BAGUETTE EN MISSION POUR CAROTTE 4.0

- valentin.berlier
- léa.masselles
- apolline.wasik

I - PRÉSENTATION DU PROBLÈME

145x145 pixels, avec une résolution au sol de l'ordre de 20 m/pixel.200 bandes spectrales16 classes

512x217 pixels, avec une résolution au sol de l'ordre de 3.7 m/pixel 204 bandes spectrales 16 classes

Représentation d'une image hyper-spectrale

II – SOLUTIONS POSSIBLES

Nos idées?

- Apprentissage non supervisés (Clustering, Watershed)
- PCA (Principal Component Analysis)
- Apprentissages supervisés
- Guided Filter
- Morphologie mathématique

III – PROTOCOLE EXPÉRIMENTAL / RÉSULTATS

Gaussian Mixture

Représentation probabiliste de chaque instance chacune imaginée comme une distribution gaussienne

BIRCH

Structure construite pendant l'entraînement, chaque feuille contenant des informations relatives au cluster

MinibatchKMEANS

KMEANS par batch, qui déplace les centroïds à chaque itération

ANALYSE EN COMPOSANTES PRINCIPALES

Etape I: standardiser la valeur des points

Etape 2: matrice de covariance

Etape 3: trouver les vecteurs propres et valeurs propres

Etape 4: obtenir les composantes principales

Etape 5: projeter les points

III – PROTOCOLE EXPÉRIMENTAL

Représentation topographique d'une bande

- PCA (Analyse en composantes principales)
- Calcul du gradient pour chaque bande
- Combination des segmentation issues de la méthode Watershed

APPRENTISSAGE SUPERVISÉ

SVM

Séparation des données à l'aide d'une frontière. La distance entre les différents clusters et la frontière qui les sépare est maximale

Random Forest

Apprentissage en parallèle sur de multiples arbres de décision construits aléatoirement et entraînés sur des sous-ensembles de données différents

VOTING CLASSIFIER

 Prédire avec plusieurs classifiers et utiliser celui qui nous procure la meilleure accuracy

APPRENTISSAGE SUPERVISÉ

• Séparation des données pour l'entraînement

Répartition équitable des classes dans les données de test et d'entraînement

APPRENTISSAGE SUPERVISÉ

Création de Dataframes

	bande1	bande2	bande3	bande4	bande5	bande6	bande7	bande8
0	0.330279	0.000000	0.000000	0.431279	0.469180	0.445544	0.497918	0.525614
1	0.268638	0.000000	0.000048	0.444190	0.468763	0.460850	0.505310	0.546543
2	0.383903	0.000000	0.000096	0.444190	0.460329	0.468347	0.522595	0.551125
3	0.286235	0.000000	0.000144	0.443357	0.479279	0.467826	0.516243	0.544981
4	0.285923	0.000000	0.000192	0.418367	0.486776	0.459913	0.508746	0.532799
21020	0.266660	0.006897	0.006705	0.415140	0.417638	0.418888	0.437422	0.455748
21021	0.283840	0.006897	0.006753	0.427322	0.418992	0.403998	0.438359	0.455748
21022	0.328301	0.006897	0.006801	0.402332	0.445856	0.404935	0.448771	0.455227
21023	0.328509	0.006897	0.006849	0.427322	0.427530	0.419304	0.430966	0.449604
21024	0.346002	0.006897	0.006897	0.401916	0.437005	0.411495	0.431903	0.445544
4	·							-

21025 rows × 203 columns

Dataframe de l'image hyper-spectrale indianapines

	Composante-1	Composante-2	Composante-3	classe
0	-0.666494	-0.476340	0.068242	0
1	-0.673073	-0.473618	0.061711	0
2	-0.690728	-0.509819	0.062771	0
3	-0.715075	-0.554360	0.068464	0
4	-0.742331	-0.584948	0.072419	0
111099	-0.735905	-0.438629	0.059982	0
111100	-0.735828	-0.452472	0.063522	0
111101	-0.732109	-0.448261	0.064637	0
111102	-0.734610	-0.449132	0.062918	0
111103	-0.723809	-0.436393	0.063378	0

Dataframe de salinas_PCA (3 premières composantes)

UTILISER UN GUIDED FILTER POUR HOMOGÉNÉISER LA CLASSIFICATION

https://www.researchgate.net/publication/331610000_Hyperspectral_image_classification_with_SVM_and_guided_filter

NOS RÉSULTATS

Classifier	Image	Timing
SVC	Indiana Pines	18s547922ms
Random Forest Classifier	Indiana Pines	l min50s544396ms
Voting Classifier	Indiana Pines	2min I 3s035478ms
SVC	Salinas	2min58s433272ms
Random Forest Classifier	Salinas	9min41s494349ms
Voting Classifier	Salinas	12min23s828414ms

COMPARAISON AVEC LA VÉRITÉ TERRAIN

MORPHOLOGIE MATHÉMATIQUE

Une image de dinde après plusieurs ouvertures

MORPHOLOGIE MATHÉMATIQUE

PIPELINE RETENUE

CONCLUSION

CONCLUSION

