主要内容

- 神经网络与循环神经网络
 - 1. 强大的功能
 - 2. 层级结构
 - 3. 多种RNN
- LSTM
 - 1. 长时依赖问题
 - 2. "记忆细胞"与状态
- **LSTM变体**
 - 1. GRU等

□ 模仿论文(连公式都格式很正确)

For $\bigoplus_{n=1,\dots,m}$ where $\mathcal{L}_{m_{\bullet}}=0$, hence we can find a closed subset \mathcal{H} in \mathcal{H} and any sets \mathcal{F} on X, U is a closed immersion of S, then $U\to T$ is a separated algebraic space.

Proof. Proof of (1). It also start we get

$$S = \operatorname{Spec}(R) = U \times_X U \times_X U$$

and the comparison in the fibre product covering we have to prove the lemma generated by $\coprod Z \times_U U \to V$. Consider the maps M along the set of points Sch_{fppf} and $U \to U$ is the fibre category of S in U in Section, \ref{Sch} and the fact that any U affine, see Morphisms, Lemma $\ref{Morphism}$. Hence we obtain a scheme S and any open subset $W \subset U$ in Sh(G) such that $\operatorname{Spec}(R') \to S$ is smooth or an

$$U = \bigcup U_i \times_{S_i} U_i$$

which has a nonzero morphism we may assume that f_i is of finite presentation over S. We claim that $\mathcal{O}_{X,x}$ is a scheme where $x,x',s''\in S'$ such that $\mathcal{O}_{X,x'}\to \mathcal{O}'_{X',x'}$ is separated. By Algebra, Lemma ?? we can define a map of complexes $\mathrm{GL}_{S'}(x'/S'')$ and we win.

To prove study we see that $\mathcal{F}|_U$ is a covering of \mathcal{X}' , and \mathcal{T}_i is an object of $\mathcal{F}_{X/S}$ for i>0 and \mathcal{F}_p exists and let \mathcal{F}_i be a presheaf of \mathcal{O}_X -modules on \mathcal{C} as a \mathcal{F} -module. In particular $\mathcal{F}=U/\mathcal{F}$ we have to show that

$$\widetilde{M}^{\bullet} = \mathcal{I}^{\bullet} \otimes_{\operatorname{Spec}(k)} \mathcal{O}_{S,s} - i_X^{-1} \mathcal{F})$$

is a unique morphism of algebraic stacks. Note that

Arrows =
$$(Sch/S)_{fppf}^{opp}$$
, $(Sch/S)_{fppf}$

and

$$V = \Gamma(S, \mathcal{O}) \longmapsto (U, \operatorname{Spec}(A))$$

is an open subset of X. Thus U is affine. This is a continuous map of X is the inverse, the groupoid scheme S.

Proof. See discussion of sheaves of sets.

The result for prove any open covering follows from the less of Example ??. It may replace S by $X_{spaces, \acute{e}tale}$ which gives an open subspace of X and T equal to S_{Zar} , see Descent, Lemma ??. Namely, by Lemma ?? we see that R is geometrically regular over S.

Lemma 0.1. Assume (3) and (3) by the construction in the description.

Suppose $X = \lim |X|$ (by the formal open covering X and a single map $\underline{Proj}_X(A) = \operatorname{Spec}(B)$ over U compatible with the complex

$$Set(A) = \Gamma(X, \mathcal{O}_{X, \mathcal{O}_X}).$$

When in this case of to show that $Q \to C_{Z/X}$ is stable under the following result in the second conditions of (1), and (3). This finishes the proof. By Definition?? (without element is when the closed subschemes are catenary. If T is surjective we may assume that T is connected with residue fields of S. Moreover there exists a closed subspace $Z \subset X$ of X where U in X' is proper (some defining as a closed subset of the uniqueness it suffices to check the fact that the following theorem

(1) f is locally of finite type. Since $S = \operatorname{Spec}(R)$ and $Y = \operatorname{Spec}(R)$.

Proof. This is form all sheaves of sheaves on X. But given a scheme U and a surjective étale morphism $U \to X$. Let $U \cap U = \coprod_{i=1,\dots,n} U_i$ be the scheme X over S at the schemes $X_i \to X$ and $U = \lim_i X_i$.

The following lemma surjective restrocomposes of this implies that $\mathcal{F}_{x_0} = \mathcal{F}_{x_0} = \mathcal{F}_{x_0} = \mathcal{F}_{x_0}$.

