

Overview of TWOCRYST MD Studies

Chiara Maccani
CERN BE-ABP-NDC
19/09/2024

Collimation System

19 September 2024

TWOCRYST collimators:

- TCP.D6R7: vertical collimator in IR7 → defines beam size
- TCCS.5R3: new 4mm crystal
- TCCP.4L3: new 7cm crystal
- TCLA.A5L3: absorber in IR3 → catch channeled halo

Beam Losses

Measure beam losses

Beam Loss Monitors (BLMs)

Induce beam losses

LHC Transverse Damper (ADT)

→ beam blow-up

Lossmaps

TWOCRYST beam dynamics

TWOCRYST set-up TCCP.4L3.B2 TCCP.B4L3.B2 TCCP.A4L3.B2 90 TCCS.5R3.B2 New **BLMs** crystal alignment J.P. Corso **TCCP TCLA** + RPX **TCCS** 0.03 0.02 0.01 y [m] 0.00 -0.01-0.02-0.03 | 6550 6600 6650 6700 6750 6800 6850 s [m]

Angular scan with circulating beam

Find channeling orientation

- Induce losses with ADT
- Observe BLM signal
- Slow crystal rotation

Measures:

- Channeling angle
- Reduction factor (crystal quality)
- Bending angle (rough estimate)

Linear scan with circulating beam

- Crystal in channeling
- Retract a collimator downstream crystal

Measures:

- Bending angle
- Multiturn channeling efficiency (see next slide)

R. Cai

Channeling Efficiency

Single pass efficiency

- Number of particles that can be channelled is known (detectors before crystal to measure θ_{in})
- Measure deflection angle $\Delta\theta_x$ with detectors after crystal
- Estimate n° channeled particles via Gaussian fit

→ H8 Test: see S. Cesare talk

$$arepsilon_{CH} = rac{n^{\circ} \ part. channeled}{n^{\circ} \ part. in \left[-rac{1}{2} heta_c < heta_{in} < rac{1}{2} heta_c
ight]}$$

Channeling Efficiency

Multiturn efficiency

- Only way to measure ε_{CH} in the machine
- Number of particles that can be channelled not known
- Known incoming angle from beam optics

V. Previtali

$$\varepsilon_{CH} = \frac{BLM\mid_{plateau}}{BLM\mid_{before\;beam}} \propto \frac{n^{\circ}\;part.\;channeled}{n^{\circ}\;part.\;chann+dechann}$$

 $\varepsilon_{CH, mutiturn} > \varepsilon_{CH, single pass}$

- Multiple crystal passage
- Not all AM and VR particles are detectable

P. Hermes - ICHEP 2024

Preparatory

- Ramp in steps (1 / 3 / 5 TeV): performed 15 May 2024
- Detector commissioning + TCCS and TCCP alignment on main beam at injection energy (450 GeV) + full characterization of both crystals

TCCP Crystal Characterization

TCCP angular scan in the beam at 1 / 3 / 5 TeV

19 September 2024

- TCCP multiturn channeling efficiency measurement
- Double channeling observation at 450 GeV (and potentially at 1 / 3 / 5 TeV) and estimation of TCCP single pass channeling efficiency

Performance estimate:

Protons on target at top energy

P. Hermes - ICHEP 2024

Preparatory

- Ramp in steps (1 / 3 / 5 TeV): performed 15 May 2024
- Detector commissioning + TCCS and TCCP alignment on main beam at injection energy (450 GeV) + full characterization of both crystals

TCCP Crystal Characterization

- TCCP angular scan in the beam at 1 / 3 / 5 TeV
- TCCP multiturn channeling efficiency measurement
- Double channeling observation at 450 GeV (and potentially at 1 / 3 / 5 TeV) and estimation of TCCP single pass channeling efficiency

Performance estimate:

Protons on target at top energy

Ramp at intermediate energies

 Λ_c^+ yield is maximum in 1-5 TeV energy range

→ TCCP needs to be tested at those energies

A lot of MD time can be saved if ramp can stop at intermediate energies and continued

Successful ramp in steps

19 September 2024

D. Mirarchi

operational test of in 2024!

Ramp at intermediate energies

Tested existing 50 μrad crystal at 1,3,5 TeV

Ramp at intermediate energies

P. Hermes - ICHEP 2024

Preparatory

- Ramp in steps (1 / 3 / 5 TeV): performed 15 May 2024
- Detector commissioning + TCCS and TCCP alignment on main beam at injection energy (450 GeV) + full characterization of both crystals

TCCP Crystal Characterization

- TCCP angular scan in the beam at 1 / 3 / 5 TeV
- TCCP multiturn channeling efficiency measurement
- Double channeling observation at 450 GeV (and potentially at 1 / 3 / 5 TeV) and estimation of TCCP single pass channeling efficiency

Performance estimate:

Protons on target at top energy

TCCS and TCCP alignment to beam

TCCP characterization in LHC

No collimator available for linear scan

→ Multiturn channeling efficiency estimated with **detectors**

Simulation of channeling distribution in PIX at 1 TeV

* 1 TeV (5 σ)

***** 5 TeV (5 σ)

P. Hermes - ICHEP 2024

Preparatory

- Ramp in steps (1 / 3 / 5 TeV): performed 15 May 2024
- Detector commissioning + TCCS and TCCP alignment on main beam at injection energy (450 GeV) + full characterization of both crystals

TCCP Crystal Characterization

- TCCP angular scan in the beam at 1 / 3 / 5 TeV
- TCCP multiturn channeling efficiency measurement
- Double channeling observation at 450 GeV (and potentially at 1 / 3 / 5 TeV) and estimation of TCCP single pass channeling efficiency

Performance estimate:

Protons on target at top energy

Double Channeling observation

Reconstruct single pass channeling efficiency by combining information from different detectors

P. Hermes - ICHEP 2024

Preparatory

- Ramp in steps (1 / 3 / 5 TeV): performed 15 May 2024
- Detector commissioning + TCCS and TCCP alignment on main beam at injection energy (450 GeV) + full characterization of both crystals

TCCP Crystal Characterization

- TCCP angular scan in the beam at 1 / 3 / 5 TeV
- TCCP multiturn channeling efficiency measurement
- Double channeling observation at 450 GeV (and potentially at 1 / 3 / 5 TeV) and estimation of TCCP single pass channeling efficiency

Performance estimate:

Protons on target at top energy

19 September 2024

Proton on target (PoT) at flat top

Test proton delivery to target in a parasitic mode:

- TCP intercepts beam in IR7
- Secondary halo travels half ring to IR3
- TCCS must be retracted wrt TCP (at least 0.5σ)
- Measure PoT rate of channeled protons

Simulation PoT distribution at 6.8 TeV with 0.5 σ TCCS retraction

Benchmark simulation tools with real observations

→ Additional study: PoT optimization changing beam optics

Simulation Framework

collection python packages for **beam dynamics simulation** in accelerators

xcoll

- Particle matter interactions in collimators
- Crystal physics

- → multiturn tracking of protons
- → beam halo simulations:
 - LHC model + set of collimators settings
 - Generate particles of beam edge
 - Track for many turns
 - Observe channeling distributions
 - PoT estimate: normalize by beam intensity and beam life-time

