print classification report

```
In [13]: print('\nClassification Report:')
print(classification_report(y_test, y_pred, target_names=iris.target_names))
```

Classification Report:

0100011100110	precision	recall	f1-score	support
setosa	1.00	1.00	1.00	10
versicolor	1.00	1.00	1.00	9
virginica	1.00	1.00	1.00	11
accuracy			1.00	30
macro avg	1.00	1.00	1.00	30
weighted avg	1.00	1.00	1.00	30

When using classification models in machine learning, there are three common metrics that we use to assess the quality of the model:

Precision: Percentage of correct positive predictions relative to total positive predictions.

Recall: Percentage of correct positive predictions relative to total actual positives.

F1 Score: A weighted harmonic mean of precision and recall. The closer to 1, the better the model.

F1 Score: 2 * (Precision * Recall) / (Precision + Recall)

VIVA

Accuracy Score: 100.000%

```
In [52]: print('\nClassification Report:')
print(classification_report(y_test, y_pred, target_names=iris.target_names))
```

Classification Report:

	precision	recall	f1-score	support
setosa	1.00	1.00	1.00	10
versicolor	1.00	1.00	1.00	9
virginica	1.00	1.00	1.00	11
accuracy			1.00	30
macro avg	1.00	1.00	1.00	30
weighted avg	1.00	1.00	1.00	30

In []: