

Non-smooth problems

ℓ_1 -regularized linear least squares

ℓ_1 induces sparsity

@fminxyz

Norms are not smooth

$$\min_{x \in \mathbb{R}^n} f(x),$$

A classical convex optimization problem is considered. We assume that f(x) is a convex function, but now we do not require smoothness.

Figure 1: Norm cones for different p - norms are non-smooth

∌ ດ **ø**

Wolfe's example

Wolfe's example

Figure 2: Wolfe's example. Popen in Colab

An important property of a continuous convex function f(x) is that at any chosen point x_0 for all $x\in \mathrm{dom}\ f$ the inequality holds:

$$f(x) \ge f(x_0) + \langle g, x - x_0 \rangle$$

Figure 3: Taylor linear approximation serves as a global lower bound for a convex function

Subgradient calculus

♥ ೧

An important property of a continuous convex function f(x) is that at any chosen point x_0 for all $x \in \text{dom } f$ the inequality holds:

$$f(x) \ge f(x_0) + \langle g, x - x_0 \rangle$$

for some vector g, i.e., the tangent to the function's graph is the global estimate from below for the function.

• If f(x) is differentiable, then $g = \nabla f(x_0)$

Figure 3: Taylor linear approximation serves as a global lower bound for a convex function

An important property of a continuous convex function f(x) is that at any chosen point x_0 for all $x \in \text{dom } f$ the inequality holds:

$$f(x) \ge f(x_0) + \langle g, x - x_0 \rangle$$

function's graph is the global estimate from below for the function.

- If f(x) is differentiable, then $g = \nabla f(x_0)$
- Not all continuous convex functions are differentiable.

Figure 3: Taylor linear approximation serves as a global lower bound for a convex function

An important property of a continuous convex function f(x) is that at any chosen point x_0 for all $x \in \text{dom } f$ the inequality holds:

$$f(x) \ge f(x_0) + \langle g, x - x_0 \rangle$$

function's graph is the global estimate from below for the function.

- If f(x) is differentiable, then $g = \nabla f(x_0)$
- Not all continuous convex functions are differentiable.

Figure 3: Taylor linear approximation serves as a global lower bound for a convex function

An important property of a continuous convex function f(x) is that at any chosen point x_0 for all $x \in \text{dom } f$ the inequality holds:

$$f(x) \ge f(x_0) + \langle g, x - x_0 \rangle$$

function's graph is the global estimate from below for the function. • If f(x) is differentiable, then $g = \nabla f(x_0)$

- Not all continuous convex functions are
- differentiable.

We do not want to lose such a lovely property.

Figure 3: Taylor linear approximation serves as a global lower bound for a convex function

A vector g is called the **subgradient** of a function $f(x): S \to \mathbb{R}$ at a point x_0 if $\forall x \in S$:

$$f(x) \ge f(x_0) + \langle g, x - x_0 \rangle$$

 $f \to \min_{x,y,z}$ Subgradient calculus

A vector g is called the **subgradient** of a function $f(x): S \to \mathbb{R}$ at a point x_0 if $\forall x \in S$:

$$f(x) \ge f(x_0) + \langle g, x - x_0 \rangle$$

The set of all subgradients of a function f(x) at a point x_0 is called the **subdifferential** of f at x_0 and is denoted by $\partial f(x_0)$.

min x,y,z Subgradient calculus

A vector g is called the **subgradient** of a function $f(x): S \to \mathbb{R}$ at a point x_0 if $\forall x \in S$:

$$f(x) \ge f(x_0) + \langle g, x - x_0 \rangle$$

The set of all subgradients of a function f(x) at a point x_0 is called the **subdifferential** of f at x_0 and is denoted by $\partial f(x_0)$.

Figure 4: Subdifferential is a set of all possible subgradients

Find $\partial f(x)$, if f(x) = |x|

Find $\partial f(x)$, if f(x) = |x|

Subdifferential properties
• If $x_0 \in \mathbf{ri}(S)$, then $\partial f(x_0)$ is a convex compact set.

- Subdifferential properties
 If $x_0 \in \mathbf{ri}(S)$, then $\partial f(x_0)$ is a convex compact set.
 - The convex function f(x) is differentiable at the point $x_0 \Rightarrow \partial f(x_0) = {\nabla f(x_0)}.$

- If $x_0 \in \mathbf{ri}(S)$, then $\partial f(x_0)$ is a convex compact set.
- The convex function f(x) is differentiable at the point $x_0 \Rightarrow \partial f(x_0) = \{\nabla f(x_0)\}.$
- If $\partial f(x_0) \neq \emptyset \quad \forall x_0 \in S$, then f(x) is convex on S.

- If $x_0 \in \mathbf{ri}(S)$, then $\partial f(x_0)$ is a convex compact set.
- The convex function f(x) is differentiable at the point $x_0 \Rightarrow \partial f(x_0) = \{\nabla f(x_0)\}.$
- If $\partial f(x_0) \neq \emptyset \quad \forall x_0 \in S$, then f(x) is convex on S.

- If $x_0 \in \mathbf{ri}(S)$, then $\partial f(x_0)$ is a convex compact set.
- The convex function f(x) is differentiable at the point $x_0 \Rightarrow \partial f(x_0) = \{\nabla f(x_0)\}.$
- If $\partial f(x_0) \neq \emptyset \quad \forall x_0 \in S$, then f(x) is convex on S.
- i Subdifferential of a differentiable function

Let $f: S \to \mathbb{R}$ be a function defined on the set S in a Euclidean space \mathbb{R}^n . If $x_0 \in \mathbf{ri}(S)$ and f is differentiable at x_0 , then either $\partial f(x_0) = \emptyset$ or $\partial f(x_0) = {\nabla f(x_0)}.$ Moreover, if the function f is convex, the first scenario is impossible.

- If $x_0 \in \mathbf{ri}(S)$, then $\partial f(x_0)$ is a convex compact set.
- The convex function f(x) is differentiable at the
- point $x_0 \Rightarrow \partial f(x_0) = \{\nabla f(x_0)\}.$ • If $\partial f(x_0) \neq \emptyset \quad \forall x_0 \in S$, then f(x) is convex on S.
- i Subdifferential of a differentiable function

Let $f: S \to \mathbb{R}$ be a function defined on the set S in a Euclidean space \mathbb{R}^n . If $x_0 \in \mathbf{ri}(S)$ and f is differentiable at x_0 , then either $\partial f(x_0) = \emptyset$ or $\partial f(x_0) = {\nabla f(x_0)}.$ Moreover, if the function f is convex, the first scenario is impossible.

Proof

1. Assume, that $s \in \partial f(x_0)$ for some $s \in \mathbb{R}^n$ distinct from $\nabla f(x_0)$. Let $v \in \mathbb{R}^n$ be a unit vector. Because x_0 is an interior point of S, there exists $\delta > 0$ such that $x_0 + tv \in S$ for all $0 < t < \delta$. By the definition of the subgradient, we have

- If $x_0 \in \mathbf{ri}(S)$, then $\partial f(x_0)$ is a convex compact set.
- The convex function f(x) is differentiable at the
- point $x_0 \Rightarrow \partial f(x_0) = \{\nabla f(x_0)\}.$ • If $\partial f(x_0) \neq \emptyset \quad \forall x_0 \in S$, then f(x) is convex on S.
- i Subdifferential of a differentiable function

Let $f: S \to \mathbb{R}$ be a function defined on the set S in a Euclidean space \mathbb{R}^n . If $x_0 \in \mathbf{ri}(S)$ and f is differentiable at x_0 , then either $\partial f(x_0) = \emptyset$ or $\partial f(x_0) = {\nabla f(x_0)}.$ Moreover, if the function f is convex, the first scenario is impossible.

Proof

1. Assume, that $s \in \partial f(x_0)$ for some $s \in \mathbb{R}^n$ distinct from $\nabla f(x_0)$. Let $v \in \mathbb{R}^n$ be a unit vector. Because x_0 is an interior point of S, there exists $\delta > 0$ such that $x_0 + tv \in S$ for all $0 < t < \delta$. By the definition of the subgradient, we have

- If $x_0 \in \mathbf{ri}(S)$, then $\partial f(x_0)$ is a convex compact set. which implies: • The convex function f(x) is differentiable at the
 - point $x_0 \Rightarrow \partial f(x_0) = \{\nabla f(x_0)\}.$ • If $\partial f(x_0) \neq \emptyset \quad \forall x_0 \in S$, then f(x) is convex on S.

i Subdifferential of a differentiable function

Let $f: S \to \mathbb{R}$ be a function defined on the set S in a Euclidean space \mathbb{R}^n . If $x_0 \in \mathbf{ri}(S)$ and f is differentiable at x_0 , then either $\partial f(x_0) = \emptyset$ or $\partial f(x_0) = {\nabla f(x_0)}.$ Moreover, if the function f is convex, the first scenario is impossible.

Proof

1. Assume, that $s \in \partial f(x_0)$ for some $s \in \mathbb{R}^n$ distinct from $\nabla f(x_0)$. Let $v \in \mathbb{R}^n$ be a unit vector. Because x_0 is an interior point of S, there exists $\delta > 0$ such

that $x_0 + tv \in S$ for all $0 < t < \delta$. By the definition

$$\frac{f(x_0 + tv) - f(x_0)}{t} \ge \langle s, v \rangle$$

for all $0 < t < \delta$. Taking the limit as t approaches 0 and using the definition of the gradient, we get:

$$\langle \nabla f(x_0), v \rangle = \lim_{t \to 0; 0 < t < \delta} \frac{f(x_0 + tv) - f(x_0)}{t} \ge \langle s, v \rangle$$
2. From this, $\langle s - \nabla f(x_0), v \rangle \ge 0$. Due to the arbitrariness of v , one can set

 $v = -\frac{s - \nabla f(x_0)}{\|s - \nabla f(x_0)\|},$

leading to
$$s = \nabla f(x_0)$$
.

of the subgradient, we have

- If $x_0 \in \mathbf{ri}(S)$, then $\partial f(x_0)$ is a convex compact set. which implies:
- The convex function f(x) is differentiable at the point $x_0 \Rightarrow \partial f(x_0) = \{\nabla f(x_0)\}.$ • If $\partial f(x_0) \neq \emptyset$ $\forall x_0 \in S$, then f(x) is convex on S.
- i Subdifferential of a differentiable function
- Let $f: S \to \mathbb{R}$ be a function defined on the set S in a Euclidean space \mathbb{R}^n . If $x_0 \in \mathbf{ri}(S)$ and f
- is differentiable at x_0 , then either $\partial f(x_0) = \emptyset$ or $\partial f(x_0) = {\nabla f(x_0)}.$ Moreover, if the function f is convex, the first scenario is impossible.

