COMP111: Artificial Intelligence

Section 9a. Reasoning under Uncertainty 2a

Frank Wolter

Content

- Random variables
- ▶ (Full) joint probability distribution
- Marginalization
- Probabilistic inference problem

Random variable

Let (S, P) be a probability space. A random variable F is a function $F: S \to \mathbb{R}$ that assigns to every $s \in S$ a single number F(s).

- Neither a variable nor random
- English translation of variabile casuale

We still assume that the sample space is finite. Thus, given a random variable F from some sample space S, the set of numbers r that are values of F is finite as well.

The event that F takes the value r, that is $\{s \mid F(s) = r\}$, is denoted (F = r). The probability (F = r) of the event (F = r) is then

$$P(F = r) = P(\{s \mid F(s) = r\})$$

Example 1

Let

$$S = \{car, train, plane, ship\}$$

Then the function $F: S \to \mathbb{R}$ defined by

$$F(car) = 1$$
, $F(train) = 1$, $F(plane) = 2$, $F(ship) = 2$

is a random variable.

$$(F = 1)$$
 denotes the event $\{s \in S \mid F(s) = 1\} = \{car, train\}.$

Define a uniform probability space (S, P) by setting

$$P(car) = P(train) = P(plane) = P(ship) = \frac{1}{4}$$

Then
$$P(F = 1) = P(\{s \in S \mid F(s) = 1\}) = P(\{car, train\}) = \frac{1}{2}$$
.

Example 2

Suppose that I roll two dice. So the sample space is

$$S = \{1, 2, 3, 4, 5, 6\}^2$$

and $P(ab) = \frac{1}{36}$ for every $ab \in S$.

Let

$$F(ab) = a + b$$
.

F is a random variable. The probability that

$$F = r$$

for a number r (say, 12) is given by

$$P(F = r) = P(\{ab \mid F(ab) = r\})$$

For example, $P(F = 12) = P(\{ab \mid F(ab) = 12\}) = P(66) = \frac{1}{36}$.

Random Variable

When defining a probability distribution P for a random variable F, we often do not specify its sample space S but directly assign a probability to the event that F takes a certain value. Thus, we directly define the probability

$$P(F = r)$$

of the event that F has value r. Observe:

- ▶ $0 \le P(F = r) \le 1$;
- $\sum_{r\in\mathbb{R}} P(F=r) = 1.$

Thus, the events (F = r) behave in the same way as outcomes of a random experiment.

Notation and Rules

▶ We write $\neg(F = r)$ for the event $\{s \mid F(s) \neq r\}$. For example, assume the random variable *Die* can take values $\{1, 2, 3, 4, 5, 6\}$ and

$$P(Die = n) = \frac{1}{6}$$

for all $n \in \{1, 2, 3, 4, 5, 6\}$ (thus we have a fair die). Then $\neg(Die = 1)$ denotes the event

$$(Die = 2)$$
 or $(Die = 3)$ or $(Die = 4)$ or $(Die = 5)$ or $(Die = 6)$

We have the following complementation rule:

$$P(\neg(F=r)) = 1 - P(F=r)$$

• We write $(F_1 = r_1, F_2 = r_2)$ for ' $(F_1 = r_1)$ and $(F_2 = r_2)$ '.

Notation and Rules

▶ We write $(F_1 = r_1) \lor (F_2 = r_2)$ for ' $(F_1 = r_1)$ or $(F_2 = r_2)$ '. Then

$$P((F_1 = r_1) \lor (F_2 = r_2)) = P(F_1 = r_1) + P(F_2 = r_2) - P(F_1 = r_1, F_2 = r_2)$$

▶ Conditional probability: if $P(F_2 = r_2) \neq 0$, then

$$P(F_1 = r_1 \mid F_2 = r_2) = \frac{P(F_1 = r_1, F_2 = r_2)}{P(F_2 = r_2)}$$

Product rule:

$$P(F_1 = r_1, F_2 = r_2) = P(F_1 = r_1 \mid F_2 = r_2) \times P(F_2 = r_2)$$

Notation

We sometimes use symbols distinct from numbers to denote the values of random variables.

For example, for a random variable *Weather* rather than using values 1, 2, 3, 4, we use

sunny, rain, cloudy, snow

Thus,

$$(Weather = sunny)$$

denotes the event that it is sunny.

To model a visit to a dentist, we use random variables *Toothache*, *Cavity*, and *Catch* (the dentist's steel probe catches in the tooth) that all take values 1 and 0 (for true and false).

For example, (Toothache=1) states that the person has toothache and (Toothache=0) states that the person does not have toothache.

