DIVISIBILITY MODULAR ARITHMETIC

Properties of Integers

Fractions - Terminology and Vocabulary

a rational number

$$\mathbf{q} = \mathbf{k} \times \mathbf{b} + \mathbf{r}$$

 $245 = 81 \times 3 + 2$
dividend quotient divisor remainder

Dividend $\mathbf{a} \in \mathbb{Z}$	Divisor $\mathbf{b} \in \mathbb{Z}^+$	Quotient $\mathbf{k} \in \mathbb{Z}$	Remainder $r \in \mathbb{N}$ and $0 \le r < b$
245	3		
41	8		
-99	11		
2	10		
-17	7		

Modulo function

 $a/b \implies a = k \times b$

The quotient k is commonly referred to as the integer part of the division. It is what is returned in an integer division operation.

The modulo or mod-n function returns the remainder r when a is divided by **b**. Ex. 12 mod 9 = 3 and 245 mod 81 = 2.

If **r=0** then **a** is a multiple of **b**, or **b** divides **a**, written **b a**, otherwise

b∤a

quotient or integer division \rightarrow **k** = **q** / **b** remainder or mod n function \rightarrow r = a % b

WORKED EXAMPLES

Calculate the following modulo

- 97558 mod 63
- **07562 mod 63**
- 9-7558 mod 63

WORKED EXAMPLES

What is (2500 + 1555 + 222 + 4) mod 5?

$$(a + b) \mod n = ((a \mod n) + (b \mod n)) \mod n$$

What is $(12 \times 13 \times 29 \times 69) \mod 11$?

(ab) mod n = ((a mod n)(b mod n)) mod n

WORKED EXAMPLES

What is the remainder when 1! + 2! + 3! ... + 49! is divided by 20?

Without a calculator, calculate the following:

- O(123 + 234 + 32 + 56 + 22) mod 3
- \bigcirc (1594 × (-117) × 475) mod 6
- \circ ((-907) × 17 × (-276)) mod 15
- ○(43534569812031 × 12903958235485) mod 2

🖒 PRACTICE PROBLEMS

What is the remainder when 1! + 2! + 3! ... 100! is divided by 18?

If the remainder is 7 when positive integer n is divided by 18, what is the remainder when n is divided by 6?

- Using the 12-hour clock format, the current time is 4 o'clock, what time will it be 101 hours from now?
- Using the 12-hour clock format, the current time is 4 o'clock, what time was it 101 hours before?

PRACTICE PROBLEMS

• Given that February 14, 2018, is a Wednesday, what day of the week will February 14, 2090 be? Hint: take into account leap years.

WORKED EXAMPLES

Calculate 7³⁵⁸ mod 10.

k	7 ^k	7 ^k mod 10	
0			
1			
2			
3			
4			
5			
6			
7			
8			
9			

Modular arithmetic and cyclicity of remainders

Calculate 7358 mod 10.

What is the ones digit of 7^{358} ?

Same question, asking differently!

9 Billions
4 Hundred Millions
8 Ten Millions
7 Hundred Thousands
6 Ten Thousands
7 Ten Thousands
7 Ten Thousands
7 Ten Thousands
7 Ten Thousands
8 Ten Thousands
9 Tens
9 Tens
9 Ones Ten Thousandths Tenths Hundredths Decimal Point

k	7 ^k	7 ^k mod 10	
0	1		
1	7		
2	49		
3	343		
4	2,401		
5	16,807		
6	117,649		
7	823,543		
8			
9			

Modular arithmetic and cyclicity of remainders

Base number ending with	Powers: seq of ones digit	Period of the cycle
0	0	1
1	1	1
2	2486	4
3	3971	4
4	46	2
5	5	1
6	6	1
7	7931	4
8	8426	4
9	91	2

- Find remainders of large numbers
 - ☐ Find the remainder of a^b mod 10
 - ☐ Find the ones digit of a^b
- When solving problems: try it and see if the pattern emerges, then use modulo to find the answer
- Also apply to the remainder of ...
 - ☐ mod 100, i.e., find the tens digit
 - **□** other mod (≠10, ≠100)

Modular arithmetic and cyclicity of remainders

Base number ending with	Powers: seq of tens digit	Period of the cycle
0	0	1
1	0	1
2		20
3	•••	20
4		10
5	2	1
6	31975	5
7	0044	4
8		20
9		10

