Inequalities Notes

Abror Maksudov

Last Updated: May 19, 2025

Contents

Defi	nitions			
2.1	Majorization			
2.2	Convex Function			
Inequalities				
3.1	AM-GM Inequality			
3.2	Weighted AM-GM Inequality			
3.3	Power Mean Inequality			
3.4	Weighted Power Mean Inequality			
3.5	HM-GM-AM-QM Inequalities			
3.6	Bernoulli's Inequality			
3.7	Jensen's Inequality			
3.8	Young's Inequality			
3.9	Cauchy–Schwarz Inequality			
3.10	Muirhead's Inequality			
3.11	Popoviciu's Inequality			
3.12	Karamata's Inequality			
3.13	Hölder's Inequality			
3.14	Minkowski Inequality			
3.15	Generalized Minkowski Inequality			
3.16	Chebyshev's Sum Inequality			
3.17	Rearrangement Inequality			
3.18	Schur's Inequality			
3.19	Generalized Schur's Inequality			
3.20	Newton's Inequality			
3.21	Maclaurin's Inequality			
3.22	Aczel's Inequality			
3.23	Huygens Inequality			
3.24	Heinz Inequality			
3.25	Nesbitt's Inequality			
	Cesàro's Inequality			
	Mildorf's Inequality			

5	Pro	oofs	6
	5.1	Proof of AM-GM Inequality using Induction	6
	5.2	Proof of AM-GM Inequality using Forward-Backward Induction (a.k.a. Cauchy	
		Induction)	7
	5.3	Proof of AM-GM Inequality using Jensen's Method	8
6	Sele	ected Problems	8

1 Introduction

2 Definitions

2.1 Majorization

Let $x = (x_1, x_2, \dots, x_n)$ and $y = (y_1, y_2, \dots, y_n)$ be non-increasing sequences of real numbers. Then x is said to *majorize* y, denoted $x \succ y$, if the following conditions are satisfied:

1.
$$x_1 \ge x_2 \ge \cdots \ge x_n$$
 and $y_1 \ge y_2 \ge \cdots \ge y_n$;

2.
$$\sum_{i=1}^{n} x_i = \sum_{i=1}^{n} y_i;$$

3.
$$\sum_{i=1}^{k} x_i \ge \sum_{i=1}^{k} y_i$$
 for all $k = 1, 2, \dots, n-1$.

Example: $(3,1,0) \succ (2,1,1), (12,0,0) \succ (4,4,4).$

2.2 Convex Function

A function $f:[a,b]\to\mathbb{R}$ is called *convex* (concave up) on [a,b] if and only if for all $x,y\in[a,b]$ and all $\lambda\in[0,1]$, the following inequality holds:

$$\lambda f(x) + (1 - \lambda)f(y) \ge f(\lambda x + (1 - \lambda)y).$$

A function is called *concave* (concave down) if the inequality is flipped.

Additionally, convexity (concavity) can be determined by checking if $f''(x) \ge 0$ ($f''(x) \le 0$) holds for all $x \in [a, b]$.

Note that f is convex if and only if -f is concave.

Example (convex): x^2, e^x . Example (concave): $\ln x, \sqrt{x}$.

3 Inequalities

3.1 AM-GM Inequality

Let $a_1, a_2, \ldots, a_n > 0$. Then, the following inequality holds:

$$\frac{a_1 + a_2 + \dots + a_n}{n} \ge \sqrt[n]{a_1 a_2 \dots a_n},$$

with equality if and only if $a_1 = a_2 = \cdots = a_n$. More precisely,

$$\frac{1}{n}\sum_{i=1}^{n}a_{i} \geq \sqrt[n]{\prod_{i=1}^{n}a_{i}}.$$

Example: $\frac{a+b+c}{3} \ge \sqrt[3]{abc}$.

