Trabalho de Álgebra Linear do 2º período do Curso de Ciência de Dados e Inteligência Artificial(FGV - EMAp)

- Professor: Yuri F. Saporito
- Feito por:
  - Lucas Hwang Cuan
  - Yonathan Rabinovici Gherman

# Regressão Logística

Esse documento tem como principal objetivo mostrar a teoria da regressão logística, sua relação com a álgebra linear e um exemplo de implementação realizado a partir da programação. Assim, esse documento foi dividido nos seguintes subtópicos:

- Teoria
- Regressão Linear
- Implementação
- Conclusão

# **Teoria**

A regressão logística é uma técnica de análise de dados com funcionalidades muito importantes voltadas, por exemplo, para a probabilidade e encontrar a relação entre duas variáveis distintas. Ela é muito utilizada em modelos de Machine Learning e Inteligência artificial, de acordo com a AWS, e possui diversos benefícios, como sua simplicidade de implementação, velocidade de processamento, flexibilidade e visibilidade.

Assim, é possível realizar uma análise preditiva a partir do resultado obtido da probabilidade de determinado cenário acontecer.

Vamos supor, por exemplo que somos uma agência de seguros e gostaríamos de saber a probabilidade de uma pessoa sofrer um acidente com base no tempo que ela passou na autoescola. Teríamos um gráfico da seguinte forma:



Os círculos vermelhos representam as pessoas que nunca sofreram acidente, enquanto os círculos azuis representam os que já sofreram, enquanto isso, o eixo x representa o número de dias que passaram na autoescola.

Se utilizássemos a regressão linear, ela não iria conseguir definir exatamente a probabilidade por causa da falta de linearidade em relação aos dados e seu limite em relação à variável binária de sofrer acidente. Isso ocorre, porque as pessoas que já sofreram acidente são classificadas em "Sim" ou "Não". Dessa forma, poderíamos representar numericamente esse gráfico da seguinte forma, sendo o eixo y se essas pessoas já sofreram acidente, e o eixo x o número de dias que eles permaneceram na autoescola.

Assim, a regressão logística geralmente é utilizada para realizar modelos de análise de dados de probabilidade de dados categóricos, muitas vezes binários como nesse exemplo.



Desse modo, ao utilizar a regressão logística, estaríamos desenhando uma sigmoide para entender a probabilidade de um dos resultados dessa variável binária acontecer, com isso, podemos perceber um gráfico da seguinte maneira:



Essa sigmoide apresenta a essa equação:

$$f(x) = \frac{1}{1 + e^{-x}}$$

A partir da equação, nota-se que todos os valores para f(x) estão entre 1 e 0, pois, caso x tenha valor igual a infinito, seu limite tenderá a 0, com a equação se igualando a 1/1. Enquanto isso, se seu expoente for igual a menos infinito, seu valor crescerá infinitamente e, consequentemente, tenderá a 0.

Nota-se que, quando os dados apresentados não possuem como resultado exatamente 1 e 0, eles são classificados a partir de sua proximidade, então todo número x que estiver classificado como 0.5 < x, será considerado como 1.

Para calcular essa probabilidade de ser um ou outro, podemos representar pela equação dada a seguir:

$$P(Y = 1 \mid X = x_i) = p_i$$

$$P(Y = 0 | X = x_i) = 1 - p_i$$

A primeira equação representa as chances de darem sucesso (1), enquanto a segunda representa as chances de darem fracasso (0).

Nesse caso não é utilizada a regressão linear, pois ela acaba superando o valor 1 do gráfico, podendo fornecer valores maiores que 1 e menor do que 0, violando o critério de probabilidade, cujos valores precisamo estar entre 0 e 1. Assim, a partir da regressão logística, temos essa condição de pé, além de uma possibilidade de ajuste de acordo com os dados apresentados no conjunto.

## **Modelos**

A regressão logística também é considerada um modelo linear generalizado (MLG), ou seja, é uma generalização flexível da regressão linear ordinária que permite variáveis de resposta que têm modelos de distribuição de erros diferente de uma distribuição normal.

A partir disso, a regressão logística pode ter uma certa semelhança com algumas funções de ligação sendo os dois famosos modelos o **logit** e o **probit**. Pelo fato de serem modelos da regressão logística, eles são classificados modelos de escolha qualitativa e acabam compensando algumas limitações do Modelo de Probabilidade Linear.

