The *plottingtools* Library

Preface

This is the documentation to a library of plotting functions which I have been developing for some time now. The library is mostly a collection of wrapper functions around the matplotlib library for Python. Its main purpose is the reduction of boilerplate code required for day-to-day tasks, as well as providing some aesthetically pleasing default parameter choices. Hence, the library is not a plotting library on its own, but a collection of functions intended to make data visualisation (such as for exploratory analysis and the communication of results) just a little bit easier:).

List of all available commands

Changing the general Aesthetics

- plottingtools.lightmode()
- plottingtools.darkmode()
- plottingtools.texon()
- plottingtools.texoff()

Making a new Figure

- plottingtools.singleplot()
- plottingtools.multiplot()

Plots unique to plottingtools

- plottingtools.similarity_heatmap()
- plottingtools.correlations_heatmap()
- plottingtools.masked_heatmap()

Adding elements to an existing plot

- plottingtools.title()
- plottingtools.labels()
- plottingtools.diagonal()
- plottingtools.rectangle()
- plottingtools.star()
- plottingtools.lines()

Changing elements of an existing plot

- plottingtools.despine()
- plottingtools.ticklabelsize()
- plottingtools.limits()
- plottingtools.ticks_and_labels()
- plottingtools.rotate_ticklabels()
- plottingtools.align_ticklabels()

Saving the current figure to a file

- plottingtools.save_png()
- plottingtools.save_svg()
- plottingtools.save_pdf()

Collections of default parameters for matplotlib plots

• TBD

Changing the general Aesthetics

plottingtools.lightmode([foreground = "0", background = "1.0"])

- Description
 - Switch to light theme.
- Required parameters
 - None.
- Optional parameters
 - foreground String specifying the foreground colour. Default: "0", i.e. pure black.
 - *background* String specifying the background colour. Default: "1.0", i.e. pure white.
- Return
 - None.

plottingtools.darkmode([foreground = "0.85", background = "0.15"])

- Description
 - Switch to dark theme.
- Required parameters
 - None.
- Optional parameters
 - *foreground* String specifying the foreground colour. Default: "0.85", i.e. light grey.
 - *background* String specifying the background colour. Default: "0.15", i.e. dark grey.
- Return
 - None.

plottingtools.texon()

• Description

Required parameters
• None.
Optional parameters
• None.
• Return
• None.
plottingtools.texoff()
• Description
• Switch off TeX-rendering of texts and numbers in plots.
Required parameters
None.
Optional parameters
• None.
• Return
• None.

 $\circ\;$ Switch on TeX-rendering of texts and numbers in plots.

Making a new Figure

plottingtools.singleplot([size = (10, 7)])

- Description
 - Generate a new plot with one figure.
- Required parameters
 - None.
- · Optional parameters
 - size 2-Tuple of numbers, containing the figure's width and height. Default: (10, 7)
- Return
 - 2-tuple (matplotlib.figure.Figure, matplotlib.pyplot.Axes)

plottingtools.multiplot(nrows, ncols, size)

- Description
 - Returns a figure with nrows by ncols subplots
- Required parameters
 - *nrows* integer, the number of rows of plots
 - *ncols* integer, the number of columns of plots
 - size_xy 2-tuple of numbers, containing the figure's width and height
- Optional parameters
 - None.
- Return
 - Tuple (matplotlib.figure.Figure, matplotlib.pyplot.Axes)

Plots unique to plottingtools

plottingtools.similarity_heatmap(ax, list_of_lists, method)

- Description
 - Generate a heatmap, showing the similarity of a list of lists of elements. Note that double entries are not taken into account.
- Required parameters
 - *ax* The matplotlib.pyplot.Axes object where the heatmap will be plotted.
 - *list_of_lists* A list of lists of elements, for which the similarities will be calculated and plotted.
 - *method* Either a string or a function specifying the method for calculating the similarity between the lists. Possible choices:
 - "jaccard": Pairwise Jaccard similarity.
 - A callable function taking two parameters *list1*, *list2*, returning the similarity between *list1* and *list2*.
- Optional parameters
 - None.
- Return
 - None.

plottingtools.correlations_heatmap(ax, list_of_lists, method)

- Description
 - Generate a heatmap, showing the correlations of a list of equal-length lists of numerical elements.
- Required parameters
 - *ax* The matplotlib.pyplot.Axes object where the heatmap will be plotted.
 - *list_of_lists* A list of equal-length lists of numerical elements, for which the correlations will be calculated and plotted.
 - *method* Either a string or a function specifying the method for calculating the correlation between the lists. Possible choices:
 - "pearson": Pearson product-moment correlation coefficient.
 - "spearman": Spearman's rank correlation coefficient.
 - "kendall": Kendall rank correlation coefficient.

- A callable function taking two parameters *list1*, *list2*, returning the desired correlation between *list1* and *list2*.
 Optional parameters

 None.

 Return
- plottingtools.masked_heatmap(ax, data, mask)
 - Description

• None.

- Plots a 2d heatmap applying a mask, so that only a certain part of the heatmap is actually plotted. Four options are possible: Plotting the lower, upper, lower-diagonal, or upper-diagonal part.
- Required parameters
 - *ax* The matplotlib.pyplot.Axes object where the heatmap will be plotted.
 - *data* A two-dimensional numpy.ndarray containing the data to be plotted.
 - *mask* A string specifying which mask to apply. Possible choices:
 - "upperdiag": Plotting the upper part plus the diagonal elements of the matrix.
 - "upper": Plotting only the upper part of the matrix without the diagonal elements.
 - "lowerdiag": Plotting the lower part plus the diagonal elements of the matrix.
 - "lower": Plotting only the lower part of the matrix without the diagonal elements.
- Optional parameters
 - None.
- Return
 - None.

