Step 1: Data Collection & Understanding

```
In [18]: # Importing pandas for data handling
         import pandas as pd
         # Pandas makes data cleaning and analysis faster and easier
         # pandas can handle large datasets efficiently
         class DataLoader:
             This class is responsible for loading the dataset and providing an initial e
             Attributes:
                 file_path (str): Path to the dataset file.
                 df (DataFrame): Loaded dataset.
             def __init__(self, file_path):
                 Initializes the DataLoader with the path to the dataset.
                 Parameters:
                     file_path (str): Path to the CSV dataset file.
                 self.file path = file path
                 self.df = None
             def load_data(self):
                 Loads the dataset from the provided file path and prints important initi
                 Returns:
                     DataFrame: The loaded dataset.
                 print("\nDataset Loading...")
                 print("-" * 100)
                 # Load the dataset
                 self.df = pd.read_csv(self.file_path)
                 # Print shape of the dataset (rows, columns)
                 print("\nDataset Loaded Successfully!")
                 print("→ Shape of Dataset:", self.df.shape)
                 print("-" * 100)
                 # Print the data types of each column
                 print(" Data Types:\n")
                 print(self.df.dtypes)
                 print("-" * 100)
                 # Display first 5 rows of the dataset
                 print("First 5 Rows:\n")
                 print(self.df.head())
                 print("-" * 100)
                 # Display missing values in the dataset
                 print("Missing Values (Column-wise):\n")
                 print(self.df.isnull().sum())
```

```
print("-" * 100)

# Show statistical summary of numeric features
print("Statistical Summary (Numerical Columns):\n")
print(self.df.describe().T)
print("-" * 100)

return self.df

loader = DataLoader("heart.csv")
df = loader.load_data()
```

```
Dataset Loading...
Dataset Loaded Successfully!
→ Shape of Dataset: (918, 12)
Data Types:
Age
                int64
Sex
               object
ChestPainType
               object
RestingBP
                int64
Cholesterol
               int64
FastingBS
               int64
              object
RestingECG
MaxHR
                int64
ExerciseAngina
              object
Oldpeak
              float64
              object
ST_Slope
HeartDisease
               int64
dtype: object
First 5 Rows:
  Age Sex ChestPainType RestingBP Cholesterol FastingBS RestingECG MaxHR \
0
   40
       Μ
                 ATA
                          140
                                     289
                                               0
                                                     Normal
                                                              172
1
  49 F
                 NAP
                          160
                                     180
                                                0
                                                     Normal
                                                              156
2 37 M
                ATA
                         130
                                     283
                                               0
                                                      ST
                                                              98
                                                0
3
   48
      F
                 ASY
                          138
                                     214
                                                     Normal
                                                              108
   54 M
                                                0
                                                     Normal
                 NAP
                         150
                                     195
                                                              122
 ExerciseAngina Oldpeak ST Slope HeartDisease
0
            N
                  0.0
                          Up
                                       0
1
            N
                  1.0
                         Flat
                                       1
2
            Ν
                  0.0
                                       0
                         Up
3
            Υ
                  1.5
                        Flat
                                       1
                  0.0
                         Up
-----
Missing Values (Column-wise):
Age
               0
Sex
ChestPainType
               0
RestingBP
Cholesterol
FastingBS
               0
RestingECG
               0
MaxHR
               0
ExerciseAngina
01dpeak
               0
ST Slope
               0
HeartDisease
dtype: int64
-----
-----
Statistical Summary (Numerical Columns):
```

	count	mean	std	min	25%	50%	75%	max	
Age	918.0	53.510893	9.432617	28.0	47.00	54.0	60.0	77.0	
RestingBP	918.0	132.396514	18.514154	0.0	120.00	130.0	140.0	200.0	
Cholesterol	918.0	198.799564	109.384145	0.0	173.25	223.0	267.0	603.0	
FastingBS	918.0	0.233115	0.423046	0.0	0.00	0.0	0.0	1.0	
MaxHR	918.0	136.809368	25.460334	60.0	120.00	138.0	156.0	202.0	
Oldpeak	918.0	0.887364	1.066570	-2.6	0.00	0.6	1.5	6.2	
HeartDisease	918.0	0.553377	0.497414	0.0	0.00	1.0	1.0	1.0	

