WORKS OF PROF. M. A. HOWE

PUBLISHED BY

JOHN WILEY & SONS, Inc.

Foundations.

A short Text-book on Ordinary Foundations, including a brief Description of the Methods Used for Difficult Foundations. 8vo, vii +110 pages. 56 figures. Cloth, \$1.25 net.

Influence Diagrams for the Determination of Maximum Moments in Trusses and Beams

8vo, vii +65 pages, 42 figures. Cloth, \$1.25 net.

The Design of Simple Roof-trusses in Wood and Steel.

With an Introduction to the Elements of Graphic Statics. Third edition, revised and enlarged. 8vo, vi +173 pages, 124 figures and 3 folding plates. Cloth, \$1.80 net.

Retaining-walls for Earth.

Including the theory of Earth-pressure as Developed from the Ellipse of Stress. With a Short Treatise on Foundations. Illustrated with Examples from Practice. Sixth edition, revised and enlarged. 12mo, xv+194 pages, 110 figures. Cloth, \$1.25 net.

A Treatise on Arches.

Designed for the use of Engineers and Students in Technical Schools. Second edition, revised and enlarged. 8vo, xxv+369 pages, 74 figures. Cloth, \$4.00 net.

Symmetrical Masonry Arches.

Including Natural Stone, Plain concrete and Reinforced concrete arches, for the use of Technical Schools, Engineers and Computers in Designing Arches according to the Elastic Theory. Second edition, revised and enlarged. Svo, xxiv+245 pages. Profusely illustrated with figures in the text and folding plates. Cloth \$2.50 pat

THE DESIGN OF SIMPLE ROOF-TRUSSES IN WOOD AND STEEL.

WITH AN INTRODUCTION TO THE ELEMENTS OF GRAPHIC STATICS.

MALVERD A. HOWE, C.E.,

Professor of Civil Engineering, Rose Polytechnic Institute; Member of American Society of Civil Engineers.

THIRD EDITION, REVISED AND ENLARGED. FIRST THOUSAND.

NEW YORK JOHN WILEY & SONS, INC. LONDON: CHAPMAN & HALL, LIMITED 1915

624.9 H84d3

Copyright: 1902, 1912, BY MALVERD A. HOWE.

THE SCIENTIFIC PRESS
ROBERT DRUMMOND AND COMPANY
BROOKLYN, N. Y.

PREFACE TO FIRST EDITION.

VERY little, if anything, new will be found in the following pages. The object in writing them has been to bring together in a small compass all the essentials required in properly designing ordinary roof-trusses in wood and steel.

At present this matter is widely scattered in the various comprehensive treatises on designing and in manufacturers' pocket-books. The student who desires to master the elements of designing simple structures is thus compelled to procure and refer to several more or less expensive books.

Students in mechanical and electrical engineering, as a rule, learn but little of the methods of designing employed by students in civil engineering. For this reason the writer has been called upon for several years to give a short course in roof-truss design to all students in the Junior class of the Rose Polytechnic Institute, and in order to do so he has been compelled to collect the data he has given in this book.

The tables giving the properties of standard shapes are based upon sections rolled by the Cambria Steel Company. Standard sections rolled by other manufacturers have practically the same dimensions.

MALVERD A. HOWE.

TERRE HAUTE, IND., September, 1902.

iii

THE HUNT LIBRARY CARNEGIE INSTITUTE OF TECHNOLOGY

SEP 1 - '65

PREFACE TO THE THIRD EDITION.

The design of details in wood has been revised, using the standard or actual sizes of lumber instead of the nominal sizes. The unit stresses for wood as given in Table XVI have been used without increasing them, although some designers use from thirty to fifty per cent larger values. If selected lumber were always obtainable, the larger values could be safely employed. Considerable new matter will be found in the body of the text and in the Appendix.

The author is indebted to Prof. H. A. Thomas for a careful reading of the text.

M. A. H.

TERRE HAUTE, IND., August, 1912.

iv

viii CONTENTS.	
ART.	PAGE
82. Design of Joint L ₀	
$U_1, \dots, U_{1}, \dots, U_{1},$	101
Ot. Li2	101
00.	102
86. Splices	102
87. End Supports	102
88. Expansion	103
20. Drawings	103
90. Drawings 91. Connections for Angles	103
92. Purlins	104
93. End Cuts of Angles—Shape of Gusset Plates	104
oo. End Outs of Angles—Shape of Gusset Frates	107
TABLES.	
I. Weights of Various Substances	109
II. Roof Coverings—Weights of	111
III. Rivets—Standard Spacing and Sizes	115
IV. Rivets—Areas to be Deducted for	117
V. Round-headed Rivets and Bolts—Weights	118
VI. Bolt Heads and Nuts—Weights and Dimensions	119
VII. Upset Screw Ends for Round Bars—Dimensions	120
VIII. Right and Left Nuts—Dimensions and Weights	121
IX. Properties of Standard I Beams	122
X. Properties of Standard Channels	124
XI. Properties of Standard Angles with Equal Legs	126
XII. Properties of Standard Angles with Unequal Legs	128
XIII. Least Radii of Gyration for Two Angles Back to Back	134
XIV. Properties of T Bars	135
XV. Standard Sizes of Yellow Pine Lumber and Corresponding Areas	
and Section Moduli	137
XVI. Average Safe Allowable Working Unit Stresses for Wood	139
XVII. Cast-iron Washers—Weights of	140
XVIII. Safe Shearing and Tensile Strength of Bolts	141
APPENDIX.	
ART. 1. Langth of Kayra Spacing of Natahas and Spacing of Delta	140
1. Length of Keys, Spacing of Notches and Spacing of Bolts	145
B. A Graphical Solution of the Knee-brace Problem	140
4. Trusses which may have Inclined Reactions	148
Tests of Toints in Wooden Trassec	151
5. Tests of Joints in Wooden Trusses	155
7. Abstracts from General Specifications for Steel Roofs and Buildings	
There are the control of the cont	103

CONTENTS.

CHAPTER V

DESIGN OF A WOODEN ROOF-TRUSS.	
ART.	PAGE
47. Data	51
48. Allowable Unit Stresses	52
49. Rafters	52
50. Purlins	53
51. Loads at Truss Apexes	54
52. Stresses in Truss Members	55
53. Sizes of Compression Members of Wood	57
54. Sizes of Tension Members of Wood	59
55. Sizes of Steel Tension Members	60
56. Design of Joint L_0 with $1\frac{1}{8}$ Bolts	61
56a. " " Bolts and Metal Plates	
57. " " " Nearly all Wood	
58. " " Steel Stirrup	
59. " " " " and Pin	
60. " " " Plate Stirrup and Pin	\dots 72
61. " " Steel Angle Block	
62. " " " Cast-iron Angle Block	
63. " " " Special	
64. " " " Plank Members	76
65. " " Soft Steel Plates and Bolts	
66. Design of Wall Bearing	77
67. Design of Joint U_2	
68. $U_1 \cup U_2 \cup U_3 \cup U_4 \cup U_5 \cup U_6 \cup U_6 \cup U_6 \cup U_7 \cup $	
69. " " L_2	82
70. " " L_3 and Hook Splice	
71. " " L ₃ , Fish-plate Splice of Wood	86
72. " " L ₃ , Fish-plate of Metal	88
73. Metal Splices for Tension Members of Wood	90
74. General Remarks Concerning Splice	90
75. Design of Joint U_3	91
76. The Attachment of Purlins	91
77. The Complete Design	92
•	
CHAPTER IV.	
DESIGN OF A STEEL ROOF-TRUSS.	
	0.0
78. Data	
79. Allowable Stresses per Square Inch	96
80. Sizes of Compression Members	
81. "Tension Members	99

GRAPHICS.

CHAPTER I.

GENERAL PRINCIPLES AND METHODS.

I. Equilibrium.—Forces acting upon a rigid body are in equilibrium when the body has neither motion of translation nor rotation.

For forces which lie in the same plane the above conditions may be stated as follows:

- (a) There will be no motion of translation when the algebraic sums of the components of the forces resolved parallel to any two coordinate axes are zero. For convenience the axes are usually taken vertical and horizontal, then the vertical components equal zero and the horizontal components equal zero.
- (b) There will be no motion of rotation when the algebraic sum of the moments of the forces about any center of moments is zero.
- 2. The Force Polygon.—Let AB, BC, CD, and DA, Fig. 1, be any number of forces in equilibrium. If these forces are laid off to a common scale in succession, parallel to the directions in Fig. 1, a closed figure will be formed as shown in Fig. 1a. This must be true if the algebraic sums of the vertical and horizontal components respectively equal zero and there is no motion of translation. Such a figure is called a force polygon.

Conversely, if any number of forces are laid off as explained above and a closed figure is formed, the forces are

in equilibrium as far as motion of translation is concerned. Motion of rotation may exist, however, when the above condition obtains.

3. Forces Not in Equilibrium.—In case a number of

Fig. 2a. Fig. 2b.

forces, not in equilibrium, are known in direction and magnitude, the principle of the force polygon (Art. 2) makes it possible to at once determine the magnitude and direction of the force necessary to produce equilibrium.

Let AB, BC,..., DE be forces not in equilibrium, Fig. 2. According to Art. 2, lay them off on some convenient scale, as shown in Fig. 2a. Now in order that the sum of the verti-

cal components shall equal zero a force must be introduced

having a vertical component equal to the vertical distance between E and A, and in order that the horizontal components may equal zero the horizontal component of this force must equal the horizontal distance between E and A. These conditions are satisfied by the force EA. If this force acts in the direction shown by the arrow-head in Fig. 2a, it will keep the given forces in equilibrium (Art. 2). If it acts in the opposite direction, its effect will be the same as the given forces, and hence when so acting it is called the *resultant*.

Fig. 2b shows the force polygon for the above forces drawn in a different order. The magnitude and direction of R is the same as found in Fig. 2a.

- 4. Perfect Equilibrium.—Let the forces AB, BC, ..., DE, Fig. 2, act upon a rigid body. Evidently the force R, found above (Art. 3), will prevent motion, either vertically or horizontally, wherever it may be applied to the body. This fulfills condition (a) (Art. 1). For perfect equilibrium condition (b) (Art. 1) must also be satisfied. Hence there must be found a point through which R may act so that the algebraic sum of the moments of the forces given and R, may be zero. This point is found by means of the equilibrium polygon.
- 5. The Equilibrium Polygon.—Draw the force polygon (Art. 2) ABCDE, Fig. 3a, and from any convenient point P draw the lines S_1, S_2, \ldots, S_5 . If S_1 and S_2 be measured with the scale of the force polygon, they represent the magnitudes and directions of two forces which would keep AB in equilibrium as far as translation is concerned, for they form a closed figure with AB (Art. 2). Likewise S_2 and S_3 would keep BC in equilibrium, etc. Now in Fig. 3 draw

 S_1 parallel to S_1 in Fig. 3a, S_2 parallel to S_2 in Fig. 3a, etc., as shown. If forces be assumed to act along these lines having the magnitudes shown in Fig. 3a, respectively, the points 1, 2, 3, and 4 will be without motion, since the forces

FIG. 3a.

meeting at each point are in equilibrium against translation by construction, and, since they meet in a point, there can be no rotation.

In Fig. 3a, S_1 and S_5 form a closed figure with R; therefore if, in Fig. 3, S_1 and S_5 be prolonged until they intersect in the point r, this point will be free of all motion under the action of the forces S_1 , S_5 , and R.

Since the points 1, 2, 3, 4, and r in Fig. 3 have neither motion of translation nor rotation, if the forces AB, BC, CD, and DE and the force R be applied to a rigid body in the relative positions shown in Fig. 3, this body will have no

motion under their action. The forces S_1 and S_5 keep the system ABCD in equilibrium and can be replaced by R.

The lines S_1 , S_2 , etc., in Fig. 3a are for convenience called *strings*, and the polygon S_1 , S_2 , S_3 , etc., in Fig. 3 is called the *equilibrium polygon*.

The point P in Fig. 3a is called the pole.

6. Application of the Equilibrium Polygon in Finding Reactions.—Let a rigid body be supported at K and K', Fig. 4, and acted upon by the forces AB, BC, CD, and

DE. Then, if equilibrium exists, it is clear that two forces, one at each support, must keep the forces AB, BC, etc., in equilibrium. These two forces are called *reactions*. For convenience designate the one upon the left as R_1 , and the one upon the right as R_2 . The magnitudes of R_1 and R_2 can be found in the following manner: Construct the force

polygon and draw the strings S_1 , S_2 , etc., as shown in Fig. 4a, and then construct the equilibrium polygon (Art. 5) as shown in Fig. 4. Unless some special condition is introduced the reactions R_1 and R_2 will be parallel to EA, Fig. 4a, and their sum equal the magnitude of EA, or the resultant of the forces AB, BC, CD, DE. Draw through Kand K' lines parallel to R, and, if necessary, prolong the line S_1 until it cuts oK, Fig. 4, and S_5 until it cuts 5K'. Connect o and 5, and in Fig. 4a, draw the string S_0 parallel to 05, Fig. 4, until it cuts EA in L. Now, since S_1 , S_0 , and AL form a closed figure in Fig. 4a, the point o in Fig. 4 will be in equilibrium under the action of these three For a like reason the point 5 will be in equilibrium under the action of the three forces S_0 , S_5 , and EL. Therefore the reaction $R_1 = AL$ and $R_2 = LE$, and the body M will be in equilibrium under the action of the forces AB, BC, CD, DE, R_1 and R_2 .

It may not be perfectly clear that no rotation can take place from the above demonstration, though there can be no translation since $R_1 + R_2 = EA$, the force necessary to prevent translation under the action of the forces AB, BC, CD, and DE.

To prove that rotation cannot take place let the forces AB, BC, etc., be replaced by their resultant R, acting downward, as shown in Fig. 4.

If no rotation takes place (Art. 1),

$$R(bK') = R_1(aK')$$
 or $R_1 = \frac{bK'}{aK'}R$.

From the similar triangles od5, Fig. 4, and PAL, Fig. 4a,

$$d_5:aK'::R_1:H$$
 or $R_1aK'=H(d_5)$.

From the similar triangles cd5, Fig. 4, and PAE, Fig. 4a,

$$d_5: bK' :: R: H$$
 or $R(bK') = H(d_5)$.

$$\therefore$$
 $R_1(aK') = RbK'$ or $R_1 = \frac{bK'}{aK'}R$,

or the value of R_1 by the above construction fulfills the condition that no rotation takes place.

- 7. Parallel Forces.—In case the forces AB, BC, etc., had been parallel the force polygon would become a straight line and the line $ABCD \dots E$ would coincide with EA. All of the constructions and conclusions given above apply to such an arrangement of forces. See Figs. 9 and 9a.
- 8. The Direction of One Reaction Given, to Find the Magnitude and Direction of the Other.—Let the direction of R_2 be assumed as vertical, then the horizontal compo-

nent, if any, of all the forces acting must be applied at K. The force polygon (Art. 2) becomes ABCDEX, as shown in Fig. 5a. Assume any pole P, and draw the strings S_1 , S_2 , etc. In Fig. 5, construct the equilibrium polygon (Art. 5) as shown, starting with S_1 , passing through K, the only point on R_1 which is known. Draw the closing line S_0' , and in

Fig, 5a the string PL' parallel to S_0' of Fig. 5. Then EL' is the magnitude of the vertical reaction R_2 , and L'A the magnitude and direction of the reaction R_1 .

To show that there will be no rotation under the action of the above forces, draw AE, EC, AC, and DE in Fig. 6,

parallel to S_1 , S_5 , PY, and AE respectively in Fig. 5a. Then the point E is in equilibrium under the action of S_1 , S_5 , and R, since these forces form a closed figure in Fig. 5a. In Fig. 6, draw AB, CB, and BE parallel to R_1 , R_2 , and AE of Fig. 5a. Then point B is in equilibrium under the action of R_1 , R_2 , and R, and BE is parallel to ED. But R

Fig. 6. and R, and BE is parallel to ED. But R_1 , S_1 , and R, and R_2 , S_5 , and R must form closed figures in Fig. 6, as they meet in a point in Fig. 5a respectively. Therefore BE prolonged coincides with DE, and there can be no rotation, since R_1 , R_2 , and R meet in a point.

9. Application of the Equilibrium Polygon in Finding Centers of Gravity.—Let $abc ext{...} k$ be an unsymmetrical body having the dimension normal to the paper equal unity. Divide the area into rectangles or triangles whose centers of gravity are readily determined. Compute the area of each small figure, and assume that this area multiplied by the weight of a unit mass is concentrated at the center of gravity of its respective area. These weights may now be considered as parallel forces P_1 , P_2 and P_3 , acting as shown in Fig. 7. The resultant of these forces must pass through the center of gravity of the entire mass, and hence lies in the lines R and R' formed by constructing two equilibrium

polygons for the forces P_1 , P_2 , and P_3 , first acting vertically and then horizontally. The intersection of the lines R and R' is the center of gravity of the mass.

The load lines in Fig. 8 and Fig. 8a are not necessarily at right angles, but such an arrangement determines the point of intersection of R and R' with a maximum degree of accuracy, since they intersect at right angles.

In the above constructions the weight of a unit mass is a common factor, and hence may be omitted and the areas alone of the small figures be used as the values of P_1 , P_2 , and P_3 .

Moments of Parallel Forces.—Let AB, BC, ..., EF be any number of parallel forces, and M' and N' two points through which R_1 and R_2 pass (Fig. 9). Construct the force

polygon Fig. 9a, and select some point P as a pole, so that the perpendicular distance H from the load line is 1000, 10000, or some similar quantity. Construct the equilibrium polygon Fig. 9 as explained in previous articles.

Suppose the moment of AB, BC, and CD about M' as a center of moments is desired. The moment equals $AB(a_1) + BC(a_2) + CD(a_3) = M_m$. Prolong the lines S_2 ,

 S_3 , and S_4 until they cut a line through M' parallel to AB, BC, etc.

From the triangles Mar, Fig. 9, and ABP, Fig. 9a,

 $aM: a_1::AB: H$ or $AB(a_1) = H(aM)$.

From the triangles ab2, Fig. 9, and BCP, Fig. 9a,

 $ab: a_2:: BC: H$ or $BC(a_2) = H(ab)$.

From the triangles bc3, Fig. 9, and CDP, Fig. 9a,

 $bc: a_3:: CD: H$ or $CD(a_3) = H(bc)$.

Or

 $AB(a_1) + BC(a_2) + CD(a_3) = M_m = H(aM + ab + bc) = H(Mc).$

From this it is seen that the moment of any force equals the ordinate measured on a line passing through the center of moments, and parallel to the given force, which is cut off between the two sides of the equilibrium polygon which are parallel to the two strings drawn from the pole P (prolonged if necessary until they cut this line) to the extremities of the load in Fig. 9a; multiplied by the pole distance H. For a combination of loads the ordinate to be multiplied by H is the algebraic sum of the ordinates for each load; the loads acting downward having ordinates of one kind, and those acting upward of the opposite kind.

To illustrate, let the moment of R_1 , AB, BC, and CD about g be required. In Fig. 9a the strings S_1 and S_0 are drawn from the extremities of R_1 , hence in Fig. 9 the ordinate gg' multiplied by H is the moment of R about g as a center of moments.

The strings S_1 and S_4 are the extreme strings for AB, BC, CD, and hence the ordinate g'4 multiplied by H is the moment of these forces. Now since the reaction acts upward and the forces AB, BC, and CD act downward, the ordinate g_4 multiplied by H is the moment of the combination.

The above property of the equilibrium polygon is very convenient in finding the moments of unequal loads spaced at unequal intervals, as is the case where a locomotive stands upon a girder bridge.

products a_1b_1 , a_2b_2 , etc., be required. The method of the previous article can be readily applied in the solution of this problem. Let b_1 . b_2 , etc., be taken as loads and a_1 , a_2 , etc., as the lever-arms of these loads about any convenient point as shown in Fig. 10. Then $H(ab) = a_1b_1$, $H(bc) = a_2$,

 b_2 , etc., and finally $H(ae) = \Sigma(ab)$, or the algebraic sum of the products a_1b_1 , a_2b_2 , etc.

In case $\Sigma(ba^2)$ is desired, the ordinates ab, bc, etc., can be taken as loads replacing b_1 , b_2 , etc., in Fig. 10. For convenience take a pole distance H' equal to that used before and draw the polygon S_1' , S_2' , etc., then $(ee')H^2 = \Sigma(ba^2)$.

12. To Draw an Equilibrium Polygon through Three Given Points.—Given the forces AB, BC, CD, and DE, it is required to pass an equilibrium polygon through the points X, Y, and Z. Construct the force polygon Fig. 11a, and through X and Y draw lines parallel to EA. Then, starting with S_5 , passing through Y, construct the equilibrium polygon Fig. 11, drawing the closing line S_6 . In Fig. 11a there result the two reactions R_1 and R_2 when a line is drawn through P parallel to S_6 of Fig. 11. Since the values

of R_1 and R_2 remain constant for the given loads, the pole from which the strings in Fig. 11a are drawn must lie upon a line drawn from L parallel to a line S_0'' connecting X and Y in Fig. 11. That is, S_0'' is the position of the closing line for all polygons passing through X and Y, and the pole can be taken anywhere upon the line P'L in Fig. 11a. In order that the polygon may also pass through Z take the loads upon the right of Z and find their resultant EB, and through Z draw a line parallel to EB. Assume Z and Y to be two

Fig. 11.

Fig. 11a.

points through which it is desired to pass an equilibrium polygon. Proceeding as in the first case, the pole must lie somewhere upon the line L'P', Fig. 11a, drawn parallel to aY, Fig. 11. Then if a polygon with its pole in LP' passes through X and Y, and one with its pole in L'P' passes through Z, the polygon with a pole at the intersection of these lines in P' will pass through the three points X, Y, and Z.

THE HUNT LIBRARY
CARNEGIE INSTITUTE OF TECHNOLOGY

ROOF-TRUSSES.

CHAPTER II.

BEAMS AND TRUSSES.

13. Vertical Loads on a Horizontal Beam: Reactions and Moments of the Outside Forces.—Let the beam XY support the loads AB, BC, etc., Fig. 12, and let the ends of

the beam rest upon supports X and Y. Required the reactions R_1 and R_2 , neglecting the weight of the beam. In order that the beam remains in place free from all motion the outside forces AB, BC, etc., with R_1 and R_2 must fulfill the conditions of Art. 1. Proceeding according to Art. 6, the force polygon ABCDEF is constructed, any point P taken as a pole, and the strings $S_1 \ldots S_5$ drawn, Fig. 12a. Then, in Fig. 12, the equilibrium polygon is constructed,

the closing line S_0 drawn, and, parallel to this line, LP is drawn in Fig. 12a, cutting the line AF into two parts; LA being the value of R_1 , and LF the value of R_2 .

The moment about any point in the vertical passing through any point x is readily found by Art. 10:

$$M_x = R_1 x - AB(x - a_1) - BC(x - a_2) = (mn)H$$

= the moment of the outside forces.

14. Vertical Loads on a Simple Roof-truss: Structure Considered as a Whole.—In this case the method of procedure is precisely that given in Art. 10. The reactions R_1 and R_2 will of course be equal if the loads are equal and

symmetrically placed about the center of the truss. This being known, the pole P may be taken on a horizontal line drawn through L, Fig. 13a, and then the closing line S_0 in Fig. 13 will be horizontal. The closing line may be made horizontal in any case by taking the pole P horizontally opposite L, which divides the load line into the two reactions.

It is evident from what precedes that the particular shape of the truss or its inside bracing has no influence upon the values of R_1 , R_2 , and the ordinates to the equilibrium polygon. However, the internal bracing must have sufficient strength to resist the action of the outside forces and keep each point of the truss in equilibrium.

15. Inclined Loads on a Simple Roof-truss: Structure Considered as a Whole.—The case shown in Fig. 14 is that usually assumed for the action of wind upon a roof-truss,

the truss being supported at X and Y. The directions of R_1 and R_2 will be parallel to AD of Fig. 14a. The determination of the values of R_1 and R_2 is easily accomplished by Art. 10, as shown in Figs. 14 and 14a.

r6. Inclined Loads on a Simple Roof-truss, One Reaction Given in Direction: Structure Considered as a Whole.—Suppose the roof-truss to be supported upon rollers at Y. Then the reaction R_2 is vertical if the rollers are on a horizontal plane. The only point in R_1 which is known is the point of support X through which it must pass. Drawing the equilibrium polygon through this point, S_5 cuts the direction of R_2 in Y', and XY' is the closing line, Fig. 15. At Y', which is by construction in equilibrium,

there are three forces acting having the directions S_0 , S_5 , and R_2 , and these forces must make a closed figure; hence, in Fig. 15a, DL is the magnitude of R_2 . Since R_1 must close the force polygon, LX is the magnitude and direction of R_1 .

If the rollers had been at X instead of Y, the method of procedure would have been quite similar. The equilibrium polygon would have passed through Y and ended upon a vertical through X, and the string S_0 would have cut off the value of R_1 on a vertical drawn through X, Fig. 15a.

17. Relation between the Values of R_2 in Articles 15 and 16.—In Article 15, R_2 can be replaced by its vertical and horizontal components without altering the existing equilibrium. If the supports are in a horizontal plane, the horizontal component can be applied at X instead of Y without in any way changing the equilibrium of the structure as a whole. Therefore the vertical component of R_2 , as found in Art. 15, is the same in value as the R_2 found in

Art. 16. This fact makes it unnecessary to go through the constructions of Art. 16 when those of Art. 15 are at hand. The constructions necessary to determine R_1 and R_2 of Art. 16 are shown by the dotted lines in Fig. 15a.

18. Internal Equilibrium and Stresses.—As previously stated (Art. 14), although the structure as a whole may be in equilibrium, it is necessary that the internal framework shall have sufficient strength to resist the stresses caused

by the outside forces. For example, in Fig. 16, at the point X, R_1 acts upward and the point is kept in equilibrium by the forces transmitted by the pieces Aa and La, parts of the frame. Suppose for the moment that these pieces be replaced by the stresses they transmit, as in Fig. 16a. The angular directions of these forces are known, but their magnitudes and character are as yet unknown. Now, since X is in equilibrium under the action of the forces R_1 , Aa, and La, these forces must form a closed figure (Art. 2). Lay off R_1 or LA, as shown in Fig. 16b, and then through A draw a line Aa parallel to Aa, Fig. 16 or 16a, and through

L a line parallel to La, Fig. 16 or 16b; then La and Aa are the magnitudes of the two stresses desired. Since in forming the closed figure Fig. 16b the forces are laid off in their true directions, one after the other, the directions will be as shown by the arrow-heads. If these arrow-heads be transferred to Fig. 16a, it is seen that Aa acts toward X, and consequently the piece Aa in the frame Fig. 16 is in compression, and in like manner the piece La is in tension.

Passing to point U_1 , Fig. 16, and treating it in a similar manner, it appears that there are four forces acting to produce equilibrium, two of which are known, namely, the outside force AB and the inside stress in Aa.

Fig. 16c shows the closed polygon for finding the magnitudes and directions of the stresses in ab and Bb.

Since Fig. 16b contains some of the lines found in Fig. 16c, the two figures can be combined as shown in Fig. 16d.

In finding the actual directions of the stresses, the forces acting around any given point must be considered independently in their own closed polygon. Although Fig. 16d contains all the lines necessary for the determination of the stresses around X and the point U_1 , yet the stress diagram for one point is independent of that for the other, for Figs. 16b and 16c can be drawn to entirely different scales if the diagrams are not combined.

The remaining points of the truss can be treated in the manner outlined above and the stress in each member found. Separate stress diagrams may be constructed for each point, or a combination diagram employed. Since, in case of the inside stresses, the forces meet in a point and there can be no revolution, there remain but two conditions of equilibrium, namely, the sum of the vertical com-

ponents of all the forces must equal zero, and the same condition for the horizontal components. This being the case, if there are *more than two unknowns* among the forces acting at any point being considered, the problem cannot be solved by the above method.

19. Inside Forces Treated as Outside Forces.—Suppose the truss shown in Fig. 17 is cut into two parts along the line aa, then the left portion remains in equilibrium as long as the pieces Dd, dg, and gL transmit to the frame the stresses

which actually existed before the cut was made. This condition may be represented by Fig. 17a. The stresses Dd, dg, and gL may now be considered as outside forces, and with the other outside forces they keep the structure as a whole in equilibrium, consequently the internal arrangement of the frame will have no influence upon the magnitudes of these forces. Equilibrium would still exist if the frame were of the shape shown in Fig. 17b and 17b'.

Fig. 17c shows the stress diagrams for the two cases shown, and also for the original arrangement of the pieces as shown in Fig. 17.

20. More than Two Unknown Forces Meeting at a Point.—Taking each point in turn, commencing with X, the stress diagrams are readily formed until point U_2 of Fig. 17 is reached. Here three unknowns are found, and hence the

problem becomes indeterminate by the usual method. If now the method of Art. 19 is adopted, the bracing changed,

and the stresses in Dd, gd, and Lg found, the problem can be solved by working back from these stresses to the point U_2 , as shown in Fig. 17c.

