

Podstawy Telekomunikacji

Modulacje oraz zwielokrotnianie kanału i dostępu

dr hab. inż. Piotr Słobodzian, prof. PWr

Katedra Telekomunikacji i Teleinformatyki Wydział Elektroniki

Politechnika Wrocławska

Zawartość wykładu

- 1) Modulacja i detekcja
 - □ cel modulacji
 - modulacja i demodulacja optymalna
 - klasyfikacja modulacji, schematy modulacji
- 2) Zwielokrotnianie kanału i wielodostęp
 - □ w dziedzinie czasu
 - □ w dziedzinie częstotliwości
 - □ kodowe
 - przestrzenne

Problemy komunikacji na odległość

Cztery główne problemy - przykład

□ Ograniczenia techniczne - rozmiary anteny

Długość anteny: $L_a \cong \frac{\lambda}{2} [m]$,

przy czym $\lambda = \frac{300}{f \, [MHz]} \, [m] \, \text{i} \, f$ - częstotliwość transmisji

Dla f = 1 kHz mamy:

$$\lambda = \frac{300}{0.001 MHz} = \frac{300}{10^{-3}} = 300 \ km \Rightarrow L_a = 150 \ km$$
 !!!

Dla urządzenia kieszonkowego założymy $L_a=15~cm~~\Rightarrow~~\lambda=2\cdot L_a=0.3~m$

Stąd, wymagana częstotliwość transmisji wynosi: $f = \frac{300}{\lambda} = \frac{300}{0.3} = 1~GHz$

Potrzebne jest przesunięcie widma sygnału informacyjnego - MODULACJA.

4/37

Politechnika Wrocławska

Modulacja i detekcja

Cel modulacji

- □ Stworzenie technicznych możliwości efektywnej transmisji informacji na odległość
- ☐ Zmniejszenie **względnej** szerokości pasma częstotliwości transmitowanego sygnału
- ☐ Zwiększenie odporności przesyłanej informacji na zakłócenia
- ☐ Umożliwienie efektywniejszego wykorzystania widma elektromagnetycznego (zwielokrotnienie)

Modulacja i detekcja

Definicja modulacji

Modulacją nazywamy proces przekształcania sygnału pierwotnego (niosącego informację) w postać dogodną do transmisji poprzez kanał telekomunikacyjny.

Proces ten polega na uzależnieniu sygnału nośnego (jednego lub wielu) od sygnału pierwotnego (modulującego).

6/37

易

Politechnika Wrocławska

Modulacja i detekcja

Definicja detekcji (demodulacji)

Detekcja (demodulacja) jest procesem odwrotnym do procesu modulacji i polega na odtworzeniu lub wydzieleniu sygnału pierwotnego (modulującego) z sygnału odebranego (zmodulowanego).

Rodzaje detekcji:

- koherentna (synchroniczna)
- niekoherentna (niesynchroniczna)

Modulacje - klasyfikacja

Akronimy:

QAM **Quadrature Amplitude Modulation** MSK Minimum Shift Keying Modulation

Gaussian Minimum Shift Keying Modulation GMSK BPSK Binary Phase Shift Keying Modulation

QPSK Quadriphase (Quadrature) Shift Keying Modulation OQPSK -Offset Quadriphase Shift Keying Modulation DPSK Differential Phase Shift Keying Modulation

CCSK Cyclic Code Shift Keying Modulation

Trellis Coded Modulation TCM

Techniki związane z modulacjami:

COFDM -Coded Orthogonal Frequency Division Multiplexing OFDM Orthogonal Frequency Division Multiplexing **DSSS** Direct Sequence Spread Spectrum Modulation

FHSS Frequency Hopping Spread Spectrum Modulation

10/37

Politechnika Wrocławska

Modulacja analogowa - przykład

Idea modulacji amplitudy (AM)

Sygnał nośny:

$$c(t) = A \cdot \cos(2\pi f_c \cdot t)$$

Sygnał zmodulowany:

$$s(t) = A \cdot [1 + k_a \cdot m(t)] \cdot \cos(2\pi f_c \cdot t)$$

 k_a - czułość modulatora $\left|k_a\cdot m(t)\right|<1$

Modulacja i detekcja optymalna

Demodulacja optymalna

Demodulacja optymalna to proces demodulacji, który:

- maksymalizuje stosunek S/N na wyjściu w modulatora (w przypadku modulacji analogowych)
- gwarantuje minimalizację prawdopodobieństwa wystąpienia błędów (w przypadku modulacji cyfrowych).

Zwielokrotnianie i wielodostęp (FDM)

Zalety i wady techniki FDM

Zalety:

□ transmisja prowadzona cały czas w tym samym paśmie częstotliwości, przez co jest to najprostsza metoda zwielokrotniania (wielodostępu)

Wady:

- □ trudności związane ze stabilnością częstotliwości nośnej
- kosztowne filtry o stromych zboczach do separacji częstotliwościowej kanałów (użytkowników)
- występowanie pasm ochronnych pomiędzy wydzielonymi kanałami (spadek współczynnika wykorzystania pasma)
- wąskopasmowe kanały sprzyjają powstawaniu zaników wielodrogowych

Zwielokrotnianie i wielodostęp (CDM)

Zalety techniki CDM

Zalety:

- poufność i bezpieczeństwo przesyłanych danych
- □ sygnały o rozproszonym widmie są niezwykle trudne do wykrycia
- sygnały są znacznie bardziej odporne na wszelkiego rodzaju zakłócenia i interferencje, zarówno naturalne jak i będące wynikiem działalności człowieka
- wysoka jakość transmisji oraz relatywnie duża pojemność, od kilku do kilkunastu razy większa od pojemności systemów opartych na technice FDMA albo TDMA

Wady:

konieczność nieustannego sterowania poziomem mocy emitowanej
 ze wszystkich nadajników (np. stacji bazowej i terminali)

Zwielokrotnianie i wielodostęp (SDM)

Zasada zwielokrotniania przestrzennego

Obsługa kilkuset tysięcy abonentów w tym samym miejscu.
Czas i częstotliwość mogą być zwielokrotnione, ale w ograniczonym zakresie.

MIASTO

ZBYT MAŁO ZASOBÓW (kanałów) !!!

