

INTEGER PRODUCTS

Why

We want sums to follow those of natural numbers.¹

Definition

Consider $[(a,b)], [(b,c)] \in \mathbf{Z}$. We define integer product of [(a,b)] with [(b,c)] as [(ac+bd,ad+bc)].²

Notation

We denote the product of [(a,b)] and [(c,d)] by $[(a,b)] \cdot [(b,c)]$ So if $x,y \in \mathbf{Z}$ then the sum of x and y is $x \cdot y$. As with natural products, we often drop the \cdot and write xy for $x \cdot y$.

¹Future editions will modify this.

²One needs to show that this is well-defined. The account will appear in future editions.

