```
In [67]:
          # Please do not change this cell because some hidden tests might depend on it.
          import os
          # Otter grader does not handle ! commands well, so we define and use our
          # own function to execute shell commands.
          def shell(commands, warn=True):
              """Executes the string `commands` as a sequence of shell commands.
                 Prints the result to stdout and returns the exit status.
                 Provides a printed warning on non-zero exit status unless `warn`
                 flag is unset.
              file = os.popen(commands)
              print (file.read().rstrip('\n'))
              exit status = file.close()
              if warn and exit_status != None:
                  print(f"Completed with errors. Exit status: {exit_status}\n")
              return exit status
          shell("""
          ls requirements.txt >/dev/null 2>&1
          if [ ! $? = 0 ]; then
          rm -rf .tmp
           git clone https://github.com/cs187-2021/project2.git .tmp
          mv .tmp/requirements.txt ./
          rm -rf .tmp
          fi
          pip install -q -r requirements.txt
```

```
In [68]:  # Initialize Otter
   import otter
   grader = otter.Notebook()
```

CS187

Project 2: Sequence labeling – The slot filling task

Introduction

The second segment of the project involves a sequence labeling task, in which the goal is to label the tokens in a text. Many NLP tasks have this general form. Most famously is the task of part-of-speech labeling as you explored in lab 2-4, where the tokens in a text are to be labeled with their part of speech (noun, verb, preposition, etc.). In this project segment, however, you'll

use sequence labeling to implement a system for filling the slots in a template that is intended to describe the meaning of an ATIS query. For instance, the sentence

What's the earliest arriving flight between Boston and Washington DC?

might be associated with the following slot-filled template:

flight_id

fromloc.cityname: boston
toloc.cityname: washington

toloc.state: dc

flight_mod: earliest arriving

You may wonder how this task is a sequence labeling task. We label each word in the source sentence with a tag taken from a set of tags that correspond to the slot-labels. For each slot-label, say flight_mod, there are two tags: B-flight_mod and I-flight_mod. These are used to mark the beginning (B) or interior (I) of a phrase that fills the given slot. In addition, there is a tag for other (O) words that are not used to fill any slot. (This technique is thus known as IOB encoding.) Thus the sample sentence would be labeled as follows:

Token	Label
BOS	0
what's	0
the	0
earliest	B-flight_mod
arriving	I-flight_mod
flight	0
between	0
boston	B-fromloc.city_name
and	0
washington	B-toloc.city_name
dc	B-toloc.state_code
EOS	0

See below for information about the BOS and EOS tokens.

The template itself is associated with the question type for the sentence, perhaps as recovered from the sentence in the last project segment.

In this segment, you'll implement three methods for sequence labeling: a hidden Markov model (HMM) and two recurrent neural networks, a simple RNN and a long short-term memory

In [69]:

network (LSTM). By the end of this homework, you should have grasped the pros and cons of the statistical and neural approaches.

Goals

- 1. Implement an HMM-based approach to sequence labeling.
- 2. Implement an RNN-based approach to sequence labeling.
- 3. Implement an LSTM-based approach to sequence labeling.
- 4. (Optional) Compare the performances of HMM and RNN/LSTM with different amounts of training data. Discuss the pros and cons of the HMM approach and the neural approach.

Setup

```
import copy
          import math
          import matplotlib.pyplot as plt
          import random
          import wget
          import torch
          import torch.nn as nn
          import torchtext.legacy as tt
          from tqdm.auto import tqdm
In [70]:
          # Set random seeds
          seed = 1234
          random.seed(seed)
          torch.manual seed(seed)
          # GPU check, sets runtime type to "GPU" where available
          device = torch.device("cuda" if torch.cuda.is available() else "cpu")
          print(device)
```

Loading data

cpu

We download the ATIS dataset, already presplit into training, validation (dev), and test sets.

```
]:
download_if_needed(filename, source_path, data_path)
```

Data preprocessing

We again use torchtext to load data and convert words to indices in the vocabulary. We use one field TEXT for processing the question, and another field TAG for processing the sequence labels.

We treat words occurring fewer than three times in the training data as *unknown words*. They'll be replaced by the unknown word type <unk>.

```
In [72]:
MIN_FREQ = 3

TEXT = tt.data.Field(init_token="<bos>", batch_first=False) # batches are of siz
TAG = tt.data.Field(init_token="<bos>", batch_first=False) # ditto
fields = (('text', TEXT), ('tag', TAG))

train, val, test = tt.datasets.SequenceTaggingDataset.splits(
    fields=fields,
    path='./data/',
    train='atis.train.txt',
    validation='atis.dev.txt',
    test='atis.test.txt'
)

TEXT.build_vocab(train.text, min_freq=MIN_FREQ)
TAG.build_vocab(train.tag)
```

