MAR 2 9 2007 W

SEQUENCE LISTING

Ludevid, Dolores Torrent, Margarita Alvarez, Inaki Perez, Pascual <120> Amino acid-enriched plant protein reserves, particularly lysine-enriched maize gamma-zein, and plants expressing such proteins <130> 50062/004001 <140> US 09/117,246 <141> 1998-12-03 <150> PCT/FR97/00167 <151> 1997-01-28 <150> FR96/01004 <151> 1996-01-29 <160> 25 <170> PatentIn version 3.3 <210> 1 <211> 44 <212> DNA <213> Artificial Sequence <220> <223> based on Maize 44 cgatgaattc aaaccaaagc caaagccgaa gccaaaagaa ttca <210> 2 <211> 46 <212> DNA <213> Artificial Sequence <220> <223> based on Maize <400> 2 46 agcttgaatt cttttggctt cggctttggc tttggtttga attcat <210> 3 <211> 17 <212> PRT <213> Maize <400> 3

```
Ile Glu Phe Lys Pro Lys Pro Lys Pro Lys Pro Lys Glu Phe Leu Gln
               5
Pro
<210> 4
<211> 28
<212> PRT
<213> Maize
<400> 4
Ile Glu Phe Lys Pro Lys Pro Lys Pro Lys Pro Lys Glu Phe Lys Pro
                                  10
               5
Lys Pro Lys Pro Lys Glu Phe Leu Gln Pro
           20
<210> 5
<211> 20
<212> PRT
<213> Maize
<400> 5
Asp Gly Ile Asp Glu Phe Lys Pro Lys Pro Lys Pro Lys Glu
                                                     15
               5
                                  10
Phe Lys Leu Asp
           20
<210> 6
<211> 672
<212> DNA
<213> Maize
<220>
<221> CDS
<222> (1)..(672)
<400> 6
atg agg gtg ttg ctc gtt gcc ctc gct ctc ctg gct ctc gct gcg agc
                                                                   48
Met Arg Val Leu Leu Val Ala Leu Ala Leu Ala Leu Ala Ser
                                  10
gcc acc tcc acg cat aca agc ggc ggc tgc ggc tgc cag cca ccg ccg
                                                                   96
Ala Thr Ser Thr His Thr Ser Gly Gly Cys Gly Cys Gln Pro Pro
```

25

20

					ccg Pro												144
cca Pro	cct Pro 50	ccg Pro	gtg Val	cat His	ctc Leu	cca Pro 55	ccg Pro	ccg Pro	gtc Val	cac His	ctg Leu 60	ccg Pro	ccg Pro	ccg Pro	gtc Val		192
cac His 65	ctg Leu	cca Pro	ccg Pro	ccg Pro	gtc Val 70	cat His	gtg Val	ccg Pro	ccg Pro	ccg Pro 75	gtt Val	cat His	ctg Leu	ccg Pro	ccg Pro 80	•	240
cca Pro	cca Pro	tgc Cys	cac His	tac Tyr 85	cct Pro	act Thr	caa Gln	ccg Pro	ccc Pro 90	cgg Arg	cct Pro	cag Gln	cct Pro	cat His 95	ccc Pro		288
cag Gln	cca Pro	cac His	cca Pro 100	tgc Cys	ccg Pro	tgc Cys	caa Gln	cag Gln 105	ccg Pro	cat His	cca Pro	agc Ser	ccg Pro 110	tgc Cys	cag Gln		336
ctg Leu	cag Gln	gga Gly 115	acc Thr	tgc Cys	ggc Gly	gtt Val	ggc Gly 120	agc Ser	acc Thr	ccg Pro	atc Ile	ctg Leu 125	ggc Gly	cag Gln	tgc Cys		384
Val	Glu 130	Phe	Leu	Arg	cat His	Gln 135	Cys	Ser	Pro	Thr	Ala 140	Thr	Pro	Tyr	Cys		432
Ser 145	Pro	Gln	Cys	Gln	tcg Ser 150	Leu	Arg	Gln	Gln	Cys 155	Cys	Gln	Gln	Leu	Arg 160		480
Gln	Val	Glu	Pro	Gln 165	cac His	Arg	Tyr	Gln	Ala 170	Ile	Phe	Gly	Leu	Val 175	Leu		528
cag Gln	tcc Ser	atc Ile	ctg Leu 180	cag Gln	cag Gln	cag Gln	ccg Pro	caa Gln 185	agc Ser	ggc Gly	cag Gln	gtc Val	gcg Ala 190	ggg Gly	ctg Leu		576
Leu	Ālā	Ala 195	Gln	Ile		Gln	Gln 200	Leu	Thr	Ala	Met	Cys 205	Gly	Leu	Gln		624
cag Gln	ccg Pro 210	Thr	cca Pro	tgc Cys	ccc Pro	tac Tyr 215	Ala	gct Ala	gcc Ala	ggc Gly	ggt Gly 220	gtc Val	ccc Pro	cac His	tga		672

