第3回 定常過程(4.2.1, 7.1.1-7.1.2, A.2)

村澤 康友

2022年10月11日

今日のポイント

1.	任意の時点 (t_1,\ldots,t_n) と時点差 s につ
	いて $F_{Y_{t_1},,Y_{t_n}}(.) = F_{Y_{t_1+s},,Y_{t_n+s}}(.)$ な
	ら $\{Y_t\}$ は(強)定常という. $ar{Y}_T$ が Y_1 と
	$T o \infty$ で漸近的に独立なら $\{Y_t\}$ はエル
	ゴード的という. $\{Y_t\}$ が定常・エルゴー
	ド的で $\mathrm{E}(Y_1)$ が存在するなら時間方向の
	標本平均 \bar{Y}_T で $\mathrm{E}(Y_1)$ を一致推定できる.

- 2. 任意の時点 t と時点差 s について $E(Y_t)$ と $cov(Y_t,Y_{t-s})$ が t に依存しないなら $\{Y_t\}$ は共分散(弱)定常という. $\gamma(s):=cov(Y_t,Y_{t-s})$ を自己共分散関数, $\rho(s):=corr(Y_t,Y_{t-s})$ を自己相関関数(ACF)と いう. ある $s\neq 0$ について $\rho(s)\neq 0$ であることを系列相関という. 平均 0 で系列相関のない共分散定常過程をホワイト・ノイズという.
- 3. 平均 μ , 自己共分散関数 γ (.) の共分散 定常過程の標本平均の平均は μ , 分散は $(1/T)\sum_{s=-(T-1)}^{T-1}[(T-|s|)/T]\gamma(s)$.
- 4. $\{Y_t\}$ の標本自己共分散関数は $\hat{\gamma}_T(s) := (1/T) \sum_{t=s+1}^T \left(Y_t \bar{Y}_T\right) \left(Y_{t-s} \bar{Y}_T\right)$, 標本自己相関関数は $\hat{\rho}_T(s) := \hat{\gamma}_T(s)/\hat{\gamma}_T(0)$. 標本自己相関関数の棒グラフをコレログラムという. $\{Y_t\}$ が iid で分散が有限なら $s \ge 1$ について $\hat{\rho}_T(s)$ $\stackrel{\sim}{\sim}$ N(0,1/T).

目次

1 定常性

1.1	(強)定常性	1
1.2	エルゴード性	2
1.3	共分散(弱)定常性(p. 125)	2
1.4	正規(ガウス)性	2
2	共分散定常過程	2
2.1	自己共分散(p. 125)	2
2.2	自己相関(p. 126)	2
2.3	系列相関とホワイト・ノイズ(p. 72,	
	p. 125)	3
2.4	偏自己相関(p. 126)	3
3	標本平均	3
•	標本平均 有限標本特性(p. 196)	
•	有限標本特性(p. 196)	3
3.1	有限標本特性(p. 196)	3
3.1 3.2	有限標本特性(p. 196)	3 4
3.1 3.2	有限標本特性(p. 196)	3 4 4 4
3.1 3.2 4 4.1	有限標本特性(p. 196)	3 4 4 4
3.1 3.2 4 4.1 4.2	有限標本特性(p. 196)	3 4 4 4 4

1 定常性

1.1 (強) 定常性

確率変数列 $\{Y_t\}$ の実現値を (y_1,\ldots,y_T) とする. y_T から Y_{T+1} を予測するには以下の 2 つの条件が必要.

- 1. (Y_t, Y_{t+1}) の同時分布は時間を通じて不変.
- $2. \ (y_1,\ldots,y_T)$ から (Y_t,Y_{t+1}) の同時分布を推定できる.

1

定義 1. 任意の時点 (t_1,\ldots,t_n) と時点差 s について $F_{Y_{t_1},\ldots,Y_{t_n}}(.)=F_{Y_{t_1+s},\ldots,Y_{t_n+s}}(.)$ なら $\{Y_t\}$ は(強) 定常という.

