# Mastermind

1st นางสาว จิราพร วังคำหาญ 65070501008 หลักสูตรวิศวกรรมศาสตรบัณฑิต สาขาวิชาวิศวกรรมคอมพิวเตอร์ 2<sup>nd</sup> นางสาว ชนม์นิภา เทียมพันธุ์ 65070501010 หลักสูตรวิศวกรรมศาสตรบัณฑิต สาขาวิชาวิศวกรรมคอมพิวเตอร์ 3<sup>rd</sup> นาย ธนพล เหนือโท 65070501024 หลักสูตรวิศวกรรมศาสตรบัณฑิต สาขาวิชาวิศวกรรมคอมพิวเตอร์

4<sup>th</sup> นาย ธเนศ จอมพูล
65070501025
หลักสูตรวิศวกรรมศาสตรบัณฑิต
สาขาวิชาวิศวกรรมคอมพิวเตอร์

5<sup>th</sup> นาย สิรวิชญ์ อาสานอก 65070501056 หลักสูตรวิศวกรรมศาสตรบัณฑิต สาขาวิชาวิศวกรรมคอมพิวเตอร์

#### l. บทนำ

เกมถอดรหัส Mastermind เป็นเกมที่ให้ผู้เล่นถอดรหัสเพื่อ ตรวจสอบว่า สามารถถอดรหัสได้เร็วเพียงใค โดยเกมนี้จะใช้ ผู้เล่นสองคนคือ ผู้เล่นที่สร้างรหัส กับผู้เล่นที่ถอดรหัส และมี การแบ่งระดับความยากเป็น การถอดรหัสจากตัวเลข สีหมุด หรือสัญลักษณ์อื่น ๆ 4 ตำแหน่ง 6 สี กับ 5 ตำแหน่ง 8 สี วิธีการเล่น คือ เกมจะให้ผู้เล่นที่สร้างรหัสสร้างรหัสลับขึ้นมา จากนั้นผู้เล่นที่ถอดรหัสจะทำการสุ่มเลือกสีมา และให้ผู้เล่นที่ สร้างรหัสจะตอบกลับด้วยการบอกจำนวนสี และตำแหน่งที่ ถูกต้อง กับจำนวนสีที่ถูกต้องแต่ตำแหน่งไม่ถูกต้อง

ซึ่งคณะผู้จัดทำได้เล็งเห็นว่า เกมถอดรหัสสามารถประยุกต์ ให้เข้ากับการเขียนโปรแกรมได้ โดยการสร้างชุดข้อมูลตัวเลข n ตัว  $(1,2,\ldots,n)$  และตำแหน่ง r ตำแแหน่ง  $(1,2,\ldots,r)$  ทั้งหมดจำนวน  $C_{n,r}$  ข้อมูล จากนั้นให้โปรแกรมสุ่มรหัสขึ้นมา 1 ชุด และตั้งชุดข้อมูลการคาดเดาอันแรก 1 ชุด แล้วใช้ Genertic Algorithm ในการสร้างชุดข้อมูลการคาดเดาในรอบ ถัดไปที่มีความใกล้เคียง กับรหัสลับมากที่สุด โดยในแต่ละ รอบของการคาดเดาจะผ่านการตรวจสอบความถูกต้องด้วยค่า  $X_i$  และ  $Y_i$  ซึ่งค่า  $X_i$  คือ จำนวนตัวเลขและตำแหน่งที่ถูกต้องของชุดข้อมูลการคาดเดาในรอบที่ i กับ ค่า  $Y_i$  คือ จำนวน ตัวเลขที่ถูกต้องแต่ตำแหน่งไม่ถูกต้องของชุดข้อมูลการคาดเดาในรอบที่ i

