Application of Information Theory, Lecture 4

Asymptotic Equipartition Property, Data Compression & Gambling

Handout Mode

Iftach Haitner

Tel Aviv University.

March 27, 2018

Part I

Asymptotic Equipartition Theorem

Entropy as # of bits to describe random variable

- ▶ In what sense is it true?
- ▶ Let $k \le n \in \mathbb{N}$ and $p = \frac{k}{n}$

$$\binom{n}{k} := \frac{n!}{k!(n-k)!}$$

$$\approx \frac{\left(\frac{n}{e}\right)^n}{\left(\frac{k}{e}\right)^k \cdot \left(\frac{n-k}{e}\right)^{n-k}} \qquad \text{(Stirling approx: } m! \approx \left(\frac{m}{e}\right)^m\text{)}$$

$$= \frac{n^n}{k^k(n-k)^{n-k}}$$

$$= \left(\frac{k}{n}\right)^{-k} \cdot \left(\frac{n-k}{n}\right)^{-(n-k)}$$

$$= p^{-pn} \cdot (1-p)^{-(1-p)n}$$

$$= 2^{-p\log(p)n} \cdot 2^{-(1-p)\log(1-p)n}$$

$$= 2^{n(-p\log p - (1-p)\log(1-p))}$$

$$= 2^{n \cdot h(p)}$$

▶ It takes about $n \cdot h(k/n)$ bits to describe a string of k zeros in $\{0,1\}^n$.

Entropy as # of bits to describe random variable, cont.

- ▶ Let X_1, \ldots, X_n be iid $\sim (p, 1 p)$
- w.h.p. about pn of X_i 's are zeros (law of large numbers)
- Assume that exactly k = pn of x_i 's are zeros
- ▶ There are $\binom{n}{\nu} \approx 2^{nh(p)}$ possibilities.
- ▶ We need nh(p) bits to tell in which possibility we are.
- ▶ In other words: it takes about nh(p) bits to describe $X = X_1, \dots, X_n$, which is H(X)!
- ▶ Describing X:
 - ► Send k the number of zeros in X. (log n bits)
 - ▶ Send the index of X in the strings of k zeroes. (about H(X) bits)
- Over all it takes about H(X) bits

Entropy as # of bits to describe random variable, cont..

- ▶ Let k_1, \ldots, k_ℓ with $\sum k_i = n$, and let $p_i = \frac{k_i}{n}$
- ▶ Let X_1, \ldots, X_n be iid $\sim (p_1, \ldots, p_\ell)$, and $n >> \ell$
- ▶ w.h.p. we can describe $X = X_1, ..., X_n$ using $H(X) = n \cdot H(p_1, ..., p_\ell)$ bits.
 - ▶ $\forall j \in [\ell]$: Send the number of X_i 's that get the value j. $(\ell \cdot \log n \text{ bits})$
 - Send the index of X among all strings of this characterization. (about $n \cdot H(p_1, \dots, p_\ell) = H(X)$ bits)
- Over all it takes about H(X) bits

Asymptotic equipartition theorem (AEP)

- ▶ A sequence $\{Z_i\}_{i=1}^{\infty}$ of rv's converges in probability to μ (denoted $Z_n \xrightarrow{P} \mu$), if $\lim_{n\to\infty} \Pr[|Z_n \mu| > \varepsilon] = 0$ for all $\varepsilon > 0$
- ▶ Let $X_1, ..., X_n$ be iid $\sim p$ and let $\mu = E X_1$.
- ▶ Weak law of large numbers: $\frac{1}{n} \cdot \sum_{i=1}^{n} X_i \stackrel{P}{\longrightarrow} \mu$
- ▶ Let $\mathbf{p}(x_1,...,x_n) = \prod_i p(x_i)$ and consider the rv $\mathbf{p}(X_1,...,X_n)$.
- ► Example p = (.1, .9).

- ▶ Hence, $E_{X_1,...,X_n}[-\log \mathbf{p}(X_1,...,X_n)] = -\sum_i E[\log p(X_i)] = H(X_1,...,X_n)$
- ▶ We will show that w.h.p. $-\log \mathbf{p}(X_1, \dots, X_n)$ is close to its expectation

Asymptotic equipartition theorem (AEP), cont.

