Основы радиоэлектроники

Источники питания, Выпрямление переменного тока, полупроводниковый ДИОД

полупроводники

вещества, в которых количество свободных зарядов зависит от внешних условий (температура, напряженность, электрическое поле)

минералы, оксиды, сульфиды, теллуриды, германий, кремний, селен и др.

Полупроводники- вещества, электрическая проводимость которых занимает промежуточное место между проводниками и диэлектриками (Ge, Si, GaS, CdS, PbS)

- Проводимость полупроводников:
 Электронная и дырочная
- Носители тока в полупроводниках:
 электроны и дырки

Рис. 223

Дырка - вакантное(не занятое электроном) состояние в связях между атомами полупроводника, характеризующееся (+) зарядом

Duc 274

полупроводники

Диод

Стабилитрон

Светодиод

Фотодиод

Варикаб

тунельный диод

Теристор

Семистор

Диод — это полупроводниковый прибор, пропускающий электрический ток только в одном направлении.

Полупроводниковые диоды используют свойство односторонней проводимости p-n перехода — контакта между полупроводниками с разным типом примесной проводимости, либо между полупроводником и металлом.

5 6 BK2-200

ПОЛУПРОВОДНИКОВЫЕ ДИОДЫ

Выпрямительные диоды

Эти устройства служат для выпрямления синусоиды переменного тока. Их принцип действия основывается на свойстве устройства переходить в закрытое состояние при обратном смещении. В результате работы диодного прибора происходит срезание отрицательных полуволн синусоиды тока. По мощности рассеивания, которая зависит от наибольшего разрешенного прямого тока, выпрямительные диоды делят на три типа – маломощные, средней мощности, мощные.

- Слаботочные диоды могут использоваться в цепях, в которых величина тока не превышает 0,3 А. Изделия отличаются малой массой и компактными габаритами, поскольку их корпус изготавливается из полимерных материалов.
- **Диоды средней мощности** могут работать в диапазоне токов 0,3-10,0 А. В большинстве случаев они имеют металлический корпус и жесткие выводы. Производят их в основном из очищенного кремния. Со стороны катода изготавливается резьба для фиксации на теплоотводящем радиаторе.
- Мощные (силовые) диоды работают в цепях с током более 10 А. Их корпусы изготавливают из металлокерамики и металлостекла. Конструктивное исполнение – штыревое или таблеточное. Производители предлагают модели, рассчитанные на токи до 100 000 А и напряжение до 6 кВ. Изготавливаются в основном из кремния.

Полупроводниковые диоды

		,	Peredimential.
	УГО	Символ в маркировке	Назначение
Выпрямительный диод	\forall	Д	Для преобразования переменного тока в постоянный.
Импульсный диод	+	Д	Для работы в импульсных схемах.
Стабилитрон	+	С	Полупроводниковый диод, работающий при обратном смещении в режиме пробоя с целью получения стабильной величины напряжения
Варикап	\rightarrow	В	Полупроводниковый диод, работа которого основана на зависимости барьерной ёмкости p-n-перехода от обратного напряжения
Туннельный диод	 	И	Полупроводниковый диод в котором туннельный эффект проявляется в появлении участка с отрицательным дифференциальным сопротивлением на ВАХ
Диод Шоттки	\	-	Выполнен на базе контакта металл-полупроводник. Диоды Шоттки широко применяют в транзисторных ключевых схемах.
Светодиод	1/2	Л	Полупроводниковый диод, создающий оптическое излучение при пропускании через него электрического тока в прямом направлении.
Фотодиод	- PAR	Ф	Полупроводниковый диод в котором при освещении светом возникают носители зарядов (электроны и дырки), увеличивающие прямую и обратную проводимости.

Схема однополупериодного выпрямителя.

Двухполупериодный выпрямитель

Диодный мост

Дио́дный мо́ст — электрическое устройство, предназначенное для преобразования («выпрямления») переменного тока в пульсирующий (постоянный). Такое выпрямление называется двухполупериодным.

Сглаживающие фильтры питания предназначены для уменьшения пульсаций выпрямленного напряжения. Принцип работы простой — во время действия полуволны напряжения происходит заряд реактивных элементов (конденсатора, дросселя) от источника — диодного выпрямителя, и их разряд на нагрузку во время отсутствия, либо малого по амплитуде напряжения.

