Introduction to Computational Techniques in Physics/Data Science Applications in Physics

Definitions

- Suppose is some function that we at some frequency
 - Measure at times $t_n =$
 - Goal is to analyze and properties of
 - •
 - •
 - •

Acronyms

- FFT =
 - DFT =
- DSP =
- SNR =
 - Often expressed in
 - i.e. SNR = amplitudes
 - For power, SNR =
- ASD =
 - PSD =
 - NPS =

where S and N are and

Acronyms

- FIR =
- IIR =

Schematic Notation

- Represent operations
- Most can be this way

•

• i.e.

Fourier Transform

 Most common way to means of a

a is by

• Represent as a

of

$$\bullet x(t) = \int_{-\infty}^{\infty} x(t) dt = \int_{-\infty}^{\infty} x(t) dt$$

• Here $x(\omega)$ is a represents the at a

of the

Also known as the

Fourier Transform

Inverse transform

$$\bullet x(\omega) = C$$

$$\bullet x(f) = C$$

• =

Discrete Fourier Transform

• For a

, replace the

with a

• $x(m) = \sum_{m=0}^{\infty} x(m)$

- Define
 - $x_{mag}(m) =$
 - $\Delta \phi(m) =$
 - P(m) =

Aliasing

- For real signals , can show that
 - Exercise for the reader
 - x(m) =
 - Moreover (obvious)
 - x(m) =
- This is called
- Spectrum for is with
 - theorem:
 - can be reconstructed from
 - iff is limited to the and
 - is often called the frequency

Fast Fourier Transform

- Brute-force transforms can be
 - Require calculations
 - However,
 are
 and obey
 - , which is used in the
 - Scale as
 - Multiple algorithms exist, and are in
 - E.g. from

Applications of FFT

FFT is useful to

Look at the of a

• e.g.

Look at the of

lacktriangle

•

•

Signal processing

Measure of the in

Design to

FIR filters

• is a way to the contributions of (random) to the of the

Usually by with some (predetermined)

Equivalent to

Box-car Filter Response

Time-Domain Signal After Filtering

Frequency-Domain Response

More FIR Filters

Ideal Low-Pass FIR Filter

Convoluted Low-Pass Filter

Example: Blackman Window

$$w(k) =$$

More (Tunable) Filters

•
$$w(k) =$$

• where $\alpha =$

•
$$\omega(k) =$$

More Tunable Filters

Bandpass Filter

Highpass Filter

Phase Response in FIR Filters

phase shift in : constant group delay (no):

(b)

IIR Filters

Example: Exponential Averaging Filter

Exponential IIR Filter

What We Have Not Covered

- Many to cover, so I so far focused on most immediately
 - There are dedicated to
- Other possible topics of interest (at your leisure):
 - Digital Signal Processing
 - Digital mixing
 - Modulation/demodulation
 - Smoothing, windowing
 - Often useful for image processing
 - Down-sampling (decimating), re-sampling