Collinearity

Dr. Michael Fix mfix@gsu.edu

Georgia State University

25 March 2025

Note: The slides are distributed for use by students in POLS 8810. Please do not reproduce or redistribute these slides to others without express permission from Dr. Fix.

Under the Hood of X

OLS (and regression methods more generally) requires:

- X is full column rank.
- N > K.

Intro

• "Sufficient" variability in X.

"Perfect" Multicollinearity

First a formal definition:

There cannot be any set of λ s such that:

$$\lambda_0 \mathbf{1} + \lambda_1 \mathbf{X}_1 + \ldots + \lambda_K \mathbf{X}_K = \mathbf{0}$$

A Toy Model

Let's see if there is a relationship between gas milage and car performance.

```
> data("mtcars")
> model1 <- lm(qsec ~ mpg, mtcars)
> summary(model1)
Call:
lm(formula = qsec ~ mpg, data = mtcars)
Residuals:
   Min
            1Q Median
                                   Max
-2.8161 -1.0287 0.0954 0.8623 4.7149
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 15.35477    1.02978    14.911    2.05e-15 ***
            0.12414 0.04916 2.525 0.0171 *
mpg
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.65 on 30 degrees of freedom
Multiple R-squared: 0.1753, Adjusted R-squared: 0.1478
F-statistic: 6.377 on 1 and 30 DF, p-value: 0.01708
```

A Toy Model

Now let's redo that using Kilograms/Liter instead of Miles/Gallon, but accidentally include both measures as predictor variables. What happens?

```
> mtcars$kgL <- mtcars$mpg * .425
> model2 <- lm(qsec ~ mpg + kgL, mtcars)
> summary(model2)
Call:
lm(formula = qsec ~ mpg + kgL, data = mtcars)
Residuals:
    Min
            1Q Median
                                    Max
-2.8161 -1.0287 0.0954 0.8623 4.7149
Coefficients: (1 not defined because of singularities)
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 15.35477    1.02978    14.911    2.05e-15 ***
            0.12414
mpg
                     0.04916
                                 2.525
                                         0.0171 *
                                    NA
                                             NΑ
kgL
                 NA
                            NA
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.65 on 30 degrees of freedom
Multiple R-squared: 0.1753, Adjusted R-squared: 0.1478
F-statistic: 6.377 on 1 and 30 DF, p-value: 0.01708
```

- 1. Perfect Multicollinearity is a very big problem (Theoretically)
- Prefect Multicollinearity is NOT a problem at all (In Practice)

N > K

- Statistically, if N < K, then:
 - We lack sufficient degrees of freedom to identify $\hat{\boldsymbol{\beta}}.^*$
 - $\hat{\boldsymbol{\beta}}$ is "overdetermined."
- Conceptually, N < K means that:
 - Our number of variables > Cases
 - Which means there can be no unique conclusion about explanatory / causal factors.
- *Note: "identification" is used in statistics and econometrics to mean several different things, I am using it here in the most basic sense to mean that the parameters (here the $\hat{\beta}$ s) cannot be determined from the variables

Let's subset the mtcars data to only look at lightweight cars and add some more predictor variables:

```
> rm(list=ls())
> data("mtcars")
> lightweight <- subset(mtcars, wt<2)
> model3 <- with(lightweight, lm(qsec ~ mpg + disp + hp))
> summary(model3)
Call:
lm(formula = qsec ~ mpg + disp + hp)
Residuals:
ALL 4 residuals are 0: no residual degrees of freedom!
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 39.54944
                            NaN
                                    NaN
                                             NaN
            -0.14716
                                   NaN
mpg
                            NaN
                                             NaN
          -0.25649
                                   NaN
                                             NaN
disp
                            NaN
            0.05502
                            NaN
                                   NaN
                                             NaN
hp
Residual standard error: NaN on O degrees of freedom
Multiple R-squared:
                        1, Adjusted R-squared:
                                                  NaN
F-statistic: NaN on 3 and 0 DF, p-value: NA
```

What Does This Tell Us?

As with "perfect" multicollinearity, having N > K will result in a model specification that is impossible to estimate. Thus, you cannot violate this assumption in practice

Intuition

High (Non-Perfect) Multicollinearity

Recall that

$$\widehat{\mathsf{Var}(\hat{oldsymbol{eta}})} = \hat{\sigma}^2 (\mathbf{X}'\mathbf{X})^{-1}$$

We can write the kth diagonal element of $(\mathbf{X}'\mathbf{X})^{-1}$ as:

$$\frac{1}{(\mathsf{X}_k'\mathsf{X}_k)(1-\hat{R}_k^2)}$$

where \hat{R}_k^2 is the R^2 from the regression of \mathbf{X}_k on all the other variables in \mathbf{X} .

N > K

Things to understand:

- 1. Multicollinearity is a *sample problem*.
- 2. Multicollinearity is a matter of degree.

