

Congratulations! You passed!

received 100%

Latest Submission Grade 100%

To pass 80% or higher

Go to next item

- 1. Which is an example of a classification task?
 - O Based on a patient's blood pressure, determine how much blood pressure medication (a dosage measured in milligrams) the patient should be prescribed.
 - Based on the size of each tumor, determine if each tumor is malignant (cancerous) or not.
 - O Based on a patient's age and blood pressure, determine how much blood pressure medication (measured in milligrams) the patient should be prescribed.
 - ✓ Correct

This task predicts one of two classes, malignant or not malignant.

2. Recall the sigmoid function is $g(z) = \frac{1}{1+e^{-z}}$

1/1 point

1/1 point

sigmoid function

If z is a large positive number, then:

- $\bigcirc g(z)$ is near negative one (-1)
- \odot g(z) is near one (1)
- $\bigcirc g(z)$ will be near zero (0)
- $\bigcirc g(z)$ will be near 0.5

Say z = +100. So e^{-z} is then e^{-100} , a really small positive number. So, $g(z)=rac{1}{1+{
m a\,small\,positive\,number}}$ which is close to $1\,$

1/1 point

	logistic regression model outputs $g(z)$ (a number between 0 and 1). Which of these would be a reasonable criteria to decide whether to predict if it's a cat?	
	Predict it is a cat if g(z) >= 0.5	
	\bigcirc Predict it is a cat if g(z) < 0.5	
	\bigcirc Predict it is a cat if g(z) < 0.7	
	\bigcirc Predict it is a cat if g(z) = 0.5	
	 Correct Think of g(z) as the probability that the photo is of a cat. When this number is at or above the threshold of 0.5, predict that it is a cat. 	
4.	True/False? No matter what features you use (including if you use polynomial features), the decision boundary learned by logistic regression will be a linear decision boundary.	1 / 1 poin
	False	
	O True	
	 Correct The decision boundary can also be non-linear, as described in the lectures. 	

 $A\ cat\ photo\ classification\ model\ predicts\ 1\ if\ it's\ a\ cat,\ and\ 0\ if\ it's\ not\ a\ cat.\ For\ a\ particular\ photograph,\ the$