Algorytmy Optymalizacji Dyskretnej

Felix Zieliński 272336

Lista 2

Zadanie 1. W tym zadaniu należało zminimalizowad koszty zakupu paliwa poprzez wyznaczenie planu zakupu i dostaw paliwa na lotniska.

Uogólnione parametry z zadania:

- L_i j-te lotnisko
- F_i i-ta firma
- z_j zapotrzebowanie j-tego lotniska
- p_i podaż paliwa z i-tej firmy
- $\bullet \ k_{ij}$ koszt zakupu galonu paliwa od i-tej firmy przez j-te lotnisko

Zmienne decezyjne:

 \boldsymbol{x}_{ij} - ilość paliwa dostarczona przez i-tą firmę na j-te lotnisko.

Ograniczenia:

- $x_{ij} \geq 0$ ilość paliwa musi być nieujemna
- $\bullet \ \sum_i x_{ij} = z_j$ suma dostaw do danego lotniska musi zaspoko
ić jego zapotrzebowanie
- $\sum_i x_{ij} \leq p_i$ firma nie może dostarczyć więcej paliwa, niż sama produkuje

Funkcja celu:

Koszt wszystkich dostaw: $min \sum_{i,j} x_{ij} * k_{ij}$

Rozwiazanie:

TBD

Zadanie 2. W tym zadaniu należało zmaksymalizować zysk zakładu poprzez wyznaczenie optymalnego tygodniowego planu placy.

Uogólnione parametry z zadania:

- L_i i-ty wyrób
- M_i j-ta maszyna
- \bullet cp_{ij} czas (w minutach na kilogram) obróbki i-tego wyroby na j-tej maszynie
- \bullet C_{j} czas dostępności j-tej maszyny w godzinach
- \bullet sp_i cena sprzedaży i-tego wyrobu
- \bullet kp_i koszt za godzinę pracy j-tej maszyny
- \bullet km_i koszt materiałowy za kilogram i-tego wyrobu
- z_i maksymalny tygodniowy popyt na i-ty wyrób

Zmienne decezyjne:

 x_i - liczba kilogramów wyprodukowanego i-tego wyrobu.

Ograniczenia:

- $x_{ij} \geq 0$ ilość wyprodukowanego wyrobu musi być nieujemna
- $\sum_i x_i * cp_{ij} \leq C_j/60$ maszyny mają ograniczony czas pracy
- $x_i \leq z_i$ nie ma sensu produkować więcej wyrobu, niż jest na niego popyt

Funkcja celu:

Zysk, jako różnica między przychodem a kosztami zmiennymi: $max(x_i*(\sum_i(sp_i-km_i)-\sum_i(kp_j/60)*\sum_i(cp_{ij}/60)))$

Rozwiazanie:

TBD

Zadanie 3. W tym zadaniu należało zminimalizować łączny koszt produkcji w firmie poprzez wyznaczenie optymalnego planu produkcji oraz magazynowania.

Uogólnione parametry z zadania:

- \bullet m_j maksymalna produkcja towaru w j-tym okresie (w jednostkach)
- \bullet k_j j-ty okres (w którym wytwarzane jest maksymalnie 100 jednostek towaru)

- \bullet c_j koszt produkcji jednej jednostki towaru w j-tym okresie
- a_j maksymalna wielkość (w jednostkach) opcjonalnej produkcji ponadwymiarowej w j-tym okresie
- \bullet o_i koszt jednostkowy w j-tej opcjonalnej produkcji ponadwymiarowej
- d_i zapotrzebowanie na towar w j-tym okresie
- $\bullet\,$ s maksymalna ilość jednostek możliwa do przechowania z jednego okresu na kolejny
- \bullet sm_i stan magazynu na początku okresu
- \bullet km koszt magazynowania za jednostkę
- mp początkowa ilość jednostek w magazynie

Zmienne decezyjne:

- \bullet x_i ilość jednostek wyprodukowanych w j-tym okresie
- $\bullet \ y_j$ ilość jednostek wyprodukowanych w j-tym okresie w produkcji opcjonalnej
- $\bullet \ z_{j}$ ilość jednostek do przechowania na koniec j-tego okresu

Ograniczenia:

- $\bullet \ x_j \geq 0$ ilość jednostek wyprodukowanych w j-tym okresie musi być nieujemna
- $\bullet~y_j \geq 0$ ilość jednostek wyprodukowanych w j-tym okresie w produkcji opcjonalnej musi być nieujemna
- $z_j \geq 0$ ilość jednostek do przechowania na koniec j-tego okresu musi być nieujemna
- $x_j \leq m_j$ nie można wyprodukować jednostek ponad maksymalną produkcję towaru w j-tym okresie
- $y_j \leq a_j$ nie można wyprodukować jednostek dodatkowych ponad maksymalną opcjonalną produkcję towaru w j-tym okresie
- $\bullet~z_j \le s$ nie można przechowywać jednostek ponad maksymalną ilość jednostek możliwą do przechowania z jednego okresu na kolejny
- koszt produkcji jednostek opcjonalnych przewyższa koszt produkcji podstawowej, a więc nie ma potrzeby ograniczania wykorzystania wszystkich jednostek przed rozpoczęciem produkcji opcjonalnej
- $\bullet \ s_1 = mp$ na początku pierwszego okresu stan magazynu jest równy stanowi początkowemu
- $\bullet \ s_K+1=0$ na koniec nie powinno zostać jednostek w magazynie

