Demand Forecasting

Logistics and Supply Chain Analytics

Jiahua Wu

382 Business School j.wu@imperial.ac.uk

Outline

- How do companies forecast?
- Three objective forecasting approaches
 - Univariate time series methods
 - ARIMA model
 - Holt-Winters exponential smoothing
 - Econometric models
- Summary

Outline

- How do companies forecast?
- Three objective forecasting approaches
 - Univariate time series methods
 - ARIMA model
 - Holt-Winters exponential smoothing
 - Econometric models
- Summary

Why do Companies Forecast?

Demand forecasting supports corporate-wide planning activities.

Levels of Forecast	Purposes
Strategic (years)	Business planning Capacity planning
Tactical (quarterly)	Marketing/Sales planning Workforce planning
Operational (days/weeks)	Short-term capacity planning Inventory planning

Forecasting Methods

Subjective

- Judgemental: sales force surveys, jury of executive opinion
- Experimental: customer surveys, focus group sessions, test marketing

Objective

- Time series: use prior history to predict the future
- Causal-effect: figure out cause-effect relationships, and use forecast of cause to predict effect
- Life cycle: use the sales curve of similar products or product lines to predict sales of the focal product
- Often times, firms use a combination of the above approaches

Forecasting Methods

Subjective

- Judgemental: sales force surveys, jury of executive opinion
- Experimental: customer surveys, focus group sessions, test marketing

Objective

- Time series: use prior history to predict the future
- Causal-effect: figure out cause-effect relationships, and use forecast of cause to predict effect
- Life cycle: use the sales curve of similar products or product lines to predict sales of the focal product
- Often times, firms use a combination of the above approaches

Outline

- How do companies forecast?
- Three objective forecasting approaches
 - Univariate time series methods
 - ARIMA model
 - Holt-Winters exponential smoothing
 - Econometric models
- Summary

Terminology

- A time series is a set of data collected at successive (discrete) time points, i.e., X_t
- Time series can be viewed as stochastic processes (SP)
 - SP is a random variable indexed by time
- A time series X_t is (weakly) stationary if
 - **1** $E(X_t) = \mu$, where μ is constant
 - 2 $Cov(X_t, X_{t+k}) = \gamma_k$, where γ_k is independent of t
- The sequence $\gamma_k = Cov(X_t, X_{t+k})$ is the auto-covariance function
 - Values of auto-covariances depend on the units of measurement of X_t

Terminology

 It is thus more convenient to use auto-correlation function (ACF), which is defined as the auto-covariances divided by the variance

$$\rho_k = corr(X_t, X_{t+k}) = \gamma_k / \gamma_0$$

- Sample counterpart
 - Sample auto-covariance function is

$$\hat{\gamma}_k = \frac{1}{n} \sum_{t=1}^{n-k} (X_t - \bar{X})(X_{t+k} - \bar{X})$$

• Sample auto-correlation function is $\hat{\rho}_{\it k}=\hat{\gamma}_{\it k}/\hat{\gamma}_0$

- A white noise process is one with (virtually) no discernible structure. A definition of a white noise process is
 - $E(X_t) = 0$
 - $Var(X_t) = \sigma^2$
 - $\gamma_k = 0$ for any k > 0
- Thus the auto-correlation function is zero apart from a single peak of 1 at k=0
- $\hat{\rho}_k$, $\forall k > 0$ will not be exactly equal to zero, so how do we know whether $\rho_k = 0$?

- We can perform a two-sided test for $H_0: \rho_k = 0, \forall k > 0$
 - Under the null, $\hat{\rho}_k$ is approximately Normal(0,1/n), where n is the sample size
 - Typical choice of significance level: 5%
 - We reject H_0 if $|\hat{
 ho}_k|>c=rac{1.96}{\sqrt{n}}$
- Conclusion: If the sample auto-correlation coefficient $\hat{\rho}_k$ falls outside the region $\left[-\frac{1.96}{\sqrt{n}}, \frac{1.96}{\sqrt{n}}\right]$ for any value of k, then we reject the null hypothesis that the true value of the coefficient at lag k is zero

```
> wn <- arima.sim(list(order = c(0,0,0)), 240)
> t <- 1:240
> ggplot(aes(x = t, y = wn)) + geom_line()
```


> acf(wn, lag.max=20)

Moving Average Models

- In general, ARIMA model has two components: autoregressive (AR) component and moving average (MA) component
- Let $u_t, t=1,2,\ldots$ be a sequence of independently and identically distributed (iid) random variables with $E(u_t)=0$ and $Var(u_t)=\sigma^2$
- The moving average model of order q, or MA(q), is defined to be

$$X_t = \mu + u_t + \theta_1 u_{t-1} + \theta_2 u_{t-2} + \dots + \theta_q u_{t-q}$$

