ОТЧЁТ ПО ПРАКТИКУМУ. МЕТОД УСЛОВНОГО ГРАДИЕНТА.

Студентка 411 группы Кузнецова М.П.

1 Математическое описание метода

Рассмотрим задачу минимизации:

$$J(u) \to inf, u \in U \tag{1}$$

Идея метода условного градиента основана на том, что в окрестности точки u_k функционал J(u) можно приближенно представить как

$$J(u) \approx J(u_k) + \langle J'(u_k), u - u_k \rangle \tag{2}$$

Так как $J(u_k)$ близко к J(u), то мы стараемся минимизировать скалярное произведение $J_k(u) = \langle J'(u_k), u - u_k \rangle$. Введём обозначение:

$$\bar{u}_k = argmin_{u \in U} J_k(u) \tag{3}$$

Для обоснования сходимости метода используется теорема:

Теорема. Пусть U - выпуклое, замкнутое, ограниченное множество, $J(u) \in C^1(U)$ и выпукла, $J'(u) \in Lip(U)$ с константой L>0, D=diam U. Тогда

$$J(u_k) - J_* \le \frac{J(u_0) - J_*}{1 + \frac{J(u_0) - J_*}{2JD}k} = O(\frac{1}{k})$$
(4)

Если J(u) сильно выпукла, то, кроме этого, выполнено условие

$$\frac{k}{2}||u_k - u_*|| \le J(u_k) - J_* \tag{5}$$

Источники: Потапов М.М. "Методы оптимизации. Конспект лекций."

2 Описание функции, реализующей метод условного градиента

f - функция, которую мы минимизируем, f_k - её производная, A,b - ограничения на $x,\,eps$ - точность, k_{max} - максимальное количество итераций.

Функция conditional gradient задаёт метод условного градиента. В ней, используя метод linprog, решаем вспомогательную задачу линейного программирования и находим \bar{u}_k . Далее, используя метод деления отрезка пополам bisect, находим α_k . После находим u_{k+1} и переходим к следующей итерации.

3 Описание решения задачи оптимизации

Функция, которую мы минимизируем

$$J(x) = \sum_{i=1}^{5} \left[(\ln(x_i - 2))^2 + (\ln(10 - x_i))^2 - (\prod_{i=1}^{5} x_i)^2 \right] \to min$$
 (6)

$$2.001 < x_i < 9.999, i = 1, ..., 5$$
 (7)

Задаём ограничения A и b, начальную точку x_0 , точность eps, програмируем данную функцию f(x), её производную $f_k(x)$ и производную по α функции $f(x_0 + \alpha * \bar{x}_k)$.

Задав всем этим нашу задачу минимизации, используем нашу функцию условного градиента и находим ответ:

$$x_{min} = (9.999, 9.999, 9.999, 9.999) \tag{8}$$

$$f(x_{min}) = -49950022233.797874 \tag{9}$$

4 Таблица решений в зависимости от выбора начальной точки

Как можно видеть по таблице, используя метод условного градиенты, оптимальное решение находится за 2 итерации, если мы не находимся на границе. И за 1 итерацию, если мы находимся на границе, которая является точкой минимума для данной задачи (последняя строчка таблицы). Из чего можно сделать вывод, что функция всюду убывает внитри наших ограничений и поэтому метод за одну итерацию приводит нас к границе и в ней и остаётся.

Ниже приведены начало и конец таблицы. С полной таблицей можно ознакомиться в прикреплённом файле table.csv.

Каждая точка имеет вид $x = [x_i, x_i, x_i, x_i, x_i]$. В таблице для более удобного её изображения пишется чему равно x_i на данной итерации.

X_0	iterations	X_{min}	$f(\mathbf{x}_{min})$
$x_i = 2.001$	2	$x_i = 9.999$	-49950022233.797874
$x_i = 2.002$	2	$x_i = 9.999$	-49950022233.797874
$x_i = 2.003$	2	$x_i = 9.999$	-49950022233.797874
$x_i = 2.004$	2	$x_i = 9.999$	-49950022233.797874
$x_i = 2.005$	2	$x_i = 9.999$	-49950022233.797874
$x_i = 2.006$	2	$x_i = 9.999$	-49950022233.797874
$x_i = 2.007$	2	$x_i = 9.999$	-49950022233.797874
$x_i = 2.008$	2	$x_i = 9.999$	-49950022233.797874
$x_i = 2.009$	2	$x_i = 9.999$	-49950022233.797874
$x_i = 2.01$	2	$x_i = 9.999$	-49950022233.797874
			• • •
$x_i = 9.99$	2	$x_i = 9.999$	-49950022233.797874
$x_i = 9.991$	2	$x_i = 9.999$	-49950022233.797874
$x_i = 9.992$	2	$x_i = 9.999$	-49950022233.797874
$x_i = 9.993$	2	$x_i = 9.999$	-49950022233.797874
$x_i = 9.994$	2	$x_i = 9.999$	-49950022233.797874
$x_i = 9.995$	2	$x_i = 9.999$	-49950022233.797874
$x_i = 9.996$	2	$x_i = 9.999$	-49950022233.797874
$x_i = 9.997$	2	$x_i = 9.999$	-49950022233.797874
$x_i = 9.998$	2	$x_i = 9.999$	-49950022233.797874
$x_i = 9.999$	1	$x_i = 9.999$	-49950022233.797874