Комплексный Анализ

Основано на лекциях Мельникова Е.В. Конспект написан Заблоцким Данилом

Весенний семестр 2024

Эти записи не одобряются лекторами, и я вношу в них изменения (часто существенно) после лекций. Они далеко не точно отражают то, что на самом деле читалось, и, в частности, все ошибки почти наверняка мои.

Оглавление

1	Гол	оморф	рные функции	3
	1.1	Комп	лексная плоскость	3
		1.1.1	Комплексные числа	3
		1.1.2	Топология комплексной плоскости	5
		1.1.3	Пути, кривые и области	11
	1.2	Функ	ции комплексного переменного	13
		1.2.1	Структура функции комплексного переменного	13
		1.2.2	Степенные ряды	15
		1.2.3	Дифференцируемые и конформные отображения	19
		1.2.4	Дробно-линейные отображения	22
		1.2.5	Элементарные функции	25
	1.3	Теори	ия интеграла Коши	26
		1.3.1	Определения и основные свойства интеграла Коши	26
		1.3.2	Интегральная теорема Коши	27
		1.3.3	Интегральная формула Коши, интеграл типа Коши	29
		1.3.4	Неопределенный интеграл теорем Мореры и Вейерштрас-	-
			ca	30
	1.4	Ряды	Тейлора и Лорана. Элементы теории вычетов	32
		1.4.1	Разложение голоморфной функции в ряд Тейлора	32
		1.4.2	Ряды Лорана	33
		1.4.3	Классификация изолированных особых точек	33
		1.4.4	Вычеты	35
		1.4.5	Вычисление интегралов	36
		1.4.6	Гармонические функции	37
		1.4.7	Целые и мероморфные функции	37
	1.5	Основ	вные принципы комплексного анализа	38
		1.5.1	Принцип аргумента и Теорема Руше	38
	Спи	сок ист	пользуемой литературы	38

Глава 1

Голоморфные функции

Лекция 1: Начало

от 15 фев 12:45

1.1 Комплексная плоскость

1.1.1 Комплексные числа

 $\mathbb{R}^2 := \mathbb{R} \times \mathbb{R},$

$$(x_1, y_1) + (x_2, y_2) \coloneqq (x_1 + x_2, y_1 + y_2),$$

 $(x_1, y_1) \cdot (x_2, y_2) \coloneqq (x_1 x_2 - y_1 y_2, x_1 y_2 + x_2 y_1).$

$$z = (x, y) = x + iy, \ x, y \in \mathbb{R}$$

$$(1,0) =: 1,$$

$$(0,1) =: i,$$

$$(0,0) =: 0$$

 $x = r \cdot \cos \phi$

 $y = r \cdot \sin \phi$

$$x =: \operatorname{Re} z$$
$$y =: \operatorname{Im} z$$

$$r = \sqrt{x^2 + y^2} =: |z|,$$

$$\phi =: \arg z, \qquad \underbrace{0 \leqslant \arg z < 2\pi}_{\text{главное значение аргумента}}$$

$$\operatorname{Arg} z := \operatorname{arg} z + 2\pi k, \ k \in \mathbb{Z}, \quad \overline{z} = x - iy$$

Формула Эйлера:

$$e^{i\phi} = \cos\phi + i\sin\phi, \quad \forall \phi \in \mathbb{R}$$

Тригонометрическая форма записи: $z = |z| \cdot (\cos \arg z + i \sin \arg z)$

Показательная форма записи:

 $z = |z| e^{i \arg z}$

Формула Муавра:

 $z^n = r^n(\cos n\phi + i\sin n\phi)$

$$e^z = e^{x+iy} = e^x \cdot e^{iy}$$

$$z^n = |z|^n e^{in \arg z}$$

$$e^{z_1 + z_2} = e^{z_1} \cdot e^{z_2}$$

$$z^{n} = |z|^{n} e^{in \arg z}$$
$$z = re^{ir}, \quad z^{n} = z_{0}$$

$$\sqrt[n]{z_0} = \sqrt[n]{|z_0|} \cdot e^{i\frac{\arg z_0 + 2\pi k}{n}}, \quad 0 \leqslant k \leqslant n - 1.$$

Теорема 1. $\forall z,z_1,z_2\in\mathbb{C}$ справедливы равенства:

1.
$$z \cdot \overline{z} = |z|^2$$

6.
$$|z_1 \cdot z_2| = |z_1| \cdot |z_2|$$

$$2. \ \overline{(z_1+z_2)}=\overline{z_1}+\overline{z_2}$$

7.
$$|z_1 + z_2| \leq |z_1| + |z_2|$$

$$3. \ \overline{z_1 \cdot z_2} = \overline{z_1} \cdot \overline{z_2}$$

8.
$$||z_1| - |z_2|| \leq |z_1 - z_2|$$

$$4. \ \overline{\overline{z}} = z$$

9.
$$\arg(z_1 \cdot z_2) = \arg z_1 + \arg z_2$$
 ($\mod 2\pi$)

5.
$$\overline{z} = z \iff z \in \mathbb{R}$$

10.
$$\arg\left(\frac{z_1}{z_2}\right) = \arg z_1 - \arg z_2 \pmod{2\pi}$$

Рис. 1.1: Сфера Римана

$$\xi^{2} + \eta^{2} + \zeta - \zeta = 0, \quad \begin{cases} \xi = \frac{x}{1+|z|^{2}} \\ \eta = \frac{y}{1+|z|^{2}} \\ \zeta = \frac{|z|^{2}}{1+|z|^{2}} \end{cases}.$$

$$P: \mathbb{C} \stackrel{\text{\tiny Ha}}{\to} S \setminus \{N\}, \quad P(z) = (\xi, \eta, \zeta).$$

$$A(x^2+y^2)+Bx+Cy+D=0,\ A,B,C,D\in\mathbb{R}$$
 общее уравнение окружности

$$\gamma$$
 — окружность на $\mathbb{C},$ $P(\gamma)$ — окружность на $S.$

$$|z|^2 = x^2 + y^2 = \frac{\zeta}{1 - \zeta}, \quad \begin{cases} x = \frac{\xi}{1 - \zeta} \\ y = \frac{\eta}{1 - \zeta} \end{cases}.$$
$$A\zeta + B\xi + C\eta + D(1 - \zeta) = 0, \quad \overline{\mathbb{C}} := \mathbb{C} \cup \{\infty\} \\ P(\infty) := N \end{cases}.$$

1.1.2 Топология комплексной плоскости

$$\alpha - \beta = \frac{12}{43}.$$

$$M_1, M_2 \in \mathbb{R}^3$$
,

$$dist(M_1, M_2) := \sqrt{(\xi_1 - \xi_2)^2 + (\eta_1 - \eta_2)^2 + (\zeta_1 - \zeta_2)^2},$$

$$d(z_1, z_2) := |z_1 - z_2|, \ z_1, z_2 \in \mathbb{C},$$

$$\rho(z_1, z_2) := \operatorname{dist} (P(z_1), P(z_2)),$$

$$B_{\varepsilon}(z_0) := \{ z \in \mathbb{C} : |z - z_0| < \varepsilon \},\$$

$$P: \mathbb{C} \stackrel{\scriptscriptstyle{\mathrm{Ha}}}{\to} S \setminus \{N\}.$$

Определение 1 (Окрестность точки). Множество называется *окрестностью точки*, если оно содержит некоторый шарик с центром в этой точке.

Обозначение.

$$O_z, \quad z \in \overline{\mathbb{C}}.$$

Лекция 2: Продолжение

от 22 фев 12:45

$$\forall z \in \mathbb{C} \ d(z; \infty) \coloneqq +\infty, \qquad \begin{array}{c} d: \quad \mathbb{C}^2 \to \mathbb{R} \\ d: \quad \mathbb{C}^2 \to \overline{\mathbb{R}} \\ \rho: \quad \overline{\mathbb{C}}^2 \to \mathbb{R}, \quad \rho(z; \infty) \in \mathbb{R} \end{array}$$

Свойство (Свойства окрестностей). $\forall z \in \overline{\mathbb{C}}$:

- 1. $\forall V \in O_z \quad z \in V$.
- 2. $\forall U, V \in O_z \quad U \cap V \in O_z$.
- 3. $\forall U \in O_z, \ \forall V \supset U \quad V \in O_z$.
- 4. $\forall V \in O_z, \ \exists U \in O_z: \ U \subset V \ \& \ \forall w \in U \quad U \in O_w.$

Определение 2 (Открытое множество). Множество называется $om\kappa pu-m\omega m$, если оно является окрестностью каждой своей точки.

