ETE3-1.R

Pranab Rai-2447137

2025-01-01

```
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
##
       filter, lag
## The following objects are masked from 'package:base':
##
       intersect, setdiff, setequal, union
##
library(lubridate)
## Warning: package 'lubridate' was built under R version 4.4.2
##
## Attaching package: 'lubridate'
## The following objects are masked from 'package:base':
##
##
       date, intersect, setdiff, union
library(ggplot2)
# Load your data
read.csv("C:\\Users\\prana\\OneDrive\\Desktop\\2trimester\\R\\ETE3\\test1.csv
")
  # Convert pickup datetime
  df$tpep_pickup_datetime <- ymd_hms(df$tpep_pickup_datetime)</pre>
  # Extract date and hour
  df <- df %>%
    mutate(
      pickup date = as.Date(tpep pickup datetime),
      pickup_hour = hour(tpep_pickup_datetime)
  # Basic Summary
  print("Basic Summary:")
```

```
## [1] "Basic Summary:"
  print(summary(df))
##
     pickup_date
                           pickup_hour
                                           VendorID
           :2001-09-21
##
                          Min.
                                 :0
                                        Min.
                                               :1.00
    Min.
##
    1st Qu.:2008-09-21
                          1st Qu.:0
                                        1st Qu.:1.75
##
    Median :2016-03-22
                                        Median :2.00
                          Median :0
##
    Mean
           :2016-03-22
                          Mean
                                 :0
                                       Mean
                                             :1.75
##
    3rd Ou.:2023-09-21
                          3rd Qu.:0
                                        3rd Qu.:2.00
##
    Max.
           :2030-09-21
                          Max.
                                 :0
                                        Max.
                                               :2.00
##
    tpep_pickup_datetime
                                       tpep_dropoff_datetime passenger_count
##
    Min.
           :2001-09-21 00:00:15.00
                                       Length:720
                                                              Min.
                                                                     :0.000
    1st Qu.:2008-09-21 00:12:05.50
                                       Class :character
                                                              1st Qu.:1.000
##
    Median :2016-03-22 00:11:48.00
                                       Mode :character
                                                              Median :1.000
##
           :2016-03-22 00:11:59.49
                                                              Mean
                                                                     :1.274
##
    3rd Qu.:2023-09-21 00:12:09.50
                                                              3rd Qu.:1.000
##
    Max.
           :2030-09-21 00:23:06.00
                                                              Max.
                                                                     :6.000
##
    trip distance
                                        store and fwd flag
                        RatecodeID
                                                             PULocationID
##
    Min.
          : 0.000
                      Min.
                             : 1.000
                                        Length:720
                                                            Min.
                                                                   : 4.0
##
    1st Qu.: 1.070
                      1st Qu.: 1.000
                                        Class :character
                                                            1st Qu.:132.0
##
    Median : 1.890
                      Median : 1.000
                                       Mode :character
                                                            Median :161.0
##
    Mean
          : 3.616
                      Mean
                             : 2.224
                                                            Mean
                                                                   :164.7
    3rd Qu.: 3.595
##
                      3rd Qu.: 1.000
                                                            3rd Qu.:233.0
##
    Max.
           :22.550
                      Max.
                             :99.000
                                                            Max.
                                                                   :265.0
##
     DOLocationID
                      payment_type
                                      fare_amount
                                                             extra
##
                                            :-107.30
                                                                :-5.000
    Min.
           : 1.0
                     Min.
                            :1.000
                                     Min.
                                                        Min.
##
    1st Qu.:106.8
                     1st Qu.:1.000
                                     1st Qu.:
                                                 9.30
                                                        1st Qu.: 0.000
                                     Median :
                                                        Median : 1.000
