Методы Оптимизации. Даниил Меркулов. Выпуклость. Выпуклые множества.

Affine set

Даны 2 точки x_1, x_2 . Тогда прямая, проходящая через них определяется следующим образом:

$$x = \theta x_1 + (1 - \theta)x_2, \theta \in \mathbb{R}$$
 (1)

Афинное множество

Множество \pmb{A} называется афинным, если для любых $\pmb{x_1}, \pmb{x_2}$ из \pmb{A} прямая, проходящая через них так же

лежит в
$$\pmb{A}$$
, т.е.

$$orall heta \in \mathbb{R}, orall x_1, x_2 \in A: heta x_1 + (1- heta) x_2 \in A$$

(2)

Примеры:

$$\mathbb{R}^n$$
, множество $\{x \mid \mathbf{A}x = \mathbf{b}\}$

Афинная комбинация

Пусть $x_1,x_2,\ldots,x_k\in S$, тогда точка $heta_1x_1+ heta_2x_2+\ldots+ heta_kx_k$ называется афинной комбинацией точек x_1,x_2,\ldots,x_k при условии $\sum_{i=1}^k heta_i=1$

Афинная оболочка

Наименьшее множество всех афинных комбинаций точек множества S называется афинной оболочкой множества S.

$$\mathbf{aff}(S) = \left\{ \sum_{i=1}^{k} \theta_i x_i \mid x_i \in S, \sum_{i=1}^{k} \theta_i = 1 \right\}$$
 (3)

Convex set

Даны 2 точки x_1, x_2 . Тогда отрезок, соединяющий их определяется следующим образом:

$$x = \theta x_1 + (1 - \theta)x_2, \theta \in [0, 1]$$
 (4)

Выпуклое множество

Множество C называется выпуклым, если для любых x_1, x_2 из A отрезок, соединяющий их, так же лежит в C, т.е.

$$\forall \theta \in [0, 1], \forall x_1, x_2 \in C:$$

$$\theta x_1 + (1 - \theta)x_2 \in C$$

$$(5)$$

Примеры:

Любое афинное множество, луч, отрезок.

Выпуклая комбинация

Пусть $x_1,x_2,\ldots,x_k\in S$, тогда точка $heta_1x_1+ heta_2x_2+\ldots+ heta_kx_k$ называется выпуклой комбинацией точек x_1,x_2,\ldots,x_k при условии $\sum\limits_{i=1}^k heta_i=1, heta_i\geq 0$

Выпуклая оболочка

Наименьшее множество всех выпуклых комбинаций точек множества S называется выпуклой оболочкой множества S.

$$\mathbf{conv}(S) = \left\{ \sum_{i=1}^{k} \theta_i x_i \mid x_i \in S, \sum_{i=1}^{k} \theta_i = 1, \theta_i \ge 0 \right\}$$
 (6)

Примеры:

Неуловимая выпуклость

На практике очень важно бывает понять, выпукло конкретное множество или нет. Для этого применяют 2 подхода в зависимости от контекста.

По определению

Показать, что S получено из простых выпуклых множеств с помощью операций, сохраняющих выпуклость:

По определению

$$x_1, x_2 \in S, 0 \le \theta \le 1 \quad \rightarrow \quad \theta x_1 + (1 - \theta) x_2 \in S \tag{7}$$

Показать, что S получено из простых выпуклых множеств с помощью операций, сохраняющих выпуклость:

Линейная комбинация выпуклых множеств выпукла

Пусть есть 2 выпуклых множества S_x, S_y , пусть множество $S=\{s\mid s=c_1x+c_2y, x\in S_x, y\in S_y, c_1, c_2\in \mathbb{R}\}$

Возьмем две точки из S: $s_1=c_1x_1+c_2y_1, s_2=c_1x_2+c_2y_2$ и докажем, что отрезок между ними $\theta s_1+(1-\theta)s_2, \theta \in [0,1]$ так же принадлежит S

$$\theta s_1 + (1 - \theta) s_2$$
 (8)

$$\theta(c_1x_1+c_2y_1)+(1-\theta)(c_1x_2+c_2y_2)$$
 (9)

$$c_1(\theta x_1 + (1-\theta)x_2) + c_2(\theta y_1 + (1-\theta)y_2)$$
 (10)

$$c_1x+c_2y\in S \quad (11)$$

Пересечение любого (!) числа выпуклых множеств выпукло

Если искомое пересечение пусто или содержит одну точку - свойство доказано по определению. В противном случае возьмем 2 точки и отрезок между ними. Эти точки должны лежать во всех пересекаемых множествах, а так как все они выпуклы, то и отрезок между ними лежит во всех множествах, а значит и в их пересечении.