We can get some sense of the datasets by looking at the size and some elements of the text and tag vocabularies.

```
In [73]:
    print(f"Size of English vocabulary: {len(TEXT.vocab)}")
    print(f"Most common English words: {TEXT.vocab.freqs.most_common(10)}\n")

    print(f"Number of tags: {len(TAG.vocab)}")
    print(f"Most common tags: {TAG.vocab.freqs.most_common(10)}")

    Size of English vocabulary: 518
    Most common English words: [('BOS', 4274), ('EOS', 4274), ('to', 3682), ('from', 3203), ('flights', 2075), ('the', 1745), ('on', 1343), ('flight', 1035), ('me', 1005), ('what', 985)]

    Number of tags: 104
    Most common tags: [('O', 38967), ('B-toloc.city_name', 3751), ('B-fromloc.city_name', 3726), ('I-toloc.city_name', 1039), ('B-depart_date.day_name', 835), ('I-f romloc.city_name', 636), ('B-airline_name', 610), ('B-depart_time.period_of_day', 555), ('I-airline_name', 374), ('B-depart_date.day_number', 351)]
```

Special tokens and tags

You'll have already noticed the BOS and EOS, special tokens that the dataset developers used to indicate the beginning and end of the sentence; we'll leave them in the data.

Finally, since torchtext will be providing the sentences in the training corpus in "batches", torchtext will force the sentences within a batch to be the same length by padding them with a special token. Again, we can access that token as shown here:

Now, we can iterate over the dataset using torchtext 's iterator. We'll use a non-trivial batch size to gain the benefit of training on multiple sentences at a shot. You'll need to be careful about the shapes of the various tensors that are being manipulated.

```
In [76]:
     BATCH_SIZE = 20

     train_iter, val_iter, test_iter = tt.data.BucketIterator.splits(
          (train, val, test),
          batch_size=BATCH_SIZE,
          repeat=False,
          device=device)
```

Each batch will be a tensor of size max_length x batch_size . Let's examine a batch.

```
In [77]:
# Get the first batch
batch = next(iter(train_iter))

# What's its shape? Should be max_length x batch_size.
print(f'Shape of batch text tensor: {batch.text.shape}\n')

# Extract the first sentence in the batch, both text and tags
first_sentence = batch.text[:, 0]
first_tags = batch.tag[:, 0]

# Print out the first sentence, as token ids and as text
print("First sentence in batch")
print(f"{first_sentence}")
print(f"{' '.join([TEXT.vocab.itos[i] for i in first_sentence])}\n")
```

```
print("First tags in batch")
print(f"{first_tags}")
print(f"{[TAG.vocab.itos[i] for i in first_tags]}")
```

The goal of this project is to predict the sequence of tags batch.tag given a sequence of words batch.text.

Majority class labeling

As usual, we can get a sense of the difficulty of the task by looking at a simple baseline, tagging every token with the majority tag. Here's a table of tag frequencies for the most frequent tags:

```
In [78]:
          def count tags(iterator):
            tag counts = torch.zeros(len(TAG.vocab.itos), device=device)
            for batch in iterator:
              tags = batch.tag.view(-1)
              tag counts.scatter add (0, tags, torch.ones(tags.shape).to(device))
            ## Alternative untensorized implementation for reference
            # for batch in iterator:
                                                  # for each batch
              for sent id in range(len(batch)): # ... each sentence in the batch
                 for tag in batch.tag[:, sent id]: # ... each tag in the sentence
                    tag_counts[tag] += 1
                                                   # bump the tag count
            # Ignore paddings
            tag counts[TAG.vocab.stoi[TAG.pad token]] = 0
            return tag counts
          tag counts = count tags(train iter)
          for tag id in range(len(TAG.vocab.itos)):
            print(f'{tag id:3} {TAG.vocab.itos[tag id]:30}{tag counts[tag id].item():3.0f
           0 <unk>
                                              0
           1 <pad>
                                              0
                                            4274
           2 <bos>
           3
                                            38967
           4 B-toloc.city name
                                            3751
           5 B-fromloc.city name
                                            3726
           6 I-toloc.city name
                                            1039
```

