# Presentation of new R functions for forecast verification

Stefan Siegert, (s.siegert@exeter.ac.uk)

please go to https://github.com/sieste/ic3-workshop and download all files into a new directory

# This workshop

- https://github.com/sieste/ic3-workshop
- ▶ hands-on session
- presentation of some new R functions
- interpretation of the output

# Overview of available verification packages in R

- verification
  - developed at NCAR
  - ▶ methods: Brier, CRPS, ROC, reliability diagram, rank histogram
- ▶ s2dverification
  - currently developed at IC3
  - methods: ACC, RMSSS, plotting!

#### New contributions

- ensemble verification
- uncertainty estimates
- comparative verification
- ▶ ... work in progress

```
source("R/toydata.r")

## Loading required package: boot

source("R/rankhist.r")
source("R/rel-diag.r")
source("R/ensemble-scores.r")
```

#### Gaussian toy data

- ▶ Gaussian ensemble data with mean mu.ens and stdev sd.ens
- ▶ Gaussian verification with mean mu.ver and stdev sd.ver
- number of samples N
- number of ensemble members K

#### Gaussian toy data



#### Rank histogram

- $ightharpoonup r_i$ : rank of the verification in the ordered ensemble
- e.g. ver=1.5, ens= $\{1,2,3\}$ : rank = 2
- histogram over the observed ranks

```
source("R/rankhist.r")
rh <- with(toydata, rankhist(ens, ver))
PlotRankhist(rh, mode="raw")</pre>
```



## Rank histogram on probability paper

- ▶  $H_0$ : the individual rank counts are  $\sim Binomial(N, \frac{1}{K+1})$
- ightharpoonup plot the cumulative likelihood of the observed rank counts under  $H_0$

PlotRankhist(rh, mode="prob.paper")



## Rank histogram significance tests

- ▶ Pearson  $\chi^2$ -test
- ▶ Jolliffe-Primo  $\chi^2$ -decomposition

```
rh.tests <- rankhist.tests(rh)
print(rh.tests)</pre>
```

```
## pearson.chi2 jp.slope jp.convex
## test.statistic 11.3200 1.0890 0.7601
## p.value 0.3331 0.2967 0.3833
```

# Fair Brier Score for binary ensemble forecasts

▶ j ... verification, 1 = yes, 0 = no▶ i ... number of ensemble members that predict the event
▶  $Br(i,j) = (j-\frac{i}{K})^2 - \frac{i(K-i)}{K^2(K-1)}$ source("R/ensemble-scores.r")

tau <-1 # exceedance threshold
with(toydata, mean(fairbrier(ens, ver, tau)))

## [1] 0.1024

# Fair continuously ranked probability score for ensemble forecasts

- ▶ fair Brier Score integrated over all possible thresholds
- $crps(e, y) = \langle |y e_i| \rangle \frac{1}{2K(K-1)} \langle |e_i e_j| \rangle$

```
source("R/ensemble-scores.r")
fcrps <- with(toydata, faircrps(ens, ver))
mean(fcrps)</pre>
```

# "Unfair" reliability diagram

```
N <- 1000
mu <- runif(N)
toydata <- GenerateToyData(N=N, mu.ens=mu, mu.ver=mu)
tau <- .5
i <- with(toydata, rowSums(ens > tau))
j <- with(toydata, 1 * (ver > tau))
```

# Reliability diagram

```
source("R/rel-diag.r")
rd <- rel.diag(probs=i/K, ver=j, nbins=11, plot=TRUE)</pre>
```



# Reliability diagram

#### print(rd)

```
##
      p.avgs cond.probs cbar.lo cbar.hi
## 1
         0.0
                  0.4000
                          0.0000
                                  0.0000
                  0.4444
                         0.0000
                                  0.2727
## 2
         0.1
## 3
         0.2
                  0.4267
                                  0.2973
                         0.1147
## 4
         0.3
                  0.3217
                         0.2188
                                   0.3922
## 5
         0.4
                  0.4494
                         0.3332
                                  0.4727
##
         0.5
                  0.4946
                         0.4350
                                  0.5741
## 7
         0.6
                  0.5543
                          0.5247
                                   0.6706
## 8
         0.7
                  0.6412
                          0.6229
                                   0.7778
##
   9
         0.8
                  0.5570
                          0.7059
                                   0.8816
## 10
         0.9
                  0.6538
                          0.7692
                                   1.0000
## 11
         1.0
                  0.8000
                          1.0000
                                   1.0000
```

