DATA MINING PROJECT BUISNESS REPORT

Shubham Nagargoje july2022 DSBA

Content Table

Part 1 -

- 1.Clustering: Read the data and perform basic analysis such as printing a few rows (head and tail), info, data summary, null values duplicate values, etc.
- 2. Clustering: Treat missing values in CPC, CTR and CPM using the formula given.
- 3 Clustering: Check if there are any outliers. Do you think treating outliers is necessary for K-Means clustering? Based on your judgement decide whether to treat outliers and if yes, which method to employ. (As an analyst your judgement may be different from another analyst).
- 4. Clustering: Perform z-score scaling and discuss how it affects the speed of the algorithm.
- 5. Clustering: Perform Hierarchical by constructing a Dendrogram using WARD and Euclidean distance.
- 6 Clustering: Make Elbow plot (up to n=10) and identify optimum number of clusters for k-means algorithm.
- 7 Clustering: Print silhouette scores for up to 10 clusters and identify optimum number of clusters.
- 8 Clustering: Profile the ads based on optimum number of clusters using silhouette score and your domain understanding [Hint: Group the data by clusters and take sum or mean to identify trends in Clicks, spend, revenue, CPM, CTR, & CPC based on Device Type. Make bar plots].
- 9 Clustering: Conclude the project by providing summary of your learnings.

Part 2 -

- 1.PCA: Read the data and perform basic checks like checking head, info, summary, nulls, and duplicates, etc.
- 2.PCA: Perform detailed Exploratory analysis by creating certain questions like (i) Which state has highest gender ratio and which has the lowest? (ii) Which district has the highest & lowest gender ratio? (Example Questions). Pick 5 variables out of the given 24 variables below for EDA: No_HH, TOT_M, TOT_F, M_06, F_06, M_SC, F_SC, M_ST, F_ST, M_LIT, F_LIT, M_ILL, F_ILL, TOT_WORK_M, TOT_WORK_F, MAINWORK_M, MAINWORK_F, MAIN_CL_M, MAIN_CL_F, MAIN_AL_M, MAIN_AL_F, MAIN_HH_M, MAIN_HH_F, MAIN_OT_M, MAIN_OT_F
- 3 PCA: We choose not to treat outliers for this case. Do you think that treating outliers for this case is necessary?
- 4. PCA: Scale the Data using z-score method. Does scaling have any impact on outliers? Compare boxplots before and after scaling and comment.
- 5 PCA: Perform all the required steps for PCA (use sklearn only) Create the covariance Matrix Get eigen values and eigen vector.
- 6 PCA: Identify the optimum number of PCs (for this project, take at least 90% explained variance). Show Scree plot.
- 7 PCA: Compare PCs with Actual Columns and identify which is explaining most variance. Write inferences about all the Principal components in terms of actual variables.
- 8 PCA: Write linear equation for first PC.

PART 1

1.Clustering: Read the data and perform basic analysis such as printing a few rows (head and tail), info, data summary, null values duplicate values, etc.

Reading the basic data set given

	Timestamp	Inventory Type	Ad - Length	Ad- Width	Ad Size	Ad Type	Platform	Device Type	Format	Available_Impressions	Matched_Queries	Impressions	Clicks	Spend
0	2020-9-2- 17	Format1	300	250	75000	Inter222	Video	Desktop	Display	1806	325	323	1	0.0
1	2020-9-2- 10	Format1	300	250	75000	Inter227	Арр	Mobile	Video	1780	285	285	1	0.0
2	2020-9-1- 22	Format1	300	250	75000	Inter222	Video	Desktop	Display	2727	356	355	1	0.0
3	2020-9-3- 20	Format1	300	250	75000	Inter228	Video	Mobile	Video	2430	497	495	1	0.0
4	2020-9-4- 15	Format1	300	250	75000	Inter217	Web	Desktop	Video	1218	242	242	1	0.0

