Select Operation – Example

■ Relation *r* :

A	В	С	D
α	α	1	7
α	β	5	7
β	β	12	3
β	β	23	10

 \bullet $\sigma_{A=B^{\wedge}D>5}(r)$:

Α	В	С	D
α	α	1	7
β	β	23	10

Select Operation

- Notation: $\sigma_p(r)$
- p is called the selection predicate
- Defined as:

$$\sigma_{D}(r) = \{t \mid t \in r \text{ and } p(t)\}$$

- Where p is a formula in propositional calculus consisting of terms connected by : ∧ (and),
 ∨ (or), ¬ (not)
- Each term is one of:

```
<attribute> op <attribute> or <constant>
```

where op is one of:
$$=, \neq, >, \geq, <, \leq$$

Example:

Project Operation – Example

Relation r.

A	В	С
α	10	1
α	20	1
β	30	1
β	40	2

 \blacksquare $\Pi_{A,C}(r)$

Project Operation

Notation:

$$\Pi_{A1\ A2}$$
 $A_k(r)$

where A_1 , A_2 are attribute names and r is a relation name.

- The result is defined as the relation of k columns obtained by erasing the columns that are not listed
- Duplicate rows removed from result
 - since relations are sets
- Example: To eliminate the branch-name attribute of account

Union Operation – Example

Relations r, s:

:[A	В
	α	1
	α	2
	β	1

r∪s:

Union Operation

- Notation: r ∪ s
- Defined as:

$$r \cup s = \{t \mid t \in r \text{ or } t \in s\}$$

- For r ∪ s to be valid (Union compatible)
 - 1. *r*, *s* must have the *same arity* (same number of attributes)
 - 2. The attribute domains must be *compatible* (e.g., 2nd column of r deals with the same type of values as does the 2^{nd} column of s)

e.g.: to find all customers with either an account or a loan

 $\Pi_{customer-name}$ (depositor) $\cup \Pi_{customer-name}$ (borrower)

Set Difference Operation – Example

Relations r, s:

A B
α 2
β 3

r − s:

Set Difference Operation

- Notation r s
- Defined as:

$$r-s = \{t \mid t \in r \text{ and } t \notin s\}$$

- Set differences must be taken between compatible relations.
 - r and s must have the same arity
 - attribute domains of r and s must be compatible

Cartesian-Product Operation – Example

Relations r, s:

	A	В	
	α	1	
	β	2	
r			

С	D	Е
α β β	10 10 20 10	a a b b

5

r x s:

A	В	С	D	Е
α	1	α	10	а
α	1	β	19	а
α	1	β	20	b
α	1	y	10	b
β	2	α	10	a
β	2	β	10	a
β	2	β	20	b
B	2	ν	10	b

Cartesian-Product Operation

- Notation: r x s
- Defined as:

$$r \times s = \{ t \mid q \mid t \in r \text{ and } q \in s \}$$

- Assume that attributes of r(R) and s(S) are disjoint;
 i.e., R ∩ S = Ø.
- If not, renaming of attributes is needed.

Composition of Operations

- Can build expressions using multiple operations
- Example: $\sigma_{A=C}(r \times s)$
- rxs

A	В	C	D	E
α	1	α	10	a
α	1	β	19	a
α	1	β	20	b
α	1	7	10	b
β	2	α	10	a
β	2	β	10	a
B	2	β	20	b
β	2	y	10	b

• $\sigma_{A=C}(r \times s)$

A	В	С	D	Ε
α	1 2 2	α	10	a
β		β	20	a
β		β	20	b

Rename Operation

- Allows us to name, and therefore to refer to, the results of relational-algebra expressions.
- Allows us to refer to a relation by more than one name.
- ρ_N (E) returns the expression E under the name N
- If a relational-algebra expression E has arity n, then

returns the result of expression E under the name N, and with the attributes renamed to A_1 , A_2 , ..., A_n .

Schema Diagram for University Database

Find all students in the CS department

Find the name of each student in the CS department

 Find the names of all persons who are both an instructor and a student (assuming names are unique)

Find the names of all students who takes/took course CS-101.
 Query 1

Formal Definition

- A basic expression in the relational algebra consists of either one of the following:
 - A relation in the database
 - A constant relation
- Let E₁ and E₂ be relational-algebra expressions; the following are all relational-algebra expressions:
 - □ E1 ∪ E2
 - $E_1 E_2$
 - □ E1 X E2
 - σ_D (E₁), P is a predicate on attributes in E₁
 - Π_S(E₁), S is a list consisting of some of the attributes in E₁
 - $\rho_N(E_1)$, N is the new name for the result of E_1

Additional Operations

We define additional operations that do not add any power to the relational algebra, but that simplify common queries.

- Set intersection
- Natural join
- Assignment
- Outer Join
- Generalized Projection
- Aggregation

Set-Intersection Operation

- Notation: r ∩ s
- Defined as:

$$t \cap s' = \{t \mid t \in r \text{ and } t \in s\}$$

- Assume union compatibility:
 - r, s have the same arity
 - attributes of r and s are compatible/
- Note: $r \cap s = r (r s)$

Set-Intersection Operation – Example

• Relation r, s:

В	Α
1 2 1	α α β
1	β

A B α 2 β 3

Natural-Join Operation

- Let r(R) and s(S)
- Notation: r⋈s √
- The result is a relation on schema R ∪ S which is obtained by considering each pair of tuples t_r from r and t_s from s.
 - If t_r and t_s have the same value on each of the attributes in $R \cap S$, a tuple t is added to the result, where t has the same value as t_r on R, and t has the same value as t_s on S.
- Example:

$$R = (A, B, C, D) & S = (E, B, D)$$

Result schema = (A, B, C, D, E)

Result schema =
$$(A, B, C, D, E)$$

$$r\bowtie s=$$

Natural-Join Operation – Example

Relations r, s:

A	В	С	D	
α	1	α	a	
B	2	7	a	
Y	4	B	b	
α	1	7	a	
δ	2	β	b	
-				

В	D	Ε
1	a	α
3	a	β
1	a	γ
2	b	8
3	b	ϵ
	S	

 $r\bowtie s$

A	В	С	D	E
α	1	α	a	α
α	1	α	a	7
α	1	7	a	α
α	1	7	a	Y
δ	2	B	b	δ

Properties

- $\prod_{A1,\ldots,Ak}(r) \cap \prod_{A1,\ldots,Ak}(s) = \prod_{A1,\ldots,Ak}(r \bowtie s)$
- $(r \bowtie s) \bowtie t = r \bowtie (s \bowtie t)$
- •
- If R=S then $r \bowtie s = r \cap s$
- Theta Join
 - combine selection with Cartesian product

Assignment Operation

- The assignment operation (←)
 - provides a convenient way to express complex queries
 - write query as a sequential program consisting of a series of assignments
- Assignment must always be made to a temporary relation variable.
 - The result to the right hand side is assigned to the relation variable on the left hand side.
 - May use the variable in subsequent expressions.
- Example: r ∩ s = r (r s) temp ← r - s result ← r - temp

 Find the names of all students who takes/took both courses CS-101 and CS-190.

 Find the IDs of all students who were taught by an instructor named Einstein in building 301.

