分析 1 期中考试

Long

2022/4/11

几点声明:

- 1、此试卷为考生回忆版,不保证问题顺序的准确性与问题陈述的严谨性。
 - 2、考试时间为 2021 年 11 月 01 日 9:50 至 12:20。
 - 3、满分100分加附加题5分。

一、解答题 (6 题, 每题 6 分)

- 3、计算 $\lim_{n\to\infty}\sum_{k=1}^{n-1}\frac{1}{nk-k^2}$ 。
- 4、计算 $\lim_{x\to\infty} x\left[\frac{1}{e}-\left(\frac{x}{x+1}\right)^x\right]$ 。
- 5、证明 $f:[1,\infty) \to \mathbb{R}, f(x) = \sqrt{\ln x}$ 一致连续。

二、判断题(4题,每题7分)

- 1、数列 $\{a_n\}_{n=1}^\infty$ 满足 $\lim_{n\to\infty}a_n=0$,则 $\sum_{n=1}^\infty(-1)^na_n$ 收敛。
- 2、数列 $\{a_n\}_{n=1}^{\infty}\subseteq\mathbb{R}-\{-1\}$ 满足 $\sum_{n=1}^{\infty}a_n$ 和 $\sum_{n=1}^{\infty}a_n^2$ 均收敛,则 $\Pi_{n=1}^{\infty}(1+a_n)$ 收敛。
- 3、 $f \in \mathcal{C}^1((0,\infty))$ 满足 $\forall x \in (0,\infty)$,都有 $\lim_{n\to\infty} f(x+n)=0$,则 $\lim_{x\to\infty} f(x)=0$ 。
- 4、 $f\in\mathcal{C}^2(\mathbb{R})$ 且满足 $\lim_{x\to\infty}f(x)=\lim_{x\to-\infty}=0$,则存在 $s,t\in\mathbb{R},s
 eq t,f''(s)=f''(t)=0$ 。

三、牛顿迭代法(4问,每题5分)

- 1、令 $\theta_1 < \theta_2 < \dots$ 是方程 $f(x) = x \tan x + 1 = 0$ 的所有正解。证 明: $\forall k \in \mathbb{N}^*, \theta_k \in (k\pi - \frac{\pi}{2}, k\pi + \frac{\pi}{2})$ 且 $f(\theta_k) = 0, f'(\theta_k) > 0$ 。

 - 2、令 $x_0 = k\pi, x_{n+1} = x_n \frac{f(x_n)}{f'(x_n)}$, 证明: $\{x_n\}$ 单调递减至 θ_k 。3、证明 $\lim_{n \to \infty} \frac{x_{n+1} \theta_k}{(x_n \theta_k)^3}$ 存在,并求 $\lim_{k \to \infty} \lim_{n \to \infty} \frac{x_{n+1} \theta_k}{(x_n \theta_k)^3}$ 。
 - 4、证明存在 $c_0, c_1, c_2, c_3 \in \mathbb{R}$ 使得

$$\theta_k = k\pi + c_0 + \frac{c_1}{k\pi} + \frac{c_2}{(k\pi)^2} + \frac{c_3}{(k\pi)^3} + o(\frac{1}{(k\pi)^3}), k \to \infty$$

并计算 c_0, c_1, c_2, c_3 。

四、震荡函数(共 16 分)

 $f_{a,b},g_{a,b}:[-1,1]\to\mathbb{R}$ 如下:

$$f_{a,b}(x) = \begin{cases} x^a \cos(x^{-b}), x \in (0,1] \\ 0, x \in [-1,0] \end{cases}$$

- 1、给定 b > 0, 求所有 a 满足 $f_{a,b} \in \mathcal{C}^n[-1,1]$
- 2、令 $g=f_{1,1}$, 求所有 $\alpha>0$ 使得 $\exists C_{\alpha}>0$ 满足 $\forall x,y\in [-1,1]$, 都有:

$$|g(x) - g(y)| \le C_{\alpha}|x - y|^{\alpha}$$

五、附加题(5分)

 $\{a_{n.k}\}$ 一族实数满足:

- 1、对任意 $k \in \mathbb{N}^*, \sum_{n=1}^{\infty} |a_{n,k}| < \infty$ 。
- 2、对任意有界序列 b_n , 有 $\lim_{k\to\infty}\sum_{n=1}^{\infty}a_{n,k}b_n=0$ 。

问: 是否有 $\lim_{k\to\infty} \sum_{n=1}^{\infty} \infty |a_{n,k}| = 0$?