(LVQ) Linear Vector Quantization

Dr. Hidayet Takçı

htakci@gmail.com | http://htakci.sucati.org

LVQ Modeli

- Denetimli öğrenim yapılan ağlarda (MLP gibi) hedef değer verilebilirken kimi durumda hedef değer vermek mümkün olmayabilir. Sadece üretilen değerin doğru olup olmadığı verilebilir.
- Bu yöntem destekleyici öğrenim olarak bilinir.
- Destekleyici öğrenim için kullanılan modellerden biri de Vektör Parçalama Yöntemi olarak bilinen LVQ modelidir.

LVQ Modeli Özellikleri

- 1984 yılında Kohonen tarafından geliştirilmiştir.
- Temel felsefesi n boyutlu bir vektörü daha düşük boyutlu vektörlerle temsil etmektir.
- LVQ için öğrenme; girdi vektörünün hangi çıkış vektörü ile eşleşeceğinin bulunmasıdır.
- Çıktı katmanındaki vektör setine referans vektörü adı verilir. Amaç; giriş vektörü ile referans vektörlerini eşleştirmektir.

LVQ Modeli Özellikleri

- Genel olarak sınıflandırma problemlerinin çözümünde kullanılır.
- Çıktı vektörlerinden sadece bir tanesi 1 değerini diğerleri 0 değerini alır. 1 değerini alan referans vektörü girdi vektörünün sınıfını verir.
- Girdiler ile çıktılar arasındaki yakınlık Euclidian yöntemi ile bulunur.
- Kazanan Her Şeyi Alır (winner takes all) stratejisine göre çalıŞır ve bütün ağırlıklar değil sadece kazanan referans vektörünün ağırlıkları güncellenir.

LVQ Ağının Yapısı

- Çok katmanlı ağlar gibi üç katmanı vardır:
 - Girdi katmanı : Bilgi işleme yoktur. Ağa veri girişi bu katmanda yapılır.
 - Kohonen katmanı : Girdi vektörüne en yakın vektörü verecek mesafe hesabı yapılır.
 - Çıktı katmanı : Girdi vektörünün hangi referans vektörüne atanacağı veya sınıflanacağı bulunur.

Input Layer

LVQ (Linear VectorQuantization)

- Kohonen Katmanına ara katman da denmektedir.
- Girdi katmanı ile ara katman = Tam bağlantılı
- Ara katman ile çıktı katmanı = Kısmi bağlantılı
- Kohonen katmanı ile çıktı katmanı arasındaki ağırlıklar sabit olup 1'e eşittir.
- G-A katman arasındaki her bir ağırlık vektörüne referans vektörü denmektedir.
- Diğer LVQ ağları LVQ2 ,Cezalandırmalı LVQ ve LVQ-X'tir.

LVQ Ağının Çalışma Prosedürü

- 1. Örneklerin belirlenir
- 2. Ağ topolojisi belirlenir (girdi ve çıktı sayıları)
- 3. Ağın öğrenme parametreleri belirlenir
- 4. Ağırlık başlangıç değerleri verilir
- 5. Öğrenme setinden bir örnek ağa sunulur
- 6. Kazanan proses elemanı bulunur
- 7. Kazanan eleman için güncellemeler yapılır
- 8. Bütün örnekler doğru sınıflandırılıncaya kadar 5-7 tekrar eder.

LVQ Ağının Öğrenme Kuralı

- LVQ ağının öğrenme kuralı Kohonen Öğrenme kuralı olarak bilinir.
- Öğrenme, Kohonen katmanındaki proses elemanlarının yarışması esasına dayanır.
 - Yarışı kazanma euclid ölçümü sonucu ortaya çıkar.
 - Ai \rightarrow i.nci referans vektörü X \rightarrow giriş vektörü iken mesafe;

$$d_{i} = ||A_{i} - X|| = \sqrt{\sum_{j} (A_{ij} - X_{j})^{2}}$$

• Di değerleri bulunduktan sonra en yakın olan referans vektörü bulunur ve bulunan vektörün doğru olup olmadığı kontrol edilir.

LVQ Ağının Öğrenme Kuralı

- Kontrol sonunda iki durum vardır:
 - Kazanan proses elemanı doğru sınıftadır.
 - İstenen durumdur, referans vektörü giriş vektörüne daha da yaklaştırılmalıdır.

$$A_{i+1} = A_i + \lambda(X - A_i)$$

- Kazanan proses elemanı hatalı sınıftadır.
 - İstenmeye n durumdur. Referans vektörü giriş vektöründen uzaklaştırılmalıdır.

$$A_{i+1} = A_i - \lambda(X - A_i)$$

LVQ Ağının Eğitilmesi

- Girdi vektörü ile referans vektörleri arasındaki mesafeler hesap edilerek her bir referans vektörüne göre kazanan 1 diğerleri 0 değeri alır.
 - i.nci proses kazandığında $\zeta_i^k = 1$
 - Aksi takdirde $C_i^k = 0$
- Kohonen katmanında yer alan proses elemanlarının çıktısı ile çıktı katmanındaki proses elemanları arasındaki ağırlıklar aşağıdaki gibi güncellenir.

