# Dynamic Gated Graph Neural Networks for Scene Graph Generation

### Mahmoud Khademi and Oliver Schulte

Department of Computing Science Simon Fraser University mkhademi@sfu.ca, oschulte@sfu.ca

Presented by Rui Zeng

# Scene Graph Generation Task

## Scene Graph Generation Task

Given an input image: Generate a labeled digraph, whose nodes represent the objects in the image and whose edges show relationships between objects.

Useful in applications such as visual question answering and fine-grained recognition.





2018-12-03

D-GGNN for Scene Graph Generation

—Scene Graph Generation Task

Useful in applications such as visual question assureing and fine-grained recognition.

bjects in the image and whose edges show relationships between objects.

• A scene graph provides scene understanding.

# D-GGNN: Reinforcement Learning for Scene Graph Generation

A scene graph generation algorithm needs to exploit visual contextual information.

- State = (encoding of) partial graph
- Action = expands current graph
- Reward = agreement with ground truth



# Q-value pipeline for selecting actions

- Partial graph (left) is encoded using a GGNN
- ② A Q-value neural network selects the next graph component to add.



Q-value pipeline for selecting actions

- We use a standard object detector (Tensorflow API). The object detector produces objectness confidence scores. The graph construction starts with the highest-scoring object.
- Given an image and its candidate object bounding-boxes, we simultaneously build the graph and assign node-types and edge-types to the nodes and edge in a Deep Q-Learning framework Mnih et al. [2013, 2015].
- The next slide explains more details.

## Q-value network for selecting actions

## State = Encoded Graph

- Feature vectors for each node v:
  - ResNet feature vector  $\hat{\mathbf{x}}_{v}$
  - Node embedding  $\mathbf{h}_{\nu}$ , computed by GGNN Li et al. [2015].
    - Captures link information.
- Node feature vectors are combined using a soft attention mechanism that represents how important node v is for the next decision.

A Q-function takes as input a state s and an action a and outputs expected future reward Q(s, a).

- Implemented by deep neural network
- Trained by temporal difference learning

D-GGNN for Scene Graph Generation

—Q-value network for selecting actions

GGNN stands for Gated Graph Neural Net

#### value network for selecting actions

State = Encoded Graph

• Feature vectors for each node v:

• ResNet feature vector x.

- Node embedding h., computed by GGNN Li et al. [2015].
   Captures link information.
- Node feature vectors are combined using a soft attention mechanism that represents how important node v is for the next decision.
   A Q-function takes as input a state s and an action a and outputs expected
- future reward Q(s, a).

   Implemented by deep neural network
- Trained by temporal difference learning

## Dataset

- The Visual Genome (VG) dataset 1.4 [Krishna et al., 2016] contains 108,077 images. Annotations provide subject-predicate-object triples.
  - e.g. man-throwing-frisbee
- 5,000 images for hyperparameter validation, 5,000 for testing.
- Preprocessing:
  - VG1.4-a uses the most frequent 150 object categories and 50 predicates Xu et al. [2017].
  - VG1.4-b uses the most frequent 1750 object categories and 347 predicates.

—Dataset

• Predicate = edge type.

#### Dataset

 The Visual Genome (VG) dataset 1.4 [Krishna et al., 2016] contains 108,077 images. Annotations provide subject-predicate-object triples.
 e.g. man-throwing-frisbee

5,000 images for hyperparameter validation, 5,000 for testing.
 Preprocessing:

Preprocessing:

• VG1.4-a uses the most frequent 150 object categories and 50 predicates Xu et al. [2017].

predicates Xu et al. [2017].

VGI .4-b uses the most frequent 1750 object categories and 347 predicates.

# Metrics (VG1.4-a)

The goal is to find ground truth relationship triplets (subject-predicate-object). Different input information = different tasks.