By weak law of large numbers:

$$\frac{1}{n}\log\mathbf{p}(X_1,\ldots,X_n)=\frac{1}{n}\sum_i\log p(X_i)\stackrel{P}{\longrightarrow}\mathsf{E}\log p(X_1)=-H(X_1)$$

▶ That is, $\lim_{n\to\infty} \Pr\left[\left|-\frac{1}{n}\log(\mathbf{p}(X_1,\ldots,X_n)) - H(X_1)\right| > \varepsilon\right] = 0$, for any $\varepsilon > 0$

Hence, $\forall \varepsilon > 0$:

- ▶ $\lim_{n\to\infty} \Pr\left[H(X_1) \varepsilon \le -\frac{1}{n}\log(\mathbf{p}(X_1,\ldots,X_n)) \le H(X_1) + \varepsilon\right] = 1$
- $\blacktriangleright \ \lim_{n\to\infty} \Pr\left[2^{-H(X_1,\ldots,X_n)-\varepsilon n} \le \mathbf{p}(X_1,\ldots,X_n) \le 2^{-H(X_1,\ldots,X_n)+\varepsilon n}\right] = 1$
- What does it mean?

Typical values

- ▶ Let $X_1, ..., X_n$ be iid $\sim p$
- ▶ For $n \in \mathbb{N}$ and $\varepsilon > 0$, the typical sequence $A_{n,\varepsilon} := \{(a_1, \ldots, a_n) \colon 2^{-n(H(X_1) + \varepsilon)} \le \Pr[X_1 = a_1 \land \ldots \land X_n = a_n] \le 2^{-n(H(X_1) \varepsilon)}\}$
- ▶ $\frac{1}{2} \cdot 2^{n(H(X_1) \varepsilon)} \le |A_{n,\varepsilon}| \le 2^{n(H(X_1) + \varepsilon)}$ (on board) (for the lower bound we assume $\Pr[(X_1, \dots, X_n) \in A_{n,\varepsilon}] \ge \frac{1}{2}$)
- ▶ Hence, $n(H(X_1) \varepsilon) 1 \le \log |A_{n,\varepsilon}| \le n(H(X_1) + \varepsilon)$
- ▶ So roughly, $(X_1, ..., X_n)$ is close to uniform over $A_{n,\varepsilon}$ and $|A_{n,\varepsilon}| \approx 2^{n(H(X_1))}$
- ▶ $A_{n,\varepsilon}$ might be tiny, but still happens, with respect to X, with high probability.

Part II

Data Compression

Data compression

- ▶ Let $X_1, ..., X_n$ be iid $\sim p$
- ► To describe $(X_1, ..., X_n)$ with negligible error, we need $H(X_1, ..., X_n) + \varepsilon n$ bits, for any $\varepsilon > 0$ and $n \to \infty$
- ▶ So $H(X_1,...,X_n)$ is approximately the number of bits it takes to describe $X_1,...,X_n$

Lower bound

- ► Encoding function $f: \{0,1\}^n \mapsto \{0,1\}^m$ and decoding function $g: \{0,1\}^m \mapsto \{0,1\}^n$ (typically m < n)
- X rv over $\{0,1\}^n$, Y = f(X)
- $\blacktriangleright X \to Y \to g(Y)$
- ▶ Assume $\Pr[g(Y) = X] \ge 1 \varepsilon$ g restores X w.h.p.
- ▶ By Fano, $H(X \mid Y)$ is small: $H(X \mid Y) \le h(\varepsilon) + \varepsilon \log(2^n) \le \varepsilon n + 1$
- ► Hence, $H(X) \varepsilon n 1 \le H(X) H(X|Y) = I(X;Y) = H(Y) H(Y|X) \le H(Y) \le m$
- ▶ Thus, $m \ge H(X) \varepsilon n 1$
- ▶ In case $H(X) = nH(X_1)$, then $m \ge n(H(X_1) \varepsilon) 1$

Codes

Definition 1 (Codes)

A code for random variable X over X is a mapping $C: X \mapsto \Sigma^*$.

- ▶ We call $\{C(x): x \in \mathcal{X}\}$ the codewords of C (with respect to X)
- C is nonsingular, if it is injective over X.
- ► For $\mathbf{x} = (x_1, x_2, ..., x_k) \in \mathcal{X}^k$, let $C(\mathbf{x}) = C(x_1)C(x_2)...C(x_k)$
- \triangleright C is uniquely decodable, if it is nonsingular over \mathcal{X}^*
- lacktriangledown Uniquely decodable \implies nonsingular (other direction is not true)
- A code is prefix code (or instantaneous code), if no codeword is a prefix of another codeword
- ▶ Prefix code ⇒ uniquely decodable
- We focus on binary prefix codes ($\Sigma = \{0, 1\}$)

Examples

- $X \sim (\frac{1}{2}, \frac{1}{4}, \frac{1}{4})$ (i.e., $\Pr[X = i] = p_i$)).
- ▶ We can use one bit to tell whether X = 1 or $X \in \{2,3\}$, and another bit to tell whether X = 2 or X = 3
- ▶ The code

X	C(x)
1	0
2	10
3	11

- ► Expected encoding length: $\frac{1}{2} \cdot 1 + \frac{1}{2} \cdot 2 = 1\frac{1}{2}$
- $X \sim (\frac{1}{3}, \frac{1}{3}, \frac{1}{6}, \frac{1}{6})$

Or

All are prefix codes: no codeword is a prefix of another codeword

Prefix codes

- ▶ Let $X \sim (p_1, ..., p_m)$ (i.e., $Pr[X = i] = p_i$))
- We want to place $\{1, ..., m\}$ on the leaves of a binary tree T (not necessarily in order):

- Every symbol is encoded by the bits on the path leading to it.
- This yields a binary prefix code.
- Every prefix code can be uniquely represented as such a tree
- We identify prefix codes with their trees.
- Encoding/decoding is clear (and highly efficient)

Code length

- ▶ For a prefix code C over X, let $\ell_C(x) = |C(x)|$ (i.e., # of bits in X)
- ▶ Since C a prefix code, $\ell_C(x)$ is the depth of x in the code tree of C
- ▶ $L_X(C) := E[\ell_C(X)]$ is the average code length (of C with respect to X)
- ▶ We sometimes speak about $L_X(T)$ where T is the tree representation of C.
- When clear from the context we omit the subscripts X and C
- \triangleright L(X) is the (average) code length of the optimal prefix code for X
- ▶ How small can L(X) be?
- ▶ It turns out that $H(X) \le L(X) \le H(X) + 1!$

Huffman code

- ► Story...
- ▶ Suppose T is optimal tree for $X \sim (p_1, ..., p_m)$ (wlg. $p_1 \ge p_2 \ge ... \ge p_m$)
- Let v be (one of) the deepest internal vertex in T
- ▶ wlg. the descendants of v are m-1 and m (o/w, we can change it to, w/o increasing $L_X(T)$)

- ▶ T' generated from T be replacing the sub-tree rooted in v with the symbol $\{m-1, m\}$
- $\blacktriangleright L_X(T) = L_{X'}(T') + (p_{m-1} + p_m) \cdot 1$, for $X' \sim (p_1, \dots, p_{m-1} + p_m)$
- T' is optimal tree for X'. (o/w, we can improve T' and hence improve T)
- Huffman algorithm:
 - **1.** Sort $p_1, ..., p_m$
 - **2.** Find (via recursions) the best tree for $(p_1, \ldots, p_{m-1} + p_m)$
 - **3.** Replace leaf $\{m-1, m\}$ with the depth-one tree of leaves m-1, m
- Huffman is an optimal binary prefix code. Proof: ?

Huffman code, example

► *X* ~ (.25, .25, .2, .15, .15)

▶ On board...

Kraft inequality

Theorem 2 (Kraft inequality)

Let C be (binary) prefix code. Then its codewords lengths ℓ_1, \ldots, ℓ_m satisfy

$$\sum_{i \in [m]} 2^{-\ell_i} \le 1.$$

Conversely, for any ℓ_1, \ldots, ℓ_m satisfying the inequality, there exists a prefix code with these lengths.

Theorem extends to the infinite case.