Варикап. Принцип действия, применение

Варикапы — это плоскостные диоды, иначе называемые параметрическими, работающие при обратном напряжении, от которого зависит барьерная емкость. Таким образом, варикапы представляют собой конденсаторы переменной емкости, управляемые не механически, а электрически, т. е. изменением обратного напряжения.

Схема включения варикапа в колебательный контур в качестве конденсатора переменной емкости

Расчет двухполупериодного выпрямителя

Рассчитать выпрямитель - значит правильно выбрать выпрямительные диоды и конденсатор фильтра, а также определить необходимое переменное напряжение, снимаемое выпрямления с вторичной обмотки сетевого трансформатора. Исходными данными для расчета выпрямителя служат: требуемое напряжение на нагрузке (U_{μ}) и потребляемый ею максимальный TOK (I_{ν}) .

Расчет ведут в таком порядке:

1. Определяют переменное напряжение, которое должно быть на вторичной обмотке сетевого трансформатора:

 $m{U_2} = m{B} \ m{U_H},$ где: $m{U_H}$ - постоянное напряжение на нагрузке, B; B - коэффициент, зависящий от тока нагрузки, который определяют по табл. 1.

Kaa 4 4		$ ext{Ток нагрузки , } A$								
Коэффициент	0,1	0,2	0,4	0,6	0,8	1,0	1,5	2		
В	0,8	1,0	1,9	1,4	1,5	1,7	2	2,3		
С	2,4	2,2	2	1,9	1,8	1,8	2	2		

2. По току нагрузки определяют максимальный ток, текущий через каждый диод выпрямительного моста:

$$I_{\partial} = 0.5 \ C \ I_{H},$$
 где: I_{∂} - ток через диод, A ; I_{H} - максимальный ток нагрузки, A ; C - коэффициент, зависящий от тока нагрузки (определяют по табл. 1).

3. Подсчитывают обратное напряжение, которое будет приложено к каждому диоду выпрямителя:

$$U_{oбp} = 1,5 \ U_{H},$$
 где: $U_{oбp}$ - обратное напряжение, B ; U_{H} - напряжение на нагрузке, B .

4. Выбирают диоды, у которых значения выпрямленного тока и допустимого обратного напряжения равны или превышают расчетные.

	Электрические па	раметры при t _{OKP} =	: + 20 ± 5 ⁰ C	
Тип диода	Наибольшая амплитуда обратного напряжения, В	Наибольший выпрямленный ток (среднее значение), А	Обратный ток при наибольшем обратном напряжении, мА	Падение напряжения в прямом направлении при наибольшем токе, В
Д242,	100	5	3	1,5
Д242А,	100	10	3	1,0
Д242Б,	100	2	3	1,0
Д243,	200	5	3	1,0
Д243А,	200	10	3	1,0
Д243Б,	200	2	3	1,0
Д244,	50	5	3	1,0
Д244А,	50	10	3	1,0
Д244Б,	50	2	3	1,0
2Д201А,	100	5	3	1,0
2Д201Б,	100	10	3	1,0
2Д201В,	200	5	3	1,0
2Д201Г,	200	10	3	1,0
Д1004	2000	0,1	0,1	4,0
Д1005А	4000	0,5	0,1	4,0
Д1005Б	4000	0,1	0,1	6,0
Д1006	6000	0,1	0,1	6,0
Д1007	8000	0,075	0,1	6,0
Д1008	10000	0,05	0,1	6,0
Д1009	2000	0,1	0,1	7,0
Д1009А	1000-2	0,1.2	0,1	3,5
Д1010	2000	0,3	0,1	11,0

5. Определяют емкость конденсатора фильтра: $C_{db} = 3200 \ I_{H} / U_{H} \ K_{n}$,

где: C_{ϕ} - емкость конденсатора фильтра, мк Φ ; $I_{\scriptscriptstyle H}$ - максимальный ток нагрузки. A; $U_{\scriptscriptstyle H}$ - напряжение на нагрузке, B; K_n - коэффициент пульсации выпрямленного напряжения (отношение амплитудного значения переменной составляющей частотой 100 Гц на выходе выпрямителя к среднему значению выпрямленного напряжения). K_n - коэффициент пульсации выпрямленного

$$K_n = U_H / U_2$$

Если выходное напряжение выпрямителя будет дополнительно стабилизироваться транзисторным стабилизатором напряжения, то расчетная емкость конденсатора фильтра может быть уменьшена в 5...10 раз.

