PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:	A2	(11) International Publication Number:	WO 98/45704	
G01N 33/53		(43) International Publication Date:	15 October 1998 (15.10.98)	

PCT/DK98/00145 (21) International Application Number:

7 April 1998 (07.04.98)

(30) Priority Data: 0392/97

(22) International Filing Date:

7 April 1997 (07.04.97)

DK

(71) Applicant (for all designated States except US): NOVO NORDISK A/S [DK/DK]; Novo Allé, DK-2880 Bagsvaerd (DK).

(72) Inventors; and

- (75) Inventors/Applicants (for US only): THASTRUP, Ole [DK/DK]; Birkevej 37, DK-3460 Birkerød (DK). PE-TERSEN BJØRN, Sara [DK/DK]; Klampenborgvej 102, DK-2800 Lyngby (DK). TULLIN, Søren [DK/DK]; Karl Gjellerups Alle 18, DK-2860 Søborg (DK). KASPER, Almholt [DK/DK]; Eigilsgade 32, 4. tv, DK-2300 København S (DK). SCUDDER, Kurt [US/DK]; Lavendelhaven 70, DK-2830 Virum (DK).
- (74) Common Representative: NOVO NORDISK A/S; attn. Lars Kellberg, Novo Allé, DK-2880 Bagsværd (DK).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, GW, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

Without international search report and to be republished upon receipt of that report.

(54) Title: A METHOD FOR EXTRACTING QUANTITATIVE INFORMATION RELATING TO AN INFLUENCE ON A CELLULAR RESPONSE

(57) Abstract

Cells are genetically modified to expresss a luminophore, e.g., a modified (F64L, S65T, Y66H) Green Fluorescent Protein (GFP, EGFP) coupled to a component of an intracellular signalling pathway such as a transcription factor, a cGMP- or cAMP-dependent protein kinase, a cyclin-, calmodulin- or phospholipid-dependent or mitogen-activated serine/threonin protein kinase, a tyrosine protein kinase, or a protein phosphatase (e.g. PKA, PKC, Erk, Smad, VASP, actin, p38, Jnk1, PKG, IkappaB, CDK2, Grk5, Zap70, p85, protein-tyrosine phosphatase 1C, Stat5, NFAT, NFAtppaB, RhoA, PKB). An influence modulates the intracellular signalling pathway in such a way that the luminophore is being redistributed or translocated with the component in living cells in a manner experimentally determined to be correlated to the degree of the influence. Measurement of redistribution is performed by recording of light intensity, fluorescence lifetime, polarization, wavelength shift, resonance energy transfer, or other properties by an apparatus consisting of e.g. a fluorescence microscope and a CCD camera. Data stored as digital images are processed to numbers representing the degree of redistribution. The method can be used as a screening program for identifying a compound that modulates a component and is capable of treating a disease related to the function of the component.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Landa		
AM	Armenia	FI	Finland	LT	Lesotho	SI	Slovenia
AT	Austria	FR	France	LU	Lithuania	SK	Slovakia
AU	Australia	GA	Gabon	LV	Luxembourg	SN	Senegal
AZ	Azerbaijan	GB	United Kingdom		Latvia	SZ	Swaziland
BA	Bosnia and Herzegovina	GE	Georgia	MC	Monaco	TD	Chad
ВВ	Barbados	GH	Ghana	MD	Republic of Moldova	TG	Togo
BE	Belgium	GN		MG	Madagascar	TJ	Tajikistan
BF	Burkina Faso	GR	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BG	Bulgaria		Greece		Republic of Macedonia	TR	Turkey
BJ	Benin	HU HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BR	Brazil		Ireland	MN	Mongolia	UA	Ukraine
BY	Belarus	IL	Israel	MR	Mauritania	UG	Uganda
CA		IS	Iceland	MW	Malawi	US	United States of Americ
CF	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
I .	Central African Republic	JР	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		23020.40
СМ	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LJ	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		
ı			. *		V.1		

1

A METHOD for extracting quantitative information relating to an influence on a cellular response

FIELD OF INVENTION

The present invention relates to a method and tools for extracting quantitative information relating to an influence, on a cellular response, in particular an influence caused by contacting or incubating the cell with a substance influencing a cellular response, where the cellular response is manifested in redistribution of at least one component in the cell. In particular, the invention relates to a method for extracting quantitative information relating to an influence on an intracellular pathway involving redistribution of at least one component associated with the pathway. The method of the invention may be used as a very efficient procedure for testing or discovering the influence of a substance on a physiological process, for example in connection with screening for new drugs, testing of substances for toxicity, identifying drug targets for known or novel drugs. Other valuable uses of the method and technology of the invention will be apparent to the skilled person on the basis of the following disclosure. In a particular embodiment of the invention, the present invention relates to a method of detecting intracellular translocation or redistribution of biologically active polypeptides, preferably an enzyme, affecting intracellular processes, and a DNA construct and a cell for use in the method.

20

25

30

10

15

BACKGROUND OF THE INVENTION

Intracellular pathways are tightly regulated by a cascade of components that undergo modulation in a temporally and spatially characteristic manner. Several disease states can be attributed to altered activity of individual signalling components (i.e. protein kinases, protein phosphatases, transcription factors). These components therefore render themselves as attractive targets for therapeutic intervention.

Protein kinases and phosphatases are well described components of several intracellular signalling pathways. The catalytic activity of protein kinases and phosphatases are assumed to play a role in virtually all regulatable cellular processes. Although the involvement of protein kinases in cellular signalling and regulation have been subjected to extensive studies, detailed knowledge on e.g. the exact timing and spatial characteristics of signalling events is often difficult to obtain due to lack of a convenient technology.

Novel ways of monitoring specific modulation of intracellular pathways in intact, living cells is assumed to provide new opportunities in drug discovery, functional genomics, toxicology, patient monitoring etc.

The spatial orchestration of protein kinase activity is likely to be essential for the high degree of specificity of individual protein kinases. The phosphorylation mediated by protein kinases is balanced by phosphatase activity. Also within the family of phosphatases translocation has been observed, e.g. translocation of PTP2C to membrane ruffles [(Cossette *et al.*1996)], and likewise is likely to be indicative of phosphatase activity.

Protein kinases often show a specific intracellular distribution before, during and after activation. Monitoring the translocation processes and/or redistribution of individual protein kinases or subunits thereof is thus likely to be indicative of their functional activity. A connection between translocation and catalytic activation has been shown for protein kinases like the diacyl glycerol (DAG)-dependent protein kinase C (PKC), the cAMP-dependent protein kinase (PKA) [(DeBernardi et al.1996)] and the mitogen-activated-protein kinase Erk-1 [(Sano et al.1995)].

10

15

20

25

30

Commonly used methods of detection of intracellular localisation/activity of protein kinases and phosphatases are immunoprecipitation, Western blotting and immunocytochemical detection.

Taking the family of diacyl glycerol (DAG)-dependent protein kinase Cs (PKCs) as an example, it has been shown that individual PKC isoforms that are distributed among different tissues and cells have different activator requirements and undergo differential translocation in response to activation. Catalytically inactive DAG-dependent PKCs are generally distributed throughout the cytoplasm, whereas they upon activation translocate to become associated with different cellular components, e.g. plasma membrane [(Farese, 1992),(Fulop Jr. et al. 1995)] nucleus [(Khalil et al. 1992)], cytoskeleton [(Blobe et al. 1996)]. The translocation phenomenon being indicative of PKC activation has been monitored using different approaches: a) immunocytochemistry where the localisation of individual isoforms can be detected after permeabilisation and fixation of the cells [(Khalil et al. 1992)]; and b) tagging all DAG-dependent PKC isoforms with a fluorescently labelled phorbol myristate acetate (PMA) [(Godson et al. 1996)]; and c) chemical tagging PKC b1 with the fluorophore Cy3 [(Bastiaens & Jovin 1996)] and d) genetic tagging of PKCα ([Schmidt et al. 1997]) and of PKCγ and PKC ε([Sakai et al. 1996]). The first method does not provide dynamic information whereas the latter methods will. Tagging PKC with fluorescently labelled phorbol myristate acetate cannot

distinguish between different DAG-dependent isoforms of PKC but will label and show movement of all isoforms. Chemical and genetic labelling of specific DAG-dependent PKCs confirmed that they in an isoform specific manner upon activation move to cell periphery or nucleus.

In an alternative method, protein kinase A activity has been measured in living cells by chemical labelling one of the kinase's subunit (Adams *et al.*1991). The basis of the methodology is that the regulatory and catalytic subunit of purified protein kinase A is labelled with fluorescein and rhodamine, respectively. At low cAMP levels protein kinase A is assembled in a heterotetrameric form which enables fluorescence resonance energy transfer between the two fluorescent dyes. Activation of protein kinase A leads to dissociation of the complex, thereby eliminating the energy transfer. A disadvantage of this technology is that the labelled protein kinase A has to be microinjected into the cells of interest. This highly invasive technique is cumbersome and not applicable to large scale screening of biologically active substances. A further disadvantage of this technique as compared to the presented invention is that the labelled protein kinase A cannot be inserted into organisms/animals as a transgene.

10

15

20

25

30

Recently it was discovered that Green Fluorescent Protein (GFP) expressed in many different cell types, including mammalian cells, became highly fluorescent [(Chalfie et al. 1994)]. WO95/07463 describes a cell capable of expressing GFP and a method for detecting a protein of interest in a cell based on introducing into a cell a DNA molecule having DNA sequence encoding the protein of interest linked to DNA sequence encoding a GFP such that the protein produced by the DNA molecule will have the protein of interest fused to the GFP, then culturing the cells in conditions permitting expression of the fused protein and detecting the location of the fluorescence in the cell, thereby localizing the protein of interest in the cell. However, examples of such fused proteins are not provided, and the use of fusion proteins with GFP for detection or quantitation of translocation or redistribution of biologically active polypeptides affecting intracellular processes upon activation, such as proteins involved in signalling pathways, e.g. protein kinases or phosphatases, has not been suggested. WO 95/07463 further describes cells useful for the detection of molecules, such as hormones or heavy metals, in a biological sample, by operatively linking a regulatory element of the gene which is affected by the molecule of interest to a GFP, the presence of the molecules will affect the regulatory element which in turn will affect the expression of the GFP. In this way the gene encoding GFP is used as a reporter gene in a cell which is constructed for monitoring the presence of a specific molecular identity.

4

Green Fluorescent Protein has been used in an assay for the detection of translocation of the glucocorticoid receptor (GR) [Carey, KL et al., The Journal of Cell Biology, Vol. 133, No. 5, p. 985-996 (1996)]. A GR-S65TGFP fusion has been used to study the mechanisms involved in translocation of the glucocorticoid receptor (GR) in response to the agonist dexamethasone from the cytosol, where it is present in the absence of a ligand, through the nuclear pore to the nucleus where it remains after ligand binding. The use of a GR-GFP fusion enables real-time imaging and quantitation of nuclear/cytoplasmic ratios of the fluorescence signal.

Many currently used screening programmes designed to find compounds that affect protein kinase activity are based on measurements of kinase phosphorylation of artificial or natural substrates, receptor binding and/or reporter gene expression.

DISCLOSURE OF THE INVENTION

15

20

The present invention provides an important new dimension in the investigation of cellular systems involving redistribution in that the invention provides quantification of the redistribution responses or events caused by an influence, typically contact with a chemical substance or mixture of chemical substances, but also changes in the physical environment. The quantification makes it possible to set up meaningful relationships, expressed numerically, or as curves or graphs, between the influences (or the degree of influences) on cellular systems and the redistribution response. This is highly advantageous because, as has been found, the quantification can be achieved in both a fast and reproducible manner, and - what is perhaps even more important - the systems which become quantifiable utilizing the method of the invention are systems from which enormous amounts of new information and insight can be derived.

The present screening assays have the distinct advantage over other screening assays, e.g., receptor binding assays, enzymatic assays, and reporter gene assays, in providing a system in which biologically active substances with completely novel modes of action, e.g. inhibition or promotion of redistribution/translocation of a biologically active polypeptide as a way of regulating its action rather than inhibition/activation of enzymatic activity, can be identified in a way that insures very high selectivity to the particular isoform of the biologically active polypeptide and further development of compound selectivity versus other isoforms of

the same biologically active polypeptide or other components of the same signalling pathway.

In its broadest aspect, the invention relates to a method for extracting quantitative information relating to an influence on a cellular response, the method comprising recording variation, caused by the influence on a mechanically intact living cell or mechanically intact living cells, in spatially distributed light emitted from a luminophore, the luminophore being present in the cell or cells and being capable of being redistributed in a manner which is related with the degree of the influence, and/or of being modulated by a component which is capable of being redistributed in a manner which is related to the degree of the influence, the association resulting in a modulation of the luminescence characteristics of the luminophore, detecting and recording the spatially distributed light from the luminophore, and processing the recorded variation in the spatially distributed light to provide quantitative information correlating the spatial distribution or change in the spatial distribution to the degree of the influence. In a preferred embodiment of the invention the luminophore, which is present in the cell or cells, is capable of being redistributed by modulation of an intracellular pathway, in a manner which is related to the redistribution of at least one component of the intracellular pathway. In another preferred embodiment of the invention, the luminophore is a fluorophore.

The cells

10

15

25

30

In the invention the cell and/or cells are mechanically intact and alive throughout the experiment. In another embodiment of the invention, the cell or cells is/are fixed at a point in time after the application of the influence at which the response has been predetermined to be significant, and the recording is made at an arbitrary later time.

The mechanically intact living cell or cells could be selected from the group consisting of fungal cell or cells, such as a yeast cell or cells; invertebrate cell or cells including insect cell or cells; and vertebrate cell or cells, such as mammalian cell or cells. This cell or these cells is/are incubated at a temperature of 30°C or above, preferably at a temperature of from 32°C to 39°C, more preferably at a temperature of from 35°C to 38°C, and most preferably at a temperature of about 37°C during the time period over which the influence is observed. In one aspect of the invention the mechanically intact living cell is part of a matrix of identical or non-identical cells.

6

A cell used in the present invention should contain a nucleic acid construct encoding a fusion polypeptide as defined herein and be capable of expressing the sequence encoded by the construct. The cell is a eukaryotic cell selected from the group consisting of fungal cells, such as yeast cells; invertebrate cells including insect cells; vertebrate cells such as mammalian cells. The preferred cells are mammalian cells.

In another aspect of the invention the cells could be from an organism carrying in at least one of its component cells a nucleic acid sequence encoding a fusion polypeptide as defined herein and be capable of expressing said nucleic acid sequence. The organism is selected from the group consisting of unicellular and multicellular organisms, such as a mammal.

10

15

20

25

30

The luminophore

The luminophore is the component which allows the redistribution to be visualised and/or recorded by emitting light in a spatial distribution related to the degree of influence. In one embodiment of the invention, the luminophore is capable of being redistributed in a manner which is physiologically relevant to the degree of the influence. In another embodiment, the luminophore is capable of associating with a component which is capable of being redistributed in a manner which is physiologically relevant to the degree of the influence. In another embodiment, the luminophore correlation between the redistribution of the luminophore and the degree of the influence could be determined experimentally. In a preferred aspect of the invention, the luminophore is capable of being redistributed in substantially the same manner as the at least one component of an intracellular pathway. In yet another embodiment of the invention, the luminophore is capable of being quenched upon spatial association with a component which is redistributed by modulation of the pathway, the quenching being measured as a change in the intensity of the luminescence.

The luminophore could be a fluorophore. In a preferred embodiment of the invention, the luminophore could be a polypeptide encoded by and expressed from a nucleotide sequence harboured in the cell or cells. The luminophore could be a hybrid polypeptide comprising a fusion of at least a portion of each of two polypeptides one of which comprises a luminescent polypeptide and the other one of which comprises a biologically active polypeptide, as defined herein.

The luminescent polypeptide could be a GFP as defined herein or could be selected from the group consisting of green fluorescent proteins having the F64L mutation as defined herein

7

such as F64L-GFP, F64L-Y66H-GFP, F64L-S65T-GFP, and EGFP. The GFP could be N- or C-terminally tagged, optionally via a peptide linker, to the biologically active polypeptide or a part or a subunit thereof. The fluorescent probe could be a component of a intracellular signalling pathway. The probe is coded for by a nucleic acid construct.

The pathway of investigation in the present invention could be an intracellular signalling pathway.

The influence

In a preferred embodiment of the invention, the influence could be contact between the mechanically intact living cell or the group of mechanically intact living cells with a chemical substance and/or incubation of the mechanically intact living cell or the group of mechanically intact living cells with a chemical substance. The influence will modulate the intracellular processes. In one aspect the modulation could be an activation of the intracellular processes. In another aspect the modulation could be an deactivation of the intracellular processes. In yet another aspect, the influence could inhibit or promote the redistribution without directly affecting the metabolic activity of the component of the intracellular processes.

In one embodiment the invention is used as a basis for a screening program, where the effect of unknown influences such as a compound library, can be compared to influence of known reference compounds under standardised conditions.

20

25

30

10

15

The recording

In addition to the intensity, there are several parameters of fluorescence or luminescence which can be modulated by the effect of the influence on the underlying cellular phenomena, and can therefore be used in the invention. Some examples are resonance energy transfer, fluorescence lifetime, polarisation, wavelength shift. Each of these methods requires a particular kind of filter in the emission light path to select the component of the light desired and reject other components. The recording of property of light could be in the form of an ordered array of values such as a CCD array or a vacuum tube device such as a vidicon tube.

In one embodiment of the invention, the spatially distributed light emitted by a luminophore could be detected by a change in the resonance energy transfer between the luminophore and another luminescent entity capable of delivering energy to the luminophore, each of

8

which has been selected or engineered to become part of, bound to or associated with particular components of the intracellular pathway. In this embodiment, either the luminophore or the luminescent entity capable of delivering energy to the luminophore undergoes redistribution in response to an influence. The resonance energy transfer would be measured as a change in the intensity of emission from the luminophore, preferably sensed by a single channel photodetector which responds only to the average intensity of the luminophore in a non-spatially resolved fashion.

In one embodiment of the invention, the recording of the spatially distributed light could be made at a single point in time after the application of the influence. In another embodiment, the recording could be made at two points in time, one point being before, and the other point being after the application of the influence. The result or variation is determined from the change in fluorescence compared to the fluorescence measured prior to the influence or modulation. In another embodiment of the invention, the recording could be performed at a series of points in time, in which the application of the influence occurs at some time after the first time point in the series of recordings, the recording being performed, e.g., with a predetermined time spacing of from 0.1 seconds to 1 hour, preferably from 1 to 60 seconds, more preferably from 1 to 30 seconds, in particular from 1 to 10 seconds, over a time span of from 1 second to 12 hours, such as from 10 seconds to 12 hours, e.g., from 10 seconds to one hour, such as from 60 seconds to 30 minutes or 20 minutes. The result or variation is determined from the change in fluorescence over time. The result or variation could also be determined as a change in the spatial distribution of the fluorescence over time.

Apparatus

10

15

20

25

30

The recording of spatially distributed luminescence emitted from the luminophore is performed by an apparatus for measuring the distribution of fluorescence in the cell or cells, and thereby any change in the distribution of fluorescence in the cell or cells, which includes at a minimum the following component parts: (a) a light source, (b) a method for selecting the wavelength(s) of light from the source which will excite the fluorescence of the protein, (c) a device which can rapidly block or pass the excitation light into the rest of the system, (d) a series of optical elements for conveying the excitation light to the specimen, collecting the emitted fluorescence in a spatially resolved fashion, and forming an image from this fluorescence emission, (e) a bench or stand which holds the container of the cells being measured in a predetermined geometry with respect to the series of optical elements, (f) a detector to

9

record the spatially resolved fluorescence in the form of an image, (g) a computer or electronic system and associated software to acquire and store the recorded images, and to compute the degree of redistribution from the recorded images.

In a preferred embodiment of the invention the apparatus system is automated. In one embodiment the components in d and e mentioned above comprise a fluorescence microscope. In one embodiment the component in f mentioned above is a CCD camera.

In one embodiment the image is formed and recorded by an optical scanning system.

In one embodiment a liquid addition system is used to add a known or unknown compound to any or all of the cells in the cell holder at a time determined in advance. Preferably, the liquid addition system is under the control of the computer or electronic system. Such an automated system can be used for a screening program due to its ability to generate results from a larger number of test compounds than a human operator could generate using the apparatus in a manual fashion.

15 Quantitation of the influence

10

20

25

30

The recording of the variation or result with respect to light emitted from the luminophore is performed by recording the spatially distributed light as one or more digital images, and the processing of the recorded variation to reduce it to one or more numbers representative of the degree of redistribution comprises a digital image processing procedure or combination of digital image processing procedures. The quantitative information which is indicative of the degree of the cellular response to the influence or the result of the influence on the intracellular pathway is extracted from the recording or recordings according to a predetermined calibration based on responses or results, recorded in the same manner, to known degrees of a relevant specific influence. This calibration procedure is developed according to principles described below (Developing an Image-based Assay Technique). Specific descriptions of the procedures for particular assays are given in the examples.

While the stepwise procedure necessary to reduce the image or images to the value representative of the is particular to each assay, the individual steps are generally well-known methods of image processing. Some examples of the individual steps are point operations such as subtraction, ratioing, and thresholding, digital filtering methods such as smoothing, sharpening, and edge detection, spatial frequency methods such as Fourier filtering, image cross-correlation and image autocorrelation, object finding and classification (blob analysis),

and colour space manipulations for visualisation. In addition to the algorithmic procedures, heuristic methods such as neural networks may also be used.

Nucleic acid constructs

15

20

30

- The nucleic acid constructs used in the present invention encode in their nucleic acid sequences fusion polypeptides comprising a biologically active polypeptide that is a component of an intracellular signalling pathway, or a part thereof, and a GFP, preferably an F64L mutant of GFP, N- or C-terminally fused, optionally via a peptide linker, to the biologically active polypeptide or part thereof.
- In one embodiment the biologically active polypeptide encoded by the nucleic acid construct is a protein kinase or a phosphatase.
 - In one embodiment the biologically active polypeptide encoded by the nucleic acid construct is a transcription factor or a part thereof which changes cellular localisation upon activation.
 - In one embodiment the biologically active polypeptide encoded by the nucleic acid construct is a protein, or a part thereof, which is associated with the cytoskeletal network and which changes cellular localisation upon activation.
 - In one embodiment the biologically active polypeptide encoded by the nucleic acid construct is a protein kinase or a part thereof which changes cellular localisation upon activation.
 - In one embodiment the biologically active polypeptide encoded by the nucleic acid construct is a serine/threonine protein kinase or a part thereof capable of changing intracellular localisation upon activation.
 - In one embodiment the biologically active polypeptide encoded by the nucleic acid construct is a tyrosine protein kinase or a part thereof capable of changing intracellular localisation upon activation.
- In one embodiment the biologically active polypeptide encoded by the nucleic acid construct is a phospholipid-dependent serine/threonine protein kinase or a part thereof capable of changing intracellular localisation upon activation.
 - In one embodiment the biologically active polypeptide encoded by the nucleic acid construct is a cAMP-dependent protein kinase or a part thereof capable of changing cellular localisation upon activation. In a preferred embodiment the biologically active polypeptide encoded by the nucleic acid construct is a PKAc-F64L-S65T-GFP fusion.

WO 98/45704

10

In one embodiment the biologically active polypeptide encoded by the nucleic acid construct is a cGMP-dependent protein kinase or a part thereof capable of changing cellular localisation upon activation.

In one embodiment the biologically active polypeptide encoded by the nucleic acid construct is a calmodulin-dependent serine/threonine protein kinase or a part thereof capable of changing cellular localisation upon activation.

In one embodiment the biologically active polypeptide encoded by the nucleic acid construct is a mitogen-activated serine/threonine protein kinase or a part thereof capable of changing cellular localisation upon activation. In preferred embodiments the biologically active polypeptide encoded by the nucleic acid constructs are an ERK1-F64L-S65T-GFP fusion or an EGFP-ERK1 fusion.

In one embodiment the biologically active polypeptide encoded by the nucleic acid construct is a cyclin-dependent serine/threonine protein kinase or a part thereof capable of changing cellular localisation upon activation.

In one embodiment the biologically active polypeptide encoded by the nucleic acid construct is a protein phosphatase or a part thereof capable of changing cellular localisation upon activation.

In one preferred embodiment of the invention the nucleic acid constructs may be DNA constructs.

- In one embodiment the biologically active polypeptide encoded by the nucleic acid construct In one embodiment the gene encoding GFP in the nucleic acid construct is derived from Aequorea victoria. In a preferred embodiment the gene encoding GFP in the nucleic acid construct is EGFP or a GFP variant selected from F64L-GFP, F64L-Y66H-GFP and F64L-S65T-GFP.
- In preferred embodiments of the invention the DNA constructs which can be identified by any of the DNA sequences shown in SEQ ID NO: 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 136, 138, 140, 142 or are variants of these sequences capable of encoding the same fusion polypeptide or a fusion polypeptide which is biologically equivalent thereto,
 e.g. an isoform, or a splice variant or a homologue from another species.

Screening program

10

15

20

25

30

The present invention describes a method that may be used to establish a screening program for the identification of biologically active substances that directly or indirectly affects intracellular signalling pathways and because of this property are potentially useful as medicaments. Based on measurements in living cells of the redistribution of spatially resolved luminescence from luminophores which undergo a change in distribution upon activation or deactivation of an intracellular signalling pathway the result of the individual measurement of each substance being screened indicates its potential biological activity.

In one embodiment of the invention the screening program is used for the identification of a biologically toxic substance as defined herein that exerts its toxic effect by interfering with an intracellular signalling pathway. Based on measurements in living cells of the redistribution of spatially resolved luminescence from luminophores which undergo a change in distribution upon activation or deactivation of an intracellular signalling pathway the result of the individual measurement of each substance being screened indicates its potential biologically toxic activity. In one embodiment of a screening program a compound that modulates a component of an intracellular pathway as defined herein, can be found and the therapeutic amount of the compound estimated by a method according to the method of the invention. In a preferred embodiment the present invention leads to the discovery of a new way of treating a condition or disease related to the intracellular function of a biologically active polypeptide comprising administration to a patient suffering from said condition or disease of an effective amount of a compound which has been discovered by any method according to the invention. In another preferred embodiment of the invention a method is established for identification of a new drug target or several new drug targets among the group of biologically active polypeptides which are components of intracellular signalling pathways.

In another embodiment of the invention an individual treatment regimen is established for the selective treatment of a selected patient suffering from an ailment where the available medicaments used for treatment of the ailment are tested on a relevant primary cell or cells obtained from said patient from one or several tissues, using a method comprising transfecting the cell or cells with at least one DNA sequence encoding a fluorescent probe according to the invention, transferring the transfected cell or cells back the said patient, or culturing the cell or cells under conditions permitting the expression of said probes and exposing it to an array of the available medicaments, then comparing changes in fluorescence patterns or redistribution patterns of the fluorescent probes in the intact living cell or cells to

13

detect the cellular response to the specific medicaments (obtaining a cellular action profile), then selecting one or more medicament or medicaments based on the desired activity and acceptable level of side effects and administering an effective amount of these medicaments to the selected patient.

5

10

20

25

30

Back-tracking of a signal transduction pathway

The present invention describes a method that may be used to establish a screening program for back-tracking signal transduction pathways as defined herein. In one embodiment the screening program is used to establish more precisely at which level one or several compounds affect a specific signal transduction pathway by successively or in parallel testing the influence of the compound or compounds on the redistribution of spatially resolved luminescence from several of the luminophores which undergo a change in distribution upon activation or deactivation of the intracellular signalling pathway under study.

15 Construction and testing of probes

In general, a probe, i.e. a "GeneX"-GFP fusion or a GFP-"GeneX" fusion, is constructed using PCR with "GeneX"-specific primers followed by a cloning step to fuse "GeneX" in frame with GFP. The fusion may contain a short vector derived sequence between "GeneX" and GFP (e.g. part of a multiple cloning site region in the plasmid) resulting in a peptide linker between "GeneX" and GFP in the resulting fusion protein.

Detailed stepwise procedure:

- Identifying the sequence of the gene. This is most readily done by searching a depository of genetic information, e.g. the GenBank Sequence Database, which is widely available and routinely used by molecular biologists. In the specific examples below the GenBank Accession number of the gene in question is provided.
- Design of gene-specific primers. Inspection of the sequence of the gene allows design of gene-specific primers to be used in a PCR reaction. Typically, the top-strand primer encompasses the ATG start codon of the gene and the following ca. 20 nucleotides, while the bottom-strand primer encompasses the stop codon and the ca. 20 preceding nucleotides, if

14

the gene is to be fused behind GFP, i.e. a GFP-"GeneX" fusion. If the gene is to be fused in front of GFP, i.e. a "GeneX"-GFP fusion, a stop codon must be avoided. Optionally, the full length sequence of GeneX may not be used in the fusion, but merely the part which localizes and redistributes like GeneX in response to a signal.

5

10

25

30

In addition to gene-specific sequences, the primers contain at least one recognition sequence for a restriction enzyme, to allow subsequent cloning of the PCR product. The sites are chosen so that they are unique in the PCR product and compatible with sites in the cloning vector. Furthermore, it may be necessary to include an exact number of nucleotides between the restriction enzyme site and the gene-specific sequence in order to establish the correct reading frame of the fusion gene and/or a translation initiation consensus sequence. Lastly, the primers always contain a few nucleotides in front of the restriction enzyme site to allow efficient digestion with the enzyme.

- -Identifying a source of the gene to be amplified. In order for a PCR reaction to produce a product with gene-specific primers, the gene-sequence must initially be present in the reaction, e.g. in the form of cDNA. Information in GenBank or the scientific literature will usually indicate in which tissue(s) the gene is expressed, and cDNA libraries from a great variety of tissues or cell types from various species are commercially available, e.g. from Clontech
 (Palo Alto), Stratagene (La Jolla) and Invitrogen (San Diego). Many genes are also available in cloned form from The American Type Tissue Collection (Virginia).
 - Optimizing the PCR reaction. Several factors are known to influence the efficiency and specificity of a PCR reaction, including the annealing temperature of the primers, the concentration of ions, notably Mg²⁺ and K⁺, present in the reaction, as well as pH of the reaction. If the result of a PCR reaction is deemed unsatisfactory, it might be because the parameters mentioned above are not optimal. Various annealing temperatures should be tested, e.g. in a PCR machine with a built-in temperature gradient, available from e.g. Stratagene (La Jolla), and/or various buffer compositions should be tried, e.g. the OptiPrime buffer system from Stratagene (La Jolla).

15

- Cloning the PCR product. The vector into which the amplified gene product will be cloned and fused with GFP will already have been taken into consideration when the primers were designed. When choosing a vector, one should at least consider in which cell types the probe subsequently will be expressed, so that the promoter controlling expression of the probe is compatible with the cells. Most expression vectors also contain one or more selective markers, e.g. conferring resistance to a drug, which is a useful feature when one wants to make stable transfectants. The selective marker should also be compatible with the cells to be used.
- The actual cloning of the PCR product should present no difficulty as it typically will be a one-step cloning of a fragment digested with two different restriction enzymes into a vector digested with the same two enzymes. If the cloning proves to be problematic, it may be because the restriction enzymes did not work well with the PCR fragment. In this case one could add longer extensions to the end of the primers to overcome a possible difficulty of digestion close to a fragment end, or one could introduce an intermediate cloning step not based on restriction enzyme digestion. Several companies offer systems for this approach, e.g. Invitrogen (San Diego) and Clontech (Palo Alto).

Once the gene has been cloned and, in the process, fused with the GFP gene, the resulting product, usually a plasmid, should be carefully checked to make sure it is as expected. The most exact test would be to obtain the nucleotide sequence of the fusion-gene.

Testing the probe

Once a DNA construct for a probe has been generated, its functionality and usefulness may be tested by subjecting it to the following tests:

- Transfecting it into cells capable of expressing the probe. The fluorescence of the cell is inspected soon after, typically the next day. At this point, two features of cellular fluorescence are noted: the intensity and the sub-cellular localization.

20

20

25

30

16

The intensity should usually be at least as strong as that of unfused GFP in the cells. If it is not, the sequence or quality of the probe-DNA might be faulty, and should be carefully checked.

The sub-cellular localization is an indication of whether the probe is likely to perform well. If it 5 localizes as expected for the gene in question, e.g. is excluded from the nucleus, it can immediately go on to a functional test. If the probe is not localized soon after the transfection procedure, it may be because of overexpression at this point in time, as the cell typically will have taken of very many copies of the plasmid, and localization will occur in time, e.g. within a few weeks, as plasmid copy number and expression level decreases. If localization does 10 not occur after prolonged time, it may be because the fusion to GFP has destroyed a localization function, e.g. masked a protein sequence essential for interaction with its normal cellular anchor-protein. In this case the opposite fusion might work, e.g. if GeneX-GFP does not work, GFP-GeneX might, as two different parts of GeneX will be affected by the proximity to GFP. If this does not work, the proximity of GFP at either end might be a problem, and it could be attempted to increase the distance by incorporating a longer linker between GeneX and GFP in the DNA construct.

If there is no prior knowledge of localization, and no localization is observed, it may be because the probe should not be localized at this point, because such is the nature of the protein fused to GFP. It should then be subjected to a functional test.

In a functional test, the cells expressing the probe are treated with at least one compound known to perturb, usually by activating, the signalling pathway on which the probe is expected to report by redistributing itself within the cell. If the redistribution is as expected, e.g. if prior knowledge tell that it should translocate from location X to location Y, it has passed the first critical test. In this case it can go on to further characterization and quantification of the response.

If it does not perform as expected, it may be because the cell lacks at least one component of the signalling pathway, e.g. a cell surface receptor, or there is species incompatibility, e.g. if the probe is modelled on sequence information of a human geneproduct, and the cell is of hamster origin. In both instances one should identify other cell types for the testing process where these potential problems would not apply.

17

If there is no prior knowledge about the pattern of redistribution, the analysis of the redistribution will have to be done in greater depth to identify what the essential and indicative features are, and when this is clear, it can go on to further characterization and quantification of the response. If no feature of redistribution can be identified, the problem might be as mentioned above, and the probe should be retested under more optimal cellular conditions.

If the probe does not perform under optimal cellular conditions it's back to the drawing board.

Developing an image-based assay technique

5

10

15

20

25

30

The process of developing an image-based redistribution assay begins with either the unplanned experimental observation that a redistribution phenomenon can be visualised, or the design of a probe specifically to follow a redistribution phenomenon already known to occur. In either event, the first and best exploratory technique is for a trained scientist or technician to observe the phenomenon. Even with the rapid advances in computing technology, the human eye-brain combination is still the most powerful pattern recognition system known, and requires no advance knowledge of the system in order to detect potentially interesting and useful patterns in raw data. This is especially if those data are presented in the form of images, which are the natural "data type" for human visual processing. Because human visual processing operates most effectively in a relatively narrow frequency range, i.e., we cannot see either very fast or very slow changes in our visual field, it may be necessary to record the data and play it back with either time dilation or time compression.

Some luminescence phenomena cannot be seen directly by the human eye. Examples include polarization and fluorescence lifetime. However, with suitable filters or detectors, these signals can be recorded as images or sequences of images and displayed to the human in the fashion just described. In this way, patterns can be detected and the same methods can be applied.

Once the redistribition has been determined to be a reproducible phenomenon, one or more data sets are generated for the purpose of developing a procedure for extracting the quantitative information from the data. In parallel, the biological and optical conditions are determined which will give the best quality raw data for the assay. This can become an iterative process; it may be necessary to develop a quantitative procedure in order to assess the effect on the assay of manipulating the assay conditions.

The data sets are examined by a person or persons with knowledge of the biological phenomenon and skill in the application of image processing techniques. The goal of this exercise is to determine or at least propose a method which will reduce the image or sequence of images constituting the record of a "response" to a value corresponding to the degree of the response. Using either interactive image processing software or an image processing toolbox and a programming language, the method is encoded as a procedure or algorithm which takes the image or images as input and generates the degree of response (in any units) as its output. Some of the criteria for evaluating the validity of a particular procedure are:

5

10

15

20

25

30

- Does the degree of the response vary in a biologically significant fashion, i.e., does it show the known or putative dependence on the concentration of the stimulating agent or condition?
- Is the degree of response reproducible, i.e., does the same concentration or level of stimulating agent or condition give the same response with an acceptable variance?
- Is the dynamic range of the response sufficient for the purpose of the assay? If not,
 can a change in the procedure or one of its parameters improve the dynamic range?
- Does the procedure exhibit any clear "pathologies", i.e., does it give ridiculous values for the response if there are commonly occurring imperfections in the imaging process? Can these pathologies be eliminated, controlled, or accounted for?
- Can the procedure deal with the normal variation in the number and/or size of cells in an image?

In some cases the method may be obvious; in others, a number of possible procedures may suggest themselves. Even if one method appears clearly superior to others, optimisation of parameters may be required. The various procedures are applied to the data set and the criteria suggested above are determined, or the single procedure is applied repeatedly with adjustment of the parameter or parameters until the most satisfactory combination of signal, noise, range, etc. are arrived at. This is equivalent to the calibration of any type of single-channel sensor.

The number of ways of extracting a single value from an image are extremely large, and thus an intelligent approach must be taken to the initial step of reducing this number to a small, finite number of possible procedures. This is not to say that the procedure arrived at is

19

necessarily the best procedure - but a global search for the best procedure is simply out of the question due to the sheer number of possibilities involved.

Image-based assays are no different than other assay techniques in that their usefulness is characterised by parameters such as the specificity for the desired component of the sample, the dynamic range, the variance, the sensitivity, the concentration range over which the assay will work, and other such parameters. While it is not necessary to characterise each and every one of these before using the assay, they represent the only way to compare one assay with another.

10 Example: Developing a Quantitative assay for GLUT4 Translocation

15

20

25

30

GLUT4 is a member of the class of glucose transporter molecules which are important in cellular glucose uptake. It is known to translocate to the plasma membrane under some conditions of stimulation of glucose uptake. The ability to visualize the glucose uptake response noninvasively, without actually measuring glucose uptake, would be a very useful assay for anyone looking for, for example, treatments for type II diabetes.

A CHO cell line which stably expressed the human insulin receptor was used as the basis for a new cell line which stably expressed a fusion between GLUT4 and GFP. This cell line was expected to show translocation of GLUT4 to the plasma membrane as visualized by the movement of the GFP. The translocation could definitely be seen in the form of the appearance of local increases in the fluorescence in regions of the plasma membrane which had a characteristic shape or pattern. This is shown in Figure 12.

These objects became known as "snircles", and the phenomenon of their appearance as "snircling". In order to quantitate their appearance, a method had to be found to isolate them as objects in the image field, and then enumerate them, measure their area, or determine some parameter about them which correlated in a dose-dependent fashion with the concentration of insulin to which the cells had been exposed. In order to separate the snircles, a binarization procedure was applied in which one copy of the image smoothed with a relatively severe gaussian kernel (sigma = 2.5) was subtracted from another copy to which only a relatively light gaussian smooth had been applied (sigma=0.5). The resultant image was rescaled to its min/max range, and an automatic threshold was applied to divide the image into two levels. The thresholded image contains a background of one value all found object with another value. The found objects were first filtered through a filter to remove objects far too

large and far too small to be snircles. The remaining objects, which represent snircles and other artifacts from the image with approximately the same size and intensity characteristics as snircles, are passed into a classification procedure which has been previously trained with many images of snircles to recognize snircles and exclude the other artifacts. The result of this procedure is a binary image which shows only the found snircles to the degree to which the classification procedure can accurately identify them. The total area of the snircles is then summed and this value is the quantitative measure of the degree of snircling for that image.

10 **Definitions**:

15

20

25

30

In the present specification and claims, the term "an influence" covers any influence to which the cellular response comprises a redistribution. Thus, e.g., heating, cooling, high pressure, low pressure, humidifying, or drying are influences on the cellular response on which the resulting redistribution can be quantified, but as mentioned above, perhaps the most important influences are the influences of contacting or incubating the cell or cells with substances which are known or suspected to exert and influence on the cellular response involving a redistribution contribution. In another embodiment of the invention the influence could be substances from a compound drug library.

In the present context, the term "green fluorescent protein" is intended to indicate a protein which, when expressed by a cell, emits fluorescence upon exposure to light of the correct excitation wavelength (cf. [(Chalfie *et al.*1994)]). In the following, GFP in which one or more amino acids have been substituted, inserted or deleted is most often termed "modified GFP". "GFP" as used herein includes wild-type GFP derived from the jelly fish *Aequorea victoria* and modifications of GFP, such as the blue fluorescent variant of GFP disclosed by Heim et al. (1994). Proc.Natl.Acad.Sci. 91:12501, and other modifications that change the spectral properties of the GFP fluorescence, or modifications that exhibit increased fluorescence when expressed in cells at a temperature above about 30°C described in PCT/DK96/00051, published as WO 97/11094 on 27 March 1997 and hereby incorporated by reference, and which comprises a fluorescent protein derived from *Aequorea* Green Fluorescent Protein (GFP) or any functional analogue thereof, wherein the amino acid in position 1 upstream from the chromophore has been mutated to provide an increase of fluorescence intensity when the

21

fluorescent protein of the invention is expressed in cells. Preferred GFP variants are F64L-GFP, F64L-Y66H-GFP and F64L-S65T-GFP. An especially preferred variant of GFP for use in all the aspects of this invention is EGFP (DNA encoding EGFP which is a F64L-S65T variant with codons optimized for expression in mammalian cells is available from Clontech, Palo Alto, plasmids containing the EGFP DNA sequence, cf. GenBank Acc. Nos. U55762, U55763).

The term "intracellular signalling pathway" and "signal transduction pathway" are intended to indicate the coordinated intracellular processes whereby a living cell transduce an external or internal signal into cellular responses. Said signal transduction will involve an enzymatic reaction said enzymes include but are not limited to protein kinases, GTPases, ATPases, protein phosphatases, phospholipases. The cellular responses include but are not limited to gene transcription, secretion, proliferation, mechanical activity, metabolic activity, cell death.

10

20

25

30

The term "second messenger" is used to indicate a low molecular weight component involved in the early events of intracellular signal transduction pathways.

The term "luminophore" is used to indicate a chemical substance which has the property of emitting light either inherently or upon stimulation with chemical or physical means. This includes but is not limited to fluorescence, bioluminescence, phosphorescence, chemiluminescence.

The term "mechanically intact living cell" is used to indicate a cell which is considered living according to standard criteria for that particular type of cell such as maintenance of normal membrane potential, energy metabolism, proliferative capability, and has not experienced any physically invasive treatment designed to introduce external substances into the cell such as microinjection.

The term "physiologically relevant" ,when applied to an experimentally determined redistribution of an intracellular component, as measured by a change in the luminescence properties or distribution, is used to indicate that said redistribution can be explained in terms of the underlying biological phenomenon which gives rise to the redistribution.

Th terms "image processing" and "image analysis" are used to describe a large family of digital data analysis techniques or combination of such techniques which reduce ordered arrays of numbers (images) to quantitative information describing those ordered arrays of numbers. When said ordered arrays of numbers represent measured values from a physical process, the quantitative information derived is therefore a measure of the physical process.

The term "fluorescent probe" is used to indicate a fluorescent fusion polypeptide comprising a GFP or any functional part thereof which is N- or C-terminally fused to a biologically active polypeptide as defined herein, optionally via a peptide linker consisting of one or more amino acid residues, where the size of the linker peptide in itself is not critical as long as the desired functionality of the fluorescent probe is maintained. A fluorescent probe according to the invention is expressed in a cell and basically mimics the physiological behaviour of the biologically active polypeptide moiety of the fusion polypeptide.

10

30

The term "mammalian cell" is intended to indicate any living cell of mammalian origin. The 15 cell may be an established cell line, many of which are available from The American Type Culture Collection (ATCC, Virginia, USA) or a primary cell with a limited life span derived from a mammalian tissue, including tissues derived from a transgenic animal, or a newly established immortal cell line derived from a mammalian tissue including transgenic tissues, or a hybrid cell or cell line derived by fusing different celltypes of mammalian origin e.g. hy-20 bridoma cell lines. The cells may optionally express one or more non-native gene products, e.g. receptors, enzymes, enzyme substrates, prior to or in addition to the fluorescent probe. Preferred cell lines include but are not limited to those of fibroblast origin, e.g. BHK, CHO, BALB, or of endothelial origin, e.g. HUVEC, BAE (bovine artery endothelial), CPAE (cow pulmonary artery endothelial) or of pancreatic origin, e.g. RIN, INS-1, MIN6, bTC3, aTC6, 25 bTC6, HIT, or of hematopoietic origin, e.g. adipocyte origin, e.g. 3T3-L1, neuronal/neuroendocrine origin, e.g. AtT20, PC12, GH3, muscle origin, e.g. SKMC, A10, C2C12, renal origin, e.g. HEK 293, LLC-PK1.

The term "hybrid polypeptide" is intended to indicate a polypeptide which is a fusion of at least a portion of each of two proteins, in this case at least a portion of the green fluorescent protein, and at least a portion of a catalytic and/or regulatory domain of a protein kinase. Furthermore a hybrid polypeptide is intended to indicate a fusion polypeptide comprising a

WO 98/45704 PCT/DK98/00145

GFP or at least a portion of the green fluorescent protein that contains a functional fluorophore, and at least a portion of a biologically active polypeptide as defined herein provided that said fusion is not the PKC α -GFP, PKC γ -GFP, and PKC ϵ -GFP disclosed by Schmidt et al.and Sakai et al., respectively. Thus, GFP may be N- or C-terminally tagged to a biologically active polypeptide, optionally via a linker portion or linker peptide consisting of a sequence of one or more amino acids. The hybrid polypeptide or fusion polypeptide may act as a fluorescent probe in intact living cells carrying a DNA sequence encoding the hybrid polypeptide under conditions permitting expression of said hybrid polypeptide.

The term "kinase" is intended to indicate an enzyme that is capable of phosphorylating a cellular component.

5

20

25

30

The term "protein kinase" is intended to indicate an enzyme that is capable of phosphorylating serine and/or threonine and/or tyrosine in peptides and/or proteins.

The term "phosphatase" is intended to indicate an enzyme that is capable of dephosphorylating phosphoserine and/or phosphothreonine and/or phosphotyrosine in peptides and/or proteins.

In the present context, the term "biologically active polypeptide" is intended to indicate a polypeptide affecting intracellular processes upon activation, such as an enzyme which is active in intracellular processes or a portion thereof comprising a desired amino acid sequence which has a biological function or exerts a biological effect in a cellular system. In the polypeptide one or several aminoacids may have been deleted, inserted or replaced to alter its biological function, e.g. by rendering a catalytic site inactive. Preferably, the biologically active polypeptide is selected from the group consisting of proteins taking part in an intracellular signalling pathway, such as enzymes involved in the intracellular phosphorylation and dephosphorylation processes including kinases, protein kinases and phosphorylases as defined herein, but also proteins making up the cytoskeleton play important roles in intracellular signal transduction and are therefore included in the meaning of "biologically active polypeptide" herein. More preferably, the biologically active polypeptide is a protein which according to its state as activated or non-activated changes localisation within the cell, preferably as an in-

24

termediary component in a signal transduction pathway. Included in this preferred group of biologically active polypeptides are cAMP dependent protein kinase A.

The term "a substance having biological activity" is intended to indicate any sample which has a biological function or exerts a biological effect in a cellular system. The sample may be a sample of a biological material such as a sample of a body fluid including blood, plasma, saliva, milk, urine, or a microbial or plant extract, an environmental sample containing pollutants including heavy metals or toxins, or it may be a sample containing a compound or mixture of compounds prepared by organic synthesis or genetic techniques.

10

15

20

The phrase "any change in fluorescence" means any change in absorption properties, such as wavelength and intensity, or any change in spectral properties of the emitted light, such as a change of wavelength, fluorescence lifetime, intensity or polarisation, or any change in the intracellular localisation of the fluorophore. It may thus be localised to a specific cellular component (e.g. organelle, membrane, cytoskeleton, molecular structure) or it may be evenly distributed throughout the cell or parts of the cell.

The phrase "back-tracking of a signal transduction pathway" is intended to indicate.

The term "organism" as used herein indicates any unicellular or multicellular organism preferably originating from the animal kingdom including protozoans, but also organisms that are members of the plant kingdoms, such as algae, fungi, bryophytes, and vascular plants are included in this definition.

The term "nucleic acid" is intended to indicate any type of poly- or oligonucleic acid sequence, such as a DNA sequence, a cDNA sequence, or an RNA sequence.

25

30

The term "biologically equivalent" as it relates to proteins is intended to mean that a first protein is equivalent to a second protein if the cellular functions of the two proteins may substitute for each other, e.g. if the two proteins are closely related isoforms encoded by different genes, if they are splicing variants, or allelic variants derived from the same gene, if they perform identical cellular functions in different cell types, or in different species. The term "biologically equivalent" as it relates to DNA is intended to mean that a first DNA sequ-

25

ence encoding a polypeptide is equivalent to a second DNA sequence encoding a polypeptide if the functional proteins encoded by the two genes are biologically equivalent.

The phrase "back-tracking of a signal transduction pathway" is intended to indicate a process for defining more precisely at what level a signal transduction pathway is affected, either by the influence of chemical compounds or a disease state in an organism. Consider a specific signal transduction pathway represented by the bioactive polypeptides A - B - C - D, with signal transduction from A towards D. When investigating all components of this signal transduction pathway compounds or disease states that influence the activity or redistribution of only D can be considered to act on C or downstream of C whereas compounds or disease states that influence the activity or redistribution of C and D, but not of A and B can be considered to act downstream of B.

The term "fixed cells" is used to mean cells treated with a cytological fixative such as glutaraldehyde or formaldehyde, treatments which serve to chemically cross-link and stabilize soluble and insoluble proteins within the structure of the cell. Once in this state, such proteins cannot be lost from the structure of the now-dead cell.

20

25

15

- 10

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1. CHO cells expressing the PKAc-F64L-S65T-GFP hybrid protein have been treated in HAM's F12 medium with 50 mM forskolin at 37°C. The images of the GFP fluorescence in these cells have been taken at different time intervals after treatment, which were: a) 40 seconds b) 60 seconds c) 70 seconds d) 80 seconds. The fluorescence changes from a punctate to a more even distribution within the (non-nuclear) cytoplasm.

15

20

25

30

Figure 2. Time-lapse analysis of forskolin induced PKAc-F64L-S65T-GFP redistribution. CHO cells, expressing the PKAc-F64L-S65T-GFP fusion protein were analysed by time-lapse fluorescence microscopy. Fluorescence micrographs were acquired at regular intervals from 2 min before to 8 min after the addition of agonist. The cells were challenged with 1 mM forskolin immediately after the upper left image was acquired (t=0). Frames were collected at the following times: i) 0, ii) 1, iii) 2, iv) 3, v) 4 and vi) 5 minutes. Scale bar 10 mm.

Figure 3. Time-lapse analyses of PKAc-F64L-S65T-GFP redistribution in response to various agonists. The effects of 1 mM forskolin (A), 50 mM forskolin (B), 1mM dbcAMP (C) and 100 mM IBMX (D) (additions indicated by open arrows) on the localisation of the PKAc-F64L-S65T-GFP fusion protein were analysed by time-lapse fluorescence microscopy of CHO/PKAc-F64L-S65T-GFP cells. The effect of addition of 10 mM forskolin (open arrow), followed shortly by repeated washing with buffer (solid arrow), on the localisation of the PKAc-F64L-S65T-GFP fusion protein was analysed in the same cells (E). In a parallel experiment, the effect of adding 10 mM forskolin and 100 mM IBMX (open arrow) followed by repeated washing with buffer containing 100 mM IBMX (solid arrow) was analysed (F). Removing forskolin caused PKAc-F64L-S65T-GFP fusion protein to return to the cytoplasmic aggregates while this is prevented by the continued presence of IBMX (F). The effect of 100 nM glucagon (Fig 3G, open arrow) on the localisation of the PKAc-F64L-S65T-GFP fusion protein is also shown for BHK/GR, PKAc-F64L-S65T-GFP cells. The effect of 10 mM norepinephrine (H), solid arrow, on the localisation of the PKAc-F64L-S65T-GFP fusion protein was analysed similarly, in transiently transfected CHO, PKAc-F64L-S65T-GFP cells, pretreated with 10 mM forskolin, open arrow, to increase [cAMP], N.B. in Fig 3H the x-axis counts the image numbers, with 12 seconds between images. The raw data of each experiment consisted of 60 fluorescence micrographs acquired at regular intervals including several images acquired before the addition of buffer or agonist. The charts (A-G) each show a quantification of the response seen through all the 60 images, performed as described in analysis method 2. The change in total area of the highly fluorescent aggregates, relative to the initial area of fluorescent aggregates is plotted as the ordinate in all graphs in Figure 3, versus time for each experiment. Scale bar 10 mm.

27

Figure 4. Dose response curve (two experiments) for forskolin-induced redistribution of the PKAc-F64L-S65T-GFP fusion.

5

10

Figure 5. Time from initiation of a response to half maximal ($t_{1/2max}$) and maximal (t_{max}) PKAc-F64L-S65T-GFP redistribution. The data was extracted from curves such as that shown in "Figure 2." All $t_{1/2max}$ and t_{max} values are given as mean±SD and are based on a total of 26-30 cells from 2-3 independent experiments for each forskolin concentration. Since the observed redistribution is sustained over time, the t_{max} values were taken as the earliest time point at which complete redistribution is reached. Note that the values do not relate to the degree of redistribution.

15 Fig F64

Figure 6. Parallel dose response analyses of forskolin induced cAMP elevation and PKAc-F64L-S65T-GFP redistribution. The effects of buffer or 5 increasing concentrations of forskolin on the localisation of the PKAc-F64L-S65T-GFP fusion protein in CHO/PKAc-F64L-S65T-GFP cells, grown in a 96 well plate, were analysed as described above. Computing the ratio of the SD's of fluorescence micrographs taken of the same field of cells, prior to and 30 min after the addition of forskolin, gave a reproducible measure of PKAc-F64L-S65T-GFP redistribution. The graph shows the individual 48 measurements and a trace of their mean±s.e.m at each forskolin concentration. For comparison, the effects of buffer or 8 increasing concentrations of forskolin on [cAMP], was analysed by a scintillation proximity assay of cells grown under the same conditions. The graph shows a trace of the mean ± s.e.m of 4 experiments expressed in arbitrary units.

25

30

20

Figure 7. BHK cells stably transfected with the human muscarinic (hM1) receptor and the PKCa-F64L-S65T-GFP fusion. Carbachol (100 mM added at 1.0 second) induced a transient redistribution of PKCa-F64L-S65T-GFP from the cytoplasm to the plasma membrane. Images were taken at the following times: a) 1 second before carbachol addition, b) 8.8 seconds after addition and c) 52.8 seconds after addition.

Figure 8. BHK cells stably transfected with the hM1 receptor and PKCa-F64L-S65T-GFP fusion were treated with carbachol (1 mM, 10 mM, 100 mM). In single cells intracellular [Ca²+] was monitored simultaneously with the redistribution of PKCa-F64L-S65T-GFP. Dashed line indicates the addition times of carbachol. The top panel shows changes in the intracellular Ca²+ concentration of individual cells with time for each treatment. The middle panel shows changes in the average cytoplasmic GFP fluorescence for individual cells against time for each treatment. The bottom panel shows changes in the fluorescence of the periphery of single cells, within regions that specifically include the circumferential edge of a cell as seen in normal projection, the regions which offers best chance to monitor changes in the fluorescence intensity of the plasma membrane.

Figure 9. a) The hERK1-F64L-S65T-GFP fusion expressed in HEK293 cells treated with 100 mM of the MEK1 inhibitor PD98059 in HAM F-12 (without serum) for 30 minutes at 37 °C. The nuclei empty of fluorescence during this treatment.

- b) The same cells as in (a) following treatment with 10 % foetal calf serum for 15 minutes at 37 $^{\circ}\text{C}$.
- c) Time profiles for the redistribution of GFP fluorescence in HEK293 cells following treatment with various concentrations of EGF in Hepes buffer (HAM F-12 replaced with Hepes buffer directly before the experiment). Redistribution of fluorescence is expressed as the change in the ratio value between areas in nucleus and cytoplasm of single cells. Each time profile is the mean for the changes seen in six single cells.
- d) Bar chart for the end-point measurements, 600 seconds after start of EGF treatments, of fluorescence change (nucleus:cytoplasm) following various concentrations of EGF.

25

10

15

20

Figure 10.

- a) The SMAD2-EGFP fusion expressed in HEK293 cells starved of serum overnight in HAM
 F-12. HAM F-12 was then replaced with Hepes buffer pH 7.2 immediately before the experiment. Scale bar is 10 mm.
- 30 b) HEK 293 cells expressing the SMAD2-EGFP fusion were treated with various concentration of TGF-beta as indicated, and the redistribution of fluorescence monitored against time.

29

The time profile plots represent increases in fluorescence within the nucleus, normalised to starting values in each cell measured. Each trace is the time profile for a single cell nucleus.

c) A bar chart representing the end-point change in fluorescence within nuclei (after 850 seconds of treatment) for different concentrations of TGF-beta. Each bar is the value for a single nucleus in each treatment.

Figure 11. The VASP-F64L-S65T-GFP fusion in CHO cells stably transfected with the human insulin receptor. The cells were starved for two hours in HAM F-12 without serum, then treated with 10% foetal calf serum. The image shows the resulting redistribution of fluorescence after 15 minutes of treatment. GFP fluorescence becomes localised in structures identified as focal adhesions along the length of actin stress fibres.

Figure 12. Time lapse recording GLUT4-GFP redistribution in CHO-HIR cells. Time indicates minutes after the addition of 100 nM insulin.

15

10

5

30

EXAMPLE 1

Construction, testing and implementation of an assay for cAMP based on PKA activation in real time within living cells.

Useful for monitoring the activity of signalling pathways which lead to altered concentrations of cAMP, e.g. activation of G-protein coupled receptors which couple to G-proteins of the $G_{\rm S}$ or $G_{\rm I}$ class.

10

20

The catalytic subunit of the murine cAMP dependent protein kinase (PKAc)was fused C-terminally to a F64L-S65T derivative of GFP. The resulting fusion (PKAc-F64L-S65T-GFP) was used for monitoring *in vivo* the translocation and thereby the activation of PKA.

Construction of the PKAc-F64L-S65T-GFP fusion:

15 Convenient restriction endonuclease sites were introduced into the cDNAs encoding murine PKAc (Gen Bank Accession number: M12303) and F64L-S65T-GFP (sequence disclosed in WO 97/11094) by polymerase chain reaction (PCR). The PCR reactions were performed according to standard protocols with the following primers:

5'PKAc: TTggACACAAgCTTTggACACCCTCAggATATgggCAACgCCgCCgCCGCCAAg (SEQ ID NO:3),

3'PKAc: gTCATCTTCTCgAgTCTTTCAggCgCgCCCAAACTCAgTAAACTCCTTgCCACAC (SEQ ID NO:4) ,

5'GFP: TTggACACAAgCTTTggACACggCgCgCCATgAgTAAAggAgAAGAACTTTTC (SEQ ID NO:1),

25 3'GFP: gTCATCTTCTCgAgTCTTACTCCTgAggTTTgTATAgTTCATCCATgCCATgT (SEQ ID NO:2).

15

30

PCT/DK98/00145

31

The PKAc amplification product was then digested with HindIII+AscI and the F64L-S65T-GFP product with AscI+XhoI. The two digested PCR products were subsequently ligated with a HindIII+XhoI digested plasmid (pZeoSV® mammalian expression vector, Invitrogen, San Diego, CA, USA). The resulting fusion construct (SEQ ID NO:68 & 69) was under control of the SV40 promoter.

Transfection and cell culture conditions.

Chinese hamster ovary cells (CHO), were transfected with the plasmid containing the PKAc-F64L-S65T-GFP fusion using the calcium phosphate precipitate method in HEPES-buffered saline (Sambrook *et al.*, 1989). Stable transfectants were selected using 1000 mg Zeocin/ml (Invitrogen) in the growth medium (DMEM with 1000 mg glucose/l, 10 % fetal bovine serum (FBS), 100 mg penicillin-streptomycin mixture ml⁻¹, 2 mM L-glutamine purchased from Life Technologies Inc., Gaithersburg, MD, USA). Untransfected CHO cells were used as the control. To assess the effect of glucagon on fusion protein translocation, the PKAc-F64L-S65T-GFP fusion was stably expressed in baby hamster kidney cells overexpressing the human glucagon receptor (BHK/GR cells) Untransfected BHK/GR cells were used as the control. Expression of GR was maintained with 500 mg G418/ml (*Neo* marker) andPKAc-F64L-S65T-GFP was maintained with 500 mg Zeocin/ml (*Sh ble* marker). CHO cells were also simultaneously co-transfected with vectors containing the PKAc-F64L-S65T-GFP fusion and the human a2a adrenoceptor (hARa2a).

For fluorescence microscopy, cells were allowed to adhere to Lab-Tek chambered coverglasses (Nalge Nunc Int., Naperville, IL, USA) for at least 24 hours and cultured to about 80% confluence. Prior to experiments, the cells were cultured over night without selection pressure in HAM F-12 medium with glutamax (Life Technologies), 100 mg penicillinstreptomycin mixture ml⁻¹ and 0.3 % FBS. This medium has low autofluorescence enabling fluorescence microscopy of cells straight from the incubator.

Monitoring activity of PKA activity in real time:

Image aquisition of live cells were gathered using a Zeiss Axiovert 135M fluorescence microscope fitted with a Fluar 40X, NA: 1.3 oil immersion objective and coupled to a Photometrics CH250 charged coupled device (CCD) camera. The cells were illuminated with a 100 W HBO arc lamp. In the light path was a 470±20 nm excitation filter, a 510 nm dichroic mirror

15

and a 515±15 nm emission filter for minimal image background. The cells were kept and monitored to be at 37°C with a custom built stage heater.

Images were processed and analyzed in the following manner:.

Method 1: Stepwise procedure for quantitation of translocation of PKA:

- The image was corrected for dark current by performing a pixel-by-pixel subtraction of a dark image (an image taken under the same conditions as the actual image, except the camera shutter is not allowed to open).
 - 2. The image was corrected for non-uniformity of the illumination by performing a pixel-by-pixel ratio with a flat field correction image (an image taken under the same conditions as the actual image of a uniformly fluorescent specimen).
 - 3. The image histogram, i.e., the frequency of occurrence of each intensity value in the image, was calculated.
 - 4. A smoothed, second derivative of the histogram was calculated and the second zero is determined. This zero corresponds to the inflection point of the histogram on the high side of the main peak representing the bulk of the image pixel values.
 - 5. The value determined in step 4 was subtracted from the image. All negative values were discarded.
 - 6. The variance (square of the standard deviation) of the remaining pixel values was determined. This value represents the "response" for that image.
- 20 7. Scintillation proximity assay (SPA) for independent quantitation of cAMP:

33

Method 2: Alternative method for quantitation of PKA redistribution:

- 1. The fluorescent aggregates are segmented from each image using an automatically found threshold based on the maximisation of the information measure between the object and background. The *a priori* entropy of the image histogram is used as the information measure.
- 2. The area of each image occupied by the aggregates is calculated by counting pixels in the segmented areas.
- 3. The value obtained in step 2 for each image in a series, or treatment pair, is normalised to the value found for the first (unstimulated) image collected. A value of zero (0) indicates no redistribution of fluorescence from the starting condition. A value of one (1) by this method equals full redistribution.
- 15 Cells were cultured in HAM F-12 medium as described above, but in 96-well plates. The medium was exchanged with Ca²⁺-HEPES buffer including 100 mM IBMX and the cells were stimulated with different concentrations of forskolin for 10 min. Reactions were stopped with addition of NaOH to 0.14 M and the amount of cAMP produced was measured with the cAMP-SPA kit, RPA538 (Amersham) as described by the manufacturer.

20

Manipulating intracellular levels of cAMP to test the PKAc-F64L-S65T-GFP fusion.

The following compounds were used to vary cAMP levels: Forskolin, an activator of adenylate cyclase; dbcAMP, a membrane permeable cAMP analog which is not degraded by phosphodiesterase; IBMX, an inhibitor of phosphodiesterase.

- 25 CHO cells stably expressing the PKAc-F64L-S65T-GFP, showed a dramatic translocation of the fusion protein from a punctate distribution to an even distribution throughout the cytoplasm following stimulation with 1 mM forskolin (n=3), 10 mM forskolin (n=4) and 50 mM forskolin (n=4) (Fig 1), or dbcAMP at 1mM (n=6).
 - Fig. 2 shows the progression of response in time following treatment with 1 mM forskolin.

Fig. 3 gives a comparison of the average temporal profiles of fusion protein redistribution and a measure of the extent of each response to the three forskolin concentrations (Fig. 3A, E, B), and to 1 mM dbcAMP (fig 3C) which caused a similar but slower response, and to addition of 100 mM IBMX (n=4, Fig. 3D) which also caused a slow response, even in the absence of adenylate cyclase stimulation. Addition of buffer (n=2) had no effect (data not shown).

As a control for the behavior of the fusion protein, F64L-S65T-GFP alone was expressed in CHO cells and these were also given 50 mM forskolin (n=5); the uniform diffuse distribution characteristic of GFP in these cells was unaffected by such treatment (data not shown).

The forskolin induced translocation of PKAc-F64L-S65T-GFP showed a dose-response relationship (Fig 4 and 6), see quantitative procedures above.

Reversibility of PKAc-F64L-S65T-GFP translocation.

15

20

30

The release of the PKAc probe from its cytoplasmic anchoring hotspots was reversible. Washing the cells repeatedly (5-8 times) with buffer after 10µM forskolin treatment completely restored the punctate pattern within 2-5 min (n=2, Fig. 3E). In fact the fusion protein returned to a pattern of fluorescent cytoplasmic aggregates virtually indistinguishable from that observed before forskolin stimulation.

To test whether the return of fusion protein to the cytoplasmic aggregates reflected a decreased [cAMP], cells were treated with a combination of 10 mM forskolin and 100 mM IBMX (n=2) then washed repeatedly (5-8 times) with buffer containing 100 mM IBMX (Fig. 3F). In these experiments, the fusion protein did not return to its prestimulatory localization after removal of forskolin.

Testing the PKA-F64L-S65T-GFP probe with physiologically relevant agents.

To test the probe's response to receptor activation of adenylate cyclase, BHK cells stably transfected with the glucagon receptor and the PKA-F64L-S65T-GFP probe were exposed to glucagon stimulation. The glucagon receptor is coupled to a G_s protein which activates adenylate cyclase, thereby increasing the cAMP level. In these cells, addition of 100 nM glucagon (n=2) caused the release of the PKA-F64L-S65T-GFP probe from the cytoplasmic aggregates and a resulting translocation of the fusion protein to a more even cytoplasmic

35

distribution within 2-3 min (Fig. 3G). Similar but less pronounced effects were seen at lower glucagon concentrations (n=2, data not shown). Addition of buffer (n=2) had no effect over time (data not shown).

Transiently transfected CHO cells expressing hARa2a and the PKA-F64L-S65T-GFP probe were treated with 10 mM forskolin for 7.5 minutes, then, in the continued presence of forskolin, exposed to 10 mM norepinephrine to stimulate the exogenous adrenoreceptors, which couple to a G₁ protein, which inhibit adenylate cyclase. This treatment led to reappearance of fluorescence in the cytoplasmic aggregates indicative of a decrease in [cAMP]_i (Fig. 3H).

10

15

20

Fusion protein translocation correlated with [cAMP],

As described above, the time it took for a response to come to completion was dependent on the forskolin dose (Fig. 5) In addition the degree of responses was also dose dependent. To test the PKA-F64L-S65T-GFP fusion protein translocation in a semi high through-put system, CHO cells stably transfected with the PKA-F64L-S65T-GFP fusion was stimulated with buffer and 5 increasing doses of forskolin (n=8). Using the image analysis algorithm described above (Method 1), a dose response relationship was observed in the range from 0.01-50 mM forskolin (Fig. 6). A half maximal stimulation was observed at about 2 mM forskolin. In parallel, cells were stimulated with buffer and 8 increasing concentrations of forskolin (n=4) in the range 0.01-50 mM. The amount of cAMP produced was measured in an SPA assay. A steep increase was observed between 1 and 5 mM forskolin coincident with the steepest part of the curve for fusion protein translocation (also Fig. 6)

25 EXAMPLE 2

Quantitation of redistribution in real-time within living cells.

Probe for detection of PKC activity in real time within living cells:

Construction of PKC-GFP fusion:

The probe was constructed by ligating two restriction enzyme treated polymerase chain reaction (PCR) amplification products of the cDNA for murine PKC α (GenBank Accession number: M25811) and F64L-S65T-GFP (sequence disclosed in WO 97/11094) respectively. Taq® polymerase and the following oligonucleotide primers were used for PCR;

5'mPKCa: TTggACACAAgCTTTggACACCCTCAggATATggCTgACgTTTACCCggCCAACg (SEQ ID NO:5),

3'mPKCa: gTCATCTTCTCgAgTCTTTCAggCgCgCCCTACTgCACTTTgCAAgATTgggTgC (SEQ ID NO:6),

5'F64L-S65T-GFP: TTggACACAAgCTTTggACACggCgCGCCATgAgTAAAggAgAAGAACTT-10 TTC (SEQ ID NO:1),

3'F64L-S65T-GFP: gTCATCTTCTCgAgTCTTACTCCTgAggTTTgTATAgTTCATCCATgC-CATgT (SEQ ID NO:2).

The hybrid DNA strand was inserted into the pZeoSV® mammalian expression vector as a HindIII-XhoI casette as described in example 1.

15 Cell Culture:

20

25

BHK cells expressing the human M1 receptor under the control of the inducible metal-lothionine promoter and maintained with the dihydrofolate reductase marker were transfected with the PKC α -F64L-S65T-GFP probe using the calcium phosphate precipitate method in HEPES buffered saline (HBS [pH 7.10]). Stable transfectants were selected using 1000 µg Zeocin®/ml in the growth medium (DMEM with 1000 mg glucose/l, 10 % foetal bovine serum (FBS), 100 mg penicillin-streptomycin mixture ml-1, 2 mM l-glutamine). The hM1 receptor and PKC α -F64L-S65T-GFP fusion protein were maintained with 500 nM methotrexate and 500 µg Zeocin®/ml respectively. 24 hours prior to any experiment, the cells were transferred to HAM F-12 medium with glutamax, 100 µg penicillin-streptomycin mixture ml-1 and 0.3 % FBS. This medium relieves selection pressure, gives a low induction of signal transduction pathways and has a low autofluorescence at the relevant wavelength enabling fluorescence microscopy of cells straight from the incubator.

Monitoring the PKC activity in real time:

Digital images of live cells were gathered using a Zeiss Axiovert 135M fluorescence microscope fitted with a 40X, NA: 1.3 oil immersion objective and coupled to a Photometrics

PCT/DK98/00145

10

20

25

37

CH250 charged coupled device (CCD) camera. The cells were illuminated with a 100 W arc lamp. In the light path was a 470±20 nm excitation filter, a 510 nm dichroic mirror and a 515±15 nm emission filter for minimal image background. The cells were kept and monitored to be at 37°C with a custom built stage heater.

5 Images were analyzed using the IPLab software package for Macintosh.

Upon stimulation of the M1-BHK cells, stably expressing the PKC α -F64L-S65T-GFP fusion, with carbachol we observed a dose-dependent transient translocation from the cytoplasm to the plasma membrane (Fig. 7a,b,c). Simultaneous measurement of the cytosolic free calcium concentration shows that the carbachol-induced calcium mobilisation precedes the translocation (Fig. 8).

Stepwise procedure for quantitation of translocation of PKC:

- 1. The image was corrected for dark current by performing a pixel-by-pixel subtraction of a dark image (an image taken under the same conditions as the actual image, except the camera shutter is not allowed to open).
- 15 2. The image was corrected for non-uniformity of the illumination by performing a pixel-by-pixel ratio with a flat field correction image (an image taken under the same conditions as the actual image of a uniformly fluorescent specimen).
 - 3. A copy of the image was made in which the edges are identified. The edges in the image are found by a standard edge-detection procedure convolving the image with a kernel which removes any large-scale unchanging components (i.e., background) and accentuates any small-scale changes (i.e., sharp edges). This image was then converted to a binary image by threshholding. Objects in the binary image which are too small to represent the edges of cells were discarded. A dilation of the binary image was performed to close any gaps in the image edges. Any edge objects in the image which were in contact with the borders of the image are discarded. This binary image represents the edge mask.
 - 4. Another copy of image was made via the procedure in step 3. This copy was further processed to detect objects which enclose "holes" and setting all pixels inside the holes to the binary value of the edge, i.e., one. This image represents the whole cell mask.
- 5. The original image was masked with the edge mask from step 3 and the sum total of all pixel values is determined.

38

- 6. The original image was masked with the whole cell mask from step 4 and the sum total of all pixel values was determined.
- 7. The value from step 5 was divided by the value from step 6 to give the final result, the fraction of fluorescence intensity in the cells which was localized in the edges.

5

10

EXAMPLE 3

Probes for detection of mitogen activated protein kinase Erk1 redistribution.

Useful for monitoring signalling pathways involving MAPK, e.g. to identify compounds which modulate the activity of the pathway in living cells.

Erk1, a serine/threonine protein kinase, is a component of a signalling pathway which is activated by e.g. many growth factors.

Probes for detection of ERK-1 activity in real time within living cells:

- The extracellular signal regulated kinase (ERK-1, a mitogen activated protein kinase, MAPK) is fused N- or C-terminally to a derivative of GFP. The resulting fusions expressed in different mammalian cells are used for monitoring *in vivo* the nuclear translocation, and thereby the activation, of ERK1 in response to stimuli that activate the MAPK pathway.
 - a) Construction of murine ERK1 F64L-S65T-GFP fusion:
- Convenient restriction endonuclease sites are introduced into the cDNAs encoding murine ERK1 (GenBank Accession number: Z14249) and F64L-S65T-GFP (sequence disclosed in WO 97/11094) by polymerase chain reaction (PCR). The PCR reactions are performed according to standard protocols with the following primers:

5'ERK1: TTggACACAAgCTTTggACACCCTCAggATATggCggCggCggCggCggCggCTCCgggggggCgggg (SEQ ID NO:7),

5'F64L-S65T-GFP: TTggACACAAgCTTTggACACggCgCgCCATgAgTAAAggAgAAGATT-TTC (SEQ ID NO:1)

5 3'F64L-S65T-GFP: gTCATCTTCTCgAgTCTTACTCCTgAggTTTgTATAgTTCATCCATgC-CATgT (SEQ ID NO:2)

To generate the mERK1-F64L-S65T-GFP (SEQ ID NO:56 & 57) fusion the ERK1 amplification product is digested with HindIII+AscI and the F64L-S65T-GFP product with AscI+Xhol. To generate the F64L-S65T-GFP-mERK1 fusion the ERK1 amplification product is then digested with HindIII+Bsu36I and the F64L-S65T-GFP product with Bsu36I+Xhol. The two pairs of digested PCR products are subsequently ligated with a HindIII+Xhol digested plasmid (pZeoSV® mammalian expression vector, Invitrogen, San Diego, CA, USA). The resulting fusion constructs are under control of the SV40 promoter.

10

25

30

b) The human Erk1 gene (GenBank Accession number: X60188) was amplified using PCR according to standard protocols with primers Erk1-top (SEQ ID NO:9) and Erk1-bottom/+stop (SEQ ID NO:10). The PCR product was digested with restriction enzymes E-coR1 and BamH1, and ligated into pEGFP-C1 (Clontech, Palo Alto; GenBank Accession number U55763) digested with EcoR1 and BamH1. This produces an EGFP-Erk1 fusion
 (SEQ ID NO:38 &39) under the control of a CMV promoter.

The plasmid containing the EGFP-Erk1 fusion was transfected into HEK293 cells employing the FUGENE transfection reagent (Boehringer Mannheim). Prior to experiments the cells were grown to 80%-90% confluency 8 well chambers in DMEM with 10% FCS. The cells were washed in plain HAM F-12 medium (without FCS), and then incubated for 30-60 minutes in plain HAM F-12 (without FCS) with 100 micromolar PD98059, an inhibitor of MEK1, a kinase which activates Erk1; this step effectively empties the nucleus of EGFP-Erk1. Just before starting the experiment, the HAM F-12 was replaced with Hepes buffer following a wash with Hepes buffer. This removes the PD98059 inhibitor; if blocking of MEK1 is still wanted (e.g. in control experiments), the inhibitor is included in the Hepes buffer.

The experimental setup of the microscope was as described in example 1.

60 images were collected with 10 seconds between each, and with the test compound added after image number 10.

Addition of EGF (1-100 nM) caused within minutes a redistribution of EGFP-Erk1 from the cytoplasm into the nucleus (Fig. 9a,b).

The response was quantitated as described below and a dose-dependent relationship between EGF concentration and nuclear translocation of EGFP-Erk1 was found (Fig. 9c,d). Reditribution of GFP fluorescence is expressed in this example as the change in the ratio value between areas in nuclear versus cytoplasmic compartments of the cell. Each time profile is the average of nuclear to cytoplasmic ratios from six cells in each treatment.

EXAMPLE 4:

5

10

15

Probes for detection of Erk2 redistribution.

Useful for monitoring signalling pathways involving MAPK, e.g. to identify compounds which modulate the activity of the pathway in living cells.

Erk2, a serine/threonine protein kinase, is closely related to Erk1 but not identical; it is a component of a signalling pathway which is activated by e.g. many growth factors.

- a) The rat Erk2 gene (GenBank Accession number: M64300) was amplified using PCR according to standard protocols with primers Erk2-top (SEQ ID NO:11) and Erk2-bottom/+stop (SEQ ID NO:13) The PCR product was digested with restriction enzymes Xho1 and BamH1, and ligated into pEGFP-C1 (Clontech, Palo Alto; GenBank Accession number U55763) digested with Xho1 and BamH1. This produces an EGFP-Erk2 fusion (SEQ ID NO:40 &41) under the control of a CMV promoter.
- b) The rat Erk2 gene (GenBank Accession number: M64300) was amplified using PCR according to standard protocols with primers (SEQ ID NO:11) Erk2-top and Erk2-bottom/-stop (SEQ ID NO:12). The PCR product was digested with restriction enzymes Xho1 and BamH1, and ligated into pEGFP-N1 (Clontech, Palo Alto; GenBank Accession number U55762) digested with Xho1 and BamH1. This produces an Erk2-EGFP fusion (SEQ ID NO:58 &59) under the control of a CMV promoter.

The resulting plasmids were transfected into CHO cells and BHK cells. The cells were grown under standard conditions. Prior to experiments, the cells were starved in medium without serum for 48-72 hours. This led to a predominantly cytoplasmic localization of both probes, especially in BHK cells. 10% fetal calf serum was added to the cells and the fluorescence of the cells was recorded as explained in example 3. Addition of serum caused the probes to redistribute into the nucleus within minutes of addition of serum.

EXAMPLE 5:

15

20

25

10 Probes for detection of Smad2 redistribution.

Useful for monitoring signalling pathways activated by some members of the transforming growth factor-beta family, e.g. to identify compounds which modulate the activity of the pathway in living cells.

Smad 2, a signal transducer, is a component of a signalling pathway which is induced by some members of the TGFbeta family of cytokines.

- a) The human Smad2 gene (GenBank Accession number: AF027964) was amplified using PCR according to standard protocols with primers Smad2-top (SEQ ID NO:24) and Smad2-bottom/+stop (SEQ ID NO:26). The PCR product was digested with restriction enzymes E-coR1 and Acc651, and ligated into pEGFP-C1 (Clontech; Palo Alto; GenBank Accession number U55763) digested with EcoR1 and Acc651. This produces an EGFP-Smad2 fusion (SEQ ID NO:50&51) under the control of a CMV promoter.
- b) The human Smad2 gene (GenBank Accession number: AF027964) was amplified using PCR according to standard protocols with primers Smad2-top (SEQ ID NO:24) and Smad2-bottom/-stop (SEQ ID NO:25). The PCR product was digested with restriction enzymes E-coR1 and Acc65I, and ligated into pEGFP-N1 (Clontech, Palo Alto; GenBank Accession number U55762) digested with EcoR1 and Acc65I. This produces a Smad2-EGFP fusion (SEQ ID NO:74 &75) under the control of a CMV promoter.
- The plasmid containing the EGFP-Smad2 fusion was transfected into HEK293 cells, where it showed a cytoplasmic distribution. Prior to experiments the cells were grown in 8 well Nunc

chambers in DMEM with 10% FCS to 80% confluency and starved overnight in HAM F-12 medium without FCS.

For experiments, the HAM F-12 medium was replaced with Hepes buffer pH 7.2.

The experimental setup of the microscope was as described in example 1.

90 images were collected with 10 seconds between each, and with the test compound added after image number 5.

After serum starvation of cells, each nucleus contains less GFP fluorescence than the surrounding cytoplasm (Fig. 10a). Addition of TGFbeta caused within minutes a redistribution of EGFP-Smad2 from the cytoplasma into the nucleus (Fig. 10b).

The redistribution of fluorescence within the treated cells was quantified simply as the fractional increase in nuclear fluorescence normalised to the starting value of GFP fluorescence in the nucleus of each unstimulated cell.

15 EXAMPLE 6:

10

20

25

Probe for detection of VASP redistribution.

Useful for monitoring signalling pathways involving rearrangement of cytoskeletal elements, e.g. to identify compounds which modulate the activity of the pathway in living cells.

VASP, a phosphoprotein, is a component of cytoskeletal structures, which redistributes in response to signals which affect focal adhesions.

a) The human VASP gene (GenBank Accession number: Z46389) was amplified using PCR according to standard protocols with primers VASP-top (SEQ ID NO:94) and VASP-bottom/+stop (SEQ ID NO:95). The PCR product was digested with restriction enzymes Hind3 and BamH1, and ligated into pEGFP-C1 (Clontech, Palo Alto; GenBank Accession number U55763) digested with Hind3and BamH1. This produces an EGFP-VASP fusion (SEQ ID NO:124 &125) under the control of a CMV promoter.

The resulting plasmid was transfected into CHO cells expressing the human insulin receptor using the calcium-phosphate transfection method. Prior to experiments, cells were grown in 8 well Nunc chambers and starved overnight in medium without FCS.

43

Experiments are performed in a microscope setup as described in example 1.

10% FCS was added to the cells and images were collected. The EGFP-VASP fusion was redistributed from a somewhat even distribution near the periphery into more localized structures, identified as focal adhesion points (Fig. 11).

5

A large number of further GFP fusions have been made or are in the process of being made, as apparent from the following Examples 7-22 which also suggest suitable host cells and substances for activation of the cellular signalling pathways to be monitored and analyzed.

10

EXAMPLE 7:

Probe for detection of actin redistribution.

Useful for monitoring signalling pathways involving rearrangement or formation of actin filaments, e.g. to identify compounds which modulate the activity of pathways leading to cytoskeletal rearrangements in living cells.

Actin is a component of cytoskeletal structures, which redistributes in response to very many cellular signals.

20

25

30

The actin binding domain of the human alpha-actinin gene (GenBank Accession number: X15804) was amplified using PCR according to standard protocols with primers ABD-top (SEQ ID NO:90) and ABD-bottom/-stop (SEQ ID NO:91). The PCR product was digested with restriction enzymes Hind3 and BamH1, and ligated into pEGFP-N1 (Clontech, Palo Alto; GenBank Accession number U55762) digested with Hind3 and BamH1. This produced an actin-binding-domain-EGFP fusion (SEQ ID NO:128 &129) under the control of a CMV promoter.

The resulting plasmid was transfected into CHO cells expressing the human insulin receptor. Cells were stimulated with insulin which caused the actin binding domain-EGFP probe to become redistributed into morphologically distinct membrane-associated structures.

Example 8:

10

15

20

Probes for detection of p38 redistribution.

Useful for monitoring signalling pathways responding to various cellular stress situations, e.g. to identify compounds which modulate the activity of the pathway in living cells, or as a counterscreen.

p38, a serine/thronine protein kinase, is a component of a stress-induced signalling pathway which is activated by many types of cellular stress, e.g. TNFalpha, anisomycin, UV and mitomycin C.

- a) The human p38 gene (GenBank Accession number: L35253) was amplified using PCR according to standard protocols with primers p38-top (SEQ ID NO:14) and p38-bottom/+stop (SEQ ID NO: 16). The PCR product was digested with restriction enzymes Xho1 and BamH1, and ligated into pEGFP-C1 (Clontech, Palo Alto; GenBank Accession number U55763) digested with Xho1 and BamH1. This produced an EGFP-p38 fusion (SEQ ID NO:46 &47) under the control of a CMV promoter.
- b) The human p38 gene (GenBank Accession number: L35253) was amplified using PCR according to standard protocols with primers p38-top (SEQ ID NO:13) and p38-bottom/-stop (SEQ ID NO:15). The PCR product was digested with restriction enzymes Xho1 and BamH1, and ligated into pEGFP-N1 (Clontech, Palo Alto; GenBank Accession number U55762) digested with Xho1 and BamH1. This produced a p38-EGFP fusion (SEQ ID NO:64 &65) under the control of a CMV promoter.

The resulting plasmids are transfected into a suitable cell line, e.g. HEK293, in which the EGFP-p38 probe and/or the p38-EGFP probe should change its cellular distribution from predominantly cytoplasmic to nuclear within minutes in response to activation of the signal-ling pathway with e.g. anisomycin.

Example 9:

30 Probes for detection of Jnk1 redistribution.

45

Useful for monitoring signalling pathways responding to various cellular stress situations, e.g. to identify compounds which modulate the activity of the pathway in living cells, or as a counterscreen.

Jnk1, a serine/threonine protein kinase, is a component of a stress-induced signalling pathway different from the p38 described above, though it also is activated by many types of cellular stress, e.g. TNFalpha, anisomycin and UV.

- a) The human Jnk1 gene (GenBank Accession number: L26318) was amplified using PCR according to standard protocols with primers Jnk-top (SEQ ID NO:17) and Jnk-bottom/+stop (SEQ ID NO:19). The PCR product was digested with restriction enzymes Xho1 and BamH1, and ligated into pEGFP-C1 (Clontech, Palo Alto; GenBank Accession number U55763) digested with Xho1 and BamH1. This produced an EGFP-Jnk1 fusion (SEQ ID NO:44 &45) under the control of a CMV promoter.
- b) The human Jnk1 gene (GenBank Accession number: L26318) was amplified using PCR according to standard protocols with primers Jnk-top (SEQ ID NO:17) and Jnk-bottom/-stop (SEQ ID NO:18). The PCR product was digested with restriction enzymes Xho1 and BamH1, and ligated into pEGFP-N1 (Clontech, Palo Alto; GenBank Accession number U55762) digested with Xho1 and BamH1. This produced a Jnk1-EGFP fusion (SEQ ID NO:62 &63) under the control of a CMV promoter.
- The resulting plasmids are transfected into a suitable cell line, e.g. HEK293, in which the EGFP-Jnk1 probe and/or the Jnk1-EGFP probe should change its cellular distribution from predominantly cytoplasmic to nuclear in response to activation of the signalling pathway with e.g. anisomycin.

25

10

Example 10:

Probes for detection of PKG redistribution.

Useful for monitoring signalling pathways involving changes in cyclic GMP levels, e.g. to identify compounds which modulate the activity of the pathway in living cells.

30 PGK, a cGMP-dependent serine/threonine protein kinase, mediates the guanylylcyclase/cGMP signal.

- a) The human PKG gene (GenBank Accession number: Y07512) is amplified using PCR according to standard protocols with primers PKG-top (SEQ ID NO:81) and PKG-bottom/+stop (SEQ ID NO:83). The PCR product is digested with restriction enzymes Xho1 and BamH1, and ligated into pEGFP-C1 (Clontech, Palo Alto; GenBank Accession number U55763) digested with Xho1 and BamH1. This produces an EGFP-PKG fusion (SEQ ID NO:134 &135) under the control of a CMV promoter.
- b) The human PKG gene (GenBank Accession number: Y07512) is amplified using PCR according to standard protocols with primers PKG-top (SEQ ID NO:81) and PKG-bottom/-stop (SEQ ID NO: 82). The PCR product is digested with restriction enzymes Xho1 and BamH1, and ligated into pEGFP-N1 (Clontech, Palo Alto; GenBank Accession number U55762) digested with Xho1 and BamH1. This produces a PKG-EGFP fusion (SEQ ID NO:136 &137) under the control of a CMV promoter.

The resulting plasmids are transfected into a suitable cell line, e.g. A10, in which the EGFP-PKG probe and/or the PKG-EGFP probe should change its cellular distribution from cytoplasmic to one associated with cytoskeletal elements within minutes in response to treatment with agents which raise nitric oxide (NO) levels.

Example 11:

10

25

- 20 Probes for detection of IkappaB kinase redistribution.
 - Useful for monitoring signalling pathways leading to NFkappaB activation, e.g. to identify compounds which modulate the activity of the pathway in living cells.
 - IkappaB kinase, a serine/threonine kinase, is a component of a signalling pathway which is activated by a variety of inducers including cytokines, lymphokines, growth factors and stress.
 - a) The alpha subunit of the human IkappaB kinase gene (GenBank Accession number: AF009225) is amplified using PCR according to standard protocols with primers IKK-top (SEQ ID NO:96) and IKK-bottom/+stop (SEQ ID NO:98). The PCR product is digested with restriction enzymes EcoR1 and Acc65I, and ligated into pEGFP-C1 (Clontech, Palo Alto;

GenBank Accession number U55763) digested with EcoR1and Acc65I. This produces an EGFP-IkappaB-kinase fusion (SEQ ID NO:120 &121) under the control of a CMV promoter.

b) The alpha subunit of the human IkappaB kinase gene (GenBank Accession number: AF009225) is amplified using PCR according to standard protocols with primers IKK-top (SEQ ID NO:96) and IKK-bottom/-stop (SEQ ID NO:97). The PCR product is digested with restriction enzymes EcoR1 and Acc651, and ligated into pEGFP-N1 (Clontech, Palo Alto; GenBank Accession number U55762) digested with EcoR1 and Acc651. This produces an IkappaB-kinase-EGFP fusion (SEQ ID NO:122 &123) under the control of a CMV promoter.

The resulting plasmids are transfected into a suitable cell line, e.g. Jurkat, in which the

EGFP-IkappaB-kinase probe and/or the IkappaB-kinase-EGFP probe should achieve a more
cytoplasmic distribution within seconds following stimulation with e.g. TNFalpha.

Example 12:

30

Probes for detection of CDK2 redistribution.

- Useful for monitoring signalling pathways of the cell cycle, e.g. to identify compounds which modulate the activity of the pathway in living cells.
 - CDK2, a cyclin-dependent serine/threonine kinase, is a component of the signalling system which regulates the cell cycle.
- a) The human CDK2 gene (GenBank Accession number: X61622) is amplified using PCR according to standard protocols with primers CDK2-top (SEQ ID NO:102) and CDK2-bottom/+stop (SEQ ID NO: 104). The PCR product is digested with restriction enzymes Xho1 and BamH1, and ligated into pEGFP-C1 (Clontech, Palo Alto; GenBank Accession number U55763) digested with Xho1 and BamH1. This produces an EGFP-CDK2 fusion (SEQ ID NO:114 &115) under the control of a CMV promoter.
 - b) The human CDK2 gene (GenBank Accession number: X61622) is amplified using PCR according to standard protocols with primers CDK2-top (SEQ ID NO:102) and CDK2-bottom/-stop (SEQ ID NO:103). The PCR product is digested with restriction enzymes Xho1 and BamH1, and ligated into pEGFP-N1 (Clontech, Palo Alto; GenBank Accession number U55762) digested with Xho1 and BamH1. This produces a CDK2-EGFP fusion (SEQ ID NO:112 &113) under the control of a CMV promoter.

48

The resulting plasmids are transfected into a suitable cell line, e.g. HEK293 in which the EGFP-CDK2 probe and/or the CDK2-EGFP probe should change its cellular distribution from cytoplasmic in contact-inhibited cells, to nuclear location in response to activation with a number of growth factors, e.g. IGF.

5

Example 13:

Probes for detection of Grk5 redistribution.

Useful for monitoring signalling pathways involving desensitization of G-protein coupled receptors, e.g. to identify compounds which modulate the activity of the pathway in living cells.

- Grk5, a G-protein coupled receptor kinase, is a component of signalling pathways involving membrane bound G-protein coupled receptors.
 - a) The human Grk5 gene (GenBank Accession number: L15388) is amplified using PCR according to standard protocols with primers Grk5-top (SEQ ID NO:27) and Grk5-
- bottom/+stop (SEQ ID NO:29). The PCR product is digested with restriction enzymes EcoR1 and BamH1, and ligated into pEGFP-C1 (Clontech, Palo Alto; GenBank Accession number U55763) digested with EcoR1 and BamH1. This produces an EGFP-Grk5 fusion (SEQ ID NO:42 &43) under the control of a CMV promoter.
- b) The human Grk5 gene (GenBank Accession number: L15388) is amplified using PCR according to standard protocols with primers Grk5-top (SEQ ID NO:27) and Grk5-bottom/-stop (SEQ ID NO:28). The PCR product is digested with restriction enzymes EcoR1 and BamH1, and ligated into pEGFP-N1 (Clontech, Palo Alto; GenBank Accession number U55762) digested with EcoR1 and BamH1. This produces a Grk5-EGFP fusion (SEQ ID NO:60 &61) under the control of a CMV promoter.
- The resulting plasmids are transfected into a suitable cell line, e.g. HEK293 expressing a rat dopamine D1A receptor, in which the EGFP-Grk5 probe and/or the Grk5-EGFP probe should change its cellular distribution from predominantly cytoplasmic to peripheral in response to activation of the signalling pathway with e.g. dopamine.

30 Example 14:

49

Probes for detection of Zap70 redistribution.

Useful for monitoring signalling pathways involving the T cell receptor, e.g. to identify compounds which modulate the activity of the pathway in living cells.

Zap70, a tyrosine kinase, is a component of a signalling pathway which is active in e.g. T-cell differentiation.

- a) The human Zap70 gene (GenBank Accession number: L05148) is amplified using PCR according to standard protocols with primers Zap70-top (SEQ ID NO:105) and Zap70-bottom/+stop (SEQ ID NO:107). The PCR product is digested with restriction enzymes E-coR1 and BamH1, and ligated into pEGFP-C1 (GenBank Accession number U55763) digested with EcoR1 and BamH1. This produces an EGFP-Zap70 fusion (SEQ ID NO:108 &109) under the control of a CMV promoter.
- b) The human Zap70 gene (GenBank Accession number: L05148) is amplified using PCR according to standard protocols with primers Zap70-top (SEQ ID NO:105) and Zap70-bottom/-stop (SEQ ID NO:106). The PCR product is digested with restriction enzymes E-coR1 and BamH1, and ligated into pEGFP-N1 (Clontech, Palo Alto; GenBank Accession number U55762) digested with EcoR1 and BamH1. This produces a Zap70-EGFP fusion (SEQ ID NO:110 &111) under the control of a CMV promoter.

The resulting plasmids are transfected into a suitable cell line, e.g. Jurkat, in which the EGFP-Zap70 probe and/or the Zap70-EGFP probe should change its cellular distribution from cytoplasmic to membrane-associated within seconds in response to activation of the T cell receptor signalling pathway with e.g. antibodies to CD3epsilon.

Example 15:

25 Probes for detection of p85 redistribution.

Useful for monitoring signalling pathways involving PI-3 kinase, e.g. to identify compounds which modulate the activity of the pathway in living cells.

p85alpha is the regulatory subunit of PI3-kinase which is a component of many pathways involving membrane-bound tyrosine kinase receptors and G-protein-coupled receptors.

5

10

15

- a) The human p85alpha gene (GenBank Accession number: M61906) was amplified using PCR according to standard protocols with primers p85-top-C (SEQ ID NO:22) and p85-bottom/+stop (SEQ ID NO:23). The PCR product was digested with restriction enzymes Bgl2 and BamH1, and ligated into pEGFP-C1 (Clontech, Palo Alto; GenBank Accession number U55763) digested with Bgl2 and BamH1. This produced an EGFP-p85alpha fusion (SEQ ID NO:48 &49) under the control of a CMV promoter.
- b) The human p85alpha gene (GenBank Accession number: M61906) was amplified using PCR according to standard protocols with primers p85-top-N (SEQ ID NO:20) and p85-bottom/-stop (SEQ ID NO:21). The PCR product was digested with restriction enzymes E-coR1 and BamH1, and ligated into pEGFP-N1 (Clontech, Palo Alto; GenBank Accession number U55762) digested with EcoR1 and BamH1. This produced a p85alpha-EGFP fusion (SEQ ID NO:66 &67) under the control of a CMV promoter.

