清华大学实验报告

软件学院 李金鹏 2019013254 实验日期: 2020年11月6日

一. 实验名称

阻尼振动和受迫振动

二. 实验目的

- 1. 观测阻尼振动,学习测量振动系统参数的基本方法
- 2. 研究受迫振动的频幅特性和相频特性,观察共振现象
- 3. 观察不同阻尼对振动的影响

三. 实验原理

1. 阻尼振动

在转动系统中,设其无阻尼时的固有角频率为 β, 并定义阻尼系数 β 其转动的角度与时间的关系满足如下方程

$$\frac{d^2\theta}{dt^2} + 2\beta \frac{d\theta}{dt} + \omega_0^2 \theta = 0$$

解上述方程可得当系统处于弱阻尼状态下时,即 $\beta < \omega_0$ 时, θ 和 t 满足如下关系

$$\theta(t) = \theta_i \exp((-\beta t)) \cos(\sqrt{\omega_0^2 - \beta^2} t + \phi_i)$$

解得阻尼振动角频率为 $\omega_{\text{d}}=\sqrt{\omega_0^2-\beta^2}$,阻尼振动周期为 $T_{\text{d}}=\frac{2\pi}{\sqrt{\omega_0^2-\beta^2}}$

同时利用 $\ln \theta$ 和 t 成线性关系,就可以进一步解得阻尼系数和阻尼比。

2. 周期性外力作用下的受迫振动

当存在周期性外力作用时,振动系统满足方程

$$J\frac{d^{2}\theta}{dt^{2}} + \gamma \frac{d\theta}{dt} + k\theta = M\omega t$$

θ和 t 满足如下关系:

$$\theta(t) = \theta_i \exp(-\beta t) \cos\left(\sqrt{\omega_0^2 - \beta^2}t + \varphi_i\right) + \theta_m \cos (\omega t - \varphi)$$

在该稳定状态下,系统的 θ 和 t 满足关系: θ (t) = θ _mcos (ωt – ϕ)

其中
$$\theta_{\rm m} = \frac{\frac{M}{J}}{\sqrt{\left(\omega_0^2 - \omega^2\right)^2 + 4\beta^2 \omega^2}}$$
; $\phi = \arctan \frac{2\beta\omega}{\omega_0^2 - \omega^2} \; (\; \theta \in \; (0, \; \pi \;))$

3. 电机运动时的受迫振动

当波尔共振仪角速度为ω,弹簧的支座是弹簧受迫振动的外激励源,摆轮转角满足以下方程:

$$J\frac{d^2\theta}{dt^2} + \gamma \frac{d\theta}{dt} + k\theta = k\alpha_m \cos\omega t$$

与受周期性外力矩时的运动方程相同,有

$$\theta(t) = \theta_{i} \exp(-\beta t) \cos\left(\sqrt{\omega_{0}^{2} - \beta^{2} t} + \phi_{i}\right) + \theta_{m} \cos(\omega t - \phi)$$

$$\alpha_{m} \omega_{0}^{2}$$

$$\alpha_{m}$$

$$\theta_{m} = \frac{\alpha_{m}\omega_{0}^{2}}{\sqrt{\left(\omega_{0}^{2} - \omega^{2}\right)^{2} + 4\beta^{2}\omega^{2}}} = \frac{\alpha_{m}}{\sqrt{\left(1 - \left(\frac{\omega}{\omega_{0}}\right)^{2}\right)^{2} + 4\zeta^{2}\left(\frac{\omega}{\omega_{0}}\right)^{2}}}$$

$$\phi = \arctan \frac{2\beta\omega}{\omega_0^2 - \omega^2} = \arctan \frac{2\zeta \left(\frac{\omega}{\omega_0}\right)}{1 - \left(\frac{\omega}{\omega_0}\right)^2}$$

