পশ্চিমবক্স মধ্যশিক্ষা পর্যন্ত কর্তৃক উচ্চতর: মাধ্যমিক ও বহুমূখী বিজ্ঞালয়সমূহের জন্ম বিজ্ঞান বিভাগের অনুমোদিত পাঠক্রম অনুমাধে নবম,

प्रभाग का कार्य का विश्व के वि

ব্যবহারিক রসায়ন

-For Classes IX, X & XI-

[Also covers the Syllabus for the Pre-University Examination, Calcutta University.]

সম্ব্যাপক (জ, এব্, গ্লায়া, এম্, এস্-সি.
সিটি কলেজ, কলিকাতা।

-প্রাপ্তিস্থাননিউ বুক এজেন্সি
১৮ বি, শ্যামাচরণ দে ষ্ট্রাট
কলিকাতা-১২

প্রকাশক:

বিশ্বাস

১৮ বি, খ্যামাচরণ দে খ্রীট
কলিকাতো-১২

প্রথম মুদ্রণ ঃ অগ্রহায়ণ, ১৩৬৬

মূল্য—তুই টাকা পঞ্চাশ, নয়। পয়সা মাত্র

মুত্রাকর ঃ বি, রায **নিউ বাসস্তী প্রেস** ৭১, কৈলাস বোসাঞ্চীট কলিকাতা-৬

মুখবন্ধ

নবংশিক্ষা প্রতের উচ্চত্র মাধ্যমিক বিভালয়সমূহের বিজ্ঞান বিভাগের ব্যবহারিক রসায়নের পাঠক্রম অনুসারে নবম, দশম ও একাদশ শ্রেণীর জন্ম এই পুস্তক লিগিত হইল। ইহাতে প্রতিটি প্রীক্ষার কাষ-প্রণালী এবং যে গমও সতকতা মবলস্ম করিলে গ্রাক্ষা নিভূনি হয় তাহা বিশ্বদভাবে যথাসন্তব সরসভাষ্য বন্না করা হইমাছে। ঘ্রাফার বৈষ্য-বন্ধ সংপ্রকে স্থেপট প্রেণা নইনা ঘানতে শক্ষাথারা নাবেরেটরতে কাজ করিতে গারে সাদকে দৃষ্টিরাহিষা ঘটিটি প্রাক্ষাণ বিষ্যেব বন্ধ মালোচনা করা হহমাছে। এই পুস্তকে প্রাক্ষিত বাংলা গ্রিভালার সাহিব উহার ইংরাজা প্রাক্ষার করা হইমাছে।

এই পুত্তক প্রণথনে রস্থান শাধের বিভিন্ন প্রধানর সাহায়ে নইয়াছি।
সিটি কলেপ্রের রস্থান বিভাগের অব্যাপকগণের নিকর হইতে যথেষ্ট সাহায়
ও উৎসাহ পাইয়াছি। এজন্ত ভাহালের নিকর সামি কত্তা শিল্ট বুক
এজেলিবৈ বন্ধাবিকারী জিহেন্চল বিশ্বাস মহাশ্যের উৎসাহ, সহাস্তৃতি ও
সাক্রিয় সহযোগিতা ব্যহাত হল গুত্তক প্রকাশ বা স্ভাব'ংইত না। ইয়োব

বিজ্ঞালয়ের শান্ধির শিক্ষকগণের ভাকত ২২তে এই শুরুকের কটি ও উন্নয়ন সম্প্রকে নতানত সাদরে গৃহাত ২ইবে। পরিশেষে, শন্ধেয় শিক্ষকর্ক ও ছাত্র-ছাত্রীদের নিকট প্রক্ষানি আনুত ২ইবে আমার শ্রু সার্থিক হইয়াছে মনে

तमायम दिश्हा

াষ্টি কলেও, কলিকাতা

১৫३ छितम्बत, ১৯৫৯

এওকার

Syllabus in Practical Chemistry

Class IX

- 1. Familiarity with Bunsen Burner.
- 2. Manipulation of glass-cutting, bending, blowing etc. Fitting up a simple apparatus, e.g. Wash bottle.
- 3. Laboratory techniques: (i) extraction, filtration, evaporation, crystallisation, sublimation. (ii) Separation of ingredients of simple mixtures.
- 4. Determination of melting point of ice and wax, and boiling point of water.
- 5. Study of differences between mixture and compound of iron and sulphur.
- 6. Preparation and simple properties of oxygen and hydrogen.

Class X

- 1. Preparation and properties of ammonia and carbon dioxide.
- 2. Study of properties of Hydrochloric acid and chlorine and of the action of hydrogen sulphide on solution of salts.
- 3. Simple exercises on the effects of heat and of reagents on substances, including the recognition of evolved gases—e.g., hydrogen, oxygen, carbon dioxide, chlorine, hydrogen chloride, hydrogen sulphide, sulphur dioxide, ammonia.
- 4. Identification of the acid radicals nitrate, chloride, carbonate, sulphate, sulphide and sulphite.

Class XI

- 1. Determination of the equivalent weight of a metal-
 - (a) by replacement of hydrogen;
 - (b) by the addition or removal of oxygen.
- 2. Use of standard solutions of acids and alkalis, and the indicators methyl orange and phenolphthalein, for determination of strengths (in terms of normality, or weight per litre) of acids or alkali solutions, or the equivalent weight of acids and alkalis by direct titration.
- (Note: Students will not be required, in the examination, to prepare their own standard solutions.)
- 3. Identification of the metallic radicals lead, copper, iron, aluminium, zinc, calcium and magnesium, in salts soluble in water or dilute acids given singly. Knowledge of a formal scheme of analysis will not be required.
- NB. Students will be required to submit their Laboratory Note Tooks to show that they had undergone the full course of practical work.

বিষয়			পৃষ্ঠা
শাধারণ নিটে, ,			viif
প্রথম অধ্যায়			
বুনসেন নীপ	•••	•••	5
বুন্দেন শিখার গঠন	•••	•••	0
দ্বিতীয় অধ্যায়			
কাচ-নন কাঠা, বাঁকান ই চ্যানি	•••	•••	Ь
ওয়াস্ রোডল ফিট করা	•••	•••	> 8
তৃতীয় অধ্যায়			•
माराहर शहीकाशाह छागानीत दर्ग	и	•••	, · 's i
भवन विभा धनार्थव छिपानान पृथ	विक्ता	•••	٠
চতুৰ্থ অধ্যায়			الله ،
বরফের গলনাংক নির্ণয	•••	•••	<u>.</u>
নোনের গলনাংক নির্ণয়	•••	•••	. ৩
জলের স্টুনাংক নির্ণয়	* * *	•••	83
পঞ্চম অধ্যায়			
লোহ ও গন্ধকের মিশ্র ও যৌগিক গ	পদার্থের পার্থক	, ···	8
ষষ্ঠ ভাধ্যায়			
গ্যাস প্রস্তুতি	•••	•••	8
অক্সিকেনের প্রস্তুতি এবং উহার ধ	ৰ্ম •••	•••	
হাইড্রোজেনের প্রস্তুতি এবং উহার	ा ধर्म	•••	t
ষ্যামোনিয়ার প্রস্তুতি এবং উহার	ধর্ম •••	•••	ŧ
কার্বন ডাই অক্লাইডের প্রস্তুতি এব	াং উহার ধর্ম	•••	6
হাইড্রোজেন ক্লোরাইডের প্রস্তুতি	এবং উহার ধর্ম	•••	•
ক্লোরিনের প্রস্তুতি এবং উহার ধর্ম	• • •	• • •	4

1	বিষয়			•	शृष्ठा
यखम	অধ্যাস				
	লবণের দ্রবণের সহিত হাই	ড্রোজেন সাব	নফাইডের বিবি	ক্রম	96
অষ্ট্ৰম	অধ্যায়				
	পদার্থের উপর তাপের প্রভ	চাৰ	•••	•••	P-8
	পদার্থের উপর বিকারকের	প্ৰভাব	•••	•••	৮৮
নবম	অধ্যায় অ্যাসিড মূলকের সনাক্তকর	re			
	কার্বনেট, সালফাইট, সা	ালফাইড,	ক্লোরাইড,	নাইট্রেট,	
	সালফেট মূলক		•••	•••	> 0
	অজ্ঞাত অ্যাসিড মূলকের স	নাক্তকরণ	• • •	• • •	704
स्थ्य	অধ্যায়				
	ধাত্র তুল্যাংকভার নির্ণয়		•••	•••	ऽ२०
वका	শৈ অধ্যায়				
	আয়তনমাত্রিক বিশ্লেষণ—	অধাৰাত ও	क्षात्राया ७	•••	১२३
- व श्वन	ি ভাধ্যাস্থ্ৰ ক্ষারকীয় বা ধাতব মূলকের				
	তম পরীকা: ১ ওম পরীক				
	বিজারণ পরীক্ষা, কোবন্ট	নাইট্রেট প্র	রীকা, শিখা	পরী কা ,	
	বোরাক্স বীড পরীক্ষা		•••	•••	>64
	সিক্ত পরীক্ষাঃ লেড, কপা	র, আয়রন,	অ্যালুমিনিয়াম	, জিংক,	
	ক্যালসিয়াম ও ম্যাগনেসিয়	•	•••	•••	১৬২
	কতকগুলি লনণের বর্ণ, দ্র	বণীয়তা ও	লবণের দ্রবণ	া প্রস্তুতি	८१८
•• •	অজ্ঞাত ক্ষারকীয় বা ধাতক	মূলকের সনা	ক্রকরণ		
	শুষ পরীক্ষা		• • •	•••	১৭২
*:	সিক্ত পরীক্ষা		•••	• • •	५९८
পরি	<u>্</u> বাষ্ট	•••	• • •	• • •	>6¢

त्राधाद्वा विर्फ्ण

সর্বপ্রকার ল্যাবরেটরী-কার্যের সাফল্যের জন্ম পরিচ্ছন্নতার সহিত ধারাবাহিক কার্য-পদ্ধতি অহুসরণ করা বিশেষ প্রয়োজন। ল্যাবরেটরীতে শৃংখলা ও একাগ্রচিন্ততা অপরিহার্য।

কাজ করিবার সময় কতকগুলি প্রয়োজনীয় দ্রব্যাদি নিজেদের নিক্ট রাখিবে—যথা, একটি তোয়ালে, সাবান, দেশলাই, ছুরি ও অ্যাপ্রন্ (apron)।

পরীক্ষা করিবার পূর্বে পরীক্ষার বিষয়-বস্তু সম্পর্কে ভাল করিয়া জানিয়া লইবে। কি পরীক্ষা করিতে হইবে তাহা না ব্ঝিয়া কখনও পরীক্ষা আরম্ভ ক্রিবে না।

পরীক্ষার পূর্বে কাচের যন্ত্রপাতি পরিস্কার করিয়া ধূইয়া লইবে। কাচের যন্ত্রপাতি উত্তপ্ত করিবার সময় ধীরে ধীরে তাপ দিবে এবং লক্ষ্য রাখিবে কাচের যন্ত্রের বাহিরে যেন জল না থাকে। কোন কঠিন রাসায়নিক দ্রব্য হাতে লইবে না—এই জন্ম কাগজের ছোট টুক্রা ব্যবহার করিতে পার।

বিকারক ব্যবহার করিবার সময় ছিপি খুলিয়া টেবিলের উপর রাখিবে না—ছিপি হাতে ধরিয়া রাখিবে। বিকারক ঢালিবার সময় যেন বোতলের লেবেল (label) নষ্ট না হয়। বিকারক অল্প অল্প করিয়া মিশাইয়া নাড়িয়া দিবে—একসঙ্গে অধিক পরিমাণ ঢালিবে না। পরীক্ষণীয় তরল পদার্থ ও মিশ্রিত বিকারক যেন পরীক্ষা-নলের অর্ধেকের বেশী না হয়। বিকারক ব্যবহার করিবার পর ছিপিসহ শিশিগুলি যথাস্থানে যে ক্রমে (order) সাজান ছিল সেইক্রেমে রাখিয়া দিবে।

অপ্রয়োজনে কোন রাসায়নিক দ্রব্যাদি নষ্ট করিবে না বা জলের কল ও গ্যাস-নল খোলা রাখিবে না। উত্তপ্ত জিনিষ টেবিলে অ্যাস্বেদটদ (asbestos)-এর উপর রাখিবে। উত্তপ্ত করা হইয়া গেলে তার-জানি (wire gauze) ব্নদেন শিখার উপর হইতে সরাইয়া রাখিবে।

গাঢ় আাণিড বা গাঢ় কারদ্রণ কখনও 'Sink'-এ ফেলিবে না—সাবধানে নর্দমায় ফেলিয়া জন ঢানিবা নিবে। কর্ক, কিল্টার কাগজ, ভাঙ্গা কাচ ইত্যানি কঠিন পনার্থ আলানা করিয়া দূরে কোন নিনিষ্ট জাবগায় রাখিবে—
Sink-এ কখনও ফেলিবে না।

় পরীক্ষায় যে সন যন্ত্রপাতি ন্যনহার করিয়াছ, পরীক্ষার পর তাহা ধুইয়া পরিকার করিয়া রাখিবে। ল্যাবরেটরী ত্যাগ করিবার পূর্বে সাবান দিয়া হাত পরিস্কার করিবে।

পরীক্ষা ও উহার ফলগুলি ল্যাবরেটরাঁ নোট বুক (Laboratory Note Book)-এ লিখিয়া নিয়নি হভাবে শিক্ষক মহাশ্য কর্তৃক সংশোধিত ও বাক্ষরিত করিয়া লইতে হয়। নোটবুকের প্রথম গাতায় একটি স্ফলিত রাখিবে—বার্ম দিক হইতে পরীক্ষার ক্রমিক সংখ্যা, পরীক্ষার নাম এবং পৃষ্ঠা সংখ্যা লিখিবে। নোট বুকের বামদিকের সালা পৃষ্ঠায় যন্ত্রপাতির চিত্র আঁকিবে এবং ডানদিকের লাইনটানা পৃষ্ঠায় পরীক্ষার বিষয় ও ফলাফল লিখিবে। নৃত্রন পরীক্ষা নৃত্রন প্রীক্ষার বিষয়ের শিরোনামা লিখিবে। পরীক্ষার তারিখ, উপরে বড় হরফে পরীক্ষার বিষয়ের শিরোনামা লিখিবে। পরীক্ষার বিষয়গুলি পরীক্ষা, পর্যবেক্ষণ ও দিদ্ধান্ত—এই তিনটি পৃথক্ পৃথক্ কলমে (column) লিখিবে। নোটবুক স্বদা প্রথম পুরুষে ও সাধারণ অতীত ক্রিয়ায় লিখিবে।

তুর্ঘটনা ও উহার প্রাথমিক চিকিৎসাঃ

ল্যাবরেটরীতে প্রায়ই দানান্ত ত্র্টনা হইতে পারে। দত্রক হইয়া মনযোগদহকারে কার্থ করিলে ত্র্টনা ফ্রাদন্তব এড়ান যায়। তথাপি, যদি কোন ত্র্বটনা ঘটে তবে তাহাদের প্রাথমিক চিকিৎসা (First aid সম্পর্কে কিছু জানা উচিত। ত্র্বটনা গুরুতর হইলে ডাক্রারের পরামর্শ গ্রহণ করা বাঞ্নীয়।

কি! পোড়া (Burns): উত্তপ্ত বস্তা ধরিয়া হাত পুড়িলে প্রথমে পিক্রিক্ অ্যাসিড দ্রবণ (Picric ecid solution) নিয়া দক্ষস্থান ধুইয়া ফেল। পরে ঐ স্থানে বার্ণল (Bu:nol) কিংবা ভোগনিন (বা অলিভ্ অয়েল) নিশ্রেত বোরিক অ্যাসিড Boric acid)-এর নলন লাগাইবে। গাঢ় অ্যাসিডে পুড়িয়া গেলে সোডিয়াম বাই-কার্ননেই দ্রবণ (Sodium bi-carbonate) দর্শ্রান ভাল করিয়া ধুইয়া ফেলিবে এবং পরে বার্ণলের প্রলেপ দিবে।

খি]- কাটা (Cuts)ঃ ছুরিতে বা কাচে কাটিয়া গেলে ক্তস্থান ভালরূপে পরিস্থার জল দিয়া ধুইয়া ফেল—কোন কাচের টুক্রা ফেন মধ্যে না থাকে। তারপর টিন্চার আয়োছিন (Tincture Iodine) বা টিন্চার বেন্জ্যেন (Tincture Benzom)-এ তুলা গিজ করিয়া ক্তস্থানে ভাল করিয়া বাঁধিয়া দাও।

গি। গ্যাসের বিষ-ক্রিয়া (Gas Poisoning): বিবাক্ত গ্যাস নিঃশ্বাদের সহিত গ্রহণ করিয়া অন্তস্থতা বোধ করিনে জল দিয়া চোপ মুখ ভাল করিয়া ধূইয়া ফেল এবং লঘু অ্যামোনিয়াম হাইডুক্সাইড (Dilute Ammonium hydroxide) দ্রবণ আঘাণ কর। পরে কিছুক্ষণ মুক্ত বায়ু সেবন করা বিধেয়।

वावशातिक त्रमायन

(Practical Chemistry)

প্রথম অধ্যায়

বুনদেন দীপের সহিত পরিচয় (Familiarity with Bunsen Burner)

(ক) বুনসেন দীপ (Bunsen Burner)

ল্যাবরেটরীতে বিভিন্ন দ্রব্য উত্তপ্ত করিবার জন্ম বৃনদেন দীপ নামক এক প্রকার দীপ ব্যবহৃত হয়। এই দীপের সাহায্যে কোল-গ্যাস বা অয়েল-গ্যাস জালাইয়া তাপ স্বাষ্টি করা হয়। জার্মান বিজ্ঞানী রবার্ট বৃনদেন এই দীপটি

व्याविकात्र करत्रन।

তোমরা ব্নসেন দীপ ব্যবহার করিবে। স্থভরাং দীপটির গঠন এবং উহার কার্য ও ব্যবহার প্রণালীর সহিত তোমাদের পরিচয় থাকা প্রয়োজন।

(বুনসেন দীপের তিনটি অংশ। যথা—(১) পার্শ-নল (খ) যুক্ত একটি ধাতব পাদপীঠ (ক) (base); পাদপীঠেব মুখটি দক্ষ নলের মত স্থচল (গ)। এই

সক্ষ নলটির সহিত পার্গ-নলটি যুক্ত থাকে।

(২) একটি লম্বা ধাতব-নল বা **দীপ-নল** (ঘ)

>নং চিত্র—ব্নসেন দীপ (burner tube)। বায়ু ২ নং চিত্র—পাদপীঠ প্রশংবশ করিবার জন্ম ইহার নীচের দিকে ছিন্ত (ও) (air holes) থাকে। দীপ-নলটি পাদপীঠের মুখের সহিত জু-এর সাহায্যে যুক্ত থাকে। (৩) একটি বা ত্রইটি ছিদ্রবিশিষ্ট ধাতব আংটি (চ)। ইহা দীপ-নলের নিম্নগায়ে পরানো থাকে। আংটি ঘুরাইয়া দীপ-নলের ছিদ্রকে সম্পূর্ণভাবে বা

क विश्व

আংশিকভাবে বন্ধ করিয়া বা খুলিয়া দীপ-নলের মধ্যের বায় নিয়ন্ত্রণ করা যায়। আংটিটকে বায়-নিয়ন্ত্রক (air regulator) বলে।

একটি ব্নদেন দীপ লইয়া জু ঘুরাইয়া দীপ-নলটি শাদপীঠ হইতে আলাদা কর এবং আংটিটি দীপ-নলের গা হইতে খুলিয়া আন। বিভিন্ন অংশ পরীক্ষা করিয়া উহাদের ছবি আঁক।

তিনটি অংশ পুনরায় যুক্ত কর। পাদপীঠের পার্থ-নলের

০ নং চিত্র—দীপ-নল ও আংটি

(luminous flame) |

সঙ্গে একটি রবার-নল আঁট করিয়া লাগাইয়া উহা কোলগ্যাস-নলের (gas tap)
সহিত যুক্ত কর। আংটি ঘুরাইয়া বায়ু প্রবেশের পথ বন্ধ করিয়া গ্যাস-নলের
মৃথ খুলিয়া দাও। কোল গ্যাস পার্থ-নল দিয়া পাদপীঠে প্রবেশ করিয়া উহার
স্চল মৃথ দিয়া দীপ-নলের মাধ্যমে উপরে উঠে। দীপ-নলের মৃথে জ্বলন্ত কাঠি
ধর—দীপের মৃথে গ্যাস জ্বলিতে থাকে। বায়ু প্রবেশের পথ বন্ধ থাকায় গ্যাস
দীপ-নলের মধ্যে বায়ুর সহিত মিশিতে পারে না বলিয়া গ্যাসের দহন সম্পূর্ণ হয়
না। এই অসম্পূর্ণ দহনের জ্বল্য খুব স্ক্র কার্বন কণার স্থাই হয়; উজ্জ্বল হলুদ
বর্ণের এক দীর্ঘ শিথা পাওয়া যায়। ইহা বুনসেন দীপের প্রাদীপ্ত শিখা

একটি পোরসেলিন বেসিনে কিছু জল লইয়া বেসিনটি চিমটা দ্বারা প্রদীপ্ত শিখার উপর ধর। বেসিনের নীচে ঝুল জমা হয়। স্থতরাং ল্যাবরেটরীতে এই শিখার সাহায্যে কিছু উত্তপ্ত করা হয় না।

এখন আংট ঘুরাইয়া বায়ু প্রবেশের পথ ধীরে ধীরে খুলিয়া দাও। গ্যাস দীপ-নলের ছিদ্র দিয়া বায়ু টানিয়া লয় এবং গ্যাস ও বায়ুর মিশ্রণ দীপ-নলের মুখে জলে। এক্ষেত্রে শিখা দীপ্তিহীন, নীলাভ, নিধুম এবং আকারে ছোট হয়। ইহা বুনসেন দীপের দীপ্তিহীন শিখা (non-luminous flame)। পূর্বের স্থায় একটি বেদিন এই শিখার উপর ধরিলে বেদিনের নীচে ঝুল জমা হয় না। স্বতরাং এই শিখার সাহায্যে কোন বস্তু উত্তপ্ত করা হয়। শিখাটি যদি সশব্দ হয়, তবে আংটি ঘুরাইয়া বায়ু প্রবেশের পথ আংশিকভাবে বন্ধ কর—শিখা শব্দহীন হইবে।

পরীক্ষা । (ক) একটি বৃনদেন দীপের মৃথের খানিকটা উপরে একটি সরু তার-জালি (wire gauze) রাথ এবং উহার উপরে আগুন ধরাইয়া দাও। দেখ, গ্যাস তার-জালির উপর জ্ঞলিতেছে, কিন্তু তারজ্ঞালি অতিক্রম করিয়া নীচের দিকে আসিতে পারিতেছে না।

(খ) একটি বৃন্দেন দীপের মৃথের উপর একটি তার-জালি ধর এবং উহার নীচে আগুন ধরাইয়া দাও। দেগ, তার-জালির নীচে গ্যাস জ্বলিতেছে কিন্তু উহার উপরে কোন শিখা নাই।

তার-জালি তাপের স্থপরিবাহী বলিয়া ইহা অতি ক্রত শিথার উত্তাপ বহন করিয়া চতুর্দিকে ছড়াইয়া দেয়। ফলে তার-জালির উপরের বা নীচের গ্যাস উহার জলনাংক (ignition temperature) পর্যন্ত উত্তপ্ত হয় না। স্থতরাং গ্যাস জলে না। প্রত্যেক বস্তুরই দহনের জন্ম একটি নির্দিষ্ট তাপমাত্রা আছে যাহার নিমে কোন দহন সম্ভব নয়। এই তাপমাত্রাকে উক্ত বস্তুর জলনাংক বলে।

কোন পাত্রে তরল পদার্থ উত্তপ্ত করিতে হইলে পাত্রটিকে ত্রিপদ ষ্ট্যান্ডে তার-জালির উপর বসাও এবং তার-জালির নীচে বুনসেন দীপ রাখিয়া দীপ্তিহীন

শিখার সাহায্যে উত্তপ্ত করিবে। তার-জালি দীপের তাপ সমানভাবে চারিদিকে ছড়াইয়া দেয় এবং পাত্রটি সমানভাবে উত্তপ্ত হইতে থাকে। উত্তপ্ত করা শেষ रहेल मौপर्টि তার-জালির নীচ হইতে সরাইয়া রাখিবে।

পরীক্ষা-নলে কোন পদার্থ গ্রম করিবার সময় পরীক্ষা-নলটি চিমটা ছারা বা ভাঁজ করা কাগজ ঘারা ধরিবে। পরীক্ষা-নলটি একটু কাভ করিয়া দীপ্তিহীন শিথায় ধরিয়া অল্প অল্প নাডাইতে থাকিবে। বায়ু প্রবেশের পথ খোলা রাগিয়া

ধীরে ধীরে গ্যাস-নল বন্ধ কর। শিখা দীপ-নলের ভিতর নামিয়া যায় এবং গ্যাদ নীচে সক মুখে জলিতে থাকে। ইহাকে "ট্রাইক্ ব্যাক্" করা বলে।

কোল গ্যাস অপেক্ষা বায়ুর পরিমাণ অনেক বেশী হইলে শিখা ট্রাইক্ ব্যাক করে। এই অবস্থায় আংটিও দীপ-নল খুব উত্তপ্ত থাকে। স্থতরাং দীপটি কথনও ধরিবে না।

ল্যাবরেটরীতে কাজ করিবার সময় শিখা ষ্ট্রাইক্ ব্যাক্ করিলে গ্যাস-নল বন্ধ করিয়া শিথা নিভাইয়া দাও। দীপ-নল ঠাণ্ডা হওয়া পর্যন্ত অপেক্ষা কর। পরে আংটি ঘুরাইয়া বায়ু প্রবেশের পথ বন্ধ করিয়া আবার গ্যাস জালিয়া দাও।

গ্যাদের সরবরাহ বাডাইয়া বা কমাইয়া দীপশিথা প্রয়োজন মত বড় বা ছোট করা যায়।

বুনসেন দীপ ব্যভীত বিভিন্ন প্রকারের দীপও ল্যবরেটরীতে ব্যবহৃত হয়। "ফিশ টেল" বা "ব্যাট্স উইং" বার্ণারের শিখা চওড়া হয়; এই শিখার সাহায্যে অনেক জায়গা জুড়িয়া ভাপ প্রয়োগ করা যায়। টেক্লু, মেকার এবং রিং

8411112F

৬ নং চিত্ৰ—ফিশ টেল

বুনদেন দীপের সহিত পরিচয়

বার্ণারও ব্যবস্থত হয়। অনেক সময় কাচ গলাইতে এবং উচ্চ তাপমাত্রায় কোন দ্রব্যকে উত্তপ্ত করিতে পদচালিত হাপর (foot bellow) ব্যবহার করা হয়।

[খ] বুনসেন শিখার গঠন

প্রথ বন্ধ করিয়া গ্যাস জালাও। শিথা প্রদীপ্ত হইবে। এই শিথার চারিটি জংশ:

(১) শিখার নীচের দিকে খুব ছোট একটু গাঢ় নীল অংশ (ক)। এখানে গ্যাদের দহন সম্পূর্ণ হয়।

- (২) শিখার প্রায় মধ্যন্তলে অদ্য গ্যাদের একটি রুফ্মগুলী (খ)।
- (৩) ইহার চতুর্দিকে ইহাকে বেষ্টন করিয়া এক উজ্জ্বল আলোকযুক্ত হলুদ অংশ থাকে (গা)। এই অংশ শিথার অধিকাংশ স্থান জুড়িয়া আছে। এথানে গ্যাদের আংশিক দহন হয় এবং উৎপন্ন স্কল্ম কার্বন কণার ভাষরতার জন্ম এই অংশ এত উজ্জ্বল দেখায়।
- (৪) সমস্ত শিখার চারিদিকে একেবারে বাহিরে একটি ঈষৎ নীল মণ্ডলী (ঘ) থাকে। এখানে গ্যাসের দহন সম্পূর্ণ হয়।

দীপ্তিহীন শিখা (Non-luminous flame)—আংট ঘুরাইয়া বায়ু প্রবেশের পথ থুলিয়া দাও। শিখা দীপ্তিহীন হইবে। এই শিখার তিনটি অংশ:

- (১) मीপ-नलात भूरथ এकिंग हां नील जान (क)।
- (২) শিথার মধ্যেকার নীলাভ অংশ (খ)। এথানে গ্যাদের আংশিক দহন হয়। এই অংশকে বিজারক অংশ (Reducing zone) বলে।
- (৩) বাহিরের প্রায় বর্ণহীন বড় অংশ (গ)। এথানে গ্যাসের দহন সম্পূর্ণ হয়। এই অংশকে জারক অংশ (Oxidising zone) বলে।

বুনসেন দীপের প্রদীপ্ত শিখায় নিমের পরীক্ষাগুলি সম্পন্ন কর।

পরীক্ষা পর্যবেক্ষণ **শিদ্ধান্ত** ১। একটি পরিন্ধার কাচ-দণ্ডের আংশিক গায়ে গ্যাদের কাচ-দণ্ড শিথার উজ্জ্বল কালো কার্বন জমা হয়। দহনের জন্ম স্থা কার্বন কণার স্ষষ্টি হয়। আলোকযুক্ত হলুদ অংশে ধর। কাঠির অগ্রভাগ জবে ক্বফ্ট মণ্ডলীর মধ্যের শিথার প্রায় মধ্যস্থলে রুষ্ণ মণ্ডলীর না; উহার যে অংশ অংশ শীতল এবং বাহিরের মধ্যে একটি দেশলাইয়ের শিথার বাহিরের দিকে অংশ উষ্ণ। কাঠির অগ্রভাগ প্রবেশ আছে দেই অংশ পুড়িয়া করাইয়া তাডাতাডি যায়। বাহির করিয়া আন। ৩। একটি সরু কাচ-নলের মুথে গ্যাস এই অংশে অদগ্ধ গ্যাস নলের এক মুখ এই অংশে জ্বলিতে থাকে। আছে। উহা সৰু নল রাথিয়া বাহিরের অপর দিয়া আসিয়া বাতাসে মুখে আগুন ধরাইয়া দাও। জ্বে।

ব্নসেন দীপের সহিত পরিচয়

বুনসেন দীপের দীপ্তিহীন শিখায় নিমের পরীক্ষাগুলি সম্পন্ন কর।

পরীক্ষা	প ৰ্যবেক্ষণ	শিশ্বান্ত
১। একটি পরিষ্কার কাচ- দণ্ড এই শিখার বাহিরের	কোন ভূদা জমা হয় না।	গ্যাদের সম্পূর্ণ দহনের জন্ম কোন কার্বন কণার
অংশে ধর।		रुष्टि इम्र नाइ।
২। একটি ভূসামাখান কাচ-দণ্ড এই শিখার বাহিরের অংশে ধর।	काठ-मण्ड পরিষ্কার হইয়া যায়।	কাৰ্বন (ভূসা) পুড়িয়া কাৰ্বন ডাই-অ ক্সাই ড় গ্যাস হয়।
৩। একটি প্লাটিনাম-তার দীপ্তিহীন শিখার গোড়া হইতে আগাঁ পর্যস্ত শিখা		শিখার আগা উফতম
वत्रावत्र धीरत्र धीरत्र नहेश। या७।		
৪। এ কটি পরিষ্কার		কপার জারিত হইয়া
কপার-তারের এক প্রান্ত শিখার বাহিরের অংশে কিছুক্ষণ ধরিয়া রাখ।	२२मा याम्र ।	কালো কপার অক্সাইডে পরিণত হয়। শিখার এই অংশ জারক অংশ।
 । কালো কপার-তারটি 	কপার-তারের পূর্বের রং	কালো কপার অক্সাই ড
শিথার মধ্যেকার নীলাভ অংশে (অথবা প্রদীপ্ত	ফিরিয়া আসে।	বিজারিত হইয়া পুনরায় কপারে পরিণত হয়।
শিথায়) কিছুক্ষণ ধরিয়া রাথ।		শিপার এই অংশ বিজারক অংশ।

দ্বিতীয় অধ্যায়

কাচ-নল কাটা, বাঁকান ইতাঁদি (Cutting, Bending of Glass Tubes etc.)

[季]

১। কাচ-নল কাটা (Cutting a glass tube):

একটি কাচ-নল টেবিলের উপর তোমার সামনে লম্বালম্বিভাবে রাথ।
বাম হাতে কাচ-নলটি চাপিয়া ধরিয়া ডান হাতে ত্রিকোণাকার ফাইল (triangular file) লইয়া নলটিকে যে স্থানে কাটিতে হইবে সেই স্থানে একটু জোরে চাপিয়া তুই একবার একই দিকে আঁচড় কাট। আঁচড় কাটিবার সময় ফাইলটি একবার সামনের দিকে এবং আরেকবার বিপরীত দিকে টানিবে না। এখন নলটিকে তুই হাতে ভোমার সামনে ধর। নলটির আঁচড়ের বিপরীত দিকে

» नः <u>ठिज</u>—कांठ-नन कांठा

ত্রইটি বৃদ্ধাঙ্গুলী কাছাকাছি রাখিয়া সামান্ত জোরে চাপ দাও এবং সঙ্গে আঁচড়ের তুই দিক ভোমার দিকে টানিয়া ধর। কাচ-নলটি দাগের স্থানে তুই অংশে ভাগ হইয়া যায়।

২। কাচ-নলের প্রান্ত মস্প করা (Rounding of sharp edges of a glass tube):

কাচ-নলের যে প্রান্ত মহণ করিতে হইবে সেই প্রান্তকে বুনসেন শিখার উষ্ণতম অঞ্চলে রাখিয়া কিছুক্ষণ নলটি ঘোরাও। কাচ গলিয়া প্রান্তটি মহণ হয়। নলের প্রাস্ত বেশীক্ষণ শিখার মধ্যে রাখিলে নলের মুখ বন্ধ হইয়া যাইবে। ঠাণ্ডা হইবার জন্ম নলটি অ্যাস্বেষ্টস্ বোর্ডের উপর রাখ।

কাচ নল ও কাচ-দণ্ড কাটিবার পরে উহাদের প্রান্তগুলি সর্বদা মস্থা করিয়া লইবে।

ৰ্বাকান (Bending a glass tube):

একটি কাচ-নলের ত্বই প্রান্ত ত্বই হাতে আহুভূমিকভাবে ধরিয়া 'ফিশ্টেল' দীপের চওড়া শিখায় অনবরত ঘুরাইতে থাক। কাচ-নলটিকে যে স্থানে বাঁকাইবে সেই স্থান জুড়িয়া নলের প্রায় ত্বই ইঞ্চি পরিমাণ স্থান যেন সমান

১০ নং চিত্র-কাচ-নল বাঁকাইবার জন্ম তাপ দেওয়া

ভাবে উত্তপ্ত হয়। এইরপে নলটি উত্তপ্ত করিতে থাক যতক্ষণ না উহার উত্তপ্ত স্থানটি বেশ নরম হইয়া নলটি নিজভারে বাঁকিয়া আসে। এখন নলটিকে শিখার বাহিরে আনিয়া নরম থাকিতে থাকিতে ধীরে ধীরে নির্দিষ্ট কোণে বাঁকাও এবং তৎক্ষণাৎ বাঁকান নলটি অ্যাস্বেষ্টস্ বোর্ডের উপর চাপিয়া ধর, যাহাতে উহার বাহু তুইটি একই তলে থাকে। নলটিকে যে কোণে বাঁকাইতে হইবে অ্যাস্বেষ্টস্ বোর্ডের উপর সেইরপ কোণ পেন্দিল দিয়া পূর্বে আঁকিয়া লইয়া উত্তপ্ত ও নরম নলটি অ্যাস্বেষ্টস্ বোর্ডের উপর সেইরপ কোণ পেন্দিল দিয়া পূর্বে আঁকিয়া লইয়া উত্তপ্ত ও নরম নলটি অ্যাস্বেষ্টস্ বোর্ডের উপর রাখিয়াও ধীরে ধীরে বাঁকাইতে পার।

বাঁকান গরম নলটি অ্যাস্বেষ্টস্ বোর্ডের উপর রাখিয়া ঠাগু। কর এবং উহার উপর ভূসা জমিয়া থাকিলে ন্যাকড়া দিয়া পরিষ্কার করিয়া ফেলু।

ভাল বাঁকান কাচ নলের রন্ধ সর্বত্ত সমান থাকিবে। নীচের নলগুলির মধ্যে গ নলটি বাঁকান ঠিক হইয়াছে। ক ও খ নল তুইটি ঠিক মত বাঁকান হয় নাই।

১১ नः ठिख

৪। সরু মুখ যুক্ত নল প্রস্তুত করা (Drawing out a jet):

একটি সরু কাচ-নলের ছই প্রান্ত ছই হাতে ধরিয়া বুনসেন দীপের শিখায় অনবরত ঘুরাইতে থাক। উত্তপ্ত স্থানটি বেশ নরম হইলে নলটি শিখার বাহিরে আনিয়া ছই প্রান্ত ছই হাত দিয়া সমানভাবে ও সোজাভাবে ধীরে ধীরে টান—

১২ নং চিত্ৰ

উহার মাঝধানটা খুব সক হইয়া যায়। লক্ষ্য রাখিবে, নলের তুই অংশ যেন পৃথক না হয়। অ্যাস্বেষ্টস্ বোর্ডের উপর রাখিয়া নলটি ঠাগুা কর। ফাইল ধারা সক্ষ অংশের মাঝধানে আঁচড় কাটিয়া তুই অংশে ভাগ কর। সক্ষ মুখ যুক্ত তুইটি নল পাওয়া যাইবে।

কৈশিক-নল (capillary.tube) প্রস্তুত করিতে হইলে একটি সরু কাচ-নলকে পূর্বের স্থায় উত্তপ্ত করিয়া দৈর্ঘ্য বরাবর টানিয়া খুব সরু লম্বা নলে পরিণত কর। এই নল হইতে প্রায় 10 সে. মি. দীর্ঘ টুক্রা ফাইলের সাহায্যে কাটিয়া লও! কঠিন পদার্থের গলনাংক নির্ণয়ে কৈশিক-নল ব্যবহৃত হয়। সক্ষ কাচ-নলের পরিবর্তে পরীক্ষা-নল লইয়া কৈশিক-নল প্রস্তুত করা যায়।

৫। নলের মুখে বাল্ব প্রস্তুত করা (Glass blowing):

একটি কাচ-নলের একপ্রাস্ত হাতে ধরিয়া অপর প্রাস্ত ব্নসেন শিখায় রাখিয়া ধীরে ধীরে ঘুরাইতে থাক যতক্ষণ না নলের মুখ উত্তাপে নরম হইয়া বন্ধ হইয়া

১৩ নং চিত্ৰ

যায়। এই অবস্থায় নলটি শিখার বাহিরে আনিয়া নলের অপর মুখে ফুঁ দাও। নলের নরম প্রান্ত গোল হয়। এইরূপে ইহাকে কয়েকবার উত্তপ্ত করিয়া নরম কর এবং অপর প্রান্ত হইতে ফুঁ দাও। নলের মুখে একটি গোল বাল্ব প্রস্তুত হয়।

৬। কর্ক ছিদ্র করা (Boring a cork):

এমন একটি কর্ক লও যাহার সক্ষ প্রান্তের ব্যাস, যে ফ্রাস্ক বা বোতলের মুখে কর্ক লাগাইতে হইবে, সেই মুখের ব্যাস অপেকা সামান্ত বড় হয়। জল দিয়া

১৪ নং চিত্র—কর্ক-সংকোচক

কর্কটি ভিজাইয়া লও এবং কর্ক-সংকোচক-এর (cork-squeezer) মধ্যে

রাথিয়া সাবধানে চাপ দাও—কর্ক যেন ভাঙ্গিয়া না যায়। ইহাতে কর্কটি বেশ নরম হয় এবং পাত্রের মুখে আঁটভাবে লাগে।

যে নল কর্কের মধ্যে প্রবেশ করাইতে হইবে তাহার ব্যাদের চেয়ে একটু ছোট ছিন্ত-বিশিষ্ট কর্ক-ছেদক (cork-borer) বাছিয়া লও। টেবিলের উপর কর্কের মোটা দিক রাথিয়া বাম হাতে উহাকে জোরে ধর। ছেদকের ধারাল

প্রান্ত জলে ভিজাইয়া, কর্কের উপর
যে স্থানে ছিদ্র করিতে হইবে, সেই
স্থানে লম্বভাবে রাথ। ছেদকটি নীচের
দিকে চাপিয়া ধীরে ধীরে ঘুরাইতে
থাক, ইহা কর্ক কাটিয়া সোজা উহার
মধ্যে প্রবেশ করে। লক্ষ্য রাখিবে,
ছেদক যেন সর্বদা লম্বভাবে থাকে।
এইরপে ছেদক কর্কের প্রায় শেষ
পর্যন্ত পৌচাইলে উহা টানিয়া
বাহির কর। কর্কের বিপরীত দিকে
অন্তর্মপ জায়গায় ছেদক ঘুরাইয়া ছিদ্র

১৫ নং চিত্র—কর্ক ছিজ করা, পার্বে কর্ক-ছেদক

কর্ক ছিদ্র করিবার পর ছেদকের মধ্যের কর্কের গুঁড়া শলাকার সাহায্যে পরিষ্কার করিয়া উহা যথাম্ভানে রাধিয়া দাও।

সম্পূর্ণ কর।

একটি ছিদ্র করিতে হইলে কর্কের ঠিক মাঝগানে করিবে। ছুইটি ছিদ্র করিতে হইলে ছিদ্র ছুইটি কেন্দ্র হুইতে যেন সমান দূরে হুয়।

রবার-কর্ক ছিদ্র করিবাব কালে ছেদকের ধারাল প্রান্থ মাঝে গাঢ় কষ্টিক সোডা দ্রবণে ভিন্ধাইয়া লইডে হয়।

[쒹]

সরল যন্ত্রপাতি ফিট্ করা (Fitting up of simple apparatus):

পূর্বে তোমরা কাচ-নল কাটা, কাচ-নল বাঁকান, স্থচলম্থযুক্ত নল প্রস্তুত করা, কর্কে ছিদ্র করা ইত্যাদি শিথিয়াছ। এখন তোমরা এই সব প্রণালীর সাহায্যে সরল যন্ত্রপাতির বিভিন্ন অংশ প্রস্তুত করিয়া ঐ অংশগুলি সংযোজনা করিতে শিথিবে।

ওয়াস বেত্তল (Wash bottle)

একটি ওয়াস্ বোতল লইয়া পরীক্ষা করিয়া দেখ। ইহা নিম্নলিখিত অংশগুলি লইয়া গঠিত।

- (১) একটি চ্যাপ্টাতল ফ্লান্স (Flat bottomed flask)।
- (২) ফ্লাম্বের মৃথে আঁট করিয়া লাগে এরপ একটি কর্ক; কর্কে তৃইটি ছিদ্র পাশাপাশি রহিয়াছে— —উহাদের ভিতর দিয়া তৃইটি কাচ নল ঠিক প্রবেশ করান যায়।
 - (৩) সুলকোণে বাঁকান একটি ছোট কাচ-নল।
- (৪) স্ক্রকোণে বাঁকান একটি বড় কাচ-নল। ইহার ছোট বাছর সহিত একটি সক্ষম্থযুক্ত নল রবার-নলের সাহায্যে সংযুক্ত আছে।

লক্ষ্য করিয়া দেখ, স্ক্ষকোণে বাঁকান নলের
শেষ প্রান্ত ফ্লান্ধের প্রায় তলা পর্যন্ত এবং স্থলকোণে ১৬ নং চিত্র—ওয়াদ বোতল
বাঁকান নলের শেষপ্রান্ত কর্কের নীচ পর্যন্ত পৌছিয়াছে। উভয় নলের বাহিরের
বাহু তুইটি একই সরল রেখায় এবং একই তলে আছে।

ওয়াস্ বোতল ফিট্ করাঃ

প্রয়োজনীয় যন্ত্রপাতি: একটি চ্যাপ্টাতল ফ্লাক্ষ (500 সি. সি.), একটি সক্ষ কাচ-নল, ফ্লাম্বের মুখে আঁটভাবে লাগে এইরূপ একটি কর্ক, কর্ক-ছেদক, রবার-নল, ত্রিকোণাকার ফাইল।

পদাতি: একটি 500 সি. সি. আয়তনের চ্যাপ্টাতল ফ্লাস্ক লও এবং উহার উচ্চতা মোটাম্টি মাপিয়া লও। সক্ষ কাচ-নল হইতে তিনটি থণ্ড কাট। একটি থণ্ডের দৈর্ঘ্য প্রায় 30 সে. মি. (ফ্লাস্কের উচ্চতার প্রায় দেড় গুণ); দ্বিতীয়টির দৈর্ঘ্য প্রায় 15 সে. মি. (প্রথম থণ্ডের প্রায় অর্ধেক); তৃতীয়টির দৈর্ঘ্য প্রায় 10 সে. মি. (প্রথম থণ্ডের প্রায় এক-তৃতীয়াংশ)। এই কাচ-নল তিনটির প্রান্ত মস্থণ কর।

30 সে. মি. দীর্ঘ কাচ-নলটিকে উহার এক প্রান্ত হইতে প্রায় 6 সে. মি. দূরতে প্রায় 60° কোণে বাঁকাও। 15 সে. মি. দীর্ঘ নলটিকে উহার প্রায় মাঝখানে প্রায় 120° কোণে বাঁকাও। 10 সে. মি. দীর্ঘ কাচ-নলটি লইয়া সক্রম্খযুক্ত নল (jet) প্রস্তুত কর। নলগুলি অ্যাস্বেষ্টস্ বোর্ডের উপর রাখিয়া ঠাণ্ডা কর। ঠাণ্ডা হইবার পর নলগুলি পাতিত জলের সাহায্যে ধৌত করিয়া ফেল।

এখন কর্কটি জল দিয়া ভিজাইয়া কর্ক-সংকোচকের সাহায্যে সাবধানে চাপিয়া নরম কর, যেন উহা ফ্রাস্কের মুখে আঁটভাবে লাগে। তারপর উপযুক্ত কর্ক-ছেদকের সাহায্যে কর্কের মধ্যে উহার কেন্দ্রের বিপরীত দিকে কেন্দ্র হইডে সমান দ্রে হইটি ছিদ্র কর। ছিদ্রের ব্যাস এইরপ হইবে যাহাতে বাঁকান নল ত্রইটিকে ছিদ্র হইটির মধ্য দিয়া ঠিক প্রবেশ করান যায়।

এইরপে ওয়াস্ বোতলের বিভিন্ন অংশগুলি প্রস্তুত করিয়া কর্কের ছিদ্র তুইটি এবং বাঁকান নল তুইটির প্রাস্তু একটু জলে ভিজাইয়া লও। স্ক্রুকোণে বাঁকান নলের দীর্ঘবাছ রুমাল দিয়া ধরিয়া আস্তুে আস্তুে ঘুরাইয়া নলটি কর্কের ছিদ্রে প্রবেশ করাও। অপর বাঁকান নলটিও এইরপে ছিদ্রে প্রবেশ করাও। (এইরপে প্রবেশ করাইবার কালে নলের বাঁকা জায়গা কথনও ধরিবে না। নল ছইটি এমন ভাবে প্রবেশ করাইবে যেন স্ক্রাকোণে বাঁকান নলের ক্ষুদ্র বাছ এবং স্থলকোণে বাঁকান নলে বাহিরের বাছ কর্কের উপরে একই তলে এবং একই সরল রেখায় থাকে। পার্মের চিত্র দেখিলে ইহা বুঝিতে পারিবে। স্ক্রাকোণে বাঁকান নলের বাহিরের প্রান্ত রবার নলের সাহায্যে সক্রম্থযুক্ত নলের (jet) সঙ্গে সংযুক্ত কর।

নল ছুইটি সহ কর্কটি ফ্লাস্কের মুথে আঁটিয়া দাও।
দেখ, দীর্ঘ নলের শেষ প্রাস্ত ফ্লাস্কের প্রায় তলা পর্যন্ত
এবং ছোট নলের শেষ প্রাস্ত কর্কের একটু নীচ পর্যন্ত যায়।
নলসহ কর্কটি খুলিয়া ফ্লাস্ক ও নল পাতিত জল ঘারা
ধৌত কর। ফ্লাস্কের প্রায় তিন-চতুর্থাংশ পাতিত জলে
ভর্তি করিয়া পুনরায় কর্ক জুড়িয়া দাও।

ওয়াস্ বোতল সম্পূর্ণ বায়ুরোধী (airtight) হওয়া
আবশুক। বায়ুরোধী হইল কিনা ব্ঝিবার জন্ম ছোটনলের মুথে ফুঁ দাও। জলের উপর চাপ পড়াতে জল
দীর্ঘ নল বাহিয়া উপরের দিকে উঠে। মুখ সরাইয়া
তৎক্ষণাৎ ছোট নলের খোলা মুখ অঙ্গুলী দ্বারা বন্ধ কর।
ফান নলের জল এক জায়গায় স্থির থাকে, তবে ব্ঝিবে ওয়াস্ বোতল বায়ুরোধী
হইয়াছে।

ছোট নলের মৃথে ফুঁ দিলে জল দীর্ঘ নলটি বাহিয়া উপরের দিকে উঠে এবং সরুম্থযুক্ত নল দিয়া জল বাহির হইয়া যায়। সরুম্থযুক্ত নলটি রবার নলের সাহায্যে যুক্ত থাকায় জলের ধারা ইচ্ছামত এদিক ওদিক ঘুরান যায়। বেশী পরিমাণে জল প্রয়োজন হইলে বোতলটি কাত করিয়া ছোট নল দিয়া জল ঢালিতে হয়।

ভূভীয় অধ্যায়

পরীক্ষাগার প্রণালী (Laboratory techniques)

[ক]

সাধারণ পরীক্ষাগার প্রণালীর বর্ণনা

কতকগুলি সাধারণ প্রণালী বা প্রক্রিয়ার সাহায়ে ল্যানুরেটরীতে পদার্থের পরীক্ষা কর হয়। সর্বপ্রকার রাসায়নিক পরীক্ষাতেই এই সমস্ত ·প্রণালীর কোন একটির সাহায্য লইতে হয়। এখানে প্রথমে এই প্রণালীগুলির বর্ণনা এবং পরে মিশ্রপদার্থের উপাদানগুলি পুথকীকরণে উহাদের প্রয়োগ সম্বন্ধে আলোচনা করা হইয়াছে।

১। দ্ৰবণ (Solution)

পরীক্ষা

পর্বেফ্র

সিদ্ধান্ত

কিছু জল লইয়া ট্হাতে অল পরিমাণ সাধারণ লবণ মিশাইয়া ভাল করিয়া নাডিয়া দাও।

১। (क) একটি পরীক্ষা-নলে । সাধারণ লবণ জলের মধ্যে সর্বত্ত সমানভাবে মিশিয়া অদুগ্য হইয়া যায়। জল পূর্বের স্থায় বচ্ছ দেখায়। [জলের সকল অংশ मगान जनगाङ ।]

লবণ জলে দ্রবণীয় (Soluble)। জল ও লবণের এই সমসত * মিখাণকে জবণ বলে। লবণ দ্রবীভূত ইইয়াছে এবং জল দ্রবী-ভূত করিয়াছে। জলকে দ্রাবক (Solvent) এবং লবণকে দ্রাব (Solute) বলে। স্ত্রাং, স্ত্রণ≕স্তাবক + স্তাব।

ধীরে উত্তপ্ত করিয়া সমস্ত জল থিকে বাষ্পীভূত কর।

(থ) পরীক্ষা-নলটি থারে পরীক্ষা-নলে কঠিন লবণ পড়িয়া

जनरं य जान हिल, जानक দূরীভূত হইলে, তাহা অবশেষ-রূপে পড়িয়া থাকে।

২। (ক) একটি পর কা-নলে । কিছুক্ষণ ২তস্ততঃ খুরিয়া বালি किছু জল लहेशा উহাতে অল । निक्तित ভারে নাচে জমা হয়। বিশুদ্ধ বালি দিয়া ভাল করিয়া নাডিয়া দাও।

জল ও বালির মিশ্রণ অসম**স**ত্ত।* বালি জলে অন্তবনীয় (insoluble) L

^{*} যে সমস্ত পদার্থের বিভিন্ন অংশের গঠন ও ধর্ম এক তাহাদের সমস্ত্র (Homogeneous) পদার্থ এবং যাহাদের বিভিন্ন অংশের গঠন ও ধর্ম বি**ভিন্ন** তাহাদের **অসমসত্ত্র** (Heterogeneous) পদার্থ বলে।

পরীক্ষা	পর্যবেক্ষণ	বিদ্বান্ত
(থ) উপরিস্থিত থানিকটা স্বচ্ছ জল আরেকটি পরীক্ষা-নলে ঢাল এবং তাপ প্রয়োগ করিয়া সমস্ত জল বাষ্পীভূত কর।	পরীক্ষা-নলে কোন অবশেষ থাকে না।	বালি জলে জ্বীভূত হয় নাই।
৩। নাঁচের দ্রবাগুলির অল্প পরিমাণ লইয়া ১ (ক) নং পরীক্ষা কর।		
(ক) নাইটার (সোরা) (গ) কপার সালফেট (তু [*] তে)	শ্বচ্ছ তরল। শ্বচ্ছ কিন্তু নীল বর্ণের তরল।	নাইটার, কপার সাল কেট, আমোনিয়াম ক্লোরাইড জলে দ্রবণীয়।
(গ) অ্যামোনিয়াম ক্লোরাইড (নিশাদল)	শ্বদ্ধ ভরল । পরীক্ষা-নলটি ঠাণ্ডা হয় ।	অ্যামোনিয়াম ক্লোরাইড জলে দ্রবীভূত হইলে তাপের শোধ্ হয়।
(গ) চক খ ড়ির গু ঁড়া (ঙ) কোহল বা স্পিরিট	অপরিবর্তিত থাকে। জলের সহিত সম্পূর্ণ মিশিয়া যায়।	জলে অন্তবণীয়। কোহল এবং দালফিউরিক অ্যাসিড জলে দ্রবণীয়।
(চ) কয়েক ফোটা গাঢ় সালফিউরিক আাসিড (ছ) সরিষার তৈল	পরীক্ষা-নলটি গরম হয়। কিছুক্ষণ অপেক্ষা করিগার পর জল ও তৈল ছুইটি স্তারে পৃথক হুইয়া যায়।	সালফিউরিক আসিডের স্তব্ধ প্রস্তুতিকালে তাপের উ দ্ভব হয়। তৈল জলে অ দ্র বগীয়।
8। একটি পরীক্ষা-নলে করেকটি কপারের ছিলা (Copper turnings) লইয়া উহাতে জল মিশাইয়া নাড়িয়া দাও।	কপার অপরিবর্তিত থাকে।	কপার জলে অ দ্র বনী র।

পরীক্ষা	পর্যবেক্ষণ	নিদ্ধান্ত
ঐ পরীক্ষা-নলে সামাস্ত গাঢ় নাইট্রিক অ্যাসিড মিশাও। ঐ নীল তরল তাপ প্রয়োগে সম্পূর্ণ বাপ্পীভূত কর।	বাদামী রঙের গ্যাস নির্গত হয়। নীল ও স্বচ্ছ তরল পাওয়া যায়। নীল কঠিন পদার্থ অবশিষ্ট থাকে।	কপার নাই ট্রিক আদিডের সহিত রাসায়নিক ক্রিয়ার ফলে দ্রবীভূত হইয়াছে। উৎপন্ন কপার নাইট্রেট পাওয়া যায়। ইহা কপার হইতে সম্পূর্ণ পৃথক। স্থতরাং কোন কোন পদার্থ দ্রাবকের সহিত রাসায়নিক প্রক্রিয়ার ফলে দ্রবীভূত হয়।

তুই বা ততোধিক পদার্থের সমসত্ব মিশ্রণকে দ্রবণ বলে। দ্রবণের উপাদান-গুলির অবস্থা কঠিন, তরল ও বায়বীয় হইতে পারে। স্থতরাং বিভিন্ন অবস্থার দ্রাবক ও দ্রাবের মিশ্রণে নানা প্রকার দ্রবণের স্বষ্ট হয়। ১নং, ৩নং-এর (ক), (খ), (গ) পরীক্ষার দ্রবণগুলি তরলে কঠিনের দ্রবণ। ৩নং-এর (ঙ), (চ) পরীক্ষার দ্রবণগুলি তরলে তরলের দ্রবণ। পরে দেখিবে, অ্যামোনিয়া, সালফার-ডাই-অক্সাইড ইত্যাদি গ্যাস জলে দ্রবীভূত হইয়া জলীয় দ্রবণ উৎপন্ন করে। ইহা ব্যক্তাত বিভিন্ন প্রকারের দ্রবণের উদাহরণ পরে জানিবে। এই সকল দ্রবণের মধ্যে তরলে কঠিনের দ্রবণের সংখ্যাই স্বাধিক। তরল দ্রাবকের মধ্যে জলই আবার স্বাপেকা অধিক সংখ্যক পদার্থকে দ্রবীভূত করে এবং এইজ্ল দ্রাবক হিসাবে জলের ব্যবহার স্বাপেক্ষা বেশী। অন্ত তরল পদার্থেরও দ্রাবক হিসাবে ব্যবহার আছে। একটি পদার্থ এক দ্রাবকে অন্তরণীয় কিন্তু অন্ত দ্রাবকে দ্রবণীয় হইতে পারে।