##
    Median :161.0
                     Median :1.000
                                                13.50
##
                                                19.93
    Mean
           :156.7
                     Mean
                            :1.228
                                     Mean
                                                        Mean
                                                                : 1.417
    3rd Qu.:231.0
##
                     3rd Qu.:1.000
                                      3rd Qu.:
                                                23.30
                                                        3rd Qu.: 2.500
##
    Max.
           :265.0
                     Max.
                            :4.000
                                     Max.
                                            : 130.40
                                                        Max.
                                                                : 9.250
                                          tolls_amount
##
       mta tax
                         tip amount
improvement surcharge
           :-0.5000
                                         Min.
                                                :-13.3800
                                                             Min.
                                                                    :-1.0000
##
    Min.
                       Min.
                              : 0.000
##
    1st Qu.: 0.5000
                       1st Qu.: 1.000
                                         1st Qu.:
                                                   0.0000
                                                             1st Qu.: 1.0000
##
    Median : 0.5000
                       Median : 2.860
                                         Median :
                                                   0.0000
                                                             Median : 1.0000
##
           : 0.4736
                                                   0.5872
                                                                    : 0.9542
    Mean
                       Mean
                              : 3.738
                                         Mean
                                                             Mean
##
    3rd Qu.: 0.5000
                       3rd Qu.: 4.400
                                         3rd Qu.:
                                                   0.0000
                                                             3rd Ou.: 1.0000
##
                                                : 21.3800
    Max.
           : 0.5000
                       Max.
                              :40.050
                                         Max.
                                                             Max.
                                                                    : 1.0000
##
     total amount
                       congestion_surcharge Airport fee
                                                   :-1.7500
##
          :-121.68
    Min.
                       Min.
                             :-2.500
                                             Min.
    1st Qu.: 15.86
                                             1st Qu.: 0.0000
##
                       1st Qu.: 2.500
##
              21.68
                       Median : 2.500
                                             Median : 0.0000
    Median :
                              : 2.205
##
    Mean
              28.85
                                             Mean
                                                    : 0.1434
                       Mean
##
    3rd Qu.: 31.32
                       3rd Qu.: 2.500
                                             3rd Qu.: 0.0000
##
           : 175.30
                              : 2.500
    Max.
                       Max.
                                             Max.
                                                   : 1.7500
```

```
# Numerical Columns
  numerical_cols <- c("trip_distance", "fare_amount", "total_amount",</pre>
"passenger count") # Add more as needed
  for (col in numerical cols) {
    if (col %in% names(df)) {
      print(paste("n", col, "Statistics:"))
      print(paste("Mean", col, ":", mean(df[[col]], na.rm = TRUE)))
      print(paste("Median", col, ":", median(df[[col]], na.rm = TRUE)))
      print(paste("Standard Deviation of", col, ":", sd(df[[col]], na.rm =
TRUE)))
      print(paste("Range of", col, ":", paste(range(df[[col]], na.rm=TRUE),
collapse = " - ")))
      print(paste("Interquartile Range (IQR) of", col, ":", IQR(df[[col]],
na.rm = TRUE)))
      print("Quantiles")
      print(quantile(df[[col]], probs = c(0.05, 0.25, 0.5, 0.75, 0.95),
na.rm=TRUE))
    }
  }
## [1] "n trip distance Statistics:"
## [1] "Mean trip distance : 3.615888888888889"
## [1] "Median trip_distance : 1.89"
## [1] "Standard Deviation of trip distance : 4.5533884784586"
## [1] "Range of trip distance : 0 - 22.55"
## [1] "Interquartile Range (IQR) of trip_distance : 2.525"
## [1] "Quantiles"
##
        5%
               25%
                       50%
                               75%
                                       95%
## 0.4895 1.0700 1.8900 3.5950 16.3160
## [1] "n fare amount Statistics:"
## [1] "Mean fare amount : 19.927027777778"
## [1] "Median fare_amount : 13.5"
## [1] "Standard Deviation of fare amount : 20.0215538600284"
## [1] "Range of fare_amount : -107.3 - 130.4"
## [1] "Interquartile Range (IQR) of fare_amount : 14"
## [1] "Quantiles"
##
   5% 25% 50% 75% 95%