四. 主要实验仪器和实验步骤

1. 实验仪器

波尔共振仪。由于 16 号实验仪器出现故障,经老师同意,我换用了另一个仪器(7号),仪器固有周期 1.513s。

2. 实验步骤

- (1) 打开电源并断开电机和闪光灯的开关。阻尼调至 0 档。手动调整电机的偏心轮使其 0 标志线与 0 度刻线对齐。同时,调整连杆和摇杆使摆轮处于平衡位置。拨动摆轮使其偏离平衡位置 150 度至 200 度,松开后观察摆轮自由摆动的情况,如衰减很慢则性能优良。开关置于摆轮,阻尼开关置于 0 档,拨动摆轮一定角度后松开,使之摆动。由大到小依次读取振幅;将周期置于"10"位置按复位钮启动周期测量,停止时读取数据,并立即按复位钮启动周期测量,记录每次的值;将周期选择位于位于"1"位置,阻尼开关置于 1、2、3 档,拨动摆轮至偏转至一定角度后松开,使之摆动。由大到小依次读取显示窗中的振幅;再次拨动摆轮使之摆动,依次读取显示窗中的周期值。测量不少于 10 组数据。
- (2)测量受迫振动的周期和振幅。开启电机开关,开关置于强迫力,周期选择置于1,将阻尼档置于1、2、3档,调节强迫力周期旋钮以调节电机转动的角频率,在振幅和周期都达到稳定后,记录下该频率的强迫力下摆轮受迫振动的周期和振幅。并开启闪光灯,两次读取闪光灯亮时有机玻璃转盘上的读数。调节电机频率,重复上述步骤,至少测量12组数据。

五. 数据处理和误差分析

一、有粘滯阻尼的阻尼振动

1、阻尼为0

		阻尼为 0								
	173	161	150	139	129					
,	172	160	149	139	129					
9	∅ 171	159	148	137	128					
/	169	158	147	137	127					
	168	157	146	135	126					

	167	155	145	135	125
	166	155	144	133	124
	165	153	143	133	123
	163	152	141	131	122
	162	151	141	131	121
10Td/	15. 115	15. 125	15. 132	15. 139	15. 145

使用逐差法进行数据处理:

$D_{j} ext{=} \ln \! heta_{j+I} - \ln \! heta_{j}$								
-0.17656	-0.18352	-0.17613	-0.18361	-0.18232				
-0.17768	-0.17751	-0.18482	-0.18361	-0.18366				
-0.17882	-0.18596	-0.17856	-0.17841	-0.18503				
-0.18114	-0.17377	0.18740	-0.17969	-0.18641				
-0.1752	-0.18232	-0.18105	-0.18100	-0.18782				

$$b = \frac{1}{I} \bar{D} = \frac{1}{I^2} \sum_{j=1}^{I} (\ln \theta_{j+I} - \ln \theta_j) = \frac{1}{25^2} \ln \left[\frac{\theta_{26} \theta_{27, \dots} \theta_{50}}{\theta_1 \theta_{2, \dots} \theta_{25}} \right] = -7.251 \times 10^{-3}$$

$$S_b = \frac{1}{25} \sqrt{\frac{\sum_{j=1}^{25} (D_j - \bar{D})^2}{24}} = 1.576 \times 10^{-4}$$

$$b = (-7.25 \pm 0.05) \times 10^{-3}$$

$$32 + 15.139 + 15.145$$

$$T_{d} = \frac{15.115 + 15.125 + 15.132 + 15.139 + 15.145}{50}$$

$$= 1.5.5$$

$$T_d = 1.513 \pm 0.005s$$

$$\beta = -\frac{b}{T_d} = 4.792 \times 10^{-3}$$

$$\omega_0 = \left| \frac{\beta}{b} \right| \sqrt{4\pi^2 + b^2} = 4.153$$

$$\omega_0 = 4.153 \pm 0.002$$

$$\xi = \sqrt{\frac{1}{1 + (\frac{2\pi}{h})^2}} = 1.154 \times 10^{-3}$$

$$\xi = (1.154 \pm 0.072) \times 10^{-3}$$

 $\Delta T_d = 1.39 \times S_{10T}/10 = 5.17 \times 10^{-3}$

$$\Delta\omega_0 = \omega_0 \sqrt{(\frac{\Delta T_d}{T_d})^2 + (\frac{\xi - \Delta \xi}{1 - \xi^2})^2} = 1.508 \times 10^{-3}$$

$$\Delta \xi = -\frac{4\pi^2}{(4\pi^2 + b^2)^{\frac{3}{2}}} \Delta b = -7.21 \times 10^{-5}$$

