR           |        | A B A+B 0 0 0 0 1 1 1 0 1 1 0           |  |
| XNOR          |        | A B AB 0 0 1 0 1 0 1 0 0 1 1 1          |  |

# جبر بول وقواعده

## الجبر البولي

- قام بوضع هذا العلم جورج بول في القرن الثامن عشر معتمد علي التعامل مع المتغيرات الثنائيه.
  - يستخدم في تبسيط الدوال(المعادلات) التي تعبر عنها بالمتغيرات الثنائية.
- المتغيرات الثنائيه: هي التي تقبل قيم ثنائيه كـ (1/0 or true/false or yes/no or high/low)

### قواعد جبر بول

$$A \cdot 1 = A$$

$$A \cdot 0 = 0$$

$$A \cdot A = A$$

$$A \cdot A = 0$$

$$A(B + \overline{B}) = A$$

$$A \oplus 1 = \overline{A}$$

$$A \oplus 0 = A$$

$$A + 1 = 1$$

$$A + 0 = A$$

$$A + A = A$$

$$A + \overline{A} = 1$$

$$A + \overline{A}B = A + B$$

نظریة دي مورجان:

1) xy = x + y

$$2) x+y=x y$$

باستخدام جبر بول أثبت أن:

$$(\bar{A} + \bar{B})(A + B) = A\bar{B} + \bar{A}B$$

$$(\bar{A} + \bar{B}) + (A + B) = \bar{A}A + \bar{A}B + A\bar{B} + \bar{B}B$$

$$= 0 + \bar{A}B + A\bar{B} + 0$$

$$= \bar{A}B + A\bar{B}$$

باستخدام جبر بول بسط الصيغ الاتيه:

$$F = (A + \overline{B})(A + C)$$

$$F = AA + AC + A\overline{B} + \overline{B}C$$

$$= A + AC + A\overline{B} + \overline{B}C$$

$$= A(1 + C + \overline{B}) + \overline{B}C$$

$$= A + \overline{B}C$$

أوجد قيمة F لجميع القيم المحتمله للمتغيرات:

$$F=ABC+AB$$

### الحل

• لابد من تكملة كل الحدود (بمعني ان يظهر كل المتغيرات في كل حد)

| الدخل |   | الخرج |   |
|-------|---|-------|---|
| Α     | В | C     | F |
| 0     | 0 | 0     | 0 |
| 0     | 0 | 1     | 0 |
| 0     | 1 | 0     | 0 |
| 0     | 1 | 1     | 0 |
| 1     | 0 | 0     | 0 |
| 1     | 0 | 1     | 1 |
| 1     | 1 | 0     | 1 |
| 1     | 1 | 1     | 1 |

•ومن ثم تصبح المعادلة هي:

$$F=A\overline{B}C+AB(C+\overline{C})$$

طبق نظریة دي مورجان

$$AB(CD + \overline{A}C)$$

$$AB(CD + \overline{AC}) = (\overline{A} + \overline{B}) + (\overline{C} + \overline{D})(A + \overline{C})$$

$$= \overline{A} + \overline{B} + A\overline{C} + A\overline{D} + \overline{C} + \overline{C}\overline{D}$$

$$= \overline{A} + \overline{B} + A\overline{D} + \overline{C}$$

$$= \overline{A} + \overline{B} + \overline{D} + \overline{C}$$

# Conversion of Boolean Function Truth table Logic Circuit

# الدوائر المنطقيه

أرسم الدائرة المنطقيه التي تحقق الصيغه التاليه قبل التبسيط وبعده, ثم قارن بين الدائرتين من حيث عدد البوابات المستخدمه؟

$$F = \left(A\overline{B}C + AB\overline{C} + ABC\right)$$

### الجمع الثنائي

### حالات الجمع الثنائي هي:

$$0 + 0 = 0$$
 Sum = 0, carry out = 0  
 $0 + 1 = 1$  Sum = 1, carry out = 0  
 $1 + 0 = 1$  Sum = 1, carry out = 0  
 $1 + 1 = 10$  Sum = 0, carry out = 1

عندما یکون الے carry in = 1 بسبب النتیجه السابقه فإن الناتج یصبح:

$$1+0+0=01$$
 Sum = 1, carry out = 0  
 $1+0+1=10$  Sum = 0, carry out = 1  
 $1+1+0=10$  Sum = 0, carry out = 1  
 $1+1+1=11$  Sum = 1, carry out = 1

## الجامع النصفي Half adder

$$S=AB+AB \equiv A \oplus B$$

الجمع النصفي:

C = AB

| الدخل |   | الخرج |   |
|-------|---|-------|---|
| A     | В | S     | C |
| 0     | 0 | 0     | 0 |
| 0     | 1 | 1     | 0 |
| 1     | 0 | 1     | 0 |
| 1     | 1 | 0     | 1 |



## الجامع الكامل Full adder

### الغرج الدخل

### الجامع الكامل:

$$S = \overline{ABC}_{in} + \overline{ABC}_{in}$$

$$+ \overline{ABC}_{in} + \overline{ABC}_{in}$$

$$+ \overline{ABC}_{in} + \overline{ABC}_{in}$$

$$+ \overline{ABC}_{in} + \overline{ABC}_{in}$$

$$+ \overline{ABC}_{in} + \overline{ABC}_{in}$$

### الجامع الكامل:

$$S=A \oplus B \oplus C_{in}$$

$$C_{out} = (A \oplus B)C_{in} + AB$$



### الجامع الكامل

## وضح كيف يتم عملية جمع 1+0+1 ؟



### الجامع الكامل

## وضح كيف يتم عملية جمع 1+0+1 ؟



### الجامع الكامل

## وضح كيف يتم عملية جمع 1+0+1 ؟



### الجمع المتوازي

يمكن دمج عدد n من دوائر الجامع الكامل لعمل جمع متوازي لأرقام ثنائيه مكون من n bit علي سبيل المثال كما هو موضح 4 bit :



## دائرة الجمع / الطرح Addition/Subtraction

### دائرة الجمع / الطرح

استخدام الجمع بدلا من الطرح:

يمكن إستخدام الجمع المتوازي لإجراء عملية طرح من خلال قلب (متمم) العدد المطروح, ثم إضافة 1 إلي  $C_{in}$ 

-كيف يتم قلب العدد من خلال البوابات؟



### دائرة الجمع / الطرح