注 1. すなわち (Y_{t_1},\ldots,Y_{t_n}) の同時分布は時間を通じて不変.

1.2 エルゴード性

 $\{Y_t\}$ を定常過程とし、 (Y_1,\ldots,Y_T) の標本平均を \bar{Y}_T とする.すなわち

$$\bar{Y}_T := \frac{1}{T} \sum_{t=1}^T Y_t$$

定義 2. \bar{Y}_T が Y_1 と $T \to \infty$ で漸近的に独立なら $\{Y_t\}$ はエルゴード的という.

定理 1 (エルゴード定理). $\{Y_t\}$ が定常・エルゴード的で $\mathrm{E}(Y_1)$ が存在するなら

$$\Pr\left[\lim_{T\to\infty}\bar{Y}_T = \mathrm{E}(Y_1)\right] = 1$$

証明. 省略(大学院レベル).

注 2. 確率 1 で収束 \Longrightarrow 確率収束. したがって時間 方向の標本平均 \bar{Y}_T で $\mathrm{E}(Y_1)$ を一致推定できる.

1.3 共分散 (弱) 定常性 (p. 125)

定義 3. 任意の時点 t と時点差 s について $\mathrm{E}(Y_t)$ と $\mathrm{cov}(Y_t,Y_{t-s})$ が t に依存しないなら $\{Y_t\}$ は共分散 (弱) 定常という.

注 3. 定常でも(共)分散が存在するとは限らない. 分散が存在すれば,定常 ⇒ 共分散定常.

1.4 正規 (ガウス) 性

定義 4. 任意の時点 (t_1,\ldots,t_n) について (Y_{t_1},\ldots,Y_{t_n}) が同時正規分布にしたがうなら $\{Y_t\}$ は正規(ガウス)過程という.

注 4. 正規過程なら定常 ← 共分散定常.

2 共分散定常過程

2.1 自己共分散 (p. 125)

 $\{Y_t\}$ を共分散定常過程とする.

定義 5. $cov(Y_t,Y_{t-s})$ を $\{Y_t\}$ の s 次の自己共分散という.

定義 6. $\{Y_t\}$ の自己共分散関数は、任意の時点差 s について

$$\gamma(s) := cov(Y_t, Y_{t-s})$$

定理 2. 任意の時点差 s について

$$\gamma(-s) = \gamma(s)$$

証明. $cov(Y_t, Y_{t-s})$ は時点 t に依存しないので

$$\gamma(-s) := cov(Y_t, Y_{t+s})$$

$$= cov(Y_{t+s}, Y_t)$$

$$= cov(Y_t, Y_{t-s})$$

$$= \gamma(s)$$

注 5. したがって s > 0 のみ考えればよい.

2.2 **自己相関**(p. 126)

定義 7. $corr(Y_t, Y_{t-s})$ を $\{Y_t\}$ の s 次の自己相関係数という.

定義 8. $\{Y_t\}$ の自己相関関数 (Autocorrelation function, ACF) は、任意の時点差 s について

$$\rho(s) := \operatorname{corr}(Y_t, Y_{t-s})$$

定理 3. 任意の時点差s について

$$\rho(s) = \frac{\gamma(s)}{\gamma(0)}$$

証明. $var(Y_t)$ は時点 t に依存しないので

$$\begin{split} \rho(s) &:= \operatorname{corr}(Y_t, Y_{t-s}) \\ &= \frac{\operatorname{cov}(Y_t, Y_{t-s})}{\sqrt{\operatorname{var}(Y_t)} \sqrt{\operatorname{var}(Y_{t-s})}} \\ &= \frac{\operatorname{cov}(Y_t, Y_{t-s})}{\operatorname{var}(Y_t)} \\ &= \frac{\gamma(s)}{\gamma(0)} \end{split}$$

定理 4. 任意の時点差s について

$$\rho(-s) = \rho(s)$$

証明. 前2定理より

$$\rho(-s) = \frac{\gamma(-s)}{\gamma(0)}$$
$$= \frac{\gamma(s)}{\gamma(0)}$$
$$= \rho(s)$$

2.3 系列相関とホワイト・ノイズ(p. 72, p. 125) 定義 9. ある $s \neq 0$ について $\rho(s) \neq 0$ であることを系列相関という.

