

Analyse Numérique - MO102

1ère année Techniques Avancées

Rapport de TP1

Réalisé par : Ben Amira Aziz Gassem Adam

Encadré par : M. AMDOUNI Saber

Année universitaire : 2023/2024

Exercice 1 : Le schéma décentré

$$H_n(u, v, w) = \begin{cases} v - \frac{\Delta t(n)}{h} (f(v) - f(u)), & \text{si } a(v) \ge 0\\ v - \frac{\Delta t(n)}{h} (f(w) - f(v)), & \text{si } a(v) < 0 \end{cases}$$
(1)

Question 1:

Dans le cas linéaire (1) a(v) = c, c'est une constante, le schéma s'écrit :

$$u_j^{n+1} = \begin{cases} u_j^n - \frac{\Delta t(n)}{h} c(u_j^n - u_{j-1}^n), & \text{si } c \ge 0\\ u_j^n - \frac{\Delta t(n)}{h} c(u_{j+1}^n - u_j^n), & \text{si } c < 0 \end{cases}$$
(2)

Si c est positive, le schéma est décentré à gauche, sinon le schéma est décentré à droite. Le schéma est donc décentré quel que soit le cas.

Question 2:

Dans le cas linéaire avec $x_0 = -2$ et $x_1 = 2$. Avec une condition initiale de type rampe, discontinue :

$$u_0(x) = \begin{cases} -\frac{1}{2}, & \text{si } x \in [-2, -\frac{1}{2}] \\ x, & \text{si } x \in [-\frac{1}{2}, 1] \\ -\frac{1}{2}, & \text{si } x \in [1, 2] \end{cases}$$
(3)

On va comparer la solution approchée avec la solution exacte pour $\alpha \in \{0.8, 1, 1.1\}$

FIGURE 1 – Évolution dans l'espace de la solution approchée et de la solution exacte pour $\alpha=0,8$

La solution numérique ne converge pas vers la solution exacte.

FIGURE 2 – Fibrage Correspondant

FIGURE 3 – Évolution dans l'espace de la solution approchée et de la solution exacte pour $\alpha=1$

La solution numérique converge exactement vers la solution exacte.

FIGURE 4 – Fibrage Correspondant

FIGURE 5 – Évolution de la solution approchée et de la solution exacte pour $\alpha=1.1$ La solution numérique ne convege pas, elle explose.

 $Figure\ 6-Fibrage\ Correspondant$

Question 3:

On se place maintenant dans le cas non linéaire avec le flux de Bürger défini par : $f(u) = \frac{u^2}{2}$ et dans ce cas a(u) = u. On calcule la solution exacte et on trouve :

$$u(x,t) = \begin{cases} -\frac{1}{2}, & \text{si } x < \sigma(t) \\ \frac{x}{t+1}, & \text{si } x \in \left[\frac{t+1}{2}, \sigma(t)\right] \\ -\frac{1}{2}, & \text{si } x > \sigma(t) \end{cases}$$
(4)

Exercice 2 : Schéma conservatif

Question 1:

Le schéma de Murman-Roe est une variante du schéma décentré qui adapte les différences finies décentrées à la direction de propagation de l'onde, ce qui permet d'améliorer la précision et la stabilité de la méthode numérique.

Question 2:

On a:

$$g(u,v) = \begin{cases} f(u), & \text{si } \tilde{a} \ge 0\\ f(v), & \text{si } \tilde{a} < 0 \end{cases}$$
 (5)

avec:

$$\tilde{a}(u,v) = \begin{cases} \frac{f(u) - f(v)}{u - v}, & \text{si } u \neq v \\ f'(u), & \text{si } u = v \end{cases}$$
 (6)

posons:

$$\tilde{a}^*(u,v) = \begin{cases} \operatorname{signe}(f(u) - f(v)) * \operatorname{signe}(u - v), & \text{si } u \neq v \\ \operatorname{signe}(f'(u)), & \text{si } u = v \end{cases}$$
 (7)

I. Cas 1: si u = v si $\tilde{a}(u, v) = f'(u)$ et $\tilde{a}^*(u, v) = \text{signe}(f'(u))$ alors

$$\tilde{a}(u,v) \geq 0 \Leftrightarrow f'(u) = \operatorname{signe}(\tilde{a}^*(u,v))$$
 alors $\tilde{a}(u,v) \geq 0 \Leftrightarrow \operatorname{signe}(f'(u)) = \tilde{a}^*(u,v) = 0$ ou 1 d'où $\tilde{a}(u,v) < 0 \Leftrightarrow \tilde{a}^*(u,v) = 0$ ou 1 et $\tilde{a}(u,v) < 0 \Leftrightarrow \operatorname{signe}(f'(u)) = -1 = \tilde{a}^*(u,v)$ d'où le résultat pour $u=v$

