Chapter 1: Linear Systems and Matrices Section: Matrix Operations Lecture #2

Lebanese University

Course Plan

Table of contents

- Matrix Notation and Arithmetic
 - Operations with Matrices
 - Properties for Matrix Operations

- Particular Matrices
 - Identity Matrix
 - Upper, Lower and Diagonal Matrices

3 The transpose of a Matrix

- Matrix Notation and Arithmetic
 - Operations with Matrices
 - Properties for Matrix Operations

- Particular Matrices
 - Identity Matrix
 - Upper, Lower and Diagonal Matrices

3 The transpose of a Matrix

Matrix Definition

Definition (Matrix)

A matrix (plural matrices) is a rectangular array of numbers, or symbols, arranged in rows and columns.

Prof. Ali WEHBE 5 /

Matrix Definition

Definition (Matrix)

A matrix (plural matrices) is a rectangular array of numbers, or symbols, arranged in rows and columns.

Notation:

$$\textbf{\textit{A}} = \begin{bmatrix} \textbf{\textit{a}}_{11} & \textbf{\textit{a}}_{12} & \cdots & \textbf{\textit{a}}_{1n} \\ \textbf{\textit{a}}_{21} & \cdots & \cdots & \textbf{\textit{a}}_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \textbf{\textit{a}}_{m1} & \cdots & \cdots & \textbf{\textit{a}}_{mn} \end{bmatrix} \text{ with }$$

with a compact form: $\mathbf{A} = [\mathbf{a}_{ij}]$

Matrix Definition

Definition (Matrix)

A matrix (plural matrices) is a rectangular array of numbers, or symbols, arranged in rows and columns.

Notation:

$$\mathbf{A} = \begin{bmatrix} \mathbf{a}_{11} & \mathbf{a}_{12} & \cdots & \mathbf{a}_{1n} \\ \mathbf{a}_{21} & \cdots & \cdots & \mathbf{a}_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{a}_{m1} & \cdots & \cdots & \mathbf{a}_{mn} \end{bmatrix} \text{ with a compact form: } \mathbf{A} = [\mathbf{a}_{ij}]$$

Example

$$A = \begin{bmatrix} 1 & -2 & -3 \\ 4 & 8 & -6 \\ 7 & 0 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix}, \quad X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

Definition (Size of a Matrix)

The size of a matrix is defined by the number of rows and columns that it contains. A matrix with m rows and n columns is called an $m \times n$ matrix or m-by-n matrix.

Prof. Ali WEHBE 6 / 44

Definition (Size of a Matrix)

The size of a matrix is defined by the number of rows and columns that it contains. A matrix with m rows and n columns is called an $m \times n$ matrix or m-by-n matrix.

Example

$$A = \begin{bmatrix} 1 & -2 & -3 \\ 4 & 8 & -6 \\ 7 & 0 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 2 \\ -1 \\ 1 \\ 5 \end{bmatrix}, \quad X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

Prof. Ali WEHBE 6 / 44

Definition (Size of a Matrix)

The size of a matrix is defined by the number of rows and columns that it contains. A matrix with m rows and n columns is called an $m \times n$ matrix or m-by-n matrix.

Example

$$A = \begin{bmatrix} 1 & -2 & -3 \\ 4 & 8 & -6 \\ 7 & 0 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 2 \\ -1 \\ 1 \\ 5 \end{bmatrix}, \quad X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

$$size(A) = 3 \times 3$$
, $size(B) = 4 \times 1$, $size(X) = 3 \times 1$

Prof. Ali WEHBE 6 / 44

Definition (Equal Matrices)

Two matrices $\mathbf{A} = [\mathbf{a}_{ij}]$ and $\mathbf{B} = [\mathbf{b}_{ij}]$ are said to be equal if:

Definition (Equal Matrices)

Two matrices $\mathbf{A} = [\mathbf{a}_{ij}]$ and $\mathbf{B} = [\mathbf{b}_{ij}]$ are said to be equal if: 1. \mathbf{A} and \mathbf{B} have the same size

Definition (Equal Matrices)

Two matrices $\mathbf{A} = [\mathbf{a}_{ij}]$ and $\mathbf{B} = [\mathbf{b}_{ij}]$ are said to be equal if:

- 1. A and B have the same size
- 2. $\mathbf{a}_{ij} = \mathbf{b}_{ij}$ for all i, j

Definition (Equal Matrices)

Two matrices $A = [a_{ij}]$ and $B = [b_{ij}]$ are said to be equal if:

- 1. A and B have the same size
- 2. $\mathbf{a}_{ij} = \mathbf{b}_{ij}$ for all i, j