Funkcja celu:

Koszt produkcji oraz magazynowania: $min \sum_{j=1}^{K} (x_j * c_j + y_j * o_j + z_j * km)$

Rozwiazanie:

TBD

Zadanie 4. W tym zadaniu należało zminimalizować koszt podróży z miasta i° do miasta j° poprzez znalezienie połączenia, które nie przekracza z góry zadanego czasu.

Uogólnione parametry z zadania:

- T zadany czas T, którego całkowity czas przejazdu nie może przekroczyć
- $\bullet \ G = (N,A)$ skierowany graf połączeń między miastami
- \bullet N zbiór miast
- \bullet A zbiór połączeń
- $\bullet \ c_{ij}$ koszt przejazdu z miasta i do j
- t_{ij} czas przejazdu z miasta i do j
- \bullet i° miasto początkowe
- \bullet j° miasto końcowe

Zmienne decezyjne:

 x_{ij} - zmienna boolowska oznaczająca, czy dane połączenie między miastem i oraz j
 jest używane.

Ograniczenia:

- $x_{ij} \in \{0, 1\}$
- $\sum_{i} x_{i \circ j} = 1$ należy zacząć ścieżkę w mieście początkowym
- $\sum_i x_{ij^\circ} = 1$ należy zakończyć ścieżkę w mieście końcowym
- $\sum_j x_{ij} \leq p_i$ firma nie może dostarczyć więcej paliwa, niż sama produkuje

Funkcja celu:

Koszt przejazdu: $\min \sum_{i,j} c_{ij} * x_{ij}$

Rozwiazanie:

TBD

Zadanie 5. W tym zadaniu należało zminimalizować całkowitą liczbę radiowozów poprzez wyznaczenie przydziału radiowozów spełniających zadane wymagania.

Uogólnione parametry z zadania:

- p_i i-ta dzielnica
- z_i j-ta zmiana
- min_{ij} minimalna liczba radiowozów dla i-tej dzielnicy i j-tej zmiany
- \bullet max_{ij} maksymalna liczba radiowozów dla i-tej dzielnicy i j-tej zmiany
- \bullet $zmin_j$ minimalna liczba radiowozów dla j-tej zmiany
- $dmin_i$ minimalna liczba radiowozów dla i-tej dzielnicy

Zmienne decezyjne:

 x_{ij} - liczba radiowozów przydzielona dzielnicy i podczas zmiany j

Ograniczenia:

- $x_{ij} \geq 0$ liczba radiowozów musi być nieujemna
- $x_{ij} \leq max_{ij}$ liczba radiowozów musi być mniejsza od maksymalnej
- $x_{ij} \geq min_{ij}$ liczba radiowozów musi być większa od minimalnej
- $\bullet \ \sum_i x_{ij} \geq zmin_j$ liczba radiowozów musi spełniać minimalną liczbę dla j-tej zmiany
- $\sum_j x_{ij} \geq dmin_i$ liczba radiowozów musi spełniać minimalną liczbę dla i-tej dzielnicy

Funkcja celu:

Liczba radiowozów: $min \sum_{i} \sum_{j} x_{ij}$

Rozwiazanie:

TBD

Zadanie 6. W tym zadaniu należało zminimalizować liczbę kamer poprzez odpowiednie ich rozmieszczenie.

Uogólnione parametry z zadania:

 $\bullet \ m$ - szerokość terenu (w kwadratach)

- $\bullet \ n$ wysokość terenu (w kwadratach)
- \bullet r_{ij} zmienna boolowska, rozmieszczenie kamer

Zmienne decezyjne:

 \boldsymbol{x}_{ij} - zmienna boolowska oznaczająca, czy w kwadracie ij umieszczona jest kamera.

Ograniczenia:

- $x_{ij} \in \{0,1\}$
- $x_{ij} + r_{ij} \leq 1$ nie można postawić kamery tam, gdzie jest kontener
- $\sum_{l=max(i-k,1)}^{min(i+k,m)} x_{lj} + \sum_{s=max(j-k,1)}^{min(i+k,m)} x_{is} \ge 1$ suma dostaw do danego lotniska musi zaspokoić jego zapotrzebowanie

Funkcja celu:

Liczba kamer: $min \sum_{i} \sum_{j} x_{ij}$

Rozwiazanie:

TBD