Pluto_MSK_Modem address map

Absolute Address: 0x0Base Offset: 0x0Size: 0x43C0007C

Offset	Identifier	Name
0x43C00000	pluto_msk_regs	Pluto MSK Registers

pluto_msk_regs address map

Absolute Address: 0x43C00000Base Offset: 0x43C00000

• Size: 0x7C

MSK Modem Configuration and Status Registers

Offset	Identifier	Name
0x00	Hash_ID_Low	Pluto MSK FPGA Hash ID - Lower 32-bits
0x04	Hash_ID_High	Pluto MSK FPGA Hash ID - Upper 32-bits
0x08	MSK_Init	MSK Modem Control 0
0x0C	$MSK_Control$	MSK Modem Control 1
0x10	MSK_Status	MSK Modem Status 0
0x14	Tx_Bit_Count	MSK Modem Status 1
0x18	Tx_Enable_Cour	ntMSK Modem Status 2
0x1C	$Fb_FreqWord$	Bitrate NCO Frequency Control Word
0x20	TX_F1_FreqWo	rdIx F1 NCO Frequency Control Word
0x24	TX_F2_FreqWo	rdIx F2 NCO Frequency Control Word
0x28	RX_F1_FreqWo	rRx F1 NCO Frequency Control Word
0x2C	RX_F2_FreqWo	rRx F2 NCO Frequency Control Word
0x30	LPF_Config_0	PI Controller Configuration and Low-pass Filter
		Configuration
0x34	LPF_Config_1	PI Controller Configuration Configuration Register 1
0x38	Tx_Data_Width	Modem Tx Input Data Width
0x3C	Rx_Data_Width	Modem Rx Output Data Width
0x40	PRBS_Control	PRBS Control 0
0x44	PRBS_Initial_St	aPRBS Control 1
0x48	PRBS_Polynomi	aPRBS Control 2
0x4C	PRBS_Error_Ma	asRRBS Control 3
0x50	PRBS_Bit_Cour	ntPRBS Status 0
0x54	PRBS_Error_Co	oul RBS Status 1
0x58	LPF_Accum_F1	F1 PI Controller Accumulator
0x5C	LPF_Accum_F2	F2 PI Controller Accumulator
0x60	$axis_xfer_count$	MSK Modem Status 3
0x64	Rx_Sample_Disc	caRdx Sample Discard

Offset	Identifier	Name
0x6C	LPF_Config_2 f1_nco_adjust f2_nco_adjust f1_error f2_error	PI Controller Configuration Configuration Register 2 F1 NCO Frequency Adjust F2 NCO Frequency Adjust F1 Error Value F2 Error Value

$Hash_ID_Low\ register$

• Absolute Address: 0x43C00000

• Base Offset: 0x0

• Size: 0x4

Bits	Identifier	Access	Reset	Name
31:0	$hash_id_lo$	r	0xAAAA5555	Hash ID Lower 32-bits

$Hash_ID_High\ register$

• Absolute Address: 0x43C00004

• Base Offset: 0x4

• Size: 0x4

Bits	Identifier	Access	Reset	Name
31:0	hash_id_hi	r	0x5555AAAA	Hash ID Upper 32-bits

hash_id_hi field Upper 32-bits of Pluto MSK FPGA Hash ID

MSK_Init register

• Absolute Address: 0x43C00008

• Base Offset: 0x8

• Size: 0x4

Synchronous initialization of MSK Modem functions, does not affect configuration registers.

Bits	Identifier	Access	Reset	Name
0 1	txrxinit txinit	rw rw	0x1 0x1	Tx/Rx Init Enable Tx Init Enable
2	rxinit	rw	0x1	Rx Init Enable

 ${f txrxinit}$ field 0 -> Normal modem operation 1 -> Initialize Tx and Rx

txinit field $0 \rightarrow Normal Tx operation <math>1 \rightarrow Initialize Tx$

rxinit field $0 \rightarrow Normal Rx operation <math>1 \rightarrow Initialize Rx$