The resulting plasmids are transfected into a suitable cell line, e.g. CHO expressing the human insulin receptor, in which the EGFP-p85 probe and/or the p85-EGFP probe may change its cellular distribution from cytoplasmic to membrane-associated within minutes in response to activation of the receptor with insulin.

Example 16:

10

15

Probes for detection of protein-tyrosine phosphatase redistribution.

- 20 Useful for monitoring signalling pathways involving tyrosine kinases, e.g. to identify compounds which modulate the activity of the pathway in living cells.
 - Protein-tyrosine phosphatase1C, a tyrosine-specific phosphatase, is an inhibitory component in signalling pathways involving e.g. some growth factors.
- a) The human protein-tyrosine phosphatase 1C gene (GenBank Accession number: X62055) is amplified using PCR according to standard protocols with primers PTP-top (SEQ ID NO:99) and PTP-bottom/+stop (SEQ ID NO:101). The PCR product is digested with restriction enzymes Xho1 and EcoR1, and ligated into pEGFP-C1 (Clontech, Palo Alto; GenBank Accession number U55763) digested with Xho1 and EcoR1. This produces an EGFP-PTP fusion (SEQ ID NO:116 &117) under the control of a CMV promoter.

b) The human protein-tyrosine phosphatase 1C gene (GenBank Accession number: X62055) is amplified using PCR according to standard protocols with primers PTP-top (SEQ ID NO:99) and PTP-bottom/-stop (SEQ ID NO:100). The PCR product is digested with restriction enzymes Xho1 and EcoR1, and ligated into pEGFP-N1 (Clontech, Palo Alto; GenBank Accession number U55762) digested with Xho1 and EcoR1. This produces a PTP-EGFP fusion (SEQ ID NO:118 &119) under the control of a CMV promoter.

The resulting plasmids are transfected into a suitable cell line, e.g. MCF-7 in which the EGFP-PTP probe and/or the PTP-EGFP probe should change its cellular distribution from cytoplasm to the plasma menbrane within minutes in response to activation of the growth inhibitory signalling pathway with e.g. somatostatin.

Example 17:

10

15

Probes for detection of Smad4 redistribution.

Useful for monitoring signalling pathways involving most members of the transforming growth factor-beta family, e.g. to identify compounds which modulate the activity of the pathway in living cells.

Smad4, a signal transducer, is a common component of signalling pathways induced by various members of the TGFbeta family of cytokines.

- a) The human Smad4 gene (GenBank Accession number: U44378) was amplified using PCR according to standard protocols with primers Smad4-top and Smad4-bottom/+stop (SEQ ID NO:35). The PCR product was digested with restriction enzymes EcoR1 and BamH1, and ligated into pEGFP-C1 (Clontech, Palo Alto; GenBank Accession number U55763) digested with EcoR1 and BamH1. This produce an EGFP-Smad4 fusion (SEQ ID NO:52 &53) under the control of a CMV promoter.
 - b) The human Smad4 gene (GenBank Accession number: U44378) was amplified using PCR according to standard protocols with primers Smad4-top (SEQ ID NO:33) and Smad4-bottom/-stop (SEQ ID NO:34). The PCR product was digested with restriction enzymes E-coR1 and BamH1, and ligated into pEGFP-N1 (Clontech, Palo Alto; GenBank Accession number U55762) digested with EcoR1 and BamH1. This produced a Smad4-EGFP fusion (SEQ ID NO:76 &77) under the control of a CMV promoter.

52

The resulting plasmids are transfected into a cell line, e.g. HEK293 in which the EGFP-Smad4 probe and/or the Smad4-EGFP probe should change its cellular distribution within minutes from cytoplasmic to nuclear in response to activation of the signalling pathway with e.g. TGFbeta.

5

10

15

Example 18:

Probes for detection of Stat5 redistribution.

Useful for monitoring signalling pathways involving the activation of tyrosine kinases of the Jak family, e.g. to identify compounds which modulate the activity of the pathway in living cells.

Stat5, signal transducer and activator of transcription, is a component of signalling pathways which are induced by e.g. many cytokines and growth factors.

- a) The human Stat5 gene (GenBank Accession number: L41142) was amplified using PCR according to standard protocols with primers Stat5-top (SEQ ID NO:30) and Stat5-bottom/+stop (SEQ ID NO:32). The PCR product was digested with restriction enzymes Bgl2 and Acc65I, and ligated into pEGFP-C1 (Clontech; Palo Alto; GenBank Accession number U55763) digested with Bgl2 and Acc65I. This produced an EGFP-Stat5 fusion (SEQ ID NO:54 &55) under the control of a CMV promoter.
- b) The human Stat5 gene (GenBank Accession number: L41142) was amplified using PCR according to standard protocols with primers Stat5-top (SEQ ID NO:30) and Stat5-bottom/stop (SEQ ID NO:331). The PCR product was digested with restriction enzymes Bgl2 and Acc65I, and ligated into pEGFP-N1 (Clontech, Palo Alto; GenBank Accession number U55762) digested with Bgl2 and Acc65I. This produced a Stat5-EGFP fusion (SEQ ID NO:78
 &79) under the control of a CMV promoter.

The resulting plasmids are transfected into a suitable cell line, e.g. MIN6 in which the EGFP-Stat5 probe and/or the Stat5-EGFP probe should change its cellular distribution from cyto-plasmic to nuclear within minutes in response to activation signalling pathway with e.g. prolactin.

Example 19:

Probes for detection of NFAT redistribution.

Useful for monitoring signalling pathways involving activation of NFAT, e.g. to identify compounds which modulate the activity of the pathway in living cells.

NFAT, an activator of transcription, is a component of signalling pathways which is involved in e.g. immune responses.

- a) The human NFAT1 gene (GenBank Accession number: U43342) is amplified using PCR according to standard protocols with primers NFAT-top (SEQ ID NO:84) and NFAT bottom/+stop (SEQ ID NO:86). The PCR product is digested with restriction enzymes Xho1 and EcoR1, and ligated into pEGFP-C1 (Clontech, Palo Alto; GenBank Accession number U55763) digested with Xho1 and EcoR1. This produces an EGFP-NFAT fusion (SEQ ID NO:130 &131) under the control of a CMV promoter.
- b) The human NFAT gene (GenBank Accession number: U43342) is amplified using PCR according to standard protocols with primers NFAT-top (SEQ ID NO:84) and NFAT-bottom/stop (SEQ ID NO:85). The PCR product is digested with restriction enzymes Xho1 and E-coR1, and ligated into pEGFP-N1 (Clontech, Palo Alto; GenBank Accession number U55762) digested with Xho1 and EcoR1. This produces an NFAT-EGFP fusion (SEQ ID NO:132 &133) under the control of a CMV promoter.
- The resulting plasmids are transfected into a suitable cell line, e.g. Jurkat, in which the EGFP-NFAT probe and/or the NFAT-EGFP probe should change its cellular distribution from cytoplasmic to nuclear within minutes in response to activation of the signalling pathway with e.g. antibodies to CD3epsilon.

25 Example 20:

Probes for detection of NFkappaB redistribution.

Useful for monitoring signalling pathways leading to activation of NFkappaB, e.g. to identify compounds which modulate the activity of the pathway in living cells.

NFkappaB, an activator of transcription, is a component of signalling pathways which are responsive to a varity of inducers including cytokines, lymphokines, some immunosuppressive agents.

a) The human NFkappaB p65 subunit gene (GenBank Accession number: M62399) is amplified using PCR according to standard protocols with primers NFkappaB-top (SEQ ID NO:87) and NFkappaB-bottom/+stop (SEQ ID NO:89). The PCR product is digested with restriction enzymes Xho1 and BamH1, and ligated into pEGFP-C1 (Clontech, Palo Alto; GenBank Accession number U55763) digested with Xho1 and BamH1. This produces an EGFP-NFkappaB fusion (SEQ ID NO:142 & 143) under the control of a CMV promoter.

- b) The human NFkappaB p65 subunit gene (GenBank Accession number: M62399) is amplified using PCR according to standard protocols with primers NFkappaB-top (SEQ ID NO:87) and NFkappaB-bottom/-stop (SEQ ID NO:88). The PCR product is digested with restriction enzymes Xho1 and BamH1, and ligated into pEGFP-N1 (Clontech, Palo Alto; Gen-
- Bank Accession number U55762) digested with Xho1 and BamH1. This produces an NFkappaB-EGFP fusion (SEQ ID NO:140 & 141) under the control of a CMV promoter.

The resulting plasmids are transfected into a suitable cell line, e.g. Jurkat, in which the EGFP-NFkappaB probe and/or the NFkappaB-EGFP probe should change its cellular distribution from cytoplasmic to nuclear in response to activation of the signalling pathway with e.g. TNFalpha.

Example 21:

20

30

Probe for detection of RhoA redistribution.

Useful for monitoring signalling pathways involving RhoA, e.g. to identify compounds which modulate the activity of the pathway in living cells.

RhoA, a small GTPase, is a component of many signalling pathways, e.g. LPA induced cytoskeletal rearrangements.

The human RhoA gene (GenBank Accession number: L25080) was amplified using PCR according to standard protocols with primers RhoA-top (SEQ ID NO:92) and RhoA-bottom/+stop (SEQ ID NO:93). The PCR product was digested with restriction enzymes

Hind3 and BamH1, and ligated into pEGFP-C1 (Clontech, Palo Alto; GenBank Accession number U55763) digested with Hind3and BamH1. This produced an EGFP-RhoA fusion (SEQ ID NO:126 &127) under the control of a CMV promoter.

The resulting plasmid is transfected into a suitable cell line, e.g. Swiss3T3, in which the EGFP-RhoA probe should change its cellular distribution from a reasonably homogenous to a peripheral distribution within minutes of activation of the signalling pathway with e.g. LPA. Example 22:

Probes for detection of PKB redistribution.

Useful for monitoring signalling pathways involving PKB e.g. to identify compounds which modulate the activity of the pathway in living cells.

PKB, a serine/threonine kinase, is a component in various signalling pathways, many of which are activated by growth factors.

- a) The human PKB gene (GenBank Accession number: M63167) is amplified using PCR according to standard protocols with primers PKB-top (SEQ ID NO:36) and PKB-bottom/+stop (SEQ ID NO:80). The PCR product is digested with restriction enzymes Xho1 and BamH1, and ligated into pEGFP-C1 (Clontech, Palo Alto; GenBank Accession number U55763) digested with Xho1 and BamH1. This produces an EGFP-PKB fusion (SEQ ID NO:138 & 139) under the control of a CMV promoter.
- b) The human PKB gene (GenBank Accession number: M63167) was amplified using PCR according to standard protocols with primers PKB-top (SEQ ID NO:36) and PKB-bottom/stop (SEQ ID NO:37). The PCR product was digested with restriction enzymes Xho1 and BamH1, and ligated into pEGFP-N1 (Clontech, Palo Alto; GenBank Accession number U55762) digested with Xho1 and BamH1. This produced a PKB-EGFP fusion (SEQ ID NO:70 &71) under the control of a CMV promoter.

The resulting plasmids are transfected into a suitable cell line, e.g. CHO expressing the human insulin receptor, in which the EGFP-PKB probe and/or the PKB-EGFP probe cycles between cytoplasmic and membrane locations during the activation-deactivation process following addition of insulin. The transition should be apparent within minutes.

REFERENCES:

- Adams, S.R., Harootunian, A.T., Buechler, Y.J., Taylor, S.S. & Tsien, R.Y. (1991) Nature 349, 694-697
- Blobe, G.C., Stribling, D.S., Fabbro, D., Stabel, S & Hannun, Y.A. (1996) J. Biol. Chem. 271, 15823-15830
 - Chalfie, M., Tu, Y., Euskirchen, G., Ward, W.W. & Prasher, D.C. (1994) Science 263, 802-805
 - Cossette, L.J., Hoglinger, O., Mou, L.J. & Shen, S.H. (1997) Exp. Cell Res. 223, 459-466
- DeBernardi, M.A. & Brooker, G. (1996) Proc. Natl. Acad. Sci. USA 93, 4577-4582
 Farese, R.V.. (1992) Biochem. J. 288, 319-323
 - Fulop Jr., T., Leblanc, C., Lacombe, G. & Dupuis, G. (1995) FEBS Lett. 375, 69-74 Godson, C., Masliah, E., Balboa, M.A., Ellisman, M.H. & Insel, P.A. (1996) Biochem. Biophys. Acta 1313, 63-71
- Khalil, R.A., Lajoie, C., Resnick, M.S. & Morgan, K.G. (1992) American Physiol. Society **c**, 714-719
 - Sano, M., Kohno, M. & Iwanaga, M. (1995) Brain Res. **688**, 213-218

 Bastiaens, P.I.H. & Jovin, T.M. (1996) Proc. Natl. Acad. Sci. USA **93**, 8407-8412

 Schmidt, D.J., Ikebe, M., Kitamura, K., & Fay, F.S. (1997) FASEB J. **11**, 2924 (Abstract)
- Sakai, N., Sasaki, K., Hasegawa, C., Ohkura, M., Suminka, K., Shirai, Y. & Saito, N. (1996)
 Soc. Neuroscience 22, 69P (Abstract)
 - Sakai, N., Sakai, K. Hasegawa, C., Ohkura, M., Sumioka, ., Shirai, Y., & Naoaki, S. (1997) Japanese Journal of Pharmacology **73**, 69P (Abstract of a meeting held 22-23 March)

57

SEQUENCE LISTING

5	(1) GENERAL INFORMATION
	(i) APPLICANT: NovoNordisk, BioImage
10	(ii) TITLE OF THE INVENTION: A Method of Detecting Cellular Translocation of Biologically Active Polypeptides Using Fluorescense Imaging
	(iii) NUMBER OF SEQUENCES: 143
15	(iv) CORRESPONDENCE ADDRESS:(A) ADDRESSEE: NovoNordisk, BioImage(B) STREET: Mørkhøjbygade 28(C) CITY: Søborg
20	(D) STATE: DK (E) COUNTRY: DENMARK (F) ZIP: 2860
25	(v) COMPUTER READABLE FORM:(A) MEDIUM TYPE: Diskette(B) COMPUTER: IBM Compatible
	(C) OPERATING SYSTEM: DOS (D) SOFTWARE: FastSEQ for Windows Version 2.0
30	<pre>(viii) ATTORNEY/AGENT INFORMATION: (A) NAME: , PV&P R (B) REGISTRATION NUMBER: (C) REFERENCE/DOCKET NUMBER:</pre>
35	(2) INFORMATION FOR SEQ ID NO:1:
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 53 base pairs
40	(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear
45	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:
	TTGGACACAA GCTTTGGACA CGGCGCGCCA TGAGTAAAGG AGAAGAACTT TTC 53
50	(2) INFORMATION FOR SEQ ID NO:2:
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 53 base pairs (B) TYPE: nucleic acid
55	<pre>(C) STRANDEDNESS: single (D) TOPOLOGY: linear</pre>

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:	
5	GTCATCTTCT CGAGTCTTAC TCCTGAGGTT TGTATAGTTC ATCCATGCCA TGT	53
J	(2) INFORMATION FOR SEQ ID NO:3:	53
10	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 54 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:	
	TTGGACACAA GCTTTGGACA CCCTCAGGAT ATGGGCAACG CCGCCGCCGC CAAG	54
20	(2) INFORMATION FOR SEQ ID NO:4:	
	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 55 base pairs	
25	(B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:	
30	GTCATCTTCT CGAGTCTTTC AGGCGCGCCC AAACTCAGTA AACTCCTTGC CACAC	55
	(2) INFORMATION FOR SEQ ID NO:5:	
35	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 55 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
40		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:	
45	TTGGACACAA GCTTTGGACA CCCTCAGGAT ATGGCTGACG TTTACCCGGC CAACG	55
.0	(2) INFORMATION FOR SEQ ID NO:6:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 55 base pairs	
50	(B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:	
-	GTCATCTTCT CGAGTCTTTC AGGCGCGCCC TACTGCACTT TGCAAGATTG GGTGC	55 58

59

	(2) INFORMATION FOR SEQ ID NO:7:	
	(2) INFORMATION FOR SEQ ID NO: /:	
5	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 64 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
10		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:	
15	TTGGACACAA GCTTTGGACA CCCTCAGGAT ATGGCGGCGG CGGCGGCGGC TCCGGGGGGC GGGG	60 64
	(2) INFORMATION FOR SEQ ID NO:8:	
20	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 55 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:	
	GTCATCTTCT CGAGTCTTTC AGGCGCCCCC GGGGCCCCTCT GGCGCCCCTG GCTGG	55
30	(2) INFORMATION FOR SEQ ID NO:9:	
	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 30 base pairs(B) TYPE: nucleic acid	
35 ·	(C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:	
40	TAGAATTCAA CCATGGCGGC GGCGGCGGCG	30
	(2) INFORMATION FOR SEQ ID NO:10:	
45	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 29 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:	
	TAGGATCCCT AGGGGGCCTC CAGCACTCC	29
55	(2) INFORMATION FOR SEQ ID NO:11:	

WO 98/45704

		PCT/DK98/00145
	60	
	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 31 base pairs(B) TYPE: nucleic acid	
5	(C) STRANDEDNESS: single	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:	
10	TACTCGAGTA ACCATGGCGG CGGCGGCGGC G	31
	(2) INFORMATION FOR SEQ ID NO:12:	
15	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
20		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:	
0.5	TAGGATCCAT AGATCTGTAT CCTGG	25
25	(2) INFORMATION FOR SEQ ID NO:13:	
30	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 26 base pairs (B) TYPE: nucleic acid	
00	(C) STRANDEDNESS: single (D) TOPOLOGY: linear	
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:	
	TAGGATCCTT AAGATCTGTA TCCTGG	26
	(2) INFORMATION FOR SEQ ID NO:14:	
40	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 28 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single	
45	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:	
50	ATCTCGAGGG AAAATGTCTC AGGAGAGG	28
	(2) INFORMATION FOR SEQ ID NO:15:	

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 28 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single

WO 98/45704	PCT/DK98/0014

(D) TOPOLOGY: linear

5	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:	
J	ATGGATCCTC GGACTCCATC TCTTCTTG	28
	(2) INFORMATION FOR SEQ ID NO:16:	
10	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
15	(b) TOPOLOGI: IIIIEAI	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:	
20	ATGGATCCTC AGGACTCCAT CTCTTCTTG	29
20	(2) INFORMATION FOR SEQ ID NO:17:	
25	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 28 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:	
	GTCTCGAGCC ATCATGAGCA GAAGCAAG	28
35	(2) INFORMATION FOR SEQ ID NO:18:(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 27 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: single	
40	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:	
45	GTGGATCCCA CTGCTGCACC TGTGCTA	27
	(2) INFORMATION FOR SEQ ID NO:19:	
50	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 28 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
55		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:	

	GIGGATCCTC ACTGCTGCAC CTGTGCTA	28
5	(2) INFORMATION FOR SEQ ID NO:20:	20
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 40 base pairs	
	(B) TYPE: nucleic acid	
10	(C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(2) Torologi: Timear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:	
15	CGCGAATTCC GCCACCATGA GTGCTGAGGG GTACCAGTAC	40
	(2) INFORMATION FOR SEQ ID NO:21:	
20	(i) SEQUENCE CHARACTERISTICS:	
20	(A) LENGTH: 32 base pairs (B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
25		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:	
	CGCGGATCCT GTCGCCTCTG CTGTGCATAT AC	32
30	(2) INFORMATION FOR SEQ ID NO:22:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 30 base pairs (B) TYPE: nucleic acid	
35	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(vi) ORIGINAL SOURCE:	
40	(A) ORGANISM: p85-top-C	
40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:	
	GGGAGATCTA TGAGTGCTGA GGGGTACCAG	30
45	(2) INFORMATION FOR SEQ ID NO:23:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 34 base pairs (B) TYPE: nucleic acid	
50	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:	
30	GGGCGGATCC TCATCGCCTC TGCTGTGCAT ATAC	
	- THE COURT ISCIBIGUAT ATAC	34
		62

	(2) INFORMATION FOR SEQ ID NO:24:	
5	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:24:	
	GTGAATTCGA CCATGTCGTC CATCTTGCCA TTC	33
15	(2) INFORMATION FOR SEQ ID NO:25:	
20	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 31 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:25:	
	GTGGTACCCA TGACATGCTT GAGCAACGCA C	31
	(2) INFORMATION FOR SEQ ID NO:26:	
30 35	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 32 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:26:	
40	GTGGTACCTT ATGACATGCT TGAGCAACGC AC	32
	(2) INFORMATION FOR SEQ ID NO:27:	
45	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 31 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:27:	
	GTGAATTCGT CAATGGAGCT GGAAAACATC G	31
55	(2) INFORMATION FOR SEQ ID NO:28:	
-•	(i) SEQUENCE CHARACTERISTICS:	

		PCT/DK98/00145
	64	
	(A) LENGTH: 30 base pairs(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
5	Tancar	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:28:	
10	GTGGATCCCT GCTGCTTCCG GTGGAGTTCG	30
	(2) INFORMATION FOR SEQ ID NO:29:	
	(i) SEQUENCE CHARACTERISTICS:	
45	(A) LENGTH: 31 base pairs	
15	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
20	(XI) SEQUENCE DECENSA-	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:29:	
	GTGGATCCCT AGCTGCTTCC GGTGGAGTTC G	2.1
25	(2) INFORMATION FOR SEQ ID NO:30:	31
25		
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 32 base pairs	
	(B) TYPE: nucleic acid	
30	(C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(b) TopoLogY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:30:	
35		
	GTAGATCTAC CATGGCGGGC TGGATCCAGG CC	32
	(2) INFORMATION FOR SEQ ID NO:31:	
40	(i) SEQUENCE CHARACTERISTICS:	
40	(A) LENGTH: 31 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
45	(D) TOPOLOGY: linear	
45	(- ') - mm-	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:31:	
	GTGGTACCCA TGAGAGGGAG CCTCTGGCAG A	31
50	(2) INFORMATION FOR SEQ ID NO:32:	31
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 31 base pairs	
55	(B) TYPE: nucleic acid	
JU	(C) STRANDEDARGE	

64

(C) STRANDEDNESS: single (D) TOPOLOGY: linear

65

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:32:	
5	GTGGTACCTC ATGAGAGGGA GCCTCTGGCA G	31
	(2) INFORMATION FOR SEQ ID NO:33:	
10	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:33:	
	GTGAATTCAA CCATGGACAA TATGTCTATT ACG	33
20	(2) INFORMATION FOR SEQ ID NO:34:	
25	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 31 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:34:	
	GTGGATCCCA GTCTAAAGGT TGTGGGTCTG C	31
	(2) INFORMATION FOR SEQ ID NO:35:	
35	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 32 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single	
40	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:35:	
	GTGGATCCTC AGTCTAAAGG TTGTGGGTCT GC	32
45	(2) INFORMATION FOR SEQ ID NO:36:	
50	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 27 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:36:	

GTCTCGAGGC ACCATGAGCG ACGTGGC

- (2) INFORMATION FOR SEQ ID NO:37:
- 5 (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 27 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:37:

TGGGATCCGA GGCCGTGCTG CTGGCCG

15

- (2) INFORMATION FOR SEQ ID NO:38:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1896 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- 25 (ix) FEATURE:

10

30

40

- (A) NAME/KEY: Coding Sequence
- (B) LOCATION: 1...1891
- (D) OTHER INFORMATION:
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:38:

ATG GTG AGC AAG GGC GAG GAG CTG TTC ACC GGG GTG GTG CCC ATC CTG

Met Val Ser Lys Gly Glu Glu Leu Phe Thr Gly Val Val Pro Ile Leu

10 15

GTC GAG CTG GAC GGC GAC GTA AAC GGC CAC AAG TTC AGC GTG TCC GGC
Val Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe Ser Val Ser Gly
20 25 30

GAG GGC GAG GGC GAT GCC ACC TAC GGC AAG CTG ACC CTG AAG TTC ATC
Glu Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr Leu Lys Phe Ile
35
40
45

TGC ACC ACC GGC AAG CTG CCC GTG CCC TGG CCC ACC CTC GTG ACC ACC

Cys Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr Leu Val Thr Thr

50 55 60

CTG ACC TAC GGC GTG CAG TGC TTC AGC CGC TAC CCC GAC CAC ATG AAG

Leu Thr Tyr Gly Val Gln Cys Phe Ser Arg Tyr Pro Asp His Met Lys

70

75

80

CAG CAC GAC TTC TTC AAG TCC GCC ATG CCC GAA GGC TAC GTC CAG GAG 288
Gln His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly Tyr Val Gln Glu
55 90 95

						01					
			TTC Phe								336
5			GGC Gly							_	384
10			GAG Glu								432
15			CAC His								480
20			AAC Asn 165				_	_	_		528
20			GAC Asp								576
25			CCC Pro								624
30			AAC Asn								672
35			GGG Gly								720
40			CGA Arg 245							_	768
40			GGC Gly								816
45			CCG Pro								864
50			CGC Arg						_	_	912
55			AGC Ser							_	960

	68
	GCC ATC AAG AAG ATC AGC CCC TTC GAA CAT CAG ACC TAC TGC CAG CGC Ala lle Lys Lys lle Ser Pro Phe Glu His Gln Thr Tyr Cys Gln Arg 325 330 335
	Thr Leu Arg Glu Ile Gln Ile Leu Leu Arg Phe Arg His Glu Asn Val
10	355 360 Ser Thr Leu Glu Ala Met Arg
15	375 380 The Asp Leu Tyr Lys Leu
20	CTG AAA AGC CAG CAG CTG AGC AAT GAC CAT ATC TGC TAC TTC CTC TAC Leu Lys Ser Gln Gln Leu Ser Asn Asp His Ile Cys Tyr Phe Leu Tyr 395 CAG ATC CTG CGG CGG CTG No.
25	CAG ATC CTG CGG GGC CTC AAG TAC ATC CAC TCC GCC AAC GTG CTC CAC Gln Ile Leu Arg Gly Leu Lys Tyr Ile His Ser Ala Asn Val Leu His 405 410 415
	CGA GAT CTA AAG CCC TCC AAC CTG CTC AGC AAC ACC ACC TGC GAC CTT 1296 Arg Asp Leu Lys Pro Ser Asn Leu Leu Ser Asn Thr Thr Cys Asp Leu 420 425 430
30	AAG ATT TGT GAT TTC GGC CTG GCC CGG ATT GCC GAT CCT GAG CAT GAC Lys Ile Cys Asp Phe Gly Leu Ala Arg Ile Ala Asp Pro Glu His Asp 435 440 445
35	CAC ACC GGC TTC CTG ACG GAG TAT GTG GCT ACG CGC TGG TAC CGG GCC His Thr Gly Phe Leu Thr Glu Tyr Val Ala Thr Arg Trp Tyr Arg Ala 450 450 460
40	CCA GAG ATC ATG CTG AAC TCC AAG GGC TAT ACC AAG TCC ATC GAC ATC Pro Glu Ile Met Leu Asn Ser Lys Gly Tyr Thr Lys Ser Ile Asp Ile 475 480
45	TGG TCT GTG GGC TGC ATT CTG GCT GAG ATG CTC TCT AAC CGG CCC ATC 1488 Trp Ser Val Gly Cys Ile Leu Ala Glu Met Leu Ser Asn Arg Pro Ile 490 495
43	TTC CCT GGC AAG CAC TAC CTG GAT CAG CTC AAC CAC ATT CTG GGC ATC Phe Pro Gly Lys His Tyr Leu Asp Gln Leu Asn His Ile Leu Gly Ile 500 500 510
50	CTG GGC TCC CCA TCC CAG GAG GAC CTG AAT TGT ATC ATC AAC ATG AAG Leu Gly Ser Pro Ser Gln Glu Asp Leu Asn Cys Ile Ile Asn Met Lys 515 520 525
55	GCC CGA AAC TAC CTA CAG TCT CTG CCC TCC AAG ACC AAG GTG GCT TGG Ala Arg Asn Tyr Leu Gln Ser Leu Pro Ser Lys Thr Lys Val Ala Trp 530 535 540

	69																
				TTC Phe													1680
5				ACC Thr													1728
10				CCC Pro 580													1776
15				GAG Glu													1824
20				CTG Leu													1872
20				CTG Leu		_		CTAG									1896
25	(2) INFORMATION FOR SEQ ID NO:39:																
30	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 631 amino acids(B) TYPE: amino acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear																
35	<pre>(ii) MOLECULE TYPE: protein 5 (v) FRAGMENT TYPE: internal (xi) SEQUENCE DESCRIPTION: SEQ ID NO:39:</pre>																
	14-4												17-1	Dwa	T10	Lon	
40	1			Lys	5					10	_				15		
				20 Gly	_	-			25		-			30			-
45	Cys		35 Thr	Gly	Lys	Leu		40 Val	Pro	Trp	Pro		45 Leu	Val	Thr	Thr	
	Leu 65	50 Thr	Tyr	Gly	Val	Gln 70	55 Cys	Phe	Ser	Arg	Tyr 75	60 Pro	Asp	His	Met	Lys 80	
50		His	Asp	Phe	Phe 85		Ser	Ala	Met	Pro 90		Gly	Tyr	Val	Gln 95		
	Arg	Thr	Ile	Phe 100	Phe	Lys	Asp	Asp	Gly 105		Tyr	Lys	Thr	Arg 110	Ala	Glu	
		-	115	Glu				120					125				
55	Ile	Asp 130	Phe	Lys	Glu	Asp	Gly 135	Asn	Ile	Leu	Gly	His 140	Lys	Leu	Glu	Tyr	

								70						
	Asn T	yr Asr	ı Ser	His A	sn V	al T	yr Il	e Met	: Ala	Asp	Lys	Gln	Lvs	. Asn
	Gly I	le Lys	. Val	1 Asn P	50 he L	vs I	le Ar	a Wie	155	71-	~ .			160
5	Val G	ln Lou	. הוה	165				170) ASII	116	GIU	Asp	Gly 175	Ser
		ln Leu												
		al Leu 195										Ser		
10		ys Asp 10									Leu			
		hr Ala								Glu				
	Gly L	eu Arg	Ser A	Arg Al	la Gl	n Al	a Ser	Asn	Ser	Thr	Met	Ala	Ala	240 Ala
15	Ala A						y Glu	Pro						
	Gly Pı	0 Gly 275	Val F	ro Gl	y Gl	u Va	l Glu	Met	Val :	Lys (Gly	270 Gln	Pro	Phe
20	Asp Va				r Th	r Gl								
	Tyr Gl			er Se	r Ala									
	Ala Il													
25	Thr Le													
	Ile Gl													
	Asp Va													
30														
	Leu Ly:													
	Gln Ile													
35	Arg Asp	Leu I	ys Pr 120	o Ser	Asn	Leu	Leu 425	Ser A	Asn T	hr T	hr C	ys A	15 sp I	Leu
	Lys Ile	Cys <i>I</i>	Asp Ph	e Gly	Leu	Ala 440	Arg	Ile A	Ala A	sp Pi	4. .co G.	30 lu H	is A	asp
40	His Thr 450	Gly F	he Le	u Thr	Glu 455	Tyr	Val .	Ala T	hr A	44 cg Ti	15 op T	yr A	rg A	la
	Pro Glu 465	Ile M	let Le	u Asn	Ser	Lys	Gly	Tyr T	46 hr Ly	50 ⁄s S∈	r I	le A	sp I	le
	Trp Ser													
45	Phe Pro	Gly L	ys Hi											
	Leu Gly													
50	Ala Arg 530													
50	530 Ala Lys 545													
55	Arg Met													
55	Leu Ala	His Pr	TO Tyr	Leu	Glu (Gln '	Tyr T 585	yr As	sp Pr	O Th	r As 59	p G1 0	u Pi	0

		•															
	Val .	Ala	Glu 595	Glu	Pro	Phe	Thr	Phe 600	Ala	Met	Glu	Leu	Asp 605	Asp	Leu	Pro	
	Lys	Glu 610		Leu	Lys	Glu	Leu 615		Phe	Gln	Glu	Thr 620	Ala	Arg	Phe	Gln	
5	Pro 625		Val	Leu	Glu	Ala 630											
			(2)	INF	ORMA	TION	FOF	SEC	DI	NO : 4	0:						
10		(i	(A) (B) (C)	QUEN LENG TYPE STRA	TH: : nu NDED	1818 clei NESS	bas c ac	e pa :id .ngle	irs								
15		٠.		OLEC EATU		TYPE	: cI	NA									
20			(B)	NAM LOC	ATIC	N: 1	1	815	equer	ice							
		(х	(i) S	EQUE	ENCE	DESC	RIPT	ION:	SEÇ) ID	NO : 4	0:					
25	ATG Met 1																48
30	GTC Val																96
35	GAG Glu												CTG Leu 45				144
40													CTC Leu				192
40													GAC Asp				240
45													TAC Tyr				288
50													ACC Thr			_	336
55													GAG Glu 125				384

													72										
			13	Ò	rc A ne L				13	у А. 5	211	тте	. re	u G	ТУ	His 140	Ly	s L	eu	Gl	и Ту	r	432
5	14	45	•		C A			150	va.	1 1)	/ <u>F</u>	116	ме	t A	1a 55	Asp	Ly	s Gi	ln	Lys	3 As:	n 0	480
10		-		•	G G:	1	65	1110	Dy s	, 11		arg	17	s As 0	sn	Ile	Glı	ı As	gp	Gly 175	7 Se	r	528
15					C GC u Al 18	0	-p	*****	171	. 61	11 (185	Ası	ı Th	ır .	Pro	Ilε	Gl 19	y 2 0	Asp	Gly	7	576
20				195				nsp	ASII	200	0	yr	Let	ı Se	r '	Thr	Gln 205	Se	r A	\la	Leu	ı	624
		2	210		C CC	- 11.	,,,,	JIU	215	Arç	JA	ap	His	Me	t V	/al 220	Leu	Le	u G	lu	Phe		672
25	225	5			GC6	- 0.	2	30	1111	neu	נט	ΙY.	Met	23!	р G 5	lu	Leu	Туз	r L	ys	Ser 240		720
30	GG# Gly	A C	TC eu	AGA Arg	TC:	CG Ar 24	.	TA /	ACC Thr	ATG Met	G(ıa A	GCG Ala 250	GC0 Ala	G G	CG (GCG Ala	GCC Ala	G	GC ly 55	CCG Pro		768
35	GAG Glu	A M	TG et	GTC Val	CGC Arg 260	O.L.	G C Y G	AG (GTG /al	TTC Phe	G# As 26	gp \	GTG Val	GGC Gly	G C	CG (CGC Arg	TAC Tyr 270	T]	CT .	AAT Asn		816
40	CTC Leu	Se		TAC Tyr 275	ATC	GG/ Gly	A G	AA G	ту	GCC Ala 280	ТА	AC G	GC Bly	ATG Met	G: Va	al C	GT Ys 85	TCT Ser	G(CT '	TAT Tyr		864
	GAT Asp	AA As	AT (sn 1	CTC Leu	AAC Asn	AA <i>I</i> Lys	A GT	1 T	GA rg 95	GTT Val	GC Al	T A a I	TC le	AAG Lys	AA Ly 30	s I	TC .	AGT Ser	CC	T :	rrr Phe		912
45	GAG Glu 305	CA	.C (AG In	ACC Thr	ТАС Туг	Су 31	3 0	AG 1	AGA Arg	AC Th	c c	eu .	AGA Arg 315	GA Gl	AG A .u I	TA A	AAA Lys	AT Il	e I	CTA Leu 120		960
50	CTG Leu	CG Ar	C I	TC he	AGA Arg	CAT His 325	0.1	G A	AC A	ATC [le	AT Il	e G	GC / ly :	ATC Ile	AA As	T G.	AC A	ATC [le	AT Il 33	e A	:GG .rg	1	.008
55	GCA Ala	CC. Pr	A A		ATT Ile 340	GAG Glu	CA Gl:	G A: n Me	rg A	ys .	GA: Asp 345	o Va	TA :	FAT Fyr	AT.	AG:	al G	CAG Sln	GA Asj	c c	TC eu	1	056

						13					
			CTT Leu								1104
5			TAT Tyr		_	_		_			1152
10			AAT Asn								1200
15			ACT Thr 405			_				_	1248
20			CCA Pro								1296
20			TGG Trp								1344
25			TCC Ser								1392
30			AAC Asn								1440
35			ATC Ile 485								1488
40			ATA Ile		_						1536
40			AAG Lys								1584
45			GAT Asp							_	1632
50			GTT Val						_	_	1680
55			AGT Ser 565	_			_			_	1728

										7							
_		_		5	80	~ [SP L	cu P	5	ys G 85	IU L	ys L	eu L	ys G 5	lu L 90	TC ATT eu Ile	1776
5	T'	IT G		AG AG lu Tl 95	CT G	CT CO	GA T	ie G.	AG Co ln P:	CA G	GA T	AC AC	rg Se	CT TA	AA		1818
10				(2)]	INFO	TAMS	ON F	OR S	SEQ]	ID No	0:41:	:					
15			(E (C	SEQUAL DE SEQUE SE	ENGTH PE: RAND	I: 60 amin EDNE	5 am o ac SS:	ino id sina	acid	S: Is							
20			(V)	MOL FRAG SEQ	MENT	TYP	E: i	nter	nal	EQ I	D NO	:41:					
25			l Se	r Ly:	s Gl	y Gl	ı Glı	ı Le	u Ph	e Th	r Gl	y Va				e Leu	
																Gly	
30	Суя	5 Th:	Thi	c Gly	/ Lys	Leu	Pro	Va]	Pro	Tr	Pro	Thr	45 Let	ı Va]	l Thr	Thr	
												Pro				Lys 80 Glu	
35				Phe	Phe											Glu	
	Val	Lys	Phe 115	Glu	Gly	Asp	Thr	Leu	Val	Asn	Arg	Ile	Glu	110 Leu	Lys	Gly	
40				Lys				Asn	Ile								
				Ser								Asp					
45	Val	Gln	Leu	Val Ala 180	165 Asp	His	Tyr	Gln	Arg	His 170 Asn	Asn	Ile	Glu	Asp	Gly 175	Ser	
				180 Leu				His									
50				Pro								Val					
				Ala			Thr										
55				Ser							Ala						
-			va.	Arg 260	стА	GIN	val	Phe	Asp 265	Val	Gly	Pro	Arg	Tyr 270	Thr	Asn	

75

```
Leu Ser Tyr Ile Gly Glu Gly Ala Tyr Gly Met Val Cys Ser Ala Tyr
                 280
                                     285
            275
     Asp Asn Leu Asn Lys Val Arg Val Ala Ile Lys Lys Ile Ser Pro Phe
                          295
5
     Glu His Gln Thr Tyr Cys Gln Arg Thr Leu Arg Glu Ile Lys Ile Leu
     305 310
                                        315
     Leu Arg Phe Arg His Glu Asn Ile Ile Gly Ile Asn Asp Ile Ile Arg
                   325
                                    330
     Ala Pro Thr Ile Glu Gln Met Lys Asp Val Tyr Ile Val Gln Asp Leu
10
               340
                                 345
     Met Glu Thr Asp Leu Tyr Lys Leu Leu Lys Thr Gln His Leu Ser Asn
           355
                             360
                                               365
     Asp His Ile Cys Tyr Phe Leu Tyr Gln Ile Leu Arg Gly Leu Lys Tyr
                          375
                                            380
15
     Ile His Ser Ala Asn Val Leu His Arg Asp Leu Lys Pro Ser Asn Leu
            390
                                        395
     Leu Leu Asn Thr Thr Cys Asp Leu Lys Ile Cys Asp Phe Gly Leu Ala
               . 405
                                    410
     Arg Val Ala Asp Pro Asp His Asp His Thr Gly Phe Leu Thr Glu Tyr
20
               420
                                425
     Val Ala Thr Arg Trp Tyr Arg Ala Pro Glu Ile Met Leu Asn Ser Lys
           435 440
                                     445
     Gly Tyr Thr´Lys Ser Ile Asp Ile Trp Ser Val Gly Cys Ile Leu Ala
                          455
                                            460
25
     Glu Met Leu Ser Asn Arg Pro Ile Phe Pro Gly Lys His Tyr Leu Asp
                    470 475
     Gln Leu Asn His Ile Leu Gly Ile Leu Gly Ser Pro Ser Gln Glu Asp
                                     490
     Leu Asn Cys Ile Ile Asn Leu Lys Ala Arg Asn Tyr Leu Leu Ser Leu
30
              500
                                505
                                         510
     Pro His Lys Asn Lys Val Pro Trp Asn Arg Leu Phe Pro Asn Ala Asp
                             520
                                               525
     Ser Lys Ala Leu Asp Leu Leu Asp Lys Met Leu Thr Phe Asn Pro His
       530
                535
                                          540
35
     Lys Arg Ile Glu Val Glu Gln Ala Leu Ala His Pro Tyr Leu Glu Gln
                    550
                                       555
     Tyr Tyr Asp Pro Ser Asp Glu Pro Ile Ala Glu Ala Pro Phe Lys Phe
                  565
                                    570 575
     Asp Met Glu Leu Asp Asp Leu Pro Lys Glu Lys Leu Lys Glu Leu Ile
40
                                585
     Phe Glu Glu Thr Ala Arg Phe Gln Pro Gly Tyr Arg Ser
                              600
             (2) INFORMATION FOR SEQ ID NO:42:
45
           (i) SEQUENCE CHARACTERISTICS:
            (A) LENGTH: 2529 base pairs
             (B) TYPE: nucleic acid
            (C) STRANDEDNESS: single
50
            (D) TOPOLOGY: linear
```

(ii) MOLECULE TYPE: cDNA

(ix) FEATURE:

55

(A) NAME/KEY: Coding Sequence

(B) LOCATION: 1...2526

76

(D) OTHER INFORMATION:

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:42:

5	1				•	5	-			cu	PIIE	10	ir G	ту	Va1	l Va	1 P	ro	Ile 15	C CTG		48
10					20	7		p vo	· - A	211	25	, HI	s L	ys	Phe	Se.	r Va 30	al:	Ser	GGC Gly		96
15	GA G1:	G G(u G)	GC G ly G	AG lu 5	GGC Gly	GAT Asp	GC6	C AC	T Ty	Y L	GGC Gly	Ly:	G C'	ΓG . eu '	ACC Thr	CTC Let	G AA	AG :	rtc	ATC		144
20	TG(Cys	C AC S Th	CC A ar T	CC (GGC Gly	AAG Lys	CTC	G CC 1 Pr 55	C G1 o Va	rg	CCC Pro	TG(G CO	0 (ACC Thr 60	CTO	C GI 1 Va	G A	.CC hr	ACC Thr		192
	CTC Lev 65	AC Th	C T	AC C	GC Sly	GTG Val	CAG Gln 70	TG Cy	C TI S Ph	C .	AGC Ser	CGC	TA Ty 75	r E	CCC Pro	GAC Asp	CA Hi	C A s M	TG et	AAG Lys 80		240
25	CAG Gln	CA Hi	C GA	AC I		TTC Phe 85	AAG Lys	TC(Ser	C GC	C A	ATG Met	CCC Pro 90	GA Gl	A G u G	GC Sly	TAC Tyr	GT(Va.	C C. 1 G. 9:	ln	GAG Glu		288
30	CGC Arg	AC:	C AT	-	TC the 1	TTC Phe	AAG Lys	GAC Asp	GA Ası	b c	GC Sly 105	AAC Asn	TA:	C A	AG ys	ACC Thr	CGC Arg	J A	CC la	GAG Glu		336
35	GTG Val	AA(3 TT 5 Ph 11	C G e G 5	AG C	GC Bly	GAC Asp	ACC	CTO Let 120	1 V	TG al	AAC Asn	CGG	C A	le (GAG Glu 125	CTG Leu	AA Ly	.G 's	GGC Gly		384
40	ATC Ile	GAC Asp 130	TT Ph	C AA	AG G /s G	AG (GAC Asp	GGC Gly 135	AAC Asn	A I	TC (CTG Leu	GGC Gly	H	AC A is I	AAG Lys	CTG Leu	GA Gl	Gʻ uʻ	TAC Tyr		432
	AAC Asn 145	TAC Tyr	AA(C AC	C C		AAC Asn 150	GTC Val	TAT Tyr	' A'	TC A	ATG Met	GCC Ala 155	As	AC A	-γs	CAG Gln	AA Ly	s A	AAC Asn 160		480
45	GGC Gly	ATC Ile	AA0 Lys	G GT Va		AC I sn F	TC he	AAG Lys	ATC Ile	C(A)	rg H	CAC lis	AAC Asn	AT Il	C G e G	AG lu	GAC Asp	GG(G1 ₂	7 S	GC Ser	5	528
50	GTG Val	CAG Gln	CTC	GC Al 18		AC C	AC 1	TAC Tyr	CAG Gln	CA Gl	n A	AC .	ACC Thr	CC Pr	C A	le (GGC Gly	GA(Asp	C G	GC ly	5	76
55	CCC (TG /al	CTG Leu 195	CT(G CC	CC G	AC A	1911	CAC His 200	TA Ty	C C	TG /	AGC Ser	ACC Th:	r G	AG 1 ln s	rcc Ser	GCC Ala	C	TG eu	6	24

							77							
		CCC Pro		_								_		672
5		GCC Ala												720
10		TCT Ser												768
15		GCC Ala 260										_	_	816
		AAA Lys												864
20		AGC Ser	_		_									912
25	 	 TTA Leu				_	_	_				_		960
30		GAA Glu									_	_		1008
35		GCA Ala 340												1056
40		GAA Glu	_											1104
40		CAA Gln	_		_				_			_		1152
45		AAG Lys					Phe							1200
50		TAC Tyr												1248
55		GAC Asp 420								_		_		1296

												78									
	G1 Va	G A		AAA 1 Lys 1 135	AAC A	ACT Thr	TTC	AGe Ar	G CA g G] 44	in T	AT yr	CGA Arg	GT(G CT l Le	u G	GA Z ly :	AA#	GG G1	G Y	GGC Gly	1344
5	TT Ph		GG G ly G 50	SAG C	TC :	rgr Cys	GCC Ala	Cy:	s GT	.G G'	TT (CGG Arg	GC0 Ala	C AC a Th 46	r G.	GT I	AAA Lys	AT Me	G t	TAT Tyr	1392
10	GC A1 46	2	GC A	AG C	GC T	TG eu	GAG Glu 470	AAC Lys	AA Ly	G AG	ig j	ATC []e	AAA Lys 475	Ly	G AC	eg A	AAA ys	GG G1	y (GAG Glu 480	1440
15	TC: Se:	C AT	rg g et A	CC C la L	cu n	AT sn 85	GAG Glu	AAG Lys	GA:	G Al	e I	CTC eu	GAG Glu	AA(G GT S Va	C A	AC sn	AG' Ser	r (CAG Gln	1488
20	TT'. Phe	r G1 ≥ Va	G G	TC A	AC C sn L 00	TG (GCC Ala	TAT Tyr	GC(С ТА а Ту 50	r G	AG lu	ACC Thr	AAC Lys	GA As	p A	CA la 10	CTC	3 T	GC Cys	1536
	TTC Leu	GT Va	C C: 1 Le 5:	rg Ad eu Tl L5	CC A	TC 1	ATG Met	AAT Asn	GG(Gl ₃ 520	/ GI	ТG. уА	AC sp	CTG Leu	AAG Lys	TT Ph	е н	AC is	ATC Ile	T	AC Yr	1584
25	AAC Asn	Me 53		SC AA	AC Co	CT (GC Gly	TTC Phe 535	GAC Glu	GA Gl	G G	AG lu	CGG Arg	GCC Ala 540	TT	G T	rT ne	TAT Tyr	G A	CG la	1632
30	GCA Ala 545		G AT	C CI	C TO	5 6	GC Sly 550	TTA Leu	GAA Glu	GA(C CT	eu l	CAC His 555	CGT Arg	GA(AZ 1 As	AC sn	ACC Thr	V	TC al 60	1680
35	TAC Tyr	CG/ Arg	A GA J As	T CT p Le	G AA u Ly 56	5 P	CT (GAA Glu	AAC Asn	ATC Ile	C CI Le 57	eu I	ITA Leu	GAT Asp	GAT Asp	TA Ty	r	GGC Gly 575	C#	AC is	1728
40	ATT Ile	AGG	AT	C TC e Se 58	LAS	сс рЬ	TG (GGC Gly	TTG Leu	GCT Ala 585	Va	G A	AAG .ys	ATC Ile	CCC Pro	GA G1 59	u (GGA Gly	G <i>P</i> As	AC sp	1776
	CTG Leu	ATC Ile	Arg 595	C GGG g Gly	C CG Y Ar	G G: g Va	TG (TA.	ACT Thr 600	GTT Val	GG G1	с т у т	AC 'yr i	Met	GCC Ala 605	CC Pr	C (GAA Glu	GT Va	C 1	1824
45	CTG Leu	AAC Asn 610	AA(Asr	CAC n Glr	AGO Aro	I TA	Y L	GC (ly)	CTG Leu	AGC Ser	CC	C G	sp '	TAC Tyr 620	TGG Trp	GG(C C	CTT Seu	GG G1	C Y	1872
50	TGC Cys 625	CTC Leu	ATC	TAT	GAC	TA E Me 63	: L	TC (GAG Glu	GGC Gly	CA(Gl	n S	CG (er 1 35	CCG Pro	TTC Phe	CGG	C G	ly .	CG Ar	g	1920
55	AAG (GAG Glu	AAG Lys	GTG Val	Lys 645	MI	ig G	AG G	AG Slu	GTG Val	GAC Asp) A	GC (GG (Arg '	GTC Val	CTC Lev	ı G	AG A	AC(G r	1968

79

						79				
			TCC Ser							2016
5			ACG Thr							2064
10			GAG Glu							2112
15 .			GAA Glu							2160
20			TAC Tyr 725							2208
			GTC Val							2256
25			GGC Gly							2304
30			TTT Phe							2352
35			CTG Leu							2400
40			AGA Arg 805							2448
			TCC Ser							2496
45			AAC. Asn				TAG			2529

50 (2) INFORMATION FOR SEQ ID NO:43:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 842 amino acids
 - (B) TYPE: amino acid
- (C) STRANDEDNESS: single

55

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein
(v) FRAGMENT TYPE: internal

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:43: Met Val Ser Lys Gly Glu Glu Leu Phe Thr Gly Val Val Pro Ile Leu Val Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe Ser Val Ser Gly Glu Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr Leu Lys Phe Ile Cys Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr Leu Val Thr Thr Leu Thr Tyr Gly Val Gln Cys Phe Ser Arg Tyr Pro Asp His Met Lys Gln His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly Tyr Val Gln Glu Arg Thr Ile Phe Phe Lys Asp Asp Gly Asn Tyr Lys Thr Arg Ala Glu Val Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile Glu Leu Lys Gly Ile Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His Lys Leu Glu Tyr Asn Tyr Asn Ser His Asn Val Tyr Ile Met Ala Asp Lys Gln Lys Asn Gly Ile Lys Val Asn Phe Lys Ile Arg His Asn Ile Glu Asp Gly Ser Val Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro Ile Gly Asp Gly Pro Val Leu Leu Pro Asp Asn His Tyr Leu Ser Thr Gln Ser Ala Leu Ser Lys Asp Pro Asn Glu Lys Arg Asp His Met Val Leu Leu Glu Phe Val Thr Ala Ala Gly Ile Thr Leu Gly Met Asp Glu Leu Tyr Lys Ser Gly Leu Arg Ser Arg Ala Gln Ala Ser Asn Ser Ser Met Glu Leu Glu Asn Ile Val Ala Asn Thr Val Leu Leu Lys Ala Arg Glu Gly Gly Gly Lys Arg Lys Gly Lys Ser Lys Lys Trp Lys Glu Ile Leu Lys Phe Pro His Ile Ser Gln Cys Glu Asp Leu Arg Arg Thr Ile Asp Arg Asp Tyr Cys Ser Leu Cys Asp Lys Gln Pro Ile Gly Arg Leu Leu Phe Arg Gln Phe Cys Glu Thr Arg Pro Gly Leu Glu Cys Tyr Ile Gln Phe Leu Asp Ser Val Ala Glu Tyr Glu Val Thr Pro Asp Glu Lys Leu Gly Glu Lys Gly Lys Glu Ile Met Thr Lys Tyr Leu Thr Pro Lys Ser Pro Val Phe Ile Ala Gln Val Gly Gln Asp Leu Val Ser Gln Thr Glu Glu Lys Leu Leu Gln Lys Pro Cys Lys Glu Leu Phe Ser Ala Cys Ala Gln Ser

										01						
	Val	His	Glu	Tyr	Leu 405	Arg	Gly	Glu	Pro	Phe 410	His	Glu	Tyr	Leu	Asp 415	Ser
	Met	Phe	Phe	Asp	Arg	Phe	Leu	Gln	Trp 425	Lys	Trp	Leu	Glu	Arg 430	Gln	Pro
5	Val	Thr	Lys 435	Asn	Thr	Phe	Arg	Gln 440	Tyr	Arg	Val	Leu	Gly 445	Lys	Gly	Gly
	Phe	Gly 450	Glu	Val	Cys	Ala	Cys 455	Gln	Val	Arg	Ala	Thr 460	Gly	Lys	Met	Tyr
10	Ala 465	Суѕ	Lys	Arg	Leu	Glu 470	Lys	Гуs	Arg	Ile	Lys 475	Lys	Arg	Lys	Gly	Glu 480
	Ser	Met	Ala	Leu	Asn 485	Glu	Lys	Gln	Ile	Leu 490	Glu	Lys	Val	Asn	Ser 495	Gln
	Phe	Val	Val	Asn 500	Leu	Ala	Tyr	Ala	Tyr 505	Glu	Thr	Lys	Asp	Ala 510	Leu	Суз
15	Leu	Val	Leu 515	Thr	Ile	Met	Asn	Gly 520	Gly	Asp	Leu	Lys	Phe 525	His	Ile	Tyr
	Asn	Met 530	Gly	Asn	Pro	Gly	Phe 535	Glu	Glu	Glu	Arg	Ala 540	Leu	Phe	Tyr	Ala
20	545		Ile			550			-		555	_				560
	_	_	Asp		565					570		_	_	_	575	
		-	Ile	580	_		_		585		-			590	_	
25			Arg 595	_	_		_	600		-	-		605			
		610	Asn				615					620				
30	625		Ile	_		630			_		635				_	640
	_		Lys		645					650	_				655	
35			Val Leu	660			_		665				_	670		
33	-		675 Ala			_	_	680	-		_		685	-		
		690	Arg				695	_				700	_			
40	705	-	Ala			710	_			_	715					720
		_	Lys		725	•	•	-		730	-				735	
45			-	740				-	745		-	-	-	750	-	Ile
	-		755 Glu		_			760			-		765			
		770	Pro				775					780				
50	785		Leu			790					795					800
	•		Pro		805			•	J	810					815	-
55			Ser	820					825					830		
			835					840								

				(2)	INFO	RMAT	ION	FOR	SEQ	ID N	0:44	:					
5			(A) L B) T C) S	ENGT YPE : TRAN	E CH H: 1 nuc DEDNI	902 leic ESS:	base aci sin	pai d	S: rs							
10			(ii (ix) MO	LECU ATUR	LE T	YPE:	cDN	A.								
15				(B)	LOCA!	/KEY: TION: R INF	1.	189	9	ience	:						
			(xi)	SEC	QUENC	CE DE	SCR	PTIC	N: S	EQ I	D NO	:44:					
20	1		rg Ac	GC AF	AG GO 's Gl	GC GA y Gl	.G GA u Gl	AG CT .u Le	G TT u Ph	C AC e Th 10	C GG r Gl	G GT y Va	G GT	l Pr	0 Il 15	C CTG e Leu	48
25				20	P 01	y ns	p va	I AS	n G1;	у ні:	s Ly:	s Ph	e Se:	7 Va 30	l Se	C GGC r Gly	96
30			35		,	p Ale	4 111.	40	r GI	/ Lys	. Lei	1 Th:	r Lei 45	ı Lys	s Phe	C ATC	144
	TG(C AC S Th 50	C AC	C GGG	C AAG Y Lys	G CTC	CCC Pro	C GTO Val	G CCC	TGG Trp	CCC Pro	ACC Thi	CTC Leu	GTC Val	ACC Thr	ACC Thr	192
35	65		•	1		G CAG I Gln 70	. Cys	PHE	ser	Arg	75	Pro	Asp	His	Met	Lys 80	240
40			•		85	AAG Lys	Ser	мта	мес	90	Glu	Gly	Tyr	Val	Gln 95	Glu	288
45				100		AAG Lys	АБР	Asp	105	Asn	Tyr	Lys	Thr	Arg 110	Ala	Glu	336
50		•	115		Cry	GAC Asp	1111	120	vai	Asn	Arg	Ile	Glu 125	Leu	Lys	Gly	384
		130		-, -	014	GAC Asp	135	ASII	TIE	Leu	Gly	His 140	Lys	Leu	Glu	Tyr	432
55	AAC Asn	TAC Tyr	AAC Asn	AGC Ser	CAC His	AAC Asn	GTC Val	TAT Tyr	ATC Ile	ATG Met	GCC Ala	GAC Asp	AAG Lys	CAG Gln	AAG Lys	AAC Asn	480

	145			150			155				160	
5			AAC Asn 165									528
10		 	 GAC Asp								_	576
			CCC Pro							_		624
15			AAC Asn									672
20			GGG Gly									720
25			CGA Arg 245									768
30			AGT Ser									816
			AAT Asn									864
35			TAT Tyr						_			912
40			CCA Pro									960
45			CTT Leu 325									1008
50			TTC Phe							_		1056
50			ATG Met									1104
55			GAT Asp							_		1152

	370		375	`	380		
E	CTG TGT Leu Cys	GGA ATC A	AG CAC CTT ys His Leu	CAT TCT (ATT CAT CGG GAC Ile His Arg Asp	1200
5	TTA AAG	CCC AGT A	AT ATA GTA	ርጥል አአአ ጥ	395	400	10.0
10	•	4()5	vai Lys S	er Asp Cys ' 110	Thr Leu Lys Ile 415	1248
	•	420	A AIG AIG	425	ily Thr Ser I	TTT ATG ATG ACG Phe Met Met Thr 430	1296
15	•	GTA GTG AC Val Val Th 435	r Arg Tyr	TAC AGA G Tyr Arg A 440	la Pro Glu V	GTC ATC CTT GGC Val Ile Leu Gly	1344
20	ATG GGC Met Gly 450	TAC AAG GA Tyr Lys Gl	A AAC GTG ou u Asn Val ; 455	GAT TTA TO Asp Leu Ti	GG TCT GTG G rp Ser Val G 460	GGG TGC ATT ATG	1392
25	465	······································	470	rie ren b	ne Pro Gly A 475	GG GAC TAT ATT rg Asp Tyr Ile 480	1440
30	GAT CAG T Asp Gln T	IGG AAT AA! Irp Asn Lys 485	, var ite (GAA CAG CT Glu Gln Le 49	eu Gly Thr P	CA TGT CCT GAA ro Cys Pro Glu 495	1488
	TTC ATG A	AAG AAA CTO Lys Lys Leu 500	CAA CCA A Gln Pro T	ACA GTA AG Thr Val Ar 505	G ACT TAC G	IT GAA AAC AGA al Glu Asn Arg 510	1536
35	CCT AAA T Pro Lys T	AT GCT GGA Yr Ala Gly 15	TAT DEL D	TT GAG AA he Glu Ly: 20	A CTC TTC CC s Leu Phe Pr 52	CT GAT GTC CTT TO Asp Val Leu	1584
40	TTC CCA G Phe Pro A 530	CT GAC TCA la Asp Ser	GAA CAC A Glu His A 535	AC AAA CT sn Lys Let	T AAA GCC AG u Lys Ala Se 540	ET CAG GCA AGG er Gln Ala Arg	1632
	545		550	ai iie Asp	P Ala Ser Ly 555	A AGG ATC TCT s Arg Ile Ser 560	1680
50	GTA GAT GA Val Asp Gl	AA GCT CTC lu Ala Leu 565	CAA CAC CC Gln His Pr	CG TAC ATO ro Tyr Ile 570	e Asn Val Tr	G TAT GAT CCT p Tyr Asp Pro 575	1728
	TCT GAA GC Ser Glu Al	CA GAA GCT la Glu Ala 580	CCA CCA CC Pro Pro Pr	CA AAG ATC CO Lys Ile 585	CCT GAC AAG	G CAG TTA GAT s Gln Leu Asp 590	1776
55	GAA AGG GA Glu Arg Gl	A CAC ACA u His Thr	ATA GAA GA Ile Glu Gl	G TGG AAA u Trp Lys	GAA TTG ATA Glu Leu Ile	A TAT AAG GAA E Tyr Lys Glu	1824

85

600 595 GTT ATG GAC TTG GAG GAG AGA ACC AAG AAT GGA GTT ATA CGG GGG CAG 1872 Val Met Asp Leu Glu Glu Arg Thr Lys Asn Gly Val Ile Arg Gly Gln 5 615 620 CCC TCT CCT TTA GCA CAG GTG CAG CAG TGA 1902 Pro Ser Pro Leu Ala Gln Val Gln Gln 630 10 (2) INFORMATION FOR SEQ ID NO:45: (i) SEQUENCE CHARACTERISTICS: 15 (A) LENGTH: 633 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 20 (ii) MOLECULE TYPE: protein (v) FRAGMENT TYPE: internal (xi) SEQUENCE DESCRIPTION: SEQ ID NO:45: 25 Met Val Ser Lys Gly Glu Glu Leu Phe Thr Gly Val Val Pro Ile Leu 10 Val Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe Ser Val Ser Gly 20 25 Glu Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr Leu Lys Phe Ile 30 40 Cys Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr Leu Val Thr Thr Leu Thr Tyr Gly Val Gln Cys Phe Ser Arg Tyr Pro Asp His Met Lys 70 Gln His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly Tyr Val Gln Glu 35 85 Arg Thr Ile Phe Phe Lys Asp Asp Gly Asn Tyr Lys Thr Arg Ala Glu 105 Val Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile Glu Leu Lys Gly 40 120 Ile Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His Lys Leu Glu Tyr 135 Asn Tyr Asn Ser His Asn Val Tyr Ile Met Ala Asp Lys Gln Lys Asn 155 45 Gly Ile Lys Val Asn Phe Lys Ile Arg His Asn Ile Glu Asp Gly Ser 165 170 Val Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro Ile Gly Asp Gly 185 190 Pro Val Leu Pro Asp Asn His Tyr Leu Ser Thr Gln Ser Ala Leu 50 195 200 205 Ser Lys Asp Pro Asn Glu Lys Arg Asp His Met Val Leu Leu Glu Phe 215 220 Val Thr Ala Ala Gly Ile Thr Leu Gly Met Asp Glu Leu Tyr Lys Ser 235 230 55 Gly Leu Arg Ser Arg Ala Arg Ala Ile Met Ser Arg Ser Lys Arg Asp

250

```
Asn Asn Phe Tyr Ser Val Glu Ile Gly Asp Ser Thr Phe Thr Val Leu
                   260
                        265
        Lys Arg Tyr Gln Asn Leu Lys Pro Ile Gly Ser Gly Ala Gln Gly Ile
                          280
        Val Cys Ala Ala Tyr Asp Ala Ile Leu Glu Arg Asn Val Ala Ile Lys
   5
                             295
       Lys Leu Ser Arg Pro Phe Gln Asn Gln Thr His Ala Lys Arg Ala Tyr
                         310
                                              315
       Arg Glu Leu Val Leu Met Lys Cys Val Asn His Lys Asn Ile Ile Gly
  10
                      325
                                         330
       Leu Leu Asn Val Phe Thr Pro Gln Lys Ser Leu Glu Glu Phe Gln Asp
                 340
                                     345
       Val Tyr Ile Val Met Glu Leu Met Asp Ala Asn Leu Cys Gln Val Ile
                                  360
       Gln Met Glu Leu Asp His Glu Arg Met Ser Tyr Leu Leu Tyr Gln Met
  15
                             375
                                                380
       Leu Cys Gly Ile Lys His Leu His Ser Ala Gly Ile Ile His Arg Asp
                         390
                                            395
       Leu Lys Pro Ser Asn Ile Val Val Lys Ser Asp Cys Thr Leu Lys Ile
 20
                      405
                                         410
       Leu Asp Phe Gly Leu Ala Arg Thr Ala Gly Thr Ser Phe Met Met Thr
                  420
                                     425
       Pro Tyr Val Val Thr Arg Tyr Tyr Arg Ala Pro Glu Val Ile Leu Gly
                                                        430
                                 440
 25
       Met Gly Tyr Lys Glu Asn Val Asp Leu Trp Ser Val Gly Cys Ile Met
                                                   445
                             455
      Gly Glu Met Val Cys His Lys Ile Leu Phe Pro Gly Arg Asp Tyr Ile
                                      460
                         470
                                            475
      Asp Gln Trp Asn Lys Val Ile Glu Gln Leu Gly Thr Pro Cys Pro Glu
 30
                                        490
      Phe Met Lys Lys Leu Gln Pro Thr Val Arg Thr Tyr Val Glu Asn Arg
                  500
                                   505
      Pro Lys Tyr Ala Gly Tyr Ser Phe Glu Lys Leu Phe Pro Asp Val Leu
                                520
      Phe Pro Ala Asp Ser Glu His Asn Lys Leu Lys Ala Ser Gln Ala Arg
                                            525
35
                   535
      Asp Leu Leu Ser Lys Met Leu Val Ile Asp Ala Ser Lys Arg Ile Ser
                        550
                                            555
      Val Asp Glu Ala Leu Gln His Pro Tyr Ile Asn Val Trp Tyr Asp Pro
40
                     565
                                        570
      Ser Glu Ala Glu Ala Pro Pro Pro Lys Ile Pro Asp Lys Gln Leu Asp
                                    585
     Glu Arg Glu His Thr Ile Glu Glu Trp Lys Glu Leu Ile Tyr Lys Glu
                                600
     Val Met Asp Leu Glu Glu Arg Thr Lys Asn Gly Val Ile Arg Gly Gln
45
                           615
     Pro Ser Pro Leu Ala Gln Val Gln Gln
50
              (2) INFORMATION FOR SEQ ID NO:46:
```

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1824 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

87

(ii) MOLECULE TYPE: cDNA
(ix) FEATURE:

5

(A) NAME/KEY: Coding Sequence (B) LOCATION: 1...1821

(D) OTHER INFORMATION:

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:46:

		()	ci) S	SEQUE	ENCE	DESC	CRIP	CION	SEÇ) ID	NO:4	16:					
10																	
				AAG													48
	Met 1	vaı	ser	Lys	GIY 5	GIU	GIU	Leu	Pne		GIÀ	vaı	vaı	Pro	11e	Leu	
	1				5					10					13		
15	GTC	GAG	CTG	GAC	GGC	GAC	GTA	AAC	GGC	CAC	AAG	TTC	AGC	GTG	TCC	GGC	96
				Asp													
				20	•	•			25		-			30		-	
	GAG	GGC	GAG	GGC	GAT	GCC	ACC	TAC	GGC	AAG	CTG	ACC	CTG	AAG	TTC	ATC	144
20	Glu	Gly	Glu	Gly	Asp	Ala	Thr	Tyr	Gly	Lys	Leu	Thr	Leu	Lys	Phe	Ile	
			35					40					45				
				GGC													192
25	Cys	50	The	Gly	гус	Leu	55	vaı	Pro	Trp	Pro	60	Leu	vai	Thr	THE	
LJ		50					33					80					
	CTG	ACC	TAC	GGC	GTG	CAG	TGC	TTC	AGC	CGC	TAC	CCC	GAC	CAC	ATG	AAG	240
				Gly													
	65		-	_		70	-			_	75		-			80	
30																	
	CAG	CAC	GAC	TTC	TTC	AAG	TCC	GCC	ATG	CCC	GAA	GGC	TAC	GTC	CAG	GAG	288
	Gln	His	Asp	Phe		Lys	Ser	Ala	Met		Glu	Gly	Tyr	Val		Glu	
					85					90					95		
35	ccc	200	3.000	mmc	mma	***	CZC	an a	aaa	777	m 2 C	7 7 C	7.00	000	aaa	CAC	336
33				TTC Phe													330
	AL 9	1111	110	100	FIIC	БуS	тэр	nsp	105	MSII	TYL	Буз	1111	110	AIG	GIU	
									100								
	GTG	AAG	TTC	GAG	GGC	GAC	ACC	CTG	GTG	AAC	CGC	ATC	GAG	CTG	AAG	GGC	384
40	Val	Lys	Phe	Glu	Gly	Asp	Thr	Leu	Val	Asn	Arg	Ile	Glu	Leu	Lys	Gly	
			115					120					125				
				AAG													432
45	11e		Phe	Lys	GIu	Asp		Asn	He	Leu	GIY		Lys	Leu	Glu	Tyr	
40		130					135					140					
	AAC	TAC	AAC	AGC	CAC	AAC	GTC	тат	ATC	ATG	GCC	GAC	AAG	CAG	AAG	AAC	480
				Ser													100
	145	. 4	-			150		-1-			155	2	-1-2		-1-2	160	
50																	
	GGC	ATC	AAG	GTG	AAC	TTC	AAG	ATC	CGC	CAC	AAC	ATC	GAG	GAC	GGC	AGC	528
	Gly	Ile	Lys	Val	Asn	Phe	Lys	Ile	Arg	His	Asn	Ile	Glu	Asp	Gly	Ser	
					165					170					175		
cc	a=*		-			a											
55				GCC													576
	val	GIU	Leu	Ala	Asp	HIS	ıyr	GIN	GIN	Asn	Thr	Pro	тте	GIĀ	Asp	GIÀ	

				00	
		180	185	190	
5	CCC GTG C Pro Val L 1	TG CTG CCC GA eu Leu Pro As 95	AC AAC CAC TAC sp Asn His Tyr 200	CTG AGC ACC CAG TCC G Leu Ser Thr Gln Ser A 205	GCC CTG 624 Ala Leu
10	AGC AAA G Ser Lys A 210	AC CCC AAC GA sp Pro Asn Gl	AG AAG CGC GAT lu Lys Arg Asp 215	CAC ATG GTC CTG CTG G His Met Val Leu Leu G 220	AG TTC 672
	GTG ACC GG Val Thr A 225	CC GCC GGG AT la Ala Gly Il 23	e int red GIA	ATG GAC GAG CTG TAC A Met Asp Glu Leu Tyr L 235	AG TCC 720 ys Ser 240
15	•	245	y bys Met Ser (CAG GAG AGG CCC ACG T Gln Glu Arg Pro Thr Ph 250	ne Tyr 55
20	CGG CAG GA Arg Gln Gl	AG CTG AAC AAC u Leu Asn Lys 260	G ACA ATC TGG (s Thr Ile Trp (265	GAG GTG CCC GAG CGT TA Glu Val Pro Glu Arg Ty 270	AC CAG 816 vr Gln
25	AAC CTG TC Asn Leu Se 27	· · · · · · · · ·	C TCT GGC GCC T y Ser Gly Ala T 280	TAT GGC TCT GTG TGT GC Tyr Gly Ser Val Cys Al 285	T GCT 864 a Ala
30	TTT GAC AC. Phe Asp Th: 290	A AAA ACG GGG r Lys Thr Gly	G TTA CGT GTG G Leu Arg Val A 295	CA GTG AAG AAG CTC TC la Val Lys Lys Leu Se 300	C AGA 912 r Arg
	CCA TTT CAC Pro Phe Glr 305	G TCC ATC ATT n Ser Ile Ile 310	Ara bys A	GA ACC TAC AGA GAA CTO rg Thr Tyr Arg Glu Leo 315	G CGG 960 u Arg 320
35	TTA CTT AAF Leu Leu Lys	A CAT ATG AAA 3 His Met Lys 325	nis Giu Asn Va	TG ATT GGT CTG TTG GAG al lle Gly Leu Leu Asp 30 335	Val
40	TTT ACA CCT Phe Thr Pro	GCA AGG TCT Ala Arg Ser 340	CTG GAG GAA TT Leu Glu Glu Ph 345	FC AAT GAT GTG TAT CTG ne Asn Asp Val Tyr Leu 350	G GTG 1056 I Val
45	ACC CAT CTC Thr His Leu 355	ATG GGG GCA Met Gly Ala	GAT CTG AAC AA Asp Leu Asn As 360	AC ATT GTG AAA TGT CAG En Ile Val Lys Cys Gln 365	AAG 1104 Lys
50	CTT ACA GAT Leu Thr Asp 370	mp mis vai	CAG TTC CTT AT Gln Phe Leu Il 375	C TAC CAA ATT CTC CGA e Tyr Gln Ile Leu Arg 380	GGT 1152 Gly
	CTA AAG TAT Leu Lys Tyr 385	ATA CAT TCA Ile His Ser 390	GCT GAC ATA AT Ala Asp Ile Il	T CAC AGG GAC CTA AAA e His Arg Asp Leu Lys 395	CCT 1200 Pro 400
55	AGT AAT CTA Ser Asn Leu	GCT GTG AAT (Ala Val Asn (GAA GAC TGT GAG Glu Asp Cys Glu	G CTG AAG ATT CTG GAT Leu Lys Ile Leu Asp	TTT 1248 Phe

PCT/DK98/00145 WO 98/45704

89

			405			410			415		
5	CTG Leu										1296
10	TGG Trp										1344
	ACA Thr 450										1392
15	GGA Gly										1440
20	ATT Ile										1488
25	TCC Ser										1536
20	AAG Lys										1584
30	GAC Asp 530										1632
35	GCG Ala										1680
40	GAT Asp										1728
45	GAC Asp				_	_	-				1776
50	AGC Ser									TGA	1824
50											

(2) INFORMATION FOR SEQ ID NO:47:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 607 amino acids
 (B) TYPE: amino acid

90

```
(C) STRANDEDNESS: single
```

(D) TOPOLOGY: linear

5

(ii) MOLECULE TYPE: protein
(v) FRAGMENT TYPE: internal

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:47:

Met Val Ser Lys Gly Glu Glu Leu Phe Thr Gly Val Val Pro Ile Leu 10 10 Val Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe Ser Val Ser Gly 25 Glu Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr Leu Lys Phe Ile 40 15 Cys Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr Leu Val Thr Thr 55 Leu Thr Tyr Gly Val Gln Cys Phe Ser Arg Tyr Pro Asp His Met Lys 70 Gln His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly Tyr Val Gln Glu 75 20 85 90 Arg Thr Ile Phe Phe Lys Asp Asp Gly Asn Tyr Lys Thr Arg Ala Glu 105 Val Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile Glu Leu Lys Gly 120 25 Ile Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His Lys Leu Glu Tyr 135 Asn Tyr Asn Ser His Asn Val Tyr Ile Met Ala Asp Lys Gln Lys Asn 140 150 155 Gly Ile Lys Val Asn Phe Lys Ile Arg His Asn Ile Glu Asp Gly Ser 30 170 Val Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro Ile Gly Asp Gly 185 Pro Val Leu Leu Pro Asp Asn His Tyr Leu Ser Thr Gln Ser Ala Leu 200 Ser Lys Asp Pro Asn Glu Lys Arg Asp His Met Val Leu Leu Glu Phe 35 215 Val Thr Ala Ala Gly Ile Thr Leu Gly Met Asp Glu Leu Tyr Lys Ser 235 Gly Leu Arg Ser Arg Gly Lys Met Ser Gln Glu Arg Pro Thr Phe Tyr 40 245 250 Arg Gln Glu Leu Asn Lys Thr Ile Trp Glu Val Pro Glu Arg Tyr Gln 265 Asn Leu Ser Pro Val Gly Ser Gly Ala Tyr Gly Ser Val Cys Ala Ala 280 Phe Asp Thr Lys Thr Gly Leu Arg Val Ala Val Lys Lys Leu Ser Arg 45 295 Pro Phe Gln Ser Ile Ile His Ala Lys Arg Thr Tyr Arg Glu Leu Arg 310 315 Leu Leu Lys His Met Lys His Glu Asn Val Ile Gly Leu Leu Asp Val 50 330 Phe Thr Pro Ala Arg Ser Leu Glu Glu Phe Asn Asp Val Tyr Leu Val 345 Thr His Leu Met Gly Ala Asp Leu Asn Asn Ile Val Lys Cys Gln Lys 360 Leu Thr Asp Asp His Val Gln Phe Leu Ile Tyr Gln Ile Leu Arg Gly 55 375

										91							
		Lys	Tyr	Ile	His	Ser	Ala	Asp	Ile	Ile	His	Arg	Asp	Leu	Lys	Pro	
	385		_			390	~3		_	~ 7	395			_	_	400	
	ser	Asn	Leu	Ala	Val 405	Asn ·	GIU	Asp	Cys	410	Leu	Lys	11e	Leu	415	Pne	
5	Gly	Leu	Ala	Arg	His	Thr	Asp	Asp	Glu 425		Thr	Gly	Tyr	Val		Thr	
	Arg	Trp	Tyr 435		Ala	Pro	Glu	Ile 440		Leu	Asn	Trp	Met		Tyr	Asn	
	Gln	Thr		Asp	Ile	Trp	Ser		Gly	Cys	Ile	Met		Glu	Leu	Leu	
10		450		•		-	455		•			460					
		Gly	Arg	Thr	Leu		Pro	Gly	Thr	qaA		Ile	Asp	Gln	Leu	-	
	465	T10	T.e.u	λrα	Leu	470	Clv	Thr	Dro	Glv	475	Glu	T.A.I	T.All	Lve	480	
	ьеи	116	Leu	Arg	485	val	GIY	1111	PIO	490	мта	GIU	neu	neu	495	цуб	
15	Ile	Ser	Ser	Glu 500	Ser	Ala	Arg	Asn	Tyr 505	Ile	Gln	ser	Leu	Thr 510	Gln	Met	
	Pro	Lys	Met 515	Asn	Phe	Ala	Asn	Val 520	Phe	Ile	Gly	Ala	Asn 525	Pro	Leu	Ala	
20	Val	Asp 530	Leu	Leu	Glu	Lys	Met 535	Leu	Val	Leu	Asp	Ser 540	qaA	Lys	Arg	Ile	
20	Thr		Ala	Gln	Ala	Leu		His	Ala	Tyr	Phe		Gln	Tyr	His	Asp	
	545					550				-	555			-		560	
	Pro	Asp	Asp	Glu	Pro 565	Val	Ala	Asp	Pro	Tyr 570	Asp	Gln	Ser	Phe	Glu 575	Ser	
25	Arg	Asp	Leu	Leu 580	Ile	Asp	Glu	Trp	Lys 585	Ser	Leu	Thr	Tyr	Asp 590	Glu	Val	
	Ile	Ser	Phe	_	Pro	Pro	Pro	Leu		Gln	Glu	Glu	Met		Ser		
			595					600					605				
30			(2)	INI	FORM	OITA	FOI	R SE	Q ID	NO:4	18:						
		7.4	() et	ויפודורים	NCE (יסמטי	OTE	o T C TT	rce.								
		\ -			STH:			•									
					E: nu												
35					ANDEI			_	2								
			(D)	TOPO	OLOGY	(: 11	neai	r									
		(i	ii) N	OLE	CULE	TYPE	E: cI	ANC									
40		i)	ix) I	FEAT	JRE:												
40			(A)	NAN	ME/KE	EY: (odir	na Se	emier	ice							
					CATIO				- 4								
			(D)	OTI	HER]	NFO	TAM	ON:									
45		()	(i) S	EQUE	ENCE	DESC	RIP	CION	: SEC	O ID	NO:4	18:					
				_						_							
					GGC Gly												48
	1	vai	Ser	пуз	5	Giu	Giu	neu	FIIC	10	GIY	vai	vaı	FIO	15	пси	
50																	
					GGC												96
	Val	Glu	Leu	Asp 20	Gly	Asp	Val	Asn	Gly 25	His	Lys	Phe	Ser	Val 30	ser	GIÀ	
				~ 0					23					J J			
55					GAT	-											144
	Glu	Gly	Glu	Gly	Asp	Ala	Thr	Tyr	Gly	Lys	Leu	Thr	Leu	Lys	Phe	Ile	

												92	?								
				35						40						45					
5	C)		ACC Thr	AC Th	C GO	SC A.	AG C	eu P	CC ro 5	GT(G CC L Pr	C T(G C	ro	ACC Thr 60	CTC	C GT u Va	G A	CC hr	ACC Thr	192
10	CT Le 65	G A	ACC	TA Ty	C GG	C G	rg c al g 7	111 C	GC ys	TTC Phe	E AG	C CG	g T	AC 'yr 5	CCC	GA(C CA	CA' SM	rg et	AAG Lys 80	240
				,		85	ie D	AG T	er.	АТА	. Mei	90	o G	lu	Gly	Туг	Va.	1 G] 95	ln i	Glu	288
15		-			10	0	.e n	AG GA	sp A	ASP	105	/ As:	n T	yr	Lys	Thr	110) 3 YJ	.a	Glu	336
20		_	, -	115		. 01	у Ас	C AC	11. 1	Leu 120	vaı	Ası	n Aı	rg	Ile	Glu 125	Let	ı Ly	s	Gly	384
25	AT(AC sp 30	TTC Phe	Ly:	G GA	G GA u As	C GC p G1 13	УР	AAC Asn	ATC	Let	G GC	Ly :	CAC His 140	AAG Lys	CTG	GA Gl	G u	TAC Tyr	432
30	145	5			501		15		1 1	yr	11e	Met	15	.a 2	Asp	ГЛЗ	Gln	Ly	s ;	Asn 160	480
				-,-	, u 1	165	i	C AA	s T	те	Arg	His 170	As	n]	lle	Glu	Asp	Gly 175	7 5	Ser	528
35					180	voř	, ur:	TAC Ty	r G.	ın	GIn 185	Asn	Th	r F	ro	Ile	Gly 190	Asp	• •	Sly	576
40			1	.95	Deu	110	ASI	AA(Asr	20	00	Tyr	Leu	Sei	r T	hr (31n 205	Ser	Ala	L	eu	624
45		21	0			ASII	GIU	AAC Lys 215	AI	eg A	Asp	His	Met	2 V	al I 20	leu :	Leu	Glu	P	he	672
50	225				····	Gly	230		ьe	eu (зтÀ	Met	Asp 235	G.	lu I	eu 1	Гуr	Lys	2	er 40	720
	GGA Gly			-5		245	per	AIA	GI	uc	ily	Tyr 250	Gln	T	yr A	rg A	Ala	Leu 255	Ty	yr	768
55	GAT Asp	TAT Tyr	L	AA I	AAG Lys	GAA Glu	AGA Arg	GAA Glu	GA Gl	A G u A	AT :	ATT Ile	GAC Asp	TT Le	rg c eu H	AC 1	TTG eu	GGT Gly	GA As	AC sp	816

PCT/DK98/00145 WO 98/45704

										93							
				260					265					270			
	מידמ	TTC	aст	стс	ידממ	מממ	GGG	TCC	ттΔ	GTA	GCT	СТТ	GGA	ттс	ΔСТ	GAT	864
5										Val							004
		_								GGC Gly							912
10'		ACC					GGG			CCG		ACT		_	_		960
	305	1111	1111	GIY	Giu	310	Gly	Asp	FIIC	Pro	315		IYL	Val	Giu	320	
15										ACA Thr 330							1008
20										TCG Ser							1056
				GCT					GAT	CTT Leu				TTT			1104
25	O.L.	0111	355		200		200	360		,200		022	365				
20										AAG Lys							1152
30										TAC Tyr			_				1200
35							_			GAT Asp 410						_	1248
40										TTG Leu							1296
45						_				ATT Ile					-		1344
50										CAA Gln							1392
50										CCT Pro							1440
55										CAT His							1488

											94								
					48						490						95		
5	ACC Thr	TCC Ser	AGC Ser	AAA Lys 500		CT Le	G TI u Le	rg Az eu As	in P	SCA Ala 505	AGA Arg	A GT.	A CT l Le	C TC' u Se:	T GA r Gl 51	u I	гт le	TTC Phe	1536
10	AGC Ser	CCT Pro	ATG Met 515	CTT Leu	TTC	AG Arg	A TI	C TO e Se 52	: A	CA la	GCC Ala	Sei	C TC	r GA: r Ası 525	As	T AC	CT 1r	GAA Glu	1584
	AAC Asn	CTC Leu 530	ATA Ile	AAA Lys	GTT Val	ATA Ile	A GA = G1 53	u 11	T T e L	TA eu	ATC Ile	TCA Ser	A ACT	Glu	A TG	G AA P As	n	GAA Glu	1632
15	CGA (Arg (545	CAG Gln	CCT Pro	GCA Ala	CCA Pro	GCA Ala 550	пе	G CC u Pr	T C	CT ro	AAA Lys	CCA Pro	Pro	AAA Lys	CC:	r AC	r	ACT Thr 560	1680
20	GTA (GCC . Ala .	AAC Asn	AAC Asn	GGT Gly 565	ATG Met	AA: Ası	r AA n Ası	C AZ	sn	ATG Met 570	TCC Ser	TTA Leu	CAA Gln	AA] Asr	GC Al.	a (GAA Glu	1728
25	TGG T	TAC :		GGA Gly 580	GAT Asp	ATC Ile	TCC	AGO Arg	G G# G G1 58	.u (GAA Glu	GTG Val	AAT Asn	GAA Glu	AAA Lys 590	Le	T (CGA Arg	1776
30	GAT A Asp T		GCA (Ala <i>A</i> 595	GAC Asp	GGG Gly	ACC Thr	TTT Phe	Leu 600	t va	'A (CGA Arg	GAT Asp	GCG Ala	TCT Ser 605	ACT Thr	AA/ Lys	A A	ATG Met	1824
	CAT G His G	GT G ly A 10	AT 1	TAT I	ACT Thr	CTT Leu	ACA Thr 615	CTA Leu	AG Ar	G A	ys AAA	GGG Gly	GGA Gly 620	AAT Asn	AAC Asn	AAA Lys	L	TA eu	1872
35	ATC AM Ile Ly 625	AA A ys I	TA T le P	TT (113	CGA Arg 630	GAT Asp	GGG Gly	AA. Ly:	A I	yr (GGC Gly 635	TTC Phe	TCT Ser	GAC Asp	CCA Pro	L	TA eu 40	1920
40	ACC TT	rc A	GT T er S		TG (al v	GTT /al	GAA Glu	TTA Leu	ATZ Ile	• A	AC (sn 1	CAC His	TAC Tyr	CGG Arg	AAT Asn	GAA Glu 655	To Se	CT er	1968
45	CTA GC Leu Al	ET CA		AT A yr A 60	AT (ccc . Pro :	AAA Lys	TTG Leu	GAT Asp	V.	TG A	AAA	TTA Leu	Leu '	TAT Tyr 670	CCA Pro	GT Va	ra al	2016
50	TCC AA Ser Ly	A TA 'S Ty 67		AA C	AG G ln A	AT (3111	GTT Val 680	GTC Val	L)	AA G /s G	AA (Asp A	AAT A Asn 1	ATT Ile	GAA Glu	GC Al	CT la	2064
•	GTA GG Val Gl	G AA y Ly 0	A AA	AA T	TA C	15 (GAA Glu G95	TAT Tyr	AAC Asn	AC Th	et c	ln E	TTT (Phe (CAA (Gln (SAA Slu	AAA Lys	AG Se	T :r	2112
55	CGA GAZ Arg Gli	А ТА и Ту	T GA r As	T AC	SA T	TA 1 eu 1	AT (GAA Glu	GAA Glu	ТА	T A	CC C	GC A	CA Thr S	CCC (Ser (CAG Gln	GA Gl	A u	2160

	705			710				715				720	
5		ATG Met											2208
10		GAA Glu											2256
		 AAG Lys 755								_		_	2304
15		AAT Asn											2352
20		AGA Arg								_	_		2400
25		ATT Ile											2448
30		AAG Lys								_			2496
00		CAA Gln 835				_					_		2544
35		TAT Tyr		_	_					_			2592
40		ACA Thr											2640
45		CGA Arg											2688
50		GGC Gly											2736
Ju		GTC Val 915											2784
55		TTG Leu											2832

96

930 935 ACC TCC CTT GTG CAG CAC AAC GAC TCC CTC AAT GTC ACA CTA GCC TAC Thr Ser Leu Val Gln His Asn Asp Ser Leu Asn Val Thr Leu Ala Tyr 2880 5 950 955 CCA GTA TAT GCA CAG CAG AGG CGA TGA Pro Val Tyr Ala Gln Gln Arg Arg 2907 965

10

15

55

(2) INFORMATION FOR SEQ ID NO:49:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 968 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- 20 (ii) MOLECULE TYPE: protein (v) FRAGMENT TYPE: internal
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:49:
- 25 Met Val Ser Lys Gly Glu Glu Leu Phe Thr Gly Val Val Pro Ile Leu 10 Val Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe Ser Val Ser Gly 25 Glu Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr Leu Lys Phe Ile 30 40 Cys Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr Leu Val Thr Thr 55 Leu Thr Tyr Gly Val Gln Cys Phe Ser Arg Tyr Pro Asp His Met Lys 70 Gln His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly Tyr Val Gln Glu 35 Arg Thr Ile Phe Phe Lys Asp Asp Gly Asn Tyr Lys Thr Arg Ala Glu 100 105 Val Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile Glu Leu Lys Gly 40 120 Ile Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His Lys Leu Glu Tyr 135 140 Asn Tyr Asn Ser His Asn Val Tyr Ile Met Ala Asp Lys Gln Lys Asn 150 155 Gly Ile Lys Val Asn Phe Lys Ile Arg His Asn Ile Glu Asp Gly Ser 45 170 Val Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro Ile Gly Asp Gly 185 190 Pro Val Leu Leu Pro Asp Asn His Tyr Leu Ser Thr Gln Ser Ala Leu 50 195 200 205 Ser Lys Asp Pro Asn Glu Lys Arg Asp His Met Val Leu Leu Glu Phe 215 Val Thr Ala Ala Gly Ile Thr Leu Gly Met Asp Glu Leu Tyr Lys Ser

230

Gly Leu Arg Ser Met Ser Ala Glu Gly Tyr Gln Tyr Arg Ala Leu Tyr

250

										91						
	Asp	Tyr	Lys	Lys 260	Glu	Arg	Glu	Glu	Asp 265	Ile	Asp	Leu	His	Leu 270	Gly	Asp
	Ile	Leu	Thr 275	Val	Asn	Lys	Gly	Ser 280	Leu	Val	Ala	Leu	Gly 285	Phe	Ser	Asp
5	Gly	Gln 290	Glu	Ala	Arg	Pro	Glu 295	Glu	Ile	Gly	Trp	Leu 300	Asn	Gly	Tyr	Asn
	Glu 305	Thr	Thr	Gly	Glu	Arg 310	Gly	Asp	Phe	Pro	Gly 315	Thr	Tyr	Val	Glu	Tyr 320
10	Ile	Gly	Arg	Lys	Lys 325	Ile	Ser	Pro	Pro	Thr 330	Pro	Lys	Pro	Arg	Pro 335	Pro
	Arg	Pro	Leu	Pro 340	Val	Ala	Pro	Gly	Ser 345	Ser	Lys	Thr	Glu	Ala 350	Asp	Val
	Glu	Gln	Gln 355	Ala	Leu	Thr	Leu	Pro 360	Asp	Leu	Ala	Glu	Gln 365	Phe	Ala	Pro
15		370	Ile				375			•		380				
	385	_	Gly			390				_	395					400
20			Ala		405					410	_	_			415	
			Glu	420					425					430		
25			135					440					445		Ī	
25		450	Ile				455					460			-	
	465		Leu	-	_	470					475					480
30			Thr Ser	•	485					490			_		495	
			Met	500					505					510		
35			515 Ile					520					525			
		530	Pro				535					540		_		
	545		Asn			550					555					560
40			Trp		565					570					575	
			Ala	580	-			_	585					590		_
45			595 Asp					600			_		605			
		610	Ile				615					620				
	625 Thr	Phe	Ser	Ser	Val	630 Val	Glu	Leu	Ile	Asn	635 His	Tyr	Arg	Asn	Glu	640 Ser
50	Leu	Ala	Gln	Tyr	645 Asn	Pro	Lys	Leu	Asp	650 Val	Lys	Leu	Leu	Tyr	655 Pro	Val
	Ser	Lys	Tyr	660 Gln	Gln	Asp	Gln		665 Val	Lys	Glu	Asp	Asn	670 Ile	Glu	Ala
55	Val		675 Lys	Lys	Leu	His		680 Tyr	Asn	Thr	Gln		685 Gln	Glu	Lys	Ser
		690	•				695					700				

										98							
																1 Glu 720	
											Phe	Asr				Lys	
5															s Glu	Tyr	
														Glr	n Arg	Ile	
10													Glu	Ile		Asp	
																Tyr 800	
15				Asp												Gln	
,,				Thr 820													
				Lys													
20				Ser													
				Trp													
25	Leu Lvs																
	Lys																
	His Tvr																
30																	
	Thr 9 945 Pro V								Ser	Leu	Asn 955	Val	Thr	Leu		Tyr 960	
35			TYL.		965	GIN .	Arg .	Arg									
			(2)	INFO	ORMA'	rion	FOR	SEQ	ID 1	NO:5	0:						
40			(A) 1 (B) 7 (C) 5	QUENC LENGT FYPE : STRAN FOPOL	TH: 2 nuc IDEDN	2160 :leic NESS:	base ac: sir	e pa: id	CS: irs								
45		(ii) MC	LECU	LE 1 E:	YPE:	cDN	IA									
50			(B)	NAME LOCA OTHE	TION R IN	FORM	21 ATIO	.57 N:									
				QUEN													
55	ATG G Met Va	rg A al S	GC A er L	,	GC G ly G	AG G	AG C lu L	TG T eu P	TC A he T	hr G	GG G' ly Va	TG G	TG C	ro I	TC C le L 5	TG eu	

						99				
	_	_		GAC Asp						96
5				GCC Ala						144
10			_	CTG Leu						192
15				CAG Gln 70			 	 	 	240
20				AAG Lys						288
				AAG Lys						336
25				GAC Asp						384
30				GAC Asp						432
35				AAC Asn 150						480
40				TTC Phe						528
40	_	_		CAC His						576
45				GAC Asp						624
50				GAG Glu						672
55				ATC Ile 230						720

	100	
	GGA CTC AGA TCT CGA GCT CAA GCT TCG AAT TCG ACC ATG TCG TCC ATC Gly Leu Arg Ser Arg Ala Gln Ala Ser Asn Ser Thr Met Ser Ser Ile 245 250 255	768
5	TTG CCA TTC ACG CCG CCA GTT GTG AAG AGA CTG CTG GGA TGG AAG AAG Leu Pro Phe Thr Pro Pro Val Val Lys Arg Leu Leu Gly Trp Lys Lys 260 265 270	816
10	TCA GCT GGT GGG TCT GGA GGA GCA GGC GGA GGA GAG CAG AAT GGG CAG Ser Ala Gly Gly Ser Gly Gly Ala Gly Gly Glu Gln Asn Gly Gln 275 280 285	864
15	GAA GAA AAG TGG TGT GAG AAA GCA GTG AAA AGT CTG GTG AAG AAG CTA Glu Glu Lys Trp Cys Glu Lys Ala Val Lys Ser Leu Val Lys Lys Leu 290 295 300	912
20	AAG AAA ACA GGA CGA TTA GAT GAG CTT GAG AAA GCC ATC ACC ACT CAA Lys Lys Thr Gly Arg Leu Asp Glu Leu Glu Lys Ala Ile Thr Thr Gln 305 310 315 320	960
	AAC TGT AAT ACT AAA TGT GTT ACC ATA CCA AGC ACT TGC TCT GAA ATT Asn Cys Asn Thr Lys Cys Val Thr Ile Pro Ser Thr Cys Ser Glu Ile 325 330 335	1008
25	TGG GGA CTG AGT ACA CCA AAT ACG ATA GAT CAG TGG GAT ACA ACA GGC Trp Gly Leu Ser Thr Pro Asn Thr Ile Asp Gln Trp Asp Thr Thr Gly 340 345 350	1056
30	CTT TAC AGC TTC TCT GAA CAA ACC AGG TCT CTT GAT GGT CGT CTC CAG Leu Tyr Ser Phe Ser Glu Gln Thr Arg Ser Leu Asp Gly Arg Leu Gln 355 360 365	1104
35	370 375 Hell Pro His Val Ile Tyr Cys Arg Leu Trp	1152
40	385 390 395 Ala Ile Glu Asn	1200
	405 410 Val Cys Val Asn Pro	1248
45	TAC CAC TAT CAG AGA GTT GAG ACA CCA GTT TTG CCT CCA GTA TTA GTG Tyr His Tyr Gln Arg Val Glu Thr Pro Val Leu Pro Pro Val Leu Val 420 425 430	1296
50	CCC CGA CAC ACC GAG ATC CTA ACA GAA CTT CCG CCT CTG GAT GAC TAT Pro Arg His Thr Glu Ile Leu Thr Glu Leu Pro Pro Leu Asp Asp Tyr 435 440 445	.344
55	ACT CAC TCC ATT CCA GAA AAC ACT AAC TTC CCA GCA GGA ATT GAG CCA Thr His Ser Ile Pro Glu Asn Thr Asn Phe Pro Ala Gly Ile Glu Pro 450 450 460	392