CHAPTER III.

STRENGTH OF MATERIALS.

a piece of wood over fifteen diameters in length is subject to compression, the total load or stress required to produce failure depends upon the kind of wood and the ratio of the least dimension to its length. If the strut is circular in cross-section, then its least dimension is the diameter of this section; if rectangular in section, then the least dimension is the smaller side of the rectangular section. The above statements apply to the usual forms of timber which are uniform in cross-section from end to end.

A piece of oak $6'' \times 8'' \times 120''$ long requires about twice the load to produce failure that a similar piece 300'' long requires.

A piece of oak $3'' \times 8'' \times 120''$ requires but about one third the load that a piece $6'' \times 8'' \times 120''$ requires for failure.

The actual ultimate strengths of the various woods used in structures have been determined experimentally and numerous formulas devised to represent these results. One of the later formulas, based upon the formula of A. L. Johnson, C.E., U. S. Department of Agriculture, Division of Forestry, is

$$P = F \times \frac{700 + 15c}{700 + 15c + c^2},$$

where P = the ultimate strength in pounds per square inch of the cross-section of a strut or column;

F = the ultimate strength per square inch of wood in short pieces;

 $c = \frac{l}{d} = \frac{\text{length of column in inches}}{\text{least dimension in inches}}$

A table of the values of P is given on page 24.

The factor of safety to be used with this table depends upon the class of structure in which the wood is employed.

The following statements are made in Bulletin No. 12, U. S. Department of Agriculture, Division of Forestry:

"Since the strength of timber varies very greatly with the moisture contents (see Bulletin 8 of the Forestry Division), the economical designing of such structures will necessitate their being separated into groups according to the maximum moisture contents in use.

MOISTURE CLASSIFICATION.

"Class A (moisture contents, 18 per cent.)—Structures freely exposed to the weather, such as railway trestles, uncovered bridges, etc.

"Class B (moisture contents, 15 per cent.)—Structures under roof but without side shelter, freely exposed to outside air, but protected from rain, such as roof-trusses of open shops and sheds, covered bridges over streams, etc.

"Class C (moisture contents, 12 per cent.)—Structures in buildings unheated, but more or less protected from outside air, such as roof-trusses or barns, enclosed shops and sheds, etc.

"Class D (moisture contents, 10 per cent.)—Structures in buildings at all times protected from the outside air,

ROOF-TRUSSES.

ULTIMATE STRENGTH OF COLUMNS. VALUES OF P.

	ULTIMATE STRENGTH IN POUNDS PER SQUARE INCH.						
$\frac{l}{d}$		Southern, Long- leaf or Georgia Yellow Pine, Canadian (Ot- tawa) White Pine, Canadian (Ontario) Red Pine, White Oak.	Douglas, Oregon and Washington Yellow Fir or Pine.	Northern or Short-leaf Yel- Yellow Pine, Spruce and Eastern Fir, Hemlock, California Red- wood, California Spruce, White Pine.	Red Pine, Norway Pine, Cypress, Cedar,		
	F = 6000	F = 5000	F = 4500	F = 4000	F = 3750		
1	5992	4993	4494	3994	3740		
2	5967	4973	4475	3978	3730		
3	5928	4940	4446	3952	3700		
4	5876	4 ⁸ 97	4407	3918	3680		
5	5813	4844	4359	3875	3630		
6	5739	4782	4304	3826	3580		
7	5656	4713	4242	3770	3530		
8	5566	4638	4174	3710	3480		
9	5469	4558	4102	3646	3420		
10	5368	4474	4026	3579	3350		
11	5264	4386	3948	3509	3290		
12	5156	4297	3867	3438	3220		
13	5047	4206	3785	3365	3160		
14	4937	4114	3703	3291	3080		
15	4826	4022	3620	3217	3020		
16	4716	3930	3537	3144	2950		
17	4606	3838	3455	3071	2880		
18	4498	3748	3373	2998	2810		
19	4391	3659	3293	2927	2750		
20	4286	3571	3214	2857	2680		
21	4183	3486	3137	2788	2620		
22	4082	3402	3061	2721	2550		
23	3983	3320	2988	2656	2490		
24	3888	3240	2916	2592	2430		
25	3794	3162	2846	2529	2370		
26	3703	3086	2777	2469	2320		
27	3615	3013	2711	2410	2260		
28	3529	2941	2647	2353	2210		
29	3446	2872	2585	2298	2150		
30	3366	2805	2524	2244	2100		
32	3212	2677	2409	2142	2010		
34	3068	2557	2301	2046	1920		
36	2934	2445	2200	1956	1830		
38	2808	2340	2106	1872	1750		
40	2690	2241	2017	1793	1680		
42	2579	2149	1934	1719	1610		
44	2476	2063	1857	1650	1550		
46	2379	1982	1784	1586	1490		
48	2288	1907	1716	1525	1430		
50	2203	1835	1652	1468	1380		

heated in the winter, such as roof-trusses in houses, halls, churches, etc."

Based upon the above classification of structures, the following table has been computed.

SAFETY FACTORS TO BE USED WITH THE TABLE ON P. 24.

Class.	Yellow Pine	All Others
Class A " B " C " D	0.20 0.23 0.28 0.31	0.20 0.22 0.24 0.25

All struts considered in this article are assumed to have square ends.

Example.—A white-pine column in a church is 12 feet long and 12 inches square; what is the safe load per square inch? $\frac{l}{d} = \frac{12 \times 12}{12} = 12$, and from the table on page 24 P = 3438 pounds per square inch. Churches belong to structures in Class D, and hence the factor of safety is 0.25 and the safe load per square inch $3438 \times 0.25 = 860$ pounds. $860 \times 144 = 123800$ pounds is the total safe load for the column.

The American Railway Engineering and Maintenance of Way Association adopted the following formula in 1907. For struts over 15 diameters long:

$$S = B\left(\mathbf{I} - \frac{l}{60d}\right),$$

in which S= the safe strength in pounds per square inch, B= the safe end bearing stress (see Column 3, Table XVI), l= the length of the column, and d= the least side of the column. l and d are expressed in the same unit. The following table gives the values of S for four values of B.

The values of B used in the following table differ slightly from those recommended by The American Railway Engineering and Maintenance of Way Association, as they are based upon the values given in Table XVI-The unit stresses are essentially the same as given in the table on page 24, when a factor of safety of 4 is used.

SAFE STRENGTH OF COLUMNS. VALUES OF S.

	SAFE STRENGTH IN POUNDS PER SQUARE INCH.						
$\frac{l}{d}$	Red Pine, Norway Pine, Cypress.	White Pine, Short-leaf Yellow Pine, Hemlock, Cedar.	Douglas, Oregon, and Yellow Fir, Spruce, Eastern Fir.	White Oak, Southern Long-leaf Yellow Pine.			
	В = 1000	B = rroo	B = 1200	B= 1400			
1 to 15	1000	1100	1200	1400			
16	730	810	880	1030			
17	720	790	86o	1000			
18	700	770	840	980			
19	68o	750	820	960			
20	670	730	800	930			
21	650	720	780	910			
22	630	700	760	890			
23	620	68o	740	8бо			
24	600	66o	720	840			
25	580	640	700	820			
26	570	620	68o	790			
27	550	600	66o	770			
28	530	590	640	750			
29	520	570	620	720			
30	500	550	600	700			

In the example on page 25, for $\frac{l}{d}$ = 24, the safe load per square inch is 648 pounds with a factor of safety of 4.

From the table on page 26 the corresponding value is found to be 660 pounds, the difference between the values being but 12 pounds.

22. Metal in Compression: Columns or Struts.—Steel is practically the only metal used in roof-trusses at the present time, and, unless they are very heavy, angles are employed to the exclusion of other rolled shapes. The load required to cripple a steel column depends upon several things, such as the kind of steel, the length, the value of the least radius of gyration for the shape used (this is usually designated by the letter r, and the values are given in the manufacturers' pocket-books), the manner in which the ends are held, etc.

If a column has its end sections so fixed that they remain parallel, the column is said to be *square-ended*. If both ends are held in place by pins which are parallel, the column is said to be *pin-ended*. A column may have one square end and one pin end.

The table on page 28 contains the ultimate strength per square inch of soft-stell columns or struts.

To obtain the safe unit stress for MEDIUM STEEL:

For quiescent loads, as in buildings, divide by 3.6

For moving loads, as in bridges, divide by 4.5

Safe unit stresses recommended by C. E. Fowler are tabulated on page 173.

EXAMPLE.—What load will cripple a square-ended column of soft steel made of one standard $6'' \times 6'' \times \frac{1}{2}''$ angle if the length of the strut is 10 feet?

From any of the pocket-books or the table at end of book the value of r is 1.18 inches, then $\frac{L}{r} = \frac{10}{1.18} = 8.5$,

STRENGTH OF STEEL COLUMNS OR STRUTS

For Various Values of $\frac{L}{r}$ in which L= Length in Feet and r= Radius of Gyration in Inches.

 $P\!=\!\mathrm{ultimate}$ strength in lbs. per square inch.

FOR SOFT STEEL.

Square Bearing. $P = \frac{45,000}{1 + \frac{(12 L)^3}{36,000r^2}}.$

 $P = \frac{45,000}{1 + \frac{(12\ L)^3}{24,000r^2}}.$

 $P = \frac{45,000}{1 + \frac{(12 \ L)^2}{18,000r^2}}.$

To obtain safe unit stress:

For quiescent loads, as in buildings, divide by 4. For moving loads, as in bridges, divide by 5.

$\frac{L}{r}$	ULTIMATE STRENGTH IN POUNDS PER SQUARE INCH.				STRENGTH IN SQUARE INCH.		
<i>r</i>	Square.	Pin and Square.	Pin.	7	Square.	Pin and Square.	Pin.
3.0	43437	42694	41978	12.0	28553	24142	20911
3.2	43230	42395	41593	12.2	28207	23771	20542
3.4	43011	42081	41190	12.4	27863 .	23406	20179
3.6	42782	41754	40773	12.6	27522	23046	19823
3.8	42543	41412	40340	12.8	27185	22693	19474
4.0	42294	41058	39893	13.0	26850	22343	19133
4.2	42035	40693	39435	13.2	26524	22005	18797
4.4	41765	40317	38966	13.4	26189	21662	18469
4.6	41488	39930	38485	13.6	25864	21329	18148
4.8	41203	39534	37998	13.8	25543	21002	17833
5.0	40910	39130	375°0	14.0	25224	20680	17523
5.2	40608	38807	36997	14.2	24909	20363	17221
5.4	40299	38300	36488	14.4	24598	20052	16925
5.6	39984	37874	35975	14.6	24290	19746	16634
5.8	39663	37443	35457	14.8	23985	19445	16350
6.0	39335	37006	34938	15.0	23684	19148	16071
6.2	39003	36566	34416	15.2	23387	18858	15799
6.4	38665	36122	33894	15.4	23093	18572	15532
6.6	38323	35676	33371	15.6	22803	18288	15270
6.8	37976	35219	32849	15.8	22516	18015	15105
7.0	37616	34776	32328	16.0	22234	17744	14764
7.2	37272	34324	31809	16.2	21954	17478	14518
7.4	36914	33872	31292	16.4	21678	17216	14279
7.6	36554	33419	30779	16.6	21406	16960	14043
7.8	36193	32966	30268	16.8	21137	16708	13812

STRENGTH OF STEEL COLUMNS OR STRUTS-Continued.

$\frac{L}{r}$	ULTIMATE STRENGTH IN POUNDS PER SQUARE INCH.		<u>L</u>	ULTIMATE STRENGTH IN POUNDS PER SQUARE INCH.			
<i>r</i>	Square.	Pin and Square.	Pin.	7	Square.	Pin and Square.	Pin.
8.0	35828	32514	29762	17.0	20872	16459	13584
8.2	35462	32064	29260	17.2	20611	16216	13366
8.4	35095	31615	28763	17.4	20353	15977	13150
8.6	34727	31169	28272	17.6	20098	15742	12938
8.8	34358	30724	27787	17.8	19847	15512	12731
9.0	33988	30282	27306	18.0	19599	15286	15258
9.2	33611	29844	26832	18.2	19351	15063	12329
9.4	33249	29408	26364	18.4	19114	14845	12135
9.6	32880	28977	25903	18.6	18878	14630	11944
9.8	32511	28549	25448	18.8	18644	14420	11757
10.0	32143	28125	25000	19.0	18418	14218	11579
10,2	31776	27706	24559	19.2	18185	14010 `	11394
10.4	31411	27290	24125	19.4	17961	13811	11219
10.6	31054	26879	23698	19.6	17740	13616	11048
10.8	30684	26474	23279	19.8	17519	13422	10877
rr.o	30324	26072	22866	20.0	17308	13235	10715
11.2	29965	25675	22460	20.2	17096	13050	10553
11.4	29608	25285	22063	20.4	16888	12868	10434
11.6	29247	24899	21671	20.6	16682	12690	10249
8.11	28903	24517	21288	20.8	16480	12515	10087

and from the above table, P=34800 pounds per square inch. The area of the angle is 5.75 square inches, hence the crippling load is $5.75\times34800=200100$ pounds. The safe load in a roof-truss is $200100\div4=50025$ pounds. If medium steel had been used, the safe load becomes $200100\div3.6=55600$ pounds. According to Fowler's formula the safe load is $8250\times5.75=47400$ pounds.

23. End Bearing of Wood.—When a stress is transmitted to the ends of the fibers there must be a sufficient number to carry the load without too much compression or bending over. To illustrate, let a load P (Fig. 18) be

transmitted through a metal plate to the end of a wooden column, then the area $b \times d$ must be such that no crushing takes place.

TABLE OF SAFE END BEARING VALUES.

1000	1100	1200	1400	Lbs. per Sq. In.
Red Pine, Norway Pine, Cypress	White Pine, Northern or Short-leaf Yel- low Pine, Cedar, Hemlock	Spruce, Eastern Fir, Douglas, Oregon and Yellow Fir	White Oak, Southern Long-leaf Pine or Georgia Yellow Pine	The values in this table have a factor of safety of 5

Example. In Fig. 18 let b = 12 inches, d = 4 inches, and suppose the wood to be white oak; what is the safe load P? $P = 4 \times 12 \times 1400 = 67200$ pounds.

23a. Bearing of Wood for Surfaces Inclined to the Fibers. In a large number of the connections in roof trusses it is necessary to cut one or both surfaces of contact between two members on an angle with the directions of the fibers. The allowable normal intensities of pressure upon such surfaces may be found from the

following formula, which is based upon the results of experiments:

 $r = q + (p - q) \left(\frac{\theta}{90}\right)^2,$

where r = normal intensity on AC;

q = normal intensity on BC;

p = normal intensity on AB;

 θ = angle of inclination of AC with direction of the wood fibers.

Fig. 18b.

SAFE BEARING VALUES FOR INCLINED SURFACES Pounds per square inch.

θ	White Oak.	Long-leaf Yellow Pine.	Northern or Short-leaf Yellow Pine.	Douglas, Oregon, and Yellow Fir, Spruce and Eastern Fir.	White Pine, Cedar.	Red Pine, Norway Pine, Cypress.
0 10 20 30 40 50 60 70 80 90	500 511 544 600 677 778 900 1045 1211	350 363 402 467 557 674 816 985 1180	250 260 292 344 418 513 628 764 921 1100	200 212 249 311 397 509 644 805 990	200 211 244 300 377 478 600 745 911	200 210 239 289 358 447 555 683 832

23b. End Bearing of Wood against Round Metal Pins. —In Fig. 18a the load P is transmitted to the wooden

strut by means of a casting and a round pin. The area of the end fibers which carry the load P is $b \times d$. The safe value of P for this area is given by the formula which is based on the normal intensities on inclined surfaces:

$$P = bd(0.46p + 0.54q) = bdF,$$

where p = the allowable intensity of pressure against the ends of the fibers;

q = the allowable intensity of pressure across the
fibers;

d = diameter of pin;

b = length of pin bearing against the wood;

P = total force which the pin can safely transmit in a direction parallel to the fibers.

APPROXIMATE VALUES OF F.

900	850	650	600	550	Lbs.perSq.In.
White Oak	Long-leaf Yellow Pine	Short-leaf Pine, Douglas, Ore- gon, Yellow Fir, Spruce, Eastern Fir	White Pine Cedar, Hemlock	Red Pine, Norway Pine, Cypress	The values in this table have a safety factor be-tween 4 and 5

23c. Splitting Effect of Round Pins Bearing against the End Fibers of Wood.—The round pin shown in Fig. 18a not only bears against the end fibers of the wood, but also tends to split the timber. Fortunately this tendency is comparatively small.

23d. Cross Bearing of Wood against Round Pins.— If the direction of the stress is normal to the fibers the bearing value of the wood on the pin may be taken, the same as on a flat surface having a width equal to the

diameter of the pin. The safe values to be used are given in Art. 25.

24. Bearing of Steel.—Since soft and soft-medium steel are practically homogeneous in structure, the same bearing value is used for round and flat surfaces. The diameter of the pin or rivet multiplied by the thickness of the plate through which it passes is taken as the bearing area. This is an approximation but is sufficient for practical purposes.

For soft or soft-medium steel the *safe* bearing value may be taken as 20000 pounds per square inch.

TABLE OF SAFE BEARING VALUES.

Diameter of Rivet.	Area in Sq. Inches.	BHARING V	ALUE FOR DI 20,00	FFERENT TH O POUNDS P	ICKNESSES ER SQUARE	OF PLATE IN INCH.	INCHES AT
		1	18	3	176	1	78
것	.1105 .1964 .3068 .4418 .6013	1875 2500 3125 3750 4375 5000	2344 3125 3906 4688 5469 6250	2813 3750 4688 5625 6563 7500	4375 5469 6563 7656 8750	5000 6250 7500 8750 10000	7031 8438 9844 11250

TABLE OF SAFE BEARING VALUES-Continued.

Diameter of Rivet,	Area in Sq. Ins.	BEARING	VALUE FO	R DIFFERE	NT THICKN DS PER SQ	ESSES OF I	LATE IN I	NCHES A
		ş	11	2	18	į _Ž	18	r
38	.1105							
$\frac{1}{2}$.1964						1	1
5	.3068	7813						
3	.4418	9375	10313	11250				ļ
7	.6013	10938	12031	13125	14219	15313	16406	[
I	.7854	12500	13750	15000	16250	17500	18750	2000

25. Bearing Across the Fibers of Wood.—If a load P, Fig. 19, be transmitted through a wooden corbel to a column, the area $b \times d$, bearing directly upon the support, must be sufficient to resist crushing. This is a point very often overlooked in construction. In Fig. 19a the same

TABLE OF SAFE BEARING VALUES.

Hemlock, California Redwood	Norway Pine.	250 Northern or Short- leaf-Yel-	350 Southern Long-leaf or Georgia	500 White Oak	Lbs. per Sq. In. The values in this table
	Spruce, Eastern Fir, Cypress, Cedar, Douglas Fir, OregonFir, Yellow Fir	low Pine, Chestnut	Yellow Pine		have a factor of safe ty of 4

conditions obtain. The washer must be of such a size that the area bearing upon the wood shall properly distribute the stress transmitted by the rod.

- 26. Bearing Across the Fibers of Steel. See Art. 24.
- 27. Longitudinal Shear of Wood.—In Fig. 20 let the piece A push against the notch in B, then the tendency is to push the portion above ba along the plane ba, or to shear lengthwise a surface b in length and t in width.

A similar condition exists in Fig. 20a. The splice may fail by the shearing along the grain the two surfaces abc and a'b'c'. A table of safe longitudinal shearing values is given below.

TABLE OF SAFE LONGITUDINAL SHEARING VALUES.

100	150	200	Lbs. per Sq. In.
White Pine, Northern or Short-leaf Yellow Pine, Canadian	leaf or Georgia	White Oak	The values in this table have a factor of
White Pine, Canadian Red Pine,	Chestnut	130	safety of 4
Spruce, Eastern Fir, Hemlock, California Redwood, Cedar		Douglas, Oregon, and Yellow Fir	

28. Longitudinal Shear of Steel.—For all structures considered in this book the longitudinal shear of steel is

fully provided for by the practical rules governing the spacing of rivets, etc. See Table III.

29. Transverse Strength of Wood.—When a beam supported at the ends is loaded with concentrated loads, as

shown in Fig. 21, the maximum moment is readily found by means of the equilibrium polygon. Let this moment be called M, then for rectangular beams

 $M = \frac{1}{6}Rbd^2,$

FIG. 21.

where M = the maximum moment in inch-pounds;

b =the breadth of the beam in inches;

d =the depth of the beam in inches;

R = the allowable or safe stress per square inch in the extreme fiber.

If M is given in foot-pounds, then the second member of the above equation becomes $\frac{1}{72}Rbd^2$.

For a uniformly distributed load

$$M = \frac{1}{8}wl^2 = \frac{1}{6}Rbd^2$$
,

where w = the load per linear inch of span;

l = the span in inches.

Example.—An oak beam 6 inches deep has a span of rofeet and carries a load of 100 pounds per linear foot. What must be the breadth of the beam to safely carry the load?

 $M = \frac{1}{4}wl^2 = \frac{1}{4} \times 100 \times 10 \times 10 = 1250$ ft.-lbs. or 15000 in.-lbs.

$$M = \frac{1}{6}Rbd^2 = 15000 = \frac{1}{6} \times 1200 \times b \times 6 \times 6$$
,

or

$$b = \frac{15000}{7200} = 2\frac{1}{8}$$
 inches.

Hence a $2\frac{1}{8}$ " \times 6" white-oak beam will safely carry the load; but the weight of the beam has been neglected, and consequently the breadth must be increased to, say, $2\frac{5}{8}$ inches. A second calculation should now be made with the weight of the beam included.

TABLE OF SAFE VALUES OF R FOR WOOD.

600	700	750	800	1000	1200
Hemlock	White Pine, Spruce, Eastern Fir, Cedar	California Redwood	Douglas, Oregon, and Yellow Fir, Red Fir, Red Pine, Cy- press, Chestnut, California Spruce, Norway Pine, Washing- ton Fir or Pine (Red Fir)	Northern or Short-leaf Yellow Pine	Southern Long-leaf or Georgia Yellow Pine, White Oak

The above values are pounds per square inch. Factor of safety 6. See Table XVI, page 139.

The transverse strength of wood as considered above assumes that the plane of the loads is parallel to the side of the timber having the dimension d. In case the plane of the loads makes the angle θ with the axis BB, Fig. 21a,

$$M\cos\theta=rac{1}{6}R'bd^2 \quad {
m or} \quad R'=rac{6M\cos\theta}{bd^2};$$
 $M\sin\theta=rac{1}{6}R''b^2d \quad {
m or} \quad R''=rac{6M\sin\theta}{b^2d};$ and $R'+R''=R.$

From these three equations

$$b = \frac{1}{Rd^2} \left\{ 3M \cos \theta + \sqrt{6M \sin \theta Rd^3 + (3M \cos \theta)^2} \right\}.$$

While this equation gives the value of b directly, it is usually easier to assume values for b and d and then from

FIG. 21a.

the first three expressions determine the value of R. If this is greater than the allowable value for the kind of wood to be used, a new trial must be made. It is seldom necessary to make more than two trials.

EXAMPLE.—Assume that a white oak purlin is placed, as shown in Plate I, so that the

angle θ , Fig. 21a, is 30°, and that the moment of the vertical loads is 20000 inch-pounds. If the depth of the purlin is assumed as 10" and the breadth as 8", then,

$$R' = \frac{6M \cos \theta}{bd^{9}} = \frac{6 \times 20000 \times 0.866}{8 \times 100} = 129.9,$$

$$R'' = \frac{6M \sin \theta}{b^{2}d} = \frac{6 \times 20000 \times 0.5}{64 \times 10} = 937.5,$$

and

$$R = R' + R'' = 129.9 + 937.5 = 1067$$
 lbs.

This is the compressive fiber stress at e or the tensile fiber stress at g, Fig. 21a.

Since 1067 is less than the allowable value of R for white oak, the purlin is safe. See Table XVI.

30. Transverse Strength of Steel Beams.—In the case of steel beams

$$M = \frac{RI}{v} = RS$$
,

where M = the maximum moment in inch-pounds;

I = the moment of inertia (given in the manufacturers' pocket-books);

v = the distance of the outermost fiber from the neutral axis;

R = the safe stress in pounds per square inch in the outermost fiber;

 $S = \frac{I}{v}$ is given in the manufacturers' pocket-books for each shape rolled for the conditions usually obtaining in practice.

The safe value of R for soft steel may be taken as 16000 pounds.

Example.—Suppose the oak beam in Article 29 is replaced by a steel channel. What must be its size and weight?

$$M = 15000 = RS = 16000S$$
; $\therefore S = 0.94$

From any of the manufacturers' pocket-books, a 3-inch channel weighing 4 pounds per linear foot has S = 1.1. The moment due to the weight of the channel is $\frac{1}{8}wl^2 = \frac{1}{8} \times 4 \times 10 \times 10 = 50$ ft.-lbs. or 600 in.-lbs.; hence the total moment is 15600 inch-pounds, and the required value of $S = \frac{15600}{16000} = 0.98$, which is less than 1.1. This being the case, a 3-inch channel weighing 4 pounds per foot will be safe. (See Tables at end of book.)

The above formula assumes that the plane of the loads is normal to one of the "principal axes" of the section of the beam. "Principal axes" are defined as the two rectangular axes, passing through the center of gravity of the section, about one of which the moment of inertia is a maximum and about the other a minimum. Sufficient data is given in the tables of properties of the various steel shapes to completely determine these axes and the maximum and minimum moments of inertia.

The following formulas for determining the maximum fiber stress for a given moment produced by loads in a plane making an angle with the principal axes, include most of the cases found in practice:

IBeam.

$$M\cos\theta = \frac{R'I_{1-1}}{\frac{1}{2}d}$$
 or $R' = \frac{M\cos\theta}{2I_{1-1}}d;$

$$M \sin \theta = \frac{R'' I_{2-2}}{\frac{1}{2}b} \text{ or } R'' = \frac{M \sin \theta}{2I_{2-2}}b;$$

$$R = R' + R''.$$

Channel.

$$\begin{split} M\cos\theta &= \frac{R'I_{1-1}}{\frac{1}{2}d} \quad \text{or} \quad R' &= \frac{M\cos\theta}{2I_{1-1}}d;\\ M\sin\theta &= \frac{R''I_{2-2}}{x} \quad \text{or} \quad R'' &= \frac{M\sin\theta}{I_{2-2}}x. \end{split}$$

These formulas refer to point a. For point e replace x by b-x.

$$R=R'+R''.$$

Angles and Z Bars.

$$M\cos\phi = \frac{R'I_{4-4}}{v_{4-4}}$$
 or $R' = \frac{M\cos\phi}{I_{4-4}}v_{4-4}$,

$$M \sin \phi = \frac{R'' I_{3-3}}{v_{3-3}}$$
 or $R'' = \frac{M \sin \phi}{I_{3-3}} v_{3-3}$,

where v = the distance of the "outer fiber" from the axis denoted by the subscript. The same fiber must be considered for both axes even if for one it is not the outermost fiber. The values for v are best determined from a full sized drawing. The particular fiber for which R = R' + R'' is a maximum can be found by trial. An inspection of the full size drawing will usually eliminate all but two possible positions.

Example.—A $4'' \times 4'' \times \frac{1}{2}''$ angle used as a beam has a span of 10 feet and is loaded with 150 pounds per foot of span, the plane of the loads being parallel to one leg of the angle. What is the maximum fiber stress?

 $I_{4-4}=2.28,\ I_{3-3}=8.84,\ \phi=45^{\circ},\ M=22500 \text{ in.-lbs.}$

$$R' = \frac{22500 \times 0.707}{8.82} 2.83 = 5105$$

$$R'' = \frac{22500 \times 0.707}{2.28} 1.16 = \frac{8093}{13198} \text{ lbs.}$$

$$R = R' + R'' = \frac{13198}{13198} \text{ lbs.}$$

For the Fiber at B

$$R' = \frac{22500 \times 0.707}{8.82} 2.48 = 4473$$

$$R'' = \frac{22500 \times 0.707}{2.28} 1.51 = \underbrace{10535}_{15008}$$

$$R = R + R' = \underbrace{15008}_{15008} \text{ lbs.}$$

Inspection shows that the maximum fiber stress cannot be at C, hence 15008 is the maximum sought.

31. Special Case of the Bending Strength of Metal Pins.

Where pins are used to connect several pieces, as in Fig.

FIG. 22.

22, the moments of the outside forces can be determined in the usual way.

This moment
$$M = \frac{RI}{v} = R(0.098d^3)$$
,

where d = the diameter of the pin in inches;

R = the safe stress in the outer fiber in pounds per square inch.

The table on page 36 gives the safe values of M for various sizes of bolts or pins. For wrought iron use R=15000, and for steel use R=25000.