定義 10. 平均 0 で系列相関のない共分散定常過程 を**ホワイト・ノイズ**という.

注 6. 分散が σ^2 なら WN (σ^2) と書く.

2.4 偏自己相関 (p. 126)

 Y_t の $(Y_{t-1}, \dots, Y_{t-s})$ 上への重回帰モデルは

 $E(Y_t|Y_{t-1},...,Y_{t-s}) = \beta_0 + \beta_1 Y_{t-1} + \cdots + \beta_s Y_{t-s}$

偏回帰係数 β_s は、 Y_{t-1},\dots,Y_{t-s+1} を通じた間接的な影響を取り除いた Y_{t-s} の Y_t への直接的な限界効果を表す。 β_s は残差回帰で得られる。すなわち Y_t の $(Y_{t-1},\dots,Y_{t-s+1})$ 上への回帰残差を Y_{t-s} の $(Y_{t-1},\dots,Y_{t-s+1})$ 上への回帰残差に回帰すればよい。

定義 11. $Y_{t-1}, \ldots, Y_{t-s+1}$ を通じた間接的な影響を取り除いた Y_t と Y_{t-s} の直接的な相関係数を $\{Y_t\}$ の s 次の偏自己相関係数という.

注 7. Y_t の $(Y_{t-1}, \ldots, Y_{t-s+1})$ 上への回帰残差と Y_{t-s} の $(Y_{t-1}, \ldots, Y_{t-s+1})$ 上への回帰残差の相関係数として得られる.

定義 12. 任意の時点差 s に対して s 次の偏自己相関係数を与える関数を偏自己相関関数(partial autocorrelation function, PACF)という.

3 標本平均

3.1 有限標本特性 (p. 196)

 $\{Y_t\}$ を平均 μ ,自己共分散関数 $\gamma(.)$ の共分散定常過程とし、 (Y_1, \ldots, Y_T) の標本平均を \bar{Y}_T とする.

定理 5.

$$\mathrm{E}\left(\bar{Y}_{T}\right) = \mu$$

証明.

$$E(\bar{Y}_T) = E\left(\frac{1}{T}\sum_{t=1}^T Y_t\right)$$
$$= \frac{1}{T}\sum_{t=1}^T E(Y_t)$$
$$= \frac{1}{T}\sum_{t=1}^T \mu$$
$$= \mu$$

補題 1.

$$var(Y_1 + \dots + Y_T) = \sum_{s=-(T-1)}^{T-1} (T - |s|)\gamma(s)$$

証明.

$$var(Y_1 + \dots + Y_T)$$
= $var(Y_1) + cov(Y_1, Y_2) + \dots$
+ $cov(Y_T, Y_{T-1}) + var(Y_T)$
= $T\gamma(0) + (T-1)(\gamma(1) + \gamma(-1)) + \dots$
+ $(\gamma(T-1) + \gamma(-(T-1)))$
= $\sum_{s=-(T-1)}^{T-1} (T-|s|)\gamma(s)$

定理 6.

$$\operatorname{var}\left(\bar{Y}_{T}\right) = \frac{1}{T} \sum_{s=-(T-1)}^{T-1} \frac{T-|s|}{T} \gamma(s)$$

証明.

$$\operatorname{var}(\bar{Y}_T) = \operatorname{var}\left(\frac{Y_1 + \dots + Y_T}{T}\right)$$
$$= \frac{\operatorname{var}(Y_1 + \dots + Y_T)}{T^2}$$

補題の結果を分子に代入すればよい.