3.2 Weighted AM-GM Inequality

Let $a_1, a_2, \ldots, a_n > 0$ and w_1, w_2, \ldots, w_n be positive integers. Then, by AM-GM we have:

$$\underbrace{\frac{a_1+a_1+\cdots+a_1}{w_1} + \underbrace{a_2+a_2+\cdots+a_2}_{w_2} + \cdots + \underbrace{a_n+a_n+\cdots+a_n}_{w_n}}_{w_1+w_2+\cdots+w_n}$$

$$\geq \left(\underbrace{a_1a_1\dots a_1}_{w_1}\underbrace{a_2a_2\dots a_2}_{w_2}\dots\underbrace{a_na_n\dots a_n}_{w_n}\right)^{\frac{1}{w_1+w_2+\cdots+w_n}}.$$

The above is equivalent to the following

$$\frac{w_1 a_1 + w_2 a_2 + \dots + w_n a_n}{w_1 + w_2 + \dots + w_n} \ge (a_1^{w_1} a_2^{w_2} \dots a_n^{w_n})^{\frac{1}{w_1 + w_2 + \dots + w_n}}.$$

More precisely,

$$\frac{\sum_{i=1}^{n} w_i a_i}{\sum_{i=1}^{n} w_i} \ge \left(\prod_{i=1}^{n} a_i^{w_i}\right)^{\frac{1}{\sum_{i=1}^{n} w_i}}$$

If we let $w_1, w_2, \dots, w_n \ge 0$ with $w_1 + w_2 + \dots + w_n = 1$, then we have:

$$w_1a_1 + w_2a_2 + \dots + w_na_n \ge a_1^{w_1}a_2^{w_2}\dots a_n^{w_n},$$

or, more precisely,

$$\sum_{i=1}^{n} w_i a_i \ge \prod_{i=1}^{n} a_i^{w_i}.$$

3

Example: $\frac{3a+2b+c}{6} \ge \sqrt[6]{a^3b^2c}$.

3.3 Power Mean Inequality

Let $a_1, a_2, \ldots, a_n > 0$. Then, the r-th power mean is defined as:

$$\mathcal{P}(r) = \begin{cases} \left(\frac{a_1^r + \dots + a_n^r}{n}\right)^{1/r} & r \neq 0, \\ \sqrt[n]{a_1 a_2 \dots a_n} & r = 0. \end{cases}$$

Example:

•
$$r = -1$$
:
$$\frac{n}{\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}} = \frac{n}{\sum_{i=1}^n \frac{1}{a_i}}$$
 (Harmonic Mean)

•
$$r = 0$$
:
$$\sqrt[n]{a_1 a_2 \dots a_n} = \left(\prod_{i=1}^n a_i\right)^{\frac{1}{n}}$$
 (Geomteric Mean)

•
$$r = 1$$
:
$$\frac{a_1 + a_2 + \dots + a_n}{n} = \frac{1}{n} \sum_{i=1}^n a_i$$
 (Arithmetic Mean)

•
$$r=2$$
:
$$\sqrt{\frac{a_1^2 + a_2^2 + \dots + a_n^2}{n}} = \sqrt{\frac{\sum_{i=1}^n a_i^2}{n}}$$
 (Quadratic Mean)

If r > s, then

$$\mathcal{P}(r) \ge \mathcal{P}(s)$$

with equality if and only if $a_1 = a_2 = \cdots = a_n$.

Example: $\mathcal{P}(2) \ge \mathcal{P}(1) \iff \sqrt{\frac{a^2+b^2}{2}} \ge \frac{a+b}{2}$.

3.4 Weighted Power Mean Inequality

Let $a_1, a_2, \ldots a_n > 0$ and $w_1, w_2, \ldots, w_n \ge 0$ with $w_1 + w_2 + \cdots + w_n = 1$. Then, the r-th weighted power mean is defined as:

$$\mathcal{P}(r) = \begin{cases} (w_1 a_1^r + w_2 a_2^r + \dots + w_n a_n^r)^{1/r} & r \neq 0, \\ a_1^{w_1} a_2^{w_2} \dots a_n^{w_n} & r = 0. \end{cases}$$

Similarly, if r > s, then

$$\mathcal{P}(r) > \mathcal{P}(s)$$

with equality if and only if $a_1 = a_2 = \cdots = a_n$.

