Applications of Neural Networks for Anomalous Energy Consumption Detection

GROUP 13: EE-163, EE-164, EE-177, EE-194

INTERNAL ADVISOR: DR. M. M. ALI BAIG - DEPT. OF ELECTRICAL ENGINEERING, NEDUET

EXTERNAL ADVISOR: MR. SHAHZEB ANWAR - ENI PAKISTAN LIMITED

Project Recap

- **Problem**: Electricity theft detection in DX grids.
- Solution: Supervised Machine Learning
- **Tools**: Scikit-Learn, Keras

Project Recap

- **Problem**: Electricity theft detection in DX grids.
- Solution: Supervised Machine Learning
- **Tools**: Scikit-Learn, Keras
- Algorithms:

 Logistic Regression,
 Random Forest,
 Support Vector Machine,
 Wide Neural Network
- Results:RF, WNN > SVM >> LR

Results as of midyear evaluation

Our Project's Focus: Then and Now

SEMESTER 7 FUNDAMENTALS AND FOUNDATIONS

- Is this project even feasible? Yes
- Does data preprocessing make sense? Yes
- Does our ML workflow make sense? Yes
- Does hyperparameter tuning work? Yes
- Deep learning > shallow learning? Yes

SEMESTER 8 GOING BEYOND THE BASICS

- How can we circumvent runtime bottlenecks?
- Could a DL model learn from 2D data?
- Which hyperparameters should we tune?
- Experimental → production model: how?

Our Progress This Semester

Specialized Techniques + Specialized Models → Best Model/Techniques → Tuning → Deployment

Focus 01: Specialized Techniques

DIMENSIONALITY REDUCTION & ADDRESSING CLASS IMBALANCE

Dimensionality Reduction

- Curse of dimensionality
- Dims $\uparrow \Rightarrow$ Data Needed, Overfitting, $O(n) \uparrow \uparrow \uparrow !$
- SVM \rightarrow AUC \odot , O(n) \odot
- 1,034-D data necessary?
- Methods: PCA, K-PCA, LLE
- K-PCA: 600 features pprox 95% of explained σ^2
- Convergence ↓, AUC ↓
- Unsuitable for our models

95% explained variance in SGCC dataset attributable to ~600 kWhs

Addressing Class Imbalance

- Class 0:1 = 0.915:0.0815
- Highly imbalanced data
- $y_{majority} \rightarrow \text{prediction} \uparrow$
- $y_{minority} \rightarrow \text{prediction} \downarrow$
- AUC skewed by $n_{majority}$
- AUC ↑, but FP/FN also ↑
- 5 different techniques
- Goal: AUC ↑, FP/FN ↓↓

Addressing Class Imbalance – Oversampling, Undersampling, Split Features

Oversampling Minority Class

- Randomly replicate minority class data points
- $n_{minority} \uparrow = n_{majority}$ possible, but duplicates
- Massively imbalanced data → overfit minority

Undersampling Majority Class

- $\downarrow n_{majority} = n_{minority}$
- Randomly remove majority class examples
- Removes potentially useful data.

Split features

- (1, 1034) kWh \rightarrow (3, 345) kWh from same X_i
- Fully sparse feature vectors
- Label granularity labels assumed, not known

Undersampling and Oversampling visualized

Addressing Class Imbalance: SMOTE, ADASYN, & Focal Loss

SMOTE & ADASYN

- Synthetic Minority Oversampling Technique
- Create synthetic $X_{minority}$ in feature space.
- $x_{new} = x_i + \lambda \times (x_{zi} x_i), \lambda \in [0,1]$
- Variants Borderline/SVM-SMOTE, ADASYN
- Performance limited by data quality
- Focal Loss Sigmoid Focal Crossentropy
 - Facebook AI loss for foreground segmentation
 - Designed for highly imbalanced datasets
 - Misclassified example → class weight ↑
 - Overfitting ↓↓, but AUC ↓ as well

SMOTE Visualized

Addressing Class Imbalance – Loss Weights

- Zheng: both classes as equally important.
- But $n_1 \ll n_0 \Rightarrow$ more "expensive" to misclassify minority than majority class.
- Concretely, if $n_1 << n_0 \implies \mathcal{L}(X_1) \gg \mathcal{L}(X_0)$
- To make classes equally important for learning, assign weights k_1 and k_0 in loss

$$k_1 \times n_1 = k_0 \times n_0 = 0.5$$

- Make misclassified minorities k times more expensive for loss than misclassified majority
- Best technique for class imbalance → best balance b/w AUC ↑ and FP/FN ↓

