Lista 3

Exercício 4 Exemplo: esfera.

- (a) Determine as geodésicas da esfera \mathbb{S}^n com sua métrica canônica.
- (b) Determine o grupo de isometrias da esfera \mathbb{S}^n com sua métrica canônica.

Solution.

(a) **Ideia essencial.** Suponha que $\gamma: I \to \mathbb{S}^n \subset \mathbb{R}^{n+1}$ é uma geodésica. Podemos pensar que $\gamma': I \to T\mathbb{S}^n \subset T\mathbb{R}^{n+1} = \mathbb{R}^{n+1}$ e analogamente $\gamma'': I \to \mathbb{R}^{n+1}$. Espaço tangente à esfera é perpendicular ao vetor posição, i.e. $\gamma \perp \gamma'$. Também $\gamma'' \perp \gamma'$; isso é porque $\gamma'' = (\gamma'')^\top + (\gamma'')^\perp$, e como γ é geodésica sabemos que $(\gamma'')^\top = 0$. Por fim, $\gamma'' = \lambda \gamma$, então concluímos que γ está dada por senos e cosenos.

Para escrever isso formalmente precisamos de uma expressão experta para γ . Em [Lee19] Prop. 5.27 achamos inspiração: damos a volta ao problema e começamos propondo uma curva que vai acabar sendo geodésica. Pegue um ponto $\mathfrak{p} \in \mathbb{S}^n$ e um vetor unitário $\mathfrak{v} \in T_\mathfrak{p} \mathbb{S}^n$. Considere

$$\gamma(t) = \cos tp + \sin tv$$

Derivando como uma simples curva em \mathbb{R}^{n+1} , vemos que $\gamma'' = -\gamma$, o que significa que $(\gamma'')^{\top} = 0$, i.e. γ é uma geodésica de \mathbb{S}^n . Mais precisamente,

$$\gamma''(t) = \left(\nabla_{\frac{d}{dt}}^{i\circ\gamma}\gamma'\right)_t \in (i\circ\gamma)^*T\mathbb{R}^{n+1} \cong \gamma^*(T\mathbb{S}^n \oplus N)$$

não tem componente tangente, e portanto

$$0 = \nabla^{\gamma}_{\frac{d}{d+}} \gamma' \in \gamma^* T \mathbb{S}^n.$$

Sendo essa uma geodésica partindo de um ponto arbitrário numa direção arbitrária, concluimos por unicidade das geodésicas e *rescaling lemma* que todas as geodésicas de \mathbb{S}^n são como γ .

Note que a geodésica γ é uma parametrização do círculo unitário no plano gerado pelos vetores p e ν , i.e. um círculo máximo. Em conclusão, as geodésicas são os círculos máximos de \mathbb{S}^n .

(b) Afirmo que $\text{Isom}\,\mathbb{S}^n=O(n+1)\stackrel{\text{def}}{=}\{A\in GL(n+1):AA^T=Id\}$. É claro que $O(n+1)\subset I\text{som}\,\mathbb{S}^n$, pois as transformações $A\in O(n+1)$ preservam o produto interno euclideano:

$$\begin{split} AA^T &= Id \iff \sum_k A_{ik} A_{jk} = \delta_{ij} \iff Ae_i \cdot Ae_j = \delta_{ij} \\ &\iff A\nu \cdot Aw = A\left(\nu^i e_i\right) \cdot A\left(w^j e_j\right) = \nu^i w^j e_i \cdot e_j = \nu \cdot w. \end{split}$$

Para ver que Isom $\mathbb{S}^n \subset \mathsf{O}(n+1)$ suponha que $A: \mathbb{S}^n \to \mathbb{S}^n$ é uma isometria. Vamos mostrar que A é a restrição de uma função $\tilde{A} \in \mathsf{O}(n+1)$. Defina

$$\tilde{A}: \mathbb{R}^{n+1} \longrightarrow \mathbb{R}^{n+1}$$
$$(r, \theta) \longmapsto rA(1, \theta)$$
$$0 \longmapsto 0$$

Se mostramos que \tilde{A} é uma isometria linear, é claro que ela é um elemento de O(n+1) pela conta anterior. De fato, basta mostrar que \tilde{A} é uma isometria, pois toda isometria de espaços de Banach que fixa a origem é linear ([?] Teo. 7.11).

