Procesos estocásticos (86.09)

 Variables y vectores aleatorios

Variables Aleatorias

Variables Aleatorias (VA)

Distribuciones de probabilidad

Distribuciones de probabilidad – Funciones de masa

Bernoulli

$$p_X(x) = egin{cases} 1-p & ext{si } x=0, \ p & ext{si } x=1. \end{cases}$$

$$p \in [0,1]$$

0.6

2 0.4

0.2

0 -0.2

0 0.2

0.4

0.6

0.8

1 1.2

i i d

ፕ Binomial

$$X \sim Bin(p)$$

$$ho_X(x) = inom{n}{x} p^x (1-p)^{n-x} \quad p \in [0,1] \ x = 0,1,\ldots,n$$

0.2
0.15

$$\stackrel{\times}{\boxtimes}$$
 0.1
0.05
0 5 10 15 20 25

Poisson $X \sim Poisson(\lambda)$

$$p_X(x) = \frac{\lambda^x e^{-\lambda}}{x!}$$

$$\lambda > 0$$

 $x = 1, 2 \dots$

Distribuciones de probabilidad – Funciones de densidad

Uniforme $X \sim U(a, b)$

$$f_X(x) = \frac{1}{b-a}, \quad a < x < b.$$

Normal $X \sim N(\mu, \sigma)$

$$f_X(x) = rac{1}{\sqrt{2\pi\sigma^2}}e^{-rac{1}{2}\left(rac{x-\mu}{\sigma}
ight)^2}, \qquad x \in \mathbb{R}$$

Exponencial $X \sim Exp(\lambda)$

$$f_X(x) = \lambda e^{-\lambda x}, \qquad x \ge 0$$

Rayleigh $X \sim Rayl(\sigma)$

$$f_X(x) = \frac{x}{\sigma^2} e^{-\frac{x^2}{2\sigma^2}}, \quad x \ge 0 \quad \sigma > 0$$

Simulación de Variables Aleatorias

Simulación de Variables Aleatorias

Funciones de Matlab/Octave para generar muestras de distribuciones comunes:

```
x = rand(1,N);
                             % Uniforme estándar
x = unifrnd(a, b, 1, N); = % Uniforme
                = مرا(ار۱۷) % Normal estándar
x = randn(1,N);
                             % Normal
x = normrnd(mu, sig, 1, N);
x = binornd(n, p, 1, N);
                             % Binomial
x = poissrnd(mu, 1, N);
                        % Poisson (mu = lambda)
x = exprnd(mu, 1, N);
                             % Exponencial (mu = 1/lambda)
x = raylrnd(b, 1, N);
                             % Rayleigh
```


N muestras con cierta distribución (realizaciones)

Simulación de Variables Aleatorias

Funciones de Python para generar muestras de distribuciones comunes:

```
import numpy as np
x = np.random.uniform(a, b, N)
                                           # Uniforme
x = np.random.normal(mu, sig, N)
                                           # Normal
                                           # Binomial
x = np.random.binomial(n, p, N)
                                           # Poisson
x = np.random.poisson(mu, N)
x = np.random.exponential(mu, N)
                                           # Exponencial
                                           # Rayleigh
x = np.random.rayleigh(scale=b, size=N)
```


N muestras con cierta distribución (realizaciones)

Simulación de Variables Aleatorias (Matlab)

```
>> x = rand(1,5) Realizaciones independientes

x = 0.0975 0.2785 0.9649
```

```
>> x = randn(1,6)
x =
-1.3499 3.0349 0.7254 -0.0631 0.7147 -0.2050
```

Simulación de Variables Aleatorias (Python)

```
import numpy as np
x = np.random.uniform(0, 1, 5) # x = np.random.rand(5)
print(x)
[0.24230626 0.56564437 0.14763606 0.97714927 0.31140779]
x = np.random.normal(0, 1, 6) \# x = np.random.randn(6)
print(x)
[ 1.03918166  0.50593943  -0.35094316  1.12961749  -0.73663994  -0.6805176  1
```

Simulación de Variables Aleatorias

Generadores de Números Pseudoaleatorios (PRNG)

- Los números aleatorios son esenciales en simulaciones de Monte Carlo, criptografía, aprendizaje automático, etc.
- Los PRNG generan secuencias que parecen aleatorias pero son deterministas.
- Se basan en una semilla inicial.

