Infection trends

What do you think of such an approach? What suggestion can you make?

The SEIR framework for microparasite dynamics

Susceptible: naïve individuals, susceptible to disease

Exposed: infected by parasite but not yet infectious

Infectious: able to transmit parasite to others

Removed: immune (or dead) individuals that don't contribute to further transmission

The SEIR framework for microparasite dynamics

- λ "Force of infection"
 - = βI under density-dependent transmission
 - = $\beta I/N$ under frequency-dependent transmission
- v Rate of progression to infectious state
 - = 1/latent period
- γ Rate of recovery
 - = 1/infectious period

The SEIR framework for microparasite dynamics

$$\frac{dS}{dt} = -\frac{\beta SI}{N}$$

$$\frac{dE}{dt} = \frac{\beta SI}{N} - \nu E$$

$$\frac{dI}{dt} = \nu E - \mu I$$

$$\frac{dR}{dt} = \mu I$$

Ordinary differential equations are just one approach to modelling SEIR systems.

Adapt model framework to disease biology and to your problem!

No need to restrict to SEIR categories, if biology suggests otherwise.

e.g. leptospirosis has chronic shedding state → SICR

Depending on time-scale of disease process (and your questions), add host demographic processes.

Disease with environmental reservoir (e.g. anthrax)

Vector-borne disease

SIR output: the epidemic curve

$$\frac{dS}{dt} = -\frac{\beta SI}{N}$$

$$\frac{dI}{dt} = \frac{\beta SI}{N} - \gamma I$$

$$\frac{dR}{dt} = \gamma I$$

Time

SIR output: the epidemic curve

Basic model analyses (Anderson & May 1991): Exponential growth rate, $r = (R_0 - 1)/D$ Peak prevalence, $I_{max} = 1 - (1 + \ln R_0)/R_0$ Final proportion susceptible, $f = \exp(-R_0[1-f]) \approx \exp(-R_0)$

SIR output: stochastic effects

