Kapitel 1

Schemata

§ 1 Garben

Definition 1.1

Sei X ein topologischer Raum, \mathcal{C} eine Kategorie. Eine **Prägarbe** \mathcal{F} auf X mit Werten in \mathcal{C} besteht aus einer Abbildung Off $(X) \to \text{Ob } \mathcal{C}$, $U \mapsto \mathcal{F}(U)$ und Morphismen $\rho_U^{U'}: \mathcal{F}(U') \to \mathcal{F}(U)$ für alle $U \subseteq U'$ offen, sodass gilt:

- i) $\rho_U^U = \mathrm{id}_U$ für alle $U \in \mathrm{Off}(X)$
- ii) $\rho_U^{U''}=\rho_U^{U'}\circ\rho_{U'}^{U''}$ für alle $U\subseteq U'\subseteq U''$ in $\mathrm{Off}(X)$

Bemerkung 1.2

Eine Prägarbe \mathcal{F} auf X mit Werten in \mathcal{C} ist dasselbe wie ein kontravarianter Funktoren $\mathcal{F}: \mathrm{Off}(X) \to \mathcal{C}$.

Definition 1.3

Eine Prägarbe \mathcal{F} auf X mit Werten in \mathcal{C} heißt Garbe, wenn für jedes $U \in Off(X)$, jede offene Überdeckung $(U_i)_{i \in I}$ von U und jede Familie $(s_i \in \mathcal{F}(U_i))_{i \in I}$ mit $\rho_{U_i \cap U_j}^{U_i}(s_i) = \rho_{U_i \cap U_j}^{U_j}(s_j)$ für alle $i, j \in I$ gilt:

Es gibt genau ein $s \in \mathcal{F}(U)$ mit $\rho_{U_i}^U(s) = s_i$ für alle $i \in I$. Dieses s wird als **Amalgam** bezeichnet.

Beispiele

- 1) X quasi-projektive Varietät über einem Körper k, $\mathcal{O}(U) = \{f : U \to \mathbb{A}^1(k) : f \text{ regulär}\}$ Ring der regulären Funktionen auf U.
 - $\Rightarrow \mathcal{O}_X$ ist Garbe von Ringen auf X (k-Algebren)
- 2) X topologischer Raum, $\mathcal{C}_X(U) := \{f : U \to \mathbb{R} \text{ stetig}\}\$ \mathcal{C}_X ist Garbe von Ringen
- 3) Sei X topologischer Raum, G Gruppe, $\mathcal{G}(U) := G$ für alle $U \subseteq X$ offen, $\rho_U^{U'} = \mathrm{id}_G$. Seien U, U' offen in X mit $U \cap U' = \emptyset$ $\widetilde{U} = U \cup U'$?!

Finde kein
$$g \in \mathcal{G}(\widetilde{U}) = G$$
 mit $g = \begin{cases} \rho_U^{\widetilde{U}}(g) = g_1 \neq g_2 \\ \rho_{U'}^{\widetilde{U}}(g) = g_2 \neq g_1 \end{cases}$

Bemerkung 1.4

Sei X topologischer Raum, \mathcal{F} Garbe auf X. Dann ist $\mathcal{F}(\emptyset)$ einelementig.

Beweis

Überdecke \emptyset durch eine leere Menge von offenen Teilmengen! Jedes $s \in \mathcal{F}(\emptyset)$ erfüllt $\rho_{\emptyset}^{U_i}(s_i) = s$ für alle $i \in \emptyset$, $\emptyset = \bigcup_{i \in \emptyset} U_i$. Also gibt es genau ein $s \in \mathcal{F}(\emptyset)$.

Definition 1.5

Sei X ein topologischer Raum, \mathcal{F} , \mathcal{G} Prägarben auf X.

Ein *Morphismus* $\varphi : \mathcal{F} \to \mathcal{G}$ ist eine natürliche Transformation der Funktoren $\mathcal{F}, \mathcal{G} :$ Off $(X) \to \mathcal{C}$, das heißt φ besteht aus Morphismen (in \mathcal{C}) $\varphi_U : \mathcal{F}(U) \to \mathcal{G}(U)$ für jedes $U \in \text{Off}(X)$, die die folgenden Diagramme kommutativ machen:

$$\mathcal{F}(U') \xrightarrow{\varphi_{U'}} \mathcal{G}(U')$$

$$\rho_U^{U'} \downarrow \qquad /// \qquad \qquad \downarrow^{\rho_U^{U'}} \qquad \text{für alle } U \subseteq U' \text{ in } \text{Off}(X)$$

$$\mathcal{F}(U) \xrightarrow{\varphi_U} \mathcal{G}(U)$$

Definition + Bemerkung 1.6

Sei \mathcal{F} eine Prägarbe auf X.

a) Für ein $x \in X$ sei ein **Halm** definiert als

$$\mathcal{F}_x = \lim_{x \in U \in \text{Off}(X)} \mathcal{F}(U) = \{(U, s) : x \in U \in \text{Off}(X), s \in \mathcal{F}(U)\} / \sim$$

wobei $(U,s) \sim (U',s') : \Leftrightarrow \exists x \in U'' \subseteq U \cap U' \text{ mit } \rho_{U''}^U(s) = \rho_{U''}^{U'}(s'). \mathcal{F}_x \text{ heißt } \boldsymbol{Halm} \text{ von } F \text{ in } x.$

- b) Für $x \in U \in Off(X)$ sei $\mathcal{F}(U) \to \mathcal{F}_x, s \mapsto (U, s)_{\sim} =: s_x \text{ der } nat \ddot{u}rliche \; Morphismus.$
- c) (UAE)

Für jedes $C \in \text{Ob } \mathcal{C}$ und jede konsistente Familie $\varphi_U : \mathcal{F}(U) \to C$ von Morphismen in \mathcal{C} gibt es genau einen Morphismus $\varphi_x : \mathcal{F}_x \to C$ mit $\varphi_x \circ \sigma_x = \varphi_U$ für alle U

$$(U,s)_{\sim} \mapsto \varphi_U(s)$$

d) Jeder Morphismus $\varphi: \mathcal{F} \to \mathcal{G}$ induziert für jedes $x \in X$ einen Morphismus

$$\varphi_x: \mathcal{F}_x \to \mathcal{G}_x$$

$$\mathcal{F}(U) \xrightarrow{\varphi_U} \mathcal{G}(U) \\
\downarrow \qquad \qquad \downarrow \\
\mathcal{F}_x \xrightarrow{----} \mathcal{G}_x$$

Bemerkung 1.7

Sei \mathcal{F} Garbe von abelschen Gruppen auf $X, U \subseteq X$ offen, $s \in \mathcal{F}(U)$. Dann gilt:

$$s = 0 \Leftrightarrow s_x = 0$$
 für alle $x \in U$

Beweis

" \Leftarrow ": Für jedes $x \in U$ gibt es Umgebung U_x mit $s|_{U_x} = 0$. $(s|_{U_x} = \rho^U_{U_x})$. Die $(U_x)_{x \in U}$ bilden offene Überdeckungen, die $s|_{U_x}$ bilden konsistente Familie, s und 0 sind beides Amalgam $\xrightarrow{\text{Gruppen-}} s = 0$

Proposition 1.8

Seien \mathcal{F}, \mathcal{G} Garben von abelschen Gruppen auf $X, \varphi : \mathcal{F} \to \mathcal{G}$ Morphismus.

- a) φ_U injektiv für jedes $U \in \text{Off}(X) \Leftrightarrow \varphi_x$ injektiv für alle $x \in X$
- b) φ_U surjektiv für jedes $U \in \text{Off}(X) \Rightarrow \varphi_x$ surjektiv für alle $x \in X$
- c) φ_U bijektiv für jedes $U \in \text{Off}(X) \Leftrightarrow \varphi_x$ bijektiv für alle $x \in X$

Beweis

a) " \Rightarrow ": Sei $x \in X$, $s_x \in \mathcal{F}$ mit $\varphi_x(s_x) = 0$. \exists Umgebung von x und $s \in \mathcal{F}(U)$ mit $s_x =$ Keim von s in x mit $\varphi_x(s_x) =$ Keim von $\varphi_U(s)$ in $x = \varphi_U(s)_s$

$$\Rightarrow \times \varphi_U(s) = 0 \xrightarrow[\text{injektiv}]{\varphi_U} s = 0$$

$$\text{": Sei } U \subset \text{Off}(X), s \in \mathcal{F}(U) \text{ mit } \varphi_U(s) = 0$$

$$\Rightarrow \text{ für alle } x \in U \text{ ist } \varphi_x(s_x) = \varphi_U(s)_x = 0 \xrightarrow{\varphi \text{ injektiv}} s_x = 0 \xrightarrow{1.7} s = 0$$

b) " \Rightarrow ": Sei $g_x \in \mathcal{G}_x$, (U,g) Repräsentant $\Rightarrow \exists s \in \mathcal{F}(U)$ mit $\varphi_U(s) = g \Rightarrow \varphi_x(s_x) = g$

Beispiel

Sei $X = \mathbb{C}$, \mathcal{O} die Garbe der holomorphen Funktionen auf \mathbb{C} , \mathcal{O}^{\times} die Garbe der invertierbaren holomorphen Funktionen. $\varphi = \exp$, das heißt für $f \in \mathcal{O}(U)$ sei $\varphi(f) = e^{2\pi i f}$.

 φ ist Garbenhomomorphisms ($e^{f+g}=e^f\cdot e^g$). φ_x ist surjektiv für jedes $x\in X$ (lokal gibt es zu jeder holomorphen Funktion ohne Nullstellen einen Logarithmus). $\varphi_{\mathbb{C}\backslash\{0\}}$ ist nicht surjektiv! (zum Beispiel gibt es keine holomorphe Funktion $\log z$ auf ganz \mathbb{C})

Schlimmer noch: φ_U ist nicht injektiv für jedes $U \in \text{Off}(\mathbb{C})$, das nicht einfach zusammenhängend ist.

 $, \Leftarrow$ ": Sei $U \subseteq X$ offen, $q \in \mathcal{G}(U)$.

Für jedes $x \in U$ gibt es $s_x \in \mathcal{F}_x$ mit $\varphi_x(s_x) = g_x$. Wähle Repräsentanten $(U_x, s^{(x)})$ von s_x , sodass $\varphi_{U_x}(s^{(x)}) = g|_{U_x}$ (das geht!) (denn: Sei (U, \tilde{s}) Repräsentant von $s_x \Rightarrow \varphi_U(\tilde{s}) \sim_x g|_U \Rightarrow \exists x \in U_x \subset U : \varphi_U(\tilde{s})|_{U_x} = g|_{U_x}$)

Die U_x bilden offene Überdeckungen von U, die $s^{(x)}$ bilden konsistente Familie (*) \Rightarrow Es gibt ein Amalgam $s \in \mathcal{F}(U)$ mit $\varphi_U(s)|_{U_x} = \varphi_{U_x}(s^{(x)}) = g|_{U_x} \Rightarrow \varphi_U(s) = g$.

(*) zu zeigen: $s^{(x)}|_{U_x \cap U_y} = s^{(y)}|_{U_x \cap U_y}$

denn: $\varphi_{U_x \cap U_y}(s^{(x)}|_{U_x \cap U_y} = \varphi_{U_x \cap U_y}(s^{(y)}|_{U_x \cap U_y}, \varphi_{U_x \cap U_y} \text{ injektiv nach Voraussetzung und a}) \Rightarrow \text{Behauptung}$

Proposition + Definition 1.9

Sei X topoloischer Raum, \mathcal{F} Prägarbe auf X (mit Werten in \mathcal{C})

- a) Es gibt genau eine Garbe \mathcal{F}^+ auf X und einen Morphismus $\vartheta: \mathcal{F} \to \mathcal{F}^+$, sodass $\vartheta_x: \mathcal{F}_x \to \mathcal{F}_x^+$ für jedes $x \in X$ ein Isomorphismus ist.
- b) \mathcal{F}^+ heißt zu \mathcal{F} assoziierte Garbe.
- c) (UAE)

Für jeden Morphismus $\varphi : \mathcal{F} \to \mathcal{G}$ in eine Garbe \mathcal{G} gibt es genau einen Morphismus $\varphi^+ : \mathcal{F}^+ \to \mathcal{G}$ mit $\varphi = \varphi^+ \circ \vartheta$.

Beweis

a) Für $U \in Off(X)$ sei

$$\mathcal{F}^+(U) := \begin{cases} s: U \to \bigcup_{x \in U} \mathcal{F}_x | s(x) \in \mathcal{F}_x \forall \ x \in X, \ \text{zu jedem} \ x \in U \\ \text{gibt es Umgebung} \ U_x \ \text{und} \ f \in \mathcal{F}(U) \ \text{mit} \ s(y) = f_y \\ \text{für jedes} \ y \in U_y \end{cases}$$

 \mathcal{F}^+ ist Garbe \checkmark

Sei $\vartheta: \mathcal{F} \to \mathcal{F}^+$ gegeben durch

$$\vartheta_U(f)(x) = f_x \quad (U \in \text{Off}(X), f \in \mathcal{F}(U))$$

 ϑ ist Morphismus: \checkmark

 ϑ ist Isomorphismus: \checkmark

Definition + Bemerkung 1.10

Sei $\varphi : \mathcal{F} \to \mathcal{G}$ Morphismus von Garben abelscher Gruppen auf X.

