Bayesian Networks and Causal Inference Assignment 1 Code Notebook

Evander van Wolfswinkel* Janneke Verbeek[†] Niek Derksen[‡]

October 2021

Import packages

library(semPlot) library(bayesianNetworks) library(funModeling) library(tidyverse) library(Hmisc) library(bnlearn) library(naivebayes) library(dagitty) library(dataPreparation) library(lavaan) library(summarytools) library(OneR) library(corrplot) library(knitr) library(readxl) library(dplyr) library(kableExtra)

^{*}s1057895

 $^{^{\}dagger} s1011065$

 $^{^{\}ddagger}s4363779$

Import dataset

Assuming the "heart_failure_clinical_records_dataset.csv"-file from this Kaggle page is present in the current working directory.

```
d1=read.table("./heart_failure_clinical_records_dataset.csv", sep=',', header=TRUE)
```

Exploration

temporary images written to 'C:\tmp'

Data Frame Summary

d1 Dimensions: 299×13

 $\textbf{Duplicates:}\ 0$

Variable	Stats / Values	Freqs (% of Valid)	Graph	Missing
age [numeric]	Mean (sd): 60.8 (11.9) min < med < max: 40 < 60 < 95 IQR (CV): 19 (0.2)	47 distinct values		0 (0.0%)
anaemia [integer]	Min: 0 Mean: 0.4 Max: 1	0: 170 (56.9%) 1: 129 (43.1%)		0 (0.0%)
creatinine_phosphokina [integer]	seMean (sd): 581.8 (970.3) min < med < max: 23 < 250 < 7861 IQR (CV): 465.5 (1.7)	208 distinct values		0 (0.0%)

Variable	Stats / Values	Freqs (% of Valid)	Graph	Missing
diabetes [integer]	Min: 0 Mean: 0.4 Max: 1	0: 174 (58.2%) 1: 125 (41.8%)		0 (0.0%)
ejection_fraction [integer]	Mean (sd): 38.1 (11.8) min < med < max: 14 < 38 < 80 IQR (CV): 15 (0.3)	17 distinct values		0 (0.0%)
high_blood_pressure [integer]	Min: 0 Mean: 0.4 Max: 1	0: 194 (64.9%) 1: 105 (35.1%)		0 (0.0%)
platelets [numeric]	Mean (sd): 263358 (97804.2) min < med < max: 25100 < 262000 < 850000 IQR (CV): 91000 (0.4)	176 distinct values		0 (0.0%)
serum_creatinine [numeric]	Mean (sd): 1.4 (1) min < med < max: 0.5 < 1.1 < 9.4 IQR (CV): 0.5 (0.7)	40 distinct values		0 (0.0%)
serum_sodium [integer]	Mean (sd): 136.6 (4.4) min < med < max: 113 < 137 < 148 IQR (CV): 6 (0)	27 distinct values		0 (0.0%)
sex [integer]	Min: 0 Mean: 0.6 Max: 1	0: 105 (35.1%) 1: 194 (64.9%)		0 (0.0%)

Variable	Stats / Values	Freqs (% of Valid)	Graph	Missing
smoking [integer]	Min: 0 Mean: 0.3 Max: 1	0: 203 (67.9%) 1: 96 (32.1%)		0 (0.0%)
time [integer]	Mean (sd): 130.3 (77.6) min < med < max: 4 < 115 < 285 IQR (CV): 130 (0.6)	148 distinct values		0 (0.0%)
DEATH_EVENT [integer]	Min: 0 Mean: 0.3 Max: 1	0: 203 (67.9%) 1: 96 (32.1%)		0 (0.0%)

All data is complete. Lets check data type:

describe(d1) %>% html()

plot_num(d1)

Preprocessing

Shorten some long variable names.

```
d1 <- rename(d1, cpk = creatinine_phosphokinase)
d1 <- rename(d1, srm_creatinine = serum_creatinine)
d1 <- rename(d1, srm_sodium = serum_sodium)</pre>
```

Create extra dataset to perform processing on.

```
d1_proc = data.frame(d1)
```

Continuous and binary data Order binary variables

```
d1_proc$anaemia <- as.numeric(ordered(d1$anaemia))
d1_proc$sex <- as.numeric(ordered(d1$sex))
d1_proc$high_blood_pressure <- as.numeric(ordered(d1$high_blood_pressure))
d1_proc$diabetes <- as.numeric(ordered(d1$diabetes))
d1_proc$smoking <- as.numeric(ordered(d1$smoking))
d1_proc$DEATH_EVENT <- as.numeric(ordered(d1$DEATH_EVENT))</pre>
```

