EGFWD

Scheduling using EDF (Project 2)

Name: Ahmed Atef Eliwa

Email: AhmedEliwa1232@gmail.com

The tasks that need to be implemented are the following according to the description:

Task	Button1	Button2	Trans_Uart	Receiv_Uart	1 st	2 nd load
					load	
Periodicity	50 ms	50 ms	100 ms	20 ms	10 ms	100
						ms
Deadline	50 ms	50 ms	100 ms	20 ms	10 ms	100 ms
Exec Time	30 us	30 us	90 us	145 us	5 ms	12 ms

• Calculate the system hyperperiod:

The hyperperiod must be the largest among all tasks = 100 ms

• Calculate the CPU load:

The cpu could be calculated as the total exec time / hyperperiod give.. However the total execution time is = sum of exec time of each task * the number that it occurs in one hyperperiod:

$$cpu \ load = \frac{2(30) + 2(30) + 1(90) + 5(145) + 10(5) + 1(12.5)}{100}$$
= 0.63435 = 63.3%

- Check system schedulability using URM and time demand analysis techniques (Assuming the given set of tasks are scheduled using a fixed priority rate -monotonic scheduler):
 - 1. Using URM:

NB: The system will be scheduable if and only if it doesn't miss its deadline.

Total utilization U = 0.634 Which is less than
$$n\left(2^{\frac{1}{n}}-1\right)=6\left(2^{\frac{1}{6}}-1\right)=0.73477$$
 Thus the system is scheduable where $U < n\left(2^{\frac{1}{n}}-1\right)$

2. Using Time Demand:

NB: The system will be scheduable if and only if the time provided is greater than the time required for each task

Task 1 (Button1 Monitor):

$$W = 30u + \left(\frac{50}{50}\right) * 30u + \left(\frac{50}{20}\right) * 145u = 26m$$

26 is less than 50 thus deadline not violated

Task 2 (Button2 Monitor):

$$W = \left(\frac{50}{10}\right) * 5m + 30u + \left(\frac{50}{50}\right) * 30u + \left(\frac{50}{20}\right) * 145u = 25.3m$$

25.3 is less than 50 thus deadline not violated

Task 3 (UART receive):

$$W = 140u + \left(\frac{20}{10}\right) * 5m = 10.1m$$

10.1 is less than 20 thus deadline not violated

Task 4 (UART transmit):

$$W = 90 + \left(\frac{100}{50}\right) * 30u + \left(\frac{100}{50}\right) * 30u + \left(\frac{100}{20}\right) * 145u + \left(\frac{100}{10}\right) * 5m = 50.91m$$

50.91 is less than 100 thus deadline not violated

Task 5 (First Load):

$$W = 5m$$

5 is less than 10 thus deadline not violated

Task 6 (Second Load):

$$W = 12.5 + \left(\frac{100}{50}\right) * 30 + \left(\frac{100}{50}\right) * 30 + \left(\frac{100}{20}\right) * 145u + \left(\frac{100}{10}\right) * 5m + 90u = 63.5$$

63.5 is less than 100 thus deadline not violated

Since none of the task violated the deadline, the overall system is scheduable.

- Using simulators to calculate the real execution time:
 - 1. Using Sismo simulation tool:

2. Using Keil simulation tool:

All tasks never miss the deadline according to the previous graphs, Thus the system is absolutely scheduable.

```
The ports used are:

port0 pin 16 → status of button 1 (variable)

port0 pin 17 → status of button 2 (variable)

port0 pin 18 → button1_monitor

port0 pin 19 → button2_monitor

port0 pin 20 → UART_Transmitter

port0 pin 21 → UART_Receiver

port0 pin 22 → Load_1

port0 pin 23 → Load2

port0 pin 24 → Idle task (default)

port0 pin 25 → Systick
```