Standard Code Library

Three Pigeons

Shanghai University

November 1, 2019

Contents

数据范围	3
对拍程序	3
STL	4
set	4
vector	4
string	5
stack	5
queue	5
priority queue	6
$\max_{i} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n$	6
bitset	7
	_
数学	8
整除	8
部分定理	8
素数	8
莫比乌斯筛	9
Lucas 定理	10
欧拉函数	10
积性函数	11
逆元(三种求法)	11
中国剩余定理	12
扩展中国剩余定理	13
矩阵快速幂	13
字符串	16
manacher (马拉车算法)	16
KMP	17
扩展 KMP	18
AC 自动机	19
字典树	22
字符串哈希	23
1 10 中中44	20
数据结构	26
并查集	26
ST 表	26
线段树	26
主席树	29
逆序对(归并排序)	31
图论	33
最小生成树	33
日 后 rb	9.4

匈牙利算 KM 算法 网络流 .	: (帯	权	最	大	兀	妃))																 	38	8
 算几何 模拟退火 三分																									

数据范围

```
bool: 1byte 0/1 int: 4byte -2147483648 \sim 2147483647 2.1 \times 10^9 unsigendint: 0 \sim 4294967295 long\ long: 8byte -9223372036854775808 \sim 9223372036854775807 9.2 \times 10^{18} unsigend/long/long: 0 \sim 18446744073709551615 1.8 \times 10^{19} double: 8byte 15 \sim 16 位有效数字 long\ double: 12byte? \leftarrow 由编译器决定 long\ double: 12byte? \leftarrow 由编译器决定 long\ double: 12byte? \leftarrow 1009 long\ d
```

对拍程序

```
bf.cpp 是暴力代码
   sol.cpp 是正解代码
   random.cpp 生成随机数据
   将三个文件都放进来跑以下代码对拍
   #include <bits/stdc++.h>
   using namespace std;
   int main() {
       for(int T = 0; T < 10000; ++T) {
10
           system("./random > ./data.in");
           double st = clock();
12
           system("./bf < ./data.in > ./data.ans");
           double et = clock();
           system("./sol < ./data.in > ./data.out");
           if(system("diff ./data.out ./ data.ans")) {
16
               puts("Wrong Answer\n");
17
               return 0;
18
           } else {
19
               printf("Accepted, 测试点 #%d, 用时 %.01fms\n", T, et - st);
20
21
       }
22
       return 0;
23
   }
24
```

STL

怕忘,全部记一遍

```
\mathbf{set}
```

```
set<int> s:
2 set<double> ss;
3 s.begin() // 返回指向第一一个元素的迭代器器
 s.clear() // 清除所有元素
5 s.count() // 返回某个值元素的个数
 s.empty() // 如果集合为空, 返回 true(真)
  s.end() // 返回指向最后一一个元素之后的迭代器器,不不是最后一一个元素
  s.equal_range() // 返回集合中与给定值相等的上下限的两个迭代器器
  s.erase() // 删除集合中的元素
 s.find() // 返回一一个指向被查找到元素的迭代器器
  s.get_allocator() // 返回集合的分配器器
  s.insert() // 在集合中插入入元素
  s.lower_bound() // 返回指向大大于(或等于) 某值的第一一个元素的迭代器器
  s.key_comp() // 返回一一个用用于元素间值比比较的函数
  s.max_size() // 返回集合能容纳的元素的最大大限值
  s.rbegin() // 返回指向集合中最后一一个元素的反向迭代器器
 s.rend() // 返回指向集合中第一一个元素的反向迭代器器
 s.size() // 集合中元素的数目目
 s.swap() // 交换两个集合变量量
 s.upper_bound() // 返回大大于某个值元素的迭代器器
 s.value_comp() // 返回一一个用用于比比较元素间的值的函数
  multiset.count() 有多少个集合返回几
```

vector

```
s.end() // 返回指向尾元素的下一一个位置的随机存取迭代器器
  s.insert(it, val) // 向迭代器器 it 指向的元素前插入入新元素 val
  s.insert(it, n, val) // 向迭代器器 it 指向的元素前插入入 n 个新元素 val
  s.insert(it, first, last)
  // 将由迭代器器 first 和 last 所指定的序列列 [first, last) 插入入到迭代器器 it 指向的元素前
  s.erase(it) // 删除由迭代器器 it 所指向的元素
  s.erase(first, last) // 删除由迭代器器 first 和 last 所指定的序列列 [first, last)
  s.reserve(n) // 预分配缓冲空间, 使存储空间至至少可容纳 n 个元素
  s.resize(n)
  /*
  改变序列列IE长度,超出的元素将会全部被删除,如果序列列需要扩展 (原空间小小于 n),元素默认值将填
   → 满扩展出的空间
26
  s.resize(n, val)
27
  改变序列列II长度,超出的元素将会全部被删除,如果序列列需要扩展 (原空间小小于 n), val 将填满扩展
   → 出的空间
30
  s.clear() // 删除容器器中的所有元素
 s.swap(v) // 将 s 与另一一个 vector 对象进行行行交换
s.assign(first, last)
 // 将序列列替换成由迭代器器 first 和 last 所指定的序列列 [first, last), [first, last) 不不
   → 能是原序列列中的一一部分
  string
1 /*
  不建议使用
 支持 vector 的操作
4 再加上字符串的拼接
  */
  stack
stack<int> s;
  stack<string> ss;
3 s.push(x); // 入入栈
4 s.pop(); // 出栈
5 s.top(); // 访问栈顶
6 s.empty(); // 当栈空时, 返回 true
7 s.size(); // 访问栈中元素个数
  queue
queue<int> q;
  queue < double > qq;
```

```
q.push(x); // 入入队列列
  q.pop(); // 出队列列
  q.front(); // 访问队首首元素
  q.back(); // 访问队尾元素
  q.empty(); // 判断队列列是否为空
  q.size(); // 访问队列列中的元素个数
  priority_queue
  priority_queue<int> q;
  priority_queue<pair<int, int> > qq; // 注意在两个尖括号之间一一定要留留空格, 防止止误判
  priority_queue<int, vector<int>, greater<int> > qqq; // 定义小的先出队列
  priority_queue<int, vector<int>, less<int> > qqq; // 定义大的先出队列
  q.empty() // 如果队列列为空,则返回 true, 否则返回 false
  q.size() // 返回队列列中元素的个数
  q.pop() // 删除队首首元素, 但不不返回其值
  q.top() // 返回具有最高高优先级的元素值,但不不删除该元素
  q.push(item) // 在基于优先级的适当位置插入入新元素
  map
map<string, int> m;
 m[key] = value;
  [key] 操作是 map 很有特色的操作,如果在 map 中存在键值为 key 的元素对,则返回该元素对的值域
   → 部分,否则将会创建一一个键值为 key 的元素对,值域为默认值。所以可以用用该操作向 map 中插
   → 入入元素对或修改已经存在的元素对的值域部分。
  */
  m.insert(make_pair(key, value));
  /*
  也可以直接调用用 insert 方法插入入元素对,insert 操作会返回一一个 pair, 当 map 中没有与 key
   → 相匹配的键值时, 其 first 是指向插入入元素对的迭代器器, 其 second 为 true; 若 map 中已经
     存在与 key 相等的键值时, 其 first 是指向该元素对的迭代器器, second 为 false。
  int i = m[key];
10
  /*
  要注意的是, 当与该键值相匹配的元素对不存在时, 会创建键值为 key (当另一一个元素是整形时,
     m[key]=0) 的元素对。
13
  map<string, int>::iterator it = m.find(key);
  /* 如果 map 中存在与 key 相匹配的键值时, find 操作将返回指向该元素对的迭代器, 否则, 返回的迭代
     器等于 map 的 end()(参回见 vector 中提到的 begin() 和 end() 操作)。
  m.erase(key); // 删除与指定 key 键值相匹配的元素对,并返回被删除的元素的个数。
  m.erase(it); // 删除由迭代器 it 所指定的元素对,并返回指向下一一个元素对的迭代器。
  m.size(); // 返回元素个数
```

```
m.empty(); // 判断是否为空
m.clear(); // 清空所有元素
```