ซึ่งทางคณะผู้จัดทำมีวัตถุประสงค์ในการสร้างเกมถอดรหัส Mastermind จากการเขียนโปรแกรม 3 แบบ แบบที่ 1 เขียนโปรแกรมภาษา C ผ่านเว็บไซต์ Replit โดยการเลือกใช้ Genertic Algorithm แบบที่ 2 เขียนโปรแกรม Wolfram ผ่านโปรแกรม Wolfram Mathematica โดยการเลือกใช้ Genertic Algorithm แบบที่ 3 เขียนโปรแกรมภาษา C ผ่านเว็บไซต์ Replit โดยการเลือกใช้ Brute force algorithm เพื่อใช้หาจำนวนการคาดเดาเฉลี่ยที่จำเป็นในการค้นหารหัสลับทั้งสองอัลกอริทึมโดยจะเฉลี่ยจากจำนวนเกมที่เล่นทั้งหมด 3 เกมเพื่อเปรียบเทียบอัลกอริทึมทั้งสองว่าวิธีการใดมีประสิทธิภาพในการคาดเดาคำตอบได้ดีที่สุด โดยจะมีการนำเสนอข้อมูลในรูปแบบตาราง

# II. เอกสารและงานที่เกี่ยวข้อง

# A. Genetic Algorithm

เป็นวิธีการแก้ปัญหาการปรับแต่งค่าแบบมีเงื่อนไขและไม่มี เงื่อนไข โดยอาศัยหลักการคัดเลือกตามธรรมชาติ ซึ่งเป็น กระบวนการวิวัฒนาการทางชีววิทยา Genetic Algorithm จะทำการปรับเปลี่ยนประชากรของชุดคำตอบแต่ละชุดซ้ำ ๆ ในแต่ละขั้นตอน โดยจะเลือกชุดคำตอบจากประชากรปัจจุบัน ให้เป็น parent เพื่อใช้ในการสร้างลูกหลานสำหรับรุ่นต่อไป ในทุกรุ่นประชากรจะพัฒนาไปสู่คำตอบที่เหมาะสม

# B. Population Size

กลุ่มตัวเลือกคำตอบในแต่ละรุ่น สามารถเรียกอีกอย่างว่า ชุดโครโมโซม โดยต้องรักษาความหลากหลายของประชากร และขนาดประชากรไม่ควรมีขนาดใหญ่เกินไปเพราะจะทำให้ Genetic Algorithm ทำงานช้าลง ในขณะเดียวกัน ขนาดที่ เล็กเกินไปอาจไม่เพียงพอสำหรับการผสมพันธุ์ที่ดี ดังนั้นจึง จำเป็นต้องกำหนดขนาดประชากรที่เหมาะสมโดยการลองผิด ลองถูก

## C. Parent Selection

เป็นกระบวนการคัดเลือก parent ที่ผสมพันธุ์และรวมตัว กันใหม่เพื่อสร้างลูกหลานให้กับรุ่นต่อไป การคัดเลือก parent มีความสำคัญอย่างยิ่งต่ออัตราการบรรจบกันของกระบวนการ Genetic Algorithm เนื่องจาก parent ที่ดีจะผลักดันไปสู่ คำตอบที่เหมาะสม

#### D. Crossover Rate

เป็นโอกาสที่โครโมโซมสองตัวจะสลับตำแหน่งในโครโมโซม หรือ โอกาสในการเกิด Crossover โดยค่าที่ดี คือ ประมาณ 0.7

## E. Mutation Rate

เป็นโอกาสที่ค่าใดค่าหนึ่งของบิตภายในโครโมโซมหนึ่งจะถูก สลับกับค่าของบิทภายในอีกโครโมโซมหนึ่ง หรือโอกาสที่เกิด Mutotion ซึ่งโดยปกติจะเป็นค่าที่ต่ำมากสำหรับยืนที่เข้ารหัส แบบไบนารี เช่น 0.001

#### F. Termination Criteria

เกณฑ์ที่จะกำหนดว่าเมื่อใดควรจะหยุดกระบวนการสร้าง แบบจำลองแทน เกณฑ์การยุติจะมีความสำคัญต่อการรักษา สมดุลระหว่างความแม่นยำและประสิทธิภาพ

# G. Crossover and Mutation Operators

Crossover
 เป็นตัวดำเนินการที่ใช้ในการเปลี่ยนแปลงการโปรแกรม
ของโครโมโซมหรือโครโมโซมจากรุ่นหนึ่งไปยังอีกรุ่นหนึ่ง
มีการเลือกสายสองสายจากแหล่งผสมพันธุ์โดยการสุ่ม
โครโมโซมมาทำการสลับตำแหน่งของโครโซมหนึ่งไปยัง
อีกตัวหนึ่งในตำแหน่งใดตำแหน่งหนึ่ง เพื่อผลิตลูกหลาน
ที่ดีกว่า วิธีที่เลือกจะขึ้นอยู่กับวิธีการเข้ารหัส