Lemma 0.2. Let X be a locally Noetherian scheme over S, $E = \mathcal{F}_{X/S}$. Set $\mathcal{I} = \mathcal{J}_1 \subset \mathcal{I}_n'$. Since $\mathcal{I}^n \subset \mathcal{I}^n$ are nonzero over $i_0 \leq \mathfrak{p}$ is a subset of $\mathcal{J}_{n,0} \circ \overline{A}_2$ works.

Lemma 0.3. In Situation ??. Hence we may assume q' = 0.

Proof. We will use the property we see that $\mathfrak p$ is the mext functor (??). On the other hand, by Lemma ?? we see that

$$D(\mathcal{O}_{X'}) = \mathcal{O}_X(D)$$

where K is an F-algebra where δ_{n+1} is a scheme over S.

□模仿莎士比亚的作品

PANDARUS:

Alas, I think he shall be come approached and the day When little srain would be attain'd into being never fed, And who is but a chain and subjects of his death, I should not sleep.

Second Senator:

They are away this miseries, produced upon my soul, Breaking and strongly should be buried, when I perish The earth and thoughts of many states.

DUKE VINCENTIO:

Well, your wit is in the care of side and that.

Second Lord:

They would be ruled after this chamber, and my fair nues begun out of the fact, to be conveyed, Whose noble souls I'll have the heart of the wars.

Clown:

Come, sir, I will make did behold your worship.

VIOLA:

I'll drink it.

□ 模仿小四的作品

每个人, 闭上眼睛的时候, 才能真正面对光明

他们在吱呀作响的船舷上,静静看着世界,没有痛苦的声音,碎裂的海洋里摇晃出阵阵沉默,吞噬过来。他们的躯体,一点,一点,逐渐暗淡在

你们虔诚的看着远方,我抬起头,不经意间,目光划过你们的面庞,上面淡淡的倔强印,那么坚强

尘世凡间

沉睡亿万光年的年轻战士

萦绕不散的寂寞烟云中

静候在末世岛屿之上

守候,女王何时归来

你的目光延向她迟归的方向

缓缓推进的海浪

这最后一夜

荡漾

□看图说话

看图说话和问答

一辆火车沿着森林边的铁轨驶

问:冲浪板是什么颜色的?

签: 黄色。

一只狗在盆里玩。

神经网络到循环神经网络

□我们知道神经网络结构如下

hidden layer 1 hidden layer 2

□ 那循环神经网络和它是什么关系呢?

循环神经网络

- □ 为什么有BP神经网络, CNN, 还要RNN?
 - 传统神经网络(包括CNN),输入和输出都是互相独立的。
 - 图像上的猫和狗是分隔开的,但有些任务, 后续的输出和之前的内容是相关的。
 - 》"我是中国人,我的母语是"
 - RNN引入"记忆"的概念
 - ▶ 循环2字来源于其每个元素都执行相同的任务。
 - ▶ 但是输出依赖于 输入 和 "记忆"

循环神经网络之 结构

□ 简单来看,把序列按时间展开

循环神经网络之 结构

- □ X₊是时间t处的输入
- \square S_t是时间t处的"记忆", S_t=f(UX_t+WS_{t-1}), f可以是tanh等
- □ 0_t是时间t出的输出,比如是预测下个词的话,可能是softmax输出的属于每个候选词的概率

循环神经网络之 结构细节

- □ 可以把隐状态S_t视作"记忆体", 捕捉了之前时间点上的信息。
- □ 输出O_t由当前时间及之前所有的"记忆"共同计算得到。
- □ 很可惜,实际应用中,S_t并不能捕捉和保留之前所有信息(记忆有限?)
- □ 不同于CNN, 这里的RNN其实整个神经网络都共享一组参数(U, V, W), 极大减小了需要训练和预估的参数量
- □ 图中的O_t在有些任务下是不存在的,比如文本情感分析, 其实只需要最后的output结果就行

不同类型的RNN

- □ 双向RNN
 - □有些情况下, 当前的输出不只依赖于之前的序列元素, 还可能依赖之后的序列元素
 - □比如从一段话踢掉部分词, 让你补全
 - □直观理解: 2个RNN叠加

不同类型的RNN

- □ 深层双向RNN
 - □和双向RNN的区别是每一步/每个时间点我们设定多层 结构

- □ 前面提到的RNN解决了,对之前的信息保存的问题
- □ 但是! 从在长期依赖的问题。
 - 看电影的时候,某些情节的推断需要依赖很久以前的 一些细节。
 - ■很多其他的任务也一样。
 - 很可惜随着时间间隔不断增大时, RNN 会丧失学习到 连接如此远的信息的能力。
 - 也就是说,记忆容量有限,一本书从头到尾一字不漏的去记,肯定离得越远的东西忘得越多。
 - 怎么办: LSTM