7 B-depart date.day name

	CS187 Project S	egment.
8	I-fromloc.city_name	636
9	B-airline_name	610
10	<pre>B-depart_time.period_of_day</pre>	555
11	I-airline_name	374
12	B-depart_date.day_number	351
13	B-depart_date.month_name	340
14	<pre>B-depart_time.time</pre>	321
15	B-round_trip	311
16	I-round_trip	303
17	B-depart_time.time_relative	290
18	B-cost_relative	281
19	B-flight_mod	264
20	<pre>I-depart_time.time</pre>	258
21	B-stoploc.city_name	202
22	B-city_name	191
23	B-arrive time.time	182
24	B-class_type	181
25	B-arrive time.time relative	162
26	I-class_type	148
27	I-arrive_time.time	142
28	B-flight_stop	141
29	B-airline code	109
30	I-depart_date.day_number	105
31	I-fromloc.airport_name	103
32	B-toloc.state name	84
33	B-toloc.state_code	81
34	B-arrive_date.day_name	78
35	B-fromloc.airport_name	75
36	B-depart_date.date_relative	72
37	B-flight_number	72
38	B-depart_date.today_relative	70
39	I-airport_name	61
40	I-city_name	53
41	B-arrive_time.period_of_day	51
42	B-fare basis code	51
43	B-flight_time	51
44	B-fromloc.state_code	51
45	B-or	49
46	B-aircraft_code	48
47	B-meal description	48
48	B-meal	47
49		45
50	—	45
51	-	44
52	B-airport_name	43
53	B-transport_type B-fromloc.state name	43
54	<u> </u>	
_	B-arrive_date.day_number	40
55	B-arrive_date.month_name	40
56	B-depart_time.period_mod	39
57	B-flight_days	37
58	B-connect	36
59	<u>-</u>	35
60	B-fare_amount	34
61	I-fare_amount	33
62	B-economy	32
63	B-toloc.airport_name	28
64		24
65	-	24
66	<u> </u>	22
67	B-depart_date.year	20
68	B-toloc.airport_code	19

```
69 B-arrive time.start time
                                   18
 70 B-depart_time.end_time
                                   18
 71 B-depart_time.start_time
                                   18
 72 I-transport_type
                                   18
 73 B-arrive_time.end_time
                                   17
 74 I-arrive_time.end_time
                                   16
 75 B-fromloc.airport code
                                   14
 76 B-restriction code
                                   14
 77 I-depart_time.end_time
                                   13
 78 I-flight_mod
                                   12
 79  I-flight_stop
                                   12
 80 B-arrive date.date relative
 81 I-toloc.state_name
                                   10
 82 I-restriction code
 83 B-return date.date relative
 84 I-depart_time.start_time
 85 I-economy
                                    7
 86 B-state code
                                    7
 87 I-arrive time.start time
 88 I-fromloc.state_name
                                    7
 89 B-state name
 90 I-depart_date.today_relative
 91 I-depart time.period of day
 92 B-period of day
 93 I-arrive date.day number
 94 B-day_name
 95 B-meal code
 96 B-stoploc.state_code
                                    3
                                    2
 97 B-arrive_time.period_mod
 98 B-toloc.country name
 99 I-arrive time.time relative
100 I-meal code
101 I-return date.date relative
102 B-return date.day number
103 B-return date.month name
```

It looks like the '0' (other) tag is, unsurprisingly, the most frequent tag (except for the padding tag). The proportion of tokens labeled with that tag (ignoring the padding tag) gives us a good baseline accuracy for this sequence labeling task. To verify that intuition, we can calculate the accuracy of the majority tag on the test set:

```
In [79]:
    tag_counts_test = count_tags(test_iter)
    majority_baseline_accuracy = (
        tag_counts_test[TAG.vocab.stoi['O']]
        / tag_counts_test.sum()
    )
    print(f'Baseline accuracy: {majority_baseline_accuracy:.3f}')
```

Baseline accuracy: 0.634

HMM for sequence labeling

Having established the baseline to beat, we turn to implementing an HMM model.

Notation

First, let's start with some notation. We use $\mathcal{V}=\langle \mathcal{V}_1,\mathcal{V}_2,\ldots \mathcal{V}_V \rangle$ to denote the vocabulary of word types and $Q=\langle Q_1,Q_2,\ldots,Q_N \rangle$ to denote the possible tags, which is the state space of the HMM. Thus V is the number of word types in the vocabulary and N is the number of states (tags).

We use $\mathbf{w}=w_1\cdots w_T\in\mathcal{V}^T$ to denote the string of words at "time steps" t (where t varies from 1 to T). Similarly, $\mathbf{q}=q_1\cdots q_T\in Q^T$ denotes the corresponding sequence of states (tags).

Training an HMM by counting

Recall that an HMM is defined via a transition matrix A, which stores the probability of moving from one state Q_i to another Q_j , that is,

$$A_{ij} = \operatorname{Pr}(q_{t+1} = Q_j \, | \, q_t = Q_i)$$

and an emission matrix B, which stores the probability of generating word \mathcal{V}_j given state Q_i , that is,

$$B_{ij} = \Pr(w_t = {\mathcal V}_i \,|\, q_t = Q_i)$$

As is typical in notating probabilities, we'll use abbreviations

$$\Pr(q_{t+1} | q_t) \equiv \Pr(q_{t+1} = Q_j | q_t = Q_i) \tag{1}$$

$$\Pr(w_t \,|\, q_t) \equiv \Pr(w_t = \mathcal{V}_j \,|\, q_t = Q_i) \tag{2}$$

where the i and j are clear from context.

In our case, since the labels are observed in the training data, we can directly use counting to determine (maximum likelihood) estimates of A and B.

