

UNIVERSIDADE FEDERAL DO CEARÁ - CAMPUS SOBRAL

CURSO: ENGENHARIA ELÉTRICA E ENGENHARIA DA COMPUTAÇÃO

DISCIPLINA: CIRCUITOS ELÉTRICOS 1 - LABORATÓRIO

PERÍODO : 2021.2

PRÁTICA 1 - ANÁLISE DE CIRCUITOS PURAMENTE RESISTIVOS

LISTA DE MATERIAIS

- Protoboard
- Resistores
- Jumpers
- Cabos
- Fonte de alimentação
- Multímetro

PARTE 1 - Leis de Kirchorff

 Use a tabela de cores para determinar o valor nominal dos resistores disponíveis na bancada. Com o multímetro, faça a medição de resistência e calcule o erro percentual. Organize os resultados numa tabela.

Figura 1 - Tabela de cores para resistores de 4 faixas

Cor	1ª Faixa	2ª Faixa	3ª Faixa	Multiplicador	Tolerância
Preto	0	0	0	x 1 Ω	
Marrom	1	1	1	x 10 Ω	+/- 1%
Vermelho	2	2	2	x 100 Ω	+/- 2%
Laranja	3	3	3	x 1K Ω	
Amarelo	4	4	4	x 10K Ω	
Verde	5	5	5	x 100K Ω	+/5%
Azul	6	6	6	x 1M Ω	+/25%
Violeta	7	7	7	x 10M Ω	+/1%
Cinza	8	8	8		+/05%
Branco	9	9	9		
Dourado				χ.1Ω	+/- 5%
Prateado				x .01 Ω	+/- 10%

2) Monte o circuito da Figura 1. Com o valor de VDC1 = 10 V, meça as tensões e correntes em cada elemento do circuito. Calcule a potência fornecida / dissipada por cada elemento do circuito. Compare com os valores teóricos

Figura 2 - Circuito resistivo misto

- 3) Verifique a validade das leis de Kirchoff de corrente e tensão.
- 4) Calcule analiticamente os valores nominais de tensão e corrente em cada resistor (apresentar os cálculos) e compare com os valores medidos apresentando o erro percentual.

PARTE 2 - Princípio da superposição

1) Montar o circuito da Figura 3. (V1 = 7 V e V2 = 5 V). Medir as tensões e correntes em todos os elementos do circuito.

Figura 3 - Circuito com duas fontes independentes

- 2) Curto circuitar a fonte V2 e medir tensões nos resistores.
- 3) Com V2 conectada, curto circuitar a fonte V1 e medir as tensões nos resistores
- 4) Verificar o teorema da superposição somando os valores obtidos em 2) e 3), comparando com os resultados em 1). Organize a análise em uma tabela e comente os resultados comparando com os cálculos teóricos

PARTE 3 - Equivalente de Thévenin e máxima transferência de potência

- 1) Monte o circuito da Figura 4. Retire o resistor R3 e medir a tensão entre os terminais A e B. Anote o valor de Vth.
- 2) Em seguida, retire as fontes do circuito e conecte os terminais de R1 e R2 ao ponto B e meça a resistência equivalente entre os terminais A e B. Anote o valor de Rth.

Figura 4 - Circuito com duas fontes de alimentação

3) Monte o circuito equivalente conforme a figura 5. Varie a resistência do potenciômetro RL com três valores abaixo de Rth, igual a Rth e três valores acima de Rth preenchendo a Tabela 1.

Rth

Note the second of the se

Figura 5 - Circuito equivalente de Thévenin

Tabela 1 - Resultados do item 3)

RL (Ω)				
Vab (V)				
I (mA)				
P (W)				

4) Baseados nos dados obtidos na Tabela 1 plote um gráfico P vs R_L . Comente os resultados. Compare com os resultados teóricos.

PARTE 4 - Dissipação de potência

1) Escolha um dos resistores de valor nominal abaixo de 200 Ω e baseado no seu valor nominal de potência, calcule o valor máximo de tensão nominal a que o resistor pode ser submetido . Conecte os terminais desse resistor na fonte e eleve a tensão da fonte gradativamente até sentir um aumento de temperatura do componente. Anote o valor dessa tensão e compare com o valor calculado.

Obs:. A potência nominal dos resistores utilizados é de ½ W . Utilize a lei de Ohm para calcular a tensão.

APÊNDICE 1

Figura A - Recomendação de montagem do circuito da Figura 2

10.0 V

6.67 mA

6.67 mA

6.67 mA

6.67 mA

6.67 mA

6.67 mA

6.68 mA

6.69 mA

6.69

Figura C - Forma alternativa de medição de corrente em R1

Figura E - Medição de corrente em R3