Bin all continuous Bin continuous variables using the histograms of the data to create regularly spaces bins

```
temp_age <- rep("<97", nrow(d1_proc)) #96 is max age
temp_age[d1_proc$age >=0 & d1_proc$age <50] <- "<50" temp_age[d1_proc$age >=50 & d1_proc$age <60] <- "50-60"
temp_age[d1_proc$age >=60 & d1_proc$age <70] <- "60-70"
temp_age[d1_proc$age >=70 & d1_proc$age <80] <- "70-80"
temp_age[d1_proc$age >=80 & d1_proc$age<90] <- "80-90" temp_age[d1_proc$age >=90] <- "90>"
#turn binned data into factor:
d1_proc$age <- ordered(temp_age, levels=c("<50","50-60","60-70","70-80","80-90",
temp_cpk[d1_proc$cpk >=200 & d1_proc$cpk <400] <- "200-400"
temp_cpk[d1_proc$cpk >=400 & d1_proc$cpk <600] <- "400-600"
temp_cpk[d1_proc$cpk>=600 \& d1_proc$cpk < 800] <- "600-800"
temp_cpk[d1_proc$cpk >=800 & d1_proc$cpk <1000] <- "800-1000"
temp_cpk[d1_proc$cpk >=1000 & d1_proc$cpk <1200] <- "1000-1200"
temp_cpk[d1_proc$cpk >=1200 & d1_proc$cpk <1400] <- "1200-1400"
\label{eq:cpk} $$ $$ temp_cpk[d1_proc$cpk >= 1400 \& d1_proc$cpk < 1600] <- "1400-1600" 
temp_cpk[d1_proc$cpk >=1600 & d1_proc$cpk <1800] <- "1600-1800"
temp_cpk[d1_proc$cpk >=1800 & d1_proc$cpk <2000] <- "1800-2000"
temp_cpk[d1_proc$cpk >=2000] <- "2000>"
#turn binned data into factor:
d1_proc$cpk <- ordered(temp_cpk, levels=c("0-200", "200-400", "400-600", "600-800", "800-1000", "1000-1200",
                                            "1200-1400","1400-1600",
                                            "1600-1800", "1800-2000",
                                            "2000>"))
temp_ef <- rep("<81", nrow(d1_proc)) #80 is max ef
temp_ef[d1_proc$ejection_fraction >=0 & d1_proc$ejection_fraction <20] <- "<20"
temp_ef[d1_proc$ejection_fraction >=20 & d1_proc$ejection_fraction <30] <- "20-30"
temp_ef[d1_proc$ejection_fraction >=30 & d1_proc$ejection_fraction <40] <- "30-40"
temp_ef[d1_proc$ejection_fraction >=40 & d1_proc$ejection_fraction <50] <- "40-50"
temp_ef[d1_proc$ejection_fraction >=50 & d1_proc$ejection_fraction <60] <- "50-60"
temp_ef[d1_proc$ejection_fraction >=60] <- "60>"
#turn binned data into factor:
d1_proc$ejection_fraction <- ordered(temp_ef, levels=c("<20","20-30","30-40"
                                                          "40-50", "50-60", "60>"))
```

```
temp_plt <- rep("<850k", nrow(d1_proc)) #850k is max platelets
temp_plt[d1_proc$platelets >=0 & d1_proc$platelets <50000] <- "<50k"
temp_plt[d1_proc$platelets >=50000 & d1_proc$platelets <100000] <- "50k-100k"
temp_plt[d1_proc$platelets >=100000 & d1_proc$platelets <150000] <- "100k-150k"
temp_plt[d1_proc$platelets >=150000 & d1_proc$platelets <200000] <- "150k-200k"
temp_plt[d1_proc$platelets >=200000 & d1_proc$platelets <250000] <- "200k-250k"
temp_plt[d1_proc$platelets >=250000 & d1_proc$platelets <300000] <- "250k-300k"
temp_plt[d1_proc$platelets >=300000 & d1_proc$platelets <350000] <- "300k-350k"
temp_plt[d1_proc$platelets >=350000 & d1_proc$platelets <400000] <- "350k-400k"
