Organização de Computadores

Professores:

Lúcia Maria de A. Drummond Simone de Lima Martins

Organização de Computadores

Livro Texto:

"Introdução à Organização de Computadores" Mário A. Monteiro LTC editora

Organização de Computadores

Objetivo:

Proporcionar ao aluno o conhecimento funcional dos diversos blocos e partes que compõem a arquitetura de um computador.

Ementa:

- → Organização lógica e funcional do Modelo de Von-Neumann: conceito, arquitetura lógica e funcional
- → Unidades Funcionais: UCP, memória, cache, dispositivos de E/S e barramentos
- → Hierarquia de memória
- → Arquiteturas micro e nanoprogramadas
- → Mecanismos de interrupção e de exceção
- → Arquiteturas avançadas: pipeline, múltiplas unidades funcionais e máquinas paralelas
- → Processadores RISC e CISC

Aula 1

Professores:

Lúcia M. A. Drummond Simone de Lima Martins

Conteúdo:

Subsistemas de memória

- Introdução
- Hierarquia de Memória
- Memória Principal
- Erros

Organização de um Computador

CPU

Barramento

Memória

"Componente de um sistema de computação cuja função é armazenar as informações que são (ou serão) manipuladas por esse sistema, para que elas (as informações) possam ser prontamente recuperadas, quando necessário."

Memória: Depósito

(Fig. 5.1 do livro texto)

Ações:

- 1. Armazenamento Escrita ou gravação (write);
- 2. Recuperação Leitura (read)

Exemplo de Depósito: Biblioteca

- 1. Elemento: livro
- 2. <u>Identificação: nome do livro</u>
- 3. Código de localização: número da estante, da prateleira, etc...

Armazenamento: guardar o livro em uma estante previamente identificada

Recuperação: através do conhecimento da localização do livro, emprestá-lo

Representação da Informação na Memória

Bit: Elemento básico de armazenamento físico, pode indicar dois valores distintos - 0 ou 1

Para representar:

- 26 letras maiúsculas
- 26 letras minúsculas
- 4 símbolos matemáticos
- 8 sinais de pontuação

64 tipos de representação - 6 bits

Representação da Informação na Memória

Célula: grupo de bits tratado em conjunto pelo sistema.

A célula é tratada como uma unidade para efeito de armazenamento e transferência.

Localização da Informação na Memória

Cada célula é identificada por um número denominado endereço.

Operações realizadas em uma memória

Escrita e Leitura:

(a) Operação de escrita - O valor 11110 é transferido (uma cópia) da UCP - para a MP e armazenado na célula de endereço 1000, apagando o conteúdo anterior (00110).

(b) Operação de leitura - O valor 10011, armazenado no endereço da MP 0110 é transferido (cópia) para a UCP, apagando o valor anterior (11110) e armazenando no mesmo local.

(Fig. 5.3 do livro texto)

Consorcio CECI

<u>Hierarquia de Memória</u>

Há muitas memórias no computador:

- interligadas de forma bem estruturada
- organizadas hierarquicamente
- constituem o subsistema de memória

(Fig. 5.4 do livro texto)

Parâmetros para análise de cada tipo de memória:

- Tempo de acesso: tempo de leitura, ou seja, transferência da memória para a Unidade Central de Processamento (UCP)
- Capacidade: quantidade de informação que pode ser armazenada em uma memória

(continua...)

(...cont) Parâmetros para análise de cada tipo de memória:

- Tecnologias de fabricação:
- Memórias de semicondutores : fabricadas com circuitos eletrônicos, rápidas e caras. Ex: registradores, memória principal (MP) e cache.
- 2. Memórias de meio magnético: armazenam as informações sob a forma de campos magnéticos, baratas e de grandes capacidades. Ex: disquetes e discos rígidos.
- Memórias de meio ótico: utilizam um feixe de luz para marcar o valor 0 ou 1 de cada dado. Ex: CD-ROM e CD-RW.

(...cont) Parâmetros para análise de cada tipo de memória:

- Temporariedade: tempo de permanência da informação na memória. Ex: programas e dados em um disco memória permanente, programas e dados em memória principal - memória transitória
- Custo: varia em função da tecnologia de fabricação.
 Unidade de medida de custo preço por byte armazenado, ao invés de custo total da memória, já que há variações nas capacidades.

Hierarquia de Memória

Registradores

- Pequenas unidades de memória que armazenam dados na UCP.
- Topo da pirâmide: maior velocidade de transferência, menor capacidade de armazenamento e maior custo.

