

3 A low drop positive voltage regulator adjustable and fixed

Features

- Typical dropout 1.3 V (at 3 A)
- Three terminal adjustable or fixed output voltage 1.5 V, 1.8 V, 2.5 V, 3.3 V, 5 V, 12 V.
- Automotive grade product: adjustable V_{OUT} only in TO-220 full pack package
- Guaranteed output current up to 3 A
- Output tolerance ± 1 % at 25°C and ± 2 % in full temperature range
- Internal power and thermal limit
- Wide operating temperature range -40 °C to 125 °C
- Package available: TO-220, TO-220FP, DPAK, D²PAK, D²PAK/A
- Pinout compatibility with standard adjustable VREG

Description

The LD1085xx is a low drop voltage regulator able to provide up to 3 A of output current. Dropout is guaranteed at a maximum of 1.2 V at the maximum output current, decreasing at lower loads. The LD1085xx is pin to pin compatible with the older 3-terminal adjustable regulators, but has better performances in term of drop and output tolerance.

A 2.85 V output version is suitable for SCSI-2 active termination. Unlike PNP regulators, where a part of the output current is wasted as quiescent current, the LD1085xx quiescent current flows

into the load, so increase efficiency. Only a 10 μF minimum capacitor is need for stability.

The device is supplied in TO-220, TO-220FP, DPAK, D²PAK and D²PAK/A. On chip trimming allows the regulator to reach a very tight output voltage tolerance, within \pm 1 % at 25 °C.

The LD1085xx is available as automotive grade in TO-220FP package only, for the option of adjustable output voltage whose commercial part number is shown in the *Table 11: Order codes*. This device is qualified according to the specification AEC-Q100 of the automotive market, in the temperature range -40 °C to 125 °C, and the statistical tests PAT, SYL, SBL are performed.

Table 1. Device summary

Part nu	umbers
LD1085XX	LD1085XX25
LD1085XX15	LD1085XX33
LD1085XX18	LD1085XX50

July 2009 Doc ID 6738 Rev 25 1/28

Contents LD1085xx

Contents

1	Diagram 3
2	Pin configuration
3	Maximum ratings
4	Schematic application 6
5	Electrical characteristics
6	Typical application
7	Package mechanical data
8	Order codes
9	Revision history

577

LD1085xx Diagram

1 Diagram

Figure 1. Schematic diagram

Pin configuration LD1085xx

2 Pin configuration

Figure 2. Pin connections (top view)

577

LD1085xx Maximum ratings

3 Maximum ratings

Table 2. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _I	DC input voltage	30	V
Io	Output current	current Internally limited	
P _D	Power dissipation	Internally limited	mW
T _{STG}	Storage temperature range	-55 to +150	°C
T _{OP}	Operating junction temperature range	-40 to +125	°C

Note:

Absolute maximum ratings are those values beyond which damage to the device may occur. Functional operation under these condition is not implied

Table 3. Thermal data

Symbol	Parameter	TO-220	TO-220FP	DPAK	D ² PAK D ² PAK/A	Unit
R _{thJC}	Thermal resistance junction-case	3	5	8	3	°C/W
R _{thJA}	Thermal resistance junction-ambient	50	60	100	62.5	°C/W

4 Schematic application

Figure 3. Application circuit

5 Electrical characteristics

 V_I = 4.5 V, C_I = C_O =10 $\mu F,\, T_A$ = -40 to 125 $^{\circ}C,$ unless otherwise specified.

