Eur päl h Pat ntamt

Eur pean Pat nt Offic

Offic ur péen d s br v ts

(11) EP 0 481 286 B1

(12)

EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention of the grant of the patent:

09.04.1997 Bulletin 1997/15

(51) Int Cl.6: G06T 13/00

- (21) Application number: 91116794.8
- (22) Date of filing: 01.10.1991
- (54) Data display method
 - Datenanzeigeverfahren

 Méthode d'affichage de données
- (84) Designated Contracting States:

 AT BE CH DE DK ES FR GB IT LI LU NL SE
- (30) Priority: 15.10.1990 US 598174
- (43) Date of publication of application: 22.04.1992 Bulletin 1992/17
- (73) Proprietor: SIERRA ON-LINE, INC. Oakhurst, CA 93644 (US)
- (72) Inventors:
 - Williams, Kenneth A.
 Bass Lake, CA. 936/4 (US)
 - Iden, David C.
 Oakhurst, CA. 93644 (US)

- Scott, Larry L. Oakhurst, CA. 93644 (US)
- (74) Representative: Llesegang, Roland, Dr.-Ing. et al FORRESTER & BOEHMERT Franz-Joseph-Strasse 38 80801 München (DE)
- (56) References cited: EP-A- 0 197 754
 - 'Creating Arcade Games on the Commodore 64' 1984, COMPUTE! PUBL. INC., GREENSBORO, NORTH CAROLINA, USA, Chapter 9: Collisions

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition f e has been paid. (Art. 99(1) European Patent Convention).

15

20

25

35

40

45

50

D ription

Background of the Invention

1. Field of the Invention.

This invention relates to computer-controlled displays of pixel information, and more particularly to a method for controlling the display of a movable image within a displayed field to provide intelligent and life-like transitions of the displayed image as it is moved from one position to another position in the displayed field.

1

2. Description of Related Art.

Conventional video game systems commonly rely upon program information and operator controls to form displayable images of a movable person, vehicle, or the like, within a relatively static background field of objects such as trees, roads, rocks, walls, and the like. Such video game systems typically incorporate 'joystick' controllers or cursor-control buttons for producing operator control signals that determine the position or direction of movement of the movable object within the background field. In such systems of contemporary design, the movable object as displayed is usually inhibited from moving through an impassable object or area such as a displayed wall, tree or rock, and the system operator is then required to manipulate cursor-control buttons or joystick controller to maneuver the displayed movable object around the displayed impassable objects. In this manner, a system operator maintains control over a movable object as it is continually repositioned and redirected along a desired path among impassable objects within the computer-controlled display. If the movable object is maneuvered into an impassable object such as a rock or tree, then the movable object may not be advanced further in a direction through the impassable object, but will have to be controlled or maneuvered by the system operator in other directions away from the impassable object under computer control. Systems of this type are commercially available and commonly include a console unit to which manual controllers are connected, and to which various memory cartridges can be connected that configure the video game system for operation as a labyrinth game, race, sporting event, or the like.

However, in certain computer-controlled game systems, a conventional 'mouse'-type controller may be utilized to position a displayed cursor at a selected position in a conventional manner. It also may be that the system operator wants the object he is controlling to keep moving in some general direction without having to maneuv r the object around the impassable object that normally prevents the movable object from continuing on the desired direction. (i.e., A direction key is used to designate travel in an easterly direction and there happens to be an impassable object east of the movable object).

When such a controller is arranged to designate a destination for a displayed movable object within a displayed field of impassabl objects, a direct path, r trajectory, betw en where a movable object is positioned in the display and where the operator desires the movable object to be next positioned in the display may intercept an impassable object that inhibits further movement of the movable object toward the desired position without additional maneuvering by the system operator. With a mouse-type controller, such maneuvering may involve awkward repositioning of a displayed cursor, via the 'mouse', to overlap the position where the movable object is 'stuck' against an impassable object, and thereafter redefine different path segments to maneuver the movable object around the impassable object toward the desired next position. This severely limits the speed with which a computer-controlled game sequence may progress through a sequence of scenes or events, and contributes to operator frustration in having to maintain continuous control over the movable object during even the most trivial repositioning maneuvers associated with a displayed scene or event.

Summary of the Invention

In accordance with the embodiments of the present invention, the path or trajectory for movement of a displayable object from one position to another position may be manually controlled by selecting the destination position using a mouse-type controller or by selecting a specific direction of travel using a direction key or joystick, and by determining whether the trajectory intercepts an impassable object or an area to be avoided in the display. In the first embodiment of the present invention, each such displayed impassable object or area has an avoidance path associated therewith which comprises a locus of points or nodes that are spaced around the impassable object or area. The trajectory to a desired next position or destination of the movable object is thus compared with avoidance paths associated with one or more impassable objects or areas positioned in the trajectory. An the movable object approaches an impassable object or area, the movable object is independently controlled to traverse along the avoidance path around the impassable object or area to a point or node along the avoidance path nearest the desired next position, at which point or node the movable object then leaves the avoidance path and proceeds toward the next desired position or destination.

The computational overhead of calculating each new trajectory for a movable object from its present displayed position to its desired destination position is reduced by incorporating a control or trigger profile around each displayed impassable object or area, and initiating independent control of a movable object along an avoidance path only in response to intersection of a movable object with the trigger profile around an impassable object or area. Avoidance paths are provided which sur-

15

20

25

35

round certain impassable obj cts or areas to avoid such as trees, holes, ponds and rocks to facilitate controlling the displayed movement of a movable object along the shortest avoidanc path around such impassable obj ct or area. In this manner, a movable object may be displayed as exhibiting rudimentary 'intelligence' in b ing able to maneuver independently around an impassable object in the path or trajectory of the movable object to its destination position without requiring the system operator to remain in continuous control of all movements of the movable object around an impassable object or area.

In a second embodiment of the present invention, a displayed field may be segregated into sectors over the area of the display, with avoidance paths associated with each impassable object or area and with 'freeway' paths oriented between spaced sectors to serve as preferred trajectories for a movable object to follow in traversing major distances in the displayed field. This preserves the realism of 'intelligent' movements exhibited by a movable object in response to major changes in desired position within a displayed field while significantly speeding up progress of the game through insignificant sequences that should not require the operator's continuous attention or control over the movement of the movable object.

In a third embodiment of the invention, the impassable objects are defined by closed polygons that are not s. If intersecting. Each polygon is defined by a plurality of nodes. The polygons are compared to the trajectory b. tween the beginning point and the selectable point. A path for movement of the object is established as the being along the direct trajectory except where a polygon is intersected. Where a polygon is intersected the path will be about the polygon. Once the path has been established, the path is optimized by eliminating unnecessary nodes by following new paths between any two nodes, even on different polygons, as long as the new path does not intersect any polygon.

Brief Description of the Drawings

Figure 1 is a pictorial representation of a computercontrolled raster-type display of a background scene in a video game;

Figure 2 illustrates a look-up table of the coordinates of points along an avoidance path;

Figure 3 is a pictorial representation of a computercontrolled raster-type display of another background scene in a video game, including freeway paths between spaced sectors;

Figure 4 is a flow chart of the process for determining whether there is an intersection between the direct trajectory and the avoidance paths;

Figure 5 is a flow chart of the process for establishing a freeway path;

Figures 6 and 6A are a flow chart of the process for displaying mov ment of objects along 'intelligent'

routes:

Figure 7 is a pictorial representation of a computer controlled raster-type display of a third background scene in a video game for the third embodiment of the present invention;

Figures 8A, 8B, 8C, 8D and 8E are flow charts of the process for providing intelligent movement of a movable object in accordance with a third embodiment of the present invention;

Figure 9 is a flow chart of the process in the third embodiment of the present invention for constructing a path between the two points from list of paths about polygons; and

Figure 10 is a flow chart of the process of third embodiment for optimizing a path between two points.

Description of the Preferred Embodiments

Referring now to Figure 1, there is shown a pictorial representation of a computer-controlled display in which background objects such as a rock 9 and a tree 11 are displayed on a raster-type display in conventional manner, for example, from pixel data that is selectively supplied in synchronism with the raster scan of one or more electron beams over the display area. The display area may be completely identified by the coordinates of points everywhere within the area over the range of values referenced, for example, from upper left comer (0,0) to lower right corner (200,200). Each such point is the location of a pixel which is activated along a scan line of pixels within a sequence of pixels per scan line, and scan lines per frame of the display, all in conventional manner. Background objects, therefore, may be conveniently stored in a Read-Only-Memory (ROM) or Random-Access-Memory (RAM) at address locations that correspond to coordinates, or to pixel counts, on the display area. Thus, the pixels that display the tree 11 and the rock 9 are accessed from memory in the proper sequence to produce the raster-type display of the scene of Figure 1 in conventional manner.

In accordance with the preferred embodiment of the present invention, an avoidance profile, or path 13, including a plurality of points or nodes 15 is located about the rock 9 (and about other impassable objects 11) at a slight spacing therefrom to represent a path or locus of points that designate varying trajectories about the impassable object. Specifically, as illustrated in the list of Figure 2, the coordinates of each point 15, 16, in the path are listed in a memory look-up table to define the incremental trajectories from point to point around the impassable object 9. Thus, for a displayed movable object (such as a person or vehicle or the like) positioned at a beginning point (point A), an operator may elect to move the object to be displayed at a selectable point (point C). This may be accomplished in conventional manner using a 'mouse'-type controller which controls the movement of a display cursor to the point C that can then be designated as the next position for the movable

20

35

45

object by 'clicking' the 'mouse'-type controller on the point. Thereafter, displayable icons suitable for characterizing a displayed person, for exampl, in a walking or running stride ar successively r called from ROM or RAM and are int rposed on the str am of pixel data for the displayed background per frame at different intervals per successive frame in a conventional manner in order to display the movable object as moving along the trajectory or direct path 12 between points A and C.

However, in accordance with the preferred embodiment of the present invention, the trajectory 12 between points A and C is compared with look-up tables of coordinate data for points along all avoidance paths 13, 17 around all impassable objects in the displayed background for the purpose of determining whether any virtual intersections will occur between the direct trajectory 12 and the locus of points or nodes 15 that form an avoidance path.

In particular, a flow chart 81, as illustrated in Figure 4, delineates the steps in the process of comparing the trajectory 12 for virtual intersections with the avoidance paths 13, 17. The process of determining intersections begins with the computation of the slope and the linear constant of the direct trajectory 12 in steps 83 and 85 respectively. Next, the slope and linear constant for a path segment between nodes 15 that form the avoidance path 13, 17 are computed in steps 87 and 89 respectively. A determination of whether there is an intersection between the direct trajectory 12 and the path segment is then made in step 91. If an intersection is detected in step 93 then the coordinate data for the intersection is noted in an intersection table and a determination of whether all path segments between the nodes 15 of the avoidance paths 13, 17 have been examined is made in step 95. If no intersection is found in step 91, then the process proceeds directly to the determination of whether all path segments have been examined in step 95 without updating the intersection table. If there are path segments that have not been compared to the direct trajectory 12, then the next path segment is obtained in step 99 and the process returns to step 87. Otherwise, a determination that all paths have been examined indicates the completion of comparing for virtual intersections.