Definition (Matrix Addition)

If $A = [a_{ij}]$ and $B = [b_{ij}]$ are matrices of same size, then their sum is the matrix given by

$$A+B=[a_{ij}+b_{ij}]$$

Prof. Ali WEHBE 7 / 44

Definition (Equal Matrices)

Two matrices $\mathbf{A} = [\mathbf{a}_{ij}]$ and $\mathbf{B} = [\mathbf{b}_{ij}]$ are said to be equal if:

- 1. A and B have the same size
- 2. $\mathbf{a}_{ij} = \mathbf{b}_{ij}$ for all i, j

Definition (Matrix Addition)

If $A = [a_{ij}]$ and $B = [b_{ij}]$ are matrices of same size, then their sum is the matrix given by

$$A+B=[a_{ij}+b_{ij}]$$

Note: The sum of two matrices of different sizes is not defined.

Example

Find A + B:

$$\bullet \ \ \textit{A} = \begin{bmatrix} 1 & -2 & -3 \\ 4 & 8 & -6 \end{bmatrix}, \quad \textit{B} = \begin{bmatrix} 7 & 0 & 1 \\ -4 & 0 & -6 \end{bmatrix}$$

$$\mathbf{2} \ \mathbf{A} = \begin{bmatrix} 3 & 2 \\ -7 & 0 \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} 8 & 0 & -1 \\ 0 & 0 & 2 \end{bmatrix}$$

Definition (Scalar Multiplication)

If $\mathbf{A} = [\mathbf{a}_{ij}]$ is an $\mathbf{m} \times \mathbf{n}$ matrix and α is a scalar, then the scalar multiple of \mathbf{A} by α is the matrix given by

$$\alpha \mathbf{A} = [\alpha \mathbf{a}_{ij}].$$

Definition (Scalar Multiplication)

If $\pmb{A} = [\pmb{a}_{ij}]$ is an $\pmb{m} \times \pmb{n}$ matrix and α is a scalar, then the scalar multiple of \pmb{A} by α is the matrix given by

$$\alpha \mathbf{A} = [\alpha \mathbf{a}_{ij}].$$

Example

$$2\begin{bmatrix}2\\-1\\1\end{bmatrix} =$$

Definition (Scalar Multiplication)

If $\mathbf{A} = [\mathbf{a}_{ij}]$ is an $\mathbf{m} \times \mathbf{n}$ matrix and α is a scalar, then the scalar multiple of \mathbf{A} by α is the matrix given by

$$\alpha \mathbf{A} = [\alpha \mathbf{a}_{ij}].$$

Example

$$2\begin{bmatrix}2\\-1\\1\end{bmatrix} = \begin{bmatrix}4\\-2\\2\end{bmatrix}, \quad -3\begin{bmatrix}2&-1\\-1&2\\4&5\end{bmatrix} =$$

Definition (Scalar Multiplication)

If $\mathbf{A} = [\mathbf{a}_{ij}]$ is an $\mathbf{m} \times \mathbf{n}$ matrix and α is a scalar, then the scalar multiple of \mathbf{A} by α is the matrix given by

$$\alpha \mathbf{A} = [\alpha \mathbf{a}_{ij}].$$

Example

$$2\begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 4 \\ -2 \\ 2 \end{bmatrix}, \quad -3\begin{bmatrix} 2 & -1 \\ -1 & 2 \\ 4 & 5 \end{bmatrix} = \begin{bmatrix} -6 & 3 \\ 3 & -6 \\ -12 & -15 \end{bmatrix}$$

Definition (Matrix Multiplication)

If $A = [a_{ij}]$ is an $\underline{m} \times \underline{n}$ matrix and $B = [b_{ij}]$ is an $\underline{n} \times \underline{r}$ matrix, then the product AB is an $m \times r$ matrix $C = [c_{ij}]$ where

$$c_{ij} = a_{i1}b_{1j} + ai2b_{2j} + a_{i3}b_{3j} + ... + a_{in}b_{nj} = \sum_{k=1}^{n} a_{ik}b_{kj}.$$

for all $i = 1, \dots, m$ and $j = 1, \dots, r$

Prof. Ali WEHBE 10 / 44

Find **AB** and **BA**.