Moving Average Models

- Define B as the backward shift operator, where $BX_t = X_{t-1}$
- Using the backward shift operator, the moving average model can be re-written as

$$X_t = \mu + \theta(B)u_t,$$

where
$$\theta(B) \equiv 1 + \theta_1 B + \theta_2 B^2 + \dots + \theta_q B^q$$

Properties of Moving Average Models

- $E(X_t) = \mu$
- $Var(X_t) = \gamma_0 = (1 + \theta_1^2 + \dots + \theta_q^2)\sigma^2$
- Covariances

$$\gamma_k = \begin{cases} (\theta_k + \theta_{k+1}\theta_1 + \dots + \theta_q\theta_{q-k})\sigma^2, & \text{for } k = 1, 2, \dots, q \\ 0 & \text{for } k > q \end{cases}$$

ACF of Moving Average Models

 \bullet ACF of the moving average model of order q is given by

$$\rho_k = \begin{cases} 1 & \text{if } k = 0, \\ \frac{\sum_{i=0}^{q-k} \theta_i \theta_{i+k}}{1 + \theta_1^2 + \dots + \theta_q^2} & \text{if } 1 \le k \le q, \\ 0 & \text{if } k > q. \end{cases}$$

ullet For an MA(q) model, its ACF vanishes after lag q

• Model: $X_t = -0.5u_{t-1} + u_t$

```
> ma1 <- arima.sim(list(ma = c(-0.5)), n = 1000)
```

> t <- 1:1000

> ggplot(data = ma1, aes(x = t, y = ma1)) + geom_line()

• Model: $X_t = -0.5u_{t-1} + u_t$

> acf(ma1, lag.max=20)

An Example: MA(2)

• Model: $X_t = 0.5u_{t-1} - 0.25u_{t-2} + u_t$

> ma2 <- arima.sim(list(ma = c(0.5, -0.25)), n = 1000)

> t <- 1:1000

> ggplot(data = ma2, aes(x = t, y = ma2)) + geom_line()

An Example: MA(2)

• Model: $X_t = 0.5u_{t-1} - 0.25u_{t-2} + u_t$

> acf(ma2, lag.max=20)

Autoregressive Models

• The autoregressive model of order p, or AR(p), is of the form

$$X_t = \mu + u_t + \phi_1 X_{t-1} + \phi_2 X_{t-2} + \dots + \phi_p X_{t-p}$$

 Using the backward shift operator, the autoregressive model can be re-written as

$$\phi(B)X_t = \mu + u_t,$$

where
$$\phi(B) \equiv 1 - \phi_1 B - \phi_2 B^2 - \dots - \phi_p B^p$$

The Stationary Condition for an AR Model

• The condition for stationarity of a general AR(p) model is that the roots of

$$1 - \phi_1 z - \phi_2 z^2 - \dots - \phi_p z^p = 0$$

all lie outside the unit circle

- Example: Is $X_t = X_{t-1} + u_t$ stationary?
 - The root is 1, so non-stationary
 - It is a unit root process

Autoregressive Models

 ACF of the autoregressive model of order p is given by Yule-Walker equations

$$\rho_k = \phi_1 \rho_{k-1} + \phi_2 \rho_{k-2} + \dots + \phi_p \rho_{k-p}$$

- For AR(1), i.e., $X_t = \phi X_{t-1} + u_t$, its ACF is given by $\rho_k = \phi^k$
- If the AR model is stationary, the auto-correlation function decays exponentially to zero
- ACF alone tells us little about the order of dependence for AR
- We need partial auto-correlation function (PACF), which behaves like ACF for MA models

Partial Auto-Correlation Function (PACF)

- Measure the correlation between an observation k periods ago and current observation, after controlling for observations at intermediate lags (i.e., all lags < k)
 - That is, PACF with lag k measures the correlation between X_t and X_{t-k} after removing the effects of X_{t-k+1} , X_{t-k+2} , ... X_{t-1}
- For an AR(p) model, its PACF vanishes after lag p
- ullet For an MA(q) model, its PACF decays exponentially

• Model: $X_t = -0.5u_{t-1} + u_t$

> pacf(ma1, lag.max = 20)

An Example: MA(2)

• Model: $X_t = 0.5u_{t-1} - 0.25u_{t-2} + u_t$

> pacf(ma2, lag.max=20)

• Model: $X_t = -0.5X_{t-1} + u_t$

> ar1 <- arima.sim(list(ar = c(-0.5)), n = 1000)

> acf(ar1, lag.max = 20)

• Model: $X_t = -0.5X_{t-1} + u_t$

> pacf(ar1, lag.max=20)

• Model: $X_t = 0.9X_{t-1} + u_t$

> ar1 <- arima.sim(list(ar = c(0.9)), n = 1000)

> acf(ar1, lag.max = 20)

• Model: $X_t = 0.9X_{t-1} + u_t$

> pacf(ar1, lag.max=20)

Summary of ACF and PACF for AR and MA Processes

- An autoregressive (AR) process has
 - an exponentially decaying ACF
 - number of spikes of PACF = AR order
- A moving average (MA) process has
 - number of spikes of ACF = MA order
 - an exponentially decaying PACF

Autoregressive Moving Average Models (ARMA)

• The autoregressive moving average model of orders p and q, or ARMA(p,q), is of the form

$$X_t = \phi_1 X_{t-1} + \dots + \phi_p X_{t-p} + \mu + u_t + \theta_1 u_{t-1} + \dots + \theta_q u_{t-q},$$
 or

$$\phi(B)X_t = \mu + \theta(B)u_t$$

- The process reduces to AR(p) if q = 0, or to MA(q) if p = 0
- ACF/PACF for an ARMA process will display combinations of behavior derived from the AR and MA parts

An Example: ARMA(1,1)

- Model: $X_t = 0.5X_{t-1} + 0.5u_{t-1} + u_t$
- > arma11 <- arima.sim(list(ar = c(0.5), ma = c(0.5)), n = 1000)
- > acf(arma11, lag.max = 20)

An Example: ARMA(1,1)

- Model: $X_t = 0.5X_{t-1} + 0.5u_{t-1} + u_t$
- > pacf(arma11, lag.max = 20)

Series arma11

Time Series Data in Practice

- Most time series are NOT stationary
- Trends in time series
 - Many time series have a common tendency of growing or shrinking over time
- Seasonality in time series
 - Seasonal patterns may be caused by predictable annual events
 - Thanksgiving sales in the US, and Boxing day sales in Canada, UK and Australia
 - Ski sales in winter

Classical Decomposition of Time Series

- One standard method of describing a time series is that of classical decomposition
 - The series is decomposed into three elements
 - Trend (T_t) : long term movements in the mean
 - Seasonal effects (St): cyclical fluctuations related to calendar or business cycle
 - Microscopic part (M_t): other random or unsystematic fluctuations
 - ullet ARMA model is used to model microscopic part M_t
 - Trend and seasonal components are eliminated by differencing

Elimination of Trends and Seasonal Components by Differencing

- Differencing
 - First order differencing: $\nabla X_t = X_t X_{t-1} = (1 B)X_t$
 - $\nabla^j(X_t) = \nabla(\nabla^{j-1}(X_t))$
 - \bullet Polynomials of ∇ are manipulated in precisely the same way as polynomial functions of real variables
 - Second order differencing

$$\nabla^2 X_t = (1 - B)^2 X_t = (1 - 2B + B^2) X_t = X_t - 2X_{t-1} + X_{t-2}$$

- Rationale behind differencing
 - If $X_t = T_t + M_t$ with $T_t = a + bt$, then T_t is eliminated in the new series $Y_t = X_t X_{t-1}$
 - If $X_t = S_t + M_t$ with seasonality of period p, we can eliminate the seasonal component with $Y_t = X_t X_{t-p}$

ARIMA Models

- If the original time series is not stationary, we can look at the first/second order differences
- X_t is said to be ARIMA(p, d, q) process if $\nabla^d X_t$ is an ARMA(p, q) process.
 - Typically, d is a small integer (≤ 2)

Is This Time Series Stationary?

Dickey-Fuller Test

• Using AR(1) model as an example. The test is for the null hypothesis that $\phi=1$ in

$$X_t = \phi X_{t-1} + u_t$$

against the one-sided alternative $\phi < 1$

So we have

 H_0 : series contains a unit root

VS

 H_1 : series is stationary

Dickey-Fuller Test

- Detailed steps
 - **1** Take the first order difference and get ∇X_t
 - **2** Run the regression $\nabla X_t = \psi X_{t-1} + u_t$
 - A test of $\phi=1$ is equivalent to a test of $\psi=0$ (since $\phi-1=\psi$)
 - Test statistics is defined as

$$\mathsf{test}\;\mathsf{statistic} = \frac{\hat{\psi}}{\mathit{se}(\hat{\psi})}$$

4 Reject null hypothesis of a unit root if the test statistic is less than critical values

Augmented Dickey Fuller (ADF) Test

- The test above is only valid if u_t is white noise
- u_t will be auto-correlated if there was auto-correlation in the dependent variable of the regression (∇X_t)
- The solution is to "augment" the test using p lags of the dependent variable. The alternative model is now given by

$$\nabla X_t = \psi X_{t-1} + \sum_{i=1}^{p} \alpha_i \nabla X_{t-i} + u_t$$

 The optimal number of lags can be chosen based on information criteria

Phillips-Perron Test

- Phillips and Perron have developed a more comprehensive theory of unit root stationary
- The tests are similar to ADF tests, but they incorporate a nonparametric correction to the DF procedure to allow for auto-correlated residuals
- The test usually gives the same conclusions as the ADF test, but calculation of the test statistics is more complicated

Criticism of ADF and PP tests

- The tests are poor at deciding when a root is close to the non-stationary boundary
- If the true data generating process is

$$X_t = 0.95 X_{t-1} + u_t$$

then the null hypothesis of a unit root should be rejected

- However, ADF and PP tests usually fail to reject null
- One way to get around this is to use a stationarity test

Stationarity Tests

In any stationarity test, we have

 $H_0: X_t$ is stationary

VS

 $H_1: X_t$ is not stationary

So that by default under the null the data is stationary

- One such stationarity test is the KPSS test
- We can compare the result of KPSS test with ADF/PP procedure to see if we obtain the same conclusion

Stationarity tests in R

- ADF test: adf.test()
- PP test: pp.test()
- KPSS test: kpss.test()
- A useful function ndiffs(): determines the number of first differences required

Fitting ARIMA Models: The Box-Jenkins Procedure

- The Box-Jenkins procedure is concerned with fitting an ARIMA model to data
- It has three parts: identification, estimation and verification
- Identification
 - The data may require pre-processing to make it stationary
 - To achieve stationarity we may do any of the following
 - Rescale it (for instance, by a log or exponential transform)
 - Remove deterministic components
 - Difference it
 - We recognise stationarity by the observation that the autocorrelations decay to zero exponentially fast

Fitting ARIMA Models: The Box-Jenkins Procedure

Identification

- ullet Once the series is stationary, we can try to fit an ARMA(p,q) model
- Selection of p and q based on ACF and PACF

	AR(p)	MA(q)	ARMA(p,q)
ACF PACF	tails off cuts off after lag p	cuts off after lag q	tails off tails off

- \bullet A rule of thumb is that sample ACF and PACF values are negligible when they lie between $\pm 1.96/\sqrt{n}$
- More rigorous measures involving information criteria

Estimation

Using the maximum likelihood estimators

Fitting ARIMA Models: The Box-Jenkins Procedure

- Verification: check whether the model fits the data using residuals analysis
 - Calculate the residuals from the model and plot them. The graph should give no indication of a non-zero mean or non-constant variance
 - Plot the sample ACF of the residuals. No more than two or three out of 40 shall fall outside the bounds $\pm 1.96/\sqrt{n}$
 - The same applies to sample PACF of the residuals
 - Tests for randomness of the residuals: Ljung-Box, McLeod-Li, turning points, difference-sign, rank test, Jarque-Bera, and etc.

Forecasting with ARIMA Models: MA Model

- An MA(q) only has memory of q
- \bullet Eg. say we have estimated an MA(3) model

$$X_{t} = \mu + \theta_{1}u_{t-1} + \theta_{2}u_{t-2} + \theta_{3}u_{t-3} + u_{t}$$

$$X_{t+1} = \mu + \theta_{1}u_{t} + \theta_{2}u_{t-1} + \theta_{3}u_{t-2} + u_{t+1}$$

$$X_{t+2} = \mu + \theta_{1}u_{t+1} + \theta_{2}u_{t} + \theta_{3}u_{t-1} + u_{t+2}$$

$$X_{t+3} = \mu + \theta_{1}u_{t+2} + \theta_{2}u_{t+1} + \theta_{3}u_{t} + u_{t+3}$$

• We are at time t and we want to forecast $1, 2, \ldots, s$ steps ahead

Forecasting with ARIMA Models: MA Model

• We know X_t, X_{t-1}, \ldots and u_t, u_{t-1}, \ldots

$$f_{t,1} = E(X_{t+1}|\Omega_t)$$

$$= E(\mu + \theta_1 u_t + \theta_2 u_{t-1} + \theta_3 u_{t-2} + u_{t+1}|\Omega_t)$$

$$= \mu + \theta_1 u_t + \theta_2 u_{t-1} + \theta_3 u_{t-2}$$

$$f_{t,2} = E(X_{t+2}|\Omega_t)$$

$$= E(\mu + \theta_1 u_{t+1} + \theta_2 u_t + \theta_3 u_{t-1} + u_{t+2}|\Omega_t)$$

$$= \mu + \theta_2 u_t + \theta_3 u_{t-1}$$

$$\begin{array}{lcl} f_{t,3} & = & E(X_{t+3}|\Omega_t) \\ & = & E(\mu + \theta_1 u_{t+2} + \theta_2 u_{t+1} + \theta_3 u_t + u_{t+3}|\Omega_t) \\ & = & \mu + \theta_3 u_t \end{array}$$