Example: $(\frac{1}{6}a^3 + \frac{1}{3}b^3 + \frac{1}{2}c^3)^{1/3} \ge a^{1/6}b^{1/3}c^{1/2}$.

3.5 HM-GM-AM-QM Inequalities

Let $a_1, a_2, ..., a_n > 0$. Then:

$$0<\mathrm{HM}\leq\mathrm{GM}\leq\mathrm{AM}\leq\mathrm{QM}$$

$$0 < \frac{n}{\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}} \le \sqrt[n]{a_1 a_2 \dots a_n} \le \frac{a_1 + a_2 + \dots + a_n}{n} \le \sqrt{\frac{a_1^2 + a_2^2 + \dots + a_n^2}{n}}.$$

More precisely,

$$0 < \frac{n}{\sum_{i=1}^{n} \frac{1}{a_i}} \le \sqrt[n]{\prod_{i=1}^{n} a_i} \le \frac{1}{n} \sum_{i=1}^{n} a_i \le \sqrt{\frac{\sum_{i=1}^{n} a_i^2}{n}}.$$

Example: $\frac{2ab}{a+b} \le \sqrt{ab} \le \frac{a+b}{2} \le \sqrt{\frac{a^2+b^2}{2}}$.

- 3.6 Bernoulli's Inequality
- 3.7 Jensen's Inequality
- 3.8 Young's Inequality
- 3.9 Cauchy-Schwarz Inequality
- 3.10 Muirhead's Inequality
- 3.11 Popoviciu's Inequality
- 3.12 Karamata's Inequality
- 3.13 Hölder's Inequality
- 3.14 Minkowski Inequality
- 3.15 Generalized Minkowski Inequality
- 3.16 Chebyshev's Sum Inequality
- 3.17 Rearrangement Inequality
- 3.18 Schur's Inequality
- 3.19 Generalized Schur's Inequality
- 3.20 Newton's Inequality
- 3.21 Maclaurin's Inequality
- 3.22 Aczel's Inequality
- 3.23 Huygens Inequality
- 3.24 Heinz Inequality
- 3.25 Nesbitt's Inequality
- 3.26 Cesàro's Inequality
- 3.27 Mildorf's Inequality

4 Selected Inequalities

5 Proofs

5.1 Proof of AM-GM Inequality using Induction

$$\frac{a_1 + a_2 + \dots + a_n}{n} \ge \sqrt[n]{a_1 a_2 \dots a_n}$$

- i. Base case is true (n=2).
- ii. n is true $\implies n+1$ is true.

Proof:

Step 1:

$$\frac{a_1 + a_2}{2} \ge \sqrt{a_1 a_2} \implies (\sqrt{a_1})^2 - 2\sqrt{a_1 a_2} + (\sqrt{a_2})^2 = (\sqrt{a_1} - \sqrt{a_2})^2 \ge 0.$$

$$\frac{a_1 + \dots + a_n}{n} \ge \sqrt[n]{a_1 \dots a_n} \Longrightarrow$$

$$\frac{a_1 + \dots + a_n + a_{n+1}}{n+1} = \frac{n \frac{a_1 + \dots + a_n}{n} + a_{n+1}}{n+1}$$

$$\ge \left(\frac{a_1 + \dots + a_n}{n}\right)^{\frac{n}{n+1}} (a_{n+1})^{\frac{1}{n+1}}$$

$$\ge (\sqrt[n]{a_1 \dots a_n})^{\frac{n}{n+1}} (a_{n+1})^{\frac{1}{n+1}}$$

$$= \sqrt[n+1]{a_1 \dots a_n a_{n+1}}$$

5.2 Proof of AM-GM Inequality using Forward-Backward Induction (a.k.a. Cauchy Induction)

$$\frac{a_1 + a_2 + \dots + a_n}{n} \ge \sqrt[n]{a_1 a_2 \dots a_n}$$

i. Base case is true (n=2).

ii. n is true $\implies 2n$ is true.

iii. n is true $\implies n-1$ is true.

