CMB 偏光観測衛星 LiteBIRD概念設計 インフレーション起源の原始重力波の探索

関本裕太郎 (JAXA)·堂谷忠靖(JAXA)·羽澄昌史(KEK)·小松英一郎 (MPA)·石野宏和(岡山大)·今田大皓(JAXA)·魚住聖 (岡山大)·宇都宮真(IPMU)·鹿島伸悟 (NAOJ)·片山伸彦 (IPMU)·桜井雄基 (IPMU)·篠崎慶亮(JAXA)·菅井肇(IPMU)· 辻本匡弘(JAXA)·冨田洋(JAXA)·永田竜 (KEK)·長谷部孝(JAXA)·松村 知岳 (IPMU)·満田和久(JAXA)·南雄人(KEK) 他 LiteBIRD phase A1チーム

ポスター

P-104:羽澄:LiteBIRD衛星のサイエンス、ミッション、プロジェクト概要

P-105: 石野: LiteBIRD衛星のシステム概要

P-106: 桜井・松村: LiteBIRD科学衛星のための偏光変調器の開発状況

P-107:金井·市来·片山: LiteBIRDのための前景放射除去アルゴリズムの検証 P-108:今田・長谷部: LiteBIRD望遠鏡光学系の物理光学および熱構造の検討

1

LiteBIRDの概要

Lite (light) satellite for the studies of B-mode polarization and Inflation from cosmic background Radiation Detection

- 宇宙マイクロ波背景放射 (CMB)の偏光を全天で観測
- 観測周波数: 34 448 GHz (15 bands)
- ISAS戦略的中型
- 2020年代 2号機

r: tensor to scalar ratio

$$r \equiv \frac{\Delta_{grav}^2(k_*)}{\Delta_R^2(k_*)}$$

Inflation potential energy

$$V^{1/4} = 1.1 \times 10^{16} \text{GeV} \left(\frac{r}{0.01}\right)^{1/4}$$

原始重力波 Bモード偏光

- インフレーション宇宙
 - Alan Guth 1981 Physical Review D
 - Katsuhiko Sato 1981 MNRAS 195, 467

- 地平線問題
- 平坦問題

・ インフラトンポテンシャル
$$V^{1/4} = 1.06 \times 10^{16} \times \left(\frac{r}{0.01}\right)^{1/4} [\mathrm{GeV}]$$

$$r \equiv rac{\Delta_{grav}^2(k_*)}{\Delta_R^2(k_*)}$$

- ・ 量子重力理論への制限
 - 代表的なsingle large field slow-roll modelでは r > 0.002
- ・ 時空の量子ゆらぎの発見

Fundamental Physicsにおける大きな意義

LiteBIRDの進展と現状

・ プロジェクト

- 2015年2月に宇宙研中型に提案、ミッション定義審査(MDR)を通過
- 2016年5月に国際科学審査、8月に計画審査2016年9月よりフェーズA1を開始
- PI 羽澄昌史 (KEK). チーム長 堂谷忠靖 (ISAS). プロジェクトサイエンティスト 小松英一郎 (MPA)
- ISAS、Kavli IPMU、KEKにおいて実行体制を増強中

• 学術会議

- 日本学術会議の指定する重点大型研究計画の一つ(マスタープラン2017)
- 文科省の指定する大型研究計画(7計画)の一つ(ロードマップ2017)
- 宇宙電波懇談会(2013)高エネルギー物理学研究者会議の将来計画検討小委員会答申 (2012,2017)

• 国際協力 米国

- 米国LiteBIRDチームが焦点面検出器を供給することをNASAに提案
- 概念検討 Concept Study Report (CSR)を終えて、2017年12月よりNASA Technology
 Developmentが始まる。

国際協力 ヨーロッパ

- 2017年ヨーロッパコンソーシアムが結成。High Frequency Telescopeとsub-Kelvin coolerを検討
- 2017年11月 ESA Science Program Committee (SPC)にて、MOの事前検討の承認
- 4つのJoint Study Group (Foreground, Systematics, High Frequency Telescope, Calibration)が結成されて、国際的に検討

国際的な競合

	LiteBIRD	CORE	PIXIE		
主体	JAXA	ESA M5 (AC	采択 (SA AO2017)		
特徴	大角度Bモード偏光	CMB全般	フーリエ分光計による CMBスペクトル測定		
ビームサイズ	0.3-1度	0.1 - 0.2度	2度		
打ち上げ予定年	LiteBIRDは世界で唯一の原始重力波の検出を2020 年代に行う可能性のある衛星計画 世界に先駆けて打ち上げるまたとない機会である。				

LiteBIRD衛星の感度

ミッション要求

 $r \equiv \frac{\Delta_{grav}^2(k_*)}{\Delta_R^2(k_*)}$

 $\delta r = 1.0E-3$

角度分解能

- 大角度相関観測
 - 角度分解能
 - スキャン方式
- 前景放射を同時観測
 - 広帯域多周波観測
- 高感度·高精度観測
 - ・ミリ波広視野観測
 - 観測検出器感度
 - 系統誤差の低減

