Symulacje komputerowe, WMat 2023

Lista 8: Losowa miara Poissona

Niech ustalony będzie zbiór z naturalną miarą Ω (naturalna miara - liczność zbioru, długość, powierzchnia, objętość, itp.). Rozpatrzmy losowy zbiór punktów $\Pi \subset \Omega, \Pi = \{p_1, p_2, \ldots\}$ oraz powiązaną z nim funkcję liczącą $N, N(A) := \#\{p_i \in \Pi : p_i \in A\}$. O N mówimy, że jest losową miarą Poissona gdy:

- 1. $N(A) \sim \mathcal{P}oiss(\lambda|A|), |A|$ miara A.
- 2. $N(A_1), N(A_2), \ldots$ są niezależnymi zmiennymi losowymi dla rozłącznych zbiorów A_1, A_2, \ldots

Miarę taką można symulować za pomocą 2-krokowej symulacji:

- 1. Wylosuj zmienną $N(\Omega) \sim \mathcal{P}oiss(\lambda |\Omega|)$.
- 2. Jako p_i wylosuj $N(\Omega)$ niezależny zmiennych losowych z rozkładu jednostajnego $\mathcal{U}(\Omega)$.

Zadania:

- 1. **Losowa miara Poissonowska** Wygeneruj losową miarę Poissonowską na Ω będącym:
 - (a) Liczbami $\{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$.
 - (b) Sześcianem.
 - (c) Kołem.

Zwizualizuj wyniki.

- 2. Niejednorodna losowa miara Poissonowska Jeżeli w definicji warunek $N(A) \sim \mathcal{P}oiss(\lambda|A|)$ zastąpimy $N(A) \sim \mathcal{P}oiss\left(\int_A \lambda(\boldsymbol{x}) \mathrm{d}\boldsymbol{x}\right)$ otrzymamy niejednorodną losową miarę Poissonowską. Do jej wygenerowania możemy użyć metody przerzedzania, tj. wygenerować miarę jednorodną \tilde{N} z intensywnością λ_{\max} , a później przerzedzić punkty, zostawiając każdy p_i z prawdopodobieństwem $\lambda(p_i)/\lambda_{\max}$. Wygenerują taką miarę na kole o $\lambda(\boldsymbol{x}) = \lambda \exp(-|\boldsymbol{x}|^2)$.
- 3. Miary o losowej intensywności Wygeneruj miarę na kole jednostkowym $B(\mathbf{0}, 1)$, dla którego $\lambda(\mathbf{x})$ będzie losowa $\lambda(\mathbf{x}) = \lambda \mathbf{1}_{B(\mathbf{X}, r)}(\mathbf{x}), \mathbf{X} \sim \mathcal{U}(B(\mathbf{0}, 1 r))$.