32. Shearing Across the Grain of Bolts, Rivets, and Pins.—For wrought-iron bolts use 7500 pounds per square inch, and for steel 10000 pounds. The safe shearing values of rivets and bolts are given on page 44. See Table XVIII.

MAXIMUM BENDING MOMENTS ON PINS WITH EXTREME FIBER STRESSES,

VARYING FROM 15000 TO 25000 POUNDS PER SQUARE INCH.

Diameter	Area of Pin	мом	ENTS IN INCH	-POUNDS FOR	FIBRE STRESS	ES OF
of Pin in Inches.	in Square Inches.	r5000 Lbs. per Sq In.	18000 Lbs. per Sq. In.	20000 Lbs. per Sq. In.	22500 Lbs. per Sq. In.	25000 Lbs. per Sq. In.
1 1 8 14 13	.785 .994 1.227 1.485	1470 2100 2900 3830	1770 2520 3450 4590	1960 2800 3830 5100	2210 3150 4310 5740	2450 3490 4790 6380
112 188 147 18	1.767 2.074 2.405 2.761	4970 6320 7890 9710	5960 7580 9470 11650	6630 8430 10520 12940	7460 9480 11840 14560	8280 10530 13150 16180
2 2 1 2 1 3 2 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3	3.142 3.547 3.976 4.430	11780 14130 16770 19730	14140 16960 20130 23670	15710 18840 22370 26300	17670 21200 25160 29590	19630 23550 27960 32880
2 1/21/050 mg/47/20 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	4.909 5.412 5.940 6.492	23010 26640 30630 34990	27610 31960 36750 41990	30680 35520 40830 46660	34510 39960 45940 52490	38350 44400 51040 58320
3 14 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	7.069 7.670 8.296 8.946	39730 44940 50550 56610	47680 55930 60660 67940	52970 59920 67400 75480	59600 67410 75830 84920	66220 74900 84250 94350
31555 sq. 778 3 378	9.621 10.321 11.045 11.793	63140 70150 77660 85690	75770 84180 93190 102820	84180 93530 103540 114250	94710 105220 116490 128530	105230 166910 129430 142810
4	12.566	94250	113100	125660	141370	157080

SAFE SHEARING VALUES OF RIVETS AND BOLTS

Diam. of Rivet.	Area in Square Inches.	Single Shear at 7500 lbs.	Double Shear at 15000 lbs.	Single Shear at 10000 lbs.	Double Shear at 20000 lbs.
miss of the second seco	.1105 .1964 .3068 .4418 .6013	828 1473 2301 3313 4510 5891	1657 2945 4602 6627 9020 11781	1105 1964 3068 4418 6013 7854	2209 3927 6136 8836 12026 15708

33. Shearing Across the Grain of Wood.

SAFE TRANSVERSE SHEARING VALUES.

400	500	600	Lbs. per Sq. In.
Cedar	White Pine, Chestnut	Hemlock	Factor of safety 4
750	1000	1250	Lbs. per Sq. In.
Spruce, Eastern Fir	White Oak, North- ern or Short-leaf Yellow Pine	Southern Long- leaf or Georgia Yellow Pine	Factor of safety 4

34. Wood in Direct Tension.

SAFE TENSION VALUES.

600 Hemlock, Cypress	700 White Pine, California Redwood, Cedar	800 Spruce, Eastern Fir, Douglas Fir, Oregon Fir, Yellow Fir, Red Pine	Lbs.perSq.In. Factor of safety 10
900 Northern or Short-leaf Yellow Pine	1000 Washington Fir or Pine, Canadian White Pine and Red Pine	1200 White Oak, Southern Long- leaf or Georgia Pine	Lbs.perSq.In. Factor of Safety 10

35. Steel and Wrought Iron in Direct Tension.—For wrought iron use 12000 pounds per square inch, for steel use 16000 pounds per square inch. See Table XVIII.

CHAPTER IV.

ROOF-TRUSSES AND THEIR DESIGN.

36. Preliminary Remarks.—Primarily the function of a roof-truss is to support a covering over a large floor-space which it is desirable to keep free of obstructions in the shape of permanent columns, partitions, etc. Train-sheds, power-houses, armories, large mill buildings, etc., are examples of the class of buildings in which roof-trusses are commonly employed.

The trusses span from side wall to side wall and are placed at intervals, depending to some extent upon the architectural arrangement of openings in the walls and upon the magnitude of the span. The top members of the trusses are connected by members called purlins, running usually at right angles to the planes of the trusses. The purlins support pieces called rafters, which run parallel to the trusses, and these carry the roof covering and any other loading, such as snow and the effect of wind.

The trusses, purlins, and rafters may be of wood, steel, or a combination of the two materials.

37. Roof Covering.—This may be of various materials or their combinations, such as wood, slate, tin, copper, clay tiles, corrugated iron, flat iron, gravel and tar, etc.

The weights given for roof coverings are usually per square, which is 100 square feet.

46

Tables I and II give the weights of various roof coverings.

38. Wind Loads.—The actual effect of the wind blowing against inclined surfaces is not very well known. The formulas in common use are given below:

Let θ = angle of surface of roof with direction of wind;

F =force of wind in pounds per square foot;

 $A = \text{pressure normal to roof, } = F \sin \theta^{r.84} \cos \theta^{-r};$

B = pressure perpendicular to direction of the wind= $F \cot \theta \sin \theta^{1.84 \cos \theta}$;

C = pressure parallel to the direction of the wind= $F \sin \theta^{\text{x.84}} \cos \theta$.

(Carnegie.)

Angle θ	5°	100	20°	30°	40°	50°	60°	70°	80°	90°
$A = F \times B = F \times C = F \times C$	0.125 0.122 0.010	0.24	0.42	0.57	0.04	0.61	0 50	0 35	0 17	0 00

39. Pitch of Roof.—The ratio of the rise to the span is

Fig. 23.

called the pitch, Fig. 23 The following table gives the angles of roofs as commonly constructed:

Pitch.	Angle θ.	gle θ . Sin θ .		Cos θ . Tan θ .	
1/2 1/3 1 2/3 1/4 1/5 1/6	45° 0′ 33° 41′ 30° 0′ 26° 34′ 21° 48′ 18° 26′	0.70711 0.55460 0.50000 0.44724 0.37137 0.31620	0.70711 0.83212 0.86603 0.89441 0.92849 0.94869	1.00000 0.66650 0.57735 0.50004 0.39997 0.33330	1.41421 1.20176 1.15470 1.11805 1.07702 1.05408

40. Transmission of Loads to Roof-trusses.—Fig. 24 shows a common arrangement of trusses, purlins, and rafters, so that all loads are finally concentrated at the apexes B, C,

FIG. 24.

D, etc., of the truss. Then the total weight of covering, rafters, and purlins included by the dotted lines mn, np, po, and om will be concentrated at the vertex B. The total wind load at the vertex B will be equal to the normal pressure of the wind upon the area mnop.

41. Sizes of Timber.—The nominal sizes of commercial timber are in even inches, as $2'' \times 4''$, $2'' \times 6''$, $4'' \times 4''$, etc., and in lengths of even feet, as 16', 18', 20', etc. The actual or standard sizes are smaller than the nominal sizes.

Table XV gives the standard sizes for long-leaf pine, Cuban pine, short-leaf pine, and loblolly pine.

42. Steel Shapes.—Only such shapes should be employed as are marked *standard* in the manufacturers' pocket-books. These are readily obtained and cost less per pound than the "special" shapes.

Ordinarily all members of steel roof-trusses are composed of two angles placed back to back, sufficient space being left between them to admit a plate for making connections at the joints. See Tables IX-XII.

43. Round Rods.—In wooden trusses the vertical tension members, and diagonals when in tension, are made of round rods. These rods should be upset * at the ends so that when threads are cut for the nuts, the diameter of the rod at the root of the thread is a little greater than the diameter of the body of the rod. It is common practice to buy stub ends—that is, short pieces upset—and weld these to the rods. Unless an extra-good blacksmith does the work the upsets should be made upon the rod used, without welds of any kind. Very long rods should not be spliced by welding, but connected with sleeve-nuts or turnbuckles.

Upset ends, turnbuckles, and sleeve-nuts are manufactured in standard sizes and can be purchased in the open market. See Table VII.

44. Bolts.—The sizes of bolts commonly used in wooden roof-trusses are $\frac{3}{4}$ " and $\frac{7}{8}$ " in diameter. Larger sizes are sometimes more economical if readily obtained. $\frac{3}{4}$ " and $\frac{7}{8}$ " bolts can be purchased almost anywhere. Care should be taken to have as many bolts as possible of the same size,

^{*} Upsets should not be made on steel rods unless they are annealed afterwards.

as the use of several sizes in the same structure usually causes trouble or delay. See Tables V and VI.

- 45. Rivets.—The rivets in steel structures should be of uniform diameter if possible. The practical sizes for different shapes are given in the manufacturers' pocket-books. See Tables III, IV, and V.
- 46. Local Conditions.—In making a design local markets should be considered. If material can be purchased from local dealers, although not of the sizes desired, it will often happen that even when a greater amount of the local material is used than required by the design, the total cost will be less than if special material, less in quantity, had been purchased elsewhere. This is especially true for small structures of wood.

CHAPTER V.

DESIGN OF A WOODEN ROOF-TRUSS.

47. Data.

Wind load = 40 pounds per square foot of vertical projection of roof.

Snow load = 20 pounds per square foot of roof.

Covering = slate 14" long, $\frac{1}{4}$ " thick = 9.2 pounds per square foot of roof.

Sheathing = long-leaf Southern pine, r_8^{1} " thick = 4.22 pounds per square foot of roof.

Rafters = long-leaf Southern pine, $1\frac{5}{8}$ " thick.

Purlins = long-leaf Southern pine.

Truss = long-leaf Southern pine, for all mem-

bers except verticals in tension,

which will be of soft steel.

Distance c. to c. of trusses = 10 feet.

Pitch of roof = 1

Form of truss as shown in Fig. 25.

48. Allowable Stresses per Square Inch.

SOUTHERN LONG-LEAF PINE.

Tension with the grain Art. 34,	1200 lbs.
End bearing Art. 23,	1400 lbs.
End bearing against bolts Art. 23b,	850 lbs.
Compression across the grain Art. 25,	350 lbs.
Transverse stress—extreme fiber stress, Art. 29,	1200 lbs.
Shearing with the grain Art. 27,	150 lbs.
Shearing across the grain Art. 33,	1250 lbs.
Columns and Struts. Values given in Art. 21.	

STEEL.

Tension with the grain Art. 35,	16000 lbs.
Bearing for rivets and bolts Art. 24,	
Transport of the said boils Art. 24,	20000 lbs.
Transverse stress—extreme fiber stress, Art. 30,	16000 lbs.
Shearing across the grain Art. 32,	10000 lbs.
Extreme fiber stress in bending (pins), Art. 31,	25000 lbs.

49. Rafters.—The length of each rafter c. to c. of purlins is 10 \times sec $\theta = 10 \times 1.2 = 12$ feet, and hence the area mnop, Fig. 24, is $12 \times 10 = 120$ square feet.

VERTICAL LOADS.

Snow =
$$20.00 \times 120 = 2400$$
 lbs.
Slate = $9.20 \times 120 = 1104$ lbs.
Sheathing = $4.22 \times 120 = 506$ lbs.
 $33.42 \times 120 = 4010$ lbs.

The normal component of this load is $4010 \times \cos \theta$, or $4010 \times 0.832 = 3336$ pounds.

The normal component of the wind is (Art. 38) about $40 \times 0.70 = 28$ lbs. per square foot, and the total, $28 \times 120 = 3360$ lbs.

The total normal load supported by the rafters, exclusive of their own weight, = 3336 + 3360 = 6696 lbs. $6696 \div 12 = 558$ lbs. per linear foot of span of the rafters.

Since the thickness of the rafters has been taken as $1\frac{5}{8}$ ", either the number of the rafters or their depth must be assumed.

Assuming the depth as $7\frac{1}{2}$ ", the load per *linear foot* which each rafter can safely carry is (Art. 29), (Table XV),

$$\frac{(wl)l}{8} = \frac{1}{6}Rbd^{2},$$

$$\frac{wl}{8} \times 12 \times 12 = 1200 \times 15.23 = 18276;$$

$$\therefore w = 85 \text{ pounds.}$$

$$558 \div 85 = 6.56 = \text{number of } 1\frac{5}{8}'' \times 7\frac{1}{2}'' \text{ rafters required.}$$

To allow for the weight of the rafters and the component of the vertical load which acts along the rafter, eight rafters will be used. If a rafter is placed immediately over each truss, the spacing of the rafters will be $10 \times 12 \div 8 = 15$ inches c. to c.

The weight of the rafters is $12.2 \times 8 \times 3.75 = 366$ lbs.

50. Purlins.—The total load normal to the roof carried by one purlin, exclusive of its own weight, is $6696 + 366 \times 0.832 = 7000$ lbs. Although this is concentrated in loads of $7000 \div 8 = 875$ lbs. spaced 15'' apart, yet it may be

considered as uniformly distributed without serious error. The moment at the center of the purlin is $\frac{1}{8}(7000) \times 10 \times 12$ = 105000 inch-pounds. The component of the vertical load parallel to the rafter is $4010 \times 0.555 = 2226$ pounds and the moment of this at the center of the purlin is

 $\frac{1}{8}(2226) \times 10 \times 12 = 33390$ inch-pounds. The purlin resists these two moments in the manner shown by Fig. 25a.

(Since the rafters rest on top of the purlin the force parallel to the rafters produces torsional stresses in the purlin. There is also an

unknown wind force parallel to the rafters which produces torsional stresses of opposite character and reduces the moment 33390. Both of these effects have been neglected.) Let $b = 7\frac{1}{2}$ and $d = 9\frac{1}{2}$. The fiber stress at B, Fig. 25a, will be the sum of the two fiber stresses produced by the two moments. For the force normal to the rafter $R' = 6 \times 105000 \div 7\frac{1}{2}(9\frac{1}{2})^2 = 932$. For the force parallel to the rafter $R'' = 6 \times 33390 \div 9\frac{1}{2}(7\frac{1}{2})^2 = 375$, R' + R'' = 932 + 375 = 1307 lbs. This is a little greater than the allowable fiber stress, which is 1200 lbs. Hence the next larger size of timber must be used, or a 10" \times 10" piece. The weight of the purlin is 282 pounds.

51. Loads at Truss Apexes.—Exclusive of the weight of the truss the vertical loads at each apex, U_1 , U_2 , U_3 , U_4 , and U_5 , Fig. 25, is

Snow, slate, sheathing Art. 49,	4010 lbs.
Rafters Art. 49,	366 lbs.
Purlins Art. 50,	282 lbs.
	4658 1bs

The weight in pounds of the truss may be found from the formula $W = \frac{3}{4}dL(\mathbf{1} + \mathbf{1} \frac{1}{0}L)$, where d is the distance in feet c. to c. of trusses, and L the span in feet. Substituting for d and L,

$$W = \frac{3}{4} \times 10 \times 60(1 + \frac{1}{10} \times 60) = 3150 \text{ lbs.}$$

The full apex load is $\frac{8150}{6} = 525$ lbs., and hence the total vertical load at each apex $U_1 - U_5$, inclusive, is 4658 + 525 = 5183 lbs. In case the top chords of the end trusses are cross-braced together to provide for wind pressure, etc., this load would be increased about 75 or roo lbs.

For convenience, and since the roof assumed will require light trusses, the apex loads will be increased to 6000 lbs. In an actual case it would be economy to place the trusses about 15 feet c. to c.

The load at the supports is $\frac{6000}{2} = 3000$ lbs.

Wind.—The wind load for apexes U_1 and U_2 is 3360 lbs. (Art. 49), and at apexes L_0 and U_4 the load is $\frac{23}{2}0.0 = 1680$ lbs. For the determination of stresses let the wind apex load be taken as 3400 lbs., and the half load as 1700 lbs.

In passing, attention may be called to the fact that the weight of the truss is less than 10 per cent. of the load it has to support exclusive of the wind; hence a slight error in assuming the truss weight will not materially affect the stresses in the several members of the truss.

52. Stresses in Truss Members.—Following the principles explained in Chapter II, the stress in each piece is readily determined, as indicated on Plate I.

Having found the stresses due to the vertical loads, the wind * loads when the wind blows from the left and when it blows from the right, these stresses must be combined in the manner which will produce the greatest stress in the various members. The wind is assumed to blow but from one direction at the same time; that is, the stress caused by the wind from the right cannot be combined with the stress due to the wind from the left.

In localities where heavy snows may be expected it is best to determine the stresses produced by snow covering but one half of the roof as well as covering the entire roof.

For convenience of reference the stresses are tabulated here.

STRESSES.

	Vertical Loads.	Wind Left.	Wind Right.	Maximum Stresses.
$L_{\scriptscriptstyle 0}U_{\scriptscriptstyle 1}\ U_{\scriptscriptstyle 1}U_{\scriptscriptstyle 2}\ U_{\scriptscriptstyle 2}U_{\scriptscriptstyle 3}$	+27200 +21700 +16300	+7300 +5800 +4400	+5600 +5600 +5600	+34500 +27500 +21900
$L_{\scriptscriptstyle 0}L_{\scriptscriptstyle 1} \ L_{\scriptscriptstyle 1}L_{\scriptscriptstyle 2} \ L_{\scriptscriptstyle 2}L_{\scriptscriptstyle 3}$	-22600 -22600 -18100	—8700 —8700 —5600	-2600 -2600 -2600	-31300 -31300 -23700
$egin{array}{c} U_1L_1\ U_2L_2\ U_3L_3 \end{array}$	0 -3000 -12000	0 -2000 -4100	0 0 -4100	0 —5000 —16100
$U_1L_2 \ U_2L_3$	+5400 +7600	+3700 +5100	0	9100 12700

⁺ signifies compression.

^{*} Some engineers consider only the lee side of the roof covered with snow when wind stresses are combined with the dead and snow load stresses.

53. Sizes of Compression Members of Wood.

Piece L_0U_1 . Stress = +34500.

Since the apex U_1 is held in position vertically by the truss members, and horizontally by the purlins, the unsupported length of L_0U_1 as a column is 12 feet.

To determine the size a least dimension must be assumed and a trial calculation made. This will be better explained by numerical calculations.

Let the least dimension be assumed as $5\frac{1}{2}$ ", then $\frac{l}{d}$ = $\frac{12 \times 12}{5^{\frac{1}{2}}}$ = 26, and from page 24, P = 3086 lbs. per square inch. The safe or allowable value is $\frac{P}{4} = \frac{3086}{4} = 771$ lbs. per square inch. Hence $34500 \div 771 = 44.7 = number$ of square inches required. If one dimension is $5\frac{1}{2}$ ", the other must be $9\frac{1}{2}$ ", or a piece $5\frac{1}{2}$ " \times $9\frac{1}{2}$ " = 52.3 square inches, 12' long, will safely carry the stress 34500 lbs. This is the standard size of a $6'' \times 10''$ timber (Table XV). If the table on page 26 is used the safe strength per square inch, for $d = 5\frac{1}{2}$, is 790 pounds and the required area is is $34500 \div 790 = 43.7$ square inches. Since a $6'' \times 8''$ piece has an actual area of but 41.3 square inches, the next larger size must be used, or a $6^{\prime\prime} \times 10^{\prime\prime}$ piece, the same as found in the first trial. A piece $6'' \times 10''$ has a much greater stiffness in the 10" direction than in the 6" direction. For equal stiffness in the two directions the dimensions should be as nearly equal as possible. For example, in the above case try a piece $8'' \times 8''$, $l \div d$ = $144 \div 7\frac{1}{2}$ = 19, P = 3659, and, with a safety factor of 4, the total load is 51400 pounds. This is 16900 pounds

greater than the stress in U_0U_1 , while the area is only 4.0 square inches greater than the area of the $6'' \times 10''$ piece. By changing the shape and adding but about 7.6 per cent to the area the safe load has been increased nearly 50 per cent.

Pieces U_1U_2 and U_2U_3 . Stresses + 27500 and + 20700.

Letting $d = 5\frac{1}{2}$ ", $27500 \div 771 = 35.7$ square inches required. Now $5\frac{1}{2}$ " $\times 7\frac{1}{2}$ " = 41.3 square inches, hence a 6" \times 8" piece can be used. However, a change in size requires a splice, and usually the cost of bolts and labor for the splice exceeds the cost of the extra material used in continuing the piece L_0U_1 past the point U_2 . For this reason, and because splices are always undesirable, the top chords of roof-trusses are made uniform in size for the maximum lengths of commercial timber, and, excepting in heavy trusses, the size of the piece L_0U_1 is retained throughout the top chord, even when one splice is necessary.

To illustrate the method of procedure when the size is changed, suppose U_2U_3 is of a different size from U_1U_2 . To keep one dimension uniform the piece must be either 6" or 8" on one side. Try the least d as $5\frac{1}{2}$ ", then $\frac{l}{d}=26$, and $\frac{P}{4}=\frac{3086}{4}=771$ lbs. 21900 ÷ 771 = 28.4 square inches required. 28.4 ÷ $5\frac{1}{2}$ indicates that a 6" × 6" piece is necessary.

Commencing with L_0U_1 the nominal sizes composing the top chord are $6'' \times 10''$, $6'' \times 8''$, and $6'' \times 6''$. Since greater strength and stiffness can be obtained

without much additional expense by using the size $8'' \times 8''$ throughout, this size will be adopted.

Piece
$$U_1L_1$$
. Stress = $+$ 9100.

The unsupported length of this piece is 12 feet. Try least $d=3\frac{3}{4}$ ", then $\frac{P}{4}=580$ and $9100\div580=16=$ the number of square inches required; hence a piece 4" \times 6" with an actual area of 21.1 square inches can be used.

Piece
$$U_2L_3$$
. Stress = $+$ 12700.

The unsupported length = $10 \times 1.6667 = 16.67$ feet,

$$\frac{l}{d} = \frac{16.67 \times 12}{3.75} = 53, \quad \frac{P}{4} = \frac{1730}{4} = 433 \text{ lbs.}$$

12700 \div 433 = 29.3 = number of square inches required, or a piece $4'' \times 10''$ must be used if d = 3.75''.

Try
$$d = 5\frac{1}{2}$$
", then $\frac{l}{d} = 36 + 1$, $\frac{P}{4} = \frac{2440}{4} = 610$.

12700 ÷ 610 = 20.8 square inches required. The smallest size where $d = 5\frac{1}{2}''$ is $5\frac{1}{2}'' \times 5\frac{1}{2}'' = 30.25$ square inches.

In this case a $6'' \times 6''$ is more economical in material by 5.3 square inches of section, and will safely carry about 3000 lbs. greater load than the $4'' \times 10''$ piece.

54. Sizes of Tension Members of Wood.

Pieces
$$L_0L_1$$
 and L_1L_2 . Stress = -31300 .

From Art. 34 the allowable stress per square inch for Southern long-leaf pine is 1200 lbs.

 $31300 \div 1200 = 26.1$ = the net number of square inches required. In order to connect the various pieces at the apexes, considerable cutting must be done for notches, bolts, etc., and where the fibres are cut off their usefulness to carry tensile stresses is destroyed. Practice indicates that in careful designing the net section must be increased by about $\frac{3}{8}$, or in this case the area required is 23 + 16 = 39 square inches, therefore, a piece $5\frac{1}{2}'' \times 7\frac{1}{2}'' = 41.3$ square inches must be used. In many of the details which follow $8'' \times 8''$ pieces will be used for the bottom chord.

Piece L_2L_3 . Stress = -23700.

In a similar manner this member can be proportioned, but since splices in tension members are very undesirable, owing to the large amount of material and labor required in making them, the best practice makes the number a minimum consistent with the market lengths of timber, and, consequently, in all but very large spans the bottom chord is made uniform in size from end to end.

55. Sizes of Steel Tension Members.

Piece U_1L_1 . Stress = 0.

Although there is no stress in U_1L_1 , yet, in order that the bottom chord may be supported at L_1 , a round rod $\frac{a}{4}$ " in diameter will be used.

Piece U_2L_2 . Stress = -5000.

The number of square inches required is (Art. 35), 5000 \div 16000 = 0.31 square inches. A round rod $\frac{41}{64}$ inch in diameter is required, exclusive of the material cut away by the

threads at the ends. The area at the root of the threads of a $\frac{7}{8}$ " round rod is 0.42 square inches, hence a $\frac{7}{8}$ " round rod will be used. (Table VII.)

Piece U_3L_3 . Stress = -16100.

 $16100 \div 16000 = 1.006$ square inches. A $1\frac{1}{4}$ " round rod has area of 1.227 square inches. This rod upset * (Table VII) to $1\frac{5}{8}$ " at the ends can be used.

If the rod is not upset a diameter of $1\frac{3}{8}$ " must be used, having an area of 1.057 square inches at the root of the threads. See Table XVIII.

Note that the above rods have commercial sizes.

56. Design of Joint L_0 .—With $1\frac{1}{8}$ " Bolts.—A common form of joint at L_0 is shown in Fig. 26. The top chord rests in a notch db in the bottom chord, and, usually, altogether too much reliance is put in the strength of this The notch becomes useless when the fibers fail along db, or when the bottom chord shears along ab. The distance ab is quite variable and depends upon the arrangement of rafters, gutters, cornice, etc. Let about 12" be assumed in this case, then it will safely resist a longitudinal shearing force of $12 \times 7^{\frac{1}{2}} \times 150 = 13500$ lbs. (Art. 27). The area of the inclined surface due to the notch db equals $1.2(1\frac{1}{2} \times 7\frac{1}{2}) = 13.5$ square inches, if $dc = 1\frac{1}{2}$. This will safely resist $13.5 \times 760 = 10300$ lbs. acting normal to the surface (Art. 23a), hence the value of the notch is but 10300 lbs., leaving 34500 - 10300 = 24200 lbs. to be held in some other manner, in this case by $1\frac{1}{8}$ " bolts.

To save cutting the bottom chord for washers, and also

^{*} Upsets on steel rods should not be used unless the entire rod is annealed after being upset at the ends.

to increase the bearing upon the supports of the truss it is customary to use a corbel or bolster, as shown in Fig. 26.

Let a single $\frac{7}{8}$ " bolt be placed 6" from the end of the bottom chord. This will prevent the starting of a crack at b, and also assist in keeping the corbel in place.

If it is assumed that the bolt holes are slightly larger

Fig. 26.

than the bolts, the instant that any motion takes place along be the bolts B will be subjected to tension. If friction along be, and between the wood and the metalplate washer be neglected, the tension in the bolts may be determined by resolving 34500 - 10300 = 24200 into two components, one normal to the plane be, and the other in the direction of the bolts. Doing this the tension in the bolts is found to be about 45000 lbs. See Fig. 26.

From Table XVIII a single $1\frac{1}{8}$ " bolt will safely resist a tension of 11100 pounds, hence five bolts are required.

Each bolt resists a tension of $\frac{45000}{5} = 9000$ lbs., and hence the area of the washer bearing across the fibers of the wood must be $\frac{9000}{350} = 25.7$ \square'' (Art. 25). As the standard cast-iron washer has an area of but 16.61 \square'' , a single steel plate will be used for all the bolts. The total area including $5 - 1\frac{1}{4}$ holes for bolts will be 5(25.7 + 1.227) = 134.6 \square'' , and as the top chord is $7\frac{1}{2}$ wide, the plate will be assumed $7'' \times 20'' = 140$ \square'' .

The proper thickness of this plate can be determined approximately as follows:

The end of the plate may be considered as an overhanging beam fastened by the nuts or heads on the bolts and loaded with 350 lbs. per square inch of surface bearing against the wood.

The distance from the end of the plate to the nuts is about 3", and the moment at the nuts is $350 \times 7 \times 3" \times 3" \times \frac{1}{2} = 11000$ inch-pounds. This must equal $\frac{1}{6} Rbd^2 = \frac{1}{6} Rbt^2 = \frac{1}{6} \times 16000 \times 7 \times t^2$, or $t^2 = \frac{11000}{18700} = 0.59$, and hence $t = 0.77" = \frac{3}{4}$ " about. A $\frac{3}{4}$ " plate will be used (Art. 30). (See page 146.)

The tension in the bolts must be transferred to the corbel by means of adequate washers. Where two bolts are placed side by side, steel plates will be used and for single bolts, cast-iron washers.

Assuming the steel plate washers as normal to the direction of the bolts, they bear upon a wood surface which is inclined to the direction of the fibers. The permissible intensity of the pressure upon this surface is (Art. 23a) for $\theta = 33^{\circ} 41'$, say, 34° , about 500 pounds.

Since each bolt transmits a stress of 9000 pounds, the net area of the plate for two bolts is $2(9000 \div 500) = 36 \square''$. Allowing for the bolt holes the gross area is about $38.5 \square''$. Making the corbel the same breadth as the bottom chord a plate $7\frac{1}{2}'' \times 5\frac{1}{4}'' = 39.3 \square''$ will furnish the required area. The thickness of this plate is found in the manner explained for the plate in the top chord. A $\frac{7}{8}''$ plate is sufficient.

