Cross-Modal Fine-Tuning Align then Refine

Tran Trong Khiem

AI lab tranning

2024/05/29

Tran Trong Khiem Cross-Modal Fine-Tuning 1 / 61

- 1 Introduction
- 2 ORCA

•00

- Implement ORCA

- Apendix

Tran Trong Khiem Cross-Modal Fine-Tuning 2/61

Introduction

Transfer learning:

- Reuse of a pre-trained model on a new problem.
- Models can apply what they have learned from large amounts of unlabeled data to downstream tasks.

Existing research:

focuses on in-modality transfer within these well-studied areas.

Figure 1: The early and middle layers are used and we only retrain the latter layers

Tran Trong Khiem Cross-Modal Fine-Tuning 3 / 61

Cross-Modal Fine-Tuning

Problem: Could cross-modal fine-tuning have immense impact on less-studied areas?

 could we use pretrained BERT models to tackle genomics tasks, or vision transformers to solve PDEs?

ORCA:

- cross-modal fine-tuning workflow.
- prevent the distortion of the pretrained weights.
- exploit the knowledge encoded in the pretrained model.

Tran Trong Khiem Cross-Modal Fine-Tuning 4 / 61

- Introduction
- 2 ORCA
- 3 Implement ORCA
- 4 Enhancing Cross-Modal Fine-Tuning
- MoNa
- 6 UPS
- 7 Proposed
- 8 Apendix

Tran Trong Khiem Cross-Modal Fine-Tuning 5 / 61

ORCA work flow

Figure 2: ORCA's three-stage fine-tuning workflow

ORCA:

- Dimensionality Alignment:
 - generate task-specific embedder and predictor.
- Distribution Alignment:
 - train the the embedding network.
- **Refine model weight**: fine-tuning to minimize the target loss.

Tran Trong Khiem Cross-Modal Fine-Tuning 6 / 61

Problem setup

Denote:

- A domain D consists of a feature space X, a label space Y, and a joint probability distribution P(X, Y).
- The target domain \mathcal{D}^t and source (pretraining) domain \mathcal{D}^s
- $\mathcal{X}^t \neq \mathcal{X}^s$, $\mathcal{Y}^t \neq \mathcal{Y}^s$, and $P_t(\mathcal{X}^t, \mathcal{Y}^t) \neq P_s(\mathcal{X}^s, \mathcal{Y}^s)$
- embedder *f* that transforms input *x* into a **sequence of features**.
- model body g that applies a series of pretrained attention layers to the embedded features.
- predictor h that generates the outputs with the desired shape.

Goal:

- Given target data $\{(x_{t_i}, y_{t_i})\}_{i=1}^n$ sampled from a joint distribution P^t in domain \mathcal{D}^t ,
- learn a model m^t that correctly maps each input x^t to its label y^t

Tran Trong Khiem Cross-Modal Fine-Tuning 7 / 61

Dimensionality Alignment

Figure 3: Dimensionality Alignment

Goal: addressing the problem of dimensionality mismatch. **Custom Embedding Network**:

- The target embedder $f^t: \mathcal{X} \to \dot{\mathcal{X}}$ with $\dot{\mathcal{X}}$ is feature space.
- f^t is composed of a convolutional layer.

Custom Prediction Head

• The prediction head h^t take $\dot{y} \in \dot{\mathcal{Y}}$ as input and return a task-dependent output tensor.

Tran Trong Khiem Cross-Modal Fine-Tuning 8 / 61

Goal: manipulate the target data so that they become closer to the pretraining modality.

- train the embedder before actually fine-tuning the model body.
- makes the embedded target features resemble the source features.
- key idea.

Denote:

- $f^s: \mathcal{X}^s \to \dot{\mathcal{X}}$ is the pretrained source embedder.
- We can learn f^t by minimize $D(P(f^t(x^t), y^t)||P(f^s(x^s), y^s))$
- D is a metric for measuring distribution distance (MMD, OTDD, Euclidean).

9 / 61 Tran Trong Khiem Cross-Modal Fine-Tuning

Implement OTDD for Distribution Alignment

- Compute distance between two dataset : $\mathcal{D}^s = (\dot{x}^s, y^s)$ and $\mathcal{D}^t = (\dot{x}^t, y^t)$
- OTDD represents each class label as a distribution over the in-class features:

$$y \mapsto \alpha_{\gamma}(X) = P(\dot{X} \mid Y = y)$$

We can compute distance between feature-label pairs as :

$$d_{Z}((x,y),(x',y')) = \left[d_{\mathcal{X}}(x,x')^{p} + W_{p}^{p}(\alpha_{y},\alpha_{y'})\right]^{\frac{1}{p}}$$