Пример расчета

Требуется рассчитать выпрямитель для зарядного устройства по следующим данным: номинальное выпрямленное напряжение $\mathbf{U}_{\rm H}=12~{\rm B}$; номинальный выпрямленный ток $\mathbf{I}_0=2~{\rm A}$; допустимый; напряжение питающей сети $\mathbf{U}_{\rm C}=220~{\rm B}$; частота сети $\mathbf{f}=50~{\rm F}_{\rm H}$. В качестве исходной схемы возьмем мостовую схему,, выполненную с использованием кремниевых диодов..

1. Определяют переменное напряжение, которое должно быть на вторичной обмотке сетевого трансформатора:

$$U_2 = B U_{\mu}, U_2 = 2.3 \bullet 12 = 27.6 B$$

Voo de de verrous				Ток наг	рузки , A			
Коэффициент	0,1	0,2	0,4	0,6	0,8	1,0	1,5	2
В	0,8	1,0	1,9	1,4	1,5	1,7	2	2,3
С	2,4	2,2	2	1,9	1,8	1,8	2	2

2. По току нагрузки определяют максимальный ток, текущий через каждый диод выпрямительного моста:

$$I_{\partial} = 0.5 \ C I_{H}, \ 0.5 \bullet 2 \bullet 2 = 2A$$
 где: I_{∂} - ток через диод, A ;

 $I_{\scriptscriptstyle H}$ - максимальный ток нагрузки, A;

С - коэффициент, зависящий от тока нагрузки (определяют по табл. 1).

Kan h h		Ток нагрузки , A								
Коэффициент	0,1	0,2	0,4	0,6	0,8	1,0	1,5	2		
В	0,8	1,0	1,9	1,4	1,5	1,7	2	2,3		
С	2,4	2,2	2	1,9	1,8	1,8	2	2		

3. Подсчитывают обратное напряжение, которое будет приложено к каждому диоду выпрямителя:

$$U_{oбp} = 1,5 \ U_{H}, \ 1,5 \bullet 12 = \underline{\textbf{18 B}}$$
 где: $U_{oбp}$ - обратное напряжение, B ; U_{H} - напряжение на нагрузке, B .

4. Выбирают диоды, у которых значения выпрямленного тока и допустимого обратного напряжения равны или превышают расчетные.

	Электрические па	раметры при t _{OKP} =	: + 20 ± 5 ⁰ C	
Тип диода	Наибольшая амплитуда обратного напряжения, В	Наибольший выпрямленный ток (среднее значение), А	Обратный ток при наибольшем обратном напряжении, мА	Падение напряжения в прямом направлении при наибольшем токе, В
Д242,	100	5	3	1,5
Д242А,	100	10	3	1,0
Д242Б,	100	2	3	1,0
Д243,	200	5	3	1,0
Д243А,	200	10	3	1,0
Д243Б,	200	2	3	1,0
Д244,	50	5	3	1,0
Д244А,	50	10	3	1,0
Д244Б,	50	2	3	1,0
2Д201А,	100	5	3	1,0
2Д201Б,	100	10	3	1,0
2Д201В,	200	5	3	1,0
2Д201Г,	200	10	3	1,0
Д1004	2000	0,1	0,1	4,0
Д1005А	4000	0,5	0,1	4,0
Д1005Б	4000	0,1	0,1	6,0
Д1006	6000	0,1	0,1	6,0
Д1007	8000	0,075	0,1	6,0
Д1008	10000	0,05	0,1	6,0
Д1009	2000	0,1	0,1	7,0
Д1009А	1000-2	0,1.2	0,1	3,5
Д1010	2000	0,3	0,1	11,0

5. Определяют емкость конденсатора фильтра:

 $C_{\phi} = 3200 I_{\scriptscriptstyle H} / U_{\scriptscriptstyle H} K_{\scriptscriptstyle D},$

где: C_{ϕ} - емкость конденсатора фильтра, мк Φ ;

 $I_{\scriptscriptstyle H}$ - максимальный ток нагрузки. A;

 $U_{\scriptscriptstyle H}$ - напряжение на нагрузке, B;

 K_n - коэффициент пульсации выпрямленного напряжения (отношение амплитудного значения переменной составляющей частотой $100 \, \Gamma$ ц на выходе выпрямителя к среднему значению выпрямленного напряжения).