For the single bolt a bevel washer will be used. The net area bearing across the fibers of the wood must be $9000(\cos\theta=0.832)\div350=21.4$ [", say, 23 [", to allow for the bolt hole. A washer 5" \times 5" will be used. The horizontal component of the stress in the bolt is 9000(0.555)=5000 pounds. This requires $5000\div1400=3.6$ [" for end bearing against the wood, and $5000\div150=33.3$ [" for longitudinal shear. A lug on the washer $\frac{3}{4}$ " \times $\frac{3}{4}$ " \times 5" will provide area for the end bearing, and if placed at the edge of the washer nearer the center of the truss, there will be ample shearing area provided.

In the above work the washers have been designed for the stress which the bolts are assumed to take and not for the stress which the bolts can safely carry. As stated above, too much reliance should not be placed upon the shearing surface ab. Assuming this to fail the stress in the bolts becomes about 64200 pounds or 12960 pounds for each bolt, which is equivalent to a stress of 10500 pounds per square inch.

The horizontal component of the tension in the bolts having been transferred to the corbel, must now be transferred to the bottom chord. This is done by two white oak keys $2\frac{1}{2}" \times 9"$ long. Each key will safely carry an

end fiber stress (Art. 23), of $1\frac{1}{4} \times 7\frac{1}{2} \times 1400 = 13100$ lbs., and two keys 2×13100 , or 26200 lbs., which exceeds the total horizontal component of the stress in the bolts.

The safe longitudinal shear of each key is (Art. 27), $7^{\frac{1}{2}''} \times 9 \times 200 = 13500$, and for both keys $2 \times 13500 = 27000$ lbs., a little larger than the stress to be transferred.

The bearing of the keys against the end fibers of the corbel and the bottom chord is safe, as the safe value for long-leaf Southern pine is the same as for white oak.

The safe longitudinal shear in the end of the bottom chord is about $7\frac{1}{2}'' \times 12 \times 150 = 13500$ lbs. exclusive of the $\frac{7}{3}''$ bolt. The safe strength at the right end of the corbel is about the same. Between the keys there is ample shearing surface without any assistance from the bolts in both the corbel and the bottom chord. The keys have a tendency to turn and separate the corbel from the bottom chord. This will produce a small tension in the five inclined bolts if the corbel is not sufficiently stiff to hold them in place when the two end bolts are drawn up tight. One $\frac{3}{4}''$ bolt for each key of the size used here is sufficient to prevent the keys from turning when the bolts pass through or near the keys. See Art. 1, Appendix.

In order to prevent bending, and also to give a large bearing surface for the vertical component of 34500 lbs., a white oak filler is placed as shown in Fig. 26, and a small oak key employed to force it tightly into place.

The net area of the bottom chord must be $\frac{\$1300}{1200} = 26.1 \square''$ which inspection shows is exceeded at all sections in Fig. 26.

The form of joint just considered is very common, but

almost always lacking in strength. In addition to the notch, usually but one or two $\frac{3}{4}$ " bolts are used where five $1\frac{1}{8}$ " bolts are required. The writer has even seen trusses where the bolts were omitted entirely.

The joint as designed would probably fail before either the top or bottom chords gave out. If tested under a vertical load, the top chord would act as a lever with its fulcrum over the oak filler; this would throw an excessive tension upon the lower pair of bolts, and they would fail in the threads of the nuts.

Whenever longitudinal shear of wood must be depended upon, as in Fig. 26, bolts should always be used to bring an initial compression upon the shearing surface, thereby preventing to some extent season cracks.

56a. Design of Joint L_0 —Bolts and Metal Plates.— The horizontal component of 34500 lbs. is 28700 lbs., which is transferred to the bottom chord by the two metal teeth let into the chord as shown in Fig. 27. Let the first plate be 7" wide and 1" thick and the notch 2" deep, then the safe moment at the point where it leaves the wood is $\frac{1}{6} Rbt^2 = \frac{1}{6} \times 16000 \times 7 \times 1 \times 1 = 18670$ inch-pounds.

A load of 18670 lbs. acting I" from the bottom of the tooth gives a moment of 18670 \times I = 18670 inch-pounds. This load uniformly distributed over the tooth = $\frac{18670}{2 \times 7}$ = 1330 lbs. per square inch; as this is less than 1400 lbs., the safe bearing against the end fibers of the wood, the value of the tooth is 1330 \times 14 = 18670 lbs. The shearing surface ahead of the tooth must be at least $\frac{18670}{160}$ = 125 \square "; and since the chord is $7\frac{1}{2}$ " thick, the length of this surface must be at least $\frac{125}{7.5}$ = 16.7", which is exceeded in Fig. 27.

In like manner the value of the second tooth 7" wide and $\frac{3}{4}$ " thick is found to be 14000 lbs., and hence the value of both teeth is 18670 + 14000 = 32670 lbs., which exceeds the total horizontal component of 34500 lbs. or 28700 lbs.

The horizontal component 28700 lbs. is transferred to the metal through the vertical plates at the end of the top chord, and these are held in place by two $\frac{7}{8}$ " bolts as

shown. The bearing against the end of the top chord exceeds the allowable value about 8800 lbs. if the vertical cut is $3\frac{1}{2}$ " as shown. The $\frac{3}{4}$ " plate is bolted to the bottom chord and the two bolts should be placed as near the hook as possible to prevent its drawing out of the noteh. The amount of metal subject to tensile stresses and shearing stresses is greatly in excess of that required.

The net area of the bottom chord exceeds the amount required.

The corbel is not absolutely necessary in this detail, but it simplifies construction.

To keep the $\frac{3}{4}$ " plate in place two $\frac{7}{4}$ " bolts are employed. They also keep the tooth in its proper position.

The teeth should usually be about twice their thickness in depth, as then the bending value of the metal about equals the end bearing against the wood. This allows for a slight rounding of the corners in bending the plates.

Fig. 28 shows another form of joint using one \(\frac{3}{4}\)" plate. The bolt near the heel of the plate resists any slight lifting action of the toe of the top chord, and also assists somewhat in preventing any slipping towards the left.

57. Design of Joint L_0 —Nearly all Wood.—The strength of this joint depends upon the resistance of the shearing surfaces in the bottom chord and the bearing of wood against wood. The notches when made, as shown in Fig. 29, will safely resist the given stresses without any assistance from the bolts. A single bolt is passed through both chords to hold the parts together which might separate in handling during erection. The horizontal bolts in the bottom chord are put in to prevent any tendency of the opening of season cracks, starting at the notches. The vertical bolts serve a similar purpose, as well as holding the corbel or bolster in place.

58. Design of Joint L_0 —Steel Stirrup.—Fig. 30 shows one type of stirrup joint, with a notch 2" deep. The safe load in bearing on the inclined surface ab is 13700 lbs., and for shearing ahead of the notch 20300 lbs. This leaves 34500—13700 = 20800 which must be taken by the stirrup. $20800 \div \tan 0 = \frac{20800}{0.607} = 31200$ lbs. = stress in stirrup rod.

FIG 28.

F1G. 29.

 $\frac{31200}{16000} = 1.95 =$ number of square inches of steel required, or 0.975 \square'' must be area of the stirrup rod. A $1\frac{1}{4}''$ round rod will be used which has an area, at the root of the threads, of 0.893 \square'' .

To pass over the top chord the rod will be bent in the arc of a circle about $7\frac{1}{2}$ " in diameter, and rest in a cast-iron

saddle, as shown in Fig. 30. The base of this saddle must have an area of $\frac{31200}{8500} = 89$ \square'' . The size of the base will be $7\frac{1}{2}'' \times 12''$.

The horizontal stress 17300 transferred to the corbel will be amply provided for by the two keys which transfer it to the bottom chord.

59. Design of Joint L_0 .—Steel Stirrup and Pin.—The detail shown in Fig. 31 is quite similar to that shown in Fig. 30, in the manner of resisting the stresses. In the

present case the tension in the steel rod is 19000 lbs., requiring a rod r_8^{1} square. Loop eyes for a $2\frac{3}{4}$ pin are formed on each end of the rod as shown. Each loop has a stress of 19000 lbs., and if this stress transmitted to the bottom chord is assumed to act r_8^{7} from the outside surface of the chord, the moment of this stress is $19000(r_8^{7}) + \frac{1}{2} = 45100$ inch-pounds, requiring a $2\frac{3}{4}$ pin

(Art. 31). The pin is safe against shearing, as 5.94×10000 = 59400 is much greater than the stress to be carried. The bearing of the pin against the end fibers of the chord is about 21000 lbs., while the permissible value is $2\frac{3}{4} \times 7\frac{1}{2} \times 850 = 17500$ lbs. (Art. 23b.) The bearing of the pin across the grain of the chord is excessive, as the vertical component of the stress in the stirrup is about 31000 lbs. It is practically impossible to use this detail with any reasonable factor of safety unless the chords are made

excessively large. The stirrup cannot be adjusted and will either carry the entire load or none of it.

It may be well to state at this time that usually it is not possible to construct a joint so that the stress shall be divided between two different lines of resistance. In the joints designed care has been taken to make the division of the stress such that, if the wood shears ahead of the notch, the bolts can take the entire load with a unit stress well within the elastic limit of the steel. The washers, etc., will be over-stressed in the same proportion as the bolts.

60. Design of Joint L_0 .—Plate Stirrup and Pin.—Fig. 32.

—The method pursued in proportioning this type of joint

is the same as that followed in Art. 59. In this case the stirrup takes the entire component of 34500 lbs., the $\frac{7}{8}$ "-bolt merely keeps the members in place. This detail has the

objection of excessive bearing stresses for the pin against the wood.

61. Design of Joint L_0 .—Steel Angle Block.—Fig. 33.— This joint needs no explanation. Its strength depends upon the two hooks and the shearing resistance in the bottom chord. The diagonal $\frac{7}{8}$ " bolt is introduced to hold the block in its seat, and to reinforce the portion in direct com-

pression. The top chord is kept in position by the top plate, and a r"-round steel pin driven into the end and passing through a hole in the block.

62. Design of Joint L_0 .—Cast-iron Angle Block.—At the right, in Fig. 33, is shown a cast-iron angle block made of $\frac{3}{4}$ " or \mathbf{r} " metal. It is held in place by two $\frac{7}{8}$ " bolts. The top chord is held in position by a cast-iron lug in the center of the block used to strengthen the portion of the block at its right end.

In all angle block joints care must be taken to have

sufficient bearing surface on top of the bottom chord to safely carry the vertical component of the stress in the top chord.

63. Design of Joint L_0 .—Special.—It sometimes happens that trusses must be introduced between walls and the truss concealed upon the outside. In this case the bottom chord rarely extends far beyond the point of intersec-

Fig. 34.

tion of the center lines of the two chords. The simplest detail for this condition is a flat plate stirrup and a square pin, as shown in Fig. 34. A pin $2\frac{3}{4}$ " square is required. The ends are turned down to fit $2\frac{1}{2}$ " holes in the $\frac{3}{8}$ " plate, and, outside of the plate the diameter is reduced for a small nut which holds a 3" plate washer in place. This detail fulfils all the conditions for bending, bearing shear, etc. If round pins are used, two will be required, each $2\frac{1}{2}$ " in diameter. These should be spaced about

Frg. 35.

F1a. 36.

10" apart and not less than 9" from the end of bottom chord.

Fig. 35 shows another type of joint. This can be adjusted, but requires a heavy bottom chord and the tendency of the angles to turn creates excessive cross bearing stresses.

64. Design of Joint L_0 .—Plank Members.—Fig. 36 shows a connection which fulfils all of the conditions of bearing, shear, bending, etc., excepting the bearing of the round bolts against the wood. The bearing intensities are about double those specified in Arts. 23b and 25.

65. Design of Joint L_0 .—Steel Plates and Bolts.— Fig. 37 shows the joint L_0 composed of steel side plates, steel bearing plates, and bolts. The stresses are transmitted directly to the bearing plates against the end fibers of the wood, from the bearing plates to the bolts and by the bolts to the side plates. Assuming two bearing plates on each side of the top chord, the thickness of each plate will be 34500 \div $7\frac{1}{2} \times 1400 \times 4 = 0.82$ or $\frac{7}{8}$ ". If six bolts are used the total bearing area for each bolt is $2d \times \frac{7}{8}$, and if the allowable bearing intensity is 20000 lbs., the diameter of each bolt is 34500 \div 12 $\times \frac{7}{8} \times$ 20000 = 0.17 in. If the side plates are but $\frac{5}{16}$ " thick the diameter becomes $34500 \div 12 \times \frac{5}{8} \times 20000 = 0.23$ in. The moment to be resisted by each bolt is $\frac{1}{12}(34500 \times 0.594) = 1708$ in.-1bs. According to Art. 31 this moment requires a bolt just a little larger than $\frac{7}{8}$ " diameter. A 1" bolt permits a moment of 2450 in.-lbs., which greatly exceeds the above, hence $\frac{7}{8}$ " bolts will be used. The shearing value of six bolts in double shear is about 72000 lbs. As is usually the case the bending values of the bolts govern the diam-

eters. The net distance between the bearing plates is $_{34500} \div _{150} \times _{7\frac{1}{2}} \times _{4} = 7.6$ in., say, 8", to provide for longitudinal shear of the wood.

The stress in the bottom chord is not sufficiently different from that in the top chord to change any of the dimensions, so the same arrangement of plates and bolts will be used. In this detail the entire reaction should be transmitted into

Fig. 37.

the side plates, the pin being placed as shown in Fig. 37. The pin must fulfil the conditions of bearing, shear, and bending.

66. Design of Wall Bearing.—In the designs of joint L_0 given above, no consideration has been made of the reaction at the support. The vertical and horizontal components of the reaction are shown on Plate I, 23500 lbs. and 3700 lbs. respectively. The vertical component must be provided for in making the bearing area of the corbel sufficiently large so that the allowable intensity for bearing across the grain is not exceeded. In this case $23500 \div 350 = 67.1 \square''$ is the minimum area required. If the corbel or bolster is made of white oak only $47 \square''$ are required. The horizontal component will usually be amply provided for by the friction between the corbel and the support, but anchor bolts should always be used in important structures. Whenever the stress in the bottom chord does not equal the horizontal component of the stress in the top chord then the difference between the two stresses must be transferred to the corbel or bolster and then to the support. In the above case 31300 - 28700 = 2600 lbs. is the excess stress to be transferred. The joints as designed amply provide for this.

In all of the illustrations of the joint L_0 the center lines of the top and bottom chords are shown meeting in a point over the center of the support. This is theoretically correct but owing to the change in shape of the truss when fully loaded the top chord has a tendency to produce bending in the bottom chord which can be counterbalanced by placing the center of the support a little to the right of the intersection of the center lines of the chords. Usually the corbel will be sufficiently heavy to take care of this moment, which cannot be exactly determined.

67. Design of Joint U_2 .—As the rafter is continuous by this joint it will be necessary to consider only the vertical rod and the inclined brace.

Since the stress of the rod is comparatively small, the standard size of cast-iron washer can be employed to transfer it to the rafter. Two forms of angle washers are shown

Fig. 38.

Fig. 39.

in Figs. 38 and 40. In Figs. 39 a bent plate washer is shown which answers very well if let into the wood or made sufficiently heavy so that the stress in the rod cannot change the angles of the bends.

Where the inclined member is so nearly at right angles with the top chord as in this case, a square bearing, as shown in Fig. 40, is all that is required if there is sufficient

bearing area. In this case there are 30.25 \square ", which has a safe bearing value of $30.25 \times 350 = 10600$ lbs., which is not sufficient.

Fig. 38 shows a method of increasing the bearing area by means of a wrought plate, and Fig. 39 the same end reached with a cast-iron block. In all cases the strut should be secured in place either by dowels, pins or other device.

68. Design of Joint U_1 .—The disposition of the $\frac{3}{4}$ " rod is evident from the Figs. 41, 42, and 43:

Fig. 41 shows the almost universal method employed by carpenters in framing inclined braces, only they seldom take care that the center lines of all pieces meet in a point as they should.

If the thrust 9100 lbs. be resolved into two components respectively normal to the dotted ends, it is found that a notch $1\frac{1}{2}$ deep is entirely inadequate to take care of the component parallel to the rafter. The cut should be made vertical and $2\frac{5}{8}$ deep. The com-

FIG. 43.

ponent nearly normal to the rafter is safely carried by about $22 \square$ ".

Figs. 42 and 43 show the application of angle-blocks, which really make much better connections, though somewhat more expensive, than the detail first described.

69. Design of Joint L_2 .—Fig. 44 shows the ordinary method of connecting the pieces at this joint. The

horizontal component of 9100 lbs. is taken by a notch $2\frac{5}{8}$ " deep and $3\frac{3}{4}$ " long.* The brace is fastened in

place by a $\frac{5}{8}$ " lag-screw 8" long. The standard castiron washer, $3\frac{1}{4}$ " in diameter, gives sufficient bearing

area against the bottom chord for the stress in the vertical rod.

Fig. 45 shows a wooden angle-block let into the bottom chord $r\frac{1}{2}$ ". The dotted tenon on the brace need not be

^{*}The permissible bearing against a vertical cut on the brace is 760 lbs. per square inch which requires a notch $2\frac{\pi}{8} \times 3\frac{\pi}{4}$. If the cut bisects the angle between the brace and bottom chord the notch required is $2'' \times 3\frac{\pi}{4}''$.

over 2" thick to hold the brace in position. The principal objection to the two details just described is that the end bearing against the brace is not central, but at one side, thereby lowering the safe load which the brace can carry.

Fig. 46 shows the application of a cast-iron angle-block. The brace is cut at the end so that an area $3\frac{3}{4}"\times4"$ trans-

mits the stress to the angle-block. If the lugs on the bottom of the block are $1\frac{1}{4}$ deep, the horizontal component of the stress in the brace will be safely transmitted.

In Fig. 47 a $\frac{3}{4}$ " bent plate is employed. This detail requires a $\frac{3}{4}$ " bolt passing through the brace and the bottom

chord to make a solid connection. The use of the bolt makes the end of the brace practically fixed, so that the stress may be assumed to be transmitted along the axis or center line.

70. Design of Joint L_s and Hook Splice.—A very common method of securing the two braces meeting at L_s is shown in Fig. 48, though they are rarely dapped into the lower chord. This method does fairly well, excepting

when the wind blows and one brace has a much larger stress than the other. In this case the stresses are not balanced, and the struts are held in place by friction and the stiffness of the top chord.

The washer for the $1\frac{1}{4}$ " rod upset to $1\frac{5}{8}$ " must have an area of $1\frac{5}{8}\frac{1}{6}\frac{0}{6}\frac{0}{8} = 46$ \square ", which is greater than the bearing area of the standard cast-iron washer, so a $\frac{3}{4}$ " plate, 6" \times 8", will be used.

It is customary to splice the bottom chord at this joint when a splice is necessary. The net area required is $^{23}_{12}$ = 20 \square'' . The splice shown in Fig. 48 is one commonly used in old trusses, and depends entirely upon the longitudinal shear of the wood and the end bearing of the fibers.

The total end bearing required is $\frac{23700}{1400} = 17$ \square'' , which is obtained by two notches, each $1\frac{1}{4}$ deep as shown. The total shearing area required is $\frac{23700}{150} = 158$ \square'' . Deducting bolt-holes, the area used is $2(7\frac{1}{2} \times 12) - 2(3) = 174$ \square'' . The three bolts used simply hold the pieces in place and prevent the rotation of the hooks or tables.

Fig. 49 * shows a similar splice where metal keys are used. The end-bearing area of the wood is the same as

before, and the available area of the wood for longitudinal shear is sufficient, as shown by the dimensions given. The net area of the side pieces is $2(2 \times 7\frac{1}{2}) = 30$ \square'' , while but 20 \square'' are actually required.

71. Design of Joint L_3 and Fish-plate Splice of Wood.

—In this case the braces are held in position by dowels

^{*}The bearing across the grain of the wood is excessive when square metal keys are used. This is due to the tendency of the keys to rotate.

and a wooden angle-block. The details of the vertical rod need no explanation, as they are the same as in Art. 70. The splice is made up of two fish-plates of wood each $2\frac{1}{4}'' \times 7\frac{1}{2}'' \times 46''$ long and four $1\frac{1}{2}''$ bolts. The net area of the fish-plates is $2(2\frac{1}{4} \times 7\frac{1}{2}) - 2(2 \times 1\frac{1}{2}) = 27.7 \square''$, while but 20 \square'' are required.

Each bolt resists in bending $\frac{23700}{8}(1\frac{1}{8}+1\frac{3}{8})=740c$

inch-pounds, which is less than the safe value, or 8280 inch-pounds (Art. 31)

The total end bearing of the wood fibers is $2(4 \times 2\frac{1}{4} \times 1\frac{1}{2})$ = 27 \square'' , and that required $\frac{23700}{860} = 28 \square''$.

The longitudinal shearing area of the wood and the transverse shearing area of the bolts are evidently in excess of that required.

The nuts on the bolts may be considerably smaller than the standard size, as they merely keep the pieces in place. The cast-iron washer may be replaced by the small plate washer, to make sure that no threeds are in the wood; otherwise washers are not needed. The bolts should have a driving fit.

72. Design of Joint L_8 and Fish-plate Splice of Metal.

—This detail, differing slightly from those previously given, requires little additional explanation. A white-oak washer

has been introduced so that a smaller washer can be used for the vertical rod.

FIG. 52.

A small cast-iron angle block replaces the wooden block of the previous article. The splice is essentially the same,

with metal fish-plates. Contrary to the usual practice, plate washers have been used under the nuts. This is to make certain that the fish-plates bear against the bolt proper and not against threads. If recessed bridge-pin nuts are used, the washers can be omitted.

Fig. 52 shows another metal fish-plate splice where four bolts have been replaced by one pin $1\frac{1}{2}$ in diameter.

The bearing plate reduces the bending moment in the pin and increases the bearing against the wood. The struts bear against a cast-iron angle-block, with a "pipe"

for the vertical rod, which transmits its stress directly to the block. Two pins in the center of the block keep the bottom chord in position laterally.

73. Metal Splices: for Tension Members of Wood.— Figs. 53 and 54 show two types of metal splices which have the great advantage over all the splices described above in that they can be adjusted. The detail shown in Fig. 53 has one serious fault. The tension in the rods tends to

rotate the angles and thereby produces excessive bearing stresses across the grain of the wood. The castings in Fig. 54 usually have round lugs, but square lugs are much more efficient.

A very old and excellent form of splice is shown in Fig. 54a.*

74. General Remarks Concerning Splices.—There are a large number of splices in common use which have not been considered, for the reason that most of them are faulty in design and usually very weak. In fact certain scarf-splices are almost useless, and without doubt the

^{*} See Manual for Railroad Engineers, by George L. Vose, 1872.

truss is only prevented from failing by the stiffness of its supports.

75. Design of Joint U_3 .—The design of this joint is clearly shown in Figs. 55-58. No further explanation seems necessary.

76. The Attachment of Purlins.—The details shown (Figs. 59-63) are self-explanatory. In all cases the adjacent purlins should be tied together by straps as shown. This precaution may save serious damage during erection, if at no other time.

The patent hangers shown in Figs. 64, 65, 66, and 67 can be employed to advantage when the purlins are placed between the top chords of the trusses.

F1G. 59.

Fig. 60.

77. The Complete Design.*—Plate I shows a complete design for the roof-truss, with stress diagrams and bills of

^{*}The dimensions and quantities shown on Plates I and II are based on timber which is full size. The purlins should be $10'' \times 10''$ instead of $6'' \times 10''$.

material. The weight is about 100 lbs. less than that assumed. In dimensioning the drawing a sufficient

Fig. 6r.

Fig. 62,

number of dimensions should be given to enable the carpenter to lay off every piece, notch, bolt hole, etc., without scaling from the drawing. To provide for settlement or sagging due to shrinkage and the seating of the

various pieces when the loading comes upon the new truss, the top chord is made sowewhat longer than its computed length. From $\frac{1}{2}$ " to $\frac{3}{4}$ " for each 10' in length will be sufficient in most cases. A truss so constructed is said to be cambered.

In computing the weights of the steel rods they have been assumed to be of uniform diameter from end to end, and increased in length an amount sufficient to provide metal for the upsets. See Table VII.

The lengths of small bolts with heads should be given from under the head to the end of the bolt, and the only fraction of an inch used should be $\frac{1}{2}$.

Plate II shows another arrangement of the web bracing which has some advantages. The compression members are shorter, and consequently can be made lighter. The bottom chord at the centre has a much smaller stress,

permitting the use of a cheap splice. On account of the increase of metal the truss is not quite as economical as that shown on Plate I. For very heavy trusses of moderate span the second design with the dotted diagonal is to be preferred.

CHAPTER VI.

DESIGN OF A STEEL ROOF-TRUSS.

78. Data.—Let the loading and arrangement of the various parts of the roof be the same as in Chapter V, and simply replace the wooden truss by a steel truss of the shape shown on Plate III. Since there is but little difference between the weights of wooden and steel trusses of the same strength, the stresses may be taken as found in Chapter V and given on Plate III.

79. Allowable Stresses per Square Inch.

SOFT STEEL.

For compression use table, page 28, with a factor of safety of 4. Compare with safe values on p. 173.

80. Sizes of Compression Members.

Piece L_0U_1 . Stress = +34500 lbs.

The ordinary shape of the cross-section of compression members in steel is shown on Plate III. Two angles are placed back to back and separated by ‡" or \$" to admit gusset-plates, by means of which all members are connected

at the apexes. Generally it is more economical to employ unequal leg angles with the longer legs back to back.

Let the gusset-plates be assumed \(\frac{3}{6}'' \) thick, then from Table XIII the least radii of gyration of angles placed as explained above can be taken.

Try two $3\frac{1}{2}'' \times 2\frac{1}{2}'' \times \frac{1}{4}''$ angles. From Table XIII the least radius of gyration (r) is 1.09. The unsupported length of the piece L_0U_1 in feet is 12, and hence $\frac{L}{r} = \frac{12}{1.09} = 11.0$. From Art. 22, P = 30324 lbs. for square-ended columns when $\frac{L}{r} = 11.0$. $30324 \div 4 = 7581$ lbs. = the allowable stress per square inch. $\frac{34500}{7581} = 4.55 =$ number of square inches required. The two angles assumed have a total area of 2.88 square inches, hence another trial must be made. An inspection of Table XIII shows that 1.09 is also the least radius of gyration for a pair of $3\frac{1}{2}'' \times 2\frac{1}{2}'' \times \frac{1}{2}''$ angles placed $\frac{3}{6}''$ apart, as shown; hence if any pair of $3\frac{1}{2}'' \times 2\frac{1}{2}''$ angles up to this size gives sufficient area, the pair will safely carry the load.

Two $3\frac{1}{2}'' \times 2\frac{1}{2}'' \times \frac{7}{16}''$ angles have an area of $2 \times 2.43 = 4.86$ square inches.

Angles with $2\frac{1}{2}$ " legs do not have as much bearing for purlins as those with longer legs, and sometimes are not as economical. In this case, two $4'' \times 3'' \times \frac{5}{16}$ " angles having an area of 4.18 square inches will safely carry 34500 lbs., making a better and more economical combination than that tried above. This combination will be used.

Thus far it has been assumed that the two angles act as one piece. Evidently this cannot be the case unless they are firmly connected. The least radius of gyration of a single angle is about a diagonal axis as shown in Table XII, and for a $4'' \times 3'' \times \frac{5}{10}l''$ angle its value is 0.65. If the unsupported length of a single angle is l, then in order that the single angle shall have the same strength as the combination above, $\frac{l}{0.65}$ must equal $\frac{L}{1.27} = 9.4$, or l = 6'.1. Practice makes this length not more than $\frac{2}{3}(6.1)$, or about 4 feet. Hence the angles will be rigidly connected by rivets every 4 feet.

Pieces
$$U_1U_2$$
 and U_2U_3 .

Owing to the slight differences in the stresses of the top chords the entire chord is composed of the same combination, or two $4'' \times 3'' \times \frac{5}{10}''$ angles, having an area of 4.18 square inches.

Piece
$$U_2L_2$$
. Stress = + 10100.

Although it is common practice to employ but one angle where the web stress is small, yet it is better practice to use two in order that the stress may not be transmitted to one side of the gusset-plate.

The unsupported length of this piece is 13'.3. The least radius of gyration of two $2\frac{1}{2}'' \times 2'' \times \frac{1}{4}''$ angles is 0.94. $\frac{L}{r} = \frac{13.3}{0.78} = 17.0$, and, from Art. 22, P = about 20900. $\frac{20900}{4} = 5225 = \text{the allowable stress per square inch.}$ $\frac{10100}{5225} = 1.93$ square inches required.

Two $2\frac{1}{2}'' \times 2'' \times \frac{1}{4}''$ angles have an area of 2.12 square inches, and hence are safe according to the strut formula. For stiffness no compression member should have a dimension less than $\frac{1}{60}$ of its length.

