Sémantique des systèmes concurrents Stage de fin d'année

Jordan Ischard

Université d'Orléans

06 juin 2019

Sommaire

- Introduction
 - Sujet du stage
 - Présentation de l'équipe
- 2λ -calculs
 - Bases
 - Forme normale
 - Stratégie de réduction
- Machines étudiées
 - Machine CC
 - Machine CK
 - Machine SCC
 - Machine CEK
 - Machine SECD

- Programmation réactive synchrone concurrente
- Concept
- Machine TTS
 - Explication
 - Sémantique de la machine
 - Sémantique de la machine
- Machine TTSI
 - Explication informelle
 - Sémantique de la machine
 - Conclusion
 - Résumer
 - Travaux futures

Introduction

Sujet du stage : Programmation réactive synchrone et Implantation d'une machine virtuelle

Encadrants : Madame Bousdira et Monsieur Dabrowski

LIFO: Le Laboratoire d'Informatique Fondamentale d'Orléans (LIFO) est un laboratoire de l'Université d'Orléans et de l'INSA Centre-Val de Loire. Les recherches menées au LIFO concernent la science informatique et les STIC (Système de Traitement des Infractions Constatées).

LMV : L'objectif de l'équipe LMV est de contribuer à l'amélioration de la compréhension des problèmes de sûreté et de sécurité des systèmes informatiques.

λ -calculs

Définition

Le λ -calcul est un système formel inventé par Alonzo Church dans les années 1930, qui fonde les concepts de fonction et d'application.

Variable	Abstraction	Application
X	$\lambda X.M$	(M N)

Règles de réduction

$$\begin{array}{lll} \alpha & (\lambda X_1.M) & \rightarrow_{\alpha} & (\lambda X_2.M[X_1 \leftarrow X_2]) \text{ où } X_2 \notin FV(M) \\ \beta & ((\lambda X.M_1)M_2) & \rightarrow_{\beta} & M_1[X \leftarrow M_2] \\ \eta & (\lambda X.(M \ X)) & \rightarrow_{\eta} & M \text{ où } X \notin FV(M) \end{array}$$

λ -calculs

Théorème de la forme normale

Si on peut réduire L tels que $L =_n M$ et $L =_n N$ et que N et M sont en forme normale alors M = N à n renommages près.

Règles de la stratégie de réduction

$$\begin{array}{cccc} M & \longrightarrow_{\bar{n}} & N \\ M & \longrightarrow_{\bar{n}} & N \\ (\lambda X.M) & \longrightarrow_{\bar{n}} & (\lambda X.N) \\ (M \ N) & \longrightarrow_{\bar{n}} & (M' \ N) \\ (M \ N) & \longrightarrow_{\bar{n}} & (M \ N') \end{array}$$

Machines étudiées

Machine CC

- utilise la β -réduction
- Sépare l'expression en 2 sous-expressions
- Exploite la chaîne de contôle uniquement

Machine CK

- Utilise la β -réduction
- principe de la continuation

Machine SCC

- Utilise la β -réduction
- Version simplifiée de la machine CC
- Exploite les deux sous-expressions

Machine CEK

- Version plus complète de la machine CK
- Ajout d'un environnement

Définition : La continuation

La continuation d'un système désigne son futur, c'est-à-dire la suite des instructions qu'il lui reste à exécuter à un moment précis.

Machines étudiées

Machine SECD

- Sauvegarde différente du CEK
- Appel par valeur
- Fonctionne avec son propre langage

- Composée de quatres éléments :
 - une pile S
 - un environnement E
 - une chaîne de contrôle C
 - un dépôt D

Règles de la machine SECD

Programmation réactive synchrone concurrente

Synchrone

Synchrone signifie que les informations seront obtenues de manière immédiate.

Concurrente

Concurrente signifie que plusieurs processus vont se dérouler durant le même instant logique.

Machines TTS: Explication

 $\lambda s.(\lambda s'.(Spawn(present\ s\ in\ 6\ 9)\ Spawn(present\ s'\ in\ 3\ 5)\ Spawn(emit\ s))\ init)\ init$ $\langle s, \langle s', \langle, s \langle, 6 \rangle \langle, 9 \rangle present \rangle\ spawn\ \langle, s' \langle, 3 \rangle \langle, 5 \rangle present \rangle\ spawn\ ap\ \langle, s\ emit \rangle\ spawn\ ap\ \rangle\rangle\ init\ ap\ ini$

Machines TTS : Sémantique de la machine

Création d'un thread :

$$\langle \langle \langle \langle X, C' \rangle, E \rangle \ S, E, \textit{spawn} \ C, D \rangle, \textit{TL}, \textit{SI} \rangle \longrightarrow_{\textit{TTS}} \langle \langle S, E, C, D \rangle, \textit{TL} \ \langle S, E, C', D \rangle, \textit{SI} \rangle$$