(Near-Perfect) Multicollinearity: Detection

- 1. High R^2 , but nonsignificant coefficients.
- 2. High pairwise correlations among independent variables.
- 3. High partial correlations among the Xs.
- 4. VIF and Tolerance.

VIF / Tolerance

If $\hat{R}_k^2 = 0$, then

$$\widehat{\mathsf{Var}(\hat{\beta}_k)} = \frac{\hat{\sigma}^2}{\mathsf{X}'_k \mathsf{X}_k};$$

So:

$$\mathsf{VIF}_k = \frac{1}{1 - \hat{R}_k^2}$$

$$\mathsf{Tolerance} = \frac{1}{\mathsf{VIF}_k}$$

Rule of Thumb: VIF > 10 is a problem.

Don't:

- Blindly drop covariates!!!
- Restrict βs...

Do:

- Add data.
- Transform the covariates
 - Data reduction
 - First differences
 - Orthogonalize
- Shrinkage / Regularization Methods

	Depe	Dependent variable:	
		democracy	
	US sample (1)	Full sample (2)	
gdp_per_capita	0.008	0.002	
	(0.001)	(0.0001)	
	t = 15.551	t = 18.264	
	p = 0.000***	p = 0.000***	
urbanization	0.399	-0.016	
	(0.158)	(0.004)	
	t = 2.521	t = -3.716	
	p = 0.014**	p = 0.0003***	
regime	0.090	0.228	
3	(0.009)	(0.001)	
	t = 9.675	t = 234.418	
	p = 0.000***	p = 0.000 ***	
Constant	0.161	0.099	
	(0.040)	(0.002)	
	t = 4.027	t = 58.892	
	p = 0.0002***	p = 0.000***	
Observations	101	10,810	
R2	0.972	0.877	
Adjusted R2	0.971	0.877	
		0.095 (df = 10806)	
F Statistic	1,128.081*** (df = 3;	97) 25,701.890*** (df = 3; 10806)	
Note:		*p<0.1; **p<0.05; ***p<0.01	

Correlation Matrix

Correlation matrix ---my_data |>
 select(democracy, gdp_per_capita, urbanization, regime) |>
 ggpairs()

Correlation

```
cor.test(my_data$democracy, my_data$regime,
   use = "complete.obs",
   method = c("pearson"))
```

Correlation

```
cor.test(my_data$democracy, my_data$regime,
    use = "complete.obs",
    method = c("pearson"))
         Pearson's product-moment correlation
        my_data$democracy and my_data$regime
t = 391.26, df = 19041, p-value < 2.2e-16
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
0.9414762 0.9446191
sample estimates:
      cor
0.9430687
```

N > K

```
Variance Inflation Factor (VIF)
    VIF value starts from 1
      value of 1 indicates there is no correlation
      value greater than 5 indicates potentially severe correlation
  vif(us model)
gdp_per_capita
                 urbanization
                                       regime
      5.023951
                     1.633371
                                     6.213308
> vif(my_model)
                 urbanization
gdp_per_capita
                                       regime
      1.446900
                     1.131696
                                     1.297502
```

```
us_data$diff_regime <- us_data$regime - lag(us_data$regime, n = 1)
us_data <- us_data |>
  mutate(diff_regime = regime - lag(regime, n = 1))
```

```
Dependent variable:
                                          democracy
                            US Sample
                                              US Sample - First difference
                               (1)
                                                           (2)
gdp_per_capita
                              0.008
                                                         0.012
                             (0.001)
                                                       (0.0003)
                                                       p = 0.000
                            p = 0.000
                          t = 15.551***
                                                     t = 37.626***
urbanization
                              0.399
                                                         1.351
                             (0.158)
                                                       (0.185)
                            p = 0.014
                                                       p = 0.000
                           t = 2.521**
                                                      t = 7.313***
regime
                              0.090
                             (0.009)
                            p = 0.000
                          t = 9.675***
diff_regime
                                                         0.007
                                                         (0.027)
                                                       p = 0.810
                                                       t = 0.242
Constant
                              0.161
                                                         -0.017
                             (0.040)
                                                        (0.053)
                           p = 0.0002
                                                       p = 0.749
                          t = 4.027***
                                                        t = -0.322
Observations 0
                              101
                                                          100
                              0.972
                                                         0.945
Adjusted R2
                              0.971
                                                         0.943
Adjusted R2 0.971 0.943
Residual Std. Error 0.027 (df = 97) 0.038 (df = 96)
                    1.128.081*** (df = 3: 97) 545.046*** (df = 3: 96)
 Statistic
                                               *p<0.1: **p<0.05: ***p<0.01
Note:
```

First differences II

```
vif(us_model)
gdp_per_capita
                 urbanization
                                       regime
      5.023951
                      1.633371
                                     6.213308
  vif(us_model2)
gdp_per_capita
                 urbanization
                                  diff_regime
      1.038942
                      1.038071
                                     1.001096
```