4 סמסטר ב' תשפ"ג - 2022-2023 - תרגיל 80177

הנחיות: כתבו את הפתרון בכתב יד ברור, בצירוף שם (פרטי ומשפחה) ומספר ת.ז. יש לציין כותרת ברורה בראש הדף הכוללת את שם הנחיות: כתבו את הפתרון, כאשר השאלות בסדר עולה, והגישו אלקטרונית באתר הקורס עד ל־ 27.04.23 בשעה 22:00.

- . $\left(ab\right)^r = a^r b^r$ מתקיים: $r \in \mathbb{Q}$ ולכל $0 < a,b \in \mathbb{R}$.1
- . $2\sqrt{x-1} + |x-2| = |x-3|$ מצאו את הקבוצה של כל המספרים הממשיים x המקיימים. 2
 - : הוכיחו או הפריכו את הטענות הבאות
 - (א) הסכום של שני מספרים אי־רציונליים הוא אי־רציונלי.
 - (ב) המכפלה של שני מספרים אי־רציונליים היא אי־רציונלית.
 - . $cx+d \neq 0$ אזי $x \in \mathbb{R} \smallsetminus \mathbb{Q}$ ויהי $c \neq 0$ כך ש־ d כך מי $c \neq 0$ גו יהיי (ג)
 - . $\sup(A)\in\mathbb{R}\setminus\mathbb{Q}$ אזי אזי $A\subseteq\mathbb{R}\setminus\mathbb{Q}$ (ד) תהי
- . $z \in A$ אז $x_1 < z < x_2$ אם $z \in \mathbb{R}$ ולכל ולכל $x_1, x_2 \in A$ אם לכל אונטרוול) אם נקראת מקטע (או אינטרוול) אם לכל אינטרוול). אינטרוול
 - . $[a_1,a_2]\subseteq A$ אזי , $\{a_1,a_2\}\subseteq A$ הוכיחו שאם . $\mathbb R$ מקטע ב־
 - (ב) יהיו $I\cap J$ וויכיחו מכיל לכל היותר איבר אחד. $(I\cap\mathbb{Q})\cap(J\cap\mathbb{Q})=\varnothing$ כך ש־
 - : הוכיחו את הטענות הבאות . \mathbb{R} . הוכיחו את הטענות הבאות .5
 - . x_0 של שתי סביבות מנוקבות של איז היא סביבה מנוקבות של (א)
 - . x_0 של שתי סביבות מנוקבות של איז היא מנוקבות של ביבות של (ב)
 - . x_0 שמכיל את מכיל מכיל מכיל שמכיל את שמכיל פתוח שמכיל (ג)
 - . x_0 שמכיל אם מכיל מכיל מכיל את שמכיל את סגור שמכיל (ד)
 - . $\sqrt[n]{y_1 \cdot \ldots \cdot y_n} \leqslant \frac{y_1 + \ldots + y_n}{n}$: הוכיחו $0 < y_1 \leqslant y_2 \leqslant \ldots \leqslant y_n$ עם $y_1 , \ldots , y_n \in \mathbb{R}$ איי יהיו $0 \leqslant y_1 \leqslant y_2 \leqslant \ldots \leqslant y_n$ איי יהיו $0 \leqslant y_1 \leqslant y_1 \leqslant y_2 \leqslant \ldots \leqslant y_n$ והעזרו בשאלה 10 של תרגיל 3). $0 \leqslant y_1 \leqslant y_2 \leqslant \ldots \leqslant y_n$ והעזרו בשאלה 10 של תרגיל 3).
 - $z_1:$ אזי: $0< z_1\leqslant z_2\leqslant \ldots\leqslant z_n$ עם $z_1,\ldots,z_n\in\mathbb{R}$ אזי: יהיו הסיקו מסעיף א': יהיו יהיו $rac{n}{rac{1}{z_1}+rac{1}{z_2}+\ldots+rac{1}{z_n}}\leqslant \sqrt[n]{z_1\cdot\ldots\cdot z_n}$

. נקראת 'אי־שוויון הממוצעים' נקראת ' $\frac{n}{\frac{1}{z_1}+\frac{1}{z_2}+\ldots+\frac{1}{z_n}}\leqslant \sqrt[n]{z_1\cdot\ldots\cdot z_n}\leqslant \frac{z_1+\ldots+z_n}{n}$ נקראת השרשרת יאי־שוויון הממוצעים

. $z_1 \,, \ldots , \, z_n$ נקרא (או אריתמטי או ממוצע חשבוני נקרא נקרא $\dfrac{z_1 + \ldots + z_n}{n}$

 $z_1 \, , \ldots , \, z_n$ נקרא ממוצע הנדסי (או גיאומטרי $\sqrt[n]{z_1 \cdot \ldots \cdot z_n}$

 $z_1\,,\ldots,\,z_n$ נקרא ממוצע הרמוני של $rac{n}{rac{1}{z_1}+rac{1}{z_2}+\ldots+rac{1}{z_n}}$