Particle spectrograph

Wave operator and propagator

					<u>(1</u>)		, d
$\tau_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{2ik}{t_1 + 2k^2t_1}$	$-\frac{i\sqrt{2}}{(t_1+2k^2t_1)^2}$	0	$\frac{-4k^4(r_1+r_5)+2k^2t_1}{(t_1+2k^2t_1)^2}$
$\tau_{1}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\sigma_{1^{\bar{-}}\alpha}^{\#2}$	0	0	0	$\frac{\sqrt{2}}{t_1 + 2 k^2 t_1}$	$\frac{-2 k^2 (r_1 + r_5) + t_1}{(t_1 + 2 k^2 t_1)^2}$	0	$\frac{i\sqrt{2}k(2k^2(r_1+r_5)\cdot t_1)}{(t_1+2k^2t_1)^2}$
$\sigma_{1^{\bar{-}}}^{\#1}{}_{\alpha}$	0	0	0	0	$\frac{\sqrt{2}}{t_1 + 2k^2t_1}$	0	$-\frac{2ik}{t_1+2k^2t_1}$
${\tau_1^{\#}}_1^1$	$\frac{i\sqrt{2} k(t_1-2t_2)}{(1+k^2)(3t_1t_2+2k^2(2r_1+r_5)(t_1+t_2))}$	$\frac{i k (6 k^2 (2 r_1 + r_5) + t_1 + 4 t_2)}{(1 + k^2)^2 (3 t_1 t_2 + 2 k^2 (2 r_1 + r_5) (t_1 + t_2))}$	$\frac{k^2 \left(6 k^2 (2 r_1 + r_5) + t_1 + 4 t_2\right)}{(1 + k^2)^2 (3 t_1 t_2 + 2 k^2 (2 r_1 + r_5) (t_1 + t_2))}$	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha\beta}$	$\frac{\sqrt{2} (t_1 - 2t_2)}{(1 + k^2) (3t_1 t_2 + 2k^2 (2r_1 + r_5) (t_1 + t_2))}$	$\frac{6k^2(2r_1+r_5)+t_1+4t_2}{(1+k^2)^2(3t_1t_2+2k^2(2r_1+r_5)(t_1+t_2))}$	$-\frac{ik(6k^2(2r_1+r_5)+t_1+4t_2)}{(1+k^2)^2(3t_1t_2+2k^2(2r_1+r_5)(t_1+t_2))} \frac{k^2(6k^2)}{(1+k^2)^2(3t_1)}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{\alpha\beta}$	341 42+2	$\frac{\sqrt{2} (t_1 - 2t_2)}{(1 + k^2) (3t_1 t_2 + 2k^2 (2r_1 + r_5) (t_1 + t_2))}$	$i \sqrt{2} k(t_1-2t_2) $ $1+k^2) (3t_1t_2+2k^2(2r_1+r_5)(t_1+t_2))$	0	0	0	0
	$\sigma_{1}^{\#1} + \alpha \beta$	$\sigma_1^{#2} + \alpha \beta$	$\tau_1^{\#1} + \alpha \beta$	$\sigma_{1}^{\#1} +^{lpha}$	$\sigma_{1}^{\#2} +^{\alpha}$	$\tau_{1}^{\#1} +^{\alpha}$	$t_1^{\#2} + ^{\alpha}$