- a) Sei Kern (φ) die Prägarbe Kern $(\varphi)(U) := \text{Kern}(\varphi_U)$.
- b) $Kern(\varphi)$ ist Garbe.
- c) φ heißt **injektiv** (oder **Monomorphismus**) : \Leftrightarrow Kern $(\varphi) = 0$

$$egin{array}{ccc} \mathcal{E}_1 \stackrel{\psi_1}{
ightarrow} & \mathcal{F} \stackrel{arphi}{
ightarrow} \mathcal{G} \ \mathcal{E}_2 \stackrel{\psi_2}{
ightarrow} & \mathcal{F} \end{array}$$

 φ Monomorphismus $\Leftrightarrow \varphi \circ \psi_1 = \varphi \circ \psi_2 \Rightarrow \psi_1 = \psi_2$

- d) Sei \mathcal{B}_{φ} die Prägarbe $\mathcal{B}_{\varphi}(U) := \text{Bild}(\varphi_U)$ $\text{Bild}(\varphi_U) := \mathcal{B}_{\varphi}^+$
- e) φ heißt surjektiv (oder Epimorphismus) : \Leftrightarrow Bild $(\varphi) = \mathcal{G}$

$$\mathcal{F} \stackrel{arphi}{
ightarrow} \mathcal{G} \stackrel{\psi_1}{\underset{\psi_2}{
ightarrow}} \mathcal{H}_1 \ \stackrel{\psi_1}{\underset{\psi_2}{
ightarrow}} \mathcal{H}_2$$

 φ Epimorphismus $\Leftrightarrow \psi_1 \circ \varphi = \psi_2 \circ \varphi \Rightarrow \psi_1 = \psi_2$

Beweis

a)

$$\begin{array}{cccc}
\mathcal{F}(U') & \xrightarrow{\varphi_{U'}} & \mathcal{G}(U') \\
\rho_U^{U'} & & & \downarrow \rho_U^{U'} \\
\mathcal{F}(U) & \xrightarrow{\varphi_U} & \mathcal{G}(U)
\end{array}$$

b) Sei $(U_i)_{i\in I}$ offene Überdeckung von $U\in \mathrm{Off}(X),\ s_i\in \mathrm{Kern}(\varphi_{U_i})\subseteq \mathcal{F}(U_i)$ konsistente Familie.

Es gibt ein Amalgam $s \in \mathcal{F}(U)$. $\varphi_x(s_x) = 0$ für jedes $x \in U \xrightarrow{1.8a} \varphi_U(s) = 0$

e) $\operatorname{Bild}(\varphi) = \mathcal{G} \Leftrightarrow \underbrace{\operatorname{Bild}(\varphi)_x}_{=\operatorname{Bild}(\varphi_x)} = \mathcal{G}_x$ für alle x

 φ Epimorphismus \Leftrightarrow für jedes $x \in X$ ist φ_x surjektiv, das heißt $\operatorname{Bild}(\varphi_x) = \mathcal{G}_x$.

Definition 1.11

Seien \mathcal{F}, \mathcal{G} Garben abelscher Gruppen auf $X, i : \mathcal{G} \to \mathcal{F}$ Monomorphismus.

- a) \mathcal{G} heißt Untergarbe von \mathcal{F} .
- b) $U \mapsto \mathcal{F}(U)/\mathcal{G}(U)$ ist Prägarbe auf X, die assoziierte Garbe \mathcal{F}/\mathcal{G} heißt **Quotientengarbe**.

Beispiel

Sei $X = S^1$ (Einheitskreislinie)

 $\mathcal{F} = \mathcal{C}$ (stetige Funktionen $S^1 \to \mathbb{R}$)

 $\mathcal{G} = \text{konstante Garbe } \mathbb{Z}$

 $U = x, U_1, U_2$ wie im Bild

$$U_1 \cap U_2 = D_1 \cup D_2$$

Sei $f_1 \in \mathcal{F}(U_1)$ mit $f_1|_{D_1} = 0$, $f_1|_{D_2} = 1$, $0 = f_2 \in \mathcal{F}(U_2) \Rightarrow f_1|_{U_1 \cap U_2} \in \mathcal{G}(U_1 \cap U_2)$ (!) $\bar{f}_1 = \bar{f}_2$ in $\mathcal{F}(U_1 \cap U_2) / \mathcal{G}(U_1 \cap U_2) \Rightarrow (\bar{f}_i \in \mathcal{F}(U_i) / \mathcal{G}(U_i))_{i=1,2}$ ist konsistente Familie. Aber: Es gibt kein $f \in \mathcal{F}(U)$ mit $f|_{U_1} = f_1$, $f|_{U_2} = f_2$

Proposition 1.12

Sei X topologischer Raum, $U \subseteq X$ offen, $x \in X$.

- a) Die Zuordnung $\Phi: \mathcal{F} \mapsto \mathcal{F}_x$ induziert exakten kovarianten Funktor von der Kategorie $\underline{\operatorname{Sh}}(X)$ der Garben abelscher Gruppen auf X in die Kategorie $\underline{\operatorname{Ab}}$ der abelschen Gruppen. Dabei ist $\Phi_x(\varphi) = \varphi_x$ für $\varphi: \mathcal{F} \to \mathcal{G}$ Morphismus.
- b) Die Zuordnung $\Phi_U : \mathcal{F} \to \mathcal{F}(U)$ induziert linksexakten kovarianten Funktor $\underline{\operatorname{Sh}}(X) \to \underline{\operatorname{Ab}}$ (mit $\Phi_U(\varphi) = \varphi_U$)

Beweis

(*) Sei $0 \to \mathcal{F}' \xrightarrow{\varphi} \mathcal{F} \xrightarrow{\psi} \mathcal{F}'' \to 0$ exakte Sequenz in $\underline{\operatorname{Sh}}(X)$. Achtung: Das bedeutet nicht, dass für jedes $\tilde{U} \in \operatorname{Off}(X)$ die Sequenz $0 \to \mathcal{F}'(\tilde{U}) \to \mathcal{F}(\tilde{U}) \to \mathcal{F}''(\tilde{U}) \to 0$ exakt sein muss.

Aber: (*) ist äquivalent zu: $0 \to \mathcal{F}'_y \overset{\varphi_y}{\to} \mathcal{F}_y \overset{\psi_y}{\to} \mathcal{F}''_y \to 0$ ist exakt für jedes $y \in X \Rightarrow a$)

b) Φ_U linksexakt bedeutet:

$$0 \to \mathcal{F}'(U) \stackrel{\varphi_U}{\to} \mathcal{F}(U) \stackrel{\psi_U}{\to} \mathcal{F}''(U) \to 0 \text{ ist exakt}$$

Das stimmt nach 1.8 und ...

Definition + Bemerkung 1.13

Sei $f: X \to Y$ stetig.

a) Sei \mathcal{F} Garbe auf X.

Dann ist die Prägarbe $U \mapsto \mathcal{F}(f^{-1}(U))$ auf Y eine Garbe, sie heißt (direkte) **Bildgarbe** von \mathcal{F} (unter f). Bezeichnung: $f_*\mathcal{F}$

b) Sei \mathcal{G} Garbe auf Y.

Die zur Prägarbe $U\mapsto \lim_{\substack{f(U)\subseteq V\\V\in \mathrm{Off}(Y)}}\mathcal{G}(V)$ assoziierte Garbe heißt $\pmb{Urbildgarbe}$ von $\mathcal{G}.$

Bezeichnung: $f^{-1}(G)$

c) f_* und f^{-1} sind kovariante Funktoren.

Beweis

- a) Sei $U \subseteq Y$ offen, $(U_i)_{i \in I}$ offene Überdeckung von U, also $(f^{-1}(U_i))_{i \in I}$ offene Überdeckung von $f^{-1}(U)$. $s_i \in f_*\mathcal{F}(U_i)$, $i \in I$, konsistente Familie.
 - $\Rightarrow \exists \text{ Amalgam } s \in \underbrace{\mathcal{F}(f^{-1}(U))}_{=f_*\mathcal{F}(U)} \text{ mit } s|_{f^{-1}(U_i)} = s_i \text{ für alle } i \in I.$
- c) Sei $\varphi : \mathcal{F} \to \mathcal{G}$ Morphismus von Garben auf X.
 - i) Definiere $\varphi_*: f_*\mathcal{F} \to f_*\mathcal{G}$ durch

$$(\varphi_*)_U = \varphi_{f^{-1}(U)} : f_* \mathcal{F}(U) = \mathcal{F}(f^{-1}(U)) \to f_x \mathcal{G}(U) = \mathcal{G}(f^{-1}(U))$$

ii) Definiere $f^{-1}\varphi: f^{-1}\mathcal{F} \to f^{-1}\mathcal{G}$ durch $(f_{\varphi}^{-1})_U = \lim_{f^{-1}(U) \subseteq V \in \text{Off}(Y)} \varphi_V$

Proposition 1.14

Sei $f:X\to Y$ stetig, $\mathcal F$ eine Garbe auf $X,\,\mathcal G$ Garbe auf Y. Dann gibt es eine (natürliche) Bijektion

$$\operatorname{Hom}(f^{-1}\mathcal{G},\mathcal{F}) \to \operatorname{Hom}(\mathcal{G},f_*\mathcal{F})$$

Das bedeutet: f^{-1} ist linksadjungiert zu f_* .

Beweis

Definiere $\varphi_{\mathcal{F}}:f^{-1}f_*\mathcal{F}\to\mathcal{F}$ und $\psi_{\mathcal{G}}:\mathcal{G}\to f_*f^{-1}\mathcal{F}$

Dann:

$$T_1: \left\{ \begin{array}{ccc} \operatorname{Hom}(f^{-1}\mathcal{G}, \mathcal{F}) & \to & \operatorname{Hom}(\mathcal{G}, f_*\mathcal{F}) \\ \alpha & \mapsto & f_*(\alpha) \circ \psi_{\mathcal{G}}: \mathcal{G} \to f_* f^{-1}\mathcal{G} \stackrel{f_*\alpha}{\to} f_*\mathcal{F} \end{array} \right.$$

Analog: $T_2: \beta \mapsto \varphi_{\mathcal{F}} \circ f^{-1}(\beta)$

Rest: Übung

§ 2 Affine Schemata

Behauptung: $\alpha: R \to R'$ Ringhomom, $\mathfrak{p} \subset R'$ Primideal $\Rightarrow \alpha^{-1}(\mathfrak{p})$ Primideal in R

Beweis: Seien $f, g \in R$ mit $f \cdot g \in \alpha^{-1}(\mathfrak{p})$

$$\Rightarrow \underbrace{\alpha(f \cdot g)}_{=\alpha(f) \cdot \alpha(g)} \in \mathfrak{p} \stackrel{\times}{\Longrightarrow} \alpha(f) \in \mathfrak{p} \Rightarrow f \in \alpha^{-1}(\mathfrak{p})$$

Definition + Bemerkung 2.1

Sei R ein Ring (das heißt kommutativer Ring mit Eins)

- a) Spec $R := \{ \mathfrak{p} \subset R : \mathfrak{p} \text{ Primideal} \}$ heißt $\mathbf{Spektrum}$ von R.
- b) Für $I \subseteq R$ sei $V(I) = \{ \mathfrak{p} \in \operatorname{Spec} R : I \subseteq \mathfrak{p} \}$. V(I) heißt **Nullstellenmenge** (vanishing set) von I, es ist V(I) = V(I).
- c) Die V(I), $I \subseteq R$ Ideal, bilden die abgeschlossenen Mengen einer Topologie auf Spec R, der **Zariski Topologie**.
- d) Für $V \subseteq \operatorname{Spec} R$ heißt $I(V) := \bigcap_{\mathfrak{p} \in V} \mathfrak{p}$ **Verschwindungsideal** von V.

