Logistic regression using Stan

Alessandro Varacca, Thomas Heckelei

July 2024

But what does logistic regression mean? (1)

$$y \sim \mathcal{D}(\boldsymbol{\theta})$$

- where θ indicates a vector of parameters;
- ▶ When the outcome of some variable y is binary, $\mathcal{D} = \text{Ber}(\pi)$, where:

$$Ber(\pi) = \begin{cases} \pi & \text{if } y = 1, \\ 1 - \pi & \text{if } y = 0. \end{cases}$$

and

$$\mathbb{E}[y] = \pi,$$

$$\mathbb{V}(y) = \pi(1 - \pi)$$

▶ In **logistic** regression models, we want to specify a functional from for $\mathbb{E}[y|X=x]$. However, unlike linear regression, this cannot be modelled **independently** of the the (conditional) variance $\mathbb{V}(y|X=x)$;

But what does logistic regression mean? (2)

- Since $\pi \in [0,1]$, when we specify a functional form $\mathbb{E}[y|X=x]$ we need to make sure that is is constrained between 0 and 1;
- ► This is typically done via the so-called **link functions**:

$$\mathbb{E}[y|X=x] = g(\mu) = g\left(\alpha + \sum_{p=1}^{P} \beta_p x_p\right)$$

where either

$$g(\mu) = egin{cases} \Phi(\mu) & ext{for Probit regression} \\ \Lambda(\mu) = \dfrac{1}{1 + \exp(\mu)} & ext{for Logistic regression}. \end{cases}$$

We will use the second one.

How many parameters?

- ▶ The logistic regression model has P + 1 parameters:
 - **1**. α
 - 2. all the β_p
- ▶ We therefore need to set a prior on each of these parameters;
- ➤ To understand what kind of priors we need, it is important to understand what each of these parameters governs in the distribution on y_i;
- ► However, since y is binary, it is typically preferable to reason in terms of π , instead;
- Moreover, any change in α or β_p does not impact π_i directly, but it does so through the transformation $g(\alpha)$ or $g(\beta_p)$;
- In other words, $\beta_p = g^{-1}\{\mathbb{E}[y|X_p = x_p + 1]\} g^{-1}\{\mathbb{E}[y|X_p = x_p]\} \text{ and,}$ because of that, they are are hard to interpret on a probability scale;
- ▶ This makes prior calibration harder in logistic regression.

Calibrating the prior(s): α (1)

- We start off by studying a reasonable prior for α which, as in the linear regression case, is much easier to understand;
- Specifically, $\alpha = g^{-1}\{\mathbb{E}[y|X=0]\} = g^{-1}\{\pi\};$
- ▶ Therefore, to understand how a prior on α impacts π , we run the following simulation:
 - 1. Sample α^s from its prior;
 - 2. Calculate $\pi^s = g(\alpha^s)$
- Since this is relatively simple to implement, we immediatly try different configurations:

$$egin{aligned} & lpha \sim \mathsf{N}(0,10) \ & lpha \sim \mathsf{N}(0,2.5) \ & lpha \sim \mathsf{N}(0,1.5) \ & lpha \sim \mathsf{N}(0,1) \end{aligned}$$

Load data and libraries

```
library(rstan)
library(tidybayes)
library(tidyverse)
library(boot)

setwd("your working directory")

load("logistic_regression_data.RData")
source("aux_functions.R")

set.seed(123)
```

Visualize the data

```
par(mfrow=c(1,3), pty="s")
hist(y)
hist(x1)
hist(x2)
```



```
par(mfrow=c(1,1), pty="m")
```

Calibrating the prior(s): α (2)

```
par(mfrow=c(1,4), pty="s")
for (j in c(1, 1.5, 2.5, 10)) {

   alpha <- rnorm(1000, 0, j)
   g_alpha <- inv.logit(alpha)
   hist(g_alpha, main = paste0("a ~ N(0, ", j, ")"), xlab = "pi")
   abline(v = 0.5, col = "red", lty = 2)
}</pre>
```



```
par(mfrow=c(1,1), pty="m")
```

Calibrating the prior(s): α (3)

- How to judge these priors?
- If we have no strong beliefs that π should be right, left skewed or skewed towards extreme ≈ 1 or ≈ 0 values, then N(0, 2.5) and N(0, 10) are **very** informative;
- ▶ In other words, choosing either of these distribution will yield priors placing a lot of emphasis on 'certain' zero or one values for y;
- ▶ On the other hand, **no information** in the context of binary outcomes corresponds to $\pi \approx 0.5$;
- ▶ Put it differently, before seeing the data, any observation should have 50-50 chance of being one (or zero);
- ▶ Therefore, $\alpha \sim N(0,1)$ is the most uninformative prior.

