## 1 Functions

25 May 2023

#### 1.1 Functions. Domain of Definition

The independent variable x is defined by a set X of its values. If to each value of the independent variable  $x \in X$  there corresponds one definite value of another variable y, then y is called the function of x with a domain of definition (or domain) X or, in functional notation, y = y(x), or y = f(x), or  $y = \varphi(x)$ , and so forth. The set of values of the function y(x) is called the range of the given function.

### 1.2 Investigation of Functions

A function f(x) defined on the set X is said to be nondecreasing on this set (respectively, increasing, nonincreasing, decreasing), if for any numbers  $x_1, x_2 \in$  $X, x_1 < x_2$  the inequality  $f(x_1) \leq f(x_2)$  (respectively,  $f(x_1) < f(x_2), f(x_1) \ge f(x_2), f(x_1) > f(x_2)$ is satisfied. The function f(x) is said to be monotonic on the set X if it possesses one of the four indicated properties. The function f(x) is said to be bounded above (or below) on the set X if there exists a number M(or m) such that  $f(x) \leq M \ \forall \ x \in X$ . The function f(x) is said to be bounded on the set X if it is bounded above and below. The function f(x) is called periodic if there exists a number T > 0 such that f(x+T) = f(x) for all x belonging to the domain of definition of the function (together with any point x the point x+T must belong to the domain of definition). The least number T possessing this property (if such a number exists) is called the period of the function f(x). The function f(x) takes on the maximum value at the point  $x_o \in X$  if  $f(x_o) \ge f(x)$  for all  $x \in X$ , and the minimum value if if  $f(x_o) \leq f(x)$  for all  $x \in X$ . A function f(x) defined on a set X which is symmetric w.r.t origin of coordinates is called even if f(-x) = f(x), and odd if f(x) = -f(x).

#### 1.3 Inverse of Function

Let the function y = f(x) be defined on the set X and have a range Y. If for each  $y \in Y$  there ex-

ists a single value of x such that f(x) = y, then this correspondence defines a certain function x = g(y) called inverse w.r.t given function y = f(x). The sufficient condition for the existence of an inverse function is a strict monotony of the original function y = f(x). If the function increases (decreases), then the inverse function also increases (decreases). The graph of the inverse function x = g(y) coincides with that of the function y = f(x) if the independent variable is marked off along the y - axis. If the independent variable is laid off along the x-axis,i. e. if the inverse function is written in the form y = g(x), then the graph of the inverse function will be symmetric to that of the function y = f(x) with respect to the bisector of the first and third quadrants.

# 2 Limits

#### 2.1 Existence

Limit of function f(x) is said to exist as  $x \to a$  when,

$$\lim_{h \to 0^+} f(a - h) = \lim_{h \to 0^+} f(a + h)$$

equal to some finite value L.

#### 2.2 Indeterminate forms

There are only seven indeterminate forms  $\frac{0}{0}, \frac{\infty}{\infty}, 0 \times \infty, \infty - \infty, \infty^0, 0^0 \text{ and } 1^{\infty}.$ 

### 2.3 List of limits

### **Limits Operations**

If  $\lim_{x\to c} f(x) = L$ 

- $\lim_{x\to c} [f(x\pm a)] = L \pm a$
- $\lim_{x\to c} af(x) = aL$
- $\lim_{x\to c} \frac{1}{f(a)} = \frac{1}{L}$  for L>0
- $\lim_{x\to c} f(x)^n = L^n$  for n>0

## Involving infinitesimal changes

If infinitesimal change h if denote by  $\Delta x$ . If f(x) and g(x) are differentiable at x.

• 
$$\lim_{h\to 0} \frac{f(x+h)-f(x)}{h} = f'(x)$$

• 
$$\lim_{h\to 0} \frac{fog(x+h)-fog(x)}{h} = f'[g(x)]g'(x)$$

• 
$$\lim_{h\to 0} \frac{f(x+h)g(x+h)-f(x)g(x)}{h} = f'(x)g(x) + \lim_{x\to 0} (\frac{e^{ax}-1}{x}) = a$$

• 
$$\lim_{h\to 0} \left(\frac{f(x+h)}{f(x)}\right)^{\frac{1}{h}} = exp\left(\frac{f'(x)}{f(x)}\right)$$

• 
$$\lim_{h\to 0} \left(\frac{f(e^h x)}{f(x)}\right)^{\frac{1}{h}} = exp\left(\frac{xf'(x)}{f(x)}\right)$$

If f(x) and g(x) are differentiable on an open interval containing c, except possibly c itself, and  $\lim_{x\to c} f(x) = \lim_{x\to c} q(x) = 0 \text{ or } \pm \infty.$ Jean Bernoulli or L'Hopital's rule can be used:

$$\lim_{x \to c} \frac{f(x)}{g(x)} = \frac{f'(x)}{g'(x)}$$

## Inequalities

If  $f(x) \leq g(x)$  for all x in interval that contains c, except possibly c itself, and the limit of f(x) and g(x) both exist at c, then  $\lim_{x\to c} f(x) \leq \lim_{x\to c} g(x)$ If  $\lim_{x\to c} f(x) = \lim_{x\to c} h(x) = L$  and

$$f(x) \le g(x) \le h(x)$$

for all x in an open interval that contains c, except possibly c itself,  $\lim_{x\to c} g(x) = L$ . This is know as  $Squeeze\ Theorem.$ 

### 2.4 Exponential Functions

Function of form  $f(x)^{g(x)}$ 

• 
$$\lim_{x\to+\infty} \left(\frac{x}{x+k}\right)^x = e^{-k}$$

• 
$$\lim_{x\to 0} (1+x)^{\frac{1}{x}} = e$$

$$\bullet \lim_{x \to 0} (1 + kx)^{\frac{m}{x}} = e^{mk}$$

• 
$$\lim_{x\to+\infty} (1+\frac{1}{x})^x = e$$

• 
$$\lim_{x\to+\infty} (1-\frac{1}{x})^x = \frac{1}{e}$$

• 
$$\lim_{x \to +\infty} (1 + \frac{k}{x})^{mx} = e^{mk}$$

• 
$$\lim_{x\to 0} (1 + a(e^{-x} - 1)^{-\frac{1}{x}}) = e^a$$

Sum products and Composites

• 
$$\lim_{x\to 0} \left(\frac{a^x-1}{x}\right) = \ln a$$

$$\bullet \ \lim_{x \to 0} \left( \frac{e^x - 1}{x} \right) = 1$$

$$\bullet \ \lim_{x \to 0} \left( \frac{e^{ax} - 1}{x} \right) = a$$

## 2.5 Logarithmic Functions

• 
$$\lim_{x\to 1} \frac{\ln x}{x-1} = 1$$

• 
$$\lim_{x \to 0} \frac{\ln(x+1)}{x} = 1$$

$$\bullet \lim_{x \to 0} \frac{-\ln(1 + a(e^{-x} - 1))}{x} = a$$