

Elo Kaggle ChallengeFinal Results Group 6 -

Tarazali Ryskul 742820Sara Sommerfeld 353391Polina Voroshylova 743340

s_ryskul18@stud.hwr-berlin.de s_sommerfeld18@stud.hwr-berlin.de s_voroshylova18@stud.hwr-berlin.de

Our approach to solve the Elo Challenge

1. Project Understanding

Project Understanding: Data Overview and Challenge

2. Data Loading

Data Loading and Size Reduction


```
def reduce_mem_usage(df, verbose=True):
    numerics = ['int16', 'int32',
'int64', 'float16', 'float32', 'float64']
    start_mem = df.memory_usage().sum() /
1024**2
    for col in df.columns:
        col_type = df[col].dtypes
        if col_type in numerics:
            c_min = df[col].min()
            c_{max} = df[col].max()
            if str(col_type)[:3] ==
'int':
                if c min >
np.iinfo(np.int8).min and c_max <</pre>
np.iinfo(np.int8).max:
                    df[col] =
df[col].astype(np.int8)
```

```
Mem. usage decreased to 4.04 Mb (56.2%
reduction)
Mem. usage decreased to 2.24 Mb (52.5%
reduction)
Mem. usage decreased to 1749.11 Mb
(43.7% reduction)
Mem. usage decreased to 114.20 Mb
(45.5% reduction)
Mem. usage decreased to 30.32 Mb (46.0%
reduction)
```

3. Exploratory Data Analysis (EDA)

EDA: Train and Test Data

	first_active_month	card_id	feature_1	feature_2	feature_3
)	2017-04-01	C_ID_0ab67a22ab	3	3	1
1	2017-01-01	C_ID_130fd0cbdd	2	3	0
2	2017-08-01	C_ID_b709037bc5	5	1	1
3	2017-12-01	C_ID_d27d835a9f	2	1	0
4	2015-12-01	C ID 2b5e3df5c2	5	1	1

ī	Training Data Sample									
	first_active_month	card_id	feature_1	feature_2	feature_3	target				
0	2017-06-01	C_ID_92a2005557	5	2	1	-0.820312				
1	2017-01-01	C_ID_3d0044924f	4	1	0	0.392822				
2	2016-08-01	C_ID_d639edf6cd	2	2	0	0.687988				
3	2017-09-01	C_ID_186d6a6901	4	3	0	0.142456				
4	2017-11-01	C_ID_cdbd2c0db2	1	3	0	-0.159790				

Target Variable

EDA: Merchant and Historical Transaction Data

	merchant_id	merchant_group_id	merchant_category_id	subsect	or_id nume	rical_1 numerical	_2 ca	tegory_	_1				
0	M_ID_838061e48c	8353	792	9	-0.05	465 -0.057465	5 N						
1	M_ID_9339d880ad	3184	840	20	Historica	l Transaction	s Sampl	le					
2	M_ID_e726bbae1e	447	690	1									
3	M_ID_a70e9c5f81	5026	792	9	authorized	_flag card_id	c	city_id	category_1	installments	category_3	merchant_category_id	mercha
4	M_ID_64456c37ce	2228	222	21	0 Y	C_ID_4e6213		88	N	0	A	80	M_ID_e
					1 Y	C_ID_4e6213	Be9bc 8	88	N	0	A	367	M_ID_8
					2 Y	C_ID_4e6213	Be9bc 8	88	N	0	Α	80	M_ID_9
					3 Y	C_ID_4e6213	Be9bc 8	88	N	0	А	560	M_ID_e
					4 Y	C ID 4e6213	Re9bc 8	88	N	0	A	80	M_ID_e

Missing Values Check: Train Data


```
print('Train Data');display(missing_values(df_train))
print('Test Data');display(missing_values(df_test))
print('New Merchants');display(missing_values(
df_new_merchant_trans))
print('Historical Transactions');display(missing_values(
df_hist_trans))
print('Merchants');display(missing_values(df_merchants))
```

Train Data
Your data contains 6
columns and has 0
columns with missing
values

Missing Values: Overview of Analysis

Train Data	Test Data	New Merchants	Historical Transactions	Merchants
Train Data Your data contains 6 columns and has 0 columns with missing values	Test Data Your data contains 5 columns and has 1 column with missing values	New Merchants Your data contains 14 columns and has 3 columns with missing values	Historical Transactions Your data contains 14 columns and has 3 columns with missing values	Merchants Your data contains 22 columns and has 4 columns with missing values

Missing Values: New Merchants Example

Train Data	Test Data	New Merchants	Historical Transactions	Merchants
Train Data		Total Miss Values	% of miss values	Merchants
Your data	category_2	111745	5.69	Your data
contains 6	category_3	55922	2.85	contains 22 columns and has
0 columns with	merchant_id	26216	1.34	4 columns with
missing values	missing values	missing values	missing values	missing values


```
. . .
sns.distplot( df_train.feature_1,ax=axes[0], kde =
False, color = 'green', bins=10).set_title("Train Data")
sns.distplot( df_test.feature_1,ax=axes[1], kde = False,
color = 'red', bins=10).set_title("Test Data")
axes[0].set(ylabel='Card Counts')
. . .
plt.show()
```


EDA: Distribution of Target Variable

EDA: Correlation of Features and Target Variable

EDA: Correlation of Features and Target Variable

Column Analysis: purchase_amount

df_hist_trans.purchase_amount.describe()

```
2.911236e+07
count
         6.134567e-02
mean
         1.123521e+03
std
        -7.469078e-01
min
25%
        -7.203559e-01
50%
        -6.883495e-01
75%
        -6.032543e-01
         6.010604e+06
max
```