Registradores - Parâmetros:

- Tempo de acesso: 1 ciclo de memória
- Capacidade: poucos bits, suficientes para armazenar um dado, uma instrução ou um endereço
- Volatilidade: memórias voláteis, precisam de energia elétrica
- Tecnologia: memórias de semicondutores (mesma tecnologia dos demais circuitos da UCP)
- Temporariedade: armazenam informação por muito pouco tempo
- Custo: dispositivo de maior custo entre os diversos tipos de memória

Consorcio CCO

Hierarquia de Memória

Memória Cache

- Memória entre a UCP e a Memória Principal
- Função: acelerar a velocidade de transferência das informações entre UCP e MP e, com isso, aumentar o desempenho do sistema.
- A UCP procura informações primeiro na Cache. Caso não as encontre, as mesmas são transferidas da MP para a Cache.
- Podem ser inseridas em dois níveis:
 - Nível 1 interna ao processador, encapsulada na mesma pastilha
 - Nível 2 cache externa, pastilha (chip) separada

Hierarquia de Memória

Memória Cache - Parâmetros:

- Tempo de acesso: menores do que os da memória principal
- Capacidade: adequada para armazenar uma apreciável quantidade de informações
- Volatilidade: dispositivos voláteis, como registradores
- Tecnologia: circuitos eletrônicos de alta velocidade, são memórias estáticas denominadas SRAM
- Temporariedade: tempo de permanência do dado ou instrução é menor do que o tempo de duração do programa a que pertence
- Custo: custo alto, entre o custo de registradores e MP

Consorcio CCO

<u>Hierarquia de Memória</u>

Memória Principal:

- Memória básica de um sistema de computação.
- Dispositivo onde o programa (e seus dados) que vai ser executado e armazenado para que a UCP busque instrução por instrução para executá-las.

Memória Principal - Parâmetros:

- Tempo de acesso: mais lentas que a memória Cache e mais rápidas do que as memórias secundárias
- Capacidade: bem maior do que a da memória Cache
- Volatilidade: volátil como a Cache e os registradores
- Tecnologia: semicondutores, memória com elementos dinâmicos DRAM
- Temporariedade: dados ou instruções permanecem na MP enquanto durar a execução do programa (ou até menos)
- Custo: mais baixo que a Cache

Consorcio CCC

<u>Hierarquia de Memória</u>

Memória Secundária:

- Memória auxiliar ou memória de massa
- Garantia de armazenamento mais permanente aos dados e programas do usuário
- Alguns diretamente ligados: discos rígidos
- Alguns conectados quando necessário: disquetes, fitas de armazenamento, CD-ROM

Memória Secundária:

- Tempo de acesso: são geralmente dispositivos eletromecânicos e portanto mais lentos do que os puramente eletrônicos.
- Capacidade: bem maior do que as demais memórias.
- Volatilidade: como armazenam informação de forma magnética ou ótica, não se perdem quando não há alimentação de energia elétrica.
- Tecnologia: varia bastante, diferentes tecnologias
- Temporariedade: caráter permanente

Organização da Memória Principal (MP)

- Instruções e dados são armazenados na MP e a UCP vai buscando-os um a um durante a execução
- Os comandos dos programas são descritos seqüencialmente
- Palavra é a unidade de informação do sistema UCP/MP que deve representar o valor de um número ou uma instrução de máquina.
- Endereço e conteúdo de memória:

Organização da Memória Principal (MP):

 Unidade de armazenamento: célula Palavra x célula

Células de 1 byte - 8 bits Palavras de 16, 32 e até 64 bits

 Unidade de transferência: quantidade de bits que é transferida da/para memória em uma operação de leitura/escrita

Organização da Memória Principal (MP):

Organização da Memória Principal (MP)

Características das Memórias de Semicondutores Atuais:

- Memórias de acesso aleatório (RAM- Random Access Memory)
- Ocupam relativamente pouco espaço, muitos bits em uma pastilha (chip)
- Possuem tempo de acesso pequeno

Organização da Memória Principal (MP)

Memórias Somente de Leitura (ROM):

- Tipo de RAM que permite apenas leitura por parte da UCP ou de outros programas
- Gravação deve ser realizada eventualmente e não através de processos comuns
- Mantém permanentemente grupo de instruções que são executadas ao ligarmos o computador com o objetivo de iniciar o sistema

Considerações sobre a Organização da MP

- Quantidade de bits de uma célula: requisito definido pelo fabricante.
 Usualmente 8 bits.
- Relação endereço x conteúdo de uma célula:

Considerações sobre a Organização da MP

 Quantidade de bits do número que representa um endereço define a quantidade máxima de endereços que uma memória pode ter.

