Lab 6: Finite State Machines

Qianjun Huang

November 1, 2022

1 Part I

1. Complete Table 1 below.

Table 1: State Encodings

State	Encoding
A	0000001
В	0000010
С	0000100
D	0001000
E	0010000
F	0100000
G	1000000

2. Complete Table 2 below.

Table 2: Encoded State Transition Table for Robo-Snail II

Current State	W	Next State
0000001	0	0000001
0000001	1	0000010
0000010	0	0000001
0000010	1	0000100
0000100	0	0010000
0000100	1	0001000
0001000	0	0010000
0001000	1	0100000
0010000	0	0000001
0010000	1	1000000
0100000	0	0010000
0100000	1	0100000
1000000	0	0000001
1000000	1	0000100

3. Derive equations for each of your next state outputs below.

$$S'_{0} = S_{0}\bar{W} + S_{1}\bar{W} + S_{4}\bar{W} + S_{6}\bar{W}$$

$$S'_{1} = S_{0}W$$

$$S'_{2} = S_{1}W + S_{6}W$$

$$S'_{3} = S_{2}W$$

$$S'_{4} = S_{2}\bar{W} + S_{3}\bar{W} + S_{5}\bar{W}$$

$$S'_{5} = S_{3}W + S_{5}W$$

$$S'_{6} = S_{4}W$$

4. Export the subcircuit schematic as an image and include it in your report.

Figure 1: A schematic of Part I's next_state.

5. Complete Table 3 below.

Table 3: Encoded Output Table for Robo-Snail II

State	Output
0000001	0
0000010	0
0000100	0
0001000	0
0010000	0
0100000	1
1000000	1

6. Derive the equation for your output logic below.

$$Z = S_5 + S_6$$

7. Export the subcircuit schematic as an image and include it in your report.

Figure 2: A schematic of Part I's output_logic.

2 Part II

1. Complete Table 4 below.

Table 4: Encoded State Transition Table for Part II

Current State	Next State
0000	0001
0001	0010
0010	0011
0011	0100
0100	0000

2. Complete Table 5 below.

Table 5: Output Table for Part II

S	ALUSelB	ALUop	LoadC	LoadALUout	LoadA	LoadB	LoadR
0000	00	0	1	0	0	0	0
0001	00	0	0	0	1	0	0
0010	00	1	0	1	1	0	0
0011	10	0	0	1	0	1	0
0100	01	0	0	0	0	0	1

 $3. \ \,$ Draw the state transition diagram and include it in Figure 3.

Figure 3: The state transition diagram for Part II

4. Describe how each state controls the datapath from Part II in Table 6.

Table 6: A description of how a state controls the datapath

		r · · · · · · · · · · · · · · · · · · ·
5	State	Description
	0000	Load the value of Input(C) to RegC
	0001	Load the value of $Input(A)$ to $RegA$
(0010	RegA and RegA are two operands and the operation of ALU is *, and then the output (A^2) is loaded in RegA
(0011	RegA and RegC are two operands and the operation of ALU is +, and then the output $(A^2 + C)$ is loaded in RegB
(0100	RegA and RegB are two operands and the operation of ALU is +, and then the output $(2A^2 + C)$ is loaded in RegR

5. Export the timing diagram as an image and include it in your report.

Figure 4: A timing simulation of the main schematic in Part II.