Naïve Bayes Classifier

Estimating Parameters

- θ that maximizes probability of observed data Maximum Likelihood Estimate (MLE): choose $\underset{\theta}{\operatorname{arg\,max}} \ \ P(\mathcal{D} \mid \theta)$
- Maximum a Posteriori (MAP) estimate: choose θ that is most probable given **prior probability and the data**

$$\hat{\theta} = \arg\max_{\theta} P(\theta \mid \mathcal{D})$$

$$= \arg\max_{\theta} \frac{P(\mathcal{D} \mid \theta)P(\theta)}{P(\mathcal{D})}$$

A wonderful tutorial: http://www.cs.ubc.ca/~murphyk/Teaching/CS340-Fall06/reading/bernoulli.pdf

Syntax

- Weather is one of <sunny,rainy,cloudy,snow> Windy is one of <windy, - windy> random variable = attribute, e.g.
- · Weather and Windy are discrete random variables
 - Domain values must be
- exhaustive and mutually exclusive
- Elementary propositions:

From Last Time

- Estimating parameters
- · Using Bayes Rule to incorporate prior beliefs - smoothing

Prior probability and distribution

Prior or unconditional probability of a proposition is the degree of belief accorded to it in the absence of any other information.

$$P(Weather = sunny) = 0.7$$
 (or abbrev. $P(sunny) = 0.7$)

Probability distribution gives values for all possible assignments: P(Weather = sunny) = 0.7

$$P(\text{Weather} = \text{rain}) = 0.2$$

$$P(\text{Weather} = \text{cloudy}) = 0.08$$

$$P(\text{Weather} = \text{cloudy}) = 0.08$$

$$P(\text{Weather} = \text{snow}) = 0.02$$

Conditional probability

- $P(\text{sunny} \mid \text{windy}) = 0.8$ i.e., probability of sunny given that windy is all I know
- Interpreted as

P(if Weather=sunny then Windy=windy)

Definition of conditional probability:

 $P(a \mid b) = P(a \land b) / P(b)$ if P(b) > 0

Alternative formulation:

 $P(a \land b) = P(a \mid b) P(b) = P(b \mid a) P(a)$

Onto Naïve Bayes

Conditional Independence

- · We say A and B are conditionally independent given C if
- $P(A \text{ and } B \mid C) = P(A \mid C) * P(B \mid C)$
 - P(A|B and C) = P(A|C)

Bayes' Rule

• From $P(a \wedge b) = P(a \mid b) P(b) = P(b \mid a) P(a)$

we get

Bayes' rule:

P(a | b) = P(b | a) P(a) / P(b)

• Useful for assessing class probability from evidence probability as: P(Class|Evidence) = P(Evidence|Class) / P(Evidence)

Bayes' rule -- more vars $\frac{P(c|e_i,e_2) = \frac{P(c,e_i,e_2)}{P(e_i,e_2)} = \alpha P(c,e_i,e_2)}{P(e_i,e_2)} = \frac{\alpha P(c,e_i,e_2)}{\alpha - 1/P(e_i,e_2)}$ $= \frac{\alpha P(e_i,e_2,c)}{\alpha - 1/P(e_i,e_2)} = \frac{\alpha P(e_i,e_2)}{\alpha - 1/P(e_i,e_2)}$ $= \frac{\alpha P(e_i,e_2,c)}{\alpha - 1/P(e_i,e_2)}$ Conditional $= \frac{\alpha P(e_i,e_2,c)}{\alpha - 1/P(e_i,e_2)}$ Independence $= \frac{\alpha P(e_i,e_2,c)}{\alpha - 1/P(e_i,e_2)}$

- Although the e_i might not be independent of e_2 , it might be that given the *class* they are independent.
 - ы ы
- e_1 is 'abilityInReading'
 - e2 is 'lengthOfArms'
- There is indeed a dependence of abilityInReading to lengthOfArms. People with longer arms read better than those with short arms....
- However, given a class variable, say 'Age', the abilityInReading is independent
 of lengthOfArms.