Fig. 1. Partially Matched Crossover (PMX)

Mutation
เป็นตัวดำเนินการที่จะใช้เพื่อรักษาความหลากหลายทาง
พันธุกรรมของโครโมโซมของประชากร โดยจะใช้ในการ
เปลี่ยนแปลงแบบสุ่มกับยืนหนึ่งรายการขึ้นไปเพื่อสร้าง
ลูกหลานใหม่



Fig. 2. Random Resetting Mutation

#### H. Elitism

เป็นกลยุทธ์ในอัลกอริทึมวิวัฒนาการ ที่คัดเลือกชุดคำตอบ ที่ดีที่สุด จากแต่ละรุ่น แล้วนำไปสู่รุ่นต่อไปโดยไม่ต้องมีการ เปลี่ยนแปลงใด ๆ กลยุทธ์นี้ช่วยเร่งความเร็วในการบรรจบ ของอัลกอริทึม แต่ต้องใช้ร่วมกับกลยุทธ์อื่น ๆ เพื่อป้องกัน การสูญพันธุ์

# I. Brute force algorithm

เป็นอัลกอริธึมประเภทพื้นฐานและง่ายที่สุด อัลกอริทึมแบบ Brute Force เป็นแนวทางที่ตรงไปตรงมาในการแก้ไขปัญหา นั่นคือแนวทางแรกที่เรานึกถึงเมื่อมองเห็นปัญหา ซึ่งในทาง เทคนิคแล้ว มันก็เหมือนกับการวนซ้ำทุกความเป็นไปได้เพื่อ แก้ไขปัญหานั้น

#### J. Combination

ในทางคณิตศาสตร์เป็นวิธีการเลือกสิ่งของจำนวนหนึ่งมา จากสิ่งของที่มีอยู่ทั้งหมด โดยไม่คำนึงถึงลำดับของการจัดหมู่ สิ่งของ k สิ่ง จากสิ่งของทั้งหมด n สิ่ง มีวิธีการจัดทั้งหมด

$$_{n}C_{r} = \binom{n}{r} = \frac{n!}{r!(n-r)!}$$

Fig. 3. สมการของ Combination

จำนวนความเป็นไปได้ทั้งหมดของรหัสที่เป็นไปได้ใน Mastermind จะมีค่าเท่ากับจำนวนของสีทั้งหมดยกกำลังด้วย ความยาวของรหัส โดยในกรณีที่มี 6 สีและรหัสมีความยาว 4 สี จำนวนความเป็นไปได้ทั้งหมดคือ 6<sup>4</sup> = 1,296 กรณี

## III. วิธีดำเนินการ

ในการทดลองสร้างเกม Mastermind แบบ 6 สี 4 ตำแหน่ง และแบบ 8 สี 5 ตำแหน่งโดยใช้ Genetic Algorithm 2 แบบ และ Brute force algorithm 1 แบบ โดยแบ่งวิธีการดังนี้

- Genetic Algorithm (C programming)
  เลือกใช้ Population Size 40 และ Parent Selection ใช้
  generation ปัจจุบัน, ใช้วิธีการ PMX Crossing over มี
  Crossing over rate 100% ใช้วิธีการ Random resetting
  mutation มี mutation rate 12% และ Elitism 0%
- Genetic Algorithm (Wolfram Mathematica) เลือกใช้ Population Size 10 และ Parent Selection ใช้ generation ปัจจุบัน 8 และ generation ก่อนหน้า 2 ใช้วิธีการ Uniform Crossoverover มี Crossing over Random rate 0 100 % ใช้วิธีการ Random resetting mutation มี Random mutation rate 0 10 % และ Elitism 0%
- Brute force algorithm (C programming)
   เลือกใช้ Brute Force ในการค้นหาโค้ดลับที่ถูกต้อง
   โดยจะสุ่มเลือกมาทดสอบจนกว่าจะค้นพบโค้ดที่ถูกต้อง