• we can finally use optimal transport to compute OTDD:

$$d_{ ext{OT}}(D^s, D^t) = \min_{\pi \in \Pi(lpha, eta)} \int_{Z imes Z} d_Z(z^s, z^t)^p \ \pi(z^s, z^t)$$

•
$$z = (\dot{x}, y)$$

Tran Trong Khiem Cross-Modal Fine-Tuning 10 / 61

- Introduction
- 2 ORCA
- 3 Implement ORCA
- 4 Enhancing Cross-Modal Fine-Tuning
- MoNa
- 6 UPS
- 7 Proposed
- 8 Apendix

Tran Trong Khiem Cross-Modal Fine-Tuning 11 / 61

Research questions

Figure 4: ORCA work flow

- 1 How does the choice of proxy dataset affect performance?
- 2 Does doing (more) embedder training improve performance?
- **3** What do the embedder and the pre-trained model contribute individually?
- 4 How much pre-training is necessary for cross-modal transfer?

Tran Trong Khiem Cross-Modal Fine-Tuning 12 / 61

ction ORCA Implement ORCA Enhancing Cross-Modal Fine-Tuning MoNa UPS Proposed Apendix Referenses

Experimental setup

Transformers pre-train model:

- **1** RoBERTa-base(Liu et al.,2019) for 1*D* tasks.
- 2 Swin-base(Liu et al.,2021) for 2D tasks.

Embedder traing

Using OTDD.

Target dataset

- 1 1D datasets: Satellite, DeepSEA, and ECG
- 2 D datasets: NinaPro, CIFAR-100, and Darcy Flow.

Proxy datasets

- 1 CIFAR-10 (Krizhevsky, 2009) for all 2D tasks.
- 2 CoNLL 2003 (Tjong Kim Sang and De Meulder, 2003) for all 1D tasks.

Tran Trong Khiem Cross-Modal Fine-Tuning 13 / 61

How does the choice of proxy dataset affect performance?

Experiment with the choice of proxy dataset for the tasks.

 Base line: embedder is trained with different proxy datasets or not trained.

Figure 5: Per-epoch fine-tuning performance

Tran Trong Khiem Cross-Modal Fine-Tuning 14 / 61

How does the choice of proxy dataset affect performance?

Paper finding:

 Embedder training does play a role in the 1D tasks, but does not matter for 2D tasks.

Questions:

- 1 Can we trust this conclusion (just comparing 4 dataset)?
- 2 Why are there differences between 2D tasks and 1D tasks?

Tran Trong Khiem Cross-Modal Fine-Tuning 15 / 61

tion ORCA Implement ORCA Enhancing Gross-Modal Fine-Tuning MoNa UPS Proposed Apendix Referenses

Does doing (more) embedder training im- prove performance?

Figure 6: Per-epoch embedder training comparing OTDD

Paper finding:

 Embedder training is unnecessary in 2/6 tasks, training the embedder more can even lead to worse task performance.

Tran Trong Khiem Cross-Modal Fine-Tuning 16 / 61

What do the embedder and the pre-trained model contribute individually?

Experiment with freezing different parts of the pipeline:

• Freezing just the embedder, just the model, or both

Figure 7: Freezing just the embedder, just the model, or both.

Tran Trong Khiem Cross-Modal Fine-Tuning 17 / 61

What do the embedder and the pre-trained model contribute individually?

Paper finding:

- fine-tuning the pre- trained model is a critical component of ORCA.
- while training the embedder is important for ORCA's success on these datasets.
 - it need not be fine-tuned beyond that.

Tran Trong Khiem Cross-Modal Fine-Tuning 18 / 61

Pre-training is not always necessary

Use RoBERTa models pre-trained on **different amounts of English data**: 10B,100M, 10M,...

Figure 8: Effect of different amounts of pre-training data on downstream performance.

Paper finding:

• the amount of pre-training has a notice able effect only at certain(30B) scales.

Tran Trong Khiem Cross-Modal Fine-Tuning 19 / 61

Conclusion

In 1D task:

- 1 some amount of **embedder training** is **necessary**.
- more embedder training can even hurt performance on the target task.
- 3 using a pre-trained model is actually not necessary.

In 2D task:

1 embedder training does not help at all.

Questions:

- 1 Can we trust this conclusion (just comparing 4 dataset)?
- 2 Why are there differences between 2D tasks and 1D tasks?

Tran Trong Khiem Cross-Modal Fine-Tuning 20 / 61

Idea for question about differences between 2D tasks and 1D tasks.

Figure 9: orca loss in Ninapro dataset

ORCA: unstable training, trapped in unfavorable local optima.