Определение 3 (Окрестность множества). Окрестностью множества называется множество, являющееся окрестностью каждой точки исходного множества (V – окрестность множества A, если $\forall z \in A \ V \in O_z$).

Определение 4. $D \subset \overline{\mathbb{C}}, \ z \in \mathbb{C},$

$$\operatorname{dist}(z,D) \coloneqq \inf_{w \in D} \operatorname{d}(z,w),$$

Определение 5. $D_1, D_2 \subset \overline{\mathbb{C}},$

$$\operatorname{dist}(D_1, D_2) \coloneqq \inf_{z \in D_1, \ w \in D_2} \operatorname{d}(z, w),$$

Определение 6 (Внутренность). Множество всех внутренних точек называется 6 нутренностью.

Обозначение.

int D.

Определение 7 (Предельная точка множества). Точка называется npe- deльной точкой множества, если в любой ее окрестности есть точки множества, отличные от данной.

Замечание. Точка является предельной точкой множества на расширенной комплексной плоскости $(\overline{\mathbb{C}}) \iff \forall$ ее окрестность содержит бесконечное число точек данного множества.

Определение 8 (Окрестность бесконечно удаленной точки). Множество $V\subset \overline{\mathbb{C}}$ является окрестностью бесконечно удаленной точки, если $\exists \varepsilon>0: \{z\in \overline{\mathbb{C}}: \ |z|>\varepsilon\}\subset V.$

Определение 9 (Точка прикосновения множества). Точка $z\in\overline{\mathbb{C}}$ расширенной комплексной плоскости называется точкой прикосновения множества $D\subset\overline{\mathbb{C}}$, если пересечение $\forall V\in O_z \quad V\cap D\neq\varnothing$.

Обозначение.

 $\operatorname{cl} D$ – замыкание (closure)

Определение 10 (Замкнутое множество). Множество называется *замкнутым*, если его дополнение открыто.

Обозначение.

 ∂D

Определение 11 (Граничная точка). Точка называется *граничной точкой множесства*, если в любой ее окрестности есть как точки множества, так и точки его дополнения.

Обозначение. Множество всех замкнутых подмножеств в $\overline{\mathbb{C}}$:

 $Cl\overline{\mathbb{C}}$ (closed)

Определение 12 (Компактное множество). Множество в $\overline{\mathbb{C}}$ называется *компактным*, если \forall его открытое покрытие имеет конечное подпокрытие.

Обозначение.

$$v$$
 – покрытие множества $D,$ если $D \underset{V \in v}{\subset} UV,$

Обозначение.

 $\mathcal{P}(\overline{\mathbb{C}})$ – совокупность всех подмножеств $\overline{\mathbb{C}}$.

Критерий 1 (Компактности). Подмножество \mathbb{C} компактно \iff оно замкнуто и ограничено.

Примечание. Множество ограничено, если оно содержится в некотором шаре.

Замечание. $\overline{\mathbb{C}}$ – компактно.

Определение 13. Последовательность $\{z_n\}_{n\in\mathbb{N}}\subset\mathbb{C}$ сходится к $z\in\mathbb{C},$ если $\forall \varepsilon>0$ $\exists n_0\in\mathbb{N}:\ \forall n\geqslant n_0$

$$|z_n-z| $\mathrm{d}(z_n,z) \xrightarrow[n o \infty]{} 0, \qquad z_n o \infty, \ \mathrm{ec}$ ли $\lim_{n o \infty} |z_n| = \pm \infty.$ $z=\lim_{n o \infty} z_n, \qquad z_n \xrightarrow[n o \infty]{} z.$$$

Замечание.

$$z_n \to z \ {\scriptscriptstyle \mathrm{B}} \ {\mathbb C} \iff \left\{ \begin{array}{l} \operatorname{Re} z_n \to \operatorname{Re} z \\ \operatorname{Im} z_n \to \operatorname{Im} z \end{array} \right. \ {\scriptscriptstyle \mathrm{B}} \ {\mathbb R},$$

$$|z_n - z| = \sqrt{(\operatorname{Re} z_n - \operatorname{Re} z)^2 + (\operatorname{Im} z_n - \operatorname{Im} z)^2} \geqslant |\operatorname{Re} z_n - \operatorname{Re} z|,$$

$$\operatorname{Re}(z_1 \pm z_2) = \operatorname{Re} z_1 \pm \operatorname{Re} z_2.$$

Критерий 2 (Коши). Последовательность $\{z_n\}_{n\in\mathbb{N}}\subset\mathbb{C}$ сходится \iff $\forall \varepsilon>0\ \exists n_0\in\mathbb{N}:\ \forall n,m\geqslant n_0$

$$|z_n - z_m| < \varepsilon.$$

Критерий 3 (Коши в $\overline{\mathbb{C}}$). Последовательность $\{z_n\}_{n\in\mathbb{N}}\subset\overline{\mathbb{C}}$ сходится $\iff \forall \varepsilon>0 \ \exists n_0\in\mathbb{N}: \ \forall n,m\geqslant n_0$

$$\rho(z_n, z_m) < \varepsilon,$$

$$z_n \xrightarrow[n \to \infty]{} z \iff \rho(z_n, z) \xrightarrow[n \to \infty]{} 0.$$

Критерий 4 (Компактности (расширенный)). Подмножество $D \subset \overline{\mathbb{C}}$ компактно $\iff \forall$ его последовательность имеет сходящуюся подпоследовательность: $D \subset \overline{\mathbb{C}} \ \forall \{z_n\}_{n \in \mathbb{N}} \subset D \ \exists \{z_{n_k}\}_{k \in \mathbb{N}} \subset \{z_n\}_{n \in \mathbb{N}}$:

$$z_{n_k} \to z \in D$$
.

Пусть $\{z_n\}_{n\in\mathbb{N}}\subset\mathbb{C}$:

$$\sum_{n=1}^{\infty} z_n = \lim_{n \to \infty} S_n.$$

Определение 14 (Числовой ряд). *Числовым рядом* называется формальная сумма членов.

Определение 15 (Абсолютно сходящийся числовой ряд). Числовой ряд называется *абсолютно сходящимся*, если сходится ряд

$$\sum_{n=1}^{\infty} |z_n|.$$

Критерий 5 (Коши (сходимости ряда)). $\sum_{n=1}^{\infty} z_n$ сходится \iff $\forall \varepsilon > 0 \ \exists m \in \mathbb{N}: \ \forall n \geqslant m \ \forall k \in \mathbb{N}$

$$\underbrace{|z_{n+1} + z_{n+2} + \ldots + z_{n+k}|}_{|S_{n+k} - S_n|} < \varepsilon.$$

Следствие 1. Если ряд сходится, то его общий член стремится к 0.

Следствие 2. Каждый абсолютно сходящийся числовой ряд сходится.

1.1.3 Пути, кривые и области

Определение 16 (Путь). Путем $\gamma:[a;b]\to\mathbb{C}$ называется непрерывное отображение [a;b] в $\mathbb{C}.$

Пример. $\gamma(t) = e^{it}$,

 $0 \leqslant t \leqslant 2\pi$.

 \Diamond

Определение 17. $\gamma_1:[a_1;b_1]\to \mathbb{C},\ \gamma_2:[a_2;b_2]\to \mathbb{C}.\ \gamma_1\sim \gamma_2,$ если \exists возрастающая непрерывная функция $\phi:[a_1;b_1]\xrightarrow{\mathrm{Ha}}[a_2;b_2]:$

$$\gamma_1(t) = \gamma_2(\phi(t)), \quad \forall t \in [a_1; b_1].$$

Пример.

$$\begin{array}{ll} \gamma_1(t) = t & 0 \leqslant t \leqslant 1 \\ \gamma_2(t) = \sin t & 0 \leqslant t \leqslant \frac{\pi}{2} \\ \gamma_3(t) = \sin t & 0 \leqslant t \leqslant \pi \\ \gamma_4(t) = \cos t & 0 \leqslant t \leqslant \frac{\pi}{2} \end{array}$$

 $\phi(t) = \arcsin t$,

$$\gamma_1(t) = \gamma_2(\phi(t)).$$

 \Diamond

Определение 18 (Жорданов путь). Путь называется *жордановым*, если он является взаимно однозначной функцией.