Proof

1. Assume, that $s \in \partial f(x_0)$ for some $s \in \mathbb{R}^n$ distinct from $\nabla f(x_0)$. Let $v \in \mathbb{R}^n$ be a unit vector. Because x_0 is an interior point of S, there exists $\delta > 0$ such that $x_0 + tv \in S$ for all $0 < t < \delta$. By the definition

$$\frac{f(x_0 + tv) - f(x_0)}{t} \ge \langle s, v \rangle$$

for all $0 < t < \delta$. Taking the limit as t approaches 0 and

using the definition of the gradient, we get:
$$\langle \nabla f(x_0),v\rangle = \lim_{t\to 0: 0 < t < \delta} \frac{f(x_0+tv)-f(x_0)}{t} \geq \langle s,v\rangle$$

2. From this, $\langle s - \nabla f(x_0), v \rangle > 0$. Due to the arbitrariness of v, one can set

$$v = -\frac{s - \nabla f(x_0)}{\|s - \nabla f(x_0)\|},$$

leading to $s = \nabla f(x_0)$. 3. Furthermore, if the function f is convex, then

according to the differential condition of convexity $f(x) \geq f(x_0) + \langle \nabla f(x_0), x - x_0 \rangle$ for all $x \in S$. But by definition, this means $\nabla f(x_0) \in \partial f(x_0)$.

of the subgradient, we have

Moreau - Rockafellar theorem (subdifferential of a linear combination)

Let $f_i(x)$ be convex functions on convex sets $S_i,\ i=$

$$\overline{1,n}$$
. Then if $\bigcap_{i=1}^n \mathbf{ri}(S_i) \neq \emptyset$ then the function

$$f(x) = \sum\limits_{i=1}^n a_i f_i(x), \ a_i > 0$$
 has a subdifferential

$$\partial_S f(x)$$
 on the set $S = \bigcap_{i=1}^n S_i$ and

$$\partial_S f(x) = \sum_{i=1}^n a_i \partial_{S_i} f_i(x)$$

Moreau - Rockafellar theorem (subdifferential of a linear combination)

Let $f_i(x)$ be convex functions on convex sets S_i , i = $\overline{1,n}$. Then if $\bigcap^n \mathbf{ri}(S_i) \neq \emptyset$ then the function

$$f(x)=\sum\limits_{i=1}^n a_if_i(x),\ a_i>0$$
 has a subdifferential $\partial_S f(x)$ on the set $S=\bigcap\limits_{i=1}^n S_i$ and

$$\partial_S f(x) = \sum_{i=1}^n a_i \partial_{S_i} f_i(x)$$

Dubovitsky - Milutin theorem (subdifferential of a point-wise maximum)

Let $f_i(x)$ be convex functions on the open convex set $S \subseteq \mathbb{R}^n$, $x_0 \in S$, and the pointwise maximum is defined as $f(x) = \max f_i(x)$. Then:

$$\partial_S f(x_0) = \mathbf{conv} \left\{ igcup_{i \in I(x_0)} \partial_S f_i(x_0)
ight\}, \quad I(x) = \{i \in [1], i \in [n]\}$$

 $f \to \min_{x,y,z}$ Subgradient calculus

•
$$\partial(\alpha f)(x) = \alpha \partial f(x)$$
, for $\alpha \ge 0$

- $\partial(\alpha f)(x) = \alpha \partial f(x)$, for $\alpha \ge 0$ $\partial(\sum f_i)(x) = \sum \partial f_i(x)$, f_i convex functions

- $\partial(\alpha f)(x) = \alpha \partial f(x)$, for $\alpha > 0$
- $\partial(\sum_{i=1}^{n}f_{i})(x) = \sum_{i=1}^{n}\partial f_{i}(x)$, f_{i} convex functions
- $\partial (f(Ax+b))(x) = A^T \partial f(Ax+b)$, f convex function

- $\partial(\alpha f)(x) = \alpha \partial f(x)$, for $\alpha > 0$
- $\partial(\sum f_i)(x) = \sum \partial f_i(x)$, f_i convex functions
- $\partial (f(Ax+b))(x) = A^T \partial f(Ax+b)$, f convex function
- $z \in \partial f(x)$ if and only if $x \in \partial f^*(z)$.

Subgradient Method

Algorithm

A vector g is called the **subgradient** of the function $f(x):S\to\mathbb{R}$ at the point x_0 if $\forall x\in S$:

$$f(x) \ge f(x_0) + \langle g, x - x_0 \rangle$$

Algorithm

A vector g is called the **subgradient** of the function $f(x): S \to \mathbb{R}$ at the point x_0 if $\forall x \in S$:

$$f(x) \ge f(x_0) + \langle g, x - x_0 \rangle$$

The idea is very simple: let's replace the gradient $\nabla f(x_k)$ in the gradient descent algorithm with a subgradient g_k at point x_k :

$$x_{k+1} = x_k - \alpha_k g_k,$$

where g_k is an arbitrary subgradient of the function f(x) at the point x_k , $g_k \in \partial f(x_k)$

Algorithm

A vector g is called the **subgradient** of the function $f(x): S \to \mathbb{R}$ at the point x_0 if $\forall x \in S$:

$$f(x) \ge f(x_0) + \langle g, x - x_0 \rangle$$

The idea is very simple: let's replace the gradient $\nabla f(x_k)$ in the gradient descent algorithm with a subgradient g_k at point x_k :

$$x_{k+1} = x_k - \alpha_k q_k,$$

where g_k is an arbitrary subgradient of the function f(x) at the point x_k , $g_k \in \partial f(x_k)$

Note that the subgradient method is not guaranteed to be a descent method; the negative subgradient need not be a descent direction, or the step size may cause $f(x_{k+1}) > f(x_k)$.

That is why we usually track the best value of the objective function

$$f_k^{\mathsf{best}} = \min_{i=1,\dots,k} f(x_i).$$

Convergence bound

$$||x_{k+1} - x^*||^2 = ||x_k - x^* - \alpha_k g_k||^2 =$$

$$||x_{k+1} - x^*||^2 = ||x_k - x^* - \alpha_k g_k||^2 =$$

$$= ||x_k - x^*||^2 + \alpha_k^2 ||g_k||^2 - 2\alpha_k \langle g_k, x_k - x^* \rangle$$

$$||x_{k+1} - x^*||^2 = ||x_k - x^* - \alpha_k g_k||^2 =$$

$$= ||x_k - x^*||^2 + \alpha_k^2 ||g_k||^2 - 2\alpha_k \langle g_k, x_k - x^* \rangle$$

$$< ||x_k - x^*||^2 + \alpha_k^2 ||g_k||^2 - 2\alpha_k \langle f(x_k) - f(x^*) \rangle$$

$$||x_{k+1} - x^*||^2 = ||x_k - x^* - \alpha_k g_k||^2 =$$

$$= ||x_k - x^*||^2 + \alpha_k^2 ||g_k||^2 - 2\alpha_k \langle g_k, x_k - x^* \rangle$$

$$\leq ||x_k - x^*||^2 + \alpha_k^2 ||g_k||^2 - 2\alpha_k (f(x_k) - f(x^*))$$

$$2\alpha_k (f(x_k) - f(x^*)) \leq ||x_k - x^*||^2 - ||x_{k+1} - x^*||^2 + \alpha_k^2 ||g_k||^2$$

$$f \rightarrow \min$$

⊕ ∩ **•**

$$||x_{k+1} - x^*||^2 = ||x_k - x^* - \alpha_k g_k||^2 =$$

$$= ||x_k - x^*||^2 + \alpha_k^2 ||g_k||^2 - 2\alpha_k \langle g_k, x_k - x^* \rangle$$

$$\leq ||x_k - x^*||^2 + \alpha_k^2 ||g_k||^2 - 2\alpha_k (f(x_k) - f(x^*))$$

$$2\alpha_k (f(x_k) - f(x^*)) \leq ||x_k - x^*||^2 - ||x_{k+1} - x^*||^2 + \alpha_k^2 ||g_k||^2$$

$$f \rightarrow \min$$

⊕ ∩ **•**

$$||x_{k+1} - x^*||^2 = ||x_k - x^* - \alpha_k g_k||^2 =$$

$$= ||x_k - x^*||^2 + \alpha_k^2 ||g_k||^2 - 2\alpha_k \langle g_k, x_k - x^* \rangle$$

$$\leq ||x_k - x^*||^2 + \alpha_k^2 ||g_k||^2 - 2\alpha_k (f(x_k) - f(x^*))$$

$$2\alpha_k (f(x_k) - f(x^*)) \leq ||x_k - x^*||^2 - ||x_{k+1} - x^*||^2 + \alpha_k^2 ||g_k||^2$$

Let us sum the obtained inequality for $k = 0, \dots, T-1$:

$$\sum_{k=0}^{T-1} 2\alpha_k (f(x_k) - f(x^*)) \le ||x_0 - x^*||^2 - ||x_T - x^*||^2 + \sum_{k=0}^{T-1} \alpha_k^2 ||g_k||^2$$

$$||x_{k+1} - x^*||^2 = ||x_k - x^* - \alpha_k g_k||^2 =$$

$$= ||x_k - x^*||^2 + \alpha_k^2 ||g_k||^2 - 2\alpha_k \langle g_k, x_k - x^* \rangle$$

$$\leq ||x_k - x^*||^2 + \alpha_k^2 ||g_k||^2 - 2\alpha_k (f(x_k) - f(x^*))$$

$$2\alpha_k (f(x_k) - f(x^*)) \leq ||x_k - x^*||^2 - ||x_{k+1} - x^*||^2 + \alpha_k^2 ||g_k||^2$$

Let us sum the obtained inequality for $k = 0, \dots, T-1$:

$$\sum_{k=0}^{T-1} 2\alpha_k (f(x_k) - f(x^*)) \le ||x_0 - x^*||^2 - ||x_T - x^*||^2 + \sum_{k=0}^{T-1} \alpha_k^2 ||g_k||^2$$

$$\le ||x_0 - x^*||^2 + \sum_{k=0}^{T-1} \alpha_k^2 ||g_k||^2$$

$$||x_{k+1} - x^*||^2 = ||x_k - x^* - \alpha_k g_k||^2 =$$

$$= ||x_k - x^*||^2 + \alpha_k^2 ||g_k||^2 - 2\alpha_k \langle g_k, x_k - x^* \rangle$$

$$\leq ||x_k - x^*||^2 + \alpha_k^2 ||g_k||^2 - 2\alpha_k (f(x_k) - f(x^*))$$

$$2\alpha_k (f(x_k) - f(x^*)) \leq ||x_k - x^*||^2 - ||x_{k+1} - x^*||^2 + \alpha_k^2 ||g_k||^2$$

Let us sum the obtained inequality for k = 0, ..., T - 1:

$$\sum_{k=0}^{T-1} 2\alpha_k (f(x_k) - f(x^*)) \le \|x_0 - x^*\|^2 - \|x_T - x^*\|^2 + \sum_{k=0}^{T-1} \alpha_k^2 \|g_k\|^2$$

$$\le \|x_0 - x^*\|^2 + \sum_{k=0}^{T-1} \alpha_k^2 \|g_k\|^2$$

$$\le R^2 + G^2 \sum_{k=0}^{T-1} \alpha_k^2$$

$$||x_{k+1} - x^*||^2 = ||x_k - x^* - \alpha_k g_k||^2 =$$

$$= ||x_k - x^*||^2 + \alpha_k^2 ||g_k||^2 - 2\alpha_k \langle g_k, x_k - x^* \rangle$$

$$\leq ||x_k - x^*||^2 + \alpha_k^2 ||g_k||^2 - 2\alpha_k (f(x_k) - f(x^*))$$

$$2\alpha_k (f(x_k) - f(x^*)) \leq ||x_k - x^*||^2 - ||x_{k+1} - x^*||^2 + \alpha_k^2 ||g_k||^2$$

Let us sum the obtained inequality for k = 0, ..., T - 1:

$$\sum_{k=0}^{T-1} 2\alpha_k (f(x_k) - f(x^*)) \le \|x_0 - x^*\|^2 - \|x_T - x^*\|^2 + \sum_{k=0}^{T-1} \alpha_k^2 \|g_k\|^2$$

$$\le \|x_0 - x^*\|^2 + \sum_{k=0}^{T-1} \alpha_k^2 \|g_k\|^2$$

$$\le R^2 + G^2 \sum_{k=0}^{T-1} \alpha_k^2$$

 Let's write down how close we came to the optimum $x^* = \arg\min_{x \in \mathbb{R}^n} f(x) = \arg f^*$ on the last iteration:

Subgradient Method

$$=\|x_k-x^*\|^2+\alpha_k^2\|g_k\|^2-2\alpha_k\langle g_k,x_k-x^*\rangle\\ \leq \|x_k-x^*\|^2+\alpha_k^2\|g_k\|^2-2\alpha_k(f(x_k)-f(x^*))\\ 2\alpha_k(f(x_k)-f(x^*))\leq \|x_k-x^*\|^2-\|x_{k+1}-x^*\|^2+\alpha_k^2\|g_k\|^2\\ \text{Let us sum the obtained inequality for }k=0,\ldots,T-1:\\ \sum_{k=0}^{T-1}2\alpha_k(f(x_k)-f(x^*))\leq \|x_0-x^*\|^2-\|x_T-x^*\|^2+\sum_{k=0}^{T-1}\alpha_k^2\|g_k\|^2\\ \leq \|x_0-x^*\|^2+\sum_{k=0}^{T-1}\alpha_k^2\|g_k\|^2\\ \leq R^2+G^2\sum_{k=0}^{T-1}\alpha_k^2$$

 $||x_{k+1} - x^*||^2 = ||x_k - x^* - \alpha_k q_k||^2 =$

- Let's write down how close we came to the optimum $x^* = \arg\min_{x \in \mathbb{R}^n} f(x) = \arg f^*$ on the last iteration:
- For a subgradient: $\langle g_k, x^* x_k \rangle \leq f(x^*) f(x_k)$.

$$\begin{split} \|x_{k+1} - x^*\|^2 &= \|x_k - x^* - \alpha_k g_k\|^2 = \\ &= \|x_k - x^*\|^2 + \alpha_k^2 \|g_k\|^2 - 2\alpha_k \langle g_k, x_k - x^* \rangle \\ &\leq \|x_k - x^*\|^2 + \alpha_k^2 \|g_k\|^2 - 2\alpha_k (f(x_k) - f(x^*)) \\ 2\alpha_k (f(x_k) - f(x^*)) &\leq \|x_k - x^*\|^2 - \|x_{k+1} - x^*\|^2 + \alpha_k^2 \|g_k\|^2 \\ \text{Let us sum the obtained inequality for } k = 0, \dots, T - 1 \text{:} \\ \sum_{k=0}^{T-1} 2\alpha_k (f(x_k) - f(x^*)) &\leq \|x_0 - x^*\|^2 - \|x_T - x^*\|^2 + \sum_{k=0}^{T-1} \alpha_k^2 \|g_k\|^2 \\ &\leq \|x_0 - x^*\|^2 + \sum_{k=0}^{T-1} \alpha_k^2 \|g_k\|^2 \\ &\leq R^2 + G^2 \sum_{k=0}^{T-1} \alpha_k^2 \end{split}$$

- Let's write down how close we came to the optimum $x^* = \arg\min_{x \in \mathbb{R}^n} f(x) = \arg f^*$ on the last iteration:
- For a subgradient: $\langle g_k, x^* x_k \rangle \leq f(x^*) f(x_k)$.
- ullet We additionally assume that $\|g_k\|^2 \leq G^2$

 $\stackrel{f}{=} \frac{\min}{x_{y,z}}$ Subgradient Method

$$\begin{split} \|x_{k+1} - x^*\|^2 &= \|x_k - x^* - \alpha_k g_k\|^2 = \\ &= \|x_k - x^*\|^2 + \alpha_k^2 \|g_k\|^2 - 2\alpha_k \langle g_k, x_k - x^* \rangle \\ &\leq \|x_k - x^*\|^2 + \alpha_k^2 \|g_k\|^2 - 2\alpha_k (f(x_k) - f(x^*)) \\ 2\alpha_k (f(x_k) - f(x^*)) &\leq \|x_k - x^*\|^2 - \|x_{k+1} - x^*\|^2 + \alpha_k^2 \|g_k\|^2 \\ \text{Let us sum the obtained inequality for } k = 0, \dots, T - 1 \text{:} \\ \sum_{k=0}^{T-1} 2\alpha_k (f(x_k) - f(x^*)) &\leq \|x_0 - x^*\|^2 - \|x_T - x^*\|^2 + \sum_{k=0}^{T-1} \alpha_k^2 \|g_k\|^2 \\ &\leq \|x_0 - x^*\|^2 + \sum_{k=0}^{T-1} \alpha_k^2 \|g_k\|^2 \\ &\leq R^2 + G^2 \sum_{k=0}^{T-1} \alpha_k^2 \end{split}$$

- Let's write down how close we came to the optimum $x^* = \arg\min_{x \in \mathbb{R}^n} f(x) = \arg f^*$ on the last iteration:
- For a subgradient: $\langle g_k, x^* x_k \rangle \leq f(x^*) f(x_k)$.
- We additionally assume that $\|g_k\|^2 \leq G^2$ • We use the notation $R = \|x_0 - x^*\|_2$

• Finally, note:

$$\sum_{k=0}^{T-1} 2\alpha_k (f(x_k) - f(x^*)) \ge \sum_{k=0}^{T-1} 2\alpha_k (f_k^{\mathsf{best}} - f(x^*)) = (f_k^{\mathsf{best}} - f(x^*)) \sum_{k=0}^{T-1} 2\alpha_k (f_k^{\mathsf{best}} - f(x^*)) = (f_k^{\mathsf{best}} - f(x^*)) \sum_{k=0}^{T-1} 2\alpha_k (f_k^{\mathsf{best}} - f(x^*)) = (f_k^{\mathsf{best}} - f(x^*)) \sum_{k=0}^{T-1} 2\alpha_k (f_k^{\mathsf{best}} - f(x^*)) = (f_k^{\mathsf{best}} - f(x^*)) \sum_{k=0}^{T-1} 2\alpha_k (f_k^{\mathsf{best}} - f(x^*)) = (f_k^{\mathsf{best}} - f(x^*)) \sum_{k=0}^{T-1} 2\alpha_k (f_k^{\mathsf{best}} - f(x^*)) = (f_k^{\mathsf{best}} - f(x^*)) = (f_k^{\mathsf{best}} - f(x^*)) \sum_{k=0}^{T-1} 2\alpha_k (f_k^{\mathsf{best}} - f(x^*)) = (f_k^{\mathsf{best}} - f(x^*)) = (f_k^{\mathsf{best}} - f(x^*)) \sum_{k=0}^{T-1} 2\alpha_k (f_k^{\mathsf{best}} - f(x^*)) = (f_k^{\mathsf{best}} - f(x^*)) = (f_k^{\mathsf{best}} - f(x^*)) \sum_{k=0}^{T-1} 2\alpha_k (f_k^{\mathsf{best}} - f(x^*)) = (f_k^{\mathsf{best}} - f(x^*)) = (f_k^{\mathsf{best}} - f(x^*)) \sum_{k=0}^{T-1} 2\alpha_k (f_k^{\mathsf{best}} - f(x^*)) = (f_k^{\mathsf{best}} - f(x^*)) = (f_k^{\mathsf{best}} - f(x^*)) \sum_{k=0}^{T-1} 2\alpha_k (f_k^{\mathsf{best}} - f(x^*)) = (f_k^{\mathsf$$

Subgradient Method

• Finally, note:

$$\sum_{k=0}^{T-1} 2\alpha_k (f(x_k) - f(x^*)) \geq \sum_{k=0}^{T-1} 2\alpha_k (f_k^{\mathsf{best}} - f(x^*)) = (f_k^{\mathsf{best}} - f(x^*)) \sum_{k=0}^{T-1} 2\alpha_k (f_k^{\mathsf{best}} - f(x^*)) = (f_k^{\mathsf{best}} - f(x^*)) \sum_{k=0}^{T-1} 2\alpha_k (f_k^{\mathsf{best}} - f(x^*)) = (f_k^{\mathsf{best}} - f(x^*)) \sum_{k=0}^{T-1} 2\alpha_k (f_k^{\mathsf{best}} - f(x^*)) = (f_k^{\mathsf{best}} - f(x^*)) \sum_{k=0}^{T-1} 2\alpha_k (f_k^{\mathsf{best}} - f(x^*)) = (f_k^{\mathsf{best}} - f(x^*)) \sum_{k=0}^{T-1} 2\alpha_k (f_k^{\mathsf{best}} - f(x^*)) = (f_k^{\mathsf{best}} - f(x^*)) \sum_{k=0}^{T-1} 2\alpha_k (f_k^{\mathsf{best}} - f(x^*)) = (f_k^{\mathsf{best}} - f(x^*)) \sum_{k=0}^{T-1} 2\alpha_k (f_k^{\mathsf{best}} - f(x^*)) = (f_k^{\mathsf{best}} - f(x^*)) \sum_{k=0}^{T-1} 2\alpha_k (f_k^{\mathsf{best}} - f(x^*)) = (f_k^{\mathsf{best}} - f(x^*)) \sum_{k=0}^{T-1} 2\alpha_k (f_k^{\mathsf{best}} - f(x^*)) = (f_k^{\mathsf{best}} - f(x^*)) \sum_{k=0}^{T-1} 2\alpha_k (f_k^{\mathsf{best}} - f(x^*)) = (f_k^{\mathsf{best}} - f(x^*)) \sum_{k=0}^{T-1} 2\alpha_k (f_k^{\mathsf{best}} - f(x^*)) = (f_k^{\mathsf{best}} - f(x^*)) \sum_{k=0}^{T-1} 2\alpha_k (f_k^{\mathsf{best}} - f(x^*)) = (f_k^{\mathsf{best}} - f(x^*)) = (f_k^{\mathsf{best}} - f(x^*)) \sum_{k=0}^{T-1} 2\alpha_k (f_k^{\mathsf{best}} - f(x^*)) = (f_k^{\mathsf{best}} - f(x^*)) = (f_k^{\mathsf{best}} - f(x^*)) \sum_{k=0}^{T-1} 2\alpha_k (f_k^{\mathsf{best}} - f(x^*)) = (f_k^{\mathsf{best}} - f(x$$

Which leads to the basic inequality:

$$f_k^{\text{best}} - f(x^*) \le \frac{R^2 + G^2 \sum_{k=0}^{T-1} \alpha_k^2}{2 \sum_{k=0}^{T-1} \alpha_k}$$

⊕ ∩ **a**

• Finally, note:

$$\sum_{k=0}^{T-1} 2\alpha_k (f(x_k) - f(x^*)) \ge \sum_{k=0}^{T-1} 2\alpha_k (f_k^{\mathsf{best}} - f(x^*)) = (f_k^{\mathsf{best}} - f(x^*)) \sum_{k=0}^{T-1} 2\alpha_k$$

• Which leads to the basic inequality:

$$f_k^{\text{best}} - f(x^*) \le \frac{R^2 + G^2 \sum_{k=0}^{T-1} \alpha_k^2}{2 \sum_{k=0}^{T-1} \alpha_k}$$

• From this point we can see, that if the stepsize strategy is such that

$$\sum_{k=0}^{T-1} \alpha_k^2 < \infty, \quad \sum_{k=0}^{T-1} \alpha_k = \infty,$$

then the subgradient method converges (step size should be decreasing, but not too fast).

⊕ ∩ •

Different step size strategies

Subgradient Method

Different step size strategies

i Theorem

Let f be a convex G-Lipschitz function and $R = \|x_0 - x^*\|_2$. For a fixed step size α , subgradient method satisfies

$$f_k^{\mathsf{best}} - f(x^*) \le \frac{R^2}{2\alpha k} + \frac{\alpha}{2}G^2$$

 Note, that with any constant step size, the first term of the right-hand side is decreasing, but the second term stays constant.

⊕ ი (

i Theorem

Subgradient Method

Let f be a convex G-Lipschitz function and $R = \|x_0 - x^*\|_2$. For a fixed step size α , subgradient method satisfies

$$f_k^{\text{best}} - f(x^*) \le \frac{R^2}{2\alpha k} + \frac{\alpha}{2}G^2$$

- Note, that with any constant step size, the first term of the right-hand side is decreasing, but the second term stays constant.
- Some versions of the subgradient method (e.g., diminishing nonsummable step lengths) work when the assumption on $\|g_k\|_2 \leq G$ doesn't hold; see 1 or 2 .

¹B. Polyak. Introduction to Optimization. Optimization Software, Inc., 1987.

 $^{^2}$ N. Shor. Minimization Methods for Non-differentiable Functions. Springer Series in Computational Mathematics. Springer, 1985.

i Theorem

Subgradient Method

Let f be a convex G-Lipschitz function and $R = \|x_0 - x^*\|_2$. For a fixed step size α , subgradient method satisfies

$$f_k^{\mathsf{best}} - f(x^*) \le \frac{R^2}{2\alpha k} + \frac{\alpha}{2}G^2$$

- Note, that with any constant step size, the first term of the right-hand side is decreasing, but the second term stays constant.
- Some versions of the subgradient method (e.g., diminishing nonsummable step lengths) work when the assumption on $||g_k||_2 \le G$ doesn't hold; see 1 or 2 .
- Let's find the optimal step size α that minimizes the right-hand side of the inequality.

¹B. Polyak. Introduction to Optimization. Optimization Software, Inc., 1987.

²N. Shor. Minimization Methods for Non-differentiable Functions. Springer Series in Computational Mathematics. Springer, 1985.

i Theorem

Let f be a convex G-Lipschitz function and $R = \|x_0 - x^*\|_2$. For a fixed step size $\alpha = \frac{R}{G}\sqrt{\frac{1}{k}}$, subgradient method satisfies

$$f_k^{\mathsf{best}} - f(x^*) \le \frac{GR}{\sqrt{k}}$$

This version requires knowledge of the number of iterations in advance, which is not usually practical.

i Theorem

Let f be a convex G-Lipschitz function and $R = \|x_0 - x^*\|_2$. For a fixed step size $\alpha = \frac{R}{G}\sqrt{\frac{1}{k}}$, subgradient method satisfies

$$f_k^{\mathsf{best}} - f(x^*) \le \frac{GR}{\sqrt{k}}$$

- This version requires knowledge of the number of iterations in advance, which is not usually practical.
- It is interesting to mention, that if you want to find the optimal stepsizes for the whole sequence $\alpha_0, \alpha_1, \ldots, \alpha_{k-1}$, you will get the same result.