Образ выпуклого множества при афинном отображении выпуклый

$$S \subseteq \mathbb{R}^n \text{ convex } \rightarrow f(S) = \{f(x) \mid x \in S\} \text{ convex } (f(x) = \mathbf{A}x + \mathbf{b})$$
 (12)

Примеры афинных функций: растяжение, проекция, перенос, множество решений линейного матричного неравенства $\{x \mid x_1A_1+\ldots+n_mA_m \preceq B\}$ Здесь $A_i, B \in \mathbf{S}^p$ - симметричные матрицы $p \times p$.

Отметим так же, что прообраз выпуклого множества при афинном отображении так же выпуклый.

$$S \subseteq \mathbb{R}^m \text{ convex } \to f^{-1}(S) = \{x \in \mathbb{R}^n \mid f(x) \in S\} \text{ convex } (f(x) = \mathbf{A}x + \mathbf{b})$$
 (13)

Convex cone

Выпуклый конус

Множество S называется выпуклым конусом, если:

$$\forall x_1, x_2 \in S, \theta_1, \theta_2 \ge 0 \quad \rightarrow \quad \theta_1 x_1 + \theta_2 x_2 \in S \tag{14}$$

Примеры:

 \mathbb{R}^n ; афинное множество, содержащее 0; луч, \mathbf{S}^n_+ - множество симметричных положительно определенных матриц

Неотрицательная коническая комбинация точек

Пусть $x_1,x_2,\ldots,x_k\in S$, тогда точка $\theta_1x_1+\theta_2x_2+\ldots+\theta_kx_k$ называется неотрицательной конической комбинацией точек x_1,x_2,\ldots,x_k при условии $\theta_i\geq 0$

Коническая оболочка точек

Наименьшее множество всех неотрицательных конических комбинаций точек множества S называется конической оболочкой множества S.

$$\mathbf{cone}(S) = \left\{ \sum_{i=1}^{k} \theta_i x_i \mid x_i \in S, \theta_i \ge 0 \right\}$$
 (15)

Примеры решения задач

Пример 1

Покажите, что множество выпукло тогда и только тогда, когда его пересечение с любой прямой выпукло.

Решение:

- 1. Заметим, что прямая выпуклое множество, а пересечение двух выпуклых множетсв всегда выпукло. Таким образом, если множество выпукло, то его пересечение с любой прямой выпукло.
- 2. Теперь пусть пересечение множества S с любой прямой выпукло. Возьмем произвольные точки $x_1, x_2 \in S$. Пересечение S и прямой через x_1, x_2 выпукло, т.е. содержит отрезок между x_1 и x_2 . Если любое пересечение содержит две точки и отрезок между ними, то и множество S его так же содержит, а стало быть выпукло.

Пример 2

Покажите, что выпуклая оболочка множества S есть пересечение всех выпуклых множеств, содержащих S.

Решение:

1. Обозначим за ${\pmb H}$ выпуклую оболочку множества ${\pmb S}$, а за ${\pmb I}$ - пересечение всех выпуклых множеств, содержащих ${\pmb S}$. Таким образом:

$$H=\mathbf{conv}(S)$$
 $I=igcap \{I_s\mid I_s ext{-convex}\ ,I_s\supseteq S\}$ Требуется доказать, что $H=I.$

- 2. Пусть $x \in H$, т.е. x выпуклая комбинация некоторых точек $x_1, \ldots, x_k \in S$. Теперь пусть I_s некоторое выпуклое множество содержащее S: $I_s \supseteq S$. Значит эта выпуклая комбинация точек $x_1, \ldots, x_k \in S \in I_s$ лежит и в I_s , так как оно выпукло (и содержит все выпуклые комбинации своих точек), т.е. $x \in I_s$. Но I_s произвольное выпуклое множество, содержащее x, а значит, $x \in \bigcap I_s$ или I. Таким образом $H \subseteq I$
- 3. Заметим, что выпуклая оболочка выпукла и содержит исходное множество, а значит, сама по себе является одним из тех множеств, которые мы пересекаем для построения I, т.е. $I_s = H$. А значит, $I \subseteq H$.
- 4. Широкий взгляд на предыдущие два пункта завершает доказательство.