II. Cas 2:

$$u\neq v$$
 : si $u\neq v$ on a $\tilde{a}(u,v)=\frac{f(u)-f(v)}{u-v}$ et $\tilde{a}^*(u,v)=\mathrm{signe}(f(u)-f(v))*\mathrm{signe}(u-v)$ donc $\tilde{a}(u,v)\geq 0 \Leftrightarrow \mathrm{signe}(f(u)-f(v))=0=\mathrm{signe}(f(u)-f(v))*\mathrm{signe}(u-v)$ ou $\mathrm{signe}(f(u)-f(v))=\mathrm{signe}(u-v)\neq 0$ Donc $\tilde{a}(u,v)\geq 0 \Leftrightarrow \tilde{a}^*(u,v)=0$ ou 1

et
$$(u,v) < 0 \Leftrightarrow \operatorname{signe}(\frac{f(u)-f(v)}{u-v}) = -1$$
 Or $\operatorname{signe}(\frac{f(u)-f(v)}{u-v}) = -1 \Leftrightarrow \operatorname{signe}(f(u)-f(v)) \neq \operatorname{signe}(u-v)$ et $\operatorname{signe}(\frac{f(u)-f(v)}{u-v}) \neq 0$ donc $\tilde{a}(u,v) < 0 \Leftrightarrow \tilde{a}^* = -1$

donc on peut déduire :

$$g(u,v) = \begin{cases} f(u) & \text{si } \tilde{a}(u,v) \ge 0\\ f(v), & \text{si } \tilde{a}(u,v) > 0 \end{cases}$$
 (8)

avec:

$$\tilde{a}(u,v) \begin{cases} \frac{f(u)-f(v)}{u-v}, & \text{si } u \neq v \\ f'(u), & \text{si } u = v \end{cases}$$
 (9)

Ce qui signifie que

$$g(u,v) = \begin{cases} f(u) \text{ si } \tilde{a}(u,v)0 \text{ ou } 1\\ f(v), \text{ si } \tilde{a}(u,v) = -1 \end{cases}$$
 (10)

avec

$$\tilde{a}(u,v) = \begin{cases} \operatorname{signe}(f(u) - f(v)) * \operatorname{signe}(u - v), & \text{si } u \neq v \\ \operatorname{signe}(f'(u)), & \text{si } u = v \end{cases}$$
(11)

Question 4:

Pour $\alpha=0.5$ et $\alpha=1$ la solution numérique converge vers la solution exacte. Mais pour $\alpha=2$, la solution explose. La condition de Rankine - Hugoniot est vérifiée : la vitesse de choc est $s(t)=\frac{f(u_+)-f(u_-)}{u_+-u_-}$ représenté par $\tilde{a}(u,v)$ ($\tilde{a}(u,v)$ correspond à la vitesse du choc de la solution faible entropique)

FIGURE 7 – Évolution dans l'espace de la solution approchée et de la solution exacte pour $\alpha = 0, 5$ ainsi que le fibrage

FIGURE 8 – Évolution dans l'espace de la solution approchée et de la solution exacte pour $\alpha=1$ ainsi que le fibrage

FIGURE 9 – Évolution dans l'espace de la solution approchée et de la solution exacte pour $\alpha=2$ ainsi que le fibrage

Question 5:

La solution numérique ne converge pas vers la solution exacte, on n'observe pas une onde de détente car la solution numérique est discontinue en $x = -\frac{1}{2}$.

FIGURE 10 – Évolution dans l'espace de la solution approchée et de la solution exacte pour $\alpha=0.5$

Exercice 3 : Schéma monotone

Question 1:

Le schéma de Lax-Friedrichs est monotone avec un flux $g(u,v) = \frac{1}{2}(f(u)+f(v)) + \frac{h}{\Delta t}(u-v)$. g est régulière puisque f est régulière donc le schéma est conservatif.

