This document contains general guidelines for the reporting of statistics in psychology research. The details of statistical reporting vary slightly among different areas of science and also among different journals.

General Guidelines

Rounding Numbers

For numbers greater than 100, report to the nearest whole number (e.g., M = 6254). For numbers between 10 and 100, report to one decimal place (e.g., M = 23.4). For numbers between 0.10 and 10, report to two decimal places (e.g., M = 4.34, SD = 0.93). For numbers less than 0.10, report to three decimal places, or however many digits you need to have a non-zero number (e.g., M = 0.014, SEM = 0.0004).

For numbers	Round to	SPSS	Report
Greater than 100	Whole number	1034.963	1035
10 - 100	1 decimal place	11.4378	11.4
0.10 - 10	2 decimal places	4.3682	4.37
0.001 - 0.10	3 decimal places	0.0352	0.035
Less than 0.001	As many digits as needed for non-zero	0.00038	0.0004

Do not report any decimal places if you are reporting something that can only be a whole number. For example, the number of participants in a study should be reported as N = 5, not N = 5.0.

Report exact p-values (not p < .05), even for non-significant results. Round as above, unless SPSS gives a p-value of .000; then report p < .001. Two-tailed p-values are assumed. If you are reporting a one-tailed p-value, you must say so.

Omit the leading zero from p-values, correlation coefficients (r), partial eta-squared (η_p^2), and other numbers that cannot ever be greater than 1.0 (e.g., p = .043, not p = 0.043).

Statistical Abbreviations

Abbreviations using Latin letters, such as mean (M) and standard deviation (SD), should be italicised, while abbreviations using Greek letters, such as partial eta-squared (η_p^2), should not be italicised and can be written out in full if you cannot use Greek letters. There should be a space before and after equal signs. The abbreviations should only be used inside of parentheses; spell out the names otherwise.

Inferential statistics should generally be reported in the style of: "statistic(degrees of freedom) = value, p = value, effect size statistic = value"

Statistic	Example
Mean and standard deviation	M = 3.45, SD = 1.21
Mann-Whitney	<i>U</i> = 67.5, <i>p</i> = .034, <i>r</i> = .38
Wilcoxon signed-ranks	Z = 4.21, p < .001
Sign test	Z = 3.47, p = .001
t-test	<i>t</i> (19) = 2.45, <i>p</i> = .031, <i>d</i> = 0.54
ANOVA	$F(2, 1279) = 6.15, p = .002, \eta_p^2 = 0.010$
Pearson's correlation	r(1282) = .13, p < .001

Descriptive Statistics

Means and standard deviations should be given either in the text or in a table, but not both.

			Descri	ptive Statistics				
	N	Me	ean	Std. Deviation	Skev	vness	Kur	tosis
	Statistic	Statistic	Std. Error	Statistic	Statistic	Std. Error	Statistic	Std. Error
age	2351	25.480	.1638	7.9445	1.869	.050	3.930	.101
Valid N (listwise)	2351							

- **66** The average age of participants was 25.5 years (SD = 7.94).
- The age of participants ranged from 18 to 70 years (M = 25.5, SD = 7.94). Age was non-normally distributed, with skewness of 1.87 (SE = 0.05) and kurtosis of 3.93 (SE = 0.10)
- 66 Participants were 98 men and 132 women aged 17 to 25 years (men: *M* = 19.2, *SD* = 2.32; women: *M* = 19.6, *SD* = 2.54).

Non-parametric tests

Do not report means and standard deviations for non-parametric tests. Report the median and range in the text or in a table. The statistics U and Z should be capitalised and italicised. A measure of effect size, r, can be calculated by dividing Z by the square root of N ($r = Z / \sqrt{N}$).

Mann-Whitney Test (2 Independent Samples...)

		Ra	anks		Test Statistics)
	pill	N	Mean Rank	Sum of Ranks		sra
sra	0	17	19.03	323.50	Mann-Whitney U	67.500
	1	14	12.32	172.50	Wilcoxon W	172.500
	Total	31			Z	-2.119
					Asymp. Sig. (2-tailed)	.034
					Exact Sig. [2*(1-tailed	.040ª
					a. Not corrected for ties	5.
					b. Grouping Variable: p	ill

66 A Mann-Whitney test indicated that self-rated attractiveness was greater for women who were not using oral contraceptives (Mdn = 5) than for women who were using oral contraceptives (Mdn = 4), U = 67.5, p = .034, r = .38.

