Clustering

What is Cluster Analysis?

 Finding groups of objects such that the objects in a group will be similar (or related) to one another and different from (or unrelated to) the objects in other groups

Notion of a Cluster can be Ambiguous

Types of Clusterings

- A clustering is a set of clusters
- Important distinction between hierarchical and partitional sets of clusters
- Partitional Clustering
 - A division of data objects into non-overlapping subsets (clusters) such that each data object is in exactly one subset
- Hierarchical clustering
 - A set of nested clusters organized as a hierarchical tree

Partitional Clustering

Hierarchical Clustering

Traditional Hierarchical Clustering

Non-traditional Hierarchical Clustering

Traditional Dendrogram

Non-traditional Dendrogram

Other Distinctions Between Sets of Clusters

Exclusive versus non-exclusive

- In non-exclusive clusterings, points may belong to multiple clusters.
- Can represent multiple classes or 'border' points

Fuzzy versus non-fuzzy

- In fuzzy clustering, a point belongs to every cluster with some weight between 0 and 1
- Weights must sum to 1
- Probabilistic clustering has similar characteristics

Partial versus complete

In some cases, we only want to cluster some of the data

Heterogeneous versus homogeneous

Clusters of widely different sizes, shapes, and densities

Types of Clusters

- Well-separated clusters
- Center-based clusters
- Contiguous clusters
- Density-based clusters
- Property or Conceptual
- Described by an Objective Function

Types of Clusters: Well-Separated

- Well-Separated Clusters:
 - A cluster is a set of points such that any point in a cluster is closer (or more similar) to every other point in the cluster than to any point not in the cluster.

3 well-separated clusters

Types of Clusters: Center-Based

Center-based

- A cluster is a set of objects such that an object in a cluster is closer (more similar) to the "center" of a cluster, than to the center of any other cluster
- The center of a cluster is often a centroid, the average of all the points in the cluster, or a medoid, the most "representative" point of a cluster

4 center-based clusters

Types of Clusters: Contiguity-Based

- Contiguous Cluster (Nearest neighbor or Transitive)
 - A cluster is a set of points such that a point in a cluster is closer (or more similar) to one or more other points in the cluster than to any point not in the cluster.

8 contiguous clusters

Types of Clusters: Density-Based

Density-based

- A cluster is a dense region of points, which is separated by low-density regions, from other regions of high density.
- Used when the clusters are irregular or intertwined, and when noise and outliers are present.

6 density-based clusters

Types of Clusters: Conceptual Clusters

- Shared Property or Conceptual Clusters
 - Finds clusters that share some common property or represent a particular concept.

.

2 Overlapping Circles

Types of Clusters: Objective Function

Clusters Defined by an Objective Function

- Finds clusters that minimize or maximize an objective function.
- Enumerate all possible ways of dividing the points into clusters and evaluate the `goodness' of each potential set of clusters by using the given objective function. (NP Hard)
- Can have global or local objectives.
 - Hierarchical clustering algorithms typically have local objectives
 - Partitional algorithms typically have global objectives
- A variation of the global objective function approach is to fit the data to a parameterized model.
 - Parameters for the model are determined from the data.
 - Mixture models assume that the data is a 'mixture' of a number of statistical distributions.

Clustering Algorithms

- K-means and its variants
- Hierarchical clustering
- Density-based clustering

K-means Clustering

- Partitional clustering approach
- Number of clusters, K, must be specified
- Each cluster is associated with a centroid (center point)
- Each point is assigned to the cluster with the closest centroid
- The basic algorithm is very simple

- 1: Select K points as the initial centroids.
- 2: repeat
- 3: Form K clusters by assigning all points to the closest centroid.
- 4: Recompute the centroid of each cluster.
- 5: **until** The centroids don't change

Example of K-means Clustering

Example of K-means Clustering

K-means Clustering — Details

- Initial centroids are often chosen randomly.
 - Clusters produced vary from one run to another.
- The centroid is (typically) the mean of the points in the cluster.
- 'Closeness' is measured by Euclidean distance, cosine similarity, correlation, etc.
- K-means will converge for common similarity measures mentioned above.
- Most of the convergence happens in the first few iterations.
 - Often the stopping condition is changed to 'Until relatively few points change clusters'
- Complexity is O(n * K * I * d)
 - n = number of points, K = number of clusters,
 I = number of iterations, d = number of attributes