Forecasting with ARIMA Models: MA Model

$$f_{t,4} = E(X_{t+4}|\Omega_t) = \mu$$

$$f_{t,s} = E(X_{t+s}|\Omega_t) = \mu, \forall s \ge 4$$

Forecasting with ARIMA Models: AR Model

• Say we have estimated an AR(2)

$$\begin{array}{rcl} X_t & = & \mu + \phi_1 X_{t-1} + \phi_2 X_{t-2} + u_t \\ X_{t+1} & = & \mu + \phi_1 X_t + \phi_2 X_{t-1} + u_{t+1} \\ X_{t+2} & = & \mu + \phi_1 X_{t+1} + \phi_2 X_t + u_{t+2} \\ X_{t+3} & = & \mu + \phi_1 X_{t+2} + \phi_2 X_{t+1} + u_{t+3} \end{array}$$

• We are at time t and we want to forecast 1, 2, ..., s steps ahead

$$f_{t,1} = E(X_{t+1}|\Omega_t)$$

= $E(\mu + \phi_1 X_t + \phi_2 X_{t-1} + u_{t+1}|\Omega_t)$
= $\mu + \phi_1 X_t + \phi_2 X_{t-1}$

Forecasting with ARIMA Models: AR Model

$$f_{t,2} = E(X_{t+2}|\Omega_t)$$

$$= E(\mu + \phi_1 X_{t+1} + \phi_2 X_t + u_{t+2}|\Omega_t)$$

$$= \mu + \phi_1 f_{t,1} + \phi_2 X_t$$

$$f_{t,3} = E(X_{t+3}|\Omega_t)$$

$$= E(\mu + \phi_1 X_{t+2} + \phi_2 X_{t+1} + u_{t+3}|\Omega_t)$$

$$= \mu + \phi_1 f_{t,2} + \phi_2 f_{t,1}$$

We can see immediately that

$$f_{t,s} = \mu + \phi_1 f_{t,s-1} + \phi_2 f_{t,s-2}, \forall s \ge 3$$

• Can easily generate ARIMA(p, q) forecasts in the same way

Measures of Forecast Error

• Forecast error for Period t + s is given by

$$E_{t+s} = f_{t,s} - X_{t+s}$$

- Common measures of forecast error
 - Mean squared error: $MSE_n = \frac{1}{n} \sum_{s=1}^{n} E_{t+s}^2$
 - penalizes large errors much more significantly than small errors
 - use MSE if the cost of a large error is much larger than the gains from very accurate forecasts
 - Mean absolute deviation: $MAD_n = \frac{1}{n} \sum_{s=1}^{n} |E_{t+s}|$
 - an appropriate choice if the cost of a forecast error is proportional to the size of the error
 - Mean absolute percentage error: $MAPE_n = \frac{\sum_{s=1}^n \left| \frac{E_{t+s}}{X_{t+s}} \right|}{n} \cdot 100$
 - a good measure when the underlying forecast has significant seasonality and demand varies considerably from one period to the next

Seasonal ARIMA Models

A seasonal ARIMA model is written as

$$ARIMA(p, d, q) \times (P, D, Q)_s$$

where

- (p, d, q): represents the non-seasonal part of the model
- $(P, D, Q)_s$: represents the seasonal part of the model; s is the periodicity
- The seasonal part of an AR or MA model will be seen in the seasonal lags of the PACF and ACF
 - When $(P, D, Q)_s = (0, 0, 1)_7$
 - A single significant spike at lag 7 in the ACF
 - The PACF shows exponential decay in the seasonal lags

An Example: ARIMA $(0,0,0) \times (0,0,1)_7$

• Model: $X_t = 0.5u_{t-7} + u_t$

An Example: ARIMA $(0,0,0) \times (0,0,1)_7$

• Model: $X_t = 0.5X_{t-7} + u_t$

ARIMA in R

- Model selection with auto.arima
 - auto.arima(x, d=NA, D=NA, max.p=5, max.q=5, max.P=2,
 max.Q=2, max.order=5, max.d=2, max.D=1, ic=c("aicc",
 "aic", "bic"), stepwise=TRUE, trace=FALSE,
 test=c("kpss","adf","pp"),...)
- Algorithm
 - 1 Determine *d* using KPSS tests
 - 2 Choose p and q by minimizing AICc
 - Initial model candidates: ARIMA(2, d, 2), ARIMA(0, d, 0), ARIMA(1, d, 0) and ARIMA(0, d, 1)
 - Variations are considered: add or minus p and/or q by 1
 - 3 Repeat step 2 until no lower AICc can be found

