

HTBLuVA Salzburg

Höhere Lehranstalt für

Elektronik und Technische Informatik

DIPLOMARBEIT

Gesamtprojekt

Gitcon

Entwicklung einer MIDI-Schnittstelle für E-Gitarren

Daniel Bräumann 5AHEL Betreuer:

Simon Grundner 5AHEL Prof. Dipl.-Ing. Siegbert Schrempf

Laurenz Hölzl 5AHEL

ausgeführt im Schuljahr 2022/23

Abgabevermerk:

Datum: 31.03.2023 übernommen von:

Elektronik und Technische Informatik

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Diplomarbeit selbständig und ohne fremde Hilfe verfasst, keine anderen als die angegebenen Quellen und Hilfsmittel benutzt und die den benutzten Quellen wörtlich und inhaltlich entnommenen Stellen als solche kenntlich gemacht habe.

Verfasserinnen / Verfasser:	Salzburg, am 31.03.2023
Daniel Bräumann	
Simon Grundner	
Laurenz Hölzl	

Elektronik und Technische Informatik

DIPLOMARBEIT

DOKUMENTATION

Namen der	Daniel Bräumann
Verfasserinnen / Ver-	Simon Grundner
fasser	Laurenz Hölzl
Jahrgang Schuljahr	5AHEL 2022/23
Thema der Diplomar- beit	Gitcon – Entwicklung einer MIDI-Schnittstelle für E-Gitarren

	Virtuelle Instrumente sind in der modernen Mu	sik-
	Produktion aufgrund ihrer Vielseitigkeit weit verb	rei-
	tet. Das Projekt macht es möglich, diese virtue	llen
	Instrumente auch mit einer E-Gitarre zu spie	len.
Aufgabenstellung	Hierfür wird das analoge Audiosignal direkt von	der
	Ausgangsbuchse der Gitarre abgegriffen, in MI	DI-
	Noten umgewandelt und via USB an eine Digital	Au-
	dio Workstation (DAW) übertragen.	

	Das Gitarrensignal muss zur weiteren Verarbeitur	าg
	vorbereitet werden. Um die Funktion des FFT-Alg	0-
Realisierung	rithmus zu prüfen, wurden diverse Testungen durch	h-
	geführt.	

	Das Projekt erkennt die gespielten Noten und über-
Ergebnisse	trägt sie ohne spürbare Latenz an die DAW.

Elektronik und Technische Informatik

Möglichkeiten der Einsichtnahme in die Arbeit

Schulbibliothek der HTBLuVA Salzburg

	Prüferin / Prüfer	Direktorin / Direktor
		Abteilungsvorständin / Abteilungs-
		vorstand
Approbation		
(Datum / Unterschrift)		

Elektronik und Technische Informatik

DIPLOMA THESIS

Documentation

	Daniel Bräumann	
Author(s)	Simon Grundner	
	Laurenz Hölzl	
Form	2022/23	
Academic year	2022/23	
Tonic	Gitcon - Development of a MIDI gateway for elec	ctric
Topic	guitars	

	The present project enables the use of an electric
Assignment of Tools	guitar as a MIDI device. The device should reliably
Assignment of Tasks	convert individual notes and chords into MIDI format
	with the lowest possible latency.

	The guitar signal needs to be prepared for further
Realisation	processing. Various tests were carried out to verify
	the functionality of the FFT algorithm.

Results	The project detects the played notes and transfers
Results	them to the DAW without noticeable latency.

Elektronik und Technische Informatik

Accessibility of		
Diploma Thesis	Accessible in the library of the HTBLUvA Salzburg	

	Examiner	Head of College
		Head of Department
Approval		
(Date / Sign)		

Vorwort

Die vorliegende Diplomarbeit ermöglicht die Verwendung einer E-Gitarre als MIDI-Controller. Das Gerät soll einzelne Noten zuverlässig mit möglichst geringer Latenz in das MIDI-Format umwandeln. Die MIDI-Signale werden anschließend an die USB-Schnittstelle eines PCs übertragen.

Der Name "Gitcon" ist eine Abbreviatur von "Guitar Converter", der Aufgrund der Funktion der Platine, nämlich Gitarrensignale in MIDI-Noten zu konvertieren, gewählt wurde.

Die Projektidee kam von Simon Grundner und Laurenz Hölzl. Da sich beide in ihrer Freizeit viel mit Musik befassen und durch ihr Interesse an digitaler Audio-Verarbeitung, war die Projektidee geboren.

Moderne Musikstücke werden üblicherweise in einer digitalen Produktionsumgebungen aus mehreren Tonspuren zusammen gemischt. Um mit diesen Programmen zu interagieren, kommen MIDI-Controller zum Einsatz. Diese verwenden das MIDI-Protokoll, um Noten- und Parametereingaben an den Computer zu übertragen. Die Idee war es nun, eine elektrische Gitarre mit diesem Protokoll kompatibel zu machen, sämtliche gespielte Noten zu erkennen und in MIDI-Signale umzuwandeln.

Die individuellen Aufgabenstellungen wurden anhand der Spezialgebiete jedes Teammitglieds gewählt. Simon beschäftigte sich mit der Entwicklung der Hardware Frontend-Platine für den Microcontroller, Daniel widmete sich dem Entwurf der analogen Signalverarbeitungskette und Laurenz arbeitete an der Implementierung der digitalen Signalverarbeitung in die Firmware.

Durch unser Projekt haben wir als Team gelernt, wie wichtig gute Kommunikation ist, um gemeinsam Ziele zu erreichen. Im Laufe der Projektarbeit traten immer wieder Schwierigkeiten auf, die wir mit Erfolg überwinden konnten. Dank der exzellenten Zusammenarbeit im Team und der großartigen Unterstützung unseres Projektbetreuers konnten wir alle Schwierigkeiten meistern und das Projekt umsetzen. Die Realisierung von Gitcon hat

nicht nur unsere Fähigkeiten zur technischen Problemlösung erweitert, sondern auch unsere Team- und Kooperationsfähigkeiten gefördert.

An dieser Stelle möchten wir uns bei allen bedanken, die diese Diplomarbeit unterstützt haben. Zunächst bei unserem Projektbetreuer Prof. Dipl.-Ing. Siegbert Schrempf, der uns nicht nur mit seiner Expertise unterstützt, sondern auch immer wieder motiviert hat. Außerdem bedanken wir uns bei Prof. Mag. Paul Schwaiger, der mit seiner Kritik geholfen hat, die Projektpräsentation weiter zu verbessern.

	In	halts	verzeichnis	
1	Üŀ	perblic	k1	3
	1.1	Was	ist ein MIDI-Controller?	3
	1.2	Gitco	on als MIDI-Controller14	1
2	Sy	/stems	spezifikationen	5
	2.1	Zielb	estimmungen1!	5
	2.	1.1	Musskriterien1	5
	2.	1.2	Wunschkriterien	5
	2.	1.3	Abgrenzungskriterien	5
	2.2	Prod	ukteinsatz1!	5
	2.	2.1	Anwendungsbereiche1	5
	2.	2.2	Zielgruppen1!	5
	2.	2.3	Betriebsbedingungen 1	5
	2.3	Prod	uktumgebung10	5
	2.	3.1	Software	5
	2.	3.2	Hardware10	5
	2.4	Prod	uktfunktionen10	5
	2.5	Prod	uktleistungen	7
	2.6	Benu	ıtzungsoberfläche	3
	2.7	Entw	ricklungsumgebung19	Э
	2.	7.1	Software	Э
	2.	7.2	Hardware 19	Э
	2.	7.3	Orgware	Э
	2.8	Qual	itätsziel Bestimmungen)
	2.9	Glob	ale Testszenarien und Testfälle20)
3	Pr	ojektn	nanagement23	3

	3.1	Arbe	itsaufteilung
	3.2	GAN [°]	TT-Diagramme24
	3.3	Proje	ektverwaltung
	3.3	3.1	Versionskontrolle
	3.3	3.2	Integrierte Tools
4	Gr	undla	gen und Methoden29
	4.1	Grun	dlagen Filter
	4.3	1.1	Warum werden Filter benötigt?29
	4.3	1.2	Analoge Filter
	4.3	1.3	Aktive Filter30
	4.3	1.4	Unterschied zwischen aktiven und passiven Filtern 31
	4.3	1.5	Operationsverstärker
	4.3	1.6	Unterschied zwischen analoge und digitale Filter 36
	4.2	Aktiv	ver Filter
	4.2	2.1	Sallen-Key-Filter
	4.2	2.2	Butterworth
	4.2	2.3	Mathematische Beschreibung
	4.3	Grun	dlagen der digitalen Signal-Verarbeitung (DSV)47
	4.3	3.1	Allgemein
	4.3	3.2	Einleitung Fourier Transformation
	4.3	3.3	Ursprung der Fourier Transformation
	4.3	3.4	Herleitung der Diskreten Fourier Transformation 51
	4.3	3.5	Fast Fourier Transform
	4.3	3.6	Firmware
	4.3	3.7	Ausgabe der Testdaten
			ogrammiersprache69

4.4.1		4.1	Agile Softwareentwicklung mit C 69
	4.5	ESP3	32
	4.	5.1	Bootloader Brennen mit dem ESP-Tool70
	4.	5.2	Einrichten in PlatformIO (PIO)
	4.	5.3	ESP IoT Development Framework (ESP IDF)
	4.6	Real	time Operating-System (RTOS)
	4.0	6.1	FreeRTOS
	4.7	Univ	ersal Asynchronous Receive and Transmit (UART) 79
	4.8	Musi	cal Instrument Digital Interface (MIDI)80
	4.8	8.1	Status Bytes
5	Er	gebnis	sse
	5.1	Block	kschaltbild
	5.2	Hard	ware
	5.2	2.1	Versorgung
	5.2	2.2	Analog-Frontend (AFE)
	5.2	2.3	Digital Frontend
	5.2	2.4	Layout der Platine
	5.3	Firm	ware
	5.3	3.1	Treiber Firmware Diagramm
	5.3	3.2	Doxygen
	5.4	Soft	ware
	5.4	4.1	Virtueller MIDI-Port
	5.4	4.2	MIDI Serial Bridge
	5.4	4.3	Ableton Live Setup
	5.5	Com	puter-Aided Design Modelle (CAD)
	5.	5.1	Electronic-CAD (ECAD)

5.	5.2 Mechanical-CAD (MCAD)	111
6 Fe	hlererfassung	113
6.1	Platine	113
6.2	Bestückung	113
6.3	ADC Channel 2 auf ADC Channel 1 über	brücken 114
6.4	Fehlende Features	114
7 GI	ossar	115
8 Ab	bildungsverzeichnis	117
9 Lit	teraturverzeichnis	122
10	Anhang	127
10.1	Begleitprotokolle	127
10.2	PCB-Fertigungsunterlagen Fehler! T	extmarke nicht definiert.
10.3	3 Firmware Referenz Handbuch Fehler!	Textmarke nicht
defi	niert.	

Diplomarbeit Gitcon 2022/2023

1 Überblick

Das Projekt Gitcon beschäftigt sich mit digitaler Musikproduktion und mit den Werkzeugen, Audiosignale elektronisch zu manipulieren. Das Gitcon-Device ist ein MIDI-Controller, der das auf einer E-Gitarre Gespielte analysiert und in digitale Noten, sogenannte MIDI-Noten umwandelt.

1.1 Was ist ein MIDI-Controller?

Wie bereits erwähnt werden in der modernen Musikproduktion digitale Produktionsumgebungen, sogenannte Digital Audio Workstations (DAW), genutzt. Diese lassen sich über das MIDI-Protokoll mithilfe eines MIDI-Controllers bedienen. Die am weitesten verbreitete Form dieses Eingabegeräts ist das Keyboard. Dieses verfügt über Klaviertasten, welche für die Noteneingabe genutzt werden und einige Regler und Knöpfe mithilfe derer Parameter in der DAW eingestellt werden können.

Abbildung 2: MIDI-Klavier (Novation¹ Launchkey)

Kommentiert [GS1]: Synthesizer sind heutzutage aus der Musikproduktion nicht mehr wegzudenken. Mit ihrer Hilfe lässt sich eine nahezu unendliche Anzahl unterschiedlicher Töne erzeugen und nachahmen.

Sie existieren in allen möglichen Größen. Von teils zimmerfüllenden, modularen Hardwaresynthesizern bis hin zu 50Mb Programmen die auf beinahe jedem Rechner laufen. Da die Synthesizer auf der Orgel basieren wird zur Bespielung ein Keyboard verwendet.

Um einen digitalen Synthesizer zu bespielen ist ein MIDI-Controller erforderlich. Dieser erzeugt selbst keinen Ton sondern sendet nur die ID der momentan gedrückten Taste/gespielten Note.

Laurenz Hölzl 5AHEL

¹ https://novationmusic.com/de/keys/launchkey

1.2 Gitcon als MIDI-Controller

Sowie ein MIDI-Klavier beim Tastenanschlag die Note vermittelt, soll unser Projekt eine MIDI-Note mit dem Saitenanschlag einer Gitarre senden. Wird beispielsweise eine E-Saite angeschlagen, so soll in der virtuellen Klaviatur (Piano Roll) der DAW die Taste "E" aufleuchten.

2 Systemspezifikationen

2.1 Zielbestimmungen

2.1.1 Musskriterien

Einzelne Noten müssen zuverlässig erkannt und umgewandelt werden.

2.1.2 Wunschkriterien

Noten sollen mit möglichst geringer Latenz übertragen werden.

2.1.3 Abgrenzungskriterien

Projekt soll nicht auf verschiede E-Gitarren getestet und optimiert werden. Das Produkt soll nicht auf Basis anderer Musikinstrumente funktionieren, welche ähnliche elektrische Ausgänge haben.

2.2 Produkteinsatz

2.2.1 Anwendungsbereiche

Der Anwendungsbereich findet sich in der Musikproduktion als innovatives Notationstool und im Lehrbereich um Anfängern das Erlernen des Notenlesens zu erleichtern.

2.2.2 Zielgruppen

Zielgruppen sin sowohl Musikproduktions-Neueinsteiger, welche Gitarre spielen als auch bereits erfahrene Produzenten, welche auf der Suche nach einzigartigen und inspirierenden Eingabemethoden sind.

2.2.3 Betriebsbedingungen

Die Versorgung sowie die Datenübertragung erfolgen über USB. Hierzu wird eine E-Gitarre via einer 6,3mm Buchse an die Platine angeschlossen. Da kein Überspannschutz vorliegt darf der Eingang nur mit einer geringen Leistung beschalten werden.

2.3 Produktumgebung

2.3.1 Software

- Silicon Labs VCP Driver
- Hairless MIDI (v0.4)
- LoopMIDI (v1.0.16)
- Ableton Live Suite (v11.2.7)
- Gitcon Firmware

2.3.2 Hardware

- Selbst entwickelte ESP32 32-Bit Mikroprozessor Platine
- 6,3mm Mono Audio Klinkenstecker
- Micro USB (AB) Male zu USB (A) Male
- · Gitarre mit elektrischem Ausgang

2.4 Produktfunktionen

/F0010/ Transienten Erkennung:

Es wird erkannt, ob eine neue Saite angeschlagen wird.

/F0020/ Noten Erkennung:

Die Note der angeschlagenen Saite wird erkannt und anschließend in das MIDI-Format konvertiert.

/F0030/ USB Kommunikation:

Das Gerät wird als MIDI Device in der DAW erkannt, uns sendet die mit der Gitarre Gespielten Noten an einen Kanal des virtuellen MIDI-Ports am PC.

/F0040/ Ausgabe:

Eingelesene Noten werden bei aktivierter Aufzeichnung in der DAW auf Pianorolls angezeigt und gespeichert. Kommentiert [GS2]: Es muss zu jeder weiteren Produktfunktion ein konkreter Testfall hinzugefügt werden ...

2.5 Produktleistungen

<u>/L010/ Latenz:</u>

Die Noten sollen ohne große Verzögerungen ankommen und so einen Liveeinsatz ermöglichen.

/L020/ Genauigkeit:

Das Signal soll zuverlässig in die richtigen Frequenzen aufgespalten werden.

2.6 Benutzungsoberfläche

/B001/ USB-Buchse

An der Micro-USB Buchse werden die an den PC zu übertragenden Daten bereitgestellt. Die USB-Schnittstelle wird zum Programmieren, sowie zum Übertragen von MIDI-Daten benutzt.

/B002/ Boot-Mode Taster

Wird der ESP32, während der Boot-Mode Taster gedrückt ist, zurückgesetzt, so wechselt er in den Download-Modus. Im Download-Modus kann dann eine neue Firmware auf den ESP32 gespielt werden.

/B003/ Reset Taster

Der Reset-Taster setzt den ESP32 zurück.

/B004/ Analoger Eingang

Am analogen Eingang werden die beiden 6,3mm Mono-Audio-Buchsen, welche am Gehäuse befestigt sind, angeschlossen.

/B005/ Slider-Switch

Mit dem Slider Switch, wird der UART-Kanal ausgewählt. Ist der Slider-Switch in der Links-Stellung (L), so kann der ESP32 über die USB-Schnittstelle programmiert bzw. gedebuggt werden. Hat man die Rechts-Stellung (R) selektiert, ist man im MIDI-Übertragungsmodus. Auf die Schnittstelle werden nun sämtliche erkannte Noten Übertragen.

Kommentiert [GS3]: Sobald wir ein Gehäuse haben, ein Bild davon einfügen (mit Audio Buchsen usw)

Kommentiert [GS4R3]: Slider Switch beschreiben

Kommentiert [SG5R3]: Evtl interface mit ableton

2.7 Entwicklungsumgebung

2.7.1 Software

- PlatformIO (Core v6.1.6, Home v3.4.3)
- ESP IoT Development Framework (v5.3.0)
- Autodesk EAGLE (v9.6.2)
- Autodesk Fusion 360 (v2.0.15509)
- ESP Flash Download Tool (v3.9.4)
- LTSpice (XVII)
- Saturn PCB Toolkit (v8.23)
- Ableton Live Suite (v11.2.7)
- Audacity

2.7.2 Hardware

- Prototypen
 - o Firmware Test-board
 - o Filter Prototyp

2.7.3 Orgware

- GitHub Desktop (v3.2.0)
 - o (https://github.com/s-grundner/MTAP-MIDI-Guitar-Converter)
- DrawIO/diagrams.net
- Obsidian (v1.1.9)
- Pro Create (v5.3.1)

Diplomarbeit Gitcon 2022/2023

2.8 Qualitätsziel Bestimmungen

	sehr wichtig	wichtig	weniger	unwichtig
			wichtig	
Robustheit			Х	
Zuverlässigkeit	×			
Korrektheit	x			
Benutzungs-			x	
freundlichkeit				
Effizienz	×			
Portierbarkeit		X		
Kompatibilität			x	

2.9 Globale Testszenarien und Testfälle

/T0010/ Noten Erkennung: FFT-Unittest

Die Note der angeschlagenen Saite wird erkannt und anschließend in das MIDI-Format konvertiert. Siehe: 4.3.7 Ausgabe p. 66

/T0020/ USB Kommunikation: MIDI Unittest

Das Gerät wird als MIDI Device in der DAW erkannt und sendet die mit der Gitarre Gespielten Noten an einen Kanal des virtuellen MIDI-Ports am PC. Die USB-Kommunikation und die Übertragungskapazität wurde mittels eines Unittest am ESP32 geprüft. Der Unittest sendet Unterschiedliche MIDI-Signale auf den MIDI-Kanal 1:

Status	Parameter 1	Parameter 2	
MIDI Note On	Note: C4	Velocity: 127	
MIDI Note Off	Note: C4	Velocity: 0	
Pitch Bend	0 (Min.)		
Pitch Bend	16383 (Max.)		
Pitch Bend	8192 (Mitte)		
MIDI Note On	Note: C4	Velocity: 127	

Kommentiert [GS6]: (Was sind typische Szenarien, die das Produkt erfüllen muss? Jede Produktfunktion /F????/ wird anhand von konkreten Testfällen /T????/ getestet. ACHTUNG:

Es muss zu jeder weiteren Produktfunktion ein konkreter Testfall hinzugefügt werden ...

Kommentiert [GS7R6]: /T0010/ Transienten Erkennung: Live-Sampling Es wird erkannt, ob eine Saite angeschlagen wird.

Pitch Bend	Aufwärtsrampe (8192 (Mitte) bis 16383 (Max.))		
Pitch Bend	Abwärtsrampe (16383 (Max.) bis 0 (Min.))		
Pitch Bend	Aufwärtsrampe (0 (Min.) bis 8192 (Mitte))		
MIDI Note Off	Note: C4	Velocity: 0	

Tabelle 1: MIDI-Unittest

Eine MIDI-Spur wird mit folgenden Einstellungen zur Aufnahme scharfgestellt:

Abbildung 3: Konfiguration einer MIDI-Spur beim MIDI-Unittest

Anschließend wird die Aufnahme gestartet:

Abbildung 4: Starten der Aufnahme des MIDI-Unittests

Das in Abbildung 5 Ergebnis wird erwartet:

Abbildung 5: Ergebnis einer Aufnahme des MIDI-Unittests

Das Ergebnis zeigt, wie die Note C4 auf der Pianoroll in der DAW zunächst an und aus geschalten wird, Anschließend wird das Maximum und Minimum des Pitchbends übertragen. Im letzten Test werden die vorherigen MIDI-Übertragungen kombiniert, indem die Note C4 angeschaltet wird und danach ein kontinuierliches Pitchbend in Form von drei linearen Rampen angewandt

/T0030/ Ausgabe: Live-Konversion

Eingelesene Noten werden bei aktivierter Aufzeichnung in der DAW auf Pianorolls angezeigt und gespeichert.

Eine MIDI-Spur wird mit folgenden Einstellungen zur Aufnahme scharfgestellt:

Abbildung 6: Konfiguration einer MIDI-Spur beim Live-Konversion Test

Anschließend wird die Aufnahme gestartet:

Abbildung 7: Starten der Aufnahme des Live-Konversionstest

Beim Anschlagen der tiefen E-Saite wurde folgendes Ergebnis aufgezeichnet

Abbildung 8: Ergebnis der Live-Konversion

3 Projektmanagement

3.1 Arbeitsaufteilung

Daniel Bräumann

- Implementierung der analogen Signalverarbeitungskette
- Entwurf des Tiefpassfilters und Verstärkers
- Vermessung des analogen Frontend

Simon Grundner

- Schaltungsentwurf
- Prototypenbau
- Platinen Entwurf
- Code-Grundgerüst und Kernel
- Audiosampling
- MIDI-Interfacing

Laurenz Hölzl

- Implementierung der FFT
- Fertigung der Testdaten
- Finetuning der Sample- und FFT-Parameter

Kommentiert [SG8]: Verwendung von Versionskontrolle dokumentieren

- Repository beschreibenOrganisation mit Git-Projects
- Insights/Workingtrends

Kommentiert [DB9]: Arbeitsaufteilung!

3.2 GANTT-Diagramme

3.3 Projektverwaltung

Um das Projekt während der Entwicklungsphase zu verwalten, wurde GitHub verwendet. GitHub ist eine weitverbreitete, webbasierte Plattform, mit welcher man das Projekt, in einer sogenannten "Repository" ablegen und von dort aus verwalten kann. Besonders bei Softwareprojekten erleichtert GitHub den Arbeitsfluss immens, da die Plattform einige ausschlaggebende Benefits mit sich bringt.

3.3.1 Versionskontrolle

GitHub ermöglicht einen strukturierten Arbeitsfluss. Ein sogenannter "Commit" wird ausgeführt, wenn ein Kollaborator mit einem Arbeitsschritt fertig ist. Dieser Commit wird mit einer Überschrift, welche den Arbeitsschritt kurz beschreibt, einer detaillierten Beschreibung und einer Prüfsumme versehen. Mithilfe der Prüfsumme kann zu jederzeit auf diesen Commit referiert werden. Dies stellt sicher, dass Änderungen am Projekt fortlaufend dokumentiert sind.

Die Plattform ermöglicht das Erstellen von Abzweigungen vom Hauptprojekt, im folgenden "Branches" genannt, mit denen Änderungen vorgenommen werden können, ohne dass das beständige Projekt verändert wird. Wenn nun während der Entwicklung kritische Änderungen erfolgen, zum Beispiel ein Refactor² oder ein neues Feature, ist man gegen mögliche fatale Fehler abgesichert.

Sobald ein Kollaborator seine Arbeit an einem Branch erledigt hat, wird eine **Pull-Request** erzeugt bei dem der Kollaborator eine Anfrage an den Administrator oder Projektleiter der Repository schickt, um den Code in das Hauptprogramm zu integrieren. Nach der Genehmigung kommt der Merge-Algorithmus von GitHub zum Einsatz, welcher neue Änderungen in die Code-Base einfügt. Kann der Algorithmus den Code nicht automatisch integrieren, kann auch manuell entschieden werden, ob ein Code-Abschnitt in den Main-Branch vereinigt wird oder nicht.

² Variablen und Funktionsnamen anpassen, um der Funktionalität zu entsprechen

3.3.2 Integrierte Tools

3.3.2.1 Trello

Trello ist eine webbasierte Projektmanagement-Software, welche es dem Team ermöglicht hat, die einzelnen Aufgaben visuell zu organisieren. Mittels einer flexiblen Board-Struktur können Karten mit den Arbeitsaufgaben in Listen organisiert werden.

Die Karten können mit Checklisten, Fälligkeitsdaten und Benutzerzuweisungen versehen werden, um den Überblick über die Aufgaben und Fortschritt zu behalten.

Auf der Website des Repository sind unter dem Reiter "Projects" die Trello-Boards für das Projekt vorhanden.

Abbildung 9: Trello Liste mit zwei Karten

3.3.2.2 GitHub Copilot

GitHub Copilot ist ein auf künstlicher Intelligenz (KI)-basiertes Tool von GitHub und kann als Erweiterung für den Visual Studio Code Editor installiert werden. Copilot ist darauf optimiert, Code anhand der bereits eingegebenen Informationen in der Datei zu generieren oder vervollständigen. Dieses Copilot Logo Werkzeug war beim Entwickeln eines Code-Prototypen sehr hilfreich. Es ist jedoch nötig, die generierten Codeblöcke immer zu validieren.

Abbildung 10:

4 Grundlagen und Methoden

4.1 Grundlagen Filter

4.1.1 Warum werden Filter benötigt?

Filter werden in der Elektronik verwendet, um unerwünschte Frequenzen aus einem Signal zu entfernen oder zu reduzieren. Ein Filter kann in der Lage sein, ein bestimmtes Frequenzband durchzulassen und alles außerhalb dieses Bereichs zu unterdrücken, oder bestimmte Frequenzen zu unterdrücken und den Rest durchzulassen.

Filter werden in vielen Bereichen der Elektronik eingesetzt, wie zum Beispiel in der Tontechnik, wo sie zur Entfernung von Rauschen und anderen Störungen verwendet werden. Ein anderer Anwendungsfall ist in der Datenkommunikation, wo sie zur Verarbeitung von Signalen und zur Entfernung von Interferenzen eingesetzt werden.

Insgesamt sind Filter ein wichtiges Werkzeug in der Elektronik, um die Qualität von Signalen zu verbessern und unerwünschte Störungen zu entfernen.

4.1.2 Analoge Filter

4.1.2.1 Passive Filter

Ein passiver Filter besteht ausschließlich aus passiven Bauelementen, wie Widerstand, Spule und Kondensator. Mithilfe dieser Bauteile kann man keine

Leistungsverstärkung erzielen. Weiters Abbildung 11: passiver LCR-Tiefpass [35]

benötigt dieser Filter keine externe Stromquelle für den Betrieb. Da die Eingangsimpedanz niedrig und die Ausgangsimpedanz hoch ist, wird eine Selbstregulierung der Spannungen ermöglicht, die die Lasten antreibt.

Der Lastwiderstand ist normalerweise nicht vom restlichen Netzwerk isoliert, dadurch kann die Charakteristik der Schaltung und der Filterprozess bei Veränderung der Last beeinflusst werden. Da ein passiver Filter keine Bandbreitenbeschränkungen aufweist, ermöglicht dies einen zufrieden-

stellenden Betrieb bei sehr hohen Frequenzen. Allerdings tendiert die in der Schaltung verwendete Induktivität bei niedrigeren Frequenzen größer zu sein, da diese den Stromfluss im Wechselstromkreis verzögert. Außerdem steigen die Kosten, wenn eine höhere Qualität und eine kleine Größe erwünscht ist. Weiters erzeugen passive Filter aufgrund des thermischen Rauschens in den Elementen ebenfalls ein hörbares Rauschen. Jedoch kann dies bei richtiger Auslegung der Bauteile minimiert werden.

Weil keine Verstärkung vorhanden ist, muss diese zu einem späteren Zeitpunkt durchgeführt werden. Dazu werden oft Pufferverstärker verwendet, da diese das Signal nicht verzerren.

4.1.3 Aktive Filter

Im Gegensatz zu passiven Filtern, die nur aus passiven Bauelementen bestehen, kommen bei aktiven Filtern Transistoren oder Operationsverstärker zum Einsatz, außerdem werden keine Induktoren verwendet. Anders als bei passiven Filtern benötigen aktive Filter aufgrund der energieverbrauchenden, Abbildung 12: aktiver Tiefpass [36]

aktiven Elemente eine externe Stromquelle. [1]

Da keine Spulen zum Einsatz kommen, wird die Schaltung kompakter. Die Eingangsimpedanz ist hoch und die Ausgangsimpedanz ist niedrig, so können niedrige Lasten am Ausgang angesteuert werden. Weiters ist die Last von der internen Schaltung isoliert, daher hat die Veränderung der Last keinen Einfluss auf die Charakteristik des Filters.

Das Ausgangssignal hat eine Leistungsverstärkung, auch können die Parameter wie Verstärkung und Grenzfrequenz beliebig angepasst werden. Probleme bei aktiven Filtern sind, dass eine Änderung in der Stromversorgung eine Änderung der Ausgangssignalgröße verursachen kann, weiters werden die Hochfrequenzbereiche durch die Eigenschaften der aktiven Elemente begrenzt. Außerdem können Rückkopplungsschleifen, die zur Regelung der aktiven Komponenten verwendet werden, zu Schwingungen und Rauschen beitragen.

4.1.4 Unterschied zwischen aktiven und passiven Filtern

- Bei passiven Filtern wird die Energie des Signals verbraucht, es ist jedoch keine Leistungsverstärkung verfügbar, während bei aktiven Filtern eine Leistungsverstärkung zur Verfügung steht.
- Aktive Filter benötigen eine externe Stromquelle. Passive Filter arbeiten nur am Signaleingang.
- o Ausschließlich passive Filter verwenden Induktivitäten.
- Aktive Filter verwenden Transistoren und Operationsverstärker, die aktive Bauelemente sind.
- Passive Filter haben theoretisch keine Frequenzbegrenzungen, während aktive Filter von den aktiven Elementen eine Einschränkung aufweisen
- Außerdem sind passive Filter etwas stabiler und können auch großen Strömen standhalten.
- Passive Filter sind preiswerter als aktive Filter, jedoch sind aktive Filter meist kompakter.

4.1.5 Operationsverstärker

Der Operationsverstärker (OPV) ist eines den vielseitigsten Bauelemente in der Elektronik. OPVs sind elektronische Verstärker, deren Name sich vom mathematischen Begriff "Operator" ableiten lässt, da dieser die Rechenoperationen durchführt. Operationsverstärker haben meist zwei Eingänge und einen Ausgang, worüber Signale verstärkt, addiert, subtrahiert, integriert, differenziert und geschaltet werden. Der OPV kommt oft als Differenzenverstärker zum Einsatz, sodass ein Signal an einem Eingang anliegt, welches über den Ausgang zum Eingang zwei rückgekoppelt wurde. Damit lassen sich schnell und unkompliziert mit Hilfe von Widerständen und Kondensatoren Verstärkerschaltungen realisieren. Weiters kommen zu diesen Einund Ausgängen noch Anschlüsse für die Spannungsversorgung hinzu. Man spricht hier von aktiven Bauteilen, welche eine Verstärkung bereitstellen können, also wird auch hier eine Versorgungsspannung benötigt.

Kommentiert [DB10]: Anderes Bild

Appliaung 13: UPV-Schaltsympol

Die obige Grafik zeigt das Schaltbild eines Operationsverstärkers. P ist der nicht-invertierende, N ist der invertierende Eingang. A ist der Ausgang, plus (+) und minus (-) sind die Eingänge für die Versorgungsspannung. [2]

4.1.5.1 Eigenschaften des OPVs

Operationsverstärker sind besonders vielseitig einsetzbar. Ihre Funktionen hängen hauptsächlich von der externen Beschaltung des OPVs ab [2]. Im Vergleich zu einem herkömmlichen Verstärker ist der Unterschied gar nicht so groß. Während ein Transistorverstärker festgelegte Eigenschaften aufgrund seiner Schaltung aufweist, wird die Funktionsweise eines

Operationsverstärkers erst durch seine externe Beschaltung definiert [2]. Die Eingänge N und P sowie der Ausgang A beziehen sich auf ein gemeinsames Massepotenzial. Der OPV kann eine Spannungsdifferenz zwischen den Eingängen N und P verstärken, wobei der Verstärkungsfaktor ν durch die äußere Beschaltung bestimmt wird. Die Ausgangsspannung ist in Phase mit der Eingangsspannung am nicht-invertierenden Eingang.

OPVs haben ähnlich wie herkömmliche Verstärker Kennlinien, die die Verstärkungscharakteristik beschreiben. Diese Kennlinien werden als "Ausgangssteuerbarkeit" bezeichnet. Da es keine perfekten OPVs mit unendlicher Verstärkung gibt, ist es wichtig, diese Kennzahlen zu berücksichtigen, um die Schaltung in einem vernünftigen Arbeitspunkt zu betreiben. Dies hilft, Verzerrungen, Sättigungs- und Clipping-Effekte zu vermeiden. [2]

Abbildung 14: Schaltbild OPV

Für die Differenzverstärkung gilt:
$$U_D = U_P - U_N$$
 (1)

Für die Ausgangsspannung gilt:
$$U_a = v * U_D = v * (U_P - U_N)$$
 (2)

Abbildung 15: Differenzenverstärkung OPV

In Abbildung 15 wird die Differenzverstärkung eines Operationsverstärkers, die auch als Leerlaufverstärkung bekannt ist, dargestellt. Diese Verstärkung hängt von der Versorgungsspannung des OPVs ab und hat ihre Grenzen im Sättigungsbereich, der sowohl im Negativen als auch im positiven Bereich auftritt. Im Idealfall ist die Leerlaufverstärkung linear und frequenz-unabhängig, aber bei einem realen Operationsverstärker gibt es aufgrund seiner Bandbreite eine obere Grenzfrequenz. Obwohl die Bandbreite bei 0 Hz beginnt, gibt es bestimmte Grenzen, die zu beachten sind. [2]

Kommentiert [DB11]: Welche grenzen?

4.1.5.2 Invertierender und nicht-invertierender OPV

Damit ein Operationsverstärker als Differenzverstärker verwendet werden kann, muss ein Teil des Ausgangssignals an einen der Eingänge zurückgeführt werden. [3] Dies wird als Gegenkopplung oder Feedback bezeichnet. Zunächst wird die einfachste und am häufigsten verwendete Operationsverstärkerschaltung betrachtet, der Impedanzwandler, der auch als Spannungsfolger bezeichnet wird.

Abbildung 16: OPV als Impedanzwandler

Der Spannungsfolger weist eine Verstärkung von eins auf und somit der Eingangsspannung "folgt". Wenn die Spannung am positiven Eingang er-

Abbildung 17: Invertierender OPV

höht wird, erkennt der OPV das unterschiedliche Potential und verstärkt die Daniel Bräumann, 5AHEL 34/129 HTBLuVA Salzburg

Ausgangsspannung, bis beide Potentiale wieder ident sind. Da die Eingangsimpedanz sehr hoch und die Ausgangsimpedanz sehr gering ist, ist das Ziel einen Verbraucher mit kleiner Impedanz an eine Quelle anschließen zu können, ohne die Quellschaltung zu sehr zu belasten. [3]

Diese Abbildung zeigt die Konfiguration als invertierenden Verstärker. Der Strom fließt von der Wechselstromquelle durch R_1 und R_2 (hier $R_1 = 1k$ und $R_2 = 3k$). Da die Eingangs-impedanz sehr hoch ist, wird der Strom durch den OPV vernachlässigbar klein. Das Ausgangssignal ist zum Eingangssignal invertiert, das Verhältnis aus R_1 zu R_2 ergibt den Verstärkungsfaktor. [3]

Dadurch gilt:
$$U_a = -U_e * \frac{R_2}{R_1}$$
 (3)

Der OPV versucht den invertierenden Eingang auf dasselbe Potential, wie des positiven Eingangs, also Masse zu bringen. Das Ausgangssignal muss also so verstärkt werden, um den Spannungsabfall an R_2 zu kompensieren. Die Spannung würde in diesen Fall verdreifacht werden, was einen Verstärkungsfaktor $\nu=3$ ergeben würde.

Abbildung 18: Nicht-invertierender OPV

Diese Abbildung zeigt jetzt die gegenteilige Schaltung. Der nicht-invertierende Verstärker arbeitet ebenso mit Gegenkopplung, die Widerstände R_1 und R_2 bilden einen Spannungsteiler (in diesem Fall ist $R_1 = 1k$ und $R_2 = 2k$),

der als unbelastet angenommen wird, da der nicht-invertierende Eingang eine hohe Eingangsimpedanz besitzt. [3]

Für den Verstärkungsfaktor gilt:
$$U_a = U_e \left(1 + \frac{R_2}{R_1}\right)$$
 (4)

Auch hier wird eine Verstärkung von drei erreicht. Es kommt bei Schaltungen dieser Art weniger auf die Widerstandswerte, sondern mehr auf deren Verhältnis an. Jedoch fließt bei zu niedrigem Wert ein hoher Strom, den der Operationsverstärker im Feedbackloop leisten muss, dies kann zu Verzerrungen oder Überhitzungen des OPVs führen. Anderenfalls sind zu hohe Werte ebenfalls kritisch, da sie zu erhöhtem Rauschen oder Oszillation führen können. [3]

4.1.6 Unterschied zwischen analoge und digitale Filter

Analoge Filter sind leicht zu implementieren, da man das zu filternde kontinuierliche Signal am Eingang einspeisen kann. Digitale Filter hingegen, arbeiten zeitdiskret. Anstatt eine analoge Schwingung, nehmen sie einen Datenstrom als Eingang, welcher aus **Samples** (Abtastwerte) des Signals besteht. Um das Signal in die Samples zu zerlegen, liest ein Analog-Digital-Umsetzer in jeder Abtastperiode den Momentanwert des Signals ein. Die Abtastfrequenz wird dabei so Hoch gewählt, dass das Signal aus den Samples möglichst genau rekonstruiert werden kann. (siehe 4.1.6.1)

Digitale Filter bieten einige Vorteile. Darunter zählt, dass ein einziger Filter mehrere Eingangssignale filtern kann, ohne etwas an der Hardware geändert zu haben. Weiters variiert die Leistung nicht mit den Umgebungsbedingungen, wonach immer eine konstante Leistung herrscht.

Die Hauptanwendungen für digitale Filter sein zum Beispiel die Trennung von kombinierten Signalen und die Wiederherstellung von verzerrten Signalen. Digitale Filter erzielen hier meist bessere Ergebnisse, aber diese Probleme sind auch mittels Analogfilter problemlos zu lösen.

Weiters unterscheiden sie sich bei der Bandbreite. Während bei Digitalfiltern die Bandbreite durch den Start der Aufnahme eingestellt wird, gilt diese bei Analogfiltern als unbegrenzt, wodurch die Auflösung nicht als statisch, sondern variabel gilt und jederzeit erhöht oder gesenkt werden kann, ohne Qualität einbüßen zu müssen.

Nachteile von digitalen Filtern sind, dass sie wesentlich teurer als Analogfilter sind und dazu eine höhere Latenz aufweisen. Dazu kommen noch eine geringere Bandbreite und ein störendes Quantisierungsrauschen.

Analoge Filter werden in einer Vielzahl von Anwendungen eingesetzt, z.B. in der Tontechnik, wie in Verstärker und Equalizern, um unerwünschte Rausch- und Störgeräusche herauszufiltern und die Klangqualität zu verbessern. Auch in der Telekommunikation sind sie von wichtiger Bedeutung. Hier werden Filter verwendet, um das Signal-Rausch-Verhältnis zu verbessern und unerwünschte Signale zu unterdrücken. Zum Beispiel in Mobilfunkgeräten, um Interferenzen von benachbarten Frequenzen zu reduzieren. Sie können auch Rauschen entfernen, um klare Messergebnisse zu erhalten, ein Anwendungsbereich hierfür ist ein Elektrokardiogramm (EKG). In der Regel werden analoge Filter dort eingesetzt, wo die Signale in kontinuierlicher Form vorliegen und es wichtig ist, spezifische Frequenzen herauszufiltern oder zu unterdrücken.

4.1.6.1 Shannon-Nyquist Theorem

Das Shannon-Nyquist Theorem ist ein Abtasttheorem, welches besagt, dass die Abtastfrequenz eines analogen Signals mindestens doppelt so hoch wie die höchste Frequenzkomponente des Signals sein muss. Dies ist aufgrund der sogenannten Nyquist-Frequenz möglich, die die höchste Frequenz angibt, die durch die Abtastung erfasst werden kann.

$$f_{Abtast} > 5 * f_{max} \tag{5}$$

Dieses Abtasttheorem ist vor allem in der digitalen Signalverarbeitung und digitalen Kommunikation von Bedeutung, da es als Grundlage für die Abtastung, Kodierung und Quantisierung gilt.

