

Discrete Structures (Monsoon 2021)

Ashok Kumar Das

Associate Professor IEEE Senior Member

International Institute of Information Technology, Hyderabad (IIIT Hyderabad) Center for Security, Theory and Algorithmic Research

E-mail: ashok.das@iiit.ac.in

URL: http://www.iiit.ac.in/people/faculty/ashokkdas https://sites.google.com/view/iitkgpakdas/

Topic: Set Theory

- A set is a well-defined collection of distinct objects, which are called members of the set or elements of the set.
- * Here, well-defined means that any given object must either be an element of the set, or not be an element of the set.
- * Examples: 1) THE SET OF STUDENTS IN DISCRETE STRUCTURES CLASS
- 2) THE SET OF VOWELS IN ENGLISH ALPHABETS
- 3) $C = \{\text{red, blue, yellow, green, purple}\}$ is well-defined since it is clear what is in the set.

Representation of a set

- **Tabular form:** If the set A consists of the elements 1, 2, 3, and 4, then we express the set in the "tabular form" as $A = \{1, 2, 3, 4\}$.
- typical element and by stating the properties which the elements of Set-builder form: A set is expressed in this form by displaying a the set must satisty.
- The symbol $A = \{x | P(x)\}$ or $A = \{x : P(x)\}$ states that A is a set of elements x which satisfy the condition P(x); the symbol ':' or '/' is read as 'such that'.

Examples

$$A = \{1, 3, 5, \dots, 39\}$$

$$= \{x | x \text{ is a positive odd integer } < 40 \}.$$

$$B = \{2, 4, 6, \ldots\}$$

(2)

$$= \{x | x = 2n, n \text{ being a natural number} \}.$$

$$X = \{1, 8, 27, 64, \ldots\}$$

(3)

$$= \{x | x = n^3, n \text{ being a positive integer} \}.$$

$$S = \{..., -15, -10, -5, 0, 5, 10, 15, ...\}$$

= $\{x | x = 5n, n \text{ is an integer}\}.$

4

- Null Set: A set, having no elements, is defined as the null set or the empty set. An empty set is denoted by ϕ .
- Finite Set: A set is finite, if it be empty or contains a finite number of elements.
- Infinite Set: A set contains an infinite number of elements is called an infinite set.

Example: The set {1, 2, 3, 4, 5} is a finite set and the set

 $\{x_1, x_2, x_3, \ldots\}$ is an infinite set.

 Order of a set: The number of elements of a finite set A is called the order or cardinal number or cardinality of the set A and is symbolically denoted by n(A) or |A|.

Example 1: If $A = \{1, 2\}$ and $B = \{1, 2, 3\}$, then |A| = 2 and

|B|=3

Example 2: The null set is regarded as a finite set of order zero, that is $|\phi| = 0$.

Notations for some well-known sets

- N the set of all natural numbers
- Z the set of all integers
- Q the set of all rational numbers, r such that $r=\frac{a}{b},~a,b\in Z,$ with b
 eq 0 and $\gcd(a,b) = 1$
- R the set of all real numbers
- ullet C the set of all complex numbers $z=a+ib,\,a,b\in R$
- E the set of all even integers
- Z⁺, Q⁺, R⁺ the corresponding sets of positive quantities only
- Z⁻, Q⁻, R⁻ the corresponding sets of negative quantities only

- Sub-set: If every element of a set A be also an element of another Mathematically, $A \subseteq B$ means if an arbitrary element $x \in A$, then set B, then A is called a subset of B and we write it as $A \subseteq B$. $x \in B$ also.
- which are not the elements of a set A, then A is called a proper Proper subset: If, however, the set B contains some elements subset of B and we write it as $A \subset B$.
- Comparable: Two sets A and B are said to be comparable, if either $A \subseteq B$ or $B \subseteq A$.
- Equality of sets: Two sets A and B are said to be equal, that is A=B, if and only if $A\subseteq B$ and $B\subseteq A$.
- Disjoint set: Two sets A and B are said to be disjoint, if they have no element in common, that is $A\cap B=\emptyset$.

 Difference between sets: The difference between two sets A and B in that order is the set of elements which belong to A, but do not

belong to B.

$$A - B \text{ or } A \setminus B = \{x | x \in A, \text{but } x \notin B\}$$

 $B - A \text{ or } B \setminus A = \{x | x \in B, \text{but } x \notin A\}$
Example: Let $A = \{1, 2, 3, 4\} \text{ and } B = \{5, 2, 3, 6\}$. Then $A - B = \{1, 4\} \text{ and } B - A = \{5, 6\}$.

