Grafos Aleatorios

Serrano Sanchez Angela*
Solano Vergaray kevin **
Silva Guanilo Italo ***

24 de junio de 2018

1. Modelos y Relaciones

El estudio de gráfos aleatorios uno de los metodos usados es con la teoría de grafos el modelo Erdos Rényi , nombrado así por ser un estudio que realizaron los matemáticos Paul Erdos y Alfréd Rényi. Sea $\mathcal{G}_{n,m}$ la familia de todos los grafos con n vertices $(V = [n] = \{1, 2, ..., n\})$ y m aristas, siendo este $0 \le m \le {n \choose 2}$. Ahora $\forall G \in \mathcal{G}_{n,m}$ le asignaremos una probablilidad :

$$\mathbb{P}(G) = \binom{\binom{n}{2}}{m}^{-1}$$

De la misma forma, en pesamos con un grafo vació en el conjunto [n], e insertamos m aristas. De tal forma que todos los posibles aristas estén en $\binom{n}{2}^{2}$ y tengas la misma posibilidad. Ahora tomamos un grafo al azar $\mathbb{G}_{n,m}=([n],E_{n,m})$ y lo nombramos **grafo aleatorio**, siendo p la probabilidad que suceda ,fijando $0 \le p \le 1$ para un $0 \le m \le 2$ asignar a cada grafo G en el conjunto de vértices [n] y m aristas una probabilidad

$$\mathbb{P}(G) = p^m (1-p)^{\binom{n}{2}-m}$$

De manera parecida , comenzaremos con un gráfo vacío con el conjunto de vértices [n] y realizar $\binom{n}{2}$ Bernoulli experimental e introducimos aristas de forma independientemente con probabilidad p. Lo cual llamaremos a este grafo aleatorio como, **grafo aleatorio binomial** y denotarlo por $\mathbb{G}_{n,p} = ([n], E_{n,p})$.

Como se puede denotar, existe una estrecha relación entre estos dos modelos de grafos aleatorios. Comenzaremos con una simple observación.

enunciado 1,1 Sea un grafo aleatorio $\mathbb{G}_{n,p}$ dado que su número de aristas sea m, si n igualmente probable que sea uno de los $\binom{\binom{n}{2}}{m}$ del grafo que tienen m bordes. Probemos que G_0 sea cualquier grafo con m bordes. Entonces

$$\{\mathbb{G}_{n,p} = G_0\} \subseteq \{\mid E_{n,p} \mid = m\}$$

^{*}angelaserrano301@gmail.com

^{**}kfsolanov07@gmail.com

^{***}italosilvasg@gmail.com

tenemos

$$\mathbb{P}(\mathbb{G}_{n,p} = G_0 \mid\mid E_{n,p} \mid= m) = \frac{\mathbb{P}(\mathbb{G}_{n,p} = G_0, \mid E_{n,p} \mid= m)}{\mathbb{P}(\mid E_{n,p} \mid= m)}$$

$$= \frac{\mathbb{P}(\mathbb{G}_{n,p} = G_0)}{\mathbb{P}(\mid E_{n,p} \mid= m)}$$

$$= \frac{p^m (1-p)^{\binom{n}{2}-m}}{\binom{\binom{n}{2}}{m} p^m (1-p)^{\binom{n}{2}-m}}$$

$$= \binom{\binom{n}{2}}{m}^{-1}$$

Ahora si $\mathbb{G}_{n,p}$, esta condicionado en el evento ($\mathbb{G}_{n,p}$ tiene m aristas) tiene igual en la distribución a $\mathbb{G}_{n,m}$ en el grafo elegido al azar en todos los grafos que poseen m aristas.

evidentemente sabemos que la principal diferencia entre esos dos modelos de grafos aleatorios es que en $\mathbb{G}_{n,m}$ elegimos la cantidad de aristas, mientras que en el caso de $\mathbb{G}_{n,p}$ la cantidad de aristas es la variable aleatoria Binomial con los parámetros $\binom{n}{2}$ y p.

De la misma forma, para un grafo que tiene un n grande y aleatorias, $\mathbb{G}_{n,m}$ y $\mathbb{G}_{n,p}$ deben comportarse de la manera parecida cuando el número de aristas m de $\mathbb{G}_{n,m}$, si m es igual o está çerca" del número esperado de aristas de $\mathbb{G}_{n,p}$ es decir, cuando

$$m = \binom{n}{2} p \approx \frac{n^2 p}{2}$$

De manera similar, cuando la probabilidad de aristas en $\mathbb{G}_{n,p}$

$$p \approx \frac{2m}{n^2}$$

Mas adelante, usaremos una notación $f \approx g$ que nos indica que f = (1 + o(1))g, donde el o(1) termino dependerá de un parámetro que va de 0 a ∞ .