Solution:

Find AB and BA.

$$\bullet \ A = \begin{bmatrix} 3 & -2 \\ 2 & 4 \\ 1 & -3 \end{bmatrix} \text{ and } B = \begin{bmatrix} -2 & 1 & 3 \\ 4 & 1 & 6 \end{bmatrix}$$

Solution:

$$AB = \begin{bmatrix} -14 & 1 & -3 \\ 12 & 6 & 30 \\ -14 & -2 & -15 \end{bmatrix}, \quad BA = \begin{bmatrix} -1 & -1 \\ 20 & -22 \end{bmatrix}$$

$$AB \neq BA$$

Definition (Matrix Multiplication)

If $A = [a_{ij}]$ is an $\underline{m} \times \underline{n}$ matrix and $B = [b_{ij}]$ is an $\underline{n} \times \underline{r}$ matrix, then the product AB is an $m \times r$ matrix $C = [c_{ij}]$ where

$$c_{ij} = a_{i1}b_{1j} + ai2b_{2j} + a_{i3}b_{3j} + ... + a_{in}b_{nj} = \sum_{k=1}^{n} a_{ik}b_{kj}.$$

for all $i = 1, \dots, m$ and $j = 1, \dots, r$

Solution:

$$\mathbf{0} \ \mathbf{A} = \begin{bmatrix} 3 & 4 \\ 1 & 2 \end{bmatrix} \text{ and } \mathbf{B} = \begin{bmatrix} 1 & 2 \\ 4 & 5 \\ 3 & 6 \end{bmatrix}$$

<u>Solution</u>: The multiplication *AB* between the matrices *A* and *B* is not defined, since the number of columns of the matrix $A = 2 \neq 3$ = number of rows of the matrix *B*. However:

$$BA = \begin{bmatrix} 5 & 8 \\ 17 & 26 \\ 15 & 24 \end{bmatrix}$$

Solution:

$$\textbf{@} \ \textbf{\textit{A}} = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \text{ and } \textbf{\textit{B}} = \begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix}$$

Solution:

$$AB = \begin{bmatrix} 3 & 3 \\ 0 & 0 \end{bmatrix}$$

$$BA = \begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix}$$

$$AB \neq BA$$

Solution:

Solution:

$$AB = [1]$$

$$BA = \begin{bmatrix} 2 & -4 & -6 \\ -1 & 2 & 3 \\ 1 & -2 & -3 \end{bmatrix}$$

$$AB \neq BA$$

In general, $AB \neq BA$. Matrix multiplication is not commutative.

Given
$$A = \begin{bmatrix} 2 & -1 & 5 \\ -3 & 0 & 9 \end{bmatrix}$$
 and $X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$. Find AX .

Definition (Power of a matrix)

Let **A** be a square matrix of size $n \times n$ and let **k** be a strictly positive integer. Then

$$A^k =$$

Let ${\it A}$ be a square matrix of size ${\it n} \times {\it n}$ and let ${\it k}$ be a strictly positive integer. Then

$$A^k = A.A.A...A$$
, k times.

Definition (Power of a matrix)

Let ${\bf A}$ be a square matrix of size ${\bf n} \times {\bf n}$ and let ${\bf k}$ be a strictly positive integer. Then

$$A^k = A.A.A...A$$
, k times.

Example

Find
$$A^3$$
 with $A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$.

Solution:

- Matrix Notation and Arithmetic
 - Operations with Matrices
 - Properties for Matrix Operations

- Particular Matrices
 - Identity Matrix
 - Upper, Lower and Diagonal Matrices

3 The transpose of a Matrix

Theorem:

Let A, B and C be three matrices (such the following operations are defined), and let α and β be two scalars. Then the following statements are true:

- 1) A + B = B + A.
- 2) (A + B) + C = A + (B + C).
- 3) (AB)C = A(BC).
- 4) A(B+C) = AB + AC.
- 5) (A+B)C = AC + BC.
- 6) $(\alpha\beta)A = \alpha(\beta A) = \beta(\alpha A)$.
- 7) $\alpha(AB) = (\alpha A)B = A(\alpha B)$.
- 8) $(\alpha + \beta)A = \alpha A + \beta A$.
- 9) $\alpha(\mathbf{A} + \mathbf{B}) = \alpha \mathbf{A} + \alpha \mathbf{B}$.

Let

$$\textbf{\textit{A}} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, \quad \textbf{\textit{B}} = \begin{bmatrix} 2 & 1 \\ -3 & 2 \end{bmatrix} \quad \text{and} \quad \textbf{\textit{C}} = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}.$$

Verify that A(BC) = (AB)C and A(B+C) = AB + AC.

Solution:

Let

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, \quad B = \begin{bmatrix} 2 & 1 \\ -3 & 2 \end{bmatrix} \quad \text{and} \quad C = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}.$$

Verify that A(BC) = (AB)C and A(B+C) = AB + AC.