Table 4. Electrical characteristics of LD1085#15

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
V	Output voltage (1)	$I_{O} = 0 \text{ mA}, T_{J} = 25^{\circ}\text{C}$	1.485	1.5	1.515	V
V _O	Output voltage V	I _O = 0 to 3 A, V _I = 3.1 to 30 V	1.47	1.5	1.53	V
۸۷/ -	Line regulation	$I_O = 0 \text{ mA}, V_I = 3.1 \text{ to } 18 \text{ V}, T_J = 25^{\circ}\text{C}$		0.2	4	mV
ΔV _O	Line regulation	$I_O = 0 \text{ mA}, V_I = 3.1 \text{ to } 15 \text{ V}$		0.4	4	mV
ΔV_{O}	Load regulation	$I_{O} = 0$ to 3 A, $T_{J} = 25^{\circ}C$		2	10	mV
ΔνΟ	Load regulation	I _O = 0 to 3 A		4	20	mV
V_d	Dropout voltage	I _O =3 A		1.3	1.5	V
Iq	Quiescent current	V _I ≤ 30 V		5	10	mA
	Short circuit current	V _I - V _O = 5 V	3.2	4.5		Α
I _{sc}	Short circuit current	V _I - V _O = 25 V	0.2	0.5		Α
	Thermal regulation	T _A = 25°C, 30ms pulse		0.008	0.04	%/W
SVR	Supply voltage rejection	f = 120 Hz, C_O = 25 μ F, I_O = 3 A V_I = 7.5 \pm 3 V	60	72		dB
eN	RMS output noise voltage (% of V_O)	T _A = 25°C, f =10 Hz to 10 kHz		0.003		%
S	Temperature stability			0.5		%
S	Long term stability	T _A = 125°C, 1000Hrs		0.5		%

^{1.} See short-circuit current curve for available output current at fixed dropout.

Electrical characteristics LD1085xx

 V_I = 4.8 V, C_I = C_O =10 $\mu F,\, T_A$ = -40 to 125 $^{\circ}C,\, unless$ otherwise specified.

Table 5. Electrical characteristics of LD1085#18

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
V.	Output voltage (1)	I _O = 0 mA, T _J = 25°C	1.782	1.8	1.818	V
V _O	Output voltage V	I _O = 0 to 3 A, V _I = 3.4 to 30 V	1.764	1.8	1.836	V
AV/ .	Line regulation	$I_O = 0 \text{ mA}, V_I = 3.4 \text{ to } 18 \text{ V T}_J = 25^{\circ}\text{C}$		0.2	4	mV
ΔV_{O}	Line regulation	$I_O = 0 \text{ mA}, V_I = 3.4 \text{ to } 15 \text{ V}$		0.4	4	mV
41/	Load regulation	$I_{O} = 0 \text{ to } 3 \text{ A}, T_{J} = 25^{\circ}\text{C}$		2	10	mV
ΔV_{O}	Load regulation	I _O = 0 to 3 A		4	20	mV
V_d	Dropout voltage	I _O = 3 A		1.3	1.5	V
Ιq	Quiescent current	$V_I \le 30 \text{ V}$		5	10	mA
ı	Short circuit current	$V_I - V_O = 5 V$	3.2	4.5		Α
I _{sc}	Short circuit current	$V_I - V_O = 25 V$	0.2	0.5		Α
	Thermal regulation	$T_A = 25$ °C, 30 ms pulse		0.008	0.04	%/W
SVR	Supply voltage rejection	f = 120 Hz, C_O = 25 μ F, I_O = 3 A V_I = 7.5 \pm 3 V	60	72		dB
eN	RMS output noise voltage (% of V_O)	T _A = 25°C, f =10 Hz to 10 kHz		0.003		%
S	Temperature stability			0.5		%
S	Long term stability	T _A = 125°C, 1000 Hrs		0.5		%

^{1.} See short-circuit current curve for available output current at fixed dropout.

 V_I = 5.5 V, C_I = C_O =10 $\mu F,\, T_A$ = -40 to 125 $^{\circ}C,\, unless$ otherwise specified.