veamos una forma practica "**tecniocadeacoplamiento**" que genera un grafo aleatorio $\mathbb{G}_{n,m}$ en dos pasos independientes. Ahora describimos una idea similar que tiene una ralación con $\mathbb{G}_{n,m}$. Supongamos que $p_1 < p$ y p_2 están definidos por la ecuación

$$1 - p = (1 - p_1)(1 - p_2)$$

Entonces,

$$p = p_1 + p_2 - p_1 p_2$$

Entonces una arista no esta incluido en $\mathbb{G}_{n,p}$ sino esta incluido en cualquiera de \mathbb{G}_{n,p_1} y \mathbb{G}_{n,p_2} esto resulta que

$$\mathbb{G}_{n,p} = \mathbb{G}_{n,p_1} \cup \mathbb{G}_{n,p_2}$$

Donde los grafos \mathbb{G}_{n,p_1} , \mathbb{G}_{n,p_2} son independientes. Ahora cuando escribimos

$$\mathbb{G}_{n,p_1} \subseteq \mathbb{G}_{n,p}$$

queremos decir que los grafos están encajados de tal forma que $\mathbb{G}_{n,p}$ se puede obtener de \mathbb{G}_{n,p_1} al superposicionar con \mathbb{G}_{n,p_2} y reemplazar las aristas dobles por uno solo

También podemos unir los **grafosaleatorios** \mathbb{G}_{n,m_2} y \mathbb{G}_{n,m_1} donde $m_2 \geq m_1$ a través de

$$\mathbb{G}_{n,m_2} = \mathbb{G}_{n,m_1} \cup \mathbb{H}$$

Donde \mathbb{H} en el **grafosaleatorios** es el conjunto de vértices [n] que tiene $m = m_2 - m_1$ aristas elegido uniformemente al azar de $\binom{\binom{n}{2}}{2} \setminus E_{n,m_1}$.

Consideremos ahora una propiedad grafos, definida como un subconjunto de todos los grafos etiquetados en el conjunto de vétices [n], es decir, $\mathcal{P} \subseteq 2^{\binom{n}{2}}$.

Ejemplo: todos los grafos conectados (con n vértices), los grafos con un ciclo de Hamilton, los grafo que contienen un sub grafo dado, los grafos planos y los grafos con un vértice de un grado dado forman una "**propiedad de grafo**" específica.

Mencionaremos dos observaciones simples que muestran una relación general entre $\mathbb{G}_{n,m}$ y $\mathbb{G}_{n,p}$ en el contexto de las probabilidades de tener una propiedad de grafo dada \mathcal{P} .

enunciado 1,2 Sea P cualquier propiedad del grafo y $p=m/\binom{n}{2}$ donde $m=m(n)\longrightarrow\infty,\binom{n}{2}-m\longrightarrow\infty$. Entonces para un n grande.

$$\mathbb{P}(\mathbb{G}_{n,m} \in \mathcal{P}) \le 10m^{1/2}\mathbb{P}(\mathbb{G}_{n,m} \in \mathcal{P})$$

Ahora por la ley probabilidad total

$$\mathbb{P}(\mathbb{G}_{n,m} \in \mathcal{P}) = \sum_{k=0}^{\binom{n}{2}} \mathbb{P}(\mathbb{G}_{n,m} \in \mathcal{P} \mid |E_{n,p}| = k) \, \mathbb{P}(|E_{n,p}| = k)$$

$$= \sum_{k=0}^{\binom{n}{2}} \mathbb{P}(\mathbb{G}_{n,k} \in \mathcal{P}) \, \mathbb{P}(|E_{n,p}| = k)$$

$$\geqslant \mathbb{P}(\mathbb{G}_{n,m} \in \mathcal{P}) \, \mathbb{P}(|E_{n,p}| = m)$$

Si el número de aristas $|E_{n,p}|$ de un **grafoaleatorio** $\mathbb{G}_{n,p}$ con variable al azar con la distribución binomial con parámetro $\binom{n}{2}$ y p. Aplicamos Fórmula de Stirling:

$$k! = (1 + o(1)) \left(\frac{k}{e}\right)^k \sqrt{2\pi k},$$

ahora si ponemos $N = \binom{n}{2}$ obtenemos

$$\mathbb{P}(|E_{n,p}|=m) = \binom{N}{m} p^m (1-p)^{\binom{n}{2}-m}$$

$$= (1 + o(1)) \frac{N^N \sqrt{2\pi k} p^m (1 - p)^{N - m}}{m^m (N - m)^{N - P} 2\pi \sqrt{m(N - m)}}$$

$$= (1 + o(1))\sqrt{\frac{N}{2\pi m(N-m)}},$$

Por lo tanto

$$\mathbb{P}(\mid E_{n,p}\mid = m) \ge \frac{1}{10\sqrt{m}}$$

asi que

$$\mathbb{P}(\mathbb{G}_{n,m} \in \mathcal{P} \leqslant 10m^{1/2}\mathbb{P}(\mathbb{G}_{n,p} \in \mathcal{P})$$

Lo llamaremos a una propiedad de grafos \mathcal{P} monótona que aumenta si $G \in \mathcal{P}$ implica $G + e \in \mathcal{P}$, es decir, agregar un arista e a un grafo G no elimina la propiedad.

