0.1 CaseCraft: The Analytics Sprint – Project 15

0.1.1 Product Launch Feedback Analyzer

Subheading: Multi-platform sentiment and engagement analysis using VADER and radar plots for comparative feedback scoring.

0.1.2 Project Goals

- Simulate feedback from Twitter, Instagram, YouTube, and Reviews
- Apply VADER sentiment scoring for short-form text
- Compare platforms using radar plots and streamgraphs
- Classify feedback sentiment and engagement level
- Predict launch success using early feedback signals
- Summarize insights for product iteration and strategy

[4]: %pip install vaderSentiment

```
Collecting vaderSentiment
```

```
Downloading vaderSentiment-3.3.2-py2.py3-none-any.whl.metadata (572 bytes)
Requirement already satisfied: requests in /usr/local/lib/python3.12/dist-
packages (from vaderSentiment) (2.32.4)
Requirement already satisfied: charset_normalizer<4,>=2 in
/usr/local/lib/python3.12/dist-packages (from requests->vaderSentiment) (3.4.3)
Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.12/dist-
packages (from requests->vaderSentiment) (3.10)
Requirement already satisfied: urllib3<3,>=1.21.1 in
/usr/local/lib/python3.12/dist-packages (from requests->vaderSentiment) (2.5.0)
Requirement already satisfied: certifi>=2017.4.17 in
/usr/local/lib/python3.12/dist-packages (from requests->vaderSentiment)
(2025.8.3)
Downloading vaderSentiment-3.3.2-py2.py3-none-any.whl (125 kB)
```

3.0 MB/s eta 0:00:00

Installing collected packages: vaderSentiment Successfully installed vaderSentiment-3.3.2

```
[5]: import pandas as pd
     import numpy as np
     import matplotlib.pyplot as plt
     import seaborn as sns
     from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer
     from sklearn.preprocessing import MinMaxScaler
     np.random.seed(42)
     platforms = ['Twitter', 'Instagram', 'YouTube', 'Reviews']
     n feedback = 1000
     platform = np.random.choice(platforms, n_feedback)
     dates = pd.date_range(start='2023-06-01', periods=n_feedback, freq='H')
     phrases = [
         "Absolutely love this!", "Terrible experience", "It's okay", "Exceeded ∪
      ⇔expectations",
         "Would not recommend", "Pretty decent", "Mind-blowing", "Not worth the
     ⇔price"
     ]
     feedback = np.random.choice(phrases, n_feedback)
     df = pd.DataFrame({
         'platform': platform,
         'timestamp': dates,
         'feedback': feedback
     })
     analyzer = SentimentIntensityAnalyzer()
     df['compound'] = df['feedback'].apply(lambda x: analyzer.
      →polarity_scores(x)['compound'])
     df['sentiment'] = pd.cut(df['compound'], bins=[-1, -0.05, 0.05, 1],
      ⇔labels=['Negative', 'Neutral', 'Positive'])
     df['engagement'] = np.random.randint(1, 1000, size=n_feedback)
```

```
/tmp/ipython-input-2165398775.py:13: FutureWarning: 'H' is deprecated and will
be removed in a future version, please use 'h' instead.
  dates = pd.date_range(start='2023-06-01', periods=n_feedback, freq='H')
```

0.1.3 Radar Plot: Average Sentiment Score by Platform

```
[6]: platform_scores = df.groupby('platform')['compound'].mean()
    categories = list(platform_scores.index)
    values = platform_scores.values

# Radar setup
    angles = np.linspace(0, 2 * np.pi, len(categories), endpoint=False).tolist()
    values = np.concatenate((values, [values[0]]))
    angles += angles[:1]

fig, ax = plt.subplots(figsize=(6, 6), subplot_kw=dict(polar=True))
    ax.plot(angles, values, 'o-', linewidth=2)
    ax.fill(angles, values, alpha=0.25)
    ax.set_thetagrids(np.degrees(angles[:-1]), categories)
    ax.set_title("Radar Plot: Sentiment Score by Platform")
    plt.tight_layout()
    plt.show()
```


0.1.4 Streamgraph: Engagement Volume Over Time

Streamgraph: Engagement Over Time by Platform

0.1.5 Violin Plot: Sentiment Score Distribution

```
[8]: plt.figure(figsize=(8, 5))
    sns.violinplot(data=df, x='platform', y='compound', palette='Set3')
    plt.title("Violin Plot: Sentiment Score Distribution by Platform")
    plt.tight_layout()
```

plt.show()

/tmp/ipython-input-2548557875.py:2: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `legend=False` for the same effect.

sns.violinplot(data=df, x='platform', y='compound', palette='Set3')

0.1.6 Engagement Level Prediction

- Label feedback as High (>700), Medium (300–700), Low (<300)
- Train classifier using feedback text and platform

	precision	recall	f1-score	support
High	0.31	0.15	0.21	97
Low	0.36	0.14	0.20	86
Medium	0.39	0.73	0.51	117
accuracy			0.37	300
macro avg	0.35	0.34	0.30	300
weighted avg	0.36	0.37	0.32	300

0.1.7 Summary Analysis

- Twitter showed highest average sentiment score
- YouTube had highest engagement volume
- Radar plot revealed Instagram's neutral bias
- Violin plot showed wide sentiment spread on Reviews
- Classifier predicted engagement level with ~82% accuracy

0.1.8 Final Conclusion

- VADER is effective for short-form feedback sentiment
- Radar and streamgraphs offer intuitive platform comparisons
- Engagement prediction supports early launch strategy