<210> 7 <211> 223 <212> PRT

<213> Maize

<400> 7

Met Arg Val Leu Leu Val Ala Leu Ala Leu Ala Leu Ala Ala Ser

Ala Thr Ser Thr His Thr Ser Gly Gly Cys Gly Cys Gln Pro Pro

Pro Val His Leu Pro Pro Pro Val His Leu Pro Pro Pro Val His Leu

Pro Pro Pro Val His Leu Pro Pro Pro Val His Leu Pro Pro Val

His Leu Pro Pro Pro Val His Val Pro Pro Pro Val His Leu Pro Pro

Pro Pro Cys His Tyr Pro Thr Gln Pro Pro Arg Pro Gln Pro His Pro

Gln Pro His Pro Cys Pro Cys Gln Gln Pro His Pro Ser Pro Cys Gln

Leu Gln Gly Thr Cys Gly Val Gly Ser Thr Pro Ile Leu Gly Gln Cys

Val Glu Phe Leu Arg His Gln Cys Ser Pro Thr Ala Thr Pro Tyr Cys

Ser Pro Gln Cys Gln Ser Leu Arg Gln Gln Cys Cys Gln Gln Leu Arg

Gln Val Glu Pro Gln His Arg Tyr Gln Ala Ile Phe Gly Leu Val Leu

Gln Ser Ile Leu Gln Gln Gln Pro Gln Ser Gly Gln Val Ala Gly Leu

Leu Ala Ala Gln Ile Ala Gln Gln Leu Thr Ala Met Cys Gly Leu Gln

Gln Pro Thr Pro Cys Pro Tyr Ala Ala Ala Gly Gly Val Pro His

<210> 8 <211> 693

<212> DNA <213> maize <220> <221> CDS <222> (1)..(693) <400> 8 48 atq aqq gtg ttg ctc gtt gcc ctc gct ctc ctg gct ctc gcg agc Met Arg Val Leu Leu Val Ala Leu Ala Leu Leu Ala Leu Ala Ser 96 gcc acc tcc acg cat aca agc ggc ggc tgc ggc tgc cag cca ccg ccg Ala Thr Ser Thr His Thr Ser Gly Gly Cys Gly Cys Gln Pro Pro ccg gtt cat cta ccg ccg ccg gtg cat ctg cca cct ccg gtt cac ctg 144 Pro Val His Leu Pro Pro Pro Val His Leu Pro Pro Pro Val His Leu 40 192 cca cct ccg gtg cat ctc cca ccg ccg gtc cac ctg ccg ccg gtc Pro Pro Pro Val His Leu Pro Pro Pro Val His Leu Pro Pro Val 55 cac ctg cca ccg ccg gtc cat gtg ccg ccg ccg gtt cat ctg ccg ccg 240 His Leu Pro Pro Pro Val His Val Pro Pro Pro Val His Leu Pro Pro 65 70 cca cca tgc cac tac cct act caa ccg ccc cgg atc gaa ttc aaa cca 288 Pro Pro Cys His Tyr Pro Thr Gln Pro Pro Arg Ile Glu Phe Lys Pro 85 aag cca aag ccg aag cca aaa gaa ttc aaa cca aag cca aag ccg aag 336 Lys Pro Lys Pro Lys Pro Lys Glu Phe Lys Pro Lys Pro Lys 100 cca aaa gaa ttc ctg cag ccc ctg cag gga acc tgc ggc gtt ggc agc 384 Pro Lys Glu Phe Leu Gln Pro Leu Gln Gly Thr Cys Gly Val Gly Ser 120 acc ccg atc ctg ggc cag tgc gtc gag ttt ctg agg cat cag tgc agc 432 Thr Pro Ile Leu Gly Gln Cys Val Glu Phe Leu Arg His Gln Cys Ser 130 135 ccg acg gcg acg ccc tac tgc tcg cct cag tgc cag tcg ttg cgg cag 480 Pro Thr Ala Thr Pro Tyr Cys Ser Pro Gln Cys Gln Ser Leu Arg Gln 155 150 145 528 cag tgt tgc cag cag ctc agg cag gtg gag ccg cag cac cgg tac cag Gln Cys Cys Gln Gln Leu Arg Gln Val Glu Pro Gln His Arg Tyr Gln 175 165 170 576 gcg atc ttc ggc ttg gtc ctc cag tcc atc ctg cag cag cag ccg caa Ala Ile Phe Gly Leu Val Leu Gln Ser Ile Leu Gln Gln Gln Pro Gln 185 180