os << bt // 把 bt 中的位集输出到 os 流

bitset

const int MAXN = 32; bitset<MAXN> bt; // bt 包括 MAXN 位, 下标 O ~ MAXN - 1, 默认初始化为 O bitset<MAXN> bt1(0xf); // Oxf 表示十十六进制数 f, 对应二二进制 1111, 将 bt1 低 4 位初始化 → 为 1 bitset<MAXN> bt2(012); // 012 表示八八进制数 12, 对应二二进制 1010, // 即将 bt2 低 4 位初始化为 1010 bitset<MAXN> bt3("1010"); // 将 bt3 低 4 位初始化为 1010 bitset<MAXN> bt4(s, pos, n); // 将 01 字符串串 s 的 pos 位开始的 n 位初始化 bt4 bt.any() // bt 中是否存在置为 1 的二二进制位? bt.none() // bt 中不不存在置为 1 的二二进制位吗? bt.count() // bt 中置为 1 的二二进制位的个数 bt.size() // bt 中二二进制位的个数 bt[pos] // 访问 bt 中在 pos 处的二二进制位 bt.test(pos) // bt 中在 pos 处的二二进制位是否为 1 bt.set() // 把 bt 中所有二二进制位都置为 1 14 bt.set(pos) // 把 bt 中在 pos 处的二二进制位置为 1 bt.reset() // 把 bt 中所有二二进制位都置为 0 bt.reset(pos) // 把 bt 中在 pos 处的二二进制位置为 0 bt.flip() // 把 bt 中所有二二进制位逐位取反 bt.flip(pos) // 把 bt 中在 pos 处的二二进制位取反 bt[pos].flip() // 同上 bt.to_ulong() // 用用 bt 中同样的二二进制位返回一一个 unsigned long 值

数学

整除

- 1. $\exists a|b \Leftrightarrow -a|b \Leftrightarrow a|-b \Leftrightarrow |a|||b||$
- 2. 若 $a|b, b|c \rightarrow a|c$
- 3. 若 a|b, a|c -> a|(bx+cy) 其中 x, y 为任意整数
- 4. 若 a|b -> am|bm 其中 m 为非零整数
- 5. 若 a|b, b|a -> b= \pm a <-> |b|=|a|
- 6. 若 albc, 且 a 与 c 互质, 则 alb
- 7. 若 a|b, a|c, 且 b 与 c 互质, 则 a|bc
- 8. 若 a|b, c 为任意整数, 则 b|ac
- 9. 对任意整数 a,b>0,存在唯一的数对 q, r,使 a=bq+r,其中 0 r<b,这个事实称为带余除法定理,是整除理论的基础
- 10. 若 c|a, c|b, 则称 c 是 a, b 的公因数。若 d 是 a, b 的公因数,d 0,且 d 可被 a, b 的任意公因数整除,则 d 是 a, b 的最大公因数。若 a, b 的最大公因数等于 1,则称 a, b 互素,也称互质。累次利用带余除法可以求出 a, b 的最大公因数,这种方法常称为辗转相除法。又称欧几里得算法。

部分定理

- 1. 欧拉定理: 对于互质的正整数 a 和 n, 有 $a^{\varphi}(n) \equiv 1 \pmod{n}$
- 2. 费马小定理: 若 gcd(a,b)=1, 则 $a^{p-1}\equiv 1 \pmod{n}$, 当 n 为质数时, $inv(a)=a^{n-2}\mod n$
- 3. 威尔逊定理: 当且仅当 p 为素数时, $(p-1)! \equiv -1 \pmod{p}$

素数

欧拉筛 O(n)

```
phi[i] = i - 1;
            }
16
            for (int j = 0; j < tot && i * prime[j] < maxn; j++)</pre>
18
                if (i % prime[j] == 0)
20
                     phi[i * prime[j]] = phi[i] * prime[j];
                     break;
22
                }
                phi[i * prime[j]] = phi[i] * phi[prime[j]];
24
            }
        }
26
   }
    莫比乌斯筛
   不知道干嘛用的
   const int maxn = 1e7 + 10;
    int prime[maxn], tot = 0, mu[maxn];
   bool check[maxn];
   void mobius()
    {
        mu[1] = 1;
        for (int i = 2; i < maxn; i++)</pre>
            if (!check[i])
10
11
                prime[tot++] = i;
12
                mu[i] = -1;
14
            for (int j = 0; j < tot && i * prime[j] < maxn; j++)</pre>
16
                check[i * prime[j]] = true;
                if (i % prime[j] == 0)
18
                     mu[i * prime[j]] = 0;
20
                     break;
21
22
                mu[i * prime[j]] = -mu[i];
            }
^{24}
        }
25
   }
```

26

Lucas 定理

```
用来求 C_n^m \mod p
    /*
   组合数取模
   11 PowMod(11 a,11 b,11 MOD){ //费马小定理求逆元,快速幂
        11 ret=1;
        while(b){
             if(b&1) ret=(ret*a)%MOD;
             a=(a*a)\%MOD;
             b>>=1;
        }
10
        return ret;
11
12
   ll fac[100005];
    11 Get_Fact(ll p){
14
        fac[0]=1;
        for(ll i=1;i<=p;i++)</pre>
16
             fac[i]=(fac[i-1]*i)%p; //预处理阶乘
18
   11 Lucas(LL n,LL m,LL p){
19
        ll ret=1;
20
        while (n \& \& m) \{
21
             ll a=n\%p,b=m\%p;
22
             if(a<b) return 0;</pre>
23
             ret=(ret*fac[a]*PowMod(fac[b]*fac[a-b]%p,p-2,p))%p;
             n/=p;
25
             m/=p;
26
        }
27
        return ret;
28
   }
29
   欧拉函数
    \varphi(n) n n
   性质
   1. 对于质数 p, \varphi(p) = p - 1。注意 \varphi(1) = 1
   2. 若m,n 互质, \varphi(mn) = \varphi(m)\varphi(n)
   3. 当 n 为奇数时,\varphi(2n) = \varphi(n)
   4. \,  当 n > 2 时,所有 \varphi(n) 都是偶数
   5. 当 n > 6 时,所有 \varphi(n) 都是合数
```

- 6. 欧拉定理: 对于互质的正整数 a 和 n, 有 $a^{\varphi(n)} \equiv 1 \mod n$
- 7. 欧拉定理推论: 小于等于 n 的数中,与 n 互质数的总和为: $\varphi(n) \times \frac{n}{2} (n > 1)$

求一个数的欧拉函数 $O(\sqrt{n})$

```
1 //直接求解欧拉函数
2 int euler(int n){ //返回 euler(n)
3 int res=n,a=n;
4 for(int i=2;i*i<=a;i++){
5 if(a%i==0){
6 res=res/i*(i-1);//先进行除法是为了防止中间数据的溢出
7 while(a%i==0) a/=i;
8 }
9 }
10 if(a>1) res=res/a*(a-1);
11 return res;
12 }
```

求 $1 \sim n$ 的欧拉函数 O(nlogn)

好像没什么用,直接欧拉筛得到欧拉函数就好了

```
void Init(){
    euler[1]=1;
    for(int i=2;i<Max;i++)
    euler[i]=i;
    for(int i=2;i<Max;i++)
    if(euler[i]==i)
    for(int j=i;j<Max;j+=i)
    euler[j]=euler[j]/i*(i-1);//先进行除法是为了防止中间数据的溢出
}</pre>
```

