CS & IT ENGINERING Data Structures

Tree

Lecture No.- 04

Recap of Previous Lecture

Topic Tree Part-03

Topics to be Covered

Topic

Tree Part-04

BST

Topic: Tree

BST

Given a key & a binary tree, find
Whether the key is foresent in the
traverse Traverse

BST

A binary search tree is a binary
tree in which every mode sotisfier
the following properly:

All the flegs in the left subtone of a mode are smaller than the fleg in the node.

All the Reys in the right subtree of a node are greater than the key in the node.

Bingry tree

BST

(iii) Insert 30

10 < 30 < 30 < 30

No. of BST, when the insertion order of Reys 1s fixed -> 1

Const.

G) BS7 by inserting Reys 10,20,30 -> 1

b) Const. BST by inserting Reys 10,5,7,9,3,4 -> 1

Const. BST by inserting Reys 1,2,3? (in any order) 5 BSTs order could be 0) 1,2,3 b) 1,3, 2 C) 2, 1, 3

#BSTs with n Rays = $\frac{2n}{n+1}$

n=3 Structure => 20co = 5 Rey57/12/3 21 23 25 4000 to fill 1,2,3 so that this structure Will become 9 Bs1

3<4<x

Griven a n-node Unlabelled structure

also on- distinct beys one given.

ways to fill the structure So that we get BST

Keys 10,20,30,40

9 #BSTs with n Reys > (Structure with) x 1
n nodes

= 2800

The inorder traversal of a BST is always increasing order of Reys.

In: 60,80,85,90,93,95,98,100,105,110,115

Pre: 100,90,70,95,110,105,115

Pre: Given In: 70, 90, 95, 100, 105, 110, 115 A Unique BST Given the Breorder of some (BST) Pre: 100,90,70,95,110,105,115 then the fostorder traversal of the BST is: 0) का गरा

Precorder Dunique tree

Search in a BST

comp = 4

= (k+1)= O(k) 70 < (100) 70 < (100) 85 95 105 120 105

Search in a BST

Key=70

Spewed binary tree

Insertion in a BST A 9 Search insert: 98 8 b) Insert 100 90 right of 95 (110) (105) (80) 95 (120) Complex ity

Deletion from BST

- a) Delete a node with 0-child (leaf node)
- b) Delete a node with 1-child
- I Deletea node with 2-child

Deletion of leaf node

delete 70

Node to be Deleted

- (of node to be delated), which is fointing to deleted node
- 3 Set this parent fainter to NULL.

Deletion of node with exactly 1-child

Deletion of node with exactly 1-child

Deletion of node with exactly 1-child

Deletion of node with 2-childs

Deletion of node with 2-childs

cose1

Cose 2: a smallest Rey Romaining Roys are greater than a Node with min value can have 0 or 1 child (No child or Right child)

if this is 8 min left > NVII

Node with man value can have o or I child

may be NULL may be NULL MULL

deletion of node with 2-child

Converted into deletion of mode with 0/1 Chibl

BST

THANK - YOU