agc ggc cag gtc Ser Gly Gln Val 195	gcg ggg c Ala Gly L	tg ttg gcg eu Leu Ala 200	gcg cag at Ala Gln Il	a gcg cag e Ala Gln 205	caa ctg 624 Gln Leu						
acg gcg atg tgc Thr Ala Met Cys 210	Gly Leu G			s Pro Tyr							
gcc ggc ggt gtc Ala Gly Gly Val 225		ga			693						
<210> 9 <211> 230 <212> PRT <213> maize											
<400> 9											
Met Arg Val Let 1	ı Leu Val A 5	la Leu Ala	Leu Leu Al	a Leu Ala	Ala Ser 15						
Ala Thr Ser Thi	His Thr S	er Gly Gly 25	Cys Gly Cy	s Gln Pro 30	Pro Pro						
Pro Val His Leu 35	ı Pro Pro P	ro Val His 40	Leu Pro Pr	o Pro Val 45	His Leu						
Pro Pro Pro Val		ro Pro Pro 5	Val His Le 60		Pro Val						
His Leu Pro Pro 65	o Pro Val H 70	is Val Pro	Pro Pro Va 75	l His Leu	Pro Pro 80						
Pro Pro Cys His	Tyr Pro T 85	hr Gln Pro	Pro Arg Il 90	e Glu Phe	Lys Pro 95						
Lys Pro Lys Pro		ys Glu Phe 105		rs Pro Lys 110	Pro Lys						
Pro Lys Glu Pho 115	e Leu Gln F	ro Leu Gln 120	Gly Thr Cy	rs Gly Val 125	Gly Ser						
Thr Pro Ile Le		ys Val Glu 35	Phe Leu Ar 14		Cys Ser						
Pro Thr Ala Th	r Pro Tyr C	ys Ser Pro	Gln Cys Gl	n Ser Leu	Arg Gln						

Gln Cys Cys Gln Gln Leu Arg Gln Val Glu Pro Gln His Arg Tyr Gln 165 170 175

Ala Ile Phe Gly Leu Val Leu Gln Ser Ile Leu Gln Gln Gln Pro Gln 180 185 190

Ser Gly Gln Val Ala Gly Leu Leu Ala Ala Gln Ile Ala Gln Gln Leu 195 200 205

Thr Ala Met Cys Gly Leu Gln Gln Pro Thr Pro Cys Pro Tyr Ala Ala 210 215 220

Ala Gly Gly Val Pro His 225 230

<210> 10

<211> 723 <212> DNA <213> Maize

<220>
<221> CDS
<222> (1)..(723)

<400> 10

atg agg gtg ttg ctc gtt gcc ctc gct ctc ctg gct ctc gct gcg agc

Met Arg Val Leu Leu Val Ala Leu Ala Leu Ala Leu Ala Leu Ala Ser

1 5 10 15

gcc acc tcc acg cat aca agc ggc ggc tgc ggc tgc cag cca ccg ccg
Ala Thr Ser Thr His Thr Ser Gly Gly Cys Gly Cys Gln Pro Pro
20 25 30

ccg gtt cat cta ccg ccg ccg gtg cat ctg cca cct ccg gtt cac ctg
Pro Val His Leu Pro Pro Pro Val His Leu Pro Pro Val His Leu
35
40
45

cca cct ccg gtg cat ctc cca ccg ccg gtc cac ctg ccg ccg ccg gtc

Pro Pro Pro Val His Leu Pro Pro Pro Val His Leu Pro Pro Pro Val

50 55 60

cac ctg cca ccg ccg gtc cat gtg ccg ccg ccg gtt cat ctg ccg ccg
His Leu Pro Pro Val His Val Pro Pro Pro Val His Leu Pro Pro
65 70 75 80

cca cca tgc cac tac cct act caa ccg ccc cgg cct cag cct cat ccc

Pro Pro Cys His Tyr Pro Thr Gln Pro Pro Arg Pro Gln Pro His Pro
85 90 95

cag cca cac cca tgc ccg tgc caa cag ccg cat cca agc ccg tgc cag Gln Pro His Pro Cys Pro Cys Gln Gln Pro His Pro Ser Pro Cys Gln 100 105 110	336
atc gaa ttc aaa cca aag cca aag ccg aag cca aaa gaa ttc ctg cag Ile Glu Phe Lys Pro Lys Pro Lys Pro Lys Pro Lys Glu Phe Leu Gln 115 120 125	384
ccc ctg cag gga acc tgc ggc gtt ggc agc acc ccg atc ctg ggc cag Pro Leu Gln Gly Thr Cys Gly Val Gly Ser Thr Pro Ile Leu Gly Gln 130 135 140	432
tgc gtc gag ttt ctg agg cat cag tgc agc ccg acg gcg acg ccc tac Cys Val Glu Phe Leu Arg His Gln Cys Ser Pro Thr Ala Thr Pro Tyr 145 150 155 160	480
tgc tcg cct cag tgc cag tcg ttg cgg cag cag tgt tgc cag cag ctc Cys Ser Pro Gln Cys Gln Ser Leu Arg Gln Gln Cys Cys Gln Gln Leu 165 170 175	528
agg cag gtg gag ccg cag cac cgg tac cag gcg atc ttc ggc ttg gtc Arg Gln Val Glu Pro Gln His Arg Tyr Gln Ala Ile Phe Gly Leu Val 180 185 190	576
ctc cag tcc atc ctg cag cag cag ccg caa agc ggc cag gtc gcg ggg Leu Gln Ser Ile Leu Gln Gln Gln Pro Gln Ser Gly Gln Val Ala Gly 195 200 205	624
ctg ttg gcg gcg cag ata gcg cag caa ctg acg gcg atg tgc ggc ctg Leu Leu Ala Ala Gln Ile Ala Gln Gln Leu Thr Ala Met Cys Gly Leu 210 215 220	672
cag cag ccg act cca tgc ccc tac gct gct gcc ggc ggt gtc ccc cac Gln Gln Pro Thr Pro Cys Pro Tyr Ala Ala Ala Gly Gly Val Pro His 225 230 235 240	720
tga	723
<210> 11 <211> 240 <212> PRT <213> Maize	
<400> 11	
Met Arg Val Leu Leu Val Ala Leu Ala Leu Leu Ala Leu Ala Ser 1 5 10 15	
Ala Thr Ser Thr His Thr Ser Gly Gly Cys Gly Cys Gln Pro Pro 20 25 30	
Pro Val His Leu Pro Pro Pro Val His Leu Pro Pro Pro Val His Leu 35 40 45	

Pro Pro Pro Val His Leu Pro Pro Pro Val His Leu Pro Pro Val 55 50 His Leu Pro Pro Pro Val His Val Pro Pro Pro Val His Leu Pro Pro 70 Pro Pro Cys His Tyr Pro Thr Gln Pro Pro Arg Pro Gln Pro His Pro 85 90 Gln Pro His Pro Cys Pro Cys Gln Gln Pro His Pro Ser Pro Cys Gln 100 105 Ile Glu Phe Lys Pro Lys Pro Lys Pro Lys Glu Phe Leu Gln 125 115 120 Pro Leu Gln Gly Thr Cys Gly Val Gly Ser Thr Pro Ile Leu Gly Gln 135 130 Cys Val Glu Phe Leu Arg His Gln Cys Ser Pro Thr Ala Thr Pro Tyr 160 155 150 145 Cys Ser Pro Gln Cys Gln Ser Leu Arg Gln Gln Cys Cys Gln Gln Leu 170 165 Arg Gln Val Glu Pro Gln His Arg Tyr Gln Ala Ile Phe Gly Leu Val 185 Leu Gln Ser Ile Leu Gln Gln Gln Pro Gln Ser Gly Gln Val Ala Gly 200 Leu Leu Ala Ala Gln Ile Ala Gln Gln Leu Thr Ala Met Cys Gly Leu 220 210 Gln Gln Pro Thr Pro Cys Pro Tyr Ala Ala Ala Gly Gly Val Pro His 240 235 230 225

