

CEO, Research with Astronaut Photography, and Tips for GIS Students

Andi Hollier (Thomas), Earth Science and Remote Sensing Unit, JSC

Background

- BS Geography, Resource and Environmental Studies
- Minor: Geology
- Certificates:
 - Water Resources Policy
 - GIS
- Former GTU Secretary and Vice President
- Astronaut Photography Cataloger (thank you Dr. Currit and Dr. Jensen)
- Jacobs Internship, Earth Science and Remote Sensing (thank you Dr. Currit and Dr. Jensen)
- Hired with Hx5 as a Scientist 1 at Johnson Space Center, August 2016

What I do as an Earth Scientist

The Earth Science and Remote Sensing Unit

eol.jsc.nasa.gov/ESRS

Iberian Peninsula to Red Sea

Videos produced by the Crew Earth Observations group at
NASA Johnson Space Center

For replication and crediting information, please see our guidelines
on our main video page.

International Space Station

Earth Science Instruments

Information as of March 2017 – subject to change

Courtesy of AGI

C
r
e
w

E
a
r
t
h

O
b
s
e
r
v
a
t
i
o
n
s

Astronaut Photography

OVER 1.5 MILLION IMAGES AVAILABLE FOR DOWNLOAD FREE!!

Night

Aurora Borealis over Eastern North America

Videos produced by the Crew Earth Observations group at
NASA Johnson Space Center

For replication and crediting information, please see our guidelines
on our main video page.

Day

Western North and South America

Videos produced by the Crew Earth Observations group at
NASA Johnson Space Center

For replication and crediting information, please see our guidelines
on our main video page.

eol.jsc.nasa.gov

Gateway to Astronaut Photography of Earth

This service is provided by the International Space Station program and the JSC Earth Science & Remote Sensing Unit, ARES Division, Exploration Integration Science Directorate.

ENTER EMAIL

SUBSCRIBE

*Must be 13 years old or older to subscribe.

ISS048-E-65427

[Help](#) [Undo](#) [Redo](#) [Delete](#) [Zoom Max](#) [Zoom Fit](#) [Show Preview](#) [Save](#) [Saved.](#) [Done](#)

Rotate Angle

-180 -90 0 90 180

Autoenhance

Undo

contrast -1.0 3.0

brightness -1.0 3.0

+

-

Terms of Use

Image Processing International Disaster Charter

Part 2 – Texas State University Projects

Astronaut Photography Cataloging

Drifter

https://eol.jsc.nasa.gov/ESRS/Regional_Remote_Sensing/Drifter/

Tweets by @jscdrifter2

Jacobs

@jscdrifter2

Date:160816,Time:123032.383,Lat:2935.4977N,Lon:g:09504.7585W,Conductivity (uS/cm2):84.9240,Temp (Celsius):30.7369

16 Aug

Jacobs

@jscdrifter2

Date:160816,Time:073620.230,Lat:2935.4983N,Lon:g:09504.7556W,Conductivity (uS/cm2):148.5960,Temp (Celsius):31.4502

16 Aug

Jacobs

@jscdrifter2

Date:160816,Time:072225.890,Lat:2935.4976N,Lon:g:09504.7593W,Conductivity (uS/cm2):148.5960,Temp (Celsius):31.4502

16 Aug

Jacobs

@jscdrifter2

Part 3- Related Projects

Andi Hollier (Thomas) & Amy Jagge

Geographic Object-Based Image Analysis (GEOBIA)

“...a sub-discipline of Geographic Information Science (GIScience) devoted to developing automated methods to partition remote sensing imagery into meaningful image-objects, and assessing their characteristics through spatial, spectral and temporal scales, so as to generate new geographic information in GIS-ready format.”

-G.J. Hay, G. Castilla

1. Computer algorithms segment images into image-objects based on image features (texture, geometry, spectral properties, and spatial relationships)

2. Assign image-objects to categories or classes of interest based on expert knowledge, unique image-object features, and supervised algorithms.