Where such intersection is determined to occur then the displayed path along which the movable object will travel from point A toward point C will be modified in any one of several ways, as follows. For example, movement may proceed along the direct trajectory 12 from point A until the intersection of the direct trajectory 12 with a point 15 (or the interpolated trajectory between two adjacent points 15, 16), after which the movable object is displayed as following the incremental trajectories between successive points or nodes 15 along the avoidance path 13. Alternatively, the determination of an intersection between the direct trajectory 12 and the avoidance path 13 initiates recalculation of the initial trajectory from point A along a path 19 toward the nearest

point 16 on the avoidance path, or for int rpolated intersections, along a path 21 toward the end point 15 of the incremental trajectory 15-16 that is closest to the selectable or target point C. The recalculation is pr ferably performed using a modified Bresenham algorithm for non-unit steps. Thus, the object is moved along the trajectory that the Bresenham algorithm specifies for getting the object from the current position to the intersection or node where the path will be accessed. Thereafter, the movable object is displayed in successive locations along the incremental trajectories of the avoidance path 13 around an impassable object 9.

The displayed movement of a movable object along the avoidance path 13 continues to a position at or near an intersection of the direct trajectory 12 with a point, or with an incremental trajectory between adjacent points 23, 25 along the avoidance path 13. The movable object may then be displayed as leaving the avoidance path 13 at a point 23 which is nearest to the selectable point C to travel along the trajectory of path 27. Alternatively, the movable object may be displayed along a trajectory 29 as leaving the avoidance path 13 at the nearest end point 25 defining an incremental trajectory 25-23 which intersects with the direct trajectory 12. Of course, the movable object may also be displayed as traversing the direct trajectory 12 between point A and the interpolated intercept (or intercept at a point) of the avoidance path 13, along the avoidance path 13 to the interpolated intercept (or intercept at a point) with the direct trajectory 12, and then along the direct trajectory 12 to the target point C. Thus, the movable object is displayed as traversing a path around an impassable object along a line of travel that closely resembles the natural or 'intelligent' choices that a live entity which is depicted by the displayed moving object would make.

In more complex background situations, the path of travel of the displayed movable object, for example, from point A to point B (within a confined area of movement) may require analysis of each exit trajectory (from the avoidance path) to determine whether other impassable objects will be encountered. Thus, exiting the avoidance path 13 from the nearest of end points 31 that define an increment of avoidance-path trajectory which intercepts the direct trajectory 14 between points A and B may encounter an impassable object 33, requiring another avoidance-path correction around object 33. Such an avoidance path correction occurs the same as the correction of travel between point A and B defined above. However, such recorrection merely redefines the beginning point (point A) to be the nearest of end points 31. Thus, the exit from the avoidance path may be from the intercept of the incremental trajectory along the avoidance path with the direct trajectory 14 to traverse a path that does not intersect an impassable object 33.

The pref rr d embodiment of the present invention, also provides 'intelligent' mov ment of an object that can pass in either direction around an impassable object. As illustrated in Figure 1, a displayed tree 11 includes an

25

30

45

50

55

avoidance path 17 completely around the base. Thus, displayed movement of an object from point D to the target point E may int is at the avoidance path 17 that could be travers d in either direction. Such avoidance path 17 is formed as the locus of points that are completely identified in a look-up table of coordinat data points similar to the coordinate data points illustrated in Figure 2. Thus, the distances between sets of adjacent points can be accumulated between intercept points 35, 37 in each direction around a closed set of data points, and the shortest of the accumulated distances determines the direction of movement around the impassable object.

While Figures 1 and 3 illustrate the display as showing top plan views of the movement from one position on the screen to another, it should be understood that the method of the present invention may also be used where the display shows a perspective view. For example, if the rock 9 and tree 11 were displayed in perspective view, an object may still be moved from point D to E. However, as the object moves along the path of nodes closest to the top of the display about the tree, the object would not be shown on the display (i.e., the display would be seen as if the object was actually moving behind the tree.

Referring now to Figure 3, there is shown a pictorial representation of raster-type display of a background scene (for example, of a waterfront shoreline) including a meandering impassable object or boundary 41. The impassable object or boundary 41 includes an avoidance path 43 along, and in close proximity with, the boundary 41. Thus, displayed movement of a movable object from point F to point G would normally occur along the direct trajectory 45, to the intercept 47 with the avoidance path 43, and along such avoidance path 43 to the intercept with the direct trajectory 45, and then along the direct trajectory 45, to the target point G in the manner previously described. This would result in unintelligent meandering movement along the boundary 41 in place of expected, 'intelligent' movement in more direct line toward the target point G.

In accordance with a second embodiment of the present invention, the display area is segmented into several sectors 51, 53, ... 65 (for data analysis, but not for display of any sector boundary lines). In selected sectors of the display area, there are provided one or more auxiliary avoidance or 'freeway' path(s) 67 which traverse the major spacings between remote sectors of the display. Therefore, the coordinate data associated with the display position of a movable object is analyzed to determine whether or not the position is in a sector that includes a freeway that traverses the display in a direction generally toward the target point G.

Thus, in the illustration of Figure 3, a movable object displayed at point F that is to be moved to point G would be moved in the manner previously described along trajectory 45 to intersection 47 and then along the avoidance path 43 through various sectors of the the displays.

However, the coordinate data at points along the avoidance path 43 is analyzed for sector identification, and whether that sector includes a freeway 67 g nerally aligned in the proper direction toward the target point G. Thus, the coordinate data along path 43 and residing in sectors 51 and 57 would not initiate transition to the freeway 67. For example, if movement was from point F toward point H, analysis of the coordinate data would indicate no benefit to be derived from traversing along the freeway 67 that resides within sector 59. However, ∞ordinate data along avoidance path 43 that resides in sector 59 can be analyzed for 'intelligent' use of an available freeway 67. For movement toward point G, the analysis of the coordinate data for points along the meandering avoidance path 43 would indicate greater distance therealong than along freeway 67 to the sector 65 in which the freeway 67 and the point G reside. Therefore, a movable object is displayed as traversing direct trajectory 45 from point F to intercept 47, then along avoidance path 43 into sector 59 at which a transition occurs to freeway 67 along the shortest path 69 between the two paths 43, 67 within the sector, then along the freeway 67 into sector 65 at which a transition occurs along the shortest path 71 between the two paths 43, 67, to the intercept 49 and then along trajectory 45 to point G. Of course, the freeway(s) 67 need not be straight, but only substantially shorter between remote sectors than a traversing avoidance path between such remote sectors. In this manner, the movable object is displayed as having traveled along a route of natural or intelligent selection between points F and G without further control or intervention by an operator.

A flow chart 101 for the process of analyzing whether a freeway path is available, and moving the object along the established path of points is illustrated in Figure 5. Once the object has been placed on an avoidance path 43, a determination of whether a freeway path 67 exists in the direction of the object's selectable position (Point 6) is made. A first step 103 is analyzing whether the object is moving from a freeway area. In a preferred embodiment, this step 103 is accomplished by determining whether any freeway path exists in the sector in which the object is positioned. For example, this determination may be made at each node along the avoidance path upon which the object is traversing. If there is no freeway path in the sector, the process is complete and the object continues to follow the avoidance path. If there is a freeway path in the sector, a next step 105 determines whether the object is moving to a freeway area. Preferably, this step evaluates whether either the selectable position or the intersection point on the avoidance path is positioned in a sector that includes a freeway path. Again, if there is no freeway path in the sector for the destination, the process is complete. Otherwise, a next step 109 in the process determin s wh th r a fr eway conn cts the sector in which the object is positioned and the sector in which the destination of the object lies. If no freeway conn cts the object's present po-

35

45

sition and the bject's destination, then the process is complete, no freeway is utilized, and the object is moved with normal pathing. If there is a freeway path connecting the current sector of the object, the object is moved towards its destination. The process continues with a step 111 of finding an access node along the freeway path that is closest to the position of the object. Next, a step 113 of finding the node along the freeway path closest to the objects destination or selectable position is executed. The object is then moved from its present position to the access node in step 115. The freeway path is followed to the departure node in step 117. Finally, the object is moved from the departure node to the destination in step 119. While the process has been described as moving the object along a path from node to node, it should be understood that the movement involves establishing a locus of points between the nodes for each movement of the object therebetween.

9

If no freeway path is available then the object is moved from point A to point B using normal pathing. Referring now to Figure 6, there is shown a flow chart 121 of the normal pathing process by which coordinate data for the points on the display and along avoidance paths are analyzed to produce displays of 'intelligent' movem intraround impassable objects or areas without intervention of the operator. A first step 123 in analyzing the coordinate data to produce 'intelligent' movement along the display is to determine whether there are any intersections between the object's direct trajectory and any avoidance paths 13, 17 and 43 on the display. The existence of any intersections can be accomplished as described above with reference to figure 4. If no intersections are found then the direct trajectory may be followed to the selectable position and the analysis is complete. However, if intersections are found to exist, then a step 125 of finding the avoidance path that is closest to the object is performed. Additionally, in step 127 the intersection closest to the position of the object is located.

Next, the process determines whether the path found to be closest is a "sticky path" A sticky path is one that holds the object on the path until the object reaches the node of the path that is closest to the object's destination point and then releases the object to continue to its destination. If the path is "sticky," then the node closest to the object's destination is located in a next step 130. If, on the other hand, the path is not "sticky" then the next step 131 locates the intersection closest to the objects destination.

After the completion of either step 130 or step 131, the next step 133 is to check whether the path is closed. If the path is closed then the route from entry in the avoidance path to exit from the avoidance path having the shortest distance is identified and selected in step 135. Since each avoidance path is formed by a series of nodes, the distance along alternate routes in a closed avoidance path can be easily calculat d by summing the distances between adjacent points along each alternate route. If the path is not closed then it is unnecessary to

calculate the route having the shortest distance since there is only a single route.

Once the route has b en selected, the bject is moved to the entry point (step 137). In a following decision step 139, the process checks whether the object reached the entry point. If the entry point was reached, then the process continues to step 151 where the object is moved to the next node along the path. However, if the entry point was not reached then the process attempts to get on the avoidance path at a point near the entry point in series of steps 141, 143, 145 and 147. In these steps, the process attempts to "backtrack" along a trajectory in a direction 180° from the object's previous trajectory. If a path is found on the backtrack trajectory, then the closest of the intersection and the node on the path will be accessed. This allows an object that is blocked from moving along the trajectory at its current position to move backward away from the blocking area onto a path around it. The process begins by searching for a backtrack point or intersection on the path behind the object in step 141. If the backtrack point was not found the process is complete and unsuccessful. If a backtrack point was found, the object is moved to the backtrack point in step 145. The process then tests whether the backtrack point was reached (step 147). If the backtrack point cannot be reached, the process is complete and unsuccessful as if no backtrack point had been found. If the backtrack point is found, the process continues using the backtrack point in place of the entry point and proceeds to step 151 where the object is moved to the next path node.

Once the object has been moved to the next path node, additional inquiries about the object's path are made. In step 153, the process checks whether the path is "slick." A "slick" path is one that allows the object to exit from the node and proceed directly to the selectable position if there is a route that does not encounter any additional impassable objects. Thus, if the path discovered to be "slick" in step 153 then there is further evaluation of whether there is a clear route (i.e., a route that does not intersect with any avoidance paths) to the selectable point. If a clear path exists, the object is moved to the selectable position in step 157 and the process is complete having moved the object from the beginning position to the selectable position. If it is determined that the path is not slick or there is no clear route to the destination then the process inquires whether the next node is the exit node (an object may also exit at a non-node which is the point where the object's trajectory last intersects the path between two adjacent nodes. That intersection or "break away" point will be used if the path is not "sticky."). If the next node is not the exit node, the process returns to step 151 and moves the next node. However, if the next node is an exit node then the object is moved to the exit node in step 163 and then the process proceeds to step 157 where the object is mov d to the d stination.