Para ver que \tilde{A} é uma isometria de \mathbb{R}^{n+1} , **afirmo** que a distância de p a q está totalmente determinada pelas normas $\|p\|$ e $\|q\|$, e pela distancia esférica entre $\frac{p}{\|p\|}$ e $\frac{q}{\|q\|}$. Note que essa afirmação é na verdade um problema de geometria plana, pois todas essas quantidades podem ser descritas dentro do único plano que contém 0, p e q.

Figure 1: Intento de prova

Acabou que essa afirmação é simplesmente a lei dos cosenos, já que a distância esférica entre $\frac{p}{\|p\|}$ e $\frac{q}{\|q\|}$ é exatamente o angulo entre p e q (poque essa distância é um segmento de círculo máximo!):

lei dos cosenos:
$$d(p,q)^2 = \|p\|^2 + \|q\|^2 - 2\|p\|\|q\|\cos\angle(p,q)$$

Em fim, \tilde{A} é uma isometria porque $d_{\mathbb{R}^{n+1}}(p,q)=d_{\mathbb{R}^{n+1}}(\tilde{A}p,\tilde{A}q)$ pelo argumento anterior.

Exercício 12 Seja (G, g) um grupo de Lie munido de uma métrica bi-invatiante e ∇ sua conexão de Levi-Civita.

(a) Mostre que

$$\nabla_{\mathbf{u}} \mathbf{v} = \frac{1}{2} [\mathbf{u}, \mathbf{v}],$$

para cada $\mathfrak{u}, \mathfrak{v} \in \mathfrak{g} \subset \mathfrak{X}(\mathsf{G})$.

(b) Seja $\overline{\nabla}$ uma conexão agim simétrica em G. Mostre que $\overline{\nabla}=\nabla$ se e somente se $\overline{\nabla}_{\mathfrak{u}}\mathfrak{u}=0$ para todo $\mathfrak{u}\in\mathfrak{g}.$

Solution.

(a) Como ∇ é Levi-Civita, temos Koszul, i.e. $\forall u, v, w \in \mathfrak{g}$,

$$2 \langle \nabla_{\mathbf{u}} \mathbf{v}, \mathbf{w} \rangle = \mathbf{u} \langle \mathbf{v}, \mathbf{w} \rangle + \mathbf{v} \langle \mathbf{u}, \mathbf{w} \rangle - \mathbf{w} \langle \mathbf{u}, \mathbf{v} \rangle$$
$$- \langle \mathbf{u}, [\mathbf{v}, \mathbf{w}] \rangle + \langle \mathbf{v}, [\mathbf{w}, \mathbf{u}] \rangle + \langle \mathbf{w}, [\mathbf{u}, \mathbf{v}] \rangle$$

Como $\langle\cdot,\cdot\rangle$ é invariante à esquerda, é constante quando avaliamos em elementos de $\mathfrak g$, e portanto os primeiros três termos se anulam. Então o exercício acaba quando mostramos que

$$\langle v, [w, u] \rangle = \langle u, [v, w] \rangle = -\langle u, [w, v] \rangle.$$

Seguindo [dC79], p. 45., a ideia é usar o fluxo $\phi: \mathbb{R} \times G \to G$ de w para expressar o colchete de Lie. Primeiro precisamos de

Afirmação O fluxo φ de um campo invariante à esquerda w comuta com a traslação à esquerda, i.e.,

$$\phi_t(e) \circ L_h = L_h \circ \phi_t(e) \qquad \forall t \in \mathbb{R} \forall h \in G.$$

Prova da afirmação. Derivamos de ambos lados. Por um lado,

$$\frac{d}{dt}\Big|_{t=0}\phi_t(e)\circ L_h = \frac{d}{dt}\Big|_{t=0}\phi_t(h) = \nu_h$$

Por outro lado.

$$\frac{d}{dt}\Big|_{t=0} L_h \circ \phi_t(e) = (L_h)_{*,\phi_t(e)} \frac{d}{dt}\Big|_{t=0} \phi_t(e) = (L_h)_{*,e} \nu_e = \nu_h.$$

Por unicidade das soluções de EDOs, acabou.