## 5.1 9.3 13.5 23.3 70.0
## [1] "n total amount Statistics:"
## [1] "Mean total_amount : 28.8541388888889"
## [1] "Median total_amount : 21.675"
## [1] "Standard Deviation of total amount : 25.4034276449892"
## [1] "Range of total_amount : -121.68 - 175.3"
## [1] "Interquartile Range (IQR) of total amount : 15.465"
## [1] "Quantiles"
                       50%
                               75%
##
        5%
## 11.2760 15.8600 21.6750 31.3250 88.8505
## [1] "n passenger count Statistics:"
## [1] "Mean passenger_count : 1.2736111111111"
```

```
## [1] "Median passenger count : 1"
## [1] "Standard Deviation of passenger count : 0.718422986186287"
## [1] "Range of passenger_count : 0 - 6"
## [1] "Interquartile Range (IQR) of passenger_count : 0"
## [1] "Quantiles"
## 5% 25% 50% 75% 95%
##
    1
         1
             1
                 1
  # Categorical Columns
  categorical_cols <- c("VendorID", "payment_type") # Add more as needed</pre>
  for (col in categorical cols) {
    if (col %in% names(df)) {
      print(paste( col, "Frequencies:"))
      print(table(df[[col]]))
      print("Proportions")
      print(prop.table(table(df[[col]])))
    }
  }
## [1] "VendorID Frequencies:"
##
   1
         2
## 180 540
## [1] "Proportions"
##
##
           2
      1
## 0.25 0.75
## [1] "payment_type Frequencies:"
##
##
         2
             3
                 4
    1
## 596 102
             4 18
## [1] "Proportions"
##
##
                         2
## 0.827777778 0.141666667 0.005555556 0.025000000
  # Combined Statistics (Example: Average Fare Amount by Hour of Day)
  if ("fare_amount" %in% names(df) & "pickup_hour" %in% names(df)){
    print("Average Fare Amount by Hour of Day:")
    print(aggregate(fare_amount ~ pickup_hour, data = df, FUN = mean,
na.rm=TRUE))
  }
## [1] "Average Fare Amount by Hour of Day:"
     pickup_hour fare_amount
##
## 1
                    19.92703
  #Checking for missing values
  print("Missing Values per column")
## [1] "Missing Values per column"
```

```
print(colSums(is.na(df)))
##
                                                               VendorID
             pickup_date
                                     pickup_hour
##
##
    tpep_pickup_datetime tpep_dropoff_datetime
                                                        passenger_count
##
##
           trip_distance
                                      RatecodeID
                                                     store_and_fwd_flag
##
##
            PULocationID
                                    DOLocationID
                                                           payment_type
##
                        0
                                               0
                                                                       0
##
             fare amount
                                           extra
                                                                mta tax
##
                        0
                                               a
                                                                       0
##
                                    tolls_amount improvement_surcharge
              tip_amount
##
##
            total_amount
                           congestion_surcharge
                                                            Airport_fee
##
  #Data Type of each column
  print("Data Type of each column")
## [1] "Data Type of each column"
  print(sapply(df, class))
## $pickup_date
## [1] "Date"
##
## $pickup_hour
## [1] "integer"
##
## $VendorID
## [1] "integer"
##
## $tpep_pickup_datetime
## [1] "POSIXct" "POSIXt"
##
## $tpep_dropoff_datetime
## [1] "character"
##
## $passenger_count
## [1] "integer"
##
## $trip_distance
## [1] "numeric"
##
## $RatecodeID
## [1] "integer"
##
## $store and fwd flag
## [1] "character"
##
```

```
## $PULocationID
## [1] "integer"
##
## $DOLocationID
## [1] "integer"
##
## $payment_type
## [1] "integer"
## $fare_amount
## [1] "numeric"
##
## $extra
## [1] "numeric"
##
## $mta_tax
## [1] "numeric"
##
## $tip_amount
## [1] "numeric"
##
## $tolls_amount
## [1] "numeric"
##
## $improvement_surcharge
## [1] "integer"
##
## $total_amount
## [1] "numeric"
##
## $congestion_surcharge
## [1] "numeric"
##
## $Airport_fee
## [1] "numeric"
  # Number of rows and columns
  print(paste("Number of rows:", nrow(df)))
## [1] "Number of rows: 720"
  print(paste("Number of columns:", ncol(df)))
## [1] "Number of columns: 21"
########
  # Extract date and hour
  df <- df %>%
    mutate(
     pickup_date = as.Date(tpep_pickup_datetime),
```

```
pickup_hour = hour(tpep_pickup_datetime),
    day_of_week = wday(tpep_pickup_datetime, label = TRUE) #Add day of week
)

# --- Data Visualization ---
print("Data Visualizations:")

## [1] "Data Visualizations:"

# 1. Histogram of Trip Distance
hist(df$trip_distance, main = "Histogram of Trip Distance", xlab = "Trip
Distance", na.rm=TRUE, col = rainbow(30)) # Rainbow color palette

## Warning in plot.window(xlim, ylim, "", ...): "na.rm" is not a graphical
## parameter

## Warning in title(main = main, sub = sub, xlab = xlab, ylab = ylab, ...):
## "na.rm" is not a graphical parameter

## Warning in axis(1, ...): "na.rm" is not a graphical parameter

## Warning in axis(2, at = yt, ...): "na.rm" is not a graphical parameter
```