পরাক্ষা	भ्यत्यक् न	াসদ্বান্ত
 । তুইটি পরীক্ষা-নলে অল্প পরিমাণ । গন্ধক লইয়া উহার একটিতে জল এবং অপরটিতে কার্বন ডাই-সালফাইড মিশাইয়া নাড়িয়া দাও। 	থাকে কিন্তু কাৰ্বন ডাই-	কাৰ্বন ডাই-সালফাইডে

जवरंगत्र देविनिष्टेर :

পরীক্ষা	পর্যবেক্ষণ	সিদ্ধান্ত
১। একটি ছোট বীকারে সামাশ্র জল লইয়া উহাতে অল্প পরিমাণ নাইটার চূর্ণ মিশ্রিত করিয়া কাচ-দণ্ড দারা উত্তমরূপে নাড়িয়া	নাইটার জলের সহিত স র্ব তা সমানভাবে মিশিয়া যায়। জল স্বচ্ছ দেখায়।	জবণ সমসন্ত মিশ্রণ।
দাও। ২ । বীকারে অল্প অল্প পরিমাণ নাইটার মিশাও এবং নাড়িতে থাক।	প্রথমে নাইটার দ্রবীভূত হইয়া ধায়। পরে আর দ্রবীভূত না হইয়া বীকারের নীচে জমা হয়।	নির্দিষ্ট তাপমাত্রায় নির্দিষ্ট পরিমাণ দ্রাবক নির্দিষ্ট পরিমাণ দ্রাব দ্রবীভূত করিতে পারে। এইরূপ দ্রবণকে সংপৃক্ত দ্রবণ (Saturated solution) বলে। নির্দিষ্ট পরিমাণের কম দ্বাব থাকিলে দ্রবণকে অসংপৃক্ত দ্রবণ (Unsaturated solution) বলে।
	অতিরিক্ত নাইটার দ্রবীভূত হয়। নাইটার দ্রবীভূত হ ইয়া	(১নং পরীক্ষার দ্রবণ) * তাপমাত্রা বৃদ্ধি করিলে নির্দিষ্ট পরিমাণ দ্রোবকে দ্রবীপৃত জ্রাবের পরিমাণ বৃদ্ধি পায়।
মিশাইয়া বীকারটি আরও উত্তপ্ত কর। ৪। বীকারটি ঘরের তাপ- মাত্রা পর্যন্ত ঠাণ্ডা কর।	বার। দ্রবণ হইতে কিছু পরিমাণ নাইটার দানা বাঁধিয়া নীচে জমা হয়।	উত্তাপ কমাইলে দ্রবনীয়তা কমিয়া ধায়।

অবণে কোন কারণে নির্দিষ্ট পরিমাণের বেশী জ্ঞাব থাকিলে উহাকে অতিপৃক্ত জ্ঞাবণ (Supersaturated solution) বলে।

পর্যবেক্ষণ

শিদ্ধান্ত

 বীকারটিতে আরও নীচের জমা নাইটার খানিকটা জল দিয়া ভাল দ্রবীভূত হয়।
 করিয়া নাড়িয়া দাও।

৬। বীকারটি তারজালির কঠিন নাইটার অবশিষ্ট উপর বুনসেন দীপের থাকে। সাহাযো ধীরে ধীরে উত্তপ্ত করিয়া সমস্ত জল বাপ্পীভূত কর। নির্দিষ্ট তাপমাত্রায় জ্রাবকের পরিমাণ বৃদ্ধি করিলে জ্রবাভূত জ্রাবের পরিমাণ বৃদ্ধি পায়। স্থতরাং, জ্রবণের উপাদানগুলির আপেক্ষিক পরিমাণ নির্দিষ্ট সীমানার মধ্যে পরিবর্তন করা যায়।
এখানে জ্রবণের একটি উপাদান (জ্রাব) পাওয়া গিয়াছে। [পরে দেখিবে, জ্রবণের ছুইটি উপাদানই—জ্রাব ও জ্রাবক—পৃথক করা যায়।]
স্থতরাং, জ্রবণের উপাদান সহজ প্রণালী দ্বারা পৃথক করা যায়।

২। আভাবণ (Decantation)

যদি কোন ভারী অন্তবণীয় কঠিন পদার্থ কোন পাত্রে তরলের মধ্যে প্রলম্বিত থাকে তবে পাত্রটিকে কিছুক্ষণ স্থিরভাবে রাখিলে কঠিন পদার্থটি নিজের ভারবশতঃ পাত্রটির তলায় থিতাইয়া জমে এবং উপরের তরল প্রায় স্বচ্ছ হইয়া আদে। এইরূপে পাত্রের তলায় অন্তবণীয় কঠিন পদার্থ জমিতে দেওয়াকে থিতান (sedimentation) এবং ঐ কঠিনকে কল্ক (sediment) বলে। জমা কঠিন পদার্থ না নাড়িয়া উপরিস্থ স্বচ্ছ তরলকে যথাসম্ভব ঢালিয়া লওয়ার প্রণালীকে আন্তর্ধাবণ (decantation) বলে।

পরীক্ষা। একটি বীকারে জলের মধ্যে কিছু মাটি মিশাইয়া কাচ-দণ্ড দারা ভাল করিয়া নাড়িয়া দাও। মাটি মিশিয়া জল দোলা হয়। বীকারটি কিছুক্ষণ স্থিরভাবে রাথ—ভারী অদ্রাব্য পদার্থগুলি ধীরে ধীরে বীকারের নীচে জমা হয় এবং উপরের জল ক্রমশঃ স্বচ্ছ হইয়া আসে। এখন বীকারটি কাত করিয়া উপরিস্থ স্বচ্ছ জলঃ কাচ-দণ্ডের গা বাহিয়া ধীরে ধীরে আরেকটি

বাঁকারে ঢাল—লক্ষ্য রাখিবে, নাচের জমা কঠিন পদার্থ (কল্ক) যেন না নড়ে। এইরপে কল্ক না নাড়িয়া যতটা সম্ভব জল উপর হইতে ঢালিয়া ফেল।

এই প্রণালীতে তরলে ভাসমান স্কল্প কঠিন পদার্থের কণা পৃথক করা যায় না।

৩। পরিত্রাবণ (Filtration)

ভারী ও লঘু, উভয় প্রকার অন্তবণীয় কঠিন পদার্থ কোন সচ্ছিন্ত পর্দার সাহায্যে তরল পদার্থ হইতে সম্পূর্ণরূপে পৃথক করা যায়। পৃথক করিবার এই প্রণালীকে পরিস্রাবন (filtration) বলে। সচ্ছিন্ত পর্দা হিসাবে ল্যাবরেটরীতে সাধারণত: ফিল্টার কাগজ (filter paper) ব্যবস্ত হয়।

য**ন্ত্রপাতি।** তুইটি বীকার, একটি কাচের ফানেল, ফিল্টার কাগজ, কাচ-দণ্ড, রিংযুক্ত একটি ষ্ট্যাণ্ড।

পদ্ধতি। একটি গোলাকার ফিল্টার কাগজ হই সমান ভাগে ভাঁজ করিয়া পুনরায় উহাকে হই সমান ভাগে ভাঁজ কর। তিন ভাঁজ একদিকে ও একভাঁজ অন্তদিকে রাথিয়া শঙ্কর (cone) আকারে উহার ভাঁজ খুলিয়া ফানেলের মধ্যে বসাও। কয়েক ফোটা জল দিয়া ফিল্টার কাগজটি ভিজাইয়া ফানেলের গায়ে ভাল করিয়া লাগাইয়া দাও—ফানেলের গা ও ফিল্টার কাগজের মধ্যে যেন ফাঁক না থাকে। ফানেলটি ট্যাণ্ডের রিং-এর মধ্যে বসাইয়া দাও। ফানেলের নীচে একটি বীকার রাখ যেন ফানেলের নল (stem) বীকারের গায়ে লাগে।

একটি বীকারে থানিকটা পরিষ্ণার জল লইয়া (কিছু সাধারণ লবণ দ্রবীভূত)
কর। উহাতে কিছুটা থড়ির গুঁড়া মিশাইয়া নাড়িয়া দাও। বীকারে জলের
সহিত একটি দ্রবণীয় এবং আরেকটি অন্তরণীয় কঠিন পদার্থ মিশ্রিত আছে।
এখন বীকারের মিশ্রণটি একটি কাচ-দণ্ডের গা বাহিয়া ফিলটার কাগজের উপর
ধীরে ধীরে ঢাল। কাচ-দণ্ডের প্রাস্থটি ফিল্টার কাগজের তিন ভাঙ্গের উপর
অংশ কেবলমাত্র স্পর্শ করিয়া অথবা উহার খ্বক্কাছাকাছি ধরিবে। ঢালিবার

সময় লক্ষ্য রাখিবে, ফানেলের জল-তল যেন সর্বদা ফিল্টার কাগজের উপর-প্রান্তের একটু নীচে থাকে।

১৮ নং চিত্র—পরিস্রাবণ ; ফিল্টার কাগজ ভাঁজ করা

ফিল্টার কাগজের অসংখ্য স্ক্র ছিদ্রের মধ্য দিয়া তরল বা দ্রবণ অনায়াসে চলিয়া যায় এবং নীচের বীকারে স্বচ্ছ তরল বা দ্রবণ সঞ্চিত হইতে থাকে। অদ্রবণীয় কঠিন পদার্থ ফিল্টার কাগজের উপর থাকিয়া যায়।

নীচের বীকারের স্বচ্ছ তরলকে পরিক্রত (filtrate) এবং ফিল্টার কাগজের উপর অদ্রবণীয় কঠিন পদার্থকে **অবশেষ** (residue) বলে।

একটি পরীক্ষা-নলে পরিস্রতের সামাগ্য অংশ লইয়া ব্নসেন শিখায় উত্তপ্ত কর। জল বাষ্পীভূত হইয়া গেলে পরীক্ষা-নলে কঠিন সাধারণ লবণ পড়িয়া থাকে। স্থতরাং লবণের দ্রবণ পরিস্রতরূপে জমা হইয়াছে।

অভএব, পরিস্রাবণ প্রণালীতে অদ্রবণীয় কঠিন পদার্থ তরল হইতে পৃথক করা যায় না।

ভরলে কঠিন পদার্থের জবণীয়ভার পরীক্ষা

कान कठिन भागर्थ जत्रल ज्वाम किना वृतिवात क्रम এकि भत्रीका-नल

তরল লইয়া উহাতে থানিকটা কঠিন পদার্থ মিশাইয়া ভাল করিয়া নাড়িয়া দাও। তারপর ফিল্টার করিয়া পরিস্রতের কয়েক ফোঁটা একটি ওয়াচ্-মাসে বাষ্পীভূত কর। যদি পাত্রে কোন অবশেষ থাকে তবে কঠিন পদার্থটি তরলে দ্রবণীয়। কোন অবশেষ না থাকিলে উহা অদ্রবণীয়।

৪। নিকাশন (Extraction)

মিশ্র পদার্থ হইতে উপযুক্ত দ্রাবকের শাহায়ে উহার কেবলমাত্র দ্রবণীর উপাদান দ্রবীভূত করিয়া অদ্রবণীয় উপাদান হইতে পৃথক করা যায়। এইরূপ পৃথক করিবার প্রণালীকে নিক্ষাশাল (extraction) বলে। মিশ্রণের উপাদান পৃথকীকরণে তোমরা এই প্রণালী প্রয়োগ করিবে।

৫। বাঙ্গীভবন (Evaporation)

যে কোন তাপমাত্রায় তরলের কেবল উপরিতল হইতে ধীরে ধীরে বাষ্পে পরিণতিকে ভবাষ্পীবন বা বাষ্পীকরণ (Evaporation) বলে।

(ক) তরল বেশী উদ্বায়ী হ'ইলে সাধারণ তাপমাত্রায় তরলকে বায়ুতে রাথিলেই উহা বাম্পীভৃত হয়।

পরীক্ষা। একটি ছোট বেসিনে অল্প পরিমাণ কার্বন ডাই-সালফাইড লইয়া বেসিনটি বায়ুতে রাখিয়া দাও। কিছুক্ষণ পরে দেখ, উহাতে কোন কার্বন ডাই-সালফাইড নাই—সমস্তই বাম্পীভূত হইয়া গিয়াছে।

স্তরাং, কার্বন ডাই-সালফাইড বা এরপ কোন বেশী উষায়ী তরলে কোন কঠিন পদার্থ দ্রবীভূত থাকিলে সাধারণ তাপমাত্রায় বাষ্পীভবন প্রণালীতে কঠিন পদার্থটি সংগ্রহ করা যায়, কিন্তু দ্রাবক ফিরিয়া পাওয়া যায় না।

পরীক্ষা। একটি বেসিনে কিছু কার্বন ডাই-সালফাইড লইয়া উহাতে অর পরিমাণ গদ্ধক দ্রবীভূত কর। বেসিনটি কিছুক্ষণ বায়ুতে রাখিয়া দাও। বেসিনে লাব গদ্ধক পড়িয়া থাকে—দ্রাবক কার্বন ডাই-সালফাইড বাঙ্গে পরিণত হইয়া ধায়। (খ) অপেক্ষাকৃত কম উদ্বায়ী তরলকে ওয়াটার বাথের বা জলগাহের উপর 100° দেটিগ্রেড বা উহার নিম তাপমাত্রায় সহজেই বাপ্পীভ্ত করা যায়।

ওয়াটার বাথ। ছই হাতল বিশিষ্ট একটি তামার বা লোহের পাত্তের মৃথের উপর কতকগুলি চ্যাপ্টা সমকেন্দ্রিক তামার আংটা থাকে। কেন্দ্রের আংটাটি

১৯ নং চিত্র—ওয়টোর বাথ

স্বাপেক্ষা ছোট এবং প্রবর্তী আংটাগুলি ক্রমান্বয়ে বড় হইতে থাকে। সব আংটাগুলি বসাইলে পাত্রটি সম্পূর্ণ ঢাকিয়া যায়। কেন্দ্র হইতে একটি বা উহার বেশী আংটা তুলিয়া ওয়াটার বাথের মৃথ প্রয়োজনমত বড় করা যায়। ওয়াটার বাথ টির অর্ধাংশ জলে ভর্তি করিয়া উহাকে ত্রিপদ-দ্যাণ্ডের উপর বসাইয়া উত্তপ্ত করা হয়। ওয়াটার বাথের জল বাম্পে পরিণত হয় এবং ঐ বাষ্প ওয়াটার বাথের উপরের তরলের পাত্রকে গ্রম করে

এবং পাত্রের তরল ধীরে ধীরে বাষ্পীভূত হয়।

পরীক্ষা। একটি বাষ্পীকরণ ডিশে কিছু সাধারণ লবণের দ্রবণ লই গা ডিশটি উত্তপ্ত গুয়াটার বাথের উপর বসাও। কিছুক্ষণ পরে দেখ, ডিশে সাধারণ লবণ পড়িয়া আছে, জল সম্পূর্ণ বাষ্পীভূত হইয়া গিয়াছে।

তোমরা ল্যাবরেটরীতে বীকারের সাহায্যে নীচের মত ওয়াটার বাথের বন্দোবস্ত করিতে পার। একটি বীকার অর্ধাংশ জলপূর্ণ করিয়া ত্রিপদ-ষ্ট্যাণ্ডে তার-জালির উপর বসাইয়া বৃনসেন দীপের সাহায্যে উত্তপ্ত কর। একটি ডিশে কিছু নাইটারের দ্রবণ লইয়া ডিশটি বীকারের মুথের উপর বসাও। কিছুক্ষণ পরে দ্রবণের জলীয় অংশ বাষ্পীভৃত হইয়া যায় এবং কঠিন নাইটার ডিশে পড়িয়া থাকে।

नका ताथित, ७ प्रांतित वात्थ यन मर्वना जन थात्क।

(গ) তরল ফুটাইয়া বাষ্পী।ভবন ক্রততর করা যায়।

খানিকটা সাধারণ লবণের দ্রবণ একটি বেসিনে লইয়া উহাকে তার-জালির উপর বুনসেন শিথায় উত্তপ্ত কর। দ্রবণটি ফুটিতে আরম্ভ করিলে জলীয় অংশ দ্রুত বাষ্পীভূত হইয়া যাইবে—সাধারণ লবণ বেসিনে অবশিষ্ট থাকিবে।

৬। পাতন (Distillation)

কোন তরলকে তাপ প্রয়োগে বাষ্পীভূত করিয়া সেই বাষ্পকে শীতল করিয়া পুনরায় তরলে পরিণত করিবার প্রণালীকে পাতন (Distillation) বলে। স্বতরাং পাতন প্রণালী বাষ্পীভবন ও ঘনীভবন—এই ছই প্রণালীর সমন্বয়।

যন্ত্রপাতিঃ পাতন ফ্লাস্ক; লিবিগ্ শীতক বা কন্ডেন্সার; গ্রাহক (receiver); থার্মোমিটার; ত্রিপদ-ষ্ট্যাণ্ড; তার-জালি; ব্নসেন দীপ; রবার-নল।

পাতন ফ্লাক্ষঃ গোলতলা বিশিষ্ট একটি সাধারণ ফ্লাক্ষ—বাষ্প বাহির হইবার জন্ম ইহার গলায় একটি সক্ষ নল থাকে।

লিবিগ শীতক বা কন্ডেন্সারঃ আবিষারক বৈজ্ঞানিক লিবিগের নামাহসারে এই যন্ত্রের নাম লিবিগ কন্ডেন্সার। কন্ডেন্সারের মধ্যে একটি দীর্ঘ সরু কাচ-নল থাকে। উহার চারিপাশ ঘিরিয়া আরেকটি মোটা কাচ-নল বেইনী-নলরূপে (jacket) থাকে। মোটা নলটির ছই প্রান্তের কাছাকাছি ছইটি ছোট পার্য-নল থাকে। ইহা ব্যবহার করিবার সময় পার্য-নলন্বয় ছইটি লম্বা রবার নল দ্বারা যুক্ত করিয়া দেওয়া হয়।

পদ্ধতি। একটি পাতন ফ্লাস্কে থানিকটা ঘোলা জল লইয়া উহাতে কিছু তুঁতিয়া দ্ৰবীভূত কর। এই জলে দ্ৰবণীয় ও অদ্ৰবণীয় পদাৰ্থ আছে।

ফ্লান্বটি ত্রিপদ-স্ট্যাণ্ডে তার-জালির উপর বসাইয়া বন্ধনীর সাহায্যে একটি স্ট্যাণ্ডের সহিত আটকাইয়া দাও। কর্কের সাহায্যে ফ্লান্কের মৃথে একটি থার্মো-মিটার বসাও। থার্মোমিটারের বাল্বটি পার্খ-নলের ঠিক নীচে কিন্তু জলের বেশ উপরে থাকিবে। কন্ডেন্সারের সক্ল-নলের এক প্রান্ত ফ্লান্কের পার্খ-নলের সহিত জুড়িয়া কন্ডেন্সারটি একটু কাত করিয়া বন্ধনীর সাহায্যে ষ্ট্যাণ্ডের সহিত আটকাইয়া দাও। কন্ডেন্সারের অপর নীচু প্রাস্ত একটি গ্রাহকের (এখানে একটি ফ্লাক্ষের) মৃথে প্রবেশ করাইয়া দাও। কন্ডেন্সারের নীচের পার্থ-নলের সহিত সংযুক্ত রবার নলটি জলকলের সহিত যুক্ত করিয়া দাও এবং উপরের পার্থ-নলের সহিত সংযুক্ত রবার-নলটির অপর প্রাস্ত Sink-এর মধ্যে রাথ। জলের কল খুলিলে নীচের পার্থ-নল দিয়া শীতল জল কন্ডেন্সারের মোটা নলে প্রবেশ করে এবং উহার মধ্যে দিয়া প্রবাহিত হইয়া উপরের পার্থ-নল দিয়া উত্তপ্ত জল বাহির হইয়া যায়। মধ্যের সক্ষ নলটি সর্বদা শীতল জলে ভুবান থাকে।

২০ নং চিত্র-পাতন

সমস্ত ব্যবস্থা সম্পূর্ণ হইলে পাতন ফ্লাস্কটিকে বুনসেন দীপের সাহায্যে উত্তপ্ত কর। কিছুক্ষণ পরে জল ফুটিতে আরম্ভ করে এবং উৎপন্ন জলীয় বাষ্পা ফ্লাস্কের পার্যবর্তী নলের ভিতর দিয়া কন্ডেন্সারের সক্ষপণে প্রবেশ করে। জলীয় বাষ্পাক্রীয় বা অন্তবনীয় অন্তব্যায়ী পদার্থ বাষ্পো পরিণত হয় না। জলীয় বাষ্পা কন্ডেন্সারের দীতল অংশের সংস্পর্শে আসিয়া পুনরায় ঘনীভূত হইয়া জলে পরিণত হয় এবং স্বচ্ছ বর্ণহীন জল ফোটা ফোটা করিয়া নীচের গ্রাহকে

সঞ্চিত ২ইতে থাকে। এই সঞ্চিত তরলকে (এখানে জল) পাতিত দ্রব্য (distillate) বলে।..ফাস্কে যে পদার্থ অবশিষ্ট থাকে তাহাকে **অবশেষ** (residue) বলে।

পরীক্ষা শেষ হইলে বুনসেন দীপ সরাইয়া জল-কলের সহিত যুক্ত রবার-নল খুলিয়া দাও—কন্ডেন্সারের মধ্যের জল পড়িয়া যায়। রবার-নল ছইটি কন্ডেন্সার হইতে খুলিয়া রাখ।

পাতন ফ্লাস্ক ও লিবিগ্ কন্ডেন্সারের পরিবর্তে বকষন্ত্রের (retoft) সাহায্যে পাতনক্রিয়া সম্পন্ন করা যাইতে পারে। এই যন্ত্রের গলাটি গ্রাহকের মধ্যে প্রবেশ করানো থাকে এবং গ্রাহক একটি শীতল জলের পাত্রে আংশিক ডুবানো থাকে। গ্রাহকের উপর কল হইতে জল ঢালা হয় অথবা একখানি

২১ নং চিত্র—বক্ষন্ত্রের সাহায্যে পাতন

ভিজা স্থাক্ড়া দিয়া গ্রাহকের উপরিভাগ ঢাকিয়া দেওয়া হয়। বকষদ্রের মধ্যে তরল প্রবেশ করাইবার জন্ম উহার উপরের দিকে ম্থ থাকে। বকষদ্রে তরল লইয়া উহাকে বুনসেন দীপের সাহায্যে উত্তপ্ত করা হয়। উষ্ণ বাষ্প গ্রাহকে আসিয়া শীতল হইয়া ঘনীভূত হয়।

ল্যাবরেটরীতে পাতন প্রণালীর প্রয়োগ অনেক। এই প্রণালীর সাহায্যে কোন তরলকে বিশুদ্ধ করা হয়। তরলে কোন অন্তবণীয় পদার্থ মিশ্রিত থাকিলে ফিল্টার করিয়া উহা পৃথক করা যায়; কিন্তু কোন দ্রবীভূত পদার্থ থাকিলে ইহা সম্ভব নহে। বাঙ্গীভবন প্রণালীতে শুধু দ্রাব সংগ্রহ করা যায়—দ্রাবক বাষ্প হইয়া উড়িয়া যায়। পাতন প্রণালীতে দ্রবণ হইতে দ্রাব ও দ্রাবক— ছইটি পদার্থকেই সংগ্রহ করা যায়। কিন্তু দ্রাব উদ্বায়ী হইলে ইহা সম্ভব নহে।

স্ফুটনের সময় থার্মোমিটারে ভাপমাত্রা অপরিবর্তিত থাকে। এই তাপমাত্রা পরীক্ষা-কালীন বায়্-চাপে তরলের স্ফুটনাংক। স্বতরাং এইরূপে কোন তরলের স্ফুটনাংক নির্ণয় করা যায়।

৭। উধ্ব পাতন (Sublimation)

কতকগুলি উদায়ী কঠিন তাপের প্রভাবে তরল না হইয়া সরাসরি বাম্পে পরিণত হয় এবং শীতল করিলে এই বাষ্প পুনরায় একই কঠিনে পরিণত হয়। যে প্রণালীতে ইহা করা হয় তাহাকে উর্ম্বপাতন (Sublimation) বলে এবং ঘনীভূত কঠিনকে উৎক্ষেপ (Sublimate) বলে।

যন্ত্রপাতি। পোরসেলিন বেসিন, ফানেল, ত্রিপদ-ষ্ট্যাণ্ড, তার জানি, ব্নসেন দীপ, বন্ধনী ও ষ্ট্যাণ্ড।

পদ্ধতি। একটি বেসিনে থানিকটা উদ্বায়ী কঠিন (অ্যামোনিয়াম ক্লোরাইড, আয়োডিন, কর্পূর বা ন্তাপ্থলিন—ইহাদের যে কোন একটি পদার্থ)

২২ নং চিত্র—উধ্ব পাতন

লইয়া বেসিন ত্রিপদ-ষ্ট্যাণ্ডে তার-জালির উপর রাখ। একটি ফানেলের নলের মূথ তূলা দিয়া বন্ধ করিয়া ফানেলটি বেসিনের উপর উপুড় করিয়া বসাও, যেন কঠিন পদার্থটি ফানেলে ঢাকা পড়ে। ফানেলের বাহির দিক এক টুক্রা ভিজ রটিং কাগজ দিয়া মুড়িয়া দাও। বুনসেন দীপের সাহায্যে বেসিনটি খুব ধারে ধীরে উত্তথ কর। তাপের প্রভাবে কঠিন পদার্থটি বাস্পীভূত হইয়া ফানেলের উপরের দিকে ঠাণ্ডা অংশে পুনরায় কঠিন হইয়া জমে। এইরূপে বেসিনেং

সমস্ত কঠিন ফানেলের গায়ে জমা হইলে তাপ দেওয়া বন্ধ কর। কিছুক্ষণ অপেক্ষ

কর—ফানেল সহ বেসিনটি ঠাণ্ডা হইতে দাও। তারপর ফানেলটি সাবধানে তুলিয়া আনিয়া উহার মধ্যের কঠিন একটি কাচের শলাকার সাহায্যে বাহির কর।

এই প্রণালী দারা উদ্বায়ী ও অহুদ্বায়ী কঠিনকে পৃথক করা যায়।

৮। কেলাসন বা স্ফটিকীকরণ (Crystallisation)

নির্দিষ্ট তাপমাত্রায় নির্দিষ্ট পরিমাণ দ্রাবক নির্দিষ্ট পরিমাণ দ্রাব দ্রবীভূত করিতে পারে। উচ্চতর তাপমাত্রায় সংপৃক্ত কোন দ্রবণকে শীতল করিলে ঐ পরিমাণ দ্রাবক নিয় তাপমাত্রায় ঐ নির্দিষ্ট পরিমাণ দ্রাব দ্রবীভূত করিতে পারে না। অতিরিক্ত দ্রাব নির্দিষ্ট জ্যামিতিক আকারে দানা বাঁধিয়া দ্রবণ হইতে পৃথক হইয়া যায়। এই দানাগুলিকে কেলাস বা স্ফটিক (crystals) বলা হয়। দ্রবণ হইতে কেলাস পৃথক করিবার প্রণালীকে কেলাসন বা স্ফটিকীকরণ (crystallisation) বলে।

নিম্নলিখিত উপায়ে কেলাস প্রস্তুত করা হয়।

🦯 ১। (ক) গরম সংপৃক্ত জবণকে শীতল করিয়াঃ

ব্দ্রপাতি। হইটি বীকার, কাচ-দণ্ড, ত্রিপদ-স্ট্যাণ্ড, তার-জালি, বুনসেন দীপ, স্ট্যাণ্ড সহ ফানেল, ফিল্টার কাগজ, থল ও মুখল।

পদ্ধতি। কিছু পরিমাণ কপার সালফেট (ছু তিয়া) খলে ভাল করিয়া গুঁড়া কর। একটি বীকারে খানিকটা জল লইয়া উহাতে অল্প অল্প করিয়া কপার সালফেটের গুঁড়া মিশাইয়া একটি কাচ-দণ্ডের সাহায়ে ধীরে ধীরে নাড়িতে থাক, যতক্ষণ না আল্প কপার সালফেট নীচে পড়িয়া থাকে। দ্রবণটি ঘরের তাপমাত্রায় সংপৃক্ত হইল। এখন বীকারটি তার-জালির উপর ব্নসেন দীপের সাহায়ে উত্তপ্ত করিতে থাক। কপার সালফেট সম্পূর্ণ দ্রবীভূত হইয়া যায়। এই উত্তপ্ত দ্রবণে আরও কিছু কপার সালফেট দিয়া ভালরপে নাড়িতে থাক, যতক্ষণ না কিছু কপার সালফেট নীচে পড়িয়া থাকে। দ্রবণটি এখন উচ্চতর তাপমাত্রায় সংপৃক্ত হইল। তারপর উপর হইতে পরিষ্কার ও

স্বচ্ছ দ্রবণ স্বস্থা একটি বীকারে স্বস্রাবণ করিয়া লও। বীকারটি একথানি কাগজ দিয়া ঢাকিয়া স্থিরভাবে রাখিয়া দাও। দ্রবণ শীরে ধীরে শীতল হইতে থাকে এবং কপার সালফেটের স্ফটিক দ্রবণ হইতে উৎপন্ন হইয়া বীকারের নীচে জ্বমা হইতে থাকে। দ্রবণ যত ধীরে ধীরে শীতল হইবে স্ফটিকের আকার ততই বড় হইবে। স্ফটিক পৃথক হইলে যে সংপৃক্ত দ্রবণ পড়িয়া থাকে তাহাকে লেখ দ্রব (mother liquor) বলে। শেষ দ্রব স্বস্থা একটি পাত্রে ধীরে ধীরে ঢালিয়া ফেল। স্ফটিকগুলি ফিল্টার কাগজের ভাজে চাপিয়া শুক্ষ কর।

(খ) লঘু জবণকে বাষ্পীতবন করিয়া:

একটি বেদিনে থানিকটা কপার সালফেটের লঘু জলীয় দ্রবণ লও। বেদিনটি তার-জালির উপর বসাইয়া ধীরে ধীরে উত্তপ্ত কর এবং কাচ-দণ্ড দ্বারা উহা নাড়িতে থাক। জল বাপ্পীভূত হইয়া দ্রবণটি ক্রমশঃ ঘন হইতে থাকে। মাঝে মাঝে কাচ-দণ্ডটি বাহিরে আনিয়া ঠাণ্ডা করিয়া দেখ। কাচ-দণ্ডের গায়ে কঠিনের দানা জমা হইলে, উত্তাপ দেওয়া বন্ধ কর। বেদিনটি স্থিরভাবে রাখিয়া দাও। দ্রবণ হইতে ফটিক পৃথক হইয়া আদিবে। পূর্বের নাম উপন হইতে শেষ দ্রব অন্ত পাত্রে ঢালিয়া ফেল এবং ফটিকগুলি শুক্ষ কর।

কেলাসন প্রণালী দারা কঠিন পদার্থের শোধন। পুনঃকেলাসন (Recrystallisation)

১। (ক) পদ্ধতিতে কপার সালফেটের যে কেলাস প্রস্তুত করিয়াছ তাহা শোধন করিতে হইবে।

পূর্ব বর্ণিত প্রণালীতে উচ্চ ভাপমাত্রায় কপার সালফেটের একটি সংপৃক্ত দ্রবণ প্রস্তুত কর। উত্তপ্ত দ্রবণটিকে যথাশীঘ্র পরিম্রাবণ কর এবং পরিম্রুত একটি বীকারে সংগ্রহ কর। বীকারটি একটি শীতল জলের পাত্রে বসাইয়া কাচ-দণ্ডের সাহায্যে দ্রবণ উত্তমরূপে নাড়িতে থাক। দ্রবণ শীতল হইলে কপার সালফেটের খূব স্ক্ষ কেলাস বীকারের নীচে জমা হইতে থাকে।

ফিল্টার কাগজের সাহায্যে পরিস্রাবণ কর; ফিল্টার কাগজের উপর

কেলাসগুলি সামান্ততম জল দারা একবার ধৌত কর। সমস্ত জল পড়িয়া গেলে কেলাসগুলি আরেকখানি ফিল্টার কাগজের ভাঁজে চাপিয়া শুষ্ক কর।

২। গলিত-পদার্থের ঘনীভবন দারাঃ

একটি বেসিনে কিছু সাধারণ গন্ধক লইয়া বেসিনটি বালি-খোলার (sand bath) উপর বসাইয়া বৃনসেন দীপের সাহায়ে উত্তপ্ত কর। সমস্ত গন্ধক গলিয়া একটি হলুদ তরল পদার্থে পরিণত হয়। বেসিনটি নামাইয়া একটি অ্যাস্বেস্টস্ বোর্ডের উপর রাখ। গলিত গন্ধক আন্তে আন্তে শীতল হইলে উহার উপরিভাগে একটি কঠিন সর পরে। কাচ-দণ্ড দ্বারা এই সরটিকে. কয়েকটি ছিদ্র করিয়া নীচের অবশিষ্ট তরল ধীরে ধীরে অক্যপাত্রে ঢালিয়া ফেল। সরটি সরাইয়া দেখ, বেসিনের গায়ে স্টের মত দীর্ঘাক্তি স্বচ্ছ ও হাল্কা হলুদ বর্ণের স্ফটিক গড়িয়া উঠিয়াছে।

ত। উধ্ব পাতন প্রণালী দারাঃ

(२५नः भूष्ठी (प्रथ)

৯। অধঃক্ষেপ্ৰ (Precipitation)

পরীক্ষা	পূৰ্যবেক্ষণ	ব্যাখ্যা	
১। একটি পরীক্ষা-নলে সাধারণ লবণের জলীয় জবণ (পাতিত জলে) লইয়া উহাতে সিলভার নাইট্রেট জবণ মিশাও।	পরীক্ষা-নলে একটি সাদা কঠিন পদা র্থ পৃথক হইয়া যায়।	সোডিয়াম নাইট্রেট ও সিলভার ক্লোরাইড উৎপত্ন হয়। সোডিয়াম নাইট্রেট জলে অবণীয় কিন্তু-সাদা সিলভার ক্লোরাইড জলে অজবণীয় বলিয়া জবণ হইতে পৃথক হইয়া যায়। পৃথক নৃতন পদার্থ টিকে (এখানে সিলভার ক্লোরাইড) অধ্যক্ষেপা (Precipitae) এবং প্রক্রিয়াটিকে অধঃক্ষেপা বলা হয়।	
২। একটি পরীক্ষা-নলে সোডিরাম সালফেটেরজলীয় • জ্ববণ লইয়া উহাতে বেরিরাম ; ক্লোরাইড জ্ববণ মিশাও।	সাদা অধংক্ষেপ।	NaCl+AgNO3 = AgCl+NaNO3 সাদা অধ্বংক্ষেপ অন্তবনীয় বেরিয়াম সালফেট অধ্বংক্ষিপ্ত হয় এবং সোডিয়াম ক্লোরাইড স্তবীভূত থাকে। Na2 SO4 + BaCl2 = BaSO4 + 2NaCl	

[4]

प्राधातन भरीकाभात अनालीत अरहाभ

সরল মিশ্রপদার্থের উপাদান পৃথকীকরণ (Separation of ingredients of simple mixtures): তোমরা সাধারণ পরীক্ষা প্রণালীর সহিত পরিচিত হইয়াছ। মিশ্রিত পদার্থের উপাদানগুলি পৃথক করিবার জন্ম এই সমস্থ প্রণালী ব্যবহৃত হয়। এই পৃথকীকরণে কোন কোন প্রণালী অবলম্বন করা হইবে তাহা উপাদানের প্রকৃতির উপর নির্ভর করে।

মিশ্র পদার্থের উপাদান পৃথকীকরণের কয়েকটি সহজ প্রণালী নিম্নে বর্ণনা করা হইল। উপাদানগুলি যাহাতে সম্পূর্ণরূপে পৃথক করা হয় সেদিকে বিশেষ লক্ষ্য রাখিতে হইবে।

চুম্বকের সাহায্যে পৃথকীকরণ

পরীক্ষা ১। বালি ও লোহচূর্ণের মিশ্রণ হইতে উপাদান তুইটি পৃথক কর। লোহচূর্ণ চুম্বক দারা আরুষ্ট হয়, বালি হয় না। স্থতরাং চুম্বকের সাহায্যে উপাদান তুইটি পৃথক করা যায়।

পদ্ধতি। মিশ্র পদার্থটি একখানি পরিষ্ণার কাগজের উপর বিস্তৃত করিয়া রাখ। মিশ্রণের উপরে একখানি চুম্বক ধর—লৌহচূর্ণ চুম্বকের আকর্ধণে উহার গায়ে লাগিয়া যায়, বালি কাগজের উপর পড়িয়া থাকে। চুম্বকটি মিশ্রণের উপর সব জায়গায় বার বার ধরিয়া সমস্থ লৌহচূর্ণ আরুষ্ট করিয়া লও। পরে চুম্বকের উপর হইতে লৌহচূর্ণ সরাইয়া একখানি কাগজের উপর রাখ।

এইরূপে উপাদান হুইটি সম্পূর্ণ পৃথক করা হইল।

উপযুক্ত জাবকের সাহায্যে পৃথকীকরণ

উপযুক্ত ভ্রাবকের সাহায্যে মিশ্র পদার্থের ভ্রবণীয় উপাদান নিঙ্গাশিত করিয়া পরিস্রাবণ প্রণালী দ্বারা অভ্রবণীয় উপাদান হইতে পৃথক করা হয়। পৃথকীকরণ সম্পূর্ণ করিতে হইলে বিশেষ লক্ষ্য রাখিতে হইবে যে, নিষ্কাশন করিবার সময় যেন সমস্ত দ্রবণীয় উপাদান দ্রাবকে দ্রবীভূত হয় এবং পরিস্রাবণের সময়ে যেন অদ্রবণীয় উপাদানটি দ্রবণীয় উপাদান হইতে সম্পূর্ণ পৃথক হয়।

পরীক্ষা ২। বালি ও সাধারণ লবণের মিশ্রণ হইতে উপাদান তুইটি পৃথক কর।

সাধারণ লবণ জলে দ্রবণীয়, বালি জলে অদ্রবণীয়। সাধারণ লবণ জলে দ্রবীভৃত করিয়া পরিস্রাবণ প্রণালী দারা জলায় দ্রবণ বালি হইতে পৃথক করা হয়। বালি ফিল্টার কাগজে অবশেষরূপে থাকে; বাঙ্গীভবন দারা পরিস্রুৎ ইইতে কঠিন সাধারণ লবণ পাওয়া যায়।

যন্ত্রপাতি। ছইটি বীকার, বেসিন, ফানেল, ফিল্টার কাগজ, কাচ-দণ্ড, ত্রিপদ-গ্রাণ্ড, তার-জালি, বুনসেন দীপ, বলয়যুক্ত দণ্ড।

পদ্ধতি। একটি বীকারে মিশ্র পদার্থটি লও। উহাতে কিছু জল দিয়া মিশ্র পদার্থটি ঠিক ঢাকিয়া দাও এবং কাচ-দণ্ড দ্বারা উহা নাড়িয়া দাও। বীকারটি ভার-জালির উপর ব্নদেন দাপের সাহায্যে উত্তপ্ত কর এবং কাচ-দণ্ড দ্বারা মিশ্রণটি নাড়িতে থাক। সাধারণ লবণ জলে দ্রবীভূত হয়। কিছুক্ষণ পরে উত্তাপ দেওয়া বন্ধ করিয়া বীকারটি প্রির ভাবে রাথিয়া দাও—বালি বীকারের নীচে জমা হইতে থাকে। ইতিমধ্যে পরিস্রাবণ করিবার যাবতীয় বন্দোবস্থ কর; পরিস্রুৎ সংগ্রহের জন্ম একটি বীকার লও। মিশ্রণের উপরিস্থ তরলকে সম্ভবমত কাচ-দণ্ডের গা বাহিয়া দানেলে ফিল্টার কাগজের উপর ঢাল—স্বচ্ছ পরিস্রুৎ নীঢ়ের বীকারে জমা হয়। এখন বীকারে আরও থানিকটা জল দাও, পূর্বের স্থায় উত্তপ্ত কর, নাড়িয়া দাও এবং কিছুক্ষণ অপেক্ষ। করিবার পর ফিল্টার কাগজের উপর আস্রাবণ কর। এই প্রক্রিয়া বার কয়েক কর যাহাতে মিশ্রণের সমস্ত লবণ দ্রবীভূত হইয়া আদে। শেষবারে বীকারের সমস্ত জল ফিল্টার কাগজের উপর ঢাল। বালির সহিত আর লবণ মিশ্রিত আছে কিনা দেখিবার জন্ম ফানেলের নল হইতে কয়েক ফোটা পরিস্রুৎ লইয়া ওয়াচ্-গ্র্যাসে বাম্পীভবন কর। কোন অবশেষ না থাকিলে ব্রিবে বালি হইতে লবণ সম্পূর্ণ পৃথক হইয়াছে।

অবশেষ থাকিলে উপরোক্ত প্রক্রিয়া পুনঃ পুনঃ কর যতক্ষণ না বালি হইতে লবণ সম্পূর্ণ পৃথক হয়।

পরিক্রৎ একটি বেসিনে লইয়া তার-জালির উপর বুনসেন দীপের সাহায্যে ধীরে ধীরে বাশ্পীভবন কর। সমস্ত জলীয় অংশ বাষ্পীভৃত হইয়া গেলে, বেসিনে কঠিন সাধারণ লবণ পড়িয়া থাকে।

ফিল্টার কাগজ ও বীকারের ব'লি আরেকটি বেসিনে লইয়' উত্তাপের স:হায়েয় বালি শুক কর।

এই প্রক্রিয়াটি নীচের মত চক করিয়া লিখিতে পার।

মিশ্র পদার্থ

(বালি ও সাবারণ লবণ)

উপযুক্ত পরিমাণ গরম জল দ্বরো সাধারণ লবণ সম্পূর্ণ দ্রবাভূত করিয়া পরিপ্রাবণ করা হইল। অবশেষ জলদ্বারা কয়েকবার ধৌত করা হইল।

পরিফ্র

অবলৈষ

সাধারণ লগণের জলীয় দ্রবণ । দ্রবণকে বাস্পীভবন করা হইল। সাধারণ লবণ অবশিষ্ট থাকে।

বালি ; ইহাকে শুদ করা হইল।

উপ্বৰ্পাতন প্ৰণালী দারা পৃথকীকরণ

প্রীক্ষা ৩। অ্যামোনিয়াম ক্লোরাইড ও সাধারণ লবণের মিশ্রণ হইতে উপাদান ছইটি পৃথক কর।

অ্যামোনিয়াম ক্লোরাইড উদ্বায়ী এবং দাধারণ লবণ অমুদ্বায়ী কঠিন পদার্থ। স্থুতরাং উপর্বপাতন প্রণালী দারা উহাদের পৃথক করা হয়।

যন্ত্রপাতি। বেসিন, ফানেল, ত্রিপদ-ষ্ট্যাণ্ড, তার-জালি, বুনসেন দীপ।

পদ্ধতি। একটি বেসিনে মিশ্র পদার্থটি লইয়া ত্রিপদ-ষ্ট্যাণ্ডে তাবজালির উপর বসাও। একটি ফানেলের নল (stem) তূলা দিয়া বন্ধ করিয়া বেসিনের মুথের উপর উপুড় করিয়া বসাও যেন মিশ্রণটি ফানেল দ্বারা সম্পূর্ণ ঢাকা থাকে।

একখানি ভিজা রটিং কাগজ দিয়া ফানেলের বাহির দিক মৃড়িয়া দাও। ব্নসেন দাপ-শিখায় বেদিনটি ধারে ধারে উত্তপ্ত কর। উদ্বায়ী অ্যামোনিয়াম ক্লোরাইড বাম্পীভৃত হইয়া ফানেলের মধ্যে জমা হইতে থাকে। ইহা যথেষ্ট পরিমাণ জমা হইলে উত্তাপ দেওয়া বন্ধ কর এবং ফানেলসহ বেদিনটি ঠাণ্ডা হইতে দাও। একটি কাচ-দণ্ডের সাহায্যে ফানেলের সমস্ত অ্যামোনিয়াম ক্লোরাইড বাহির করিয়া একখানি পরিষ্ণার কাগজের উপর রাখ। ফানেলটি পূর্বের ক্যায় বেদিনের উপর বসাইয়া পুনরায় উত্তপ্ত কর। আর উৎক্ষেপ (sublimate) জমা নাহইলে ব্ঝিবে ে অ্যামোনিয়াম ক্লোরাইড সম্পূর্ণ পৃথক হইয়াছে। উৎক্ষেপ জমা হইলে উক্ত প্রক্রিয়াটি পুনঃ পুনঃ কর। (২২নং চিত্র দেখ)

পরীক্ষা ৪। গন্ধক, নাইটার ও কাঠকয়লাচূর্ণ—এই তিনটি পদার্থের মিশ্রন (বারুদ) হইতে উপাদানগুলি পৃথক কর।

গন্ধক কার্বন ডাই-সালফাইডে দ্রবণীয় কিন্তু জলে অদ্রবণীয়। নাইটার জলে দ্রবণীয় কিন্তু কার্বন ডাই-সালফাইডে অদ্রবণীয়। কাঠকয়লা এই তুইটি দ্রাবকেই অদ্রবণীয়।

যন্ত্রপাতি। বীকার, বেসিন, ফানেল, ফিল্টার কাগজ, তার-জালি, ত্রিপদ-প্ট্যাণ্ড, ব্নদেন দীপ ইত্যাদি।

জাবক। কার্বন ডাই-সালফাইড ও জল। (কার্বন ডাই-সালফাইড দাহ্য বলিয়া উহা ব্যবহার করিবার সময় নিকটে কোন দীপশিথা রাথিবে না।)

পদ্ধতি। মিশ্র পদার্থটি একটি বীকারে লও। উহাতে উপযুক্ত পরিমাণ কার্বন ডাই-সালফাইড মিশাইয়া কাচ-দণ্ড দ্বারা ভাল করিয়া নাড়িয়া দাও। গন্ধক দ্রবীভূত হয়। বীকারের উপরিস্থ তরল ফিল্টার কাগজের উপর আম্রাবণ কর। ফানেলের নীচে বেসিন রাখিয়া পরিস্রৎ সংগ্রহ কর। অল্প অল্প কার্বন ডাই-সালফাইড ব্যবহার করিয়া এই প্রক্রিয়াটি বার কয়েক কর যতক্ষণ না সমস্ত গন্ধক দ্রবীভূত হইয়া পরিস্রতে জমা হয়। ফানেলের নল হইতে কয়েক ফোটা পরিস্রৎ তরল সাধারণ তাপমাত্রায় বাম্পীভবন কর—যদি কোন অবশেষ না থাকে তবে ব্রিবে যে সমস্ত গন্ধক বাকা উপাদান তুইটি হইতে সম্পূর্ণ

পৃথক হইয়াছে। সর্বশেষে বীকারের সমস্ত তরল ফিল্টার কাগজের উপর ঢালিয়া দাও।

পরিক্রৎস**হ বেসিনটি বায়ুতে** রাখিয়া দাও। কার্বন ডাই-সালফাইড সম্পূর্ণ বাষ্পাভূত হইয়া গেলে গন্ধক অবশিষ্ট থাকে।

ফিল্টার কাগজ ও বীকারের ভিতরের অবশেষ কিছুক্ষণ বাতাসে থোলা অবস্থায় রাথ। মিশ্রিত কার্বন ডাই-সালফাইড বাষ্পীভৃত হইলে অবশেষটি শুদ্ধ হয়। ফিল্টার কাগজের উপর অবশেষ জল দ্বারা বীকারে স্থানাস্তরিত কর। এখন বীকারের নাইটার (জলে দ্রবণীয়) ও কাঠকয়লার (জলে অদ্রবণীয়) মিশ্রণ হইতে উপাদান তুইটি ২নং পরীক্ষার ক্যায় পৃথক কর।

উল্লিখিত প্রক্রিয়াটি নীচেব মত ছক করিয়া লিখিতে পার।

মিশ্রপদার্থ

(গন্ধক, নাইটার ও কাঠকয়লাচ্র্ব)

উপযুক্ত পরিমাণ কার্বন ডাই-সালফাইড দ্বারা গন্ধক সম্পূর্ণ দ্রবীভূত করিয়া পরিস্রাবণ করা হইল। অবশেষ জ্ঞাবক দ্বারা কয়েকবার ধৌত করা হইল।

পরিফ্রৎ

কার্বন ডাই-সালফাইডে গন্ধকেব দ্রবণ। দ্রবণকে বাপ্টাভবন করা হইল সন্ধাক পাওয়া বায়।

অবশেষ

(নাইটার ও কাঠকয়লা) শুক্ষ করিয়া উপযুক্ত পরিমাণ উত্তপ্ত জলদারা নাইটার সম্পূর্ণ দ্রবীভূত করিয়া পরিস্রাবণ করা হইল। অবশেষ জল দারা কয়েকবার ধৌত করা হইল।

পরীক্ষা ৫। বালি, লৌহচ্র্ণ, আয়োডিন ও তুঁতিয়া—ইহাদের মিশ্রণ ° হইতে উপাদানগুলি পৃথক কর।

পদ্ধতি। (ক) '১নং পরীক্ষার আয় চুম্বক দারা লৌহচূর্ণ অন্যান্ত উপাদান হইতে পৃথক কর।

- (খ) ৩নং পরীক্ষার ন্যায় উধ্ব পাতন দারা উদায়ী আয়োডিন **অবশিষ্ট** উপাদানগুলি হইতে পৃথক কর।
 - (গ) ২নং পরীক্ষার ন্যায় জল দ্বারা তুঁ তিয়া বালি হইতে পৃথক কর।

প্রশ্ন। নীচের প্রত্যেকটি মিশ্রণ হইতে উপাদানগুলি পৃথক কর এবং ক্রিয়াগুলির ছক তৈয়ারী কর।

- (১) বালি ও নাইটারের মিশ্রণ।
- (২) গন্ধক ও লৌ**হচুর্ণের মি**শ্রণ।
- (৩) খড়ির গুঁড়া ও কপুরের মিশ্রণ।
- (৪) পটাসিয়াম আয়োডাইড ও আয়োডিনের মিশ্রণ।
- (৫) লৌহচূর্ব, কাচ-চূর্ব ও আয়োডিনের মিশ্রণ।
- (৬) গন্ধক, বালি ও সাধারণ লবণের মিশ্রণ।
- (৭) সাধারণ লবণ, নিশাদল ও বালির মিশ্রণ।

চভূৰ্থ **অ**ধ্যায় [ক]

কঠিন পদার্থের গলনাংক নির্ণয় (To find the melting point of a solid)

গলনাংক (Melting point): কোন নির্দিষ্ট চাপে কঠিন যে তাপমাত্রায় গলিতে আরম্ভ করে তাহাকে উক্ত কঠিনের গলনাংক বলে। কঠিনের গলন শেষ না হওয়া পর্যন্ত ঐ তাপমাত্রা স্থির থাকে। আবার, ঐ গলিত পদার্থকে ঠাণ্ডা করিলে যে তাপমাত্রায় উহা জমিয়া কঠিনে পরিণত হইতে স্থক্ষ করে তাহাকে উহার হিমাংক বলে। কঠিনীভবন সম্পূর্ণ না হওয়া পর্যন্ত ঐ তাপমাত্রা স্থির

২৩ নং চিত্র—বরফের গলনাংক নির্ণয় থাকে। কোন পদার্থের গলনাংক ও হিমাংক এক। যেমন সাধারণ বায়্-চাপে বরফ 0°cএ গলিয়া জল হয়; স্মাবার জল ঐ তাপ-মাত্রাতেই জমিয়া বরফে পরিণত হয়।

(১) বরফের গলনাংক নির্ণয়

ষ্দ্রপাতি (Apparatus) ঃ একটি বড় ফানেল, একটি সেণ্টিগ্রেড থার্মোমিটার, একটি বীকার, আংটা, বন্ধনী, ষ্ট্যাগু।

প্রকৃতি (Procedure) একটি ইয়াণ্ডে
আংটা লাগাইয়া উহার মধ্যে একটি
পরিদ্ধার বড় ফানেল বসাও। ফানেলের
নীচে একটি বীকার রাখ। একখণ্ড মোটা কাপড়ে বরফ মৃড়িয়া কাঠের হাতুড়ির
সাহায্যে উহা টুক্রা টুক্রা কর। বরফটুক্রাগুলি

ঠাণ্ডা পাতিত জল দারা ধৌত কর। ফানেলটি পরিষ্কার বরফের টুক্রা দারা

ভর্তি কর। বরফ গলিয়া জল হইলে সেই জল ফানেলের নীচে বীকারে জ্বমা হয়। একটি কাচের শূলাকা দিয়া ফানেলের মাঝামাঝি বরফের টুক্রা একটু সরাইয়া বরফের মধ্যে থার্মোমিটারের বাল্ব ও নলের কিছু অংশ প্রবেশ করাইয়া দাও। লক্ষ্য রাখিবে, থার্মোমিটারের O'c চিহ্ন যেন বরফের তল হইতে একটু উপরে থাকে। এই অবস্থায় থার্মোমিটারটি বন্ধনীর সাহায্যে ষ্ট্যাণ্ডের সহিত আটকাইয়া দাও। বাল্বটি সর্বদা বরফের সংস্পর্শে রাখিবে, বরফ ও থার্মো-মিটারের বাল্বের মধ্যে যেন কোন ফাক না থাকে।

বাল্বটি বরকের সংস্পূর্ণে থাকায় ক্রমণঃ ঠাণ্ডা হয় এবং থার্ঘোমিটারের পারদ নীচে নামিতে থাকে / পারদ যখন 0° সেন্টিগ্রেড চিহ্নের কাছাকাছি নামিয়া আসে তথন পাঁচ মিনিট অন্তর থার্মোমিটারে ভাপমাত্রা লক্ষ্য কর এবং উহা খাতায় লিখিয়া রাখ। যে ভাপমাত্রায় পারদ স্থির থাকে, সেই ভাপমাত্রাই বরকের গলনাংক।

থার্মোমিটারের স্কে ল	প্ ৰ্যবেক্ষণ সংখ্যা	প্রতি পাঁচ মিনিট অন্তর থার্মোমিটারের তাপমাত্রা	যে তাপমাত্রায় পারদ স্থির থাকে	গলনাংক
নেণ্টিগ্রে ড	1. 2. 3. 4.		***	•••
	5.			

