

UNIVERSIDAD DE EL SALVADOR FACULTAD DE INGENIERÍA Y AROUITECTURA UNIDAD DE CIENCIAS BÁSICAS DEPARTAMENTO DE MATEMÁTICA

MATEMÁTICA III

CICLO I - 2019

GUÍA DE DISCUSIÓN: UNIDAD II COORDENADAS POLARES

I. COORDENADAS POLARES Y SUS GRAFICOS.

En los ejercicios 1 - 8, se da las coordenadas polares de un punto. Marcar el punto y hallar sus coordenadas rectangulares.

1) (3,
$$\frac{5\pi}{6}$$

1)
$$(3, \frac{5\pi}{6})$$
 3) $(-1, 7)$ 5) $(3, -\frac{\pi}{3})$ 7) $(-4, 23\frac{\pi}{4})$
2) $(4, \frac{3\pi}{2})$ 4) $(0, -\pi)$ 6) $(-4, \frac{11\pi}{12})$ 8) $(-3, -1.5)$

7)
$$(-4, 23\frac{\pi}{4})$$

2)
$$(4, \frac{3\pi}{2})$$

4)
$$(0, -\pi)$$

6)
$$(-4, \frac{11\pi}{12})$$

En los ejercicios 9 - 16, se da las coordenadas rectangulares de un punto. Hallar dos pares de coordenadas polares para ese punto, donde $0 \le \theta < 2\pi$.

9)
$$(5, 5)$$
 11) $(-8, 6)$ 13) $(-\sqrt{8}, -\sqrt{8})$ 15) $(0, 0)$

$$(12)(3\sqrt{3}, -3)$$

10)
$$(0, 5)$$
 12) $(3\sqrt{3}, -3)$ 14) $(-2, 0)$ 16) $(-\sqrt{6}, -\sqrt{2})$

En los Ejercicios 17 - 32, convertir la ecuación en coordenadas rectangulares a polares y cuando sea posible exprese r en función de θ .

17)
$$x^2 - y^2 = 4$$

18)
$$y = 4$$

19)
$$y^2 - 4ax - 4a^2 = 0$$

17)
$$x^2 - y^2 = 4$$
 18) $y = 4$ 19) $y^2 - 4ax - 4a^2 = 0$ 20) $x^2 + (y+1)^2 = \sqrt{x^2 + y^2} + 1$

$$21) -y^2 - 3x + \frac{9}{4} = 0$$

$$22) \ x^3 + y^3 = 3x$$

23)
$$4x + 7y - 2 = 0$$

21)
$$-y^2 - 3x + \frac{9}{4} = 0$$
 22) $x^3 + y^3 = 3xy$ 23) $4x + 7y - 2 = 0$ 24) $(x^2 + y^2)^2 - 9(x^2 - y^2) = 0$

25)
$$y = \frac{x^2}{\sqrt{1 - x^2}}$$

26)
$$x = 10$$

27)
$$xy = 4$$

25)
$$y = \frac{x^2}{\sqrt{1-x^2}}$$
 26) $x = 10$ 27) $xy = 4$ 28) $(x-3)^2 + (y-2)^2 = 13$ 29) $x^2 + y^2 - 2ay = 0$

29)
$$x^2 + y^2 - 2ay = 0$$

30)
$$x^2y - y^3 - 5x^2 + 5y^2 = 0$$

31)
$$y^2 - 8x - 16 = 6$$

30)
$$x^2y - y^3 - 5x^2 + 5y^2 = 0$$
 31) $y^2 - 8x - 16 = 0$ 32) $y = \sqrt{\tan^{-1}\left(\frac{y}{x}\right)^2 - x^2}$

33) Determinar una ecuación polar, $r^2 = R(\theta)$, de la gráfica cuya ecuación cartesiana es $x = \frac{2y}{v^2 + 1}$

En los Ejercicios 34-47 convertir la ecuación polar en rectangular.