$MSK_Control$ register

• Absolute Address: 0x43C0000C

• Base Offset: 0xC

• Size: 0x4

MSK Modem Configuration and Control

Bits	Identifier	Access	Reset	Name
0	ptt	rw	0x0	Push-to-Talk Enable
1	loopback_ena	rw	0x0	Modem Loopback Enable
2	rx_invert	rw	0x0	Rx Data Invert Enable
3	$clear_counts$	rw	0x0	Clear Status Counters

ptt field 0-> PTT Disabled 1-> PTT Enabled

 $\begin{array}{ll} \textbf{loopback_ena field} & 0 -> \text{Modem loopback disabled 1 -> Modem loopback enabled} \end{array}$

 \mathbf{rx} _invert field 0 -> Rx data normal 1 -> Rx data inverted

clear_counts field Clear Tx Bit Counter and Tx Enable Counter

MSK_Status register

• Absolute Address: 0x43C00010

• Base Offset: 0x10

• Size: 0x4

Modem status bits

Bits	Identifier	Access	Reset	Name
0	demod_sync_le	oak	0x0	Demodulator Sync Status
1	tx_enable	\mathbf{r}	0x0	AD9363 DAC Interface Tx Enable Input
				Active
2	rx_enable	r	0x0	AD9363 ADC Interface Rx Enable Input
				Active
3	tx_axis_valid	r	0x0	Tx S_AXIS_VALID

 ${\bf demod_sync_lock\ field} \quad {\rm Demodulator\ Sync\ Status\ -\ not\ currently\ implemented}$

tx_enable field 1-> Data to DAC Enabled 0-> Data to DAC Disabled

rx_enable field 1-> Data from ADC Enabled 0-> Data from ADC Disabled

 $\label{eq:tx_axis_valid} \textbf{tx} _ \textbf{axis} _ \textbf{valid field} \quad 1 -> \\ \textbf{S} _ \textbf{AXIS} _ \textbf{VALID Enabled} \quad 0 -> \\ \textbf{S} _ \textbf{AXIS} _ \textbf{VALID Disabled}$

Tx_Bit_Count register

• Absolute Address: 0x43C00014

• Base Offset: 0x14

• Size: 0x4

Modem status data

Bits	Identifier	Access	Reset	Name
31:0	$tx_bit_counter$	r	0x0	Tx Bit Count

Tx_Enable_Count register

• Absolute Address: 0x43C00018

• Base Offset: 0x18

• Size: 0x4

Modem status data

Bits	Identifier	Access	Reset	Name
31:0	tx_ena_counter	r	0x0	Tx Enable Count

tx_ena_counter field Number of clocks on which Tx Enable is active

Fb_FreqWord register

• Absolute Address: 0x43C0001C

• Base Offset: 0x1C

• Size: 0x4

Set Modem Data Rate

Bits	Identifier	Access	Reset	Name
31:0	$config_data$	rw	0x0	Frequency Control Word

config_data field Sets the center frequency of the NCO as $FW = Fn * 2^32/Fs$, where Fn is the desired NCO frequency, and Fs is the NCO sample rate

$TX_F1_FreqWord$ register

• Absolute Address: 0x43C00020

• Base Offset: 0x20

• Size: 0x4

Set Modulator F1 Frequency

Bits	Identifier	Access	Reset	Name
31:0	config_data	rw	0x0	Frequency Control Word

config_data field Sets the center frequency of the NCO as FW = Fn * 2^32/Fs, where Fn is the desired NCO frequency, and Fs is the NCO sample rate

$TX_F2_FreqWord\ register$

• Absolute Address: 0x43C00024

• Base Offset: 0x24

• Size: 0x4

Set Modulator F2 Frequency

Bits	Identifier	Access	Reset	Name
31:0	$config_data$	rw	0x0	Frequency Control Word

config_data field Sets the center frequency of the NCO as FW = Fn * 2^32/Fs, where Fn is the desired NCO frequency, and Fs is the NCO sample rate

RX_F1_FreqWord register

• Absolute Address: 0x43C00028

• Base Offset: 0x28

• Size: 0x4

Set Demodulator F1 Frequency

Bits	Identifier	Access	Reset	Name
31:0	$config_data$	rw	0x0	Frequency Control Word

config_data field Sets the center frequency of the NCO as $FW = Fn * 2^32/Fs$, where Fn is the desired NCO frequency, and Fs is the NCO sample rate