Refering now to Figures 7-10, the third embodiment

35

of the present invention will be discussed. In a third embodiment, the present invention advantageously provides an alternate method for 'intelligent' movem nt about any impassable objects. In Figure 7, a raster type display shows a background including impassable objects such as a rock 200, a tree 202 and a mountain 204. As with the display of Figure 1, the display area is identified by coordinates of points everywhere over the area of the display from (0,0) in the upper left comer to (200,200) in the lower right comer. The movement of an movable object, similar to the object described above with reference to the first embodiment, from a beginning position to a selectable position may be specified by an operator using either a mouse as described above, direction keys or a joystick. The third embodiment of the present invention advantageously provides intelligent movement of the object from beginning position to the selectable position with a method comprising the steps of: defining a polygon about each impassable object; calculating a direct trajectory between the beginning position and the selectable position; determining whether the direct trajectory intersects any of the impassable objects on the display; sorting the intersections according to their closeness to the beginning position; constructing a path from the beginning position, around the impassable objects intersected, to the selectable position; and optimizing the path. In addition, if more than one impassable object is intersected by the direct trajectory, further optimization is performed by selecting the path with the shortest distance from the possible paths about the impassable objects intersected.

In accordance with the third embodiment of present invention, a polygon 206, 208, 210 is defined about each of the impassable objects 200, 202, 204, respectively. Each polygon is defined by a plurality of nodes or points N1-N20. The nodes N1-N6 define the polygon 206 about the rock 200. Similarly, the nodes N7-N12 and nodes N13-N20 respectively define the polygons 208, 210 about the other impassable objects 202, 204. The polygons 206, 208, 210 are preferably closed, not selfintersecting (e.g. Jordan polygons) and do not intersect any other polygons about impassable objects. The use of nodes is advantageous because the polygons are automatically defined simply by specifying nodes that define the boundary of the impassable object. The nodes allow the polygons to be to conceptualized by programm rs defining polygons. It should be understood that while the polygons 206, 208 and 210 are illustrated in Figure 7 for ease of understanding, the polygons 206, 208, 210 are provided for data analysis only and are not typically shown on the display. In particular, the nodes N1-N20 are preferably stored in memory and as lists of points, with each polygon specified by a pointer to a first node in a chain of lists.

The present invention advantageously allows the polygons to be defined as one of three possible types. First, a totally accessible polygon is one in which polygons may be entered and exited as if they are not an

obstacle to mov ment of the obj ct, but at the same time represent obstacles when the desired trajectory does not begin or ind within the polygin. S cond, polygons may be near point accessible which means intry to and exit is allowed, but only from the point along the polygon nearest to the start or end point of the trajectory that lies on the polygon. Finally, polygons may be barred access polygons which cannot be entered. The various types of polygons provide the method of the present invention with versatility for the programmers using the present method. The process of defining the polygons will now be described in more detail with reference to a flow chart 216 shown in Figure 8A. The polygons 206, 208, 210 are defined in a step 218. The polygons are each defined by a pointer to a list of nodes. A list of polygons is then created by listing the pointers to the first node of each polygon. The polygons preferably defined by orienting the nodes about each polygon in a clockwise manner; if not the direction is reversed. Such orientation simplifies the calculation of an alternate path about the polygon by determining the interior of the polygon given two nodes. Next, step 220 determines whether the beginning point is in a polygon. If the beginning point is in a polygon, then the beginning point is redefined according to the type of polygon in which the beginning point is positioned, in step 222. For example, if the type is a near access polygon then the beginning point becomes the nearest point on the polygon to original beginning point. The line segment from the polygon to the original beginning point will be added once the path has been determined. If the type of the polygon is totally accessible then the polygon will be removed from the polygon list. A similar evaluation and redefinition occurs in steps 224 and 226 with respect to the selectable point.

After the polygons 206, 208, 210 have been defined, the direct trajectory between the beginning point and the selectable point is computed in step 228. This is preferably accomplished by calculating the line segment between the beginning point and the selectable point. For example, a pair of direct trajectories 212, 214 are shown in Figure 7 between X and Y, and X and Z.

Once the direct trajectory 212, 214 between the beginning position and selectable position has been determined, the direct trajectories 212, 214 are compared to the polygons 206, 208, 210 to determine whether the direct trajectories 212, 214 intersect the polygons 206, 208, 210 defined by the nodes N1-N20. The direct trajectories 212, 214 are preferably compared to the polygons 206, 208, 210 by determining whether the line segment representing the direct trajectory 212, 214 intersects any of the vectors between adjacent nodes in the polygons 206, 208, 210. As shown in Figure 7, such a comparison of the direct trajectory 212 between X and Y returns intersections I1, I2 on polygon 204 between nodes N13 and N14, and N19 and N20, respectively. The comparison of the direct trajectory 214 between X and Z with the polygons 206, 208, 210 results in four intersections: 13 between nodes N1 and N6, 14 between

35

45

nodes N4 and N5, 15 between nodes N7 and N12, and I6 between nodes N9 and N10.

The method of the present invention next establishes paths around the intersected polygons 206, 208, 210 and selects the path with the shortest distance. For movement of an object from X to Y, one path around the polygon 210 would be from I1 to I2 through nodes N14, N15, N16, N17, N18, and N19. The other path around the polygon 210 would be through nodes N13 and N20. The distance of the path is determined by summing the distances between the adjacent nodes in the path from 11 to I2. The path having the shortest distance is then selected for movement of the object from the beginning position to the selectable position. Where the trajectory between the beginning position and the selectable position intersects more than one polygon as with the direct trajectory 214, the shortest path is determined about each polygon individually. For the direct trajectory 214 between X and Z, a shortest path for polygon 206 between 13 and 14 is calculated separately from the shortest path about polygon 208 between 15 and 16. For example, the shortest path for polygon 206 is the path through nodes N5 and N6 and the shortest path about the polygon 208 is through nodes N7, N8, N9.

The distance between two particular nodes is preferably definable by the user. This is particularly advantageous where the polygon borders on the edge of the display such as with polygon 210. Since all impassable objects are defined by closed polygons regardless of their position, impassable objects which lie on the edge of the display will be defined by a polygon that has one side along the edge of the display. Even though the polygon has a side along the edge of the display, this side is not a clear path for movement about the impassable object and movement of the object along the side is not permitted. Thus, defining the distance between two nodes to be infinity or the maximum possible value will insure that the object always moves along the path that shown on the display rather than the path along the edge of the display. For example, the distance between nodes N13 and N20 is preferably defined to be the maximum possible value to insure that any trajectory that intersects polygon 210 takes a path about the mountains 204 on the portion of the screen displayed rather than along the edge of the display where the object is not permitted to travel and where the object would not be fully viewabl. Therefore, in determining which is the shortest path about the polygon 210 between the intersections I1 and 12, the path through nodes N14, N15, N16, N17, N18 and N19 would be selected.

The third embodiment preferably determines whether the direct trajectory intersects with any polygons as well as the shortest path according the process shown in a flowchart 230 of Figur 8B. In step 232, the method tests whether the beginning position and the selectable position are the same. If they are the same, no comparisons are necessary and the method continues to the next series of steps. If the beginning position and

th selectable position are not the same, the process determines if the end of the polygon list has be n r ached, in step 234. If the end f the list has b en reach, either no polygons are in the display field, or all the polygons in the display field have already been been compared to the dir ct trajectory. Otherwise, the direct trajectory is compared to the polygon noted in the list of polygons in step 136. If there is no intersection, step 238 gets the next polygon in the list and loops through the comparison step 236 so that the direct trajectory is compared to each polygon in the list. However, if the direct trajectory intersects the polygon, the intersection closest to the beginning point, and the intersection closest to the selectable point are determined in step 240. The shortest path between these two intersection points is then calculated in step 242, and the shortest path is stored in a PATHLIST in step 244. The paths stored in the PATHLIST are stored according to the distance from the beginning position to the closest intersection. Once the PATHLIST of shortest paths about polygons has been formed and the intersection nearest to the beginning position and intersection nearest the selectable position for each polygon is saved, the intersection points are analyzed to determine if any of the polygons entry and exit intersection points overlap any of the other polygons entry and exit points. By "overlap" it is meant that when viewed along the trajectory from the beginning position, no intersection saved for a polygon lies between the intersections saved for any other polygon. In step 246, a variable (pathnumber) which indicates the number of paths in PATHLIST, or the number of polygons intersected is incremented and the process continues by getting the next polygon in the list in step 238 and returning to step 234.

If no overlap was found, a path between the beginning position and the selectable position is created by linking the shortest paths, the beginning position and the selectable position together. For example, a path from X to Y around the intersected polygon 210 would include nodes X, I1, N14, N15, N16, N17, N18, N19, I2 and Y. A path from X to Z around the intersected polygons 206, 208 would include nodes X, I3, N6, N5, I4, I5, N7, N8, N9, I6 and Z. It should be understood that since the trajectory 214 intersects more than a single polygon, the path is created by forming a path along nodes starting with the beginning point, X, then proceeding to the closest intersection to X, namely I3. The intersection I3 and the shortest path from 13 to 14 about the polygon 206 are then linked to X. The next closest intersection 15 to the beginning point is then retrieved and linked to intersection 14. The path associated with intersection 15, the shortest path about the polygon 208 through nodes N7, N8, N9 and I6, is also appended to the path. It should be understood that this process could continue for any number of polygons that are intersect d by a dir ct trajectory. After the intersection clos st to the selectable position is linked to the path, the path is completed by adding the node for the sell ctable position such as Z.

20

25

30

35

The process of constructing the path is a step 250 in the flow chart of Figure 8C for the avoidance pathing process, and will be detailed more specifically with r ferenc to a flowchart 254 of Figure 9. The process begins forming the path with the beginning point in step 256. In step 258, the process tests whether the PATH-LIST is empty which indicates that no polygons are intersected, or the paths about the intersected polygons have already been added to the path. If the PATHLIST is not empty, then the first path in the list is retrieved in step 260. If there is no overlap between this polygon's entry and the previous polygon's exit then the retrieved path is added to the path by inserting the nodes representing the closest intersection to the beginning point. the shortest path and the closest intersection to the selectable point, in that order. Once these nodes have been inserted, the first path in the PATHLIST is deleted in step 264 and the process returns to step 258. If there was overlap detected during the analysis of the entry and exit intersection points of the polygons, then one of two alternatives is taken at each overlap. If the entry and exit point of a polygon lies between the entry and exit point of another then this polygon is not use in creating the a path from the beginning position to the selectable position. If the entry point of some polygon (polygon B) is between the entry and exit point of another polygon (polygon A) and the exit point of polygon B does not lie between the entry and exit point of polygon A then the path created will continue to exit point of polygon A and at that point the path is saved and a new path is generated by the method described herein with the beginning point being the exit point of polygon A and the same selectable point (this is a recursion of the method generating the unoptimized path in that the method is calling itself. The two paths are then combined into one path). Thus, the process will cycle through all the paths in the PATHLIST and add them to the path being constructed between the beginning and selectable positions until PATHLIST is empty. Then the selectable position added and the entire path is returned in steps 266 and 268. However, if overlap is detected the program will call itself to generate the path starting at the exit point of the previous polygon to the selectable point. Then the path returned is appended to the current path (after removing the duplicate point generated, the exit from the previous polygon) and this path is returned.

As best shown in Figure 7, once a path that avoids impassable objects between X and Y has been established, the path is optimized. In other words, any nodes on the original path that can be eliminated are removed to create an optimized path between the beginning position and the selectable position. The optimized path does not intersect with any of the polygons and has a shorter distance than the original path. For example the path between X and Y is initially established along the points X, 11, N14, N15, N16, N17, N18, N19, I2, and Y. After one iteration of the optimization process, the path between X and Y is reduced to the path comprising the

nodes X, I1, N14, N15, N16, N17, N18, N19, I2, and Y. The first iteration of optimization removes nodes I1, and N14, by replacing them with a dir ct path 270 b twe n X and N15. Similarly, a second iteration of optimization eliminates nodes N16 and N17 by providing a direct path 272 between N15 and N18. The path is fully optimized after a third iteration of the optimization process which eliminates I2 from the path.