4.2 Aktiver Filter

4.2.1 Sallen-Key-Filter

Der Sallen-Key Filter ist einer der meistgenutzten Filter in der Signalverarbeitung, um Frequenzen in einem Signal zu verstärken oder abzuschwächen. Der Filter besteht lediglich aus einem Operationsverstärker und einigen passiven Bauelementen, weswegen er als aktiver Filter bezeichnet wird. Es ist wichtig zu beachten, dass der Sallen-Key eine Filtertopologie und keine Filtercharakteristik, wie Butterworth, Bessel usw. Jedoch können verschiedene Charakteristiken in verschiedene Topologien implementiert werden, je nach Änderung der Komponentenwerte verändert sich die Filtercharakteristik.

Sallen-Key werden meist als Tief- oder Hochpass verwendet, wobei bei Erweiterung auch ein Bandpass ermöglicht wird. Weiters weist der Sallen-Key eine gute Linearität und eine geringe Verzerrung auf, was es zu einer effektiven Lösung für die Signalverarbeitung macht. Dazu ist diese Topologie sehr leicht zu realisieren und auch in der Lage eine hohe Güte zu erreichen, was dazu führt, dass unerwünschte Frequenzen sich sehr stark unterdrücken lassen oder spezifische Frequenzen sehr genau verstärken lassen.

Abbildung 19: Sallen-Key Tiefpass (links) & Hochpass (rechts)

Jedoch gibt es auch Nachteile des Sallen-Key Filters. Dazu zählen eine begrenzte Bandbreite und hohe Empfindlichkeit bei Veränderung der passiven Komponenten, die zu einer Verschiebung der Filtercharakteristik führen können. Daher sollte die Überwachung der Filtercharakteristik an oberster Stelle stehen, um eine unerwünschte Veränderung zu bemerken. [2]

4.2.1.1 Unterschiede in den Ordnungen

Filter gibt es in diversen Ordnungen, mit jeweils anderen Eigenschaften. So ist es auch beim Sallen-Key der Fall. Eine Änderung, die sofort auffällt, ist der Aufbau der Schaltung. Während beim Sallen-Key erster Ordnung nur jeweils ein Widerstand und Kondensator verwendet werden, benötigt ein Filter zweiter Ordnung vier passive Bauteile.

Abbildung 20: Filter erster Ordnung

Abbildung 21: Filter zweiter Ordnung

Weiters unterscheiden sich die Ordnungen auch in der Flankensteilheit. In erster Ordnung fällt die Kurve um 20dB/Dekade (6dB/Oktave), bei einem Sallen-Key zweiter Ordnung beträgt die Flankensteilheit 40dB/Dekade (12db/Oktave).

Abbildung 22: Flankensteilheit der Ordnungen [24]

Während der Sallen-Key erster Ordnung nur eine Resonanzfrequenz hat, hat der Sallen-Key zweiter Ordnung zwei Resonanzfrequenzen. Diese beeinflussen die Filtercharakteristik maßgeblich in deren Umgebung. Auch die Dämpfung verändert sich je nach Ordnung. Das bedeutet, dass ein Filter zweiter Ordnung eine höhere Dämpfungsfähigkeit aufweist und somit unerwünschte Frequenzen besser unterdrücken, kann als ein Filter erster Ordnung. [4]

4.2.2 Butterworth

Die Butterworth Filtercharakteristik ist eine der beliebtesten Charakteristiken, da sie eine auf einer flachen Übertragungsfunktion basiert, was bedeutet, dass die Verstärkung im Frequenzbereich möglichst gleichmäßig ist. Weiters weist sie eine maximale lineare Phasenreaktion auf, was bedeutet, dass alle Frequenzen innerhalb des Durchlassbereichs des Filters ohne Phasenverschiebung passieren. Dies ist ein wichtiger Vorteil bei der Verarbeitung von Signalen, bei denen eine gleichmäßige Phasenreaktion erforderlich ist, wie zum Beispiel bei der Signalübertragung oder in der Audio- und Musikproduktion.

Abbildung 23: Butterworth Frequenzverhalten [33]

Die Übertragungsfunktion ist charakterisiert durch eine Glättungskurve, die zu einem sanften Roll-Off führt. Dies führt zu einem Kompromiss zwischen der Dämpfung von unerwünschten Frequenzen und der Aufrechterhaltung einer möglichst linearen Phasenreaktion innerhalb des Durchlassbereichs. Als Roll-Off wird der Abgang nach der Grenzfrequenz bezeichnet. Ideal "Brick wall" Response bedeutet, dass die Abschwächung perfekt und abrupt ist und keine Verzerrungen vorkommen.

Außerdem ist die Butterworth Charakteristik für ihre hohe Stabilität bekannt. Anders als bei anderen Filtertypen, wie Chebyshev- oder Elliptischen-Filter, die ein Rippelverhalten in der Übertragungsfunktion aufweisen, weist ein Butterworth-Filter keine unerwünschten Spitzen oder Wellen auf. Dadurch wird die Filterleistung und Genauigkeit der Signalverarbeitung verbessert.

Abbildung 24: Frequenzverhalten der Filtercharakteristiken [32]

4.2.2.1 Toleranzschema

Um einen Filter erfolgreich zu dimensionieren, müssen zuallererst die Anforderungen des zu entwerfenden Filters festgelegt werden, das sogenannte Toleranzschema. Dies beschreibt die zulässigen Bereiche des Amplitudengangs, dazu wird der Frequenzgang in drei Arbeitsbereiche unterteilt.

Abbildung 25: Toleranzschema [31]

- Im Durchlassbereich wird die maximal erlaubte Welligkeit des Amplitudengangs angegeben. Das Nutzsignal soll außerdem möglichst nicht beeinträchtigt werden. Der Toleranzbereich wird durch das Verhältnis $\frac{A_{D,min}}{A_{D,max}}$ festgelegt, wobei A_D die Grundverstärkung des Filters ist.
- Der Übergangsbereich ist jener Bereich, wo die Dämpfung des Filters bis auf die vom Sperrbereich festgelegte Mindestdämpfung anwachsen soll. Der Bereich beginnt bei $\Omega=1$ und endet bei $\Omega=\Omega_S$.
- Die Mindestdämpfung wird zu Beginn des Sperrbereichs bei Ω_S spezifiziert. Diese wird mit dem Quotienten $\frac{A_{S,max}}{A_{D,max}}$ angegeben.

4.2.3 Mathematische Beschreibung

4.2.3.1 Allgemeine Herleitung der Übertragungsfunktion

Bei der allgemeinen Herleitung der Übertragungsfunktion werden die Bauteile durch Impedanzen ersetzt. Außerdem wird der Operations-verstärker

als ideal angenommen, deshalb hat diese Schaltung bei A nur einen Knotenpunkt. Es wird eine komplexe Frequenzvariable $p=s=j\omega$ verwendet, um die Herleitung übersichtlicher zu gestalten. Diese Herleitung kann zur Weiteren Berechnung eines Tiefpasses oder Hochpasses verwendet werden. [5]

Abbildung 26: Schaltbild Filter zweiter Ordnung

$$I_{1}(s) = I_{2}(s) + I_{3}(s)$$

$$I_{1}(s) = \frac{U_{e}(s) - U_{r}(s)}{Z_{1}(s)}$$

$$I_{2}(s) = \frac{U_{r}(s) - U_{a}(s)}{Z_{4}(s)}$$

$$I_{3}(s) = \frac{U_{r}(s)}{Z_{2}(s) + Z_{3}(s)}$$

$$I_{3}(s) = \frac{U_{a}(s)}{v * Z_{3}(s)}$$

$$I_{1} = I_{2} + I_{3}$$

durch Einsetzen den Teilgleichungen:

$$\frac{U_e-U_r}{Z_1} = \frac{U_r-U_a}{Z_4} + \frac{U_a}{v*Z_3}$$

mit:
$$U_r = I_3 * (Z_2 + Z_3)$$

$$\begin{split} \frac{U_e - I_3 * (Z_2 + Z_3)}{Z_1} &= \frac{I_3 * (Z_2 + Z_3) - U_a}{Z_4} + \frac{U_a}{v * Z_3} \\ \frac{U_e}{Z_1} - \frac{U_a * (Z_2 + Z_3)}{v * Z_1 * Z_3} &= \frac{U_a * Z_2 + U_a * Z_3 - U_a * v * Z_3 + U_a * Z_4}{v * Z_3 * Z_4} \\ &= \frac{U_e}{Z_1} - \frac{U_a * (Z_2 + Z_3)}{v * Z_1 * Z_3} &= \frac{U_a [(Z_2 + Z_4) + Z_3 (1 - v)]}{v * Z_3 * Z_4} \\ &= \frac{U_e}{Z_1} &= \frac{U_a [(Z_2 + Z_4) + Z_3 (1 - v)]}{v * Z_3 * Z_4} + \frac{U_a (Z_2 + Z_3)}{v * Z_1 * Z_3} \\ &= \frac{U_e}{Z_1} &= \frac{U_a \{Z_1 [(Z_2 + Z_4) + Z_3 (1 - v)] + Z_4 (Z_2 + Z_3)\}}{v * Z_1 * Z_3 * Z_4} \end{split}$$

Allgemeine Übertragungsfunktion:

$$\frac{U_a}{U_e} = \frac{v * Z_3 * Z_4}{Z_1 * Z_2 + Z_1 * Z_4 + Z_2 * Z_4 + Z_3 * Z_4 + Z_1 * Z_3 (1 - v)}$$
(6)

4.2.3.2 Sallen-Key-Tiefpass 2. Ordnung

Für die obige Schaltung wird bei einen Tiefpass 2. Ordnung die Impedanzen Z1 und Z2 ohmsche Widerstände eingesetzt. Für Z3 und Z4 werden kapazitive Blindwiderstände verwendet. [5]

Abbildung 27: Schaltbild Sallen-Key zweiter Ordnung

Sallen-Key TP mit Verstärkung:

$$X_c = \frac{1}{j\omega c}$$

$$Z_{3} = \frac{1}{s * C_{1}}; Z_{4} = \frac{1}{s * C_{2}}$$

$$\frac{U}{S} = \frac{U}{U_{e}(s)} = \frac{v * \frac{1}{s * C_{1}} * \frac{1}{s * C_{2}}}{R_{1}R_{2} + R_{1}\frac{1}{s * C_{2}} + R_{2}\frac{1}{s * C_{2}} + \frac{1}{s * C_{1}} * \frac{1}{s * C_{2}} + R_{1}\frac{1}{s * C_{1}}(1 - v)}$$

$$\frac{G}{TP} = \frac{v}{R_{1}R_{2}C_{1}C_{2}s^{2} + C_{1}s(R_{1} + R_{2}) + 1 + R_{1}C_{2}s(1 - v)}$$

$$\frac{G}{TP} = \frac{v}{1 + R_{1}R_{2}C_{1}C_{2}s^{2} + s[C_{1}(R_{1} + R_{2}) + R_{1}C_{2}(1 - v)]}$$
allgemein normierter TP 2. Ordnung:
$$\frac{G}{TP} = \left(\frac{1}{1 + j\frac{\omega}{\omega_{g}}}\right)^{2} = \frac{1}{1 - \left(\frac{\omega}{\omega_{g}}\right)^{2} + ja\frac{\omega}{\omega_{g}}}$$

Mit
$$s = j\omega$$
 folgt:

$$\underline{G}_{TP} = \frac{v}{1 - R_1 R_2 C_1 C_2 \omega^2 + j \omega [C_1 (R_1 + R_2) + R_1 C_2 (1 - v)]}$$
(8)

Durch einen Vergleich sich entsprechender Komponenten im normierten allgemeinen TP-Filter zweiter Ordnung können Grenzfrequenzen und Dämpfungswerte (a) für unterschiedliche Dimensionierungen von R und C ermittelt werden. Die Simulationsergebnisse für unterschiedliche Verstärkungen sind auf den Ausgangswert 0dB gesetzt. Die Amplitudenerhöhung nimmt bei Verstärkung größer 1,5 deutlich zu.

$$\left(\frac{\omega}{\omega_g}\right)^2 = R_1 R_2 C_1 C_2 \omega^2$$

$$\omega_g^2 = \frac{1}{R_1 R_2 C_1 C_2} ; f_g = \frac{1}{2\pi \sqrt{R_1 R_2 C_1 C_2}}$$

$$a\frac{\omega}{\omega_g} = \omega [C_1 (R_1 + R_2) + R_1 C_2 (1 - v)]$$

$$a = \omega_g [C_1(R_1 + R_2) + R_1C_2(1 - v)]$$
 Nach Einsetzen von ω_g :
$$a = \frac{C_1(R_1 + R_2) + R_1C_2(1 - v)}{\sqrt{R_1R_2C_1C_2}}$$
 Mit $R_1 = R_2 = R$ und $C_1 = C_2 = C$
$$f_g = \frac{1}{2\pi RC} \; ; \; a = 3 - v$$

Wenn Widerstände und Kondensatoren unterschiedliche Werte haben:

$$f_g = \frac{1}{2\pi\sqrt{R_1R_2C_1C_2}} \tag{10}$$

Abbildung 28: Dämpfungskurven

In Abbildung 24 ist zu sehen, wie sich die Dämpfungskurve mit diversen Faktoren verändert. Der Dämpfungsfaktor beschreib die Fähigkeit eines Systems, unerwünschte Schwingungen abzuschwächen oder zu unterdrücken. Man sieht, dass bei einer niedrigen Dämpfung das System mehr Zeit benötigt, um abzuklingen bzw. hält die Schwingung länger an. Anders als bei einem hohen Dämpfungsfaktor, wo sich das System schneller beruhigt. [5]

4.3 Grundlagen der digitalen Signal-Verarbeitung (DSV)

4.3.1 Allgemein

Schlägt man auf einer Gitarre eine Saite an, so schwingt diese mit einer gewissen Frequenz. Am ESP32 soll nun mithilfe eines Algorithmus die Frequenz und daraus folgend die gespielte Note erkannt werden. Hierfür wird der Fast Fourier Transform (FFT) Algorithmus verwendet. Mithilfe der FFT kann das Frequenzspektrum des Signals ermittelt werden.

Aufgrund des Aufbaus einer E-Gitarre gibt es neben der Grundfrequenz aber noch eine Vielzahl anderer Schwingungen, welche beispielsweise durch das Kabel, Holz oder Pickup (Tonabnehmer) der Gitarre auftreten können. Diese "Zusatzschwingungen" treten bei allen Instrumenten in einer individuellen Kombination auf und sind der Grund, warum sich die gleiche Note auf zum Beispiel Klavier und Gitarre unterschiedlich anhört.

Spielt man einen Ton auf einem Instrument so treten neben dem Grundton noch sogenannte Obertöne oder Teiltöne auf. Diese sind höher als der tatsächlich gespielte Grundton und stellen bei dessen Erkennung eine maßgebliche Herausforderung dar.

Um ein möglichst obertonfreies Signal zu gewährleisten, ist es ratsam, den Pickup, welcher am Hals sitzt zu wählen. Die Brücke reflektiert einige Schwingungen und beeinflusst dadurch das Signal.

Abbildung 29: Aufbau einer E-Gitarre

4.3.2 Einleitung Fourier Transformation

Die Fourier Transformation ist eine Integraltransformation, welche 1822 von Jean Baptiste Fourier eingeführt wurde und genutzt wird, um das diskrete Frequenzspektrum aperiodischer Signale zu ermitteln. Ihr gegenüber steht die Fourier Reihe, mit welcher sich das Spektrum periodischer Funktionen berechnen lässt. Sie ist in vielen Bereichen von Wissenschaft und Technik unerlässlich. Vor allem bei der Datenkomprimierung spielt sie eine große Rolle. Um sie von einem Computer ausführen zu lassen gibt es die Diskrete Fourier Transformation (DFT) und die Schnelle Fourier Transformation (FFT).

Eigentlich handelt es sich beim FFT-Algorithmus nur um eine Möglichkeit die DFT mit hoher Geschwindigkeit durchzuführen. James Cooley und John W. Tukey wiederentdeckten ihn im Jahr 1965. Wiederentdeckung deshalb, weil Carl Friedrich Gauß den Algorithmus in seiner ersten Form bereits 1805 entdeckte und verwendete, diese aber nie publizierte. Erst die durch diesen Algorithmus erreichte hohe Durchführungsgeschwindigkeit ermöglicht eine so breit gefächerte Anwendung.

Abbildung 30: Veranschaulichung Fourier Transformation

Diplomarbeit Gitcon 2022/2023

4.3.3 Ursprung der Fourier Transformation

4.3.3.1 Fourier Reihe

1807 fand Jean Baptiste Fourier heraus, dass sich eine periodische Funktion als eine Linearkombination von Sinus- und Cosinus-Schwingungen, eine sogenannte Fourier-Reihe, ausdrücken lässt:

$$x_p(t) = \frac{a_0}{2} + \sum_{k=1}^{\infty} (a_k * \cos(2\pi k f_0 t) + b_k * \sin(2\pi k f_0 t))$$
(11)

Hierbei sind a_k und b_k sogenannte Fourier-Koeffizienten, welche den Amplituden der entsprechenden (also kten) Schwingungsanteile gleichkommen. Für den Fall "k=0" existiert das, den arithmetischen Mittelwert darstellende, zeitunabhängige Glied $\frac{a_0}{2}$. Die Grundfrequenz der Fourier-Reihe ist über f_0 dargestellt.

Wird nun die Cosinus-Funktion durch $\cos(j\omega t)=\frac{1}{2}*(e^{-j\omega t}+e^{j\omega t})$ und Sinus-Funktion durch $\sin(\omega t)=\frac{1}{2j}*(e^{j\omega t}-e^{-j\omega t})$ ersetzt so erhält man die komplexe Fourier-Reihe.

$$x_p(t) = \sum_{k = -\infty}^{\infty} c_k * e^{j\omega t}$$
(12)

Der Koeffizient c_k ist der komplexe Fourier Koeffizient, aus welchem sich Amplituden und Phasen der Harmonischen berechnen lassen. Multipliziert man hier beide Seiten mit $e^{-j\omega t}$ und integriert diese anschließend von $-\frac{T_0}{2}$ bis $\frac{T_0}{2}$ erhält man die als Analysegleichung bezeichnete Bestimmungsgleichung:

$$c_k = \frac{1}{T_0} * \int_{-\frac{T_0}{2}}^{\frac{T_0}{2}} x_p(t) * e^{-j\omega t} dt$$
 (13)

Das Bestimmen von c_k über eine Integration gestaltet sich in der Praxis sehr mühsam. Mithilfe der FFT lassen sich diese Koeffizienten viel einfacher und effizienter berechnen. [8, p. 25 ff.]

4.3.3.2 Von der Fourier Reihe zur Fourier Transformation

Da die Fourier Reihe in ihrer Anwendung auf periodische Signale beschränkt ist, wurde die Fourier Transformation eingeführt. Wie bereits erwähnt wird diese genutzt, um das diskrete Frequenzspektrum aperiodischer Signale zu ermitteln. Damit dies möglich wird, wird das Eingangssignal als periodisches Signal angenommen, wobei seine Periode unendlich groß ist. Sie lässt sich herleiten, indem man in der Gleichung für die komplexe Fourier Reihe c_k durch das Integral aus der Analysegleichung und $x_p(t)$ durch x(t) ersetzt.

$$x(t) = \sum_{k=-\infty}^{\infty} \left(\int_{-\frac{T_0}{2}}^{\frac{T_0}{2}} x(t) * e^{-j\omega t} dt \right) * e^{j\omega t} * \frac{1}{T_0}$$
 (14)

Hierbei entspricht kf_0 einem Punkt auf der Frequenzachse und kann daher als f geschrieben werden. Da die Periode eines aperiodischen Signals $T_0=\infty$ ist die Grundfrequenz $f_0=\frac{1}{T_0}$ demzufolge unendlich klein und wird als deshalb mit df ersetzt.

$$x(t) = \int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} x(t) * e^{-j\omega t} dt \right) * e^{j\omega t} dt$$
(15)

Das eingeklammerte Integral heißt Fourier Transformierte X(f) und ist eine Funktion von f. Somit erhält man als Formel für die Fourier Transformation:

$$X(f) = \int_{-\infty}^{\infty} x(t) * e^{-j\omega t} dt$$
(16)

Dies kann nun auf x(t) umgeformt werden, womit sich die Inverse Fourier Transformation ergibt:

$$x(t) = \int_{-\infty}^{\infty} X(f) * e^{j\omega t} df$$
 (17)

Zusammenfassend kann gesagt werde, dass X(f) die Fourier-Transformierte von x(t) und x(t) die inverse Fourier-Transformierte von X(f) ist. Dabei gibt X(f) die Stärke und Phase an mit welcher eine komplexe Sinusschwingung mit der Frequenz f im Signal x(t) vorhanden ist. [8, p. 28 ff.]