Calibrating β_1 and β_2 (1)

- ▶ Understanding what prior to give β_1 and β_2 is more complex;
- Not only do the distribution on these parameters will impact π , but so will their interaction with the covariates;
- As for α , let us see how different distribution choices for β_p play out: we begin by setting $\beta_1 = \beta_2 \sim N(0,5)$ and simulate:
 - 1. α^s from N(0,1);
 - 2. β_1^s from N(0, 5);
 - 3. β_2^s from N(0, 5);
 - 4. $\pi_i^s = 1/(1 + \exp{\{\alpha^s + \beta_1^s x_{i,1} + \beta_2^s x_{i,2}\}}).$
- As in the linear regression case study, we run this simulation using a separate Stan program:

```
rstan_options(auto_write = TRUE)
logi_reg_prior <- stan_model("logistic_regression_prior.stan")</pre>
```

Calibrating β_1 and β_2 (2)

► As before, we must first set the data list:

```
dat_list <- list(</pre>
  N = length(y),
  x1 = x1,
  x2 = x2
  y = y,
 mu_b1 = 0,
 mu_b2 = 0,
  sigma_b1 = 5,
  sigma_b2 = 5,
  mu_alpha = 0,
  sigma_alpha = 1
```

Calibrating β_1 and β_2 (3)

• We can now simulate $\tilde{\pi}^s$!

 \blacktriangleright and extract the $N \times S$ matrix of simulated probability values:

```
prior_sample_fit_pi <- prior_sample %>% spread_draws(prob[condition])
```

Notice that this look slightly different from the linear regression case study. We will see why in a second.

Calibrating β_1 and β_2 (4)

- Let us now visualize the simulated π_i^s ;
- ▶ We can use the the functions in the tidybayes package;

```
prior_sample_fit_pi %>%
  ggplot(aes(x = condition, y = prob)) +
  geom_hex(bins = 50) +
  scale_fill_gradient(low = "white", high = "black") +
  theme_bw() +
  labs(x = "individual",
        y = "Probability") +
  theme(aspect.ratio = 1,
        axis.text.x = element_blank(),
        axis.ticks.x = element_blank(),
        panel.grid = element_blank())
```

Calibrating β_1 and β_2 (4)

- Let us now visualize the simulated π_i^s ;
- ▶ We can use the the functions in the tidybayes package;

► This plot is sort of a bird's-eye view of several sequential histograms.

Calibrating β_1 and β_2 (5)

▶ For example, picking individual, say, i = 95 we have:

► Therefore, $\beta_1 = \beta_2 \sim N(0,5)$ are very informative in that they automatically set probability values to their extremes.

Calibrating β_1 and β_2 (5)

▶ What if we set $\beta_1 = \beta_2 \sim N(0,1)$?

Calibrating β_1 and β_2 (6)

For individual, say, i = 95 we have:

- ► Still very informative!
- ► So, what can we do if we want to keep prior information limited?

Default priors in logistic regression (1)

- One again, the prom is the scale-dependence of these coefficients;
- Even setting a relatively tight prior on β_p , when we multiply these coefficients by x_p , if the rage of the corresponding covariate is too big, this will have a disproportionate importance in pushing π to the extremes;
- One again, we can solve this issue by standardizing!
- ▶ In the context of logistic regression this practice is a bit less intuitive, although still fairly straightforward to carry out;
- ► The literature suggests that numeric variables should have mean zero and standard deviation one, while categorical variables should be centered on their mean:

$$\dot{z} = \begin{cases} (z - \hat{z})/\text{sd}(z) * 0.5 & \text{if z is numeric,} \\ z - \bar{z} & \text{if z is binary.} \end{cases}$$

Default priors in logistic regression (2)

Let us re-define our data list:

```
x1 sc \leftarrow as.vector(scale(x1)*0.5)
x2_sc \leftarrow as.vector(scale(x2)*0.5)
dat_list <- list(</pre>
 N = length(y),
 x1 = x1_sc,
 x2 = x2_sc,
  y = y,
 mu b1 = 0
 mu_b2 = 0,
  sigma_b1 = 1,
  sigma_b2 = 1,
  mu_alpha = 0,
  sigma_alpha = 1
```

Default priors in logistic regression (3)

```
prior_sample <- sampling(logi_reg_prior,</pre>
                         data = dat list,
                         algorithm = "Fixed_param")
prior_sample_fit_pi <- prior_sample %>% spread_draws(prob[condition])
prior_sample_fit_pi %>%
  ggplot(aes(x = condition, y = prob)) +
  geom_hex(bins = 50) +
  scale_fill_gradient(low = "white", high = "black") +
 theme bw() +
  labs(x = "individual".
       v = "Probability") +
  theme(aspect.ratio = 1,
        axis.text.x = element_blank(),
        axis.ticks.x = element_blank(),
        panel.grid = element_blank())
```