积性函数

满足 gcd(a,b) = 1, 且满足 f(ab) = f(a)f(b), 则 f(x) 为积性函数

性质

- 1. 若 f(n),g(n) 均为积性函数,则函数 h(n)=f(n)g(n) 也是积性函数
- 2. 若 f(n) 为积性函数,则函数也是积性函数,反之一样
- 3. 任何积性函数都能应用线性筛, 在 O(n) 时间内求出 1~n 项

逆元 (三种求法)

1. 费马小定理求逆元,要求模数 p 为质数则有

```
inv(i) = i^{p-2} \mod p
```

```
2. 扩展欧几里得,模数 p 可以不为质数
   ll inv(ll a, ll p) //求 a 关于 p 的逆元
       11 x, y;
       11 d = exgcd(a, p, x, y);
        if (d != 1)
            return -1;
       return (x % p + p) % p;
   }
   3. 基于 inv(a) = (p - \lfloor p/a \rfloor) * inv(p\%a)\%p,在 O(n) 时间复杂度下求出逆元表。(lls 模板)
   void init()
   {
2
        inv[1] = 1;
        for (int i = 2; i < maxn; i++)</pre>
            inv[i] = (mod - mod / i) * 1LL * inv[mod % i] % mod;
   }
   中国剩余定理
   对于同余线性方程组
   x \equiv a_1 \pmod{m_1}
   x \equiv a_2 (mod \ m_2)
   x \equiv a_n \pmod{m_n}
   当 m_1, m_2, \cdots, m_n 两两互质时,方程组有解,求其解 x
   int CRT(int a[], int m[], int n) {
        int M = 1;
2
        int ans = 0;
        for(int i = 1; i <= n; i++) {
            M = m[i];
       for(int i = 1; i <= n; i++) {</pre>
            int x, y;
            int Mi = M / m[i];
            exgcd(Mi, m[i], x, y);
10
            ans = (ans + Mi * x * a[i]) % M;
12
        if(ans < 0) ans += M;
13
       return ans;
14
   }
```

15

扩展中国剩余定理

```
满足上式条件下 m 可以不互质
   LL exgcd(LL a, LL b, LL &x, LL &y){
        if(!b){x=1,y=0;return a;}
       LL re=exgcd(b,a%b,x,y),tmp=x;
        x=y,y=tmp-(a/b)*y;
       return re;
   }
   LL m[maxn],a[maxn];
                             //m 为模数集, a 为余数集
   LL exCRT(){
       LL M=m[1],A=a[1],t,d,x,y;int i;
        for(i=2;i<=n;i++){
10
            d=exgcd(M,m[i],x,y);//解方程
            if((a[i]-A)%d)return -1;//无解
12
            x*=(a[i]-A)/d, t=m[i]/d, x=(x%t+t)%t;//x x
            A=M*x+A,M=M/d*m[i],A%=M;//日常膜一膜(划掉)模一模,防止爆
14
        }
        A = (A\%M + M)\%M;
16
        return A;
18
   矩阵快速幂
   #include<bits/stdc++.h>
   using namespace std;
   typedef long long 11;
   const int mod=123456789;
   struct matrix{
        ll a[11][11]; //begin with 1
        int r,c;
       matrix(int n,int m):r(n),c(m){memset(a,0,sizeof(a));}
       11* operator[](int x){return a[x];}
       friend matrix operator*(matrix A, matrix B)
        {
11
            matrix C(A.r,B.c);
            for(int i=1;i<=A.r;i++)</pre>
13
                for(int j=1;j<=B.c;j++)</pre>
                    for(int k=1;k<=A.c;k++){</pre>
15
                        C[i][j] += (A[i][k]*B[k][j])%mod;
16
                        C[i][j]+=mod;
17
                        C[i][j]%=mod;
18
                    }
19
            return C;
        }
21
   };
```

```
23
   matrix qpow(matrix A,ll m)//方阵 A 的 m 次幂
24
    {
25
        matrix ans(A.r,A.c);
26
        for(int i=1;i<=A.r;i++) ans.a[i][i]=1; //单位矩阵
27
        while(m)
28
             if(m&1)ans=ans*A;
30
             A=A*A;
31
            m>>=1;
32
        }
        return ans;
34
   }
35
36
    int main()
37
    {
38
        11 T,n;
39
        for(cin>>T;T--;)
40
41
             scanf("%lld",&n);
42
            matrix A(6,6);
43
             A[1][1]=1;
             A[1][2]=2;
45
             A[1][3]=1;
             A[1][4]=3;
47
             A[1][5]=3;
48
             A[1][6]=1;
49
             A[2][1]=1;
             A[3][3]=1;
51
             A[4][3]=1;
52
             A[4][4]=1;
53
             A[5][3]=1;
54
             A[5][4]=2;
55
             A[5][5]=1;
56
             A[6][3]=1;
57
             A[6][4]=3;
58
             A[6][5]=3;
59
             A[6][6]=1;
60
             matrix X2(6,1);
61
             X2[1][1]=2;
62
             X2[2][1]=1;
             X2[3][1]=1;
64
             X2[4][1]=2;
65
             X2[5][1]=4;
66
             X2[6][1]=8;
67
             matrix Xn=qpow(A,n-2)*X2;
68
```

```
69 printf("%lld\n", Xn[1][1]);
70 }
71 }
```

