Today's content

- (i) Workers allocation
- (ii) Aggressive cows.

10. Given N tasks, k workers and time taken for each task, find min time in which we can complete all tasks.

Note: 1) A single worker can only do continuous set of tasks ii) All workers start their assigned task at same time iii) A task can only be assigned to 1 worker.

$$\{x\}$$
: 0 1 2 3 4 5 Time taken. N=5, 1 1 1 1 1 101 $\{x\}$

Ideal: Brute force.

- g: In how many ways can I choose 2 sticks out of 14 sticks?.

 14

 C2.
- g: In how many ways can I choose (k-1) sticks out of (n-1) sticks?.

 N-1 *N. TC.

 (5 prefix Sum =>. N+ n-1 c *k = TC.

Idea 2: Binary search.

exi: ar: [10 2 9 8].

K=1, Time taken = 29.

K=4: Time taken.

Discord.

case 1: If we can finish the task in mid time.

ans=mid goto left.

mid

case 2: If we cannot finish task in mid time. goto right.

Can I finish all the tasks in lomin?

Can I finish all the tasks in 30 min?

```
Code:
                           -> #Tasks.
  def mintime (ar, k, m)
   ٤
          L= max(ar), h= sum(ar), ans= sum(ar).
                                                        # elements = h-1+1
                                                            = Sum(ar)-max(or).
          while (L=h)
          1
                 m= (1+h)/2.
                 Il can we finish all the tasks in m time.
                 it (check (n, k, ar, m))
                      ans= m
                      h=m-1 // goto kbt.
                 else // goto right
                      1= m+1
           return ans
    z
                          def cherk (n, k, ar, t)
                                C=0, S=0
                                 for i in range (0, N)
                                      S= S+ar(i) 4 adding tosk time.
                                       if(s>t)
                                        if (c==k) // utilized k workers, but tasks
retian folse are left.
                                 return true
```

Even after utilizing 4 people, tasks are left out, retain false

- X=15, K=4.		0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 3 5 1 7 8 2 5 3 10 1 4 7 5 4 6 $\begin{array}{c} & & & & & & & & & & & & & & & & & & &$			
L	h		n I finish 111 tasks in m time	ans update.	
lo	31	40.	✓	ans=40, goto left, h=m-1.	
lo	39	24	~	ans= 24, goto left, h= m-1	
lo	23	le	×	goto right, 1=m+1.	
17	23	20	*	goto right, 1=mt1	
21	23	22	✓	ans = 22, goto lebt, h=m-1	
21	21	21	*	goto right, l=mt1	
22	21	(7h) x	break retain	22.	

Break.

(0: 28:00 (0: 38:00

10:40:00

- 20. Given k cows and N stalls, all stalls are on n-anis at different locations, Place all cows in such a way that minimum distance between the 2 cows is maximized. (keep the aggressive cows as far as possible)
 - Note: (i) Only one cow can be present at one stall.

 (ii) All cows need to be placed, (N>K). All stalls positions are sorted.

Gra:
Stalls = 9

2 6 11 14 19 25 30 39 43.

Cows = 4

$$c_1 \frac{4}{c_1} c_2 \frac{5}{c_3} c_4 \cdot - - \frac{3}{c_4} c_4 \frac{1}{c_4}$$
 $c_1 \frac{9}{c_4} c_2 \frac{8}{c_4} c_3 \frac{11}{c_4} c_4 \frac{8}{c_4}$
 $c_1 \frac{9}{c_4} c_4 \frac{15}{c_4} c_4 \frac$

Ideal: Given N stalls, ways to choose k stalls for k cows.

NCK * K.

To calculate min distance for a selection.

No. of ways

Idea 2: Binary Search.

a) Target: maximum min distance between 2 cows.

high
min of Stalls(N-1)

adjacent elements - Stalls(0). 6) Search space: difference.

Stalls (4): [3 8 14 20). Ext: Stalls (4): [38 14 20). K=4 cows: k: 2 60W5; CI 17

BS discard. high ww mid Case 1: say we can place all cows at a distance of mid".

> ans= mid move right.

a distance of "mid". move left:

0 1 2 3 4 5 6 7 8 Stalls =9 C3, C4, X, -> 20. ofor 5

Can I place cows atteast at 20 distance apost?

wal

high

20 21 22 23 Can I place cows atleast at 5 distance apart? F F F F

7 7 7 7

```
def maxDistance (n, k, stalls)

\[
\begin{align*}
\text{def maxDistance} \( \n, \text{ k, stalls} \) \\
\text{l = min adjacent diff. in stalls(), h = stalls(\text{m-i}) - stalls(\text{o}), ans = \text{while} (1 \in h) \\
\text{m = (1+h)/2} \\
\text{m = (1+h)/2} \\
\text{m = (1+h)/2} \\
\text{m = (1+h)/2} \\
\text{if (check (n, k, stalls, m))} \\
\text{l ans = mid} \\
\text{l = m+1} \\
\text{elge} \\
\text{h = m-1} \\
\text{TC : N \text{\text{\text{NO(log}(\text{#elements)})}} \\
\text{TC : N \text{\text{\text{\text{NO(log}(\text{#elements)})}} \\
\text{TC : N \text{\text{\text{NO(log}(\text{#elements)})}} \\
\text{TC : N \text{\text{\text{NO(log}(\text{#elements)})}} \\
\text{TC : N \text{\text{\text{NO(log}(\text{#elements)})}} \\
\text{TC : N \text{\text{\text{\text{NO(log}(\text{#elements)})}}} \\
\text{TC : N \text{\text{\text{\text{NO(log}(\text{#elements)})}}} \\
\text{TC : N \text{\text{\text{\text{\text{\text{NO(log}(\text{#elements)})}}} \\
\text{TC : N \text{\text{\text{\text{\text{\text{NO(log}(\text{#elements})})}}} \\
\text{TC : N \text{\text{\text{\text{\text{\text{\text{\text{NO(log}(\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\te
```

		0 1	2 3 4	5 6 7 8	
		2 6	11 14 19	25 30 39 43.	
		CI	cz	cz C4	
L	h	m	an I place	update ans.	
3	41	22	×	goto left, h=m	-1.

ous=12, gots right, 1=m1