Topologia Notatki z ćwiczeń

27 marca 2020

Lista 2

Uwaga 1

Dla dowolnej przestrzeni metrycznej (X, d) i zbioru $Y \subseteq X$ niech $d_Y = d|_{Y \times Y}$. Wtedy (Y, d_Y) jest podprzestrzenią metryczną (X, d). To definiuje przestrzeń topologiczną $(Y, \mathcal{T}(d_Y))$ i jest to ta sama przestrzeń, co podprzestrzeń $(Y, (\mathcal{T}(d))_Y)$ przestrzeni topologicznej $(X, \mathcal{T}(d))$.

Uwaga 2 (nowa)

Przy rozwiązywaniu zadania 4. pojawiła się wątpliwość, czy przy badaniu należenia punktu x do domknięcia danego zbioru, należy rozważać obydwa zbiory U i V ($U \subseteq V$) z definicji 1.2.13 otoczenia. Otóż nie trzeba, tzn. definicję 1.2.14 domknięcia zbioru równoważnie można zapisać zamieniając "otoczenie x" na "otoczenie otwarte x" (czyli dowolny otwarty zbiór zawierający x).

Zad. 6.

Zakładamy: A – otwarty, $A \cap B = \emptyset$. Mamy $B \subseteq A^c$, A^c – domknięty. Zatem $\overline{B} \subseteq A^c$. Tym bardziej $\operatorname{Int} \overline{B} \subseteq A^c$, czyli $A \subseteq (\operatorname{Int} \overline{B})^c$. $(\operatorname{Int} \overline{B})^c$ jest domknięty, więc $\overline{A} \subseteq (\operatorname{Int} \overline{B})^c$, czyli $\overline{A} \cap \operatorname{Int} \overline{B} = \emptyset$.