Universidad Tecnologica Nacional Facultad Regional Buenos Aires

Teoría de circuitos II

Laboratorio N°1: Teoria moderna y filtrado activo

Informe de laboratorio

Curso: R4001

Autores:

Albanesi, Tomas Agustin

Docentes:

- Dr. Ing. Soria Llamedo, Mariano
- Ing. Fuoco, César
- Ing. Pavelek, Israel

Índice

1.	Descripción del trabajo de laboratorio	3
2.	Desarrollo matemático	4
3.	Diagrama en bloques del circuito	5
4.	Diagramas esquemáticos	6
5.	Diagramas de PCB	7
6.	Listado de materiales (BOM)	8
7.	Método de medición	9

1. Descripción del trabajo de laboratorio

El laboratorio realizado tiene como principales objetivos los siguientes:

- Consolidar los conceptos de teoría moderna mediante la implementación circuital.
- Simular e implementar el filtro con componentes activos de precisión.
- Medir las partes de la función transferencia para frecuencias menores a 100 kHz.

Para realizarlo, se selecciono la siguiente plantilla de filtrado:

Filtro	Función de aproximación	Frecuencia de corte	Frecuencia de stop	Atenuación máxima en banda de paso	Atenuación mínima en banda de stop
В	Chebyshev	4.6 kHz	1.2 kHz	1 dB	20 dB

	Pasa altos normalizado	Pasa bajos prototipo	
	Manzana	4	
	Naranja	10	
İ	Plátano	3	

Cuadro 1: Fruta disponible

2. Desarrollo matemático

En primer lugar en base a los datos del filtro solicitado:

Filtro	Función de aproximación	Frecuencia de corte	Frecuencia de stop	Atenuación máxima en banda de paso	Atenuación mínima en banda de stop
В	Chebyshev	4.6 kHz	1.2 kHz	1 dB	20 dB

Procederemos a realizar la plantilla de atenuación del filtro:

Filtro	Función de aproximación	Frecuencia de corte	Frecuencia de stop	Atenuación máxima en banda de paso	Atenuación mínima en banda de stop
В	Chebyshev	4.6 kHz	1.2 kHz	1 dB	20 dB

Luego, debido a que nos encontramos en presencia de un filtro pasa altos, debemos convertir los parametros de la plantilla a un filtro pasa bajos prototipo, de la siguiente forma:

3. Diagrama en bloques del circuito

4. Diagramas esquemáticos

5. Diagramas de PCB

6. Listado de materiales (BOM)

7	TA / T / A 1	1	1 /
7.	Matodo	do	medición
	MICHORD	\mathbf{u}	mountion