

Assignment 3 Control

Task 1

C1: 0.05 Hz and

Parameter		Unit	HAWC2S
Optimal Cp tracking K factor	K	[N·m]/[rad·s^-2]	0.20411E+08
Proportional gain of torque controller	K_{Pg}	[N·m] / [rad]	0.111389E+09
Integral gain of torque controller	K_{Ig}	[N·m] / [rad s^-1]	0.249955E+08
Proportional gain of pitch controller	K_P	[rad] / [rad]	2.95133
Integral gain of pitch controller	Kı	[rad·s] / [rad]	0.577807
Coefficient of linear term in aerodynamic gain scheduling	KK_1	[rad]	4.31691
Coefficient of quadratic term in aerodynamic gain scheduling	<i>KK</i> 2	[rad^2]	-
Aerodynamic gain at pitch = 0 deg	$\partial Q_A/\partial heta$	[N·m] / [rad]	-755.01842

Task 2

		Region 1	Region 1 Region 2		Region 3		
CA	ASE	K	KPg	Klg	KP	KI	KK1
Constant	nstant (f=0.05Hz)		1.1139E+08	2.4996E+07	2.9513E+00	5.7781E-01	4.3169
Power (CP)	C2 (f=0.01Hz)	2.0412E+07	2.2278E+07	9.9982E+05	8.9141E-01	2.3112E-02	
	C3 (f=0.1Hz)		2.2278E+08	9.9982E+09	5.5262E+00	2.3112E+00	
Constant	C4 (f=0.05Hz)		1.1139E+08	2.4996E+07	2.5749E+00	5.7781E-01	
Torque (CT)	C5 (f=0.01Hz)		2.2278E+07	9.9982E+05	5.1498E-01	2.3112E-02	
	C6 (f=0.1Hz)		2.2278E+08	9.9982E+07	5.1498E+00	2.3112E+00	
СР	C7 (f=0.05Hz)		0.9547E+08	2.4996E+07	2.58349	5.7781E-01	

Constant Power Control

Constant Torque Control

C7: Improved Controller Design

Case C7

Appendix

Task 1 - Derivations

Optimal Cp tracking K factor

$$\begin{split} K &= \frac{\eta \rho A R^3 C_p \left(\theta_{\text{opt}}, \lambda_{\text{opt}}\right)}{2 \lambda_{\text{opt}}^3} \\ &= \frac{[-][kg.m^{-3}][m^2][m^3][-]}{2[-]} \\ &= [kg][m^2] \\ &= [kg][m][s^2][s^{-2}][rad^{-2}] \\ &= \frac{[N.m]}{[rad\ s^{-2}]} \end{split}$$

Integral gain of torque Ctrl

Proportional gain of torque Ctrl.

$$k_{Ig} = \eta \left(I_r + n_g^2 I_g \right) \omega_{\Omega g}^2$$

$$k_{Ig} = [-] ([kg.m^2] + [-]^2 [kg.m^2]) [rad s^{-1}]^2$$

= $\frac{[kg.rad^2.m^2]}{[s^2]} = [N.m.rad^2] [rad^{-3}] = \frac{[N.m]}{[rad]}$

$$egin{align} k_{Pg} &= 2\eta \zeta_{\Omega g} \omega_{\Omega g} ig(I_r + n_g^2 I_gig) \ &= 2[-][-][rad.\,s^{-1}][kg.\,m^2] \ &= [rad.\,s^{-1}][kg.\,m][m][s^2][s^{-2}] \ &= rac{[N][m]}{rad.\,s^{-1}} \end{split}$$

Integral gain of pitch Ctrl.

Proportional gain of pitch Ctrl.

$$k_{I} = \frac{\omega_{\Omega}^{2} \left(I_{r} + n_{g}^{2} I_{g} \right)}{-\left. \frac{\partial Q}{\partial \theta} \right|_{0}}$$

$$= \frac{[rad/s]^2 \left([Kg - m^2] + [-]^2 [Kg - m^2] \right)}{-[N - m/deg]}$$

$$= \frac{[rad/s]^2[Kg - m^2]}{-[Kg - m^2/s^2 * deg]}$$

$$= [rad^2/rad]$$

$$= [rad/rad]$$

$$k_P = \frac{2\zeta_{\Omega}\omega_{\Omega}\left(I_r + n_g^2 I_g\right) - \frac{1}{\eta} \frac{\partial Q_g}{\partial \Omega}\Big|_{0}}{-\frac{\partial Q}{\partial \theta}\Big|_{0}}$$

$$= \frac{[rad/s]^{2}[Kg - m^{2}]}{-[Kg - m^{2}/s^{2} * deg]} \qquad k_{P} = \frac{[-][rad.s^{-1}] \left([kg.m^{2}] + [-]^{2}[kg.m^{2}]\right) - \frac{1}{[-]}[kg.m^{2}.s^{-1}.rad^{-1}]}{-[kg.m^{2}.s^{-2}.deg^{-1}]}$$

$$= [rad^{2}/rad] \qquad = \frac{[rad][s]}{[rad]}$$

Aerodynamic Gain

• Aerodynamic damping equation:

$$\left. \frac{\partial Q_A}{\partial \theta} = \left. \frac{\partial Q_A}{\partial \theta} \right|_{\theta=0} \left(1 + \frac{\theta}{KK_1} + \frac{\theta^2}{KK_2} \right)$$

- Aerodynamic gain is $\frac{\partial Q_A}{\partial \theta}$ and has units $\frac{Nm}{rad}$
- KK1 must have units rad
- KK2 must have units rad^2
- $\frac{\partial Q_A}{\partial \theta}\Big|_{\theta=0}$ also has units $\frac{Nm}{rad}$

For the same $\omega\Omega$, why is the kP different but kI is the same when using Constant Power and Constant Torque?

$$k_P = \frac{2\zeta_{\Omega}\omega_{\Omega}(I_r + n_g^2 I_g) - \frac{1}{\eta} \left. \frac{\partial Q_g}{\partial \Omega} \right|_0}{-\left. \frac{\partial Q}{\partial \theta} \right|_0},$$

It can be seen that the expression of kp depends on the partial derivative of the generator torque wrt. angular velocity. Therefore, this term is 0 for constant torque case but not for constant power.

$$k_I = rac{\omega_\Omega^2 ig(I_r + n_g^2 I_gig)}{-rac{\partial Q}{\partial heta}ig|_0}$$

The expression of kI does not depend on the partial derivative of the generator torque wrt. angular velocity, and so it's the same in both cases. (it just depends on the total inertia of the system, the frequency and the partial derivative of the the aerodynamic torque)

Step Wind Simulation

Pitch Angles

Constant Power

Constant Torque

Thanks for your attention