字符串

manacher (马拉车算法)

```
求以任一点为中心的回文半径
   O(n)
   */
   const int maxl=1100005;
   int p[2*maxl+5]; //p[i]-1 表示以 i 为中点的回文串长度
   int Manacher(string s)
       string now;
       int len=s.size();
10
       for(int i=0;i<len;i++)</pre>
                                    //将原串处理成%a%b%c% 形式, 保证长度为奇数
11
       {
12
          now+='%';
13
          now+=s[i];
       }
15
       now+='\%';
       int len=now.size();
17
       int pos=0,R=0;
18
       for (int i=0;i<len;i++)</pre>
19
           if (i<R) p[i]=min(p[2*pos-i],R-i); else p[i]=1;</pre>
21
           while (0 \le i-p[i] \&\&i+p[i] \le len\&\&now[i-p[i]] == now[i+p[i]]) p[i]++;
           if (i+p[i]>R) {pos=i;R=i+p[i];}
23
       }
       int MAX=0;
25
       for (int i=0;i<len;i++)</pre>
26
       {
27
           cout<<i<" : "<<p[i]-1<<endl;
                                                      //p[i]-1 为 now 串中以 i 为中点的回文半
28
            → 径, 即是 s 中最长回文串的长度
           cout<<now.substr(i-p[i]+1,2*p[i]-1)<<endl;</pre>
29
           MAX=max(MAX,p[i]-1);
30
       }
31
                              //最长回文子串长度
       return MAX;
33
   /* 罗老师版马拉车 */
   const int maxn = 2e5;
   string Mnc(string &s)
5
       string t = "$#";
       for (int i = 0; i < s.length(); ++i) //构造辅助串
```

```
t += s[i];
9
            t += '#';
10
       }
11
12
        int ml = 0, p = 0, R = 0, M = 0;
13
        //最大长度,最长回文中心,当前最大回文串右端,当前最长回文中心
14
        int len = t.length();
16
        vector<int> P(len, 0); //回长度数组
       for (int i = 0; i < len; ++i)</pre>
18
19
            P[i] = R > i ? min(P[2 * M - i], R - i) : 1; //转移方程
20
21
            while (t[i + P[i]] == t[i - P[i]]) //长度扩张
22
                ++P[i];
23
24
            if (i + P[i] > R) //更新右端和中心
25
26
                R = i + P[i];
27
                M = i;
28
            }
29
            if (ml < P[i]) //记录极大
31
                ml = P[i];
                p = i;
33
            }
34
35
       return s.substr((p - ml) / 2, ml - 1); //返回回文串
37
   }
38
   KMP
   char p[maxn],s[1000005];
   int t;
   int next1[maxn];
   void getNext()
   {
5
        int plen = strlen(p);
6
        int j = 0, k = -1;
       next1[0] = -1;
       while(j < plen)</pre>
10
            if(k == -1 \mid | p[k] == p[j])
11
            {
12
                ++j; ++k;
13
```

```
next1[j] = k;
14
            }
15
            else
16
                k = next1[k];
17
        }
19
   int KMP(int ans)
21
        int plen = strlen(p);
22
        int slen = strlen(s);
23
        int i = 0, j = 0;
24
       while(i < slen)
25
        {
            if(j == -1 \mid \mid s[i] == p[j])
27
28
                ++i; ++j;
29
            }
30
            else
31
                j = next1[j];
32
            if(j == plen)
33
34
                ans++;
                j = next1[j];
36
            }
37
38
        return ans;
   }
40
   扩展 KMP
   char s[maxn];
   int nxt[maxn], ex[maxn]; //ex 数组即为 extend 数组
   //预处理计算 nxt 数组
   void GETNEXT(char *str)
   {
        int i=0,j,po,len=strlen(str);
       nxt[0]=len;//初始化 nxt[0]
       while(str[i]==str[i+1]&&i+1<len)//计算 nxt[1]
       nxt[1]=i;
10
       po=1;//初始化 po 的位置
11
       for(i=2;i<len;i++)</pre>
13
            if(nxt[i-po]+i<nxt[po]+po)//第一种情况, 可以直接得到 nxt[i] 的值
                nxt[i]=nxt[i-po];
15
            else//第二种情况,要继续匹配才能得到 nxt[i] 的值
16
```

```
{
17
               j=nxt[po]+po-i;
18
               if(j<0)j=0;//如果 i>po+nxt[po],则要从头开始匹配
19
               while(i+j<len&&str[j]==str[j+i])//计算 nxt[i]
20
                   j++;
21
               nxt[i]=j;
22
               po=i;//更新 po 的位置
           }
24
       }
   }
26
27
   //计算 extend 数组
28
   void EXKMP(char *s1,char *s2)
29
30
       int i=0,j,po,len=strlen(s1),l2=strlen(s2);
31
       GETNEXT(s2);//计算子串的 nxt 数组
32
       while(s1[i]==s2[i]&&i<12&&i<len)//计算 ex[0]
33
           i++;
34
       ex[0]=i;
35
       po=0;//初始化 po 的位置
36
       for(i=1;i<len;i++)
37
           if(nxt[i-po]+i<ex[po]+po)//第一种情况, 直接可以得到 ex[i] 的值
39
               ex[i]=nxt[i-po];
           else//第二种情况,要继续匹配才能得到 ex[i] 的值
41
               j=ex[po]+po-i;
43
               if(j<0)j=0;//如果 i>ex[po]+po 则要从头开始匹配
               while(i+j<len&&j<l2&&s1[j+i]==s2[j])//计算 ex[i]
45
                   j++;
46
               ex[i]=j;
47
               po=i;//更新 po 的位置
48
           }
49
50
   }
51
   AC 自动机
   #include <bits/stdc++.h>
   typedef unsigned long long ull;
   const int P = 1e9+7;
   const int maxn = 5e5 + 200;
   const int inf = 0x3f3f3f3f;
   using namespace std;
   struct trie
   {
```

```
trie *nxt[26];
        trie *fail;
10
        int cnt;//根据题意修改
11
        int flag;//根据提议修改
12
        trie()
        {
14
            cnt = 1;
            flag = 0;
16
            fail = NULL;
            memset(nxt,NULL,sizeof(nxt));
18
        }
19
   };
20
    trie *root;
   int T,N,Q;
22
    char S[maxn],s1[maxn],s2[maxn];
23
    //插入字符串,根据题意修改函数中的 cnt、flag
   void Insert(char *s)
25
    {
26
        trie *p = root;
27
        int len = strlen(s);
28
        for(int i = 0; i < len; i++)</pre>
29
30
            int id = s[i] - 'a';
31
            if(p->nxt[id] != NULL)
33
                 p = p->nxt[id];
34
                 p -> cnt++;
35