							101				
			TAT Tyr								1440
5			ACA Thr								1488
10			GAA Glu 500								1536
15			CAG Gln								1584
20			TAT Tyr								1632
			TCA Ser								1680
25			TGC Cys			_	 	 	 	 	1728
30	_	_	ACA Thr 580		_						1776
35			GAA Glu								1824
40			CCC Pro								1872
40			ATT Ile								1920
45			GCT Ala							GCC Ala	1968
50			CTA Leu 660								2016
55			GCA Ala								2064

)2						
E		- 6	90				6	95	TA D	го Г	eu G	In T	rp L 00	eu A	sp L	AA GTA ys Val	2112
5	Т Ъ 7	TA A eu T 05	CT C hr G	AG A' ln M	TG G	-, -,	CC C er P: 10	CT T	CA G' er Va	TG C	rg C	GC T ys S 15	CA A	GC A' er Me	rg ro	CA TAA er	2160
10				(2)	INFO	RMAT	ON 1	FOR S	SEQ]	ED NO	0:51	:					
15	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 719 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 																
20			(V)	MOL FRAG SEQ	MENT	TYP	E: i	nter	ein nal N: S	EQ I	D NO	:51:					
25			l Se	r Ly	s Gl	y Gl	u Gl	u Le	u Ph	e Th	r Gl	y Va				e Leu r Gly	
																r Gly e Ile	
30	Су	5 Th:	r Th	r Gly	, Lys	Let	1 Pro	va:	l Pro	Tr	p Pro	o Thi	45 Let	ı Va]	Thi	Thr	
																Lys 80 Glu	
35					Phe				Gly	y Asr						Glu	
	Va1	Lys	Phe 115	Glu	Gly	Asp	Thr	Leu	Val	Asn	Arg	Ile	Glu	110 Leu	Lys	Gly	
40								Asn	Ile					Leu			
									Ile Arg								
45				Ala					Gln								
									Tyr				Gln				
50								Arg	Asp								
									Gly								
55									Ser Lys								
				260					265				y	270	пур	nys	

										100						
	Ser	Ala	Gly 275	Gly	Ser	Gly	Gly	Ala 280	Gly	Gly	Gly	Glu	Gln 285	Asn	Gly	Gln
	Glu	Glu 290	ГÀЗ	Trp	Cys	Glu	Lys 295	Ala	Val	Lys	Ser	Leu 300	Val	Lys	Lys	Leu
5	Lys 305	Lys	Thr	Gly	Arg	Leu 310	Asp	Glu	Leu	Glu	Lys 315	Ala	Ile	Thr	Thr	Gln 320
	Asn	Cys	Asn	Thr	Lys 325	Cys	Val	Thr	Ile	Pro 330	Ser	Thr	Cys	Ser	Glu 335	Ile
10	Trp	Gly	Leu	Ser 340	Thr	Pro	Asn	Thr	Ile 345	Asp	Gln	Trp	Asp	Thr 350	Thr	Gly
	Leu	Tyr	Ser 355	Phe	Ser	Glu	Gln	Thr 360	Arg	Ser	Leu	Asp	Gly 365	Arg	Leu	Gln
	Val	Ser 370	His	Arg	Lys	Gly	Leu 375	Pro	His	Val	Ile	Tyr 380	Cys	Arg	Leu	Trp
15	Arg 385	Trp	Pro	Asp	Leu	His 390	Ser	His	His	Glu	Leu 395	Lys	Ala	Ile	Glu	Asn 400
	_		_		405			-	-	410			_	Val	415	
20	_		_	420	_				425					Val 430		
		_	435					440					445	Asp	_	
0.5		450					455					460	_	Ile		
25	465			_		470					475	-	-	Ile		480
	_	_			485					490				Asp	495	
30				500					505					Asn 510		
		-	515					520					525	Trp		
35		530					535					540		Ser		
00	545					550					555			Asn		560
		_		_	565	_				570			_	Leu	575	
40				580					585	Ī				590 Ala	_	
		_	595					600	_			_	605	Pro		
45	Val	610 Cys	Lys	Ile	Pro	Pro	615 Gly	Cys	Asn	Leu	Lys	620 Ile	Phe	Asn	Asn	Gln
	625 Glu	Phe	Ala	Ala	Leu	630 Leu	Ala	Gln	Ser	Val	635 Asn	Gln	Gly	Phe	Glu	640 Ala
	Val	Tyr	Gln	Leu	645 Thr	Arg	Met	Cys	Thr	650 Ile	Arg	Met	Ser	Phe	655 Val	Lys
50	Gly	Trp	Gly	660 Ala	Glu	Tyr	Arg	Arg	665 Gln	Thr	Val	Thr		670 Thr	Pro	Cys
	Trp		675 Glu	Leu	His	Leu		680 Gly	Pro	Leu	Gln	_	685 Leu	Asp	Lys	Val
55	Leu 705	690 Thr	Gln	Met	Gly		695 Pro	Ser	Val	Arg	Cys 715	700 Ser	Ser	Met	Ser	
	,05					710					113					

	(2) INFORMATION FOR SEQ ID NO:52:	
5	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2421 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
10	(ii) MOLECULE TYPE: cDNA (ix) FEATURE:	
15	(A) NAME/KEY: Coding Sequence (B) LOCATION: 12418 (D) OTHER INFORMATION:	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:52: ATG GTG AGC AAG GGC GAG GAG CTG TTC ACC GGG GTG GTG CCC ATC CTG Met Val Ser Lys Gly Glu Glu Leu Phe Thr Gly Val Val Pro Ile Leu 1 5 10 15	48
25	GTC GAG CTG GAC GGC GAC GTA AAC GGC CAC AAG TTC AGC GTG TCC GGC Val Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe Ser Val Ser Gly 20 25 30	96
30	GAG GGC GAG GGC GAT GCC ACC TAC GGC AAG CTG ACC CTG AAG TTC ATC Glu Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr Leu Lys Phe Ile 35 40 45	144
	TGC ACC ACC GGC AAG CTG CCC GTG CCC TGG CCC ACC CTC GTG ACC ACC Cys Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr Leu Val Thr Thr 50 55 60	192
35	CTG ACC TAC GGC GTG CAG TGC TTC AGC CGC TAC CCC GAC CAC ATG AAG Leu Thr Tyr Gly Val Gln Cys Phe Ser Arg Tyr Pro Asp His Met Lys 70 75 80	240
40	CAG CAC GAC TTC TTC AAG TCC GCC ATG CCC GAA GGC TAC GTC CAG GAG Gln His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly Tyr Val Gln Glu 85 90 95	288
45	CGC ACC ATC TTC TTC AAG GAC GAC GGC AAC TAC AAG ACC CGC GCC GAG Arg Thr Ile Phe Lys Asp Asp Gly Asn Tyr Lys Thr Arg Ala Glu 100 105 110	336
50	GTG AAG TTC GAG GGC GAC ACC CTG GTG AAC CGC ATC GAG CTG AAG GGC Val Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile Glu Leu Lys Gly 115	384
	ATC GAC TTC AAG GAG GAC GGC AAC ATC CTG GGG CAC AAG CTG GAG TAC Ile Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His Lys Leu Glu Tyr 130 135 140	432
55	AAC TAC AAC AGC CAC AAC GTC TAT ATC ATG GCC GAC AAG CAG AAC ASn Tyr Asn Ser His Asn Val Tyr Ile Met Ala Asp Lys Gln Lys Asn	480

							100						
	145			150				155			160		
5		ATC Ile										528	ı
10		CAG Gln										576	
		GTG Val										624	
15		AAA Lys 210										672	:
20		ACC Thr										720	H
25	_	CTC Leu		_	_							768	
30		ATG Met										816	;
30	_	GTG Val				_						864	:
35		GCA Ala 290										912	:
40		GAT Asp										960	,
45		CCT Pro										1008	3
50		GTG Val										1056	•
		AGG Arg										1104	ł
55		CAG Gln										1152	: 1

	370	375		380	
5	TAT CAC TAC GAA CGA Tyr His Tyr Glu Arg 385	390	CCT GGA ATT (Pro Gly Ile 7	GAT CTC TCA GGA TTA Asp Leu Ser Gly Leu 400	1200
10	ACA CTG CAG AGT AAT Thr Leu Gln Ser Asn 405	110 561	410	Val Lys Asp Glu Tyr 415	1248
	GTG CAT GAC TTT GAG Val His Asp Phe Glu 420	ory orn Pro	425	Thr Glu Gly His Ser 430	1296
	ATT CAA ACC ATC CAG Ile Gln Thr Ile Gln 435	440	ser Asn Arg A	la Ser Thr Glu Thr 445	1344
20	TAC AGC ACC CCA GCT Tyr Ser Thr Pro Ala 450	'455	er Glu Se 40	er Asn Ala Thr Ser 60	1392
25		470	al Ala Ser Th 475	hr Ser Gln Pro Ala 480	1440
30	AGT ATA CTG GGG GGC A Ser Ile Leu Gly Gly 5 485	er ura ser G	490 Leu Le	eu Gln Ile Ala Ser 495	1488
	GGG CCT CAG CCA GGA C Gly Pro Gln Pro Gly G 500	orn orn a	AT GGA TTT AC sn Gly Phe Th 05	T GGT CAG CCA GCT r Gly Gln Pro Ala 510	1536
35	ACT TAC CAT CAT AAC A Thr Tyr His His Asn S 515	GC ACT ACC AC er Thr Thr Th 520	CC TGG ACT GG	A AGT AGG ACT GCA y Ser Arg Thr Ala 525	1584
40	CCA TAC ACA CCT AAT T Pro Tyr Thr Pro Asn L 530	TG CCT CAC CA eu Pro His Hi 535	AC CAA AAC GGG s Gln Asn Gly	y His Leu Gln His	1632
45	CAC CCG CCT ATG CCG CC His Pro Pro Met Pro Pr 545	TO WIR LIG GI	A CAT TAC TGG y His Tyr Trp 555	G CCT GTT CAC AAT O Pro Val His Asn 560	1680
50	GAG CTT GCA TTC CAG CC Glu Leu Ala Phe Gln Pr 565	T CCC ATT TC O Pro Ile Se	C AAT CAT CCT r Asn His Pro 570	GCT CCT GAG TAT Ala Pro Glu Tyr 575	1728
	TGG TGT TCC ATT GCT TA Trp Cys Ser Ile Ala Ty 580	C TTT GAA ATO r Phe Glu Met 585	- Asp Val Gln		1776
55	TTT AAG GTT CCT TCA AG Phe Lys Val Pro Ser Se:	C TGC CCT ATT r Cys Pro Ile	GTT ACT GTT		1824
					106

107

		595			600			605			
5			GGA Gly								1872
10			GCC Ala								1920
	-		TGT Cys 645			 					1968
15			GTC Val							_	2016
20		_	GGA Gly						_		2064
25			GAT Asp								2112
30			CAA Gln								2160
			GGC Gly 725								2208
35			GCT Ala								2256
40			ATG Met								2304
45			AAA Lys							_	2352
50			CTC Leu								2400
			TTA Leu 805	TGA							2421

55 (2) INFORMATION FOR SEQ ID NO:53:

```
(i) SEQUENCE CHARACTERISTICS:
                (A) LENGTH: 806 amino acids
                (B) TYPE: amino acid
   5
                (C) STRANDEDNESS: single
                (D) TOPOLOGY: linear
              (ii) MOLECULE TYPE: protein
              (v) FRAGMENT TYPE: internal
  10
              (xi) SEQUENCE DESCRIPTION: SEQ ID NO:53:
       Met Val Ser Lys Gly Glu Glu Leu Phe Thr Gly Val Val Pro Ile Leu
       Val Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe Ser Val Ser Gly
 15
                                      25
       Glu Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr Leu Lys Phe Ile
                                  40
       Cys Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr Leu Val Thr Thr
 20
                              55
       Leu Thr Tyr Gly Val Gln Cys Phe Ser Arg Tyr Pro Asp His Met Lys
                           70
       Gln His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly Tyr Val Gln Glu
                                          90
       Arg Thr Ile Phe Phe Lys Asp Asp Gly Asn Tyr Lys Thr Arg Ala Glu
 25
                                      105
       Val Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile Glu Leu Lys Gly
                                 120
       Ile Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His Lys Leu Glu Tyr
 30
      Asn Tyr Asn Ser His Asn Val Tyr Ile Met Ala Asp Lys Gln Lys Asn
                         150
                                              155
      Gly Ile Lys Val Asn Phe Lys Ile Arg His Asn Ile Glu Asp Gly Ser
                                         170
      Val Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro Ile Gly Asp Gly
35
                                     185
      Pro Val Leu Pro Asp Asn His Tyr Leu Ser Thr Gln Ser Ala Leu
                                  200
      Ser Lys Asp Pro Asn Glu Lys Arg Asp His Met Val Leu Leu Glu Phe
40
                             215
      Val Thr Ala Ala Gly Ile Thr Leu Gly Met Asp Glu Leu Tyr Lys Ser
                          230
                                             235
      Gly Leu Arg Ser Arg Ala Gln Ala Ser Asn Ser Asn Ser Thr Met Asp
                     245
                                         250
      Asn Met Ser Ile Thr Asn Thr Pro Thr Ser Asn Asp Ala Cys Leu Ser
45
                 260
                                      265
      Ile Val His Ser Leu Met Cys His Arg Gln Gly Gly Glu Ser Glu Thr
                                 280
     Phe Ala Lys Arg Ala Ile Glu Ser Leu Val Lys Lys Leu Lys Glu Lys
50
                             295
                                                 300
     Lys Asp Glu Leu Asp Ser Leu Ile Thr Ala Ile Thr Thr Asn Gly Ala
                         310
     His Pro Ser Lys Cys Val Thr Ile Gln Arg Thr Leu Asp Gly Arg Leu
                                            315
                                         330
     Gln Val Ala Gly Arg Lys Gly Phe Pro His Val Ile Tyr Ala Arg Leu
```

										.00						
	Trp	Arg	Trp 355	Pro	Asp	Leu	His	Lys 360	Asn	Glu	Leu	Lys	His 365	Val	ГÀЗ	Tyr
	Cys	Gln 370	Tyr	Ala	Phe	Asp	Leu 375	Lys	Cys	Asp	Ser	Val 380	Сув	Val	Asn	Pro
5	Tyr 385	His	Tyr	Glu	Arg	Val 390	Val	Ser	Pro	Gly	Ile 395	Asp	Leu	Ser	Gly	Leu 400
	Thr	Leu	Gln	Ser	Asn 405	Ala	Pro	Ser	Ser	Met 410	Met	Val	Lys	Asp	Glu 415	Tyr
10	Val	His	Asp	Phe 420	Glu	Gly	Gln	Pro	Ser 425	Leu	Ser	Thr	Glu	Gly 430	His	Ser
			435	Ile				440					445			
	Tyr	Ser 450	Thr	Pro	Ala	Leu	Leu 455	Ala	Pro	Ser	Glu	Ser 460	Asn	Ala	Thr	Ser
15	Thr 465	Ala	naA	Phe	Pro	Asn 470	Ile	Pro	Val	Ala	Ser 475	Thr	Ser	Gln	Pro	Ala 480
	Ser	Ile	Leu	Gly	Gly 485	Ser	His	Ser	Glu	Gly 490		Leu	Gln	Ile	Ala 495	
20				Pro 500					505	_			-	510		
	Thr	Tyr	His 515	His	Asn	Ser	Thr	Thr 520	Thr	Trp	Thr	Gly	Ser 525	Arg	Thr	Ala
	Pro	Tyr 530	Thr	Pro	Asn	Leu	Pro 535	His	His	Gln	Asn	Gly 540	His	Leu	Gln	His
25	His 545	Pro	Pro	Met	Pro	Pro 550	His	Pro	Gly	His	Tyr 555	Trp	Pro	Val	His	Asn 560
	Glu	Leu	Ala	Phe	Gln 565	Pro	Pro	Ile	Ser	Asn 570	His	Pro	Ala	Pro	Glu 575	Tyr
30	Trp	Cys	Ser	Ile 580	Ala	Tyr	Phe	Glu	Met 585	Asp	Val	Gln	Val	Gly 590	Glu	Thr
			5 9 5	Pro			•	600					605	_	•	
0.5		610		Gly			615		_		•	620				
35	H15	Arg	Thr	Glu	Ala	630	Glu	Arg	Ala	Arg	Leu 635	His	Ile	Gly	Lys	Gly 640
				Glu	645					650					655	
40				Ala 660					665					670		
	Gly	Arg	Ala 675	Pro	Gly	Asp	Ala	Val 680	His	Lys	Ile	Tyr	Pro 685	Ser	Ala	Tyr
		690		Phe			695		-		_	700				
45	Ala 705	Ala	Thr	Ala	Gln	Ala 710	Ala	Ala	Ala	Ala	Gln 715	Ala	Ala	Ala	Val	Ala 720
				Pro	725					730					735	
50				Ala 740					745					750		
			755	Arg				760					765			
		770		Ile			775					780				
55	Arg 785	Ala	Leu	Gln	Leu	Leu 790	Asp	Glu	Val	Leu	His 795	Thr	Met	Pro	Ile	Ala 800

110

Asp Pro Gln Pro Leu Asp 805

5	(2) INFORMATION FOR SEQ ID NO:54:	
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 3120 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
15	(ii) MOLECULE TYPE: cDNA (ix) FEATURE:	
13	(A) NAME/KEY: Coding Sequence(B) LOCATION: 13117(D) OTHER INFORMATION:	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:54:	
0.5	ATG GTG AGC AAG GGC GAG GAG CTG TTC ACC GGG GTG GTG CCC ATC CTG Met Val Ser Lys Gly Glu Glu Leu Phe Thr Gly Val Val Pro Ile Leu 1 5 10	48
25	GTC GAG CTG GAC GGC GAC GTA AAC GGC CAC AAG TTC AGC GTG TCC GGC Val Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe Ser Val Ser Gly 25	96
30	GAG GGC GAG GGC GAT GCC ACC TAC GGC AAG CTG ACC CTG AAG TTC ATC Glu Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr Leu Lys Phe Ile 35	144
35	TGC ACC ACC GGC AAG CTG CCC GTG CCC TGG CCC ACC CTC GTG ACC ACC Cys Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr Leu Val Thr Thr 50 55 60	192
40	CTG ACC TAC GGC GTG CAG TGC TTC AGC CGC TAC CCC GAC CAC ATG AAG Leu Thr Tyr Gly Val Gln Cys Phe Ser Arg Tyr Pro Asp His Met Lys 70 75 80	240
	CAG CAC GAC TTC TTC AAG TCC GCC ATG CCC GAA GGC TAC GTC CAG GAG Gln His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly Tyr Val Gln Glu 85 90 95	288
45	CGC ACC ATC TTC TTC AAG GAC GAC GGC AAC TAC AAG ACC CGC GCC GAG Arg Thr Ile Phe Phe Lys Asp Asp Gly Asn Tyr Lys Thr Arg Ala Glu 100 105 110	336
50	GTG AAG TTC GAG GGC GAC ACC CTG GTG AAC CGC ATC GAG CTG AAG GGC Val Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile Glu Leu Lys Gly 115	384
55	ATC GAC TTC AAG GAG GAC GGC AAC ATC CTG GGG CAC AAG CTG GAG TAC Ile Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His Lys Leu Glu Tyr 130 135 140	432

							111				
			AAC Asn								480
5			AAG Lys								528
10			CTC Leu								576
15			CTG Leu 195								624
20			GAC Asp		_						672
20			GCC Ala								720
25			AGA Arg								768
30			GCG Ala								816
35	_	_	GTC Val 275	_							864
40		_	ATT Ile								912
40			GAG Glu								960
45			GAA Glu								1008
50			CTC Leu								1056
55			CGG Arg 355	_							1104

												4								
		3	70	.			110	375	; ;	у 1.	re r	eu	Val	As ₁	o Al	a M	et	Se:	C CAG r Gln	1152
5	38	5					390	GIII	1 111.	I Pr	ie G.	Iu (G1u 395	Let	ı Ar	g L	eu	Va:	C ACG l Thr 400	1200
10	CA Gl	G GA	AC A Sp T	CA G hr G		AT (sn (GAG Glu	CTG Leu	Lys	G AA s Ly	A C	eu (CAG Gln	CAC Glr	AC'	T C	ln	GAC Glu	TAC Tyr	1248
15	TT(Pho	C Al	C A		AG T ln T 20	AC o	CAG Sln	GAG Glu	AG(C CT Le 42	u Ar	eg 1	ATC Ile	CAA Gln	GC: Ala	r ca a Gl 43	n	TTI Phe	GCC Ala	1296
20			43	15		- L	CI ,	FIO	440	i Gi	ı Ar	gL	eu	Ser	Arc 445	g Gl	u :	Thr	GCC Ala	1344
	CTC	CA G1 45	G CA n Gl 0	G AA .n Ly	G CA	AG G Ln V	u1 .	CT Ser	CTG Leu	GA0	G GC	C T a T	rp	TTG Leu 460	CAG Gln	CG Ar	T (GAG Glu	GCA Ala	1392
25	CAG Gln 465	AC.	A CT r Le	G CA u Gl	G CA n Gl	··· ·	AC C yr A 70	GC .rg	GTG Val	GAC Glu	CTO	u A	CC (la (GAG Glu	AAG Lys	CA Hi	C C	AG 31n	AAG Lys 480	1440
30	ACC Thr	CTO	G CA	G CT	G CT u Le 48	u //	GG A	AG ys	CAG Gln	CAG Gln	AC(Thi	r I.	TC 1	ATC Ile	CTG Leu	GA: Ası	A	AC sp 95	GAG Glu	1488
35	CTG Leu	ATC Ile	CAC	TGG Trj 500	,	G CC	G C	GG (rg (CAG Gln	CAG Gln 505	CTC	G GC	CC C	GG Gly	AAC Asn	GGC Gly 510	G.	GG ly	CCC Pro	1536
40			515			- AD	p v	2 I	520	GIN	ser	Tr	ърС	ys	Glu 525	Lys	Le	eu .	Ala	1584
	GAG Glu	ATC Ile 530	ATO	TGC Trp	Glr	3 AA 1 As	C CC n Ai 53	.y c	CAG Sln	CAG Gln	ATC Ile	CG Ar	g A	.GG (.rg / 40	GCT Ala	GAG Glu	C# Hi	AC (CTC Leu	1632
45	TGC Cys 545	CAG Gln	CAG Gln	CTG	Pro	110 550	S PI	C G	GC ly	CCA Pro	GTG Val	GA Gl: 55	u G	AG A lu N	ATG Met	CTG Leu	GC Al	.a (GAG Glu G60	1680
50	GTC . Val .	AAC Asn	GCC Ala	ACC Thr	ATC Ile 565		G GA	C A p I	TT /	тте	TCA Ser 570	GC0 Ala	C C	rg c eu V	TG /	ACC Thr	AG Se 57	r 1	ACA Thr	1728
55	TTC ;	ATC Ile	ATT Ile	GAG Glu 580	AAG Lys	CAC Glr	CC Pr	T C	ro c	CAG 31n 585	GTC Val	CT(ı Ly	AG A /s T	hr (CAG Gln 590	AC Th	C A	AG ys	1776

						113				
		GCC Ala 595								1824
5		CCC Pro								1872
10		CTG Leu								1920
15		AAC Asn								1968
20		GCC Ala								2016
		CGG Arg 675								2064
25		TCT Ser								2112
30		CTG Leu								2160
35		GCC Ala								2208
40		GTG Val								2256
40		GCG Ala 755								2304
45		ACC Thr								2352
50		AGC Ser								2400
55		TTC Phe								2448

									114							
	CAG 7	rgg T Trp P	TT GA he As	F	GTG Val	ATG Met	GAG Glu	GTC Val 825	L Let	AAG Lys	AAG Lys	CAC His	CAC His	Ly	G CCC s Pro	2496
5	CAC T His T	-	AT GA sn As 35	T GGG p Gly	GCC Ala	ATC Ile	CTA Leu 840	GIY	TTT Phe	GTG Val	AAT Asn	AAG Lys 845	CAA Gln	CAC Glr	G GCC	2544
10	CAC G His A 8	AC C'sp Le	TG CT eu Le	C ATC u Ile	AAC Asn	AAG Lys 855	CCC Pro	GAC Asp	GGG	ACC Thr	TTC Phe 860	TTG Leu	TTG Leu	CGC	TTT Phe	2592
15	AGT G. Ser A. 865	AC TO	CA GA	A ATC	GGG Gly 870	GGC Gly	ATC Ile	ACC Thr	ATC Ile	GCC Ala 875	TGG Trp	AAG Lys	TTT Phe	GAC Asp	TCC Ser 880	2640
20	CCG G	AA CG lu Ar	GC AAG	C CTG Leu 885	TGG Trp	AAC Asn	CTG Leu	AAA Lys	CCA Pro 890	TTC Phe	ACC Thr	ACG Thr	CGG Arg	GAT Asp 895	TTC Phe	2688
	TCC AT		900)	AIG .	ASP .	Arg	ьец 905	Gly	Asp	Leu .	Ser '	Tyr 910	Leu	Ile	2736
25	TAT GT Tyr Va	91	5		nig .	:	920	Asp	Glu	Val :	Phe s	Ser 1 925	ГЛЗ	Tyr	Tyr	2784
30	ACT CC Thr Pr 93	T GTO O Val O	G CTG l Leu	GCT Ala	Lys A	GCT (Ala V 935	GTT (/al /	GAT Asp	GGA Gly	Tyr V	GTG / Val I 940	AAA C	CCA Pro	CAG Gln	ATC Ile	2832
35	AAG CA Lys Gl: 945	A GTO	GTC Val		GAG 1 Glu F 950	TT C	TG 1	AAT (Ala :	TCT (Ser <i>I</i> 955	GCA G	AT G	CT (Gly	GGC Gly 960	2880
40	AGC AGG Ser Sei	C GCC r Ala	ACG Thr	TAC I Tyr 1 965	ATG G Met A	SAC C	AG C	иа в	CCC : Pro s	CC C	CCA G	CT G la V	al (rgc Cys 975	CCC Pro	2928
	CAG GCT Gln Ala		980		1	YL P	9	85	Asn F	ro A	sp H	is V. 9:	al I 90	eu i	Asp	2976
45	CAG GAT Gln Asp	GGA Gly 995	GAA Glu	TTC G	SAC C	TG G eu A	sp G	AG A lu T	CC A	TG G	AT G' sp Va	al Al	CC A la A	.GG (CAC His	3024
50	GTG GAG Val Glu 1010	GAA Glu	CTC	TTA C Leu A	GC CC rg Ai	9 1	CA A	TG G et A	AC A sp S	GT C er Le	eu As	AC TO	CC C	GC C rg I	CTC Jeu	3072
55	TCG CCC Ser Pro 1025	CCT Pro	GCC (GGT C Gly L	Cu Fi	CC AC	C TO	CT G	CC Ac	rg G]	GC TC ly Se	C CI	C T	CA Ter	'GA	3120

115

(2) INFORMATION FOR SEQ ID NO:55:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1039 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- 10 (ii) MOLECULE TYPE: protein

5

55

(v) FRAGMENT TYPE: internal

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:55:

		(2	~1, .)EQUI	SIVCE	DESC	LKIP.	LION		ע גע	110	٠.				
15	Met 1	Val	Ser	Lys	Gly 5	Glu	Glu	Leu	Phe	Thr 10	Gly	Val	Val	Pro	Ile 15	Leu
	Val	Glu	Leu	Asp 20	Gly	Asp	Val	Asn	Gly 25	His	Lys	Phe	Ser	Val 30	Ser	Gly
20	Glu	Gly	Glu 35	Gly	Asp	Ala	Thr	Tyr 40	Gly	Lys	Leu	Thr	Leu 45	Lys	Phe	Ile
	Суз	Thr 50	Thr	Gly	Lys	Leu	Pro 55	Val	Pro	Trp	Pro	Thr 60	Leu	Val	Thr	Thr
	Leu 65	Thr	Tyr	Gly	Val	Gln 70	Cys	Phe	Ser	Arg	Tyr 75	Pro	Asp	His	Met	Lys 80
25	Gln	His	Asp	Phe	Phe 85	Lys	Ser	Ala	Met	Pro 90	Glu	Gly	Tyr	Val	Gln 95	Glu
	Arg	Thr	Ile	Phe 100	Phe	Lys	Asp	Asp	Gly 105	Asn	Tyr	Lys	Thr	Arg 110	Ala	Glu
30	Val	Lys	Phe 115	Glu	Gly	Asp	Thr	Leu 120	Val	Asn	Arg	Ile	Glu 125	Leu	Lys	Gly
	Ile	Asp 130	Phe	Lys	Glu	Asp	Gly 135	Asn	Ile	Leu	Gly	His 140	Lys	Leu	Glu	Tyr
	Asn 145	Tyr	Asn	Ser	His	Asn 150	Val	Tyr	Ile	Met	Ala 155	Asp	Lys	Gln	Lys	Asn 160
35	Gly	Ile	Lys	Val	Asn 165	Phe	Lys	Ile	Arg	His 170	Asn	Ile	Glu	Asp	Gly 175	Ser
	Val	Gln	Leu	Ala 180	Asp	His	Tyr	Gln	Gln 185	Asn	Thr	Pro	Ile	Gly 190	Asp	Gly
40	Pro	Val	Leu 195	Leu	Pro	Asp	Asn	His 200	Tyr	Leu	Ser	Thr	Gln 205	Ser	Ala	Leu
	Ser	Lys 210	Asp	Pro	Asn	Glu	Lys 215	Arg	qaA	His	Met	Val 220	Leu	Leu	Glu	Phe
	Val 225	Thr	Ala	Ala	Gly	11e 230	Thr	Leu	Gly	Met	Asp 235	Glu	Leu	Tyr	Lys	Ser 240
45	Gly	Leu	Arg	Ser	Thr 245	Met	Ala	Gly	Trp	Ile 250	Gln	Ala	Gln	Gln	Leu 255	Gln
	Gly	qaA	Ala	Leu 260	Arg	Gln	Met	Gln	Val 265	Leu	Tyr	Gly	Gln	His 270	Phe	Pro
50	Ile	Glu	Val 275	Arg	His	Tyr	Leu	Ala 280	Gln	Trp	Ile	Glu	Ser 285	Gln	Pro	Trp
	Asp	Ala 290	Ile	Asp	Leu	Asp	Asn 295	Pro	Gln	Asp	Arg	Ala 300	Gln	Ala	Thr	Gln
	Leu	Leu	Glu	Glv	Leu	Val	Gln	Glu	Len	Gln	Lvs	Lvs	Ala	Glu	His	Gln

115

335

Leu Leu Glu Gly Leu Val Gln Glu Leu Gln Lys Lys Ala Glu His Gln

Val Gly Glu Asp Gly Phe Leu Leu Lys Ile Lys Leu Gly His Tyr Ala

315

330

310

	116	
	Thr Gln Leu Gln Lys Thr Tyr Asp Arg Cys Pro Leu Glu Leu Val Arg	
	340 345 350 Cys Ile Arg His Ile Leu Tyr Asn Glu Gln Arg Leu Val Arg Glu Ala	3
5	355 360 365	а
	370 375 Ser Ser Pro Ala Gly Ile Leu Val Asp Ala Met Ser Glr	1
	Lys His Leu Gln Ile Asn Gln Thr Phe Glu Glu Leu Arg Leu Val The	_
10	Gln Asp Thr Glu Asp Glu Leu Lyg Lyg 1395)
10	405 410 415	•
	Phe Ile Ile Gln Tyr Gln Glu Ser Leu Arg Ile Gln Ala Gln Phe Ala 420 425	
	Gln Leu Ala Gln Leu Ser Pro Gln Glu Arg Leu Ser Arg Glu Thr Ala 435 440	
15	Leu Gln Gln Lys Gln Val Ser Leu Glu Ala Trp Leu Gln Arg Glu Ala 450 455	
	Gln Thr Leu Gln Gln Tyr Arg Val Glu Leu Ala Glu Lys His Gln Lys 465 470	
	465 470 475 480	
20	Thr Leu Gln Leu Leu Arg Lys Gln Gln Thr Ile Ile Leu Asp Asp Glu 485 490	
	Leu lie Gin Trp Lys Arg Arg Gln Gln Leu Ala Gly Asn Gly Gly Pro	
	Pro Glu Gly Ser Leu Asp Val Leu Gln Ser Trp Cys Glu Lys Leu Ala	
25	Glu Ile Ile Trp Gln Asn Arg Gln Gln Ile Arg Arg Ala Glu His Leu	
	530 535 540 Cys Gln Gln Leu Pro Ille Pr	
	Cys Gln Gln Leu Pro Ile Pro Gly Pro Val Glu Glu Met Leu Ala Glu 545 550 555	
30	Val Asn Ala Thr Ile Thr Asp Ile Ile Ser Ala Leu Val Thr Ser Thr	
	Phe Ile Ile Glu Lys Gln Pro Pro Gln Val Leu Lys Thr Gln Thr Lys	
	Phe Ala Ala Thr Val Arg Leu Leu Val Gly Gly Lys Leu Asn Val His	
35	595 600 Het Asn Pro Pro Gln Val Lus 10 605	
	Met Asn Pro Pro Gln Val Lys Ala Thr Ile Ile Ser Glu Gln Gln Ala 610 615 620	
	Lys Ser Leu Leu Lys Asn Glu Asn Thr Arg Asn Glu Cys Ser Gly Glu	
40	Ile Leu Asn Asn Cys Cys Val Met Glu Tyr His Gln Ala Thr Gly Thr	
	Leu Ser Ala His Phe Arg Asn Met Ser Leu Lys Arg Ile Lys Arg Ala	
	Asp Arg Arg Gly Ala Gly Con Val	
45	Asp Arg Arg Gly Ala Glu Ser Val Thr Glu Glu Lys Phe Thr Val Leu 675 680 685	
	Phe Glu Ser Gln Phe Ser Val Gly Ser Asn Glu Leu Val Phe Gln Val 690 695	
	Lys Thr Leu Ser Leu Pro Val Val Val Ile Val His Gly Ser Glr Nor	
50	His Asn Ala Thr Ala Thr Val Leu Trp Asp Asn Ala Phe Ala Glu Pro	
50	725 730 735 Gly Arg Val Pro Phe Ala Val Pro Pro 735	
	Gly Arg Val Pro Phe Ala Val Pro Asp Lys Val Leu Trp Pro Gln Leu 740 745 750	
e e	Cys Glu Ala Leu Asn Met Lys Phe Lys Ala Glu Val Gln Ser Asn Arg 755 760	
55	Gly Leu Thr Lys Glu Asn Leu Val Phe Leu Ala Gln Lys Leu Phe Asn	
	775 780	

117

										117							
	Asn 785	Ser	Ser	Ser	His	Leu 790	Glu	Asp	туr	Ser	Gly 795	Leu	Ser	Val	Ser	Trp 800	
	Ser	Gln	Phe	Asn	Arg 805	Glu	Asn	Leu	Pro	Gly 810	Trp	Asn	Tyr	Thr	Phe 815	Trp	
5	Gln	Trp	Phe	Asp 820	Gly	Val	Met	Glu	Val 825	Leu	Lys	Lys	His	His 830	Lys	Pro	
	His	Trp	Asn 835	Asp	Gly	Ala	Ile	Leu 840	Gly	Phe	Val	Asn	Lys 845	Gln	Gln	Ala	
10	His	Asp 850	Leu	Leu	Ile	Asn	Lys 855	Pro	Asp	Gly	Thr	Phe 860	Leu	Leu	Arg	Phe	
	Ser 865	Asp _.	Ser	Glu	Ile	Gly 870	Gly	Ile	Thr	Ile	Ala 875	Trp	Lys	Phe	Asp	Ser 880	
	Pro	Glu	Arg	Asn	Leu 885	Trp	Asn	Leu	Lys	Pro 890	Phe	Thr	Thr	Arg	Asp 895	Phe	
15	Ser	Ile	Arg	Ser 900	Leu	Ala	Asp	Arg	Leu 905	Gly	Asp	Leu	Ser	Tyr 910	Leu	Ile	
	Tyr	Val	Phe 915	Pro	Asp	Arg	Pro	Lys 920	Asp	Glu	Val	Phe	Ser 925	Lys	Tyr	Tyr	
20	Thr	Pro 930	Val	Leu	Ala	Lys	Ala 935	Val	Asp	Gly	Tyr	Val 940	Lys	Pro	Gln	Ile	
	Lys 945	Gln	Val	Val	Pro	Glu 950	Phe	Val	Asn	Ala	Ser 955	Ala	Asp	Ala	Gly	Gly 960	
	Ser	Ser	Ala	Thr	Tyr 965	Met	Asp	Gln	Ala	Pro 970	Ser	Pro	Ala	Val	Cys 975	Pro	
25	Gln	Ala	Pro	Tyr 980	Asn	Met	Tyr	Pro	Gln 985	Asn	Pro	Asp	His	Val 990	Leu	Asp	
	Gln	Asp	Gly 995	Glu	Phe	qaA		Asp 1000	Glu	Thr	Met		Val	Ala	Arg	His	
30		Glu 1010	Glu	Leu	Leu	_	Arg 1015	Pro	Met	Asp		Leu 1020	Asp	Ser	Arg	Leu	
	Ser 025	Pro	Pro	Ala	Gly	Leu 1030	Phe	Thr	Ser		Arg 1035	Gly	Ser	Leu		ı	
			(2)) IN	FORM	OITA	v FOI	R SE	Q ID	NO:	56:						
35		(:	i) SI	EQUEI	NCE (CHARA	ACTE	RIST:	ICS:								
					GTH: E: ni			-	airs								
40					ANDEI OLOG			_	е								
		(:	ii) r	MOLE	CULE	TYPI	E: cl	DNA						•			
		(:	ix) 1	FEAT	URE:												
45			(B)	LO	ME/KI CATIO HER	: NC	1:	1872	equei	nce							
50		(2	ki) S	SEQUI	ENCE	DES	CRIP	гіои	: SE	Q ID	ио:	56:					
50					GCG Ala 5												48

96

GGA ACT GCT GGG GTC GTC CCG GTG GTC CCC GGG GAG GTG GAG GTG GTG

Gly Thr Ala Gly Val Val Pro Val Val Pro Gly Glu Val Glu Val Val

	118	
	20 25 30	
5	AAG GGG CAG CCA TTC GAT GTG GGC CCA CGC TAC ACG CAG CTG CAG TAC Lys Gly Gln Pro Phe Asp Val Gly Pro Arg Tyr Thr Gln Leu Gln Tyr 35 40 45	144
10	ATC GGC GAG GGC GCG TAC GGC ATG GTC AGC TCA GCT TAT GAC CAC GTG Ile Gly Glu Gly Ala Tyr Gly Met Val Ser Ser Ala Tyr Asp His Val 50 55 60	192
45	CGC AAG ACC AGA GTG GCC ATC AAG AAG ATC AGC CCC TTT GAG CAT CAA Arg Lys Thr Arg Val Ala Ile Lys Lys Ile Ser Pro Phe Glu His Gln 65 70 75 80	240
15	ACC TAC TGT CAG CGC ACG CTG AGG GAG ATC CAG ATC TTG CTG CGA TTC Thr Tyr Cys Gln Arg Thr Leu Arg Glu Ile Gln Ile Leu Leu Arg Phe 85 90 95	288
20	CGC CAT GAG AAT GTT ATA GGC ATC CGA GAC ATC CTC AGA GCG CCC ACC Arg His Glu Asn Val Ile Gly Ile Arg Asp Ile Leu Arg Ala Pro Thr 105 110	336
25	CTG GAA GCC ATG AGA GAT GTT TAC ATT GTT CAG GAC CTC ATG GAG ACA Leu Glu Ala Met Arg Asp Val Tyr Ile Val Gln Asp Leu Met Glu Thr 115 120 125	384
30	GAC CTG TAC AAG CTG CTT AAA AGC CAG CAG CTG AGC AAT GAC CAC ATC Asp Leu Tyr Lys Leu Leu Lys Ser Gln Gln Leu Ser Asn Asp His Ile 130 135 140	432
35	TGC TAC TTC CTC TAC CAG ATC CTC CGG GGC CTC AAG TAT ATA CAC TCA Cys Tyr Phe Leu Tyr Gln Ile Leu Arg Gly Leu Lys Tyr Ile His Ser 150 155 160	480
33	GCC AAT GTG CTG CAC CGG GAC CTG AAG CCT TCC AAT CTG CTT ATC AAC Ala Asn Val Leu His Arg Asp Leu Lys Pro Ser Asn Leu Leu Ile Asn 165 170 175	528
40	ACC ACC TGC GAC CTT AAG ATC TGT GAT TTT GGC CTG GCC CGG ATT GCT Thr Thr Cys Asp Leu Lys Ile Cys Asp Phe Gly Leu Ala Arg Ile Ala 180 185 190	576
45	GAC CCT GAG CAC GAC CAC ACT GGC TTT CTG ACG GAG TAT GTG GCC ACA Asp Pro Glu His Asp His Thr Gly Phe Leu Thr Glu Tyr Val Ala Thr 195 200 205	624
50	CGC TGG TAC CGA GCC CCA GAG ATC ATG CTT AAT TCC AAG GGC TAC ACC Arg Trp Tyr Arg Ala Pro Glu Ile Met Leu Asn Ser Lys Gly Tyr Thr 210 215 220	672
	AAA TCC ATC GAC ATC TGG TCT GTG GGC TGC ATT CTG GCT GAG ATG CTC Lys Ser Ile Asp Ile Trp Ser Val Gly Cys Ile Leu Ala Glu Met Leu 235 240	720
55	TCC AAC CGG CCC ATC TTC CCC GGC AAG CAC TAC CTG GAC CAG CTC AAC Ser Asn Arg Pro Ile Phe Pro Gly Lys His Tyr Leu Asp Gln Leu Asn	768

										119								
					245					250					255			
5					ATC Ile												816	
10					AAG Lys												864	
			_	_	TGG Trp												912	
15					GAC Asp												960	
20					GCG Ala 325												1008	
25					CCA Pro												1056	
30					CCC Pro												1104	
					CAG Gln												1152	
35					GAA Glu												1200	
40					GTT Val 405												1248	
45					ACA Thr												1296	
50					CCT Pro												1344	
					TGC Cys												1392	
55	GAC Asp	TTT Phe	TTC Phe	AAG Lys	AGT Ser	GCC Ala	ATG Met	CCC Pro	GAA Glu	GGT Gly	TAT Tyr	GTA Val	CAG Gln	GAA Glu	AGA Arg	ACT Thr	1440	1

	465 470 475	
	4/5 480	
5	485 490 495	1488
10	TTT GAA GGT GAT ACC CTT GTT AAT AGA ATC GAG TTA AAA GGT ATT GAT Phe Glu Gly Asp Thr Leu Val Asn Arg Ile Glu Leu Lys Gly Ile Asp 500 510	1536
	TTT AAA GAA GAT GGA AAC ATT CTT GGA CAC AAA ATG GAA TAC AAT TAT Phe Lys Glu Asp Gly Asn Ile Leu Gly His Lys Met Glu Tyr Asn Tyr 515 520 525	1584
15	AAC TCA CAT AAT GTA TAC ATC ATG GCA GAC AAA CCA AAG AAT GGC ATC Asn Ser His Asn Val Tyr Ile Met Ala Asp Lys Pro Lys Asn Gly Ile 530 535 540	1632
20	AAA GTT AAC TTC AAA ATT AGA CAC AAC ATT AAA GAT GGA AGC GTT CAA Lys Val Asn Phe Lys Ile Arg His Asn Ile Lys Asp Gly Ser Val Gln 545 550 555	1680
25	TTA GCA GAC CAT TAT CAA CAA AAT ACT CCA ATT GGC GAT GGC CCT GTC Leu Ala Asp His Tyr Gln Gln Asn Thr Pro Ile Gly Asp Gly Pro Val 565 570 575	1728
30	CTT TTA CCA GAC AAC CAT TAC CTG TCC ACG CAA TCT GCC CTT TCC AAA Leu Leu Pro Asp Asn His Tyr Leu Ser Thr Gln Ser Ala Leu Ser Lys 580 585 590	1776
	GAT CCC AAC GAA AAG AGA GAT CAC ATG ATC CTT CTT GAG TTT GTA ACA Asp Pro Asn Glu Lys Arg Asp His Met Ile Leu Leu Glu Phe Val Thr 595 600 605	1824
35	GCT GCT GGG ATT ACA CAT GGC ATG GAT GAA CTA TAC AAA CCT CAG GAG T Ala Ala Gly Ile Thr His Gly Met Asp Glu Leu Tyr Lys Pro Gln Glu 610 620	1873
40	AA (2) INFORMATION FOR SEQ ID NO:57:	1875
45	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 624 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
50	(ii) MOLECULE TYPE: protein (v) FRAGMENT TYPE: internal	
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:57: Met Ala Ala Ala Ala Ala Pro Gly Gly Gly Gly Glu Pro Arg 1 5 10 15 Gly Thr Ala Gly Val Val Pro Val Val Pro Gly Glu Val Glu Val Val	

				20					25					30		
	Lys	Gly	Gln 35	Pro	Phe	Asp	Val	Gly 40	Pro	Arg	Tyr	Thr	Gln 45	Leu	Gln	Tyr
5	Ile	Gly 50	Glu	Gly	Ala	Tyr	Gly 55	Met	Val	Ser	Ser	Ala 60	Tyr	Asp	His	Val
	Arg 65	Lys	Thr	Arg	Val	Ala 70	Ile	Lys	Lys	Ile	Ser 75	Pro	Phe	Glu	His	Gln 80
	Thr	Tyr	Cys	Gln	Arg 85	Thr	Leu	Arg	Glu	Ile 90	Gln	Ile	Leu	Leu	Arg 95	Phe
10	Arg	His	Glu	Asn 100	Val	Ile	Gly	Ile	Arg 105	Asp	Ile	Leu	Arg	Ala 110	Pro	Thr
	Leu	Glu	Ala 115	Met	Arg	Asp	Val	Tyr 120	Ile	Val	Gln	Asp	Leu 125	Met	Glu	Thr
15	Asp	Leu 130	Tyr	Lys	Leu	Leu	Lys 135	Ser	Gln	Gln	Leu	Ser 140	Asn	Asp	His	Ile
	Cys 145	Tyr	Phe	Leu	Tyr	Gln 150	Ile	Leu	Arg	Gly	Leu 155	Lys	Tyr	Ile	His	Ser 160
	Ala	Asn	Val	Leu	His 165	Arg	Asp	Leu	Lys	Pro 170	Ser	Asn	Leu	Leu	Ile 175	Asn
20				180	Leu	_			185		-			190		
			195		Asp			200					205			
25		210			Ala		215					220				
	225				Ile	230					235					240
20					Ile 245					250					255	
30				260	Ile				265					270		
			275		Lys			280					285			
35		290			Trp		295					300				
	305				Asp Ala	310					315					320
40					325 Pro					330					335	
40				340	Pro				345					350		
			355		Gln			360					365			
45		370			Glu		375					380				
	385				Val	390					395					400
50					405 Thr					410					415	
				420	Pro				425					430		
			435		Cys			440					445			
55		450			Ser		455					460				
										-	_				_	

										122			-				
	465	5				470											
•	Ile	Phe	Tyr	Lvs	Asn	Δen	C1.			_	475	i				480	
	Phe	Glu	G) v	. yaz	485	, veh		/ Asn	Tyr	Lys 490	Thr	Arg	Ala	Glu	Val 495	480 Lys	
. 5	Dha	. .	- G1y	500	inr	Leu	Val	. Asn	Arg 505	Ile	Glu	Leu	Lys	Gly	Ile	Asp	
	Pne	гÀЗ	G1u 515	Asp	Gly	Asn	Ile	Leu 520	Gly	His	Lys	Met	Glu	510 Tyr	Asn	Tyr	
	Asn	Ser 530	His	Asn	Val	Tyr	Ile 535	Met	Ala	Asp	Lys	Pro	Lys	Asn	Gly	Ile	
10	Lys 545	Val	Asn	Phe	Lys	Ile 550	Arg	His	Asn	Ile	Lys	540 Asp	Gly	Ser	Val	Gln	
	Leu	Ala	qaA	His	Tyr	Gln	Gln	Asn	Thr	Pro	555 Ile	Gly	Asp	Gly	Pro	560 Val	
15	Leu	Leu	Pro	Asp	565 Asn	His	Tyr	Leu	Ser	570 Thr	Gln	Ser	Ala	Leu	575 Ser	Lva	
.0	Asp	Pro	Asn	580 Glu	Lys	Arg	Asp	His	585 Met	Ile	Leu	Len	Glu	590 Phe	261	-v	
	Ala	Ala	595 Gly	Ile	Thr	His	Gly	600 Met	Asp	Glu	Lou	The table	605	Pne Pro	vaı	Thr	
20		610					615		пор	GIU	ьeu	620	rys	Pro	Gln	Glu	
			(2)	INF	ORMA	TION	FOR	SEQ	ID	NO:5	8:						
25			(A)	PENG,	TH:	1815	bas	ISTI e pa	CS: irs								
20			(C) s	STRAI	: nuc NDEDI LOGY:	VESS:	si	nale									
30		(ii		LEC	JLE 1												
		,															
			(B)	LOCA	TION R IN	: 1.	18	Seq	ueno	e							
35		(xi						ON:	SEO	TD M	0.50						
	ATG G	CG G	CG G	CG G	CG G	CG (2)	CG G		aa ~								
40	Met A	la A	la A	la A	la A	la A	la G	ly P	ro G 1	IU M	et V	TC Co	GC G(rg G)	GG CA Ly GI	ln V	TG al	48
	TTC G	AC GI	rg go	GG C	CG CC	GC TA	AC A	CT A	AT C	TC TO	CG TA	AC AT	rc go			3C	96
45	Phe A	Sp ve	20) Ly Pi	ro Ai	rg Ty	rT	hr A: 25	211 TH	eu Se	er Ty	yr I]	le G] 30	y Gl	u G	ly	96
	GCC TA	AC GG	C AI	G G1	T TO	T TC	T G	CT TA	AT G	AT AZ	ייי ריז	רר אז			-	_	
	Ala Ty	/r Gl 35	y Me	t Va	al Cy	's Se	r A]	La ly	r As	p As	n Le	u As	n Ly	s Va	l Ar	g g	144
50	GTT GC	T AT	C AA	G AA	A AT	C AG	T CC	T TI	T GA	G CA	.C CA	G AC	C TA	C TG	יי רי	c	100
	50		-	,		55	L FI	.O PII	e G1	u Hi	s G1 60	n Th	г ту	r Cy	s Gl	n	192
55	AGA AC Arg Th 65	C CT	G AG	A GA g Gl	G AT	A AA	A AT	CCT	A CT	G CG	C TT	C AG	A CA	T GAG	S AA	С	240
	65			_ ~	70	- - y	- 11	e ne	ч ге	u Ar	g Ph	e Ar	g Hi	s Glı	As:	n	
																	122

														GAG Glu			288
5														CTT Leu			336
40				100				_	105				-	110		-	
10														TAT Tyr			384
15														AAT Asn			432
20	His					Pro					Leu			ACT Thr		Asp	480
20	145 CTC	AAG	ATC	TGT	GAC	150 TTT	GGC	CTT	GCC	CGT	155 GTT	GCA	GAT	CCA	GAC	160 CAT	528
25	Leu	Lys	Ile	Cys	Asp 165	Phe	Gly	Leu	Ala	Arg 170	Val	Ala	Asp	Pro	Asp 175	His	
25														TGG Trp 190			576
30														TCC Ser			624
35														AAC Asn			672
40	_													ATC Ile			720
	_													ATA Ile			768
45														AAG Lys 270			816
50														GAT Asp			864
55														GTT Val			912

	GCT CTG GCC CAC CCG TAC CTG GAG CAG TAT TAT GAC CCA AGT GAT GAG 960
5	305 310 315 Ser Asp Glu 320
	CCC ATT GCT GAA GCA CCA TTC AAG TTT GAC ATG GAG CTG GAC GAC TTA 1008 Pro Ile Ala Glu Ala Pro Phe Lys Phe Asp Met Glu Leu Asp Asp Leu 325 330 335
10	CCT AAG GAG AAG CTC AAA GAA CTC ATT TTT GAA GAG ACT GCT CGA TTC 1056 Pro Lys Glu Lys Leu Lys Glu Leu Ile Phe Glu Glu Thr Ala Arg Phe 340 345 350
15	CAG CCA GGA TAC AGA TCT ATG GAT CCA CCG GTC GCC ACC ATG GTG AGC 1104 Gln Pro Gly Tyr Arg Ser Met Asp Pro Pro Val Ala Thr Met Val Ser 355 360 365
20	AAG GGC GAG GAG CTG TTC ACC GGG GTG GTG CCC ATC CTG GTC GAG CTG Lys Gly Glu Glu Leu Phe Thr Gly Val Val Pro Ile Leu Val Glu Leu 370 370 380
25	GAC GGC GAC GTA AAC GGC CAC AAG TTC AGC GTG TCC GGC GAG GGC GAG Asp Gly Asp Val Asn Gly His Lys Phe Ser Val Ser Gly Glu Gly Glu 395 400
	GGC GAT GCC ACC TAC GGC AAG CTG ACC CTG AAG TTC ATC TGC ACC ACC 1248 Gly Asp Ala Thr Tyr Gly Lys Leu Thr Leu Lys Phe Ile Cys Thr Thr 405 410 415
30	GGC AAG CTG CCC GTG CCC TGG CCC ACC CTC GTG ACC ACC CTG ACC TAC Gly Lys Leu Pro Val Pro Trp Pro Thr Leu Val Thr Thr Leu Thr Tyr 420 425 430
35	GGC GTG CAG TGC TTC AGC CGC TAC CCC GAC CAC ATG AAG CAG CAC GAC Gly Val Gln Cys Phe Ser Arg Tyr Pro Asp His Met Lys Gln His Asp 435 440 445
40	TTC TTC AAG TCC GCC ATG CCC GAA GGC TAC GTC CAG GAG CGC ACC ATC Phe Phe Lys Ser Ala Met Pro Glu Gly Tyr Val Gln Glu Arg Thr Ile 450 450 450
45	TTC TTC AAG GAC GAC GGC AAC TAC AAG ACC CGC GCC GAG GTG AAG TTC Phe Phe Lys Asp Asp Gly Asn Tyr Lys Thr Arg Ala Glu Val Lys Phe 470 480
	GAG GGC GAC ACC CTG GTG AAC CGC ATC GAG CTG AAG GGC ATC GAC TTC Glu Gly Asp Thr Leu Val Asn Arg Ile Glu Leu Lys Gly Ile Asp Phe 485 490 495
50	AAG GAG GAC GGC AAC ATC CTG GGG CAC AAG CTG GAG TAC AAC TAC AAC Lys Glu Asp Gly Asn Ile Leu Gly His Lys Leu Glu Tyr Asn Tyr Asn 500 505 510
55	AGC CAC AAC GTC TAT ATC ATG GCC GAC AAG CAG AAG AAC GGC ATC AAG Ser His Asn Val Tyr Ile Met Ala Asp Lys Gln Lys Asn Gly Ile Lys 515 520 525

5		AAC Asn 530															1632
		GAC Asp								Ile							1680
10		CCC Pro															1728
15		AAC Asn															1776
20		GGG Gly											STAA				1815
			(2)	INI	ORM	OITA	ı FOF	R SEQ	O ID	NO:	59:						
25		(i	(A) (B) (C)	LENC TYPE STRA	TH: : an MDEI	CHARA 604 nino ONESS	amir acio S: si	no ad l ingle	cids								
30			Li) N	OLEC	ULE	TYPE	E: p1	rotei									
35		()	ci) S	EQUE	NCE	DESC	CRIPT	CION	: SEÇ) ID	NO:5	9:					
	1	Ala Asp			5			-		10			_	-	15		
40	Ala	Tyr	-	20 Met	Val	Cys	Ser		25 Tyr	Asp	Asn	Leu		30 Lys	Val	Arg	
	Val	Ala 50	35 Ile	Lys	Lys	Ile	Ser 55	40 Pro	Phe	Glu	His	Gln 60	45 Thr	Tyr	Cys	Gln	
45	Arg 65	Thr	Leu	Arg	Glu	Ile 70	Lys	Ile	Leu	Leu	-	Phe	_		Glu	Asn 80	
	Ile	Ile	Gly	Ile	Asn 85	Asp	Ile	Ile	Arg	Ala 90	Pro	Thr	Ile	Glu	Gln 95	Met	
	Lys	Asp	Val	Tyr 100	Ile	Val	Gln	Asp	Leu 105	Met	Glu	Thr	Asp	Leu 110	Tyr	Lys	
50	Leu	Leu	Lys 115	Thr	Gln	His	Leu	Ser 120	Asn	Asp	His	Ile	Cys 125	Tyr	Phe	Leu	
	Tyr	Gln 130	Ile	Leu	Arg	Gly	Leu 135	Lys	Tyr	Ile	His	Ser 140	Ala	Asn	Val	Leu	
		Arg	Asp	Leu	Lys		Ser	Asn	Leu	Leu		Asn	Thr	Thr	Cys	_	
55	145 Leu	Lys	Tle	Cve	Asn	150 Phe	Glv	Len	A1-	A ~~	155 Val	Δls	Δεν	Dro	λεν	160 His	
		/		J, 5			~ _ Y	u	ALA	~- y	AGT	710	o P		പാവ	****	

								126						
	Asp H	lic Thr	21 71	55				170					175	;
		lis Thr												
5		ro Glu 195									Lys	Ser		
		rp Ser 10				Leu				Leu				
	Ile P. 225	he Pro	Gly Ly	s His	Tyr	Leu	Asp	Gln	Leu	220 Asn 1	lis :	Ile	Leu	Gly
10	Ile L	eu Gly	Ser Pr	o Ser	Gln	Glu	Asp	Leu	235 Asn (Cys 1	le :	[le	Asn	240 Leu
		la Arg	Asn Ty											
45		sn Arg												
15		275 /s Met] 90												
		00 eu Ala I												
20														
		e Ala (
25		o Gly T												
		y Glu G O												
	385	y Asp V	al Asn	Gly :	His 1	Lys I	Phe S	Ser V	al S	er G	y G	lu G	ly (Glu
30		Ala T	hr Tyr											
	Gly Lys													
35	Gly Val													
55	Phe Phe													
	Phe Phe	Lys As	p Asp	Gly A	55 Sn T	yr L	ys T	hr A	46	0 a G1	u 112) 1,	·- r	
40	Glu Gly	Asp Th	r Leu	470 Val A	sn A	rq I	le G	4' 111 T.4	75 =11 T.v	c Cl	. Tl	- n	4	80
	Lys Glu	Asp Gl	485 y Asn	Ile L	eu G	- lv н	4: is L	90 Vg. T.4	ou 2)		y 11	4 9	5 P	ne
	Ser His	50 Asn Va	0 l Tyr	Ile M	et A	5.	05 8n L	, c _ C1	-u G ₁	и ту.	51	n 1y 0	T A	sn
45	Val Asn 530	515 Phe Ly	s Ile	Ara H	52	20 20		, s G		525	1 G1;	y II	еL	ys
	530 Ala Asp	His Tv	r Gln	5. 31 n A	35	311 I.	.e G	LU AS	54 (y Sei D	· Va	l Gl	n L	eu
50	Ala Asp 545 Leu Pro													
	Leu Pro	Glu Ise	565	т.Хт. Г(⊭u Se	er Th	r Gl 57	n Se '0	r Ala	i Leu	Ser	Г Ly:	s As	σp
	Pro Asn	580 Tle mb	Arg A	asp Hi	ıs Me	t Va 58	l Le 5	u Le	u Glı	Phe	Val	Th:	r Al	la
55	Ala Gly	595	. тел (aly Me	et As 60	p Gl	u Le	и Ту	r Lys	1				

										121						
			(2	INI	FORM	ATIO	1 FOI	R SE	Q ID	NO:	50:					
5		(:	(A) (B) (C)	LENG TYPI STRA	NCE (GTH: E: nu ANDEI OLOG!	251: ucle: ONES	l bas ic ac	se pa cid ingle	airs							
10			ix)	FEAT								•				
15			(B)	LO	ME/KI CATIO HER :	ON: 3	1	2508	equer	ice						
		(;	xi) s	EQUI	ENCE	DESC	CRIP	rion	: SE(Q ID	NO:	60:				
20		GAG Glu														48
		GGG Gly													GAA Glu ,	96
25		CTG Leu														144
30		GAC Asp 50														192
35		CTT Leu														240
40		CAG Gln														288
45		CTG Leu														336
70		TCC Ser														384
50		GAG Glu 130														432
55	Cys	GCA Ala	Gln	Ser		His	Glu	Tyr		Arg	Gly	Glu		His		480

	The one or			
5	TAT CTG GAC AGC ATG T Tyr Leu Asp Ser Met I 165	ITT TTT GAC CGC Phe Phe Asp Arg	TTT CTC CAG TGG AAG TGG TTG Phe Leu Gln Trp Lys Trp Leu	528
3	GAA AGG CAA CCG GTG A Glu Arg Gln Pro Val I 180	ACC AAA AAC ACT Thr Lys Asn Thr 185	TTC AGG CAG TAT CGA GTG CTA Phe Arg Gln Tyr Arg Val Leu 190	576
10	GGA AAA GGG GGC TTC G Gly Lys Gly Gly Phe G 195	GGG GAG GTC TGT ly Glu Val Cys 200	GCC TGC CAG GTT CGG GCC ACG Ala Cys Gln Val Arg Ala Thr 205	624
15	210	215	GAG AAG AAG AGG ATC AAA AAG Glu Lys Lys Arg Ile Lys Lys 220	672
20	225 23	30	GAG AAG CAG ATC CTC GAG AAG Glu Lys Gln Ile Leu Glu Lys 235 240	720
25	245	tar Ash Leu	GCC TAT GCC TAC GAG ACC AAG Ala Tyr Ala Tyr Glu Thr Lys 250 255	768
20	260	265	ATG AAT GGG GGT GAC CTG AAG Met Asn Gly Gly Asp Leu Lys 270	816
30	275	280	GGC TTC GAG GAG GAG CGG GCC Gly Phe Glu Glu Glu Arg Ala 285	864
35	290	295	GGC TTA GAA GAC CTC CAC CGT Gly Leu Glu Asp Leu His Arg 300	912
40	305 310)	CT GAA AAC ATC CTG TTA GAT TO Glu Asn Ile Leu Leu Asp 315 320	960
45	325	3:	TG GGC TTG GCT GTG AAG ATC eu Gly Leu Ala Val Lys Ile 30 335	1008
	340	345	TG GGC ACT GTT GGC TAC ATG al Gly Thr Val Gly Tyr Met 350	1056
50	355	360	r Gly Leu Ser Pro Asp Tyr 365	1104
55	TGG GGC CTT GGC TGC CTC Trp Gly Leu Gly Cys Leu 370	ATC TAT GAG AT Ile Tyr Glu Me 375	TG ATC GAG GGC CAG TCG CCG et Ile Glu Gly Gln Ser Pro 380	1152
				400

5			_		AAG Lys	_		_					1200
·					GAG Glu 405								1248
10					AAG Lys								1296
15					GAG Glu								1344
20					TTC Phe								1392
25		_			ccc Pro		_						1440
		_			ACT Thr 485								1488
30					AAG Lys								1536
35					GAA Glu							_	1584
40			_		CTC Leu								1632
45					GGG Gly								1680
					AGT Ser 565								1728
50	_				CAT His								1776
55				_	ACC Thr								1824

5	610		615	neu Asp	GIY ASP Val 620	AAC GGC CAC AAG Asn Gly His Lys	1872
	TTC AGC GT Phe Ser Va 625	7	GAG GGC (Glu Gly (630	GAG GGC (Glu Gly 1	GAT GCC ACC Asp Ala Thr 635	TAC GGC AAG CTG Tyr Gly Lys Leu 640	1920
10	ACC CTG AA Thr Leu Ly	G TTC ATC s Phe Ile 645	TGC ACC A Cys Thr T	mr Gry I	AAG CTG CCC Lys Leu Pro	GTG CCC TGG CCC Val Pro Trp Pro 655	1968
15	ACC CTC GT Thr Leu Va	G ACC ACC (1 Thr Thr 1 660	CTG ACC T Leu Thr T	AC GGC G yr Gly V 665	GTG CAG TGC : Val Gln Cys 1	TTC AGC CGC TAC Phe Ser Arg Tyr 670	2016
20	CCC GAC CAG Pro Asp His 675	C ATG AAG (s Met Lys (AH HIS A	AC TTC T sp Phe P 80	ne Lys Ser A	GCC ATG CCC GAA lla Met Pro Glu 85	2064
25	GGC TAC GTO Gly Tyr Val 690	C CAG GAG C L Gln Glu A	GC ACC AT rg Thr II 695	TC TTC T le Phe Pl	TC AAG GAC G he Lys Asp A 700	AC GGC AAC TAC sp Gly Asn Tyr	2112
	705	7	10	ie Giu G	1y Asp Thr L 715	TG GTG AAC CGC eu Val Asn Arg 720	2160
30		725	re wah M	е Lys G1 73	u Asp Gly A	AC ATC CTG GGG sn Ile Leu Gly 735	2208
35		740	··· IYI AS	745	s Asn Val Ty	AT ATC ATG GCC r Ile Met Ala 750	2256
40	GAC AAG CAG Asp Lys Gln 755	AAG AAC GG Lys Asn Gl	C ATC AAG y Ile Lys 760	VAL AS	C TTC AAG AT n Phe Lys Il 76	C CGC CAC AAC e Arg His Asn 5	2304
45	770		775	ı Ala Ası	p His Tyr Gl 780	G CAG AAC ACC n Gln Asn Thr	2352
	CCC ATC GGC Pro Ile Gly 785	GAC GGC CC Asp Gly Pro	o var neu	CTG CCC	GAC AAC CA Asp Asn Hi	C TAC CTG AGC S Tyr Leu Ser 800	2400
50	ACC CAG TCC Thr Gln Ser	GCC CTG AGG Ala Leu Sei 805	C AAA GAC	CCC AAC Pro Asn 810	l Glu Lys Arg	C GAT CAC ATG Asp His Met 815	2448
55	GTC CTG CTG (Val Leu Leu (GAG TTC GTO Glu Phe Val 320	ACC GCC Thr Ala	GCC GGG Ala Gly 825	ATC ACT CTC	GGC ATG GAC Gly Met Asp 830	2496

131

```
GAG CTG TAC AAG TAA
                                                                   2511
     Glu Leu Tyr Lys
            835
5
             (2) INFORMATION FOR SEQ ID NO:61:
           (i) SEQUENCE CHARACTERISTICS:
10
            (A) LENGTH: 836 amino acids
             (B) TYPE: amino acid
            (C) STRANDEDNESS: single
             (D) TOPOLOGY: linear
15
           (ii) MOLECULE TYPE: protein
           (v) FRAGMENT TYPE: internal
           (xi) SEQUENCE DESCRIPTION: SEQ ID NO:61:
20
     Met Glu Leu Glu Asn Ile Val Ala Asn Thr Val Leu Leu Lys Ala Arg
                  5
                           10
     Glu Gly Gly Gly Lys Arg Lys Gly Lys Ser Lys Lys Trp Lys Glu
                20
                                 25
     Ile Leu Lys Phe Pro His Ile Ser Gln Cys Glu Asp Leu Arg Arg Thr
25
                              40
     Ile Asp Arg Asp Tyr Cys Ser Leu Cys Asp Lys Gln Pro Ile Gly Arg
                          55
     Leu Leu Phe Arg Gln Phe Cys Glu Thr Arg Pro Gly Leu Glu Cys Tyr
                                         75
             70
30
     Ile Gln Phe Leu Asp Ser Val Ala Glu Tyr Glu Val Thr Pro Asp Glu
                                     90
     Lys Leu Gly Glu Lys Gly Lys Glu Ile Met Thr Lys Tyr Leu Thr Pro
                100
                       105 110
     Lys Ser Pro Val Phe Ile Ala Gln Val Gly Gln Asp Leu Val Ser Gln
35
                              120
                                                125
     Thr Glu Glu Lys Leu Leu Gln Lys Pro Cys Lys Glu Leu Phe Ser Ala
         130 135
                                            140
     Cys Ala Gln Ser Val His Glu Tyr Leu Arg Gly Glu Pro Phe His Glu
                      150
                                         155 160
40
     Tyr Leu Asp Ser Met Phe Phe Asp Arg Phe Leu Gln Trp Lys Trp Leu
                  165
                                    170
     Glu Arg Gln Pro Val Thr Lys Asn Thr Phe Arg Gln Tyr Arg Val Leu
                                  185
                180
     Gly Lys Gly Gly Phe Gly Glu Val Cys Ala Cys Gln Val Arg Ala Thr
45
           195
                              200
                                                205
     Gly Lys Met Tyr Ala Cys Lys Arg Leu Glu Lys Lys Arg Ile Lys Lys
                 215 220
     Arg Lys Gly Glu Ser Met Ala Leu Asn Glu Lys Gln Ile Leu Glu Lys
                       230
50
     Val Asn Ser Gln Phe Val Val Asn Leu Ala Tyr Ala Tyr Glu Thr Lys
                           250
                  245
     Asp Ala Leu Cys Leu Val Leu Thr Ile Met Asn Gly Gly Asp Leu Lys
                                  265
     Phe His Ile Tyr Asn Met Gly Asn Pro Gly Phe Glu Glu Glu Arg Ala
55
                               280
     Leu Phe Tyr Ala Ala Glu Ile Leu Cys Gly Leu Glu Asp Leu His Arg
```

290 295 300 Glu Asn Thr Val Tyr Arg Asp Leu Lys Pro Glu Asn Ile Leu Leu Asp 305 Asp Tyr Gly His Ile Arg Ile Ser Asp Leu Gly Leu Ala Val Lys Ile 307 Asp Tyr Gly His Ile Arg Ile Ser Asp Leu Gly Leu Ala Val Lys Ile 330 Asp Tyr Gly His Ile Arg Ile Ser Asp Leu Gly Leu Ala Val Lys Ile 340 Fro Glu Gly Asp Leu Ile Arg Gly Arg Val Gly Thr Val Gly Tyr Met 345 Ala Pro Glu Val Leu Asn Asn Gln Arg Tyr Gly Leu Ser Pro Asp Tyr 355 Ala Pro Gly Leu Gly Cys Leu Ile Tyr Glu Met Ile Glu Gly Gln Ser Pro 370 370 Phe Arg Gly Arg Lys Glu Lys Val Lys Arg Glu Gly Val Asp Arg Arg 385 390 Val Leu Glu Thr Glu Glu Val Tyr Ser His Lys Phe Ser Glu Glu Ala 405 Lys Ser Ile Cys Lys Met Leu Leu Thr Lys Asp Ala Lys Gln Arg Leu 400 Gly Cys Gln Glu Glu Gly Ala Ala Glu Val Lys Arg His Pro Phe Phe 445 Asp Asp Arg Asn Met Asn Phe Lys Arg Leu Glu Ala Gly Met Leu Asp Pro Pro 455 Phe Val Pro Asp Pro Arg Ala Val Tyr Cys Lys Asp Val Leu Asp Pro Pro 465 Phe Val Pro Asp Pro Arg Ala Val Tyr Cys Lys Asp Val Leu Asp Ile 465 Asp Asp Phe Tyr Ser Lys Phe Ser Thr Gly Ser Val Ser Ile Pro Trp Gln 500 Asn Glu Met Ile Glu Thr Glu Cys Phe Lys Glu Leu Asn Val Phe Gly 515 Asp Phe Tyr Ser Lys Phe Ser Thr Gly Ser Val Ser Ile Pro Trp Glu 515 Asp Pro Pro Lys Lys Gly Leu Gln Arg Leu Glu Arg Leu Asp His Thr Asp Asp 490 Asn Asn Ser Lys Ser Ser Pro Ser Ser Lys Thr Ser Phe Asn His His 550 Fo Pro Val Ala Thr Met Val Ser Lys Gly Glu Glu Leu Asn His Pro 560 Asn Asn Ser Lys Ser Ser Pro Ser Ser Lys Thr Ser Phe Asn His His 555 Fro Pro Val Ala Thr Met Val Glu Leu Asp Gly Asn His Cys Glo Phe Ser Asn His Val Ser Lys Gly Glu Glu Leu Phe Thr Gly Ser Ser Asn Ser Thr Gly Ser Ser Arg Asp 555 Fo Pro Val Ala Thr Met Val Glu Leu Asp Gly Asp Val Asn Gly His Lys Glo Phe Ser Val Ser Gly Glu Glu Gly Asp Ala Thr Tyr Gly Lys Leu 660 Asp Asp Asp His Wal Thr Leu Thr Tyr Gly Val Glu Cys Phe Ser Arg Tyr 660 Asp Asp His Met Lys Glu Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu 660 Asp Asp His Met Lys Gln His Asp Phe Phe Lys Ser Ala Met Pro Glu 665 Asp Cys Thr Leu Lys Phe Ile Cys Thr Thr												132	?						
Sind Ash Thr Val Tyr Arg Asp Leu Lys Pro Glu Ash Ile Leu Leu Asp 305 310 320 325 325 326 325 335 335 335 335 335 345 335 335 345 335 335 345 336 345 336 365 366 365 366 366 366 367 370 375 370 375 376								2	95					3	0.0				
Asp Tyr Gly His Ile Arg Ile Ser Asp Leu Gly Leu Ala Val Lys Ile 325 326 327 336 336 346 346 346 347 348 348 348 349 348 349 341 349 341 340 342 341 345 360 365 366 365 367 367 370 375 376 376 376 377 375 376 376 377 375 376 377 375 376 377 375 376 377 375 376 377 375 376 377 375 376 377 375 376 377 375 376 377 375 376 377 375 376 377 375 376 377 375 376 377 375 376 377 375 376 377 375 376 377 375 376 377 375 376 377 375 376 377 375 376 377 377 375 376 377 375 376 377 377 375 376 377 377 377 377 377 377 377 377 377														lu A	sn I				
Pro Glu Gly Asp Leu Ile Arg Gly Arg Val Gly Try Net 360	5	Asp	э Ту	r Gl	у Н	is I 3	le A 25	rg I	le	Ser	Ası	Le	u G]	гэ Гу Ье	eu A	la '	Val		
Ala Pro Glu Val Leu Asn Asn Gln Arg Tyr Gly Leu Ser Pro Asp Tyr 350 360 365 360 365 360 365 360 365 360 365 360 370 370 385 380 380 380 380 380 380 38		Pro	Gl	u Gl	у Аз 34	sp L	eu I	le A	rg	Gly	Arg	y Va	1 G1	ут	ır V	al (Gly	Ту	r Met
10 Trp Gly Leu Gly Cys Leu Ile Tyr Glu Met Ile Glu Gly Gln Ser Pro 370 370 380 Phe Arg Gly Arg Lys Glu Lys Val Lys Arg Glu Glu Val Asp Arg Arg 385 390 395 400 Val Leu Glu Thr Glu Glu Val Tyr Ser His Lys Phe Ser Glu Glu Ala 405 410 415 Lys Ser Ile Cys Lys Met Leu Leu Thr Lys Asp Ala Lys Gln Arg Leu 420 425 430 445 Oliv Cys Gln Glu Glu Gly Ala Ala Glu Val Lys Arg His Pro Phe Phe 450 445 Arg Asn Met Asn Phe Lys Arg Leu Glu Ala Gly Met Leu Asp Pro Pro 450 455 Phe Val Pro Asp Pro Arg Ala Val Tyr Cys Lys Asp Val Leu Asp Pro Pro 465 485 Asp Phe Tyr Ser Lys Phe Ser Thr Gly Ser Val Ser Ile Pro Trp Gln 500 Asn Glu Met Ile Glu Thr Glu Cys Phe Lys Glu Leu Asn Val Phe Gly 515 Asn Asn Ser Lys Gly Leu Leu Gln Arg Leu Asn Arg Asn His Pro Pro Glu 545 Asn Asn Ser Lys Ser Ser Pro Ser Ser Lys Thr Ser Phe Asn His His 545 11e Asn Ser Asn His Val Ser Leu Asp Gly Asp Val Asn Gly His Lys 610 Val Val Pro Ile Leu Val Glu Leu Asp Gly Asp Ala Thr Tyr Gly Lys Leu 620 Arg Asn His Val Gly Glu Gly Asp Ala 630 Pro Pro Val Ala Thr Met Val Ser Lys Gly Glu Glu Leu Phe Thr Gly 630 Pro Pro Val Ala Thr Met Val Ser Lys Gly Glu Glu Leu Phe Thr Gly 650 Asn Asn Ser Lys Ser Ser Pro Ser Ser Lys Thr Ser Phe Asn His His 650 Val Val Pro Ile Leu Val Glu Leu Asp Gly Asp Val Asn Gly His Lys 660 Asn Asn Ser Val Ser Gly Glu Gly Glu Glu Leu Phe Thr Gly 660 For Pro Val Ala Thr Met Val Ser Lys Gly Glu Glu Leu Phe Thr Gly 660 Asn Asn Ser Val Ser Gly Glu Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu 661 Find Leu Lys Phe Ile Cys Thr Thr Gly Lys Leu Pro Val Pro Trp Pro 660 Gly Tyr Val Gln Glu Arg Thr Thr Gly Lys Leu Pro Val Pro Trp Pro 660 Gly Tyr Val Gln Glu Arg Thr Thr File Phe Phe Lys Asp Asp Gly Asn Tyr 660 Gly Tyr Val Gln Glu Arg Thr Ile Phe Phe Lys Ser Ala Met Pro Glu 675 Gly Tyr Val Gln Glu Arg Thr Ile Phe Phe Lys Ser Ala Met Pro Glu 675 Glu Leu Lys Gly Ile Asp Phe Lys Gly Glu Asp Gly Asn Tle Leu Cly 550 Lys Thr Arg Ala Glu Val Lys Phe Glu Gly Asp Thr Leu Val Asn Arg 710 710 710 Tile Glu Leu Lys Gly Ile Asp Phe Lys Gly Asp Gly Asn Tle Leu		Ala	Pr	o Gl 35	u Va	il L	eu A	sn A	sn	Gln	Arg	, ГТу	r Gl	у Ье	eu S	er 1	350 Pro	Asp	Tyr
Phe Arg Gly Arg Lys Glu Lys Val Lys Arg Glu Glu Val Asp Arg Arg 385	10							eu I	le '										
Val Leu Glu Thr Glu Glu Val Tyr Ser His Lys Phe Ser Glu Glu Ala 405							/s G	lu L											
Lys Ser Ile Cys Lys Met Leu Leu Thr Lys Asp Ala Lys Gin Arg Leu 420 425 430 430 435 430 Gil Glu Glu Glu Glu Glu Glu Glu Glu Glu Gl																			
Gly Cys Gln Glu Glu Gly Ala Ala Glu Val Lys Arg His Pro Phe Phe Ass Net Asn Phe Lys Arg Leu Glu Ala Gly Met Leu Asp Pro Pro Asp Ass Net Asn Phe Lys Arg Ala Val Tyr Cys Lys Asp Val Leu Asp Pro Pro Asp Ass Net Asn Phe Lys Arg Ala Val Tyr Cys Lys Asp Val Leu Asp Ile Afs Ass Phe Val Pro Asp Pro Arg Ala Val Tyr Cys Lys Asp Val Leu Asp Ile Afs Ass Leu Asp His Thr Asp Asp Asp Ass Asp Pro Pro Asp Ass Ass Leu Asp His Thr Asp Asp Ass Ass Glu Met Ile Glu Thr Glu Cys Phe Lys Glu Leu Asn Val Pro Glu Sin Sin Ass Gly Thr Leu Pro Pro Asp Leu Asn Arg Ass His Pro Pro Glu Sin Ass Gly Thr Leu Pro Pro Asp Leu Asn Arg Ass His Pro Pro Glu Sin Ass Ass Ass Ass Ass Ass Ass Ser Lys Ser Ser Pro Ser Ser Lys Thr Ser Pre Ass His Ris Gln Sin Ass Ass Ass Ass Ass Ass Ass Ass Ass As	15																		
20 Arg Asn Met Asn Phe Lys Arg Leu Glu Ala Gly Met Leu Asp Pro Pro Asp Phe Val Pro Asp Pro Arg Ala Val Tyr Cys Lys Asp Val Leu Asp Ile Asp Pro Arg Ala Val Tyr Cys Lys Asp Val Leu Asp Ile Asp Pro Arg Ala Val Tyr Cys Lys Asp Val Leu Asp Ile Asp																			
# A50	20																		
Single S	20														t Le	u A			
Asp Phe Tyr Ser Lys Phe Ser Thr Gly Ser Val Ser Ile Pro Trp Gln																			
Asp Phe Tyr Ser Lys Phe Ser Thr Gly Ser Val Ser Ile Pro Trp Gln	25	Glu	GIn	Phe	Sei	Th 48	r Va 5	l Ly	s G	ly '	Val	Asn	Leu	as,	Hi.	s Tl	hr i	Asp	Asp
Asn Glu Met Ile Glu Thr Glu Cys Phe Lys Glu Leu Asn Val Phe Gly 515 30 Pro Asn Gly Thr Leu Pro Pro Asp Leu Asn Arg Asn His Pro Pro Glu 530 Pro Pro Lys Lys Gly Leu Leu Gln Arg Leu Phe Lys Arg Gln His Gln 545 Asn Asn Ser Lys Ser Ser Pro Ser Ser Lys Thr Ser Phe Asn His His 565 Ile Asn Ser Asn His Val Ser Ser Asn Ser Thr Gly Ser Ser Arg Asp 580 Pro Pro Val Ala Thr Met Val Ser Lys Gly Glu Glu Leu Phe Thr Gly 595 40 Val Val Pro Ile Leu Val Glu Leu Asp Gly Asp Val Asn Gly His Lys 610 Phe Ser Val Ser Gly Glu Glu Gly Asp Ala Thr Tyr Gly Lys Leu 625 Thr Leu Lys Phe Ile Cys Thr Thr Gly Lys Leu Pro Val Pro Trp Pro 645 Thr Leu Val Thr Thr Leu Thr Tyr Gly Val Gln Cys Phe Ser Arg Tyr 660 Pro Asp His Met Lys Gln His Asp Phe Phe Lys Asp Asp Gly Asn Tyr 660 Gly Tyr Val Gln Glu Arg Thr Ile Phe Phe Lys Asp Asp Gly Asn Tyr 660 Gly Tyr Val Gln Glu Val Lys Phe Glu Gly Asp Gly Asp Ile Leu Val Asn Arg 705 Tle Glu Leu Lys Gly Ile Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly 10 Thr Leu Glu Lys Gly Ile Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly 11 Asn Arg 705 Table Glu Leu Lys Gly Ile Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly 12 Thr Leu Gly Ile Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly 13 Table Leu Lys Gly Ile Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly 14 Table Clu Lys Gly Ile Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly 15 Table Clu Lys Gly Ile Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly 15 Table Clu Lys Gly Ile Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly 15 Table Clu Lys Gly Ile Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly 15 Table Clu Lys Gly Ile Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly 15 Table Clu Lys Gly Ile Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly 15 Table Clu Lys Gly Ile Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly 16 Table Clu		Asp	Phe	Tyr	Ser 500	Ly	s Ph	e Se	r T	hr (Gly	Ser	Val	Sei	: Il	e Pi	20 :	195 Trp	Gln
Pro		Asn	Glu	Met 515	Ile	Glı	ı Th	r Gl	u C	ys 1	Phe	Lys	Glu	Leu	As:	n Va	LO al I	he	Gly
Pro Pro Lys Lys Gly Leu Leu Gln Arg Leu Phe Lys Arg Gln His Gln 545 Asn Asn Ser Lys Ser Ser Pro Ser Ser Lys Thr Ser Phe Asn His His 565 Ile Asn Ser Asn His Val Ser Ser Asn Ser Thr Gly Ser Ser Arg Asp 590 Pro Pro Val Ala Thr Met Val Ser Lys Gly Glu Glu Leu Phe Thr Gly 595 40 Val Val Pro Ile Leu Val Glu Leu Asp Gly Asp Val Asn Gly His Lys 615 Phe Ser Val Ser Gly Glu Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu 625 Thr Leu Lys Phe Ile Cys Thr Thr Gly Lys Leu Pro Val Pro Trp Pro 660 Pro Asp His Met Lys Gln His Asp Phe Phe Lys Ser Ala Met Pro Glu 695 Gly Tyr Val Gln Glu Arg Thr Ile Phe Phe Lys Asp Asp Gly Asn Tyr 690 Lys Thr Arg Ala Glu Val Lys Phe Glu Gly Asp Gly Asp Ile Leu Val Asn Arg 705 Ile Glu Leu Lys Gly Ile Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly Gly Ile Gly Ile Gly Ile Asp Phe Lys Glu Asp Ile Leu Gly Gly Ile Gly Ile Asp Phe Lys Glu Asp Ile Leu Gly	30							o Pro) A					Asn	52: Hi:				
Asn Asn Ser Lys Ser Ser Pro Ser Ser Lys Thr Ser Phe Asn His His 575 11e Asn Ser Asn His Val Ser Ser Asn Ser Thr Gly Ser Ser Arg Asp 580 580 585 585 585 580 580 585 585 580 580 585 585 580 580 580 585 585 580 580 580 585 580 580 580 580 585 580		Pro 545	Pro	Lys	Lys	Gly	/ Let	ı Leı	1 G)	ln A	ırg	Leu	Phe	540 Lys	Arg	g Gl	n H	lis	Gln
The Asn Ser Asn His Val Ser Ser Asn Ser Thr Gly Ser Ser Arg Asp 590	35					Ser	Ser				er :	Lys							
Pro Pro Val Ala Thr Met Val Ser Lys Gly Glu Glu Leu Phe Thr Gly 595					Asn					r A	sn :								
40 Val Val Pro Ile Leu Val Glu Leu Asp Gly Asp Val Asn Gly His Lys 610 615 620 Phe Ser Val Ser Gly Glu Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu 625 630 635 640 Thr Leu Lys Phe Ile Cys Thr Thr Gly Lys Leu Pro Val Pro Trp Pro 645 655 Thr Leu Val Thr Thr Leu Thr Tyr Gly Val Gln Cys Phe Ser Arg Tyr 660 665 665 665 Pro Asp His Met Lys Gln His Asp Phe Phe Lys Ser Ala Met Pro Glu 675 680 685 Gly Tyr Val Gln Glu Arg Thr Ile Phe Phe Lys Asp Asp Gly Asn Tyr 690 695 700 Lys Thr Arg Ala Glu Val Lys Phe Glu Gly Asp Thr Leu Val Asn Arg 705 710 715 720 Ile Glu Leu Lys Gly Ile Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly		Pro 1	Pro	Val 595	Ala	Thr	Met	Val	Se	r L	ys (Gly	Glu	Glu	Leu	59 Ph	0 e T	hr (Gly
Phe Ser Val Ser Gly Glu Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu 625	40							Glu	Le					Val					
Thr Leu Lys Phe Ile Cys Thr Thr Gly Lys Leu Pro Val Pro Trp Pro 645 Thr Leu Val Thr Thr Leu Thr Tyr Gly Val Gln Cys Phe Ser Arg Tyr 660 Pro Asp His Met Lys Gln His Asp Phe Phe Lys Ser Ala Met Pro Glu 675 Gly Tyr Val Gln Glu Arg Thr Ile Phe Phe Lys Asp Asp Gly Asn Tyr 690 Lys Thr Arg Ala Glu Val Lys Phe Glu Gly Asp Thr Leu Val Asn Arg 705 Ile Glu Leu Lys Gly Ile Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly		Phe 5	Ser	Val	Ser	Gly	Glu	Gly	Gl	u G	ly A	Asp A	Ala	620 Thr	Tyr	Gl	y L	ys 1	Leu
Thr Leu Val Thr Thr Leu Thr Tyr Gly Val Gln Cys Phe Ser Arg Tyr 660 Pro Asp His Met Lys Gln His Asp Phe Phe Lys Ser Ala Met Pro Glu 675 Gly Tyr Val Gln Glu Arg Thr Ile Phe Phe Lys Asp Asp Gly Asn Tyr 690 Lys Thr Arg Ala Glu Val Lys Phe Glu Gly Asp Thr Leu Val Asn Arg 705 Ile Glu Leu Lys Gly Ile Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly	45	Thr I	eu .	Lys	Phe	Ile	Cys	Thr	Th	r G	ly I	ys)	635 Leu	Pro	Val	Pro	T	rp I	540 Pro
Pro Asp His Met Lys Gln His Asp Phe Phe Lys Ser Ala Met Pro Glu 675 Gly Tyr Val Gln Glu Arg Thr Ile Phe Phe Lys Asp Asp Gly Asn Tyr 690 Lys Thr Arg Ala Glu Val Lys Phe Glu Gly Asp Thr Leu Val Asn Arg 705 Tle Glu Leu Lys Gly Ile Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly										r G	ly V								
Gly Tyr Val Gln Glu Arg Thr Ile Phe Phe Lys Asp Asp Gly Asn Tyr 690 695 700 Lys Thr Arg Ala Glu Val Lys Phe Glu Gly Asp Thr Leu Val Asn Arg 705 710 725 Tle Glu Leu Lys Gly Ile Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly									Ası	Pl (Q c									
Lys Thr Arg Ala Glu Val Lys Phe Glu Gly Asp Thr Leu Val Asn Arg 705 710 715 720 Ile Glu Leu Lys Gly Ile Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly	50							Thr											
Ile Glu Leu Lys Gly Ile Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly							Val												
	55	Ile G	lu I	Leu I	Lys (Gly 725	Ile	Asp	Phe	. Ly	s G	lu A	15 .sp (Gly .	Asn	Ile	Le	7 u G	20 ly
His Lys Leu Glu Tyr Asn Tyr Asn Ser His Asn Val Tyr Ile Met Ala																			

				740					745					750				
	Asp	Lys	Gln 755	Lys	Asn	Gly	Ile	Lys 760	Val	Asn	Phe	Lys	Ile 765	Arg	His	Asn		
5	Ile	Glu 770	Asp	Gly	Ser	Val	Gln 775	Leu	Ala	Asp	His	Tyr 780	Gln	Gln	Asn	Thr		
	Pro 785		Gly	Asp	Gly	Pro 790	Val	Leu	Leu	Pro	Asp 795	Asn	His	Tyr	Leu	Ser 800		
	Thr	Gln	Ser	Ala	Leu 805	Ser	Lys	Asp	Pro	Asn 810	Glu	Lys	Arg	Asp	His 815	Met		
10	Val	Leu	Leu	Glu 820	Phe	Val	Thr	Ala	Ala 825	Gly	Ile	Thr	Leu	Gly 830	Met	Asp		
	Glu	Leu	Tyr 835	Lys														
15			(2)	INI	FORM	OITA	I FOR	R SE(O ID	NO: 6	52:							
		(i		EQUEN														
	(A) LENGTH: 1893 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single																	
20				STRA				~	2									
				OLEC FEATU		TYPI	E: cI	ANC										
25	(ix) FEATURE: (A) NAME/KEY: Coding Sequence (B) LOCATION: 1 1890																	
	(A) NAME/KEY: Coding Sequence (B) LOCATION: 11890 (D) OTHER INFORMATION:																	
	•																	
30		()	(i) 5	EQUE	ENCE	DESC	RIPT	rion	: SE() ID	NO:	52:						
				AGC Ser													48	
25	1		5		5	5				10	-1-	-		-	15	2		
35				TTC													96	
	Asp	Ser	Thr	Phe 20	Thr	Val	Leu	Lys	Arg 25	Tyr	Gln	Asn	Leu	J0	Pro	Ile		
40	GGC	TCA	GGA	GCT	CAA	GGA	ATA	GTA	TGC	GCA	GCT	тат	GAT	GCC	TTA	CTT	144	
	Gly	Ser	Gly 35	Ala	Gln	Gly	Ile	Val 40	Cys	Ala	Ala	Tyr	Asp 45	Ala	Ile	Leu		
	GAA	AGA	ДДТ	GTT	GCA	ATC	DAG	AAG	СТА	AGC	CGA	CCA	ւեւգեւ	CAG	таа	CAG	192	
45		Arg		Val			Lys				Arg	Pro					172	
		50					55				•	60						
				AAG Lys													240	
50	65					70					75					80		
				AAT Asn													288	
<i></i>	TOU	11.1.0	Lys	YOU	85	110	Cly	Leu	neu	90	vaı	FIIG	TIIL	110	95	ניעם		
55	TCC	CTA	GAA	GAA	TTT	CAA	GAT	GTT	TAC	ATA	GTC	ATG	GAG	CTC	ATG	GAT	336	
																	•	133

												34								
					_					10	75					11	LO		Asp	
5	GC Al	A A	AT C sn L 1	TT T eu C 15	ys (CAA (Sln)	GTG Val	ATT Ile	CA Gl 12	II ME	rg g et g	AG lu	CTA Leu	GAT Asp	CA: His	Gl	AA A .u A	.GA .rg	ATG Met	384
10	TC: Se:	C TA	AC C /r L 30	TT C	TC T eu T	AT C		ATG Met 135	CT(Let	з тс и Су	T G	GA ly	ATC Ile	AAG Lys 140	CAC	CT Le	T C. u H	AT is	TCT Ser	432
15	145	5	•	FT A		1	50	Asp	ъес	т гу	s P	ro	Ser 155	Asn	Ile	Va.	l Vá	a l	Lys 160	480
			L -3	SC AC	1	65	ys.	116	ren	l Asj	p Pi 17	ne (Gly	Leu	Ala	Arc	g Th	r 75	Ala	528
20	•			T TT r Ph 18	0	-C PI	- L .	riir.	Pro	191 185	c Va	11 /	/al	Thr	Arg	Тут 190	ту)	r.	Arg	576
25	GCA Ala	Pro	C GA D Gl 19	G GT u Va 5	C A7	rc ca	TT G	TY	ATG Met 200	GGC Gly	TA	c z r I	y AAG	GAA Glu	AAC Asn 205	GTG Val	GA As	T :	TTA Leu	624
30	TGG Trp	Ser 210	r GT(Va.	G GGG	G ТС У Су	C Al	.C 14	TG (et (GGA Gly	GAA Glu	AT Me	G G t V	al (TGC Cys 220	CAC His	AAA Lys	AT Il	C (CTC Leu	672
35	225		2	A AGO	, ,,,,	23	0	16 1	Asp	GIN	Tr	2 2	sn I 35	ya ,	Val	Ile	Glu	າ G 2	1n 40	720
	CTT Leu	-			24	5	.	iu r	-ne	met	ьуя 250	S Ly	ys I	eu (3ln	Pro	Thr 255	· V	al	768
40	AGG . Arg	ACT Thr	TAC	GTT Val 260		A AAG	C AC	GA C	10	AAA Lys 265	TAT Tyr	G(CT G la G	GA T	yr :	AGC Ser 270	TTT Phe	G.	AG lu	816
45	AAA (CTC Leu	TTC Phe 275	CCT Pro	GA1 Asp	GT(C CI	u P	TC he: 80	CCA Pro	GCT Ala	GA As	C T	er G	AA (lu H 85	CAC	AAC Asn	Ai Ly	AA Ys	864
50	CTT A	AAA Lys 290	GCC Ala	AGT Ser	CAG Gln	GCA Ala	AG Ar 29	y A	AT ?	rtg Leu	TTA Leu	TC Se	r L	AA A ys M 00	TG C	TG eu	GTA Val	A7	ΓA Le	912
55	GAT C Asp A 305	GCA Ala	TCT Ser	AAA Lys	AGG Arg	ATC Ile 310	20	T G: r Va	TA (SAT Asp	GAA Glu	GC Al 31	a Le	rc c eu g	AA C ln H	AC (CCG Pro	ТА Ту 32	r	960
	ATC A	TA	GTC	TGG	TAT	GAT	CC	r TC	CT G	AA (GCA	GA	A GC	CT CO	CA C	CA (CCA	AΑ	.G	1008