2、阻尼为1

阻尼为1	1	2	3	4	5	6
θ	157	145	135	125	115	107
Td /	1.512	1.513	1.514	1.515	1.515	1.515
7	8	9	10	11	12	
99	91	84	78	72	66	
1.516	1. 516	1.516	1.516	1.516	1. 516	

$$\frac{t_p(n-1)}{\sqrt{n}} = 0.60$$

$D_{j} ext{=} \ln \! heta_{j+I} - \ln \! heta_{j}$							
-0.4611 -0.4659 -0.4745 -0.4716 -0.4683 -0.4832							

$$b = \frac{1}{I^2} \bar{D} = \frac{1}{I^2} \sum_{i=1}^{I} (\ln \theta_{j+I} - \ln \theta_j) = \frac{1}{6^2} \ln \left[\frac{\theta_7 \theta_{8....} \theta_{12}}{\theta_1 \theta_{2....} \theta_6} \right] = -0.0785$$

$$\Delta b = 0.6S_b = \frac{0.6}{6} \sqrt{\frac{\sum (D_j - \overline{D})^2}{5}} = 7.629 \times 10^{-4}$$

$$b = -0.0785 \pm 0.0008$$

$$T_d = \frac{1.512 + 1.513 + 1.514 + 1.515 \times 3 + 1.516 \times 6}{12}$$

$$= 1.515 \quad \Delta T_d = T_d \times 10^{-5} + 0.001 = 1.015 \times 10^{-3}$$

$$T_d = 1.515 \pm 0.001$$

$$\Delta T_d = T_d \times 10^{-5} + 0.001 = 1.015 \times 10^{-3}$$

$$T_d = 1.515 \pm 0.001$$

$$\beta = -\frac{b}{T_d} = 0.0518 \quad 5 \quad \xi = \sqrt{\frac{1}{1 + \left(\frac{2\pi}{b}\right)^2}} = 0.0125 \quad \Delta \xi = -\frac{4\pi^2}{(4\pi^2 + b^2)^{\frac{3}{2}}} \Delta b$$

$$=-1.214\times10^{-4}$$

$$\xi = 0.0125 \pm 0.0001$$

$$\omega_0 = \left| \frac{\beta}{b} \right| \sqrt{4\pi^2 + b^2} = 4.148 \ \Delta \omega_0 = \omega_0 \sqrt{(\frac{\Delta T_d}{T_d})^2 + (\frac{\xi - \Delta \xi}{1 - \xi^2})^2} = 5.248 \times 10^{-2} \ \Delta \omega_0 = 4.148 \pm 0.052 \ \Delta$$

2、阻尼为2

- 111/0/3 -						
阻尼为 2	1	2	3	4	5	6
θ /Φ	168	153	139	127	116	105
Td /5	1.512	1.512	1.514	1.514	1.515	1. 515
7	8	9	10	11	12	13
96	87	V 9	72	65	60	54
1.516	1. 515	1.516	1.516	1.516	1. 516	1. 516

共测了 13 组,取后 12 组进行数据分析

当测量次数 n=12 时,查得

$$\frac{t_p(n-1)}{\sqrt{n}} \doteq 0.60$$

			· ·					
	D_{j} = $\ln \theta_{j+I} - \ln \theta_{j}$							
-0.5645 -0.5650 -0.5675 -0.5792 -0.5596						-0.5754		

$$b = \frac{1}{I^2} \bar{D} = \frac{1}{I^2} \sum_{i=1}^{I} (\ln \theta_{j+I} - \ln \theta_j) = \frac{1}{6^2} \ln \left[\frac{\theta_8 \theta_{9.....} \theta_{13}}{\theta_2 \theta_{3.....} \theta_7} \right] = -0.0948$$

$$\Delta b = 0.6S_b = \frac{0.6}{6} \sqrt{\frac{\sum (D_j - \overline{D})^2}{5}} = 7.335 \times 10^{-4} \qquad b = -0.0948 \pm 0.0007$$