Лемма 1. Для каждого жорданова пути $\exists \delta > 0$: для \forall некольцевой точки пути окружность в этой точке с радиусом δ пересекает этот путь не более чем в двух точках.

Определение 19 (Кривая). *Кривой* называется класс эквивалентных между собой путей.

Лекция 3: Продолжение

от 29 фев 12:45

Определение 20 (Связное множество). $A \subset \overline{\mathbb{C}}$ называется *связным*, если $\nexists U, V \in Op\overline{\mathbb{C}}: U \cap A \neq \varnothing, \ U \cap V = \varnothing.$

Обозначение.

 $Op\overline{\mathbb{C}}$ – совокупность всех открытых множеств

Пример. Несвязно:

 \Diamond

Определение 21 (Линейно связное множество). Множество называется *линейно связным*, если любые две его точки можно соединить путем, значения которого лежат в этом множестве.

Замечание. В пространстве \mathbb{R}^n , и в частности $\overline{\mathbb{C}}$, любое открытое множество связно \iff оно линейно связно.

Определение 22 (Область). *Областью* в $\overline{\mathbb{C}}$ (\mathbb{C}) называется любое непустое открытое связное множество.

Определение 23 (Замкнутая область). *Замкнутой областью* будем называть замыкание области.

1.2 Функции комплексного переменного

1.2.1 Структура функции комплексного переменного

 $f:\mathbb{C}\to\mathbb{C}$

 $\operatorname{dom} f$ – область определения функции $\operatorname{im} f$ – область значения функции

Определение 24 (Предел отображения). $D \subset \text{dom } f, \ z_0 \in \overline{\mathbb{C}}$ – предельная точка D. Тогда $w_0 \in \overline{\mathbb{C}}$ называется пределом отображения f,

$$w_0\coloneqq\lim_{D\circ z\to z_0}f(z),$$
 если $\forall V\in O_{w_0}\ \exists U\in O_{z_0}:\ f(\mathring{U}\cap D)\subset V,$

$$U \in O_{z_0}, \quad \mathring{U} = U \setminus \{z_0\}.$$

Примечание. В случае, когда $z_0, w_0 \in \mathbb{C}$ следует, что $\forall \varepsilon > 0 \ \exists \delta > 0 : \ \forall z \in D$

$$0 < |z - z_0| < \delta \implies |f(z) - w_0| < \varepsilon.$$

Определение 25 (Непрерывная функция в точке). Функция f называется *непрерывной в точке* $z_0 \in \mathbb{C}$, если:

- 1. $z_0 \in \text{dom } f$.
- 2. $\forall \varepsilon > 0 \ \exists \delta > 0 : \ \forall z \in D$

$$0 < |z - z_0| < \delta \implies |f(z) - w_0| < \varepsilon.$$

Определение 26 (Непрерывная функция на множестве). Функция $f:\mathbb{C}\to\mathbb{C}$ непрерывна на $D\subset\mathbb{C},$ если

- 1. $D \subset \text{dom } f$.
- 2. $\forall z_0 \in D \ \forall \varepsilon > 0 \ \exists \delta > 0 \ \forall z \in D$

$$|z - z_0| < \delta \implies |f(z) - f(z_0)| < \varepsilon.$$

Примечание (Функция Дирихле).

$$D(x) = \begin{cases} 1, & x \in \mathbb{Q} \\ 0, & x \in \mathbb{R} \setminus \mathbb{Q} \end{cases},$$

непрерывна на \mathbb{Q} , непрерывна на $\mathbb{R} \setminus \mathbb{Q}$.

Замечание. Если множество является открытым или совпадает с областью определения функции, то непрерывность функции на этом множестве равносильно ее непрерывности в каждой точке.

$$f_n: \mathbb{C} \to \mathbb{C}(n \in \mathbb{N}), \quad D := \bigcap_{n \in \mathbb{N}} \operatorname{dom} f_n.$$

Определение 27. $A\subset D,\ f:A\to\mathbb{C},\ f_n\rightrightarrows f$ на A, если $\forall \varepsilon>0$ $\exists n_0\in\mathbb{N}:\ \forall z\in A\ \forall n\geqslant n_0$

$$|f_n(z) - f(z)| < \varepsilon.$$

$$\left(\forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} : \forall n \geqslant n_0 \quad \sup_{z \in A} \left| f_n(z) - f(z) \right| < \varepsilon, \ |z - z_0| < \delta \implies \left| f(z) - f(z_0) \right| < \varepsilon \right).$$

Теорема 2 (Вейерштрасса). Если $\{f_n\}_{n\in\mathbb{N}}\subset C(A),\ f_n\rightrightarrows f,$ то $f\in C(A).$

Определение 28 (Функциональный ряд). *Функциональным рядом* называется формальная сумма членов последовательности функции.

Обозначение. $\sum_{n=1}^{\infty} f_n$.

Определение 29 (Числовой ряд). $\forall z \in D \ \sum_{n=1}^{\infty} f_n(z)$ называется $\mathit{чис-}$ ловым рядом $\big\{f_n(z)\big\}_{n\in\mathbb{N}}$.

$$S_n \coloneqq \sum_{k=1}^n f_k$$
 – частичная сумма.

Теорема 3 (Признак Вейерштрасса). $\sum_{n=1}^{\infty} f_n$ таков, что $\forall n \in \mathbb{N} \ \forall z \in A \ |f_n| \leqslant c_n$, причем $\sum_{n=1}^{\infty} c_n$ сходится. Тогда ряд $\sum_{n=1}^{\infty} f_n$ равномерно абсолютно сходится на A.

Теорема 4 (Критерий Коши (равномерная сходимость)). $\{f_n\}_{n\in\mathbb{N}}$ равномерно сходится на $A\iff \forall \varepsilon>0\ \exists n_0\in\mathbb{N}: \forall n,m\geqslant n_0$

$$\sup_{z \in A} |f_n(z) - f_n(z_0)| < \varepsilon.$$

Определение 30 (Линейная функция). Функция $f: \mathbb{C} \to \mathbb{C}$ называется линейной, если $\forall \alpha, \beta \in \mathbb{C} \ \forall z_1, z_2 \in \mathbb{C}$

$$f(\alpha z_1 + \beta z_2) = \alpha f(z_1) + \beta f(z_2).$$

Замечание. Функция $f:\mathbb{C}\to\mathbb{C}$ является линейной $\iff\exists a\in\mathbb{C}:\forall z\in\mathbb{C}$

$$f(z) = az$$
.

1.2.2 Степенные ряды

$$\sum_{n=0}^{\infty}a_n(z-z_0)^n, \text{ где } \{a_n\}_{n\in\mathbb{N}}\subset\mathbb{C},\ z,z_0\in\mathbb{C}.$$

Теорема 5 (1-я теорема Абеля). Если ряд $\sum_{n=0}^{\infty} a_n (z-z_0)^n$ сходится в точке $z_1 \in \mathbb{C}$, то он абсолютно сходится при $|z-z_0| < |z_1-z_0|$.

А если ряд $\sum_{n=0}^{\infty} a_n (z-z_0)^n$ расходится в точке $z_1 \in \mathbb{C}$, то он рас-

ходится и при $|z - z_0| > |z_1 - z_0|$.

Доказательство.

1.
$$\sum_{n=0}^{\infty} a_n (z_1 - z_0)^n$$
 сходится $\Longrightarrow |a_n (z_1 - z_0)^n| \xrightarrow[n \to \infty]{} 0$.

$$c := \sup_{n \in \mathbb{N}} |a_n(z_1 - z_0)^n| < +\infty, \quad |z - z_0| < |z_1 - z_0|.$$

Рассмотрим

$$\sum_{n=0}^{\infty} \left| a_n (z - z_0)^n \right| = \sum_{n=0}^{\infty} \left| a_n (z_1 - z_0)^n \right| \cdot \left| \frac{z - z_0}{z_1 - z_0} \right|^n \leqslant c \cdot \sum_{n=0}^{\infty} \left| \frac{z - z_0}{z_1 - z_0} \right|^n < + \infty.$$

2. добавить

Определение 31 (Радиус сходимости). Элемент $R \in [0; +\infty]$ называется радиусом сходимости ряда $\sum_{n=0}^{\infty} a_n (z-z_0)^n$, если при $|z-z_0| < R$ исходный ряд абсолютно сходится, а при $|z-z_0| > R$ исходный ряд расходится.

