Modélisation de l'entrepôt : Environnement

GIUSEPPE BERIO

Objectifs

Apprendre la modélisation d'un entrepôt/datamart pour une mise en œuvre ROLAP

Apprendre la modélisation d'un entrepôt/datamart pour une mise en œuvre MOLAP

Rappel : niveaux de modélisation

Schéma Conceptuel Modélisation produit Conceptuelle génère Schéma logique produit Modélisation logique Schéma physique = Modélisation Schéma logique + produit physique éléments d'optimisation

Modèles de données (rappel)

Modèle conceptuel de données

 Éléments pour la représentation (précise, souvent dans un langage formalisé) de l'information sous-jacente les données, indépendants de toute mise en œuvre (par exemple ER, UML, Merise)

Modèle logique de données

 Éléments pour la représentation de données suivant une mise en œuvre informatique, mais indépendants de l'outil permettant cette mise en œuvre (par exemple, le modèle relationnel)

Modèle physique de données

 Un modèle de stockage de données représentées par le modèle logique correspondant typiquement à un modèle logique augmenté avec des paramètres propres au stockage (par exemple, des indexes)

Oracle SQL Developer (SQLD)

Outil gratuit : vous pouvez l'installer sur vos ordinateurs

Environnement de développement pour systèmes opérationnels et systèmes décisionnels

Accès à ORACLE, envoi de commandes SQL, DDL (Data Definition Language) et DML (Data Manipulation Language)

3-niveaux de modélisation (terminologie propre à Oracle)

Génération automatique/importation des schémas logiques et physiques (DDL) pour ORACLE (et autres SGBD comme DB2 et SQLServer)

Comparaison/Fusion de schémas

Importation/Exportation vers XMLA (Microsoft), OracleAW (Oracle) et CubeViews (IBM) pour le modèle multidimensionnel

Retro-ingénierie via connexion à une base relationnelle existante (ce qui probablement explique le nommage pour les 3 niveaux de modélisation)

SQLD: accès oracle

SQLD: une fois connecté à Oracle

SQLD: ACCÈS INTERFACE DE MODÉLISATION

SQLD : une fois lancée l'interface de modélisation

Modèles dans SQLD(M)

Modèle physique

Oracle Analytical workspace

Objectifs du TD

Compréhension de la modélisation multidimensionnelle par les pratiques de modélisation avec SLQD dans un contexte ROLAP (exercices)

- Modélisation des sources/données traitées par l'ETL
- Modélisation (conceptuelle) dimensionnelle
- Génération du schéma logique
- Compréhensions du schéma physique
- Génération du code

SQLD, modélisation des sources et pour les données traitées par un ETL

Création d'un schéma conceptuel (notations <u>interchangeables</u> Bachman/Barker (alternatives à MERISE et autres notations)

- Organisation en sous-vues ou affichages, avec possibilité d'ajouter des vues
- Support pour *l'objet-relationnel*

Génération automatique d'un schéma relationnel à partir du schéma conceptuel

- Cela vous évite de le faire manuellement (gain de temps et limitation di risque d'erreur)
- L'organisation est la même que le schéma conceptuel

Support pour la définition d'un schéma physique (à partir du schéma relationnel)

Génération automatique du DDL (déploiement vers le SGBD à utiliser)

Cela vous évite de le faire manuellement (gain de temps et limitation du risque d'erreur)

Utilisation de la retro-ingénierie pour reconstituer un schéma d'une base (relationnelle) existante

 Essentiel pour la ré-conception d'une source ou pour sa compréhension et utilisation dans le but de développer un schéma dimensionnel

Rappel: fonctionnement ROLAP

Données brutes (sources)

Composant ETL (intégration et fiabilisation de données) – données disponibles

ClientID	Quantité	Produit	Date
1	100	54	01/01/2013
1	200	76	02/02/2013

ClientID Quantité Produit Date 100 54 01/01/2013 200 02/02/2013 76 100 54 01/02/2013 200 56 02/01/2013

1, 100a, 54, 01/02/2013; 2, 200, 56, 02/01/2013

Mesure précalculée

Mesure

Composant ETL (alimentation de la table de faits/agrégation)

ClientID	Σ Quantité
1	300
3	100
2	200

	ClientID	Σ Quantité	Produit	Date
	1	100	54	01/01/2013
	1	200	76	02/02/2013
>	3	100	54	01/02/2013
	2	200	56	02/01/2013

