IBM Watson Seminar

String Kernels and Cluster Kernels for Protein Classification

Christina Leslie
Department of Computer Science
Columbia University

Protein Sequence Classification

- Protein represented by sequence of amino acids, encoded by a gene
- Easy to sequence proteins, difficult to obtain structure

 Classification Problem: Learn how to classify protein sequence data into families and superfamilies defined by structure/function relationships
 3D Structure

Sequence

VLSPADKTNVKAAWGKVGAHAGEYGAEALER MFLSFPTTKTYFPHFDLSHGSAQVKGHGKKV ADALTNAVAHVDDMPNALSALSDLHAHKLRV DPVNFKLLSHCLLVTLAAHLPAEFTPAVHAS LDKFLASVSTVLTSKYR

Class
Globin family
Globin-like superfamily

Function
Oxygen transport

Structural Hierarchy of Proteins

- Remote homologs: sequences that belong to the same superfamily but not the same family – remote evolutionary relationship
- Structure and function conserved, though sequence similarity can be low

Learning Problem

- Use discriminative supervised learning approach to classify protein sequences into structurally-related families, superfamilies
- Labeled training data: proteins with known structure, positive (+) if example belongs to a family or superfamily, negative (-) otherwise
- Focus on remote homology detection

Approach: Support vector machines (SVMs) with new *string kernels* based on inexact string matching

Labeled Training Sequences

Classification Rule

Beyond Classification: Protein Ranking

- Ranking problem: given query protein sequence, return ranked list of similar proteins from sequence database
- Limitations of classification framework
 - Small amount of labeled data (proteins with known structure), huge unlabeled databases
 - Missing classes: undiscovered structures
- Good local similarity scores, based on heuristic alignment: BLAST, PSI-BLAST

Approach: Use new *semi-supervised learning* methods – training on labeled and unlabeled data – to improve ranking performance

Outline

- 1. Protein classification: Mismatch kernel
 - SVMs and kernel methods
 - Inexact matching through mismatches
 - Efficient kernel computation, fast prediction
- 2. Experimental results on SCOP dataset
- 3. Other models for inexact matching
 - Kernels from gaps, substitutions, wildcards
- 4. Cluster kernels: Semi-supervised methods
 - Using unlabeled data to change the kernel

Support Vector Machine (SVM) Classifiers

 Training examples mapped to (usually high-dimensional) feature space by a feature map

$$F(x) = (F_1(x), ..., F_N(x))$$

Learn linear classifier in feature space

$$f(x) = [w, F(x)] + b$$

by solving optimization problem: trade-off between maximizing *geometric margin* and minimizing margin violations

 Large margin gives good generalization performance, even in high dimensions

Kernels for Discrete Objects

- Kernel trick: To train an SVM, can use kernel rather than explicit feature map
- Can define kernels for sequences, graphs, other discrete objects:

{ sequences } $\xrightarrow{\mathsf{F}} \mathsf{R}^\mathsf{N}$ For sequences x, y, feature map F, kernel value is inner product in feature space $\mathsf{K}(x, y) = | \mathsf{F}(x), \mathsf{F}(y) | |$

 Original string kernels [Watkins, Haussler, later Lodhi et al.] require quadratic time in sequence length, O(|x| |y|), to compute each kernel value K(x, y)

String Kernels for Biosequences

- We'll define new fast string kernels for biological sequence data
 - Biologically-inspired underlying feature map
 - Kernels scale linearly with sequence length,
 O(c_K(|x| + |y|)) to compute
 - Protein classification performance competitive with best available methods
 - Mismatches for inexact sequence matching (other models later)

Spectrum-based Feature Map

- Idea: feature map based on spectrum of a sequence
 - The k-spectrum of a sequence is the set of all k-length contiguous subsequences that it contains
 - Feature map is indexed by all possible k-length subsequences ("k-mers") from the alphabet of amino acids
 - Dimension of feature space = |□|^k
 (|□| = 20 for amino acids)

```
AKQDYYYYEI
AKQ
 KQD
  ODY
    DYY
     YYY
      YYY
       YYE
         YEI
```

k-Spectrum Feature Map

Feature map for k-spectrum with no mismatches:

For sequence
$$x$$
, $F_{(k)}(x) = (F_t(x))_{\{k-\text{mers }t\}}$, where $F_t(x) = \#\text{occurrences of }t \text{ in }x$

C. Leslie, E. Eskin, and W. Noble, *The Spectrum Kernel: A String Kernel for SVM Protein Classification*. Pacific Symposium on Biocomputing, 2002.