Wilcoxon Signed-ranks Test (2 Related Samples...)

66 A Wilcoxon Signed-ranks test indicated that femininity was preferred more in female faces (Mdn = 0.85) than in male faces (Mdn = 0.65), Z = 4.21, p < .001, r = .76.

Sign Test (2 Related Samples...)

	Frequencies		Test Statistic	csa
mala famala	Negative Differences	N]	male – female
male – female	Negative Differences ^a Positive Differences ^b	25	7	-3.469
	Positive Differences	5	Assume Sim (2 to its d)	
	Ties ^c	1	Asymp. Sig. (2-tailed)	.001
	Total	31	a. Sign Test	
a. male < fe	male		_	
b. male > fe	male			
c. male = fer	male			

66 A sign test indicated that femininity was preferred more in female faces than in male faces, Z = 3.47, p = .001.

T-tests

Report degrees of freedom in parentheses. The statistics *t*, *p* and Cohen's *d* should be reported and italicised.

One-sample t-test

	O	ne-Sample	Statistics					One-Samp	e Test		
	N	Mean	Std. Deviation	Std. Error Mean				Test V	alue = 3.5		
				-						95%	CI
female	31	4.503	.6957	.1250				Sig. (2-	Mean		
male	31	3.4581	.73179	.13143		t	df	tailed)	Difference	Lower	Upper
					female	8.029	30	.000	1.0032	.748	1.258
					male	319	30	.752	04194	3104	.2265

- 66 One-sample t-test indicated that femininity preferences were greater than the chance level of 3.5 for female faces (M = 4.50, SD = 0.70), t(30) = 8.01, p < .001, d = 1.44, but not for male faces (M = 3.46, SD = 0.73), t(30) = -0.32, p = .75, d = 0.057.
- **66** The number of masculine faces chosen out of 20 possible was compared to the chance value of 10 using a one-sample t-test. Masculine faces were chosen more often than chance, t(76) = 4.35, p = .004, d = 0.35.

Paired-samples t-test

Report paired-samples t-tests in the same way as one-sample t-tests.

		Paired	Samples	Statistics						
		Mean	N	Std. Deviation	Std. Error Mean					
air 1	pathogen	26.39	722	7.414	.276	5				
	sexual	18.03	722	9.490	.353	3				
	Pai	red Sampl	es Correla N		Sia.					
Pair 1	pathogen &		N 722	Correlation .373	Sig.					
un 1	patriogen a	SCAGGI	122	.373	.000					
					Paired Samp	oles Test				
						Paired Differ	rences			
						95% Confiden the Diff				
			Mean	Std. Deviation	Std. Error Mean	Lower	Upper	t	df	Sig. (2 – tailed)
air 1	pathogen -	covual	8.353	9.617	.358	7.650	9.056	23.338	721	.00

66 A paired-samples t-test indicated that scores were significantly higher for the pathogen subscale (M = 26.4, SD = 7.41) than for the sexual subscale (M = 18.0, SD = 9.49), t(721) = 23.3, p < .001, d = 0.87.

Scores on the pathogen subscale (M = 26.4, SD = 7.41) were higher than scores on the sexual subscale (M = 18.0, SD = 9.49), t(721) = 23.3, p < .001, d = 0.87. A onetailed p-value is reported due to the strong prediction of this effect.

Independent-samples t-test

		Gro	up Statisti	cs								
	sex	N	Mean	Std. Deviation	Std. Erro Mean							
pathogen	male	201	24.42	7.6	89 .!	542						
	female	535	27.04	7.2	09 .:	312						
			Lev	vene's Test f Variar	or Equality of nces			t	-test for Equality	of Means		
			Lev	vene's Test f Variar	or Equality of nces			t	-test for Equality	of Means		
											95% Confidence the Diffe	
				F	Sig.	t	df	Sig. (2 – tailed)	Mean Difference	Std. Error Difference	Lower	Upper
athogen	Equal var assumed			2.568	.109	-4.301	734	.000	-2.613	.607	-3.805	-1.42
	Equal var assumed	iances not				-4.177	340.008	.000	-2.613	.626	-3.843	-1.38

66 An independent-samples t-test indicated that scores were significantly higher for women (M = 27.0, SD = 7.21) than for men (M = 24.2, SD = 7.69), t(734) = 4.30, p < .001, d = 0.35.