Refering now to Figure 10, the optimization process will be described with particularity. A flow chart 280 illustrates the process for optimizing a path. The process begins by setting a variable M equal to the number of nodes in step 282. In step 284, the value of M is compared to three. If M is less than three, then there are only two nodes in the path and there is nothing to optimize so the path is returned in step 286 and optimization is complete. On the other hand, if M is three or greater the process to continues to steps 288 and 290 where an index PO is set to the first node in the path, and an index PN is set to the (M-1)th node in the path, respectively. In step 292, the polygon list is initialized to the beginning of the list by setting PG equal to zero. Step 294 determines whether the trajectory between nodes PO and PN intersect the polygon(PG). If an intersection is found there is not an optimizing path between nodes PO and PN. In step 296 the process checks to see if node PN is within two nodes of node PO which may indicate optimization is not possible. If node PN is not within two nodes of node PO, then the index PN is decremented in step 298 and the next node closer to node PO is evaluated to determine whether a direct path between node PO and node PN-1 exists by looping to step 292. If no intersection is found between the polygon and the trajectory between nodes PO and PN in step 294, then the direct trajectory between nodes PO and PN is compared to the remaining polygons by the loop provided by steps 300 and 302. If the direct trajectory between nodes PO and PN is found not to intersect any of the polygons then there is an optimizing path between nodes PO and PN. The nodes between nodes PO and PN are eliminated from the path in step 304 and the M is reset to the number of nodes in the optimized path in step 306. Finally, in step 308, PO is compared with M-2. If M-2 is greater than PO, further optimization is possible. PO is incremented in step 312 and the process is performed again with the new value of PO. If M-2 is not greater than PO, the path has been fully optimized and the optimized path is returned in step 310.

The third embodiment of the present invention also provides additional optimization where the path between the beginning position and the selectable position intersects more than one polygon. In such situations, as with the path between X and Z, the additional optimization calculates the optimal distance for all possible combinations of routes about the intersected polygons 206, 208 and selects the shortest. For example, the pathing would provide an optimized path from X to Z using the shortest distances about each polygon 206, 208. The

optimized path is an optimization of the path through the nodes 13, N6, N5, 14, 15, N7, N8, N9, and 16. However, the additional optimization calculates the distance along three other paths b tween X and Z, namely: a path in opposite directions about the both polygons 206, 208 through nodes 13, N1, N2, N3, N4, I4, I5, N12, N11, N10, and 16; a path opposite in direction only about the first polygon 206 through nodes 13, N1, N2, N3, N4, I4, I5, N7, N8, N9, and I6; and a path opposite in direction only about the second polygon 208 through the nodes 13, N6, N5, I4, I5, N12, N11, N10, and I6. Therefore, such additional optimization would return the shortest path that avoids the polygons 206 and 208, namely, the path defined by the nodes X, N6, N11, N10 and Z. The fully optimized result is a path along the shortest path about the first polygon 206 and longer path about the second polygon 208.

The process for providing additional optimization is illustrated in the flowchart 252 shown in Figures 8C and 8D. First, the process compares the variable pathnumber to two, in step 320. If the pathnumber is less than two, one or fewer polygons are intersected by the trajectory between the beginning and selectable positions. Thus, normal optimization as discussed above with reference to Figure 10, is performed in step 322 and will fully optimize the path. If the pathnumber is two or greater then the path OP between the beginning and selectable positions is constructed in step 250. This construction step 250 is preferably in accordance with the method described in Figure 9. In step 324, the path OP is optimized using the same method as in step 320. The optimized path is also stored as path BP. In step 326, the length of the path BP is calculated and a variable BL is set equal to the length of the path BP. Next, in step 328, all the possible paths about each polygon and the possible combinations of those paths are determined. The initial direction is set to the direction about which the path BP traverses the polygons. Those skilled in the art will understand that the permutation of possible paths about n polygons will be 2ⁿ. Thus, for a path that intersects two polygons there are 22 or four different paths from the beginning position to the selectable position and about the polygons. The method of the present invention advantageously calculates each of the 2ⁿ path and selects the path with the shortest optimized distance. In step 328, a new path NP is created by changing the direction about which one of the intersected polygons is traversed. A determination of whether all possible paths about the intersected polygons is made in step 332. If all the possible directions have been examined, then the process returns the path BP in step 334 and the additional optimization is complete. However, if not all the directions have been examined the path NP is optimized in step 336 similar to the optimization in steps 322 and 324. The st ps 338, 340, 342, and 344 d fine a loop that effectively optimizes all the possible paths about the intersected polygons and saves the shortest path in the path BP. In particular, step 338

sets the path ONP equal to the optimized path of NP. In step 340, the length of the path ONP is calculated. In st p 342, the length of ONP is compar d to the shortest length found, BL. If the length is less than BL, BL is s t to b the length of ONP and the path BP is set to be ONP and the process loops to step 330. Finally, it should be noted that in the third embodiment the entire path from the beginning position to the selectable position is determined before any movement of the object along the path. Thus, the animation provided by movement in the third embodiment is very smooth and uniform because delays due to processor speed limitation and calculation the path during movement are eliminated. Therefore, the preferred embodiments provide intelligent movement from the beginning position to the selectable position in an automatic fashion.

Claims

15

20

25

 A method for establishing a contiguous path of points between a beginning position (A, D, F, X) and a selectable position (B, C, E, G, H, Y, Z) for a movable object on a computer-controlled display showing at least one impassable object (9, 11, 33, 41, 200, 202, 204), said method comprising the steps of:

providing coordinates for the beginning position (A, D, F, X) and the selectable position (B, C, E, G, H, Y, Z);

defining the position of any impassable objects (9, 11, 33, 41, 200, 202, 204);

calculating a direct trajectory (12, 14, 45, 212, 214) between the beginning position (A, D, F, X) and the selectable position (B, C, E, G, H, Y, Z);

comparing the direct trajectory (12, 14, 45, 212, 214) to the position defined for each impassable object (9, 11, 33, 41, 200, 202, 204); and establishing a locus of points intermediate the beginning position (A, D, F, X) and the selectable position (B, C, E, G, H, Y, Z), said locus of points positioned either near or on the direct trajectory (12, 14, 45, 212, 214) where the direct trajectory (12, 14, 45, 212, 214) does not have the same position as the impassable objects (9, 11, 33, 41, 200, 202, 204) and positioned about the impassable object (9, 11, 33, 41, 200, 202, 204) where the direct trajectory (12, 14, 45, 212, 214) and the impassable objects (9, 11, 33, 41, 200, 202, 204) have the same position.

55 2. The method of Claim 1, wherein said step of defining the position of any impassable objects (9, 11, 33, 41, 200, 202, 204) further comprises:

20

25

30

45

50

selecting a plurality of nodes (15, 16, 23, 25 31, N1-N20) about the impassable object (9, 11, 33, 41, 200, 202, 204); and calculating a plurality of incremental trajectories between the nodes (15, 16, 23, 25, 31, N1-N20) to form an avoidance path (13, 17, 19, 21, 43, 206, 208, 210).

- 3. The method of Claim 1, wherein the step of calculating a direct trajectory (12, 14, 45, 212, 214) between the beginning position (A, D, F, X) and the selectable position (B, C, E, G, H, Y, Z) includes calculating the slope and linear constant of a line segment or a vector between the coordinates for the beginning position (A, D, F, X) and the selectable position (B, C, E, G, H, Y, Z).
- 4. The method of Claim 1 or 2, wherein said step of comparing the direct trajectory (12, 14, 45, 212, 214) to the position of the impassable objects (9, 11, 33, 41, 200, 202, 204) comprises determining whether the direct trajectory (12, 14, 45, 212, 214) intersects the avoidance path (13, 17, 19, 21, 43, 206, 208, 210) for each impassable object (9, 11, 33, 41, 200, 202, 204).
- 5. The method of Claim 4, wherein said step of comparing the direct trajectory (12, 14, 45, 212, 214) to the avoidance paths (13, 17, 19, 21, 43, 206, 208, 210) for intersections (I1-I6, 35, 37 47, 49) therebetween further comprises the steps of:

computing the slope and linear constant of the direct trajectory (12, 14, 45, 212, 214); computing the slope and linear constant for each incremental trajectory in each avoidance path (13, 17, 19, 21, 43, 206, 208, 210); and comparing the slope and linear constant of the direct trajectory (12, 14, 45, 212, 214) with the slope and linear constant for each incremental trajectory in each avoidance path (13, 17, 19, 21, 43, 206, 208, 210) to determine whether any intersections within the domain of the display exists.

The method of Claim 2, wherein said step of establishing a locus of points intermediate the beginning position (A, D, F, X) and the selectable position (B, C, E, G, H, Y, Z) further comprises the steps of:

in a first forming step, forming the path of points along the direct trajectory (12, 14, 45, 212, 214) until the selectable position (B, C, E, G, H, Y, Z) or an intersection (I1-I6, 35, 37, 47, 49) between the direct trajectory (12, 14, 45, 212, 214) and the avoidance path (13, 17, 19, 21, 43, 206, 208, 210) is reached; forming the path of points along the avoidance

path (13, 17, 19, 21, 43, 206, 208, 210) until another intersection (I1-I6, 35, 37 47, 49) between the direct trajectory (12, 14, 45, 212, 214) and the avoidance path (13, 17, 19, 21, 43, 206, 208, 210) is reached; and returning to forming the path of points in accordance with the first forming step.

The method of Claim 6, further comprising the steps of:

determining the paths of points about the impassable object (9, 11, 33, 41, 200, 202, 204); analyzing whether there is more than one path of points about the impassable object (9, 11, 33, 41, 200, 202, 204) and calculating the distance along each path of points; and selecting the path of points about the impassable object (9, 11, 33, 41, 200, 202, 204) that has the shorter distance.

- 8. The method of Claim 6, further comprising the step of optimizing the distance of the path of points between the beginning position (A, D, F, X) and the selectable position (B, C, E, G, H, Y, Z) by forming new paths of points between any two nodes (15, 16, 23, 25, 31, N1-N20) where the distance between the two nodes (15, 16, 23, 25, 31, N1-N20) along the new path of points is less than the distance between the two nodes (15, 16, 23, 25, 31, N1-N20) on the path of points, and the new path of points does not include points within any impassable object (9, 11, 33, 41, 200, 202, 204).
- 35 9. The method of Claim 6, wherein the step of optimizing the distance of the path of points comprises:

determining the paths of points about each impassable object (9, 11, 33, 41, 200, 202, 204); calculating the distance from the beginning position (A, D, F, X) to the selectable position (B, C, E, G, H, Y, Z) along all combinations of paths about each impassable object (9, 11, 33, 41, 200, 202, 204); and selecting the combination of paths about the impassable objects (9, 11, 33, 41, 200, 202, 204) that has the shortest total distance from the beginning position (A, D, F, X) the selectable position (B, C, E, G, H, Y, Z).

10. The method of Claim 2, wherein said step of establishing a locus of points intermediate the beginning position (A, D, F, X) and the selectable position (B, C, E, G, H, Y, Z) is performed by recalculating and proceeding along the trajectory (19, 21, 270) from the beginning position (A, D, F, X) to the node (15, 16, 23, 25, 31, N1-N20) of the avoidance path (13, 17, 19, 21, 43, 206, 208, 210) that is closest to the

20

30

35

45

selectable position (B, C, E, G, H, Y, Z) and is an endpoint of the incremental trajectory that the direct trajectory (12, 14, 45, 212, 214) inters cts.