Solution:

$$A(BC) = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 4 & 1 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 6 & 5 \\ 16 & 11 \end{bmatrix}$$

$$(AB)C = \begin{bmatrix} -4 & 5 \\ -6 & 11 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 6 & 5 \\ 16 & 11 \end{bmatrix}$$

Thus

$$A(BC) = (AB)C.$$

$$A(B+C) = \begin{bmatrix} 1 & 2 \\ 3 & 3 \end{bmatrix} \begin{bmatrix} 3 & 1 \\ -1 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 7 \\ 5 & 15 \end{bmatrix}$$

$$\textit{AB} + \textit{AC} = \begin{bmatrix} -4 & 5 \\ -6 & 11 \end{bmatrix} + \begin{bmatrix} 5 & 2 \\ 11 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 7 \\ 5 & 15 \end{bmatrix}$$

Hence, A(B+C) = AB + AC.

- Matrix Notation and Arithmetic
 - Operations with Matrices
 - Properties for Matrix Operations

- Particular Matrices
 - Identity Matrix
 - Upper, Lower and Diagonal Matrices

3 The transpose of a Matrix

Prof. Ali WEHBE 23 / 44

1) A **row** Matrix, is a matrix of size $1 \times n$ has the following form

$$A = [a_{11}, a_{12}, \cdots, a_{1n}].$$

Prof. Ali WEHBE 24 / 4

1) A **row** Matrix, is a matrix of size $1 \times n$ has the following form

$$A = [a_{11}, a_{12}, \cdots, a_{1n}].$$

2) A Column Matrix, is a matrix of size $m \times 1$ has the following form

$$A = \begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{bmatrix}.$$

Prof. Ali WEHBE 24 / 44

1) A **row** Matrix, is a matrix of size $1 \times n$ has the following form

$$A = [a_{11}, a_{12}, \cdots, a_{1n}].$$

2) A **Column** Matrix, is a matrix of size $m \times 1$ has the following form

$$A = \begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{bmatrix}.$$

3) A square matrix, is a matrix of size $n \times n$, equivalently, the number of rows is equal the number of columns.

24 / 44

1) A **row** Matrix, is a matrix of size $1 \times n$ has the following form

$$A = [a_{11}, a_{12}, \cdots, a_{1n}].$$

2) A **Column** Matrix, is a matrix of size $m \times 1$ has the following form

$$A = \begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{bmatrix}.$$

- 3) A square matrix, is a matrix of size $n \times n$, equivalently, the number of rows is equal the number of columns.
- The **zero** matrix of size $m \times n$, denoted by O_{mn} , is the matrix with all the entries are equal to zero.

24 / 44

Special Matrices

Example (Square Matrix)

$$A = \begin{bmatrix} 1 & -2 & -3 \\ 4 & 8 & -6 \\ 7 & 0 & 1 \end{bmatrix} \qquad B = \begin{bmatrix} 1 & -2 & -3 & 2 \\ 4 & 8 & -6 & 3 \\ 7 & 0 & 1 & 2 \\ 9 & 3 & -5 & 0 \end{bmatrix}$$

Example (Zero Matrix)

Theorem (Property of zero matrix)

Let **A** be a $m \times n$ matrix and let **c** be a scalar. Then, the following statements are true:

- 1) $A + O_{mn} = O_{mn} + A = A$.
- 2) $A + (-A) = O_{mn}$.
- 3) If $cA = O_{mn}$ then c = 0 or $A = O_{mn}$.

Solve for X in the equation 3X + A = B with

$$A = \begin{bmatrix} 1 & -2 \\ 0 & 3 \end{bmatrix}$$
 and $B = \begin{bmatrix} -3 & 4 \\ 2 & 1 \end{bmatrix}$

Prof. Ali WEHBE 27 / 4

Solve for X in the equation 3X + A = B with

$$A = \begin{bmatrix} 1 & -2 \\ 0 & 3 \end{bmatrix}$$
 and $B = \begin{bmatrix} -3 & 4 \\ 2 & 1 \end{bmatrix}$

Solution:
$$3X + A = B \Longrightarrow 3X = B - A \Longrightarrow X = \frac{1}{3}(B - A)$$
. Hence

$$B - A = \begin{bmatrix} -4 & 6 \\ 2 & -2 \end{bmatrix} \Longrightarrow X = \begin{bmatrix} -\frac{4}{3} & 2 \\ \frac{2}{3} & -\frac{2}{3} \end{bmatrix}$$