Focus 02: Specialized Models

CONVOLUTIONAL NEURAL NETWORK & WIDE AND DEEP CONVOLUTIONAL NEURAL NETWORK

Convolutional Neural Network

- Hierarchical feature extraction → Generalizability
- Convolve 2D windows of multichannel tenors with filters
- **Filters**: learned feature extractors
- Stride: distance between centers of adjacent convolutional windows.
- Padding: to be divisible by 7
- Pooling: strongest feature extracted by a convolution & reduces the dimensionality of the input patch.
- Zheng: 1D data (daily) → pad → reshape → 2D data (weekly)

CNN data flow

Wide and Deep Neural Network

- Pioneered by Google AI
- Combines both WNN & CNN
- Generalization AND memorization
- Loss: WDNN < CNN < WNN
- AUC: WNN > CNN > WDNN
- 1D tensor for WNN & 2D/3D tensor for CNN component.
- WNN + CNN O/P → Sigmoid
- Outperforms other classifiers

Loss comparison on the canonical California Housing price dataset. WDNN outperforms both wide and deep neural networks.

Wide and Deep Neural Network

- Pioneered by Google AI
- Combines both WNN & CNN
- Generalization AND memorization
- Loss: WDNN < CNN < WNN
- AUC: WNN > CNN > WDNN
- 1D tensor for WNN & 2D/3D tensor for CNN component.
- WNN + CNN O/P \rightarrow Sigmoid
- Outperforms other classifiers
- Highest compute complexity
- Highest propensity to overfit

AUC on the SGCC (FYP dataset). WDNN outperforms CNN and WNN, but tends to overfit very quickly.

Focus 03: WDNN Hyperparameter tuning

MAXIMISING WDNN MODEL PERFORMANCE

WDNN Hyperparameter tuning

A hyperparameter tuning workflow implemented from scratch for compatibility with Keras Functional API WDNN

WDNN Hyperparameter Tuning

- WDNN → keras functional API
- Grid Search API: incompatible
- Implemented hyperparameter tuning from scratch
- Combinations of hyperparameter values → build function.
- One model per combo.
- Plot train/val loss and AUC ∀ combos → visualize trends
- Max AUC @ 4 /5 epochs → best value

Effect of WNN Dense Units on WDNN

Tuning Visualized: trends in train/validation loss and AUC for WDNN densely connected units

WDNN Hyperparameter Tuning

- WDNN → keras functional API
- Grid Search API: incompatible
- Implemented hyperparameter tuning from scratch
- Combinations of hyperparameter values → build function.
- One model per combo.
- Plot train/val loss and AUC ∀ combos → visualize trends
- Max AUC @ 4 /5 epochs → best value

Component	Parameter	Zheng	Tuning	AUC (Optimal)
CNN	Regularizer	NA	DO OR BN	~0.79
	Activation	ReLU	SeLU	~0.76
	No. of Filters	18 ~ 20	8	~0.77 - ~0.78
	Kernel Size	(3, 3)	(3, 3)	~0.77 - ~0.78
	Dense Units	50	54	~0.78
	Dense Activ.	ReLU	SeLU	~0.78 - 0.79
	Pool Size	Max (3, 7)	Max (3, 7)	Not tuned
WNN	Units	64 (60% TR)	54	0.78
	Activation	ReLU	Softmax	0.78

Focus 04: Model Deployment

AMAZON WEB SERVICES (AWS) AND SAGEMAKER → PRODUCTION

Model Deployment: AWS

Amazon Web Services (AWS)

- Cloud computing platform for interfacing by client.
- Serving 34% of the cloud market all over the world.
- On demand computing + custom API interactions.
- Storage, GPUs, RAM & runtime optimization online

Amazon SageMaker

- Build, train, validate, & deploy models.
- Pre-built ML model images → fine tune if needed.
- Autopilot: Sagemaker chooses best algorithm!

Model Deployment: Web Services Used

S3 Bucket

- Storage logically partitioned and set up based on user's needs.
- bucket that can be linked when a compute instance is launched.
- Bucket data uniquely identifiable by key/prefix pair → call in notebook to load data.

Notebook Instance

- Jupyter Notebook instances isolated computing environments running on cloud instances.
- Can also be used for setting up model endpoints that can be invoked for making predictions.

AWS Lambda

- Automates launching and managing server resources \rightarrow no human intervention required.
- Instantly reallocates resources in response to a request.

