#### 1

# GATE BM 2023 Quetion 9

## Snehil Singh EE22BTECH11050\*

### **Question:**

Out of 1000 individuals in a town, 100 unidentified individuals are covid positive. Due to lack of adequate covid-testing kits, the health authorities of the town devised a strategy to identify these covid-positive individuals. The strategy is to:

- 1) Collect saliva samples from all 1000 individuals and randomly group them into sets of 5.
- 2) Mix the samples within each set and test the mixed sample for covid.
- 3) If the test done in (ii) gives a negative result, then declare all the 5 individuals to be covid negative.
- 4) If the test done in (ii) gives a positive result, then all the 5 individuals are separately tested for covid. Given this strategy, no more than testing kits will be required to identify all the 100 covid positive individuals irrespective of how they are grouped
  - 1) 700
  - 2) 600
  - 3) 800
  - 4) 1000

### **Solution:**

#### Given:

| Parameter                            | Value |
|--------------------------------------|-------|
| Number of individuals                | 1000  |
| Strenght of each group               | 5     |
| Number of groups                     | 200   |
| Number of Covid positive individuals | 100   |

$$Number of test sinitially to examine each group = 200 (1)$$

| Probability                                | Value |
|--------------------------------------------|-------|
| Probability of individual testing positive | 0.1   |
| Probability of individual testing negative | 0.9   |

| Parameter | Value | Expression                      |  |
|-----------|-------|---------------------------------|--|
| n         | 5     | Number of individuals in group  |  |
| p         | 0.1   | Probability of testing positive |  |
| q         | 0.9   | Probability of testing negative |  |

$$Pr(X = k) = {}^{n} C_{n-k}(q)^{k}(p)^{n-k}$$
 (2)

$$= {}^{5}C_{k}(0.9)^{k}(0.1)^{5-k}$$
(3)

And the CDF is

$$F_X(k) = Pr(X \le k) \tag{4}$$

$$= \sum_{i=0}^{k} {}^{n}C_{i}(q)^{i}(p)^{n-i}$$
(5)

$$= \sum_{i=0}^{k} {}^{n}C_{i}(q)^{i}(p)^{n-i}$$

$$= \sum_{i=0}^{k} {}^{5}C_{i}(0.9)^{i}(0.1)^{5-i}$$
(5)
(6)

(7)

Where k is number of individuals tested positive Evaluating probability of every case in a group

| Parameter             | Calculation                   | Probability |
|-----------------------|-------------------------------|-------------|
| All positive          | $^{5}C_{5}(0.1)^{5}$          | 0.00001     |
| 4 positive 1 negative | $^{5}C_{4}(0.1)^{4}(0.9)$     | 0.00045     |
| 3 positive 2 negative | $^{5}C_{3}(0.1)^{3}(0.9)^{2}$ | 0.00810     |
| 2 positive 3 negative | $^{5}C_{2}(0.1)^{2}(0.9)^{3}$ | 0.07290     |
| 1 positive 4 negative | $^{5}C_{1}(0.1)^{1}(0.9)^{4}$ | 0.32805     |
| All negaive           | $^{5}C_{0}(0.9)^{5}$          | 0.5904      |

$$P_{(ofagroup testing positive)} = F_X(k)$$

$$= \sum_{i=0}^{4} {}^{5}C_{i}(0.9)^{i}(0.1)^{5-i}$$

$$= {}^{5}C_{5}(0.1)^{5} + {}^{5}C_{4}(0.1)^{4}(0.9) + {}^{5}C_{3}(0.1)^{3}(0.9)^{2} + {}^{5}C_{2}(0.1)^{2}(0.9)^{3} + {}^{5}C_{1}(0.1)^{1}(0.9)^{4}$$

$$(10)$$

$$= 0.00001 + 0.00045 + 0.0081 + 0.0729 + 0.32805$$
 (11)

$$= 0.4096$$
 (12)

Now calculating the expected number of sets:

$$Expected number of tests for one set = 1 + 5 * P_{(of a group testing positive)}$$
 (13)

$$= 1 + 5 * 0.4096 \tag{14}$$

$$= 3.048$$
 (15)

$$Total expected number of sets = 200 * (Expected number of tests for one set)$$
 (16)

$$= 200 * 3.048 \tag{17}$$

$$=609.6$$
 (18)

:. So 609.6 is the number of tests required to detect all the covid positive individuals. According to the options, no more than 700 tests will be required.

So, the correct answer is option A 700.