NAME: ANKIT GOHA
ROLL: 200108062
EXAM: ENDSEM

COURSE: EE210 DATE: 25/11/21

. A destablish Anglish

Anxit Guha 200108062

Bed to 7 segment decoder requires
5 inputs and 7 outputs.
4 inputs specify 32 (25) so the
ROH size must be 32x7.

4-bit odden sub:

| Doput                                     | output                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Decimal                     |
|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| A3 A2 A7 A0 B3 B2 B1 B0 0 0 0 0 0 0 0 0 0 | Ch 0   1 0 0   1 0 0 0   0 0 0   0 0 0   0 0   0 0   0 0   0   0 0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0 | 010010                      |
| where selection:                          | input 5=0<br>512 xy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9 mpls (50 mpls) 2 512 (22) |

Anxit Guly 200108062

In always block the UK signal and ramoun of for (x+3) time white and will remain I for y time unit in loop.

Duty cycle will be given by 4/8+7)

Solving, 
$$\frac{4}{\chi+7} = 0.27$$

frequency of ch = f.

Hency T-flip feop ach as frequency

dividen. Frequency of 9= £

Y= ch @ 9.

Frequency of y= £

Ankit Guha, 200108062

Den the given circuit, the 3 bit country converts the given decimal into gray code.

The output of gray code is connected to the selection was of meetiplexer.

The output of multiplexen is pulled low . Therefore the output is o when multiplexen is not enabled.

| Decimal | Binary | Gray cade | 3150 € | Output                      |
|---------|--------|-----------|--------|-----------------------------|
| 0       | 000    | 000       | 000    | $\mathcal{L}_{\circ}$       |
| 1       | 001    | 001       | 001    | 0                           |
| 2       | 010    | 0 11      | 110    | 0                           |
| 3       | 011    | 010       | 010    | $\mathcal{I}^{l}$           |
| 4       | 100    | ( ) (     | 110    | $\mathcal{I}_{\mathcal{S}}$ |
| 5       | 101    | 111       | (1)    | a                           |
| G       | 110    | 101       | 101    | , O                         |
| チ       | 111    | (00)      | 00)    | $\pm$                       |

P Paper transister logic  $19 = 0 = 1 \quad d = 5$   $1400 \quad d = 5$ 

100



touth table:

$$\frac{1}{\rho(1)} \frac{1}{\rho(2)} \frac{1}{\sigma} = \frac{1}{\sigma} \frac{1}{\sigma} = \frac{1}{\sigma} \frac{$$

Ankit hula, 200108062 A combination circuit implementing a xor function will be generated ! Rom circuit d'agram, OXA+IXA =Y 2x1=0, 2x0= B TY Y = AQ+ AQ Excitation table of D-flip-flop Q (++1) ≥ D 21 B (4+1) 2 Y 2 9(++1) = A9+AQ if \$20/ 07 A = (1+1) P A = if A=O, 0073A & 1=(1+1)& if A= L, g(+1)=0 = A= W=1. 45 8 = L 8(++) = 0+A = A

 $4 \quad 8 = 1$  8 = 1 8 = 1 9 (1+1) = 0+1 9 (1+1) = 0 = 1 9 (1+1) = 0 = 1 1 + 1 = 1 1 + 1 = 1 1 = 1 = 1 1 = 1 = 1 1 = 1 = 1 1 = 1 = 1 1 = 1 = 1

Ankit Gula, 200108062.

(n turns of mintums.

(n turns of mintums.

F(A,B,C,D)= 2 (0,2,3,4,6,7,8,9,10,11,13,

Truth table!

| A   | B                |      | _D_ | motim    | _        | t            |        |
|-----|------------------|------|-----|----------|----------|--------------|--------|
| 0   | -<br>-<br>-<br>- | 906  | 66  |          | ,        | ( )<br>()    | F20    |
| _0  | 0                | 0    |     | 7 1-12   | <u> </u> |              |        |
| 0   | 0                | 1    | 0   | 2/1      | , e d    | l            | F21    |
| _ 0 | 0                | 1    | -,  | 3        |          | 1            | 1-1    |
| 0   | (                | 0    | 0   | Y        |          | 1            |        |
|     | t                | 0    |     | ,<br>    |          | O            | 6=A    |
| 0   | 1                | 1    | 0   | 6        |          | 1            | -      |
| 0   | l                |      | 1   | <i>J</i> |          | ,            | P=1    |
|     | 6                | 0    | 0   | 8        |          | <u></u>      |        |
| _   | 6                | 0    | ĺ   | 9        |          | 1            | F21    |
| 1   | 0                |      | ව   | to       | 7        | <u>'</u>     |        |
|     |                  | ,/a[ | 1   |          |          | 1            | f= \$1 |
| 1   | ( and            | 0    | 6   | 12       |          | <u></u>      |        |
| _ \ | <u> </u>         | O    | 1   | 13       | (        | D<br>D       | ESD"   |
| P   |                  | 1    | 0   | 14       |          | <del>`</del> | 1      |
| 1   | 1                | 1    | 1   | 12       |          | $\bigcirc$   | F2D    |

Ankle hule 200108662 from the street of some fine of the x = (000)(000)

> We know 90 \$ =1 .. 80 \$ =0 guacula 1 = x 12

unil be changed only at possessingedge of clock

J1= fl2 = 0.5 NH

= AC+BC = (A+B) C

Vo = 50P = P, = Tx = (A+B)C = (A+B)C

no of product tumo = no of ponallel patho from ope to your patho from ope to your lithrate present = cips of those by in pat turn which present in that parts.

Ankit hung 200108062

$$= 2 \left[ 1 - \sqrt{3} \right] = 0.268$$

$$= 2 \left[ 1 - \sqrt{3} \right] = 0.268$$

$$V_{1H} = V_{E} + \frac{2}{\sqrt{37}} \left( V_{DD} - V_{E} \right) = 0.5 + \frac{2}{\sqrt{10}} (2)$$

Anxit Gula 200108062