Generadores de Números Pseudoaleatorios (PRNG)

Algoritmo Congruencial Lineal (LCG)

$$X_{n+1} = (a \cdot X_n + c) mod m$$

Xo is Le swille, algun numero dedo

- LCG genera todos los enteros posibles en {0,1,...,m-1} antes de repetirse.
- Algunos valores comunes (MINSTD) son: a = 16807, c=0, $m = 2^{3}-1$.
- Otros generadores: Mersenne Twister, Xorshift, Permuted Congruential Generator, etc.

¿ Dui tiene de aleatorio esto ? ... No mucho, es pseudoalestorio J.L.

Simulación de Variables Aleatorias

- 1. Método de la transformación inversa.
- 2. Método de aceptación rechazo.
- 3. Método de la transformación de Box-Muller
- 4. Otros

Simulación de VA – Método de la Transformación Inversa

Queremos una transformación $g: \mathbb{R} \to \mathbb{R}$ para obtener realizaciones de una VA X (de cierta distribución) a partir de una VA uniforme $U \sim U(0,1)$.

Requerimientos

- $F_x(x)$ debe ser una función continua
- $F_x(x)$ debe ser monótona creciente
- $F_x(x)$ debe ser invertible

Procedimiento del método

- 1. Generar un número random $U \sim U(0,1)$
- 2. Obtener una realización de $Z = F_x^{-1}(U)$

Simulación de VA – Método de la Transformación Inversa

Queremos una transformación $g: \mathbb{R} \to \mathbb{R}$ para obtener realizaciones de una VA X (de cierta distribución) a partir de una VA uniforme $U \sim U(0,1)$.

Requerimientos

- $F_{x}(x)$ debe ser una función continua
- $F_x(x)$ debe ser monótona creciente
- $F_x(x)$ debe ser invertible

Procedimiento del método

- 1. Generar un número random $U \sim U(0,1)$
- 2. Obtener una realización de $Z = F_x^{-1}(U)$

Simulación de VA – Método de la Transformación Inversa

Ejemplo: Generar una distribución exponencial

Función de densidad de $X \sim \text{Exp}(\lambda)$:

$$f_X(x) = \lambda e^{-\lambda x} \quad ; x \geq 0$$

Función de distribución de X:

$$F_X(x) = \int_0^x f_X(x) dt = 1 - e^{-\lambda x}$$

Obtener Z con inversa de $F_x(x)$:

$$Z=F_X^{-1}(U)=-rac{\ln(1-U)}{\lambda}$$

Realizo un experimento aleatorio uniforme estándar La probabilidad de observar u1 o menos es FU(u1) Hago de cuenta que eso es la realización de x1, que tienen probabilidad FX(x1) ¿A qué x corresponde la probabilidad de observar ese evento o menor? Al pedo todo este texto, el dibujito es más claro

Histogramas

- Permite representar una aproximación de la función de densidad / masa de probabilidad
- Representa la **frecuencia de ocurrencia** de una dada VA dentro de cada bin
- Divide el eje de la VA en intervalos (bins)

Elanto quilombe para contar
$$B_j = [m_j - \frac{h}{2}, m_j + \frac{h}{2}]$$

$$f_h(x) = rac{1}{nh} \sum_{i=1}^{n} \sum_{j=1}^{n} \mathbf{1}\{x_i \in B_j\} \cdot \mathbf{1}\{x \in B_j\},$$

$$B_j = [m_j - \frac{n}{2}, m_j + \frac{n}{2}]$$

h y m_i son la longitud y centro del intervalo.