Пример 3

Пусть $x \in \mathbb{R}$ - случайная величина с заданным вероятностным распределением $\mathbb{P}(x=a_i)=p_i$, где $i=1,\ldots,n$, а $a_1<\ldots< a_n$. Говорят, что вектор вероятностей исходов $p\in\mathbb{R}^n$ принадлежит вероятностному симплексу, т.е. $P = \left(p \right) \$ hid \mathbf{1}^Tp = 1, p \succeq 0\right\ = \left{ p \mid p_1 + \ldots + p_n = 1, p_i \ge 0 \right\}.

Определите, выпукло ли множество таких p, которые удовлетворяют условию:

• $lpha<\mathbb{E} f(x)<eta$, где $\mathbb{E} f(x)$ означает математическое ожидание заданной функции $f(x):\mathbb{R} o\mathbb{R}$, т.е. $\mathbb{E} f(x)=\sum_{i=1}^n p_i f(a_i)$

По условию: $\alpha < \sum_{i=1}^n p_i f(a_i) < \beta$. Это означает, что на p наложено два линейных неравенства, каждое из которых определяет выпуклое множество (полупространство), что в пересечении с выпуклым симплексом даст выпуклое множество.

• $\mathbb{E}x^2 < \alpha$

По условию: $\sum_{i=1}^n p_i a_i^2 \leq \alpha$. Это условие является линейным неравенством, что так же задает выпуклое множество ограничений, что в пересечении с симплексом дает выпуклое множество.

• $\forall x \leq \alpha$

По условию:
$$\mathbb{V}x=\mathbb{E}\left\{(x-\mathbb{E}x)^2
ight\}=\mathbb{E}x^2-(\mathbb{E}x)^2$$
 = $\sum\limits_{i=1}^np_ia_i^2-\left(\sum\limits_{i=1}^np_ia_i
ight)^2\leq lpha$

Множество, вообще говоря, не выпукло. Для этого достаточно ограничиться минимальным контрпримером, когда n=2, а один из линейных коэффициентов равен 0, а другой 1, пусть α так же равен $\frac{1}{228}$: $p_2-p_2^2 \leq \frac{1}{228}$. Подставьте точки (1,0) и (0,1) - они удовлетворяют неравенству, в то время как середина отрезка между ними (0.5,0.5) этим свойством не обладает.

Домашнее задание 2

- 0. Покажите, что множество афинно тогда и только тогда, когда его пересечение с любой прямой афинно.
- 1. Пусть S_1, \ldots, S_k произвольные непустые множества в \mathbb{R}^n . Докажите, что:

$$\circ \ \mathbf{cone}\left(igcup_{i=1}^k S_i
ight) = \sum\limits_{i=1}^k \mathbf{cone}\left(S_i
ight)$$

$$\circ \ \ \mathbf{conv}\left(\sum\limits_{i=1}^{k}S_{i}
ight)=\sum\limits_{i=1}^{k}\mathbf{conv}\left(S_{i}
ight)$$

- 2. Докажите, что множество $S\subseteq\mathbb{R}^n$ выпукло тогда и только тогда, когда $(\alpha+\beta)S=\alpha S+\beta S$ для всех неотрицательных lpha и eta
- 3. Пусть $x \in \mathbb{R}$ случайная величина с заданным вероятностным распределением $\mathbb{P}(x=a_i)=p_i$, где $i=1,\dots,n$, а $a_1<\dots< a_n$. Говорят, что вектор вероятностей исходов $p\in\mathbb{R}^n$ принадлежит вероятностному симплексу, т.е. $P=\left\{p\mid \mathbf{1}^Tp=1, p\succeq 0\right\}=\left\{p\mid p_1+\dots+p_n=1, p_i\geq 0\right\}$.

Определите, выпукло ли множество таких p, которые удовлетворяют условию:

$$\circ \ \mathbb{P}(x > \alpha) \leq \beta$$

$$\circ \mathbb{E}|x^{2017}| \leq \alpha \mathbb{E}|x|$$

$$\circ \mathbb{E}|x^2| \geq \alpha$$

$$\circ \ \mathbb{V}x \geq \alpha$$

В качестве решения необходимо предоставить либо:

- .pdf файл, сверстанный с помощью $L\!\!\!/T_E\!\!\!X$ с решениями задач
- .ipynb с оформленным решением