            }
            else
37
            {
38
                p -> nxt[id] = new trie;
39
                 p = p \rightarrow nxt[id];
40
41
42
        p -> flag++;
43
   }
44
   //获取 fail 指针, 一般不用动
45
   void getFail()
46
   {
47
        queue<trie*> q;
48
        q.push(root);
49
        trie *temp,*p;
50
        while(!q.empty())
51
52
            p = q.front();
53
            q.pop();
54
```

```
for(int i = 0; i < 26; ++i)</pre>
56
                  if(p -> nxt[i])
57
58
                       if(p == root)
                           p -> nxt[i] -> fail = root;
60
                       else
                       {
62
                           temp = p -> fail;
63
                           while(temp)
64
                           {
65
                               if(temp -> nxt[i])
66
67
                                    p -> nxt[i] -> fail = temp -> nxt[i];
                                    break;
69
                               }
70
                               temp = temp -> fail;
71
                           }
72
                           if(!temp) p -> nxt[i] -> fail = root;
73
74
                      q.push(p -> nxt[i]);
75
                  }
             }
77
         }
    }
79
    int query(char* s)
80
81
         int i = 0,res = 0;
         trie *p = root;
83
         trie *temp;
84
         while(s[i])
85
86
             int id = s[i] - 'a';
             while(!p \rightarrow nxt[id] \&\& p != root) p = p \rightarrow fail;
88
             p = p -> nxt[id];
89
             if(p == NULL) p = root;
             temp = p;
91
             //这里是匹配和计算的过程, 根据题意修改
92
             while(temp != root && temp -> flag != 0)
93
94
                  res += temp -> flag;
                  temp \rightarrow flag = 0;
96
                  temp = temp -> fail;
             }
98
             i++;
         }
100
```

```
return res;
101
    }
102
    void Free(trie *p)
103
104
         for(int i = 0; i < 26; ++i)</pre>
105
106
             if(p -> nxt[i] != NULL) Free(p->nxt[i]);
107
108
         delete(p);
109
        p = NULL;
110
111
    字典树
    #include <bits/stdc++.h>
    typedef unsigned long long ull;
    const int maxn = 11;
    const int inf = 0x3f3f3f3f;
    using namespace std;
    struct trie
        trie *nxt[26];
        int cnt;
        trie()
10
11
             cnt = 1;
12
             memset(nxt,NULL,sizeof(nxt));
14
    };
    trie *root;//记得在函数开始前 new trie
16
    int i,id;
    char S[maxn],s1[maxn];
    //插入字符串
19
    void Insert(char *s)
20
21
        trie *p = root;
22
         i = 0;
23
         while(s[i]){
             id = s[i] - 'a';
25
             if(p->nxt[id])
26
27
                 p = p->nxt[id];
                 p -> cnt++;
29
             }
             else
31
             {
```

```
p -> nxt[id] = new trie;
33
                p = p \rightarrow nxt[id];
34
            }
35
            i++;
36
        }
38
    //查询字符串, 功能可以自己改
   int query(char* s)
40
        trie *p = root;
42
        i = 0;
43
        while(s[i])
44
        {
45
            id = s[i] - 'a';
46
            if(p \rightarrow nxt[id]) p = p \rightarrow nxt[id];
47
            else return 0;
48
            i++;
49
        }
50
        return p -> cnt;
51
52
    //递归释放字典树
53
   void Free(trie *p)
55
        for(i = 0; i < 26; ++i) if(p -> nxt[i] != NULL) Free(p->nxt[i]);
        delete(p);
57
        p = NULL;
59
   字符串哈希
   hash[i] = (hash[i-1] * seed + str[i]) \mod M
   #include <iostream>
   #include <string>
   #include <cstring>
    #include <unordered_set>
   using namespace std;
   const int mod=1e6+13;
   unordered_set<long long>hash_table;
   int eid=0,p[mod];
   struct node
10
        long long next;
11
        string s;
12
   }e[100005];
   void insert(int u,string str)
   {
15
```

```
e[eid].s=str;
16
        e[eid].next=p[u];
17
        p[u]=eid++;
19
   string str;
   unsigned int BKDRHash(string str)
                                           //unsigned int 在溢出时会自动取模 2~32??
21
        unsigned int seed = 131; // 31 131 1313 13131 131313 etc..
23
        unsigned int hash = 0;
        for(int i=0;i<str.size();i++)</pre>
25
            hash = (hash * seed + (str[i]))%mod;
        return (hash & Ox7FFFFFFF) %mod;
27
   }
    // AP Hash Function
29
   unsigned int APHash(string str)
30
31
        unsigned int hash = 0;
32
        int i;
33
        for (i=0;i<str.size(); i++)</pre>
34
        {
35
            if ((i \& 1) == 0)
36
                 hash ^= ((hash << 7) ^ (str[i]) ^ (hash >> 3));
            else
38
                 hash \hat{} = ( ((hash << 11) \hat{} (str[i]) \hat{} (hash >> 5)));
40
        return (hash & Ox7FFFFFFF);
42
    int hash_in(string s)
44
        long long u=BKDRHash(s);
45
        for(int i=p[u];i!=-1;i=e[i].next)
                                                 //使用链式前向星模拟链表进行冲突判断
46
47
            string v=e[i].s;
            if(v==s) return 0;
49
50
        insert(u,s);
51
        return 1;
52
53
   int main()
55
        memset(p,-1,sizeof(p));
        while(cin>>str)
57
        {
            cout<<str<<endl;</pre>
59
            cout<<BKDRHash(str)<<endl;</pre>
            cout<<APHash(str)<<endl;</pre>
61
```