- Matrix Notation and Arithmetic
 - Operations with Matrices
 - Properties for Matrix Operations

- Particular Matrices
 - Identity Matrix
 - Upper, Lower and Diagonal Matrices

3 The transpose of a Matrix

Let $A = [a_{ij}]$ be an $n \times n$ matrix. The **Diagonal** of A is the set that contains the entries a_{ij} such that i = j

Let $\pmb{A} = [\pmb{a}_{ij}]$ be an $\pmb{n} \times \pmb{n}$ matrix. The **Diagonal** of \pmb{A} is the set that contains the entries \pmb{a}_{ij} such that $\pmb{i} = \pmb{j}$

Example

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \\ 13 & 14 & 15 & 16 \end{bmatrix}$$

Diagonal of a matrix

Definition

Let $A = [a_{ij}]$ be a square matrix. The **Diagonal** of A is the set that contains the entries a_{ij} such that i = j.

Example

```
m{A} = egin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \\ 13 & 14 & 15 & 16 \end{bmatrix} . The diagonal of m{A} is m{S} = \{1,6,7,16\}.
```

Prof. Ali WEHBE 30 / 44

Identity Matrix

Definition

The $n \times n$ identity matrix is the matrix $I_n = [\delta_{ij}]$ with

$$\delta_{ij} = \begin{cases} 1 & \text{if} & i = j, \\ 0 & \text{if} & i \neq j. \end{cases}$$

Identity Matrix

Definition

The $n \times n$ identity matrix is the matrix $I_n = [\delta_{ij}]$ with

$$\delta_{ij} = \begin{cases} 1 & \text{if} \quad i = j, \\ 0 & \text{if} \quad i \neq j. \end{cases}$$

Example

$$I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad I_4 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

Identity Matrix

Theorem

Let **A** be an $m \times n$ matrix. Then, the following statements are true:

- $\mathbf{0} AI_n = A$

Theorem

Let **A** be an $m \times n$ matrix. Then, the following statements are true:

Example

$$A = \begin{bmatrix} 3 & 4 & 1 \\ 2 & 6 & 3 \\ 0 & 1 & 8 \end{bmatrix}$$
. Show that $I_3A = AI_3 = A$.

Solution: Homework.

- Matrix Notation and Arithmetic
 - Operations with Matrices
 - Properties for Matrix Operations

- Particular Matrices
 - Identity Matrix
 - Upper, Lower and Diagonal Matrices

3 The transpose of a Matrix

Prof. Ali WEHBE 33 / 44

Let
$$A = [a_{ij}] \in M_{n,n}(\mathbb{R})$$
.

Let $A = [a_{ij}] \in M_{n,n}(\mathbb{R})$.

1- The matrix **A** is said to be an upper triangular matrix if $a_{ij} = 0$ for all i > j and there exists $a_{ij} \neq 0$ for i < j.

Let $A = [a_{ii}] \in M_{n,n}(\mathbb{R})$.

- 1- The matrix **A** is said to be an upper triangular matrix if $a_{ij} = 0$ for all i > j and there exists $a_{ij} \neq 0$ for i < j.
- 2- The matrix **A** is said to be an lower triangular matrix if $a_{ij} = 0$ for all i < j and there exists $a_{ij} \neq 0$ for i > j.

Prof. Ali WEHBE 34 / 44

Let $\mathbf{A} = [\mathbf{a}_{ij}] \in M_{n,n}(\mathbb{R})$.

- 1- The matrix A is said to be an upper triangular matrix if $a_{ij} = 0$ for all i > j and there exists $a_{ij} \neq 0$ for i < j.
- 2- The matrix \bf{A} is said to be an lower triangular matrix if $\bf{a}_{ij} = \bf{0}$ for all $\bf{i} < \bf{j}$ and there exists $\bf{a}_{ij} \neq \bf{0}$ for $\bf{i} > \bf{j}$.
- 3- The matrix A is said to be a diagonal matrix if $a_{ij} = 0$ for all i > j, i < j, and there exists $a_{ij} \neq 0$.

