

G Spójny => Gv, Gu spójne

(=) G = (V, E), $(V_1, V_2) \in S \iff$ $\forall straige \'s\'a\'e ka z <math>V_1 do V_2$ $G_V, G_U Sp\'ojne \implies \bigvee (\mathcal{V}, \mathcal{U}) \in S$ $\mathcal{V}, \mathcal{U}, \mathcal{U}$ $\mathcal{V} \neq \mathcal{U}$

 G_{V} spójne = $\sum_{v \in V} \{v, u\} \in S$

Gn spójne => H (v,v) es

Wybieramy wierzhotek współny x dla G_V , G_U Wienny, że $(x, V) \in S \land (x, u) \in S$, wtedy $(x, V) \in S$ orac $\forall (x, \tilde{v})$ $v \in V$, $v \neq m, V$

Wniosek:

 $\forall (\tilde{v}, \tilde{u}) \in S$, cyli Gjest spójny

=>) G spájny

Wybieramy nojdinissa scienka i usuwamy jej końce.

Gdy by usunière téóregos = tranców
rozspójnito graf, to by znacyto, że
istniot most do któnegos z tych pundtów,
czyhi scieżka bytoby przedłużalna
o graf stojący za mostem.

Sprecenosé z zortozemem o otnyosú sajeżti.