34)
$$r \csc(\theta) = 2$$

35)
$$r = 1 + 2\cos(\theta)$$

$$36) r = 4\cos(\theta)$$

37)
$$r = \frac{1}{1 - \cos(\theta)}$$

38)
$$\theta^2 = \frac{\pi^2}{9}$$

$$39) \ r = \frac{6}{\sqrt{3} + 3sen(\theta)}$$

40)
$$r = 4$$

41)
$$r = \frac{2\cos(\theta)}{1-\cos^2(\theta)}$$

42)
$$2sen(\theta) - r\cos^2(\theta) = 0$$

43)
$$r = \sqrt{4sen(2\theta)}$$

$$44) r^2 = \cos(2\theta)$$

45)
$$r = \frac{6}{2\cos(\theta) - 3\operatorname{sen}(\theta)}$$

46)
$$r = 2\cos(3\theta)$$

$$47) \operatorname{sen}^{2}(\theta) - \cos^{2}(\theta) = 0$$

II. TRAZADO DE CURVAS EN COORDENADAS POLARES

1)
$$r = -2\cos(3\theta)$$

2)
$$r = -sen 5\theta$$

3)
$$r = -2$$

4)
$$r = 3 \operatorname{sen} 2\theta$$

5)
$$r = \theta$$

6)
$$r = 3\cos 2\theta$$

7)
$$r = 3\cos\theta$$

8)
$$r^2 = 4 \cos 2\theta$$

9)
$$r = 4sen\theta$$

10)
$$r^2 = 4 sen(2\theta)$$

11)
$$r = 3 \csc \theta$$

12)
$$r = 3 + 2 sen(\theta)$$

13)
$$r = 2 \sec \theta$$

14)
$$r = 2 - 4 \cos(\theta)$$

15)
$$r = \frac{2}{2\cos\theta - sen\theta}$$

16)
$$r = 1 + 2sen(\theta)$$

17)
$$r = \cos\left(\theta + \frac{\pi}{4}\right)$$

$$18) \ r = 5 - 2\cos(\theta)$$

19)
$$r = 3(1 - \cos(\theta))$$

20)
$$r = -8\cos(\theta) - 2sen(\theta)$$

21)
$$r = 2\cos(3\theta)$$

22)
$$r = 3sen(\theta) + 4cos(\theta)$$

III. CÁLCULO DE ÁREAS

En los ejercicios 1-10 determinar los puntos de intersección de las gráficas de las ecuaciones.

1)
$$r = a \operatorname{sen}(\theta)$$

 $r = a \cos(\theta)$

6)
$$r = 1 + \cos(\theta)$$

 $r = 3\cos(\theta)$

2)
$$r = 3(1 + \sin \theta)$$

 $r = 3(1 - \sin \theta)$

7)
$$r = \theta/2, r = 2, 0 < \theta < 2\pi$$

3)
$$r = 1 + \cos(\theta)$$

 $r = 1 - \sin(\theta)$

8)
$$r^2 = 4\cos(\theta), r = 1-\cos(\theta)$$

4)
$$r = 2 - 3\cos(\theta)$$

 $r = \cos \theta$

9)
$$r = tan(\theta), r = \left(\frac{\sqrt{2}}{2}\right) csc(\theta)$$

5)
$$\theta = \pi/4, r = 2, 0 < \theta$$

10)
$$r = 3 + sen(\theta), r = 2 csc(\theta)$$

En los ejercicios 11 – 20 calcular el área de la región.

11)
$$r = 2\cos(3\theta)$$

12) El interior de
$$r = 1 + 2\cos(\theta)$$

13) Un pétalo de
$$r = 4 \operatorname{sen}(2\theta)$$

14) Lazo interior de
$$r = 1 + 2\cos(\theta)$$

15) Un pétalo de
$$r = 2 \cos 2\theta$$

16) Lazo interior de
$$r = 3 + 4 \operatorname{sen}(\theta)$$

17)
$$r = \cos(5\theta)$$

18) Entre lazos de
$$r = 1 + 2\cos(\theta)$$

19) El interior de
$$r = 1 - sen(\theta)$$

(por encima del eje polar)

20) Entre lazos de
$$r = 2(1 + 2 \operatorname{sen}\theta)$$

En los ejercicios 21 - 28, calcular el área de la región.

21) Interior común
$$\mathbf{a} : \mathbf{r} = 4 \text{ sen } 2\theta \text{ y } \mathbf{r} = 2$$

22) Interior común
$$\mathbf{a} : \mathbf{r} = 3 (1 + \sin \theta)$$
 y $\mathbf{r} = 3 (1 - \sin \theta)$

23) **Interior común a**:
$$r = 3 - 2 sen(\theta)$$
 y $r = -3 + 2 sen(\theta)$

24) Interior común a :
$$r = 3 - 2 \operatorname{sen}(\theta)$$
 y $r = 3 - 2 \operatorname{cos}(\theta)$

25) Interior común a :
$$r = 4 \operatorname{sen}(\theta)$$
 y $r = 2$

- 26) Interior a $r = 3 \operatorname{sen}(\theta)$ y exterior a $r = 2 \operatorname{sen}(\theta)$
- 27) Interior a $r = 2a \cos(\theta)$ y Exterior a r = a
- 28) Interior comun a $r = 3 2sen(\theta)$ y a r = 2 (utilizando solamente ángulos positivos)

b)

- 29) Interior a r = 2 y exterior a $r = 4\cos(3\theta)$ (**primer cuadrante**)
- 30) Calcular el área de la región sombreada

h)

i)

sugerencia: Para calcular uno de los puntos de intersección utilice la fórmula general $(-1)^n r = f(\theta + n\pi)$, con n=2 en la ecuación $r=2\theta$ y luego en el simultaneo usar el método de newton-raphson con $\theta_0=1.05$

IV. Uso de la tecnología

Haciendo uso de una herramienta graficadora trace las siguientes curvas:

1)
$$r = sen\left(\frac{\theta}{2}\right)$$

$$2) r = \cos\left(\frac{\theta}{3}\right)$$

3)
$$r = \theta \cos(\theta)$$

4)
$$r = 2 + 4sen(5\theta)$$

5)
$$r = \frac{1}{\sqrt{\theta}}$$

$$6) \quad r = 2 + 2\cos\left(\theta - \frac{\pi}{4}\right)$$

7)
$$r = 1 - 2sen\left(\theta + \frac{\pi}{4}\right)$$

MATERIAL COMPARTIDO ORIGINALMENTE PARA:

MAT 315 - 2020 ÷ 9 https://chat.whatsapp.com/CQHD50k

SI LLEGO POR OTRO MEDIO, CUMPLIMOS NUESTRO PROPOSITO AYUDAR A OTROS :)