Tran Trong Khiem Cross-Modal Fine-Tuning 21 / 61

- 1 Introduction
- 2 ORCA
- 3 Implement ORCA
- 4 Enhancing Cross-Modal Fine-Tuning
- MoNa
- 6 UPS
- 7 Proposed
- 8 Apendix

Tran Trong Khiem Cross-Modal Fine-Tuning 22 / 61

tetion ORCA Implement ORCA Enhancing Cross-Modal Fine-Tuning MoNa UPS Proposed Apendix Referenses

Introduction

ORCA:

- faces instability during training.
- potentially leading to suboptimal results as it is prone to getting trapped in unfavorable local optima.

Figure 10: Loss landscape

Patch Replacement(PaRe):

 Motivated by traditional data augmentation techniques like Mixup (Zhang et al., 2017) and CutMix (Yunet al., 2019)

Tran Trong Khiem Cross-Modal Fine-Tuning 23 / 61

Patch Replacement(PaRe)

Figure 11: PaRe Overview

Embedder:

- pre-trained embedder $f_s: \mathcal{X}^s \to \tilde{\mathcal{X}}^s$
- target embedder f_t is randomly initialized $f_t: \mathcal{X}^t \to \tilde{\mathcal{X}}^t$

Tran Trong Khiem Cross-Modal Fine-Tuning 24 / 61

PaRe

Figure 12: Patch scoring

Patch scoring:

- The source embeddings $\tilde{X}_s \in \mathbb{R}^{N \times D}$ contain N patches, where $\tilde{X}_s = {\{\tilde{x}_{s1}, \tilde{x}_{s2}, \dots, \tilde{x}_{sN}\}}.$
- Score each patch \tilde{x}_{si} from the source and \tilde{x}_{ti} from the target using a gate network.

$$S_s = \sigma(F_C(\tilde{X}_s))$$

• The higher the score, the more critical information the patch contains

Tran Trong Khiem Cross-Modal Fine-Tuning 25 / 61

PaRe

Figure 13: Pa Re

Patches replacement

- keep the positions of the top (N k) target patches with the highest scores fixed.
- replace the bottom (*k*) target patches with the lowest scores with the top (*k*) source patches with the highest scores.
- k linearly decreases with the number of training epochs:

$$k = k_0 (1 - \frac{\text{ep}_{\text{current}}}{\text{ep}_{\text{total}}})$$

Tran Trong Khiem Cross-Modal Fine-Tuning 26 / 61

Loss function

Denote:

- Output of patchs replacement \tilde{X}^m for source and target.
- Output of source encoder $g(\tilde{X}^m)$.
- source prediction $p^{ms} = h_s\left(g(\tilde{X}^m)\right)$ and target prediction $p^{mt} = h_t\left(g(\tilde{X}^m)\right)$.
- Weight $\lambda = \frac{k}{k_0}$.

Loss function:

• Calculate the mixed loss \mathcal{L}_{mix} using mixed embeddings \tilde{X}^m .

$$\mathcal{L}_{\text{mix}} = (1 - \lambda)\mathcal{L}_{\text{tar}}(p^{mt}, y_t) + \lambda\mathcal{L}_{\text{src}}(p^{ms}, y_s)$$

Tran Trong Khiem Cross-Modal Fine-Tuning 27 / 61

Experiment Setup

Pre-train model:

- **1** RoBERTa (Liu et al., 2019) for 1*D* tasks.
- 2 Swin Transformers (Liu et al., 2021) for 2D tasks.

Proxy datasets:

- 1 2D classification tasks: CIFAR10, Tiny-ImageNet.
- 2 D dense prediction tasks: VOC.
- 3 1D tasks: CoNLL-2003.

Tran Trong Khiem Cross-Modal Fine-Tuning 28 / 61

Overall results

NAS-Bench-360:

- comprises four 2D classification tasks, three 2D dense prediction tasks, and three 1D tasks.
- PaRe achieves the best performance across all tasks.

	CIFAR-100 0-1 error (%)	Spherical 0-1 error (%)	Darcy Flow relative ℓ_2	PSICOV MAE ₈	Cosmic 1-AUROC	NinaPro 0-1 error (%)	FSD50K 1-mAP	ECG 1-F1 score	Satellite 0-1 error (%)	DeepSEA 1-AUROC
Hand-designed	19.39	67.41	8.00E-03	3.35	0.127	8.73	0.62	0.28	19.80	0.30
NAS-Bench-360	23.39	48.23	2.60E-03	2.94	0.229	7.34	0.60	0.34	12.51	0.32
DASH	24.37	71.28	7.90E-03	3.30	0.190	6.60	0.60	0.32	12.28	0.28
Perceiver IO	70.04	82.57	2.40E-02	8.06	0.485	22.22	0.72	0.66	15.93	0.38
FPT	10.11	76.38	2.10E-02	4.66	0.233	15.69	0.67	0.50	20.83	0.37
NFT	7.67	55.26	7.34E-03	1.92	0.170	8.35	0.63	0.44	13.86	0.51
ORCA	6.53	29.85	7.28E-03	1.91	0.152	7.54	0.56	0.28	11.59	0.29
Pare	6.25	25.55	7.00E-03	0.99	0.121	6.53	0.55	0.28	11.18	0.28

Figure 14: Prediction errors (↓) across 10 diverse tasks on NAS-Bench-360.