Cloud Processing Workflow

- User \longleftrightarrow API Gateway \longleftrightarrow λ function
- lambda_handler: stores
 the features in its event
 argument in the form of
 either a dictionary, CSV file
 or a JSON tree.
- Invoke_endpoint:
 client: data → compute
 instance → prediction
- Prediction = p(y = 1|data)
- Prediction → JSON → API
 Gateway → Response
- One request per consumer

Cloud Processing Workflow

API Structure

Results: WDNN

- WDNN trained with hyperparameters in slide 18.
- Best Model: ROC AUC = 0.82
- Best Model: Lowest FP/FN
- Different hyperparameters from Zheng's → ROC AUC ↑.
- Trained on standard scaled,
 20 epochs, 54 dense units.
- Weighted binary crossentropy loss function
- Softmax : CNN component
 SeLU WNN component.
- Dropout and Batch Norm regularization for overfitting

Results: Classification Threshold

- Classification threshold = ϵ
- $\widehat{y_i} = \begin{cases} 1, & P(y_i = 1|X_i) > \epsilon \\ 0, & P(y_i = 1|X_i) \le \epsilon \end{cases}$
- $\bullet \quad \epsilon \uparrow \Rightarrow n(\hat{y}_i = 1) \downarrow, P \downarrow$
- No "optimal" value for $\epsilon \rightarrow$ depends on use case
- $\epsilon \uparrow$: TN \downarrow , FP \downarrow , TP \downarrow
- $\epsilon \downarrow$: TP \uparrow , FP \uparrow , TN \downarrow
- Tested $\epsilon \in [0.5, 0.75]$
- We recommend ϵ = 0.525

$$\epsilon = 0.65$$

 $\epsilon = 0.525$

Results

- 5/6 models: $AUC_{FYP} > AUC_{Zheng}$
- CNN results → no tuning, not using manual filter design.
- WDNN AUC 1: feature scaling, weighed loss, extensive tuning
- Greatest improvement in WNN followed by WDNN then SVM.
- WDNN > CNN > SVM > RF > WNN > LR in terms of AUC
- WDNN ROC AUC ↑, FP ↓, FN ↓
- WDNN best model for the FYP.

Model Performance Comparison - FYP vs Zheng

Comparing ROC AUC of our model's against Zheng's benchmark

Results

- 5/6 models: $AUC_{FYP} > AUC_{Zheng}$
- CNN results → no tuning, not using manual filter design
- WDNN AUC 1: feature scaling, weighed loss, extensive tuning
- Greatest improvement in WNN followed by WDNN then SVM.
- WDNN > CNN > SVM > RF > WNN > LR in terms of AUC
- WDNN ROC AUC ↑, FP ↓, FN ↓
- WDNN best model for the FYP.
- Up to 6% improvement on Zheng's benchmark

Percentage Improvement in ROC AUC

Achieved up to 6% improvement on Zheng's ROC AUC. CNN performance is lower because no hyperparameter tuning.

Conclusions

- Successful proof of concept: ML is a viable technique for detecting energy theft using kWh data.
- DL > ML: multiple non-linear transformations of feature space \rightarrow richer representations of data
- FYP > Zheng: Our AUCs are up to 6% higher than Zheng's on 5/6 models.
- Best Model: WDNN: highest ROC AUC (0.82), lowest FP/FN by true label
- Class Imbalance techniques: Weighted loss by class weights > focal loss, SMOTE, sampling
- Dimensionality Reduction: PCA, KPCA unsuitable, and possibly unnecessary for this project.
- Deployment: AWS is very useful, but can be unreliable e.g. tf, py version inconsistencies

The Importance of Data Quality

- Good data >> Good models: Model performance, utility of SMOTE, PCA → all limited by data quality.
- Data Quality ↑ if fewer missing data, more timeseries data → performance ↑

Future Work

Sequence Models

- Memory and state → learn meaningful, long-term dependencies and patterns in timeseries data
- 1D-CNN, bidirectional LSTM, transformers

Anomaly Detection

- Semi-supervised learning: need labels for few, not all, examples
- Identify kWhs that deviate "sufficiently" from the norm \rightarrow outliers, anomalies.
- Pre-built algorithms in Scikit-Learn

AWS Batch Transform

- Inference right now: one request → one consumer.
- For scalability, one request → multiple consumers
- AWS Batch Transform: concurrency + parallel processing → inference on multiple examples.

Thank You

QUESTIONS?