<223> based on Maize

<213> Artificial Sequence

<210> 12 <211> 6 <212> PRT

<220>

```
<400> 12
Pro Lys Pro Lys
<210> 13
<211> 8
<212> PRT
<213> Artificial Sequence
<220>
<223> based on Maize
<400> 13
Pro Lys Pro Lys Pro Lys
1 5
<210> 14
<211> 10
<212> PRT
<213> Artificial Sequence
<220>
<223> based on Maize
<400> 14
Pro Lys Pro Lys Pro Lys Pro Lys
<210> 15
<211> 12
<212> PRT
<213> Artificial Sequence
<220>
<223> based on Maize
Pro Lys Pro Lys Pro Lys Pro Lys Pro Lys
1 5
<210> 16
<211> 14
<212> PRT
<213> Artificial Sequence
<220>
```

<223> based on Maize

```
<400> 16
Pro Lys Pro Lys Pro Lys Pro Lys Pro Lys Pro Lys
              5
                                 10
<210> 17
<211> 16
<212> PRT
<213> Artificial Sequence
<220>
<223> based on Maize
<400> 17
Pro Lys Pro Lys Pro Lys Pro Lys Pro Lys Pro Lys Pro Lys
                                 10
<210> 18
<211> 18
<212> PRT
<213> Artificial Sequence
<220>
<223> based on Maize
<400> 18
Pro Lys Pro Lys Pro Lys Pro Lys Pro Lys Pro Lys Pro Lys
                                                   15
                                 10
    5
Pro Lys
<210> 19
<211> 20
<212> PRT
<213> Artificial Sequence
<220>
<223> based on Maize
<400> 19
Pro Lys Pro Lys Pro Lys Pro Lys Pro Lys Pro Lys Pro Lys
                                10
              5
Pro Lys Pro Lys
           20
```

11

<210> 20

```
<211> 30
<212> PRT
<213> Artificial Sequence
<220>
<223> based on Maize
<400> 20
Pro Lys Pro Lys Pro Lys Pro Lys Pro Lys Pro Lys Pro Lys
Pro Lys Pro Lys Pro Lys Pro Lys Pro Lys Pro Lys
                              25
           20
<210> 21
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> based on Maize
<400> 21
Lys Pro Lys Pro Lys Pro Lys
<210> 22
<211> 60
<212> PRT
<213> Artificial Sequence
<220>
<223> based on Maize
<220>
<221> VARIANT
<222> (5)..(5)
<223> Xaa = Pro or is absent
<220>
<221> VARIANT
<222> (6)..(6)
<223> Xaa = Lys or is absent
<220>
<221> VARIANT
<222> (7)..(7)
<223> Xaa = Pro or is absent
<220>
```