										135							
	Ile	Asn	Val	Trp	Tyr 325	Asp	Pro	Ser	Glu	Ala 330	Glu	Ala	Pro	Pro	Pro 335	Lys	
5		CCT Pro			_												1056
10		GAA Glu															1104
15		GGA Gly 370															1152
		GAT Asp															1200
20		GGG Gly															1248
25		AAG Lys															1296
30		CTG Leu															1344
35		CCC Pro 450															1392
33		TAC Tyr															1440
40		GAA Glu															1488
45	AAC Asn	TAC Tyr			CGC Arg												1536
50		CGC Arg															1584
E.E.		GGG Gly 530															1632
55	ATG	GCC	GAC	AAG	CAG	AAG	AAC	GGC	ATC	AAG	GTG	AAC	TTC	AAG	ATC	CGC	1680

	136	
	Met Ala Asp Lys Gln Lys Asn Gly Ile Lys Val Asn Phe Lys Ile Arg	
-	CAC AAC ATC GAG GAC GGC AGC GTG GAG	
5	565 570 Fis Tyr Gln Gln 575	1728
10	AAC ACC CCC ATC GGC GAC GGC CCC GTG CTG CTG CCC GAC AAC CAC TAC Asn Thr Pro Ile Gly Asp Gly Pro Val Leu Pro Asp Asn His Tyr 580 585 590	1776
15	CTG AGC ACC CAG TCC GCC CTG AGC AAA GAC CCC AAC GAG AAG CGC GAT Leu Ser Thr Gln Ser Ala Leu Ser Lys Asp Pro Asn Glu Lys Arg Asp 595 600 605	1824
	CAC ATG GTC CTG GAG TTC GTG ACC GCC GCC GGG ATC ACT CTC GGC His Met Val Leu Leu Glu Phe Val Thr Ala Ala Gly Ile Thr Leu Gly 610 620	1872
20	ATG GAC GAG CTG TAC AAG TAA Met Asp Glu Leu Tyr Lys 625 630	1893
25	(2) INFORMATION FOR SEQ ID NO:63:	
	(i) SEQUENCE CHARACTERISTICS:	
30	 (A) LENGTH: 630 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
35	(ii) MOLECULE TYPE: protein(v) FRAGMENT TYPE: internal	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:63:	
40	Met Ser Arg Ser Lys Arg Asp Asn Asn Phe Tyr Ser Val Glu Ile Gly 1 5 10 15	
	Asp Ser Thr Phe Thr Val Leu Lys Arg Tyr Gln Asn Leu Lys Pro Ile 20 21 22 30	
-	Gly Ser Gly Ala Gln Gly Ile Val Cys Ala Ala Tyr Asp Ala Ile Leu Glu Arg Asp Val Ala Tla T	
45	Glu Arg Asn Val Ala Ile Lys Lys Leu Ser Arg Pro Phe Gln Asn Gln 50 55 60 Thr His Ala Lys Arg Ala Thr Ang Gl	
	Thr His Ala Lys Arg Ala Tyr Arg Glu Leu Val Leu Met Lys Cys Val 65 70 75 80	
50	Asn His Lys Asn Ile Ile Gly Leu Leu Asn Val Phe Thr Pro Gln Lys 85 90 Ser Leu Glu Glu Phe Gln Asn Val Thurs	
	Ser Leu Glu Glu Phe Gln Asp Val Tyr Ile Val Met Glu Leu Met Asp 100 105 110 Ala Asn Leu Cys Gln Val Ile Gln Met Glu Leu Asp His Glu Arg Met 115 120	
Er	Ser Tyr Leu Leu Tyr Gln Met Leu Cys Gly Ile Lys His Leu His Ser	
55	130 135 140 Ala Gly Ile Ile His Arg Asp Leu Lys Pro Ser Asn Ile Val Val Lys	
	Let bet Ash the val Val Lys	120

										137						
	145					150					155					160
	Ser	Asp	Cys	Thr	Leu 165	Lys	Ile	Leu	Asp	Phe 170	Gly	Leu	Ala	Arg	Thr 175	Ala
5	Gly	Thr	Ser	Phe 180		Met	Thr	Pro	Tyr 185		Val	Thr	Arg	Tyr 190		Arg
			195	Val				200	_		_		205		_	
	Trp	Ser 210	Val	Gly	Сув	Ile	Met 215	Gly	Glu	Met	Val	Cys 220	His	Lys	Ile	Leu
10	Phe 225	Pro	Gly	Arg	Asp	Tyr 230	Ile	Asp	Gln	Trp	Asn 235	Lys	Val	Ile	Glu	Gln 240
	Leu	Gly	Thr	Pro	Cys 245	Pro	Glu	Phe	Met	Lys 250	Lys	Leu	Gln	Pro	Thr 255	Val
15	Arg	Thr	Tyr	Val 260	Glu	Asn	Arg	Pro	Lys 265	Tyr	Ala	Gly	Tyr	Ser 270	Phe	Glu
	Lys	Leu	Phe 275	Pro	Asp	Val	Leu	Phe 280	Pro	Ala	Asp	Ser	Glu 285	His	Asn	Lys
		290		Ser			295					300				
20	Asp 305	Ala	Ser	Lys	Arg	Ile 310	Ser	Val	Asp	Glu	Ala 315	Leu	Gln	His	Pro	Tyr 320
				Trp	325	_				330					335	-
25				Lys 340			_		345					350		
	_		355	Ile	_	_		360		_			365	_		-
		370		Ile		_	375					380				
30	385			Pro		390					395	_				400
				Val	405					410					415	
35		_		Ser 420			-		425		-	_		430	-	_
	-		435	Leu	_			440			_	-	445			
40		450		Leu			455			-	-	460		-		
40	465			Asp Tyr		470	_			_	475		_			480
				Thr	485					490					495	
45				500 Glu					505					510		
			515	Lys				520					525			
-50		530		Lys			535					540				
	545		_	Glu		550		-		-	555			-		560
				Ile	565					570					575	
55				580					585					590		Asp
														-,-	3	E

	138	
	595 600 605	
	Als Met val Leu Leu Glu Phe Val Thr Ala Ala Gly Ile Thr Leu Gly	
	Met Asp Glu Leu Tyr Lys 620	
5	625 630	
	050	
	(2) INFORMATION FOR SEQ ID NO:64:	
10	(i) SEQUENCE CHARACTERISTICS:	
,,	(A) LENGTH: 1821 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
15		
13	(ii) MOLECULE TYPE: cDNA	
	(ix) FEATURE:	
	(A) NAME/KEY: Coding Sequence	
	(B) LOCATION: 11818	
20	(D) OTHER INFORMATION:	
ı	(vi) CROWNING -	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:64:	
	ATG TCT CAG GAG AGG CCC ACG TTC TAC CGG CAG GAG CTG AAC AAG ACA	
25	Met Ser Gln Glu Arg Pro Thr Phe Tyr Arg Gln Glu Leu Asn Lys Thr	48
	1 5 10 15 15	
	ATC TGG GAG GTG CCC GAG CGT TAC CAG AAC CTG TCT CCA GTG GGC TCT lle Trp Glu Val Pro Glu Arg Tyr Gln Asn Leu Ser Pro Val Gly Ser	96
30		
	30	
	GGC GCC TAT GGC TCT GTG TGT GCT GCT TTT GAC ACA AAA ACG GGG TTA	144
	35 Ala Ala Phe Asp Thr Lys Thr Gly Leu	
35	40 45	
	CGT GTG GCA GTG AAG AAG CTC TCC AGA CCA TTT CAG TCC ATC ATT CAT	
	Arg Val Ala Val Lys Lys Leu Ser Arg Pro Phe Gln Ser Ile Ile His	192
	55 60	
40	GCG AAA AGA ACC TAC AGA GAA CTG CGG TTA CTT AAA CAT ATG AAA CAT	
	Ala Lys Arg Thr Tyr Arg Glu Leu Arg Leu Lys His Met Lys His 70	240
	70 75 80	
45	GAA AAT GTG ATT GGT CTG TTG GAC GTT TTT ACA CCT GCA AGG TCT CTG	288
	85 Red Hed Asp val Phe Thr Pro Ala Arg Ser Leu	
	95	
	GAG GAA TTC AAT GAT GTG TAT CTG GTG ACC CAT CTC ATG GGG GCA GAT	226
50	The val Tyr Leu val Thr His Leu Met Gly Ala Age	336
	100 105 110	
	CTG AAC AAC ATT GTG AAA TGT CAG AAG CTT ACA GAT GAC CAT GTT CAG	
	Leu Asn Asn Ile Val Lys Cys Gln Lys Leu Thr Asp Asp His Val Gln	384
55	115 120 125	
00		
	TTC CTT ATC TAC CAA ATT CTC CGA GGT CTA AAG TAT ATA CAT TCA GCT	432
		138

										135							
	Phe	Leu 130	Ile	Tyr	Gln	Ile	Leu 135	Arg	Gly	Leu	Lys	Tyr 140	Ile	His	Ser	Ala	
5					AGG Arg											_	480
10					AAG Lys 165												528
		_			GGC Gly									_		_	576
15					TGG Trp												624
20					ATG Met												672
25					ATT Ile												720
30					GAG Glu 245												768
35					TCT Ser												816
					GCC Ala												864
40					TCA Ser							_		_		_	912
45					GCT Ala												960
50					CAG Gln 325									_		_	1008
55	_				ACC Thr				_								1056
••	CTT	GAC	CAA	GAA	GAG	ATG	GAG	TCC	GAG	GAT	CCA	CCG	GTC	GCC	ACC	ATG	1104

	140	
	Leu Asp Gln Glu Glu Met Glu Ser Glu Asp Pro Pro Val Ala Thr Met 355 360 365	
5	GTG AGC AAG GGC GAG GAG CTG TTC ACC GGG GTG GTG CCC ATC CTG GTC Val Ser Lys Gly Glu Glu Leu Phe Thr Gly Val Val Pro Ile Leu Val 370 380	1152
10	GAG CTG GAC GGC GAC GTA AAC GGC CAC AAG TTC AGC GTG TCC GGC GAG Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe Ser Val Ser Gly Glu 385 390 395 400	1200
15	GGC GAG GGC GAT GCC ACC TAC GGC AAG CTG ACC CTG AAG TTC ATC TGC Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr Leu Lys Phe Ile Cys 405 410 415	1248
	ACC ACC GGC AAG CTG CCC GTG CCC TGG CCC ACC CTC GTG ACC ACC CTG Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr Leu Val Thr Thr Leu 420 425 430	1296
20	ACC TAC GGC GTG CAG TGC TTC AGC CGC TAC CCC GAC CAC ATG AAG CAG Thr Tyr Gly Val Gln Cys Phe Ser Arg Tyr Pro Asp His Met Lys Gln 435 440 445	1344
25	CAC GAC TTC TTC AAG TCC GCC ATG CCC GAA GGC TAC GTC CAG GAG CGC His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly Tyr Val Gln Glu Arg 450 460	1392
30	ACC ATC TTC TTC AAG GAC GAC GGC AAC TAC AAG ACC CGC GCC GAG GTG Thr Ile Phe Phe Lys Asp Asp Gly Asn Tyr Lys Thr Arg Ala Glu Val 465 470 480	1440
35	AAG TTC GAG GGC GAC ACC CTG GTG AAC CGC ATC GAG CTG AAG GGC ATC Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile Glu Leu Lys Gly Ile 485 490 495	1488
	GAC TTC AAG GAG GAC GGC AAC ATC CTG GGG CAC AAG CTG GAG TAC AAC ASp Phe Lys Glu Asp Gly Asn Ile Leu Gly His Lys Leu Glu Tyr Asn 500 505 510	1536
40	TAC AAC AGC CAC AAC GTC TAT ATC ATG GCC GAC AAG CAG AAG AAC GGC Tyr Asn Ser His Asn Val Tyr Ile Met Ala Asp Lys Gln Lys Asn Gly 515 520 525	1584
45	ATC AAG GTG AAC TTC AAG ATC CGC CAC AAC ATC GAG GAC GGC AGC GTG Ile Lys Val Asn Phe Lys Ile Arg His Asn Ile Glu Asp Gly Ser Val 530 540	1632
50	CAG CTC GCC GAC CAC TAC CAG CAG AAC ACC CCC ATC GGC GAC GGC CCC Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro Ile Gly Asp Gly Pro 555 550	1680
55	GTG CTG CTG CCC GAC AAC CAC TAC CTG AGC ACC CAG TCC GCC CTG AGC Val Leu Pro Asp Asn His Tyr Leu Ser Thr Gln Ser Ala Leu Ser 575	1728
	AAA GAC CCC AAC GAG AAG CGC GAT CAC ATG GTC CTG GAG TTC GTG	1776 140

141

Lys Asp Pro Asn Glu Lys Arg Asp His Met Val Leu Leu Glu Phe Val 580 585 590

ACC GCC GCC GGG ATC ACT CTC GGC ATG GAC GAG CTG TAC AAG TAA

ACC GCC GCC GGG ATC ACT CTC GGC ATG GAC GAG CTG TAC AAG TAA 1821

5 Thr Ala Ala Gly Ile Thr Leu Gly Met Asp Glu Leu Tyr Lys
595 . 600 605

(2) INFORMATION FOR SEQ ID NO:65:

10

15

50

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 606 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (v) FRAGMENT TYPE: internal
- 20 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:65:

Met Ser Gln Glu Arg Pro Thr Phe Tyr Arg Gln Glu Leu Asn Lys Thr 1 5 10 15 Ile Trp Glu Val Pro Glu Arg Tyr Gln Asn Leu Ser Pro Val Gly Ser

25 20 25 30

Gly Ala Tyr Gly Ser Val Cys Ala Ala Phe Asp Thr Lys Thr Gly Leu
35 40 45

Arg Val Ala Val Lys Lys Leu Ser Arg Pro Phe Gln Ser Ile Ile His

30 Ala Lys Arg Thr Tyr Arg Glu Leu Arg Leu Leu Lys His Met Lys His 65 70 75 80

Glu Asn Val Ile Gly Leu Leu Asp Val Phe Thr Pro Ala Arg Ser Leu

85
90
95

Glu Glu Phe Asn Asp Val Tyr Leu Val Thr His Leu Met Gly Ala Asp
100 105 110

Leu Asn Asn Ile Val Lys Cys Gln Lys Leu Thr Asp Asp His Val Gln 115 120 125

Phe Leu Ile Tyr Gln Ile Leu Arg Gly Leu Lys Tyr Ile His Ser Ala 130 135 140

40 Asp Ile Ile His Arg Asp Leu Lys Pro Ser Asn Leu Ala Val Asn Glu 145 150 155 160

Asp Cys Glu Leu Lys Ile Leu Asp Phe Gly Leu Ala Arg His Thr Asp 165 170 175

Asp Glu Met Thr Gly Tyr Val Ala Thr Arg Trp Tyr Arg Ala Pro Glu 45 180 185 190

Ile Met Leu Asn Trp Met His Tyr Asn Gln Thr Val Asp Ile Trp Ser 195 200 205

Val Gly Cys Ile Met Ala Glu Leu Leu Thr Gly Arg Thr Leu Phe Pro
210 225 220

Gly Thr Asp His Ile Asp Gln Leu Lys Leu Ile Leu Arg Leu Val Gly
225 230 235 240
Thr Pro Gly Ala Glu Leu Leu Lys Lys Ile Ser Ser Glu Ser Ala Arg

245 250 255

Asn Tyr Ile Gln Ser Leu Thr Gln Met Pro Lys Met Asn Phe Ala Asn
250 265 270

Val Phe Ile Gly Ala Asn Pro Leu Ala Val Asp Leu Leu Glu Lys Met

Leu Val Leu Asp Ser Asp Lys Arg 11e Thr Ala Ala Gln Ala Leu Ala 290											142	?					
His Ala Tyr Phe Ala Gln Tyr His Asp Pro Asp Asp Glu Pro Val Ala 305		Lou		275	5				28	0				28	5		
5 305 310 310 315 320 Amp Pro Tyr Asp Gln Ser Phe Glu Ser Arg Asp Leu Leu Ile Amp Glu 325 330 335 Trp Lys Ser Leu Thr Tyr Asp Glu Val Ile Ser Phe Val Pro Pro Pro Pro 340 345 350 360 10 Leu Asp Gln Glu Glu Met Glu Ser Glu Asp Pro Pro Val Ala Thr Met 355 360 360 Val Ser Lys Gly Glu Glu Leu Phe Thr Gly Val Val Pro Ile Leu Val 370 380 Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe Ser Val Ser Gly Glu Leu Asp Gly Gly Glu Glu Fro Trp Pro Thr Leu Lys Phe Ile Cys 405 Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr Leu Lys Phe Ile Cys 410 Thr Tyr Gly Val Gln Cys Phe Ser Arg Tyr Pro Asp His Met Lys Gln 435 Thr Ile Phe Phe Lys Ser Ala Met Pro Glu Gly Tyr Val Gln Glu Arg 450 Thr Tile Phe Phe Lys Asp Asp Gly Asn Tyr Lys Thr Arg Ala Glu Val 450 Thr Ile Phe Phe Lys Asp Asp Gly Asn Tyr Lys Thr Arg Ala Glu Val 485 Asp Phe Lys Glu Asp Thr Leu Val Asn Arg Ile Glu Leu Lys Gly Ile 485 Asp Phe Lys Glu Asp Thr Leu Val Asn Arg Ile Glu Leu Lys Gly Ile 485 Asp Phe Lys Glu Asp Thr Leu Val Asn Arg Ile Glu Leu Lys Gly Ile 485 Soo 505 Tyr Asn Ser His Asn Val Tyr Ile Met Ala Asp Lys Gln Lys Asn Gly 515 Ile Lys Val Asn Phe Lys Ile Arg His Asn Ile Glu Asp Gly Ser Val 530 Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro Ile Gly Asp Gly Fro 555 Lys Asp Pro Asn Glu Lys Arg Asp His Met Val Leu Leu Gly Pro 550 (2) INFORMATION FOR SEO ID NO:66: 45 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2913 base pairs (B) Type: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear		Leu	290	Let	ı Ası	Sei	: As	р Ly 29	s Ar 5	g Il	e Th	r Al	a Al	a Gl	n Al	a Le	u Ala
Asp Pro Tyr Asp Gln Ser Phe Glu Ser Arg Asp Leu Leu Ile Asp Glu 325	5	His 305	Ala	Туг	Phe	≥ Ala	G1: 31:	п Ту 0	r Hi	s As	p Pr	o Asj	As ₁	p Glu	ı Pro	o Va	l Ala
Trp Lys Ser Leu Thr Tyr Asp Glu Val 11e Ser Phe Val Pro Pro Pro Pro 340		Asp	Pro	Tyr	Asp	Gln 325	Se:	r Ph	e Gl	u Se	r Ar	g Ası	Let	ı Leı	ı Ile	e Asj	320 p Glu
10 · Leu Asp Gln Glu Glu Met Glu Ser Glu Asp Pro Pro Val Ala Thr Met 355 360 365 361 365 361 365 365 365 366 365 367 367 368 368 370 370 370 370 370 370 370 370 370 370		Trp	Lys	Ser	Leu	Thr	Ту	r Ası	o Gl	u Va	1 Ile	0 ∋ Sei	Phe	e Val	. Pro	33! Pro	5 Pro
Val Ser Lys Gly Glu Glu Leu Phe Thr Gly Val Val Pro Ile Leu Val 370 375 380 Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe Ser Val Ser Gly Glu 610 Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr Leu Lys Phe Ile Cys 405 405 410 425 430 430 435 440 445 435 440 445 435 440 445 455 460 445 450 435 465 470 455 460 475 460 475 460 475 475 480 480 485 480 480 485 480 480 485 480 480 485 480 480 485 480 480 485 480 480 485 480 480 485 480 480 485 480 480 485 480 480 485 480 480 485 480 480 485 480 485 480 480 485 480 485 480 480 485 480 480 485 480 480 485 480 480 485 480 480 485 480 480 480 485 480 480 485 480 480 480 485 480 480 480 480 480 480 480 480 480 480	10	Leu	Asp	Gln	Glu	Glu	Met	: Glu	ı Se:	34: Gl:	5 u Asp	Pro) Pro	Val	350 Ala) i Thi	r Met
Simple Ser S								Lei	ı Phe								
Cly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr Leu Lys Phe Ile Cys 405	15	Glu	Leu	Asp	Gly	Asp	Va]	Asn	i Gl	/ His	s Lys	Phe	380 Ser	Val	Ser	· Glv	Glu
## Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr Leu Val Thr Thr Leu 420		Gly	Glu	Gly	Asp	Ala	390 Thr	Tyr	Gly	' Lys	Leu	395 Thr	Leu	Lvs	Phe	Tle	400
20 Thr Tyr Gly Val Gln Cys Phe Ser Arg Tyr Pro Asp His Met Lys Gln 435 440 440 445 440 450 445 450 455 460 455 460 Thr Ile Phe Phe Lys Ser Ala Met Pro Glu Gly Tyr Val Gln Glu Arg 450 470 470 475 480 480 25 465 Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile Glu Leu Lys Gly Ile 485 Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His Lys Leu Glu Tyr Asn 500 500 Tyr Asn Ser His Asn Val Tyr Ile Met Ala Asp Lys Gln Lys Asn Gly 511 512 11e Lys Val Asn Phe Lys Ile Arg His Asn Ile Glu Asp Gly Ser Val 530 Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro Ile Gly Asp Gly Pro 545 550 Val Leu Leu Pro Asp Asn His Tyr Leu Ser Thr Gln Ser Ala Leu Ser 565 Lys Asp Pro Asn. Glu Lys Arg Asp His Met Val Leu Leu Glu Phe Val 580 580 580 580 Thr Ala Ala Gly Ile Thr Leu Gly Met Asp Glu Leu Tyr Lys 595 600 605 (2) INFORMATION FOR SEQ ID NO:66: (3) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2913 base pairs (B) Type: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (A) NAME/KEY: Coding Sequence (B) LOCATION: 12910		Thr	Thr	Gly	Lys	405 Leu	Pro	Val	Pro	Trp	410 Pro	Thr	Leu	-, c	Thr	415	Cys
### Asp Phe Phe Lys Ser Ala Met Pro Glu Gly Tyr Val Gln Glu Arg 450	20																
Thr Ile Phe Phe Lys Asp Asp Gly Asn Tyr Lys Thr Arg Ala Glu Val 465 465 470 470 470 470 470 470 470 470 470 470		His	Asp	435 Phe	Phe	Lys	Ser	Ala	440 Met	Pro	Glu	Glv	Tur	445	met.	Lys	GIN
Lys Phe Glu Gly Asp Thr Leu Val Asn Arg 11e Glu Leu Lys Gly I1e 485 Asp Phe Lys Glu Asp Gly Asn I1e Leu Gly His Lys Leu Glu Tyr Asn 500 Tyr Asn Ser His Asn Val Tyr I1e Met Ala Asp Lys Glu Lys Asn Gly 515 I1e Lys Val Asn Phe Lys I1e Arg His Asn I1e Glu Asp Gly Ser Val 530 Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro I1e Gly Asp Gly Pro 555 Val Leu Leu Pro Asp Asn His Tyr Leu Ser Thr Gln Ser Ala Leu Ser 565 Lys Asp Pro Asn Glu Lys Arg Asp His Met Val Leu Leu Glu Phe Val 580 Thr Ala Ala Gly I1e Thr Leu Gly Met Asp Glu Leu Tyr Lys 595 (2) INFORMATION FOR SEQ ID NO:66: (3) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2913 base pairs (B) Type: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (A) NAME/KEY: Coding Sequence (B) LOCATION: 12910	0.5	Thr	450 Ile	Phe	Phe	Lys	Asp	455 Asp	Glv	Asn	Tvr	Live	460	7	GIII	GIU	Arg
Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His Lys Leu Glu Tyr Asn 500 Tyr Asn Ser His Asn Val Tyr Ile Met Ala Asp Lys Gln Lys Asn Gly 515 1le Lys Val Asn Phe Lys Ile Arg His Asn Ile Gly Asp Gly Ser Val 530 Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro Ile Gly Asp Gly Pro 555 Val Leu Leu Pro Asp Asn His Tyr Leu Ser Thr Gln Ser Ala Leu Ser 565 Lys Asp Pro Asn Glu Lys Arg Asp His Met Val Leu Leu Gly Pro 580 Thr Ala Ala Gly Ile Thr Leu Gly Met Asp Glu Leu Tyr Lys 605 (2) INFORMATION FOR SEQ ID NO:66: 45 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2913 base pairs (B) Type: nucleic acid (C) STRANDEDNESS: single (II) MOLECULE TYPE: CDNA (IX) FEATURE:	25	465 Lys	Phe (Glu	Gly	Asp	470 Thr	Leu	Val	Asn	Ara	475	Glu	Ary Tou	Ala	GIU	480
30 Tyr Asn Ser His Asn Val Tyr Ile Met Ala Asp Lys Gln Lys Asn Gly		Asp I	Phe 1	Lys	Glu	485 Asp	Gly	Asn	Ile	Leu	490 Glv	Hie	Tue	Leu	гув	495	Ile
The Lys Val Asn Phe Lys Ile Arg His Asn Ile Glu Asp Gly Ser Val 530 535 540	30	Tyr A	Asn s	Ser :	500 His .	Asn '	Val	Tyr	Ile	505 Met	Δla	yes	шур	neu	510 510	Tyr	Asn
Signature Sign		Ile I	ys 1	515 /al /	Asn I	Phe 1	Lys	Ile	520 Arg	Hic	yen	Asp	пув	525	гу	Asn	Gly
Val Leu Leu Pro Asp Asn His Tyr Leu Ser Thr Gln Ser Ala Leu Ser 565 Lys Asp Pro Asn. Glu Lys Arg Asp His Met Val Leu Leu Glu Phe Val 580 Thr Ala Ala Gly Ile Thr Leu Gly Met Asp Glu Leu Tyr Lys 595 (2) INFORMATION FOR SEQ ID NO:66: (3) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2913 base pairs (B) Type: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE Type: cDNA (ix) FEATURE: (A) NAME/KEY: Coding Sequence (B) LOCATION: 12910	Δ																
Lys Asp Pro Asn. Glu Lys Arg Asp His Met Val Leu Leu Glu Phe Val 580 585 590 Thr Ala Ala Gly Ile Thr Leu Gly Met Asp Glu Leu Tyr Lys 595 600 (2) INFORMATION FOR SEQ ID NO:66: (3) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2913 base pairs (B) Type: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE Type: cDNA (ix) FEATURE: (A) NAME/KEY: Coding Sequence (B) LOCATION: 12910	35																
Thr Ala Ala Gly Ile Thr Leu Gly Met Asp Glu Leu Tyr Lys 595 600 (2) INFORMATION FOR SEQ ID NO:66: (3) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2913 base pairs (B) Type: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE Type: cDNA (ix) FEATURE: (A) NAME/KEY: Coding Sequence (B) LOCATION: 12910		Lys A	.sp P	ro F	sn. G	65 Slu 1	vs	Ara	Agn	Deu Bio	570	Inr (Gin :	Ser 1	Ala	Leu 575	Ser
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2913 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (ix) FEATURE: (A) NAME/KEY: Coding Sequence (B) LOCATION: 12910	40	Thr A	la A	5 la G	80 Sly I	le T	hr i	Leu (Glv	585 Met	net Nes /	val 1	Leu 1	Leu (31u : 590	Phe	Val
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2913 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (ix) FEATURE: (A) NAME/KEY: Coding Sequence (B) LOCATION: 12910			5	95				(600		Asp (Jiu i			rys		
(A) LENGTH: 2913 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (ix) FEATURE: (A) NAME/KEY: Coding Sequence (B) LOCATION: 12910	45										NO:66	5:					
(B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (ix) FEATURE: (A) NAME/KEY: Coding Sequence (B) LOCATION: 12910	45		(2	4) L	ENGT	H: 2	913	base	na:	CS: irs							
(ii) MOLECULE TYPE: cDNA (ix) FEATURE: (A) NAME/KEY: Coding Sequence (B) LOCATION: 12910			(1	B) T C) S'	YPE: TRAN	nuc. DEDN	leic ESS:	aci sin	d								
(A) NAME/KEY: Coding Sequence (B) LOCATION: 12910	50		(I) T	OPOL	OGY:	lin	ear									
(B) LOCATION: 12910			(ii) (ix)	MOI FE	LECUI ATURI	LE TY	PE:	CDN	A								
(D) OTHER INFORMATION:	55		(A) N	NAME/	KEY:	Co	ding	Seq	uenc	:e						
			(D) C	THEF	RINE	ORM.	29 ATIO	N:								

143

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:66:

		•	•	_					-	_							
5			_	GAG Glu	_		_										48
10				GAA Glu 20													96
15				TCC Ser										_	_	_	144
15				GAA Glu												_	192
20				GAC Asp													240
25				CCT Pro													288
30				GGT Gly 100									_		_	_	336
25				CCG Pro			_								_	_	384
35				CTT Leu											_		432
40				ACT Thr											_	_	480
45				CTT Leu											_		528
50				CAC His 180													576
55				CCT Pro													624
33	TTA	GCT	CCA	GAA	GTA	CAA	AGC	TCC	GAA	GAA	TAT	ATT	CAG	CTA	TTG	AAG	672

	144	
	Leu Ala Pro Glu Val Gln Ser Ser Glu Glu Tyr Ile Gln Leu Leu Lys 210 215 220	
5	AAG CTT ATT AGG TCG CCT AGC ATA CCT CAT CAG TAT TGG CTT ACG CTT Lys Leu Ile Arg Ser Pro Ser Ile Pro His Gln Tyr Trp Leu Thr Leu 230 235 240	720
10	CAG TAT TTG TTA AAA CAT TTC TTC AAG CTC TCT CAA ACC TCC AGC AAA Gln Tyr Leu Leu Lys His Phe Phe Lys Leu Ser Gln Thr Ser Ser Lys 245 250 255	768
15	AAT CTG TTG AAT GCA AGA GTA CTC TCT GAA ATT TTC AGC CCT ATG CTT Asn Leu Leu Asn Ala Arg Val Leu Ser Glu Ile Phe Ser Pro Met Leu 260 265 270	816
20	TTC AGA TTC TCA GCA GCC AGC TCT GAT AAT ACT GAA AAC CTC ATA AAA Phe Arg Phe Ser Ala Ala Ser Ser Asp Asn Thr Glu Asn Leu Ile Lys 275 280 285	864
20	GTT ATA GAA ATT TTA ATC TCA ACT GAA TGG AAT GAA CGA CAG CCT GCA Val Ile Glu Ile Leu Ile Ser Thr Glu Trp Asn Glu Arg Gln Pro Ala 290 295 300	912
25	CCA GCA CTG CCT CCT AAA CCA CCA AAA CCT ACT ACT GTA GCC AAC AAC Pro Ala Leu Pro Pro Lys Pro Pro Lys Pro Thr Thr Val Ala Asn Asn 305 310 320	960
30	GGT ATG AAT AAC AAT ATG TCC TTA CAA AAT GCT GAA TGG TAC TGG GGA Gly Met Asn Asn Met Ser Leu Gln Asn Ala Glu Trp Tyr Trp Gly 325 330 335	1008
35	GAT ATC TCG AGG GAA GAA GTG AAT GAA AAA CTT CGA GAT ACA GCA GAC Asp Ile Ser Arg Glu Glu Val Asn Glu Lys Leu Arg Asp Thr Ala Asp 340 345 350	1056
40	GGG ACC TTT TTG GTA CGA GAT GCG TCT ACT AAA ATG CAT GGT GAT TAT Gly Thr Phe Leu Val Arg Asp Ala Ser Thr Lys Met His Gly Asp Tyr 355 360 365	1104
40	ACT CTT ACA CTA AGG AAA GGG GGA AAT AAC AAA TTA ATC AAA ATA TTT Thr Leu Thr Leu Arg Lys Gly Gly Asn Asn Lys Leu Ile Lys Ile Phe 375 380	1152
45	CAT CGA GAT GGG AAA TAT GGC TTC TCT GAC CCA TTA ACC TTC AGT TCT His Arg Asp Gly Lys Tyr Gly Phe Ser Asp Pro Leu Thr Phe Ser Ser 390 395 400	1200
50	GTG GTT GAA TTA ATA AAC CAC TAC CGG AAT GAA TCT CTA GCT CAG TAT Val Val Glu Leu Ile Asn His Tyr Arg Asn Glu Ser Leu Ala Gln Tyr 405 410 415	1248
55	AAT CCC AAA TTG GAT GTG AAA TTA CTT TAT CCA GTA TCC AAA TAC CAA Asn Pro Lys Leu Asp Val Lys Leu Leu Tyr Pro Val Ser Lys Tyr Gln 420 425 430	1296
	CAG GAT CAA GTT GTC AAA GAA GAT AAT ATT GAA GCT GTA GGG AAA AAA	1344 144

										145							
	Gln	Asp	Gln 435	Val	Val	Lys	Glu	Asp 440	Asn	Ile	Glu	Ala	Val 445	Gly	Lys	Lys	
5					AAC Asn												1392
10					GAA Glu												1440
15					GAA Glu 485												1488
					CAA Gln												1536
20					AAT Asn												1584
25					TCT Ser												1632
30			_		TTG Leu										_		1680
35					AGC Ser 565												1728
			_		TTG Leu										_		1776
40				_	TGG Trp		_										1824
45					GAT Asp						~						1872
50					AGC Ser												1920
55					ACT Thr 645												1968
00	TAT	GCC	TGC	TCT	GTA	GTG	GTG	GAC	GGC	GAA	GTA	AAG	CAT	TGT	GTC	ATA	2016

	146	
	Tyr Ala Cys Ser Val Val Asp Gly Glu Val Lys His Cys Val Ile 660 665 670	
5	AAC AAA ACA GCA ACT GGC TAT GGC TTT GCC GAG CCC TAT AAC TTG TAC Asn Lys Thr Ala Thr Gly Tyr Gly Phe Ala Glu Pro Tyr Asn Leu Tyr 675 680 685	2064
10	AGC TCT CTG AAA GAA CTG GTG CTA CAT TAC CAA CAC ACC TCC CTT GTG Ser Ser Leu Lys Glu Leu Val Leu His Tyr Gln His Thr Ser Leu Val 690 695 700	2112
15	CAG CAC AAC GAC TCC CTC AAT GTC ACA CTA GCC TAC CCA GTA TAT GCA Gln His Asn Asp Ser Leu Asn Val Thr Leu Ala Tyr Pro Val Tyr Ala 705 710 715	2160
	CAG CAG AGG CGA CAG GAT CCA CCG GTC GCC ACC ATG GTG AGC AAG GGC Gln Gln Arg Arg Gln Asp Pro Pro Val Ala Thr Met Val Ser Lys Gly 725 730 735	2208
20	GAG GAG CTG TTC ACC GGG GTG GTG CCC ATC CTG GTC GAG CTG GAC GGC Glu Glu Leu Phe Thr Gly Val Val Pro Ile Leu Val Glu Leu Asp Gly 740 745	2256
25	GAC GTA AAC GGC CAC AAG TTC AGC GTG TCC GGC GAG GGC GAG GGC GAT Asp Val Asn Gly His Lys Phe Ser Val Ser Gly Glu Gly Glu Gly Asp 755 760 765	2304
30	GCC ACC TAC GGC AAG CTG ACC CTG AAG TTC ATC TGC ACC ACC GGC AAG Ala Thr Tyr Gly Lys Leu Thr Leu Lys Phe Ile Cys Thr Thr Gly Lys 770 780	2352
35	CTG CCC GTG CCC TGG CCC ACC CTC GTG ACC ACC CTG ACC TAC GGC GTG Leu Pro Val Pro Trp Pro Thr Leu Val Thr Thr Leu Thr Tyr Gly Val 785 790 795 800	2400
	CAG TGC TTC AGC CGC TAC CCC GAC CAC ATG AAG CAG CAC GAC TTC TTC Gln Cys Phe Ser Arg Tyr Pro Asp His Met Lys Gln His Asp Phe Phe 805 810 815	2448
40	AAG TCC GCC ATG CCC GAA GGC TAC GTC CAG GAG CGC ACC ATC TTC TTC Lys Ser Ala Met Pro Glu Gly Tyr Val Gln Glu Arg Thr Ile Phe Phe 825 830	2496
45	835 B40 845	2544
50	GAC ACC CTG GTG AAC CGC ATC GAG CTG AAG GGC ATC GAC TTC AAG GAG Asp Thr Leu Val Asn Arg Ile Glu Leu Lys Gly Ile Asp Phe Lys Glu 855 860	2592
55	GAC GGC AAC ATC CTG GGG CAC AAG CTG GAG TAC AAC TAC AAC AGC CAC Asp Gly Asn Ile Leu Gly His Lys Leu Glu Tyr Asn Tyr Asn Ser His 865 870 875 880	2640
	AAC GTC TAT ATC ATG GCC GAC AAG CAG AAG AAC GGC ATC AAG GTG AAC	2688

										147		·					
	Asn	Val	Tyr	Ile	Met 885	Ala	Asp	Lys	Gln	Lys 890	Asn	Gly	Ile	Lys	Val 895	Asn	
5					CAC His												2736
10 .					AAC Asn												2784
15					CTG Leu												2832
13					CAC His										_	_	2880
20					ATG Met 965						TAA						2913
25					FORM					NO : 6	5 7 :						
30			(A) (B) (C) (D)	LENG TYPI STRA	NCE (GTH: E: an ANDEI OLOG!	970 mino ONESS	amin acio 3: s: inean	no ad i ingle	cids e								
35		(7	/) FI	RAGMI	ENT :	TYPE	: int	terna	al	Q ID	NO:	67:					
40	1				Gly 5 Asp					10			A	_	15		
	Asn	Lys	Gly 35	20 Ser	Leu	Val	Ala	Leu 40	25 Gly	Phe	Ser	Asp	Gly 45	30 Gln	Glu	Ala	
45		50			Ile Phe		55					60					
	65 Lys	Ile	Ser	Pro	Pro 85	70 Thr	Pro	Lys	Pro	Arg 90	75 Pro	Pro	Arg	Pro	Leu 95	80 Pro	
50				100	Ser Asp		-		105		_			110			
			115		Ile		Leu	120					125				
55	Glu	130 Cys	Ser	Thr	Leu	Tyr	135 Arg	Thr	Gln	Ser	Ser	140 Ser	Asn	Leu	Ala	Glu	

							14	48							
	45	 		15	0				155	5					160
															160 u Met
5															u Asp
												lu	Met	: 11	e Ser
40											e G	ln :			u Lys
10										Ту	r Tı				r Leu
								eu .	Ser	G1					240 Lys
15							r G	lu :							Leu
												n I	Leu	Ιle	. Lys
20											ı Ar	g			Ala
20										Thi	va va				Asn 320
		sn As													
25		r Ar													
30		r Le													
		p Gly													
		u Lei													
35		s Leu 420													
40		ı Tyr													
		Glu Ile													
		lle Thr													
45		Thr 500 Gly													
		Lys													
50		Asp													
		Asn													
55		Tyr 580													
55		580 Glu													
					-				J.	~ ~	-SP	110	. 1	уг с)CT

149

			595					600					605			
	Len	Val		Asp	Asn	Glu	Asp		Pro	His	His	Δen		Lys	Thr	Trn
		610			1.00		615	204		****		620	Olu	Lys	1111	111
	Asn		Glv	Ser	Ser	Asn		Asn	Lvs	Ala	Glu		Len	Leu	Ara	Glv
5	625		1			630			-1-		635				••••	640
-		Ara	Asp	Glv	Thr		Leu	Val	Ara	Glu		Ser	Lvs	Gln	Glv	
		3		1	645				J	650			-7-		655	-1-
	Tyr	Ala	Cys	Ser	Val	Val	Val	qaA	Gly		Val	Lys	His	Cys		Ile
	•		•	660				-	665			•		670		
10	Asn	Lys	Thr	Ala	Thr	Gly	Tyr	Gly	Phe	Ala	Glu	Pro	Tyr	Asn	Leu	Tyr
			675					680					685			_
	Ser	Ser	Leu	Lys	Glu	Leu	Val	Leu	His	Tyr	Gln	His	Thr	Ser	Leu	Val
		690					695					700				
	Gln	His	Asn	Asp	Ser	Leu	Asn	Val	Thr	Leu	Ala	Tyr	Pro	Val	Tyr	Ala
15	705					710					715					720
	Gln	Gln	Arg	Arg		Asp	Pro	Pro	Val		Thr	Met	Val	Ser		Gly
					725		A,			730				•	735	
	Glu	Glu	Leu		Thr	Gly	Val	Val		Ile	Leu	Val	Glu	Leu	Asp	Gly
00	_		_	740		_		_	745					750		
20	Asp	Val		Gly	Hıs	Lys	Phe		Val	Ser	GIÀ	Glu	-	Glu	Gly	Asp
	n 1 -	m\	755	01	*	*	m)	760	•	D1	T 7 -		765	_,	a 1	-
	Ala	770	туг	GIY	гÀг	Leu		ьеи	гав	Pne	rre	-	Thr	Thr	GIY	ьуs
	T 011		1101	Dwa	T	Dwo	775	T	17-7	mh se	mh	780	mb	Tyr	01	17.3
25	785	PIO	val	PIO	тър	790	1111	ьец	val	IIII	795	neu	1111	TAT	GIY	800
		Cvs	Phe	Ser	Ara		Pro	Δsn	His	Met		Gln	ніе	qaA	Dhe	-
	0211	C , D			805	- 7 -		тор	*****	810	-	0111	111.5	дор	815	1110
	Lvs	Ser	Ala	Met		Glu	Glv	Tyr	Val			Ara	Thr	Ile		Phe
	•			820			•	•	825					830		
30	Lys	Asp	Asp	Gly	Asn	Tyr	Lys	Thr	Arg	Ala	Glu	Val	Lys	Phe	Glu	Gly
			835					840					845			
	Asp	Thr	Leu	Val	Asn	Arg	Ile	Glu	Leu	Lys	Gly	Ile	Asp	Phe	Lys	Glu
		850					855					860				
		Gly	Asn	Ile	Leu		His	Lys	Leu	Glu		Asn	Tyr	Asn	Ser	
35	865					870					875				_	880
	Asn	Val	Tyr	Ile		Ala	Asp	Lys	Gln		Asn	Gly	Ile	Lys		Asn
	51. .	.	*1.	•	885		-1.	~3	_	890	_			_	895	_
	Pne	гуѕ	11e		ніѕ	Asn	11e	GIU		GIÄ	Ser	Val	Gin	Leu	Ala	Asp
40	114 -	(T)	a1	900	2	mh	D	-1 -	905		~ 3	5	**- 3	910		D
40	HIS	Tyr	915	GIII	Asn	Int	Pro	920	GIY	Asp	GIY	Pro	925	Leu	Leu	PIO
	yen	λen		Tur	T.Au	Ser	Thr		Cor	λ1-	Ton	802		Asp	Dro	λαπ
	тэр	930	1113	171	Deu	Ser	935	GIII	Ser	Ala	цеu	940	цув	жыр	PIO	ASII
	G] 11		Ara	Asp	His	Met		Len	Len	Glu	Phe		Thr	Ala	Ala	Glv
45	945	_,_	3			950					955	741	~***			960
-		Thr	Leu	Gly	Met		Glu	Leu	Tyr	Lys						
				•	965	•			-	970						

(2) INFORMATION FOR SEQ ID NO:68:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1788 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
- 55 (D) TOPOLOGY: linear

150

(ii) MOLECULE TYPE: cDNA (ix) FEATURE:

(A) NAME/KEY: Coding Sequence (B) LOCATION: 1...1785 5

(D) OTHER INFORMATION:

10 ATG GGC AAC GCC GCC GCC GCC AAG AAG GGC AGC GAG CAG GAG AGC GTG Met Gly Asn Ala Ala Ala Ala Ala Lys Lys Gly Ser Glu Gln Glu Ser Val 1 5 AAA GAG TTC CTA GCC AAA GCC AAG GAA GAT TTC CTG AAA AAA TGG GAA Lys Glu Phe Leu Ala Lys Ala Lys Glu Asp Phe Leu Lys Lys Trp Glu 20 25 GAC CCC TCT CAG AAT ACA GCC CAG TTG GAT CAG TTT GAT AGA ATC AAG Asp Pro Ser Gln Asn Thr Ala Gln Leu Asp Gln Phe Asp Arg Ile Lys 45 ACC CTT GGC ACC GGC TCC TTT GGG CGA GTG ATG CTG GTG AAG CAC AAG Thr Leu Gly Thr Gly Ser Phe Gly Arg Val Met Leu Val Lys His Lys 50 GAG AGT GGG AAC CAC TAC GCC ATG AAG ATC TTA GAC AAG CAG AAG GTG Glu Ser Gly Asn His Tyr Ala Met Lys Ile Leu Asp Lys Gln Lys Val 65 GAG AGT GAG CTA AAG CAG ATC GAG CAC ACT CTG AAT GAG AAG CGC ATC CTG Glu Ser Gly Asn His Tyr Ala Met Lys Ile Leu Asn Glu Lys Arg Ile Leu 85 GAG GCC GTC AAC TTC CCG TTC CTG GTC AAA CTT GAA CAG CAC AATC CTG Val Lys Leu Lys Gln Ile Glu His Thr Leu Asn Glu Lys Arg Ile Leu 85 CAG GCC GTC AAC TTC CCG TTC CTG GTC AAA CTT GAA CTC CTC TCC 85 GAC AAC TCA AAC CTG TAC ATG GTC AAA CTT GAA CTT GAA TTC TCC TTC AAG ASp Asn Ser Asn Leu Tyr Met Val Met Glu Tyr Val Ala Gly Gly Glu 115 ATG TTC TCC CAC CTA CGG CGG ATT GGA AGG TTC AGG GAG CCC CAT GCC Met Phe Ser His Leu Arg Arg Ile Gly Arg Phe Ser Glu Pro His Ala 130 ATG TTC TCC CAC CTA CGG CGG ATC GTC ACC TTT GAG TAT CTG CAC CTC Arg Phe Tyr Ala Ala Gln Ile Val Leu Thr Phe Glu Tyr Leu His Ser 145 CGT TTC TAC GG GGG CAG ATC GTC CTG ACC TTT GAG TAT CTG CAC TCC Arg Phe Tyr Ala Ala Gln Ile Val Leu Thr Phe Glu Tyr Leu His Ser 145 CCAG CAG GCC TAT CTA CAG GGG ACC CTG AAG CCC GAG AAT CTT CTC ATC GAC Arg Phe Tyr Ala Ala Gln Ile Val Leu Thr Phe Glu Tyr Leu His Ser 145 CCAG CAG GCC TAT CTA CAG GGG ACC CTG AAG CCC GAG AAT CTT CTC ATC GAC Arg Phe Tyr Ala Ala Gln Ile Val Leu Thr Phe Glu Tyr Leu His Ser 145 CCAG CAG GCC TAT CTA CAG GGG ACC CTG AAG CCC GAG AAT CTT CTC ATC GAC Arg Phe Tyr Ala Ala Gln Ile Val Leu Thr Phe Glu Tyr Leu His Ser 145 CCAG CAG GCC TAT ATT CAG CGG GAC CTG AAG CCC GAG AAT CTT CTC ATC GAC ACG CAG GCC TAT ATT				(xi)	SEC	QUEN	CE D	ESCR	IPTI	ON:	SEQ	ID	NO:	68:							
20 25 25 26 26 27 27 28 28 28 29 29 29 29 29 29 29 29 29 29 29 29 29	10	1	L	-			5	5	Lu A	ra D	λs π	ys (0 17A	Ser	Glı	u Gl:	n Gl	u Se	er 5	Val	48	3
ACC CTT GGC ACC GGC TCC TTT GGG CGA GTG ATG CTG GTG AAG CAC AAG ACC CTT GGC ACC GGC TCC TTT GGG CGA GTG ATG CTG GTG AAG CAC AAG Thr Leu Gly Thr Gly Ser Phe Gly Arg Val Met Leu Val Lys His Lys 50 GAG AGT GGG AAC CAC TAC GCC ATG AAG ATC TTA GAC AAG CAG AAG GTG Glu Ser Gly Asn His Tyr Ala Met Lys Ile Leu Asp Lys Gln Lys Val 65 70 GTG AAG CTA AAG CAG ATC GAG CAC ACT CTG AAT GAG AAG CGC ATC CTG 85 CAG GCC GTC AAC TTC CCG TTC CTG GTC AAA CTT GAA TGAG AAG CGC ATC CTG 90 GAC AAC TCA AAC CTG TAC ATC GTC ATG GTC AAA CTT GAA TTC TCC TTC AAG ASp Asn Ser Asn Leu Tyr Met Val Lys Leu Glu Phe Ser Phe Lys 100 GAC AAC TCA AAC CTG TAC ATG GTC ATG GAG TAT GTA GCT GGT GGC GAG ASp Asn Ser Asn Leu Tyr Met Val Met Glu Tyr Val Ala Gly Gly Glu 115 ATG TTC TCC CAC CTA CGG CGG ATT GGA AGG TC AGC GAG CCC CAT GCC Met Phe Ser His Leu Arg Arg Ile Gly Arg Phe Ser Glu Pro His Ala 130 CGT TC TAC GCG GCG CAG ATC GTC CTG ACC TTT GAG TAT CTG CAC TCC Arg Phe Tyr Ala Ala Gln Ile Val Leu Thr Phe Glu Tyr Leu His Ser 140 CGT TC TC CAC CTA TAC CGG GAC CTG AAG CCC GAG AAT CTT CTC ATC Arg Phe Tyr Ala Ala Gln Ile Val Leu Thr Phe Glu Tyr Leu His Ser 140 CGT GAC CTC ATC TAC CGG GAC CTG AAG CCC GAG AAT CTT CTC ATC Arg Phe Tyr Ala Ala Gln Ile Val Leu Thr Phe Glu Tyr Leu His Ser 140 CGG CAG CTC ATC TAC CGG GAC CTG AAG CCC GAG AAT CTT CTC ATC Arg Phe Tyr Ala Ala Gln Ile Val Leu Thr Phe Glu Tyr Leu His Ser 140 CGG CAG CAC CTC ATC TAC CGG GAC CTG AAG CCC GAG AAT CTT CTC ATC Arg Phe Tyr Ala Ala Gln Ile Val Lys Pro Glu Asn Leu Leu Ile Asp 165 CAG CAG CAG CTT ATT CAG CGG GAC TTG AGC CTC GAG AAT CTT CTC ATC AAG CAG CAG CTC ATC TAC CAG GAC CTC GAG CCC CAG CCC CAG CCC ATC CAG CAG CTC ATC TAC CAG GAC CTC CAG CCC CAG CCC CAG CCC ATC CAG CAG CTC ATC TAC CAG GAC CTC CAG CCC CAG CCC CAG CCC CAG CCC CAG CCC CAC CCC CAG CCC CAC CCC CAG CCC CAC CCC CAG CCC CA	15					20			U A.	נת בי	25	iu A	sp .	Phe	Let	ı Ly:	s Ly 30	s Tr	p	Glu	96	;
25	20				35				ı nı	40	.11 116	u A	sp (31n	Phe	Asp 45) Ar	g Il	e	Lys	144	
65 70 70 70 75 75 75 80 1 1 2 80 80 80 80 80 80 80 80 80 80 80 80 80	25		5	0	_		- J <u>-</u>	, 50	55	e GI	y Ar	g va	al M	let	Leu 60	Val	. Lys	Hi:	s 1	Lys	192	
CAG GCC GTC AAC TTC CCG TTC CTG GTC AAA CTT GAA TTC TCC TTC AAG 336 Gln Ala Val Asn Phe Pro Phe Leu Val Lys Leu Glu Phe Ser Phe Lys 110 GAC AAC TCA AAC CTG TAC ATG GTC ATG GAG TAT GTA GCT GGT GGC GAG ASP ASP ASP ASP Leu Arg Arg 11e Gly Arg Phe Ser Glu Pro His Ala 130 ATG TTC TCC CAC CTA CGG CGG ATT GGA AGG TTC AGC GAG CCC CAT GCC Arg Phe Ser His Leu Arg Arg 11e Gly Arg Phe Ser Glu Pro His Ala 130 CGT TTC TAC GCG GCG CAG ATC GTC CTG ACC TTT GAG TAT CTG CAC TCC Arg Phe Tyr Ala Ala Gln Ile Val Leu Thr Phe Glu Tyr Leu His Ser 160 CTG GAC CTC ATC TAC CGG GAC CTG AAG CCC GAG AAT CTT CTC ATC GAC Arg Phe Tyr Ala Ala Gln Ile Val Leu Thr Phe Glu Tyr Leu His Ser 160 CTG GAC CTC ATC TAC CGG GAC CTG AAG CCC GAG AAT CTT CTC ATC GAC Arg Phe Tyr Arg Asp Leu Lys Pro Glu Asn Leu Leu Ile Asp 175 CAG CAG GGC TAT ATT CAG GTG ACA GAC TTC GGT TTT GCC AAG CGT GTG 576 Gln Gln Gly Tyr Ile Gln Val Thr Asp Phe Gly Phe Ala Lys Arg Val	20	65			•			70	. AI	a Me	с гу	S 1.	.е L 7	eu 5	Asp	Ьуs	Gln	Lys	<i>]</i> 8	/al 30	240	
GAC AAC TCA AAC CTG TAC ATG GTC ATG GLU Tyr Val Ala Gly Gly Glu 125 ATG TTC TCC CAC CTA CGG CGG ATT GGA AGG TTC AGC GAG CCC CAT GCC Met Phe Ser His Leu Arg Arg Ile Gly Arg Phe Ser Glu Pro His Ala 130 CGT TTC TAC GCG GCG CAG ATC GTC CTG ACC TTT GAG TAT CTG CAC TCC Arg Phe Tyr Ala Ala Gln Ile Val Leu Thr Phe Glu Tyr Leu His Ser 150 CTG GAC CTC ATC TAC CGG GAC CTG AAG CCC GAG AAT CTT CTC ATC GAC Leu Asp Leu Ile Tyr Arg Asp Leu Lys Pro Glu Asn Leu Leu Ile Asp 165 CAG CAG GGC TAT ATT CAG GTG ACA GAC TTC GGT TTT GCC AAG CGT GTG 576 Gln Gln Gln Gly Tyr Ile Gln Val Thr Asp Phe Gly Phe Ala Lys Arg Val	30		-			-1-	85		. 011	ı nı;	s Ini	90 90	u A	sn	Glu	Lys	Arg	11e 95	≥ L	eu	288	
ATG TTC TCC CAC CTA CGG CGG ATT GGA AGG TTC AGC GAG CCC CAT GCC Met Phe Ser His Leu Arg Arg Ile Gly Arg Phe Ser Glu Pro His Ala 130 CGT TTC TAC GCG GCG CAG ATC GTC CTG ACC TTT GAG TAT CTG CAC TCC Arg Phe Tyr Ala Ala Gln Ile Val Leu Thr Phe Glu Tyr Leu His Ser 145 CTG GAC CTC ATC TAC CGG GAC CTG AAG CCC GAG AAT CTT CTC ATC GAC Leu Asp Leu Ile Tyr Arg Asp Leu Lys Pro Glu Asn Leu Leu Ile Asp 165 CAG CAG GGC TAT ATT CAG GTG ACA GAC TTC GGT TTT GCC AAG CGT GTG 56 Gln Gln Gly Tyr Ile Gln Val Thr Asp Phe Gly Phe Ala Lys Arg Val	35					100			7 1110	. nec	105	г гу	s Le	eu (Glu	Phe	Ser 110	Phe	L	ys	336	
130 135 135 140 CGT TTC TAC GCG GCG CAG ATC GTC CTG ACC TTT GAG TAT CTG CAC TCC ATC ATC Phe Glu Tyr Leu His Ser 150 CTG GAC CTC ATC TAC CGG GAC CTG AAG CCC GAG AAT CTT CTC ATC GAC Leu Asp Leu Ile Tyr Arg Asp Leu Lys Pro Glu Asn Leu Leu Ile Asp 165 CAG CAG GGC TAT ATT CAG GTG ACA GAC TTC GGT TTT GCC AAG CGT GTG 576 Gln Gln Gly Tyr Ile Gln Val Thr Asp Phe Gly Phe Ala Lys Arg Val	40			1	.15		204	-71	nec	120	мет	GI.	u Ty	r \	Val	Ala 125	Gly	Gly	G.	lu	384	
145 150 150 155 160 50 CTG GAC CTC ATC TAC CGG GAC CTG AAG CCC GAG AAT CTT CTC ATC GAC Leu Asp Leu Ile Tyr Arg Asp Leu Lys Pro Glu Asn Leu Leu Ile Asp 165 CAG CAG GGC TAT ATT CAG GTG ACA GAC TTC GGT TTT GCC AAG CGT GTG 576 Gln Gln Gly Tyr Ile Gln Val Thr Asp Phe Gly Phe Ala Lys Arg Val	45		13	0				•••9	135	116	GIY	Arg	3 Ph	e 5	Ser 140	Glu	Pro	His	A]	la	432	
Leu Asp Leu Ile Tyr Arg Asp Leu Lys Pro Glu Asn Leu Leu Ile Asp 165 170 175 CAG CAG GGC TAT ATT CAG GTG ACA GAC TTC GGT TTT GCC AAG CGT GTG 576 Gln Gln Gly Tyr Ile Gln Val Thr Asp Phe Gly Phe Ala Lys Arg Val		145			-			150	116	vai	Leu	Thi	15	e G 5	lu '	Tyr	Leu	His	Se 16	er 50	480	
180 The Asp Phe Gly Phe Ala Lys Arg Val	50						165	9	rap	ьец	Lys	170	GI	uA	.sn I	Leu 1	Leu	Ile 175	As	p	528	
	55	CAG Gln	CAG Gln	G G	GC 1 ly 1	AT Yr .80	ATT Ile	CAG Gln	GTG Val	ACA Thr	Asp	TTC Phe	GG: Gly	r T	TT (Ala I	ys i	CGT Arg	GT Va	G 1	576	

E		GGC Gly											624
5		ATT Ile 210											672
10		GGA Gly											720
15		GAC Asp				_						_	768
20		TTC Phe											816
25		CTG Leu											864
		AAT Asn 290											912
30		ATC Ile											960
35	_	CCT Pro	_								_	_	1008
40		GTC Val			_							_	1056
45		GCC Ala			_	_	_		_	_		_	1104
		GTT Val 370											1152
50		GAG Glu											1200
55	_	TGC Cys		_									1248

152

5	ACT CTC ACT TAT GGT GTT CAA TGC TTT TCT AGA TAC CCA GAT CAT ATG Thr Leu Thr Tyr Gly Val Gln Cys Phe Ser Arg Tyr Pro Asp His Met 420 425 430	1296
	AAA CAG CAT GAC TTT TTC AAG AGT GCC ATG CCC GAA GGT TAT GTA CAG Lys Gln His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly Tyr Val Gln 435 440 445	1344
10	GAA AGA ACT ATA TTT TAC AAA GAT GAC GGG AAC TAC AAG ACA CGT GCT Glu Arg Thr Ile Phe Tyr Lys Asp Asp Gly Asn Tyr Lys Thr Arg Ala 450 455 460	1392
15	GAA GTC AAG TTT GAA GGT GAT ACC CTT GTT AAT AGA ATC GAG TTA AAA Glu Val Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile Glu Leu Lys 465 470 480	1440
20	485 490 495	1488
25	500 FOST THE MET ALA ASP Lys Pro Lys 505 510	1536
	515 Eys 11e Arg His Asn Ile Lys Asp Gly 525	1584
30	AGC GTT CAA TTA GCA GAC CAT TAT CAA CAA AAT ACT CCA ATT GGC GAT 1 Ser Val Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro Ile Gly Asp 530 540	.632
35	GGC CCT GTC CTT TTA CCA GAC AAC CAT TAC CTG TCC ACG CAA TCT GCC Gly Pro Val Leu Leu Pro Asp Asn His Tyr Leu Ser Thr Gln Ser Ala 550 555 560	680
40	CTT TCC AAA GAT CCC AAC GAA AAG AGA GAT CAC ATG ATC CTT CTT GAG Leu Ser Lys Asp Pro Asn Glu Lys Arg Asp His Met Ile Leu Leu Glu 565 570 575	728
45	TTT GTA ACA GCT GCT GGG ATT ACA CAT GGC ATG GAT GAA CTA TAC AAA Phe Val Thr Ala Ala Gly Ile Thr His Gly Met Asp Glu Leu Tyr Lys 580 590	776
	CCT CAG GAG TAA Pro Gln Glu 1 595	788
50	(2) INFORMATION FOR SEQ ID NO:69:	
55	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 595 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single	

(C) STRANDEDNESS: single

153

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(v) FRAGMENT TYPE: internal

5 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:69:

Met Gly Asn Ala Ala Ala Lys Lys Gly Ser Glu Gln Glu Ser Val 10 10 Lys Glu Phe Leu Ala Lys Ala Lys Glu Asp Phe Leu Lys Lys Trp Glu 25 Asp Pro Ser Gln Asn Thr Ala Gln Leu Asp Gln Phe Asp Arg Ile Lys 40 Thr Leu Gly Thr Gly Ser Phe Gly Arg Val Met Leu Val Lys His Lys 15 Glu Ser Gly Asn His Tyr Ala Met Lys Ile Leu Asp Lys Gln Lys Val 70 Val Lys Leu Lys Gln Ile Glu His Thr Leu Asn Glu Lys Arg Ile Leu 85 90 Gln Ala Val Asn Phe Pro Phe Leu Val Lys Leu Glu Phe Ser Phe Lys 20 105 Asp Asn Ser Asn Leu Tyr Met Val Met Glu Tyr Val Ala Gly Gly Glu 120 Met Phe Ser His Leu Arg Arg Ile Gly Arg Phe Ser Glu Pro His Ala 25 135 Arg Phe Tyr Ala Ala Gln Ile Val Leu Thr Phe Glu Tyr Leu His Ser 150 155 Leu Asp Leu Ile Tyr Arg Asp Leu Lys Pro Glu Asn Leu Leu Ile Asp 170 165 30 Gln Gln Gly Tyr Ile Gln Val Thr Asp Phe Gly Phe Ala Lys Arg Val 180 185 Lys Gly Arg Thr Trp Thr Leu Cys Gly Thr Pro Glu Tyr Leu Ala Pro 200 Glu Ile Ile Leu Ser Lys Gly Tyr Asn Lys Ala Val Asp Trp Trp Ala 35 210 215 220 Leu Gly Val Leu Ile Tyr Glu Met Ala Ala Gly Tyr Pro Pro Phe Phe 230 235 Ala Asp Gln Pro Ile Gln Ile Tyr Glu Lys Ile Val Ser Gly Lys Val 250 40 Arg Phe Pro Ser His Phe Ser Ser Asp Leu Lys Asp Leu Leu Arg Asn 260 265 Leu Leu Gln Val Asp Leu Thr Lys Arg Phe Gly Asn Leu Lys Asp Gly 280 Val Asn Asp Ile Lys Asn His Lys Trp Phe Ala Thr Thr Asp Trp Ile 45 295 300 Ala Ile Tyr Gln Arg Lys Val Glu Ala Pro Phe Ile Pro Lys Phe Lys 310 Gly Pro Gly Asp Thr Ser Asn Phe Asp Asp Tyr Glu Glu Glu Ile 325 330 50 Arg Val Ser Ile Asn Glu Lys Cys Gly Lys Glu Phe Thr Glu Phe Gly 345 Arg Ala Met Ser Lys Gly Glu Glu Leu Phe Thr Gly Val Val Pro Ile 360 Leu Val Glu Leu Asp Gly Asp Val Asn Gly Gln Lys Phe Ser Val Ser 55 375 Gly Glu Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr Leu Lys Phe

								154							
	385			390					305						
	Ile Cy	s Thr T	hr Gly 405	Lys	Leu	Pro	Val	Pro	395 Trp	Pro	Thr	Leu	Val	400 Thr	
5	Thr Le	u Thr T	yr Gly	Val	Gln	Cys	Phe	Ser	Arg	Tyr	Pro	Asp	415 His	Met	
	Lys Gl:	n His A	zo ∋p Phe	Phe	Lys	Ser	425 Ala	Met	Pro	Glu	Glv	430	บาโ	C1-	
	Glu Ar	435 g Thr I: O	le Phe	Tyr	Lys	440 Asp	Asn	Gly	7.00	<i>m</i>	445	-,	val	GIN	
10	450 Glu Val) l Lys Pl	ne Glu	Glv	455	mb	т.	GIY	ASII	1yr 460	ьув	Thr	Arg	Ala	
	465 Gly 11e	l Lys Pl		470	- Tap	Int	Leu	Val	Asn 475	Arg	Ile	Glu	Leu	Lys 480	
	D	Asp Ph	485	GLu	Asp	Gly	Asn	Ile 490	Leu	Gly	His	Lys	Met	Glu	
15	Tyr Asn	Tyr As	n Ser 0	His	Asn	Val	Tyr 505	Ile	Met	Ala	Asp	Lys	Pro	Lys	
	Asn Gly	Ile Ly 515	s Val	Asn	Phe	Lys	Ile	Arg	His	Asn	Ile	510 Lys	Asp	Gly	
	Ser Val 530	Gln Le	u Ala	Asp 1	His	520 Tyr	Gln	Gln	Asn	Thr	525 Pro	Ile	Glv	Δen	
20	Gly Pro 545	Val Le	ı Leu	Pro A	535 Asp	Asn	His	Tvr	I.em	540	Th.	a1	o.,	льр	
	545 Leu Ser	Lys As	o Pro	550 Asn (:11:	Lve	7	~ / L	555		TIIL	GIN	ser .	Ala 560	
	Phe Val	Thr Al:	565	د داد		- y - S	Arg	570	H1S	Met .	Ile	Leu	Leu (575	Glu	
25	Phe Val	580)	GIY I	.ie '	rnr .	His 585	Gly :	Met i	Asp (31u	Leu ' 590	Tyr]	Гуs	
	Pro Gln	595										-			
		(2) IN	FORMA	rion	FOR	SEO	TD i	NTO - 74							
30	(i) SEQUE) :						
	·	(A) LEN	GTH: 2	181	base	na i	irs								
35		(B) TYP	ANDEDN	ESS:	sin	d gle									
33		(D) TOP	OLOGY:	line	ear										
	(i (i:	i) MOLE x) FEAT	CULE T	YPE:	CDN.	A									
40															
		(A) NAM	ALION	: 1	.21	78	uenc	e							
		(D) OTI													
45) SEQUE													
	ATG AGC G	AC GTG	GCT AT	T GT	G AA	AG GA	AG G	GT TO	G CI	rg ca	C A	AA CO	a Go	ıcı	4.0
	Met Ser A	sp val	Ala [] 5	le Va	l Ly	rs G]	lu G: 10	гу Тъ	TP Le	u Hi	s Ly	/s Ar	g G1	у.	48
50	GAG TAC A	TC AAG	ACC TO	G CG	g cc	'A CC						15			
	Glu Tyr I	le Lys 20	Thr Tr	p Ar	g Pr	O AL	9 1	r Ph	C CT le Le	C CT u Le	C AA u Ly	AG AA 's As	T GA n As	T. p	96
						25	•				30)			
55	GGC ACC T Gly Thr P	he Ile	GC TA Gly Ty	C AAC r Lys	GA Gl:	G CG u Ar	G CC	G CA	G GA	T GT	G GA	C CA	A CG	Т	144
	3.	5			40	_	J	- 01	no	45	. AS	b GT	n Ar	g	

5				CTC Leu					_								192
-				CCC Pro			-										240
10				ATC Ile													288
15				ACA Thr 100						-	_						336
20				GAG Glu													384
25				GAA Glu													432
				AAC Asn													480
30				GTG Val													·528
35	Ala	Met	Lys	ATC Ile 180	Leu	Lys	Lys	Glu	Val 185	Ile	Val	Ala	Lys	Asp 190	Glu	Val	576
40	Ala	His	Thr 195	CTC Leu	Thr	Glu	Asn	Arg 200	Val	Leu	Gln	Asn	Ser 205	Arg	His	Pro	624
45	Phe	Leu 210	Thr	GCC Ala	Leu	Lys	Tyr 215	Ser	Phe	Gln	Thr	His 220	Asp	Arg	Leu	Cys	672
				GAG Glu													720
50				GTG Val													768
55				GCC Ala 260													816

5	275	280	•	Asp Gly His Ile 285	864
	AAG ATC ACA GAC Lys Ile Thr Asp 290	TTC GGG CTG TGC Phe Gly Leu Cys 295	AAG GAG GGG ATC 2 Lys Glu Gly Ile 1 300	AAG GAC GGT GCC Lys Asp Gly Ala	912
10	305	310	CCT GAG TAC CTG (Pro Glu Tyr Leu F	ula Pro Glu Val 320	960
15		325	GCA GTG GAC TGG T Ala Val Asp Trp T 330	rp Gly Leu Gly 335	1008
20	340	nee nee cys	GGT CGC CTG CCC T Gly Arg Leu Pro P 345	he Tyr Asn Gln 350	1056
25	355	360		lu Ile Arg Phe 55	1104
0.	370	375	AAG TCC TTG CTT TO Lys Ser Leu Leu Se 380	er Gly Leu Leu	1152
30	AAG AAG GAC CCC A Lys Lys Asp Pro L 385	390	395 Gly Gly Ser Gl	u Asp Ala Lys 400	1200
35		os	tia Gly He Val Tr 410	p Gln His Val 415	1248
40	TAC GAG AAG AAG CT Tyr Glu Lys Lys Le 420	- Del 110 PIO P	TC AAG CCC CAG GT he Lys Pro Gln Va 25	C ACG TCG GAG l Thr Ser Glu 430	1296
45	ACT GAC ACC AGG TR Thr Asp Thr Arg Ty 435	AT TTT GAT GAG G T Phe Asp Glu G 440	AG TTC ACG GCC CAG lu Phe Thr Ala Glr 445	Met Ile Thr	1344
	ATC ACA CCA CCT GA Ile Thr Pro Pro As 450	C CAA GAT GAC A p Gln Asp Asp S 455	GC ATG GAG TGT GTG er Met Glu Cys Val 460	GAC AGC GAG Asp Ser Glu	1392
50	CGC AGG CCC CAC TT Arg Arg Pro His Ph 465	C CCC CAG TTC TO e Pro Gln Phe Se 470	CC TAC TCG GCC AGC er Tyr Ser Ala Ser 475	AGC ACG GCC Ser Thr Ala 480	1440
55	TCG GAT CCA CCG GTG Ser Asp Pro Pro Va: 489	- wit Met As	G AGC AAG GGC GAG 1 Ser Lys Gly Glu 490		1488

5	-		GTG Val 500								1536
3	-		AGC Ser								1584
10			CTG Leu								1632
15		-	CTC Leu								1680
20			GAC Asp								1728
25			TAC Tyr 580								1776
			ACC Thr								1824
30			GAG Glu							_	1872
35			AAG Lys							_	1920
40			AAG Lys						_		1968
45			GAG Glu 660							_	2016
			ATC Ile								2064
50			CAG Gln								2112
55			CTG Leu								2160

158

ATG GAC GAG CTG TAC AAG TAA Met Asp Glu Leu Tyr Lys 2181 5 (2) INFORMATION FOR SEQ ID NO:71: (i) SEQUENCE CHARACTERISTICS: 10 (A) LENGTH: 726 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 15 (ii) MOLECULE TYPE: protein (v) FRAGMENT TYPE: internal (xi) SEQUENCE DESCRIPTION: SEQ ID NO:71: 20 Met Ser Asp Val Ala Ile Val Lys Glu Gly Trp Leu His Lys Arg Gly Glu Tyr Ile Lys Thr Trp Arg Pro Arg Tyr Phe Leu Leu Lys Asn Asp 25 Gly Thr Phe Ile Gly Tyr Lys Glu Arg Pro Gln Asp Val Asp Gln Arg 25 Glu Ala Pro Leu Asn Asn Phe Ser Val Ala Gln Cys Gln Leu Met Lys 55 Thr Glu Arg Pro Arg Pro Asn Thr Phe Ile Ile Arg Cys Leu Gln Trp Thr Thr Val Ile Glu Arg Thr Phe His Val Glu Thr Pro Glu Glu Arg 75 30 85 Glu Glu Trp Thr Thr Ala Ile Gln Thr Val Ala Asp Gly Leu Lys Lys 105 Gln Glu Glu Glu Met Asp Phe Arg Ser Gly Ser Pro Ser Asp Asn 35 120 Ser Gly Ala Glu Glu Met Glu Val Ser Leu Ala Lys Pro Lys His Arg 135 140 Val Thr Met Asn Glu Phe Glu Tyr Leu Lys Leu Leu Gly Lys Gly Thr 150 40 Phe Gly Lys Val Ile Leu Val Lys Glu Lys Ala Thr Gly Arg Tyr Tyr 165 170 Ala Met Lys Ile Leu Lys Lys Glu Val Ile Val Ala Lys Asp Glu Val 185 Ala His Thr Leu Thr Glu Asn Arg Val Leu Gln Asn Ser Arg His Pro 45 200 Phe Leu Thr Ala Leu Lys Tyr Ser Phe Gln Thr His Asp Arg Leu Cys 215 Phe Val Met Glu Tyr Ala Asn Gly Gly Glu Leu Phe Phe His Leu Ser 220 230 Arg Glu Arg Val Phe Ser Glu Asp Arg Ala Arg Phe Tyr Gly Ala Glu 50 250 Ile Val Ser Ala Leu Asp Tyr Leu His Ser Glu Lys Asn Val Val Tyr 265 Arg Asp Leu Lys Leu Glu Asn Leu Met Leu Asp Lys Asp Gly His Ile 55 280 Lys Ile Thr Asp Phe Gly Leu Cys Lys Glu Gly Ile Lys Asp Gly Ala

		290					205					200				
	Thr		Luc	Thr	Phe	Cvo	295	Th~	Dro	C1	Т	300	77.	Dana	a 1	T7- 7
	305	MCC	Буз	1111	FIIC	310	GIY	THE	PIO	GIU	315	Leu	Ald	PIO	GIU	320
		Glu	Asp	Asn	Asp		Glv	Δra	Δla	Val		Trn	Ттъ	Gly	T.em	
5					325	-/-	01,	9	niu	330	ASP	ııp	ııp	Gry	335	GIY
-	Val	Val	Met	Tyr	Glu	Met	Met	Cvs	Glv		Leu	Pro	Phe	Tvr		Gln
				340				- 2	345	5				350		
	Asp	His	Glu	Lys	Leu	Phe	Glu	Leu	Ile	Leu	Met	Glu	Glu		Arq	Phe
			355					360					365			
10	Pro	Arg	Thr	Leu	Gly	Pro	Glu	Ala	Lys	Ser	Leu	Leu	Ser	Gly	Leu	Leu
		370					375					380				
	Lys	Lys	Asp	Pro	Lys	Gln	Arg	Leu	Gly	Gly	Gly	Ser	Glu	Asp	Ala	Lys
	385					390					395			•		400
4.5	Glu	Ile	Met	Gln	His	Arg	Phe	Phe	Ala		Ile	Val	Trp	Gln	His	Val
15	_	-1	_	_	405	_	_	_		410	_				415	
	lyr	GIU	гÀг		Leu	ser	Pro	Pro		Lys	Pro	GIn	Val		Ser	Glu
	Th.	λαν	Th∽	420	Tyr	Dho	7 ~~	61.	425	Db =	mh	71 -	01	430	T1.	mb
	1111	мър	435	Arg	TYL	Pne	Asp	440	Giu	Pne	Inr	Ala	445	Met	TTE	Thr
20	Tle	Thr		Pro	Asp	Gln	Asn		Ser	Met	Glu	Cvs		Δen	Ser	Glu
		450					455	p	501		O1u	460	Vu.	nop	OCI	Olu
	Arg	Arg	Pro	His	Phe	Pro		Phe	Ser	Tyr	Ser		Ser	Ser	Thr	Ala
	465	_				470				-	475					480
	Ser	Asp	Pro	Pro	Val	Ala	Thr	Met	Val	Ser	Lys	Gly	Glu	Glu	Leu	Phe
25					485					490					495	
	Thr	Gly	Val		Pro	Ile	Leu	Val	Glu	Leu	Asp	Gly	Asp	Val	Asn	Gly
				500	_				505					510		
	His	Lys		Ser	Val	Ser	Gly		Gly	Glu	Gly	Asp		Thr	Tyr	Gly
30	T 1	T 011	515	T	T	Dh.	T1.	520	ml	m 1	~1	. .	525	5	**- 7	D
30	гуѕ	530	IIII	Leu	Lys	Pne	535	сув	inr	Thr	GIY		Leu	Pro	vai	Pro
	Trn		Thr	T.em	Val	Thr		Len	Thr	Tree	Glv	540	Gln	Cvc	Dhe	Car
	545					550	****	LCu	1111	LYL	555	Vai	GIII	Cys	FIIC	560
		Tyr	Pro	Asp	His		Lvs	Gln	His	Asp		Phe	Lvs	Ser	Ala	
35	_	•		•	565		•			570			-2-	-	575	
	Pro	Glu	Gly	Tyr	Val	Gln	Glu	Arg	Thr	Ile	Phe	Phe	Lys	Asp	Asp	Gly
				580					585					590		
	Asn	Tyr	Lys	Thr	Arg	Ala	Glu	Val	Lys	Phe	Glu	Gly	Asp	Thr	Leu	Val
			595					600					605			
40	Asn		Ile	Glu	Leu	Lys		Ile	Asp	Phe	Lys		Asp	Gly	Asn	Ile
	T	610	77.	T	•	a 1	615		_		_	620				
	625	GIY	HIS	ràs	Leu	630	Tyr	Asn	Tyr	Asn		His	Asn	Val	Tyr	
		Δla	Agn	Lazg	Gln		Aen	Gly	Tla	Lvc	635	Λαn	Dho	Tara	Tlo	640
45		ALU	тор	Ly S	645	Lys	A511	Gly	116	650	vaı	ASII	PHE	цуs	655	Arg
_	His	Asn	Ile	Glu	Asp	Glv	Ser	Val	Gln		Ala	Asp	His	Tvr		Gln
				660	-	-			665					670		
	Asn	Thr	Pro	Ile	Gly	Asp	Gly	Pro	Val	Leu	Leu	Pro	Asp	Asn	His	Tyr
			675					680					685			
50	Leu		Thr	Gln	Ser	Ala		Ser	Lys	Asp	Pro	Asn	Glu	Lys	Arg	Asp
		690		_	_		695			_		700	_			
		Met	val	Leu	Leu		Phe	Val	Thr	Ala		Gly	Ile	Thr	Leu	
	705 Met	V ~~~	G1	Len	Фъ	710					715					720
55	ec	Asp	GLU	ח∈u	Tyr 725	пув										

160

	160	
	(2) INFORMATION FOR SEQ ID NO:72:	
5	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2751 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
10	(ii) MOLECULE TYPE: cDNA (ix) FEATURE:	
15	 (A) NAME/KEY: Coding Sequence (B) LOCATION: 12748 (D) OTHER INFORMATION: (xi) SEQUENCE DESCRIPTION: SEQ ID NO:72: 	
20	ATG GCT GAC GTT TAC CCG GCC AAC GAC TCC ACG GCG TCT CAG GAC GTG Met Ala Asp Val Tyr Pro Ala Asn Asp Ser Thr Ala Ser Gln Asp Val 1 5 10 15	48
25	GCC AAC CGC TTC GCC CGC AAA GGG GCG CTG AGG CAG AAG AAC GTG CAT Ala Asn Arg Phe Ala Arg Lys Gly Ala Leu Arg Gln Lys Asn Val His 20 25 30	96
	GAG GTG AAA GAC CAC AAA TTC ATC GCC CGC TTC TTC AAG CAA CCC ACC Glu Val Lys Asp His Lys Phe Ile Ala Arg Phe Phe Lys Gln Pro Thr 35 40 45	144
30	TTC TGC AGC CAC TGC ACC GAC TTC ATC TGG GGG TTT GGG AAA CAA GGC Phe Cys Ser His Cys Thr Asp Phe Ile Trp Gly Phe Gly Lys Gln Gly 50 55 60	192
35	TTC CAG TGC CAA GTT TGC TGT TTT GTG GTT CAT AAG AGG TGC CAT GAG Phe Gln Cys Gln Val Cys Cys Phe Val Val His Lys Arg Cys His Glu 70 75 80	240
40	TTC GTT ACG TTC TCT TGT CCG GGT GCG GAT AAG GGA CCT GAC ACT GAC Phe Val Thr Phe Ser Cys Pro Gly Ala Asp Lys Gly Pro Asp Thr Asp 85 90 95	288
45	GAC CCC AGG AGC AAG CAC AAG TTC AAA ATC CAC ACA TAC GGA AGC CCT Asp Pro Arg Ser Lys His Lys Phe Lys Ile His Thr Tyr Gly Ser Pro 100 105 110	336
	ACC TTC TGT GAT CAC TGT GGG TCC CTG CTC TAT GGA CTT ATC CAC CAA Thr Phe Cys Asp His Cys Gly Ser Leu Leu Tyr Gly Leu Ile His Gln 115 120 125	384
50	GGG ATG AAA TGT GAC ACC TGC GAC ATG AAT GTT CAC AAC CAG TGT GTG Gly Met Lys Cys Asp Thr Cys Asp Met Asn Val His Asn Gln Cys Val 130 135 140	432

160

480

160

ATC AAT GAC CCT AGC CTC TGC GGA ATG GAT CAC ACA GAG AAG AGG GGG Ile Asn Asp Pro Ser Leu Cys Gly Met Asp His Thr Glu Lys Arg Gly

155

	999	* mm	m » m	ama		00m	~~~	ama		a. m			ama		ama		
					AAG Lys 165												528
5																	
	GTA	CGA	GAT	GCA	AAA	AAT	CTA	ATC	CCT	ATG	GAT	CCA	AAT	GGG	CTT	TCG	576
	Val	Arg	Asp	Ala 180	Lys	Asn	Leu	Ile	Pro 185	Met	Asp	Pro	Asn	Gly 190	Leu	Ser	
10	GAT	CCT	TAT	GTG	AAG	CTG	AAA	CTA	ATC	CCT	GAC	CCC	AAG	AAT	GAG	AGC	624
	Asp	Pro	Tyr 195	Val	Lys	Leu	Lys	Leu 200	Ile	Pro	Asp	Pro	Lys 205	Asn	Glu	Ser	
	AAA	CAG	AAA	ACC	AAA	ACC	ATC	CGC	TCC	AAC	CTG	AAT	CCT	CAG	TGG	AAT	672
15	Lys	Gln 210	Lys	Thr	Lys	Thr	Ile 215	Arg	Ser	Asn	Leu	Asn 220	Pro	Gln	Trp	Asn	
	GAG	TCC	TTC	ACG	TTC	AAA	TTA	AAA	CCT	TCA	GAC	AAA	GAC	CGG	CGA	CTG	720
	Glu	Ser	Phe	Thr	Phe	Lys	Leu	Lys	Pro	Ser	Asp	Lys	Asp	Arg	Arg	Leu	
20	225	GM3	<i>a</i>	 .	maa	230					235			a. a	mma	240	7.50
					TGG Trp												768
	Ser	vai	GIU	116	245	Mah	тър	Asp	Arg	250	1111	Arg	MSII	АБР	255	Mec	
25																	
	GGA	TCC	CTT	TCC	TTT	GGT	GTC	TCA	GAG	CTA	ATG	AAG	ATG	CCG	GCC	AGT	816
	Gly	Ser	Leu	Ser	Phe	Gly	Val	Ser	Glu	Leu	Met	Lys	Met	Pro	Ala	Ser	
				260					265					270			
30	GGA	TGG	тат	מממ	GCT	CAC	ልልሮ	ממי	GDD	GNG	GGC	GDD	ייימיי	ጥልሮ	ממכ	GTG	864
-					Ala												001
	•	-	275	•				280			2		285				
		_		_	GGA										_		912
35	Pro		Pro	Glu	Gly	Asp		Glu	Gly	Asn	Met		Leu	Arg	Gln	Lys	
		290					295					300					
	TTT	GAG	AAA	GCC	AAG	CTA	GGT	CCT	GTT	GGT	AAC	AAA	GTC	ATC	AGC	CCT	960
	Phe	Glu	Lys	Ala	Lys	Leu	Gly	Pro	Val	Gly	Asn	Lys	Val	Ile	Ser	Pro	
40	305					310					315					320	
	TCA	CAA	GNC	אכא	AAG	ריא א	CCX	TCC	770	מממ	CTC	CAC	אכא	CTC	מממ	CTC	1008
					Lys												1008
	001				325	01	110	001	7.511	330	пси	пор	9	vuz	335	Dea	
45																	
	ACA	GAC	TTC	AAC	TTC	CTC	ATG	GTG	CTG	GGG	AAG	GGG	AGT	TTT	GGG	AAG	1056
	Thr	Asp	Phe		Phe	Leu	Met	Val		Gly	Lys	Gly	Ser		Gly	Lys	
				340					345					350			
50	GTG	ATG	CTT	GCT	GAC	AGG	AAG	GGA	ACG	GAG	GAA	CTG	TAC	GCC	ATC	AAG	1104
					Asp												
			355		-	_	-	360		-			365			-	
EE	•				GAC												1152
55	ile		гуз	тÀг	Asp	vaı		тте	GIn	Asp	Asp	_	val	Glu	Cys	Inr	
		370					375					380					

	AT Me	'G G'	TG G	AG A lu L	AG C	GC G	TG C	TG (3CC	СТ	G CI	rg g	AC	AAG	ccc	G CC	'АТ	тт	CTG	1200
5	38	5				3	90	cu ,	41 d	Let	ם נו	u A	sp 95	Lys	Pro	Pr	O P.	he	Leu 400	1200
	AC. Th	A CA	AG C	rg ca eu H:	AC TO		GC T ys P	TC C	CAG Sln	ACA Thi	4 GI Va 41	I A	AC (CGG Arg	CTG	та Ту	C T	1e	GTC Val	1248
10	AT0 Met	G GA t Gl	LA TA	AC GI Vr Va 42		AC G(in G)	GC GC	EG G	AT sp	CTI Leu 425	Me	G TA	AC (CAC His	ATT Ile	CAG Gl:	n Gl	A.n	GTC Val	1296
15		•	43				O GI	4	40	vaı	Phe	е Ту	m A	la	Ala 445	Glı	ıIl	e	Ser	1344
20		45	ō	G TT u Ph			45	5 5	ув .	Arg	GI	, 11	e I 4	le ' 60	Tyr	Arg	As	р 1	Leu	1392
25	465			C AA' n Ası	- ,	47	0	u As	5 11 ;	ser	GIU	47	у Н. 5	is 1	Ile	ГÀЗ	Ile	e 1 4	Ala 180	1440
	-		-	3 ATO	485	, <u>.</u> .,	3 616	, UI	. S P	чес	Met 490	Ası	o G	ly V	/al	Thr	Th:	· A	lrg	1488
30	ACC Thr	TTC	TGC Cys	GGA Gly 500		Pro	GAC Asp	С ТА Э Ту	T I	TT le	GCC Ala	CCA	A GA	AG A	le	ATC Ile 510	GCT Ala	T	AC Yr	1536
35	CAG Gln	CCG Pro	TAC Tyr 515	GGG	AAG Lys	TCT Ser	GTA Val	GA As _] 52	b 1	GG 'rp '	TGG Trp	GCG Ala	TA Ty	r G	GT (ly \ 25	GTG Val	CTG Leu	r C	TG eu	1584
40	TAC Tyr	GAG Glu 530	ATG Met	CTA Leu	GCC Ala	GGG Gly	CAG Gln 535	CC.	r c	CG '	TTT Phe	GAT Asp	GG G1 54	у G	AA C lu <i>A</i>	AT Asp	GAA Glu	Gi A:	AT sp	1632
45	GAA Glu 545				-	550	Mec	GIL	ı H.	ıs A	Asn	Val 555	Se	r Tj	/r P	ro .	Lys	Se 56	er 50	1680
	TTG		-		565	,	SCI	116	. C }	/s I 5	ys 70	GГÀ	Let	ı M∈	t T	hr i	Lys 575	Gl	.n	1728
50	CCT (-	580			Cys	сту	58	15	ıu (GLY	Glu	ı Ar	g A: 5:	sp V 90	/al	Ar	g	1776
55	GAG C	CAT lis	GCC Ala 595	TTC Phe	TTC Phe	AGG Arg	AGG Arg	ATC Ile 600	GA As	CT PT	GG (GAG Glu	AAA Lys	CT Le	u G	AG A	AAC Asn	AG Ar	a G	1824

5				CCC Pro							1872
J				CGA Arg							1920
10				ATA Ile							1968
15				GTG Val			_		_		2016
20				GAA Glu 680				_	_		2064
25				GAT Asp		_		_		_	2112
				GCA Ala							2160
30				CTA Leu						_	2208
35				CAA Gln							2256
40				AAG Lys 760							2304
45				AAA Lys							2352
				GAT Asp							2400
50				GAT Asp				_			2448
55				AAT Asn							2496

5	AAG Lys	AAT Asn	GGC Gly 835	ATC Ile	AAA Lys	GTT Val	AAC Asn	TTC Phe 840	ьуз	ATT	AG Ar	A C	is A	AAC . Asn :	ATT Ile	AAA Lys	GAT Asp	2544
	GGA Gly	AGC Ser 850	GTT Val	CAA Gln	TTA Leu	GCA Ala	GAC Asp 855	CAT His	TAT	CAA Gln	CA Gli	n As	AT A sn T	CT (CCA Pro	ATT Ile	GGC Gly	2592
10	GAT Asp 865	GGC Gly	CCT Pro	GTC Val	CTT Leu	TTA Leu 870	CCA Pro	GAC Asp	AAC Asn	CAT His	TAC Tyr 875	r Le	rg T eu S	CC F er 1	CG hr	CAA Gln	TCT Ser 880	2640
15	GCC Ala	CTT Leu	TCC . Ser :	4 -	GAT Asp 885	CCC Pro	AAC Asn	GAA Glu	AAG Lys	AGA Arg 890	GAT Asp	CA Hi	AC A'	TG A et I	le :	CTT Leu 895	CTT Leu	2688
20	GAG Glu	TTT Phe	GTA Z Val :	ACA Thr 900	GCT Ala	GCT Ala	GGG Gly	ATT Ile	ACA Thr 905	CAT His	GGC Gly	AT Me	G GA	sp G	AA (lu I 10	CTA Leu	TAC Tyr	2736
25	AAA Lys	CCT (Pro (CAG (Gln (BAG '	ΓΑΑ													2751
30		((2) SEQ A) L B) T C) S	UENC ENGT YPE:	E CH H: 9	916 a .no a	TERI	STIC	cs:	NO : 7	3:							
35		(ii	D) To) MO: FRAG	OPOL LECU	OGY: LE T	lin YPE:	ear pro	tein	1									
		(xi) SE(QUEN	CE D	ESCR:	IPTI	ON:	SEO	א תד	ī 0 . 7	٠.						
40	Met A	la As	sp Va	al Ty	yr Pi	ro A	la A	sn A	sp S	er T	hr i	Ala						
	Ala A	sn Aı	rg Ph	ie Al	la A	rg Ly	/s G	ly A	la L	eu A	rg (Gln	Lys	Ası	ı Va) 1 н	is	
	Glu V																	
45	Phe C	35	; 17.2	_ ~			4()	-u A	-y P	ne i	rne	ьуs 45	Glr	ı Pr	O T	hr	
	Phe Cy)	T HI	s cy	's Tr	ır As 55	p Ph	ne I	le T	rp G	ly I	Phe	Gly	Lys	Gl	n G	ly	
	Phe G	ln Cy	s Gl	n Va	.1 Cy	s Cy	s Ph	e Va	al Va	al H	is I	ys	Arg	Cys	Hi	s G]	lu	
50	Phe Va	al Th	r Ph	e Se	r Cy	s Pr	o Gl	y Al	la As	79 p Ly	5 ys G	ilv	Pro	Asn	Th	80 r 70) :D	
	Asp Pr	o Ar	g Se:	85 r Ly	s Hi	s Ly	s Ph	e I.v.	90 75 T1) 	ia m	'h∽	т	p	95	- A:	٠,٢	
	Thr Ph	ie Cv	100	0 0 # 1	e ^-		- ••	10	5	- ni	ro I	111,	ıyr	110	Se:	r Pr	0	
55	Thr Ph	11.	5	- ui	ь су	s GI	y Se 12	r Le O	u Le	u Ty	r G	ly	Leu 125	Ile	His	s Gl	n	
	Gly Me	t Ly	s Cys	s As _l	p Th	r Cy	s As	р Ме	t As	n Va	l H	is .	Asn	Gln	Суя	s Va	1	

