•••

WISET 여대학원생 공학연구팀제 발표

경상국립대학교 허지혜

••• 목차

1. 연구 주제

2. 데이터 이해

3. 딥러닝

4. 딥러닝 실습

저화질 CT 영상 이미지를 고화질 CT 영상 이미지로 변환

- 중학교 3학년 수학 함수

$$x = 2$$

$$F(x) = 2x + 2$$

$$y = 6$$

저화질 CT Image = Low Dose CT Image

CT Image

분류 비교

CT(Computed Tomography) 란?!

전신화 단층 촬영이란 기존의 X-선 영상법과 컴퓨터를 결합시킨 것이다.

컴퓨터 단층촬영(CT)는 X-선과 컴퓨터를 이용하여 인체의 목적 부위를 여러 방향에서 조사하여 투과한 X-선을 검출기로 수집하고 그 부위에 대한 X-선의 흡수차이를 컴퓨터가 수학적 기법을 이용하여 재구성하는 촬영 기법을 의미한다.

CT는 인체의 단면에 대한 재현 능력이 매우 우수하기 때문에 인체의 정상적인 해부학적 구조의 변경 정도를 비교적 쉽고 정확하게 파악할 수 있게 정보를 주며, 혈액 조식, 종양 등을 구분하는데 우수한 분해 능력을 가지고 있어 영상진단분야에서 중요한 영역을 맡고 있다.

CT의 원리와 탄생 스토리

CT(Computed Tomography) 란

전신회

Generator : 고전압 발생 장치

Gantry : scan 담당부분 x선관, Detector, DAS 포함 PUD: 전압 분배 장치

Bowtie Filter : 환자를 통과한 빔이 위치에 관계없이 균등하게 detection에 도달한다.

Collimator:

X-선 관측 : slice 두께 조절 검출기측 : slice 두께 유지

CT(Computed Tomography) 란?!

전신화 단층 촬영이란 기존의 X-선 영상법과 컴퓨터를 결합시킨 것이다.

CT(Computed Tomography) 란?!

전신화 단층 촬영이란 기존의 X-선 영상법과 컴퓨터를 결합시킨 것이다.

2 1 1 2	X선관과 검출기	선속	검출기 수	특징
1세대	회전 / 직선	단일 연필형	1~2	직선→1°회전(180°), 5분/slice
2세대	회전 / 직선	좁은 부채형	20~60	직선→10°회전(180°), 1분/slice, Bowtie Filter
3세대	회전 / 회전	넓은 부채형	300~1000	360°회전, 1~10초/slice, ring artifact
4세대	회전 / 고정	넓은 부채형	1200~4000	
EBT	전자총,고정/고정	넓은부채형 전자선속	1296	5세대 CT장치 0.05~0.1초(혈류검사에 유용)
MDCT	회전or고정/회전	넓은 부채형	10000~40000	

CT(Computed Tomography) Image 란?!

영상의료에서 사용되는 대표적인 이미지

사진 검출 과정:

X-선 -> 피사체 -> 검약 X선 -> 섬광체 -> 빛신호 -> 광다이오드 -> 전기신호

Anatomical Planes

- · Anatomical position
- Anatomical planes
- Coronal (Frontal) Plane divides the body into front and back sections
- Sagittal Plane divides the body into left and right sections
 - Median divides the body into equal left and right parts
- Axial (Horizontal or Transverse) Plane - divides the body into upper and lower segments

https://www.pinterest.co.kr/pin/114490015511169070/

첫 번째 확진자 흉부방사선 촬영 사진과 정밀 폐CT 사진 (사진= 서울대병원 제공)

모델을 구성

딥러닝을 이용하여 모델을 구성 Framework란? 개발에 바탕이 되는 템플릿과 같은 역할 을 하는 클래스들의 인터페이스 집합

딥러닝 프레임워크로 Pytorch 이용

> Pytorch는 언어 Python으로 이루어짐

Deep Learning 이란?!

딥러닝(Deep Learning)이란 여러 층을 가진 인공신경망을 이용하여 학습을 수행하는 것이다.

여기서 학습이란, 컴퓨터에게 식을 창작하게 하는 것이다.

Deep Learning 이란?!

딥러닝(Deep Learning)이란 여러 층을 가진 인공신경망을 이용하여 학습을 수행하는 것이다.

여기서 학습이란, 컴퓨터에게 식을 창작하게 하는 것이다.

$$x = 2$$

$$X = 3$$

$$X = 4$$

$$X = 5$$

$$X = 6$$

$$y = 6$$

$$y = 8$$

$$y = 10$$

$$y = 12$$

$$y = 14$$

3. 딥러닝

? = ax + b

$$y = 8$$

 $y = 10$
 $y = 12$
 $y = 14$
 $y = 14$
 $y = 14$
 $y = 14$

y = 6

$$2a + b = 6$$

 $3a + b = 8$
 $4a + b = 10$
 $5a + b = 12$

$$- x = -2$$
 $- x = -2$
 $- x = -2$

? = ax + b

Model
= 컴퓨터를 학습하여 특징을 알아내어 최적화된 파라미터 a, b를 구한다.

X, input, 독립변수

y, output, 종속변수

Deep Neural Network

Deep Learning Model Convolution Neural Network

Recurrent Neural Network

Neural Network(NN) 란?!

딥러닝(Deep Learning) 모델의 기본으로 인간 몸에 있는 뉴런의 모양과 닮은 모양이라서 NN이라는 이름을 붙였다.

