REAL ANALYSIS QUALIFYING EXAM SPRING 2001

(Bennett & Moore)

Answer all eight questions. Throughout, (X, \mathcal{M}, μ) denotes a measure space, μ denotes a positive measure unless otherwise specified, and all functions are assumed to be measurable.

- 1. Let ν, μ be positive measures on (X, \mathcal{M}) . Show that the following are equivalent:
 - (a) $\nu \ll \mu$
 - (b) For every $\varepsilon > 0$ there exists $\delta > 0$ such that $\nu(B) < \varepsilon$ whenever $B \in \mathcal{M}$ and $\mu(B) < \delta$.
- **2.** Suppose $f \in L^p(\mathbb{R}), 1 \leq p < \infty$. Prove that $\lim_{h \to 0} \int_{\mathbb{R}} |f(x+h) f(x)|^p dx = 0$.
- **3.** A set $A \subseteq L^1(\mu)$ is called uniformly integrable if for every $\varepsilon > 0$, there exists a $\delta > 0$ such that $\int_E |f| \, d\mu < \varepsilon$ whenever $\mu(E) < \delta$.

Prove Vitali's theorem:

- If (i) $\mu(X) < \infty$, (ii) $\{f_n\}$ is uniformly integrable, and (iii) $f_n \to f$ a.e., where $|f| < \infty$ a.e., then $||f_n f||_1 \to 0$.
- **4.** Prove or disprove: If $U \subseteq \mathbb{R}$ is open, then $|\overline{U}\backslash U| = 0$.
- **5.** Suppose $\{a_n\}$ is a decreasing sequence of positive numbers and $\sum_{n=1}^{\infty} a_n < \infty$. Show that $\lim_{n \to \infty} na_n = 0$.
- **6.** Evaluate $\lim_{A\to\infty} \int_0^A \frac{\sin(x)}{x} dx$. (Hint: $\int_0^\infty e^{-xt} dt = \frac{1}{x}$).
- 7. Suppose T is a linear operator on $L^2(X, \mathcal{M}, \mu)$ with $||Tf||_2 = ||f||_2$. Show $\langle Tf, Tg \rangle = \langle f, g \rangle$ for all $f, g \in L^2$.
- 8. Suppose $g_{\alpha} \in L^2(X, \mathcal{M}, \mu)$ are such that $\left| \int_X f(x) g_{\alpha}(x) d\mu(x) \right| \leq \|f\|_2^3$ for all α and $f \in L^2(X, \mathcal{M}, \mu)$. Show that there exists an M > 0 such that $\|g_{\alpha}\|_2 \leq M < \infty$ for every α .