

Quiz #2

Monday, September 26 2016

NAME:			

Please write clearly and properly.

Problem	Grade
1	
2	
Total	

21:640:403 Complex variables

Fall 2016

Problem 1 (\sim 6 points.). Are the following sequences of complex numbers $(z_n)_{n \in \mathbb{N}}$ converging, yes or no? If yes, give the limit. *No explanations are required.*

(1)
$$z_n = \frac{1+3i}{1+n}$$

$$(2) \ z_n = e^{ni\pi/2}$$

$$(3) z_n = e^{-n+i\pi}$$

$$(4) \quad z_n = 2i - \frac{e^{ni\pi/2}}{n}$$

(5)
$$z_n = (1-i)^n$$

$$(6) \ z_n = \left(\frac{1-i}{2}\right)^n$$

21:640:403 Complex variables

Fall 2016

Problem 2 (\sim 8 points.). For each one of the sets $A_k \subseteq \mathbb{C}$ ($1 \le k \le 4$) defined below, answer the following questions:

- Is A_k open?
- Is A_k closed?
- Is A_k compact?
- Is A_k connected?

No explanations are required.

(1)
$$A_1 = \left\{ z \in \mathbb{C}^* : \frac{\pi}{8} < \operatorname{Arg}(z) \leqslant \frac{\pi}{4} \right\}.$$

(2)
$$A_2 = \{z \in \mathbb{C} \colon 1 \leq Re(z) \leq 2\}$$

(3)
$$A_3 = \overline{D(0,2)} \cup \overline{D(2i,1)}$$

(4)
$$A_4 = D(0,5) - D(1,1)$$
.