Tran Trong Khiem Cross-Modal Fine-Tuning 29 / 61

Overall results(.cnt)

PDEBench:

 comprises multiple scientific ML-related datasets, with a focus on the physics domain.

	Advection 1D	Burgers 1D	Diffusion-Reaction 1D	Diffusion-Sorption 1D	Navier-Stokes 1D	Darcy-Flow 2D	Shallow-Water 2D	Diffusion-Reaction 2D
PINN	6.70E-01	3.60E-01	6.00E-03	1.50E-01	7.20E-01	1.80E-01	8.30E-02	8.40E-01
FNO	1.10E-02	3.10E-03	1.40E-03	1.70E-03	6.80E-02	2.20E-01	4.40E-03	1.20E-01
U-Net	1.10E+00	9.90E-01	8.00E-02	2.20E-01	-	-	1.70E-02	1.60E+00
ORCA	9.80E-03	1.20E-02	3.00E-03	1.60E-03	6.20E-02	8.10E-02	6.00E-03	8.20E-01
PaRe	2.70E-03	8.30E-03	2.60E-03	1.60E-03	6.62E-02	8.06E-02	5.70E-03	8.18E-01

Figure 15: Normalized Root Mean Squared Errors (nRMSEs, ↓) across 8 tasks of PDEBench

Tran Trong Khiem Cross-Modal Fine-Tuning 30 / 61

Limitation

- Determining the most suitable source modality proxy dataset based on the target modality dataset remains a **challenge**.
- **2** a modality-agnostic data augmentation method is necessary to prevent model overfitting and enhance cross-modal fine-tuning.

Tran Trong Khiem Cross-Modal Fine-Tuning 31 / 61

- 2 ORCA
- 3 Implement ORCA
- 4 Enhancing Cross-Modal Fine-Tuning
- **5** MoNa
- 6 UPS
- 7 Proposed
- 8 Apendix

Tran Trong Khiem Cross-Modal Fine-Tuning 32 / 61

Introduction

The cross-modal transfer is not as straightforward as the in-modality transfer due to two challenges:

- 1 The input and label space are different across modalities.
- The knowledge required for addressing tasks in different modality may also differ.

Key problem:

- What knowledge from source modality is transferred via the pretrained model?
- How does it benefit the target modality?

MoNa: Improves the cross-modal transfer with two-stage training.

- 1 leverages meta learning to learn an optimal target embedder.
- 2 vanilla finetuning.

Tran Trong Khiem Cross-Modal Fine-Tuning 33 / 61

Notations

Model Architecture: g_{θ}

- An embedder $e(\cdot; \theta_e)$.
- A transformer encoder $f(\cdot; \theta_f)$.
- A predictor $h(\cdot; \theta_h)$.
- The parameter of full model as $\theta = \{\theta_e, \theta_f, \theta_h\}$.
- Pretrained weights of the source model as $\theta_0^S = \{\theta_{e_0}^S, \theta_{f_0}^S, \theta_{h_0}^S\}$.
- Target model $\theta^T = \{\theta_e^T, \theta_f^T, \theta_h^T\}$.
- Vanilla finetuning:

$$heta_T^* = rg \min_{ heta_T} \sum_{i=1}^{n_T} \ell\left(g_{ heta}^T(x_i^T), y_i^T\right),$$

Tran Trong Khiem Cross-Modal Fine-Tuning 34 / 61

Distortion of learned source modality knowledge

Problem:

• There lacks a general metric measuring the degree of knowledge reuse during transfer.

Expectation:

 Smaller distortion if more source knowledge is reused to solve target task.

Figure 16: Linear probing results on CIFAR-10.

Tran Trong Khiem Cross-Modal Fine-Tuning 35 / 61

Distortion of learned source modality knowledge(.cnt)

Finding:

- More epochs leads to larger distortion of source knowledge on all target modalities except for CIFA-100.
- A large discrepancy may hinder the effectiveness of cross-modal transfer.
- Embedder training:
 - Mitigates the knowledge misalignment between target and source.
 - Reduces the model distortion during its adaptation towards target tasks.
- The key to effective transfer:
 - Learn a target embedding function $e^T: X \to \hat{X}$.
 - makes the target conditional distribution $P(Y^t|\hat{X})$ more aligned with the source knowledge.