🍾 (২) মোমের গলনাংক নির্ণয়

যন্ত্রপাতি (Apparatus) ? বীকার, আলোড়ক (Stirrer), সেটিগ্রেড থার্মোমিটার, পাতলা কাচের কৈশিক নল (10. সে. মি. দার্ঘ), বন্ধনী, ষ্ট্যাণ্ড, ত্রিপদ-ষ্ট্যাণ্ড, তার-জালি, বুনসেন দীপ।

পদ্ধতি (Procedure) একটি বেসিনে কিছু মোম উত্তপ্ত করিয়া গলাও এবং গলিত মোমের মধ্যে কৈশিক নলের এক মৃথ ডুবাইয়া তুলিয়া আন। কিছুটা গলিত মোম কৈশিক-নলের মধ্যে প্রবেশ করে এবং জমিয়া কঠিন হয়। বাহির অংশের মোম মৃছিয়া ফেল। নলের এই মৃথ দীপশিথায় উত্তপ্ত করিয়া গলাইয়া বন্ধ কর।

একটি বীকারে থানিকটা জল লইয়া উহা ত্রিপদ-ষ্ট্যাণ্ডে তার-জালির উপুর বপাও। মোম-ভরা কৈশিক-নলটি সেন্টিগ্রেড থার্মোমিটারের সঙ্গে রবারের আংটি দিয়া বাঁধ যেন উহার মোম ভরা অংশ থার্মোমিটারের বাল্বের পাশে থাকে। কৈশিক-নলসহ থার্মোমিটারটি সাবধানে জলের মধ্যে ডুবাও। লক্ষ্য রাখিবে, নলের সবটা মোম ও বাল্ব যেন জলের মধ্যে ডুবান থাকে এবং কৈশিক-নলেব

অপর পোলা মৃথ জলের উপরে থাকে। এই অবস্থায় থার্মোমিটারটি বন্ধনীর সাহায্যে ষ্ট্যাণ্ডের সহিত আটকাইয়া দাও।

'বৃনসেন দীপের সাহায্যে বীকারের জল ধীরে ধীরে উত্তপ্ত কর এবং সঙ্গে সঙ্গে আলোড়ক দারা জল উপর নীচে নাড়িতে থাক।' জল আন্তে আন্তে ও সমানভাবে উত্তপ্ত হয় এবং থার্মোমিটারের পারদ ধীরে ধীরে নল বাহিয়া উপরে উঠে। ' সারদ ক্রতে উঠিলে সঠিক গলনাংক লক্ষ্য করা কষ্ট্রসাধ্য হইয়া পড়ে।' জল উত্তপ্ত করিবার সময়

থার্মামিটারের প্রতি সতর্ক দৃষ্টি রাগিবে। 'উত্তপ্ত হইয়া কৈশিক-নলের মোম গলিতে আরম্ভ করে।' দেখিবে, নলের অস্বচ্ছ মোম স্বচ্ছ তরলে পরিণত হইতেছে। যে মুহুর্তে গলন আরম্ভ হইবে তথনকার তাপমাত্রা থার্মো-মিটার হইতে পড়। এগন বুনসেন দীপটি নীচ হইতে সরাও এবং পূর্বের স্থায় জল নাড়িতে থাক। গলিত মোম আস্ভে আস্ভে জমিতে আরম্ভ করে। স্বচ্ছ তরল আবার অস্বচ্ছ কঠিনে পরিণত হয়। ঠিক এই সময়ে থার্মোমিটারে তাপমাত্রা লক্ষ্য কর। এই হুই তাপমাত্রার গড় হুইল মোমের গলনাংক।

এই পরীক্ষাটি আরও তুইবার কব্নিয়া নীচের মত পরীক্ষার ফল লিখিয়া রাখ।
--

পর্যবেশ্বণ সংখ্যা	যে ভাপমাত্রায় মোম গলিতে আরম্ভ করে (t ₁ °c)	যে গ্রাপমাত্রায় গালত মোম জমিং এ আরম্ভ করে * (t2 °c)	ছই তাপমাত্রার গড় $\left(rac{\mathbf{t_1} + \mathbf{t_2}}{2}\right)$ °o	ডিগ্রী সেণ্টিগ্রেডে মোমের গলনাংকের গড়
1. 2 3.	1 mg	6.0	33 32 46.	4.! ·

[খ]

Dalis कुलात क्रिकेनाश्क निर्मा (To find the boiling point of water)

শুটনাংক (Boiling point) ঃ নির্দিষ্ট তাপমাত্রায় ও নির্দিষ্ট বায়্চাপে তরলের সকল অংশ হইতে জত বাস্পে পরিণতিকে স্ট্রন বলে এবং
এই নির্দিষ্ট তাপমাত্রাকে তরলের শুটনাংক (Boiling point) বলে।
বায়্-চাপ নির্দিষ্ট থাকিলে স্ট্রের সময় তরলের বাস্পের তাপমাত্রা অপরিবর্তিত
থাকে যতক্ষণ না সমস্ত তরল বাস্পীভূত হইয়া য়য়। এই তাপমাত্রায় বাস্পের
চাপ তরলের উপরের বায়্-চাপের সমান। বায়্-চাপ বাজিলে স্ট্রনাংক বাজে,
বায়্-চাপ কমিলে স্ট্রনাংক কমে।

যন্ত্রপাতি (Apparatus): পাতন ফ্লান্স, লিবিগ্ শীতক, গ্রাহক, দেনিগ্রেড থার্মোমিটার, ত্রিপদ-ষ্ট্রাণ্ড, তার-জ্ঞালি, বুনসেন দীপ, কর্ক।

পদ্ধতি (Procedure) ঃ পাতন প্রণালীতে ষেরপ যন্ত্রপাতি ফিট্ করিয়াছ, এখানেও দেইরপ ফিট্ কর। (২০নং চিত্র দেখ)

পাতন সাফটি পাতিত জল দারা উত্তমরূপে ধৌত করিয়া উহার অর্থেকটা পাতিত জল দারা ভতি কর। জলে তুই তিন টুক্রা পিউমিস্ পাথর (pumice stone) ফেলিয়া দাও যাহাতে জল সহজভাবে ফোন্টে। সেণ্টিগ্রেড থার্মো-মিটারটি কর্কের সাহায্যে ফ্লাম্বের মুখে এমনভাবে বসাও যেন থার্মোমিটারের বাল্ব ফ্লাম্বের পার্গ-নলের ঠিক নীচে কিন্তু জল হইতে বেশ উপরে থাকে এবং থার্মোমিটারের 100°c চিহ্ন যেন কর্কের কিছু উপরে থাকে।

এখন তার-জালির উপর ফ্লাস্কটি রাথিয়া বুনসেন দীপের সাহায্যে উত্তপ্ত কর। জল উত্তপ্ত হয় এবং থার্মোমিটারের পারদ ক্রমশঃ উপরে উঠিতে থাকে। কিছুক্ষণ পরে জল ঘুটিতে আরম্ভ করে। পারদ 100°c চিহ্নের কাছাকাছি আসিলে প্রতি পাঁচ মিনিট অন্তর থার্মোমিটারের তাপমাত্রা লক্ষ্য করিয়া লিখিয়া রাখা। যে তাপমাত্রায় থার্মোমিটারের পারদ স্থির হইয়া দাঁড়াইয়া থাকে তাহাই পরীক্ষাকালীন বায়ু-চাপে জলের ক্ষুটনাংক।)

থার্মো মিটারের	পর্যবেক্ষণ	প্রতি পাঁচ মিনিট অন্তর	পরীক্ষাকালীন বায়ু-
স্কেল	সংখ্যা	থার্মোমিটারের তাপমাত্রা	চাপে স্ফুটনাংক
সেণ্টিগ্রেড	1, 2. 3. 4. 5.	•••	 •••

পঞ্চম অধ্যায়

लोर ३ मन्नाकत प्रिय ३ (योभिक भमार्थत भार्थका

(Differences between mixture and compound of iron and sulphur)

ৈ লৌহ ও গন্ধক হুইটি মৌলিক পদার্থ। ইহাদের মিশ্র ও যৌগিক পদার্থের পার্থক্য তোমরা পরীক্ষা করিয়া দেখিবে। ইহার পূর্বে এই পদার্থ চুইটির কতকগুলি সাধারণ ধর্ম তোমরা মনে রাখিবে।

- (১) लोट्ड वर्ग कारला; भन्नत्कत वर्ग श्लूम।
- (२) लोर हुन्नक द्वारा आकृष्टे रुप्त ; शक्कक आकृष्टे रुप्त ना ।
- (৩) লৌহ লঘু সালফিউরিক অ্যাসিডে দ্রবীভূত হইয়া গন্ধহীন, দাহ হাইড্রোজেন গ্যাস উৎপন্ন করে; গন্ধক অ্যাসিডে দ্রবীভূত হয় না।
- (৪) গন্ধক কার্বন ডাই-সালফাইডে দ্রবীভূত হয়; লোহ উহাতে অদ্রবণীয়।
 লোহ ও গন্ধকের মিশ্র পদার্থ। চারি ভাগ গন্ধক ও সাত ভাগ
 লোহচুর একত্র করিয়া একটি খলে মুখল দিয়া ভাল করিয়া মিশাও। এই
 মিশ্রপদার্থটি লইয়া নিমের পরীক্ষাগুলি সম্পন্ন কর।

পরীক্ষা	পর্যবেক্ষণ	দি কান্ত
১। মি পদার্থটি প্রস্তুতকালে তাপের উদ্ভব বা শোষণ হয় কিনা লক্ষ্য কর।	তাপের উদ্ভব বা শোষণ হয় ন!।	মিশ্রণ প্রস্তুতকালে তাপের উদ্ভব বা শোষণ হয় না। *
	কালো লোহকণা ও হণুদ গন্ধক- কণা পাশাপাশি রহিয়াছে। কোথাও লোহকণা বেশা, কোথাও গন্ধক কণা বেশী।	মিশ্র পদার্থ অসমসত্ত্ব
 ৩। কাগজে ছড়ান মিশ্রণটির উপর একটি চুম্বক ধর। 	চুম্বকের আর্কষণে কালো লে)হ- কণাগুলি উঠিয়া আসিয়া চুম্বকের	
* যে কোন জবণ মিশ্ৰ পদাৰ্থ	হিওয়া সত্ত্ৰেও সমসত্ব এবং কোন বে	চান দ্রবণ প্রস্তুতিকালে তাপের

বিনিমর হয়। [১৭ পৃষ্ঠার ৩নং পরীক্ষার (গ) ও (চ) অংশ দেখ।]

পরীক্ষা	পর্যবেক্ষণ	সিদ্ধান্ত '
	গায়ে লাগে। হলুদ গন্ধক কণা কাগজের উপর পড়িয়া থাকে।	প্রতরাং চুম্বক দারা লোহকণা- গুলি গন্ধক কণা হইতে পৃথক করা যায়।
্ ।একটি প্রীকান্নলে	কালো লে¦হকণা আসিডে	নিগত গ্যাস টি হা ইড়োজেন।(১৫
	দ্ৰবাভূত হয় এবং গন্ধহান গাাস	
 শ্ব সালফিডরিক আসিড 	নিৰ্গত হয়। গন্ধক কণা	
মিশাও।	অপরিবতিত পাকে।	
্পরীক্ষা-নলের মৃথে একটি জলন্ত	গণ্য মৃত্ব বিশেষরণের সহিত	
কাঠি ধর 🕽) 🏏	জলিয়া উঠে।	
´ ে। একটি পরাক্ষা-নলে কিছু	অবশেষের বর্ণ কালো এবং ইহা	লৌহ ও গন্ধকের ধর্ম বর্তমান
মিশ্ৰণ লইয়া উহাতে উপযুক্ত	চুম্বক ধারা আকৃষ্ট হয়।	আছে।
পরিমাণ কার্বন ডাই-দালফাইড		কাৰ্বন ডাই-সালফাইড দারা
মিশাইয়া ভ াল করিয়া নাড়িয়া		নিষ্ঠাশন করিয়া গন্ধক লোহ
দাও এবং পরি প্রাবণ কর।	ı	হইতে পৃথক করা যায়।
পরিক্রং একটি পাত্তে বা গ্রাসে	কাৰ্বন ডাই-সালফাইড বাস্গীভূত	স্বতরাং, মিশ্রণে উপাদানগুলির
রাপিয়া দাও।	হইয়া যায় এবং পাতে হলুদ	শ্ব শ্ব ও প্রকৃতি অবাহত
	বর্ণের গন্ধক পড়িয়া পাকে।	থাকে এবং উহার উপাদা নগু লি
		সহজ যান্ত্রিক উপা য়ে পৃথক করা
		याय ।
📐 ৬। যে কোন পৰিমাণ লৌহচূর	্উলিখিত পরাক্ষাগুলির পর্য-	মিশ্ৰ পদাৰ্থে উপাদানগুলি
যে কোন পরিমাণ গদ্ধকের	্ বিক্ষণের অনুরূপ।	ওজনের যে কোন অনুপাতে
সহিত মিশ।ইয়া আর একটি	1	পাকিতে পারে।
মি≞ণ প্রস্তুত কর। ঐ মি≓ণ	ı	
ল ইয়া উলিখিত পরীক্ষাগুলি	1	
করিয়া দেশ।	1	

लोह ও गन्नत्कत्र योगिक अमार्थ

(চারি ভাগ গন্ধক ওঁ সাত ভাগ লোহচ্র একটি খলে ভাল করিয়া মিশাও।
একটি পরীক্ষা-নলে এই মিশ্রণ লইয়া বুনসেন শিখায় উত্তপ্ত কর। মিশ্রণটি
ক্রমশঃ লাল হইয়া জলিতে থাকে এবং উত্তপ্ত হইয়া গলিয়া যায়।) শিখা হইতে
সরাইয়া আনিলেও কিছুক্ষণ উহা জলিতে থাকে। এই পরিবর্তনে তাপের
উদ্ভব-হয়। পরীক্ষা-নল ঠাণ্ডা হইলে তরল পদার্থটি কঠিন হয়। পরীক্ষা-নলটি
ভাঙ্গিয়া উহার মধ্যের কালো কঠিন পদার্থটি একটি খলে ভাল করিয়া
শুড়া কর।)

উত্তাপের ফলে লৌহ ও গন্ধকের মধ্যে রাসায়নিক সংযোগ ঘটে এবং ফেরাস সালফাইড নামক একটি নৃতন যৌগিক পদার্থ উৎপন্ন হয়। লৌহ ও গন্ধকের এই যৌগিক পদার্থ লইয়া নিমের পরীক্ষাগুলি সম্পন্ন কর।

পরীক্ষা	পর্যবেক্ষণ	নিদ্ধা ন্ত
১। যৌগিক পদার্থটি প্রস্তুতি- কালে তাপের উদ্ভব বা শোষণ	তাপের উদ্ভব হয় ।	যৌগিক পদা র্থ সংগঠনকালে তাপ উদ্ভূত বা শোষিত হয়।
হয় কিনা লক্ষ্য কর। > থানিকটা গুঁড়া একটি কাগজের উপর ছড়াইয়া একখানি লেন্দের সাহায্যে পরীক্ষা কর।	পৃথকভাবে হলুদ গন্ধক কণা দেখা যায় না। সমস্তটাই সমান কালো দেখায়।	যৌগিক পদার্থ সমসত্ত্ব।
্ত। কাগজে ছড়ান পদা র্থ টির উপর একটি চুম্বক ধর।	চুম্বক মারা বিশেষ কিছু আকৃষ্ট হয় না।*	লোংহর ধর্ম বিলুপ্ত হইয়াছে। অতএব, চুম্বক দ্বারা লোহকণা পুথক করা যায় না।

* এই প্রণালীতে উৎপন্ন ফেরাস সালফাইড বিশুদ্ধ ন্য়—ইহাতে সামাশ্য পরিমাণে লোহ থাকিয়া যায় বলিয়া লোহেছ সেই অংশটুকু মাত্র চুম্বক দারা আকর্ষিত হয়। বিশুদ্ধ ফেরাস সালফাইড চুম্বক দারা আকর্ষিত হয় না।

পরীক্ষা	পর্যবেশণ	দিদ্ধান্ত
৪। এক টি প রী ক্ষা-ন লে খানিকটা গুঁড়া লইয়া উহাতে লযু সালফিউরিক আাসিড মিশাও।	পচা ডিমের গন্ধযুক্ত একটি বর্ণহীন গাসে নির্গত হয়।	নির্গত গ্যাস হাইড়োজেন নহে: বিন্ত কর্ম হিত্রমাং লৌহের অ্যাসিডে জবীভূত হইয়া হাইড়োজেন উংপন্ন করিবার ধর্ম আর নাই। গ্রামটি হাইড়োজেন সালকাইড,''! (ফেরাস সালকাইড ও লয় আাসিডের বিক্রিয়ার ইহা উংপন্ন হয়) স্বিত্রাং একটি নৃত্ন পদার্থের
ে। পরীক্ষা-নলে থানিকটা গুঁড়া লইয়া উহাতে কার্বন ডাই- সালফাইড মিশাইয়া ভাল করিয়া নাড়িয়া দাও এবং পরিস্রাবণ কর। পরিক্রং একটি পাত্রে বাতাসে রাখিয়া দাও।	ফিল্টার কাগতে কালো অবশেষ থাকে। ইহা চুম্বক দ্বারা আকৃষ্ট হয় না। কার্ব ন ডাই-সালফাইড সম্পূর্ণ বাপ্পীভূত হইয়া গোলে পাত্রে কিছুই অবশেষ থাকে না।	সৃষ্টি হইরাছে।) ব্যোগিক পদার্থে লোহ ও গন্ধকের ধর্ম বিলপ্ত হইরাছে। স্কুতরাং, কার্বন ডাই-সালফাইড ধারা নিকাশন করিয়া গন্ধক ফিরিয়া পাওয়া যায় না।
	71-7 11 1	শ্বতরাং, যৌগিক পদার্থে উপাদান- গুলির নিজ নিজ ধর্মের লোপ হয় এবং যৌগিক পদার্থের নিজম্ব নৃতন ধর্ম গড়িয়া উঠে। ইহার উপাদান- গুলি সহজ যান্ত্রিক উপায়ে পুথক করা যায় না।

ক্রপ্টব্য। যৌগিক পদার্থের একটি বৈশিষ্ট্য এই যে, উহাতে উপাদানগুলি সর্বদা ওজনের নির্দিষ্ট অন্থপাতে থাকে।

ষ্ট অধ্যায়

গ্যাদ-প্রস্তুতি

(Preparation of gases)

ল্যাবরেটরীতে তোমরা কতকগুলি গ্যাস প্রস্তুত করিয়া উহাদের ধর্ম সম্বনীয় পরাক্ষা করিবে। বিভিন্ন গগেস প্রস্তুত করিবার সময় কিরূপ, যন্ত্র ব্যবহার করিতে হয় এবং উৎপন্ন গ্যাস কিরূপে সংগ্রহ করে তাহা তোমাদের জানা প্রয়োজন।

(ক) গ্যাস উৎপাদক যন্ত্ৰ (Gas generating apparatus):

কতকগুলি গ্যাস সাধারণ তাপমাত্রায় প্রস্তুত করা হয় অর্থাৎ উহাদের প্রস্তুতির সময় তাপ প্রয়োগের প্রয়োজন হয় না। এরপ ক্ষেত্রে যদি একটি

২৫ নং চিত্র—দীর্ঘনাল-ফানেল ও নির্গম নলযুক্ত

উল্ফ বোতল

বিক্রিয়ক (reactant) তরল পদার্থ হয় তবে তাহাদের প্রস্তুতির জন্ম তৃই মৃথ বিশিষ্ট উল্ফ বোতল (Woulfe's bottle) ব্যবহার করা হয়। কঠিন বিক্রিয়কটি বোতলের মধ্যে রাথা হয়। তরল পদার্থ ঢালিবার জন্ম বোতলের একম্থে দীর্ঘনাল-ফানেল (Thistle funnel) এবং

উৎপন্ন গ্যাস বাহির হইবার জন্য অপর মৃপে নির্গম-নল (Delivery tube) লাগান থাকে। হাইড্রোজেন, কার্বন ডাই-অক্সাইড, হাইড্রোজেন সালফাইড গ্যাস প্রস্তুত করিতে

এইরপ যন্ত্র ব্যবহার করা হয়।

কতকগুলি গ্যাস প্রস্তুত করিতে উত্তাপের প্রয়োজন হয়। একটি বিক্রিয়ক তরল পদার্থ হইলে গোলেতলা-বিশিষ্ট ফ্লাক্ষ (Round bottomed flask) ব্যবস্থত

২৬ নং চিত্র— গোলতল ফ্লাস্ক

হয়। ফ্লাস্কের মৃথে কর্কের সাহায্যে দীর্ঘনাল-ফানেল ও নির্গম-নল লাগান থাকে।

হাইড্রোজেন ক্লোরাইড, ক্লোরিন গ্যাস এইরূপ যন্ত্রে প্রস্তুত করা হয়।

গ্যাস প্রস্তুত করিতে উচ্চ তাপমাত্রার প্রয়োজন হইলে এবং বিক্রিয়ক কঠিন পদার্থ হইলে শক্ত কাচের মোটা পরীক্ষা নল (Hard glass test tube) বা **ধাতব রিটর্ট** বা ফ্লাক্ষ ব্যবহার করা হয়।

অক্সিজেন ও অ্যামোনিয়া গ্যাস প্রস্তুত করিবার জন্ম এইরূপ যন্ত্র ব্যবহার করা হয়।

(থ) গ্যাস-সংগ্ৰহ (Collection of gases) :

ন্যাবরেটরীতে পরীক্ষার জন্ম কাচনির্মিত গ্যাস-জারে (Gas-jars) গ্যাস সংগ্রহ করা হয়। গ্যাস-জারের মুখ বন্ধ করিবার জন্ম কাচের গোল চাক্তি বা চাক্তি (Lids) ব্যবহার করা হয়। উৎপন্ন গ্যাসের সংগ্রহ-প্রণালী উহার প্রকৃতির উপর নির্ভর করে।

(১) জল-অপসারণ দারা (By displacement of water):

জলে অদ্রবণীয় বা খুব অল্প দ্রবণীয় গ্যাস জলের উপর সংগ্রহ করা হয়।
গ্যাস-জ্যোণীতে (Pneumatic trough) জল রাখিয়া একটি জলপূর্ণ গ্যাস

ন্ধার দ্রোণীর ছিদ্রযুক্ত তাকের ('Beehive shelf) উপর উপুড় করিয়া বসান হয়। গ্যাস উৎপাদ কষল্লের সহিত একটি নির্গম-নল যুক্ত করিয়া নির্গম-নলের

শেষ প্রান্ত গ্যাস-জারের নীচে প্রবেশ করান হয়। গ্যাস বুদ্বুদের আকারে গ্যাস-জারের জল-অপুসারিত করিয়া উহার মধ্যে সঞ্চিত হয়।

হাইড্রোজেন, অক্সিজেন গ্যাস জল-অপসারণ দারা সংগ্রহ করা হয়।

(২) বায়ু-অপসারণ ছারা (By displacement of air):

জলে দ্রবণীয় গ্যাস জলের উপর সংগ্রহ করা যায় না। দ্রবণীয় গ্যাস বায়ু অপেক্ষা ভারী বা লঘু হইলে বায়্র অপসারণ দারা গ্যাস-জারে সংগ্রহ করা হয়। গ্যাস বায়ু অপেকা ভারী হইলে, গ্যাস-জারটি টেবিলের উপর বসাইয়া নির্গম-

भाम

বাতাস

বাতাস 🕒 গ্যাস

২৮ নং চিত্র--বায়ুর উধর্বাপসারণ ২৯ নং চিত্র--বায়ুর নিম্নাপসারণ দারা গ্যাস সংগ্রহ

ৰারা গ্যাস সংগ্রহ

নলের শেষ প্রান্ত জারের প্রায় তলা পর্যন্ত প্রবিষ্ট করান হয়। গ্যাস নির্গম-নলের ভিতর দিয়া গ্যাস-জারে প্রবেশ করে এবং জারের বায়ু উপরের দিকে অপসারিত করিয়া উহার মধ্যে জমা হয়। কার্বন ডাই-জক্মাইড, হাইড্রোজেন ক্লোরাইড, ক্লোরিন গ্যাস এইরূপে সংগ্রহ করা হয়।

গ্যাস বায়ু অপেক্ষা লঘু হইলে, গ্যাস-জারটি উপুড় করিয়া নির্গম-নলের উপর রাখা হয়। উৎপন্ন গ্যাস গ্যাস-জারের বায়ু নিম্নুথে অপসারিত করিয়া, উহার মধ্যে সঞ্চিত হয়। অ্যামোনিয়া গ্যাস এইরূপে সংগ্রহ করা হয়।

অক্সিজেনের প্রস্তৃতি এবং উহার সাধারণ ধর্ম (Preparation and simple properties of Oxygen)

[ক] অক্সিজেন-প্রস্তুতির ল্যাবরেট্রী প্রণালী:

ভন্ত (Theory) ঃ পটাসিয়াম ক্লোরেট ও ম্যাংগানিজ ডাই-অক্সাইডের মিশ্রণ উত্তপ্ত করিয়া ল্যাবরেটরীতে অক্সিজেন গ্যাস প্রস্তুত করা হয়।

 $2 \text{ KClO}_3 = 2 \text{ KCl} + 30_2$ $[\text{MnO}_2]$

ম্যাংগানিজ ডাই-অক্সাইড এখানে পটাসিয়াম ক্লোরেটের বিযোজন তরাশ্বিত করে, কিন্তু বিক্রিয়াশেষে উহার পরিমাণ ও ধর্ম অপরিবর্তিত থাকে। স্থতরাং ইহা প্রভাবকরূপে (catalyst) কাজ করে।

যন্ত্রপাতি (Apparatus): শক্ত কাচের একটি মোটা পরীক্ষা-নল, একটি বাঁকান নির্গম-নল, বন্ধনী সহ একটি ষ্ট্যাণ্ড, একটি গ্যাসন্দ্রোণী, ঢাক্নিসহ কয়েকটি গ্যাস-জার, বুনসেন দীপ, উজ্জ্বন-চামচ (deflagrating spoon)।

রাসায়নিক দ্ব্যাদি (Chemicals): পটাসিগ্নাম ক্লোরেট, ম্যাংগানিজ ডাই-অক্লাইড।

পদ্ধতি (Procedure): শক্ত কাচের একটি মোটা পরীক্ষা-নল এবং উহার মুখে আঁটভাবে লাগে এইরূপ একটি কর্ক লও। কর্কটিকে ছিদ্র করিয়া এই ছিদ্রপথে বাঁকান নিগম-নলটির ক্ষুত্রতর বাহু জুড়িয়া দাও।

পাঁচ ভাগ পটাসিয়াম ক্লোরেট ও একভাগ ম্যাংগানিজ ডাই-অক্লাইড খলে উত্তমরূপে মিশ্রিত কর। বাজারের ম্যাংগানিজ ডাই-অক্লাইডে কিছু কার্বন মিশ্রিত থাকিতে পারে। কার্বন মিশ্রিত ম্যাংগানিজ ডাই-অক্লাইড ও পটাসিয়াম ক্লোরেটের মিশ্রণ উত্তপ্ত করিলে বিক্লোরণ ঘটে। স্থতরাং উহাতে কার্বন আছে কিনা দেখিবার জন্ম মিশ্রণের খুব সামান্ত একটু অংশ থোলা পরীক্ষা-নলে উত্তপ্ত কর। কোনরূপ বিক্ষোরণ না হইলে ব্রিবে ম্যাংগানিজ ডাই-অক্লাইডে কার্বন নাই। পরীক্ষা-নলটির এক-তৃতীয়াংশ এই মিশ্রণ দ্বারা ভর্তি কর—পরীক্ষা-নলের

দৈর্ঘ্য বরাবর নিশ্রণের উপর দিয়া গ্যাস বাহির হইবার যেন পথ থাকে। নির্গমননল সহক্রিটি পরাক্ষানলের মুথে আটিয়া দাও। বন্ধনীর সাহায্যে পরাক্ষানলটি একটি ট্যাণ্ডের সঙ্গে আটকাইয়া দাও যেন পরীক্ষানলের মুথের দিকটা একটু নত অবস্থায় থাকে এবং নির্গমনল নীচের দিকে বাঁকান থাকে। নির্গমনলের অপর প্রাস্তটি একটি গ্যাসন্দ্রোণীতে জ্বলের নীচে রাখ।

৩০ নং চিত্র-অক্সিজেন প্রস্তুতি ও সংগ্রহ

বৃনদেন দীপের সাহায্যে পরীক্ষা-নলটি ধীরে ধীরে সমানভাবে উত্তপ্ত কর।
বৃনদেন দীপটি প্রথমে পরীক্ষা-নলের মৃথের দিকে মিশ্রণের নীচে ধর। পরে
আন্তে আন্তে উহাকে পিছনের দিকে সরাইয়া আন। এইরপে পরীক্ষা-নলের
দৈর্ঘ্য বরাবর দীপটি একবার সামনের দিকে ও আরেকবার পিছনের দিকে
সরাইয়া মিশ্রণটি সমানভাবে উত্তপ্ত করিতে থাক।

পটাদিয়াম ক্লোরেট তাপে বিধোজিত হইয়া অক্সিজেন গ্যাস উৎপন্ন হয়।
অক্সিজেন নির্গম-নল দিয়া জলের ভিতর বৃদ্ব্দের আকারে বাহির হইতে থাকে।
প্রথমে কিছু গ্যাস বাহির হইতে দাও—পরীক্ষা-নলের ভিতরের বায়ু এই সাথে
বাহির হইয়া য়য়। একটি গ্যাস-জার জলে সম্পূর্ণ ভর্তি করিয়া উহার মৃথ
ঢাক্নি দিয়া বন্ধ কর। গ্যাস-জারটিকে গ্যাসজোণীর জলের মধ্যে উপুড়
করিয়া ভোণীর ছিদ্রযুক্ত তাকের উপর বসাও। গ্যাস-জারের ঢাক্নি সরাইয়া

নির্গম-নলের শেষ প্রাস্তটি উহার মধ্যে প্রবেশ করাও। অক্সিজেন বৃদ্বুদের আকারে গ্যাস-জারের জল অপসারিত করিয়া ঐ পাত্রে সঞ্চিত হইতে থাকে। গ্যাস-জারটি অক্সিজেনে পূর্ণ হইলে উহার মুখটি জলের নীচেই ঢাক্নি দিয়া বন্ধ কর এবং দ্রোণী হইতে গ্যাস-ভারটি তুলিয়া টেবিলের উপর রাখ।

এইরপে জল-অপসারণ দ্বারা পর পর কয়েকটি গ্যাস-জার অক্সিজেন গ্যাসে পূর্ণ কর।

সভৰ্কতা (Precautions):

- (:) পরীক্ষা-নলটি মৃথের দিকে একটু নীচু করিয়া লাগাইবে।
- (২) পরীক্ষা-নলে মিশ্রণের উপর দিয়া গ্যাস বাহির হইবার পথ রাখিবে !
- (৩) ম্যাংগানিজ ডাই-অক্সাইড কার্বনমূক্ত কিনা পরীক্ষা করিবে।
- (s) পরীক্ষা-নলটি ধীরে ধীরে সমানভাবে উত্তপ্ত করিবে।
- (৫) থুব বেশী গ্যাস বাহির হইতে আরম্ভ করিলে কিছুক্ষণের জন্ম উত্তাপ দেওয়া বন্ধ রাখিবে।
- (৬) গ্যাস সংগ্রহের পর নির্গম-নলটি জল হইতে উপরে তুলিয়া বুনসেন দীপটি সরাইবে। নচেৎ উত্তপ্ত পরীক্ষা-নলে দ্রোণী হইতে জল প্রবেশ করিয়া ফাটিয়া যাইবে।

[খ] অক্সিজেনের সাধারণ ধর্ম সম্পর্কীয় পরীক্ষাঃ

পরীক্ষা	পূৰ্যবেক্ষণ	শিদ্ধান্ত ও ব্যাখ্য।
১। গ্যাস-জারে অক্সিজেনের বর্ণ	বৰ্ণ ও গন্ধ নাই।	অঞ্জিল গ্যাস বর্ণহীন ও
ও গন্ধ পরীক্ষা করিয়া দেখ।		भक्क शेन ।
- ১। অক্সিজেন জল-অপসারণ	ইহা জলে দ্ৰবীভূত হয়	অক্সিজেন গ্যাস জলে অক্রবণীয়।*
দারা সংগ্রহ করিয়াছ।	নাই।	

প্রকৃতপক্ষে অক্সিজেন জলে অতি সামায় দ্রবণীয়।

পরীকা

পর্যবেক্ষণ

সিদ্ধান্ত ও ব্যাখ্যা

ত। একটি কাঠির মাথায় আগুন কাঠিটি ধরাইয়া ফুঁ দিয়া উহার শিখাটি নিভাইয়া ফেল। কাঠিটি লালাভ থাকিতে অক্সিজেনপূর্ণ পাকিতে গ্যাস-জারে প্রবেশ করাও।

উজ্জ্বলভাবে ब्बनिया উঠে। গাাস জলে না।

অক্সিজেন **पश्तित्र** সহায়ক কিন্তু দাহা নয়। িএই পরীক্ষার সাহাযো অক্সি-জেন গ্যাস সনাক্ত করা হয়।]

🖊 🎖 । একটি উজ্জ্বলন-চামচে এক 🛭 টুক্রা কাঠকয়লা (কার্বন) লইয়া শিখার সহিত জ্বলিয়া বুনসেন শিখায় উত্তপ্ত কর। धनस्र कार्ठ-कब्रमा मह চाम्हि একটি অক্সিজেনপূর্ণ গ্যাস-জারে প্রবেশ করাও।

कार्ठ कप्रवाधि উष्क्रव উঠে ।

অক্রিজেন দহনের উত্তম সহায়ক।

দহনের পরে চামচটি বাহির নীল লিটমাস দ্রবণের করিয়া আনিয়া গ্যাস-জারে কিছুটা বর্ণ ঈষৎ লাল হয়। নীল লিটমাস জবণ মিশাও এবং জারটির মুখ ঢাক্নি দিয়া স্ক করিয়া ঝাঁকাইয়া দাও।

কার্বন অক্সিক্তেনে দহনের ফলে ডাই-অক্সাইড কার্বন গাস উৎপন্ন হয়। এই গ্যাস জলে কাৰ্ৰোনিক আদিড নামে মুদ্ৰ আাসিড উৎপন্ন করে। এইজ**ন্ত** नीन निरुपाम जन्म नान रय। মুতরাং, কার্বন ডাই-অক্সাইড আম্লিক (acidic) অ**ন্ধা**ইড।

 $C+O_2 = CO_2$ $CO_2 + H_2O = H_2CO_2$.

ে। একটি উজ্জ্বন-চামচে কিছ গন্ধকচূৰ্ণ লইয়া বুনসেন শিখায় উত্তপ্ত কর। ভ্রলন্ত গন্ধকচর্ণ সহ চামচটি অক্সিজেনপূর্ণ গ্যাস-জারে প্রবেশ করাও।

দহনের পরে গ্যাস-জারটিতে नील लिप्रेमामु ज्वर् মিশাইয়া নাডিয়া দাও।

গন্ধক নীলাভ শিথার সহিত উজ্জলভাবে ত্বলিতে থাকে। তীব্ৰ ঝাঝাল গন্ধযুক্ত গ্যাস উৎপন্ন হয়। नौल लिप्रेमाम দ্রবণ नान श्रा

দহনের ফলে সালফার ডাই-অক্সাইড গ্যাস উৎপন্ন হয়। **সালফিউরাস हेश** জলে আাসিড উৎপন্ন করে। এইজক্ত नोल लिएमाम जन् হয়। স্বতরাং সালফার ডাই-অক্সাইড আগ্নিক অক্সাইড। $8+0_{9} = 80_{9}$ 802+H20=H2802.

পরীক্ষা	পর্যবেক্ষণ	সিদ্ধান্ত ও ব্যাখ্যা
ভ। একটি উজ্জ্বন চামচে কিছু ফস্ফরাস লইয়া চামচটি অক্সিজেন- পূর্ণ গ্যাস-জারে প্রবেশ করাও। গ্যাস-জারে নীল নিটমাস দ্রবণ চালিযা জারটি ঝাকাইয়া দাও।	ফস্ফরাস অত্যস্ত তাঁব্র- ভাবে জ্বলিয়া উঠে। জারটি ঘন সা দা ধেঁায়ায় ভরিয়া যায়। নীল লিটমাস জ্বৰণ লাল হয়।	দহনের ফলে ফস্ফরাস্ পেণ্ট- স্থাইড উৎপন্ন হয়। জলে ইহা ফস্ফরিক আাসিড উৎপন্ন করে বলিয়া ইহার জলীয় দ্রবণ নীল লিটমাস দ্রবণের বর্ণ লাল করে। ফস্ফরাস পেণ্টস্থাইড আগ্লিক অক্সাইড। $4P+5O_2 = 2P_2O_5$ $P_2O_5 + 3II_2O = 2II_3PO_4$
৭। একটি উদ্ঘলন চামচে এক টুক্রা সোডিয়াম লইয়া উত্তপ্ত কর এবং উত্তপ্ত সোডিয়াম সহ চামচটি অক্সিজেনপূর্ণ গাাস-জারে প্রবেশ করাও।	শিখাসহ উজ্জ্লভাবে	দহনের ফলে সোডিয়ানের চুইটি অক্সাইড উৎপন্ন হয়। 4Na+O2=2Na2() 2Na+O2=Na2O2
গ্যাস-জারটিতে লাল লিটমাস দ্রবণ মিশাইয়া জারটি ঝ [*] াকাও।	লাল লিটমান নী ল হয়।	উৎপন্ন অক্সাইড ছুইটি ক্ষারণমী। $Na_2O + II_2O = 2NaOII$ $2Na_2O_2 + 2II_2O$ $= 4NaOII + O_2$.
৮। একটি জ্বলন্ত মাাগনেসিয়ামের ফিতা চিমটা দিয়া ধরিয়া অক্সিজেন- পূর্ণ গ্যাস-জারে প্রবেশ করাও।	-	ম্যাগনেসিয়ান অক্সাইড উৎপন্ন হয়। $2Mg+O_3=2MgO$. জলে ম্যাগনেসিয়ান হাইডুক্সাইড উৎপন্ন হয়। $MgO+H_2O=Mg(OII)_2$.
গ্যাস-জারটিতে লাল লিটমাস দ্রবণ মিশাইয়া জারটি ঝীকাইয়া দাও।	ला न निष्माम नीन र ग्न	ম্যা গ নে সি য়া ম [*] অ স্থা ই ড ক্ষারকীয় (basic) অ স্থা ইড।

সহোৎপন্ন পদার্থ (Bye-product)-এর সংগ্রন্থ প্র পটাসিয়াম ক্লোরেটের বিযোজন সম্পূর্ণ হইলে প্রীক্ষা-নলে ম্যাংগানিজ ডাই-অক্সাইড (জলে অন্তবণীয়) এবং পটাসিয়াম ক্লোরাইড (জলে দ্রবণীয়) অবশিষ্ট থাকে। স্থতরাং ঐ মিশ্রণ হইতে কঠিন পটাসিয়াম ক্লোরাইড পৃথক করিতে পার। (৩৩ পৃষ্ঠার ২নং পরীক্ষা দেখ।)

হাইড্রোজেনের প্রস্তৃতি এবং উহার সাধারণ ধর্ম (Preparation and simple properties of Hydrogen)

[ক] হাইড্রোজেন-প্রস্তুতির ল্যাবরেটরী প্রণালীঃ

তত্ত্ব (Theory): সাধারণ তাপমাত্রায় দন্তার ছিব্ড়া বা গ্র্যান্লেটেড্ জিংক-এর সহিত লঘু সালফিউরিক অ্যাসিড মিশাইয়া ল্যাবরেটরীতে হাইড্রোজেন গ্যাস প্রস্তুত করা হয়। $Z_n + H_2SO_4 = Z_nSO_4 + H_2$.

্ বল্পণ তি (Apparatus): ছইম্খ-বিশিষ্ট একটি উল্ফ বোতল; একটি দীর্ঘনাল-ফানেল; বাঁকান নির্গম-নল; গ্যাসন্দোণী; ঢাক্নি সহ কয়েকটি গ্যাস-জার; কয়েকটি পরীক্ষা-নল ।

়**্রাসায়নিক দ্র্ব্যাদি (** Chemicals) : দ্স্তার ছিব্ড়া ; লঘু সালফিউরিক অ্যাসিড । ্

পদ্ধতি (Procedure) ঃ তুই মৃথ-বিশিষ্ট একটি উল্ফ বোডলে কিছু দন্তার চিব্ডা লও। ছিদ্র করা তুইটি কর্কের একটিতে একটি দীর্ঘনাল-ফানেল এবং অপরটিতে একটি বাঁকান নির্গম-নল প্রবেশ করাও। ফানেল ও নির্গম-নলসহ কর্ক তুইটি উল্ফ বোডলের তুই মুথে আটিয়া দাও। দীর্ঘনাল-মানেলের শেষ প্রান্ত যেন বোডলের প্রায় ভলা পর্যন্ত পৌছায় এবং নির্গম-নলের গোড়ার দিক কর্কের কেটু নীচে পর্যন্ত যায়। দীর্ঘনাল-ফানেলের মধ্য দিয়া ধানিকটা জল বোডলে ঢালিয়া দাও—যাহাতে জিংক-এর ছিব্ডাগুলি সম্পূর্ণ জলে আবৃত থাকে এবং

দীর্ঘনাল-ফানেলের প্রান্তটি জলে ডুবিয়া থাকে। নচেৎ ঐ ফানেলের ভিতর দিয়া উৎপন্ন গ্যাস বাহির হইয়া যাইবে।

হাইড্রোজেন ও বায়্র মিশ্রণ অগ্নিসংখোগে বিন্দোরণ ঘটায়। স্করাং বিশেষ
লক্ষ্য রাখিতে হইবে যাহাতে হাইড্রোজেন প্রস্তুত করিবার সন্ধটি সম্পূর্ণ বায়ুরোধী
(air tight) হয় এবং হাইড্রোজেন বায়্র সহিত না মিশিতে পারে। বাবস্থাটি
সম্পূর্ণ বায়ুরোধী হইয়াছে কিনা তাহা পরীক্ষা করিবার জন্য নির্গম-নলের বাহির
প্রান্ত হইতে মুগ দিয়া সামান্ত ফুঁ দাও। উল্ফ বোতল হইতে থানিকটা জল
নল বাহিয়া উপরে উঠিতে থাকিবে! এগন নির্গম-নলের প্রান্থটি অঙ্গুলি দারা
চাপিয়া ধর। নলের মধ্যে জল স্থিরলাবে দাঁড়াইয়া থাকিলে ব্ঝিবে যে
ব্যবস্থাটি সম্পূর্ণ বায়ুরোধী হইয়াছে। নল হইতে জল ধারে ধীরে নামিয়া
আসিলে ব্ঝিবে যন্তুটির কোথাও বায়ু চলাচলের ছিদ্রপথ আছে। সে ক্ষেত্রে
কর্ক ও কাচের সংযোগস্থলে কিছু মোম গলাইয়া লাগাইয়া দাও। আবার
পরীক্ষা করিয়া দেখ যন্ত্র বায়ুরোধী হইয়াছে কিনা।

৩১ নং চিত্র-- সাইড্রোছেন প্রস্তুতি ও সংগ্রহ

নির্গম-নলের শেবপ্রাস্ত গ্যাস-দ্রোণীর জলের নীচে রাথ। দীর্ঘ-নাল ফানেলের ভিতর দিয়া লঘু সালফিউরিক অ্যাসিড অল্প অল্প করিয়া উল্ফ বোতলে ঢাল। বোতলটি মাঝে মাঝে আস্তে নাড়িয়া দাও। সালফিউরিক অ্যাসিড জিংক-এর সংস্পর্শে আসিলেই হাইড্রোজেন গ্যাস উৎপন্ন হয় এবং বোতলের বায়্র সহিত মিশ্রিত হইয়া নির্গম-নলের মধ্য দিয়া বাহির হইতে থাকে। কিছুক্ষণ অপেক্ষা কর, যাহাতে উল্ফ বোতলের মধ্যের বায়ু সম্পূর্ণ বাহির হইয়া যায়। বায়ু সম্পূর্ণ বাহির হইয়াছে কিনা জানিবার জন্ম একটি জলপূর্ণ পরীক্ষানল নির্গম-নলের উপর উপুড় করিয়া হাইড্রোজেন গ্যাসে ভর্তি কর। তারপর পরীক্ষা-নলটির মৃথ বন্ধ করিয়া জল হইতে তুলিয়া আনিয়া বৃনসেন শিখার নিকট উপুড় করিয়া ধর। গ্যাস নিঃশব্দে জ্ঞলিলে বৃবিবে বোতলের মধ্যেকার বায়ু সম্পূর্ণ বাহির হইয়া গিয়াছে। আর যদি মৃছ্ বিফোরণ হয় (বুবিবে, উহার মধ্যে কিছু বায়ু আছে), তবে আরও কিছুক্ষণ গ্যাস ছাড়িয়া দাও। আবার পরীক্ষা করিয়া দেথ যন্ত্রটি বায়ুমুক্ত হইয়াছে কিনা টু

া যন্ত্রটি সম্পূর্ণ বাষুরোধী হইয়াচে এবং নির্গত গ্যাসে আর বায়ু নাই—এই ছইটি বিষয়ে নিশ্চিত হইয়া গ্যাস সংগ্রহ করিতে আরম্ভ কর। একটি গ্যাস-জার জলে সম্পূর্ণ ভর্তি করিয়া উহার মুখ ঢাক্নি দিয়া বন্ধ কর—গ্যাস-জারে যেন একটুকুও বায়ু না থাকে। এখন অক্সিজেন সংগ্রহের ন্যায় জল-অপসারণ ঘারা গ্যাস-জারে হাইড্রোজেন ভর্তি করিয়া টেবিলের উপর উপুড় করিয়া রাখ। এইরপে কয়েকটি গ্যাস-জার হাইড্রোজেনে পূর্ণ কর।

সত্ৰ্কত (Precautions):

- (১) দীর্ঘনাল-ফানেলের শেষপ্রান্ত সর্বদা জলের নীচে ডুবান থাকিবে।
- 🌣 (২) যন্ত্র সম্পূর্ণ বায়ুরোধী করিবে।
 - (৩) গ্যাস সংগ্রহ করিবার পূর্বে যন্ত্রকে বায়ুমূক্ত করিবে।
- · (s) গ্যাদ-জার সম্পূর্ণ জলে ভর্তি করিবে—জারের মধ্যে যেন বায়ু নাথাকে।
 - (e) কাছাকাছি কোন বুনসেন শিখা রাখিবে না।

[খ] হাইড্রোজেনের সাধারণ ধর্ম সম্পর্কীয় পরীক্ষাঃ

পরীক্ষা	পর্যবেক্ষণ	সিদ্ধান্ত ও ব্যাখ্যা
১। গ্যাস-জারে হাইড্রোজেনের	কোন বৰ্ণ বা গন্ধ	হাইড়োজেন বৰ্ণহীন ও
বর্ণ ও গন্ধ পরীক্ষা কর।	नारे ।	গন্ধহীন গ্যাস।
২। জলের উপরে হাইড়োজেন	জলে দ্ৰবী <mark>ভূ</mark> ত হয় নাই।	জলে অদ্রবণীয়।
সংগ্রহ করিয়াছ।		
 । একটি হাইড্রোজেনপূর্ণ গাাস- 	গাস-জারের মুখে	হাইড়োজেন গাাস দাহ
জার নিম্নম্থ করিয়া ধরিয়া উহার মধ্যে	হাইড়োজেন ঈষৎ নীল	কিন্ত দহনের সহায়ক নছে।
একটি ঘলন্ত কাঠি প্রবেশ করাও।	শিখার সহিত জলে।	িএই পরীক্ষার সাহাযো
	কিন্ত জনত কাঠি	হাইড্রোজেন সনাক্ত করা
	নিভিয়া যায়।	হয় ৷]
৪। একটি পালি গ্যাস-জার		নীচের গ্যাস জারের
(বায়ুপূর্ণ) উপুড় করিয়া একটি :	সুথে গাস ঈষৎ নীল	হাইড়োজেন উপরের গ্যাস-
হাইডোজেনপূর্ব গ্যাস-জারের মুখে :	শিশার সহিত জলে,	জারে উঠিয়া গিয়াছে।
মুখে বদাইয়া উহার ঢাক্নি সরাও।	কিন্তু কাঠিট নিভিয়া	স্তরাং হাই <i>ড়োজেন</i> বাযু
কিছুক্ষণ পরে উপরের গ্যাস-জারটি	যায় ।	অপেঙ্গা লয়।
তুলিয়া নিয়মৃথ করিয়া উহাতে একটি		
জনস্ত কাঠি প্রবেশ করাও।	i	
॰। উল্ফ বোতলের নির্গম-নলের	সাবানের বৃদ্বৃদ্ আপনা	হাইড়োজেন বায়ু অপেকা
মৃথ একটি বীকারে সাবানের ফেনার	আপনি উ পরে উঠিয়া	तम् ।
মধ্যে রাখিয়া কিছুফণ হাইড্রোজেন	যায় ।	
গ্যাস চালনা কর। নির্গন নলটি একটু		
তুলিয়া উহার মুখে ফুঁ দিয়া সাবানের		
ন্দৰুদ্ বাতাদে ছাড়িয়া দাও।		
🕦 । একটি পরীক্ষা-নলে নীল	কোন লিটমাস জবণের	হাইড়ো/জন উদাদীন
এবং আরেক টি তে লাল লিটমাদ দ্রবণ		
লইয়া উহাদের মধ্যে পৃথকভাবে		
হাইড়োজেন গ্যাস চালনা কর।		

পরীক্ষা	পর্যবেক্ষণ	সিদ্ধান্ত ও ব্যাখ্যা
প। এক টে পরীক্ষা-নলে লঘু নালফিউরিক অ্যাসিড মিশ্রিত পটাসিয়াম পারম্যাংগানেটের লঘু দ্রবণ লপ্ত এবং উহার মধ্যে উল্ফ বোতল	দ্রবণের বর্ণের কোন পরিবর্ভন হয় না।	সাধারণ হাইড্রোজেন পটাসিয়াম পারম্যাংগা- নেটের সহিত ক্রিয়া করে না।
হইতে হাইড়োজেন গ্যাস চালনা কর। ঐ পরীক্ষা-নলে কিছু জিংকের চিব্ড়া দাও।	বুদ্বুদ্ করিয়া গাাস নির্গত হয় এবং জবণ ধীরে ধীরে বর্ণহীন হয়।	আাসিড ও জিংক হইতে উৎপন্ন ভারমান (nascent) হাইড্রোজেন পারমাাংগানেট দ্রবণকে বিভারিত করিয়া বর্ণহীন করে।
ে ৮। একটি পরীক্ষা-নাল ফেরিক- ক্লোরাইড জবণ (হলুদ বর্ণ) লইয়া উহাতে উল্ফ বোতল হইতে হাইড্রোজেন চালনা কর।	দ্রবণের বর্ণের কোন পরিবর্তন হয় না।	সাধারণ হাইড্রোজেন ফেরিক কোরাইডকে বিজ্ঞারিত করিতে পারে না,
ঐ পরীক্ষা-নলে কিছু জিংকের ছিব্ড়া ও লঘ্ সালফিউরিক আাসিড মিশাও।	দ্রবণটি বর্ণহীন হয়।	বিদ্যারিত করিতে পারে। FeCl3 + [II] == FeCl9 + HCl স্থতরাং, সাধারণ হাইড্রোজেন অপেক্ষা জায়মান হাইড্রোজেন অধিকতর সঞ্জিয়।

সহোৎপন্ন পদার্থ (bye-product)-এর সংগ্রহ ঃ জিংক ও সালফিউরিক আাসিড দ্বারা হাইড্রোজেন প্রস্তুতিকালে দ্রবণীয় জিংক সালফেট উৎপন্ন হয়। প্রস্তুতির পরে উল্ফ বোতলের তরল পদার্থটি ফিল্টার কর। পরিস্রুত জিংক সালফেটের লঘু জলীয় দ্রবণ। এই লঘু দ্রবণ বাষ্পীভূত করিয়া জিংক সালফেটের কেলাস প্রস্তুত কর।

আ্যামোনিয়ার প্রস্তৃতি এবং উহার সাধারণ ধর্ম (Preparation and simple properties of Ammonia)

[ক] অ্যামোনিয়া প্রস্তুতির ল্যাবরেটরী প্রণালী:

তত্ত্ব (Theory) ? ল্যাবরেটরীতে সাধারণত অ্যামোনিয়াম ক্লোরাইড ও ক্যালসিয়াম হাইড্রক্লাইডের মিশ্রণ উত্তপ্ত করিয়া অ্যামোনিয়া গ্যাস প্রস্তুত করা হয়।

 $2NH_4Cl + Ca (OH)_2 = 2NH_3 + CaCl_2 + 2H_2O$.