Goal 1(a): Find the transition matrix

The matrix A contains the transition probabilities: A_{ij} is the probability of moving from state Q_i to state Q_j in the training data, so that $\sum_{j=1}^N A_{ij} = 1$ for all i.

We find these probabilities by counting the number of times state Q_j appears right after state Q_i , as a proportion of all of the transitions from Q_i .

$$A_{ij} = rac{\sharp (Q_i,Q_j) + \delta}{\sum_k \left(\sharp (Q_i,Q_k) + \delta
ight)}$$

(In the above formula, we also used add- δ smoothing.)

Using the above definition, implement the method train_A in the HMM class below, which calculates and returns the A matrix as a tensor of size $N \times N$.

You'll want to go ahead and implement this part now, and test it below, before moving on to the next goal.

Remember that the training data is being delivered to you batched.

Goal 1(b): Find the emission matrix B

Similar to the transition matrix, the emission matrix contains the emission probabilities such that B_{ij} is probability of word $w_t = \mathcal{V}_i$ conditioned on state $q_t = Q_i$.

We can find this by counting as well.

$$B_{ij} = rac{\sharp(Q_i,\mathcal{V}_j) + \delta}{\sum_k \left(\sharp(Q_i,\mathcal{V}_k) + \delta
ight)} = rac{\sharp(Q_i,\mathcal{V}_j) + \delta}{\sharp(Q_i) + \delta V}$$

Using the above definitions, implement the train_B method in the HMM class below, which calculates and returns the B matrix as a tensor of size $N \times V$.

You'll want to go ahead and implement this part now, and test it below, before moving on to the next goal.

Sequence labeling with a trained HMM

Now that you're able to train an HMM by estimating the transition matrix A and the emission matrix B, you can apply it to the task of labeling a sequence of words $\mathbf{w} = w_1 \cdots w_T$. Our goal is to find the most probable sequence of tags $\hat{\mathbf{q}} \in Q^T$ given a sequence of words $\mathbf{w} \in \mathcal{V}^T$.

$$egin{aligned} \mathbf{\hat{q}} &= rgmax(\Pr(\mathbf{q} \,|\, \mathbf{w})) \ &= rgmax(\Pr(\mathbf{q}, \mathbf{w})) \ &= rgmax(\Pr(\mathbf{q}, \mathbf{w})) \ &= rgmax\left(\Pi_{t=1}^T \Pr(w_t \,|\, q_t) \Pr(q_t \,|\, q_{t-1})
ight) \end{aligned}$$

where $\Pr(w_t = \mathcal{V}_j \mid q_t = Q_i) = B_{ij}$, $\Pr(q_t = Q_j \mid q_{t-1} = Q_i) = A_{ij}$, and q_0 is the predefined initial tag TAG.vocab.stoi[TAG.init_token].

Goal 1(c): Viterbi algorithm

Implement the predict method, which should use the Viterbi algorithm to find the most likely sequence of tags for a sequence of words.

Warning: It may take up to 30 minutes to tag the entire test set depending on your implementation. (A fully tensorized implementation can be much faster though.) We highly recommend that you begin by experimenting with your code using a *very small subset* of the dataset, say two or three sentences, ramping up from there.

Hint: Consider how to use vectorized computations where possible for speed.