- Permite representar una aproximación de la función de densidad
- Representa la frecuencia de ocurrencia de una dada VA dentro de cada bin
- Divide el eje de la VA en intervalos (bins)
- Debe representarse normalizada con área unitaria.


```
Matlab

histogram(x)

% Por defecto gráfica frecuencia de ocurrencia con
% bins en automático(se ajusta)

No mormolica
histogram(x, bins)

% Se puede especificar la cantidad de bins

histogram(x,bins,'Normalization','pdf')

% Normalización (para comparar

And hay q'pouldo hall TP

% con la función de densidad)
```

Matlab/Octave

```
h = hist(x, bins); % Guardar en una variable los valores de hist()

[h, xc] = hist(x, bins); % Guardar histograma normalizado y graficar
bar(xc, h /(sum(h)*(xc(2)-xc(1))));
```

Python

```
import matplotlib as plt
plt.hist(x) # Por defecto gráfica frecuencia de ocurrencia con 20 bins
plt.hist(x, bins) # Se puede especificar la cantidad de bins
plt.hist(x, bins, density = True) # Histograma normalizado
                                  # PDF aprox. (el área cierra a 1)
# Histograma para distribuciones discretas
plt.hist(x, bins = np.arange(xmin, xmax + 1) - 0.5, density = True)
```

Aramanuto Momentos de una variable aleatoria

Momentos de una variable aleatoria

Esperanza

$$\mathbb{E}[X] = \mu_X$$

Covarianza entre dos VA

$$Cov(X, Y) = \mathbb{E}[(X - \mu_X)(Y - \mu_Y)]$$

Los cuatro junter del aposalipsis

Varianza (medida de dispersión)

$$\mathbb{V}[X] = \sigma_X^2 = \mathbb{E}\left[(X - \mu_X)^2 \right]$$

Coeficiente de correlación

$$\rho(X,Y) = \frac{\operatorname{Cov}(X,Y)}{\sigma_X \, \sigma_Y}$$

$$-1 \le \varrho \le 1$$

Estimación de algunas medidas estadísticas (Matlab)

Funciones de Matlab para estimar algunas de las medidas estadísticas

Estimación de algunas medidas estadísticas (Matlab)

Funciones de Matlab/Octave para estimar algunas de las medidas estadísticas

```
>> mean(x)
ans =
0.6462
```

```
>> var(x)
ans =
0.1242
```

```
>> std(x)
ans =
0.3524
```

Estimación de algunas medidas estadísticas (Python)

Funciones de Python para **estimar** algunas de las medidas estadísticas

```
import numpy as np

mean_x = np.mean(x)  # Media

var_x = np.var(x)  # Varianza

std_x = np.std(x)  # Desvío

corr_coef = np.corrcoef(x, y) # Coeficiente de correlación
```

Estimación de algunas medidas estadísticas (Python)

```
import numpy as np
x = np.random.normal(0, 1, 1000)
y = np.random.normal(0, 1, 1000)
mean x = np.mean(x)
                                           std x = np.std(x)
print(mean x)
                                           print(std x)
 -0.014969036499220583
                                           1.000321491280756
var x = np.var(x)
                                           corr coef = np.corrcoef(x, y)
print(var x)
                                           print(corr coef)
                                           [[ 1. -0.04528167]
 1.0006430859181559
                                            [-0.04528167 1.
```

Actividad 1

Actividad 1 Variables aleatorias e Histogramas

Genere N experimentos de una variable aleatoria Rayleigh con parámetro b = 0.5. Grafique su histograma para los siguientes parámetros:

- 1. N = 100, bins = 10
- 2. N = 100, bins = 30
- 3. N = 10000, bins = 30

Actividad 2

Actividad 2 Variables aleatorias e Histogramas

Sea x una variable aleatoria exponencial, $X \sim \text{Exp}(\lambda)$, de parámetro $\lambda = 0.5$

- 1. Genere $N = 10^4$ muestras de X (usando el método de **transformación** inversa).
- 2. Estime la media y la varianza muestrales de X y comparelas con las teóricas ($\mu = 1/\lambda$, $\sigma^2 = 1/\lambda^2$).
- 3. Construya el **histograma** de las muestras de *X*. Normalice el histograma para que tenga área 1. Compare la función obtenida con la función de densidad de probabilidad teórica.