temp_plt[d1_proc$platelets >=400000 & d1_proc$platelets <450000] <- "400k-450k"
temp_plt[d1_proc$platelets >=450000 & d1_proc$platelets <500000] <- "450k-500k"
temp_plt[d1_proc$platelets >=500000] <- "500k>"
#turn binned data into factor
d1_proc$platelets <- ordered(temp_plt, levels=c("<50k","50k-100k","100k-150k",
                                                                                 "150k-200k", "200k-250k", "250k-300k", "300k-350k", "350k-400k", "400k-450k", "450k-500k", "500k>"))
temp_sc <- rep("<9.5", nrow(d1_proc)) #850k is max platelets
temp_sc[d1_proc$srm_creatinine >=0 & d1_proc$srm_creatinine <1.0] <- "<1.0"
temp_sc[d1_proc$srm_creatinine >=1.0 & d1_proc$srm_creatinine <1.5] <- "1.0-1.5"
temp_sc[d1_proc$srm_creatinine >=1.5 & d1_proc$srm_creatinine <2.0] <- "1.5-2.0"
temp_sc[d1_proc$srm_creatinine >=2.0 & d1_proc$srm_creatinine <2.5] <- "2.0-2.5"
temp_sc[d1_proc$srm_creatinine >=2.5 & d1_proc$srm_creatinine <3.0] <- "2.5-3.0"
temp_sc[d1_proc$srm_creatinine >=3.0 & d1_proc$srm_creatinine <3.5] <- "3.0-3.5"
temp_sc[d1_proc$srm_creatinine >=3.5 & d1_proc$srm_creatinine <4.0] <- "3.5-4.0"
temp_sc[d1_proc$srm_creatinine >=4.0] <- "4.0>"
d1_proc$srm_creatinine <- ordered(temp_sc, levels=c("<1.0","1.0-1.5","1.5-2.0",
                                                                                        "2.0-2.5", "2.5-3.0", "3.0-3.5", "3.5-4.0", "4.0>"))
temp_ss <- rep("<149", nrow(d1_proc)) #148 is max serum_sodium
temp_ss[d1_proc$srm_sodium >=0 & d1_proc$srm_sodium <125] <- "<125" temp_ss[d1_proc$srm_sodium >=125 & d1_proc$srm_sodium <130] <- "125-130"
temp_ss[d1_proc$srm_sodium >=130 & d1_proc$srm_sodium <135] <- "130-135"
temp_ss[d1_proc$srm_sodium >=135 & d1_proc$srm_sodium <140] <- "135-140"
temp_ss[d1_proc$srm_sodium >=140 & d1_proc$srm_sodium <145] <- "140-145"
temp_ss[d1_proc$srm_sodium >=145] <- "145>"
\label{lem:condition} $$d1_{proc$srm\_sodium} \leftarrow ordered(temp\_ss, \ \mbox{levels=c("<125","125-130", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135", "130-135"
                                                                                 "135-140","140-145","145>"))
temp_time <- rep("<286", nrow(d1_proc)) #285 is max time
temp_time[d1_proc$time >=60 & d1_proc$time <90] <- "60-90"
temp_time[d1_proc$time >=90 & d1_proc$time <120] <- "90-120"
temp_time[d1_proc$time >=120 & d1_proc$time <150] <- "120-150"
\label{temp_time} temp\_time[d1\_proc$time >=150 & d1\_proc$time <180] <- "150-180"
temp_time[d1_proc$time >=180 & d1_proc$time <210] <- "180-210"
temp_time[d1_proc$time >=210 & d1_proc$time <240] <- "210-240"
temp_time[d1_proc$time >=240 & d1_proc$time <270] <- "240-270"
temp_time[d1_proc$time >=270] <- "270>"
d1_proc$time <- ordered(temp_time, levels=c("<30","30-60","60-90","90-120",
                                                                            "120-150","150-180","180-210",
"210-240","240-270","270>"))
```

