Introduction to Floating base Robots

Motivation

- industrial fixed-base robots are fast and accurate in a limited, structured, known, static workspace
- to be useful in the outside world, robots must be able to move freely in large, unstructured, uncertain, dynamic environments

Possible applications:

- Exploration / inspection
- Search & rescue
- Transportation
- Demining / nuclear decommissioning
- Monitoring / surveillance
- Agriculture

Examples

Underwater

Seagoo ROV (inspection)

Space

NASA SpaceX (space manipulation)

Air

Amazon Prime Air Quadrotor (delivery)

Wheels

WooWee Rovio (monitoring)

Tracks

spacecraft. NASA, via Associated Press

Indumil (demining)

Legs

Big Dog (trasnportation)

Asimo (research)

Floating bose robot:

- P bose is a mainig body (vi general under ctuated)

FULLY ACTUATED -> # OCTUSTORS =# DOTS

UNDERA CTUATED -> # OCTUGTORS < # DOFS

The bone con be controlled through The oction of contoct forces / Rockets!

E XAMPLES:

Spoce reports

legged lahots

Legged robots

and move in the desired direction

Legged robot are peculiar tip of floating base robots with single chain kinematic structures (legs) that branch from the base (no kinematic loops)

Brief history of legged robots

First computer-controller robot (Raiber, 70s – 80s)

ZMP concept (Vukobratovic, 1972)

P2 (Honda, 1996)

2000

1970

First Humanoid Robot (1973 - Waseda University, Japan)

1980

The pre-robotic period First walking machines were tele-operated by humans: GE Walking Truck (~1960s)

1990

Purely passive dynamics (McGeer, 1990)

Brief history of legged robots

Toro (DLR, 2013)

Walkman (IIT, 2015)

HRP-2 (Kawada, 2002)

iCub

2000 2010 2020

ASIMO, Honda (2000)

BigDog, Boston Dynamics (2008)

Atlas, Boston Dynamics (2019)

HyQReal, IIT (2019)

Humanoids VS Quadrupeds

Why Humanoids?

- adaptability: humanoids can work in environments suitable for humans and use machines designed for humans
- psychological and commercial reasons: humanoids have a major appeal because of human-like appearance: empathy

Why quadrupeds?

- Higher stability due to the larger support polygon
- Smaller feet (point-like assumption)
- Different kind of gaits (walk, trot, pace...)

Sensor equipment

- proprioceptive: perception of the robot itself
 - Joint positions (encoders)
 - Joint torques (loadcell, torque sensors)
 - Base orientation, velocity, acceleration (IMU)
- exteroceptive: perception of the environment surrounding the robot (obstacles, robots, people, etc)
 - Infrared cameras
 - Stereo cameras
 - Laser cameras

Basic terminology: Support Polygon (SP)

Convex hull of the contact points

Humanoids

Quadrupeds

Gait scheduler: crawl example

Basic terminology: Center of Mass (CoM)

$$X_{CON} = \frac{\sum_{i=0}^{N} x_i m_i^i}{\sum_{i=0}^{N} m_i^i} \rightarrow M_{TOI}$$

Xi = Position of
The COM of
Link i m The
frame of interest