Operações com a MP

- Escrita armazena informação na memória
- Leitura recupera uma informação na memória

(Fig. 5.11 do livro texto)

Operações com a MP

- Registrador de Dados de Memória (RDM): armazena a informação que está sendo transferida da/para memória para/da UCP (leitura/escrita)
- Barramento de Dados: interliga o RDM à MP para transferência de informações (dados ou instruções)
- Registrador de Endereços de Memória (REM): armazena um endereço de memória
- Barramento de Endereços: interliga o REM à MP para transferência de endereço (unidirecional)
- Barramento de Controle: sinais de controle (leitura, escrita, wait)
- Controlador: decodifica o endereço colocado no barramento para localizar a célula desejada. Controla processos de leitura/escrita

Operações com a MP

Linguagem de Transferência entre Registradores (LTR):

```
(REM) ← (CI) // Conteúdo de CI é copiado para REM
```

(RDM) ← (MP(REM)) // Conteúdo da célula da MP cujo endereço está em REM copiado para RDM

Operações com a MP - leitura:

- 1) (REM) ← (outro registrador da UCP)
- 1ª) O endereço é colocado no barramento de endereços
- 2) Sinal de leitura é colocado no barramento de controle
- 2ª) Decodificação do endereço e localização da célula
- 3) $(RDM) \leftarrow (MP(REM))$ pelo barramento de dados
- *4)* (outro registrador da UCP) ← (RDM)

Operações com a MP - leitura:

(Fig. 5.12 do livro texto)

Operações com a MP - escrita:

- 1) (REM) ← (outro registrador)
 1ª)O endereço é colocado no barramento de endereços
- 2) $(RDM) \leftarrow (outro\ registrador)$
- 3) Sinal de escrita é colocado no barramento de controle
- 4) $(MP(REM)) \leftarrow (RDM)$

Operações com a MP - escrita:

Capacidade de MP - cálculos:

Quantidade de informações que podem ser armazenadas. Usualmente, mede-se em função da quantidade de bytes:

- 1 Kbyte= 2¹⁰ bytes (Kilo)
- 1 Mbyte = 2^{20} bytes (Mega)
- 1 Gbyte = 2^{30} bytes (Giga)
- 1 Tbyte = 2^{40} bytes (Tera)
- 1 Pbyte = 2^{50} bytes (Peta)

Capacidade de MP - cálculos:

Considere uma memória com N células, cada uma com M bits:

- Pode-se armazenar em cada célula valores de 0 até 2[™] -1
- Sendo E o número de bits de um endereço, $N = 2^{E}$
- O total de bits $T = N \times M$

Capacidade de MP - cálculos:

Capacidade de MP - cálculos:

Exemplo 1:

Uma memória RAM tem um espaço máximo de endereçamento de 2K. Cada célula pode armazenar 16 bits. Qual o valor total de bits que pode ser armazenado na memória e qual o tamanho de cada endereço?

Capacidade de MP - cálculos:

- Espaço de endereçamento $N = 2K = 2 \times 2^{10} = 2^{11}$
- Para endereçar N células são necessários E bits, onde N= 2^E.
- Portanto, o tamanho de cada endereço é 11 bits.
- A memória tem 2K endereços e cada um corresponde a uma célula de 16 bits.
- Portanto, o total T de bits que a memória pode armazenar é :
 2K x 16 = 32 K bits

Capacidade de MP - cálculos:

Exemplo 2:

Uma memória RAM é fabricada com a possibilidade de armazenar um máximo de 256 K bits. Cada célula pode armazenar 8 bits. Qual é o tamanho de cada endereço e qual é o total de células que podem ser utilizadas naquela RAM?

Capacidade de MP - cálculos:

- Total de bits = $T = 256 K = 2^8 \times 2^{10} = 2^{18}$
- 1 célula= 8 bits. $M = 8 = 2^3$
- Sendo $T = N \times M$, então $N = T/M = 256K/8 = 32 K = 2^{15}$
- $N = 2^E = 2^{15}$. E = 15
- Portanto, o tamanho de cada endereço é 15 bits e o total de células é 32 K

Capacidade de MP - cálculos:

Exemplo 3:

Um computador, cuja memória RAM tem uma capacidade máxima de armazenamento de 2K palavras de 16 bits cada, possui um REM e um RDM. Qual o tamanho destes registradores? Qual o valor do maior endereço dessa MP e qual a quantidade de bits que nela pode ser armazenada?

Capacidade de MP - cálculos:

- Total de endereços = $N = 2K = 2^{11} = 2^{E}$. Logo E = 11 bits
- REM deve ter um tamanho de 11 bits, pois guarda endereços
- Se a palavra (M) tem 16 bits, RDM deve ter o mesmo tamanho, pois guarda dados
- Total de bits = $T = N \times M = 2 K \times 16 = 32 K$ bits
- Como o total de endereços é 2K, o maior endereço é 2K -1 = 2047

Capacidade de MP - cálculos:

Exemplo 4:

Um processador possui um RDM com capacidade de armazenar 32 bits e um REM com capacidade de armazenar 24 bits. Sabendo-se que em cada acesso são lidas 2 células da memória RAM e que o barramento de da dos tem tamanho igual ao da palavra, pergunta-se: a) Qual é a capacidade máxima de endereçamento do microcomputador em questão? b) Qual é o tamanho total de bits que podem ser armazenados na memória RAM? c) Qual é o tamanho da palavra e de cada célula?

Capacidade de MP - cálculos:

a) Qual é a capacidade máxima de endereçamento do microcomputador em questão?

- Se REM=24 bits, que armazena o endereço, a capacidade de endereçamento é 2²⁴
- 2²⁴ = 16 M endereços ou células

Capacidade de MP- cálculos:

b) Qual é o total máximo de bits que podem ser armazenados na memória RAM?

- Total de bits = T = N x M , onde M = 1 célula e N = Total de células =
 16 M = 2²⁴
- Como o RDM = 32 bits guarda 2 células
- 1 célula = 16 bits
- $T = 16 \times 16 M = 256 M \text{ bits}$

Capacidade de MP- cálculos:

c) Qual é o tamanho da palavra e de cada célula da máquina?

- Tamanho da palavra é igual ao BD = RDM = 32 bits
- O tamanho de cada célula é 16 bits (em cada acesso são lidas 2 células)

Capacidade de MP - cálculos:

Exemplo 5:

Um processador possui um BE com capacidade de permitir a transferência de 33 bits de cada vez. Sabe-se que o BD permite a transferência de 4 palavras em cada acesso e que cada célula da memória RAM armazena um oitavo de cada palavra. Considerando que a memória pode armazenar um máximo de 64 Gbits, pergunta-se: a)Qual é a quantidade máxima de células que podem ser armazenadas na memória? b) Qual é o tamanho do REM e BD existentes neste processador? c) Qual é o tamanho de cada célula e da palavra desta máquina?

Capacidade de MP - cálculos:

a) Qual é a quantidade máxima de células que podem ser armazenadas na memória RAM?

- Se REM=33 bits, que armazena o endereço, a capacidade de endereçamento é 2³³
- 2³³ = 8 G endereços ou células

Capacidade de MP - cálculos:

b) Qual é o tamanho do REM e BD existentes neste processador?

- Como Total de bits = T = N x M , onde M = 1 célula, então M=T/N ou M = 64 G / 8 G = 8 bits
- Como palavra = 8 células, palavra = 64 bits
- Como BD transfere 4 palavras, BD = 256 bits
- REM = BE = 33 bits

Capacidade de MP - cálculos:

c) Qual é o tamanho de cada célula e palavra desta máquina?

- Como Total de bits = T = N x M , onde M = 1 célula, então M=T/N ou M = 64 G / 8 G = 8 bits
- Como palavra = 8 células, palavra = 64 bits

Consorcio Cede

Memória Principal

<u>Tipos e Nomenclatura de MP</u>

<u>Tipos e Nomenclatura de MP</u>

- MP é popularmente denominada Memória RAM (random access memory)
- Variações:
 - SRAM Static RAM mais cara, mais rápida, usada na fabricação de cache
 - DRAM Dynamic RAM usado na fabricação de MP tradicional, diversos fabricantes com muitas nuances
 - ROM Read only memory não volátil programa de bootstrap, boot ou IPL - Initial Program Load

<u>Tipos e Nomenclatura de MP</u>

(Fig. 5.16(a) do livro texto)

Memória do Tipo ROM

Objetivos:

- Ter desempenho semelhante ao das memórias R/W de semicondutores
- Não ser volátil
- Ter segurança, permitir apenas leitura de seu conteúdo por determir ados programas. Há determinados programas críticos que não gostaríamos de ver infectados por vírus.

Memória do Tipo ROM

Aplicações:

- Guardar conjunto de rotinas básicas do Sistema Operacional.
 Por exemplo: em microcomputadores, sistema básico de entrada e saída- BIOS
- Sistemas de controle de processos, como forno de microondas, videogames, sistemas de injeção eletrônica

Erros

- A memória principal (MP) utiliza um meio de transmissão (barramento de dados) para trânsito da informação entre MP e a UCP
- Esse trânsito sofre interferências que podem alterar o valor de 1 ou mais bits (de 0 para 1 ou de 1 para 0)

Erros

Processo básico de detecção e correção de erros:

- Grupos de M bits a serem gravados nas células da MP sofrem um processamento, segundo um algoritmo A e produz como resultado K + M bits
- Serão gravados em células com capacidade para armazenar M+K hits
- Ao ser recuperada uma determinada célula, o sistema de detecção é acionado, o mesmo algoritmo A é executado sobre os M bits obtendo-se um novo conjunto K2
- Conjuntos têm o mesmo valor ausência de erros
- Conjuntos com valores diferentes existência de erros

Erros

Código de Correção de Erros:

(Fig. 5.19 do livro texto)

