BASE DE DATOS DE VECTORES

• 12/08/2023

EMBEDDINGS VARIABLES LATENTES

- Un embedding es un espacio de dimensiones relativamente bajas en el que puede traducir vectores de dimensiones altas.
- Los embeddings facilitan el aprendizaje automático en entradas grandes, como vectores dispersos que representan palabras.

EMBEDDINGS

EMBEDDINGS

BASE DE DATOS DE VECTORES

 A vector database is a type of database that stores data as high-dimensional vectors, which are mathematical representations of features or attributes. Each vector has a certain number of dimensions, which can range from tens to thousands, depending on the complexity and granularity of the data.

Workflow

METODOS DE BUSQUEDA

- ESTABLECER METRICAS Y MEDIDAS DE DISTANCIA
- COMO OBTENEMOS LOS VECTORES MÁS "PARECIDOS"

MÉTRICAS DE BUSQUEDA

- Euclideana (L2)
- Producto Interno (IP)
- Similaridad por coseno (normalize_L2)

METODOS DE BUSQUEDA

- knn (FLAT)
- Local Sensitivity Hashing (LSH)
- Hierarchical Navigable Small World (HNSW)
- Product Quantization (PQ)
- Inverted File Index (IVF)

KNN

HNSW

IVF

IVF

PQ Product Quantization

Workflow

Ranking

☐ include secondary database models 10 systems in ranking, July 2						
Rank					Score	
Jul 2023	Jun 2023	Jul 2022	DBMS	Database Model	Jul Jun Jul 2023 2023 2022	
1.	1.	1.	Kdb 🞛	Multi-model 👔	8.22 +0.22 -0.95	
2.	2.		Chroma	Vector DBMS	2.41 +0.02	
3.	3.		Pinecone	Vector DBMS	2.27 +0.14	
4.	4.	4 2.	Milvus 🞛	Vector DBMS	1.36 +0.05 +0.99	
5.	5.	4 3.	Weaviate ც	Vector DBMS	1.27 +0.19 +1.15	
6.	6.		Vald	Vector DBMS	0.86 -0.04	
7.	1 8.	4 .	Qdrant	Vector DBMS	0.61 +0.03 +0.54	
8.	1 9.		Deep Lake	Vector DBMS	0.55 +0.05	
9.	4 7.		Vespa	Multi-model 👔	0.55 -0.04	
10.	10.		MyScale	Multi-model 👔	0.19 -0.07	

PRACTICA