Assingnment No-01

Title: Linear regression by using Deep Neural network: Implement Boston housing price.prediction problem by linear regression using Deep Neural network. Use Boston House price prediction dataset.

```
import numpy as np
import pandas as pd
from sklearn.datasets import load boston
boston = load boston()
data = pd.DataFrame(boston.data)
data.head()
data.columns = boston.feature names
                                                                           12
              1
                                         6
                                                7
                                                    8
                                                          9
                                                              10
                                                                     11
                   2
                        3
                                                       296.0
            18.0 2.31 0.0 0.538 6.575 65.2 4.0900
                                                  1.0
                                                             15.3 396.90
                                                                         4.98
   0.02731
             0.0 7.07 0.0 0.469 6.421
                                      78.9 4.9671
                                                  2.0
                                                       242.0
                                                             17.8 396.90
                                                                         9.14
 2 0.02729
             0.0 7.07 0.0 0.469 7.185 61.1 4.9671
                                                  2.0 242.0
                                                             17.8 392.83
                                                                         4.03
   0.03237
             0.0 2.18 0.0 0.458 6.998 45.8 6.0622 3.0 222.0
                                                             18.7 394.63
                                                                         2.94
             0.0 2.18 0.0 0.458 7.147 54.2 6.0622 3.0 222.0
 4 0.06905
data['PRICE'] = boston.target
data.head(n=10)
```

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTAT	PRICE
0	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1.0	296.0	15.3	396.90	4.98	24.0
1	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2.0	242.0	17.8	396.90	9.14	21.6
2	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2.0	242.0	17.8	392.83	4.03	34.7
3	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	3.0	222.0	18.7	394.63	2.94	33.4
4	0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	3.0	222.0	18.7	396.90	5.33	36.2
5	0.02985	0.0	2.18	0.0	0.458	6.430	58.7	6.0622	3.0	222.0	18.7	394.12	5.21	28.7
6	0.08829	12.5	7.87	0.0	0.524	6.012	66.6	5.5605	5.0	311.0	15.2	395.60	12.43	22.9
7	0.14455	12.5	7.87	0.0	0.524	6.172	96.1	5.9505	5.0	311.0	15.2	396.90	19.15	27.1
8	0.21124	12.5	7.87	0.0	0.524	5.631	100.0	6.0821	5.0	311.0	15.2	386.63	29.93	16.5
9	0.17004	12.5	7.87	0.0	0.524	6.004	85.9	6.5921	5.0	311.0	15.2	386.71	17.10	18.9

print(data.shape)

data.isnull().sum()

CRIM 0 ZN 0 INDUS 0 CHAS 0 NOX 0 RM 0 AGE 0 DIS 0 RAD 0 TAX PTRATIO 0 В 0 LSTAT PRICE 0 dtype: int64

data.describe()

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO
count	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000
mean	3.613524	11.363636	11.136779	0.069170	0.554695	6.284634	68.574901	3.795043	9.549407	408.237154	18.455534
std	8.601545	23.322453	6.860353	0.253994	0.115878	0.702617	28.148861	2.105710	8.707259	168.537116	2.164946
min	0.006320	0.000000	0.460000	0.000000	0.385000	3.561000	2.900000	1.129600	1.000000	187.000000	12.600000
25%	0.082045	0.000000	5.190000	0.000000	0.449000	5.885500	45.025000	2.100175	4.000000	279.000000	17.400000
50%	0.256510	0.000000	9.690000	0.000000	0.538000	6.208500	77.500000	3.207450	5.000000	330.000000	19.050000
75%	3.677083	12.500000	18.100000	0.000000	0.624000	6.623500	94.075000	5.188425	24.000000	666.000000	20.200000
max	88.976200	100.000000	27.740000	1.000000	0.871000	8.780000	100.000000	12.126500	24.000000	711.000000	22.000000

data.info()

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 506 entries, 0 to 505
Data columns (total 14 columns):