Neural Network(신경망)

Convolution Neural Network(CNN) 란?!

딥러닝(Deep Learning) 종류 중 하나로 영상에 주로 사용되는 딥러닝 모델이다. 데이터로부터 자동으로 특징을 추출하여 패턴을 파악한다.

input

output

Convolution Neural Network(CNN)

CNN을 한국말로 풀어 쓰면 합성곱 신경망이라는 뜻이다. 모델 안에서 합성곱이 진행되어 다음과 같은 명칭으로 불리기 시작되었다.

CNN의 구조는 두가지로 나뉜다.

Convolution Layer

Convolution Neural Network(CNN)

CNN을 한국말로 풀어 쓰면 합성곱 신경망이라는 뜻이다. 모델 안에서 합성곱이 진행되어 다음과 같은 명칭으로 불리기 시작되었다.
CNN의 구조는 두가지로 나뉜다.
Fully (

Fully Connected Layer

Convolution Layer

CNN 안에서 합성곱을 할 수 있는 층인 Convolution Layer는 두가지의 기능을 가지고 있다. 첫번째로는 합성곱이다. 이를 통해 이미지의 특징을 뽑아낸다. 두번째는 Pooling이다. 이미지의 크기를 줄인다. 위를 통해 이미지의 특징만 추출하고 크기를 줄인다.

CNN

Fully Connected Layer

CNN 안에서 분류를 하기 위한 층이다. 위를 통해 결론을 얻는다.

Convolution Layer – 합성곱 과정

32	32	30
44	100	44
70	120	44

우리가 볼 순 없지만 사진은 사실 여러 개의 숫자로 이루어져 있다. 범위: 0 ~ 255

Convolution Layer – 합성곱 과정

71		69
110)	100

위 사진을 특징을 특정 기준을 중심으로 추출한 채로 뽑아내려고 한다. 이때 사용되는 방법이 합성곱 이다.

1	0	1
0	1	0
1	0	1

1	1
0	1

1	0	1
0	1	0
1	0	1

1	1
0	1

1 1	1 0	1
0 0	1 1	0
1	0	1

$$1 \times 1 + 1 \times 0 + 0 \times 0 + 1 \times 1 = 2$$

1 1	10	1
0 0	11	0
1	0	1

$$1 \times 1 + 1 \times 0 + 0 \times 0 + 1 \times 1 = 2$$

2	

1	1 0	1 1
0	0 1	1 0
1	0	1

$$1 \times 0 + 1 \times 1 + 0 \times 1 + 1 \times 0 = 1$$

2	1

1	0	1
0	1	0
1	0	1

1 1	10	1
0 0	11	0
1	0	1

1	1 0	1 1
0	0 1	1 0
1	0	1

1	0	1
1 0	11	0
0 1	10	1

1	0	1
0	1 1	1 0
1	0 0	1 1

2	1
1	2

Convolution Layer – Pooling 예시

Max Poolig

Average Poolig

Convolution Layer – Pooling 예시

Max Poolig

Convolution Layer – Pooling 예시

Average Poolig

Fully Connected Layer

CNN 모델 적용

Convolution Layer

Deep Learning 과정

Optimizer

Loss

Result

••• 3. 딥러닝 Deep Learning 과정 Input Model Optimizer Output Loss Result

Deep Learning 과정

컴퓨터

개 고양이

3. 딥러닝

Deep Learning 과정

New Data

컴퓨터 예측

정답

컴퓨터

예측 값과 정답 값이 다른 경우가 생긴다.

Loss Function or 손실 함수

위와 같이 모델에 대입한 결과와 실제 값 간의 차이를 나타낸 값이 loss 값이다. Loss 값을 줄이는 방향으로 모델을 수정해야한다.

이진분류

코로나이다. Or 코로나 아니다.

Binary cross entropy

$$BCE(x) = -\frac{1}{N} \sum_{i=1}^{N} y_i \log \left(h(x_i; \theta)\right) + (1 - y_i) \log \left(1 - h(x_i; \theta)\right).$$

Optimizer

모델의 예측 결과와 실제 값 차이를 최소화시키기 위해서 모델 안 파라미터를 수정하는 역할을 한다. 우리 모델에서는 Adam 함수를 주로 사용할 것이다.

정확도(Accuracy)

Pytorch 란?!

Deep Learning with PyTorch

파이토치란 2016년에 발표된 딥러닝을 구현하기 위한 파이썬 기반의 오픈소스 머신러닝 라이브러리이다. Facebook 인공지능 연구팀에 의해 개발되었으며, 간결하고 빠른 구현으로 차세대 프레임워크로 주목 받고 있다.

Pytorch 란?!

Deep Learning with PyTorch

- 설치가 간편하다.
- 실시간 결과값을 시각화한다. 파이썬 라이브러리(Numpy, Scipy등)과 높은 호환성을 가진다.
 - Tensor 연산이 GPU로 사용가능하다.
 - 자동 미분 시스템을 이용해 쉽게 짤 수 있다.
 - 학습 및 추론 속도가 빠르고 다루기 쉽다.

••• 4. 딥러닝 실습

- 1. 데이터 불러오기
- 2. 데이터를 넣을 가방 만들기
- 3. 모델을 생성해서 적절한 값 찾기
- 4. Loss Function을 정의하기
- 5. Optimizer 정의하기
- 6. 가지고 있는 데이터로 모델 학습 시키기