1							
$f_{1^-}^{\#2} \alpha$	0	0	0	$i k t_1$	0	0	0
$f_{1^-}^{\#1}\alpha$	0	0	0	0	0	0	0
$\omega_{1}^{\#2}{}_{\alpha} f_{1}^{\#1}{}_{\alpha} f_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{t_1}{\sqrt{2}}$	0	0	0
$\omega_{1^{^{-}}\alpha}^{\#1}$	0	0	0	$k^2 (r_1 + r_5) - \frac{t_1}{2}$	$\frac{t_1}{\sqrt{2}}$	0	$-ar{\imath} k t_1$
$f_{1}^{\#1}$	$-\frac{ik(t_1-2t_2)}{3\sqrt{2}}$	$\frac{1}{3}$ \bar{l} k $(t_1 + t_2)$	$\frac{1}{3}$ \vec{l} k $(t_1 + t_2)$ $\frac{1}{3}$ k^2 $(t_1 + t_2)$	0	0	0	0
$\omega_1^{\#2}{}_+ \alpha_{eta}$	$-\frac{t_1-2t_2}{3\sqrt{2}}$	$\frac{t_1+t_2}{3}$	$-\frac{1}{3}\bar{l}k(t_1+t_2)$	0	0	0	0
$\omega_1^{\#1}_+ \alpha_\beta$	$\omega_{1}^{\#1} + \alpha \beta \left[\frac{1}{6} \left(6 k^2 \left(2 r_1 + r_5 \right) + t_1 + 4 t_2 \right) \right]$	$-\frac{t_1-2t_2}{3\sqrt{2}}$	$\frac{ik(t_1-2t_2)}{3\sqrt{2}}$	0	0	0	0
	$\omega_1^{\#1} + ^{lphaeta}$	$\omega_{1}^{\#2} + \alpha^{\beta}$	$f_{1+}^{#1} + \alpha \beta$	$\omega_{1}^{\#1} +^{lpha}$	$\omega_{1}^{\#2} +^{lpha}$	$f_{1}^{\#1} +^{lpha}$	$f_{1}^{#2} + \alpha$

	$\omega_2^{\#}$	÷1 + αβ	$f_{2}^{\#1}$	ιβ	ω	#1 2 αβ;	X
$\omega_{2}^{\sharp 1} \dagger^{\alpha \beta}$	<u>t</u>	<u>1</u> 2	$-\frac{ikt_1}{\sqrt{2}}$	<u>L</u>		0	
$f_{2}^{#1}\dagger^{\alpha\beta}$	<u>ī</u> k	$\frac{t_1}{\sqrt{2}}$	$k^2 t_1$	L		0	
$\omega_2^{\#1} \dagger^{\alpha\beta\chi}$		0	0		k ²	$r_1 + \frac{t}{2}$	<u>†</u> 1 2
Source constraints/gauge generators SO(3) irreps Multiplicities	$\tau_0^{\#2} = 0$ 1	$\tau_{0+}^{\#1} - 2 \bar{i} k \sigma_{0+}^{\#1} == 0 \qquad \boxed{1}$	$t_1^{\#2}{}^{\alpha} + 2 i k \sigma_1^{\#2}{}^{\alpha} == 0$ 3	($t_{1}^{*,1} = 0$ 3	$\tau_{1}^{\#1}\alpha\beta + ik \ \sigma_{1}^{\#2}\alpha\beta == 0 3$	$\int_{t_{+}^{+}}^{t_{+}} d\beta - 2 \tilde{l} k O_{+}^{+} d\beta = 0 5$

	$\omega_{0}^{\#1}$	-t ₁
16		$\omega_0^{#1}$ †
aints:	$\sigma_{2^{-}}^{\#1}\alpha\beta\chi$	0
Fotal constraints:	$\tau_{2}^{\#1}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$
_	$\sigma_{2}^{\#1}$	$\frac{2}{(1+2k^2)^2t_1}$

 $r_{2+}^{\#1}\alpha\beta - 2ik\sigma_{2+}^{\#1}\alpha\beta = 0$

 $f_{0}^{\#1}$

$\tau_2^{\#1}$	$-\frac{2i\sqrt{2}}{(1+2k^2)^2}$	$\frac{4k^2}{(1+2k^2)^2}$	
$\sigma_{2}^{\#1}{}_{\alpha\beta}$	$\frac{2}{(1+2k^2)^2t_1}$	$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	
	$\sigma_{2}^{\#1} + \alpha^{eta}$	$\tau_2^{\#1} + \alpha \beta$	
$\sigma_{0^{\text{-}}}^{\#1}$	0	0	
$\tau_0^{\#2}$	0	0	
	$\frac{1}{2}t_{1}$	$\frac{2}{t_1}$	