First part:

- Denote the i'th codeword by i
- Let Y the leaf reached by a uniform random walk on the code tree, taking the value ⊥ if reaches empty leaf.
- ▶ $Pr[Y = i] = 2^{-\ell_i}$.
- ▶ Hence, $\sum_{i \in [m]} 2^{-\ell_i} = \sum_i \Pr[Y = i] \le 1$

Kraft inequality. cont.

- ▶ Let $\ell_1 \leq \ldots \leq \ell_m$ be such that $\sum_{i \in [m]} 2^{-\ell_i} \leq 1$
- ▶ We construct a tree of *m* codewords with the above lengths.
 - 1. Start with a full binary tree of depth ℓ_m
 - **2.** At step *i*, assign an unassigned node of depth ℓ_i to the *i*'th codeword, and remove node's descendants from the tree.
- If completed, the algorithm yields the desired code.
- Claim: the algorithm always completes.
 - ▶ $S(\ell,j)$ nodes of depth $\ell \ge \ell_j$ that the assignment of node to the j'th codeword made unavailable.
 - $|\mathcal{S}(\ell,j)| = 2^{\ell-\ell_j}$
 - ▶ $Z(i) := \bigcup_{j=1}^{i-1} S(\ell_i, j)$ nodes of depth ℓ_i unavailable at the beginning of step i
 - $ightharpoonup |\mathcal{Z}(i)| \cdot 2^{-\ell_i} = (\sum_{j \in [i-1]} 2^{\ell_i \ell_j}) \cdot 2^{-\ell_i} = \sum_{j \in [i-1]} 2^{-\ell_j} < 1$
 - $\implies |\mathcal{Z}(i)| < 2^{\ell_i}$
 - \implies At beginning of step *i* exists an available depth- ℓ_i node.

Optimal code

Theorem 3

$$H(X) \leq L(X) < H(X) + 1$$
 for any rv X.

Proving lower bound:

- Let C be a binary prefix code for $X \sim p = (p_1, \dots, p_m)$, and let $\ell_i = |C(i)|$. (As usual, we assume wlg. that $p_i = \Pr[X = i]$).
- ▶ Let $q_1 = 2^{-\ell_1}, \dots, q_m = 2^{-\ell_m}$. By Kraft. $\sum q_i \le 1$
- ▶ By Jensen (HW 1) $-\sum_{i \in [m]} p_i \log p_i \le -\sum p_i \log q_i = \sum_i p_i \ell_i = L_X(C)$
- ► Hence $H(X) \leq L_X(C)$.

Proving upper bound:

- $\blacktriangleright \ \ell_i = \lceil -\log p_i \rceil.$
- ► $\sum_{i \in [m]} 2^{-\ell_i} \le \sum_{i \in [m]} p_i \le 1$
- ▶ By Kraft, \exists boolean prefix code C over X with $C(i) = \ell_i$
- ► $L_X(C) = \sum_i p_i \ell_i < \sum_i p_i (-\log p_i + 1) = -\sum_i p_i \log p_i + \sum_i p_i = H(X) + 1$

Discrete distribution generation

Definition 4

Algorithm G generates the rv $X \sim \{p_1, \dots, p_m\}$ if the following holds: in each step, G either stops or flips a coin $\sim (q_i, 1 - q_i)$.^a After it stop, G outputs a value in \mathbb{N} . The probability that G outputs i is p_i .

Proposition 5

Let X be rv, and let g(X) be the expected number of coins used by its best generating algorithm. Then $H(X) \leq g(X) < H(X) + 1$. If each p_i is a power of 2 (i.e., 2^{-k} for some $k \in \mathbb{Z}$), then g(X) = H(X).

Proof: ? HW

Proposition 6 (proof omitted)

Let X be a rv, and let $g_b(X)$ be the expected number of coins used by its best generating algorithm that only flips uniform coins. Then $H(X) \le g_b(X) \le H(X) + 2$.

 a_{q_i} can be a function of previous coins outcome.

