Motion and Strength Simulations

Kaur Jaakma 23.11.2020 This Week's Tasks MECHANISM ▶ BODIES g GRAVITY ▶ N CONNECTIONS ▶ ○ MOTORS SPRINGS DAMPERS **BUSHING LOADS** FORCES/TORQUES INITIAL CONDITIONS TERMINATION CONDITIONS ▶ X ANALYSES ▶ ◀▶ PLAYBACKS Aalto University School of Engineering

Motion Simulations

MBS

Multi-body Simulation

Studies behavioral of mechanism

- Motion and velocities (kinematics)
- Forces and torques (dynamics)
- Contacts

Can be as integrated module in CAD or separate software

Degrees of Freedoms

DoFs

Object in 3D world

- 3 translations
- 3 rotations

Joints

Creo Mechanism

Integrated MBS application

Can affect behavioral of assemblies

For ex. Gears in Clock Assembly

Other MBS software

Stand-alone

- MSC Adams
- SIMPACK

Integrated in CAD

- NX Motion
- Solid Works Motion Simulation
- Etc.

Strength Analyses

Creo Simulate -

Creo's FEM module

- Strength
- Vibration
- Fatigue
- Thermal
- Optimization

Workflow

Material

Assign material to simulation model

Constrains

· How model is attached to ground, what can move etc.

Forces

· What loads model have, is there gravity etc.

Run simulation

Meshing, what and how is calculated

Checking results

What happened and where?

Example Simulation Process

Example Simulation Process

Analyzing the results

Iterative Process

Constrains

Constrain type affects results

- Fixed vs
- Revolute

Mesh Element Size

Mesh Element Size

Element

- Max size 250 mm
- 292 pcs

Calulation time

• 0:00:01

Created files

• 3,31 MB

Element

- Max size 10 mm
- 536888 pcs

Calulation time

• 0:58:40

Created files

• 4,29 GB

All inputs and accuracy of inputs affect outcome It is a good practice to validate your results

- With basic hand calculation equations $w''(x) = -\frac{M(x)}{E \times I(x)}$
- For example in beam case with fixed load and fixed shape
 - I and F are constant

$$w_y(x) \coloneqq \frac{F \cdot L^3}{6 \cdot E \cdot I_{yy}} \cdot \left(3 \cdot \frac{x^2}{L^2} - \frac{x^3}{L^3}\right)$$

Beam

- Length 6 m (100 mm elements)
- 1 kN force in the free end
- Steel as material

Max displacement 21,57 mm

With Matchcad

With gravity

Max displacement 96,06 mm

Mathcad with gravity

Complex geometry

Material steel, 250 N force, fixed on left

Complex geometry - Results

Stresses under 250 MPa → OK

Complex geometry - Fatique

With 250 MPa max stress 10⁴,7 ~ 50000 repeats

Vibration simulations

Feasibility Study

Can be used to analyze how changes in certain inputs affect the output

Optimization

Variables

- Main thickness (1 5 mm)
- Rib thickness (1 5 mm)

Constraint

Stress less than 250 MPa

Goal

Minimize mass

Example Software

Stand-alone

- Abaqus
- Ansys
- Comsol
- Femap

Integrated into CAD for ex.

- Creo Simulate
- Catia Simulia
- NX Nastran

Case cooling rib
Material steel
150 W load at the bottom
No airflow

- Conduction
- Radiation

10 mm ribs
Max T 41,0 °C
Only conduction

Steel-to-air

10 mm ribs
Max T 99,9 °C
Only radiation

5 mm ribs
Max T 35,5 °C
Only conduction

Steel-to-air

5 mm ribs
Max T 72,4 °C
Only radiation

Feasibility Study

Rib thickness as input between 5...20 mm

Radiation

Final Words

Engineer's Responsibility

Crap in → Crap out

If simulation model inputs are incorrect → result is also

Use your time to validate your model

Colorful picture itself isn't any result

aalto.fi