Beweis

c) $\emptyset = V(R)$

$$\operatorname{Spec} R = V(0)$$

$$\bigcap_{i \in I} V(I_i) = \bigcap_{i \in I} \{ \mathfrak{p} \in I_i \subseteq \mathfrak{p} \} = \{ \mathfrak{p} : I_i \subseteq \mathfrak{p} \forall i \} = V(\bigcup_{i \in I} I_i) = V(\sum_{i \in I} I_i)$$

$$V(I_1) \cup V(I_2) = \{ \mathfrak{p} \in \operatorname{Spec} R : I_1 \subseteq \mathfrak{p} \text{ oder } I_2 \subseteq \mathfrak{p} \} = V(I_1 \cdot I_2) \stackrel{?}{=} V(I_1 \cap I_2)$$
$$I_1 \cdot I_2 \subseteq I_1 \cap I_2 \Rightarrow V(I_1 \cdot I_2) \supseteq V(I_1 \cap I_2)$$

$$\mathfrak{p} \in V(I_1 \cdot I_2) \Rightarrow I_1 \cdot I_2 \subseteq \mathfrak{p} \stackrel{\text{CE}}{\Longrightarrow} I_1 \subseteq \mathfrak{p} \Rightarrow I_1 \cap I_2 \subseteq \mathfrak{p}$$

$$\Rightarrow V(I_1 \cdot I_2) = V(I_1 \cap I_2)$$

- a) $V(I(V)) = \bar{V}$ für jedes $V \subseteq \operatorname{Spec} R$
- b) $I(V(I)) = \sqrt{I}$ für jedes ideal $I \subseteq R$

Beweis

a) "
$$\supseteq$$
": $V \subseteq V(I(V)) = \{ \mathfrak{q} \in \operatorname{Spec} R : \bigcap_{\mathfrak{p} \in V} \mathfrak{p} \subseteq \mathfrak{q} \}$

"⊆": Es ist
$$\bar{V} = \bigcap_{V \subseteq V(I)} V(I)$$
 Ist I Ideal in R mit $V \subseteq V(I)$, so ist $I \subseteq I(V) = \bigcap_{\mathfrak{p} \in V} \mathfrak{p}$.

$$\Rightarrow V(I) \supseteq V(I(V))$$

$$\Rightarrow V(I(V)) \subseteq \bigcap_{I:V \subseteq V(I)} V(I) = \bar{V}$$

b)
$$I(V(I)) = \bigcap_{\mathfrak{p} \in V(I)} \mathfrak{p} = \bigcap_{I \subseteq \mathfrak{p}} \mathfrak{p} \stackrel{!}{=} \sqrt{I} \text{ (Übung)}$$

Proposition 2.3

Sei $V \subseteq \operatorname{Spec} R$ abgeschlossen, $V \neq 0$. Dann gilt: V irreduzibel $\Leftrightarrow I(V)$ Primideal

Beweis

Wie in Algebraische Geometrie I, Proposition 4.4

Bemerkung 2.4

Jeder Ringhomomorphismus $\alpha: R \to R'$ induziert stetige Abbildung $f_{\alpha}: \operatorname{Spec} R' \to R$ durch $\mathfrak{p} \mapsto \alpha^{-1}(\mathfrak{p})$, das heißt Spec : $\left\{\begin{array}{cc} \operatorname{Ringe} & \to & \operatorname{Top} \\ R & \mapsto & \operatorname{Spec} R \end{array}\right.$ ist kontravarianter Funktor.

Beweis

Noch zu zeigen: f_{α} stetig.

Sei
$$V = V(I) \subseteq \operatorname{Spec} R \Rightarrow f_{\alpha}^{-1}(V) = \{ \mathfrak{p} \in \operatorname{Spec} R' : \alpha^{-1}(\mathfrak{p}) \supseteq I \} = \{ \mathfrak{p} : \mathfrak{p} \supseteq \alpha(I) \} = V(\alpha(I))$$

Bemerkung 2.5

Sei k algebraisch abgeschlossener Körper, $V \subseteq \mathbb{A}^n(k)$ affine Varietät.

Dann ist
$$m: \left\{ \begin{array}{ccc} V & \to & \operatorname{Spec} k[V] \\ x & \mapsto & m_x \end{array} \right.$$
 injektiv und stetig.

Beweis

injektiv: ✓

 $m \ stetig: \ \operatorname{Sei}V(I) \subseteq \operatorname{Spec} k[V] \ abgeschlossen.$

$$\Rightarrow m^{-1}(V(I)) = \{x \in V : m_x \in V(I)\} = \{x : I \subseteq m_x\} = \{x : f(x) = 0 \text{ für alle } f \in I\} = V(I)$$

Beispiel

Seien $\mathfrak{p} \subsetneq \mathfrak{q}$. Dann ist $\mathfrak{q} \in \overline{\{\mathfrak{p}\}}$

Definition + Bemerkung 2.6

- a) Ein Punkt $x \in X$ (X topologischer Raum) heißt **generisch**, wenn $\overline{\{x\}} = X$ ist.
- b) Jede irreduzible Teilmenge von $\operatorname{Spec} R$ hat genau einen generischen Punkt.
- c) Die irreduziblen Komponenten von SpecR entsprechen bijektiv den minimalen Primidealen in R.

Bemerkung 2.7

Für jedes $f \in R$ ist $D(f) = \operatorname{Spec} R \setminus V(f) = \{ \mathfrak{p} \in \operatorname{Spec} R : f \notin \mathfrak{p} \}$ offen in $\operatorname{Spec} R$. Die $D(f), f \in R$ bilden eine Basis der Zariski-Topologie.

Beweis

Sei
$$U \subseteq \operatorname{Spec} R$$
 offen, $V = \operatorname{Spec} R - U \Rightarrow \exists I \subseteq R$ Ideal mit $V = V(I)$. Für $f \in I$ ist $f \in \mathfrak{p}$ für jedes $\mathfrak{p} \in V$, das heißt $V(I) \subseteq V(f) \Rightarrow D(f) \subseteq U$

Bemerkung 2.8

 $\operatorname{Spec} R$ ist quasikompakt.

Beweis

Sei $(U_i)_{i\in I}$ offene Überdeckung von Spec R. Œ $U_i = D(f_i)$ für ein $f_i \in R$.

Dann gilt :
$$\bigcup_{i \in I} D(f_i) = \operatorname{Spec} R \Leftrightarrow \bigcap_{i \in I} V(f_i) = \emptyset \Leftrightarrow \operatorname{Die} f_i, i \in I$$
, erzeugen R

$$\Rightarrow \exists i_1, \dots, i_k \text{ mit } 1 = \sum_{\nu=1}^k a_{\nu} f_{i_{\nu}} \text{ für gewisse } a_{\nu} \in R$$

$$\Rightarrow \bigcup_{\nu=1}^{k} D(f_{i_{\nu}}) = \operatorname{Spec} R$$

Definition + Bemerkung 2.9

Sei R ein Ring, $X = \operatorname{Spec} R$

- a) Für $f \in R$ sei $\mathcal{O}_X(D(f)) := R_f$
- b) Die Zuordnung $D(f) \mapsto R_f$ ist eine \mathcal{B} -Garbe von Ringen auf X für die Basis $\mathcal{B} = \{D(f) : f \in R\}$ der Zariski-Topologie auf X.
- c) Es gibt eine eindeutig bestimmte Garbe \mathcal{O}_X von Ringen auf X mit $\mathcal{O}_X(D(f)) = R_f$ für jedes $f \in R$. \mathcal{O}_X heißt **Strukturgarbe** auf X.
- d) Für beliebiges $U \subseteq X$ offen ist $\mathcal{O}_X(U) = \{s : U \to \bigsqcup_{\mathfrak{p} \in U} R_{\mathfrak{p}} | s(\mathfrak{p}) \in R_{\mathfrak{p}} \text{ für alle } \mathfrak{p} \in U\}$; für jedes $\mathfrak{p} \in U$ gibt es Umgebung $U_{\mathfrak{p}} \subseteq U$ von \mathfrak{p} und $f, g \in R$ mit $g \notin \mathfrak{q}$ für alle $\mathfrak{q} \in U_{\mathfrak{p}}$ sodass $s(\mathfrak{q}) = \frac{f}{g}(\mathfrak{q})$ für alle $\mathfrak{q} \in U_{\mathfrak{p}}$ }

 $g \notin \mathfrak{q}$ bedeutet $\mathfrak{q} \in D(g)$; $\frac{f}{g}(\mathfrak{q}) :=$ Bild von $\frac{f}{g}$ in $R_{\mathfrak{q}}$

e) $\mathcal{O}_{X,\mathfrak{p}} \cong R_{\mathfrak{p}}$ für jedes $\mathfrak{p} \in X$.

Beweis

b) Seien $f, g \in R$ mit $D(f) \subseteq D(g)$.

$$\Rightarrow V(g) \subseteq V(f) \Rightarrow f \in \bigcap_{(g) \in \mathfrak{p}} \mathfrak{p} = \sqrt{(g)}$$

 $\Rightarrow \exists d \geq 1 \text{ mit } f^d \in (g),$ das heißt $\exists h \in R \text{ mit } f^d = g \cdot h$

$$\Rightarrow \text{ erhalte Homomorphismus } \begin{array}{c} R_g \rightarrow R_f \\ \frac{a}{g^k} \mapsto \frac{a \cdot h^k}{f^{d \cdot k}} \end{array}$$

Wohldefiniertheit: $\frac{g}{1} \cdot \frac{h}{f^d} = 1$ in R_f , da $g \cdot h - f^d = 0$ in R_f .

Zeige: $D(f) \mapsto R_f$ ist \mathcal{B} -Garbe.

Sei also $f \in R$, $(D(f_i))_{i \in I}$ offene Überdeckung von D(f), $g_i \in R_{f_i}$ konsistente Familie (das heißt $g_i = g_j$ in $\mathcal{O}_X(D(f_i) \cap D(f_j)) = \mathcal{O}(D(f_if_j)) = R_{f_if_j}$).

Zu zeigen: $\exists ! g \in R_f$ mit $g = g_i$ in R_{f_i} für jedes i:

- Œ $f = 1, I = \{1, ..., n\}$ (X ist quasikompakt)
- Eindeutigkeit: Ist g = h in R_{f_i} , i = 1, ..., n, so ist $(g h) \cdot f_i^d = 0$ für ein $d \ge 1$. Die f_i^d , i = 1, ..., n, erzeugen R (!)

$$(f_1,\ldots,f_n)^{n\cdot d}\subseteq (f_1^d,\ldots,f_n^d)$$

$$\Rightarrow g = h$$

• Existenz: Schreibe $g_i = \frac{h_i}{f_i^N}$, $h_i \in R$, $N \ge 1$. Nach Voraussetzung ist $\overbrace{f_i^N f_j^N g_i}^{=f_j^N h_i} = \overbrace{f_j^N f_i^N g_j}^{f_i^N h_j}$ für ein (anderes) $N \ge 1$.

$$(f_1^N, \dots, f_n^N) = R \Rightarrow \exists b_i \in R \text{ mit } 1 = \sum_{i=1}^n b_i f_i^N$$

Setze
$$g := \sum_{i=1}^{n} b_i h_i$$

Dann ist für $j = 1, \dots, n$

$$f_j^N g = f_j \sum_{i=1}^n b_i h_i = \sum_{i=1}^n b_i f_j^N h_i = \underbrace{\sum_{i=1}^n b_i f_i^N}_{=1} h_j = h_j = f_j^N g_j \text{ in } R_{f_j}$$

$$\Rightarrow g = g_i \text{ in } R_{f_i}$$

Definition 2.10

Sei R ein Ring, $X = \operatorname{Spec} R$, \mathcal{O}_X die Strukturgarbe. Dann heißt (X, \mathcal{O}_X) affines Schema.

Beispiele

- 1) R = k Körper $\Rightarrow X = \operatorname{Spec} k = \{(0)\}, \mathcal{O}_X(X) = k$
- 2) R=k[X], k Körper. Ist $\{(0)\}$ offen? Nein! $k=\mathbb{Q}\colon \mathfrak{p}=(X^2+X+1) \text{ ist abgeschlossener Punkt}$

$$R_{\mathfrak{p}}/m_{\mathfrak{p}} \cong \mathbb{Q}[X]/(X^2 + X + 1) = \mathbb{Q}(\zeta_3)$$

$$\Rightarrow \mathfrak{q} = (X-a), a \in k, \, R_{\mathfrak{q}} / m_{\mathfrak{q}} \cong {}^{k[X]} / (X-a) \cong k$$

Bemerkung 2.11

Sei (X, \mathcal{O}_X) affines Schema, $X = \operatorname{Spec} R$. Dann ist für jedes $f \in R$ auch $(D(f), \mathcal{O}_X(f))$ affines Schema. Genauer: $(D(f), \mathcal{O}_X(D(f))) = (\operatorname{Spec} R_f, \mathcal{O}_{\operatorname{Spec} R_f})$

Beweis

$$D(f) = \{ \mathfrak{p} \subset R \text{ Primideal} : f \notin R \}$$

 $\operatorname{Spec} R_f = \{ \mathfrak{p} \subset R \text{ Primideal} \}$

$$\begin{array}{ccc} R & \to & R_f \\ a & \mapsto & \frac{a}{1} \end{array}$$

$$\mathfrak{p} \subsetneq \mathfrak{q} \not\ni f, \, \mathfrak{p} \cdot R_f = \mathfrak{q} \cdot R_f$$

Sei
$$x \in \mathfrak{q} \setminus \mathfrak{p} \stackrel{!}{\Rightarrow} \frac{x}{1} \notin \mathfrak{p} \cdot R_f$$

Sei
$$x = \frac{a}{f^d}, a \in \mathfrak{p}, d \geq 1 \Rightarrow f^d \cdot x \in \mathfrak{p} \not$$

Sei $h = \frac{g}{f^d} \in R_f$. Zu zeigen:

$$\underbrace{\mathcal{O}_{x|_{D(f)}(D(h))}}_{\mathcal{O}_{X}(D(f)\cap D(g)=R_{f\cdot g})} \cong \underbrace{\mathcal{O}_{\operatorname{Spec} R_{f}}(D(h))}_{(R_{f})_{h}=R_{f\cdot g}}$$

§ 3 (Allgemeine) Schemata

Definition 3.1

- a) Ein *geringter Raum* ist ein topologischer Raum X zusammen mit einer Garbe \mathcal{O}_X von Ringen.
- b) Ein geringter Raum (X, \mathcal{O}_X) heißt **lokal** geringter Raum, wenn für jedes $x \in X$ der Halm $\mathcal{O}_{X,x}$ ein lokaler Ring ist.