 $\frac{13.3 \times 12}{50} = 3''.2$, or the long legs of the angles should

be 3".2, and the sum of the short legs not less than this amount. Hence two $3\frac{1}{2}"\times2\frac{1}{2}"\times\frac{1}{4}"$ angles, having an area of 2.88 square inches, must be used. Tie-rivets will be used once in about every four feet.

Piece L_1U_1 will be the same as L_2U_2 .

Piece U_1L_2 . Stress = +9100 lbs.

Two $3'' \times 2\frac{1}{2}'' \times \frac{1}{4}''$ angles = 2.62 square inches can evidently be used, as the dimensions and stresses are slightly less than for U_2L_2 .

The least radius of gyration of a single $3'' \times 2\frac{1}{2}'' \times \frac{1}{4}''$ angle is 0.53, hence they must be riveted together every $\frac{2}{3}(0.53)$ (12.0) = 4.24 feet. Note that $2\frac{1}{2}''$ legs can be used here, as they will receive no rivets, while in the top chord both angle legs will receive rivets as shown on Plate III.

81. Sizes of Tension Members.

Piece L_0L_2 . Stress = -31300 lbs.

The net area required is $\frac{31300}{16000} = 1.96$ square inches. The same general form of section is used for tension members as for compression members. In the compression members the rivets were assumed to fill the holes and transmit the stresses from one side of the holes to the other. In tension members this assumption cannot be made, for the fibers are cut off by the rivet-hole, and consequently cannot transmit any tensile stress across the rivet-holes. This being the case, the two angles employed for tension members must have an area over and above the net area required equal to the area cut out or injured by the rivet-holes. In calculating the reduction of area for rivet-holes, they are assumed to be $\frac{1}{8}$ " larger than the diameter

of the rivet. For a $\frac{3}{4}$ " rivet the diameter of the hole is taken as $\frac{7}{8}$ ". See Table IV.

For this truss let all rivets be $\frac{3}{4}''$. For a trial let the piece in hand (L_0L_2) be made up of two $3'' \times 2\frac{1}{2}'' \times \frac{1}{4}''$ angles having an area of 2.62 square inches. As shown by the arrangement of rivets on Plate III, but one rivet-hole in one leg of each angle must be deducted in getting the net area. One $\frac{3}{4}''$ rivet-hole reduces the area of two angles $2(\frac{7}{8} \times \frac{1}{4}) = 0.44$ square inch, and hence the net area of two $3'' \times 2\frac{1}{2}'' \times \frac{1}{4}''$ angles is 2.62 - 0.44 = 2.18 square inches, which is a little greater than that required, and consequently can be safely used.

Piece L_2U_3 . Stress = -17000 lbs.

 $\frac{170\,00}{160\,00}$ = 1.06 square inches net section required. Two $2\frac{1}{2}'' \times 2'' \times \frac{1}{4}''$ angles = 2.12 square inches.

2.12-0.44=1.68 square inches net section. As this is greater than the area required, and also the smallest standard angle with $\frac{1}{4}''$ metal which can be conveniently used with $\frac{3}{4}''$ rivets, it will be employed.

Piece $L_{\rm s}U_{\rm s}$. Stress = -16,300 lbs.

Use two $2\frac{1}{2}"\times 2"\times \frac{1}{4}"$ angles having a gross area of 2.12 square inches and a net area of 1.68 square inches.

82. Design of Joint L_0 , Plate III.—The piece L_0U_1 must transfer a stress of 34500 lbs. to the gusset through a number of $\frac{3}{4}$ " rivets. These rivets may fail in two ways. They may shear off or crush. If they shear off, two surfaces must be sheared, and hence they are said to be in double shear. From Art. 32, a $\frac{3}{4}$ " rivet in double shear will safely carry 8836, and hence in this case $\frac{34500}{8836} = 4$ is the number of rivets required.

The smallest bearing against the rivets is the $\frac{2}{8}$ gusset-plate. From Art. 24, the safe bearing value in a $\frac{2}{8}$ plate is 5625 lbs., showing that seven rivets must be employed to make the connection safe in bearing.

It is seen that as long as the angles are at least $\frac{1}{4}$ " thick, the gussets $\frac{3}{8}$ " thick, and the rivets $\frac{3}{4}$ " in diameter the required number of rivets in any member equals the stress divided by the bearing value of a $\frac{3}{4}$ " rivet in a $\frac{3}{8}$ " plate, or 5625.

The piece L_0L_2 requires $\frac{3}{5}\frac{1}{6}\frac{3}{2}\frac{0}{5}=6$ rivets.

The rivets are assumed to be free from bending, as the rivet-heads clamp the pieces together firmly.

The location of the rivet lines depends almost entirely upon practical considerations. The customary locations are given in Table III.

83. Design of Joint U_1 .—The number of rivets required in L_2U_1 is $\frac{0.100}{0.00} = 2$ rivets. The best practice uses at least three rivets, but the use of two is common. As the top chord is continuous, evidently the same number is required in it.

Joint U_2 will require the same treatment.

84. Design of Joint L_2 .

 L_0L_2 requires 6 rivets as in Art. 82. L_2U_1 requires 2 rivets as in Art. 83.

 L_2U_2 requires 2 rivets as in Art. 83.

 L_2U_3 requires $\frac{170\,0\,0\,0}{50\,0\,5}=$ 4 rivets.

 L_2L_2' requires $\frac{1}{5} \frac{6}{6} \frac{3}{2} \frac{0}{5} = 3$ rivets,

but the connection of L_2L_2' will probably be made in the field, that is, will not be made in the shop but at the building, so the number of rivets should be increased 25 per cent. Therefore 4 rivets will be provided for.

85. Design of Joint U_3 .

 U_2U_3 requires 7 rivets as in Art. 82. L_2U_3 requires 4 rivets as in Art. 83.

If field-rivets are used, these numbers become 9 and 5 respectively.

86. Splices.—As shown on Plate III the bottom chord angles have been connected to the gusset-plate at joint L_2 in the manner followed at the other joints with the addition of a plate connecting the horizontal legs of the angles. Although this connection is almost universally used, yet it is much better practice to extend L_1L_2 beyond the gusset-plate and then splice the angles by means of a plate between the vertical legs of the angles and a horizontal plate on the under side of the horizontal legs of the angles. See paragraph 38, page 168.

87. End Supports.—In designing joint L_0 only enough rivets were placed in the bottom chord to transmit its stress to the gusset-plate. Usually a plate not less than 1" thick is riveted under the bottom-chord angles to act as a bearing plate upon the support. The entire reaction must pass through this plate and be transmitted to the gusset-plate by means of the bottom-chord angles, unless the gusset has a good bearing upon the plate. This is not the usual condition and is not economical. The reaction is about 24000 lbs. (Art. 65). $\frac{24000}{56825} = 5 =$ the number of $\frac{3}{4}''$ rivets required for this purpose alone. The total number of rivets in the bottom angles is 5 + 6 = 11 rivets. The number of rivets found by this method is in excess of the number theoretically required. The exact number is governed by the resultant of the reaction and the stress in L_0L_1 .

The bearing plate should be large enough to distribute the load over the material upon which it bears, and to admit two anchor-bolts outside the horizontal legs of the bottom angles.

88. Expansion.—Expansion of trusses having spans less than 75 feet may be provided for by letting the bearing plate slide upon a similar plate anchored to the supports, the anchor-bolts extending through the upper plates in slotted holes. See Plate III.

Trusses having spans greater than 75 feet should be provided with rollers at one end.

In steel buildings the trusses are usually riveted to the tops of columns and no special provision made for expansion.

- 89. Frame Lines and Rivet Lines.—Strictly, the rivet lines and the frame lines used in determining the stresses should coincide with the line connecting the centers of gravity of the cross-sections of the members. This is not practicable, so the rivet lines and frame lines are made to coincide.
- 90. Drawings.—Plate III has been designed to show various details and methods of connecting the several parts of the truss and the roof members. A great many other forms of connections, purlins, roof coverings, etc., are in use, but all can be designed by the methods given above. Plate III contains all data necessary for the making of an estimate of cost, and is quite complete enough for the contractor to make dimensioned *shop drawings* from. These drawings are best made by the parties who build the truss, as their draughtsmen are familiar with the machinery and templets which will be used.

gr. Connections for Angles.—In designing the connections of the angles, but one leg of the angle has been riveted to the gusset-plate. From a series of experiments made by Prof. F. P. McKibben (Engineering News, July 5, 1906, August 22, 1907) it appears that this connection has an efficiency of about 76 per cent based upon the net area of the angle. If short lug or hitch angles are used to connect the outstanding leg to the gusset-plate the efficiency is raised but about 10 per cent. The use of lug angles is not economical unless considerable saving can be made in the size of the gusset-plate. While the ordinary connection has an efficiency of but 76 per cent yet members and connections designed by this method are perfectly safe for structures of the class being considered, since the stress per square inch is less than 22000 pounds. The above statements have particular reference to members in tension but are probably true for compression members as well, as far as efficiency is concerned.

92. Purlins.—When I beams or channels are used for purlins their design offers no difficulties. The loads are resolved respectively into components parallel and normal to the webs of the purlins and then the method explained in Art. 30 will determine the extreme fiber stress for the section assumed. If this exceeds or differs greatly from the allowable fiber stress, a new trial must be made.

Although Art. 30 explains the method to be followed in designing purlins consisting of angles, and an example given to illustrate the method, yet it may be well to give a second example here where the loading is in two planes.

From Art. 50. The moments at the center of the purlin are given for components of the loads respectively

normal and parallel to the rafter. Let these two moments be resisted by a $6'' \times 4'' \times \frac{13}{16}''$ angle placed as shown in Fig. 68. Table XII gives the location of the axes I-I,

Fig. 68.

2-2, 3-3, and 4-4, the axes 3-3 and 4-4 being the principal axes. Since the sum of the moments of inertia about any pair of rectangular axes is constant, $I_{1-1} + I_{2-2}$ = $I_{3-3} + I_{4-4}$. I_{1-1} and I_{2-2} are given in Table XII,

 $I_{3-3}=Ar^2$, where A and r can be found from the table. Then $I_{4-4}=I_{1-1}+I_{2-2}-I_{3-3}=35.38-5.51=29.87$. From a scale drawing or by computation the distances from the principal axes to the points a, b, c, etc., are readily found. The two moments are resolved into components parallel to the principal axes, shown in Fig. 68. The resultant moment parallel to the axis 3-3 is 109000 in.-lbs. and that parallel to 4-4 is 11000 in.-lbs. These moments produce compression at a and b, tension at e, and tension and compression at c and d. Inspection indicates that the maximum fiber stress will be at a or b.

For the point a,

$$f_4 = \frac{109000}{29.87} 3.70 = 13500,$$

$$f_3 = \frac{17000}{5.51}$$
1.25 = 2500,

nence

$$f_4 + f_3 = 13500 + 2500 = 16000$$
lbs.,

which is the fiber stress at a. The fiber stress at b is 15600 lbs. The permissible fiber stress is 16000 lbs., hence the next heavier angle must be used unless the weight of the purlin is neglected.

Since the moments of inertia of the angles given in Table XII are based upon angles without fillets and rounded corners, the points a and b have been taken as shown in Fig. 68. The distances to the axes shown are values scaled from a full size drawing and are sufficiently accurate for all practical purposes.

As stated in Art. 50, the planes of the loads are assumed to pass through the longitudinal gravity line of the angle.

As the rafters are usually placed on top of the purlin, there is a twisting moment which has not been considered.

93. End Cuts of Angles, Shape of Gusset-plates—Dimensions, etc.—In general, it is economical to cut all angles at right angles to their length. Gusset-plates should have as few cuts as possible and in no case, where avoidable, should re-entrant cuts be made. Any framework which can be included in a rectangle having one side not exceeding 10 feet can be shipped by rail. This permits the riveting up of small trusses in the shop, thereby avoiding field riveting. Large trusses can be separated into parts which can be shipped, leaving but a few joints to be made in the field.

TABLES.

Table I.
WEIGHTS OF VARIOUS SUBSTANCES.

WOODS (SEASONED).

Name.	Weight in Lbs. per Cu. Foot.	Weight in Lbs. per Square Foot, Board Measure.
Ash, American, white	38	3.17
Cherry		3.50
Chestnut		3.42
Elm		2.96
Hemlock		2.08
Hickory		4.42
Mahogany, Spanish	53	4.42
" Honduras		2.96
Maple		4.08
Oak, live		4.92
" white		4.33
Pine, white		2.08
" yellow, northern		2.83
" southern		3.75
Spruce	25	2.08
Sycamore	37	3.08
Walnut, black	38	3.17

Green timbers usually weigh from one-fifth to one-half more than dry.

MASONRY.

	Name.	,	Weight in Lbs. per Cubic Foot.
"	ordinar	l brickyye, well dressed	. 112
"		mortar rubble	. 154
Sandstone	, well dre	ssed	

TABLES.

BRICK AND STONE.

Name.		Weight in Lbs.
Brick, best pressed.		per Cubic Foot.
" common, hard		. 150
" soft, inferior		. 125
Cement, hydraulic loose, Rosendale	• • • • • • • • • • • • • • • • • • •	. 100
" " Towing it	• • • • • • • • • • • • • • • • •	. 56
" " " English P "		. 50
Granite English Portl	land	. 90
Granite	• • • • • • • • • • • • • • • • • • • •	. 170
Limestones and marbles		. 168
in small pieces	S	. 96
Quartz, common		. 165
Sandstones, building		. 151
Dilaies, led of black		*60
Slate.		. 175
· **		
METALS.		
Name.	Weight in Lbs. We	inha in Th
	per Cubic Et Sour	ight in Lbs. per are Ft., 1" thick
Brass (copper and zinc), cast	504	42.00
roned	524	43.66
Copper, cast	542	45.17
" rolled	548	45.66
iron, cast.	450	37.50
wrought, purest	•	40.42
" average	480	40.00
Lead		-
Steel.		59.27
Tin, cast	••	40.83
Zinc		38.23
	437	36.42

TABLE II.

WEIGHTS OF ROOF COVERINGS.

CORRUGATED IRON (BLACK).

Weight of corrugated iron required for one square of roof, allowing six inches lap in length and two and one-half inches in width of sheet.

(Keystone.)

Thickness in Inches.	Weight in Lbs. per Sq. Ft., flat.	Weight in Lbs. per Sq. Ft., cor- rugated.	Weight	in Pounds	of One Sq	uare of the	following	Lengths.
Thic	Wei	Weig	5′	6'	7'	8′	9′	10'
0.065 0.049 0.035 0.028 0.022 0.018	2.61 1.97 1.40 1.12 0.88 0.72	3.28 2.48 1.76 1.41 1.11 0.91	365 275 196 156 123 101	358 270 192 154 121	353 267 190 152 119 97	350 264 188 150 118 97	348 262 186 149 117 96	346 261 185 148 117 95

The above table is calculated for sheets 30t inches wide before corrugating. Purlins should not be placed over 6' apart.

(Phænix.)

	BLACK	IRON.		GA	LVANIZED II	on.
Thickness in Inches.	Weight in Pounds per Square Foot, flat,	Weight in Pounds per Square Foot, on Roof.	Weight in Pounds per Square Foot, on Roof.	Weight in Pounds per Square Foot, flat.	Weight in Pounds per Square Foot, on Roof,	Weight in Pounds per Square Foot, on Roof.
0.065 0.049 0.035 0.028 0.022 0.018	2.61 1.97 1.40 1.12 0.88 0.72	1.97 2.29 1.40 1.63 1.12 1.31 0.88 1.03	3.37 2.54 1.82 1.45 1.14 0.93	3.00 2.37 1.75 1.31 1.06 0.94	3.50 2.76 2.03 1.53 1.24 1.09	3.88 3.07 2.26 1.71 1.37 1.21
	FI	at.	Corrugated.		Flat.	Corrugate

The above table is calculated for the ordinary size of sheet, which is from 2 to 2} feet wide and from 6 to 8 feet long, allowing 4 inches lap in length and 2½ inches in width of sheet.

The galvanizing of sheet iron adds about one-third of a pound to its weight per square foot.

TABLES.

Table II—Continued.

PINE SHINGLES.

The number and weight of pine shingles required to cover one square of roof.

_			
Number of Inches exposed to Weather.	Number of Shin gles per Square of Roof,	Weight in Pounds of Shinglesonone Square of Roofs.	Remarks.
4 4½ 5 5½ 6	900 800 720 655 600	216 192 173 157 144	The number of shingles per square is for common gable-roofs. For hip-roofs add five per cent. to these figures. The weights per square are based on the number per square.

SKYLIGHT GLASS.

The weights of various sizes and thicknesses of fluted or rough plate-glass required for one square of roof. $\,$

Dimensions in Inches.	Thickness in Inches.	Area in Square Feet.	Weight in Pounds per Square of Roof.
12×48	8 E 14 38 F2	3.997	250
15×60		6.246	350
20×100		13.880	500
94×156		101.768	700

In the above table no allowance is made for lap.

If ordinary window-glass is used, single-thick glass (about $\frac{1}{1}t''$) will weigh about 82 pounds per square, and double-thick glass (about $\frac{1}{2}t''$) will weigh about 164 pounds per square, no allowance being made for lap.

Table II—Continued.

SLATE.

The number and superficial area of slate required for one square of roof.

Dimensions in Inches.	Number per Square.	Superficial Area in Square Feet.	Dimensions in Inches.	Number per Square.	Superficial Area in Square Feet.
6×12	533	267	12×18	160	240
7×12 8×12	457 400		10×20 11×20	169	235
0×12	355		12×20	154 141	
7×14	374	254	14×20	121	
8×14	327		16×20	137	
9×14	291		12×22	126	231
10×14	261		14×22	108	
8×16	277	246	12×24	114	228
9×16	246		14×24	98	
10×16	221		16×24	86	
9×18	213	240	14×26	89	225
10×18	192	[]	16×26	78	

As slate is usually laid, the number of square feet of roof covered by one slate can be obtained from the following formula:

Width × (length -- 3 inches) = the number of square feet of roof covered.

The weight of slate of various lengths and thicknesses required for one square of roof.

Length		Wei	ght in pou	nds, per sq	uare, for t	he thickne	ess.	
in Inches.	₺"	186"	1 "	3"	1/'	<u>₹</u> ″	<u>*</u> "	1"
12 14 16 18 20 22 24 26	483 460 445 434 425 418 412 407	724 688 667 650 637 626 617 610	967 920 890 869 851 836 825 815	1450 1379 1336 1303 1276 1254 1238 1222	1936 1842 1784 1740 1704 1675 1653	2419 2301 2229 2174 2129 2093 2066 2039	2902 2760 2670 2607 2553 2508 2478	3872 3683 3567 3480 3408 3350 3306 3263

The weights given above are based on the number of slate required for one square of roof, taking the weight of a cubic foot of slate at 175 pounds.

THE HUNT LIBRARY CARNEGIE INSTITUTE OF TECHNOLOGY

Table II—Continued.

$Terra\hbox{-}cotta.$

Porous terra-cotta roofing 3" thick weighs 16 pounds per square foot and thick, 12 pounds per square foot.

Ceiling made of the same material 2" thick weighs 11 pounds per square

Tiles.

Flat tiles 6½"×10½"×½" weigh from 1480 to 1850 pounds per square of roof, the lap being one-half the length of the tile.

Tiles with grooves and fillets weigh from 740 to 925 pounds per square of roof. Pan-tiles $14\frac{1}{2}$ " × $10\frac{1}{2}$ " laid 10" to the weather weigh 850 pounds per square of roof.

Tin.

The usual sizes for roofing tin are $14''\times20''$ and $20''\times28''$. Without allowing anything for lap or waste, tin roofing weighs from 50 to 62 pounds per square. Tin on the roof weighs from 62 to 75 pounds per square.

For preliminary estimates the weights of various roof coverings may be taken as tabulated below:

Name.	Weight in Lbs. per Square of Roof.
Cast_iron plates (3" think)	square of Roof.
Cast-iron plates (%" thick)	1500
Copper.	80 -125
Felt and asphalt.	100
Felt and gravel	800-1000
Iron, corrugated.	100- 375
Iron, galvanized flat	100- 350
Lath and plaster	900~1000
Sheathing, pine 1" thick yellow, northern southern	300
southern	400
Spruce 1" thick	200
Sneathing, chestnut or maple, 1" thick	400
" ash, hickory or oak, 1" thick	500
Sheet iron (18" thick)	300
and lating	500
Shingles, pine	200
Slates († 'thick)	000
Skylights (glass $\frac{1}{16}$ " to $\frac{1}{16}$ " thick)	250- 700
Sheet lead	500- 800
Thaten	650
Tin	70- 125
Tiles, flat.	1500-2000
(grooves and fillets)	700-1000
pan	1000
" with mortar	2000-3000
Zinc	100- 200

TABLE III.

STANDARD SPACING OF RIVET AND BOLT HOLES IN ANGLES AND IN FLANGES AND CONNECTION ANGLES OF CHANNELS.

Ang	gles.		Standard Channels.								
Depth of Leg, Inches.	m in Inch e s	Depth of Chan- nel, Inches	per	in	in Inches	in Inche	Depth of Chan- nel, Inches	Weight per Foot, Pounds	in	e in Inches	g in Inches
3 1	176 18	3 3 3	4.0 5.0 6.0	15 78 74	4186 4393 48	1 1 1 4 9 8 2		18.75	1½ 1½	$\begin{array}{c} 4\frac{1}{2} \\ 4\frac{1}{3}\frac{9}{2} \end{array}$	1 B 1 B 1 B
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	क्षानां स्त्रेसत्त्रंस नंनत्नांन	4 4 4	5.25 6.25 7.25	I I I	416 432 4112	16 25 25 25	9 9 9	13.25 15.00 20.00 25.00	155550574554 14514	41 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	다 하다 하다 다 다 다 하나
2 2 2 1 2 1 6	To do days	5 5 5	6.5 9.0 11.5	I I1 11	4878 488 42	156 R9 8 168	10 10 10	15.0 20.0 25.0 30.0	1 1 2 1 2 2 2 2	41 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7 16 17 18 18 18 18 17 16
2½ 2¾	I	6 6 6	8.0 10.5 13.0	15 15 15 15 15 15	4515150 4515150 4515150 450	- 22- 23- 24- 24- 24	10	35.0	2 1 ³ / ₁	1	
3 3½ 4	134 2 24 212	7	9.75 12.25				12 12 12 12	25.0 30.0 35.0 40.0	14 2 2 2	41 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	181215172 181215172 181215172
4½ 5 5 5 8	2½ 2¼ 3¼	7 7 7 7	14.75 17.25 19.75	14 14 14 14 14 14 14 14 14 14 14 14 14 1	4 5 7 5 4 1 7 5 4 1 7 5 4 1 5 1 2 4 1 5 1 2	⊷ ය ⊷ යෙත්තප)නප)නප)න	15 15 15	33.0 35.0 40.0	1		4 celtecito
6	31/2	8 8 8	11.25 13.75 16.25	1 1 1 1 1 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2	41 415 418 482	කුත සතුත සෝහ	15 15 15	45.0 50.0 55.0	178 21 21 21 21	41155 514 515 515 515 515 515 515 515 51	educates I postes I p

TABLES.

Table III—Continued.

MAXIMUM SIZE OF RIVETS IN BEAMS, CHANNELS, AND ANGLES.

I Beams.						,	Channels	s.		Ang	les.	
Depth of Beam, Inches.	Weight per Foot, Pounds,	Size of Rivet, Inches.	Depth of Beam, Inches.	Weight per Foot, Pounds.	Size of Rivet, Inches.	Depth of Chan- nel, Inches.	Weight per Foot, Pounds.	Size of Rivet,	Length of Leg, Inches.	Size of Rivet, Inches.	Length of Leg. Inches.	Size of Rivet,
3 4 5 6 7 8 9 10 12 12	5.5 7.5 9.75 12.25 15.0 17.75 21.0 25.0 31.5 40.0	ಬೆಯ-ಕೆನ-ಕೆನಗಳು ಬೆರು ಬೆಳುಗಳು ಕೆನಗಳು	15 15 18 20 20 24	42.0 60.0 80.0 55.0 65.0 80.0	अस्त्रसान्ध्रान्ध्र म म म	3 4 5 6 7 8 9 10 12 15	4.0 5.25 6.50 8.0 9.75 11.25 13.25 15.0 20.50 33.0	- ಅಧ್ಯಾಕ್ತಿಯಕ್ಕಿಯಿಂದು ಹೈಗಾಕ್ತಿಯಕ್ಕಿಯ	1 14 56 15 15 15 15 15 15 15 15 15 15 15 15 15	-tectoctartartartartactactecte	2 2 3 3 4 4 5 56	34347811111

RIVET SPACING.

All dimensions in inches.

Size of	Minimum	Maximum Pitch at Ends	Minimum Pitch in Flanges of	Distance from E Centre of R	dge of Piece to livet Hole.
Rivets.	Pitch.	of Compression Members.	Chords and Girders.	Minimum.	Usual.
न्यव्यवस्थान्यक्रम्यन्य म	1 1 1 2 2 2 3	2½ 3 3½ 4	4 4 4 4	15 15 15 15 17	114 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

TABLE IV.

RIVETS.

Tables of Areas in Square Inches, to be deducted from Riveted Plates or Shapes to Obtain Net Areas.

Thick- ness Plates						Size o	f Hole	e, in Ir	ches.*	•				
in Inches.	1	16 16	300	76	1/2	9 Te	58	11 16	34	13 18	7 8	15 16	I	1 1 6
15 16 18 16 16	.06 .08 .09	.08 .10 .12 .14	.09 .12 .14 .16	.11 .14 .16 .19	.13 .15 .19	.14 .18 .21	.16 .20 .23	.17 .21 .26	.19 .23 .28 .33	.20 .25 .30	.22 .27 .33	.23 .29 .35 .41	.25 .31 .38	.27 .33 .40 .46
12 16 16 16	.13 .14 .16 .17	.16 .18 .20	.19 .21 .23 .26	.22 .25 .27 .30	.25 .28 .31 .34	.28 .32 .35 .39	.31 .35 .39 .43	.34 .39 .43 .47	.38 .42 .47 .52	.41 .46 .51	.44 .49 .55 .60	·47 ·53 ·59 ·64	.50 .56 .63	.53 .60 .66
3/41-17-00-1-1-1 00/00 10/10	.19 .20 .22 .23	.23 .25 .27 .29	.28 .30 .33 .35	.33 .36 .38 .41	.38 .41 .44 .47	.42 .46 .49 .53	.47 .51 .55	.52 .56 .60	.56 .61 .66	.66 .71	.66 .71 .77 .82	.70 .76 .82 .88	.75 .81 .88	.80 .86 .93 1.00
1 16 1 18 1 16	.25 .27 .28 .30	.31 .33 .35 .37	. 38 . 40 . 42 . 45	.44 .46 .49 ,52	.50 .53 .56 .59	.56 .60 .63 .67	.63 .66 .70 .74	.77	·75 .80 .84 .89	.91		1.00	1.13	I.I3 I.20
1	.31 .33 .34 .36	.39 .41 .43 .45	.47 .49 .52 .54	·55 ·57 ·60 ·63	.63 .66 .69	.70 .74 .77 .81	.78 .81 .86	.90 .95	.98 1.03	1.07	1.09 1.15 1.20 1.26	I.23	1.31	1.39 1.46
12 15 15 15 116	.38 .39 .41 .42	· 47 · 49 · 51 · 53	. 56 . 59 . 61 . 63	.66 .68 .71 .74	.75 .78 .81 .84	.84 .88 .91 .95	.98 1.02	1.07	I.17 I.22	1.27	1.31 1.37 1.42 1.47	1.46	1.56	I.66
13 1117 178 1116 2	.44 .45 .47 .48	.55 .57 .59 .61	.66 .68 .70 .73 .75	.77 .79 .82 .85 .88	.94	I.02 I.05 I.00	I.I3 I.I7 I.21	I.25 I.29 I.33	1.36 1.41 1.45	I.47 I.52 I.57	1.53 1.59 1.64 1.70 1.75	1.70 1.76 1.82	1.81 1.88	1.93 1.99

^{*} Size of hole = diameter of rivet + $\frac{1}{8}$ ".

TABLE V.

WEIGHTS OF ROUND-HEADED RIVETS AND ROUND-HEADED BOLTS WITHOUT NUTS PER 100.

Wrought Iron.

Basis: 1 cubic foot iron = 480 pounds. For steel add 2%.