Conditional Independence

P(R and B|Y) = P(R|Y)P(B|Y)2/12 = (4/12)(6/12)

P(R and B|Y) = P(R|Y)P(B|Y)1/9 = (3/9)(3/9)

Exercise: Are R and B independent given not Y? P(R and B| not Y) = P(R| not Y)P(B| not Y)?

"Conditional independence" by AzaToth at English Wikipedia. Licensed under CC BYSA 3.0 via Commons – https://commons.wikimedia.org/wikiPiac/Conditional_independence.svg#media/File:Conditional_independence.svg

Naive Bayes

$P(c | e_1, ..., e_n) = \alpha P(e_1 | c) ... P(e_n | c) P(c)$

- Assumption:
- Attributes are conditionally independent (given the class value)
- Although based on assumption that is almost never correct, this scheme works well in practice!

Naïve Bayes for classification

- Classification learning: what's the probability of the class given an instance?
- Instance-Tuple (Evidence): $E_1=e_1, E_2=e_1,..., E_n=e_n$
 - Class $C = \{c, ...\}$
- Naïve Bayes assumption: evidence can be split into independent parts (i.e. attributes of instance!)

```
= P(e_1|c) \; P(e_2|c) ... \; P(e_n|c) \; P(c) \, / \; P(e_1,e_2,...,\;e_n)
P(c|E) = P(c \mid e_1, e_2, ..., e_n)
```

The weather data example

	i					1	17		
Outlook	Temp.	Humidity Windy	Windy	Play		E I	J Com		
Sunny	Cool	High	True	خ		Eviae	Evidence E		
					Outlook	Temp.	Humidity Windy	Windy	Play
(Play=1	P(Play=no E) =				Sunny	Hot	High	False	No
P(Out	look=Su	P(Outlook=Sunny play=no) *	* (on=/		Sunny	Hot	High	True	9 N
P(Ten	p=Cool	P(Temp=Cool play=no) *	*		Overcast	Hot	High	False	Yes
P(Hur	i niditv=F	P(Humidity=High play=no) *	,=ho) *		Rainy	Mild	High	False	Yes
D. C. C. C.			*		Rainy	Cool	Normal	False	Yes
r (wii.	ull—km	r (willay—iilde piay—iio)	(o		Rainy	Cool	Normal	True	No
P(pla)	P(play=no) / P(E) =	(F) =			Overcast	Cool	Normal	True	Yes
= (3/5)*	*				Sunny	Mild	High	False	N _o
(1/5)*	*				Sunny	Cool	Normal	False	Yes
(4/5) *	*				Rainy	Mild	Normal	False	Yes
(3/5) *	*				Sunny	Mild	Normal	True	Yes
(5/17)	, / D/E) .	(5.2)	(D/G)		Overcast	Mild	High	True	Yes
41/C)) / r(E)	- 0.0200	r(E)		Overcast	Hot	Normal	False	Yes
					Rainy	Mild	Hiah	True	oN O

Weather Data

Outlook	Temp.	Humidity Windy	Windy	Play			
Sunny	Hot	High	False	_N			
Sunny	Нot	High	True	g			
Overcast	Hot	High	False	Yes			
Rainy	Mild	High	False	Yes	۱	2	2
Rainy	Cool	Normal	False	Yes	•	■ A Hew day.	ďa y
Rainy	Cool	Normal	True	g	Outlook	Temp.	Humidit
Overcast	Cool	Normal	True	Yes	Sunny	C00	High
Sunny	Mild	High	False	g			
Sunny	Cool	Normal	False	Yes			
Rainy	Mild	Normal	False	Yes			
Sunny	Mild	Normal	True	Yes			
Overcast	Mild	High	True	Yes			
Overcast	Hot	Normal	False	Yes			
Rainy	Mild	High	True	No			