$$\boldsymbol{\zeta}_i = \sum_{j} \boldsymbol{\zeta}_j^k \boldsymbol{\alpha}_{ki}$$

LVQ Ağı Avantaj ve Dezavantajları

- Ağın öğrenmesi temel çok katmanlı ağlara nazaran daha hızlı ve kolaydır. Doğrusal olmayan problemlerde kullanılabilir.
- Öğrenme katsayısının (λ) 0 değerini almaması durumunda (fazla eğitim alması durumu) ağın öğrendiklerini unutması ve doğru ağırlık değerlerinden uzaklaşması söz konusudur.
- Bazı problemlerde sürekli olarak aynı referans vektörü kazanmaktadır ki bu istenen bir durum değildir.
- Sınıflandırma yapılırken iki sınıfın tam ortasında veya sınırlara çok yakın bulunan vektörlerin hangi sınıfa gireceği belirlenemeyebilir.

LVQ2

- Bu ağ, LVQ modelinin uygulaması sonucunda elde edilen çözümün iyileştirilmesi amacı ile geliştirilmiştir.
- Temel amacı, sınıfların sınır değerlerindeki yanlış sınıflandırmaları önlemektir.
- Bu ağda, eğitim sırasında aynı anda 2 referans vektörünün ağırlıkları değiştirilmektedir.

LVQ2 devam

- LVQ2 ağında ağırlıkları değiştirilecek olan iki vektöre A1 ve A2 denirse, her iki vektörün ağırlığının değiştirilmesi için aşağıda belirtilen her iki koşulun sağlanması gerekmektedir.
 - A1 girdi vektörüne en yakın ağırlık vektörü, A2 ise ondan sonraki en yakın ağırlık vektörü olsun. Bu durumda A1 yanlış, A2 ise doğru sınıftadır.
 - Girdi vektörü A1 ve A2 vektörlerinin arasında merkezi olarak belirlenmiş bir aralık içerisinde kalmaktadır.

Cezalandırma Mekanizmalı LVQ

- LVQ ağının dezavantajları belirtilirken hatırlanacağı üzere, aynı referans vektörünün sürekli olarak kazanması sonucu ağın esnekliği bozulmakta idi.
- Bu durumun önüne geçebilmek için Desiono tarafından, ağ üzerinde eğitim aşamasında sürekli olarak kazanan vektörler cezalandırılmaktadır.
 Böylece aynı vektörün sürekli olarak üst üste kazanmasının önüne geçilmektedir.

Cezalandırmalı LVQ

 Bu yapıda, ağırlık vektörünün girdi vektöründen olan mesafesine b değeri eklenir. Bu değerin hesaplanmasında ağırlık vektörünün kaç defa kazandığı etkilidir.

$$c_i = c(p_i + 1/N)$$

 $C \rightarrow sabit$

N→Kohonen katmanındaki işlem elemanı sayısı

Pi→i. işlem elemanının yarışmayı kazanma olasılığıdır.

• Bu sayede fazla kazanan işlem elemanının mesafesi daha fazla arttırılıp cezalandırılarak sürekli kazanması önlenmekte ve diğerlerine de zaman içinde kazanma şansı tanınmaktadır.

LVQ-X Ağı

- LVQ-X ağında, eğitim sırasında her iterasyonda çoğunlukla iki ağırlık vektörünün ağırlığı birden değiştirilir.
- Bu işlem, öğrenme hızını artırmakta, öğrenme zamanını kısaltmakta ve de ağın genelleme yeteneğini arttırmaktadır.

LVQ-X devam

- LVQ-X ağında, her iterasyonda, yarışmayı kazanan iki tane işlem elemanı bulunmaktadır. Bunlar;
 - Global kazanan: Girdi vektörüne en yakın ağırlık vektörüne sahip olan işlem elemanını göstermektedir.
 - Yerel kazanan: Doğru sınıf içerisinden girdi vektörüne en yakın olan ağırlık vektörüne sahip işlem elemanını ifade etmektedir.

LVQ-X devam

- Eğer, global kazanan işlem elemanı doğru sınıf içerisinde değil ise onun ağırlık vektörü o girdi vektöründen uzaklaştırılır. Aynı zamanda doğru sınıf içindeki en yakın olan proses elemanının (local winner) ağırlık vektörü de girdi vektörüne yaklaştırılır.
- Eğer, global kazanan ve yerel kazanan aynı işlem elemanı ise sadece tek bir ağırlık vektörü değiştirilmekte ve kazanan işlem elemanının ağırlık vektörü girdi vektörüne yaklaştırılmaktadır.

Önemli Not

Bu bölümün hazırlanmasında Ercan Öztemel hocaya ait ders kitabından faydalanılmıştır.

Dr. Hidayet Takçı GYTE Bilgisayar Müh. Böl. Öğretim Elemanı