PYTHON WORKSHOP

- Session I: environment setup, Monday, 8/28 5-6pm, E208
- Session 2: basic Python, Friday 9/1, 5-6:30pm
- (tentative) Session 3: Python ML workflow, Wednesday 9/20, 5:30-6:30pm
- (tentative) Session 4: beyond linear modeling, Monday 9/25, 5-6:30pm

PYTHON IN DATA SCIENCE WORKSHOP

Session 1: Data Science Environment Setup with Anaconda

Purpose: This workshop is intended to refresh/update Python skills, which will NOT be covered in class or during office hours.

Who: Students in CS 534, CS 334, CS 325. All 300-500 level students are welcome.

MSC E208

Monday, August 28th 2023 5:00 - 6:00 PM

No registration needed!

Bring your laptop!

COURSE OUTLINE

- Algorithms for supervised learning: nearest neighbors, decision trees, linear regression, logistic regression, neural networks, naïve bayes, ensembles, boosting, deep learning
- Algorithms for unsupervised learning: principal component analysis
- Model assessment and model selection
- New learning paradigms and emerging topics

K-NEAREST NEIGHBORS

CS 334: Machine Learning

BREAKOUT ACTIVITY

NETFLIX PRIZE (2006-2009)

\$1M prize for 10% improvement

NETFLIX DATASET

	Star Wars I:The Phantom Menace	Star Wars IV: A New Hope	Star Wars VII: The Force Awakens	Raiders of the Lost Arc	Casablanca	Singing in the Rain
Sam	3	4	3	4	I	2
Alice	4	5	5	4	2	I
Bob	I	2	3	2	5	3
Matt	2	3	3		4	4
Joyce	Joyce 5		5	?	?	2

What are Joyce's missing ratings and why?

NETFLIX DATASET

		Star Wars I:The Phantom Menace	Star Wars IV: A New Hope	Star Wars VII: The Force Awakens	Raiders of the Lost Arc	Casablanca	Singing in the Rain	
	Sam	3	4	3	4	I	2	
Most similar	Alice	4	5	5	4	2	l	
	Bob	l	2	3	2	5	3	
	Matt	2	3	3	I	4	4	
	Joyce	5	5	5	?	?	2	

What are Joyce's missing ratings and why?

EXAMPLE: IMAGE RECOGNITION

Training data with labels

query data

Distance Metric

$$\to \mathbb{R}$$

Nearest Neighbor (NN) Classifier

EXAMPLE: CANCER SURVIVAL

EXAMPLE: CANCER SURVIVAL

EXAMPLE: CANCER SURVIVAL

NN DECISION BOUNDARIES

Survived

Did not survive

Age

A decision boundary is a line separating the positive regions from the negative regions

NN DECISION BOUNDARIES

Survived

Did not survive

Age

A decision boundary is a line separating the positive regions from the negative regions

Should these two small regions / exist? How to avoid it

Number of Malignant Nodes

K-NEAREST NEIGHBOR (K-NN) CLASSIFIER

- Examine the k-"closest" training data points to new point x
- Assign the object the most frequently occurring class (majority vote) or the average value (regression)
- Can have weighted majority or weighted average

http://cs.nyu.edu/~dsontag/courses/ml13/slides/lecture11.pdf

K-Nearest Neighbor (kNN) Classifier

• Training: memorize/store the entire training set including features and labels

def train(images, labels): Memorize all # Machine learning! data and labels return model

• Prediction: point to the test point

find the k-"closest" training data return the majority class

Predict the label def predict(model, test_images): # Use model to predict labels of the most similar return test labels training image

EXAMPLE: K=2

EXAMPLE: K=3

EXAMPLE: K=N

K-NN: PRACTICAL CHALLENGES

- How to pick k?
- What is the right measure of closeness/distance?

VALUE OF K

K-NN: SMOOTHING

1-Nearest Neighbor

15-Nearest Neighbors

What is the training error when k=1?

Error rates and K

(More on model selection later)

K-NN: PRACTICAL CHALLENGES

- How to pick k?
- What is the right measure of closeness/distance?

REVIEW: SUPERVISED LEARNING

• Learning a mapping from input to output, given a labeled set of input-output pairs, i.e. training dataset D

$$\{(\mathbf{x}_i, y_i)\}, i = 1, \cdots, N$$

- Each input instance represents an object/sample as a d-dimensional vector of features
- Classification: output is categorical (e.g. orange, lemon)

$$y_i \in \{1, \ldots, C\}$$

- Binary vs. multiclass classification
- Regression: output is real-valued

http://homepages.inf.ed.ac.uk/imurray2/

MEASUREMENT OF DISTANCE

EUCLIDEAN DISTANCE

Number of Malignant Nodes

Also known as crow distance (green) or L2 norm of the difference vector

MANHATTAN DISTANCE

Also known as taxicab distance (purple) or LI norm of the difference vector

Number of Malignant Nodes

COMMON DISTANCE METRICS

Euclidean	$D(\mathbf{x}, \mathbf{z}) = \sqrt{\sum_{i=1}^{d} (x_i - z_i)^2}$
Manhattan	$D(\mathbf{x}, \mathbf{z}) = \sum_{i=1}^{d} x_i - z_i $
Minkowski	$D(\mathbf{x}, \mathbf{z}) = \left(\sum_{i=1}^{d} x_i - z_i ^p\right)^{\frac{1}{p}}$