注 8.
$$\gamma(-s) = \gamma(s)$$
 より

$$\operatorname{var}\left(\bar{Y}_{T}\right) = \frac{1}{T} \left(\gamma(0) + 2 \sum_{s=1}^{T-1} \frac{T-s}{T} \gamma(s) \right)$$

系 1. $\{Y_t\} \sim WN(\sigma^2)$ なら

$$\operatorname{var}\left(\bar{Y}_{T}\right) = \frac{\sigma^{2}}{T}$$

定理 7. $\{Y_t\}$ が正規過程なら

$$\bar{Y}_T \sim N\left(\mu, \frac{1}{T} \sum_{s=-(T-1)}^{T-1} \frac{T-|s|}{T} \gamma(s)\right)$$

証明. 正規分布の線形変換は正規分布.

3.2 漸近特性 (p. 196)

 $\{Y_t\}$ を定常・エルゴード的とする.

定理 8.

$$\underset{T \to \infty}{\text{plim }} \bar{Y}_T = \mu$$

証明. エルゴード定理の系として得られる.

補題 2.

$$\lim_{T \to \infty} \frac{\operatorname{var}(Y_1 + \dots + Y_T)}{T} = \sum_{s = -\infty}^{\infty} \gamma(s)$$

証明. 前補題より

$$\lim_{T \to \infty} \frac{\operatorname{var}(Y_1 + \dots + Y_T)}{T}$$

$$= \lim_{T \to \infty} \frac{1}{T} \sum_{s = -(T-1)}^{T-1} (T - |s|) \gamma(s)$$

$$= \lim_{T \to \infty} \sum_{s = -(T-1)}^{T-1} \frac{T - |s|}{T} \gamma(s)$$

$$= \sum_{s = -\infty}^{\infty} \gamma(s)$$

注 9. したがって

$$\lim_{T \to \infty} \operatorname{var} \left(\frac{1}{\sqrt{T}} \sum_{t=1}^{T} (Y_t - \mu) \right)$$

$$= \lim_{T \to \infty} \frac{1}{T} \operatorname{var} \left(\sum_{t=1}^{T} (Y_t - \mu) \right)$$

$$= \lim_{T \to \infty} \frac{\operatorname{var}((Y_1 - \mu) + \dots + (Y_T - \mu))}{T}$$

$$= \lim_{T \to \infty} \frac{\operatorname{var}(Y_1 + \dots + Y_T)}{T}$$

$$= \sum_{t=1}^{\infty} \gamma(t)$$

定理 9 (中心極限定理). $\sum_{s=-\infty}^{\infty} \gamma(s) < \infty$ なら (若干の追加的な条件の下で)

$$\frac{1}{\sqrt{T}} \sum_{t=1}^{T} (Y_t - \mu) \stackrel{d}{\longrightarrow} \mathbf{N} \left(0, \sum_{s=-\infty}^{\infty} \gamma(s) \right)$$

証明. 省略 (大学院レベル).

注 10. したがって

$$\bar{Y}_T \stackrel{a}{\sim} N\left(\mu, \frac{1}{T} \sum_{s=-\infty}^{\infty} \gamma(s)\right)$$

または

$$\bar{Y}_T \stackrel{a}{\sim} N\left(\mu, \frac{1}{T} \sum_{s=-(T-1)}^{T-1} \frac{T-|s|}{T} \gamma(s)\right)$$

4 コレログラム

4.1 標本自己共分散

定義 13. $\{Y_t\}$ の標本自己共分散関数は、任意の時点差 s について

$$\hat{\gamma}_T(s) := \frac{1}{T} \sum_{t=s+1}^{T} (Y_t - \bar{Y}_T) (Y_{t-s} - \bar{Y}_T)$$

注 11. T-sやT-s-1でなくTで割るのが普通.

4.2 標本自己相関 (p. 126)

定義 14. $\{Y_t\}$ の標本自己相関関数は、任意の時点 \hat{E} s について

$$\hat{\rho}_T(s) := \frac{\hat{\gamma}_T(s)}{\hat{\gamma}_T(0)}$$

定義 15. 標本自己相関関数の棒グラフを**コレログ ラム**という.

