

Todays God

- Frichim

> (not ·]= OP = PF-P; = | Fdt = FOT mu ma

$$v = u - gt + v_{rd} \ln\left(\frac{m_i}{m_f}\right)$$

$$v = u - gt + v_{rd} \ln\left(\frac{m_o}{m}\right)$$

Q At
$$t=0$$
, rest $t=6$, $KE=7$

$$K\varepsilon = \frac{7}{7} \times 4 \times (12)_{3} = 352$$

$$\Delta P =$$

$$\Delta P = 0 \times$$

$$\langle \vec{n} \rangle = \frac{\Delta P}{\Delta t} = \frac{2mv}{\Delta t}$$

Frichion

Static friction

Kinchic friction (Pw)

- It oppose reladive motion
- It has an upper limit
 (fs)max

- fs Variable Static Selfadiusting frich
- It act where there is

 no relative modim

 blu contact surface

 Tholependent on and

- It oppose the relative motion
- It value is constant.

- It act when there is relative motion blue Contact Simplere.
- · Independent on area

1) What is max. Value of static friction.

Ke lige effectively min. 40N force ki jaquirat han

(2) what is value of kinetic foilding

$$\int_{K} = M_{K}N = .3 \times 100$$

Iska matlab agar block fisal/move kan raha hai to Uspan friction 30N Lagega.

$$M_s = .4$$
 $M_k = .3$

$$f_s = 10 N$$

(3)
$$F = 30N$$

 $a = 20$
 $f = 30N$

$$(f_s)_{\text{max}} = 40$$

$$f_K = 30$$

$$F = 40 \Rightarrow a = 0 \Rightarrow f = 40 = (f_s)_{ma}$$

6)
$$F = 40.001$$
 $a = \frac{F - f}{n}$
move
 f

$$\alpha = \frac{40001 - 40}{10} = .0001$$

$$a = \frac{F - f_K}{m} = \frac{40.001 - 30}{10} = \frac{10.001}{10}$$

$$a = \frac{10}{10} = 2$$

$$M_{s} = .4$$

$$M_{k} = .3$$

$$10 \text{ Mg}$$

Find the a, f in following cases

6
$$F = 40.001$$

 $Q = \frac{F - f_K}{m} = \frac{40.001 - 30}{10}$
 $C = 1.001$

$$(f_s)_{\text{max}} = 40$$

$$f_K = 30$$

$$a = \frac{F - f_k}{m} = \frac{50 - 30}{10} = 2$$

$$f_k = 30$$

(8)
$$f = 90N$$
, $a = \frac{90-30}{10} = 6$

$$(f_s)_{max} = 60$$

$$f_{k} = 50$$

$$M_{s} = .5$$

$$\Phi$$
 $f = 61$, $\alpha = \frac{61-50}{10} = 1.1$, $f = 50$

(5)
$$F = 70$$
 $\alpha = \frac{70 - 50}{10} = 2$, $f_k = 50$

$$\alpha = \frac{80-50}{10} = 3$$
, $f = 50$

10 Kg

$$(f_s)_{max} = 60$$

 $f_k = 50$

$$F_1 = 80N$$
 $F_2 = 70N$
 f_5

$$a = 0$$

$$f_s = 10$$

$$80 = 70 - f_s$$

 $f_s = 10$

$$F_1 = 80N$$

$$F_2 = 80N$$

$$F_3 = 80N$$

$$a = 0$$

$$f = 60 = (f_s)$$

$$F_1 = 80N \qquad F_2 = 10N$$

$$F_1 = 80N \qquad F_2 = 10N$$

$$F_1 = 80N \qquad F_2 = 10N$$

$$F_3 = 10N$$

$$F_4 = 80N \qquad F_2 = 10N$$

$$f_{k}=50$$
, $\alpha = \frac{80-10-50}{10} = 2$

10 Kg

$$M_s = .6$$
 $(f_s)_{max} = .60$
 $M_k = .5$ $f_k = .50$

$$F_1 = 10N$$

$$F_2 = 50N$$

$$0K8$$

$$F_1 = 100N$$

$$F_2 = 20N$$

$$F_3 = 20N$$

$$a = \frac{80-50}{10} = 3$$

$$F_{100N} = 50N$$

$$F_{2} = 50N$$

$$F_{3} = 50N$$

$$G_{5} = 0, \quad f = 50$$

(b)
$$F_1 = 30N$$

$$F_2 = 50N$$

$$A = 0, f = 20$$

$$F_{1}=30N$$

$$F_{2}=100N$$

$$F_{3}=100N$$

$$F_{4}=100N$$

$$M_{K} = .5$$
 $M_{S} = .6$
 f_{S}
 $f_{K} = .50$
 $f_{K} = .50$

$$a = \frac{100 - 50}{10 + 10}$$

$$a = \frac{80 - 60}{10} = 3$$

$$\alpha = 80 - 50 = 3$$

$$a = \frac{10}{10} = 6$$

2

Find value of friction, acc, nature of friction.

Fi r		7 F2
→	lokg	-

Fi	Fz	a	f	
60 N	0			
(60 N	[00N	 		
200 N	2501			
200N	240 N	•		
looN	SOM	r		
SOM	N00			
80 N	Nag			
404	6014			

find a 8 frichim

F=100N

$$M_S = .4$$
 $M_V = .3$

F = 50N

$$M_S = .4$$
 $M_K = .3$

$$M_S = .4$$
 $M_K = .3$

$$F = 100N$$

$$Q = 37$$

$$lok9 = 4$$

$$A_{c} = 4$$

- Que are attached solve them sincrely.

- KPP

- DPP

- tell-, now you can solve of NLM.

##