Problem Solving 1

#QuoteOfTheWeek

"He who conquers himself is the mightiest warrior."

- of B closest points to Origin
- 0.2. Allocate books
- 03. K reverse linkedust
- 04. Infine to postfix
- 05. Check two bracket Expression

Video Solution

B Closest Points to Origin

Problem Description

You are developing a feature for Zomato that helps users **find the nearest restaurants to their current location**. It uses GPS to determine the user's location and has access to a database of restaurants, each with its own set of coordinates in a two-dimensional space representing their geographical location on a map. The goal is to identify the **"B" closest restaurants** to the user, providing a quick and convenient way to choose where to eat.

Given a list of restaurant locations, denoted by **A** (each represented by its x and y coordinates on a map), and an integer **B** representing the number of closest restaurants to the user. The user's current location is assumed to be at the origin (0, 0).

Here, the distance between two points on a plane is the Euclidean distance.

You may return the answer in any order. The answer is guaranteed to be unique (except for the order that it is in.)

NOTE: Euclidean distance between two points P1(x1, y1) and P2(x2, y2) is $sqrt((x1-x2)^2 + (y1-y2)^2)$.

•	٠	, , ,
•	•	Points () () = [(3,3) B=2
		[5,-1]
٠	•	(-2,4)
•	٠	· · · · · · · · · · · · · · · · · · ·
•	•	User = (0,0)
•	٠	્ર ^પ ક્ર <u>થ્</u> ય
		(عربير)
•	٠	(حربی ده در این
•	•	dis= \((\z_2 - \z_1)^2 + (\y_2 - \y_1)^2
٠	٠	
•	•	
		(o,o) (x,y)
•	·	
•	•	$dis = \sqrt{x^2 + y^2}$
•	•	
•	•	7:13 AM -> 7:20 AM
•	•	

points () () = [(3,3)]
$$k=2$$
 $(-2,4)$]

 $d_1 = \sqrt{3^2 + 3^2} = \sqrt{18}$
 $d_2 = \sqrt{5^2 + (-1)^2} = \sqrt{26}$

Ans ()() = [(3,3)]

 $d_3 = \sqrt{(-2)^2 + 4^2} = \sqrt{20}$

We force \rightarrow Find distance of all points from origin

A store if in the arroy,

Now, iterate on all those distances d.

 $get = 4x = 8$ smallest points

Arroys. sort (points, new comparator < 7())

Public int compare (int() A, int()B)

int dis_1 = A(0) + A(0) + A(1) + A(1)

int dis_2 = 8(0) + B(0) + B(1) + B(1)

"f (dis, < dis2) return -1;

else return 0;

else of (dis, > dis,) return 1; Points (][]= [3,3] (-2,4][5,-1]

Sc: 0(n)

ans [9] = points (1)

Allocate Books

Problem Description

Given an array of integers A of size N and an integer B.

The College library has N books. The ith book has A[i] number of pages.

You have to allocate books to B number of students so that the maximum number of pages allocated to a student is minimum.

A book will be allocated to exactly one student.

Each student has to be allocated at least one book.

Allotment should be in contiguous order, for example: A student cannot be allocated book 1 and book 3, skipping book 2.

Calculate and return that minimum possible number.

NOTE: Return **-1** if a valid assignment is not possible.

A() =
$$\frac{12}{12}$$
 34 67 90} B=2
S₁ = $\frac{12}{12}$ 46 | 113
S₂ = 191 | 157 | 90

$$A() = \{10 \ 20 \ 5 \ 15 \ 5\} \quad B = 2$$

$$S_1 = |book \rightarrow 10| \quad Max parts$$

$$S_2 = 4book \rightarrow 45$$

$$S_1 = 2 \text{ book} \longrightarrow 30$$

$$S_2 = 3 \text{ book} \longrightarrow 25$$

$$S_1 = 3 \text{ books} \rightarrow 35$$
 $S_2 = 2 \text{ books} \rightarrow 20$
 $S_1 = 4 \text{ books} = 50$
 $S_2 = 1 \text{ books} = 50$
 $S_3 = 1 \text{ books} = 50$
 $S_4 = 1 \text{ books$

Lo

```
9nt (1) A, 9nt B)
   minpoges
      10 = Max of Array (A)
      hi = , sum of , Array (A) .
   ind ons = 0
   while ( lo & hi)
     mide do+ (hi- lo)/2;
     9f ( isteasible (A,B, mid))
      ans=mid;
      . hi = mid-1 .
     else lo= mid+1
boolean is feasible (int () A, int B, int mid)
  ant stull, sum = 0
   for ( 9=0; 9<n; 9++)
      "f ( Sum + A ( ? ) > mid )
          Sum = A [1]
      else sum+= A[1];
```

K reverse linked list

Problem Description

Given a singly linked list A and an integer B, reverse the nodes of the list B at a time and return the modified linked list.