∑ Quantité
200
54
200
76
200
56

Une ligne=Un fait, à savoir une observation, représentée par une mesure, sur le passé → table de faits

Composant

300 01/2013 300 02/2013 ∑ Quantité Année 600 2013

Mois

Σ Quantité

Modèle logique dimensionnel ROLAP

Dimension et hiérarchie

Démo fonctionnement 2 (ROLAP)

Composant ETL (extraction de données) – Staging

Non typé

correction/typage

Typé

1, 100a, 54, 01/02/2013; 2, 200, 56, 02/01/2013

1, 100, 54, 01/02/2013; 2, 200, 56, 02/01/2013

produit inexistant

ClientID	Quantité	Produit /	Date
1	100	54	01/01/2013
1	200	78VGVS	02/02/2013

ClientID	Quantité	Produit	Date
1	100	54	01/01/2013

normalisation

ClientID	Quantité	Produit	Date	ville
1	100	54	01/01/2013	Nantes
1	200	78	02/02/2013	Nantes

ClientID	Quantité	Produit	Date
1	100	54	01/01/2013
1	200	78	02/02/2013

ClientID	ville
1	Nantes

ClientID	Quantité	Produit	Date	Ville d'achat
1	100	54	01/01/2013	Nantes
1	200	78	02/02/2013	Nantes

Exercice 1 (représentation de données disponibles : sources ou staging ETL)

Exercice 1 bis

Parfois il est utile de spécifier une vue (externe) à savoir une requête nommée

Rajoutez *une vue (externe)* au schéma conceptuel de l'exercice 1

Vue : tous les mois où il y a au moins une vente

Affichez la vue dans le schéma local

Exercice 2 (réalisation des bases de données extraites, nettoyées, intégrées)

Générez automatiquement un schéma relationnel à partir du schéma de l'exercice 1

Ensuite, générez automatiquement le *DDL (Data Definition Language script)* à partir du schéma relationnel (code SQL)

Exercice 2 bis

Modifiez le *schéma relationnel* résultat de l'exercice 2 (par exemple, modifier un type, rajouter une colonne, modifier la vue, etc.)

Régénérez le schéma conceptuel

Refaites les 2 actions ci-dessus plusieurs fois et analysez l'impact sur le schéma conceptuel

Utilisez le DDL généré (EXERCICE 2) pour créer les tables et les autres éléments dans votre espace ORACLE 12c :

- Connectez vous à ORACLE 12c (si pas encore connecté ou connexion perdue)
- Copiez-collez le script DDL généré dans la fenêtre d'exécution d'instructions
- Exécutez ce script utilisant une des icones appropriées
- Vérifiez que l'exécution a bien fonctionnée (aucune erreur n'est affichée dans la fenêtre de résultats)

Créez quelques données dans les tables (insert into)

Exercice 4 (rajout d'un modèle physique/optimisation)

Créez un schéma physique (vide)

Ajoutez/repérez les informations traitées (via les tables ou directement)

Régénérez le *DDL* (si vous y avez rajouté des informations)

SQLD pour la modélisation dimensionnelle

Création d'un schéma dimensionnel conceptuel (avec une notation propre à l'outil)

Rattachement manuel d'un schéma conceptuel dimensionnel à un schéma conceptuel (fait/mesure, dimension, niveau /identifiant/informations)

Mais aucun contrôle n'est fait sur la cohérence

Génération/mise à jour d'un modèle physique contenant les dimensions et contrôle de cohérence avec le modèle logique

Génération automatique du DDL

• Cela vous évite de le faire manuellement (gain de temps et limitation di risque d'erreur

Utilisation de la retro-ingénierie pour obtenir un schéma dimensionnel

Organisation (de base)

Modèle dimensionnel (Conceptuel)

modèle compact (structure sans attributs, clés et autres informations)

Signification des relations

Entre cube et dimension

Entre niveaux

Entre dimension et niveau

- Réutilisation des niveaux à partir d'un niveau
- Nouvelle hiérarchie

Utilisez le *schéma conceptuel* résultat de l'exercice 1 pour définir un *schéma dimensionnel*

Faits: ventes-quantité (l'entité Vente fournit la quantité comme donnée de base); granularité par produit simple

Dimensions: produit, 1 niveau

Mesure: somme (quantité)

Exercice 5 Bis

Utilisez le *schéma conceptuel* résultat de l'exercice 1 pour définir un *schéma dimensionnel*