NORMS

$$\ell_p=\left(\sum_{i=1}^N|x_i|^p
ight)^{1/p}$$
 , for $p\geq 1$ For $p=1$, we get $\ell_1=|x_1|+|x_2|+\ldots+|x_n|$ For $p=2$, $\ell_2=\sqrt{x_1^2+x_2^2+\ldots+x_n^2}$ For $p=3$, $\ell_3=\sqrt[3]{|x_1|^3+|x_2|^3+\ldots+|x_n|^3}$ For $p o\infty$, $\ell_\infty=\max_i(|x_1|,|x_2|,\ldots,|x_n|)$

THER DISTANCE METRICS

- Categorical/Integer-valued space

• Hamming distance:
$$D(\mathbf{x},\mathbf{y}) = \frac{N_{\text{different}}(\mathbf{x},\mathbf{y})}{N_{\text{total}}}$$
• Canberra:
$$D(\mathbf{x},\mathbf{y}) = \sum \frac{|x_i - y_i|}{|x_i| + |y_i|}$$

$$D(\mathbf{x}, \mathbf{y}) = \sum \frac{|x_i - y_i|}{|x_i| + |y_i|}$$

- Boolean-valued space
 - |accard:

$$D(\mathbf{x}, \mathbf{y}) = \frac{|\mathbf{x} \cap \mathbf{y}|}{|\mathbf{x} \cup \mathbf{y}|}$$

OTHER DISTANCE METRICS

	Star Wars I:The Phantom Menace	Star Wars IV: A New Hope	Star Wars VII: The Force Awakens	Raiders of the Lost Arc	Casablanca	Singing in the Rain
Sam	3	4	3	4	I	2
Alice	4	5	5	4	2	I
Bob	I	2	3	2	5	3
Matt	2	3	3	I	4	4
Joyce	5	5	5	?	?	2

What's the hamming distance of the two records (considering column 1, 2, 3, 6)?

FEATURE SCALING

• Min-max normalization: Scale data to fixed range [0, 1] or [a,b]

$$x' = rac{x - \min(x)}{\max(x) - \min(x)} \quad x' = a + rac{(x - \min(x))(b - a)}{\max(x) - \min(x)} \quad rac{0.2}{0.0}$$

• Standardization (Z-score normalization): Center data to zero mean and scale by unit variance

$$x' = \frac{x - \bar{x}}{\sigma}$$

K-NN: IRRELEVANT FEATURES

 Irrelevant / noisy features may hurt performance since it adds random perturbations to the distance measure

• Example: 1-D data, what happens if we add noisy attribute?

K-NN: CHARACTERISTICS

- Instance-based (lazy) learning (as vs. model-based eager learning)
- Non-parametric (as vs. parametric)
- Easy to understand and implement
- Can model complex decision boundaries quite well (depending on k)
- Memory intensive (needs to store all the data) can use clustering
- Can be fooled by irrelevant features

ONLINE DEMO

http://vision.stanford.edu/teaching/cs23 I n-demos/knn/

NETFLIX PRIZE (2006-2009)

\$1M prize for 10% improvement

Collaborative Filtering

- Estimate rating by user x for item I
- Collaborative filtering
 - User-based: find similar users to user x
- Select k-nearest neighbors, compute the rating

		Star Wars I:The Phantom Menace	Star Wars IV: A New Hope	Star Wars VII: The Force Awakens	Raiders of the Lost Arc	Casablanca	Singing in the Rain	
Q	Sam	3	4	3	4	I	2	
d	Alice	4	5	5	4	2	I	
	Bob	I	2	3	2	5	3	
	Matt	2	3	3	I	4	4	
q	loyce	5	5	5	?	?	2	

Collaborative Filtering

- Estimate rating by user x for item I
- Collaborative filtering
 - User-based: find similar users to user x
 - Item-based: find similar items rated by user x
- Select k-nearest neighbors, compute the rating

$$r_{xi} = \frac{\sum_{j \in N(i;x)} s_{ij} \cdot r_{xj}}{\sum_{j \in N(i;x)} s_{ij}}$$

s_{ij}... similarity of items *i* and *j*r_{xj}...rating of user *u* on item *j*N(i;x)... items similar to *i* rated by x

	Star Wars I:The Phantom Menace	Star Wars IV: A New Hope	Star Wars VII: The Force Awakens	Raiders of the Lost Arc	Casablanca	Singing in the Rain	
Sam	3	4	3	4	I	2	
Alice	4	5	5	4	2	I	
Bob	I	2	3	2	5	3	
Matt	2	3	3	I	4	4	
loyce	5	5	5	?	?	2	

	Р	Vars nanto 1ena	Star' Ne	Vars w H∈	IV: A pe	Star Wars VII: The Force Awakens	Raio L	ers of ost An	the	Casablanca	Singing in the Rain
Sam		3		4		3		4		I	2
Alice		4		5		5		4		2	I
Bob				2		3		2		5	3
Matt		2		3		3		I		4	4
Joyce		5		5		5		?		?	2

Netflix Prize

Netflix: 0.9514

Grand Prize: 0.8563

Netflix Prize

Global average: 1.1296

<u>User average: 1.0651</u>

Movie average: 1.0533

Netflix: 0.9514

Grand Prize: 0.8563

Netflix Prize

Global average: 1.1296

User average: 1.0651

Movie average: 1.0533

Netflix: 0.9514

Basic Collaborative filtering: 0.94

Grand Prize: 0.8563

HOMEWORK # I ANNOUNCEMENT

- Out 8/28, Due 9/12 @ 11:59 PM ET on Gradescope
- 4 questions
 - QI-Q2: Get familiar with Python
 - Numerical programming (Numpy)
 - Dataset loading and visualization (Pandas and other libraries)
 - Q3-Q4: kNN
 - Implement kNN (use Numpy)
 - Evaluate kNN (use sklearn)