Windy

Humidity High

The weather data example Windy

Outlook	Temp.	Humidity	Windy	Play	,	Emil	J Com		
Sunny	Cool	High	True	خ		Eviae	Evidence E		
$P(Plav=ves \mid E) =$	ves E) :	II			Outlook	Temp.	Humidity	Windy	Play
P(O)III	look=Si	P(Outlook=Sunny nlay=yes) *	(Sever)	*	Sunny	Hot	High	False	No
P(Ten		P(Temn=Cool I nlav=ves) *	(35) *		Sunny	Hot	High	True	8
D(H ₁₁₁	ap coo	P(Humidita=High play=yes) *	(S)	*	Overcast	Hot	High	False	Yes
D(XX;	ade: (T.	ingii piaj	(e) (e)		Rainy	Mild	High	False	Yes
r (w II D(zdov	r(wiiidy=iide piay D(zdor=iig) / B(E) =	r (w iiiuy— i i ue piay—yes) · D(=lor=====) / D(E) —	. (SD		Rainy	Cool	Normal	False	Yes
	/_ycs)/	r(E) =			Rainy	Cool	Normal	True	8
* (6/7) =	(Overcast	Cool	Normal	True	Yes
(3/9) *	%				Sunny	Mild	High	False	g
(3/9) *	*				Sunny	Cool	Normal	False	Yes
(3/9) *	*				Rainy	Mild	Normal	False	Yes
(9/14)/P(E)	(9/14) / P(E) = 0.0053 / P(E)	/ P(E)		Sunny	Mild	Normal	True	Yes
					Overcast	Mild	High	True	Yes
Don't we	orry for	Don't worry for the 1/P(E); It's); It's		Overcast	Hot	Normal	False	Yes
alpha	, the noi	alpha, the normalization constant.	n const	ant.	Rainy	Mild	High	True	No

Normalization constant

_
ī
~
H)
no
F
<u></u>
5
\mathbf{z}
$\overline{+}$
ΞÌ
S
Ş
Ţ
<u>[a</u>
a
Ъ

i.e. i.e.

> 0.0053 / P(E) + 0.0206 / P(E) = 1P(E) = 0.0053 + 0.0206

 $P(play=yes \mid E) = 0.0053 / (0.0053 + 0.0206) = 20.5\%$ $P(play=no \mid E) = 0.0206 / (0.0053 + 0.0206) = 79.5\%$

$The \begin{tabular}{ll} $^{c'}Zero-frequency\ problem \end{tabular} $^{c'}Zero-frequency\ problem \end{tabul$

The "zero-frequency problem"

That's called smoothing

- Probability P(Humidity=Highl play=yes) will be zero!
 P(Play="Yes"|E) will also be zero!
- No matter how likely the other values are!
- = (2/9) * (3/9) * (3/9) * (3/9) * (9/14) / P(E) = 0.0053 / P(E)P(Humidity=High | play=yes) * P(Windy=True | play=yes) * P(play=yes) / P(E) =
 - It will be instead:
- = ((2+1)/(9+3)) * ((3+1)/(9+3)) * ((3+1)/ (9+2)) * ((3+1)/(9+2)) *((9+1)/(14+2)) / P(E) = 0.0069 / P(E) Number of possible values for 'Outlook' Add k (# of possible attribute values) to the denominator. (see example on the right). Add 1 to the count for every attribute value-class combination (Laplace estimator);

Missing values

- Training: instance is not included in the frequency count for attribute value-class combination
- Classification: attribute will be omitted from calculation
- Outlook Temp. Humidity Windy Play Example:

P(Humidity=High | play=no) * P(Windy=True | play=no) * P(Temp=Cool | play=no) * $P(play=no \mid E) =$ High P(Humidity=High | play=yes) * Cool P(Windy=True | play=yes) * P(Temp=Cool | play=yes) * P(play=yes | E)

= (2/8) * (5/7) * (4/7) * (6/16) / P(E)= 0.0382 / P(E)P(play=no) / P(E) == (3/12) * (3/11) * (3/11) * (10/16) /P(E) = 0.0116 / P(E)P(play=yes) / P(E) =

 $P(play=no \mid E) = 77\%$ After normalization: P(play=yes | E) = 23%,

Weather Data with Numeric Attrib

sunny sunny avercast overcast rainy rainy rainy overcast sunny	85 83 70 68 65	85 90 86 96 96 80 70	FALSE	2
cast cast cast y	83 70 68 65	90 86 96 80 70	TRI IF	2
cast / / / / / / / / / / / / / / / / / / /	83 70 68 65	86 96 80 70	1	no
/ / / cast ny	70 68 65	96 80	FALSE	yes
y rcast ny Vr	68	80	FALSE	yes
y rcast yr Yr	65	70	FALSE	yes
rcast yr yr			TRUE	no
ýr Ýr	64	65	TRUE	yes
γυ	72	96	FALSE	no
	69	70	FALSE	yes
rainy	75	80	FALSE	yes
sunny	75	70	TRUE	yes
overcast	72	06	TRUE	yes
overcast	81	75	FALSE	yes
rainy	71	91	TRUE	no