$$T_d = \frac{1.512 + 1.514 \times 2 + 1.515 \times 3 + 1.516 \times 6}{12}$$

$$= 1.515 \int \Delta T_d = T_d \times 10^{-5} + 0.001 = 1.015 \times 10^{-3} \int T_d = 1.515 \pm 0.001 \int \Delta T_d = 0.001 = 0.0001 = 0.0001 = 0.0001$$

$$\beta = -\frac{b}{T_d} = 0.0626 \sum_{\xi=0}^{3} \xi = \sqrt{\frac{1}{1 + \left(\frac{2\pi}{b}\right)^2}} = 0.0151 \qquad \Delta \xi = -\frac{4\pi^2}{(4\pi^2 + b^2)^{\frac{3}{2}}} \Delta b$$

$$=-1.167\times10^{-4}$$

$$\xi = 0.0151 \pm 0.0001$$

$$\omega_0 = \left| \frac{\beta}{b} \right| \sqrt{4\pi^2 + b^2} = 4.148 \sum_{b=0}^{\infty} \omega_0 = \omega_0 \sqrt{(\frac{\Delta T_d}{T_d})^2 + (\frac{\xi - \Delta \xi}{1 - \xi^2})^2} = 6.319 \times 10^{-2} \sum_{b=0}^{\infty} \omega_0 = \frac{\beta}{b} \left| \sqrt{4\pi^2 + b^2} \right| = 4.148 \sum_{b=0}^{\infty} \omega_0 = \omega_0 \sqrt{(\frac{\Delta T_d}{T_d})^2 + (\frac{\xi - \Delta \xi}{1 - \xi^2})^2} = 6.319 \times 10^{-2}$$

$$\omega_0 = 4.148 \pm 0.063$$
 S

3、阻尼为3

阻尼为3	1	2	3	4	5	6
θ/ο	157	139	123	109	97	86
د/ Td	1. 513	1.514	1.514	1.515	1.516	1.516
7	8	9	10	11	12	
76	67	59	52	46	41	
1.517	1. 516	1.516	1. 517	1.516	1. 516	

$D_{j} ext{=} \ln \! heta_{j+I} - \ln \! heta_{j}$						
-0.7255 -0.7298 -0.7347 -0.7401 -0.7461 -0.7408						

$$b = \frac{1}{I^2} \bar{D} = \frac{1}{I^2} \sum_{j=1}^{I} (\ln \theta_{j+I} - \ln \theta_j) = \frac{1}{6^2} \ln \left[\frac{\theta_7 \theta_{8.....} \theta_{12}}{\theta_1 \theta_{2....} \theta_6} \right] = -0.1227$$

$$\Delta b = 0.6S_b = \frac{0.6}{6} \sqrt{\frac{\sum (D_j - \bar{D})^2}{5}} = 7.629 \times 10^{-4}$$
 $b = -0.1227 \pm 0.0008$

$$T_d = \frac{1.513 + 1.514 \times 2 + 1.515 + 1.516 \times 6 + 1.517 \times 2}{12}$$

$$\Delta T_d = T_d \times 10^{-5} + 0.001 = 1.015 \times 10^{-3}$$

$$T_d = 1.516 \pm 0.001$$

$$\beta = -\frac{b}{T_d} = 0.0809$$
 $\xi = \sqrt{\frac{1}{1 + \left(\frac{2\pi}{b}\right)^2}} = 0.0195$ $\Delta \xi = -\frac{4\pi^2}{(4\pi^2 + b^2)^{\frac{3}{2}}} \Delta b$