Diplomarbeit Gitcon 2022/2023

4.3.4 Herleitung der Diskreten Fourier Transformation

Tatsächlich handelt es sich bei der Diskreten Fourier Transformation (DFT) um eine Annäherung der Fourier Transformation, welche es ermöglicht sie effizient von einem digitalen Rechner berechnen zu lassen.

Hierbei wird die Formel für die Fourier Transformierte (16) als Ausgangspunkt genutzt. Das zeitkontinuierliche Signal wird durch seinen Abtastwert x(nT) und das Differential durch das Abtastintervall T ersetzt. Zur Annäherung des Integrals wird die Summe verwendet:

$$X_{s}(f) = \sum_{n=-\infty}^{+\infty} x(nT) * e^{-j\omega nT} * T$$
(18)

Da eine unendliche Anzahl an Abtastwerten unmöglich zu berechnen ist, werden eine endliche Anzahl N dieser herausgeschnitten/"gefenstert" (engl: windowing). Außerdem kann der Faktor T aus "Bequemlichkeit" weggelassen werden.

$$X_{sw}(f) = \sum_{n=0}^{N-1} x(nT) * e^{-j\omega n \frac{f}{f_s}}$$
 (19)

Dies Funktion ist f_s -periodisch und hat nur an N-Stellen linear unabhängige Funktionswerte. Ausgewertet wird sie an N gleichentfernten Frequenzstellen $f=0,\frac{f_s}{N},2*\frac{f_s}{N},...,(N-1)*\frac{f_s}{N}$. Werden der Einfachheit halber wieder einige Faktoren $(\frac{f_s}{N},T)$ und die Kennzeichnung sw weggelassen ergibt sich die Definition (Analysegleichung) der DFT:

$$X[k] = \sum_{n=0}^{N-1} x[n] * e^{-jkn\frac{2\pi}{N}}$$
 (20)

Die inverse DFT (IDFT) (Synthesegleichung) ist definiert als:

$$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] * e^{jkn\frac{2\pi}{N}}$$
 (21)

[8, p. 163 ff.]

4.3.4.1 Matrix-Interpretation der DFT

Führt man den Drehfaktor (engl: twiddle factor) $W_N=e^{-j2\pi/N}$ ein, so kann die DFT und IDFT auch folgenderweise geschrieben werden:

$$X[k] = \sum_{n=0}^{N-1} x[n] * W_N^{kn}$$
 (22)

$$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] * W_N^{-kn}$$
(23)

Diese beiden Sequenzen lassen sich in Vektorform darstellen:

$$x_{N} = \begin{bmatrix} x[0] \\ x[1] \\ \vdots \\ x[N-1] \end{bmatrix}, \quad X_{N} = \begin{bmatrix} X[0] \\ X[1] \\ \vdots \\ X[N-1] \end{bmatrix}$$
 (24)

Definiert man nun noch die DFT-Matrix:

$$\boldsymbol{W}_{N} = \begin{bmatrix} 1 & 1 & \cdots & 1 \\ 1 & W_{N}^{1} & \cdots & W_{N}^{N-1} \\ \vdots & \vdots & \vdots \vdots & \vdots \\ 1 & W_{N}^{N-1} & \cdots & W_{N}^{(N-1)(N-1)} \end{bmatrix}$$
 (25)

...so lässt sich die N-Punkte-DFT als Matrizenmultiplikation schreiben:

$$X_N = W_N x_N \tag{26}$$

Multipliziert man die DFT mit der inversen DFT-Matrix (28) so wird die IDFT erhalten:

$$x_N = W_N^{-1} X_N \tag{27}$$

Definiert ist die inverse DFT-Matrix als:

$$W_N^{-1} = \frac{1}{N} W_N^* \tag{28}$$

[8, p. 165 f.]

Somit lässt sich folgendes aussagen:

 "Die diskrete Fourier Transformation ist eine Multiplikation, nämlich des Signalvektors mit der DFT-Matrix. Das Resultat ist der DFT-Koeffizienten-vektor." [8, p. 166] Diplomarbeit Gitcon 2022/2023

4.3.4.2 Eigenschaften der DFT

- "Die DFT einer Linearkombination von Signalen ist gleich der Linearkombination ihrer DFTs." [8, p. 169]
- "Die DFT und die IDFT sind N-periodisch." [8, p. 169]
- "Die Energie des Signals im Zeitbereich ist gleich der Energie des Signals im Frequenzbereich geteilt durch N." (Parceval-Theorem)
 [8, p. 170]
- "Die DFT eines reellen Signals ist bezüglich dem Punkt k= N/2 symmetrisch." [8, p. 170]

4.3.4.3 DFT als Annäherung der Fourier Transformation

Vorausgesetzt ein zeitkontinuierliches Signal x(t) ist beschränkt auf ein Intervall der Dauer T_0 , dann lässt sich für dieses an den diskreten Frequenzpunkten $f_k = \frac{f_s}{N}$ durch die DFT folgendermaßen annähern:

$$X(f)|_{f=k\frac{f_s}{N}} \approx TX[k], \qquad k = \begin{cases} -\frac{N}{2}, \dots, -1, 0, 1, \dots \frac{N}{2} - 1 : N \ gerade \\ -\frac{N-1}{2}, \dots, -1, 0, 1, \dots \frac{N-1}{2} : N \ ungerade \end{cases}$$
(29)

Die Messdauer NT muss hierbei größer oder gleich der Signaldauer T_0 sein. Sollte das Messfenster länger sein als die Signaldauer, so wird der Signalvektor mit Nullen ergänzt, bis er die Länge N hat. Dadurch wird ebenfalls eine bessere graphische Auflösung erzielt. Durch Verkleinerung des Abtastintervalls $T=\frac{1}{f_s}$ wird die physikalische Auflösung des Spektrums verbessert. Proportional zur Verkleinerung der Abtastintervalls wird auch der Approximationsfehler, welcher durch die Bandüberlappung entsteht.

4.3.5 Fast Fourier Transform

Gegensätzlich zur populären Meinung ist die FFT selbst keine Transformierte, sondern eine Methode zur effizienten Berechnung der DFT. Betrachtet man die Definition der DFT:

$$X[k] = \sum_{n=0}^{N-1} x[n] * W_N^{kn}$$
(30)

...so stellt man fest, dass der Rechenaufwand dieser, bei N*N Multiplikationen und N*(N-1) Additionen, etwa N^2 beträgt. Die Verwendung der FFT vermindert den Rechenaufwand, setzt aber voraus, dass N eine Zweierpotenz ist.

Zuerst wir die Folge x[n] in zwei Teile geteilt, die eine mit den geraden, die andere mit den ungeraden Abtastwerten. Die DFT-Summe kann nun ebenfalls in zwei Teilsummen aufgespalten werden:

$$X[k] = \sum_{n=0}^{\frac{N}{2}-1} x_1[n] * W_N^{2nk} + W_N^k * \sum_{n=0}^{\frac{N}{2}-1} x_2[n] * W_N^{2nk}$$
(31)

Wobei W_N^{2nk} auch geschrieben werden kann als:

$$W_N^{2nk} = e^{-j\frac{2\pi}{N}2nk} = e^{-j\frac{2\pi}{N/2}nk} = W_{N/2}^{nk}$$
 (32)

Somit ergibt sich:

$$X[k] = \sum_{n=0}^{\frac{N}{2}-1} x_1[n] * W_{\frac{N}{2}}^{nk} + W_N^k * \sum_{n=0}^{\frac{N}{2}-1} x_2[n] * W_{\frac{N}{2}}^{nk} = X_1[k] + W_N^k * X_2[k]$$
(33)

Nun fällt auf, dass $X_1[k]$ und $X_2[k]$ die DFTs von $x_1[n]$ und $x_2[n]$ repräsentieren.

Das heißt, dass eine N-Punkte-DFT in zwei N/2-Punkte-DFT zerlegt wurde, welche jeweils nur mehr $(\frac{N}{2})^2$ Rechenoperationen erfordern. Die Multiplikation mit W_N^k und anschließende Addition benötigen nochmals N Operationen. Der endgültige Rechenaufwand beträgt somit $2\left(\frac{N}{2}\right)^2 + N$.

Das folgende Signalflussdiagramm beschreibt die Aufspaltung einer 8-Punkte-DFT graphisch:

Abbildung 31: Aufspaltung 8-Punkte-DFT

Die Vorgehensweise der FFT ist somit eklatant: Die beiden N/2-Punkte-DFTs werden nun fortlaufend immer weiter zerlegt (in diesem Fall in je zwei N/4-Punkte-DFTs usw.) bis nur noch 2-Punkte-DFTs übrig sind. Das setzt jedoch voraus, dass es sich bei N um eine Zweierpotenz handelt. Die Anzahl der benötigten Zerlegungsschritte beträgt somit $q = \log_2(N)$. Im folgenden Bild wird die weitere Zerlegung der 8-Punkte-DFT dargestellt:

Abbildung 32: weitere Zerlegung 8-Punkte-DFT

Wird der untere Teil des Bildes betrachtet, so lässt sich feststellen, dass dieser aus N/2 sogenannten Butterfly oder Schmetterlings-Graphen besteht, welche folgendermaßen aussehen:

Abbildung 33: Butterfly-Graph

Zur Berechnung eines solchen Graphen werden je zwei komplexe Multiplikationen und Additionen benötigt. Dies resultiert in einem Rechenaufwand von *N* Operationen pro Zerlegungsebene.

Mit q Zerlegungsebenen ergibt sich ein Rechenaufwand von

$$N_q = N * \log_2(N). \tag{34}$$

Bedenkt man hierbei, dass zur Berechnung der regulären DFT N^2 Operationen benötigt werden, so stellt dies eine massive Aufwandssenkung dar.

Berücksichtigt man noch die Beziehung

$$W_N^{r+N/2} = W_N^{N/2} * W_N^r = -W_N^r, (35)$$

lässt sich der Graph noch weiter vereinfachen, so, dass nur noch **eine** Multiplikation pro Butterfly erforderlich ist:

Abbildung 34: vereinfachter Butterfly

Alle oben beschriebenen Maßnahmen machen die FFT dermaßen effizient, dass bei ihrer Verwendung, bei beispielsweise einer 1024-Punkte-DFT, über 99% der Rechenoperationen eingespart werden können. [8, p. 174 ff.]

4.3.6 Firmware

Das DSP-Programm, welches am ESP32 läuft, führt eine FFT mit dem Eingangssignal durch. Um ein kontinuierliches Einlesen der Gitarrensignale zu ermöglichen wird der DMA-Controller genutzt.

Wegen ihrer einfachen Anwendung, guten Dokumentation und ihrer hohen Performance wurde die FFT-Bibliothek von Robin Scheibler verwendet. Bei dieser handelt es sich um eine Implementierung von radix-2, split-radix und den Basen vier und acht. Diese Basen limitieren die maximal mögliche Größe der FFT.

Bei der Erstellung des Programms wurde zuerst die richtige Anwendung FFT-Library und ihrer Funktionen getestet. Danach wurde die Weiterverarbeitung der Ergebnisse realisiert.

Abbildung 35: Dataflow Firmware

4.3.6.1 Erklärung der FFT anhand eines Testprogramms

```
#define NFFT 8192
#define F_ABT 44100
Codesegment 1: Macros
```

Zuerst werden für NFFT die Größe des FFT-Buffers und für F_ABT die in der Audiotechnik übliche Abtastrate von 44,1 kHz festgelegt.

```
#include <stdio.h>
#include <stdlib.h>
#include "esp_log.h"
#include "driver/adc.h"
#include "esp_adc_cal.h"
#include <math.h>
#include "fft.h"
#include "processed-data.h" //enthält test_buffer
Codesegment 2: Includes
```

Codesegment 2 importiert sämtliche benötigte Bibliotheken. Der Header "processed-Data.h" enthält die vorbereiteten Testdaten. (siehe S. 68 Datenauszug 2)

```
float fft_buffer[NFFT];
float magnitude[NFFT / 2];
float frequency[NFFT / 2];
float keyNR[NFFT / 2];
float ratio = (float)F_ABT / (float)NFFT;
Codesegment 3: Array Initialisierung
```

Alle benötigten Buffer und Variablen werden in Codesegment 3 initialisiert. Das Array "fft_buffer" enthält nach dem Ausführen der FFT die Ergebnisse. Die drei darauffolgenden Arrays beinhalten jeweils die Magnitude, die Frequenz und die am Piano korrespondierende Tastennummer. Die Variable "ratio" beinhaltet die Auflösung des Amplitudenspektrums in Hertz.

```
float getMaxMag();
float max;
Codesegment 4: Deklaration von max
```

Um unwesentliche Frequenzen relativ zur Lautstärke auszuschließen, wird die Funktion "getMaxMag()" eingeführt welche die höchste auftretende Magnitude ermittelt.

Laurenz Hölzl, 5AHEL

```
float getMaxMag()
    float max = 0;
    for (int i = 0; i < NFFT / 2; i++)
        if (magnitude[i] > max)
        {
             max = magnitude[i];
        }
    return max;
}
Codesegment 5: Ausprogrammierung "getMaxMag()"
void app_main(void)
{
     fft_config_t *real_fft_plan = fft_init(
          NFFT,
          FFT_REAL,
          FFT_FORWARD,
          test_buffer,
          fft_buffer
     ); ...
Codesegment 6: Start "main-loop"
```

Codesegment 6 startet den "main-loop". Die FFT wird mit den Argumenten: Größe des Eingangspuffers, Art der FFT, Eingangspuffer und Buffer für die Ergebnisse konfiguriert.

```
fft_execute(real_fft_plan);
Codesegment 7: FFT-Ausführung
```

Die Ergebnisse werden anschließend verarbeitet.

Der abgebildete For-Loop ist für die Berechnung der Einzelnen Signifikanten Werte wie etwa Magnitude, Frequenz und die am Piano korrespondierende Tastennummer zuständig.

Zur Berechnung der Tastennummer wird die Formel

$$keyNR = \log\left(\frac{f}{440Hz}\right) * 12 + 49 \tag{36}$$

verwendet. Die 440Hz sind der Kammerton A. Hierbei ist zu beachten, dass, um die Midi-Notennummer zu erhalten noch 20 dazu addiert werden müssen, das Midi-Format besitzt 128 mögliche Notennummern, von denen die ersten 20 nicht belegt sind. [9]

Mit der If-Verzweigung wird überprüft, ob eine Magnitude einen Schwellenwert übersteigt, was bedeuten würde, dass diese Frequenz im Eingangssignal vorkommt. Die vereinzelten, auskommentierten "printf" Funktionen dienen, um die einzelnen Zwischenwerte auszugeben um diese mit Matlab zu überprüfen. Im endgültigen Programm sind diese nicht mehr vorhanden da sie rein zum Debuggen dienen.

fft_destroy(real_fft_plan);

Codesegment 10: FFT-Zerstörung

In Codesegment 10 wird die FFT-Konfiguration zerstört. Dies ist ein Wichtiger Schritt da für jeden Durchlauf des Algorithmus eine neue Konfiguration erstellt werden muss.

4.3.6.2 Testdatenfertigung

Zur Aufbereitung der Testdaten wurde das Audiobearbeitungsprogramm Audacity und ein eigens entwickeltes Python-Tool genutzt.

Für den Testdurchlauf wurde das Anschlagen einer A-Saite gewählt. Die Aufnahme erfolgt mit einer Samplerate von 44,1 kHz.

Das aufgenommene Signal ist in Abbildung 36 in Audacity zu sehen. Die Abnahme der Signalstärke beziehungsweise das Ausklingen der Seite kann an der anfänglichen Amplitude von circa 0,25 beobachtet werden.

Abbildung 36: Audacity Interface

Um nun die einzelnen Punkte aus dem Signal zu extrahieren, muss ein Bereich im Signal ausgewählt werden.

Abbildung 37: Auswahl eines Signalabschnitts

Anschließend muss in der Menüleiste unter Werkzeuge die Option Sample-Datenexport gewählt werden.

Abbildung 38: Audacity Tools

Daraufhin öffnet sich das folgende Fenster.

Abbildung 39: Sample-Datenexport Fenster

Hier wird als erste Option die Anzahl der Samplepunkte gewählt. Da im Testprogramm für die maximale Buffer Größe NFFT 8192 definiert wurde, wird dies hier ebenfalls gewählt. Die Option Messskala muss auf linear gestellt werden. Als Zielort wird der Pfad zum Python Tool angegeben.

Durch einen Klick auf den Button "Anwenden" werden die Daten exportiert und das Fenster schließt sich.

```
0.00256
```

0.00223

0.00204

Datenauszug 1: Ausgabe Audacity

Der obenstehende zeigt die ersten drei Datenpunkte der ausgegebenen Datei.

4.3.6.3 Das Python Tool

Um die von Audacity ausgegebene Datei für den C-Compiler lesbar zu machen, müssen die Daten in ein Array gespeichert werden. Um diese zu automatisieren, wurde mit Python das im Folgenden beschrieben Tool entwickelt. Die Sprache eignet sich aufgrund ihrer Einfachheit gut für solche Werkzeuge.

Am in Audacity festgelegten Zielort befindet sich nun die Datei "sampledata.txt". Diese enthält einen Datenpunkt pro Zeile. Damit das Testprogramm damit arbeiten kann muss nun ein Array mit den Werten befüllt werden, welches in der Datei "processed-data.h" erstellt wird.

Abbildung 40: Dataflow Python Tool

Die Funktionsweise des Tools ist im Folgenden beschrieben.

```
import shutil
Codesegment 11: Import des "shutil" Moduls
```

In Codesegment 11 wird Pythons "shutil"-Modul importiert, welches benötigt wird, um mit externen Dateien zu arbeiten.

```
arr=[]
arr = [0 for i in range(8192)]
i = 0
Codesegment 12: Variablen Initialisierung
```

Ein Array mit der Größe 8192 wird in Codesegment 12 erstellt. In dieses werden die Werte aus der ".txt" Datei gespeichert. Die Variable i dient hier als Zähler.

```
with open('sample-data.txt') as f:
    while True:
        line = f.readline()
        if not line:
            break
        line = line.strip()
        data = float(line) * 25
        #print(data)
        arr[i] = data
        i += 1
f.close()
```

Codesegment 13: Datei auswerten

Codesegment 13 öffnet die Datei "sample-data.txt". In der While-Schleife wird jede Zeile an die korrespondierende Stelle im Array gespeichert. Die If-Verzweigung beendet die Schleife, sobald sie am Ende der Datei angelangt ist.

```
file_to_delete = open("processed-data.h",'w')
file_to_delete.close()
Codesegment 14: Löschung vorhandener Ausgabedatei
```

Das Array soll in den Header "processed-data.h" gespeichert werden, um es einfach in das Testprogramm integrieren zu können. Um sicherzustellen,

dass keine Überschneidungen mit einer veralteten Version des Headers auftreten, wird diese gelöscht.

```
with open('processed-data.h', 'w') as d:
    d.write('float test_buffer[] = {')
    for data in arr:
        d.write(str(data) + ',')
    d.write('};')
    d.close()

Codesegment 15: Ausgabe der Datei
```

Codesegment 15 erstellt den Header als leere Datei. Dieser wird befüllt mit einem nach C-Syntax deklarierten Array. Nach der geöffneten, geschwungenen Klammer wird der Inhalt des Python-Arrays in für die C-Syntax gültiger Form geschrieben und die geschlossene Klammer angehängt. Daraufhin wird die Datei geschlossen.

```
shutil.copyfile('processed-data.h',
'/home/laurenz/Dokumente/GitHub/MTAP-MIDI-Guitar-
Converter/firmware/ESP_DSP/src/processed-data.h')
Codesegment 16: Kopieren der Datei
```

In Codesegment 16 wird die Datei noch in das Verzeichnis des Testprogramms kopiert. Nach dem Ausführen des Tools ist der Test Buffer bereit und das Testprogramms kann ausgeführt werden

4.3.7 Ausgabe der Testdaten

Der Output nach einem Ausführen sieht folgendermaßen aus:

```
20-th magnitude: 2.373904 => corresponds to 107.666016 Hz keyNR: 25
21-th magnitude: 2.073598 => corresponds to 113.049316 Hz keyNR: 25
41-th magnitude: 3.630623 => corresponds to 220.715332 Hz keyNR: 37

Datenauszug 2: Output des Testprogramms
```

Die Frequenz wird mithilfe des Verhältnisses $\frac{f_{Abtast}}{Gr\"{o}\&e\ der\ FFT}$ lässt sich die Frequenz am entsprechenden Index berechnen:

$$f[i] = i * \frac{f_{Abtastrate}}{Gr\"{o}se \ der \ FFT}$$

Die Richtigkeit des Outputs wird mit Audacity und Matlab überprüft.

4.3.7.1 Überprüfung mit Audacity

In Audacity muss in der Menüleiste unter Analyse, Spektrum zeichnen gewählt werden.

Abbildung 41: Audacity Analyse Tools

Im dadurch geöffneten Fenster kann nun das Frequenzspektrum untersucht werden.