We compute similarly: f(Temperature=66 | no)

couling on an		f(Tomporphino-66 year)		=e(- ((60-III)'2' 2 val))	sqrt(2"3.14"var)
ann		(00)(199	(38,027)	/ < val) //	_
	1				

var = ((83-73)^2 + (70-73)^2 + (68-73)^2 + (64-73)^2 + (69-73)^2 + (75-73)^2 + (75-73)^2 + (75-73)^2 + (81-73)^2 J (9-1) = 38 83+70+68+64+69+75+75+72 +81)/9 = 73

f(Temperature=66 | yes) =e(- ((66-73)^2 / (2*38))) / sqrt(2*3.14*38) = **.034**

We compute similarly: f(Humidity=90 | no)

"Hallucinating" training data, as for MAP

Dealing with numeric attributes

- Usual assumption: attributes have a normal or Gaussian probability distribution (given the class).
- Probability density function for the normal distribution is:

$$f(x|class) = \frac{1}{\sigma\sqrt{2\pi}} e^{\frac{(x-\mu)^2}{2\sigma^2}}$$
We approximate μ by the sample mean:

We approximate σ² by the sample variance:

 $\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}$$

Weather Data

			i catio		22		
outlook	outlook temperature humidity windy	humidity	windy	play	Outlook	Temp.	Humidity
sunny	85	85	FALSE	no	Sunny	99	06
sunny	80	06	TRUE	no			
overcast	83	98	FALSE	yes	4/11/14	1	(00), 100
rainy	70	96	FALSE	yes) (I		(Hullimany=90 yes) -0/ ((O) 50/0 / 3*(0
rainy	89	80	FALSE	yes	בר אבר אורים בר אורים	((30-111)	=e(- ((90-III) 2 / Z va
rainy	9	20	TRUE	no	sdr(sqrt(2"3.14"var)	var)
overcast	64	9	TRUE	yes			
sunny	72	96	FALSE	no	II .		
sunny	69	02	FALSE	yes)+98)	+08+96	(86+96+80+65+70+8
rainy	75	80	FALSE	yes	+25)/	+75)/9 = 79	
sunny	22	20	TRUE	yes			
overcast	72	06	TRUE	yes	var =	(86-7	var = ((86-79)^2 + (9
overcast	81	75	FALSE	yes	(80-7	$-9)^{^{2}}$	$(80-79)^{4}$ + $(65-79)^{4}$
rainy	71	91	TRUE	no	(70-7	.9) ^{^2} +	$(70-79)^{4}$ + $(80-79)^{4}$
					.!		

96-79)^2 + 30+70+90 f(Humidity=90 | yes) =e(- ((90-79)^2 / (2*104))) / sqrt(2*3.14*104) = **.022** $(80.79)^2 + (65.79)^2 +$ $(70.79)^2 + (80.79)^2 +$ $(70.79)^2 + (90.79)^2 +$ $(75.79)^2 + (90.19)^2 +$

Classifying a new day

A new day E:

Outlook	Temp.	Humidity	Windy	Play
Sunny	99	06	true	خ

P(play=yes | E)

P(Outlook=sunny | play=yes) * P(Humidity=90 | play=yes) * P(Temp=66 | play=yes) *

= (2/9) * (0.034) * (0.022) * (3/9)*(9/14) / P(E) = 0.000036 / P(E)

P(Windy=true | play=yes) * P(play=yes) / P(E) =

= (3/5) * (0.0291) * (0.038) * (3/5)*(5/14) / P(E) = 0.000136 / P(E)P(Outlook=sunny | play=no) * P(Humidity=90 | play=no) * P(Windy=true | play=no) * P(Temp=66 | play=no) * P(play=no) / P(E) = $P(play=no \mid E) =$

P(play=no | E) = 79.1%After normalization: P(play=yes \mid E) = 20.9%,

Discussion of Naïve Bayes

- Naïve Bayes works surprisingly well (even if independence assumption is clearly violated)
- estimates as long as maximum probability is assigned to correct Because classification doesn't require accurate probability class .