Vectores aleatorios

Variables Aleatorias (VA)

Momento de primer orden de un Vector Aleatorio

Vector aleatorio

Media de un vector aleatorio X

$$\mathbb{E}[\mathbf{X}] = \mu_{\mathbf{X}} = \mathbb{E}\left[\begin{bmatrix} X_1 \\ \vdots \\ X_n \end{bmatrix}\right] = \begin{bmatrix} \mathbb{E}[X_1] \\ \vdots \\ \mathbb{E}[X_n] \end{bmatrix}$$

Simulación de Vectores aleatorios

Realizaciones iid de un VeA uniforme de dimensión 1x5

```
>> x = rand(1,5)

Esta is UNA realización

del Ve A .

[0.0975 0.2785 0.5469 0.9575 0.9649]
```

Realizaciones iid de un VeA normal de dimensión 1x5

```
>> x = randn(1,5)
x =
-1.3499 3.0349 0.7254 -0.0631 0.7147
```

2 realizaciones iid de un VeA uniforme de dimensión 1x5

```
>> x = rand(2,5)

x =

0.4519  0.8644  0.5398  0.6779  0.7095

0.7685  0.7278  0.7395  0.5265  0.3678
```

También puede verse como 5 realizaciones iid de un VeA uniforme de dimensión 2x1

```
>> x = rand(2,5)

x =

0.4519  0.8644  0.5398  0.6779  0.7095

0.7685  0.7278  0.7395  0.5265  0.3678
```

2 realizaciones iid de un VeA uniforme de dimensión 1x5

También puede verse como 5 realizaciones iid de un VeA uniforme de dimensión 2x1

```
>> x = rand(2,5)

x =

0.4519  0.8644  0.5398  0.6779  0.7095

0.7685  0.7278  0.7395  0.5265  0.3678
```

2 realizaciones iid de un VeA uniforme de dimensión 1x5

```
>> x = rand(2,5)

x =

0.4519  0.8644  0.5398  0.6779  0.7095

0.7685  0.7278  0.7395  0.5265  0.3678
```

También puede verse como 5 realizaciones iid de un VeA uniforme de dimensión 2x1

Actividad 3

Actividad 3 Vectores aleatorios

Genere N = 200 muestras para definir los siguientes vectores aleatorios.:

- 1. Para el vector $\mathbf{U} = [U_1 \ U_2]^T$, genere dos variables uniformes, $U_1 \sim U(0;2)$ y $U_2 \sim U(0;3)$.
- 2. Para el vector $\mathbf{X} = [X_1 \ X_2]^{\mathsf{T}}$ genere muestras de las variables $X_1 \ \mathsf{y} \ X_2$ a partir de $U_1 \ \mathsf{y} \ U_2$, tal que $X_1 = 0.5 \ U_1 0.3 \ U_2 \ \mathsf{y} \ X_2 = 0.7 \ U_1 + 0.2 \ U_2$.
- 3. Para el vector $\mathbf{Y} = [Y_1 \ Y_2]^T$, genere muestras de las variables Y_1 y Y_2 a partir de U_1 y U_2 , tal que $Y_1 = 1.2 \ U_1 0.1 \ U_2$ y $Y_2 = U_1 + 0.1 \ U_2$.

Haga el gráfico de dispersión (ej: scatter(u1, u2)) y calcule el coeficiente de correlación para cada uno de casos. Thruinn un In puto cana

Nota: defina el límite de los ejes del gráfico con axis([-1 3 -1 3]).

Actividad 4 Vectores aleatorios

$$\varrho(U_1, U_2) = -0.0112$$

Actividad 4 Vectores aleatorios

 $\varrho(X_1, X_2) = 0.3628$ 3 palobrer q'arustan a todo atudiante: ME toDO DEL

JACOBIANO

Actividad 4 Vectores aleatorios

$$\varrho(Y_1, Y_2) = 0.9570$$

Ejercicio

Ejercicio (Transformación Box Muller)

Sean U_1 , U_2 dos variables aleatorias independientes uniformes ~U(0; 1).

1. Halle la densidad conjunta de las variables:

$$\begin{cases} R = \sqrt{-2\ln(U_1)} \\ \Theta = 2\pi U_2. \end{cases}$$

Verifique que R tiene distribución Rayleigh, que Θ es uniforme y que son independientes (¿por que?).

Halle la densidad conjunta de las variables:

$$\begin{cases} Z_1 = R\cos\Theta \\ Z_2 = R\sin\Theta \end{cases}$$

y demuestre que se trata de variables normales estándar independientes. '