Step 2: Preprocessing, Univariate & Bivariate Analysis

```
In [19]:
         import seaborn as sns # Built on top of matplotlib, seaborn makes it easy to cre
         import matplotlib.pyplot as plt # Low-level plotting library for creating visual
                                # Provides numerical operations and supports fast array
         import numpy as np
         from sklearn.preprocessing import StandardScaler # From Scikit-learn, this class
         # Crucial for machine learning algorithms that rely on feature scaling.
         class DataPreprocessor:
             This class handles preprocessing, univariate analysis, and bivariate analysi
             def __init__(self, df):
                 self.df = df
             def preprocess(self):
                 Handles missing values, encodes categorical variables, and returns the p
                 print("Starting Data Preprocessing...")
                 print("-" * 100)
                 # Handling missing values (if any)
                 if self.df.isnull().sum().sum() > 0:
                     self.df = self.df.fillna(self.df.median(numeric only=True))
                     print("Missing values filled with median of respective columns.")
                 # Encoding categorical features
                 self.df = pd.get_dummies(self.df, drop_first=True)
                 print("Categorical Variables Encoded.")
                 print("-" * 100)
                 print("Data Preprocessing Completed Successfully.")
                 print("-" * 100)
                 return self.df
             def univariate_analysis(self):
                 Performs univariate analysis including countplots, pie charts, and histo
                 print("Univariate Analysis Started...")
                 print("-" * 100)
```

```
# Countplot of Target Variable
        sns.countplot(x='HeartDisease', data=self.df)
        plt.title("Target Class Distribution (Countplot)")
        # Pie Chart of Target Variable
        target_counts = self.df['HeartDisease'].value_counts()
        plt.figure(figsize=(6, 6))
        plt.pie(target_counts, labels=['No Heart Disease', 'Heart Disease'], aut
        plt.title("Target Class Distribution (Pie Chart)")
        plt.show()
        # Histograms of Numerical Features
        numeric_cols = self.df.select_dtypes(include=[np.number]).columns.drop('
        self.df[numeric_cols].hist(bins=20, figsize=(14, 10), edgecolor='black')
        plt.suptitle("Histogram of Numerical Features", fontsize=16)
        plt.show()
        print(self.df['HeartDisease'].value counts())
        print("-" * 100)
    def bivariate_analysis(self):
        Performs bivariate analysis including correlation heatmap and boxplots o
        print("Bivariate Analysis Started...")
        print("-" * 100)
        # Correlation Heatmap
        plt.figure(figsize=(12, 8))
        sns.heatmap(self.df.corr(), annot=True, cmap='coolwarm_r')
        plt.title("Correlation Heatmap")
        plt.show()
        # Boxplots for Numerical Features vs Target
        numeric_cols = self.df.select_dtypes(include=[np.number]).columns.drop('
        for col in numeric cols:
            plt.figure(figsize=(8, 5))
            sns.boxplot(x='HeartDisease', y=col, data=self.df)
            plt.title(f"{col} vs HeartDisease (Boxplot)")
            plt.show()
        # Optional Pairplot for smaller datasets (commented out)
        # sns.pairplot(self.df, hue='HeartDisease', diag_kind='hist')
        # plt.show()
        print("-" * 100)
preprocessor = DataPreprocessor(df)
df = preprocessor.preprocess()
preprocessor.univariate analysis()
preprocessor.bivariate analysis()
```


Target Class Distribution (Pie Chart)

Histogram of Numerical Features

HeartDisease

1 508 0 410

Name: count, dtype: int64

Bivariate Analysis Started...

