A A7009

Total Pages: 2

Reg No.:	Name:
----------	-------

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

FIFTH SEMESTER B.TECH DEGREE EXAMINATION, DECEMBER 2017

Course Code: CS301

Course Name: THEORY OF COMPUTATION (CS)

Max. Marks: 100 **Duration: 3 Hours**

PART A					
Answer all questions, each carries 3 marks.					
1	Define Non Deterministic Finite Automata? Compare its ability with	(3)			
	Deterministic Finite Automata in accepting languages.				
2	Write the notations for the language accepted by DFA, NFA, ϵ -NFA	(3)			
3	Can we use finite state automata to evaluate 1's complement of a binary number?	(3)			
	Design a machine to perform the same.				
4	Define Two-way finite automata	(3)			
	PART B				

Answer any two full questions, each carries 9 marks.

- 5 a) Design a Finite state automata which accepts all strings over {0,1} with odd (5) number of 1's and even number of 0's.
 - b) Show the changes needed to convert the above designed automata to accept even (4) number of 1's and odd number of 0's
- Construct Regular grammar for the regular expression: 6 (5) L = (a + b)*(aa + bb)(a + b)*
 - b) List the closure properties of Regular sets.

7

State Myhill-Nerode theorem. Minimize the following DFA by table filling (9) method using Myhill-Nerode theorem describing the steps in detail.

PART C

Answer all questions, each carries 3 marks.

8 Which Normal Form representation of CFG will you prefer in converting CFG to (3) NPDA? Why?

(4)

A		A7009	
9		What do you mean by useless symbol in a grammar? Show the elimination of useless symbols with an example.	(3)
10		Explain the different methods by which a PDA accepts a language.	(3)
11		Can we construct a Deterministic PDA for the language ww ^R ?Justify your	(3)
11		answer. Otherwise how can we modify this language to make it accepted by	(3)
		DPDA.	
		PART D	
		Answer any two full questions, each carries 9 marks.	
12		Define CFG for the following languages over the alphabets {a,b}	(9)
12		i. $L = \{a^{m+n}b^mc^nn,m>0\}$	(2)
		ii. L contains all odd length strings only	
		iii. $L = \{ 0^n 1^n 2^n n > 0 \}$	
13		Design a Push Down Automata for the language $L = \{a^nb^{2n} \mid n > 0\}$	(9)
13		Trace your PDA with n=3.	(2)
14		Prove that the following languages are not regular	(9)
•		i. $L = \{0^{i^2} \text{ such that } i \ge 1\}$ is not regular	(2)
		ii. $L = \{a^p \text{ such that } p \text{ is a prime } n \text{ umber}\}$	
		$E = \{u^{\epsilon} \text{ such that } p \text{ is a prime it amber} \}$ $PART E$	
		Answer any four full questions, each carries 10 marks.	
15		State and prove pumping lemma for Context Free Languages.	(10)
16		Construct a Turing machine that recognizes the language $L = \{ a^n b^n c^n n > 0 \}$	(10)
17	a)	What is a Context sensitive grammar(CSG). Design a CSG to accept the	(6)
1 /	u)	language $L = \{0^n 1^n 2^n n > 0\}$	(0)
	b)	Define Linear Bound Automata	(4)
18	a)	Write a note on Recursive Enumerable Languages	(5)
	b)	Discuss about Universal Turing Machines	(5)
19	a)	Explain Chomsky's Hierarchy of Languages	(6)
	b)	Let $L = \{x/x \in (a+b+c)^* \text{ and } x _a = x _b = x _c \}$. What class of language	(4)
		does Lbelong? Why? What modification will you suggest in the grammar to	` '
		accept this language?	
20		Discuss the Undecidable Problems About Turing Machines	(10)

CAREERYUGA