Stepper motor?

* Applies a DC electricity in a controlled Sequence to get the movement * One pulse -> one movement generally (1-8° perstep) * open loop system

* moves in descrete steps.

Types of Stepper Motors

- 1. Permanent Magnet Stepper Motor
 - Uses a permanent magnet rotor.
 - Moves in discrete steps when the stator windings are energized.
 - Good for low-speed and high-torque applications.
- 2. Variable Reluctance Stepper Motor
 - · Uses a non-magnetic, toothed rotor.
 - Moves based on the principle of minimizing magnetic reluctance.
 - Less common but useful for high-speed applications.
- 3. Hybrid Stepper Motor (Most common type)
 - Combines features of both permanent magnet and variable reluctance types.
 - Offers better torque and precision.
 - Typically used in 3D printers, CNC machines, and robotics.

bub -> High power consumption low efficiency Possible step loss.

No seechack system to track position

Closed loop Stepper motor

* Includes feedback system (encoder) to monitor position and adjust its movement in realtime.

How9.

- 1. Controller sends step pulses.
- 2. The stepper motor votates according to the given steps.
- 3. A sensor Coptical or magnetic) monitors the actual position of the rotor.
- 4. Controller compares the actual position with the commanded position
- 5. If there is a mismatch controller compensates by adjusting current or reapplying steps-

Applications of Closed-Loop Stepper Motors

- CNC Machines Prevents position loss in machining operations.
- 3D Printers Ensures accurate layer positioning without step loss.
- Robotics Provides precise movement with adaptive torque.
- Medical Equipment High accuracy in devices like automated syringes and scanning mechanisms.
- Automated Manufacturing Reduces errors in production lines.

Advantages of Closed-Loop Stepper Motors

- No Lost Steps The system detects and corrects errors in real time.
- ☑ Higher Torque at High Speeds Unlike open-loop systems, torque does not drop off significantly.
- Energy Efficient Only consumes as much power as needed, reducing heat.
- Smoother Operation Reduces vibration and noise.
- Faster Acceleration & Deceleration Better for dynamic applications.

Disadvantages

- X More Expensive Additional components like encoders and advanced drivers increase cost.
- X More Complex Requires a feedback system and a more advanced controller.

Difference Between Open-Loop and Closed-Loop Stepper Motors

Feature Han	Open-Loop Stepper	Closed-Loop Stepper
Feedback	No	Yes (Encoder)
Accuracy a sign	Lower (may lose steps)	Higher (self-correcting)
Efficiency	Always draws max current	Adjusts current based on need
Torque Control	Fixed torque	Adaptive torque of its position
Cost	Lower	Higher
Heat Generation	Higher (constant current)	Lower (optimized current use)