数据结构

并查集

```
const int maxn = 200;
   int father[maxn];
   int Find(int a){
       if(father[a] == a) return a;
       return father[a]=Find(father[a]);
6
   void Union(int a,int b){
       int f1=Find(a),f2=Find(b);
       father[f2] = f1;
   }
10
   void init(){
11
       for(int i = 1; i <= M; ++i) father[i]=i;</pre>
  }
13
   ST 表
   离线区间最值
  //d 为数据, mx[i][j] 表示 [i,i+2^j] 区间内最大值
  int mx[100][100],d[100] = {0},n;
   //查询 [1,r] 内最大值
   int askmx(int l,int r) {
       int k = log2(r-l+1);
       return max(mx[1][k],mx[r-(1<<k)+1][k]);
   //初始化,数据输入完后调用
   void init(){
       for(int i = 0; i <= n; ++i) mx[i][0] = d[i];
10
       for(int j = 1; (1<<j) <= n+1; ++j)
           for(int i = 0; i + (1 << j) <= n+1; ++i)
12
               mx[i][j] = max(mx[i][j-1], mx[i+(1 << (j-1))][j-1]);
   }
   线段树
   求和版本
#include <bits/stdc++.h>
typedef long long ll;
_3 const int maxn = 2e5+300;
const int inf = 0x3f3f3f3f;
5 using namespace std;
   int a[maxn],Sum[maxn<<2],lazy[maxn<<2];</pre>
  //更新当前节点
```

```
void pushup(int& rt,int l,int r){
        rt = 1+r;
   }
10
    //下传函数
11
    void pushdown(int l,int r,int rt){
        //区间改值
13
        if(lazy[rt]){
            int m = (1+r) >> 1;
15
            lazy[rt<<1] = lazy[rt];</pre>
            lazy[rt<<1|1] = lazy[rt];
17
            Sum[rt <<1] = lazy[rt] * (m-l+1);
18
            Sum[rt << 1|1] = lazy[rt] * (r-m);
19
            lazy[rt] = 0;
        }
21
        //区间增减
22
        /*if(lazy[rt]){
23
            int m = (l+r) \gg 1;
24
            lazy[rt<<1] += lazy[rt];</pre>
25
            lazy[rt<<1/1] += lazy[rt];</pre>
26
            Sum[rt << 1] += lazy[rt] * (m-l+1);
27
            Sum[rt << 1/1] += lazy[rt] * (r-m);
28
            lazy[rt] = 0;
29
        }*/
30
   }
31
    //l: 当前节点的左端点 r: 当前节点的右端点 rt: 当前节点的编号
32
    void build(int l,int r,int rt){
        if(1 == r){
34
            Sum[rt] = a[1];
            return;
36
        }
37
        int m = (1+r) >> 1;
38
39
        build(1,m,rt<<1);
        build(m+1,r,rt<<1|1);
40
        pushup(Sum[rt],Sum[rt<<1],Sum[rt<<1|1]);</pre>
41
   }
42
    //1: 当前节点的左端点 r: 当前节点的右端点 rt: 当前节点的编号 [L,R] 查询的区间
43
    int query(int L,int R,int l,int r,int rt){
44
        if(L <= 1 && R >= r) return Sum[rt];
45
        int m = (1+r) >> 1;
46
        pushdown(l,r,rt);
47
        if(R <= m) return query(L,R,1,m,rt<<1);</pre>
        else if(L \geq= m+1) return query(L,R,m+1,r,rt<<1|1);
49
        else{
50
            int res = 0;
51
            pushup(res,query(L,R,1,m,rt<<1),query(L,R,m+1,r,rt<<1|1));</pre>
            return res;
53
```

```
}
54
   }
55
   //l: 当前节点的左端点 r: 当前节点的右端点 rt: 当前节点的编号 将 L 的值改为 V
   void update(int L,int V,int l,int r,int rt){
57
        if(l==r){Sum[rt]=V;return;}
        int m = (1+r) >> 1;
59
       pushdown(l,r,rt);
        if(L <= m) update(L,V,1,m,rt<<1);</pre>
61
        else update(L,V,m+1,r,rt<<1|1);
        pushup(Sum[rt],Sum[rt<<1],Sum[rt<<1|1]);</pre>
63
   }
64
   void segupdate(int L,int R,int l,int r,int rt,int lzy){
65
        if(L \le 1 \&\& R \ge r){
66
            //区间改值
67
            lazy[rt]=lzy;
68
            Sum[rt] = (r-l+1) * lzy;
69
            //区间加减
70
            /*lazy[rt]+=lzy;
71
            sum[rt] += (r-l+1) * lzy;*/
72
            return;
73
        }
74
        int m = (1+r) >> 1;
        pushdown(l,r,rt);
76
        if(L <= m) segupdate(L,R,1,m,rt<<1,lzy);</pre>
        if(R > m) segupdate(L,R,m+1,r,rt << 1 | 1,lzy);
78
        pushup(Sum[rt],Sum[rt<<1],Sum[rt<<1|1]);</pre>
        return;
80
   }
   最大值
   #include <bits/stdc++.h>
   using namespace std;
   const int maxn = 200000 + 5;
   const int inf = 0x3f3f3f3f;
   //mark 是原始数据
   int mark[maxn],Max[maxn<<2];</pre>
   //更新当前节点
   void pushup(int rt){
       Max[rt] = max(Max[rt<<1], Max[rt<<1|1]);
   }
10
   //l: 当前节点的左端点 r: 当前节点的右端点 rt: 当前节点的编号
   void build(int l,int r,int rt){
12
        if(l == r){Max[rt] = mark[l];return;}
13
        int m = (1+r) >> 1;
14
        build(1,m,rt<<1);
        build(m+1,r,rt<<1|1);
16
```

```
pushup(rt);
17
   }
18
   //l: 当前节点的左端点 r: 当前节点的右端点 rt: 当前节点的编号 [L,R] 查询的区间
19
   int query(int L,int R,int l,int r,int rt){
20
        if(L <= 1 && R >= r) return Max[rt];
21
        int m = (1+r) >> 1;
22
        int res = 0;
        if(L <= m) res = max(res,query(L,R,1,m,rt<<1));</pre>
24
       if(R > m) res = \max(\text{res,query}(L,R,m+1,r,rt<<1|1));
       return res;
26
   }
   //l: 当前节点的左端点 r: 当前节点的右端点 rt: 当前节点的编号 将 L 的值改为 V
28
   void update(int L,int V,int l,int r,int rt){
        if(l==r){Max[rt]=V;return;};
30
        int m = (1+r) >> 1;
31
        if(L <= m) update(L,V,1,m,rt<<1);</pre>
32
        else update(L,V,m+1,r,rt<<1|1);</pre>
33
       pushup(rt);
34
   }
35
   主席树
   #include <iostream>
   #include <map>
   #include <set>
   const int maxn = 1e9+100;
   using namespace std;
   struct node{
       node *lson;
       node *rson;
       int tcnt;
       bool valid;
10
       node(){
11
            lson = NULL;
12
13
            rson = NULL;
            tcnt = 0;
14
            valid = 1;
15
       }
16
17
   };
19
   node* root[200005];
21
   int T,tot,cnt,n,m,a[200005],ID[200005];
   map<int,int> M;
   set<int> S;
```

```
25
26
    inline void pushup(node *&rt){
        rt -> tcnt = rt->lson->tcnt+rt->rson->tcnt;
28
   }
29
30
   void build(int l,int r,node *&rt){
31
            rt = new node;
32
            if(l==r) return;
            int m = (1+r) >> 1;
34
            build(1,m,rt->lson);
            build(m+1,r,rt->rson);
36
        }
    void add(int x,int l,int r,node *&rt,node *&lst){
39
        rt = new node;
40
        rt->tcnt=lst->tcnt+1;
41
        if(l==r) return;
42
        int m = (1+r) >> 1;
43
        if(x \le m){
44
            rt->rson=lst->rson;
45
            add(x,1,m,rt->lson,lst->lson);
47
        else{
            rt->lson=lst->lson;
49
            add(x,m+1,r,rt->rson,lst->rson);
51
   }
53
    int findkth(int k,int l,int r,node *rt,node *lst){
54
        if(l==r) return ID[1];
55
        int m = (1+r) >> 1;
56
        int s = rt->lson->tcnt-lst->lson->tcnt;
        if(s>=k) return findkth(k,1,m,rt->lson,lst->lson);
        else return findkth(k-s,m+1,r,rt->rson,lst->rson);
59
   }
60
61
62
   void Free(node *rt){
63
        if(rt->lson && rt->lson->valid) Free(rt->lson);
64
        if(rt->rson && rt->rson->valid) Free(rt->rson);
        rt->valid=0;
66
        delete(rt);
        rt=NULL;
68
   }
70
```

```
int main()
71
   {
72
        ios::sync_with_stdio(0);cin.tie(0);cout.tie(0);
73
        cnt = 0; tot = 0;
74
        cin >> n >> m;
75
        for(int i = 0; i < n; ++i){
76
            cin >> a[i];
            S.insert(a[i]);
78
        for(set<int>::iterator it = S.begin(); it != S.end(); ++it){
80
            M[*it]=++cnt;
            ID[cnt] = *it;
82
        }
        build(1,cnt,root[tot]);
        for(int i = 0; i < n; ++i){
85
            add(M[a[i]],1,cnt,root[tot+1],root[tot]);
86
            tot++;
87
        }
        int 1,r,k;
89
        while(m--){
90
            cin >> 1 >> r >> k;
91
            cout << findkth(k,1,cnt,root[r],root[l-1]) << endl;</pre>
93
        return 0;
   }
95
   逆序对(归并排序)
   #include <bits/stdc++.h>
   typedef long long 11;
   const int maxn = 1e5 + 200;
   using namespace std;
   //acnt 为逆序对的数量
   int a[maxn],b[maxn],acnt,i,j,cnt;
   void Merge(int l,int m,int r){
        cnt = l, i=l, j=m+1;
        while(i <= m && j <= r){
10
            if(a[i] <= a[j])
11
                b[cnt++] = a[i++];
12
13
                b[cnt++] = a[j++];
                //统计逆序对
15
                acnt += m-i+1;
            }
17
        }
```

```
while(i <= m) b[cnt++] = a[i++];
19
        while(j <= r) b[cnt++] = a[j++];
20
        for(int i = 1; i <= r; i++) a[i]=b[i];</pre>
21
22
   void Mergesort(int 1,int r){
23
        if(1 < r - 1){
24
            Mergesort(1,(1+r)>>1);
            Mergesort(((1+r)>>1)+1,r);
26
27
       Merge(1,(1+r)>>1,r);
28
        return;
   }
30
```