補題 3. $\{Y_t\}$ が iid で平均が既知かつ分散が有限なら $s \geq 1$ について

$$\sqrt{T}\hat{\gamma}_T(s) \stackrel{d}{\longrightarrow} N\left(0, \gamma(0)^2\right)$$

証明. 平均が既知なので

$$\hat{\gamma}_T(s) := \frac{1}{T} \sum_{t=s+1}^T (Y_t - \mu)(Y_{t-s} - \mu)$$

 $\{Y_t\}$ は iid なので

$$E((Y_{t} - \mu)(Y_{t-s} - \mu))$$

$$= E(Y_{t} - \mu) E(Y_{t-s} - \mu)$$

$$= 0$$

$$var((Y_{t} - \mu)(Y_{t-s} - \mu))$$

$$= E((Y_{t} - \mu)^{2}(Y_{t-s} - \mu)^{2})$$

$$= E((Y_{t} - \mu)^{2}) E((Y_{t-s} - \mu)^{2})$$

$$= var(Y_{t}) var(Y_{t-s})$$

$$= \gamma(0)^{2}$$

また $r \ge 1$ について

$$cov((Y_t - \mu)(Y_{t-s} - \mu), (Y_{t-r} - \mu)(Y_{t-s-r} - \mu))$$

$$= E((Y_t - \mu)(Y_{t-s} - \mu)(Y_{t-r} - \mu)(Y_{t-s-r} - \mu))$$

$$= E(Y_t - \mu) E((Y_{t-s} - \mu)(Y_{t-r} - \mu))$$

$$E(Y_{t-s-r} - \mu)$$

$$= 0$$

したがって $\{(Y_t - \mu)(Y_{t-s} - \mu)\} \sim \text{WN}\left(\gamma(0)^2\right)$ なので、中心極限定理より

$$\frac{1}{\sqrt{T}} \sum_{t=1}^{T} (Y_t - \mu)(Y_{t-s} - \mu) \stackrel{d}{\longrightarrow} N(0, \gamma(0)^2)$$

注 12. 平均が未知でも成立.

定理 10. $\{Y_t\}$ が iid で分散が有限なら $s \ge 1$ について

$$\sqrt{T}\hat{\rho}_T(s) \stackrel{d}{\longrightarrow} N(0,1)$$

証明. 補題より

$$\sqrt{T} \frac{\hat{\gamma}_T(s)}{\gamma(0)} \stackrel{d}{\longrightarrow} N(0,1)$$

 $\operatorname{plim}_{T\to\infty}\hat{\gamma}_T(0)=\gamma(0)$ より

$$\sqrt{T} \frac{\hat{\gamma}_T(s)}{\hat{\gamma}_T(0)} \stackrel{d}{\longrightarrow} \mathcal{N}(0,1)$$

注 13. したがって

$$\hat{\rho}_T(s) \stackrel{a}{\sim} \mathrm{N}\left(0, \frac{1}{T}\right)$$

 $s \ge 1$ として次の両側検定を考える.

$$H_0: \rho(s) = 0$$
 vs $H_1: \rho(s) \neq 0$

このとき $|\hat{\rho}_T(s)| \geq 1.96/\sqrt{T}$ なら有意水準 5% で H_0 を棄却.

例 1. NYSE 総合指数の対数階差系列のコレログラム (図 1).

5 今日のキーワード

(強) 定常, エルゴード的, 共分散(弱) 定常, 正規(ガウス) 過程, 自己共分散, 自己共分散関数, 自己相関係数, 自己相関関数(ACF), 系列相関, ホワイト・ノイズ, 偏自己相関係数, 偏自己相関関数(PACF), 標本自己共分散関数, 標本自己相関関数, コレログラム

6 次回までの準備

提出 宿題3

復習 教科書第4章2.1節,第7章1.1-1.2節,補 論A.2節,復習テスト3

予習 教科書第7章2.1節

自己相関係数(ACF) Id_close

偏自己相関係数(PACF) Id_close

図1 NYSE 総合指数の対数階差系列のコレログラム