Fast Fourier Transform and MATLAB Implementation

by
Wanjun Huang
for
Dr. Duncan L. MacFarlane

Signals

In the fields of communications, signal processing, and in electrical engineering more generally, a signal is any time-varying or spatial-varying quantity

This variable(quantity) changes in time

- Speech or audio signal: A sound amplitude that varies in time
- Temperature readings at different hours of a day
- Stock price changes over days
- Etc.

Signals can be classified by continues-time signal and discrete-time signal:

- A discrete signal or discrete-time signal is a time series, perhaps a signal that has been sampled from a continuous-time signal
- A digital signal is a discrete-time signal that takes on only a discrete set of

values

Periodic Signal

periodic signal and non-periodic signal:

- Period T: The minimum interval on which a signal repeats
- Fundamental frequency: $f_0 = 1/T$
- Harmonic frequencies: kf₀
- Any periodic signal can be approximated by a sum of many sinusoids at harmonic frequencies of the signal (kf_0) with appropriate amplitude and phase
- Instead of using sinusoid signals, mathematically, we can use the complex exponential functions with both positive and negative harmonic frequencies Euler formula: $\exp(j\omega t) = \sin(\omega t) + j\cos(\omega t)$

Time-Frequency Analysis

 A signal has one or more frequencies in it, and can be viewed from two different standpoints: Time domain and Frequency domain

Time-domain figure: how a signal changes over time Frequency-domain figure: how much of the signal lies within each given frequency band over a range of frequencies

Why frequency domain analysis?

- To decompose a complex signal into simpler parts to facilitate analysis
- Differential and difference equations and convolution operations in the time domain become algebraic operations in the frequency domain
- Fast Algorithm (FFT)

Fourier Transform

We can go between the time domain and the frequency domain by using a tool called *Fourier transform*

- A Fourier transform converts a signal in the time domain to the frequency domain(spectrum)
- An inverse Fourier transform converts the frequency domain components back into the original time domain signal

Continuous-Time Fourier Transform:

$$F(j\omega) = \int_{-\infty}^{+\infty} f(t)e^{-j\omega t}dt \qquad f(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} F(j\omega)e^{j\omega t}d\omega$$

Discrete-Time Fourier Transform(DTFT):

$$X(e^{j\omega}) = \sum_{n=-\infty}^{+\infty} x[n]e^{-j\omega n} \qquad x[n] = \frac{1}{2\pi} \int_{2\pi} X(e^{j\omega})e^{j\omega n} d\omega$$

Fourier Representation For Four Types of Signals

The signal with different time-domain characteristics has different frequency-domain characteristics

- 1 Continues-time periodic signal ---> discrete non-periodic spectrum
- 2 Continues-time non-periodic signal ---> continues non-periodic spectrum
- 3 Discrete non-periodic signal ---> continues periodic spectrum
- 4 Discrete periodic signal ---> discrete periodic spectrum

The last transformation between time-domain and frequency is most useful

The reason that discrete is associated with both time-domain and frequency domain is because computers can only take finite discrete time signals

Periodic Sequence

A periodic sequence with period *N* is defined as:

$$\tilde{x}(n) = \tilde{x}(n + kN)$$
 , where k is integer

For example:
$$W_N^{kn} = e^{-j\frac{2\pi}{N}kn}$$
 (it is called *Twiddle Factor*)

Properties: Periodic
$$W_N^{kn} = W_N^{(k+N)n} = W_N^{k(n+N)}$$

Symmetric
$$W_N^{-kn} = (W_N^{kn})^* = W_N^{(N-k)n} = W_N^{k(N-n)}$$

Orthogonal
$$\sum_{k=0}^{N-1} W_N^{kn} = \begin{cases} N & n = rN \\ 0 & other \end{cases}$$

For a periodic sequence $\tilde{\chi}(n)$ with period N, only N samples are independent. So that N sample in one period is enough to represent the whole sequence

Discrete Fourier Series(DFS)

Periodic signals may be expanded into a series of sine and cosine functions

$$\widetilde{X}(k) = \sum_{n=0}^{N-1} \widetilde{x}(n) W_N^{kn}$$

$$\widetilde{X}(k) = DFS(\widetilde{x}(n))$$

$$\widetilde{x}(n) = \frac{1}{N} \sum_{n=0}^{N-1} \widetilde{X}(k) W_N^{-kn}$$

$$\widetilde{x}(n) = IDFS(\widetilde{X}(k))$$

 $\widetilde{X}(k)$ is still a periodic sequence with period N in frequency domain

The Fourier series for the discrete-time periodic wave shown below:

