# INDUCTOR DESIGN 1MHZ/5A AND SIMULATION IN BOOST CONVERTER



Hashem Jarhi, Amir Rashed Advisor: Eric Herbelin

### Introduction:

Designing Inductor to work in 1mhz/5A in FEMM software

Simulating the inductor in boost converter using Ltspice tool

### An ideal inductor

- Vin = 48V
- Vout = 60V
- Frequency = 1 MHz
- Idc (continuous) = 5A
- Ipeak = 10A



### INDUCTOR SELECTION

Case 1: Inductance selected 48uH



### INDUCTOR SELECTION

|                                          |                        |      |              |            |                     |          |        |         | Ratings                |      |  |  |
|------------------------------------------|------------------------|------|--------------|------------|---------------------|----------|--------|---------|------------------------|------|--|--|
|                                          |                        | IHL  | P-6767GZ-8   | Inductance | 47                  | μН       |        |         |                        |      |  |  |
|                                          |                        |      |              |            |                     |          |        |         | 0.0527                 | Ohms |  |  |
| Inputs:<br>Enter data into yellow fields |                        |      |              |            | Outputs             |          |        | Isat    | 7                      | Amps |  |  |
|                                          |                        |      |              |            |                     |          |        | l(Heat) | 7.25                   | Amps |  |  |
|                                          | Frequency = 1000000 Hz |      |              |            | ET <sub>ckt</sub>   | 9.90     | V-usec |         |                        |      |  |  |
| Out                                      | Output Current = 5     |      |              | Amps       | F(eff)              | 964981.5 | Hertz  | Ind     | uctor Current (One Cyc | le)  |  |  |
| Arr                                      | bient Temp =           | 2:   | 5            | °C         | Res                 | 0.060823 | Ohms   | 6.0     |                        |      |  |  |
|                                          | Volts In =             | 48   |              | Volts      | l <sub>max</sub>    | 6.42     | Amps   |         |                        |      |  |  |
|                                          | Volts Out =            |      | 0            | Volts      | I <sub>min</sub>    | 6.21     | Amps   | 5.0     |                        |      |  |  |
|                                          | V <sub>SW</sub> =      |      | 5            | Volts      | l <sub>ripple</sub> | 0.21     | Amps   | 4.0     |                        |      |  |  |
|                                          | ∨ <sub>D</sub> =       |      | 0.5          |            | Duty                | 0.21     |        | 1.5     |                        |      |  |  |
|                                          | l <sub>ind</sub> =     |      | 6.3          |            | P <sub>core</sub>   | 0.032    | Watts  | 3.0     |                        |      |  |  |
|                                          | ET <sub>100</sub> =    |      | 23.01 V-usec |            | P <sub>dc</sub>     | 2,426    | Watts  | 2.0     |                        |      |  |  |
| B <sub>pk</sub> =                        |                        | 43.0 |              | G          | Pac                 | 0.021    | Watts  | 2.0     |                        |      |  |  |
| А                                        | 0.696                  | Inch | 17.65        | mm         | P <sub>tot</sub>    | 2.479    | Watts  | 1.0     |                        |      |  |  |
| В                                        | 0.675                  | Inch | 17.15        | mm         | Temp. Coeff.        | 12.5     | °CMV   |         |                        |      |  |  |
| С                                        | 0.276                  | Inch | 7.0          | mm         | Temp Rise           | 31.0     | °C     | 0.0     | 0.5                    |      |  |  |
|                                          |                        |      |              |            | Comp Temp           | 56.0     | °C     | , i     |                        | ·    |  |  |
| Reference 5.5                            |                        |      |              |            |                     |          |        |         | Time (µSec)            |      |  |  |

### INDUCTOR SELECTION

#### • Case 1: Inductance selected 48uH

#### Pros:

- Ripple in inductor less
- Peak current requirement less

#### Cons:

- More time to take for reaching at steady state level
- More noise
- More transient time
- More Power loss in inductor
- Efficiency affected

