Threat Intelligence & IOC

Obiettivo:

Analizzate la cattura attentamente e rispondere ai seguenti quesiti:

- Identificare ed analizzare eventuali IOC, ovvero evidenze di attacchi in corso
- In base agli IOC trovati, fate delle ipotesi sui potenziali vettori di attacco utilizzati
- Consigliate un'azione per ridurre gli impatti dell'attacco attuale ed eventualmente un simile attacco futuro

Gestione Permessi

```
(kali® kali)-[~/Desktop]
$ chmod ugo+rw Cattura_U3_W1_L5.pcapng

(kali® kali)-[~/Desktop]
$ chown kali Cattura_U3_W1_L5.pcapng
```

Analisi pacchetti

Dopo un broadcast da parte della macchina .150 per comunicare la presenza del servizio web sulla rete, possiamo vedere la prima comunicazioni TCP che si muove sulla porta 80:

Time	Source	Destination	Protocol	Length Info
2 23.764214995	192.168.200.100	192.168.200.150	TCP	74 53060 → 80 [SYN] Seq=0 Win=64240 L
4 23.764777323	192.168.200.150	192.168.200.100	TCP	74 80 → 53060 [SYN, ACK] Seq=0 Ack=1
6 23.764815289	192.168.200.100	192.168.200.150	TCP	66 53060 → 80 [ACK] Seq=1 Ack=1 Win=6
7 23.764899091	192.168.200.100	192.168.200.150	TCP	66 53060 → 80 [RST, ACK] Seq=1 Ack=1 \

E' presente il classico handshake TCP ma il client .100 ha chiuso la connessione subito, facendo sospettare di un operazione con nmap -sS, scansione silenziosa delle porte aperte.

Subito dopo il client prova la stessa operazione sulla porta 443 ma viene rifiutato probabilmente perché il servizio https non e' attivo.

	Time	Source	Destination	Protocol	Length Info
Ī	3 23.764287789	192.168.200.100	192.168.200.150	TCP	74 33876 → 443 [SYN] Seq=0 Win=64
	5 23.764777427	192.168.200.150	192.168.200.100	TCP	60 443 → 33876 [RST, ACK] Seq=1 A

Successivamente a un ARP-SCAN, sembrerebbe che l'attaccante stia facendo un secondo synscan sulle porte comuni:

12 36.774143445	192.168.200.100	192.168.200.150	TCP	74 41304 → 23 [SYN] Seq=0 Win=64240
13 36.774218116	192.168.200.100	192.168.200.150	TCP	74 56120 → 111 [SYN] Seq=0 Win=64246
14 36.774257841	192.168.200.100	192.168.200.150	TCP	74 33878 → 443 [SYN] Seq=0 Win=64246
15 36.774366305	192.168.200.100	192.168.200.150	TCP	74 58636 → 554 [SYN] Seq=0 Win=64246
16 36.774405627	192.168.200.100	192.168.200.150	TCP	74 52358 → 135 [SYN] Seq=0 Win=64246
17 36.774535534	192.168.200.100	192.168.200.150	TCP	74 46138 → 993 [SYN] Seq=0 Win=64240
18 36.774614776	192.168.200.100	192.168.200.150	TCP	74 41182 → 21 [SYN] Seq=0 Win=64240
19 36.774685505	192.168.200.150	192.168.200.100	TCP	74 23 → 41304 [SYN, ACK] Seq=0 Ack=1
20 36.774685652	192.168.200.150	192.168.200.100	TCP	74 111 → 56120 [SYN, ACK] Seq=0 Ack=

tutte queste comunicazioni finiscono con un reset come quelle viste inizialmente.

Lista porte trovate aperte:

- 21
- 22
- 23
- 25
- 53
- 80
- 111
- 139
- 445
- 512
- 514

Considerazioni sui log:

I log iniziali presentano un chiaro segno di **nmap TCP SYN port scan,** una tecnica silenziosa per scannerizzare le porte aperte su una macchina.

La macchina target ha risposto con un SYN-ACK a molte porte facendo trapelare i servizi attivi e potenzialmente exploitabili.

Successivamente la macchina attaccante continua a scannerizzare tutte le altre porte utilizzando la stessa tecnica iniziale, molte di esse chiuse:

Macchina attaccante:

Dopo un'analisi di alcuni campi dei pacchetti si può dire che la macchina attaccante sta utilizzando linux come SO, questo è dovuto a campi come **Window_size = 64420** e **timestamp attivo** tipici di sistemi linux.

Il numero alto e casuale delle porte sorgente e' un probabile segno che si sta usando uno strumento avanzato per lo scan, come nmap. Un altro segno di nmap e' l'ordinamento tipico delle opzioni TCP.

Azioni consigliate:

• Attivare logging e alert su connessioni SYN anomale

Gli IP che effettuano connessioni di questo genere vanno RILEVATI e successivamente BLOCCATI per evitare possibili escalation. Un attaccante potrebbe passare alla fase di exploit dopo aver raccolto abbastanza informazioni sui servizi in esecuzione.

• Limitare la superficie di attacco

Quindi chiudere tutte le porte non utili, come ftp o ssh, porte delicate su un web server.

Questa azione riduce le possibilità d'attacco anche se avviene la scansione.

• HoneyPot e fingerPrinting

Una honeyPot ben configurata puo' rallentare di molto un attaccante.

Allo stesso tempo e' importante profilare l'attaccante per future attribuzioni e per capire se cambia strumenti o tecniche.