$$K_n = U_H / U_2 \quad K_n = 12/27, 6 = 0,43$$

$$C_{\phi}=3200\,I_{_{\!H}}/\,U_{_{\!H}}\,K_{_{\!R}},=rac{3200ledsymbol{\circ}2}{12ledsymbol{\circ}0,43}={f \underline{1240}}$$
 мкф

Номинал,	Напряжение,В								
мкФ	10	16	25	35	63	100	250		
1 мкФ				14	16	18	20		
2,2 мкФ			6	8	10	10	10		
4,7 мкФ			15	7,5	4,2	2,3	5		
10 мкФ		8	5,3	3,2	2,4	3,0	2,5		
22 мкФ	5,4	3,6	2,1	1,5	1,5	1,5	1		
47 мкФ	2,2	1,6	1,2	0,68	0,56	0,7	0,8		
100 мкФ	1,2	0,7	0,32	0,32	0,3	0,15	0,8		
220 мкФ	0,6	0,33	0,23	0,17	0,16	0,09	0,5		
470 мкФ	0,24	0,18	0,12	0,09	0,09	0,05	0,3		
1000 мкФ	0,12	0,09	0,08	0,07	0,05	0,05			
4700 мкФ	0,11	0,08	0,07	0,05	0,04				
10000 мкФ	0,10	0,07	0,06	0,04					

Ответ;

Диоды Д242Б 4шт.

Конденсатор Сф-4700мкф 1шт. Или 1000 мкф 2шт.

Практическая работа №1 Основы радиоэлектроники. Вариант №

ТЕМА: Расчет двухполуперодного выпрямителя

ЗАДАНИЕ

диод	Дано			НАЙТИ				
Подбор Из таблицы	U _н (В)	І _н (А)	U ₂ (B)	Ι _∂ (A)	U _{обр} (В)	K_n	С _ф (мкф)	
	20	1						

	Электрические па	раметры при t _{OKP} =	+ 20 ± 5 ⁰ C	
Тип диода	Наибольшая амплитуда обратного напряжения, В	Наибольший выпрямленный ток (среднее значение), А	Обратный ток при наибольшем обратном напряжении, мА	Падение напряжения в прямом направлении при наибольшем токе, В
Д242,	100	5	3	1,5
Д242А,	100	10	3	1,0
Д242Б,	100	2	3	1,0
Д243,	200	5	3	1,0
Д243А,	200	10	3	1,0
Д243Б,	200	2	3	1,0
Д244,	50	5	3	1,0
Д244А,	50	10	3	1,0
Д244Б,	50	2	3	1,0
2Д201А	100	1,5	3	1,0
2Д201Б,	100	10	3	1,0
2Д201В,	200	5	3	1,0
2Д201Г,	200	10	3	1,0
Д1004	2000	1	_1	4,0
Д1005А	4000	0,5	0,1	4,0
Д1005Б	4000	0,1	0,1	6,0
Д1006	6000	0,1	0,1	6,0
Д1007	8000	0,75	0,1	6,0
Д1008	10000	0,05	0,1	6,0
Д1009	2000	0,1	0,1	7,0
Д1009А	1000-2	0,2	0,1	3,5
Д1010	2000	0,3	0,1	11,0

Номинал,	Напряжение,В								
мкФ	10	16	25	35	63	100	250		
1 мкФ				14	16	18	20		
2,2 мкФ			6	8	10	10	10		
4,7 мкФ			15	7,5	4,2	2,3	5		
10 мкФ		8	5,3	3,2	2,4	3,0	2,5		
22 мкФ	5,4	3,6	2,1	1,5	1,5	1,5	1		
47 мкФ	2,2	1,6	1,2	0,68	0,56	0,7	0,8		
100 мкФ	1,2	0,7	0,32	0,32	0,3	0,15	0,8		
220 мкФ	0,6	0,33	0,23	0,17	0,16	0,09	0,5		
470 мкФ	0,24	0,18	0,12	0,09	0,09	0,05	0,3		
1000 мкФ	0,12	0,09	0,08	0,07	0,05	0,05			
4700 мкФ	0,11	0,08	0,07	0,05	0,04				
10000 мкФ	0,10	0,07	0,06	0,04					

Ответ;

Диоды Д242Б 4шт.

Конденсатор Сф-4700мкф 1шт. Или 1000 мкф 2шт.