যন্ত্রপাতি (Apparatus) ঃ শক্ত কাচের একটি মোটা পরীক্ষা-নল, সমকোণে বাঁকান একটি নির্গম-নল, ঢাকনি সহ কয়েকটি গ্যাস-জার, বন্ধনীসহ একটি ষ্ট্যাণ্ড, কয়েকটি পরীক্ষা-নল, বুনসেন দীপ।

রাসায়নিক জব্যাদি (Chemicals)ঃ অ্যামোনিয়াম ক্লোরাইড, ক্যালসিয়াম হাইড্রক্সাইড (কলিচুন)।

পদ্ধতি (Procedure) ঃ কিছু পরিমাণ অ্যামোনিয়াম ক্লোরাইড ও উহার প্রায় তিনগুণ পরিমাণ শুদ্ধ ক্যালিসিয়াম হাইড্ক্সাইড একটি থলে (mortar) উত্তমরূপে মিপ্রিত কর। একটি শক্ত কাচের মোটা পরীক্ষা-নলের প্রায় অর্ধেক এই মিশ্রণ দ্বারা ভর্তি কর। পরীক্ষা-নলের দৈর্ঘ্য বরাবর মিশ্রণের উপর দিয়া গ্যাস বাহির হইবার যেন পথ থাকে। কর্কের সাহায্যে পরীক্ষা-নলের মুথে সমকোণে বাঁকান একটি নির্গম-নল জুড়িয়া দাও যেন উহার দীর্ঘ বন্ধনীর সাহায্যে দিকে থাকে। পরীক্ষা-নলিটিকে মুথের দিকে একটু নীচু করিয়া বন্ধনীর সাহায্যে দ্ব্যান্তের সহিত আটকাইয়া দাও। একটি শুদ্ধ গ্যাস জার নির্গম-নলের উপর উপুড় করিয়া রাখ যেন নির্গম-নলের শেষ প্রান্ত গ্যাস-জারের প্রায় তলা পর্যন্ত পৌচায়।

বুনসেন দাপের সাহায্যে পরীক্ষা-নলের মিশ্রণটি উহার দৈর্ঘ্য বরাবর ধীরে ধীরে উত্তপ্ত কর। উৎপন্ন অ্যামোনিয়া গ্যাস নির্গম-নল দিয়া বাহিরে আসে। অ্যামোনিয়া বায়ু অপেক্ষা লঘু বলিয়া গ্যাস-জারের বায়ু নীচে সরাইয়া উহার

মধ্যে জমা হয়। গ্যাস-জারটি অ্যামোনিয়ায় পূর্ণ হইয়াছে কিনা দেখিবার জন্ত হাইড্রোক্লোরিক অ্যাসিডে সিক্ত একটি কাচ-দণ্ড গ্যাস-জারের মুখে ধর। ঘন সাদা ধোঁয়া উৎপন্ন হইলে বৃঝিবে যে গ্যাস-জার অ্যামোনিয়া-পূর্ণ হইয়াছে।

৩২নং চিত্র-জ্যামোনিয়া প্রস্তুতি ও সংগ্রহ

গ্যাস-জারটির মৃথে ঢাক্নি দিয়া সাবধানে তুলিয়া টেবিলের উপর উপুড় করিয়া রাথ। এইরূপে বায়ুর নিমাপসারণ দারা কয়েকটি শুফ গ্যাস-জারে অ্যামোনিয়া গ্যাস সংগ্রহ কর।

[খ] অ্যামোনিয়ার সাধারণ ধর্ম সম্পর্কীয় পরীক্ষাঃ

পরীক্ষা	 পর্যবেক্ষণ	সিদ্ধান্ত ও ব্যাখ্যা
১। (ক) আন্মোনিয়া গানের বর্ণ লক্ষ্য কর। (খ) গ্যাস-জারের চাক্নি সামাশ্র একটু সরাও। উহার মুখে হাত নাড়িয়া আনমোনিয়া গ্যাস তোমার দিকে চালিত কর এবং গন্ধ পরীক্ষা কর। [গ্যাস-জার হইতে সরাসরি গন্ধ লইবে না।]	কোন বৰ্ণ নাই । তাত্ৰ ঝ [*] াঝাল গন্ধ	আক্রোনিয়া ঠাব্র কাঁঝাল গন্ধ বিশিষ্ট বর্ণহীন গ্যাস।

পরীকা সিদ্ধান্ত ও ব্যাখ্যা প্যবেশ্ব ২। একটি আমোনিয়া-আমোনিয়া দাহ্য নহে; দহনের জ্বন্ত কাঠি নিভিয়া। পূর্ণ গাস-জার উপুড় করিয়া সহায়কও নহে। যায়, গাাস জলে উহার ভিতর একটি খলন্ত কাঠি ना । প্রবেশ করাও। অ্যামোনিয়া গ্যাস জলে খুব দ্রবণীয় ৩। একটি সাণ্মোনিয়া-লাল লিটমাস দ্রবণ এবং উহার জলীয় দ্রবণ (আমোনিয়াম পূর্ণ গ্যাস-জারে লাল লিটমাস नील इया भाग-হাইড্রন্মাইড) কার ধর্মী। দ্রবণ ঢালিয়া জারটি ভালরূপে জারে জল উঠিয়া $NH_3 + H_2O = NH_1OH$. গ্যাস-জারটি নাডিয়া দাও। সমস্ত জার জলে জলের মধ্যে উপুড় করিয়া উহার ¦ পূৰ্ব হয়। ঢাকনি সরাও। আমোনিয়া উদায়ী বলিয়া দ্রবণ পরীক্ষা-নলে এই নীল দ্রবণের দ্রবণ পুনরায় লাল হইতে বাহির হইয়া যায়। সামান্ত অংশ লইয়া উত্তপ্ত কর। হয় ৷ আমেনিয়া ও হাইড্রোক্লোরিক আসিড 8। একটি খালি গ্যাস-ष्ट्रेषि भाग-ज्यात्रहे যুক্ত হইয়া অ্যামোনিয়াম ক্লোরাইড ঘৰ সাদা ধৌয়ায় কোটা গাঢ জারে কয়েক উৎপন্ন করে। সাদা ধৌয়াটি উৎপন্ন ভরিয়া যায়। হাইডোক্লোরিক আামিড দিয়া আমোনিয়াম ক্লোরাইডের অতি স্ক্র গ্যাস-জারটি গডাইয়া লও। এই সাদা কণার সমষ্টি। $NH_3 + HCl = NH_4Cl$. আাদিড মাথা জারটি একটি [হাইড্রোক্লোরিক অ্যাসিডের সহিত অ্যামোনিয়া-পূর্ণ গণ্স-জারের ঘন সাদা ধোঁয়া উৎপাদন—এই মুখের উপর বসাইয়া ঢাক্নি পরীকার সাহায্যে আমোনিয়া গাসে সরাও। সনাক্ত করা হয়।] ে। একটি খালি (অর্থাৎ ঘন সাদা ধৌয়া আমোনিয়া নীচের গ্যাস-জার বায়পূর্ণ) গাস-জার একটি হইতে উপরের গ্যাস-জারে চ**লি**য়া উৎপন্ন হয়। আসিয়াছে। শ্বতরাং ইহা বায়ু অপেকা অ্যামোনিয়া-পূর্ণ গ্যাস-জারের মুখের উপর বসাইয়া ঢাকনি नघ् । সরাও। কিছুক্ষণ পরে হাইড্রো-ক্লোরিক আাসিডে সিক্ত একটি কাচ-দণ্ড উপরের জারের মুখে क्द्र ।

পরীক্ষা ৬। একটি বা তৃইটি আামোনিয়া-পূর্ণ গ্যাস-জারে থানিকটা পাতিত জল ঢালিয়া গ্যাস-জারের মৃথ বন্ধ করিয়া ভালরূপে ঝাঁকাও। আামোনিয়া গ্যাস জলে দ্রবীভূত হইয়া আমোনিয়াম হাইড্রাইড দ্রবণ উৎপন্ন করে। নিম্ন পরীক্ষাগুলির জন্ম এই দ্রবণ অথবা ল্যাবরেটরীর লঘু আমোনিয়াম হাইড্রাইড দ্রবণ ব্যবহার করিবে। নিমের প্রত্যেকটি লবণের দ্রবণ পৃথক পরীক্ষা-নলে লইয়া উহাতে

- (১) প্রথমে কোটা কোটা করিয়া ভল্ল পরিমান,
- (২) পরে অতিরিক্ত পরিমাণ অ্যামোনিয়াম হাইডুক্সাইড দ্রবণ মিশাও।

ল বণের নাম	প্যবেক্ষণ	দিদ্ধা ন্ত ও ব্যাখ্যা
(ক) কপার সালফেট জবণ। (CuSO1) (প) সিলভার নাইট্রেট জবণ। (AgNO3)	(২) নীলাভ বেত অবঃ ক্ষেপ। (২) অবঃক্ষেপ দ্রবাস্ত্ত হইয়া গাঢ় নাল দ্রবণ পরিণত হয়। (১) বালামী অবঃক্ষেপ। (২) অবঃক্ষেপ দ্রবাস্ত্ত হইয়া দ্রবণ বর্ণহান হয়।	(২) বেসিক কপার সালফেটের [CuSO4, Cu (OII2)] অধঃ- শেপ। (২) অতিরিক্ত অ্যানোনিয়ায় দ্রবণীয় কিউপ্রি-অ্যানোনিয়ায় সালফেট উৎপর হয়। (২) সিলভার হাইড্রক্সাইড অস্থায়ী বলিয়া সিলভার অক্সাইড (Ag2O) অধঃক্ষিপ্ত হয়। (২) অতিরিক্ত অ্যানোনিয়ায় দ্রটিল লবণ শৃষ্টি করিয়া ইহা দ্রবাভূত হয়।
(গ) জিংক সালফেট দ্র বণ। (ZnSO ₄)	(১) সাদা ঘনঃকোণ। (২) অধঃকেপ দ্রবীসূত হয়।	(১) জিংক হাইছুকাইড

त्मिनात खर्ग शास्त्रा योत्र।]

লবণের নাম	পর্যবেক্ষণ	দিদ্ধান্ত ও ব্যাখ্যা
্য) ফেরিক ক্লোরাইড দ্রবণ। (FeCl ₃)	(১) বাদামী অধঃক্ষেপ। (২) কোন পরিবর্তন হয় না।	(১) ফেরিক হাইডুক্সাইড অধঃ- ক্ষিপ্ত হয়। FeCl ₃ + 3NH ₄ OH = Fe(OH) ₃ + 3NH ₄ Cl (২) ফেরিক হাইডুক্সাইড অতি- রিক্ত অ্যামোনিয়ায় অদ্রবনীয়।
(ঙ) অ্যালুমিনিয়াম সালফেট দ্রবণ। [Al2(SO4)3]	(১) সাদা আঁঠিলো অধঃক্ষেপ। (২) বিশেষ কোন পরিবর্তন হয় না।	(১) আানুমিনিয়াম হাইডুক্সাইড অধঃক্ষিপ্ত হয়। Al ₂ (SO ₄) ₃ + 6NH ₄ OH = 2Al(OH) ₈ + 3(NH ₄) ₂ SO ₄ (২) ইহা অতিরিক্ত আমোনিয়ায় সামাশ্য ক্রবনীয়।
(চ) ম্যাপনেসিয়াম সালফেট ক্সবণ। (MgSO1)	(২) সাদা অধ্যক্ষেপ। (২) কোন পরিবর্তন হয় না।	(১) ও (২) ম্যাগনেদিয়াম হাইড্র- ক্সাইড অতিরিক্ত অ্যামোনিয়ায় অদ্রবণীয়। MgSO4+2NH4OH== Mg(OH)2+(NH4)2SO4 মতরাং, অ্যামোনিয়ামহাইড্রক্সাইড ধাতব লবণের ক্রবণে উক্ত ধাতুর হাইড্রক্সাইড অধঃক্রিপ্ত করে। ধাতব হাইড্রক্সাইডের কতকগুলি অতিরিক্ত অ্যামোনিয়ায় দ্রবণীয়, কতকগুলি অদ্রবণীয়।
(ছ) নেস্লার জবণ (Ness- ler's solution) [মারকিউরিক ক্লোরাইড প্রবণে পটাসিয়াম অয়োডাইড জ্ববণ মিশাইলে লাল অধঃক্ষেপ আসে। অতিরিক্ত পটাসিয়াম আয়োডাইডে ইহা জ্ববাভূত হয়। এই জ্ববণের সহিত কম্ভিক সোডা বা পটাস মিশাইলে	বাদামী অধ্যক্ষেপ।	রাসায়নিক সংযোগে বাদামী বর্ণের যৌগিক উৎপন্ন হয়। [নেস্লার দ্রবণের সহিত বাদামী অধ্যক্ষেপ বা বর্ণ—এই পরীক্ষা দ্বারা অ্যামোনিয়া বা উহার লবণের অন্তিত্ব প্রমাণ করা হয়।]

কার্বন ভাই-অক্সাইভের প্রস্তুতি এবং উহার সাধারণ ধর্ম (Preparation and simple properties of Carbon-dioxide) \(\sumsymbol{/} [ক] কার্বন ডাই-অক্সাইড প্রস্তুতির ল্যাবরেটরী প্রণালী ঃ

তত্ত্ব (Theory): সাধারণ তাপমাত্রায় ক্যালসিয়াম কার্বনেটের (মার্বেল-পাথর) সহিত লখু হাইড্রোক্লোরিক অ্যাসিড মিশ্রিত করিয়া ল্যাবরেটরীতে কার্বন ডাই-অক্সাইড প্রস্তুত করা হয়।

 $CaCO_3 + 2HCl = CaCl_2 + H_2O + CO_2$

যন্ত্রপাতি Apparatus): উল্ফ-বোতল, দীর্ঘনাল-ফানেল, নির্গম-নল, ঢাক্নি সহ কয়েকটি গ্যাস-জার, কয়েকটি পরীক্ষা-নল।

রাসায়নিক জব্যাদি (Chemicals): ক্যালসিয়াম কার্বনেট (মার্বেল-পথের), হাইড্রোক্লোরিক অাসিড (১ আয়তন অ্যাসিড: ১ আয়তন জল)।

পদ্ধতি (Procedure): একটি উল্ফ-বোতলে মার্বেলের ছোট ছোট টুকরা লও এবং বোতলে জল ঢালিয়া মার্বেলের টুক্রাগুলি ঠিক ডুবাইয়া রাখ। কর্কের সাহায্যে উল্ফ-বোতলের এক মুখে একটি দীর্ঘনাল-ফানেল এবং অপর

৩০নং চিত্র-কার্বন ডাই-অক্সাইড প্রস্তুতি ও সংগ্রহ

্বথে একটি নির্গম-নল জুড়িয়া দাও। দীর্ঘনাল-ফানেলের শেষ প্রাস্ত যেন জলে ডুবান থাকে। নির্গম-নলের অপর প্রাস্ত একটি গ্যাস-জারের প্রায় তলা পর্যস্ত পৌছাইয়া দাও। বস্তুটি বায়ুরোবী হইল কিনা পরীক্ষা করিয়া দেখ। দীর্ঘনাল-ফানেলের ভিতর দিয়া অল্ল অল্ল করিয়া হাইড্রোক্লোরিক অ্যাসিড (১৯১) ঢাল এবং বোতলটি মাঝে মাঝে একটু নাড়িয়া দাও।

আাদিত মাবেল-পাথরের সংস্পর্শে আদিলেই বিক্রিয়া আরম্ভ হয় এবং কাবন ডাই-অক্সাইডের বুদ্দন আরম্ভ হয়। উৎপন্ন কার্বন ডাই-অক্সাইড নির্গান-লা দিয়া বাহির ছইয়া আদে। এই গ্যাস বায়ু অপেকা ভারী বলিয়া গ্যাস-জারের বায় উপরের দিকে অপ্যারিত করিয়া জারের মধ্যে জমা হয়। গ্যাস-জার কার্বন ডাই-অক্সাইডে পূর্ণ ইইয়াছে কিনা দেখিবার জন্ত একটি জলন্ত কাঠি গ্যাস-জারে প্রবেশ করাও। জলন্ত কাঠি নিভিন্না গোলে বুকিবে যে জারটি গ্যাস-জারে প্রবেশ করাও। জলন্ত কাঠি নিভিন্না গোলে বুকিবে যে জারটি গ্যাসে পূর্ণ ইইয়াছে। ঢাক্নি দিয়া গ্যাস-জারের মুগ বন্ধ করিয়া টেবিলের উপর রাখ। এইরপে বায়র উর্কাপিদারণ দ্বারা কয়েকটি গ্যাস-জারে কার্বন-ডাই-অক্সাইড গ্যাস সংগ্রহ কর।

দ্রেপ্টব্য ঃ এই পদ্ধতিতে হাইড্রোকোরিক অ্যাসিডের পরিবর্তে সালফিউরিক অ্যাসিড ব্যবহার করিলে অদ্রবণীয় ক্যালসিয়াম সালফেট উংপন্ন হন্ন এবং মার্বেলের উপর উহার আবরণ পড়ায় কিছুক্ষণ পরেই রাসায়নিক ক্রিয়া বন্দ্র হইয়া যায়। সেইজন্ত সালফিউরিক অ্যাসিড ব্যবহার কর্না উচিত নহে।

 $CaCO_3 + H_2SO_1 = CaSO_1 + H_2O + CO_2$

[খ] কার্বন ডাই-অক্সাইডের সাধারণ ধর্ম সম্পর্কীয় পরীক্ষাঃ

প্ৰবেক্ষণ

সিদ্ধান্ত ও ব্যাপা

পরীক্ষা

	• • • •	11419 3 31471
১। কার্বন ডাই-অক্সাইড	কোন বৰ্ণ বা গন্ধ নাই।	- কাৰ্বন ডাই-অক্লাইড বৰ্ণহীন, গন্ধহীন
গাংদের বর্ণ ও গন্ধ পরীকা	! !	भाग ।
করিয়া দেখ।		
২। কা ৰ্ব ন ডাই-অক্সাইড-	ছলস্ত কাঠি নিভিয়া	কাৰ্বন ডাই-অগ্নাইড দাগ নহে এবং

২। কাৰন ডাই-জন্মাইড- জ্লন্ত কাচি নিভিয়া কাৰন ডাই-অন্নাইড দাই নহৈ এবং
পূৰ্ব একটি সন্স-জন্মে একটি 'যায় প্ৰাসে হলে না। দহনের সহায়ক নহে।
জ্লন্ত কাঠি প্ৰবেশ করাও।

পরীক্ষা	পৃৰ্যবেক্ষণ	নিদ্ধান্ত ও ব্যাখ্যা
৬। একটি জ্লন্ত	মাগনেদিয়াম-ফি তা টি	ম্যাগনেসিয়াম দহনকালে তাপ-
ম্যাগনেসিয়াম-ফিতা কার্বন ডাই-	প্রদীপ্ত শিখায় অলিয়া	মাত্রা বৃদ্ধি পায় এবং তাহাতে কার্বন
এক্সাইড-পূ র্ব গ াস-জারে প্রবেশ	উঠে। গ্যাস-জারে	ডাই-অকাইড বিযোজিত হইয়া
করাও।	সাদা ও কালো অবশেষ	অগ্নিজেন উংপন্ন হয়। এই
	় পড়িয়া থাকে।	অক্রিজেনের সাহায্যে ম্যাগনেসিয়াম
		জ্বলে এবং মাাগনেদিয়াম অক্সাইড
		(সাদা) ও কালো কার্বন কণা
		ডংপন্ন হয়।
		$2Mg + CO_2 = 2MgO + C.$
		ম্যাগনেসিয়াম অক্সাইড স্থ্যাসিডে
মধ্যে লগু হাইড়োকোরিক		দ্ৰবীভূত ২্য়, কালো কাৰ্বন-কণা
গণাসিত চালিয়া জারটি না ট্রিয়া	ভরলে ভাসিতে থাকে।	অপরিবতিত থাকে।
नि ।		$MgO + 2\Pi Cl = MgCl_2 + H_2O$
⊌ি কাৰ্বন ডাই-অগ্নাইড-		কাৰ্বন ডাই-অক্যাইড ছলে অল্প
পূর্ণ একটি গাস-ভার জলের	1	ज्वनीय ।
নব্যে উপুড় করিয়া ঢাকনি	করে।	
সর(ও।		
৫। একটি খালি গ্যাস-	1	
জারের মুখের উপর একটি		
কার্বন ডাই-অক্সাইড-পূর্ণ গ্যান-		
জার	ı	
ঢাকনি সরাও।	প্রিমার চলের চল	উপরের গ্যাস-জণ্র হ ইতে কা র্বন
কিছুক্ষণ পরে নীচের গ্যাস-জারে খানিকটা পরিক্ষার চূন-জল	·	ডাই-অক্সাইড নীচের গ্যাস-জারে
•	; ; ! EXIMILEX !	আসিয়াছে।
ঢালিয়া ঝ াকাই য়া দাও।	\$5 CC	ম্ভরাং কার্বন ডাই-অক্সাইড বায়ু
অপবা, নীচের প্যাস-জারে একটি	কাঠাট নিভিয়া যায়।	Treat with a

জনন্ত কাঠি প্রবেশ করাও।

স্মপেশা ভারী।

পরীক্ষা	পর্যবেক্ষণ	সিদ্ধান্ত ও ব্যাখ্যা
 একটি পরীক্ষা-নলে লথু নীল লিটমাস দ্রবণ লইয়া উহাতে কার্বন ডাই-অক্সাইড গাস পরিচালিত কর। পরীক্ষা-নলটি উত্তপ্ত কর। 	_	কার্বন ডাই-অক্সাইডের জলীয় দ্রবণ ক্ষীণ (weak) আদিড-ধর্মী; দ্রবণে কার্বনিক আদিড উৎপন্ন হয়। CO2+112():112CO3 দ্রবণ হইতে কার্বন ডাই-অক্সাইড গ্যাস বাহির হইয়া যায়। কার্বনিক আদিড পঞ্চায়া (unstable) আদিড।
৭। একটি পরীক্ষা-নলে পরিশার চ্ব-জল লইয়া উহাতে কার্বন ডাই-অক্সাইড গ্যাস পরিচালিত কর।	् ट्टेग्रा गांग्र ा	উৎপন্ন অদ্রবণীয় কালসিয়াম কার্বনেটের ভাসমান ক্ষু ক্ষু কণিকার জন্ম জল গোলা দেখায়। Ca(OH) 2 + CO 2 CaCO 3 + II 2 O. [এই পরীক্ষার সাহায্যে কার্বন ডাই- অল্লাইড গোসের অস্তিত্ব নির্ধারণ করা হয়।]
ঐ প্রকো-নলে অধিক পরিমাণে গটাস পরিচালিত কর।	্পরিপার হয়।	অদ্রবণীয় কালসিয়াম কার্বনেট দ্রবণীয় বাই-কার্বনেটে পরিণত হয়। CaCO ₃ + 11 ₂ O + CO ₂ Ca(HCO ₃) ₂
ঐ দ্রবণ ফুটাও।	পরিশার চূণ-জল আবার খোলা হইয়া যায়। ্	উত্তাপে বাই-কার্বনেট বিযোজিত হইয়া কার্বনেট অধঃক্ষিপ্ত হয়। $Ca(HCO_3)_2$ $=CaCO_3 + CO_2 + H_2O.$

পরীক্ষা	পর্যবেক্ষণ	সিদ্ধাস্ত ও ব্যাখ্যা
৮। একটি কার্বন ডাই- আত্মইড-পূর্ণ গ্যাস-জারে থানিকটা কষ্টিক সোডা দ্রবণ ঢালিয়া জারটির মৃথ বন্ধ করিয়া ভালরূপে নাড়িয়া দাও। গ্যাস- জারটিকে জলের মধ্যে উপুড় করিয়া ঢাক্নি সরাও।		কষ্টিক সোড়া দ্বারা কার্বন ডাই- অক্সাইড শোষিত হয়। অ্যাসিড্থর্মী কার্বন ডাই-অক্সাইডএর সহিত ক্ষারদ্রবণের বিক্রিয়া দ্বারা সোডিয়াম কার্বনেট (জলে দ্রবণীয়) উৎপন্ন হয়। 2NaOH+CO2 = Na2CO3+II2O

হাইড্রোজেন ক্লোৱাইডের প্রস্তৃতি এবং উহার ধর্ম (Preparation and properties of Hydrogen Chloride)

কি প্রস্তুতির ল্যাবরেটরী প্রণালী:

তত্ত্ব (Theory): সোডিয়াম ক্লোরাইডের সহিত গাঢ় সালফিউরিক অ্যাসিডের বিক্রিয়া দার। ল্যাবরেটরীতে হাইড্রোজেন ক্লোরাইড প্রস্তুত করা হয়। $NaCl + H_2SO_4 = NaHSO_4 + HCl$

যন্ত্রপাতি (Apparatus): একটি গোল-তল ফ্লাস্ক, নির্গম-নল, দীর্ঘনাল-ফানেল, ঢাক্নি সহ কয়েকটি গ্যাস-জার; ত্রিপদ-ষ্ট্যাণ্ড, তার-জালি, বুনসেন দীপ, বন্ধনী সহ ষ্ট্যাণ্ড।

রাসায়নিক জব্যাদি (Chemicals): সোডিয়াম ক্লোরাইড (সাধারণ লবণ), গাঢ় সালফিউরিক অ্যাসিড।

পদ্ধতি (Procedure): একটি গোল-তল ফ্লাম্বে কিছু সাধারণ লবণ লও। কর্কের সাহায্যে একটি দীর্ঘনাল-ফানেল ও একটি নির্গম-নল (তুইবার সমকোণে বাকান) ফ্লাম্বের মুখে জুড়িয়া দাও। ফ্লাম্বটিকে তার-জালির উপর বসাইয়া

বন্ধনীর সাহায্যে ষ্ট্যাণ্ডের সহিত আটকাইয়া দাও। নির্গম-নলের বড় বাহুর শেষ প্রান্থটি একটি শুদ্ধ গ্যাস-জারের তলা পর্যন্ত প্রবেশ করাইয়া দাও। দীর্ঘনাল-ফানেলের ভিতর দিয়া গাঢ় সালফিউরিক অ্যাসিড ঢাল যেন সমস্ত সাধারণ লবণ উহা দ্বারা ঢাকা পড়ে এবং দীর্ঘনাল-ফানেলের প্রান্তটি অ্যাসিডের নীচে ডুবিয়া থাকে। সাধারণ লবণের সহিত গাঢ়

৩৪নং চিত্র---হাইড্রোজেন ক্লোরাইডের প্রস্তৃতি ও সংগ্রহ

সালফিউরিক আাসিড মিলিত হইলে হাইড্রোজেন ক্লোরাইড উৎপন্ন হইতে আরম্ভ করে। ফ্লাস্কটিকে তার-জালির নীচ হইতে অল্ল অল্ল উত্তপ্ত করিয়া গ্যাস-জারটি হাইড্রোজেন ক্লোরাইড দ্বারা পূর্ণ কর। গ্যাস-জার হাইড্রোজেন ক্লোরাইড দ্বারা পূর্ণ কর। গ্যাস-জার হাইড্রোজেন ক্লোরাইডে পূর্ণ হইয়াছে কিনা দেখিবার জন্ম একটি কাচ-দণ্ড আ্যামোনিয়াম হাইড্রাইডে ড্বাইয়া গ্যাস-জারের মৃথে ধর। সাদা ঘন ধোঁায়া উৎপন্ন হইলে ব্রিবে যে গ্যাস-জারটি হাইড্রোজেন ক্লোরাইডে পূর্ণ হইয়াছে।

এইরপে বায়ুর উর্ধাপসার্ণ দারা কয়েকটি গ্যাস-জার হাইড্রোজেন ক্লোরাইডে পূর্ণ কর।

[খা হাইড্রোজেন ক্লোরাইডের ধর্ম সম্পর্কীয় পরাক্ষাঃ

পরাক্ষা	প্ৰ্বেক্ষণ	দিদ্ধান্ত ও ব্যাখ্যা
১। হাইড়োজেন কোরাই-	কোন বৰ্ণ নাই।	·
ডের বর্ণ পর্র:ক্ষা করি রা		
(प्रिंग ।		
२। গণস-জারের ঢাক্নি	ঝাঁঝল গন্ধ।	হাইড্রোজেন ক্লোরাইড ঝাঝাল
সরাইয়া সাবধানে গন্ধ পরীক্ষা		্ গন্ধযুক্ত বৰ্ণহীন গাাস।
কর।	সিক্ত বাতাদে গ্যাস	
[৬১ পৃষ্ঠার ১ (খ) পরীক্ষা দে খ ়া	ধৃমায়িত হয় ।	
ও। হাইছোজেন ক্লোরাইড-	জ্বলন্ত শলাকা নিভিয়া যায় ;	হাইড্রোজেন ক্লোরাইড দাঞ্
পূর্ণ গণস-ভারে ৭কটি জ্বন্ত	গাস ছলে না।	নহে, দহনের সহায়ক নহে।
শলাকা প্রবেশ করাও।		
৪। একটি গ্রাস-পূর্ব জারে	নীল লিটমাস-দ্রবণ লাল ি	হাইড্রোজেন ক্লোরাইড জলে
নাল লিটমান জবণ ঢালিয়া	३ ड्या याग्र ।	ুণুব জবনীয়। ইহার জলায়
জারটির মুখ ঢাকিয়া উভ্যক্রপে		[:] এবণ (হাইড্রোক্রোরিক আর্মিড)
নাডিয়া দাও। পনাস-জাবটি	ভতি হইয়া যায়।	অনসিড়ৰমী (acidic)।
জলেৰ মধো উপুড করিয়া চাক্নি		
সর্ভে।		
ে। একটি হাইড্রোজেন	ধন সাধা কোঁয়া উৎপন্ন	আন্মানিয়াম জোলাইড উৎপন্ন
ক্লোরাইড গাাস-পূর্ণ গ্যাম-	रुग़ ।	হ য়।
জারেব মুধে জামোনিয়াম-		NH4OH + HCI
হাই৬ক্সাইডে সিক্ত একটি কাচ-		: MI 4 CI+ II 2O,
দশু ধর।	l	্র <i>এই</i> পরীক্ষার সাহায্যে
1	i !	্ হাইড়োজেন কোরাইড সনাক্ত
	i '	্ করা হয় ।]

পরীক্ষা ৬। একটি বা তুইটি হাইড্রোজেন ক্লোরাইড-পূর্ণ গ্যাস-জারে কিছু পাতিত ত্বল ঢালিয়া গ্যাস-জারের মুখ বন্ধ করিয়া ভালরপে নাড়িয়া দাও। গ্যাদের জলীয় দ্রবণ অর্থাৎ হাইড্রোক্লোরিক অ্যাসিড উৎপন্ন হইল। নিম পরীক্ষাগুলির জন্ম এই দ্রবণ বা ল্যাবরেটরীর লঘু হাইড্রোক্লোরিক অ্যাসিড ব্যবহার করিবে। নিমের প্রত্যেকটি লবণের দ্রবণ পৃথক পরীক্ষা-নলে লইয়া উহাতে লঘু হাইড্রোক্লোরিক অ্যাসিড মিশাও।

লবণের নাম	পর্যবেক্ষণ : 	<u> শিদ্ধান্ত ও ব্যাখ্যা</u>
কে) সিলভার নাইট্রেট দ্রবণ। (AgNO) সানা অধ্যক্ষেপ ভাগ করিয়া দুইটি প্রীক্ষানলে লণ্ড।	সাদা অধ্যক্ষপ।	অন্তবনীয় দিলভার ক্রেরাইড উংপন্ন হয়। AgNO 3 + HCl - AgCl + HNO 3.
	কোন পরিবর্তন হয় না।	সিলভার ক্লোরাইড নাইট্রিক আসিডে অদ্রবনীয় কিন্তু
অপর ভাগে আমেনিয়ান হাইডুকাইড নিশাও।	অবংক্ষেপ দ্রবীভূত হয়।	অ্যামোনিয়ায় দ্রবণীয় ।
(থ) লেড নাইট্টে দ্বণ। !Pb(NC3)2 [†]	দানা অনঃক্ষেপ।	লেড কোরাইড অধঃক্ষিপ্ত হয়। Pb (NO3)2+2HCl =2PbCl2+2HNO3
পরীকা-নলটি উত্তপ্ত কর। প্রীকা-নলটি ঠাঙা কর।	অধংক্ষেপ দ্রবাস্থত হয়। অধংক্ষেপ চক্চকে কেলাস- রূপে পুনরায় অনে।	উংপন্ন লেড ক্লোরাইড ত গু ডালে অব ণীয়, শীত ল ডালে অদ্রবণীয়।
(গ) মারকিউরাস নাইট্রেট হবণ। $[{ m Hg}_2({ m NO}_3)_2$	সাদা অধংক্ষেপ।	মারকিউরাস ক্লোরাইড গ্রঃ- ক্লিপ্ত হয়। Hg2(NO3)2+2HCl -Hg2Cl2+2HNO3
পরীকা-নলের উপরিস্থ তরল খানিকটা ঢালিয়া ফেলিয়া উহাতে অ্যামোনিয়াম হাইডকাইড মিশাও।	অধঃক্ষেপের বর্ণ কালো হইয়া যায়।	্রকটি জটিল লবণ উৎপন্ন হয়। সূক্ষ পারদকণা উহার সহিত মিশ্রিত থাকার জক্ত কালো দেখায়।

পরীক্ষা	পর্যবেক্ষণ	সিদ্ধান্ত ও ব্যাখ্যা
৭। একটি পরীক্ষা-নলে লযু হাইড্রোক্লোরিক আাসিড লইয়া উহাতে কএকটি গ্রান্সলেটেড্ জিংক ফলিয়া দাও।	বৰ্ণহীন ও গন্ধহীন গ্যাস নিৰ্গত হয়।	
প্রাক্ষা-নলের নৃথে জ্বলন্ত শ্লাকাধর।	। শব্দ করিয়া গগদ জ্বলিয়া উঠে।	হা ⁷ ড়োজেন গালে নিগত হয়। Zn+2HCl=ZnCl ₂ +H ₂
৮। একটি পরীক্ষা-নলে সামান্স পরিমাণ মাংগানিত ডাই-অক্সাইড লইয়া উহাতে গাঢ় হাইড্যোক্সোরিক অনসিড মিশাইয়া তাপ দাও।	দুকুভাভ হ রিদ্রাব :শ্ র প্নান	মাাংগানিজ ডাই-অন্নাইড ছারা হাইড়োক্লোরিক আদিড় জারিত হুইয়া কোরিন গ্যাস উংপন্ন হয়। MnO2+4HCl = MnCl2+Cl2+2H2O
৯। একটি পরীক্ষা-নলে সামাক্ত পরিমাণ কঠিন পটাসিয়াম পারম্যাংগানেট লইয়া উহাতে গাঢ় হাইড্যো- ক্রোরিক আসিড মিশাও।	দনং প্ৰীক্ষা র স্থায়।	সাধারণ তাপমাত্রায় পটাসিয়াম পারম্যাংগানেট হাইড্যোক্লোরিক অ্যাসিডকে জারিত করে এবং ক্লোরিন উৎপন্ন হয়। 2KMnO ₄ + 16HCl == 2KCl + 2MnCl ₂ +8H ₂ O+5Cl ₂

क्राजित्वत श्रञ्जित अवः छेरात धर्म (Preparation and properties of Chlorine) ক্রারিন প্রস্তুতির ল্যাবরেটরী প্রণালী:

উত্ব (Theory): ম্যাংগানিজ ডাই-অক্সাইড ও গাঢ় হাইড্রোক্লোরিক অ্যাসিডের মিশ্রণ উত্তপ্ত করিয়া ল্যাবরেটরীতে ক্লোরিন গ্যাস প্রস্তুত করা হয়। $MnO_2 + 4HCl = MnCl_2 + Cl_2 + 2H_2O$.

যন্ত্রপাতি (Apparatus) ঃ হাইড্রোজেন ক্লোরাইড প্রস্তৃতিকালে বে যন্ত্রপাতি ব্যবস্থত হইয়াছে।

রাসায় নিক জব্যাদি (Chemicals) ঃ ম্যাংগানিজ ডাই-অক্সাইড ও গাঢ় হাইড্রোক্লোরিক অ্যাসিড।

পদ্ধতি (Procedure) ঃ ৩৪নং চিত্তের ন্থায় যন্ত্রপাতি ফিট্ কর এবং হন্ত্র বায়ুরোধী (air tight) হইয়াছে কিনা পরীক্ষা করিয়া দেখ। ফ্লাঙ্কে কিছু ম্যাংগানিজ ডাই-অক্সাইড পাউডার লও এবং দীর্ঘ-নাল ফানেল দিয়া গাঢ় হাইড্রোক্লোরিক অ্যাসিড ঢালিয়া দাও, ফানেলের নল যেন অ্যাসিডে তুবান থাকে। ফ্লাঙ্কটি সাবধানে নাভিয়া ম্যাংগানিজ ডাই-অক্সাইড ও অ্যাসিড ভাল করিয়া মিশাইয়া দাও। নির্গম-নলের শেষপ্রাস্ত একটি সচ্ছিত্র কার্ড-বোর্ডের মধ্য দিয়া গ্যাস-জারের প্রায় তলা পর্যন্ত পৌছাইয়া দাও। বুনসেন দীপের সাহায্যে ফ্লাঙ্কটিকে ধীরে ধীরে তাপ দাও। সবুজ আভাযুক্ত হলুদ বর্ণের ক্লোরিন গ্যাস উৎপন্ন হয়। উৎপন্ন গ্যাস নির্গম-নল দিয়া বাহিরে আন্সে এবং গ্যাস-জারের বায়ু উর্ধ্বে অপসারিত করিয়া উহার মধ্যে সঞ্চিত্ত হয়।

গ্যাস-জার ক্লোরিনে পূর্ণ ইইয়াছে কিনা ভাহা গ্যাসের বর্ণ দেখিয়া বুঝা যায়। অথবা, এক টুক্রা ফিল্টার কাগজ ষ্টার্চ ও পটাসিয়াম আয়োডাইড ডবণে সিক্ত করিয়া গ্যাস-জারের মূথে ধর। ষ্টার্চ-আয়োডাইড কাগজ নাল হইলে বুবি বে যে গ্যাস-জার ক্লোরিন গ্যাসে পূর্ণ ইইয়াছে। এইরূপে বায়ুর উর্ধ্ব অপসারণ দারা কয়েকটি গ্যাস-জার ক্লোরিন গ্যাসে ভতি কর এবং তাক্নি দারা জারের মূথ ভাল করিয়া বন্ধ কর।

সভর্কভাঃ ক্লোরিন একটি বিষাক্ত গ্যাস এবং ইহার গন্ধ খুব অপ্রতিকর। প্রস্তুতিকালে ঘাহাতে ক্লোরিন গ্যাস ল্যাবরেটরীর বায়ুতে বেশা চড়াইয়া না পড়ে সেদিকে বিশেষ লক্ষ্য রাথা কর্তব্য। হন্তুটি সম্পূর্ণ বায়ুরোধী করিতে ২ইবে। "ফিউম্ চেম্বারে" ক্লোরিন প্রস্তুত ও সংগ্রহ করা সম্ভব হইলেই ভাল। গ্যাস সংগ্রহ শেষ হইলে নির্গম নলের প্রান্তুটি ক্ষিক সোডা দ্রবণে ভূবাইয়া রাণিতে হয়—ক্লোরিন ঐ দ্রবণে শোবিত হয়। ক্লোরিন গ্যাসে খাস নেওয়ার ফলে অক্সন্থ মনে হইলে সাবধানে লঘু অ্যামোনিয়াম হাইডুক্মাইড-এর গন্ধ লওয়া প্রয়োজন।

[थ] क्रिवित्वत अर्ध जन्मकीय श्रेतीका

বি । কো। রলের ধন সম্পকার পর।ক্ষা			
পরীক্ষা	পর্যবেক্ষণ	দি দ্ধা ন্ত ও ব্যাখ্যা	
কর এবং সাবধানে গন্ধ পরীক্ষা করিয়া দেখ [৬০ পৃষ্ঠার ০ (খ) পরীক্ষা দেখ] ২ । ক্লোরিন-পূর্ব একটি গাস-জারে জলত শলাকা প্রবেশ করাও।	ব্লিচিং পাউডারের গন্ধ। শলাকা নিভিয়া যায়, গাাস স্থলে না।	ক্লোরিন ব্রিচিং পাউডারের পদ্দ- যুক্ত সবুজাভ হলুদ বর্ণের গ্যাস। ক্লোরিন সাধারণত দাগ নহে বা দহনের সহায়ক নহে।	
০। ক্লোরিন-পূর্ণ একটি গাাস-জারে খানিকটা জল ঢাল এবং জারটির মূখ বন্ধ করিয়া জারটি ভাল করিয়া ঝাকাও। গাাস-জারটি জলের মধ্যে উপুড় করিয়া ঢাক্নি সরাও।	গাস জারের মধ্যে ধীরে ধীরে অল্প গুল প্রবেশ করে।	ক্লোরিন গ্যাস জলে অল্প দ্রবণীয়। জলীয় দ্রবণকে ক্লোরিন-জল (chlorine-water) বলে।	
৪। উজ্জ্লন চামচে একটি শোসবাতি লইয়া ক্লোরিন-পূর্ণ শাস-জারে প্রবেশ করাও। থা তারপিন তৈল সিজ্ এক টুক্রা ফিল্টার কাগজ ক্লোরিন-পূর্ণ গাস-জারে ছাড়িয়া দাও।	হয় এবং ধোঁয়ার সৃষ্টি হয়। কাগজটি জ্বলিয়, উঠে। ঝুনমিত্রিত ধোঁয়া ডংপন্ন	নাম ও তারপিন তৈল কার্বন ও হাইড়োগেন লইয়া গঠিত। ক্লোরিন এই হাইড়োজেনের সহিত সংযুক্ত হইয়া হাইড়োন ক্লোরিক আসিড়ে পরিণত হয় এবং কার্বন আলাদা হইয়া হায়। স্কুতরাং ক্লোরিনের হাইডোজেনের প্রতি আসক্তি	

টুক্র। বেত ফস্ফরাস লইয়া অলিয়া উঠে; সাদা বে ায়া উৎপন্ন হয় (সাদা ধে ায়া)। ক্রোরিন-পূর্ব গাাস-জারে প্রবেশ । উৎপন্ন হয়। করাও ৷

🟲 👅। উজ্জ্বন চামচে এক ফন্ফরাস স্বতঃস্কৃতভাবে ফস্ফরাস ট্রাই-ও পেণ্টা-ক্লোরাইড $2P + 3Cl_2 = 2PCl_3$ $2P + 5Ol_2 = 2PCl_5$.

পরীক্ষা সিদ্ধান্ত ও ব্যাখ্যা পর্যবেক্ষণ ৭। উজ্জ্বন চামচে কিছু প্রত্যেক ধাতুকণা ক্লোরিনের আনিটমনি ক্লোরিনের সহিত অ্যাণ্টিমনি সংস্পর্ণে আ দি বা মা ত্র প্রত্যক্ষভাবে সংযুক্ত হইয়া উহার পাউডার ল্ইয়া জ্বলিয়া উঠে এবং চারিদিকে । ক্লোরাইড উৎপন্ন করে। উহা ক্লোরিন-পূর্; গ্লাস-জারে ছাডিয়া দাও। অগ্নিক্ষুলিংগ ছড়াইয়া পড়ে। '৮। একটি শুক রচিন ফুলের বর্ণের কোন | ক্লোরিন শুদ্ধ পদার্থকে বিরঞ্জিতজ দুল ক্লোরিন-পূর্ণ গাদ্য-জারের পরিবর্তন হয় না। করিতে পারে না। . মধ্যে ফেলিয়া দাও। জারের মধ্যে সামান্ত একট্ট রঙিন দুল বর্ণহীন হইয়া | ক্লোরিন জলের উপস্থিতিতে বিরঞ্জি ত ফোরিন করে। *জল* দিয়া ফুল**টি** ভিজাইয়া गाय । প্রথমে জল হুইতে জায়মান नाउ। অক্সিলেন উৎপাদন করে। এই জায়মান অক্সিজেন রং-গুলিকে ারিত করিয়া সদৌ করে। স্তরা ক্লোরিন জারণ-ক্রিয়া ছারা বিরঞ্জন করে : $Cl_2 + H_2O \rightarrow 2HCl + O$ ছাপার কালিতে কার্বন আছে। ন। চাপার অকর**পূ**র্ণ ছাপার অক্ষর অপরিবভিত ইহা জায়মান অক্সিজেন দারা একটি কাগজের এক পাৰে পাকে। সধারণ কালির জারিত হয় না। সাধারণ কালি দিয়া কয়েকটি দাগ বিরঞ্জিত হয়। দাগ কাট। কাগজটি জলে ভিজাইয়া কোরিন-পূর্ণ গ্যাস-লারের মধ্যে ফেলিয়া দাও। কাগজটি নাল হুইয়া ক্লোবিন ছারা পটাসিয়াম ২০। এক টুকরা ফিল্টার অ(য়োডাইড জারিত হইয়া ग[ग्र কাগত প্রাচ ও পটাসিগাম আয়োডিন উৎপ**ন্ন** হয়। এই আয়েডোইড দ্বণে ভিজাইয়া আয়োডিন ষ্টার্টের সহিত একটি (ষ্টার্চ আয়োডাইড কাগজ) নীল যৌগিকের শৃষ্টি করে। $2KI + Cl_2 = 2KCl + I_2$. ক্লোরিন গণদের মধ্যে ধর। ্রই পরীক্ষার সাহাযো ক্লোরিন গ্যাসের অস্তিত্ব প্রমাণ

করা হয়।]

পরীক্ষা

পর্যবেক্ষণ

সিদ্ধান্ত ও ব্যাগ্যা

১১। একটি পরীকা-নলে লঘু প্টাসিয়াম আয়োডাইড দ্রবণ লইয়া উহাতে ক্লোরিন গ্যাস চালিত কর (বা ক্লোরিন জল দাও)। কার্বন ডাই-সালফাইড মিশাইয়া নাড়িয়া माख ।

পটাসিয়াম ভ:য়োডাইডের পরিবর্তে পটাসিয়াম ব্রোমাইড দ্রবণ লইয়া ঐ পরীক্ষা কর।

তরলের নিম্ন ভারটির বর্ণ ক্লোরিন কর্তৃক পটানিয়াম গোর বেগুনী হয় ় আয়োড়(ইড হইতে নিগ্ত আয়োডিন কার্বন ডুটে-দালকাইডে জুৰ্বাস্তুত হওয়ার জন্ম এরূপ বর্ণ হয়। $2K1 + Cl_2 = 2KC1 + I_2$ তরলের নিম্ন স্তারের বর্ণ কার্বন দুটে-স্লাফটেডে

বাদামী হয়। ব্রোমিন-দ্রবণের বর্ণ। 2KBr+Cl₂

- 2KCl + Br₂

বিনা ভাপে ক্লোরিন গ্যাস উৎপাদন

কর্কের সাহাধ্যে একটি কনিক্যাল ফ্রাঙ্ক (conical flask)-এর মুখে বিন্দুপাতন ফানেল (dropping funnel) ও নির্গম নল জড়িয়া দাও

৩৫নং চিত্র-বিনা তাপে ক্লোরিন উৎপাদন।

পটাসিয়াম পারম্যাংগানেট কেলাস ফ্লাস্কের মধ্যে রাখিয়া বিন্দুপাতন ফানেল ২ইতে ধীরে ধীরে গাঢ় হাইড্রোক্লোরিক জ্ঞাসিড ঢাল। ক্লোরিন গ্যাস ৎউপন্ন হয়।

সপ্তম অধ্যায়

लवापत जवापत प्रशिक्त राहेत्या जन সালফাইডের বিক্রিয়া

(Action of Hydrogen Sulphide on Solutions of Salts)

সাধারণ তাপমাত্রায় ফেরাস সালফাইড ও লগু সালফি৬রিক আাসিভের বি,ক্রিয়া দারা হাইড্রোজেন সালফাইড বা সালফিউরেটেড হাইড্রোজেন এ,স্তত করা হয়। গ্যাসটি উল্ফ-বোজলে তৈয়ারা করা হয় (৩১নং চিত্র দেখ), এবং বায়ু অপেক্ষ। ভারী বলিয়া বায়ুর উপাপসারণ দারা গ্যাস-জারে সংগ্রহ করা হয়

$FeS+H_2SO_4=FeSO_4+H_2S$.

হাইড্রোজেন সালফাইড একটি বর্ণহীন, পচা ডিমের ন্যায় গর্মযুক্ত অ্যাসিডধর্মী গ্যাস। ইহা ল্যাবরেট্রীর একটি অত্যন্ত প্রয়োজনীয় বিকারক (reagent); নানাবিধ পরীক্ষার জন্ম ইহা প্রায়ই ব্যবহৃত হয়। উল্দ-বোতলে এই গ্যাস

৩৬নং চিত্র-কিপ্স গম্ব

উৎপাদনের প্রধান অম্ববিধা এই যে কেরাস সালফাইড যতক্ষণ অ্যাসিডের **সং**ম্পর্ণে থাকিবে ততক্ষণই গ্যাস উৎপন্ন হইতে থাকে। যে কোন সময়ে প্রয়োজনাত্যায়ী এবং নিয়মিত পরিমাণে দালফাইড গ্যাদ পাওয়ার হাইডোজেন কিপ্স-যন্ত্র (Kipp's Apparatus) ব্যবহার করা হয়।

কিপ্স যন্ত্রের মধ্য-গোলক খ-এ ফেরাস দালদাইডের টুক্রা লওয়া হয় এবং উপরের গোলক ক-এর ভিতর দিয়া লঘু শালফিউরিক অ্যাসিড ঢালিয়া দেওয়া হয়। অ্যাসিড ফেরাস मानकारेट इत मः म्लार्भ व्यामितनरे मानकि উत्तरहेष হাইড্রোজেন উৎপন্ন হয় এবং খ গোলকের ষ্টপ-কক্ (Stop-cock) যুক্ত

নির্গম-নল দিয়া বাহির হইয়া যায়। গ্যাদের প্রয়োজন না থাকিলে ষ্টপ-কক্ বন্ধ করিয়া দেওঁয়া হয়। খা গোলকের ভিতর উৎপন্ন গ্যাদের চাপে অ্যাদিড গা গোলকে নামিয়া আসিয়া নল বাহিয়া উপরের ক গোলকে চলিয়া যায়। আসিড আর ফেরাস সালকাইডের সংস্পর্ণে থাকে না—স্বতরাং গ্যাস উৎপাদন বন্ধ হইয়া যায়।

কোন দ্রণে হাইড্রোজেন সাস্থাইড গ্যাস পরিচালিত করিতে হইলে রবার-নলের সাহায়ে স্থা-কক্ যুক্ত নির্গম-নলে একটি কাচ-নল জুড়িয়া দাও। দ্রণটি পরাক্ষা-নলে বা বাকারে লইয়া কাচ-নলের অপর প্রান্ত দ্রবণের মধ্যে ভ্রাইয়া রাখ। প্রপ-কক্ খুলিয়া দাও, গ্যাস দ্রবণের ভিতর দিয়া বৃদ্বৃদাকারে বাহির হইতে থাকে।

[ক] হাইড্রোজেন সালফাইডের বিজারণ ক্রিয়া (Reducing action of Hydrogen Sulphide)

প্রীক্ষাঃ নাচের লবণের দ্রবণগুলি এক একটি পরীক্ষা-নলে লইয়া উহাতে কিপ্দ যন্ত্র হইতে কাচ-নলের সাহায্যে হাইড্রোডেন সালকাইড গ্যাস পরিচালিত কর। বিভিন্ন দ্রবণে গ্যাস পরিচালিত করিবার সময় প্রত্যেক্বার কাচ-নলটি পরিধার করিয়া লইবে।

ল্বণের নাম	পূৰ্যবেশ্ব	সিকান্ত ও ব্যাখ্যা
১। ফেরিক কোরাইড দ্রবণ। (৮º८८;)	নাদ। অন্যক্ষেপ।	ফেরিক ক্লোরাইড বিজারিত হইয়া ফেরাস ক্লোরাইডে পরিণত হয় এবং সালফার অধ্যক্ষিপ্ত হয়। 2FoCl ₃ + H ₂ S=2FoCl ₃ +2HCl+S

লবণের নাম	পূৰ্যবেক্ষণ	দিদ্ধান্ত ও ব্যাখ্যা
২। সালফিউরিক অ্যাসিড মিশ্রিত পটাসিয়াম পার- ম্যাংগানেট দ্রবণ। (KMnO.1)	দ্রবণ বর্ণহীন হয় , সাদা সালফার অধঃক্ষিপ্ত হয় ।	পারম্যাংগানেট বিজারিত হইয়া ম্যাংগানিজ সালফেটে পরিণত হয়। 2KMnO.1 + 3H2TO.4 +5H2S=K2SO.1
়। সালফিউরিক আসিড মিশ্রিত পটাসিয়াম ডাইলোমেট দ্রবণ। (K 2 Cr 2 O 7)	দ্রবণের বর্ণ সবুজ হয় , সালফার অধঃক্ষিপ্ত হয়।	+2MnSO ₄ + 8H ₂ O+5S ডাইকোমেট বিজারিত হুইয়া কোমিক-লবণে পরিণত হয়। K ₂ Cr ₂ O ₇ + 4H ₂ SO ₁
		+ 311 $_2$ S = K $_2$ SO $_4$ + Cr $_2$ (SO $_4$) $_3$ + 7H $_2$ O + 3S শুতিক্ষেত্রেই বিজারক হাইড়োজেন সালফাইড নিজে জারিত হইয়া সালফারে পরিণত হয়।

[খ] ধাতৰ সালফাইড উৎপাদন (Formation of Metallic Sulphides)

পরীক্ষা: নীচের লবণের দ্রবণগুলি পৃথক পৃথক পরীক্ষা-নলে লইয়া উহার মধ্যে সালফিউরেটেড হাইড্রোজেন পরিচালিত কর।

লবণের নাম	পর্যবেক্ষণ	নিষ্কান্ত ও ব্যথ্যা
১। (क) কপার সলেফেটের	কালো অধংক্ষেপ।	কালো কপার সালফাইড উৎপন্ন
ङलोग्न जुन्न ।		रुग्न ।
(খ) লগু হাইড়োক্লোরিক	>>	CuSO 4 + 112S
অ্যানিড মিশ্রিত কপার সালফেট		$= CuS + H_2SO_4$
मुवन ।		

লব্ণের নাম	প্ৰব্ৰক্ষণ	সিদ্ধান্ত ও ব্যাখ্যা •
২। লেড নাইট্রে টের জলীয় দ্রবণ।	কালো অধঃক্ষেপ।	কালো লেড সালফাইড উৎপন্ন হয়।
ও। (ক) মারকিউরিক ক্লোরাইডের জলীয় দ্রবণ। (খ) লঘু হাইডোক্লোরিক আংসিড মিঞিত মারকিউরিক ক্লোরাইডের দ্রবণ।	প্রথমে সাদা এবং পরে ক্রমে ক্রমে হলুদ, বাদামী এবং অবশেষে কালো অবংক্ষেপ। অতিরিক্ত সালফিউরেটেড হাই- ড্যোজেনে সর্বনা কালো	Pb(NO3)2 + H2S = PbS + 2HNO3 कালো অধ্যক্ষেপটি মারকিউরিক সালফাইডের। HgCl2 + H2S
 ৪। লঘু হাইডোক্লোরিক আাদিড মিশ্রিত ষ্টানাদ্ কোরাইড জবণ। ৫। আাদিড মিশ্রিত আানিমনি ক্লোরাইড জবণ। 	ভাজেশে স্বাধ কালে। অবঃক্ষেপ আসে। বা দা মী ব র্ণের অবঃক্ষেপ। কমলারঙের অবঃক্ষেপ।	= HgS + 2HCl है। नाम् मानकाইড উংপন্ন হয়। SnCl ₂ + H ₂ S SnS + 2HCl আান্টিমনি দালফাইড উংপন্ন হয়। ১ এ নং লবণগুলির প্রভাকে ক্ষেত্রেই বিভিন্ন ধাতুর সালফাইড ও
৬। লথু হাইড্রোংক্লারিক	অধ্যক্ষেপ আদে না।	আাসিড উৎপন্ন হয়। এই ধাতব সালফাইডগুলি উৎপন্ন আাসিডে বা ক্রবণে পূর্ব ১ইতে আাসিড মিশ্রিত থাকিলেও অধ্যক্ষিপ্ত হয়। কারণ ইহারা আাসিডে অন্তবনীয়। কেরাস সালফাইড আাসিডে ক্রবনীয়
আাসিড মিশ্রিত ফেরাস সালফেট জবণ। উহাতে অতি রি জ আামোনিয়াম হাই ডুক্সাই ড মিশাও।	কালে অধ্যক্ষেপ।	কিন্তু ক্ষারে অদ্ববীয়।

লবণের নাম

পর্যবেক্ষণ

সিদ্ধান্ত ও ব্যাখ্যা

^१। (ক) জিংক সালফেটের সাদা অধ্যক্ষেপ। জলীয় দ্রবণ।

(খ) উহাতে লঘু হাইড্রো- অধঃক্ষেপ দ্রবীসূত হয়। ক্লোরিক অ্যানিড মিশাও।

(গ) অংরিক্ত সোডিয়াম। সাদা অধংক্ষেপ। হাইড়ক্সাইড বা অ্যামোনিয়াম হাইড়ক্সাইড মিশ্রিত জিংক সালফেট দ্রবা।

৮। (ক) সোডি য়া ম কোন অধঃক্ষেপ আদে ক্লোরাইডের জলীয় দ্রবণ। না।

- (খ) আাদিড মিশ্রিত সোডিয়াম ক্লোরাইড দ্রবণ।
- (গ) আমোনিয়া মিঞ্জিত সোডিয়াম ক্লোবাইড দ্রবণ।

। সোডিয়াম ক্লোরাইডের
পরিবর্তে ক্যালসিয়াম ক্লোরাইড
ও ম্যাগনেসিয়াম সালফেটের
ক্রবণ লইয়া ঐরপ পরীক্ষা কর।

नामा जिःक मानकहिङ উৎপन्न इरा । ZnSO 1 + II 2S

— ZnS + H₂SO₁
জিংক সালফাইড আসিডে জবণীয়।
(স্বতরাং আসিড মিশ্রিত জিংক
সালফেট জবণে হাইড্রোজেন
সালফাইড চালনা করিলে অধ্যক্ষেপ
পাওয়া যায় না।)

জিংক সালফাইড ক্ষারে অদ্রবনীয়।
 ড ও ৭নং পরীক্ষার উংপন্ন
সালফাইডগুলি আাসিডে দ্রবনীয়
কিন্তু ক্ষারে অদ্রবনীয়। স্বতরাং
ক্ষারীয় (alkaline) দ্রবনে
ইহারা অধ্যক্ষিপ্ত হয়।
সোডিয়াম সালফাইড জলে দ্রবনীয়
বলিয়া কোন ক্ষেত্রেই ইহা অধ্যক্ষিপ্ত
হয় না। (পটাসিয়াম ও
আামোনিয়াম লবণের ক্ষেত্রেও
একই পর্যবেক্ষণ ও সিদ্ধান্ত।)

জলের উপস্থিতিতে ক্যালসিয়াম বা ম্যাগনেসিয়াম সালফাইড উংগল্প হয় না। স্বতরাং কোন অধ্যক্ষেপ আসে না।

জ্ঞ ইব্য ঃ ধাতব লবণের জ্রবণের মধ্যে সালফিউরেটেড হাইড্রোজেন পরিচালিত করিলে ধাতব সালফাইড অধঃক্ষিপ্ত হয়। এই ধাতব সালফাইডগুলির বিশেষ বর্ণ আছে—কপার, লেড ও মারকারির সালফাইড কালো, ট্রানাস্ সালফাইড বাদামী, অ্যাণ্টিমনি সালফাইড কমলা, জিংক সালফাইড সাদা। আবার, এই সালফাইডগুলির কতকগুলি অ্যাসিডে অন্তবণীয়, কতকগুলি অ্যাসিডে দ্রবণীয় কিন্তু ক্ষারে অন্তবণীয় এবং কতকগুলি সর্ব অবস্থাতেই দ্রবণীয়। ধাতব সালফাইডের বিশিষ্ট বর্ণ এবং অ্যাসিড ও ক্ষারে ইহাদের দ্রবণীয়তার স্থ্যোগ গ্রহণ করিয়া হাইড্রোজেন সালফাইডের সাহায্যে অনেক সময়ে লবণের মধ্যে বিশেষ ধাতৃ সনাক্ত করা ধায়। এই জন্ম রাসায়নিক বিশ্লেষণে সালফিউরেটেড হাইড্রোজেন বছল পরিমাণে ব্যবহৃত হয়।

অন্তম অধ্যায়

भपार्षत छेभत ठाभ ३ विकातकत श्रहाव ०वः विर्गठ भगामत प्रवाक कत्र

(Effects of heat and of reagents on substances including the recognition of evolved gases)

[ক] তাপের প্রভাব

তাপ প্রয়োগে বিভিন্ন পদার্থে বিভিন্ন প্রকার পরিবর্তন দেখা যায়। এই পরিবর্তনগুলি পদার্থ সমূহের স্বরূপ নির্ণয় করিতে সাহায্য করে। কোন কোন ক্ষেত্রে গ্যাস নির্গত হয় এবং নির্গত গ্যাস উপযুক্ত রাসায়নিক পরীক্ষা ছারা সনাক্ত করা হয়।

পরীক্ষাঃ সামান্ত পরিমাণ চূর্ণ পদার্থ একটি পরিষ্কার ও শুষ্ক পরীক্ষা-নলে ঢালিয়া লও, যেন উহা পরীক্ষা-নলের গায়ে লাগিয়া না যায়। চিমটার (holder) সাহায্যে পরীক্ষা-নলটি অহুভূমিকভাবে ধরিয়া বৃনদেন দীপের দীপ্তিহীন শিখায় (non-luminous flame) প্রথমে ধীরে ধীরে এবং পরে জোরে তাপ দাও।

পদার্থের নাম	পর্যবেক্ষণ	দিদ্ধান্ত ও ব্যাখ্যা
 ি জি:ক অক্লাইড 	উত্তপ্ত অবস্থায় ইহার বর্ণ হলুদ	
(ZnO) ; সাদা অনিয়তা-	উত্তপ্ত অবস্থায় ইহার বর্ণ হলুদ এবং শীতল অবস্থায় সাদা।	
কার পদার্থ।		১, ২ ও ৩ নং
২। লেড ম নোকাই ড	উত্তপ্ত অবস্থায় বর্ণ আরও গাঢ়	পরিবর্তন গুলি মবস্থাগত
	হয়। শীতল অবস্তায় হলুদ।	
৩।কেরিক অক্লাইড	উত্তপ্ত অবস্থায় ইহার বর্ণ কালো	changes) I
(Fe ₂ O ₃), গাঢ় লাল	এবং শীতল অবস্থায় গাঢ় লাল।	
বর্ণ।		

পদার্থের নাম	পর্যবেক্ষণ	সিদ্ধান্ত ও ব্যাখ্যা
৪। আয়োডিন কেলাস ; ধ্সর বর্ণের স্ফটিক।	বেগুণী গ্যাস নির্গত হয়; পরীক্ষা-নলের উপরের অংশে শীতল হইয়া পুনরায় কঠিন অবস্থায় পরিণত হয়।	আয়োডিনের উর্ধপাতন ।
अ। অ্যামোনিয়াম কোরাই ড (NH₄Cl); বাদা। উ্তিয়া (CuSO₄, 5H₂O), নীল বর্ণের সোদক ফটিক (bluo)	বাপ্পীভূত হইয়া পরীক্ষা-নলের উপরের শীতল অংশে পুনরায় কঠিন অবস্থায় পরিণত হয়। পরীক্ষা-নলের উপরের শীতল অংশে জলীয় বাম্প জমা হয়। সাদা অনিয়তাকার গুঁড়া	আমোনিয়াম ক্লো রা ই ড উধ্ব পাতিত হয়। তু তিয়ার কেলাসন জল (water of crystallisation) বাহির হইয়া যায় এবং উহা অনার্দ্র
hydrated crystals)। পরীক্ষা-নলটি ঠা ভা হইলে উহাতে এক ফোটা	(umorphous powder) পড়িয়া পাকে। নীল বৰ্ণ ফিরিয়া আদে।	(anhydrous) লবণে পরিণত হয়। অনার্দ্র লবণ পুনরায় সোদক স্ফটিকে পরিণত হয়।
পুল দাও। ৭। পটা সিয়াম বা সোডিয়াম নাই টেট (KNO3 বা NaNO3)।	গ্যাস নিগত হয়	পটাসিয়াম বা সোড়িয়াম নাইট্রেট বিযোজিত হইয়া ধাতুর নাইট্রাইট উৎপন্ন হয় এবং
পরীক্ষা-নলের মুখে শিখাহীন জ্বলম্ভ শলাকা ধর।°		অন্ধিজেন গাস নিৰ্গত হয়। 2KNO3=2KNO2+02 2NaNO3=2NaNO2+02
্ঠা মারকিউরিক অক্সাইড (HgO) , লাল বর্ণ।	উত্তথ্য অবস্থায় ইহার বর্ণ কালো হইতে থাকে , গ্যাস নির্গত হয় ; পরীক্ষা-নলের ভিতর উজ্জ্বল আয়নার মত দেখায়।	
পরীক্ষা-নলের মৃথে শিখাহীন জ্বলম্ভ কাঠি ধর।	কাঠিটি উজ্জ্ব শিখাস হ অ লিয়া উঠে।	নিগত গ্যাস অন্ধিক্তেন।

পদার্থের নাম পর্যবেক্ষণ **দিদ্ধান্ত** ও ব্যাখ্যা কাগজের উপর রৌপ্যাকৃতি थ क ि কাচ-দণ্ডের মারকিউরিক অক্সাইড তাপে কুড় কুড় গোলক (মার্কারির **সাহায্যে** ই আয়ুনাটি বিযোজিত হইয়া মার্কারি ও গুড়া) জমা হয়। চাছিয়া একখানি কাগজের অক্সিজেনে পরিণত হয়। উপর **ফেল**। $2HgO = 2Hg + O_2$ পরীক্ষা-নল শীতল হইলে অপরিবর্তিত মা র কি উ রি ক অক্সাইডের পূর্বের বর্ণ ফিরিয়া व्यात्म । २। जि:क कार्दान है গ্যাস নিৰ্গত হয়। উত্তপ্ত কাৰ্বনেট বিযোজিত বৰ্ণ, শীতল $(ZnCO_3)$ অবস্থায় হলুদ হইয়া জিংক অক্সাইডে পরিণত অবস্থায় সাদা। হয়। উৎপন্ন জিংক অক্সাইডের বর্ণের পরিবর্তন হয়। [)नः भरीका (मथ।] চুন-জল যোলাটে হয়। ডাই-অক্সাইড কর্কের সাহায্যে পরীক্ষা-কার্বন নলের মুখে একটি বাঁকান নিৰ্গত হয়। নির্গম-নলের এক $ZnCO_3 = ZnO + CO_2$ কুড়িয়া দাও এবং অপর প্রাপ্ত আরেকটি পরীক্ষ'-চুন-জলের मध्य ডুবাইয়া রাখ।

গ্যাস নিৰ্গত হয় , পরীক্ষা-নলে

কালো পদার্থ অবশিষ্ট থাকে।

চুন-জল ঘোলা হয়

১ । ৰূপার কার্ব নে ট

(CuOO₃); शन्का मर्क

নির্গত গ্যাসটি পরীক্ষা কর।

সাহায্যে

চুন-জলের

वर्ष ।

কপার কার্বনেট বিষোত্তি হ হইয়া কালো কপার অক্সাইডে পরিণত হয় এবং কার্বন ডাই-অক্সাইড গ্যাস উৎপন্ন হয়। $CuCO_2 = CuO + CO_2$.