Adding elements to an existing plot

plottingtools.title(ax, title, [fontsize = 40, pad = 20])

- Description
 - Adds or changes a title to/of an existing matplotlib.pyplot.Axes object.
- Required parameters
 - *ax* The matplotlib.pyplot.Axes object.
 - *title* String containing the title.
- Optional parameters
 - *fontsize* The font size of the title. Deafults to 40.
 - *pad* The padding between the title and the actual plot. Defaults to 20.
- Return
 - None.

plottingtools.labels(ax, xlabel, ylabel, [fontsize = 30, pad = 15])

- Description
 - Adds ior changes the x and y axis labels of an matplotlib.pyplot.Axes object. To only change one of the labels, pass None to the respective other parameter.
- Required parameters
 - *ax* The matplotlib.pyplot.Axes object.
 - *xlabel* String containing the new x-axis label, or None to leave the x-axis label unchanged.
 - *ylabel* String containing the new y-axis label, or None to leave the y-axis label unchanged.
- Optional parameters
 - *fontsize* The font size of the labels. Defaults to 30.
 - *pad* The padding between the axis labels and the axes. Defaults to 15.
- Return
 - None.

plottingtools.diagonal(ax, [colour = "black", alpha = 0.3, linestyle = "-", linewidth = 2])

- Description
 - Add a 1:1 diagonal to an existing matplotlib.pyplot.Axes object.
- Required parameters
 - *ax* The matplotlib.pyplot.Axes object.
- Optional parameters
 - *colour* A string specifying the colour of the diagonal. Defaults to "black".
 - *alpha* Numerical value between 0 and 1, specifying the transparency of the diagonal. Defaults to 0.3.
 - *linestyle* String specifying the line style of the diagonal. Defaults to "-", i.e. a continuous line.
 - *linewidth* Numerical value specifying the width of the diagonal. Defaults to 2.
- Return
 - None.

plottingtools.rectangle(ax, x1, y1, x2, y2, [colour = "red", linewidth = 3, linestyle = "-", fill = False])

- Description
 - Add a rectangle to an existing matplotlib.pyplot.Axes object.
- Required parameters
 - *x1* x-coordinate of the lower-left point of the rectangle.
 - *y1* y-coordinate of the lower-left point of the rectangle.
 - *x*2 *x*-coordinate of the upper-right point of the rectangle.
 - *y2* y-coordinate of the upper-right point of the rectangle.
- Optional parameters
 - *colour* String specifying the colour of the rectangle's border. Defaults to red.
 - *linewidth* Numerical value specifying the width of the rectangle's border. Defaults to 3.
 - *linestyle* String specifying the line style of the rectangle. Defaults to "-", i.e. a continuous line.
 - *fill* Boolean specifying whether to fill the rectangle. Defaults to False, i.e. no filling.

- Return
 - None.

plottingtools.star(ax, x, y, [colour = "red", fontsize = 50])

- Description
 - Add an asterisk to an existing matplotlib.pyplot.Axes object, e.g. as a marker of statistical significance or to denote special points of interest.
- Required parameters
 - *x* x-coordinate of the asterisk.
 - *y* y-coordinate of the asterisk.
- Optional parameters
 - *colour* String specifying the colour of the asterisk. Defaults to red.
 - *fontsize* Numerical value specifying the font size of the star. Defaults to 50.
- Return
 - None.

plottingtools.lines(ax, which, pos, [colour = "black", alpha = 0.3, linestyle = "-", linewidth = 2, zorder = -100])

• Function will be reworked soon. Don't use for now.

Changing elements of an existing plot (documentation of this section is WIP)

plottingtools.despine(ax,	[which = ['top',	'right']])
---------------------------	------------------	------------

- Description
 - Remove spines of a matplotlib.pyplot.Axes plot.
- Required parameters
 - *ax* The matplotlib.pyplot.Axes object to remove spines from.
- Optional parameters
 - *which* Array of strings specifying which spines to remove. Possible choices are "top", "right", "left", "bottom". Defaults to ["top", "right"].
- Return
 - None.

plottingtools.ticklabelsize(ax, [which = "both", size = 20])

• Description

0

• Required parameters

0

• Optional parameters

0 **

- Return
 - None.

plottingtools.limits(ax, xlimits, ylimits)

• Description

0

• Required parameters

Optional parameters
o **
• Return
 None.
plottingtools.ticks_and_labels(ax, which, ticks, label)
• Description
0
Required parameters
0
Optional parameters
o **
• Return
• None.
plottingtools.rotate_ticklabels(ax, which, rotation)
• Description
0
Required parameters
0
Optional parameters
o **
• Return
• None.
plottingtools.align_ticklabels(ax, which, horizontal, vertical)

• Description

• Required parameters

0

• Optional parameters

o **

- Return
 - None.

Saving the current figure to a file

plottingtools.save_png(filename, [dpi = 300])

- Description
 - Save the current plot as PNG file.
- Required parameters
 - *filename* string with the file name to export to.
- Optional parameters
 - *dpi* The resolution, in dpi. Default: 300
- Return
 - None.

plottingtools.save_svg(filename)

- Description
 - Save the current plot as SVG file.
- Required parameters
 - *filename* string with the file name to export to.
- · Optional parameters
 - None
- Return
 - None.

plottingtools.save_pdf(filename)

- Description
 - Save the current plot as PDF file.
- Required parameters
 - *filename* string with the file name to export to.

- Optional parameters
 - None.
- Return
 - None.

Collections of default parameters for matplotlib plots (documentation of this section is WIP)