Applying basic EDA to explore the data, info,summary,null values and duplicates

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 23066 entries, 0 to 23065
Data columns (total 19 columns):
```

O Timestamp 23066 non-null object	ct
0 Timestamp 23066 non-null object	ct
1 InventoryType 23066 non-null object	1
2 Ad - Length 23066 non-null int64	•
3 Ad- Width 23066 non-null int64	1
4 Ad Size 23066 non-null int64	1
5 Ad Type 23066 non-null object	ct
6 Platform 23066 non-null object	ct
7 Device Type 23066 non-null object	ct
8 Format 23066 non-null object	ct
9 Available_Impressions 23066 non-null int64	1
10 Matched_Queries 23066 non-null int64	1
11 Impressions 23066 non-null int64	1
12 Clicks 23066 non-null int64	1
13 Spend 23066 non-null float	64
14 Fee 23066 non-null float	64
15 Revenue 23066 non-null float	64
16 CTR 18330 non-null float	64
17 CPM 18330 non-null float	64
18 CPC 18330 non-null float	64

dtypes: float64(6), int64(7), object(6)

memory usage: 3.3+ MB

There are 6 float, 7 integer and 6 object data types

Timestamp	0
InventoryType	0
Ad - Length	0
Ad- Width	0
Ad Size	0
Ad Type	0
Platform	0
Device Type	0
Format	0
Available_Impressions	0
Matched_Queries	0
Impressions	0
Clicks	0
Spend	0
Fee	0
Revenue	0
CTR	4736
CPM	4736
CPC	4736
dtype: int64	

So there are 4736 null values in CTR CPM CPC.

There are no duplicate records present in thr dataframe Summary

- There are 6 categorical type and 13 numerical type of datatypes.
- No null values except CPC CPM CTR
- There are no duplicates found
- Data is not scaled and has a great difference range of datapoints.

2. - Clustering: Treat missing values in CPC, CTR and CPM using the formula given

For CPM, CPC, CPM

CPM = (Total Campaign Spend / Number of Impressions) * 1,000.

CPC = Total Cost (spend) / Number of Clicks.

CTR = Total Measured Clicks / Total Measured Ad Impressions x 100.

Almost all the values are filled by using the givem formula.

3 - Clustering: Check if there are any outliers. Do you think treating outliers is necessary for K-Means clustering? Based on your judgement decide whether to treat outliers and if yes, which method to employ. (As an analyst your judgement may be different from another analyst).

• There are outliers present in the data and i think that for k means clustering, we should treat the outliers.

There are two ways to treate outliers,

- Z_score method normalising data with z score, mean=0, std=1
- MIn-Max method assinging the maximum value to the outliers greater than upper range=Q3+(1.5 * IQR) and lower_range= Q1-(1.5 * IQR) to the minimum value.

Here we will use min max method to treat the outliers.

4. - Clustering: Perform z-score scaling and discuss how it affects the speed of the algorithm.

	Timestamp	Inventory Type	Ad - Length	Ad- Width	Ad Size	Ad Type	Platform	Device Type	Format	Available_Impressions	Matched_Queries	Impressions	Clicks	Spend
0	2020-9-2- 17	Format1	300	250	75000	Inter222	Video	Desktop	Display	1806	325	323	1	0.0
1	2020-9-2- 10	Format1	300	250	75000	Inter227	Арр	Mobile	Video	1780	285	285	1	0.0
2	2020-9-1- 22	Format1	300	250	75000	Inter222	Video	Desktop	Display	2727	356	355	1	0.0