$$=-1.2135\times10^{-4}$$

 $\xi = 0.0195 \pm 0.0001$

 $\omega_0 = 4.145 \pm 0.081$

一、电机运动时的受迫振动

1、阻尼为1

测量数据如下

受迫振动阻	1	2	3	4	5	6	7
尼 1	1	2	ວ	4	J	0	•
振幅(度)	22	45	55	85	119	129	157
受迫周期 T	1.663	1. 588	1. 572	1. 544	1. 536	1. 526	1. 518
(s) 	1.000	1.000	1.012	1.011	1.000	1.020	1.010
相差1(度)	9	15	18	37	43	52.5	71
相差2(度)	10	17	20	36	44	54	73
相差 🦯	9.5	16	19	36.5	43.5	53 . 2 5	72
固有周期 TO	1.513	1.513	1. 513	1. 513	1. 513	1.513	1. 513
w/w0	0.910	0. 953	0.962	0.980	0. 985	0.991	0. 997
8	9	10	11	12	1/3	14	15
162	163	163	163	149	135	109	94
1.516	1.513	1.511	1. 510	1.505	1. 500	1.495	1. 490
78	87.5	89. 5	93	114	122	138	144
79	89.5	90.5	95	115	124	139	145
78. 5	88.5	90	94	114.5	123	138.5	144. 5
1. 513	1.513	1.513	1.513	1. 513	1. 513	1. 513	1. 513
0. 998	1	1.001	1.002	1.005	1.009	1.012	
16	17	18	19	20			1.015
79	55	35	25	20			
1.484	1.466	1.435	1. 407	1.385			
148.5	158	165	168	169			
149.5	159	166	169	170			
149	158. 5	165. 5	168. 5	169.5			
1.513	1.513	1.513	1.513	1.513			
1.02	1.032	1.054	1.075	1.091			1

(标红的那个数据应该在它的上一格里,但是填在上一个的话就会让表格乱掉,我不知道为

什么会这样,后面有两个表格也是这样,给老师阅读带来不便,十分抱歉!)

没事的,好神奇~

此法测出的ω₀为 4.158 与理论值 4.148 吴基为 2%

由 $\phi = \arctan \frac{2\beta\omega}{\omega_0^2 - \omega^2}$ 可以计算出 ϕ_{theory} 如下表

阻尼为1	1	2	3	4	5	6	7
β/5-1	0.0518	0.0518	0.0518	0.0518	0.0518	0.0518	0.0518
Td (s)	1.663	1. 588	1.572	1.544	1.536	1.526	1.518
ω /ς -/	3. 776	3. 955	3. 995	4.067	4. 089	4. 115	4. 137
ω0/5-1	4. 148	4. 148	4. 148	4. 148	4. 148	4. 148	4. 148
φ theory/	7. 56	14. 68	18. 38	32. 34	41.08	57.40	78.00
φ /- '	9. 5	16	19	36. 5	43. 5	53. 25	72
Δ φ / 💆	1.94	1. 32	0.62	4. 16	2.42	4. 15	6
Δφ/φ theory	0. 204	0. 082	0.032	0. 114	0.056	0.078	0.083
8	9	10	11	12	13	14	15
0.0518	0.0518	0.0518	0.0518	0.0518	0.0518	0.0518	0.0518
1. 516	1.513	1. 511	1.510	1.505	1.500	1.495	1. 490
4. 142	4. 151	4. 158	4. 159	4. 172	4. 187	4. 201	4. 215
4. 148	4. 148	4. 148	4 148	4. 148	4. 148	4. 148	4. 148
83.39	93. 31	91. 10	101.97	114.79	126.85	135. 47	142.07
78. 5	88. 5	90	94	114. 5	123	138. 5	144.5
4.89	4.81	0.10	7. 97	0.29	3.85	3.03	2. 43
0.062	0.054	0.001	0.085	0.003	0.031	0.022	0.017
16	17	18	19	20			
0.0518	0.0518	0.0518	0.0518	0.0518			
1. 484	1.466	1. 435	1.407	1.386			
4. 232	4. 284	4. 376	4. 463	4. 531			
4. 148	4. 148	4. 148	4. 148	4. 148			
148.08	158.84	166. 87	170. 33	171.96			
149	158. 5	165. 5	168.5	169.5			
0.92	0.34	1. 37	1.83	2.46			
0.006	0.002	0.008	0.011	0.015			

误差分析:ф的理论值与实际值的误差大多数在6.2%以内,图中标紫的数据误差反常大, 我猜测是因为这几个数据的 ϕ 的实际值很小,导致因为人为因素读数时的误差被放大,可能是的,角度较是我测那几个数据时读数疏忽,恰好该处 ϕ 实际值很小,以至于相对误差被放的很大,所以,误差越大 我认为这几个标紫的数据可以被当作数据噪音被舍弃; 在舍弃一些噪音以后, 其他数据在 90 度左右两边时误差增大,平均误差为 3.36%

2、阻尼为2 测量数据如下

受迫振动阻	1	2	3	4	5	6	7
尼 2							·
振幅 (度)	23	43	55	87	103	121	129
受迫周期 T	1.663	1. 588	1. 572	1. 544	1. 536	1. 526	1. 521
(s)	1.000	1.000	1, 0, 2		1.000	1. 020	1, 011
相差1(度)	9	16	23	39	47	61	73
相差2(度)	10	17	24	40	46	63	74
相差	9.5	16. 5	23. 5	39.5	46.5	62	73. 5
固有周期 T0 (s)	1.513	1. 513	1.513	1.513	1. 513	1.513	1. 513
w/w0	0.910	0. 953	0.962	0. 980	0. 985	0. 991	0. 995
8	9	10	11	12	13	14	15
133	135	135	132	127	117	104	87
1. 517	1.514	1. 513	1.510	1. 505	1.500	1.496	1. 490
80. 5	89. 5	91	99.5	110	119	129	138
82	90. 5	93	100.5	112	121	130	139
81. 25	90	92	100	111	120	129. 5	138. 5
1.513	1.513	1.513	1.513	1. 513	1. 513	1. 513	1.513
0. 997	0. 999	1	1.002	1.005	1.009	1.012	
16	17	18	19	20			1.015
83	55	35	25	20			
1.484	1.466	1. 435	1.407	1.386			
144	154	163	166	167			
145	155	164	167	169			
144.5	154. 5	163. 5	166. 5	168			
1.513	1.513	1.513	1.513	1. 513			
1.02	1.032	1.054	1.075	1.091			

此法测出的 ω_0 为 4.150,与理论值 4.148 误差为 0.05%

由 $\phi = \arctan \frac{2\beta\omega}{\omega_0^2 - \omega^2}$ 可以计算出 ϕ_{theory} 如下表

阻尼为2	1	2	3	4	5	6	7
β	0.0626	0.0626	0.0626	0.0626	0.0626	0.0626	0.0626
Td (s)	1.663	1. 588	1.572	1.544	1.536	1.526	1.521
ω	3. 776	3. 955	3. 995	4.067	4. 089	4. 115	4. 131
ω0	4. 148	4. 148	4. 148	4.148	4. 148	4. 148	4. 148
φtheory	9. 11	17. 57	21.87	37. 42	46.49	62.11	74. 78
ф	9. 5	16. 5	23.5	39. 5	46. 5	62	73.5
Δφ	0.39	1.07	1.63	2.08	0.01	0.11	1.28
Δφ/φ	0.041	0. 065	0.069	0.053	0,0002	0.002	0.017
theory	0.041	0.003	0.003	0.000	0.0002	0.002	0.011

8	9	10	11	12	13	14	15
0.0626	0.0626	0.0626	0.0626	0.0626	0.0626	0.0626	0.0626
1.517	1.514	1. 513	1.510	1.505	1.500	1.495	1.490
4. 142	4. 150	4. 151	4. 159	4. 172	4. 187	4. 201	4. 215
4. 148	4. 148	4. 148	4. 148	4. 148	4. 148	4. 148	4. 148
84. 52	90.180	92. 74	99.95	110.92	121.80	130.74	136.72
81.25	90	92	100	111	120	129. 5	138.5
3. 27	0.18	0.74	0.05	0.08	1.8	1.24	1.78
0.040	0.002	0.008	0.0005	0.0007	0.015	0.0096	0.013
16	17	18	19	20			
0.0626	0.0626	0.0626	0.0628	0.0626			
1.484	1.466	1. 435	1 407	1.386			
4. 232	4.284	4. 376	4. 463	4. 531			
4. 148	4. 148	4. 148	4. 148	4. 148			
143.03	154. 93	164. 26	168.36	170.32			
144. 5	154. 5	163. 5	166.5	168			
1.47	0.43	0.76	1.86	2.32			
0.010	0.0028	0.0046	0.011	0.014			