图论

最小生成树

Prim

```
#include <bits/stdc++.h>
   const int maxn = 200;
   const int inf = 0x3f3f3f3f;
   using namespace std;
   int N,dis[maxn][maxn],vis[maxn],ans,mndis[maxn];
   void prim(){
       //初始化,将 1 号点加入到生成树中
       ans = 0;
       int cnt = 1;
       vis[1] = 1;
10
       for(int i = 1;i <= N;++i) mndis[i]=dis[1][i];</pre>
11
       while(cnt != N){
12
           int mn = inf,id;
13
           //找出所有点中距离生成树最近的点
           for(int i = 1; i <= N; i++){
15
                if(!vis[i] && mndis[i] < mn){</pre>
                    mn = mndis[i];
17
                    id = i;
               }
19
           }
           //将找到的点加入生成树
21
           vis[id] = 1;
           ans += mn;
23
           cnt++;
24
           //更新剩余点到树的距离
25
           for(int i = 1; i <= N; i++) mndis[i] = min(mndis[i],dis[id][i]);</pre>
26
27
       }
28
   }
   Kruskal
   #include <bits/stdc++.h>
   const int maxn = 200;
   using namespace std;
   struct edge{
       int from;
5
       int to;
       int val;
       edge(int a = 0,int b = 0,int c = 0){from=a;to=b;val=c;}
       friend bool operator > (edge a,edge b){
```

```
return a.val > b.val;
10
       }
11
   };
^{12}
   int N,M,father[maxn];
13
   priority_queue< edge,vector<edge>,greater<edge> > Q;
   int Find(int a){
15
        if(father[a] == a) return a;
       return father[a]=Find(father[a]);
17
   }
   void Union(int a,int b){
19
        int f1=Find(a),f2=Find(b);
        father[f2] = f1;
21
   void init(){
23
        for(int i = 1; i <= M; ++i) father[i]=i;</pre>
24
        while(!Q.empty()) Q.pop();
25
   }
26
   void kruscal(){
27
        int ans = 0,cnt = 0;
28
       while(!Q.empty() && cnt != M-1){
29
            edge temp = Q.top();
30
            Q.pop();
            int f = temp.from,t = temp.to,v = temp.val;
32
            if(Find(t)!=Find(f)){
                Union(f,t);
34
                cnt++;
                ans+=v;
36
            }
38
        //cnt 小于 M-1 则没有连通, 否则 ans 为最小生成树大小
       if(cnt != M-1) puts("?");
40
        else printf("%d\n",ans);
41
   }
42
   最短路
   dijkstra(单源最短路)
   #include <iostream>
   #include <queue>
   #include <cstring>
   #include <algorithm>
   const int maxn = 1000+50;
   const int inf = 0x3f3f3f3f;
   using namespace std;
   struct edge{
       int to;
```

```
int val;
10
        edge(int a = 0,int b = 0){to=a;val=b;}
11
   };
12
   struct nod{
13
        int pos;
        int d;
15
       nod(int a = 0, int b = 0){pos=a;d=b;}
        //优先队列重载大于符号
17
       friend bool operator > (nod a, nod b){
            return a.d>b.d;
19
        }
20
   };
21
   //邻接表
22
   vector<edge> E[maxn];
23
24
   int T,N,dis[maxn];//dis[i] 为从 X 到 i 的最短距离,可以根据情况扩充为 d[i][j][k].....
25
26
   //加边, 无向图时添加两条边
27
   void add(int f,int t,int v){
28
       E[f].push_back(edge(t,v));
29
       E[t].push_back(edge(f,v));
30
       return;
31
   }
32
33
   void dij(){
34
       memset(dis,inf,sizeof(dis));
        priority_queue< nod,vector<nod>,greater<nod> > Q;
36
        dis[N]=0;
        Q.push(nod(N,0));//初始态,N 为出发点
38
        while(!Q.empty()){
39
            nod temp = Q.top();
40
            int pos = temp.pos;
41
            int d = temp.d;
42
            Q.pop();
43
            if(d > dis[pos]) continue;
44
            //遍历邻接表更新相邻点的最短距离
45
            for(int i = 0; i < E[pos].size(); ++i){</pre>
46
                int to = E[pos][i].to;
47
                int val = E[pos][i].val;
48
                int nd = d + val;
49
                if(nd < dis[to]){</pre>
                    dis[to] = nd;
51
                    Q.push(nod(to,nd));
                }
53
            }
        }
55
```

```
}
56
   SPFA(单源最短路)
   可以判负环
   const int maxn = 1e5 + 5;
   const int INF = 0x3f3f3f3f;
   struct edge
   {
       int to;
       int val;
       edge(int a = 0, int b = 0)
           to = a; val = b;
       }
10
   };
11
   vector<edge> mp[maxn];
                           //邻接表存图
12
   int d[maxn];
                            //最短距离
   bool vis[maxn];
                            //记录节点是否在队列里
   int EnqueNum[maxn];
                            //记录进队次数
   int PointNum;
                            //节点数
16
   bool spfa(int s)
                            //s 为起点
18
       memset(d,INF,sizeof(d));
19
       d[s] = 0;
20
       queue<int> que;
                            //记录路径改变的点
21
       que.push(s);
22
       vis[s] = true;
       EnqueNum[s]++;
24
       while(!que.empty())
26
           int temp = que.front();
27
           que.pop();
28
           vis[temp] = false;
           for(int i = 0; i < mp[temp].size(); i++)</pre>
30
31
               edge e = mp[temp][i];
32
               //如果可以松弛
33
               if(d[e.to] > d[temp] + e.val)
35
                   d[e.to] = d[temp] + e.val;
36
                    //且该点不在队列里
37
                   if(!vis[e.to])
39
                        vis[e.to] = true;
                        que.push(e.to);
41
```

```
EnqueNum[e.to]++;
42
                         if(EnqueNum[e.to] >= PointNum) //判负环
43
                             return false;
                    }
45
                }
            }
47
        }
        return true;
49
   }
   floyd(多源最短路)
   //注意 k,i,j!!!
   for(int k=1; k<=n; k++)</pre>
        for(int i=1;i<=n;i++)</pre>
            for(int j=1; j<=n; j++)</pre>
                dis[i][j] = min(dis[i][j], dis[i][k] + dis[k][j]);
   匈牙利算法 (最大匹配)
   最小点覆盖 = 最大匹配,最大独立集 = 点 - 最小点覆盖
   #include <bits/stdc++.h>
   using namespace std;
   const int maxn = 1e5;
   char mp[55][55];
   int R,C,ans,lnum,rnum,match[maxn],a[55][55],b[55][55];
   bool vis[maxn];
   vector<int> E[maxn];
   bool dfs(int u){
        for(int i = 0; i < E[u].size(); ++i){</pre>
11
            int v = E[u][i];
12
            if(!vis[v]){
13
                vis[v]=1;
14
                if(match[v] ==-1 || dfs(match[v])){
                    match[v]=u;
16
                    return 1;
17
                }
18
            }
19
20
        return 0;
21
   }
22
23
   int xyl(){
24
       memset(match,-1,sizeof(match));
```

```
ans = 0;
26
       for(int i = 0; i < lnum; ++i){</pre>
27
           memset(vis,0,sizeof(vis));
           ans += dfs(i);
29
       }
       return ans;
31
32
   KM 算法 (带权最大匹配)
   三份板子不知道哪份是正确实现
   //不确定对不对的 O(n^3)
   const int AX = 3e2+6;
   bool visx[AX];
   bool visy[AX];
   int w[AX][AX];
   int lx[AX] , ly[AX]; //可行性顶标
   int linker[AX]; //记录匹配的边
                    //记录每个 j 相连的 i 的最小的 lx[i]+ly[j]-w[i][j]
   int slack[AX];
   int n ;
   bool dfs( int x ){
       visx[x] = true;
11
       for( int y = 1 ; y <= n ; y ++ ){
12
           if( !visy[y] && lx[x] + ly[y] == w[x][y] ){
13
               visy[y] = true;
14
               if( linker[y] == -1 \mid \mid dfs( linker[y] ) ){
15
                    linker[y] = x;
16
                   return true;
17
               }
18
           }else if( slack[y] > lx[x] + ly[y] - w[x][y] ){//x,y 不在相等子图且 y 不在增广路
               slack[y] = lx[x] + ly[y] - w[x][y];
20
21
       }
22
       return false;
23
24
25
   void KM(){
26
       memset( linker , -1 , sizeof(linker) );
       memset( ly , 0 , sizeof(ly) );
28
       for( int i = 1 ; i <= n ; i++ ){
           lx[i] = -INF;
30
           for( int j = 1 ; j <= n ; j++ ){
31
               if( lx[i] < w[i][j] ) lx[i] = w[i][j];</pre>
32
33
       }
34
```