⊣.				
$\sigma_{0^{\text{-}}}^{\#1}$	0	0 0		$\frac{1}{t_2}$
$\tau_0^{\#2}$	0	0	0	0
$\tau_{0}^{\#1}$	$\frac{i\sqrt{2}k}{(1+2k^2)^2t_1}$	$-\frac{2k^2}{(1+2k^2)^2t_1}$	0	0
$\sigma_{0^+}^{\#1}$	$-\frac{1}{(1+2k^2)^2t_1}$	$-\frac{i\sqrt{2}k}{(1+2k^2)^2t_1}$	0	0
	$\sigma_{0}^{\#1}$ †	$\tau_{0}^{\#1}$ †	$\tau_0^{\#2}$ †	$\sigma_{0}^{\#1}$ \dagger

Q	uad	ratic	(free)	action

 $\iiint (\frac{1}{6} \left(6 \, t_1 \, \, \omega^{\alpha_i}_{ \alpha} \, \, \omega_{i \, \, \theta}^{ \theta} + 6 \, \, f^{\alpha \beta} \, \, \tau_{\alpha \beta} + 6 \, \, \omega^{\alpha \beta \chi} \, \, \sigma_{\alpha \beta \chi} - 12 \, t_1 \, \, \omega_{\alpha \, \, \theta}^{ \theta} \, \partial_i f^{\alpha_i} + 12 \, t_1 \, \, \omega_{\alpha \, \, \theta}^{ \theta} \, \partial_i f^{\alpha_i} + 12 \, t_1 \, \, \omega_{\alpha \, \, \theta}^{ \theta} \, \partial_i f^{\alpha_i} + 12 \, t_1 \, \, \omega_{\alpha \, \, \theta}^{ \theta} \, \partial_i f^{\alpha_i} + 12 \, t_1 \, \, \omega_{\alpha \, \, \theta}^{ \theta} \, \partial_i f^{\alpha_i} + 12 \, t_1 \, \, \omega_{\alpha \, \, \theta}^{ \theta} \, \partial_i f^{\alpha_i} + 12 \, t_1 \, \, \omega_{\alpha \, \, \theta}^{ \theta} \, \partial_i f^{\alpha_i} + 12 \, t_1 \, \, \omega_{\alpha \, \, \theta}^{ \theta} \, \partial_i f^{\alpha_i} + 12 \, t_1 \, \, \omega_{\alpha \, \, \theta}^{ \theta} \, \partial_i f^{\alpha_i} + 12 \, t_1 \, \, \omega_{\alpha \, \, \theta}^{ \theta} \, \partial_i f^{\alpha_i} + 12 \, t_1 \, \, \omega_{\alpha \, \, \theta}^{ \theta} \, \partial_i f^{\alpha_i} + 12 \, t_1 \, \, \omega_{\alpha \, \, \theta}^{ \theta} \, \partial_i f^{\alpha_i} + 12 \, t_1 \, \, \omega_{\alpha \, \, \theta}^{ \theta} \, \partial_i f^{\alpha_i} + 12 \, t_1 \, \, \omega_{\alpha \, \, \theta}^{ \theta} \, \partial_i f^{\alpha_i} + 12 \, t_1 \, \, \omega_{\alpha \, \, \theta}^{ \theta} \, \partial_i f^{\alpha_i} + 12 \, t_1 \, \, \omega_{\alpha \, \, \theta}^{ \theta} \, \partial_i f^{\alpha_i} + 12 \, t_1 \, \, \omega_{\alpha \, \, \theta}^{ \theta} \, \partial_i f^{\alpha_i} + 12 \, t_1 \, \, \omega_{\alpha \, \, \theta}^{ \theta} \, \partial_i f^{\alpha_i} + 12 \, t_1 \, \, \omega_{\alpha \, \, \theta}^{ \theta} \, \partial_i f^{\alpha_i} + 12 \, t_1 \, \, \omega_{\alpha \, \, \theta}^{ \theta} \, \partial_i