Tran Trong Khiem Cross-Modal Fine-Tuning 36 / 61

MoNA: Modality Knowledge Alignment

MoNa:

- 1 Stage 1: Target embedder training.
- 2 Stage 2: Full finetuning.

Target embedder training:

- Virtually update model weight : $\theta^{T} = \theta^{T} \alpha \nabla \mathcal{L}_{inner}$
 - Where L_{inner} is the target loss.
- Outer-loop : find optimal embedder parameters ϕ_e^{\star} .
 - resulting optimal target encoder.
 - generates high quality representations of source data.

MoNA: Modality Knowledge Alignment(.cnt)

Outer-loop:

- Compute source features $\{f_i^S = f(e(x_i^s, \theta_e^s), \theta_f^T)\}$
- Measures the source discriminability of the induced encoder :

$$\begin{aligned} \mathcal{L}_{\text{outer}} &= \mathcal{L}_{\text{align}} + \mathcal{L}_{\text{uniform}} \\ &= -\mathbb{E}_{i,j:y_i = y_j} \left[\left\| f_i - f_j \right\|_2^2 \right] - \log \mathbb{E}_{i,j} \left[e^{-2 \left\| f_i - f_j \right\|_2^2} \right] \end{aligned}$$

• To prevent the embedder from overly focusing on source modality, we have :

$$\mathcal{L}'_{outer} = \lambda \mathcal{L}_{outer} + \mathcal{L}_{inner}$$

• Update the target embedder as :

$$\phi_e = \phi_e - \beta \nabla \mathcal{L}'_{\text{outer}}$$

Tran Trong Khiem Cross-Modal Fine-Tuning 38 / 61

MoNA: Modality Knowledge Alignment(.cnt)

Algorithm 1 MoNA: Modality Knowledge Alignment

Input: Source pretrained model $g_{\theta_0^S}$; Learning rate α, β ; Maximum iterations I_1, I_2 .

Output: Model for the target task: g_{θ^T} .

Stage 1: Target embedder training

for
$$iter = 1, 2, \cdots, I_1$$
 do

Initialize the target model $g_{\theta \tau}$ with ϕ_e and $\theta_{f_0}^{\mathcal{S}}$.

Virtually update: $\boldsymbol{\theta}^{\mathcal{T}^*} = \boldsymbol{\theta}^{\mathcal{T}} - \alpha \nabla_{\boldsymbol{\theta}^{\mathcal{T}}} \mathcal{L}_{inner}$.

Compute source features $\{f_i^s\}$ with $\theta_{e_0}^{\mathcal{S}}$ and $\theta_f^{\mathcal{T}^*}$.

Obtain outer-loop loss using Eq. (4).

Update target embedder: $\phi_e \leftarrow \phi_e - \beta \nabla_{\phi_e} \mathcal{L}'_{outer}$.

end for

Stage 2: Full finetuning

for
$$iter = 1, 2, \cdots, I_2$$
 do

Initialize the target model g_{θ^T} with ϕ_e and $\theta_{f_0}^S$. Update target model towards Eq. (1).

end for

Figure 17: Modality Knowledge Alignment.

Tran Trong Khiem Cross-Modal Fine-Tuning 39 / 61

Experiments Setup

Pre-train model:

- 1 RoBERTa (Liu et al., 2019) for 1D tasks.
- 2 Swin Transformers (Liu et al., 2021) for 2D tasks.

Source datasets:

- 1 2D classification tasks: CIFAR10
- 2 1D tasks: CoNLL-2003.

NAS-Bench-360:

 comprises four 2D classification tasks, three 2D dense prediction tasks, and three 1D tasks.

PDEBench:

• comprises multiple scientific ML-related datasets, with a focus on the physics domain.

Tran Trong Khiem Cross-Modal Fine-Tuning 40 / 61

Experiments Result

NAS-Bench-360:

Model	CIFAR-100	Spherical	Darcy Flow	PSICOV	Cosmic	NinaPro	FSD50K	ECG	Satellite	DeepSEA
ORCA	6.53	29.85	7.28 E-3	1.91	0.152	7.54	0.56	0.28	11.59	0.29
MoNA	6.48	27.13	6.80 E-3	0.99	0.121	7.28	0.55	0.27	11.13	0.28
PaRe	6.25	25.55	7.00 E-3	0.99	0.121	6.53	0.55	0.28	11.18	0.28

Table 1: Prediction errors (\downarrow) on ten tasks of NAS-Bench-360.

