PROJET INFORMATIQUE SEMESTRE 3:

MUYA LABA Gédéon BETTAHAR Hicham Cy-tech MI6

Répartition des taches au sein du groupe :

Pour la répartition des taches, nous avons tout d'abord élaboré une sorte de plan générale de ce qu'on devait faire, ainsi que les idées principales. Par la suite Gédéon s'est principalement chargé du script shell, des arguments et des options, et Hicham s'est chargé des tris en c. Bien évidemment, lorsque nous rencontrions des problèmes, nous nous aidions et c'est principalement cette aide qui nous a permis d'avancer jusque ici.

Planning de réalisation :

Nous avons profité des nombreux TD d'informatique dédiés au projet pour pouvoir avancé. De plus nous avons aussi avancer chez nous chacun de notre coté ou en appel pour discuter du code et des problèmes que l'on rencontrait. Lorsque l'on avait des heures de trous, nous allions aussi en salle d'informatique pour pouvoir faire le point et continuer le projet.

Limitations fonctionnelles:

Dû a un manque de temps et de compréhension, l'option température et l'option pression atmosphérique non pas pu être terminés à temps. Les graphiques de sortie ne sont eux aussi pas disponible car nous avons eu beaucoup de mal à prendre en main l'outil GnuPlot.

Fichier d'entrée :

Pour obtenir le fichier d'entrée voulu, nous allons d'abord le filtrer en shell afin d'obtenir les données voulu en fonction de l'option et du mode.

Fichier temporaire (intermédiaire):

Le fichier temp stock toutes les valeurs pour calculer la moyenne de chaque station et la stocker dans un nouvel arbre qui sera lui utilisé pour trier le résultat et l'écrire dans le fichier de sortie. Exemple de fichier temporaire que l'on a obtenu grâce à la commande ./main.sh -f <nom du fichier> -h :

	Α	В	C
1	89642	120.000000	4.100000
2	89642	160.000000	5.100000
3	81415	0.000000	0.000000
4	81408	80.000000	4.000000
5	81408	330.000000	1.000000
6	81408	30.000000	2.000000
7	81408	40.000000	1.000000
8	81405	100.000000	6.000000
9	81405	70.000000	2.000000
10	81405	120.000000	1.000000
11	81401	0.000000	0.000000
12	78925	30.000000	0.000000
13	78925	40.000000	2.000000
14	78925	20.000000	0.000000
15	78925	30.000000	1.000000
16	78922	140.000000	7.000000
17	78897	20.000000	0.000000
18	78897	120.000000	5.000000
19	78897	220.000000	0.000000
20	71805	210.000000	9.000000
21	71805	230.000000	7.000000
22	71805	210.000000	7.000000
23	71805	260.000000	6.000000
24	71805	20.000000	6.000000
25	67005	310.000000	7.000000
26	67005	0.000000	0.000000
27	67005	130.000000	4.000000
28	61998	240.000000	2.000000
29	61997	310.000000	17.000000

Fichier de sortie :

Voici un exemple de fichier de sortie, avec les numéros de stations trié par ordre décroissant (l'option de tri par défaut étant l'AVL) encore une fois avec la commande : ./main.sh -f <nom_du_fichier> -h . On retrouve donc dans la colonne A les numéros des stations triés par ordre décroissant. Dans la colonne B l'angle du vecteur et dans la colonne C sa norme (longueur).

	Α	В	С
1	89642	160.000000	5.100000
2	81415	0.000000	0.000000
3	81408	40.000000	1.000000
4	81405	120.000000	1.000000
5	81401	0.000000	0.000000
6	78925	30.000000	1.000000
7	78922	140.000000	7.000000
8	78897	220.000000	0.000000
9	71805	20.000000	6.000000
10	67005	130.000000	4.000000
11	61998	240.000000	2.000000
12	61997	210.000000	7.000000
13	61996	330.000000	6.000000
14	61980	140.000000	4.000000
15	61976	60.000000	6.000000
16	61972	160.000000	2.100000
17	61970	240.000000	1.000000
18	61968	70.000000	2.000000
19		250.000000	0.000000
20	7761	60.000000	1.000000
21	7747	310.000000	8.000000
22	7690	300.000000	1.000000
23	7661	140.000000	6.000000
24	7650	0.000000	0.000000
25	7643	300.000000	7.000000
26		300.000000	7.000000
27		60.000000	3.000000
28		80.000000	1.000000
29		280.000000	1.000000
30		0.000000	0.000000
31		150.000000	0.000000
32		260.000000	1.000000
33		240.000000	6.000000
34		160.000000	3.000000
35		150.000000	6.000000
36		340.000000	0.000000
37		230.000000	4.000000
38		170.000000	5.000000
39		160.000000	6.000000
40		140.000000	5.000000
41		240.000000	1.000000
42		200.000000	4.000000
43		250.000000	10.000000
44		230.000000	5.000000
45		220.000000	10.000000
46	/190	190.000000	4.000000