f^{\alpha_i} + 12 \, t_1 \, \, \omega_{\alpha \, \, \theta}^{ \theta} \, \partial_i f^{\alpha_i} + 12 \, t_1 \, \, \omega_{\alpha \, \, \theta}^{ \theta} \, \partial_i f^{\alpha_i} + 12 \, t_1 \, \, \omega_{\alpha \, \, \theta}^{ \theta} \, \partial_i f^{\alpha_i} + 12 \, t_1 \, \, \omega_{\alpha \, \, \theta}^{ \theta} \, \partial_i f^{\alpha_i} + 12 \, t_1 \, \, \omega_{\alpha \, \, \theta}^{ \theta} \, \partial_i f^{\alpha_i} + 12 \, t_1 \, \, \omega_{\alpha \, \, \theta}^{ \theta} \, \partial_i f^{\alpha_i} + 12 \, t_1 \, \, \omega_{\alpha \, \, \theta}^{ \theta} \, \partial_i f^{\alpha_i} + 12 \, t_1 \, \, \omega_{\alpha \, \, \theta}^{ \theta} \, \partial_i f^{\alpha_i} + 12 \, t_1 \, \, \omega_{\alpha \, \, \theta}^{ \theta} \, \partial_i f^{\alpha_i} + 12 \, t_2 \, \omega_{\alpha \, \, \theta}^{ \theta} \, \partial_i f^{\alpha_i} + 12 \, t_3 \, \omega_{\alpha \, \, \theta}^{ \theta} \, \partial_i f^{\alpha_i} + 12 \, t_3 \, \omega_{\alpha \, \, \theta}^{ \theta} \, \partial_i f^{\alpha_i} + 12 \, t_3 \, \omega_{\alpha \, \, \theta}^{ \theta} \, \partial_i f^{\alpha_i} + 12 \, t_3 \, \omega_{\alpha \, \, \theta}^{ \theta} \, \partial_i f^{\alpha_i} + 12 \, t_3 \, \omega_{\alpha \, \, \theta}^{ \theta} \, \partial_i f^{\alpha_i} + 12 \, t_3 \, \omega_{\alpha \, \, \phi}^{ \theta} \, \partial_i f^{\alpha_i} + 12 \, \omega_{\alpha \, \, \phi}^{ \theta} \, \partial_i f^{\alpha_i} + 12 \, \omega_{\alpha \,$ $\omega_{l\theta}^{\theta} \partial_{l}^{\theta} f_{\alpha}^{\alpha} - 6t_{1} \partial_{l} f_{\theta}^{\theta} \partial_{l}^{\theta} f_{\alpha}^{\alpha} - 6t_{1} \partial_{l} f_{\alpha}^{\alpha l} \partial_{\theta} f_{\alpha}^{\theta} + 12t_{1} \partial_{l}^{\theta} f_{\alpha}^{\alpha} \partial_{\theta} f_{\beta}^{\theta} +$ $4\,t_1\,\,\omega_{_{i\theta\alpha}}\,\partial^\theta f^{\alpha i} + 4\,t_2\,\,\omega_{_{i\theta\alpha}}\,\partial^\theta f^{\alpha i} - 4\,t_1\,\partial_\alpha f_{_{i\theta}}\partial^\theta f^{\alpha i} + 2\,t_2\,\partial_\alpha f_{_{i\theta}}\partial^\theta f^{\alpha i} 4\,t_1\,\partial_\alpha f_{\theta_l}\,\partial^\theta f^{\alpha l}-t_2\,\partial_\alpha f_{\theta_l}\,\partial^\theta f^{\alpha l}+2\,t_1\,\partial_\iota f_{\alpha\theta}\,\partial^\theta f^{\alpha l}-t_2\,\partial_\iota f_{\alpha\theta}\,\partial^\theta