ผู้จัดทำจะทำการนำอัลกอริทึมทั้งสามรูปแบบมาทำการ คาดเดารหัสลับ โดยเล่นเกมทั้งหมด 3 เกมเพื่อหาจำนวนการ คาดเดาในแต่ละเกมและในแต่ละอัลกอริทึม จากนั้นทำการหา ค่าเฉลี่ยจำนวนครั้งในการคาดเดาของอัลกอริทึมทั้งสามแบบ และบันทึกผลลงตาราง

#### IV. ผลการทดลอง

จากการทดลองได้นำวิธีการ Genetic Algorithm แบบ C programming และ Wolfram Mathematica เพื่อนำมาทำ การเปรียบเทียบ parameter ของวิธีการ Genetic Algorithm ทั้งสองแบบแล้วนำเสนอข้อมูลแบบตาราง ดังตางรางที่ 1

TABLE I ตารางการปรับแต่ง Genertic Algorithm ทั้งสองแบบ

|                  | Genetic Algorithm   | Genetic Algorithm       |  |
|------------------|---------------------|-------------------------|--|
| parameter        | (C programming)     | (Wolfram Mathematica)   |  |
| Population size  | 40                  | 10                      |  |
| Termination      | More than 0 element | Maxgen <= 10            |  |
| criteria         | in Eligible Set     | Eligible Set <= 10      |  |
| Parent selection | current generation  | current generation = 8  |  |
| method           | current generation  | previous generation = 2 |  |
| Crossover        | PMX                 | Uniform Crossover       |  |
| method           | FMX                 | Official Crossover      |  |
| Crossover        | 100 %               | Random 0-100 %          |  |
| rate             | 100 %               | Kundom 0-100 %          |  |
| Mutation         | Random resetting    | Random resetting        |  |
| method           | Rundom resetting    |                         |  |
| Mutation         | 12 %                | Random 0-10%            |  |
| rate             | 12 /0               | Kanaom 0-10%            |  |
| Elitism          | 0 %                 | 0 %                     |  |

จากการทดลองสร้างเกม Mastermind ในรูปแบบของ 6 สี 4 ตำแหน่ง ได้นำวิธีการ Genetic Algorithm 2 แบบ คือ แบบ C programming และ Wolfram Mathematica และวิธีการ Brute force algorithm จากนั้นจะทำการเก็บรวบรวมผล การทดลอง และนำผลการทดลองที่ได้ไปวิเคราะห์หาข้อมูล แล้วนำเสนอข้อมูลแบบตาราง ดังตางรางที่ 2 และ 3

TABLE II ตารางบันทึกผลจำนวนการคาดเดารหัสลับและค่าเฉลี่ยการคาดเดาของแต่ละ algorithm ของเกม mastermind แบบ 6 สี 4 ตำแหน่ง

| จำนวนการคาดเดา                             | จำนวนเกมที่เล่น |          |          | ค่าเฉลี่ย |
|--------------------------------------------|-----------------|----------|----------|-----------|
| ของ Algorithm                              | เกมที่ 1        | เกมที่ 2 | เกมที่ 3 | ผแหพย     |
| Genetic Algorithm<br>(C programming)       | 2               | 4        | 3        | 3.00      |
| Genetic Algorithm<br>(Wolfram Mathematica) | 2               | 3        | 4        | 3.00      |
| Brute force<br>algorithm                   | 513             | 1046     | 117      | 558.67    |

TABLE III ตารางแสดงผลการเล่นของเกม mastermind แบบ 6 สี 4 ตำแหน่ง ของ Genetic Algorithm ทั้งสองแบบ

| Guesses<br>และ Solution<br>ของแต่ละเกม |          | จำนวนการคาดเดาของ Algorithm             |                                                  |  |
|----------------------------------------|----------|-----------------------------------------|--------------------------------------------------|--|
|                                        |          | Genetic<br>Algorithm<br>(C programming) | Genetic<br>Algorithm<br>(Wolfram<br>Mathematica) |  |
| เกมที่ 1                               | Guesses  | 1123,<br>1562                           | 4432,<br>5256                                    |  |
| PLIMIN I                               | Solution | 1562                                    | 5256                                             |  |
| เกมที่ 2                               | Guesses  | 1123,<br>2344,<br>6331,<br>3331         | 2552,<br>4451,<br>4453                           |  |
|                                        | Solution | 3331                                    | 4453                                             |  |
| เกมที่ 3                               | Guesses  | 1123,<br>1252,<br>3164,<br>3626         | 6323,<br>4224,<br>4521,<br>4525                  |  |
|                                        | Solution | 3626                                    | 4525                                             |  |