Abbildung 42: Frequenzanalyse Audacity

Abbildung 43: Frequenzanalyse Audacity

In Abbildung 42 ist zu erkennen, dass neben der Grundfrequenz von 107 Hz noch eine zweite sehr prominent heraussticht. Dabei handelt es um eine Harmonische, deren Frequenz ein Vielfaches der Grundfrequenz ist. Diese haben nicht immer eine niedrigere Amplitude als der Grundton, weshalb sie bei der Notenerkennung eine besondere Herausforderung sind.

Um etwaige Erkennungsprobleme, durch Harmonische, zu umgehen, wird im Hauptprogramm die tiefste Frequenzspitze als Grundton angenommen.

4.3.7.2 Überprüfung mit Matlab

Audacity liefert mit seiner Frequenzanalyse das Frequenzspektrum, welches jedoch interpoliert wird, um einen Graphen zu zeichnen. Ob die Ausgabe des Programms und somit der FFT stimmt, wird deshalb mit Matlab geprüft.

Abbildung 44: Matlab FFT

Abbildung 34 zeigt den Plot der Matlab FFT. In diesem wurden die 3 Frequenzen, welche das Testprogramm ausgibt, markiert. Es fällt auf, dass bei den zwei rechteren Punkten eine Abweichung von circa 5 Hz zum Testprogramm besteht. Das liegt daran, dass das Testprogramm nur einen kleinen Teil (8192 Datenpunkte) analysiert, Matlab aber die komplette ".wav" Datei. Außerdem treten in C durch die verschiedenen Datentypen immer wieder Rundungsfehler auf. Da die Frequenzen trotz der Abweichung zu den gleichen Noten korrespondieren, kann dieser Fehler vernachlässigt werden.

4.4 C-Programmiersprache

Die Funktionen in der Firmware des Projektes
werden beinahe ausschließlich mit der Programmiersprache C realisiert. C ist eine weitverbreitete imperative, prozedurale
Programmiersprache, welche bekannt und beliebt für die hardwarenahe
Programmierung ist. Das im Folgenden beschriebene ESP IoT Development
Framework basiert auf der Programmiersprache C.

4.4.1 Agile Softwareentwicklung mit C

In C lassen sich die Methoden der agilen Softwareentwicklung anwenden, auf welche beim Firmware-Development geachtet wurden. Drei bekannte Denkweisen im Extreme-Programming sind die KISS-, DRY- und YAGNI-Prinzipien.

KISS was so viel heißt wie "Keep it Simple, Stupid!" [10], ist eine im Extreme Programming angewandte Methode, welche besagt, dass die kürzeste Lösung oft die Einfachste ist. Es sollen daher keine überflüssigen Methoden implementiert werden und "Klammer-Neste" so seicht wie möglich gehalten werden.

DRY steht für "Don't Repeat Yourself " [10]. Mehrfach vorkommender Code soll in Funktionen gefasst werden, sodass bei Änderungen nur an einer Stelle gearbeitet werden muss. Daher soll eine Methode nur eine Funktion haben.

YAGNI ist die Abbreviatur der Phrase "You Ain't Gonna Need It" [10]. Aus dem Englischen übersetzt, bedeutet sie so viel wie "Du wirst es nicht brauchen". Oftmals hat man während der Programmierung neue Einfälle, welche über die bisherigen Planungen hinausragen und erst viel später, wenn überhaupt, benötigt werden. Anstatt die Zeit in Arbeit zu investieren, welche möglicherweise überflüssig ist, sollte man sich auf die wesentlichen Problemstellungen fokussieren.

4.5 ESP32

Der ESP32 ist ein Leistungsstarkes System on a Chip (SoC) mit einem Dual-Core 32-bit Xtensa LX6 Prozessor des Herstellers Espressif, welcher oft aufgrund seiner Vielzahl an Peripherien, Protokollen und Sensorschnittstellen, im Internet of Things (IoT) Verwendung findet. Integrierte Schnittstellen sind beispielsweise UART, SPI, Abbildung 45: ESP32 CAN, I2C, I2S, WLAN und Bluetooth. [11] [12]

Prozessor (Mitte), PIF WLAN-Antenne (links)

Abbildung 46: ESP-WROOM mit **IPX-Connector**

Für Prototypen sind ESP32-WROOM Module, halbfertige PCB-Module mit gekerbten Löchern als Pins, üblich. Module unterscheiden sich grundlegend im Footprint, welcher durch die Art der Antenne, PIF-Antenne³ oder IPX⁴ Connector, bestimmt ist. Eine vom Footprint unabhängige Kenngröße, ist die Größe des Flash-Memory.

4.5.1 Bootloader Brennen mit dem ESP-Tool

Um den ESP32 programmieren zu kön- Flash Download Tools nen, muss zuerst die Firmware (ESP-AT) auf den Chip heruntergeladen werden. Abbildung 47: Download des Flash Tools

Dafür kommt das ESP Flash Download Tool⁵ von Espressif⁶ zum Einsatz. Dieses Tool wir dafür benötigt, die Binary-Files der Firmware über USB auf den SPI-Flash zu spielen. Im Nächsten muss zuerst das Tool heruntergeladen, entpackt und die .exe ausgeführt werden. [13]

Abbildung 48: File Folder des heruntergleadnen Ordner

³ Planar Inverted F-Shaped Antenna

⁴ Koaxial-Steckverbinder

⁵ https://www.espressif.com/en/support/download/other-tools

⁶ https://www.espressif.com/en

Mit den gezeigten Einstellungen, kann nun das Aufsetzen der Firmware fortgesetzt werden.

Natürlich werden auch die ESP-AT Binaries⁷ selbst benötigt, welche man in den SDK-Downloads auf der Espressif Website findet. Von dem entsprechenden Modul (hier der ESP32-WROOM) muss nun die empfohlene Version der Firmware Abbildung 49: ESP-AT Versionen

```
ESP32-WROOM-32 Series

    v2.4.0.0 ESP32-WROOM-32 AT Bin V2.4.0.0.zip (Recommended)

    v2.2.0.0 ESP32-WROOM-32_AT_Bin_V2.2.0.0.zip

    v2.1.0.0 ESP32-WROOM-32_AT_Bin_V2.1.0.0.zip

    v2.0.0.0 ESP32-WROOM-32 AT Bin V2.0.0.0.zip

    v1.1.2.0 ESP32-WROOM-32_AT_Bin_V1.1.2.0.zip
    v1.1.1.0 ESP32-WROOM-32_AT_Bin_V1.1.1.0.zip

    v1.1.0.0 ESP32-WROOM-32 AT Bin V1.1.0.0.zip

    v1.0.0.0 ESP32-WROOM-32_AT_Bin_V1.0.0.0.zip
    v0.10.0.0 ESP32-WROOM-32_AT_Bin_V0.10.0.0.zip
```

heruntergeladen werden. ESP-AT beinhaltet die Binärdateien der Partitions-Tabelle, des Bootloaders, sowie Encryption-Keys und Certificate-Authorities (CA) von Netzwerkprotokollen wie MQTT.

Hat man den Firmware Folder entpackt, befindet sich in dem Ordner ein flasher_args.json File, in welchem man die Pfade zu den Binärdateien findet, sowie den Offset, welcher bestimmt an welcher Stelle im SPI-Flash die Binary installiert werden soll. [13]

```
"flash files" : {
        "0x8000": "partition_table/partition-table.bin",
"0x10000": "ota_data_initial.bin",
"0xf000": "phy_multiple_init_data.bin",
"0x1000": "bootloader/bootloader.bin",
        "0x100000" : "esp-at.bin",
"0x20000" : "at_customize.bin"
        "0x24000": "ar_customized_partitions/server_cert.bin",
"0x34000": "customized_partitions/mqtt_key.bin",
"0x26000": "customized_partitions/server_key.bin",
"0x26000": "customized_partitions/server_key.bin",
"0x26000": "customized_partitions/server_ca.bin",
"0x26000": "customized_partitions/client_ca.bin",
        "0x2e000": "customized_partitions/client_ca.pin,
"0x3e000": "customized_partitions/factory_param.bin",
"0x21000": "customized_partitions/ble_data.bin",
"""" """ nartomized_partitions/mqtt_ca.bin",
        "0x21000": "customized_partitions/ble_data.bin"
"0x38000": "customized_partitions/mqtt_ca.bin"
         "0x37000" :
                                     "customized_partitions/mqtt_cert.bin
         "0x2a000" :
                                     "customized_partitions/client_cert.bin",
         "0x2c000" : "customized_partitions/client_key.bin"
```

Abbildung 50: flasher_args.json - flash_files

Den Flasher Arguments entsprechend, müssen die Pfade sowie deren Offset in das Flash-Download-Tool eingetragen werden [13]:

⁷https://docs.espressif.com/projects/espat/en/latest/esp32/AT_Binary_Lists/ESP32_AT_binaries.html#

Abbildung 51: Tool Interface mit eingetragenen Binaries

Auch die SPI Flash Konfigurationen werden aus den Flasher Arguments entsprechend übernommen: [13]

```
"flash_settings" : {
        "flash_mode": "dio",
        "flash_size": "detect",
        "flash_freq": "40m"
},
```

Abbildung 52: flasher_args.json - flash_settings

Abbildung 53: SPI Flash Config in dem GUI

Nun muss nur noch der richtige COM-Port selektiert werden und "Start" ausgeführt werden.

Der Bootloader sollte nun erfolgreich auf den ESP32 gebrannt worden sein. Der Erfolg kann in PlatformIO, welches im folgenden Kapitel installiert wird validiert werden.

4.5.2 Einrichten in PlatformIO (PIO)

Der für das Projekt verwendete Texteditor ist Visual Studio Code. Dieser kann mit diversen Plug-Ins um Features erweitert werden. Um SoCs zu programmieren ist die Erweiterung "PlatformIO" erforderlich. Im Extensions-Tab lässt sich das Plug-In mit einem Klick auf den Button "Install" installieren.

Nachdem der Installationsvorgang abgeschlossen ist, erscheint ein neuer Tab unter dem Extensions-Tab.

Mit einem Klick auf die Schaltfläche "New Project" öffnet sich ein neues Fenster, in welchem ein neues Projekt erstellt werden kann.

Abbildung 56: PlatformIO Project Wizard

Das Projekt wurde folgendermaßen konfiguriert:

Abbildung 57: Konfiguriertes Projekt

Wird die Option "Use default location" abgewählt, so kann ein individueller Dateipfad für das Projekt festgelegt werden.

Nach einem Klick auf "Finish" wird das Projekt erstellt. Ist der Vorgang abgeschlossen, erscheint im Filebrowser das von PlatformIO strukturierte Projekt.

Abbildung 58: PlatformIO Projekt Struktur

Die Datei "platformio.ini" dient als Konfigurationsdatei

Nun müssen einige Libraries importiert werden. Dafür muss im PlatformIO-Home Fenster der Reiter "Libraries" ausgewählt werden. Im Suchfeld kann dann nach der gewünschten Bibliothek gesucht werden.

Abbildung 59: PlatformIO Library Reiter

Wählt man die Bibliothek "FFT" aus, so öffnet sich ein Untermenü, in welchem sie dem Projekt hinzugefügt werden kann.

Abbildung 60: Bibliothek Untermenü

Der Knopf "Add to Project" öffnet den Importdialog.

Abbildung 61: Einbinden von Dependencies

Nach dem die Schaltfläche "Add" betätigt wurde, findet sich in der Datei "platformio.ini" ein neuer Eintrag.

```
10
11 [env:az-delivery-devkit-v4]
12 platform = espressif32
13 board = az-delivery-devkit-v4
14 framework = espidf
15 lib_deps = tinyu-zhao/FFT@^0.0.1
```

Abbildung 62: platformio.ini

Eine Änderung der Konfigurationsdatei wird erst mit dem nächsten "Build" übernommen, bei welchem die Library in den "Include" Ordner geladen wird.

Befehle wie "Build" oder "Upload" können im Project-Tasks Reiter ausgeführt werden.

Abbildung 63: Project-Tasks Panel

Wird der Befehl "Upload" ausgeführt, sollte der richtige Port automatisch vom Programm gewählt werden. Dieser kann aber auch manuell in der Statusleiste am unteren Rand des Fensters geändert werden. Dazu muss auf das Steckersymbol geklickt werden. Ist das Herunterladen des Bootloaders im vorherigen Kapitel 4.5.1 misslungen, so wird beim Hochladen des Codes im Terminal ein Fehler ausgegeben.

Die Statusleiste kann vom Entwickler beliebig angepasst werden. In der Abbildung 64 zeigt sie die üblichen Shortcuts, welche für das Arbeiten mit PIO hilfreich sind.

4.5.3 ESP IoT Development Framework (ESP IDF)

Das Internet of Things Development Framework (IDF) ist ein von Espressif Systems bereitgestellte Firmware, zur Entwicklung von Software auf ESP-SoCs. Das Framework ist in der Programmiersprache C verfasst und Open Source auf der ESP-IDF Projektseite dokumentiert. Mit dem IDF lassen sich mittels bereitgestellter Funktionen die Peripherien des Systems ansteuern.

4.6 Realtime Operating-System (RTOS)

Oft haben Programme mehrere dedizierte Prozesse mit striktem Ablauf. Wenn nun Echtzeitdaten vermessen werden, wie zum Beispiel Audio, müssen die Laufzeiten dieser Prozesse geregelt werden, um sich gegenseitig nicht zu blockieren, da sie sich meistens einen Kern teilen. Dafür kommt ein Echtzeitbetriebssystem zum Einsatz. Der im Gitcon implementierte FreeRTOS Kernel übernimmt die besagte Aufgabe, Tasks zu priorisieren und ermöglicht dadurch einen zeitlich reibungslosen Ablauf zu ermöglichen.

4.6.1 FreeRTOS

FreeRTOS ist ein marktführendes Echtzeitbetriebssystem, das für eingebettete Systeme und IoT-Geräte entwickelt wurde. Es bietet einen Multitasking-Kernel, der die gleichzeitige Ausführung mehrerer Tasks mit jeweils eigenen Prioritätsstufen und Laufzeitbeschränkungen ermöglicht. FreeRTOS ist Open Source unter der MIT Lizenz und kann privat, als auch kommerziell genutzt werden. [14]

FreeRTOS ist hochgradig konfigurierbar und seine Struktur betont geringen Overhead und hohe Leistung, wodurch es für Systeme mit begrenzten Ressourcen geeignet ist. Es enthält Funktionen wie Task-Scheduling, Kommunikation zwischen Tasks und Speicherverwaltung. FreeRTOS ist in C geschrieben und enthält Ports für eine Vielzahl von Mikrocontrollern und Prozessoren unter anderem für ESP32 basierte Systeme.

Diplomarbeit Gitcon 2022/2023

4.7 Universal Asynchronous Receive and Transmit (UART)

UART steht für Universal Asynchronous Receive and Transmit und ist, wie der Name bereits sagt, ein serielles, asynchrones⁸ Übertragungsprotokoll. Mit UART, welche Datenübertragungen im Vollduplex-Betrieb unterstützt, werden zwei Peripherien miteinander verbunden. Die Abbildung 65: UART-Verbindung

Bus-Teilnehmer sind hierbei gleichgestellt, was heißt, dass des keinen Mastercontroller gibt, welcher den Bus steuert. Die Daten werden einfach gesendet. Bei der Verdrahtung ist zu beachten, dass die Übertragungsleitungen überkreuzt angeschlossen werden müssen (siehe Abbildung 65). [15]

UART spielt eine wichtige Rolle bei der Arbeit mit SoCs, da deren Firmware oft über eine USB-Bridge den Flashspeicher beschreiben. Die USB-Bridge spricht das System dabei mit UART an. Auch das Debuggen erfolgt meistens über diese serielle Schnittstelle.

Die übertragenen Datenpakte haben folgendes Format:

Start Bit	Data Frame	Parity Bits	Stop Bits
(1 bit)	(5 to 9 Data Bits)	(0 to 1 bit)	(1 to 2 bits)

Abbildung 66: UART-Datenpaket

Ein Startbit signalisiert dem Empfänger, dass eine Übertragung beginnt. Das Potential auf der Übertragungsleitung ist Normally-High und wird durch das Startbit auf Low gezogen. Anschließend folgt das Datenframe, welches je nach Konfiguration fünf bis neun Bit lang ist. Eine Paritätsbit dient zur Validierung der Übertragung. Dieses Bit kann aber auch im Controller ausgeschalten werden. Am Ende der Übertragung setzt ein Stop Bit den Bus wieder auf den Idle-Zustand. [16]

⁸ Asynchron: Ohne Taktleitung

4.8 Musical Instrument Digital Interface (MIDI)

Das MIDI-Protokoll wurde in den frühen 80ern entwickelt und standardisiert die Kommunikation zwischen Computern und Musik-Hardware, sogenannten MIDI-Controllern. Jedes Mal, wenn eine Taste auf einem Controller gedrückt wird, erstellt dieser eine MIDI-Nachricht und sendet sie an den Computer. Diese Tasten sind nicht nur auf die Klaviatur eines MIDI-Controllers beschränkt, es können ebenfalls MIDI-Wörter gesendet werden, welche andere Parameter in einer digitalen Musikproduktionsumgebung steuern, wie zum Beispiel die Intensität eines Audioeffekts.

Beispielsweise kann die Grenzfrequenz des in Abbildung 67 gezeigten digitalen Filters mittels eines enkodierten Potentiometers am MIDI-Controller gesteuert werden.

Abbildung 67: Ableton Live Effekt EQ Eight (Filter)

Es ist wichtig zu wissen, dass MIDI-Signale nichts mit niederfrequenten Audiosignalen zu tun haben. Weder analoges- noch digital aufgefasstes Audio kommt in einer MIDI-Kommunikation vor. [17]

Das MIDI-Protokoll beschreibt unter anderem die zu übertragenden Noten mit digitalen Wörtern, welche in einer genormten Tabelle festgehalten sind. Jede Note hat daher eine Adresse, durch welche dann ein anderes digitales Instrument weiß, mit welcher Tonhöhe es diese Note spielen muss.

4.8.1 Status Bytes

Eine MIDI-Nachricht ist aus drei (manchmal zwei) Bytes aufgebaut:

- Status und Kanal
- Erstes Datenbyte
- Zweites Datenbyte

Abbildung 68: MIDI-Word

4.8.1.1 MIDI-Status

Um das MIDI-Wort so kurz wie möglich zu halten, teilen sich des Statusund Kanalnibble ein Byte. Mit dem Statusnibble wird dem Empfänger mitgeteilt, welche Funktion die darauffolgenden Datenbytes haben. Mit 16 verschiedenen Möglichkeiten, kann der Status mit vier Bit eindeutig codiert werden. Mögliche Statusnibble sind:

Status	Hex-Wert	Funktion
Note Off	0x8	Beendet das Spielen einer Note
Note On	0x9	Startet das Spielen einer Note
Polyphon Pressure	0xA	Löst beim Nachdrücken einer Keyboard Taste
		aus (gilt für die jeweils gedrückte Note)
Control Change	0xB	Spricht Steuerelemente, wie z.B. Regler in
		der DAW an.
Program Change	0xC	Wechselt zwischen verschiedene Klänge und
		Instrumente
Channel Pressure	0xD	Löst beim Nachdrücken einer Keyboard Taste
		aus (gilt für alle Noten auf dem Kanal)

Pitch Bend	0xE	Ändert die Tonhöhe des gesamten Kanals in
		feinen Schritten.
System Messages	0xF	MIDI Clock, Start, Stop, System Reset, Active
		Sensing

Tabelle 2: MIDI-Status

4.8.1.2 MIDI-Kanal

Mit den Vier übrigen Bit wird der Kanal eingestellt, an den die Nachricht geschickt werden soll. Ein einzelner Controller kann also bis zu 16 verschieden MIDI-Kanäle in einer DAW ansprechen. Auf einem MIDI-Keyboard würden zum Beispiel die Klaviertasten auf einen anderen Kanal geschickt werden als die Drumpads.

Abbildung 69: Vier verschiede MIDI-Spuren mit dem gleichen Controller als Input

Abbildung 70: Novation⁹ Launchkey Mini

Drumpads (Channel 10)

Klaviertasten (Channel 1)

4.8.1.3 Datenbytes

Für das Projekt sind nur die Funktionen *Note On* und *Note Off* relevant, weshalb die Dokumentation der Datenbytes auf diese beiden Status-Worte beschränkt ist.