Case 2: Inductance selected 3.3uH

### INDUCTOR SELECTION



### INDUCTOR SELECTION

|                                          |                        |       |                     |              |                     |          |        | Ratings                      |             |      |
|------------------------------------------|------------------------|-------|---------------------|--------------|---------------------|----------|--------|------------------------------|-------------|------|
|                                          |                        | IHL   | P-6767GZ-8 <i>i</i> | Inductance   | 3.3                 | μΗ       |        |                              |             |      |
|                                          |                        |       |                     | 25° C DC Res | 0.00306             | Ohms     |        |                              |             |      |
| Inputs:<br>Enter data into yellow fields |                        |       |                     |              | Outputs             |          |        | Isat                         | 32          | Amps |
|                                          |                        |       |                     |              |                     |          |        | I(Heat)                      | 32.2        | Amps |
|                                          | Frequency = 1000000 Hz |       |                     | Hz           | ET <sub>ckt</sub>   | 9.90     | V-usec |                              |             |      |
| Out                                      | Output Current = 5     |       | ;                   | Amps         | F(eff)              | 964981.5 | Hertz  | Inductor Current (One Cycle) |             |      |
| Am                                       | Ambient Temp =         |       | 5                   | °C           | Res                 | 0.003532 | Ohms   | 7.8                          |             |      |
|                                          | Volts In =             |       | 48 Volts            |              | I <sub>max</sub>    | 7.82     | Amps   | 7.0                          |             |      |
|                                          | Volts Out =            |       | 0                   | Volts        | I <sub>min</sub>    | 4.82     | Amps   | 8.0                          |             |      |
|                                          | V <sub>SW</sub> =      | 0.5   |                     | Volts        | I <sub>ripple</sub> | 3.00     | Amps   | 5.0                          |             |      |
|                                          | V <sub>D</sub> =       |       | 0.5                 |              | Duty                | 0.21     |        | 1                            |             |      |
|                                          | l <sub>ind</sub> =     |       | 6.3                 |              | P <sub>core</sub>   | 0.699    | Watts  | 4.0                          |             |      |
|                                          | ET <sub>100</sub> =    |       | 7.67                |              | P <sub>dc</sub>     | 0.141    | Watts  | 3.0                          |             |      |
| B <sub>pk</sub> =                        |                        | 129.0 |                     | G            | Pac                 | 0.110    | Watts  | 2.0                          |             |      |
| А                                        | 0.696                  | Inch  | 17.65               | mm           | P <sub>tot</sub>    | 0.949    | Watts  | 1.0                          |             |      |
| В                                        | 0.675                  | Inch  | 17.15               | mm           | Temp. Coeff.        | 10.9     | °CMV   | 1.0                          |             |      |
| С                                        | 0.276                  | Inch  | 7.0                 | mm           | Temp Rise           | 10.4     | °C     | 0.0                          | 0.5         | 1    |
|                                          |                        |       |                     |              | Comp Temp           | 35.4     | °C     | ű                            | b.0         | ,    |
| Reference 5.5                            |                        |       |                     |              |                     |          |        |                              | Time (µSec) |      |

### INDUCTOR SELECTION

#### Case 2: Inductance selected 3.3uH

• By selecting lower value of inductance, loss in inductor becomes 0.949 watts.

