```
In [2]: import pandas as pd
In [3]: data=pd.read_csv("/home/placement/Downloads/fiat500.csv")
In [4]: |data.head()
Out[4]:
               model engine_power age_in_days
                                                  km previous_owners
                                                                                    lon price
                                                                           lat
                lounge
                                                25000
             1
                                51
                                           882
                                                                   1 44.907242
                                                                                8.611560
                                                                                         8900
             2
                                51
                                          1186
                                                32500
                                                                      45.666359 12.241890
                                                                                         8800
                   pop
                                               142228
                                                                   1 45.503300 11.417840 4200
                  sport
                                74
                                          4658
                lounge
                                51
                                          2739
                                               160000
                                                                   1 40.633171 17.634609
                                                                                         6000
             5
                                73
                                          3074 106880
                                                                   1 41.903221 12.495650 5700
                  pop
          datal=data.drop(['lat','lon','ID'],axis=1)
In [5]:
In [6]: data1.head()
Out[6]:
             model engine_power age_in_days
                                               km previous_owners price
          0 lounge
                             51
                                             25000
                                        882
                                                                1 8900
                                       1186
                                             32500
                                                                1 8800
               pop
                             51
              sport
                             74
                                      4658 142228
                                                                1 4200
          3 lounge
                             51
                                      2739 160000
                                                                1 6000
                             73
                                      3074 106880
                                                                1 5700
               pop
In [7]: data=pd.get dummies(data)
```

```
In [8]: data.shape
Out[8]: (1538, 11)
In [ ]:
In [9]: y=data['price']
In [10]: x=data.drop('price',axis=1)
In [ ]:
In [11]: y
Out[11]: 0
                 8900
                 8800
         2
                 4200
                 6000
                 5700
         1533
                 5200
         1534
                 4600
         1535
                 7500
         1536
                 5990
         1537
                 7900
         Name: price, Length: 1538, dtype: int64
In [12]: from sklearn.model_selection import train_test_split
In [13]: x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.33, random_state=42)
```

localhost:8888/notebooks/fiat500 12.ipynb

In [14]: x_test.head(5)

Out[14]:

	ID	engine_power	age_in_days	km	previous_owners	lat	lon	model_lounge	model_pop	model_sport
481	482	51	3197	120000	2	40.174702	18.167629	0	1	0
76	77	62	2101	103000	1	45.797859	8.644440	0	1	0
1502	1503	51	670	32473	1	41.107880	14.208810	1	0	0
669	670	51	913	29000	1	45.778591	8.946250	1	0	0
1409	1410	51	762	18800	1	45.538689	9.928310	1	0	0

In [15]: x_train.shape

Out[15]: (1030, 10)

In [16]: x_train.head()

Out[16]:

	ID	engine_power	age_in_days	km	previous_owners	lat	lon	model_lounge	model_pop	model_sport
527	528	51	425	13111	1	45.022388	7.58602	1	0	0
129	130	51	1127	21400	1	44.332531	7.54592	1	0	0
602	603	51	2039	57039	1	40.748241	14.52835	0	1	0
331	332	51	1155	40700	1	42.143860	12.54016	1	0	0
323	324	51	425	16783	1	41.903221	12.49565	1	0	0

