CS57300 PURDUE UNIVERSITY APRIL 11, 2019

DATA MINING

ANNOUNCEMENT

- Next class: April 16 (Tuesday)
 - Guest lecture: Graphic models and casual inference (Professor Elias Bareinboim)
- April 18 (Thursday): No class; work on your final project
- April 23 & 25: Final project presentations
 - ▶ 5 minute presentation + 1 minute Q&A; order will be out soon
 - > Slides will be due on April 21, 11:59pm

PATTERN MINING

DATA MINING COMPONENTS

- ▶ Task specification: Pattern discovery
- Knowledge representation
- Learning technique
- Evaluation

PATTERN DISCOVERY

- Models describe entire dataset (or large part of it)
- Pattern characterizes local aspects of data
- Pattern: predicate/statement that returns "true" for the instances in the data where the pattern occurs and "false" otherwise

PATTERN IN TABULAR DATA

- \blacktriangleright Primitive pattern: subset of all possible observations over variables $X_1,...,X_p$
 - If X_k is categorical then $X_k=c$ is a primitive pattern
 - If X_k is ordinal then $X_k \le c$ is a primitive pattern
- Start from primitive patterns and combine using logical connectives such as AND and OR
 - age<40 AND income<100,000</p>
 - chips=1 AND (beer=1 OR soda=1)

PATTERN DISCOVERY TASK

- Find all "interesting" patterns in the data
 - Find a pattern that is frequently true
 - Find associative property between patterns

EXAMPLES

- Supermarket transaction database
 - ▶ 10% of the customers buy wine and cheese
- Telecommunications alarms database
 - If alarms A and B occur within 30 seconds of each other then alarm C occurs within 60 seconds with p=0.5
- Web log dataset
 - If a person visits the CNN website, there is a 60% chance the person will visit the ABC News website in the same month

KNOWLEDGE REPRESENTATION

RULE

- ► A rule is an expression of the form $\theta \rightarrow \phi$
- A statement about the co-occurrence of events/patterns
- Support (aka frequency)
 - ► $s(\theta \rightarrow \phi) = fr(\theta \land \phi) / N$
 - \blacktriangleright Proportion of N items with antecedent θ and consequent ϕ
- Confidence (aka accuracy)
 - $c(\theta \rightarrow \phi) = p(\phi \mid \theta) = fr(\theta \land \phi) / fr(\theta)$
 - \blacktriangleright Proportion of items which have antecedent θ that also have consequent ϕ

ASSOCIATION RULES

- Find all rules of the form $\theta \rightarrow \phi$ that satisfy the following constraints:
 - Support of the rule is greater than threshold s
 - Confidence of the rule is greater than threshold c

ASSOCIATION RULE EXAMPLE

- Support threshold: 30%, confidence threshold: 70%
- Flour -> Eggs
- Eggs -> Milk
- Milk -> Eggs
- ► Flour —> Milk
- Eggs, Flour -> Milk
- ► Flour, Milk -> Eggs

Transaction ID	beer	eggs	flour	milk
1	0	1	1	1
2	1	1	0	0
3	0	1	0	1
4	0	1	1	1
5	0	0	0	1

LEARNING

MODEL SPACE AND SEARCH

- Model space: All possible rules
- Suppose there are N binary variables
- Even if we only consider rules where θ and ϕ are conjunctions of $X_k=1$
 - We still have $\binom{N}{2}\binom{2}{1}+\binom{N}{3}\binom{3}{1}+\binom{3}{2})+\ldots+\binom{N}{N}\times(\binom{N}{1}+\binom{N}{2}+\ldots+\binom{N}{N-1})$ rules
- Searching for all patterns is computationally intractable

SOLUTION: THE APRIORI ALGORITHM

- Key idea: Decompose the search process into two steps
- First search for "frequent itemset": combinations of predicate whose support is above the threshold
- Then search among frequent items to prune rules whose confidence is below threshold

FINDING FREQUENT ITEMSETS

- Find sets of items with minimum support
- Support is monotonic
 - A subset of a frequent itemset must also be frequent
 - Eg. If {A,B} is a frequent itemset then both {A} and {B} are frequent itemsets as well
 - ▶ That is, if {A} is not a frequent itemset, then {A, B} can't be a frequent itemset either
- Approach
 - lteratively find frequent itemsets with cardinality from 1 to k (k-itemset)
 - Prune any sets of size k that are not frequent

PATTERN MINING

EXAMPLE

support threshold = 0.2

ALGORITHM TO FIND FREQUENT ITEMSETS

```
FrequentItemsetGeneration (D, minsup)
   % C_k: candidate itemsets of size k; L_k: frequent itemsets of size k
   L_1 = \{ frequent single items \}
  for (k=1; L_k!=\varnothing; k++)
      C_{k+1} = CandidateItemsetGeneration (L_k, minsup)
      for each transaction t in D
         increment the count of all candidates in C_{k+1} contained in t
      L_{k+1} = candidates in C_{k+1} with minsup
Return \bigcup_k L_k
```

GENERATING CANDIDATES

```
CandidateItemsetGeneration (L_k, minsup)
    % step 1: self-joining L_k
    C_{k+1} = \{\}
    For p in L_k, q in L_k, p!=q:
       Add p \cup q in C_{k+1} if |p \cup q| = k+1
   % step 2: pruning
   For c in C_{k+1}
       For all k-item subsets s of c
          If s not in L_k then delete c from C_{k+1}
```