Bemerkung 3.2

Jedes affine Schema (Spec R, $\mathcal{O}_{\operatorname{Spec} R}$) ist ein lokal geringter Raum.

Definition 3.3

- a) Ein **Morphismus** $f:(X,\mathcal{O}_X)\to (Y,\mathcal{O}_Y)$ ist eine stetige Abbildung $f:X\to Y$ zusammen mit einem Morphismus $f^\#:\mathcal{O}_Y\to f_*\mathcal{O}_X$ von Garben.
- b) Ein Morphismus zwischen lokal geringten Räumen (X, \mathcal{O}_X) und (Y, \mathcal{O}_Y) ist ein Morphismus $f:(X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)$ wie in a) sodass für jedes $x \in X$ der auf den Halmen induzierte Homomophismus $f_x^\#: \mathcal{O}_{Y,f(x)} \to \mathcal{O}_{X,x}$ die Bedingung $f_x^\#(m_{f(x)}) \subseteq m_x$ erfüllt $(f_x^\#$ heißt dann lokaloer Homomophismus).

$$(f_*\mathcal{O}_X)_{f(x)} = \lim_{f(x)\in U} \mathcal{O}_X(\underbrace{f^{-1}(U)}_{x\in}) \to \mathcal{O}_{X,x}$$

Beispiel

Sei R lokaler Ring, nullteilerfrei, $K = \operatorname{Quot}(R) \neq R$. Dann ist die Inklusion $R \hookrightarrow K$ nicht lokal.

Proposition 3.4

Die Kategorie der affinen Schemata mit Morphismen aus Definition 3.3 b) ist (anti-)äquivalent zur Kategorie der Ringe.

Beweis

(i) Sie Zuordnung $R \to (\operatorname{Spec} R, \mathcal{O}_{\operatorname{Spec} R})$ ist Funktor. Sei $\alpha : R \to S$ Ringhomomorphismus, $f_{\alpha} : \operatorname{Spec} S \to \operatorname{Spec} R, \mathfrak{p} \mapsto \alpha^{-1}(\mathfrak{q})$. Nach Bemerkung 2.4 ist f_{α} stetig und $f_{\alpha}^{-1}(D(g)) = D(\alpha(g))$.

Definiere $f_{\alpha}^{\#}: \mathcal{O}_{\operatorname{Spec} R} \to (f_{\alpha})_{*}\mathcal{O}_{\operatorname{Spec} S}$ durch

$$\underbrace{\mathcal{O}_{\operatorname{Spec} R}(D(g))}_{=R_g\ni\frac{a}{g^d}} \ \mapsto \ (f_\alpha)_*\mathcal{O}_{\operatorname{Spec} S}(D(g)) = \ \mathcal{O}_{\operatorname{Spec} S}(f_\alpha^{-1}(D(g)) = \ \underbrace{\mathcal{O}_{\operatorname{Spec} S}(D(\alpha(g))}_{=S_{\alpha(g)}}) = S_{\alpha(g)}$$

Noch zu zeigen: $(f_{\alpha}^{\#})_{\mathfrak{q}}$ ist lokal für jedes $\mathfrak{q} \in \operatorname{Spec} S$

Sei
$$\mathfrak{p} = \alpha^{-1}(\mathfrak{q}) \in \operatorname{Spec} R$$
, das heißt $\mathfrak{p} = f_{\alpha}(\mathfrak{q})$.

Das maximale Ideal $m_{\mathfrak{p}}$ (beziehungsweise $m_{\mathfrak{q}}$) in $\mathcal{O}_{\operatorname{Spec} R,\mathfrak{p}}(=R_{\mathfrak{p}})$ (beziehungsweise $\mathcal{O}_{\operatorname{Spec} S,\mathfrak{q}}$) ist $\mathfrak{p}R_{\mathfrak{p}}$ (beziehungsweise $\mathfrak{q}R_{\mathfrak{q}}$).

Für
$$a = \frac{b}{f} \in m_{\mathfrak{p}} \ (b \in \mathfrak{p}, f \notin \mathfrak{p})$$
 ist $(f_{\alpha}^{\#})_{\mathfrak{q}}(a) = \frac{\alpha(b)}{\alpha(f)} \in m_{\mathfrak{q}}$, da $b \in \mathfrak{q} = \alpha^{-1}(\mathfrak{q})$, also $\alpha(b) \in \mathfrak{q}$ und $f \notin \mathfrak{p} = \alpha^{-1}(\mathfrak{q})$, also $\alpha(f) \notin \mathfrak{q}$.

Beispiel (Fortsetzung des Beispiels)

 $\alpha: R \hookrightarrow K$, dim R=1 (zum Beispiel diskreter Bewertungsring)

Beweis (Fortsetzung des Beweises von Proposition 3.4)

(ii) Ist (X, \mathcal{O}_X) affines Schema, $X = \operatorname{Spec} R$, so ist $R = \mathcal{O}_X(X)$. Ein Morphismus $\operatorname{Spec} S \to \operatorname{Spec} R$ induziert Homomophismus

$$f^{\#}: \underbrace{\mathcal{O}_{\operatorname{Spec} R}(\operatorname{Spec} R)}_{=R} \to \underbrace{f_{*}\mathcal{O}_{\operatorname{Spec} S}(\operatorname{Spec} R)}_{=\mathcal{O}_{\operatorname{Spec} S}(f^{-1}(\operatorname{Spec} R))=S}$$

Nachrechnen: Die Funktoren in (i) und (ii) sind zueinander invers.

Definition 3.5

Ein lokal geringter Raum (X, \mathcal{O}_X) heißt **Schema**, wenn es eine offene Überdeckung $(U_i)_{i \in I}$ von X gibt und affine Schemata (Spec $R_i, \mathcal{O}_{\operatorname{Spec} R_i}$) für jedes $i \in I$, sodass

$$(U_i, \mathcal{O}_X|_{U_i}) \stackrel{\text{als lokal}}{\cong} \underset{\text{geringter Raum}}{\cong} (\operatorname{Spec} R_i, \mathcal{O}_{\operatorname{Spec} R_i})$$

Bemerkung + Definition 3.6

Sei (X, \mathcal{O}_X) Schema, $U \subseteq X$ offen.

Dann ist $(U, \mathcal{O}_X|_U)$ auch ein Schema. $(U, \mathcal{O}_X|_U)$ heißt **offenes Unterschema** von X.

Beweis

Sei $X = \bigcup_{i \in I} \operatorname{Spec} R_i$ eine offene Überdeckung von X durch affine Schemata.

$$\Rightarrow U = \bigcup_{i \in I} (U \cap \operatorname{Spec} R_i), \text{ wobei } U \cap \operatorname{Spec} R_i \subset \operatorname{Spec} R_i \text{ offen, also} = \bigcup_{j \in J} D(f_{ij}), f_{ij} \in R_i$$

$$(D(f_{ij}), \mathcal{O}_{\operatorname{Spec} R_i}|_{D(f_{ij})})$$
 ist affines Schema nach Bemerkung 2.11

Proposition 3.7 (Verkleben)

Seien (X, \mathcal{O}_X) und (Y, \mathcal{O}_Y) Schemata, $U \subseteq X$ und $V \subseteq Y$ offen und $\varphi : (U, \mathcal{O}_X|_U) \to (V, \mathcal{O}_Y|_V)$ Isomorphismus von Schemata (das heißt von lokal geringten Räumen). Sei $Z = (X \cup Y)/_{\sim}$ der topologische Raum, der durch Verkleben von X und Y längs φ ntsteht.

Dann gibt es genau eine Garbe \mathcal{O}_Z auf Z mit $\mathcal{O}_Z|_X = \mathcal{O}_X$ und $\mathcal{O}_Z|_Y \cong \mathcal{O}_Y$.

Beweis

Die offenen Teilmengen von X und von Y bilden eine Basis der Topologie auf Z.

Beispiel

$$\begin{array}{c} X = \mathbb{A}^1, U = \mathbb{A}^1 \setminus \{0\} \\ Y = \mathbb{A}^1, V = \mathbb{A}^1 \setminus \{0\} \end{array} \varphi = \mathrm{id} \qquad \begin{array}{c} U \\ V \\ \end{array}$$

Beispiele

1) Quasiprojektive Varietäten:

 $V \subseteq \mathbb{P}^n(k)$, k Körper quasi-projektiver Varietäten. V besitzt endlich Überdeckung durch affine Varietäten $V = \bigcup_{i=1}^r X_i$.

V ist "Verklebung" dieser affinen Varietäten. Jedes X_i bestimmt affines Schema Spec $k[X_i]$. Verklebe die Spec $k[X_i]$ zu Schema (X, \mathcal{O}_X) . X hat dieselben abgeschlossenen Punkte wie V (falls k algebraisch abgeschlossen).

Beobachtung: (X, \mathcal{O}_X) hängt (bis auf Isomorphie) nicht von der gewählten affinen Überdeckung ab.

Proposition 3.8

Sei k algebraisch abgeschlossener Körper. Dann gilt:

- a) Die Zuordnung $V \mapsto \operatorname{Spec} k[V]$ ist ein volltreuer, auf Objekten injektiver Funktor t von der Kategorie der affinen Varietäten/k in die Kategorie der affinen Schemata.
- b) t setzt sich fort zu volltreuem, auf Objekten injektivem Funktor

quasiprojektive Varietäten/
$$_k \rightarrow \text{Schemata}$$

Bezeichnung 3.9

$$\mathbb{A}^n_k := \operatorname{Spec} k[X_1, \dots, X_n] \text{ (vergleiche } \mathbb{A}^n(k))$$

Beispiele

2) $X = Y = \mathbb{A}^1_k$, $U = V = D(T) = \mathbb{A}^1_k \setminus \{(T)\}$, $\mathbb{A}^1_k = \operatorname{Spec} k[T]$. Verklebe X und Y längs id: $U \to V$.

Erhalte Schema Z mit offenen Einbettungen $i_X: X \to Z, i_Y: Y \to Z$ sodass $Z - \{0_X, 0_Y\}$ isomorph zu U = V ist.

Es gilt:

- (i) Z ist irreduzibel.
- (ii) Sei $W \subseteq Z$ offen, $0_X \in W$, $0_Y \in W$, $f \in \mathcal{O}_Z(W)$. Dann ist $f(0_X) = f(0_Y)$.
- (iii) Die Diagonale $\Delta = \{(z_1, z_2) \in Z \times Z : z_1 = z_2\}$ ist nicht abgeschlossen.

Folgerung: Z ist nicht isomorph zu einem affinen Schema. Beweis in der Übung.

Definition + Bemerkung 3.10

Sei $S := \bigoplus_{d>0} S_d$ graduierter Ring $(S_d \cdot S_e = S_{d+e})$

- a) $\operatorname{Proj}(S) := \{ \mathfrak{p} \subset S : \mathfrak{p} \text{ homogenes Primideal}, S_+ \nsubseteq \mathfrak{p} \}$ $(S_+ := \bigoplus_{d>0} S_d) \text{ heißt } \boldsymbol{homogenes Spektrum} \text{ von } S.$
- b) Für ein homogenes Ideal $I \subseteq S$ sei $V(I) : \{ \mathfrak{p} \in \operatorname{Proj} S, I \subseteq \mathfrak{p} \}$. Die V(I) bilden die abgeschlossenen Mengen einer Topologie auf Proj S (**Zariski Topologie**).
- c) Für homogenes $f \in S$ sei $D_+(f) := \operatorname{Proj} S V(f)$. Die $D_+(f)$, $f \in S$ homogen, bilden Basis.
- d) Für $f \in S$ homogen sei

$$\mathcal{O}_{\operatorname{Proj} S}(D_{+}(f)) := S_f^{\operatorname{hom}} = \left\{ \frac{a}{f^d} : a \text{ homogen vom Grad } d \cdot \deg(f) \right\}$$

- e) Es gibt genau eine Garbe $\mathcal{O}_{\operatorname{Proj} S}$ von Ringen auf Proj S mit $\mathcal{O}_{\operatorname{Proj} S}(D_+(f)) = S_f^{\operatorname{hom}}$.
- f) Für $\mathfrak{p} \in \operatorname{Proj} S$ ist

$$\mathcal{O}_{ProjS,\mathfrak{p}} = S_{\mathfrak{p}}^{\text{hom}} = \left\{ \frac{a}{b} : a, b \text{ homogen, deg } a = \deg b, b \notin \mathfrak{p} \right\}$$

(lokaler Ring mit maximalem Ideal $\mathfrak{p}\cdot S_{\mathfrak{p}}^{\mathrm{hom}}:=\{\frac{a}{b}\in S_{\mathfrak{p}}^{\mathrm{hom}}:a\in\mathfrak{p}\}$)

g) (Proj S, $\mathcal{O}_{\text{Proj }S}$) ist Schema.