Column Analysis: purchase_amount

df_hist_trans.purchase_amount.describe()

```
2.911236e+07
count
         6.134567e-02
mean
         1.123521e+03
std
        -7.469078e-01
min
25%
        -7.203559e-01
50%
        -6.883495e-01
75%
        -6.032543e-01
         6.010604e+06
max
```


Column Analysis: purchase_amount

np.percentile(df_hist_trans

["purchase_amount"].values,q=99)

1.2208409547805337

Feature Analysis: Yearly and Monthly Histogram

Feature Analysis: Daily and Hourly Histogram

Feature Analysis: state_id and city_id Histogram

Feature Analysis: subsector_id Histogram

4. Data Preprocessing

Data Preprocessing


```
def aggregate_historical_transactions(history):
    . . .
    agg_func = {
        'authorized_flag': ['sum', 'mean'],
        'merchant_id': ['nunique'],
        'city_id': ['nunique'],
        'state_id': ['nunique'],
        'purchase_amount': ['sum', 'median', 'max', 'min', 'std'],
        'installments': ['sum', 'median', 'max', 'min', 'std'],
        'purchase_date': [np.ptp],
```


Data Preprocessing

def aggregate_historical_transactions(history):

	card_id	hist_transactions_count	hist_authorized_flag_sum	hist_authorized_flag_mean	hist_merchant_id_nunic
0	C_ID_00007093c1	149	114	0.765101	29
1	C_ID_0001238066	123	120	0.975610	65
2	C_ID_0001506ef0	66	62	0.939394	28
3	C_ID_0001793786	216	189	0.875000	119
4	C_ID_000183fdda	144	137	0.951389	73

```
'purchase_date': [np.ptp],
...
}
```


Data Preprocessing: elapsed_time Value Creation

from datetime import datetime

```
df_train['elapsed_time'] = (datetime(2018, 2, 1) - df_train['first_active_month']).dt.days
df_test['elapsed_time'] = (datetime(2018, 2, 1) - df_test['first_active_month']).dt.days
```

	first_active_month	card_id	feature_1	feature_2	feature_3	target	elapsed_time
0	2017-06-01	C_ID_92a2005557	5	2	1	-0.820312	245
1	2017-01-01	C_ID_3d0044924f	4	1	0	0.392822	396
2	2016-08-01	C_ID_d639edf6cd	2	2	0	0.687988	549
3	2017-09-01	C_ID_186d6a6901	4	3	0	0.142456	153
4	2017-11-01	C_ID_cdbd2c0db2	1	3	0	-0.159790	92

Data Preprocessing: Table Merging


```
df_train = pd.merge(df_train, new_history, on='card_id', how='left')

df_test = pd.merge(df_test, new_history, on='card_id', how='left')

df_train = pd.merge(df_train, new_merchants, on='card_id', how='left')

df_test = pd.merge(df_test, new_merchants, on='card_id', how='left')
```

```
df_train.shape, df_test.shape
((201917, 50), (123623, 49))
```

5. Data Cleaning

Data Cleaning

sns.distplot(df_train['new_purchase_amount_std'].dropna())

Data Cleaning

sns.distplot(df_train['new_purchase_amount_std'].dropna())

sns.distplot(df_train['new_purchase_amo
unt_std'].fillna(df_train['new_purchase
_amount_std'].mean()))

Your data contains 48 columns and has 0 columns with missing values

6. Modeling

Linear Models: Why we used Linear, Ridge and Lasso Regression

Linear Regression

Linear regression is the simplest form to be used for supervised learning particularly useful in order to predict quantitative responses.

Ridge Regression

Ridge regression shrinks the coefficients and it helps to reduce the model complexity and multi-collinearity.

Lasso Regression

Lasso regression not only helps in reducing overfitting but it can help us in the feature selection.

Non-linear Models: Why we used Trees and Random Forest

Decision Tree

- Can handle both numerical and categorical values.
- Perform well on large datasets.
- Are extremely fast.
- Resistant to outliers, hence require little data preprocessing.

Random Forest

- Applied to build a number of decision trees on bootstrapped training samples.
- Random subsets of features considered when the nodes are splitted.

Source: ISLR Book

Modeling: How we applied the selected Models

Linear	Ridge	Lasso	Decision Tree	Random
Regression	Regression	Regression	Regressor	Forest
 Cross validation Fitting model 	 Tuning params with GridSearchCV Fitting model with best params 	 Tuning params with GridSearchCV Fitting model with best params 	 Fitting model with our own parameter values Tuning parameters with GridSearchCV Fitting model with best params 	 Fitting model with own params values Fitting model with best params tuned by Randomized SearchCV Fitting model with best params tuned by Randomized SearchCV

Results of Modeling: Comparison of RMSE

Linear Regression

RMSE: 3.7718

Ridge Regression

RMSE: 3.7983

Lasso Regression

RMSE: 3.7987

Decision Tree Regressor

RMSE: 3.7638

Random Forest

RMSE: 3.7419

Best RMSE

7. Feature Importance

Feature Importance: Overview

8. Model Submission and Conclusion

Our main Challenges during the Project

Replacement of missing values

Some columns could not be replaced with the function of mean/median/min.

Application of best models

Opportunity to apply knowledge from class while choosing the best models for the challenge.

New feature creation

First time to create new features to fit model with difficult identification of necessary features.

Reduction of memory

Large dataset had to be reduced in size in order to not "crash" the server constantly.

Result and Conclusion

THANK YOU