 The method of Claim 6, further comprising the steps of:

analyzing an exit trajectory (27, 29, 274) from the farthest intersection (I2, I4, I6, 37, 49) and the nodes (15, 16, 23, 25, 31, N1-N20) that define the incremental trajectory which intersects the direct trajectory (12, 14, 45, 212, 214) to determine if other impassable objects (9, 11, 33, 41, 200, 202, 204) will be encountered; and selecting the exit trajectory (27, 29, 274) that does not intersect with another impassable object (9, 11, 33, 41, 200, 202, 204).

12. The method of Claim 6, wherein the step of proceeding along the avoidance path (13, 17, 19, 21, 43, 206, 208, 210) further comprising the steps of:

determining whether the avoidance path (13, 17, 19, 21, 43, 206, 208, 210) is closed; calculating the distance from the closest intersection (I1, I3, I5, 35, 47) to the farthest intersection (I2, I4, I6, 37, 49) along each path; and selecting the path from the closest intersection (I1, I3, I5, 35, 47) to the farthest intersection (I2, I4, I6, 37, 49) having the shortest distance.

13. A method for establishing a contiguous path of movement between a beginning position (A, D, F, X) and a selectable position (B, C, E, G, H, Y, Z) for a computer controlled display, said method comprising the steps of:

providing coordinates for the beginning position (A, D, F, X) and the selectable position (B, C, E, G, H, Y, Z);

defining an avoidance path (13, 17, 19, 21, 43, 206, 208, 210) of coordinates about each impassable object (9, 11, 33, 41, 200, 202, 204); segmenting the display area into a plurality of sectors (51-65);

providing at least one freeway 67 between remote sectors (51-65) of the display said freeway traversing the major spacings between remote sectors of the display and being shorter than a traversing avoidance path between said remote sectors;

calculating a direct trajectory (12, 14, 45, 212, 214) between the beginning position (A, D, F, X) and the selectable position (B, C, E, G, H, Y, 7).

comparing the direct trajectory (12, 14, 45, 212, 214) to the avoidance paths (13, 17, 19, 21, 43, 206, 208, 210) for intersections (I1-I6, 35, 37,

47, 49) therebetween and for each avoidanc path (13, 17, 19, 21, 43, 206, 208, 210) determining a closest intersection (11, 13, 15, 35, 47) and a farthest inters ction (37, 49, 12, 14, 16); analyzing the coordinate data at positions along the avoidance path (13, 17, 19, 21, 43, 206, 208, 210) between the closest (11, 13, 15, 35, 47) and farthest intersections (37, 49, 12, 14, 16) to determine whether the sector (51-65) includes any freeways 67 in the direction of the selectable position (B, C, E, G, H, Y, Z); and establishing a locus of points defined by the path traveled by:

a) if there are no intersections, proceeding in the direction of the direct trajectory (12, 14, 45, 212, 214) toward the selectable position (B, C, E, G, H, Y, Z) until the selectable position (B, C, E, G, H, Y, Z) is reached, b) if there is at least one intersection, proceeding from the closest intersection (I1, 13, 15, 35, 47) toward the farthest intersection (37, 49, 12, 14, 16) for any avoidance path (13, 17, 19, 21, 43, 206, 208, 210) encountered by following the avoidance path (13, 17, 19, 21, 43, 206, 208, 210) and entering, traversing and exiting any freeway 67 in the direction of the selectable position (B, C, E, G, H, Y, Z); and c) exiting the avoidance path (13, 17, 19, 21, 43, 206, 208, 210) near the farthest intersection (37, 49, I2, I4, I6) along the trajectory (12, 14, 45, 212, 214) toward the selectable position (B, C, E, G, H, Y, Z).

14. The method of Claim 13, wherein the step of analyzing the coordinate data further comprises the steps of:

analyzing coordinate data along the avoidance path (13, 17, 19, 21, 43, 206, 208, 210) between the closest intersection (11, 13, 15, 35, 47) and the farthest intersection (37, 49, 12, 14, 16) to identify the sectors (51-65) in which the coordinates are positioned;

identifying any freeways 67 in the sectors (51-65) identified;

ascertaining whether the identified freeways 67 are aligned in the direction of the selectable position (B, C, E, G, H, Y, Z);

determining whether the distance along the freeway 67 between two sectors (51-65) is less than the distance along the avoidance path (13, 17, 19, 21, 43, 206, 208, 210) between the two sectors (51-65).

 The method of Claim 13, wherein the step of proceeding from the closest intersection (I1, I3, I5, 35,

12

15

20

30

40

45

50

55

47) to the farthest intersection (37, 49, 12, 14, 16) further comprises the steps of:

proceeding along the avoidanc path (13, 17, 19, 21, 43, 206, 208, 210); determining an access node along the avoidance path (13, 17, 19, 21, 43, 206, 208, 210)

that is closest to the freeway 67; determining a departure node along the avoidance path (13, 17, 19, 21, 43, 206, 208, 210)

ance path (13, 17, 19, 21, 43, 206, 208, 210) that is closest to the selectable position (B, C, E, G, H, Y, Z); entering the freeway 67 at the access node:

entering the freeway 67 at the access node; proceeding along the freeway 67 to the departure node;

exiting the freeway 67 at the departure node; and

proceeding along the direct trajectory (12, 14, 45, 212, 214) toward the selectable position (B, C, E, G, H, Y, Z).

16. The method of Claim 13, further comprising an optimizing step which comprises:

determining the possible paths about the impassable objects (9, 11, 33, 41, 200, 202, 204) intersected by the direct trajectory (12, 14, 45, 212, 214);

optimizing the possible paths about the impassable objects (9, 11, 33, 41, 200, 202, 204); calculating the distance along the optimized possible paths; and

selecting the path with the shortest distance from the optimized possible paths and establishing the locus of points along said shortest path.

17. The method of Claim 16, wherein the step of establishing a locus of points intermediate the beginning position and the selectable position (B, C, E, G, H, Y, Z), further comprises the steps of:

testing for overlap with other impassable objects (9, 11, 33, 41, 200, 202, 204); eliminating any impassable objects (9, 11, 33, 41, 200, 202, 204) from the path of points which are completely overlapped by another impassable object (9, 11, 33, 41, 200, 202, 204); recursing with an exit point from the previous impassable object (9, 11, 33, 41, 200, 202, 204) as the beginning point if a impassable object (9, 11, 33, 41, 200, 202, 204) is partially overlapped; and combining the path returned by recursing with

18. The method of Claim 17, wherein the step of testing for overlap comprises comparing an xit point of a

the path of points.

previous impassable object (9, 11, 33, 41, 200, 202, 204) with an entry and an exit point of a next impassabl object (9, 11, 33, 41, 200, 202, 204) to determine whether the entry and exit points of the next impassable object (9, 11, 33, 41, 200, 202, 204) lie before the exit point of the previous impassable object (9, 11, 33, 41, 200, 202, 204) when traversing the direct trajectory (12, 14, 45, 212, 214) from the beginning point the selectable point.

19. The method of Claim 18, wherein the steps of testing for overlap and eliminating any impassable objects (9, 11, 33, 41, 200, 202, 204) comprise not including the next impassable object (9, 11, 33, 41, 200, 202, 204) in the path of points if the entry and exit point of the next impassable object (9, 11, 33, 41, 200, 202, 204) lie before the exit point of the previous impassable object (9, 11, 33, 41, 200, 202, 204).

20. The method of Claim 18, wherein the recursing step is performed by performing the method with the exit point of the previous impassable object (9, 11, 33, 41, 200, 202, 204) as the beginning position (A, D, F, X) and the selectable position (B, C, E, G, H, Y, Z) is the same, if the entry point of the next impassable object (9, 11, 33, 41, 200, 202, 204) lie before the exit point in the previous impassable object (9, 11, 33, 41, 200, 202, 204) lies after the exit point of the previous impassable object (9, 11, 33, 41, 200, 202, 204).

5 Patentansprüche

 Verfahren zum Etablieren eines ununterbrochenen Weges aus Punkten zwischen einer Anfangsposition (A, D, F, X) und einer auswählbaren Position (B, C, E, G, H, Y, Z) für einen beweglichen Gegenstand auf einer computergesteuerten Anzeige, welche wenigstens einen nicht passierbaren Gegenstand (9, 11, 33, 41, 200, 202, 204) zeigt, mit folgenden Verfahrensschritten:

Vorsehen von Koordinaten für die Anfangsposition (A, D, F, X) und die auwählbare Position (B, C, E, G, H, Y, Z);

Definieren der Position nicht passierbarer Gegenstände (9, 11, 33, 41, 200, 202, 204);

Berechnen einer direkten Trajektorie (12, 14, 45, 212, 214) zwischen der Anfangsposition (A, D, F, X) und der auswählbaren Position (B, C, E, G, H, Y, Z);

Vergleichen d r direkten Trajektori (12, 14, 45, 212, 214) mit der für jeden nicht passierbaren Gegenstand (9, 11, 33, 41, 200, 202, 204) definierten Position; und

20

25

30

45

50

55

Etablieren eines geometrischen Ortes der Punkte zwischen der Anfangsposition (A, D, F, X) und der auswählbaren Position (B, C, E, G, H, Y, Z), wobei dieser geometrisch Ort der Punkte entw der in der Nähe oder auf der direkten Trajektorie (12, 14, 45, 212, 214) liegt, wo die direkte Trajektorie (12, 14, 45, 212, 214) nicht dieselbe Position wie die nicht passierbaren Gegenstände (9, 11, 33, 41, 200, 202, 204) hat, und um die nicht passierbaren Gegenstände (9, 11, 33, 41, 200, 202, 204) herum positioniert ist, wo die direkte Trajektorie (12, 14, 45, 212, 214) und die nicht passierbaren Gegenstände (9, 11, 33, 41, 200, 202, 204) dieselbe Position haben.

 Verfahren nach Anspruch 1, bei dem der Schritt des Definierens der Position der nicht passierbaren Gegenstände (9, 11, 33, 41, 200, 202, 204) ferner folgende Schritte umfaßt:

Auswählen mehrerer Knoten (15, 16, 23, 25, 31, N1-N20) um den nicht passierbaren Gegenstand (9, 11, 33, 41, 200, 202, 204) herum; und

Berechnen mehrerer inkrementeller Trajektorien zwischen den Knoten (15, 16, 23, 25, 31, N1-N20), um einen Ausweichweg (13, 17, 19, 21, 43, 206, 208, 210) zu bilden.

- 3. Verfahren nach Anspruch 1, bei dem der Schritt des Berechnens einer direkten Trajektorie (12, 14, 45, 212, 214) zwischen der Anfangsposition (A, D, F, X) und der auswählbaren Position (B, C, E, G, H, Y, Z) das Berechnen der Steigung und der linearen Konstante eines Liniensegmentes oder eines Vektors zwischen den Koordinaten für die Anfangsposition (A, D, F, X) und die auswählbare Position (B, C, E, G, H, Y, Z) umfaßt.
- Verfahren nach Anspruch 1 oder 2, bei dem der Schritt des Vergleichens der direkten Trajektorie (12, 14, 45, 212, 214) mit der Position der nicht passierbaren Gegenstände (9, 11, 33, 41, 200, 202, 204) eine Ermittlung umfaßt, ob die direkte Trajektorie (12, 14, 45, 212, 214) den Ausweichweg (13, 17, 19, 21, 43, 206, 208, 210) für jeden nicht passierbaren Gegenstand (9, 11, 33, 41, 200, 202, 204) schneidet.
- Verfahren nach Anspruch 4, bei dem der Schritt des Vergleichens der direkten Trajektorie (12, 14, 45, 212, 214) mit dem Ausweichweg (13, 17, 19, 21, 43, 206, 208, 210) zum Auffinden von Schnittpunkten (I1-I6, 35, 37, 47, 49) zwischen diesen die folgenden weiteren Schritte umfaßt:

Berechnen der Steigung und der linearen Kon-

stant der direkten Trajektorie (12, 14, 45, 212, 214);

Berechnen der St igung und der linearen Konstante für jede inkrementelle Trajektorie in j dem Ausweichw g (13, 17, 19, 21, 43, 206, 208, 210); und

Vergleichen der Neigung und der linearen Konstante der direkten Trajektorie (12, 14, 45, 212, 214) mit der Neigung und der linearen Konstante für jede inkrementelle Trajektorie in jedem Ausweichweg (13, 17, 19, 21, 43, 206, 208, 210), um zu ermitteln, ob in dem Bereich der Anzeige Schnittstellen existieren.