Теорема 6 (Коши-Адамара). Для степенного ряда $\sum_{n=0}^{\infty} a_n (z-z_0)^n$ положим $l:=\varlimsup_{n\to\infty}\sqrt[n]{|a_n|}$. Тогда:

- 1. Если l=0, то исходный ряд сходится $\forall z \in \mathbb{C}$.
- 2. Если $l = \infty$, то исходный ряд сходится только в точке z_0 .
- 3. Если $l \in (0; +\infty)$, то при $|z-z_0| < \frac{1}{l}$, а при $|z-z_0| > \frac{1}{l}$ исходный ряд расходится.

Доказательство.

1.
$$\overline{\lim}_{n \to \infty} \sqrt[n]{|a_n|} = \lim_{n \to \infty} \sqrt[n]{|a_n|} = 0,$$

$$z \in \mathbb{C}, \sum_{n=0}^{\infty} |a_n(z-z_0)^n|.$$

$$\lim_{n\to\infty} \sqrt[n]{\left|a_n(z-z_0)^n\right|} = \lim_{n\to\infty} \sqrt[n]{\left|a_n\right|} \cdot |z-z_0| = 0 \implies \text{ряд сходится}.$$

$$2. \ \overline{\lim}_{n \to \infty} \sqrt[n]{|a_n|} = \infty,$$

$$\exists \{a_{n_k}\}_{k \in \mathbb{N}} \subset \{a_n\}_{n \in \mathbb{N}}, \quad \sqrt[n_k]{|a_{n_k}|} \to +\infty.$$

$$\sqrt[n_k]{|a_{n_k}|} \cdot |z - z_0| \to +\infty \implies |a_{n_k}|.$$

3.
$$|z - z_0| < \frac{1}{l} \implies l|z - z_0| < 1$$
.

Дописать.

Лекция 4: Продолжение

от 7 мар 12:45

Следствие 3. Для любого
$$\sum_{n=0}^\infty a_n (z-z_0)^n \ R=rac{1}{l},$$
 где $l:=\overline{\lim}\sqrt[n]{|a_n|}.$

Замечание. Если $\exists \lim_{n \to \infty} \frac{|a_n|}{|a_{n+1}|}$, то этот предел равен R (радиусу сходимости).

Теорема 7 (О непрерывности степенного ряда). Пусть R – радиус сходимости степенного ряда $\sum_{n=0}^{\infty} a_n (z-z_0)^n$. Тогда $\forall r \in (0;R)$ равномерно абсолютно сходится при $|z-z_0| \leqslant r$.

Комплексный Анализ

Доказательство.

$$\sum_{n=0}^{\infty} \left| a_n(z - z_0) \right|^n \leqslant \sum_{n=0}^{\infty} |a_n| \cdot r^n < +\infty,$$

исходный ряд сходится равномерно по признаку Вейерштрасса. \Box

Следствие 4. Каждый степенной ряд непрерывен внутри своего круга сходимости.

Примечание. $\left\{z \in \mathbb{C}: \; |z-z_0| < R \right\}$ – круг сходимости.

Теорема 8. Пусть R – радиус сходимости $\sum_{n=0}^{\infty} a_n (z-z_0)^n$. Предположим, что $|z_1-z_0| < R$. Тогда $\exists \{b_n\}_{n \in \mathbb{N}} \subset \mathbb{C}$:

$$\sum_{n=0}^{\infty} b_n (z - z_1)^n = \sum_{n=0}^{\infty} a_n (z - z_0)^n$$

при $|z - z_1| < \operatorname{dist} (z_1, \{w \in \mathbb{C} : |w - z_0| = R\}).$

Замечание. Свойства ряда $\sum_{n=0}^{\infty} a_n (z-z_0)^n, \ |z-z_0| < R$ идентичны свойствам ряда $\sum_{n=0}^{\infty} a_n w^n, \ |w| < R.$

Теорема 9 (Вторая теорема Абеля). Если ряд $\sum_{n=0}^{\infty} a_n (z-z_0)^n$ сходится в точке $z_1 \neq z_0$ и S(z) – его сумма при $|z-z_0| < |z_1-z_0|$, то

$$\lim_{z \to z_0} S(z) = S(z_1) := \sum_{n=0}^{\infty} a_n (z_1 - z_0)^n$$

при стремлении z к z_1 по любому пути, заключенному между двумя хордами к окружности $|z-z_0|=|z_1-z_0|$, исходящими из точки z_1 .

$$[z_0, z_1) \ni z \to z_1, \quad z - z_0 =: (z_1 - z_0)t, \ 0 \leqslant t < 1.$$

$$e^z := \sum_{n=0}^{\infty} \frac{z^n}{n!},$$

$$\sin z := \sum_{n=0}^{\infty} (-1)^n \cdot \frac{z^{2n+1}}{(2n+1)!}, \cos z := \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n}}{(2n)!}, \forall z \in \mathbb{C} \ e^{iz} = \cos z + i \sin z.$$

Теорема 10 (Единственность). Если ряд $\sum_{k=0}^{\infty} a_n z^n$ и $\sum_{k=0}^{\infty} b_n z^n$ сходятся в круге $|z| < R \neq 0$ и в точках ненулевой плоскости $\{z_k\}_{k \in \mathbb{N}}$, лежащей в этом круге и сходящейся к нулю, суммы этих рядов совпадают, то $\forall n \in \overline{\mathbb{N}} a_n = b_n$.

Доказательство.

$$\forall k \in \mathbb{N} \ \sum_{n=0}^{\infty} a_n z_k^n = \sum_{n=0}^{\infty} b_n z_k^n, \ z_k \xrightarrow[k \to \infty]{} 0 \implies a_0 = b_0,$$

$$\forall k \in \mathbb{N} \ \sum_{n=1}^{\infty} a_n z_k^{n-1} = \sum_{n=1}^{\infty} b_n z_k^{n-1}, \ z_k \xrightarrow[k \to \infty]{} \Longrightarrow a_1 = b_1,$$

$$\vdots$$

1.2.3 Дифференцируемые и конформные отображения

Определение 32 (Дифференцируемое отображение). Отображение $f: \mathbb{C} \to \mathbb{C}$, определенное в некоторой окрестности точки $z_0 \in \mathbb{C}$, называется дифференцируемым в этой точке, если $\exists a \in \mathbb{C}: \forall z$ достаточно близких к z_0 справедливо равенство:

$$f(z) - f(z_0) = a \cdot (z - z_0) + o(z - z_0).$$

Замечание. Из определния вытекает, что дифференциемость функции в точке равносильна существованию $\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} \in \mathbb{C}.$

Определение 33 (Голоморфная функция). Функция называется *голо-морфной* в точке, если она моногенна в некоторой ее окрестности, то есть она ???.

Определение 34 (Регулярная функция). Функция называется регулярной в точке, если она имеет в этой точке конечную производную, отличную от 0.

Замечание.
$$f(z)=f(x+iy)=u(x,y)+iv(x,y),$$

$$\underset{\mathrm{Re}\,f}{\parallel} \underset{\mathrm{Im}\,f}{\parallel}$$

$$\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} =$$

$$= \lim_{\Delta x \to 0} \frac{u(x_0 + y_0) + iv(x_0 + \Delta x, y_0) - u(x_0, y_0 - iv(x_0, y_0))}{\Delta x} =$$

$$= \frac{\partial u}{\partial x} (x_0, y_0) + i \frac{\partial v}{\partial x} (x_0, y_0),$$

$$z = x_0 + \triangle x + iy_0.$$

Пример.
$$f(z)=f(x+iy)=x+2iy,$$

$$\frac{\partial u}{\partial x}=1\neq \frac{\partial v}{\partial y}=2.$$

 \Diamond

Теорема 11. Если вещественная и мнимая части функции f дифференцируемы в точке (x_0,y_0) и в этой точке выполнены условия Коши-Римана, то f монотонна в $z_0=x_0+iy_0$.