										,00						
		130					135					140				
	Ile	Asn	Asp	Pro	Ser	Leu	Cys	Gly	Met	Asp	His	Thr	Glu	Lys	Arg	Gly
	145		_			150	-	_		•	155			_	-	160
	Arg	Ile	Tyr	Leu	Lys	Ala	Glu	Val	Thr	qaA	Glu	Lys	Leu	His	Val	Thr
5					165					170					175	
	Val	Arg	Asp	Ala	Lys	Asn	Leu	Ile	Pro	Met	Asp	Pro	Asn	Gly	Leu	Ser
				180					185					190		
	qaA	Pro	Tyr	Val	Lys	Leu	Lys	Leu	Ile	Pro	Asp	${\tt Pro}$	Lys	Asn	Glu	Ser
			195					200					205			
10	Lys	Gln	Lys	Thr	Lys	Thr	Ile	Arg	Ser	Asn	Leu	Asn	Pro	Gln	Trp	Asn
		210					215					220				
	Glu	Ser	Phe	Thr	Phe	_	Leu	Lys	Pro	Ser	_	Lys	Asp	Arg	Arg	
	225					230					235					240
	Ser	Val	Glu	Ile	-	Asp	Trp	Asp	Arg		Thr	Arg	Asn	Asp		Met
15		_	_	_	245		-			250		_		_	255	_
	GIA	Ser	Leu		Phe	Gly	Val	ser		Leu	Met	Lys	Met	Pro	Ala	ser
	01	m	m	260	27-	774 -	7	a 1	265	a 1	01	01	m	270	7	17- 1
	GIY	Trp	_	ьуѕ	AIA	HIS	Asn		GIU	GIU	GIY	GIU	_	Tyr	Asn	vai
20	n	710	275	C1	C1.,	700	C1	280	C1	7.00	Mot	C1	285	X ~~~	Cln.	Tira
20	PIO	290	PIO	Giu	GIY	Asp	295	GIU	Gry	ASII	Mec	300	Leu	Arg	GIII	ьуѕ
	Dhe		Lva	- ר ה	Lare	Len		Dro	V=1	Glv	λen	_	V= l	Ile	Ser	Pro
	305	Giu	Буз	AIG	БуБ	310	Gry	FIO	vai	Gry	315	Llys	vai	116	JCI	320
		Glu	Asp	Ara	Lvs		Pro	Ser	Agn	Asn		Asp	Ara	Val	Lvs	
25					325					330			5		335	
	Thr	αsA	Phe	Asn		Leu	Met	Val	Leu		Lys	Gly	Ser	Phe		Lys
				340					345	•	-	•		350	•	•
	Val	Met	Leu	Ala	Asp	Arg	Lys	Gly	Thr	Glu	Glu	Leu	Tyr	Ala	Ile	Lys
			355		_	_	_	360					365			
30	Ile	Leu	Lys	Lys	Asp	Val	Val	Ile	Gln	Asp	Asp	Asp	Val	Glu	Cys	Thr
		370					375					380				
	Met	Val	Glu	Lys	Arg	Val	Leu	Ala	Leu	Leu	Asp	Lys	Pro	Pro	Phe	Leu
	385					390					395					400
	Thr	Gln	Leu	His		Cys	Phe	Gln	Thr		Asp	Arg	Leu	Tyr		Val
35			_	_	405		•		_	410					415	
	Met	Glu	Tyr		Asn	Gly	Gly	Asp		Met	Tyr.	His	Ile	Gln	Gln	Val
	~1	•	n1	420	a 3	D	a1-	-1-	425	-1	_			430	-1 -	
	GIY	гÀг		гув	GIU	Pro	GIn		vaı	Pne	Tyr	Ala		Glu	me	ser
40	T7.0	C114	435	Dho	Dho	Ι	1114.0	440	7~~	a1	T10	т1.	445	Arg	N am	T ON
40	116	450	Leu	Pne	Pne	ren	455	rys	Arg	GIÀ	116	460	Tyr	Arg	Asp	Leu
	Lave		λen	Agn	Val	Met		Δen	Ser	Glu	Glv		Tle	Lys	Tle	Δla
	465	пец	Hall	ven	vai	470	пси	VOII	Ser	GIU	475	1115	116	цуз	110	480
		Phe	Glv	Met	Cvs		Glu	His	Met	Met		Glv	Val	Thr	Thr	
45	···		027		485	-7-				490		- 1			495	5
	Thr	Phe	Cys	Glv		Pro	asp	Tyr	Ile		Pro	Glu	Ile	Ile		Tyr
			1	500			-	•	505					510		
	Gln	Pro	Tyr	Gly	Lys	Ser	Val	Asp	Trp	Trp	Ala	Tyr	Gly	Val	Leu	Leu
			515	_	_			520	_	_		-	525			
50	Tyr	Glu	Met	Leu	Ala	Gly	Gln	Pro	Pro	Phe	Asp	Gly	Glu	Asp	Glu	Asp
		530					535					540				
		Leu	Phe	Gln	Ser	Ile	Met	Glu	His	Asn	Val	Ser	Tyr	Pro	Lys	
	545					550					555					560
	Leu	Ser	Lys	Glu		Val	Ser	Ile	Cys		Gly	Leu	Met	Thr		Gln
55	Δ				565		_		_	570					575	
	Pro	Ala	гуѕ	Arg	Leu	GIA	Cys	GLY	Pro	Glu	GIY	GLu	Arg	Asp	val	arg

```
580
                                     585
       Glu His Ala Phe Phe Arg Arg Ile Asp Trp Glu Lys Leu Glu Asn Arg
                          600
      Glu Ile Gln Pro Pro Phe Lys Pro Lys Val Cys Gly Lys Gly Ala Glu
  5
                              615
                                                620
      Asn Phe Asp Lys Phe Phe Thr Arg Gly Gln Pro Val Leu Thr Pro Pro
                         630
                                             635
      Asp Gln Leu Val Ile Ala Asn Ile Asp Gln Ser Asp Phe Glu Gly Phe
                     645
                                         650
      Ser Tyr Val Asn Pro Gln Phe Val His Pro Ile Leu Gln Ser Ala Val
 10
                                      665
      Gly Arg Ala Met Ser Lys Gly Glu Glu Leu Phe Thr Gly Val Val Pro
                                 680
                                                    685
      Ile Leu Val Glu Leu Asp Gly Asp Val Asn Gly Gln Lys Phe Ser Val
15
                            695
                                                 700
      Ser Gly Glu Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr Leu Lys
                       710
                                          715
      Phe Ile Cys Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr Leu Val
                                        730
      Thr Thr Leu Thr Tyr Gly Val Gln Cys Phe Ser Arg Tyr Pro Asp His
20
                  740
                                    745
      Met Lys Gln His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly Tyr Val
                         760
      Gln Glu Arg Thr Ile Phe Tyr Lys Asp Asp Gly Asn Tyr Lys Thr Arg
25
                             775
                                                 780
      Ala Glu Val Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile Glu Leu
                         790
                                             795
      Lys Gly Ile Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His Lys Met
                     805
                                         810
      Glu Tyr Asn Tyr Asn Ser His Asn Val Tyr Ile Met Ala Asp Lys Pro
30
                 820
                                    825
      Lys Asn Gly Ile Lys Val Asn Phe Lys Ile Arg His Asn Ile Lys Asp
                                840
      Gly Ser Val Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro Ile Gly
35
                             855
                                               860
      Asp Gly Pro Val Leu Leu Pro Asp Asn His Tyr Leu Ser Thr Gln Ser
                      870
                                           875
      Ala Leu Ser Lys Asp Pro Asn Glu Lys Arg Asp His Met Ile Leu Leu
                    885
                                        890
     Glu Phe Val Thr Ala Ala Gly Ile Thr His Gly Met Asp Glu Leu Tyr
40
                 900
                                                        910
     Lys Pro Gln Glu
            915
45
              (2) INFORMATION FOR SEQ ID NO:74:
           (i) SEQUENCE CHARACTERISTICS:
             (A) LENGTH: 2157 base pairs
             (B) TYPE: nucleic acid
50
             (C) STRANDEDNESS: single
             (D) TOPOLOGY: linear
           (ii) MOLECULE TYPE: cDNA
```

(A) NAME/KEY: Coding Sequence

(ix) FEATURE:

167

(B) LOCATION: 1...2154(D) OTHER INFORMATION:

(xi) SEOUENCE DESCRIPTION: SEO ID NO:74:

5		()	ci) S	EQUI	ENCE	DESC	CRIP	CION:	SEC) ID	NO:	74:					
	ATG	TCG	TCC	ATC	TTG	CCA	TTC	ACG	CCG	CCA	GTT	GTG	AAG	AGA	CTG	CTG	48
	Met	Ser	Ser	Ile	Leu	Pro	Phe	Thr	Pro	Pro	Val	Val	Lys	Arg	Leu	Leu	
	1				5					10					15		
10					TCA												96
	Gly	Trp	Lys	-	Ser	Ala	Gly	Gly		Gly	Gly	Ala	Gly	-	Gly	Glu	
				20					25					30			
	CNG	ידי אי א	ccc	CNG	GAA	G N N	አአር	TCC	יייטייי	CAC	***	CCA	GTG	מממ	א כיייי	CTC	144
15				_	Glu	_											144
			35				_, _	40	0,0		_,_		45	/ -		200	
	GTG	AAG	AAG	CTA	AAG	AAA	ACA	GGA	CGA	TTA	GAT	GAG	CTT	GAG	AAA	GCC	192
	Val	Lys	Lys	Leu	Lys	Lys	Thr	Gly	Arg	Leu	qaA	Glu	Leu	Glu	Lys	Ala	
20		50					55					60					
	አጥሮ	אככ	A CT	Chh	AAC	TOT	እ አጥ	A CIT	***	TOT	Cmm	N.C.C	מידי מ	CCN	n.c.c	א כייני	240
					Asn												240
	65					70			_,,	-ys	75					80	
25																	
	TGC	TCT	GAA	ATT	TGG	GGA	CTG	AGT	ACA	CCA	AAT	ACG	ATA	GAT	CAG	TGG	288
	Cys	Ser	Glu	Ile	Trp	Gly	Leu	Ser	Thr	Pro	Asn	Thr	Ile	Asp	Gln	Trp	
					85					90					95		
30	0 B III	202	202	000	Omm.	m	300	mma	mam	<i>-</i>	<i>-</i>	3.00	3.00	mam	amm	anm.	226
30					CTT Leu												336
	p			100	200	- 1 -			105	Ozu	0111		9	110	200	7102	
	GGT	CGT	CTC	CAG	GTA	TCC	CAT	CGA	AAA	GGA	TTG	CCA	CAT	GTT	ATA	TAT	384
35	Gly	Arg	Leu	Gln	Val	Ser	His	Arg	Lys	Gly	Leu	Pro	His	Val	Ile	Tyr	
			115					120					125				
	maa	007	mma	maa	~~~	maa	00m	G 3 m	omm	~~~	3 cm	~~~	~~~	C.D.D	ama	220	433
					CGC Arg												432
40	Cys	130	Deu	115	Arg	11p	135	rop	Deu	1112	361	140	1115	Giu	пси	БуЗ	
	GCA	ATT	GAA	AAC	TGC	GAA	TAT	GCT	TTT	AAT	CTT	AAA	AAG	GAT	GAA	GTA	480
	Ala	Ile	Glu	Asn	Cys	Glu	Tyr	Ala	Phe	Asn	Leu	Lys	Lys	Asp	Glu	Val	
	145					150					155					160	
45	mam	am.			m> c	a. a										oom	
		_			TAC			_						_			528
	Суз	vai	ASII	FIO	Tyr 165	nis	ıyı	GIII	Arg	170	GIU	THIL	PIO	vai	175	PIO	
50	CCA	GTA	TTA	GTG	CCC	CGA	CAC	ACC	GAG	ATC	CTA	ACA	GAA	CTT	CCG	CCT	576
	Pro	Val	Leu	Val	Pro	Arg	His	Thr	Glu	Ile	Leu	Thr	Glu	Leu	Pro	Pro	
				180					185					190			
	ama	~~~	~~~	m > m	3.00	a. -	mee	* c	005					mer e		001	
55					ACT Thr						_						624
55	Jeu	νοħ	195	- y -	1111	1113	SET	200	F10	GIU	voii	TILL	205	FIIC	FIO	N10	

5	GGA ATT GAG CCA CAG AGT AAT TAT ATT CCA GAA ACG CCA CCT CCT GGA Gly Ile Glu Pro Gln Ser Asn Tyr Ile Pro Glu Thr Pro Pro Pro Gly 210 215 220	672
	TAT ATC AGT GAA GAT GGA GAA ACA AGT GAC CAA CAG TTG AAT CAA AGT Tyr Ile Ser Glu Asp Gly Glu Thr Ser Asp Gln Gln Leu Asn Gln Ser 230 235 240	720
10	ATG GAC ACA GGC TCT CCA GCA GAA CTA TCT CCT ACT ACT CTT TCC CCT Met Asp Thr Gly Ser Pro Ala Glu Leu Ser Pro Thr Thr Leu Ser Pro 245 250 255	768
15	GTT AAT CAT AGC TTG GAT TTA CAG CCA GTT ACT TAC TCA GAA CCT GCA Val Asn His Ser Leu Asp Leu Gln Pro Val Thr Tyr Ser Glu Pro Ala 260 265 270	816
20	TTT TGG TGT TCA ATA GCA TAT TAT GAA TTA AAT CAG AGG GTT GGA GAA Phe Trp Cys Ser Ile Ala Tyr Tyr Glu Leu Asn Gln Arg Val Gly Glu 275 280 285	864
25	ACC TTC CAT GCA TCA CAG CCC TCA CTC ACT GTA GAT GGC TTT ACA GAC Thr Phe His Ala Ser Gln Pro Ser Leu Thr Val Asp Gly Phe Thr Asp 290 295 300	912
	CCA TCA AAT TCA GAG AGG TTC TGC TTA GGT TTA CTC TCC AAT GTT AAC Pro Ser Asn Ser Glu Arg Phe Cys Leu Gly Leu Leu Ser Asn Val Asn 305 310 315	960
30	CGA AAT GCC ACG GTA GAA ATG ACA AGA AGG CAT ATA GGA AGA GGA GTG Arg Asn Ala Thr Val Glu Met Thr Arg Arg His Ile Gly Arg Gly Val 325 330 335	1008
35	CGC TTA TAC TAC ATA GGT GGG GAA GTT TTT GCT GAG TGC CTA AGT GAT Arg Leu Tyr Tyr Ile Gly Gly Glu Val Phe Ala Glu Cys Leu Ser Asp 340 345 350	1056
40	AGT GCA ATC TTT GTG CAG AGC CCC AAT TGT AAT CAG AGA TAT GGC TGG Ser Ala Ile Phe Val Gln Ser Pro Asn Cys Asn Gln Arg Tyr Gly Trp 355 360 365	1104
45	370 375 Pro Pro Gly Cys Asn Leu Lys Ile	1152
	385 390 Leu Leu Ala Gln Ser Val Asn Gln 395 400	1200
50	GGT TTT GAA GCC GTC TAT CAG CTA ACT AGA ATG TGC ACC ATA AGA ATG Gly Phe Glu Ala Val Tyr Gln Leu Thr Arg Met Cys Thr Ile Arg Met 405 410 415	1248
55	AGT TTT GTG AAA GGG TGG GGA GCA GAA TAC CGA AGG CAG ACG GTA ACA Ser Phe Val Lys Gly Trp Gly Ala Glu Tyr Arg Arg Gln Thr Val Thr 420 425 430	296
		100

															CAG		1344
5	Ser	Thr	Pro 435	Cys	Trp	Ile	Glu	Leu 440	His	Leu	Asn	Gly	Pro 445	Leu	Gln	Trp	
				_											TGC Cys		1392
10															ACC Thr		1440
15	_			_	_	_									CTG Leu 495		1488
20															GGC Gly		1536
25	_		_												ATC Ile		1584
															ACC Thr		1632
30															AAG Lys		1680
35															GAG Glu 575		1728
40		_													GAG Glu		1776
45															GGC Gly		1824
45															TAC Tyr		1872
50															AAC Asn		1920
55															AGC Ser 655		1968

5					66	0		7.	GIII	GI.	n As	sn 1 55	hr I	Pro	Ile	Gl	y A 6	sp G 70	ly	CCC Pro	2016
	V:	al I	Jeu Jeu	Leu 675	Pr	C G	AC A sp A	AC sn	CAC His	TA:	L Le	rg A eu S	GC A er 1	CC hr	CAG Gln	TC Se:	r A.	CC C la L	TG eu	AGC Ser	2064
10	A <i>l</i> Ly	AA C	SAC Isp S90	CCC Pro	AA As	C GI	AG A	, 5	CGC Arg 695	GAT Asp	CA Hi	CA'	rg g et V	al l	CTG Leu 700	CT(Let	G GA	AG T	TC he	GTG Val	2112
15	AC Th 70		CC la	GCC Ala	GG(G AT	C 1,	CT (nr 1 10	CTC Leu	GGC Gly	AT Me	G GA	sp G	AG (lu I 15	TG eu	ТАС Туг	AA Ly	GT) 's	A.A		2157
20			(i)	SE	QUE	ifor Ence	CHA	RAC	TER	IST	ICS		75	:							
25			,	(A) (B) (C)	LEN TYP STR	GTH E: AND OLO	: 71 amin EDNE	.8 a .0 a .SS:	min cid si	o a	cid	5									
30			(V)	FR	AGM	CULI ENT	TYP	E:	inte	erna	al										
	Met													:75							
22																		Lei 15 Gly			
35																		Ser			
								Th	ır G									Lys			
40													Va:					Ser			
							Gly											Gln		r p	
45												Glu						95 Leu			
	Gly									rg]	Lys					s '					
50	Cys															s (
50	Ala 145													Ly	з Ьу						
	Суз	Val	As	n P	ro '	Tyr 165	His	Ту	r Gl	n A	Arg	Val 170	Glu	Thi	Pr	7 0	/al	Leu	16 Pr	0	
55	Pro										lu	Ile									
	Leu	Asp	As	рΤ	r'	Fhr	His	Ser	: 11	e F	ro	Glu	Asn	Thr	As	u E	.90 he	Pro	Al	a	

										171						
			195					200					205			
	Gly	Ile 210	Glu	Pro	Gln	Ser	Asn 215	Tyr	Ile	Pro	Glu	Thr 220	Pro	Pro	Pro	Gly
5	Tyr 225	Ile	Ser	Glu	Asp	Gly 230		Thr	Ser	Asp	Gln 235		Leu	Asn	Gln	Ser 240
		Asp	Thr	Gly	Ser 245		Ala	Glu	Leu	Ser 250		Thr	Thr	Leu	Ser 255	
	Val	Asn	His	Ser 260	_	Asp	Leu	Gln	Pro 265		Thr	Tyr	Ser	Glu 270		Ala
10	Phe	Trp	Cys 275		Ile	Ala	Tyr	Tyr 280		Leu	Asn	Gln	Arg 285		Gly	Glu
	Thr	Phe 290	His	Ala	Ser	Gln	Pro 295	Ser	Leu	Thr	Val	Asp 300	Gly	Phe	Thr	Asp
15	Pro 305	Ser	Asn	Ser	Glu	Arg 310	Phe	Сув	Leu	Gly	Leu 315	Leu	Ser	Asn	Val	Asn 320
	Arg	Asn	Ala	Thr	Val 325	Glu	Met	Thr	Arg	Arg 330	His	Ile	Gly	Arg	Gly 335	Val
	Arg	Leu	Tyr	Tyr 340	Ile	Gly	Gly	Glu	Val 345	Phe	Ala	Glu	Cys	Leu 350	Ser	Asp
20	Ser	Ala	Ile 355	Phe	Val	Gln	Ser	Pro 360	Asn	Cys	Asn	Gln	Arg 365	Tyr	Gly	Trp
		Pro 370				_	375				-	380			-	
25	385	Asn				390					395					400
		Phe			405					410					415	
		Phe		420					425					430		
30		Thr	435	_	_			440				_	445			_
		Asp 450					455					460				
35	465	Met		_		470	_		_	_	475					480
		Ser			485					490					495	
40		Leu		500					505	_				510		
40		Glu	515				_	520	_				525			_
		Thr					535					540				
45	545	Tyr				550				-	555	_			_	560
		Asp Ile			565					570					575	
50		Phe		580					585		-		_	590		
		Phe	595					600					605			
		610 Asn					615					620				
55	625					630					635	-1-		-1-		640
	Ile	Lys	Val	Asn	Phe		Ile	Arg	His	Asn		Glu	Asp	Gly	Ser	

172 650 Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro Ile Gly Asp Gly Pro 665 Val Leu Leu Pro Asp Asn His Tyr Leu Ser Thr Gln Ser Ala Leu Ser 5 680 Lys Asp Pro Asn Glu Lys Arg Asp His Met Val Leu Leu Glu Phe Val 695 700 Thr Ala Ala Gly Ile Thr Leu Gly Met Asp Glu Leu Tyr Lys 710 10 (2) INFORMATION FOR SEQ ID NO:76: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2397 base pairs 15 (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA 20 (ix) FEATURE: (A) NAME/KEY: Coding Sequence (B) LOCATION: 1...2394 (D) OTHER INFORMATION: 25 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:76: ATG GAC AAT ATG TCT ATT ACG AAT ACA CCA ACA AGT AAT GAT GCC TGT Met Asp Asn Met Ser Ile Thr Asn Thr Pro Thr Ser Asn Asp Ala Cys 48 30 10 CTG AGC ATT GTG CAT AGT TTG ATG TGC CAT AGA CAA GGT GGA GAG AGT Leu Ser Ile Val His Ser Leu Met Cys His Arg Gln Gly Glu Ser 96 25 35 GAA ACA TTT GCA AAA AGA GCA ATT GAA AGT TTG GTA AAG AAG CTG AAG Glu Thr Phe Ala Lys Arg Ala Ile Glu Ser Leu Val Lys Lys Leu Lys 144 40 GAG AAA AAA GAT GAA TTG GAT TCT TTA ATA ACA GCT ATA ACT ACA AAT 40 Glu Lys Lys Asp Glu Leu Asp Ser Leu Ile Thr Ala Ile Thr Thr Asn 192 GGA GCT CAT CCT AGT AAA TGT GTT ACC ATA CAG AGA ACA TTG GAT GGG Gly Ala His Pro Ser Lys Cys Val Thr Ile Gln Arg Thr Leu Asp Gly 45 240 AGG CTT CAG GTG GCT GGT CGG AAA GGA TTT CCT CAT GTG ATC TAT GCC Arg Leu Gln Val Ala Gly Arg Lys Gly Phe Pro His Val Ile Tyr Ala 288

172

384

CGT CTC TGG AGG TGG CCT GAT CTT CAC AAA AAT GAA CTA AAA CAT GTT Arg Leu Trp Arg Trp Pro Asp Leu His Lys Asn Glu Leu Lys His Val 105

AAA TAT TGT CAG TAT GCG TTT GAC TTA AAA TGT GAT AGT GTC TGT GTG

90

50

										173								
	Lys	Tyr	Cys 115	Gln	Tyr	Ala	Phe	Asp 120	Leu	Lys	Cys	Asp	Ser 125	Val	Cys	Val		
5					TAC Tyr												432	
10					CAG Gln									_			480	
15					GAC Asp 165										_	_	528	
15					ACC Thr									_			576	
20					ACC Thr												624	
25					AAC Asn											_	672	
30					CTG Leu											_	720	
					CAG Gln 245												768	
35					CAT His									_			816	;
40					ACA Thr										_		864	
45					CCT Pro											_	912	
50					GCA Ala												960	1
					TCC Ser 325												1008	3
55	GAG	ACA	TTT	AAG	GTT	CCT	TCA	AGC	TGC	CCT	ATT	GTT	ACT	GTT	GAT	GGA	1056	; 1

											174									
	Gl	u T	hr P	he L	ys V 40	al P	ro S	er S	er (Ile	e Va	1 T		al 1 50	\sp	Gly		
5	ТА Ту	C G		AC Cosp Po	CT T	CT G er G	GA G	TY A	AT C sp A 60	GC rg	TTT Phe	TG1 Cys	Г ТТ з Le	G G(u G] 36	ST C		TC eu	TCC Ser	11	04
10	AA As:	T G7 n Va 37	TC C al H: 70	AC A(GG AG	CA G	Lu A	CC A' la II 75	rr g le G	AG .	AGA Arg	GCA Ala	A AG	g Le	G C	AC A is I	TA le	GGC Gly	11	52
15	385	5			AG TI	39	90	∖а гу	rs G.	ry (31u	Gly 395	' Ası	o Va	1 T1	p V	al	Arg 400	12	00
20	_				C CA P Hi 40	5	a va	I Ph	ie va	4	110	Ser	Туг	ту	r Le	u As	sp 15	Arg	124	18
20				42		u 11	o gi	y As	р А1 42	.a v :5	'a I	His	Lys	Ile	Э Ту 43	r Pr O	О.	Ser	129	6
25		•	43	5	G GT		c As	44	u Ar	g G	ın ı	Cys	His	Arc 445	g Gl:	n Me	t (Gln	134	4
30		450)		r ACT	. Ale	455	i Ala	a Al	аА	la A	Ala	Ala 460	Gln	Ala	a Al	a I	Ala	139	2
35	465		2		C ATO	470) Gly	PIC) GI	y Se	er V	/al 175	Gly	Gly	Ile	Al:	a F 4	ro 80	1440	0
40					TCA Ser 485	71.0	, TI	нта	GI	49	le G	ily '	Val	Asp	Asp	Let 495	ı A	rg	1488	3
40	CGC		-1-	500	Deu	nr 9	Mec	ser	505	va	t L	ys (Gly	Trp	Gly 510	Pro	A	sp	1536	i
45	TAC Tyr		515		501	116	Lys	520	Thr	Pr	o C;	ys 1	ſrp	Ile 525	Glu	Ile	H:	is	1584	
50		530			204	0111	535	ren	Asp	G1	u Va	al L 5	eu 1	His	Thr	Met	Pı	co	1632	
55	ATT (Ile A				0.111	550	пеп	Asp	Trp	Asj	9 Pr 55	CO P	ro V	Val	Ala	Thr	Ме 5 6	t 0	1680	
	GTG A	AGC .	AAG	GGC	GAG	GAG	CTG	TTC	ACC	GGG	3 GT	rg g	TG (ccc .	ATC	CTG	GT	rc	1728	174

										175							
	Val	Ser	Lys	Gly	Glu 565	Glu	Leu	Phe	Thr	Gly 570	Val	Val	Pro	Ile	Leu 575	Val	
5					GAC Asp												1776
10	_	_	_		GCC Ala			_									1824
15					CTG Leu												1872
13					CAG Gln												1920
20					AAG Lys 645												1968
25					AAG Lys												2016
30					GAC Asp												2064
					GAC Asp												2112
35					AAC Asn												2160
40					TTC Phe 725												2208
45					CAC His												2256
50					GAC Asp												2304
55					GAG Glu											_	2352
55	ACC	GCC	GCC	GGG	ATC	ACT	стс	GGC	ATG	GAC	GAG	CTG	TAC	AAG	TAA		2397 1

176

Thr Ala Ala Gly Ile Thr Leu Gly Met Asp Glu Leu Tyr Lys
785 790 795

5 (2) INFORMATION FOR SEQ ID NO:77:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 798 amino acids
- (B) TYPE: amino acid

10

15

- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (v) FRAGMENT TYPE: internal
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:77:

Met Asp Asn Met Ser Ile Thr Asn Thr Pro Thr Ser Asn Asp Ala Cys

20 Leu Ser Ile Val His Ser Leu Met Cys His Arg Gln Gly Gly Glu Ser

Glu Thr Phe Ala Lys Arg Ala Ile Glu Ser Leu Val Lys Lys Leu Lys
35 40

Glu Lys Lys Asp Glu Leu Asp Ser Leu Ile Thr Ala Ile Thr Thr Asn

50
55
60

Gly Ala His Pro Ser Lys Cys Val Thr Ile Gln Arg Thr Leu Asp Gly
65 70 75 80

Arg Leu Gln Val Ala Gly Arg Lys Gly Phe Pro His Val Ile Tyr Ala

Lys Tyr Cys Gln Tyr Ala Phe Asp Leu Lys Cys Asp Ser Val Cys Val 115 120 125

Asn Pro Tyr His Tyr Glu Arg Val Val Ser Pro Gly Ile Asp Leu Ser

35 130 135 140

Gly Leu Thr Leu Gln Ser Asn Ala Pro Ser Ser Met Met Val Lys Asp

145 150 150

Glu Tyr Val His Asp Phe Glu Gly Gln Pro Ser Leu Ser Thr Glu Gly

165

170

40 His Ser Ile Gln Thr Ile Gln His Pro Pro Ser Asn Arg Ala Ser Thr
180 185 180

Glu Thr Tyr Ser Thr Pro Ala Leu Leu Ala Pro Ser Glu Ser Asn Ala

Thr Ser Thr 200 205

Thr Ser Thr Ala Asn Phe Pro Asn Ile Pro Val Ala Ser Thr Ser Gln

215
220

50 Pro Ala Thr Tyr His His Asn Ser Thr Thr Thr Thr Thr Gly Ser Arg

Thr Ala Pro Tyr Thr Pro Asn Leu Pro His His Gln Asn Gly His Leu 275 280 285

Gln His His Pro Pro Met Pro Pro His Pro Gly His Tyr Trp Pro Val

295

295

300

His Asn Glu Leu Ala Phe Gln Pro Pro Ile Ser Asn His Pro Ala Pro

										177						
	305					310					315					320
	Glu	Tyr	Trp	Cys	Ser 325	Ile	Ala	Tyr	Phe	Glu 330	Met	Asp	Val	Gln	Val 335	Gly
5	Glu	Thr	Phe	Lys 340	Val	Pro	Ser	Ser	Cys 345	Pro	Ile	Val	Thr	Val 350	Asp	Gly
	Tyr	Val	Asp 355	Pro	Ser	Gly	Gly	Asp 360	Arg	Phe	Cys	Leu	Gly 365	Gln	Leu	Ser
	Asn	Val 370	His	Arg	Thr	Glu	Ala 375	Ile	Glu	Arg	Ala	Arg 380	Leu	His	Ile	Gly
10	Lys 385	Gly	Val	Gln	Leu	Glu 390	Суз	Lys	Gly	Glu	Gly 395	Asp	Val	Trp	Val	Arg 400
	Cys	Leu	Ser	Asp	His 405	Ala	Val	Phe	Val	Gln 410	Ser	Tyr	Tyr	Leu	Asp 415	Arg
15	Glu	Ala	Gly	Arg 420	Ala	Pro	Gly	Asp	Ala 425	Val	His	Lys	Ile	Tyr 430	Pro	Ser
	Ala	Tyr	Ile 435	Lys	Val	Phe	Asp	Leu 440	Arg	Gln	Cys	His	Arg 445	Gln	Met	Gln
	Gln	Gln 450	Ala	Ala	Thr	Ala	Gln 455	Ala	Ala	Ala	Ala	Ala 460	Gln	Ala	Ala	Ala
20	Val 465	Ala	Gly	Asn	Ile	Pro 470	Gly	Pro	Gly	Ser	Val 475	Gly	Gly	Ile	Ala	Pro 480
	Ala	Ile	Ser	Leu	Ser 485	Ala	Ala	Ala	Gly	Ile 490	Gly	Val	Asp	Asp	Leu 495	Arg
25	Arg	Leu	Cys	Ile 500	Leu	Arg	Met	Ser	Phe 505	Val	ГÀЕ	Gly	Trp	Gly 510	Pro	Asp
	Tyr	Pro	Arg 515	Gln	Ser	Ile	Lys	Glu 520	Thr	Pro	Cys	Trp	Ile 525	Glu	Ile	His
	Leu	His 530	Arg	Ala	Leu	Gln	Leu 535	Leu	Asp	Glu	Val	Leu 540	His	Thr	Met	Pro
30	545		_		Gln	550		_	_	_	555					560
					Glu 565					570					575	
35				580	Asp			_	585	_				590		
			595	_	Ala		-	600	-				605			
40		610			Leu		615		_			620				
40	625				Gln	630					635					640
		_			Lys 645					650	_	_			655	_
45				660	Lys	_	-	-	665	-	-		_	670		
			675	_	Asp			680		_			685		_	
50		690			Asp	_	695			_		700			_	
50	705				Asn	710	-				715	_		-		720
					Phe 725					730					735	
55				740	His				745					750		
	val	⊾eu	ьeu	Pro	Asp	Asn	Hls	Tyr	Leu	ser	Inr	GIn	ser	Ala	Leu	ser

	755 760 765 Lys Asp Pro Asn Glu Lys Arg Asp His Met Val Leu Leu Glu Phe Val 770 775												
	770 775 780 Thr Ala Ala Gly Ile Thr Leu Gly Met Asp Glu Leu Tyr Lys 785												
5	785 790 795												
	(2) INFORMATION FOR SEQ ID NO:78:												
10	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 3138 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 												
15	(ii) MOLECULE TYPE: cDNA (ix) FEATURE:												
20	(A) NAME/KEY: Coding Sequence (B) LOCATION: 13135 (D) OTHER INFORMATION:												
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:78:												
25	ATG GCG GGC TGG ATC CAG GCC CAG CAG CTG CAG GGA GAC GCG CTG CGC Met Ala Gly Trp Ile Gln Ala Gln Gln Leu Gln Gly Asp Ala Leu Arg 1 5 10 15	48											
30	CAG ATG CAG GTG CTG TAC GGC CAG CAC TTC CCC ATC GAG GTC CGG CAC Gln Met Gln Val Leu Tyr Gly Gln His Phe Pro Ile Glu Val Arg His	96											
	25 30												
35	TAC TTG GCC CAG TGG ATT GAG AGC CAG CCA TGG GAT GCC ATT GAC TTG Tyr Leu Ala Gln Trp Ile Glu Ser Gln Pro Trp Asp Ala Ile Asp Leu 35 40 45	144											
	GAC AAT CCC CAG GAC AGA GCC CAA GCC ACC CAG CTC CTG GAG GGC CTG Asp Asn Pro Gln Asp Arg Ala Gln Ala Thr Gln Leu Leu Glu Gly Leu 50 60	192											
40	GTG CAG GAG CTG CAG AAG AAG GCG GAG CAC CAG GTG GGG GAA GAT GGG Val Gln Glu Leu Gln Lys Lys Ala Glu His Gln Val Gly Glu Asp Gly 65 70 75 80	240											
45	TTT TTA CTG AAG ATC AAG CTG GGG CAC TAC GCC ACG CAG CTC CAG AAA Phe Leu Leu Lys Ile Lys Leu Gly His Tyr Ala Thr Gln Leu Gln Lys 85 90 95	288											
50	ACA TAT GAC CGC TGC CCC CTG GAG CTG GTC CGC TGC ATC CGG CAC ATT Thr Tyr Asp Arg Cys Pro Leu Glu Leu Val Arg Cys Ile Arg His Ile 100 105 110	336											
55	CTG TAC AAT GAA CAG AGG CTG GTC CGA GAA GCC AAC AAT TGC AGC TCT Leu Tyr Asn Glu Gln Arg Leu Val Arg Glu Ala Asn Asn Cys Ser Ser 115 120 125	384											
	CCG GCT GGG ATC CTG GTT GAC GCC ATG TCC CAG AAG CAC CTT CAG ATC	432 178											

										179							
	Pro	Ala 130	Gly	Ile	Leu	Val	Asp 135	Ala	Met	Ser	Gln	Lys 140	His	Leu	Gln	Ile	
5					GAG Glu												480
10					CTG Leu 165												528
15					AGG Arg												576
					CGT Arg											_	624
20					GCC Ala												672
25					CTG Leu					_				_			720
30					ACC Thr 245												768
35					CTG Leu												816
00					TCC Ser											_	864
40					ATC Ile												912
45					GTG Val												960
50					TCA Ser 325												1008
55					GTC Val												1056
00	CGC	CTG	CTG	GTG	GGC	GGG	AAG	CTG	AAC	GTG	CAC	ATG	AAT	CCC	CCC	CAG	1104

	A T	_						180						
						3	80				365		ro Gln	
5	GTG A Val L 3	AG GC ys Al 70	C ACC	ATC .		GT G er G 75	AG <i>CE</i> lu Gl	AG CA	G GCC n Ala	AAG Lys 380	TCT C	TG C	IT AAA eu Lys	1152
10	AAT G. Asn G. 385	AG AA lu As	C ACC	5 -	AAC G Asn G 390	AG TO	GC AG /s Se	T GG	r GAG y Glu 395	ATC (CTG A Leu A	AC AA sn As	AC TGC sn Cys 400	1200
15	TGC G	TG AT al Me	G GAG t Glu	TAC (Tyr H 405	CAC CA His Gl	AA GC ln Al	CC AC	G GGC r Gly 410	Thr	CTC I	AGT G	CC CA la Hi 41	s Phe	1248
	AGG AA Arg As	AC ATO	G TCA E Ser 420	CTG A	AG AC	G AT	C AA0 e Ly:	s Arg	GCT Ala	GAC C	CGG CO Arg Ai	g Gl	T GCA y Ala	1296
20	GAG TO Glu Se	C GTC r Val 435	ACA Thr	GAG G Glu G	AG AA lu Ly	G TT s Ph	e ini	A GTC Val	CTG Leu	Phe G	AG TO llu Se	T CAG	G TTC	1344
25	AGT GT Ser Va 45	T GGC l Gly O	AGC Ser	AAT G	AG CT lu Le 45	u va.	G TTC l Phe	CAG Gln	Val	AAG A Lys T 460	CT CT	G TC(C CTA	1392
30 .	CCT GTO Pro Val 465	G GTT l Val	GTC . Val	ATC GT Ile Va		C GGC	C AGC / Ser	CAG Gln	GAC (Asp 1475	CAC A	AT GC	C ACG a Thr	GCT Ala 480	1440
35	ACT GTO	G CTG Leu		GAC AA Asp As 185	T GCC	TTT Phe	GCT Ala	GAG Glu 490	CCG (GGC AG	GG GTO	G CCA Pro 495	TTT Phe	1488
	GCC GTG Ala Val	CCT Pro	GAC A Asp I 500	AAA GT ys Va	G CTG l Leu	TGG Trp	CCG Pro 505	CAG Gln	CTG T Leu C	GT GA	AG GCC u Ala 510	Leu	AAC Asn	1536
40	ATG AAA Met Lys	TTC Phe 515	AAG G Lys A	CC GA	A GTG u Val	CAG Gln 520	AGC Ser	AAC (Asn i	CGG G Arg G	GC CT ly Le 52	u Thr	AAG Lys	GAG Glu	1584
45	AAC CTC Asn Leu 530	GTG Val	TTC C Phe L	TG GCO eu Ala	G CAG Gln 535	AAA Lys	CTG Leu	TTC /	Asn A	AC AG sn Se:	C AGC r Ser	AGC Ser	CAC His	1632
50	CTG GAG Leu Glu 545	GAC Asp	TAC A	GT GGC er Gly 550	neu	TCC Ser	GTG Val	ser 1	GG TG Trp Se	CC CAC	G TTC n Phe	Asn	AGG Arg 560	1680
55	GAG AAC Glu Asn	TTG (CCG GC Pro Gl	GC TGG ly Trp 55	AAC Asn	TAC Tyr	Inr 1	TTC T Phe T	GG CF	AG TGO In Trp	TTT Phe	GAC Asp	GGG Gly	1728
	GTG ATG	GAG (etg ti	G AAG	AAG	CAC	CAC A	AAG C	CC CA	C TGG	З ААТ	GAT (GGG	1776 180

										181							
	Val	Met	Glu	Val 580	Leu	Lys	Lys	His	His 5 8 5	Lys	Pro	His	Trp	Asn 590	Asp	Gly	
5					TTT Phe												1824
10					GGG Gly												1872
4-					ATC Ile												1920
15					CCA Pro 645												1968
20					GGG Gly												2016
25					GAG Glu												2064
30					GGA Gly												2112
					GCA Ala												2160
35					CCC Pro 725												2208
40					AAC Asn												2256
45	GAC Asp	CTG Leu	GAT Asp 755	GAG Glu	ACC Thr	ATG Met	GAT Asp	GTG Val 760	GCC Ala	AGG Arg	CAC His	GTG Val	GAG Glu 765	GAA Glu	CTC Leu	TTA Leu	2304
50					GAC Asp												2352
					GCC Ala												2400
55	GAT	CCA	CCG	GTC	GCC	ACC	ATG	GTG	AGC	AAG	GGC	GAG	GAG	CTG	TTC	ACC	2448

	182	
	Asp Pro Pro Val Ala Thr Met Val Ser Lys Gly Glu Glu Leu Phe Thr 805 810 815	
5	GGG GTG GTG CCC ATC CTG GTC GAG CTG GAC GGC GAC GTA AAC GGC CAC Gly Val Val Pro Ile Leu Val Glu Leu Asp Gly Asp Val Asn Gly His 820 825 830	2496
10	AAG TTC AGC GTG TCC GGC GAG GGC GAG GGC GAT GCC ACC TAC GGC AAG Lys Phe Ser Val Ser Gly Glu Gly Glu Gly Asp Ala Thr Tyr Gly Lys 835 840 845	2544
15	CTG ACC CTG AAG TTC ATC TGC ACC ACC GGC AAG CTG CCC GTG CCC TGG Leu Thr Leu Lys Phe Ile Cys Thr Thr Gly Lys Leu Pro Val Pro Trp 850 855 860	2592
00	CCC ACC CTC GTG ACC ACC CTG ACC TAC GGC GTG CAG TGC TTC AGC CGC Pro Thr Leu Val Thr Thr Leu Thr Tyr Gly Val Gln Cys Phe Ser Arg 865 870 875 880	2640
20	TAC CCC GAC CAC ATG AAG CAG CAC GAC TTC TTC AAG TCC GCC ATG CCC Tyr Pro Asp His Met Lys Gln His Asp Phe Phe Lys Ser Ala Met Pro 885 890 895	2688
25	GAA GGC TAC GTC CAG GAG CGC ACC ATC TTC TTC AAG GAC GAC GGC AAC Glu Gly Tyr Val Gln Glu Arg Thr Ile Phe Phe Lys Asp Asp Gly Asn 900 905 910	2736
30	TAC AAG ACC CGC GCC GAG GTG AAG TTC GAG GGC GAC ACC CTG GTG AAC Tyr Lys Thr Arg Ala Glu Val Lys Phe Glu Gly Asp Thr Leu Val Asn 915 920 925	2784
35	CGC ATC GAG CTG AAG GGC ATC GAC TTC AAG GAG GAC GGC AAC ATC CTG Arg Ile Glu Leu Lys Gly Ile Asp Phe Lys Glu Asp Gly Asn Ile Leu 930 935 940	2832
	GGG CAC AAG CTG GAG TAC AAC TAC AAC AGC CAC AAC GTC TAT ATC ATG Gly His Lys Leu Glu Tyr Asn Tyr Asn Ser His Asn Val Tyr Ile Met 950 955 960	2880
40	GCC GAC AAG CAG AAG AAC GGC ATC AAG GTG AAC TTC AAG ATC CGC CAC Ala Asp Lys Gln Lys Asn Gly Ile Lys Val Asn Phe Lys Ile Arg His 965 970 975	2928
45	AAC ATC GAG GAC GGC AGC GTG CAG CTC GCC GAC CAC TAC CAG CAG AAC Asn Ile Glu Asp Gly Ser Val Gln Leu Ala Asp His Tyr Gln Gln Asn 980 985 990	2976
50	ACC CCC ATC GGC GAC GGC CCC GTG CTG CCC GAC AAC CAC TAC CTG Thr Pro Ile Gly Asp Gly Pro Val Leu Leu Pro Asp Asn His Tyr Leu 995 1000 1005	3024
55	AGC ACC CAG TCC GCC CTG AGC AAA GAC CCC AAC GAG AAG CGC GAT CAC Ser Thr Gln Ser Ala Leu Ser Lys Asp Pro Asn Glu Lys Arg Asp His 1010 1015 1020	3072
	ATG GTC CTG GAG TTC GTG ACC GCC GCC GGG ATC ACT CTC GGC ATG	3120 182

183

Met Val Leu Glu Phe Val Thr Ala Ala Gly Ile Thr Leu Gly Met 1025 1030 1035 1040

GAC GAG CTG TAC AAG TAA
5 Asp Glu Leu Tyr Lys

3138

(2) INFORMATION FOR SEQ ID NO:79:

10

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1045 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
- 15

50

- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
 (v) FRAGMENT TYPE: internal
- 20 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:79:

Met Ala Gly Trp Ile Gln Ala Gln Gln Leu Gln Gly Asp Ala Leu Arg

1 5 10 15

Gln Met Gln Val Leu Tyr Gly Gln His Phe Pro Ile Glu Val Arg His 25 25 30

25 20 25 30

Tyr Leu Ala Gln Trp Ile Glu Ser Gln Pro Trp Asp Ala Ile Asp Leu

35 40 Ara Gin 11p 11e Giu Ser Gin Pro 11p Asp Ara 11e Asp Leu

Asp Asn Pro Gln Asp Arg Ala Gln Ala Thr Gln Leu Glu Gly Leu
50 55 60

30 Val Gln Glu Leu Gln Lys Lys Ala Glu His Gln Val Gly Glu Asp Gly
65 70 75 80
Phe Leu Leu Lys Ile Lys Leu Gly His Tyr Ala Thr Gln Leu Gln Lys

85 90 95 Thr Tyr Asp Arg Cys Pro Leu Glu Leu Val Arg Cys Ile Arg His Ile

35 100 105 110 Leu Tyr Asn Glu Gln Arg Leu Val Arg Glu Ala Asn Asn Cys Ser Ser 115 120 125

Pro Ala Gly Ile Leu Val Asp Ala Met Ser Gln Lys His Leu Gln Ile 130 135 140

Asn Gln Thr Phe Glu Glu Leu Arg Leu Val Thr Gln Asp Thr Glu Asn 145 150 155 160

Glu Leu Lys Lys Leu Gln Gln Thr Gln Glu Tyr Phe Ile Ile Gln Tyr 165 170 175

Gln Glu Ser Leu Arg Ile Gln Ala Gln Phe Ala Gln Leu Ala Gln Leu 45 180 185 190

Ser Pro Gln Glu Arg Leu Ser Arg Glu Thr Ala Leu Gln Gln Lys Gln 195 200 205

Val Ser Leu Glu Ala Trp Leu Gln Arg Glu Ala Gln Thr Leu Gln Gln
210 215 220

Tyr Arg Val Glu Leu Ala Glu Lys His Gln Lys Thr Leu Gln Leu Leu 225 230 235 240 Arg Lys Gln Gln Thr Ile Ile Leu Asp Asp Glu Leu Ile Gln Trp Lys

245 250 255
Arg Arg Gln Gln Leu Ala Gly Asn Gly Gly Pro Pro Glu Gly Ser Leu

55 260 265 270
Asp Val Leu Gln Ser Trp Cys Glu Lys Leu Ala Glu Ile Ile Trp Gln

													184	1								
				27						2	80						_					
	A	sn	Arg 290	g Gl	n G]	ln I	le A	Arg	Arg 295	A	la	Glu	Hi	s L	eu	Су	s G	85 ln (ln	Le	u 1	Pro
	I	le	Pro	Gl	y Pr	o v	al (Slu	Gli) 1 M/	- +-	Lan	ד ה		1	300)					
5	3	05					3	10				Leu	WI	a G	1u	۷a.	L As	sn A	la	Th	r]	lle
	T	hr :	Asp	Ile	e I1	e s	er A	lla	Let	l Vá	al '	Thr	Se	r T	hr	Phe	• I]	le I	le	Gl	3 u I	320 .vs
	G.	ln i	Pro	Pro	Gl	n V	25 al L	eu	Lys	Tł	ır (31n	33 Th:	0 r L	ys	Phe	: A]	аА	la	33 Th	5 r 1	7a 1
10	Aı	rg 1	Leu	Le:	34 Va	0 1 G:	ly G	ly	Lvs	Le	:	345 Asn	Va.	l u				3	50	- 11		aı
	Va	al I	Lvs	355 Ala	i Th	r T	- _ T	10		36	0		va.	. п.	15	Met	36	in P 5	ro	Pro	o G	ln
				Ala																		
15	38	511 C	iu	Asn	Th	r Ar	g A	sn (90	Glu	Су	s S	er	Gl	7 G	lu :	Ile	Le	u A	sn	Ası	ı C	ys
	СУ	s V	'al	Met	Glı	и ту	r H	is (31n	Al	аŢ	hr	Gly	3 9 Th	95 1r]	Leu	Se	r A	la	His	4 P	00 be
	Ar	g A	sn	Met	Sei	40 Le	u Ly	ys l	۱rg	Il	e L	vs	410) 1 A I	аĭ	len	λ~.	~ A-		415		
20	Gl	u S	er	Val	420 The	, GI	n G			nl-	4	25		, 111	.a r	rsb	AL	9 A1	.g	GIy	' A.	la
				Val 435																		
	36	4.	50	Gly	Ser	As	n Gl	u I 4	eu 55	Va:	l P	he	Gln	Va	1 L	ys 60	Thi	. Le	u i	Ser	Le	eu
25	Pro 469	o Va 5	al	Val	Val	. 11	e Va 47	l H	is	Gly	S	er	Gln	As	рН	is	Asr	ı Al	a ?	Chr	Al	a
				Leu		Ası	As															
				Pro																		
30	Met	: Ly	/s]	Phe 5 15	500 Lys	Ala	Gl:	u V	a ì	Gln	5()5		2	u c	ys	- GIU	51	a 1 0	eu	As	n
	Asn	ı Le	: u v	515 Val	Phe	Leu	וה		1	520	_	-1 1		ALC	3 G.	тÀ	ьеи 525	Th	r L	ys	G1	u
	ĭ 0	53	0	Val	_	DC U	AI	a G. 5:	35	ьys	ьe	eu I	Phe	Ası	1 A:	sn 10	Ser	Se	S	er	Hi	s
35				Asp											Se	er (
	Glu	As	n I	eu	Pro	Gly 565	Tr	As	n :	Гуr	Th	rp	he	555 Trp	G]	n :	Гrр	Phe	: A	sp	560 Gl	D 7
	Val	Ме	t G	lu	Val	Leu	Lys	ь Гу	s ł	lis	Hi	s L	70 ys	Pro	Ні	s :	ľrp	Asn	5 A	75 sp	Glv	,
40	Ala	Il	e L	eu (Gly	Phe	Va1	. As	n I	ys	58 Gl:	5 n G	ln.	Ala	ні	e 1	- \en	590		•	~ 7 .	
	Asn	Ly	5 s P	95 ro <i>l</i>	as!	Glv	Thr	· Ph	6 A T	00	Ι					6	05	пец	. Lie	≠u	116	•
	Glv	610	0 T	ו מו	The w	T1-		61	5	ie u	пe	u A	rg .	Pne	Se 62	r A O	sp	Ser	G.	Lu	Ile	:
45	Gly 625	OI,	γ 1	16]	.nr	тте	630	Tr	рL	ys	Phe	2 A:	sp :	Ser 635	Pr	o G	lu	Arg	As	n]	Leu	
	Trp	Ası	ı L	eu I	γys	Pro 645	Phe	Th	r T	hr	Arg	3 A:	sp I	Phe	Se	r I	le	Arg	S€	er]	Leu	
	Ala	Asp) A	rg L	eu (Gly	Asp	Le	u s	er	Туг	: Le	50 eu]	lle	ту	r V	al	Phe	65 Pr	5 O 1	qa/	
50	Arg	Pro	Ly	/s A	sp (Glu	Val	Phe	∍ S	er	665 Lys	; : Т <u>у</u>	r T	'yr	Th	r P	ro	670 Val	Le	u A	la.	
	Lys	Ala	Va	al A	sp (Gly	Tyr	Va:	6. L L	80 Ys	Pro	G]	ln I	le	Lys	6 3 G	85 ln	Val	V۵) r		
	Glu	oy0 Phe	Va	ıl A	sn 1	Ala	Ser	695	5					_	700)		1	va		10	
55	Glu 705 Met	7 e=	<i>-</i>				710	AT.	. AS	ıμ,	мла	. G1	у G 7	1y 15	Ser	S	er i	Ala	Th	r I	yr 20	
	Met .	чар	GΙ	n A	ıa F	ro.	Ser	Pro) A]	la '	Val	Су	s P	ro	Glr	ı A.	la 1	Pro	ту	r A	sn	

185

					725					730					735	
	Met	Tyr	Pro	Gln 740	Asn	Pro	Asp	His	Val 745	Leu	Asp	Gln	Asp	Gly 750	Glu	Ph∈
5	Asp	Leu	Asp 755	Glu	Thr	Met	Asp	Val 760	Ala	Arg	His	Val	Glu 765	Glu	Leu	Lev
Ū	Arg		Pro	Met	Asp	Ser			Ser	Arg	Leu			Pro	Ala	Gly
		770 Phe	Thr	Ser	Ala		775 Gly	Ser	Leu	Ser		780 Val	Pro	Arg	Ala	
10	785 Asp	Pro	Pro	Val		790 Thr	Met	Val	Ser	_	795 Gly	Glu	Glu	Leu		800 Thr
	Gly	Val	Val		805 Ile	Leu	Val	Glu		810 Asp	Gly	Asp	Val		815 Gly	His
	Lys	Phe	Ser	820 Val	Ser	Gly	Glu		825 Glu	Gly	Asp	Ala		830 Tyr	Gly	Lys
15	Leu	Thr	835 Leu	Lys	Phe	Ile	Сув	840 Thr	Thr	Gly	Lys	Leu	845 Pro	Val	Pro	Trp
		850	Leu				855					860				
20	865					870					875					880
20		_	Asp		885					890					895	
			Tyr	900					905					910		
25	Tyr	Lys	Thr 915	Arg	Ala	Glu	Val	Lys 920	Phe	Glu	Gly	Asp	Thr 925	Leu	Val	Asn
	Arg	Ile 930	Glu	Leu	Lys	Gly	Ile 935	qaA	Phe	Lys	Glu	Asp 940	Gly	Asn	Ile	Leu
	Gly 945	His	Lys	Leu	Glu	Tyr 950	Asn	Tyr	Asn	Ser	His 955	Asn	Val	Tyr	Ile	Met 960
30	Ala	Asp	Lys	Gln	Lys 965	Asn	Gly	Ile	Lys	Val 970	Asn	Phe	Lys	Ile	Arg 975	His
	Asn	Ile	Glu	Asp 980	Gly	Ser	Val	Gln	Leu 985	Ala	Asp	His	Tyr	Gln 990	Gln	Asn
35	Thr	Pro	Ile 995	Gly	Asp	Gly		Val		Leu	Pro		Asn 1005		Tyr	Leu
		Thr	Gln	Ser	Ala		-		Asp	Pro				Arg	Asp	His
			Leu	Leu				Thr	Ala		Gly		Thr	Leu	-	
40		Glu	Leu	Tyr		1030				_	1035				-	1040
				-	1045											
			(2)	INI	FORM	OITA	I FOR	SE(Q ID	NO: 8	30:					

- 45 (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 28 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

50

55

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:80:

TGGGATCCTC AGGCCGTGCT GCTGGCCG

(2) INFORMATION FOR SEQ ID NO:81:

185

5	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 27 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:81: GTCTCGAGGG AGCATGGGCA CCTTGCG	
15	(2) INFORMATION FOR SEQ ID NO:82:(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 27 base pairs(B) TYPE: nucleic acid	27
20	(C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:82:	
25	TGGGATCCGA GAAGTCTATA TCCCATC	27
	(2) INFORMATION FOR SEQ ID NO:83:	
30	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 28 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:83:	
	TGGGATCCTT AGAAGTCTAT ATCCCATC	28
40	(2) INFORMATION FOR SEQ ID NO:84: (i) SEQUENCE CHARACTERISTICS:	28
45	(A) LENGTH: 28 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:84:	
50	GTCTCGAGCC ATGAACGCCC CCGAGCGG	28
	(2) INFORMATION FOR SEQ ID NO:85:	
55	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 30 base pairs(B) TYPE: nucleic acid	
		186

187

(C) STRANDEDNESS: single (D) TOPOLOGY: linear 5 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:85: GTGAATTCTC GTCTGATTTC TGGCAGGAGG 30 (2) INFORMATION FOR SEQ ID NO:86: 10 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single 15 (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:86: 20 GTGAATTCTT TACGTCTGAT TTCTGGCAGG 3.0 (2) INFORMATION FOR SEO ID NO:87: (i) SEQUENCE CHARACTERISTICS: 25 (A) LENGTH: 34 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 30 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:87: GTCTCGAGCC ATGGACGAAC TGTTCCCCCT CATC 34 35 (2) INFORMATION FOR SEQ ID NO:88: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 31 base pairs (B) TYPE: nucleic acid 40 (C) STRANDEDNESS: single (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:88: 45 31 GTGGATCCAA GGAGCTGATC TGACTCAGCA G (2) INFORMATION FOR SEQ ID NO:89: 50 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 32 base pairs (B) TYPE: nucleic acid

187

(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

	188	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:89:	
	GTGGATCCTT AGGAGCTGAT CTGACTCAGC AG	32
5	(2) INFORMATION FOR SEQ ID NO:90:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 32 base pairs	
10	(B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:90:	
	CCTCCTAAGC TTATCATGGA CCATTATGAT TC	32
	(2) INFORMATION FOR SEQ ID NO:91:	
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: single	
25	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:91:	
30	CCTCCTGGAT CCCTGCGCAG GATGATGGTC CAG	33
	(2) INFORMATION FOR SEQ ID NO:92:	
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 45 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:92:	
	GGATGGAAGC TTCAATGGCT GCCATCCGGA AGAAACTGGT GATTG	45
45	(2) INFORMATION FOR SEQ ID NO:93:	
	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 45 base pairs(B) TYPE: nucleic acid	
50	(C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:93:	
55	GGATGGGGAT CCTCACAAGA CAAGGCAACC AGATTTTTC TTCCC	45
		100

	189	
	(2) INFORMATION FOR SEQ ID NO:94:	
5	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:94:	
	GGGAAGCTTC CATGAGCGAG ACGGTCATC	29
15	(2) INFORMATION FOR SEQ ID NO:95:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 28 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single	
20	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:95:	
25	CCCGGATCCT CAGGGAGAAC CCCGCTTC	28
	(2) INFORMATION FOR SEQ ID NO:96:	
30	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 30 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
35		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:96:	30
40	GTGAATTCGA CCATGGAGCG GCCCCCGGGG	30
	(2) INFORMATION FOR SEQ ID NO:97: (i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 27 base pairs(B) TYPE: nucleic acid	
45	(C) STRANDEDNESS: single (D) TOPOLOGY: linear	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:97:	
- •	GTGGTACCCA TTCTGTTAAC CAACTCC	27
	(2) INFORMATION FOR SEQ ID NO:98:	
55	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 28 base pairs	

WO 98/45704

		PC1/DK98/00145
	190	•
	(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
5	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:98:	
	GTGGTACCTC ATTCTGTTAA CCAACTCC	28
10	(2) INFORMATION FOR SEQ ID NO:99:	20
15	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 28 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:99:	
	GTCTCGAGAG ATGCTGTCCC GTGGGTGG	28
	(2) INFORMATION FOR SEQ ID NO:100:	
25	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 27 base pairs	
30	(B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:100:	
35	GTGAATTCGC TTCCTCTTGA GGGAACC	27
	(2) INFORMATION FOR SEQ ID NO:101:	
40	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 27 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
45	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:101:	
	GTGAATTCAC TTCCTCTTGA GGGAACC	27
50	(2) INFORMATION FOR SEQ ID NO:102:	
	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 29 base pairs(B) TYPE: nucleic acid	
55	(C) STRANDEDNESS: single	
:10	(D) monor	

190

(D) TOPOLOGY: linear

. 191

GTCTCGAGCC ATGGAGAACT TCCAAAAGG (2) INFORMATION FOR SEQ ID NO:103: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 28 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (2) INFORMATION FOR SEQ ID NO:103: GTGGATCCCA GAGTCGAAGA TGGGGTAC (2) INFORMATION FOR SEQ ID NO:104: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:104: 30 GTGGATCCTC AGAGTCGAAG ATGGGGTAC (2) INFORMATION FOR SEQ ID NO:105: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 40 (xi) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 40 (xi) SEQUENCE CHARACTERISTICS: (A) LENGTH: 32 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(2) INFORMATION FOR SEQ ID NO:103: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 28 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:103: GTGGATCCCA GAGTCGAAGA TGGGGTAC (2) INFORMATION FOR SEQ ID NO:104: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (C) STRANDEDNESS: single (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:104: (xi) SEQUENCE DESCRIPTION: SEQ ID NO:104: (2) INFORMATION FOR SEQ ID NO:105: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (xi) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:105: GTGAATTCGG CGATGCCAGA CCCCGCGGCG 45 (2) INFORMATION FOR SEQ ID NO:106: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 32 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single	9
(A) LENGTH: 28 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (Xi) SEQUENCE DESCRIPTION: SEQ ID NO:103: GTGGATCCCA GAGTCGAAGA TGGGGTAC (2) INFORMATION FOR SEQ ID NO:104: (1) SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (C) STRANDEDNESS: single (D) TOPOLOGY: linear (Xi) SEQUENCE DESCRIPTION: SEQ ID NO:104: (Xi) SEQUENCE DESCRIPTION: SEQ ID NO:105: (1) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (Xi) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (Xi) SEQUENCE DESCRIPTION: SEQ ID NO:105: GTGAATTCGG CGATGCCAGA CCCCGCGGCG 45 (2) INFORMATION FOR SEQ ID NO:106: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 32 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single	
(C) STRANDEDNESS: single (D) TOPOLOGY: linear 15	
GTGGATCCCA GAGTCGAAGA TGGGGTAC (2) INFORMATION FOR SEQ ID NO:104: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:104: (2) INFORMATION FOR SEQ ID NO:105: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (xi) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:105: GTGAATTCGG CGATGCCAGA CCCCGCGGCG (2) INFORMATION FOR SEQ ID NO:106: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 32 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single	
GTGGATCCCA GAGTCGAAGA TGGGGTAC (2) INFORMATION FOR SEQ ID NO:104: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:104: (2) INFORMATION FOR SEQ ID NO:105: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:105: (3) GTGGATCCTC AGAGTCGAAG ATGGGGTAC (2) INFORMATION FOR SEQ ID NO:105: (3) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (Xi) SEQUENCE DESCRIPTION: SEQ ID NO:105: GTGAATTCGG CGATGCCAGA CCCCGCGGCG (2) INFORMATION FOR SEQ ID NO:106: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 32 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single	
(2) INFORMATION FOR SEQ ID NO:104: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single 25 (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:104: 30 GTGGATCCTC AGAGTCGAAG ATGGGGTAC (2) INFORMATION FOR SEQ ID NO:105: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 40 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:105: GTGAATTCGG CGATGCCAGA CCCCGCGGCG 45 (2) INFORMATION FOR SEQ ID NO:106: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 32 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:104: (xi) SEQUENCE DESCRIPTION: SEQ ID NO:105: (2) INFORMATION FOR SEQ ID NO:105: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:105: GTGAATTCGG CGATGCCAGA CCCCGCGGCG (2) INFORMATION FOR SEQ ID NO:106: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 32 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single	8
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single 25 (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:104: 30 GTGGATCCTC AGAGTCGAAG ATGGGGTAC 29 (2) INFORMATION FOR SEQ ID NO:105: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 40 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:105: GTGAATTCGG CGATGCCAGA CCCCGCGGCG 45 (2) INFORMATION FOR SEQ ID NO:106: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 32 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single	
(B) TYPE: nucleic acid (C) STRANDEDNESS: single 25 (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:104: 30 GTGGATCCTC AGAGTCGAAG ATGGGGTAC 29 (2) INFORMATION FOR SEQ ID NO:105: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 40 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:105: GTGAATTCGG CGATGCCAGA CCCCGCGGCG 45 (2) INFORMATION FOR SEQ ID NO:106: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 32 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:104: (xi) SEQUENCE DESCRIPTION: SEQ ID NO:104: (2) INFORMATION FOR SEQ ID NO:105: (i) SEQUENCE CHARACTERISTICS: (a) LENGTH: 30 base pairs (b) TYPE: nucleic acid (c) STRANDEDNESS: single (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:105: GTGAATTCGG CGATGCCAGA CCCCGCGGCG (2) INFORMATION FOR SEQ ID NO:106: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 32 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:104: 30 GTGGATCCTC AGAGTCGAAG ATGGGGTAC (2) INFORMATION FOR SEQ ID NO:105: (i) SEQUENCE CHARACTERISTICS: (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:105: GTGAATTCGG CGATGCCAGA CCCCGCGGCG (2) INFORMATION FOR SEQ ID NO:106: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 32 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single	
30 GTGGATCCTC AGAGTCGAAG ATGGGGTAC (2) INFORMATION FOR SEQ ID NO:105: (i) SEQUENCE CHARACTERISTICS: (a) LENGTH: 30 base pairs (b) TYPE: nucleic acid (c) STRANDEDNESS: single (d) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:105: GTGAATTCGG CGATGCCAGA CCCCGCGGCG (2) INFORMATION FOR SEQ ID NO:106: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 32 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single	
(2) INFORMATION FOR SEQ ID NO:105: (i) SEQUENCE CHARACTERISTICS: (a) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:105: GTGAATTCGG CGATGCCAGA CCCCGCGGCG (2) INFORMATION FOR SEQ ID NO:106: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 32 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:105: GTGAATTCGG CGATGCCAGA CCCCGCGGCG (2) INFORMATION FOR SEQ ID NO:106: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 32 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single	9
(A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (Xi) SEQUENCE DESCRIPTION: SEQ ID NO:105: GTGAATTCGG CGATGCCAGA CCCCGCGGCG (2) INFORMATION FOR SEQ ID NO:106: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 32 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single	
(B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 40 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:105: GTGAATTCGG CGATGCCAGA CCCCGCGGCG 45 (2) INFORMATION FOR SEQ ID NO:106: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 32 base pairs (B) TYPE: nucleic acid 50 (C) STRANDEDNESS: single	
(C) STRANDEDNESS: single (D) TOPOLOGY: linear 40 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:105: GTGAATTCGG CGATGCCAGA CCCCGCGGCG 45 (2) INFORMATION FOR SEQ ID NO:106: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 32 base pairs (B) TYPE: nucleic acid 50 (C) STRANDEDNESS: single	
(D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:105: GTGAATTCGG CGATGCCAGA CCCCGCGGCG (2) INFORMATION FOR SEQ ID NO:106: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 32 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:105: GTGAATTCGG CGATGCCAGA CCCCGCGGCG (2) INFORMATION FOR SEQ ID NO:106: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 32 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single	
GTGAATTCGG CGATGCCAGA CCCCGCGGCG 45 (2) INFORMATION FOR SEQ ID NO:106: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 32 base pairs (B) TYPE: nucleic acid 50 (C) STRANDEDNESS: single	
(2) INFORMATION FOR SEQ ID NO:106: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 32 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 32 base pairs (B) TYPE: nucleic acid 50 (C) STRANDEDNESS: single	0
(A) LENGTH: 32 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single	
(B) TYPE: nucleic acid (C) STRANDEDNESS: single	
-	
(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:106:	
55 GTGGATCCCA GGCACAGGCA GCCTCAGCCT TC 32	.2
GIGGATGGGA GGGTGAGGGT TC	191

	(2) INFORMATION FOR SEQ ID NO:107:	
5	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
10		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:107:	
	GTGGATCCTC AGGCACAGGC AGCCTCAGCC TTC	33
15	(2) INFORMATION FOR SEQ ID NO:108:	
20	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2616 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
25	(ii) MOLECULE TYPE: cDNA (ix) FEATURE:	
	(A) NAME/KEY: Coding Sequence(B) LOCATION: 12613(D) OTHER INFORMATION:	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:108:	
35	ATG GTG AGC AAG GGC GAG GAG CTG TTC ACC GGG GTG GTG CCC ATC CTG Met Val Ser Lys Gly Glu Glu Leu Phe Thr Gly Val Val Pro Ile Leu 1 10 15	48
	GTC GAG CTG GAC GGC GAC GTA AAC GGC CAC AAG TTC AGC GTG TCC GGC Val Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe Ser Val Ser Gly 25	96
40	GAG GGC GAG GGC GAT GCC ACC TAC GGC AAG CTG ACC CTG AAG TTC ATC Glu Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr Leu Lys Phe Ile 35	144
45	TGC ACC ACC GGC AAG CTG CCC GTG CCC TGG CCC ACC CTC GTG ACC ACC Cys Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr Leu Val Thr Thr 50 55 60	192
50	CTG ACC TAC GGC GTG CAG TGC TTC AGC CGC TAC CCC GAC CAC ATG AAG Leu Thr Tyr Gly Val Gln Cys Phe Ser Arg Tyr Pro Asp His Met Lys 65 70 75 80	240
55	CAG CAC GAC TTC TTC AAG TCC GCC ATG CCC GAA GGC TAC GTC CAG GAG Gln His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly Tyr Val Gln Glu 85 90 95	288
	CGC ACC ATC TTC TAG GAC GAC GGC AAC TAG AAG ACC CGC GCC GAG	336 192

. 193

										193								
	Arg	Thr	Ile	Phe 100	Phe	Lys	Asp	Asp	Gly 105	Asn	Tyr	Lys	Thr	Arg 110	Ala	Glu		
5					GGC Gly												38	14
10					GAG Glu												43	12
15					CAC His												4.8	10
		_			AAC Asn 165												52	8
20					GAC Asp												57	6
25					CCC Pro												62	4
30					AAC Asn	_											67	2
35					GGG Gly												72	0
00	_				CGA Arg 245	_											76	8
40					CCC Pro												81	.6
45	_				AAG Lys												86	4
50					CGC Arg												91	.2
5.E					CAC His												96	0
55	TAC	GCC	АТТ	GCC	GGC	GGC	AAA	GCG	CAC	TGT	GGA	CCG	GCA	GAG	CTC	TGC	100) 8 1

### Ala He Ala Gly Gly bys Ala His Cys Gly Pro Ala Glu Leu Cys 125 330 ### GAG TTC TAC TCC CGC GAC CCC GAC GGG CTC CCC TGC AAC CTG CGC AAG CLU Phe Tyr Ser Arg Asp Pro Asp Gly Leu Pro Cys Asn Leu Arg Lys 340 ### CCC TGC AAC CGG CCG TCG GGC CTC GAC CGC GGG GTC TTC GAC CCC CGC TGC AAC CGC CGC GGG GTC TTC GAC CCC CGC GGC CTC CGC GGC CTC GGC CAC CCC GGG GTC TTC GAC CCC CGC AGA ACG CCC GGG GTC TTC GAC CCC CGC GAG CCC CGC AGA CCC CCC		194
100 345 345 346		3.35
TGC CTG CGA GAC GCC ATG GTG CGT GAC TAC GTG CGC CAG ACG TGG AAG TGC CTG CGA GAC GCC ATG GTG CGT GAC TAC GTG CGC CAG ACG TGG AAG TGC CTG CAG GAC GCC ATG GTG CGT GAC TAC GTG CGC CAG ACG TGG AAG TGC CYS Leu Arg Asp Ala Met Val Arg Asp Tyr Val Arg Gln Thr Trp Lys 370 370 370 370 380 TGC GAG GGC GAG GCC CTG GAG CAG GCC ATC ATC AGC CAG GCC CGC CAG Leu Glu Glu Glu Ala Leu Glu Gln Ala Ile Ile Ser Gln Ala Pro Gln J95 TGC GAG GAG GCC CTG GAG CAG GCC CAC GAG CGC CTG GAC Leu Glu Clys Leu Ile Ala Thr Thr Ala His Glu Arg Met Pro Trp Tyr 405 GCG CAG AGC AGC CTG ACG CGT GAG GAC GCC CAC GAG CGC ATG CCC Alis Ser Ser Leu Thr Arg Glu Glu Ala Glu Arg Lys Leu Tyr Ser Gly 420 GCG CAG ACC GAC GAC GAC GAC GAC GCC GAG CGC AAA CTT TAC TCT GGG His Ser Ser Leu Thr Arg Glu Glu Ala Glu Arg Lys Leu Tyr Ser Gly 420 GCG CAG ACC GAC GAC GAC AGG TCC CTG AGG CCG CGG AAG GAC GAC GGC Ala Gln Thr Asp Gly Lys Phe Leu Larg Pro Arg Lys Glu Gln Gly 435 ACA TAC GCC CTG TCC CTC ATC TAT GGG AAG ACG GT TAC CAC TAC CTC Thr Tyr Ala Leu Ser Leu Ile Tyr Gly Lys Thr Val Tyr His Tyr Leu 450 ATC AGC CAA GAC AAG GGG GGC AAG TAC TGC AGG GGC ACC AAG 11e Ser Gln Asp Lys Ala Gly Lys Tyr Cys Ile Pro Glu Gly Thr Lys 450 ATC AGC CAA GAC AAG GGG GGC AAG TAC TGC CAC GAG GAC ACC AAG 11e Ser Gln Asp Lys Ala Gly Lys Tyr Cys Ile Pro Glu Gly Thr Lys 475 ATC AGC CAC AGC CTC GCA CAG GAG TAC TCC CAAC AGC ACC AAG 11e Ser Gln Asp Lys Ala Gly Lys Tyr Cys Ile Pro Glu Gly Thr Lys 475 ATC AGC CAC AGC CTC GCA CAG GAG TAC TCC CAAC AGC AGC AGC AGC AGC ACC AAG GGC CTC ATC TAC TGC CTC AAG GAG GCC CAC CAC AGC 11e Ser Gln Asp Lys Ala Gly Lys Tyr Cys Ile Pro Glu Gly Thr Lys 485 ATC AGC CAC GGG GCC AGC CTG GCC CAC CCC ACC ACC ACC AGC AGC AGC AGC AGC AGC AGC AGC CTC ACC TAC CTC ACC CAC CCC ACC ACC AGC Gly Leu Ile Tyr Cys Leu Lys Glu Ala Cys Pro Asn Ser Ser Ala Ser 500 TG GC CTC ATC TAC TGC CTC AAG AGC AGC CTC CAC CCC ACC CCC ACC ACC AGC CCC CAC CCC ACC CCC ACC CCC ACC CCC ACC ACC ACC AGC AGC AGC AGC AGC AGC	ŧ	340 345 350
15	10	355 360 365 365
385 390 395 396 397 398 398 399 395 396 397 398 398 398 399 397 398 398	15	370 375 191 Val Arg Gln Thr Trp Lys
405 410 410 410 415 410 415 416 417 415 417 415 417 415 417 417	20	385 390 395 400
420 425 426 427 428 428 428 428 429 420 425 430 430 430 430 430 430 430 43	20	405 410 Arg Met Pro Trp Tyr
ACA TAC GCC CTG TCC CTC ATC TAT GGG AAG ACG GTG TAC CAC TAC CTC THr Tyr Ala Leu Ser Leu Ile Tyr Gly Lys Thr Val Tyr His Tyr Leu 455 ATC AGC CAA GAC AAG GCG GGC AAG TAC TCC CAG GGC AAG GGC AAG AGG ACG AAG ACG AGG ATG ATG CTC ATC TCC GAG GGC ACC AAG AGG ACG AAG ACG CTC ATC CTC ATC TCC GAG GGC ACC AAG ACG ACG ATG ACG CTC ATC ACG ATC ACG ACG ACG ACG ACG ACG ACG ACG ACG AC	25	420 425 Arg Lys Leu Tyr Ser Gly
35 ATC AGC CAA GAC AAG GCG GGC AAG TAC TGC ATT CCC GAG GGC ACC AAG 1440 ATG AGC CAA GAC AAG GCG GGC AAG TAC TGC ATT CCC GAG GGC ACC AAG 1440 ATG AGC CAA GAC ACG CTC TGG CAG CTG GTG GAG TAT CTG AAG CTG AAG GCG GAC 1488 ATT GAC ACG CTC TGG CAG CTG GTG GAG TAT CTG AAG CTG AAG GCG GAC 1488 ABF ABP Thr Leu Trp Gln Leu Val Glu Tyr Leu Lys Ala Asp 490 AGG CTC ATC TAC TGC CTG AAG GAG GCC TGC CCC AAC AGC AGC AGC AGC AGC AGC GIV Leu Lys Glu Ala Cys Pro Asn Ser Ser Ala Ser 510 AAC GCC TCA GGG GCT GCT GCT CCC ACA CTC CCA GCC CAC CCA TCC ACG 1584 ASN Ala Ser Gly Ala Ala Ala Pro Thr Leu Pro Ala His Pro Ser Thr 525 TTG ACT CAT CCT CAG AGA CGA ATC GAC ACC CTC AAC TCC ACG GIV Tyr 530 ACC CCT GAG CCA GCA CGC ATA ACG TCC CCA GAC AAA CCG CGG CCG ATG 1680 ACC CCT GAG CCA GCA CGC ATA ACG TCC CCA GAC AAA CCG CGG CCG ATG 1680	30	435 440 Arg Lys Glu Gln Gly
465	35	450 455 460
40 TTT GAC ACG CTC TGG CAG CTG GTG GAG TAT CTG AAG CTG AAG GCG GAC Phe Asp Thr Leu Trp Gln Leu Val Glu Tyr Leu Lys Leu Lys Ala Asp 495 GGG CTC ATC TAC TGC CTG AAG GAG GCC TGC CCC AAC AGC AGC AGC GAGC G		470 475 470 475 480
GGG CTC ATC TAC TGC CTG AAG GAG GCC TGC CCC AAC AGC AGT GCC AGC 1536 Gly Leu Ile Tyr Cys Leu Lys Glu Ala Cys Pro Asn Ser Ser Ala Ser 510 AAC GCC TCA GGG GCT GCT GCT CCC ACA CTC CCA GCC CAC CCA TCC ACG 1584 Asn Ala Ser Gly Ala Ala Ala Pro Thr Leu Pro Ala His Pro Ser Thr TTG ACT CAT CCT CAG AGA CGA ATC GAC ACC CTC AAC TCA GAT GGA TAC 1632 Leu Thr His Pro Gln Arg Arg Ile Asp Thr Leu Asn Ser Asp Gly Tyr ACC CCT GAG CCA GCA CCC ATA ACG TCC CCA GAC AAA CCC CGG CCG ATG 1680	40	TTT GAC ACG CTC TGG CAG CTG GTG GAG TAT CTG AAG CTG AAG GCG GAC 1488 Phe Asp Thr Leu Trp Gln Leu Val Glu Tyr Leu Lys Leu Lys Ala Asp 485 490 495
AAC GCC TCA GGG GCT GCT GCT CCC ACA CTC CCA GCC CAC CCA TCC ACG 1584 Solvent Ala Ser Gly Ala Ala Ala Pro Thr Leu Pro Ala His Pro Ser Thr TTG ACT CAT CCT CAG AGA CGA ATC GAC ACC CTC AAC TCA GAT GGA TAC Leu Thr His Pro Gln Arg Arg Ile Asp Thr Leu Asn Ser Asp Gly Tyr ACC CCT GAG CCA GCA CCA CCA ACC CTC AAA CCG CGG CCG ATG 1680	45	GGG CTC ATC TAC TGC CTG AAG GAG GCC TGC CCC AAC AGC AGT GCC AGC Gly Leu Ile Tyr Cys Leu Lys Glu Ala Cys Pro Asn Ser Ser Ala Ser 500 505
530 535 540 ACC CCT GAG CCA GCA CGC ATA ACG TCC CCA GAC AAA CCG CGG CCG ATG 1680	50	AAC GCC TCA GGG GCT GCT CCC ACA CTC CCA GCC CAC CCA TCC ACG Asn Ala Ser Gly Ala Ala Ala Pro Thr Leu Pro Ala His Pro Ser Thr 515 520 525
	55	530 535 540 Ser Asp Gly Tyr

										195							
	Thr 545	Pro	Glu	Pro	Ala	Arg 550	Ile	Thr	Ser	Pro	Asp 555	Lys	Pro	Arg	Pro	Met 560	
5					AGC Ser 565												1728
10					AAG Lys												1776
15			_		GGC Gly												1824
					AAG Lys												1872
20					AAG Lys												1920
25					CTG Leu 645												1968
30		_	_		GCC Ala												2016
35					TTC Phe												2064
					CTG Leu												2112
40					TTT Phe												2160
45					CAC His 725												2208
50					GAC Asp												2256
55					TGG Trp												2304
-	TCC	AGC	CGC	AGC	GAT	GTC	TGG	AGC	TAT	GGG	GTC	ACC	ATG	TGG	GAG	GCC	2352

													96								
	S	er	Ser 770	Ar	g Se	er A	Asp	Val	Trp 775	Se:	г ту	r G	ly	Val	Th:	Met	Tr	рG	lu	Ala	
5	7	85		- , .	. 0.	.y C	, 111	790	PIO	ту:	с гъ	s L	ys	Met 795	Lys	Gly	Pro	o G	lu	800	2400
10					- 11	8	05	GIII	GIY	гу	Ar	g M 8	et 10	Glu	Cys	CCA Pro	Pro	6] 8]	lu 15	Сув	2448
15					82	0	7 ~	AIA	Dea	Met	82!	r A:	sp (Cys	Trp	ATC Ile	Tyr 830	Ly	's	Trp	2496
			<u>F</u> -	835	11,	JA	ъÞ	rne	теп	840	Val	L G.	lu (Sln	Arg	ATG Met 845	Arg	Al	а	Сув	2544
20	ТА	C 1 r 1	TAC Tyr 150	AGC Ser	CTO	G GC	CC i	JCI	AAG Lys 855	GTG Val	GAA Glu	A GG	G C y F	ro	CCA Pro 860	GGC Gly	AGC Ser	AC Th	A (CAG Gln	2592
25	AA Ly 86	s A	CT la	GAG Glu	GCT Ala	GC Al	a (TGT Cys 370	GCC Ala	TGA											2616
30			(i) SE	QUE	NCE	СН	'ION 'ARA(71 a	TER	ISTI	CS:	МО	:10	9:							
35				(B) (C)	TYP. STR.	E: a	ami EDN	no a ESS: lin	cid sin												
			(ii)) M FR	OLE(AGMI	CULI ENT	TY:	YPE: PE:	pro inte	otei erna	n 1										
40								ESCR													
																al E					
45																er v	al :	Ser			
																eu L	ys I				
50																5 eu V					
																sp H					
	Arg															yr V					
55	Val																				
						_				v	<i>1</i>	7011	wτί	4 T.I	e G.	tu L	eu L	ys	G1	У	

			115					120					125			
	Ile	Asp	Phe	Lys	Glu	Asp	Gly	Asn	Ile	Leu	Gly	His	Lys	Leu	Glu	Tyr
		130		-			135				<u>.</u>	140	_			_
	Asn	Tyr	Asn	Ser	His	Asn	Val	Tyr	Ile	Met	Ala	Asp	Lys	Gln	Lys	Asn
5	145	- 2 -				150					155					160
•		Tle	Lys	Va 1	Δen		Luc	Tle	Ara	Hie		716	Glu	Acn	Gly	
	GIY	116	цуз	Val		FIIC	шуз	116	Arg		ASII	116	Giu	Asp	_	Ser
		~ 3	-		165			~ 1	01	170			-7-		175	~ 1
	vai	GIN	Leu		Asp	MIS	Tyr	GIU		ASI	Thr	Pro	TIE	_	Asp	GIY
4.0		_		180	_	_		•	185		_			190		_0
10	Pro	Val	Leu	Leu	Pro	Asp	Asn		Tyr	Leu	Ser	Thr		Ser	Ala	Leu
			195					200					205			
	Ser	Lys	Asp	Pro	Asn	Glu	Lys	Arg	Asp	His	Met	Val	Leu	Leu	Glu	Phe
		210					215					220				
	Val	Thr	Ala	Ala	Gly	Ile	Thr	Leu	Gly	Met	Asp	Glu	Leu	Tyr	Lys	Ser
15	225					230					235					240
	Gly	Leu	Arg	Ser	Arg	Ala	Gln	Ala	Ser	Asn	Ser	Ala	Met	Pro	Asp	Pro
	-		_		245					250					255	
	Ala	Ala	His	Leu	Pro	Phe	Phe	Tvr	Glv	Ser	Ile	Ser	Ara	Ala	Glu	Ala
				260				-	265			-		270		
20	Glu	Glu	His		Lvg	Len	ΔΊа	Glv		Δla	Asn	Glv	T.e.11		Len	Len
20	GIU	Olu	275		цуБ	Deu	niu	280	1100	71.4	nsp	O L y	285	1110	u	Deu
	7 ~~~	61 m		7 0	7	000	1 011		G1	П	1707	T 011		T 011	17-1	uio
	Arg		Cys	Leu	Arg	361		GLY	GTA	гÄт	val		ser	Leu	vai	піз
	_	290	_	1			295	_			_	300	_	_	~3	
05	-	vaı	Arg	Pne	HIS		Pne	Pro	TIE	Gru		GIN	ьеu	Asn	GIY	
25	305		-			310	_				315				_	320
	Tyr	Ala	Ile	Ala	_	GIA	ьуs	Ala	His	_	GIA	Pro	Ala	Glu		Cys
	_				325				_	330					335	
	GLu	Phe	Tyr		Arg	Asp	Pro	Asp		Leu	Pro	Cys	Asn		Arg	Lys
				340					345					350		
30	Pro	Cys	Asn	Arg	Pro	Ser	Gly	Leu	Glu	Pro	Gln	Pro	Gly	Val	Phe	Asp
			355					360					365			
	Cys	Leu	Arg	Asp	Ala	Met	Val	Arg	Asp	Tyr	Val	Arg	Gln	Thr	Trp	Lys
		370					375					380				
	Leu	Glu	Gly	Glu	Ala	Leu	Glu	Gln	Ala	Ile	Ile	Ser	Gln	Ala	Pro	Gln
35	385					390					395					400
	Val	Glu	Lys	Leu	Ile	Ala	Thr	Thr	Ala	His	Glu	Arq	Met	Pro	Trp	Tyr
			-		405					410		_			415	_
	His	Ser	Ser	Leu	Thr	Arq	Glu	Glu	Ala	Glu	Arg	Lvs	Leu	Tvr	Ser	Gly
				420					425					430		•
40	Ala	Gln	Thr	Asp	Glv	Lvs	Phe	Leu		Ara	Pro	Ara	Lvs	Glu	Gln	Glv
, •		01	435	P	 1	-,-		440		9		*** 5	445			4 -7
	Thr	Tur	Ala	T.OU	Ser	T.011	Tle		Glv	Lve	Thr	Val		Hic	Tur	T.em
	1111	450	Y10	neu	SCL	БСи	455	LYL	Gry	цуб	1111	460	TYL	1115	ryr	шси
	T1-		~1 -	7 ~~	T	77.		T	m	<i>a</i>	71 =		~1	G1	mb	T 110
A.E.		261	Gln	Asp	_		GIA	nys	IYL	Cys		PIO	GIU	GIY	1111	
45	465					470			~1	_	475		-	-		480
	Pne	Asp	Thr	ьeu		Gin	Leu	vaı	GIU		ьeu	гàг	ьeu	гàг		Asp
		_		_	485	_	_			490		_	_	_	495	_
	Gly	Leu	Ile	-	Cys	Leu	Lys	Glu		Cys	Pro	Asn	Ser		Ala	Ser
				500					505					510		
50	Asn	Ala	ser	Gly	Ala	Ala	Ala	Pro	Thr	Leu	Pro	Ala	His	Pro	Ser	Thr
			515					520					525			
	Leu	Thr	His	Pro	Gln	Arg	Arg	Ile	Asp	Thr	Leu	Asn	Ser	Asp	Gly	Tyr
		530					535					540				
	Thr	Pro	Glu	Pro	Ala	Arg	Ile	Thr	Ser	Pro	Asp	Lys	Pro	Arg	Pro	Met
55	545					550					555					560
	Pro	Met	Asp	Thr	Ser	Val	Tyr	Glu	Ser	Pro	Tyr	Ser	Asp	Pro	Glu	Glu

198

```
565
                                           570
        Leu Lys Asp Lys Lys Leu Phe Leu Lys Arg Asp Asn Leu Leu Ile Ala
                            585
        Asp Ile Glu Leu Gly Cys Gly Asn Phe Gly Ser Val Arg Gln Gly Val
   5
                                   600
        Tyr Arg Met Arg Lys Lys Gln Ile Asp Val Ala Ile Lys Val Leu Lys
                                                      605
                              615
        Gln Gly Thr Glu Lys Ala Asp Thr Glu Glu Met Met Arg Glu Ala Gln
                                                  620
                          630
                                               635
        Ile Met His Gln Leu Asp Asn Pro Tyr Ile Val Arg Leu Ile Gly Val
  10
                                          650
       Cys Gln Ala Glu Ala Leu Met Leu Val Met Glu Met Ala Gly Gly
                                    665
       Pro Leu His Lys Phe Leu Val Gly Lys Arg Glu Glu Ile Pro Val Ser
  15
                                 680
       Asn Val Ala Glu Leu Leu His Gln Val Ser Met Gly Met Lys Tyr Leu
                               695
       Glu Glu Lys Asn Phe Val His Arg Asp Leu Ala Ala Arg Asn Val Leu
                          710
                                             715
 20
       Leu Val Asn Arg His Tyr Ala Lys Ile Ser Asp Phe Gly Leu Ser Lys
                                 730
       Ala Leu Gly Ala Asp Asp Ser Tyr Tyr Thr Ala Arg Ser Ala Gly Lys
                   740
                                     745
       Trp Pro Leu Lys Trp Tyr Ala Pro Glu Cys Ile Asn Phe Arg Lys Phe
 25
                                  760
       Ser Ser Arg Ser Asp Val Trp Ser Tyr Gly Val Thr Met Trp Glu Ala
                            775
                                                  780
      Leu Ser Tyr Gly Gln Lys Pro Tyr Lys Lys Met Lys Gly Pro Glu Val
                         790
                                             795
      Met Ala Phe Ile Glu Gln Gly Lys Arg Met Glu Cys Pro Pro Glu Cys
 30
                                         810
      Pro Pro Glu Leu Tyr Ala Leu Met Ser Asp Cys Trp Ile Tyr Lys Trp
                  820
                                      825
      Glu Asp Arg Pro Asp Phe Leu Thr Val Glu Gln Arg Met Arg Ala Cys
 35
                                 840
      Tyr Tyr Ser Leu Ala Ser Lys Val Glu Gly Pro Pro Gly Ser Thr Gln
                                                    845
                           855
                                                860
      Lys Ala Glu Ala Ala Cys Ala
                         870
40
               (2) INFORMATION FOR SEQ ID NO:110:
            (i) SEQUENCE CHARACTERISTICS:
              (A) LENGTH: 2598 base pairs
45
              (B) TYPE: nucleic acid
              (C) STRANDEDNESS: single
              (D) TOPOLOGY: linear
            (ii) MOLECULE TYPE: cDNA
50
            (ix) FEATURE:
               (A) NAME/KEY: Coding Sequence
               (B) LOCATION: 1...2595
               (D) OTHER INFORMATION:
55
```

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:110:

. 199

5		CCC Pro						_		48
J		GCC Ala 20							_	96
10		CTG Leu						_		144
15		CAC His							_	192
20		ACC Thr						_		240
25		TGC Cys					_			288
		AAG Lys 100						_		336
30		GAC Asp						_		384
35		AAG Lys						_		432
40		CAG Gln						_		480
45		TAC Tyr								528
		GGG Gly 180								576
50		GGC Gly								624
55		CTC Leu								672

5	GAG GGC ACC AAG TTT GAC ACG CTC TGG CAG CTG GTG GAG TAT CTG AAG Glu Gly Thr Lys Phe Asp Thr Leu Trp Gln Leu Val Glu Tyr Leu Lys 230 CTG AAG GCG GAC GGG CTC ATC TAC TGC CTG AAG GAG GCC TGC CCC AAC Leu Lys Ala Asp Gly Leu Ile Tyr Cys Leu Lys Glu Ala Cys Pro Asn	720 768
10	245 250 255 AGC AGT GCC AGC AAC GCC TCA GGG GCT GCT GCT CCC ACA CTC CCA GCC Ser Ser Ala Ser Asn Ala Ser Gly Ala Ala Ala Pro Thr Leu Pro Ala 260 260 265 270	816
15	CAC CCA TCC ACG TTG ACT CAT CCT CAG AGA CGA ATC GAC ACC CTC AAC His Pro Ser Thr Leu Thr His Pro Gln Arg Arg Ile Asp Thr Leu Asn 275 280 285	864
20	TCA GAT GGA TAC ACC CCT GAG CCA GCA CGC ATA ACG TCC CCA GAC AAA Ser Asp Gly Tyr Thr Pro Glu Pro Ala Arg Ile Thr Ser Pro Asp Lys 290 295 300	912
25	CCG CGG CCG ATG CCC ATG GAC ACG AGC GTG TAT GAG AGC CCC TAC AGC Pro Arg Pro Met Pro Met Asp Thr Ser Val Tyr Glu Ser Pro Tyr Ser 310 315 320	960
20	GAC CCA GAG GAG CTC AAG GAC AAG AAG CTC TTC CTG AAG CGC GAT AAC Asp Pro Glu Glu Leu Lys Asp Lys Lys Leu Phe Leu Lys Arg Asp Asn 325 330 335	1008
30	CTC CTC ATA GCT GAC ATT GAA CTT GGC TGC GGC AAC TTT GGC TCA GTG Leu Leu Ile Ala Asp Ile Glu Leu Gly Cys Gly Asn Phe Gly Ser Val 340 345 350	1056
35	CGC CAG GGC GTG TAC CGC ATG CGC AAG AAG CAG ATC GAC GTG GCC ATC Arg Gln Gly Val Tyr Arg Met Arg Lys Lys Gln Ile Asp Val Ala Ile 355 360 365	1104
40	AAG GTG CTG AAG CAG GGC ACG GAG AAG GCA GAC ACG GAA GAG ATG ATG Lys Val Leu Lys Gln Gly Thr Glu Lys Ala Asp Thr Glu Glu Met Met 370 375 380	1152
45	CGC GAG GCG CAG ATC ATG CAC CAG CTG GAC AAC CCC TAC ATC GTG CGG Arg Glu Ala Gln Ile Met His Gln Leu Asp Asn Pro Tyr Ile Val Arg 390 395 400	1200
50	CTC ATT GGC GTC TGC CAG GCC GAG GCC CTC ATG CTG GTC ATG GAG ATG Leu Ile Gly Val Cys Gln Ala Glu Ala Leu Met Leu Val Met Glu Met 405 410 415	1248
	GCT GGG GGC GGG CCG CTG CAC AAG TTC CTG GTC GGC AAG AGG GAG GAG Ala Gly Gly Gly Pro Leu His Lys Phe Leu Val Gly Lys Arg Glu Glu 420 425 430	1296
55	ATC CCT GTG AGC AAT GTG GCC GAG CTG CTG CAC CAG GTG TCC ATG GGG Ile Pro Val Ser Asn Val Ala Glu Leu Leu His Gln Val Ser Met Gly 435 440 445	1344
		200

5				GAG Glu						1392
J				CTG Leu						1440
10				GCA Ala 485						1488
15				TGG Trp						1536
20				TCC Ser						1584
25		_	_	TTG Leu						1632
				ATG Met						1680
30		_		CCA Pro 565						1728
35				GAG Glu						1776
40		_		TAC Tyr						1824
45				AAG Lys						1872
				AGC Ser						1920
50				CTG Leu 645						1968
55				GAG Glu						2016

202

5	TTC AT	675	5		CI, I	61 61	30 30	o val	l Pro	Trp	Pro 685	Thr	Le	u Val	2064
	ACC AC Thr Th 69	0		-1-	6	95	т су	s Pne	Ser	Arg 700	Tyr	Pro	Ası) His	2112
10	ATG AA Met Ly 705			···p	710	пе Бу	s se	r Ala	715	Pro	Glu	Gly	Tyr	720	2160
15	CAG GAG Gln Glu	J		725	inc P	ие гу	s Asp	730	GIY	Asn '	Tyr	Lys	Thr 735	Arg	2208
20	GCC GAC Ala Glu		740		Jau G.	LY AS	745	Leu	Val	Asn A	Arg :	Ile 750	Glu	Leu	2256
25	AAG GGC Lys Gly	755			., 5 01	760)	Asn	11e	Leu C	31y 1 765	lis .	Lys	Leu	2304
	GAG TAC Glu Tyr 770		1 - 3.	0	77	5 ASI	ı vaı	ıyr	Ile i	Met A 780	la A	sp 1	Lys	Gln	2352
30	AAG AAC Lys Asn 785	•		75	90	n Phe	ьуs	ile .	Arg 1 795	dis A	sn I	le C	3lu	Asp 800	2400
35	GGC AGC Gly Ser	GTG (CAG C Gln L	TC G(eu A] 05	CC GA	C CAC P His	TAC Tyr	CAG (Gln (810	CAG A Gln A	AAC A	CC C hr P	ro I	TC le	GGC Gly	2448
40	GAC GGC Asp Gly	8	320	Ju Do	.u F1(Asp	825	His 7	Tyr L	eu Se	er Th	nr G 30	ln a	Ser	2496
45	GCC CTG Ala Leu	835	1	·F	O ASI	840	nys .	Arg A	Asp H	is Me 84	et Va 5	ıl L	eu I	Leu	2544
	GAG TTC Glu Phe 850	GTG A Val T	CC GC	CC GC	C GGG a Gly 855	ATC Ile	ACT (CTC G Leu G	TA We	TG GA et As 60	C GA	G C'	rg 7 eu 7	TAC Tyr	2592
50	AAG TAA Lys 865														2598

55 (2) INFORMATION FOR SEQ ID NO:111:

```
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 865 amino acids
```

- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- 5 (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: protein
- (v) FRAGMENT TYPE: internal
- 10 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:111:

Met Pro Asp Pro Ala Ala His Leu Pro Phe Phe Tyr Gly Ser Ile Ser Arg Ala Glu Ala Glu Glu His Leu Lys Leu Ala Gly Met Ala Asp Gly Leu Phe Leu Leu Arg Gln Cys Leu Arg Ser Leu Gly Gly Tyr Val Leu Ser Leu Val His Asp Val Arg Phe His His Phe Pro Ile Glu Arg Gln Leu Asn Gly Thr Tyr Ala Ile Ala Gly Gly Lys Ala His Cys Gly Pro Ala Glu Leu Cys Glu Phe Tyr Ser Arg Asp Pro Asp Gly Leu Pro Cys Asn Leu Arg Lys Pro Cys Asn Arg Pro Ser Gly Leu Glu Pro Gln Pro Gly Val Phe Asp Cys Leu Arg Asp Ala Met Val Arg Asp Tyr Val Arg Gln Thr Trp Lys Leu Glu Gly Glu Ala Leu Glu Gln Ala Ile Ile Ser Gln Ala Pro Gln Val Glu Lys Leu Ile Ala Thr Thr Ala His Glu Arg Met Pro Trp Tyr His Ser Ser Leu Thr Arg Glu Glu Ala Glu Arg Lys Leu Tyr Ser Gly Ala Gln Thr Asp Gly Lys Phe Leu Leu Arg Pro Arg Lys Glu Gln Gly Thr Tyr Ala Leu Ser Leu Ile Tyr Gly Lys Thr Val Tyr His Tyr Leu Ile Ser Gln Asp Lys Ala Gly Lys Tyr Cys Ile Pro Glu Gly Thr Lys Phe Asp Thr Leu Trp Gln Leu Val Glu Tyr Leu Lys Leu Lys Ala Asp Gly Leu Ile Tyr Cys Leu Lys Glu Ala Cys Pro Asn Ser Ser Ala Ser Asn Ala Ser Gly Ala Ala Ala Pro Thr Leu Pro Ala His Pro Ser Thr Leu Thr His Pro Gln Arg Arg Ile Asp Thr Leu Asn Ser Asp Gly Tyr Thr Pro Glu Pro Ala Arg Ile Thr Ser Pro Asp Lys Pro Arg Pro Met Pro Met Asp Thr Ser Val Tyr Glu Ser Pro Tyr Ser Asp Pro Glu Glu Leu Lys Asp Lys Lys Leu Phe Leu Lys Arg Asp Asn