6. Verfahren nach Anspruch 2, bei dem der Schritt des Etablierens eines geometrischen Ortes der Punkte zwischen der Anfangsposition (A, D, F, X) und der auswählbaren Position (B, C, E, G, H, Y, Z) die folgenden weiteren Schritte umfaßt:

in einem ersten Ausbildungsschritt, Ausbilden des Weges aus Punkten längs der direkten Trajektorie (12, 14, 45, 212, 214) bis die auswählbare Position (B, C, E, G, H, Y, Z) oder eine Schnittstelle (I1-I6, 35, 37, 47, 49) zwischen der direkten Trajektorie (12, 14, 45, 212, 214) und dem Ausweichweg (13, 17, 19, 21, 43, 206, 208, 210) erreicht wird;

Ausbilden des Weges aus Punkten längs des Ausweichweges (13, 17, 19, 21, 43, 206, 208, 210), bis eine andere Schnittstelle (11-16, 35, 37, 47, 49) zwischen der direkten Trajektorie (12, 14, 45, 212, 214) und dem Ausweichweg (13, 17, 19, 21, 43, 206, 208, 210) erreicht wird; und

Zurückgehen zum Ausbilden des Weges aus Punkten gemäß dem ersten Ausbildungsschritt.

40 7. Verfahren nach Anspruch 6 mit den weiteren Verfahrensschritten:

Ermitteln des Weges aus Punkten um den nicht passierbaren Gegenstand (9, 11, 33, 41, 200, 202, 204);

Analysieren, ob es mehr als einen Weg aus Punkten um den nicht passierbaren Gegenstand (9, 11, 33, 41, 200, 202, 204) gibt, und Berechnen der Distanz längs jedes Weges aus Punkten; und

Auswählen des Weges aus Punkten um den nicht passierbaren Gegenstand (9, 11, 33, 41, 200, 202, 204), welcher die kürzeste Distanz hat.

 Verfahren nach Anspruch 6, mit dem weiteren Verfahrensschritt: Optimieren der Distanz des Weges aus Punkten zwischen d r Anfangsposition (A, D,

15

30

40

45

50

F, X) und der auswählbaren Position (B, C, E, G, H, Y, Z) durch Ausbilden neuer Wege aus Punkten zwischen beliebigen zwei Knoten (15, 16, 23, 25, 31, N1-N20), wobei die Distanz zwischen den zw i Knoten (15, 16, 23, 25, 31, N1-N20) längs des neuen Weges aus Punkten g ringer ist als die Distanz zwischen den zwei Knoten (15, 16, 23, 25, 31, N1-N20) auf dem Weg aus Punkten und wobei der neue Weg aus Punkten nicht Punkte innerhalb irgendeines nicht passierbaren Gegenstands (9, 11, 33, 41, 200, 202, 204) enthält.

- Verfahren nach Anspruch 6, bei dem der Schritt des Optimierens der Distanz des Weges aus Punkten folgende Verfahrensschritte umfaßt;
 - Ermitteln des Weges aus Punkten um jeden nicht passierbaren Gegenstand (9, 11, 33, 41, 200, 202, 204);
 Berechnen der Distanz von der Anfangsposition (A, D, F, X) zu der auswählbaren Position (B, C, E, G, H, Y, Z) längs aller Kombinationen aus Wegen um jeden nicht passierbaren Gegenstand (9, 11, 33, 41, 200, 202, 204); und Auswählen der Kombination aus Wegen um die nicht passierbaren Gegenstände (9, 11, 33, 41, 200, 202, 204), welche die kürzeste Gesamtdistanz von der Anfangsposition (A, D, F, X) zu der auswählbaren Position (B, C, E, G, H, Y, Z) hat.
- 10. Verfahren nach Anspruch 2, bei dem der Schritt des Etablierens eines geometrischen Ortes aus Punkten zwischen der Anfangsposition (A, D, F, X) und der auswählbaren Position (B, C, E, G, H, Y, Z) durch Neuberechnung und Fortschreiten längs der Trajektorie (19, 21, 270) von einer Anfangsposition (A, D, F, X) zu dem Knoten (15, 16, 23, 25, 31, N1-N20) des Ausweichweges (13, 17, 19, 21, 43, 206, 208, 210) erfolgt, welcher am nächsten bei der auswählbaren Position (B, C, E, G, H, Y, Z) liegt und ein Endpunkt der inkrementellen Trajektorie ist, welche die direkte Trajektorie (12, 14, 45, 212, 214) schneidet.
- Verfahren nach Anspruch 6 mit folgenden weiteren Verfahrensschritten:

Analysieren einer Ausgangstrajektorie (27, 29, 274) von dem entferntesten Schnittpunkt (12, 14, 16, 37, 49) und der Knoten (15, 16, 23, 25, 31, N1-N20), welche die inkrementelle Trajektorie definieren, die die direkte Trajektorie (12, 14, 45, 212, 214) schneidet, um zu ermitteln, ob weitere nicht passierbare Gegenstände (9, 11, 33, 41, 200, 202, 204) getroffen werden; und Auswählen der Ausgangstrajektorie (27, 29,

274), welche keinen weiter in nicht passierbaren Gegenstand (9, 11, 33, 41, 200, 202, 204) schneidet.

 Verfahren nach Anspruch 6, bei dem der Schritt des Fortschreitens längs des Ausweichweges (13, 17, 19, 21, 43, 206, 208, 210) die folgenden weiteren Verfahrensschritte umfaßt:

> Ermitteln, ob der Ausweichweg (13, 17, 19, 21, 43, 206, 208, 210) geschlossen ist; Berechnen der Distanz von dem nächstgelege-

> nen Schnittpunkt (I1, I3, I5, 35, 47) zu dem entferntesten Schnittpunkt (I2, I4, I6, 37, 49) längs jedes Weges; und

> Auswählen des Weges von dem nächstgelegenen Schnittpunkt (I1, I3, I5, 35, 47) zu dem entferntesten Schnittpunkt (I2, I4, I6, 37, 49) mit der kürzesten Distanz.

13. Verfahren zum Etablieren eines ununterbrochenen Bewegungsweges zwischen einer Anfangsposition (A, D, F, X) und einer auswählbaren Position (B, C, E, G, H, Y, Z) für eine rechnergesteuerte Anzeige, mit folgenden Verfahrensschritten:

Vorsehen von Koordinaten für die Anfangsposition (A, D, F, X) und die auswählbare Position (B, C, E, G, H, Y, Z);

Definieren eines Ausweichweges (13, 17, 19, 21, 43, 206, 208, 210) aus Koordinaten um jeden nicht passierbaren Gegenstand (9, 11, 33, 41, 200, 202, 204) herum;

Segmentieren des Anzeigebereiches in mehrere Sektoren (51-65);

Vorsehen wenigstens einer Autobahn 67 zwischen entfernten Sektoren (51-65) der Anzeige, wobei die Autobahn die

Hauptabstände zwischen entfernten Sektoren der Anzeige durchläuft und kürzer als ein querlaufender Ausweichweg zwischen den entfernten Sektoren ist;

Berechnen einer direkten Trajektorie (12, 14, 45, 212, 214) zwischen der Anfangsposition (A, D, F, X) und der auswählbaren Position (B, C, E, G, H, Y, Z);

Vergleichen der direkten Trajektorie (12, 14, 45, 212, 214) mit den Ausweichwegen (13, 17, 19, 21, 43, 206, 208, 210), um Schnittpunkte (I1-I6, 35, 37, 47, 49) zwischen diesen zu finden, und Ermitteln eines nächstgelegenen Schnittpunktes (I1, I3, If, 35, 47, 49) und eines am weitesten entfernten Schnittpunktes (37, 49, I2, I4, I6) für jeden Ausweichweg (13, 17, 19, 21, 43, 206, 208, 210);

Analysieren der Koordinatendaten bei Positionen längs des Ausweichweges (13, 17, 19, 21, 43, 206, 208, 210) zwischen dem nächstgele-

genen (I1, I3, I5, 35, 47) und dem am weitesten entfernten Schnittpunkt (37, 49, I2, I4, I6), um zu ermitt In, ob der S ktor (51-65) irg ndwelche Autobahnen 67 in der Richtung der auswählbaren Position (B, C, E, G, H, Y, Z) enthält; und

Etablieren eines geometrischen Ortes aus Punkten, welcher durch den zurückgelegten Weg definiert wird, indem

a) wenn es keine Schnittstellen gibt, in der Richtung der direkten Trajektorie (12, 14, 45, 212, 214) auf die auswählbare Position (B, C, E, G, H, Y, Z) fortgeschritten wird, bis die auswählbare Position (B, C, E, G, H, Y, Z) erreicht ist;

b) wenn es wenigstens einen Schnittpunkt gibt, von dem nächstgelegenen Schnittpunkt (I1, I3, I5, 35, 47) in Richtung zu dem am weitesten entfernten Schnittpunkt (37, 49, I2, I4, I6) fortgeschritten wird, indem dem Ausweichweg (13, 17, 19, 21, 43, 206, 208, 210) gefolgt wird, wenn ein solcher aufgetroffen wird, und jede Autobahn 67 in der Richtung der auswählbaren Position (B, C, E, G, H, Y, Z) betreten, durchlaufen und verlassen wird; und

c) der Ausweichweg (13, 17, 19, 21, 43, 206, 208, 210) in der Nähe der am weitesten entfernten Schnittstelle (37, 49, I2, I4, I6) längs der Trajektorie (12, 14, 45, 212, 214) in Richtung auf die auswählbare Position (B, C, E, G, H, Y, Z) verlassen wird.

14. Verlahren nach Anspruch 13, bei dem der Schritt des Analysierens der Koordinatendaten ferner die folgenden Schritte umfaßt:

Analysieren von Koordinatendaten längs des Ausweichweges (13, 17, 19, 21, 43, 206, 208, 210) zwischen der nächstgelegenen Schnittstelle (I1, I3, I5, 35, 47) und der am weitesten entfernten Schnittstelle (37, 49, I2, I4, I6), um die Sektoren (51-65) zu identifizieren, in denen die Koordinaten liegen;

Identifizieren von Autobahnen 67 in den identifizierten Sektoren (51-65):

Feststellen, ob die identifizierten Autobahnen 67 in der Richtung der auswählbaren Position (B, C, E, G, H, Y, Z) ausgerichtet sind;

Ermitteln, ob die Distanz längs der Autobahn 67 zwischen zwei Sektoren (51-65) kleiner ist als die Distanz längs des Ausweichweges (13, 17, 19, 21, 43, 206, 208, 210) zwischen den beiden Sektoren (51-65).