Замечание. Предположим, что f дифференцируема в точке z_0 и $f'(z_0) \neq 0$ (другими словами, f регулярна в точке z_0)

$$\triangle w = f(z) - f(z_0), \ \triangle z = z - z_0,$$

$$\lim_{\Delta z \to 0} \frac{\Delta w}{\Delta z} = f'(z_0) \implies \lim_{\Delta z \to 0} \left| \frac{\Delta w}{\Delta z} \right| = \left| f'(z_0) \right| \neq 0,$$
$$\left| \frac{\Delta w}{\Delta z} \right| \approx \left| f'(z_0) \right|.$$

Это свойство называется постоянством искажения масштаба.

$$\triangle w \approx f'(z_0) \cdot \triangle z$$
, $\arg \triangle w = \arg f'(z_0) + \arg \triangle z$.

Определение 35 (Конфорное отображение). $f: D \to \mathbb{C}$ называется конфорным отображением, если оно является гомеоморфизмом и оно конфорно в каждой точке области D, то есть в каждой точки области D сохраняется постоянство изменения масштаба.

Определение 36 (Голоморфная функция). Функция называется *голо-морфной в области*, если она моногенна в каждой точке этой области.

Определение 37 (Одноместная функция). Если комплексная функция взаимнооднозначна в некоторой области, то она называется *одноместной в этой области*.

Если f определена в $D \ \forall z_1, z_2 \in D$ из $f(z_1) = f(z_2) \implies z_1 = z_2$.

Теорема 12. Каждое конфорное в области отображение гомеоморфно и ???

Теорема 13. Каждое одноместное гомеоморфное и регулярное отображение является конфорным отображением в этой области.

Теорема 14 (О голоморфной сумме степенного ряда). Пусть ряд $\sum_{n=0}^{\infty} a_n z^n$ сходится в круге $|z| < R \neq 0$ и S(z) – его сумма в этом круге. Тогда S голоморфна при |z| < R и $S'(z) = \sum_{n=1}^{\infty} n a_n z^{n-1}$ при |z| < R.

Следствие 5. Сумма каждого степенного ряда в круге его сходимости бесконечно дифференцируема.

Определение 38 (Аналитическая функция). Функция называется *аналитической* в области, если в некоторой окружности каждой точки этой области она раскладывается в степенной ряд,

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n, \quad |z - z_0| < r, \quad \{a_n\}_{n \in \overline{\mathbb{N}}} \subset \mathbb{C},$$

Следствие 6. Каждая аналитическая функция бесконечно дифференцируема.

Замечание. Каждая голоморфная в области функция является аналитической.

Определение 39 (Антикофорное отображение). Отображение называется *антиконфорным* или конфорным отображением второго рода в области, если в каждой точке этой области имеет место постоянство искажения масштаба и ... квасиконсерватсум углов.

Определение 40 (Антианалитическое отображение). Отображение называется *антианалитическим* в области, если его сопряженное аналитично в этой области.

Теорема 15. u и v – вещественная и мнимая части комплексного числа f=u+iv. Если u и v непрерывно дифференцируемы в этой области и в каждой точке этой области для функции f имеет место консерватизм, то функция f голоморфна и регулярна в этой области.

Теорема 16. Если функции u,v непрерывно дифференцируемы в области и в этой области функция f обладает свойством постоянства искажения масштабов, то f голоморфна или атиголоморфна в этой области.

Замечание. Функция антиголоморфна, если голоморфны ее отображения.

Определение 41 (Голоморфная в бесконечно удаленной точке функция). Говорят, что функция f голоморфна в бесконечно удаленной точке, если функция $g(z) \coloneqq f\left(\frac{1}{z}\right)$ голоморфна.

1.2.4 Дробно-линейные отображения

Определение 42 (Дробно-линейное отображение). *Дробно-линейным отображением* называется функция вида

$$f(z) = \frac{az+b}{cz+d}.$$

Если выполняется $ad-bc \neq 0$, то дробно-линейное отображение называется невырожденным.

Пример.
$$f\left(-\frac{d}{c}\right) \coloneqq \infty, \quad f(\infty) \coloneqq \frac{d}{c}.$$

 \Diamond

Теорема 17.

- 1. Каждое дробно-линейное отображение является гомеоморфизмом $\overline{\mathbb{C}}$ на $\overline{\mathbb{C}}$.
- 2. Каждая дробно-линейная функция однозначно определяется своими значениями в трех различных точках.
- 3. Любое двойное отношение сохраняется при дробно-линейном отображении, если f дробно-линейная функция, то \forall различных z_1, z_2, z_3, z_4

$$\frac{z_3 - z - 1}{z_3 - z_2} : \frac{z_4 - z_1}{z_4 - z_2} = \frac{f(z_3) - f(z_1)}{f(z_3) - f(z_2)} : \frac{f(z_4) - f(z_1)}{f(z_4) - f(z_2)}.$$

- 4. Суперпозиция дробно-линейных функций является дробно-линейной функцией.
- 5. Определяя произведение двух дробно-линейных функций как их суперпозицию, получаем, что множество всех дробно-линейных функций образует группу (M).

Определение 43 (Симметричная точка). $z^* \in \mathbb{C}$ называется $\mathit{симмет-ричной точкой } z$ из круга $|\xi - z_0| \leqslant R$, если:

1.
$$\arg(z^* - z_0) = \arg(z - z_0)$$
.

2.
$$|z^* - z_0| \cdot |z - z_0| = R^2$$
.

$$\frac{R}{|z - z_0|} = \frac{|z^* - z_0|}{R}.$$

Формула для симметричной точки: $z^* = \frac{R^2}{\overline{z} - \overline{z_0}} + z_0$.

Определение 44 (Отображение симметрии). *Отображением симметрии* мы называем сопоставление каких-то симметричных им относительно какой-то окрестности.

Теорема 18. Каждая дробно-линейная функция является суперпозицией четного числа симметрий относительно окружности или прямой.

Определение 45 (Общее уравнение окружности).

$$A(x^2 + y^2) + bx + b_1y + c = 0,$$

$$B \coloneqq \frac{b+ib_1}{2}, \quad Az\overline{z} + \overline{B}z + B\overline{z} + c = 0.$$

Теорема 19. При ∀ дробно-линейном отображении окрестность переходит в окружность.

Теорема 20. Если $ad-bc \neq 0$, то дробно-линейная функция $f(z) = \frac{az+b}{cz+d}$ во всех точках $z \in \mathbb{C} \setminus \left\{-\frac{d}{c}\right\}$ голоморфна и регулярна.

Теорема 21. Каждый дробно-линейный автоморфизм верхней полуплоскости представим в виде

$$f(z) = \frac{az+b}{cz+d},$$

где $a, b, c, d \in \mathbb{R}$ и ad - bc > 0.

 \forall отображение такого вида является отображением верхней полуплоскости на себя (то есть, ее автоморфизмом).

Теорема 22. Каждый дробно-линейный изоморфизм верхней полуплоскости на единичном круге можно представить в виде

$$f(z) = e^{i\theta} \frac{z - a}{z - \overline{a}},$$

где $\theta \in \mathbb{R}$, Im a > 0.

 \forall отображение такого вида является изоморфизмом верхней полуплоскости на единичном круге.

Теорема 23. Каждый дробно-линейный автоморфизм единичного круга на себя можно представить в виде

$$f(z) = e^{i\theta} \frac{z - a}{1 - \overline{a}z},$$

где $\theta \in \mathbb{R}, |a| < 1.$

 \forall отображение такого вида является автоморфизмом единичного круга.

1.2.5 Элементарные функции

$$z^n (n \in \mathbb{N}), e^z, \sin z, \cos z,$$

$$\tan z := \frac{\sin z}{\cos z}, \quad \cot z := \frac{\cos z}{\sin z},$$

$$\cot z := \frac{e^z + e^{-z}}{2}, \quad \operatorname{sh} z := \frac{e^z - e^{-z}}{2}.$$

Примечание (Функция Жуковского).

$$\begin{aligned} w &= \frac{1}{2}(z + \frac{1}{z}), & w(0) \coloneqq \infty, \\ w &= z + \sqrt{z^2 - 1}, & w(\infty) \coloneqq \infty. \end{aligned}$$

$$z_1 \cdot z_2 = 1.$$

Областью одноместности функции Жуковского является точки, не уд. $z_1 \cdot z_2 = 1$, в частности единичный круг, его внешность, верхняя и нижняя полуплоскости.