Leu Leu Ile Ala Asp Ile Glu Leu Gly Cys Gly Asn Phe Gly Ser Val

Arg Gln Gly Val Tyr Arg Met Arg Lys Lys Gln Ile Asp Val Ala Ile

	204	
	355	
	Lys Val Ley Lys Gln Cly mby Gl	
	Lys Val Leu Lys Gln Gly Thr Glu Lys Ala Asp Thr Glu Glu Met Met 370 375 380	t
5	385 390 Ala Gin Ile Met His Gln Leu Asp Asn Pro Tyr Ile Val Arg	3
	Leu Ile Gly Val Cys Gln Ala Glu Ala Leu Met Leu Val Met Glu Met)
	Ala Gly Gly Pro Leu His Lys Phe Leu Val Gly Lys Arg Cly Gly	
10	420 425 430 Ile Pro Val Ser Asn Val Ala Glu Leu Leu His Gln Val Ser Met Gly 435	ı
	435 440 445 Met Lys Tyr Leu Glu Glu Lys App Di 1915 Gin val Ser Met Gly	•
	Met Lys Tyr Leu Glu Glu Lys Asn Phe Val His Arg Asp Leu Ala Ala 450 455 460	
15	Arg Asn Val Leu Leu Val Asn Arg His Tyr Ala Lys Ile Ser Asp Phe	
	GIY Leu Ser Lys Ala Leu Gly Ala Asp Asp Ser Tyr Tyr Thr Ala Arg	
	Ser Ala Gly Lys Trp Pro Leu Lys Trp Tyr Ala Pro Glu Cys Ile Asn	
20	Phe Arg Lys Phe Ser Ser Arg Ser Asp Val Trp Ser Tyr Gly Val Thr	
	Met Trp Glu Ala Leu Ser Tyr Gly Gln Lys Pro Tyr Lys Lys Met Lys	
25	Gly Pro Glu Val Met Ala Phe Ile Glu Gln Gly Lys Arg Met Gly Cro	
	545 550 555 560	
	Pro Pro Glu Cys Pro Pro Glu Leu Tyr Ala Leu Met Ser Asp Cys Trp 565 570	
	11e Tyr Lys Trp Glu Asp Arg Pro Asp Phe Leu Thr Val Glu Gln Arg	
30	Met Arg Ala Cys Tyr Tyr Ser Leu Ala Ser Lys Val Glu Gly Pro Pro	
	Gly Ser Thr Gln Lys Ala Glu Ala Ala Cys Ala Trp Asp Pro Pro Val	
35	Ala Thr Met Val Ser Lys Gly Glu Glu Leu Phe Thr Gly Val Val Pro	
33	630 635 640 Ile Leu Val Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe Ser Val	
	645 650 655 Ser Gly Glu Gly App Ala Thur	
40	Ser Gly Glu Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr Leu Lys 660 665 665 670	
	Phe Ile Cys Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr Leu Val 675 680 685	
	Thr Thr Leu Thr Tyr Gly Val Gln Cys Phe Ser Arg Tyr Pro Asp His 690 695	
45	Met Lys Gln His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly Tyr Val	
	Gln Glu Arg Thr Ile Phe Phe Lys Asp Asp Gly Asn Tyr Lys Thr Arg	
	Ala Glu Val Lys Phe Glu Gly Asp Thr Leu Val Asp Arg Llo Gly Leu	
50	Lys Gly Ile Asp Phe Lys Glu Asp Gly Asp Ile Low Gly Wile 7	
	755 760 765 Glu Tyr Asn Tyr Asn Ser His Asn Val Tyr Ile Met Ala Asp Lys Gln 770 775	
	Lys Asn Gly Ile Lys Val Asn Phe Lys Ile Arg His Asn Ile Glu Asp 785 790	
55	785 790 795 800	
	Gly Ser Val Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro Ile Gly	

	Asp	Gly	Pro	Val 820	805 Leu	Leu	Pro	Asp	Asn 825	810 His	Tyr	Leu	Ser	Thr 830	815 Gln	Ser		
5	Ala	Leu	Ser 835		Asp	Pro	Asn	Glu 840		Arg	Asp	His	Met 845	Val	Leu	Leu		
	Glu	Phe 850		Thr	Ala	Ala	Gly 855		Thr	Leu	Gly	Met 860		Glu	Leu	Tyr		
10	Lys 865																	
			(2)	INI	FORM	MIOITA	1 FOF	SEC) ID	NO:	112:							
15		(i)	(A) (B) (C)	LENG TYPE STR	NCE (STH: E: nu NDEI OLOGY	1639 uclei ONESS	bas ic ac S: si	se pa cid ingle	airs									
20				OLEC	TULE JRE:	TYPI	E: CI	ONA										
25			(B)	LO	ME/KE CATIO MER I	ON: I	l]	L632	equer	nce								
25		()	ki) S	EQUE	ENCE	DESC	CRIPT	CION	: SE(Q ID	NO:	112:						
30														ACG Thr			48	
														GTG Val 30			96	
35														AGT Ser		_	144	
40														AAT Asn			192	
45														CTG Leu			240	
50														TCT Ser			288	
55														CAG Gln 110			336	
Jü	CAG	GGC	СТА	GCT	TTC	TGC	CAT	TCT	CAT	CGG	GTC	CTC	CAC	CGA	GAC	CTT	384	205

										200							
	G]	ln G	ly L 1	eu A: 15	la Pł	ne Cy	s Hi	.s Se 12	r Hi	s Aı	rg Va	al Le	eu Hi 12		g A	sp Leu	
5	AA Ly		CT C ro G 30	AG A# ln As	AT CI sn Le	G CT u Le	T AT u Il 13	e As	C AC	A GA r Gl	G GG u Gl	SG GC Ly Al	a Il	C AA e Ly	G CT	TA GCA u Ala	432
10	GA As 14	£	rr G(ne G]	GA CI ly Le	A GC u Al	C AG a Ar 15	A MI	T TT a Ph	T GG e Gl	A GT y Va	C CC 1 Pr 15	o Va	T CG	T AC g Th	Т ТА г Ту	C ACC T Thr	480
15	CA' Hi	T GA s Gl	G GI u Va	TG GT	G AC 1 Th 16	т пе	3 TG0 u Tr)	G TAC	C CG	A GC g Al 17	a Pr	T GA o Gl	A ATO	C CT	C CT u Le 17	G GGC u Gly 5	528
	TC(Se	G AA r Ly	A TA	T TA T Ty 18	. DC.	C ACA	A GCT	r GTC	G GAG L Asp 185	o Ile	C TG	G AG	C CTO	G GG(1 Gly 19(у Су	C ATC	576
20	TTT Phe	r GC e Al	T GA a Gl		G GTO	G ACT l Thr	CGC Arg	CGG J Arg 200	l ATS	C CTO	TTO Phe	C CC	r GGF O Gly 205	Asp	TC' Se:	r GAG r Glu	624
25	ATT Ile	GA6 Asp		G CT(n Lei	TTC Phe	CGG Arg	Ile 215	Pne	CGG Arg	ACT Thr	CTC	G GGC 1 Gly 220	Thr	CCA Pro	GAT Asp	GAG Glu	672
30	GTG Val 225	-	TGC Trp	G CCA	A GGA O Gly	GTT Val 230	ACT Thr	TCT Ser	ATG Met	CCT Pro	GAT Asp 235	Tyr	AAG Lys	CCA Pro	AGT Ser	TTC Phe 240	720
35	CCC Pro	AAC Lys	TGG Trp	GCC Ala	CGG Arg 245	CAA Gln	GAT Asp	TTT Phe	AGT Ser	AAA Lys 250	GTT Val	' GTA Val	CCT Pro	CCC Pro	CTG Leu 255	GAT Asp	768
	GAA Glu	GAT Asp	GGA Gly	CGG Arg 260	AGC Ser	TTG Leu	TTA Leu	TCG Ser	CAA Gln 265	ATG Met	CTG Leu	CAC His	TAC Tyr	GAC Asp 270	CCT Pro	AAC Asn	816
40	AAG Lys	CGG Arg	ATT Ile 275	JCI	GCC Ala	AAG Lys	GCA Ala	GCC Ala 280	CTG Leu	GCT Ala	CAC His	CCT Pro	TTC Phe 285	TTC Phe	CAG Gln	GAT Asp	864
45	GTG Val	ACC Thr 290	AAG Lys	CCA Pro	GTA Val	CCC Pro	CAT His 295	CTT Leu	CGA Arg	CTC Leu	TGG Trp	GAT Asp 300	CCA Pro	CCG Pro	GTC Val	GCC Ala	912
50	ACC Thr 305	ATG Met	GTG Val	AGC Ser	AAG Lys	GGC Gly 310	GAG Glu	GAG Glu	CTG Leu	TTC Phe	ACC Thr 315	GGG Gly	GTG Val	GTG Val	CCC Pro	ATC Ile 320	960
55	CTG Leu	GTC Val	GAG Glu	CTG Leu	GAC Asp 325	GGC Gly	GAC Asp	GTA . Val .	Asn	GGC Gly 330	CAC His	AAG Lys	TTC . Phe	Ser	GTG Val 335	TCC Ser	1008
	GGC	GAG	GGC	GAG	GGC	GAT (GCC /	ACC '	TAC (GGC .	AAG	CTG	ACC (TTC	1056 206

207

	Gly	Glu	Gly	Glu 340	Gly	Asp	Ala	Thr	Tyr 345	Gly	Lys	Leu	Thr	Leu 350	Lys	Phe		
5						AAG Lys												1104
10						GTG Val												1152
15						TTC Phe 390												1200
15						TTC Phe				_								1248
20						GGC Gly												1296
25						GAG Glu												1344
30						CAC His												1392
35						AAC Asn 470												1440
35						GAC Asp								_	_			1488
40						CCC Pro												1536
45						AAC Asn												1584
50						GGG Gly										AAG Lys	т	1633
	AA																	1635

(2) INFORMATION FOR SEQ ID NO:113:

(i) SEQUENCE CHARACTERISTICS:

```
(A) LENGTH: 544 amino acids
```

- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(v) FRAGMENT TYPE: internal

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:113:

Met Glu Asn Phe Gln Lys Val Glu Lys Ile Gly Glu Gly Thr Tyr Gly Val Val Tyr Lys Ala Arg Asn Lys Leu Thr Gly Glu Val Val Ala Leu Lys Lys Ile Arg Leu Asp Thr Glu Thr Glu Gly Val Pro Ser Thr Ala Ile Arg Glu Ile Ser Leu Leu Lys Glu Leu Asn His Pro Asn Ile Val Lys Leu Leu Asp Val Ile His Thr Glu Asn Lys Leu Tyr Leu Val Phe Glu Phe Leu His Gln Asp Leu Lys Lys Phe Met Asp Ala Ser Ala Leu Thr Gly Ile Pro Leu Pro Leu Ile Lys Ser Tyr Leu Phe Gln Leu Leu Gln Gly Leu Ala Phe Cys His Ser His Arg Val Leu His Arg Asp Leu Lys Pro Gln Asn Leu Leu Ile Asn Thr Glu Gly Ala Ile Lys Leu Ala Asp Phe Gly Leu Ala Arg Ala Phe Gly Val Pro Val Arg Thr Tyr Thr His Glu Val Val Thr Leu Trp Tyr Arg Ala Pro Glu Ile Leu Leu Gly Ser Lys Tyr Tyr Ser Thr Ala Val Asp Ile Trp Ser Leu Gly Cys Ile Phe Ala Glu Met Val Thr Arg Arg Ala Leu Phe Pro Gly Asp Ser Glu Ile Asp Gln Leu Phe Arg Ile Phe Arg Thr Leu Gly Thr Pro Asp Glu Val Val Trp Pro Gly Val Thr Ser Met Pro Asp Tyr Lys Pro Ser Phe Pro Lys Trp Ala Arg Gln Asp Phe Ser Lys Val Val Pro Pro Leu Asp Glu Asp Gly Arg Ser Leu Leu Ser Gln Met Leu His Tyr Asp Pro Asn Lys Arg Ile Ser Ala Lys Ala Ala Leu Ala His Pro Phe Phe Gln Asp Val Thr Lys Pro Val Pro His Leu Arg Leu Trp Asp Pro Pro Val Ala Thr Met Val Ser Lys Gly Glu Glu Leu Phe Thr Gly Val Val Pro Ile Leu Val Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe Ser Val Ser Gly Glu Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr Leu Lys Phe Ile Cys Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr Leu Val Thr

209

	Thr	Leu 370	Thr	Tyr	Gly	Val	Gln 375	Cys	Phe	Ser	Arg	Tyr 380	Pro	Asp	His	Met	
	Lys 385	_	His	Asp	Phe	Phe 390		Ser	Ala	Met			Gly	Tyr	Val		
5		Arg	Thr	Ile	Phe		Lys	Asp	Asp		395 Asn	Tyr	Lys	Thr		400 Ala	
	Glu	Val	Lys	Phe	405 Glu	Gly	Asp	Thr	Leu	410 Val	Asn	Arg	Ile	Glu	415 Leu	Lys	
	Glv	Ile	Asp	420 Phe	Lys	Glu	Asp	Glv	425 Asn	Ile	Leu	Glv	His	430 Lvs	Leu	Glu	
10			435					440				_	445				
	Tyr	450	Tyr	Asn	Ser	HIS	455	vaı	Tyr	TTE	Met	A1a 460	Asp	Lys	GIn	Lys	
	Asn 465	Gly	Ile	Lys	Val	Asn 470	Phe	Lys	Ile	Arg	His 475	Asn	Ile	Glu	Asp	Gly 480	
15	Ser	Val	Gln	Leu	Ala 485	Asp	His	Tyr	Gln	Gln 490	Asn	Thr	Pro	Ile	Gly 495	Asp	
	Gly	Pro	Val		Leu	Pro	Asp	Asn			Leu	Ser	Thr			Ala	
	Leu	Ser	Lys	500 Asp	Pro	Asn	Glu	Lys	505 Arg	Asp	His	Met	Val	510 Leu	Leu	Glu	
20	Dho	Wa I	515	777	Ala	Cly	Tlo	520	Lou	C1	Mot	7 an	525	T 011	Tire	Tvo	
	PHE	530	1111	Ala	міа	GIY	535	1111	beu	Gry	Mec	540	GIU	пеп	ıyı	Буѕ	
			(2)	INI	FORM	TION	1 FOI	R SE	QI Ç	NO:	114:						
25		()	i) SI	eouri	NCE (ימממי	ושרטבו	י ביי	ירפי								
		()	(A)	LENG	GTH:	1635	bas	se pa									
					E: ni ANDEI				2								
30					DLOG			-									
				OLEC	CULE JRE:	TYPI	E: cI	ONA									
35			(A)	NAI	ME/KE	EY: (Codir	ng Se	equer	nce							
					CATIO												
		(2	(i) S	EQUI	ENCE	DESC	CRIPT	rion	: SE() ID	NO:	114:					
40	ATG	GTG	AGC	ΔAG	GGC	GAG	GAG	CTG	ጥጥር	ACC	GGG	GTG	GTG	CCC	ልጥሮ	כידני	48
	Met				Gly					Thr					Ile		10
	1				5					10					15		
45					GGC Gly												96
	vai	GIU	Deu	20	GLY	rap	Val	Maii	25 25	nis	пуз	FIIC	261	30	261	Gry	
	GAG	GGC	GAG	GGC	GAT	GCC	ACC	TAC	GGC	AAG	CTG	ACC	CTG	AAG	TTC	ATC	144
50	Glu	Gly	Glu 35	Gly	Asp	Ala	Thr	Tyr 40	Gly	Lys	Leu	Thr	Leu 45	Lys	Phe	Ile	•
	TGC	ACC	ACC	GGC	AAG	CTG	CCC	GTG	CCC	TGG	כככ	ACC	СТС	GTG	ACC	ACC	192
E E		Thr			Lys		Pro					Thr					
55		50					55					60					

												21										
-	6	5		•		GC G Ly V	7	0	-ys	PHE	: Se	r A	rg 1	Tyr 75	Pro) As	p i	lis	Me	t :	Lys 80	240
5				•		C T ie Pl 8!	5	y 5 .	CI	HIG	и ме	9(.co G	ilu	Gly	ту	r V	al	G1: 95	n (Glu	288
10		_			10			узн	.sp	Авр	10	y As 5	n T	yr	Lys	Th	r A 1	rg 10	Ala	a (3lu	336
15			•	115		G GG u Gl	·y A	op 1	:	120	val	L AS	n A	rg	Ile	Gl:	ı L	eu	Lys	3 G	ly	384
20		13	30		-1	G GA 5 Gl	~ /I.	1:	35	na <i>F</i>	116	: ье	u G.	Ly :	His 140	Lys	: Le	eu	Glu	T	yr	432
	14	5	•			CA Hi	15	0	11 1	ΥΥ	тте	Me	15	la <i>1</i> 55	Asp	Lys	G]	n i	Lys	A:	sn 60	480
25	_			- . -		AA Ası 165	5	с пу	SI	те	Arg	H15	As)	n]	lle	Glu	As	p (31y 175	Se	er	528
30					180		,	3 I Y	ı G	III ·	GIN 185	Asn	Th	r F	ro	Ile	Gl 19	у <i>Р</i> 0	Asp	G1	У	576
35			1	95		CCC	11.01	, AS	20	00	ryr	ren	Se	r T	hr (Gln 205	Se	r A	la	Le	u	624
40		210	0	•		AAC Asn	010	21!	5 S A1	g A	qaA	HIS	Met	2 V	al I 20	Leu	Le	1 G	lu	Ph	е	672
	GTG Val 225					U .,	230	1111	. Le	eu c	яТĀ	Met	235) G	lu I	eu	Туз	L	ys :	Se:	r O	720
45	GGA Gly	CTC	A)	GA :	rcr Ser	CGA Arg 245	GCC Ala	ATC Met	GA Gl	G A	sn	TTC Phe 250	CAA Gln	A.Z	AG G vs V	TG al	GAA Glu	L	AG 2 ys :	ATC	2	768
50	GGA Gly	GAG Glu	GG G1	-	ACG Thr 160	TAC Tyr	GGA Gly	GTT Val	' GT Va	1 T	AC 2 yr 1 65	AAA Lys	GCC Ala	Ar	A A	sn :	AAG Lys 270	Le	rg A	ACG Thr	3 :	816
55	GGA Gly	GAG Glu	GT Va 27	G G 1 V 5	TG (GCG Ala	CTT Leu	AAG Lys	AA Lys 280	S I.	TC (CGC Arg	CTG Leu	GA As	p T	CT (hr (GAG Glu	AC	T G	GAG Slu	;	864

						211					
			ACT Thr								912
5			ATT Ile								960
10			GTT Val 325								1008
15			GCT Ala								1056
			CTG Leu								1104
20			GAC Asp								1152
25			CTA Leu								1200
30			TAC Tyr 405		_					_	1248
35			CTG Leu							_	1296
40			TGC Cys						_		1344
40			TCT Ser								1392
45			GAT Asp								1440
50		_	AGT Ser 485			 	 				1488
55			CTG Leu								1536

										21								
	CT Le	CG C		AC GI yr A: 15	AC Co	CT A.	ac A	ys Al	GG A' rg I: 20	TT To	CG G er A	CC A	ys A	CA G la A 25	CC C	TG GCT eu Ala		1584
5	CA Hi	C CC s Pr 53		rc Ti	rc ca ne Gl	AG GA	SP V	rg ac al Th	CC AA	AG CO	CA G: ro Va	al Pi	CC CA ro H:	AT C	FT CC	GA CTC f	т	1633
10	GA		,	ד נכי	NEOD	Mስጥነ	-ON F	.05		_								1635
			,	2, 1	MEOR	I LAM	.ON F	OR S	EQ I	D NC):115	:						
15			(A (B (C) TY	NGTH PE: RAND	: 54 amin EDNE	4 am o ac SS:	sing	acid	s:								
20			(ii) (v)	MOL FRAG	ECUL MENT	Е ТҮ ТҮР	PE: E: i	prote	ein nal									
			(xi)	SEQ	JENC	E DE	SCRI	PTIO	N: S	EO TI	р ио	.115						
25	Met 1				s Gly									l Pro	o Ile	e Leu		
20									ı Gly							c Gly		
			/ Glu					туг						20		e Ile		
30								40				Thi				Thr		
	Leu 65	Thr	Туг	Gly	Val	Glr 70	Cys	Phe	Ser	Arg	Tyr	60 Pro	Asp	His	Met	Lys		
35	Gln	His	Asp	Phe	Phe 85		Ser	Ala	Met	Pro	75 Glu	Gly	туг туг	Val	Gln	80 Glu		
	Arg	Thr	Ile	Phe 100	Phe	Lys	Asp	Asp	Gly 105	90 Asn	туг	Lys	Thr	Arg	95 Ala	Glu		
	Val	Lys	Phe 1 1 5	Glu	Gly	Asp	Thr	Leu 120	Val	Asn	Arg	Ile			Lys	Gly		
40	Ile	Asp 130	Phe	Lys	Glu	Asp	Gly 135	Asn	Ile	Leu	Gly	His	125 Lys	Leu	Glu	Tyr		
	Asn 145	Tyr	Asn	Ser	His	Asn 150	Val	Tyr	Ile	Met	Ala	140 Asp	Lys	Gln	Lys	Asn		
45						Phe		Ile										
								Gln	Gln	Asn	Thr							
	Pro								Tyr									
50								Arg										
	Val 225						Thr											
F F	Gly :	Leu	Arg	Ser	Arg	Ala	Met	Glu	Asn	Phe	235 Gln	Lve	Val	Gl	T > - ~	240 Tlo		
55	Gly (
						_		-		_, .		• 3 L G	ASII	ьys	ьeи	inr		

213

										213						
				260					265					270		
	Gly	Glu	Val 275	Val	Ala	Leu	Lys	Lys 280	Ile	Arg	Leu	Asp	Thr 285	Glu	Thr	Glu
5	Gly	Val 290		Ser	Thr	Ala	Ile 295		Glu	Ile	Ser	Leu 300		Lys	Glu	Leu
J			Pro	Asn	Ile			Leu	Leu	Asp			His	Thr	Glu	
	305		M	T	17-1	310	01	D1	T	*** -	315	3		.	T	320
					325					330					Lys 335	
10	Met	Asp	Ala	Ser 340	Ala	Leu	Thr	Gly	Ile 345	Pro	Leu	Pro	Leu	11e 350	Lys	Ser
	Tyr	Leu	Phe 355	Gln	Leu	Leu	Gln	Gly 360	Leu	Ala	Phe	Cys	His 365	Ser	His	Arg
15	Val	Leu 370		Arg	Asp	Leu	Lys 375		Gln	Asn	Leu	Leu 380		Asn	Thr	Glu
	-		Ile	Lys	Leu			Phe	Gly	Leu			Ala	Phe	Gly	Val 400
	385 Pro	Val	Arg	Thr	-	390 Thr	His	Glu	Val		395 Thr	Leu	Trp	Tyr	Arg	
20	Pro	Glu	Ile		405 Leu	Gly	Ser	Lys	-	410 Tyr	Ser	Thr	Ala		415 Asp	Ile
	Trp	Ser		420 Gly	Cys	Ile	Phe		425 Glu	Met	Val	Thr	_	430 Arg	Ala	Leu
	Phe	Pro	435 Gly	Asp	Ser	Glu	Ile	440 Asp	Gln	Leu	Phe	Arg	445 Ile	Phe	Arg	Thr
25	Leu	450 Gly	Thr	Pro	Asp	Glu	455 Val	Val	Trp	Pro	Gly	460 Val	Thr	Ser	Met	Pro
	465	_			_	470			_		475				Ser	480
20	_	-	-		485			_	-	490	_		_		495	
30	Val	Val	Pro	Pro 500	Leu	Asp	GIu	Asp	G1y	Arg	Ser	Leu	Leu	5er	Gln	Met
	Leu	His	Tyr 515	Asp	Pro	Asn	Lys	Arg 520	Ile	Ser	Ala	Lys	Ala 525	Ala	Leu	Ala
35	His	Pro 530	Phe	Phe	Gln	Asp	Val 535	Thr	Lys	Pro	Val	Pro 540	His	Leu	Arg	Leu
			(2)) INI	FORM	ATIO	v FO	R SEG) ID	NO:	116:					
									_							
40		(:	(A) (B)	EQUEI LEN(TYPI STRI	GTH: E: ni	2532 ucle:	2 bas	se pa	airs							
				TOP				_	-							
45				MOLE FEAT		TYPI	E: c	DNA								
) NAI					eque	nce						
50			•) LO	-											
		(:	xi) :	SEQU	ENCE	DES	CRIP'	TION	: SE	Q ID	NO:	116:				

213

48

15

10

ATG GTG AGC AAG GGC GAG GAG CTG TTC ACC GGG GTG GTG CCC ATC CTG

Met Val Ser Lys Gly Glu Glu Leu Phe Thr Gly Val Val Pro Ile Leu

5

55

.1

5					20	P 01	.у.ғ.	sp ·	vaı	AS	1 G. 25	Ly 1	His	Ly	s Pl	ne	Ser	. Va	l s	er	GGC Gly	96
	GA G1	G G	-	GAG Glu 35	GG Gl	C GA y As	T G	CC A	ACC	TA(Ty) 40	G GC	ic i	AAG Lys	CTo	G AC	ır	CTG Leu 45	AA Ly	GT sP	TC he	ATC Ile	144
10	TG(Cy:	C A(s T)		ACC Thr	G17	C AA y Ly	G C	-u F	CCC Pro	GTC Val	CC Pr	C 1	rgg Trp	CCC	C AC Th	ır]	CTC Leu	GT Va	G AG	cc	ACC Thr	192
15	CTC Let 65	3 AC	ec :	IAC Iyr	GGC Gly	C GT V Va	G CA 1 G1 70	.11 C	'GC	TTC	AG Se	C C	:GC .rg	TAC Tyr 75	C CC	C (SAC Asp	CA:	C AT	rg et	AAG Lys 80	240
20				F		TTO Pho 85	- шу	5 5	er	Ата	ме	t Р 9	ro 0	Glu	Gl;	уΊ	yr	Va]	95	n	Glu	288
25	J				100		: цу	S A	sp	Asp	105	γ A: 5	sn	Tyr	Lys	з Т	hr	Arg 110	Al	a	Glu	336
		_,	1	15	oru	GGC	AS	9 11	ır .	120	val	L As	sn i	Arg	Ile	2 G	1u 25	Leu	Ьγ	s (Gly	384
30	ATC Ile	GAG As ₁		TC he	AAG Lys	GAG Glu	GA(G GG G G1 13	. у и	AAC Asn	ATC	CT Le	rg (eu (GGG Gly	CAC His	L	AG Ys	CTG Leu	GA(3 7 u 1	TAC Tyr	432
35	AAC Asn 145	TAC	C A/	AC .	AGC Ser	CAC His	AAC Asr 150	ı va	C 1	TAT Tyr	ATC Ile	AT Me	t A	GCC Ala 155	GAC Asp	L)	AG (CAG Gln	AAC Lys	s P	AAC Asn .60	480
40	GGC Gly	ATC	Ly	AG (GTG /al	AAC Asn 165	TTC	Ly	G A s I	TC le	CGC Arg	CA Hi 17	s A	AC sn	ATC Ile	GP G1	.u A	GAC Asp	GGC Gly 175	S	GC er	528
45	GTG Val	CAG Gln	Le		SCC Ala .80	GAC Asp	CAC His	TA:	C C	ın (CAG Gln 185	AA As:	C A	.cc hr	CCC Pro	AT Il	e G	GC 1y .90	GAC Asp	G	GC ly	576
	CCC Pro	GTG Val	CT Le		TG eu	CCC Pro	GAC Asp	AA(Asr	1 H	AC ? is ?	rac ryr	CT(G A	GC /	ACC Thr	CA G1 20	n S	cc	GCC Ala	Ľ.	TG eu	624
50	AGC :	AAA Lys 210	GA:	C C	cc i	AAC Asn	GAG Glu	AAC Lys 215	A	GC (SAT Asp	CAC His	C AT	et '	GTC Val 220	CT(G C	TG eu	GAG Glu	T'	rc ne	672
55	GTG A Val 7 225	ACC Thr	GC(C G	CC (- J	ATC Ile 230	ACT Thr	CT Le	rc e	GC ly	ATC Met	G G# : As	sp G	GAG Glu	CT(3 T.	AC . yr :	AAG Lys	TO Se	er	720
																						0.4

215

	_				CGA	_											768
5	GIY	Leu	Arg	ser	Arg 245	GIU	met	Leu	ser	250	Gly	Trp	Phe	His	Arg 255	Asp	
J					GAT												816
	Leu	Ser	Gly	Leu 260	Asp	Ala	Glu	Thr	Leu 265	Leu	Lys	Gly	Arg	Gly 270	Val	His	
10					GCT Ala												864
	_		275					280		-			285	_			
15			_		GTG Val	_											912
.0	Deu	290	• • • •	•••		U 17	295	0111	,	****	****	300	nrg	110	U 2	7.011	
					TAT												960
20	305	Gly	Asp	FILE	Tyr	310	Den	ıyı	GIY	GIY	315	пув	PHE	AIA	1111	320	
					GAG Glu								•		_		1008
0.5	1111	Olu	Deu	vai	325	171	171	1111	GIII	330	GIII	GIY	Vai	neu	335	дор	
25	CGC	GAC	GGC	ACC	ATC	ATC	CAC	CTC	AAG	TAC	CCG	CTG	AAC	TGC	TCC	GAT	1056
	Arg	Asp	Gly	Thr 340	Ile	Ile	His	Leu	Lys 345	Tyr	Pro	Leu	Asn	Cys 350	Ser	Asp	
30				_	AGG										_	_	1104
	Pro	Thr	355	GIU	Arg	Trp	ıyr	360	GIY	HIS	Met	ser	365	GIY	GIN	AIA	
25					CAG												1152
35	GIU	370	Leu	ьец	Gln	AIG	3 7 5	GIY	GIU	PIO	irp	380	Pne	Leu	Val	AIG	
	_				CAG Gln												1200
40	385	Del	пси	561	GIII	390	Gly	nsp	FIIC	vai	395	SEL	Val	пец	261	400	
					GGC												1248
	GIII	PIO	Буъ	Ald	Gly 405	PIO	Gly	261	PIO	410	Arg	vai	1111	птв	415	цуѕ	
45	GTC	ATG	TGC	GAG	GGT	GGA	CGC	TAC	ACA	GTG	GGT	GGT	TTG	GAG	ACC	TTC	1296
	Val	Met	Cys	Glu 420	Gly	Gly	Arg	Tyr	Thr 425	Val	Gly	Gly	Leu	Glu 430	Thr	Phe	
50					GAC												1344
	Asp	ser	Leu 435	Tnr	Asp	ьeu	val	Glu 440	H1S	Pne	гуѕ	гуз	Thr 445	GIÀ	116	GIU	
55					GCC Ala												1392
55	GIU	450	Set	GIY	WIG	FIIE	455	TYL	ьец	Arg	GIII	460	TÄL	TAL	wrd	IIIL	

5	465				4	70	10 0	JIU	АЅП	Arg	1 Va. 479	l Lei 5	ı Gl	u Le	u As	C AAG n Lys 480	
	Lys (Sln (Slu S		lu A: 85	sp T	hr A	la:	AAG Lys	GCT Ala 490	Gl ⁷	C TTC / Phe	TG(G GA	G GA0 1 Gl1 49!	G TTT u Phe 5	1488
10	GAG A		5	00	, 5 0.		iu v	gT I	505	Asn	Leu	His	Gln	510	J Lei	ı Glu	1536
15	GGG C	5	15			<u></u> ,	52	20	ıys	Asn	Arg	Tyr	Ьуs 525	Asn	Ile	Leu	1584
20	CCC TO Pro	30	•			53	5	re L	eu (GIN	Gly	Arg 540	Asp	Ser	Asn	Ile	1632
25	CCC GC Pro GI 545	_		E -1	55	0	11 MI	.a.A.	sn :	lyr	11e 555	Lys	Asn	Gln	Leu	Leu 560	1680
	GGC CC			56!	5	. шу.	2 111	£ 13	yr 1 5	70	Ala	Ser	Gln	Gly	Cys 575	Leu	1728
30	GAG GC Glu Al		580)	. not	, Elle	- 11)	5 G J	in M 35	et 1	Ala	Trp	Gln	Glu 590	Asn	Ser	1776
35	CGT GT Arg Va	59	5			****	600)	.u v	aı (slu .	Lys (Gly . 605	Arg	Asn	Lys	1824
40	TGC GTO Cys Val)	-3-		110	615	val	. G1	у ме	et G	ln A	Arg <i>l</i> 520	Ala 1	Tyr	Gly :	Pro	1872
45	TAC TCT Tyr Ser 625				630	Cly	GIU	HI	S AS	sp T 6	nr 1 35	Chr G	3lu 7	Tyr 1	Lys 1	Leu 540	1920
50	CGT ACC			645	Jer	110	Leu	ASI	65 65	n G	ly A	sp L	eu I	le A	rg (Slu	1968
50	ATC TGG		660		-12	Deu	361	665	Pr	O As	зр Н	is G	ly V 6	al F 70	ro S	er	2016
55	GAG CCT Glu Pro	GGG Gly 675	GGT Gly	GTC Val	CTC Leu		TTC Phe 680	CTG Leu	GA As	c cz p Gl	AG A	le A	AC C sn G	AG C ln A	GG C rg G	AG ln	2064

				CCT Pro						_	_				_	_	2112
5																	
				ACA											_		2160
		GIA	Arg	Thr	GIY		TTE	TTE	vai	ше	715	Met	Leu	Met	GIU	720	
	705					710					112					120	
10	ATC	TCC	ACC	AAG	GGC	CTG	GAC	TGT	GAC	ATT	GAC	ATC	CAG	AAG	ACC	ATC	2208
	Ile	Ser	Thr	Lys	Gly	Leu	Asp	Cys	Asp	Ile	qaA	Ile	Gln	Lys	Thr	Ile	
					725					730					735		
												~~~				a. a	2256
15				CGG Arg													2256
15	GIII	met	Val	740	нта	GIII	ALG	ser	745	Mec	vai	GIII	1111	750	АІА	GIII	
				, 10													
	TAC	AAG	TTC	ATC	TAC	GTG	GCC	ATC	GCC	CAG	TTC	ATT	GAA	ACC	ACT	AAG	2304
	Tyr	Lys	Phe	Ile	Tyr	Val	Ala	Ile	Ala	Gln	Phe	Ile	Glu	Thr	Thr	Lys	
20			755					760					765				
	አክሮ	አአር	CTC	GAG	cac	CTG	CAG	TCC	CAG	አለር	aac	CNG	GAG	TCG	GAG	TAC	2352
				Glu											_		2332
	-1-	770					775			-1-		780				•	
25																	
				ACC										_		_	2400
	-	Asn	Ile	Thr	Tyr		Pro	Ala	Met	Lys		Ala	His	Ala	Lys		
	785					790					795					800	
30	TCC	CGC	ACC	TCG	TCC	AAA	CAC	AAG	GAG	GAT	GTG	TAT	GAG	AAC	CTG	CAC	2448
	Ser	Arg	Thr	Ser	Ser	Lys	His	Lys	Glu	Asp	Val	Tyr	Glu	Asn	Leu	His	
					805					810					815		
	N COTT	220	220	220	אממ	CAC	CNC	7 7 7 A	OTTO	ח ח פ	770	CAC	ccc.	TON	CCA	GNC	2496
35				AAG Lys											_		2430
00	1111	цуз	7,011	820	9	OIU	OIU	2,5	825	<i></i> , -	<i></i> , <i></i>	0111	*** 5	830			
	AAG	GAG	AAG	AGC	AAG	GGT	TCC	CTC	AAG	AGG	AAG	TGA					2532
40	Lys	Glu	-	Ser	Lys	Gly	Ser		Lys	Arg	Lys						
40			835					840									
•																	
			(2	) IN:	FORM	ATIO	N FO	R SE	Q ID	NO:	117:						•
45		(:		EQUE													
				LENO TYP					cias								
				STR					e								
				TOP				_									
50																	
				MOLE			-										
		(-	∨) F.	RAGM	ENT.	LIPE	: ın	cern	al								
		(:	xi)	SEQU	ENCE	DES	CRIP	TION	: SE	Q ID	NO:	117:					
55		·	•														
	Met	Val	Ser	Lys	Gly	Glu	Glu	Leu	Phe	Thr	Gly	Val	Val	Pro	Ile	Leu	
																	2

												2	18							•
						5	5					1	0						15	
																			l Se	r Gly
5																	eu :	Lys		e Ile
	Су	s I 5	hr 0	Thi	r Gl	у Lу	s Le	u P 5	ro	Va:	l Pr	0 T	'rp	Pro	Th	45 r Le	u '	Val	Th	r Thr
	Le 65	u T	hr	Туг	Gl	y Va	l G1	n C	ys	Phe	e Se	r A	rg	Туг	60 Pr	o As	p I	lis	Met	Lys
10	Gl	n H	is	Asp	Phe	e Ph 85			er	Ala	Me	t P	ro	75 Glu	ı Gl	у Ту	rī	/al	Glr	80 1 Glu
						∍ Ph					G1:	9 7 A								Glu
15					Gli	•			ır	Leu	ι Va	•					-			Gly
								p G1	y.	120	)						_			Tyr
							s As:	n Va												Asn
20						Ası	ı Ph													160 Ser
					Ala	Asp	,					1.	ın							
25			al	Leu																Leu
23		- Г	s.																	Phe
			_				Ile	Th:							220					Ser
30							230 Glu													
						477	Ala					- 7 5	^							
25			r I	Phe	~ • •		Arg				265									
35		Se	r i				Gly													
	Ser		-				Asp	2.7	3						200					
40							310 Tyr													
							Ile													
45							Trp													
45	Glu	Thi	: L																	
	Glu							<b>ગ</b> /၁							200					
50							330						- 3	95						
00	Gln					エレコ						4 7 N	١.						le :	Lys
	Val									- 4	ュンム							u I	hr i	
55	Asp																Gl	y I		
	Glu	мıа	Se	er G	TA I	ата	Phe	Val	Ту	r I	Leu .	Arg	G.	ln E	ro	Tyr	ту	r A	la 1	Chr

```
450
                          455
                                            460
     Arg Val Asn Ala Ala Asp Ile Glu Asn Arg Val Leu Glu Leu Asn Lys
              470
                              475
     Lys Gln Glu Ser Glu Asp Thr Ala Lys Ala Gly Phe Trp Glu Glu Phe
5
                                    490
                   485
     Glu Ser Leu Gln Lys Gln Glu Val Lys Asn Leu His Gln Arg Leu Glu
               500
                                 505
                                                  510
     Gly Gln Arg Pro Glu Asn Lys Gly Lys Asn Arg Tyr Lys Asn Ile Leu
                             520
                                            525
     Pro Phe Asp His Ser Arg Val Ile Leu Gln Gly Arg Asp Ser Asn Ile
10
                         535
     Pro Gly Ser Asp Tyr Ile Asn Ala Asn Tyr Ile Lys Asn Gln Leu Leu
                           555
           550
     Gly Pro Asp Glu Asn Ala Lys Thr Tyr Ile Ala Ser Gln Gly Cys Leu
15
                  565
                                    570
     Glu Ala Thr Val Asn Asp Phe Trp Gln Met Ala Trp Gln Glu Asn Ser
              580 585
     Arg Val Ile Val Met Thr Thr Arg Glu Val Glu Lys Gly Arg Asn Lys
      595
                 600
                                  605
     Cys Val Pro Tyr Trp Pro Glu Val Gly Met Gln Arg Ala Tyr Gly Pro
20
     Tyr Ser Val Thr Asn Cys Gly Glu His Asp Thr Thr Glu Tyr Lys Leu
                   630
                                        635
     Arg Thr Leu Gln Val Ser Pro Leu Asp Asn Gly Asp Leu Ile Arg Glu
25
                                   650
     Ile Trp His Tyr Gln Tyr Leu Ser Trp Pro Asp His Gly Val Pro Ser
               660
                                 665
                                                  670
     Glu Pro Gly Gly Val Leu Ser Phe Leu Asp Gln Ile Asn Gln Arg Gln
                             680
30
     Glu Ser Leu Pro His Ala Gly Pro Ile Ile Val His Cys Ser Ala Gly
                        695
                                           700
     Ile Gly Arg Thr Gly Thr Ile Ile Val Ile Asp Met Leu Met Glu Asn
                     710
                                        715
     Ile Ser Thr Lys Gly Leu Asp Cys Asp Ile Asp Ile Gln Lys Thr Ile
35
                  725 730 735
     Gln Met Val Arg Ala Gln Arg Ser Gly Met Val Gln Thr Glu Ala Gln
                                 745
     Tyr Lys Phe Ile Tyr Val Ala Ile Ala Gln Phe Ile Glu Thr Thr Lys
                              760
40
     Lys Lys Leu Glu Val Leu Gln Ser Gln Lys Gly Gln Glu Ser Glu Tyr
                          775
                                            780
     Gly Asn Ile Thr Tyr Pro Pro Ala Met Lys Asn Ala His Ala Lys Ala
                      790
                                        795
     Ser Arg Thr Ser Ser Lys His Lys Glu Asp Val Tyr Glu Asn Leu His
45
                   805
                                    810
     Thr Lys Asn Lys Arg Glu Glu Lys Val Lys Lys Gln Arg Ser Ala Asp
               820
                                 825
     Lys Glu Lys Ser Lys Gly Ser Leu Lys Arg Lys
                           840
```

(2) INFORMATION FOR SEQ ID NO:118:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 2562 base pairs
- (B) TYPE: nucleic acid

(C) STRANDEDNESS: single

220

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(ix) FEATURE:

5

(A) NAME/KEY: Coding Sequence(B) LOCATION: 1...2559

(D) OTHER INFORMATION:

10 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:118

, ,			(XI)	SEQ	UENC	E DE	SCRI	PTIO	N: S	EQ I	D NO	:118	:				
15	ATO Met	CT Le	G TC u Se	C CG	T GG g Gl	G TG y Tr	G TT p Ph	T CA e Hi	C CG s Ar	A GA g As 10	C CT p Le	C AG u Se	T GG r Gl	G CT	G GA u As 15	T GCA p Ala	48
				20	ı Dy	9 61	y Ar	3 GT	y Va. 25	l Hi	s Gl	y Se:	r Pho	e Lei 30	ı Al	T CGG a Arg	96
20			35	<i>-</i>	, 191	GII	1 61)	40	o Pne	e Sei	: Le	ı Sei	r Va] 45	l Arg	y Va:	G GGG l Gly	144
25		50				116	55	1116	GIr	n Asr	Ser	60 Gly	/ Asp	Phe	туг	GAC Asp	192
30	65	-1-	Cly	Oly	Giu	дуs 70	Pne	Ala	Thr	Leu	75	Glu	Leu	Val	Glu	TAC Tyr 80	240
35	-1-		0111	. GIII	85	GIŸ	vai	ьеи	GIn	Asp 90	Arg	Asp	Gly	Thr	Ile 95	ATC Ile	288
40			-,0	TAC Tyr 100	110	neu	ASII	Cys	105	Asp	Pro	Thr	Ser	Glu 110	Arg	Trp	336
40	•		115	CAC His	1100	Ser	GIY	120	Gin	Ala	Glu	Thr	Leu 125	Leu	Gln	Ala	384
45		130	914	110	ııp	1111	135	Leu	Val	Arg	Glu	Ser 140	Leu	Ser	Gln	Pro	432
50	GGA Gly 145			var	neu	150	vai	ьеи	Ser	Asp	Gln 155	Pro	Lys	Ala	Gly	Pro 160	480
55	GGC S		0		165	Vai	Int	HIS	ile	Lys 170	Val	Met	Cys	Glu	Gly 175	Gly	528
	CGC 1	TAC	ACA	GTG	GGT	GGT	TTG	GAG	ACC	TTC	GAC	AGC	CTC	ACG	GAC	CTG	576 220

										221		•					
	Arg	Tyr	Thr	Val 180	Gly	Gly	Leu	Glu	Thr 185	Phe	Asp	Ser	Leu	Thr 190	Asp	Leu	
5															GCC Ala		624
10															GCT Ala		672
															GAG Glu		720
15															AAG Lys 255		768
20															GAG Glu		816
25															AGC Ser		864
30															TAC Tyr	_	912
															AAC Asn		960
35															AAT Asn 335		1008
40															ATG Met		1056
45															TGG Trp		1104
50															AAC Asn		1152
55															GTC Val		1200
55	CCG	CTG	GAC	AAT	GGA	GAC	CTG	ATT	CGG	GAG	ATC	TGG	CAT	TAC	CAG	TAC	1248

	_									222							
	Pro	o Le	u As	p As	n Gl 40	y As _l 5	p Lei	u Ile	e Ar	g Gl:	u Ile O	e Tr	рHi	ѕ Ту	r Gl 41	n Tyr 5	
5	CT( Let	G AG	C TG	G CC p Pro 42	O AS	C CAT p His	r GG( s Gl)	G GTO	C CCC l Pro 425	Se:	r GA	G CC	T GG o Gl	G GG y Gl: 43	y Va	C CTC l Leu	1296
10	AG( Ser	TTO Pho	C CT6 e Les 43	u Asj	C CAC	G ATO	AAC Asr	C CAC 1 Glr 440	ı Arc	G CAC	G GA/	A AG	T CTO	u Pro	r CA	C GCA s Ala	1344
15	GGG Gly	Pro 450	) TT6	C ATO	C GT0 ≥ Val	G CAC	C TGC Cys 455	Ser	GCC Ala	GGC Gly	C ATO	GG( Gl ₃ 46(	Arg	C ACA	A GGG	C ACC	1392
	ATC Ile 465	116	r GT( ≥ Val	C ATO	GAC Asp	ATG Met	Leu	ATG Met	GAG Glu	AAC Asn	ATC Ile 475	Ser	C ACC	C AAC	GGG Gly	C CTG Leu 480	1440
20	GAC Asp	TGT Cys	GAC Asp	C ATI	GAC Asp 485	lle	CAG Gln	AAG Lys	ACC Thr	ATC Ile 490	Gln	ATC Met	GTC Val	CGG Arg	GCG Ala	G CAG	1488
25	CGC Arg	TCG Ser	GGC	ATG Met	val	CAG Gln	ACG Thr	GAG Glu	GCG Ala 505	CAG Gln	TAC Tyr	AAG Lys	TTC Phe	ATC Ile 510	Tyr	GTG Val	1536
30	GCC Ala	ATC	GCC Ala 515	GIN	TTC Phe	ATT Ile	GAA Glu	ACC Thr 520	ACT Thr	AAG Lys	AAG Lys	AAG Lys	CTG Leu 525	GAG Glu	GTC Val	CTG Leu	1584
35	CAG Gln	TCG Ser 530	CAG Gln	AAG Lys	GGC Gly	CAG Gln	GAG Glu 535	TCG Ser	GAG Glu	TAC Tyr	GGG Gly	AAC Asn 540	ATC Ile	ACC Thr	TAT Tyr	CCC Pro	1632
oo	CCA Pro 545	GCC Ala	ATG Met	AAG Lys	AAT Asn	GCC Ala 550	CAT His	GCC Ala	AAG Lys	GCC Ala	TCC Ser 555	CGC Arg	ACC Thr	TCG Ser	TCC Ser	AAA Lys 560	1680
40	CAC His	AAG Lys	GAG Glu	GAT Asp	GTG Val 565	TAT Tyr	GAG Glu	AAC Asn	CTG Leu	CAC His 570	ACT Thr	AAG Lys	AAC Asn	AAG Lys	AGG Arg 575	GAG Glu	1728
45	GAG Glu	AAA Lys	GTG Val	AAG Lys 580	AAG Lys	CAG Gln	CGG Arg	TCA Ser	GCA Ala 585	GAC Asp	AAG Lys	GAG Glu	AAG Lys	AGC Ser 590	AAG Lys	GGT Gly	1776
50	TCC Ser	CTC Leu	AAG Lys 595	AGG Arg	AAG Lys	CGA Arg	Ile	CTG Leu 600	CAG Gln	TCG Ser	ACG Thr	GTA Val	CCG Pro 605	CGG Arg	GCC Ala	CGG Arg	1824
55	GAT Asp	CCA Pro 610	CCG Pro	GTC Val	GCC Ala	Inr	ATG Met 615	GTG Val	AGC Ser	AAG Lys	Gly	GAG Glu 620	GAG Glu	CTG Leu	TTC Phe	ACC Thr	1872
	GGG (	GTG	GTG	ccc	ATC	CTG	GTC (	GAG ·	CTG (	GAC (	GGC	GAC	GTA	AAC	GGC	CAC	1920 222

										223							
	Gly 625	Val	Val	Pro	Ile	Leu 630	Val	Glu	Leu	Asp	Gly 635	Asp	Val	Asn	Gly	His 640	
5												GCC Ala					1968
10												CTG Leu					2016
			Leu	GTG				Thr	TAC			CAG Gln	Cys	TTC			2064
15												AAG Lys					2112
20												700 AAG					2160
	705	•	•			710	_				715	Lys	•	•		720	2208
25	-	-			725			-		730	-	Asp			735		
30												GAC Asp					2256
												AAC Asn					2304
35												TTC Phe 780					2352
40												CAC His					2400
45												GAC Asp					2448
50												GAG Glu					2496
			Leu					Thr				ATC Ile					2544
55	GAC	GAG	835 CTG	TAC	AAG	TAA		840					043				2562 22

224

Asp Glu Leu Tyr Lys

45

```
850
  5
                (2) INFORMATION FOR SEQ ID NO:119:
             (i) SEQUENCE CHARACTERISTICS:
               (A) LENGTH: 853 amino acids
               (B) TYPE: amino acid
 10
               (C) STRANDEDNESS: single
               (D) TOPOLOGY: linear
             (ii) MOLECULE TYPE: protein
             (v) FRAGMENT TYPE: internal
 15
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO:119:
      Met Leu Ser Arg Gly Trp Phe His Arg Asp Leu Ser Gly Leu Asp Ala
                                          10
20
      Glu Thr Leu Leu Lys Gly Arg Gly Val His Gly Ser Phe Leu Ala Arg
                 20
                                     2.5
      Pro Ser Arg Lys Asn Gln Gly Asp Phe Ser Leu Ser Val Arg Val Gly
                                40
      Asp Gln Val Thr His Ile Arg Ile Gln Asn Ser Gly Asp Phe Tyr Asp
25
      Leu Tyr Gly Gly Glu Lys Phe Ala Thr Leu Thr Glu Leu Val Glu Tyr
                         70
                                              75
      Tyr Thr Gln Gln Gln Gly Val Leu Gln Asp Arg Asp Gly Thr Ile Ile
                    85
                                         90
      His Leu Lys Tyr Pro Leu Asn Cys Ser Asp Pro Thr Ser Glu Arg Trp
30
                 100
                                    105
      Tyr His Gly His Met Ser Gly Gly Gln Ala Glu Thr Leu Leu Gln Ala
                                 120
                                           125
      Lys Gly Glu Pro Trp Thr Phe Leu Val Arg Glu Ser Leu Ser Gln Pro
35
                           135
                                                 140
      Gly Asp Phe Val Leu Ser Val Leu Ser Asp Gln Pro Lys Ala Gly Pro
                       150
                                            155
     Gly Ser Pro Leu Arg Val Thr His Ile Lys Val Met Cys Glu Gly Gly
                     165
                                         170
     Arg Tyr Thr Val Gly Gly Leu Glu Thr Phe Asp Ser Leu Thr Asp Leu
40
                180
```

185 Val Glu His Phe Lys Lys Thr Gly Ile Glu Glu Ala Ser Gly Ala Phe 195 200 205 Val Tyr Leu Arg Gln Pro Tyr Tyr Ala Thr Arg Val Asn Ala Ala Asp 215 220 Ile Glu Asn Arg Val Leu Glu Leu Asn Lys Lys Gln Glu Ser Glu Asp 230 235 Thr Ala Lys Ala Gly Phe Trp Glu Glu Phe Glu Ser Leu Gln Lys Gln 245 250

Glu Val Lys Asn Leu His Gln Arg Leu Glu Gly Gln Arg Pro Glu Asn 50 260 265 Lys Gly Lys Asn Arg Tyr Lys Asn Ile Leu Pro Phe Asp His Ser Arg

280 285 Val Ile Leu Gln Gly Arg Asp Ser Asn Ile Pro Gly Ser Asp Tyr Ile

55 295 300 Asn Ala Asn Tyr Ile Lys Asn Gln Leu Leu Gly Pro Asp Glu Asn Ala

										LLO						
	305					310					315					320
	Lys	Thr	Tyr	Ile	Ala 325	Ser	Gln	Gly	Cys	Leu 330	Glu	Ala	Thr	Val	Asn 335	Asp
5	Phe	Trp	Gln	Met 340	Ala	Trp	Gln	Glu	Asn 345		Arg	Val	Ile	Val 350	Met	Thr
	Thr	Arg	Glu 355		Glu	Lys	Gly	Arg 360		Lys	Cys	Val	Pro 365		Trp	Pro
	Glu	Val	Gly	Met	Gln	Arg	Ala 375		Gly	Pro	Tyr			Thr	Asn	Сув
10	_		His	Asp	Thr			Tyr	Lys	Leu	_	380 Thr	Leu	Gln	Val	
	385 Pro	Leu	Asp	Asn		390 Asp	Leu	Ile	Arg		395 Ile	Trp	His	Tyr		400 Tyr
	Levi	C0*	Trp	Dro	405	u; c	Gly.	Ma I	Dro	410	<i>c</i> 1	Dro	<i>α</i> 1	C1**	415	Ton
15			_	420					425				_	430		
			Leu 435	_				440	_				445			
00		450	Ile				455					460				
20	465		Val		_	470					475			-	_	480
			Asp		485			-		490				_	495	
25			Gly	500					505		-	_		510	_	
			Ala 515					520			-		525			
		530	Gln	_			535			_	_	540			_	
30	Pro 545	Ala	Met	Lys	Asn	Ala 550	His	Ala	Lys	Ala	Ser 555	Arg	Thr	Ser	Ser	<b>Ъуз</b> 560
			Glu	_	565	_				570		_		_	575	
35			Val	580	_		_		585	_	_		_	590	_	_
			Lys 595		_			600					605	_		_
		610	Pro				615					620				
40	625		Val			630				-	635	-			-	640
	Lys	Phe	Ser	Val	Ser 645	Gly	Glu	Gly	Glu	Gly 650	Asp	Ala	Thr	Tyr	Gly 655	Lys
45	Leu	Thr	Leu	Lys 660	Phe	Ile	Cys	Thr	Thr 665	Gly	Lys	Leu	Pro	Val 670	Pro	Trp
	Pro	Thr	Leu 675	Val	Thr	Thr	Leu	Thr 680	Tyr	Gly	Val	Gln	Cys 685	Phe	Ser	Arg
	Tyr	Pro 690	Asp	His	Met	Lys	Gln 695	His	Asp	Phe	Phe	Lys 700	Ser	Ala	Met	Pro
50	705	_	Tyr			710	_				715	_	_	_	_	720
	Tyr	Lys	Thr	Arg	Ala 725	Glu	Val	Lys	Phe	Glu 730	Gly	Asp	Thr	Leu	Val 735	Asn
55	Arg	Ile	Glu	Leu 740	Lys	Gly	Ile	Asp	Phe 745	Lys	Glu	Asp	Gly	Asn 750	Ile	Leu
	Gly	His	Lys	Leu	Glu	Tyr	Asn	Tyr	Asn	Ser	His	Asn	Val	Tyr	Ile	Met

	226	•
	755 760 765	
	Ala Asp Lys Gln Lys Asn Gly Ile Lys Val Asn Phe Lys Ile As	
_	Asn Ile Glu Asp Gly Ser Val Gly Ley Ale Ass	lm 3
5		
	Thr Pro Ile Gly Asp Gly Pro Val Leu Leu Pro Asp Asn His Ty	/r Leu
	Ser Thr Gln Ser Ala Leu Ser Lys Asp Pro Asn Glu Lys Arg As	l5 sp His
10	Met Val Leu Glu Phe Val Thr Ala Ala Gly Ile Thr Leu Gl	
	Asp Glu Leu Tyr Lys 850	
15	(2) INFORMATION FOR SEQ ID NO:120:	
20	<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 2994 base pairs</li> <li>(B) TYPE: nucleic acid</li> <li>(C) STRANDEDNESS: single</li> <li>(D) TOPOLOGY: linear</li> </ul>	
25	(ii) MOLECULE TYPE: cDNA (ix) FEATURE:	
	<ul><li>(A) NAME/KEY: Coding Sequence</li><li>(B) LOCATION: 12991</li><li>(D) OTHER INFORMATION:</li></ul>	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:120:	
35	ATG GTG AGC AAG GGC GAG GAG CTG TTC ACC GGG GTG GTG CCC ATC Met Val Ser Lys Gly Glu Glu Leu Phe Thr Gly Val Val Pro Ile 1 5 10 15	CTG 48
33	GTC GAG CTG GAC GGC GAC GTA AAC GGG GAG AAC	
	Val Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe Ser Val Ser 20 25 30	GGC 96 Gly
40	GAG GGC GAG GGC GAT GCC ACC TAC GGC AAG CTG ACC CTG AAG TTC	1 ma
	Glu Gly Gly Asp Ala Thr Tyr Gly Lys Leu Thr Leu Lys Phe 35 40 45	Ile 144
45	TGC ACC ACC GGC AAG CTG CCC GTG CCC TGG CCC ACC CTC GTG ACC Cys Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr Leu Val Thr	ACC 192
	50 55 60	Inr
	CTG ACC TAC GGC GTG CAG TGC TTC AGC CGC TAC CCC GAC CAC ATG	AAC 240
50	Leu Thr Tyr Gly Val Gln Cys Phe Ser Arg Tyr Pro Asp His Met  70  75	AAG 240 Lys 80
55	CAG CAC GAC TTC TTC AAG TCC GCC ATG CCC GAA GGC TAC GTC CAG Gln His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly Tyr Val Gln 85 90 95	Glu
	CGC ACC ATC TTC TTC AAG GAC GAC GGC AAC TAC AAG ACC CGC GCC	GAG 336 226

										227								
	Arg	Thr	Ile	Phe 100	Phe	Lys	Asp	Asp	Gly 105	Asn	Tyr	Lys	Thr	Arg 110	Ala	Glu		
5						GAC Asp										_	384	
10						GAC Asp									_		432	
						AAC Asn 150											480	
15						TTC Phe						_			_		528	
20						CAC His											576	
25						GAC Asp							_		_		624	
30						GAG Glu											672	
25						ATC Ile 230											720	
35						GCT Ala											768	
40						GGC Gly									_		816	
45	-					TTC Phe	-		_					_		_	864	
50						GCA Ala											912	
						TGG Trp 310											960	
55	AAC	CAT	GCC	AAT	GTT	GTA	AAG	GCC	TGT	GAT	GTT	CCT	GAA	GAA	TTG	AAT	1008	22

										228							
										33	0				33	eu Asn 35	
5				34	10	p va	I PI	o re	u Le 34	u A1 5	a Me	t Gl	u Ty	r Cy 35	s Se 0	CT GGA er Gly	•
10	GG Gl	A GA y As	AT CT sp Le 35		A AA	G CTO	G CT u Le	C AA u As: 36	п гу	A CC s Pr	A GA o Gl	A AA u As	T TG n Cy 36	s Cy	T GG s Gl	A CTT y Leu	1104
15	AA. Ly:	A GA S G1 37		GC CA	G AT	A CT'	TC 1 Se: 37!	r net	A CT/	A AG	T GA' r As _l	T AT p Il 38	e Gl	G TC' Y Se:	T GG r Gl	G ATT y Ile	1152
	CG/ Arg 385	A TA J Ty	T TT	G CA u Hi	T GA	A AAC 1 Asr 390	ı uy:	A ATT	Γ ATA ≥ Ile	A CA	CGA Arg 395	j As	T CT! p Lei	A AAI 1 Lys	A CC	T GAA O Glu 400	1200
20	AAC Asn	AT.	A GT e Va	T CT	T CAC u Glr 405	, web	' GTT	GGT Gly	GGA Gly	AAC Lys	Il€	A ATA	A CAT	AAA Lys	A AT	A ATT	1248
25	GAT Asp	CT(	G GG u Gl	A TAT Y Ty: 420	. MIG	AAA Lys	GAT Asp	GTT Val	GAT Asp 425	GIn	GGA Gly	AGT Ser	CTG	TGT Cys	Thi	A TCT	1296
30	TTT Phe	GT(	G GG/ 1 Gl ₃ 435		CTG	CAG Gln	TAT Tyr	CTG Leu 440	GCC Ala	CCA Pro	GAG Glu	CTC	TTT Phe	GAG Glu	AAT Asr	AAG Lys	1344
35	CCT Pro	TAC Tyr 450		GCC Ala	ACT Thr	GTT Val	GAT Asp 455	TAT Tyr	TGG Trp	AGC Ser	TTT Phe	GGG Gly 460	Thr	ATG Met	GTA Val	TTT	1392
	GAA Glu 465	TGT Cys	'ATT	GCT Ala	GGA Gly	TAT Tyr 470	AGG Arg	CCT Pro	TTT Phe	TTG Leu	CAT His	CAT His	CTG Leu	CAG Gln	CCA Pro	TTT Phe 480	1440
40	ACC Thr	TGG Trp	CAT His	GAG Glu	AAG Lys 485	ATT Ile	AAG Lys	AAG Lys	AAG Lys	GAT Asp 490	CCA Pro	AAG Lys	TGT Cys	ATA Ile	TTT Phe 495		1488
45	TGT Cys	GAA Glu	GAG Glu	ATG Met 500	TCA Ser	GGA Gly	GAA Glu	vai	CGG Arg 505	TTT Phe	AGT Ser	AGC Ser	CAT His	TTA Leu 510		CAA Gln	1536
50	CCA Pro	AAT Asn	AGC Ser 515	CTT Leu	TGT Cys	AGT Ser	Leu	ATA Ile 520	GTA Val	GAA Glu	CCC Pro	ATG Met	GAA Glu 525	AAC Asn	TGG Trp	CTA Leu	1584
55	CAG Gln	TTG Leu 530	ATG Met	TTG Leu	AAT Asn	TTD A	GAC Asp 535	CCT Pro	CAG (	CAG Gln	Arg	GGA Gly 540	GGA Gly	CCT Pro	GTT Val	GAC Asp	1632
00	CTT	ACT	TTG	AAG	CAG	CCA 1	AGA '	TGT :	TTT (	GTA '			GAT (	CAC .	ATT	TTG	1680 228

										229							
	Leu 545	Thr	Leu	Lys	Gln	Pro 550	Arg	Cys	Phe	Val	Leu 555	Met	Asp	His	Ile	Leu 560	
5						CAC His	_						_		_	_	1728
10						CCT Pro								_			1776
15						GGA Gly											1824
						CTG Leu								_		_	1872
20						GGC Gly 630						-					1920
25						TAT Tyr											1968
30	-					ATT Ile											2016
35						GTG Val										_	2064
33						AGC Ser									_		2112
40						TAT Tyr 710											2160
45						CAA Gln											2208
50						GAC Asp											2256
EE						AAA Lys											2304
55	AAG	GCC	ATC	CAC	TAT	GCT	GAG	GTT	GGT	GTC	ATT	GGA	TAC	CTG	GAG	GAT	2352

										200							
	Lу	s Al 77	a I] '0	e Hi	ѕ Ту	r Ala	a Gli 77!	u Va 5	l Gl	y Va	1 11	e Gl 78		r Le	u Gl	u Asp	
5	CA: Gl: 78!		T AI e Me	TG TC	T TT r Le	G CAT u His 790	AT &	r ga a Gl	A AT u Il	C AT e Me	G GG t G1 79	y Le	A CAG	G AA n Ly	G AG s Se	C CCC r Pro 800	2400
10	TA:	r GG	A AG y Ar	A CG	T CAG g Gl: 80!	п Сту	GAC Asp	TTO Le	G ATO	G GA t Gl: 81	u Se:	r CTO	G GA/	A CAG	G CG n Ar	T GCC g Ala 5	2448
15	AT7 Ile	GA'	T CT	A TA' u Ty: 820	г гу	G CAG S Gln	TTA Leu	AA Ly:	A CAG S His 825	s Arg	A CC	r TC#	A GAT	CAC His	s Se	C TAC r Tyr	2496
	AGT Ser	GA(	2 AG 5 Se: 83!		A GAO	ATG	GTG Val	AA/ Lys 840	3 116	ATT	GTC Val	G CAC	ACT Thr	· Va]	G CAC	G AGT	2544
20	CAG Gln	GAC Asp 850	, vr.	r GTC g Val	CTC Leu	AAG Lys	GAG Glu 855	CTC	TTT Phe	GGT Gly	CAT His	TTG Leu 860	Ser	AAC Lys	TTC Lev	TTG	2592
25	GGC Gly 865	TG1 Cys	C AAC	G CAG	AAG Lys	ATT Ile 870	ATT Ile	GAT Asp	CTA	CTC Leu	CCT Pro 875	Lys	GTG Val	GAA Glu	GTG Val	GCC Ala 880	2640
30	CTC Leu	AGT Ser	' AA'I ' Asn	ATC	AAA Lys 885	GAA Glu	GCT Ala	GAC Asp	AAT Asn	ACT Thr 890	GTC Val	ATG Met	TTC Phe	ATG Met	CAG Gln 895	Gly	2688
35	AAA Lys	AGG Arg	CAG Gln	AAA Lys 900	GAA Glu	ATA Ile	TGG Trp	CAT His	CTC Leu 905	CTT Leu	AAA Lys	ATT Ile	GCC Ala	TGT Cys 910	ACA Thr	CAG Gln	2736
	AGT Ser	TCT Ser	GCC Ala 915	CGC Arg	TCT Ser	CTT Leu	GTA Val	GGA Gly 920	TCC Ser	AGT Ser	CTA Leu	GAA Glu	GGT Gly 925	GCA Ala	GTA Val	ACC Thr	2784
40	CCT Pro	CAG Gln 930	ACA Thr	TCA Ser	GCA Ala	TGG Trp	CTG Leu 935	CCC Pro	CCG Pro	ACT Thr	TCA Ser	GCA Ala 940	GAA Glu	CAT His	GAT Asp	CAT His	2832
45	TCT Sér 945	CTG Leu	TCA Ser	TGT Cys	GTG Val	GTA / Val / 950	ACT Thr	CCT Pro	CAA Gln	GAT Asp	GGG Gly 955	GAG Glu	ACT Thr	TCA Ser	GCA Ala	CAA Gln 960	2880
50	ATG Met	ATA Ile	GAA Glu	GAA Glu	AAT Asn 965	TTG A	AAC ( Asn (	TGC Cys	CTT Leu	GGC Gly 970	CAT His	TTA Leu	AGC Ser	ACT Thr	ATT Ile 975	ATT Ile	2928
55	CAT (	GAG Glu	GCA Ala	AAT Asn 980	GAG Glu	GAA ( Glu (	CAG ( Gln (	GGC Gly	AAT Asn 985	AGT Ser	ATG Met	ATG . Met .	Asn :	CTT Leu 990	GAT Asp	TGG Trp	2976
-	AGT T	rgg	TTA	ACA	GAA '	TGA											2994 230

231

Ser Trp Leu Thr Glu 995

5 (2) INFORMATION FOR SEQ ID NO:121:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 997 amino acids
  - (B) TYPE: amino acid
- (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: protein
  - (v) FRAGMENT TYPE: internal

15

10

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:121:

	Met 1	Val	Ser	Lys	Gly 5	Glu	Glu	Leu	Phe	Thr 10	Gly	Val	Val	Pro	Ile 15	Leu
20	Val	Glu	Leu	Asp 20	Gly	Asp	Val	Asn	Gly 25	His	Lys	Phe	Ser	Val 30	Ser	Gly
	Glu	Gly	Glu 35	Gly	Asp	Ala	Thr	Tyr 40	Gly	Lys	Leu	Thr	Leu 45	Lys	Phe	Ile
25	_	Thr 50		_	-		55			-		60				
	65	Thr				70					75					80
	Gln	His	Asp	Phe	Phe 85	Lys	Ser	Ala	Met	Pro 90	Glu	Gly	Tyr	Val	Gln 95	Glu
30	Arg	Thr	Ile	Phe 100	Phe	Lys	Asp	Asp	Gly 105	Asn	Tyr	Lys	Thr	Arg 110	Ala	Glu
	Val	Lys	Phe 115	Glu	Gly	Asp	Thr	Leu 120	Val	Asn	Arg	Ile	Glu 125	Leu	Lys	Gly
35	Ile	Asp 130	Phe	Lys	Glu	Asp	Gly 135	Asn	Ile	Leu	Gly	His 140	Lys	Leu	Glu	Tyr
	Asn 145	Tyr	Asn	Ser	His	Asn 150	Val	Tyr	Ile	Met	Ala 155	Asp	Lys	Gln	Lys	Asn 160
		Ile	_		165		<u>.</u>			170				_	175	
40	Val	Gln	Leu	Ala 180	Asp	His	Tyr	Gln	Gln 185	Asn	Thr	Pro	Ile	Gly 190	qaA	Gly
	Pro	Val	Leu 195	Leu	Pro	Asp	Asn	His 200	Tyr	Leu	Ser	Thr	Gln 205	Ser	Ala	Leu
45	Ser	Lys 210	Asp	Pro	Asn	Glu	Lys 215	Arg	Asp	His	Met	Val 220	Leu	Leu	Glu	Phe
	Val 225	Thr	Ala	Ala	Gly	11e 230	Thr	Leu	Gly	Met	Asp 235		Leu	Tyr	Lys	Ser 240
	Gly	Leu	Arg	Ser	Arg 245	Ala	Gln	Ala	Ser	Asn 250	Ser	Thr	Met	Glu	Arg 255	Pro
50	Pro	Gly	Leu	Arg 260	Pro	Gly	Ala	Gly	Gly 265	Pro	Trp	Glu	Met	Arg 270	Glu	Arg
		Gly	275	-	-		-	280		-		•	285			
55	Leu	Asp 290	Leu	Lys	Ile	Ala	Ile 295	Lys	Ser	Cys	Arg	Leu 300	Glu	Leu	Ser	Thr
	T	7	7	07	70	(T)	G	TT -	~1·	T ] _	C1 ~	T1-	B4 ~ -	T	7	T 011

Lys Asn Arg Glu Arg Trp Cys His Glu Ile Gln Ile Met Lys Lys Leu

											2	32							
	3 (					:	310						31	5					320
					J	23						3 7 N	Va	l Pr					u Asn
5										4.4	eu 2	Ala	Me			_			r Gly
	G1	y As	sp Le 3!	eu Ai 55	g L	ys I	eu 1	Leu	As 36	n Ly	/S ]	Pro	Gli	ı As		s C	50 'ys	Gly	/ Leu
	Ly	's G]	lu Se 70	er Gl	ln I	le I	eu s	Ser 375	Le	u Le	eu s	Ser	Ası	) Il	36 e Gl	5 .y S	er	Gly	/ Ile
10	Ar 38	g Ту 5	r Le	eu Hi	s G	lu A	sn I 90	уys	11	e I1	e F	lis	Arg	38 As	p Le	u L	ys	Pro	Glu
	As	n Il	e Va	al Le	u G:	ln A 05	sp V	/al	Gl	y Gl	у І	ys	399 Ile	ll	e Hi	s L	ys	Ile	400 : Ile
15	As	p Le	u Gl	у Ту 42	r Al	la L	ys A	sp	Va:	l As	рG	ln	Gly	se:	r Le			415 Thr	Ser
	Pho	e Va	1 G1 43	y Th		eu G	ln I	уr	Le:	42 1 Al	a P	ro	Glu	Le		e G	30 lu	Asn	Lys
	Pro	о Ту 45	r Th O	r Al	a Th	r V	al A	sp 55	Ту	Tr	p S	er	Phe	Gly	44. Th:	5 r Me	et	Val	Phe
20		_		e Al			/r A 70	rg					4 7 F		Le				
				s Gl		s I.	le L												
25				u Mei 50	•					501	g Pi	he					eu -		
									ヘノロ	Va.	l G						n '		
				t Leu											Gly	' Pr			
30				ı Lys		JJ	v							Met	Asp				
				; Il∈								t	Thr						
35				Leu 580							Le	u :					n S	Ser	
									nuu							Le	u I		
40				Ile											Ser				
40				Val															
				Thr														eu	Ser
45				Asn 660													ı P	ro	
				Arg															
50				Asp															
				Leu															
				Ala															
55	Lys Glv																		
	Gly	-10	261	SET	oru	гÀв	мet	L	eu :	Lys	Ala	T	rp I	yys	Glu	Met	G]	u G	lu

			755					760					765				
	Lys	Ala		His	Tyr	Ala	Glu		Gly	Val	Ile	Gly		Leu	Glu	Asp	
		770					775					780				_	
5	785	11e	Met	Ser	Leu	H15	Ala	GIu	He	Met	795	Leu	GIn	Lys	Ser	Pro 800	
Ū		Gly	Arg	Arg	Gln		Asp	Leu	Met	Glu		Leu	Glu	Gln	Arg		
	_	_	_	_	805	_	-			810					815		
	Ile	Asp	Leu	-	Lys	Gln	Leu	Lys		Arg	Pro	Ser	Asp		Ser	Tyr	
10	Ser	Asp	Ser	820 Thr	Glu	Met	Val	Lvs	825 Ile	Ile	Val	His	Thr	830 Val	Gln	Ser	
			835					840					845				
	Gln		Arg	Val	Leu	Lys		Leu	Phe	Gly	His			Lys	Leu	Leu	
	Glv	850 Cve	Lve	Gln	Lve	Tle	855	Δen	I.em	T.em	Pro	860		Glu	Val	בות	
15	865	CyS	<b>_</b>	Q.1.1.	БуБ	870	110	Asp	Deu	ncu	875	БуБ	VOI	GIU	Val	880	
	Leu	Ser	Asn	Ile	Lys	Glu	Ala	Asp	Asn	Thr	Val	Met	Phe	Met	Gln	Gly	
			<b>03</b>	•	885	T3 -	<b></b>	***	•	890	•	-7-		<b>a</b>	895	<b>a</b> 1	
	гув	Arg	GIN	900	GIU	11e	Trp	HIS	ьец 905	Leu	гÀг	iie	Ala	910	Thr	Gin	
20	Ser	Ser	Ala		Ser	Leu	Val	Gly		Ser	Leu	Glu	Gly		Val	Thr	
			915					920					925				
	Pro	Gln 930	Thr	Ser	Ala	Trp	Leu 935	Pro	Pro	Thr	Ser	Ala 940	Glu	His	Asp	His	
	Ser		Ser	Cys	Val	Val		Pro	Gln	Asp	Glv		Thr	Ser	Ala	Gln	
25	945					950				_	955					960	
	Met	Ile	Glu	Glu		Leu	Asn	Cys	Leu	_	His	Leu	Ser	Thr	Ile	Ile	
	***	~1	n 7 -	7 ~~	965	G1	<b>~1</b> ~	<b>~</b> 2	D	970	Mah	M-4-	n	T	975	(Trees	
	HIS	GIU	Ald	980	GIU	Giu	GIII	GIY	985	ser	Mec	Met	ASI	990	Asp	11p	
30	ser	Trp	Leu		Glu												
			995														
			(2)	TNI	ORMA	OTTL	I FOI	SEC	מד כ	NO:	122 ·						
			(2)		OILL I			023,	2 10								
35		( :					CTE										
							l bas ic ac	_	airs								
							G: si		9								
							inear	_									
40							_										
				OLEC		TYPE	E: cI	ANC									
		(-	LA, 1	LAIC	Mr.												
							Codin	_	_	nce							
45							12										
			(U)	011	ier .	LNFOR	RMAT	LON:									
		()	ci) S	EQUI	ENCE	DESC	CRIP	rion	: SE	Q ID	NO:	122:					
F0																	
50															TGG Trp		48
	1	JIU	ALY	-10	5	GLY	Leu	vra	7.0	10	VIG	GIY	GIY	-10	11p	JIU	
66															CTG		96
55	Mec	Arg	GIII	Arg	neu	GIÀ	Inr	GIA	G1y 25	rne	чτλ	ASN	val	Cys 30	Leu	Tyr	

F	CAG Gln	CAT His	CGG Arg 35	GAA Glu	CTT Leu	GAT Asp	CTC Leu	AAA Lys 40	ATA Ile	GCA Ala	ATT	AAG Lys	TCT Ser 45	TGT Cys	CGC Arg	CTA Leu	144
5	GAG Glu	CTA Leu 50	AGT Ser	ACC Thr	AAA Lys	AAC Asn	AGA Arg 55	GAA Glu	CGA Arg	TGG Trp	TGC Cys	CAT His 60	GAA Glu	ATC Ile	CAG Gln	ATT Ile	192
10	ATG Met 65	AAG Lys	AAG Lys	TTG Leu	AAC Asn	CAT His 70	GCC Ala	AAT Asn	GTT Val	GTA Val	AAG Lys 75	GCC Ala	TGT Cys	GAT Asp	GTT Val	CCT Pro 80	240
15	GAA Glu	GAA Glu	TTG Leu	AAT Asn	ATT Ile 85	TTG Leu	ATT Ile	CAT	GAT Asp	GTG Val 90	CCT Pro	CTT Leu	CTA Leu	GCA Ala	ATG Met 95	GAA Glu	288
20	Tyr	Cys	TCT Ser	Gly 100	Gly	Asp	Leu	Arg	Lys 105	Leu	Leu	Asn	Lys	Pro 110	Glu	Asn	336
25	TG <b>T</b> Cys	TGT Cys	GGA Gly 115	CTT Leu	AAA Lys	GAA Glu	AGC Ser	CAG Gln 120	ATA Ile	CTT Leu	TCT Ser	TTA Leu	CTA Leu 125	AGT Ser	GAT Asp	ATA Ile	384
	GGG Gly	TCT Ser 130	GGG Gly	ATT Ile	CGA Arg	TAT Tyr	TTG Leu 135	CAT His	GAA Glu	AAC Asn	AAA Lys	ATT Ile 140	ATA Ile	CAT His	CGA Arg	GAT Asp	432
30	CTA Leu 145	AAA Lys	CCT Pro	GAA Glu	AAC Asn	ATA Ile 150	GTT Val	CTT Leu	CAG Gln	GAT Asp	GTT Val 155	GGT Gly	GGA Gly	AAG Lys	ATA Ile	ATA Ile 160	480
35	CAT His	AAA Lys	ATA Ile	ATT Ile	GAT Asp 165	CTG Leu	GGA Gly	TAT Tyr	GCC Ala	AAA Lys 170	GAT Asp	GTT Val	GAT Asp	CAA Gln	GGA Gly 175	AGT Ser	528
40	CTG Leu	TGT Cys	ACA Thr	TCT Ser 180	TTT Phe	GTG Val	GGA Gly	ACA Thr	CTG Leu 185	CAG Gln	TAT Tyr	CTG Leu	GCC Ala	CCA Pro 190	GAG Glu	CTC Leu	576
45	TTT Phe	GAG Glu	AAT Asn 195	AAG Lys	CCT Pro	TAC Tyr	Thr	GCC Ala 200	ACT Thr	GTT Val	GAT Asp	TAT Tyr	TGG Trp 205	AGC Ser	TTT Phe	gly ggg	624
	ACC Thr	ATG Met 210	GTA Val	TTT Phe	GAA Glu	TGT Cys	ATT Ile 215	GCT Ala	GGA Gly	TAT Tyr	AGG Arg	CCT Pro 220	TTT Phe	TTG Leu	CAT His	CAT His	672
50	CTG Leu 225	CAG Gln	CCA Pro	TTT Phe	Thr	TGG Trp 230	CAT His	GAG Glu	AAG Lys	ATT Ile	AAG Lys 235	AAG Lys	AAG Lys	GAT Asp	CCA Pro	AAG Lys 240	720
55	TGT Cys	ATA Ile	TTT Phe	Ala	TGT Cys 245	GAA Glu	GAG Glu	ATG Met	Ser	GGA Gly 250	GAA Glu	GTT Val	CGG Arg	Phe	AGT Ser 255	AGC Ser	768

					CCA												816
5	His	Leu	Pro	Gln 260	Pro	Asn	Ser	Leu	Cys 265	Ser	Leu	Ile	Val	Glu 270	Pro	Met	
J	GAA	AAC	TGG	CTA	CAG	TTG	ATG	TTG	AAT	TGG	GAC	ССТ	CAG	CAG	AGA	GGA	864
	Glu	Asn	Trp 275	Leu	Gln	Leu	Met	Leu 280	Asn	Trp	Asp	Pro	Gln 285	Gln	Arg	Gly	
10					CTT Leu												912
15					AAT Asn												960
	GCA	AAG	АТА	ATT	TCT	TTT	CTG	TTA	CCA	CCT	GAT	GAA	AGT	CTT	CAT	TCA	1008
20	Ala	Lys	Ile	Ile	Ser 325	Phe	Leu	Leu	Pro	Pro 330	Asp	Glu	Ser	Leu	His 335	Ser	
					ATT Ile												1056
25	GAA	СТТ	СТТ	TCA	GAG	ACA	GGA	АТТ	тст	СТС	САТ	ССТ	CGG	ΑΑΑ	CCA	GCC	1104
					Glu						_						
30		_			CTA Leu												1152
35					AAA Lys												1200
40					GAT Asp 405												1248
					ATA Ile												1296
45					CTA Leu												1344
50		_			TTA Leu												1392
55					TTG Leu												1440

	GAG Glu	TTT Phe	TTT Phe	CAC His	AAA Lys	Ser	ATT	CAG	CTT Leu	GAC Asp	Leu	GAG Glu	AGA Arg	TAC Tyr	AGC Ser 495	GAG Glu	1488
5	CAG Gln	ATG Met	ACG Thr	TAT Tyr 500	Gly	ATA Ile	TCT Ser	TCA Ser	GAA Glu 505	AAA Lys	ATG Met	CTA Leu	AAA Lys	GCA Ala 510	TGG Trp	AAA Lys	1536
10	GAA Glu	ATG Met	GAA Glu 515	Glu	AAG Lys	GCC Ala	ATC Ile	CAC His 520	Tyr	GCT Ala	GAG Glu	GTT Val	GGT Gly 525	GTC Val	ATT Ile	GGA Gly	1584
15	TAC Tyr	CTG Leu 530	GAG Glu	GAT Asp	CAG Gln	ATT Ile	ATG Met 535	TCT Ser	TTG Leu	CAT His	GCT Ala	GAA Glu 540	ATC Ile	ATG Met	GGG	CTA Leu	1632
20	G1n 545	AAG Lys	Ser	Pro	Tyr	Gly 550	Arg	Arg	Gln	Gly	Asp 555	Leu	Met	Glu	Ser	Leu 560	1680
25	Glu	CAG Gln	Arg	Ala	Ile 565	Asp	Leu	Tyr	Lys	Gln 570	Leu	Lys	His	Arg	Pro 575	Ser	1728
	Asp	CAC His	Ser	Tyr 580	Ser	Asp	Ser	Thr	Glu 585	Met	Val	Lys	Ile	Ile 590	Val	His	1776
30	ACT Thr	GTG Val	CAG Gln 595	AGT Ser	CAG Gln	GAC Asp	CGT Arg	GTG Val 600	CTC Leu	AAG Lys	GAG Glu	CTG Leu	TTT Phe 605	GGT Gly	CAT His	TTG Leu	1824
35	Ser	AAG Lys 610	Leu	Leu	Gly	Cys	Lys 615	Gln	Lys	Ile	Ile	Asp 620	Leu	Leu	Pro	Lys	1872
40	Va1 625	GAA Glu	Val	Ala	Leu	Ser 630	Asn	Ile	Lys	Glu	Ala 635	Asp	Asn	Thr	Val	Met 640	1920
45	TTC Phe	ATG Met	CAG Gln	GGA Gly	AAA Lys 645	AGG Arg	CAG Gln	AAA Lys	GAA Glu	ATA Ile 650	TGG Trp	CAT His	CTC Leu	CTT Leu	AAA Lys 655	ATT Ile	1968
	GCC Ala	TGT Cys	ACA Thr	CAG Gln 660	AGT Ser	TCT Ser	GCC Ala	CGC Arg	TCT Ser 665	CTT Leu	GTA Val	GGA Gly	TCC Ser	AGT Ser 670	CTA Leu	GAA Glu	2016
50	GGT Gly	GCA Ala	GTA Val 675	ACC Thr	CCT Pro	CAG Gln	Thr	TCA Ser 680	GCA Ala	TGG Trp	CTG Leu	CCC Pro	CCG Pro 685	ACT Thr	TCA Ser	GCA Ala	2064
55	GAA Glu	CAT His 690	GAT Asp	CAT His	TCT Ser	Leu	TCA Ser 695	TGT Cys	GTG Val	GTA Val	ACT Thr	CCT Pro 700	CAA Gln	GAT Asp	GGG Gly	GAG Glu	2112

					ATG												2160
-	Thr 705	Ser	Ala	Gln	Met	Ile 710	Glu	Glu	Asn	Leu	Asn 715	Cys	Leu	Gly	His	Leu 720	
5	AGC	ΔСТ	ΔΤΤ	ልጥጥ	CAT	GAG	GCA	דממ	GAG	GAA	CAG	GGC	ידממ	дст	ልጥር	ATG	2208
					His												2200
					725					730		7			735		
10	AAT	CTT	GAT	TGG	AGT	TGG	TTA	ACA	GAA	TGG	GTA	CCG	CGG	GCC	CGG	GAT	2256
	Asn	Leu	Asp	Trp 740	Ser	Trp	Leu	Thr	Glu 745	Trp	Val	Pro	Arg	Ala 750	Arg	Asp	
	CCA	CCG	GTC	GCC	ACC	ATG	GTG	AGC	AAG	GGC	GAG	GAG	CTG	TTC	ACC	GGG	2304
15	Pro	Pro	Val	Ala	Thr	Met	Val	Ser	Lys	Gly	Glu	Glu	Leu	Phe	Thr	Gly	
			755					760					765				
					CTG												2352
20	Val		Pro	Ile	Leu	Val		Leu	Asp	Gly	Asp		Asn	Gly	His	Lys	
20		770					775					780					
					GGC												2400
	785	ser	vaı	ser	Gly	790	GIY	Glu	GIA	Asp	A1a 795	Thr	Tyr	GIY	гÀа	ьеи 800	
25	765					790					193					800	
	ACC	CTG	AAG	TTC	ATC	TGC	ACC	ACC	GGC	AAG	CTG	CCC	GTG	CCC	TGG	CCC	2448
	Thr	Leu	Lys	Phe	Ile	Cys	Thr	Thr	Gly	Lys	Leu	Pro	Val	Pro	Trp	Pro	
					805					810					815		
30	ACC	CTC	GTG	ACC	ACC	CTG	ACC	TAC	GGC	GTG	CAG	TGC	TTC	AGC	CGC	TAC	2496
	Thr	Leu	Val	Thr	Thr	Leu	Thr	Tyr	Gly	Val	Gln	Cys	Phe	Ser	Arg	Tyr	
				820					825					830			
					AAG												2544
35	Pro	Asp		Met	Lys	Gln	His	_	Phe	Phe	Lys	Ser		Met	Pro	Glu	
			835					840					845				
	_		_	_	GAG									_			2592
40	GIY	850	vaı	GIN	Glu	Arg	855	тте	Pne	Pne	гуѕ	Asp 860	Asp	GIY	Asn	Tyr	
70		650					033					860					
	AAG	ACC	CGC	GCC	GAG	GTG	AAG	TTC	GAG	GGC	GAC	ACC	CTG	GTG	AAC	CGC	2640
	Lys	Thr	Arg	Ala	Glu	Val	Lys	Phe	Glu	Gly	Asp	Thr	Leu	Val	Asn	Arg	
Ω	865					870					875					880	
45	<b>.</b>	0.0	ama			7 mg	a. a			~~~	~~~	~~~			omo	000	2600
					GGC Gly												2688
	116	Giu	пец	цуѕ	885	116	Asp	Pne	цуѕ	890	Asp	GIA	ASII	116	895	GIY	
															0,0		
50	CAC	AAG	CTG	GAG	TAC	AAC	TAC	AAC	AGC	CAC	AAC	GTC	TAT	ATC	ATG	GCC	2736
	His	Lys	Leu	Glu	Tyr	Asn	$\mathtt{Tyr}$	Asn	Ser	His	Asn	Val	Tyr	Ile	Met	Ala	
				900					905					910			
	GNG	מממ	CAC	777	AAC	acc	אידים	770	ome	777	mma	מ מ מ	איייט	000	C2 C	ስ አ C	2701
55					Asn	_											2784
			915	_1 =		2		920				_10	925	9			

238

5	A7	C GA le Gl 93	u As	AC GG sp Gl	C AG y Se	C GT r Va	G CA 1 G1 93	n Le	C GC u Al	C GA	C CA	С ТА s Ту 94	r Gl	G CA	G AA n As	C ACC	2832
3	CC Pr 94	0 11	C GG e Gl	C GA y As	C GG p Gl	C CC y Pro 95	o va	G CT l Le	G CT u Le	G CC u Pr	C GA O As	p As	C CA	C TA	C CI r Le	G AGC u Ser 960	2880
10	111	ı Gı	11 56	I AI	а леі 96!	u Sei	с Бу	s As	p Pr	o As 97	n Gli 0	и ГУ	s Arg	g Ası	97	-	
15	va	T De	u be	98	u Pne	e val	ACC Th	C GC	G GC a Ala 98	a Gl	G ATO	C AC	r CT(	GG( Gl ₃ 990	/ Me	G GAC t Asp	2976
20		G CTO		r Ly:	G TAA	A											2991
25			(i) S (A) (B)	SEQUE LEN	NFORM ENCE NGTH:	CHAR 996 mino	ACTE ami aci	RIST .no a .d	ICS:		:123:						
30		(	(D)	TOP	CULE	Y: l TYP	inea E: p	rote	in								
35	Met				ENCE								Gly	Pro	Trp	Glu	
40	Met	Arg	Glu	Arg 20	Leu	Gly	Thr	Gly	Gly 25	10 Phe	Gly	Asn	Val	Cys	15 Leu	Tyr	
40			33		Leu Lys			40					45				
45	Met 65	Lys	Lys	Leu	Asn	His 70	Ala	Asn	Val	Val	Lys	60 Ala	Cys	Asp	Val	Pro	
				Gly	Ile 85 Gly					90					0.5		
50	Сув	Cys	Gly 115	Leu	Lys	Glu	Ser	Gln 120	105 Ile	Leu	Ser	Leu	Leu	110 Ser	Asp	Ile	
		130			Arg Asn		135					140	Ile				
55	443				Asp	T20					155					1.00	

					165					170					175	
	Lou	Cva	Thr	Ser	165	Wa l	Gly	Thr	T 011	170	There	LOW	ח ז ח	Dro	175	Len
	Leu	Cys	1111	180	FIIC	Val	Gry	1111	185	GIII	TAT	Leu	міа	190	GIU	пеа
	Phe	Glu	Asn	Lys	Pro	Tvr	Thr	Ala		Val	Asp	Tvr	Trp		Phe	Glv
5			195	-7-		-1-		200				-1-	205			
	Thr	Met	Val	Phe	Glu	Cys	Ile	Ala	Gly	Tyr	Arg	Pro	Phe	Leu	His	His
		210					215				_	220				
	Leu	Gln	Pro	Phe	Thr	Trp	His	Glu	Lys	Ile	Lys	Lys	Lys	Asp	${\tt Pro}$	Lys
	225					230					235					240
10	Cys	Ile	Phe	Ala	_	Glu	Glu	Met	Ser	-	Glu	Val	Arg	Phe		Ser
	***	<b>.</b>	<b>D</b>	<b>01</b>	245	<b>3</b>	O		G	250	•	<b>T</b> 3 .	**- 7	<b>a</b> 1	255	14-5
	HIS	ьeu	Pro	Gln 260	PIO	ASII	ser	Leu	265	ser	Leu	116	vaı	270	PIO	Met
	Glu	Asn	Trn	Leu	Gln	Leu	Met	Leu		Trp	Asn	Pro	Gln		Ara	Glv
15		11011	275		<b></b>			280					285			,
	Gly	Pro	Val	Asp	Leu	Thr	Leu	Lys	Gln	Pro	Arg	Cys	Phe	Val	Leu	Met
		290					295					300				
	Asp	His	Ile	Leu	Asn	Leu	Lys	Ile	Val	His	Ile	Leu	Asn	Met	Thr	Ser
	305		_	_		310					315					320
20	Ala	Lys	Ile	Ile		Phe	Leu	Leu	Pro		Asp	Glu	Ser	Leu		Ser
	T 011	~1 m	Cox	7 ~~~	325	C1	7 ~~	C1	mh.~	330	710	7.00	The se	C111	335	Gln
	геп	GIII	261	Arg	116	GIU	Arg	GIU	345	СТУ	116	ASII	1111	350	261	GIII
	Glu	Leu	Leu	Ser	Glu	Thr	Glv	Ile		Leu	Asp	Pro	Ara		Pro	Ala
25			355				2	360					365	•		
	Ser	Gln	Cys	Val	Leu	Asp	Gly	Val	Arg	Gly	Суз	Asp	Ser	Tyr	Met	Val
		370					375					380				
		Leu	Phe	Asp	Lys		Lys	Thr	Val	Tyr		Gly	Pro	Phe	Ala	
20	385	0	<b>.</b>	0	7	390	17-1	n	m	T3 -	395	<b>~1</b> -	<b>&gt;</b>		T	400
30	Arg	ser	Leu	Ser	405	Cys	vai	Asn	туг	410	vai	GIN	Asp	ser	цу S	TIE
	Gln	Leu	Pro	Ile		Gln	Leu	Ara	Lvs		Trp	Ala	Glu	Ala		His
				420					425					430		
	Tyr	Val	Ser	Gly	Leu	Lys	Glu	Asp	Tyr	Ser	Arg	Leu	Phe	Gln	Gly	Gln
35			435					440					445			
	Arg		Ala	Met	Leu	Ser		Leu	Arg	Tyr	Asn		Asn	Leu	Thr	Lys
		450	•	m\	T	<b>7</b> 3 -	455	71-	0	<b>01</b>	<b>a</b> 1	460	*	77-		T 011
	мес 465	гÀг	Asn	Thr	ren	470	ser	Ala	ser	GIN	475	Leu	Lys	Ата	гуя	480
40		Phe	Phe	His	Lvs		Tle	Gln	Leu	Asp		Glu	Ara	Tvr	Ser	
	014				485					490			••	-1-	495	
	Gln	Met	Thr	Tyr	Gly	Ile	Ser	Ser	Glu	Lys	Met	Leu	Lys	Ala	Trp	Lys
				500					505					510		
	Glu	Met	Glu	Glu	Lys	Ala	Ile	His	Tyr	Ala	Glu	Val	Gly	Val	Ile	Gly
45			515		_			520					525			_
	Tyr		Glu	Asp	GIn	He		Ser	Leu	His	Ala		Ile	Met	GIY	Leu
	Gla	530	Sar	Pro	Тиг	Gly	535	7~4	Gl n	alv	λαν	540	Mot	Glu	Ser	Len
	545	nys	361	FIU	1 Y L	550	Arg	Arg	GIII	сту	555	пеа	Mec	GIU	JCI	560
50		Gln	Arq	Ala	Ile		Leu	Tyr	Lys	Gln		Lys	His	Arq	Pro	
			_		565	-		-	-	570		-		_	575	
	Asp	His	Ser	Tyr	Ser	Asp	Ser	Thr	Glu	Met	Val	Lys	Ile	Ile	Val	His
				580		_		=	585					590		_
CE	Thr	Val		Ser	Gln	Asp	Arg		Leu	Lys	Glu	Leu		Gly	His	Leu
55	ee	T	595	Less	Glar.	C	T	600	T	T1.	т1.	7 c=	605	Torr	D~~	Lve
	ser	пÀв	Leu	Leu	GTÅ	Cys	пàв	GIII	гÀв	тте	116	Asp	ոեն	neu	PLO	nys

```
615
                                                620
      Val Glu Val Ala Leu Ser Asn Ile Lys Glu Ala Asp Asn Thr Val Met
                       630
                                 635
      Phe Met Gln Gly Lys Arg Gln Lys Glu Ile Trp His Leu Leu Lys Ile
 5
                     645
                                       650
      Ala Cys Thr Gln Ser Ser Ala Arg Ser Leu Val Gly Ser Ser Leu Glu
                 660
                                   665
      Gly Ala Val Thr Pro Gln Thr Ser Ala Trp Leu Pro Pro Thr Ser Ala
                                680
                                                   685
10
      Glu His Asp His Ser Leu Ser Cys Val Val Thr Pro Gln Asp Gly Glu
                      695
      Thr Ser Ala Gln Met Ile Glu Glu Asn Leu Asn Cys Leu Gly His Leu
                        710
                                          715
      Ser Thr Ile Ile His Glu Ala Asn Glu Glu Gln Gly Asn Ser Met Met
15
                   725
                                       730
      Asn Leu Asp Trp Ser Trp Leu Thr Glu Trp Val Pro Arg Ala Arg Asp
                         745
      Pro Pro Val Ala Thr Met Val Ser Lys Gly Glu Glu Leu Phe Thr Gly
                                760
20
      Val Val Pro Ile Leu Val Glu Leu Asp Gly Asp Val Asn Gly His Lys
                            775
      Phe Ser Val Ser Gly Glu Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu
                        790
                                           795
      Thr Leu Lys Phe Ile Cys Thr Thr Gly Lys Leu Pro Val Pro Trp Pro
25
                    805
                                       810
     Thr Leu Val Thr Thr Leu Thr Tyr Gly Val Gln Cys Phe Ser Arg Tyr
                820
                                    825
                                                830
      Pro Asp His Met Lys Gln His Asp Phe Phe Lys Ser Ala Met Pro Glu
                               840
30
     Gly Tyr Val Gln Glu Arg Thr Ile Phe Phe Lys Asp Asp Gly Asn Tyr
                           855
                                              860
     Lys Thr Arg Ala Glu Val Lys Phe Glu Gly Asp Thr Leu Val Asn Arg
                        870
                                          875
     Ile Glu Leu Lys Gly Ile Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly
35
                    885
                                       890
     His Lys Leu Glu Tyr Asn Tyr Asn Ser His Asn Val Tyr Ile Met Ala
                                   905
     Asp Lys Gln Lys Asn Gly Ile Lys Val Asn Phe Lys Ile Arg His Asn
                               920
                                     925
40
     Ile Glu Asp Gly Ser Val Gln Leu Ala Asp His Tyr Gln Gln Asn Thr
                           935
                                               940
     Pro Ile Gly Asp Gly Pro Val Leu Leu Pro Asp Asn His Tyr Leu Ser
                        950
                                          955
     Thr Gln Ser Ala Leu Ser Lys Asp Pro Asn Glu Lys Arg Asp His Met
45
                    965
                                       970
     Val Leu Leu Glu Phe Val Thr Ala Ala Gly Ile Thr Leu Gly Met Asp
              980
                                    985
     Glu Leu Tyr Lys
             995
50
```