ARIMA in R

- Model estimation with arima and Arima
 - arima/Arima(x, order = c(OL, OL, OL), seasonal = list(order = c(OL, OL, OL), period = NA),...)
 - Key difference: Arima allows for a nonzero constant being included in the model for the first differenced data, i.e.,

$$\phi(B)X_t = \mu + \theta(B)u_t$$

An Example

 A dataset contains monthly sales for shampoo at a retailer store for January 2001-December 2003 (shampoo.csv)

Outline

- How do companies forecast?
- Three objective forecasting approaches
 - Univariate time series methods
 - ARIMA model
 - Holt-Winters exponential smoothing
 - Econometric models
- Summary

Classical Decomposition of Time Series

- Recall that under the classical decomposition, the time series can be decomposed into three elements
 - Trend (T_t) : long term movements in the mean
 - Seasonal effects (S_t) : cyclical fluctuations related to calendar or business cycle
 - Microscopic part (M_t) : other random or unsystematic fluctuations
- An alternative approach is to model each of these three elements separately, and then combine them
 - either additively: $X_t = T_t + S_t + M_t$
 - or multiplicatively: $X_t = T_t S_t + M_t$

Holt-Winters Exponential Smoothing

Notations

- X_t = actual demand observed in Period t
- Two parts to characterize the trend in data: intercept (level) and slope (trend)
 - $\hat{L}_t = \text{estimate of level for Period } t$
 - \hat{T}_t = estimate of trend for Period t
- \hat{S}_t = estimate of seasonal factor for Period t

Simple Exponential Smoothing

 When there is no trend or seasonality, Holt-Winters model reduces to simple exponential smoothing

Systematic component of demand = level

ullet The initial estimate of level \hat{L}_0 is taken to be the average of all historical data

$$\hat{L}_0 = \frac{1}{n} \sum_{i=1}^n X_i$$

• After observing the demand X_{t+1} for Period t+1, we revise the estimate of the level as

$$\hat{L}_{t+1} = \alpha X_{t+1} + (1 - \alpha)\hat{L}_t,$$

where α is a smoothing constant for the level, $0<\alpha<1$

The current forecast for all future periods is

$$f_{t,h} = \hat{L}_t$$
, for any $h > 0$

Simple Exponential Smoothing

• We can also express the level in a given period as

$$\hat{L}_{t+1} = \alpha X_{t+1} + (1 - \alpha)\hat{L}_{t}
= \sum_{n=0}^{t} \alpha (1 - \alpha)^{n} X_{t+1-n} + (1 - \alpha)^{t} \hat{L}_{0}$$

- The current estimate of the level is a weighted average of all of the past observations of demand
- It assigns a set of exponentially declining weights to past data (i.e., recent observations weighted higher than older observations)
 - ullet A higher value of lpha corresponds to a forecast that is more responsive to recent observations
 - ullet A lower value of lpha represents a more stable forecast that is less responsive to recent observations

Trend-Corrected Exponential Smoothing (Holt's Model)

• The trend-corrected exponential smoothing is appropriate when demand has a trend but no seasonality

Systematic component of demand = level + trend

- The initial estimate of level and trend is obtained by running a linear regression between demand X_t and time period t, i.e., $X_t = at + b$
 - b: measures the estimate of demand at Period t=0, and is our estimate of \hat{L}_0
 - a: measures the rate of change in demand per period, and is our estimate of $\hat{\mathcal{T}}_0$

Trend-Corrected Exponential Smoothing (Holt's Model)

• In Period t, given estimates of \hat{L}_t and \hat{T}_t , the forecast for future periods is expressed as

$$f_{t,h} = \hat{L}_t + h\hat{T}_t$$
, for any $h > 0$

• After observing the demand X_{t+1} for Period t+1, we revise the estimate of the level and trend as follows

$$\hat{L}_{t+1} = \alpha X_{t+1} + (1 - \alpha)(\hat{L}_t + \hat{T}_t)
\hat{T}_{t+1} = \beta(\hat{L}_{t+1} - \hat{L}_t) + (1 - \beta)\hat{T}_t$$

where α is a smoothing constant for the level, $0<\alpha<1$, and β is a smoothing constant for the trend, $0<\beta<1$

Trend- And Seasonality-Corrected Exponential Smoothing (Winter's Model)

- We discuss one case to illustrate the concepts of Winter's Model
 - The systematic component has the multiplicative form can easily be modified for the other case
 - Demand is seasonal with periodicity p
- This method is appropriate when the systematic component of demand has a level, a trend and a seasonal factor, i.e.,

 $Systematic\ component\ of\ demand = (level+trend) \cdot seasonal\ factor$

Trend- And Seasonality-Corrected Exponential Smoothing (Winter's Model)