গাস

পদার্থের নাম পর্যবেক্ষণ **শিদ্ধান্ত ও ব্যাখ্যা** ১১। লেড গ্যাস নিৰ্গত হয় : পরীক্ষা-নলে লেড কার্বনেট হলুদ বর্ণের লেড (PbCO₃), 커데 1 হনুদ পদার্থ অবশিষ্ট পাকে। অক্সাইডে পরিণত হয় এবং চুন-জলের কাৰ্বন ডাই-অক্সাইড **সাহা**য্যে **इन**-जल घाला २ए। গ্যাস নির্গত গাসটি পরীকা কর। উৎপন্ন হয়। $PbCO_3 = PbO + CO_2$ 13/ विष ना है हि है, লেড নাইট্রেট বিশো**জি**ত হইয়া গাঢ় বাদামী বর্ণের গ্যাস নির্গত [Pb(NO₃)₂]. ভারী হলুদ বর্ণের লেড মনোক্সাইডে হয় , পরীক্ষা-নলে হলুদ বর্ণের বৰ্ণহীন ক্ষৃতিক। পরিণত হয়। গাঢ় বাদামী পদার্থ অবশিষ্ট থাকে। বর্ণের নাইটোজেন পারক্রাইড গাাস ও উহার সহিত অক্সিজেন গাাস নিৰ্গত হয়। $2Pb(NO_8)_2 = 2PbO +$ পরীক্ষা-নলের কাঠি শিশাসহ জ্বলিয়া উঠে। শিখাহীন জ্বলন্ত কাঠি ধর। $4N0_{9} + 0_{2}$ সোদক কোরাস সালফেট ১৩। ফেরাস সালফেট কেলাসন জল বাহির হইয়া যায় (FeSO₄, 7IIO₂), 著称 অনার্দ্র লবণে পরিণত হয়। উচ্চ এবং লবণের বর্ণ সাদা হয়। তাপমাত্রায় ইহা বিযোজিত সবুজ বর্ণের সোদক ক্টিব। আরও তাপে ইহা গাচ লাল হইয়া ফেরিক অক্সাইড উৎপন্ন বর্ণের পদার্থে পরিণত হয়। করে এবং সালফার ডাই-ও গাাস নিগত হয়। ট্রাই-অক্সাইড গ্যাস নির্গত হয়। $2FeSO_4 = Fe_2O_3 + SO_2$ +80s ১৪। বোরাক্স। স্বচ্ছ পদাৰ্থটি সোডি য়া ম গলিয়া यात्र, কেলাসন জল $(Na_2B_4O_7, 10H_2O)$ বোরিক মেটাবে¦রেট বাহির হইয়া যায়—স্পঞ্লের মত 8 অক্সাইড । ফুলিয়া উঠে। আরও পরে ইহা গলিয়া একটি স্বচ্ছ কাচের মত

পদার্থে পরিণত হয়।

[খ] বিকারক (reagent)-এর প্রভাব

নিম্নলিখিত পরীক্ষাগুলিতে কতকগুলি পদার্থের উপর সাধারণ রি-এজেণ্ট (বিকারক)-এর ক্রিয়া দেখানো হইয়াছে। ক্রিয়ার ফলে কোন গ্যাস নির্গত হইলে সেই গ্যাসকে কিরুপে, উহার বর্ণ, গন্ধ লক্ষ্য করিয়া ও রাসায়নিক পরীক্ষার সাহায্যে সনাক্ত করা হয় তাহা বুঝিতে পারিবে।

পরীক্ষা	পর্যবেক্ষণ	দিদ্ধান্ত ও ব্যাখ্যা
একটি পরীক্ষা-নলে কয়েক টুক্রা গ্রান্থলেটেড জিংক লইয়া উহাতে লঘু হাইড্রোক্লোরিক বা সালফিউরিক আাসিড মিশাও।	গন্ধহীন, বৰ্ণহীন গ্যাস নিগত হয়।	জিংক লঘু হাইড়োক্লোরিক বা দালফিউরিক অ্যাদিডে দ্রবীভূত হইয়া হাইড়োঙেন গ্যাদ উৎপন্ন করে।
भूतीका नत्नत भूत्य धनस्य भनाका यत्र ।	শব্দ করিয়া গ্যাস জ্বলিয়া উঠে।	$Zn + 2HCl$ $= ZnCl_2 + H[_2$
-101141 431 1	340 ($Zn + H_2SO_4$ $= ZnSO_4 + H_2$
২। জিংকের পরিবর্তে		নিৰ্গত গাাদ হাইড়োজেন ।
লোহচূর্ণ ও ম্যাগনেশিয়াম-		Fe + 2JICl
তার লইয়া :নং পরীক্ষা কর।		FeCl ₂ + II ₂
		$Mg + H_2SO_4$
		$= MgSO_4 + II_2$

পুন একটি পরাক্ষা-নলে বৃদ্বৃদ্ করিয়া বর্ণহীন গ্যাস সোডিয়াম কার্বনেট ও
গোডিয়াম কার্বনেট লইয়া বাহির হয়। অ্যাসিডের বিক্রিয়ায় কার্বন ডাইউহাতে লগু হাইড্রোক্লোরিক অ্যাসিড শুন হয়।
মালফিউরিক অ্যাসিড শুন হর ।
মালফিউরিক আসেড

পরীকা

পৰ্ববেক্ষণ

চুন-জল ঘোলা হয়।

দিশ্বান্ত ও ব্যাখ্যা

পরীক্ষা-নলের মুখে একটি নির্গম-নল (ছইবার সমকোণে বাঁকান) জুড়িরা দাও। নির্গম-নলের মপর প্রান্ত আরেকটি পরীক্ষা-নলে চুন-জলের মধ্যে ডুবাইয়া রাগ।

। সোডিয়াম কার্বনেটের
পরিবর্তে পট।সিয়াম কার্বনেট,
কা ল সি য়া ম কার্বনেট,
ম্যাগনেশিয়াম কার্বনেট, কপার
কার্বনেট লইয়া ৩নং পরীক্ষা
কর।

একটি পরীক্ষা-নলে
 কেরাস সালফাইড লইয়া উহ্বাতে
 লয় হাইডোক্লোরিক বা
 সালফিউরিক আাসিড মিশাও।

প্রত্যেক ক্ষেত্রেই নির্গত গ্যাস চুন-জল গোলা করে।

পচা ডিমের স্থায় গন্ধযুক্ত বর্ণহান গ্যাস নির্গত হয়। নিৰ্গত গাাস কাৰ্বন ডাইঅন্ধাইড। সমস্ত ধাতৰ কাৰ্বনেট
লবণ খনিজ আাসিড খারা
আক্রান্ত হন্ন এবং কার্বন
ডাই-অক্সাইড উংপন্ন হন্ন।

হাইড়োজেন দালফাইড গ্যাস নিৰ্গত হয়।

 $FeS + II_2SO_4$

 $= FeSO_4 + H_2S$

 $F_0S + 2HCl$

=FeCl₂ + H₂S

পরীক্ষা-নলের মুখে লেড লেড-আাসিটেট কাগজ আাসিটেট দ্রবণে সিক্ত এক কালো হইয়া যার। • টুক্রা ফিল্টার কাগজ ধর। হাইড়োজেন সালফাইড বর্ণহীন লেড অ্যাসিটেটকে লেড সালফাইডে পরিণত করে।

পরীক্ষা পর্যবেক্ষণ সিদ্ধান্ত ও ব্যাখ্যা ৬। ফেরাস সালফাইডের হাইড়োজেন সালফাইড নিৰ্গত পচা ডিমের স্থায় গন্ধযুক্ত পরিবর্তে দোডিয়াম সালফাইড रुग्र । বৰ্ণহীন গাস—লেড - লইয়া এনং পরীক্ষা কর। Na₂S+2HCl আসিটেট কাগজ কালো $= H_2S + 2NaC1$ করিয়া দেয়। সালফারের গন্ধ-নির্গত গ্যাস সালকার ডাই-৭/ একটি পরীকা-নলে खनस বিশিষ্ট গ্যাস নিৰ্গত হয়। অক্সাইড। সে|ডিয়াম সালফ।ইট লবণ Na 1803 + 112804 লইয়া উহাতে লঘু হাইড়ো-ক্লোরিক সালফিউব্লিক বা $= Na_2SO_4 + H_2O$ আৰ্াসিড মিশাও। +802 ডাইক্রোমেট কাগজের বর্ণ ইহা ডাইক্রোমেট ও পার-পরীক্ষা-নলের মুখে সবুজ হইয়া যায়। পটাসিয়াম ডাইকোমেট দ্রবণে মাংগানেটকে বিজারিত করিয়া যথাক্রমে স্বুজ ও বর্ণহীন করে। সিক্ত এক টুকরা ফিল্টার কাগজ ধর। অথবা, পারম্যাংগানেট দ্রবণ বর্ণ-একটি কাচ-দশু পটাসিয়াম शैन श्रु। পারম্যাংগানেট দ্রবণে ডুবাইয়া পরীকা-নলের মুখে ধর। ৮ া এফটি প্রীক্ষা-নলে সালফারের গন্ধ-खनस বিশিষ্ট গ্যাস নিৰ্গত হয়। ক্ষেক্টি তামার কুচি (copper turnings) লইয়া উহাতে সালফ্টিরিক **স্যাসিড** গাচ মিশাইয়া তাপ দাও। ডাইক্রোমেট কাগজ সবুজ সালফার ডাই-অক্সাইড গ্যাস ডাইক্রোমেট কাণ্ড বা হইয়া যায়, নিৰ্গত হয়। পার-বা পারমাংগানেট দ্রবণের সাহায্যে মানংগানেট জবণ বৰ্ণহীন Cu + 2H 2SO4 গাদটি পরীকা কর।

হয় ৷

 $= CuSO_4 + 2H_2O + SO_2$

পরীকা

পর্যবেক্ষণ

সিদ্ধান্ত ও ব্যাখ্যা

এশ একটি পরীক্ষা-নলে লইয়া সোডিয়াম ক্লোরাইড *সালফিউরিক* তাহাতে গাঢ় আাসিড মিশাইয়া সামাস্ত তাপ দাও।

সাদা ধোঁয়ার আকারে নির্গত গাস তাৰ গৰাযুক্ত একটি গ্যাস নিৰ্গত হয়।

হাইড্রোক্রেন ক্লোরাইড। সোডিয়াম ক্লোরাইড ও সালফিউরিক আদিডের বিক্রিয়ায় হাইড়োজেন ক্লোরাইড় উৎপন্ন হয়।

একটি কাচ-দণ্ড আমোনিয়াম সাদা ঘন ধোঁয়া উৎপন্ন হাইডুক্সাইডে ডুবাইয়া পরীক্ষা-नल्तत्र भूरथ धत्र ।

श्य ।

NaCl+H2SO1 - Natiso4 + HCl

১৯/ একটি পরীক্ষা-নলে ব্লিচিং পাউডারের গন্ধযুক্ত সোডিয়াম ক্লোৱাইড ও মাাংগা-নিজ ডাই-অক্সাইডের মিশ্রণ नरेग्रा STIG **সালফিউরিক** আাসিড খিশাও এবং পরীকা-নলটি উত্তপ্ত কর।

সবজাভ হল্দ বর্ণের গাাস নিৰ্গত হয়।

নিৰ্গত গাাস ক্লোরিন। গাঢ সালফিউরিক অ্যাসিড সোডিয়াম ক্লোরাইড হইতে হাইড্রোকেন ক্লোরাইড উৎপন্ন করে এবং উश गारगानिक छाई-अञ्चार छ ঘারা জারিত হইয়া কোরিনে পরিণত হয়।

এক টুকরা ফিশ্টার কাগজ স্টার্চ আয়োডাইড কাগজ ষ্টার্চ ও পটাসিয়াম আয়োডাইড দ্রবণে ভিজাইয়া পরীকা-নলের मूर्व ध्र ।

नोन श्रृंश याय ।

2NaCl + 3112SO4 + MnO 2 $= 2NaHSO_4 + MnSO_4$ +2H2O+Cl2

১১। একটি পরীক্ষা-নলে ম্যাংগানিজ ডাই-অক্সাইডের সহিত পাঢ় হাইডোক্লোব্লিক আাসিড মিশাইয়া তাপ দাও।

নিৰ্গত গ্যাস ষ্টাৰ্চ আয়ো-ডাইড কাগজের সাহায্যে পরীকা কর।

मन्बां श्लुष वर्णत भाग নিৰ্গত হয়।

ষ্টাৰ্চ আয়োডাইড কাগজ नील श्रेष्ट्रा यात्र ।

নিগত গাাস ক্লোবিন । মাংগানিজ ডাই-অক্সাইড দারা হাইডোক্লোরিক আদিড জারিত হইয়া ক্রোরিন উৎপন্ন হয়।

 $MnO_2 + 4HCl$ $= MnCl_2 + Cl_2 + 2lf_2O$

পরীক্ষা-নলের মূথে ধর।

দিদ্ধান্ত ও ব্যাখ্যা পরাক্ষা পর্যবেক্ষণ ১> · একটি পরীক্ষা নলে সবুজাভ হলুদ বর্ণের গ্যাস নির্গত গ্যাস ক্লোরিন। পটাসিয়াম পার্মাাংগানেট নিৰ্গত হয়। পটাসিয়াম পারম্যাংগানেট ছারা কেলাস লইয়া উহাতে গাঢ় হাইড়োক্লোরিক অ্যাসিড জারিত হাইড়োক্লোরিক হইয়া ক্লোরিন উৎপন্ন হয়। আাসিড মিশাও ! নিৰ্গত গ্যাদ স্থাৰ্চ-আয়ো- স্থাচ আয়োডাইড কাগজ ঢা'ড কাগজের সাহাযো পরীকা नील इहेशा यात्र। কর। ২০। একটি পরীক্ষা-নলে বর্ণহীন, গন্ধহীন গাাস নির্গত গ্যাস হাইড়োজেন। জিংক ধাতুর চূর্ব (Zinc dust) নিৰ্গত হয়। Zn + 2NaOHলইয়া দোডিয়াম হাইড়কাইড $= \operatorname{Zn}(O\operatorname{Na})_2 + \operatorname{H}_2$ দ্রবণ মিশাও এবং ভাপ দাও। পরাক্ষা-নলের মৃথে ঘলও শব্দ করিয়া গ্যাদ ঘলিয়া एर्द्र । শলাকা ধর। ২ু৪ বি অনুমোনিয়াম ক্লোৱাইড ঝাঝালো গন্ধযুক্ত গ্যাস নিৰ্গত হয়। ব। সালফেটের সহিত উহার পরিমাণ দে।ডিয়াম । দ্বিগুণ কার্বনেট মিশাও। এই মিশ্রণের । খানিকটা একটি পরীক্ষা-নলে লইয়া তাপ দাও। ' নির্গত গাসের মধ্যে ভিজা লাল লিটমাস নীল হয়। নির্গত গ্যাস আমানিয়া। লাল লিটমাস কাগজ ধর। আমোনিয়াম লবণ ও সোডিয়াম ্রকটি কাচ-দণ্ড হাইড়ো- সাদ। খন ধেঁায়া উৎপন্ন কার্বনেটের বিক্রিয়ার আে শানিয়া ক্লোরিক অাসিডে ডুবাইয়া হয়। গ্যাস উৎপন্ন হয়।

নবম অথ্যায়

অ্যাসিড-মূলকের সনাক্তকরণ

(Identification of acid radicals)

লবণের ক্ষারকীয়-মূলক (basic radical) এবং অ্যাসিড-মূলক (acid radical):

জ্যাসিডের হাইড্রোজেন কোন ধাতু দারা প্রতিস্থাপিত হইয়া লবণ (Salt) উৎপন্ন হয়। ধাতুর নামের সহিত, যে জ্যাসিড হইতে লবণ উৎপন্ন হয়, তাহার নাম যুক্ত করিয়া লবণের নামকরণ হয়। লবণ প্রস্তুতির প্রণালীর মধ্যে একটি হইল ক্ষারক ও অ্যাসিডের রাসায়নিক বিক্রিয়া।

কারক (Base) + আ্যাসিড (Acid) = লবণ (Salt) + জল (Water)

 $NaOH + HCl = NaCl + H_2O$

 $ZnO + H_2SO_4 = ZnSO_4 + H_2O$

লবণের মধ্যে ছুইটি অংশ থাকে—একটি ধাতব অংশ (metallic portion), অপরটি অধাতব অংশ (non-metallic portion)। লবণ প্রস্তুতিকালে ধাতব অংশটি ক্ষারক হুইতে আসে বলিয়া উহাকে ক্ষারকীয়-মূলক (Basic radical) এবং অধাতব অংশটি অ্যাসিড হুইতে আসে বলিয়া উহাকে অ্যাসিড-মূলক (Acid radical) বলে।

সোভিয়াম ক্লোরাইড ও জিংক সালফেট জলীয় দ্রবণে নিম্নলিথিতরূপে আয়নিত হয়। NaCl $ightharpoonup Na^+ + Cl^-$; ZnSO, $ightharpoonup Zn^{+\ +} + SO$, ightharpoonup

দ্রবণে ক্ষারকীয় অংশটি পরাবিহাৎবাহী (electro-positive) এবং আ্যাসিড অংশটি অপরাবিহাৎবাহী (electro-negative) । সোডিয়াম ক্লোরাইড লবণে সোডিয়াম (Na^+) ক্ষারকীয়-মূলক এবং কোরাইড (Cl^-) অ্যাসিড-মূলক । সেইরূপ জিংক সালফেটে জিংক (Zn^{++}) ক্ষারকীয়-মূলক এবং সালফেট (SO_4^-) অ্যাসিড-মূলক । নিম্নে ক্যেকটি অ্যাসিড (তোমাদের

পাঠক্রমের অন্তর্ভুক্ত) এবং উহা হইতে উৎপন্ন একটি লবণের ক্ষারকীয়-মূলক ও স্মাসিড-মূলক উল্লেখ করা হইল।

স্যা সিড	অ্যাদিড হইতে	7	াবণটি র
401148	i উৎপন্ন একটি লবণ	ক্ষারকীয় মূলক	অ্যাসিড মূলক
১। হাইড়োক্লোরিক	পটাসিয়াম ক্লোরাইড	পটাসিয়াষ (K+)	ক্লোরাইড (Cl-)
(HCl)	(KCl) ,		
२ । नाइँद्विक	দোডিয়াম নাইট্রেট	সোডিয়াম (Na¹)	নাইট্রেট (NO ₃ -)
(HNO ₃)	(NaNO ₃)		
৩ : কাৰ্বনিক	ম্যাগনেসিয়াম কার্বনেট	ম্য:গনেসিয়াম	কাৰ্বনেট (CO3 =)
(H ₂ CO ₃)	(MgCO _b)	(Mg+ ')	
৪। সা ল ফিউরিক	জিংক সালফেট	জিংক (Zn ⁺⁺)	সালফেট (SO ₄ =)
(H ₂ SO ₄)	(ZnSO ₄)		
<। मानकि डेबाम	ক্যালসিয়াম সালফাইট	ক্যালসিয়া ম	সালফাইট (SO ₃ =)
(H ₂ SO ₃)	(CaSO ₅)	(Ca + -)	
🖜। হাইড্রোজেন	ফেরাস সালফাইড	ফেরাস আর্রন	मानकारेंড (S=)
मानगाइँড (H ₂ S)	(FeS)	(Fe ⁺⁺)	

একটি অজ্ঞাত অজৈব লবণ (unknown inorganic salt) সনাক্ত করিতে হইলে, যে ক্ষারকীয়-মূলক ও আাসিড-মূলক লইয়া লবণ গঠিত, তাহা নির্ণয় করিতে হয়। কতকগুলি পরীক্ষার সাহায্যে এই মূলক তুইটি পৃথকভাবে সনাক্ত করা হয়। উভয় মূলকের পরীক্ষা তুইটি পদ্ধতিতে করা হয়—একটি শুদ্ধ পরীক্ষা (Dry test) এবং অপবটি সিক্ত পরীক্ষা (Wet test)। শুদ্ধ পরীক্ষায় কঠিন লবণ লইয়া এবং সিক্ত পরীক্ষায় লবণের দ্রবণ লইয়া পরীক্ষাগুলি করা হয়। সাধারণত প্রথমে শুদ্ধ এবং তাহার পরে সিক্ত পরীক্ষা করা হইয়া থাকে। দশম শ্রেণীতে তোমরা কেবলমাত্র আ্যাসিড-মূলক সনাক্ত

কার্বনেট মূলকের জন্য পরীক্ষা (ূ) (Test for Carbonate radical, CO₃ =)

_ [ক] শুদ্ধ-পরীক্ষা (Dry test)

কঠিন সোডিয়াম কার্বনেট (Na2CO3) লইয়া শুক্ত-পরীক্ষা সম্পন্ন কর

পরীক্ষ	পর্যবেক্ষ ণ	ব্যাখ্যা
নামান্ত পরিমাণ কঠিন সোডিয়াম	ব র্ হীন, গন্ধহীন গ্যাস বুদব্দের আকারে নির্গত হয়।	আাদিডের সহিত বিক্রিয়ার কার্বন ডাই-অক্লাইড গাাস নির্গত হয়। Na 2CO 3 + 2HCl = 2NaCl + CO 2 + H2O.
কর্কের সাহায্যে পরীক্ষা- নলের মূখে নির্গম-নল জুড়িরা উহার অপর প্রাস্ত আল্রেকটি পরীক্ষা-নলে পরিধ্বার চুনের জলের মধ্যে ডুবাইয়া রাখ। (৩৭নং চিত্র দেখ)	পরিস্কার চুনের জল গোলাটে হয়।	অন্ত্রবণীয় ক্যালসিয়াম কার্বনেট উংপন্ন হয়। $Ca (OH)_2 + CO_3$ $= CaCO_3 + H_2O$

[थ] मिल-भन्नोका (Wet test)

পাতিত জলে সোডিয়াম সালফাইটের দ্রবণ লইয়া পরীক্ষাগুলি সম্পন্ন কর

পরীক্ষা	পর্যবেক্ষণ	ব্যাখ্যা
্প একটি পরীক্ষা-নলে সোডিয়াম সালকাইটের দ্রবণ লইয়া উহাতে সিলভার নাইট্রেট দ্রবণ মিশাও।	माना चयः स्कर्भ । १८८२	সিলভার সালফাইট উৎপন্ন হয়। Na ₂ SO ₃ +2AgNO ₃ =Ag ₂ SO ₃ +2NaNO ₃
ত্বণ । মনাও। ত অবিংক্ষেপ ভাগ করিয়া ত্ইটি পরীক্ষা-নলে লও। এক ভাগে লগু নাইট্রিক আদিড এবং অপর ভাগে আমোনিয়াম হাইদুক্সাইড মিশাও।	উভয় ক্ষেত্রেই অধঃক্ষেপ দ্ৰবাস্থৃত হইয়া যায়।	দিলভার দালফাইট নাইট্রিক অ্যাদিড ও আমোনিয়ায় দ্রবণীয়
একটি পরীক্ষা-নলে লবণের দ্রবণ লইয়া উহাতে বেরিয়াম ক্লোরাইড দ্রবণ মিশাও।	াদা অনঃক্ষেপ।	বেরিয়াম দালফাইট উৎপন্ন হয়। Na 2SO 3 + BaCl 2 =BaSO 3 + 2NaCl.
ু উহাতে লগু হাইড়োক্লোরিক আদিড় মিশাও।	স্বাধঃক্ষেপ <u>দ্</u> ৰবাস্থত হয়। ক্ষ্য	বেরিয়াম সালফাইট অ্যাসিডে দ্রবণীয়।

দ্রষ্ঠব্য: সোডিয়াম, পটাসিয়াম, অ্যামোনিয়াম সালফাইট জলে দ্রবণীয়;
অন্তান্ত সালফাইট জলে অদ্রবণীয়। সালফাইট লবণের সহিত প্রায়ই কিছু
সালফেট লবণ মিশ্রিত থাকায় ২নং পরীক্ষার অধ্যক্ষেপের কিছুটা অদ্রবণীয়
থাকিতে পারে। চূন-জল এবং সিলভার নাইট্রেট ও বেরিয়াম ক্লোরাইড দ্বারা
কার্বনেট ও সালফাইট মূলকের পরীক্ষার পর্যবেক্ষণ একই রকম।

সালফাইভ মূলকের জনা পরীকা (Test for Sulphide radical, S=)

[ক] শুদ্ধ-পরীক্ষা (Dry test)

কঠিন সোডিয়াম সালফাইড (Na2S) লবণ লইয়া পরীক্ষা সম্পন্ন কর।

পরীক্ষা পর্যবেক্ষণ ব্যাখ্যা

১। একটি পরীক্ষা-নলে পচা ডিমের স্থায় সালফিউরেটেড হাইড্রোজেন নির্গত কঠিন সোডিয়াম সালফাইড গন্ধযুক্ত বর্ণহীন গ্যাস হয়। Na₃S+2HCl লইয়া উহাতে লঘু সালফিউরিক নির্গত হয়। =2NaCl+H₂S.
বা হাইড্রোক্লোরিক আাসিড

े [थ] जिङ-श्रेतीका (Wet test)

পাতিত জলে সোডিয়াম সালফাইডের দ্রবণ প্রস্তুত করিয়া উহা ব্যবহার কর।

পরীক্ষা	পৰ্যবেক্ষণ	ব্যাখ্যা
 ১। একটি পরীক্ষা-নলে সোডিয়াম সালফাইড দ্রবণ 	দ্রবণের বর্ণ বেগুণী হর।	এক টি জটিল লবণ উৎপন্ন হয়। কেবলমাত্র কারীয় সালফাইড এই
লইয়া উহাতে কয়েক ফোঁটা		পরীক্ষার সাড়া দেয়। H2S গ্যাস
সো ডি য়া ম নাইট্রোপ্রসাইড	I	বা উহার জলীয় দ্রবণ দারা এই
ত্ৰবণ মিশাও।		পরীক্ষা হয় না।
ু 5 ২। একটি পরীক্ষা-নলে	। কালো অধঃক্ষেপ।	লেড সালফাইড উৎপন্ন হয়।
দ্রবণের আরেক অংশ লইয়া		
লেড অ্যাসিটেট দ্ৰবণ মিশাও।		
🗡 উহাতে লযু নাইট্ৰিক	অধংক্ষেপ দ্রবীভূত হয়।	
আাসিড মিশাইয়া উত্তপ্ত কর।		•
ু 🔊। একটি পরীক্ষা-নলে	কালো অধঃক্ষেপ।	সিলভার সালফাইড উৎপন্ন হয়।
্রন্তবণের আরেক অংশ লইয়া		Na ₂ S+2AgNO ₃
সিলভার-নাইট্রেট দ্রবণ মিশাও।		$= Ag_2S + 2NaNO_3.$
🍍 छेशएउ वयू नार्रेष्टिक	অধঃক্ষেপ দ্ৰবীভূত হয়।	मिनভाর मानकारेफ गतम नारंष्ट्रिक
ব্যানিড মিশাইয়া উত্তপ্ত কর।		ত্মাসিডে দ্ৰবণীয়।

জ্ঞপ্তব্য : ক্ষার-ধাতুর (alkali metals) সালফাইড ব্যতীত অক্সান্ত

मानकारेष करन व्यवनीय।

ক্লোৱাইড মুলকের জন্য পরীক্ষা (১) • (Test-for Chloride radical, Cl -)

[ক] শুদ্ধ-পরীকা (Dry test)

কঠিন সোডিয়াম ক্লোরাইড (NaCl) লইয়া পরীক্ষাগুলি সম্পন্ন কর

পরীক্ষা	পর্যবেক্ষণ	ব্যাখ্যা
১। একটি পরীক্ষা-নলে সোডিয়াম ক্লোরাইড লইয়া উহাতে গাঢ় সালফিউরিক অ্যাসিড মিশাইয়া সামাক্ত তাপ	ঝ াঝাল গন্ধযুক্ত গ্যাস নিৰ্গত হয় ।	হাইড়োজেন ক্লোরাইড গ্যাস নির্গত হয়। NaCl+H ₂ SO ₄ =NaHSO ₄ +HCl.
পরীক্ষা নলের মুখে ভিজা নীল লিটমাস কাগজ ধর ৷	नीन निष्टेभाम कांशक नांन रम्र ।	আাসিডধর্মী গ্যাদ।
একটি কাচ-দণ্ড অ্যামোনি- য়াম হাইড়ক্সাইড দ্রবণে ড্বাইয়া পরীক্ষা-নলের মুখে ধর।	ঘন সাদা ধেঁায়া উৎপন্ন হয়।	হাইড্রোজেন ক্লোরাইড ও আামোনিরাম হাইড়ক্সাইড যুক্ত হইয়া আমোনিরাম ক্লোরাইড উৎপন্ন হয়। HCl+NII4OH =NH4Cl+H2O
২। একটি পরাক্ষা-নলে সোডিয়াম ক্লোরাইড লইয়া উহাতে ম্যাংগানিজ ডাই- অক্সাইড ও গাঢ় সালফিউরিক অ্যাসিড মিশাইয়া মিশ্রণটি উত্তপ্ত কর।	ব্রিচিং পাউডারের গন্ধযুক্ত সবুজাভ হলুদ বর্ণের গ্যাস নির্গত হয়।	কোরিন গাাস নির্গত হয়। MnO ₂ + 2NaCl + 3H ₂ SO ₄ = MnSO ₄ + 2NaHSO ₄ + Cl ₂ + 2H ₂ O
ষ্টার্চ ও পটাসিয়াম আয়োডাইড দ্রবণে সিক্ত এক ট্ক্রা ফিল্টার কাগজ পরাক্ষা- নলের মূধে ধর।	ষ্টাৰ্চ-আয়োডাইড কাগজ নীল হইয়া যায়।	ক্লোরিন কতৃ ক পটাসিরাম আয়োডাইড হইতে নির্গত আয়োডিন ষ্টার্চের সহিত একটি নীল গৌগিকের সৃষ্টি করে ৷ 2KI + Cl ₂ = 2KCl+I ₂

ব্যবহারিক রসায়ন

[*] जिल्ल-भन्नीका (Wet test)

পাতিত জলে সোডিয়াম ক্লোরাইডের দ্রবণ লইয়া পরীক্ষাগুলি সম্পন্ন কর।

পরীক্ষা	প ৰ্যবেক্ষণ	ব্যাখ্যা
১। একটি পরীক্ষা-নলে	সাদা অধংক্ষেপ।	সিলভার ক্লোরাইড অধঃক্রিপ্ত
সোডিয়াম ক্লোরাইডের দ্রবণ		ह्य ।
नञ्ग উহাতে मिललात नारेखिं		NaCl+AgNO ₃
দ্ৰবণ মিশাও।		$= AgCl + NaNO_3.$
माना व्यस्थायम् प्रहे व्यस्य		
ভাগ করিয়া হুইটি পরীক্ষা-নলে		
नु ।		
এক অংশে গাঢ় নাইট্ৰিক	অধঃক্ষেপ দ্রবীভূত হয় না।	সিলভার ক্লোরাইড নাইট্রিক
অ্যাসিড মিশাই য়া ভালরূপে	•	অ্যাসিডে অদ্রবণীয় কিন্তু
নাড়িয়া দাও।		। আমোনিয়ায় দ্রবণীয়।
অপর অংশে অ্যামোনিয়াম	অধঃক্ষেপ দ্রবীভূত হয়।	
হাইডুক্সাইড মিশাইয়া ভালরূপে		
নাড়িয়া দাও।		
২। একটি পরীক্ষা-নলে	সাদা অধঃক্ষেপ।	লেড ক্লোরাইড উৎপন্ন হয়।
দ্রবণের আরেক অংশ লইয়া		2NaCl+(CH 3COO) 2Pb.
লেড আদিটেট ত্রবণ মিশাও।		=PbCl ₂ +2CH ₈ COONa.
পরাক্ষা-নলটি উত্তপ্ত কর।	অধঃকেপ দ্রবীভূত হয়,	লেড ক্লোরাইড গরম জলে
	কিন্তু শীতল হইলে পুনরায়	দ্রবণীয় কিন্তু শীতল জলে
	আসে।	অন্ত্ৰবণীয় ৷
৩। একটি পরীক্ষা-নলে	কোন পরিবর্তন হয় না।	
দ্রবণের আরেক অংশ লইয়া		
বেরিয়াম ক্লোরাইড দ্রবণ		
মিশাও।		

্ **দ্রেষ্টব্য :** লেড ক্লোরাইড তপ্ত জলে দ্রবণীয়; ষ্ট্যানাস ক্লোরাইড লঘু হাইড্রোক্লোবিক অ্যাসিড মিশ্রিত জলে দ্রবণীয়।

নাইট্রেট মূলকের জনা পরীক্ষা (3) (Test for nitrate radical, NO3)

[ক] শুদ্ধ-পরীক্ষা (Dry test)

পরীক্ষার জন্ম কঠিন পটাসিয়াম নাইট্রেট (KNO3) লও।

পরীক্ষা	1	পর্যবেশ্ব ণ		ব্যাখ্যা
্য। একটি পরীক্ষা-নলে পটাসিয়াম নাইট্রেট লগু এবং উহাতে গাঢ় সালফি উ রিক	- হাল্কা গ্যাস।	বাদার্মা	্ বণের	নাইট্রক অ্যাসিডের ধেঁীয়া। KNO ₃ + H ₂ SO ₄ = KHSO ₄ + HNO ₃ .
অ্যাসিড মিশাইয়া ভাপ দাও।				

২। একটি পরীক্ষ; নলে
পটাসিয়াম নাইট্রেট লইয়া গাঢ়
সালফিউরিক আাসিড ও কয়েক
টুক্রা কপারের কুচি (copper
turnings) মিশাও। পরীক্ষানলটি উত্তথ্ঞ কর।

২। একটি পরীক্ষ⊹নলে পাঢ় বাদামা বর্ণের গ্যাস সিয়াম নাইট্রেট লইয়া গাঢ় নির্গত হয়।

সালফিউরিক অ্যাসিড নাইট্রেট লবণ হইতে নাইট্রিক অ্যাসিড উৎপন্ন করে এবং উহা কপারের সহিত বিক্রিয়া করিয়া বাদামী নাইট্রোজেন ডাই-অক্সাইড গ্যাস উৎপন্ন করে।

ব্যবহারিক রুসায়ন

[খ] সিক্ত-পরীক্ষা (Wet test)

পাঁতিত জলে পটাসিয়াম নাইট্রেটের দ্রবণ লইয়া পরীকা কর

পরীক্ষা

প্রস্ত্রক্ষণ

न्तरा

১। একটি প্রাক্ষানরে সাল্লিউরিক প্রাসিড ও প্রানিয়াম নাইট্রেট পটাসিয়াম নাইট্রেট দুবণ লইয়া বিপুর্ব স্বণের সংযোগন্তবে কিট্রিক আাসিড দ্বারা বিপিত্র উহাতে সত্য প্রস্তুত করা ফেরান বিকটি দুরামান বর্ণের বিহুইয়া নাইট্রিক আনি সালফেট দেবৰ বিশাও। ভারপর বিলয় (1,০%n ring) করে। কেরাস সালফেট নাইট্রিক কিছু গাঢ় সালফিউরিক আর্গিড 🖟 গুটুত হয় পরীক্ষা-মলের গা বাহিয়া বাঁরে ধীরে ঢালিয়া দাও।

সাল আাসিডকে বিজারিত করিয়া নাইটিক অকাইড উৎপন্ন করে। এই নাইট্রিক অক্সাইড অতিরিঞ্জ ফেরাস সালফেটের সহিত যুক্ত হ্ইয়া বাদামী বর্গের FeSO 1. ১০ যোগ উৎপন্ন করে।

- ২। একটি প্রাক্ষা-নলে কোন স্বান্য ক্র লবণের দ্বণে সিলভার নাইট্রেট ক্রবণ মিশাও।
- ৩ ! ঐরপে আ ধার বেরিয়াম কোরাইড দ্রুণ famile !

দেপ্রব্য ঃ সমস্ত নাইট্রেট লবণ জলে দ্রব্দীয়; সেইজগু নাইট্রেটের সেক্ত পরীক্ষায় বিকারকের সাহায্যে কোন অধংকেপ পাওয়া যায় না।

লেড বা ক্যাল্সিয়াম নাইট্রেট-এর দ্রবণ লইয়া বলম্ব পরীক্ষা করিবার কালে ফেরাস সালফেট দ্রবণ মিশাইলে সাদা অধঃক্ষেপ আসে। সেকেত্রে অধংকেপ নীচে ভুমিতে দিয়া বা পরিস্রাবণ করিয়া পরিস্রুত লইয়া কার্য করিবে।

কয়েকটি ফেরাস সালকেটের দানা পরীক্ষা-নলে লইয়া কয়েকবার পাতিত জল

দিয়া ধুইয়া ফেল। মিশ্রিত ফেরিক সালফেট শ্রবীভূত হইয়া পৃথক হইয়া যায়; সবুজ ফেরাস সালফেট অবশিষ্ট থাকে। ইহা পাতিত জলে শ্রবীভূত কর।

বলয় পরীক্ষার বিক্রিয়া :---

 $KNO_3 + H_2SO_4 = KHSO_4 + HNO_3$ $2HNO_3 + 3H_2SO_4 + 6FeSO_4 = 2NO + 3Fe_2(SO_4)_3 + 4H_2O$ $FeSO_4 + NO = FeSO_4$. NO.

সালফেট মূলকের জন্য পরীক্ষা (Test for sulphate radical, SO;) সিক্ত পরীক্ষা (Wet test)

পাতিত জলে সোভিয়াম সালফেটের (Na2SO4) দ্রবণ লইয়া পরীক্ষা কর।

পরীক্ষা	পর্যবেক্ষণ	ব্যাখ্যা	
১। একটি পরীক্ষা-নলে সোডিয়াম সালকেট দ্রবণ লইয়া উহাতে বেরিয়াম ক্লোরাইড বা বেরিয়াম নাইট্রেট দ্রবণ মিশাও। উহার মধ্যে গাঢ় হাইড্রো-	সাদা অধঃক্ষেপ । কোন পরিবর্তন হয় না ।	বেরিয়াম সালফেট অধঃকিশ্ত হয়। Na ₂ SO ₄ +BaCl ₂ =BaSO ₄ +2NaCl বেরিয়াম সালফেট গাঢ় হাইড্রো-	
ক্লোরিক অ্যাসিড মিশাও।		ক্লোরিক অ্যাসিডে অ দ্র বণীয় ।	
২। সোডিয়াম সালকেটের সম্ দ্রবণে সিলভার [*] নাইট্রেট	কোন অধঃক্ষেপ আসে না।		
দ্ৰবণ মিশাও।	<u> </u>		

দ্বিষ্ঠব্য: লেড লবণের দ্রবণে বেরিয়াম ক্লোরাইড দিলে লেড ক্লোরাইডের সাদা অধঃক্ষেপ আসে; স্থতরাং সালফেট বলিয়া ভূল হইতে পারে। তথন বেরিয়াম নাইট্রেট দ্রবণ মিশাইয়া দেখ—সাদা অধঃক্ষেপ আসে কিনা। লেড সালফেট ব্যতীত অন্যান্ত সালফেট লবণ (পাঠক্রমের অস্তর্ভূক্ত) জলে দ্রবণীয়। ক্যালসিয়াম সালফেট জলে সামান্ত দ্রবণীয়। সালফেট মূলকের জন্ত শুক্ত-পরীক্ষা করিবার প্রয়োজন নাই।

অজ্ঞাত অ্যাসিড মুলকের সনাক্তকরণ

(Identification of unknown acid radicals)

[কার্বনেট (CO_3^-); সালফাইট (SO_3^-); সালফাইড (S^-); কোরাইড (CI^-); নাইটেট (NO_3^-); সালফেট (SO_4^-)] শুক্ষ-পরীক্ষা (Dry test)

পরীক্ষা	পর্যবেক্ষণ	শিদ্ধান্ত
লঘু সালফিউরিক বা হাইড্যোক্লোরিক অগাসিড মিশাও। সাধারণ তাপ- মাত্রায় কোন গ্যাস নির্গত না হইলে	গন্ধহীন গ্যাস নিৰ্গত হয়।	
পর্য়ক্ষা-নলটি সামাশ্য উত্তপ্ত কর। এই গ্যাস স্বচ্ছ চুন-জলের মধ্যে চালনা কর। (৩৭নং চিত্র দেখ)	স্বচ্ছ চুন-জল ঘোলাটে হয়। (থ) জ্বলন্ত গদ্ধকের স্থায় গদ্ধযুক্ত বর্ণহান গ্যাস নির্গত	কা ৰ্ব নেট
একটি কাচ-দণ্ড পটাসিয়াম প্রসাংগানেট দ্রবণে ডুবাইয়া	হয়। পারম্যাংগানেট দ্রবণ বর্ণহান	
পরীক্ষা-নলের মুখে ধর। অথবা, দ্যু অ্যাসিড মিশ্রিত পটাসিয়াম কোমেট দ্রবণে সিক্ত এক টুক্রা ফিল্টার কাগজ পরীক্ষা-	হয়। ডাই-ক্রেমেট কাগজ সবুজ হইয়া যায়।	সালফাইট
নলের মুখে ধর। অ্যাসিটেট জবণে সিক্ত এক টুক্রা ফিল্টার কাগজ পরীক্ষা- নলের মুখে ধর।	(গ) পচা ডিমের স্থায় গন্ধযুক্ত বর্ণহীন গ্যাস নির্গত হয়। লেড অ্যাসিটেট কাগজ কালো হইয়া যায়।	मानका ইড

	পৰ্যবেক্ষণ	দিদ্ধান্ত
/। একটি পরীক্ষা নলে কিছু লবণ লইয়া উহাতে গাঢ় সালফিউব্লিক অ্যাসিড মিশাইয়া	(ক) সাদা ধোঁয়ার আকারে তীত্র গন্ধযুক্ত গ্যাস নির্গত হয়।	
দামান্ত তাপ দাও। একটি কাচ-দণ্ড আমোনিয়াম হাইডক্সাইডে ড্বাইয়া পরীক্ষা-নলের মূখে ধর।	ঘন সাদা ধে*ায়া উৎপন্ন হয়।	ক্লোর াই ড।
	(খ) বাদামী বর্ণের গ্যাস।	সম্ভবতঃ নাইট্রেট।
	(গ) ১নং পরীক্ষার পর্যবেক্ষণের	কাৰ্বনেট, সালফাইট
	অমুরূপ।	বা সালফাইড ।
। কিছু কঠিন লবণের সহিত	ব্লিচিং পাউডারের গন্ধযুক্ত	
কিছু স্যাংগানিক ডাই-অক্সাইড	সবুজাভ হলুদ বর্ণের গ্যাস নির্গত	
মিশ্রিত করিয়া একটি পরীক্ষা-নলে	रुत्र ।	
লও। উহাতে গাঢ় সালফিউরিক		
অ্যাসিভ মিশাইয়া তাপ দাও।		
ষ্টাৰ্চ ও পটাসিয়াম আয়োডাইড	ষ্টার্চ-আয়োডাইড কাগজ নীল	ক্লোরাইড।
দ্রবণে সিধ্ন এক টুক্রা ফিল্টার	रुरेग्रा यात्र ।	
কাগজ্ঞ পরীক্লা-নলের মূথে ধর।		
👂। একটি পরীক্ষা-নলে	গাঢ় বাদামী রঙের গ্যাস নির্গত	নাইটে ুট।
नवन नहेन्रा উहात मर्पा	रुप्र ।	
কয়েকটি কপারের কুচি (Copper		,
turnings) দাও। উহাতে দামাশ্র		
গাঢ় সালফিউরিক অ্যাসিড মিশাইয়া		

ব্যবহারিক রসায়ন

সিক্ত-পরীক্ষা (Wet test) (WET TEST [ক] জলে জবণীয় লবণের জন্ম:

কিছু কঠিন লবণ একটি বীকারে লইয়া পাতিত জলে (distilled water) দ্রবীভূত করে। এই স্বচ্ছ দ্রবণের এক এক অংশ লইয়া নিম্নলিখিত পরীক্ষাগুলি সম্পন্ন কর।

পরীক্ষা	পর্যবেক্ষণ	নিদ্ধান্ত
১। একটি পরীক্ষা-নলে লবণের দ্রবণ লইয়া উহাতে সিলভার নাইট্রেট দ্রবণ মিশাও। সাদা অধঃক্ষেপ হুই অংশে ভাগ করিয়া হুইটি পরীক্ষা-নলে লও।	(ক) সাদা অধঃক্ষেপ।	(ক) সম্ভবতঃ ক্লোরাইড কার্বনেট, সালফাইট।
এক অংশে গাঢ় নাইট্রিক আসিড ও অপর অংশে আমোনিয়াম হাইড্রকাইড	সাদা অবংক্ষেপ নাইট্রক আসিডে অনুদ্রবায় কিন্তু আনমানিয়ায় জবনীয়। সাদা অবংক্ষেপ নাইট্রক আসিড ও আমোনিয়ায় জবনীয়। (খ) কালো অবংক্ষেপ।	নিশ্চিতরূপে ক্লোরাইড। কার্বনেট; সালফাইট হইতে পারে। (খ) সালফাইড হইতে পারে।
কালো অধংকেপের মধ্যে লঘু নাইট্রিক আাসিড মিশাইয়া তাপ দাও। > । একটি পরীক্ষা-নলে, লবণের জবণ লইয়া উহাতে বেরিয়াম ক্লোরাইড বা বেরিয়াম নাইট্রেট জবণ মিশাও।	्रेट्टा भन्नम नाटेष्ट्रिक व्यामिएड चित्रीय। रे	সম্ভবতঃ সালকেট, সাল- ফাইট, কার্বনেট।

পুরীক্ষা	পর্যবেক্ষণ	<u> </u>
এ পরীক্ষা-নলে গাড় ক্রিডেগ্রেস্ক্রিক জ্যাংসিদ	সাদা অধঃক্ষেপ দ্ৰবীভূত	নিশ্চিতরূপে সালফেট।
হাইড্রোক্লোরিক অ্যাসিড মিশাও।	হয় না। সাদা অধঃক্ষেপ দ্বীভূত হয়।	সালফাইট, কা র্বনে ট হ ইতে পারে।
 একটি পরীক্ষা-নলে লবণের দ্রবণ লইয়া উহাতে কয়েক ফোঁটা স্বত তৈরী সোডিয়াম নাইট্রো-প্রুসাইড দ্রবণ দাও। 	দ্রবণের বর্ণ বেগুনী হয় ।	নিশ্চিতরূপে সালফাইড।
৪ একটি পরীক্ষা-নলে লবদের দ্রবণ লইয়া উহাতে সভ প্রস্তুত করা ফেরাস সালফেট দ্রবণ মিশাও। তারপর পরীক্ষা-নলের গা বাহিয়া ধীরে ধীরে গাড় সালফিউরিক অ্যাসিড ঢালিয়া দাও।	জনণের সংযোগস্থলে গাঢ় বাদামী রঙের বলয় (brown	ি নিশ্চিতরূপে নাইট্রেট।

(थ) जटन जाजवनीय नवरनंत्र जगा:

কিছু পরিমাণ কঠিন লবণের সহিত উহার তিনগুণ পরিমাণ বিশুদ্ধ সোডিয়াম কার্বনেট মিশ্রিত কর। এই মিশ্রণটি একটি বীকারে লইয়া উহাতে পাতিত জল দাও এবং মিশ্রণটি দশ মিনিটকাল ..ভাল করিয়া ফুটাও : ঠাণ্ডা হইলে ইহা পরিস্রাবণ কর এবং পরিস্রুত একটি বীকারে সংগ্রহ কর। এই পরিস্রুত হইতে অল্প অল্প পরিমাণ লইয়া নিমের পরীক্ষাগুলি সম্পন্ন কর।

ব্যবহারিক রসায়ন

পরীক্ষা	পর্যবেক্ষণ	শি শ্বান্ত
৪। একটি পরীক্ষা-নলে	কোন বাদামী বর্ণের গ্যাস নির্গত	 नाः दिएं नरह ।
কঠিন লবণ লইয়া উহ্¦তে		11 - 22 - 10 (1
কয়েকটি তামার কুচি ও কিছু	•	
গাঢ় দানফিউরিক আদিড		
মিশাইয়া উত্তপ্ত করা হইল।	' 	
	[খ] সিক্ত-পরীক্ষা	
সিক্ত পরীক্ষার জন্ম	পাতিত জলে লবণটির দ্রবণ 🕾	গস্তুত করা হইল
পরীক্ষা	পর্য:বক্ষণ	সিকান্ত
২। একটি পরীক্ষা-নলে	সাদা অধ্যক্ষেপ।	
লবণের দ্রবণ লইয়া উহাতে		
সিলভার নাইট্রেট দ্বণ নিশান		
र हेन ।		
সাধা অবঃক্ষেপ ছুই অংশে	অবঃক্ষেপ নাইট্রিক অ্যাসিডে	· নিশ্চিতরূপে কোরাইড় : !
ভাগ করিয়া এক অংশে গাঢ়	অদ্ৰবৰ্ণীয় কিন্তু আমোনিয়ায়	
নাইট্রিক আাসিড এবং অপর	দ্রবনীয় ।	
অংশে আনোনিয়াম হাই দুকাইড		
দেওয়া হইল।	1	
২। একটি পরীক্ষা-নলে	সাদা অবংক্ষেপ আদে না।	স্বালকেট, সালফাইট বা
দ্বণের আরেক অংশে]	ক।র্বনেট নহে।
বেরিয়াম ক্লোরাইড দ্রবণ মিশান	}	
्रहेत। —	<u> </u>	
স্থতরাং, প্রদত্ত লবণের অ্যাসিড মূলকটি-—কোরাইড (Cl -)		
নমুনা—৩		

••• • •गः लवन।

माना भनार्थ ; ज्ञत्न ज्ववीय ।

ভারিখ-----

শুক্ষ-পরীক্ষা

পরীক্ষা	পর্থবেক্ষণ	শিদ্ধান্ত
১। একটি পরীক্ষা-নলে সামান্ত কঠিন লবণ এইয়া উহাতে লথু সালফিউরিক আাসিড মিশান হইল।		সম্ভবতঃ কার্বনেট
নির্গত গ্যাস চুন-জলে পরি- চালিত করা হইল।	চুন-জল যোলাটে হয়।	। : কার্বনেট ।
একটি কাচ-দণ্ড পটাসিয়াম পারমনংগানেট দ্রবণে ড্বাইয়া প্রাক্ষা-নলের মুখে ধরা ২ইল।	পারম্যাংগানেট দ্রবণের বর্ণের কোন পরিব তন হয় না ।	मानकाइँ नरह ।
২। একটি পরীক্ষা-নলে কঠিন লবণ লইয়া উহাতে গাঢ় সালফিউরিক অ্যাসিড মিশাইয়া	তীব্রবেগে বর্ণহীন গন্ধহীন গাাস নির্গত হয়।	 कार्वरमिष्ठ ।
কঠিন লবণ লইয়া উহাতে ম্যাংগানিজ ডাই-অক্সাইড ও গাঢ় সালফিউরিক অ্যাসিফ	সবৃ জাভ হলুদ বর্ণের গ্যাস নির্গত হয় না।	্রিরাইড নহে।
মিশাইয়া উত্তপ্ত করা হই ল। ৪। একটি পরীক্ষা-নলে কঠিন লবণ লইয়া উহাতে তামার কৃচি ও গাঢ় সালফিউরিক আাসিড মিশাইয়া উত্তপ্ত করা হইল।	বাদ!মী রঙের গ্যাস নির্গত হয় না।	' নাইট্রেট নঙে ।

সিক্ত-পরীকা •

পাতিত জলে লবণের দ্রবণ প্রস্তুত করা হইল।

পরীক্ষা	পর্যবেশ্বণ	শিদ্ধা ন্ত
১। একটি পরীক্ষা-নলে লবণের দ্রবণ লইয়া উহাতে সিলভার নাইট্রেট দ্রবণ মিশান		
र हेन ।		
পরীক্ষা-নলে গাঢ় নাইট্রিক	্ অধঃক্ষেপ দ্রবীভূত হয়	ক্লোরাইড নহে : কার্বনেট ব:
আসিড দেওয়া হইল !		সালফাইট হইতে পাবে
২। দ্রণের আরেক অংশে	' म्रान व्यक्षःस्क्रमः।	
বেরিয়াম ক্লোরাইড দ্রবণ মিশান	1	
<i>२</i> इंग् ।	! !	
উহাতে গাঢ় হাইড়োক্লোরিক	্ত্রীভূত হয়	সালফেট নহে , কার্বনেট বা
আংসিড মিশান হইল ।	1	সালফাইট হইতে পারে।

স্থতরাং, প্রদত্ত লবণের অ্যাসিড মূলকটি—কার্বনেট (CO₃ ।)
[জ্ঞেষ্টব্য ঃ জলে অদ্রবণীয় কার্বনেটের জন্ম সিক্ত-পরীক্ষা করিবে না।
কেবলমাত্র শুন্দ-পরীক্ষা দ্বারা কার্বনেট সনাক্ত করিবে ।

नगून|-8

তারিখ-

-নং লবণ

সাদা পাউডার, জলে অদ্রবণীয় কিন্তু লঘু হাইড্রোক্লোরিক অ্যাসিড দিয়া উত্তপ্ত করিলে দ্রবণীয় হয়। দ্রবণ প্রস্তৃতিকালে বিশিষ্ট গন্ধযুক্ত গ্যাস নির্গত হয়।

14

পরীক্ষা	পর্যবেক্ষণ	সি দ্ধান্ত
কঠিন লবণ লইয়া লখু হাইজ্রো- ক্লোরিক অ্যাসিড মিশাইয়া তাপ দেওয়া হইল।		
লেড অ্যাসিটেট দ্রবণে সিক্ত এক টুক্রা ফিল্টার কাগজ পরীক্ষা-নলের মুখে ধরা হইল।	লেড অ্যাসিটেট কাগজ কালো হইয়া যায়।	मानकाश्
২। ৭কটি পরাঞ্চা-নলে কঠিন লবণ লইয়া উহাতে সামান্ত গাঢ় সালফিউরিক আদিড মিশাইয়া তাপ দেওয়া হইল .	১নং পরাক্ষার পর্যবেক্ষণের ['] অনুরূপ।	, भानक (इंफ
	সবুজাভ হলুদ বর্ণের গাাস নির্গত হয় না।	ক্লোরাইড নহে।
৪। একটি পরীক্ষা-নলে কঠিন লবণ লইয়া উহাতে কয়েকটি তামার কুচি ও দামান্ত গাঢ় দালফিউরিক অ্যাসিড মিশাইয়া উত্তপ্ত করা হইল।	গাঢ় বাদামী রঙের গ্যাস নির্গত হয় না।	নাঠাট্রট নহে

ব্যবহারিক রসায়ন

সিক্ত-পরীক্ষা

প্রদত্ত লবণটি জলে অন্তবণীয়। একটি বীকারে কিছু কঠিন লবণের সহিত উহার তিনগুণ পরিমাণ সোডিয়াম কার্বনেট মিশ্রিত করিয়া জল দিয়া দশ মিনিটকাল ভালরপে ফুটান হইল। ঠাণ্ডা হইলে ইহা পরিস্রাবণ করিয়া পরিস্রুতের এক এক অংশ লইয়া নিম্নের পরীক্ষাগুলি করা হইল।

পরীক্ষ	পূর্যদুবক্ষণ:	শিদ্ধা ন্ত
	দ্রবণের বর্ণ বেগুনী হয়।	নিশ্চিভরূপে সালফাইড।
পরীক্ষা-নলে লইয়া সোডিয়াম না ইট্রো প্রুসাইড স্ত বণ মিশান		
इंडेन ।		
২। একটি পরীক্ষা-নলে	সালা অধ্যক্ষেপ আসে না।	ক্লোরাই দুনহে।
পরিস্রতের আরেক অংশ লইয়া		!
নাইট্রিক অণসিডের সাহায়ো		
আদিডিক করা হইল। উহাতে	!	
সিলভার নাইট্রেট দ্রবণ মিশান		
२ हेन ।		
৩। পরিস্রুতের আরেক	নাদা অধ্যক্ষেপ আনে না।	সালফেট মতে।
গংশ হাইড়োক্লোরিক অনসিতের		1
শাহায্যে আদিডিক করিয়া উহাতে	•	ı
বেরিয়াম ক্লোরাইড মিশান হইল।		Į.