Beweis

g)
$$D_{+}(f)$$
, $\underbrace{\mathcal{O}_{\operatorname{Proj} S}(D_{+}(f))}_{\ni \mathfrak{p} \mapsto \{\frac{a}{f^{d}} \in S_{f}^{\operatorname{hom}} : a \in \mathfrak{p}\}} \cong \operatorname{Spec} S_{f}^{\operatorname{hom}}$

Beispiel

$$S = k[X_0, \dots, X_n]$$

Dann: Proj
$$S = t(\mathbb{P}^n(k)) =: \mathbb{P}^n_k$$
, denn $D_+(X_i) = \operatorname{Spec} k[\frac{X_0}{X_i}, \dots, \frac{X_n}{X_i}]$

§ 4 Abgeschlossene Unterschemata

Bemerkung + Definition 4.1

Sei R Ring, $I \subseteq R$ Ideal

- a) Die Abbildung $V(I) \to \operatorname{Spec}(R/I), \mathfrak{p} \mapsto \mathfrak{p} \mod I$ ist ein Homöomorphismus.
- b) $(V(I), \mathcal{O}_{\text{Spec}(R/I)})$ heißt **abgeschlossenes Unterschema** von Spec R.
- c) Die abgeschlossenen Unterschemata von SpecR entsprechen bijektiv den Idealen in R.
- d) Für abgeschlossene Unterschemata $Z_i \in \operatorname{Spec}^R/I_i$ gilt: Z_2 ist abgeschlossenes Unterschema von Z_1 (" $Z_2 \leq Z_1$ ") $\Leftrightarrow I_1 \subseteq I_2$. Es ist dann $Z_2 = V(I_2) \subseteq V(I_1) = Z_1$

Beispiel

 $X = \mathbb{A}^1_k - \operatorname{Spec}[X], Z_1 = \operatorname{Spec}^k[X]/(X^2), Z_2 = k[X]/(X^2 - X).$ Dann ist $Z_1 \subseteq Z_2$ als topologische Räume aber nicht als abgeschlossene (Unter-) Schemata.

Definition + Bemerkung 4.2

Sei $I \subseteq R$ Ideal, $Z = \operatorname{Spec} R/I$ das zugehörige abgeschlossene Unterschema von $X = \operatorname{Spec} R$.

- a) Für $U \subseteq X$ offen sei $I(U) := I \cdot \mathcal{O}_X(U)$, das Bild von I unter Restriktion. \mathcal{I} ist Garbe von Idealen auf X.
- b) Sei $j:Z\to X$ die Inklusion. Dann ist $j_*\mathcal{O}_Z\cong \mathcal{O}_X/I$

Beweis

b) Für
$$f \in R$$
 ist $j_*\mathcal{O}_Z D(f) = \mathcal{O}_Z j^{-1} D(f) = \mathcal{O}_Z(D(f) n \mathbb{Z}) = \mathcal{O}_Z(D(\overline{f})) = \binom{R}{I} \overline{f} = \frac{R_f}{I R_f} = \frac{\mathcal{O}_X}{I(D(f))}$

Folgerung 4.3

In der Situation 4.2 wird $j:Z\to X$ zum Schemamorphismus, wobei

 $j^{\#}\mathcal{O}_X \xrightarrow{j_*\mathcal{O}_Z} j_*\mathcal{O}_Z$ $\nearrow b)$ \mathcal{O}/\mathcal{I}

die Quotientenabbildung $\mathcal{O}_X \to \mathcal{O}_X/\mathcal{I}$ ist.

Definition 4.4

Sei (X, \mathcal{O}_X) ein Schema

- a) Eine Garbe \mathcal{I} (von abelschen Gruppen) auf X heißt Idealgarbe, wenn für jedes offene $U \subseteq X \mathcal{I}(X)$ ein Ideal in $\mathcal{O}_X(U)$ ist und die Restriktionshomomorphismen $\mathcal{O}_X(U)$ -linear sind.
- b) Ist $X = \operatorname{Spec} R$ affines Schema, so heißt eine Idealgarbe \mathcal{I} auf X quasikohärent, wenn es ein Ideal I in R gibt mit $\mathcal{I}(U) = I\mathcal{O}_X(U)$ für jedes offene $U \subseteq X$.
- c) Eine Idealgarbe \mathcal{I} auf X heißt **kohärent**, wenn für jedes offene affine Unterschema $U \subseteq X$ die Einschränkung $\mathcal{I}|_U$ quasikohärent ist.

Proposition 4.5

Eine Idealgarbe \mathcal{I} auf X ist genau dann quasikohärent, wenn es eine offene Überdeckung $(U_i)_{i\in I}$ gibt durch affine Unterschemata U_i gibt, sodass \mathcal{I}/U_i quasikohärent ist für jedes I. (Beweis Übung)

Definition + Bemerkung 4.6

- a) Sei (X, \mathcal{O}_X) ein Schema. Ein abgeschlossenes Unterschema von X ist ein Schema (Y, \mathcal{O}_Y) , wobei $Y \subseteq X$ abgeschlossen und $\mathcal{O}_Y = \mathcal{O}_X/\mathcal{I}$ für eine quasikohärente Untergarbe $\mathcal{I} \subseteq \mathcal{O}_X$.
- b) Ist (Y, \mathcal{O}_Y) abgeschlossenes Unterschema, so gilt für jedes offene $U \subseteq X$: $U \cap Y$ ist das abgeschlossene Unterschema von U, das zu \mathcal{I}/U gehört. Ist U affin, so ist \mathcal{I}/U die von $\mathcal{I}(U)$ induzierte Idealgarbe.

Definition + Bemerkung 4.7

- a) Sei R ein Ring. $N_R := \sqrt{(0)} = \{x \in R | \exists n \geq 1 : x^n = 0\}$ ist ein Ideal in R, das **Nilradikal**.
- b) Ein Ring R heißt **reduziert**, wenn $N_R = (0)$ ist.
- c) Ist $X = \operatorname{Spec} R$, so heißt $X_{\operatorname{Red}} := \operatorname{Spec} R/N_R$ das zu X assoziierte **reduzierte Schema**.
- d) X_{Red} ist abgeschlossenes Unterschema von X und $X_{\text{Red}} \hookrightarrow X$ ist Homömorphismus.
- e) Sei X ein Schema, \mathcal{N}_X die durch $\mathcal{N}_X(U)$ = Nilradikal in $\mathcal{O}_X(U)$ definierte Idealgarbe. Dann gilt: \mathcal{N}_X ist quasikohärent.
- f) Das zu \mathcal{N}_X assoziierte abgeschlossene Unterschema von X heißt \mathcal{X}_{red} . (X, \mathcal{O}_X) heißt reduziert, wenn $\mathcal{X}_{red} \cong X$ als Schema, das heißt $\mathcal{N}_X = 0$.

Beweis

e) Zu zeigen: Für
$$f \in R$$
, R Ring, gilt: $\mathcal{N}_{(R_f)} = \mathcal{N}_R R_f$.
"2": Sei $a \in \mathcal{N}_R$, also $a^n = 0$ für ein $n \ge 1$. Für $x \in R_f$ ist $ax \in \mathcal{N}_{R_f}$
"⊆": $x = \frac{a}{f^d} \in R_f, x^n = 0 \Rightarrow \frac{a^n}{f^{dn}} = 0 \Rightarrow a^n = 0$

§ 5 Faserprodukte

Definition + Bemerkung 5.1

Seien X, Y, S Mengen, $f: X \to Y, g: Y \to S$ Abbildungen.

- a) $X \times_S Y := \{(x, y) \in X \times Y : f(x) = g(y)\}$ heißt **Faserprodukt**.
- b) Es gilt: $X \times_S Y = \bigcup_{s \in S} f^{-1}(s) \times g^{-1}(s)$
- c) Das Faserprodukt erfüllt folgende UAE:

Für alle Mengen Z, Abbildungen $\varphi: Z \to X$, $\psi: Z \to Y$ mit $f \circ \varphi = g \circ \psi$ gibt es genau eine $h: Z \to X \times_S Y$ mit $\varphi = \operatorname{pr}_X \circ h$, $\psi = \operatorname{pr}_Y \circ h$.

d) Das Faserprodukt ist der Limes des Diagramms

Beweis

c) Setze
$$h(z) := (\varphi(z), \psi(z))$$

Beispiele

- 1) $S = \{s\} \Rightarrow X \times_S Y = X \times Y$
- 2) $X \subseteq S, Y \subseteq S, f, g$ die Inklusionen $\Rightarrow X \times_S Y = X \cap Y$
- 3) $Y \subseteq S, g: Y \hookrightarrow S \Rightarrow X \times_S Y = f^{-1}(Y)$
- 4) $X = Y \Rightarrow X \times_S Y = \text{Equalizer}(f, g)$

Definition 5.2

Seien X, Y, S Schemata, $f: X \to S, g: Y \to S$ Morphismen.

Dann heißt ein Schema $X \times_S Y$ zusammen mit Morphismen $\operatorname{pr}_X : X \times_S Y \to X$ und $\operatorname{pr}_Y : X \times_S Y \to Y$, sodass $f \circ \operatorname{pr}_X = g \circ \operatorname{pr}_Y$ ist, **Faserprodukt** von X und Y über S, wenn die UAE aus 5.1 c) erfüllt ist.

Definition + Bemerkung 5.3

Sei S ein Schema.

- a) Ein **S-Schema** ist ein Schema X zusammen mit einem Morphismus $f: X \to S$.
- b) Die S-Schmata bilden eine Kategorie Sch/S.
- c) Das Faserprodukt $X \times_S Y$ ist das Produkt von $f: X \to S$ und $g: Y \to S$ in Sch/S.

Beispiel

 $S = \text{Spec}, k \text{ K\"{o}rper}$

Ein Morphismus $X \to \operatorname{Spec} k$ ist nach Übung 3, Aufgabe 1 vollständig bestimmt durch einen Ringhomomorphismus $k \to \mathcal{O}_X(X)$. Dieser macht $\mathcal{O}_X(X)$ zur k-Algebra und \mathcal{O}_X zu einer Garbe von k-Algebra. Insbesondere sind k-Varietäten über den Funktor t k-Schemata. Das Faserprodukt von k-Varietäten ist das Produkt der k-Varietäten (im Sinne von Algebraische Geometrie I)(siehe unten).

Satz 1

Das Faserprodukt $X \times_S Y$ existiert für alle S-Schemata $f: X \to S$ und $g: Y \to S$. Es ist eindeutig bis auf eindeutigen Isomorphismus.

Beweis

(1) $X = \operatorname{Spec} A$, $Y = \operatorname{Spec} B$, $S = \operatorname{Spec} R$ affin. f und g machen A und B zu R-Algebra. Behauptung: Das Tensorprodukt $A \otimes_R B$ erfüllt $\operatorname{Spec}(A \otimes_R B) = X \times_S Y$.

Erinnerung: Das Tensorprodukt $M\otimes_R N$ von R-Moduln M,n "linearisiert" die bilinieare Abbildung

• Sind M = A und N = B R-Algebra, so hat $A \otimes_R B$ eine Struktur als R-Algebra:

$$(a_1 \otimes b_1) \cdot (a_2 \otimes b_2) := a_1 a_2 \otimes b_1 b_2$$

- $\sigma_A: A \to A \otimes_R B, a \mapsto a \otimes 1$ $\sigma_B: B \to A \otimes_R B, b \mapsto 1 \otimes b$ sind R-Algebren-Homomophismen.
- $A \otimes_R B$ erfüllt die richtige UAE

"Beweis:" $\tilde{\gamma}: A \times B \to C$, $(a,b) \mapsto \alpha(a) \cdot \beta(b)$ ist bilinear, induziert also $\gamma: A \otimes B \to C$ linear. Nachrechnen: γ Ringhomomorphismus, γ eindeutig.

Also: Spec $(A \otimes_R B)$ erfüllt die geforderte UAE für alle affinen Schemata Z.

Ist Z beliebiges Schema, so induzieren $\varphi: Z \to X$ und $\psi: Z \to Y$ R-Algebrahomomorphismen $\alpha: A \to \mathcal{O}_Z(Z), \ \beta: B \to \mathcal{O}_Z(Z).$

 α und β induzieren $\gamma:A\otimes_R B\to \mathcal{O}_Z(Z)$, also (Übung 3, Aufgabe 1) Morphismus $h:Z\to\operatorname{Spec}(A\otimes_R B)$.