Функция Жуковского является конфорным отображением \forall области, не содержащих точки $\pm 1.$

Лекция 5: Продолжение

от 14 мар 12:45

1.3 Теория интеграла Коши

1.3.1 Определения и основные свойства интеграла Коши

Определение 46 (Разбиение кривой Жордана). Пусть γ – кривая Жордана, $\gamma \in \mathbb{C}$ с концами $\alpha, \beta \in \mathbb{C}$.

Разбиением кривой Жордана назовем $\sigma \coloneqq \{z_0, z_1, \dots, z_n, \xi_0, \dots \xi_{n-1}\}$, где $n \in \mathbb{N}, \ z_0 = \alpha, \ z_n = \beta, \ z_{k+1} \notin \widehat{z_0 z_k} \ \forall k \in \overline{0, n-1}, \ \zeta_k \in \widehat{z_k, z_{k+1}}$

$$\triangle z_k \coloneqq z_{k+1} - z_k,$$

 $\mathrm{d}(\sigma)\coloneqq \max_{0\leqslant k< n-1} |\triangle z_k|$ – диаметр разбиения $\sigma.$

Определение 47. Если $f:\gamma \to \mathbb{C},\ \sigma$ – интегральная сумма, то

$$S_{\sigma}(f) := \sum_{k=1}^{n-1} f(S_k) \underbrace{(z_{k+1} - z_n)}_{\triangle z_k}.$$

Определение 48. $\prod (\gamma)$ – множество всех разбиений кривой γ ,

$$\Phi: \prod(\gamma) \to \mathbb{C}.$$

Будем говорить, что $\exists \lim_{d(\sigma) \to 0} \Phi(v) = w \in \mathbb{C}$, если $\forall \varepsilon > 0 \ \exists \delta > 0 : \ \forall \sigma \in \prod(\gamma) \ \operatorname{d}(\sigma) < \delta \implies \left| \Phi(\sigma) - w \right| < \varepsilon$.

Определение 49 (Интеграл Коши). Если $f:\gamma \to \mathbb{C}$ и $\exists \lim_{\mathrm{d}(\sigma) \to 0} S_{\sigma}(f) \in \mathbb{C},$

TC

$$\int_{\gamma} f(z) \, \mathrm{d} \, z := \lim_{\mathrm{d}(\sigma) \to 0} S_{\sigma}(f)$$

называется интегралом Kowu от функции f по кривой γ .

Теорема 24. Если f непрерывна на спрямляемой кривой Жордана γ , то $\int_{\gamma} f(z) \, \mathrm{d}\, z$ существует (то есть является элементом $\mathbb C$).

Доказательство. f(z) = f(x + iy) = u(x, y) + iv(x, y),

$$\begin{split} \int_{\gamma} f(z) \, \mathrm{d} \, z &= \int_{\gamma} \big(u(x,y) + i v(x,y) \big) \, \mathrm{d}(x+iy) = \\ &= \int_{\gamma} u \, \mathrm{d} \, x - v \, \mathrm{d} \, y + \int_{\gamma} v \, \mathrm{d} \, x + u \, \mathrm{d} \, y \in \mathbb{C}. \end{split}$$

1.3.2 Интегральная теорема Коши

Лемма 2 (Гауса). Если функция f непрерывна в области D, то для любой спрямляемой кривой Жордана $\gamma \subset D$, для любого $\varepsilon > 0$ существует вписанная в γ ломанная P такая, что

$$\left| \int_{\gamma} f(z) \, \mathrm{d} z - \int_{P} f(z) \, \mathrm{d} z \right| < \varepsilon.$$

Теорема 25 (Интегральная теорема Коши). Пусть D – односвязная область в \mathbb{C} , функция f голоморфна в D. Тогда для любой замкнутой спрямляемой кривой Жордана γ

$$\int_{\gamma} f(z) \, \mathrm{d} \, z = 0.$$

Доказательство. Пусть γ – \triangle в D.

Докажем, что интеграл по этому треугольнику равен нулю. Допустим противное:

$$\left| \int_{\gamma} f(z) \, \mathrm{d} z \right| =: M \neq 0.$$

$$\gamma_{1}, \gamma_{2}, \gamma_{3}, \gamma_{4}, \quad \int_{\gamma} f(z) \, \mathrm{d} z = \sum_{k=1}^{4} \int_{\gamma_{n}} f(z) \, \mathrm{d} z,$$

$$\left| \int_{\gamma} f(z) \, \mathrm{d} z \right| \leqslant \sum_{k=1}^{n} \left| \int_{\gamma_{k}} f(z) \, \mathrm{d} z \right|,$$

$$\overline{\triangle_{0}} := \gamma, \quad \overline{\triangle_{1}} := \gamma_{i} : \left| \int_{\gamma_{i}} f(z) \, \mathrm{d} z \right| \geqslant \frac{M}{4},$$

$$\exists \overline{\triangle_{2}} : \left| \int_{\overline{\triangle_{2}}} f(z) dz \right| \geqslant \frac{M}{4^{2}}.$$

Продолжая этот процесс, мы получм последовательность $\{\overline{\triangle_k}\}$:

$$\left| \int_{\overline{\triangle}_k} f(z) \, \mathrm{d} \, z \right| \geqslant \frac{M}{4^k},$$
$$D(\overline{\triangle}_{k+1}) \subset D(\overline{\triangle}_k).$$

То есть можем считать эту последовательность $\{\overline{\triangle_k}\}$ как последовательность вложенных множеств $\Longrightarrow \exists z_0 \in \bigcap_{k \in \mathbb{N}} D(\overline{\triangle_k}) \neq \varnothing$.

???????

В силу произвольности ε получаем, что M=0,

$$\left| \int_{\gamma} f(z) \, \mathrm{d} z - \int_{P} f(z) \, \mathrm{d} z \right| < \varepsilon.$$

Теорема 26 (Обобщенная интегральная теорема Коши). Если функция f голоморфна в односвязной области D, ограниченной замкнутой спрямляемой кривой Жордана γ и f непрерывна вплоть до границы, то есть $\forall z_0 \in \gamma$

$$\lim_{D\ni z\to z_0} f(z) = f(z_0) \implies \int_{\gamma} f(z) \,\mathrm{d}\, z = 0.$$

Следствие 7. Если область D ограничена конечным числом замкнутых спрямляемых кривых Жордана. Если f голоморфна в этой области ???

Следствие 8. Утверждение обобщенной теоремы остается в силе, если условие голоморфности функции f в области нарушается в конечном количестве точек $z_1, \ldots z_n \in D$, в которых функция ведет себя так:

$$\lim_{\exists \to z_k} (z - z_k) f(z) = 0 \quad (0 \leqslant k \leqslant n).$$

1.3.3 Интегральная формула Коши, интеграл типа Коши

Теорема 27 (Интегральная формула Коши). Если функция f голоморфна в односвязной области D, ограничена замкнутой спрямляемой кривой Жордана γ , непрерывна вплоть до границы, то

$$\frac{1}{2\pi i}\int_{\gamma}\frac{f(z)}{z-z_0}\,\mathrm{d}\,z=\left\{\begin{array}{ll}f(z_0),\ \mathrm{если}\ z_0\in D\\0,\ \mathrm{если}\ z_0\notin\mathrm{cl}\,D\end{array}\right.$$

Определение 50 (Интеграл типа Коши). Пусть односвязная область D ограничена замкнутой спрямляемой кривой Жордана γ , а функция f непрерывна на γ . Положим

$$F(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(\xi)}{\xi - z} \,\mathrm{d}\,\xi, \ z \in D.$$

Эта функция F называется интегралом типа Kouu.

Теорема 28 (Лиувилль). Если функция f голоморфна в \mathbb{C} и ограничена, то $f \equiv const.$

Доказательство. $R>0, z\in\mathbb{C}$

$$f'(z) = \frac{1}{2\pi i} \int_{|\xi-z|=R} \frac{f(\xi)}{(\xi-z)^2} d\xi.$$

Пусть M > 0: $\sup_{z \in \mathbb{C}} |f(z)| \leqslant M \implies$

$$\begin{split} \left|f'(z)\right| &\leqslant \frac{1}{2\pi} \int_{|\xi-z|=R} \frac{|f(\xi)|}{\left|\xi-z\right|^2} \left| \operatorname{d} \xi \right| \leqslant \frac{1}{2\pi} \cdot \frac{M}{R^2} \cdot 2\pi R = \frac{M}{R} \xrightarrow[R \to +\infty]{} 0 \implies \\ &\Longrightarrow f'(z) = 0 \ (\forall z \in \mathbb{C}). \end{split}$$

$$u_{x}^{'}=u_{y}^{'}=v_{x}^{'}=v_{y}^{'}=0 \implies u=const,\ v=const \implies f=const.$$

1.3.4 Неопределенный интеграл теорем Мореры и Вейерштрасса

Теорема 29. Непрерывная в односвязной области D функция f голоморфна в этой области $\iff \forall z_0, z \in D \ \int_{z_0}^z f(\xi) \, \mathrm{d}\, \xi$ не зависит от пути интегрирования, соединяющего области D точек z_0, z .

