UNIVERSIDADE FEDERAL DE MINAS GERAIS

ELT135 - Introdução ao Reconhecimento de Padrões Exercício 9 - 15/09/2019

Classificação de problemas não linearmente separáveis utilizando mistura de gaussianas

Hernane Braga Pereira - 2014112627

1. Introdução

Este relatório tem como objetivo exemplificar o uso da técnica de mistura de gaussianas, geradas à partir da separação de clusters através do método k-means, para classificação de problemas não linearmente separáveis.

2. Problema espiral

Para este exercício foi utilizado o problema *Espiral* com 1000 amostras, que foi gerado usando o pacote *mlbench* do R, e foi pedido que o problema fosse classificado. Como as classes 1 (vermelha) e classe 2 (preta) não são linearmente separáveis, utilizou-se o método das misturas de gaussianas para linearizar o problema, e então utilizar o classificador bayesiano para separação.

Figura 1. Problema Espiral utilizado

Para gerar as gaussianas, foi utilizado o método *K-means* para gerar 30 clusters, de forma que nenhum cluster estivesse em duas classes.

Figura 2. Clusters criados (k=30)

Após os clusters serem criados, os dados foram separados em 10 partições, ou *folds*, para realização da validação cruzada. Para cada iteração, os dados foram separados em 90% para treino e 10% para teste. Como estamos assumindo distribuição normal em cada cluster, a equação do classificador bayesiano foi adaptada para este contexto.

$$P(\mathbf{x}|S_1,\cdots,S_p) = \sum_{k=1}^p \pi_k \frac{1}{\sqrt{(2\pi)^n |\mathbf{\Sigma}_k|}} \exp\left(-\frac{1}{2}(\mathbf{x}_k - \boldsymbol{\mu}_k)^{\mathrm{T}} \mathbf{\Sigma}_k^{-1} (\mathbf{x}_k - \boldsymbol{\mu}_k)\right)$$

Equação 1. Probabilidade de um ponto x pertencer à classe desejada, dado que os clusters $S1,\ S2...,S_p$ pertencem à esta classe

Onde μ_k é o vetor de médias do cluster k e $\pi_k = \frac{N_k}{N}$ é o coeficiente da combinação linear onde N_k é o número de amostras do cluster k e N o número total de amostras. Após a execução do modelo os seguintes resultados foram obtidos:

Nº Teste	Taxa de acurácia para a Classe 1	Taxa de acurácia para a Classe 2	Taxa de acurácia Total
1	100%	100%	100%
2	100%	100%	100%
3	100%	100%	100%
4	100%	100%	100%
5	100%	100%	100%
6	100%	100%	100%
7	100%	100%	100%
8	100%	100%	100%
9	100%	100%	100%
10	100%	100%	100%
Média Geral	100%	100%	100%

Quadro 1. Comparação de acurácia para 30 clusters

O desvio padrão encontrado foi de 0.

Figura 3. Superfície de contorno da solução encontrada usando 30 clusters

Como os resultados indicaram 100% de acerto em todos as tentativas, repetiu-se o experimento utilizando 16 clusters, ao invés de 30.

Nº Teste	Taxa de acurácia para a Classe 1	Taxa de acurácia para a Classe 2	Taxa de acurácia Total
1	88%	84%	86%
2	96%	76%	86%
3	92%	78%	85%
4	92%	84%	88%
5	88%	86%	87%
6	92%	88%	90%
7	80%	90%	85%
8	98%	84%	91%
9	86%	82%	84%
10	90%	82%	87%
Média Geral	90%	84%	87%

Quadro 2. Comparação de acurácia para 16 clusters

Nº Teste	Desvio padrão para a Classe 1	Desvio padrão para a Classe 2	Desvio padrão Total
1	0.3282607	0.3703280	0.5021167
2	0.1979487	0.4314191	0.4923660
3	0.2740475	0.4184520	0.4975699
4	0.2740475	0.3703280	0.5009083
5	0.3282607	0.3505098	0.5024184
6	0.2740475	0.3282607	0.5021167
7	0.4040610	0.3030458	0.5000000
8	0.1414214	0.3703280	0.4975699
9	0.3505098	0.3880879	0.5021167
10	0.3030458	0.3703280	0.5016136
Média Geral	0.2875651	0.3701087	0.4998796

Quadro 3. Comparação de desvio padrão para 16 clusters

Figura 3. Superfície de contorno da solução encontrada usando 16 clusters

Ao analisar os resultados, conclui-se que o método da mistura de gaussianas foi efetivo em separar as duas classes do problema *Espiral*, porém nota-se que há uma dificuldade em se determinar qual é o número ideal de agrupamentos necessários para a solução do problema. Ao utilizar um número alto de agrupamento, houve maior custo computacional e classificou-se com acurácia de 100%, enquanto que usando quase a metade de clusters (16), houve uma acurácia total média 87%.

3. Problema breastcancer

Para este exercício foi pedido que se classifica-se o problema *breastcancer*, do pacote *mlbench* do R, utilizando as mesmas técnicas de separação de clusters e classificação utilizando as misturas de gaussianas, porém em um problema real de detecção de câncer de mama em um dataset com 9 variáveis de entrada. Abaixo os resultados encontrados usando 5 clusters.

Nº Teste	Taxa de acurácia para a Classe 1	Taxa de acurácia para a Classe 2	Taxa de acurácia Total
1	89%	100%	93%
2	96%	100%	97%
3	83%	100%	89%
4	96%	96%	96%
5	98%	100%	99%
6	91%	100%	94%
7	93%	100%	96%
8	96%	100%	97%

9	96%	100%	97%
10	98%	100%	99%
Média Geral	93%	100%	96%

Quadro 4. Comparação de acurácia para 5 clusters

Nº Teste	Desvio padrão para a Classe 1	Desvio padrão para a Classe 2	Desvio padrão Total
1	0,3146964	0	0,4974786
2	0,2061846	0	0,4866755
3	0,383223	0	0,5017567
4	0,2061846	0,2041241	0,4826171
5	0,147442	0	0,4826171
6	0,2848849	0	0,4934352
7	0,2496374	0	0,4902782
8	0,2061846	0	0,4866755
9	0,2084091	0	0,4881372
10	0,1490712	0	0,4841917
Média Geral	0,2355918	0,0204124	0,4893863

Quadro 5. Comparação de desvio padrão para 5 clusters

4. Referências

- [1] Clustering, Notas de aula, agosto de 2019.
- [2] Misturas de Gaussianas, Notas de aula, setembro de 2019.
- [3] Misturas de Gaussianas: qualidade de partições, Notas de aula, setembro de 2019.