(2) X, Y, Z nicht notwendig affin.

Überdecke S durch offene affine Schemata $S_i = \operatorname{Spec} R_i$ $(i \in I)$. Sei $X_i := f^{-1}(S_i)$, $Y_i := g^{-1}(S_i)$ (offen in X bewziehungsweise Y).

Überdecke X_i durch offene affine Schemata $X_{ij} = \operatorname{Spec} A_{ij}$

Überdecke Y_i durch offene affine Schemata $Y_{ij} = \operatorname{Spec} B_{ij}$

Nach (1) existiert $X_{ij} \otimes_{S_i} Y_{ik}$ für alle i, j, k

Behauptung 1: Sei T ein Schema, V, W T-Schemata, $(V_l)_{l \in L}$ offene Überdeckung von V. Existiert $V_l \times_T W$ für jedes l, so existiert $V \times_T W$.

Wende Behauptung 1 an auf

- $T = S_i, V = X_i, W = Y_{ik}, V_l = X_{il} \Rightarrow X_i \times_{S_i} Y_{ik}$ existiert $\forall i, k$
- $T = S_i, V = Y_i, W = X_i, V_l = Y_{il} \Rightarrow X \times_{S_i} Y_{ik}$ existiert $\forall i$

Behauptung 2: Für jedes i ist $X_i \times_{S_i} Y_i = X_i \times_S Y$

Dann wende Behauptung an auf

$$T = S, V = X, W = Y, V_l = X_l \Rightarrow X \times_S Y$$
 existiert

Beweis 2:

$$\Psi(Z) \subseteq g^{-1}(\underbrace{f(\varphi(Z))}_{\subseteq S_i}) \subseteq Y_i$$

Beweis 1: Verklebe die $V_l \times_T W$ längs $U_{lm} = \operatorname{pr}_l^{-1}(V_l \cap V_m) \subseteq V_l \times_T W$. Es gilt: $U_{lm} = (V_l \cap V_m) \times_T W$. Dann ist $U_{lm},= U_{ml}$, lassen sich also verkleben zu Schema V. Zeige: $V = V \times_T W$

Bemerkung 5.4

- a) $X \times_S S \cong X$ für jedes S-Schema
- b) $(X \times_S T) \times_T Y \cong X \times_S Y$ für alle...

Beweis

a) Zeige: X erfüllt die UAE von $X \times_S S$

Es gilt $\mathrm{id}_S \circ \psi = f \circ \varphi$ im unteren Dreieck, also auch im Oberen.

b) Zeige: $X \times_S Y$ erfüllt die UAE von $(X \times_S T) \times_T Y$

 $Betrachte: Z \xrightarrow{\varphi} X \times_S T Y$ T

Es gilt: $f \circ \operatorname{pr}_X = t \circ g \circ \operatorname{pr}_Y$

 $\mathit{Zu\ zeigen:} \boxed{f \circ \mathrm{pr}_X} \circ \varphi = t \circ g \circ \psi = \boxed{t \circ \mathrm{pr}_T} \circ \varphi$

 $\textit{Wir wissen:} \ \mathrm{pr}_T \circ \varphi = g \circ \psi$

Zu zeigen: (i) $h \circ \Phi = \varphi$

(ii)
$$\operatorname{pr}_{V} \circ \Phi = \psi \checkmark$$

Für (i) ist zu zeigen: (i₁) $\underbrace{\operatorname{pr}_X \circ h}_{\operatorname{Dr}_Y} \circ \Phi = \operatorname{pr}_X \circ \varphi \checkmark$

$$(i_2)\underbrace{\operatorname{pr}_T \circ h}_{g \circ \operatorname{pr}_Y} \circ \Phi = \operatorname{pr}_T \circ \varphi$$

Damit ist die Existenz von Φ gezeigt. Eindeutigkeit in der Übung.

§ 6 Punkte

Definition + Bemerkung 6.1

Sei X ein Schema, $x \in X$

a) $\kappa(x) := \mathcal{O}_{X,x}/m_x$ heißt **Restklassenkörper** von X im Punkt x.

Beispiele

1)
$$X = \operatorname{Spec} \mathbb{Z}$$

 $x = p \Rightarrow \kappa(x) = \mathbb{F}_p$
 $x = (0) \Rightarrow \kappa(x) = \mathbb{Q}$

2)
$$X = \mathbb{A}^1_k$$

 $x = (X - a) \ (a \in k) \Rightarrow \kappa(x) = k$
 $x = (0) \Rightarrow \kappa(x) = k(X) = \operatorname{Quot}(k[X])$

3)
$$X = \mathbb{A}^2_k = \operatorname{Spec} k[X, Y]$$

 $x = (f), f \text{ irreduzibel} \Rightarrow \kappa(x) = \operatorname{Quot}(k[V]) = k(V) \ (V = V(f))$

- b) Sei $f: X \to S$ ein Morphismus, s:=f(x). f induziert Homomorphismus $\kappa(s) \to \kappa(x)$.
- c) Für einen Körper k gibt es genau dann einen Morphismus ι : Spec $k \to X$ mit $\iota(0) = x$, wenn $\kappa(x)$ isomorph zu einem Teilkörper von k ist.
- d) In der Situation c) heißt x k-wertiger Punkt von x.

Beweis

- b) f induziert lokalen Homomorphismus $f_x^\#: \mathcal{O}_{S,f(x)} \to \mathcal{O}_{X,x}$, das heißt $f_x^\#(m_s) \subseteq m_x \Rightarrow f_x^\#$ induziert $\kappa(s) \to \kappa(x)$.
- c) Sei $U = \operatorname{Spec} R$ affine Umgebung von x.

 ι exisiert $\Leftrightarrow \exists \alpha : R \to k$ mit Kern $(\alpha) = \mathfrak{p}$, wobei \mathfrak{p} das zu x gehörige Primideal in R ist.

Es ist
$$\mathcal{O}_{X,x} \cong R_{\mathfrak{p}}$$
, also $\kappa(x) = R_{\mathfrak{p}}/\mathfrak{p} \cdot R_{\mathfrak{p}}$

Also: ι existiert $\Leftrightarrow \exists \alpha: \begin{array}{ccc} R & \to & k \\ \mathfrak{p} & \mapsto & (0) \end{array}$, also $\overline{\alpha}: \kappa(x) \to k$

$$, \Leftarrow$$
": $\alpha: R \to R_{\mathfrak{p}} \to R_{\mathfrak{p}}/\mathfrak{p} \cdot R_{\mathfrak{p}} \xrightarrow{\overline{\alpha}} k$

Bemerkung 6.2

Seien X, Y S-Schemata.

Dann ist die Abbildung $\left\{ \begin{array}{ccc} X \times_S Y & \to & \{(x,y) \in X \times Y : f(x) = g(y)\} \\ z & \mapsto & (\operatorname{pr}_X(z), \operatorname{pr}_Y(z)) \end{array} \right. \text{ surjektiv.}$

Beweis

Abbildung wohldefiniert: ✓

Seien $x \in X, y \in Y$ mit $f(x) = g(y) =: s \in S$. Seien $\kappa : \kappa(s), \kappa(x), \kappa(y)$ die Restklassenkörper. Œ $\kappa \subseteq \kappa(x)$, $\kappa \subseteq \kappa(y)$. Sei k ein Körper mit $\kappa(x) \subseteq k$, $\kappa(y) \subseteq k$ (zum Beispiel Komposition). Sei $Z := \operatorname{Spec} k$.

Nach 6.1 c) gibt es Morphismen $\varphi: Z \to X, \varphi(0) = x, \psi: Z \to Y, \psi(0) = y$. Es ist $f \circ \varphi = g \circ \psi \Rightarrow \exists h: Z \to X \times Y$ mit $\operatorname{pr}_X \circ h = \varphi, \operatorname{pr}_Y \circ h = \psi$. Setze z:=h(0).

Definition + Bemerkung 6.3

Sei $f: X \to Y$ Morphismus von Schemata, $y \in Y$

- a) $X_y = f^{-1}(y) = X \times_Y \operatorname{Spec} \kappa(y)$ heißt **Faser** von f über y. Dabei ist $\iota : \operatorname{Spec} \kappa(y) \to Y$ der zu y gehörige Morphismus aus 6.1.
- b) $\operatorname{pr}_X: X_y \to X$ ist injektiv.
- c) $\operatorname{pr}_X(X_y) \to \{x \in X : f(x) = y\}$ ist bijektiv.
- d) Ist y abgeschlossen, so ist X_y abgeschlossenes Unterschema.

Beweis

- c) Folgt aus b) und 6.2.
- d) Folgt aus c).
- b) Seien $x_1, x_2 \in X_y$ mit $\operatorname{pr}_X(x_1) = \operatorname{pr}(x_2) =: x \in X \Rightarrow f(x) = y$. Sei $Z = \operatorname{Spec} \kappa(x)$ und $\iota: Z \to X$ mit $\iota(0) = x$. Sei $\psi: Z \to \operatorname{Spec} \kappa(y)$ der von $f_*^\#$ induzierte Morphismus (6.1 b)).

Nach 6.1 b) ist $\kappa(x) \subseteq \kappa(x_i)$, i = 1, 2.

 $\stackrel{\underline{6.1c}}{\Longrightarrow} \exists$ Morphismen $h_i: Z \to X_y$ mit $h_i(0) = x_i, i = 1, 2$

Es gilt: $\operatorname{pr}_Z \circ h_i = \psi, \ i = 1, 2$

 $\operatorname{pr}_X \circ h_i = \iota$ nach Definition von h_i

$$\xrightarrow{\text{Eindeutigkeit}} h_1 = h_2 \Rightarrow x_1 = x_2$$

Beispiele

 $1) \ f : \underset{= \operatorname{Spec} \, k[X]}{\mathbb{A}^1_k} \to \mathbb{A}^1_k, \\ "x \mapsto x^2 \text{``}; \ f \ \text{werde induziert von } \alpha : k[X] \to k[X], \\ X \mapsto X^2 \text{'`}; \ f \ \text{werde induziert von } \alpha : k[X] \to k[X], \\ X \mapsto X^2 \text{'`}; \ f \ \text{werde induziert von } \alpha : k[X] \to k[X], \\ X \mapsto X^2 \text{'`}; \ f \ \text{werde induziert von } \alpha : k[X] \to k[X], \\ X \mapsto X^2 \text{'`}; \ f \ \text{werde induziert von } \alpha : k[X] \to k[X], \\ X \mapsto X^2 \text{'`}; \ f \ \text{werde induziert von } \alpha : k[X] \to k[X], \\ X \mapsto X^2 \text{'`}; \ f \ \text{werde induziert von } \alpha : k[X] \to k[X], \\ X \mapsto X^2 \text{'`}; \ f \ \text{werde induziert von } \alpha : k[X] \to k[X], \\ X \mapsto X^2 \text{'`}; \ f \ \text{werde induziert von } \alpha : k[X] \to k[X], \\ X \mapsto X^2 \text{'`}; \ f \ \text{werde induziert von } \alpha : k[X] \to k[X], \\ X \mapsto X^2 \text{'`}; \ f \ \text{werde induziert von } \alpha : k[X] \to k[X], \\ X \mapsto X^2 \text{'`}; \ f \mapsto X^2 \text{'$

$$\operatorname{Sei} y = (X - a) \Rightarrow X_y = \mathbb{A}^1_k \times_{\mathbb{A}^1_k} \operatorname{Spec} k = \operatorname{Spec}(\underbrace{k[X] \otimes_{k[X]} k})$$

$$k[X]/\alpha(X-a) = k[X]/(X^2-a) = \begin{cases} k \oplus k & \text{falls } a \in (k^{\times})^2 \\ k[X]/(X^2) & \text{falls } a = 0 \end{cases}$$

2) X = (x, y)-Ebene $\cup (z, w)$ -Ebene in \mathbb{A}^4_k $= V(z, w) \cup V(x, y) = V(xz, yz, xw, yw)$ $f: X \to \mathbb{A}^2_k, (x, y, z, w) \mapsto (x + z, y + w)$ wird induziert von $\alpha: k[s, t] \to k[X, Y, Z, W] \to k[V], s \mapsto X + Z, t \mapsto Y + W.$

Sei
$$y = ,(0,0)$$
" = $(s,t) \Rightarrow V_y = V \times_{\mathbb{A}^2_k} \operatorname{Spec} k = \operatorname{Spec}(k \otimes_{k[s,t]} k) \cong {}^k[V]/_{\alpha(s,t)} = {}^k[V]/_{(X+Z,Y+W)} = {}^k[X,Y,Z,W]/_{(X+Z,Y+W,XZ,YZ,XW,YW)} = {}^k[X,Y]/_{(-X^2,-XY,-Y^2)} =: R$
Beachte: $\dim_k R = 3$

Definition + Bemerkung 6.4

Sei X ein Schema, T ein weiteres Schema.