Define model version 1

Plot first model

plot(g1)

Test independent relationship of the first model using chi-squared test.

```
chi_square_test <- localTests(g1, d1_proc, type = 'cis.chisq')
top_rmsea <- chi_square_test[order(chi_square_test$p.value, decreasing = FALSE),]
knitr::kable(top_rmsea[1:10,1:4])%>%
   kable_styling(bootstrap_options = c("striped", "hover", "condensed"),latex_options = "HOLD_position")
```

	rmsea	x2	df	p.value
sexsmkn	0.4428667	59.447006	1	0.0000000
cpksrmDEAT	0.0517796	192.718992	90	0.0000000
$cpk.\\timeDEAT$	0.0662021	248.381072	154	0.0000022
srm_csrm_sDEAT	0.0687494	126.431244	70	0.0000421
agesrm_	0.0539983	65.412019	35	0.0013729
anamcpk	0.0759400	27.185334	10	0.0024341
dbtssex	0.1469911	7.438700	1	0.0063836
dbtssmkn	0.1355618	6.476344	1	0.0109320
agehg	0.0759849	13.602814	5	0.0183393
hgtimeejc_	0.1295641	66.950393	45	0.0184953

- Sex and smoking are very dependent, research on this checks out; Men smoke way more than women.
- diabetes and sex are dependent
- diabetes and smoking are dependent

P_values not significant but somewhat high rmsea: - Death is not independent from smoking given ejection fraction. - Anaemia is not independent from serum_.. given platelets - Death is not independent from anaemia given platelets - Death is not independent from high blood pressure given ejection fraction etc.

Test conditional independencies using polychoric correlation matrix

This test serves as an extra method to compare with the chi-squared test results.

```
# Compute polychoric correlation
d1_proc_corr = lavCor(d1_proc)
```

Perform correlation tests

Highest coef estimates table Computes and plots the table ordered by estimate coefs, with the highest value first.

```
corrtest <- localTests(g1, sample.cov = d1_proc_corr, sample.nobs=nrow(d1_proc))
top_corr <- corrtest[order(corrtest$estimate, decreasing = TRUE),]
knitr::kable(top_corr[1:6,1:4])%>%
   kable_styling(bootstrap_options = c("striped", "hover", "condensed"),latex_options = "HOLD_position")
```

	estimate	p.value	2.5%	97.5%
sexsmkn	0.4458917	0.0000000	0.3505396	0.5356125
agesrm_	0.2663449	0.0000027	0.1576849	0.3691157
cpktimeDEAT	0.1853698	0.0012771	0.0732929	0.2929712
ejcsrmDEAT	0.1564557	0.0067391	0.0436102	0.2654492
agehg	0.0962893	0.0965585	-0.0173303	0.2074798
DEAThgejc	0.0908136	0.1177979	-0.0230450	0.2023694

Lowest coef estimates table Computes and plots the table ordered by estimate coefs, with the lowest value first.

```
down_corr <- corrtest[order(corrtest$estimate,decreasing = FALSE),]
knitr::kable(down_corr[1:6,1:4])%>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed"),latex_options = "HOLD_position")
```

	estimate	p.value	2.5%	97.5%
anamcpk	-0.2418198	0.0000219	-0.3461102	-0.1320132
srm_csrm_sDEAT	-0.2272203	0.0000713	-0.3325441	-0.1166115
hgtimeejc_	-0.2102628	0.0002463	-0.3165454	-0.0990080
hgtimeDEAT	-0.1971350	0.0006018	-0.3041265	-0.0854280
ejcsrm_	-0.1865432	0.0011645	-0.2939081	-0.0746935
dbtssex	-0.1577295	0.0062091	-0.2664854	-0.0451062

Positive correlations - Similar to the chi-squared test, sex and smoking are strongly correlated. - Creatine phosphokinase shows correlation with time and death_event. - Age and serum creatine also show significant correlations.

Negative correlations - Many given time, are negatively correlated - Anaemia and creatine-pk show negative correlation - Age and creatine-cpk - diabetes and sex

Define intermediate model with sex based changes.

Create dependencies in network for the implied gender relationships.

```
Create dependencies in n

g2 <- graphlayout(dagitty('dag {
    bb="0,0,1,1"
    age [pos="0.213,0.767"]
    anaemia [pos="0.913,0.191"]
    cpk [pos="0.814,0.701"]
    idabetes [pos="0.837,0.127"]
    ejection_fraction [pos="0.564,0.237"]
    bEATH_EVENT [pos="0.504,0.491"]
    high_blood_pressure [pos="0.661,0.123"]
    platelets [pos="0.761,0.379"]
    sax [pos="0.385,0.926"]
    smoking [pos="0.523,0.027"]
    smm_creatinine [pos="0.677,0.933"]
    srm_creatinine [pos="0.677,0.933"]
    srm_sodium [pos="0.128,0.495"]
    time [pos="0.196,0.265"]
    age -> DEATH_EVENT
    age -> DEATH_EVENT
    diabetes -> ejection_fraction
    ejection_fraction -> DEATH_EVENT
    DEATH_EVENT -> time
    bigh_blood_pressure -> ejection_fraction
    anaemia -> platelets
    platelets -> DEATH_EVENT
    swo -> DEATH_EVENT
                         sex -> bEATH_EVENT
smoking -> high_blood_pressure
srm_creatinine -> DEATH_EVENT
sex -> smoking
sex -> diabetes
```