- Initial estimates are obtained as follows
 - **1** The deseasonalized demand \bar{X}_t for Period t is given by

$$\bar{X}_t = \begin{cases} \left[X_{t-(p/2)} + X_{t+(p/2)} + \sum_{i=t+1-(p/2)}^{t-1+(p/2)} 2X_i \right] / 2p & \text{if } p \text{ is even} \\ \sum_{i=t-[(p-1)/2]}^{t+[(p-1)/2]} X_i / p & \text{if } p \text{ is odd} \end{cases}$$

- **2** Regress \bar{X}_t on t, and obtain \hat{L}_0 and \hat{T}_0 as in the Holt's model
- **3** Seasonal factor for Period t is given by $\bar{S}_t = X_t/\bar{X}_t$
- **4** Given r seasonal cycles in the data, for all periods of the form pt+i, $1 \le i \le p$, the seasonal factor is obtained as $\hat{S}_i = \frac{\sum_{j=0}^{r-1} \bar{S}_{jp+i}}{|S_{jp+i}|}$

Trend- And Seasonality-Corrected Exponential Smoothing (Winter's Model)

• In Period t, given estimates of level \hat{L}_t , trend \hat{T}_t and seasonal factors, $\hat{S}_t, \ldots, \hat{S}_{t+p-1}$, the forecast for future periods is given by

$$f_{t,h} = (\hat{L}_t + h\hat{T}_t)\hat{S}_{t+h}, \text{ for any } h > 0$$

• After observing the demand X_{t+1} for Period t+1, we revise the estimate of the level, trend, and seasonal factors as follows

$$\hat{L}_{t+1} = \alpha(X_{t+1}/\hat{S}_{t+1}) + (1-\alpha)(\hat{L}_t + \hat{T}_t)
\hat{T}_{t+1} = \beta(\hat{L}_{t+1} - \hat{L}_t) + (1-\beta)\hat{T}_t
\hat{S}_{t+p+1} = \gamma(X_{t+1}/\hat{L}_{t+1}) + (1-\gamma)\hat{S}_{t+1}$$

where α is a smoothing constant for the level, $0<\alpha<1$; β is a smoothing constant for the trend, $0<\beta<1$; and γ is a smoothing constant for the seasonal factor, $0<\gamma<1$.

A Framework for Holt-Winters Exponential Smoothing

- Initialize: Compute initial estimate of the level (\hat{L}_0) , trend (\hat{T}_0) , and seasonal factors $(\hat{S}_1, \dots, \hat{S}_p)$ from the given data
- For each Period t
 - Forecast: Given the estimates in Period t, forecast demand for future periods using $f_{t,h} = (\hat{L}_t + h \cdot \hat{T}_t)\hat{S}_{t+h}$
 - The first forecast is for Period 1 and is made with the estimates of level, trend, and seasonal factor at Period 0
 - Estimate error: Record the actual demand X_{t+1} for Period t+1 and compute the error E_{t+1} in the forecast for Period t+1 as

$$E_{t+1} = f_{t,1} - X_{t+1}$$

- ullet Update estimates of level, trend and seasonality with X_{t+1}
- Optimize: Find the smoothing constants such that the selected measure of forecast errors is minimized

Holt-Winters in R

```
HoltWinters(x, alpha = NULL, beta = NULL, gamma = NULL, seasonal
= c("additive", "multiplicative"), start.periods = 2, l.start =
NULL, b.start = NULL, s.start = NULL, optim.start = c(alpha =
0.3, beta = 0.1, gamma = 0.1), optim.control = list())
```

- x: An object of class ts
- alpha, beta, gamma, seasonal: Holt-Winters model specification
- start.periods: start periods used in the autodetection of start values
- 1.start, b.start, s.start: start values for level, trend and seasonal factors
- optim.start: the starting values for the optimizer

Holt-Winters in R

- Another function for Holt-Winters algorithm: ets(y, model="ZZZ",...)
 - model="ZZZ": the first letter denotes error type, the second letter denotes the trend type, and the third letter denotes the season type
 - Parameters
 - "N" = none
 - "A" = additive
 - "M" = multiplicative
 - "Z" = automatically selected
 - Eg., "AAA" indicates additive Holt-Winters' model with trend and seasonality

Holt-Winters in R

- Difference between HoltWinters() and ets()
 - HoltWinters()
 - uses heuristic values for the initial states
 - estimates the smoothing parameters by minimizing MSE
 - ets()
 - estimates both the initial states and smoothing parameters by maximizing the likelihood function
 - provides a larger model class
- The author claims that ets() is more reliable; however, not widely tested

An Example

 A dataset contains monthly sales for shampoo at a retailer store for January 2001-December 2003 (shampoo.csv)

Outline

- How do companies forecast?
- Three objective forecasting approaches
 - Univariate time series methods
 - ARIMA model
 - Holt-Winters exponential smoothing
 - Econometric models
- Summary

Examples of Time Series Regression

- Static models
 - A static model describes the relationship among contemporaneous variables
 - Eg. A simple sales model: $sales_t = \beta_0 + \beta_1 price_t + u_t$ may be used to study the relationship between sales and price
- Finite distributed lag (FDL) models
 - A FDL model allows the lags of one or more variables to affect the dependent variable

$$y_t = \alpha_0 + \delta_0 z_t + \delta_1 z_{t-1} + \ldots + \delta_q z_{t-q} + u_t,$$

which is called an FDL of order q.