େ ଚ

i Theorem

Let f be a convex G-Lipschitz function and $R = \|x_0 - x^*\|_2$. For a fixed step size $\alpha = \frac{R}{G}\sqrt{\frac{1}{k}}$, subgradient method satisfies

$$f_k^{\mathsf{best}} - f(x^*) \le \frac{GR}{\sqrt{k}}$$

- This version requires knowledge of the number of iterations in advance, which is not usually practical.
- It is interesting to mention, that if you want to find the optimal stepsizes for the whole sequence $\alpha_0, \alpha_1, \ldots, \alpha_{k-1}$, you will get the same result.
- Why? Because the right-hand side is convex and symmetric function of $\alpha_0, \alpha_1, \ldots, \alpha_{k-1}$.

i Theorem

Let f be a convex G-Lipschitz function and $R = \|x_0 - x^*\|_2$. For a fixed step length $\gamma = \alpha_k \|g_k\|_2$, i.e. $\alpha_k = \frac{\gamma}{\|g_k\|_2}$, subgradient method satisfies

$$f_k^{\mathsf{best}} - f(x^*) \le \frac{GR^2}{2\gamma k} + \frac{G\gamma}{2}$$

• Note, that for the subgradient method, we typically can not use the norm of the subgradient as a stopping criterion (imagine f(x) = |x|). There are some variants of more advanced stopping criteria, but the convergence is so slow, so typically we just set a maximum number of iterations.

 $f \to \min_{x,y,z}$

⊕ ი

i Theorem

Let f be a convex G-Lipschitz function and $R = \|x_0 - x^*\|_2$. For a diminishing step size strategy $\alpha_k = \frac{R}{G\sqrt{k+1}}$, subgradient method satisfies

$$f_k^{\text{best}} - f(x^*) \le \frac{GR(2 + \ln k)}{4\sqrt{k+1}}$$

Bounding sums:

i Theorem

Let f be a convex G-Lipschitz function and $R = ||x_0 - x^*||_2$. For a diminishing step size strategy $\alpha_k = \frac{R}{C_1 \sqrt{k-1}}$, subgradient method satisfies

$$f_k^{\text{best}} - f(x^*) \le \frac{GR(2 + \ln k)}{4\sqrt{k+1}}$$

1. Bounding sums:

$$\sum_{k=1}^{T-1} \alpha_k^2 = \frac{R^2}{G^2} \sum_{k=1}^{T} \frac{1}{k} \le \frac{R^2}{G^2} (1 + \ln T);$$

i Theorem

Let f be a convex G-Lipschitz function and $R = \|x_0 - x^*\|_2$. For a diminishing step size strategy $\alpha_k = \frac{R}{G\sqrt{k+1}}$, subgradient method satisfies

$$f_k^{\text{best}} - f(x^*) \le \frac{GR(2 + \ln k)}{4\sqrt{k+1}}$$

1. Bounding sums:

$$\sum_{k=0}^{T-1} \alpha_k^2 = \frac{R^2}{G^2} \sum_{k=1}^{T} \frac{1}{k} \le \frac{R^2}{G^2} (1 + \ln T); \qquad \sum_{k=0}^{T-1} \alpha_k = \frac{R}{G} \sum_{k=1}^{T} \frac{1}{\sqrt{k}} \ge \frac{R}{G} \int_1^{T+1} \frac{1}{\sqrt{t}} dt = \frac{2R}{G} (\sqrt{T+1} - 1).$$

i Theorem

Let f be a convex G-Lipschitz function and $R = \|x_0 - x^*\|_2$. For a diminishing step size strategy $\alpha_k = \frac{R}{G\sqrt{k+1}}$, subgradient method satisfies

$$f_k^{\text{best}} - f(x^*) \le \frac{GR(2 + \ln k)}{4\sqrt{k+1}}$$

1. Bounding sums:

$$\sum_{k=0}^{T-1} \alpha_k^2 = \frac{R^2}{G^2} \sum_{k=0}^{T-1} \frac{1}{k} \le \frac{R^2}{G^2} (1 + \ln T); \qquad \sum_{k=0}^{T-1} \alpha_k = \frac{R}{G} \sum_{k=0}^{T-1} \frac{1}{\sqrt{k}} \ge \frac{R}{G} \int_{1}^{T+1} \frac{1}{\sqrt{t}} dt = \frac{2R}{G} (\sqrt{T+1} - 1).$$

2. We drop the last -1 in the upper bound above and use the basic inequality:

i Theorem

Let f be a convex G-Lipschitz function and $R = \|x_0 - x^*\|_2$. For a diminishing step size strategy $\alpha_k = \frac{R}{C \cdot \sqrt{k+1}}$, subgradient method satisfies

$$f_k^{\text{best}} - f(x^*) \le \frac{GR(2 + \ln k)}{4\sqrt{k+1}}$$

1. Bounding sums:

$$\sum_{k=0}^{T-1} \alpha_k^2 = \frac{R^2}{G^2} \sum_{k=1}^T \frac{1}{k} \le \frac{R^2}{G^2} (1 + \ln T); \qquad \sum_{k=0}^{T-1} \alpha_k = \frac{R}{G} \sum_{k=1}^T \frac{1}{\sqrt{k}} \ge \frac{R}{G} \int_1^{T+1} \frac{1}{\sqrt{t}} dt = \frac{2R}{G} (\sqrt{T+1} - 1).$$

2. We drop the last -1 in the upper bound above and use the basic inequality:

$$f_T^{\mathsf{best}} - f(x^*) \le rac{R^2 + G^2 \sum\limits_{k=0}^{T-1} lpha_k^2}{2 \sum\limits_{k=0}^{T-1} lpha_k}$$

i Theorem

Let f be a convex G-Lipschitz function and $R = \|x_0 - x^*\|_2$. For a diminishing step size strategy $\alpha_k = \frac{R}{G\sqrt{k+1}}$, subgradient method satisfies

$$f_k^{\text{best}} - f(x^*) \le \frac{GR(2 + \ln k)}{4\sqrt{k+1}}$$

1. Bounding sums:

$$\sum_{k=0}^{T-1} \alpha_k^2 = \frac{R^2}{G^2} \sum_{k=1}^{T} \frac{1}{k} \le \frac{R^2}{G^2} (1 + \ln T); \qquad \sum_{k=0}^{T-1} \alpha_k = \frac{R}{G} \sum_{k=1}^{T} \frac{1}{\sqrt{k}} \ge \frac{R}{G} \int_1^{T+1} \frac{1}{\sqrt{t}} dt = \frac{2R}{G} (\sqrt{T+1} - 1).$$

2. We drop the last -1 in the upper bound above and use the basic inequality:

$$f_T^{\mathsf{best}} - f(x^*) \le \frac{R^2 + G^2 \sum_{k=0}^{T-1} \alpha_k^2}{2 \sum_{k=0}^{T-1} \alpha_k} \le \frac{R^2 + R^2 (1 + \ln T)}{4 \frac{R}{G} \left(\sqrt{T+1}\right)}$$

i Theorem

Let f be a convex G-Lipschitz function and $R = \|x_0 - x^*\|_2$. For a diminishing step size strategy $\alpha_k = \frac{R}{G\sqrt{k+1}}$, subgradient method satisfies

$$f_k^{\text{best}} - f(x^*) \le \frac{GR(2 + \ln k)}{4\sqrt{k+1}}$$

1. Bounding sums:

$$\sum_{k=1}^{T-1} \alpha_k^2 = \frac{R^2}{G^2} \sum_{k=1}^{T} \frac{1}{k} \le \frac{R^2}{G^2} (1 + \ln T); \qquad \sum_{k=1}^{T-1} \alpha_k = \frac{R}{G} \sum_{k=1}^{T} \frac{1}{\sqrt{k}} \ge \frac{R}{G} \int_{1}^{T+1} \frac{1}{\sqrt{t}} dt = \frac{2R}{G} (\sqrt{T+1} - 1).$$

2. We drop the last -1 in the upper bound above and use the basic inequality:

$$f_T^{\mathsf{best}} - f(x^*) \le \frac{R^2 + G^2 \sum\limits_{k=0}^{T-1} \alpha_k^2}{2\sum\limits_{k=0}^{T-1} \alpha_k} \le \frac{R^2 + R^2(1 + \ln T)}{4\frac{R}{G}\left(\sqrt{T+1}\right)} = \frac{GR(2 + \ln T)}{4\sqrt{T+1}}$$

Non-smooth Convex

 $\begin{array}{c} \text{Non-smooth} \\ \mu \text{ - strongly convex} \end{array}$

Subgradient Method

Non-smooth Convex

$$O\left(\frac{1}{\sqrt{k}}\right)$$

$\begin{array}{c} \text{Non-smooth} \\ \mu \text{ - strongly convex} \end{array}$

$$\mathcal{O}\left(\frac{1}{k}\right)$$

Subgradient Method

i Theorem

Let f be μ -strongly convex on a convex set and x, y be arbitrary points. Then for any $g \in \partial f(x)$,

$$\langle g, x - y \rangle \ge f(x) - f(y) + \frac{\mu}{2} ||x - y||^2.$$

1. For any $\lambda \in [0,1)$, by μ -strong convexity,

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y) - \frac{\mu}{2}\lambda(1 - \lambda)\|x - y\|^2.$$

i Theorem

Let f be μ -strongly convex on a convex set and x,y be arbitrary points. Then for any $g\in\partial f(x)$,

$$\langle g, x - y \rangle \ge f(x) - f(y) + \frac{\mu}{2} ||x - y||^2.$$

1. For any $\lambda \in [0,1)$, by μ -strong convexity,

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y) - \frac{\mu}{2}\lambda(1 - \lambda)\|x - y\|^2$$
.

2. By the subgradient inequality at x, we have

$$f(\lambda x + (1-\lambda)y) \ge f(x) + \langle q, \lambda x + (1-\lambda)y - x \rangle \rightarrow f(\lambda x + (1-\lambda)y) \ge f(x) - (1-\lambda)\langle q, x - y \rangle.$$

i Theorem

Let f be μ -strongly convex on a convex set and x, y be arbitrary points. Then for any $g \in \partial f(x)$,

$$\langle g, x - y \rangle \ge f(x) - f(y) + \frac{\mu}{2} ||x - y||^2.$$

1. For any $\lambda \in [0,1)$, by μ -strong convexity,

$$f(\lambda x + (1-\lambda)y) \le \lambda f(x) + (1-\lambda)f(y) - \frac{\mu}{2}\lambda(1-\lambda)\|x - y\|^2.$$

2. By the subgradient inequality at x, we have

$$f(\lambda x + (1 - \lambda)y) \ge f(x) + \langle g, \lambda x + (1 - \lambda)y - x \rangle \quad \to \quad f(\lambda x + (1 - \lambda)y) \ge f(x) - (1 - \lambda)\langle g, x - y \rangle.$$

3. Thus,
$$f(x) - (1-\lambda)\langle g, x-y\rangle \leq \lambda f(x) + (1-\lambda)f(y) - \frac{\mu}{2}\lambda(1-\lambda)\|x-y\|^2$$

$$(1-\lambda)f(x) \leq (1-\lambda)f(y) + (1-\lambda)\langle g, x-y\rangle - \frac{\mu}{2}\lambda(1-\lambda)\|x-y\|^2$$

$$f(x) \leq f(y) + \langle g, x-y\rangle - \frac{\mu}{2}\lambda\|x-y\|^2$$

i Theorem

Let f be μ -strongly convex on a convex set and x, y be arbitrary points. Then for any $g \in \partial f(x)$, $\langle g, x - y \rangle \ge f(x) - f(y) + \frac{\mu}{2} ||x - y||^2.$

1. For any
$$\lambda \in [0,1)$$
, by μ -strong convexity,
$$f(\lambda x + (1-\lambda)y) \leq \lambda f(x) + (1-\lambda)f(y) - \frac{\mu}{2}\lambda(1-\lambda)\|x-y\|^2.$$

2. By the subgradient inequality at
$$x$$
, we have

2. By the subgradient inequality at
$$x$$
, we have

By the subgradient inequality at
$$x$$
, we have
$$f(\lambda x + (1 - \lambda)y) > f(x) + (a - \lambda x + (1 - \lambda)y)$$

 $f(\lambda x + (1-\lambda)y) \ge f(x) + \langle q, \lambda x + (1-\lambda)y - x \rangle \rightarrow f(\lambda x + (1-\lambda)y) \ge f(x) - (1-\lambda)\langle q, x - y \rangle.$

we have
$$x \perp (1 - \lambda)u - x \rightarrow 0$$

$$\rightarrow f$$

$$(\lambda x + (1$$

$$f(x) - (1 - \lambda)\langle g, x - y \rangle \le \lambda f(x) + (1 - \lambda)f(y) - \frac{\mu}{2}\lambda(1 - \lambda)\|x - y\|^2$$

$$(1-\lambda)f(x) \le (1-\lambda)f(y) + (1-\lambda)\langle g, x-y\rangle - \frac{\mu}{2}\lambda(1-\lambda)\|x-y\|^2$$

$$\langle g, x - y \rangle$$

$$-\frac{\mu}{2} \lambda \|x-y\|^2$$

$$f(x) \le f(y) + \langle g, x - y \rangle - \frac{\mu}{2} \lambda ||x - y||^2$$

4. Letting
$$\lambda \to 1^-$$
 gives $f(x) \le f(y) + \langle g, x - y \rangle - \frac{\mu}{2} ||x - y||^2 \to \langle g, x - y \rangle \ge f(x) - f(y) + \frac{\mu}{2} ||x - y||^2$.