3	2020-9-3- 20	Format1	300	250	75000	Inter228	Video	Mobile	Video	2430	497	495	1	0.0
4	2020-9- 4 - 15	Format1	300	250	75000	Inter217	Web	Desktop	Video	1218	242	242	1	0.0

after appling z score the data is converted to.

	Ad - Length	Ad- Width	Ad Size	Available_Impressions	Matched_Queries	Impressions	Clicks	Spend	Fee	Revenue	CTR	СРМ	CPC
0	-0.364496	-0.432797	-0.102518	-0.755333	-0.778949	-0.768478	-0.867488	-0.89317	0.535724	-0.880093	-0.586626	NaN	-1.042561
1	-0.364496	-0.432797	-0.102518	-0.755345	-0.778988	-0.768516	-0.867488	-0.89317	0.535724	-0.880093	-0.586626	NaN	-1.042561
2	-0.364496	-0.432797	-0.102518	-0.754900	-0.778919	-0.768445	-0.867488	-0.89317	0.535724	-0.880093	-0.586626	NaN	-1.042561
3	-0.364496	-0.432797	-0.102518	-0.755040	-0.778781	-0.768302	-0.867488	-0.89317	0.535724	-0.880093	-0.586626	NaN	-1.042561
4	-0.364496	-0.432797	-0.102518	-0.755610	-0.779030	-0.768560	-0.867488	-0.89317	0.535724	-0.880093	-0.586626	NaN	-1.042561

And has been normalised to a range.

	Ad - Length	Ad- Width	Ad Size	Available_Impressions	Matched_Queries	Impressions	Clicks	Spend	Fee	Rev
count	2.306600e+04	2.306600e+04	2.306600e+04	2.306600e+04	2.306600e+04	2.306600e+04	2.306600e+04	2.306600e+04	2.306600e+04	2.306600
mean	-4.030447e-15	5.390161e-15	-4.156304e-15	-3.617510e-15	1.341008e-15	-1.224345e- 15	1.960656e-15	1.250852e-15	-2.322121e-14	3.13622
std	1.000022e+00	1.000022e+00	1.000022e+00	1.000022e+00	1.000022e+00	1.000022e+00	1.000022e+00	1.000022e+00	1.000022e+00	1.000022
min	-1.134891e+00	-1.319110e+00	-1.467840e+00	-7.561823e-01	-7.792648e-01	-7.688060e- 01	-8.674882e- 01	-8.931702e- 01	-2.222416e+00	-8.800
25%	-1.134891e+00	-4.327968e-01	-2.975645e-01	-7.403406e-01	-7.614468e-01	-7.606554e- 01	-7.934379e- 01	-8.580464e- 01	-5.675316e-01	-8.464
50%	-3.644957e-01	-1.865987e-01	-2.975645e-01	-5.285774e-01	-5.277221e-01	-5.389745e- 01	-4.054310e- 01	-3.055230e- 01	5.357244e-01	-3.176
75%	1.433093e+00	1.290590e+00	4.826195e-01	4.330590e-01	3.714976e-01	3.660513e-01	4.686290e-01	3.939323e-01	5.357244e-01	3.89802
max	1.467332e+00	1.290590e+00	1.652896e+00	2.193158e+00	2.070914e+00	2.056111e+00	2.361729e+00	2.271900e+00	5.357244e-01	2.244218

By appling z-score , we have reduced the range of the data , which increases the speed of the alogrithim

5. - Clustering: Perform Hierarchical by constructing a Dendrogram using WARD and Euclidean distance.

Here, 4 is the optimum number of clusters that should be made.

	Ad - Length	Ad- Width	Ad Size	Available_Impressions	Matched_Queries	Impressions	Clicks	Spend	Fee	Revenue	
Clusters											
1	468.551724	198.216230	72900.388903	5.811260e+06	2.846720e+06	2.707899e+06	11599.900441	5831.979704	0.312681	3941.835894	5.27
2	429.870025	153.506297	64778.962217	2.569059e+06	1.218455e+06	1.165571e+06	4484.104471	2090.528877	0.347572	1367.305327	1.093
3	326.689973	466.006531	81939.012678	7.434439e+04	4.606658e+04	3.764695e+04	4420.519641	453.424741	0.349848	295.252722	9.756
4	407.890615	324.820800	77651.336234	7.635432e+05	4.444652e+05	3.975864e+05	17202.431712	2993.150706	0.335736	2014.825412	4.959

6 - Clustering: Make Elbow plot (up to n=10) and identify optimum number of clusters for k-means algorithm.