Evaluating K-means Clusters

- Most common measure is Sum of Squared Error (SSE)
 - For each point, the error is the distance to the nearest cluster
 - To get SSE, we square these errors and sum them.

$$SSE = \sum_{i=1}^{K} \sum_{x \in C_i} dist^2(m_i, x)$$

- x is a data point in cluster C_i and m_i is the representative point for cluster C_i
 - can show that m_i corresponds to the center (mean) of the cluster
- Given two sets of clusters, we prefer the one with the smallest error
- One easy way to reduce SSE is to increase K, the number of clusters
 - A good clustering with smaller K can have a lower SSE than a poor clustering with higher K

Two different K-means Clusterings

Limitations of K-means

- K-means has problems when clusters are of differing
 - Sizes
 - Densities
 - Non-globular shapes

 K-means has problems when the data contains outliers.

Limitations of K-means: Differing Sizes

Original Points

K-means (3 Clusters)

Limitations of K-means: Differing Density

Original Points

K-means (3 Clusters)

Limitations of K-means: Non-globular Shapes

Original Points

K-means (2 Clusters)

Overcoming K-means Limitations

Original Points

K-means Clusters

One solution is to use many clusters. Find parts of clusters, but need to put together.

Overcoming K-means Limitations

Original Points

K-means Clusters

Overcoming K-means Limitations

Original Points

K-means Clusters

Importance of Choosing Initial Centroids

Importance of Choosing Initial Centroids

Importance of Choosing Initial Centroids ...

Importance of Choosing Initial Centroids ...

Problems with Selecting Initial Points

- If there are K 'real' clusters then the chance of selecting one centroid from each cluster is small.
 - Chance is relatively small when K is large
 - If clusters are the same size, n, then

$$P = \frac{\text{number of ways to select one centroid from each cluster}}{\text{number of ways to select } K \text{ centroids}} = \frac{K!n^K}{(Kn)^K} = \frac{K!}{K^K}$$

- For example, if K = 10, then probability = $10!/10^{10} = 0.00036$
- Sometimes the initial centroids will readjust themselves in 'right' way, and sometimes they don't
- Consider an example of five pairs of clusters

Solutions to Initial Centroids Problem

- Multiple runs
 - Helps, but probability is not on your side
- Sample and use hierarchical clustering to determine initial centroids
- Select more than k initial centroids and then select among these initial centroids
 - Select most widely separated
- Postprocessing
- Generate a larger number of clusters and then perform a hierarchical clustering
- Bisecting K-means
 - Not as susceptible to initialization issues

Handling Empty Clusters

- Basic K-means algorithm can yield empty clusters
- Several strategies
 - Choose the point that contributes most to SSE
 - Choose a point from the cluster with the highest SSE
 - If there are several empty clusters, the above can be repeated several times.

Updating Centers Incrementally

- In the basic K-means algorithm, centroids are updated after all points are assigned to a centroid
- An alternative is to update the centroids after each assignment (incremental approach)
 - Each assignment updates zero or two centroids
 - More expensive
 - Introduces an order dependency
 - Never get an empty cluster
 - Can use "weights" to change the impact

Hierarchical Clustering

- Produces a set of nested clusters organized as a hierarchical tree
- Can be visualized as a dendrogram
 - A tree like diagram that records the sequences of merges or splits

Strengths of Hierarchical Clustering

- Do not have to assume any particular number of clusters
 - Any desired number of clusters can be obtained by 'cutting' the dendrogram at the proper level
- They may correspond to meaningful taxonomies
 - Example in biological sciences (e.g., animal kingdom, phylogeny reconstruction, ...)

Hierarchical Clustering

- Two main types of hierarchical clustering
 - Agglomerative:
 - Start with the points as individual clusters
 - At each step, merge the closest pair of clusters until only one cluster (or k clusters) left
 - Divisive:
 - Start with one, all-inclusive cluster
 - At each step, split a cluster until each cluster contains an individual point (or there are k clusters)
- Traditional hierarchical algorithms use a similarity or distance matrix
 - Merge or split one cluster at a time

Agglomerative Clustering Algorithm

- Most popular hierarchical clustering technique
- Basic algorithm is straightforward
 - 1. Compute the proximity matrix
 - Let each data point be a cluster
 - 3. Repeat
 - 4. Merge the two closest clusters
 - 5. Update the proximity matrix
 - **6. Until** only a single cluster remains
- Key operation is the computation of the proximity of two clusters
 - Different approaches to defining the distance between clusters distinguish the different algorithms

Starting Situation

Start with clusters of individual points and a proximity matrix

Intermediate Situation

After some merging steps, we have some clusters

p11

p12

Intermediate Situation

• We want to merge the two closest clusters (C2 and C5) and

C2

C1

C1

C3

C5

C4

update the proximity matrix.

