

Algorithms and Data Structures 2 CS 1501

Spring 2022

Sherif Khattab

ksm73@pitt.edu

Announcements

- Upcoming deadlines:
 - Homework 5 due on 2/21
 - Lab 5 due on 2/25
 - Homework 6 due on 2/28
 - Assignment 1 due on 3/14
- Midterm exam on Wednesday 3/2
 - In-person, paper, closed book exam
- Faculty Candidate Talk tomorrow at 10:00 am at Sennott Square 5317
 - Topic: self-balancing binary search trees
 - very relevant talk to this class!

Previous lecture ...

- Prefix-free Compression problem
 - Huffman coding as an optimal solution
 - Implementation details
 - storing the trie in the compressed file
 - Writing out variable-length bit strings

CourseMIRROR Reflections (interesting)

- I found it interesting how Huffman trees are created
- How to make a huffman tree
- I enjoyed going through examples
- It was quite fascinating how we were able to get back the original string after compression
- Manually compressing/decompressing data using Huffman trees
- How to reduce bits
- The most interesting part of class was amount of bits you save with huffman's algorithm.
- Stepping through the Huffman compression algorithm and seeing the difference in bits once compressed

CourseMIRROR Reflections (confusing)

- Huffman compression algorithm steps
- Tree serialization/storage/encoding
- The difference between the compression algorithm and what's written to the file
- why to use an RST to implement a Huffman tree
- Why do we need to use a buffer to process bits?
- The most confusing part about class was the pairing of nodes in the new tree.
- The way to construct the forest in Huffmans compression can be a bit tricky as there are multiple ways to construct it

Binary I/O

Representing tries as bitstrings

Huffman Compression Example

Huffman pseudocode

- Encoding approach:
 - Read input
 - Compute frequencies
 - Build trie/codeword table
 - O Write out trie as a bitstring to compressed file
 - Write out character count of input
 - O Use table to write out the codeword for each input character
- Decoding approach:
 - Read trie
 - Read character count
 - O Use trie to decode bitstring of compressed file

How do we determine character frequencies?

- Option 1: Preprocess the file to be compressed
 - O Upside: Ensure that Huffman's algorithm will produce the best output for the given file
 - O Downsides:
 - Requires two passes over the input, one to analyze frequencies/build the trie/build the code lookup table, and another to compress the file
 - Trie must be stored with the compressed file, reducing the quality of the compression
 - This especially hurts small files
 - Generally, large files are more amenable to Huffman compression
 - O Just because a file is large, however, does not mean that it will compress well!

How do we determine character frequencies?

- Option 2: Use a static trie
 - Analyze multiple sample files, build a single tree that will be used for all compressions/expansions
 - Saves on trie storage overhead...
 - O But in general not a very good approach
 - Different character frequency characteristics of different files means that a code set/trie that works well for one file could work very poorly for another
 - Could even cause an increase in file size after "compression"!

How do we determine character frequencies?

- Option 3: Adaptive Huffman coding
 - Single pass over the data to construct the codes and compress a file with no background knowledge of the source distribution
 - Not going to really focus on adaptive Huffman in the class, just pointing out that it exists...

Adaptive Huffman

Further implementation concerns

- Need to efficiently be able to select lowest weight trees to merge when constructing the trie
 - Can accomplish this using a priority queue
- Need to be able to read/write bitstrings!
 - Unless we pick multiples of 8 bits for our codewords, we will need to read/write fractions of bytes for our codewords
 - We're not actually going to do I/O on fraction of bytes
 - We'll maintain a buffer of bytes and perform bit processing on this buffer
 - See BinaryStdIn.java and BinaryStdOut.java

Ok, so how good is Huffman compression

- ASCII requires 8m bits to store m characters
- For a file containing c different characters
 - O Given Huffman codes $\{h_0, h_1, h_2, ..., h_{(c-1)}\}$
 - O And frequencies $\{f_0, f_1, f_2, ..., f_{(c-1)}\}$
 - O Sum from 0 to c-1: $|h_i|^* f_i$
- Total storage depends on the differences in frequencies
 - O The bigger the differences, the better the potential for compression
- Huffman is optimal for character-by-character prefix-free encodings
 - O Proof in Propositions T and U of Section 5.5 of the text

Problem of the Day

- Huffman's is optimal for character-by-character prefix-free encodings
 - Proof in Propositions T and U of Section 5.5 of the text
- But can we do better than Huffman's for lossless compression?