จากการทดลองสร้างเกม mastermind ในรูปแบบของ 8 สี 5 ตำแหน่ง ได้นำวิธีการ Genetic Algorithm 2 แบบ คือ แบบ C programming และ Wolfram Mathematica และวิธีการ Brute force algorithm จากนั้นจะทำการเก็บรวบรวมผล การทดลอง และนำผลการทดลองที่ได้ไปวิเคราะห์หาข้อมูล แล้วนำเสนอข้อมูลแบบตาราง ดังตางรางที่ 4 และ 5

TABLE IV ตารางบันทึกผลจำนวนการคาดเดารหัสลับและค่าเฉลี่ยการคาดเดาของแต่ละ algorithm ของเกม mastermind แบบ 8 สี 5 ตำแหน่ง

| จำนวนการคาดเดา                             | จำนวนเกมที่เล่น |          |          | ค่าเฉลี่ย |
|--------------------------------------------|-----------------|----------|----------|-----------|
| ของ Algorithm                              | เกมที่ 1        | เกมที่ 2 | เกมที่ 3 | ผแหพก     |
| Genetic Algorithm<br>(C programming)       | 5               | 5        | 4        | 4.67      |
| Genetic Algorithm<br>(Wolfram Mathematica) | 5               | 4        | 4        | 4.33      |
| Brute force<br>algorithm                   | 4784            | 10227    | 49013    | 21341.33  |

TABLE V ตารางแสดงผลการเล่นของเกม mastermind แบบ 8 สี 5 ตำแหน่ง ของ Genetic Algorithm ทั้งสองแบบ

|                                       |          | จำนวนการคาดเดา                                | 19124 Algorithm                               |
|---------------------------------------|----------|-----------------------------------------------|-----------------------------------------------|
| Guesses<br>และSolution<br>ของแต่ละเกม |          | Genetic<br>Algorithm<br>(C programming)       | Genetic Algorithm (Wolfram Mathematica)       |
| เกมที่ 1                              | Guesses  | 11234,<br>61323,<br>42364,<br>78213,<br>21816 | 65157,<br>73417,<br>33551,<br>82637,<br>86327 |
|                                       | Solution | 21816                                         | 86327                                         |
| เกมที่ 2                              | Guesses  | 11234,<br>47283,<br>58241,<br>23271,<br>73271 | 78275,<br>35836,<br>53388<br>43518            |
|                                       | Solution | 73271                                         | 43518                                         |
| เกมที่ 3                              | Guesses  | 11234,<br>37263,<br>74536,<br>45736           | 63616,<br>32486,<br>83264,<br>43862           |
|                                       | Solution | 45736                                         | 43862                                         |

# V. สรุปและอภิปรายผล

การทดลอง Mastermind โดยการใช้ Genetic Algorithm แบบ C programming และ Wolfram Mathematica เทียบกับ Brute Force Algorithm และการเปรียบเทียบในความมี ประสิทธิภาพของ Guesses และ Solution ของ Genetic Algorithm ระหว่างแบบ C programming และแบบ Wolfram Mathematica สามารถสรุปได้ดังนี้

- Genetic Algorithm:
  - ทั้ง Genetic Algorithm แบบ C programming และ Wolfram Mathematica มีค่าเฉลี่ยจำนวนของการ คาดเดาที่ใกล้เคียงกัน จากกรณี Mastermind 6 สี 4 ตำแหน่ง และ Mastermind 8 สี 5 ตำแหน่ง