EXAMPLE

support threshold = 0.3

EXAMPLE


```
Confidence
                                 3/4 = 0.75
eggs}
              \rightarrow {flour}
                                 3/3 = 1
flour}
                  {eggs}
                                 2/4 = 0.5
                  {milk}
eggs}
                                 2/4 = 0.5
milk}
                  {eggs}
                                 2/3 = 0.67
flour}
                  {milk}
                                 2/4 = 0.5
milk}
                  {flour}
                                 2/3 = 0.67
                  {milk}
eggs, flour}
              \rightarrow
                                 2/2 = 1
eggs, milk}
                  {flour}
                                 2/2 = 1
{flour, milk}
                  {eggs}
                                 2/4 = 0.5
                  {flour, milk}
eggs}
                  \{\text{eggs, milk}\}\ 2/3 = 0.67
flour}
              \rightarrow {eggs, flour} 2/4 = 0.5
[milk]
```

RULE GENERATION

▶ Given a frequent itemset L, find all non-empty subsets $f \in L$ such that $f \rightarrow (L - f)$ satisfies the minimum confidence requirement

If {A,B,C,D} is a frequent itemset, candidate rules:

```
ABC \rightarrowD, ABD \rightarrowC, ACD \rightarrowB, BCD \rightarrowA, A \rightarrowBCD, B \rightarrowACD, C \rightarrowABD, D \rightarrowABC AB \rightarrowCD, AC \rightarrow BD, AD \rightarrow BC, BC \rightarrowAD, BD \rightarrowAC, CD \rightarrowAB,
```

▶ If |L|=k then there are 2^k-2 candidate association rules (ignoring $L \to \emptyset$ and $\emptyset \to L$)

EFFICIENT RULE GENERATION

- Key insight: the confidence of rules generated from the same itemset is monotonic with respect to the number of items in the consequent
 - Recall that:

$$c(\theta \rightarrow \varphi) = p(\varphi \mid \theta)$$

Consider frequent itemset $L=\{A,B,C,D\}$:

$$c(ABC \to D) = P(D|ABC) = \frac{fr(ABCD)}{fr(ABC)}$$

$$c(ABC \to D) = P(D|ABC) = \frac{fr(ABCD)}{fr(ABC)}$$
$$c(AB \to CD) = P(CD|AB) = \frac{fr(ABCD)}{fr(AB)}$$

We know:
$$fr(ABC) \le fr(AB)$$
 and $\frac{1}{fr(ABC)} \ge \frac{1}{fr(AB)}$
thus: $c(ABC \to D) \ge c(AB \to CD) \ge c(A \to BCD)$

PRUNING RULES

ALGORITHM TO FIND RULES WITH HIGH CONFIDENCE

```
Let R_m=confident rules with m variable consequents
Let H_m=candidate rules with m variable consequents
RuleGeneration ( L, minconf )
  for (k=1; L_k!=\emptyset; k++)
      H<sub>1</sub>=candidate rules with single variable consequent from L<sub>k</sub>
      for (m=1; H_m!=\emptyset; m++)
         If k > m + 1:
            H_{m+1} = generate candidate rules from R_m
            R_{m+1} = select candidates in H_{m+1} with minconf
   Return \bigcup_m R_m
```

APRIORI ALGORITHM

- Input: data (D), minsup, minconf
- ▶ Output: All rules (\mathbf{R}) with support \geq minsup and confidence \geq minconf

```
Apriori Algorithm ( D, minsup, minconf )

% Find all itemsets with support ≥ minsup

L = FrequentItemsetGeneration ( D, minsup )

% Find all rules with confidence ≥ minconf

R = RuleGeneration ( L, minconf )

Return R
```

EVALUATION

EVALUATION

- Association rules algorithms usually return many, many rules
 - Many are uninteresting or redundant
 (e.g., ABC→D and AB→D may have same support and confidence)
- How to quantify interestingness?
 - Objective: statistical measures
 - Subjective: unexpected and/or actionable patterns (requires domain knowledge)

OBJECTIVE MEASURES

▶ Given a rule $X \rightarrow Y$, can compute statistics based on contingency tables

Contingency table for $X \to Y$

	Υ	Y	
X	f ₁₁	f ₁₀	f ₁₊
X	f ₀₁	f ₀₀	f _{o+}
	f ₊₁	f ₊₀	ΙΤΙ

 f_{11} : support of X and Y f_{10} : support of X and Y f_{01} : support of X and Y f_{00} : support of X and Y

Used to define various measures

support, confidence, lift, Gini,
 J-measure, etc.

DRAWBACK OF SUPPORT

- Support suffers from the rare item problem (Liu et al.,1999)
 - Infrequent items not meeting minimum support are ignored which is problematic if rare items are important
 - E.g. rarely sold products which account for a large part of revenue or profit
- Support falls rapidly with itemset size. A threshold on support favors short itemsets

PATTERN MINING

DRAWBACK OF CONFIDENCE

	Coffee	Coffee	
Tea	15	5	20
Tea	75	5	80
	90	10	100

Association Rule: Tea → Coffee

Confidence= P(Coffee|Tea) = 0.75

but P(Coffee) = 0.9

⇒ Although confidence is high, rule is misleading

 \Rightarrow P(Coffee|Tea) = 0.9375

PATTERN MINING

LIFT EXAMPLE

	Coffee	Coffee	
Tea	15	5	20
Tea	75	5	80
	90	10	100

Association Rule: Tea → Coffee

Confidence = P(Coffee|Tea) = 0.75

but P(Coffee) = 0.9

 \Rightarrow Lift = 0.75/0.9= 0.8333 (< 1, therefore is negatively associated)