3. Thus.

i Theorem

Let f be a μ -strongly convex function (possibly non-smooth) with minimizer x^* and bounded subgradients $\|g_k\| \leq G$. Using the step size $\alpha_k = \frac{2}{\mu(k+1)}$, the subgradient method guarantees for k > 0 that:

$$f_k^{\mathsf{best}} - f(x^*) \le \frac{2G^2}{\mu k}.$$

1. We start with the method formulation as before:

⊕ O

i Theorem

Let f be a μ -strongly convex function (possibly non-smooth) with minimizer x^* and bounded subgradients $\|g_k\| \le G$. Using the step size $\alpha_k = \frac{2}{\mu(k+1)}$, the subgradient method guarantees for k > 0 that:

$$f_k^{\mathsf{best}} - f(x^*) \le \frac{2G^2}{\mu k}.$$

1. We start with the method formulation as before:

$$||x_{k+1} - x^*||^2 = ||x_k - x^* - \alpha_k q_k||^2 =$$

i Theorem

Let f be a μ -strongly convex function (possibly non-smooth) with minimizer x^* and bounded subgradients $\|g_k\| \leq G$. Using the step size $\alpha_k = \frac{2}{\mu(k+1)}$, the subgradient method guarantees for k > 0 that:

$$f_k^{\mathsf{best}} - f(x^*) \le \frac{2G^2}{\mu k}.$$

1. We start with the method formulation as before:

$$||x_{k+1} - x^*||^2 = ||x_k - x^* - \alpha_k g_k||^2 =$$

$$= ||x_k - x^*||^2 + \alpha_k^2 ||g_k||^2 - 2\alpha_k \langle g_k, x_k - x^* \rangle$$

 $f \to \min_{x,y,z}$

⊕ o a

i Theorem

Let f be a μ -strongly convex function (possibly non-smooth) with minimizer x^* and bounded subgradients $\|g_k\| \le G$. Using the step size $\alpha_k = \frac{2}{\mu(k+1)}$, the subgradient method guarantees for k > 0 that:

$$f_k^{\mathsf{best}} - f(x^*) \le \frac{2G^2}{\mu k}.$$

1. We start with the method formulation as before:

$$||x_{k+1} - x^*||^2 = ||x_k - x^* - \alpha_k g_k||^2 =$$

$$= ||x_k - x^*||^2 + \alpha_k^2 ||g_k||^2 - 2\alpha_k \langle g_k, x_k - x^* \rangle$$

$$< ||x_k - x^*||^2 + \alpha_k^2 ||g_k||^2 - 2\alpha_k \langle f(x_k) - f(x^*) \rangle - \alpha_k \mu ||x_k - x^*||^2$$

i Theorem

Let f be a μ -strongly convex function (possibly non-smooth) with minimizer x^* and bounded subgradients $\|g_k\| \leq G$. Using the step size $\alpha_k = \frac{2}{\mu(k+1)}$, the subgradient method guarantees for k > 0 that:

$$f_k^{\mathsf{best}} - f(x^*) \le \frac{2G^2}{\mu k}.$$

1. We start with the method formulation as before:

$$||x_{k+1} - x^*||^2 = ||x_k - x^* - \alpha_k g_k||^2 =$$

$$= ||x_k - x^*||^2 + \alpha_k^2 ||g_k||^2 - 2\alpha_k \langle g_k, x_k - x^* \rangle$$

$$\leq ||x_k - x^*||^2 + \alpha_k^2 ||g_k||^2 - 2\alpha_k (f(x_k) - f(x^*)) - \alpha_k \mu ||x_k - x^*||^2$$

$$= (1 - \mu \alpha_k) ||x_k - x^*||^2 + \alpha_k^2 ||g_k||^2 - 2\alpha_k (f(x_k) - f(x^*))$$

i Theorem

Let f be a μ -strongly convex function (possibly non-smooth) with minimizer x^* and bounded subgradients $\|g_k\| \leq G$. Using the step size $\alpha_k = \frac{2}{\mu(k+1)}$, the subgradient method guarantees for k > 0 that:

$$f_k^{\mathsf{best}} - f(x^*) \le \frac{2G^2}{\mu k}.$$

1. We start with the method formulation as before:

$$||x_{k+1} - x^*||^2 = ||x_k - x^* - \alpha_k g_k||^2 =$$

$$= ||x_k - x^*||^2 + \alpha_k^2 ||g_k||^2 - 2\alpha_k \langle g_k, x_k - x^* \rangle$$

$$\leq ||x_k - x^*||^2 + \alpha_k^2 ||g_k||^2 - 2\alpha_k (f(x_k) - f(x^*)) - \alpha_k \mu ||x_k - x^*||^2$$

$$= (1 - \mu \alpha_k) ||x_k - x^*||^2 + \alpha_k^2 ||g_k||^2 - 2\alpha_k (f(x_k) - f(x^*))$$

$$2\alpha_k (f(x_k) - f(x^*)) \leq (1 - \mu \alpha_k) ||x_k - x^*||^2 - ||x_{k+1} - x^*||^2 + \alpha_k^2 ||g_k||^2$$

 $f \to \min_{x,y,z}$

⊕ ი

i Theorem

Let f be a μ -strongly convex function (possibly non-smooth) with minimizer x^* and bounded subgradients $\|g_k\| \le G$. Using the step size $\alpha_k = \frac{2}{\mu(k+1)}$, the subgradient method guarantees for k > 0 that:

$$f_k^{\mathsf{best}} - f(x^*) \le \frac{2G^2}{\mu k}.$$

1. We start with the method formulation as before:

$$||x_{k+1} - x^*||^2 = ||x_k - x^* - \alpha_k g_k||^2 =$$

$$= ||x_k - x^*||^2 + \alpha_k^2 ||g_k||^2 - 2\alpha_k \langle g_k, x_k - x^* \rangle$$

$$\leq ||x_k - x^*||^2 + \alpha_k^2 ||g_k||^2 - 2\alpha_k (f(x_k) - f(x^*)) - \alpha_k \mu ||x_k - x^*||^2$$

$$= (1 - \mu \alpha_k) ||x_k - x^*||^2 + \alpha_k^2 ||g_k||^2 - 2\alpha_k (f(x_k) - f(x^*))$$

$$2\alpha_k (f(x_k) - f(x^*)) \leq (1 - \mu \alpha_k) ||x_k - x^*||^2 - ||x_{k+1} - x^*||^2 + \alpha_k^2 ||g_k||^2$$

 $f(x_k) - f(x^*) \le \frac{1 - \mu \alpha_k}{2\alpha_k} \|x_k - x^*\|^2 - \frac{1}{2\alpha_k} \|x_{k+1} - x^*\|^2 + \frac{\alpha_k}{2} \|g_k\|^2$

 $f \to \min_{x,y,z}$

⊕ ∩ **a**

2. Substitute the step size $\alpha_k = \frac{2}{\mu(k+1)}$ into the inequality:

2. Substitute the step size $\alpha_k = \frac{2}{\mu(k+1)}$ into the inequality:

$$f(x_k) - f(x^*) \le \frac{\mu(k-1)}{4} \|x_k - x^*\|^2 - \frac{\mu(k+1)}{4} \|x_{k+1} - x^*\|^2 + \frac{1}{\mu(k+1)} \|g_k\|^2$$

2. Substitute the step size $\alpha_k = \frac{2}{\mu(k+1)}$ into the inequality:

$$f(x_k) - f(x^*) \le \frac{\mu(k-1)}{4} \|x_k - x^*\|^2 - \frac{\mu(k+1)}{4} \|x_{k+1} - x^*\|^2 + \frac{1}{\mu(k+1)} \|g_k\|^2$$

$$f(x_k) - f(x^*) \le \frac{\mu(k-1)}{4} \|x_k - x^*\|^2 - \frac{\mu(k+1)}{4} \|x_{k+1} - x^*\|^2 + \frac{1}{\mu(k+1)} \|g_k\|^2$$

2. Substitute the step size $\alpha_k = \frac{2}{\mu(k+1)}$ into the inequality:

$$f(x_k) - f(x^*) \le \frac{\mu(k-1)}{4} \|x_k - x^*\|^2 - \frac{\mu(k+1)}{4} \|x_{k+1} - x^*\|^2 + \frac{1}{\mu(k+1)} \|g_k\|^2$$

$$f(x_k) - f(x^*) \le \frac{\mu(k-1)}{4} \|x_k - x^*\|^2 - \frac{\mu(k+1)}{4} \|x_{k+1} - x^*\|^2 + \frac{1}{\mu k} \|g_k\|^2$$

$$k \left(f(x_k) - f(x^*) \right) \le \frac{\mu k(k-1)}{4} \|x_k - x^*\|^2 - \frac{\mu k(k+1)}{4} \|x_{k+1} - x^*\|^2 + \frac{1}{\mu} \|g_k\|^2$$

2. Substitute the step size $\alpha_k = \frac{2}{\mu(k+1)}$ into the inequality:

$$f(x_k) - f(x^*) \le \frac{\mu(k-1)}{4} \|x_k - x^*\|^2 - \frac{\mu(k+1)}{4} \|x_{k+1} - x^*\|^2 + \frac{1}{\mu(k+1)} \|g_k\|^2$$

$$f(x_k) - f(x^*) \le \frac{\mu(k-1)}{4} \|x_k - x^*\|^2 - \frac{\mu(k+1)}{4} \|x_{k+1} - x^*\|^2 + \frac{1}{\mu k} \|g_k\|^2$$

$$k \left(f(x_k) - f(x^*) \right) \le \frac{\mu k(k-1)}{4} \|x_k - x^*\|^2 - \frac{\mu k(k+1)}{4} \|x_{k+1} - x^*\|^2 + \frac{1}{\mu} \|g_k\|^2$$

3. Summing up the inequalities for all $k=0,1,\dots,T-1$, we get:

⇔ റ ഉ

2. Substitute the step size $\alpha_k = \frac{2}{\mu(k+1)}$ into the inequality:

$$f(x_k) - f(x^*) \le \frac{\mu(k-1)}{4} \|x_k - x^*\|^2 - \frac{\mu(k+1)}{4} \|x_{k+1} - x^*\|^2 + \frac{1}{\mu(k+1)} \|g_k\|^2$$

$$f(x_k) - f(x^*) \le \frac{\mu(k-1)}{4} \|x_k - x^*\|^2 - \frac{\mu(k+1)}{4} \|x_{k+1} - x^*\|^2 + \frac{1}{\mu k} \|g_k\|^2$$

$$k \left(f(x_k) - f(x^*) \right) \le \frac{\mu k(k-1)}{4} \|x_k - x^*\|^2 - \frac{\mu k(k+1)}{4} \|x_{k+1} - x^*\|^2 + \frac{1}{\mu} \|g_k\|^2$$

3. Summing up the inequalities for all $k = 0, 1, \dots, T - 1$, we get:

$$\sum_{k=1}^{T-1} k \left(f(x_k) - f(x^*) \right) \le 0 - \frac{\mu(T-1)T}{4} \|x_T - x^*\|^2 + \frac{1}{\mu} \sum_{k=1}^{T-1} \|g_k\|^2$$