Table 6. Electrical characteristics of LD1085#25

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
V.	Output voltage ⁽¹⁾	I _O = 0 mA, T _J = 25°C	2.475	2.5	2.525	V
V _O	Output voltage V	I _O = 0 to 3 A, V _I = 4.1 to 30 V	2.45	2.5	2.55	V
۸۷/-	Line regulation	$I_{O} = 0$ mA, $V_{I} = 4.1$ to 18 V, $T_{J} = 25^{\circ}$ C		0.2	4	mV
ΔV_{O}	Line regulation	$I_O = 0 \text{ mA}, V_I = 4.1 \text{ to } 18 \text{ V}$		0.4	4	mV
۸۷/-	Load regulation	$I_{O} = 0 \text{ to } 3 \text{ A}, T_{J} = 25^{\circ}\text{C}$		2	10	mV
ΔV_{O}	Load regulation	I _O = 0 to 3 A		4	20	mV
V_d	Dropout voltage	I _O = 3 A		1.3	1.5	V
Iq	Quiescent current	$V_I \le 30 \text{ V}$		5	10	mA
1	Short circuit current	$V_I - V_O = 5 V$	3.2	4.5		Α
I _{sc}	Short circuit current	V _I - V _O = 25 V	0.2	0.5		Α
	Thermal regulation	T _A = 25°C, 30ms pulse		0.008	0.04	%/W
SVR	Supply voltage rejection	$f = 120 \text{ Hz}, C_O = 25 \mu\text{F}, I_O = 3 \text{ A} $ $V_I = 7.5 \pm 3 \text{ V}$	60	72		dB
eN	RMS output noise voltage (% of V_O)	T _A = 25°C, f =10 Hz to 10 kHz		0.003		%
S	Temperature stability			0.5		%
S	Long term stability	T _A = 125°C, 1000 Hrs		0.5		%

^{1.} See short-circuit current curve for available output current at fixed dropout.

Electrical characteristics LD1085xx

 V_I = 6.3 V, C_I = C_O =10 $\mu F,\, T_A$ = -40 to 125 $^{\circ}C,\, unless$ otherwise specified.

Table 7. Electrical characteristics of LD1085#33

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
Vo	Output voltage ⁽¹⁾	$I_{O} = 0 \text{ mA}, T_{J} = 25^{\circ}\text{C}$	3.267	3.3	3.333	V
VO.	Output voltage V	$I_O = 0 \text{ to } 3 \text{ A}, V_I = 4.9 \text{ to } 30 \text{ V}$	3.234	3.35	3.366	V
۸۷/ -	Line regulation	$I_O = 0 \text{ mA}, V_I = 4.9 \text{ to } 18 \text{ V}, T_J = 25^{\circ}\text{C}$		0.5	6	mV
ΔV_{O}	Line regulation	$I_O = 0 \text{ mA}, V_I = 4.9 \text{ to } 18 \text{ V}$		1	6	mV
۸۷/-	Load regulation	$I_{O} = 0 \text{ to } 3 \text{ A, } T_{J} = 25^{\circ}\text{C}$		3	15	mV
ΔV _O	Load regulation	I _O = 0 to 3 A		7	20	mV
V_{d}	Dropout voltage	I _O = 3 A		1.3	1.5	V
Iq	Quiescent current	V _I ≤ 30 V		5	10	mA
	Short circuit current	V _I - V _O = 5 V	3.2	4.5		Α
I _{sc}	Short circuit current	V _I - V _O = 25 V	0.2	0.5		Α
	Thermal regulation	T _A = 25°C, 30 ms pulse		0.008	0.04	%/W
SVR	Supply voltage rejection	f = 120 Hz, C_O = 25 μ F, I_O = 3 A V_I = 8.3 \pm 3 V	60	72		dB
eN	RMS output noise voltage (% of V_O)	T _A = 25°C, f =10 Hz to 10 kHz		0.003		%
S	Temperature stability			0.5		%
S	Long term stability	T _A = 125°C, 1000 Hrs		0.5		%

^{1.} See short-circuit current curve for available output current at fixed dropout.

 V_I = 8 V, C_I = C_O =10 $\mu F,\, T_A$ = -40 to 125 $^{\circ} C,$ unless otherwise specified.

Table 8. Electrical characteristics of LD1085#50

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
W	Output voltage (1)	I _O = 0 mA, T _J = 25°C	4.95	5	5.05	V
V _O	Output voltage V	I _O = 0 to 3 A, V _I = 6.6 to 30 V	4.9	5	5.1	V
۸\/ .	Line regulation	$I_O = 0 \text{ mA}, V_I = 6.6 \text{ to } 20 \text{ V}, T_J = 25^{\circ}\text{C}$		0.5	10	mV
ΔV_{O}	Line regulation	$I_O = 0 \text{ mA}, V_I = 6.6 \text{ to } 20 \text{ V}$		1	10	mV
۸۱/-	Load regulation	$I_{O} = 0 \text{ to } 3 \text{ A, } T_{J} = 25^{\circ}\text{C}$		5	10	mV
ΔV_{O}	Load regulation	I _O = 0 to 3 A		10	35	mV
V_d	Dropout voltage	I _O = 3 A		1.3	1.5	V
Iq	Quiescent current	V _I ≤ 30 V		5	10	mA
1	Short circuit current	V _I - V _O = 5 V	3.2	4.5		Α
I _{sc}	Short circuit current	V _I - V _O = 25 V	0.2	0.5		Α
	Thermal regulation	T _A = 25°C, 30 ms pulse		0.008	0.04	%/W
SVR	Supply voltage rejection	f = 120 Hz, C_O = 25 μ F, I_O = 3 A V_I = 10 \pm 3 V	60	72		dB
eN	RMS output noise voltage (% of V_O)	T _A = 25°C, f = 10 Hz to 10 kHz		0.003		%
S	Temperature stability			0.5		%
S	Long term stability	T _A = 125°C, 1000 Hrs		0.5		%

^{1.} See short-circuit current curve for available output current at fixed dropout.

Electrical characteristics LD1085xx

 V_I = 4.25 V, C_I = C_O =10 $\mu F,\, T_A$ = -40 to 125 $^{\circ}C,$ unless otherwise specified.

Table 9. Electrical characteristics of LD1085#

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
V	Output voltage ⁽¹⁾	I _O = 10 mA T _J = 25°C	1.237	1.25	1.263	V
V _O	Output voltage (*)	I_{O} = 10 mA to 3 A, V_{I} = 2.85 to 30 V	1.225	1.25	1.275	V
ΔV _O	Line regulation	$I_O = 10 \text{ mA}, V_I = 2.85 \text{ to } 16.5 \text{ V},$ $T_J = 25^{\circ}\text{C}$		0.015	0.2	%
		I _O = 10 mA, V _I = 2.85 to 16.5 V		0.035	0.2	%
AV/ .	Load regulation	I_O = 10 mA to 3 A, T_J = 25°C		0.1	0.3	%
ΔV _O	Load regulation	I _O = 0 to 3 A		0.2	0.4	%
V _d	Dropout voltage	I _O = 3 A		1.3	1.5	V
I _{O(min)}	Minimum load current	V _I = 30 V		3	10	mA
	Short circuit current	V _I - V _O = 5 V	5.5	6.5		Α
I _{sc}		V _I - V _O = 25 V	0.5	0.7		Α
	Thermal regulation	T _A = 25°C, 30ms pulse		0.003	0.015	%/W
SVR	Supply voltage rejection	$ f = 120 \text{ Hz}, C_O = 25 \ \mu\text{F,} C_{ADJ} = 25 \ \mu\text{F,} \\ I_O = 3 \text{ A}, \ V_I = 6.25 \pm 3 \text{ V} $	60	72		dB
I _{ADJ}	Adjust pin current	V _I = 4.25 V, I _O = 10 mA		55	120	μΑ
ΔI_{ADJ}	Adjust pin current change (1)	$I_O = 10 \text{ mA to 3 A}, V_I = 2.85 \text{ to } 16.5 \text{ V}$		0.2	5	μΑ
eN	RMS output noise voltage (% of V_O)	T _A = 25°C, f =10 Hz to 10 kHz		0.003		%
S	Temperature stability			0.5		%
S	Long term stability	T _A = 125°C, 1000 Hrs		0.5		%

^{1.} See short-circuit current curve for available output current at fixed dropout.

 V_I = 4.25 V, C_I = C_O =10 $\mu F,\, T_A$ = -40 to 125 °C, unless otherwise specified.