(2) INFORMATION FOR SEQ ID NO:124:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1908 base pairs
- 55 (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single

241

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(ix) FEATURE:

5

35

55

(A) NAME/KEY: Coding Sequence(B) LOCATION: 1...1905

(D) OTHER INFORMATION:

10 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:124:

20 GAG GGC GAG GGC GAT GCC ACC TAC GGC AAG CTG ACC CTG AAG TTC ATC
Glu Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr Leu Lys Phe Ile
35 40 45

TGC ACC ACC GGC AAG CTG CCC GTG CCC TGG CCC ACC CTC GTG ACC ACC CC CS Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr Leu Val Thr Thr 50 55 60

CTG ACC TAC GGC GTG CAG TGC TTC AGC CGC TAC CCC GAC CAC ATG AAG
Leu Thr Tyr Gly Val Gln Cys Phe Ser Arg Tyr Pro Asp His Met Lys
30 65 70 75 80

CAG CAC GAC TTC TTC AAG TCC GCC ATG CCC GAA GGC TAC GTC CAG GAG
Gln His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly Tyr Val Gln Glu
85
90
95

CGC ACC ATC TTC TTC AAG GAC GAC GGC AAC TAC AAG ACC CGC GCC GAG

Arg Thr Ile Phe Phe Lys Asp Asp Gly Asn Tyr Lys Thr Arg Ala Glu

100 105 110

40 GTG AAG TTC GAG GGC GAC ACC CTG GTG AAC CGC ATC GAG CTG AAG GGC 384
Val Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile Glu Leu Lys Gly
115 120 125

ATC GAC TTC AAG GAG GAC GGC AAC ATC CTG GGG CAC AAG CTG GAG TAC 432 - 45 Ile Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His Lys Leu Glu Tyr 130 135

AAC TAC AAC AGC CAC AAC GTC TAT ATC ATG GCC GAC AAG CAG AAG AAC 480 Asn Tyr Asn Ser His Asn Val Tyr Ile Met Ala Asp Lys Gln Lys Asn 150 155 160

GGC ATC AAG GTG AAC TTC AAG ATC CGC CAC AAC ATC GAG GAC GGC AGC
Gly Ile Lys Val Asn Phe Lys Ile Arg His Asn Ile Glu Asp Gly Ser
165 170 175

GTG CAG CTC GCC GAC CAC TAC CAG CAG AAC ACC CCC ATC GGC GAC GGC 576

										242							
	Va	1 G	ln Le	eu A] 18	la As 30	p Hi	в Ту	r Gl	n Gl 18	n As	n Th	ır P	ro II	le G1		sp Gly	
5			19	5	u Pi	O AS	p As	n H1 20	.s Ту 0	r Le	u Se	r Tì	r G] 20	ln Se	r Al	CC CTG .a Leu	624
10	AG Se:	C AA r Ly 21	o Ao	.C CC p Pr	C AA O As	C GA	G AA u Ly 21	s Ar	C GA g As	T CA p Hi	C AT s Me	G GT t Va 22	1 Le	G CI u Le	G GA u Gl	G TTC u Phe	672
15	GT( Va. 225		C GC r Al	C GC a Al	C GG a Gl	G ATO y Ile 230	= In	r CT	C GG u Gl	C AT	G GA t As 23	p Gl	G CT u Le	G TA u Ty	C AA r Ly	G TCC s Ser 240	720
	GG# Gly	A CT	C AG	A TC	r CGA r Arg 245	A ATS	CAZ Glr	A GC	T TC	C ATO	t Se	C GA r Gl	G AC u Th	G GT r Va	C AT 1 I1 25	C ATG e Met 5	768
20	AGC Ser	GA(	3 ACC	G GT( C Val 260	r TT6	TGT Cys	TCC Ser	AGC Ser	C CGC Arg 265	y Ala	C AC	r GT	G ATO	G CT	ту:	r GAT	816
25	GAT Asp	Gl)	2 AAC / Asr 275	LLys	G CGA	TGG Trp	CTC	CCT Pro	) Ala	GGC Gly	C ACC	G GG	r ccc y Pro 285	Glr	GC0 Ala	TTC Phe	864
30	AGC Ser	CGC Arg 290		CAC Gln	ATC Ile	TAC Tyr	CAC His 295	AAC Asn	CCC Pro	ACG Thr	GCC Ala	CAA S Asr 300	ı Ser	TTT	CGC Arg	GTC Val	912
35	305	1	9	Буз	Mer	310	PIO	Asp	Gin	Gln	Val 315	Val	. Ile	Asn	Cys	GCC Ala 320	960
		, 41	nig	GIY	325	ьуѕ	Tyr	Asn	Gln	Ala 330	Thr	Pro	Asn	Phe	His 335	CAG Gln	1008
40	•	5		340	CGC Arg	GIII	vai	irp	345	Leu	Asn	Phe	Gly	Ser 350	Lys	Glu	1056
45	GAT Asp	GCG Ala	GCC Ala 355	CAG Gln	TTT Phe	GCC Ala	GCC Ala	GGC Gly 360	ATG Met	GCC Ala	AGT Ser	GCC Ala	CTA Leu 365	GAG Glu	GCG Ala	TTG Leu	1104
50	GAA Glu	GGA Gly 370	GGT Gly	GGG Gly	CCC Pro	PIO	CCA Pro 375	CCC Pro	CCA Pro	GCA Ala	CTT Leu	CCC Pro 380	ACC Thr	TGG Trp	TCG Ser	GTC Val	1152
55	CCG . Pro . 385	AAC Asn	GGC Gly	CCC Pro	DCI	CCG Pro	GAG Glu	GAG Glu	GTG Val	GAG Glu	CAG Gln 395	CAG Gln	AAA Lys	AGG Arg	CAG Gln	CAG Gln 400	1200
	CCC (	GGC	CCG	TCG	GAG ·	CAC A	АТА	GAG	CGC	CGG	GTC	TCC	AAT	GCA	GGA	GGC	1248 242

											L-10							
	P	co	Gly	Pro	Ser	Glu 405	His	Ile	Glu	Arg	Arg 410	Val	Ser	Asn	Ala	Gly 415	Gly	
;	_				Pro		GCT Ala			Pro					Gly			1296
							CCC									_	_	1344
10		co	Pro	Pro 435	Gly	Pro	Pro	Pro	Pro 440	Pro	Gly	Leu	Pro	Pro 445	Ser	Gly	Val	
							GGA Gly											1392
1	C'						GGC Gly											1440
0.4	4	55					470		_	_	-	475		_			480	
20							GCT Ala											1488
2							GGG Gly											1536
	A	3C	GGA	GGT	500 GGG	GGA	CTC	ATG	GAA	505 GAG	ATG	AAC	GCC	ATG	510 CTG	GCC	CGG	1584
30		er	Gly	Gly 515	Gly	Gly	Leu	Met	Glu 520	Glu	Met	Asn	Ala	Met 525	Leu	Ala	Arg	
				Lys			CAA Gln									_		1632
3	G		AAT	CAG			CCA	GAG					GCC			_		1680
	5	45					Pro 550					555					560	
40							GAG Glu											1728
4							ACC Thr								Thr			1776
	T	CC	AGT	GAT	580 TAC	TCG	GAC	CTA	CAG	585 AGG	GTG	AAA	CAG	GAG	590 CTT	CTG	GAA	1824
5		er	Ser	Asp 595	Tyr	Ser	Asp	Leu	Gln 600	Arg	Val	Lys	Gln	Glu 605	Leu	Leu	Glu	
							TTG Leu										-	1872
5		гC		CAG	GAG	CTG	AGG		CGG	GGT	TCT	ccc						1908 24
																		24

244

Phe Val Gln Glu Leu Arg Lys Arg Gly Ser Pro 625 630 635

5 (2) INFORMATION FOR SEQ ID NO:125:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 635 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (v) FRAGMENT TYPE: internal

15

10

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:125:

	Ţ		Ser		5					10					15	
20			Leu	20					25					3.0	Ser	
			Glu 35					40					45			
25		50	Thr				55					60				
	03		Tyr			70					75					B O
			Asp		85					90					95	Glu
30			Ile	100					105					110		
			Phe 115					120					125			
35		130	Phe				135					140				
	145		Asn			150					155					160
			Lys		165					170					175	Ser
40			Leu	180					185					190	Asp	
			Leu 195					200					205	Ser		
45		210	Asp				215					220	Leu			
	225		Ala			230					235	Glu				240
			Arg		245					250	Ser				255	Met
50			Thr	260					265					270	Tyr	
			Asn 275					280	Ala				285	Gln		
55		290	Val				295					300	Ser			
	Val	Gly	Arg	Lys	Met	Gln	Pro	Asp	Gln	Gln	Val	Val	Ile	Asn	Cys	Ala

245

```
310
                                       315
     Ile Val Arg Gly Val Lys Tyr Asn Gln Ala Thr Pro Asn Phe His Gln
                 325
                                  330
     Trp Arg Asp Ala Arg Gln Val Trp Gly Leu Asn Phe Gly Ser Lys Glu
5
                               345
     Asp Ala Ala Gln Phe Ala Ala Gly Met Ala Ser Ala Leu Glu Ala Leu
           355
                   360
                                    365
     Glu Gly Gly Pro Pro Pro Pro Ala Leu Pro Thr Trp Ser Val
                        375
                                          380
10
     Pro Asn Gly Pro Ser Pro Glu Glu Val Glu Gln Gln Lys Arg Gln Gln
                     390
                                       395
     Pro Gly Pro Ser Glu His Ile Glu Arg Arg Val Ser Asn Ala Gly Gly
                  405
                         410
     Pro Pro Ala Pro Pro Ala Gly Gly Pro Pro Pro Pro Pro Gly Pro Pro
15
            420
                               425
     Pro Pro Pro Gly Pro Pro Pro Pro Gly Leu Pro Pro Ser Gly Val
                                    445
                  440
     Pro Ala Ala His Gly Ala Gly Gly Pro Pro Pro Ala Pro Pro
20
     Leu Pro Ala Ala Gln Gly Pro Gly Gly Gly Ala Gly Ala Pro Gly
                    470
                                       475
     Leu Ala Ala Ile Ala Gly Ala Lys Leu Arg Lys Val Ser Lys Gln
                                   490
     Glu Glu Ala Ser Gly Gly Pro Thr Ala Pro Lys Ala Glu Ser Gly Arg
25
              500
                               505
                                                 510
     Ser Gly Gly Gly Leu Met Glu Glu Met Asn Ala Met Leu Ala Arg
                                              525
                             520
     Arg Arg Lys Ala Thr Gln Val Gly Glu Lys Thr Pro Lys Asp Glu Ser
                         535
                                           540
30
     Ala Asn Gln Glu Pro Glu Ala Arg Val Pro Ala Gln Ser Glu Ser
             550
                                     555
     Val Arg Arg Pro Trp Glu Lys Asn Ser Thr Thr Leu Pro Arg Met Lys
                                   570
                  565
     Ser Ser Ser Ser Val Thr Thr Ser Glu Thr Gln Pro Cys Thr Pro Ser
35
        580 585 590
     Ser Ser Asp Tyr Ser Asp Leu Gln Arg Val Lys Gln Glu Leu Leu Glu
                             600
     Glu Val Lys Lys Glu Leu Gln Lys Val Lys Glu Glu Ile Ile Glu Ala
               615
40
     Phe Val Gln Glu Leu Arg Lys Arg Gly Ser Pro
             (2) INFORMATION FOR SEQ ID NO:126:
```

45 (i) SEQUENCE CHARACTERISTICS:

50

55

- (A) LENGTH: 1329 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

- (ix) FEATURE:
  - (A) NAME/KEY: Coding Sequence(B) LOCATION: 1...1326
  - (D) OTHER INFORMATION:

246

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:126:

				_					٠٠. 5	ro Ti	J NO	:126	:				
5	ATO Met	GT(	G AGO	C AAC	G GGG G Gly 5	C GAO	G GAC	G CTO	TTC Phe	C ACC Thi	C GGG	G GT(	G GT	G CCO	C ATO	C CTG e Leu	48
10	GTC Val	GAC Glu	G CTO	G GAC 1 Asp 20	GGC Gly	C GA(	C GTA	A AAC . Asr	GGG Gl ₃ 25	C CAC	AAC Lys	TTC Phe	C AGO	C GTO Val	TC(	C GGC r Gly	96
15	GAG Glu	GGC Gly	GAC Glu 35	GGC Gly	GAT Asp	GCC Ala	ACC Thr	TAC Tyr 40	GGC Gly	AAC Lys	CTC Leu	ACO Thr	C CTC Leu 45	AAC Lys	TTO Phe	C ATC	144
	TGC Cys	ACC Thr 50	ACC Thr	GGC Gly	AAG Lys	CTG Leu	Pro	GTG Val	Pro	TGG Trp	CCC Pro	ACC Thr	CTC	GTG Val	ACC Thr	ACC Thr	192
20	CTG Leu 65	ACC	TAC Tyr	GGC	GTG Val	CAG Gln 70	TGC Cys	TTC Phe	AGC Ser	CGC Arg	TAC Tyr 75	CCC Pro	GAC Asp	CAC	ATG Met	AAG Lys 80	240
25	CAG Gln	CAC His	GAC Asp	TTC Phe	TTC Phe 85	AAG Lys	TCC Ser	GCC Ala	ATG Met	CCC Pro 90	GAA Glu	GGC Gly	TAC Tyr	GTC Val	CAG Gln 95	GAG Glu	288
30	CGC Arg	ACC Thr	ATC Ile	TTC Phe 100	TTC Phe	AAG Lys	GAC Asp	GAC Asp	GGC Gly 105	AAC Asn	TAC Tyr	AAG Lys	ACC Thr	CGC Arg 110	GCC Ala	GAG Glu	336
35	GTG Val	AAG Lys	TTC Phe 115	GAG Glu	GGC Gly	GAC Asp	ACC Thr	CTG Leu 120	GTG Val	AAC Asn	CGC Arg	ATC Ile	GAG Glu 125	CTG Leu	AAG Lys	GGC Gly	384
	110	GAC Asp 130	TTC Phe	AAG Lys	GAG Glu	GAC Asp	GGC Gly 135	AAC Asn	ATC Ile	CTG Leu	GGG Gly	CAC His 140	AAG Lys	CTG Leu	GAG Glu	TAC Tyr	432
40	AAC Asn 145	TAC Tyr	AAC Asn	AGC Ser	CAC His	AAC Asn 150	GTC Val	TAT Tyr	ATC Ile	ATG Met	GCC Ala 155	GAC Asp	AAG Lys	CAG Gln	AAG Lys	AAC Asn 160	480
45	GGC .	ATC Ile	AAG Lys	vaı	AAC Asn 165	TTC Phe	AAG Lys	ATC Ile	CGC Arg	CAC His 170	AAC Asn	ATC Ile	GAG Glu	GAC Asp	GGC Gly 175	AGC Ser	528
50	GTG (	CAG Gln	CTC Leu	GCC Ala 180	GAC Asp	CAC His	TAC Tyr	Gln	CAG Gln 185	AAC Asn	ACC Thr	CCC Pro	ATC Ile	GGC Gly 190	GAC Asp	GGC Gly	576
55	CCC (	VAI	CTG Leu 195	CTG Leu	CCC Pro	GAC . Asp .	Asn ]	CAC His	TAC Tyr	CTG . Leu	AGC . Ser	Thr	CAG Gln 205	TCC Ser	GCC Ala	CTG Leu	624
	AGC A	AAA	GAC	ccc i	AAC (	GAG .	AAG (	CGC (	GAT (	CAC /	ATG (	GTC	CTG	CTG	GAG	TTC	672 <b>24</b> 6

SUBSTITUTE SHEET (RULE 26)

	Ser	Lys 210	Asp	Pro	Asn	Glu	Lys 215	Arg	Asp	His	Met	Val 220	Leu	Leu	Glu	Phe	
5														TAC Tyr			720
10														CGG Arg			768
15		-												TTG Leu 270			816
15														ACA Thr			864
20														GTA Val	_		912
25														CTG Leu			960
30														TCC Ser			1008
25														CCA Pro 350			1056
35														AAT Asn			1104
40		-												AAG Lys			1152
45														AAC Asn		_	1200
50														GAT Asp			1248
														GCT Ala 430			1296
55	GGG	AAG	AAA	AAA	TCT	GGT	TGC	CTT	GTC	TTG	TGA						1329 247

248

Gly Lys Lys Lys Ser Gly Cys Leu Val Leu 435 440

```
5 (2) INFORMATION FOR SEQ ID NO:127:
```

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 442 amino acids
  - (B) TYPE: amino acid
- 10 (C) STRANDEDNESS: single

- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (v) FRAGMENT TYPE: internal
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:127:

Met	Val	Ser	Lys	Gly	Glu	Glu	Leu	Phe	Thr	Glv	Val	Val	Pro	Ile	τ.
1				5					3.0	-1					-
									10					15	

- 20 Val Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe Ser Val Ser Gly
  20 25 30
- Glu Gly Gly Asp Ala Thr Tyr Gly Lys Leu Thr Leu Lys Phe Ile
- Cys Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr Leu Val Thr Thr 25 50 55
- Leu Thr Tyr Gly Val Gln Cys Phe Ser Arg Tyr Pro Asp His Met Lys
  - Gln His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly Tyr Val Gln Glu
    85 90 95
- 30 Arg Thr Ile Phe Phe Lys Asp Asp Gly Asn Tyr Lys Thr Arg Ala Glu
  100 105 110
  - Val Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile Glu Leu Lys Gly
    115 120 125
- Ile Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His Lys Leu Glu Tyr

  135 130 135 140
  - Asn Tyr Asn Ser His Asn Val Tyr Ile Met Ala Asp Lys Gln Lys Asn 145 150 155 160
  - Gly Ile Lys Val Asn Phe Lys Ile Arg His Asn Ile Glu Asp Gly Ser 165 170 175
- 40 Val Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro Ile Gly Asp Gly
  180 185 190
  - Pro Val Leu Leu Pro Asp Asn His Tyr Leu Ser Thr Gln Ser Ala Leu 195 200 205
- Ser Lys Asp Pro Asn Glu Lys Arg Asp His Met Val Leu Glu Phe
  210 215 220
  - Val Thr Ala Ala Gly Ile Thr Leu Gly Met Asp Glu Leu Tyr Lys Ser
    225 230 235 240
- Gly Leu Arg Ser Arg Ala Gln Ala Ser Met Ala Ala Ile Arg Lys Lys
  245 250 255

  Leu Val Ile Val Gly Non G
- 50 Leu Val Ile Val Gly Asp Gly Ala Cys Gly Lys Thr Cys Leu Leu Ile 260 265 270
- Glu Asn Tyr Val Ala Asp Ile Glu Val Asp Gly Lys Gln Val Glu Leu 295 300
  Ala Leu Trp Asp Thr Ala Gly Gln Glu Asp Tyr Asp Arg Leu Arg Pro

										243								
	305					310					315					320		
	Leu	Ser	Tyr	Pro	Asp 325	Thr	Asp	Val	Ile	Leu 330	Met	Cys	Phe	Ser	Ile 335	Asp		
5	Ser	Pro	Asp	Ser 340	Leu	Glu	Asn	Ile	Pro 345		Lys ·	Trp	Thr	Pro 350	Glu	Val		
	Lys	His	Phe 355		Pro	Asn	Val	Pro 360		Ile	Leu	Val	Gly 365	Asn	Lys	Lys		
	Asp	Leu 370		Asn	Asp	Glu	His 375		Arg	Arg	Glu	Leu 380		Lys	Met	Lys		
10	Gln 385		Pro	Val	Lys	Pro 390		Glu	Gly	Arg	Asp 395	Met	Ala	Asn	Arg	Ile 400		
		Ala	Phe	Gly	Tyr 405		Glu	Cys	Ser	Ala 410		Thr	Lys	Asp	Gly 415			
15	Arg	Glu	Val	Phe 420		Met	Ala	Thr	Arg 425		Ala	Leu	Gln	Ala 430		Arg		
.0	Gly	Lys	Lys 435		Ser	Gly	Сув	Leu 440	_	Leu				150				
00			(2)	INI	FORM	OITA	1 FO	R SEC	Q ID	NO:	L28:							
20		( :		-	ICE (													
			(B)	TYPI	STH: S: nu	icle:	ic a	cid										
25					ANDEI			_	2									
			ii) N ix) N		CULE JRE:	TYPI	E: cI	DNA										
30			(B)	LO	ME/KI CATIO HER :	ON:	ı:	1137	equei	nce								
		(2	ki) S	SEQUI	ENCE	DESC	CRIP	rion	: SEC	Q ID	NO:	128:						
35	ΔΤС	GAC	רמיד	ጥልጥ	СУТ	ידריד	CAG	CDD	ACC	ממ	CDT	TAC	ልጥር	CAG	CCA	GAD	4	8
												Tyr				_	1	•
	1				5					10					15			
40												GCC Ala		_			9	6
	Gru	Asp	Пр	20 20	nrg	ASP	пец	пец	25	Asp	FIU	AIG	TTP	30	БуЗ	GIII		
	_					_	_					CAC				_	14	4
45	Gln	Arg	Lys 35	Thr	Phe	Thr	Ala	Trp 40	Cys	Asn	Ser	His	Leu 45	Arg	Lys	Ala		
												CGG					19	2
50	Gly	Thr 50	Gln	Ile	Glu	Asn	11e 55	Glu	Glu	Asp	Phe	Arg 60	Asp	GIA	Leu	Lys		
												CGC					24	0
	Leu 65	Met	Leu	Leu	Leu	70	vaí	lle	ser	Gly	Glu 75	Arg	Leu	Ala	ràs	Pro 80		
55	GAG	CGA	GGC	AAG	ATG	AGA	GTG	CAC	AAG	ATC	TCC	AAC	GTC	AAC	AAG	GCC	28	8
																		2

										25							
	G1	u A:	rg G	ly Ly	/s Me 85	et Ar	g Va	l Hi	s Ly	/s I] 90	le Se	er As	n Va	l As	n Ly 95	/s Ala	ı
5				10	0	.a 5e	т пу	S GI	y va 10	11 Ly 5	s Le	u Va	l Se	r Il 11	e G1 0	SA GCC y Ala	
10			11	.5	± A3	p GI	y As	11 va 12	0 т г	s Me	t Th	r Le	u Gly 12!	y Me 5	t Il	C TGG e Trp	
15		13	0	C 25	u AI	g AL	13:	p Pro 5	o Pro	o Va	l Ala	a Th:	r Met O	: Va	l Se	C AAG r Lys	432
	145	5		<b>.</b> . <b>.</b>	u File	150	)	y va.	L Va.	l Pro	0 Ile 159	€ Let 5	ı Val	Glı	ı Lei	G GAC u Asp 160	480
20	-,	7	, ,,,	ı noı	165	HIS	, rys	s Pne	e Ser	7 Val 170	l Ser	Gly	, Glu	Gly	/ Glu		528
25	GAT Asp	GC0	C ACC	TAC Tyr 180	. Ory	AAG Lys	CTC Leu	ACC Thr	CTG Leu 185	ггуз	TTC Phe	: ATC	TGC Cys	ACC Thr 190	Thr	GGC Gly	576
30	AAG Lys	CTC	CCC Pro	• • • • •	Pro	TGG Trp	CCC Pro	ACC Thr 200	CTC Leu	GTG Val	ACC Thr	ACC Thr	CTG Leu 205	ACC Thr	TAC	GGC	624
35		210			561	Arg	215	Pro	Asp	His	Met	Lys 220	CAG Gln	His	Asp	Phe	672
	TTC Phe 225	AAG Lys	TCC Ser	GCC Ala	ATG Met	CCC Pro 230	GAA Glu	GGC Gly	TAC Tyr	GTC Val	CAG Gln 235	GAG Glu	CGC Arg	ACC Thr	ATC Ile	TTC Phe 240	720
40	TTC Phe	AAG Lys	GAC Asp	GAC Asp	GGC Gly 245	AAC Asn	TAC Tyr	AAG Lys	ACC Thr	CGC Arg 250	GCC Ala	GAG Glu	GTG Val	AAG Lys	TTC Phe 255	GAG Glu	768
45	GGC Gly	GAC Asp	ACC Thr	CTG Leu 260	GTG Val	AAC Asn	CGC Arg	ATC Ile	GAG Glu 265	CTG Leu	AAG Lys	GGC Gly	ATC Ile	GAC Asp 270	TTC Phe	AAG Lys	816
50	GAG Glu	GAC Asp	GGC Gly 275	AAC Asn	ATC Ile	CTG Leu	GGG Gly	CAC His 280	AAG Lys	CTG Leu	GAG Glu	Tyr	AAC Asn 285	TAC Tyr	AAC Asn	AGC Ser	864
55	CAC His	AAC Asn 290	GTC Val	TAT Tyr	ATC .	net.	GCC Ala 295	GAC Asp	AAG Lys	CAG Gln	Lys .	AAC Asn 300	GGC 1 Gly :	ATC .	AAG Lys	GTG Val	912
	AAC :	FTC	AAG	ATC	CGC (	CAC 2	AAC :	ATC (	GAG (	GAC	GGC i	AGC (	GTG (	CAG	CTC	GCC	960 250

										251							
	Asn 305	Phe	Lys	Ile	Arg	His 310	Asn	Ile	Glu	Asp	Gly 315	Ser	Val	Gln	Leu	Ala 320	
5											GAC Asp						1008
10											GCC Ala						1056
15											GAG Glu						1104
10						ATG Met					AAG Lys	TAA					1140
20			(2)	IN)	FORM	ATIOI	v FOI	R SE(	Q ID	NO:	129:						
25		(:	(A) (B) (C)	LENG TYPI STR	GTH: E: ar ANDEI	CHARA 379 mino DNESS	amin acio S: s:	no ao i ingle	cids								
30		(1	v) FI	RAGMI	ENT :	TYPI IYPE DESC	: int	terna	al	מד ה	NO:1	129:					
35	1	Asp	His	Tyr	Asp 5	Ser	Gln	Gln	Thr	Asn 10	Asp	Tyr			15		
		_	_	20	_	_			25	_	Pro		_	30	-		
40	Gly	Thr 50	35 Gln	Ile	Glu	Asn	Ile 55	40 Glu	Glu	Asp	Phe	Arg 60	45 Asp	Gly	Leu	Lys	
	Leu 65		Leu	Leu	Leu	Glu 70		Ile	Ser	Gly	Glu 75		Leu	Ala	Lys	Pro 80	
45					85					90	Ser Leu				95		
			Ile	100					105		Thr			110			
50	Thr	Ile 130	115 Ile	Leu	Arg	Arg	Asp 135	120 Pro	Pro	Val	Ala	Thr	125 Met	Val	Ser	Lys	
	145	Glu				150	Gly				Ile 155	Leu				160	
55	_	_			165		-			170	Ser Phe	_		_	175	-	
										-			-				0.5

										202							
	T 1 10		_	180					185	i				190	)		
								201	,				205	Thr	Туг	Gly	
5		Gln 210					~15					220	Gln	His			
	Phe 225	Lys	Ser	Ala	Met	Pro 230	Glu	Gly	Tyr	Val	Gln	Glu	Arg	Thr	Ile		
	Phe	Lys	Asp	Asp	Gly	Asn		Lys	Thr	Arg	235 Ala	Glu	Val	Lys	Phe	240 Glu	
10		Asp			Val				Glu	250							
		Asp		200				His	Lys					222			
15		Asn 290					Ala	28U				Asn	205				
		Phe				His	233					200					
		His			Gln	210					215						
20		Asp		His	323					4 3 N							
		Glu		240					445					250			
		Ile						3011					365	1111	AIG	AIG	
25		370			•		375		Deu	171	цуѕ						
			(2)	INF	ORMA	TION	FOR	SEC	DI	NO:1	30:						
30		(i	) SE	QUEN	CE C	HARA	CTER	ISTI	CS:								
30			(B)	TYPE	TH: : nu	clei	c ac	id									
			(C) ; (D) '	STRA TOPO	NDED: LOGY	NESS : li:	: si: near	ngle									
35		(ii	i) Mo	O <b>L</b> EC	ULE :	TYPE	: cDi	NA									
		(i)	c) FI	EATU	RE:			•									
			(A)	NAMI	YTION	۲: Co	oding	g Se	quen	ce							
40			(D)	отн	ER IN	FORN	ATIC	ON:									
		(xi	) SE	QUEN	ICE I	ESCF	RIPTI	ON:	SEQ	ID 1	NO:13	30:					
	ATG O	TG A	GC A	AG G	GC G	AG G	ag c	מיני:	רידירי זי	\CC (		ma c	ma -	100 -	me -	-	
45	Met V 1	al S	er L	ys G	ly G 5	lu G	lu I	eu I	ne T	hr (	3ly V	al V	al P	ro I	TC (	ETG Leu	48
					•				1	.0				1	.5		
50	GTC G Val G	lu L		Sp G	ly A	sp V	al A	sn C	GC C	CAC A lis L	AG I ys P	TC A	GC G er V	TG Tal S	CC C	GC ly	96
-				•				2	5				3	0			
	GAG G Glu G	GC G ly G	AG G lu G	GC G ly A	AT G sp A	CC A la T	CC T hr T	AC G	GC A	AG C	TG A	CC C	TG A	AG T	TC A	TC	144
55		-					4	U				4	5				
	TGC A	CC A	CC G	GC A	AG C	TG C	CC G	TG C	CC T	GG C	CC A	CC C'	TC G	TG A	CC A	CC	192
																	252

										253							
	Cys	Thr 50	Thr	Gly	Lys	Leu	Pro 55	Val	Pro	Trp	Pro	Thr 60	Leu	Val	Thr	Thr	
5					GTG Val												240
10					TTC Phe 85												288
15					TTC Phe											_	336
.0					GGC Gly												384
20					GAG Glu												432
25					CAC His												480
30					AAC Asn 165												528
35					GAC Asp												576
33					CCC Pro												624
40					AAC Asn	_										_	672
45					GGG Gly												720
50					CGA Arg 245												768
55					GCC Ala												816
55	GAG	CTT	GAC	TTC	TCC	ATC	CTC	TTC	GAC	TAT	GAG	TAT	TTG	AAT	CCG	AAC	864

										254							
	Gl	u Le	u As 27	p Ph	e Se	r Ile	e Le≀	28	e As	р Ту	r Gl	и Ту	r Le 28		n Pr	o Asn	
5	GA:	A GA u Gl 29	u GI	G CC u Pr	G AA' o Asi	T GC# n Ala	A CAT A His 295	5 Lys	G GTG S Va	C GC	C AG a Se	C CC r Pr 30	o Pr	C TC	C GG C Gl	A CCC y Pro	912
10	GC/ A1a 305	ı ıy	C CC r Pr	C GA	T GA'	r GTA P Val 310	. Met	GA(	TAT	r GGG	C CTO y Let 319	u Ly	G CCI	А ТА( э Туз	C AGG	C CCC r Pro 320	960
15	CTT Let	GC Ala	T AG' a Se:	T CTO	TCT 1 Se1 325	GIY	GAG Glu	CCC Pro	C CCC	GG( Gl _y 330	Arg	A TTO	C GG# ∈ Gly	A GAC	CCC Pro	G GAT	1008
	AGC Arg	GT/ Val	A GGG	G CCC Y Pro 340	GIR	AAG Lys	TTT	CTG Leu	AGC Ser 345	Ala	GCC Ala	C AAC	G CCA	GCA Ala 350	Gly	G GCC / Ala	1056
20	TCG Ser	GG(	C CTC / Let 355	ı ser	C CCT	CGG Arg	ATC Ile	GAG Glu 360	Ile	ACT Thr	CCC Pro	TCC Ser	CAC His	Glu	CTC Leu	ATC Ile	1104
25	CAG Gln	GCA Ala 370	r var	GGG Gly	CCC Pro	CTC Leu	CGC Arg 375	ATG Met	AGA Arg	GAC Asp	GCG Ala	GGC Gly 380	Leu	CTG Leu	GTG Val	GAG Glu	1152
30	CAG Gln 385	CCT Pro	CCC Pro	CTG Leu	GCC Ala	GGG Gly 390	GTG Val	GCC Ala	GCC Ala	AGC Ser	CCG Pro 395	AGG Arg	TTC Phe	ACC Thr	CTG Leu	CCC Pro 400	1200
35	GTG Val	CCC	GGC	TTC Phe	GAG Glu 405	GGC Gly	TAC Tyr	CGC Arg	GAG Glu	CCG Pro 410	CTT Leu	TGC Cys	TTG Leu	AGC Ser	CCC Pro 415	GCT Ala	1248
	AGC Ser	AGC Ser	GGC Gly	TCC Ser 420	TCT Ser	GCC Ala	AGC Ser	TTC Phe	ATT Ile 425	TCT Ser	GAC Asp	ACC Thr	TTC Phe	TCC Ser 430	CCC Pro	TAC Tyr	1296
40	ACC Thr	TCG Ser	CCC Pro 435	TGC Cys	GTC Val	TCG Ser	CCC Pro	AAT Asn 440	AAC Asn	GGC Gly	GGG Gly	CCC Pro	GAC Asp 445	GAC Asp	CTG Leu	TGT Cys	1344
45	CCG Pro	CAG Gln 450	TTT Phe	CAA Gln	AAC Asn	ATC Ile	CCT Pro 455	GCT Ala	CAT His	TAT Tyr	TCC Ser	CCC Pro 460	AGA Arg	ACC Thr	TCG Ser	CCA Pro	1392
50	ATA Ile 465	ATG Met	TCA Ser	CCT Pro	CGA Arg	ACC Thr 470	AGC Ser	CTC Leu	GCC Ala	GAG Glu	GAC Asp 475	AGC Ser	TGC Cys	CTG Leu	GGC Gly	CGC Arg 480	1440
55	CAC His	TCG Ser	CCC Pro	GTG Val	CCC Pro 485	CGT (	CCG ( Pro )	GCC Ala	Ser	CGC Arg 490	TCC Ser	TCA Ser	TCG Ser	Pro	GGT Gly 495	GCC Ala	1488
	AAG	CGG	AGG	CAT	TCG	TGC (	GCC (	GAG (	GCC	TTG	GTT	GCC	CTG	CCG	ccc	GGA	153 <i>6</i> 254

										255							
	ГÀЗ	Arg	Arg	His 500	Ser	Cys	Ala	Glu	Ala 505	Leu	Val	Ala	Leu	Pro 510	Pro	Gly	
5					CGC Arg												1584
10					GAC Asp												1632
45					ATC Ile												1680
15			_	_	CCC Pro 565												1728
20					GCC Ala												1776
25		_		_	TTC Phe		_										1824
30					TCC Ser												1872
					ATT Ile												1920
35					TGG Trp 645												1968
40					CAG Gln												2016
45					GGG Gly												2064
50					GGC Gly												2112
<b>5</b> 5					GCT Ala												2160
55	CAG	GTG	CAC	CGA	ATC	ACG	GGG	AAA	ACT	GTC	ACC	ACC	ACC	AGC	TAT	GAG	2208

										256							
	Gln	ı Val	l His	s Arg	725	e Thi	r Gly	/ Lys	Thr	730		Thi	Thi	r Sei	735	Glu 5	
	AAG	ATA	A GTO	G GG	C AAC	C ACC	CAAA	A GTO	CTC	GAG	ATC	. cc	: TTC	GAC	; ccc	C AAA	2256
5	Lys	Ile	e Val	740	/ Asr	1 Thi	Lys	val	. Leu 745	ı Glu	ı Ile	Pro	Let	750	Pro	Lys	2230
	AAC	AAC	ATO	AGG	GCA	ACC	ATC	GAC	TG1	GCG	GGG	ATO	TTO	AAC	CTI	AGA	2304
40	Asn	Asn	ı Met	. Arg	g Ala	Thr	Ile	Asp	Суз	Ala	Gly	Ile	Lev	Lys	Leu	Arg	2304
10			755	•				760					765	5		AAG	
	Asn	Ala	Asp	Ile	Glu	Leu	Arg	Lvs	Glv	GAG	Thr	GAC	ATI	GGA	AGA	AAG	2352
45		770					775		1			780		. Gly	Arg	гур	
15	אמר	ΔCG	CGG	e cerc	י אכא	CTC	Comm	, mma									
	Asn	Thr	Arq	Val	Ara	Leu	GTT Val	Phe	Ara	. GTT Val	CAC	ATC	CCA	GAG	TCC	AGT	2400
	785					790					795					800	
20	GGC	AGA	ATC	GTC	TCT	TTA	CAG	ACT	GCA	TCT	AAC	CCC	ATC	GAG	TGC	TCC	2448
	GIY	Arg	ше	vai	805		Gln	Thr	Ala	Ser 810	Asn	Pro	Ile	Glu	Cys 815	Ser	
0.5	CAG	CGA	TCT	GCT	CAC	GAG	CTG	CCC	ATG	GTT	GAA	AGA	CAA	GAC	ACA	GAC	2496
25	Gln	Arg	Ser	Ala 820	His	Glu	Leu	Pro	Met 825	Val	Glu	Arg	Gln	Asp 830	Thr	Asp	
	AGC	TGC	CTG	GTC	TAT	GGC	GGC	CAG	CAA	ATG	ATC	CTC	ACG	GGG	CAG	ልልሮ	2544
30	Ser	Суѕ	Leu 835	Val	Tyr	Gly	Gly	Gln 840	Gln	Met	Ile	Leu	Thr 845	Gly	Gln	Asn	2344
	TTT	ACA	TCC	GAG	TCC	AAA	GTT	GTG	TTT	ACT	GAG	AAG	ACC	ልሮል	CAT	CCA	2592
	Phe	Thr	Ser	Glu	Ser	Lys	Val	Val	Phe	Thr	Glu	Lys	Thr	Thr	Asp	Glv	2592
35		850					855					860			-	-	
55	CAG	CAA	ATT	TGG	GAG	λтс	GAA	ccc	7.00	ama.	~~ m						
	Gln	Gln	Ile	Trp	Glu	Met	Glu	Ala	Thr	Val	Asn	LVS	Agn	AAG	AGC	CAG	2640
	865					870					875	-,5	1100	<b>Д</b> у 5	561	880	
40	CCC	AAC	ATG	CTT	TTT	GTT	GAG	ATC	CCT	GAA	тат	CGG	אאכ	AAG	CAT	ስጥሮ	2688
	Pro	Asn	Met	Leu	Pne	Val	Glu	Ile	Pro	Glu	Tyr	Arg	Asn	Lys	His	Ile	. 2000
					885					890				-	895		
	CGC	ACA	CCT	GTA	AAA	GTG	AAC	TTC	TAC	GTC	ATC	דעע	GGG	አአር	אמא	777	2736
45	Arg	Thr	Pro	Val	Lys	Val	Asn	Phe	Tyr	Val	Ile	Asn	Gly	Lys	Arq	Lvs	2736
				900					905				-	910		4 -	
	CGA	AGT	CAG	CCT	CAG	CAC	TTT	ACC	тас	CAC	CCA	GTC	CCA	ccc	እጥረ	220	2704
	Arg	Ser	Gln	Pro	Gln	His	Phe	Thr	Tyr	His	Pro	Val	Pro	Ala	Ile	LVS	2784
50			915					920	-				925			2,0	
	ACG	GAG	CCC	ACG	GAT	GAA	тдт	GAC	CCC	አ Cm	CTC.	א תריכי	maa				
	Thr	Glu	Pro	Thr	Asp	Glu	Tyr	Asp	Pro	Thr	Leu	AIC	TGC	AGC	CCC	ACC	2832
<b>55</b>		930			-		935	•	-			940	-,5	JC1	-10	****	
55	ሮልጥ 4	GGA	ccc	ርሞር	GGG	מממ	CD C										
	CAT	JOA	330	-10	330	AUC	CAG	CCT	TAC	TAC	CCC	CAG	CAC	CCG	ATG	GTG	2880
																	256

	His 945	Gly	Gly	Leu	Gly	Ser 950	Gln	Pro	Tyr	Tyr	Pro 955	Gln	His	Pro	Met	Val 960	
5														TGC Cys			2928
10														CAA Gln 990			2976
45							Gln					Leu		CCC Pro			3024
15	Leu					Pro					Ala			TCC Ser			3072
20					Ser					Ala				GGC Gly	Gln		3120
25				Leu					Thr					TCG Ser			3168
30			Tyr					Gln					Gly	AGC Ser 1070			3216
		Phe					Tyr					Ala		GGC Gly	_		3264
35	Arg					Pro					Gln			AGC Ser			3312
40					Val					Asn				CAA Gln	Arg	_	3360
45				Gly					Asp					TTA Leu			3408
50			Thr					Gln					Thr	TAC Tyr 1150			3456
		Val					Arg					Gly		CCT Pro			3504
55	AAT	CAG	ACG	TAA													3516 257

Asn Gln Thr 

```
5 (2) INFORMATION FOR SEQ ID NO:131:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 1171 amino acids
(B) TYPE: amino acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein
(v) FRAGMENT TYPE: internal

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:131:
```

Met Val Ser Lys Gly Glu Glu Leu Phe Thr Gly Val Val Pro Ile Leu Val Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe Ser Val Ser Gly Glu Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr Leu Lys Phe Ile Cys Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr Leu Val Thr Thr Leu Thr Tyr Gly Val Gln Cys Phe Ser Arg Tyr Pro Asp His Met Lys Gln His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly Tyr Val Gln Glu Arg Thr Ile Phe Phe Lys Asp Asp Gly Asn Tyr Lys Thr Arg Ala Glu Val Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile Glu Leu Lys Gly Ile Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His Lys Leu Glu Tyr Asn Tyr Asn Ser His Asn Val Tyr Ile Met Ala Asp Lys Gln Lys Asn Gly Ile Lys Val Asn Phe Lys Ile Arg His Asn Ile Glu Asp Gly Ser Val Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro Ile Gly Asp Gly Pro Val Leu Leu Pro Asp Asn His Tyr Leu Ser Thr Gln Ser Ala Leu Ser Lys Asp Pro Asn Glu Lys Arg Asp His Met Val Leu Leu Glu Phe Val Thr Ala Ala Gly Ile Thr Leu Gly Met Asp Glu Leu Tyr Lys Ser Gly Leu Arg Ser Arg Ala Met Asn Ala Pro Glu Arg Gln Pro Gln Pro Asp Gly Gly Asp Ala Pro Gly His Glu Pro Gly Gly Ser Pro Gln Asp Glu Leu Asp Phe Ser Ile Leu Phe Asp Tyr Glu Tyr Leu Asn Pro Asn Glu Glu Glu Pro Asn Ala His Lys Val Ala Ser Pro Pro Ser Gly Pro Ala Tyr Pro Asp Asp Val Met Asp Tyr Gly Leu Lys Pro Tyr Ser Pro

	305					310					315					320
	Leu	Ala	Ser	Leu	Ser 325	Gly	Glu	Pro	Pro	Gly 330	Arg	Phe	Gly	Glu	Pro 335	Asp
5	Arg	Val	Gly	Pro 340		Lys	Phe	Leu	Ser 345		Ala	Lys	Pro	Ala 350		Ala
Ü	Ser	Gly			Pro	Arg	Ile	Glu 360		Thr	Pro	Ser		Glu	Leu	Ile
	Gln		355 Val	Gly	Pro	Leu	_		Arg	Asp	Ala	_	365 Leu	Leu	Val	Glu
10		370 Pro	Pro	Leu	Ala	_	375 Val	Ala	Ala	Ser		380 Arg	Phe	Thr	Leu	
	385 Val	Pro	Gly	Phe	Glu	390 Gly	Tyr	Arg	Glu	Pro	395 Leu	Cys	Leu	Ser	Pro	400 Ala
	Ser	Ser	Gly	Ser	405 Ser	Ala	Ser	Phe	Ile	410 Ser	Asp	Thr	Phe	Ser	415 Pro	Tyr
15			_	420					425		_			430 Asp		
			435	_				440		_			445	_		_
20		450					455			_		460	_	Thr		
20	465				_	470					475		_	Leu	_	480
	His	Ser	Pro	Val	Pro 485	Arg	Pro	Ala	Ser	Arg 490	Ser	Ser	Ser	Pro	Gly 495	Ala
25	Lys	Arg	Arg	His 500	Ser	Cys	Ala	Glu	Ala 505	Leu	Val	Ala	Leu	Pro 510	Pro	Gly
	Ala	Ser	Pro 515	Gln	Arg	Ser	Arg	Ser 520	Pro	Ser	Pro	Gln	Pro 525	Ser	Ser	His
	Val	Ala 530	Pro	Gln	Asp	His	Gly 535	Ser	Pro	Ala	Gly	Tyr 540	Pro	Pro	Val	Ala
30	Gly 545		Ala	Val	Ile	Met 550		Ala	Leu	Asn	Ser 555		Ala	Thr	Asp	Ser 560
		Cys	Gly	Ile			Lys	Met	Trp	-		Ser	Pro	Asp		
	Pro	Val	Ser		565 Ala	Pro	Ser	Lys	Ala	570 Gly	Leu	Pro	Arg	His	575 Ile	Tyr
35	Pro	Ala	Val	580 Glu	Phe	Leu	Gly	Pro	585 Cys	Glu	Gln	Gly	Glu	590 Arg	Arg	Asn
	Ser	Ala	595 Pro	Glu	Ser	Ile	Leu	600 Leu	Val	Pro	Pro	Thr	605 Trp	Pro	Lys	Pro
40	Leu	610 Val	Pro	Ala	Ile	Pro	615 Ile	Cys	Ser	Ile	Pro	620 Val	Thr	Ala	Ser	Leu
	625					630		_			635			Tyr		640
					645					650		-		Tyr	655	
45				660					665					670		
		•	675	_	_			680				•	685			Val
		690			-	-	695			-		700	-	Leu		
50	Phe 705	Ile	Gly	Thr	Ala	Asp 710	Glu	Arg	Ile	Leu	Lys 715	Pro	His	Ala	Phe	Tyr 720
	Gln	Val	His	Arg	Ile 725	Thr	Gly	Lys	Thr	Val 730	Thr	Thr	Thr	Ser	Tyr 735	Glu
55	Lys	Ile	Val	Gly 740	Asn	Thr	Lys	Val	Leu 745		Ile	Pro	Leu	Glu 750	Pro	Lys
	Asn	Asn	Met		Ala	Thr	Ile	Asp		Ala	Gly	Ile	Leu	Lys	Leu	Arg

260

				_												
	7.00	N 7 -	755					760	)				765	5		
		,,,	,				775					700				Lys
5						790					795	Ile	Pro			Ser
	Gly	Arg	Ile	Val	Ser 805	Leu	Gln	Thr	Ala	Ser 810	Asn	Pro	Ile	Glu		800 Ser
	Gln	Arg	Ser	Ala 820	His		Leu	Pro	Met 825	Val	Glu	Arg	Gln			Asp
10	Ser	Cys	Leu 835	Val	Tyr	Gly	Gly	Gln 840	Gln	Met	Ile	Leu			Gln	Asn
	Phe	Thr 850	Ser		Ser	Lys	Val	Val	Phe	Thr	Glu		845 Thr	Thr	Asp	Gly
15	Gln 865			Trp	Glu	Met 870	855 Glu	Ala	Thr	Val	Asp	860 Lys	Asp	Lys	Ser	Gln
		Asn	Met	Leu	Phe		Glu	Ile	Pro	Glu	875 Tyr	Arg	Asn	Lys	His	880 Ile
	Arg	Thr	Pro	Val 900	Lys	Val	Asn	Phe	Tyr	890 Val	Ile	Asn	Gly	Lys	895 Arg	Lys
20				Pro	Gln			Thr	905					910		
	Thr	Glu			Asp	Glu	Tyr	920 Asp	Pro	Thr	Leu	Ile	925 Cys	Ser	Pro	Thr
		230			Gly		935					940				
25	213					950					955					0.60
	Ala	Glu	Ser	Pro	Ser 965	Сув	Leu	Val	Ala	Thr 970	Met	Ala	Pro	Cys	Gln 975	960 Gln
	Phe	Arg	Thr	Gly 980	Leu	Ser	Ser	Pro	Asp 985	Ala	Arg	Tyr	Gln	Gln 990	Gln	Asn
30	Pro	Ala	Ala 995	Val	Leu	Tyr	Gln 1	Arg	Ser	Lys	Ser		Ser .005	Pro	Ser	Leu
	Leu 1	Gly 010	Tyr	Gln	Gln	Pro 1	Ala 015	Leu	Met	Ala		Pro 020	Leu	Ser	Leu	Ala
35	Asp .	Ala	His	Arg	Ser 1	Val 030	Leu	Val	His	Ala	Gly .035	Ser	Gln	Gly		
	Ser .	Ala	Leu	Leu	His	Pro	Ser	Pro	Thr	Asn	Gln	Gln	Ala	Ser	Pro	040 Val
					045				1	.050				7	A E E	
	Ile			000				1	065				1	070		
40	Glu :		075				1	Cys 080	Glu			1	Pro	Gly		
	Arg 1	Pro 090	Gly	Pro	Pro :	Pro 1	Val 095	Ser	Gln	Gly	Gln .	Arg	Leu	Ser	Pro	Gly
45	Ser :	Tyr	Pro	Thr	Val :	Ile	Gln	Gln	Gln	Asn	Ala '	Thr :	Ser	Gln .	Arg .	Ala
45	103				1.	TTO				7	115				-	100
	Ala 1			1	145				1	130				7	125	
	Gly V	Val	Thr	Ile : 140	Lys (	Gln (	Glu (	Gln .	Asn	Leu .	Asp (	3ln '		Tyr :	Leu .	Asp
50	Asp \	Val :	Asn (		Ile :	Ile A	Arg 1	Lys (	145 Glu	Phe	Ser (	Glv 1	1 Pro	150 Pro 1	Ala :	Ara
			133				1	160			'		165			3
	Asn (	31n ' 170	rnr													

(2) INFORMATION FOR SEQ ID NO:132:

PCT/DK98/00145 WO 98/45704

5		(1)	(A) (B) (C) (D)	LENG TYPE STRA TOPO MOLEG	ETH: E: nt ANDEI OLOGY CULE IRE:	CHARF 3546 Iclei DNESS 7: li TYPE	basic ac E: si inear E: cI	se pa cid ingle	airs	ıce								
		()	(D)	OTI	HER I	ON: 1 INFOR	(TAMS	ON:	- : SE(	) ID	NO: 1	132:						
15						CGG Arg											48	
20						GGC Gly											96	
25						TAT Tyr											144	
30	His	Lys 50	Val	Ala	Ser	CCA Pro	Pro 55	Ser	Gly	Pro	Ala	Tyr 60	Pro	Asp	Asp	Val	192	
35	Met 65	Asp	Tyr	Gly	Leu	AAG Lys 70	Pro	Tyr	Ser	Pro	Leu 75	Ala	Ser	Leu	Ser	Gly 80	240	
40	Glu	Pro	Pro	Gly	Arg 85	TTC	Gly	Glu	Pro	Asp 90	Arg	Val	Gly	Pro	Gln 95	Lys	288	
40	Phe	Leu	Ser	Ala 100	Ala	AAG Lys	Pro	Ala	Gly 105	Ala	Ser	Gly	Leu	Ser 110	Pro	Arg	336	
45	Ile	Glu	Ile 115	Thr	Pro	TCC	His	Glu 120	Leu	Ile	Gln	Ala	Val 125	Gly	Pro	Leu	384	
50	Arg	Met 130	Arg	Asp	Ala		Leu 135	Leu	Val	Glu	Gln	Pro 140	Pro	Leu	Ala	Gly	432	
55						AGG Arg 150											480	
	TAC	CGC	GAG	CCG	CTT	TGC	TTG	AGC	CCC	GCT	AGC	AGC	GGC	TCC	TCT	GCC	528	261

	Arg	Ser	Pro	Ser	Pro	CAG Gln	Pro	Ser	Ser	Hic	Unl	GCA	CCC	CAG	GAC	CAC	864
30			2/5			Gln		280					285				
	GGC	TCC	CCG	GCT	GGG	TAC	CCC	CCT	GTG	GCT	GGC	TCT	GCC	GTG	ATC	ATG	912
	Gly	Ser 290	Pro	Ala	Gly	Tyr	Pro	Pro	Val	Ala	Gly	Ser	Ala	Val	Ile	Met	912
35							295					300					
	GAT	GCC Ala	CTG	AAC	AGC	CTC	GCC	ACG	GAC	TCG	CCT	TGT	GGG	ATC	CCC	CCC	960
	305	Ата	ьeu	Asn	ser	Leu 310	Ala	Thr	Asp	Ser	Pro 315	Сув	Gly	Ile	Pro	Pro	
40	አለር	איייט	maa													320	
70	Lys	Met	Trp	Lys	Thr	AGC Ser	CCT Pro	GAC Asp	CCC Pro	TCG Ser	CCG Pro	GTG Val	TCT	GCC Ala	GCC	CCA	1008
					325					330	110	vuı	DCI		335	PIO	
	TCC	AAG	GCC	GGC	CTG	CCT	CGC	CAC	ATC	TAC	CCG	GCC	GTG	GAG	ייירי	ርጥር	1056
45	Ser	Lys	Ala	Gly 340	Leu	Pro	Arg	His	Ile	Tyr	Pro	Ala	Val	Glu	Phe	Leu	1056
									345					350			
	GGG Glv	CCC	TGC	GAG	CAG	GGC	GAG .	AGG	AGA	AAC	TCG	GCT	CCA	GAA	TCC	ATC	1104
50	Gly	- 10	355	GIU	GIII	GIY	GIU.	Arg 360	Arg .	Asn .	Ser		Pro   365	Glu .	Ser	Ile	
	CTG	СТС	ርጥጥ	ccc	ccc	א כיוחי	TO C	aa~									
	CTG Leu	Leu	Val	Pro	Pro	ACT '	rgg ( Trp ]	CCC Pro	AAG Lvs	CCG ( Pro	CTG Leu	GTG (	CCT (	GCC A	ATT	CCC	1152
55		370					375		-,-			380		nia .	- T E	FIO	
55	ATC	TGC	AGC .	ATC	CCA (	GTG :	ACT 1	מטפ	<b>ፐ</b> ሮሮ <i>'</i>	مىلات ب	יייטיטי	CC2 -	~mm ·	73.C	na.~		
				-				JUA		-10	-C1	CCA (	~1.I. (	SAG	r.GG	CCG	1200
																	262

										263							
	Ile 385	Cys	Ser	Ile	Pro	Val 390	Thr	Ala	Ser	Leu	Pro 395	Pro	Leu	Glu	Trp	Pro 400	
5					TCA Ser 405												1248
10			_		CGG Arg												1296
45					ACT Thr												1344
15					CCT Pro												1392
20	_				AAG Lys												1440
25					ACC Thr 485												1488
30					ATC Ile												1536
0.5					GGG Gly												1584
35					ACG Thr												1632
40					CAC His												1680
45					AAC Asn 565												1728
50					GAA Glu												1776
EF					ATC Ile												1824
55	GTT	GTG	TTT	ACT	GAG	AAG	ACC	ACA	GAT	GGA	CAG	CAA	ATT	TGG	GAG	ATG	1872

										264							
	Va	1 Va 63	al Ph	ne Th	ır Gl	u Ly	s Th 61	r Th 5	r As	p Gl	y Gl	n Gl 62		e Tr	p Gl	lu Met	
5	62	5	.u 11.	ır va	I AS	63( Б г.У:	s Asj	р гу	s Se	r Gl	n Pr 63	o As 5	n Me	t Le	u Ph	CT GTT ie Val 640	1920
10				o gi	64:	5 5	j ASI	л гу	s His	65 E	≥ Arq	g Th	r Pr	o Va	1 Ly 65		1968
15			- 19	66	0	a ASI	1 G13	/ Lys	665	J Lys	S Arg	g Se:	r Glı	1 Pro	9 Gl:	G CAC n His	2016
	TTT Phe	AC Th	C TA T Ty:		C CCA	A GTC Val	Pro	GC( Ala 680	a TTE	AAC Lys	ACC Thr	G GAC	G CCC 1 Pro 685	Thi	G GA	r GAA p Glu	2064
20	TAT Tyr	GA As _l	,	C ACT	r CTG	ATC	TGC Cys 695	Ser	C CCC	ACC Thr	CAT	GGZ Gly 700	/ Gly	CTC	GG(	G AGC / Ser	2112
25	CAG Gln 705		Г ТАС Э Туз	TAC Tyr	C CCC	CAG Gln 710	CAC His	CCG Pro	ATG Met	GTG Val	GCC Ala 715	GAG Glu	TCC Ser	CCC	TCC Ser	TGC Cys 720	2160
30	CTC Leu	GT(	GCC Ala	ACC Thr	ATG Met 725	GCT Ala	CCC Pro	TGC Cys	CAG Gln	CAG Gln 730	TTC Phe	CGC Arg	ACG Thr	GGG Gly	CTC Leu 735	TCA Ser	2208
35	TCC Ser	CCI Pro	GAC Asp	GCC Ala 740	CGC Arg	TAC Tyr	CAG Gln	CAA Gln	CAG Gln 745	AAC Asn	CCA Pro	GCG Ala	GCC Ala	GTA Val 750	CTC Leu	TAC Tyr	2256
	CAG Gln	CGG Arg	AGC Ser 755	AAG Lys	AGC Ser	CTG Leu	AGC Ser	CCC Pro 760	AGC Ser	CTG Leu	CTG Leu	GGC Gly	TAT Tyr 765	CAG Gln	CAG Gln	CCG Pro	2304
40	GCC Ala	CTC Leu 770	ATG Met	GCC Ala	GCC Ala	CCG Pro	CTG Leu 775	TCC Ser	CTT Leu	GCG Ala	GAC Asp	GCT Ala 780	CAC His	CGC Arg	TCT Ser	GTG Val	2352
45	CTG Leu 785	GTG Val	CAC His	GCC Ala	GGC Gly	TCC Ser 790	CAG Gln	GGC Gly	CAG Gln	Ser	TCA Ser 795	GCC Ala	CTG Leu	CTC Leu	CAC His	CCC Pro 800	2400
50	TCT Ser	CCG Pro	ACC Thr	AAC Asn	CAG Gln 805	CAG (	GCC Ala	TCG Ser	Pro	GTG Val 810	ATC Ile	CAC His	TAC Tyr	TCA Ser	CCC Pro 815	ACC Thr	2448
55	AAC Asn	CAG Gln	CAG Gln	CTG Leu 820	CGC Arg	TGC ( Cys (	GGA :	Ser	CAC ( His ( 825	CAG ( Gln (	GAG '	TTC Phe	Gln	CAC His 830	ATC Ile	ATG Met	2496
	TAC '	TGC	GAG	AAT	TTC	GCA (	CCA (	GGC /	ACC I	ACC I	AGA (	CCT	GGC (	CCG	CCC	CCG	2544 <b>264</b>

										265							
	Tyr	Cys	Glu 835	Asn	Phe	Ala	Pro	Gly 840	Thr	Thr	Arg	Pro	Gly 845	Pro	Pro	Pro	
5		AGT Ser 850															2592
10		CAG Gln															2640
15		AGT Ser															2688
15		CAG Gln															2736
20		AAG Lys															2784
25		TCG Ser 930															2832
30		AAG Lys															2880
0.5		GAC Asp	_		_												2928
35		GGC Gly															2976
40		GGC Gly					Pro					Val					3024
45	Tyr	GGC Gly L010				Phe					Asp						3072
50		TTC Phe			Ser					Gly					Arg		3120
		TTC Phe		ГÀЗ					Tyr					Glu			3168
55	TTC	GAG	GGC	GAC	ACC	CTG	GTG	AAC	CGC	ATC	GAG	CTG	AAG	GGC	ATC	GAC	3216 2

	266	
	Phe Glu Gly Asp Thr Leu Val Asn Arg Ile Glu Leu Lys Gly Ile Asp 1060 1065 1070	
5	TTC AAG GAG GAC GGC AAC ATC CTG GGG CAC AAG CTG GAG TAC AAC TAC Phe Lys Glu Asp Gly Asn Ile Leu Gly His Lys Leu Glu Tyr Asn Tyr 1075 1080 1085	3264
10	AAC AGC CAC AAC GTC TAT ATC ATG GCC GAC AAG CAG AAG AAC GGC ATC Asn Ser His Asn Val Tyr Ile Met Ala Asp Lys Gln Lys Asn Gly Ile 1090 1095 1100	3312
15	AAG GTG AAC TTC AAG ATC CGC CAC AAC ATC GAG GAC GGC AGC GTG CAG Lys Val Asn Phe Lys Ile Arg His Asn Ile Glu Asp Gly Ser Val Gln 1105 1110 1115 1120	3360
	CTC GCC GAC CAC TAC CAG CAG AAC ACC CCC ATC GGC GAC GGC CCC GTG Leu Ala Asp His Tyr Gln Gln Asn Thr Pro Ile Gly Asp Gly Pro Val 1125 1130 1135	3408
20	CTG CTG CCC GAC AAC CAC TAC CTG AGC ACC CAG TCC GCC CTG AGC AAA Leu Leu Pro Asp Asn His Tyr Leu Ser Thr Gln Ser Ala Leu Ser Lys 1140 1145 1150	3456
25	GAC CCC AAC GAG AAG CGC GAT CAC ATG GTC CTG CTG GAG TTC GTG ACC Asp Pro Asn Glu Lys Arg Asp His Met Val Leu Leu Glu Phe Val Thr 1155 1160 1165	3504
30	GCC GCC GGG ATC ACT CTC GGC ATG GAC GAG CTG TAC AAG TAA Ala Ala Gly Ile Thr Leu Gly Met Asp Glu Leu Tyr Lys 1170 1180	3546
35	(2) INFORMATION FOR SEQ ID NO:133:  (i) SEQUENCE CHARACTERISTICS:	
40	<ul> <li>(A) LENGTH: 1181 amino acids</li> <li>(B) TYPE: amino acid</li> <li>(C) STRANDEDNESS: single</li> <li>(D) TOPOLOGY: linear</li> <li>(ii) MOLECULE TYPE: protein</li> <li>(v) FRAGMENT TYPE: internal</li> </ul>	
45	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:133:	
	Met Asn Ala Pro Glu Arg Gln Pro Gln Pro Asp Gly Gly Asp Ala Pro  1 5 10 15  Gly His Glu Pro Gly Gly Ser Pro Gln Asp Glu Leu Asp Phe Ser Ile  20 25	
50	Leu Phe Asp Tyr Glu Tyr Leu Asn Pro Asn Glu Glu Glu Pro Asn Ala 35 40 45 His Lys Val Ala Ser Pro Pro Ser Gly Pro Ala Tyr Pro Asp Asp Val	
55	Met Asp Tyr Gly Leu Lys Pro Tyr Ser Pro Leu Ala Ser Leu Ser Gly	
	Glu Pro Pro Gly Arg Phe Gly Glu Pro Asp Arg Val Gly Pro Gln Lys	

	D1	•	<b>a</b>		85	-	_			90	_				95	
	Pne	ьeu	ser		Ala	rys	Pro	Ala		Ala	Ser	Gly	Leu		Pro	Arg
				100	_	_			105					110		
_	lle	GIu		Thr	Pro	Ser	His		Leu	Ile	Gln	Ala		Gly	Pro	Leu
5	_		115	_				120					125			
	Arg		Arg	Asp	Ala	Gly		Leu	Val	Glu	Gln	Pro	Pro	Leu	Ala	Gly
		130					135					140				
		Ala	Ala	Ser	Pro		Phe	Thr	Leu	Pro	Val	Pro	Gly	Phe	Glu	Gly
	145					150					155					160
10	Tyr	Arg	Glu	Pro		Суѕ	Leu	Ser	Pro		Ser	Ser	Gly	Ser	Ser	Ala
					165					170					175	
	ser	Phe	Ile		Asp	Thr	Phe	Ser		Tyr	Thr	Ser	Pro		Val	Ser
	_		_	180					185					190		
4 ==	Pro	Asn		GIA	GIA	Pro	Asp		Leu	Cys	Pro	Gln	Phe	Gln	Asn	Ile
15			195			_		200					205			
	Pro		His	Tyr	Ser	Pro		Thr	Ser	Pro	Ile	Met	Ser	Pro	Arg	Thr
	^	210					215					220				
		Leu	Ala	Glu	Asp		Сув	Leu	Gly	Arg		Ser	Pro	Val	Pro	
00	225		_	_	_	230					235					240
20	Pro	Ата	ser	Arg		ser	Ser	Pro	GIA		Lys	Arg	Arg	His		Cys
		<b>~</b> 3		<b>.</b>	245			_	_	250		_	_		255	_
	Ala	GIU	Ата		vai	Ala	Leu	Pro		GIY	АТа	Ser	Pro		Arg	Ser
	7 ~~~	602	Dro	260	Dwa	~1 _n	Dwo		265	***	**- 7	77-		270		***
25	Arg	Ser	275	261	PLO	GIII	PIO		ser	HIS	vaı	Ala		GIN	Asp	HIS
20	Gly	Cor		ת ז ת	Gly	T-1-	Dro	280	17-1	n 3 -	<i>α</i> 1	Ser	285	17. 7	T1.	Mah
	Cry	290	110	AIG	GIY	T y L	295	PIO	vaı	мта	GIA	300	Ald	vai	116	Mec
	Δen		T.e11	Aen	Sor	T.011		Thr	λcn	Ca*	Dro	Cys	<i>α</i> 1	T10	Dro	Dro
	305		ac u	11011	001	310	niu	* 111	тэр	SCI	315	Суз	GIY	116	FIU	320
30		Met	Trn	Lvs	Thr		Pro	Aen	Pro	Ser		Val	Ser	λla	בומ	
	-1-			-7-	325					330	110	V 14.1	501	AIU	335	110
	Ser	Lvs	Ala	Glv		Pro	Ara	His	Tle		Pro	Ala	Val	Glu		Len
		-		340			5		345	-1-				350		
	Gly	Pro	Cvs	Glu	Gln	Glv	Glu	Ara	-	Asn	Ser	Ala	Pro		Ser	Ile
35	-		355			•		360					365			
	Leu	Leu	Val	Pro	Pro	Thr	Trp	Pro	Lys	Pro	Leu	Val		Ala	Ile	Pro
		370					375		•			380				
	Ile	Cys	Ser	Ile	Pro	Val	Thr	Ala	Ser	Leu	Pro	Pro	Leu	Glu	Trp	Pro
	385					390					395				_	400
40	Leu	Ser	Ser	Gln	Ser	Gly	Ser	Tyr	Glu	Leu	Arg	Ile	Glu	Val	Gln	Pro
					405					410					415	
	Lys	Pro	His	His	Arg	Ala	His	Tyr	Glu	Thr	Glu	Gly	Ser	Arg	Gly	Ala
				420					425					430		
	Val	Lys	Ala	Pro	Thr	Gly	Gly	His	${\tt Pro}$	Val	Val	Gln	Leu	His	Gly	Tyr
45			435					440					445			
	Met		Asn	Lys	Pro	Leu		Leu	Gln	Ile	Phe	Ile	Gly	Thr	Ala	Asp
	_	450					455					460				
		Arg	Ile	Leu	Lys		His	Ala	Phe	Tyr	Gln	Val	His	Arg	Ile	Thr
<b>E</b> 0	465		m1		_,	470		_	_		475		<u>-</u>			480
50	GTA	гув	Thr	val		Thr	Thr	Ser	Tyr		Lys	Ile	Val	Gly		Thr
	T	37. 3	<b>.</b>	<b>~1</b>	485	_	_	~ 7	_	490	_	_			495	
	гλа	vaı	ьeu		тте	Pro	Leu	GIu		ràs	Asn	Asn	Met		Ala	Thr
	Tle	λ ~~	C110	500 31a	G1	т1 -	T	T	505	7	D =	77-	<b>3</b>	510	<b>a</b> 2	<b>T</b>
55	TIE	Asp	515	чтя	GTÀ	тте	neu		ьeu	arg	Asn	Ala		тте	GIU	ьeu
55	Ara	Tare		Glu	Thr	Acn	Tla	520	۸	T	n	mb~	525	17-7	A	T 0
	9	-ys	Gry	JIU	TIIL	veħ	116	GIA	Arg	пÀв	АЗП	Thr	ALG.	val	Arg	ьeu

													268								•
			530						53	5						540					
	V 5	al 45	Ph∈	Ar	g Vá	al H	is :	[le	Pro	o G.	lu s	Ser	Se:	r G	ly A	Arg	11	e Va	ıls	er	Leu
5	G	ln	Thr	Al	a Se	r A 5	sn 1 65	Pro	Ile	e G]	lu (	Cys	Se:	r G	ln A	Arg	Se	r Al	a H	is	560 Glu
	L	eu	Pro	Me	t Va 58	1 G	lu A	ırg	Glr	n As	p 7	hr 85	Ası	Se	er (	'ys	Let	ı Va	1 T	75 yr	Gly
40											у (	ln	Asr						u S		Lys
10																	Ιlε	Tr			Met
	G. 62	Lu 2 25	Ala	Thi	r Va	l As	p L	ys	Asp	Ly	s S	er	Gln	Pr	O A	sn	Met	Le	u Pl	he	Val
					Gl																
15					Va:																
					660 His																
20																					
					Thi																
					Туг																
25					Thr									Phe	e Ar						
					Ala 740							n .	Asn								
30					Lys						Se	r							Gl		
30					Ala											a H	lis				
	785	1 V a	1 L	HIS	Ala	GΤλ	' Se 79	r G	ln	Gly	G1	n s	Ser	Ser	Al	a L	eu	Léu	His	5 E	ro
35	Ser	Pı	: 0:	Thr	Asn	Gln 805	G1:	n A	la	Ser	Pr	0 V	/al	795 Ile	Hi	s T	yr	Ser	Pro	3 I c	00 hr
					Leu 820	Arg	Су					s G								e M	
					Asn						Th	r T					ly				
40					Gly				eu 9	Ser						P					
	865	G1	n G	ln .	Asn	Ala	Thi	S	er (	3ln	Arg	j A	la A	Ala	Lys	A	sn (	Gly	Pro	P	ro
45					Gln							A	la (								
	Glu			sn 1							Let	B.									
	Arg	Ly	s G 9			Ser	Gly	Pı	co P	ro	905 Ala	A:	rg A	sn	Gln	Th	ır A	)10 Arg	Ile	Le	eu
50	Gln	Se:	r T	hr (	/al	Pro	Arg	A]	la A	rg	Asp	Pı	ro P	ro	Val	92 A1	:5 .a 1	hr 1	Met	Va	al
	Ser 945							Ph	ıe T							11					
55	Leu						Asn						ne S	er							
	Glu	Gly	As	sp A	la :	Chr	Tyr	Gl	у Ь	ys :	Leu	Th	r L	eu	Lys	Ph	e I	le (	975 Cys	Th	r

	980 985 990	
	Thr Gly Lys Leu Pro Val Pro Trp Pro Thr Leu Val Thr Thr Leu Thr 995 1000 1005	
5	Tyr Gly Val Gln Cys Phe Ser Arg Tyr Pro Asp His Met Lys Gln His 1010 1015 1020	
	Asp Phe Phe Lys Ser Ala Met Pro Glu Gly Tyr Val Gln Glu Arg Thr	
	025 1030 1035 1040	
	Ile Phe Phe Lys Asp Asp Gly Asn Tyr Lys Thr Arg Ala Glu Val Lys 1045 1050 1055	
10	Phe Glu Gly Asp Thr Leu Val Asn Arg Ile Glu Leu Lys Gly Ile Asp	
	1060 1065 1070	
	Phe Lys Glu Asp Gly Asn Ile Leu Gly His Lys Leu Glu Tyr Asn Tyr	
	1075 1080 1085	
45	Asn Ser His Asn Val Tyr Ile Met Ala Asp Lys Gln Lys Asn Gly Ile	
15	1090 1095 1100  Luc Val Aca Pho Luc Ilo Aca Hic Aca Ilo Clu Aca Clu Cor Val Cla	
	Lys Val Asn Phe Lys Ile Arg His Asn Ile Glu Asp Gly Ser Val Gln 105 1110 1115 1120	
	Leu Ala Asp His Tyr Gln Gln Asn Thr Pro Ile Gly Asp Gly Pro Val	
	1125 1130 1135	
20	Leu Leu Pro Asp Asn His Tyr Leu Ser Thr Gln Ser Ala Leu Ser Lys	
	1140 1145 1150	
	Asp Pro Asn Glu Lys Arg Asp His Met Val Leu Leu Glu Phe Val Thr	
	1155 1160 1165	
	Ala Ala Gly Ile Thr Leu Gly Met Asp Glu Leu Tyr Lys	
25	1170 1175 1180	
	(2) INFORMATION FOR SEQ ID NO:134:	
	(2) INFORMATION FOR BEQ ID NO.134.	
	(i) SEQUENCE CHARACTERISTICS:	
30	(A) LENGTH: 2802 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
35	(ii) MOLECULE TYPE: cDNA	
	(ix) FEATURE:	
	(A) NAME/KEY: Coding Sequence	
	(B) LOCATION: 12799	
40	(D) OTHER INFORMATION:	
	(-,	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:134:	
	ATG GTG AGC AAG GGC GAG GAG CTG TTC ACC GGG GTG GTG CCC ATC CTG 48	
45	Met Val Ser Lys Gly Glu Glu Leu Phe Thr Gly Val Val Pro Ile Leu	
	1 5 10 15	
	GTC GAG CTG GAC GGC GAC GTA AAC GGC CAC AAG TTC AGC GTG TCC GGC 96	
	Val Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe Ser Val Ser Gly	
50	20 25 30	
	GAG GGC GAG GGC GAT GCC ACC TAC GGC AAG CTG ACC CTG AAG TTC ATC 144	
	Glu Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr Leu Lys Phe Ile	
EE	35 40 45	
55	THE ARE ARE COL AND COME OF THE COL THE COL ARE ONE ARE ARE ARE ARE	
	TGC ACC ACC GGC AAG CTG CCC GTG CCC TGG CCC ACC CTC GTG ACC ACC 192	200
	•	269

	_	,								2/0							
	Cy	5 Th	r Th	r Gl	у Lу	s Le	ı Pro	o Va	l Pr	o Tr	p Pro	0 Th		u Va	l Th	r Thr	
5	CT( Let 65	AC Th	C TA r Ty	C GG r Gl	C GT y Va	G CA0 1 Gl: 70	TG0	C TT	C AGo	C CG(	C TAG g Ty: 75	C CC	C GA	C CA	C AT s Me	G AAG t Lys 80	240
10	CAC Glr	CAO Hi	C GA	C TT p Ph	C TT e Pho 85	C AAC	TC(	C GCC	C ATO	CCC Pro	C GAA	A GGG	С ТАС у Туз	C GT	C CA( 1 Gl: 95	G GAG n Glu	288
15	CGC Arg	ACC Thi	C ATO	C TTO Pho 100	e Pne	C AAG E Lys	GAC Asp	GA(	GGC Gly 105	Asn	TAC Tyr	Lys	G ACC	C CGC Arg	g Ala	C GAG a Glu	336
	GTG Val	Lys	F TTC F Phe 115	- 010	G GG(	GAC Asp	ACC	CTC Leu 120	val	AAC Asn	CGC Arg	ATC Ile	GAG Glu 125	Let	AAC Lys	GGC Gly	384
20	ATC Ile	GAC Asp 130	PILE	AAC Lys	GAG Glu	GAC Asp	GGC Gly 135	Asn	: ATC	CTG Leu	GGG Gly	CAC His	Lys	CTG Leu	GAG Glu	TAC	432
25	AAC Asn 145	TAC	AAC Asn	: AGC	CAC His	AAC Asn 150	GTC Val	TAT Tyr	ATC Ile	ATG Met	GCC Ala 155	GAC Asp	AAG Lys	CAG Gln	AAG Lys	AAC Asn 160	480
30	GGC	ATC Ile	AAG Lys	GTG Val	AAC Asn 165	TTC Phe	AAG Lys	ATC Ile	CGC Arg	CAC His 170	AAC Asn	ATC Ile	GAG Glu	GAC Asp	GGC Gly 175	AGC Ser	528
35	GTG Val	CAG Gln	CTC Leu	GCC Ala 180	GAC Asp	CAC His	TAC Tyr	CAG Gln	CAG Gln 185	AAC Asn	ACC Thr	CCC Pro	ATC Ile	GGC Gly 190	GAC Asp	GGC Gly	576
	CCC Pro	GTG Val	CTG Leu 195	CTG Leu	CCC Pro	GAC Asp	AAC Asn	CAC His 200	TAC Tyr	CTG Leu	AGC Ser	ACC Thr	CAG Gln 205	TCC Ser	GCC Ala	CTG Leu	624
40		AAA Lys 210	GAC Asp	CCC Pro	AAC Asn	GAG Glu	AAG Lys 215	CGC Arg	GAT Asp	CAC His	Met	GTC Val 220	CTG Leu	CTG Leu	GAG Glu	TTC Phe	672
45	GTG Val 225	ACC Thr	GCC Ala	GCC Ala	GGG Gly	ATC Ile 230	ACT Thr	CTC Leu	GGC Gly	Met	GAC Asp 235	GAG Glu	CTG Leu	TAC Tyr	AAG Lys	TCC Ser 240	720
50	GGA Gly	CTC Leu	AGA Arg	TCT Ser	CGA Arg 245	GGG Gly	AGC Ser	ATG Met	Gly	ACC Thr 250	TTG Leu	CGG Arg	GAT Asp	TTA Leu	CAG Gln 255	TAC Tyr	768
55	GCG (	CTC Leu	GIII	GAG Glu 260	AAG Lys	ATC (	GAG (	GIu	CTG . Leu . 265	AGG (	CAG (	CGG Arg	Asp	GCT Ala 270	CTC Leu	ATC Ile	816
	GAC (	GAG	CTG	GAG	CTG	GAG 1	fTG (	GAT	CAG Z	AAG (	GAC (	GAA	CTG .	ATC	CAG	AAG	864 270

										2/1							
	Asp	Glu	Leu 275	Glu	Leu	Glu	Leu	Asp 280	Gln	Lys	Asp	Glu	Leu 285	Ile	Gln	Lys	
5		CAG Gln 290													_		912
10		CAG Gln				_								_			960
45		AAG Lys													_		1008
15		CTC Leu															1056
20		GAT Asp															1104
25		GAG Glu 370														_	1152
30		TAT Tyr															1200
		GTG Val														_	1248
35		AAG Lys												_		_	1296
40		CTT Leu									_				_		1344
45		AAA Lys 450															1392
50		ACA Thr															1440
e e		CCA Pro															1488
55	GAT	GTC	CTT	GAA	GAG	ACC	CAC	TAT	GAA	AAT	GGA	GAA	TAT	ATT	ATC	AGG	1536 2

										272							
	As	p V	al Le	eu G] 50	lu G] 00	u Th	r Hi	в Ту	r Gl 50	u As 5	n Gl	y Gli	и Ту	r Il 51		e Arg	
5	CA G1	A GO	GT GO Ly Al	.u AI	GA GG	G GA y As	C AC p Th	C TT r Ph 52	e Pn	T AT	C ATO	C AGO	C AA/ C Lys 525	Gl	A AC	G GTA r Val	1584
10	110	53	30	IT AL	g GI	u As	53!	r Pro 5	o Sei	r Glı	ı Asp	540	Val	Phe	e Le	T AGA u Arg	1632
15	549	5	u Gi	у пу	s GI	y As <u>ı</u> 55(	o Tri	o Phe	e G1)	/ Glu	1 Lys 555	Ala	Leu	Glr	ı Gl	G GAA / Glu 560	1680
	GA: As _I	r GT o Va	G AG 1 Ar	A AC. g Th:	A GCA r Ala 569	a Asr	C GTA	A ATT	GCT Ala	GCA Ala 570	Glu	GCT Ala	GTA Val	ACC Thr	TG( Cys	C CTT S Leu	1728
20	GTC Val	AT Il	T GA	C AGA P Arg 580	A WOF	C TCT Ser	TTT Phe	Lys	CAT His 585	Leu	ATT	GGA Gly	GGG Gly	CTG Leu 590	Asp	GAT Asp	1776
25	GTI Val	TC'	T AAT r Asi 59!	Luy	A GCA S Ala	TAT Tyr	GAA Glu	GAT Asp 600	Ala	GAA Glu	GCT Ala	AAA Lys	GCA Ala 605	AAA Lys	TAT Tyr	GAA Glu	1824
30	GCT Ala	GAZ Glu 610		G GCT A Ala	TTC Phe	TTC Phe	GCC Ala 615	AAC Asn	CTG Leu	AAG Lys	CTG Leu	TCT Ser 620	GAT Asp	TTC Phe	AAC Asn	ATC Ile	1872
35	625	7.01	, 1111	Deu	GGA Gly	630	GIY	GIA	Phe	Gly	Arg 635	Val	Glu	Leu	Val	Gln 640	1920
		_,_	001	GIU	GAA Glu 645	ser	пуs	Tnr	Phe	Ala 650	Met	Lys	Ile	Leu	Lys 655	Lys	1968
40	CGT Arg	CAC	ATT Ile	GTG Val 660	GAC Asp	ACA Thr	AGA Arg	CAG Gln	CAG Gln 665	GAG Glu	CAC His	ATC Ile	Arg	TCA Ser 670	GAG Glu	AAG Lys	2016
45	CAG Gln	ATC Ile	ATG Met 675	CAG Gln	GGG Gly	GCT Ala	CAT His	TCC Ser 680	GAT Asp	TTC Phe	ATA Ile	Val .	AGA Arg 685	CTG Leu	TAC Tyr	AGA Arg	2064
50	ACA Thr	TTT Phe 690	AAG Lys	GAC Asp	AGC Ser	AAA Lys	TAT Tyr 695	TTG Leu	TAT Tyr	ATG Met	Leu	ATG ( Met (	GAA (	GCT Ala	TGT Cys	CTA Leu	2112
55	GGT Gly 705	GGA Gly	GAG Glu	CTC Leu	TGG Trp	ACC Thr 710	ATT Ile	CTC Leu	AGG Arg	Asp .	AGA ( Arg (	GGT ? Gly s	TCG ? Ser 1	TTT	Glu	GAT Asp 720	2160
	TCT	ACA	ACC	AGA	TTT	TAC .	ACA (	GCA	TGT (	GTG (	GTA (	GAA (	GCT T	TTT (	GCC	TAT	2208 <b>27</b> 2

										273							
	Ser	Thr	Thr	Arg	Phe 725	Tyr	Thr	Ala	Cys	Val 730	Val	Glu	Ala	Phe	Ala 735	Tyr	
	CTG	CAT	TCC	AAA	GGA	ATC	ATT	TAC	AGG	GAC	CTC	AAG	CCA	GAA	AAT	CTC	2256
5	Leu	His	Ser	Lys 740	Gly	Ile	Ile	Tyr	Arg 745	Asp	Leu	Lys	Pro	Glu 750	Asn	Leu	
	ATC	CTA	GAT	CAC	CGA	GGT	TAT	GCC	AAA	CTG	GTT	GAT	TTT	GGC	TTT	GCA	2304
10	Ile	Leu	Asp 755	His	Arg	Gly	Tyr	Ala 760	Lys	Leu	Val	Asp	Phe 765	Gly	Phe	Ala	
	AAG	AAA	ATA	GGA	TTT	GGA	AAG	AAA	ACA	TGG	ACT	TTT	TGT	GGG	ACT	CCA	2352
45	Lys	Lys 7 <b>7</b> 0	Ile	Gly	Phe	Gly	Lys 7 <b>7</b> 5	Lys	Thr	Trp	Thr	Phe 780	Cys	Gly	Thr	Pro	
15	CAC	m v m	CTIA	aaa	CCN	CNC	7 TC	N TO C	ama	220	***	GGC	an m	an a	a mm	max.	2400
												Gly					2400
	785	-7-	•	,,,,,	110	790		110	Deu	71011	795	Oly		r.op		800	
20	GCC	GAC	TAC	TGG	TCA	CTG	GGA	ATC	CTA	ATG	TAT	GAA	CTC	CTG	ACT	GGC	2448
	Ala	Asp	Tyr	Trp	Ser 805	Leu	Gly	Ile	Leu	Met 810	Tyr	Glu	Leu	Leu	Thr 815	Gly	
	AGC	CCA	CCT	TTC	TCA	GGC	CCA	GAT	CCT	ATG	AAA	ACC	TAT	AAC	ATC	ATA	2496
25	Ser	Pro	Pro	Phe 820	Ser	Gly	Pro	Asp	Pro 825	Met	Lys	Thr	Tyr	Asn 830	Ile	Ile	
	TTG	AGG	GGG	ATT	GAC	ATG	АТА	GAA	TTT	CCA	AAG	AAG	ATT	GCC	AAA	AAT	2544
30	Leu	Arg	Gly 835	Ilè	Asp	Met	Ile	Glu 840	Phe	Pro	Lys	Lys	Ile 845	Ala	Lys	Asn	
	GCT	GCT	AAT	TTA	АТТ	AAA	AAA	СТА	TGC	AGG	GAC	AAT	CCA	TCA	GAA	AGA	2592
	_	_										Asn 860					
35		~~~	3 3 m	mma				-		~		~~~		~~~		maa	2540
												CAA Gln					2640
	865	Gly	ASII	Deu	БуБ	870	Gly	vai	Буз	Asp	875	GIII	nys	1115	шуз	880	
40	TTT	GAG	GGC	TTT	AAC	TGG	GAA	GGC	TTA	AGA	AAA	GGT	ACC	TTG	ACA	CCT	2688
	Phe	Glu	Gly	Phe	Asn 885	Trp	Glu	Gly	Leu	Arg 890	Lys	Gly	Thr	Leu	Thr 895	Pro	
	CCT	ATA	ATA	CCA	AGT	GTT	GCA	TCA	CCC	ACA	GAC	ACA	AGT	AAT	TTT	GAC	2736
45	Pro	Ile	Ile	Pro 900	Ser	Val	Ala	Ser	Pro 905	Thr	Asp	Thr	Ser	Asn 910	Phe	Asp	
	AGT	TTC	CCT	GAG	GAC	AAC	GAT	GAA	CCA	CCA	CCT	GAT	GAC	AAC	TCA	GGA	2784
												Asp					
50			915					920					925				
			ATA			TAA											2802
	Trp	_	Ile	Asp	Phe												
55		930															

274

## (2) INFORMATION FOR SEQ ID NO:135:

```
(i) SEQUENCE CHARACTERISTICS:
```

- (A) LENGTH: 933 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- 10 (v) FRAGMENT TYPE: internal

5

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:135:

15					5					10					7.5	Leu
				20					25					20		Gly
20								40					45			lle
20		50					55					60				Thr
	0.5					70					75					Lys 80
25					85					90					95	Glu
				100					105					110		Glu
20			110					120					125	Leu		Gly
30		130					135					140		Leu		
	143					120					155			Gln		160
35					T P P					170				Asp	175	
				190					185					Gly 190		
40			193					200					205	Ser		
40		2.10					215					220		Leu		
						230					235			Tyr		240
45					245					250				Leu	255	
				260					265					Ala 270		
50			2/5					280					285	Ile		
50		290					295					300		Pro		
	303					310					315			Glu		220
55					325					330				Asp	225	
	Asp		SEL	117.23	val	inr	гел	Pro	Phe	Tyr	Pro	Lys	Ser	Pro	Gln	Ser

				340					345					350		
	Lys	Asp	Leu 355	Ile	Lys	Glu	Ala	Ile 360	Leu	Asp	Asn	Asp	Phe 365	Met	Lys	Asn
5	Leu	Glu 370	Leu	Ser	Gln	Ile	Gln 375	Glu	Ile	Val	Asp	Cys 380	Met	Tyr	Pro	Val
	Glu 385		Gly	Lys	Asp	Ser 390	Cys	Ile	Ile	Lys	Glu 395		Asp	Val	Gly	Ser 400
		Val	Tyr	Val			Asp	Gly	Lys			Val	Thr	Lys		
10	Val	Lys	Leu	-	405 Thr	Met	Gly	Pro	-	410 Lys	Val	Phe	Gly		415 Leu	Ala
	Ile	Leu	Tyr	420 Asn	Cys	Thr	Arg		425 Ala	Thr	Val	Lys		430 Leu	Val	Asn
	Val	Lys	435 Leu	Trp	Ala	Ile	Asp	440 Arg	Gln	Сув	Phe	Gln	445 Thr	Ile	Met	Met
15	Arg	450 Thr	Gly	Leu	Ile	Lys	455 His	Thr	Glu	Tyr	Met	460 Glu	Phe	Leu	Lys	Ser
	465 Val	Pro	Thr	Phe	Gln	470 Ser	Leu	Pro	Glu	Glu	475 Ile	Leu	Ser	Lys	Leu	480 Ala
20	Asp	Val	Leu	Glu	485 Glu	Thr	His	Tyr	Glu	490 Asn	Gly	Glu	Tyr	Ile	495 Ile	Arg
	Gln	Gly	Ala	500 Arg	Gly	Asp	Thr	Phe	505 Phe	Ile	Ile	Ser	Lvs	510 Gly	Thr	Val
			515 Thr					520					525			
25		530	Gly	_			535		, ·		_	540				_
	545		Arg		_	550	_		_		555					560
20	_		_		565					570					575	
30			Asp	580	_			_	585			_	-	590	_	
			Asn 595			-		600				_	605	_	_	
35		610	Ala				615			-		620	_			
	11e 625	Asp	Thr	Leu	Gly	Val 630	Gly	Gly	Phe	Gly	Arg 635	Val	Glu	Leu	Val	Gln 640
	Leu	Lys	Ser	Glu	Glu 645	Ser	Lys	Thr	Phe	Ala 650	Met	Lys	Ile	Leu	Lys 655	Lys
40	_		Ile	660					665				_	670		
	Gln	Ile	Met 675	Gln	Gly	Ala	His	Ser 680	Asp	Phe	Ile	Val	Arg 685	Leu	Tyr	Arg
45	Thr	Phe 690	Lys	Asp	Ser	Lys	Tyr 695	Leu	Tyr	Met	Leu	Met 700	Glu	Ala	Cys	Leu
	Gly 705	Gly	Glu	Leu	Trp	Thr 710	Ile	Leu	Arg	Asp	Arg 715	Gly	Ser	Phe	Glu	Asp 720
	Ser	Thr	Thr	Arg	Phe 725	Tyr	Thr	Ala	Суз	Val 730	Val	Glu	Ala	Phe	Ala 735	Tyr
50	Leu	His	Ser	Lys 740	Gly	Ile	Ile	Tyr	Arg 745	Asp	Leu	Lys	Pro	Glu 750	Asn	Leu
	Ile	Leu	Asp 755	His	Arg	Gly	Tyr	Ala 760	Lys	Leu	Val	Asp	Phe 765	Gly	Phe	Ala
55	Lys	Lys 770	Ile	Gly	Phe	Gly	Lys 775	Lys	Thr	Trp	Thr	Phe 780	Сув	Gly	Thr	Pro
	Glu	Tyr	Val	Ala	Pro	Glu	Ile	Ile	Leu	Asn	Lys	Gly	His	Asp	Ile	Ser

	270														
	785 790 795 800														
	Ala Asp Tyr Trp Ser Leu Gly Ile Leu Met Tyr Glu Leu Leu Thr Gly														
5	Ser Pro Pro Phe Ser Gly Pro Asp Pro Met Lys Thr Tyr Asn Ile Ile														
	Leu Arg Gly Ile Asp Met Ile Glu Phe Pro Lys Lys Ile Ala Lys Asn														
	Ala Ala Asn Leu Ile Lys Lys Leu Cys Arg Asp Asn Pro Ser Glu Arg 850 855														
10	Leu Gly Asn Leu Lys Asn Gly Val Lys Asp Ile Gln Lys His Lys Trp														
	Phe Glu Gly Phe Asn Trp Glu Gly Leu Arg Lys Gly Thr Leu Thr Pro														
15	Pro Ile Ile Pro Ser Val Ala Ser Pro Thr Asp Thr Ser Asn Phe Asp														
	Ser Phe Pro Glu Asp Asn Asp Glu Pro Pro Pro Asp Asp Asn Ser Gly 915 920 925														
00	Trp Asp Ile Asp Phe 930														
20	(2) INFORMATION FOR SEQ ID NO:136:														
	(i) SEQUENCE CHARACTERISTICS:														
25	<ul><li>(A) LENGTH: 2799 base pairs</li><li>(B) TYPE: nucleic acid</li><li>(C) STRANDEDNESS: single</li><li>(D) TOPOLOGY: linear</li></ul>														
	(ii) MOLECULE TYPE: cDNA														
30	(ix) FEATURE:														
35	<ul><li>(A) NAME/KEY: Coding Sequence</li><li>(B) LOCATION: 12795</li><li>(D) OTHER INFORMATION:</li></ul>														
33	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:136:														
	ATG GGC ACC TTG CGG GAT TTA CAG TAC GCG CTC CAG GAG AAG ATC GAG	48													
40	Met Gly Thr Leu Arg Asp Leu Gln Tyr Ala Leu Gln Glu Lys Ile Glu  1 5 10 15														
	GAG CTG AGG CAG CGG GAT GCT CTC ATC GAC GAG CTG GAG CTG GAG TTG	96													
45	Glu Leu Arg Gln Arg Asp Ala Leu Ile Asp Glu Leu Glu Leu Glu Leu 20 25 30														
	GAT CAG AAG GAC GAA CTG ATC CAG AAG CTG CAG AAC GAG CTG GAC AAG ASD Gln Lys Asp Glu Lou Ilo Cla Lys Asp Glu Lys As	44													
	Asp Gln Lys Asp Glu Leu Ile Gln Lys Leu Gln Asn Glu Leu Asp Lys 35 40 45														
50	TAC CGC TCG GTG ATC CGA CCA GCC ACC CAG CAG GCG CAG AAG CAG AGC  TVr Arg Ser Val Tle Arg Dro Ale The Car Cag CAG GCG CAG AAG CAG AGC	92													
	Tyr Arg Ser Val Ile Arg Pro Ala Thr Gln Gln Ala Gln Lys Gln Ser 50 60														
55	GCG AGC ACC TTG CAG GGC GAG CCG CGC ACC AAG CGG CAG GCG ATC TCC Ala Ser Thr Leu Gln Gly Glu Pro Arg Thr Lys Arg Gln Ala Ile Ser	10													
	65 70 75 80														
		_													