Proof:

Step 1:

$$\frac{a_1 + a_2}{2} \ge \sqrt{a_1 a_2} \implies (\sqrt{a_1})^2 - 2\sqrt{a_1 a_2} + (\sqrt{a_2})^2 = (\sqrt{a_1} - \sqrt{a_2})^2 \ge 0.$$

Step 2:

$$\frac{a_1 + \dots + a_n}{n} \ge \sqrt[n]{a_1 \dots a_n} \Longrightarrow$$

$$\frac{a_1 + a_2 + \dots + a_{2n}}{2n} = \frac{1}{2} \left(\frac{a_1 + a_2 + \dots + a_n}{n} + \frac{a_{n+1} + a_{n+2} + \dots + a_{2n}}{n} \right)$$

$$\ge \frac{\sqrt[n]{a_1 a_2 \dots a_n} + \sqrt[n]{a_{n+1} a_{n+2} \dots a_{2n}}}{2}$$

$$\ge \sqrt[n]{\sqrt[n]{a_1 a_2 \dots a_n}} \cdot \sqrt[n]{a_{n+1} a_{n+2} \dots a_{2n}}$$

$$= \sqrt[2n]{a_1 a_2 \dots a_{2n}}$$

Step 3:
$$\frac{a_1 + a_2 + \dots + a_{n-1} + a_n}{n} \ge \sqrt[n]{a_1 a_2 \dots a_{n-1} a_n} \Longrightarrow \frac{a_1 + a_2 + \dots + a_{n-1} + \frac{a_1 + \dots + a_{n-1}}{n-1}}{n} \ge \sqrt[n]{a_1 a_2 \dots a_{n-1} \cdot \frac{a_1 + \dots + a_{n-1}}{n-1}}$$

$$\frac{(n-1)(a_1 + a_2 + \dots + a_{n-1}) + (a_1 + \dots + a_{n-1})}{n \cdot (n-1)} = \frac{(n-1+1)(a_1 + a_2 + \dots + a_{n-1})}{n \cdot (n-1)}$$

$$\frac{a_1 + a_2 + \dots + a_{n-1}}{n-1} \ge \sqrt[n]{a_1 a_2 \dots a_{n-1} \cdot \frac{a_1 + \dots + a_{n-1}}{n-1}}$$

$$\left(\frac{a_1 + a_2 + \dots + a_{n-1}}{n-1}\right)^n \ge a_1 a_2 \dots a_{n-1} \cdot \frac{a_1 + \dots + a_{n-1}}{n-1}$$

$$\left(\frac{a_1 + a_2 + \dots + a_{n-1}}{n-1}\right)^{n-1} \ge a_1 a_2 \dots a_{n-1}$$

$$\frac{a_1 + a_2 + \dots + a_{n-1}}{n-1} \ge \sqrt[n-1]{a_1 a_2 \dots a_{n-1}}$$

5.3 Proof of AM-GM Inequality using Jensen's Method

Let $a_1, a_2, \ldots, a_n > 0$ and $f(x) = \ln x$ be a *concave* function on $(0, \infty)$. By Jensen's Inequality we have:

$$f\left(\frac{1}{n}\sum_{i=1}^{n}a_{i}\right) \geq \frac{1}{n}\sum_{i=1}^{n}f(a_{i})$$

$$\ln\left(\frac{a_{1}+a_{2}+\cdots+a_{n}}{n}\right) \geq \frac{\ln\left(a_{1}\right)+\ln\left(a_{2}\right)+\cdots+\ln\left(a_{n}\right)}{n}$$

$$=\frac{\ln\left(a_{1}a_{2}\dots a_{n}\right)}{n}$$

$$=\ln\left(\sqrt[n]{a_{1}a_{2}\dots a_{n}}\right)$$

$$e^{\ln\left(\frac{a_{1}+a_{2}+\cdots+a_{n}}{n}\right)} \geq e^{\ln\left(\sqrt[n]{a_{1}a_{2}\dots a_{n}}\right)}$$

$$\frac{a_{1}+a_{2}+\cdots+a_{n}}{n} \geq \sqrt[n]{a_{1}a_{2}\dots a_{n}}$$

6 Selected Problems

1. –

8