If Levene's test for equality of variances is significant, report the statistics for the row equal variances not assumed with the altered degrees of freedom rounded to the nearest whole number.

66 Scores on the pathogen subscale were higher for women (M = 27.0, SD = 7.21) than for men (M = 24.2, SD = 7.69), t(340) = 4.30, p < .001, d = 0.35. Levene's test indicated unequal variances (F = 3.56, p = .043), so degrees of freedom were adjusted from 734 to 340.

ANOVAs

ANOVAs have two degrees of freedom to report. Report the between-groups df first and the within-groups df second, separated by a comma and a space (e.g., F(1, 237) = 3.45). The measure of effect size, partial eta-squared (η_p^2), may be written out or abbreviated, omits the leading zero and is not italicised.

One-way ANOVAs and Post-hocs

rests o	of Betwee	en-Subjects Ef	fects						Multiple Con	nparisons		
le:female												
Type III Sum of Squares	df	Mean Square	F	Sig.	Partia I Eta Squar ed	(1)	(J)	Mean Difference (I-	Std Error	Sin		Upper Bound
4.766a	2	2.383	6.152	.002	.010	1	2	116*				019
25473.878	1	25473.878	65762.819	.000	.981	1	3					018
4.766	2	2.383	6.152	.002	.010	2	1					.212
495.433	1279	.387	[-	3					.075
26234.842	1282		[3	1					.245
500.199	1281					'	2					.127
.010 (Adjusted	l R Squar	ed = .008)						served means.			073	.127
	Type III Sum of Squares 4.766 ^a 25473.878 4.766 495.433 26234.842 500.199	Type III Sum of Squares df 4.766a 2 25473.878 1 4.766 2 495.433 1279 26234.842 1282 500.199 1281	Type III Sum of Square df Square 2.383 25473.878 1 25473.878 4.766 2 2.383 495.433 1279 26234.842 1282	Type III Sum of Squares def Mean Square F 4,766* 2 2,383 6,152 25473.878 1 25473.878 65762.819 4.766 2 2,383 6,152 495,433 1279 3.87 6.152 26234.842 1282 500.199 1281	Type III Sum of Squares d df Mean Square F Sig. 4.766* 2 2.383 6.152 .002 25473.878 1 25473.878 65762.819 .000 4.766 2 2.383 6.152 .002 495.433 1279 3.87 6.152 .002 26234.842 1282 500.199 1281 .002	Type III Sum of Squares d df Mean Square F Sig. Square Partia Square 4.766* 2 2.383 6.152 .002 .010 25473.878 1 25473.878 65762.819 .000 .981 4.766 2 2.383 6.152 .002 .010 495.433 1279 3.87 6.152 .002 .010 26234.842 1282 500.199 1281 6.152 .002 .010	Type III Sum of Square F Sig. Partial Square F Sig. Partial Square F Sig. S	Type III Sum of Square	Type Sum of Square F Sig. Partia Fta Square 1	Type Sum of Squares Gf Mean Square F Sig. Partial Square F Sig. Partial Square F Sig. Square Square F Sig. Square Square F Sig. Square Square Square F Sig. Square Square	Type Sum of Squares Game of Squares F Sig. Sig. Farisa Farisa	Type Sum of Square

Analysis of variance showed a main effect of self-rated attractiveness (SRA) on preferences for femininity in female faces, F(2, 1279) = 6.15, p = .002, $\eta_p^2 = .010$. Posthoc analyses using Tukey's HSD indicated that femininity preferences were lower for participants with low SRA than for participants with average SRA (p = .014) and high SRA (p = .004), but femininity preferences did not differ significantly between participants with average and high SRA (p = .82).