স্ত্রাং, প্রদত্ত লবণেব অ্যাসিড মূলকটি—সালফাইড (S-

नगून|--१

তারিখ · · · · · · · ন লবণ তাল্কা তলুদ বর্ণের পদার্থ ; জলে দ্রবণায়।

শুক্ষ-পরীক্ষা

(৪নং নম্নার শুক্ষ-পরীক্ষার আয় লিখ)

সিক্ত-পরীক্ষা

পাতিত জলে লবণের দ্রবণ প্রস্তুত করা হইল।

পরীক্ষা	পর্যবেক্ষণ	শিদ্ <u>ধান্ত</u>
১। পরীক্ষা-নলে লবণের দুবণ লইয়া উহাতে সিলভার	কালো অধংক্ষেপ।	নালফাইড হইতে পারে।
নাইটেট দেবণ মিশান হইল। প্রীকানলে লঘু নাইট্রিক আাসিড মিশাইয়া উত্তপ্ত করা		
হতার। ২ । দেবগের আরেক তাংশ গবাকানেরে লইয়া বেরিয়াম	নাদা অধঃক্ষেপ আনে না।	সালফেট, কার্বনেট বা সালফাইট নহে।
কোবাইড দল মিশান হইল। ৩। প্রীফা-নলে এবনের াবেক পংশে সোডিয়াম		নিশ্চিতরূপে সালফাইড।
নাইট্রোপাসাইড দ্বল মিশান ১৯০1	ı	

প্তরাং, প্রদত্ত লব প্র অ্যাসিড মূলকটি—সালফাইড (S)

দেশম অধ্যায়

षाञूत जूलगाश्कडात निर्वन्न

(Determination of Equivalent Weight of Metals)

তুল্যাংকভার (Equivalent Weight): কোন মৌলিক পদার্থের যতভাগ ওজন 1 ভাগ ওজনের হাইড্রোজেন, 8 ভাগ ওজনের অক্সিজেন বা 35.5 ভাগ ওজনের ক্লোরিনের সহিত সংযুক্ত হয় অথবা কোন থৌগিক পদার্থ হইতে প্রতিস্থাপিত করে, ততভাগ ওজনের সংখ্যাটিকে ঐ মৌলিক পদার্থের তুল্যাংকভার (Equivalent Weight) বা কেবলমান তুল্যাংক

এই তুল্যাংকভার একটি সংখ্যা দ্বার। প্রকাশিত হয়—ইহার কোন একক নাই। তুল্যাংক গ্রামে প্রকাশিত হইলে উহাকে গ্রাম-তুল্যাংক (Gram-Equivalent) বলে।

উদাহরণঃ (:) HCl এ 1 ভাগ ওজনের হাইড্রোজেন নৃক্ত আচে 35:5 ভাগ ওজনের ক্লোরিনের সহিত। স্ত্রাং ক্লোরিনের তুল্যাংক ভার 35:5 এবং গ্রাম-তুল্যাংক 35:5 গ্রাম।

(a) $Zn + 2HCl = ZnCl_2 + H_2$ 65.3 2

এই সমাকরণ অনুসারে স্যাসিত হঠতে 2 ভাগ ওজনের হাইড্রেজন প্রতিভাপিত হয় 65°3 ভাগ ওজনের জিংক দ্বারা। স্তরাং 1 ভাগ ওজনের হাইড্রেজেন প্রতিভাপিত হইবে $\frac{65°3}{2}$ বা 32°65 ভাগ ওজনের জিংক দ্বারা। অতএব, জিংকের তুল্যাংকভার 32°65 এবং গ্রাম তুল্যাংক 32°65 গ্রাম।

(৩) ম্যাগনেধিরাম অক্সাইডে (MgO), 16 ভাগ ওজনের অক্সিডেন যুক্ত আছে 24 ভাগ ওজনের ম্যাগনেধিয়ামের সহিত। ৪ ভাগ ওজনের অক্সিজেন যুক্ত থাকিবে 12 ভাগ ওজনের ম্যাগনেসিয়ামের সহিত। স্বতরাং, Mg-এর তুল্যাংকভার 12 এবং গ্রাম-তুল্যাংক 12 গ্রাম।

(৪) সোডিয়াম ক্লোরাইডে (NaCl), 35.5 ভাগ ওজনের ক্লোরিন যুক্ত ভাছে 23 ভাগ ওজনের সোভিয়ামের সহিত। স্থতরাং, সোডিয়ামের তুল্যাংকভার 23 এবং গ্রাম-তুল্যাংক 23 গ্রাম।

[ক] হাইড্রোজেন প্রতিস্থাপন প্রণালী

(Hydrogen replacement method)

জিংকের তুল্যাংকভার নির্ণয় ঃ

ভত্ত্ব (Theory) 🖁 তুল্যাংকভারের সংজ্ঞা।

নিনিষ্ট 'ওজনের জিংকের সহিত আাসিডের বিক্রিয়ায় নির্গত হাইড্রোজেনের খায়তন হইতে উহার ওজন নির্ণয় করা হয়। আাসিড হইতে এক ভাগ ৬জনের হাইড্রোজেন প্রতিস্থাপিত করিতে যত ভাগ ওজনের জিংক লাগে তত ভাগ ওজনের সংখ্যাই হইল জিংকের তুল্যাংকভার। $Zn+2HCl= \angle nCl_2+H_2$.

যন্ত্রপাতি (Apparatus) ঃ বাকার, কানেল, এক মৃথ বন্ধ অংশাংকিত কাচ-নল, একটি বড় জার (Jar), কেমিক্যাল ব্যালেন্স।

রাসায়নিক দেব্যাদি (Chemicals)ঃ বিশুদ্ধ জিংক, সালফিউরিক আাসিড, কপার সালফেট দ্রবন।

পদ্ধতি (Procedure) ঃ (:) একটি ওয়াচ-গ্লাসে প্রায় 0:08 গ্রাম দ্রুনের বিশুদ্ধ জিংক-এর যথাপ ওলন (exact weight) লও। একটি শুদ্ধ ওয়াচ-গ্লাস প্রথমে ওলন কর; উহাতে কিছু বিশুদ্ধ জিংক লইয়া পুনরায় ওজন কর। এই তুই ভজনের পার্থকা হইতে জিংক-এর ওজন পাইবে। জিংকসহ ওগাচ-গ্লাসটি একটি বীকারে রাথিয়া একটি ফানেল উপুড় করিয়া ইহা সম্পূর্ণ গ্রাক্যা দাও। বাকারে জল ঢালিয়া ফানেলের নলটি সম্পূর্ণ ডুবাইয়া দাও।

(২) এক মূপ বন্ধ একটি অংশাংকিত নল জলে ভতি কর যেন উহার মধ্যে

বায়ু না থাকে। অংশাংকিত নলের থোলা মৃথ অঙ্গুলি দ্বারা বন্ধ করিয়া নলটি ফানেলের উপর উপুড় করিয়া বসাও। বন্ধনীর সাহায্যে নলটি ফ্টাণ্ডের সহিত আটকাইয়া দাও।

(৩) এখন বীকারের জলে সামান্ত পরিমাণ গাঢ় সালফিউরিক অ্যাসিড মিশাও এবং কাচ দণ্ড ঘারা সাবধানে নাড়িয়া দাও। [একটি পিপেটের সরু মৃথ সালফিউরিক অ্যাসিডে ডুবাইয়া অপর থোলা মৃথ অঙ্গুলি ঘারা বন্ধ করিয়া অ্যাসিড হইতে তুলিয়া আন এবং অঙ্গুলির চাপ কমাইয়া ফোটা ফোটা অ্যাসিড মিশাও।] বীকারে কয়েক ফোটা কপার সালফেট দ্রবণ মিশাও। অ্যাসিড আস্তে আস্তে ফান্ডেলর ভিতর যায় এবং উহা জিংক-এর সংস্পর্শে আসিলে হাইড্রোজেন গ্যাস উৎপন্ন হয়। উৎপন্ন হাইড্রোজেন বৃদ্বুদের আকারে অংশাংকিত নলের জল অপসারিত করিয়া উহার মধ্যে জনা হয়। আরও কিছু অ্যাসিড মিশাইয়া নাড়িয়া দাও। অ্যাসিডে সমস্ত জিংক দ্রবীভূত হইয়া

তদ নং চিত্র- নাড়িয়া দাও। আদিতে সমস্ত জিংক দ্রবীভৃত ইইয়া জিংকের তুল্যাংকভার নির্ণয় গোলে এবং হাইড্রোজেনের বৃদ্ধুদন বন্ধ ইইলে বুরিবে বিজিয়াটি শেষ ইইয়াছে।

(৪) বিক্রিয়া শেষে নলের পোলা মুগটি জলের নাচেই অঙ্গুলি দারা বন্ধ করিয়া হাইছোজেন পূর্ণ অংশাংকিত নলটি তুলিয়া একটি জলপূর্ণ বড় জারের মধ্যে ডুবাইয়া রাখ। এক টুক্রা ভাজ করা কাগজের সাহায্যে অংশাংকিত নলটি জলের মধ্যে উপুড করিয়া পাড়াভাবে কিছুক্ষণ ধরিয়া রাখ। নলটি একটু উপর নীচ করিয়া নলের ভিতরের এবং বাহিরের জল একই সমতলে আন। এই অবভায় অংশাংকিত নল হইতে হাইড্রোজেনের আয়ন্তন সঠিকভাবে (৫) থার্মোমিটারের সাহায্যে জারের জলের তাপমাত্রা এবং ব্যারোমিটার দিখিয়া পরীক্ষাকালীন বায়ু-চাপ জানিয়া লও। এই তাপমাত্রায় জলীয় বাষ্পের চাপের তালিকা' হইতে জানিয়া লও।

পরীক্ষার ফল (Experimental Results):

জিংক-এর ওজন = W গ্রাম (g)

সঞ্চিত হাইড্রোজেনের আয়তন = V c.c.

পরীক্ষাকালীন তাপমাত্রা = t সেন্টিগ্রেড (c)

বায়ু-চাপ = P মি. মি (mm.)

t সেন্টিগ্রেড তাপমাত্রায় জলীয় বাপ্প-চাপ = f মি. মি.

গণনা (Calculations) ঃ হাইড্রোজেনের প্রকৃত চাপ=(P-f) মি. মি.
মনে করা হইল, এই V c.c. হাইড্রোজেনের আয়তন N. T. P.-তে
V, c.c.। স্থতরাং বয়েল ও চাল দের সংযুক্ত গ্যাস স্থ্র অনুযায়ী,

$$\frac{V_1 \times 760}{273} = \frac{V \times (P - f)}{t + 273}$$

$$V \times (P - f) \times 275$$

$$\therefore V_1 = \frac{V \times (P-f) \times 273}{(t+273) \times 760} \text{ c.c.}$$

 V_1 c.c. হাইড্রোজেনের ওজন = $\frac{V \times (P-f) \times 273}{(t+273)760} \times 00009$ গ্রাম

[কারণ, N.T.P. তে 1 c.c. হাইড্রোজেনের ওজন = 'C0009 গ্রাম]

স্তরাং, জিংক-এর তুল্যাংকভার= — জিংক-এর ওজন প্রতিস্থাপিত হাইড্রোজেনের ওজন

$$= \frac{\mathbf{W} \times 760(\mathbf{t} + 273)}{\mathbf{V}(\mathbf{P} - \mathbf{f}) \times 273 \times 00009}$$

আহরন প্রভৃতি ধাতুর তুল্যাংকভার নির্ণয় করা যায়।

- (২) বিশুদ্ধ জিংক-এর সহিত অ্যাসিডের ক্রিয়া হয় না বলিয়া কয়েক ফোঁটা কপার সালফেট দ্রবণ মিশান হয়। অক্যান্ত ক্ষেত্রে কপার সালফেট মিশাইবার প্রয়োজন নাই।
- (৩) হাইড়োজেন সংগ্রহের জন্য সাধারণত 50 c.c. অংশাংকিত নল ব্যবহার করা হয়। স্বতরাং ধাতুর পরিমাণ এরপ হওয়া আবশ্যক যাহাতে উৎপন্ন হাইড়োজেনের আয়তন 50 c.c. এর কম হয়। পরীক্ষায় জিংকের ওজন 0:1 গ্রামের ও ম্যাগনেসিয়ামের ওজন 0:05 গ্রামের কম লইবে।
- (৪) ম্যাগনেসিয়াম ফিতা খুব হাল্কা বলিয়া খুব ছোট একটি কাচদণ্ডের টুক্রার সহিত বাধিয়া দিতে পার। গ্যাসের চাপে উহা আর উপরে উঠিয়া ঘাইবে না।

[খ] জারণ প্রণালী (Oxidation Method)

(১) ম্যাগনেসিয়ামের তুল্যাংকভার নির্ণয়ঃ

ভব্ব / Theory /ঃ তুল্যাংকভারের সংজ্ঞা।

বথার্থ ওজনের ম্যাগনেসিয়াম অক্সিজেনে উত্তপ্ত করিয়া অক্সাইডে পরিণত কর। হয়। ম্যাগনেসিয়াম অক্সাইড ও ম্যাগনেসিয়ামের ওজন হইতে ম্যাগনেসিয়ামের সহিত সংযুক্ত অক্সিজেনের ওজন পাওয়। যায়। ৪ ভাগ ভজনের অক্সিজেনের সহিত যত ভাগ ওজনের ম্যাগনেসিয়াম সংযুক্ত হয় সেই ওজন-সংখ্যাই ম্যাগনেসিয়ামের তুল্যাংকভার।

$$2Mg + O_2 = 2MgO$$
.

যন্ত্রপাতি (Apparatus) ও পোর্সেলিন মূচি (crucible), ত্রিপদ-ষ্ট্যাণ্ড, ত্রিসহ-মৃতিকার ত্রিভুজ (fire-clay triangle), বৃন্সেন দীপ, ডেসিকেটর, ব্যালেন্স।

প্রয়োজনীয় জব্যঃ ম্যাগনেসিয়ামের টুক্রা।

পদ্ধতি (Procedure) ঃ .(১) ঢাকনিসহ একটি পোর্সেলিন মৃচি পরিষ্ণার কর এব উচা ত্রিপদ-স্তাত্তে অগ্নিসহ-মৃত্তিকার ত্রিভূজের উপর রাথিয়া বৃন্সেন দীপের সাহায্যে কিছুক্ষণ তীব্রভাবে উত্তপ্ত কর। তারপর ম্চিটিকে ডেসিকেটরে রাখিয়া শীতল কর এবং সতর্কভাবে উহার ওজন লও। ম্চির ওজন নিত্য (constant) না হওয়া পর্যন্ত এ প্রক্রিয়াটি অর্থাৎ উত্তপ্ত করা, শীতল করা এবং ওজন লওয়া, ক্রমান্বয়ে করিয়া যাও। ম্চির নিত্য ওজনটি লিথিয়া রাখ।

- (২) অল্প পরিমাণ ম্যাগনেসিয়াম টুক্রা মৃচিতে লইয়া পুনরীয় উহার ওজন লও। ত্ইটি ওজনের প্রভেদ হইতে কত ওজনের ম্যাগনেসিয়াম লইয়াছ তাহা বৃঝিতে পারিবে।
- (৩) এখন ঢাক্নিসহ মৃচিটি অগ্নিসহ-মৃত্তিকার ত্রিভুজে বসাইয়া প্রথমে ধীরে ধীরে তাপ দাও। তারপর ইহাকে তীব্রভাবে উত্তপ্ত কর। ম্যাগনে-সিয়াম সম্পূর্ণরূপে অক্সাইডে পরিণত হইলে তাপ দেওয়া বন্ধ কর। মৃচিটি ডেসিকেটরে শীতল কর এবং উহার ওজন লও।

৩৯ নং চিত্র—ম্যাগনেসিয়ামের তুল্যাংকভার নির্ণয়

(৪) আর একবার মৃচিটিকে তাপ দিয়া ডেসিকেটরে শীতল করিয়া ওজন কর। যতক্ষণ না তুইটি ওজন এক হয় ততক্ষণ এইভাবে উত্তপ্ত করে, শীতল কর এবং ওজন লও। মৃচিটির নিত্য ওজন (constant weight) লিখিয়া রাখ।

পরীক্ষার ফল (Experimental Results):

ঢাক্নিসহ মৃচির ওজন == \mathbf{w}_1 গ্রাম ঢাক্নিসহ মৃচি এবং ম্যাগনেসিয়ামের ওজন = \mathbf{w}_2 গ্রাম ঢাক্নিসহ মৃচি ও ম্যাগনেসিয়াম অক্সাইডের ওজন = \mathbf{w}_3 গাম । গ্রামা (Calculations):

ম্যাগনেসিয়ামের ওজন= (w_2-w_1) গ্রাম ম্যাগনেসিয়াম অক্সাইডের ওজন= (w_3-w_1) গ্রাম

: অক্সিজেনের ওজন = $(w_3 - w_1) - (w_2 - w_1)$ গ্রাম = $(w_3 - w_2)$ গ্রাম

স্তলং, $(\mathbf{w}_3 - \mathbf{w}_2)$ গ্রাম অক্সিজেন সংযুক্ত হয় $(\mathbf{w}_2 - \mathbf{w}_1)$ গ্রাম ম্যাগনেসিয়ামের সহিত \mathbf{v}_1

$$\therefore$$
 ৪ গ্রাম $(\mathbf{w_3} - \mathbf{w_1}) \times 8$ $(\mathbf{w_3} - \mathbf{w_2})$

অতএব, ম্যাগনেসিয়ামের তুল্যাংকভার = $\frac{(\mathbf{w_2} - \mathbf{w_1}) \times 8}{(\mathbf{w_3} - \mathbf{w_2})}.$

(২) কপারের তুল্যাংকভার নির্ণয়:

ভত্ত্ব (Theory): তুল্যাংকভারের সংজ্ঞা।

কপারকে পরোক্ষভাবে অক্সাইডে পরিণত করা হয়। গাঢ় নাইট্রিক আাসিডের সহিত বিক্রিয়া দারা প্রথমে কপার নাইট্রেট দ্রবণ, বাস্পীভবনের সাহায্যে উহা হইতে কঠিন কপার নাইট্রেট, এবং তাপের প্রয়োগে কঠিন কপার নাইট্রেট বিযোজিত করিয়া কপার অক্সাইড প্রস্তুত করা হয়। কপার অক্সাইড ও কপারের ওজন হইতে অক্সিজেনের ওজন বাহির করিয়া কপারে: তুল্যাংকভার গণনা করা হয়।

$$Cu + 4HNO_3 = Cu(NO_3)_2 + 2NO_2 + 2H_2O$$

 $2Cu(NO_3)_2 - 2CuO + 2N_2O_4 + O_3$

যন্ত্রপাতি (Apparatus): ঢাক্নিসহ পোর্সিলেন মৃচি, অগ্নিসহ-মৃত্তিকার তিত্ত জ, ত্রেপদ-স্ট্যান্ত, বুনসেন দীপ, পিপেট, ভয়াটার-বাথ, ডেসিকেটর, ব্যালেন্স।

রাসায়নিক জব্যাদি (Chemicals): বিশ্বদ্ধ কপার কৃচি, গাঢ় নাইট্রিক স্থাসিত।

পদ্ধতি (Procedure): (১) ঢাক্নিসহ একটি পোর্সেলিন মুচি পরিভার করিয়া পূর্ব পরীক্ষা-পদ্ধতির (১) অংশের ত্যায় উহার নিত্য ওজন (constant weight) নির্ণয় কর।

(২) অল্প পরিমাণ বিশুদ্ধ কপার লইয়া মৃচিটিকে পুনরায় ওজন কর। এই তুই ওজনের পার্থক্য হইতে কপারের ওজন পাইবে।

- (৩) পাতিত জলদ্বারা কপার কৃচি ঠিক ঢাকিয়া দাও। পিপেটের সাহায্যে করেক ফোঁটা গাঢ় নাইট্রিক অ্যাসিড উহাতে মিশাও। কপারের সঙ্গে বিক্রিয়ায় বাদামী বর্ণের নাইট্রোজেন পার-অক্সাইড গ্যাস নির্গত হয় এবং কপার জ্বী-ভ্রু হইয়া নীল কপার নাইট্রেট জ্বণে পরিণত হয়। বিক্রিয়া বন্ধ হইলে আরও কয়েক ফোঁটা নাইট্রিক অ্যাসিড মিশাও এবং অপেক্ষা কর। সমস্ত কপার দ্বীভূত না হওয়া পর্যন্ত এইরপ করিবে। ঢাক্নির গায়ে কপার নাইট্রেট জ্বণ লাগিয়া থাকিলে সামান্ত পাতিত জল দ্বারা ধুইয়া মৃচিতে ফেল।
- (৪) মৃচিটি ওয়াটার-বাথের উপর রাখিয়া ধীরে ধীয়ে বাশীভবন কর।

 চাক্নিট অন্ন ফাক করিয়া রাখিবে। লক্ষ্য রাখিবে, বাশীভবন করিবার

 দমরে নাইটেট দ্রবণ থেন ছিট্কাইয়া না পড়ে। কিছুক্ষণ পরে অ্যাসিড এবং
 ভাল বাশীভ্ত হইয়া যায় এবং কঠিন নীল কপার নাইটেট মৃচিতে পড়িয়া
 থাকে।
- ি মৃচিটিকে চিমটার সাহায্যে একটি অগ্নিসহ-মৃত্তিকার ত্রিভূজের (fire-clay triangle) উপর রাথ এবং বুনসেন দাপের সাহায্যে উত্তপ্ত কর। এত্যধিক উত্তাপে কপার নাইট্রেট বিধোজিত হইয়া কপার অক্সাইডে পরিণত হয়। যথন আর কোন গ্যাস নির্গত হয় না তথন বুঝিবে বিযোজন সম্পূর্ণ হয়য়াছে। মৃচিটি ডেসিকেটরে শীতল কর এবং উহার ওজন লও।
- (০) পুনরায় মৃচিটিকে পূর্বের ন্যায় উত্তপ্ত কর এবং পরে ডেসিকেটরে শাতল কর এবং ওজন কর। এই ছুইবারের ওজনে যদি কোন তারতম্য হয়, তবে মৃচিটি পুনঃপুনঃ উত্তপ্ত কর, শাতল কর এবং ওজন কর যতক্ষণ না উহার ওজন এবরিবতিত থাকে। এই নিত্য ওজন (constant weight) লিখিয়া রাখ।

প্রীক্ষার ফল (Experimental Results):

ঢাক্নিসহ মৃচির ওজন = a গ্রাম ঢাক্নিসহ মৃচি ও কপারের ওজন = b গ্রাম ঢাক্নিসহ মৃচি ও কপার অক্সাইডের ওজন = c গ্রাম

গণনা (Calculations):

কপারের ওজন =(b-a) গ্রাম কপার অক্সাইডের ওজন=(c-a) গ্রাম

∴ কপারের সহিত মিলিত অক্সিজেনের ওজন = (c-a) - (b-a) = (c-b) গ্রাম

ম্ভরাং, কপারের তুল্যাংকভার = $\frac{(b-a)8}{(c-b)}$.

व्यादनां इ

- (১) কপারের ওজন 1 গ্রামের কম লইবে।
- (২) যে সকল ধাতু প্রত্যক্ষভাবে সম্পূর্ণরূপে অক্সিজেনের সহিত যুক্ত হইয়া অক্সাইডে পরিণত হয় না সেই ধাতুগুলিকে এইরূপে পরোক্ষভাবে অক্সাইডে পরিণত করা হয়। টিন, জিংক, লেড প্রভৃতি ধাতুর তুল্যাংকভার এই উপায়ে নির্ণয় করা ঘাইতে পারে।

একাদশ অথ্যায়

আয়তনমাত্রিক বিশ্লেষণ—অমুমিতি ৪ ক্ষারমিতি (Volumetric analysis—Acidimetry and Alkalimetry)

আয়তনমাত্রিক বিশ্লেষণ (Volumetric analysis): আয়তনমাত্রিক বিশ্লেষণে কোন পদার্থের দ্রবণের নির্দিষ্ট আয়তনের সহিত মাত্রিক বিক্রিয়ার (quantitative reaction) জন্ম একটি জ্ঞাত শক্তি বা মাত্রার দ্রবণের কত আয়তন প্রয়োজন তাহা পরিমাপ করিয়া রাসায়নিক স্ত্রের সাহায্যে ঐ পদার্থের গুজন নির্ণয় করা হয়। ইহার জন্ম যে জ্ঞাতমাত্রার দ্রবণ ব্যবহার করা হয় তাহাকে প্রমাণ দ্রবণ (Standard solution) বলে। প্রমাণ দ্রবণের নির্দিষ্ট আয়তনে নির্দিষ্ট পরিমাণ দ্রাব দ্রবীভূত থাকে। প্রমাণ দ্রবণের সহিত অজ্ঞাত মাত্রা দ্রবণের সম্পূর্ণ বিক্রিয়া করাইবার পরীক্ষা-পদ্ধতিকে টাইট্রেশন (Titration) বলে এবং অজ্ঞাতমাত্রা দ্রবণকে টাইট্রেট্ করা হইতেছে বলা হয়। যে অবস্থায় বিক্রিয়াটি সমাপ্ত হয় তাহাকে সমাপ্তি-ক্ষণ (end point) বলে। টাইট্রেশনের সময় কতকগুলি রাসায়নিক দ্রব্য ব্যবহার করা হয়। বিক্রিয়া শেণে এই পদার্থগুলি বিশেষ কোন পরিবর্তন (যথা, বর্ণ পরিবর্তন) দ্বারা টাইট্রেশনের সমাপ্তি-ক্ষণ নির্দেশ করে। ইহাদিগকে নির্দেশক বা ইণ্ডিকেটর (Indicator) বলে।

আয়তনের একক (Unit of volume): তরল পদার্থের আয়তন মাপিনার প্রাথমিক একক হইল লিটার (litre)। 4° ডিগ্রি সেন্টিগ্রেড তাপমাত্রায় ও সাধারণ বায়্চাপে এক কিলোগ্রাম জলের আয়তনকে এক লিটার বলে। অল্প আয়তন পরিমাপের জন্ম লিটারের এক সহস্রাংশ ভাগকে একক ধরা হয়। ইহাকে মিলি লিটার (millilitre বা সংক্ষেপে ml.) বলে। এক সেন্টিমিটার বাহু বিশিষ্ট একটি ঘন্কের আয়তনকে ঘল সেন্টিমিটার বাহু বিশিষ্ট একটি ঘন্কের আয়তনকৈ ঘল সেন্টিমিটার বাহু বিশিষ্ট একটি ঘন্কের আয়তনকি ঘল সেন্টিমিটার বাহু বিশিষ্ট একটি ঘন্কের আয়তনকি ঘল সেন্টিমেটার মিটার সেন্টিমেটার বাহু বিশিষ্ট একটি ঘন্কের আয়তনকি ঘল সেন্টিমেটার সিটার সিটা

সঠিক পরীক্ষা দ্বারা জানা গিয়াছে যে, 1000 ml. = 1000·028 c.c.। ইহাদের পার্থক্য এত কন যে ml. এবং c.c. একই অর্থে ব্যবহৃত হয়।

প্রশান ক্রিয়ার ভিন্তিতে যে আয়তনমাত্রিক বিশ্লেষণ করা হয়—অর্থাৎ আয়ুমিতি ও ক্ষারমিতি (acidimetry and alkalimetry)—তাহা তোমরা এখন শিখিবে।

প্রশান-ক্রিয়া (Neutralisation reactions): আ্যাসিড ও কারের দ্রুপ্র মিশাইলে উহাদের মধ্যে রাসায়নিক ক্রিয়ার ফলে লবণ ও জল উৎপর হয়। হাইড্রোক্রোরিক অ্যাসিড ও সোডিয়াম হাইড্রাইডের বিক্রিয়ায় সোডিয়াম ক্রোরাইড ও জল উৎপর হয়। HCl+NaOH=NaCl+H2O. দ্রুপ্র আয়নিত হইয়া H+ আয়ন এবং ক্যার আয়নিত হইরা OH—আয়ন উৎপাদন করে। HCl=H++Cl-; NaOH=Na++OH-। আ্যাসিডের H+ আয়ন এবং ক্যারের OH—আয়ন সংযুক্ত হইয়া জল উৎপর করে। H++OH-=H2O. অ্যাসিড ও ক্যারের এই বিক্রিয়াটিকে প্রশামন-ক্রিয়া বলে।

অন্নমিতি (Acidimetry)ঃ অ্যাসিদের প্রমাণ দ্রবণের সাহায্যে অজ্ঞাত্যাত্রার ক্ষার দ্রবণ প্রশমিত করিয়া সেই ক্ষার দ্রবণের মাত্রা নির্ণয় করিবার প্রণালীকে অন্নমিতি বলে।

ক্ষারমিতি (Alkalimetry): ক্ষারের প্রনাণ দ্রবণের সাহায্যে অক্তাতনাত্রার খ্যাসিড দ্রবণ প্রশনিত করিয়া ঐ খ্যাসিড দ্রবণের নাত্রা নির্ণয় করিবার প্রণালীকে ক্ষারমিতি বলে।

রাসায়নিক স্থত্রাস্থারে নির্দিষ্ট পরিনাণ কারের সহিত নির্দিষ্ট পরিনাণ আদি দিবি বিক্রিয়া করে। NaOH + HCl = NaCl+H2O.।
40 গ্রাম 36.5 গ্রাম

সনীকরণ ছইতে দেখা যায় যে অ্যাসিড দ্রবণে যদি 36.5 গ্রাম ছাইড্রোক্রোরিক অ্যাসিড থাকে তবে উহাতে 40 গ্রাম কটিক সোডা মিশাইলে অ্যাসিড সম্পূর্ণ প্রশমিত হইয়া লবণে পরিণত হইবে। দ্রবণে কোন অতিরিক্ত ব্যাদিত বা কার থাকিবে না, অর্থাৎ দ্রবণটি লবণের প্রাক্ষম দ্রবণ (neutral . solution)। যদি ঐ অ্যাদিড দ্রবণে 40 গ্রামের কম পরিমাণ কৃষ্টিক সোডা মিশান হয়, তবে সফত্ত কৃষ্টিক সোডা প্রশমিত হইষা লবণে পরিণত হইবে এবং অতিরিক্ত অ্যাদিড দ্রবণে অবশিষ্ট থাকিবে, অর্থাৎ দ্রবণটি অ্যাসিডগুণযুক্ত (acidic) হইবে। আবার, যদি 40 গ্রামের বেশী পরিমাণ কৃষ্টিক সোডা মিশান হয় তবে সমস্ত অ্যাদিড প্রশমিত হইয়া লবণে পরিণত হইবে এবং অতিরিক্ত কৃষ্টিক সোডা দ্রবণে অবশিষ্ট থাকিবে, অর্থাৎ দ্রবণটি ক্ষারেগুণযুক্ত (alkaline) হইবে।

পরীক্ষা ১ ঃ (ক) একটি পরীক্ষা-নলে লঘু হাইড্রোক্রোরিক বা সাল-ফিউরিক বা নাইট্রিক অ্যাদিড লইয়া কয়েক ফোঁটা ফিনল্থ্যলিন (Phenolphthalein) মিশাও। অ্যাদিড ত্রবণ বর্ণহান থাকে।

(খ) একটি পরীক্ষা-নলে লঘু কষ্টিক সোডা বা কটিক পটাস দ্রবণ লইয়া কয়েক ফোঁটা ফিনল্থ্যালিন মিশাও। দ্রবণের বর্ণ গোলাপী (pink) হয়।

পরীক্ষা ২ ঃ ফিনল্থ্যলিনের পরিবর্তে নিথাইল অরেঞ্জ (Methyl orange) লইয়া ১ (ক) ও (খ) নং পরীক্ষা কর। দেখ, অ্যাসিড দ্রবণের বর্ণ গোলাপী ও ক্ষারীয় দ্রবণের বর্ণ হলুদ হয়।

উপরের পর্নাক্ষা ত্ইটি হইতে দেখা যায় যে ফিনল্থ্যলিন ও মিথাইল অরেজ অ্যাসিড ও ক্ষার দ্রবণে বিভিন্ন বর্ণ ধারণ করে। পূর্বে তোমনা লিটমাসের ক্ষেত্রে দেখিফাছ, ইহা অ্যাসিড দ্রবণে লাল এবং ক্ষারীয় দ্রবণে নীল বর্ণ ধারণ করে। এই পদার্থগুলি উহাদের বর্ণের পরিবর্তন দ্বারা কোন দ্রবণের অ্যাসিডগুণ বা ক্ষারগুণ প্রকাশ করে।

পরীক্ষা । একটি পরিস্কার বীকারে পরীক্ষা-নলের প্রায় এক চতুর্থাংশ পরিমাণ লঘু সালফিউরিক অ্যাসিড (ল্যাবরেটরীর রি-এজেণ্ট) লইয়া উহাতে খানিকটা পাতিত জল মিশাও। দ্রবণে কয়েক ফোঁটা ফিনল্থ্যলিন মিশাও —দ্রবণ বর্ণহীন থাকে। একটি বীকারে খানিকটা লঘু কষ্টিক সোডা দ্রবঞ্চ

(ল্যাবরেউরী রি-এজেণ্ট) লইয়া দ্রপারের সাহায্যে ফোঁটা ফোঁটা কষ্টিকসোডা দ্রবণ বীকারের অ্যাদিড দ্রবণে মিশাও এবং নাড়িতে থাক। কষ্টিক সোডা দ্রবণ মিশাইবার ফলে দ্রবণের অ্যাদিড শুণ ক্রমশঃ কমিতে থাকে। যেই মাত্র সমস্ত অ্যাদিড প্রশমিত হইয়া যাইবে এবং এক ফোঁটা ক্রার দ্রবণ অতিরিক্ত হইবে তখন দ্রবণটির বর্ণ গোলাপী হইয়া যাইবে, কারণ ফিনল্থ্যলিন ক্রারদ্রবণে গোলাপী বর্ণ ধারণ করে। ফিনল্থ্যলিনের এই বর্ণ পরিবর্তন দ্বারা বুয়া যায় যে অ্যাদিড ও ক্রারের প্রশমন ক্রিয়া সমাপ্ত হইয়াছে। অ্যাদিড দ্রবণে ক্রারদ্রবণ না মিশাইয়া, ক্রারদ্রবণে ধীরে ধ্যাদিড দ্রবণ মিশাইয়া দেখ। ফিনল্থ্যলিন ক্রারদ্রবণে গোলাপী বর্ণের হইবে। যেইমাত্র সমস্ত ক্রার অ্যাদিড দ্বারা প্রশমিত হইয়া এক ক্রোটা অ্যাদিড অতিরিক্ত হইবে, দ্রবণ বর্ণহীন হইয়া যাইবে।

স্থানাং, এই পদার্থগুলি (ফিনল্থ্যলিন, মিথাইল অরেঞ্জ) কেবলমাত্র কোন দ্রবণের অ্যাসিডগুণ বা ক্ষারগুণই প্রকাশ করে না; বর্ণ পরিবর্তন ছারা অ্যাসিড ও ক্ষারের প্রশন্ন ক্রিয়ার স্মাপ্তিও স্ফ্রনা করে। ইহাদিগকে প্রশন্ন-নির্দেশক (Neutralisation indicators) বা অ্যাসিড-ক্ষারক নির্দেশক (Acid-base indicators) বলে।

দ্ব ইণ্ডিকেটর দকলপ্রকার অ্যাদিড ও ক্ষারের প্রশমন ক্রিয়ার দ্যাপ্তি নির্দেশ করিবার ক্রন্থ ব্যবহার করা যায় না। ইহাদের ব্যবহার অ্যাদিড ও ক্ষারের প্রকৃতির উপর নির্ভর করে। যে দকল অ্যাদিড দ্রবণে বিয়োজিত হইয়া অধিক্যাত্রায় H⁺ আয়ন উৎপাদন করে তাহাদের তীত্রে অ্যাদিড (strong acids) এবং যাহারা অল্পাত্রায় H⁻ আয়ন উৎপাদন করে তাহাদের মৃত্র অ্যাদিড (weak acids) বলে। HCl, HNO₈ ও H₂SO₄ তীত্র অ্যাদিড; অ্যাদেটিক, অক্সালিক ও কার্বনিক অ্যাদিড মৃত্র অ্যাদিড। যে দব করে তাহাদের তীত্র ক্ষার (strong alkali) এবং যাহারা অল্পাত্রায় OH⁻ আয়ন উৎপাদন করে তাহাদের তীত্র ক্ষার (strong alkali) এবং যাহারা অল্পাত্রায় OH⁻ আয়ন উৎপাদন করে তাহাদের তীত্র ক্ষার (strong alkali) এবং যাহারা অল্পাত্রায় OH⁻ আয়ন উৎপাদন করে তাহাদের হৃত্র ক্ষার (weak alkali) বলে। NaOH,

KOH তীত্র ক্ষার; NH₄OH মৃত্র ক্ষার। বিভিন্ন প্রকার অ্যাসিড ও ক্ষারের প্রশ্নমন ক্রিয়ার উপযুক্ত ইণ্ডিকেটরের নাম দেওয়া হইল।

প্রশমন সমাপ্তি সূচনার জন্ম উপযুক্ত ইণ্ডিকেটর

- (১) তীব্র অ্যাসিড ও তীব্র ক্ষার · · · যে কোন ইণ্ডিকেটর
- (২) তীব্র অ্যাসিড ও মৃত্ব কার · · · মিথাইল অরেঞ্জ
- (৩) মৃত্ব অ্যাসিড ও তীব্র ক্ষার · · · ফিনল্থ্যলিন
- (৪) মৃত্ব অ্যাসিড ও মৃত্ব ক্ষার \cdots কোন ইণ্ডিকেটর নহে

টাইট্রেশনে যে প্রমাণ দ্রবণ (Standard solution) ন্যবহার করা হয় তাহা প্রস্তুত করা হয় নির্দিষ্ট আয়তনের জলে গ্রান-তুল্যাংক অমপাতে অ্যাদিড, ক্ষার বা লবণ দ্রবীভূত করিয়া। প্রমাণ দ্রবণ প্রস্তুতিতে গ্রাম-তুল্যাংক প্রথা ব্যবহার করিবার প্রধান স্ক্রবিধা এই যে ইহাতে গণনা খ্র সহজ হয়; কারণ টাইট্রেশনের সমাপ্তি-ক্ষণে (end point) প্রমাণ দ্রবণের দ্রাবের গ্রাম-তুল্যাংক অজ্ঞাত মাত্রা দ্রবণের দ্রাবের গ্রাম-তুল্যাংক অজ্ঞাত মাত্রা দ্রবণের দ্রাবের গ্রাম-তুল্যাংকের সমান।

আ্যাসিডের প্রাম-তুল্যাংক (Gram equivalent of an acid):

যত গ্রাম অ্যাসিডে 1 গ্রাম প্রতিস্থাপনীয় (replaceable) হাইড্রোজেন থাকে

তত গ্রামকে ঐ অ্যাসিডের প্রাম-তুল্যাংক বলে। প্রতিস্থাপনীয়

হাইড্রোজেনের সংখ্যা হইল অ্যাসিডের ক্ষারগ্রাহিতা (basicity)। স্কতরাং,

অ্যাসিডের গ্রাম-তুল্যাংক: - অ্যাসিডের গ্রাম আণবিক ওন্ধন

অ্যাসিডের গ্রাম-তুল্যাংক: - অ্যাসিডের গ্রাম আণবিক ওন্ধন

অ্যাসিডের ক্ষারগ্রাহিতা

গ্রান-তুল্যাংক আণ্বিক ওজন কার্গাহিতা অ্যাসিড $(z) = \frac{(z)}{(z)}$ (२) (2) হাইড্রোক্রোরিক—IICi ৪৫·১ গ্ৰাম 86.2 নাই িট্ৰক—HNO, 68 68 সাল্ফিউরিক—II "SO. 98 অক্লালিক—H_C_O_, 2H2O 126 68

তালিকা হইতে বুঝিতে পারা যায় যে দ্রবণগুলির নর্যালিটি যথাক্রমে 1, 2, '5, '1 ও '01 কারণ এক লিটার দ্রবণে ঐ ঐ পরিমাণ গ্রাম-তুল্যাংক দ্রাব দ্রবীভূত আছে।

যে দ্রবণের নর্মালিটি 1 সেই দ্রবণে প্রতি লিটারে দ্রাবের পরিমাণ 1 × দ্রাবের গ্রাম-তুল্যাংক। যে দ্রবণের নর্মালিটি 2, '5, '1 বা '01 সেই দ্রবণে প্রতি লিটারে দ্রাবের পরিমাণ যথাক্রমে 2 × গ্রাম-তুল্যাংক, '5 × গ্রাম-তুল্যাংক, '1 × গ্রাম-তুল্যাংক বা '01 × গ্রাম-তুল্যাংক। অতএব,

প্রতি লিটারে গ্রাম হিসাবে ওজন = নর্মালিটি × গ্রাম-তুল্যাংক।

কয়েকটি মূল নীতি ঃ

(১) 1000 c.c. (N) দ্রবণে দ্রাবের পরিমাণ= 1 গ্রাম-তুল্যাংক

:.
$$1000 \text{ c.c.} \binom{N}{10} \cdots \cdots = \frac{1}{10} \frac{\text{sin-persist}}{10} \cdots \text{ (4)}$$

এবং 100 c.c. (N)
$$\cdots = \frac{1 \text{ গ্রাম-তুল্যাংক}}{10} \cdots (খ)$$

(ক) ও (খ) দ্রবণ ছুইটি পরস্পরের তুল্য,

1000 c.c.
$$\binom{N}{10}$$
 দ্বণ ≡ 100 c.c. (N) দ্বণ।

10 c.c.
$$\binom{N}{10}$$
 জবণ $\equiv 1$ c.c. (N) জবণ $\equiv \left(10 \times \frac{1}{10}\right)$ c.c. (N) জবণ।

স্তরাং, 10 c.c.
$$\binom{N}{10}$$
 জবণ $\equiv \left(10 \times \frac{1}{10}\right)$ c.c. (N) জবণ।

সাধারণ ভাবে:

উদাহরণ ঃ 20 c.c. 4 (N) দ্রবণ \equiv (20 × 4) বা 80 c.c. (N) দ্রবণ। 25 c.c. '5 (N) দ্রবণ \equiv (25 × ·5) বা 12 5 c.c. (N) দ্রবণ। 100 c. c $\binom{N}{20}$ দ্রবণ \equiv (100 × $\frac{1}{20}$) বা 5 c.c. (N) দ্রবণ। 50 c.c. 1·12 $\binom{N}{10}$ দ্রবণ \equiv $\binom{50}{50}$ × 1·12 × $\frac{1}{10}$

বা 56 c.c (N) দ্ৰবণ।

(২) যে কোন অ্যাসিডের 1000 c.c. (N) দ্রবণে 1 গ্রাম-তুল্যাংক অ্যাসিড এবং যে কোন ক্ষারের 1000 c.c. (N) দ্রবণে 1 গ্রাম-তুল্যাংক ক্ষার থাকে। কিন্তু 1 গ্রাম-তুল্যাংক অ্যাসিড ও 1 গ্রাম-তুল্যাংক ক্ষার পরস্পরকে প্রশমিত করে। অতএব.

1000 c.c. (N) যে কোন অ্যাসিড দ্রবণ = 1000 c.c. (N) যে কোন ফার দ্রবণ। বা, 1 c.c. (N) যে কোন অ্যাসিড দ্রবণ = 1 c.c. (N) যে কোন ফার দ্রবণ। বা, 1 c.c. (N) যে কোন অ্যাসিড দ্রবণ = 1 c.c. (N) যে কোন অ্যাসিড দ্রবণ = 1 c.c. (N) যে কোন ফার দ্রবণ।

অর্থাৎ, কোন অ্যাসিডের নর্মাল দ্রবণের কোন নির্দিষ্ট আয়তনকৈ প্রশমিত করিতে ক্ষারের সমান আয়তন নর্মাল দ্রবণ প্রয়োজন। সাধারণভাবে, সম-মাত্রার অ্যাসিড ও ক্ষারদ্রবণ সম-আয়তনে পরস্পরকৈ প্রশমিত করে।

এরাম-তুল্যাংকের সংখ্যা = নর্মালিটি × লিটারের সংখ্যা। ছইটি দ্রবণ পরস্পর সম্পূর্ণ বিক্রিয়া করিলে উহাদের মধ্যে দ্রানের তুল্যাংক-পরিমাণ সমান। অর্থাৎ প্রথম দ্রবণের দ্রাবের গ্রাম-তুল্যাংক সংখ্যা = দ্বিতীয় দ্রবণের দ্রাবের গ্রাম-তুল্যাংক সংখ্যা। স্বতরাং, প্রথম দ্রবণের নর্মালিটি × উহার লিটার সংখ্যা = দ্বিতীয় দ্রবণের নর্মালিটি × উহার লিটার সংখ্যা। উভয় 'এবণের আয়তন লিটারে প্রকাশ না করিয়া c.c.-তেও প্রকাশ করা যায়।
স্মৃতরাং ছুইটি দ্রবণ পরস্পরের তুল্য হুইলে একটি দ্রবণের মাত্রা ও আয়তনের
শুণফল অপর দ্রবণের মাত্রা ও আয়তনের শুণফলের সমান।

প্রথম দ্রবণের আয়তন যদি V_1 ও মাত্রা N_1 হয় এবং দিতীয় দ্রবণের আয়তন V_2 ও মাত্রা N_2 হয় তবে দ্রবণ ছইটি পরস্পর তুল্য হইলে,

$$V_1 \times N_1 = V_2 \times N_2$$

- (৪) জবণের মাত্রা লঘুকরণঃ
- (ক) 1. c.c. 36(N) H₂SO₄
 =(1×36) c.c. বা 36 c.c. (N) H₂SO₄ দ্ৰবণ।
 =(36×10) c.c. বা 360 c.c. $\binom{N}{10}$ H₂SO₄ দ্ৰবণ।

স্থা র c.c. 36 (N) H_3SO_4 লইয়া জল মিশাইয়া উহার আয়তন 36 c.c. করিলে দ্রবণের মাত্রা হইবে (N) এবং আয়তন 360 c.c. করিলে দ্রবণের মাত্রা হইবে ${N \choose 10}$ ।

(খ) $1000 \text{ c c.} \left(\frac{N}{10}\right) \text{H}_2\text{SO}_4$ দ্রবণপ্রস্তুকরিতে $36(N) \text{ H}_2\text{SO}_4$ -এর কত c.c. লাগিবে ?

ননে কর, x c.c. 36 (N) $H_{9}SO_{4}$ লাগিবে। স্বতরাং x c.c. এই অ্যানিডে যত সালফিউরিক অ্যাসিড আছে, 1000 c.c. $\binom{N}{10}$ স্থানে তত সালফিউরিক অ্যাসিড থাকিবে।

$$\therefore x \times 36 = 1000 \times \frac{1}{100}$$

$$\therefore x = \frac{1000}{36 \times 10} = 2.8 \text{ c.c.}$$

প্রমাণ দ্রবণের প্রস্তৃতিঃ [ছাত্রদের নিজেদের প্রমাণ দ্রবণ প্রস্তৃত্বতি হইবে না।]..