Im Datenbyte eins ist bei beiden Status die Adresse der Note gespeichert, während in Byte zwei die Anschlagstärke übertragen wird. Ungewöhnlicherweise wird auch beim Ausschalten einer Note die Anschlagstärke (Loslass-

⁹ https://novationmusic.com/de/keys/launchkey-mini

Geschwindigkeit) übertragen, welche je nach Empfänger beispielsweise als Nachklang interpretiert werden könnte. [17]

Die Adresse der Note lässt sich wie folgt herausfinden: Die Note A0 entspricht der Adresse 21 (dezimal). Von dort aus zählt man linear aufwärts bis 127, welches der Note G9 entspricht. Noten unter A0 können auch übertragen werden, jedoch sind die Frequenzen, welcher sie entsprechen, nicht mehr im hörbaren Bereich. Die Anschlagstärke einer Note bestimmt die Initiale Lautstärke. Hat seine Note die Anschlagstärke 0, so wird sie automatisch als *Note Off* interpretiert. [18] [9] [17]

Soll beispielsweise die Note E2 mit einer Anschlagstärke von 64 auf Kanal 1 angeschaltet werden, sieht das übertragene Wort folgendermaßen aus:

	Status	Kanal	Byte 1	Byte 2
	Status		(Adresse)	(Anschlagstärke)
Dezimal	144		40	64
Hexadezimal	0x90		0x28	0x40
Binär	1001	0000	00101000	0100 0000

Tabelle 3: Beispiel eines MIDI Worts

Nach dieser Übertragung bleibt die Note so lange angeschaltet, bis ein *Note Off* Signal auf dieselbe Adresse und denselben Kanal gesendet wird.

5 Ergebnisse

Mit dem Wissen der Grundlagen, lassen sich nun die Entwicklungsergebnisse im Detail erklären. Hierbei wird darauf geachtet, dass jede Funktion hinterfragt und die Wahl der Komponenten genau begründet ist.

5.1 Blockschaltbild

Mit dem folgenden Funktionsblockdiagramm wird die Prozesskette des Guitar Converter beschrieben.

Abbildung 71: Funktionsblockdiagramm des Gitcon

Gestrichelte Linien visualisieren die drei primären Sektionen, in die die Prozesskette unterteilt ist:

- Analoges Frontend
- Digitalisierung des Signals
- Firmware, die für die DSV zuständig ist und die Daten auf den USB schickt.

Dicke Gelbe Pfeile stellen den Übergang einer Sektion in eine andere dar.

Mit den Figuren innerhalb der strichlierten Linien, wird noch einmal zusätzlich die Arbeitsunterteilung veranschaulicht. Mit der Farbe der jeweiligen Figur, wird auf ein Teammitglied referiert.

Abbildung 72: Legende der Arbeitsunterteilung

Sektion 1: Analoges Frontend

Das analoge Frontend besteht aus einem Tiefpassfilter und einem Verstärker. Da in der digitalen Signalverarbeitung nur die Grundschwingung erfasst werden soll, sind sämtliche höhere Frequenzen unbrauchbar und nur ein weiterer Störfaktor des Systems. Aufgrund dessen, werden die Frequenzen oberhalb des höchsten Tones, welchen man mit einer Gitarre im Standard-Tuning spielen kann(~1200Hz), gedämpft. [19]

Die Spannungen, welche von den Pickups einer E-Gitarre induziert werden, haben eine sehr geringe Amplitude (~100mV) [19]. Werden mehrere Saiten gleichzeitig angeschlagen, kann sich die Spitzenspannung aufgrund der sechs Saiten auf circa das Sechsfache erhöhen. Der Verstärkungsfaktor im Pass-Band des Filters erhöht die Amplitude des Signals um 9dB (Faktor 2,82), um die Genauigkeit, mit welcher das Signal vom digitalen Hardware Frontend aufgefasst werden kann, zu erhöhen.

Sektion 2: Digital Hardware Frontend

Im digitalen Hardware Frontend findet die Digitalisierung des Signals statt. Ein Analog Digital Wandler (ADC) digitalisiert das Audio und stellt die Daten dem ESP32 bereit. Aufgrund von bekannten Ungenauigkeiten und Störeinflüssen des internen ADC des ESP32, wurde zur Absicherung ein externer 12-Bit ADC verbaut [20]. Dieser wurde aber wegen der zufriedenstellenden Funktionalität des internen AD-Wandlers nicht weiter benötigt und auch nicht auf der Hauptplatine verlötet.

Sektion 3: Firmware

Sobald die Daten digitalisiert sind, analysiert die Firmware das aufbereitete Signal der E-Gitarre und erkennt die Frequenzanteile, aus welchen sich die gespielte Note ergibt. Erkannte Noten werden auf den USB-Port geschickt.

5.2 Hardware

Im folgenden Teil wird zunächst der Schaltplan des funktionalen Blockschaltbildes (Abbildung 71) dokumentiert, sowie die Wahl der Komponenten begründet. Darauffolgend werden die Layout Kriterien und Guidelines für das Leiterplatten-Design beschreiben.

5.2.1 Versorgung

Die Komponenten, die zur Realisierung des Blockdiagrammes gewählt wurden, müssen mit 3,3 Volt versorgt werden. Da uns der USB-Bus jedoch einen Pegel von 5 Volt zur Verfügung stellt, muss dieser zuerst heruntergeregelt werden. Hierzu wird ein Low Drop-Out Regulator verwendet.

Abbildung 73: Spannungsregler und USB-Connector im Schaltplan

5.2.1.1 LDO (AMS1117-3.3)

Ein Low-Dropout Regulator ist eine Art linearer Spannungsregler mit einem möglichst geringen Spannungsabfall über dem Ein- und Ausgangskontakt. LDOs werden verwendet, um das Rauschen in Versorgungsleitungen zu eliminieren aber auch, um eine (etwas) höhere Spannung in eine niedrigere Spannung zu regeln. In diesem Fall werden die 5 Volt der USB-Schnittstelle, in die von den Peripherien am Board benötigten, 3,3 Volt heruntergeregelt.

Gegenüber Schaltreglern haben sie den Vorteil, dass sie kompakt sind und kein Schaltrauschen verursachen. Auch der Wirkungsgrad ist aufgrund der niedrigen Dropout-Spannung hoch genug, jedoch geringer als bei Schaltreglern. Mit einem maximalen Ausgangsstrom von 1 Ampere reicht er vollkommen aus, den Gitcon mit Strom zu versorgen. Jedoch ist zu beachten, dass, um die Stabilität zu gewährleisten, ein 22µF (Tantal-Elektrolyt-) Kondensator am Ausgang angebracht werden sollte. C6 und C7 halten hier die Ein- und Ausgangsspannung bei Spannungseinbrüchen möglichst konstant. Außerdem leuchtet eine rote LED leuchtet auf, wenn das Gerät eingesteckt ist.

5.2.1.2 ESD-Schutz

ESD ist die Abkürzung für *electrostatic discharge* und beschreibt die plötzliche Entladung eines Objekts auf ein anderes, wenn sie miteinander in Kontakt treten. Der Potentialunterschied zwischen den Objekten, kann je nach Material mehrere **Kilovolt** erreichen.

Integrierte Schaltkreise, wie sie in diesem Projekt enthalten sind, sind typischerweise sehr empfindlich gegenüber statischer Entladung. Aufgrund des vielen Interagieren mit der Platine, zum Beispiel beim Ein- und Ausstecken, muss mittels TVS¹⁰-Dioden V4-6 eine Abschirmung gegen statische Entladung am USB-Eingang vorhanden sein.

¹⁰ Transient Voltage Suppression

5.2.1.2.1 Kennwerte der TVS-Diode

<u>Uni- oder Bidirektional</u>

Je nachdem ob die zu schützende Leitung über oder Ounter dem Massepotential liegt, muss man bei unidi- Abbildung 76: Symbol der rektionalen TVS-Dioden die Polung beachten. Bidirek- Bipolaren TVS-Diode tionale arbeiten in beide Richtungen.

Anzahl von Kanälen

Oft haben Konnektoren eine Vielzahl an Pole (z.B. HDMI) die geschützt werden müssen. Deshalb gibt es mehrere TVS-Dioden in einem einzigen Package.

<u>Arbeitsspannung</u>

Abbildung 77: SC7538-**08UTG Block Diagramm**

Die Arbeitsspannung ist die maximale Spannung, welche im Normalbetrieb auf der Leitung vorkommt. Hier 3,3 Volt.

<u>Klemmspannung</u>

Im Falle eines ESD-Spikes, wirkt die TVS-Diode niederohmig gegen Masse. Die Spannung, die dabei an der Diode abfällt, ist die Klemmspannung. Obwohl sie immer noch signifikant höher ist als die Betriebsspannung, ist sie aufgrund der kurzen Dauer nicht weiter gefährlich, trotzdem sollte sie in jedem Anwendungsfall möglichst gering gewählt werden. Einen genauen Wert dafür findet man nur sehr schwer. Man sollte im Datenblatt der TVS-Diode auf Verweise für typische Applikationen achten.

Intrinsische Kapazität

Wie bei jedem Bauteil, gibt es gewisse parasitäre Kenngrößen, die im Inneren präsent sind. Bei der TVS-Diode ist die Kapazität eine störende, dennoch unvermeidbare, Größe. Bei TVS-Dioden mit hoher Kapazität besteht die Gefahr, dass sehr kurze ESD-Stöße nicht gefiltert werden können. Abgesehen von der intrinsischen Kapazität, ist zu berücksichtigen, dass auch die Leiterbahn von der Buchse zur Diode keine eigene signifikante Kapazität aufweisen darf. Dies wird durch eine möglichst kurze Leiterbahnführung sowie eine dünne Leiterbahnbreite realisiert.

IEC61000-4-2 Rating

Die TVS-Diode verfügt über eine Rating-Stufe der IEC61000-4-2 Norm, welche Aussagen über die absoluten Höchstwerte des ESD-Spikes liefert.

5.2.1.3 Verpolungsschutz

Obwohl es nur schwer möglich ist, einen USB-Stecker falschherum einzustecken, verfügt die Schaltung trotzdem über einen Verpolungsschutz. Sobald eine negative Spannung am Eingang anliegt, wirkt die Schottky-Diode V3 entgegen dem Stromfluss. Der Vorwärtsspannungsabfall an der Diode ist hierbei nicht problematisch, da die Spannung nach der Diode auf 3.3V heruntergeregelt wird.

5.2.2 Analog-Frontend (AFE)

Warum wir einen Filter benötigen, lässt sich aus den Eigenschaften des Gitarren Pickups sowie das Schwingverhalten einer Saite erschließen.

5.2.2.1 Schaltung

Abbildung 78: LPF-Schaltung

Als Operationsverstärker wird der OPV TLV271G4 von Texas Instrumentes verwendet, dieser ist Teil der TLV27x- Serie und wurde für Anwendungen mit niedrigem Stromverbrauch und dem Einsatz in batteriebetriebenen Geräten entwickelt. Der OPV hat einen breiten Versorgungsspannungsbereich von 2,7V bis 12V und kann einen Ausgangsstrom von bis zu 60 mA liefern. Weiters verfügt dieser über einen hohen Eingangswiderstand, was zu einer erhöhten Empfindlichkeit gegenüber Eingangssignalen macht.

5.2.2.1.1 Einkopplung des Audios

Da der Gitcon über keine negative Versorgung verfügt, muss das Audio zwischen Masse und +3.3 Volt eingekoppelt werden. Dafür sorgen die Widerstände R_9 , R_{13} und der Kondensator C_{16} . Wobei ein Kondensator nur Wechselspannungen durchlässt und Gleichspannungen herausgefiltert. Eine erfolgreiche Einkopplung wird erreicht, indem der Kondensator die Spannung auf das Potential zwischen R_9 und R_{13} anhebt bzw. senkt.

5.2.2.2 Filterprototyp

Abbildung 79: Filter Prototyp mit TL074

5.2.2.3 Filterdimensionierung

Eine gute Möglichkeit einen Filter zu dimensionieren ist mithilfe von dem TI Filter Design Tool (https://webench.ti.com/filter-design-tool/). Durch Messen wurden die Bauteilwerte ermittelt und an eine optimale Übertragungskennline angepasst. Im folgenden Kapitel wird eine Dimensionierung eines Sallen-Keys durchgeführt.

5.2.2.3.1 Berechnung eines idealen Sallen-Key:

Übertragungsfunktion für einen Sallen-Key zweiter Ordnung:

$$H(s) = \frac{\frac{1}{R_1 R_2 C_1 C_2}}{s^2 + s \left(\frac{1}{R_1 C_1} + \frac{1}{R_2 C_1}\right) + \frac{1}{R_1 R_2 C_1 C_2}}$$
(37)

durch vereinfachen:

$$H(s) = \frac{a_0}{s^2 + a_1 * s + a_0}$$

$$a_1 = \frac{1}{R_1 C_1} + \frac{1}{R_2 C_1}; \ a_0 = \frac{1}{R_1 R_2 C_1 C_2}$$
(38)

Wenn man R_1 und R_2 (bzw. die normalisierten Werte R_{1n} und R_{2n}) gleichsetzt und $\omega_c=1$ setzt, kann man sich die normalisierten Werte für C_1 und C_2 (C_{1n} und C_{2n}) berechnen.

$$\omega_c = 1 \rightarrow a_0 = 1 \; ; \; a_1 = \sqrt{2}$$
 $R_{1n} = R_{2n} = 1 \; ; \; C_{1n} * C_{2n} = 1$
 $C_{2n} = \frac{1}{C_{1n}} \; ; \; a_1 = \frac{2}{C_{1n}} = \sqrt{2}$

(∴ deshalb)

$$\therefore C_{1n} = \sqrt{2} = 1,414 F$$

$$C_{2n} = \frac{1}{C_{1n}} = 0,707 \, F$$

Da die Widerstandswerte sehr klein und die Kapazitäten unrealistisch sind müssen diese skaliert werden. Wenn man m als Skalierungsfaktor bezeichnet, werden die Widerstände m-mal erhöht und die Kapazitäten um 1/m verringert, um dieselbe Grenzfrequenz von 1 zu behalten.

$$m = 10000$$

$$R_1 = R_{1n} * m = 10k\Omega$$

$$R_2 = R_{2n} * m = 10k\Omega$$

$$C_1 = \frac{C_{1n}}{m * \omega_0} = \frac{1,141}{10k * 2 * \pi * 10kHz} = 2,2nF$$

$$C_2 = \frac{C_{2n}}{m * \omega_0} = \frac{0,707}{10k * 2 * \pi * 10kHz} = 1,1nF$$

Dies ist eine ideale Dimensionierung, wobei beide Widerstände gleich sind.

5.2.2.4 Simulation

Der entworfene Filter wurde mit der Software LTspice simuliert. Die Gitarre liefert eine Spannung von 70-100mV. Diese Simulation wurde mit einem Eingangssignal von 100mV durchgeführt, daraus ergibt sich eine Ausgangsspannung von 280mV und eine Verstärkung von 9dB.

Abbildung 80: Spannungsverhältnis Ua/Ue

Die negative Spannung ergibt sich aus der Phasendrehung in Abbildung 81, da diese gegen -180° dreht.

Die Verstärkung wird durch folgende Formel berechnet:

Abbildung 81: Simulation des Verhältnis Ua/Ue

In Abbildung 81 ist die Verstärkung erkennbar, da ${\it U}_a$ um 9dB höher als ${\it U}_e$ ist. Weiters ist der Roll-off von -6dB gut erkennbar, was einen Filter zweiter Ordnung charakterisiert.

5.2.2.5 Messtechnische Bestimmung des Frequenzgangs

Die Bestimmung des Frequenzgangs wurde im Frequenzbereich von 207Hz bis 3140Hz durchgeführt, um den Roll-off Point und die abfallende Steigung gut zu erkennen.

Abbildung 82: Messung des Filters

Abbildung 82 zeigt die Messung des Verhältnisses Ua/Ue, hierbei ist der Roll-off bei der Grenzfrequenz, die etwas über 1000Hz liegt, ersichtlich. Auch zu erkennen ist die kontinuierlich fallende Steigung. Die Messwerte befinden sich im Toleranzbereich der Simulation und sind daher gültig.

Freq	Ua	Ua/Ue	Ue
207	3,32	2,86206897	1,16
260	3,36	2,89655172	
370	3,4	2,93103448	
440	3,44	2,96551724	
493	3,52	3,03448276	
554	3,56	3,06896552	
586	3,6	3,10344828	
696	3,64	3,13793103	
784	3,64	3,13793103	
1047	3,4	2,93103448	
1111	3,26	2,81034483	
1175	3,12	2,68965517	
1245	2,92	2,51724138	
1328	2,76	2,37931034	
1396	2,52	2,17241379	
1485	2,28	1,96551724	
1567	2,08	1,79310345	
1661	1,88	1,62068966	
1754	1,78	1,53448276	
1865	1,48	1,27586207	
1980	1,36	1,17241379	
2100	1,2	1,03448276	
2230	1,08	0,93103448	
2341	0,92	0,79310345	
2500	0,88	0,75862069	
2624	0,72	0,62068966	
2793	0,64	0,55172414	
2997	0,54	0,46551724	
3140	0,488	0,42068966	

 3140
 0,488
 0,42068966

 Tabelle 4: Tabelle mit Messpunkten

5.2.3 Digital Frontend

Die nötigen Peripherien des Gitcon werden mit einem **ESP-WROOM-32UE-N8** Modul gesteuert. Die Namensgebung des Moduls liefert Informationen über die Serie des Chips:

ESP-WROOM-32 32-Bit WROOM Modul

U	IPX Antennen Connector für externe Antennen
E	E-Serie
N8	8MB Flash Speicher
-	Kein Pseudostatisches RAM (PSRAM)

Tabelle 5: ESP-WROOM Spezifikationen

Da keine kabellosen Kommunikationssysteme wie WLAN oder Bluetooth benötigt werden, ist die Wahl auf ein kompaktes Modul mit IPX-Steckverbinder, anstelle einer großflächigen PIF-Antenne, gefallen.

5.2.3.1 Beschaltung des ESP-WROOM-32UE Chips

Abbildung 83: ESP32 Beschaltung

Für den Betrieb des ESP32-WROOM Moduls, werden grundsätzlich nur zwei Entkopplungskondensatoren C1 und C2 benötigt. Sie müssen möglichst nah am Versorgungs-Kontakt platziert werden, wobei der HF-Entkopplungs-Kondensator C2 näher als der Bulk-Kondensator C1 platziert werden sollte. Dies stellt sicher, dass der ESP32 stabil versorgt wird, da ein Reset automatisch bei Spannungseinbrüchen ausgelöst werden würde.

Abbildung 84: Reset bei Spannungseinbruch

Für den manuellen Reset Eingang wird ein Pull-Up-Widerstand (R1) in Kombination mit einem Entstör-Kondensator (C3) benötigt, welcher ungewollte Resets verhindert und zusätzlich die natürliche Prellung des Tasters unterdrückt. Die beiden Komponenten sollten möglichst nah am Reset-Pin platziert werden.

5.2.3.1.1 Pin-Out

ESP32 GPIO	Label	Funktion
GND_xx	GND	Digitale Masse Pins, Heat-Sink vom Modul
3V3	+3V3	Versorgungsspannung
EN	EN	Enable / Reset Pin
1026	TXD1	Transmit-Leitung des UART1 Treibers (MIDI TX)
1027	RXD1	Receive-Leitung des UART1 Treibers (MIDI RX)
100	GPIO0	Boot-Mode Pin
105	VSPI_ CS	Chipselect für den ADC
IO18	VSPI_CLK	Taktleitung des VSPI-Busses
IO19	VSPIQ_MISO	Master In Slave Out des VSPI-Busses
RXD0	RXD0	Receive-Leitung des UARTO Treibers (Debug/Programmierung)
TXD0	TXD0	Receive-Leitung des UART0 Treibers (Debug/Programmierung)

Tabelle 6: ESP32 Pin-Out

Um einen neuen kompilierten Code auf den ESP32 herunterzuladen, muss er sich während eines Resets im "Boot" Modus befinden. Dieser Modus wird durch einen Taster, der, während dem Uploaden des Codes gedrückt werden muss, initialisiert.

Abbildung 85: Taster und Schiebeschalter

5.2.3.2 Beschaltung der USB-Bridge

Abbildung 86: Beschaltung der USB-Bridge

Die Beschaltung der USB-Bridge wurde nach den Richtlinien im Datenblatt implementiert. Neben den Pull-Widerständen R2 und R7, wird sie mit einem Spannungsteiler, bestehend aus R3 und R5, beschalten. Dieser dient zur Konfiguration eines integrierten Linearreglers, welcher aber im Bypass Modus ist. Das heißt, dass er nicht zur Versorgung externer Komponenten

verwendet wird, da sein Versorgungsstrom maximal 100mA ist. Abzüglich des Stromes, den die Bridge selbst benötigt, ist der Ausgangsstrom des internen LVR zu niedrig, um als Hauptversorgung verwendet zu werden. Die besagte in Konfiguration wird im Datenblatt als "USB Self-Powered"-Konfiguration bezeichnet. Die beiden Transistoren dienen als elektrischer Bootund Reset-Schalter, welcher von der USB-Bridge bei Bedarf angesteuert wird.