```
The WSS value for 1 clusters is 299857.9999999998
The WSS value for 2 clusters is 178957.67749378303
The WSS value for 3 clusters is 137024.77550794432
The WSS value for 4 clusters is 101036.63569196296
The WSS value for 5 clusters is 67986.59137885594
The WSS value for 6 clusters is 58515.880559607926
The WSS value for 7 clusters is 48763.82989556023
The WSS value for 8 clusters is 42076.58046464563
The WSS value for 9 clusters is 36816.622632624065
The WSS value for 10 clusters is 32928.91438710698
```


THe OPtimum no. of clusters are 5 for k mean

7 - Clustering: Print silhouette scores for up to 10 clusters and identify optimum number of clusters.

```
sil score for 2 is 0.43796685070315555

sil score for 3 is 0.3380282471161297

sil score for 4 is 0.40200501676284645

sil score for 5 is 0.49502489534287814

sil score for 6 is 0.49190880475307874

sil score for 7 is 0.5042344609844847

sil score for 8 is 0.4895488238624933

sil score for 9 is 0.5230820335171237

sil score for 10 is 0.536145934891218
```

8 - Clustering: Profile the ads based on optimum number of clusters using silhouette score and your domain understanding [Hint: Group the data by clusters and take sum or mean to identify trends in Clicks, spend, revenue, CPM, CTR, & CPC based on Device Type. Make bar plots].

Part 2.

PCA: Read the data and perform basic checks like checking head, info, summary, nulls, and duplicates, etc.

MARG_CL_0_3_F	MARG_AL_0_3_M	MARG_AL_0_3_F	MARG_HH_0_3_M	MARG_HH_0_3_F	MARG_OT_0_3_M	MARG_OT_0_3_F	NON_WORK_M	NON_WORK_F
749	180	237	680	252	32	46	258	214
715	123	229	186	148	76	178	140	160
188	44	89	3	34	0	4	67	61
247	61	128	13	50	4	10	116	59
1928	465	1043	205	302	24	105	180	478

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 640 entries, 0 to 639
Data columns (total 61 columns):

#	Column	Non-Null Count	Dtype
0	State Code	640 non-null	int64
1	Dist.Code	640 non-null	int64
2	State	640 non-null	object
3	Area Name	640 non-null	object
4	No_HH	640 non-null	int64
5	TOT_M	640 non-null	int64
6	TOT_F	640 non-null	int64
7	M_06	640 non-null	int64
8	F_06	640 non-null	int64
9	M_SC	640 non-null	int64
10	F_SC	640 non-null	int64
11	M_ST	640 non-null	int64
12	F_ST	640 non-null	int64
13	M_LIT	640 non-null	int64
14	F_LIT	640 non-null	int64
15	M_ILL	640 non-null	int64
16	F_ILL	640 non-null	int64
17	TOT_WORK_M	640 non-null	int64
18	TOT_WORK_F	640 non-null	int64
	MAINWORK_M	640 non-null	int64
20	MAINWORK_F	640 non-null	int64
21	MAIN_CL_M	640 non-null	int64
22	MAIN_CL_F	640 non-null	int64
23	MAIN_AL_M	640 non-null	int64
24	MAIN_AL_F	640 non-null	int64
25	MAIN_HH_M	640 non-null	int64
26	MAIN_HH_F	640 non-null	int64