Table 10. Electrical characteristics of LD1085PY (Automotive Grade)

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
W	Output voltage (1)	I _O = 10 mA T _A = 25°C	1.237	1.25	1.263	V
V _O	Output voltage ()	I_{O} = 10 mA to 3 A, V_{I} = 2.85 to 30 V	1.225	1.25	1.275	V
ΔV_{O}	Line regulation	$I_O = 10 \text{ mA}, V_I = 2.85 \text{ to } 16.5 \text{ V}$		0.035	0.2	%
ΔV _O	Load regulation	I _O = 0 to 3 A		0.2	0.4	%
V _d	Dropout voltage	I _O = 3 A		1.3	1.5	V
I _{O(min)}	Minimum load current	V _I = 30 V		3	10	mA
1	Short circuit current	V _I - V _O = 5 V, T _A = 25°C	5.5	6.5		Α
I _{sc}		V _I - V _O = 25 V, T _A = 25°C	0.5	0.7		Α
	Thermal regulation	T _A = 25°C, 30 ms pulse		0.003	0.015	%/W
SVR	Supply voltage rejection	$I_{O} = 120 \text{ Hz}, C_{O} = 25 \mu\text{F}, C_{ADJ} = 25 \mu\text{F}, C_{O} = 3 \text{ A}, V_{I} = 6.25 \pm 3 \text{ V}, T_{A} = 25 ^{\circ}\text{C}$	60	72		dB
I _{ADJ}	Adjust pin current	$V_{I} = 4.25 \text{ V}, I_{O} = 10 \text{ mA}$		55	120	μΑ
ΔI_{ADJ}	Adjust pin current change (1)	I_{O} = 10 mA to 3 A, V_{I} = 2.85 to 16.5 V		0.2	5	μΑ
eN	RMS output noise voltage (% of V_O)	T _A = 25°C, f =10 Hz to 10 kHz		0.003		%
S	Temperature stability			0.5		%
S	Long term stability	T _A = 125°C, 1000 Hrs		0.5		%

^{1.} See short-circuit current curve for available output current at fixed dropout.

Typical application LD1085xx

6 Typical application

Unless otherwise specified $T_J = 25$ °C, $C_I = C_O = 10 \mu F$.

Figure 4. Output voltage vs. temperature

V_O(V)
1.83
1.82
1.81
1.80
1.79
1.78
1.77
1.76
-50
0
50
100
T_J(°C)

Figure 5. Output voltage vs. temperature

Figure 6. Output voltage vs. temperature

Figure 7. Short circuit current vs. dropout voltage

Figure 8. Line regulation vs. temperature

Figure 9. Load regulation vs. temperature

4/28 Doc ID 6738 Rev 25

LD1085xx Typical application

Figure 10. Dropout voltage vs. temperature

Figure 11. Dropout voltage vs. output current

Figure 12. Adjust pin current vs. temperature Figure 13. Quiescent current vs. temperature

Figure 14. Line regulation vs. temperature

Figure 15. Supply voltage rejection vs. output current

Typical application LD1085xx

Figure 16. Supply voltage rejection vs. frequency

SVR(dB)

80 $V_{IN} = 5.3 \pm 1.5 V$ $V_{IO} = 3A$ $T_{J} = 25 ^{\circ}C$ $C_{IN} = 10 \mu F(tant.)$ $C_{O} = 22 \mu F(tant.)$

1000

10000

f(KHz)

Figure 17. Supply voltage rejection vs. temperature

Figure 18. Minimum load current vs. temperature

100

10

Figure 19. Stability, $V_0 = 1.8 \text{ V}$

Figure 20. Stability, $V_0 = 12 \text{ V}$

Figure 21. Line transient

16/28 Doc ID 6738 Rev 25

LD1085xx Typical application

Figure 22. Line transient

C1 High
12.64V

Vin
12.64V

Vin
11.64V

C1 Low
11.64V

Vin
11.64V

C1 Low
11.64V

Vin
12.5 V

Vin
12.

Figure 23. Load transient

Figure 24. Load transient

7 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK[®] is an ST trademark.

