Exercice 7

Démonstration Soit S un ensemble $\mathcal{R} \subseteq \mathcal{L} \subseteq S^2$ et \mathcal{L} une relation asymétrique. Nous voulons demontrer que \mathcal{R} est asymétrique. Nous devons montrer que $(\forall a,b \in S \mid \langle a,b \rangle \in \mathcal{R} \implies \langle b,a \rangle \notin \mathcal{R})$. À cette fin, soient $a,b \in S$ et supposons

$$\langle a, b \rangle \in \mathcal{R}$$

alors, comme $\mathcal{R} \subseteq \mathcal{L}$ par définition ça veut dire $(\forall a, b \mid \langle a, b \rangle \in \mathcal{R} \implies \langle a, b \rangle \in \mathcal{L})$, nous donnant

$$\langle a, b \rangle \in \mathcal{L}$$

Car \mathcal{L} est asymétrique, cela signifie $(\forall a, b \in S \mid \langle a, b \rangle \in \mathcal{L} \implies \langle b, a \rangle \notin \mathcal{L})$. Donc,

$$\langle b, a \rangle \notin \mathcal{L}$$

Par la contrapositive de l'implication pour la définition du sous-ensemble nous avons que $(\forall a,b \mid \langle a,b\rangle \notin \mathcal{L} \implies \langle a,b\rangle \notin \mathcal{R})$ et ainsi

$$\langle b, a \rangle \notin \mathcal{R}$$
.

Puisque a et b ont été choisis arbitrairement, nous avons montré que $(\forall a,b \in S \mid \langle a,b \rangle \in \mathcal{R} \implies \langle b,a \rangle \notin \mathcal{R})$ et donc \mathcal{R} est asymétrique.