- Predicate classification (PRED-CLS): location and object categories are given.
- Scene graph classification (SG-CLS) task: location of objects are given.
- Scene graph generation (SG-GEN) task: only the image is given.
- Relationship phrase detection (REL-PHRASE-DET) and Relationship detection (REL-DET) are similar to SG-GEN, applied on VG1.4-b Liang et al. [2017].
- Metric is Top-K recall (Rec@K): the number of the ground-truth-triples hit in the top-K predictions in an image.

D-GGNN for Scene Graph Generation

-Metrics (VG1.4-a)

medica (vol.14 d)

The goal is to find ground truth relationship triplets
(subject-predicate-object). Different input information = different tasks.

• Predicate classification (PRED-CLS): location and object categories are

- given.

  Scene graph classification (SG-CLS) task: location of objects are given
- Scene graph generation (SG-GEN) task: only the image is given.
   Relationship phrase detection (REL-PHRASE-DET) and Relationship detection (REL-DET) are similar to SG-GEN, applied on VG1.4-b Liang
- Metric is Top-K recall (Rec@K): the number of the ground-truth-triples hit in the top-K predictions in an image.

- Predictions are ranked by the product of the objectness confidence scores an the Q-values of the selected predicates.
- We are following the evaluation methodology in previous papers.

## Experimental Results

|                  | PRED-CLS |       | SG-CLS |       | SG-GEN |       |
|------------------|----------|-------|--------|-------|--------|-------|
| Model            | R@50     | R@100 | R@50   | R@100 | R@50   | R@100 |
| Lu et al. [2016] | 27.88    | 35.04 | 11.79  | 14.11 | 00.32  | 00.47 |
| Xu et al. [2017] | 44.75    | 53.08 | 21.72  | 24.38 | 03.44  | 04.24 |
| D-GGNN (ours)    | 46.85    | 55.63 | 23.80  | 26.78 | 06.36  | 07.54 |

Table: VG1.4-a results for scene graph generation (SG-GEN). D-GGNN finds twice as many triplets as the previous state-of-the-art.

|                                       | REL-PHRASE-DET |       | REL-DET |       |
|---------------------------------------|----------------|-------|---------|-------|
| Model                                 | R@100          | R@50  | R@100   | R@50  |
| CNN+RPN Simonyan and Zisserman [2014] | 01.39          | 01.34 | 01.22   | 01.18 |
| Faster R-CNN Ren et al. [2015]        | 02.25          | 02.19 | -       | -     |
| CNN+TRPN Ren et al. [2015]            | 02.52          | 02.44 | 02.37   | 02.23 |
| Lu et al. [2016]                      | 10.23          | 09.55 | 07.96   | 06.01 |
| VRL Liang et al. [2017]               | 16.09          | 14.36 | 13.34   | 12.57 |
| D-GGNN (ours)                         | 18.21          | 15.78 | 14.85   | 14.22 |

Table: On VG1.4-b results on variants of the scene graph generation task. D-GGNN shows an improvement over the most recent baseline, and almost double for the older methods.

