Sciences de l'informatique - ALGORITHMIQUE ET PROGRAMMATION

Correction Epreuve principale - Session de juin 2011

Première partie : (10 points)

Exercice n°1: (4 points)

• Trace de la fonction Inconnue pour le couple de valeurs (2,13):

	b	n	ch	r	S	inconnue	
0 1 0 1 Resultat de la for	2	13	""	1			
		6	"1"	0	"1"		✓ Résultat de la fonction
		3	"01"	1	"0"		•
<i>I</i> "101" <i>I</i> "1"		1	"101"	1	"1"		
0 "1101" "1" (" 1101" *)		0	"1101"		"1" ("1101"	

Trace de la fonction Inconnue pour le couple de valeurs (16,163):

b	n	ch	r	S	inconnue	✓ Résultat de la fonction
16	163	"""	3			
	10	"3"	10	"3"		
	0	"A3"		"A"	("A3"	
						•

Le type de la fonction inconnue est : Chaîne de caractères
 Tableau de déclaration d'objets :

Objet	Type/Nature	
ch, s	Chaîne de caractères	
r	Entier	

La fonction retourne le résultat de la <u>conversion</u> d'un entier <u>n</u> dans la base <u>b</u>.

Exercice n°2: (3 points)

Dans cet exercice il est demandé l'algorithme d'une fonction récursive.

- 1) D'après la définition de la suite, on déduit qu'elle est définie selon 3 cas :
 - Cas 1, n=0, le résultat (U) est égal à 0, puisque la valeur du résultat est fixée, il s'agit d'un cas d'arrêt du traitement récursif.
 - Cas 2, n=1, le résultat (U) est égal à -9, puisque la valeur du résultat est fixée, il s'agit d'un cas d'arrêt du traitement récursif

 Cas 3, n≥ 2, le résultat est défini en fonction de 2 autres termes. Puisque la valeur du résultat n'est pas fixée, il ne s'agit pas d'un cas d'arrêt du traitement. De plus, comme le résultat est défini en fonction de n termes précédents, on en déduit qu'il s'agit de la définition de l'étape

d'avancement dans le traitement récursif

On obtient alors l'algorithme suivant pour la fonction récursive U :

```
0/ DEF FN U (n : Entier) : Entier Long

1/ Si (n = 0) Alors U ← 0

Sinon Si (n = 1) Alors U ← -9

Sinon U ← 6 * FN U(n-1) − 9 * FN U(n-2)

FinSi

2/ FIN U
```

2) L'ordre de récurrence de la fonction est égal à 2 car le terme Un est défini à partir des termes Un-1 et Un-2

Solutions équivalentes possibles :

- car le terme **Un** est défini à partir des deux termes précédents.
- car le terme **Un** est défini à partir de deux termes.

Exercice n°3: (3 points)

Analyse de la fonction Div huit

```
DEF FN Div_huit (Ch : chaîne) : Booléen

5/ Résultat = Div_huit ← (Cas1 OU Cas2)

4/ (Cas1, Cas2) = [Cas1 ← Faux, Cas2 ← Faux]

Si (c MOD 2 = 0) ET ((d*10 + u) MOD 8 = 0) Alors

Cas1 ← Vrai

Sinon

Si (c MOD 2 = 1) ET ((d*10 + u - 4) MOD 8 = 0) Alors

Cas2 ← Vrai

FinSi

FinSi

1/ c = Val (ch[Long(ch)-2],c,e)

2/ d = Val(ch[Long(ch)-1],d,e)

3/ u = Val(ch[Long(ch)],u,e)

6/ FIN Div huit

(0.25 pt)

(0.75 pt)

(0.75 pt)

(3*0.25 = 0.75 pt)
```

Explications:

- Séquences 1, 2 et 3 : Puisque la valeur numérique à traiter contient un nombre de chiffres compris entre 20 et 200, il est impossible d'utiliser :
- 1. Un type numérique prédéfini
- 2. Les opérations DIV et MOD pour extraire le chiffre des unités (u), des dizaines (d) et des centaines (c).

Il faudra donc:

- 1. Pour contenir les chiffres qui composent le nombre, utiliser le type chaîne de caractères et la fonction de conversion entre les chaînes et les entiers (Val).
- 2. Pour obtenir:

- a. le chiffre des unités (u), extraire le dernier caractère de ch (noté, ch[longueur(ch)])
- b. le chiffre des dizaines (d), extraire le dernier caractère de ch (noté, ch[longueur(ch)] 1)
- c. le chiffre des centaines (c), extraire le dernier caractère de ch (noté, ch[longueur(ch) 2])
- Séquence 4 : Traduction des 2 cas de divisibilité :

 I^{er} cas: Le chiffre des centaines (c) est pair (c MOD 2 = 0) et le nombre formé par les 2 derniers chiffres les plus à droite(du) est multiple de 8. ((d*10 + u) MOD 8 = 0)

 2^{eme} cas: Le chiffre des centaines (c) est **impair** (c MOD 2 = 1) et le nombre formé par les 2 derniers chiffres les plus à droite(du) diminué de 4 est multiple de 8. ((d*10 + u - 4) MOD 8 = 0)

TDO

Objet	Nature / Type	Rôle
Cas1, Cas2	Booléen	Variable intermédiaire
С	entier	Chiffre des centaines
d	entier	Chiffre des dizaines
u	entier	Chiffre des unités
e	entier	Variable intermédiaire

Partie 2: (10 points)