RX_F2_FreqWord register

• Absolute Address: 0x43C0002C

• Base Offset: 0x2C

• Size: 0x4

Set Demodulator F2 Frequency

Bits	Identifier	Access	Reset	Name
31:0	$config_data$	rw	0x0	Frequency Control Word

config_data field Sets the center frequency of the NCO as FW = Fn * 2^32/Fs, where Fn is the desired NCO frequency, and Fs is the NCO sample rate

LPF_Config_0 register

• Absolute Address: 0x43C00030

• Base Offset: 0x30

• Size: 0x4

Configure PI controller and low-pass filter

Bits	Identifier	Access	Reset	Name
0	lpf_freeze	rw	0x0	Freeze the accumulator's current value
1	lpf_zero	rw	0x0	Hold the PI Accumulator at zero
7:2	$prbs_reserved$	W	0x0	_
31:8	lpf_alpha	rw	0x0	Lowpass IIR filter alpha

lpf_freeze field 0 -> Normal operation 1 -> Freeze current value

 $lpf_zero field 0 -> Normal operation 1 -> Zero and hold accumulator$

lpf_alpha field Value controls the filter rolloff

LPF_Config_1 register

• Absolute Address: 0x43C00034

• Base Offset: 0x34

• Size: 0x4

Configures PI Controller I-gain and divisor

Bits	Identifier	Access	Reset	Name
	i_gain	rw	0x0	Integral Gain Value
	i_shift	rw	0x0	Integral Gain Bit Shift

i_gain field Value m of 0-16,777,215 sets the integral multiplier

i_shift field Value n of 0-32 sets the integral divisor as 2^-n

Tx_Data_Width register

• Absolute Address: 0x43C00038

• Base Offset: 0x38

• Size: 0x4

Set the parallel data width of the parallel-to-serial converter

Bits	Identifier	Access	Reset	Name
7:0	$data_width$	rw	0x8	Modem input/output data width

data_width field Set the data width of the modem input/output

$Rx_Data_Width register$

• Absolute Address: 0x43C0003C

• Base Offset: 0x3C

• Size: 0x4

Set the parallel data width of the serial-to-parallel converter

Bits	Identifier	Access	Reset	Name
7:0	data_width	rw	0x8	Modem input/output data width

data_width field Set the data width of the modem input/output

PRBS_Control register

• Absolute Address: 0x43C00040

• Base Offset: 0x40

• Size: 0x4

Configures operation of the PRBS Generator and Monitor

Bits	Identifier	Access	Reset	Name
0	prbs_sel	rw	0x0	PRBS Data Select
1	$prbs_error_insert$	W	0x0	PRBS Error Insert
2	$prbs_clear$	W	0x0	PRBS Clear Counters
3	prbs_manual_sync	W	0x0	PRBS Manual Sync
15:4	$prbs_reserved$	W	0x0	_
31:16	$prbs_sync_threshold$	w	0x0	PRBS Auto Sync Threshold

prbs_sel field 0-> Select Normal Tx Data 1-> Select PRBS Tx Data

prbs_error_insert field $0 \rightarrow 1$: Insert bit error in Tx data (both Normal and PRBS) $1 \rightarrow 0$: Insert bit error in Tx data (both Normal and PRBS)

 $prbs_clear\ field \quad 0 \rightarrow 1: Clear\ PRBS\ Counters\ 1 \rightarrow 0: Clear\ PRBS\ Counters$

prbs_manual_sync field $0 \to 1$: Synchronize PRBS monitor $1 \to 0$: Synchronize PRBS monitor

 ${\bf prbs_sync_threshold}$ field -0 : Auto Sync Disabled N > 0 : Auto sync after N errors

PRBS_Initial_State register

• Absolute Address: 0x43C00044

• Base Offset: 0x44

• Size: 0x4

PRBS Initial State

Bits	Identifier	Access	Reset	Name
31:0	$config_data$	rw	0x0	PRBS Seed

config_data field Sets the starting value of the PRBS generator

PRBS_Polynomial register

• Absolute Address: 0x43C00048

• Base Offset: 0x48

• Size: 0x4

PRBS Polynomial

Bits	Identifier	Access	Reset	Name
31:0	$config_data$	rw	0x0	PRBS Polynomial

config_data field Bit positions set to '1' indicate polynomial feedback positions