Inexact Matching through Mismatches

- For k-mer s, the mismatch neighborhood N_(k,m)(s) is the set of all k-mers t within m mismatches from s
- Size of mismatch neighborhood is O(|□|^mk^m)

(k,m)-Mismatch Feature Map

Feature map for k-spectrum, allowing m mismatches:

For a k-mer
$$s$$
, $F_{(k,m)}(s) = (F_t(s))_{\{k-mers\ t\}}$,
where $F_t(s) = 1$ if t is in neighborhood $N_{(k,m)}(s)$,
 $F_t(s) = 0$ otherwise

Extend additively to longer sequences x by summing over all k-mers s in x

C. Leslie, E. Eskin, J. Weston and W. Noble, *Mismatch String Kernels for SVM Protein Classification*. Neural Information Processing Systems 2002.

Computing the (k,m)-Mismatch Kernel

- Use mismatch tree to organize lexical traversal of all instances of k-mers (with mismatches) in the training data
 - Each path down to a leaf corresponds to a coordinate in feature map
 - Kernel values for all training sequences updated at each leaf node
 - Depth-first traversal can be accomplished with recursive function

Computing the Kernel for Pair of Sequences

Traversal of trie for k=3, m=1

X: EADLALGKAVF

y: ADLALGADQVFNG

^ ^ ^ ^ ^ ^ ^

Computing the Kernel for Pair of Sequences

Traversal of trie for k=3, m=1

y: ADLALGADQVFNG

Computing the Kernel for Pair of Sequences

Traversal of trie for k=3, m=1 X:**ADLALGADQVFNG** Update kernel value for K(x,Scales linearly with y) by adding contribution length, for feature **ADL** $O(k^{m+1}||||m(|x|+|y|))$

SVM Solution

 Linear classifier defined in feature space by

$$f(x) = []w, F(x) []+ b$$

where sign($f(x)$) gives
prediction

SVM solution gives normal vector

$$\mathbf{w} = \prod_i y_i \prod_i F(x_i)$$

as a linear combination of
support vectors, involving
weights \prod_i and labels y_i

Fast prediction

- SVM training determines subset of training sequences corresponding to support vector sequences and their weights: (x_i, □_i)
- Linear decision rule in feature space:

$$f(x) = \prod_i y_i \prod_i \prod F(x_i), F(x) \prod + b$$

- F(x) is sum of feature vectors F(s) for k-mers s in x
 - Precompute per k-mer scores for classifier
 - ☐ Test sequences can be classified in *linear time* via lookup of k-mers

Outline

- Protein classification: Mismatch kernel
 - SVMs and kernel methods
 - Inexact matching through mismatches
 - Efficient kernel computation, fast prediction
- 2. Experimental results on SCOP dataset
- 3. Other models for inexact matching
 - Kernels from gaps, substitutions, wildcards
- 4. Cluster kernels: Semi-supervised methods
 - Using unlabeled data to change the kernel

SCOP Experiments

Fold

Superfamily

Family

 Tested with experiments on SCOP dataset from Jaakkola et al.

Experiments designed to ask: Could the method discover a new family of a known superfamily?

SCOP Experiments

- 160 experiments for 33 target families from 16 superfamilies
- Compared results against
 - SVM-Fisher (HMM-based kernel)
 - SAM-T98 (profile HMM)
 - PSI-BLAST (heuristic alignment-based method)
- ROC scores: area under the graph of true positives as a function of false positives, scaled so that both axes vary between 0 and 1

Results Across All Target Families

Background on Fisher-SVM

- Previous solution [Jaakkola, Diekhans, Haussler]:
 - Use positive examples to train profile HMM, (M_+, \square_0)
 - For each training example x, Fisher score is gradient of log-likelihood score for x given M_+ (evaluated at \square_0)

