Database Systems: Concepts, Design, and Implementation

USC Viterbi School of Engineering

ISE 382 (4 Units)

Fall 2017

Description

Data model for industry applications. Modeling and designing robust databases. Implementing and querying databases with SQL. Innovations in database applications.

Objective

To prepare students to model and build databases. Upon completion of the course, students will be able to:

- 1. Create relational data models
- 2. Perform normalization to eliminate anomalies
- 3. Convert models to functioning databases
- 4. Use Structured Query Language (SQL) to build and query databases
- 5. Demonstrate effective use of
 - MySQL DBMS
 - Teradata DBMS
- 6. Test and validate database implementation with transactions
- 7. Explain how database transactions are controlled in multiuser environments
- 8. Describe database security and maintenance
- 9. Describe the innovations and uses of databases in diverse applications

Prerequisites

None.

InstructorListed on Blackboard under ContactsTeaching AssistantListed on Blackboard under ContactsOffice HoursListed on Blackboard under ContactsLecture10:00pm – 11:50pm, MW @ KAP158Discussion8:00am – 9:20am, Friday @ RTH1099:30am – 10:50am, Friday @ RTH115

Database Systems: Concepts, Design, and Implementation

ISE 382(4 Units)

Course Outline

Note: Schedule subject to change

W	Topic(s)	Assignment
1	Course introduction	Read: Ch 1
	The relational model	Lab: LP #1
2	Data modeling terms	Read: Ch 2
	Data modeling concepts	Lab: LP #2
		Do: HW #1
3	Labor Day (no class)	Read: Ch 3
	Designing data models	
4	ER diagraming concepts	Read: Ch 4
	Case study 1	<i>Lab</i> : LP #3
	,	Do: HW #2
5	Enhanced ER diagrams	Read: Ch 5
	Normalization	Lab: LP #4
6	Normal forms	Do: HW #3 Read: Ch 6
		Lab: LP #5
	Case study 2	
7	Exam 1	<i>Do</i> : Proj #1
	Database implementation	
8	SQL: select	Read: Ch 7
	SQL: subqueries	Lab: LP #6
9	SQL: cross joins	Read: Ch 8
	SQL: advanced joins	Lab: LP #7
10	<u> </u>	Do: Proj #2 Lab: LP #8
	SQL: CRUD	Lub: LP #8
	SQL: set operations	David Ch O
11	Case study 3	Read: Ch 9 Lab: LP#9
	ETL	
12	Multiuser databases	Read: Ch 2
	Database applications	Lab: LP#10
13	Cloud databases	<i>Do</i> : Proj #3
	Business intelligence	