Então repare:

$$\varphi_{\mathsf{t}}(\mathsf{h}) = (\varphi_{\mathsf{t}} \circ \mathsf{L}_{\mathsf{h}})(e) = (\mathsf{L}_{\mathsf{h}} \circ \varphi_{\mathsf{t}})(e) = \mathsf{h}\varphi_{\mathsf{t}}(e) = \mathsf{R}_{\varphi_{\mathsf{t}}(e)}\mathsf{h},$$

ou seja, qualquer curva integral de w é simplesmente a curva integral que passa por e trasladada.

Agora lembre que o colchete de Lie pode ser expressado como

$$[w,v]_e = \frac{d}{dt}\Big|_{t=0} \Big(\phi_{-t}\Big)_{*,\phi_t(e)} \nu_{\phi_t(e)}.$$

(Onde fixamos o parámetro -t e deixamos livre o outro para ver φ_{-t} como um difeomorfismo de G.)

Juntando com a discussão anterior obtemos

$$[w,v]_{e} = \frac{\mathrm{d}}{\mathrm{d}t}\Big|_{t=0} \Big(\mathsf{R}_{\varphi_{-t}(e)} \Big)_{*,\varphi_{t}(e)} \nu_{\varphi_{t}(e)}.$$

Agora repare: como a métrica é bi-invariante,

$$\begin{split} \langle u, \nu \rangle &= \left\langle \left(R_{\phi_{-t}(e)} \right)_{*,\phi_{t}(e)} \left(L_{\phi_{t}(e)} \right)_{*,e} u_{e\prime} \left(R_{\phi_{-t}(e)} \right)_{*,\phi_{t}(e)} \left(L_{\phi_{t}(e)} \right)_{*,e} \nu_{e} \right\rangle \\ &= \left\langle \left(R_{\phi_{-t}(e)} \right)_{*,\phi_{t}(e)} u_{\phi_{t}(e)\prime} \left(R_{\phi_{-t}(e)} \right)_{*,\phi_{t}(e)} \nu_{\phi_{t}(e)} \right\rangle \end{split}$$

Agora derivemos como funções de t (dentro de T_eG , i.e. não precisamos derivada covariante), e avaliemos em t=0. (Note que quando avaliamos em t=0 o factor que não derivamos não muda—estamos trasladando à direita e à esquerda por $\varphi_0(e)$!) Obtemos:

$$\begin{split} 0 &= \frac{d}{dt} \Big|_{t=0} \left\langle \left(R_{\phi_{-t}(e)} \right)_{*,\phi_{t}(e)} u_{\phi_{t}(e)}, \left(R_{\phi_{-t}(e)} \right)_{*,\phi_{t}(e)} \nu_{\phi_{t}(e)} \right\rangle \\ &= \left\langle \frac{d}{dt} \Big|_{t=0} \left(R_{\phi_{-t}(e)} \right)_{*,\phi_{t}(e)} u_{\phi_{t}(e)}, \left[\left(R_{\phi_{-t}(e)} \right)_{*,\phi_{t}(e)} \nu_{\phi_{t}(e)} \right]_{t=0} \right\rangle \\ &+ \left\langle \left[\left(R_{\phi_{-t}(e)} \right)_{*,\phi_{t}(e)} u_{\phi_{t}(e)} \right]_{t=0}, \frac{d}{dt} \Big|_{t=0} \left(R_{\phi_{-t}(e)} \right)_{*,\phi_{t}(e)} \nu_{\phi_{t}(e)} \right\rangle \\ &= \left\langle \left[w, u \right]_{e}, \nu_{e} \right\rangle + \left\langle u_{e}, \left[w, \nu \right]_{e} \right\rangle. \end{split}$$