Prof. Ali WEHBE 34 / 44

$$A = \begin{bmatrix} 1 & -2 & 3 \\ 0 & 0 & 0 \end{bmatrix}$$

$$B = \begin{bmatrix} 7 & 0 & 0 \\ -1 & 3 & 0 \\ 1 & 4 & -5 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & -2 & 3 \\ 0 & 0 & 0 \\ 0 & 0 & 5 \end{bmatrix} \qquad B = \begin{bmatrix} 7 & 0 & 0 \\ -1 & 3 & 0 \\ 1 & 4 & -5 \end{bmatrix} \qquad C = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -5 & 0 \\ 0 & 0 & 5 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & -2 & 3 \\ 0 & 0 & 0 \\ 0 & 0 & 5 \end{bmatrix} \qquad B = \begin{bmatrix} 7 & 0 & 0 \\ -1 & 3 & 0 \\ 1 & 4 & -5 \end{bmatrix} \qquad C = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -5 & 0 \\ 0 & 0 & 5 \end{bmatrix}$$

• A is an upper triangular matrix

$$A = \begin{bmatrix} 1 & -2 & 3 \\ 0 & 0 & 0 \\ 0 & 0 & 5 \end{bmatrix} \qquad B = \begin{bmatrix} 7 & 0 & 0 \\ -1 & 3 & 0 \\ 1 & 4 & -5 \end{bmatrix} \qquad C = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -5 & 0 \\ 0 & 0 & 5 \end{bmatrix}$$

- A is an upper triangular matrix
- B i a lower triangular matrix

$$A = \begin{bmatrix} 1 & -2 & 3 \\ 0 & 0 & 0 \\ 0 & 0 & 5 \end{bmatrix} \qquad B = \begin{bmatrix} 7 & 0 & 0 \\ -1 & 3 & 0 \\ 1 & 4 & -5 \end{bmatrix} \qquad C = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -5 & 0 \\ 0 & 0 & 5 \end{bmatrix}$$

- A is an upper triangular matrix
- **B** i a lower triangular matrix
- C is a diagonal matrix.

- Matrix Notation and Arithmetic
 - Operations with Matrices
 - Properties for Matrix Operations

- Particular Matrices
 - Identity Matrix
 - Upper, Lower and Diagonal Matrices

3 The transpose of a Matrix

Prof. Ali WEHBE 36 / 44

Definition (Matrix Transpose)

Let $A = [a_{ij}]$ be an $m \times n$ matrix. The **transpose** of A is formed by writing its columns as rows and it is denoted by A^T .

Accordingly, the size of \mathbf{A}^T is $\mathbf{n} \times \mathbf{m}$ and if $\mathbf{A}^T = [\mathbf{b}_{ij}]$ then

$$b_{ij}=a_{ji}$$

for $i = 1, \dots, m$ and $j = 1, \dots, n$.

Prof. Ali WEHBE 37 / 44

Determine the Transpose of the following Matrices:

Solution:

Prof. Ali WEHBE 38 / 44

Determine the Transpose of the following Matrices:

Solution: A is an 2×3 matrix with entries a_{ij} given by:

$$\begin{cases} a_{11} = 1, & a_{12} = 2, & a_{13} = 3, \\ a_{21} = 4, & a_{22} = 5, & a_{23} = 6. \end{cases}$$

Determine the Transpose of the following Matrices:

Solution: A is an 2×3 matrix with entries a_{ij} given by:

$$\begin{cases} a_{11} = 1, & a_{12} = 2, & a_{13} = 3, \\ a_{21} = 4, & a_{22} = 5, & a_{23} = 6. \end{cases}$$

Then, A^T is an 3×2 matrix with entries

Determine the Transpose of the following Matrices:

$$\mathbf{0} \ \mathbf{A} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}.$$

Solution: A is an 2×3 matrix with entries a_{ij} given by:

$$\begin{cases} a_{11} = 1, & a_{12} = 2, & a_{13} = 3, \\ a_{21} = 4, & a_{22} = 5, & a_{23} = 6. \end{cases}$$

Then, A^T is an 3×2 matrix with entries

$$b_{11} = 1, \quad b_{12} = 4, \\ b_{21} = 2, \quad b_{22} = 5, \quad \Rightarrow \\ b_{31} = 3, \quad b_{32} = 6.$$

Determine the Transpose of the following Matrices:

$$\mathbf{0} \ A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}.$$

Solution: A is an 2×3 matrix with entries a_{ij} given by:

$$\begin{cases} a_{11} = 1, & a_{12} = 2, & a_{13} = 3, \\ a_{21} = 4, & a_{22} = 5, & a_{23} = 6. \end{cases}$$

Then, A^T is an 3×2 matrix with entries

$$\begin{array}{lll} b_{11} = 1, & b_{12} = 4, \\ b_{21} = 2, & b_{22} = 5, & \Rightarrow A^T = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix} \end{array}$$

$$\mathbf{\Theta} \ \mathbf{B} = \begin{bmatrix} -3 & 2 & 1 \\ 4 & 3 & 2 \\ 1 & 2 & 5 \end{bmatrix}$$

$$\mathbf{\Theta} \ B = \begin{bmatrix} -3 & 2 & 1 \\ 4 & 3 & 2 \\ 1 & 2 & 5 \end{bmatrix} \Longrightarrow B^T = \begin{bmatrix} -3 & 4 & 1 \\ 2 & 3 & 2 \\ 1 & 2 & 5 \end{bmatrix}.$$

