Part A

- 1. Method 2
- 2. Method 4
- 3. Method 3
- 4. Method 1

Part B

Methods 1, 2, and 4 are set up as fixedpoint problems: they search for where g(x) = x. The fewer iterations required for their absolute errors to equal 0, the faster the convergence. So we see from the graph that method 2 converges fastest, then method 4, then method 1.

Method 3 is a root-finding problem of the

form f(x) = g(x) - x = 0 where g(x) = x. Since $p_n = 0$, $|p_n - p| = |0 - p| = p$. Once the absolute error for method 3 converges to a value, the solution has been found. Here it has found the root to 5 significant digits after the 6^{th} iteration from the table of absolute error values. Similarly, method 2 converged to a solution by the 5^{th} iteration.

Part C

Asymptotic error constants were computed using elementwise division and power operations. p_n and p_{n+1} are the extraction of all columns and the 2^{nd} : n^{th} rows and 1^{st} : $n-1^{th}$ rows of the absolute error matrix, respectively. λ 's for n=2:n-1 were computed.

- Method 1: For $n \geq 192$, $\alpha = 1$, $\frac{|p_{n+1}-p|}{|p_n-p|^{\alpha}} = 1$. So, this sequence converges to p of order 1 with asymptotic error constant $\lambda = 1$.
- Method 2: For $n \geq 5$, $\alpha = 1$, $\frac{|p_{n+1}-p|}{|p_n-p|^{\alpha}} = \frac{0}{0}$, which is undefined.
- Method 3: For $n \geq 17$, $\alpha = 2$, $\frac{|p_{n+1}-p|}{|p_n-p|^{\alpha}} = 0.374756176784315$. So, this sequence converges to p of order 2 with asymptotic error constant $\lambda = 0.374756176784315$, and this sequence is said to be quadratically convergent.
- Method 4: For $n \geq 52$, $\alpha = 1$, $\frac{|p_{n+1}-p|}{|p_n-p|^{\alpha}} = \frac{0}{0}$, which is undefined.