Finite Length Sequence

Real lift signal is generally a finite length sequence $x(n) = \begin{cases} x(n) & 0 \le n \le N-1 \\ 0 & others \end{cases}$

$$x(n) = \begin{cases} x(n) & 0 \le n \le N - \\ 0 & others \end{cases}$$

If we periodic extend it by the period *N*, then $\widetilde{x}(n) = \sum_{n=0}^{\infty} x(n+rN)$

$$\widetilde{x}(n) = \sum_{r=-\infty}^{\infty} x(n+rN)$$

Relationship Between Finite Length Sequence and Periodic Sequence

A periodic sequence is the periodic extension of a finite length sequence

$$\widetilde{x}(n) = \sum_{m=-\infty}^{\infty} x(n + rN) = x((n))_{N}$$

A finite length sequence is the principal value interval of the periodic sequence

$$x(n) = \widetilde{x}(n)R_N(n)$$
 Where $R_N(n) = \begin{cases} 1 & 0 \le n \le N-1 \\ 0 & others \end{cases}$

So that:

$$x(n) = \widetilde{x}(n)R_N(n) = IDFS[\widetilde{X}(k)]R_N(n)$$

$$X(k) = \widetilde{X}(k)R_N(k) = DFS[\widetilde{x}(n)]R_N(n)$$

Discrete Fourier Transform(DFT)

- Using the Fourier series representation we have Discrete Fourier Transform(DFT) for finite length signal
- DFT can convert time-domain discrete signal into frequencydomain discrete spectrum

Assume that we have a signal $\{x[n]\}_{n=0}^{N-1}$. Then the DFT of the signal is a sequence X[k] for $k = 0, \dots, N-1$

$$X[k] = \sum_{n=0}^{N-1} x[n]e^{-2\pi jnk/N}$$

The Inverse Discrete Fourier Transform(IDFT):

$$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{2\pi j n k / N}, n = 0, 2, \dots, N-1.$$

Note that because MATLAB cannot use a zero or negative indices, the index starts from 1 in MATLAB

DFT Example

The DFT is widely used in the fields of spectral analysis, acoustics, medical imaging, and telecommunications.

For example:

$$x[n] = [2 \ 4 - 1 \ 6], \quad N = 4, (n = 0,1,2,3)$$

$$X[k] = \sum_{n=0}^{3} x[n]e^{-j\frac{\pi}{2}nk} = \sum_{n=0}^{3} x[n](-j)^{nk}$$

$$X[0] = 2 + 4 + (-1) + 6 = 11$$

 $X[1] = 2 + (-4j) + 1 + 6j = 3 + 2j$
 $X[2] = 2 + (-4) + (-1) - 6 = -9$
 $X[3] = 2 + (4j) + 1 - 6j = 3 - 2j$

Fast Fourier Transform(FFT)

- The Fast Fourier Transform does not refer to a new or different type of Fourier transform. It refers to a very efficient algorithm for computing the DFT
- The time taken to evaluate a DFT on a computer depends principally on the number of multiplications involved. DFT needs N^2 multiplications. FFT only needs $N\log_2(N)$
- The central insight which leads to this algorithm is the realization that a discrete Fourier transform of a sequence of N points can be written in terms of two discrete Fourier transforms of length N/2
- Thus if *N* is a power of two, it is possible to recursively apply this decomposition until we are left with discrete Fourier transforms of single points

Fast Fourier Transform(cont.)

Re-writing
$$X[k] = \sum_{n=0}^{N-1} x[n]e^{-2\pi jnk/N}$$
 as $X[k] = \sum_{n=0}^{N-1} x[n]W_N^{nk}$

It is easy to realize that the same values of $\left.W\right._{N}^{nk}$ are calculated many times as the computation proceeds

Using the symmetric property of the twiddle factor, we can save lots of computations

$$X[k] = \sum_{n=0}^{N-1} x[n]W_N^{nk} = \sum_{\substack{n=0 \ even \ n}}^{N-1} x(n)W_N^{kn} + \sum_{\substack{n=0 \ odd \ n}}^{N-1} x(n)W_N^{kn}$$

$$= \sum_{r=0}^{N/2-1} x(2r)W_N^{2kr} + \sum_{r=0}^{N/2-1} x(2r+1)W_N^{k(2r+1)}$$

$$= \sum_{r=0}^{N/2-1} x_1(r)W_{N/2}^{kr} + W_N^{k} \sum_{r=0}^{N/2-1} x_2(r)W_{N/2}^{kr}$$

$$= X_1(k) + W_N^{k} X_2(k)$$

Thus the N-point DFT can be obtained from two N/2-point transforms, one on even input data, and one on odd input data.