2-way Factorial ANOVAs

			Dependent Variab		ests of bei	tween-Subjects	Effects		
Betwe	en-Subj	ects Factors	Source	Type III Sum of Squares	df	Mean Square	F	Sig.	Partial Eta Squared
		N	Corrected Model	6.943a	5	1.389	3.592	.003	.014
sra3	1	435	Intercept	24670.105	1	24670.105	63818.861	.000	.980
Jius	2	477	sra3	4.721	2	2.360	6.106	.002	.009
	3	370	pill	1.694	1	1.694	4.381	.037	.003
pill	0	762	sra3 * pill	.335	2	.167	.433	.649	.001
PIII	1		Error	493.256	1276	.387			
	1	520	Total	26234.842	1282				
			Corrected Total	500.199	1281				

66 A 3x2 ANOVA with self-rated attractiveness (low, average, high) and oral contraceptive use (true, false) as between-subjects factors revealed a main effects of SRA, F(2, 1276) = 6.11, p = .002, $η_p^2$ = .009, and oral contraceptive use, F(1, 1276) = 4.38, p = .037, $η_p^2$ = 0.003. These main effects were not qualified by an interaction between SRA and oral contraceptive use, F(2, 1276) = 0.43, p = .65, $η_p^2$ = .001.

3-way ANOVAs and Higher

Although some textbooks suggest that you report all main effects and interactions, even if not significant, this reduces the understandability of the results of a complex design (i.e. 3-way or higher). Report all significant effects and all predicted effects, even if not significant. If there are more than two non-significant effects that are irrelevant to your main hypotheses (e.g. you predicted an interaction among three factors, but did not predict any main effects or 2-way interactions), you can summarise them as in the example below.

	Tests of	Within	-Subjects Ef	fects				Te	sts of Be	tween-Subject	s Effects		
Measure:MEASURE_1 Epsilon Corrections:Sph	nericity Assum	ed					Measure:ME Transforme	ASURE_1 d Variable:Aver	age				
Source	Type III Sum of Squares	df	Mean Square	F	Sig.	Partial Eta Squared	Source	Type III Sum of Squares	df	Mean Square	F	Sig.	Partial Eta Squared
facesex	511.103	1	511.103	1371.811	.000	.518	Intercept	39807.825	1	39807.825	81083.827	.000	.985
facesex * pill	1.871	1	1.871	5.022	.025	.004	pill	.223	1	.223	.455	.500	.000
facesex * sra3	5.144	2	2.572	6.904	.001	.011	sra3	.889	2	.445	.906	.405	.001
facesex * pill * sra3	.045	2	.023	.061	.941	.000	pill * sra3	.923	2	.462	.940	.391	.00
Error(facesex)	475.406		.373				Error	626,448	1276	.491			

66 A mixed-design ANOVA with sex of face (male, female) as a within-subjects factor and self-rated attractiveness (low, average, high) and oral contraceptive use (true, false) as between-subjects factors revealed a main effect of sex of face, F(1, 1276) = 1372, p < .001, $η_p^2 = .52$. This was qualified by interactions between sex of face and SRA, F(2, 1276) = 6.90, p = .001, $η_p^2 = .011$, and between sex of face and oral contraceptive use, F(1, 1276) = 5.02, p = .025, $η_p^2 = .004$. The predicted interaction among sex of face, SRA and oral contraceptive use was not significant, F(2, 1276) = 0.06, p = .94, $η_p^2 < .001$. All other main effects and interactions were non-significant and irrelevant to our hypotheses, all F ≤ 0.94, p ≥ .39, $η_p^2 ≤ .001$.

Violations of Sphericity and Greenhouse-Geisser Corrections

ANOVAs are not robust to violations of sphericity, but can be easily corrected. For each within-subjects factor with more than two levels, check if Mauchly's test is significant. If so, report chi-squared (χ^2), degrees of freedom, p and epsilon (ϵ) as below and report the Greenhouse-Geisser corrected values for any effects involving this factor (rounded to the appropriate decimal place). SPSS will report a chi-squared of .000 and no p-value for within-subjects factors with only two levels; corrections are not needed.