MaxHR vs HeartDisease (Boxplot)

Step 3: Data Splitting

```
In [20]:
        from sklearn.model_selection import train_test_split # Splits your dataset into
         from sklearn.preprocessing import StandardScaler # Standardizes/Scales your nume
         class DataSplitter:
             Splits the dataset into training and testing sets and applies feature scalin
             def __init__(self, df):
                 self.df = df
             def split(self):
                 # Step 1: Separate Features and Target Variable
                 X = self.df.drop('HeartDisease', axis=1)
                 y = self.df['HeartDisease']
                 # Step 2: Train-Test Split (70% training, 30% testing)
                 X_train, X_test, y_train, y_test = train_test_split(
                     X, y, test_size=0.3, random_state=42
                 # Step 3: Apply Feature Scaling
                 scaler = StandardScaler()
                 X_train_scaled = scaler.fit_transform(X_train)
                 X_test_scaled = scaler.transform(X_test)
                 # Step 4: Display Shape of Data
                 print("Data Split Completed:")
                 print(f"Training Set Shape: {X_train.shape}")
```

```
print(f"Testing Set Shape: {X_test.shape}")
    print("Data Scaled Successfully.")
    print("-" * 100)

    return X_train_scaled, X_test_scaled, y_train, y_test, scaler

# Example Usage
splitter = DataSplitter(df)
X_train, X_test, y_train, y_test, scaler = splitter.split()

Data Split Completed:
Training Set Shape: (642, 15)
Testing Set Shape: (276, 15)
Data Scaled Successfully.
```

Step 4: Model Training (SVM) and Evaluation

```
In [21]:
        from sklearn.svm import SVC
         from sklearn.metrics import accuracy_score, classification_report
         class SVMTrainer:
             Trains and evaluates a Support Vector Machine (SVM) classifier.
             def __init__(self):
                 self.model = None
             def train(self, X_train, y_train, kernel='linear'):
                 Train an SVM model on the provided training data.
                 Parameters:
                     X train: Training features
                     y train: Training target labels
                     kernel: Kernel type ('linear', 'rbf', 'poly', etc.)
                 self.model = SVC(kernel=kernel)
                 self.model.fit(X_train, y_train)
                 print("Model Training Completed.")
                 print("-" * 100)
                 return self.model
             def evaluate(self, model, X_test, y_test):
                 Evaluate the trained model on test data.
                 Parameters:
                     model: Trained model object
                     X_test: Testing features
                     y_test: Actual target labels for test data
                 print("Model Evaluation Results")
                 print("-" * 100)
                 y_pred = model.predict(X_test)
```

```
print(f"Accuracy Score: {accuracy_score(y_test, y_pred):.4f}")
       print("\nClassification Report:\n")
       print(classification_report(y_test, y_pred))
       print("-" * 100)
 # Example Usage
 trainer = SVMTrainer()
 model = trainer.train(X_train, y_train, kernel='linear')
 trainer.evaluate(model, X_test, y_test)
Model Training Completed.
______
Model Evaluation Results
______
Accuracy Score: 0.8732
Classification Report:
          precision recall f1-score support
        0
              0.81
                     0.89
                             0.85
                                      112
              0.92
                     0.86
                              0.89
                                      164
                              0.87
                                     276
   accuracy
            0.87
                     0.88
                             0.87
                                     276
  macro avg
weighted avg
              0.88
                     0.87
                              0.87
                                      276
```

Step 5: Model Saving and Loading using Pickle

```
In [22]: import pickle

class ModelManager:
    """
    Handles saving and loading of trained ML models using pickle.
    """

def save_model(self, model, scaler, filename='heart_disease_svm_model.pkl'):
    """
    Saves the trained model and scaler to a file.

Parameters:
    model: Trained machine learning model
    scaler: Scaler object used for data preprocessing
    filename: Name of the file to save
    """

with open(filename, 'wb') as f:
    pickle.dump((model, scaler), f)
    print(f"Model Saved as '{filename}'")
    print("-" * 100)

def load_model(self, filename='heart_disease_svm_model.pkl'):
    """
```

```
Loads the trained model and scaler from a file.

Returns:
    model: The trained machine learning model
    scaler: The scaler object used for preprocessing
"""

with open(filename, 'rb') as f:
    model, scaler = pickle.load(f)
    print(f"Model Loaded from '{filename}'")
    return model, scaler

manager = ModelManager()
manager.save_model(model, scaler)  # Saves model
loaded_model, loaded_scaler = manager.load_model()  # Loads model back
print("Testing Reloaded Model Accuracy:")
print("-" * 100)
print("Score:", loaded_model.score(X_test, y_test))
```

Model Saved as 'heart_disease_svm_model.pkl'

Model Loaded from 'heart_disease_svm_model.pkl'

Testing Reloaded Model Accuracy:

.....

Score: 0.8731884057971014