		Djaı	neter o	f Rivet	in Inch	es.	
Length under Head to Point. Inches.	38	1/2	5 8	3	7 8	1	11
I I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4.7 5.5 6.2 7.0	9.3 10.7 12.1 13.4	76.0 18.1 20.2 22.4	25.2 28.3 31.3 34.4	37.2 41.3 45.5 49.7	52.6 58.0 63.5 68.9	71. 78. 85. 92.
2 2 1 2 1 2 1 2 1	7.8 8.5 9.3	14.8 16.2 17.5 18.9	24.5 26.6 28.8 30.9	37.5 40.5 43.6 46.7	62.2	79.8 85.3	105. 112.
3 31 31 31 32 33	10.8 11.6 12.4 13.1	20.3 21.6 23.0 24.3		55.9	74.7 78.9	96.2 107.1 107.1 112.6	133. 140.
4 44 42 44 44	13.9 14.7 15.4 16.2	25.7 27.1 28.4 29.8	43.7 45.8	65.1 68.2	91.4 95.6	118.0 123.5 128.9 134.4	161 167
555556666666	17.0 17.7 18.5 19.3 20.0 20.8 21.6 22.3	31.2 32.5 33.9 35.3 36.6 38.0 39.3 40.7	52.2 54.3 56.4 58.6 60.7 62.8	77.4 80.4 83.5 86.6 89.6	108.2 112.3 116.5 120.7 124.8	139.8 145.3 150.7 156.2 161.6 167.1 172.5 178.0	188 195 202 209 216 223
7 7 1 7 1 7 1 7 1	23.1 23.9 24.6 25.4	42.1 43.4 44.8 46.2	69.2	98.8 101.9 105.0	141.6	188.9	243 250
8 8 1 9 9 <u>1</u>	26.2 27.7 29.2 30.8	47.5 50.2 53.0 55.7	79.9	111.1	162.2	216.2 227.1	278 292
10 10	32.3 33.8 35.4 36.9 38.	61.2 63.9 66.6	96.9 101.2	135.6 141.8 147.9 154.3 160.2	3 195.8 204.2 212.5	3 259 . 8 2 270 . 7 5 281 . 6	333 347 361
re inch in length of 100 Rivets reight of 100 Rivet Heads	3.07		8.5	12.2	16.70 24.29	21.82 34.77	27. 47.

Height of rivet head = $\frac{6}{10}$ diameter of rivet.

TABLE VI.

WEIGHTS AND DIMENSIONS OF BOLT HEADS.

Manufacturers' Standard Sizes Basis: Hoopes & Townsend's List.

	1							
Diameter		Squ	ARB.			Hex	AGON.	
of Bolt.	Short Diameter	Long Diameter	Thick- ness.	Weight per roo.	Short Diameter	Long Diameter	Thick- ness.	Weight per 100.
Inches.	Inches.	Inches.	Inches.	Pounds.	Inches.	Inches.	Inches.	Pounds.
14 5 rego 7 rego order to 10 rego foreborder to 11 11 11 11 11 2	**************************************	.619 .707 .840 .972 1.061 1.193 1.326 1.591 1.856 2.122 2.298 2.475 3.006 3.359 3.536 3.889 4.243 4.420	Fig. 20 75 Mindsoderto Hollesso-Kusboderto	1.0 1.7 2.8 4.9 6.8 9.9 13.0 22.0 34.8 54.7 73.3 95.7 156.8 215.4 260.3 341.3 437.4 508.5	7 b charte charte to 5 to 12 2 2 2 3 3	.505 .578 .686 .974 1.083 1.299 1.516 1.733 1.877 2.021 2.3021 2.343 2.888 3.176 3.464 3.610	14 cto 14 ctocyteto Harton-Patacogneto	.9 1.5 2.4 4.3 5.9 8.6 11.2 19.0 33.1 47.4 63.5 82.9 132.3 203.5 244.4 408.2 469.9

Approximate rules for dimensions of finished nuts and heads for bolts (square and hexagon).

Short diameter of nut = 1½ diameter of bolt;
Thickness of nut=1 diameter of bolt;
Short diameter of head=1½ diameter of bolt;
Thickness of head=1 diameter of bolt;
Long diameter of square nut or head=2.12 diameter of bolt;
" "hexagon nut or head=1.73 diameter of bolt.

TABLE V.

WEIGHTS OF ROUND-HEADED RIVETS AND ROUND-HEADED BOLTS WITHOUT NUTS PER 100.

 $Wrought\ Iron.$

Basis: 1 cubic foot iron =480 pounds. For steel add 2%.

Length under Head to Point.		Dia	meter o	f Rivet	in Inch	es.	
Inches.	38	1/2	<u>5</u>	3	78	1	11
I I4 I2 12 12	4.7 5.5 6.2 7.0	9.3 10.7 12.1 13.4	18.1 20.2	25.2 28.3 31.3 34.4		58.0 63.5	78. 85.
2 21 21 21 24 24	7.8 8.5 9.3	14.8 16.2 17.5 18.9	24.5 26.6 28.8 30.9	37.5 40.5 43.6 46.7		79.8 85.3	98. 105. 112. 119.
3 34 31 32 34	10.8 11.6 12.4 13.1	20.3 21.6 23.0 24.3	35.I 37.3		74.7 78.9	96.2 106 107.1 112.6	133. 140.
4 4 ¹ / ₄ 4 ¹ / ₄ 4 ² / ₄	13.9 14.7 15.4 16.2	25.7 27.1 28.4 29.8	45.8		91.4 95.6	118.0 123.5 128.9 134.4	161. 167.
5 14 1-12 24 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	17.0 17.7 18.5 19.3 20.0 20.8 21.6 22.3	31.2 32.5 33.9 35.3 36.6 38.0 39.3 40.7	52.2 54.3 56.4 58.6 60.7 62.8	77.4 80.4 83.5 86.6 89.6 92.7	108.2 112.3 116.5 120.7 124.8 129.0	139.8 145.3 150.7 156.2 161.6 167.1 172.5 178.0	188. 195. 202. 209. 216. 223.
7 71 71 71 71	23.1 23.9 24.6 25.4	42.1 43.4 44.8 46.2	69.2 71.4	98.8 101.9 105.0 108.0	141.6 145.7	194.4	243. 250.
8 8½ 9 9½	26.2 27.7 29.2 30.8	47.5 50.2 53.0 55.7	79.9 84.1	111.1 117.2 123.4 129.5	162.2 170.8	216.2 227.1	278 292.
10 10½ 11 11½ 12	32.3 33.8 35.4 36.9 38.	66.6	92.7 96.9 101.2 105.4 109.7	154.1	195.8 204.2 212.5	259.8 270.7 281.6	333. 347. 361.
ne inch in length of 100 Rivets eight of 100 Rivet Heads	3.07	5·45 4.82	8.52 9.95	12.27 16.12	16.70 24.29	21.82 34.77	27.6 47.6

Height of rivet head = $\frac{6}{10}$ diameter of rivet.

TABLE VI.

WEIGHTS AND DIMENSIONS OF BOLT HEADS.

Manufacturers' Standard Sizes Basis: Hoopes & Townsend's List.

			T.		moonu s .	LIBU.		
Diameter		Squ	JARB.			Hex	AGON.	
of Bolt.	Short Diameter	Long Diameter	Thick- ness.	Weight per 100.	Short Diameter	Long Diameter	Thick- ness.	Weight per 100.
Inches.	Inches.	Inches.	Inches.	Pounds.	Inches.	Inches.	Inches.	Pounds.
14 Presio 7 1-15 Presion 41-10 1-10 1-14 1-150 1	71-171-151-1-1614-121-1-1-1615-1-1-1615-1-16	.619 .707 .840 .972 I.061 I.193 I.326 I.591 I.856 2.122 2.298 2.475 3.006 3.359 3.536 3.889 4.243 4.420	Redo Triansporter to To I I I I I I I I I I I I I I I I I I	1.0 1.7 2.8 4.9 6.8 9.9 13.0 22.0 34.8 54.7 73.3 95.7 156.8 215.4 260.3 341.3 437.4 508.5	7 0 080-10 1-2005 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.505 .578 .686 .794 .866 .974 I.083 I.290 I.516 I.733 I.877 2.021 2.309 2.743 2.888 3.176 3.464 3.610	The city of the special specia	.9 1.5 2.4 4.3 58.6 11.2 19.0 33.1 47.4 63.5 82.9 132.3 203.5 244.4 408.2 469.9

Approximate rules for dimensions of finished nuts and heads for bolts (square and hexagon)

Short diameter of nut=1½ diameter of bolt;
Thickness of nut=1 diameter of bolt;
Short diameter of head=1½ diameter of bolt;
Thickness of head=1 diameter of bolt;
Long diameter of square nut or head=2.12 diameter of bolt;
"" hexagon nut or head=1.73 diameter of bolt.

TABLE VII. UPSET SCREW ENDS. Round Bars.

The	IMEN	SIONS	OF UPSE	T END.	l	DIM	ENSIONS A	ND I	PROPOR	TIONS	ог вор	Y OF BA	R.	
In. In. Sq. In In. Sq. In. Lbs. In. Prct. In. Sq. In. In. In. Sq. In. In. Sq. In. In. In. Sq. In. In. In. Sq. In. In. In. In. In. In. In. In. In. In	Diameter Screw.		Area at Root of Thread.	Number of Threads per Inch.		Area at Body of Bar,	Weight per Foot of Bar,	Add for Upset.	Excess of Area of Thread over that of Body of Bar.		1	Weight per Foot of Bar,	Add for Upset.	Excess of Area at Root of Thread over that of Body of Bar
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	In.	In.	Sq. In		In.	Sq. In.	Lbs.	·In.	PrCt.	In.	Sq. In.	Lbs.	In.	Pr Ct
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	347	4 1	.302		1225			6 1		7 T T	.249	.845	41	21
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	4½ 4½	.550		1 1 1 1 8	.371	1.262	$6\frac{1}{4}$	48	3	.442	1.502	41/2	25
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11	44	.893	7		.601	2.044	52 61	49	15	.690	2.347		29
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 § 1 ½	5		6	I t			4½ 4¾		I 1 6 I 3 7	.887 I.IO8	3.01 3.77	41 37	17
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	15 13	51 51			Ι <u>΄</u> Ι΄, 5, τ	1.227	4.17	$4\frac{1}{2}$	23					18
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	17	51	2.048	5	170	1.623		44	26	-			•	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		52 53		42	12			51		1 1 6 7 1 1			41	20 18
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	21	51	3.023	41/2	134	2.405	8.18	4 ³ / ₄	26	1 1 8 1 1 8	2.580	8.77		17
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2 2 2	6			1 1 5					2	2 142	TO 68	27	18
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	25	61	4.155	4	2 T R	3.341	11.36	43						17
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	27 27	6½	4.019		2+	3.758	12.78	41	23	2.5	4 222		أب	22
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	$6\frac{1}{2}$	5.428		28	4.430	15.07	43	23	ı	4.200	14.20	42	44
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	31	63	5.957	31/2	2 7 6	4.666		$5\frac{1}{2}$	28	21/2				21
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	31			32	217	5.157	17.53	54	- 1	28				20
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	31	7		31	218	6.231	19.29 21.12	5		24	5.940	20.20	42	19
3½ 7½ 0.041 3 3 7.069 24.03 6½ 22 1 1 1 1	3 8	71	8.171	31	27	6.492	22.07	51		215	6.777	23.04	43	21
24 belia applia a 1 - C	37	7‡		3	3,			61	1			. 1		
38 72 9.305 3 38 7.670 26 .08 51 21 4 72 9.993 3 31 8.296 28.20 43 20	38	72			38			51		1	İ	i	-	

TABLE VIII. RIGHT AND LEFT NUTS.

Dimensions of Nuts from Edge Moor Bridge Works' Standard.

	T			1	1	io Sian		
Diam- eter of	Length of Upset.	Diameter of Bar.	Side of Square Bar.	l OI		Diam- eter of	Weig	tht or
Screw.				Nut.	Thread.	Hex.	One	One Nut and
B	G	A	. A .	r	T	w	Nut.	Two Screw Ends.
Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Pounds.	Lbs.
1 1 1 1 1 1 1 2 2 2 2 2 2 2 3 3 3 3 4	44455555555666666777	and d 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	of and 116 and	$\begin{array}{c} 6 \\ 6 \\ 6 \\ 6 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 8 \\ 8 \\ 8 \\ 8 \\ 9 \\ 9 \\ 1 \\ 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1$	For the second state of the second section of the second second section of the second sec	charge		44777144444444444444444444444444444444

 $\begin{array}{c} \text{Table IX.} \\ \text{PROPERTIES OF STANDARD I BEAMS.} \end{array}$

	2	3	4	5	6	7	8	9	10	11
_		-								
Section Number,	Depth of Beam.	Weight per Foot.	Area of Section.	Thickness of Web.	Width of Flange.	Moment of Inertia Axis 1-1,	Section Modulus Axis 1-1.	Radius of Gyration Axis 1–1.	Moment of Inertia Axis 2-2.	Radius of Gyration Axis 2-2.
Sect	d		A	t	b	I	s	r	I'	r'
	ches.	Pounds.	Sq. Inches.	Inches.	Inches.	Inches,4	Inches.\$	Inches.	Inches.4	Inches.
B 5 B 5 B 5	3 3 3	5.5 6.5 7.5	1.63 1.91 2.21	.26	2.33 2.42 2.52	2.5 2.7 2.9	1.7	1.23 1.19 1.15	.46 .53 .60	.53 .52 .52
B 9 B 9 B 9	4 4 4 4	7.5 8.5 9.5	2.70	.26	2,66 2,73 2.81 2.88	6.0 6.4 6.7 7.1	3.2	1.64 1.59 1.54 1.52	.77 .85 .93	.59 .58 .58 .57
B 13 B 13 B 13	5 5 5	9.75 12.25 14.75	3.60	.36	3.00 3.15 3.29	12.1 13.6 15.1	5.4	2.05 1.94 1.87	1.23 1.45 1.70	.65 .63 .63
B 17 B 17 B 17	6 6 6	12.25 14.75 17.25	4 . 34	.35	3·33 3·45 3·57	21.8 24.0 26.2	8.0	2.46 2.35 2.27	1.85 2.09 2.36	.72 .69 .68
B 21 B 21 B 21	7 7	15.0 17.5 20.0	4.42 5.15 5.88	.25 .35 .46	3.66 3.76 3.87	36.2 39.2 42.2	11.2		2.67 2.94 3.24	.78 .76 .74
B 25 B 25 B 25 B 25	8 8 8 8 8	17.75 20.25 22.75 25.25	5.90 5 6.69	.35	4.00 4.08 4.17 4.26	56.9 60.2 64.3 68.0	15.0	3.18	3.78 4.04 4.36 4.71	.8r

Table IX—Continued.

PROPERTIES OF STANDARD I BEAMS.

1	2	3	4	5	6	7	8 ′	9	10	ıı
Section Number.	Depth of Beam.	Weight per Foot.	Area of Section.	Thickness of Web.	Width of Flange.	Moment of Inertia Axis 1-1.	Section Modulus , Axis 1-1.	Radius of Gyration Axis 1-1.	Moment of Inertia Axis 2-2.	Radius of Gyration Axis 2-2.
Secti	d		A	t	b	I	s	r	I'	r ′
	Inches.	Pounds.	Sq. Inches.	Inches.	Inches.	Inches.4	Inches.3	Inches.	Inches.4	Inches.
B 29 B 29 B 29 B 29	9 9 9	21.0 25.0 30.0 35.0	6.31 7.35 8.82 10.29	. 29 . 41 . 57 . 73	4.33 4.45 4.61 4.77	84.9 91.9 101.9 111.8	18.9 20.4 22.6 24.8	3.67 3.54 3.40 3.30	5.16 5.65 6.42 7.31	.90 .88 .85 .84
B 33 B 33 B 33 B 33	10 10	25.0 30.0 35.0 40.0	7.37 8.82 10.29 11.76	.31 .45 .60 .75	4.66 4.80 4.95 5.10	122.1 134.2 146.4 158.7	24.4 26.8 29.3 31.7	4.07 3.90 3.77 3.67	6.89 7.65 8.52 9.50	.97 .93 .91
B 41 B 41 B 41	12 12 12	31.5 35.0 40.0	9.26 10.29 11.76	.35 .44 .56	5.00 5.09 5.21	215.8 228.3 245.9	36.0 38.0 41.0	4.83 4.71 4.57	9.50 10.07 10.95	1.01 .99 .96
B 53 B 53 B 53 B 53 B 53	15 15 15 15	42.0 45.0 50.0 55.0 60.0	12.48 13.24 14.71 16.18 17.65	.41 .46 .56 .66	5.50 5.55 5.65 5.75 5.84	441.8 455.8 483.4 511.0 538.6	58.9 60.8 64.5 68.1 71.8	5.95 5.87 5.73 5.62 5.52	14.62 15.09 16.04 17.06 18.17	1.08 1.07 1.04 1.03
B 65 B 65 B 65 B 65	18 18 18	55.0 60.0 65.0 70.0	15.93 17.65 19.12 20.59	. 46 . 56 . 64 . 72	6.00 6.10 6.18 6.26	795.6 841.8 881.5 921.2	88.4 93.5 97.9 102.4	7.07 6.91 6.79 6.69	21.19 22.38 23.47 24.62	1.15 1.13 1.11 1.09
B 73 B 73 B 73	20 20 20	65.0 70.0 75.0	19.08 20.59 22.06	.50 .58 .65	6.25 6.33 6.40	1169.5 1219.8 1268.8	117.0 122.0 126.9	7.83 7.70 7.58	27.86 29.04 30.25	1.21 1.19 1.17
B 89 B 89 B 89 B 89 B 89	24 24 24 24 24	80.0 85.0 90.0 95.0 100.0	23.32 25.00 26.47 27.94 29.41	.50 .57 .63 .69	7.00 7.07 7.13 7.19 7.25	2087.2 2167.8 2238.4 2309.0 2379.6	173.9 180.7 186.5 192.4 198.3	9.46 9.31 9.20 9.09 8.99	42.86 44.35 45.70 77.10 48.55	1.36 1.33 1.31 1.30 1.28

Table X.
PROPERTIES OF STANDARD CHANNELS.

_			1	1		ī	·		1		,		
_	I	2	3	4	5	6	7	8	9	10	11	12	13
	Section Number.	Depth of Channel.	Weight per Foot.	Area of Section.	Thickness of Web.	Width of Flange.	Moment of Inertia Axis 1-1.	Section Modulus Axis 1-1.	Radius of Gyration Axis 1-1.	Moment of Inertia Axis 2-2.	Section Modulus Axis 2-2,	Radius of Gyration Axis 2-2.	Distance of Centre of Gravity from Outside of Web.
		đ		A	t	ъ	1	s	r	II'	s′	r'	x
-		Ins.	Lbs.	Sg. In.	Inches	Inches	Ins.4	Ins.8	Inches	Ins.4	Ins.3	Inches	Inches
CCC	5 5 5	3 3 3	4.00 5.00 6.00	1.19 1.47 1.76	.17 .26 .36	1.41 1.50 1.60	1.6 1.8 2.1	I.I I.2 I.4	1.17 1.12 1.08	.20 .25	.21 .24 .27	.4I .4I .42	·44 ·44 ·46
CCC	9 9 9	4 4 4	5.25 6.25 7.25	1.55 1.84 2.13	.18 .25 .33	1.58 1.65 1.73	3.8 4.2 4.6	1.9 2.1 2.3	1.56 1.51 1.46	. 32 . 38 . 44	.29 .32 .35	· 45 · 45 · 46	.46 .46 .46
CCC	13 13 13	5 5 5	6,50 9.00 11.50	1.95 2.65 3.38	.19 .33 .48	I.75 I.89 2.04	7.4 8.9 10.4	3.0 3.5 4.2	1.95 1.83 1.75	.48 .64 .82	. 38 · 45 · 54	.50 .49 .49	.49 .48 .51
C	17 17 17 17	6 6 6 6	8.00 10.50 13.00 15.50	2.38 3.09 3.82 4.56	.20 .32 .44 .56	1.92 2.04 2.16 2.28	13.0 15.1 17.3 19.5	4.3 5.0 5.8 6.5	2.34 2.21 2.13 2.07	70 .88 1.07 1.28	.50 .57 .65 .74	.54 .53 .53	.52 .50 .52 .55
CCC	21 21 21 21 21 21	77777	9.75 12.25 14.75 17.25 19.75	2.85 3.60 4.34 5.07 5.81	.21 .32 .42 .53 .63	2.09 2.20 2.30 2.41 2.51	21.1 24.2 27.2 30.2 33.2	6.0 6.9 7.8 8.6 9.5	2.72 2.59 2.50 2.44 2.39	.98 1.19 1.40 1.62 1.85	.63 .71 .79 .87	.59 .57 .57 .56	.55 .53 .53 .55
CCC	25 25 25 25 25 25	8 8 8 8	11.25 13.75 16.25 18.75 21.25	3.35 4.04 4.78 5.51 6.25	.22 .31 .40 .49 .58	2.26 2.35 2.44 2.53 2.62	32.3 36.0 39.9 43.8 47.8	8.1 9.0 10.0 11.0	3.10 2.98 2.89 2.82 2.76	1.33 1.55 1.78 2.01 2.25	.79 .87 .95 1.02	.63 .62 .61 .60	. 58 . 56 . 56 . 57 . 59

Table X—Continued.

PROPERTIES OF STANDARD CHANNELS.

ī	2		• .		6							
	_	3	4	5		7	8	9	10		12	13
Section Number,	Depth of Channel.	Weight per Foot.	Area of Section.	Thickness of Web.	Width of Flange.	Moment of Inertia Axis 1-1.	Section Modulus Axis 1-1.	Radius of Gyration Axis 1-1,	Moment of Inertia Axis 2–2,	Section Modulus Axis 2-2.	Radius of Gyration Axis 2-2,	Distance of Centre of Gravity from Outside of Web.
	d		A	t	b	I	s	r	I'	S'	r'	x
	Ins.	Lbs.	Sq. In.	Inches	Inches	Ins.4	Ins.3	Inches	Ins.4	Ins.3	Inches	Inches
C 33 C 33 C 33 C 33 C 41 C 41 C 41	12 12 12	13.25 15.00 20.00 25.00 15.00 25.00 30.00 35.00 20.50 25.00 30.00 35.00 40.00	4.41 5.88 7.35 4.46 5.88 7.35 8.82 10.29 6.03 7.35 8.82	.23 .29 .45 .61 .24 .38 .53 .68 .82 .28 .39 .51 .64	3.18 2.94 3.05 3.17 3.30	47.3 50.9 60.8 70.7 66.9 78.7 91.0 103.2 115.5 128.1 144.0 161.6 179.3 196.9	10.5 11.3 13.5 15.7 13.4 15.7 18.2 20.6 23.1 21.4 24.0 26.9 29.9 32.8	3.66 3.52 3.42 3.35 4.61 4.43 4.28 4.17	1.77 1.95 2.45 2.98 2.30 2.85 3.40 3.99 4.66 3.91 4.53 5.21 5.90 6.63	.97 1.03 1.19 1.36 1.17 1.34 1.50 1.67 1.87	.67 .66 .65 .64 .72 .70 .68 .67 .67	.61 .59 .58 .62 .64 .61 .62 .65 .69
C 53 C 53 C 53 C 53	15 15	40.00 45.00 50.00	10.29	.40 .43 .52 .62 .72 .82	3.43 3.52 3.62	312.6 319.9 347.5 375.1 402.7 430.2	41.7 42.7 46.3 50.0 53.7 57.4	5.44	11.22	3.16 3.22 3.43 3.63 3.85 4.07	.91 .89 .88	.79 .79 .78 .79 .80

 $\begin{array}{ccc} \mathbf{T}_{\mathrm{ABLE}} & \mathbf{XI}. \\ \mathbf{PROPERTIES} & \mathbf{OF} & \mathbf{STANDARD} & \mathbf{ANGLES}. \end{array}$

ī	2	3	1 4	1 -	1 6	1 -			,			
	·	3	4_	5_	0	7	8	9	IO	II	12	13
Section Number,	Dimensions,	Thickness.	Weight per Foot.	Area of Section.	Distance of Centre of Gravity from Back of Flange.	Moment of Inertia Axis 1-1.	Section Modulus Axis 1-1.	Radius of Gyration Axis 1-1.	Distance of Cen. of Grav- from Ext. Apex on Line Inclined at 45° to Flange.	Least Moment of inertia Axis 2-2.	Section Modulus Axis 2-2.	Least Radius of Gyration Axis 2-2.
	a×a	t		A	x	1	S	r	x"	I"	S"	r''
A 5	Inches.	Ins.	Lbs.	Sq.In		Ins.4	Ins.8	Inches	Inches	Ins.4	Ins.8	Ins.
A 5 A 5	Inches. \$\frac{3}{4} \times \frac{3}{4} \times \frac{3}{4}	Ins.	.58	.17	.23 .25	.009	.017	.22	.33	.004	.011	.14
_	****		.04	.25	.25	.012	.024	.22	. 36	.005	.014	.14
A 7	ı×ı	18 16 14	.80	.23	.30	.022	.031	.30	.42	.000	.021	
A 7	ı Xı	1,6	1.16	.34	. 32	.030	.044	.30	.45	.013	.021	.19
A 7	^1	4	1.49	.44	∙34	.037	.056	.29	. 48	.016	.034	.19
A 9 A 9	11×11	1	1.02	.30	.36							
Αj	11×11 11×11 11×11	188 14 14 15	1.47	.43	.38	.044 .061	.049 .071	.38	.51	.018	.035	.24
A, 9	IIXI	1	1.91	.56	.40	.077	.091	.38	. 54	.025	. 047	.24
A 9	11×11	16	2.32	. 68	.42	.000	.100	·37 ·36	·57	.033	.057	.24 .24
A 11	TAXTA	_8	T 70			.]	- 1		1	.040	.000	. 24
A 11	1½×1½ 1½×1½ 1½×1½	1 4 5 1 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	1.79 2.34	·53	· 44 · 47	.II	. 104	.46	.63	.045	.072	.29
AII	1½×1½	18	2.86	.84	.49	.14	.134	.45	.66	.058	.088	.29
A 11	$1\frac{1}{2} \times 1\frac{2}{2}$	3	3.35	.98	.51	.19	.102	.44	.69	.070	.101	. 29
А 13	-314-3						00	.44	72	.082	.114	. 29
A 13	13×13 13×13 13×13 13×13 13×13	\$ 16 145 1367 16	2.77	.62 .81	.51	.18	.14	.54	.72	.073	. IO	.34
A 13	14×14	5.	3.39	100	∙53	.23	.19	.53		.094	.13	.34
A 13	14×14	4	3.98	I.17	·55	.27	.23	.52	· 75	.113	.15	.34
A 13	13×13	18	4.56	1.34	.59	.35	.26	.51	.8r	.133	.16	.34
A 15	1					-03	.30	.51	.84	.152	. r8	.34
A 15	2 X 2 2 X2	114 5 K 380 7 K	2.43 3.19	.71	- 57	.27	.19	.62	.80	.II	.14	20
A 15	2 X2	5	3.19	.94 1.15	.61	-35	.25	.6r	.84	.14	.17	. 39 . 39
A 15	2 X2 2 X2 2 X2	3	4.62	1.36	.64	.42	.30	.60	.87	. 17	.20	.39
A 15	2 X2	7 18	5.30		.66	.54	.35	.59	.90	.20	.22	. 39
A	1		1			.04	.40	.59	.93	.23	.25	. 38
A 17 A 17	$\begin{array}{c} 2\frac{1}{2} \times 2\frac{1}{2} \\ 2\frac{1}{2} \times 2\frac{1}{2} \\ 2\frac{1}{2} \times 2\frac{1}{2} \\ 2\frac{1}{2} \times 2\frac{1}{2} \\ 2\frac{1}{2} \times 2\frac{1}{2} \end{array}$	145 E 007 E		1.19	.72	.70	.39	.77	1.01	.29	20	4-1
A 17	21×21	3	5.0	1.46	· 74	.85	.48	·77		.35	. 28	· 49 · 49
A 17	21×21	7	6.8	2.00	78	.98	·57	.75	1.05	.41	.38	.49 .48
A 17	$2\frac{1}{2}\times2\frac{1}{2}$	10	7.7	2.25	.78 1 81 1		.72	.75	I.II	.46	.42	.48
			1				.12	.74	1.14	.52	.46	. 48

Table XI—Continued.

PROPERTIES OF STANDARD ANGLES.