After Merging

The question is "How do we update the proximity matrix?"

How to Define Inter-Cluster Distance

	p1	p2	р3	p4	p 5	<u> </u>
p1						
p2						
р3						
p4						
p5						
_						

- MIN
- MAX
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
 - Ward's Method uses squared error

	p1	p2	р3	p4	p 5	<u> </u>
p1						
p2						
р3						
p4						
p5						
_						

- MIN
- MAX
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
 - Ward's Method uses squared error

	p 1	p2	р3	p4	р5	<u> </u>
p1						
p2						
рЗ						
p 4						
р5						

- MIN
- MAX
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
 - Ward's Method uses squared error

	p 1	p2	рЗ	p4	р5	<u> </u>
р1						
p2						
рЗ						
p4						_
р5						

- MIN
- MAX
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
 - Ward's Method uses squared error

	p 1	p2	р3	p4	р5	<u> </u>
p1						
p2						
рЗ						
p 4						
р5						

- MIN
- MAX
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
 - Ward's Method uses squared error

MIN or Single Link

- Proximity of two clusters is based on the two closest points in the different clusters
 - Determined by one pair of points, i.e., by one link in the proximity graph

• Example:

Distance Matrix:

	p1	p2	р3	p4	p5	p6
p1	0.00	0.24	0.22	0.37	0.34	0.23
p2	0.24	0.00	0.15	0.20	0.14	0.25
р3	0.22	0.15	0.00	0.15	0.28	0.11
p4	0.37	0.20	0.15	0.00	0.29	0.22
p5	0.34	0.14	0.28	0.29	0.00	0.39
p6	0.23	0.25	0.11	0.22	0.39	0.00

Hierarchical Clustering: MIN

Nested Clusters

Dendrogram

Strength of MIN

Can handle non-elliptical shapes

Limitations of MIN

Sensitive to noise and outliers

MAX or Complete Linkage

- Proximity of two clusters is based on the two most distant points in the different clusters
 - Determined by all pairs of points in the two

Distance Matrix:

	p1	p2	р3	p4	p5	p6
p1	0.00	0.24	0.22	0.37	0.34	0.23
p2	0.24	0.00	0.15	0.20	0.14	0.25
р3	0.22	0.15	0.00	0.15	0.28	0.11
p4	0.37	0.20	0.15	0.00	0.29	0.22
p5	0.34	0.14	0.28	0.29	0.00	0.39
p6	0.23	0.25	0.11	0.22	0.39	0.00

Hierarchical Clustering: MAX

Nested Clusters

Dendrogram

Strength of MAX

Less susceptible to noise and outliers

Limitations of MAX

- Tends to break large clusters
- Biased towards globular clusters

Group Average

 Proximity of two clusters is the average of pairwise proximity between points in the two clusters.

$$proximity(Cluster_{i}, Cluster_{j}) = \frac{\sum\limits_{\substack{p_{i} \in Cluster_{i} \\ p_{j} \in Cluster_{j}}} proximity(Cluster_{i}, Cluster_{j})}{|Cluster_{i}| \times |Cluster_{j}|}$$

 Need to use average connectivity for scalability since total proximity favors large clusters

Distance Matrix:

	p1	p2	р3	p4	p5	p6
p1	0.00	0.24	0.22	0.37	0.34	0.23
p2	0.24	0.00	0.15	0.20	0.14	0.25
р3	0.22	0.15	0.00	0.15	0.28	0.11
p4	0.37	0.20	0.15	0.00	0.29	0.22
p5	0.34	0.14	0.28	0.29	0.00	0.39
p6	0.23	0.25	0.11	0.22	0.39	0.00

