$$M = E(Y_4) - PE(Y_4)$$

assuming the formula works for h=k we will show it works for h=k+1

lim
$$E[Y_{f+h}|Y_f]$$
: $\lim_{h \to \infty} Y_{f+h} = Y_{f+h} \lim_{h \to \infty} h$ (if $A \le 0 \to 0 \to 0$) No it does not depend on Y_f it depends on A . (if $A > 0 \to 0 \to 0$)

$$3$$
 $Y_{+} = B_{1} + St + E_{+}, t = 1, ..., T$

Based on the FOC'S of the OLS

$$= \frac{\sum_{t=1}^{T} (t-\bar{t})St}{\sum_{t=1}^{T} (t-\bar{t})^{2}} + \frac{\sum_{t=1}^{T} (t-\bar{t})(B_{1}-\hat{y}_{t})}{\sum_{t=1}^{T} (t-\bar{t})^{2}} + \frac{\sum_{t=1}^{T} (t-\bar{t})E_{t}}{\sum_{t=1}^{T} (t-\bar{t})^{2}}$$

$$= \int_{t=1}^{\infty} \left(\frac{\xi_{+} - \xi_{+}}{\xi_{+}} \right) \left(\frac{1 - \frac{1-\xi_{+}}{2}}{\xi_{+}} \right)^{2}$$

$$Var(\hat{S}-S)/T = var(\int T \frac{\sum_{t=1}^{T} \mathcal{E}_{t}(t-\frac{Tt}{2})}{\sum_{t=1}^{T} (t-\frac{Tt}{2})^{2}} \frac{\overline{\mathcal{E}}_{t}}{\sum_{t=1}^{T} (t-\frac{Tt}{2})^{2}}$$

$$= Var \left[\mathcal{E}_{+} \quad \frac{T \sum_{t=1}^{T} \left(t - \frac{T+1}{2} \right)^{2}}{\left(\sum_{t=1}^{T} \left(t - \frac{T+1}{2} \right)^{2} \right)^{2}} \right]$$

$$= Var \left[\mathcal{E}_{+} \cdot \frac{\uparrow}{\sum_{i=1}^{T} \left(\uparrow - \frac{\uparrow + 1}{2} \right)^{2}} \right]$$

9 iven
$$2+1+2=\frac{T(2T+1)(T+1)}{6}$$

$$\sum_{t=1}^{T} + \frac{1}{2} - 2\sum_{t=1}^{T} \left(t \cdot \frac{T+1}{2} \right) + T \left(\frac{T+1}{2} \right)^{2} = \frac{T(2T+1)(T+1)}{6} - \frac{T(T+1)^{2}}{2} + \frac{T(T+1)^{2}}{4}$$

$$=T\left[\frac{\left(T+1\right)\left(2T+1\right)}{6}-\frac{\left(T+1\right)^{2}}{2}+\frac{\left(T+1\right)^{2}}{4}\right]$$

$$=\frac{\Gamma(\Gamma^2-1)}{12}$$

$$Var(\widehat{S}-S)=\frac{E_{T}+1}{(T+1)(T-1)T}$$

$$= Var(\mathcal{E}_T) \cdot \frac{12}{(T+1)(T-1)}$$

S is superconsistent if the following model holds

$$\mathbb{E}\left(\widehat{S}\right) = \mathbb{E}\left(S\right) + \mathbb{E}\left[\sum_{t=1}^{T} \frac{t-\widehat{t}}{\left|\mathcal{E}_{t+1}^{T}\left(t-\frac{T}{2}\right)\right|^{2}}\left(\left|\mathcal{E}_{t}\right|-\widehat{\mathcal{E}}_{T}\right)\right]$$

$$= \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} \frac{1}{2 \left(1 - \frac{n+1}{2}\right)^{2}} \left[E\left(E_{+} - \overline{E}_{+}\right) \right]$$

In a finite sample it is unpiased

1.

2. Seasonal Patterns

- a. After generating our seasonal dummy variable and computing the regression of gcem on L(0/10) we have the following results seen in Figure 1. Using this we can then calculate the average value for gcem for every month to determine which has the largest and smallest average value seen in Figure 2. Using this we find that March has the largest average value with 0.2396536 and December has the smallest with a value of -0.3081064.
- b. Preforming the OLS of gcem on grres (x) and then with 1, 3, and 5 lags. The 3 regressions are seen in Figure 3. We can then find the three chi2 for each of these regressions in Figure 4. Using these we can calculate the nR2 for each of these regressions and compare them to the Chi2 to test for serial correlation which is seen in the following table.

	nR2	Chi2	Asymptotic
			Distribution
1 Lag	69.0844	69.237	X^2(1)
3 Lags	101.9592	103.322	X^2(3)
5 Lags	114.8512	117.311	X^2(5)

Based on this we see that the Stata reported Chi2 is close to our nR2 for all lags 1, 3, and 5.

