

Exercise 13A

Question 17:

Let each side of the cube be a cm

Then, the lateral surface area of the cube =
$$(4a^2)$$
 cm²

$$4a^2 = 900$$

$$a^2 = 900 = 225$$

⇒
$$a^2 = \frac{900}{4} = 225$$

∴ $a = \sqrt{225} = 15 \text{ cm}$

∴ Volume of the cube =
$$a^3$$

= $(15)^3$ = $(15 \times 15 \times 15)$ cm³
= 3375 cm³.

Question 18:

Volume of the cube =512 cm³

[Volume =
$$a^3$$
]

$$\therefore$$
 Each edge of the cube = $\sqrt[3]{512} = 8$ cm.

$$\therefore \text{ Surface area of cube} = 6a^2$$
= 6 x (8)² cm²
= (6 x 64) cm²

$$= (6 \times 64) \text{ cm}^2$$

= 384 cm²

Question 19:

Volume of the new cube =
$$[(3)^3 + (4)^3 + (5)^3]$$
 cm
= $(27 + 64 + 125)$ cm²
= 216 cm²
Now edge of this cube = a cm
And, a³ = 216
 \therefore a = 6 cm

Lateral surface area of the new cube = $4a^2$ cm².

$$= 4 \times (6)^{2} \text{ cm}^{2}$$

= $(4 \times 36) \text{ cm}^{2}$
= 144 cm^{2}

 \therefore The lateral surface area of the new cube formed =144 cm².

Question 20:

Area =
$$2 \text{ hectares} = 2 \times 10000 \text{ m}^2$$

Depth of the ground = 5 cm =
$$\frac{5}{100}$$
 m

Volume of water = (area x depth)
$$5$$

$$= \left(2 \times 10000 \times \frac{5}{100}\right) \text{m}^3$$

$$= 1000 \, \text{m}^3$$

∴ Volume of water that falls =1000 m³

********* END *******