Introduction for MATLAB

MATLAB is a numerical computing environment developed by MathWorks. MATLAB allows matrix manipulations, plotting of functions and data, and implementation of algorithms

Getting help

You can get help by typing the commands help or lookfor at the >> prompt, e.g.

Arithmetic operators

Symbol Operation Example
+ Addition 3.1 + 9
- Subtraction 6.2 - 5
* Multiplication 2 * 3
/ Division 5 / 2
^ Power 3^2

Data Representations in MATLAB

Variables: Variables are defined as the assignment operator "=" . The syntax of variable assignment is

variable name = a value (or an expression)
For example,

>>
$$x = 5$$

 $x = 5$
>> $y = [3*7, pi/3];$ % pi is π in MATLAB

Vectors/Matrices: MATLAB can create and manipulate arrays of 1 (vectors), 2 (matrices), or more dimensions

row vectors: a = [1, 2, 3, 4] is a 1X4 matrix column vectors: b = [5; 6; 7; 8; 9] is a 5X1 matrix, e.g. >> A = [1 2 3; 7 8 9; 4 5 6] A = 1 2 3

Mathematical Functions in MATLAB

MATLAB offers many predefined mathematical functions for technical computing, e.g.

cos(x)	Cosine	abs(x)	Absolute value
sin(x)	Sine	angle(x)	Phase angle
exp(x)	Exponential	conj(x)	Complex conjugate
sqrt(x)	Square root	log(x)	Natural logarithm

Colon operator (:)

Suppose we want to enter a vector x consisting of points (0,0.1,0.2,0.3,...,5). We can use the command >> x = 0:0.1:5;

Most of the work you will do in MATLAB will be stored in files called *scripts*, or m-files, containing sequences of MATLAB commands to be executed over and over again

Basic plotting in MATLAB

MATLAB has an excellent set of graphic tools. Plotting a given data set or the results of computation is possible with very few commands

The MATLAB command to plot a graph is plot(x,y), e.g.

```
>> x = 0:pi/100:2*pi;
>> y = sin(x);
>> plot(x,y)
```

MATLAB enables you to add axis Labels and titles, e.g.

```
>> xlabel('x=0:2\pi');
>> ylabel('Sine of x');
>> tile('Sine function')
```


Example 1: Sine Wave


```
Fs = 150; % Sampling frequency
t = 0:1/Fs:1; % Time vector of 1 second
f = 5; % Create a sine wave of f Hz.
x = \sin(2*pi*t*f);
nfft = 1024; % Length of FFT
% Take fft, padding with zeros so that length(X)
is equal to nfft
X = fft(x,nfft);
% FFT is symmetric, throw away second half
X = X(1:nfft/2);
% Take the magnitude of fft of x
mx = abs(X);
% Frequency vector
f = (0:nfft/2-1)*Fs/nfft;
% Generate the plot, title and labels.
figure(1);
plot(t,x);
title('Sine Wave Signal');
xlabel('Time (s)');
ylabel('Amplitude');
figure(2);
plot(f,mx);
title('Power Spectrum of a Sine Wave');
xlabel('Frequency (Hz)');
ylabel('Power');
```

Example 2: Cosine Wave


```
Fs = 150; % Sampling frequency
t = 0:1/Fs:1; % Time vector of 1 second
f = 5; % Create a sine wave of f Hz.
x = cos(2*pi*t*f);
nfft = 1024; % Length of FFT
% Take fft, padding with zeros so that length(X) is
equal to nfft
X = fft(x,nfft);
% FFT is symmetric, throw away second half
X = X(1:nfft/2);
% Take the magnitude of fft of x
mx = abs(X);
% Frequency vector
f = (0:nfft/2-1)*Fs/nfft;
% Generate the plot, title and labels.
figure(1);
plot(t,x);
title('Sine Wave Signal');
xlabel('Time (s)');
ylabel('Amplitude');
figure(2);
plot(f,mx);
title('Power Spectrum of a Sine Wave');
xlabel('Frequency (Hz)');
ylabel('Power');
```

Example 3: Cosine Wave with Phase Shift


```
Fs = 150; % Sampling frequency
t = 0:1/Fs:1; % Time vector of 1 second
f = 5; % Create a sine wave of f Hz.
pha = 1/3*pi; % phase shift
x = cos(2*pi*t*f + pha);
nfft = 1024; % Length of FFT
% Take fft, padding with zeros so that length(X) is
equal to nfft
X = fft(x, nfft);
% FFT is symmetric, throw away second half
X = X(1:nfft/2);
% Take the magnitude of fft of x
mx = abs(X);
% Frequency vector
f = (0:nfft/2-1)*Fs/nfft;
% Generate the plot, title and labels.
figure(1);
plot(t,x);
title('Sine Wave Signal');
xlabel('Time (s)');
ylabel('Amplitude');
figure(2);
plot(f,mx);
title('Power Spectrum of a Sine Wave');
xlabel('Frequency (Hz)');
ylabel('Power');
```

