

## Project Development Phase Model Performance Test

| Date          | 10 November 2022                                                  |  |
|---------------|-------------------------------------------------------------------|--|
| Team ID       | PNT2022TMID02435                                                  |  |
| Project Name  | Project – Detection of Parkinson's disease using machine learning |  |
| Maximum Marks | 10 Marks                                                          |  |

## **Model Performance Testing:**

Project team shall fill the following information in model performance testing template.

| S.No. | Parameter      | Values                                                                                                                     | Screenshot                                                                                                                                                                                                                                                |
|-------|----------------|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.    | Metrics        | Accuracy Score-  Classification Report —  Cm = confus print(cm) (tn, fp, fn  [14 1 4 1  0.8333333  from sklean print(class | predictions = model.predict(X_test)  cm = confusion_matrix(y_test, predictions).flatten() print(cm) (tn, fp, fn, tp) = cm  [14  1  4  11]  accuracy = (tp + tn) / float(cm.sum()) print(accuracy)  [14  1  4  11] 0.8333333333333333333333333333333333333 |
| 2.    | Tune the Model | Hyperparameter Tuning -                                                                                                    | <pre>model = RandomForestClassifier(n_estimators=100) model.fit(X_train, y_train)</pre>                                                                                                                                                                   |
|       |                | Validation Method -                                                                                                        | <pre>model = RandomForestClassifier() rf_random = RandomizedSearchCV(estimator = model,</pre>                                                                                                                                                             |



Mondershare PDFelement