Subgradient Method

2. Substitute the step size $\alpha_k = \frac{2}{\mu(k+1)}$ into the inequality:

$$f(x_k) - f(x^*) \le \frac{\mu(k-1)}{4} \|x_k - x^*\|^2 - \frac{\mu(k+1)}{4} \|x_{k+1} - x^*\|^2 + \frac{1}{\mu(k+1)} \|g_k\|^2$$

$$f(x_k) - f(x^*) \le \frac{\mu(k-1)}{4} \|x_k - x^*\|^2 - \frac{\mu(k+1)}{4} \|x_{k+1} - x^*\|^2 + \frac{1}{\mu k} \|g_k\|^2$$

$$k \left(f(x_k) - f(x^*) \right) \le \frac{\mu k(k-1)}{4} \|x_k - x^*\|^2 - \frac{\mu k(k+1)}{4} \|x_{k+1} - x^*\|^2 + \frac{1}{\mu} \|g_k\|^2$$

3. Summing up the inequalities for all $k = 0, 1, \dots, T - 1$, we get:

$$\sum_{k=0}^{T-1} k \left(f(x_k) - f(x^*) \right) \le 0 - \frac{\mu(T-1)T}{4} \|x_T - x^*\|^2 + \frac{1}{\mu} \sum_{k=0}^{T-1} \|g_k\|^2 \le \frac{G^2 T}{\mu}$$

2. Substitute the step size $\alpha_k = \frac{2}{\mu(k+1)}$ into the inequality:

$$f(x_k) - f(x^*) \le \frac{\mu(k-1)}{4} \|x_k - x^*\|^2 - \frac{\mu(k+1)}{4} \|x_{k+1} - x^*\|^2 + \frac{1}{\mu(k+1)} \|g_k\|^2$$

$$f(x_k) - f(x^*) \le \frac{\mu(k-1)}{4} \|x_k - x^*\|^2 - \frac{\mu(k+1)}{4} \|x_{k+1} - x^*\|^2 + \frac{1}{\mu k} \|g_k\|^2$$

$$k \left(f(x_k) - f(x^*) \right) \le \frac{\mu k(k-1)}{4} \|x_k - x^*\|^2 - \frac{\mu k(k+1)}{4} \|x_{k+1} - x^*\|^2 + \frac{1}{\mu} \|g_k\|^2$$

3. Summing up the inequalities for all $k = 0, 1, \dots, T-1$, we get:

$$\sum_{k=0}^{T-1} k \left(f(x_k) - f(x^*) \right) \le 0 - \frac{\mu(T-1)T}{4} \|x_T - x^*\|^2 + \frac{1}{\mu} \sum_{k=0}^{T-1} \|g_k\|^2 \le \frac{G^2 T}{\mu}$$

$$\left(f_{T-1}^{\mathsf{best}} - f(x^*) \right) \sum_{k=0}^{T-1} k \left(f_{T-1}^{\mathsf{best}} - f(x^*) \right)$$

2. Substitute the step size $\alpha_k = \frac{2}{\mu(k+1)}$ into the inequality:

$$f(x_k) - f(x^*) \le \frac{\mu(k-1)}{4} \|x_k - x^*\|^2 - \frac{\mu(k+1)}{4} \|x_{k+1} - x^*\|^2 + \frac{1}{\mu(k+1)} \|g_k\|^2$$

$$f(x_k) - f(x^*) \le \frac{\mu(k-1)}{4} \|x_k - x^*\|^2 - \frac{\mu(k+1)}{4} \|x_{k+1} - x^*\|^2 + \frac{1}{\mu k} \|g_k\|^2$$

$$k \left(f(x_k) - f(x^*) \right) \le \frac{\mu k(k-1)}{4} \|x_k - x^*\|^2 - \frac{\mu k(k+1)}{4} \|x_{k+1} - x^*\|^2 + \frac{1}{\mu} \|g_k\|^2$$

3. Summing up the inequalities for all $k = 0, 1, \dots, T-1$, we get:

$$\sum_{k=0}^{T-1} k \left(f(x_k) - f(x^*) \right) \le 0 - \frac{\mu(T-1)T}{4} \|x_T - x^*\|^2 + \frac{1}{\mu} \sum_{k=0}^{T-1} \|g_k\|^2 \le \frac{G^2 T}{\mu}$$

$$\left(f_{T-1}^{\mathsf{best}} - f(x^*) \right) \sum_{k=0}^{T-1} k = \sum_{k=0}^{T-1} k \left(f_{T-1}^{\mathsf{best}} - f(x^*) \right) \le \sum_{k=0}^{T-1} k \left(f(x_k) - f(x^*) \right)$$

2. Substitute the step size $\alpha_k = \frac{2}{\mu(k+1)}$ into the inequality:

$$f(x_k) - f(x^*) \le \frac{\mu(k-1)}{4} \|x_k - x^*\|^2 - \frac{\mu(k+1)}{4} \|x_{k+1} - x^*\|^2 + \frac{1}{\mu(k+1)} \|g_k\|^2$$

$$f(x_k) - f(x^*) \le \frac{\mu(k-1)}{4} \|x_k - x^*\|^2 - \frac{\mu(k+1)}{4} \|x_{k+1} - x^*\|^2 + \frac{1}{\mu k} \|g_k\|^2$$

$$k \left(f(x_k) - f(x^*) \right) \le \frac{\mu k(k-1)}{4} \|x_k - x^*\|^2 - \frac{\mu k(k+1)}{4} \|x_{k+1} - x^*\|^2 + \frac{1}{\mu} \|g_k\|^2$$

3. Summing up the inequalities for all $k = 0, 1, \dots, T-1$, we get:

$$\sum_{k=0}^{T-1} k \left(f(x_k) - f(x^*) \right) \le 0 - \frac{\mu(T-1)T}{4} \|x_T - x^*\|^2 + \frac{1}{\mu} \sum_{k=0}^{T-1} \|g_k\|^2 \le \frac{G^2 T}{\mu}$$

$$\left(f_{T-1}^{\mathsf{best}} - f(x^*) \right) \sum_{k=0}^{T-1} k \left(f_{T-1}^{\mathsf{best}} - f(x^*) \right) \le \sum_{k=0}^{T-1} k \left(f(x_k) - f(x^*) \right) \le \frac{G^2 T}{\mu}$$

2. Substitute the step size $\alpha_k = \frac{2}{\mu(k+1)}$ into the inequality:

$$f(x_k) - f(x^*) \le \frac{\mu(k-1)}{4} \|x_k - x^*\|^2 - \frac{\mu(k+1)}{4} \|x_{k+1} - x^*\|^2 + \frac{1}{\mu(k+1)} \|g_k\|^2$$

$$f(x_k) - f(x^*) \le \frac{\mu(k-1)}{4} \|x_k - x^*\|^2 - \frac{\mu(k+1)}{4} \|x_{k+1} - x^*\|^2 + \frac{1}{\mu k} \|g_k\|^2$$

$$k \left(f(x_k) - f(x^*) \right) \le \frac{\mu k(k-1)}{4} \|x_k - x^*\|^2 - \frac{\mu k(k+1)}{4} \|x_{k+1} - x^*\|^2 + \frac{1}{\mu} \|g_k\|^2$$

3. Summing up the inequalities for all $k = 0, 1, \dots, T - 1$, we get:

$$\sum_{k=0}^{T-1} k \left(f(x_k) - f(x^*) \right) \le 0 - \frac{\mu(T-1)T}{4} \|x_T - x^*\|^2 + \frac{1}{\mu} \sum_{k=0}^{T-1} \|g_k\|^2 \le \frac{G^2 T}{\mu}$$

$$\left(f_{T-1}^{\text{best}} - f(x^*) \right) \sum_{k=0}^{T-1} k = \sum_{k=0}^{T-1} k \left(f_{T-1}^{\text{best}} - f(x^*) \right) \le \sum_{k=0}^{T-1} k \left(f(x_k) - f(x^*) \right) \le \frac{G^2 T}{\mu}$$

$$f_{T-1}^{\text{best}} - f(x^*) \le \frac{G^2 T}{\mu \sum_{k=0}^{T-1} k}$$

2. Substitute the step size $\alpha_k = \frac{2}{\mu(k+1)}$ into the inequality:

$$f(x_k) - f(x^*) \le \frac{\mu(k-1)}{4} \|x_k - x^*\|^2 - \frac{\mu(k+1)}{4} \|x_{k+1} - x^*\|^2 + \frac{1}{\mu(k+1)} \|g_k\|^2$$

$$f(x_k) - f(x^*) \le \frac{\mu(k-1)}{4} \|x_k - x^*\|^2 - \frac{\mu(k+1)}{4} \|x_{k+1} - x^*\|^2 + \frac{1}{\mu k} \|g_k\|^2$$

$$k \left(f(x_k) - f(x^*) \right) \le \frac{\mu k(k-1)}{4} \|x_k - x^*\|^2 - \frac{\mu k(k+1)}{4} \|x_{k+1} - x^*\|^2 + \frac{1}{4} \|g_k\|^2$$

3. Summing up the inequalities for all $k = 0, 1, \dots, T - 1$, we get:

$$\sum_{k=0}^{T-1} k \left(f(x_k) - f(x^*) \right) \le 0 - \frac{\mu(T-1)T}{4} \|x_T - x^*\|^2 + \frac{1}{\mu} \sum_{k=0}^{T-1} \|g_k\|^2 \le \frac{G^2 T}{\mu}$$

$$\left(f_{T-1}^{\text{best}} - f(x^*) \right) \sum_{k=0}^{T-1} k = \sum_{k=0}^{T-1} k \left(f_{T-1}^{\text{best}} - f(x^*) \right) \le \sum_{k=0}^{T-1} k \left(f(x_k) - f(x^*) \right) \le \frac{G^2 T}{\mu}$$

$$f_{T-1}^{\text{best}} - f(x^*) \le \frac{G^2 T}{\mu \sum_{k=0}^{T-1} k} = \frac{2G^2 T}{\mu T(T-1)}$$

2. Substitute the step size $\alpha_k = \frac{2}{\mu(k+1)}$ into the inequality:

$$f(x_k) - f(x^*) \le \frac{\mu(k-1)}{4} \|x_k - x^*\|^2 - \frac{\mu(k+1)}{4} \|x_{k+1} - x^*\|^2 + \frac{1}{\mu(k+1)} \|g_k\|^2$$

$$f(x_k) - f(x^*) \le \frac{\mu(k-1)}{4} \|x_k - x^*\|^2 - \frac{\mu(k+1)}{4} \|x_{k+1} - x^*\|^2 + \frac{1}{\mu k} \|g_k\|^2$$

$$k \left(f(x_k) - f(x^*) \right) \le \frac{\mu k(k-1)}{4} \|x_k - x^*\|^2 - \frac{\mu k(k+1)}{4} \|x_{k+1} - x^*\|^2 + \frac{1}{4} \|g_k\|^2$$

3. Summing up the inequalities for all $k = 0, 1, \dots, T - 1$, we get:

$$\sum_{k=0}^{T-1} k \left(f(x_k) - f(x^*) \right) \le 0 - \frac{\mu(T-1)T}{4} \|x_T - x^*\|^2 + \frac{1}{\mu} \sum_{k=0}^{T-1} \|g_k\|^2 \le \frac{G^2 T}{\mu}$$

$$\left(f_{T-1}^{\text{best}} - f(x^*) \right) \sum_{k=0}^{T-1} k = \sum_{k=0}^{T-1} k \left(f_{T-1}^{\text{best}} - f(x^*) \right) \le \sum_{k=0}^{T-1} k \left(f(x_k) - f(x^*) \right) \le \frac{G^2 T}{\mu}$$

$$f_{T-1}^{\text{best}} - f(x^*) \le \frac{G^2 T}{\mu \sum_{k=0}^{T-1} k} = \frac{2G^2 T}{\mu T (T-1)} \qquad f_k^{\text{best}} - f(x^*) \le \frac{2G^2}{\mu k}.$$

Summary. Subgradient method

Problem Type	Stepsize Rule	Convergence Rate	Iteration Complexity
Convex & Lipschitz problems	$\alpha \sim \frac{1}{\sqrt{k}}$	$\mathcal{O}\left(\frac{1}{\sqrt{k}}\right)$	$\mathcal{O}\left(\frac{1}{arepsilon^2}\right)$
Strongly convex & Lipschitz problems	$\alpha \sim \frac{1}{k}$	$\mathcal{O}\left(\frac{1}{k}\right)$	$\mathcal{O}\left(\frac{1}{\varepsilon}\right)$