Example 4: Square Wave


```
Fs = 150; % Sampling frequency
t = 0:1/Fs:1; % Time vector of 1 second
f = 5; % Create a sine wave of f Hz.
x = square(2*pi*t*f);
nfft = 1024; % Length of FFT
% Take fft, padding with zeros so that length(X) is
equal to nfft
X = fft(x,nfft);
% FFT is symmetric, throw away second half
X = X(1:nfft/2);
% Take the magnitude of fft of x
mx = abs(X);
% Frequency vector
f = (0:nfft/2-1)*Fs/nfft;
% Generate the plot, title and labels.
figure(1);
plot(t,x);
title('Square Wave Signal');
xlabel('Time (s)');
ylabel('Amplitude');
figure(2);
plot(f,mx);
title('Power Spectrum of a Square Wave');
xlabel('Frequency (Hz)');
ylabel('Power');
```

Example 5: Square Pulse


```
Fs = 150; % Sampling frequency
t = -0.5:1/Fs:0.5; % Time vector of 1 second
w = .2; % width of rectangle
x = rectpuls(t, w); % Generate Square Pulse
nfft = 512; % Length of FFT
% Take fft, padding with zeros so that length(X) is
equal to nfft
X = fft(x,nfft);
% FFT is symmetric, throw away second half
X = X(1:nfft/2);
% Take the magnitude of fft of x
mx = abs(X);
% Frequency vector
f = (0:nfft/2-1)*Fs/nfft;
% Generate the plot, title and labels.
figure(1);
plot(t,x);
title('Square Pulse Signal');
xlabel('Time (s)');
ylabel('Amplitude');
figure(2);
plot(f,mx);
title('Power Spectrum of a Square Pulse');
xlabel('Frequency (Hz)');
ylabel('Power');
```

Example 6: Gaussian Pulse


```
Fs = 60; % Sampling frequency
t = -.5:1/Fs:.5;
x = 1/(sqrt(2*pi*0.01))*(exp(-t.^2/(2*0.01)));
nfft = 1024; % Length of FFT
% Take fft, padding with zeros so that
length(X) is equal to nfft
X = fft(x,nfft);
% FFT is symmetric, throw away second half
X = X(1:nfft/2);
% Take the magnitude of fft of x
mx = abs(X);
% This is an evenly spaced frequency vector
f = (0:nfft/2-1)*Fs/nfft;
% Generate the plot, title and labels.
figure(1);
plot(t,x);
title('Gaussian Pulse Signal');
xlabel('Time (s)');
ylabel('Amplitude');
figure(2);
plot(f,mx);
title('Power Spectrum of a Gaussian Pulse');
xlabel('Frequency (Hz)');
ylabel('Power');
```

Example 7: Exponential Decay


```
Fs = 150; % Sampling frequency
t = 0:1/Fs:1; % Time vector of 1 second
x = 2*exp(-5*t);
nfft = 1024; % Length of FFT
% Take fft, padding with zeros so that
length(X) is equal to nfft
X = fft(x,nfft);
% FFT is symmetric, throw away second
half
X = X(1:nfft/2);
% Take the magnitude of fft of x
mx = abs(X);
% This is an evenly spaced frequency
vector
f = (0:nfft/2-1)*Fs/nfft;
% Generate the plot, title and labels.
figure(1);
plot(t,x);
title('Exponential Decay Signal');
xlabel('Time (s)');
ylabel('Amplitude');
figure(2);
plot(f,mx);
title('Power Spectrum of Exponential
Decay Signal');
xlabel('Frequency (Hz)');
ylabel('Power');
```

Example 8: Chirp Signal


```
Fs = 200; % Sampling frequency
t = 0:1/Fs:1; % Time vector of 1 second
x = chirp(t, 0, 1, Fs/6);
nfft = 1024; % Length of FFT
% Take fft, padding with zeros so that
length(X) is equal to nfft
X = fft(x,nfft);
% FFT is symmetric, throw away second half
X = X(1:nfft/2);
% Take the magnitude of fft of x
mx = abs(X);
% This is an evenly spaced frequency
vector
f = (0:nfft/2-1)*Fs/nfft;
% Generate the plot, title and labels.
figure(1);
plot(t,x);
title('Chirp Signal');
xlabel('Time (s)');
ylabel('Amplitude');
figure(2);
plot(f,mx);
title('Power Spectrum of Chirp Signal');
xlabel('Frequency (Hz)');
ylabel('Power');
```