Bio Sensors

Principle of Biosensors

Body Temperature Measurement

- Traditionally place to measure is mouth or armpit
- Can also be measured from ear by utilizing thermal radiation
- Body thermal distribution can be measured by infra red cameras
- Blood temperature can be measured by using thin thermocouple sensor invaded through the skin

Electrical Responses

- ECG, Electro-Cardiogram, Heart activity
- EMG,Electro-Myogram, Muscle movement
- EOG, Electro-Oculogram, Eye movement
- EEG, Electro-Encephalogram
- GSR, Galvanic Skin Response

Disposable Oral Thermometer

Thermal Radiation Based Ear Thermometer

Block diagram of a pyroelectric radiation ear thermometer.

Camera, Measuring Thermal Radiation

Structure of the pyroelectric vidicon camera.

Blood Flow Measurement

- Blood flow in big vessels and sometimes in heart is important part of diagnostics
- Basically similar technology can be also used to measure respiratory air flow

Noninvasive Sensor for Blood Flow Measurement

Cross section of the skin blood-flow (SBF) sensor with an isotherm system generated in the skin.

Blood Flow Measurement Bridge

Schematic circuit diagram of the constant temperature hot-film anemometer used for blood-flow measurements.

Blood Pressure Measurement

- On the skin blood pressure can be done by using piezo resistive silicon based pressure sensors. Signal response is formed in traditional differential amplifier.
- Similar miniature size sensors can be utilized in invasive measurements under the skin

Blood Pressure Sensor

 (a) Typical resistor layout structure and (b) circuit connection of the piezoresistive pressure sensor membranes.

Pressure sensor structures based on silicon diaphragms; (a) piezoresistive and (b) optical fiber version. [Reprinted with permission

Spirometry

- The performance of lungs can be measured by utilizing pressure sensors which make it possible to measure e.g. respiratory air flow
- Sensors based on piezoelectrical features of PVDF (polyvinylidene difluoride) are also used for lungs measurements
- Miniature size silicon based mechanical sensors are used in internal pressure measurements of eye

Breath Measurement

Structure of the piezopolymer-based finger pulse and breathing wave sen-

SOr.

Internal Eye Pressure Measurement

Acoustic Sensor in Hearing Aid

Hearing aid is a special application for acoustic sensors

Sensors in Ultrasonic Imaging

X-ray Imaging

X-ray image formation using Charpak detector and X-ray scanning.

X-ray Imaging

Principle of X-ray computed tomography.

X-ray Imaging, Sensor

Structure of the classical X-ray detector used in CT—photo-electron multiplier with scintillator crystal and collimator.

oamk.fi

STUDY MATERIAL

Electrochemical Sensors

- Used often to measure oxygen in blood
- Also used to measure pH (power of Hydrogen)

STUDY MATERIAL

MRI (Magnetic Resonance Imaging)

