Algèbre Linéaire 2 - Série 8

Applications linéaires: image, noyau, inverse, composition

1. Pour $\alpha \in \mathbb{R}$, on considère l'application linéaire $f_{\alpha} : \mathbb{R}^3 \to \mathbb{R}^3$ définie par

$$f_{\alpha} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -x + (2 - \alpha)y + z \\ x - y - z \\ x - y + (4 - \alpha)z \end{pmatrix}.$$

- (a) Déterminer pour quelles valeurs de $\alpha \in \mathbb{R}$ l'application f_{α} est injective.
- (b) Déterminer pour quelles valeurs de $\alpha \in \mathbb{R}$ l'application f_{α} est surjective.
- (c) Déterminer pour quelles valeurs de $\alpha \in \mathbb{R}$ l'application f_{α} est bijective.
- (d) Déterminer $Ker(f_1)$.
- (e) Est-ce qu'il existe une application linéaire $g: \mathbb{R}^2 \to \mathbb{R}^3$ telle que $\operatorname{Im}(g) = \operatorname{Im}(f_0)$?
- (f) Est-ce qu'il existe une application linéaire $h: \mathbb{R}^3 \to \mathbb{R}^2$ telle que $\operatorname{Ker}(h) = \operatorname{Ker}(f_1)$?

2. Soient

•
$$f: \mathbb{R}^3 \to \mathbb{R}^3$$
 l'application linéaire de matrice $A = \begin{pmatrix} 1 & 2 & 1 \\ 3 & 3 & 1 \\ 2 & 3 & 1 \end{pmatrix}$.

•
$$g: \mathbb{R}^3 \to \mathbb{R}^2$$
 l'application linéaire donnée par $g(\overrightarrow{e_1}) = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, g(\overrightarrow{e_2}) = \begin{pmatrix} 2 \\ -2 \end{pmatrix}, g(\overrightarrow{e_3}) = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$

•
$$h: \mathbb{R}^3 \to \mathbb{R}^3$$
 l'application linéaire donnée par $h \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2x + 3y + 2z \\ y + z \\ 2x - z \end{pmatrix}$.

- (a) Montrer que f est bijective, et déterminer f^{-1} .
- (b) Soit $i: \mathbb{R}^3 \to \mathbb{R}^2$ telle que $i \circ f = g$. Calculer $i(\overrightarrow{x})$ pour $\overrightarrow{x} \in \mathbb{R}^3$.
- (c) A quelle condition le vecteur $\overrightarrow{x} \in \mathbb{R}^3$ appartient-il à Im(h)?
- 3. Soit f la rotation de \mathbb{R}^3 d'angle 45° autour de l'axe Oy, et soit g la rotation de \mathbb{R}^3 d'angle 120° autour de la droite x=y=z.
 - (a) Déterminer les matrices de f, g, $f \circ g$, et $g \circ f$.
 - (b) On peut prouver que la composition de deux rotations autour d'axes passant par l'origine est à nouveau une telle rotation. Déterminer l'axe et l'angle de rotation de $g \circ f$.