 Verfahren nach Anspruch 13, bei dem der Schritt des Fortschreitens von der nächstgelegenen Schnittstelle (I1, I3, I5, 35, 47) zu der am weitesten entfernten Schnittstelle (37, 49, I2, I4, I6) ferner die folgend in Schritte umfaßt:

Fortschreiten längs des Ausweichweges (13, 17, 19, 21, 43, 206, 208, 210);

Ermitteln eines Zugangsknotens längs des Ausweichweges (13, 17, 19, 21, 43, 206, 208, 210), der am nächsten bei der Autobahn 67 liegt;

Ermitteln eines Austrittsknotens längs des Ausweichweges (13, 17, 19, 21, 43, 206, 208, 210), der am nächsten bei der auswählbaren Position (B, C, E, G, H, Y, Z) liegt;

Eintreten in die Autobahn 67 bei dem Zugangsknoten;

Fortschreiten längs der Autobahn 67 zu dem Austrittsknoten;

Verlassen der Autobahn 67 bei dem Austrittsknoten; und

Fortschreiten längs der direkten Trajektorie (12, 14, 45, 212, 214) in Richtung auf die auswählbare Position (B, C, E, G, H, Y, Z).

 Verfahren nach Anspruch 13 mit weiterhin einem Optimierungsschritt, bei dem

die möglichen Wege um die nicht passierbaren Gegenstände (9, 11, 33, 41, 200, 202, 204) ermittelt werden, welche von der direkten Trajektorie (12, 14, 45, 212, 214) geschnitten werden; die möglichen Wege um die nicht passierbaren Gegenstände (9, 11, 33, 41, 200, 202, 204) optimiert werden;

die Distanz längs der optimierten möglichen Wege berechnet wird; und

der Weg mit der kürzesten Distanz unter den optimierten möglichen Wegen ausgewählt wird und der geometrische Ort der Punkte längs dieses kürzesten Weges eingerichtet wird.

17. Verfahren nach Anspruch 16, bei dem der Schritt des Etablierens eines geometrischen Ortes aus Punkten zwischen der Anfangsposition und der auswählbaren Position (B, C, E, G, H, Y, Z) ferner die folgenden Schritte umfaßt:

Untersuchen, ob es eine Überdeckung mit anderen nicht passierbaren Gegenständen (9, 11, 33, 41, 200, 202, 204) gibt;

Eliminieren aller nicht passierbaren Gegenstände (9, 11, 33, 41, 200, 202, 204) aus dem Weg aus Punkten, welche vollständig von ein m and ren nicht passierbaren Gegenstand (9, 11, 33, 41, 200, 202, 204) überdeckt w rd n:

rekursives Fortfahren mit einem Ausgangspunkt von dem vorhergehenden nicht passier-

40

45

50

35

baren Gegenstand (9, 11, 33, 41, 200, 202, 204) als dem Anfangspunkt, wenn ein nicht passi rbarer Gegenstand (9, 11, 33, 41, 200, 202, 204) teilweis überdeckt wird; und Kombinieren des Weges, auf dem bei dem rekursiven Fortfahren zurückgegangen wurde, mit dem Weg aus Punkten.

- 18. Verlahren nach Anspruch 17, bei dem der Schritt des Überprüfens von Überdeckungen das Vergleichen eines Ausgangspunktes eines vorhergehenden nicht passierbaren Gegenstandes (9, 11, 33, 41, 200, 202, 204) mit einem Eingangs- und einem Ausgangspunkt eines nächsten nicht passierbaren Gegenstands (9, 11, 33, 41, 200, 202, 204) umfaßt, um zu ermitteln, ob die Eingangs- und Ausgangspunkte des nächsten nicht passierbaren Gegenstandes (9, 11, 33, 41, 200, 202, 204) vor dem Ausgangspunkt des vorhergehenden nicht passierbaren Gegenstands (9, 11, 33, 41, 200, 202, 204) liegen, wenn die direkte Trajektorie (12, 14, 45, 212, 214) von dem Anfangspunkt zu dem auswählbaren Punkt durchlaufen wird.
- 19. Verfahren nach Anspruch 18, bei dem in dem Schritt des Überprüfens von Überdeckungen und Eliminierens nicht passierbarer Gegenstände (9, 11, 33, 41, 200, 202, 204) der nächste nicht passierbare Gegenstand (9, 11, 33, 41, 200, 202, 204) nicht in den Weg aus Punkten eingeschlossen wird, wenn der Eingangs- und der Ausgangspunkt des nächsten nicht passierbaren Gegenstandes (9, 11, 33, 41, 200, 202, 204) vor dem Ausgangspunkt des vorhergehenden nicht passierbaren Gegenstandes (9, 11, 33, 41, 200, 202, 204) liegen.
- 20. Verfahren nach Anspruch 18, bei dem der Schritt des rekursiven Fortfahrens durchgeführt wird, indem das Verfahren mit dem Ausgangspunkt des vorhergehenden nicht passierbaren Gegenstandes (9, 11, 33, 41, 200, 202, 204) als der Anfangsposition (A, D, F, X) durchgeführt wird und die auswählbare Position (B, C, E, G, H, Y, Z) die gleiche ist, wenn der Eingangspunkt des nächsten nicht passierbaren Gegenstandes (9, 11, 33, 41, 200, 202, 204) vor dem Ausgangspunkt des vorhergehenden nicht passierbaren Gegenstandes (9, 11, 33, 41, 200, 202, 204) liegt und der Ausgangspunkt des nächsten nicht passierbaren Gegenstandes (9, 11, 33, 41, 200, 202, 204) nach dem Ausgangspunkt des vorhergehenden nicht passierbaren Gegenstandes (9, 11, 33, 41, 200, 202, 204) liegt.

Rev ndications

 Procédé pour établir un chemin contigu de points entre une position de départ (A, D, F, X) et une position sélectionnable (B, C, E, G, H, Y, Z) pour un objet mobile sur un affichage commandé par ordinat ur compr nant au moins un objet infranchissable (9, 11, 33, 41, 200, 202, 204), ce procédé comprenant les étapes suivantes:

attribuer des coordonnées à la position de départ (A, D, F, X) et à la position sélectionnable (B, C, E, G, H, Y, Z) définir la position de tout objet infranchissable (9, 11, 33, 41, 200, 202, 204); calculer une trajectoire directe (12, 14, 45, 212, 214) entre la position de départ (A, D, F, X) et la position sélectionnable (B, C, E, G, H, Y, Z); comparer la trajectoire directe (12, 14, 45, 212, 214) à la position définie pour chaque objet infranchissable (9, 11, 33, 41, 200, 202, 204); et établir un ensemble de points entre la position de départ (A, D, F, X) et la position sélectionnable (B, C, E, G, H, Y, Z), cet ensemble de points étant positionné près de ou sur la trajectoire directe (12, 14, 45, 212, 214) là où la trajectoire directe (12, 14, 45, 212, 214) n'a pas la même position que les objets infranchissables (9, 11, 33, 41, 200, 202, 204) et étant positionné autour de l'objet infranchissable (9, 11, 33, 41, 200, 202, 204) là où la trajectoire directe (12, 14, 45, 212, 214) et les objets infranchissables (9, 11, 33, 41, 200, 202, 204) ont la même position.

2. Procédé selon la revendication 1, dans lequel l'étape consistant à définir la position de tout objet infranchissable (9, 11, 33, 41, 200, 202, 204) comprend en outre les étapes suivantes :

sélectionner une pluralité de noeuds (15, 16, 23, 25, 31, N1-N20) autour de l'objet infranchissable (9, 11, 33, 41, 200, 202, 204); et calculer une pluralité de trajectoires incrémentielles entre les noeuds (15, 16, 23, 25, 31, N1-N20) pour former un chemin d'évitement (13, 17, 19, 21, 43, 206, 208, 210).

- Procédé selon la revendication 1, dans lequel l'étape de calcul d'une trajectoire directe (12, 14, 45, 212, 214) entre la position initiale (A, D, F, X) et la position sélectionnable (B, C, E, G, H, Y, Z) comprend le calcul de la pente et du module d'un segment de droite ou d'un vecteur entre les coordonnées de la position de départ (A, D, F, X) et de la position sélectionnable (B, C, E, G, H, Y, Z).
 - 4. Procédé selon la revendication 1 ou 2, dans lequ l'étape de comparaison de la trajectoire directe (12, 14, 45, 212, 214) à la position des objets infranchissables (9, 11, 33, 41, 200, 202, 204) comprend l'étape consistant à déterminer si la trajectoire directe

10

20

30

35

40

50

(12, 14, 45, 212, 214) coupe le chemin d'évitement (13, 17, 19, 21, 43, 206, 208, 210) pour chaque objet infranchissable (9, 11, 33, 41, 200, 202, 204).

5. Procédé selon la revendication 4, dans lequel l'étape de comparaison de la trajectoir directe (12, 14, 45, 212, 214) aux chemins d'évitement (13, 17, 19, 21, 43, 206, 208, 210) pour déterminer des intersections (I1-I6, 35, 37, 47, 49) entre eux comprend en outre les étapes suivantes:

calculer la pente et le module de la trajectoire directe (12, 14, 45, 212, 214); calculer la pente et le module de chaque trajectoire incrémentielle dans chaque chemin d'évitement (13, 17, 19, 21, 43, 206, 208, 210); et comparer la pente et le module de la trajectoire directe (12, 14, 45, 212, 214) à la pente et au module de chaque trajectoire incrémentielle dans chaque chemin d'évitement (13, 17, 19, 21, 43, 206, 208, 210) pour déterminer s'il existe des intersections dans le domaine de l'affichage.

6. Procédé selon la revendication 2, dans lequel l'étape d'établissement d'un ensemble de points situés entre la position de début (A, D, F, X) et la position sélectionnable (B, C, E, G, H, Y, Z) comprend en outre les étapes suivantes :

dans une première étape, former le chemin de points le long de la trajectoire directe (12, 14, 45, 212, 214) jusqu'à ce que la position sélectionnable (B, C, E, G, H, Y, Z) ou une intersection (11-16, 35, 37, 47, 49) entre la trajectoire directe (12, 14, 45, 212, 214) et le chemin d'évitement (13, 17, 19, 21, 43, 206, 208, 210) soit atteinte ;

former le chemin de points le long du chemin d'évitement (13, 17, 19, 21, 43, 206, 208, 210) jusqu'à ce qu'une autre intersection (I1-I6, 35, 37, 47, 49) entre la trajectoire directe (12, 14, 45, 212, 214) et le chemin d'évitement (13, 17, 19, 21, 43, 206, 208, 210) soit atteinte; et revenir à la formation du chemin de points selon la première étape de formation.

Procédé selon la revendication 6, comprenant en outre les étapes suivantes :

déterminer les chemins de points autour de l'objet infranchissable (9, 11, 33, 41, 200, 202, 204);

analyser s'il existe plus d'un chemin de points autour de l'objet infranchissable (9, 11, 33, 41, 200, 202, 204) et calculer la longueur de chaque chemin de points ; et

sélectionner le chemin de points autour de l'ob-

jet infranchissable (9, 11, 33, 41, 200, 202, 204) de plus courte longueur.