PDEBench:

Model	Advection	Burgers	Diffusion-Reaction	Diffusion-Sorption	Navier-Stokes	Darcy-Flow	Shallow-Water	Diffusion-Reaction
ORCA	9.80 E-3	1.20 E-2	3.00 E-3	1.60 E-3	6.20 E-2	8.10 E-2	6.00 E-3	8.20 E-1
MoNA	8.8 E-3	1.14 E-2	2.80 E-3	1.60 E-3	5.40 E-2	7.9 E-2	5.70 E-3	8.18 E-1
PaRe	2.70 E-3	8.30 E-3	2.60 E-3	1.60E-3	6.62 E-2	8.06 E-2	5.70 E-3	8.18 E-1

Table 2: Normalized Root Mean Squared Errors (nRMSEs, ↓) across 8 tasks of PDEBench.

Tran Trong Khiem Cross-Modal Fine-Tuning 41 / 61

Denote:

• Representing the semantic knowledge within a modality using the conditional distribution P(Y|X).

Problem: Measure the degree of "similarity" of such knowledge between two modalities is challenging.

• Both the data space \mathcal{X} and the label space \mathcal{Y} are different.

Solution: Modify the conditional distribution $P(Y^t|X^t)$ and $P(Y^s|X^s)$ to make it comparable across modalities.

- Modifying the **input space** : Using **embedder**.
- Modifying the label space is more difficult.

Assumption:

• The cardinality of source modality label space is **larger** than the cardinality of the label space of the target modality.

$$|Y^s| > |Y^t|$$

Tran Trong Khiem Cross-Modal Fine-Tuning 42 / 61

- Select a subset of the source modality label space $Y_B^s \subseteq Y^s$ such that $|Y_B^s| = |Y^t|$.
- Permutation $\pi(\cdot)$ that adjusts the order of source classes, we have $Y_{\pi R}^s = \pi(Y_R^s)$.

Definition: Given the source modality M^s and the target modality M^t satisfying the assumption.

- $\hat{\mathcal{X}}$ is the share input space generated from raw data spaces by embedders.
- $P(Y^s|\hat{X}), P(Y^t|\hat{X})$ are the conditional distribution for the source and target modality.
- The modality semantic knowledge discrepancy between the two modalities is:

$$D(M^s, M^t) = \inf_{\pi, B} d\left(P(Y^s_{\pi, B} \mid \hat{X}), P(Y^t \mid \hat{X})\right)$$

• $d(\cdot,\cdot)$ is an arbitrary discrepancy measure between two conditional

Tran Trong Khiem Cross-Modal Fine-Tuning 43 / 61

Problem: Too much computation cost for finding the optimal permutation π .

• $|Y^s| = m, |Y^t| = n$ then we conduct random experiment for $C_m^n * n!$ times

Solution: Using Approximation Algorithm for Computing Modality Knowledge Discrepancy.

- Source pretrained model g_{θ^s} ; Target data $\{x_i^t, y_i^t\}$; $|Y^t| = K$
- Compute the source logit for each target sample: $z_i^s = g_{\theta^s}(x_i^t)$.
- Randomly select a subset B of class index from source class.
- Assign the **source category** as $y_{i,B}^{S} = \arg \max_{k \in B} [z_{i,k}^{S}]_{k}$.
- Randomly shuffle the index of target labels: $y^t = \pi(y^t)$.
- We can compute the modality knowledge discrepancy as:

$$D(M^s, M^t) = \frac{1}{n_t} \sum_{i=1}^{n_t} d\left(p(y_B^s \mid x_i^t), p(y^t \mid x_i^t)\right).$$

Tran Trong Khiem Cross-Modal Fine-Tuning 44 / 61

Algorithm 2 Approximation Algorithm for Modality Knowledge Discrepancy

- 1: Input: Source pretrained model $g_{\theta_s^S}$; Target data $\{x_t^t, y_i^t\}$; Target task category number K; Maximum experiments I.
- 2: **Output:** Modality Knowledge Discrepancy $D(\mathcal{M}^s, \mathcal{M}^t)$.
- 3: Compute the source logit for each target sample: $z_i^s = g_{\theta_0^S}(x_i^t)$.
- 4: $min_D \leftarrow 1$.
- 5: **for** $exp = 1, 2, \dots, I$ **do**
- 6: Randomly select a subset \mathcal{B} of class index from source class indexes with the size equals to target class number, $|\mathcal{B}| = K$.
 - $y_{i,\mathcal{B}}^s \leftarrow \arg\max_{k \in \mathcal{B}} [\boldsymbol{z}_i^s]_k$
- Randomly shuffle the index of target labels: $y^t \leftarrow \pi(y^t)$, (e.g., $\pi(1) = 2, \pi(2) = 1$.)
- Compute $D_{exp}(\mathcal{M}^s, \mathcal{M}^t)$ using Eq. (11).
- 0: $min_D \leftarrow \min(D_{exp}, min_D)$.
- 11: end for
- 12: Return min D.