- Method relies on generative model
 - Requires large amount of data or sophisticated priors to train M₊
 - Expensive: dynamic programming (quadratic in sequence length) – for each sequence x, forwardbackward algorithm to compute features

Aside: Connection with Fisher Kernel

 Consider order k-1 Markov chain model for positive sequences, with parameters

- Corresponding Fisher coordinate for x is (#occurrences of s₁.. s_{k-1}t in x)/□^{t|s₁..s_{k-1}}
 - \square (#occurrences of $s_1...s_{k-1}$ in x)
- Fisher kernel for Markov chain model similar to k-spectrum kernel

Interpretation of Mismatch-SVM

Classifier

- Rank features by |w_i|, associate to +/class by sign(w_i)
- Top positivelyweighted k-mer features learned by SVM map to conserved regions in the multiple alignment of positive training sequences

```
>saq..--ksp..aelksifek..yaakeg....dpnqlsk...eel......
..kgligaef...........p.....p......
>snklh-----fafrl..yd-ldk....d-ekisr...del......
..lqvlrmmv.....gvnisdeqlgsi
>maa..pldqai..qllvatfhk..ysqkeq....dknslsk...qel......
..keliqkelti.....g.....g......
>sfqqf-----kvfd-..--edg....d-gyisa...rel......
..qmvlgk-1.....g.....g.....
>snklh-----fafrl..yd-ldk....d-dkisr...del......
..lqvlrmmv.....gvnisdeqlgsi
>sll.....prtlddl
...fqeldkn...gdgevSFEEFQvlvkkisq.....
...iqeadqd...gdsaiSFTEFVkvl----ekvdv.
>pkl......k....d.....ae-iaql.
...medldrn...kdgeVNFQEyvtflgalamiynea.
>---...idrvekm
...ivsvdsn...rdGRVDFFEFkdmm----rsvlv.
...iqeadqd...gdsaiSFTEFVkvl----ekvdv.
```

Interpretation of Mismatch-SVM

Classifier

- Rank features by |w_i|, associate to +/class by sign(w_i)
- Top positivelyweighted k-mer features learned by SVM map to conserved regions in the multiple alignment of positive training sequences

Interpretation of Mismatch-SVM

Classifier

- Rank features by |w_i|, associate to +/- class by sign
- Top positivelyweighted k-mer features learned by SVM map to conserved regions in the multiple alignment of positive training sequences

Advantages of Mismatch-SVM

- Mismatch-SVM performs as well as SVM-Fisher but avoids computational expense, training difficulties of profile HMM
- Advantages of string kernel:
 - Efficient computation: scales linearly with sequence length
 - Fast prediction: classify test sequences in linear time
 - Interpretation of learned classifier
 - General approach for biosequence data, does not rely on alignment or generative model

Outline

- Protein classification: Mismatch kernel
 - SVMs and kernel methods
 - Inexact matching through mismatches
 - Efficient kernel computation, fast prediction
- 2. Experimental results on SCOP dataset
- 3. Other models for inexact matching
 - Kernels from gaps, substitutions, wildcards
- 4. Cluster kernels: Semi-supervised methods
 - Using unlabeled data to change the kernel

Other Fast(er) Kernels for Inexact Matching

- Mismatch kernel is linear in sequence length, but constant c_K = k^{m+1}|□|^m depends on alphabet size
- Other models for inexact matching can achieve $O(c_K(|x| + |y|))$ with c_K independent of |y|
 - Restricted gaps
 - Probabilistic substitutions
 - Wildcards

C. Leslie and R. Kuang, Fast String Kernels for Inexact String Matching. To appear, COLT/KW 2003.

Inexact Matching through Gaps

- For g-mer s, the gapped match set G_(g,k)(s) consists of all k-mers t that occur in s with (g k) gaps
- Size of gapped match set is O(g^{g-k}), independent of |□|

(g,k)-Gappy Kernel

Feature map:

```
For a g-mer s, F_{(g,k)}(s) = (F_t(s))_{\{k-\text{mers }t\}}, where F_t(s) = 1 if t is in set G_{(g,k)}(s), F_t(s) = 0 otherwise; extend additively by summing over g-mers s in x

AKQKL \longrightarrow (0, ..., 1, 1, ..., 1, ..., 1, ..., 0)

AKK AKL AKQ AQK
```