```
State Lode
                                            Ø
                          Dist.Code
                                            0
State Code
                          State
Dist.Code
                 0
                          Area Name
                                            0
State
                 0
                          No HH
                                            0
Area Name
                 0
No HH
                 0
                          MARG HH 0 3 F
                          MARG OT 0 3 M
                                           0
MARG HH 0 3 F
                          MARG_OT_0_3_F
                                            0
MARG_OT_0_3_M
                 0
                          NON WORK M
                                            0
MARG OT 0 3 F
                 0
                          NON WORK F
NON WORK M
                 0
                          Length: 61, dtype: int64
NON WORK F
                 0
Length: 61, dtype: int64
```

Summary,

- There are no null values , and duplicates
- data is highly ranged
- There are many outliers

PCA: We choose not to treat outliers for this case. Do you think that treating outliers for this case is necessary?

As we can see a large no. of outliers, not treating the outliers will have no affect on the pca as the data will be scaled and it will reduce the effect of outliers.

Additionally, after scaling, it will increase the speed of the operations too.

PCA: Scale the Data using z-score method. Does scaling have any impact on outliers? Compare boxplots before and after scaling and comment.

Before scaling

After scaling

AS we compare both the boxplots, that is before and after scaling.

- There are still outliers in the data
- The data is scaled to 0 to 15 range.
- After scaling, algorithem speeds up.

PCA: Perform all the required steps for PCA (use sklearn only) Create the covariance Matrix Get eigen values and eigen vector

Bartletts Test of Sphericity Bartlett's test of sphericity tests the hypothesis that the variables are uncorrelated in the population.

H0: All variables in the data are uncorrelated Ha: At least one pair of variables in the data are correlated If the null hypothesis cannot be rejected, then PCA is not advisable.

If the p-value is small, then we can reject the null hypothesis and agree that there is atleast one pair of vairbales in the data wihich are correlated hence PCA is recommended.

from factor_analyzer.factor_

KMO Test The Kaiser-Meyer-Olkin (KMO) - measure of sampling adequacy (MSA) is an index used to examine how appropriate PCA is.

Generally, if MSA is less than 0.5, PCA is not recommended, since no reduction is expected. On the other hand, MSA > 0.7 is expected to provide a considerable reduction is the dimension and extraction of meaningful components.

0.8039889932781528

This confirms the statistical significance of corelations.