	1											
<u> </u>	2	3	4	5	6	7	8	9	10	11	12	13
Section Number,	Dimensions,	Thickness.	Weight per Foot.	Area of Section.	Distance of Centre of Gravity from Back of Flange.	Moment of Inertia Axis 1-1.	Section Modulus Axis I-1.	Radius of Gyration Axis 1-1.	Distance of Cen. of Grav. from Ext. Apex on Line Inclined at 45° to Flange.	Least Moment of Inertia Axis 2-2.	Section Modulus Axis 2-2.	Least Radius of Gyration Axis 2-2,
	a×a	t		A	x	1	s	ı.	ж′′	I"	s"	r''
A 19 A 19 A 19 A 19 A 19 A 19	Inches 3 ×3 3 ×3 3 ×3 3 ×3 3 ×3 3 ×3 3 ×3	Ins. 14 5 5 7 6 12 9 6 1 5 8	7.2 8.3 9.4	1.44 1.78 2.11 2.43 2.75 3.06	.84 .87 .89 .91 .93	Ins.4 1.24 1.51 1.76 1.99 2.22 2.43 2.62	Ins. ³ .58 .71 .83 .95 1.07 1.19	Inches .93 .92 .91 .91 .90 .89	Inches 1.19 1.22 1.26 1.29 1.32 1.35 1.38	Ins.4 .50 .61 .72 .82 .92 1.02	Ins. ³ .42 .50 .57 .64 .70 .76 .81	.59 .59 .58 .58 .58 .58 .58
A 21 A 21 A 21 A 21 A 21 A 21 A 21 A 21	$\begin{array}{c} 3\frac{1}{2} \times 3\frac{1}{2} \\ 3\frac{1}{2} \times 3\frac{1}{2} \end{array}$	387 6 1 2 0 6 5 8 1 1 6 3 4 1 1 6 1 1 6 1 1 6 1 1 6 1 1 6 1 1 6 1 6 1 1 6	8.4 9.8 11.1 12.3 13.5 14.8 15.9	3.62 3.98 4.34 4.69	1.01 1.04 1.06 1.08 1.10 1.12 1.15	2.87 3.26 3.64 3.99 4.33 4.65 4.96 5.25	1.15 1.32 1.49 1.65 1.81 1.96 2.11	1.07 1.05 1.05 1.04 1.04 1.03	1.43 1.46 1.50 1.53 1.56 1.59 1.62	1.16 1.33 1.50 1.66 1.82 1.97 2.13 2.28	.81 .91 1.00 1.09 1.17 1.24 1.31	.68 .68 .68 .68 .67 .67
A 23 A 23 A 23 A 23 A 23 A 23 A 23 A 23	4 ×4 4 ×4 4 ×4 4 ×4 4 ×4 4 ×4 4 ×4 4 ×4	Take The Hate Liver and the	9.7 11.2 12.8 14.2 15.7 17.1 18.5	2.40 2.86 3.31 3.75 4.18 4.61 5.03 5.44 5.84	1.12 1.14 1.16 1.18 1.21 1.23 1.25 1.27	3.71 4.36 4.97 5.56 6.12 6.66 7.17 7.66 8.14	1.29 1.52 1.75 1.97 2.19 2.40 2.61 2.81 3.01	1.24 1.23 1.22 1.21 1.20 1.19 1.19	1.58 1.61 1.64 1.67 1.71 1.74 1.77 1.80 1.83	1.50 1.77 2.02 2.28 2.52 2.76 3.00 3.23 3.46	95 1.10 1.23 1.36 1.48 1.59 1.70 1.80 1.89	.79 .78 .78 .78 .77 .77
A 27 A 27 A 27 A 27 A 27 A 27 A 27 A 27	6 ×6 6 ×6 6 ×6 6 ×6 6 ×6 6 ×6 6 ×6	71-210-650-16-34-36-70	19.6 21.9 24.2 26.4 28.7	7.78 8.44 9.09	1.68 1.71 1.73 1.75 1.78	17.68 19.91 22.07 24.16 26.19 28.15 30.06 31.92	4.07 4.61 5.14 5.66 6.17 6.66 7.15 7.63	1.87 1.86 1.85 1.84 1.83 1.83 1.82	2.51 2.54	7.13 8.04 8.94 9.81 10.67 11.52 12.35 13.17	3.04 3.37 3.70 4.01 4.31 4.59 4.86 5.12	1.19 1.18 1.18 1.17 1.17 1.17 1.17

Column 9 contains the least radii of gyration for two angles back to back for all thicknesses of gusset plates.

128

Table XII.

PROPERTIES OF STANDARD ANGLES

I	2	3	4	5	6	7	8
Section Number.	Dimen- sions.	Thickness.	Weight per Foot.	Area of of Section.	Distance of Centre of Gravity from Back of Longer Flange.	Moment of Inertia Axis 1-1.	Section Modulus, Axis 1-1,
	bxa	t		A	x	1	s
	Inches.	Inches.	Pounds.	Sq. In	Inches.	Inches.4	Inches ³ .
A 91 A 91 A 91 A 91 A 91 A 91	$ \begin{array}{c} 2\frac{1}{2} \times 2 \\ 2\frac{1}{2} \times 2 \end{array} $	3 6 1 4 2 5 6 1 7 5 6 7 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	2.8 3.6 4.5 5.3 6.0 6.8	.81 1.06 1.31 1.55 1.78 2.00	.51 .54 .56 .58 .60	.29 .37 .45 .51 .58 .64	.20 .25 .31 .36 .41
A 93 A 93 A 93 A 93 A 93 A 93	$\begin{array}{c} 3 \times 2\frac{1}{2} \\ 3 \times 2\frac{1}{2} \end{array}$	14 5 6 7 6 7 1 2 9 6 1 2 9 6 1 6 1 1 2 9 6 1 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4.5 5.5 6.5 7.5 8.5 9.4	1.31 1.62 1.92 2.21 2.50 2.78	.66 .68 .71 .73 .75	.74 .90 1.04 1.18 1.30	.40 .49 .58 .66 .74
A 95 A 95 A 95 A 95 A 95 A 95 A 95 A 95	$\begin{array}{c} 3\frac{1}{2} \times 2\frac{1}{2} \\ 3\frac{1}{2} \times 2\frac{1}{2} \end{array}$	1456 000 7 6 100 100 100 100 110	4.9 6.0 7.2 8.3 9.4 10.4 11.4	1.44 1.78 2.11 2.43 2.75 3.06 3.36 3.65	.61 .64 .66 .68 .70 .73 .75	.78 .94 1.09 1.23 1.36 1.49 1.61	.41 .50 .59 .68 .76 .84
A 97 A 97 A 97 A 97 A 97	$3\frac{1}{2} \times 3$ $3\frac{1}{2} \times 3$ $3\frac{1}{2} \times 3$ $3\frac{1}{2} \times 3$ $3\frac{1}{2} \times 3$	5 8 7 8 7 8 7 8 9 8 8 8 8 8 8 8 8 8 8 8 8	6.6 7.8 9.0 10.2	1.93 2.30 2.65 3.00 3.34	.81 .83 .85 .88	1.58 1.85 2.09 2.33 2.55	.72 .85 .98 I.10

Table XII—Continued.

PROPERTIES OF STANDARD ANGLES.

9	10	11	12	13	14	15	I
Radius of Gyration Axis 1-1.	Distance of Centre of Gravity from Back of Shorter Flange.	Moment of Inertia Axis 2-2.	Section Modulus Axis 2-2.	Radius of Gyration Axis 2-2.	Tangent of Angle	Least Radius of Gyration Axis 3-3.	Section Number,
r	x′	x,	s'	r'	4	r"	
Inches.	Inches.	Inches.4	Inches.3	Inches.		Inches.	
.60 .59 .58 .58	.76 .79 .81 .83	.51 .65 .79 .91	.29 .38 .47 .55	.79 . .78 .78 .77	.632 .626 .620 .614	.43 .42 .42 .42	A 91 A 91 A 91 A 91
.56	.88	1.14	.70	75	.600	.42	A 91
.75 .74 .74 .73 .72 .72	.91 .93 .96 .98 I.00	1.17 1.42 1.66 1.88 2.08 2.28	.56 .69 .81 .93 1.04 1.15	.95 .94 .93 .92 .91	.684 .680 .676 .672 .666	.53 .53 .52 .52 .52 .52	A 93 A 93 A 93 A 93 A 93 A 93
.74 .73 .72 .71 .70 .70 .69	1.11 1.14 1.16 1.18 1.20 1.23 1.25 1.27	1.80 2.19 2.56 2.91 3.24 3.55 3.85 4.13	.75 .93 1.09 1.26 1.41 1.56 1.71	1.12 1.11 1.10 1.09 1.09 1.08 1.07	.506 .501 .496 .491 .486 .480 .472 .468	.54 .54 .54 .53 .53 .53	A 95 A 95 A 95 A 95 A 95 A 95 A 95 A 95
.90 .90 .89 .88	1.06 1.08 1.10 1.13 1.15	2.33 2.72 3.10 3.45 3.79	.95 1.13 1.29 1.45 1.61	1.10 1.09 1.08 1.07	.724 .721 .718 .714 .711	.63 .62 .62 .62 .62	A 97 A 97 A 97 A 97 A 97

Column 9 contains the least radii of gyration for two angles with short legs, back to back for all thicknesses of gusset plates.

Table XII—Continued. PROPERTIES OF STANDARD ANGLES.

<u> </u>	2	3	4	5	6	7	8
Section Number,	Dimen- sions.	Thickness.	Weight per Fost.	Area of Section.	Distance of Centre of Gravity from Back of Longer Flange.	Moment of Inertia Axis 1-1.	Section Modulus. Axis 1-1.
	bxa	t		A	x	I	S
	Inches.	Inches.	Pounds.	Sq. In.	Inches.	Inches.4	Inches3.
A 97 A 97 A 97 A 97	$3\frac{1}{2} \times 3$ $3\frac{1}{2} \times 3$ $3\frac{1}{2} \times 3$ $3\frac{1}{2} \times 3$	50 71 10 34 11 11	12.5 13.6 14.7 15.7	3.67 4.00 4.31 4.62	.92 .94 .96 .98	2.76 2.96 3.15 3.33	I.33 I.44 I.54 I.65
A 99 A 99 A 99 A 99 A 99 A 99 A 99 A 99	4 ×3 4 ×3 4 ×3 4 ×3 4 ×3 4 ×3 4 ×3 4 ×3	와 다 이전 2. 1 전 2	7.1 8.5 9.8 11.1 12.3 13.6 14.8 15.9	2.09 2.48 2.87 3.25 3.62 3.98 4.34 4.69 5.03	.76 .78 .80 .83 .85 .87 .89	1.65 1.92 2.18 2.42 2.66 2.87 3.08 3.28 3.47	.73 .87 .99 1.12 1.23 1.35 1.46 1.57
A 101 A 101 A 101 A 101 A 101 A 101 A 101	5 × 3 5 × 3	5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8.2 9.7 11.3 12.8 14.2 15.7 17.1 18.5	2.40 2.86 3.31 3.75 4.18 4.61 5.03 5.44 5.84	.68 .70 .73 .75 .77 .80 .82 .84	1.75 2.04 2.32 2.58 2.83 3.06 3.29 3.51 3.71	.75 .89 I.02 I.15 I.27 I.39 I.51 I.62
A 103 A 103 A 103 A 103 A 103 A 103 A 103 A 103 A 103	55555555555555555555555555555555555555	ctor I - factor to de sierto	10.4 12.0 13.6 15.2 16.7 18.3 19.8 21.2 22.7	3.05 3.53 4.00 4.46 4.92 5.37 5.81 6.25 6.67	.86 .88 .91 .93 .95 .97 1.00	3.18 3.63 4.05 4.45 4.83 5.20 5.55 5.89 6.21	1.21 1.39 1.56 1.73 1.90 2.06 2.22 2.37 2.52

TABLES.

Table XII—Continued. PROPERTIES OF STANDARD ANGLES.

· · · · · · · · · · · · · · · · · · ·												
. 9	10	11	12	13	14	15	I					
Radius of Gyration Axis 1–1.	Distance of Centre of Gravity from Back of Shorter Flange.	Moment of Inertia. Axis 2-2.	Section Modulus Axis 2-2.	Radius of Gyration Axis 2-2.	Tangent of Angle	Least Radius of Gyration Axis 3-3.	Section Number.					
	x′	I'	s′	r'	α	r''						
Inches.	Inches.	Inches.4	Inches.3	Inches.		Inches.						
.87 .86 .85	1.17 1.19 1.21 1.23	4.11 4.41 4.70 4.98	1.76 1.91 2.05 2.20	1.06 1.05 1.04 1.04	.707 .703 .698 .694	.62 .62 .62 .62	A 97 A 97 A 97 A 97					
.89 .88 .87	1.26 1.28 1.30	3.38 3.96 4.52	1.23 1.46 1.68	1.27 1.26 1.25	.554 .551 .547	.65 .64 .64	A 99 A 99 A 99 A 99					
.86 .86 .85 .84	1.33 1.35 1.37 1.39	5.05 5.55 6.03 6.49	1.89 2.09 2.30 2.49	1.25 1.24 1.23 1.22	.543 .538 .534 .529	.64 .64 .64	A 99 A 99 A 99					
.84 .83	I.42 I.44	6.93 7.35	2.68	1.22	.524 .518	.64 .64	A 99 A 99					
.85 .84 .84 .83 .82 .82 .80	1.68 1.70 1.73 1.75 1.77 1.80 1.82 1.84	6.26 7.37 8.43 9.45 10.43 11.37 12.28 13.15 13.98	1.89 2.24 2.58 2.91 3.23 3.55 3.86 4.16 4.46	1.61 1.60 1.50 1.58 1.57 1.56 1.55	.368 .364 .361 .357 .353 .349 .345 .340	.66 .65 .65 .65 .65 .64 .64	A 101 A 101 A 101 A 101 A 101 A 101 A 101					
1.02 1.01 1.00 .99 .98 .98	1.61 1.63 1.66 1.68 1.70 1.72 1.75 1.77	7.78 8.90 9.99 11.03 12.03 12.99 13.92 14.81	3.32 3.65 3.97 4.28 4.58	1.60 1.59 1.58 1.57 1.56 1.56 1.55 1.54	.485 .482 .479 .476 .472 .468 .464 .460	.76 .76 .75 .75 .75 .75 .75	A 103 A 103 A 103 A 103 A 103 A 103 A 103					

Column 9 contains the least radii of gyration for two angles with short legs back to back for all thicknesses of gusset-plates.

Table XII—Continued.

PROPERTIES OF STANDARD ANGLES.

<u> </u>	2	3	4	5	6	7	8
Section Number.	Dimen- sions.	Thickness.	Weight per Foot.	Area of Section.	Distance of Centre of Gravity from Back of Longer Flange.	Moment of Inertia Axix 1-1.	Section Modulus Axis 1-1.
	bxa	t		A	x	I	s
	Inches.	Inches.	Pounds.	Sq. In.	Inches.	Inches.4	Inches, 8
A 105 A 105 A 105 A 105 A 105 A 105 A 105 A 105	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	다하기는 - 1000년 다 다 다 사내 사내가 100 - 110 대 110 110	11.6 13.5 15.3 17.1 18.9 20.6 22.3 24.0 25.7	3.42 3.96 4.50 5.03 5.55 6.06 6.56 7.06 7.55	.79 .81 .83 .86 .88 .90 .93 .95	3.34 3.81 4.25 4.67 5.08 5.47 5.84 6.20 6.55	1.23 1.41 1.59 1.77 1.94 2.11 2.27 2.43 2.59
A 107 A 107 A 107 A 107 A 107 A 107 A 107 A 107	6 ×4 6 ×4 6 ×4 6 ×4 6 ×4 6 ×4 6 ×4 6 ×4		12.3 14.2 16.2 18.1 19.9 21.8 23.6 25.4 27.2	3.61 4.18 4.75 5.31 5.86 6.40 6.94 7.46 7.98	.94 .96 .99 I.01 I.03 I.06 I.08 I.10	4.90 5.60 6.27 6.91 7.52 8.11 8.68 9.23 9.75	x.60 1.85 2.08 2.31 2.54 2.76 2.97 3.18 3.39

Table XII—Continued.

PROPERTIES OF STANDARD ANGLES.

9	10	II	12	13	14	15	I
Radius of Gyration Axis 1-1,	Distance of Centre of Gravity from Back of Shorter Flange,		Section Modulus Axis 2-2.	Radius of Gyration Axis 2-2.	Tangent of Angle CC	Least Radius of Gyration. Axis 3-3.	Section Number.
r	x'	ı'	s′	r'		r"	
Inches,	Inches.	Inches.4	Inches.8	Inches.		Inches.	
.99 .98 .97 .96 .96 .95 .94	2.04 2.06 2.08 2.11 2.13 2.15 2.18 2.20 2.22	12.86 14.76 16.59 18.37 20.08 21.74 23.34 24.89 26.39	3.24 3.75 4.24 4.72 5.19 5.65 6.10 6.55 6.98	1.94 1.93 1.92 1.91 1.90 1.89 1.89 1.88	.350 .347 .344 .341 .338 .334 .331 .327 .323	.77 .76 .76 .75 .75 .75 .75 .75	A 105 A 105 A 105 A 105 A 105 A 105 A 105 A 105 A 105
1.17 1.16 1.15 1.14 1.13 1.13 1.11	1.94 1.96 1.99 2.01 2.03 2.06 2.08 2.10	13.47 15.46 17.40 19.26 21.07 22.82 24.51 26.15 27.73	3.32 3.83 4.33 4.83 5.31 5.78 6.25 6.75 7.15	1.93 1.92 1.91 1.90 1.90 1.89 1.88 1.87	.446 .443 .440 .438 .434 .431 .428 .425	.88 .87 .87 .86 .86 .86 .86	A 107 A 107 A 107 A 107 A 107 A 107 A 107 A 107

Column 9 contains the least radii of gyration for two angles with short legs back to back for all thicknesses of gusset-plates.

TABLE XIII.

LEAST RADII OF GYRATION FOR TWO ANGLES WITH UNEQUAL LEGS, LONG LEGS BACK TO BACK.

Dimensions, Inches.	Thickness, Inches.	Area of Two Angles, Square	Least Radii	of Gyration f Back to Back	or Distances	of Gyration
		Inches.	o Inch.	g Inch.	3 Inch.	for one Angle.
$2\frac{1}{2} \times 2$	a ran far facta o profa fa fa for the poster of a bost of a bost of a part of a decide the charter of a charte	1.62	0.79	0.79	0.79	0,43
$2\frac{1}{2}\times 2$	*	3.09	0.77	0.77	0.77	0,42
$2\frac{1}{2}\times 2$	2	4.00	0.75	0.75	0.75	0.42
$3 \times 2\frac{1}{2}$	1 4	2.63	0.95	0.95	0.95	0.53
$3 \times 2\frac{1}{2}$	***	3.84	0.93	0.93	0.93	0.52
$3 \times 2\frac{1}{2}$	J, g.	5.55	0.91	0.91	0.91	0.52
$3\frac{1}{2}\times2\frac{1}{2}$	4	2.88	0.96	1.00	1.12	0.54
$3\frac{1}{2}\times2\frac{1}{2}$,2,	5.50	1.00	1.00	1.00	0.53
$3\frac{1}{2}\times2\frac{1}{2}$	1,8	7.30	1.03	1.06	I.oĆ	0.53
$3\frac{1}{2}\times3$	I.c	3.87	1.10	1.10	1.10	0.63
$3\frac{1}{2}\times3$	16	6.68	1.07	1.07	1.07	0.62
$3\frac{1}{2}\times3$	1.8	9.24	1.04	1.04	1.04	0.62
4 ×3	I g	4.18	1.17	1.27	1,27	0.65
4 ×3	19	7.24	1.21	1,24	1.24	0.64
4 ×3	18	10.05	1.21	1.21	1.21	0.64
5 ×3	T ₀	4.80	1.09	1.22	1.36	0,66
5 ×3	T _o t	8.37	1.13	1.26	1.41	0.65
5 ×3 5 ×3½	18	rr.68	1.17	1.32	1.47	0.64
5 ×3⅓	1 8	6.09	I.34	1.46	r.60	0.76
5 ×3½	<u>§</u>	9.84	1.37	1.51	1.56	0.75
5 ×3½	1 1	13.34	1.42	1.53	1.53	0.75
	8	6.84	1,26	1.39	1.53	0.77
$6 \times 3^{\frac{7}{2}}$	<u>§</u>	11.09	1,30	1.43	1.58	0.75
$6 \times 3\frac{7}{2}$	1	15.09	1.34	1.49	1.64	0.75
6 ×4	8	7.22	1.50	1.62	1.76	0.88
6 ×4	8	11.72	1.53	1.67	1.81	0.86
6 ×4	*	15.97	1.58	r.68	r.86	0.86

TABLE XIV. PROPERTIES OF T BARS.

Equal Legs.

				22090.			
	2	3	4	5	6	7	8
		DIME	sions.				
Section Number.	Width of Flange.	Depth of Bar.	Thickness of Flange.	Thickness of Stem.	Weight per Foot.	Area of Section.	Dist. Cent. of Gravity from Out- side of Flange.
	b	đ	s to n'	t to t ₁		A	x
	Inches.	Inches.	Inches.	Inches.	Pounds.	Sq. Ins.	Inches.
T 181 T 183 T 187 T 189 T 37 T 39 T 41 T 69 T 97	1 18 8 8 8 8 1 1 1 1 1 1 1 1 1 1 1 1 1	1 18 8 8 8 8 1 1 1 1 1 1 1 1 1 1 1 1 1	1 to 52 1	1 to 58 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	.89 1.39 1.53 1.61 1.85 3.7 4.3 4.1 7.8 9.3	.26 .41 .45 .47 .54 1.05 1.26 1.19 2.27	.29 .33 .34 .36 .39 .59 .61 .68 .88
			Unequal	Legs.			L
T 185 T 65 T 101	11 3 31 32	1 1 8 2 2 4	8 (1 16 (7 8 (7 8 (7 8 (7 8 (7	5 44 7 82 48 82 8 47 7 8 47 7	1.49 7.2 9.9	.44 2.07 2.91	.29 .71 1.20

Table XIV—Continued.

PROPERTIES OF T BARS.

Equal Legs—(Continued).

I	9	10	11	12	13	14
Section	Moment of Inertia Axis 1-1.	Section Modulus Axis 1-1.	Radius of Gyration Axis 1-1.	Moment of Inertia Axis 2-2.	Section Modulus Axis 2-2.	Radius of Gyration Axis 2-2.
Number.	ı	s	r	<u>r</u> ′	S'	r'
	Inches4.	Inches ³ .	Inches.	Inches4.	Inches ³ .	Inches.
T 181 T 181 T 183 T 189 T 37 T 39 T 41 T 69 T .97	.02 .04 .05 .06 .08 .37 .43 .51 1.82 3.1	.03 .05 .06 .07 .08 .26 .31 .32 .86	.30 .32 .33 .35 .39 .59 .59 .65	.01 .02 .03 .03 .05 .18 .23 .24 .92	.02 .04 .05 .05 .07 .18 .23 .22 .61	.21 .25 .26 .27 .29 .42 .42 .45 .64
		Unequal I	Legs—(Cont	inued).		
T 185 T 65 T 101	.04 1.08 4.3	.05 .60 1.54	.29 .64 1.23	.03 .90 I.42	.01 .60 .81	.28 .28 .70

Table XV.

STANDARD SIZES OF YELLOW PINE LUMBER AND CORRESPONDING AREAS AND SECTION MODULI.*

Nominal Size.	Standard Size.	Area A,	Section Modulus,	
b' d'	b d	Sq. In.	$S = \frac{1}{6}bd^2.$	
2× 6 8 10 12 14 16	155× 550 72121 92121 11212 1321 152	9.1 12.2 15.4 18.7 21.9 25.2	8.57 15.23 24.44 35.82 49.36 65.03	Relative transverse strength of yellow pine Long-leaf
2½×6 8 10 12 14 16	2½× 5½ 7½ 9½ 11½ 13½ 15½	12.4 16.9 21.4 25.9 30.4 34.9	11.34 21.10 33.84 49.60 68.34 90.10	Relative compressive strength of yellow pine. With the grain Long-leaf. 100 Cuban. 115 Loblolly 94 Short-leaf 86
3×6 8 10 12 14 16	2½× 5½ 75½ 9½ 113½ 15½	15.1 20.6 26.1 31.6 37.1 42.6	13.86 25.78 41.36 60.60 83.53 110.11	Longitudinal shear at neutral axis $W = \text{total}$ safe uniformly distributed load on beam supported at ends
4× 4 6 8 10 12 14 16	34 × 34 5 6 1 7 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	14.1 21.1 28.1 35.6 43.1 50.6 58.1	8.79 19.77 35.16 56.41 82.66 113.91 150.16	A = area of section of beam $f_s = \text{safe intensity for longitudi-}$ nal shear $W = \frac{4}{5}Af_s$.

^{*} Compiled from "A Manual of Standard Wood Construction," published by The Yellow Pine Manufacturers' Association, St. Louis, Mo.

TABLE XV-Continued.

Nominal Size. b' d'	Standard Size.	Area A,	Section modulus, $S = \frac{1}{4}bd^2$.	
6× 6 8 10 12 14 16 18	5½× 5½× 5½ 7½ 11½ 11½ 11½ 11½ 11½ 11½ 11½ 11½ 11½	30.3 41.3 52.3 63.3 74.3 85.3 96.3	27.70 51.56 82.73 121.23 167.10 220.21 280.73	Bending Moments. For a fiber stress of 1200 pounds per square inch the maximum bending moment in fool-pounds is 100S, where S=the section modulus
8×8	7½× 7½	56.3	70.31	
10	9½	71.3	112.81	
12	11½	86.3	165.31	
14	13½	101.3	227.81	
16	15½	116.3	300.31	
10×10	9½× 9½	90.3	142.89	
12	11½	109.3	209.39	
14	13½	128.3	288.56	
16	15½	147.3	380.39	
12×12	11½×11½	132.3	253.48	
14	13½	155.3	349.31	
16	15½	178.3	460.48	
18	17½	201.3	586.98	
14×14	13½×13½	182.3	410.06	
16	15½	209.3	540.56	
18	17½	236.3	689.06	
16×16	15½×15½ 17½	240.3 271.3	620.67 791.14	

TABLE XVI.

AVERAGE SAFE ALLOWABLE WORKING UNIT STRESSES, IN POUNDS PER SQUARE INCH. Recommended by the Committee on "Strength of Bridge and Trestle Timbers," Association of Railway Superintendents of Bridges and Buildings, Fifth Annual Convention, New Orleans, October, 1895, and modified in 1904.

	TENSION.	ON.	ర	COMPRESSION.	÷	TRANS	TRANSVERSE.	SHEARING.	RING.
	Ξ	(2)	(3)	(4)	(5)	(9)	(2)	(8)	6
Kind of Timber.	i		With Grain.	Grain.		Extreme	Modulus	With	Acros
	With Grain.	Across Grain,	End Bearing.	Columns under 15 Diam.	Grain.	Fiber Stress.	Fiber of Stress. Elasticity.	Grain.	Grain.
Factor of Safety.	Теп.	Ten.	Five.	Five.	Four.	Six.	Two.	Four.	Four.
White Oak	1200	200	1400	1000	200	1200	750000	200	1000
White Pine	200	20	1100	800	200	200	500000	100	200
Southern Long-leaf or Georgia Yellow Pine	1200	9	1400	1000	350	1200	750000	150	1250
Douglas, Oregon, and Yellow Fir	800	:	1200	906	200	80	220000	130	
Washington Fir or Pine (Red Fir)	1000	:	:	:	:	800	,		
Northern or Short-leaf Yellow Pine	000	20	II00	800	250	1000	0000009	100	1000
Red Pine	800	ည	1000	750	200	800	565000		
Norway Pine	800	:	1000	750	200	8	265000		
Canadian (Ottawa) White Pine.	1000		:	1000	:	:	:	100	
Ontario	1000		:	1000	:	800	200000	001	
	800	2	1200	800	200	200	000009	0 0 1	750
Hemlock	909		1100	800	150	9	450000	100	009
Cymress	009		1000	750	200	800	450000		
Cedar	400		1100	750	200	200	350000	00 I	400
Chestaut	850	:	:	800	250	800	200000	120	200
California Redwood	200		:	800	120	750	350000	100	
California Spruce	. :			800	:	800	000009		

Table XVII.
CAST-IRON WASHERS.

Diam.of bolt d. Inches.	D Inches.	d" Inches.	d' Inches.	T Inches.	Weight. Lbs.	Bearing Area. Sq. In.
1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	2333446678901112	1122223554445556	oricalcalcalcalcalcalcalcalcalcalcalcalcalc	4 1 1 1 1 2 2 2 3 3	1 1 2 1 2 2 3 5 5 1 7 1 2 0 7 3 6 4 6	5.16 6.69 7.78 10.35 11.68 16.61 26.92 28.61 38.52 49.91 62.77 77.11 92.91 110.19

For sizes not given $D = 4d + \frac{1}{4}$; $d' = d + \frac{1}{4}$;

 $d'' = 2d + \frac{1}{4}$. T = d.

TABLE XVIII.

SAFE SHEARING AND TENSILE STRENGTH OF BOLTS.

			Wrough	it Iron.	Soft S	STEEL.
Diam. of Bolt.	Gross Area. Square Inch.	Net Area. Square Inch.	Single Shear 7500 lbs. per Sq. In.	Tension 12000 lbs. per Sq. In.	Single Shear 10000 lbs. per Sq. In.	Tension 16000 lbs. per Sq. In.
- invaloculario 1 in 1 in 1 in 1 in 2 2 2 2 2 3	0.196 0.307 0.442 0.601 0.785 0.994 1.227 1.485 1.767 2.405 3.142 3.976 4.909 5.940 7.069	0.126 0.202 0.302 0.420 0.550 0.694 0.893 1.057 1.295 1.744 2.302 3.023 3.715 4.619 5.428	1470 2300 3320 4510 5890 7460 9200 11140 13250 18040 23560 29820 36820 44550 53020	1510 . 2420 3620 5040 6600 8330 10720 12680 15540 20930 27620 36280 44580 55430	1960 3070 4420 6010 7850 9940 12270 14850 17670 24050 31420 39760 49090 59400 70690	2020 3230 4830 6720 8800 11100 14290 16910 20720 27900 36830 48370 59440 73900 86850

APPENDIX.