Analyse du programme principal

DEBUT Zone Accumulation

4/ Résultat = PROC Afficher NbZones (Nb Zones, Recap, Nb Recap, Deg Min)

3/ (Recap, Nb_Recap, Nb_Zones) = Proc Déterminer_Zones (Espace, N, Recap, Nb_Recap,

Nb_Zones, Deg_Min, DN)

1/ (Espace, N) = Proc Remplir Matrice (Espace, N)

2/ (Deg Min, DN) = Proc Valider (Deg Min, DN)

5/ FIN Zone Accumulation

Tableau des nouveaux types

Туре

 $Tab_Mat = Tableau de 100x100 d'entiers$

Enreg = enregistrement

Lig : entier Col : entier Nb Uns : entier

FIN Enreg

Tab_Recap = Tableau de 100x100 d'enreg (récapitulatif des subdivisions de la matrice)

Tableau des objets globaux

Objet	Type	Rôle
Recap	Tab_Recap	Tableau des zones de concentration
Nb_Recap,	Entier	Contient le nombre d'éléments du tableau
Nb_zones	Entier	Contient le nombre de zones de concentration
Espace	Tab_Mat	Matrice carrée contenant des 0 et des 1
N	Entier	Contient l'ordre de la matrice Espace
DN	Entier	Contient le nombre de zones
Deg_Min	Entier	Degré minimum de concentration

Afficher_NbZones	Procédure	Permet d'afficher les zones de concentration min
Déterminer_Zones	Procédure	Permet de déterminer les zones et leur concentration
Remplir_Matrice	Procédure	Permet de remplir la matrice Espace
Valider	Procédure	Permet de valider la valeur de Deg_Min et DN

Analyse de la procédure Remplir Matrice

Rôle du module : La saisie de N, la taille de la matrice Espace et son remplissage de 0 et de 1, d'une manière aléatoire

Tableau des objets locaux

Objet	Nature / Type	Rôle
L	Entier	Compteur
C	Entier	Compteur

Analyse de la procédure Valider

Rôle du module:

- Saisir et validation de **DN**, un diviseur de **N**
- Saisie et validation de **Deg_Min**, le degré de concentration minimum (**Deg_Min** € [1,(**DN*DN**)]).

Analyse de la procédure Afficher NbZones

Rôle du module : Affichage des résultats

DEF PROC Afficher_NbZones (Recap : Tab_Recap ; Nb_Recap, Nb_Zones, Deg_Min : entier)

```
Résultat = Tab-Affiché

1/ Tab-Affiché = [ Ecrire (« Le nombre de zones de concentration est : » , Nb_Zones) ]

Pour i de 1 à Nb_Recap faire

Si recap[i]. Nb_uns >= Deg_Min alors

écrire (" Zone n° :" ,i, " : ligne : ", recap[i].lig , " , colonne : ", recap[i].col , " .

Le nombre de 1 dans cette zone est : ", recap[i].nb_uns, ". ")

FinSi

FinPour

2/ FIN Afficher NbZones
```

Tableau des objets locaux

	Objet	Nature / Type	rôle
Ī	i	Variable / Entier	Compteur

Analyse de la procédure Déterminer_Zones

Rôle du module : Détermination du nombre de zones

FinSi

FinPour

FinPour

Nb Recap ← cpt

2/ FIN Determiner-Zones

5/ FIN Zone Accumulation

Tableau des objets locaux

Objet	Nature / Type	rôle
Cptlig, cptcol, nbun, cpt, col, lig	Variable / Entier	Compteurs

Algorithme programme principal

```
DEBUT Zone_Accumulation

1/ Proc Remplir_Matrice (Espace, N)

2/ Proc Valider (Deg_Min, DN)

3/ Proc Déterminer_Zones (Espace, N, Recap, Nb_Recap, Nb_Zones, Deg_Min, DN)

4/ Proc Afficher NbZones (Nb Zones, Recap, Nb Recap, Deg Min)
```

Algorithme de la procédure Remplir_Matrice

Algorithme de la procédure Valider

Algorithme de la procédure Afficher_NbZones

```
0/ DEF PROC Afficher_NbZones (Recap : Tab_Recap ; Nb_Recap, Nb_Zones, Deg_Min : entier)
```

Algorithme de la procédure Déterminer Zones

```
0/ DEF PROC Determiner Zones (Espace: tab Mat; D: entier; VAR Recap: Tab Recap;
VAR Nb Recap, Nb Zones: entier; Deg Min, DN: entier)
1/ \text{ cpt } \leftarrow 0 \text{ Nb Zones } \leftarrow 0
       Pour cptlig de 1 à DN faire
            Pour cptcol de 1 à DN faire
                Nbun \leftarrow 0
                 Cpt \leftarrow cpt + 1
                 Recap[cpt].lig \leftarrow DN * cptlig – DN + 1
                 Recap[cpt].col \leftarrow DN * cptcol – DN + 1
                 Pour lig de (DN * cptlig – DN + 1) à (DN * cptlig) faire
                       Pour col de (DN * cptcol – DN + 1) à (DN * cptcol) faire
                             Si (Espace [lig, col] = 1) alors
                                Nbun←Nbun+1
                             FinSi
                       FinPour
                 FinPour
                 Recap[cpt].nb uns ← nbun
                 Sinb uns >= Deg min alors
                       nb zones \leftarrow nb zones +1
                 FinSi
            FinPour
       FinPour
       Nb Recap ← cpt
2/ FIN Determiner-Zones
```