```
#eigen vector
pca.components_
array([[ 1.56020579e-01,
                         1.67117635e-01,
                                          1.65553179e-01,
                        1.62566396e-01,
        1.62192948e-01,
                                          1.51357849e-01,
        1.51566500e-01, 2.72341946e-02, 2.81833150e-02,
        1.61992837e-01, 1.46872680e-01, 1.61749445e-01,
        1.65248187e-01,
                         1.59871988e-01, 1.45935804e-01,
                                         1.03127159e-01,
        1.46200730e-01, 1.23970284e-01,
        7.45397856e-02, 1.13355712e-01, 7.38821590e-02,
        1.31572584e-01, 8.33826397e-02, 1.23526242e-01,
        1.11021264e-01, 1.64615479e-01,
                                          1.55395618e-01,
        8.23885414e-02, 4.91953957e-02,
                                         1.28598563e-01,
        1.14305073e-01, 1.40853227e-01, 1.27669598e-01,
        1.55262872e-01, 1.47286584e-01, 1.64971950e-01,
                        1.65501611e-01,
        1.61253433e-01,
                                         1.55647049e-01,
        9.30142064e-02, 5.15358640e-02,
                                         1.28576116e-01,
        1.10645843e-01, 1.39592763e-01, 1.24545909e-01,
        1.54293786e-01, 1.46285654e-01, 1.50125706e-01,
        1.40157047e-01, 5.25417829e-02, 4.17859530e-02,
        1.21840354e-01, 1.16011410e-01, 1.39868774e-01,
        1.32192245e-01, 1.50375578e-01, 1.31066203e-01],
```

#covarience matrix
cov_matrix=data_scaled.cov()
cov_matrix

	No_HH	тот_м	TOT_F	M_06	F_06	M_SC	F_SC	M_ST	F_ST	M_LIT	 MARG_CL_0_3_M	MARG_CL_0_
No_HH	1.001565	0.917604	0.972109	0.798807	0.797619	0.776522	0.825137	0.149861	0.165361	0.933397	 0.557813	0.556
тот_м	0.917604	1.001565	0.984178	0.952313	0.949275	0.841240	0.827592	0.091565	0.086315	0.990860	 0.699403	0.596
TOT_F	0.972109	0.984178	1.001565	0.909396	0.907975	0.818238	0.834059	0.123819	0.128848	0.986983	 0.656373	0.599
M_06	0.798807	0.952313	0.909396	1.001565	0.999713	0.782342	0.748700	0.055361	0.044017	0.914186	 0.761800	0.648
F_06	0.797619	0.949275	0.907975	0.999713	1.001565	0.774345	0.742846	0.065240	0.054748	0.909062	 0.764809	0.650
M_SC	0.776522	0.841240	0.818238	0.782342	0.774345	1.001565	0.986612	-0.045738	-0.047900	0.819765	 0.674687	0.570
F_SC	0.825137	0.827592	0.834059	0.748700	0.742846	0.986612	1.001565	-0.014144	-0.009204	0.815424	 0.651473	0.586
M_ST	0.149861	0.091565	0.123819	0.055361	0.065240	-0.045738	-0.014144	1.001565	0.989593	0.090682	 0.123160	0.196
F_ST	0.165361	0.086315	0.128848	0.044017	0.054748	-0.047900	-0.009204	0.989593	1.001565	0.087512	 0.121601	0.217
M_LIT	0.933397	0.990860	0.986983	0.914186	0.909062	0.819765	0.815424	0.090682	0.087512	1.001565	 0.653528	0.560
F_LIT	0.929539	0.933166	0.958510	0.833812	0.830425	0.715056	0.729895	0.100645	0.101050	0.969471	 0.548153	0.485
M_ILL	0.764235	0.912965	0.859542	0.946889	0.950093	0.802028	0.763753	0.083193	0.072703	0.843152	 0.745823	0.626
F_ILL	0.863423	0.886746	0.888305	0.864675	0.866643	0.834017	0.848529	0.138247	0.149727	0.835690	 0.709562	0.673
TOT_WORK_M	0.939667	0.971936	0.970471	0.857112	0.854127	0.826064	0.824978	0.122835	0.119357	0.978480	 0.601813	0.514
TOT_WORK_F	0.926707	0.809159	0.877604	0.684563	0.686421	0.714087	0.778146	0.265163	0.285420	0.816644	 0.493600	0.549
MAINWORK_M	0.928079	0.934292	0.942489	0.790929	0.786017	0.779710	0.783570	0.113785	0.109484	0.954792	 0.473037	0.393
MAINWORK_F	0.892700	0.745533	0.824110	0.585895	0.586599	0.645150	0.713990	0.231171	0.246706	0.769242	 0.303333	0.340
MAIN_CL_M	0.432077	0.532567	0.488420	0.562042	0.562478	0.609108	0.579425	0.099419	0.083256	0.469297	 0.465574	0.392

Eigen values,

array([0.55726063, 0.13784435, 0.07275295, 0.06426418, 0.03865049, 0.03395169, 0.02060239, 0.01315764])

PCA: Identify the optimum number of PCs (for this project, take at least 90% explained variance). Show Scree plot.

```
#eigen values
var_exp=pca.explained_variance_ratio_
var_exp
```

array([0.55726063, 0.13784435, 0.07275295, 0.06426418, 0.03865049, 0.03395169, 0.02060239, 0.01315764])

Cumulative Variance Explained [0.55726063 0.69510499 0.76785794 0.83212212 0.87077261 0 .9047243

0.92532669 0.93848433]

The cumlative explained variance ratio is over almost 92.5% in 7 pca's.