18/28 Doc ID 6738 Rev 25

TO.	.220	mec	hani	cal d	ata
I U	-ZZU	HEC	114111		ala

Dim		mm.		inch.			
Dim.	Min.	Тур.	Max.	Min.	Тур.	Max.	
Α	4.40		4.60	0.173		0.181	
С	1.23		1.32	0.048		0.051	
D	2.40		2.72	0.094		0.107	
D1		1.27			0.050		
E	0.49		0.70	0.019		0.027	
F	0.61		0.88	0.024		0.034	
F1	1.14		1.70	0.044		0.067	
F2	1.14		1.70	0.044		0.067	
G	4.95		5.15	0.194		0.203	
G1	2.4		2.7	0.094		0.106	
H2	10.0		10.40	0.393		0.409	
L2		16.4			0.645		
L4	13.0		14.0	0.511		0.551	
L5	2.65		2.95	0.104		0.116	
L6	15.25		15.75	0.600		0.620	
L7	6.2		6.6	0.244		0.260	
L9	3.5		3.93	0.137		0.154	
DIA.	3.75		3.85	0.147		0.151	

577

TO-220FP mechanical data

Dim		mm.		inch.			
Dim.	Min.	Тур	Max.	Min.	Тур.	Max.	
Α	4.40		4.60	0.173		0.181	
В	2.5		2.7	0.098		0.106	
D	2.5		2.75	0.098		0.108	
E	0.45		0.70	0.017		0.027	
F	0.75		1	0.030		0.039	
F1	1.15		1.50	0.045		0.059	
F2	1.15		1.50	0.045		0.059	
G	4.95		5.2	0.194		0.204	
G1	2.4		2.7	0.094		0.106	
Н	10.0		10.40	0.393		0.409	
L2		16			0.630		
L3	28.6		30.6	1.126		1.204	
L4	9.8		10.6	0.385		0.417	
L5	2.9		3.6	0.114		0.142	
L6	15.9		16.4	0.626		0.645	
L7	9		9.3	0.354		0.366	
DIA.	3		3.2	0.118		0.126	

DPAK mechanical data

Dim		mm.		inch.			
Dim.	Min.	Тур.	Max.	Min.	Тур.	Max.	
Α	2.2		2.4	0.086		0.094	
A1	0.9		1.1	0.035		0.043	
A2	0.03		0.23	0.001		0.009	
В	0.64		0.9	0.025		0.035	
b4	5.2		5.4	0.204		0.212	
С	0.45		0.6	0.017		0.023	
C2	0.48		0.6	0.019		0.023	
D	6		6.2	0.236		0.244	
D1		5.1			0.200		
E	6.4		6.6	0.252		0.260	
E1		4.7			0.185		
е		2.28			0.090		
e1	4.4		4.6	0.173		0.181	
Н	9.35		10.1	0.368		0.397	
L	1			0.039			
(L1)		2.8			0.110		
L2		0.8			0.031		
L4	0.6		1	0.023		0.039	
R		0.2			0.008		
V2	0°		8°	0°		8°	

577

D²PAK mechanical data

Dim.		mm.			inch.		
DIM.	Min.	Тур.	Max.	Min.	Тур.	Max.	
Α	4.4		4.6	0.173		0.181	
A1	2.49		2.69	0.098		0.106	
A2	0.03		0.23	0.001		0.009	
В	0.7		0.93	0.027		0.036	
B2	1.14		1.7	0.044		0.067	
С	0.45		0.6	0.017		0.023	
C2	1.23		1.36	0.048		0.053	
D	8.95		9.35	0.352		0.368	
D1		8			0.315		
E	10		10.4	0.393		0.409	
E1		8.5			0.335		
G	4.88		5.28	0.192		0.208	
L	15		15.85	0.590		0.624	
L2	1.27		1.4	0.050		0.055	
L3	1.4		1.75	0.055		0.068	
М	2.4		3.2	0.094		0.126	
R		0.4			0.016		
V2	0°		8°	0°		8°	