Naive Bayes Tax Data

Classify: (_, No, Married, 95K, ?)

Evade 100K 20K 220K 80 K 85K Divorced Divorced Aarried Single Single Single Refund e e ŝ å ŝ

 $P(Yes) = 3/10 = 0.3 \\ P(Refund=No|Yes) = (3+1)/(3+2) = 0.8 \\ P(Status=Married|Yes) = (0+1)/(3+3) = 0.17$

 $= e^{\frac{(x-\mu)^2}{2\sigma^2}}$ $f(income | Yes) = \frac{1}{\sqrt{2\pi\sigma^2}}$

Approximate μ with: (95+85+90)/3 = 90

Approximate σ^2 with:

/((95-90)^2+(85-90) ^2+(90-90) ^2)/ e(- $((95-90)^2 / (2*25)))$)/ sqrt(2*3.14*25) = .048f(income=95|Yes) = (3-1) = 25

P(Yes | E) = α *.8*.17*.048*.3= α *0.0019584

Probability densities

Relationship between probability and density:

$$\Pr[c - \frac{\varepsilon}{2} < x < c + \frac{\varepsilon}{2}] \approx \varepsilon * f(c)$$

But: this doesn't change calculation of a posteriori probabilities because ϵ cancels out after normalization

Tax Data – Naive Bayes

Classify: (_, No, Married, 95K, ?)

(Apply also the Laplace normalization)

Tid	Tid Refund	Marital Status	Taxable Income	Evade
_	Yes	Single	125K	o _N
7	°Z	Married	100K	٥ ٧
က	°Z	Single	70K	_S
4	Yes	Married	120K	٥ ٧
2	°Z	Divorced	95K	Yes
9	°Z	Married	80K	٥ ٧
_	Yes	Divorced	220K	_S
80	°Z	Single	85K	Yes
0	°Z	Married	75K	٥ ٧
10	°Z	Single	90K	Yes

Tax Data

Lid	Refund	Marital	Taxable	
		Status	Income	Evade
-	Yes	Single	125K	o _N
2	°Z	Married	100K	o N
က	°Z	Single	70K	o N
4	Yes	Married	120K	o N
2	°Z	Divorced	95K	Yes
9	o Z	Married	60K	o N
7	Yes	Divorced	220K	o N
∞	°Z	Single	85K	Yes
6	o N	Married	75K	o N
10	No	Single	90K	Yes

Classify: (_, No, Married, 95K, ?)

P(Refund=No|No) = (4+1)/(7+2) = .556P(Status=Married|No) = (4+1)/(7+3) =P(No) = 7/10 = .7

$$f(income | No) = \frac{1}{\sigma \sqrt{2\pi}} e^{\frac{(x-\mu)^2}{2\sigma^2}}$$

(125+100+70+120+60+220+75)/7 = 110Approximate σ² with: Approximate µ with:

 $((125-110)^2 + (100-110)^2 + (70-110)^2 + (70-110)^2 + (20-110)^2 + (60-110)^2 + (75-110)^2 + (75-110)^2 + (75-110)^2 + (70-110)^2 +$

f(income=95|No) =

e(-((95-110)^2 / (2*2975))) / sqrt(2*3.14* 2975) = .00704 P(No | E) = α *.556*.5* .00704*0.7= α *.

Tax Data

	_										
	Evade	ON	٥ ٧	٥ ٧	_S	Yes	_S	٥ ٧	Yes	°N	Yes
,	Taxable Income	125K	100K	70K	120K	95K	60K	220K	85K	75K	90K
	Marital Status	Single	Married	Single	Married	Divorced	Married	Divorced	Single	Married	Single
	Refund	Yes	°Z	°N	Yes	°Z	°N	Yes	°N	°N	°Z
	Tid	1	7	က	4	2	9	7	80	6	10

Classify: (_, No, Married, 95K, ?)

```
P(Yes | E) = \alpha*.0019584
P(No | E) = \alpha*.00137
```

 $\alpha = 1/(.0019584 + .00137) = 300.44$

We predict "Yes."

