Maxent Conventions and Kernels

Contents

1	Conventions	1
	1.1 Particle-Hole Conventions	1
2	Kernels	2

1 Conventions

The Maxent project uses the following conventions:

$$G(i\omega_n) = \int_0^\beta d\tau e^{-i\omega_n \tau} G(\tau)$$
$$G(\tau) = \frac{1}{\beta} \sum_{i\omega_n} e^{-i\omega_n \tau} G(i\omega_n)$$

$$G(\tau)<0\,\forall\tau\in[0,\beta]$$

$$A(\omega) = -\frac{1}{\pi} \text{Im}[G(\omega)]$$

$$i\omega_n = \begin{cases} \frac{(2n+1)\pi}{\beta} & \text{fermionic} \\ \frac{2n\pi}{\beta} & \text{bosonic} \end{cases}$$

1.1 Particle-Hole Conventions

The following applies for data that is particle-hole symmetric:

- For Fermionic Matsubara data, $Re[G(i\omega_n)] = 0$
- For Bosonic Matsubara data, $\text{Im}[G(i\omega_n)] = 0$
- \bullet For Legendre data, points that have ℓ odd are 0, but Maxent can read them

2 Kernels

Dataspace	Kernel Name	Kernel
Frequency	Fermionic	$\frac{1}{i\omega_n-\omega}$
Without PH	Bosonic	$\frac{\omega}{i\omega_n + \omega}$
	Anomalous	$\frac{-\omega}{i\omega_n - \omega}$
Frequency	Fermionic	$-\frac{\omega_n}{\omega_n^2 + \omega^2}$
With PH	Bosonic	$\frac{\omega^2}{\omega_n^2 + \omega^2}$
	Anomalous	$\frac{\omega^2}{\omega_n^2 + \omega^2}$

Dataspace	Kernel Name	Kernel
Time	Fermionic	$-\frac{e^{-\tau\omega}}{1+e^{-\omega\beta}}$
	Bosonic	$\frac{1}{2}\omega \frac{\left[e^{-\omega\tau} + e^{-\omega(\beta-\tau)}\right]}{1 - e^{-\omega\beta}}$
	Boris	$-e^{-\omega au}$