Evaluation

We've provided you with the evaluate function, which takes a dataset iterator and uses predict on each sentence in each batch, comparing against the gold tags, to determine the accuracy of the model on the test set.

```
In [84]:
          import numpy as np
          class HMMTagger():
            def __init__ (self, text, tag):
              self.text = text
              self.tag = tag
              self.V = len(text.vocab.itos) # vocabulary size
self.N = len(tag.vocab.itos) # state space size
              self.initial_state_id = tag.vocab.stoi[tag.init_token]
              self.pad_state_id = tag.vocab.stoi[tag.pad_token]
              self.pad word id = text.vocab.stoi[text.pad token]
            def train_A(self, iterator, delta):
               """Returns A for training dataset `iterator` using add-`delta` smoothing."""
              # Create A table
              A = torch.zeros(self.N, self.N, device=device)
               #TODO: Add your solution from Goal 1(a) here.
                      The returned value should be a tensor for the A matrix
                      of size N x N.
               for batch in iterator:
                   #print(batch.batch_size)
                   #print(len(batch.tag))
                   #print(batch.tag)
                   for i in range(batch.batch size):
                       tags = batch.tag[:,i]
                       #print(tags)
                       indices = zip(tags[:-1], tags[1:])
                       for first, second in indices:
                           if first != self.pad_state_id:
                               A[first][second] += 1
               for row in A:
                   denominator = torch.sum(row) + (delta * self.N)
                   if denominator != 0:
                       for i in range(self.N):
                           row[i] = (row[i] + delta) / (denominator)
               #print(A)
              return A
            def train B(self, iterator, delta):
               """Returns B for training dataset `iterator` using add-`delta` smoothing."""
               # Create B
              B = torch.zeros(self.N, self.V, device=device)
               #TODO: Add your solution from Goal 1 (b) here.
                      The returned value should be a tensor for the $B$ matrix
                      of size N \times V.
               for batch in iterator:
                  #print(len(batch.tag))
                   #print(len(batch.text))
                  tags = batch.tag.T
                   texts = batch.text.T
                   for i in range(len(tags)):
                       indices = zip(tags[i], texts[i])
```

```
for first, second in indices:
              B[first][second] += 1
  for row in B:
      denominator = torch.sum(row) + (delta * self.V)
      if denominator != 0:
          for i in range(self.V):
              row[i] = (row[i] + delta) / (denominator)
  #print(B)
 return B
def train_all(self, iterator, delta=0.01):
  """Stores A and B (actually, their logs) for training dataset `iterator`."""
  self.log A = self.train A(iterator, delta).log()
  self.log B = self.train B(iterator, delta).log()
def predict(self, words):
      """Returns the most likely sequence of tags for a sequence of `words`.
      Arguments:
       words: a tensor of size (seq len,)
      Returns:
       a list of tag ids
      #TODO: Add your solution from Goal 1 (c) here.
             The returned value should be a list of tag ids.
      seq len = len(words)
      backpointerArr = torch.zeros(self.N, seq_len, device=device)
      tagSequence = torch.zeros(self.N, seq_len, device=device)
      for row in range(self.N):
          tagSequence[row][0] = -math.inf
      tagSequence[self.initial state id][0] = 1
      for col in range(1, seg len):
          for row in range(self.N):
              prev = self.log_A[: , row] + tagSequence[: , col-1]
              tagSequence[row][col] = self.log B[row][words[col]] + torch.max(
              backpointerArr[row][col] = torch.argmax(prev)
      bestpath = torch.zeros(len(words), device=device)
      lastCol = tagSequence[: , seq len-1]
      maxTag = torch.argmax(lastCol)
      columnCount = seg len - 1
      while columnCount >= 0:
          bestpath[columnCount] = maxTag
          maxTag = int(backpointerArr[maxTag][columnCount])
          columnCount -= 1
      return bestpath
def evaluate(self, iterator):
  """Returns the model's token accuracy on a given dataset `iterator`."""
 correct = 0
  total = 0
  for batch in tqdm(iterator, leave=False):
    for sent id in range(len(batch)):
      words = batch.text[:, sent id]
```

```
words = words[words.ne(self.pad_word_id)] # remove paddings
tags_gold = batch.tag[:, sent_id]
tags_pred = self.predict(words)
for tag_gold, tag_pred in zip(tags_gold, tags_pred):
    if tag_gold == self.pad_state_id: # stop once we hit padding
        break
else:
    total += 1
    if tag_pred == tag_gold:
        correct += 1
return correct/total
```

Putting everything together, you should now be able to train and evaluate the HMM. A correct implementation can be expected to reach above **90% test set accuracy** after running the following cell.

```
In [85]: # Instantiate and train classifier
hmm_tagger = HMMTagger(TEXT, TAG)
hmm_tagger.train_all(train_iter)

# Evaluate model performance
print(f'Training accuracy: {hmm_tagger.evaluate(train_iter):.3f}\n'
f'Test accuracy: {hmm_tagger.evaluate(test_iter):.3f}')
```

Training accuracy: 0.915
Test accuracy: 0.906

RNN for Sequence Labeling

HMMs work quite well for this sequence labeling task. Now let's take an alternative (and more trendy) approach: RNN/LSTM-based sequence labeling. Similar to the HMM part of this project, you will also need to train a model on the training data, and then use the trained model to decode and evaluate some testing data.

After unfolding an RNN, the cell at time t generates the observed output \mathbf{y}_t based on the input \mathbf{x}_t and the hidden state of the previous cell \mathbf{h}_{t-1} , according to the following equations.

$$egin{aligned} \mathbf{h}_t &= \sigma(\mathbf{U}\mathbf{x}_t + \mathbf{V}\mathbf{h}_{t-1}) \ \mathbf{\hat{y}}_t &= \mathrm{softmax}(\mathbf{W}\mathbf{h}_t) \end{aligned}$$

The parameters here are the elements of the matrices U, V, and W. Similar to the last project segment, we will perform the forward computation, calculate the loss, and then perform the backward computation to compute the gradients with respect to these model parameters. Finally, we will adjust the parameters opposite the direction of the gradients to minimize the loss, repeating until convergence.

You've seen these kinds of neural network models before, for language modeling in lab 2-3 and sequence labeling in lab 2-5. The code there should be very helpful in implementing an RNNTagger class below. Consequently, we've provided very little guidance on the implementation. We do recommend you follow the steps below however.