Default priors in logistic regression (4)

Default priors in logistic regression (4)

Estimation

Once all the priors have been setup, we can use Stan to sample from the implied joint posterior distribution:

$$f(\alpha, \beta_1, \beta_2 | \mathbf{y}, X_1 = x_1, X_2 = x_2)$$

▶ To do this, we need to load the second program:

```
logi_reg <- stan_model("logistic_regression.stan")</pre>
```

► Fitting the model to the data now only requesires a slighly different sampling statement:

Exploring the results (1)

To quickly visualize the results, we can call the function summary as we would do with the standard lm output:

```
params <- c("alpha", "beta1", "beta2")</pre>
summary(fit, pars = params)$summary[,1:3]
##
               mean
                         se mean
                                         sd
## alpha 1.1697060 0.004120061 0.2003817
## beta1 3.1343891 0.009065092 0.4662018
## beta2 -0.7557881 0.006402164 0.3397158
params <- c("alpha", "beta1", "beta2")</pre>
summary(fit, pars = params)$summary[,4:8]
```

```
## 2.5% 25% 50% 75% 97.5%

## alpha 0.7846771 1.0353133 1.166372 1.2978965 1.5599222

## beta1 2.2340592 2.8213259 3.119159 3.4400835 4.0990099

## beta2 -1.4233458 -0.9789671 -0.748847 -0.5217524 -0.1039808
```

Exploring the results (2)

Because of standardization, we need to transform all the coefficients back to the original scale of the data;

```
beta1 <- sample_fit$beta1 * (0.5/sd(x1))
beta2 <- sample_fit$beta2 * (0.5/sd(x2))
alpha <- sample_fit$alpha - (beta1*mean(x1)) - (beta2*mean(x2))

par(mfrow=c(1,3), pty="s")
hist(beta1)
hist(beta2)
hist(alpha)</pre>
```



```
par(mfrow=c(1,1), pty="m")
```

Exploring the results (3)

```
summary(beta1)
##
     Min. 1st Qu. Median Mean 3rd Qu. Max.
##
   0.3958 0.7478 0.8268 0.8308 0.9119 1.2478
summary(beta2)
##
     Min. 1st Qu. Median Mean 3rd Qu. Max.
## -0.9867 -0.4968 -0.3800 -0.3835 -0.2648 0.1220
summary(alpha)
```

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -0.1763 0.5478 0.7287 0.7248 0.8963 1.7526
```

What if we used glm() instead?

```
summary(glm(y ~ x1 + x2, family = binomial(link = "logit")))
##
## Call:
## glm(formula = y ~ x1 + x2, family = binomial(link = "logit"))
##
## Coefficients:
##
             Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.7466 0.2886 2.587 0.00967 **
## x1 1.1288 0.1777 6.354 2.1e-10 ***
## x2 -0.4242 0.1968 -2.155 0.03116 *
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 247.64 on 199 degrees of freedom
##
## Residual deviance: 157.42 on 197 degrees of freedom
## AIC: 163.42
##
## Number of Fisher Scoring iterations: 6
```

Posterior probabilities (1)

▶ Just as in the linear regression case, we can calculate probabilities from the marginal posterior of the estimated parameters:

```
thr <- -0.5
prob <- mean(beta2>thr); prob
## [1] 0.75625
```


Credible Intervals

To calculate CrI, we simply take the corresponding quantile values:

```
rbind(quantile(alpha, c(.025, .975)),
    quantile(beta1, c(.025, .975)),
    quantile(beta2, c(.025, .975)))
```

```
## 2.5% 97.5%
## [1,] 0.2142146 1.23708005
## [2,] 0.5921740 1.08650981
## [3,] -0.7222782 -0.05276515
```

Model checking (internal consistency - 1)

- Unlike linear regression, we cannot evaluated goodness of fit by studying min, max and sd of the Posterior Predictive Distribution (PoPD);
- ► Inserade we need to fin a metric that make sense when using binary data;
- ▶ One such metric is the Correct Classification Rate (CCR), which indicates the proportion of observations correctly classified to either zero or one:

```
ccr <- numeric(length = nrow(sample_fit$y_pred))
for(s in 1:nrow(sample_fit$y_pred)) {
  conf_mat <- table(sample_fit$y_pred[s,], y)
  corr_class <- diag(conf_mat)
  ccr[s] <- (sum(corr_class) / sum(conf_mat)) * 100
}</pre>
```

Model checking (internal consistency - 2)


```
par(pty="m")
```