Plot intermediate model

```
plot(g2)
```


Test independent relationship of the intermediate model using chi-squared test.

```
chi_square_test <- localTests(g2, d1_proc, type = 'cis.chisq')
plotLocalTestResults(chi_square_test)</pre>
```



```
top_rmsea <- chi_square_test[order(chi_square_test$p.value, decreasing = FALSE),]
knitr::kable(top_rmsea[1:10,1:4])%>%
   kable_styling(bootstrap_options = c("striped", "hover", "condensed"),latex_options = "HOLD_position")
```

	rmsea	x2	df	p.value
cpksrmDEAT	0.0517796	192.71899	90	0.0000000
cpktimeDEAT	0.0662021	248.38107	154	0.0000022
srm_csrm_sDEAT	0.0687494	126.43124	70	0.0000421
agesrm_	0.0539983	65.41202	35	0.0013729
DEAThgdbtsejcsmkn	0.2568963	36.42911	15	0.0015324
anamcpk	0.0759400	27.18533	10	0.0024341
DEATsmknejcsex	0.2891601	20.93410	8	0.0073246
agehg	0.0759849	13.60281	5	0.0183393
hgtimedbtsejcsmkn	0.2368054	127.40332	99	0.0287913
ejcsexdbtshg	0.0715987	29.75973	19	0.0549370

Results of the test suggest a significant dependence relationship between high blood pressure and death.

Define final model

Plot final model

plot(g3)

Test independent relationship of the final model using chi-squared test.

```
chi_square_test <- localTests(g3, d1_proc, type = 'cis.chisq')
plotLocalTestResults(chi_square_test)</pre>
```



```
top_rmsea <- chi_square_test[order(chi_square_test$p.value, decreasing = FALSE),]
knitr::kable(top_rmsea[1:10,1:4])%>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed"),latex_options = "HOLD_position")
```

	rmsea	x2	df	p.value
cpksrmDEAT	0.0517796	192.718992	90	0.0000000
cpktimeDEAT	0.0662021	248.381072	154	0.0000022
srm_csrm_sDEAT	0.0687494	126.431244	70	0.0000421
agesrm_	0.0539983	65.412019	35	0.0013729
anamcpk	0.0759400	27.185334	10	0.0024341
agehg	0.0759849	13.602814	5	0.0183393
ejcsexdbtshg	0.0715987	29.759733	19	0.0549370
ageanam	0.0624170	10.804868	5	0.0553891
anamsmkn	0.0905209	3.441822	1	0.0635656
agedbts	0.0602549	10.409667	5	0.0644256

Little significant high RMSEA test remain using this model. Therefore, we will use this model to fit our SEM using the polychoric correlation matrix and analyse it's path coefficients.

Fitting SEM using binned catagorical polychoric correlation matrix

```
# Define SEM model in lavaan syntax
sem_model <- "
            srm_sodium~DEATH_EVENT
            time~DEATH EVENT
            DEATH_EVENT~age
            cpk~age
            platelets~anaemia
            DEATH_EVENT~cpk
            ejection fraction~diabetes
            DEATH EVENT~ejection fraction
            DEATH_EVENT~high_blood_pressure
            ejection_fraction~high_blood_pressure
            DEATH_EVENT~platelets
            DEATH_EVENT~sex
            diabetes~sex
            smoking~sex
           high_blood_pressure~smoking
           DEATH_EVENT~srm_creatinine
# Fit SEM
fit <- sem(sem_model, sample.cov = d1_proc_corr, sample.nobs = nrow(d1_proc), fixed.x = FALSE)
# Plot SEM network without exogenous covariances, minimum coef values of 0.1 and no residuals.
semPaths(fit, what="est", whatLabels = "par", style = "OpenMx", layout = "tree2",
         residuals = FALSE, nCharNodes=0, edge.label.cex = 1.5, asize = 6,
         sizeMan = 12, sizeMan2 = 5, minimum = 0.1, curvature = 1.5,
         rotation=1,curve=2, exoCov=FALSE)
```