In [17]: y_train.shape

Out[17]: (1030,)

```
In [18]: y_train.head()
Out[18]: 527
                9990
                9500
         129
         602
                7590
         331
                8750
         323
                9100
         Name: price, dtype: int64
In [19]: | from sklearn.linear_model import LinearRegression
         reg=LinearRegression()
         reg.fit(x_train,y_train)
Out[19]:
          ▼ LinearRegression
          LinearRegression()
In [20]: ypred=reg.predict(x_test)
```

```
In [21]:
             ypred
                10420.91991521,
                                 8559.36348376,
                                                  6802.41765474.
                                                                  9463.60914351.
                 6595.32443302. 10452.79948148.
                                                  8985.36620712, 10381.62641587,
                 9044.61727199.
                                 9858.25635967.
                                                  8431.44396488.
                                                                 9332.03262887.
                 9968.53895502, 8373.53182638,
                                                  4730.06355541, 10128.50049952,
                 9951.43993841, 10514.34035875,
                                                  9980.65273426,
                                                                 4951.73872798,
                 7295.05742766, 9562.10832139,
                                                                  5552.67362672.
                                                  9907.19829915,
                 9997.10882667,
                                 5143.10046698,
                                                 8426.58953237,
                                                                 7496.77298917,
                 7788.58793224, 9652.49535927,
                                                  8621.5141248 , 10372.95686992,
                 7121.85593538, 9807.45515506,
                                                  8055.56244116.
                                                                 7460.56572873.
                10280.14093316, 10476.37888795,
                                                  5412.86365493,
                                                                 9159.69570754,
                 9570.24451488, 10631.67197425, 10191.16722391,
                                                                  9246.40215298,
                                                                 8915.29037502,
                 6018.78924109, 9615.95984878, 10520.04528994,
                 8227.95081736, 9888.28916316,
                                                  9469.40296538,
                                                                  9984.09733556,
                10405.22999333, 10510.19490347,
                                                  9686.14366923,
                                                                  8096.65870148,
                10493.03817153, 10386.55525134,
                                                  8807.23351267,
                                                                  8280.41931335,
                 6855.39153451, 10228.17167191,
                                                                 8847.08211454,
                                                  4741.4113269 ,
                 5777.60377085, 10140.98307313,
                                                 8867.00881496, 10115.19879685,
                 9581.17073619, 10485.09114495, 10213.14966572,
                                                                  9750.35350756,
                 9670.90795615. 6722.33834114.
                                                 9564.21623605.
                                                                  8616.86940955.
                 6677 30400880 10373 25062634 10171 86282428 10201 5580761
In [22]: from sklearn.metrics import r2 score
         r2 score(y test,ypred)
Out[22]: 0.8428319728488683
In [23]: from sklearn.metrics import mean squared error
         mean squared error(ypred,y test)
Out[23]: 577189.6736608233
In [24]: import math
         a=577189.6736608233
         print(math.sqrt(a))
```

759.7300005007195

```
In [25]: Results=pd.DataFrame(columns=['price','predicate'])
    Results['price']=y_test
    Results['predicate']=ypred
    Results=Results.reset_index()
    Results['Id']=Results.index
    Results.head(15)
```

Out[25]:

	index	price	predicate	Id
0	481	7900	5819.193088	0
1	76	7900	7248.829142	1
2	1502	9400	9741.893697	2
3	669	8500	9798.980331	3
4	1409	9700	10055.006246	4
5	1414	9900	9551.495568	5
6	1089	9900	9758.017439	6
7	1507	9950	10122.977837	7
8	970	10700	9654.966181	8
9	1198	8999	9251.140326	9
10	1088	9890	10478.095123	10
11	576	7990	7807.300526	11
12	965	7380	7705.158738	12
13	1488	6800	6295.632449	13
14	1432	8900	9545.404863	14

In [26]: Results['diff_price']=Results.apply(lambda row:row.price-row.predicate,axis=1)

In [27]: Results.head(15)

Out[27]:

	index	price	predicate	ld	diff_price
0	481	7900	5819.193088	0	2080.806912
1	76	7900	7248.829142	1	651.170858
2	1502	9400	9741.893697	2	-341.893697
3	669	8500	9798.980331	3	-1298.980331
4	1409	9700	10055.006246	4	-355.006246
5	1414	9900	9551.495568	5	348.504432
6	1089	9900	9758.017439	6	141.982561
7	1507	9950	10122.977837	7	-172.977837
8	970	10700	9654.966181	8	1045.033819
9	1198	8999	9251.140326	9	-252.140326
10	1088	9890	10478.095123	10	-588.095123
11	576	7990	7807.300526	11	182.699474
12	965	7380	7705.158738	12	-325.158738
13	1488	6800	6295.632449	13	504.367551
14	1432	8900	9545.404863	14	-645.404863

In []: