pst-solides3d: Exemples d'utilisation

v. 3.0 (2007/12/21)

Jean-Paul VIGNAULT, Manuel LUQUE, Arnaud SCHMITTBUHL

<jpv@melusine.eu.org>, <manuel.luque27@gmail.com>, <aschmittbuhl@libertysurf.fr> *

21 décembre 2 007

Table des matières

1	Un avion	2
2	Anneaux De Borromée	2
3	Chaîne olympique	2
4	Un abécédaire	4
5	Une coupe	5
6	Anneaux carrés	5
7	La vénus de Milo	6

^{*}Avec la collaboration de : Jürgen GILG<gilg@acrotex.net>, Jean-Michel SARLAT<jm.sarlat@gmail.com>.

8	Ruban de Möbius	6
9	Labrador	7
10	La double hélice de l'ADN	8
11	Modèles moléculaires compact et éclaté 11.1 Cl ₂ : modèle compact 11.2 Cl ₂ : modèle éclaté 11.3 CO ₂ : modèle compact 11.4 CO ₂ : modèle éclaté 11.5 Modèle éclaté du N ₂ 11.6 Modèle compact de l'acétylène 11.7 Modèle éclaté de l'acétylène	8 10 11 12 13 14 15
12	Un pliant	16
13	Une chaise	17
14	Une coccinelle VW	17
15	Une VW multicolore	18
16	Une pomme	18
17	Un shu	19
18	Une sphère	20
19	Sphères accolées	20
20	Une théière	21
21	Surface de Clebsch	21
22	Nefertiti	22
23	Champignons	22
24	Un demi-coquillage	25
25	Un coquillage qui tourne	25
26	Un coquillage et son ombre	27
27	Une toupie	27
28	Corne	28
29	Trompette, version 1	29
30	Trompette, version 2	30
31	Les cercles de Villarceau	31
32	Un tore coupé par un plan méridien	32
33	Un tore coupé par l'équateur	33

1 Un avion

2 Anneaux De Borromée


```
\begin{pspicture}(-4,-6)(4,6)
 \codejps{
 /ORing1 {
    0.25 0.9 [18 30] newtore
    {0.75 1.5 1 scaleOpoint3d} solidtransform
    {0 0 0 rotateOpoint3d} solidtransform
    dup (Blue) outputcolors} def
 /ORing2 {
    0.25 0.9 [18 30] newtore
    {0.75 1.5 1 scaleOpoint3d} solidtransform
    {90 0 90 rotateOpoint3d} solidtransform
    dup (Yellow) outputcolors} def
 /ORing3 {
    0.25 0.9 [18 30] newtore
    {0.75 1.5 1 scaleOpoint3d} solidtransform
    {0 90 90 rotateOpoint3d} solidtransform
    dup (Red) outputcolors} def
18 /un {ORing1 ORing2 solidfuz} def
/deux {ORing3 un solidfuz} def
deux drawsolid**}
 \end{pspicture}
```

3 Chaîne olympique


```
\begin{pspicture}(-6,-5)(6,6)
\psset{lightsrc=50 -50 50,viewpoint=40 0 20,SphericalCoor,Decran=100,ngrid=18 30,r0=0.25,r1=0.9}
\psSolid[object=tore, solidmemory=true,
  RotY=90,
  fillcolor=blue,
  action=none,
  name=anneau1](0,-2.5,0)
\psSolid[object=tore,solidmemory=true,
 RotY=90,
 fillcolor=Brown,
  action=none,
  name=anneau2](0,0,0)
\psSolid[object=tore,solidmemory=true,
 RotY=90,
 fillcolor=red,
  action=none,
  name=anneau3](0,2.5,0)
\psSolid[object=tore,solidmemory=true,
 fillcolor=yellow,
   action=none,
  name=anneau4](0,-1.25,0)
\psSolid[object=tore,solidmemory=true,
 fillcolor=green,
   action=none,
  name=anneau5](0,1.25,0)
\psSolid[object=fusion,
  base=anneau1 anneau2 anneau3 anneau4 anneau5,
  name=anneaux,
  action=draw**] %
\composeSolid
\end{pspicture}
```

4 Un abécédaire

6 Anneaux carrés


```
\psset{viewpoint=20 10 30,Decran=10,lightsrc=10 20 20}
\begin{pspicture}(-3,-4)(5,3)
\psframe*[linecolor=gray!40](-3,-4)(5,3)
\codejps{
/SquareRing {
   [10 -1 10 1 8 1 8 -1] 4 newanneau
   {0 0 45 rotateOpoint3d} solidtransform
   } def
SquareRing dup (Apricot) outputcolors
SquareRing
       {0 90 0 rotateOpoint3d} solidtransform
        {0 7.5 0 translatepoint3d} solidtransform
       dup (SkyBlue) outputcolors
    solidfuz
   drawsolid**}
\end{pspicture}
```

7 La vénus de Milo

8 Ruban de Möbius

9 Labrador

0 La double hélice de l'ADN

- 11 Modèles moléculaires compact et éclaté
- 11.1 Cl₂: modèle compact


```
\begin{array}{c} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\
\psset{lightsrc=10 50 10,lightintensity=2,
                                                                          viewpoint=100 30 20,Decran=30,SphericalCoor}
  \psset{linecolor={[cmyk]{0 0.72 1 0.45}},
                                                                          linewidth=0.5\pslinewidth}
\codejps{
% r phi theta [ngrid] newcalottesphere
        /Chlore1 {
                5 -30 90 [16 18] newcalottesphere
        {90 0 0 rotateOpoint3d} solidtransform
            {0 -2.5 0 translatepoint3d} solidtransform
              dup videsolid
                dup (Green) outputcolors
              } def
              /Chlore2 {
            5 -30 90 [16 18] newcalottesphere
            {-90 0 0 rotateOpoint3d} solidtransform
          {0 2.5 0 translatepoint3d} solidtransform
                dup (Green) outputcolors
              } def
                /dichlore{
                Chlore1 Chlore2 solidfuz
                } def
                dichlore drawsolid**}
\axesIIID(2.5,7.5,2.5)(15,15,12)
\end{pspicture}
```

11.2 Cl₂: modèle éclaté


```
\begin{pspicture}(-5,-5)(5,5)
 \psset{lightsrc=10 50 10,lightintensity=2,viewpoint=100 30 30,Decran=30,SphericalCoor}
 \psset{linecolor={[cmyk]{0 0.72 1 0.45}},linewidth=0.5\pslinewidth}
 \codejps{
 /Chlore1 {5 -30 90 [16 18] newcalottesphere
  {90 0 0 rotateOpoint3d} solidtransform
    \{0\ -10\ 0\ translatepoint3d\} solidtransform
    dup (Green) outputcolors } def
 /Chlore2 {5 -30 90 [16 18] newcalottesphere
{-90 0 0 rotateOpoint3d} solidtransform
  {0 10 0 translatepoint3d} solidtransform
  dup (Green) outputcolors } def
 /Liaison {
     0 0.5 15 [12 10] newcylindre
     {-90 0 0 rotateOpoint3d} solidtransform
   {0 -7.5 0 translatepoint3d} solidtransform
      dup (White) outputcolors
   } def
19/Cl2{Chlore1 Chlore2 solidfuz} def
/dichlore{Cl2 Liaison solidfuz} def
  dichlore drawsolid**}
 \axesIIID(1,15,1)(15,20,12)
 \end{pspicture}
```

11.3 CO₂: modèle compact


```
\begin{array}{c} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\
 \pstVerb{/DarkGray {0.2 setgray} def}%
 \psset{lightsrc=92 16 35,lightintensity=2,
                                                               viewpoint=100 10 20,Decran=30,SphericalCoor}
 \psset{linecolor={[cmyk]{0 0.72 1 0.45}}},
                                                               linewidth=0.5\pslinewidth}
 \codejps{
% r phi theta [ngrid] newcalottesphere
              /Oxygen {
              5 -30 90 [16 18] newcalottesphere
              dup videsolid
              dup (rouge) outputcolors
              } def
              /Carbon {
              5 -30 30 [16 18] newcalottesphere
               {90 0 0 rotateOpoint3d} solidtransform
              dup (DarkGray) outputcolors
              } def
              /Oxygen1 {
                                 Oxygen {90 0 0 rotateOpoint3d} solidtransform
                                                               {0 -4.33 0 translatepoint3d} solidtransform } def
                                   Oxygen {-90 0 0 rotateOpoint3d} solidtransform
                                                                        {0 4.33 0 translatepoint3d} solidtransform } def
               /CO{Oxygen1 Carbon solidfuz} def
                 /CO2 {CO Oxygen2 solidfuz} def
               CO2 drawsolid**}
 \axesIIID(2.5,7.5,2.5)(15,15,12)
 \end{pspicture}
```

11.4 CO₂: modèle éclaté


```
\begin{pspicture}(-7,-3)(7,6)
 \pstVerb{/DarkGray {0.2 setgray} def}%
 \psset{lightsrc=92 16 35,lightintensity=2,
       viewpoint=100 30 20,Decran=30,SphericalCoor}
 \psset{linecolor={[cmyk]{0 0.72 1 0.45}},
       linewidth=0.5\pslinewidth}
 \codejps{
 \% r phi theta [ngrid] newcalottesphere
  /Oxygen {
  5 -30 90 [16 18] newcalottesphere
  dup videsolid
  dup (rouge) outputcolors
  } def
  /Carbon {
  5 -30 30 [16 18] newcalottesphere
  {90 0 0 rotateOpoint3d} solidtransform
  dup (DarkGray) outputcolors
  } def
 /Liaison {
     0 0.5 15 [10 10] newcylindre
     {-90 0 0 rotateOpoint3d} solidtransform
      dup (White) outputcolors
   } def
24/L1 { Liaison {0 -17.5 1.5 translatepoint3d} solidtransform } def
2 /L2 { Liaison {0 -17.5 -1.5 translatepoint3d} solidtransform } def
26/L3 { Liaison {0 2.5 1.5 translatepoint3d} solidtransform } def
27/L4 { Liaison {0 2.5 -1.5 translatepoint3d} solidtransform } def
28/Oxygen1 {Oxygen {90 0 0 rotateOpoint3d} solidtransform
                 \{0\ -19.33\ 0\ translatepoint3d\}\ solidtransform\ \}\ def
Oxygen2 {Oxygen {-90 0 0 rotateOpoint3d} solidtransform
                 {0 19.33 0 translatepoint3d} solidtransform } def
32/Oxygen1L1 {Oxygen1 L1 solidfuz} def
38 /Oxygen1L12 {Oxygen1L1 L2 solidfuz} def
34/C01L12{Oxygen1L12 Carbon solidfuz} def
35/Oxygen2L3 {Oxygen2 L3 solidfuz} def
36/Oxygen2L34 {Oxygen2L3 L4 solidfuz} def
37/CO2 {CO1L12 Oxygen2L34 solidfuz} def
 CO2 drawsolid**}
 %/L1234 {L12 L34 solidfuz} def
 %L1234 drawsolid**}
 \axesIIID(2.5, 2.5, 2.5)(15, 25, 15)
 \end{pspicture}
```

11.5 Modèle éclaté du N₂


```
\begin{array}{c} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\
             \psset{lightsrc=92 16 35,lightintensity=2,
                                                                  viewpoint=100 30 20,Decran=30,SphericalCoor}
             \psset{linecolor={[cmyk]{0 0.72 1 0.45}},
                                                                  linewidth=0.5\pslinewidth}
             \codejps{
            \% r phi theta [ngrid] newcalottesphere
                        /Nitrogen {
                        5 -30 90 [16 18] newcalottesphere
                     {0 180 0 rotateOpoint3d} solidtransform
                        dup videsolid
                        dup (bleu) outputcolors
                        } def
       /Liaison {
                                                  0 0.5 15 [18 10] newcylindre
                                                         dup (White) outputcolors
 k/L1 {Liaison {0 -1.5 2 translatepoint3d} solidtransform } def
 /L2 {Liaison {0 1.5 2 translatepoint3d} solidtransform } def
2 /L3 {Liaison {0 0 2 translatepoint3d} solidtransform } def
2 /NitrogenL1 {Nitrogen L1 solidfuz} def
22 /NitrogenL12 {NitrogenL1 L2 solidfuz} def
23 /NitrogenL123 {NitrogenL12 L3 solidfuz} def
 /N2{NitrogenL123 Nitrogen {0 180 0 rotateOpoint3d} solidtransform {0 0 17 translatepoint3d} solidtransform
                         solidfuz} def
 28 N2 {60 0 0 rotateOpoint3d} solidtransform {0 0 45 rotateOpoint3d} solidtransform drawsolid**}
 26 \axesIIID(2.5,2.5,2.5)(15,15,15)
            \end{pspicture}
```

11.6 Modèle compact de l'acétylène


```
\begin{array}{c} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c}
      \psset{lightsrc=92 16 35,lightintensity=2,linewidth=0.5\pslinewidth,
                                                               viewpoint=100 30 20,Decran=30,SphericalCoor}
      \pstVerb{/DarkGray {0.5 setgray} def}%
     \codejps{
     \% r phi theta [ngrid] newcalottesphere
                  /Carbon {
                  4 -48.6 48.6 [16 18] newcalottesphere
                  {0 90 0 rotateOpoint3d} solidtransform
           dup (DarkGray) outputcolors
               } def
                  /Hydrogen {
                  3.317 -37.1 90 [16 18] newcalottesphere
                  dup videsolid
                  dup (White) outputcolors
                  } def
/C2H2 {Hydrogen {0 -90 0 rotateOpoint3d} solidtransform
                                                                                                                                            \{-8\ 0\ 0\ translatepoint3d\} solidtransform
                                                                                                                                         {-3 0 0 translatepoint3d} solidtransform
                                                       Carbon
                                                                       solidfuz
                                                       Carbon
                                                                                                                                    {3 0 0 translatepoint3d} solidtransform
                                                                       solidfuz
                                                       Hydrogen {0 90 0 rotateOpoint3d} solidtransform
                                                                                                                                    {8 0 0 translatepoint3d} solidtransform
                                                                         solidfuz} def
 C2H2 {0 0 90 rotateOpoint3d} solidtransform drawsolid**}
     \axesIIID(2.5,2.5,2.5)(15,15,15)
     \end{pspicture}
```

11.7 Modèle éclaté de l'acétylène


```
\begin{pspicture}(-7,-2.5)(7,3)
\psset{lightsrc=92 16 35,lightintensity=2,linewidth=0.5\pslinewidth,
      viewpoint=100 30 20, Decran=30, SphericalCoor}
\pstVerb{/DarkGray {0.5 setgray} def}%
\codejps{
 /Carbon {
 4 -48.6 48.6 [16 18] newcalottesphere
 {0 90 0 rotateOpoint3d} solidtransform
 dup (DarkGray) outputcolors
 } def
 /Hydrogen {
 3.317 -37.1 90 [16 18] newcalottesphere
 dup videsolid dup (White) outputcolors
 } def
/LiaisonCH {
    0 0.5 9 [10 10] newcylindre
     dup (White) outputcolors
  } def
/LiaisonCC {
    0 0.5 10 [10 10] newcylindre
     dup (White) outputcolors
/C2H2 {Carbon {-8 0 0 translatepoint3d} solidtransform
    Carbon {8 0 0 translatepoint3d} solidtransform
    LiaisonCC {0 -90 0 rotateOpoint3d} solidtransform
             {5 0 0 translatepoint3d} solidtransform
      solidfuz
    LiaisonCC {0 -90 0 rotateOpoint3d} solidtransform
             {5 0 1.5 translatepoint3d} solidtransform
      solidfuz
    LiaisonCC \{0\ -90\ 0\ rotateOpoint3d\} solidtransform
             {5 0 -1.5 translatepoint3d} solidtransform
      solidfuz
    LiaisonCH {0 -90 0 rotateOpoint3d} solidtransform
             {-11 0 0 translatepoint3d} solidtransform
     solidfuz
     Hydrogen {0 90 0 rotateOpoint3d} solidtransform
             {22 0 0 translatepoint3d} solidtransform
       solidfuz
     LiaisonCH {0 90 0 rotateOpoint3d} solidtransform
             {11 0 0 translatepoint3d} solidtransform
     solidfuz
     Hydrogen {0 -90 0 rotateOpoint3d} solidtransform
             {-22 0 0 translatepoint3d} solidtransform
       solidfuz } def
C2H2 {0 0 90 rotateOpoint3d} solidtransform drawsolid**}
\psPoint(0,8,5){C2}\psPoint(0,22,5){H2}
\psPoint(0,-8,5){C1}\pcline{<->}(C1)(C2)
\lput*{:U}{\small 12,1 pm}
\ \c) \ (C2) (H2) \ (Small 10,9 pm)
\axesIIID(2.5,24,2.5)(15,26,10)
\end{pspicture}
```

12 Un pliant

13 Une chaise

14 Une coccinelle VW

15 Une VW multicolore

16 Une pomme

17 Un shu

18 Une sphère

21 Surface de Clebsch

22 Nefertiti

Champignons 23


```
\newcommand\SectionChampignon{
/r3 0.2 R mul def
0 0 %1
% 0 r1 0 % 2
-33 10 43 { /Angle ED
   Angle cos 0.5 h mul mul 0.2 h mul sub
     Angle sin 0.5 h mul mul 0.3 h mul add
     } for
0 10 90 {
   /Angle ED
   0.8 R mul Angle cos mul r3 add 0.8 R mul Angle sin mul 0.6 h mul add
   } for
0 h
\begin{pspicture}(-3,-6)(3,6)
\propty = (-3, -2)(3, 6)
\psset[pst-solides3d]{SphericalCoor=true,viewpoint=100 20 20,Decran=50,lightsrc=90 30 30}
\psSolid[object=grille,base=-8 8 -8 8,action=draw**,fillcolor=green!50]%
\psSolid[object=anneau,section=\SectionChampignon,fillcolor=red!20,h=10,R=5,r=0,unit=0.5,RotX=-20,linewidth
  =0.5\pslinewidth](-4,5,0)
\psSolid[object=anneau,section=\SectionChampignon,fillcolor=white,h=10,R=5,r=0,linewidth=0.5\pslinewidth]%
\psSolid[object=anneau,section=\SectionChampignon,fillcolor=yellow!50,h=10,R=5,r=0,unit=0.4,RotY=-90,RotZ=-40,
  linewidth=0.5\pslinewidth](4,6,0)
\end{pspicture}
```



```
\newcommand\SectionAmanite{
  /radius1 h 8 div 1.52 mul def
  /xC1 h 8 div 0.25 mul def
  /yC1 h 8 div 1.5 mul def
  /radius2 h 8 div 4.5 \text{ mul} dup mul h 8 div 2 mul dup mul add sqrt 4 div 4.5 \text{ mul} def
  /xC2 0 def
 /yC2 h 8 div 2.46 mul def
 -110 10 70 { /Angle ED
             Angle cos radius1 mul xC1 add
               Angle sin radius1 mul yC1 add
             } for
12 h 8 div 0.5 mul h 8 div 6 mul
40 10 90 {/Angle ED
             Angle cos radius2 mul xC2 add
              Angle sin radius2 mul yC2 add
             } for
 0 h
8 }
 \begin{pspicture}(-3,-6)(3,6)
 psframe*(-3,-2)(3,6)
 \psset[pst-solides3d]{SphericalCoor,viewpoint=100 20 20,Decran=50,lightsrc=90 30 30}
 \psSolid[object=grille,base=-8 8 -8 8,action=draw**,hue=0.2 0.5 0.5 1,grid](0,0,0)
 \psSolid[object=anneau,section=\SectionAmanite,h=8,R=5,r=0,hue=0 1 0.5 1,unit=0.5,grid,RotX=-20](-4,5,0)
 \psSolid[object=anneau,section=\SectionAmanite,h=8,R=5,r=0,hue=0 1 0.5 1,grid](0,0,0)
 \psSolid[object=anneau,section=\SectionAmanite,h=8,R=5,r=0,hue=0 1 0.5 1,grid,unit=0.4,RotY=-90,RotZ
   =-50](4,6,0)
 \end{pspicture}
```

24 Un demi-coquillage

25 Un coquillage qui tourne

26 Un coquillage et son ombre

27 Une toupie


```
| \psset{unit=0.75}
| \psignature \{(-6,-5)(6,7)\} \psigname(-6,-5)(6,7)
| \psset[pst-solides3d] \{viewpoint=20 20 10, SphericalCoor, Decran=20, lightsrc=10 15 0\}
| \frac{Narametric Surfaces}{Nesolid[object=grille, base=-3 3 -3 3, action=draw, linecolor=red](0,0,-3)}
| \quad \text{defFunction [algebraic] \{toupie\}(u,v) \{(abs(u)-1)^2 * cos(v)\} \{(abs(u)-1)^2 * sin(v)\} \{u\} \\ \psSolid[object=surfaceparametree, linecolor=\{[cmyk]\{1,0,1,0.5\}\}, \\ \text{base=1 -1 0 2 pi mul,incolor=green!50,fillcolor=yellow!50,} \\ \text{function=toupie,linewidth=0.5\pslinewidth, unit=3,} \\ \text{ngridIIID[Zmin=-3, Zmax=3](-3,3)(-3,3)} \\ \text{lend(pspicture}\end{pspicture}
| \text{lend(pspicture} \]
| \text{lend(pspicture} \text{lend(pspicture}) \text{lend(pspicture}) \text{lend(pspicture}) \text{lend(pspicture}) \text{lend(pspicture} \text{lend(pspicture}) \text{lend(pspicture}) \text{lend(pspicture} \text{lend(pspicture}) \text{lend(pspicture} \text{lend(pspicture}) \text{lend(pspicture}) \text{lend(pspicture} \text{lend(pspicture}) \text{lend(pspicture}) \text{lend(pspicture} \text{lend(pspicture}) \text{lend(pspicture} \text{lend(pspicture}) \text{lend(pspicture} \text{lend(pspicture}) \text{lend(pspicture} \text{lend(pspicture}) \text{lend(pspicture}) \text{lend(pspicture} \text{lend(pspicture}) \text{lend(pspicture} \text{lend(pspicture}) \text{lend(pspicture}) \text{lend(pspicture} \text{lend(pspicture}) \text{lend(pspicture}) \text{lend(pspicture}) \text{lend(pspicture} \text{lend(pspicture}) \text{lend(pspict
```

28 Corne


```
| \begin{pspicture}(-7,-6)(7,5)
| \psframe*[linecolor=gray!30](-7,-6)(7,5)
| \psframe*[linecolor=gray!30](-7,-6)(7,5)
| \psset[pst-solides3d]{viewpoint=100 50 20,SphericalCoor,Decran=100,lightsrc=10 15 10}
| \deffunction[algebraic]{corne}(u,v){(2 + u*cos(v))*sin(2*pi*u)}{(2 + u*cos(v))*cos(2*pi*u) + 2*u}{u *sin(v)}
| \psSolid[object=grille,base=-4 4 -3 5,action=draw*,linecolor=blue](0,0,-2)
| \psSolid[object=surfaceparametree,linecolor=blue,
| base=0 1 0 2 pi mul,fillcolor=blue!50,incolor=yellow!50,
| function=corne,linewidth=0.5\pslinewidth,
| ngrid=20]%
| \quadrillage
| \end{pspicture}
```

29 Trompette, version 1


```
| \begin{pspicture}(-6,-8)(6,6)
| \psframe*[linecolor=gray!50](-6,-8)(6,6)
| \psset[pst-solides3d]{viewpoint=20 40 30,SphericalCoor,Decran=20,lightsrc=10 15 10}
| \defFunction[algebraic]{trompette}(u,v){cos(u)*sin(v)}{cos(v)*ln(tan(1/2*v))+2}{sin(u)*sin(v)}
| \frac{\defFunction RPN}{\defFunction{trompette}(u,v){u Cos v Sin mul}{v Cos 0.5 v mul Tan log 2.3 mul add}{u Sin v Sin mul}
| \psSolid[object=grille,base=-4 4 -4 4,action=draw*,linecolor=red](0,0,-2)
| \psSolid[object=surfaceparametree,linecolor={[cmyk]{1,0,1,0.5}},
| base=0 2 pi mul 0.03 2,fillcolor=yellow!50,incolor=green!50,
| function=trompette,linewidth=0.5\pslinewidth,unit=2,
| ngrid=20] \frac{\defta}{v} \text{gridIIID[Zmin=-2,Zmax=2](-4,4)(-4,4)}
| \end{pspicture}
```

30 Trompette, version 2


```
\begin{pspicture}(-6,-6)(6,8)

\pspframe*[linecolor=gray!50](-6,-6)(6,8)

\psset[pst-solides3d]{viewpoint=100 20 20,SphericalCoor,Decran=100,lightsrc=10 15 10}

\defFunction[algebraic]{trompette}(u,v){cos(u)*sin(v)}{sin(u)*sin(v)}{cos(v)+ln(tan(1/2*v))+2}

\defFunction[algebraic]{trompette}(u,v){cos(u)*sin(v)}{sin(u)*sin(v)}{cos(v)+ln(tan(1/2*v))+2}

\defFunction[algebraic]{trompette}(u,v){cos(u)*sin(v)}{sin(u)*sin(v)}{cos(v)+ln(tan(1/2*v))+2}

\defFunction[algebraic]{trompette}(u,v){cos(u)*sin(v)}{sin(u)*sin(v)}{cos(v)+ln(tan(1/2*v))+2}

\defFunction[algebraic]{trompette}(u,v){cos(u)*sin(v)}{sin(u)*sin(v)}{cos(v)*ln(u)*sin(v)}{cos(v)*ln(1/2*v))+2}

\def base=0 2 pi mul 0.0221 2,fillcolor=yellow!50,incolor=blue!50,

\def function=trompette,linewidth=0.5\pslinewidth,unit=2,

\def ngrid=20]{trompette}{trompette}(u,v){cos(u)*sin(v)}{cos(u)*sin(v)}{cos(u)*sin(v)}{cos(u)*sin(v)}{cos(u)*sin(v)}{cos(u)*sin(v)}{cos(u)*sin(v)}{cos(u)*sin(v)}{cos(u)*sin(v)}{cos(u)*sin(v)}{cos(u)*sin(v)}{cos(u)*sin(v)}{cos(u)*sin(v)}{cos(u)*sin(v)}{cos(u)*sin(v)}{cos(u)*sin(v)}{cos(u)*sin(v)}{cos(u)*sin(v)}{cos(u)*sin(v)}{cos(u)*sin(v)}{cos(u)*sin(v)}{cos(u)*sin(v)}{cos(u)*sin(v)}{cos(u)*sin(v)}{cos(u)*sin(v)}{cos(u)*sin(v)}{cos(u)*sin(v)}{cos(u)*sin(v)}{cos(u)*sin(v)}{cos(u)*sin(v)}{cos(u)*sin(v)}{cos(u)*sin(v)}{cos(u)*sin(v)}{cos(u)*sin(v)}{cos(u)*sin(v)}{cos(u)*sin(u)*sin(v)}{cos(u)*sin(u)*sin(v)}{cos(u)*sin(u)*sin(v)}{cos(u)*sin(u)*sin(u)*sin(u)*sin(u)*sin(u)*sin(u)*sin(u)*sin(u)*sin(u)*sin(u)*sin(u)*sin(u)*sin(u)*sin(u)*sin(u)*sin(u)*sin(u)*sin(u)*sin(u)*sin(u)*sin(u)*sin(u)*sin(u)*sin(u)*sin(u)*sin(u)*sin(u)*sin(u)*sin(u)*sin(u)*sin(u)*sin(u)*sin(u)*sin(u)*sin(u)*sin(u)*sin(u)*sin(u)*sin(u)*sin(u)*sin(u)*sin(u)*sin(u)*sin(u)*sin(u)*sin(u)*sin(u)*sin(u)*sin(u)*sin(u)*sin(u)*sin(u)*sin(u)*sin(u)*sin(u)*sin(u)*sin(u)*sin(u)*sin(u)*sin(u)*sin(u)*sin(u)*sin(u)*sin(u)*sin(u)*sin(u)*sin(u)*sin(u)*sin(u)*sin(u)*sin(u)*sin(u)*sin(u)*sin(u)*sin(u)*sin(u)*sin(u)*sin(u)*sin(u)*sin(u)*sin(u)*sin(u)*sin(u)*sin(u)*sin(u)*sin(u)*sin(u)*sin(u)*
```