#	Column	Non-Null Count	Dtype
0	CRIM	506 non-null	float64
1	ZN	506 non-null	float64
2	INDUS	506 non-null	float64
3	CHAS	506 non-null	float64
4	NOX	506 non-null	float64
5	RM	506 non-null	float64
6	AGE	506 non-null	float64
7	DIS	506 non-null	float64
8	RAD	506 non-null	float64
9	TAX	506 non-null	float64
10	PTRATIO	506 non-null	float64
11	В	506 non-null	float64
12	LSTAT	506 non-null	float64
13	PRICE	506 non-null	float64

dtypes: float64(14)
memory usage: 55.5 KB

import seaborn as sns

sns.distplot(data.PRICE)

sns.boxplot(data.PRICE)

<matplotlib.axes._subplots.AxesSubplot at 0x7f44d077ed60>

correlation = data.corr()
correlation.loc['PRICE']

CRIM -0.388305

ZN 0.360445 INDUS -0.483725 0.175260 CHAS -0.427321 NOX 0.695360 RM -0.376955 AGE DIS 0.249929 RAD -0.381626 TAX -0.468536 PTRATIO -0.507787 0.333461 -0.737663 LSTAT PRICE 1.000000

Name: PRICE, dtype: float64

import matplotlib.pyplot as plt

fig,axes = plt.subplots(figsize=(15,12))

sns.heatmap(correlation, square = True, annot = True)

															- 1	0
CRIM -	1	-0.2	0.41	-0.056	0.42	-0.22	0.35	-0.38	0.63		0.29	-0.39	0.46	-0.39	1	
₽.	-0.2	1	-0.53	-0.043	-0.52	0.31	-0.57	0.66	-0.31	-0.31	-0.39	0.18	-0.41	0.36	- c	0.8
SINDINS	0.41	-0.53	1	0.063	0.76	-0.39	0.64	-0.71	0.6	0.72	0.38	-0.36	0.6	-0.48		
CHAS	-0.056	-0.043	0.063	1	0.091	0.091	0.087	-0.099	-0.0074	-0.036	-0.12	0.049	-0.054	0.18	- c	0.6
XON .	0.42	-0.52	0.76	0.091	1	-0.3	0.73	-0.77	0.61	0.67	0.19	-0.38	0.59	-0.43	- C	0.4
RM -	-0.22	0.31	-0.39	0.091	-0.3	1	-0.24	0.21	-0.21	-0.29	-0.36	0.13	-0.61	0.7		
AGE	0.35	-0.57	0.64	0.087	0.73	-0.24	1	-0.75	0.46		0.26	-0.27	0.6	-0.38	- c	0.2
SIG	-0.38	0.66	-0.71	-0.099	-0.77	0.21	-0.75	1	-0.49	-0.53	-0.23	0.29	-0.5	0.25	- a	0.0
RAD -	0.63	-0.31	0.6	-0.0074	0.61	-0.21	0.46	-0.49	1	0.91	0.46	-0.44	0.49	-0.38		
TAX -	0.58	-0.31	0.72	-0.036	0.67	-0.29		-0.53	0.91	1	0.46	-0.44	0.54	-0.47		-0.2
PTRATIO	0.29	-0.39	0.38	-0.12	0.19	-0.36	0.26	-0.23	0.46	0.46	1	-0.18	0.37	-0.51		
<u> </u>	-0.39	0.18	-0.36	0.049	-0.38	0.13	-0.27	0.29	-0.44	-0.44	-0.18	1	-0.37	0.33		-0.4
LSTAT	0.46	-0.41	0.6	-0.054	0.59	-0.61	0.6	-0.5	0.49	0.54	0.37	-0.37	1	-0.74		-0.6
PRICE -	-0.39	0.36	-0.48	0.18	-0.43	0.7	-0.38	0.25	-0.38	-0.47	-0.51	0.33	-0.74	1		
	CRIM	ΖŃ	INDUS	CHAS	NOX	RМ	AĞE	DİS	RAD	TAX	PTRATIO	В	LSTAT	PRICE		

```
plt.figure(figsize = (20,5))
features = ['LSTAT', 'RM', 'PTRATIO']
for i, col in enumerate(features):
     plt.subplot(1, len(features) , i+1)
     x = data[col]
    y = data.PRICE
    plt.scatter(x, y, marker='o')
    plt.title("Variation in House prices")
    plt.xlabel(col)
    plt.ylabel('"House prices in $1000"')
            Variation in House prices
                                                                                 Variation in House prices
                                                                      House prices in $1000"
                                    House prices in $1000
  20
                                     20
                                                                        20
  10
X = data.iloc[:,:-1]
y= data.PRICE
mean = X_train.mean(axis=0)
std = X train.std(axis=0)
X_train = (X_train - mean) / std
X \text{ test} = (X \text{ test - mean}) / \text{std}
#Linear Regression
from sklearn.linear model import LinearRegression
```

```
regressor = LinearRegression()
regressor.fit(X train,y train)
y pred = regressor.predict(X test)
from sklearn.metrics import mean squared error
rmse = (np.sqrt(mean squared error(y test, y pred)))
print(rmse)
from sklearn.metrics import r2 score
r2 = r2 \ score(y \ test, y \ pred)
print(r2)
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
X train = sc.fit transform(X train)
X_test = sc.transform(X_test)
import keras
from keras.layers import Dense, Activation, Dropout
from keras.models import Sequential
model = Sequential()
model.add(Dense(128,activation = 'relu',input dim =13))
model.add(Dense(64,activation = 'relu'))
```

```
model.add(Dense(32,activation
'relu')) model.add(Dense(16,activation
= 'relu')) model.add(Dense(1))
model.compile(optimizer = 'adam',loss
='mean squared error', metrics=['mae'])
!pip install ann_visualizer
!pip install graphviz
from ann visualizer.visualize import
ann viz;
ann viz(model, title="DEMO ANN");
history = model.fit(X_train, y_train, epochs=100, validation_split=0.05)
          plotly.subplots
                                 import
make subplots
                                 import
plotly.graph objects as go
fig = go.Figure()
fig.add_trace(go.Scattergl(y=history.history['loss
'],
                    name='Train'))
fig.add_trace(go.Scattergl(y=history.history['val_loss'],
                    name='Valid'))
fig.update layout (height=500, width=700,
                  xaxis_title='Epoc
                  h',
                  yaxis title='Loss
                  • )
fig.show()
```



```
fig = go.Figure()
```

