典型分组函数

www.huawei.com

前言

- 一旦成功地从表中检索出数据,就需要进一步操纵这些数据,以获得有用或有意义的结果。这些操作包括:执行计算与数学运算、转换数据、解析数值、组合值和聚合一个范围内的值等。
- 多行函数:这些函数能够操纵成组的行,每个行组给出一个结果,这 些函数也被称为分组函数。

- 学完本课程后,您应该能:
 - □ 了解SQL函数的种类
 - □ 使用分组函数
 - □ 学会使用group by和having子句
 - □ 学会使用组函数嵌套

1. 典型分组函数介绍

- 1.1 什么是分组函数
- 1.2 常用分组函数
- 1.3 Group by 子句
- 1.4 Having 子句
- 1.5 分组函数嵌套

1.1 什么是分组函数

分组函数用于统计表的数据,作用于多行,并返回一个统计结果。分组函数也被成为多行函数。

EMPLOYEES

EMPNO ENAME	JOB	SAL	DEPTNO	
7369 SMITH	CLERK	1000	20	
7499 ALLEN	SALESMAN	1600	30	
7521 WARD	SALESMAN	1250	30	
7566 JONES	MANAGER	2975	20	MAX(SALARY)
7654MARTIN	SALESMAN	1250	30	在员上表中,新水
7698BLAKE	MANAGER	2850	30	最多的员工薪水
7999 ELINA	TRAINER	5000	60	
7788 SCOTT	ANALYST	3000	20	
7844TURNER	SALESMAN	1500	30	

1.2 常用分组函数

• 常用种类

函数	描述		
AVG (num)	返回数字表达式终所有值的平均值		
Sum (num)	返回数字表达式或列总和		
Count (*)	返回表达式中值的个数		
Max (num)	返回表达式中最高值		
Min (num)	返回表达式中最低值		

• SQL结构

```
SELECT group_function(column), ... FROM table [WHERE condition];
```


1.2 常用分组函数 (续)

查询部门编号为30的部门雇员最高工资,最低工资、平均工资及工资总额。

统计部门编号为30的部门雇员获得奖金的总人数。

1.3 Group by 子句

• Group by 子句用于对查询结果分组统计

EMPLOYEES

1.3 Group by 子句(续)

SQL结构

```
SELECT column, group_function(column)
FROM table
[GROUP BY group_by_expression];
```

• 示例: 查询每个部门的平均工资。

1.4 Having 子句

使用group by和having子句限制分组显示结果。

EMPLOYEES

	A	DEPARTMENT_ID	A	SA	LARY		
1		10				4400	
2		20				13000	
3		20				6000	
4		50				5800	l
5		50				2500	
6		50				2600	
7		50				3100	
8		50				3500	
9		60				4200	
10		60				6000	
11		60				9000	
12		80		·		11000	
13		80				10500	l
14		80				8600	I

在员工表中,显示每个部门最高薪水大于10,000的员工部门 号和薪水

	A	DEPARTMENT_ID	Ð	MAX(SALARY)
1		20		13000
2		80		11000
3		90		24000
4		110		12000

1.4 Having 子句(续)

SQL结构

```
SELECT column, group_function(column)
FROM table
[GROUP BY group_by_expression]
[HAVING group_condition]
[ORDER BY column];
```

• 示例: 查询每个部门最高薪资大于10,000的员工部门号和薪水。

1.4 Having 子句(续)

- 示例:
- 查询每个部门的平均薪资大于1,000的部门号和平均薪资,按照部门编号升序排列。

1.5 分组函数嵌套

• 把多个分组函数嵌套在一起,完成复杂的功能。

• 示例:显示部门最大平均薪水

小测试

- (C) 子句用于对查询结果分组统计。
 - A. WHERE 子句
 - B. ORDER BY子句
 - C. GROUP BY子句
 - **D. HAVING**子句
- 查询每个部门的平均工资(A)。
 - A. SELECT deptno,avg(sal) FROM emp GROUP BY deptno;
 - B. SELECT deptno,avg(sal) FROM emp;
 - C. SELECT deptno,avg(sal) FROM emp GROUP BY sal;
 - D. SELECT deptno,avg(sal) FROM emp GROUP BY deptno HAVING avg(sal)>1000;

小测试

- 下列不属于分组函数的是(D)。
 - A. AVG ()
 - B. SUM ()
 - C. Max ()
 - D. ROUND()
- 返回表达式中值的个数的组函数(ABC)。
 - Count (*)
 - Count (1)
 - Count(deptno)
 - Sum(sal)

谢谢 www.huawei.com