aQa course 2021 - Miniproject

Giorgio Tosti Balducci

June 2021

Contents

1.	The	ory														1
	1.1.	Strong	ly Correl	ated	Sys	sten	ns .									1
		1.1.1.	Exercise	1 .												1
		1.1.2.	Exercise	2 .												1
2.	Proj	ect														3
Bil	oliogr	aphy														Ę
Α.	First	appen	dix													7

1. Theory

1.1. Strongly Correlated Systems

1.1.1. Exercise 1

(a) Let a_i^{\dagger} be the creation operator on orbital i and a_i the annhilation operator. The canonical anticommutation relations are

$${a_i, a_j} = {a_i^{\dagger}, a_j^{\dagger}} = 0$$
 (1.1)

$$\{a_i, a_i^{\dagger}\} = \delta_{i,j} \mathbb{1}. \tag{1.2}$$

(b) One transformation is

$$c_{i,0} = a_i + a_i^{\dagger} \tag{1.3}$$

$$c_{i,1} = \mathrm{i}(a_i - a_i^{\dagger}),\tag{1.4}$$

where i is the orbital index.

(c) Majorana fermions satisfy the following anticommutation relation

$$\{c_{i,\alpha}c_{i,\beta}\} = \delta_{i,j}\delta_{\alpha,\beta}\mathbb{1}.$$
(1.5)

1.1.2. Exercise 2

- (a) Using the Jordan-Wigner transformation, a fermionic operator a_j or a_j^{\dagger} becomes a j-local qubit operator, since it acts non trivially on j sites.
- **(b)** Thanks to the fact of storing only partial sums of qubits occupation, a fermionic operator translates into a $O(\log(j))$ -local qubit operator.

2. Project

More text . . . Here I cite [1]

Bibliography

[1] A. Einstein. "Die Ursache der Mäanderbildung der Flußläufe und des sogenannten Baerschen Gesetzes". In: *Die Naturwissenschaften* 14.11 (Mar. 1926), pp. 223–224. DOI: 10.1007/bf01510300.

A. First appendix

Lots of cool stuff about being structured.

Todo list