- c. Comparing Newey-West standard errors to our regular standard errors we see how the two models differ in Figure 5. As we can see the Newey west SE for grres is 0.408 and the normal regression SE is 0.376. Since there is serial correlation in the error terms the robust standard errors from our OLS regression are not consistent. This differs from our Newey-West SE which are consistent to order p since Newey-West standard errors account for the presence of serial correlation.
- d. Testing the null hypothesis that Beta1 equals Beta2 we find the T-test seen in Figure 6. Based on this we reject the null hypothesis in favour of the alternative hypothesis that Beta1 does not equal Beta2 with a 99% significance level.

Appendix:

Figure 1:

. reg gcem L(0/10).seasonal,robust							
Linear regress	sion	Number of	obs =	300			
				F(11, 288) =	222.59	
				Prob > F		0.0000	
		R-squared		0.8579			
				Root MSE		.07263	
		Robust					
gcem	Coefficient	std. err.	t	P> t	[95% conf.	interval]	
seasonal							
	.0615033	.0311696	1.97	0.049	.0001543	.1228524	
L1.	.4572201	.0277411	16.48	0.000	.402619	.5118211	
L2.	.54776	.0227141	24.12	0.000	.5030534	.5924667	
L3.	.5216514	.0162686	32.06	0.000	.489631	.5536717	
L4.	.3994491	.0145876	27.38	0.000	.3707372	.428161	
L5.	.4189702	.0127077	32.97	0.000	.3939584	.443982	
L6.	.2630278	.0138355	19.01	0.000	.2357962	.2902593	
L7.	.3745389	.012687	29.52	0.000	.3495679	.3995098	
L8.	.2636277	.0132052	19.96	0.000	.2376368	.2896186	
L9.	.3240971	.0131053	24.73	0.000	.2983027	.3498914	
L10.	.070113	.0160822	4.36	0.000	.0384595	.1017666	
_cons	3081064	.0114932	-26.81	0.000	3307278	285485	

Figure 2:

rigure 2.							
. reg gcem L(0/11).seasonal, nocons robust							
Linear regress		Number of obs =					
				F(12, 287) =		100000000000000000000000000000000000000	
				Prob >			
				R-squar			
				Root MS	E =	.0726	
		Robust					
gcem	Coefficient	std. err.	t	P> t	[95% conf	. interval]	
seasonal							
	2466031	.0289752	-8.51	0.000	303634	1895722	
L1.	.1491136	.02525	5.91	0.000	.0994149	.1988124	
L2.	.2396536	.0195931	12.23	0.000	.2010892	.278218	
L3.	.2135449	.0115148	18.55	0.000	.1908808	.2362091	
L4.	.0913427	.0089842	10.17	0.000	.0736594	.109026	
L5.	.1108637	.0054218	20.45	0.000	.1001922	.1215353	
L6.	0450786	.0077029	-5.85	0.000	0602401	0299172	
L7.	.0664325	.005373	12.36	0.000	.055857	.0770079	
L8.	0444787	.0065029	-6.84	0.000	0572782	0316792	
L9.	.0159906	.0062976	2.54	0.012	.0035952	.028386	
L10.	2346745	.011197	-20.96	0.000	2567131	2126358	
L11.	3081064	.011494	-26.81	0.000	3307297	2854831	

Figure 3:

<pre>. estout lag1 lag3 l > legend label va</pre>	lag5, cells(b(star fi arlabels(_cons const		t(2))) ///
	oic, fmt(3 0 1) labe		
> 3tat3(12 ti_1 t	orc, imic(5 0 1) cabe	t(K-sqi uiles bi	C//
	1 Lag	3 Lag	5 Lag
	b/se	b/se	b/se
x	0.091	-0.049	0.060
	(0.32)	(0.30)	(0.30)
L.Residuals	0.474***	0.495***	0.499***
	(0.05)	(0.05)	(0.06)
L2.Residuals		0.003	-0.085
		(0.06)	(0.06)
L3.Residuals		-0.335***	-0.344***
		(0.05)	(0.06)
L4.Residuals			0.149*
			(0.06)
L5.Residuals			-0.264***
			(0.06)
constant	-0.000	-0.001	-0.002
	(0.01)	(0.01)	(0.01)
R-sqr	0.224	0.333	0.378
dfres	305	301	297
BIC	-219.6	-253.8	-261.5
* p<0.05, ** p<0.01,	*** p<0.001		

Figure 4:

lags(p)	chi2	df	Prob > chi2
1	69.237	1	0.0000
3	103.322	3	0.0000
5	117.311	5	0.0000

Figure 5:

	Newey SE b/se	Normal SE b/se
x	0.512	0.512
	(0.408)	(0.376)
constant	0.003	0.003
	(0.012)	(0.011)
R-sqr		0.007
dfres	307	307
BIC		-148.2

Figure 6:

Two-sample t test with equal variances							
Group	0bs	Mean	Std. err.	Std. dev.	[95% conf.	interval]	
1 2	25 26	2466031 .1477424	.0289732 .0242965	.1448661 .1238882	3064009 .0977028	1868053 .1977819	
Combined	51	0455642	.0335445	.2395556	1129403	.0218119	
diff		3943454	.037695		4700964	3185944	
	iff < 0) = 0.0000	Pr(Ha: diff != T > t) =			iff > 0) = 1.0000	