Signal Basics

Digital Signal Processing

January 24, 2023

Review: Discrete-Time Signals

A discrete-time signal is a function

$$x: \mathbb{Z} \to B$$
,

for some output set B (typically $B = \mathbb{R}$ or $B = \mathbb{C}$).

Equivalently, x is a sequence

$$x[n] \in B, \quad -\infty \le n \le \infty.$$

Sampled Continuous Signals

Discrete-time signals often come from continuous signals:

Here, $T \in \mathbb{R}$ is the sampling period. T = (1/25)s = 0.04s

$$T = (1/25)s = 0.04s$$

and $\frac{1}{T}$ is the **sampling frequency**. $\frac{1}{T} = 25 Hz$

$$\frac{1}{T} = 25 \text{Hz}$$

Unit Sample Function

Also known as the unit impulse function.

Shifting the Unit Impulse

For any integer k,

$$\delta[n-k] = \begin{cases} 1, & n-k=0, \\ 0, & n-k \neq 0. \end{cases}$$

Or, in other words,

$$\delta[n-k] = \begin{cases} 1, & n=k, \\ 0, & n \neq k. \end{cases}$$

Shifting the Unit Impulse

$$\delta[n-4] = \begin{cases} 1, & n=4, \\ 0, & n \neq 4. \end{cases}$$

Shifting the Unit Impulse

$$\delta[n+2] = \begin{cases} 1, & n = -2, \\ 0, & n \neq -2. \end{cases}$$

Scaling and Adding Shifted Impulses

We can scale and add shifted impulses to construct signals:

$$x[n] = 2\delta[n+4] - 3\delta[n+1] + \delta[n] - \delta[n-3]$$

Scaling and Adding Impulses

In fact, any sequence, x[n], can be written as a sum of scaled, shifted impulses:

$$x[n] = \sum_{k=-\infty}^{\infty} x[k]\delta[n-k].$$

Unit Step Function

$$u[n] = \begin{cases} 1, & n \ge 0, \\ 0, & n < 0. \end{cases}$$

Relationship Between Step and Impulse

$$u[n] = \sum_{k=-\infty}^{n} \delta[k]$$

Discrete analogy to integration

Relationship Between Step and Impulse

$$\delta[n] = u[n] - u[n-1]$$

Discrete analogy to differentiation

A real exponential sequence is of the form

$$x[n] = A\alpha^n,$$

for constants $A \in \mathbb{R}$ and $\alpha \in \mathbb{R}$.

When $0 < \alpha < 1$, we get exponential **decay**:

$$x[n] = 0.5^n$$

When $\alpha > 1$, we get exponential **growth**:

$$x[n] = 2^n$$

Note: taking reciprocal of α is equivalent to time-reversal:

Let
$$x[n] = \alpha^n$$
, then

$$x[-n] = \alpha^{-n} = (\alpha^{-1})^n = \left(\frac{1}{\alpha}\right)^n$$

When $\alpha < 0$, we get exponential **oscillation**:

$$x[n] = (-0.5)^n$$

Note: time shift is equivalent to multiplication:

Let
$$x[n] = \alpha^n$$
, then

$$x[n-k] = \alpha^{n-k} = \alpha^n \alpha^{-k} = \alpha^{-k} x[n]$$

Sinusoidal Function

$$A = 2, \quad \omega_0 = 4\pi, \quad \phi = \frac{1}{4}$$

$$x[n] = A\cos(\omega_0 n + \phi)$$

A: amplitude

 ω_0 : frequency

 ϕ : phase

Relation to Continuous Sinusoidal

Discrete-time sinusoidal is just a sampled continuous sinusoidal

$$A=2, \quad \omega_0=4\pi, \quad \phi=\frac{1}{4}$$

$$x(t) = A\cos(\omega_0 t + \phi)$$

A: amplitude

 ω_0 : frequency

 ϕ : phase