Histogram of Trip Distance

2. Boxplot of Fare Amount by Hour of Day
boxplot(fare_amount ~ pickup_hour, data = df, main = "Fare Amount by Hour",
xlab = "Hour", ylab = "Fare Amount", na.rm=TRUE, col = rainbow(24)) # Rainbow
color palette for each hour

Fare Amount by Hour

Hour

```
# 3. Scatterplot of Trip Distance vs. Fare Amount with color by payment
type
plot(df$trip_distance, df$fare_amount, main = "Distance vs. Fare", xlab =
"Distance", ylab = "Fare", na.rm=TRUE, col = factor(df$payment_type)) # Color
by payment type

## Warning in plot.window(...): "na.rm" is not a graphical parameter

## Warning in plot.xy(xy, type, ...): "na.rm" is not a graphical parameter

## Warning in axis(side = side, at = at, labels = labels, ...): "na.rm" is
not a

## graphical parameter

## Warning in axis(side = side, at = at, labels = labels, ...): "na.rm" is
not a

## graphical parameter

## Warning in box(...): "na.rm" is not a graphical parameter

## Warning in title(...): "na.rm" is not a graphical parameter
```

Distance vs. Fare

4. Bar Chart of Vendor ID
barplot(table(df\$VendorID), main = "Vendor Frequencies", xlab = "Vendor",
ylab = "Frequency", col = rainbow(nlevels(factor(df\$VendorID)))) # Rainbow
color palette for each vendor

Vendor Frequencies

6. Bar chart of payment type
barplot(table(df\$payment_type), main = "Payment Type Frequencies", xlab =
"Payment Type", ylab = "Frequency", col =
rainbow(nlevels(factor(df\$payment_type)))) # Rainbow color palette for each
payment type

Payment Type Frequencies

7. Boxplot of trip distance by day of the week
boxplot(trip_distance ~ day_of_week, data = df, main = "Trip Distance by Day
of Week", xlab = "Day of Week", ylab = "Trip Distance", na.rm=TRUE, col =
rainbow(7)) # Rainbow color palette for each day of the week

Trip Distance by Day of Week


```
# 8. Scatterplot matrix for numerical variables (if more than 2)
   numerical_cols <- c("trip_distance", "fare_amount", "total_amount",
"passenger_count")
   numerical_data <- df[, numerical_cols[numerical_cols %in% names(df)]] #
Select only available numerical cols
   if (ncol(numerical_data) >= 2) {
      pairs(numerical_data, main = "Scatterplot Matrix of Numerical Variables",
   col = "lightblue") # Single color for scatterplot matrix
   }
```

Scatterplot Matrix of Numerical Variables

Trip Distance vs. Fare Amount (Colored by Vendor)

Tip Amount by Day of Week

Total Amount (including taxes) by Hour of Day

Total Amount (including taxes) by Day of Week

Average Tip Amount by Hour and Day of Week

Average Total Amount by Hour and Day of Week