Prof. Ali WEHBE 39 / 44

$$\mathbf{\Theta} \ B = \begin{bmatrix} -3 & 2 & 1 \\ 4 & 3 & 2 \\ 1 & 2 & 5 \end{bmatrix} \Longrightarrow B^T = \begin{bmatrix} -3 & 4 & 1 \\ 2 & 3 & 2 \\ 1 & 2 & 5 \end{bmatrix}.$$

$$\mathbf{\Theta} \ B = \begin{bmatrix} -3 & 2 & 1 \\ 4 & 3 & 2 \\ 1 & 2 & 5 \end{bmatrix} \Longrightarrow B^T = \begin{bmatrix} -3 & 4 & 1 \\ 2 & 3 & 2 \\ 1 & 2 & 5 \end{bmatrix}.$$

Definition (Symmetric Matrix)

An $n \times n$ matrix **A** is said to be **symmetric** if $A^T = A$, equivalently, when $a_{ij} = a_{ij}$.

39 / 44

$$\mathbf{\Theta} \ B = \begin{bmatrix} -3 & 2 & 1 \\ 4 & 3 & 2 \\ 1 & 2 & 5 \end{bmatrix} \Longrightarrow B^T = \begin{bmatrix} -3 & 4 & 1 \\ 2 & 3 & 2 \\ 1 & 2 & 5 \end{bmatrix}.$$

Definition (Symmetric Matrix)

An $n \times n$ matrix **A** is said to be **symmetric** if $A^T = A$, equivalently, when $a_{ii} = a_{ii}$. An $n \times n$ matrix **A** is said to be **skew-symmetric** if $A^T = -A$, equivalently, when $a_{ij} = -a_{ij}$.

39 / 44

 \Longrightarrow **A** is symmetric.

$$B = \begin{bmatrix} 0 & 1 & 2 \\ -1 & 0 & 3 \\ -2 & -3 & 0 \end{bmatrix}$$

 \Longrightarrow **A** is symmetric.

$$\mathbf{\Theta} \ B = \begin{bmatrix} 0 & 1 & 2 \\ -1 & 0 & 3 \\ -2 & -3 & 0 \end{bmatrix} \Longrightarrow B^{T} = \begin{bmatrix} 0 & -1 & -2 \\ 1 & 0 & -3 \\ 2 & 3 & 0 \end{bmatrix} \Longrightarrow B^{T} = -B$$

 \Longrightarrow **A** is symmetric.

$$\mathbf{\Theta} \ B = \begin{bmatrix} 0 & 1 & 2 \\ -1 & 0 & 3 \\ -2 & -3 & 0 \end{bmatrix} \Longrightarrow B^T = \begin{bmatrix} 0 & -1 & -2 \\ 1 & 0 & -3 \\ 2 & 3 & 0 \end{bmatrix} \Longrightarrow B^T = -B$$

 \Longrightarrow **B** is skew-symmetric.

 \Longrightarrow **A** is symmetric.

 \Longrightarrow **B** is skew-symmetric.

 \implies **A** is symmetric.

$$\mathbf{\Theta} \ B = \begin{bmatrix} 0 & 1 & 2 \\ -1 & 0 & 3 \\ -2 & -3 & 0 \end{bmatrix} \Longrightarrow B^T = \begin{bmatrix} 0 & -1 & -2 \\ 1 & 0 & -3 \\ 2 & 3 & 0 \end{bmatrix} \Longrightarrow B^T = -B$$

 \Longrightarrow B is skew-symmetric.

 \Longrightarrow C is neither symmetric and nor skew-symmetric.

Let **A** and **B** be two $m \times n$ matrices and let α be a scalar.