- Genetic Algorithm ทั้งสองรูปแบบมีประสิทธิภาพ ในการทำงานเมื่อถูกนำมาใช้ในการคาดการณ์ จาก การทดสอบแสดงให้เห็นได้ว่าทั้งสองรูปแบบนั้นจะมี ประสิทธิภาพในการคาดเดาที่ใกล้เคียงกัน
- การเลือกใช้ Genetic Algorithm แบบไหนขึ้นอยู่กับ ความต้องการ และทรัพยากรที่มีอยู่ เช่น ขนาดของ Population และเวลาที่สามารถให้กับการทดลอง
- Brute Force Algorithm:
  - Brute Force Algorithm มีจำนวนการคาดเดาสูงมาก เนื่องจากต้องทดสอบทุกรายการที่เป็นไปได้
  - มีความช้ามาก และไม่เหมาะสมสำหรับปัญหาขนาด ใหญ่ เนื่องจากต้องทดลองทุกรูปแบบที่เป็นไปได้
- การเปรียบเทียบความมีประสิทธิภาพของ Guesses และ Solution
  - Genetic Algorithm (C programming) จะกำหนด Initial Guess ใว้เป็นค่าเดิมตลอด ดังนั้นจะทำการ เปรียบเทียบที่ Solution แทน ค่าที่ดีที่สุด คือ 1562 ของ 6 สี 4 ตำแหน่ง, 45736 ของ 8 สี 5 ตำแหน่ง และค่าที่แย่ที่สุด คือ 3331 ของ 6 สี 4 ตำแหน่ง, 21816, 73271 ของ 8 สี 5 ตำแหน่ง
  - Genetic Algorithm (Wolfram Mathematica) ทำการสุ่มค่า Initial Guess จึงทำการเปรียบเทียบที่ Initial Guess และ Solution ค่าที่ดีที่สุด คือ Initial Guess คือ 4432, Solution คือ 5256 ของ 6 สี 4 ตำแหน่ง, Initial Guess คือ 78275, 63616, Solution คือ 43518, 43862 ตามลำดับ ของ 8 สี 5 ตำแหน่ง, ค่าที่แย่ที่สุด คือ Initial Guess คือ 6323, Solution คือ 4525 ของ 6 สี 4 ตำแหน่ง, Initial Guess คือ 65157, Solution คือ 86327 ของ 8 สี 5 ตำแหน่ง

ดังนั้นจะสรุปได้ว่า Genetic Algorithm จึงเป็นทางเลือกที่ดี ในการคาดเดา Mastermind เมื่อนำเปรียบเทียบกับ Brute Force Algorithm ที่มีความช้ามาก และการเลือกใช้ Genetic Algorithm แบบไหนจะขึ้นอยู่กับความต้องการของปัญหาและ ทรัพยากรที่มีอยู่ เนื่องจากทั้ง Genetic Algorithm ในรูปแบบ C programming และ ในรูปแบบ Wolfram Mathematica มีประสิทธิภาพใกล้เคียงกัน แต่อาจมีความแตกต่างในกรณีใด กรณีหนึ่ง เช่น ขนาดของ Population และอัลกอริทึมที่ใช้ ในการ Crossover และ Mutation

# References

- [1] https://www.chessgoshop.com/category/85/เกมฝึกiq/เกมถอดรหัสmastermind
- [2] https://www.mathworks.com/help/gads/what-is-the-geneticalgorithm.html
- [3] https://www.tutorialspoint.com/genetic\_algorithms/genetic\_ algorithms\_parent\_selection.htm
- [4] https://www.geeksforgeeks.org/crossover-in-genetic-algorithm/
- [5] https://en.wikipedia.org/wiki/Mutation\_(genetic\_algorithm)
- [6] http://www.ai-junkie.com/ga/intro/gat2.html
- [7] https://www.igi-global.com/dictionary/multi-objectiveevolutionary-algorithms/9592
- [8] https://web.itu.edu.tr/ etaner/courses/NIC/handouts/genetic\_ algorithms\_handouts.pdf

- [9] https://www.sciencedirect.com/topics/computerscience/termination-criterion
- [10] B.R.Rajakumara, Aloysius George, "APOGA: An Adaptive Population Pool Size Based Genetic Algorithm", Published by Elsevier B.V, vol.4, 2013
- [11] R. Santiago-Mozos, Sancho Salcedo-Sanz, Mario DePrado-Cumplido, Carlos Bousoño-Calzón, "A two-phase heuristic evolutionary algorithmfor personalizing course timetables: A casestudy in a Spanish university", Published by researchGate, 2003