#### Fair reliability diagram

frd <- fair.rel.diag(i=i, j=j, K=K, plot=TRUE, plot.refin=TRUE)</pre>



### Fair reliability diagram

#### print(frd)

```
cond.probs HO.line cbar.lo cbar.hi
##
##
   1
              0.4000
                      0.3271
                              0.0000
                                       1.0000
                      0.3627
                              0.1818
##
              0.4444
                                       0.5557
##
   3
              0.4267
                      0.3984
                                       0.5161
                              0.2833
##
              0.3217
                      0.4340
                                       0.5136
                              0.3486
##
              0.4494
                      0.4696
                              0.3986
                                       0.5360
##
              0.4946
                      0.5053
                              0.4391
                                       0.5773
##
  7
              0.5543
                      0.5409
                              0.4702
                                       0.6183
##
   8
              0.6412
                      0.5765
                              0.4917
                                       0.6593
##
   9
       8
              0.5570
                      0.6122
                              0.4921
                                       0.7273
##
   10
              0.6538
                      0.6478
                              0.4800
                                       0.8214
##
   11
      10
              0.8000
                      0.6834
                               0.2000
                                       1.0000
```

# Comparative ensemble verification

- ▶ We want to address the question: Is the forecast ens better than a reference forecast ens.ref at predicting the same verification ver?
- Our hindcast dataset now has 3 members

### Comparison of two imperfect ensemble forecasts

- ens and ver as before
- additionally: ens.ref, a benchmark ensemble, to which the performance of ens is compared

Good statistical tests should find that both ensembles are unreliable (biased), and that ens is more reliable than ens.ref.

### Rank histogram analysis of ens.ref

```
rh.ref <- with(toydata2, rankhist(ens.ref, ver))
PlotRankhist(rh.ref, mode="prob.paper")</pre>
```



## Rank histogram analysis of ens.ref

## Rank histogram analysis of ens

```
rh <- with(toydata2, rankhist(ens, ver))
PlotRankhist(rh, mode="prob.paper")</pre>
```



### Rank histogram analysis of ens

```
rh.tests <- rankhist.tests(rh)
print(rh.tests)

## pearson.chi2 jp.slope jp.convex
## test.statistic 13.9600 3.84400 0.2051
## p.value 0.1748 0.04992 0.6506</pre>
```

# Comparison of rank histograms: AnalyzeRankhistDifference

rh.comp is a matrix that summarizes the rank histogram comparison:

```
print(t(as.matrix(rh.comp)))
```

```
##
            pearson.chi2 jp.slope jp.convex
## score.diff
                 19.580 13.580 6.343
## p.value
                  0.060 0.010
                                   0.150
## Q0.01
                -38.150 -1.894 -15.417
## Q0.05
                -15.191 -1.055 -5.049
## Q0.1
                 -3.388 3.681 -1.023
## Q0.9
                 59.906 22.357 31.172
## Q0.95
                 81.686 24.675 39.391
## Q0.99
                116.853 31.923
                                  52.397
```

# Similar for the specific scores for slope and convexity:

p-values:

▶ bootstrap quantiles:

# Comparison of fair Brier Scores

# Analysis of fair Brier score difference

```
fbr.comp <- with(toydata3,
  AnalyzeFairBrierDifference(ens, ens.ref, ver,
                              tau=.5, n.boot=100))
print(as.matrix(fbr.comp))
                        [,1]
##
## fair.brier.diff
                    0.01956
## p.value
                    0.20000
                   -0.03849
## Q0.01
## Q0.05
                   -0.02274
                   -0.01193
## Q0.1
                    0.05360
## Q0.9
                    0.05712
## Q0.95
## Q0.99
                    0.06434
```