角度スケール 全天観測

M. Hazumi et al. 2012

衛星のメリット

- 大気揺らぎによる影響がなくなる
- 広帯域観測が可能となる

LiteBIRD主な仕様

	仕様	
観測周波数	低周波望遠鏡 (LFT) 34 ~ 270 GHz (バンド数 12)	
	高周波望遠鏡 (HFT) 238 ~ 448 GHz (バンド数 3)	
感度	3 μK·arcmin 以下	
全誤差	$\delta r < 1 \times 10^{(-3)}$	
観測期間	3年間	
軌道	L2リサジュ軌道、歳差角 45度、スピン角 50度 (0.1 rpm)	
角度分解能	100 GHz の半値全幅で 30 分角以下	
視野	LFT (> 20度×10度), HFT (> 10度×10度)	
低温開口絞り	温度 < 2 K	
回転半波長板	回転速度 LFT 88 rpm, 温度 < 10 K	
	NETParray = 1.7 μ K \sqrt{s} @ 100 mK	
超伝導焦点面検出器	素子数 ~ 3000	
	f_{knee} 20 mHz 以下	
データ転送レート	4 GByte/day	
重量	2.2 ton	
電力	2.5 kW	

Phase A1における課題

- 1. 前景放射の除去
- 2. 系統誤差の低減
- 3. 回転半波長板の開発
- 4. 冷却系熱設計
- 5. 物理光学の検討
- 6. 検証方法の検討
- 7. 国際協力の確立

前景放射

Poster-107 金井(横国大)、市來 (名古屋大)、片山(IPMU)他 LiteBIRDのための前景放射除去アルゴリズム シンクロトロン放射

Band Sensitivity

| Noise Equivalent Temperature [KcMB \ Sec_100_10_2]
| Noise Equivalent Temperature [KcMB \ Sec_100_2]
| Noise Equivalent Tempe

IPA)

ESA: Planck

観測周波数(GHz)

- 1. 前景放射: Thermal dust & Synchrotron
- 2. 34 448 GHzの多数バンドでの観測

2014年3月 Bicep2 が150GHzにてr=0.2の報告 Phys. Rev. Lett. 112(24), 241101 "Detection of B-Mode Polarization at Degree Angular Scales by BICEP2" これによりダストの観測の重要性が明らかになった。

https://sites.google.com/berkeley.edu/bmodefromspace02/home

ダスト

LiteBIRD系統誤差の低減

テンソルスカラ一比 dr = 1e-3

- 偏波特性・ビーム特性
 - 冷却望遠鏡
 - HWP & 焦点面検出器
 - 上空較正
 - 地上較正試験
 - 温度安定性
- 1/f ノイズ
 - 偏光変調
- 宇宙線
- スキャン戦略
 - re-visit
 - cross link

石野宏和 (岡山大) 永田竜 (KEK) Poster -105

Poster 106 桜井雄基 (IPMU) 他

偏光変調器

直径	偏光効率	温度	排熱	回転速度	寿命
Ф 450 mm	> 98%	< 10 K	〈2 mW(観測時)	88 rpm	> 3年
Ψ430 mm	34 – 270 GHz	\ 10 K	〈 5 mW (再冷却時)	oo rpiii	/ 34

冷却系熱設計

低周波望遠鏡 (LFT)物理光学計算

Integration Scheme

Provisional

LFT calibration

- Scope
 - Beam measurements
 - Polarization angle measurements
 - Spectral responses
- Configuration
 - LFT
 - 5K enclosure
 - GSE sub-K cooler
- Test Environment
 - Dedicated chamber (T ~ 5K)
 - dia. 4m x h 5m
 - 77 K Liquid N2 + 4K GM cooler

Phase A1における課題

	現状	
1. 前景放射の除去	✓	Poster107 金井•片山
2. 系統誤差の低減	進行中	Poster105 石野
3. 回転半波長板の開発	進行中	Poster106 桜井•松村
4. 冷却系熱設計	✓	Poster108 今田●長谷部
5. 物理光学の検討	進行中	Poster108 今田●長谷部
6. 検証方法の検討	進行中	コストを含めて検討中
7. 国際協力の確立	✓	Poster104 羽澄

まとめ

- LiteBIRDは原始重力波からのCMB Bモード偏光を大角度 スケールで精密観測し、インフレーション物理を探求
- JAXA主導でNASA, ESAが参加
 - NASA、ESAを含めて、唯一の衛星ミッションの候補
- δr < 0.001達成のため、

$$r \equiv \frac{\Delta_{grav}^2(k_*)}{\Delta_R^2(k_*)}$$

- 前景放射分離(観測バンド、検出器感度)
- 系統誤差低減(ビーム性能、偏光変調機構、スキャン姿勢 etc)
- 較正精度向上 (上空、地上)

を最適化した観測システムを構築

• 2020年代戦略的中型2号機を目指して概念検討