f^{\alpha l}+$ $4\,t_1\,\partial_\theta f_{\alpha i}\,\partial^\theta f^{\alpha i}+t_2\,\partial_\theta f_{\alpha i}\,\partial^\theta f^{\alpha i}+2\,t_1\,\partial_\theta f_{i\alpha}\,\partial^\theta f^{\alpha i}-t_2\,\partial_\theta f_{i\alpha}\,\partial^\theta f^{\alpha i}+$ $2\left(t_{1}+t_{2}\right)\,\omega_{\alpha i\theta}\left(\,\omega^{\alpha i\theta}\,+2\,\partial^{\theta}f^{\alpha i}\right)+2\,\,\omega_{\alpha \theta i}\left(\left(t_{1}-2\,t_{2}\right)\,\omega^{\alpha i\theta}+2\left(2\,t_{1}-t_{2}\right)\partial^{\theta}f^{\alpha i}\right) 8\,r_1\,\partial_\beta\omega_{\alpha\imath\theta}\,\partial^\theta\omega^{\alpha\beta\imath} + 4\,r_1\,\partial_\beta\omega_{\alpha\theta\imath}\,\partial^\theta\omega^{\alpha\beta\imath} - 16\,r_1\,\partial_\beta\omega_{\imath\theta\alpha}\,\partial^\theta\omega^{\alpha\beta\imath} 4\,r_1\,\partial_{\imath}\omega_{\alpha\beta\theta}\,\partial^{\theta}\omega^{\alpha\beta\imath} + 4\,r_1\,\partial_{\theta}\omega_{\alpha\beta\imath}\,\partial^{\theta}\omega^{\alpha\beta\imath} + 4\,r_1\,\partial_{\theta}\omega_{\alpha\imath\beta}\,\partial^{\theta}\omega^{\alpha\beta\imath} + 6\,r_5\,\partial_{\imath}\omega_{\theta\ \kappa}^{\ \kappa}$ $\partial^{\theta}\omega^{\alpha_{I}}_{\alpha}$ - $6r_{5}\partial_{\theta}\omega_{I\kappa}^{\kappa}\partial^{\theta}\omega^{\alpha_{I}}_{\alpha}$ - $6r_{5}\partial_{\alpha}\omega^{\alpha_{I}\theta}\partial_{\kappa}\omega_{I\theta}^{\kappa}$ + $12r_{5}\partial^{\theta}\omega^{\alpha_{I}}_{\alpha}\partial_{\kappa}\omega_{I\theta}^{\kappa}$ + $6\,r_5\,\partial_\alpha\omega^{\alpha_I\theta}\,\partial_\kappa\omega_{\theta_I}^{\ \kappa}-12\,r_5\,\partial^\theta\omega^{\alpha_I}_{\ \alpha}\partial_\kappa\omega_{\theta_I}^{\ \kappa}))[t,\,x,\,y,\,z]\,dz\,dy\,dx\,dt$

Massive and massless spectra

	Massive particle				
	Pole residue:	$\frac{-3t_1t_2(t_1+t_2)+6r_1(t_1^2+2t_2^2)+3r_5(t_1^2+2t_2^2)}{(2r_1+r_5)(t_1+t_2)(-3t_1t_2+4r_1(t_1+t_2)+2r_5(t_1+t_2))}>0$			
Polarisations: Square mass:		3			
		$-\frac{3t_1t_2}{2(2r_1+r_5)(t_1+t_2)} > 0$			
	Spin:	1			
	Parity:	Even			

Massive particle			
$-\frac{1}{r_1} > 0$			
5			
$-\frac{t_1}{2r_1} > 0$			
2			
Odd			

(No massless particles)

Unitarity conditions

 $r_1 < 0 \&\& r_5 > -2 r_1 \&\& t_1 > 0 \&\& -t_1 < t_2 < 0$