Question 2:

On a
$$H_n(u, v, w) = \frac{1}{2}(u+v) - \frac{\Delta t(n)}{2h}(f(w) - f(u))$$
 sous la condition CFL on a $\alpha = \frac{a(u)\Delta t}{h} \leq 1$

Si on dérive H_n par rapport à u on aura $H'_n(u, v, w) = \frac{1}{2} + \frac{\Delta t(n)}{2h}a(u) > 0$ donc H_n est croissante par rapport à u Il est clair que H_n est croissante par rapport à v Si on dérive

 H_n par rapport à w on aura $H'_n(u,v,w)=\frac{1}{2}-\frac{\Delta t(n)}{2h}a(w)>0$ sous les conditions CFL On en conclut que le schéma de Lax-Friedrichs est monotone.

Question 3.

Le fichier contenant le code sera inclus avec le compte rendu

Question 4.

FIGURE 11 – Évolution dans l'espace de la solution approchée et de la solution exacte pour $\alpha=0.5$

FIGURE 12 – Évolution dans l'espace de la solution approchée et de la solution exacte pour $\alpha=1$

Pour $\alpha=0.5$ et $\alpha=1$ la condition CFL est satisfaite et plus qu'on se rapproche de 1 la solution converge vers la solution exacte. Le schéma est stable.

FIGURE 13 – Évolution dans l'espace de la solution approchée et de la solution exacte pour $\alpha=2$ ainsi que le fibrage

FIGURE 14 – Évolution dans l'espace de la solution approchée et de la solution exacte pour $\alpha=2$ ainsi que le fibrage

Alors que pour $\alpha > 1$ la condition CFL n'est pas satisfaite ainsi. le schéma est instable et la solution ne converge pas vers la solution exacte.

Le schéma de Lax-Friedrich permet d'aboutir à une solution approchée qui converge vers la solution faible entropique lors d'une détente et qui explose lors d'un choc lorsque la condition CFL n'est pas vérifiée.

Exercice 4: Le schéma de Godunov

Question 1:

On considère un problème de Riemann à deux états :

Cas 1:
$$u_g < u_d$$

Après avoir effectué un calcul des caractéristiques, on trouve que l'équation des caractéristiques s'écrit :

$$X(t) = \begin{cases} u_g t + x_0, & \text{si } x \in [x_{j-\frac{1}{2}}, x_j] \\ u_d t + x_0, & \text{si } x \in [x_j, x_{j+\frac{1}{2}}] \end{cases}$$
(12)

On trouve après un calcul de la solution que

$$u(x,t) = \begin{cases} u_g, & \text{si } x \in x < x_j + u_g t \\ \frac{x - x_j}{t} & \text{si } x \in [x_j + u_g t, x < x_j + u_d t] \\ u_d, & \text{si } x \in x > x_j + u_d t \end{cases}$$
(13)

Il suffit d'appliquer le flux de Bürgers.

Cas 2: $u_a > u_d$

On va avoir un choc, il faut vérifier la condition Rankine Hugoniot : $\sigma'(t) = \frac{u_g + u_d}{2}$ et $\sigma(t_n) = x_j$ alors $\sigma(t) = \frac{u_g + u_d}{2}t + x_j$

$$\begin{cases} u_g, & \text{si } x < \sigma(t) \\ u_d, & \text{si } x > \sigma(t) \end{cases}$$

Il suffit d'appliquer le flux de Bürger.

Question 2:

Le fichier contenant le code sera inclus avec le compte rendu.

Question 3:

FIGURE 15 – Évolution dans l'espace de la solution approchée et de la solution exacte pour $\alpha=0.4$ ainsi que le fibrage

FIGURE 16 – Évolution dans l'espace de la solution approchée et de la solution exacte pour $\alpha=1$ ainsi que le fibrage

FIGURE 17 – Évolution dans l'espace de la solution approchée et de la solution exacte pour $\alpha=2$ ainsi que le fibrage

FIGURE 18 – Évolution dans l'espace de la solution approchée et de la solution exacte pour $\alpha=3$ ainsi que le fibrage

Question 4:

FIGURE 19 – Évolution dans l'espace de la solution approchée et de la solution exacte pour $\alpha=0.4$

FIGURE 20 – Évolution dans l'espace de la solution approchée et de la solution exacte pour $\alpha=1$

FIGURE 21 – Évolution dans l'espace de la solution approchée et de la solution exacte pour $\alpha=2$

FIGURE 22 – Évolution dans l'espace de la solution approchée et de la solution exacte pour $\alpha=3$