Part III

Gambling

Horse racing

- ► Horses {1,..., *m*}
- ▶ If horse i wins, gambler get payoff oi per 1 \$
- ► Gambler strategy $\mathbf{b} = (b_1, \dots, b_m) b_i$ is the fraction of gambler wealth invested in horse i $(b_i \ge 0 \text{ and } \sum_i b_i = 1)$
- ▶ If horse *i* wins, gamblers' wealth is multiplied by b_io_i
- ▶ Let $X \sim \mathbf{p} = (p_1, \dots, p_m)$ be the outcome of a random race.
- ▶ $S(X) := \mathbf{b}(X)\mathbf{o}(X)$ is the factor in which gamblers' wealth is multiplied in a single race (letting $\mathbf{z}(i) = z_i$)
- ▶ We are interested in $S_n := \prod_{i=1}^n S(X_i)$, where X_i 's are iid $\sim p$

Doubling rate

For gambling strategy $\mathbf{b} = (b_1, \dots, b_m)$, and race outcome distribution $\mathbf{p} = (p_1, \dots, p_m)$, $S_n := \prod_{i=1}^n S(X_i) = \prod_{i=1}^n \mathbf{b}(X_i) \mathbf{o}(X_i)$, where X_i 's are iid $\sim p$

Definition 7 (doubling rate)

The doubling rate is $W(\mathbf{b}, \mathbf{p}) = \sum_{i=1}^{m} p_i \log(b_i o_i)$

Theorem 8

For race outcome $\sim \mathbf{p}$ and gambling strategy \mathbf{b} , it holds that $S_n \xrightarrow{n} 2^{nW(\mathbf{b},\mathbf{p})}$

Proof:

- fix **p** and **b** and let X_1, \ldots, X_m be iid \sim **p**
- ▶ $\log S(X_1), \ldots, \log S(X_n)$ are iid
- By weak low of large numbers,

$$\frac{1}{n}\log S_n = \frac{1}{n}\sum_i \log(S(X_i)) \stackrel{n}{\longrightarrow} \mathsf{E}(\log S(X_1)) = W(\mathbf{b}, \mathbf{p})$$

Maximal doubling rate

Theorem 9

Let
$$W^*(\mathbf{p}) = \max_{\mathbf{b}} W(\mathbf{b}, \mathbf{p})$$
, then $W^*(\mathbf{p}) = W(\mathbf{p}, \mathbf{p}) = \sum_i p_i \log o_i - H(\mathbf{p})$

Roughly, best strategy is to follow the distribution (ignoring the payoffs)!

$$W(\mathbf{b}, \mathbf{p}) = \sum_{i=1^{m}} p_{i} \log(b_{i}o_{i})$$

$$= \sum_{i} p_{i} \log\left(\frac{b_{i}}{p_{i}}p_{i}o_{i}\right)$$

$$= \sum_{i} p_{i} \log o_{i} - H(\mathbf{p}) - \sum_{i} p_{i} \cdot \log \frac{b_{i}}{p_{i}}$$

$$= \sum_{i} p_{i} \log o_{i} - H(\mathbf{p}) - D(\mathbf{p}||\mathbf{b})$$

$$\leq \sum_{i} p_{i} \log o_{i} - H(\mathbf{b}) = W(\mathbf{p}, \mathbf{p})$$

where $D(\mathbf{p}||\mathbf{b})$, the relative entropy from \mathbf{p} to \mathbf{b} , is known to be non-negative.

Gambling with side information

- Let (X, Y) ~ p be the outcome of a race and a side information, and let
 o be the race payoffs.
- $\blacktriangleright W^*(X) := \max_{\mathbf{b}} \sum_{x} p_X(x) \left(\mathbf{b}(x) o(x) \right)$

The best strategy for (X, \mathbf{o})

 $\blacktriangleright W^*(X|Y) := \max_{\mathbf{b}} \sum_{x,y} p(x,y) \log(\mathbf{b}_y(x)o(x))$

The best strategy for (X, \mathbf{o}) , when Y is known

Theorem 10

$$\Delta W = I(X; Y).$$

- $W^*(X) = \sum_{x} p_X(x) \log o(x) H(X)$
- $W^*(X|Y) = \mathsf{E}_{y \leftarrow Y} \left[\sum_{x} p_{X|Y}(x|y) \log o(x) H(X|_{Y=y}) \right] = \sum_{x} p_{X}(x) \log o(x) H(X|Y)$
- ▶ Hence, $\Delta W = H(X) H(X|Y) = I(X;Y)$.