#### Pros:

- Reach faster at steady state level than 47uH
- Less power loss than 47uH

### Cons:

- Ripple in inductor more
- More noise at transient time
- High Peak current

Case 3: Inductance selected 10uH

### INDUCTOR SELECTION



### INDUCTOR SELECTION

|                                                   |                          |      |       |        |                     |                   |          |        |              | Ratings                 |      |  |  |
|---------------------------------------------------|--------------------------|------|-------|--------|---------------------|-------------------|----------|--------|--------------|-------------------------|------|--|--|
| IHLP-6767GZ-8A - 10 boost µH Ind. Loss Calculator |                          |      |       |        |                     |                   |          |        |              | 10                      | μН   |  |  |
|                                                   |                          |      |       |        |                     |                   |          |        | 25° C DC Res | 0.0102                  | Ohms |  |  |
| Inputs:<br>Enter data into yellow fields          |                          |      |       |        |                     | Outputs           |          |        | Isat         | 13                      | Amps |  |  |
|                                                   |                          |      |       |        |                     |                   |          |        | I(Heat)      | 16                      | Amps |  |  |
|                                                   | Frequency = 10000000 H:  |      |       |        |                     | ET <sub>okt</sub> | 9.90     | V-usec |              |                         | ->   |  |  |
| Out                                               | Output Current = 5       |      |       | Amps   |                     | F(eff)            | 964981.5 | Hertz  |              | uctor Current (One Cycl | e)   |  |  |
| An                                                | Ambient Temp = 25        |      | °C    |        | Res                 | 0.011772          | Ohms     | 6.8    |              |                         |      |  |  |
|                                                   | Volts In = 48            |      | Volts |        | I <sub>max</sub>    | 6.81              | Amps     | 6.0    |              |                         |      |  |  |
|                                                   | Volts Out = 60           |      | Volts |        | I <sub>min</sub>    | 5.82              | Amps     | 5.0    |              |                         |      |  |  |
|                                                   | V <sub>SWV</sub> = 0.5   |      | Volts |        | I <sub>ripple</sub> | 0.99              | Amps     |        |              |                         |      |  |  |
|                                                   | V <sub>D</sub> = 0.5     |      | Volts |        | Duty                | 0.21              |          | 4.0    |              |                         |      |  |  |
|                                                   | l <sub>ind</sub> = 6.3   |      | 6.3   | Amps   |                     | P <sub>core</sub> | 0.229    | Watts  | 3.0          |                         |      |  |  |
|                                                   | ET <sub>100</sub> = 9.15 |      | 9.15  | V-usec |                     | P <sub>de</sub>   | 0.470    | Watts  |              |                         |      |  |  |
|                                                   | B <sub>pk</sub> =        |      | 108.2 |        |                     | Pac               | 0.140    | Watts  | 2.0          |                         |      |  |  |
| А                                                 | 0.696                    | Inch | 17.65 | mm     |                     | P <sub>tot</sub>  | 0.839    | Watts  | 1.0          |                         |      |  |  |
| В                                                 | 0.675                    | Inch | 17.15 | mm     |                     | Temp. Coeff.      | 13.3     | °CAV   |              |                         |      |  |  |
| С                                                 | 0.276                    | Inch | 7.0   | mm     |                     | Temp Rise         | 11.1     | °C     | 0.0          | 0.5                     | 1    |  |  |
|                                                   |                          |      |       |        |                     | Comp Temp         | 36.1     | °C     | U            | U.5                     | 1    |  |  |
| Reference<br>Cost                                 | l 55                     |      |       |        |                     |                   |          |        |              | Time (µSec)             |      |  |  |

### INDUCTOR SELECTION

#### Case 3: Inductance selected 10uH

• By selecting calculated value of inductance, loss in inductor becomes 0.843 watts.

#### Pros:

- Reach faster at steady state level than 47uH
- Ripple is less than 3.3uH inductor
- Less power loss among all
- Highest efficiency of good among all

#### Cons:

- Ripple in inductor more than 47uH
- High Peak current than 47uH but maximum peak current is satisfied

### BASIC INDUCTOR:1



### BASIC INDUCTOR:1 (FEMM)



2.237e+000 : 2.362e+000 2.113e+000 : 2.237e+000 1.989e+000 : 2.113e+000 1.864e+000: 1.989e+000 1.740e+000: 1.864e+000 1.616e+000: 1.740e+000 1.492e+000: 1.616e+000 1.367e+000: 1.492e+000 1.243e+000: 1.367e+000 1.119e+000 : 1.243e+000 9.943e-001:1.119e+000 8.701e-001: 9.943e-001 7.458e-001: 8.701e-001 6.215e-001: 7.458e-001 4.972e-001: 6.215e-001 3.729e-001: 4.972e-001 2.486e-001: 3.729e-001 1.243e-001: 2.486e-001 <3.727e-006: 1.243e-001 Density Plot: |B|, Tesla

### BASIC INDUCTOR: 2



## DOUBLE E INDUCTOR (FEMM)



DOUBLE E
INDUCTOR
(simulation
results)



### DOUBLE E RESULTS (FEMM)

### Winding results



#### Total current



#### **Total loss**



### CHOOSING INDUCTOR PROPERTIES: SIZING



| Characteristic                                                    | Relative Size     | Absolute Size for $a = 1 cm$ |
|-------------------------------------------------------------------|-------------------|------------------------------|
| Core area A <sub>core</sub>                                       | 1.5a <sup>2</sup> | 1.5 cm <sup>2</sup>          |
| Winding area $A_w$                                                | $1.4a^{2}$        | $1.4 \text{ cm}^2$           |
| Area product $AP = A_w A_c$                                       | $2.1a^{4}$        | 2.1 cm <sup>4</sup>          |
| Core volume V <sub>core</sub>                                     | $13.5a^{3}$       | $13.5 \text{ cm}^3$          |
| Winding volume $V_w^a$                                            | $12.3a^3$         | $12.3 \text{ cm}^3$          |
| Total surface area of assembled inductor/transformer <sup>b</sup> | $59.6a^2$         | 59.6 cm <sup>2</sup>         |

d = 1.5a, h = 2.5a, b, = 0.7a and h = 2a.