PRBS_Error_Mask register

• Absolute Address: 0x43C0004C

• Base Offset: 0x4C

• Size: 0x4

PRBS Error Mask

Bits	Identifier	Access	Reset	Name
31:0	$config_data$	rw	0x0	PRBS Error Mask

config_data field Bit positions set to '1' indicate bits that are inverted when a bit error is inserted

${\bf PRBS_Bit_Count\ register}$

• Absolute Address: 0x43C00050

• Base Offset: 0x50

• Size: 0x4

PRBS Bits Received

Bits	Identifier	Access	Reset	Name
31:0	$status_data$	r	0x0	PRBS Bits Received

status_data field Number of bits received by the PRBS monitor since last BER can be calculated as the ratio of received bits to errored-bits

PRBS_Error_Count register

• Absolute Address: 0x43C00054

• Base Offset: 0x54

• Size: 0x4

PRBS Bit Errors

Bits	Identifier	Access	Reset	Name
31:0	$status_data$	r	0x0	PRBS Bit Errors

status_data field Number of errored-bits received by the PRBS monitor since last sync BER can be calculated as the ratio of received bits to errored-bits

LPF_Accum_F1 register

• Absolute Address: 0x43C00058

• Base Offset: 0x58

• Size: 0x4

Value of the F1 PI Controller Accumulator

Bits	Identifier	Access	Reset	Name
31:0	status_data	r	0x0	PI Controller Accumulator Value

status_data field PI Controller Accumulator Value

LPF_Accum_F2 register

• Absolute Address: 0x43C0005C

• Base Offset: 0x5C

• Size: 0x4

Value of the F2 PI Controller Accumulator

Bits	Identifier	Access	Reset	Name
31:0	status_data	\mathbf{r}	0x0	PI Controller Accumulator Value

status_data field PI Controller Accumulator Value

axis_xfer_count register

• Absolute Address: 0x43C00060

• Base Offset: 0x60

• Size: 0x4

Modem status data

Bits	Identifier	Access	Reset	Name
31:0	$xfer_count$	r	0x0	S_AXIS Transfers

xfer_count field Number completed S_AXIS transfers

Rx_Sample_Discard register

• Absolute Address: 0x43C00064

• Base Offset: 0x64

• Size: 0x4

Configure samples discard operation for demodulator

Bits	Identifier	Access	Reset	Name
	rx_sample_discard	rw	0x0	Rx Sample Discard Value
	rx_nco_discard	rw	0x0	Rx NCO Sample Discard Value

rx_sample_discard field Number of Rx samples to discard

rx_nco_discard field Number of NCO samples to discard

LPF_Config_2 register

• Absolute Address: 0x43C00068

• Base Offset: 0x68

• Size: 0x4

Configures PI Controller I-gain and divisor

Bits	Identifier	Access	Reset	Name
23:0	p_gain	rw	0x0 $0x0$	Proportional Gain Value
31:24	p_shift	rw		Proportional Gain Bit Shift

p_gain field Value m of 0-16,777,215 sets the proportional multiplier

p_shift field Value n of 0-32 sets the proportional divisor as 2^-n

f1_nco_adjust register

• Absolute Address: 0x43C0006C

• Base Offset: 0x6C

• Size: 0x4

Frequency offet applied to the F1 NCO

Bits	Identifier	Access	Reset	Name
31:0	data	r	0x0	F1 NCO Frequency Adjust

data field Frequency offet applied to the F1 NCO

$f2_nco_adjust\ register$

• Absolute Address: 0x43C00070

• Base Offset: 0x70

• Size: 0x4

Frequency offet applied to the F2 NCO

Bits	Identifier	Access	Reset	Name
31:0	data	r	0x0	F2 NCO Frequency Adjust

data field Frequency offet applied to the F2 NCO

f1_error register

• Absolute Address: 0x43C00074

• Base Offset: 0x74

• Size: 0x4

Error value of the F1 Costas loop after each active bit period

Bits	Identifier	Access	Reset	Name
31:0	data	r	0x0	F1 Error Value

f2_error register

• Absolute Address: 0x43C00078

• Base Offset: 0x78

• Size: 0x4

Error value of the F2 Costas loop after each active bit period

Bits	Identifier	Access	Reset	Name
31:0	data	r	0x0	F2 Error Value