	EAGURE 1				Maucin	y 3 1C3	t of Spherici	ty.						
Measure:Mi Within	EASURE I						Epsilon ^a							
ubjects	Mauchly's W	Approx. Chi- Square	df	Sig.	Greenhoi Geisse		Huynh-Feldt	Lower-bo	ound					
subscale	.950	36.144	2	.000	l .	953	.956		500					
a. May b	e used to adju	st the degrees of	freedom for	or the aver	aged tests (of signif	icance. Corre	cted tests ar	re displayed in tl	ne Tests	of Within-Subject	s Effects table		
b. Desig	n: Intercept +	sex												
b. Desig Within S	n: Intercept + ubjects Design	sex : subscale Tests of Withir	-Subjects						Te	sts of Be	tween-Subjects			
Within Si Measure:M	ubjects Design	: subscale	-Subjects					Measure:M			tween–Subjects			
Within S Measure:M Desilon Cor	ubjects Design	: subscale Tests of Withir house-Geisser I Sum			F	Sig.	Partial Eta Squared	Measure:M	MEASURE 1		etween-Subjects Mean Square		Sig.	Partial Eta Squarec
Within Si Measure: Mi Epsilon Cor Source	ubjects Design EASURE_1 rections:Green Type II of Squ	: subscale Tests of Withir house-Geisser I Sum	Mear	Effects	F 377.538	Sig. .000	Partial Eta	Measure:M Transform	IEASURE_1 ed Variable:Ave Type III Sum	age			Sig. .000	Eta Squared
Within S Measure:M	EASURE_1 rections:Green Type II of Squ 4184	: subscale Tests of Withir house-Geisser I Sum lares df	Mear 05 219	Effects	F 377.538 30.391		Partial Eta Squared	Measure:M Transform Source	MEASURE_1 ed Variable:Ave Type III Sum of Squares	age df	Mean Square	Effects F		

66 Data were analysed using a mixed-design ANOVA with a within-subjects factor of subscale (pathogen, sexual, moral) and a between-subject factor of sex (male, female). Mauchly's test indicated that the assumption of sphericity had been violated ($\chi^2(2) = 16.8$, p < .001), therefore degrees of freedom were corrected using Greenhouse-Geisser estimates of sphericity (ε = 0.98). Main effects of subscale, F(1.91, 1350.8) = 378, p < .001, $η_p^2 = .35$, and sex, F(1, 709) = 78.8, p < .001, $η_p^2 = .10$, were qualified by an interaction between subscale and sex, F(1.91, 1351) = 30.4, p < .001, $η_p^2 = .041$.

ANCOVA

Tests of Between-Subjects Effects								
Dependent Variab Source	Type III Sum of Squares	df	Mean Square	F	Siq.	Partial Eta Squared		
Corrected Model	1210.158a	3	403.386	7.502	.000	.030		
Intercept	52794.932	1	52794.932	981.794	.000	.573		
sex	107.679	1	107.679	2.002	.157	.003		
age	174.602	1	174.602	3.247	.072	.004		
sex * age	.879	1	.879	.016	.898	.000		
Error	39362.526	732	53.774					
Total	550509.000	736						
Corrected Total	40572,683	735						

- 66 An ANCOVA [between-subjects factor: sex (male, female); covariate: age] revealed no main effects of sex, F(1, 732) = 2.00, p = .16, $\eta_p^2 = .003$, or age, F(1, 732) = 3.25, p = .072, $\eta_p^2 = .004$, and no interaction between sex and age, F(1, 732) = 0.016, p = .90, $\eta_p^2 < .001$.
- 66 The predicted main effect of sex was not significant, F(1, 732) = 2.00, p = .16, $η_p^2 = .003$, nor was the predicted main effect of age, F(1, 732) = 3.25, p = .072, $η_p^2 = .004$. The interaction between sex and age were also not significant, F(1, 732) = 0.016, p = .90, $η_p^2 < .001$.

Correlations

Italicise *r* and *p*. Omit the leading zero from *r*.

		female	male
female	Pearson Correlation	1.000	.132**
	Sig. (2-tailed)		.000
	N	1282	1282
male	Pearson Correlation	.132**	1.000
	Sig. (2-tailed)	.000	
	N	1282	1282

66 Preferences for femininity in male and female faces were positively correlated, Pearson's r(1282) = .13, p < .001.

References

American Psychological Association. (2005). *Concise Rules of APA Style*. Washington, DC: APA Publications.

Field, A. P., & Hole, G. J. (2003). *How to design and report experiments*. London: Sage Publications.