Weighted version with gap penalty, 0 < □ □ 1:</p>

Gives truncated version of Lodhi et al. string kernel

Gappy Kernel Computation

- Traverse instance g-mers in the data, greedily align to klength paths (k-mer features)
- At leaf node, count instances for each input sequence (or perform restricted dynamic programming for weighted version)

 \bigcirc O(c_K(|x| + |y|)) with c_K = g^{g-k+1}

Gappy Kernel SCOP Results

Inexact Matching through Probabilistic Substitutions

- Use substitution matrices to obtain P(a|b), substitution probabilities for residues a, b
- The mutation neighborhood M_(k,□)(s) is the set of all k-mers t such that

$$- \prod_{i=1...k} \log P(s_i|t_i) < \prod$$

```
For a k-mer s, map F_{(k, \square)}(s) = (F_t(s))_{\{k-\text{mers }t\}}, where F_t(s) = 1 if t is in neighborhood M_{(k,\square)}(s), F_t(s) = 0 otherwise; extend additively
```

 \Box $c_K = k N_{\Box}$, where N_{\Box} is max size of mutation neighborhood

Substitution Kernel SCOP Results

Inexact Matching through Wildcards

Introduce wildcard character "□", define feature space indexed by k-mers from □□ {□}, allowing up to m wildcards

```
For a k-mer s, F_{(k,m)}(s) = (F_t(s))_{\{k-mers\ t\}}, where F_t(s) = \prod^{\# wildcards\ in\ t}, if t matches s, F_t(s) = 0 otherwise; extend additively
```

☐ Using pruned depth k trie over ☐ {☐}, $c_{K} = k^{m+1}$

Wildcard Kernel SCOP Results

Related Recent String Kernel Work

- For exact matching case, Vishwanathan and Smola compute convex combinations of kernels using suffix trees
- Ben-Hur et al. define a motif kernel: features are known motifs, stored using trie
- Li and Noble use feature vectors of pairwise alignment scores (Smith-Waterman, BLAST)
- Can describe all the kernels here using transducer formalism (finite state automata) of Cortes et al.

Outline

- Protein classification: Mismatch kernel
 - SVMs and kernel methods
 - Inexact matching through mismatches
 - Efficient kernel computation, fast prediction
- 2. Experimental results on SCOP dataset
- 3. Other models for inexact matching
 - Kernels from gaps, substitutions, wildcards
- 4. Cluster Kernels: Semi-supervised methods
 - Using unlabeled data to change the kernel

Use of Unlabeled Data

- About 30,000 proteins with known structure (labeled proteins), but about 1 million sequenced proteins
- BLAST, PSI-BLAST: widely-used heuristic alignment-based sequence similarity scores
 - Good *local similarity score*, less useful for more remote homology
 - BLAST/PSI-BLAST E-values give good measure of distance between sequences
- Can we use unlabeled data, combined with good local distance measure, for semi-supervised approach to protein classification?

Cluster Kernels

- Use unlabeled data to change the (string) kernel representation
- Cluster assumption: decision boundary should pass through low density region of input space; clusters in the data are likely to have consistent labels
 - Profile kernel
 - Bagged kernel

J. Weston, C. Leslie, D. Zhou, A. Elisseeff, and W. S. Noble, Cluster Kernels for Semi-supervised Protein Classifiction. Submitted.

Profile Kernel

resent seque...

s neighborhood N(x): $F^{Profile}(x) = (1/|N(x)|) \prod_{x' \text{ in } N(x)} F(x')$ Represent sequence x by the average sequences in its neighborhood N(x):

$$\mathsf{F}^{\mathsf{Profile}}(x) = (1/|\mathsf{N}(x)|) \bigsqcup_{x' \text{ in } \mathsf{N}(x)} \mathsf{F}(x')$$

Profile kernel:

$$\mathsf{K}^{\mathsf{Profile}}(x,y) = (1/|\mathsf{N}(x)||\mathsf{N}(y)|) \bigsqcup_{\mathsf{N}(x) \times \mathsf{N}(y)} \mathsf{K}(x',y')^{\bullet}$$