Let ${\it A}$ and ${\it B}$ be two ${\it m} \times {\it n}$ matrices and let ${\it \alpha}$ be a scalar. Then, the following properties are true:

Let ${\it A}$ and ${\it B}$ be two ${\it m} \times {\it n}$ matrices and let ${\it \alpha}$ be a scalar. Then, the following properties are true:

Let ${\it A}$ and ${\it B}$ be two ${\it m} \times {\it n}$ matrices and let ${\it \alpha}$ be a scalar. Then, the following properties are true:

- $(\alpha A)^T = \alpha A^T.$
- $(A + B)^T = A^T + B^T$

Let ${\it A}$ and ${\it B}$ be two ${\it m} \times {\it n}$ matrices and let ${\it \alpha}$ be a scalar. Then, the following properties are true:

- $(\alpha A)^T = \alpha A^T.$
- $(A + B)^T = A^T + B^T.$

Prof. Ali WEHBE 41 / 44

Calculate $(AB)^T$ in two methods, where $A = \begin{bmatrix} 1 & 2 & 1 \\ 3 & 3 & 5 \\ 2 & 4 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 0 & 2 \\ 2 & 1 & 1 \\ 5 & 4 & 1 \end{bmatrix}$.

Solution:

Prof. Ali WEHBE 42 /

Calculate
$$(AB)^T$$
 in two methods, where $A = \begin{bmatrix} 1 & 2 & 1 \\ 3 & 3 & 5 \\ 2 & 4 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 0 & 2 \\ 2 & 1 & 1 \\ 5 & 4 & 1 \end{bmatrix}$.

Solution:

First method:

Calculate
$$(AB)^T$$
 in two methods, where $A = \begin{bmatrix} 1 & 2 & 1 \\ 3 & 3 & 5 \\ 2 & 4 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 0 & 2 \\ 2 & 1 & 1 \\ 5 & 4 & 1 \end{bmatrix}$.

Solution:

First method:

$$AB = \begin{bmatrix} 10 & 6 & 5 \\ 34 & 23 & 14 \\ 15 & 8 & 9 \end{bmatrix}$$

Calculate
$$(AB)^T$$
 in two methods, where $A = \begin{bmatrix} 1 & 2 & 1 \\ 3 & 3 & 5 \\ 2 & 4 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 0 & 2 \\ 2 & 1 & 1 \\ 5 & 4 & 1 \end{bmatrix}$.

Solution:

First method:

$$AB = \begin{bmatrix} 10 & 6 & 5 \\ 34 & 23 & 14 \\ 15 & 8 & 9 \end{bmatrix} \Longrightarrow (AB)^T = \begin{bmatrix} 10 & 34 & 15 \\ 6 & 23 & 8 \\ 5 & 14 & 9 \end{bmatrix}.$$

Prof. Ali WEHBE 42 / 44

Exam	nl	e
∟∧aııı	v	v

Second method:

Second method:

$$A^{T} = \begin{bmatrix} 1 & 3 & 2 \\ 2 & 3 & 4 \\ 1 & 5 & 1 \end{bmatrix}$$

Prof. Ali WEHBE 43 /

Second method:

$$A^T = egin{bmatrix} 1 & 3 & 2 \\ 2 & 3 & 4 \\ 1 & 5 & 1 \end{bmatrix}$$
 and $B^T = egin{bmatrix} 1 & 2 & 5 \\ 0 & 1 & 4 \\ 2 & 1 & 1 \end{bmatrix}$. Then

$$(AB)^T =$$

Second method:

$$A^T = egin{bmatrix} 1 & 3 & 2 \\ 2 & 3 & 4 \\ 1 & 5 & 1 \end{bmatrix}$$
 and $B^T = egin{bmatrix} 1 & 2 & 5 \\ 0 & 1 & 4 \\ 2 & 1 & 1 \end{bmatrix}$. Then

$$(AB)^T = B^T A^T =$$

Second method:

$$\mathbf{A}^T = \begin{bmatrix} 1 & 3 & 2 \\ 2 & 3 & 4 \\ 1 & 5 & 1 \end{bmatrix} \text{and } \mathbf{B}^T = \begin{bmatrix} 1 & 2 & 5 \\ 0 & 1 & 4 \\ 2 & 1 & 1 \end{bmatrix}. \text{ Then }$$

$$(AB)^T = B^T A^T = \begin{bmatrix} 1 & 2 & 5 \\ 0 & 1 & 4 \\ 2 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 3 & 2 \\ 2 & 3 & 4 \\ 1 & 5 & 1 \end{bmatrix} = \begin{bmatrix} 10 & 34 & 15 \\ 6 & 23 & 8 \\ 5 & 14 & 9 \end{bmatrix}.$$

Prof. Ali WEHBE 43 / 44

Given $\mathbf{A} = \begin{bmatrix} 1 & 3 & 2 \\ 2 & 3 & 4 \end{bmatrix}$, Find $\mathbf{A}\mathbf{A}^T$ and $(\mathbf{A}\mathbf{A}^T)^T$. What can you conclude?

Prof. Ali WEHBE 44 / 44