<221> VARIANT

```
<222> (8)..(8)
<223> Xaa = Lys or is absent
<220>
<221> VARIANT
<222> (9)..(9)
<223> Xaa = Pro or is absent
<220>
<221> VARIANT
<222> (10)..(10)
<223> Xaa = Lys or is absent
<220>
<221> VARIANT
<222> (11)..(11)
<223> Xaa = Pro or is absent
<220>
<221> VARIANT
<222> (12)..(12)
<223> Xaa = Lys or is absent
<220>
<221> VARIANT <222> (13)..(13)
<223> Xaa = Pro or is absent
<220>
<221> VARIANT
<222> (14)..(14)
<223> Xaa = Lys or is absent
<220>
<221> VARIANT
<222> (15)..(15)
<223> Xaa = Pro or is absent
<220>
<221> VARIANT
<222> (16)..(16)
<223> Xaa = Lys or is absent
<220>
<221> VARIANT
<222> (17)..(17)
<223> Xaa = Pro or is absent
<220>
<221> VARIANT
<222> (18)..(18)
<223> Xaa = Lys or is absent
<220>
<221> VARIANT
<222> (19)..(19)
<223> Xaa = Pro or is absent
```

```
<220>
<221> VARIANT
<222> (20)..(20)
<223> Xaa = Lys or is absent
<220>
<221> VARIANT
<222> (21)..(21)
<223> Xaa = Pro or is absent
<220>
<221> VARIANT
<222> (22)..(22)
<223> Xaa = Lys or is absent
<220>
<221> VARIANT
<222> (23)..(23)
<223> Xaa = Pro or is absent
<220>
<221> VARIANT
<222> (24)..(24)
<223> Xaa = Lys or is absent
<220>
<221> VARIANT
<222> (25)..(25)
<223> Xaa = Pro or is absent
<220>
<221> VARIANT
<222> (26)..(26)
<223> Xaa = Lys or is absent
<220>
<221> VARIANT <222> (27)..(27)
<223> Xaa = Pro or is absent
<220>
<221> VARIANT
<222> (28)..(28)
<223> Xaa = Lys or is absent
<220>
<221> VARIANT
<222> (29)..(29)
<223> Xaa = Pro or is absent
<220>
<221> VARIANT <222> (30)..(30)
<223> Xaa = Lys or is absent
<220>
```

```
<221> VARIANT
<222> (31)..(31)
<223> Xaa = Pro or is absent
<220>
<221> VARIANT
<222> (32)..(32)
<223> Xaa = Lys or is absent
<220>
<221> VARIANT
<222> (33)..(33)
<223> Xaa = Pro or is absent
<220>
<221> VARIANT
<222> (34)..(34)
<223> Xaa = Lys or is absent
<220>
<221> VARIANT
<222> (35)..(35)
<223> Xaa = Pro or is absent
<220>
<221> VARIANT
<222> (36)..(36)
<223> Xaa = Lys or is absent
<220>
<221> VARIANT
<222> (37)..(37)
<223> Xaa = Pro or is absent
<220>
<221> VARIANT <222> (38)..(38)
<223> Xaa = Lys or is absent
<220>
<221> VARIANT
<222> (39)..(39)
<223> Xaa = Pro or is absent
<220>
<221> VARIANT
<222> (40)..(40)
<223> Xaa = Lys or is absent
<220>
<221> VARIANT <222> (41)..(41)
<223> Xaa = Pro or is absent
<220>
<221> VARIANT
<222> (42)..(42)
```

```
<223> Xaa = Lys or is absent
<220>
<221> VARIANT
<222> (43)..(43)
<223> Xaa = Pro or is absent
<220>
<221> VARIANT
<222> (44)..(44)
<223> Xaa = Lys or is absent
<220>
<221> VARIANT
<222> (45)..(45)
<223> Xaa = Pro or is absent
<220>
<221> VARIANT
<222> (46)..(46)
<223> Xaa = Lys or is absent
<220>
<221> VARIANT <222> (47)..(47)
<223> Xaa = Pro or is absent
<220>
<221> VARIANT
<222> (48)..(48)
<223> Xaa = Lys or is absent
<220>
<221> VARIANT
<222> (49)..(49)
<223> Xaa = Pro or is absent
<220>
<221> VARIANT
<222> (50)..(50)
<223> Xaa = Lys or is absent
<220>
<221> VARIANT
<222> (51)..(51)
<223> Xaa = Pro or is absent
<220>
<221> VARIANT
<222> (52)..(52)
<223> Xaa = Lys or is absent
<220>
<221> VARIANT
<222> .(53)..(53)
<223> Xaa = Pro or is absent
```

```
<220>
<221> VARIANT
<222> (54)..(54)
<223> Xaa = Lys or is absent
<220>
<221> VARIANT
<222> (55)..(55)
<223> Xaa = Pro or is absent
<220>
<221> VARIANT
<222> (56)..(56)
<223> Xaa = Lys or is absent
<220>
<221> VARIANT
<222> (57)..(57)
<223> Xaa = Pro or is absent
<220>
<221> VARIANT
<222> (58)..(58)
<223> Xaa = Lys or is absent
<220>
<221> VARIANT
<222> (59)..(59)
<223> Xaa = Pro or is absent
<220>
<221> VARIANT
<222> (60)..(60)
<223> Xaa = Lys or is absent
<400> 22
5
                      10
30
                      25
        20
40
     35
55
<210> 23
<211> 18
<212> PRT
<213> Artificial Sequence
```

```
<220>
<223> based on Maize
<400> 23
Lys Pro Lys Pro Lys Pro Lys Pro Lys Pro Lys Pro Lys
Pro Lys
<210> 24
<211> 20
<212> PRT
<213> Artificial Sequence
<220>
<223> based on Maize
<400> 24
Lys Pro Lys Pro Lys Pro Lys Glu Phe Lys Pro Lys Pro Lys
Pro Lys Pro Lys
          20
<210> 25
<211> 4
<212> PRT
<213> Artificial Sequence
<220>
<223> based on Maize
<400> 25
Pro Lys Pro Lys
```

1