- Theorem: If $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$.
- Theorem: If $A \subseteq B$ and $B \subseteq A$, then A = B.
- Theorem: The null set Ø is a proper subset of every set except Ø

element is called a power set of S and is symbolically denoted by **Power set:** A set formed of all the subsets of a set S as its

Example: If $S = \{a, b, c\}$, then

$$P(S) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}, \{a, b, c\}\}.$$

- Notes: (1) The null set \emptyset is an element/member of $\mathcal{P}(S)$.
- (2) The set S being a subset of itself is also an element of the power set $\mathcal{P}(S)$.
- **Theorem:** If a finite set S has n elements, then its power set $\mathcal{P}(S)$ has 2^n elements. In other words, $|\mathcal{P}(S)| = 2^{|S|}$.
- Quiz. What will happen for the power set $\mathcal{P}(S)$, if S is itself a null

 Universal set: A universal set, U is the set of elements from which elements may be chosen to form sets for a particular discussion. Example: The set of even numbers is a subset of the universal set of whole numbers.

set *U*. The complement of *S* relative to *U* is the set of all elements of U which are not elements of S, and it is denoted by $\sim S$ or S' or Complement of a set: Let S be a given subset of the universal S^c or S.

Example: If $U = \{1, 2, 3, 4, 5, 6\}$ and $S = \{2, 3, 4\}$, then $S' = \{1, 5, 6\}.$

Symbolically, $S' = \{x | x \in U \text{ and } x \notin S\}$.

Venn-Euler diagram

 It is a schematic representation of sets by certain areas containing the elements of the sets, being represented by the points of the respective areas.

Figure: $A \subseteq B$

Venn-Euler diagram

Figure: A' = U - A

Basic Set Operations

Union or Join The union of two sets A and B is denoted and

defined by

$$A \cup B = \{x | x \in A \text{ or } x \in B\}$$

= $\{x | x \in A \lor x \in B\}.$

• If A_1, A_2, \ldots, A_n be the subsets of X, where n is a positive integer, then

$$A_1 \cup A_2 \cup ... \cup A_n = \bigcup_{i=1}^n A_i$$

= $\{x | x \in A_i \text{ for some value } i, 1 \le i \le n\}.$

• Example: If $A = \{1, 2, 3\}$ and $B = \{4, 3, 5, 6\}$, then $A \cup B = \{1, 2, 3, 4, 5, 6\}.$

Basic Set Operations (Continued...)

- From the Venn diagram, it is easy to observe the following theorems.

- 1 $A \cup A = A$ 2 $A \cup U = U$ 3 If $A \subseteq B$, then $A \cup B = B$ 4 $A \cup B = B \cup A$ 5 $A \cup \emptyset = A$

Basic Set Operations (Continued...)

 Intersection or Meet The intersection of two sets A and B is denoted and defined by

$$A \cap B = \{x | x \in A \text{ and } x \in B\}$$

= $\{x | x \in A \land x \in B\}$.

• If A_1, A_2, \ldots, A_n be the subsets of X, where n is a positive integer, then

$$A_1 \cap A_2 \cap \ldots \cap A_n = \bigcap_{i=1}^n A_i$$
$$= \{x | x \in A_i, \forall i, 1 \leq i \leq n\}.$$

Example: If $A = \{a, b, c\}$ and $B = \{c, d, e\}$, then $A \cap B = \{c\}$.

Basic Set Operations (Continued...)

- From the Venn diagram, the following theorems are obvious:

- 1 $A \cap A = A$ 2 $A \cap U = A$ 3 If $A \subseteq B$, then $A \cap B = A$ 4 $A \cap B = B \cap A$ 5 $A \cap \emptyset = \emptyset$ 6 $A \cap A' = \emptyset$

Laws of Algebra on Sets

Let A, B and C be three any sets.

- Commutative laws

- Associative laws
- **1** $A \cup (B \cup C) = (A \cup B) \cup C$ **2** $A \cap (B \cap C) = (A \cap B) \cap C$
- Idempotent laws
- \bullet $A \cup A = A$

Laws of Algebra on Sets (Continued...)

Let A, B and C be three any sets.

- Distributive laws

- De Morgon's laws

- 1 $A B = A \cap B'$ 2 $(A \cup B)' = A' \cap B'$ 3 $(A \cap B)' = A' \cup B'$ 4 $A (B \cup C) = (A B) \cap (A C)$ 5 $A (B \cap C) = (A B) \cup (A C)$

Theorem

$$(A \cup B)' = A' \cap B'.$$

Proof.

In order to prove $(A \cup B)' = A' \cap B'$, we must prove two parts: a) $(A \cup B)' \subseteq A' \cap B'$ and b) $A' \cap B' \subseteq (A \cup B)'$.

a) To prove $(A \cup B)' \subseteq A' \cap B'$:

Let x be an arbitrary element of $(A \cup B)'$. Then, we have: $x \notin (A \cup B)$. $x \in B'$. So, $x \in (A' \cap B')$. Thus, every element of $(A \cup B)'$ is also an Therefore, by De Morgan's law, $x \notin A$ and $x \notin B$, that is, $x \in A'$ and element of $(A' \cap B')$, that is, $(A \cup B)' \subseteq A' \cap B'$.

b) To prove $A' \cap B' \subseteq (A \cup B)'$:

is, $x \notin A$ and $y \notin B$. So, using De Morgan's law, we have: $x \notin (A \cup B)$. Let x be an arbitrary element of $A' \cap B'$. Then, $x \in A'$ and $x \in B'$, that Consequently, $x \in (A \cup B)'$. Since x is arbitrary, $A' \cap B' \subseteq (A \cup B)'$. Thus, combining a) and b), we arrive: $(A \cup B)' = A' \cap B'$.