Определение 51 (Первообразная голоморфной в области). Первообразной голоморфной в области D функции f называется голоморфная в D функция $F: \forall z \in D$ F'(z) = f(z).

Замечание. Любые две первообразные голоморфной функции отличаются только на константу.

Определение 52 (Неопределенный интеграл). Совокупность всех первообразных голоморфной функции называется ее *неопределенным интегралом*.

Обозначение. $\int f(z) dz = F(z) + c$.

Замечание. Если функция f голоморфна в области D и F – ее первообразная, то $\forall z_0,z\in D$

$$\int_{z_0}^{z} f(\xi) \, \mathrm{d}\, \xi = F(z) - F(z_0).$$

Теорема 30 (Морера). Для того, чтобы непрерывная в односвязной области функция была голоморфна в этой области, необходимо и достаточно, чтобы интеграл от этой функции по любому замкнутому контуру, лежащему в области, был равен 0.

Замечание. В сторону достаточности условия теоремы Мореры можно ослабить. Если функция непрерывна в односвязной области и $\int_{\triangle} f(z) \, \mathrm{d} z = 0$, то функция голоморфна $\forall \triangle \in D$.

Определение 53. Пусть $\{f_n\}_{n\in\mathbb{N}}\subset C(D)$. Говорят, что эта последовательность сходится равномерно к f внутри D, если $\forall K\in D\Subset D$ $f_n\rightrightarrows f$ на K, то есть $\forall \varepsilon>0 \exists n\in\mathbb{N}:\ \forall n\geqslant n_0$

$$\sup_{I \in K} |f_n(z) - f(z)| < \varepsilon.$$

Теорема 31 (Вейерштрасса). Равномерный предел последовательности голоморфных функций является голоморфной функцией, то есть если $\{f_n\}_{n\in\mathbb{N}}\subset\mathcal{H}(D)$ и $f_n\rightrightarrows f$ внутри D, то $f\in\mathcal{H}(D)$.

Определение 54 (Корень многочлена). Корнем многочлена $P(z) := a_n z^n + \ldots + a_1 z + a_0$, где $a_0, a_1, \ldots, a_n \in \mathbb{C}$, называется число $z_0 \in \mathbb{C}$: $P(z_0) = 0$.

Теорема 32 (Безу). Если z_0 – корень многочлена P, то \exists многочлен $Q:\ P(z)=(z-z_0)\cdot Q(z_0).$

Теорема 33 (Основная теорема алгебры). Каждый многочлен с комплексными коэффициентами в $\deg \geqslant 1$ имеет к.б. один комплексный корень.

Следствие 9. Каждый многочлен n-ой степени имеет n корней.

Лекция 6: Продолжение

от 21 мар 12:45

1.4 Ряды Тейлора и Лорана. Элементы теории вычетов

1.4.1 Разложение голоморфной функции в ряд Тейлора

Теорема 34. Пусть $f \in \mathcal{H}(D)$. Тогда $\forall z_0 \in D \; \exists r > 0$: при $|z - z_0| < r$

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z - z_n)^n.$$

Следствие **10.** $\mathcal{H}(D) = \mathcal{A}(D)$.

Теорема 35. Пусть f голоморфна в $B_r(z_0)$ $\forall z \in B_r(z_0)$ $f(z) = \sum_{n=0}^{\infty} C_n(z-z_0)^n$.

Тогда $\forall n \in \overline{\mathbb{N}}$

$$C_n = \frac{1}{2\pi i} \int_{|\xi - z_0| = \rho} \frac{f(z)}{(\xi - z_0)^{n+1}} d\xi \quad \forall \rho \in (0, r).$$

То есть любой степенной ряд является рядом Тейлора для своей суммы.

Доказательство. Радиус сходимости $\geqslant r, \ \rho \in (0;r).$ $|z-z_0|=\rho \implies$ ряд сходится, рассмотрим:

$$f(z) = \frac{1}{2\pi i} \int_{|\xi - z_0| = \rho} \frac{f(\xi)}{(\xi - z_0)^{k+1}} d\xi =$$

$$= \frac{1}{2\pi i} \int_{|\xi - z_0| = \rho} \frac{\sum_{n=0}^{\infty} C_n (\xi - z_0)^n}{(\xi - z_0)^{k+1}} d\xi =$$

$$= -\frac{k!}{2\pi i} \cdot C_k \cdot 2\pi i = C_n \cdot k!,$$

$$C_k = \frac{f^{(k)}(z_0)}{k!}.$$

Теорема 36 (Неравенство Коши). Пусть f голоморфна в D и $B_r[z_0] \subset D, \ f(z) = \sum_{n=0}^{\infty} C_n (z-z_0)^n.$ Пусть $M := \sup_{|z-z_0| \leqslant r} |f(z)|$. Тогда $\forall n \in \overline{\mathbb{N}} \ |C_n| \leqslant \frac{M}{r^n}.$

Определение 55 (Предельная точка). Точка называется *предельной точкой множества*, если в любой ее окрестности есть точки множества, отличные от данной.

Следствие 11. Любые две аналитические в области функции, совпадающие на множестве, имеющем в этом множестве предельную точку, тождественно равны.

1.4.2 Ряды Лорана

Определение 56 (Ряд Лорана). *Рядом Лорана* называется степенной ряд вида $\sum_{n=-\infty}^{\infty} C_n(z-z_0)^n$. Ряд Лорана раскладывается на сумму двух рядов:

$$\sum_{n=-\infty}^{\infty} C_n (z-z_0)^n := \sum_{n=0}^{\infty} C_n (z-z_0)^n + \sum_{n=1}^{\infty} C_{-n} (z-z_0)^{-n}.$$

Ряд Лорана сходится \iff сходятся обе его составляющие. Область сходимости ряда Лорана: $0 \leqslant r < |z - z_0| < R \leqslant +\infty$.

Теорема 37 (О ряде Лорана). Если функция f голоморфна в кольце $r < |z - z_0| < R$, то в этом кольце она разлагается в ряд Лорана. $f(z) = \sum_{n=-\infty}^{\infty} C_n (z-z_0)^n$ с коэфициентами C_n , определяемыми формулами:

$$C_n = \frac{1}{2\pi i} \int_{|\xi - z_0| = \rho} \frac{f(\xi)}{(\xi - z_0)^{n+1}} \,\mathrm{d}\,\xi \quad \forall \rho \in (r, R).$$

1.4.3 Классификация изолированных особых точек

Определение 57 (Правильная точка). Точка $z_0 \in \text{dom } f$ называется npa-вильной точкой функции f, если f определена в некоторой области и непрерывна в самой функции.

Определение 58 (Особая точка). *Особой* точкой функции называется предельная точка ее области определения, этой области не принадлежащая.

Определение 59 (Изолированная особая точка). Особая точка называется *изолированной* особой точкой, если в некоторой ее окрестности других особых точек нет.

Замечание. Особая точка функции называется изолированной, если в проколотой окрестности этой точки функция голоморфна.

Пример.

$$f(z) = \frac{1}{\sin\frac{1}{z}},$$

 $z_0=0$ — особая точка, $\sin rac{1}{z}=0 \implies rac{1}{z}=\pi k,\; k\in Z,$ $z_k=rac{1}{\pi k},\; k\in \mathbb{Z}$ — особые точки,

$$\frac{1}{\pi(k+1)} < \frac{1}{\pi k} < \frac{1}{\pi(k-1)}.$$

 \Diamond

Теорема 38 (О путях и полюсах). Изолированная особая точка z_0 функции f является полюсом порядка m функции $f \iff$ она является путем m-го порядка функции $\rho(z) = \frac{1}{f(x)}$.