Hierarchical Clustering: Group Average

Nested Clusters

Dendrogram

Hierarchical Clustering: Group Average

 Compromise between Single and Complete Link

- Strengths
 - Less susceptible to noise and outliers

- Limitations
 - Biased towards globular clusters

Cluster Similarity: Ward's Method

- Similarity of two clusters is based on the increase in squared error when two clusters are merged
 - Similar to group average if distance between points is distance squared
- Less susceptible to noise and outliers
- Biased towards globular clusters
- Hierarchical analogue of K-means
 - Can be used to initialize K-means

Hierarchical Clustering: Comparison

MST: Divisive Hierarchical Clustering

Build MST (Minimum Spanning Tree)

- Start with a tree that consists of any point
- In successive steps, look for the closest pair of points (p, q) such that one point (p) is in the current tree but the other (q) is not
- Add q to the tree and put an edge between p and q

MST: Divisive Hierarchical Clustering

Use MST for constructing hierarchy of clusters

Algorithm 7.5 MST Divisive Hierarchical Clustering Algorithm

- 1: Compute a minimum spanning tree for the proximity graph.
- 2: repeat
- 3: Create a new cluster by breaking the link corresponding to the largest distance (smallest similarity).
- 4: until Only singleton clusters remain

Hierarchical Clustering: Time and Space requirements

- O(N²) space since it uses the proximity matrix.
 - N is the number of points.

- O(N³) time in many cases
 - There are N steps and at each step the size,
 N², proximity matrix must be updated and searched
 - Complexity can be reduced to O(N² log(N)) time with some cleverness

Hierarchical Clustering: Problems and Limitations

- Once a decision is made to combine two clusters, it cannot be undone
- No global objective function is directly minimized
- Different schemes have problems with one or more of the following:
 - Sensitivity to noise and outliers
 - Difficulty handling clusters of different sizes and non-globular shapes
 - Breaking large clusters

DBSCAN

- DBSCAN is a density-based algorithm.
 - Density = number of points within a specified radius (Eps)
 - A point is a core point if it has at least a specified number of points (MinPts) within Eps
 - These are points that are at the interior of a cluster
 - Counts the point itself
 - A border point is not a core point, but is in the neighborhood of a core point
 - A noise point is any point that is not a core point or a border point

DBSCAN: Core, Border, and Noise Points

DBSCAN Algorithm

- Eliminate noise points
- Perform clustering on the remaining points

```
current\_cluster\_label \leftarrow 1
for all core points do
  if the core point has no cluster label then
    current\_cluster\_label \leftarrow current\_cluster\_label + 1
    Label the current core point with cluster label current_cluster_label
  end if
  for all points in the Eps-neighborhood, except i^{th} the point itself do
    if the point does not have a cluster label then
       Label the point with cluster label current_cluster_label
    end if
  end for
end for
```

DBSCAN: Core, Border and Noise Points

Original Points

Point types: core, border and noise

Eps = 10, MinPts = 4

When DBSCAN Works Well

- Resistant to Noise
- Can handle clusters of different shapes and sizes

When DBSCAN Does NOT Work Well

Original Points

- Varying densities
- High-dimensional data

(MinPts=4, Eps=9.75).

(MinPts=4, Eps=9.92)

DBSCAN: Determining EPS and MinPts

- Idea is that for points in a cluster, their kth nearest neighbors are at roughly the same distance
- Noise points have the kth nearest neighbor at farther distance
- So, plot sorted distance of every point to its kth nearest neighbor

Cluster Validity

- For supervised classification we have a variety of measures to evaluate how good our model is
 - Accuracy, precision, recall
- For cluster analysis, the analogous question is how to evaluate the "goodness" of the resulting clusters?
- But "clusters are in the eye of the beholder"!
- Then why do we want to evaluate them?
 - To avoid finding patterns in noise
 - To compare clustering algorithms
 - To compare two sets of clusters
 - To compare two clusters

Clusters found in Random Data

Measures of Cluster Validity

- Numerical measures that are applied to judge various aspects of cluster validity, are classified into the following three types.
 - External Index: Used to measure the extent to which cluster labels match externally supplied class labels.
 - Entropy
 - Internal Index: Used to measure the goodness of a clustering structure without respect to external information.
 - Sum of Squared Error (SSE)
 - Relative Index: Used to compare two different clusterings or clusters.
 - Often an external or internal index is used for this function, e.g., SSE or entropy
- Sometimes these are referred to as criteria instead of indices
 - However, sometimes criterion is the general strategy and index is the numerical measure that implements the criterion.