5.2.3.3 Interner ADC mit DMA-Support

Zur Erfassung der analogen Signale wird der im SoC integrierte Analog-Digital-Wandler verwendet. Die maximale Auflösung beträgt 12 Bit, wobei die Referenzspannung (1V1-3V3) in der Firmware konfiguriert werden kann. Der DMA-Controller schreibt die aus der AD-Konversion resultierenden Daten, in einen Direct Memory Access (DMA) Buffer. Ein DMA Buffer ermöglicht es der Firmware, die Daten kontinuierlich einzulesen. Diese Funktion ist wichtig, um die CPU zu entlasten, sodass trotz anderer Prozesse ein kontinuierlicher Datenstrom zur Verfügung steht und keine Lücken in den Audiodaten vorkommen.

5.2.4 Layout der Platine

Eine Zielsetzung bei dem Projekt ist es, sich von den Entwicklungsmodulen zu distanzieren und ein Gerät zu entwickeln, welches einem vermarktbaren Produkt ähnelt. Um dieses Ziel zu erfüllen, ist ein geeignetes Leiterplattendesign ausschlaggebend für die Funktionalität und einen kompakten Footprint des Gerätes. Bei dem Design der Leiterplatte wurden besonders auf die elektromagnetische Verträglichkeit geachtet.

5.2.4.1 Versorgungsleitungen

Die Versorgungsleiterbahnen sind leicht von den anderen Leiterbahnen zu unterscheiden, da sie im Vergleich viel dicker sind. Da über Versorgungsleitungen der meiste Strom fließt, ist es von Vorteil diese so breit wie möglich zu machen, um Verluste zu minimieren. Mit einer Breite von 32mil kann eine solche Leiterbahn bis zu 3,8 Ampere (mit einem Temperaturanstieg um ca. 30°C) standhalten.

Abbildung 87: Berechnung des maximalen Stromes im PCB-Toolkit Rechner

Abbildung 88: Versorgungsleitungen (5V rot, 3V3 orange)

Die Versorgung der USB-Bridge, des ESP32 und der Analog-Sektion sind Sternpunkt-förmig am LDO angeschlossen. Eine Besonderheit bei der Analog-Versorgung ist, dass sie zusätzlich mit einem passivem C-L-C Pi-Filter ausgestattet ist, um mittel- bis hochfrequentes Rauschen zu entfernen.

Abbildung 89: Komponenten des Pi-Filters

5.2.4.2 Massefläche

Die Masseanschlüsse der einzelnen Komponenten werden mit einer Massefläche verbunden. Die daraus resultierende induktionsarme Verbindung sorgt dafür, dass Stromrückflüsse einen nur sehr geringen Potentialunterschied verursachen.

5.2.4.2.1 Sternpunktmasse

Treffen sich die einzelnen Masseflächen in nur einem Punkt, so spricht man von einer Sternpunktmasse. Eine Sternpunktmasse hat den Vorteil, dass Masseschleifen verhindert werden.

Abbildung 90: Visualisierung einer Sternpunktmasse

Eine Masseschleife entsteht, wenn sich mehrere Bauteile eine Impedanz (eine Leiterbahnenabschnitt) als Masse teilen. Durch den Stromrückfluss eines Bauteils auf diesem Abschnitt kann das Massepotential an einem anderen Bauteil angehoben werden. Man würde dann von einer galvanischen Kopplung sprechen.

In diesem Fall werden die Masse-Polygone möglichst nahe am LDO mit SMD-Überbrückungen verbunden. (siehe pink-markierte Felder in Abbildung 92)

Abbildung 91:

Auf der Platine werden die Komponenten auf drei verschiedene *SMD-Jumper* Arten klassifiziert: Digitale-, Analoge- und Leistungsbauteile.

Abbildung 92: Bottom (links) und Top (rechts) Masse-Layer

PGND: Leistungsmasse (Orange)

Leistungsbauteile treiben oft hohe Ströme, welche ungewollte Differenzen auf dem Massepotential hervorrufen können. Isoliert man nun diese Masse von den signaltreibenden Bauteilen, ist nur das Leitungsbauteil von der galvanischen Kopplung betroffen.

GND: Digitalmasse (Blau)

Digitale Bauteile arbeiten oft mit hochfrequenten Signalen (hier z.B. der SPI-Bus). Wenn HF-Leitungen frei liegen, können sie auf nahen Leiterbahnen, durch das sich schnell ändernde elekt- Abbildung 93: kapazitive Kopplung

rische Feld, Störungen verursachen (Crosstalk¹¹). Diesen Effekt bezeichnet man als kapazitive Kopplung.

Abbildung 94: Massefläche zwischen HF-Leitungen

Um dieser Kopplung zwischen den Leiterbahnen entgegenzuwirken, muss zwischen besagten Leitungen eine Massefläche ausgeprägt sein. Da diese Störungen nun von der Masse absorbiert werden, muss die Fläche vom Rest isoliert werden. Dies wird

¹¹ Ungewollte Übertragung von Signalen auf eine andere Leitung durch Kopplungsarten

erzielt, indem man sie nahe an der Masse der Versorgungseinheit (LDO) anschließt.

AGND: Analogmasse (Grün)

Bei analogen Signalen ist oft das Rauschen ein kritischer Faktor (SNR). Beispielsweise haben die Audiosignale, welche von den Pick-Ups der E-Gitarre induziert werden, eine sehr geringe Amplitude. Benötigt nun eine andere Komponente für kurze Zeit einen hohen Strom oder generiert durch hohe Frequenzen ein Rauschen, so können Störungen auf der Masse auftreten, welches die Referenz für das Audiosignal verändert. Ein ADC kann dann das Signal nicht mehr korrekt erfassen und das Sample ist fehlerhaft. Eine störungsbefreite Masse unterstützt somit die Integrität des Signales und es kann in möglichst originaler Form weiterverarbeitet werden.

5.2.4.2.2 Via-Stitching am Masse-Polygon

Um den Stromrückflussweg von Komponenten so kurz wie möglich zu halten, wurden die Masseflächen an mehreren Stellen mit einer Vielzahl an Durchkontaktierungen (Vias) "vernäht". Das Massepotential wird auf der Platine

Abbildung 95: Ground-Stitches

dadurch über die gesamte Fläche konstant gehalten.

5.2.4.3 Platzierung der Entkopplungskondensatoren

Entkopplungskondensatoren haben grundsätzlich zwei Aufgaben. Zum einen sollen sie bei Spannungseinbrüchen die Versorgung möglichst aufrechterhalten, außerdem sollen hochfrequente Störsignale gefiltert werden.

Ein einziger Kondensator kann beide Aufgaben nicht ideal erfüllen, da mit niedrigeren Kapazitäten zwar die HF-Entkopplung besser ist, jedoch die Bulk-Kapazität fehlt, um einen Einbruch der Spannung zu kompensieren und umgekehrt. Deshalb ist es üblich, zwei Kondensatoren so nahe wie möglich an der Versorgung eines integrierten Schaltkreises (IC) auf der Platine zu montieren.

5.2.4.4 Audio

Niederfrequente Audio-Signale, müssen von allen Störund Rauschguellen isoliert werden, sodass das Audio möglichst original aufgefasst werden kann. Auf der gegenüberliegenden Seite der Leiterplatte sind daher keine Leiterbahnen verlegt, sondern nur eine Massefläche.

Abbildung 96: Masse unter Audio-Sektion

5.2.4.5 Differentielles Paar

Die Datenleitungen eines USB sind ein differentielles Paar und müssen auf der Platine auch als solches geroutet werden. Datenübertragungen mit einem Differentiellen Paar unterscheiden sich von normalen Leitungen, da sie kein Bezugspotential (Masse) haben, sondern zwei Leitungen mit demselben Datensignal, wobei eines der beiden invertiert ist. Die Impedanz des Differentiellen Paares muss angepasst werden, da sonst die maximale Übertragungsrate eingeschränkt werden könnte. Die Leitungen sind angepasst, wenn beide Leitungen gleich lang geroutet sind und dieselbe Impedanz aufweisen. [21]

5.2.4.6 Abmessung und kompakter Footprint

Ein weiterer Vorteil einer selbst angefertigten Leiterplatte ist die Kontrolle über den Footprint. Neben den ästhetisch ansprechenden abgerundeten Ecken hat die Platine eine Abmessung von lediglich 31.75mm x 54.61mm. Zusätzlich verfügt die Platine über eine Einkerbung, mit welcher sie Abbildung 97: Einkersich in das Gehäuse einrasten lässt. Im CAD-Abschnitt

bung zur Befestigung

(5.5.2.2, S. 112) wird genaueres über die Gehäusekonstruktion bekannt gegeben.

5.2.4.7 SMD-Testterminals

Um Systemtests zu vereinfachen, wurden wichtige Signale mithilfe von Testterminals leicht für Tastköpfe von Oszilloskopen und Multimetern zugänglich gemacht. Insgesamt wurden auf der Platine neun Testterminals verbaut, mit welchen man leichten Zugriff auf verschieden Versorgungsleitungen sowie analoge und digitale Signalleitungen hat.

5.3 Firmware

5.3.1 Treiber Firmware Diagramm

Abbildung 98: Firmware Struktogramm

Nach einem Firmware Reset erfolgt zunächst die Initialisierung der Datenstrukturen. Es werden die Treiber der Peripherien initialisiert und die Standardkonfiguration aus dem Config-Header geladen. Ein Sampler, der die Audiodaten vom Direct Memory Access Controller liest und den Audio Buffer bereitstellt, wird initialisiert und gestartet. Auch die Ressourcen für den Digital Signal Processing Algorithmus werden allokiert. Ebenfalls wird der Treiber für die MIDI-Schnittstelle gestartet und kann aus der DSP resultierende MIDI-Daten an die USB-Bridge senden.

Drei vom RTOS geregelte Tasks formen die Prozesskette. Mittels Queues (First In First Out, FIFO) werden die Daten in den nächsten Task übergeben. Von der zentralen Datenstruktur "Driver Parameter Handler" kann von allen Tasks aus auf die Peripherien und FIFOs referenziert werden.

5.3.2 Doxygen

Der Code wurde mittels sogenannter ungarischer Notation versehen. Ungarische Notation kommt in der Firmware in Form von dokumentativen Kommentaren vor, welche anschließend von dem Programm **Doxygen** erkannt werden und daraus Referenzfiles generiert, welche hilfreich für die Dokumentation des Codes sind. Alle im Quellverzeichnis vorkommenden Dateien werden indiziert und es wird ein Inhaltsverzeichnis daraus erstellt. Weiters werden die verwendeten Datentypen aufgelistet und mit einer Beschreibung versehen, mit welchen der Code inline dokumentiert ist. In Summe ergibt sich daraus das Referenzhandbuch für die Firmware mit folgender Struktur:

- 1. Data Structure Index
 - Inhaltsverzeichnis für Typedefs und Datenstrukturen
- 2. File Index
 - Inhaltsverzeichnis für Header- und Quelldateien
- 3. Data Structure Documentation
 - Beschreibung der für Typedefs und Datenstrukturen
- 4. File Documentation
 - Beschreibung der Methoden und Algorithmen

Das Handbuch der Firmware dieses Projekts ist nicht in der Diplomarbeit enthalten und wird separat zur Verfügung gestellt. Kommentare ungarischer Notation unterscheiden sich durch ein zusätzliches Sonderzeichen von normalen Kommentaren:

	Ungarische Notation	Standardkommentar
Multiline- Comment	/** */	/* */
Singleline- Comment	///	//
Beispiel	/** * Ofile gitcon.h * Oauthor Os-grundner OLaurenz03 * Obrief Gitcon Device Driver * Oversion 0.1 * Odate 2022-12-23 * * Ocopyright Copyright (c) 2022 */	/* * Ofile gitcon.h * Opiner Observed Served Serv

Tabelle 7: ungarische Notation im Vergleich zu herkömmlichen Kommentaren

5.4 Software

Um den Guitar-Converter am PC auslesen zu können, werden bestimmte Treiber benötigt. Im Folgenden werden die nötigen Konfigurationen der Software beschrieben, um den Gitcon betriebsbereit zu machen und ihn in der digital Audio Workstation Ableton Live verwenden zu können.

5.4.1 Virtueller MIDI-Port

Originale MIDI-Controller verfügen über zwei DIN 5-Pol Stecker, um die Parameter untereinander auszutauschen. Da am Mainboard eines PCs jedoch keine DIN-Stecker verbaut sind, werden die Daten über USB vermittelt. Damit die DAW nun MIDI-Geräte voneinander Port eines klassischen unterscheiden kann, gibt es softwarebasierte, virtuelle Ports.

Abbildung 99: MIDI-Controllers

Hierfür kommt die Software loopMIDI zum Einsatz. In ihr kann man Instanzen von virtuellen MIDI-Ports erzeugen, sodass die DAW weiß, welche MIDI-Signale tatsächlich vom dem Gitcon-Device stammen. Um einen Port zu erzeugen, gibt man den Namen in das Textfeld ein und klickt auf die Plus (+) Schaltfläche.

Abbildung 100: Loop MIDI GUI

5.4.2 MIDI Serial Bridge

Eine MIDI Serial Bridge wird benötigt, um erhaltene Bytes von dem COM-Port an einen MIDI-Port weiterzuleiten, welcher als Schnittstelle zur DAW dient.

Abbildung 101: hairless-midiserial Benutzeroberfläche

Das hier verwendete Programm hairless-midiserial, ermöglicht es, einen seriellen Port auszuwählen, von welchem die Daten, an ein MIDI-Port gesendet (MIDI-Out), beziehungsweise empfangen (MIDI In) werden können. Ein zuvor erzeugter virtueller MIDI-Port kann Port Dropdown-Menü nun in der Benutzeroberfläche selektiert werden.

Abbildung 102: MIDI-

Das Programm ist Open-Source und der Code kann in der öffentlichen GitHub-Repository eingesehen werden.

• https://GitHub.com/projectgus/hairless-midiserial

5.4.3 Ableton Live Setup

Mit dem Tastenkürzel Ctrl + , werden die Voreinstellungen (Preferences) aufgerufen. Sofern zuvor ein virtueller MIDI-Port erzeugt worden ist, wird er von Ableton Live erkannt und kann im Reiter MIDI selektiert werden. [22]

Abbildung 103: Live Preferences

Eingehende MIDI-Signale können nun von Ableton Live in einen MIDI-Kanal geroutet werden, in welchem dann die Signale zur Verfügung stehen. Das Gitcon Device Abbildung 104: MIDI-Spur Konfiguraschickt die MIDI-Noten auf den Kanal 1. In

der MIDI-Spur muss also der entsprechende Kanal ausgewählt werden. Um nun die eintreffenden MIDI-Noten aufzunehmen, muss die MIDI-Spur aufnahmebereit geschalten werden (Arming). Eine Spur ist für die Aufnahme Scharfgestellt, wenn man die "Arm"-Schaltfläche anklickt, sodass sie rot aufleuchtet. [23]

5.5 Computer-Aided Design Modelle (CAD)

5.5.1 Electronic-CAD (ECAD)

Abbildung 105: ECAD-Modell

Um ein besseres Bild der Platine im Vorhinein zu haben, wurden für alle Komponenten ein 3D-Modell erzeugt und ein ECAD-Modell der Platine in Fusion 360 kreiert. Das Modell war auch hilfreich festzustellen, ob jedes Bauteil im Layout genügend Spielraum hat, und es hardwaretechnisch keine Interferenzen gibt.

5.5.2 Mechanical-CAD (MCAD) und Material Kunde

Um das Projekt näher an die Form eines vermarktbaren Produkts heranzuführen, wurde für die Platine ein mechanisches Gehäuse entworfen und anschließend mit einem FDM-Drucker aus PLA 3D-gedruckt.

5.5.2.1 3D-Druck

Fused Deposition Modeling (FDM) ist die Bezeichnung einer 3D-Drucktechnologie, bei der ein thermoplastischer Kunststoff geschmolzen und anschließend in Lagen aufgeschichtet wird (Schmelzschichtverfahren) [24].

Abbildung 106 zeigt einen FDM-Drucker in Arbeit. Eine Spritzdüse, aus der heißer Kunststoff fließt, fährt für jede Schicht die Kontur des MCAD-Modells nach.

Abbildung 106: FDM-Drucker

Der hier verwendete Kunststoff ist **Polylactid** (PLA), ein in FDM-Druckern häufig verwendeter Polyester, welcher auf aus Pflanzenstärke gewonnener Milchsäure basiert. [25]

5.5.2.2 Gehäuse

Abbildung 107: MCAD-Modell des Gehäuses Abbildung 108: Assembliertes Endprodukt

Das Gehäuse besteht aus drei Komponenten:

Abbildung 110: Gehäusekomponenten

1.Dem Platinen Bett, 2.der Erweiterung für den Schiebeschalter 3.und dem Deckel.

Im Platinen Bett wird das Mainboard, sowie die Audiobuchse des Gitcon befestigt. Um die Platine im Bett zu befestigen, muss sie lediglich in den Slot eingeschoben werden. Ein Clip am Gehäuse rastet in die Einkerbung an der Platine ein, wodurch das Zurückrutschen ver- Abbildung 109:

Befestigungs-Clip

Die Audiobuchse wird wie in Abbildung 110 gezeigt mit der inkludierten Mutter und beilag Scheibe verschraubt.

hindert wird.

Um den Slider-Switch von außen umschalten zu können, wird die Erweiterungsschiene auf den Schiebeschalter gesteckt. Durch Löcher in der Wand des Bettes, kann die Schiene von außen Hin und Her geschoben werden.

Der Deckel des Gehäuses wird auf dem Bett angepresst, was bedeutet, dass er allein durch die Reibung am Gehäuse festgehalten wird. Neben dem Schutz der Platine von oben, werden auch die Schlitze bei der USB-Buchse und den Tastern verdeckt. Auch die Schiene des Schiebeschalters wird durch ihn an Ort und Stelle gehalten.

6 Fehlererfassung

6.1 Platine

- Taster Footprint ist falsch
 - o Korrektur mittels Durchtrennung falscher Leiterbahnen.
- Teil des Doku-Layers wurde nicht auf den Silkscreen gedruckt.

6.2 Bestückung

Da bei der Bestückung keine 12nF Kondensatoren für den Tiefpass verfügbar gewesen sind, wurden sie mit 10nF suppliert. Um zu überprüfen, wie sich diese Abweichung auf das Übertragungsverhalten des Tiefpasses auswirkt, wurde eine Simulation mit beiden Bauteilwerten durchgeführt.

Simulation mit 10nF (Ist)

Abbildung 112: Simulation mit 10nF

Simulation mit 12nF (Soll)

Abbildung 113: Simulation mit 12nF

Fazit: 10nF beeinflusst die Schaltung positiv, da die Resonanz an den Grenzfrequenzen (Güte- oder Q-Faktor) geringer ist.

6.3 ADC Channel 2 auf ADC Channel 1 überbrücken

Der I2S-Support der internen Analog-Digital-Wandler des ESP32 ist auf den ADC-Kanal 1 begrenzt. Da diese Beschränkung erst bei der Firmwareprogrammierung aufgefallen ist, wurde dieses Erratum auf der Platine mittels einer Überbrückung auf den korrekten Pin korrigiert.