大部分数据中 ϕ 的理论值和实际值差别都在 2%以内,共振附近的理论值与实际值相 差相对较大,以及在 ϕ 实际值相对较小的时候,受读数误差影响较大,故此处理论值与 实际值相差也略大,但总体精度比较好,<u>平均相对误差为</u> 1.89%。

3、阻尼为3时

受迫振动阻	1	2	3	4	5	6	7
尼 3							
振幅 (度)	23	41	53	78	89	100	106
受迫周期 T	1. 663	1. 588	1. 572	1. 544	1. 536	1.526	1. 521
(s)	1. 000	1,000	1, 0, 2	1.011	1.000	/ 020	1, 021
相差1(度)	11	21	26	45	54	69	79
相差2(度)	12	2/2	27	46	55	71	80
相差	11.5	21. 5	26. 5	45.5	54. 5	70	79. 5
固有周期 T0 (s)	1.513	1. 513	1. 513	1. 513	1. 513	1. 513	1. 513
w/w0	0.910	0. 953	0.962	0.980	0. 985	0. 991	0. 995
8	9	10	11	12	13	14	
107	107	107	103	99	91	77	
1. 517	1.514	1.513	1.510	1.505	1.500	1.490	
85	89. 5	91	99. 5	109.5	117	131	
86	90.5	93	100.5	110.5	119	132	
85. 5	90	92	100	110	118	131.5	
1.513	1.513	1. 513	1.513	1.513	1. 513	1. 513	

0. 997	0.999	1	1.00	2	1. 005	5	1.009	1.015
15	16	17						
71	55	20						
1.484	1.466	1.386						
136	150	165						
137	151	165. 5						
136. 5	150. 5	165. 25						
1. 513	1.513	1.513						
1.02	1.032	1.091						

此法测出的 ω_0 为 4.150,与理论值 4.145 误差为 1%

由 $\phi = \arctan \frac{2\beta\omega}{\omega_0^2 - \omega^2}$ 可以计算出 ϕ_{theory} 如下表

	ω_0	ω		-				
阻尼为3	1		2	3	4	5	6	7
β	0.0809	0.080	0.0809		0.0809	0.0809	0.0809	0.0809
Td (s)	1.663	1	. 588	1.572	1.544	1.536	1.526	1.521
ω	3. 776	3	. 955	3. 995	4.067	4. 089	4. 115	4. 131
ω0	4. 150	4	. 150	4. 150	4. 150	4. 150	4. 150	4. 150
φtheory	11.65	2	2.40	27.11	43.98	52. 78	66. 52	76. 76
ф	11.5		21.5	26.5	45. 5	54. 5	70	79.5
Δφ	0.15		0.9	0.61	1.52	1.72	3.48	2. 74
Δφ/φ theory	0.013	0	. 041	0.023	0. 033	0.032	0.050	0.034
8	9		10	11	12	13	14	
0.0809	0.0809	0.	0809	0.0809	0.0809	0.0809	0.0809	
1. 517	1.514	1	. 513	1.510	1.505	1.500	1.490	
4. 142	4. 150	4. 1	4. 151		4. 172	4. 187	4. 215	
4. 150	4. 150	4.150	4. 150		4. 150	4. 150	4. 150	
84.35	90	90.	90.71		105. 17	114.48	128.56	
85. 5	90		92	99.75	110	118	131.5	
1.15	0	1.29		3.41	4.83	3. 52	2.94	
0.013	0	0	. 014	0.034	0.044	0.030	0.022	
15	16	17						
0.0809	0.0809	0.0809						
1. 484	1.466	1.386						
4. 232	4. 284	4. 531						
4. 150	4. 150	4. 150						
135.11	148.48	167. 50						
136.5	150.5	165. 25						
1.39	2.02	2. 25						
0.010	0.013	0.014						

大部分的 Φ 的理论值与实际值之差都在 4%以内,最大误差为 5%,当然个别数据不排除偶然因素的影响,我最初预测在共振点附近误差会增大很多,但实际处理完的数据却恰恰相反,这可能是我在共振附近测得特别仔细的原因。最后,总的平均误差为 2.5%。