Faits: ventes-quantité

Dimensions: produit, *(client)*, *temps*

Mesure : somme (quantité)

Générez un *schéma relationnel (et physique – appelé « modèle Oracle » en SQLD)* à partir du schéma dimensionnel résultat de l'exercice 5 (ou 5 bis)

Éditez et analysez le *schéma physique* pour voir quelles informations ont y été rajoutées

Générez le DDL

Appréciez, à travers les différentes couleurs, la structure du schéma qui doit être flocon, étoile ou constellation

Utilisez le *schéma relationnel* résultat de l'exercice 2, pour définir un *schéma dimensionnel*

Synthèse modélisation : schéma dimensionnel

Génération/déploiement ROLAP

Nota bene : si nécessaire, le schéma conceptuel initialement chargé peut être modifié car s'agissant du schéma de l'entrepôt à créer

Génération (des informations additionnelles)

Modèle (schéma) dimensionnel

Modèle (schéma) conceptuel

Modèle (schéma) relationnel (et physique)

déploiement

ROLAP

Nouvelle Base (entrepôt)

Export MOLAP

Synchronisation

SQLD(M) permet aussi de faire de la mise à jour/synchronisation entre

Les différents niveaux de modélisation

 Un entrepôt existant et la mise à jour de son schéma suivie par un redéploiement

Principes méthodologiques et SQLD

SQLD fournit un vrai support aux méthodes basées sur des principes (méthodologiques) bien spécifiques

Plus précisément :

- SQLD nécessite d'un (ou plusieurs) schéma de sources, (typiquement 1 seul qui est le résultat de l'intégration des plusieurs schémas source se trouvant dans la zone « staging » de l'ETL), pour utiliser concrètement la modélisation dimensionnelle
- Ces schémas peuvent être conceptuels ou relationnels; les schémas conceptuels peuvent avoir été obtenus par retro-ingénierie s'ils ne sont pas directement disponibles

On peut donc indiquer que même si potentiellement SQLD permet de développer **top-down** un schéma dimensionnel, l'outil semble conçu pour fournir un vrai support au développement **bottom-up**

Principes méthodologiques et SQLD

TOP-DOWN:

- 1. Développement d'un schéma dimensionnel souhaité
- 2. Définition et affectation à aux données disponibles (espace ETL données sources, données intégrées)
- 3. Modélisation logique
- 4. Modélisation physique
- 5. Codage

BOTTOM-UP:

- Schématisation de données disponibles (espace ETL données sources, données intégrées)
- 2. Modélisation du schéma dimensionnel systématiquement annoté par la schématisation de données disponibles ; modification, si nécessaire, de la schématisation de données disponibles
- 3. Modélisation logique
- 4. Modélisation physique
- 5. Codage

Organisation bottom-up

Compréhension de la signification de dimension :

Introduire niveau semestre pour la dimension TEMPS

Comprendre qu'il est possible que les données stockées dans la table correspondante puissent « contredire » la relation 1 à n représentée par la hiérarchie dimensionnelle

→ impact, réponses erronées pour requêtes réécrites

Introduction des relations entre « cube » et « dimension » (alternative à l'utilisation d'une entité partagée entre « cube » et « dimension » pour s'assurer de la « joignabilité » :

Refaire le schéma dimensionnel, spécifiant la « jointure » entre dimension « client » et « cube »

Continuer pour les autres dimensions, si nécessaire

Représentation de la Table de Faits :

Rajouter quelques mesures au sein du schéma dimensionnel

Réutiliser les schémas des tables propres au « cube » pour obtenir la structure de base de la table de fait (merge)

Adapter les colonnes de la table produite par « merge » :

Mesures

Clé primaire (granularité de faits)

Bases de la modélisation physique (hors dimensions) :

Choix (compromis fréquence de mise à jour/utilité (utilité : estimation taille, réécriture possible*, fréquence requêtes potentielles) et représentation des vues matérialisées

Choix et représentation de partitions de la table de faits (estimation du stockage table de faits/partitions)

Choix et représentation des index bitmap de jointure entre table de faits et dimensions (rapidité de mise à jour des vues matérialisées)

Stockage par colonnes de la tables de faits (rapidité de mise à jour des vues matérialisées vs estimation du stockage)

*à savoir la(les) mesure(s) doit(doivent) être agregable(s) ou additive(s) ou calculable(s) par mesures additives ou agregables