 $f \to \min_{x,y,z}$ Subgradient Method

⊕ 0

$$f(x) = \frac{1}{2m} \|Ax - b\|_2^2 + \lambda \|x\|_1 \to \min_{x \in \mathbb{R}^n}, \qquad A \in \mathbb{R}^{m \times n}, \quad \lambda \left(\frac{1}{m} A^T A\right) \in [\mu; L].$$

Linear Least Squares with ℓ_1 Regularization (LASSO). m=1000, n=100, λ =0, μ =0, L=10. Optimal sparsity: 0.0e+00

Figure 6: Smooth convex case. Sublinear convergence, no convergence in domain

⊕ n ø

$$f(x) = \frac{1}{2m} \|Ax - b\|_2^2 + \lambda \|x\|_1 \to \min_{x \in \mathbb{R}^n}, \qquad A \in \mathbb{R}^{m \times n}, \quad \lambda \left(\frac{1}{m} A^T A\right) \in [\mu; L].$$

Linear Least Squares with ℓ_1 Regularization (LASSO). m=1000, n=100, λ =0.1, μ =0, L=10. Optimal sparsity: 1.0e-02

Figure 7: Non-smooth convex case. Small λ value imposes non-smoothness. No convergence with constant step size

$$f(x) = \frac{1}{2m} \|Ax - b\|_2^2 + \lambda \|x\|_1 \to \min_{x \in \mathbb{R}^n}, \qquad A \in \mathbb{R}^{m \times n}, \quad \lambda \left(\frac{1}{m} A^T A\right) \in [\mu; L].$$

Linear Least Squares with ℓ_1 Regularization (LASSO). m=1000, n=100, λ =1, μ =0, L=10. Optimal sparsity: 7.0e-02

Figure 8: Non-smooth convex case. Larger λ value reveals non-monotonicity of $f(x_k)$. One can see that a smaller constant step size leads to a lower stationary level.

$$f(x) = \frac{1}{2m} \|Ax - b\|_2^2 + \lambda \|x\|_1 \to \min_{x \in \mathbb{R}^n}, \qquad A \in \mathbb{R}^{m \times n}, \quad \lambda \left(\frac{1}{m} A^T A\right) \in [\mu; L].$$

Linear Least Squares with ℓ_1 Regularization (LASSO). m=100, n=100, λ =1, μ =0, L=10. Optimal sparsity: 2.3e-01

Figure 9: Non-smooth convex case. Diminishing step size leads to the convergence fot the f_L^{best}

 $f \to \min_{x,y,z}$ Subgradient Method

⊕ o a

$$f(x) = \frac{1}{2m} \|Ax - b\|_2^2 + \lambda \|x\|_1 \to \min_{x \in \mathbb{R}^n}, \quad A \in \mathbb{R}^{m \times n}, \quad \lambda \left(\frac{1}{m} A^T A\right) \in [\mu; L].$$

Linear Least Squares with ℓ_1 Regularization (LASSO). m=100, n=100, λ =1, μ =0, L=10. Optimal sparsity: 2.3e-01

Figure 10: Non-smooth convex case. $\frac{\alpha_0}{\sqrt{k}}$ step size leads to the convergence fot the f_k^{best}

$$f(x) = \frac{1}{2m} \|Ax - b\|_2^2 + \lambda \|x\|_1 \to \min_{x \in \mathbb{R}^n}, \qquad A \in \mathbb{R}^{m \times n}, \quad \lambda \left(\frac{1}{m} A^T A\right) \in [\mu; L].$$

Linear Least Squares with ℓ_1 Regularization (LASSO). m=100, n=100, λ =1, μ =0, L=10. Optimal sparsity: 2.3e-01

Figure 11: Non-smooth convex case. $\frac{\alpha_0}{\sqrt{k}}$ step size leads to the convergence fot the f_k^{best}

$$f(x) = \frac{1}{2m} \|Ax - b\|_2^2 + \lambda \|x\|_1 \to \min_{x \in \mathbb{R}^n}, \qquad A \in \mathbb{R}^{m \times n}, \quad \lambda \left(\frac{1}{m} A^T A\right) \in [\mu; L].$$

Linear Least Squares with ℓ_1 Regularization (LASSO). m=100, n=100, λ =1, μ =1, L=10. Optimal sparsity: 2.0e-01

Figure 12: Non-smooth strongly convex case. $\frac{\alpha_0}{h}$ step size leads to the convergence for the f_h^{best}

 $f \to \min_{x,y,z}$ Subgradient Method

⊕ o o

$$f(x) = \frac{1}{2m} \|Ax - b\|_2^2 + \lambda \|x\|_1 \to \min_{x \in \mathbb{R}^n}, \qquad A \in \mathbb{R}^{m \times n}, \quad \lambda \left(\frac{1}{m} A^T A\right) \in [\mu; L].$$

Linear Least Squares with ℓ_1 Regularization (LASSO). m=100, n=100, λ =1, μ =1, L=10. Optimal sparsity: 2.0e-01

Figure 13: Non-smooth strongly convex case. $\frac{\alpha_0}{\sqrt{L}}$ step size works worse

$$f(x) = \frac{1}{m} \sum_{i=1}^{m} \log(1 + \exp(-b_i(A_i x))) + \lambda ||x||_1 \to \min_{x \in \mathbb{R}^n}, \quad A_i \in \mathbb{R}^n, \quad b_i \in \{-1, 1\}$$

Binary Logistic Regression with ℓ_1 Regularization. m=300, n=50, λ =0.1. Optimal sparsity: 8.6e-01

Figure 14: Logistic regression with ℓ_1 regularization

⊕ ೧ Ø

$$f(x) = \frac{1}{m} \sum_{i=1}^{m} \log(1 + \exp(-b_i(A_i x))) + \lambda ||x||_1 \to \min_{x \in \mathbb{R}^n}, \quad A_i \in \mathbb{R}^n, \quad b_i \in \{-1, 1\}$$

Binary Logistic Regression with ℓ_1 Regularization. m=300, n=50, λ =0.1. Optimal sparsity: 8.6e-01

Figure 15: Logistic regression with ℓ_1 regularization

$$f(x) = \frac{1}{m} \sum_{i=1}^{m} \log(1 + \exp(-b_i(A_i x))) + \lambda ||x||_1 \to \min_{x \in \mathbb{R}^n}, \quad A_i \in \mathbb{R}^n, \quad b_i \in \{-1, 1\}$$

Binary Logistic Regression with ℓ_1 Regularization. m=300, n=50, λ =0.25. Optimal sparsity: 9.6e-01

Figure 16: Logistic regression with ℓ_1 regularization

$$f(x) = \frac{1}{m} \sum_{i=1}^{m} \log(1 + \exp(-b_i(A_i x))) + \lambda ||x||_1 \to \min_{x \in \mathbb{R}^n}, \quad A_i \in \mathbb{R}^n, \quad b_i \in \{-1, 1\}$$

Binary Logistic Regression with ℓ_1 Regularization. m=300, n=50, λ =0.25. Optimal sparsity: 9.6e-01

Figure 17: Logistic regression with ℓ_1 regularization

 $f \to \min_{x,y,z}$ Subgradient Method

⊕ ດ ຄ

$$f(x) = \frac{1}{m} \sum_{i=1}^{m} \log(1 + \exp(-b_i(A_i x))) + \lambda ||x||_1 \to \min_{x \in \mathbb{R}^n}, \quad A_i \in \mathbb{R}^n, \quad b_i \in \{-1, 1\}$$

Figure 18: Logistic regression with ℓ_1 regularization

 $f \to \min_{x,y,z}$

⊕ o a

$$f(x) = \frac{1}{m} \sum_{i=1}^{m} \log(1 + \exp(-b_i(A_i x))) + \lambda ||x||_1 \to \min_{x \in \mathbb{R}^n}, \quad A_i \in \mathbb{R}^n, \quad b_i \in \{-1, 1\}$$

Figure 19: Logistic regression with ℓ_1 regularization

 $f \to \min_{x,y,z}$ Subgradient Method

⊕ o o

Lower bounds

$k_{\varepsilon} \sim \mathcal{O}\left(\frac{1}{\varepsilon^2}\right)$ $k_{\varepsilon} \sim \mathcal{O}\left(\frac{1}{\sqrt{\varepsilon}}\right)$ $k_{\varepsilon} \sim \mathcal{O}\left(\frac{1}{\varepsilon}\right)$	$ \left(\frac{1}{k^2}\right) \qquad \mathcal{O}\left(\left(\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}\right)^k\right) \\ \mathcal{O}\left(\frac{1}{\sqrt{\varepsilon}}\right) \qquad k_{\varepsilon} \sim \mathcal{O}\left(\sqrt{\kappa}\log\frac{1}{\varepsilon}\right) $	

³Nesterov, Lectures on Convex Optimization ⁴Carmon, Duchi, Hinder, Sidford, 2017

⁵Nemirovski, Yudin, 1979 Lower bounds

Black box iteration

The iteration of gradient descent:

$$x^{k+1} = x^k - \alpha^k \nabla f(x^k)$$

$$= x^{k-1} - \alpha^{k-1} \nabla f(x^{k-1}) - \alpha^k \nabla f(x^k)$$

$$\vdots$$

$$= x^0 - \sum_{i=0}^k \alpha^{k-i} \nabla f(x^{k-i})$$

Black box iteration

The iteration of gradient descent:

$$x^{k+1} = x^k - \alpha^k \nabla f(x^k)$$

$$= x^{k-1} - \alpha^{k-1} \nabla f(x^{k-1}) - \alpha^k \nabla f(x^k)$$

$$\vdots$$

$$= x^0 - \sum_{i=0}^k \alpha^{k-i} \nabla f(x^{k-i})$$

Consider a family of first-order methods, where

$$x^{k+1} \in x^0 + \operatorname{span}\left\{\nabla f(x^0), \nabla f(x^1), \dots, \nabla f(x^k)\right\}$$
 f - smooth $x^{k+1} \in x^0 + \operatorname{span}\left\{q_0, q_1, \dots, q_k\right\}$, where $q_i \in \partial f(x^i)$ f - non-smooth

(1)

Black box iteration

The iteration of gradient descent:

$$x^{k+1} = x^k - \alpha^k \nabla f(x^k)$$

$$= x^{k-1} - \alpha^{k-1} \nabla f(x^{k-1}) - \alpha^k \nabla f(x^k)$$

$$\vdots$$

$$= x^0 - \sum_{i=0}^k \alpha^{k-i} \nabla f(x^{k-i})$$

Consider a family of first-order methods, where

$$x^{k+1} \in x^0 + \operatorname{span}\left\{
abla f(x^0),
abla f(x^1), \dots,
abla f(x^k)
ight\} \qquad f$$
 - smooth $x^{k+1} \in x^0 + \operatorname{span}\left\{q_0, q_1, \dots, q_k\right\}$, where $q_i \in \partial f(x^i) \qquad f$ - non-smooth

To construct a lower bound, we need to find a function f from the corresponding class such that any method from the family 1 will work at least as slowly as the lower bound.

(1)

Non-smooth convex case

i Theorem

There exists a function f that is $G ext{-Lipschitz}$ and convex such that any method 1 satisfies

$$\min_{i \in [1,k]} f(x^i) - \min_{x \in \mathbb{B}(R)} f(x) \ge \frac{GR}{2(1+\sqrt{k})}$$

for R>0 and $k\leq n$, where n is the dimension of the problem.

Non-smooth convex case

i Theorem

There exists a function f that is G-Lipschitz and convex such that any method 1 satisfies

$$\min_{i \in [1,k]} f(x^i) - \min_{x \in \mathbb{B}(R)} f(x) \ge \frac{GR}{2(1+\sqrt{k})}$$

for R > 0 and $k \le n$, where n is the dimension of the problem.

Proof idea: build such a function f that, for any method 1, we have

$$\operatorname{span}\left\{g_0,g_1,\ldots,g_k\right\}\subset\operatorname{span}\left\{e_1,e_2,\ldots,e_i\right\}$$

where e_i is the i-th standard basis vector. At iteration $k \leq n$, there are at least n-k coordinate of x are 0. This helps us to derive a bound on the error.

Consider the function:

$$f(x) = \beta \max_{i \in [1,k]} x[i] + \frac{\alpha}{2} ||x||_2^2,$$

where $\alpha,\beta\in\mathbb{R}$ are parameters, and x[1:k] denotes the first k components of x.