Pelo inciso (a), é claro que se $\overline{\nabla} = \nabla$, $\overline{\nabla}_{\mathfrak{u}}\mathfrak{u} = 0$. Para a implicação contrária, vejamos que

$$\overline{\nabla}_{\mathbf{u}} \mathbf{v} = \frac{1}{2} [\mathbf{u}, \mathbf{v}], \qquad \mathbf{u}, \mathbf{v} \in \mathfrak{g}$$

que é conveniente porque sabemos que isso é igual a $\nabla_{\mathbf{u}} v$ pelo inciso (a). É só fazer:

$$0 = \overline{\nabla}_{u+v} u + v = \overline{\nabla}_{u} u + \overline{\nabla}_{v} v + \overline{\nabla}_{v} u + \overline{\nabla}_{v} v$$

Lembre que $\overline{\nabla}$ é simétrica, i.e. $\overline{\nabla}_{\mathfrak{u}} v - \overline{\nabla}_{v} \mathfrak{u} = [\mathfrak{u}, v]$. Somando com a equação anterior:

$$\overline{\nabla}_{\mathbf{u}} \mathbf{v} - \overline{\nabla}_{\mathbf{v}} \mathbf{u} + \overline{\nabla}_{\mathbf{u}} \mathbf{v} + \overline{\nabla}_{\mathbf{v}} \mathbf{u} = [\mathbf{u}, \mathbf{v}]$$

como queríamos. Para concluir é só ver que ∇ e $\overline{\nabla}$ também coincidem em campos vetoriais que não são invariantes à esquerda. Então pegue uma base $\{u_i\} \subset \mathfrak{g}$ e dois campos $X = X^i u_i, Y = Y^j u_i$ quaisquer. Então:

$$\overline{\nabla}_X Y = \overline{\nabla}_{X^i u_i} Y^j u_j = X^i u_i Y_j u_j + Y^j \overline{\nabla}_{u_i} u_j = X^i u_i Y_j u_j + Y^j \nabla_{u_i} u_j = \nabla_X Y.$$

Pergunta Tem algum argumento super simples para argumentar essa última parte sem pegar uma base de g?

Exercício 13 (Exercício 3, Cap. III, [dC79]) Sejam G um grupo de Lie, $\mathfrak g$ sua álgebra de Lie, $\mathfrak e$ $\mathfrak X \in \mathfrak g$. As trajetórias de $\mathfrak X$ determinam uma aplicação $\phi:(-\varepsilon,\varepsilon)\to \mathsf G$ com $\phi(0)=e,\phi'(t)=\mathsf X(\phi(t)).$

- (a) Prove que $\varphi(t)$ está definida para todo $t \in \mathbb{R}$ e que $\varphi(t+s) = \varphi(t) \cdot \varphi(s)$, $(\varphi : \mathbb{R} \to G$ é então chamado um *subgrupo a 1-parâmetro de* G.
- (b) Prove que se G tem uma métrica bi-invariante $\langle \cdot, \cdot \rangle$ então as geodésicas de G que partem de e são os subgrupos a 1-parâmetro de G.

Solution.

(a) Lembre que no exercício anterior mostramos que

$$\phi_t(h) = R_{\phi_+(e)}(h) = h \cdot \phi_t(e), \qquad \forall t \in (-\epsilon, \epsilon), \ \forall h \in G.$$

Fixe um $t_0 \in (-\varepsilon, \varepsilon)$ e pegue $h = \varphi_{t_0}(e)^{-1}$. Obtemos que

$$\varphi_{t}(\varphi_{t_{0}}(e)^{-1}) = \varphi_{t_{0}}(e)^{-1}\varphi_{t}(e).$$

Ou seja, $\phi_{t_0}(e)^{-1}\phi_t(e)$ é uma curva integral de X que passa por e no tempo $t=t_0$. Como também $\phi_{t-t_0}(e)$ é uma curva integral de X que passa por e no tempo $t=t_0$, por unicidade de EDOs obtemos

$$\varphi_{t_0}(e)^{-1}\varphi_t(e) = \varphi_{t-t_0}(e)$$
 (1)

Avaliando o lado esquerdo em $t'=t-t_0$, do lado direito chegamos até $\phi_{t-2t_0}(e)$. Repetindo esse processo cobrimos todo $\mathbb R$.

