

به نام خدا

یادگیری ماشین

آرش عبدی هجراندوست arash. abdi. hejrandoost@_gmail. com_

آزمون اطمینان Significant Test

Null Hypothesis ورضيه صفر ×

د یا قبول با درجه اطمینان دلفواه
 مثلا در هرس گره های درخت تصمیه

- in form ation gain معیار کوچک بودن
 - ت چه مدی کوچک؟
- فرض: ویژگی انتماب شده هیچ تمایزی ایجاد نمیکند/ هیچ الگویی ندارد
 فرضیه صفر
 - بررسی میزان درست/غلط بودن این فرضیه

🗙 فرضیہ صفر:

🔾 میزان انمراف از فرضیه:

هرس ده هیچ تمایزی ایجاد نمیکند.

ویژگی انتخاب شده هیچ تمایزی ایجاد نمیکند. \bigcirc محاسبه میزان احتمال بر اساس توزیع تصادفی \bigcirc اندازه نمونه ها: v=n+p

$$\hat{p}_k = p \times \frac{p_k + n_k}{p + n}, \qquad \hat{n}_k = n \times \frac{p_k + n_k}{p + n}$$

p+n, p+n

 $\Delta = \sum_{k=1}^{d} \frac{(p_k - \hat{p}_k)^2}{\hat{p}_k} + \frac{(n_k - \hat{n}_k)^2}{\hat{n}_k}$

است و میتوان بر اساس X^2 با درجه X^2 با درجه d-1 است و میتوان بر اساس نمونه موجود میزان اطمینان را مماسبه کرد. X^2

$X^2 - 7$ هرس کای

دانشگاه، عام. صنعت!

Degrees of freedom (df)	χ^2 value $^{[20]}$										
1	0.004	0.02	0.06	0.15	0.46	1.07	1.64	2.71	3.84	6.63	10.83
2	0.10	0.21	0.45	0.71	1.39	2.41	3.22	4.61	5.99	9.21	13.82
3	0.35	0.58	1.01	1.42	2.37	3.66	4.64	6.25	7.81	11.34	16.27
4	0.71	1.06	1.65	2.20	3.36	4.88	5.99	7.78	9.49	13.28	18.47
5	1.14	1.61	2.34	3.00	4.35	6.06	7.29	9.24	11.07	15.09	20.52
6	1.63	2.20	3.07	3.83	5.35	7.23	8.56	10.64	12.59	16.81	22.46
7	2.17	2.83	3.82	4.67	6.35	8.38	9.80	12.02	14.07	18.48	24.32
8	2.73	3.49	4.59	5.53	7.34	9.52	11.03	13.36	15.51	20.09	26.12
9	3.32	4.17	5.38	6.39	8.34	10.66	12.24	14.68	16.92	21.67	27.88
10	3.94	4.87	6.18	7.27	9.34	11.78	13.44	15.99	18.31	23.21	29.59
p-value (probability)	0.95	0.90	0.80	0.70	0.50	0.30	0.20	0.10	0.05	0.01	0.001

در مثال رستوران: type ویژگی ■ 🍍 ۴ مقدار 🛨 درجه س در واقع ۳ متغیر تصادفی وجود دارد (چهارمی؟) (۵٪) عن بیشتر \leftarrow رد فرضیه صفر با درجه اطمینان ۹۵٪ $\Delta = 7.82$ رد فرضیه صفر با درجه اطمینان ۹۹٪ (۱٪) $\Delta = 11.35$

دانشگاه، علی صنعت

چند چالش در درخت تصمیم

:Missing Data X

- با وجود درخت، داده تست بدون یک ویژگی مشخص را چگونه دسته بندی کنیه؟
 - مماسبه کنیم؟ و Gain مماسبه کنیم؟
 - اگر ویژگی دارای مقادیر گسسته بسیار زیاد بود؟
 - 🔾 کد شهر
 - خ ناپایداری درفت: 🗙
 - دیدن یک نمونه جدید = اعتمال تغییر ریشه درخت و ...

انتخاب مدل و بهینه سازی

🗙 هدف کلان یادگیری 🗙 فرض iid برای نمونه ها

independent and identically distributed

Error rate X

Hyperparameters X

🗙 تقسیم داده ما: Training set

Validation set Test set

K- fold cross-validation

leave-one-out cross-validation - LOOCV K=n

ایتخاب مدل و بهینه سازی

انتماب فضای مدل

دانشگاه، عام. صنعت!

validatidېر

🗙 ظرفیت درخت تصمیه برگ به تعداد نمونه ما

🗙 تطابق کامل با داده های آموزشی:

Interpolation Memorization

افزودن ظرفیت به مدل (مثلا شبکه عصبی)

دانشگاه، علی صنعت

○ توابع کاندید بیشتر

امتمال یافتن تابع مناسب بیشتر

Error Ratess

آیا درصد فطا برای ارزیابی کارایی کافی است؟ لاید نه؟

Spam دسته بندی ×

مطای ۱٪ خوب است؟

 $L(x,y,\hat{y}) = Utility(result\ of\ using\ y\ given\ input\ x)$ - $Utility(result\ of\ using\ \hat{y}\ given\ input\ x)$

پیشتر از دو کلاس در دو کلاس میشتر از دو کلاس

Generalization Loss

$$GenLoss_L(h) = \sum_{(x,y)\in\mathcal{E}} L(y,h(x)) P(x,y)$$

$$h^* = \underset{h \in \mathcal{H}}{\operatorname{argmin}} \operatorname{GenLoss}_L(h)$$

$$EmpLoss_{L,E}(h) = \sum_{(x,y)\in E} L(y,h(x)) \frac{1}{N}$$

$$\hat{h}^* = \operatorname*{argmin}_{h \in \mathcal{H}} EmpLoss_{L,E}(h)$$

فضای محدود (فرضیه)

کلل وجود خطا:

Regularization

Cross - Validation هدف از هدف از بیش برازش ملوگیری از بیش برازش

اه مایگزین – مریمه کردن پیمِیدگی:

 $Cost(h) = EmpLoss(h) + \lambda Complexity(h)$

 $h^* = argmin Cost(h)$

🗙 معیاری پیمِیدگی؟

 L_2 برای فضای چندجمله ای: مثلا کا Loss جلوگیری از غروجی های شدیدا پرت!

Feature Selection

راه دیگری برای تامین سادگی در مدل

 X^2 هرس \times

روشهای عمومی انتخاب ویژگی

تنظیم پارامترهای آزاد

- Cross Validation
 یافتن مقدار صمیم پارامترها با

 یافتن مقدار صمیم پارامتر
 یارامتر
 - مقادیر زیاد یک یارامتر (پیوسته)
 - Hand-tuning X
 - تنظیم دستی 🔾
 - کیلویی!!
 - ایراد:
 - باید بالا سر سیستی بود ...
 - و ماند!
 - و مُرد!!
 - و مرد !! ا لزوما به بهترین نمیرسیه! (به اندازه کافی خوب<u>)</u>

تنظیم پارامترهای آزاد

- Grid search X
- مکان موازی سازی اجراها 🔾
- Random Sampling X

پهینه سازی تابع یادگیری 🗙

- مِشْم بسته تا وقتی وقت هست
- یافتن تابعی با ورودی پارامترها و خروجی دقت (loss)
- بعد از هر بار مماسبه برای یک سری پارامتر، فرضیات راجع به تابع هدف به روز شود

با تشکر