Abbildung 114: Weißes Kabel als Überbrückungsmedium der Pins

6.4 Fehlende Features

- Die Implementation einer Debug-LED wäre praktisch gewesen, um beliebige Parameter anzeigen zulassen, zum Beispiel wann:
 - o eine Transiente erkannt wurde;
 - o eine Note übertragen wurde;
- Eine RX/TX-Package-LED an der UART-Bridge

7 Glossar

ADC	Analog-Digital-Converter
AFE	
CAD	
CPU	Central Processing Unit
DFTDis	krete Fourier Transformation
DSP	
DSV	Digitale Signalverarbeitung
ECAD Elect	
EKG	
ESD	
ESP	Kürzal für Espressif Produkto
FDM	
FFT	Fast Fourier Transform
FIFOs	
Gitcon	
GND	Ground (Masse)
GPIOG	
HF	
I2C	
I2S	
IC	
IDF	
IoT	
LDO	Low Dropout Regulator
LED	Light Emitting Diode
MCAD Mecha	nical Computer-Aided Design
MIDI Musica	
MQTT Message	
OPV	Operationsverstärker
PC	Personal Computer
PCB	
Pickup	
PIF	
PIO	
PLA	
PSRAM	
RAMRandom Access	
RTOS	
SDK	
SMD	
SNR	Signal to Noise Ratio
SoC	System on a Chip
TI	i exas Intruments (Firma)

TVS	Transient Voltage Suppresion
	Universal Asynchronous Recieve and Transmit
	Universal Serial Bus
Via	Durchkontaktierung
WLAN	

8 Abbildungsverzeichnis	
Abbildung 1: Gitcon Logo	4
Abbildung 2: MIDI-Klavier (Novation Launchkey)	. 13
Abbildung 3: Konfiguration einer MIDI-Spur beim MIDI-Unittest	. 21
Abbildung 4: Starten der Aufnahme des MIDI-Unittests	. 21
Abbildung 5: Ergebnis einer Aufnahme des MIDI-Unittests	. 21
Abbildung 6: Konfiguration einer MIDI-Spur beim Live-Konversion Test	. 22
Abbildung 7: Starten der Aufnahme des Live-Konversionstest	. 22
Abbildung 8: Ergebnis der Live-Konversion	. 22
Abbildung 9: Trello Liste mit zwei Karten	. 28
Abbildung 10: Copilot Logo	. 28
Abbildung 11: passiver LCR-Tiefpass [35]	. 29
Abbildung 12: aktiver Tiefpass [36]	. 30
Abbildung 13: OPV-Schaltsymbol	. 32
Abbildung 14: Schaltbild OPV	. 33
Abbildung 15: Differenzenverstärkung OPV	. 33
Abbildung 16: OPV als Impedanzwandler	. 34
Abbildung 17: Invertierender OPV	. 34
Abbildung 18: Nicht-invertierender OPV	. 35
Abbildung 19: Sallen-Key Tiefpass (links) & Hochpass (rechts)	. 38
Abbildung 20: Filter erster Ordnung	. 39
Abbildung 21: Filter zweiter Ordnung	. 39
Abbildung 22: Flankensteilheit der Ordnungen [24]	. 39
Abbildung 23: Butterworth Frequenzverhalten [33]	. 40
Abbildung 24: Frequenzverhalten der Filtercharakteristiken [32]	. 41
Abbildung 25: Toleranzschema [31]	. 42
Abbildung 26: Schaltbild Filter zweiter Ordnung	. 43
Abbildung 27: Schaltbild Sallen-Key zweiter Ordnung	. 44
Abbildung 28: Dämpfungskurven	. 46
Abbildung 29: Aufbau einer E-Gitarre	. 47
Abbildung 30: Veranschaulichung Fourier Transformation	. 48
Abbildung 31: Aufspaltung 8-Punkte-DFT	. 55

Abbildung 32: w	eitere Zerlegung 8-Punkte-DFT	56
Abbildung 33: Bu	utterfly-Graph	56
Abbildung 34: ve	ereinfachter Butterfly	57
Abbildung 35: Da	ataflow Firmware	58
Abbildung 36: Au	udacity Interface	62
Abbildung 37: Au	uswahl eines Signalabschnitts	63
Abbildung 38: Aı	udacity Tools	63
Abbildung 39: Sa	ample-Datenexport Fenster	63
Abbildung 40: Da	ataflow Python Tool	64
Abbildung 41: Au	udacity Analyse Tools	67
Abbildung 42: Fr	requenzanalyse Audacity	67
Abbildung 43: Fr	requenzanalyse Audacity	67
Abbildung 44: M	latlab FFT	68
Abbildung 45: ES	SP32 Prozessor (Mitte), PIF WLAN-Antenne (links)	70
Abbildung 46: ES	SP-WROOM mit IPX-Connector	70
Abbildung 47: Do	ownload des Flash Tools	70
=	ile Folder des heruntergleadnen Ordner	
Abbildung 49: ES	SP-AT Versionen	71
Abbildung 50: fla	asher_args.json - flash_files	71
Abbildung 51: To	ool Interface mit eingetragenen Binaries	72
Abbildung 52: fla	asher_args.json - flash_settings	72
	PI Flash Config in dem GUI	
	latformIO Installation	
Abbildung 55: Pl	latformIO Home	73
_	latformIO Project Wizard	
Abbildung 57: Ko	onfiguriertes Projekt	74
Abbildung 58: Pl	latformIO Projekt Struktur	75
Abbildung 59: Pl	latformIO Library Reiter	75
=	ibliothek Untermenü	
	inbinden von Dependencies	
	latformio.ini	
Abbildung 63: Pr	roject-Tasks Panel	77

Abbildung 64: Statusleiste mit PIO-Schaltflächen77	7
Abbildung 65: UART-Verbindung79	
Abbildung 66: UART-Datenpaket79	Э
Abbildung 67: Ableton Live Effekt EQ Eight (Filter)80	
Abbildung 68: MIDI-Word81	1
Abbildung 69: Vier verschiede MIDI-Spuren mit dem gleichen Controller als	5
Input82	2
Abbildung 70: Novation Launchkey Mini82	2
Abbildung 71: Funktionsblockdiagramm des Gitcon84	1
Abbildung 72: Legende der Arbeitsunterteilung85	5
Abbildung 73: Spannungsregler und USB-Connector im Schaltplan 86	5
Abbildung 74: ESD-Warnhinweis87	7
Abbildung 75: ESD-Schutz in Schaltungen87	7
Abbildung 76: Symbol der Bipolaren TVS-Diode88	3
Abbildung 77: SC7538-08UTG Block Diagramm88	3
Abbildung 78: LPF-Schaltung90)
Abbildung 79: Filter Prototyp mit TL07491	L
Abbildung 80: Spannungsverhältnis Ua/Ue93	3
Abbildung 81: Simulation des Verhältnis Ua/Ue93	3
Abbildung 82: Messung des Filters94	1
Abbildung 83: ESP32 Beschaltung96	5
Abbildung 84: Reset bei Spannungseinbruch97	7
Abbildung 85: Taster und Schiebeschalter98	3
Abbildung 86: Beschaltung der USB-Bridge98	3
Abbildung 87: Berechnung des maximalen Stromes im PCB-Toolkit Rechne	r
)
Abbildung 88: Versorgungsleitungen (5V rot, 3V3 orange) 100)
Abbildung 89: Komponenten des Pi-Filters)
Abbildung 90: Visualisierung einer Sternpunktmasse 101	L
Abbildung 91: SMD-Jumper101	L
Abbildung 92: Bottom (links) und Top (rechts) Masse-Layer 102	2
Abbildung 93: kapazitive Kopplung102	2

bbildung 94: Massefläche zwischen HF-Leitungen	12
bbildung 95: Ground-Stitches auf der Platine	13
Abbildung 96: Masse unter Audio-Sektion104	14
bbildung 97: Einkerbung zur Befestigung10-	14
bbildung 98: Firmware Struktogramm	15
bbildung 99: MIDI-Port eines klassischen Controllers 10	8
Abbildung 100: Loop MIDI GUI10	8
bbildung 101: hairless-midiserial Benutzeroberfläche 10	19
Abbildung 102: MIDI-Port Dropdown-Menü 10	19
Abbildung 103: Live Preferences	0
bbildung 104: MIDI-Spur Konfiguration	0
Abbildung 105: ECAD-Modell11	. 1
bbildung 106: FDM-Drucker11	.1
bbildung 107: MCAD-Modell des Gehäuses 11:	2
bbildung 108: Assembliertes Endprodukt	2
Abbildung 109: Befestigungs-Clip	2
bbildung 110: Gehäuse-komponenten	2
Abbildung 111: Slider-Schiene11	2
Abbildung 112: Simulation mit 10nF	3
Abbildung 113: Simulation mit 12nF	4
Abbildung 114: Weißes Kabel als Überbrückungsmedium der Pins 114	4

Diplomarbeit	Gitcon	2022/2023
Codesegment 1:	Macros	59
Codesegment 2:	Includes	59
Codesegment 3:	Array Initialisierung	59
Codesegment 4:	Deklaration von max	59
Codesegment 5:	Ausprogrammierung "getMaxMag()"	60
Codesegment 6:	Start "main-loop"	60
Codesegment 7:	FFT-Ausführung	60
Codesegment 8:	Verarbeitung der FFT-Daten	60
Codesegment 9:	Ausgabe	61
Codesegment 10): FFT-Zerstörung	62
Codesegment 11	l: Import des "shutil" Moduls	65
Codesegment 12	2: Variablen Initialisierung	65
Codesegment 13	3: Datei auswerten	65
Codesegment 14	4: Löschung vorhandener Ausgabedatei	65
Codesegment 15	5: Ausgabe der Datei	66
Codesegment 16	5: Kopieren der Datei	66
Datenauszug 1:	Ausgabe Audacity	64
Datenauszug 2:	Output des Testprogramms	66

Diplomarbeit Gitcon 2022/2023

9 Literaturverzeichnis

- [1] "ElectronicsTutorials," [Online]. Available: https://www.electronicstutorials.ws/de/filtern/aktiver-tiefpassfilter.html.
- [2] S. Tietze, Halbleiter-Schaltungstechnik, Springer, 2002.
- [3] H. Zumbahlen, "Basic Linear Design," Newens/Elsevier, 2008.
- [4] "ElectronicsTutorials," [Online]. Available: https://www.electronicstutorials.ws/de/filtern/filter-zweiter-ordnung.html.
- [5] "Elektroniktutor Analogverstärker," [Online]. Available: https://www.elektroniktutor.de/analogverstaerker/aktivflt.html.
- [6] P. Mahler, "Delamar," [Online]. Available: https://www.delamar.de/gitarre/e-gitarre-aufbau-schaubild-39598/. [Zugriff am 12 03 2023].
- [7] NTi Audio AG, "NTI Audio," [Online]. Available: https://www.nti-audio.com/de/service/wissen/fast-fourier-transformation-fft.
 [Zugriff am 22 02 2023].
- [8] D. C. v. Grüningen, Digitale Signalverarbeitung, Carl Hanser Verlag, 2008.
- [9] Inspired Acoustics, "MIDI note numbers and center frequencies," Inspired Acoustics, [Online]. Available: https://www.inspiredacoustics.com/en/MIDI_note_numbers_and_center_frequencies.
- [10] H. S. Domareski, "DRY, KISS & YAGNI Principles," Medium, 14 06 2020. [Online]. Available: https://henriquesd.medium.com/drykiss-yagni-principles-1ce09d9c601f.

Diplomarbeit Gitcon 2022/2023

- [11] Espressif Systems (Shanghai) Co., Ltd, "https://www.espressif.com/en/support/documents/technicaldocuments," 13 02 2023. [Online]. Available: https://www.espressif.com/sites/default/files/documentation/esp32 -wroom-32e_esp32-wroom-32ue_datasheet_en.pdf.
- [12] Wdwd, "ESP32," Wikimedia Foundation Inc, 12 03 2023. [Online]. Available: https://de.wikipedia.org/wiki/ESP32.
- [13] Espressif Systems (Shanghai) Co., Ltd., "ESP-AT User Guide,"
 Espressif Systems (Shanghai) Co., Ltd., 2023. [Online]. Available:
 https://docs.espressif.com/projects/espat/en/latest/esp32/Get_Started/Downloading_guide.html.
- [14] "FreeRTOS," Amazon Web Services, Inc., [Online]. Available: https://www.freertos.org/.
- [15] "UART verstehen," Rohde & Schwarz Österreich GesmbH, 2023.

 [Online]. Available: https://www.rohde-schwarz.com/at/produkte/messtechnik/essentials-test-equipment/digital-oscilloscopes/uart-verstehen_254524.html#:~:text=UART%20steht%20f%C3%BCr%20Universal%20Asynchronous,zu%20senden%20und%20zu%20empfangen..
- [16] E. Peňa, "A Hardware Communication Protocol Understanding
 Universal Asynchronous Receiver/Transmitter," Analog Devices,
 Inc., 04 12 2020. [Online]. Available:
 https://www.analog.com/en/analog-dialogue/articles/uart-a-hardware-communication-protocol.html.
- [17] ZeM College GbR, "ZeM College MIDI Kompendium," ZeM College GbR, 2008. [Online]. Available: https://www.zem-college.de/indexf.html.

- [18] M. Association, "Expanded MIDI 1.0 Messages List (Status Bytes)," MIDI Association, 2023. [Online]. Available: https://www.midi.org/specifications-old/item/table-2-expanded-messages-list-status-bytes.
- [19] "Pickup (music technology)," Wikimedia Foundation, Inc., 02 03 2023. [Online]. Available: https://en.wikipedia.org/wiki/Pickup_(music_technology).
- [20] Espressif Systems (Shanghai) Co., Ltd., "Analog to Digital Converter (ADC) Calibration Driver," Espressif Systems (Shanghai) Co., Ltd., 2023. [Online]. Available: https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/peripherals/adc_calibration.html.
- [21] Z. Peterson, "What Are Differential Pairs and Differential Signals?," Altium Ltd., 21 03 2023. [Online]. Available: https://resources.altium.com/p/what-are-differential-pairs-and-differential-signals.
- [22] M. Hughes, "Ableton-Referenzhandbuch Version 11," Ableton AG, 2021. [Online]. Available: https://www.ableton.com/de/manual/credits/.
- [23] M. Hughes, "Neue Clips aufnehmen," Ableton AG, 2021. [Online]. Available: https://www.ableton.com/de/manual/recording-new-clips/.
- [24] 3dfilstore, "3dfilstore," EWX Tech GmbH, [Online]. Available: https://www.3dfilstore.ch/blog/2018/11/03/fdm-oder-sla-was-ist-besser/#:~:text=Fused%20Deposition%20Modeling%20ist%20die, hinzugef%C3%BCgt%2C%20um%20das%20Werkst%C3%BCck%20aufzubauen..

- [25] "Kunststoffe.de," Carl Hanser GmbH & Co. KG, [Online]. Available: https://www.kunststoffe.de/a/grundlagenartikel/polylactid-pla-264462.
- [26] R. Shashikanth, "11 Best High-Speed PCB Routing Practices," Sierra Circuits, 29 09 2020. [Online]. Available: https://www.protoexpress.com/blog/best-high-speed-pcb-routing-practices/.
- [27] The Sierra Circuits Team, "How to Handle Current Return Path for Better Signal Integrity," Sierra Circuits, 08 02 2021. [Online]. Available: https://www.protoexpress.com/blog/current-return-path-signal-integrity/.
- [28] S. V, "How Via Stitching Facilitates High-Current PCB Designs," Sierra Circuits, 23 03 2023. [Online]. Available: https://www.protoexpress.com/blog/how-via-stitching-facilitates-high-current-pcb-designs/.
- [29] Espressif Systems (Shanghai) Co., Ltd, "API Reference ESP32," Espressif Systems (Shanghai) Co., Ltd, 2016. [Online]. Available: https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/index.html.
- [30] "ElectronicsTutorials," [Online]. Available: https://www.electronicstutorials.ws/filter/sallen-key-filter.html.
- [31] "ScienceDirect," [Online]. Available: https://www.sciencedirect.com/topics/engineering/sallen-key.
- [32] Espressif Systems (Shanghai) Co., Ltd., "Get Started," Espressif Systems (Shanghai) Co., Ltd., 2023. [Online]. Available: https://docs.espressif.com/projects/esp-idf/en/latest/esp32/get-started/index.html.

- [33] "spsc.tugraz.at," [Online]. Available:

 CAMAAAAu7/J6AAAB8IBMVEX////d3d3g4ODm5ubV1dUAAADb29v19
 fVqamrt7e20tLS6urrAwMDS0tJvb2/KysqZmZmurq4QEBCKioo8PDzw
 8PD6//9GRkb///r6+vorKyumpqaenp7///fp6emDg4N2dnZOTk4gICD/
 /+xYWFj/+9+fm8Pt///38OmRkZH88N3iw5sAV.
- [34] "blog.bliley.com," [Online]. Available: https://blog.bliley.com/hs-fs/hubfs/filter_post/filter-response-comparison.png?width=640&name=filter-response-comparison.png.
- [35] "www.electronics-tutorials.ws," [Online]. Available: https://www.electronics-tutorials.ws/wp-content/uploads/2018/05/filter-fil57.gif.
- [36] "www.electronics-tutorials.ws," [Online]. Available:
 https://www.electronics-tutorials.ws/wp content/uploads/2013/08/opamp78.gif?fit=333%2C224?fit=333,22
 6.
- [37] "www.mikrocontroller.net," [Online]. Available: https://www.mikrocontroller.net/attachment/305033/LCR-Tiefpass.png.
- [38] "www.mikrocontroller.net," [Online]. Available: https://www.mikrocontroller.net/attachment/305031/aktiver_tiefpa ss.png.

10 Anhang

10.1 Begleitprotokolle

Name: Hr. Daniel Bräumann

Diplomarbeitstitel: Gitcon – Entwicklung einer MIDI-Schnittstelle für

E-Gitarren

KW	Beschreibung	Zeitaufwand
38	Diplomarbeitsantrag erstellen	3
39	Diplomarbeitsantrag einreichen	3
40	Projektplanung, Aufgabenverfeinerung, Ganttdiagramm	3
41	Schaltungsentwurf	5
42	Erstdimensionierung der Schaltung	10
43	Prototypenbau	6
44	Prototypenbau & Simulation	6
45	Simulation	4
46	Bewertung des Prototyps als DUT	10
47	Bewertung des Prototyps als DUT	7
48	Optimierung der Schaltung	6
49	Optimierung der Schaltung	4
50	Simulation	6
51	Prototypenbau	5
52	Bewertung des Prototyps als DUT	7
01	Diplomarbeit schreiben	4
02	Diplomarbeit schreiben	6
03	Systemtests für das AFE	8
04	Systemtests für das AFE	6
05	Vertiefende Grundlagenarbeit	6
06	Vertiefende Grundlagenarbeit	8
07	Simulation des gesamten AFEs	7
08	Diplomarbeit schreiben	3
09	Vertiefende Grundlagenarbeit	4
10	Diplomarbeit schreiben	5
11	Diplomarbeit schreiben	7
12	Diplomarbeit schreiben	6
13	Diplomarbeit schreiben	3

KW ...Kalenderwoche

Name: Hr. Simon Grundner

Diplomarbeitstitel: Gitcon – MIDI-Interface für E-Gitarren

KW	Beschreibung	Zeitaufwand
38	Diplomarbeitsantrag erstellen	2
39	Diplomarbeitsantrag einreichen	2
40	Projektplanung, Aufgabenverfeinerung, Ganttdiagramm	4
41	Erstellen eines Funktionsblockdiagramm	2
42	Bauteilverfügbarkeit Überprüfen	2
43	Benötigte Treiber und Bibliotheken recherchieren	4
44	Prototyp Filter	8
45	Entwurf des Digitalen Hardware-Frondendes	3
46	Schaltungsentwurf	10
47	Erstellen einer Stückliste	4
	Erstellen der Leiterplatte	13
	Grundlagenarbeit Leiterplattendesign	7
48	CAD-Modellierung der Leiterplatte	4
49	Platine fertig	1
50	Logo und Poster zeichnen	2
51	Bauteile bestellt	3
	Filter Vermessung	2
	Projektpräsentation	6
52	Initialisierung der Firmware	8
	MIDI-Anbindung getestet	5
	ADC-Treiber programmiert	6
01	Prototypen Board gebaut	5
	Platine bestellt	1
	Aufsetzen des RTOS-Kernels	10
02	Sampler für die Gitarre programmiert	13
	MIDI-Klavier mit DIP-Schalter	6
	DIP-Entpreller	2
03	Platine gelötet	3
0.4	Sampler Bugfixes	2
04	Audio Buffer Optimierung	4
05	Sampler Output mit der FFT verknüpft	5
	DMA Sampler optimiert	4
0.0	Live-Sampling implementiert	12
06	Refactor	7
0.7	Fehlererfassung der PCB	5
07	FFT-Notenkonversion in MIDI	
08	Firmware Dokumentation	13
09 10	Bugfix in MIDI-Trieber MIDI-Unittest	5 4
10		
11	Audio und FFT-Buffer Optimierung FFT-Unittests	7 2
11	Live-Konversion implementiert	13
12		5
13	Live-Konversion optimiert Schreiben der Diplomarbeit	20
13	Schleiben der Dipiomarbeit	20

KW ...Kalenderwoche

Name: Hr. Laurenz Hölzl

Gitcon – Entwicklung einer MIDI-Schnittstelle für E-Gitarren Diplomarbeitstitel:

KW	Beschreibung	Zeitaufwand
38	Diplomarbeitsantrag erstellen	3
39	Diplomarbeitsantrag einreichen	3
40	Projektplanung, Aufgabenverfeinerung, Ganttdiagramm	3
41	Recherche zur FFT	8
42	Recherche zur FFT	12
43	Einrichten der Entwicklungsumgebung	10
44	Entwicklung Testprogramm	10
45	Entwicklung Testprogramm	10
46	Erstellen der Presentation	10
47	Entwicklung Testprogramm	10
48	Testdatenfertigung	9
49	Testdatenfertigung	4
50	Matlab programmierung	7
51	Tests	5
52	Anpassung des Testprogramms	6
01	Anpassung des Testprogramms	5
02	Entwicklung der Notenerkennung und -Übertragung	10
03	Entwicklung der Notenerkennung und -Übertragung	10
04	Entwicklung der Notenerkennung und -Übertragung	5
05	Diplomarbeit schreiben	6
06	Vertiefende Grundlagenarbeit	8
07	Diplomarbeit schreiben	7
08	Test und Feintuning der Firmware	8
09	Test und Feintuning der Firmware	7
10	Test und Feintuning der Firmware	5
11	Diplomarbeit schreiben	7
12	Diplomarbeit schreiben	6
13	Diplomarbeit schreiben	3

KW ...Kalenderwoche