1.Import Necessary Packages

```
In [2]: import numpy as np
   import pandas as pd
   import seaborn as sns
   import matplotlib.pyplot as plt

In [4]: import os
   for dirname, _, filenames in os.walk('/kaggle/input'):
        for filename in filenames:
            print(os.path.join(dirname, filename))

2.Load The File

In [8]: income_df=pd.read_csv(r'C:\Users\DELL\Downloads\6th, 7th - Intro to Stats, Desc
In [10]: income_df
```

Out[10]:	Mthly_HH_Income	Mthly_HH_Expense	No_of_Fly_Members	Emi_or_Rent_Amt	Annu
_	o 5000	8000	3	2000	
	1 6000	7000	2	3000	
	2 10000	4500	2	0	
	3 10000	2000	1	0	
	4 12500	12000	2	3000	
	5 14000	8000	2	0	
	6 15000	16000	3	35000	
	7 18000	20000	5	8000	
	8 19000	9000	2	0	
	9 20000	9000	4	0	
1	0 20000	18000	4	8000	
1	1 22000	25000	6	12000	
1	2 23400	5000	3	0	
1	3 24000	10500	6	0	
1	4 24000	10000	4	0	
1	5 25000	12300	3	0	
1	6 25000	20000	3	3500	
1	7 25000	10000	6	0	
1	8 29000	6600	2	2000	
1	9 30000	13000	4	0	
2	0 30500	25000	5	5000	
2	32000	15000	4	0	
2	2 34000	19000	6	0	
2	34000	25000	3	4000	
2	4 35000	12000	3	0	
2	3 5000	25000	4	0	
2	39000	8000	4	0	
2	40000	10000	4	0	
2	42000	15000	4	0	
2	9 43000	12000	4	0	
3	0 45000	25000	6	0	
3	1 45000	40000	6	3500	
3	45000	10000	2	1000	

	Mthly_HH_Income	Mthly_HH_Expense	No_of_Fly_Members	Emi_or_Rent_Amt	Annu
33	45000	22000	4	2500	
34	46000	25000	5	3500	
35	47000	15000	7	0	
36	50000	20000	4	0	
37	50500	20000	3	0	
38	55000	45000	6	12000	
39	60000	10000	3	0	
40	60000	50000	6	10000	
41	65000	20000	4	5000	
42	70000	9000	2	0	
43	80000	20000	4	0	
44	85000	25000	5	0	
45	90000	48000	7	0	
46	98000	25000	5	0	
47	100000	30000	6	0	
48	100000	50000	4	20000	
49	100000	40000	6	10000	

In [12]: income_df.head()

Out[12]:		Mthly_HH_Income	Mthly_HH_Expense	No_of_Fly_Members	Emi_or_Rent_Amt	Annua
	0	5000	8000	3	2000	
	1	6000	7000	2	3000	
	2	10000	4500	2	0	
	3	10000	2000	1	0	
	4	12500	12000	2	3000	
	4					•

3.Analyze The Data

In [18]: income_df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 50 entries, 0 to 49 Data columns (total 7 columns): Column Non-Null Count Dtype --- -----_____ 0 Mthly HH Income 50 non-null int64 1 Mthly_HH_Expense 50 non-null int64 2 No_of_Fly_Members 50 non-null int64 3 Emi_or_Rent_Amt 50 non-null int64 Annual_HH_Income 50 non-null int64 5 Highest_Qualified_Member 50 non-null object No_of_Earning_Members 50 non-null int64 dtypes: int64(6), object(1) memory usage: 2.9+ KB In [22]: income_df.shape Out[22]: (50, 7) income_df.describe().T In [24]: Out[24]: count mean std min 25% 50% Mthly_HH_Income 50.0 41558.00 26097.908979 5000.0 23550.0 35000.0 Mthly_HH_Expense 50.0 18818.00 12090.216824 2000.0 10000.0 15500.0 No_of_Fly_Members 50.0 4.06 1.517382 4.0 1.0 3.0 Emi_or_Rent_Amt 50.0 3060.00 6241.434948 0.0 0.0 0.0 Annual_HH_Income 50.0 490019.04 320135.792123 64200.0 258750.0 447420.0 No_of_Earning_Members 50.0 1.0 1.46 0.734291 1.0 1.0 In [26]: income_df.isna().any() False Out[26]: Mthly_HH_Income Mthly_HH_Expense False No_of_Fly_Members False Emi_or_Rent_Amt False Annual_HH_Income False Highest_Qualified_Member False No_of_Earning_Members False dtype: bool 4. What is the Mean Expense of a Household? income_df["Mthly_HH_Expense"].mean() In [29]: Out[29]: 18818.0 5. What is the Median Household Expense? In [32]: income_df["Mthly_HH_Expense"].median()

Out[32]: 15500.0

6. What is the Monthly Expense for most of the Households?

```
In [34]: mth_exp_tmp = pd.crosstab(index=income_df["Mthly_HH_Expense"], columns="count")
    mth_exp_tmp.reset_index(inplace=True)
    mth_exp_tmp[mth_exp_tmp['count'] == income_df.Mthly_HH_Expense.value_counts().ma
```

7.Plot the Histogram to count the Highest qualified member

```
In [42]: income_df["Highest_Qualified_Member"].value_counts().plot(kind="bar")
```

Out[42]: <Axes: xlabel='Highest_Qualified_Member'>

8.Calculate IQR(difference between 75% and 25% quartile)

Out[47]: 15000.0

9. Calculate Standard Deviation for first 4 columns.

10. Calculate Variance for first 3 columns.

11.Calculate the count of Highest qualified member

In [59]: income_df["Highest_Qualified_Member"].value_counts().to_frame().T Out[59]: **Under-**Post-Highest_Qualified_Member Graduate Illiterate **Professional Graduate** Graduate 19 10 10 6 5 count

12.Plot the Histogram to count the No_of_Earning_Members

In [65]: income_df["No_of_Earning_Members"].value_counts().plot(kind="bar")

Out[65]: <Axes: xlabel='No_of_Earning_Members'>

In []: