Teoria da Computação

Exame de Época Especial

Universidade da Beira Interior

2007-2008

A consulta dos apontamentos manuscritos e os apontamentos da disciplina (**e só esses**) é tolerada.

Proibido o uso de calculadora e de telemóvel.

Qualquer fraude implica reprovação na disciplina.

Só serão corrigidas as provas **legíveis**.

Relembramos que, na tradição da axiomática de Peano, a notação \mathbb{N} refere-se ao conjunto dos naturais incluindo o 0. Referiremo-nos ao conjunto dos naturais sem o 0 por \mathbb{N}^* .

1 Princípios da Teoria da Computação

Uma técnica popular para a demonstração de indecidibilidade de problemas, a técnica da redução, consiste em exibir uma transformação do problema estudado para um problema conhecido por ser indecidível.

Se encontrar uma solução para um problema A pode se transformar na (ou pode equivaler numa) procura duma solução para o um problema B, então se B não tem solução algorítmica de certeza que A também não tem. O problema A é assim igualmente indecidível.

Neste contexto, é importante que a referida transformação seja ela própria decidível (tem de existir um algoritmo que a efectue).

Diga porque esta última condição é essencial. Sugestão: digo por exemplo o que aconteceria (em termos de conclusão por tirar sobre o problema A) se a transformação não pudesse ser um algoritmo.

2 Técnicas de Demonstração

Utilize o princípios da gaiola de pombos para demonstrar o seguinte teorema:

Sejam $a_1 \dots a_n \in \mathbb{N}$, n inteiros naturais positivos distintos. Então existe sempre 2 destes valores cuja a diferença é divisível por n-1.

3 OCaml

Considere o tipo das árvores binárias:

```
type 'a bin_tree =
    Empty
  | Node of 'a bin_tree * 'a * 'a bin_tree
```

Defina uma função igual: 'a bin_tree -> 'a bin_tree -> bool que devolve true se o seu primeiro argumento contém exactamente os mesmos elementos que o seu segundo argumento, false señão.

4 Autómatos

Considere um autómato $M = \{Q, \Sigma, I, F, R_{\delta}\}$ não determinista com transições ϵ com |F| > 1. É sempre possível transformar um autómato como M num autómato não determinístico com transições ϵ equivalente M' possuindo um só estado final.

- 1. Proponha um algoritmo que realize tal transformação.
- 2. Demonstre (ou pelo menos dê um esboço de demonstração) que o autómato resultante M' é equivalente ao autómato M (ou seja que L(M) = L(M')). Esta propriedade é a propriedade de correcção do algoritmo proposto.

5 Autómatos de pilha

Defina um autómato com pilha que reconheça a linguagem $\{a^n.b^m.c^{n+m+p} \mid n,m,p \in \mathbb{N}\}.$

6 Máquinas de Turing

- 1. Diga que configuração atinge a execução da seguinte máquina $M = \{Q, \Gamma, \Sigma, \delta, q_0, \sharp, \emptyset\}$ sobre a palavra abba:
 - $Q = \{q_0, q_1, q_2, q_3\}$ • $\Gamma = \{a, b, A, A', B, B'\}$

 - $\Sigma = \{a, b\}$ • $\delta = q_0$ DireitaA' q_1 B'Direita q_0 q_3 Direita q_1 q_1 bbDireita q_1 AADireita q_1 q_1 DireitaBB q_1 # q_2 AEsquerda q_1 Esquerdaa q_2 ab q_2 bEsquerda q_2 AAEsquerda q_2 A'ADireita q_2 q_0 BEsquerda q_2 q_2 BB'BDireita q_2 q_0 Direita q_3 q_3 bbDireita q_3 ADireitaA q_3 BBDireita q_3 q_3 BEsquerda q_2