**REFRENCE:** POWER ELECTRONICS 3<sup>rd</sup> EDITION, NED MOHAN, TORE

# CHOOSING INDUCTOR PROPERTIES: CORE MATERIAL



# CHOOSING INDUCTOR PROPERTIES: CORE MATERIAL



### CHOOSING INDUCTOR PROPERTIES: WINDING MATERIAL

Copper was chosen as the winding material due to its high conductivity. Additionally, the flexibility of copper makes winding easier, which reduces the volume of copper needed. This results in a coil with a lower weight. For the thickness of the copper wire, we will choose the thickest possible to minimize wasted power.

$$P_{w,\text{sp}} = k_{\text{Cu}} \rho_{\text{Cu}} (J_{\text{rms}})^2$$
$$J_{\text{rms}} = I_{\text{rms}} / A_{\text{cu}}$$

### DOUBLE E CONS

#### Cons:

Complex Manufacturing: The double E core design can be more complex and costly to manufacture compared to simpler core shapes.

Higher Cost: Due to the complexity and materials used, double E inductors can be more expensive.

Limited Availability: They might not be as readily available as other types of inductors, which can be a limitation for some applications.

### TOROID INDUCTOR: CORE TYPE

• Core type: Ferrite core- R type material.





### TOROID INDUCTOR: CORE TYPE

- Selected core: **0\_43825TC** from magnetics manufacture
  - Current density  $(J) = 3 \text{ A/mm}^2$
  - Current (I) = 10 A
- Area product:  $(L*I^2)/(B*Kw*Kc*J) = (35.6u*10*10)/(0.02*0.6*1*3*10^6)$

$$= 9.88* 10^{-7} \text{ cm}^{4}$$

- Inductance: ~35.6uH
- Wire Selection: 14 AWG

## TOROID INDUCTOR: DESING



TOROID
INDUCTOR:
FEMM
RESULTS



### Ideal toroid



## Simulating nonlinearity OF toroid

| No. | Parameters          | Values      |
|-----|---------------------|-------------|
| 1   | AL (inductance)     | 8.06 uH/N^2 |
| 2   | Le (path length)    | 82.8 mm     |
| 3   | Ae (cross section)  | 231 mm^2    |
| 4   | B (flux density)    | 0.02 Tesla  |
| 5   | H (flux intensity)  | 15 A/m      |
| 6   | Outer length        | 38.1 mm     |
| 7   | Inner length        | 19 mm       |
| 8   | Height              | 25.4 mm     |
| 9   | N (number of turns) | 20          |

### Python Code to Check Current Vs Inductance Graph

- import femm
- import numpy as np
- · import matplotlib.pyplot as plt
- femm.openfemm()
- femm.opendocument("Inductor design 1MHz.FEM"); #save FEMM file where Python install
- femm.mi\_saveas("tem.fem") #save into Temporary file
- min=1; max=10; step=0.5
- Npoints = int((max-min)/step)
- I=np.arange (min, max, step, dtype=np.float64)
- W=np.arange (min, max, step, dtype=np.float64)
- L=np.arange (min, max, step, dtype=np.float64)

- print("FEMM Result:")
- for k in range (0, Npoints):
- femm.mi\_modifycircprop("Coil",5,I[k])
- femm.mi\_analyze()
- femm.mi\_loadsolution()
- femm.mo\_selectblock(6.5,6.2) #Select inner winding
- femm.mo\_selectblock(9.5,17.5) #Select Outer winding
- femm.mo\_selectblock(9.5,10.5) #Select Core
- W[k]=femm.mo\_blockintegral(2) #Field Energy
- L[k]=2\*W[k]/I[k]\*\*2 #Inductance
- print(I[k],L[k]) #Print result Current Vs Inductance graph
- #Plot Current Vs Inductance graph
- plt.figure(1)
- plt.plot(I,L\*1e3, 'rs--')
- plt.grid(True)
- plt.ylabel("Inductance (mH("
- plt.xlabel("Current (A)")
- plt.savefig("L\_vs\_Current.png",dpi=300)

### From FEMM to ITspice



### From FEMM to Ltspice

$$\Phi = N \cdot A_e \cdot B \cdot anh\left(rac{N}{H \cdot L_e} \cdot I(L)
ight)$$

- K1 = N\*Ae\*B ~= 14.6 \* 10^-6
- K2 = N/(H\*Le) = 2.4154
- Flux  $(\phi)$ = 14.6 \* 10^-6 \* tanh (2.4154\*I(L))
- $L = d\phi/dI$

$$L = N \cdot A_e \cdot B \cdot \left(rac{N}{H \cdot L_e}
ight) \cdot \left(1 - anh^2\left(rac{N}{H \cdot L_e} \cdot I(L)
ight)
ight)$$













Thank grows