Nature of Invention: Chemical molecule and synthesis route

Applicant: QuantiVEX

Inventors: Shubham Singh, Pulkit

Chemical Formula: (R-C₆H₄-SO₃Na)

Chemical Name: Linear alkyl benzene sulphonate

Chemical synthesis routes:

a. Sulfonation of linear alkyl benzene

Raw materials

- 1.Linear alkyl benzene(R-C₆H₄)
- 2.SO₃ (sulphonating agent)
- 3. Hydrogen peroxide (a protic reagent and oxidising agent)
- 4. A Neutralizing agent

Sulfonation:

Reaction:

linear alkyl benzene + So₃(sulfonating agent) → linear alkyl benzene sulfonic acid

Mechanism:

Sulfonation of linear alkyl benzene (LAB) is an **electrophilic aromatic substitution (EAS)** reaction. The sulfonating agent, sulfur trioxide (SO_3), acts as an electrophile and attaches to the benzene ring of LAB.

1. Activation of Sulfur Trioxide (SO₃):

- a. SO₃ is a strong electrophile and reacts with benzene directly.
- b. It forms a highly reactive intermediate due to the resonance stabilization of the benzene ring.

2. Formation of the Arenium Ion (σ -complex):

- a. The benzene ring donates electrons to SO₃, forming an unstable carbocation (arenium ion).
- b. This intermediate is stabilized via resonance.

3. Proton Transfer and Formation of the Product:

- a. A base (often water or trace H₂SO₄) removes a proton from the arenium ion.
- b. This restores aromaticity, leading to the formation of **linear alkyl benzene** sulfonic acid.

Reaction Conditions:

- **Temperature:** 0 90°C (typically controlled to prevent over-sulfonation)
- **Solvent:** Can be carried out in a gas phase or liquid phase; sulfuric acid may be used as a solvent.

• Reaction Type: Highly exothermic, requiring efficient cooling.

Sulfonation Process: Detailed Mechanism and Kinetics

The sulfonation of Linear Alkyl Benzene (LAB) follows first-order kinetics, with the reaction rate expressed as:

$$r = k[LAB][H_2SO_4]^2[H_2O]^{-1}$$

where excess sulfuric acid increases reaction speed, but excess water formation slows it down. The activation energy for the reaction is **18.75 kcal/mol**, as determined from Arrhenius modeling.

To ensure complete conversion (>98%), the molar ratio of LAB:H₂SO₄ should be maintained at 1:5. The semi-batch reactor configuration with controlled acid addition helps manage exothermic heat release. A cooling jacket is required to maintain optimal reaction temperature (60°C).

Bleaching:

Reaction:

linear alkyl benzene sulfonic acid + hydrogen peroxide →linear alkyl benzene sulfonic acid

(Dark coloured) (Light coloured)

Mechanism:

1. Oxidation of Impurities:

- a. Impurities (e.g., polymeric species, oxidized byproducts) contain **conjugated double bonds**, leading to colour.
- b. H₂O₂ oxidizes these compounds, breaking their extended conjugation and rendering them colourless.

2. Radical Formation:

- a. Under suitable conditions, H_2O_2 decomposes to form hydroxyl radicals ($\cdot OH$).
- b. These radicals oxidize organic impurities to CO₂ and water.

Reaction Conditions:

- Temperature: 0 50°C
 - o Higher temperatures accelerate oxidation but may degrade the product.
- Catalyst: Sometimes metal catalysts (e.g., sodium tungstate) are used to enhance bleaching efficiency.
- Solvent: The reaction is typically carried out in an aqueous medium.

Neutralization:

Reaction:

Linear alkyl benzene sulfonic acid → linear alkyl benzene sulfonate (Neutralizing agent)

_Mechanism:

- 1. Acid-Base Reaction:
 - a. The sulfonic acid (-SO₃H) group reacts with a base, donating a proton (H⁺).
 - b. This forms the corresponding sulfonate salt (-SO₃ Na⁺).
- 2. Salt Formation and Stabilization:
 - a. The product (linear alkyl benzene sulfonate, or **LAS**) is **water-soluble** and **stable**.
 - b. This reaction prevents further oxidation and degradation.

Reaction Conditions:

- **Temperature:** Room temperature to 50°C
- pH control: The final solution must be mildly alkaline (pH ~7-8) to ensure complete neutralization.
- Agitation: Stirring is essential to ensure uniform mixing.

Purity Testing and Final Product Evaluation

After synthesis, the quality of LAS is determined using:

- 1. **FTIR/NMR spectroscopy**: Confirms sulfonate (-SO₃⁻) formation.
- 2. Titration of residual acid: Ensures neutralization is complete.
- 3. **High-Performance Liquid Chromatography (HPLC)**: Detects byproducts to maintain commercial-grade purity.

Scaling Up: Industrial Considerations

For large-scale production, Falling Film Reactors (FFR) are used to improve reaction efficiency and heat management. The final product is spray-dried to produce LAS in powdered form, making it ideal for detergent formulations.

References:

- 1) https://patents.google.com/patent/US2827484A/en
- 2)https://pmc.ncbi.nlm.nih.gov/articles/PMC8867685/
- 3) https://hithaldia.in/eccn/vol6 1a/J5 6.pdf
- $4) \underline{https://patentimages.storage.googleapis.com/1b/67/78/712514f5f0fc50/WO1997014676A1.} \underline{pdf}$

Contributors:

Name	Roll No	Signature
CEO Name	Nithin TM	Nitherful
First author Name	Shubham Singh	Shubham
Second author Name	Pulkit	- Jahrt