Physics 2250: Problem Set VI

Jeremy Favro

November 1, 2024

Problem 1. Consider the two pnp BJT's shown in the diagrams below. What regimes are each of the transistors operating in?

Solution 1. I'm not sure if this actually makes any sense but for the first circuit because $R_b = R_c$ but $V_{sb} < V_{sc}$ (the battery voltages) $V_b < V_c$. Then because $V_b e = 0.7 \text{V}$, $V_e < V_b$ so $V_e < V_b < V_c$ so, because this is a pnp transistor and not npn, the transistor is operating in the reverse active regime.

Then for the second circuit because the base is at 0V and $V_c < V_e$, $V_b < V_e > V_c$ which indicates that the transistor is operating in the saturated regime.

Problem 2. An Si BJT is set up in the "common emitter" configuration with the collector powered by $V_C = 20$ V across a load resistor of $R_L = 500\Omega$. The base is simply being supplied by I_b

Solution 2.

a)

$$R_L = 500\Omega$$

b)
$$\beta = \frac{I_c}{I_b} \approx \frac{5 \text{mA}}{0.1 \text{mA}} = 50$$

c) The power expended by the resistor is given by $P=I_c^2R_L=\beta^2I_b^2R_L$ and β is greatest when the transistor is operating in forward-active mode as $\beta_F>\beta_R>>\beta'$. From the graph it can be seen that the maximum power as wired is expended when $I_C\approx 20 \mathrm{mA} \implies P=(20 \mathrm{mA})^2\cdot 500\Omega=0.2 \mathrm{W}$

Problem 3. Consider the $(\beta = 100)$ BJT-containing circuit below

Solution 3.

a) Because $V_e < V_b < V_c$ the transistor is operating in the forward active regime. Traversing the bottom bit of the circuit as a KVL loop

$$\begin{aligned} &13 - I_b R_b - 0.7 - I_e R_e = 0 \\ &13 - I_b R_b - 0.7 - (1+\beta) I_b R_e = 0 \\ &I_b = \frac{0.7 - 13}{-(R_b + (1+\beta)R_e)} = 1.108 \text{mA} \end{aligned}$$

Then because $I_e = I_c + I_b = (1 + \beta) I_b = 0.0112 \text{A}$ (as used above) which means that $V_e = 11.12 \text{V} = V_{out}$ b)