					_					GAT Asp 90							288
5 .										AAG Lys						_	336
10	እጥሮ	CTT	מאכ	100	GAC	արգու	λΤС	አአር	105	TTG	CNG	СТС	тСС	110	ልጥሮ	CAG	384
,						_				Leu	_			_	_		204
15										GAG Glu							432
20										CTG Leu							480
										GTG Val 170							528
25										ATT Ile							576
30										GTA Val							624
35										AGG Arg				_			672
40		_								GTT Val							720
		_	_							GAT Asp 250						_	768
45										CAA Gln							816
50										TAA Asn							864
55										ACT Thr							912

		•															
5	TT' Pho 30	C 01	A GA y Gl	G AA u Ly	A GCO s Ala	TTO Lev 310	1 GI1	G GGC	G GAZ	A GAT 1 Asp	GTC Val	Arg	A ACI	A GC	A AA a As	C GTA n Val 320	960
	AT'	r GC e Al	T GC a Al	A GA a Gl	A GCT u Ala 325	ı vaı	ACC Thi	C TGC	CTI Let	GTC Val	Ile	GA(	C AGA	A GAO	C TC: Se:	r TTT r Phe	1008
10	AA <i>l</i> Lys	A CA s Hi	T TT S Le	G AT u Ile 340	з сту	GGG Gly	CTC Leu	GAT Asp	GAT Asp 345	) Val	TCT Ser	'AA' 'Asr	AAA Lys	GCA Ala 350	туз	GAA Glu	1056
15	GAT Asp	GC.	A GAZ a Gli 35!	T ATS	r AAA a Lys	GCA Ala	AAA Lys	TAT Tyr 360	Glu	GCT Ala	GAA Glu	GCG Ala	GCT Ala 365	Phe	TTC Phe	GCC Ala	1104
20	AAC Asn	Let 370	л пу:	G CTC	TCT Ser	GAT Asp	TTC .Phe 375	AAC Asn	ATC Ile	ATT Ile	GAT Asp	ACC Thr 380	Leu	GGA Gly	GTI Val	GGA Gly	1152
25	GGT Gly 385	FILE	C GG# ≘ Gly	A CGA / Arg	GTA Val	GAA Glu 390	CTG Leu	GTC Val	CAG Gln	TTG Leu	AAA Lys 395	AGT Ser	GAA Glu	GAA Glu	TCC	Lys 400	1200
	ACG Thr	TTT Phe	GCA Ala	ATG Met	AAG Lys 405	ATT Ile	CTC Leu	AAG Lys	AAA Lys	CGT Arg 410	CAC His	ATT Ile	GTG Val	GAC Asp	ACA Thr 415	AGA Arg	1248
30	CAG Gln	CAG Gln	GAG Glu	CAC His 420	ATC Ile	CGC Arg	TCA Ser	GAG Glu	AAG Lys 425	CAG Gln	ATC Ile	ATG Met	CAG Gln	GGG Gly 430	GCT Ala	CAT His	1296
35	TCC Ser	GAT Asp	TTC Phe 435	ATA Ile	GTG Val	AGA Arg	CTG Leu	TAC Tyr 440	AGA Arg	ACA Thr	TTT Phe	AAG Lys	GAC Asp 445	AGC Ser	AAA Lys	TAT Tyr	1344
40	TTG Leu	TAT Tyr 450	ATG Met	TTG Leu	ATG Met	Glu	GCT Ala 455	TGT Cys	CTA Leu	GGT Gly	GGA Gly	GAG Glu 460	CTC Leu	TGG Trp	ACC Thr	ATT Ile	1392
45	CTC Leu 465	AGG Arg	GAT Asp	AGA Arg	GGT Gly	TCG Ser 470	TTT Phe	GAA Glu	GAT Asp	Ser	ACA Thr 475	ACC Thr	AGA Arg	TTT Phe	TAC Tyr	ACA Thr 480	1440
	GCA Ala	TGT Cys	GTG Val	GTA Val	GAA Glu 485	GCT Ala	TTT Phe	GCC Ala	TAT Tyr	CTG Leu 490	CAT His	TCC Ser	AAA Lys	GGA Gly	ATC Ile 495	ATT Ile	1488
50	TAC Tyr	AGG Arg	GAC Asp	CTC Leu 500	AAG Lys	CCA (	GAA . Glu .	Asn :	CTC Leu 505	ATC	CTA ( Leu )	GAT Asp	His !	CGA Arg 510	GGT Gly	TAT Tyr	1536
55	GCC Ala	AAA Lys	CTG Leu 515	GTT Val	GAT '	TTT (	Gly :	TTT ( Phe 2 520	GCA . Ala	AAG Z	AAA : Lys :	Ile	GGA ' Gly 1 525	TTT Phe	GGA Gly	<b>A</b> AG Lys	1584

279

					TGT Cys							1632
5					CAT His 550							1680
10					CTC Leu							1728
15					TAT Tyr	_	_		_			1776
20					ATT Ile							1824
25					CCA Pro							1872
	_		_	_	AAG Lys 630						_	1920
30					ACC Thr							1968
35					AGT Ser							2016
40					GAC Asp							2064
45		_			ATG Met							2112
					GTC Val 710							2160
50					GAG Glu							2208
55					TGC Cys							2256

280

5	AC(	C CT r Le	C GT u Va 75	T 111	C ACC	C CTC	ACC Thi	TAC TY1 760	G13	C GTC	G CAG	TGC Cys	TTC Phe 765	Sei	C CG	C TAC g Tyr	2304
	CC( Pro	C GAG O Asj 770	o ur	C ATO	G AAC	G CAG	CAC His	Asp	TTC Phe	TTC Phe	: AAG : Lys	TCC Ser 780	Ala	ATC Met	CCC Pro	C GAA o Glu	2352
10	GGC Gly 785	y	C GTC	C CAC L Glr	G GAG	CGC Arg 790	Thr	: ATC	TTC	TTC Phe	AAG Lys 795	Asp	GAC Asp	GGC Gly	AA( Asr	TAC Tyr 800	2400
15	AAG Lys	ACC Thr	C CGC	GCC Ala	GAG Glu 805	GTG Val	AAG Lys	TTC Phe	GAG Glu	GGC Gly 810	GAC Asp	ACC Thr	CTG Leu	GTG Val	AAC Asr 815	C CGC Arg	2448
20	ATC Ile	GAG Glu	CTC Leu	AAG Lys 820	GIA	ATC Ile	GAC Asp	TTC Phe	AAG Lys 825	GAG Glu	GAC Asp	GGC Gly	AAC Asn	ATC Ile 830	CTG Leu	GGG Gly	2496
25	CAC His	AAG Lys	Leu 835	GAG Glu	TAC Tyr	AAC Asn	TAC Tyr	AAC Asn 840	AGC Ser	CAC His	AAC Asn	GTC Val	TAT Tyr 845	ATC Ile	ATG Met	GCC Ala	2544
	GAC Asp	AAG Lys 850	CAG Gln	AAG Lys	AAC Asn	GGC Gly	ATC Ile 855	AAG Lys	GTG Val	AAC Asn	TTC Phe	AAG Lys 860	ATC Ile	CGC Arg	CAC His	AAC Asn	2592
30	ATC Ile 865	GAG Glu	GAC Asp	GGC Gly	AGC Ser	GTG Val 870	CAG Gln	CTC Leu	GCC Ala	GAC Asp	CAC His 875	TAC Tyr	CAG Gln	CAG Gln	AAC Asn	ACC Thr 880	2640
35	CCC Pro	ATC Ile	GGC Gly	GAC Asp	GGC Gly 885	CCC Pro	GTG Val	CTG Leu	CTG Leu	CCC Pro 890	GAC Asp	AAC Asn	CAC His	TAC Tyr	CTG Leu 895	AGC Ser	2688
40	ACC Thr	CAG Gln	TCC Ser	GCC Ala 900	CTG Leu	AGC Ser	AAA Lys	Asp	CCC Pro 905	AAC Asn	GAG . Glu	AAG Lys	Arg .	GAT Asp 910	CAC His	ATG Met	2736
45	GTC Val	CTG Leu	CTG Leu 915	GAG Glu	TTC Phe	GTG . Val	Inr	GCC Ala 920	GCC Ala	GGG . Gly	ATC /	Thr	CTC ( Leu ( 925	GGC Gly	ATG Met	GAC Asp	2784
	GAG Glu				TAA												2799
50			(2)	INF	ORMA:	гіои	FOR	SEQ	ID 1	NO:13	37:						

- (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 932 amino acids
  - (B) TYPE: amino acid

55

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(v) FRAGMENT TYPE: internal

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:137:

Met Gly Thr Leu Arg Asp Leu Gln Tyr Ala Leu Gln Glu Lys Ile Glu Glu Leu Arg Gln Arg Asp Ala Leu Ile Asp Glu Leu Glu Leu Glu Leu Asp Gln Lys Asp Glu Leu Ile Gln Lys Leu Gln Asn Glu Leu Asp Lys Tyr Arg Ser Val Ile Arg Pro Ala Thr Gln Gln Ala Gln Lys Gln Ser Ala Ser Thr Leu Gln Gly Glu Pro Arg Thr Lys Arg Gln Ala Ile Ser Ala Glu Pro Thr Ala Phe Asp Ile Gln Asp Leu Ser His Val Thr Leu Pro Phe Tyr Pro Lys Ser Pro Gln Ser Lys Asp Leu Ile Lys Glu Ala Ile Leu Asp Asn Asp Phe Met Lys Asn Leu Glu Leu Ser Gln Ile Gln Glu Ile Val Asp Cys Met Tyr Pro Val Glu Tyr Gly Lys Asp Ser Cys Ile Ile Lys Glu Gly Asp Val Gly Ser Leu Val Tyr Val Met Glu Asp Gly Lys Val Glu Val Thr Lys Glu Gly Val Lys Leu Cys Thr Met Gly Pro Gly Lys Val Phe Gly Glu Leu Ala Ile Leu Tyr Asn Cys Thr Arg Thr Ala Thr Val Lys Thr Leu Val Asn Val Lys Leu Trp Ala Ile Asp Arg Gln Cys Phe Gln Thr Ile Met Met Arg Thr Gly Leu Ile Lys His Thr Glu Tyr Met Glu Phe Leu Lys Ser Val Pro Thr Phe Gln Ser Leu Pro Glu Glu Ile Leu Ser Lys Leu Ala Asp Val Leu Glu Glu Thr His Tyr Glu Asn Gly Glu Tyr Ile Ile Arg Gln Gly Ala Arg Gly Asp Thr Phe Phe Ile Ile Ser Lys Gly Thr Val Asn Val Thr Arg Glu Asp Ser Pro Ser Glu Asp Pro Val Phe Leu Arg Thr Leu Gly Lys Gly Asp Trp Phe Gly Glu Lys Ala Leu Gln Gly Glu Asp Val Arg Thr Ala Asn Val Ile Ala Ala Glu Ala Val Thr Cys Leu Val Ile Asp Arg Asp Ser Phe Lys His Leu Ile Gly Gly Leu Asp Asp Val Ser Asn Lys Ala Tyr Glu Asp Ala Glu Ala Lys Ala Lys Tyr Glu Ala Glu Ala Ala Phe Phe Ala Asn Leu Lys Leu Ser Asp Phe Asn Ile Ile Asp Thr Leu Gly Val Gly Gly Phe Gly Arg Val Glu Leu Val Gln Leu Lys Ser Glu Glu Ser Lys

										282	2					
	38					39	0				39	5				
	Th	r Ph	e Al	a Me	t Ly: 40:	s Il	e Le	u Ly	s Ly	s Ar 41	g Hi	s Il	e Va	l As		400 r Arg
5	Gl	n Gl	n Gl	u Hi 42	s Ile O	e Ar	g Se	r Gl	u Ly 42	s Gl	n Il	e Me	t Gl			s a His
	Se	r As	p Ph 43	e Ilo	e Val	l Ar	g Le	и Ту 44	r Ar	g Th	r Ph	e Ly			r Ly	s Tyr
	Le	и Ту 45	r Me O	t Le	u Met	: Glu	1 Ala	а Су	s Le	u Gl	y Gl	y Gl	44. u Le	s u Tr <u>l</u>	) Th	r Ile
10	Le:	u Ar 5	g As	p Arg	g Gly	/ Sei	Phe	e Gl	u As	p Se	r Th:	46 r Th:	r Ar	g Phe	≘ Ty:	r Thr
					400	•				49	u Hi:	s Se			40	480 e Ile
15				200	,				50	u Ile	e Lei			C 3 /		y Tyr
				•				521	⊇ Ala	a Ly:			E 2 6	Phe	e Gly	/ Lys
			-				7.1	•				- 4 -	. Ala	Pro		lle
20						220					555					Gly 560
					202					570	)					Pro
25				Lys 580					585							
								600					CAL			
30				Asp			O T D					C 2 A				
				Ile		030					635					- 4 -
				Lys	040					650						
35				Asp 660 Pro					665					C70		
			0,3	Ala				h H O					C D E			
40				Ile			030					700				
				Ser												
4.5				Phe												
45			Val	740 Thr					745					750		
		Asp		Met				/h()					765			
50				Gln			//>					700				
				Ala	Glu	,,,				Gly	705					
55			Leu	Lys (				Phe	Lys							
				Glu '					H25					000		

•			835					840					845			_	
	Asp	Lys 850	Gln	Lys	Asn	Gly	Ile 855	Lys	Val	Asn	Phe	860 Lys	Ile	Arg	His	Asn	
5	Ile 865	Glu	Asp	Gly	Ser	Val 870	Gln	Leu	Ala	Asp	His 875	Tyr	Gln	Gln	Asn	Thr 880	
		Ile	Gly	Asp	Gly 885	Pro	Val	Leu	Leu	Pro 890	Asp	Asn	His	Tyr	Leu 895	Ser	
	Thr	Gln	Ser	Ala 900		Ser	Lys	Asp	Pro 905		Glu	Lys	Arg	Asp 910	_	Met	
10	Val	Leu	Leu 915		Phe	Val	Thr			Gly	Ile	Thr	Leu 925		Met	Asp	
	Glu	Leu 930		Lys				920					923				
15		230	(2)	. TXT	ZODM7	יייי איי	T FO	, er.	מד ה	NO. T	20.						
13						ATION				NO:	.36;						
		(:		_		2184											
20						ones:			<b>=</b>								
			(D)	TOPO	DLOG	Y: 1:	inear	•									
		•		OLEC		TYP	E: cI	ANC									
25		·				EY: (	rodit	na 54	miei	nce							
			(B)	LO	CATIO	ON: 3	ι2	2181	-que.								
						INFO											
30		()	(1) :	SEQUI	ENCE	DESC	CRIP.	NOL	: SE(	מז כ	NO:	138:					
						GAG Glu											48
35	1			-	5					10					15		
						GAC Asp											96
	Val	Giu	ьец	20 20	Gry	АБР	vai	ASII	25 25	HIS	Буз	FIIC		30	DCI	Gry	
40						GCC											144
	Glu	GIY	35	GIY	Asp	Ala	Thr	1yr 40	Gly	гÀг	Leu	Thr	16u 45	гÀг	Pne	11e	
						CTG											192
45	Cys	Thr 50	Thr	Gly	rys	Leu	Pro 55	Val	Pro	Trp	Pro	Thr 60	Leu	Val	Thr	Thr	
	CTG	ACC	TAC	GGC	GTG	CAG	TGC	TTC	AGC	CGC	TAC	ccc	GAC	CAC	ATG	AAG	240
າ <b>50</b>	Leu 65	Thr	Tyr	Gly	Val	Gln 70	Cys	Phe	Ser	_	Tyr 75	Pro	Asp	His	Met	Lys 80	
		CAC	GAC	דידיכי	ጥጥር	AAG	דככ	GCC	ልፕር	CCC	GAA	GGC	TAC	GTC	CAG	GAG	288
						Lys										_	
55				mer e							m= -					a » c	226
	CGC	ACC	ATC	TTC	TTC	AAG	GAC	GAC	GGC	AAC	TAC	AAG	ACC	CGC	GCC	GAG	336 2

										284							
	Ar	g T	hr I	le Ph 10	ne Ph	ie Ly	aA e	p As	p Gl 10	y As 5	п Ту	r Ly	s Th	r Ar 11		a Glu	
5			1:	15	u Gi	умъ	b m	12	u Va O	1 As:	n Ar	g Ile	e Gl: 129	ı Le	и Ьу	s Gly	384
10		13	00	те Бу	5 61	u AS	13!	y Ası 5	n II	e Lei	u Gl	y His 140	Lys	Le	u Gl	G TAC u Tyr	432
15	145	5			- 111	150	o va.	т тут	c 116	e Met	15:	a Asp 5	Lys	Glı	1 Ьу	G AAC s Asn 160	480
	7		c by	o va	16	5	: rAs	3 11e	Arg	7 His 170	Ası	ı Ile	Glu	. Asp	17:		528
20	GTG Val	G CA	G CT n Le	C GCG u Ala 180	, vol	C CAC His	TAC Tyr	CAG Gln	CAC Gln 185	l Asn	ACC Thr	CCC Pro	ATC Ile	GGC Gly 190	Ası	G GGC	576
25	CCC Pro	Va.	G CTO Let 19	4 100	CCC Pro	GAC Asp	AAC Asn	CAC His 200	TAC	CTG Leu	AGC Ser	ACC Thr	CAG Gln 205	TCC	GCC	CTG Leu	624
30	AGC Ser	AA Lys 210		CCC Pro	AAC Asn	GAG Glu	AAG Lys 215	CGC Arg	GAT Asp	CAC His	ATG Met	GTC Val 220	CTG Leu	CTG Leu	GAG Glu	TTC	672
35	225				GLY	230	inr	ьец	GIY	Met	Asp 235	GAG Glu	Leu	Tyr	Lys	Ser 240	720
	GGA Gly	CTC	AGA Arg	TCT Ser	CGA Arg 245	GGC Gly	ACC Thr	ATG Met	AGC Ser	GAC Asp 250	GTG Val	GCT Ala	ATT Ile	GTG Val	AAG Lys 255	GAG Glu	768
40	GGT Gly	TGG Trp	CTG Leu	CAC His 260	AAA Lys	CGA Arg	GGG Gly	GAG Glu	TAC Tyr 265	ATC Ile	AAG Lys	ACC Thr	Trp	CGG Arg 270	CCA Pro	CGC Arg	816
45	TAC Tyr	TTC Phe	CTC Leu 275	CTC Leu	AAG Lys	AAT Asn	GAT Asp	GGC Gly 280	ACC Thr	TTC Phe	ATT Ile	Gly	TAC Tyr 285	AAG Lys	GAG Glu	CGG Arg	864
50		CAG Gln 290	GAT Asp	GTG Val	GAC Asp	CAA Gln	CGT Arg 295	GAG Glu	GCT Ala	CCC Pro	CTC Leu	AAC Asn 300	AAC   Asn	TTC Phe	TCT Ser	GTG Val	912
55	GCG Ala 305	CAG Gln	TGC Cys	CAG Gln	CTG Leu	ATG Met 310	AAG :	ACG (	GAG Glu	Arg :	CCC Pro 315	CGG ( Arg 1	CCC / Pro /	AAC Asn	ACC Thr	TTC Phe 320	960
	ATC I	ATC	CGC	TGC	CTG	CAG '	TGG 1	ACC 2	ACT (	GTC 1	ATC	GAA (	CGC A	ACC '	TTC	CAT	1008

										285							
	Ile	Ile	Arg	Cys	Leu 325	Gln	Trp	Thr	Thr	Val 330	Ile	Glu	Arg	Thr	Phe 335	His	
5					GAG Glu												1056
10					CTC Leu												1104
15					AGT Ser									_	_		1152
10					AAG Lys												1200
20					AAG Lys 405							-		_			1248
25					CGC Arg										_		1296
30					GAC Asp												1344
					AGG Arg												1392
35					CGC Arg												1440
40					CAC His 485									_		CGG Arg	1488
45					GGC Gly											_	1536
50					GTG Val												1584
					GGG Gly											AAG Lys	1632
55	GAG	GGG	ATC	AAG	GAC	GGT	GCC	ACC	ATG	AAG	ACC	TTT	TGC	GGC	ACA	CCT	1680

286

										200							
	Glu 545	Gly	Ile	Lys	Asp	Gly 550	Ala	Thr	Met	Lys	Thr 555		Сув	Gly	Thr	Pro 560	
5	GAG Glu	TAC Tyr	CTG	GCC	Pro	Glu	GTG Val	CTG Leu	GAG Glu	GAC Asp 570	AAT Asn	GAC Asp	TAC Tyr	GGC Gly	CGT Arg 575	GCA Ala	1728
10	val	Asp	Trp	Trp 580	Gly	Leu	Gly	Val	585	Met	Tyr	Glu	Met	Met 590	Cys	Gly	1776
15	Arg	Leu	Pro 595	Phe	Tyr	Asn	Gln	Asp 600		Glu	Lys	Leu	Phe 605	Glu	Leu	Ile	1824
	Leu	мес 610	GIu	Glu	Ile	Arg	Phe 615	Pro	CGC Arg	Thr	Leu	Gly 620	Pro	Glu	Ala	Lys	1872
20	TCC Ser 625	TTG Leu	CTT Leu	TCA Ser	GGG Gly	CTG Leu 630	CTC Leu	AAG Lys	AAG Lys	GAC Asp	CCC Pro 635	AAG Lys	CAG Gln	AGG Arg	CTT Leu	GGC Gly 640	1920
25	GGG Gly	GGC Gly	TCC Ser	GAG Glu	GAC Asp 645	GCC Ala	AAG Lys	GAG Glu	ATC Ile	ATG Met 650	CAG Gln	CAT His	CGC Arg	TTC Phe	TTT Phe 655	GCC Ala	1968
30	GGT Gly	ATC Ile	GTG Val	TGG Trp 660	CAG Gln	CAC His	GTG Val	TAC Tyr	GAG Glu 665	AAG Lys	AAG Lys	CTC Leu	AGC Ser	CCA Pro 670	CCC Pro	TTC Phe	2016
35	rys	Pro	675	Val	Thr	Ser	Glu	Thr 680	GAC Asp	Thr	Arg	Tyr	Phe 685	Asp	Glu	Glu	2064
	Pne	690	Ala	Gln	Met	Ile	Thr 695	Ile	ACA Thr	Pro	Pro	Asp 700	Gln	Asp	Asp	Ser	2112
40	ATG Met 705	GAG Glu	TGT Cys	GTG Val	GAC Asp	AGC Ser 710	GAG Glu	CGC Arg	AGG Arg	CCC Pro	CAC His 715	TTC Phe	CCC Pro	CAG Gln	TTC Phe	TCC Ser 720	2160
45		TCG Ser		Ser				TGA									2184
50		(i	(2) ) SE						ID :	NO:1	39:						
55			(A) (B) (C)	LENG TYPE STRA	TH: : am NDED	727 . ino :	aminacid cid	o ac ngle	ids								

287

(ii) MOLECULE TYPE: protein
(v) FRAGMENT TYPE: internal

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:139:

5		``	,	J_Q01	21.02			1011	. 52,	, 10	110.					
	Met 1	Val	Ser	Lys	Gly 5	Glu	Glu	Leu	Phe	Thr 10	Gly	Val	Val	Pro	Ile 15	Leu
				20	Gly				25					30		
10		_	35	_	Asp			40	_	-			45	_		
	_	50		-	Lys		55			-		60				
15	65				Val	70	-			_	75		_			80
					Phe 85					90			_		95	
•				100	Phe				105					110		
20		_	115		Gly	=		120			_		125		-	•
		130			Glu		135				-	140	-			
25	145				His	150		_			155	-	-		•	160
					Asn 165					170					175	
30				180	Asp				185					190		
30			195		Pro	_		200	-				205			
		210	_		Asn		215	_	_			220				
35	225				Gly Arg	230					235					240
			\		245 Lys	-				250					255	
40				260	Lys				265		_		_	270		
40			275		Asp			280				_	285	_		_
		290	_		Leu		295					300				
45	305				Leu	310					315					320
			_	_	325 Glu		_			330			_		335	
50				340	Leu		_		345	_				350		
			355		Ser			360					365			
		370			Lys		375					380				
55	385				Lys	390					395				_	400
	-			-	•	- 4			- 1	-	_	_			4 -	

288

	_				405					410					415	
				420					425					430		Val
5			435					440					445			Val
	Leu	Gln 450	Asn	Ser	Arg	His	Pro 455		Leu	Thr	Ala	Leu 460	Lys	Tyr	Ser	Phe
	Gln 465	Thr	His	Asp	Arg	Leu 470	Cys		Val	Met	Glu 475	Tyr	Ala	Asn	Gly	Gly
10	Glu	Leu	Phe	Phe	His 485			Arg	Glu	Arg	Val	Phe	Ser	Glu		480 Arg
	Ala	Arg	Phe	Tyr 500	Gly	Ala	Glu	Ile	Val 505	Ser	Ala	Leu	Asp		495 Leu	His
15	Ser	Glu	Lys 515	Asn		Val	Tyr	Arg 520			Lys	Leu		510 Asn	Leu	Met
	Leu	Asp 530		Asp	Gly	His	Ile 535		Ile	Thr	Asp	Phe 540	525 Gly	Leu	Cys	Lys
	Glu 545	Gly	Ile	Lys	Asp	Gly 550	Ala	Thr	Met	Lys	Thr 555	Phe	Cys	Gly	Thr	
20	Glu	Tyr	Leu	Ala	Pro 565			Leu	Glu	Asp 570	Asn	Asp	Tyr	Gly	Arg 575	560 Ala
	Val	Asp	Trp	Trp 580	Gly	Leu	Gly	Val	Val 585		Tyr	Glu	Met	Met 590	Cys	Gly
25	Arg	Leu	Pro 595	Phe	Tyr	Asn	Gln	Asp 600	His	Glu	Lys	Leu	Phe 605	Glu	Leu	Ile
	Leu	Met 610	Glu	Glu	Ile	Arg	Phe 615		Arg	Thr	Leu	Gly 620	Pro	Glu	Ala	Lys
	Ser 625	Leu	Leu	Ser	Gly	Leu 630	Leu	Lys	Lys	Asp	Pro 635	Lys	Gln	Arg	Leu	Gly 640
30	Gly	Gly	Ser	Glu	Asp 645	Ala	Lys	Glu	Ile	Met 650	Gln	His	Arg	Phe	Phe 655	Ala
	Gly	Ile	Val	Trp 660	Gln	His	Val	Tyr	Glu 665	Lys	Lys	Leu	Ser	Pro 670	Pro	Phe
35	Lys	Pro	Gln 675	Val	Thr	Ser	Glu	Thr 680	Asp	Thr	Arg	Tyr	Phe 685	Asp	Glu	Glu
		690		Gln			695					700	Gln			
	705			Val		710		Arg	Arg	Pro	His 715	Phe	Pro	Gln	Phe	Ser 720
40	Tyr	Ser	Ala	Ser	Ser 725	Thr	Ala									
			(2)	INF	ORMA	TION	FOR	SEC	ID	NO:1	40:					
45																
40		(1	) SE	QUEN	CE C	HARA	CTER	ISTI	CS:							
			(B)	LENG TYPE	: nu	2394 Clei	e bas	e pa	ırs							
			(C)	STRA	NDED	NESS	: si	nale								
			(D)	торо	LOGY	: li	near	3								
50		, .														
				OLEC EATU		TYPE	: cD	NA								
			(A)	NAM	E/KE	Y: C	odin	g Se	auen	ce						
55			(B)	LOC	ATIO:	N: 1	2	391	<b>.</b>							

(D) OTHER INFORMATION:

289

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:140:

5		GAC Asp															48
10		GGC Gly															96
15		TTC Phe															144
		AGG Arg 50															192
20		TAC Tyr															240
25		CCT Pro															288
30		GGC Gly															336
35	Phe	CAG Gln	Asn 115	Leu	Gly	Ile	Gln	Cys 120	Val	Lys	Lys	Arg	Asp 125	Leu	Glu	Gln	384
	Ala	Ile 130	Ser	Gln	Arg	Ile	Gln 135	Thr	Asn	Asn	Asn	Pro 140	Phe	Gln	Val	Pro	432
40	Ile 145	GAA Glu	Glu	Gln	Arg	Gly 150	Asp	Tyr	Asp	Leu	Asn 155	Ala	Val	Arg	Leu	Сув 160	480
45	Phe	CAG Gln	Val	Thr	Val 165	Arg	Asp	Pro	Ser	Gly 170	Arg	Pro	Leu	Arg	Leu 175	Pro	528
50	Pro	GTC Val	Leu	Pro 180	His	Pro	Ile	Phe	Asp 185	Asn	Arg	Ala	Pro	Asn 190	Thr	Ala	576
55	Glu	CTC	Lys 195	Ile	Cys	Arg	Val	Asn 200	Arg	Asn	Ser	Gly	Ser 205	Cys	Leu	Gly	624
	GGG	GAT	GAG	AIC	110	CIA	CTG	TGT	GAC	AAG	GIG	CAG	AAA	GAG	GAC	AII	672 2

										290							
	Gly	/ As 21	p Gl 0	u Il	e Ph	e Lei	1 Let 21!	и Су: 5	s Asp	Lys	s Val	1 Glr 220		s Glı	ı Ası	p Ile	
5	GA0 Glu 225	ı va	G TA	T TT	C ACC	G GG# c Gly 230	Pro	A GGG	C TGC Y Trp	GAC Glu	G GC0 1 Ala 235	a Arg	GGC Gly	TCC Ser	TT'	T TCG E Ser 240	720
10	CA# Gln	A GC	T GA' a As _l	r GTO P Val	G CAC l His 245	3 Arg	CAA Glr	A GTO	G GCC L Ala	: ATT	: Val	TTC Phe	CGG	ACC Thr	CCT Pro 255	CCC Pro	768
15	ТАС Туг	GC	A GA( a Asp	260 260	Ser	CTG Leu	Gln	GCT Ala	CCT Pro 265	Val	CGT Arg	GTC Val	TCC	Met 270	Glr	CTG Leu	816
	CGG Arg	CG(	G CCT g Pro 275	Ser	GAC Asp	CGG Arg	GAG Glu	Leu 280	Ser	GAG Glu	CCC Pro	ATG Met	GAA Glu 285	TTC Phe	CAG Gln	TAC Tyr	864
20	CTG Leu	Pro 290	Asp	ACA Thr	GAC Asp	GAT Asp	CGT Arg 295	His	CGG Arg	ATT Ile	GAG Glu	GAG Glu 300	AAA Lys	CGT Arg	AAA Lys	AGG Arg	912
25	ACA Thr 305	TAT	GAG	ACC Thr	TTC Phe	AAG Lys 310	AGC Ser	ATC Ile	ATG Met	AAG Lys	AAG Lys 315	AGT Ser	CCT Pro	TTC Phe	AGC Ser	GGA Gly 320	960
30	CCC Pro	ACC	GAC Asp	CCC Pro	CGG Arg 325	CCT Pro	CCA Pro	CCT Pro	CGA Arg	CGC Arg 330	ATT Ile	GCT Ala	GTG Val	CCT Pro	TCC Ser 335	CGC Arg	1008
35	AGC Ser	TCA Ser	GCT Ala	TCT Ser 340	GTC Val	CCC Pro	AAG Lys	CCA Pro	GCA Ala 345	CCC Pro	CAG Gln	CCC Pro	TAT Tyr	CCC Pro 350	TTT Phe	ACG Thr	1056
	TCA Ser	TCC Ser	CTG Leu 355	AGC Ser	ACC Thr	ATC Ile	AAC Asn	TAT Tyr 360	GAT Asp	GAG Glu	TTT Phe	CCC Pro	ACC Thr 365	ATG Met	GTG Val	TTT Phe	1104
40	CCT Pro	TCT Ser 370	GGG Gly	CAG Gln	ATC Ile	AGC Ser	CAG Gln 375	GCC Ala	TCG Ser	GCC Ala	TTG Leu	GCC Ala 380	CCG Pro	GCC Ala	CCT Pro	CCC Pro	1152
45	CAA Gln 385	GTC Val	CTG Leu	CCC Pro	CAG Gln	GCT Ala 390	CCA Pro	GCC Ala	CCT Pro	GCC Ala	CCT Pro 395	GCT Ala	CCA Pro	GCC Ala	ATG Met	GTA Val 400	1200
50	TCA Ser	GCT Ala	CTG Leu	GCC Ala	CAG Gln 405	GCC Ala	CCA Pro	GCC Ala	CCT Pro	GTC Val 410	CCA Pro	GTC Val	CTA Leu	GCC Ala	CCA Pro 415	GGC Gly	1248
55	CCT Pro	CCT Pro	CAG Gln	GCT Ala 420	GTG Val	GCC Ala	CCA Pro	CCT Pro	GCC Ala 425	CCC Pro	AAG Lys	CCC . Pro '	Thr	CAG Gln 430	GCT Ala	GGG Gly	1296
	GAA	GGA	ACG	CTG	TCA	GAG	GCC	CTG	CTG	CAG	CTG	CAG '	rtt (	GAT	GAT	GAA	1344 <b>29</b>

										291							
	Glu	Gly	Thr 435	Leu	Ser	Glu	Ala	Leu 440	Leu	Gln	Leu	Gln	Phe 445	Asp	Asp	Glu	
5					TTG Leu												1392
10					GTC Val												1440
15					GCC Ala 485												1488
					ACT Thr												1536
20					CCA Pro												1584
25					GAC Asp												1632
30					ATC Ile											_	1680
35					GAG Glu 565											_	1728
33					GTA Val											_	1776
40					ACC Thr												1824
45					CCC Pro												1872
50					TGC Cys												1920
55					TCC Ser 645												1968
55	ATC	TTC	TTC	AAG	GAC	GAC	GGC	AAC	TAC	AAG	ACC	CGC	GCC	GAG	GTG	AAG	2016

										292							
	Ile	Phe	Phe	660	Asp	Asp	Gly	Asr	Tyr 665		Thr	Arg	Ala	Glu 670		Lys	
5	TTC Phe	GAG Glu	GGC Gly 675	Asp	ACC	CTG Leu	GTG Val	AAC Asn 680	Arg	ATC Ile	GAG Glu	CTG Leu	AAG Lys 685	GGC Gly	ATC	GAC Asp	2064
10	TTC Phe	Lys 690	GIu	GAC Asp	GGC Gly	AAC Asn	ATC Ile 695	CTG Leu	GGG Gly	CAC His	AAG Lys	CTG Leu 700	GAG Glu	TAC Tyr	AAC Asn	TAC Tyr	2112
15	705	Ser	His	Asn	Val	TAT Tyr 710	Ile	Met	Ala	Asp	Lys 715	Gln	Lys	Asn	Gly	Ile 720	2160
	AAG Lys	GTG Val	AAC Asn	TTC Phe	AAG Lys 725	ATC Ile	CGC Arg	CAC His	AAC Asn	ATC Ile 730	GAG Glu	GAC Asp	GGC Gly	AGC Ser	GTG Val 735	CAG Gln	2208
20	CTC Leu	GCC Ala	GAC Asp	CAC His 740	TAC Tyr	CAG Gln	CAG Gln	AAC Asn	ACC Thr 745	CCC Pro	ATC Ile	GGC Gly	GAC Asp	GGC Gly 750	CCC Pro	GTG Val	2256
25	CTG Leu	CTG Leu	CCC Pro 755	GAC Asp	AAC Asn	CAC His	TAC Tyr	CTG Leu 760	AGC Ser	ACC Thr	CAG Gln	TCC Ser	GCC Ala 765	CTG Leu	AGC Ser	AAA Lys	2304
30	GAC Asp	CCC Pro 770	AAC Asn	GAG Glu	AAG Lys	CGC Arg	GAT Asp 775	CAC His	ATG Met	GTC Val	CTG Leu	CTG Leu 780	GAG Glu	TTC Phe	GTG Val	ACC Thr	2352
35	GCC Ala 785	GCC Ala	GGG Gly	ATC Ile	ACT Thr	CTC Leu 790	GGC Gly	ATG Met	GAC Asp	GAG Glu	CTG Leu 795	TAC Tyr	AAG Lys	TAA			2394
			(2)	TNE	ODMA	TTON	EOD	ana									
40		(i	) SE (A) (B) (C)	QUEN LENG TYPE STRA	CE C TH: : am	HARA 797 ino NESS : li	CTER amin acid : si	ISTI o ac	CS:	NO:1	41:						
45		(v	) FR	AGME	NT T	TYPE YPE:	int	erna	.1								
		(x	i) s	EQUE	NCE :	DESCI	RIPT	ION:	SEQ	ID I	NO:1	41:					
50	Met . 1				5					10					15		
	Ser		-	2 U					25				-	a n			
55	Arg		33				4	10					15				
	Glu Z	ura :	SET .	TITE A	sp :	inr 7	hr I	ъys	Thr 1	His 1	Pro ?	Thr :	Ile I	ys :	Ile i	Asn	

		50					55					60				
	Gly	Tyr	Thr	Gly	Pro	Gly	Thr	Val	Arg	Ile	Ser	Leu	Val	Thr	Lys	Asp
	65					70					75					80
	Pro	Pro	His	Arg	Pro	His	Pro	His	Glu	Leu	Val	Gly	Lys	Asp	Cys	Arg
5					85					90					95	
	Asp	Gly	Phe	-	Glu	Ala	Glu	Leu		Pro	Asp	Arg	Cys		His	Ser
				100				_	105	_	_		_	110		
	Phe	Gln		Leu	GIA	He	GIn		Val	Lys	Lys	Arg		Leu	Glu	Gin
40		<b>~</b> 3	115	<b>~1</b> .		- 7 -	<b>G</b> 1.	120			_		125	<b>~1</b>		<b>5</b>
10	Ala		ser	GIN	Arg	TTE		Thr	Asn	Asn	Asn	Pro	Pne	Gin	vaı	Pro
	Tlo	130	C111	Gln	7 ~~	Clv	135	Т175	7 ~~	Lou	700	140	17-1	7 ~~	Lou	Cara
	145	GIU	Giu	GIII	Arg	150	Asp	ıyı	Авр	ьец	155	Ala	vai	Arg	ьец	160
		Gln	Val	Thr	Val		Aen	Dro	Cer	Gly		Pro	Len	Ara	I.eu	
15	FIIC	Gin	Val	1111	165	AL 9	мэр	FIU	JUL	170	Ar 9	FIO	БСи	n. y	175	110
10	Pro	Val	Leu	Pro		Pro	Tle	Phe	Asp		Ara	Ala	Pro	Asn		Ala
				180					185					190		
	Glu	Leu	Lys		Cys	Arq	Val	Asn		Asn	Ser	Gly	Ser		Leu	Gly
			195		•	_		200	,			•	205	•		•
20	Gly	Asp	Glu	Ile	Phe	Leu	Leu	Cys	Asp	Lys	Val	Gln	Lys	Glu	Asp	Ile
		210					215	-	_	-		220	-		_	
	Glu	Val	Tyr	Phe	Thr	Gly	Pro	Gly	Trp	Glu	Ala	Arg	Gly	Ser	Phe	Ser
	225					230					235					240
	Gln	Ala	Asp	Val	His	Arg	Gln	Val	Ala	Ile	Val	Phe	Arg	Thr	Pro	Pro
25					245					250					255	
	Tyr	Ala	Asp		Ser	Leu	Gln	Ala		Val	Arg	Val	Ser		Gln	Leu
	_	_		260	_	_			265		_			270		_
	Arg	Arg		Ser	Asp	Arg	Glu		Ser	Glu	Pro	Met		Phe	GIn	Tyr
30	T 011	D=-0	275	mb	7	7	7	280	7	T1.	<b>a</b> 1	<b>~1</b>	285	2	T	7 ~~
30	Leu	290	Азр	1111	мэр	Asp	295	urs	ALG	116	GIU	Glu 300	цув	Arg	цуъ	Arg
	Thr		Glu	Thr	Phe	Lvs		Tle	Met	Lvs	Lvs	Ser	Pro	Phe	Ser	Glv
	305	- / -	014			310		110		_,,	315	501	110	1 110		320
		Thr	Asp	Pro	Arq		Pro	Pro	Arq	Arq		Ala	Val	Pro	Ser	
35			-		325				_	330					335	_
	Ser	Ser	Ala	Ser	Val	Pro	Lys	Pro	Ala	Pro	Gln	Pro	Tyr	Pro	Phe	Thr
				340					345					350		
	Ser	Ser	Leu	Ser	Thr	Ile	Asn	Tyr	Asp	Glu	Phe	Pro	Thr	Met	Val	Phe
			355					360					365			
40	Pro		Gly	Gln	Ile	Ser		Ala	Ser	Ala	Leu	Ala	Pro	Ala	Pro	Pro
		370	_	_		_ •	375		_			380				
		Val	Leu	Pro	Gln		Pro	Ala	Pro	Ala		Ala	Pro	Ala	Met	
	385		<b>.</b>		<b>~1</b>	390					395		-		<b>D</b>	400
45	ser	Ата	геп	АТа		Ата	Pro	Ата	Pro		Pro	Val	Leu			GIY
43	Dro	Dro	Cln	ח ה	405	. ה ה	Dro	Dro	ח ז ה	410	T	Pro	The		415	Gl ₁
	FIO	FIU	GIII	420	Val	AIG	FIU	FIU	425	PIO	цуз	PIO	1111	430	ліа	GIY
	Glu	Glv	Thr		Ser	Glu	Ala	Leu		Gln	Leu	Gln	Phe		Asp	Glu
		1	435					440				<b></b>	445	110 P		
50	qaA	Leu		Ala	Leu	Leu	Gly		Ser	Thr	Asp	Pro		Val	Phe	Thr
	•	450	•				455					460				
	Asp		Ala	Ser	Val	Asp		Ser	Glu	Phe	Gln	Gln	Leu	Leu	Asn	Gln
	465					470					475					480
	Gly	Ile	Pro	Val		Pro	His	Thr	Thr		Pro	Met	Leu	Met	Glu	Tyr
55					485					490					495	
	Pro	Glu	Ala	Ile	Thr	Arg	Leu	Val	Thr	Gly	Ala	Gln	Arg	Pro	Pro	Asp

```
500
                                       505
       Pro Ala Pro Ala Pro Leu Gly Ala Pro Gly Leu Pro Asn Gly Leu Leu
                                  520
       Ser Gly Asp Glu Asp Phe Ser Ser Ile Ala Asp Met Asp Phe Ser Ala
  5
                              535
                                                  540
       Leu Leu Ser Gln Ile Ser Ser Leu Asp Pro Pro Val Ala Thr Met Val
                           550
                                            555
       Ser Lys Gly Glu Glu Leu Phe Thr Gly Val Val Pro Ile Leu Val Glu
                      565
                                          570
       Leu Asp Gly Asp Val Asn Gly His Lys Phe Ser Val Ser Gly Glu Gly
 10
                   580
                                     585
       Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr Leu Lys Phe Ile Cys Thr
                                   600
                                                     605
       Thr Gly Lys Leu Pro Val Pro Trp Pro Thr Leu Val Thr Thr Leu Thr
 15
                              615
       Tyr Gly Val Gln Cys Phe Ser Arg Tyr Pro Asp His Met Lys Gln His
                   630
                                             635
       Asp Phe Phe Lys Ser Ala Met Pro Glu Gly Tyr Val Gln Glu Arg Thr
                                      650
      Ile Phe Phe Lys Asp Asp Gly Asn Tyr Lys Thr Arg Ala Glu Val Lys
 20
                                      665
      Phe Glu Gly Asp Thr Leu Val Asn Arg Ile Glu Leu Lys Gly Ile Asp
             675
                                  680
      Phe Lys Glu Asp Gly Asn Ile Leu Gly His Lys Leu Glu Tyr Asn Tyr
25
                            695
      Asn Ser His Asn Val Tyr Ile Met Ala Asp Lys Gln Lys Asn Gly Ile
                       710
                                             715
      Lys Val Asn Phe Lys Ile Arg His Asn Ile Glu Asp Gly Ser Val Gln
                     725
                                          730
      Leu Ala Asp His Tyr Gln Gln Asn Thr Pro Ile Gly Asp Gly Pro Val
30
                  740
                                     745
      Leu Leu Pro Asp Asn His Tyr Leu Ser Thr Gln Ser Ala Leu Ser Lys
                                760
                                                    765
      Asp Pro Asn Glu Lys Arg Asp His Met Val Leu Leu Glu Phe Val Thr
35
                              775
                                                780
      Ala Ala Gly Ile Thr Leu Gly Met Asp Glu Leu Tyr Lys
                          790
               (2) INFORMATION FOR SEQ ID NO:142:
40
            (i) SEQUENCE CHARACTERISTICS:
              (A) LENGTH: 2394 base pairs
              (B) TYPE: nucleic acid
              (C) STRANDEDNESS: single
45
              (D) TOPOLOGY: linear
            (ii) MOLECULE TYPE: CDNA
            (ix) FEATURE:
50
               (A) NAME/KEY: Coding Sequence
               (B) LOCATION: 1...2391
               (D) OTHER INFORMATION:
            (xi) SEQUENCE DESCRIPTION: SEQ ID NO:142:
55
     ATG GTG AGC AAG GGC GAG GAG CTG TTC ACC GGG GTG GTG CCC ATC CTG
```

										295							
	Met 1	Val	Ser	Lys	Gly 5	Glu	Glu	Leu	Phe	Thr 10	Gly	Val	Val	Pro	Ile 15	Leu	
5					GGC Gly												96
10					GAT Asp	-			_							_	144
15				_	AAG Lys			_						_	_		192
					GTG Val												240
20					TTC Phe 85												288
25					TTC Phe												336
30					GGC Gly											_	384
35					GAG Glu										_		432
55					CAC His									_			480
40					AAC Asn 165												528
45					GAC Asp												576
50					CCC Pro												624
55					AAC Asn												672
55	GTG	ACC	GCC	GCC	GGG	ATC	ACT	CTC	GGC	ATG	GAC	GAG	CTG	TAC	AAG	TCC	720

										296							
	Va: 22:	l Thi	r Ala	Ala	a Gly	/ Ile 230	Thr	Lev	Gly	/ Met	235		ı Leı	ту:	r Ly	s Ser 240	
5	GG? Gl	A CTC	AGA Arg	TCT Ser	CGA Arg 245	, Ala	: ATG	GAC Asp	GAA Glu	Leu 250	Phe	C CCC	C CTO	C ATO	2 TTC Phe 255	C CCG Pro	768
10	GC# Ala	A GAG	CCA Pro	GCC Ala 260	Gln	GCC Ala	: TCT Ser	Gly	Pro 265	Туг	GTC Val	GAC Glu	ATC	270 270	e Glu	G CAG	816
15	CCC Pro	AAG Lys	CAG Gln 275	CGG Arg	GGC Gly	ATG Met	CGC	TTC Phe 280	CGC Arg	TAC	AAG Lys	TGC Cys	GAG Glu 285	Gly	G CGC	TCC Ser	864
	GCG Ala	GGC Gly 290	AGC Ser	ATC Ile	CCA Pro	GGC Gly	GAG Glu 295	AGG Arg	AGC Ser	ACA Thr	GAT Asp	ACC Thr	Thr	Lys	ACC Thr	CAC His	912
20	CCC Pro 305	Thr	ATC Ile	AAG Lys	ATC Ile	AAT Asn 310	GGC Gly	TAC Tyr	ACA Thr	GGA Gly	CCA Pro 315	GGG Gly	ACA Thr	GTG Val	CGC	ATC Ile 320	960
25	TCC Ser	CTG Leu	GTC Val	ACC Thr	AAG Lys 325	GAC Asp	CCT Pro	CCT Pro	CAC His	CGG Arg 330	CCT Pro	CAC His	CCC Pro	CAC His	GAG Glu 335	CTT	1008
30	GTA Val	GGA Gly	AAG Lys	GAC Asp 340	TGC Cys	CGG Arg	GAT Asp	GGC Gly	TTC Phe 345	TAT Tyr	GAG Glu	GCT Ala	GAG Glu	CTC Leu 350	TGC Cys	CCG Pro	1056
35	GAC Asp	CGC Arg	TGC Cys 355	ATC Ile	CAC His	AGT Ser	TTC Phe	CAG Gln 360	AAC Asn	CTG Leu	GGA Gly	ATC Ile	CAG Gln 365	TGT Cys	GTG Val	AAG Lys	1104
	AAG Lys	CGG Arg 370	GAC Asp	CTG Leu	GAG Glu	CAG Gln	GCT Ala 375	ATC Ile	AGT Ser	CAG Gln	CGC Arg	ATC Ile 380	CAG Gln	ACC Thr	AAC Asn	AAC Asn	1152
40	AAC Asn 385	CCC Pro	TTC Phe	CAA Gln	GTT Val	CCT Pro 390	ATA Ile	GAA Glu	GAG Glu	CAG Gln	CGT Arg 395	GGG Gly	GAC Asp	TAC Tyr	GAC Asp	CTG Leu 400	1200
45	AAT Asn	GCT Ala	GTG Val	Arg	CTC Leu 405	TGC Cys	TTC Phe	CAG Gln	Val	ACA Thr 410	GTG Val	CGG Arg	GAC Asp	CCA Pro	TCA Ser 415	GGC Gly	1248
50	AGG Arg	CCC Pro	CTC Leu	CGC Arg 420	CTG Leu	CCG Pro	CCT Pro	Val	CTT Leu 425	CCT Pro	CAT His	CCC Pro	ATC Ile	TTT Phe 430	GAC Asp	AAT Asn	1296
55	CGT Arg	Ата	CCC / Pro / 435	AAC Asn	ACT   Thr	GCC Ala	Glu	CTC Leu 440	AAG . Lys	ATC Ile	TGC Cys	Arg	GTG Val 445	AAC Asn	CGA Arg	AAC Asn	1344
	TCT	GGC :	AGC '	rgc ·	CTC (	GGT (	GGG (	GAT (	GAG .	ATC	TTC	CTA	CTG	TGT	GAC	AAG	1392 <b>296</b>

										297					•		
	Ser	Gly 450	Ser	Cys	Leu	Gly	Gly <b>455</b>	Asp	Glu	Ile	Phe	Leu 460	Leu	Cys	Asp	Lys	
5		CAG Gln															1440
10		CGA Arg															1488
15		TTC Phe															1536
,,,		GTC Val															1584
20		ATG Met 530															1632
25		GAG Glu															1680
30		AGT Ser															1728
25		GCT Ala															1776
35		CCC Pro															1824
40		CCC Pro 610															1872
45		GCC Ala															1920
50		GCT Ala															1968
55		GTC Val															2016
55	AAG	CCC	ACC	CAG	GCT	GGG	GAA	GGA	ACG	CTG	TCA	GAG	GCC	CTG	CTG	CAG	2064

•										298							
	Lys	Pro	Thr 675	Gln	Ala	Gly	Glu	Gly 680		Leu	Ser	Glu	Ala 685	Leu	Leu	Gln	
5	CTG Leu	CAG Gln 690	TTT Phe	GAT Asp	GAT Asp	GAA Glu	GAC Asp 695	Leu	GGG Gly	GCC Ala	TTG Leu	CTT Leu 700	GGC Gly	AAC Asn	AGC Ser	ACA Thr	2112
10	GAC Asp 705	CCA Pro	GCT Ala	GTG Val	TTC Phe	ACA Thr 710	GAC Asp	CTG Leu	GCA Ala	TCC	GTC Val 715	GAC Asp	AAC Asn	TCC Ser	GAG Glu	TTT Phe 720	2160
15	CAG Gln	CAG Gln	CTG Leu	CTG Leu	AAC Asn 725	CAG Gln	GGC Gly	ATA Ile	CCT Pro	GTG Val 730	GCC Ala	CCC Pro	CAC His	ACA Thr	ACT Thr 735	GAG Glu	2208
	CCC Pro	ATG Met	CTG Leu	ATG Met 740	GAG Glu	TAC Tyr	CCT Pro	GAG Glu	GCT Ala 745	ATA Ile	ACT Thr	CGC Arg	CTA Leu	GTG Val 750	ACA Thr	GGG Gly	2256
20	GCC Ala	CAG Gln	AGG Arg 755	CCC Pro	CCC Pro	GAC Asp	CCA Pro	GCT Ala 760	CCT Pro	GCT Ala	CCA Pro	CTG Leu	GGG Gly 765	GCC Ala	CCG Pro	GGG Gly	2304
25	CTC Leu	CCC Pro 770	AAT Asn	GGC Gly	CTC Leu	CTT Leu	TCA Ser 775	GGA Gly	GAT Asp	GAA Glu	GAC Asp	TTC Phe 780	TCC Ser	TCC Ser	ATT Ile	GCG Ala	2352
30	GAC Asp 785	ATG Met	GAC Asp	TTC Phe	TCA Ser	GCC Ala 790	CTG Leu	CTG Lėu	AGT Ser	CAG Gln	ATC Ile 795	AGC Ser	TCC Ser	TAA			2394
			(2)	INI	FORMA	TION	FOF	R SE	Q ID	NO:1	L <b>43:</b>						
35		(i	(A) (B)	LENC TYPE	TH: : am	HARA 797 nino NESS	amir acid	no ad	cids								
40		(i (v	(D)	TOPO	ULE	: li TYPE YPE:	near : pr	otei	i <b>n</b>								
45		(x	i) S	EQUE	NCE	DESC	RIPI	: NOI	SEC	) ID	NO:1	43:					
	1	Val			5					10					15		
50		Glu Gly		20					25					30			
		Thr	35			Leu	Pro	40			Pro	Thr	45				
55	Leu 65	Thr				Gln 70					Tyr 75					A U	
	Gln	His .	Asp	Phe	Phe	Lys	Ser	Ala	Met	Pro	Glu	Gly	Tyr	Val	Gln	Glu	

	_	_,	- 1	~1	85	•			<b>~</b> 3.	90	_	_	1	_	95	<b>63</b>
	Arg	Thr	He		Phe	Lys	Asp	Asp		Asn	Tyr	Lys	Thr	Arg	Ala	Glu
				100					105					110		
	Val	Lys		Glu	Gly	Asp	Thr		Val	Asn	Arg	Ile		Leu	Lys	Gly
5			115					120					125			
	Ile	Asp	Phe	Lys	Glu	Asp	Gly	Asn	Ile	Leu	Gly	His	Lys	Leu	Glu	Tyr
		130					135					140				
	Asn	Tyr	Asn	Ser	His	Asn	Val	Tyr	Ile	Met	Ala	Asp	Lys	Gln	Lys	Asn
	145					150					155					160
10	Gly	Ile	Lys	Val	Asn	Phe	Lys	Ile	Arg	His	Asn	Ile	Glu	Asp	Gly	Ser
					165					170					175	
	Val	Gln	Leu	Ala	Asp	His	Tyr	Gln	Gln	Asn	Thr	Pro	Ile	Gly	Asp	Gly
				180					185					190		
	Pro	Val	Leu	Leu	Pro	Asp	Asn	His	Tyr	Leu	Ser	Thr	Gln	Ser	Ala	Leu
15			195					200					205			
	Ser	Lys	Asp	Pro	Asn	Glu	Lys	Arg	Asp	His	Met	Val	Leu	Leu	Glu	Phe
		210					215					220				
	Val	Thr	Ala	Ala	Gly	Ile	Thr	Leu	Gly	Met	Asp	Glu	Leu	Tyr	Lys	Ser
	225					230					235					240
20	Gly	Leu	Arg	Ser		Ala	Met	qaA	Glu	Leu	Phe	Pro	Leu	Ile	Phe	Pro
					245					250					255	
	Ala	Glu	Pro		Gln	Ala	Ser	Gly	Pro	Tyr	Val	Glu	Ile	Ile	Glu	Gln
				260					265					270		
	Pro	Lys	Gln	Arg	Gly	Met	Arg		Arg	Tyr	Lys	Cys	Glu	Gly	Arg	Ser
25		_	275					280					285			
	Ala		Ser	Ile	Pro	Gly		Arg	Ser	Thr	Asp		Thr	Lys	Thr	His
		290		_		_	295			_		300			_	
		Thr	IIe	Lys	IIe		GIY	Tyr	Thr	GIY		GIA	Thr	Val	Arg	
00	305	_		1		310	_	_	•	_	315	•	_		~1	320
30 ·	Ser	Leu	Val	Thr	_	Asp	Pro	Pro	His	_	Pro	His	Pro	His		Leu
		~3		_	325	_		~3		330	~ 1		~1		335	
	vaı	GIA	гàг	_	Cys	Arg	Asp	GIY		ryr	GIU	Ala	GIU	Leu	Cys	Pro
	7	7	<b>~</b> -	340	71: -		Db.s	<b>G3</b>	345	7	<b>a</b> 1	T1.	<b>a</b> 1-	350	171	¥
35	Asp	Arg	355	116	urs	261	PHE	360	ASII	Leu	GIŸ	116	365	Cys	val	Lys
33	Lve	7 ~ ~		Lou	Cl.	Cln	λ1-		Co.~	Cln	7 ~~	Tlo		Thr	λan	Acn
	цуь	370	wab	neu	Giu	GIII	375	116	261	GIII	Arg	380	GIII	1111	ASII	ASII
	λen		Dhe	Gln	Val	Pro		Glu	Glu	Gln	λνα		λευ	Tyr	Nen	T.eu
	385	110	1110	0111	•	390	110	Olu	OIU	OIII	395	Cry	ASP	- 7 -	тор	400
40		Δla	Val	Ara	Len		Phe	Gln	Val	Thr		Δνα	Δsn	Pro	Ser	
, 0			***		405	O, D		0111	•42	410	V U I	*****	nop.		415	017
	Ara	Pro	Leu	Ara		Pro	Pro	Val	Leu		His	Pro	Ile	Phe		Asn
	3			420					425					430		
	Arq	Ala	Pro	Asn	Thr	Ala	Glu	Leu		Ile	Cvs	Ara	Val	Asn	Arq	Asn
45	_		435					440	-,-		-3		445			
	Ser	Gly	Ser	Cys	Leu	Gly	Gly	Asp	Glu	Ile	Phe	Leu	Leu	Cys	Asp	Lys
		450		•		-	455					460		-		-
	Val	Gln	Lys	Glu	Asp	Ile	Glu	Val	Tyr	Phe	Thr	Gly	Pro	Gly	Trp	Glu
	465		-		-	470			-		475	•		-	-	480
50	Ala	Arg	Gly	Ser	Phe	Ser	Gln	Ala	Asp	Val	His	Arg	Gln	Val	Ala	Ile
_					485					490					495	
	Val	Phe	Arg	Thr	Pro	Pro	Tyr	Ala	Asp	Pro	Ser	Leu	Gln	Ala	Pro	Val
				500					505					510		
	Arg	Val		Met	Gln	Leu	Arg	Arg	Pro	Ser	Asp	Arg		Leu	Ser	Glu
55			515					520					525			
	Pro	Met	Glu	Phe	Gln	Tyr	Leu	Pro	Asp	Thr	Asp	Asp	Arg	His	Arg	Ile

		530					535					540				
	Glu	Glu	Lys	Arg	Lys	Arg	Thr	Tyr	Glu	Thr	Phe	Lys	Ser	Ile	Met	Lvs
	545					550					555					560
5			Pro		565					570					575	
			Val	580					585					590		
			Tyr 595					600					605			
10		610	Thr				615					620				
	625		Pro			630					635					640
15			Pro		645					650					655	
			Leu	660					665					670		
			Thr 675					680					685			
20		690	Phe				695					700				
	705		Ala			710					715					720
25			Leu		725					730					735	
			Leu	740					745					750		
			Arg 755					760					765			
30		770	Asn				775					780		Ser	Ile	Ala
	Asp 785	Met	qaA	Phe	Ser	Ala 790	Leu	Leu	Ser	Gln	Ile 795	Ser	Ser			

301

PCT/DK98/00145

## **CLAIMS**

5

10

15

- 1. A method for extracting quantitative information relating to an influence on a cellular response, the method comprising recording variation, caused by the influence on a mechanically intact living cell or mechanically intact living cells, in spatially distributed light emitted from a luminophore, the luminophore being present in the cell or cells and being capable of being redistributed in a manner which is related with the degree of the influence, and/or of being modulated by a component which is capable of being redistributed in a manner which is related to the degree of the influence, the association resulting in a modulation of the luminescence characteristics of the luminophore, and processing the recorded variation in the spatially distributed light to provide quantitative information correlating the spatial distribution to the degree of the influence on the cellular response.
- 2. A method according to claim 1, as used for extracting quantitative information relating to an influence on an intracellular pathway involving redistribution of at least one component associated with the pathway, or part thereof, the method comprising recording the result of the influence on mechanically intact living cell or cells, as manifested in spatially distributed light emitted from a luminophore which is present in the cell or cells and which is capable of being redistributed, by modulation of the pathway, in a manner which is related to the redistribution of the at least one component of the intracellular pathway, processing the recorded result to provide quantitative information about the spatially distributed light and correlating the quantitative information to the degree of the influence on the intracellular pathway.
- 3. A method according to claim 1 or 2, wherein the quantitative information which is indicative of the degree of the cellular response to the influence or the result of the influence on the intracellular pathway is extracted from the recording or recordings according to a predetermined calibration based on responses or results, recorded in the same manner, to known degrees of a relevant specific influence.
- 4. A method according to any of the preceding claims, wherein the influence is contact between the mechanically intact living cell or the group of mechanically intact living cells with a

302

chemical substance and/or incubation of the mechanically intact living cell or the group of mechanically intact living cells with a chemical substance.

- 5. A method according to claim 4 wherein the substance is a substance whose effect on an
  intracellular pathway is to be determined.
  - 6. A method according to any of the preceding claims, wherein the recording is made at a single point in time after the application of the influence.
- 7. A method according to any of claims 1-5, wherein the recording is made at two points in time, one point being before, and the other point being after the application of the influence.
  - 8. A method according to any of claims 1-5, wherein the recording is performed at a series of points in time, in which the application of the influence occurs at some time after the first time point in the series of recordings, the recording being performed, e.g., with a predetermined time spacing of from 0.1 seconds to 1 hour, preferably from 1 to 60 seconds, more preferably from 1 to 30 seconds, in particular from 1 to 10 seconds, over a time span of from 1 second to 12 hours, such as from 10 seconds to 12 hours, e.g., from 10 seconds to one hour, such as from 60 seconds to 30 minutes or 20 minutes.

20

- 9. A method according to any of claims 1-7, wherein the cell or cells is/are fixed at a point in time after the application of the influence at which the response has been predetermined to be significant, and the recording is made at an arbitrary later time.
- 25 10. A method according to any of the preceding claims, wherein the luminophore is a luminophore which is capable of being redistributed in a manner which is physiologically relevant to the degree of the influence.

303

11. A method according to any of the preceding claims, wherein the luminophore is a luminophore which is capable of associating with a component which is capable of being redistributed in manner which is physiologically relevant to the degree of the influence.

- 12. A method according to any of the preceding claims, wherein the luminophore is a luminophore which is capable of being redistributed in a manner which is experimentally determined to be correlated to the degree of the influence.
- 13. A method according to any of the preceding claims, wherein the luminophore is a luminophore which is capable of being redistributed, by modulation of the intracellular pathway, in substantially the same manner as the at least one component of the intracellular pathway.
- 14. A method according to any of claims 1-13, wherein the luminophore is a luminophore
   which is capable of being quenched upon spatial association with a component which is redistributed by modulation of the pathway, the quenching being measured as a decrease in the intensity of the luminescence.

20

25

- 15. A method according to any of claims 1-13, wherein the variation or result with respect to the spatially distributed light emitted by the luminophore is detected by a change in the resonance energy transfer between the luminophore and another luminescent entity capable of delivering energy to the luminophore, each of which has been selected or engineered to become part of, bound to or associated with particular components of the intracellular pathway, and one of which undergoes redistribution in response to the influence, thereby changing the amount of resonance energy transfer, the change in the resonance energy transfer being measured as a change in the intensity of emission from the luminophore.
- 16. A method according to claim 15, wherein the change in the intensity of the emission from the luminophore is sensed by a single channel photodetector which responds only to the average intensity of the luminophore in a non-spatially resolved fashion

WO 98/45704

PCT/DK98/00145

304

17. A method according to any of claims 1-16, wherein the property of the light being recorded is intensity, fluorescence lifetime, polarization, wavelength shift, or other property which is modulated as a result of the underlying cellular response.

5

- 18. A method according to any of claims 1-15 or 17, wherein the recording of the spatially distributed light is performed using a recording system which records the spatial distribution of a recordable property of the light in the form of an ordered array of values.
- 19. A method according to claim 18, wherein the recording of the spatial distribution of the recordable property of the light is performed using a charge transfer device such as a CCD array or a vacuum tube device such as a vidicon tube.
- 20. A method according to any of the preceding claims, wherein the light to be measured
   passes through a filter which selects the desired component of the light to be measured and rejects other components.
  - 21. A method according to any of the preceding claims, wherein the recording of the spatial distribution of the recordable property of light is performed by fluorescence microscopy.

20

- 22. A method according to any of the preceding claims, wherein the recording of the variation or result with respect to light emitted from the luminophore is performed by recording the spatially distributed light as one or more digital images, and the processing of the recorded variation to reduce it to one or more numbers representative of the degree of redistribution comprises a digital image processing procedure or combination of digital image processing procedures.
- 23. A method according to any of claims 2-22, wherein the intracellular pathway is an intracellular signalling pathway.

- 24. A method according to any of the preceding claims, wherein the luminophore is a fluorophore.
- 25. A method according to any of the preceding claims wherein the luminophore is a polypeptide encoded by and expressed from a nucleotide sequence harboured in the cell or cells.
- 26. A method according to any of the preceding claims, wherein the luminophore is a hybrid polypeptide comprising a fusion of at least a portion of each of two polypeptides one of which comprises a luminescent polypeptide and the other one of which comprises a biologically active polypeptide, as defined herein.
- 27. A method according to claim 26, wherein the luminescent polypeptide is a GFP as defined herein.
  - 28. A method according to claim 27 wherein the GFP is selected from the group consisting of green fluorescent proteins having the F64L mutation as defined herein.
- 29. A method according to claim 28 wherein the GFP is a GFP variant selected from the group consisting of F64L-GFP, F64L-Y66H-GFP, F64L-S65T-GFP, and EGFP.
  - 30. A method according to any of the previous claims for detecting intracellular translocation of a biologically active polypeptide affecting intracellular processes upon activation, the method comprising
    - a) culturing one or more cells containing a nucleotide sequence coding for a hybrid polypeptide comprising a GFP which is N- or C-terminally tagged, optionally through a linker, to a biologically active polypeptide under conditions permitting expression of the nucleotide sequence,

5

10

15

25

- b) modulating the activity of the biologically active polypeptide by incubating the cell or cells with a substance having biological activity and
- c) measuring the fluorescence produced by the incubated cell or cells and determining the result or variation with respect to the fluorescence, such result or variation being indicative of the translocation of a biologically active polypeptide in said cell.
- 31. A method according to claim 30, wherein the nucleotide sequence is a DNA sequence.
- 32. A method according to claim 30 or 31, wherein the modulation is an activation.
- 33. A method according to claim 30 or 31, wherein the modulation is a deactivation.
- 34. A method according to any of claims 30-33 wherein the fluorescence of the cell or cells is measured prior to the modulation, and the result or variation determined in step (c) is a change in fluorescence compared to the fluorescence measured prior to the modulation.
- 35. A method according to any of claims 30-34, wherein the intracellular processes are intracellular signalling pathways.
- 36. A method according to claim 34, wherein the change in fluorescence measured in step(c) comprises determining a change in the spatial distribution of the fluorescence.
  - 37. A method according to any of the preceding claims wherein the mechanically intact living cell or cells is/are a mammalian cell/mammalian cells which, during the time peroid over which the influence is observed, is/are incubated at a temperature of 30°C or above, preferably at a temperature of from 32°C to 39°C, more preferably at a temperature of from 35°C to 38°C, and most preferably at a temperature of about 37°C.

307

38. A method according to any of the preceding claims, wherein the at least one mechanically intact living cell is part of a matrix of identical or non-identical cells.

- 39. A method according to any of claims 1-36 and 38, wherein the cell or cells is/are selected from the group consisting of fungal cells, such as a yeast cell; invertebrate cells including insect cells; and vertebrate cells, such as mammalian cells.
  - 40. A nucleic acid construct coding for a fusion polypeptide comprising a biologically active polypeptide that is a component of an intracellular signalling pathway, or a part thereof, and a GFP, with the proviso that the construct is not a construct coding for a fusion polypeptide in which the biologically active polypeptide is selected from the group consisting of PKC-alpha, PKC-gamma, and PKC-epsilon.
- 41. A nucleic acid construct coding for a fusion polypeptide comprising a biologically active polypeptide that is a component of an intracellular signalling pathway, or a part thereof, and an F64L mutant of GFP.
  - 42. A nucleic acid construct according to claim 40 or 41, wherein the biologically active polypeptide is a protein kinase or a phosphatase.

20

- 43. A nucleic acid construct according to any of claims 40-42 wherein the GFP is N- or C-terminally tagged, optionally via a peptide linker, to the biologically active polypeptide or part thereof.
- 44. A nucleic acid construct according to any of claims 40, 41 and 43, wherein the biologically active polypeptide is a transcription factor or a part thereof which changes cellular localisation upon activation.

308

45. A nucleic acid construct according to any of claims 40, 41 and 43, wherein the biologically active polypeptide is a protein, or a part thereof, which is associated with the cytoskeletal network and which changes cellular localisation upon activation.

- 46. A nucleic acid construct according to any of claims 40-43, wherein the biologically active polypeptide is a protein kinase or a part thereof which changes cellular localisation upon activation.
- 47. A nucleic acid construct according to claim 46, wherein the protein kinase is a serine/threonine protein kinase or a part thereof capable of changing intracellular localisation upon activation.

15

48. A nucleic acid construct according to claim 46, wherein the protein kinase is a tyrosine protein kinase or a part thereof capable of changing intracellular localisation upon activation.

49. A nucleic acid construct according to claim 46, wherein the protein kinase is a phospholipid-dependent serine/threonine protein kinase or a part thereof capable of changing intracellular localisation upon activation.

- 50. A nucleic acid construct according to claim 46, wherein the protein kinase is a cAMP-dependent protein kinase or a part thereof capable of changing cellular localisation upon activation.
- 51. A nucleic acid construct according to claim 50 which codes for a PKAc-F64L-S65T-GFP fusion.
  - 52. A nucleic acid construct according to claim 46, wherein the protein kinase is a cGMP-dependent protein kinase or a part thereof capable of changing cellular localisation upon activation.

309

53. A nucleic acid construct according to claim 46, wherein the protein kinase is a calmodulin-dependent serine/threonine protein kinase or a part thereof capable of changing cellular localisation upon activation.

- 54. A nucleic acid construct according to claim 46, wherein the protein kinase is a mitogenactivated serine/threonine protein kinase or a part thereof capable of changing cellular localisation upon activation.
- 55. A nucleic acid construct according to claim 54, which codes for an ERK1-F64L-S65T-GFP fusion.
  - 56. A nucleic acid construct according to claim 54, which codes for an EGFP-ERK1 fusion.
- 57. A nucleic acid construct according to claim 46, wherein the protein kinase is a cyclindependent serine/threonine protein kinase or a part thereof capable of changing cellular localisation upon activation.
- 58. A nucleic acid construct according to claim 42 or 43, wherein the biologically active polypeptide is a protein phosphatase or a part thereof capable of changing cellular localisation upon activation.
  - 59. A nucleic acid construct according to any of claims 40-58 which is a DNA construct.
- 60. A nucleic acid construct according to any of claims 40-59 wherein the gene encoding GFP is derived from Aequorea victoria.
  - 61. A nucleic acid construct according to claim 60 in which the gene encoding GFP is the gene encoding EGFP as defined herein.

310

62. A nucleic acid construct according to claim 60 in which the gene encoding a GFP is a gene encoding a GFP variant selected from F64L-GFP, F64L-Y66H-GFP and F64L-S65T-GFP.

5

10

- 63. A DNA construct according to claim 59 and 61 or, where applicable, 62, which is a construct as identified by any of the DNA sequences shown in SEQ ID NO: 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 136, 138, 140, and 142, or is a variant thereof capable of encoding the same fusion polypeptide or a fusion polypeptide which is biologically equivalent thereto, as defined herein.
- 64. A cell containing a nucleic acid construct according to any of claims 40-63 and capable of expressing the sequence encoded by the construct.

15

20

- 65. A cell according to claim 64, which is a eukaryotic cell.
- 66. A cell according to claim 64, which is selected from the group consisting of fungal cells, such as yeast cells; invertebrate cells, including insect cells, and vertebrate cells, such as mammalian cells.
- 67. A cell according to claim 66, which is a mammalian cell.
- 68. An organism carrying in at least one of its component cells a nucleic acid sequence as contained in the constructs according to any of claims 40-59, said cell being capable of expressing said nucleic acid sequence.
  - 69. An organism according to claim 68 which is selected from the group consisting of unicellular and multicellular organisms, such as a mammal.

311

- 70. A fluorescent probe comprising a GFP which is N- or C-terminally tagged, optionally via a peptide linker, to a biologically active polypeptide or a part or a subunit thereof which is a component of a intracellular signalling pathway as defined herein, the probe being a probe which is encoded by the nucleic acid construct according to any of claims 40-59.
- 71. A method according to any of claims 1-39, wherein the luminophore is a fusion polypeptide as encoded by the nucleic acid construct according to any of claims 40-63.
- 72. A method according to any of claims 1-39 or 71 in which the method of the invention is used in a screening program as defined herein.
  - 73. An apparatus for measuring the distribution of fluorescence in at least one cell, and thereby any change in the distribution of fluorescence in at least one cell, which includes the following component parts: (a) a light source, (b) a means for selecting the wavelength(s) of light from the source which will excite the fluorescence of the protein, (c) a means for rapidly blocking or pass ing the excitation light into the rest of the system, (d) a series of optical elements for conveying the excitation light to the specimen, collecting the emitted fluorescence in a spatially resolved fashion, and forming an image from this fluorescence, (e) a bench or stand which holds the container of the cells being measured in a predetermined geometry with respect to the series of optical elements, (f) a detector to record the spatially resolved fluorescence in the form of an image, (g) a computer or electronic system and associated software to acquire and store the recorded images, and to compute the degree of redistribution from the recorded images.

25

15

- 74. An apparatus according to claim 73 in which some or all of the system is automated.
- 75. An apparatus according to claim 73 in which components d and e comprise a fluorescence microscope.

312

76. An apparatus according to claim 73 in which component f is a CCD camera.

77. An apparatus according to claim 73 in which the image is formed and recorded by an optical scanning system.

5

- 78. An apparatus according to claim 73 in which a liquid addition system is used to add a known or unknown compound to any or all of the cells in the cell holder at a time determined in advance.
- 79. An apparatus according to claim 78 in which the liquid addition system is under the control of the computer or electronic system.
  - 80. A method according to any of claims 1-79 wherein the method is a screening program for the identification of a biologically active substance as defined herein that directly or indirectly affects an intracellular signalling pathway and is potentially useful as a medicament, wherein the result of the individual measurement of each substance being screened which indicates its potential biological activity is based on measurement of the redistribution of spatially resolved luminescence in living cells and which undergoes a change in distribution upon activation of an intracellular signalling pathway.

20

25

- 81 A method according to any of claims 1-79 wherein the method is a screening program for the identification of a biologically toxic substance as defined herein that exerts its toxic effect by interfering with an intracellular signalling pathway, wherein the result of the individual measurement of each substance being screened which indicates its potential biologically toxic activity is based on measurement of the redistribution of said fluorescent probe in living cells and which undergoes a change in distribution upon activation of an intracellular signalling pathway.
- 82. A method according to any of claims 1-80 wherein a fluorescent probe is used in back-30 tracking of signal transduction pathways as defined herein.

- 83. A method of treating a condition or disease related to the intracellular function of a protein kinase comprising administering to a patient suffering from said condition or disease an effective amount of a compound which has been discovered by any method according to the invention.
- 84. A compound that modulates a component of an intracellular pathway as defined herein, as determined by a method according to the method of the invention.
- 10 85. A medical composition comprising a therapeutic amount of a compound identified according the method of the invention.

5

15

- 86. A method of selectively treating a patient suffering from an ailment which responds to medical treatment comprising obtaining a primary cell or cells from said patient, transfecting the cell or cells with at least one DNA sequence encoding a fluorescent probe according to the invention, culturing the cell or cells under conditions permitting the expression of said probes and exposing it to an array of medicaments suspected of being capable of alleviating said ailment, then comparing changes in fluorescence patterns or redistribution patterns of the fluorescent probes in the intact living cell or cells to detect the cellular response to the specific medicaments (obtaining a cellular action profile), then selecting a medicament(s) based on desired activity and acceptable level of side effects and administering an effective amount of said medicament(s) to said patient.
- 87. A method according to any of claims 1-80 of identifying a drug target among the group of biologically active polypeptides which are components of intracellular signalling pathways.



Fig 2



Fig 3

















4/12

Fig 4



5/12

Fig 5

[forskolin]µM	$t_{1/2\text{max}}/s$	t _{max} /s
1	115±21	310±31
10	69±14	224±47
50	47±10	125±28

Fig 6



Fig 7





Fig 8





WO 98/45704 PCT/DK98/00145











WO 98/45704 PCT/DK98/00145

11/12

Fig 11



WO 98/45704 PCT/DK98/00145

12 / 12

Fig. 12













#### **PCT**

# WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau



#### INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:		(11) International Publication Number: WO 98/45704
G01N 33/50, C12Q 1/48, 1/25	A3	(43) International Publication Date: 15 October 1998 (15.10.98)
(21) International Application Number: PCT/DKS (22) International Filing Date: 7 April 1998 (C) (30) Priority Data: 0392/97 7 April 1997 (07.04.97) (71) Applicant (for all designated States except US): NORDISK A/S [DK/DK]; Novo Allé, DK-2880 B.	07.04.9 D NOV	BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, GW, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NI, PT, SE), OAPI patent (BE, BI, CE, CE, CE, CE, CE, CE, CE, CE, CE, CE
(DK).  (72) Inventors; and  (75) Inventors/Applicants (for US only): THASTRU [DK/DK]; Birkevej 37, DK-3460 Birkerød (D TERSEN BJØRN, Sara [DK/DK]; Klampenborg DK-2800 Lyngby (DK). TULLIN, Søren [DK/DK] Gjellerups Alle 18, DK-2860 Søborg (DK). K Almholt [DK/DK]; Eigilsgade 32, 4. tv, DK-2300 havn S (DK). SCUDDER, Kurt [US/DK]; Lavenc 70, DK-2830 Virum (DK).  (74) Common Representative: NOVO NORDISK A/S; at Keilberg, Novo Allé, DK-2880 Bagsværd (DK).	K). PH vej 102 K]; Ka ASPER Køber delhave	Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.  (88) Date of publication of the international search report:  22 April 1999 (22.04.99)

(54) Title: A METHOD FOR EXTRACTING QUANTITATIVE INFORMATION RELATING TO AN INFLUENCE ON A CELLULAR RESPONSE

#### (57) Abstract

Cells are genetically modified to expresss a luminophore, e.g., a modified (F64L, S65T, Y66H) Green Fluorescent Protein (GFP, EGFP) coupled to a component of an intracellular signalling pathway such as a transcription factor, a cGMP- or cAMP-dependent protein kinase, a cyclin-, calmodulin- or phospholipid-dependent or mitogen-activated serine/threonin protein kinase, a tyrosine protein kinase, or a protein phosphatase (e.g. PKA, PKC, Erk, Smad, VASP, actin, p38, Jnk1, PKG, IkappaB, CDK2, Grk5, Zap70, p85, protein-tyrosine phosphatase 1C, Stat5, NFAT, NFkappaB, RhoA, PKB). An influence modulates the intracellular signalling pathway in such a way that the luminophore is being redistributed or translocated with the component in living cells in a manner experimentally determined to be correlated to the degree of the influence. Measurement of redistribution is performed by recording of light intensity, fluorescence lifetime, polarization, wavelength shift, resonance energy transfer, or other properties by an apparatus consisting of e.g. a fluorescence microscope and a CCD camera. Data stored as digital images are processed to numbers representing the degree of redistribution. The method can be used as a screening program for identifying a compound that modulates a component and is capable of treating a disease related to the function of the component.

#### FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	rl.	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Солдо	KE	Kenya	NL	Netherlands	YU	Yugoslavia
СН	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	. Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		
1							

Int. tional Application No PCT/DK 98/00145

CA 01 400			FC1/DK 98/00145			
IPC 6	SIFICATION OF SUBJECT MATTER G01N33/50 C12Q1/48 C12Q1/	25				
	to International Patent Classification (IPC) or to both national class	ification and IPC				
	SEARCHED					
170 6	documentation searched (classification system followed by classific G01N C12Q C12N C07K					
	ation searched other than minimum documentation to the extent the					
	and the state of t	base and, where practical, so	∍arch terms used)			
C. DOCUM	ENTS CONSIDERED TO BE RELEVANT					
Category °	Citation of document, with indication, where appropriate, of the	relevant passages	Relevant to claim No.			
X	WO 97 11094 A (NOVONORDISK AS ; OLE (DK); TULLIN SOEREN (DK); PO 27 March 1997	THASTRUP DULSEN LAR)	1-27, 30-40, 44-60,			
Y	see the whole document see claims		64-82,88 28,29, 41,61-63			
Х	WO 91 01305 A (UNIV WALES MEDIC) 7 February 1991	NE)	1-27, 30-40, 42-60, 64-84,			
Υ	see page 4, line 15 - line 20 see claims see examples 1-10		87,88 28,29, 41,61-63			
		-/				
	er documents are listed in the continuation of box C.	X Patent family mem	nbers are listed in annex.			
"A" documer	egories of cited documents :  It defining the general state of the art which is not red to be of particular relevance	or prionty date and not cited to understand the	d after the international filling date in conflict with the application but principle or theory underlying the			
"E" earlier do filling da	E" earlier document but published on or after the international strength of particular relevance; the claimed invention					
citation	L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)  cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone document of particular relevance, the claimed invention					
O" document referring to an oral disclosure, use, exhibition or other means  P" document published prior to the international filling date but    On the art   On						
- ater tra	in the priority date claimed	5 17 siment member of the				
	January 1999		25. 02. 1999			
lame and ma	niling address of the ISA	Authorized officer				
	European Patent Office, P.B. 5818 Patentlaan 2 NL · 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,					
	Fax: (+31-70) 340-3016	Hoekstra,	S			

Int ational Application No PCT/DK 98/00145

	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	10:
Category '	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X .	WO 95 07463 A (UNIV COLUMBIA ;WOODS HOLE OCEANOGRAPHIC INST (US); CHALFIE MARTIN) 16 March 1995 cited in the application	1-27, 30-40, 42-60, 64-84, 87,88
Y	see claim 26 see the whole document	28,29, 41,61-63
Υ	WO 96 23898 A (NOVONORDISK AS ;THASTRUP OLE (DK); TULLIN SOEREN (DK); POULSEN LAR) 8 August 1996 see the whole document	28,29, 41,61-63
X	see page 8-17	42,43, 46,47
X	WO 96 03649 A (UNIV NORTH CAROLINA) 8 February 1996 see page 49; example 6.10	45
Ρ,Χ	WO 97 20931 A (US HEALTH ;HTUN HAN (US); HAGER GORDON L (US)) 12 June 1997 see claims 41-58	40,44
Ρ,Χ	WO 97 30074 A (CYTOGEN CORP ;UNIV NORTH CAROLINA (US)) 21 August 1997 see page 57	44
P,X	WO 98 02571 A (TSIEN ROGER Y ;CUBITT ANDREW B (US); UNIV CALIFORNIA (US)) 22 January 1998	1-27, 30-40, 42-50, 52-54, 57-60, 64-82,88
	see claims	
Ε	WO 98 30715 A (ISACOFF EHUD Y ;SIEGAL MICAH S (US); UNIV CALIFORNIA (US); CALIFOR) 16 July 1998 see the whole document	1-84,87, 88
	-/	

Int ational Application No PCT/DK 98/00145

CICantin	(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT						
C.(Continu	<del>,</del>						
Calegory	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.					
P, X O, X	SAKAI, N. ET AL.: "Direct visualization of the translocation of the gamma subspecies of protein kinase c in living cells using fusion proteins with green fluorescent protein."  THE JOURNAL OF CELL BIOLOGY, vol. 139, no. 6, 15 December 1997, pages 1465-1476, XP002078902 see the whole document & Direct visualization of the	1-43,46, 47,49, 53-57, 59-82,88					
	translocation of the gamma subspecies of protein kinase c in living cells using fusion proteins with green fluorescent protein. Meeting held at 22-23.03.97 cited in the application see abstract						
X	SCHMIDT, D.J. ET AL.: "Dynamic analysis of alpha-PKC-GFP chimera translocation events in smooth muscle with ultra-high speed 3D fluorescence microscopy" FASEB JOURNAL, vol. 11, no. 3, 28 February 1997, page A505 XP002077257 cited in the application see abstract	1-43,46, 47,49, 53-57, 59-82,88					
	GERISCH, GUENTHER ET AL: "Chemoattractant-controlled accumulation of coronin at the leading edge of Dictyostelium cells monitored using a green fluorescent protein-coronin fusion protein" CURR. BIOL. (1995), 5(11), 1280-5 CODEN: CUBLE2:ISSN: 0960-9822, XP002089510 see abstract p 1281, right col, second full , last sentence	1,40,43,					
	SIDOROVA, JULIA M. ET AL: "Cell cycle-regulated phosphorylation of Swi6 controls its nuclear localization" MOL. BIOL. CELL (1995), 6(12), 1641-58 CODEN: MBCEEV; ISSN: 1059-1524, XP002089512 see the whole document	40,43,44					
	HAN HTUN ET AL: "VISUALIZATION OF GLUCOCORTICOID RECEPTOR TRANSLOCATION AND INTRANUCLEAR ORGANIZATION IN LIVING CELLS WITH A GREEN FLUORESCENT PROTEIN CHIMERA" PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA, vol. 93, no. 10, May 1996, pages 4845-4850, XP002029560 see the whole document	1-40,44, 64-72					
l	-/						

In. ational Application No PCT/DK 98/00145

		PCT/DK 98/00145
	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	
Category ·	Citation of document, with indication, where appropriate, of the relevant passages	Refevant to claim No.
X ·	CAREY K L ET AL: "EVIDENCE USING A GREEN FLUORESCENT PROTEIN-GLUCOCORTICOID RECEPTOR CHIMERA THAT THE RAN/TC4 GTPASE MEDIATES AN ESSENTIAL FUNCTION INDEPENDENT OF NUCLEAR PROTEIN IMPORT" THE JOURNAL OF CELL BIOLOGY, vol. 133, no. 5, June 1996, pages 985-996, XP000670316 cited in the application see the whole document	1-40,44, 64-72
X .	OGAWA H ET AL: "LOCALIZATION, TRAFFICKING, AND TEMPERATURE-DEPENDENCE OF THE AEQUOREA GREEN FLUORESCENT PROTEIN IN CULTURES VERTEBRATE CELLS" PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA, vol. 92, no. 25, 5 December 1995, pages 11899-11903, XP002029556 see the whole document	1-40,44, 64-72
X	WESTPHAL, MONIKA ET AL: "Microfilament dynamics during cell movement and chemotaxis monitored using a GFP - actin fusion protein" CURR. BIOL. (1997), 7(3), 176-183 CODEN: CUBLE2; ISSN: 0960-9822, XP002090291 see page 181, left-hand column, line 1	1,40,43, 45
x	TODA, TAKASHI ET AL: "The fission yeast sts5+ gene is required for maintenance of growth polarity and functionally interacts with protein kinase C and an osmosensing MAP kinase pathway"  J. CELL SCI. (1996), 109(9), 2331-2342  CODEN: JNCSAI;ISSN: 0021-9533, XP002090292 see abstract	40,42
A	WEBB, CHRIS D. ET AL: "Use of green fluorescent protein for visualization of cell-specific gene expression and subcellular protein localization during sporulation in Bacillus subtilis"  J. BACTERIOL. (1995), 177(20), 5906-11 CODEN: JOBAAY; ISSN: 0021-9193, XP002089513 see the whole document	44
A	WO 94 23039 A (CANCER RES INST ROYAL; MARSHALL CHRISTOPHER JOHN (GB); ASHWORTH AL) 13 October 1994 see the whole document	1-84,87, 88

9

tr. ational application No. PCT/DK 98/00145

Box I	Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)	
This Inte	ernational Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:	_
1. X	Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:	
2. X	Although claims 83-84 and claim 87 relate to a method of treatment of the human/animal body, the search has been carried out and based on the alleged effects of the compound/composition (Rule 39.1(iv) PCT - Method for treatment of the human or animal body by therapy).  Claims Nos.:  85,86	
	because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:	
	see FURTHER INFORMATION sheet PCT/ISA/210	
3.	Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).	
Box II	Observations where unity of invention is lacking (Continuation of item 2 of first sheet)	┨
	rnational Searching Authority found multiple inventions in this international application, as follows:	$\frac{1}{2}$
	ectioning Additionly loand maniple inventions in this international application, as follows:	ĺ
	see additional sheet	
		I
1. X	As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.	
2	As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.	
3	As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:	
4.	No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:	
Remark o	The additional search fees were accompanied by the applicant's protest.  No protest accompanied the payment of additional search fees.	

International Application No. PCT/DK 98/00145

#### FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

Claims Nos.: 85,86

The subject-matter (compounds per se) is solely characterised in claims 85 and 86 by the result to be achieved, no support of a technical character is derivable from the description for the technical formulation of the subject of the search, accordingly no scope of a search could be defined and a meaningfull search is hence not possible.

International Application No. PCT/DK 98/00145

#### FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

This International Searching Authority found multiple (groups of) inventions in this international application, as follows:

 Claims: Partially: 1-43, 46, 59-82 and 88; Entirely: 47, 49, 53-57

Methods for extracting information from influences on a living cell involving observing spatial redistribution or modulation of a luminophore linked to a biologically active molecule, in particular to a molecule involved in intracellular signalling pathways, nucleic acids encoding fusion proteins comprising bothe the luminophore and the biological active molecule, cells containing and expressing these nucleic acids, as well as methods and apparatuses involving above products, inso far as related to the biologically active protein being serine/threonine protein kinases

2. Claims: Partially: 1-41, 43, 59-82 and 88; Entirely: 48

Methods for extracting information from influences on a living cell involving observing spatial redistribution or modulation of a luminophore linked to a biologically active molecule, in particular to a molecule involved in intracellular signalling pathways, nucleic acids encoding fusion proteins comprising bothe the luminophore and the biological active molecule, cells containing and expressing these nucleic acids, as well as methods and apparatuses involving above products, inso far as related to the biologically active protein being to tyrosine kinases

3. Claims: Partially: 1-43, 46, 59-82 and 88; Entirely: 50, 51

MMethods for extracting information from influences on a living cell involving observing spatial redistribution or modulation of a luminophore linked to a biologically active molecule, in particular to a molecule involved in intracellular signalling pathways, nucleic acids encoding fusion proteins comprising bothe the luminophore and the biological active molecule, cells containing and expressing these nucleic acids, as well as methods and apparatuses involving above products, inso far as related to the biologically active protein being to cAMP dependent protein kinases.

4. Claims: Partially: 1-43, 46, 59-82 and 88; Entirely: 52

MMethods for extracting information from influences on a living cell involving observing spatial redistribution or modulation of a luminophore linked to a biologically active

International Application No. PCT/DK 98/00145

#### FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

molecule, in particular to a molecule involved in intracellular signalling pathways, nucleic acids encoding fusion proteins comprising bothe the luminophore and the biological active molecule, cells containing and expressing these nucleic acids, as well as methods and apparatuses involving above products, inso far as related to the biologically active protein being cGMP dependent protein kinases

5. Claims: Partially: 1-43, 59-82 and 88; Entirely: 58

Methods for extracting information from influences on a living cell involving observing spatial redistribution or modulation of a luminophore linked to a biologically active molecule, in particular to a molecule involved in intracellular signalling pathways, nucleic acids encoding fusion proteins comprising bothe the luminophore and the biological active molecule, cells containing and expressing these nucleic acids, as well as methods and apparatuses involving above products, inso far as related to the biologically active protein being protein phosphatases

6. Claims: Partially: 1-41, 43, 59-82 and 88; Entirely: 44

Methods for extracting information from influences on a living cell involving observing spatial redistribution or modulation of a luminophore linked to a biologically active molecule, in particular to a molecule involved in intracellular signalling pathways, nucleic acids encoding fusion proteins comprising bothe the luminophore and the biological active molecule, cells containing and expressing these nucleic acids, as well as methods and apparatuses involving above products, inso far as related to the biologically active protein being to transcription factors

7. Claims: Partially: 1-41, 43, 59-82 and 88; Entirely: 45

Methods for extracting information from influences on a living cell involving observing spatial redistribution or modulation of a luminophore linked to a biologically active molecule, in particular to a molecule involved in intracellular signalling pathways, nucleic acids encoding fusion proteins comprising bothe the luminophore and the biological active molecule, cells containing and expressing these nucleic acids, as well as methods and apparatuses involving above products, inso far as related to the biologically active protein being to proteins associated with the cytoskeletal network



Information on patent family members

In. national Application No

	n				PCT/D	98/00145
cite	Patent documen ed in search rep	t ort	Publication date		Patent family member(s)	Publication date
W(	9711094	Α	27-03-1997	AU	4482996 A	09-04-1997
				CA	2232727 A	27-03-1997
				EP	0851874 A	08-07-1998
WC	9101305	Α	07-02-1991	AU	6054590 A	22-02-1991
				CA	2064766 A	23-01-1991
				EP	0484369 A	13-05-1992
				JP	5501862 T	08-04-1993
				US	5683888 A	04-11-1997
WO	9507463	Α	16-03-1995	US	5491084 A	13-02-1996
				AU	694745 B	30-07-1998
				AU	7795794 A	27-03-1995
				CA	2169298 A	16-03-1995
				EP	0759170 A	26-02-1997
				JP	9505981 T	17-06-1997
WO	9623898	Α	08-08-1996	AU	4483096 A	21-08-1996
				CA	2217700 A	08-08-1996
				EP	0815257 A •	07-01-1998
MO	9603649	Α	08-02-1996	AU	3146095 A	22-02-1996
				CA	2195629 A	08-02-1996
				EP	0772773 A	14-05-1997
				JP	10503369 T	31-03-1998
WO	9720931	Α	12-06-1997	ΑU	1283497 A	27-06-1997
				CA	2239951 A	12-06-1997
WO	9730074 	A 	21-08-1997	AU	2272397 A	02-09-1997
WO 	9802571 	Α	22-01-1998	AU	3801997 A	09-02-1998
WO	9830715 	Α	16-07-1998	AU	5090498 A	03-08-1998
WO	9423039	Α	13-10-1994		677834 B	08-05-1997
				AU	6382394 A	24-10-1994
				EP	0703984 A	03-04-1996
				JP	9501302 T	10-02-1997
				AU	696939 B	24-09-1998
				AU	1586195 A	29-08-1995
				CA	2182967 A	17-08-1995
				EP	0742827 A	20-11-1996
				WO	9521923 A	17-08-1995
				JР	9508795 T	1, 00 1990

# This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

# **BEST AVAILABLE IMAGES**

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
·

#### IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

# THIS PAGE BLANK (USPTO)