Problema de Condição Inicial: $y' = f(t,y), \quad y(a) = y_0, \quad t \in [a,b]$

Objectivo: Obter aproximação da solução exacta $y(t_i) \approx y_i$

Exercício:

Considere o problema de condição inicial $y' = -ty^2$, y(1) = 2, $t \in [1,2]$.

Determine uma aproximação para y(2) usando:

(a) o método de Euler explícito e:

i. h = 0.5

ii. h = 0.25

iii. h = 0.1

(b) o método de Runge-Kutta de 2ª ordem e:

i. h = 0.5

ii. h = 0.25

iii. h = 0.1

(c) Sabendo que a solução exacta do problema é dada por $y(t) = \frac{2}{t^2}$, construa tabelas como a que se segue e, compare a precisão dos resultados obtidos nas alíneas anteriores com o valor exacto de y(2)

			Aproxin	nações	Erros		
		$y(t_i)$	y_i	y_i	$ y(t_i)-y_i $	$ y(t_i)-y_i $	
$\underline{}$	t_i	exacta	Euler	RK2	Euler	$ y(t_i) - y_i $ RK2	
			3				

		1					

Resolução:

 $\mathbf{a})$

i)
$$h = 0.5$$
 « passo

1ºPasso:

Discretização do intervalo [a,b] = [1,2]

Atendendo ao facto de $h=\frac{b-a}{n} \Leftrightarrow n=\frac{b-a}{h}\,,\ a=1,\ b=2$ e $h=0.5\,,$ tem-se:

 $n = \frac{2-1}{0.5} = \frac{1}{0.5} = 2$ » partição o intervalo dado em 2 subintervalos com a mesma amplitude

2ºPasso:

Aplicar a equação iterativa o método de Euler » $y_{i+1} = y_i + hf(t_i, y_i)$ i = 0,...,n-1

Iterações:

•
$$i = 0$$
 $y_1 = y_0 + hf(t_0, y_0)$ $y_1 = 2 + 0.5 * f(1, 2)$ $y_1 = 2 + 0.5 * (-1 * (2^2)) \Leftrightarrow y_1 = 2 + 0.5 * (-4) \Leftrightarrow y_1 = 0$
• $i = 1$ $y_2 = y_1 + hf(t_1, y_1)$ $y_2 = 0 + 0.5 * f(1.5, 0)$ $y_2 = 0 + 0.5 * (-1.5 * (0^2)) \Leftrightarrow y_2 = 0$

Aproximação: $y(t_2) = y(2) \approx y_2 = 0$

b)

i)
$$h = 0.5$$
 « passo

 1° Passo: $\equiv 1^{\circ}$ passo (a)

Discretização do intervalo [a,b] = [1,2]

Atendendo ao facto de $h = \frac{b-a}{n} \Leftrightarrow n = \frac{b-a}{h}$, a = 1, b = 2 e h = 0.5, tem-se:

 $n=\frac{2-1}{0.5}=\frac{1}{0.5}=2\,$ » partição o intervalo dado em 2 subintervalos com a mesma amplitude

2ºPasso:

Aplicar a equação iterativa o método de Runge-Kutta de ordem 2

$$k_1 = hf(t_i, y_i)$$

$$k_2 = hf(t_{i+1}, y_i + k_1)$$

$$y_{i+1} = y_i + \frac{1}{2}(k_1 + k_2)$$
 $i = 0, ..., n-1$

Iterações:

$$k_1 = hf(t_0, y_0) = 0.5 * f(1, 2) = 0.5 * (-4) = -2$$

$$\bullet \quad i = 0 \qquad k_2 = hf(t_1, y_0 + k_1) = 0.5 * f(1.5, 0) = 0.5 * (0) = 0$$

$$y_1 = y_0 + \frac{1}{2}(k_1 + k_2) \Leftrightarrow y_1 = 2 + \frac{1}{2}(-2 + 0) \Leftrightarrow y_1 = 1$$

$$k_1 = hf(t_1, y_1) = 0.5 * f(1.5, 1) = 0.5 * (-1.5 * 1^2) = -0.75$$
• $i = 1$
$$k_2 = hf(t_2, y_1 + k_1) = 0.5 * f(2, 1 - 0.75) = 0.5 * (-2 * (-0.25)^2)$$

$$y_2 = 1 + \frac{1}{2}(-0.75 - 0.0625) \Leftrightarrow y_2 = 0.5938$$

Aproximação: $y(t_2) = y(2) \approx y_2 = 0.5938$

(c) Solução exacta do problema é dada por $\mathit{y}(t) = \frac{2}{t^2}$

			Aproxin	nações	Erros		
		$y(t_i)$	y_i	y_i	$ y(t_i)-y_i $	$ y(t_i)-y_i $	
i	t_i	exacta	Euler	RK2	Euler	RK2	
0	1	2	2	2	0	0	
1	1.5	0.8889	0	1	0.889	0.1111	
2	2	0.5	0	0.5938	0.5	0.0938	

Figura~1

USANDO AS FUNÇÕES IMPLEMENTADAS EM MATLAB SOBRE OS MÉTODOS »EULER, RK2 E RK4

ii)
$$h = 0.25$$
 « passo

		•	Aproximações			Erros		
		$y(t_i)$	y_i	y_i	y_i	$ y(t_i)-y_i $	$ y(t_i)-y_i $	$ y(t_i)-y_i $
i	t_i	exacta	Euler	RK2	RK4	Euler	RK2	RK4
0	1	2,00000	2,00000	2,00000	2,00000	0,00000	0,00000	0,00000
1	1,25	1,28000	1,00000	1,34375	1,28131	0,28000	0,06375	0,00131
2	1,5	0,88889	0,68750	0,94769	0,88988	0,20139	0,05880	0,00099
3	1,75	0,65306	0,51025	0,69766	0,65371	0,14281	0,04460	0,00065
4	2	0,50000	0,39635	0,53245	0,50043	0,10365	0,03245	0,00043

Figura~2

		-	Aproximações			Erros			
		$y(t_i)$	y_i	y_i	y_i	$ y(t_i) - y_i $	$ y(t_i)-y_i $	$ y(t_i)-y_i $	
i	t_i	exacta	Euler	RK2	RK4	Euler	RK2	RK4	
0	1	2,00000	2,00000	2,00000	2,00000	0,00000	0,00000	0,00000	
1	1,1	1,65289	1,60000	1,65920	1,65292	0,05289	0,00631	0,00003	
2	1,2	1,38889	1,31840	1,39740	1,38892	0,07049	0,00851	0,00003	
3	1,3	1,18343	1,10982	1,19231	1,18346	0,07361	0,00888	0,00003	
4	1,4	1,02041	0,94970	1,02885	1,02044	0,07071	0,00844	0,00003	
5	1,5	0,88889	0,82343	0,89659	0,88891	0,06546	0,00770	0,00002	
6	1,6	0,78125	0,72172	0,78812	0,78127	0,05953	0,00687	0,00002	
7	1,7	0,69204	0,63838	0,69811	0,69206	0,05366	0,00607	0,00002	
0	1,8	0,61728	0,56910	0,62262	0,61730	0,04818	0,00533	0,00001	
9	1,9	0,55402	0,51080	0,55869	0,55403	0,04321	0,00468	0,00001	
10	2	0,50000	0,46123	0,50410	0,50001	0,03877	0,00410	0,00001	

Figura~3