Problem of the Day: Lossless Compression

- Input: A sequence of characters
 - n characters
 - each encoded as an 8-bit Extended ASCII
- Output: A bit string
 - of length less than 8*n
 - the original sequence can be fully restored from the bitstring

Subproblem: Prefix-free Compression

- Input: A sequence of n characters
- Output: A codeword h_i for each character i such that
 - No codeword is a prefix of any other
 - When each character in the input sequence is replaced with each codeword
 - the length of that compressed sequence is minimum
 - the original sequence can be fully restored from the compressed bitstring

That seems like a bit of a caveat...

- Where does Huffman fall short?
 - O What about repeated patterns of multiple characters?
 - Consider a file containing:
 - 1000 A's
 - 1000 B's
 - ...
 - 1000 of every ASCII character
 - Will this compress at all with Huffman encoding?
 - Nope!
 - But it seems like it should be compressible...

Run length encoding

- Could represent the previously mentioned string as:
 - 1000A1000B1000C, etc.
 - Assuming we use 10 bits to represent the number of repeats, and8 bits to represent the character...
 - 4608 bits needed to store run length encoded file
 - vs. 2048000 bits for input file
 - Huge savings!
- Note that this incredible compression performance is based on a very specific scenario...
 - O Run length encoding is not generally effective for most files, as they often lack long runs of repeated characters

Run-length Encoding

Can we reason about how much a file can be compressed?

• Yes! Using Shannon Entropy

Information theory in a single slide...

- Founded by Claude Shannon in his paper "A Mathematical Theory of Communication"
- Entropy is a key measure in information theory
 - Slightly different from thermodynamic entropy
 - A measure of the unpredictability of information content
 - O By losslessly compressing data, we represent the same information in less space
 - Hence, 8 bits of uncompressed text has less entropy than 8 bits of compressed data

Entropy Equation

Entropy (m) =
$$log Pr(m)$$

25:/.

Entropy (c) = $-1 \times log Pr(o)$
= $-1 \times log \frac{1}{4}$
= $-1 \times log \frac{1}{4}$
= $-1 \times -2 = 2 \text{ bits}$
 $\frac{1}{2100} \Longrightarrow -1 \times log \frac{1}{2} = 100 \text{ bits}$

Entropy applied to language:

- Translating a language into binary, the entropy is the average number of bits required to store a letter of the language
- Entropy of a message * length of message = amount of information contained in that message
- On average, a lossless compression scheme cannot compress a message to have more than 1 bit of information per bit of compressed message
- Uncompressed, English has between 0.6 and 1.3 bits of entropy per character of the message

What else can we do to compress files?

Patterns are compressible, need a general approach

- Huffman used variable-length codewords to represent fixed-length portions of the input...
 - O Let's try another approach that uses fixed-length codewords to represent variable-length portions of the input
- Idea: the more characters can be represented in a single codeword, the better the compression
 - Consider "the": 24 bits in ASCII
 - O Representing "the" with a single 12 bit codeword cuts the used space in half
 - Similarly, representing longer strings with a 12 bit codeword would mean even better savings!

How do we know that "the" will be in our file?

- Need to avoid the same problems as the use of a static trie for Huffman encoding...
- So use an adaptive algorithm and build up our patterns and codewords as we go through the file

LZW compression

- Initialize codebook to all single characters
 - O e.g., character maps to its ASCII value
- While !EOF:
 - Match longest prefix in codebook
 - Output codeword
 - O Take this longest prefix, add the next character in the file, and add the result to the dictionary with a new codeword

LZW compression example

- Compress, using 12 bit codewords:
 - TOBEORNOTTOBEORNOT

Cur	Output	Add		Т	84	TT:264
Т	84	TO:256		TO	256	TOB:265
0	79	OB:257		BE	258	BEO:266
В	66	BE:258		OR	260	ORT:267
Е	69	EO:259		ТОВ	265	TOBE:268
0	79	OR:260		EO	259	EOR:269
R	82	RN:261		RN	261	RNO:270
N	78	NO:262		ОТ	263	
0	79	OT:263	-			

Please submit your reflections by using the CourseMIRROR App

If you are having a problem with CourseMIRROR, please send an email to **coursemirror.development@gmail.com**

8/29/2022