Goal 2(a): RNN training

Implement the forward pass of the RNN tagger and the loss function. A reasonable way to proceed is to implement the following methods:

1. forward(self, text_batch): Performs the RNN forward computation over a whole text_batch (batch.text in the above data loading example). The text_batch will be of shape max_length x batch_size. You might run it through the following layers: an embedding layer, which maps each token index to an embedding of size embedding_size (so that the size of the mapped batch becomes max_length x batch_size x embedding_size); then an RNN, which maps each token embedding to a vector of hidden_size (the size of all outputs is max_length x batch_size x hidden_size); then a linear layer, which maps each RNN output element to a vector of size N (which is commonly referred to as "logits", recall that N = |Q|, the size of the tag set).

This function is expected to return logits, which provides a logit for each tag of each word of each sentence in the batch (structured as a tensor of size $max_length x batch_size x N$).

You might find the following functions useful:

- nn.Embedding
- nn.Linear
- nn.RNN
- 1. compute_loss(self, logits, tags): Computes the loss for a batch by comparing logits of a batch returned by forward to tags, which stores the true tag ids for the

batch. Thus logits is a tensor of size \max_{n} length x batch_size x N, and tags is a tensor of size \max_{n} length x batch_size. Note that the criterion functions in torch expect outputs of a certain shape, so you might need to perform some shape conversions.

You might find nn.CrossEntropyLoss from the last project segment useful. Note that if you use nn.CrossEntropyLoss then you should not use a softmax layer at the end since that's already absorbed into the loss function. Alternatively, you can use nn.LogSoftmax as the final sublayer in the forward pass, but then you need to use nn.NLLLoss, which does not contain its own softmax. We recommend the former, since working in log space is usually more numerically stable.

Be careful about the shapes/dimensions of tensors. You might find torch. Tensor. view useful for reshaping tensors.

1. train_all(self, train_iter, val_iter, epochs=10, learning_rate=0.001): Trains the model on training data generated by the iterator train_iter and validation data val_iter. The epochs and learning_rate variables are the number of epochs (number of times to run through the training data) to run for and the learning rate for the optimizer, respectively. You can use the validation data to determine which model was the best one as the epocks go by. Notice that our code below assumes that during training the best model is stored so that rnn_tagger.load_state_dict(rnn_tagger.best_model) restores the parameters of the best model.

Goal 2(b) RNN decoding

Implement a method to predict the tag sequence associated with a sequence of words:

- 1. predict(self, text_batch): Returns the batched predicted tag sequences associated with a batch of sentences.
- 2. def evaluate(self, iterator): Returns the accuracy of the trained tagger on a dataset provided by iterator.

```
pad id = self.tag.vocab.stoi[self.tag.pad token]
    self.loss function = nn.CrossEntropyLoss(reduction='sum', ignore index=p
    self.init_parameters()
def init_parameters(self, init_low=-0.15, init_high=0.15):
    """Initialize parameters. We usually use larger initial values for small
    See http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf for a more
    in-depth discussion.
    for p in self.parameters():
        p.data.uniform (init low, init high)
def forward(self, text batch):
   hidden = None
    logits = self.hidden2output(self.rnn(self.word embeddings(text batch),hi
    return logits
def compute loss(self, logits, tags):
    return self.loss_function(logits.view(-1, self.N), tags.view(-1))
def train_all(self, train_iter, val_iter, epochs = 10, learning_rate = 0.001
    self.train()
    optim = torch.optim.Adam(self.parameters(), lr=learning rate)
    best validation accuracy = -float('inf')
    best model = None
    for epoch in range(epochs):
      total = 0
      running loss = 0.0
      for batch in tqdm(train iter):
        self.zero grad()
        words = batch.text
        tags = batch.tag
        logits = self.forward(words)
        loss = self.compute loss(logits, tags)
        (loss/words.size(1)).backward()
        optim.step()
        total += 1
        running loss += loss.item()
      validation accuracy = self.evaluate(val iter)
      if validation_accuracy > best_validation_accuracy:
       best validation accuracy = validation accuracy
        self.best model = copy.deepcopy(self.state dict())
      epoch_loss = running_loss / total
      print (f'Epoch: {epoch} Loss: {epoch loss:.4f} '
             f'Validation accuracy: {validation accuracy:.4f}')
def predict(self, text batch):
    """Returns the most likely sequence of tags for a sequence of words in `
    Arguments:
      text batch: a tensor containing word ids of size (seq len, 1)
    Returns:
      tag batch: a tensor containing tag ids of size (seq len, 1)
    #TODO: your code below
    logits = self.forward(text batch)
    tag batch = torch.argmax(logits, dim = 2)
    return tag batch
```

```
def evaluate(self, iterator):
    """Returns the model's performance on a given dataset `iterator`.
   Arguments:
      iterator
   Returns:
     overall accuracy, and precision, recall, and F1 for comma
   correct = 0
   total = 0
   pad_id = TAG.vocab.stoi[TAG.pad_token]
    for batch in tqdm(iterator):
     words = batch.text
      tags = batch.tag
     tags_pred = self.predict(words)
     mask = tags.ne(pad_id)
     cor = (tags == tags_pred)[mask]
     correct += cor.float().sum().item()
      total += mask.float().sum().item()
   return correct/total
```

