Machine Learning for Software Engineering

Indice

- Introduzione
- Progettazione
- Risultati
- Conclusioni
- Minacce alla validità
- Link

Introduzione

Contesto

- I bug costano
- Con il testing si possono trovare e dare garanzie sulla qualità dei prodotti
- Ma anche il testing è costoso

Scopo

- Rendere il testing più efficiente
- Verrà effettuato predicendo quali classi conterranno bug
- Nello studio si analizzeranno le differenze tra i modelli di predizione

1) Recupero informazioni

- Con Git sono state recuperate le release e le revisioni
- Con Jira sono stati recuperati i ticket di tipo bug e risolti

E' di interesse stabilire quali classi e in quali versioni siano affette dai difetti.

Per stabilire le versioni dai ticket viene recuperato:

- Opening version (OV)
- Fixed vesion (FV)
- Affected versions (AV), se disponibili

- 2) Calcolo infected version (IV)
 - Se le AV erano disponibili, la prima viene considerata come IV
 - Se non lo erano, è stato utilizzato proportion:

$$P = \frac{FV - IV}{FV - OV} \Leftrightarrow IV = FV - (FV - OV) * P$$

- Per il calcolo di P
 - Se erano disponibili meno di 5 ticket per la versione è stato usato Cold
 Start calcolato sugli altri progetti di Apache
 - Altrimenti viene calcolato tramite Increment

- 3) Individuazione classi affette
 - Dalle versioni di Jira sono state ricavate le revisioni di Git

Dalle revisioni di Git sono state ricavate le classi modificate

4) Scelta metriche

Sono state usate metriche di classe

LoC	Loc Touched
NR	Nfix
Nauth	Avarege LoC Added
Max Loc ADded	Churn
Average Churn	Max Churn

5) Dataset

 Per preservare l'ordine temporale ed evitare che il testing set abbia dati antecedenti al traning set, è stato creato usando walk-foward

6) Metriche di performance:

• Precision
$$\frac{TP}{TP+FP}$$

• Recall
$$\frac{TP}{TP+FN}$$

- AUC
 - Area sotto la ROC curve
- Kappa
 - Quante volte il modello è stato più accurato di un classificatore dummy

7) Classificatori:

Random forest

Naive Bayes

$$P(A|B) = \frac{P(B|A) * P(A)}{P(B)}$$

Ibk

- 8) Variabili validate empiricamente:
 - No selection e no sampling
 - Best first e no sampling
 - Best first e oversampling
 - Best first e undersampling
 - Best first e SMOTE

Conclusioni BookKeeper

- Miglior classificatore:
 - No feature selection e no sampling Random forest
 - Best first e no sapling Random forest
 - Best first e oversampling Naive Bayes
 - Best first e undersampling Naive Bayes
 - Best first e SMOTE Random forest
 - Migliore combinazione in assoluto: Best first e no sampling con Random forest

Conclusioni Avro

- Miglior classificatore:
 - No feature selection e no sampling Naive Bayes
 - Best first e no sapling Naive Bayes
 - Best first e oversampling Naive Bayes
 - Best first e undersampling Naive Bayes
 - Best first e SMOTE Naive Bayes
 - Migliore combinazione in assoluto: Best first e oversamplin sampling con Naive Bayes

Minacce alla validità

 Considerando il numero di versioni e il cambiamento frequente delle classi in Avro, potrebbe essere più appropriato Moving Window per il calcolo di proportion

 Con Cold Start vengono considerati pochi progetti e il loro unico legame è l'appartenenza al gruppo Apache

Link

- GitHub:
 - https://github.com/GRonz00/ispw2

- SonarClouad:
 - https://sonarcloud.io/project/overview?id=GRonz00_ispw22