fig.show()


```
y_pred =
model.predict(X_test)
mse_nn, mae_nn = model.evaluate(X_test, y_test)
 print('Mean squared error on test data: ',
 mse nn) print('Mean absolute error on test data:
 ', mae nn)
 Mean squared error on test data: 10.571733474731445 Mean absolute error on test data: 2.2669904232025146
 #Comparison
                 with
                          traditional
 approaches
 #First let's try with a simple algorithm, the Linear Regression:
 from sklearn.metrics import mean absolute error
 lr model =
 LinearRegression()
 lr_model.fit(X_train,
 y_train)
 y_pred_lr = lr_model.predict(X_test)
```

```
mse lr = mean squared error(y test,
y pred lr) mae lr =  
mean_absolute_error(y_test, y_pred_lr)
print('Mean squared error on test data: ',
mse lr) print('Mean absolute error on test data:
', mae_lr)from sklearn.metrics import r2_score
r2 = r2 \ score(y \ test,
y pred) print(r2)
0.8812832788381159
 # Predicting RMSE the Test set results
 from sklearn.metrics import mean_squared_error
 rmse = (np.sqrt(mean_squared_error(y_test,
 y pred)))print(rmse)
 3.320768607496587
 # Make predictions on new
 dataimport sklearn
 new data = sklearn.preprocessing.StandardScaler().fit transform(([[0.1,
 10.0,5.0, 0, 0.4, 6.0, 50, 6.0, 1, 400, 20, 300, 10]]))
 prediction = model.predict(new data)
 print("Predicted house price:",
 prediction)
```