Лабораторная работа № 1 ДО ПРОХОЖДЕНИЕ СИГНАЛОВ ЧЕРЕЗ RC-ЦЕПИ

Методические указания по выполнению лабораторной работы в среде DesignLab 8.0»

Исследование частотных характеристик НЧ-фильтра

- 1. В операционной системе «Windows» под управлением программы «Schematics» собрать схему для исследования частотных свойств НЧ-фильтра:
 - Открыть библиотеку элементов (Draw GetNewPart).
 - Выбрать из библиотеки следующие компоненты:
 - резистор R;
 - источник синусоидального напряжения VAC;
 - конденсатор C;
 - узел нулевого потенциала AGND или EGND.
 - Расположить элементы на рабочем поле в соответствии с принципиальной схемой рис. 1. Для этого на элемент, с которым надо что-то сделать, поместить курсор мыши и щелкнуть его левой кнопкой. Элемент окрасится, отмеченный элемент можно повернуть (*Ctrl/R*), удалить (*Delete*) или переместить, задать или изменить обозначение и параметры элемента.

Рис. 1. Принципиальная схема моделирования

- Соединить элементы в соответствии с принципиальной схемой. Для этого курсор мыши перевести в режим рисования соединительных линий (*иконка карандаш с тонкой линией*). Подвести карандаш к выводу одного из элементов и щелкнуть левой кнопкой мыши (ЛКМ). Подвести карандаш к другой точке схемы и снова щелкнуть ЛКМ. И так далее. Для отмены режима рисования щелкнуть правой кнопкой мыши.
- Можно ввести обозначения элементов в соответствии с рис. 1. Для этого дважды щелкнуть на имя элемента. В выплывшем окне ввести нужное имя.
- Установить параметры резистора и конденсатора. Для этого дважды щелкнуть ЛКМ на элементе. В выплывшем окне установить нужное значение параметра. Для источника напряжения установить ACMAG=1V (амплитуда входного сигнала равна 1В на всем частотном диапазоне) (рис. 2).

Рис. 2.

- Сохранить схему в рабочей папке, например, D:\Student\<*name>*. Имя папки и файла не должно содержать кириллицы.
- 2. Снять амплитудно-частотную характеристику НЧ-фильтра.
 - Установить (см. рис. 3) режим анализа по переменному току (Analysis/Setup AC Sweep или иконка ::):

Decade – изменение частоты по логарифмическому закону;

Pts/Decade = 101 – число точек на декаду;

Start Freq = 10 – начальная частота;

End Freq = 1Meg – конечная частота.

Рис.3.

- Подключить выходу схемы (см. рис. 1) специальный маркер измерения напряжения в децибелах (Markers Mark Advanced Vdb). В этом случае выходной сигнал, а так как $U_{\rm Bx}$ =1B, то и коэффициент передачи, измеряется в децибелах.
- Запустить расчет схемы(F11 или иконка \square) и получить амплитудночастотную характеристику НЧ-фильтра.

Рис. 4. *Исследование частотных характеристик ВЧ-фильтра*

- Для исследования процессов в ВЧ-фильтре, необходимо поменять местами резистор и конденсатор, изменить их параметры в соответствии с вариантом.
- Далее надо сохранить новую схему в рабочей папке под другим именем.
- Запустить расчет схемы (F11 или иконка \square) и получить амплитудночастотную характеристику ВЧ-фильтра.
- Воспользовавшись электронным курсором (пиктограмма $\stackrel{\checkmark}{}$) и маркером курсора (пиктограмма $Mark\ Label\ \stackrel{\checkmark}{}$) по АЧХ схемы с разделительным конденсатором определить на уровне -3дБ нижнюю граничную частоту f_H (рис. 5).

Рис. 5.

Исследование временных характеристик RC-цепи с интегрирующим конденсатором

- Чтобы создать схему для исследования временных характеристик *RC*-цепи с интегрирующим конденсатором надо открыть схему НЧ-фильтра, созданную ранее, заменить источник VAC на импульсный источник VPULSE.
- К входу и выходу схемы (вместо маркера Vdb) надо подключить маркер для измерения напряжения (Markers Voltage или пиктограмма (puc.6).

– Задать параметры импульсного генератора VPULSE (рис. 7):

V1=0 -минимальное значение импульсного сигнала;

V2=... V – максимальное значение импульса равно U_m (зависит от варианта);

TD=1n – задержка импульса относительно начала временного анализа;

TR=1n –длительность переднего фронта импульса;

TF=1n — длительность заднего фронта импульса;

PW=...u – длительность импульса $t_{\rm u}$ (в мкс) (зависит от варианта);

PER= можно не задавать (в этом случае импульс будет одиночным).

Рис. 7.

– Отключить анализ частотных характеристик и установить режим анализа во временной области (*Analysis/Setup - Transient*) (рис. 8):

Print Step=20ns – шаг вывода данных;

Final Time=...us – конечное время расчета (в мкс) определяется как $2t_{\rm H}$; Step Ceiling = (0.01...0.02) Final Time.

Рис.8.

- Запустить расчет схемы (F11) и получить временные зависимости (рис.9).
- Воспользовавшись двумя электронными курсорами определить по уровням $0,1...0,9~U_m$ длительности фронта $t_{\rm o}$ и среза $t_{\rm c}$ выходного напряжения.

Рис. 9. Исследование временных характеристик RC-цепи с разделительным конденсатором

- Для исследования временных характеристик *RC*-цепи с разделительным конденсатором надо открыть схему BЧ-фильтра, созданную ранее, заменить источник VAC на импульсный источник VPULSE.
- Дальнейшие действия как в предыдущем пункте.
- Запустить расчет схемы (F11) и получить временные зависимости (рис. 10).
- Воспользовавшись двумя электронными курсорами определить максимальное значение выходного сигнала $U_{\rm m}$ и спад плоской вершины Δu .

Исследование временных характеристик RC-цепи с дифференцирующим конденсатором

- В предыдущей схеме уменьшить емкость конденсатора C_2 в 100 раз.
- Оставить маркер для вывода напряжения только на выходе исследуемой схемы.
- Запустить расчет схемы (F11 или пиктограмма \square) и получить временную зависимость (рис.11).
- С помощью электронных курсоров по уровню $0.5U_{\rm m}$ определить длительности положительного и отрицательного импульсов.

Рис. 11.

Приложение.

Определение произвольной частоты по графику LH: LH= 20 $\lg(U_{\text{вых}}/U_{\text{вх}})$, построенному в логарифмическом масштабе: $f_x = 10^{\binom{n+\frac{a}{b}}{b}}$