31 Les cercles de Villarceau


```
\psset{unit=0.75}
\begin{pspicture}(-6,-8)(6,6)
\psframe*[linecolor=gray!50](-6,-8)(6,6)
\psset[pst-solides3d]{viewpoint=20 10 30,SphericalCoor,Decran=20,lightsrc=10 15 10}
\psSolid[object=grille,base=-4 4 -4 4,action=draw*,linecolor=red](0,0,-6)
radius*sin(u)}
\psSolid[object=surfaceparametree,
       base=0 2 pi mul 0 2 pi mul ,action=draw**,fillcolor=yellow!50,linecolor=yellow,incolor=yellow!50,grid,
      function=torus,linewidth=0.5\pslinewidth,grid,
\mbox{multido} \r=0+0.3927}{16}{\%}
\defFunction[algebraic]{villarceauxy}(t){sqrt(\Radius^2-\radius^2)*cos(\r)*sin(t)-(\radius+\Radius*cos(t))*sin
      \psSolid[object=courbe,
          range=0 2 pi mul,linecolor=blue,
          resolution=360,function=villarceauxy] %
\ensuremath{\defFunction[algebraic]{villarceau}(t){sqrt(\adius^2-\radius^2)*cos(\r)*sin(t)-(\radius+\Radius*cos(t))*sin(\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\radius+\rad
       r) \{ \sqrt{\xrt(\xrdius^2-\xrdius^2)*sin(\xrdius+\xrdius+\xrdius*cos(\xrdius+\xrdius*sin(\xrdius+\xrdius+\xrdius+\xrdius*sin(\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\xrdius+\x
\psSolid[object=courbe,
          range=0 2 pi mul,
          linecolor={[cmyk]{1,0,1,0.5}},linewidth=0.75\pslinewidth,
          resolution=360,
          function=villarceau]%
\defFunction[algebraic]{villarceau}(t){sqrt(\Radius^2-\radius^2)*cos(\r)*sin(t)+(\radius+\Radius*cos(t))*sin(\
      r) \{ \sqrt{\lambda \sin^2 - \alpha \sin^2 + \sin(x) * \sin(t) - (\alpha \sin + \alpha \sin(t)) * \cos(x) } { - \alpha \sin(t) } 
\psSolid[object=courbe,
          range=0 2 pi mul,
          linecolor={[cmyk]{1,0,1,0.5}}, linewidth=0.75\pslinewidth,
          resolution=360,
          function=villarceau]%
(\rdot{r}){-4}{\radius*sin(t)}
\psSolid[object=courbe,
         range=0 2 pi mul,
          resolution=360,
          function=villarceauyz]}
\gridIIID[Zmin=-6,Zmax=2,QZ=-2](-4,4)(-4,4)
\end{pspicture}
```

32 Un tore coupé par un plan méridien


```
\begin{pspicture}(-5,-5)(6,6)
\protect{psframe(-5,-5)(6,6)}
\psset[pst-solides3d]{viewpoint=20 20 20,SphericalCoor,Decran=20,lightsrc=10 15 0}
% Parametric Surfaces
\psSolid[object=grille,base=-3 3 -3 3,action=draw,linecolor=red](0,0,-2)
\defFunction[algebraic]{torus}(u,v){(1+ 0.5*cos(u))*cos(v)}{(1+ 0.5*cos(u))*sin(v)}{0.5*sin(u)}
\psSolid[object=surfaceparametree,linecolor={[cmyk]{1,0,1,0.5}},
  base=0 2 pi mul pi 2 div neg pi 2 div,fillcolor=yellow!50,incolor=green!50,
  function=torus,linewidth=0.5\pslinewidth,unit=2,RotZ=180,
  ngrid=20]%
\psSolid[object=courbe,
  range=0 2 pi mul,unit=2,
  linecolor=blue,
   resolution=360,
   function=cercleA] %
\psSolid[object=courbe,
  range=0 2 pi mul,unit=2,
   linecolor=blue,
   resolution=360,
   function=cercleB] %
\gridIIID[Zmin=-2,Zmax=2](-3,3)(-3,3)
\end{pspicture}
```

33 Un tore coupé par l'équateur


```
\psset{unit=0.75}
\begin{pspicture}(-5,-5)(6,6)
\psframe(-5,-5)(6,6)
\psset[pst-solides3d]{viewpoint=20 20 20,SphericalCoor,Decran=20,lightsrc=10 15 0}
% Parametric Surfaces
\psSolid[object=grille,base=-3 3 -3 3,action=draw,linecolor=red](0,0,-2)
\psSolid[object=surfaceparametree,linecolor={[cmyk]{1,0,1,0.5}},
  base=pi neg 0 0 2 pi mul ,fillcolor=yellow!50,incolor=green!50,
 function=torus,linewidth=0.5\pslinewidth,unit=2,
  tracelignedeniveau=true,
 hauteurlignedeniveau=-.01,
  linewidthlignedeniveau=1,
  couleurlignedeniveau=blue,
  ngrid=20] %
\gridIIID[Zmin=-2,Zmax=2](-3,3)(-3,3)
\end{pspicture}
```