Examples of probabilistic models

To model a domain using probability theory, one first introduces the relevant random variables. We have seen two basic examples:

► The weather domain could be modeled using the single random variable *Weather* with values

(sunny, rain, cloudy, snow)

► The dentist domain could be modeled using the random variables *Toothache*, *Cavity*, and *Catch* with values 0 and 1 for true and false.

We might be interested in

$$P(Cavity = 1 \mid Toothache = 1, Catch = 1)$$

Student Exam Domain

A very basic model of the performance of students in an exam could be given by the random variables

- Grade: takes as values the possible grades of a student in the exam;
- Answers: takes as values the possible answers to exam questions;
- Background: takes as value the school visited before going to university;
- Works_hard: takes as values the degree to which the student works hard.

We might be interested in

$$P(Grade = A \mid Works_hard = 1, Background = Comprehensive)$$

Fire Alarm Domain

A basic model of a fire alarm system and reporting about it could be given by the following random variables (all take value 0 or 1):

- Fire: there is fire;
- Alarm: the alarm goes off;
- ► *Tampering*: there is tampering with the alarm system;
- Smoke: there is smoke (no smoke detector used);
- Leaving: people leave the building;
- Report: it is reported that people leave the building (reporting not always correct).

We might be interested in

$$P(Fire = 1 \mid Report = 1)$$

Probability Distribution

- The probability distribution for a random variable gives the probabilities of all the possible values of the random variable.
- ▶ For example, let Weather be a random variable with values

such that its probability distribution is given by

- ► P(Weather = sunny) = 0.7;
- ightharpoonup P(Weather = rain) = 0.2
- ► P(Weather = cloudy) = 0.08;
- ightharpoonup P(Weather = snow) = 0.02.
- Assume the order of the values is fixed. Then we write instead

$$P(Weather) = (0.7, 0.2, 0.08, 0.02)$$

where the bold **P** indicates that the result is a vector of numbers representing the individual values of *Weather*.

More Probability Distributions

► Assume the random variable *Die* can take the values 1,2,3,4,5,6 and represents a fair die. Then we can define its probability distribution as

$$\mathbf{P}(Die) = (\frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6})$$

▶ Recall the random variable F(ab) = a + b from the sample space $S = \{1, 2, 3, 4, 5, 6\}^2$ with $P(ab) = \frac{1}{36}$ for all $a, b \in \{1, 2, 3, 4, 5, 6\}$. Then 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 are its possible values. Then

$$\mathbf{P}(F) = (\frac{1}{36}, \frac{2}{36}, \frac{3}{36}, \dots, \frac{1}{36})$$

Joint Probability Distribution

Let F_1, \ldots, F_k be random variables. A joint probability distribution for

$$F_1, \ldots, F_k$$

gives the probabilities

$$P(F_1=r_1,\ldots,F_k=r_k)$$

for the events

$$(F_1 = r_1)$$
 and \cdots and $(F_k = r_k)$

that F_1 takes value r_1 , F_2 takes value r_2 , and so on up to k, for all possible values r_1, \ldots, r_k .

The joint probability distribution is denoted $P(F_1, ..., F_k)$.

Example

A possible joint probability distribution P(Weather, Cavity) for the random variables Weather and Cavity is given by the following table:

Weather =	sunny	rain	cloudy	snow
Cavity = 1	0.144	0.02	0.016	0.02
Cavity = 0	0.576	0.08	0.064	0.08

The probabilities of the joint distribution sum to 1!

Full Joint Probability Distribution

A full joint probability distribution

$$P(F_1,\ldots,F_k)$$

is a joint probability distribution for all relevant random variables F_1, \ldots, F_k for a domain of interest.

Every probability question about a domain can be answered by the full joint distribution because the probability of every event is a sum of probabilities

$$P(F_1=r_1,\ldots,F_k=r_k)$$

(The r_1, \ldots, r_k are often called data points or sample points.)

Example: Full Joint Probability Distribution for Dentist Domain

Assume the random variables *Toothache*, *Cavity*, *Catch* fully describe a visit to a dentist.

Then a full joint probability distribution is given by the following table:

	${\it Toothache}=1$		Toothache=0	
	Catch = 1	Catch = 0	Catch = 1	Catch = 0
$\it Cavity = 1$	0.108	0.012	0.072	0.008
Cavity = 0	0.016	0.064	0.144	0.576

The probabilities of the joint distribution sum to 1!

Full Joint Probability Distributions

► The full joint probability distribution for the student exam domain, denoted

P(*Grade*, *Answers*, *Background*, *Works_hard*)

gives the probability for every possible combination of values of the random variables *Grade*, *Answers*, *Background*, and *Works_hard*.