Initialisation d'un signal :

$$\langle \langle S, E, init \ C, D \rangle, TL, S\overline{I} \rangle \longrightarrow_{TTS} \langle \langle s \ S, E, C, D \rangle, TL, SI' \rangle$$

avec $\iota(SI) = (s, SI')$

Émettre :

$$\begin{split} &\langle\langle s \; S, E, \textit{emit} \; C, D\rangle, \textit{TL}, \textit{SI}\rangle \longrightarrow_{\textit{TTS}} \langle\langle S, E, C, D\rangle, \textit{TL} \; \textit{ST}, \textit{SI}'\rangle \\ &\textit{avec} \; \varepsilon(s, \textit{SI}) = (\textit{ST}, \textit{SI})' \end{split}$$

Récupération de thread :

$$\langle\langle S, E, \epsilon, \emptyset \rangle, \langle S', E', C, D \rangle \ TL, SI \rangle \longrightarrow_{TTS} \langle\langle S', E', C, D \rangle, TL, SI \rangle$$

Fin d'un instant logique :

$$\langle \langle S, E, \epsilon, \emptyset \rangle, \emptyset, SI \rangle \longrightarrow_{TTS} \langle \langle S, E, \epsilon, \emptyset \rangle, TL, SI' \rangle$$
 avec $\tau(SI) = (TL, SI')$

Machines TTS : Sémantique de la machine

Test d'un signal présent :

Test d'un signal non présent avec thread remplaçable :

$$\begin{split} & \langle \langle \langle \langle X', C'' \rangle, E \rangle \ \langle \langle X, C' \rangle, E \rangle \ s \ S, E, \ present \ C, D \rangle, \langle S', E', C''', D' \rangle \\ & TL, SI \rangle \longrightarrow_{TTS} \langle \langle S', E', C''', D' \rangle, TL, SI' \rangle \\ & \text{avec} \ SI(s) = \langle \textit{faux}, ST \rangle \\ & \text{et} \ SI'(s) = \langle \textit{faux}, ST \ \langle \langle \langle X', C'' \rangle, E \rangle \ \langle \langle X, C' \rangle, E \rangle \ s \ S, E, \ \textit{present} \ C, D \rangle \rangle \end{split}$$

Test d'un signal non présent sans thread remplaçable :

$$\begin{split} & \langle \langle \langle \langle X', C'' \rangle, E \rangle \ \langle \langle X, C' \rangle, E \rangle \ s \ S, E, C, D \rangle, \emptyset, SI \rangle \longrightarrow_{TTS} \\ & \langle \langle \emptyset, \epsilon, \emptyset, \emptyset \rangle, \emptyset, SI' \rangle \\ & \text{avec} \ SI(s) = \langle \textit{faux}, ST \rangle \\ & \text{et} \ SI'(s) = \langle \textit{faux}, ST \ \langle \langle \langle X', C'' \rangle, E \rangle \ \langle \langle X, C' \rangle, E \rangle \ s \ S, E, \textit{present} \ C, D \rangle \rangle \end{split}$$

Machines TTSI: Explication informelle

 $\lambda s. (\textit{Spawn}(\textit{put} \times 4) \; \textit{put} \times 3 \; \textit{Spawn}(\textit{wait} \; \textit{get} \times 1 \; 0)) \; \textit{init} \\ \langle x, \langle, 4 \times \textit{put} \rangle \; \textit{spawn} \; 3 \times \textit{put} \; \textit{ap} \; \langle, -1 \; \langle, \rangle \; \langle, \rangle \; \textit{present} \; x \; 1 \; 0 \; \textit{get} \; \textit{ap} \rangle \; \textit{spawn} \; \textit{ap} \; \rangle \; \textit{init} \; \textit{ap}$

Machines TTSI : Sémantique de la machine

Ajout d'une valeur :

$$\langle\langle \textit{I}, \textit{s} \; \textit{b} \; \textit{S}, \textit{E}, \textit{put} \; \textit{C}, \textit{D} \rangle, \textit{TL}, \textit{SI} \rangle \longrightarrow_{\textit{TTSI}} \langle\langle \textit{I}, \textit{S}, \textit{E}, \textit{C}, \textit{D} \rangle, \textit{TL}, \textit{SI} \; [(\textit{s}, \textit{I}) \leftarrow \textit{b}] \rangle$$

Prise d'une valeur :

$$\langle\langle I,s\ b\ n\ \langle\langle X,C'\rangle,E'\rangle\ S,E,get\ C,D\rangle,TL,SI\rangle\longrightarrow_{TTSI}$$

 $\langle\langle I,\emptyset,E'[X\leftarrow V],C',\langle S,E,C,D\rangle\rangle,TL,SI\rangle$
si pour $SI(s)=\langle emit,CS,SSI\rangle$ et $SSI(b)=\langle CI,IL\rangle$ on a $I\notin IL$ alors $\gamma(I,b,SSI(b))=V$
sinon $n=V$

Émettre

$$\langle \langle s | S, E, emit | C, D \rangle, TL, SI \rangle \longrightarrow_{TTS} \langle \langle S, E, C, D \rangle, TL | ST, SI' \rangle$$

avec $\varepsilon(s, SI) = (ST, SI)'$

Conclusion

En Résumé:

- Machine réactive pure
- Machine réactive avec partages de valeurs

Travaux futures:

- Preuve du déterminisme
- Gestion des erreurs