Finite Distributed Lag Models

• FDL(q) model

$$y_t = \alpha_0 + \delta_0 z_t + \delta_1 z_{t-1} + \ldots + \delta_q z_{t-q} + u_t.$$

- The partial effect of z_{t-j} on y_t is δ_j (holding everything else fixed)
- ullet δ_0 is called the impact propensity/multiplier
- When there is a permanent one-unit shift in z at t, i.e.,

$$\Delta z_s = 0 \text{ for } s < t \text{ and } \Delta z_s = 1 \text{ for } s \ge t,$$

the eventual effect on y is $(\delta_0 + \delta_1 + \ldots + \delta_q)$, known as the long-run propensity/multiplier

Using Time Trend in Regression Analysis

- In econometrics models, time trend is generally explicitly included
 - Linear trend

$$y_t = \alpha_0 + \alpha_1 t + u_t.$$

Holding other factors fixed,

$$\Delta y_t = y_t - y_{t-1} = \alpha_1.$$

Exponential trend

$$\log(y_t) = \beta_0 + \beta_1 t + u_t.$$

Holding other factors fixed,

$$\Delta y_t/y_t \approx \Delta \log(y_t) = \beta_1.$$

Using Time Trend in Regression Analysis

Consider the model

$$y_t = \beta_0 + \beta_1 x_{t1} + \beta_2 x_{t2} + \beta_3 t + u_t,$$

where the time trend captures unobserved factors that grow (or shrink) over time

- β_1 is the effect of x_{t1} on y_t , holding other factors (including trend) fixed
- In a time series regression with trending variables, R^2 is often very high, which is the consequence of trending, not necessarily the explanatory power of (x_{t1}, x_{t2})

Using Seasonal Dummies in Regression Analysis

• A model of monthly series with both trend and seasonality

$$y_t = \beta_0 + \beta_1 x_{t1} + \beta_2 x_{t2} + \beta_3 t + \beta_4 t^2 + \delta_1 feb_t + \delta_2 mar_t + \dots + \delta_{11} dec_t + u_t,$$

where β_1 is the effect of x_{t1} on y_t , holding other factors (including trend and seasonality) fixed

Forecasting with Econometric Models

- One-step-ahead forecast
 - Models with only lagged independent variables

$$y_t = \beta_0 + \beta_1 y_{t-1} + \beta_2 x_{t-1} + u_t$$

- Exactly the same as prediction in univariate time series models
- $f_{t,1} = E(y_{t+1}|\Omega_t) = \beta_0 + \beta_1 y_t + \beta_2 x_t$
- Models with contemporaneous variables

$$y_t = \beta_0 + \beta_1 x_t + u_t$$

- Need to know x_t in the future time period
- Multiple-step-ahead forecast
 - Need to forecast both dependent and independent variables
 - Vector autoregressive (VAR) model

When to use Econometric Models?

- Appropriate when demand is highly correlated with some environmental factors
 - Model is built to relate the independent exogenous factors to the demand
- Examples
 - ullet Diapers/Nappies \sim birth rates lagged by 1 year
 - \bullet Promotional items \sim marketing promotions & ads
 - ullet Umbrellas/Fuel \sim weather, temperature, etc.

Outline

- How do companies forecast?
- Three objective forecasting approaches
 - Univariate time series methods
 - ARIMA model
 - Holt-Winters exponential smoothing
 - Econometric models
- Summary

Forecasting Methods

Products need to be segmented to help identify the types of forecasting methods needed

Product Segment	Common Methods
New products	Life cycle (diffusion models)
Mature products	Time series
Promoted and event-based products	Cause-effect
Slow-moving or sporadic	Poisson Croston's: crost() in R

Miscellaneous Forecasting Issues

- Characteristics of forecasts
 - Long-term forecasts are less accurate than short-term forecasts
 - Aggregate forecasts are more accurate than disaggregate forecasts
 - Top down vs. bottom up forecasting?
- Data issues
 - Sales data is not demand data
 - Historical data might not exist
 - Demand visibility can be skewed by level of echelon
 - Collaborative planning, forecasting, and replenishment (CPFR)