- a) Ein T-wertiger Punkt von X ist ein Morphismus $T \to X$.
- b) Der Funktor $h_X : \underline{\operatorname{Sch}} \to \underline{\operatorname{Sets}}, T \mapsto \operatorname{Hom}(T, X)$ heißt **Punktfunktor** zu X. h_X ist kontravarianter Funktor.
- c) Die H_X definieren Funktor $h: \underline{\operatorname{Sch}} \to \underline{\operatorname{Fun}}(\operatorname{Sch}^{\operatorname{op}}, \operatorname{Sets})$. Dieser Funktor ist Kovariant. ($\underline{\operatorname{Fun}}(\operatorname{Sch}^{\operatorname{op}}, \operatorname{Sets})$ ist die Kategorie der kontravarianten Funktoren von Schemata nach Mengen; op steht für "opposite")

Beispiele

- 1) Sei $T = \operatorname{Spec}(^{k[\varepsilon]}/_{(\varepsilon^2)})$ (k ein Körper), $X = \mathbb{A}^2_k = \operatorname{Spec}(^k[X,Y])$. Ein T-wertiger Punkt von X ist ein Ringhomomorphismus $\alpha: k[X,Y] \to k^{[\varepsilon]}/_{(\varepsilon^2)}$. Sei α surjektiv, $\alpha^{-1}((\varepsilon)) = (X,Y)$.
 - Also $\alpha(X) = a\varepsilon$, $\alpha(Y) = b\varepsilon$ $(a, b \in k) \Rightarrow \alpha(bX aY) = 0$. α bestimmt also nicht nur einen Punkt x von X, sondern auch eine "Richtung" in x.
- 2) $T = \operatorname{Spec} R$, R diskreter Bewertungsring.

$$T = \{t_0, t_1\}, t_0 \in \overline{\{t_1\}}, K := \text{Quot } R, X \text{ ein Schema}, \kappa(t_0) = k, \kappa(t_1) = K$$

$$\operatorname{Hom}(T,X) = \{(x_0, x_1, x_2) : x_0, x_1 \in X, x_0 \neq x_1, x_0 \in \overline{\{x_1\}}, \iota : \kappa(x_1) \to K \\ \operatorname{Homomorphismus mit } \iota(\mathcal{O}_{\overline{\{x_1\}}, x_0}) \subseteq R \text{ und } \iota(m_{x_0}) \subseteq m\}$$

§ 7 Endlichkeitseigenschaften

Definition 7.1

Sei X ein Schema.

- a) X heißt **lokal noethersch**, wenn es eine offene Überdeckung $(U_i)_{i\in I}$ von X durch affine Schemata $U_i = \operatorname{Spec} R_i$ gibt, sodass die R_i noethersch sind.
- b) X heißt **noethersch**, wenn es eine endliche Überdeckung wie in a) gibt.

Beispiel

Quasiprojektive Varietäten sind noethersch.

Proposition 7.2

- a) Ein affines Schema $X = \operatorname{Spec} R$ ist genau dann noethersch, wenn R noethersch ist.
- b) Ein Schema X ist genau dann lokal noethersch, wenn für jedes offene affine Unterschema $U = \operatorname{Spec} R$ gilt: R ist noethersch

Beweis

- a) folgt aus b)
- b) Sei $X = \bigcup_{i \in I} U_i$, $U_i = \operatorname{Spec} R_i$ offen in X, R_i noethersch. Sei $U = \operatorname{Spec} R$ offen in X.

Zu zeigen: R ist noethersch

Es gilt: $U \cap U_i$ ist offen in U_i für jedes $i. \Rightarrow U \cap U_i = \bigcup_{j \in J_i} D(f_{ij})$ für geeignete $f_{ij} \in R_i$.

 $D(f_{ij}) = \operatorname{Spec}(R_i)_{f_{ij}}, R_{ij} := (R_i)_{f_{ij}}$ ist noethersch

 $D(f_{ij})$ ist auch offen in U.

 $\Rightarrow \exists g_{ijk} \in R \text{ mit } D(f_{ij}) = \bigcup_k D(g_{ijk})$

Sei $\varphi_{ij}: R \to R_{ij}$ der von $D(f_{ij}) \hookrightarrow U$ induzierte Ringhomomorphismus

$$\Rightarrow R_{g_{ijk}} \stackrel{(!)}{\cong} (R_{ij})_{\varphi_{ij}(g_{ijk})} \Rightarrow R_{g_{ijk}}$$
 ist noethersch

Die $D(g_{ijk})$ überdecken U.

U ist quasikompakt \Rightarrow endlich viele der g_{ijk} genügen zum Überdecken. Nenne sie g_1, \ldots, g_r . Sei nun $I_1 \subseteq I_2 \subseteq \ldots$ Kette von idealen in R. Für $i=1,\ldots,r$ sei $\varphi_i:R\to R_{g_i}$ der natürliche Homomorphismus $\Rightarrow \varphi_i(I_1)\cdot R_{g_i}\subseteq \varphi_i(I_2)\cdot R_{g_i}\subseteq \ldots$ wird stationär

Behauptung: Für jedes Ideal $I \subseteq R$ gilt:

$$I = \bigcap_{i=1}^{r} \varphi_i^{-1}(\varphi_i(I) \cdot R_{g_i})$$

Beweis der Behauptung:

"
$$\supseteq$$
": Sei $b \in \bigcup_{i=1}^r \varphi_i^{-1} \left(\varphi_i(I) \cdot R_{g_i} \right)$

Für jedes $i=1,\ldots,r$ gibt es $a_i\in I,\ n\in\mathbb{N}$ mit $\varphi_i(b)=\frac{b}{1}=\frac{a_i}{g_i^n}$ in $R_{g_i}.\Rightarrow \exists m_i$ mit $g_i^{m_i}(g_i^{n_i}b-a_i)=0$ in $R\Rightarrow g_i^{m_i+n_i}b=g_i^{m_i}a_i\in I\Rightarrow \exists M$ mit $g_i^Mb\in I$ für $i=1,\ldots,r$

Nach Voraussetzung ist
$$(g_1, \dots, g_r) = R$$
 $\Rightarrow (g_1^M, \dots, g_r^M) = R$ $\Rightarrow b \in I$

Definition + Proposition 7.3

Sei $f: X \to Y$ Morphismus von Schemata.

- a) f heißt **lokal von endlichem Typ**, wenn es eine offene affine Überdeckung $(U_i = \operatorname{Spec} A_i)_{i \in I}$ von Y gibt und für jedes $i \in I$ eine offene affine Überdeckung $(U_{ij} = \operatorname{Spec} B_{ij})_{j \in J_i}$ von $f^{-1}(U_i) \subseteq X$, so dass B_{ij} (durch den von f induzierten Homomorphismus) endlich erzeugte A_i -Algebra ist $\forall i \in I, j \in J_i$.
- b) f heißt **von endlichem Typ**, wenn in a) jedes $f^{-1}(U_i)$ eine endliche Überdeckung der gewünschten Art hat.
- c) Ist f (lokal) von endlichem Typ, so gibt es für jedes offene affine $U = \operatorname{Spec} A \subseteq Y$ eine endliche offene affine Überdeckung $U_i = \operatorname{Spec} B_i$ von $f^{-1}(U)$, so dass B_i endlich erzeugte A-Algebra ist.

Beweis

c) Ähnlich 7.2

Beispiele 7.4

- 1) Jeder Morphismus von quasiprojektiven Varietäten/k ist von endlichem Typ.
- 2) Insbesondere ist für jede quasiprojektive Varietät V/k der "Strukturmorphismus" $V \to \operatorname{Spec} k$ von endlichem Typ.
- 3) Spec $\mathbb{C} \to \operatorname{Spec} \mathbb{Q}$ ist nicht lokal von endlichem Typ.

Definition 7.5

Ein Morphismus $f: X \to Y$ von Schemata heißt **endlich**, wenn es eine offene affine Überdeckung $(U_i = \operatorname{Spec} A_i)_{i \in I}$ von Y gibt, so dass für jedes $i \in I$ $f^{-1}(U_i)$ affin ist (also $f^{-1}(U_i) = \operatorname{Spec} B_i$) und dabei B_i als A_i -Modul endlich erzeugt ist.

Bemerkung 7.6

Ist $f: X \to Y$ endlich, so ist $f^{-1}(y)$ endlich für jedes $y \in Y$.

Beweis

Sei $U = \operatorname{Spec} A$ affine Umgebung von $y \Rightarrow f^{-1}(y) \subset f^{-1}(U) = \operatorname{Spec} B$

B ist nach Voraussetzung endl. erzeugter A-Modul. Weiter ist $f^{-1}(y) = \operatorname{Spec}(B \otimes_A \kappa(y))$. $B \otimes_A \kappa(y)$ ist endlich-dimensionaler $\kappa(y)$ -Vektorraum $\Rightarrow B \otimes_A \kappa(y)$ hat nur endlich viele Primideale

§ 8 Eigentliche Morphismen

Definition 8.1

Sei $f: X \to X$ ein Morphismus von Schemata.

a) Der von id_X induzierte Morphismus $\Delta = \Delta_f : X \to X \times_S X$ heißt **Diagonalmorphismus** (oder Diagonale) zu f.

Es ist
$$\operatorname{pr}_1(\Delta(X)) = \operatorname{pr}_2(\Delta(X))$$

b) f heißt **separiert** (oder auch X heißt separiert über S), wenn Δ einen abgeschlossene Einbettung ist.

Erinnerung 8.2

Ein topologischer Raum X ist genau dann hausdorffsch, wenn $\Delta=\{(x,x)\in X\times X\}$ abgeschlossene Teilmenge von $X\times X$ ist

Bemerkung 8.3

Jeder Morphismus affiner Schemata ist separiert.

Beweis

Sei $f: X = \operatorname{Spec} B \to \operatorname{Spec} A = Y$ Morphismus, induziert von Ringhomomorphismus $\alpha: A \to B$. Dann ist $X \times_Y X = \operatorname{Spec}(B \otimes_A B)$.

 $\Delta: X \to X \times_Y X \text{ wird induziert von } \mu: \begin{array}{ccc} B \otimes_A B & \to & B \\ b_1 \otimes b_2 & \mapsto & b_1 \cdot b_2 \end{array}$

 μ ist surjektiv, also ist Δ abgeschlossene Einbettung.

Bemerkung 8.4

Offene und abgeschlossene Einbettungen sind separiert.

Beweis

Sei $i: U \hookrightarrow X$ offene abgeschlossene Einbettung. $\Rightarrow U \times_X U \cong U$ und für $\Delta: U \to U \times_X U \cong U$ gilt $\Delta = \mathrm{id}_U$.

Definition 8.5

Sei $f: X \to Y$ ein Morphismus von Schemata.

a) f heißt $universell\ abgeschlossen$, wenn für jeden Morphismus $g:Y'\to Y$ gilt: $f':X\times_YY'\to Y'$ ist abgeschlossen.

b) f heißt **eigentlich**, wenn es von endlichem Typ, separiert und universell abgeschlossen ist.

Beispiel

 $\mathbb{A}^1_k \to \operatorname{Spec}$ ist abgeschlossen, aber nicht universell abgeschlossen. Denn:

$$\mathbb{A}^2_k = \mathbb{A}^1_k \times_k \mathbb{A}^1_k \longrightarrow \mathbb{A}^1_k$$

$$\downarrow^{\operatorname{pr}_1} \qquad \qquad \downarrow$$

$$\mathbb{A}^1_k \longrightarrow \operatorname{Spec} k$$

 pr_1 ist nicht abgeschlossen.

$$V = V(X^2 + Y^2 - 1) \subseteq \mathbb{A}_k^2, \text{ pr}_1(V) = ?$$

$$V = V(XY - 1) \Rightarrow \text{pr}_1(V) = \mathbb{A}_k^1 - \{0\}$$

 $\Rightarrow \operatorname{pr}_1(V) = \mathbb{A}^1_k - \{0\}$ ist nicht abgeschlossen (Œ k algebraisch abgeschlossen)

Definition 8.6

- a) Ein nullteilerfreier Ring R heißt Bewertungsring, wenn für jedes $x \in K = \text{Quot } R$ gilt: $x \in R$ oder $x^{-1} \in R$. R ist lokaler Ring mit maximalem Ideal $m = \{x \in R : x^{-1} \notin R\}$, $(x+y)^{-1} = \text{Übung}$??
- b) Sei $f:X\to Y$ ein Morphismus von Schemata, R ein Bewertungsring, $K=\operatorname{Quot} R,$ $U=\operatorname{Spec} K,$ $T=\operatorname{Spec} R.$

Ein kommutatives Diagramm $\bigcup_{f}^{h_0} X \longrightarrow X$ heißt $\pmb{Bewertungs diagramm}$ für f. $T \xrightarrow{h_1} Y$

Satz 2

Sei $f:X\to Y$ ein Morphismus von Schemata, X noethersch, f von endlichem Typ für "eigentlich". Dann gilt:

a) f ist genau dann $\left\{\begin{array}{l} \text{separiert} \\ \text{eigentlich} \end{array}\right\}$, wenn es zu jedem Bewertungsdiagramm

$$\operatorname{Spec} K = U \xrightarrow{h_2} X$$

$$\downarrow f \quad (*)$$

$$\operatorname{Spec} R = T \xrightarrow{h_1} Y$$

 $\left\{\begin{array}{c} \text{h\"{o}chstens} \\ \text{genau} \end{array}\right\}$ einen Morphismus $h:T\to X$ gibt sodass (*) kommutiert

Dabei sei R ein Bewertungsring und K = Quot(R).

b) Sind X und Y noethersch und f von unendlichem Typ, so genügt es, Bewertugnsdiagramme zu diskreten Bewertungsringen zu betrachten.