Figure 18: Approximation Algorithm for Computing Modality Knowledge Discrepancy

Tran Trong Khiem Cross-Modal Fine-Tuning 45 / 61

- 1 Introduction
- 2 ORCA
- 3 Implement ORCA
- 4 Enhancing Cross-Modal Fine-Tuning
- MoNa
- **6** UPS
- 7 Proposed
- 8 Apendix

Tran Trong Khiem Cross-Modal Fine-Tuning 46 / 61

Introduction

Partial Differential Equations (PDEs):

• play a pivotal role in modeling and understanding real-world phenomena.

Unified PDE Solvers (UPS):

- Learns unified neural operators for complex time-dependent PDEs.
- Improved efficiency and generalization ability.
- Adapt pretrained Large Language Models (LLMs) to PDE solving.
- Map the current state of a PDE to its future state for general spatiotemporal PDEs.

Tran Trong Khiem Cross-Modal Fine-Tuning 47 / 61

Introduction

Figure 19: Adapt pretrained LLMs for PDE solving.

Two key designs:

- 1 Unified data representation.
- 2 Unified network architecture.

Tran Trong Khiem Cross-Modal Fine-Tuning 48 / 61

Unified Data Resprentation

Goal: Align PDEs with varying dimensions and physical quantities into the same feature space.

Model PDEs that follow the general form:

$$\frac{du(t,x)}{dt} = L\left(u(t,x), \frac{\partial u(t,x)}{\partial x}, \frac{\partial^2 u(t,x)}{\partial x^2}, \cdots\right)$$
$$u(0,x) = u_0(x), \quad B(u(t,y)) = 0$$

- $x \in \Omega \subset \mathbb{R}^d$ is the spatial variable.
- $u: [0,T] \times \Omega \to \mathbb{R}^d$ is a time-varying function defined over the domain Ω for finite time T.
- L is a operator which acts on u and multiple partial derivatives of u w.r.t x.
- $u_0(x): \Omega \to \mathbb{R}^d$ denotes the PDE's initial condition.
- Operator *B* defines the boundary condition where $y \in \partial \Omega$ is a point on the domain's boundary.

Tran Trong Khiem Cross-Modal Fine-Tuning 49 / 61

Unified Data Resprentation

Problem Setup:

- A set of *S* spatiotemporal PDEs $\{u_s\}_{s=1}^S$.
- Each $u^s = \{u_t^s(x)\}_{t=1}^{T_s}$ is a solution to a PDE.
- We have an *n*-point discretization of the functions $\{u_t^s\}_{t=1}^T$ at points $W_n^s = \{x_1^s, x_2^s, \dots, x_n^s\}$, where each $x_i^s \in \mathbb{R}^{d^s}$.

Unifying Dimension:

- Let $d = \max_{s \in S} d^s$. We want to represent all datasets in \mathbb{R}^d .
- For PDEs with $d_s < d$, the final $d d_s$ coordinates of $x_i^s \in W_n^s$ are set to zero.

Unifying Physical Quantities:

Tran Trong Khiem Cross-Modal Fine-Tuning 50 / 61

- 1 Introduction
- 2 ORCA
- 3 Implement ORCA
- 4 Enhancing Cross-Modal Fine-Tuning
- MoNa
- 6 UPS
- Proposed
- 8 Apendix

Tran Trong Khiem Cross-Modal Fine-Tuning 51 / 61

Idea

Problem setup:

- Tranformers pre-train body model g_s in domain D^s .
- Dataset $\{x_i^t, y_i^t\}_{i=1}^N$ in domain D^t .
- Dataset $\{x_i^s, y_i^s\}_{i=1}^N$ in domain D^s

Figure 20: proposed model

embedder: f extract feature from input f(.)

- random init for f_t .
- using pre-train and freezing for f_s

predictor: h generate output h(.).

Tran Trong Khiem Cross-Modal Fine-Tuning 52 / 61

Idea(cnt.)

Proposed workflow:

- 1 Stage 1 : Embedder training: mitigate modality gap.
- 2 Stage 2: Modality gap estimation.
- 3 Stage 3: Full fine-tuning.

Tran Trong Khiem Cross-Modal Fine-Tuning 53 / 61

Stage 1: Embedder training

Goal: Reduces the model distortion during its adaptation towards target tasks.

Base line:

- **Emb**: updates the target embedder using the same task loss as vanilla finetun- ing while keeping the rest of the network frozen.
- ORCA: Train embedder by optimizing OTDD distance between source and target.
- MoNa: Using meta-learning to train embedder.