Now train your tagger on the training and validation set. Run the cell below to train an RNN, and evaluate it. A proper implementation should reach about **95%+ accuracy**.

```
Epoch: 0 Loss: 447.2533 Validation accuracy: 0.8167

Epoch: 1 Loss: 163.7799 Validation accuracy: 0.9200

Epoch: 2 Loss: 85.5635 Validation accuracy: 0.9441

Epoch: 3 Loss: 57.4101 Validation accuracy: 0.9543

Epoch: 4 Loss: 42.9645 Validation accuracy: 0.9621

Epoch: 5 Loss: 33.8012 Validation accuracy: 0.9685

Epoch: 6 Loss: 27.4417 Validation accuracy: 0.9733

Epoch: 7 Loss: 22.5431 Validation accuracy: 0.9779

Epoch: 8 Loss: 18.9634 Validation accuracy: 0.9794

Epoch: 9 Loss: 16.1390 Validation accuracy: 0.9806
```

```
Training accuracy: 0.990 Test accuracy: 0.979
```

LSTM for slot filling

Did your RNN perform better than HMM? How much better was it? Was that expected?

RNNs tend to exhibit the vanishing gradient problem. To remedy this, the Long-Short Term Memory (LSTM) model was introduced. In PyTorch, we can simply use <code>nn.LSTM</code>.

In this section, you'll implement an LSTM model for slot filling. If you've got the RNN model well implemented, this should be extremely straightforward. Just copy and paste your solution, change the call to nn.RNN to a call to nn.LSTM, and make any other minor adjustments that are necessary. In particular, LSTMs have *two* recurrent parts, h and c. You'll thus need to initialize both of these when performing forward computations.

```
In [55]:
          class LSTMTagger(nn.Module):
              def init (self, text, tag, embedding size, hidden size):
                  super().__init__()
                  self.text = text
                  self.tag = tag
                  self.N = len(tag.vocab.itos)
                  self.V = len(text.vocab.itos)
                  self.embedding size = embedding size
                  self.hidden size = hidden size
                  self.word embeddings = nn.Embedding(self.V, embedding size)
                  self.lstm = nn.LSTM(input size=embedding size,
                                    hidden size=hidden size,
                                    bidirectional=True)
                  self.hidden2output = nn.Linear(hidden size*2, self.N)
                  pad id = self.tag.vocab.stoi[self.tag.pad token]
                  self.loss function = nn.CrossEntropyLoss(reduction='sum', ignore index=p
                  self.init parameters()
              def init parameters(self, init low=-0.15, init high=0.15):
                  """Initialize parameters. We usually use larger initial values for small
                  See http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf for a more
                  in-depth discussion.
                  for p in self.parameters():
                      p.data.uniform_(init_low, init_high)
              def forward(self, text batch):
                  hidden = None
                  logits = self.hidden2output(self.lstm(self.word embeddings(text batch),h
                  return logits
              def compute loss(self, logits, tags):
                  return self.loss_function(logits.view(-1, self.N), tags.view(-1))
              def train all(self, train iter, val iter, epochs = 10, learning rate = 0.001
                  self.train()
                  optim = torch.optim.Adam(self.parameters(), lr=learning rate)
```

```
best validation accuracy = -float('inf')
    best model = None
    for epoch in range(epochs):
      total = 0
      running_loss = 0.0
      for batch in tqdm(train_iter):
        self.zero grad()
        words = batch.text
        tags = batch.tag
        logits = self.forward(words)
        loss = self.compute_loss(logits, tags)
        (loss/words.size(1)).backward()
        optim.step()
        total += 1
        running_loss += loss.item()
      validation_accuracy = self.evaluate(val_iter)
      if validation_accuracy > best_validation_accuracy:
        best validation accuracy = validation accuracy
        self.best_model = copy.deepcopy(self.state_dict())
      epoch_loss = running_loss / total
      print (f'Epoch: {epoch} Loss: {epoch_loss:.4f} '
             f'Validation accuracy: {validation accuracy:.4f}')
def predict(self, text batch):
    """Returns the most likely sequence of tags for a sequence of words in `
    Arguments:
      text batch: a tensor containing word ids of size (seq len, 1)
    Returns:
     tag batch: a tensor containing tag ids of size (seg len, 1)
    #TODO: your code below
    logits = self.forward(text batch)
    tag batch = torch.argmax(logits, dim = 2)
    return tag batch
def evaluate(self, iterator):
    """Returns the model's performance on a given dataset `iterator`.
   Arguments:
      iterator
    Returns:
     overall accuracy, and precision, recall, and F1 for comma
    correct = 0
    total = 0
    pad id = TAG.vocab.stoi[TAG.pad token]
    for batch in tqdm(iterator):
     words = batch.text
      tags = batch.tag
     tags pred = self.predict(words)
     mask = tags.ne(pad id)
     cor = (tags == tags pred)[mask]
      correct += cor.float().sum().item()
      total += mask.float().sum().item()
    return correct/total
```