Para confirmar a segunda propriedade avaliamos eq. (1) em t=0 para obter $\varphi_{t_0}(e)^{-1}=\varphi_{-t_0}(e)$. Para concluir pegue $t,s\in\mathbb{R}$ quaisquer e escreva:

$$\varphi_{t+s}(e) = \varphi_{t-(-s)}(e) = \varphi_{-s}^{-1}\varphi_{t}(e) = \varphi_{s}(e)\varphi_{t}(e).$$

(b) Pegue $X \in \mathfrak{g}$ e considere a curva integral que passa por e, ϕ . Pelo exercício anterior,

$$0 = \nabla_X X = \nabla_{\phi * \frac{d}{dt}} X = \nabla_{\frac{d}{dt}}^{\phi} X \circ \phi = \nabla_{\phi'} \phi'$$

Então as curvas integrais de X que passam por *e* são geodésicas. Como isso é para qualquer vetor em g, por unicidade das soluções a EDOs, acabou.

Exercício 14 Dada uma variedade Riemanniana (M^n, g) denotamos por d_g a distância induzida por g.

- (a) Sejam g, h duas métricas Riemannianas em M^n . Mostre que se $d_g = d_h$ então q = h.
- (b) Seja (M,g) uma variedade Riemanniana e $F:M\to M$ um difeomorfismo. Mostre que F é uma isometria se e somente se $d_g(F(\cdot),F(\cdot))=d_g(\cdot,\cdot)$.

Demostração.

(a) Prova por contrapositiva.

Afirmação Se $g \neq h$, existem um aberto $U \subset M$ e um marco $\{E_i\} \subset \mathfrak{X}(U)$ tais que

$$g(E_{i_0},E_{i_0}) \neq h(E_{i_0},E_{i_0}) \qquad \text{para algum } i_0 \in \{1,\dots,n\}.$$

Prova da afirmação. Se $g(E_i, E_i) = h(E_i, E_i)$ para todo marco em todo aberto de M, é claro que

$$g(X,Y) = g(X^{i}E_{i}, Y^{j}E_{i}) = X^{i}Y^{j}g(E_{i}, E_{i}) = h(X,Y)$$

para quaisquer $X, Y \in \mathfrak{X}(M)$.

Então pegue um marco $\{E_i\} \in \mathfrak{X}(U)$ tal que $g(E_{i_0}, E_{i_0}) \neq h(E_{i_0}, E_{i_0})$ em U. Sendo a diferença dessas quantidades uma função distinta da constante zero, podemos supô-la estritamente positiva dentro de U. Pegue $p \in U$ e uma vizinhança geodésica contendo p, que renomeamos U por simplicidade. Dentro de uma vizinhança geodésica, a distância de p aos outros pontos dentro de U está realizada por geodésicas, então podemos pegar $q \in U$ e γ geodésica ligando p e q.

Considere uma extensão de $\gamma' \in \mathfrak{X}_{\gamma}$ dentro de U, digamos $G = G^{i}E_{i}$. Então:

$$\begin{split} d_g(p,q) &= \int_a^b g(G^i E_i, G^i E_i) \circ \gamma dt = \int_a^b (G^i \circ \gamma)^2 g(E_i, E_i) \circ \gamma dt \\ &\neq \int_a^b (G^i \circ \gamma)^2 h(E_i, E_i) \circ \gamma dt = d_h(p,q). \end{split}$$

(b) Primeiro suponha que $F^*d_g = d_g$. Para mostrar que F é uma isometria usamos o inciso anterior: consideramos as métricas g e F^*g em M. Basta mostrar que $d_g = d_{F^*g}$. Por um tempo pensei que era para usar um câmbio de variáveis, mas acabei pensando assim: Pegue uma curva γ ligando p e q. Note que

$$\underbrace{\int_{\alpha}^{b} F^{*}g(\gamma'(t), \gamma'(t))dt}_{\ell(\text{curva de p a q})} = \underbrace{\int_{\alpha}^{b} g(F_{*,\gamma(t)}\gamma'(t), F_{*,\gamma(t)}\gamma'(t))dt}_{\ell(\text{curva de F(p) a F(q)})}$$

Ou seja, do lado esquerdo estamos medindo o comprimento (respeito à métrica F^*g) de uma curva ligando p a q, enquanto que do lado direito estamos medindo o comprimento (respeito à métrica g) da curva $F \circ \gamma$, que liga F(p) a F(q).