Tran Trong Khiem Cross-Modal Fine-Tuning 54 / 61

Modality gap estimation

OTDD:

- Using when label space is discrete.
- Extract feature for target and source: $e_i^t = g^s(f^t(x_i^t))$ and $e_i^s = g^s(f^s(x_i^s))$.
- Measure distance between $\{e_i^t, y_i^t\}_{i=1}^N$ and $\{e_i^s, y_i^s\}_{i=1}^N$.

MMD:

• Using when label space is continuous.

We have:

- Modality gap $D = D(\mathcal{M}^t, \mathcal{M}^s)$.
- D > Γ : modality gap is large. Large distortion of learn source modality knowledge.
 - focus on target loss.

Tran Trong Khiem Cross-Modal Fine-Tuning 55 / 61

Full fine-tuning

Option 1:

- If modality gap is large : $\mathcal{L} = \mathcal{L}_{target}$.
- If modality gap is small : $\mathcal{L} = \alpha \mathcal{L}_{target} + \beta \mathcal{L}_{source}$

Option 2:

• Loss function as: $\mathcal{L} = \alpha \mathcal{L}_{\text{target}} + \frac{\beta}{\epsilon + D} (1 - \frac{ep_{\text{current}}}{ep_{\text{total}}}) \mathcal{L}_{\text{source}}$.

Tran Trong Khiem Cross-Modal Fine-Tuning 56 / 61

- 1 Introduction
- 2 ORCA
- 3 Implement ORCA
- 4 Enhancing Cross-Modal Fine-Tuning
- MoNa
- 6 UPS
- 7 Proposed
- 8 Apendix

Tran Trong Khiem Cross-Modal Fine-Tuning 57 / 61

MMD

Define: MMD is a distance (difference) between feature means. **Denote:**

- X and $\phi(X) \in \mathcal{F}$ is the a feature map.
- Assuming \mathcal{F} satisfies the necessary conditions:
 - X, Y such that $k(X, Y) = \langle \phi(X), \phi(Y) \rangle_{\mathcal{F}}$

Feature Mean:

• Given $\mathcal{X} \sim P$ we have feature means :

$$\mu_P = \mathbb{E}_{X \sim P}[\phi(X)]$$

Maximum mean discrepancy:

$$MMD(P, Q) = ||\mathbb{E}_{X \sim P}[\phi(X)] - \mathbb{E}_{Y \sim O}[\phi(Y)]||_{\mathcal{T}} = ||\mu_P - \mu_O||$$

Tran Trong Khiem Cross-Modal Fine-Tuning 58 / 61

tion ORCA Implement ORCA Enhancing Gross-Modal Fine-Tuning MoNa UPS Proposed Apendix Referenses

Optimal transport(OP): Comparing by 'transporting'

Figure 22: Optimal transport

Optimal transport

- a method to find least-cost schemes to transport dirt and rubble from one place to another.
- $\operatorname{OT}_c(\alpha, \beta) := \min_{\pi \in \Pi(\alpha, \beta)} \int_{X \vee X} c(x, y) d\pi(x, y).$
 - $\Pi(\alpha, \beta)$ be the set of joint probability distributions on $X \times X$.
- $W_p(\alpha, \beta) = OT(\alpha, \beta)^{1/p}$ is called the *p*-Wasserstein distance.

Tran Trong Khiem Cross-Modal Fine-Tuning 59 / 61

- Introduction
- 2 ORCA
- 3 Implement ORCA
- 4 Enhancing Cross-Modal Fine-Tuning
- MoNa
- 6 UPS
- Proposed
- 8 Apendix

Tran Trong Khiem Cross-Modal Fine-Tuning 60 / 61

tion ORCA Implement ORCA Enhancing Gross-Modal Fine-Tuning MoNa UPS Proposed Apendix Referenses

References

- Junhong Shen, Liam Li, Lucio M. Dery, Corey Staten, Mikhail Khodak, Graham Neubig, Ameet Talwalkar; Cross-Modal Fine-Tuning: Align then Refine
- 2 MMD.
- 3 OTDD
- Paloma García-de-Herreros, Vagrant Gautam, Philipp Slusallek, Dietrich Klakow, Marius Mosbach, What explains the success of cross-modal fine-tuning with ORCA?
- **6** Lincan Cai, Shuang Li, Wenxuan Ma, Jingxuan Kang, Binhui Xie, Zixun Sun, Chengwei Zhu, Enhancing Cross-Modal Fine-Tuning with Gradually Intermediate Modality Generation.

Tran Trong Khiem Cross-Modal Fine-Tuning 61 / 61