Run the cell below to train an LSTM, and evaluate it. A proper implementation should reach about **95%+ accuracy**.

```
In [56]:
# Instantiate and train classifier
lstm_tagger = LSTMTagger(TEXT, TAG, embedding_size=36, hidden_size=36).to(device
lstm_tagger.train_all(train_iter, val_iter, epochs=10, learning_rate=0.001)
lstm_tagger.load_state_dict(lstm_tagger.best_model)

# Evaluate model performance
print(f'Training accuracy: {lstm_tagger.evaluate(train_iter):.3f}\n'
f'Test accuracy: {lstm_tagger.evaluate(test_iter):.3f}')
```

```
Epoch: 0 Loss: 557.4358 Validation accuracy: 0.7796

Epoch: 1 Loss: 236.0250 Validation accuracy: 0.8488

Epoch: 2 Loss: 156.1624 Validation accuracy: 0.9021

Epoch: 3 Loss: 107.9332 Validation accuracy: 0.9296

Epoch: 4 Loss: 78.9057 Validation accuracy: 0.9388

Epoch: 5 Loss: 60.8047 Validation accuracy: 0.9496

Epoch: 6 Loss: 48.3766 Validation accuracy: 0.9569

Epoch: 7 Loss: 39.5688 Validation accuracy: 0.9638

Epoch: 8 Loss: 33.0261 Validation accuracy: 0.9686

Epoch: 9 Loss: 28.2274 Validation accuracy: 0.9716

Training accuracy: 0.982
Test accuracy: 0.972
```

(Optional) Goal 4: Compare HMM to RNN/LSTM with different amounts of training data

Vary the amount of training data and compare the performance of HMM to RNN or LSTM (Since RNN is similar to LSTM, picking one of them is enough.) Discuss the pros and cons of HMM and RNN/LSTM based on your experiments.

This part is more open-ended. We're looking for thoughtful experiments and analysis of the results, not any particular result or conclusion.

The code below shows how to subsample the training set with downsample ratio ratio. To speedup evaluation we only use 50 test samples.

```
In []: ratio = 0.1 test_size = 50
```

```
# Set random seeds to make sure subsampling is the same for HMM and RNN
         random.seed(seed)
         torch.manual_seed(seed)
         train, val, test = tt.datasets.SequenceTaggingDataset.splits(
                     fields=fields,
                     path='./data/',
                     train='atis.train.txt',
                     validation='atis.dev.txt',
                     test='atis.test.txt')
         # Subsample
         random.shuffle(train.examples)
         train.examples = train.examples[:int(math.floor(len(train.examples)*ratio))]
         random.shuffle(test.examples)
         test.examples = test.examples[:test_size]
         # Rebuild vocabulary
         TEXT.build_vocab(train.text, min_freq=MIN_FREQ)
         TAG.build_vocab(train.tag)
In [ ]:
In [ ]:
In []:
```

Type your answer here, replacing this text.

Debrief

Question: We're interested in any thoughts you have about this project segment so that we can improve it for later years, and to inform later segments for this year. Please list any issues that arose or comments you have to improve the project segment. Useful things to comment on include the following:

- Was the project segment clear or unclear? Which portions?
- Were the readings appropriate background for the project segment?
- Are there additions or changes you think would make the project segment better?

I think the project segments were very clear this time around. I didn't have too many questions on the implementations to use. The readings and lab segments were very helpful for this project segment. I was able to get a lot out of both parts and apply it to this project segment. I would say this project segment was overall well taught and accessible and wouldn't recommend any additions or changes to make the segment better.

Instructions for submission of the project

segment

This project segment should be submitted to Gradescope at http://go.cs187.info/project2-submit-code and http://go.cs187.info/project2-submit-pdf, which will be made available some time before the due date.

Project segment notebooks are manually graded, not autograded using otter as labs are. (Otter is used within project segment notebooks to synchronize distribution and solution code however.) **We will not run your notebook before grading it.** Instead, we ask that you submit the already freshly run notebook. The best method is to "restart kernel and run all cells", allowing time for all cells to be run to completion. You should submit your code to Gradescope at the code submission assignment at http://go.cs187.info/project2-submit-code.

We also request that you **submit a PDF of the freshly run notebook**. The simplest method is to use "Export notebook to PDF", which will render the notebook to PDF via LaTeX. If that doesn't work, the method that seems to be most reliable is to export the notebook as HTML (if you are using Jupyter Notebook, you can do so using File -> Print Preview), open the HTML in a browser, and print it to a file. Then make sure to add the file to your git commit. Please name the file the same name as this notebook, but with a .pdf extension. (Conveniently, the methods just described will use that name by default.) You can then perform a git commit and push and submit the commit to Gradescope at http://go.cs187.info/project2-submit-pdf.