Pegando o ínfimo de ambas quantidades, concluímos que a distância d_{F^*g} coincide com a distância F^*d_g , que por hipótese é igual a d_g . A implicação contrária também fica clara: supondo que $F^*g = g$, levando em conta a igualdade das integrais acima e pegando o ínfimo, concluímos que $F^*d_g = d_g$.

Exercício 15 Suponha que (M^n, g) é uma variedade Riemanniana conexa.

- (a) (M, g) simétrica $\implies (M, g)$ homogênea.
- (b) (M, q) 2-homogênea $\implies (M, q)$ isotrópica.

Solution.

(a) **Ideia.** Pegamos dois pontos $q, q' \in M$. Para usar que M é simétrica buscamos o "ponto meio". Esse deve ser $p \in M$ que esteja no meio do caminho de uma curva minimizante γ ligando q e q'. Daí, pegamos $F \in Iso_p := \{$ isometrias de M que fixam $p\}$ com a propriedade de que $d_pF = -Id$. Daí devemos provar que F preserva γ e não fixa q. Daí, só existem dois pontos em γ que guardam a mesma distância com p: q e q'. Como $F(q) \neq q$ também guarda essa distância, concluímos que F(q) = q'.

Infelizmente fui incapaz de levar minha ideia até uma prova sem ajuda externa. Primeiramente me pareceu improvável a possibilidade de construir a geodésica minimizante (pode não existir para variedades não completas; mostrar que a propriedade de simetria implica a existência de curvas minimizantes parecia muito forte).

Conjectura Para quaisquer $q, q' \in M$ existe uma curva minimizante γ ligando q e q'.

Supondo que existe γ , podemos pegar $F \in Iso_p$ tal que $d_pF = -Id$ onde p é ponto meio sobre γ respeito q e q'.

Tentei mostrar que F preserva γ perto de p usando um marco geodésico, onde a geodésicas são curvas integrais de linhas, mas depois descobri que minha prova estava errada (pois dF só age como - Id em p):

Afirmação Perto de p, $F(\gamma(t)) \in \text{img } \gamma$.

Prova da afirmação. Pegue coordenadas geodésicas centradas em p, de modo que as curvas minimizantes como γ são imagens de retas em T_pM baixo a exponencial. Agora derivamos: $F \circ \gamma$:

$$\frac{d}{dt}\Big|_{t} F \circ \gamma = F_{*,\gamma(t)} \gamma'(t) = -\gamma'(t).$$

Portanto, a derivada da curva $F \circ \gamma$ coincide com a derivada de γ . Por unicidade de soluções de EDOs, concluímos que $F \circ \gamma(t) \in \operatorname{img} \gamma$ dentro desta bola geodésica. \square

Depois desse ponto comecei a buscar ajuda em livros, internet e ChatGPT. Rapidamente reparei que minhas ideias eram boas, e consegui:

Prova da afirmação reforçada. Pegue coordenadas geodésicas centradas em p, de modo que as curvas minimizantes como γ são imagens de retas em T_pM baixo a exponencial. Agora derivamos: $F \circ \gamma$ em t=0 (supondo que $\gamma(0)=p$):

$$\frac{\mathrm{d}}{\mathrm{dt}}\Big|_{\mathrm{t=0}}\mathsf{F}\circ\gamma=\mathsf{F}_{*,p}\gamma'(0)=-\gamma'(0).$$

Portanto, a derivada da curva $(F \circ \gamma)(t)$ coincide com a derivada de $\gamma(-t)$. Por unicidade de soluções de EDOs, concluímos que $F \circ \gamma(t) \in \operatorname{img} \gamma$ dentro desta bola geodésica.

Seguindo com esse raciocínio, $F \circ \gamma$ é uma curva definida em todo o domínio de γ , e portanto deve coincidir com $\gamma(-t)$ ao longo desse domínio. Ou seja, $F \circ \gamma$ é γ percorrida em sentido oposto. Isso significa, por definição de p como ponto meio, e desde que supomos que $\gamma(0) = p$, que, se $\gamma(t_0) = q$, necessariamente $q' = \gamma(-t_0) = (F \circ \gamma)(t_0) = F(q)$, como queríamos. (Note que meu desejo inicial de mostrar que $F(q) \neq q'$ não foi necessário.)

Então tudo fica resolvido se mostramos a conjetura. O motivo inicial para conjeturar isso foi notar que $\mathbb{R}^2\setminus\{0\}$, onde os pontos antípodas (entre outros) não podem ser ligados por curvas minimizantes, parece perder a propriedade de ser um espaço simétrico (que \mathbb{R}^2 tem). Com efeito, a intuição mostra que $\mathrm{Iso}(\mathbb{R}^2\setminus\{0\})=\mathrm{O}(2)$, de modo que o grupo de isotropia Iso_p é trivial para todo ponto.

A inspiração final chega de MathOverflow: parece que, com efeito, toda variedade simétrica é completa:

"Consider a local geodesic and use the symmetry to flip it, effectively doubling the length of the geodesic, ad infinitum"

A ideia nos lembra do exercício que fizemos com grupos de Lie. Pegamos uma geodésica definida perto de p. Pegamos q \neq p dentro da bola geodésica centrada em p. Agora considere F \in Iso $_q$ tal que F $_q$ == Id. Sabemos que γ está definida entre p e q, e, pela afirmação mostrada acima, compondo com F obtemos γ reparametrizada em sentido oposto. Isso permite chegar a um ponto sobre a curva original que fica à mesma distância de q que p, só que no sentido oposto. Repetindo esse processo, vemos que a geodésica pode ser estendida infinitamente.

De fato, isso parece mostrar a conjetura via teorema de Hopf-Rinow, por exemplo em [Lee19], Lemma 6.18 e Coro. 6.20. Tem uma prova sem usar esse teorema?

(b) Queremos ver que $\forall p \in M$ e $\forall v, w \in T^1_pM$ existe $F \in Iso_p(M)$ tal que $F_{*,p}v = w$. Para usar a propriedade de ser 2-homogênea, defina $p_1 := q_1 := p$, e $p_2 := exp_p(v)$, $q_2 := exp_p(w)$. (Isto é, supondo por enquanto que exp_p está definida em vetores de norma 1.) Então existe $F \in Iso(M)$ tal que $F(p_1) = F(q_1)$, i.e. $F \in Iso_p(M)$, e tal que $F(p_2) = F(q_2)$.

Para ver que $F_{*,p}\nu=w$, note que $(F\circ\gamma_{\nu})(1)=F(\gamma_{\nu}(1))=F(p_2)=q_2$. Então $F\circ\gamma_{\nu}$ é uma curva ligando p e q. Pelo exercício 14(b) dessa lista, como F é uma isometria, sabemos que preserva a distância, de modo a $F\circ\gamma_{\nu}$ é minimizimante e portanto uma geodésica. Daí $F\circ\gamma_{\nu}$ é uma reparametrização de γ_{w} ; mas como F é isometria,

preserva a norma dos vetores velocidade e portanto as curvas coincidem. Isso significa que $w=\gamma_w'(0)=(\mathsf{F}\circ\gamma_v)'(0)=\mathsf{F}_{*,p}\gamma_v'(0)=\mathsf{F}_{*,p}\nu.$

Por último só note que se \exp_p não está definida em vetores de norma 1, podemos fazer a mesma construção em vetores que estejam dentro do domínio dela, obtendo uma função cuja diferencial envia um múltiplo pequeno de ν em um múltiplo de igual proporção respeito a w. A diferencial dessa função também envia ν em w, pois é uma isometria linear.

References

[dC79] M.P. do Carmo. *Geometria Riemanniana*. Escola de geometria diferencial. Instituto de Matemática Pura e Aplicada, 1979.

[Lee19] John M. Lee. *Introduction to Riemannian Manifolds*. Graduate Texts in Mathematics. Springer International Publishing, 2019.