Applying Bearing Loads

Bearing Loads in ANSYS

Bearing Loads in SolidWorks

	Material	
Concrete	Concrete Floor	Magnesium Alloy (similar modulus to concrete)
Structural Steel	Wheel	Cast Carbon Steel
	Connections	
No Separation	Global Contact	No Penetration
	Boundary Conditions	
Frictionless Support	Symmetrical Faces	Roller/Slider
Fixed Support	Bottom of Floor	Fixed
	Loading	
Bearing Load (change <i>Vector</i> to <i>Components</i> : y = -2000 N)	2000 N	Bearing Loads 1. Assembly > Reference Geometry 2. "Point" on each Arc Center 3. "Coordinate System" choose "Point" for point and hole's surface for z-axis (coordinate system's z-axis must be aligned with the hole's axis) Load only in negative y- direction
	Mesh	
Medium	Main mesh	Default
Inner surface of hub and lower hole (<i>Refinement</i> = 1)	Refinements	Inner surface of hub and lower hole (Apply mesh control; move slider to 3/4 to Fine)

Optimization in SolidWorks

- Material: Create a custom material (6061 Aluminum Alloy)
 - See picture in zip file
 - o For the Elastic modulus value, select Link parameter from the cell's dropdown menu
 - Click Edit/define...
 - o Name: Elastic modulus; Category: Simulation; Value: 6.9e10
 - o Click OK; Select the new Parameter you created; Click OK
 - The cell should now be blue
- Fixtures: Roller/Slider...on symmetrical faces AND front face (so it doesn't float away!)
- External Loads: Bearing Loads
 - Need coordinate system @ center of each hole
 - Draw construction lines from center of hub to center of each hole; use this line for the coordinate system's x- or y-axis.
 - Create coordinate system using the construction line's point at the center of the hole, the construction line for the x- or y-axis, and the hole's surface for the z-axis (if necessary).
 - Apply bearing load of 300 N directed away from the hub center along the construction line.
- Mesh: use default, but mesh control could be added for holes where stress concentrations will be higher.
- Run Simulation!! Note "Yield Strength" on Von Mises Stress scale!

To create an optimization:

- Right-click on the tab (at the bottom of the window) for the Study you just created and Add Design Study
- Variable
 - Elastic modulus
 - Select Elastic_modulus from the list
 - Select Discrete Values: 1e10,5e10,1e11,5e11,1e12
 - Or define your own step size
 - Hole diameter
 - Select Add parameter...
 - Name: Hole_diameter
 - Category: Model Dimension
 - Select diameter dimension on part in main window.
 - Click OK
 - Either use the default range or define your own.
- Constraints
 - Select Add sensor...
 - Sensor Type > Simulation data
 - Data Quantity > Stress
 - Properties > Model Max
 - Click the green check mark
 - Select *Is less than* = 55 N/mm²
- Goals
 - Select Add sensor...
 - Sensor Type > Mass
 - Click the green check mark
 - Select Minimize
- Run!