•		head) .;	•	•	•	•	•								
•		head	. Pri	٧٠,	•	•	•	•	•	•	•		•	•	•	•
•	}		•		•	•	•	•	•	•	•		•	•	•	•

Infix to Postfix

Problem Description

Given string A denoting an infix expression. Convert the infix expression into a postfix expression.

String A consists of ^, /, *, +, -, (,) and lowercase English alphabets where lowercase English alphabets are operands and ^, /, *, +, - are operators.

Find and return the postfix expression of A.

NOTE:

 \land has the highest precedence.

/ and * have equal precedence but greater than + and -.

+ and - have equal precedence and lowest precedence among given operators.

$$A = "x^y/(a*z)+b"$$

$$\frac{z^{\prime}y}{(a*z)+b}$$

$$\frac{2y^{\prime}}{(a*z)+b}$$

$$\frac{2y^{\prime}}{(a*z)+b}$$

$$\frac{2y^{\prime}}{(a*z)+b}$$

$$\frac{2y^{\prime}}{(a*z)+b}$$

$$A = "a+b*(c^d-e)^(f+g*h)-i"$$

$$a + b * (c^2 - e)^2 (f + g * h)^{-1}$$
 $a + b * (ca^2 e)^2 (f + gh*)^{-1}$
 $a + b * (ca^2 e)^2 (f + gh*)^{-1}$
 $a + b * (ca^2 e)^2 (f + gh*)^{-1}$
 $a + b * (ca^2 e)^2 (f + gh*)^{-1}$
 $a + b * (ca^2 e)^2 (f + gh*)^{-1}$
 $a + b * (ca^2 e)^2 (f + gh*)^{-1}$
 $a + b * (ca^2 e)^2 (f + gh*)^{-1}$
 $a + b * (ca^2 e)^2 (f + gh*)^{-1}$
 $a + b * (ca^2 e)^2 (f + gh*)^{-1}$
 $a + b * (ca^2 e)^2 (f + gh*)^{-1}$
 $a + b * (ca^2 e)^2 (f + gh*)^{-1}$
 $a + b * (ca^2 e)^2 (f + gh*)^{-1}$
 $a + b * (ca^2 e)^2 (f + gh*)^{-1}$
 $a + b * (ca^2 e)^2 (f + gh*)^{-1}$
 $a + b * (ca^2 e)^2 (f + gh*)^{-1}$
 $a + b * (ca^2 e)^2 (f + gh*)^{-1}$
 $a + b * (ca^2 e)^2 (f + gh*)^{-1}$
 $a + b * (ca^2 e)^2 (f + gh*)^{-1}$
 $a + b * (ca^2 e)^2 (f + gh*)^{-1}$
 $a + b * (ca^2 e)^2 (f + gh*)^{-1}$
 $a + b * (ca^2 e)^2 (f + gh*)^{-1}$
 $a + b * (ca^2 e)^2 (f + gh*)^{-1}$
 $a + b * (ca^2 e)^2 (f + gh*)^{-1}$
 $a + b * (ca^2 e)^2 (f + gh*)^{-1}$
 $a + b * (ca^2 e)^2 (f + gh*)^{-1}$
 $a + b * (ca^2 e)^2 (f + gh*)^{-1}$
 $a + b * (ca^2 e)^2 (f + gh*)^{-1}$
 $a + b * (ca^2 e)^2 (f + gh*)^{-1}$
 $a + b * (ca^2 e)^2 (f + gh*)^{-1}$
 $a + b * (ca^2 e)^2 (f + gh*)^{-1}$
 $a + b * (ca^2 e)^2 (f + gh*)^{-1}$

a-z > push it to AL push it to stack resolve expression until opening brocket. OI. If strengty () or (is present peek -> st. push(); else
of (lower priority op is on peek) Lo st. puch (core operatos) else (higher priority op is presed) وم سط resolve expression

-*****k ·

+

```
24= 0 = (P-C+q), K
```

```
public int prec(char c) {

if (c == '^')

return 3;

else if (c == '*' || c == '/')

return 2;

else if (c == '+' || c == '-')

return 1;

else

return -1;
}

public String infixToPostfix(String s) {
```

```
Stack < Character > st = new Stack < Character > ();
       ArrayList < Character > ns = new ArrayList < Character > ();
for (int i = 0; i < s.length(); i++) {
   char C = s.charAt(i);
   if ((C >= 'a' && C <= 'z') || (C >= 'A' && C <= 'Z'))
        ns.add(C);
    else if (C == '(')
        st.push('(');
    else if (C == ')') {
        while (st.size()>0 && st.peek() != '(') {
            char c = st.peek();
            st.pop();
            ns.add(c);
                                                 remove ('
            st.pop(); -
                           م(جا، peelc ( ) إ = `( ' )
    else {
       while (st.size()>0 && prec(C) <= prec(st.peek())) {
            char c = st.peek();
            st.pop();
            ns.add(c);
        st.push(C);
while (st.size()>0) {
   char c = st.peek();
   st.pop();
   ns.add(c);
StringBuilder result = new StringBuilder(ns.size());
for (Character c: ns) {
   result.append(c);
return result.toString();
```