Text Classification

- · Assign a document to a category (e.g. spam/not spam)
- Naïve Bayes models are often used for this task.
- Evidence variables are the presence or absence of each word in the language.
- Bag of words

Bernoulli Naïve Bayes

• Now we can use Naïve Bayes for classifying a new document:

$$\begin{split} &P(Category = c \mid Word_1 = true, ..., Word_n = false) = \\ &\alpha * P(Category = c) \prod_{i=1}^{n} P(Word_i ? \mid Category = c) \\ &P(Category = \neg c \mid Word_1 = true, ..., Word_n = false) = \end{split}$$

- $\alpha^*P(Category = \neg c) \prod_{i=1}^n P(Word_i? \mid Category = \neg c)$ Word₁, ..., Word_n are all of the words in **any** document
 - (i.e. all the words we know about)
 - $P(Word_i ? | Category = c)$ is
- $P(W ord_i \mid Category = c)$ if word i does appear in test doc $P(\neg W ord_i \mid Category = c)$ if word i does not appear in test doc
- α is the normalization constant.

Benefits

- Why use Naïve Bayes
- works well
- fewer parameters
- How many params for binary classification with N binary features?
- $-P(e_1 \mid C)...P(e_N \mid C) * P(C)$
- For the full joint distribution?
 - $P(e_1 \ldots e_N | C) * P(C)$
- In practice, take the log before multiplying

Bernoulli Naïve Bayes

- Training: Given **training data** a set of documents that **have been** assigned to categories, training is just counting

 | Of course P(-W|C) = 1-P(W|C) |
- Prior probability P(Category)
- Fraction of all the training documents that are of that category
- Conditional probabilities P(Word; | Category)
- Fraction of docs of category c that contain word Word,
- Conditional probabilities P(¬Word; | Category)
- Fraction of docs of category c that don't contain word Word.
 - Also, $P(Word_i \mid Category = \neg c)$
- Fraction of docs **not** of category c that contain word Word_i.
 - $P(\neg Word_i \mid Category = \neg c)$
- Fraction of docs not of category c that don't contain word Word.

Multinomial Naïve Bayes

- Don't use probability for words that don't appear in a document $P(Category=c\mid Word_{l}=true, ..., Word_{m}=true)=$
 - $\alpha * P(\text{Category} = c) \prod_{i=1}^{m} P(\text{Word}_i \mid \text{Category} = c)$
- Now the product is over only the m words that do appear in the document we are testing on
- (all words will be equal to true)
- If the same word appears more than one time (say t times), we count its probability more than one time (t times).

Multinomial Naïve Bayes

- We also redefine the $P(w_i|y)$ N_{yi} is the total number of times feature i appeared for any instance with label y

$$P(w_i|y) = \frac{N_{yi} + \alpha_s}{N_y + p * \alpha_s}$$

- $N_y = \sum_{j=1}^p N_{y,\ell}$ is the total number of times any feature appeared in an instance label y

 - p is the total number of features, and α_s is the additive smoothing parameter. Different from normalization constant

Binomial cares if a word doesn't occur, but not how many times it occurs. Multinomial cares if a word occurs >1 time, but ignores absent words.

Test Document	Bernoulli	Multinomial
 ZAAX	Calculate P(X C)P(Y C)P(Z C)P(C) and P(X -C)P(Y -C) P(Z -C)P(-C)	Calculate P(X C)P(Y C) P(Y C)P(Z C)P(C) and P(X -C)P(Y -C) P(Z -C)P(-C)
 ХУ	Calculate P(X C)P(Y C)P(¬Z C)P(C) and P(X ¬C)P(Y ¬C)P(¬Z ¬C)P(¬C)	Calculate P(X C)P(Y C)P(C) and P(X -C)P(Y -C)P(-C)
ΥΥZ	Calculate P(-X C)P(Y C)P(Z C)P(C) and P(-X -C)P(Y -C)P(Z -C)P(-C)	Calculate P(Y C)P(Y C)P(C) and P(Y -C)P(Y -C)P(-C)