▶ The full joint probability distribution for the fire alarm domain gives the probability for every possible combination of values of the random variables *Fire*, *Alarm*, *Tampering*, *Smoke*, *Leaving*, and *Report*.

Marginalization

Given a joint distribution $P(F_1, ..., F_k)$, one can compute the marginal probabilities of the random variables F_i by summing out the remaining variables.

For example,

$$P(Cavity = 1) = 0.108 + 0.012 + 0.072 + 0.008 = 0.2$$

is the sum of the entries in the first row of:

	${\it Toothache}=1$		Toothache=0	
	Catch = 1	Catch = 0	Catch = 1	Catch = 0
$\mathit{Cavity} = 1$	0.108	0.012	0.072	0.008
Cavity = 0	0.016	0.064	0.144	0.576

Conditional Distributions

- We can also compute conditional distributions from the full joint distribution.
- ▶ We use the **P** notation for conditional distributions.
- ▶ $P(F \mid G)$ gives the conditional distribution of F given G given by the probabilities $P(F = r \mid G = s)$ for all values r and s.
- Using P notation, the general version of the product rule is as follows:

$$P(F,G) = P(F \mid G)P(G)$$

stands for the list of equations:

$$P(F = r_1, G = s_1) = P(F = r_1 | G = s_1)P(G = s_1)$$

 $P(F = r_1, G = s_2) = P(F = r_1 | G = s_2)P(G = s_2)$
 $\cdots = \cdots$

Probabilistic Inference

Probabilistic inference can be characterized as the computation of posterior probabilities

$$\mathbf{P}(Q \mid E_1 = e_1, \dots, E_n = e_n)$$

for query variables Q given observed evidence e_1, \ldots, e_n . In principle, we can use the full joint distribution to do this:

	${\it Toothache}=1$		Toothache = 0	
	Catch = 1	Catch = 0	Catch = 1	Catch = 0
$\mathit{Cavity} = 1$	0.108	0.012	0.072	0.008
Cavity = 0	0.016	0.064	0.144	0.576

Example: $P(Cavity \mid Toothache = 1)$

We want to compute the conditional probability distribution for Cavity given the observation/evidence Toothache = 1.

Thus we want to compute:

- $ightharpoonup P(Cavity = 1 \mid Toothache = 1)$ and
- $ightharpoonup P(Cavity = 0 \mid Toothache = 1)$

We can easily obtain this using the table:

$$P(\textit{Cavity} = 1 \mid \textit{Toothache} = 1) = \frac{P(\textit{Cavity} = 1, \textit{Toothache} = 1)}{P(\textit{Toothache} = 1)} = \frac{0.12}{0.2} = 0.6$$

$$P(\textit{Cavity} = 0 \mid \textit{Toothache} = 1) = \frac{P(\textit{Cavity} = 0, \textit{Toothache} = 1)}{P(\textit{Toothache} = 1)} = \frac{0.08}{0.2} = 0.4$$

The denominator 0.2 can be viewed as a normalization constant $\frac{1}{\alpha} = 5$ for the distribution $\mathbf{P}(\textit{Cavity}|\textit{Toothache} = 1)$, ensuring that it adds up to 1.

Example: $P(Cavity \mid Toothache = 1)$

Instead of

$$P(\textit{Cavity} = 1 \mid \textit{Toothache} = 1) = \frac{P(\textit{Cavity} = 1, \textit{Toothache} = 1)}{P(\textit{Toothache} = 1)} = \frac{0.12}{0.2} = 0.6$$
 $P(\textit{Cavity} = 0 \mid \textit{Toothache} = 1) = \frac{P(\textit{Cavity} = 0, \textit{Toothache} = 1)}{P(\textit{Toothache} = 1)} = \frac{0.08}{0.2} = 0.4$

consider

$$\begin{aligned} \textbf{P}(\textit{Cavity} \mid \textit{Toothache} = 1) &= & \alpha \textbf{P}(\textit{Cavity}, \textit{Toothache} = 1) \\ &= & \alpha (0.12, 0.08) \\ &= & 5 (0.12, 0.08) \\ &= & (0.6, 0.4) \end{aligned}$$

Combinatorial Explosion

This approach does not scale well: for a domain described by n random variables taking k distinct values each we face two problems:

- ▶ Writing up the full joint distribution requires $k^n 1$ entries;
- ▶ How do we find the numbers (probabilities) for the entries?

For these reasons, the full joint distribution in tabular form is **not** a practical tool for building reasoning systems.