Use PSI-BLAST distance and mismatch kernel as base kernel

Profile kernel addresses cluster assumption

Bagged Kernel

- Use k-means clustering to cluster data (labeled + unlabeled), N bagged runs
- Using N runs, define
 p(x,y) = (# times x, y are in same cluster)/N
- Bagged kernel:

$$K^{\text{Bagged}}(x,y) = p(x,y) K(x,y)$$

 Use PSI-BLAST for clustering, mismatch kernel for underlying kernel

,

Experimental Set-up

- Full dataset: 7329 SCOP protein sequences
- Experiments:
 - 54 target families (remote homology detection)
 - Test + training approximately for each experiment <4000 sequences, other data treated as unlabeled
- Evaluation: How well do cluster kernel approaches compare to the standard approach, adding positive homologs to dataset?

Results for Cluster Kernels

Conclusions

- SVMs with string kernels like mismatch kernels that incorporate inexact matching are competitive with best-known methods for protein classification
- Efficient kernel computation: $O(c_K(|x| + |y|))$, linear-time prediction, feature extraction
- Gaps, substitutions, and wildcards give kernel constant c_K that is independent of alphabet size
- Semi-supervised cluster kernels using unlabeled data to modify kernel representation – improve on original string kernel

Future Work

- Full multiclass protein classification problem
 - 1000s of classes of different sizes, hierarchical labels
 - Use of unlabeled data for improving kernel representation
- Domain segmentation problem: predict and classify domains of multidomain proteins
- Develop and implement <u>semi-supervised ranking</u> approaches, make available on web server
- Local structure prediction: predict local conformation state (backbone angles) for short peptide segments, step towards structure prediction

Protein Ranking

- Pairwise sequence comparison: most fundamental bioinformatics application
- BLAST, PSI-BLAST: widely-used heuristic alignment-based sequence similarity scores
 - Given query sequence, search unlabeled database and return ranked list of similar sequences
 - Query sequence does not have to belong to known family or superfamily
 - Good local similarity score, less useful for more remote homology
- Can we use <u>semi-supervised machine learning</u> to improve on PSI-BLAST?

Joint work with J. Weston, A. Elisseeff, and W. S. Noble

Ranking Induced by Clustering

Idea: Map out protein sequence space by performing constrained clustering, using label constraints

- Use dissimilarity measure derived from PSI-BLAST
- Best to use constrained clustering for model selection (number of clusters) based on labeled data, then use regular efficient clustering algorithms
 - Generalized ("kernel") k-means
 - Hierarchical clustering (average linkage)

Experimental Set-up for Ranking

- Training set: 4246 SCOP protein sequences (from 554 superfamilies) – known classes
- Test set:
 - 3083 SCOP protein sequences (from 516 different superfamilies) – hidden classes
 - 101,403 unlabeled sequences from SWISSPROT
- Task: How well can we retrieve database sequences (from train + test sets) in same superfamily as query? Evaluate with ROC-50 scores
- For initial experiments, SWISSPROT sequences only used for PSI-BLAST scores, not for clustering

Ranking Results for Clustering

Label Propagation

- Zhu and Ghahramani: Propagate labels through dense regions of example space
- Y is m x 2 matrix of label probabilities, where m is number of examples
- Clamp known labels:(1,0) for class 1, (0,1) for class 2
- K is matrix of transition probabilities (sparse, derived from PSI-BLAST)

Iterate until convergence to fixed point:

- Propagate: Y

 K Y
- Row normalize Y
- Clamp known labels

Online Semi-Supervised Approach

- Idea: PSI-BLAST returns good high-confidence prediction scores, can rule out extremely lowconfidence scores
 - Given query, assign positive pseudo-label to sequences with good (small) E-values
 - Assign negative pseudo-label to sequences with poor (large) E-values
- Small number of (pseudo-)labeled examples, rest of database considered unlabeled: apply semisupervised technique
- Known class information not used, but can use for model selection

Ranking Results for Label-Prop

Ranking Results: Comparison with Structure-Structure Scores

(5,1)-Mismatch vs Fisher Using ROC Scores

(5,1)-Mismatch vs Fisher Using ROC-50 Scores

(5,1)-Mismatch vs. 3-Spectrum Using ROC Scores

(5,1)-Mismatch vs. 3-Spectrum Using ROC-50 Scores