- 8. Procédé selon la revendication 6, comprenant en outre l'étape consistant à optimiser la longueur du chemin de points ntre la position de départ (A, D, F, X) et la position sélectionnable (B, C, E, G, H, Y, Z) en formant de nouveaux chemins de points entre deux noeuds quelconques (15, 16, 23, 25, 31, N1-N20) dans laquelle la distance entre les deux noeuds (15, 16, 23, 25, 31, N1-N20) le long du nouveau chemin de points est inférieure à la distance entre les deux noeuds (15, 16, 23, 25, 31, N1-N20) sur le chemin de points, et le nouveau chemin de points ne comprend pas de points à l'intérieur de tout objet infranchissable (9, 11, 33, 41, 200, 202, 204).
- 9. Procédé selon la revendication 6, dans lequel l'étape d'optimisation de la longueur du chemin de points comprend :

déterminer les chemins de points autour de chaque objet infranchissable (9, 11, 33, 41, 200, 202, 204); calculer la distance à partir de la position de départ (A, D, F, X) vers la position sélectionnable (B, C, E, G, H, Y, Z) pour toutes les combinaisons de chemins autour de chaque objet infranchissable (9, 11, 33, 41, 200, 202, 204); et sélectionner la combinaison de chemins autour des objets infranchissables (9, 11, 33, 41, 200, 202, 204) qui présente la longueur totale la plus courte à partir de la position de départ (A, D, F, X) vers la position sélectionnable (B, C, E, G, H, Y, Z).

- 10. Procédé selon la revendication 2, dans lequel l'étape consistant à établir un ensemble de points intermédiaires entre la position de départ (A, D, F, X) et la position sélectionnable (B, C, E, G, H, Y, Z) est réalisée en recalculant et en procédant le long de la trajectoire (19, 21, 270) à partir de la position de départ (A, D, F, X) vers le noeud (15, 16, 23, 25, 31, N1-N20) du chemin d'évitement (13, 17, 19, 21, 43, 206, 208, 210) qui est le plus proche de la position sélectionnable (B, C, E, G, H, Y, Z) et est un point terminal de la trajectoire incrémentielle que coupe la trajectoire directe (12, 14, 45, 212, 214).
- Procédé selon la revendication 6, comprenant en outre les étapes suivantes :

analyser une traj ctoire de sortie (27, 29, 274) à partir de l'intersection la plus lointain (12, 14, 16, 37, 49) et d s noeuds (15, 16, 23, 25, 31, N1-N20) qui définissent la trajectoire incrémentielle qui coupe la trajectoire directe (12, 14, 45,

20

30

35

212, 214) pour déterminer si d'autr s objets infranchissables (9, 11, 33, 41, 200, 202, 204) seront rencontrés; t sélectionn r la trajectoir de sortie (27, 29, 274) qui ne coupe aucun autre objet infranchissable (9, 11, 33, 41, 200, 202, 204).

12. Procédé selon la revendication 6, dans lequel l'étape consistant à procéder le long du chemin d'évitement (13, 17, 19, 21, 43, 206, 208, 210) comprend en outre les étapes suivantes :

déterminer si le chemin d'évitement (13, 17, 19, 21, 43, 206, 208, 210) est fermé; calculer la distance à partir de l'intersection la plus proche (11, 13, 15, 35, 47) jusqu'à l'intersection la plus lointaine (12, 14, 16, 37, 49) le long de chaque chemin; et sélectionner le chemin de l'intersection la plus proche (11, 13, 15, 35, 47) à l'intersection la plus lointaine (12, 14, 16, 37, 49) ayant la plus courte longueur.

13. Procédé d'établissement d'un chemin contigu de déplacement entre une position de départ (A, D, F, X) et une position sélectionnable (B, C, E, G, H, Y, Z) pour un affichage commandé par ordinateur, ce procédé comprenant les étapes suivantes :

> attribuer des coordonnées pour la position de départ (A, D, F, X) et pour la position sélectionnable (B, C, E, G, H, Y, Z);

> définir un chemin d'évitement (13, 17, 19, 21, 43, 206, 208, 210) de coordonnées autour de chaque objet infranchissable (9, 11, 33, 41, 200, 202, 204);

segmenter la zone d'affichage en plusieurs secteurs (51-65);

prévoir au moins une voie libre (67) entre les secteurs éloignés (51-65) de l'affichage, cette voie libre passant par les plus grands écarts entre les secteurs éloignés de l'affichage et étant plus courte qu'un chemin d'évitement traversant entre les secteurs éloignés;

calculer une trajectoire directe (12, 14, 45, 212, 214) entre la position de départ (A, D, F, X) et la position sélectionnable (B, C, E, G, H, Y, Z); comparer la trajectoire directe (12, 14, 45, 212, 214) aux chemins d'évitement (13, 17, 19, 21, 43, 206, 208, 210) pour déterminer des intersections (I1-I6, 35, 37, 47, 49) entre eux et, pour chaque chemin d'évitement (13, 17, 19, 21, 43, 206, 208, 210), déterminer l'intersection la plus proche (I1, I3, I5, 35, 47) et l'intersection la plus lointaine (37, 49, I2, I4, I6);

analyser les données de coordonné s aux positions le long du chemin d'évitement (13, 17, 19, 21, 43, 206, 208, 210) entre les intersec-

tions la plus proche (I1, I3, I5, 35, 47) et la plus lointaine (37, 49, I2, I4, I6) pour déterminer si le s cteur (51-65) comprend des voi s libres (67) dans la direction de la position sélectionnable (B, C, E, G, H, Y, Z); et établir un ensemble de points définis par le chemin parcouru, en :

a) s'il n'y a pas d'intersection, procédant dans la direction de la trajectoire directe (12, 14, 45, 212, 214) vers la position sélectionnable (B, C, E, G, H, Y, Z) jusqu'à ce que la position sélectionnable (B, C, E, G, H, Y, Z) soit atteinte;

b) s'il y a au moins une intersection, procédant à partir de l'intersection la plus proche (11, 13, 15, 35, 47) vers l'intersection la plus lointaine (37, 49, 12, 14, 16) pour tout chemin d'évitement (13, 17, 19, 21, 43, 206, 208, 210) rencontré en suivant le chemin d'évitement (13, 17, 19, 21, 43, 206, 208, 210) et en entrant, traversant et sortant de toute voie libre (67) dans la direction de la position sélectionnable (B, C, E, G, H, Y, Z); et c) sortant des chemins d'évitement (13, 17, 19, 21, 43, 206, 208, 210) près de l'intersection la plus proche (37, 49, 12, 14, 16) le long de la trajectoire (12, 14, 45, 212, 214) vers la position sélectionnable (B, C, E, G, H, Y, Z).

14. Procédé selon la revendication 13, dans lequel l'étape d'analyse des données de coordonnées comprend en outre les étapes suivantes :

> analyser les données de coordonnées le long du chemin d'évitement (13, 17, 19, 21, 43, 206, 208, 210) entre l'intersection la plus proche (11, 13, 15, 35, 47) et l'intersection la plus lointaine (37, 49, 12, 14, 16) pour identifier les secteurs (51-65) dans lesquels les coordonnées sont positionnées;

> identifier toute voie libre (67) dans les secteurs (51-65) identifiés ;

vérifier si les voies libres identifiées (67) sont alignées dans la direction de la position sélectionnable (B, C, E, G, H, Y, Z);

déterminer si la distance le long de la voie libre (67) entre deux secteurs (51-65) est inférieure à la distance le long du chemin d'évitement (13, 17, 19, 21, 43, 206, 208, 210) entre les deux secteurs (51-65).

15. Procédé s lon la revendication 13, dans lequel l'étape consistant à procéder à partir de l'intersection la plus proche (I1, I3, I5, 35, 47) vers l'intersection la plus lointaine (37, 49, I2, I4, I6) comprend en outr

15

25

30

35

40

45

50

55

procéder le long du chemin d'évit ment (13, 17, 19, 21, 43, 206, 208, 210);

déterminer un noeud d'accès le long du ch min d'évitement (13, 17, 19, 21, 43, 206, 208, 210) qui est le plus proche de la voie libre (67); déterminer un noeud de départ I long du chemin d'évitement (13, 17, 19, 21, 43, 206, 208, 210) qui est le plus proche de la position sélectionnable (B, C, E, G, H, Y, Z);

entrer dans la voie libre (67) au niveau du noeud d'accès;

procéder le long de la voie libre (67) vers le noeud de départ;

sortir de la voie libre (67) au niveau du noeud de départ ; et

procéder le long de la trajectoire directe (12, 14, 45, 212, 214) vers la position sélectionnable (B, C, E, G, H, Y, Z).

16. Procédé selon la revendication 13, comprenant en outre une étape d'optimisation qui comprend :

déterminer les chemins possibles autour des objets infranchissables (9, 11, 33, 41, 200, 202, 204) coupés par la trajectoire directe (12, 14, 45, 212, 214);

optimiser les chemins possibles autour des objets infranchissables (9, 11, 33, 41, 200, 202, 204);

calculer la distance le long des chemins possibles optimisés ; et

sélectionner le chemin de plus courte longueur à partir des chemins possibles optimisés et établir l'ensemble des points le long du chemin le plus court.

17. Procédé selon la revendication 16, dans lequel l'étape consistant à établir un ensemble de points entre la position de départ et la position sélectionnable (B, C, E, G, H, Y, Z) comprend en outre les étapes suivantes :

vérifier s'il y a recouvrement avec d'autres objets infranchissables (9, 11, 33, 41, 200, 202, 204)

éliminer du chemin de points tous les objets infranchissables (9, 11, 33, 41, 200, 202, 204) qui sont complètement recouverts par un autre objet infranchissable (9, 11, 33, 41, 200, 202, 204);

repartir d'un point de départ à partir de l'objet infranchissable précédent (9, 11, 33, 41, 200, 202, 204) en tant que point de départ si un objet infranchissabl (9, 11, 33, 41, 200, 202, 204) est partiellement en recouvrement; et combiner le chemin obtenu de façon récursive avec le chemin de points.

- 18. Procédé selon la revendication 17, dans lequel l'étape de vérification de recouvr ment comprend l'étape consistant à comparer un point de sortie de l'objet infranchissable précédent (9, 11, 33, 41, 200, 202, 204) à un point d'entrée et un point de sortie d'un objet infranchissable suivant (9, 11, 33, 41, 200, 202, 204) pour déterminer si les points d'entrée et de sortie de l'objet infranchissable suivant (9, 11, 33, 41, 200, 202, 204) se trouvent avant le point de sortie de l'objet infranchissable précédent (9, 11, 33, 41, 200, 202, 204) quand on passe par la trajectoire directe (12, 14, 45, 212, 214) à partir du point de départ vers le point sélectionnable.
- 19. Procédé selon la revendication 18, dans lequel les étapes de vérification de recouvrement et d'élimination de tout objet infranchissable (9, 11, 33, 41, 200, 202, 204) comprennent les étapes consistant à ne pas inclure l'objet infranchissable suivant (9, 11, 33, 41, 200, 202, 204) dans le chemin de points si les points d'entrée et de sortie de l'objet infranchissable suivant (9, 11, 33, 41, 200, 202, 204) se trouvent avant le point de sortie de l'objet infranchissable précédent (9, 11, 33, 41, 200, 202, 204).
- 20. Procédé selon la revendication 18, dans lequel l'étape récursive est effectuée en mettant en oeuvre le procédé avec le point de sortie de l'objet infranchissable précédent (9, 11, 33, 41, 200, 202, 204) en tant que position de départ (A, D, F, X) et dans lequel la position sélectionnable (B, C, E, G, H, Y, Z) est identique, si le point d'entrée de l'objet infranchissable suivant (9, 11, 33, 41, 200, 202, 204) se trouve avant le point de sortie de l'objet infranchissable précédent et le point de sortie de l'objet infranchissable suivant (9, 11, 33, 41, 200, 202, 204) se trouve après le point de sortie de l'objet infranchissable précédent (9, 11, 33, 41, 200, 202, 204).

150,140 150,120 INTERCEPT 140,100 130, 90

100, 90 INTERCEP 50,150

50,180

150,150

Tiqure 2

Figure 7