- (ক) সোডিযান কার্বনেট, অক্সালিক অ্যাদিড ইত্যাদি পদার্থ বিশুদ্ধ অবস্থায় পাওয়া যায় বলিয়া উহাদের নির্দিষ্ট পরিমাণ ওজন করিয়া নির্দিষ্ট পরিমাণ জলে দ্রবীভূত করিয়া প্রমাণ দ্রবণ প্রস্তুত করা হয়। এই পদার্থ-গুলিকে প্রাইমারী ষ্ট্যাণ্ডার্ড (Primary standard) বলে।
- (খ) অপরপক্ষে, সোডিয়ান বা পটাদিয়ান হাইজুক্সাইড, সালফিউরিক, হাইজোক্লোরিক অ্যাদিড ইত্যাদি পদার্থ সম্পূর্ণ অনার্দ্র ও বিশুদ্ধ অবস্থায় পাওয়া যায় না বলিলা প্রথনে উহাদের আহ্নমানিক মাত্রার দ্রবণ প্রস্তুত করা হয়। পরে স্থনির্দিষ্ট মাত্রার কোন বিশুদ্ধ পদার্থের দ্রবণের সহিত টাইট্রেশন করিয়া উহাদের সঠিক মাত্রা নির্ণয় করা হয়। এই পদার্থগুলিকে সেকেগুারী ষ্ট্যাণ্ডার্ড (Secondary standard) বলে।

সোডিয়াম কার্বনেটের ডেসি-নর্মাল $\binom{N}{10}$ জবণঃ মনে কর, $250 \text{ c.c.} \binom{N}{10}$ Na_2CO_3 জবণ প্রস্তুত করিতে হইবে। Na_2CO_3 -এর গ্রাম-তুল্যাংক 53 গ্রাম। স্থতরাং $250 \text{c.c.} \binom{N}{10}$ জবণের জন্ম $\frac{53}{10 \times 4}$ বা 1.325 গ্রাম Na_2CO_3 প্রয়োজন। একেবারে ঠিক 1.325 গ্রাম ওজন করা সময়দাপেক্ষ। তাই 1.325 গ্রামের সামান্ত কম বা বেশী কোন যথার্থ ওজন লইয়া 250 c.c. ফ্লাক্ষে জলে জবীভূত করিয়া ফ্লাক্ষের দাগ পর্যন্ত জলপূর্ণ করা হয়। ইহাতে জবণের মাত্রা সঠিক $\binom{N}{10}$ না হইয়া কিছু কম বা বেশী হয়। নিয়লিখিত উপায়ে জবণের মাত্রা হিসাব করা হয়। মনে কর, 1.358 গ্রাম Na_2CO_3 ওজন করিয়া জবণ প্রস্তুত করা হইয়াছে।

1.325 গ্রাম Na_2CO_3 250c.c দ্রবণে থাকিলে উহার মাত্রা হয় $\left(\frac{N}{10}\right)$ ।

. : 1.358 গ্রাম $N_{a_2}CO_3$ 250c.c. দ্রবণে থাকিলে উহার মাত্রা হয় $\frac{1.358}{1.325}\binom{N}{10}$ বা, $1.025\binom{N}{10}$ ।

1.025-কে $\left(\frac{N}{10}\right)$ দ্রবণের **গুণক** বা **ফ্যাক্টর** (factor) বলে।

স্তরাং, দ্রবণের ফ্যাক্টর = দ্রাবের যে ওজন লওয়া প্রয়োজন।

সালফিউরিক অ্যাসিডের নর্মাল (N) ও ডেসি-নর্মাল $\left(\frac{N}{10}\right)$ দ্রবণ ঃ

মনে কর, 1000 c.c. (N) H_2SO_4 দ্রবণ প্রস্তুত করিতে হইবে। ল্যাবরেটরীর গাঢ় H_2SO_4 সাধারণত 36 (N)। স্থতরাং 28 c c. গাঢ় H_2SO_4 লইয়া পাতিত জলের সাহায্যে উহার আয়তন 1000 c.c. করিলে দ্রবণের মাত্রা হইবে আহ্মানিক (N) এবং 2.8 c c. লইয়া আয়তন 1000 c.c. করিলে দ্রবণের মাত্রা হইবে আহ্মানিক $\binom{N}{10}$ (১৩৮ পৃষ্ঠা দেখ)।

- (ক) একটি পরিস্বার 500 c.c. বীকারে প্রায় 400 c c. পাতিত জল লও। একটি মাপক সিলিগুারে 28 30 c.c. গাঢ় H₂SO₄ লইয়া বীকারের জলে ধারে ধীরে ঢাল এবং সঙ্গে সঙ্গে কাচ-দণ্ডের সাহায্যে দ্রবণ নাড়িয়া দাও। অ্যাসিড দ্রবণ গরম হয়। সমস্ত অ্যাসিড মিশান হইলে কিছুক্ষণ অপেক্ষা কর। দ্রবণ ঠাগু হইলে উহা ফানেলের সাহায্যে একটি লিটার ফ্রান্থে ঢালিয়া নির্দিষ্ঠ দাগ পর্যন্ত পাতিত জলে ভতি কর। ফ্রান্থের মুখে ছিপি দিয়া ফ্রান্থটি কয়েকবার নীচ-উপুর করিয়া দ্রবণ ভালরূপে নাড়িয়া দাও। দ্রবণ আহ্নানিক (1√) সাত্রার হইবে।
- (খ) এইরূপে 3 c.c. গাঢ় দালফিউরিক অ্যাদিডে জল মিশাইয়া উহার আয়তন 1000 c.c. করিলে দ্রবণের মাত্রা আহ্নমানিক $\binom{N}{10}$ হইবে। অথবা, একটি মাপক দিলিগুারের সাহায্যে 100 c.c. আহুমানিক (N) মাত্রার

অ্যাসিড দ্রবণ লইয়া জল মিশাইয়া উহার আয়তন $1000 \ c.c.$ কর। দ্রবণের মাত্রা আহ্মানিক $\binom{N}{10}$ হইবে।

হাইড্রোক্লোরিক অ্যাসিডের ডেসি নর্মাল ${N \choose 10}$ দ্রবণ ঃ

- (ক) একটি বীকারে প্রায় 400c.c পাতিত জল লও। মাপক সিলিগুারে 9 c.c. গাঢ় HCl লইয়া বীকারে ঢাল এবং দ্রবণ নাড়িয়া দাও। অ্যাসিড দ্রবণ একটি লিটার ফ্লাস্কে ঢালিয়া ফ্লাস্কের দাগ পর্যন্ত গলে পূর্ণ কর। দ্রবণের মাত্রা আহুমানিক $\binom{N}{10}$ হইবে।
 - (খ) নর্মাল দ্রবণের জন্ম 90 c c. গাঢ় HCl লইবে।

সোডিয়াম হাইড়ক্সাইডের ডেসি-নর্মাল $\binom{N}{10}$ জবণঃ

সোডিয়ান হাইডুক্সাইডের গ্রান-তুল্যাংক 40 গ্রান। স্বতরাং 1000 c.c. $\binom{N}{10}$ দ্বণে থাকিবে 4 গ্রান। একটি বীকারে 4.5 গ্রান বিশুদ্ধ সোডিয়ান হাইডুক্সাইড তাড়া তাড়ি ওজন করিয়া পাতিত জলে দ্রবীভূত কর। দ্রণ ঠাগুর হইলে উহা একটি লিটার ফ্লাস্কে ঢাল এবং পাতিত জল দারা ফ্লাস্কের দাগ পর্যন্ত পূর্ণ কর। জল নিশাইবার কালে দ্রবণ নাড়িয়া দিবে। ফ্লাস্কের মুখ একটি রবার কর্কের সাহায্যে বন্ধ কর। দ্রণের মাত্রা আহু্যানিক $\binom{N}{10}$ হইবে।

অমুমিতি ও ক্ষারমিতির পরীক্ষায় ব্যবহৃত যন্ত্রপাতি ? নিয়লিখিত
যন্ত্রগুলি অমুমিতি ও ক্ষারমিতির পরীক্ষায় ব্যবহৃত হয়।

- (১) মাপক ফ্লাস্ক (Measuring or Volumetric tlask)
- (২) অংশাংকিত দিলিগুার (Graduated cylinder)
- (৩) বুরেট (Burette)
- (৪) পিপেট (Pipette)
- (৫) বীকার, কনিক্যাল ফ্লাস্ক (Conical flask)

কাচের যন্ত্রপাতি পরিস্কার করা (Cleaning of glass apparatus): এই পরীক্ষায় ব্যবহৃত যন্ত্রপাতি খুব পরিস্কার ও গ্রীজ্ (grease) মুক্ত হওয়া বিশেষ প্রয়োজন। অন্তর্থায় পরীক্ষার ফল সঠিক হয় না। কাচের পাত্রগুলি প্রথমে সোডার দ্রবন দিয়া এবং পরে লঘু নাইট্রিক অ্যাসিড ও পাতিত জল দ্বারা পরিস্কার করা যায়। চুর্ন পটাসিয়াম বা সোডিয়াম ডাইক্রোমেট ও গাঢ় সালফিউরিক অ্যাসিডের মিশ্রন (ক্রোমিক অ্যাসিড)-ও কাচের পাত্র পরিস্কার করিবার জন্ম ব্যবহৃত হয়। যন্ত্রগুলি যথা,—পিপেট, বুরেট, নাপক ফ্লাস্ক, কনিক্যাল ফ্লাস্ক প্রভৃতি ক্রোমিক অ্যাসিডে পূর্ন করিয়া সারারাত্রি রাখা হয়। ক্রোমিক অ্যাসিড ঢালিয়া রাখিয়া যন্ত্রগুলি ভাল করিয়া পাতিত জল দ্বারা ধুইয়া ফেলা হয়।

(১) মাপক ফ্লান্ধ (Measuring flask): লখা ও দর গলাযুক্ত একটি চ্যাপ্টা কাচের ফ্লান্ধ। ইহার গলার চারিদিকে ঘিরিয়া একটি চিছ্ন আছে। এই চিছ্ন পর্যন্ত নির্দিষ্ট আয়তনের তরল পদার্থ ফ্লান্কে ধরে। ইহা সাধারণত 100 c.c., 250 c.c., 500 c.c., এক লিটার আয়তনের হয়। ইহার মুখে কাচের ছিপি (glass stopper) লাগান থাকে।

(২) **অংশাংকিত সিলিণ্ডার** (Graduated cylinder): ইহা এক মুখ খোলা ও এক মুখ বন্ধ কাচের মোটা নল। ইহা খাড়াভাবে দাঁড়াইয়া

৪০নং চিত্র—নাপক ফ্লাক্ষ ৪১নং চিত্র—অংশাংকিত সিলিণ্ডার

থাকিতে পারে এবং c.c.তে অংশাংকিত। মোটাম্টিভাবে ইহা দারা নির্দিষ্ট, আয়তনের তরল পদার্থ নাপা ও স্থানান্তরিত করা যায়।

(৩) বুরেট (Burette): সমান ছিদ্র বিশিষ্ট লম্বা নোটা কাচের নল—এক মুখ খোলা এবং অপর মুখ সরু।
এই সরু মুখে (jet) কাচের ইপ-কক্ (stop-cock)
লাগান আছে। অনেক বুরেটের সরু মুখ রবার-নল
দিয়া অন্ত একটি সরু কাচ-নলের সহিত যুক্ত
থাকে। রবার নলটি Pinch-cock দ্বারা খোলা
বা বন্ধ করা যায়। ইহা সাধারণত O হইতে 50 c.c.
পর্যন্ত অংশাংকিত থাকে। প্রত্যেক c.c.-কে
আবার সমান দশ ভাগে ভাগ করা আছে—
প্রত্যেক ছোট ভাগের আয়তন 0:1c.c.। বিভিন্ন
আয়তনের তরল পদার্থ স্থানান্তরিত করিবার জন্ত

পরীক্ষণীয় তরল পদার্থ দারা বুরেট
ধোত করা (Rinsing): গ্রপ-কক্ থোলা

৪২নং চিত্র—ব্রেট
অবস্থায় বুরেট শাড়াভাবে গ্রাণ্ডের সহিত আটকাও এবং ওয়াস্ বোতল
হইতে উহার মধ্যে পাতিত জল ঢালিয়া দাও। বুরেট ধৌত হইযা জল জেট
দিয়া পড়িয়া যাইবেণ এইরূপে কয়েকবার পাতিত জল দারা বুরেট ধৌত
কর। গ্রপ-কক্ বন্ধ করিয়া বুরেটের মধ্যে পরীক্ষণীয় তরল পদার্থের প্রায়
10c.c. পরিমাণ ঢাল। এখন বুরেটিট অম্পুমিকভাবে ছ্ই হাতে ধরিয়া
আত্তে আত্তে ঘুরাও এবং সঙ্গে সঙ্গে সাবধানে খোলা মুখের দিকে
কাত কর—লক্ষ্য রাখিবে, তরল পদার্থ যেন খোলা মুখ দিয়া বাহির হইয়া
না যায়। এইরূপে বুরেট নাড়াচাড়া করিয়া তরল পদার্থ গড়াইয়া বুরেটের
ভিতরের গায়ের সমস্ত অংশ ভিজাইয়া ফেল। পরে গ্রপ-কক্ খুলিয়া তরল

প্রদার্থ বাহির করিয়া ফেল। পরীক্ষার পূর্বে এইরূপে পরীক্ষণীয় তরল পদার্থ লইয়া বুরেট ছ্ই-তিনবার ধৌত করিবে।

বুরেট পাঠ (Reading of burette): একটি ব্রেটের খানিকটা

23

24

৪ গ্ৰং চিত্ৰ—ববেট পাঠ

জল দারা ভতি কর। দেখ, জ্লের উপর-পৃষ্ঠ নিম্নগামী বা অবতল (concave)। তরল পদার্থের বাঁকা তলের সর্বনিয় বিন্দুর পাঠ লইতে হয়। বুরেট পাঠ করিবার সময় চোখ ও তরল পদার্থের বাঁকা তল (meniscus) একই লেভেন্সে রাখিবে। তরল পদার্থের বাঁকা তলের সর্বনিম বিন্দু বুরেটের যে অংকের সহিত মিলিয়া যায় উহাই বুরেট পাঠ। পার্শ্বের চিত্রের বুরেট পাঠ হইতেছে 24.4 c c.।

বুরেট ব্যবহারে সতর্কতা (Precautions): (১) বুরেটের উপ-কক্ যেন সহজেই ঘোরে এবং বুরেটে তরল পদার্থ ভরিয়া উপ-কক্ বন্ধ করিলে একটুও তরল পদার্থ যেন না পড়ে। প্রয়োজন হইলে ইপ-ককে সামাত ভেদেলিন লাগাইবে। (২) কোন তরল পদার্থ ঢালিবার সময়ে উহা যেন त्रतंदेत १! नाहिया ना १८ए। (२) व्रतंदेत रक्षतं रकान वृत्वृत् थाकित ना । (৪) বুরেটে কারীয় দ্রবণ লইয়া প্রীকা করিলে প্রীকার পর উহা প্রথমে অ্যাসিড দিয়া ওপরে পাতিত জল দিয়া ধুইয়া ফেলিবে। (৫) পরাক্ষার শেদে বুরেট পাতিত জলে ধুইয়া উহার খোল। মুখ ছোট পরাক্ষা-নল দিয়া ঢাকিয়া রাখিবে অথবা বুরেটের জেট উপরের দিকে রাখিয়া উন্টাকরিয়া ই্যাণ্ডের সহিত আইকাইয়া রাখিবে

পিপেট (Pipette): তুই মুখ-খোলা একটি কাচের নল-মাঝখানটা মোটা এবং নীচের অংশ সরু হইয়া গিয়াছে। নল (stem)-এর উপরের দিকে একটি দাগ কাটা আছে—এই দাগ নির্দিষ্ট আয়তন নির্দেশ করে। পিপেটের সাহাথ্যে নির্দিষ্ট আয়তনের তরল পদার্থ এক পাত্র হইতে অন্ত পাত্রে স্থানান্তরিত। করা হয়। ইহার ধারকশক্তি (capacity) সাধারণত 5, 10, 20, 25, 50c.c.। পিপেটের সাহাথ্যে নির্দিষ্ট আয়তনের তরল পদার্থ কিরুপে স্থানান্তরিত করা হয় তাহা ১নং পরীক্ষায় বর্ণনা করা হইয়াছে।

পরীক্ষা ১ ঃ স্থানিদিষ্ট মাত্রার সোডিয়াম কার্বনেট জবণের সাহায্যে আনুমানিক $\frac{N}{10}$ সালফিউরিক অ্যাসিডের সঠিক মাত্রা নির্ণয় [To find the exact strength of an approximate $\left(\frac{\dot{N}}{10}\right)$ Sulphuric acid solution with the help of Sodium carbonate solution of known strength]:

ভত্ত (Theory): [১৩৭ পৃষ্ঠার (৩) অংশ দেখ]

যন্ত্র গাঁভি (Apparatus): 50c.c. বুরেট, 25c.c. পিপেট, 250c.c. ক্নিক্যাল ফ্রাস্ক বা বীকার ও কাচের শলাকা, ওয়াস বোতল।

রাসায়নিক দ্রব্যাদি (Chemials): আহুমানিক $\left(\frac{N}{10}\right)$ সালফিউরিক অ্যাসিড, $1.02 \, {N \choose 10}$ সোডিয়াম কার্বনেট দ্রবণ, মিথাইল অরেঞ্জ।

পদ্ধতি (Procedure): (১) অ্যাসিড দারা বুরেট পূর্ণ করা: একটি 50c.c. বুরেট লইয়া উহার ষ্টপ-কক্ সহজেই ঘোরান যায় কিনা দেখ; না গেলে উহাতে দামাল্ল ভেসেলিন মাথিয়া লও। প্রথমে পাতিত জল দারা বুরেটটি বার কয়েক ধ্ইয়া ফেল। লক্ষ্য কর, ষ্টপ-কক বন্ধ থাকিলে একটুও জল যেন না পড়ে। পরে ছ্ই তিন্যার পরীক্ষণীয় দালফিউরিক অ্যাসিড দ্রবণের 5—10c.c.-এর মত লইয়া বুরেট ভালরূপে ধ্ইয়া লও (rinse) (১৪০ পৃষ্ঠা দেখ)। বন্ধনীর দাহায্যে বুরেট ষ্ট্যাণ্ডের সহিত খাড়াভাবে আটকাইয়া দাও। একটি শুষ্ক ফানেলের দাহায্যে অ্যাসিড দ্রবণ বুরেটে ঢালিয়া উহার শৃক্ত (০) চিক্লের কিছু উপর পর্যন্ত পূর্ণ কর এবং ফানেলটি সরাইয়া লও। ষ্টপ-কক্ সাময়িকভাবে একেবারে খুলিয়া দাও—বুরেটের জেট দিয়া অ্যাসিড দ্রবণ বাহির

হইয়া যায়। জেটে বায়ুর বুদবুদ আছে কিনা লক্ষ্য করিয়া দেখ; থাকিলে ষ্টপ-কক্ খুলিয়া আরও খানিকটা অ্যাসিড বাহির করিয়া দাও। ইহাতে অ্যাসিড দ্রবণ শৃত্য চিছের নীচে নামিয়া গেলে পুনরায় শৃত্য চিছের কিছু উপর পর্যন্ত অ্যাসিডে ভতি কর। এখন ষ্টপ-কক্ খুলিয়া ফোঁটা ফোঁটা করিয়া অ্যাসিড ফেলিতে থাক। যখন দ্রবণের বাঁকাতলের সর্বনিম্ন বিন্দু শৃত্য চিছের সমরেখায় আসিবে তখন ষ্টপ-কক্ বন্ধ কর।

(২) পিপেটের সাহায্যে সোডিয়াম কার্বনেট দ্রবণ মাপিয়া লওয়া: একটি 25e.c. পিপেট পাতিত জলে ধোও। পিপেটের সরুমুখের

১১নং চিত্র —িপেটের নাহায়ো তবৰ মাপিছ। লওয়া

বাহির অংশের জল ফিল্টার কাগজ নিয়া মুছিয়া ফেল। পিপেটের সরুমুখ সোডিয়াম কার্বনেট দ্রবণে ভ্রাইয়া থোলা মুখ নিয়া শুনিয়া খানিকটা দ্রবণ পিপেটের তোল এবং আছুল নিয়া পিপেটের মুখ আটকাইয়া উহা দ্রবণ হইতে ভূলিয়া আন। এই এবণ নিয়া পিপেটের ভিতর গায়ের সমস্ত অংশ ভিজাইয়া ফেল এবং পরে সরুমুখ নিয়া দ্রবণ ফেলিশা লাও। এইরূপে ছই-তিনবার পিপেটের ভিতরের অংশ দ্রবণ নিয়া ধুইয়া লও। পিপেট পুনরাম সোডিয়াম কার্বনেট প্রবণে ভূলাইয়া পিপেটের নগের কিছু উপর পর্যন্ত খানিকটা দ্রবণ শুনিয়া তোল। খোলামুধে আছুল নিয়া চালিয়া পিপেট লম্বভাবে চোগের সামনে ভূলিয়া ধর। পিপেটের সরুমুধের বাহির অংশের দ্রবণ ফিল্টার কাগজ নিয়া মুছিয়া ফেল। আছুলের চাপ নিয়ম্বিত করিয়া অতিরিক্ত দ্রবণ কেটো সেটটা

করিয়া ফেল দেন দ্রনণের বাঁকাতলের স্বনিয় বিন্দু পিপেটের দাণের সহিত মিলিয়া যায়। এখন আঙ্কুল পুনরায় চাপিয়া ধর দেন আর কোন এতিরিক্ত কোঁটা না পড়িয়া যায়। এই অবস্থায় পিপেটের সরুমুখ একটি পরিষার 250c.c. কনিক্যাল ফ্লাম্বে বা বীকারে প্রবেশ করাও। ফ্লাম্ব বা বীকারটি একটু কাত করিয়া পিপেটের সরুমুখ পাত্রের গায়ে স্পর্শ করাইয়া আঙ্কুল সরাইয়া লও— দ্রবণ অপনা আপনি পিপেট হইতে পাত্রে নানিয়া আসে। পিপেট হইতে পাত্র নানিয়া আসে। পিপেট হইতে পাত্রে নানিয়া আসে। পিপেট হইতে স্পর্শ করাইয়া রাখিয়া পিপেটট তুলিয়া আন। ইহাতে যতটা দ্রবণ ফ্লাস্কেবা বীকারে পড়িল তাহার আয়তন হইল 25c.c.। পিপেটের মুখের শেষ ফোঁটা কখনও ফুঁ দিয়া বা অক্ত কোন উপায়ে ফেলিবে না।

- (৩) ইণ্ডিকেটর মিশানঃ এইরূপে কনিক্যাল ফ্লাস্কে 25c.c. সোডিয়াম কার্বনেট দ্রবণ লইয়া 25—30c.c. পাতিত জল দাও। উহাতে ছই-এক ফোঁটা নিথাইল অরেঞ্জ (Methyl orange) মিশাও। দ্রবণের বর্ণ হলুদ হয়। ইণ্ডিকেটর বেশী দিবে না—বেশী হইলে টাইট্রেশনের সমাপ্তি-ক্ষণ (end point) ধরিতে অস্থবিধা হয়।
- (৪) টাইট্রেশনঃ 25c.c. সোডিয়াম কার্বনেট দ্রবণ সম্পূর্ণ প্রশামত করিতে মঠিক কত c.c. অ্যাসিড দ্রবণ লাগিবে তাহা নির্ণয় করিতে হইবে। প্রথম টাইট্রেশনেই একেবারে সঠিক আয়তন নির্ণয় করা সময়সাপেক ও কইসাধ্য। সেই জন্ম প্রথমে আমুনানিক কত অ্যাসিড লাগে দেখিয়া পরে সঠিক আয়তন নির্ণয় করা হয়।
- কে) প্রাথমিক টাইট্রেশনঃ দ্রন্দহ কনিক্যাল ফ্রান্ট ব্রেটের ঠিক নীচেরাথ। বুরেট হইতে এক এক বারে প্রায় 1 c.c.এর মত অ্যাসিড মিশাও এবং দ্রন্থ ভালরূপে নাড়িয়া দাও। দ্রন্থের বর্ণের কোন পরিবর্তন হয় কিনা লক্ষ্য রাথ। এইরূপে অ্যাসিড মিশাইবার ফলে এক সময় দেখিবে যে দ্রণের বর্ণ গোলাপী হইয়া গিয়াছে অর্থাৎ দ্রন্থে অতিরিক্ত অ্যাসিড মিশান হইয়াছে। মনে কর, 24c.c. অ্যাসিড মিশাইলে দ্রণের বর্ণের পরিবর্তন হয় না কিন্তু 25c.c. মিশাইলে উহার বর্ণ গোলাপী হয়। স্কতরাং, বুঝিতে পারিবে যে, প্রশমনের জন্ম অ্যাসিডের প্রয়োজনীয় আয়তন 24c.c. ও 25c c. এর মধ্যে। এইরূপ প্রথমে 1 c.c. এর মধ্যে সমাপ্তি-ক্ষণ নির্ণয় করা হয়।
- (খ) সঠিক টাইট্রেশন: (১) পূর্বের ছায় বুরেটের শৃহ্য চিহ্ন পর্যস্ত আ্যাসিড দ্রবণ লও। (২) পিপেটের সাহায্যে 25c.c. সোডিয়াম কার্বনেটঃ

জবণ কনিক্যাল ফ্লাস্কে লও এবং 25—30 c.c. পাতিত জল নিশাও। উহাতে ছই এক ফোঁটা নিথাইল অরেঞ্জ দাও—দ্রবণের বর্ণ হলুদ হয়। (৪) কনিক্যাল ফ্লাস্কটি ব্রেটের নীচে একখানি দাদা কাগজের উপর বসাও। ব্রেট হইতে আাসিড দ্রবণ ঢাল এবং সঙ্গে সঙ্গে ফ্লাস্কের দ্রবণ ভালরূপে নাঙিতে থাক। এইরূপে তাড়াতাড়ি প্রায় 24c.c. আসিড নিশান হইলে ইপকক্ বন্ধ কর—ব্রেটের জেটের মুখে যেন কোন ফোঁটা (drop) বাহির হইয়া না থাকে। এখন ওয়াস বোতলের সরুমুখের সাহায্যে ফ্লাস্কের ভিতরের অংশ পাতিত জল দিয়া ধুইয়া ফেল—ফ্লাস্কের গায়ে আ্যাসিড লাগিলে ধুইয়া নীচে নামিয়া যাইবে। এখন দ্রবণে সাবধানে ফোঁটা ফোঁটা করিয়া আ্যাসিড নিশাও এবং নাড়িয়া লাও। যখন এক ফোঁটা আ্যাসিড নিশাইলে দ্রবণের বর্ণ হাল্কা হলুদ হইতে গোলাপী হইবে তখন ইপ-কক্ বন্ধ কর। ইহাই টাইট্রেশনের স্মান্তি-ফণ (end point)। গোণ ও ব্রেটের দ্রবণ এক স্মান্তরালে এক মেল রেংগ্র রাহিয়া রাহিয়া বুরেট প্রান্ত কর (হেগ্র প্রান্ত নিম্না)।

(৫) এইরূপে 25 c. c. সেতিয়ান কার্নটোই প্রবণ হইয়া আরও ছুইবার টাইট্রেশন কর এবং ব্যবহাত অ্যাসিডের আযতন নির্ণয় কর। প্রক্রোক কল নীচের মত লিখিয়া রাখ।

পরীক্ষার ফল ঃ সোচিয়াম কার্বনেট দ্রবণের মাত্রা = $1.02 {N \choose 10}$

টাইট্রেশন গংখ্যা	Na_CO_ দুৰণের আয়তন (c.c.)	প্রপম	বুবেট পাঠ (c c.)	ে শ্	আগ্রিগড়েব আয়ঙন (c.c.)	: গড়
1.	25	0		24.6	24.6	
2.	25	. 0		215	24.2	24.58 c.c.
8,	25	0		24.5	24.5	

গণনাঃ N₁ মাতার V₁ c.c. আাণিড দ্রবণ ও N₂ মাতার V₂ c.c. ফারদ্রণ পরস্পরকে প্রশনিত করিলে,

$$V_1 \times N_1 = V_2 \times N_2$$
, এখানে $V_1 = 21.53$ c. c., $V_2 = 25c$. c., $N_2 = 1.02$ $\left(\frac{N}{10}\right)$

...
$$24.53 \times N_1 = 25 \times 1.02 \ \binom{N}{10}$$

$$N_1 = \frac{25 \times 1.02}{24.53} = 1.039 \binom{N}{10} = .1039 N.$$

∴ H₂SO₄ দ্রবণের মাতা= 1039 N.

প্রতি লিটার দ্রবণে H,SO,-এর পরিমাণ = নর্মা লিট × গ্রাম-তুল্যাংক = (1039 × 49) গ্রাম = 5.0911 গ্রাম।

দ্পের (১) প্রতিবারের টাইট্রেশনেই বুরেটের শৃষ্য চিচ্ন পর্যন্ত পরীক্ষণীয় তরল পনার্থ দারা ভাতি করিয়া লওয়া ভাল। (২) তিনটি পৃথক টাইট্রেশনে তরল পনার্থের আয়তনে যদি 'Jc.c. এর বেশী পার্থক্য হয়, তাহা হইলে আনার নৃতন করিয়া টাইট্রেশন করিবে। (৩) পরবর্তী টাইট্রেশনে এই পরীক্ষার সকল সতর্ক তা অবলম্বন করিবে।

পরীক্ষা ২ ঃ স্থনির্দিষ্ট মাত্রার সালফিউরিক আাসিড ডবণের গ সাহায্যে আনুমানিক, $\binom{N}{10}$ সোডিয়াম হাইডুক্সাইড ডবণের সঠিক মাত্রা নির্বায় ঃ (To find the exact strengh of an approximate $\binom{N}{10}$ NaOH solution with the help of H_2SO_4 -solution of , known strength) :

তত্ত্ব ও যত্ত্বপাতিঃ ১নং পরীক্ষার স্থায়।

রাসায়নিক দ্রব্যাদিঃ আত্যানিক $\binom{N}{10}$ NaOH দ্রবণ, $1\cdot C4$ $\binom{N}{10}$ H_uSO_4 ফিনল্গ্যনিন।

পদ্ধতিঃ (১) $1.04 \left(\frac{N}{10}\right) \, H_2 SO_4$ দ্রবণ দার। বুরেটের শৃষ্ঠ চিছ পর্যস্ত পূর্ণ কর—বুরেটে বা উহার জেটে যেন বায়ুর বুদ্বুদ্ না থাকে।

- (২) পিপেটের দাহায্যে 25c.c. আমুমানিক $\left(\frac{N}{10}\right)$ NaOH দ্রবণ একটি কনিক্যাল ফ্রাস্কে লও।
- (৩) ফ্রান্তে খানিকটা পাতিত জল মিশাইয়া ছই-এক কোঁটা ফিনল্থ্যলিন বাওঁ। দ্রবণের বর্ণ গোলাপী হয়।
- (৪) বুরেট হইতে সাবধানে আদিত ঢালিয়া সমাপ্তি-কণ (end point)
 না আদা পর্যন্ত টাইট্রেশন কর। সমাপ্তি-ক্ষণে এক কোঁটা আদিত গোলাপী
 দ্রবণ বর্ণহীন করিবে।
- (৫) সমগ্র পদ্ধতি আরও ছ্ইবার পুনরাবৃত্তি কর এবং টাইটেশনের ফলাফল নীতের মত লিখিয়া রাখ।

পরীকার ফল ঃ

प्रेष्ट द्विश्व भारत्यः	N .OH F71: 7 T F 54 (c.c.)	842.A.	خ:خۇخ: (c.c.)	ুৰাস	II SO ₄ -६द 'श:४ इन (c c.)	। গড়
1.	25	0		28 7	2n 7	
2.	25	0		28 B	23.8	28.76 c c.
8.	25	0		:8.8	28 8	

গণলাঃ NaOH দ্বণের আগতন × উহার মাজা = H2SO4-জবণের আগতন × উহার মাজা

 \therefore 25 × NaOH দ্রবংশর মাতা = 23.76 × 1.04 $\binom{N}{10}$

: NaOH-দ্ৰবণের মাজা =
$$\frac{23.76 \times 1.04}{25} \binom{N}{10} = 0.988 \binom{N}{10}$$
: = 0.0988N

প্রতি লিটারে NaOHএর পরিমাণ = নর্যালিটি × গ্রাম-তুল্যাংক
 = (0.0988 × 40) গ্রাম
 = 3.952 গ্রাম।

জ্ঞ ব্যঃ এই পরীক্ষায় অ্যাদিড ও ক্ষার উভয়ই তীব্র। স্ক্তরাং এই টাইট্রেশনে যে কোন ইণ্ডিকেটর উপযুক্ত। পরীক্ষাটি নিধাইল অরেঞ্জ ইণ্ডিকেটর ব্যবহার করিয়া পুনরাবৃত্তি করিয়া পূর্বের ভাষ দ্রবণের মাতা নির্ণষ্ট কর। তুইটি পরীক্ষার ফল এক হইবে।

পরীক্ষা ৩ঃ 1:06 $\binom{N}{10}$ অক্সালিক আ্যাসিড দ্রবন দেওয়া আছে। ইহার সাহায্যে একটি আনুমানিক $\binom{N}{10}$ NaOH দ্রবনের সঠিক মাত্রা (১) নর্মালিটিতে এবং (২) লিটার প্রতি ওজনে নির্ণয় কর। [Given 1:06 $\binom{N}{10}$ Oxalic acid solution. Find, with its help, the strength of an approximate $\binom{N}{10}$ NaOH solution (i) in terms of normality, and (ii) in grams per litre.] তত্ত্ব ও যন্ত্রপাতি ঃ সংপ্রীক্ষার হায়।

রাসায়নিক দ্ব্যাদিঃ $1.06 {N \choose 10}$ অফ্রালিক আ্যাসিড দ্ব্q আয়ুমানিক ${N \choose 10}$ মাজার NaOH দ্বুণ, ফিনল্থ্যলিন।

পদ্ধতিঃ $1.06\binom{N}{10}$ অর্থালিক অ্যাসিড দ্বন দারা ব্রেটের শৃ্ফ চিছ পর্যন্ত পূর্ণ কর। পিপেটের সাহায্যে 25~c.~c.~NaOH দ্বন কনিক্যাল

ফ্যান্কে লও। NaOH দ্বণে থানিকটা পাতিত জল নিশাইয়া ছই-এক ফোঁটা ফিনল্থানিন নিশাও। দ্বণের বর্ণ পোনাণী হয়। বুরেট হইতে ফোঁটা ফোঁটা অফ্রালিক অ্যাসিড নিশাইয়া স্যাপ্তি-ক্ষণ ন' খাসা পর্যন্ত NaOH দ্বণ টাইট্রেট কর। স্যাপ্তি-ক্ষণে দ্বণ বর্ণহীন হইবে।

পরীক্ষার ফল ঃ
ভ্রমালিক অ্যাসিড দ্রবণের মাত্রা = $1.06 \binom{N}{10}$

টাইট্রেশন সংখ্যা	NaOH দ্রবংশর আয়ত্তন (c.c.)	্ প্রথম	বুৰেট পাঠ (e.c.)	(শ্য	আাসিড়ের আয়তন (c.c.)	গড়
1.	25	; o		24.2	24.2	13
2.	25	0		24.2	24.2	24·2 c.c.
8.	25	0		21.5	21.2	

গণনাঃ NaOH দ্রণের আয়তন × উহার মাতা = অক্যালিক অ্যাদিডের আয়তন × উহার মাতা

$$\therefore$$
 25 × NaOH দুরশের দাতা = 24 2 × 1·06 $\binom{N}{10}$

: NaOH extra wisi =
$$\frac{24.2 \times 1.06}{25} \binom{N}{10} = 1.026 \binom{N}{10}$$

= '1026 (N)

∴ প্রতি লিটারে NaOH-এর পরিমাণ = '1026 × 40 = 4'104 গ্রাম।

অ্যাসিড ও ফারের তুল্যাংক ভার নির্ণয় ঃ

(To determine the equivalent weight of acid and alkali):
পরীক্ষা ৪ঃ 1.03 (N) H2SO4 জনপের সাহান্যে সোডিয়াম

কার্বনেটের ভুল্যাংক ভার নির্ণয় কর (Find the equivalent weight of Na₂CO₃ with the help of $1.08 \left(\frac{N}{10}\right)$ H₂SO₄, solution).

ভত্ত Na_sCO_s এর তুল্যাংক ভার: (১৩৪ পৃষ্ঠা দেখ)

রাসায়নিক দ্রব্যাদিঃ বিশুদ্ধ সোডিয়ান কার্বনেট, 1.08 $\left(\frac{N}{10}\right)$. H_2SO_4 , মিথাইল অরেঞ্জ।

যন্ত্রপাতি : ১নং পরীক্ষার ভাষ।

পদ্ধতি ঃ (১) 1.325 থানের কাছাকাছি বিশুদ্ধ সোভিয়ান কার্বনেটের যথার্থ (exact) ওজন লও। এই সোভিয়ান কার্বনেট 250 c.c. নাপক ফ্লাস্কে জনে দ্রবীভূত করিয়া ফ্লাস্কের গলার চিহ্ন পর্যন্ত পাতিত জল দ্বারা পূর্ণ কর। (২) পিপেটের সাহায্যে $25 \, \text{c.c.} \, \text{Na}_2 \text{CO}_8$ দ্রবণ কনিক্যাল ফ্লাস্কে লও এবং ১নং পরীক্ষার স্থায় $1.08 \, \binom{N}{10} \, \text{H}_2 \text{SO}_1$ দ্রবণের সাহায়ে সমাপ্তি-ক্ষণ না আসা পর্যন্ত টাইট্রেট কর।

পরীক্ষার ফল । গোডিয়াম কার্বনেটের ওছন = 1.350 গ্রাম।
অ্যাসিডের আয় তনের গড় = 23.65 c.c.

গণনাঃ 25 c c. Na₂CO₈ দ্ৰবণ ≈ 23.65 c.c. $1.08 \left(\frac{N}{10}\right)$ H₂ SO₄ দ্ৰবণ

:. Na₃CO₃ ধ্বণের মাতা = $\frac{23.65 \times 1.08}{25} {N \choose 10} = 0.1022(N)$

মনে বর, Na₂CO₃ এর প্রাম-তুল্যাংক = E প্রাম। স্কররাং প্রতি লিটারে Na₂CO₂ এর পরিমান = 0.1022 × E গ্রাম। ি কিছ বাবহাত Na₂CO₃ ধ্রণে প্রতি নিটারে Na₂CO₃ এর পরিমান = 1.350 × 4 বা 5.400 গ্রাম।

- ' .:. 0·1022 × E = 5·400 গ্রাম।
 - .. $E = \frac{5.400}{0.1022} = 52.83$ and 1
 - ∴ তুল্যাংক ভার =52.83।

পরীক্ষা ৫ ঃ $1.12\left(\frac{N}{10}\right)$ NaOH দ্রবণের সাহায্যে অক্সালিক অ্যাসিডের তুল্যাংক ভার নির্ণয় কর।

সংকেত $\mathfrak E$ (১) নির্নিষ্ট গরিমাণ বিশুন্ধ অন্ত্রালিক অ্যাসিড ওছন করিয়া নির্নিষ্ট পরিমাণ জলে দ্রবীভূত করিয়া অন্ত্রালিক অ্যাসিডের একটি দ্রবণ প্রস্তুত কর । (২) প্রদন্ত $1.12 \left(\frac{N}{10}\right)$ NaOH দ্রবণের সাহায্যে টাইট্রেশন করিয়া অন্ত্রালিক অ্যাসিড দ্রবণের মাত্রা নির্ণিয় কর ৷ (৩) ধনং পরীক্ষার স্থানার ছ্যায় গণনা করিয়া অ্যাসিডের ভুল্যাংক ভার নির্ণিয় কর ৷

দ্বাদশ অধ্যায়

ক্ষারকীয় বা ধাতব মূলকের সনাক্তকরণ

(Identification of basic or metallic radicals)

লবণের ক্ষারকীয় ও অ্যাসিড মূলক কাহাকে বলে তাহা পূর্বে আলোচনা করা হইয়াছে (৯০ পৃষ্ঠা দেখ)। অ্যাসিড-মূলকের সনাজকরণ পদ্ধতি তোমরা নবম শ্রেণীতে শিখিয়াছ। এখন লবণের ক্ষারকীয় মূলক বা ধাতব অংশ সনাজ করিতে শিখিবে। ক্ষারকীয় ও অ্যাসিড মূলক ছুইটি পৃথক পৃথক বাহির করিয়া সম্পূর্ণ লবণটি সনাজ করা হয়। মনে কর, পরীক্ষার সাহায্যে দেখা গেল যে একটি লবণের ক্ষারকীয় মূলক Mg⁺⁺ এবং অ্যাসিড-মূলক SO₄ = । স্কুতরাং, লবণটি হুইল MgSO₄ (ম্যাগনেসিয়াম সালফেট)।

কারকীয় মূলকও আাসি ছ-মূলকের হায় শুক (Dry) ও সিক্ত (Wet) পদ্ধতিতে সনাক্ত করা হয়। নিয়লিখিত প্রীক্ষাগুলি শুক পদ্ধতির অস্তর্ভুক্ত।

- ১। শুক পরীক্ষা-নলে তাপ প্রয়োগ (Heating in a dry test tube):
 - ২। চারকোল বিজারণ পরীক্ষা (Charcoal Reduction Test).
 - ৩। কোবল্ট নাইট্রেট পরীক্ষা (Cobalt nitrate Test).
 - 8। শিখা পরীক্ষা (Flame Test)
 - ে। বোরাক্সবীড্পরীক্ষা (Borax bead Test).
- ১। শুক পরীক্ষা-নলে তাপ প্রয়োগ (Heating in a dry test tube):

শুদ্ধ পরীক্ষা নগে লইখা কোন কোন লবণ উত্তপ্ত করিলে উহাদের কিন্ধপ পরিবর্তন ঘটে তাথা তোমরা দশম শ্রেণীতে পরীক্ষা করিয়া দেখিয়াছ। এই পরিবর্তনগুলি লবণের ক্ষারকীয় বা ধাতব মূলক সনাক্ত করিতে সাহায্য করে। অষ্টন অধানেরর 'পনার্থের উপর তাপের প্রভাব'-এই অংশের ১, ২, ৩, ৬, ৯, ১০, ১১, ১২ ও ১৩ নং পরীক্ষাগুলি পুনরায় কর। (পৃষ্ঠা ৮৪-৮৭)।

রো-পাইপ বা ফুৎ-নলের ব্যবহার (Use of blow-pipe):

জারক ও বিজারক শিখায় লবণ উত্তপ্ত করিতে হইলে ব্লো-পাইপ বা ফুৎনল (blow-pipe) ব্যবহার করিতে হয়। ব্লো-পাইপ একটি বাঁকান ধাতব
নল—নলের বাঁকোন দিকের মুখ খুব দরু এবং অপর মুখ অপেক্ষাক্বত চওড়া।
নলের চওড়া মুখে ফুঁ দিলে দরু মুখ দিয়া বাতাস বাহির হয়।

জারক শিখায় (oxidising flame) তাপ দেওয়া ঃ

বুনসেন দীপের বায়ু প্রবেশের পথ (air holes) খুলিয়া শিখা দীপ্তিহীন (non-luminous) কর। ইহা বুনসেন দীপের জারক শিখা (oxidising flame)। শিখার কেন্দ্রখনে ব্লো-পাইপের সরু মুখ রাখ এবং অপর মুখে ধীরে ধীরে দুঁ নিয়া শিখার অগ্রভাগ, যে পদার্থ উত্তপ্ত করিতে হইবে তাহার উপর ফেল

বিজারক শিখায় (reducing flame) তাপ দেওয়া ঃ

वूनरमन नीरशद बाग्न खरदरनद ४४ (air holes) दक्ष कविया निशं खनीखः

४१व• 5िव

বিজাবক শিখায় তাপ দেওয়া

জাৰক শিখায় তাৰ দেওয়া

(luminous) কর। ইয়া বুল্টের প্রের বিজ্ঞারক শিখা (reducing flame)। শিখার ঠিক বাহিরে লো-পাইপের সরু মুখ্ট রাখ এবং অপর

মুপে ফুঁ দিয়া প্রদীপ্ত শিখা যে পদার্থ উত্তপ্ত করিতে হইবে, তাহার উপর ফেল।

ই। চারকোল বিজারণ পরীক্ষা (Charcoal Reduction Test):

এক টুক্রা কাঠ কয়লা বা চারকোল ব্লক (charcoal block) লইয়া উহার মাঝখানে ছুরি দিয়া একটি ছোট গর্ভ কর। , গর্ভের মুখ বেশী চওড়া করিবে না। , যে লবণ লইয়া পরীক্ষা করিবে সেই লবণের সহিত উহার প্রায় তিনগুণ পরিমাণ অনার্দ্র গোডিয়াম কার্বনেট বা গালক মিশ্র (Fusion mixture: গোডিয়াম ও পটাদিয়াম কার্বনেটের মিশ্রণ) ভাল করিয়া মিশাও। এই মিশ্রণের খানিকটা চারকোলের গর্ভে রাখিয়া ছই এক কোঁটা জল দিয়া ভিজাইয়া দাও। বুনসেন দীপের শিখা প্রদীপ্ত (luminous) কর। বাম হাতে চিমটার সাহায্যে চারকোল ব্লকটি ধর এবং ভান হাতে প্রো-পাইপ লইয়া উহার সরু মুখ শিখার ঠিক বাহিরে রাখ এবং অপর মুখে ছু দিয়া প্রনীপ্ত শিখা মিশ্রণের উপর ফেলিয়া তাপ বিতে থাক।

न्नदर्व	প্রবৈক্ষণ
১। त्लप्र-लदव	১। চাবকোল ব্লকের গতের চারিদিকে হল্দ
	বর্ণের আন্তবণ (incrustation), চক্চকে নরম ধাতব-
	্ গুটি (metallic bead), কাগাজ লাগ কাটে।
२। क्षांत-ल्व	२। লাল বর্ণেব আঁশে (Red scales).
০। আয়রন-লব ণ	৩। কালো বার্ণর শক্ত অবাশ্ব—অবশেষ চুম্বক
	দারা আঞুই হয়।
	: [চারাকালের গঠহইতে কালো অবশেষ বাছির
	করিয়া ভাঁড়া কর এবং উহাব উপর চুম্বক ধরিয়া
	পরীক্ষাক্র। }
४। छिश्क-लद्व।	 ৪। তপ্ত অব হায় ঽয়ৄদ, শীতল অবহায় সাদা।
ে। আলুমিনিয়াম, কাল-	। অবশেষ, সাধা। উত্তপ্ত অবহায় ভাষর
সিয়াম, মাাগ্ৰেসিয়াম- লব ণ।	(incandescent) হইয়া উঠে।

॰ আলোচনাঃ (১) নোডিয়াম কার্বনেট ধাতব লবণকে ধাতব কার্বনেটে পরিণত করে। এই ধাতব কার্বনেট তাপে বিযোজিত হইয়া ধাতব অক্সাইড উৎপন্ন হয় এবং কার্বন ডাই-অক্সাইড নির্গত হয়। তারপর বিজারক শিখা ও চারকোল রকের কার্বন দারা ধাতব অক্সাইড বিজারিত হইয়া ধাতুতে পরিণত হয়। ধাতব লবণ→ধাতব কার্বনেট→ধাতব অক্সাইড→ধাত্ । এইক্সপে লেডলবণ হইতে ধাতব লেড (চক্চকে নরম গুটি), কপার লবণ হইতে ধাতব কপার (লাল বর্ণের অবশেষ), আয়রন লবণ হইতে ধাতব আয়রন (কালো চৌম্বক পরার্থ) উৎপন্ন হয়। জিংক লবণ হইতে ধাতব জিংক উৎপন্ন হয় কিছ জিংক উন্নার্ম শিখার জারক অংশে নীত হইয়া প্ররায় জিংক আরাইডে পরিণত হয়। সেইজন্ত জিংক লবণের ক্লেত্রে বর্ণান্তর দেখা যায়। আলুমিনিয়ান, ক্যালিস্বান ও ম্যাপনেসিয়াম লবণ উহাদের অক্সাইডে পরিণত হয় কিছ এই অক্সাইডগ্রনি কার্বন দারা ধাতুতে বিজারিত হয় না। চারকোল পরীকার অবশেষ উহাদের অন্তাইড। উন্তাপে উহারা ভাষর হয়য়া উঠে।

(২) প্রতিবার পরীক্ষার জন্ত চারকোল ব্লকে নূতন পর্ত করিয়া লইবে।

ক্রিকাবল্ট নাইট্রেট পরীক্ষা (Cobalt Nitrate Test):

চারকোল ব্লকের গর্তে সামান্ত পরিমাণ লবণ লও।, বুনসেন দীপের বায়-প্রেশের পথ খুলিয়া শিখা দীপ্তিনীন কর। শিখার কেলস্থলে ব্লো-পাইপের দরমুখ রাখিয়া অপর মুখে ফুঁ দিয়া,দীপ্তিনীন শিখার অগ্রভাগ চারকোল প্রকের গর্তের লবণের উপর ফেলিয়া তাপ দিতে,থাক। উন্তাপে লবণ ভাষব হইয়া উঠিলে চারকোল ব্রকটি শিখার বাহিরে আন এবং ছই এক ফোঁটা লঘু কোবল্ট নাইট্রেট ত্রবণ সালা অবশেষের উপর ঢাল। কোবল্ট নাইট্রেট সিক্ত অবশেশ পুনরায় জারক শিখায় 'গীব্রভাবে উন্তপ্ত কর।, শিখা হইতে চারকোল ব্লক বাহিরে আনিয়া,অবশেষের বর্ণ লক্ষ্য কর।

লবণ -	পর্যবেক্ষণ ঃ অবশেষের বর্ণ
১। জিংক লবণ ··	্রান্ত্র । ইহাকে Rinmann's green বলে।
२। অ্যালুমিনিয়াম লবণ	" २। नील। ইহাকে Thenard's blue বলে।
৩। ম্যাগ্নেসিয়াম লবণ	গেও। গোলাপী (Pink)
৪। ক্যালসিয়াম লবণ	s। ध्मत्र (Grey) .

- আবেলাচনাঃ (১) কোবল্ট নাইট্রেট [Co(NO3)2] তাপে বিযোজিত হইয়া কোবল্ট অক্সাইডে (CoO) পরিণত হয়। উৎপন্ন কোবল্ট অক্সাইড ধাতুর অক্সাইডের সহিত যুক্ত হইয়া বিভিন্ন বর্ণের যৌগ উৎপন্ন করে।
- (২) খুব সাবধানে এক বা ত্বই কোঁটা লঘু কোবন্ট নাইট্রেট দ্রবণ মিশাইবে। কোবন্ট নাইট্রেট দ্রবণ একটু বেশী হইলেই অবশেষের বর্ণ সর্বলা কালো হইবে। কারণ অতিরিক্ত কোবন্ট নাইট্রেট কালো কোবন্ট অক্সাইডে পরিণত হয়।
- (৩) কোবন্ট নাইট্রেট নিশাইয়া অবশেষ জারক শিখায় তীব্রভাবে উত্তপ্ত করিবে।
- (৪) অজ্ঞাত লবণ সনাক্ত করিবার সময় কোবন্ট নাইট্রেট পরীক্ষা তখনই করিবে যখন বেখিবে যে চারকোল বিজ্ঞারণ পরীক্ষার অবশেষ সাদা ইইয়াছে ৮

8। শিখা পরীকা (Flame Test):

শিখা পরীক্ষা প্লাটনাম (Platinum) তারের সাহায্যে করা হয়। প্রায় 5 সেন্টিমিটার দীর্ঘ একটি প্লাটনাম তার একটি কাচ-নশু বা কাচ-নলের একপ্রান্তে যুক্ত থাকে। কাচ-দশুটি হাতলের কাজ করে। প্লাটনাম তারটি পরিকার আছে কিনা তাহা পরীক্ষার পূর্বে দেখিয়া লইবে। প্লাটনাম তারের খগুভাগ বুনসেন দীপের দীপ্তিহীন শিখায় (non-luminous flame) ধর। তারটি পরিকার থাকিলে শিখার কোন বর্ণ দেখা যাইবে না। শিখা বর্ণহীন না

্হলৈ তারটির অগ্রভাগ গাঢ় হাইড্রোক্লোরিক অ্যাসিডে ডুবাইয়া (একটি ওয়াচ, গ্লাসে অ্যাসিড লইবে) পুনরায় দীপ্তিহীন শিখায় উত্তপ্ত কর। শিখা বর্ণহীন না হওয়া পর্যন্ত এইরূপ অ্যাসিডে ডুবাইয়া তারটি উত্তপ্ত কর।

এখন প্লাটনাম তারটি গাঢ় হাইড্রোক্রোরিক অ্যাসিডে ডুবাইয়া খুব সামান্ত পরিমাণ লবণ তারের অগ্রভাগে স্পর্ণ করিয়া লও। তারপর তারের অগ্রভাগ দীপ্রিহীন শিখায় ধর এবং শিখার বর্ণ লক্ষ্য কর। মাঝে মাঝে তারটি অ্যাসিডে সিক্ত করিয়া নইবে।

লবণ	পর্যবেক্ষণ ঃ শিখার বর্ণ
১। ক্যালসিয়ান ল্বে	১। ইটেন মত লাল ; কণস্থী। (transient brick red colour)
२। कर्भात लदन	২। নলোভ সবুজ বানীল
৩। ক্ডেল্বণ	৩। নীলভে সান

আলোচন। ই (১) কতকগুলি ধাতুর উবারী লবণ বুনদেন দীপের দীপ্তিহীন শিখার বর্ণ রাজীন করে। ধাতুর ক্লোরাইড লবণ সর্বাপেক্ষা উবাধী বনিয়া শিখা পরীক্ষার ধাতুর অফা লবণকে গাঢ় হাইড্রোক্লোরিক অ্যাসিডের সহিত উত্তপ্ত করিয়া ক্লোরাইডে পরিণত করা হয়।

- (২) প্লাটনান ভারের পরিবর্তে "আাদ্বেদ্টস্ ফাইবার" (asbestos fibre) এর নাহায্যে শিহা পরীক্ষা করা ঘাইতে পারে।
- (৩) পূর্ববর্তী প্রক্রিয় লেড লবণের ছডির প্রমাণিত হইলে উহার শিখা প্রাক্ষা অ্যাস্বেশ্টস্ ফাইবারের সাহাধ্যে করিবে। কারণ লেড লবণ প্রাটনাম তার ক্ষয় করে।
- (৪) পৃথক লবণের শিখা পরীক্ষার জন্ম প্লাটনাম তার পরিকার করিয়া লইবে অথবা নূতন জ্যাস্বেস্টস্ ফাইশার ব্যবহার করিবে।
- (৫) কাচ-দণ্ড বা কাচ-নলের একপ্রান্ত বুনদেন শিখায় উত্তপ্ত করিয়া গলাইয়া উহাতে প্লাটনান তার লাগান হয়।

৫। বোরাক্স বীড পরীক্ষা (Borax bead Test):

প্লাটিনাম তারের অগ্রভাগ বাঁকাইয়া গোল করিয়া একটি আংটি (loop) কর এবং বুনদেন শিখায় আংটিট উত্তপ্ত কর। উত্তপ্ত আংটিট দারা বোরাক্স চূর্ণ স্পর্শ করিয়া লও—আংটির গায়ে কিছু বোরাক্স লাগিয়া যায়। আংটিটিকে প্নরায় শিখায় উত্তপ্ত কর। তাপে বোরাক্স প্রথমে ফুলিয়া উঠে এবং পরে গলিয়া কাচের মত সচ্ছ বর্ণহীন একটি দানায় পরিণত হয়। এই দানাটি প্নরায় বোরাক্স-চূর্ণে স্পর্শ করিয়া উত্তপ্ত কর। ক্ষেক্বার এইক্সপ করিয়া তারের অগ্রভাগে বোরাক্সের বর্ণহীন স্বচ্ছ দানা বা বীড (bead) তৈয়ারী কর।

উত্তপ্ত বীডটি পরীক্ষণীয় লবণে স্পর্শ করিয়া খুব সামান্ত পরিমাণ লবণ উহার গায়ে লাগাইয়া লও। লবণসহ বোরাক্স বীডটি জারক শিখায় কিছুক্ষণ উত্তপ্ত কর এবং শিখার বাহিরে আনিয়া বোরাক্স বীডের বর্ণ লক্ষ্য কর। আবার এই বীডটি-ই বিজ্ঞারক শিখায় কিছুক্ষণ উত্তপ্ত করিয়া শিখার বাহিরে আনিয়া বীডের বর্ণ লক্ষ্য কর।

লবণ	পর্যবেক্ষণ ঃ বে	ারাক্স-বীডের বর্ণ
১৷ কপাৰ লবণ	জারক শিধায় ১। উত্তপ্ত অবস্থায় সব্জ এবং শীতল অবস্থায় নীল;	বিজারক দিখার ১। লাল ; অফছে বীড়।
২। আয়েরন লবণ	ৰচছ বীড। * ২। হলুদ: ৰচছ বীড়া	। বোতলের বর্ণের স্থায় হাল্কা সবুজ বর্ণ: স্বচ্ছ বীড

আলোচনা ঃ (১) উত্তাপে বোরাক্স গলিয়া বোরিক অক্সাইড ও সোডিয়াম মেটাবোরেটে পরিণত হয়। উচ্চ তাপমাত্রায় লবণটি অক্সাইডে পরিণত হইয়া বোরাক্স বীডের সহিত রঙীন যৌগ স্বষ্ট করে।

(২) পরীক্ষার জন্ম থ্ব সামান্ত লবণ বীডের সহিত 'স্পর্শ করিয়া লইবে।

লবণ বেশী হইলে বীডের বর্ণ কালো ও অম্বচ্ছ হইবে। বীডের গায়ে বেশী লবণ লাগিলে, বীডটি উত্তপ্ত করিয়া আবার বোরাক্স-চূর্ণে স্পর্শ করিয়া লইবে।

- (৩) বিভিন্ন লবণের জন্ম পৃথক বীড্ তৈয়ারী করিবে।
- (8) পরীক্ষা-শেষে বোরাক্স বীডটি বুনসেন শিখায় গলাইয়া ঝাঁকি দাও। বীডটি তার হইতে পড়িয়া যাইবে। এইরূপ কয়েকবার করিয়া প্লাটনাম তারটি পরিষ্কার করিয়া রাখ।

शिक भंदीका (Wet test)

লবণের দ্রবণ লইয়া সিক্ত পরীক্ষা করা হয়। যে সমস্ত লবণ জলে এবং লঘু হাইড্রোক্লোরিক অ্যাসিডে দ্রবণীয় কেবলমাত্র তাহাদের ক্ষারকীয় মূলক সনাক্তকরণ তোমাদের পাঠক্রমের অস্তর্ভুক্ত।

লবণের দ্রবণের সহিত বিভিন্ন বিকারক (reagent) বা একই বিকারক বিভিন্ন অবস্থায় নিশাইলে নানাপ্রকার পরিবর্তন হয়। বিকারকের সহিত বিক্রিয়ায় সাধারণত অদ্বণীয় নৃতন পদার্থ উৎপন্ন হইয়া অধঃক্ষিপ্ত হয় এবং এই অধঃক্ষেপের বর্ণ, দ্রবণীয়তা ইত্যাদি পরীক্ষা করিয়া দেখা হয়।

সিক্ত পরীক্ষা করিবার সময় নিমলিখিত বিষয়গুলি সর্বনা মনে রাখিবে :

- (১) পরীক্ষার জন্ম লবণের স্বচ্ছ ও লঘু দ্রবণ (dilute solution) ব্যবহার করিবে।
 - (২) পরীকা নলের এক-চতুর্থাংশের বেশী দ্রবণ লইবে না।
- (৩) দ্রবণে বিকারক সর্বলা অল্প অল্প করিয়া মিশাইবে এবং দ্রবণ ভাল করিয়া নাড়িয়া লিবে। অধঃক্ষপ আসিলে উহা অতিরিক্ত বিকারকে দ্রবীভূত হয় কিনা লক্ষ্য করিবে।
- (৪) কোন অধংক্ষেপের দ্রবণীয়তা পরীক্ষা করিতে হইলে অধংক্ষেপের উপরিস্থিত তরল পদার্থ যথাসম্ভব ঢালিয়া ফেলিয়া প্রয়োজনীয় দ্রাবক মিশাইবে।
- (৫) পরিষার কাচ-নলের সাহায্যে দ্রবণে হাইড্রোক্তেন সালফাইড গ্যাস পরিচালিত করিবে।

লেড মূলকের জন্ম পরীক্ষা (Pb++)

লেড নাইটেট [P.b(NO₈)₂]-এর জলীয় দ্রবণ লইয়া পরীক্ষাগুলি কর

পরীক্ষা	পর্যবেক্ষণ	ব্যাখ্যা
১। একটি পরীক্ষা-নলে	সাদা অধংক্ষেপ।	লেড ক্লোরাইড অধঃকিপ্ত
দ্ৰবণের এক অংশ লইয়া লবু		হয়। Pb(NO ₂), +2HCl
হাই ড্রোকোরিক অ্যাসিড		$= PbCl_1 + 2HNO_3$
মিশাও।		•
উপরিন্থিত তরল পদার্থ	সাদা অধঃকে প দ্ৰবীভূত	লেড ক্লোরাইড তথ
আস্রাবণ কর। উহাতে	হয়—দ্ৰবণ ঠাণ্ডা হইলে চক্চ:ক	জলে দ্ৰবণীয়—শীতল জলে
খানিকটা পাতিত জল মিশাইয়া	প্চের স্থায় অধঃক্ষেপ পুনরায়	ুঅদ্রবণীয় ।
উত্তপ্ত কর।	আংস।	
31 जनान चादिक	কালো অধংক্ষেপ।	লেড সালফাই ড অধ: -
অংশে হাইড্রোকেন সালফাইড		किथ इस ।
গাাস পরিচালিত কর।		$Pb(NO_3)_1 + H_1S$ = $PbS + 2HNO_3$.
়। দ্রণের আরেক	হলুন বর্ণের অধঃক্ষেপ	লেড আয়োডাইড উৎপন্ন
অংশে পটাসিয়াম আয়োডাইড		इस ।
দ্ৰবণ মিশাও।		$Pb(NO_1)_2 + 2KI$
S. C. C		$=PbI_1+2KNO_s$.
উপরিশ্বিত তর্ম পদার্থ	व्यर: क्लि स्रीज्ञ इह—स्र	
যতটা সম্ভব ঢালিয়া ফেলিয়া	ঠাণ্ডা হইলে হলুদ বর্ণের চক্চকে	
উহাতে খানিকটা, পাতিত জল	অধঃক্ষেপ আসে।	
মিশাও এবং দ্রবণ উত্তপ্ত কর।		
এ এবণের আরেক	হল্দ অধঃকেপ।	্লৈড ক্রোমেটের অধঃকেপ।
অংশে পটাসিয়াম ক্রোমেট		$Pb(NO_3)_1 + K_2CrO_4$
দ্ৰবণ মিশাও।		$= PbCrO_4 + 2KNO_3.$
। দ্রবণের আরেক	সাদা অধঃকেপ।	! লেড সালফেট অধঃকিপ্ত
অংশে লঘু সালফিউরিক		र इत्र ।
অ্যাসিড মিশাও।		Pb(NO ₃),+H,SO ₄ =PbSO ₄ +2HNO ₃

পরীক্ষা	পর্যবেক্ষণ	ব্যাখ্যা
টপরি হিত ত রল পদার্থ	অধঃ:কপ দ্বীভূত হয়।	লৈড সালকেট আন্মা-
অস্ত্রেবে করিয়া উহাতে গঢ়ে		নিয়ান অগাসিটে:ট
আমেনিহাম আসেটেট তবণ		দ্ৰবনীয়।
দিশাও।		1

কপার মূলকের জন্য পরীক্ষা (Cu++)

কপার সালফেট (CuSO₄, 5H₂O)-এর জলীয় দ্রবণ লইয়া পরীকা কর

পরীক্ষা	পর্যবেক্ষণ	ব্যাখ্যা
১। একটি পরীকা-নাল	কেনি অধঃকেপ আসে না।	
দৰণের এক অংশ লইয়া লগু		
হাইড়োকোধিক আসিড		
মিশ্ভে।		
আংসিড় ডিজিড এট জবাণ	ক (লং অধ্যুক্তপ ।	কুপাৰ সাল্ফাইড অধং-
रा मुल उराहर जाहरक करान	:	ক্ষিপ্ত হয়।
হাইয়ুড়ুড়েলন স্লেকটেড পৰি-		CuSO ₄ +H ₄ S
5 लिंड क्र । •		$=CuS+H_1SO_4$
अ हरत्र अवस्	প্ৰথম ফিকে নাল্বৰ্ণৰ অধঃ-	ক্ষরক মুক্পার সাল্ফেটের
অংশ অল অল কৰিয়	কেপ আনে—অভিরিক	অধঃপেক। সভিরিক
	হণকেংনিয়াৰ উঠা দুৰীভূত	
£ 4. 6 1	३ टेश (पार मोलरार्गन उरा	উৎপল্ল করিয়া জ্বীসূত
	<u> </u>	হয়।
 इ.स.च्या च्याप्तकः 	प्र.क: रल् छे - लाल् न ्रर्ग न	কিউপ্রিক ফেরো ম' রা-
	ञ <i>न</i> ्दर्भ ।	नाङ्ख्य व्यवः एक्षा
সংহাৰটিড জুবৰ মিশাও।		
অভিরিক্ত অগুয়ে:নিয়া্ম	অধঃকেপ দুব ভুত হটয়৷ গাঢ়	
হাইডুক্সাইড হিশাও।	ন'ল বর্ণের ক্রবণ উৎপন্ন হয়।	

পরীক্ষা	পৰ্য বৈক্ষণ	ব্যাখ্যা
	माना व्यवः स्कलः जनः । नानामी।	দাদা কিউপ্রাস সায়ো- ডাইড উৎপর হয়। উৎপর আয়োডিন ত্বী সূত পাকার জন্ত ত্বপের বর্ণ বাদামী দেশার।
। দ্রবণের আরেক আংশে পরিষ্কার লোহার তার (Iron wire) ডুবাও।	তারের গায়ে ল'ল কণ্র জনাহয়।	দ্ৰণ হইতে লোফ্ দ্ৰা কপাৰ বিচ্ছিন্ন হয়। CuSO4+Fe =FeSO4+Cu.