Porejemplo: En general, la conectividad y la Hamiltonicidad son propiedades de aumento monótono. UN la propiedad de aumento monótono no es trivial si el grafo vacío $\overline{K_n} \notin \mathcal{P}$ y el grafo completo $K_n \in \mathcal{P}$

Una propiedad de grafo es monótona que disminuye si $G \in \mathcal{P}$ implica $G - e \in \mathcal{P}$, es decir, eliminar un borde de un grafo no elimina la propiedad. Propiedades de un el grafo no está conectado o es plano son ejemplos de disminución monótona propiedades de grafo. Obviamente, una propiedad grafo \mathbb{P} es monótona que aumenta si y solo si su complemento es monótono disminuyendo. Claramente, no todos las propiedades grafos son monótonas

ejemplo tener al menos la mitad de los vértices que tienen una dado el grado fijo d no es monótono.

Del argumento si lo acoplamos se deduce que si \mathcal{P} es un monótono que aumenta propiedad entonces, siempre que p < p' o m < m'.

$$\mathbb{P}(\mathbb{G}_{n,p} \in \mathcal{P}) \le \mathbb{P}(\mathbb{G}_{n,p'} \in \mathcal{P})$$

У

$$\mathbb{P}(\mathbb{G}_{n,m} \in \mathcal{P}) \leq \mathbb{P}(\mathbb{G}_{n,m'} \in \mathcal{P})$$

respectivamente.

Para aumentar las propiedades grafos de forma monótona, podemos obtener una parte superior mucho mejor obligado en $\mathbb{P}(\mathbb{G}_{n,m} \in \mathcal{P})$, en términos de $\mathbb{P}(\mathbb{G}_{n,m} \in \mathcal{P})$, que el dado por **enunciado1**,2

enunciado1,2 Sea \mathcal{P} un monótono que aumenta la propiedad del grafo y $p = \frac{m}{N}$, Entonces, para n grande y p tal que $Np, N(1-p)/(Np)^{/2} \longrightarrow \infty$

$$\mathbb{P}(\mathbb{G}_{n,m} \in \mathcal{P}) \leqslant 3\mathbb{P}(\mathbb{G}_{n,n} \in \mathcal{P}).$$

Prueba Supongamos que \mathcal{P} es monótona y $p = \frac{m}{N}$, donde $N = \binom{n}{2}$ Entonces

$$\mathbb{P}(\mathbb{G}_{n,p} \in \mathcal{P}) = \sum_{k=0}^{N} \mathbb{P}(\mathbb{G}_{n,k} \in \mathcal{P}) \, \mathbb{P}(\mid E_{n,p} \mid = k)$$

$$\geqslant \sum_{k=m}^{N} \mathbb{P}(\mathbb{G}_{n,k} \in \mathcal{P}) \, \mathbb{P}(\mid E_{n,p} \mid = k)$$

Sin embargo, por la propiedad de acoplamiento sabemos que para $k \ge m$,

$$\mathbb{P}(\mathbb{G}_{n,k} \in \mathcal{P}) \ge \mathbb{P}(\mathbb{G}_{n,m} \in \mathcal{P}).$$

El número de bordes $\mid E_{n,p} \mid$ en $\mathbb{G}_{n,p}$ tiene la distribución binomial con parámetros N, p. Por lo tanto

$$\mathbb{P}(\mathbb{G}_{n,p} \in \mathcal{P}) \geqslant \mathbb{P}(\mathbb{G}_{n,m} \in \mathcal{P}) \sum_{k=m}^{N} \mathbb{P}(|E_{n,p}| = k)$$
$$= \mathbb{P}(\mathbb{G}_{n,m} \in \mathcal{P}) \sum_{k=m}^{N} u_{k}$$

donde

$$u_k = \binom{N}{k} p^k (1-p)^{N-K}.$$

Ahora, usando la fórmula de Stirling,

$$u_m = (1 + 0(1)\frac{N^N p^m (1 - p)^{N - m}}{m^m (N - m)^{N - m} (2\pi m)^{1/2}} = \frac{1 + o(1)}{(2\pi m^{1/2})}$$