Design Problems

Raktim Bhattacharya Aerospace Engineering, Texas A&M University

Active Suspension

Disturbance Rejection with Active Suspension

Equations of motion

$$m_1\ddot{x}_1 = -k_1(x_1 - x_2) - c_1(\dot{x}_1 - \dot{x}_2) + u,$$

$$m_2\ddot{x}_2 = k_1(x_1 - x_2) + c_1(\dot{x}_1 - \dot{x}_2) - k_2(x_2 - d) - u.$$

State Variables

$$q_1 := x_1,$$
 $q_2 := x_2,$ $q_3 := \dot{x}_1,$ $q_4 := \dot{x}_2.$

Disturbance Rejection with Active Suspension

Linear System

$$\begin{bmatrix} \dot{q}_1 \\ \dot{q}_2 \\ \dot{q}_3 \\ \dot{q}_4 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -k_1/m_1 & k_1/m_1 & -c_1/m_1 & c_1/m_1 \\ k_1/m_2 & -(k_1+k_2)/m_2 & c_1/m_2 & -c_1/m_2 \end{bmatrix} \begin{bmatrix} q_1 \\ q_2 \\ q_3 \\ q_4 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1/m_1 \\ -1/m_2 \end{bmatrix} u + \begin{bmatrix} 0 \\ 0 \\ 0 \\ k_2/m_2 \end{bmatrix} d.$$

Output z(t)

$$z = \begin{bmatrix} q_1 \\ u \end{bmatrix}.$$

System Parameters and Definition

```
clear; clc;
% System Parameters
m1 = 290; % kg -- Body mass
m2 = 60; % kg -- suspension mass
k1 = 16200; % N/m
k2 = 191000: % N/m
c1 = 1000: % Ns/m
A = [0 \ 0 \ 1 \ 0]
    0 0 0 1:
    -k1/m1 k1/m1 -c1/m1 c1/m1;
    k1/m1 - (k1+k2)/m2 c1/m2 - c1/m2);
Bu = [0;0;1/m1;-1/m2];
Bw = [0;0;0;k2/m2];
nx = 4: nu = 1:
nz = 1: nw = 1:
Cz = [1,0,0,0];
Du = 1*ones(nz,nu):
```

System Uncertainty

- There is 20% uncertainty in the body mass m_1 variation in passenger mass and luggage
- There is 10% uncertainty in tire springiness k_2
- There is 10% uncertainty in c_1 uncertainty in shock absorbers

System Analysis

- lacktriangle Make a grid over parameters (m_1,k_2,c_1) with 10 points along each parameter
- Plot bode plot for the 1000 systems
- Assess variation in system response due to parametric uncertainty

Robustness of Nominal Controller

- Make a grid over parameters (m_1, k_2, c_1) with 10 points along each parameter.
- Run 100 simulations for the closed-loop system with nominal controller and assess the quality of disturbance rejection
 - ▶ Plot state and control trajectories for the 1000 realizations
 - ▶ Compute the average and standard deviation of the \mathcal{H}_2 norm of $G_{w \to z}$ from the 1000 systems

Design of Robust Controller

- Design \mathcal{H}_{∞} optimal controller including uncertainty in the system using hinfsyn() MATLAB command.
- Make a grid over parameters (m_1, k_2, c_1) with 10 points along each parameter.
- Run 1000 simulations for the closed-loop system with robust controller and assess the quality of disturbance rejection
 - \blacktriangleright Plot state and control trajectories for the 1000 realizations
 - ▶ Compare the average and standard deviation of the \mathcal{H}_{∞} norm obtained using nominal controller with the \mathcal{H}_{∞} norm obtained from the synthesis of the robust controller.

Design of Robust Controller (contd).

- To assess the conservativeness of the design, compute $||G_{w\to z}||_{\infty}$ for the 1000 systems with the robust controller. How does the \mathcal{H}_{∞} norm from robust synthesis compare with these 1000 values. What can you say about the conservativeness of the controller?
- lacktriangle Compare the performance of the nominal and robust controller based on trajectory plots and \mathcal{H}_2 norms

Robust \mathcal{H}_{∞} Regulator

Design of Robust Controller – Extra Credit

The above design specifications do not include rate limits on control u and does not penalize magnitude of x_2 .

How can you modify the control problem to impose limits on these variables?

It is unclear what the limits on u,\dot{u} , and x_2 should be and what is their effect on $\|G_{w\to z}\|_{\infty}$. You are to vary limits on u,\dot{u} , and x_2 and plot the corresponding $\|G_{w\to z}\|_{\infty}$ to help decide them. The limit on \dot{u} can be expressed as a low pass filter with a cut off frequency ω_c .

Robust Flight Control

Tracking Controller for Nonlinear System

Trimming F-16 Dynamics

■ The longitudinal nonlinear F16 dynamics is given by

$$\dot{x} = f(x, u),$$

where $x = [V, \alpha, \theta, q]$ and $u = [T, \delta_e]$.

■ Trim states and control are (\bar{x}, \bar{u}) , such that

$$\dot{x} = f(\bar{x}, \bar{u}) = 0.$$

Trim conditions for steady-level flight implies

$$\gamma = \theta - \alpha = 0$$
, and $q = 0$.

Tracking Controller for Nonlinear System

Trimming F-16 Dynamics (contd.)

■ Trimming is done as a constrained (nonlinear) optimization problem.

$$\min_{x,u} \dot{x}^T \dot{x}$$

subject to

$$LB \le \begin{bmatrix} x \\ u \end{bmatrix} \le UB, \ A_{\mathsf{eq}} \begin{bmatrix} x \\ u \end{bmatrix} = b_{\mathsf{eq}}.$$

- This is implemented in trimF16.m. Study the code and understand how it works.
- Using this code, you are to trim the vehicle at velocities

$$V = [900, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700].$$

■ Linearize the system about (\bar{x}, \bar{u}) to obtain a family of A, B, C, D. This is done in trimF16.m using MATLAB command linmod(...).

Tracking Controller for Nonlinear System

Robust Control Design

- 1. Model the variation in A, B, C, D as parametric uncertainty using LFTs.
- 2. Include disturbance in α dynamics as uniform white noise $\in [-1,1]$ rad.
- 3. Design output feedback \mathcal{H}_{∞} controller to track V, γ reference signals in the presence of model uncertainty and disturbance.
- 4. Show performance of the robust controller for a doublet in $\gamma_r=\pm 30^\circ$ and $V_r=\pm 50 ft/s$, on the linear model obtained at each of the trim velocities.
- 5. Compare with the performance of the nominal controller designed at $V=1200\,$ ft/s trim, on the linear model obtained at each of the trim velocities.
- 6. Repeat steps 4,5 for the nonlinear model, i.e. test your robust controller and nominal controller on the nonlinear F16 model.