Доказательство. Самостоятельно.

Теорема 39 (Сохоцкий). Изолированная особая точка функции является существенно особой точкой \iff в любой ее окрестности функция принимает значения сколь угодно близкие к любому числу $a \in \overline{\mathbb{C}}$.

Определение 60 (A-точка). Пусть $A \in \mathbb{C}$, точка z называется A-точкой функции f, если f(z) = A.

Теорема 40 (Большая теорема Пикара). В окрестности существенно особой точки z_0 голоморфной функции $f \ \forall A \in \mathbb{C}$, за исключением быть может одного, существует последовательность A-точек функции f, сходящаяся к точке z_0 .

1.4.4 Вычеты

Определение 61 (Вычет функции относительно точки). Если z_0 – изолированная особая точка функции f, то вычетом f относительно z_0 называется интеграл $\frac{1}{2\pi i}\int_{\gamma}f(z)\,\mathrm{d}\,z$, где γ – произволный контур, ограничивающий область D: f непрерывна в $\mathrm{cl}\,D\setminus\{z_0\}$ и голоморфна в $D\setminus\{z_0\}$, то есть в качестве γ можно брать любую окрестность сколь угодно малого радиуса с центром в точке z_0 .

Обозначение. $\operatorname{Res} f \big|_{z=z_0} \coloneqq \frac{1}{2\pi i} \int_{\gamma} f(z) \, \mathrm{d} z.$

Теорема 41 (Основная теорема теории вычетов). Пусть γ — замкнутый контур, ограничивающий односвязную область D, функция f непрерывна на $\operatorname{cl} D = D \cup \gamma$ и голоморфна внутри D, за исключением конечного числа точек. Тогда:

$$\int_{\gamma} f(z) \, \mathrm{d} z = 2\pi i \sum_{k=1}^{m} \underset{z_k}{\mathrm{Res}} f.$$

Доказательство. m=3,

$$\Gamma = \gamma \cup \gamma_1^- \cup \gamma_2^- \cup \gamma_3^-,$$

$$\int_{\Gamma} f(z) \, \mathrm{d} z = 0 = \int_{\gamma} f(z) \, \mathrm{d} z - \int_{\gamma_1} f(z) \, \mathrm{d} z - \int_{\gamma_2} f(z) \, \mathrm{d} z - \int_{\gamma_3} f(z) \, \mathrm{d} z.$$

Теорема 42 (О сумме вычетов). Если функция голоморфна в $\overline{\mathbb{C}}$, за исключением конечного числа изолированных о.т., то

$$\sum_{k=0}^{m} \underset{z_k}{\operatorname{Res}} f = 0.$$

1.4.5 Вычисление интегралов

Определение 62. Главным значнием по Коши интеграла $\int_{-\infty}^{+\infty} f(x) dx$ называется

$$\lim_{R \to \infty} \int_{-R}^{R} f(x) \, \mathrm{d} \, x =: Vp \int_{-\infty}^{\infty} f(x) \, \mathrm{d} \, x.$$

Замечание. Если несобственный интеграл $\int_{-\infty}^{\infty} f(x) \, \mathrm{d}\, x$ сходится, то его значение совпадает с его главным значением по Коши, Обратно неверно.

Лемма 3. Пусть

- 1. Для некоторого $R_0 > 0$ функция f непрерывна при $|z| > R_0$ и ${\rm Im}\, z \geqslant 0.$
- $2. \lim_{R \to \infty} \sup_{z \in \gamma_R} |zf(z)| = 0.$

Тогда $\lim_{R \to \infty} \int_{\gamma_R} f(z) \, \mathrm{d} \, z = 0.$

Лемма 4 (Жордана). Пусть $\alpha > 0$,

- 1. Для некоторого $R_0>0$ функция f непрерывна при $|z|>R_0$ и ${\rm Im}\,z\geqslant 0.$
- $2. \ \, \lim_{R\to\infty} \sup_{z\in\gamma_A} \left|f(z)\right| = 0.$

Тогда $\lim_{R \to \infty} \int_{\gamma R} e^{i\alpha z} f(z) \, \mathrm{d}\, z = 0.$

1.4.6 Гармонические функции

Определение 63 (Гармоническая функция). Определенная в односвязной области $D \subset \mathbb{R}^2$ функция u(x,y) называется гармонической функцией, если $u \in C^2(D)$ и

$$\triangle u := \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \equiv 0,$$

где △ – оператор Лапласа.

Теорема 43. Если функция f голоморфна в односвязной области $D \subset \mathbb{C}$, то ее вещественная и мнимая части являются гармоническими функциями в этой области.

Доказательство.

$$\begin{split} f(z) &= f(x+iy) = u(x,y) + iv(x,y), \\ \frac{\partial u}{\partial x} &= \frac{\partial v}{\partial y}, \ \frac{partialu}{\partial y} = -\frac{\partial v}{\partial x}, \\ \frac{partial^2 u}{\partial y^2} &= \frac{\partial}{\partial y} \left(\frac{\partial u}{\partial y}\right) = \frac{\partial}{\partial y} \left(-\frac{\partial v}{\partial x}\right) = -\frac{\partial^2 v}{\partial y \partial x}. \end{split}$$

Получаем, что смеш. производные непрерывны, зачит они равны $\Longrightarrow \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \equiv 0 \Longrightarrow$ вещественная и мнимая части являются гармоническими.

1.4.7 Целые и мероморфные функции

Определение 64 (Целая функция). Голоморфная в \mathbb{C} функция называется *целой функцией*. Целая функция называется *трансцендентной*, если бесконечность является ее существенно о.т.

Определение 65 (Мероморфная функция). Функция, голоморфная в области D всюду, за исключением полюсов, называется *мероморфной* в этой области функцией.

Теорема 44 (О мероморфной функции). Если ∞ является устранимой о.т. мероморфной функции, то данная функция является частным двух многочленов, то есть является рациональной функцией.

Доказательство. ∞ – изолированная о.т. (в силу условия), z_1, \ldots, z_n – конечное число оптимальных точек.

$$f(z) = h(z) + \sum_{k=1}^{m} f_k \left(\frac{1}{z - z_0} \right),$$

$$\lim_{z \to \infty} f(z) = C_0, \quad \lim_{z \to \infty} h(z) = C_0$$

 $\implies h = const$ (по теореме Лиувиля) $\implies f(z) = C_0 + \sum_{k=1}^m f_k\left(\frac{1}{z-z_k}\right) = \frac{P(z)}{Q(z)}.$

Лекция 7: Продолжение

от 28 мар 12:45

1.5 Основные принципы комплексного анализа

1.5.1 Принцип аргумента и Теорема Руше

Определение 66. Пусть f голоморфна в некоторой проколотой окружности точки z_0 , а z_0 не хуже, чем полюс, тогда:

$$f(z) = \sum_{n=0}^{\infty} C_n (z - z_0)^n,$$

$$M_f(z_0) := \inf\{n \in \mathbb{Z} : C_n \neq 0\}.$$

Лемма 5. Пусть z_0 – обычная точка или полюс функции f. Тогда

$$\operatorname{Res}_{z_0} \frac{f'}{f} = M_f(z_0).$$

Примечание. $\frac{f'}{f} = \left(\ln f(z)\right)'$ — логарифмическая производная функции f. **Замечание.** Предположим, что есть многозначная функция ϕ и кривая γ . Если мы можем выделить ветвь функции ϕ , которая будет непрерывна в окружности $\gamma:[a,b]\to\mathbb{C},\ \gamma(a),\gamma(b),$ то вариацией этой функции вдоль кривой γ

Литература

- [1] Шабат «Введение в комплексный анализ, 1976» (том 1)
- [2] Привалов «Введение в ТФКП, 1967»
- [3] Бицадзе «Основы теории аналитических функций комплексного переменного, 1984»
- [4] Волковыский, Лунц, Араманович «Сборник задач по ТФКП», 1975»
- [5] Гилев В.М. «Основы комплексного анализа. Ч.1», 2000»
- [6] Исапенко К.А. «Комплексный анализ в примерах и упражнениях (Ч.1, 2017, Ч.2, 2018)»
- [7] Мещеряков Е.А., Чемеркин А.А. «Комплексный анализ. Практикум»
- [8] Боярчук А.К. «Справочное пособие по высшей математике» (том 4)