- □ LSTM是RNN一种,大体结构几乎一样。区别是?
 - □它的"记忆细胞"改造过。
 - □该记的信息会一直传递,不该记的会被"门"截断。

□ 之前提到的RNN结构如下

□ 咱们把"记忆细胞"表示得炫酷一点

- □ LSTM呢?
 - □"记忆细胞"变得稍微复杂了一点点

□ 图太复杂,细节看不懂?别着急,我们解释解释。

- □ LSTM关键:"细胞状态"
 - □细胞状态类似于传送带。直接在整个链上运行,只有一些少量的线性交互。信息在上面流传保持不变会很容易。

- □ LSTM怎么控制"细胞状态"?
 - □通过"门"让信息选择性通过,来去除或者增加信息到细胞状态
 - □包含一个sigmoid神经网络层 和 一个pointwise乘法操作
 - □ Sigmoid 层输出0到1之间的概率值,描述每个部分有多少量可以通过。 0代表"不许任何量通过",1就指"允许任意量通过"

- □ 第1步:决定从"细胞状态"中丢弃什么信息 => "忘记门"
- □ 比如完形填空中填"他"或者"她"的问题,细胞状态可能包含当前主语的类别,当我们看到新的代词,我们希望忘记旧的代词。

$$f_t = \sigma\left(W_f \cdot [h_{t-1}, x_t] + b_f\right)$$

- □ 第2步:决定放什么新信息到"细胞状态"中
 - Sigmoid层决定什么值需要更新
 - ② Tanh层创建一个新的候选值向量 $ilde{C}_t$
 - 3 上述2步是为状态更新做准备

$$i_t = \sigma(W_i \cdot [h_{t-1}, x_t] + b_i)$$

$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

- □ 第3步:更新"细胞状态"
 - 更新C_{t-1}为C_t
 - ② 把旧状态与f_t相乘,丢弃掉我们确定需要丢弃的信息
 - $\mathbf{3}$ 加上 \mathbf{i}_{t} * \mathbf{C}_{t} 。这就是新的候选值,根据我们决定更新每个状态的程度进行变化。

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

- □ 第4步:基于"细胞状态"得到输出
 - 首先运行一个sigmoid 层来确定细胞状态的哪个部分将输出
 - 2 接着用tanh处理细胞状态(得到一个在-1到1之间的值),再将它和sigmoid门的输出相乘,输出我们确定输出的那部分。
 - B 比如我们可能需要单复数信息来确定输出"他"还是"他们"

$$o_t = \sigma (W_o [h_{t-1}, x_t] + b_o)$$
$$h_t = o_t * \tanh (C_t)$$

LSTM的变体

- □ 变种1
 - ▶ 增加"peephole connection"
 - ▶ 让 门层 也会接受细胞状态的输入。

$$f_t = \sigma \left(W_f \cdot [\boldsymbol{C_{t-1}}, h_{t-1}, x_t] + b_f \right)$$

$$i_t = \sigma \left(W_i \cdot [\boldsymbol{C_{t-1}}, h_{t-1}, x_t] + b_i \right)$$

$$o_t = \sigma \left(W_o \cdot [\boldsymbol{C_t}, h_{t-1}, x_t] + b_o \right)$$

LSTM的变体

- □ 变种2
 - > 通过使用 coupled 忘记和输入门
 - > 之前是分开确定需要忘记和添加的信息,这里是一同做出决定。

$$C_t = f_t * C_{t-1} + (1 - f_t) * \tilde{C}_t$$

LSTM的变体

- □ 变种3: Gated Recurrent Unit (GRU), 2014年提出
 - > 将忘记门和输入门合成了一个单一的 更新门
 - >同样还混合了细胞状态和隐藏状态,和其他一些改动。
 - ▶ 比标准LSTM简单。

LSTM比较?

- □ 2015的paper 《LSTM: A Search Space Odyssey》中,对各种变体做了对比,发现其实本质上它们大同小异。
- □ 2015的论文《An Empirical Exploration of Recurrent Network Architectures》中,google和facebook的大神尝试了1w+种RNN架构,发现并非所有任务上LSTM都表现最好。
- □ 现在有更多的RNN研究方向,比如attention model和Grid LSTM等等