

Database Management System

Assignment - UNIT III

SEM - II

2 Marks Questions

1. What is relation in DBMS? Explain with example.

Ans - A relation in a database management system (DBMS) refers to a table that organizes data into rows and columns. Each row represents a record, and each column represents an attribute or field.

For example, in a "Students" table, each row might represent a student, with columns like StudentID, Name, Age, and Grade.

2. What are the properties of relation?

Ans - The properties of a relation in DBMS are:

- 1. Unique Column Names: Each column in a relation must have a unique name.
- **2. Unique Column Values**: Each value in a column must be unique within that column.
- 3. Atomic Values: Each cell in the table should hold a single, indivisible value.
- **4. Rows are Unique:** No two rows in a relation should be identical; each row must be unique.
- **5. Columns have a Defined Domain:** Each column should contain values from a specific data domain.
 - 3. What is domain in terms of DBMS?

Ans - A domain specifies the range of possible values for a column or attribute. It defines what kind of data can be stored in that column. For example, the domain of an "Age" column might be integers between 0 and 120.

4. Explain degree of relation.

Ans - The degree of relation in DBMS just tells you how many columns a table has. If you have a table with columns for "ID", "Name", and "Age", the degree is 3 because there are three columns.

5. Explain cardinality ratio in DBMS.

Ans - Cardinality ratio in DBMS tells us how many instances of one entity are related to another entity. For example, in a library database, it indicates how many books are written by one author.

10 Marks Questions

6. Explain following Term with suitable example

a. Primary Key **b.** Candidate Key **c.** Super Key

Ans - 1. Primary Key:

- Uniquely identifies each record in a table.
- Example: Employee ID in an Employee table.

2. Candidate Key:

- Attributes that could potentially serve as a primary key.
- **Example:** Both Employee ID and Employee Passport could be candidate keys in an employee table.

3. Super Key:

- A super key is a set of columns in a table that uniquely identifies each record.

Example: In an "Employee "table, the Employee ID alone can serve as a super key since it uniquely identifies each Employee.

DIAGRAM:

- 7. List and explain any five rules of mapping the ER and EER Model to the Relational
- **Ans 1. Entity to Table:** Entities become tables. Each entity's attributes become columns in its respective table.
- **2. Attribute to Column:** Each attribute directly translates to a column in the corresponding table. Composite attributes are broken down into individual columns.
- **3. Primary Key:** The primary key of an entity becomes the primary key of its corresponding table. It uniquely identifies each row in the table.
- **4. Relationship to Foreign Key:** For relationships, the primary key of the related entity becomes a foreign key in the referring table. This maintains referential integrity.

- **5. Many-to-Many:** Many-to-many relationships are handled by creating an associative table. This table contains foreign keys referencing the participating entities, resolving the many-to-many relationship into two one-to-many relationships.
 - 8. List and explain unary and set operations.

Ans - Unary Operations:

- These operations work on a single relation.
- Examples:
 - **Selection**: Choosing specific rows based on a condition.
 - Projection: Selecting specific columns.
 - Renaming: Giving new names to attributes.
- They help in managing and refining data within a single table.
 - Set Operations:
- These operations combine data from two relations.
- Examples:
- **Union**: Combining all rows from both relations, removing duplicates.
- Intersection: Selecting only rows common to both relations.
- **Difference:** Selecting rows from one relation not found in the other.
- Set operations are useful for comparing and merging data between different tables.
 - 9. Explain any five basic terms in relational model.

Ans - 1. Table:

- A table in the relational model represents a collection of related data organized into rows and columns.

2. Row (Tuple or Record):

- A row, also known as a tuple or record, represents a single instance of data in a table.

3. Column (Attribute or Field):

- A column, also known as an attribute or field, represents a specific type of data within a table.

4. Primary Key:

- The primary key is a unique identifier for each row in a table, ensuring data integrity and uniqueness.

5. Foreign Key:

- A foreign key is a column in one table that refers to the primary key in another table, establishing relationships between tables.
 - 10. Explain all cases for mapping of ER diagram to relation model for binary relationship with cardinality ratio m:m, 1:m, m:1, 1:1.

Ans - 1. Many-to-Many (m:m):

- Create a separate table for the relationship.
- Include foreign keys referencing the primary keys of both related entities.
- Each row in the new table represents a pairing between instances of the

- Add a foreign key column in the table representing the "many" side.
- The foreign key column references the primary key of the table representing the "one" side.
- Each row on the "many" side can be associated with only one row on the

3. Many-to-One (m:1):

- Similar to one-to-many but from the opposite perspective.
- Add a foreign key column in the table representing the "one" side.
- The foreign key column references the primary key of the table representing the "many" side.
- Each row on the "many" side can be associated with multiple rows on the "one" side.

- Include foreign key columns in either of the related tables.
- Each foreign key column references the primary key of the other table.
- Ensure each foreign key column is unique to enforce the one-to-one relationship.

Disclaimer: Answers are based on available data and calculations. We strive for accuracy but cannot guarantee it. Users should verify information independently. We are not responsible for any errors or outcomes.

THANK YOU, CREATED BY SAURABH All THE BEST

"खुद पर भरोसा रखो, आगे बढ़ो ना डरो, सपनों को पाने का संकल्प करो, रास्ते में होगी मुश्किलें पर न थको। हारने की हो सोच, जीतने की हो आस, मन को हमेशा हो सकार, विश्वास रखो अपने पर और देखो अच्छे दिन का स्वागत कैसे करते हैं।"