4、幅频曲线

根据上述结果,绘制幅频曲线如下图

图像特征: 三条曲线大致关于 w/w0=1 对称,在 w/w0 附近取到最大值,由高到低依次是阻尼为 1、阻尼为 2、阻尼为 3,说明阻尼越大振幅越小。(异常部分: w/w0 在 1.01-1.09 范围内,阻尼为 3 的曲线较高,反思里写了对这个现象的解释。)

反思: 阻尼 1 和阻尼 2 我都测了 20 组数据, 阻尼 3 少测了离共振点比较远的 2 组数据, 当时认为对曲线影响不大, 毕竟那个部分曲线比较平滑, 但正因为这样使得计算机在拟合时, w/w0 在 1.03 到 1.09 范围内时, 黄线(阻尼为 3)部分高于黑线和红线, 当然如果人工手动拟合的话可以避免这一瑕疵。这让我意识到, 如果使用计算机拟合曲线时, 前几组数据测的多的话, 后几组数据也应当相应的多, 这样才能保证 3 条曲线都完美, 才能放在一起比较, 如果前两条曲线精度很高, 但第三条精度降低的话, 放在一起比较就会出问题。(有一种补救方法就是把前两组数据也去掉 1.01-1.09 部分的点, 但这显然会使曲线精度下降)以后我做实验一定会注意这一点。

5、相频曲线

根据上述结果,绘制相频曲线如下图

图像特征:从阻尼1到阻尼3,阻尼比依次增大,在曲线左侧,阻尼比小的曲线在下方,在右侧,阻尼比小的曲线在上方。三者在 w/w0=1 附近相交,在该附近曲线较陡,在两侧曲线较为平缓。

六. 思考题

1. 周期测量位于摆轮时, 当显示窗中周期和振幅的示数都稳定时, 受迫振动处于稳定状态。

2.

阻尼状态	阻尼为1		阻尼为2		阻尼为3		
w/w0(1/2)	0.979	1.019	0. 971	1. 027	0. 961	1.038	
w/w0(1)	1		1		0.999		

由
$$\beta = \xi \omega_0$$
且 $\omega_0 = 4.148$ 解得 β

阻尼	1			2			3		
w/w0	0. 979	1.019	练习2	0. 971	1.027	练习2	0. 961	1.038	练习2
β	0.0494	0.0462	0.0518	0.0678	0.0661	0.0626	0. 0904	0. 0940	0.0809

可以发现通过这个方法得到的β值与练习 2 的误差还是比较大的,平均误差在 9.5%,这应该是图像数据点不充分以及曲线拟合不完美造成的。

七、实验小结

- 1、我实验过程中实验仪器(16号)出了故障,在老师的批准下,又换了一台(7号)。
- 2、我最初选取横坐标 w/w0 是按 w/w0 等间隔选取的,但是这样 横坐标选取不合理,导致 90 度曲线附近的点个数不够,曲线拟合效 果不好,在老师的指导下,又在 90 度附近补了很多点;后来又觉得

曲线不完美,在第十周周二又去实验室又补测了一回。最后相频曲线效果很好,但幅频曲线有点瑕疵,我在前面幅频曲线的下面写了相应的分析和反思。

- 3、这次实验是我明白在数据实际值较小的时候,读数马虎导致的相对误差是十分大的,甚至导致这个数据点只能作废。在受迫阻尼振动(阻尼为1) ф的理论值与实际值的比较的表格下面我写了相应的反思。这也给我敲响了警钟,读数时一定专注,尽量减少人为因素的影响。
- 4、在测周期时,因为人手动将周期值复位的不确定性,会导致有一个"半圈"的偏差,即你实际想测周期 T1 的值,但由于手速慢了,测得只能是周期 T1 的后半圈加上 T2 的前半圈的值。如果想实现精确测量难度确实有点大,建议结合计算机技术来测量周期。
- 5、这次实验是处理数据最多的实验,我用了整整两周的时间才把数据处理完毕,期间自己学会了用 matlab 来拟合数据点,花费了时间的同时也收获了知识和技术,整个实验过程感到充实而有意义。

(原始实验数据附在实验报告末尾) 太不容易了,给你点赞!

72 65 60 54.