- Find remainders of large numbers
 - ☐ mod 100, i.e., find the tens digit
- O Know how to answer questions:

Asking for **the tens digit** ≥ answer: a single digit 0-9

Asking for mod 100

- → find both tens & units digits
- → answer: a two-digit number (or one-digit if it is less than 10)

15

WORKED EXAMPLES

• What is the tens digits of 7³⁵⁸?

k	7 ^k	
0		
1		
2		
3		
4		
2 3 4 5 6 7		
6		
7		
8		
9		

Hint: follow the same process as before, work on the tens instead of the ones digit

WORKED EXAMPLES

• What is the tens digits of 7358?

Same question, asking differently!

• Calculate 7³⁵⁸ mod 100.

k	7 ^k	tens digit	k mod 4
0			
1			
2			
3			
4			
5			
6			
7			
8			
9			

• Calculate 7³⁵⁵ mod 100.

Use the result of 7³⁵⁸ mod 100 from the last example to answer this (no need to recalculate the cycles of both the ones & tens digits. Think divisibility & modulo!

PRACTICE PROBLEMS

• Find the tens digits of 6²³⁴⁵⁷⁸⁹

Calculate 4¹⁰⁰⁰ mod 10.

PRACTICE PROBLEMS It does not have to always be mod 10 or mod 100

• What is the remainder when 4¹⁰⁰⁰ is divided by 7? modulo of 7

Hint: find a cyclic pattern of modulo 7 of powers of 4

PRACTICE PROBLEMS It does not have to always be mod 10 or mod 100

• Calculate 7⁵¹⁴⁰ mod 4.

Hint: find a cyclic pattern of modulo 4 of powers of 7

https://www.youtube.com/watch?v=Kf9KjCKmDcU

https://www.youtube.com/watch?v=sMOZf4GN3oc 24

In plaintext, an intruder can always read your secret conversation

25

An intruder may catch your encrypted message but not able to read it

Caesar Cipher, also called Caesar shift or shift cipher

Caesar cipher hides (*encrypts*)
a message by moving each letter a
certain number (*a shifted key*) of
places to the right along the
sorted list of alphabets A-Z

Each letter in the original plaintext is replaced with a different letter that is a fixed right-shift of the alphabets A-Z

https://www.youtube.com/watch?v=BdI2whtMyzU

27

WORKED EXAMPLES

Using Caesar Cipher with key=7, encrypt the word FOX

Using Caesar Cipher with key=7, decrypt the word THW

The role of modular arithmetic in Caesar Cipher

When shifted, an alphabet wraps around to the first letter A upon reaching the last letter Z

ENCRYPT: $e_k(x) = (x + k) \mod 26$

DECRYPT: $d_k(x) = (x - k) \mod 26$

A right rotation of 3 places is equivalent to a left shift of 23

20

https://www.secplicity.org/2017/05/25/historical-cryptography-ciphers/

Caesar Cipher

Map 26 letters of English alphabet to numbers: A=0, B=1, ..., Z=25

Sender: encrypt each letter x in a message: $e_k(x) = (x + k) \mod 26$

Receiver: decrypt each letter x in a message: $d_k(x) = (x - k) \mod 26$

key=18 M A T H

With key=13, encrypt a message: TREATY IMPOSSIBLE

With key=4, decrypt a message: GSQTYXIV WGMIRGI

PRACTICE PROBLEMS

With key=444, encrypt a message: GREGORIAN CALENDARS

The ciphertext "KBKXEUTK" is the result of encrypting the word "EVERYONE" using Caesar Cipher with the key equals to ____

Traditionally, the alphabets in the Caesar Cipher consists of 26 English letters 'A' through 'Z'. In an extended cipher, digits '0' through '9' are included and ordered after the English letters:

ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789. In this extended version, perform the following encryption.

Encrypt IC0S32T with key 8

Decrypt **0X22B058** with key **23**

PRACTICE PROBLEMS

Given the characters:

AaBbCcDdEeFfGgHhliJjKkLlMmNnOoPpQqRrSsTtUuVvWwXxYyZz9876543210

Using Caesar Cipher, the plaintext INSIDEouT4589 is the result of decrypting the word sx4snoZA2lhGf, what is the key, k, used for encryption? Give your answer, k, such that k is the least possible key that is more than 1000.