D-GGNN for Scene Graph Generation

—Experimental Results

| Experimental Results |                                                      |            |             |           |               |           |             |  |
|----------------------|------------------------------------------------------|------------|-------------|-----------|---------------|-----------|-------------|--|
|                      |                                                      | PRED-CLS   |             | 56-       | SG-CLS        |           | GEN         |  |
|                      | Model                                                | 8950       | 88100       | 9850      | 89100         | 80850     | 89100       |  |
|                      | Lu et al. [2016]                                     | 27.00      | 35.04       | 11.79     | 14.11         | 00.32     | 00.47       |  |
|                      | Xu et al. [2017]                                     | 44.75      | 53.00       | 21.72     | 24.30         | 03.44     | 04.24       |  |
|                      | D-GGNN (ours)                                        | 46.05      | 55.63       | 23.00     | 26.78         | 05.36     | 07.54       |  |
| Table                | VG1.4-a result                                       |            |             |           | - 150 0       | EM) D     | CONN Early  |  |
|                      |                                                      |            |             |           |               | morej. D- | worse tites |  |
| twice a              | a many triplets a                                    | is the pr  | evious sta  | ite-of-th | e-art.        |           |             |  |
|                      |                                                      |            |             |           |               |           |             |  |
|                      |                                                      |            |             | 00.0      | DELIGNACE DET |           | 90 - DCT    |  |
|                      | Model                                                |            |             | 94100     | 2830          | 99100     | 11110       |  |
|                      | CNN+95% Semional                                     | n and Zasa | -man (2014) | 65.39     | 01.34         | 01.22     | 00.18       |  |
|                      | Factor R-CNN Ren et al. (2006)                       |            | 02.25       | 02.19     |               |           |             |  |
|                      | CNN+TRPN Res et al. (2019)                           |            | 02.52       | 02.44     | 02.37         | 62.23     |             |  |
|                      | Le et al. D006                                       |            | 13.22       | 09.55     | 07.66         | 06.00     |             |  |
|                      | VSL Liang et al. (2017)                              |            | 16.09       | 14.36     | 13.34         | 12.57     |             |  |
|                      | D-GGNN (ours)                                        |            | 18.21       | 15.79     | 14.65         | 14.22     |             |  |
| D-GGN                | On VG1 . 4-5 re<br>IN shows an imp<br>older methods. |            |             |           |               |           |             |  |

- For the VG1.4a dataset, the average number of ground-truth triplets in the images is 7.1.
- Results for VRL Liang 2017 are not available for VG1.4-a.

## Conclusion<sup>1</sup>

- Scene graph generation is an important part of scene understanding.
- We utilized a deep Reinforcement learning framework to sequentially generate a scene graph for an input image.
- New idea: entire partial graph is encoded as state information for RL.
  - A Gated Graph Neural Network computes node embeddings that capture relational information.
- We presented a generative deep architecture for graph-structured information from data sources (e.g. image, videos, text, program).
- Future Work: Evaluate in more applications, e.g. Visual Question Answering.
- We have a couple more scene graphs to show.



nclusion

- Scene graph generation is an important part of scene understanding.
   We utilized a deep Reinforcement learning framework to sequentially
- generate a scene graph for an input image.

  New idea: entire partial graph is encoded as state information for RL.
- New idea: entire partial graph is encoded as state information for RL.
   A Gated Graph Neural Network computes node embeddings that capture relational information.
- We presented a generative deep architecture for graph-structured information from data sources (e.g. image, videos, text, program).
- Future Work: Evaluate in more applications, e.g. Visual Question
- . We have a couple more scene graphs to show.

These are optional, it would be nice to leave the audience with pictures.











## References

- R. Krishna, Y. Zhu, O. Groth, J. Johnson, K. Hata, J. Kravitz, S. Chen, Y. Kalantidis, L.-J. Li, D. A. Shamma, et al. Visual genome: Connecting language and vision using crowdsourced dense image annotations. arXiv preprint arXiv:1602.07332, 2016.
- Y. Li, D. Tarlow, M. Brockschmidt, and R. Zemel. Gated graph sequence neural networks. arXiv preprint arXiv:1511.05493, 2015.
- X. Liang, L. Lee, and E. P. Xing. Deep variation-structured reinforcement learning for visual relationship and attribute detection. In Computer Vision and Pattern Recognition (CVPR), 2017 IEEE Conference on, pages 4408–4417. IEEE, 2017.
- C. Lu, R. Krishna, M. Bernstein, and L. Fei-Fei. Visual relationship detection with language priors. In European Conference on Computer Vision, pages 852–869. Springer, 2016.
- V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602, 2013.
- V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al. Human-level control through deep reinforcement learning. *Nature*, 518(7540):529, 2015.
- S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards real-time object detection with region proposal networks. In *Advances in neural information processing systems*, pages 91–99, 2015.
- K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.
- D. Xu, Y. Zhu, C. B. Choy, and L. Fei-Fei. Scene graph generation by iterative message passing. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, volume 2, 2017.