MATEMÁTICA DISCRETA Teoría de Conjuntos

Prof. Sergio Salinas

Facultad de Ingeniería Universidad Nacional de Cuyo

Agosto 2024

Contenido

- 1 Definición de función
- 2 Definición de dominio e imágen de una función
- 3 Representación de una función mediante un diagrama de Venn
- 4 Funciones de interés
- **5** Funciones inyectiva, sobreyectiva y biyectiva
- 6 Función inversa
- 7 Composición de funciones

Definición de función

Funciones

Definición

Una función, $f: X \rightarrow Y$, es una regla que cumple las siguientes condiciones:

- 1. Para todo $x \in X$ existe $y \in Y$ tal que f(x) = y. (Existencia)
- 2. Si $f(x) = y_1$ y $f(x) = y_2$, entonces $y_1 = y_2$. (Unicidad)

Leemos la imagen de x por medio de f es y. Alternativamente, f de x igual a y cuando f(x) = y.

Definición de dominio e imágen de una función

Funciones

Definición

El **dominio** de f es el conjunto:

$$Dom(f) := \{x \in X : \text{ existe } y \in B \text{ tal que } f(x) = y\}$$

Como $f: X \to Y$ cumple con existencia entonces siempre Dom(f) = X.

La **imagen** de f es el conjunto:

$$Im(f) := \{ y \in Y : \text{ existe } x \in X \text{ tal que } f(x) = y \}$$

Al conjunto Y se lo denomina **conjunto de llegada** o **codominio** donde $\mathit{Im}(f) \subset Y$

Representación de una función mediante un diagrama de Venn

Funciones

Figura: Representación por diagrama de Venn de una relación que es función. Existencia \(\sqrt{U}\) Unicidad \(\sqrt{\chi}\).

Figura: Representación por diagrama de Venn de una relación que NO es función. Existencia XUnicidad √.

Figura: Representación por diagrama de Venn de una relación que NO es función. Existencia Vunicidad X.

Figura: Representación por diagrama de Venn de una relación que es función. Existencia XUnicidad X.

Funciones

Ejemplos:

- 1. Sea $f: \mathbb{N} \to \mathbb{Z}$ definida por f(x) = 2x + 1.
- 2. Sea $g: \mathbb{Z} \to \mathbb{N} \cup \{0\}$ definida por $g(x) = x^2$
- 3. Sea $h: \mathbb{N} \to \mathbb{Q}$ definida por $h(x) = \frac{x}{x+1}$

Función constante

Sea $y_0 \in Y$, la función $f: X \to Y$ definida por $f(x) = y_0$, para todo $x \in X$, se denomina función constante.

Función identidad

La función $id_X: X \to X$ definida por $id_X(x) = x$, para todo $x \in X$, se denomina **función identidad**.

Función valor absoluto

La función valor absoluto $|x|:\mathbb{R}\to\mathbb{R}$ se define por:

$$|x| = \begin{cases} x, & \text{si } x \ge 0, \\ -x, & \text{si } x < 0. \end{cases}$$

Funciones inyectiva, sobreyectiva y biyectiva

Función inyectiva

Función inyectiva

Una función $f: X \to Y$ es inyectiva si para todo $x_1, x_2 \in X$

$$f(x_1) = f(x_2) \to x_1 = x_2$$

Equivalentemente, usando el contrarecíproco,

$$x_1 \neq x_2 \rightarrow f(x_1) \neq f(x_2)$$

Función inyectiva

Ejemplos:

1. Sea $f: \mathbb{Z} \to \mathbb{Z}$ dada por $f(x) = 3x^2 + 7$ entonces la función NO es inyectiva ya que:

$$f(2) = 3\dot{2}^2 + 7 = 19 = 3\dot{(-2)}^2 + 7 = f(-2)$$

2. Sea $g: \mathbb{Z} \to \mathbb{Z}$ dada por g(x) = 2x - 6 entonces la función es inyectiva ya que si consideramos x_1 y x_2 dos puntos cualesquiera del dominio entonces:

$$g(x_1) = g(x_2) \leftrightarrow 2x_1 - 6 = 2x_2 - 6$$
$$\leftrightarrow 2x_1 = 2x_2$$
$$\leftrightarrow x_1 = x_2$$

Función sobreyectiva

Función sobreyectiva

Una función $f: X \to Y$ es sobreyectiva si la imagen Im(f) = Y

Equivalentemente, para todo $y \in Y$ existe $x \in X$ tal que f(x) = y.

Función sobreyectiva

Ejemplos:

- 1. Sea $f(x): \mathbb{R} \to [7, +\infty)$ dada por $f(x) = 3x^2 + 7$, entonces es una función sobreyectiva.
- 2. Sea $f(x):[4,+\infty)\to\mathbb{R}$ dada por $f(x)=5\sqrt{x-4}$, entonces NO es una función sobreyectiva.

Función biyectiva

Función biyectiva

Una función $f: X \rightarrow Y$ es biyectiva si es inyectiva y sobreyectiva.

Ejemplo de una función biyectiva $f: \mathbb{Z} \to \mathbb{Z}$:

$$f(x) = x - 3$$

Función inversa

Función inversa

Función inversa

Sean $f: X \to Y$ una función biyectiva de X en Y. Definimos una nueva función, llamada función inversa, $f^{-1}: Y \to X$ definida por:

$$f^{-1}(y) := x$$

para todo $y \in Y$, si f(x) = y, con $x \in X$.

Observación

La función inversa NO siempre existe pero si existe es única.

Composición de funciones

Composición de funciones

Composición de funciones

Sean $f \colon Y \to Z$ y $g \colon X \to Y$ funciones. La función compuesta $f \circ g \colon X \to Z$ es una

función definida por:

$$(f\circ g)(x):=f(g(x))$$

para todo $x \in X$.

Observación

 $f \circ g$ se lee "g compuesta con f"

Funciones: Teorema

Funciones: Teorema

Sea $f: X \to Y$ una función. Entonces es equivalente:

- 1. f es biyectiva
- 2. f tiene inversa
- 3. Existe $g: Y \to X$ tal que $f \circ g = id_Y$ y $g \circ f = id_X$.

Fin