I. Length of Keys, Spacing of Notches and Spacing of Bolts.—Let p = the end bearing intensity, q = the bearing intensity across the grain, and s = the intensity in

longitudinal shear for the key. Then the length of the key is $l=\frac{p}{s}d$, when end bearing and longitudinal shear are considered. As the key tends to rotate under the moment pd^2 , cross bearing stresses are produced and the maximum intensity must not exceed q. The length of the key based on q is $l=d\sqrt{6\frac{p}{q}}$. This value of l is less than that found above for wooden keys, hence their length is controlled by end bearing and longitudinal shear intensities. Evidently square metal keys produce excessive

cross bearing intensities and should only be used when p is taken as $\frac{2}{3}q$. For given values of p and q the proper length of metal keys is found from the second formula given above.

Unless the pieces A and B are securely bolted together the rotation of the key will separate them. The rotating moment is $\frac{2}{3}Ql = pd^2$.

$$\therefore Q = \frac{3}{2} \frac{pd^2}{l},$$

where l = the length of the key.

This value of Q assumes the dimension normal to the page as unity. If the piece B is assumed to be fixed, then a bolt at C passing through A, the key, and B will have a tensile stress of $\frac{3}{2}\frac{pd^2}{l}b$, where b is the width of the pieces and the key. The stress in the bolt for any other position is uncertain, but probably it will not be greatly in excess of the stress given by the above formula if placed anywhere in the key.

For notches, as shown in Fig. 1a, the spacing is controlled by end bearing and longitudinal shear intensities and

$$l = \frac{p}{s}d.$$

The spacing of round bolts is somewhat difficult to determine accurately, owing to the splitting action. If this is neglected the spacing may be considered as depend-

ing upon the end bearing and longitudinal shear intensities for the wood. If p' is the end bearing intensity, then

$$l = \frac{1}{2} \frac{p'}{s} d.$$

As a matter of precaution the diameter of the bolt should be added to this length except at the end of the piece, where one-half the diameter may be added. Approximately, the spacing of bolts may be taken as four and one-half diameters of the bolts for hard woods and five times the diameters for soft woods.

Values of	Figs. 1 and 1a, $l = \frac{p}{s}d.$	Fig. 1b, $\frac{1}{2}\frac{p'}{s}d+d.$
White Oak White Pine Long-leaf Pine Douglas Fir Short-leaf Pine Spruce	$\begin{array}{c} \mathtt{11.od} \\ \mathtt{9.3}d \\ \mathtt{9.2}d \\ \mathtt{11.od} \end{array}$	3.75d 4.00d 3.83d 3.31d 4.00d 4.00d

2. Plate Washers and Metal Hooks for Trusses of Wood.— Where a number of bolts are necessary, it is usually more

economical to use a single plate to transfer the stresses in the bolts to the wood than to use single cast-iron washers,

FIG. 2.

since the use of washers necessitates a wider spacing of bolts.

As a close approximation we may assume that the plate will have a tendency to bend along the dotted lines, and that the load producing this is the bearing value of the wood against which the plate bears.

If B is the safe bearing value for the wood and R the modulus of safe strength for the metal in bending, then

$$Bbl\left(\frac{l}{2}\right) = \frac{1}{6}Rbt^2$$
, or $l^2 = \frac{R}{3B}t^2$.

From which

$$l = t \sqrt{\frac{R}{3B}}.$$

Assuming R=16,000 and the values of B as given in Table XVI, we obtain the following:

White Oak	l = 3.26t
White Pine	l = 5.16t
Long-leaf Southern Pine	l=3.90t

Douglas, Oregon, and Yellow Fir	l = 5.16t
Northern or Short-leaf Yellow Pine	l = 4.62t
Spruce and Eastern Fir	l=5.16t

Where plates are bent at right angles, forming a hook bearing against the end fibers of wood, the efficient depth of the notch will obtain when the total safe bearing upon

FIG. 2a.

the end fibers of the wood and the safe fiber stress in the metal plate are reached at the same time. Then, if 16,000 is the safe fiber stress for steel and B the safe end bearing for wood as given in Table XVI, the efficient depth of the notch can be found from the formula

$$d = t\sqrt{\frac{R}{3B}}.$$

The values of d are given below for different woods:

White Oak	d = 1.95t
White Pine	d = 2.20t
Long-leaf Southern Pine	d = 1.95t
Douglas, Oregon, and Yellow Fir	d = 2.11t
Northern or Short-leaf Yellow Pine	d = 2.20t
Spruce and Eastern Fir	d = 2.11t

Since in bending a plate the inside of the bend will be an arc of a circle having a radius of about $\frac{1}{2}t$, the depth

of the notch should be increased this amount, but the efficiency should be based upon the values of d given above.

3. A Graphical Solution of the Knee-brace Problem.—
(First published in Railroad Gazette, May 18, 1906.) The actual stresses in knee-braces between columns and roof-trusses will probably never be known exactly, as there are

Fig. 3.

so many variable factors entering the question. In the usual construction, where columns are bolted to masonry pedestals at the bottom, either riveted or bolted to the trusses at the top, and with the knee-braces riveted at both ends, the degree to which these connections may be considered fixed is a question leading to many arguments and differences of opinion. It is not proposed to enter into this question at all, but to show how the stresses in all the members of the framework can be found graphically under a given assumption.

Assume, for example, that the bottom of the columns are sufficiently fixed, so that the point of zero moment is

midway between the bottom and the attachment of the knee-braces, and that the top attachments and those of the knee-braces to the columns such that they may be considered as pin-connections. Taking the truss and loading shown in Fig. 3, it is evident that the external forces must be in equilibrium, and, unless the points M and N are unlike in some particular, the reactions at these points will be parallel to the resultant of the given forces and the sum of the two reactions equal this resultant in magnitude. This is shown by HE, Fig. 3a, which represents the direc-

Fig. 3a.

tion and magnitude of the resultant of the given forces. Assume a convenient point as a pole, and construct an equilibrium polygon in the usual manner, and draw the string S_0 , dividing HE into two parts at L. $HL=R_1'=$ the reaction at M, and $LE=R_2'=$ the reaction at N. These reactions are correct in direction and magnitude, unless some condition is imposed to change them.

If there are no bending moments at M and N and these points are prevented from moving vertically, the vertical components of the reactions must remain constant, even in the extreme case where M may be assumed as a pin and N as resting on rollers.

Any assumption may be made as to the horizontal reactions at these points, as long as their sum equals the horizontal component of HE, Fig. 3a. It is customary to assume these reactions as equal. If this is the case, then the reaction at M is HL' and that at N, L'E, as shown in Fig. 3a.

The next step is to find the effect of these reactions at the points O, Q, P, and R. The vertical components will

Fig. 3b.

act as vertical reactions at O and P. The horizontal components will produce bending moments at O and P, and,

in effect, horizontal forces at O, P, Q, and R. To determine these forces, in Fig. 3a, assume a pole vertically below E and draw the strings S_1 and S_0 from the extremities of the horizontal component as shown. Then, in Fig. 3, from N draw S_1 and S_0 in the usual manner, and complete the equilibrium polygon with S_2 . In Fig. 3a draw ZF parallel to S_2 of Fig. 3, then SF is the force at P, and FE the force at P produced by the action of the horizontal reaction at P. The forces at P and P are of course, the same as found at P and P respectively. With these forces determined, the problem is solved in the usual manner, as shown in Fig. 3b.

4. Trusses which may have Inclined Reactions. — All trusses change in span under different loads, owing to the changes in length of the members under stress. Trusses with straight bottom chords do not change sufficiently to create any considerable horizontal thrust, but those having broken bottom chords, like the scissors-truss, often, when improperly designed, push their supports outward. This can be obviated by permitting one end of the truss to slide upon its support until fully loaded with the dead load, then the only horizontal thrust to be taken by the supports will be that due to wind and snow loads. Of course the horizontal component of the wind must be resisted by the supports in any case. A better way of providing for the horizontal thrust produced by vertical loads is to design the truss so that the change in the length of the span is so small that its effect may be neglected. This requires larger truss members than are sometimes used and care in making connections at the joints.

Let p = the stress per square inch in any member produced by a full load;

u = the stress in any member produced by a load of one pound acting at the left support and parallel to the plane of the support, usually horizontal;

l=the length center to center of any member (inches);

E = the modulus of elasticity of the material composing any member;

D = the total change in span produced by a full load.

Then

$$D = \Sigma \frac{pul}{E}.*$$

Fig. 4.

If S = the stress or horizontal force necessary to make D zero,

a = the area of any member in square inches,

^{*}Theory and Practice of Modern Framed Structures, Johnson, Bryan, Turneaure (John Wiley & Sons, N. Y.). Roofs and Bridges, Merriman and Jacoby (John Wiley & Sons, N. Y.).

To illustrate the use of these formulas we will take a simple scissors-truss having a span of 20 feet and a rise of 10 feet.

COMPUTATIONS FOR D AND S.

Stress Produced by 1000- lb. Loads.	a, sq. in.	⊅. lbs.	u, lbs.	l, inches.	$\frac{pul}{E}$	<u>u₹</u> aE
+3160 +2100 + 800 -2360 -1980	36 36 36 36 36 0.785	87.8 58.3 22.2 65.5 2522	+0.71 +0.71 0.00 -1.58 -1.00	84.8 84.8 63.2 126.5 80.0	.00528 .00351 .00000 .01316 .00336 .02531 _2	.00000118 .00000118 0 .00000875 .00000170
	Produced by 1000- lb. Loads. +3160 +2100 + 800 -2360	Produced by 1000-lb. Loads. +3160 36 +2100 36 +800 36 -2360 36	Produced by rooo- lb. Loads. +3160	Produced by rootal lbs. a, sq. in. lbs. lbs. lbs. lbs. lbs. lbs. lbs. lbs	Produced by rootal b. Loads. +3160 36 87.8 +0.71 84.8 +800 36 22.2 0.00 63.2 -2360 36 65.5 -1.58 126.5	Produced by rooo- Ib. Loads. 36

$$S = \frac{.05062}{.00002562} = 1975.$$

Let all members except bb' be made of long-leaf Southern pine $6'' \times 6''$, and bb' consist of a 1-inch round rod of steel upset at the ends. The value of E for the wood is 1,000,000 and for the steel 30,000,000.

Computing D and S, we find that the horizontal deflection is very small, being only about $\frac{1}{20}$ inch, and the force necessary to prevent this is about 2000 pounds.

In case the truss is arranged on the supports so that the span remains constant, the supports must be designed to resist a horizontal force of 2000 pounds. The actual stresses in the truss members will be the algebraic sum of the stresses produced by the vertical loads and the horizontal thrust.

An inspection of the computations for D shows that

the pieces aL and a'L contribute over one half the total value of D. If the area of these pieces is increased to 64 square inches, the value of D is reduced about 25 per cent.

It is possible to design the truss so that the change of span is very small by simply adjusting the sizes of the truss members, increasing considerably those members whose distortion contributes much to the value of D.

The application of the above method to either wood or steel trusses of the scissors type enables the designer to avoid the quite common defect of leaning walls and sagging roofs.

Fig 5.

5. Tests of Joints in Wooden Trusses.—In 1897 a series of tests was made at the Massachusetts Institute of Technology on full-sized joints. The results were published in the Technology Quarterly of September, 1897, and reviewed by Mr. F. E. Kidder in the Engineering Record of November 17, 1900.

The method of failure for three types of joints is shown in Fig. 5.

- 6. Examples of Details Employed in Practice.—The following illustrations have been selected from recent issues of the Engineering News, the Engineering Record, and The Railroad Gazette.
- Fig. 6. A roundhouse roof-truss, showing the connection at the support with arrangement of brickwork, gutter, down-spouts, etc. The purlins are carried by metal stirrups hanging over the top chord of the truss.
- Fig. 6a. Details of a Howe truss, showing angle-blocks and top- and bottom-chord splices.
- Fig. 6b. A common form of roof-truss, showing detail at support. The diagonals are let into the chords. The purlins stand vertical and rest on top of the truss top chord.
- Fig. 6c. A comparatively large roof-truss of the Pratt type of bracing, showing details of many joints. A large number of special castings appear in this truss.
- Fig. 6d. Howe truss details, showing connection to wooden column, knee-brace bolster, cast-iron angle-block, and brace-connection details.
- Fig. 6e. Scissors-trusses, showing five forms in use, and also three details which have been used by Mr. F. E. Kidder.

Fig. 6.—Roundhouse Roof, Urbana Shops, Peoria and Eastern R.R.

Fig. 6f. A steel roof-truss, showing details. The purlins are supported by shelf-angles on the gusset-plates extended. The principal members of the web system have both legs of the angles attached to the gusset-plates.

Fig. 6a.—Canadian Pacific R.R., Montreal.

Fig. 6b.—Boston and Maine R.R., Concord, N. H.

Outline of Main Truss of Forestry Building.

Fig. 6c.—Details of Truss Framing in Forestry Building, Pan-American Exposition.

Fig. 6g. A steel roof-truss with a heavy bottom chord. The exceptional feature in this truss is the use of flats for web tension members.

Fig. 6d.—Howe Truss, Horticultural Building, Pan-American Exposition.

Fig. 6e.—Scissors-trusses and Details Used by Mr. F. E. Kidder.

Fig. 6f.—Roof-truss of Power-house, Boston and Maine R.R., Concord, N. H.

Fig. 6g.—Roof-truss, Peoria and Eastern R.R., Urbana.

Fig. 6h. A light steel roof-truss, showing arrangement

Fig. 6h.—Power-house, New Orleans Naval Station.

Fig. 6i.—Pennsylvania Steel Company's New Bridge Plant.

of masonry, gutters, down-spout, etc. In this roof the purlins rest on the top chord of the truss, and any tipping

or sliding is prevented by angle-clips and $\frac{5}{8}$ -inch rods, as shown.

Fig. 6i. Detail of connection of a steel roof-truss to a steel column. The illustration also shows gutter, downspout, cornice, etc.

Fig. 6j.—Template Shop Roof-truss, Ambridge Plant of the American Bridge Company.

Fig. 6k.—General Electric Machine-shop, Lynn, Mass.

Figs. 6j and 6k. Details similar to those shown in Fig. 6i, but for lighter trusses.

7. Abstracts from General Specifications for Steel Roofs and Buildings.

By Charles Evan Fowler, M. Am. Soc. C. E. GENERAL DESCRIPTION.

- 1. The structure shall be of the general out-Diagram. line and dimensions shown on the attached diagram, which gives the principal dimensions and all the principal data. (2, 72.)
- 2. The sizes and sections of all members, together with the strains which come upon them, shall be marked in their proper places upon a strain sheet, and submitted with proposal. (1,72.)
- 3. The height of the building shall mean the Clearances. distance from top of masonry to under side of bottom chord of truss. The width and length of building shall mean the extreme distance out to out of framing or sheeting.
- 4. The pitch of roof shall generally be one fourth. (6.)

LOADS.

The trusses shall be figured to carry the following loads:

5. Snow Loads.

Snow Load.

		Pite	h of Ro	of.	
Location.	1/2	1/3	1/4	1/5	1/6
	Poun	ds per Ho	orizontal	Square I	Foot.
Southern States and Pacific Slope. Central States. Rocky Mountain States. New England States. Northwestern States.	0 0 0 0	0 7 10 10	0 15 20 20	0 22 27 35 37	0 30 35 45 50

wind Load. 6. The wind pressure on trusses in pounds per square foot shall be taken from the following table:

Pitch.	Vertical.	Horizontal.	Normal.
$1/2 = 45^{\circ}$ 00'	19	19	27
$1/3 = 33^{\circ} 41'$	17	12	22
$I/4 = 26^{\circ} 34'$	15	8	18
$1/5 = 21^{\circ} 48'$	13	6	15
$1/6 = 18^{\circ} 26'$	II	4	13 (7.)

7. The sides and ends of buildings shall be figured for a uniformly distributed wind load of 20 pounds per square foot of exposed surface when 20 feet or less to the eaves, 30 pounds per square foot of exposed surface when 60 feet to the eaves, and proportionately for intermediate heights. (6.)

Weight of Covering.

8. The weight of covering may be taken as follows: Corrugated iron laid, black and painted, per square foot:

For galvanized iron add 0.2 pounds per square foot to above figures.

Slate shall be taken at a weight of 7 pounds per square foot for 3/16" slate 6"×12", and 8.25 pounds per square foot for 3/16" slate 12"×24", and proportionately for other sizes.

Sheeting of dry pine-boards at 3 pounds per foot, board measure.

Plastered ceiling hung below, at not less than 10 pounds per square foot.

The exact weight of purlins shall be calculated.

9. The weight of Fink roof-trusses up to 200 Weight of Trusses. feet span may be calculated by the following formulæ for preliminary value:

w = .06s + .6, for heavy loads; w = .04s + .4, for light loads. (40, 45.)

s = span in feet;

w = weight per horizontal square foot in pounds.

- 10. Mill buildings, or any that are subject to Increase of Corrosive action of gases, shall have all the above loads increased 25 per cent.
- 11. Buildings or parts of buildings, subject to strains from machinery or other loads not mentioned, shall have the proper allowance made.
- 12. No roof shall, however, be calculated for Minimum Load.

 a less load than 30 pounds per horizontal square foot.

UNIT STRAINS.

		Soft-medium		
	Iron.	Steel.	•	
13. Shapes, net	section.	15000	(57.)	Tension only.
Bars	14000	17000		
Bottom flar	nges of			
rolled bear	ms	15000		
Laterals of	angles,			
net section	1	20000	(57.)	
Laterals of t	oar 18000)	(41.)	
14. Flat ends an	id fixed			Compression
ends		12500-	$-500\frac{l}{r}$	only.
<i>l</i> =length in feet ce	enter to cente			
r = least radius of g	vration in inc	hes.	(50.)	

Flanges.

15. Top flanges of built girders shall have the same gross area as tension flanges.

Combined.

16. Members subject to transverse loading in addition to direct strain, such as rafters and posts having knee-braces connected to them, shall be considered as fixed at the ends in riveted work, and shall be proportioned by the following formula, and the unit strain in extreme fiber shall not exceed, for soft-medium steel, 15000.

$$s = \frac{Mn}{I} + \frac{P}{A}$$
. (52, 62.)

s = strain per square inch in extreme fiber;

M =moment of transverse force in inch-pounds;

n =distance center of gravity to top or bottom of final section in inches;

I = final moment of inertia;

P =direct load;

A = final area.

		Soft-media	ım
Shearing.	Soft Steel.	Steel.	, .
onearing.	17. Pins and rivets 10000		(57.)
	Web-plates	7000	
Bearing.	18. On diameter of pins		
	and rivet-holes 20000	20000	(57.)
Bending.	19. Extreme fiber of pins.	25000	
	Extreme fiber of pur-		
	lins	15000	
Laterals.	20. Lateral connections will have	at per o	ent
	greater unit strains than above.	and Charles	E m s
Bolts.	21. Bolts may be used for field co	nnection	ısat
	two thinds of it	The second second	The state of the s

two thirds of rivet values. (17, 18.)

TIMBER PURLINS.

22. In purlins of yellow pine, Southern pine, or white oak, the extreme fiber strain shall not exceed 1200 pounds per square inch. (50.)

CORRUGATED-IRON COVERING.

26. Corrugated iron shall generally be of 2½inch corrugations, and the gauge in U.S. standard shall be shown on strain sheet.

27. The span or distance center to center of roof-purlins shall not exceed that given in the following table:

27 gauge2' o"	20 gauge4′ 6″
26 gauge2' 6"	18 gauge5' o"
24 gauge3' o''	16 gauge5' 6"
22 gauge4' o"	(48.)

- 28. All corrugated iron shall be laid with one corrugation side lap, and not less than 4 inches end lap, generally with 6 inches end lap. (32.)
- 29. All valleys or junctions shall have flashing extending at least 12 inches under the corrugated iron, or 12 inches above line where water will stand.

30. All ridges shall have roll cap securely fastened over the corrugated iron.

31. Corrugated iron shall preferably be secured Fastenings. to the purlin by galvanized straps of not less than five eighths of an inch wide by No. 18 gauge; these shall pass completely around the purlin and have each end riveted to the sheet. There

shall be at least two fastenings on each purlin for each sheet.

32. The side laps shall be riveted with sixpound rivets not more than six inches apart. (28.)

Finish Angle. 33. At the gable ends the corrugated iron shall be securely fastened down on the roof, to a finish angle or channel, connected to the end of the roof purlins.

DETAILS OF CONSTRUCTION.

Tension Members. 37. All tension members shall preferably be composed of angles or shapes with the object of stiffness.

38. All joints shall have full splices and not rely on gussets. (65.)

39. All main members shall preferably be made of two angles, back to back, two angles and one plate, or four angles laced. (67.)

40. Secondary members shall preferably be made of symmetrical sections.

41. Long laterals or sway rods may be made of bar, with sleeve-nut adjustment, to facilitate erection.

42. Members having such a length as to cause them to sag shall be held up by sag-ties of angles, properly spaced.

Compression 43. Rafters shall preferably be made of two angles, two angles and one plate, or of such form as to allow of easy connection for web members. (65.)

44. All other compression members, except

substruts, shall be composed of sections symmetrically disposed. (65.)

- 45. Substruts shall preferably be made of symmetrical sections.
- 46. The trusses shall be spaced, if possible, at Purlins. such distances apart as to allow of single pieces of shaped iron being used for purlins, trussed purlins being avoided, if possible. Purlins shall preferably be composed of single angles, with the long leg vertical and the back toward the peak of the roof.
- 47. Purlins shall be attached to the rafters or columns by clips, with at least two rivets in rafter and two holes for each end of each purlin.
- 48. Roof purlins shall be spaced at distances apart not to exceed the span given under the head of Corrugated Iron. (27.)
- 49. Purlins extending in one piece over two or more panels, laid to break joint and riveted at ends, may be figured as continuous.
- 50. Timber purlins, if used, shall be attached in the same manner as iron purlins.
- 51. Sway-bracing shall be introduced at such Sway-bracing. points as is necessary to insure ease of erection and sufficient transverse and longitudinal strength. (41.)

52. All such strains shall preferably be carried to the foundation direct, but may be accounted for by bending in the columns. (62.)

53. Bed-plates shall never be less than one- Bed-plates. half inch in thickness, and shall be of sufficient

thickness and size so that the pressure on masonry will not exceed 300 pounds per square inch. Trusses over 75 feet span on walls or masonry shall have expansion rollers if necessary. (54.)

Anchor-bolts.

54. Each bearing-plate shall be provided with two anchor-bolts of not less than three fourths of an inch in diameter, either built into the masonry or extending far enough into the masonry to make them effective. (53.)

Punching.

55. The diameter of the punch shall not exceed the diameter of the rivet, nor the diameter of the diameter of the punch by more than one sixteenth of an inch. (56.)

Punching and Reaming.

56. All rivet-holes in steel may be punched, and in case holes do not match in assembled members they shall be reamed out with power reamers. (71.)

Effective Diameter of Rivets.

57. The effective diameter of the driven rivet shall be assumed the same as before driving, and, in making deductions for rivet-holes in tension members, the hole will be assumed one eighth of an inch larger than the undriven rivet. (13, 17.)

Pitch of Rivets. 58. The pitch of rivets shall not exceed twenty times the thickness of the plate in the line of strain, nor forty times the thickness at right angles to the line of strain. It shall never be less than three diameters of the rivet. At the ends of compression members it shall not exceed

four diameters of the rivet for a length equal to the width of the members.

59. No compression member shall have a Chength of Compression length exceeding fifty times its least width, unless its unit strain is reduced accordingly. (14.)

60. Laced compression members shall be Tie-plates. staved at the ends by batten-plates having a length not less than the depth of the member.

61. The sizes of lacing-bars shall not be less Lacin bars. than that given in the following table, when the distance between the gauge-lines is

6" c	r 16	ess t	han	8′′		 	$1\frac{1}{4}^{\prime\prime}$	$\times \frac{1}{4}''$
8′′ '	•		"	10"		 	$1\frac{1}{2}^{\prime\prime}$	$\times 1''$
10"	•	"	"	12"		 	$1\frac{3}{4}''$	$\times_{\frac{5}{16}''}$
12"	•	"	"	16"		 	2′′	׳.′′
16" '	·	"	"	20"		 	$2\frac{1}{4}''$	$\times_{\overline{16}''}$
20"	•	"	"	24"		 	$2\frac{1}{2}''$	$\times \frac{1}{2}''$
24" "	' a	bov	re of	ang	les.		(52.)

They shall generally be inclined at 45 degrees to the axis of the member, but shall not be spaced so as to reduce the strength of the member as a whole.

- 62. Where laced members are subjected to Bending. bending, the size of lacing-bars or -angles shall be calculated or a solid web-plate used. (13, 14, 61.)
- 63. All rods having screw ends shall be upset Upset Rods. to standard size, or have due allowance made.
- 64. No metal of less thickness than $\frac{1}{4}$ inch shall Variation in Weight. be used, except as fillers, and no angles of less

than 2-inch leg. A variation of 3 per cent. shall be allowable in the weight or cross-section of material.

WORKMANSHIP.

Finished Surfaces.

- 65. All workmanship shall be first class in every particular. All abutting surfaces of compression members, except where the joints are fully spliced, must be planed to even bearing, so as to give close contact throughout. (38.)
- 66. All planed or turned surfaces left exposed must be protected by white lead and tallow.

Rivets.

- 67. Rivet-holes for splices must be so accurately spaced that the holes will come exactly opposite when the members are brought into position for driving-rivets, or else reamed out. (38, 70, 71.)
- 68. Rivets must completely fill the holes and have full heads concentric with the rivet-holes. They shall have full contact with the surface, or be countersunk when so required, and shall be machine driven when possible. Rivets must not be used in direct tension.
- 69. Built members when finished must be free from twists, open joints, or other defects. (65.)

Drilling.

70. Drift-pins must only be used for bringing the pieces together, and they must not be driven so hard as to distort the metal. (71.)

Reaming.

71. When holes need enlarging, it must be done by reaming and not by drifting. (70.)

Drawings and Specifications.

72. The decision of the engineer or architect shall control as to the interpretation of the draw-

ings and specifications during the progress of the work. But this shall not deprive the contractor of right of redress after work is completed, if the decision shall be proven wrong. (1.)

STEEL COLUMN UNIT STRAINS. \Box 12500 - 500 $\frac{l}{r}$.

l÷r.		l÷r.		l÷r.		l÷r.	
3.0 .2 .4 .6 .8 4.0 .2 .4 .6 .8 5.0 .2 .4 .6 .8 6.0 .2 .4 .6 .8 7.0 .2 .4 .6 .8 .6 .8 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9	11000 10900 10800 10700 10600 10500 10200 10100 10000 9800 9700 9500 9500 9400 9300 9200 9100 9000 8800 8800	7.6 .8 8.0 .2 .4 .6 .8 9.0 .2 .4 .6 .8 10.0 .2 .4 .6 .8 11.0	8700 8600 8500 8400 8300 8200 8100 8000 7900 7800 7500 7400 7300 7200 7100 7000 6900 6800 6600 6500	12.2 .4 .6 .8 13.0 .2 .4 .6 .8 14.0 .2 .4 .6 .8 15.0 .2 .4 .6 .8 16.0 .2 .4 .6 .8	6400 6300 6200 6100 6000 5900 5800 5700 5500 5300 5200 5100 4900 4800 4700 4500 4400 4300 4200	16.8 17.0 .2 .4 .6 .8 18.0 .2 .4 .6 .8 19.0 .2 .4 .6 .8 20.0 .2 .4 .6 .8 20.0 .8	4100 4000 3900 3800 3700 3500 3400 3200 3100 3000 2900 2500 2400 2400 2200 2100

SHEARING AND BEARING VALUE OF RIVETS.

Diameter of Rivet in Inches.		Single Shear at Rivet.		Bea 2000	ring Va o Lbs. p	or So I	oifferent n. (=Di late X 20	iam, oi	κ_{1}	f Plate Thickn	at ess
Frac-	Deci- mal.	Rivet.	Lbs. per Sq. In.	1 "	5"	∄″	76"	½"	16"	§"	11 "
122 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	.5 .5625 .625 .6875 .75 .8125 .875	.4418 .5185 .6013	1960 2480 3070 3710 4420 5180 6010 6900	2500 2810 3130 3440 3750 4070 4380 4690	5280 5470	6570	4920 5470 6010 6560 7110 7660 8200	8120 8750	9150 9840	10160 10 94 0	12890