3. Image-objects are the basic unit of analysis

GEOBIA

1985

2002

2014

Accuracy Assessment

- Perform two types of accuracy assessments on classified images for comparison
- Overall accuracy > 80% and kappa statistic > 0.71

ERDAS: Generate 150 randomly stratified points and assign classes to points using the unclassified digital image as reference. Assess accuracy using confusion matrix and statistical report.

Ecognition: Select >5 samples for each class and create TTA mask based off samples. Assess accuracy using confusion matrix and statistical report.

Change Detection

- Perform change detection between classified images for years 1985 and 2014.
- Generate Matrix Union output image quantifying change between two images.

1985 "From" Class	2014 "To" Class							
	Unchanged							
	Roads	Water	Mixed Forest	Grassland	Developed - High	Developed - Medium	Developed - Low	Developed - Open Space
Hectares (%)	1823.67(83.73)	1197.06(77.86)	6090.06(58.72)	2725.17(41.35)	27070.8 (42.30)	5150.7 (27.28)	5887.13 (62.14)	243.384 (74.82)
Roads		1.75495(1.75)	14.8709(4.19)	14.6862(4.14)	185.471(52.34)	123.493(34.85)	12.6541(3.57)	1.38549(0.39)
Water	2.03205 (0.59)		111.855(32.86)	13.6702(4.01)	52.8211(15.51)	128.112(37.64)	30.8502(9.06)	1.01603(0.29)
Mixed Forest	130.236(3.04)	85.7156(2.00)		1505.66(35.17)	395.881(9.24)	1364.43(31.87)	796.978(18.61)	2.12442(0.04)
Grassland	118.413(3.06)	37.7777(0.97)	1334.13(34.51)		755.646(19.54)	1143.12(29.57)	474.484(12.27)	2.03205(0.05)
Developed - High	339.6391(1.19)	102.279(0.33)	3602.09(11.87)	5472.13(18.04)		18158.4(59.86)	2627.9(8.66)	31.035(0.10)
Developed - Medium	78.6034(0.57)	71.8607(0.52)	1864.68(13.57)	2887.45(21.02)	5150.7(37.50)		3654.5(26.61)	23.9228(0.17)
Developed - Low	4.0641(0.11)	38.609(1.07)	647.763(18.05)	657.461(18.32)	437.168(12.18)	1802.24(50.32)		0.184732(0.005)
Developed Open Space	0	0.646562(0.78)	50.43189(61.55)	0	0	18.7503(22.88)	12.0999(14.76)	

Part 4 – Free and Open Source GIS Tools

Free and Open Source?

Free

“...the users have the freedom to run, copy,
distribute, study, change and improve the software”

-Richard Stallman

Open Source

- Some licenses are restrictive
 - Can't make a modified version

QGIS

- Free and Open Source GIS software supporting raster, vector, database formats and functions
- Licensed under GNU
- Windows, Mac, Linux, BSD, and Android

Automating GIS Tasks – GDAL/OGR

- Geospatial Data Abstraction Library – Translating and processing raster and vector data
- GDAL – Raster
- OGR – Vector
- GDAL/OGR: Has both raster and vector tools
- Free and open-source
- Command line interface
- Can translate 142 raster formats and 84 vector formats
- Explore, manipulate, convert data on the fly.
- Check out Sara Safavi and Sasha Hart's workshop:
<http://slides.sarasafavi.com/gdal/#/>

Credit: Sara Safavi and Sasha Hart

Real-time 3D visualization of geospatial data using Blender

- 3D modeling with a powerful open-source rendering and game engine software
 - Can import various georeferenced data with BlenderGIS addon
 - Almost every operation can be scripted in a Python environment
 - Can publish with Blender4Web or sketchfab addons.
 - [Sample geospatial model in Sketchfab](#)

Open Drone Map

- Open source toolkit
- Supports aerial drone image processing
- Can process to:
 - Point clouds
 - DSMs
 - Textured DSMs
 - Orthorectified imagery
 - Classified point clouds
 - DEMs

Recommended Coursework

- Technical Writing
- Maps and Map Making
- All GIS and Remote Sensing classes
- As much math as possible
- Python or R course (tons of free online options)

Questions?