Measuring Cluster Validity Via Correlation

- Two matrices
 - Proximity Matrix
 - Ideal Similarity Matrix
 - One row and one column for each data point
 - An entry is 1 if the associated pair of points belong to the same cluster
 - An entry is 0 if the associated pair of points belongs to different clusters
- Compute the correlation between the two matrices
 - Since the matrices are symmetric, only the correlation between n(n-1) / 2 entries needs to be calculated.
- High correlation indicates that points that belong to the same cluster are close to each other.
- Not a good measure for some density or contiguity based clusters.

Measuring Cluster Validity Via Correlation

 Correlation of ideal similarity and proximity matrices for the K-means clusterings of the following two data sets.

Corr = -0.9235

Corr = -0.5810

 Order the similarity matrix with respect to cluster labels and inspect visually.

Clusters in random data are not so crisp

DBSCAN

Clusters in random data are not so crisp

K-means

Clusters in random data are not so crisp

Complete Link

DBSCAN

Internal Measures: SSE

- Clusters in more complicated figures aren't well separated
- Internal Index: Used to measure the goodness of a clustering structure without respect to external information
 - SSE
- SSE is good for comparing two clusterings or two clusters (average SSE).
- Can also be used to estimate the number of clusters

Internal Measures: SSE

SSE curve for a more complicated data set

SSE of clusters found using K-means

Framework for Cluster Validity

- Need a framework to interpret any measure.
 - For example, if our measure of evaluation has the value, 10, is that good, fair, or poor?
- Statistics provide a framework for cluster validity
 - The more "atypical" a clustering result is, the more likely it represents valid structure in the data
 - Can compare the values of an index that result from random data or clusterings to those of a clustering result.
 - If the value of the index is unlikely, then the cluster results are valid
 - These approaches are more complicated and harder to understand.
- For comparing the results of two different sets of cluster analyses, a framework is less necessary.
 - However, there is the question of whether the difference between two index values is significant

Statistical Framework for SSE

Example

- Compare SSE of 0.005 against three clusters in random data
- Histogram shows SSE of three clusters in 500 sets of random data points of size 100 distributed over the range 0.2 – 0.8 for x and y values

Statistical Framework for Correlation

 Correlation of ideal similarity and proximity matrices for the K-means clusterings of the following two data sets.

Corr = -0.9235

Corr = -0.5810

Internal Measures: Cohesion and Separation

- Cluster Cohesion: Measures how closely related are objects in a cluster
 - Example: SSE
- Cluster Separation: Measure how distinct or wellseparated a cluster is from other clusters
- Example: Squared Error
 - Cohesion is measured by the within cluster sum of squares (SSE)

$$SSE = WSS = \sum_{i} \sum_{x \in C_i} (x - m_i)^2$$

Separation is measured by the between cluster sum of squares

$$BSS = \sum_{i} |C_{i}| (m - m_{i})^{2}$$

- Where $|C_i|$ is the size of cluster i

Internal Measures: Cohesion and Separation

- Example: SSE
 - BSS + WSS = constant

$$SSE = WSS = (1-3)^{2} + (2-3)^{2} + (4-3)^{2} + (5-3)^{2} = 10$$

$$BSS = 4 \times (3-3)^{2} = 0$$

$$Total = 10 + 0 = 10$$

$$SSE = WSS = (1-1.5)^{2} + (2-1.5)^{2} + (4-4.5)^{2} + (5-4.5)^{2} = 1$$

$$BSS = 2 \times (3-1.5)^{2} + 2 \times (4.5-3)^{2} = 9$$

$$Total = 1 + 9 = 10$$

Internal Measures: Cohesion and Separation

- A proximity graph based approach can also be used for cohesion and separation.
 - Cluster cohesion is the sum of the weight of all links within a cluster.
 - Cluster separation is the sum of the weights between nodes in the cluster and nodes outside the cluster.

Final Comment on Cluster Validity

"The validation of clustering structures is the most difficult and frustrating part of cluster analysis.

Without a strong effort in this direction, cluster analysis will remain a black art accessible only to those true believers who have experience and great courage."

Algorithms for Clustering Data, Jain and Dubes