Consider the function:

$$f(x) = \beta \max_{i \in [1,k]} x[i] + \frac{\alpha}{2} ||x||_2^2,$$

where $\alpha, \beta \in \mathbb{R}$ are parameters, and x[1:k] denotes the first k components of x.

Key Properties:

• The function f(x) is α -strongly convex due to the quadratic term $\frac{\alpha}{2}||x||_2^2$.

Consider the function:

$$f(x) = \beta \max_{i \in [1,k]} x[i] + \frac{\alpha}{2} ||x||_2^2,$$

where $\alpha,\beta\in\mathbb{R}$ are parameters, and x[1:k] denotes the first k components of x.

Key Properties:

- The function f(x) is lpha-strongly convex due to the quadratic term $\frac{lpha}{2}\|x\|_2^2$.
- The function is non-smooth because the first term introduces a non-differentiable point at the maximum coordinate of x.

Consider the function:

$$f(x) = \beta \max_{i \in [1,k]} x[i] + \frac{\alpha}{2} ||x||_2^2,$$

where $\alpha,\beta\in\mathbb{R}$ are parameters, and x[1:k] denotes the first k components of x.

Key Properties:

- The function f(x) is lpha-strongly convex due to the quadratic term $\frac{lpha}{2}\|x\|_2^2$.
- The function is non-smooth because the first term introduces a non-differentiable point at the maximum coordinate of x.

Consider the function:

$$f(x) = \beta \max_{i \in [1,k]} x[i] + \frac{\alpha}{2} ||x||_2^2,$$

where $\alpha, \beta \in \mathbb{R}$ are parameters, and x[1:k] denotes the first k components of x.

Key Properties:

- The function f(x) is α -strongly convex due to the quadratic term $\frac{\alpha}{2} ||x||_2^2$.
- The function is non-smooth because the first term introduces a non-differentiable point at the maximum coordinate of x.

Consider the subdifferential of f(x) at x:

$$\begin{split} \partial f(x) &= \partial \left(\beta \max_{i \in [1,k]} x[i] \right) + \partial \left(\frac{\alpha}{2} \|x\|_2^2 \right) \\ &= \beta \partial \left(\max_{i \in [1,k]} x[i] \right) + \alpha x \\ &= \beta \mathsf{conv} \left\{ e_i \mid i : x[i] = \max_j x[j] \right\} + \alpha x \end{split}$$

େ 💎 ମ 🍯

Consider the function:

$$f(x) = \beta \max_{i \in [1,k]} x[i] + \frac{\alpha}{2} ||x||_2^2,$$

where $\alpha, \beta \in \mathbb{R}$ are parameters, and x[1:k] denotes the first k components of x.

Key Properties:

- The function f(x) is α -strongly convex due to the quadratic term $\frac{\alpha}{2} ||x||_2^2$.
- ullet The function is non-smooth because the first term introduces a non-differentiable point at the maximum coordinate of x.

Consider the subdifferential of f(x) at x:

$$\begin{split} \partial f(x) &= \partial \left(\beta \max_{i \in [1,k]} x[i] \right) + \partial \left(\frac{\alpha}{2} \|x\|_2^2 \right) \\ &= \beta \partial \left(\max_{i \in [1,k]} x[i] \right) + \alpha x \\ &= \beta \mathsf{conv} \left\{ e_i \mid i : x[i] = \max_i x[j] \right\} + \alpha x \end{split}$$

It is easy to see, that if $g \in \partial f(x)$ and $\|x\| \leq R$, then

$$||g|| \le \alpha R + \beta$$

Thus, f is $\alpha R + \beta$ -Lipschitz on B(R).

Next, we describe the first-order oracle for this function. When queried for a subgradient at a point x, the oracle returns

$$\alpha x + \gamma e_i$$

where *i* is the *first* coordinate for with $x[i] = \max_{1 \le j \le k} x[j]$.

• We ensure that $||x^0|| \le R$ by starting from $x^0 = 0$.

Next, we describe the first-order oracle for this function. When queried for a subgradient at a point x, the oracle returns

$$\alpha x + \gamma e_i$$

where i is the *first* coordinate for with $x[i] = \max_{1 \le j \le k} x[j]$.

- We ensure that $||x^0|| \le R$ by starting from $x^0 = 0$.
- When the oracle is queried at $x^0 = 0$, it returns e_1 . Consequently, x^1 must lie on the line generated by e_1 .

Next, we describe the first-order oracle for this function. When queried for a subgradient at a point x, the oracle returns

$$\alpha x + \gamma e_i$$

where i is the first coordinate for with $x[i] = \max_{1 \leq j \leq k} x[j]$.

- We ensure that $||x^0|| < R$ by starting from $x^0 = 0$.
- When the oracle is queried at $x^0 = 0$, it returns e_1 . Consequently, x^1 must lie on the line generated by e_1 .
- By an induction argument, one shows that for all i, the iterate x^i lies in the linear span of $\{e_1, \ldots, e_i\}$. In particular, for $i \le k$, the k+1-th coordinate of x_i is zero and due to the structure of f(x):

$$f(x^i) \ge 0.$$

• It remains to compute the minimal value of f. Define the point $y \in \mathbb{R}^n$ as

$$y[i] = -rac{eta}{lpha k} \quad ext{for } 1 \leq i \leq k, \qquad y[i] = 0 \quad ext{for } k+1 \leq i \leq n.$$

 $f \to \min_{x,y,z}$ Lower bounds

• It remains to compute the minimal value of f. Define the point $y \in \mathbb{R}^n$ as

$$y[i] = -\frac{\beta}{\alpha k}$$
 for $1 \le i \le k$, $y[i] = 0$ for $k + 1 \le i \le n$.

• Note, that $0 \in \partial f(y)$:

$$\begin{split} \partial f(y) &= \alpha y + \beta \mathsf{conv} \left\{ e_i \mid i : y[i] = \max_j y[j] \right\} \\ &= \alpha y + \beta \mathsf{conv} \left\{ e_i \mid i : y[i] = 0 \right\} \\ &0 \in \partial f(y). \end{split}$$

 $f \to \min_{x,y,z}$ Lower bounds

• It remains to compute the minimal value of f. Define the point $y \in \mathbb{R}^n$ as

$$y[i] = -\frac{\beta}{\alpha k}$$
 for $1 \le i \le k$, $y[i] = 0$ for $k + 1 \le i \le n$.

• Note, that $0 \in \partial f(y)$:

$$\begin{split} \partial f(y) &= \alpha y + \beta \mathsf{conv} \left\{ e_i \mid i : y[i] = \max_j y[j] \right\} \\ &= \alpha y + \beta \mathsf{conv} \left\{ e_i \mid i : y[i] = 0 \right\} \\ &0 \in \partial f(y). \end{split}$$

• It follows that the minimum value of $f = f(y) = f(x^*)$ is

$$f(y) = -\frac{\beta^2}{\alpha k} + \frac{\alpha}{2} \cdot \frac{\beta^2}{\alpha^2 k} = -\frac{\beta^2}{2\alpha k}.$$

 $f \to \min_{x,y,z}$ Lower bounds

• It remains to compute the minimal value of f. Define the point $y \in \mathbb{R}^n$ as

$$y[i] = -\frac{\beta}{\alpha k}$$
 for $1 \le i \le k$, $y[i] = 0$ for $k + 1 \le i \le n$.

• Note, that $0 \in \partial f(y)$:

$$\begin{split} \partial f(y) &= \alpha y + \beta \mathsf{conv} \left\{ e_i \mid i: y[i] = \max_j y[j] \right\} \\ &= \alpha y + \beta \mathsf{conv} \left\{ e_i \mid i: y[i] = 0 \right\} \\ &0 \in \partial f(y). \end{split}$$

• It follows that the minimum value of $f = f(y) = f(x^*)$ is

$$f(y) = -\frac{\beta^2}{\alpha k} + \frac{\alpha}{2} \cdot \frac{\beta^2}{\alpha^2 k} = -\frac{\beta^2}{2\alpha k}.$$

• Now we have:

$$f(x^i) - f(x^*) \ge 0 - \left(-\frac{\beta^2}{2\alpha k}\right) \ge \frac{\beta^2}{2\alpha k}.$$

 $f \to \min_{x,y,z}$

We have: $f(x^i) - f(x^*) \geq \frac{\beta^2}{2\alpha k}$, while we need to prove that $\min_{i \in [1,k]} f(x^i) - f(x^*) \geq \frac{GR}{2(1+\sqrt{k})}$.

We have: $f(x^i) - f(x^*) \geq \frac{\beta^2}{2\alpha k}$, while we need to prove that $\min_{i \in [1,k]} f(x^i) - f(x^*) \geq \frac{GR}{2(1+\sqrt{k})}$.

Convex case

$$\alpha = \frac{G}{R} \frac{1}{1 + \sqrt{k}} \quad \beta = \frac{\sqrt{k}}{1 + \sqrt{k}}$$
$$\frac{\beta^2}{2\alpha} = \frac{GRk}{2(1 + \sqrt{k})}$$

Note, in particular, that $||y||_2^2 = \frac{\beta^2}{\alpha^2 k} = R^2$ with these

parameters

$$\min_{i \in [1,k]} f(x^i) - f(x^*) \ge \frac{\beta^2}{2\alpha k} = \frac{GR}{2(1+\sqrt{k})}$$

We have: $f(x^i) - f(x^*) \geq \frac{\beta^2}{2\alpha k}$, while we need to prove that $\min_{i \in [1,k]} f(x^i) - f(x^*) \geq \frac{GR}{2(1+\sqrt{k})}$.

Convex case

$$\alpha = \frac{G}{R} \frac{1}{1 + \sqrt{k}} \quad \beta = \frac{\sqrt{k}}{1 + \sqrt{k}}$$
$$\frac{\beta^2}{2\alpha} = \frac{GRk}{2(1 + \sqrt{k})}$$

Note, in particular, that $\|y\|_2^2 = \frac{\beta^2}{\alpha^2 k} = R^2$ with these parameters

$$\min_{i \in [1,k]} f(x^i) - f(x^*) \ge \frac{\beta^2}{2\alpha k} = \frac{GR}{2(1+\sqrt{k})}$$

Strongly convex case

Note, in particular, that
$$\|y\|_2^2=\frac{\beta^2}{\alpha^2k}=\frac{G^2}{4\alpha^2k}=R^2$$
 with these parameters

 $\alpha = \frac{G}{2R}$ $\beta = \frac{G}{2}$

$$\min_{i \in [1, k]} f(x^i) - f(x^*) \ge \frac{G^2}{8\alpha k}$$

Applications

Linear Least Squares with l_1 -regularization

$$\min_{x \in \mathbb{R}^n} \frac{1}{2} ||Ax - b||_2^2 + \lambda ||x||_1$$

The algorithm will be written as:

$$x_{k+1} = x_k - \alpha_k \left(A^{\top} (Ax_k - b) + \lambda \operatorname{sign}(x_k) \right),$$

where the signum function is taken element-wise.

LLS with I_1 regularization. 2 runs. $\lambda = 1$

Applications

Regularized logistic regression

Given $(x_i, y_i) \in \mathbb{R}^p \times \{0, 1\}$ for $i = 1, \dots, n$, the logistic regression function is defined as:

$$f(\theta) = \sum_{i=1}^{n} \left(-y_i x_i^T \theta + \log(1 + \exp(x_i^T \theta)) \right)$$

This is a smooth and convex function with its gradient given by:

$$\nabla f(\theta) = \sum_{i=1}^{n} (y_i - s_i(\theta)) x_i$$

where $s_i(\theta) = \frac{\exp(x_i^T \theta)}{1 + \exp(x_i^T \theta)}$, for $i = 1, \dots, n$. Consider the regularized problem:

$$f(\theta) + \lambda r(\theta) \to \min_{\theta}$$

where $r(\theta) = \|\theta\|_2^2$ for the ridge penalty, or $r(\theta) = \|\theta\|_1$ for the lasso penalty.

Support Vector Machines

Let
$$D = \{(x_i, y_i) \mid x_i \in \mathbb{R}^n, y_i \in \{\pm 1\}\}$$

We need to find $\theta \in \mathbb{R}^n$ and $b \in \mathbb{R}$ such that

$$\min_{\theta \in \mathbb{R}^n, b \in \mathbb{R}} \frac{1}{2} \|\theta\|_2^2 + C \sum_{i=1}^m \max[0, 1 - y_i(\theta^\top x_i + b)]$$

References

• Subgradient Methods Stephen Boyd (with help from Jaehyun Park)