#### Comparison of fair crps

```
fcrps.comp <- with(toydata3,</pre>
  AnalyzeFairCrpsDifference(ens=ens, ens.ref=ens.ref,
                             ver=ver, n.boot=100))
print(as.matrix(fcrps.comp))
                      [,1]
##
   fair.crps.diff 0.12023
## p.value
                  0.00000
## Q0.01
                  0.04691
## Q0.05
                  0.05940
                  0.06810
## Q0.1
## Q0.9
                  0.18077
                  0.19096
## Q0.95
## Q0.99
                   0.20236
```

#### Some actual data

- tropical sea surface temperature data
- ▶ 51 years
- ▶ 10 lead times (10 years)
- ▶ 8 different ensembles
- ▶ up to 10 members each

```
load("R/SST-raw.Rdata")
print(dim(SST.trop))

## [1] 51 10 8 10
print(dim(SST.trop.obs))

## [1] 51 10
```

#### Some actual data

the available models

# A specific analysis

set parameters

```
lead <- 7
model <- "hadcm3_ff"
model.ref <- "hadcm3_an"
dates <- 1:40
members <- 1:10
members.ref <- 1:10</pre>
```

▶ get data:

```
ens <- SST.trop[dates, lead, model, members]
ens.ref <- SST.trop[dates, lead, model.ref, members.ref]
ver <- SST.trop.obs[dates, lead]</pre>
```

### Rank histogram of ens.ref

```
rh.ref <- rankhist(ens.ref,ver)
PlotRankhist(rh.ref, mode="prob.paper")</pre>
```



# Rank histogram of ens.ref

```
rankhist.tests(rh.ref)
```

```
## pearson.chi2 jp.slope jp.convex
## test.statistic 13.3500 1.122e+01 0.002885
## p.value 0.2048 8.081e-04 0.957167
```

## Rank histogram of ens

```
rh <- rankhist(ens,ver)
PlotRankhist(rh, mode="prob.paper")</pre>
```



### Rank histogram of ens

```
rankhist.tests(rh)
```

```
## pearson.chi2 jp.slope jp.convex
## test.statistic 13.3500 0.0625 3.9490
## p.value 0.2048 0.8026 0.0469
```

#### Rank histogram comparison

```
rh.comp <- AnalyzeRankhistDifference(ens, ens.ref,
                                  ver, n.boot=100)
print(t(as.matrix(rh.comp)))
##
            pearson.chi2 jp.slope jp.convex
## score.diff
                   0.000 11.1600 -3.946
                   0.490 0.0000
                                     0.840
## p.value
## Q0.01
                 -26.554 -0.6922 -13.215
## Q0.05
                 -18.727 0.8324 -6.823
## Q0.1
                 -6.655 3.6180 -4.015
## Q0.9
                28.655 18.4220 4.903
                  32.532 20.4600 7.525
## Q0.95
## Q0.99
                  50.072 26.1248 14.706
```

#### Brier Score comparison

```
br.comp <- AnalyzeFairBrierDifference(ens, ens.ref, ver,</pre>
                                        tau=mean(ver),
                                        n.boot=100)
print(as.matrix(br.comp))
                          [,1]
##
## fair.brier.diff -3.383e-18
## p.value
                  5.100e-01
## Q0.01
                    -8.678e-02
## Q0.05
                    -6.133e-02
                    -4.478e-02
## Q0.1
                    4.006e-02
## Q0.9
                     5.353e-02
## Q0.95
## Q0.99
                     6.488e-02
```

# Crps comparison

```
crps.comp <- AnalyzeFairCrpsDifference(ens, ens.ref,</pre>
                                       ver, n.boot=100)
print(as.matrix(crps.comp))
##
                      [,1]
## fair.crps.diff 0.013999
## p.value
               0.010000
                0.002906
## Q0.01
## Q0.05
               0.005512
## Q0.1
               0.006312
## Q0.9
                0.020968
## Q0.95
                0.023224
## Q0.99
                 0.026772
```