D²PAK/A mechanical data

Dim		mm.			inch.		
Dim.	Min.	Тур.	Max.	Min.	Тур.	Max.	
Α	4.40		4.60	0.173		0.181	
A1	2.49		2.69	0.098		0.106	
A2	0.03		0.23	0.001		0.009	
В	0.7		0.93	0.028		0.037	
B1	0.8		1.3	0.031		0.051	
B2	1.14		1.7	0.045		0.067	
С	0.45		0.60	0.018		0.024	
C2	1.23		1.36	0.048		0.054	
D	8.95		9.35	0.352		0.368	
D1		8			0.315		
Е	10		10.4	0.394		0.409	
E1		8.5			0.335		
G	4.88		5.28	0.192		0.208	
L	15		15.85	0.591		0.624	
L2	1.27		1.4	0.050		0.055	
М	2.4		3.2	0.094		0.126	
R		0.4			0.016		
V2	0°		8°	0°		8°	

Tane	2	reel	DΡΔ	K-PP	ΔΚ	mechanical	data
Iape	CX I	וככו	ν Γ κ	IZ-L L	AI	IIICUIIaiiiCai	uala

Dim	mm.			inch.		
Dim.	Min.	Тур.	Max.	Min.	Тур.	Max.
А			330			12.992
С	12.8	13.0	13.2	0.504	0.512	0.519
D	20.2			0.795		
N	60			2.362		
Т			22.4			0.882
Ao	6.80	6.90	7.00	0.268	0.272	0.2.76
Во	10.40	10.50	10.60	0.409	0.413	0.417
Ko	2.55	2.65	2.75	0.100	0.104	0.105
Po	3.9	4.0	4.1	0.153	0.157	0.161
Р	7.9	8.0	8.1	0.311	0.315	0.319

Tape & reel D²PAK-P²PAK-D²PAK/A-P²PAK/A mechanical data

Dim.		mm.		inch.		
Dilli.	Min.	Тур.	Max.	Min.	Тур.	Max.
А			180			7.086
С	12.8	13.0	13.2	0.504	0.512	0.519
D	20.2			0.795		
N	60			2.362		
Т			14.4			0.567
Ao	10.50	10.6	10.70	0.413	0.417	0.421
Во	15.70	15.80	15.90	0.618	0.622	0.626
Ko	4.80	4.90	5.00	0.189	0.193	0.197
Ро	3.9	4.0	4.1	0.153	0.157	0.161
Р	11.9	12.0	12.1	0.468	0.472	0.476

Order codes LD1085xx

8 Order codes

Table 11. Order codes

Packages					
TO-220	TO-220FP	D ² PAK DPAK (T&R) D ² PAK/A		D ² PAK/A (T&R)	voltage
			LD1085DT15R		1.5 V
				LD1085D2M18R	1.8 V
				LD1085D2M25R	2.5 V
		LD1085D2T33R		LD1085D2M33R	3.3 V
LD1085V50					5.0 V
LD1085V	LD1085P	LD1085D2T-R		LD1085D2M-R	ADJ
	LD1085PY ⁽¹⁾				ADJ

^{1.} Automotive Grade products.

LD1085xx Revision history

9 Revision history

Table 12. Document revision history

Date	Revision	Changes
07-Oct-2004	12	Mistake order codes - Table 1.
08-Feb-2005	13	Mistake U.M. load regulation - V ==> mV.
01-Mar-2005	14	Version 1.2 V removed.
22-May-2006	15	Order codes has been updated and new template.
10-Nov-2006	16	Add package DPAK, typo on V _O test value in tables 3, 4 and 11.
04-Apr-2007	17	Order codes updated.
07-Jun-2007	18	Order codes updated.
05-Dec-2007	19	Modified: Table 11.
29-Jan-2008	20	Added new order codes for Automotive grade products see <i>Table 11 on page 26</i> .
18-Feb-2008	21	Modified: Table 11 on page 26.
09-Apr-2008	22	Modified: Table 11 on page 26.
14-Jul-2008	23	Modified: Table 11 on page 26.
22-Aug-2008	24	Modified: Table 3 on page 5.
28-Jul-2009	25	Modified: Table 11 on page 26.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2009 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

28/28 Doc ID 6738 Rev 25