কেরাস ও কেরিক আয়রনের জন্য পরীক্ষা (Fe⁺⁺ and Fe⁺⁺⁺)

আয়রন ছই শ্রেণীর যৌগ গঠন কর—ফেরাস লবণ ও ফেরিক লবণ। ফেরাস লবণে আয়রনের যোজ্যতা (valency) ছুই এবং ফেরিক আয়রনে তিন।

- (ক) ফেরাস সালফেট (FeSO₄, 7H₂O)-এর জলীয় দ্রবণ লইয়া ফেরাস লবণের পরীক্ষা কর।
- (খ) ফেরিক ক্লোরাইড (FeCl₃, 6H₂O)-এর জলীয় দ্রবণ লইযা ফেরিক লবণের পরীক্ষা কর।

পরীক্ষা	পৰ্যবেক্ষণ	ব্যাখ্যা
্ব (ক) ফেরাস লবণের দ্রবণের এক অংশ লইয়া সোডিয়াম হাইডুক্সাইড' বা অ্যামোনিয়াম হাইডুক্সাইড মিশাও।	(ক) সব্জাভ সাদা অধঃক্ষেপ —অ তি রি ক্ত বি কা র কে অদ্রবীয়। বাতাসের সংস্পশ্রে অধঃক্ষেপের বর্ণ বাদামী হইতে বাকে।	(ক) ফেবাস হাইডুরাইড অধঃকিপ্ত হয়। FeSO ₄ + 2NaOH = Fe(OH), + Na, SO ₄ . ইহা বাতাসে জারিত হ ই য়া ফেরিক-বৌগিকে
(ৰ) ফেরিক লব ণের এবণের এক অংশ লইয়া সোডি- রাম হাইওুক্সাইড বা আামোন নিরাম হাইওুক্সাইড মিশাও।	(খ) বাদামী বর্ণের অধঃকেণ —অ তি রি জ বি কার কে অদ্রবনীর। আাসিডে দুবণীর।	(খ) ফেরিক হাইড়ফাইড উৎপর হয়। FeCl, +8NH,OH =Fe(OH), +8HCl.

अत्रीक ।	প্য বৈক্ষণ	ব্যাখ্যা
২। (ক) ফেরাস সাল্ফেট	(ক) সাদা বা ফিকে নীলবর্ণের	,
দ্রবণে পটাসিযাম ফেরো	व्यदः कथ ।	
সায়ানাইড [K.Fe(CN),] তবৰ মিশাও। (ব) ফেরিক কোরাইড তবৰে পটাসিয়াম ফেরে:- সাযানাইড তবৰ মিশাও।	(গ) গাড় নীল বার্ণর অধঃক্ষেপ।	একটি জটিল লবণ (ফেরি ফেবোসায়ানাইড) উৎগ হয়। ইহাকে Prussia
্। (ক) ফেবাস সাল- : ফেটের দ্রুবে পটাসিয়াম ফেবি- সায়ানাইড [K,Fe(CN),] দ্রুবেণ মিশাও।	(ক) গাড়নীল বংগর অধঃকেপ।	blue বলে। জটিল লবণ (ফেবাস ফেবি সায়ানাইড) উৎপন্ন হয় ই হা কে Turnbull' blue বলে।
(ব) ফেবিক ক্লোৱাইড	কোন অধঃকেপ আদেনা।	
লবণে পটাসিয়ান ফেরি-	ত্রণের বর্ণ বাদামী বা সবৃজ্ঞাভ	
ষায়ানাইড দুবৰ নিশ্:ও।	দেখায়।	
৪। (ক) কের'স সালুফেট	দ্বণের বর্ণের কোন প্রিবর্তন	
'	হয় না। (ফেবিক লবণ মুক্ত	
সায়ানেট বা সংল্ফো-সায়ানেট ্	হই:েল্)।	
[NH,CNS] ত্রণ নিশাও।		
(ব) ফেরিক ক্লোবটেড ছববে আমোনিযাম পায়ে।- দায়ানেউলুবণ মিশাও।	(अ) ज़राण्य दर्ग शांक लाल अस्र।	জাটিল লাবণ উৎপন্ন হযা।

আালুমিনিয়াম মূলকের জন্য পরীক্ষা (Al+++)

অ্যালুমিনিয়াম দালকেট $[Al_2(SO_4)_3, 18H_2O]$ বা পটাস অ্যালাম্ $[K_2SO_4, Al_2(SO_4)_3, 24H_2O]$ -এর জলীয় দ্রবণ লইয়া পরীক্ষা কর।

পরীক্ষা	পর্যবেক্ষণ	ব্যাখ্যা
১। একটি° পরীক্ষা-ন ে	সাদা আঁটালো (gelatinous)	অ্যাল্মিনিয়াম হাইডুক্লাইড
দ্রবণের এক অংশ লটয়া	অধঃ কেপ — অতিরিক্ত	অধঃক্ষিপ্ত হয়।
অ্যামোনিয়াম হাইডুলাইড	বিকারকে সামাভ	Al ₂ (SO ₄) ₂ +6NH ₄ OH
মিশা ও ।	দ্রবণীয়।	=2Al(OH) _s +
		8,NH ₄) ₂ SO ₄ .
উহাতে গাঢ় আমোনিয়াম	অধঃক্ষেপ দ্রবীভূত হয় না।	1
কোরাইড দ্রবণ মিশাও।		
প্রবংগর আবেক	সাল আঁঠালো অধঃক্ষেপ্—	্ অধঃকিপ্ত অ্যালুমিনিয়াম
অংশে অল্প অল্প কবিয়া	110192 14411°4 A140°4.1	হাইডুকাইড অতিরি ক
দোডিয়ান হাই ডুফাইড <u>দ</u> ৰণ	্দ্রবর্গায় ৷	্ গোডিয়াম হাইডুক্সাইডে
মিশাইয়া নাড়িয়া দাও।	ı	ত্ৰবনীয় সোডিয়াম আালু-
		নিনেট উৎপন্ন করে।
	:	$A1(OH)_3 + NaOH$ $= NaA1O_2 + 2H_2O$
वे नदर्भ कठिन आह्मा-	পুনবায় সাদা আঁঠিলো	সোডিয়াম আলুমিনেট
নিরাম ক্লোরাইড মিশাও এবং	অধঃক্ষেপ আসে।	হইতে আাল্মি নিয়াম
प्रतन कृषा ।		হাইডুকাইড অধ:কি প্ত
		전쟁 NaAlO, +NH, Cl +H, O=Al(OH), +NaCl+NH,

জিংক মূলকের জন্ম পরীক্ষা (Zn++)

জিংক দালফেট (ZnSO4, 7H2O)-এর জলীয় দ্রবণ লইয়া পরীক্ষা কর।

পরীক্ষা	পর্যবেক্ষণ	ব্যাখ্যা
্য একটি পরীকা নলে	সাদা অধঃকেপ।	জিংক সালফাইড অধঃ
দ্বণের এক অংশ লৃইয়া		ক্ষিপ্ত হয়।
হাই ডুজেন সাল্ফাইড		ZnSO ₄ +II ₂ S
পরিচালিত কর।		$= ZnS + H_{2}SO_{4}.$

পরীক্ষা	পর্য বেক্ষণ	ব্যাখ্যা
<u> ২</u> / দ্রবণের আরেক	দাদা অধঃক্ষেণ —অতিবিক্ত'	জিংক হাইডুক্সাইড উৎপন্ন
অংশে অ্যানোনিয়াম হাইডু-	অ্যানেয়ায় দ্বণীয়।	হয়। জটিল লবণ উৎপন্ন
কাইড মিশাও।		করিয়া ইহা দ্রবীভূত হর। ZnSO ₄ + 2NH ₄ OH = Zn(OH) ₂ + (NH ₄) ₂ SO ₄
ণ্ৰ দ্ৰবংশ হাইড্ৰোজেন	সাল অগঃ:কপ।	जिश्क मानकारे
সালফাইড পরিচালিত কর।		३ स् ।
 । ত্রণের আরেক অংশে 	্কান অধঃকোপ আগ্ৰেন।	জিংক হাইডুকাইডু
গড় আনোনিয়ান ক্লোকাইড		অ'য়োনিয়'ম কে'ব্'ই'ছে
তবণ ও আলুনোনিয়ান		नदनैय ।
হাইডুকাইড মিশাও।		
এ দুৰণে হাইড়োজন		জিংক সালফাই,ডুব
সালদাইড পরিচালিত কর।		ञाब्द्वीकृष्टः ।
৪। তবংশর আগারক	প্রথান সাদা অবঃকেপ	জিংক হাইড়্য়াইড় অধ:-
অংশে দে'ডিয়ান হাইটুয়াইড	াস – অভিরিক্ত বিকারকে	কিপ্ত হয়। অতিবিক্ত
দ্ৰণ মিশাও।	হা দৰ ভূত হয়।	সোডিয়াম ভাইচ্য়াইডেৰ
वे प्रराप शहेर्यास्त्रम	মানো অবংক্ষেধ।	সহিত ইহা দুৰ্ণীয়
সালফাইড পবিচা লিত ক ৰ।		সোডিয়ান জিংকেট উৎপন করে। সাদা অধঃকেপ
		জিংক সালফাইডের। ZnSO ₄ + 2NaOH = Zn(OH) ₂ + Na ₂ SO ₄ Zn(OH) ₂ + 2NaOH = Na ₄ (ZnO ₂)+2H ₂ O
। द्वतानद्व व्यादिक	স্থে অধঃকেশ।	জিংক ফেরোসায়ানাইড
খংশে পটাসিয়ান ফেরোসায়া-		উৎপন্ন হয়।
নাইড [K. Fe'CN'a] দ্ৰবণ		
মিশাও :	Ì	

ক্যালসিয়াম মূলকের জন্ম পরীক্ষা (Ca++)

ক্যালনিয়াম ক্লোরাইড (CaCl2, 6H2O)-এর জলীয় দ্রবণ লইয়া পরীকা কর।

পরীক্ষা	পর্যবেক্ষণ	ব্যাখ্যা
ত্রকটি পরীক্ষা-নলে দবণের এক অংশ লইয়া আ্যামোনিরাম বা সোডিরাম গাইডুক্সাইড মিশাও।		
২। দ্রবণের আরেক সংশে অ্যামোনিয়ান কার্যনেট দ্রবণ মিশাও।	সাদা অনিয়তকার (amor- phous) অবংকেশ। উত্তর কবিলে অবংকেশ কটিককোর বারণ করে। আসেটিক আসিতে অবংকেশ তবংশীয়।	
্য দ্বংরে সারেক অংশে স্যামোনিয়াস অক্সালেট দ্বণ মিশাও।	ভারী সাদা অধ:ক্ষেপ ।	কণ্লসিয়ান সন্নালট অধঃক্ষিপুত্র
	সাদ অধংকেল। (লণু চবা- অধংকেল আসিতে দেবী হয়।)	
 । দবণের আরেক অংশে আমোনিয়াম ক্লোরাইড মিশাইবার পর পটাসিয়াম ফেরো সা য়া না ই ড ছবণ মিশাও। 	নাল অধঃক্ষেপ।	জ্ঞটিল শ্বণ উংগ্র হয়

ম্যাগনেসিয়াম মূলকের জন্ম পরীক্ষা (Mg++)

ম্যাগনেদিয়াম সালফেট (MgSO₄, $7H_2O$) এর জ্লীয় দ্বণ লইয়া পরীক্ষা কর।

পরীক্ষা	পর্যবেক্ষণ	ব্যাখ্যা
২। একটি প্রীকা-নলে লবং ব এক অংশ লইনা আামোনিয়াম বা সোডিয়াম হাইডুক্সাইড ত্রণ মিশাও। উহাতে গাঢ় অ্যামোনিয়াম কোরাইড ত্রণ মিশাও।	সাদা অধঃক্ষেপ—অতিবিক্ত বিকারকে ইয়া দুবীভূত হয় না। অধঃক্ষেপ দুবীভূত হয়।	ম্যাগনেসিয়াম হাইডু- কাইডের অধঃক্ষেপ। MgSO ₄ +2NaOH. =Mg(OH),+Na ₂ SO ₄
ুপ ভবণের আরে ক অংশে আমোনিরাম কাবনেট ভবণ মিশাও। কিছু ক্ষণ অপেকা কর বা ভবণ গ্রম কর।	সান অধঃকেপ ;	কাৰকীয় ম্যাগ্ৰেসিয়াম কাৰ্যনটের অধঃক্ষেপ।
উহাতে গ'ড় অন্মোনিয়ান কোরাইড ববণ নিশাও।	অধঃকেপ দুবীভূত হয় ।	
০। ত্রণের আরে ক অংশ একটি পরীক্ষা-নলেলইয়া গঢ়ে অ্যানোনিয়ান ক্লোরইড ত্রণ ও অ্যানোনিয়ান হাই- ডুরাইড নিশাও। উহাতে ডাই-সোডিয়ান হাইড্রোজন ফ শ্রুটে (Na ₂ HPO ₄) মি শা ই য়া পরীক্ষা-নলটির ভিতরের গা কাচের শ্লাকা দিয়া চাছিয়া দাও।	সাল। কটিককোর অধঃক্ষেপ্ .	ম্যাগ্রেসিয়াম স্ম্যামোনিয়াম ফস্ফেট [Mg(NH4)PO4] স্বধঃক্ষিপ্ত হয়।

পাঠক্রমের অন্তভুক্ত কতকগুলি লবণের বর্ণ ও দ্রবণীয়তা [কেবলমাত্র Pb, Cu, Fe, Al, Zn, Ca, Mg-এর লবণ]

म्नवर्गत वर्ग লবণের নাম Pb₈O₄; Fe₂O₈; Cu₂O. লাল PbO; FeCl_s; Fe(NO_s)₂. रुलुम FeSO₄, 7H₂O; CuCO₈ (ফারকীয়); সবুজ CuCl₂, 2H₂O. নীল $CuSO_4$, $5H_2O$; $Cu(NO_8)_2$, $3H_2O$. PbS; CuS; CuO; FeS. কালো সাদা বা বর্ণহীন Ca, Mg, Zn, Al-এর লবণ; PbCOs; PbCl₂; PbSO₄.

জ্বণীয়তা (Solubility)

কার্বনেট—সব কার্বনেট হাইড্রোক্লোরিক অ্যাসিডে দ্রবণীয়।
সালফাইট—সমস্ত সালফাইট হাইড্রোক্লোরিক অ্যাসিডে দ্রবণীয়।
সালফাইড—সমস্ত সালফাইড হাইড্রোক্লোরিক অ্যাসিডে দ্রবণীয়।
ক্লোরাইড—সমস্ত ক্লোরাইড জলে দ্রবণীয়। লেড ক্লোরাইড তপ্ত জলে
দ্রবণীয়, শীতল জলে অদ্রবণীয়।

দালফেট—লেড দালফেট ব্যতীত অন্তান্ত দালফেট জলে দ্রবণীয়।
ক্যালসিয়াম দালফেট জলে দামান্ত দ্রবণীয়; লঘু হাইড্রোক্লোরিক অ্যাসিডে দ্রবীভূত হয়।

নাইট্রেট —সমস্ত নাইট্রেট জলে দ্রবণীয়।

অক্সাইড ও হাইড্ক্সাইড—CaO ও Ca(OH), জলে দ্রবণীয়।
PbO, CuO, Fe2O8, Al2O8, ZnO, MgO হাইড্রোক্রোরিক অ্যাসিডে দ্রবীভূত হয়।

দ্রষ্টব্য ঃ সোডিয়াম ও পটা সিয়াম এর লবণগুলি জলে দ্রুণীয়।

সিক্ত-পরীক্ষার জন্ম দ্রবণ প্রস্তৃতি

(১) একটি পরীক্ষা-নলে সামাগ্য পরিমাণ চুর্ণ লেবণ লইয়া পাতিত জল মিশাইয়া নাড়িয়া দাও। দ্রবণ স্বচ্ছ দেখাইলে বুঝিবে যে লবণ জলে দ্রবীভূত হইয়াছে। ঠাণ্ডা জলে দ্রবীভূত না হইলে উত্তপ্ত করিয়া দেখ ইহা দ্রবীভূত হয় কি না।

(২) জলে অদ্রবণীয় হইলে আরেকটি পরীক্ষা-নলে সামান্ত লবণ লইয়া উহাতে লঘু হাইড্রোক্লোরিক অ্যাসিড মিশাইয়া দেখ লবণ দ্রবীভূত হয় কিনা। গৈণা অবস্থায় দ্রবীভূত না হইলে উহা উত্তপ্ত করিয়া দেখ। যদি লবণ দ্রবীভূত না হয় তবে লবণের সহিত গাঢ় হাইড্রোক্লোরিক অ্যাসিড মিশাও এবং প্রয়োজন হইলে উত্তপ্ত কর।

এইরপে সামান্ত লবণ লইয়া প্রথমে দেখিয়া লইবে উহা জলে না হাইড্রোক্লোরিক আসিছে দ্রবন্ধ। তারপর পরীক্ষণীয় লবণ বেশী করিয়া একটি বিকারে লও এবং জলে বা হাইড্রোক্লোরিক আসিছে উহার দ্রবণ পূর্বের স্থায় প্রস্তুত কর। এই মূল দ্রবণ (Original solution) হইতে এক এক অংশ লইয়া সিক্ত পরীক্ষাগুলি করিবে।

জন্তব্য ঃ হাইড্রাক্লোরিক অ্যাদিছে লেড লবণের দ্রবণ প্রস্তুতির সময় লক্ষ্য রাখিবে। হাইড্রাক্লোরিক আদিছের সহিত উত্তপ্ত করিলে লেড ক্লোরাইড উৎপন্ন হয়। ইহা তপ্ত অবস্থায় দ্রবণীয় কিন্তু শীতল করিলে লেড ক্লোরাইডের অধঃক্ষেপ অানে।

कर्मकिं जिवर्गत दर्ग लक्षा कतिसा (नग ।

দ্রবণের বর্ণ	ক্ষারকীয় মূলকের নাম	
নীল	কিউপ্রিক কপার্ (Cu⁺⁺)	
म नूक	ফেরাদ খায়রন (Fe ⁺⁺)	
इ <i>न्</i> ष	ফেরিক আয়রন (Fe ⁺⁺⁺)	

অজ্ঞাত কারকীয় মূলকের সনাক্ত করণের পদ্ধতি (Identification of unknown basic radicals.)

[কেবলমাত লেড, কপার, আয়রন, আয়ালুমিনিয়াম, জিংক, ক্যালসিয়াম ভন্যাগনেসিয়াম লবণের জন্ম

শুক-পরীক্ষা (Dry test)

Ap-14 m (Dià test)			
श्चर्यटवस्कृ व	সিন্ধান্ত		
(ক) পর্নকা-নলের উপ্রেব দিকে জলায় বাপা জন। হয়। (খ) উত্তপ্ত অবস্থায় হল্দ, শীতল অবস্থায় সাদা। (গ) উত্তপ্ত অবস্থায় কনল। বা হল্দ বর্ণ, শীতল অবস্থায় হল্দ বর্ণ। (ঘ) নাল, সব্জ বা নালাভ	(ক) কেলাসন-জ ল যু ক্ত লবণ তে পাবে (ব) কয়েকটি জিংক-লবণ হুইতে পারে। (গ) কয়েকটি লেড লবণ হুইতে পারে।		
সবৃদ্ধ বংশর লবণ; উত্তপ্ত অবস্থায় সালা, বালামী বা কালো। (৬) বালামী বংশর গাণস নির্মত হয়।			
(চ) সাদা লবণ; উত্তপ্ত কবিলে কোন পরিবর্তন হয়না।	(চ) অ্যালুমিনিয়াম ক্যালসিয়াম, ম্যাগনে সিয়াম-লবণ হইতে পারে।		
(ক) হলুদ বার্ণর আন্তরণ (Yellow incrustation); চক্চকে নরম ধাতব শুটি, (Malleable, metallic bead.); কাগাজে দাগ কাটে।	(ক) লেড্-লাবণ		
(থ) লাল বর্ণের আঁশ। (Red Scales) (গ) কালো বর্ণের শক্ত অবশেষ, চুম্বক ম্বারা আঁকুষ্ট			
	প্রতিক্ষণ (ক) পরীক্ষা-নলের উপারের দিকে জলীয় বাপ্প জনা হর। (খ) উত্তপ্ত অবস্থায় কনল। (গ) উত্তপ্ত অবস্থায় কনল। বা হলুদ বর্ণ, শীতল অবস্থায় হলুদ বর্ণ। (ঘ) নাল, সব্জ বা নীলাভ সব্জ বার্ণার লবণ; উত্তপ্ত অবস্থায় সালা, বাদামী বা কালো। (৬) বাদামী বর্ণার গ্রাম্য নির্মিত হয়। (চ) সালা লবণ; উত্তপ্ত কবিলে কোন পরিবর্তন হয় না। (ক) হলুদ বর্ণার আস্তরণ (Yellow incrustation); চক্চকে নরম ধা ত ব শু টি, (Malleable, metallic bead.); কাসকো লাগ কাটে। (খ) লাল বর্ণার আশা নাটে। (ধ) লাল বর্ণার আশা বির্মানী (Red Scales) (গ) কালো ব্র্ণার শ্রুদ্ধের শ্রুদ্ধের সালা		

পরীক্ষা	পয বৈক্ষণ	সিদ্ধান্ত
	^(ন) তপ্ত অবস্থার হল্দ শীতল অবস্থায় সাদা।	(ঘ) জিংক-লবণ।
	(৪) সাদা অবংশেষ; তপ্ত অবস্থায় ভাস্থর (incande- scent)।	
·৩। কোবল্ট নাই-	অবশেষের বর্ণ	1
টেট পরীক্ষা [Cobalt nitrate Test] (চারকোল বিজার গ	(ক) স্বুজ (ধ) নীল	(ক) জিংক-লবণ। (ব) আগলুমিনিয়াম-
পরীক্ষার অবশেষ সাদা হইলে এই পবীক্ষা করিবে।)	(গ) গোলাপী (Pink) (গ) ধুসর (Grey)	লবণ। (গ) ম্যাগনেসিয়াম-লবণ। (ঘ) ক্যালসিয়াম-লবণ।
8। শিখা পরীক্ষা (Flame Test.]	শিখাৰ বৰ্ণ (ক) ইটেব মত লাল ; কণ্ডুয়োঁ। (transient brick	(ক) ক্যালসিয় ম-লবণ।
	(গ) নীলাভ সাল	(গ) কপার-ল্বণ। (গ) লেড-ল্বণ।
৫। বোরাক্স বীড পরীক্ষা [Borax-bead Test.]	বীডের বর্ণ জারক শিখা বিজ্ঞারক শিখা (ক) তথ্য অবস্থায় (ক) লাল,	(ক) কপার-লবণ।
(কেবলমাত্র র টান লবণের ; জন্ম এই পরীক্ষা কবিবে।)	সবুজ, শতিল অপ্চছ অবস্থায় নীল। বীড়া	
	(খ) হাল্ক। (খ) বোতলের হলুন। বর্ণের ভাষ ভাল্ক। সবুজ বর্ণ।	(ধ) আররন-ল্বগ্।

বাদামী অধঃকেপ দ্বীভূত

কর। দ্রবগদুই অংশে ভাগ

করিয়া (১) এক ভাগে পটা-

সিয়াম ফেরোসায়ানাইড জবণ

অধঃক্ষেপ। (২) অপরভাগে

মিশাও—গাঢ়

नील रार्पत

ক্ষারকীয় বা ধাতব মৃশকের সনাক্তকরণ সিক্ত-পরীক্ষা (Wet test)

স্থনিশ্চিতভাবে ·· পর্যবেক্ষণ সিদ্ধাস্ত 🔰। একটি পরীক্ষা-নলে সাদা অধঃ- লেড-লবণ। (১) উপরিখিত তরল যথা-মূল দ্রণের এক অংশ লইয়া কেপ। সম্ভব ঢালিয়া কেলিয়া উহাতে লঘু হাইড্রোক্লোরিক অ্যাসিড পাতিত জল মিশাইয়া ফুটাও। উত্তপ্ত অবস্থায় সাদা অধঃকেণ মিশাও। प्रतीष्ट्र इस ; नीउन इरेल চক্চকে স্চের স্থায় অধঃক্ষেপ পুনরায় আসে। (२) भूल जरन लहेशा ১५० পृक्षीय दर्गिङ २, ०, 8 3 ६ नः भद्रौका ় করিয়া লেড-মূলক স্নিশ্চিত-ভাবে সনাক্ত কর। অধঃকেশ না আসিলে: 'রীক্ষাব কালো অধঃ- ¦ কপার-লবণ। ' মূল দুবণ লইয়া ১৬৪—৬৫পৃষ্ঠায় २। ३नः दर्गित २, २, 8 ७ ६ नः भदीका আাসিড মিশ্রিত দ্রবণ গ্রম : কেপ। করিয়া কপারমূলক নিশ্চিত করিয়া হাইড্রোজেন সাল-রূপে সনাক্ত কর। ফাইড পরিচালিত কর। অধঃকেপ না আসিলে : (ক) বাদামী ; (ক) আয়বন (ক) বাদামী অধঃক্ষেপেব ৩। একটি পরীক্ষা-নঙ্গে नःर्गद अधः- निर्मा এক অংশ আরেকটি পরীকা-মূল দ্রবণের আরেক অংশ নলে ঢালিয়া লও। লযু হ'ই-লইয়া কয়েক ফোটা গাঢ় ড়োক্লোরিক আসিড মিশাইয়া নাইট্ৰ অ্যাসিড মিশাইয়া

ফুটাও। উত্তপ্ত দ্রবণে কঠিন

অ্যামোনিয়াম ক্লোৱাইড দ্রবী- [†]

ভূত কর। তারপর অতিরিক্ত

মিশাইয়া জবণ নাড়িয়া দাও।

(দ্রবণ ইইতে আমোনিয়ার

হাইডুক্সাইড

অ্যামোনিয়াম

পরীক্ষা	পয বৈক্ষণ	সিদ্ধান্ত	স্থনিশ্চিতভাবে সনাক্তকরণ
গদ্ধ জাসেলে ব্যক্তে উহা উপ্তা প কিলা গৈ কিশ্যে হট্য'ছে ()			আমানিয়াম থায়োসায়ানেট দ্ৰণ মিশাও—দ্ৰুবণের বৰ্ণ গাচ লাল হয়। স্বৃত্তরাং, নিশ্চিত- রূপে আধ্রন মূলক।
	(খ) স: স আঁ ঠা লো অধঃক্ষেপ।		(১) মূল দ্রবণের এক অংশ পর কা-নলে লইয়া অতিরিত্ত সোডিয়াম হাইডুক্সাইড দাও। প্রথমে সাদ। অধঃক্ষেপ আমে এবং অতিরিক্ত বিকারকে দ্রীস্তুত হয়। দ্রবণে কঠিন অ্যামোনি য়াম ক্লোরাইড মিশাইয়া উত্তপ্ত কর—সাদা আঁঠালো অধঃক্ষেপ। ' স্তরাং, নিশ্চিতক্রপে আগেল- মিনিয়াম মূলক।
অধঃকেপ না আসিলে : 8। ৩নং পৰীক্ষাৰ দুসুণ ঃ ই টুছুঃ জে ন স্পল্ফাইডু প্ৰিচালিত কৰ।	সাদ; অধঃ- ক্ষেপ।	জিংক লবণ।	(২) লবণের মূল দ্রবণের এক অংশে অতিরিক্ত সোডিয়াম হাইডুল্লাইড দ্রবণ নিশাও। প্রথমে সাদা অধঃক্ষেপ আসে এবং অতিরিক্ত বিকারকে দ্রবীভূত হয়। এই দ্রবণে হাইড্রোজেন সালফাইড পরিচালিত কর—সাদা অধঃক্ষেপ। (২) মূল দ্রবণের আরেক অংশে পটাসিয়াম ভেরো-

পরীক্ষা	পর্যবেক্ষণ	সিদ্ধান্ত	স্থনিশ্চিতভাবে . সনাক্তকরণ
•••			সারানাইড ত্রবণ মিশাও— সাদা অধঃক্ষেপ। স্তরাং, নিশ্চিতরূপে বিংক. মূলক।
অধঃকেপ না আসিলে: () মূল দ্রবণের আরেক অংশ পরীক্ষা-নলে লইয়া কঠিন আ্যামোনিয়াম ক্লোরাইড ও অতিরিক্ত আ্যামোনি য়া ম হাইডুক্লাইড মিশাও। উহাতে অতিরিক্ত আ্যামোনি য়া ম কার্বনে ট দ্রবণ মিশাও। পরীক্ষা-নলটি সামাস্য উত্তপ্ত	ক্ প ।	म्दिन्।	(২) কিছু সংময় অপেক্ষা করিয়া অধঃক্ষেপ যতটা সন্তব নীচে জমিতে দাও। উপরিস্থিত তরল পদার্থ যথাসন্তব ঢালিয়া- ফেল। ল যু অ্যাসে টিক অ্যাসিড মিলাইয়া সাদা অধঃক্ষেপ দ্রবীভূত কর। এই দ্রণে অ্যামোনিয়াম হাই-
बन्न ।			তুরাইড দিয়া আনোনিয়াম অক্সালেট দ্বেণ মিশাও— সাদা অধঃকেপ। (২) সাদা অধঃকেপ লইয়া শিখা পরীকা কর—শিখার বর্ণ ইটের মত লাল; কণস্থারী। স্তরাং, নিশ্চিতরূপে ক্যাল- সিয়াম মূলক।
অধঃকেপ না আসিলে : । ব্নং পরীক্ষার দ্রবণে ডাই-সোডিয়াম হাইড্রোক্সেন ফস্ফেট মিশাইয়া ভালরূপে নাড়িয়া দাও। একটি কাচ- দণ্ডের সাহায্যে পরীক্ষা-নলের ভিতরের অংশ চাছিয়া দাও।	কার অধ:-		

- দৃষ্টব্য ঃ (১) প্রদন্ত লবণ লঘু হাইড্রোক্লোরিক অ্যাসিডে দ্রবণীয় এবং ঠাগু অবস্থায় অধঃক্ষেপ না আসিলে উহা লেড লবণ নহে। সেক্ষেত্রে মূল দ্রবণ লইয়া ২নং পরীক্ষা হইতে আরম্ভ করিবে।
- (২) অ্যামোনিয়াম ক্লোরাইডের উপস্থিতিতে অ্যামোনিয়াম হাইড্রন্সাইড বারা ফেরাস হাইড্রন্সাইড আংশিকভাবে অধঃক্ষিপ্ত হয়। সেইজয় ফেরাস লবণকে ফেরিক লবণে পরিণত করিবার জয় ৩নং পরীক্ষায় দ্রবণ গাঢ় নাইট্রিক অ্যাসিড দিয়া ফুটান হয়। শুক্ষ পরীক্ষায় আয়রন লবণের অভিত্ব প্রমাণিত হইলে নাইট্রিক অ্যাসিড দিয়া উত্তপ্ত করিবে।
- (৩) পরীক্ষণীয় লবণে আয়রন 'আস' কিংবা 'ইক্' শ্রেণীর তাহা বৃ্ঝিবার জ্ঞা ১৬৫-৬৬ পৃষ্ঠায় বর্ণিত ১, ২, ৩ ও ৪নং 'ারীক্ষা করিয়া দেখিতে পার।
- (৪) কঠিন অ্যামোনিয়াম ক্লোরাইডের পরিবর্তে উহার গাঢ় দ্রবণ ব্যবহার করিতে পার।
- (৫) অন্তান্ত লবণের অবর্তমানে ৮নং পরীক্ষা ন্যাগনে সিয়াম লবণের অন্তিত্ব নিশ্চিতরূপে প্রমাণ করে।

কাবকীয় মূলক সনাক্ত করিয়া কিব্নপে ল্যাবরেটরী নোট-বুকে লিখিতে হয় তাহার ক্ষেক্টি নমুনা নিম্নে দেওয়া হইল।

नमून।-->

ভারিখ · · · ·

••••न् लन्

স্বচ্ছ বর্ণহীন ক্ষটিকাকার প্রদর্থ, জলে দ্রণীয়।

শুক-পরীক্ষা

পরীক্ষা	পর্যবেক্ষণ	সিদ্ধা স্ত	
১৮ কেটি শুস প্রাক্তা নলে স্মান্ত্র কঠিন লবত লইম্	প্ৰ'কা¦-ন লেব টপ্ৰিভাগে ভিলমি ৰাপে জনা হয়।	কেলাসন-জল্মুক ক'তে পারে।	———— ल्राः।
উত্তপ্ত কবা হইল।			

পরীক্ষা	পৰ্যবেক্ষণ	সিন্ধান্ত
২। লবণের আরে ক অংশের সহিত উহার তিনগুণ পরিমাণ সোডিয়াম কার্ননেট মিশাইয়া চারকোল রকের গর্তে রাধিয়া বিজাবক শিখায় রো-পাইপের সাহাযে করা হইল।	সাদা অবংশধ।	অ্যালুমিনিয়াম, ক্যা ল- সিয়াম, ম্যাগনেসিয়াম লবণ হইতে পারে।
 া ঐ সাদা অবশেষ এক কোঁটা কোবন্ট নাইট্রেট দ্রবণে সিক্ত কবিয়া জারক শিশায় উত্তপ্ত করা হইল। 	অবশেষের বর্ণ গোলাপী (pink) হয়।	ম্যাগ্নেসিয়াম-লবণ ২ইতে পারে।
৪। প্লাটনান তাবের অগ্রভাগে হাইড্রোক্লোরিক অ্যাসিড সিক্ত সামাক্ত লবণ স্প্রশ করিয়া শিখা পরীকা করা হইল।	শিখার কোন বিশেষ বর্ণ দেখা যায় না।	ক্যাল সি যাম, কপার, লেড-লবণ নহে।

সিক্ত-পরীক্ষা

পাতিত জলে লবণের দ্রবণ প্রস্তুত করিয়া সিক্ত পরীক্ষা করা হইল

পরীক্ষা	পর্যবেক্ষণ	সিদ্ধান্ত
ঃ। লবণের মূল দ্রবণের একাংশে লঘু হাইড্রোক্লোরিক	কোন অধঃক্ষেপ আসে না।	(ल्ड-ल्द॰ नर्ट्।
জ্যাসিড মিশান হইল। १। ঐ জবণ্গরম করিরা হাইড্রোজেন সালফাইড গ্যাস পরিচালিত করা হুইল।	»	্ কপার-লবণ নছে।

ব্যবহারিক রসায়ন

পরীক্ষা	পৰ্যবেক্ষণ	সিন্ধান্ত
৩। মূল দ্রণের আরেক।	কোন অধঃক্ষেপ আসে না।	আয়রন কিংবা অ্যালু-
অংশে কঠিন অ্যামোনিয়াম		মিনিয়াম লবণ নহে।
ক্লোরাইড মিশাইয়া উত্তপ্ত		
করা হইল ৷ উহাতে অতিরিক্ত		
অ্যানোন্যাম হাইডুকাইড		; ;
মিশাইরা নাড়িয়া দেওয়া		
र् रेल्।		
৪। ই দুবাণ হাইড়োজেন ,	1)	জিংক-লবণ নহে।
দাল্ভাইড গ্যাস পরিচ,লিত		
করা হইল।		
 । মূল ক্রণের আংবেক । 	31	ক্যালসিয়াম লবণ নঙে
অংশে কঠিন অগ্যানিয়াম		
কোবাইড ও অতিবিক অ্যামা- :	· · · · · · · · · · · · · · · · · · ·	
নিয়াম হাইডুকু।ইড মিশান		1
হুইল। উহাতে অগ্নোনিয়াম		
কার্বনেট দ্রবণ নিশান হইল।		
७। এই न्दर्ग छाई-।	সাদা অধঃকেপ।	। ম্যাগনেসিয়াম লব ণ।
সোডিলাম হাইড়োজেন		
তৃত্ত নিশাইরা প্রীকা-		
নলের গা কাচের শলাকা		
দিয়া চাঙিয়া শেওয়া ইউলা।		1

স্কুতরাং, প্রবন্ত লবণের কারকীয় মূলক—ম্যাগনেসিয়াম (Mg++)

नयून।--१

তারিখ · · · · ·

····নং লবণ

সাদ' পাউডার; লঘু হাইড্রোক্লোরিক অ্যাসিডে দ্রবণীয়। দ্রবণ প্রস্তাত-কালে বৃদ্বৃদন হয়।

শুক্ব পরীক্ষা

পরীক্ষা	পৰ্য বৈক্ষণ	সিদ্ধান্ত
১। একটি ৬ ক পর কা_	উত্তপ্ত অবস্থায় হলুদ, শীতল	জিংক-লবণ হইতে পারে।
ন:ল সামাত্ত পরিমাণ লবণ	অবস্থায় সাদা।	•
উত্তপ্ত কেবা হইল ।		
২: লবণেৰ আ <i>ৰে</i> ক	নাদা অবশেষ ; উত্তপ্ত অবস্থায়	জিংক লবণ হইতে পারে।
সংশেব সহিত উহাব তিনগুণ	् इत्रूष वर्ग ।	
পরিমাণ গোডিয়াম কার্যনেট		
মিশাইয়া চারকোল ব্লকর গতে		
রাধিয়া বিজারক শিধায় ব্লো-	•	•
পাইপের সাহায়ে উত্তপ্ত কর।		
३ टेल ।		
া সাদা অবংশৰ এক	পুৰু অবশেষ।	জিংক লবণ।
েণটো কোৰণ্ট নাইট্রেট ছারা		
সিক্ত করিয়া জারক শিখার		•
উত্তপ্ত করা ২ইল।		
৪। প্লাটিনাম তারের	শিখার বিশেষ কোন বর্ণ হয়	ক্যালসিয়াম. কুপার,
অগ্রভাগে সামাক্ত লবণ স্পর্শ	ना ।	लिए-लंदन नर्ड
করিয়া শিখা পরীক্ষা করা		
इ डेल् ।		

সিক্ত-পরীক্ষা

লঘু হাইড্রোক্লোরিক অ্যাসিডে লবণের স্বচ্ছ দ্রবণ প্রস্তুত করা হইল যেহেতু লবণটি লঘু হাইড্রোক্লোরিক অ্যাসিডে দ্রবণীয় উহা লেড লবণ নহে।

পরীক্ষা	পয বৈক্ষণ	সিদ্ধান্ত
:। লবণের দ্রবণের এক	কোন অধ:ক্ষেপ আসে না।	কপার লবণ নছে ।
অংশ গ্রম করিয়া হাইড্রো:জন		!
সালফাইড পরিচালিত করা		
इहेल।		
२। मृल दरागद आरदक	কোন অধঃক্ষেপ আসে না।	আয়রন বা অ্যালুমিনিরাম
অংশে কঠিন অ্যামেনিয়াম		, ल्दन <i>नर्</i> छ ।
ক্লোরাইড মিশাইয়া উত্তপ্ত করা		
হইল এবং উহাতে অতিরিক্ত		
অামোনিয়ম হাইডুকাইড		
মিশান হটল।		
০। ঐ দ্রণে হাইড়োজেন	मान् व्यथः एकन् ।	' জিংক-ল্বৰ্ ৷
সালকাইড পরিচালিত করা		,
इ र्हेल ।		, , ,
নিশ্চিত প্রীক্ষা :) 1
	সাল অধঃক্ষেপ—অতিরিক্ত	ı
অংশ প্রীকা-নলে লাইয়া	रिकारक उर्वाष्ट्र इस्र।	,
উহাতে সে:ডিয়াম হাইডুক্সাইড		
দুৰ্গ মিশ্ন ইটল ।		নিশ্চিউরূপে জিংক।
ঐ দুব্ৰে হাইডু াজেন	मिन व्यस्तुक्त्रः।	। नान्छ अस्य । धर्क ।
সলেফাইড পরিচালিত করা		
हर्न ।		Chrona Co n
২। মূল দ্রণের আরেক	मान् अधः क्ष्मभ	নিশ্চিতন্নপে জিংক
অংশে পটাসিয়াম ফেরো-		
সায়ানাইড দ্ৰবণ মিশান হইল।		

স্থানাং, প্রদন্ত লবণের ফারকীয় মূলকটি—জিংক (Zn++)

नगून।-७

কারিখ-----

••••भः नद्य

वर्गशैन ऋषिक, खल खवगीय।

শুদ্ধ-পরীক্ষা

পরীক্ষা	প্য বৈক্ষণ	সিদ্ধান্ত
১। একটি পরীক্ষা-নলে সামান্ত কঠিন লবণ লইয়া উত্তপ্ত করা হইল।	গাঢ় বাদামী বর্ণের গ্যাস নির্গত হয়, হলুদ বর্ণের পদার্থ অবশিষ্ট থাকে।	লেড লবে হইতে পারে
২। লবণের আ রে ক সংশের সহিত উহার তিনগুণ সোডিয়াম কার্বনেট মিশাইয়া ব্লো-পাইপের সাহায্যে বিজারক শিখার উত্তপ্ত করা হইল।	হলুদ বর্ণের আন্তরণ ; চক্চকে নরম ধাতব শুটি, কাগজে দাগ কাটে।	লেড ল্বণ।
 গা অ্যান্বেস্ট্রন ফাই- বার গাঢ় হাইড্রোক্লোরিক অ্যাসিডে সিক্ত করিয়া উহাতে ব্ব সামাল্ল লবন স্পর্ল করিয়া শিবা পরীক্ষা করা হইল। 	শিশাব বৰ্ণ নালাভ সংদা।	লেডে লাবণ।

সিক্ত-পরীক্ষা

পাতিত জলে লবণ দ্রবীভূত করিয়া দ্রবণ প্রস্তুত করা হইল।

পরীক্ষা	পর্য বেক্ষণ	সিদ্ধান্ত
১। একটি পরীক্ষা-নলে লবংশর জবশের এক অংশ লইরা লঘু হাইড্রোক্লোরিক জ্যাসিড মিশান হইল।	সাদা অধঃক্ষেপ।	লেড-ল্ব ৰ

পরীক্ষা	প্য বৈক্ষণ	সিদ্ধ
উপরি হিত ত রল পদার্থ	অধ:কেপ দ্ৰবীভূত হয়; ঠাণ্ডা	লেড-লবণ।
ৰথাসম্ভব ঢালিয়া উহাতে	হইলে চক্চকে স্চের স্থায়	
ৰানিকটা পাতিত জ্বল	অধঃকেপ পুনরার আসে।	
মিশাইয়া উত্তপ্ত করা হইল।		!
. १। मृल उत्राप्त आरितक	কালো অধঃক্ষেপ।	
बर् न हारेए <u>।</u> जिन मानकारेए		•
পরিচালিত করা হইল।		
 भृत ट्राल्ड खारिक 	२लू म दर्शत अ ४१एक ।	
অংশে পটা সিয়াম আয়োডাইড		
দুৰণ মিশান হইল।		
উপরিহিত তবল পদার্থ	व्यर्शकल हरीष्ट्ठ इय—हरन	
ঢালিয়া ফেলিয়া উহাতে পাতিত	टीखा इटे.ल इल्न रार्वद	
জল মিশাইয়া উত্তপ্ত করা	চক্চকে অধঃক্রেপ আসে।	
ड हेल् ।		
8। <u>इ</u> न्द्रशन्त्र व्यक्तक	ङ्क्षान रर्श्व छा धः क्लिश ।	লেড- ল বৰ।
অংশে প্টাসিয়াম ক্রোমেট		
দ্ৰবণ মিশান ১ইল।		
ে। দ্রবণের আরেক অংশে	সাল অধঃকেপ।	
লঘু সালফিউরিক আাসিড		1
মিশান ভুটল।		
উপবিধিত তরল আ্ফাস্ট	অধংকেপ দ্বীভূত হয়।	লেড-লবণ।
করিয়া গঢ়ে অন্নোনিয়নে		
আয়াসিটেট দুৰু হিশান হুটল।		

স্তরাং, প্রদত্ত লবণের কারকীয় মূলক—লেড (Pb++)

পরিশিষ্ট

ল্যাবরেটরীতে ব্যবহৃত বিকারক (Laboratory reagents)

জ্ঞ ত্রৈ বিকারকের দ্রবণ প্রস্তুতির জন্ম সর্বদা পাতিত জল ব্যুবহার করিবে।

গাঢ় অ্যাসিড (Concentrated Acids)

অ্যাসেটিক অ্যাসিড (17N); সালফিউরিক অ্যাসিড (36N) হাইড্রোক্লোরিক অ্যাসিড (12N); নাইট্রিক অ্যাসিড (16N) লঘু অ্যাসিড (Dilute Acids)

অ্যানেটিক অ্যাসিড—285 c. c. গাঢ় অ্যানেটিক অ্যাসিডে পাতিত জুল মিশাইয়া উহার আয়তন এক লিটার কর। (5N)

হাইড়োকোরিক অ্যাসিড—430 c. c. গাঢ় অ্যাসিডে পাতিত জল মিশাইয়া উহার আয়তন এক লিটার কর। (5N)

নাইটি ক অ্যাসিড—310 c. c. গাঢ় অ্যাসিডে পাতিত জল মিশাইয়া উহার আয়তন এক লিটার কর। (5N)

সালফিউরিক অ্যাসিড—140 c. c. গাঢ় অ্যাসিডে জল মিশাইয়া উহার আয়তন এক লিটার কর। (5N) [দ্রবণ প্রস্তুতির বিশদ বিবরণের জ্যু ১৪০ পৃষ্ঠা দেখ।]

ক্ষার (Alkalis)

গাঢ় অ্যামোনিয়াম হাইডুক্সাইড (15N)

লঘু অ্যামো নিয়াম হাইড়ক্সাইড -- 335 c. c. গাঢ় অ্যামোনিয়াম হাইড়ক্সাইডে জল মিশাইয়া উহার আয়তন এক লিটার কর (5N)। গাঢ় অ্যামোনিয়ান হাইড়ক্সাইডের বোতল খুলিবার সময় বোতলটি ঠাণ্ডা করিয়া

(প্রায় 5°C) লইবে। তারপর বোতলের ছিপি হোযালে দিয়া ধরিয়া সাবধানে খুলিবে।

ক্যাল সিয়াম হাইডুক্সাইড —2 কিংবা 3 গ্রাম ক্যালসিয়াম হাইডুক্সাইড এক লিটার জলে ভাল করিয়া ঝাঁকাইয়া ফিল্টার কর (O'O4N)।

সোডিয়াম হাইড়কাইড—220 গ্রাম সোডিয়াম হাইড়কাইড এক লিটাঃ হলে দ্বীভূত কর। (5N)

পটাসিয়াম হাইড়কাইড—310 গ্রাম পটাসিয়াম হাইড়কাইড এক লিটার জলে দ্রবীভূত কর। (5N)

লবণের দ্রবণ

নামের পার্সে লিখিত পরিমাণ লবণ এক লিটার পাতিত জলে দ্রবীভূত করিয়া দ্রবণ প্রস্তুত কর।

<u>জ্</u> বগের	<u> যাত্রা</u>
অ্যামোনিয়াম অক্সালেট [(NH4)2 C2O1,H2O]—35 গ্রাম	'5N
অ্যামোনিয়াম অ্যাসিটেট (CH3COONH1)—231 গ্রাম	3N
অ্যামোনিয়াম কার্বনেট [(NH ₄) ₂ CO ₃]—160 গ্রাম লবণ	
140 c.c. গাঢ় অ্যামোনিয়ান হাইড্রক্সাইড ও 860 c.c. জলের	
মিশ্রণে দ্রবীভূত কর।	4N
অ্যামোনিয়াম ক্লোরাইড, NH Cl—270 গ্রাম	5N
কোবৰ্ণ্ট নাইট্ৰেট, Co(NO ₈)2, 6H2O—44 গ্ৰাম	0.3N
চুল-জল (Lime water)—'ক্যালিসিয়ান হাইড্রন্সাইড' দেখ।	
ভাইসোডিয়াম হাইড়োজেন ফস্ফেট	
Na, HPO., 12H, O-120 MTA	1N
পটাসিয়াম আয়োডাইড, KI83 গ্রাম	0.5N
পটাসিয়াম কোমেট, K,C,rO,4—49 গ্রাম	0.5N
পটাসিয়াম পারম্যাংগানেট, KMnO ₄ —3'2 গ্রাম	0·1N
পটাসিয়াম কেরিসায়ানাইড, KaFe(CN)a—55গ্রাম	0.5N

পটাসিয়াম কেরোসায়ানাইড, K,Fe(CN),,3H,O-53 গ্রাম	0.5N
লেড আগসিটেট, Pb(CH, COO)2, 3H2O-95 গ্রাম	0 [.] 5Ń
বেরিস্নাম ক্লোরাইড, BaCl, 2H, O-122 গ্রাম	1N
বেরিয়াম নাইট্রেট, Ba(NO _s),130 গ্রাম	1N
সিলভার নাইট্রেট, AgNO3—17 গ্রাম	0·1N

অস্থান্থ বিকারক

লিটমাস দ্রবণ: 500 c c. জলের সহিত 500 গ্রাম লিটমাস মিশাইয়া কিছুক্ষণ ফুটাও। সারারাত্রি রাখিবার পর ফিল্টার কর। দ্রবণে 300 c.c. মেথিলেটেড স্পিরিট মিশাও এবং জল মিশাইয়া দ্রবণের আয়তন এক লিটার কর।

মিথাইল অরেপ্ত (Methyl orange): 0.5—0.6 গ্রাম মিথাইল অরেপ্ত (অ্যাসিড) এক লিটার জলে দ্রবীভূত কর। প্রয়োজন হইলে ফিল্টার করিয়া লও।

ফিনল্থ্যলিন (Phenolphthalein): 5 গ্রাম ফিনল্থ্যলিন 500 c.c. আন্কহলে দ্রবীভূত কর। উহাতে 500 c.c.-জল মিশাও এবং সঙ্গে নাড়িয়া লাও। বোন অধংক্ষেপ আসিলে ফিল্টার কর।

ষ্টার্চ দ্রবণ (Starch solution): 2 গ্রাম স্থার্চের (soluble starch) সহিত অল্প পরিমাণ ঠাণ্ডা জল মিশাইয়া একটি লেই (paste) প্রস্তুত কর। 100 c.c. ফুটন্ত জলে উহা মিশাও; দশ মিনিট ফুটাও এবং 2 গ্রাম পট্যাসমাম আয়োডাইড মিশাও।

वावशांत्रिक त्रभायन

পরমাণবিক ওজন Atomic Weights]

Name	Symbol	At. Wt.	Name	Sym bol	At, Wt.
Aluminium	Al	26'98	Ircn	Fe	55.84
Antimony	Sb	121.76	Lead	Pb	207.21
Arsenic	As	74'91	Magnesium	Mg	24'32
Barium	Ba	137'36	Manganese	Mn	54.94
Bismuth	Bi	209°C0	Mercury	Hg.	200'61
Boron	В	10.82	Nickel	Ni	58'69
Bromine	Br	79'916	Nitrogen	N	14'008
Cadmium	Cd	112'41	Oxygen	0	16'0000
Calcium	Ca	40.08	Phosphorus	P	31'02
Carbon	C	12'011	Platinum	Pt	195.23
Chlorine	C	35'457	Potassium	K	39'100
Chromium	Cr	52'01	Silicon	Si	28'09
Cobalt	Co	58'94	Silver	Ag	107'88
Copper	Cu	63'54	Sodium	Na	22'991
Fluorine	F	19 00	Strontium	Sr	87'63
Gold	Au	197.20	Sulphur	8	32'066
Hydrogen	H	1.008	Tin	Sn	118'70
Lodine	, I	126'92	Zinc	Zn	65.38

জলীয় বাজ্পের চাপ ' [Tension of Water vapour]

Temperature C	Tension in mm. of mercury	Temperature C	Tension in mm. of mercury
15'0	12'70	25'5	24'26
15.5	13'11	26.0	24'99
16.0	13.54	26'5	25.74
16.5	13'97	27.0	26.21
17.0	14.42	27.5	27:29
17.5	14.88	28.0	28'10
18.0	15'36	28.5	28.93
18.5	15 '84	29'0	29.78
19.0	16'35	29*5	30.65
19.5	16.86	3 0.0	31'55
20.0	17.39	30'5	32.46
20'5	17.93	31.0	33'41
21.0	18'49	31.5	34'37
21'5	19'07	32.0	35.36
22'0	19.66	32.5	36'37
22.5	20'27	33.0	37 41
2 3 '0	50.89	33.2	38'47
23'5	21.53	34.0	39'57
24.0	22.18	34.2	40.68
24'5	22.86	35'0	4183
25.0	23.55		i