Eigenschaften

- Lösung finden durch iterative Verbesserungen
 - Aktion wird ausgeführt, welche kurzfristig größte Verbesserung liefert
- schnelle Implementation
- lösen Probleme gut aber nicht optimal
 - lokales Optimum
- gute Laufzeit
 - anstatt exponentieller Laufzeit womöglich polynomiell
- Voraussetzungen
 - Lösungen lassen sich bewerten (Gewinnmaß)
 - kontinuierliche Verbesserung einfach berechenbar

Traveling Salesman Problem

- · Gegeben:
 - Graph G mit Knoten V={1,...,n}

(n Städte)

- Kanten $E \subseteq \{(i,j)|i \neq j \text{ und } i,j \in V\}$

(Verbindungen zwischen Städten)

− Kantengewichte $c_{i,j} > 0$ für alle $(i,j) \in E$

(Kosten der Reise von i nach j)

- Gesucht:
 - Rundreise die die Summe der Kantengewichte minimiert.
 - Eine Rundreise ist ein Kreis durch den Graphen der jeden Knoten genau ein mal besucht.
 - North

 See Newself Res Postol

 Brench West Render R

- Maß für Güte der Lösung: Länge der Reise
- · Gieriger Algorithmus:
 - Beginne mit beliebiger Rundreise R
 - Solange eine Verbesserung gefunden wird
 - Für alle Subpfade (a,b,c,d) in R
 - Wenn Länge(a,c,b,d)<Länge(a,b,c,d)
 - » Vertausche b und c im Pfad R
 - » Verbesserung gefunden

Lokales Optimum, Verbesserung mög