Ludwig

Grundlagenpraktikum: Rechnerarchitektur

LEHRSTUHL FÜRRECHNERARCHITEKTUR UND PARALLELE SYSTEME

Gruppe 233 – Vortrag zu Aufgabe A316

Sommersemester 2023

Ludwig Gröber, Julian Pins, Daniel Safyan

München, 21. August 2023

- (1) der Lösungsansatz
- (2) die angewandten Optimierungen
- (3) die Performanz
- (4) die Genauigkeit
- (5) ein Ausblick und die Einordnung

Daniel

(1) Lösungsansatz

Lookup-Tabelle

Daniel

binary32 IEEE 754 standard single-precision floating point number format

Problematik einer Reihenentwicklung

$$\sum_{k=0}^{\infty} a_k x^{\pm k}$$

Größtes erwartetes Ergebnis:

$$arsinh(DOUBLE_MAX) \approx 710,41$$

Gemischte Reihe:

$$\operatorname{arsinh}(x) = \begin{cases} \mathit{TaylorArsinh} & \text{falls } |x| < 1 \\ \ln(2x) + error(x) & \text{falls } |x| > 1 \\ x & \text{falls } x \in \{\pm \inf, \pm Nan\} \end{cases}$$

$$|x| \leq 1$$

Taylor Entwicklung um 0:

$$arsinh(x) = \sum_{k=0}^{\infty} \frac{(2k-1)!!(-x^2)^k}{(2k)!!(2k+1)} = \sum_{k=0}^{\infty} \frac{(-1)^k (2k)! x^{2k+1}}{(2k+1)(2^k * k!)^2}$$

x > 1

Approximation:

$$arshinh(x) = \ln\left(x + \sqrt{x^2 + 1}\right) = \ln(2x) + error(x)$$

Reine Reihe:

$$\ln(2) - \left(\frac{1}{x}\right) + error(x)$$

Gemischte Reihe:

$$\ln(2x) = \ln(2) + \ln(x) = \ln(2) + \ln(M * 2E) = \ln(2) + E * \ln(2) + \ln(M)$$

Ludwig

(2) Optimierungen

Reihen: Tylor-Entwicklungen

- Anzahl der Reihenglieder gewählt
- Koeffizienten der drei Reihen vorberechnet
- Horner-Schema angewandt $2x^4 4x^3 5x^2 + 7x + 11 = \left(\left(2 * x 4\right) * x 5\right) * x + 7\right) * x + 11$
- Absorption f
 ür kleine und große x -> weniger Reihenglieder

Tabellen-Lookup

- Logarithmische Verteilung der Werte in der Lookup-Tabelle
- Exponent und erste 4 Bit der Mantisse -> Index des nächst kleineren Wertes der Tabelle
- Punktsymmetrie: $arsinh(-x) = -arsinh(x) \rightarrow$ nur betragsmäßige Betrachtung
- Index der Tabelle aus Exponent und höchstwertigen vier Bit der Mantisse errechnet
- Lineare Interpolation zwischen Werten

Ludwig

(3) Performanz

Performanz

- 1 reine Reihe ist rechen-intensiv, da für alle *x* 13 Reihenglieder berechnet werden
- 2 gemischte Reihe für $|x| \ge 1$ am langsamsten, da 40 Reihenglieder berechnet werden
- gemischte Reihe für |x| < 1 fast gleich schnell wie die reine Reihe, da gleiche Reihe verwendet
- 3 Lookup-Table verbessert die Laufzeit auf Kosten des Speicherverbrauchs von etwa 255KB
- 4 <math.h> für große x auch mit mehr als 10^{11} Wiederholungen Laufzeit 0ns

Pins

(4) Genauigkeit

Pins

Vergleichswert: relativer Fehler

Genauigkeit Reihenentwicklung

Pins

Vergleichswert: relativer Fehler

$$arsinh(x) = \sum_{k=0}^{\infty} \frac{(2k-1)!!(-x^2)^k}{(2k)!!(2k+1)} = \sum_{k=0}^{\infty} \frac{(-1)^k (2k)! x^{2k+1}}{(2k+1)(2^k * k!)^2}$$

Reihenentwicklungen

Reihenentwicklungen

Pins

Pins

(5) Einordnung und Ausblick

Zusammenfassung

Pins

	Genauigkeit	Performanz (worst case)	Speicherverbrauch
Lookuptabelle	Bis zu 0.02 % rel. Fehler für Eingaben zwischen Datenpunkten	2.61 ns	Ca. 500 KB für Tabelle
Reine Reihendarstellung	Nur Konvergenzbereich x < 1	6.37 ns	Niedrig
Gemischte Reihendarstellung	Sehr hoch Ungenau für 0.25 < x < 4	29.21 ns	Niedrig
Komplexe Instruktionen	Sehr hoch Ungenau für x < 2 ⁻²⁶	1.65 ns	Niedrig

Ausblick: weitere Optimierungen

Pins

Allgemein:

- Datentyp float f
 ür Speichereinsparung
- Mikrooptimierungen Assembly
- Verwendung von Reihendarstellung/ Lookuptabelle abhängig vom Eingabewert

Reihendarstellungen:

Anzahl Reihenglieder abhängig von Eingabewert

Lookuptabelle:

- Splines
- Umverteilung der Messpunkte in der Lookuptabelle

Danke für die Aufmerksamkeit & Zeit für Fragen

$$---arsinh(x) = ln(x + \sqrt{x^2 + 1})$$

Quellen

O.V. (2019), https://meerdavon.com/wipe-out-aengste-surfen/ (Aufgerufen am: 15.07.2023) "Surfen"

Preuß, M. (2019), https://science-to-go.com/die-kettenlinie-2/ (Aufgerufen am: 15.07.2023) "Kettenlinie"

Hartung, L. (2019), https://www.spektrum.de/news/weisser-zwerg-nagt-riesenplaneten-an/1689980

(Aufgerufen am: 15.07.2023) "Gravitationswelle"

O.V. (2014), https://commons.wikimedia.org/wiki/File:History_of_the_Universe_%28multilingual%29.svg (Aufgerufen am: 15.07.2023) "Ausdehnung des Universums"

Stolfi, J. (2009), https://commons.wikimedia.org/wiki/File:Hash_table_3_1_1_0_1_0_0_SP.svg (Aufgerufen am 16.07.2023) "Hash-Map"

Rtnick (2010), https://commons.wikimedia.org/wiki/File:Lin_interp_w-legend.png (Aufgerufen am 16.07.2023) "Linear interpolation"

Quellen

O.V. (2016), https://commons.wikimedia.org/wiki/File:Runge's_phenomenon_in_Lagrange_polynomials.svg (Aufgerufen am 16.07.2023) "Runge Effekt"

O.V. (2022), https://commons.wikimedia.org/wiki/File:Binary32_format_for_single-precision_floating_point_number.png (Aufgerufen am 16.07.2023) "double"