Erinnerung

R Bewertungsring : $\Leftrightarrow R$ nullteilerfrei, für $x \in \operatorname{Quot}(R)^{\times}$ ist $x \in R$ oder $x^{-1} \in R$.

Bewertung: G abelsche Gruppe, \leq Totalordnung auf G, sodass aus $x \leq y$ folgt: $x + a \leq y + a \ \forall \ a \in G, \ v : k^{\times} \to G$ Homomophismus mit $v(a + b) \geq \min(v(a), v(b))$.

Beispiel

Sei $X = \mathbb{A}^1_k$, $Y = \operatorname{Spec} k$, $f: X \to Y \dots$

 $K = k(T), R = \{\frac{g}{h} : g, h \in k[T], \deg h \ge \deg g\}, R \text{ diskreter Bewertungsring}, K = \operatorname{Quot}(R)$

Es gibt kein h, da $k[T] \hookrightarrow k(T)$ nicht über R faktorisiert: $T \notin R$

Bemerkung

Beweisskizze

I) "separiert"

" \Rightarrow ": Seien h, h' Fortsetzungen von h_0 .

Sei $\tilde{h}:T\to X\times_Y X$ der von h und h' induzierte Morphismus.

Nach Voraussetzung ist $h(t_1) = h'(t_1) = h_0(t_1) =: x_1 \Rightarrow \tilde{h}(t_1) \in \Delta(X)$

 $\Delta(X)$ ist nach Voraussetzung abgeschlossen $\Rightarrow \tilde{h}(t_0) \in \overline{\{\tilde{h}(t_1)\}} \subseteq \Delta(X) \Rightarrow h(t_0) = h'(t_0) \Rightarrow h = h'$, weil $h^\#$ und $h'^\#$ durch h_0 festgelegt sind.

" \Leftarrow ": Genügt zu zeigen: $\Delta(X)$ ist abgeschlossen in $X \times_Y X$. Weil X noethersch ist, können wir verwenden:

Proposition 8.7

Sei $f: X \to Y$ ein quasikompakter Morphismus von Schemata.

Dann gilt: f(X) ist abgeschlossen in $Y \Leftrightarrow$ für jedes $y_1 \in f(X)$ und jedes $y_0 \in \overline{\{y_1\}}$ ist $y_0 \in f(X)$ ("abgeschlossen unter Spezialisierung")

Beweis

Sei also $x_1 \in \Delta(X)$, $x_0 \in \overline{\{x_1\}} \subseteq X \times_Y X$. Sei $Z := \overline{\{x_1\}}$ mit der reduzierten Struktur $\mathcal{O} := \mathcal{O}_{Z,x_0}$, $K = \mathcal{O}_{Z,x_1} = \kappa(x_1) = \operatorname{Quot} \mathcal{O}$.

Proposition + Definition 8.8

Sei K ein Körper, $R \subset K$ ein lokaler Ring.

- a) (R_1, m_1) dominiert (R_2, m_2) , wenn $R_2 \subseteq R_1$ und $m_2 = m_1 \cap R_2$.
- b) R ist Bewertungsring $\Leftrightarrow R$ ist maximal bezüglich Dominanz
- c) R wird dominiert von einem Bewertungsring.

Beweis

[AM94] Chapter 5, Theorem 5.11

Sei also $R \subset K$ Bewertungsring, der \mathcal{O} dominiert. Nach Vorüberlegung gibt es Morphismus $h: T = \operatorname{Spec} R \to X \times_Y X$ mit $h(t_1) = x_1$, $h(t_0) = x_0$.

Sei $h_i := \operatorname{pr}_i \circ h, i = 1, 2$

$$\Rightarrow f \circ h_1 = f \circ h_2$$

Da $x_1 \in \Delta(X)$ ist $h_1|_U = h_2|_U$, $U = \operatorname{Spec} K$.

 $\xrightarrow{\text{Vor.}} h_1 = h_2 \Rightarrow h \text{ faktorisiert "uber } \Delta \Rightarrow x_0 \in \Delta(X).$

II) "eigentlich"

" \Rightarrow ": Eindeutigkeit von h folgt aus I

Existenz von h: Im Basiswechseldiagramm

$$X \times_Y T \xrightarrow{\qquad \qquad } X$$

$$f' \downarrow \qquad \qquad \downarrow f$$

$$T \xrightarrow{\qquad \qquad \qquad } Y$$

ist f' nach Voraussetzung abgeschlossen.

Sei $\varphi: U \to X \times_Y T$ der von h_0 und i induzierte Morphismus

Da $i = f' \circ \varphi$ ist und i dominant, ist auch f' dominant $\xrightarrow{f' \text{ abg.}} f'$ surjektiv Sei $z_1 = \varphi(t_1) \in X \times_Y T$, also $f'(z_1) = t_1$ (generischer Punkt), $Z := \overline{\{z_1\}}$ mit reduzierter Struktur.

Auch $f'|_Z$ ist surjektiv, also gibt es $z_0 \in Z$ mit $f'(z_0) = t_0$. f' induziert lokalen Ringhomomorphismus $R = \mathcal{O}_{T,t_0} \to \mathcal{O}_{Z,z_0}$ und Einbettung $K = \kappa(t_1) \hookrightarrow \kappa(z_1)$. φ induziert $\kappa(z_1) \hookrightarrow \kappa(t_1) = K$, also $\kappa(z_1) \cong K$.

$$\xrightarrow{\text{Prop. } 8.8} R \cong \mathcal{O}_{Z,z_0} \xrightarrow{\S 3 \text{ Bsp. } 2} \exists \ h: t \to X \text{ mit } h(t_i) = \operatorname{pr}_X(z_i), \ i = 0, 1$$

" \Leftarrow ": Zu zeigen: Wenn es zu jedem Bewertungsdiagramm genau eine Fortsetzung h von h_1 gibt, so ist f eigentlich.

Es genügt zu zeigen: f' ist universell abgeschlossen. Sei also Bewertungsdiagramm

$$X' = X \times_Y Y' \longrightarrow X$$

$$f' \downarrow \qquad \qquad \downarrow f$$

$$Y' \longrightarrow Y$$

Zu zeigen: f' ist abgeschlossen. Sei dafür $Z' \subseteq X'$ abgeschlossen, $y_1 = f'(z_1) \in f'(Z')$ und $y_0 \in \overline{\{y_1\}}$.

Zu zeigen: $y_0 \in f'(Z')$ (das genügt nach Proposition 8.7)

Sei $\mathcal{O} = \mathcal{O}_{Z,y_0}$, wobei $Z = \overline{\{y_1\}}$ (mit reduzierter Struktur)

$$Quot(\mathcal{O}) = \kappa(y_1) \underset{(f')^{\#}}{\hookrightarrow} \kappa(z_1) =: K$$

 $K|\kappa(y_1)$ ist endliche Körpererweiterung (da f von endlichem Typ) $\xrightarrow{\text{Prop.8.8}}$ Es gibt Bewertungsring R von K, der \mathcal{O} dominiert \Rightarrow Es gibt Morphismus $h_1: T = \operatorname{Spec} R \to Y'$ mit $h_1(t_i) = y_i, i = 0, 1$. Dann ist

ein Bewertungsdiagramm für f. Nach Voraussetzung gibt es $h: T \to X$ mit ... Die UAE des Faserprodukts liefert $h': T \to X'$ mit $f'(h'(t_0)) = h_1(t_0) = y_0 \Rightarrow y_0 \in f'(Z')$.

$$h'(t_0) := z_0 \in \overline{\{h'(t_1)\}} = \overline{\{z_1\}} \in Z'$$

Folgerung 8.9

Für Morphismen noetherscher Schemata gilt:

a) Die Komposition
$$\left\{ \begin{array}{l} \text{separierter} \\ \text{eigentlicher} \end{array} \right\}$$
 Morphismen ist $\left\{ \begin{array}{l} \text{separiert} \\ \text{eigentlich} \end{array} \right\}$.

b) { separiert eigentlich } ist stabil unter Basiswechsel.

c) Ist
$$g \circ f \left\{ \begin{array}{c} \text{separiert} \\ \text{eigentlich und } g \text{ separiert} \end{array} \right\}$$
, so ist $f \left\{ \begin{array}{c} \text{separiert} \\ \text{eigentlich} \end{array} \right\}$.

Bewertungskriterium anwenden

Proposition 8.10

Der Strukturmorphismus $\mathbb{P}^n_{\mathbb{Z}} = \operatorname{Proj} \mathbb{Z}[X_0, \dots, X_n] \to \operatorname{Spec} \mathbb{Z}$ ist eigentlich.

Folgerung 8.11

Sei k ein Körper

- a) \mathbb{P}_k^n ist eigentlich über Spec k.
- b) Sind V, V' projektive Varietäten über $k, f: V \to V'$ Morphismus, so ist der induzierte Morphismus $t(V) \to t(V')$ eigentlich.

Beweis

b) Sei $X:=t(V),\,Y:=t(V')$ (abgeschlossene Unterschemata) $\subseteq \mathbb{P}^n_k$

Aus 8.9 a) und 8.9 c) folgt: f ist eigentlich.

Beweis (von Proposition 8.10)

 \mathbb{P}^n_k ist von endlichem Typ über Spec \mathbb{Z}

$$\begin{array}{c|c} U & \longrightarrow & \mathbb{P}^n_{\mathbb{Z}} \\ \text{Sei} & \downarrow & & \text{ein Bewertungsdiagramm.} \\ T & \longrightarrow & \operatorname{Spec} \mathbb{Z} \end{array}$$

 $Zu\ zeigen: \exists !h: T \to \mathbb{P}^n_{\mathbb{Z}}$

Sei $\xi_1: h_0(t_1)$; Œ $\xi_1 \in \bigcap_{i=0}^n U_i$ ($U_i = D(X_i)$) (sonst ist $\xi_1 \in \mathbb{P}^{n-1}_{\mathbb{Z}}$ Induktion über n) $\Rightarrow \frac{x_i}{x_j} \in \mathcal{O}_{\mathbb{P}^n_{\mathbb{Z}},\xi_1}^{\times}$ für alle $i,j \Rightarrow \mathrm{Das}$ Bild \tilde{f}_{ij} von $\frac{x_i}{x_j}$ in $\underbrace{\kappa(\xi_1)}_{=\mathcal{O}_{\mathbb{P}^n_{\mathbb{Z}},\xi_1}/m_{\xi_1}}$ ist $\neq 0 \Rightarrow f_{ij} := h_0^\#(\tilde{f}_{ij}) \in K^{\times}$

Sei $v:K^{\times}\to G$ die zuRgehörige Bewertung. Wähle $j\in\{1,\dots,n\},$ sodass $v(f_{j0})=$ $\min_{k=1}^{n} v(f_{k0}) \Rightarrow v(f_{ij}) = v(f_{i0}) - v(f_{j0}) \geq 0 \text{ für } i = 0, \dots, n \Rightarrow f_{ij} \in R \text{ für } i = 0, \dots, n \Rightarrow \frac{X_i}{X_j} \mapsto f_{ij} \text{ definiert Ringhomomorphismus } \mathbb{Z}\left[\frac{X_0}{X_j}, \dots, \frac{X_n}{X_j}\right] \to R, \text{ also Morphismus } h : T \to U_j \hookrightarrow \mathbb{P}^n_{\mathbb{Z}}$

Eindeutigkeit von h: Sei $h'_{\neq h}: T \to U_k$ eine weitere Fortsetzung von h_0 .

Dann ist $k \neq j$, weil $U_j \to \operatorname{Spec} \mathbb{Z}$ separiert ist (8.3). Sei $\beta : \mathbb{Z}[\frac{X_0}{X_k}, \dots, \frac{X_n}{X_k}] \to R$ der zugehörige Ringhomomorphismus $\Rightarrow \beta(\frac{X_i}{X_k}) = h_0^{\#}(\frac{X_i}{X_k}) = f_{ik} \in R^{\times}$

Es ist $f_{ik} = f_{ij} \cdot f_{jk} \Rightarrow \beta$ induziert denselben Morphismus $T \to \mathbb{P}^n_{\mathbb{Z}}$ wie α .