for(int x = 1 ; x <= n ; x++){

35

```
for( int i = 1 ; i <= n ; i++ ) slack[i] = INF; //每次匹配 x 都要更新 slack
36
            while(1){
37
                memset( visx , false , sizeof(visx) );
                memset( visy , false , sizeof(visy) );
39
                if(dfs(x)){
                    break;
41
                else{ // 匹配失败后 <math>x 一定在增广路, 寻找不在增广路的 j
                    int delta = INF;
43
                    for( int j = 1 ; j <= n ; j++ ){
                        if( !visy[j] && delta > slack[j] ){
45
                             delta = slack[j];
46
                        }
47
                    }
48
49
                    for( int i = 1 ; i <= n ; i++ ){
50
                        if( visx[i] ) lx[i] -= delta;
51
                    }
52
                    for( int i = 1 ; i <= n ; i++ ){
                        if( visy[i] ) ly[i] += delta;
54
                        else slack[i] -= delta;
55
                        //修改顶标后, 要把所有的 slack 值都减去 delta
56
                         //slack[j] = min(lx[i] + ly[j] - w[i][j])
                         //在增广路的 lx[i] 减少,所以不在增广路的 slack[j] 减小
58
                    }
                }
60
            }
61
62
   }
63
   void bfs(int k)
2
        int px,py=0,yy=0,d;
       memset(pre,0,sizeof pre);
       memset(slack,0x3f,sizeof slack);
        linky[py]=k;
6
        do
            px=linky[py],d=0x3f3f3f3f,vis[py]=1;
10
            for(int i=1;i<=n;i++)</pre>
11
                if(vis[i]==0)
                {
13
                    if(slack[i]>dbx[px]+dby[i]-C[px][i])
14
                        slack[i]=dbx[px]+dby[i]-C[px][i],pre[i]=py;
15
                    if(slack[i] < d) d = slack[i], yy=i;</pre>
16
                }
17
            for(int i=0;i<=n;i++)</pre>
```

```
if(vis[i]) dbx[linky[i]]-=d,dby[i]+=d;
19
                 else slack[i]-=d;
20
            py=yy;
21
        }while(linky[py]!=0);
22
        while(py) linky[py]=linky[pre[py]],py=pre[py];
   }
24
   void km()
26
        memset(dbx,0,sizeof dbx);
27
        memset(dby,0,sizeof dby);
28
        memset(linky,0,sizeof linky);
        for(int i=1;i<=n;i++)</pre>
30
            memset(vis,0,sizeof vis),bfs(i);
31
   }
32
    const int maxn = 300;
    const int inf = 0x3f3f3f3f;
    int n;
   bool vis_l[maxn], vis_r[maxn];
    int match[maxn],slack[maxn],ex_l[maxn],ex_r[maxn];
    int E[maxn] [maxn];
   bool dfs(int u){
10
        vis_l[u]=1;
11
        for(int v = 0; v < n; ++v){
12
            int w = E[u][v];
13
            if(!vis_r[v] \&\& ex_l[u]+ex_r[v]==w){
14
                 vis_r[v]=1;
                 if(match[v] ==-1 | | dfs(match[v])){
16
                     match[v]=u;
                     return 1;
                 }
20
            else slack[v] = min(slack[v],ex_l[u]+ex_r[v]-w);
21
22
        return 0;
   }
24
    int km(){
26
        memset(match,-1,sizeof(match));
27
        memset(ex_r,0,sizeof(ex_r));
28
        for(int i = 0; i < n; ++i){
29
            ex_l[i] = -inf;
30
            for(int j = 0; j < n; ++j)
31
                 ex_1[i]=max(ex_1[i],E[i][j]);
```

```
33
        for(int i = 0; i < n; ++i){
34
            memset(slack,inf,sizeof(slack));
            while(true){
36
                memset(vis_1,0,sizeof(vis_1));
                memset(vis_r,0,sizeof(vis_r));
                if(dfs(i)) break;
                else{
40
                     int d = inf;
41
                     for(int j = 0; j < n; ++j)
42
                         if(!vis_r[j]) d = min(d,slack[j]);
43
                     for(int j = 0; j < n; ++j){
44
                         if(vis_1[j]) ex_1[j]-=d;
45
                         if(vis_r[j]) ex_r[j]+=d;
46
                         else slack[j] -= d;
47
                     }
48
                }
49
            }
50
51
        int res = 0;
52
        for(int i = 0; i < n; ++i)</pre>
53
            if(match[i] > -1)
                res += E[match[i]][i];
55
        return res;
   }
57
   网络流
   DINIC
   const int maxn = 300;
    const int inf = 0x3f3f3f3f;
   int n;
   bool vis_l[maxn], vis_r[maxn];
    int match[maxn],slack[maxn],ex_l[maxn],ex_r[maxn];
    int E[maxn] [maxn];
    bool dfs(int u){
10
        vis_l[u]=1;
11
        for(int v = 0; v < n; ++v){
            int w = E[u][v];
13
            if(!vis_r[v] \&\& ex_l[u]+ex_r[v]==w){
                vis_r[v]=1;
15
                if(match[v] ==-1 | | dfs(match[v])){
                     match[v]=u;
17
```

```
return 1;
18
                }
19
            }
20
            else slack[v] = min(slack[v],ex_l[u]+ex_r[v]-w);
21
22
        return 0;
23
   }
24
25
   int km(){
        memset(match,-1,sizeof(match));
27
        memset(ex_r,0,sizeof(ex_r));
28
        for(int i = 0; i < n; ++i){</pre>
29
            ex_1[i] = -inf;
            for(int j = 0; j < n; ++j)
31
                 ex_1[i]=max(ex_1[i],E[i][j]);
32
        }
33
        for(int i = 0; i < n; ++i){
34
            memset(slack,inf,sizeof(slack));
            while(true){
36
                memset(vis_1,0,sizeof(vis_1));
37
                 memset(vis_r,0,sizeof(vis_r));
38
                 if(dfs(i)) break;
                 else{
40
                     int d = inf;
                     for(int j = 0; j < n; ++j)
42
                         if(!vis_r[j]) d = min(d,slack[j]);
                     for(int j = 0; j < n; ++j){
44
                         if(vis_l[j]) ex_l[j]-=d;
45
                         if(vis_r[j]) ex_r[j]+=d;
46
                         else slack[j] -= d;
47
                     }
48
                }
49
            }
50
        }
51
        int res = 0;
52
        for(int i = 0; i < n; ++i)
53
            if(match[i] > -1)
                 res += E[match[i]][i];
55
        return res;
56
   }
57
    费用流
   const int maxn = 1e3 + 7;
   const int INF = 0x3f3f3f3f;
   struct Edge
```

```
{
        int from, to, cap, flow, cost;
   };
   struct MCMF
    {
        int n, m, s, t;
        vector<Edge> edges;
        vector<int> G[maxn];
11
        int inq[maxn];
        int d[maxn]; //最短路数组
13
        int p[maxn]; //记录路径
        int a[maxn]; //记录流量
15
        void init(int n)
16
        {
            this->n = n;
18
            for (int i = 0; i < n; i++)
19
                G[i].clear();
20
            edges.clear();
21
        }
22
        void addedge(int from, int to, int cap, int cost)
23
24
            edges.push_back(Edge{from, to, cap, 0, cost});
            edges.push_back(Edge{to, from, 0, 0, -cost});
26
            m = edges.size();
27
            G[from].push_back(m - 2);
28
            G[to].push_back(m - 1);
30
        bool spfa(int s, int t, int &flow, int &cost)
        {
32
            for (int i = 0; i < n; i++)
33
                d[i] = INF;
34
            memset(inq, 0, sizeof(inq));
35
            d[s] = 0;
36
            inq[s] = 1;
37
            p[s] = 0;
38
            a[s] = INF;
39
            queue<int> q;
40
            q.push(s);
41
            while (!q.empty())
42
43
                int u = q.front();
                q.pop();
45
                inq[u] = 0;
                for (int i = 0; i < G[u].size(); i++)</pre>
47
                {
48
                     Edge &e = edges[G[u][i]];
49
```

```
if (e.cap > e.flow && d[e.to] > d[u] + e.cost)
50
51
                         d[e.to] = d[u] + e.cost;
                                                                 //松弛
52
                         p[e.to] = G[u][i];
                                                                 //记录上一个点
53
                         a[e.to] = min(a[u], e.cap - e.flow); //流量控制
                         if (!inq[e.to])
55
                         {
                             q.push(e.to);
57
                             inq[e.to] = 1;
58
                         }
59
                    }
60
                }
61
            }
62
            if (d[t] == INF)
63
                return false; //不存在最短路
64
            flow += a[t];
65
            cost += d[t] * a[t];
66
            int u = t;
67
            while (u != s)
68
            {
69
                edges[p[u]].flow += a[t];
70
                edges[p[u] ^{1} 1].flow -= a[t];
                u = edges[p[u]].from;
72
            }
            return true;
74
        }
        int Mincost(int s, int t)
76
        {
            int flow = 0, cost = 0;
78
            while (spfa(s, t, flow, cost))
79
80
                ;
            return cost;
81
        }
82
   };
83
```

计算几何

几何板子以后再补先补点骚操作

模拟退火

```
struct Point{
        double x,y,z;
   };
   double dist(Point a,Point b){
        return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y)+(a.z-b.z)*(a.z-b.z));
   double solve(int n){
        double ans=1e30;
        Point tmp;
        tmp.x=tmp.y=tmp.z=0;;
10
        int s=1;
11
        double step=100;
12
        while(step>eps){
13
            for(int i=1;i<=n;i++){</pre>
                if(dist(tmp,p[s]) < dist(tmp,p[i])) s=i;</pre>
15
            double Dist=dist(tmp,p[s]);
17
            ans=min(ans,Dist);
            tmp.x+=(p[s].x-tmp.x)/Dist*step;
19
            tmp.y+=(p[s].y-tmp.y)/Dist*step;
            tmp.z+=(p[s].z-tmp.z)/Dist*step;
21
            step*=0.98;
22
23
        return ans;
   }
25
   三分
   解决凹凸函数的最值问题
   while (r-l>eps)
        {
2
            double lmid=l+(r-1)/3.0,rmid=r-(r-1)/3.0;
            if (f(lmid)<f(rmid)) l=lmid; else r=rmid;</pre>
        }
```