#### 1. Logit

O modelo logit é o mais tradicional quando é apresenta uma variável binária como variável dependente. De forma resumida, o logit é uma função que consiste aplicar o logaritmo nas odds, sendo possível calcular a razão de possibilidades a partir da diferença entre dois logits, como logit(p) - logit(q). Por fim, é importante ressaltar que a função logit é representada pela função inversa da sigmoide, mostrada a seguir:

$$Ln\left(\frac{P}{1-P}\right) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + ... + \beta_k X_k$$

Nessa equação, P representa a probabilidade, sendo portanto, um número entre 0 e 1.

#### 2. Probit

Essa função de ligação é bem mais complexa do que a logit e é caracterizada por uma distribuição normal cumulativa. Além disso, ela apresenta técnicas semelhantes e com o mesmo objetivo, tentar calcular a probabilidade de determinado resíduo pertencer a uma categoria ou outra.

Sua fórmula pode ser verificada a seguir:

$$PD_i = \Phi\left(\sum_{j=1}^n \beta_j X_{ij}\right)$$

Nota-se que Φ representa a distribuição normal cumulativa da função.

# Regressão Linear

Além dessa sua importância e aplicações, podemos perceber que a equação da regressão logística apresenta uma certa semelhança com a equação da regressão linear, outra técnica muito utilizada para análise de dados e análise preditiva.

$$y = \beta_0 + \beta_1 x$$

Essa equação da regressão linear é composta pelos seguintes elementos:

y = variável resposta ou dependente

 $\beta_0$  = intercepto

 $\beta_1$  = coeficiente angular

x = variável explicativa ou independente

Acaba que a regressão linear pode ser representada em forma de matriz a partir da seguinte multiplicação:

$$egin{bmatrix} y_1 \ y_2 \ y_3 \ dots \ y_n \end{bmatrix} = egin{bmatrix} 1 & x_1 & x_1^2 & \dots & x_1^m \ 1 & x_2 & x_2^2 & \dots & x_2^m \ 1 & x_3 & x_3^2 & \dots & x_3^m \ dots & dots & dots & dots \ 1 & dots & dots & dots \ 1 & x_n & x_n^2 & \dots & x_n^m \end{bmatrix} egin{bmatrix} eta_0 \ eta_1 \ eta_2 \ dots \ eta_m \end{bmatrix}$$

A equação mostrada anteriormente não coincide totalmente com a multiplicação mostrada, pois ela representa uma regressão linear simples, enquanto a matriz representa as variações de regressão linear a partir do conjunto de resíduos apresentados.

Nota-se que nessa multiplicação de matrizes, a matriz composto pelas diferentes variações de x é composto por equações lineares. A partir disso, é possível notar a relação que o sistema apresenta com a álgebra linear, seus conceitos e aplicações.

# Mas a Regressão Logística é uma regressão linear ou não?

A regressão logística não é uma regressão linear, mas uma regressão linear generalizada, pois o modelo(Regressão de Bernoulli) em si não é linear por parâmetros(coeficientes), mas pode ser transformado em uma regressão linear (através de uma função de ligação, no caso a *logit*).

• Um modelo linear generalizado é linear nos coeficientes dos dados observados e não nos dados em si.

# Linear

$$ullet eta_0 + eta_1 x_1 + eta_2 x_2 + eta_3 x_3 \ldots \ ullet eta_0 + eta_1 x_1 + eta_2 sin(x_1) + eta_2 e^{x_2} + eta_3 \sqrt{x_1 x_2} \$$

## Não Linear

$$ullet eta_0 + sin(eta_1 x_1)$$

| Tipo de regressão | utilização                                                                                                                       | exemplo de uso                                                                                                                                                             |  |  |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Poisson           | usada para modelar dados de contagem.                                                                                            | número de mortes em determinada região<br>ou o número de consumidores que entram<br>em um estabelecimento comercial.                                                       |  |  |
| Bernoulli         | utilizada na modelagem de fenômenos que<br>podem ser resumidos em uma variável<br>binária, ou seja, se ocorreu ou não um evento. | modelos de concessão de crédito ou em<br>pesquisas clínicas que tem como objetivo<br>verificar os fatores de influência na ocorrência<br>ou não de uma determinada doença. |  |  |
| Gama              | usada para modelar dados positivos e<br>assimétricos. A regressão Gama modela<br>variáveis continuas.                            | estudo dos fatores que influenciam no valor de<br>um imóvel ou ainda os fatores que influenciam<br>na demanda de produtos em diferentes centros<br>de distribuição.        |  |  |

Fonte: https://statplace.com.br/blog/o-que-sao-modelos-lineares-generalizados/



Fonte: https://www.researchgate.net/post/ls-Logistic-regression-a-linear-method



Fonte:https://www.kaggle.com/code/tanavbajaj/logistic-regression-math-behind-without-sklearn

# Implementação

```
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
```

**CAR PRICE** (https://www.kaggle.com/datasets/shaistashaikh/carprice-assignment?resource=download)

## Importando Base

```
In [211... #importando a base de dados
    df = pd.read_csv("CarPrice_Assignment.csv")
    df
```

| Out[211 |            | car_ID | symboling                   | CarName                | fueltype | aspiration | doornumber | carbody     | drivewheel | enginelocation | whe |
|---------|------------|--------|-----------------------------|------------------------|----------|------------|------------|-------------|------------|----------------|-----|
|         | 0          | 1      | 3                           | alfa-romero<br>giulia  | gas      | std        | two        | convertible | rwd        | front          |     |
|         | 1          | 2      | 3                           | alfa-romero<br>stelvio | gas      | std        | two        | convertible | rwd        | front          |     |
|         | <b>)</b> 3 |        | alfa-romero<br>Quadrifoglio | gas                    | std      | two        | hatchback  | rwd         | front      |                |     |
|         | 3          | 4      | 2                           | audi 100 ls            | gas      | std        | four       | sedan       | fwd        | front          |     |
|         | 4          | 5      | 2                           | audi 100ls             | gas      | std        | four       | sedan       | 4wd        | front          |     |
|         | •••        |        |                             |                        |          |            |            |             |            |                |     |

|     | car_ID | symboling | CarName            | fueltype | aspiration | doornumber | carbody | drivewheel | enginelocation | wh |
|-----|--------|-----------|--------------------|----------|------------|------------|---------|------------|----------------|----|
| 200 | 201    | -1        | volvo 145e<br>(sw) | gas      | std        | four       | sedan   | rwd        | front          |    |
| 201 | 202    | -1        | volvo 144ea        | gas      | turbo      | four       | sedan   | rwd        | front          |    |
| 202 | 203    | -1        | volvo 244dl        | gas      | std        | four       | sedan   | rwd        | front          |    |
| 203 | 204    | -1        | volvo 246          | diesel   | turbo      | four       | sedan   | rwd        | front          |    |
| 204 | 205    | -1        | volvo 264gl        | gas      | turbo      | four       | sedan   | rwd        | front          |    |

205 rows × 26 columns

```
In [182... #substituindo gas e diesel por 1 e 0
    df2 = df.replace("diesel",1)
    df3 = df2.replace("gas",0)

In [183... #definindo as variáveis independentes e a variável dependente sendo observada
    y = df3["fueltype"]
    x = df3.drop(df3.columns, axis=1)
```

# Gráfico de Dispersão dos Dados

```
In [184... plt.figure()
    plt.scatter(df3["wheelbase"], df3["fueltype"])
    plt.show()
```



## Definição de amostras para treinar o modelo e para testar o modelo

```
In [185...
X_train, X_test, y_train, y_test = train_test_split(df3[["wheelbase"]],df3["fueltype"],train
```

## Dados de Teste

```
In [186... X_test
```

| Out[186 |     | wheelbase |
|---------|-----|-----------|
|         | 62  | 98.8      |
|         | 163 | 94.5      |

|     | wheelbase |
|-----|-----------|
| 10  | 101.2     |
| 58  | 95.3      |
| 89  | 94.5      |
| 195 | 104.3     |
| 41  | 96.5      |
| 2   | 94.5      |
| 197 | 104.3     |
| 64  | 98.8      |
| 21  | 93.7      |
| 28  | 103.3     |
| 37  | 96.5      |
| 99  | 97.2      |
| 171 | 98.4      |
| 108 | 107.9     |
| 24  | 93.7      |
| 23  | 93.7      |
| 79  | 93.0      |
| 199 | 104.3     |
| 186 | 97.3      |
| 196 | 104.3     |
| 165 | 94.5      |
| 168 | 98.4      |
| 150 | 95.7      |
| 63  | 98.8      |
| 7   | 105.8     |
| 147 | 97.0      |
| 85  | 96.3      |
| 106 | 99.2      |
| 48  | 113.0     |
| 69  | 106.7     |
| 86  | 96.3      |
| 123 | 103.3     |
| 61  | 98.8      |
| 170 | 98.4      |
| 146 | 97.0      |
| 159 | 95.7      |

|     | wheelbase |
|-----|-----------|
| 124 | 95.9      |
| 45  | 94.5      |
| 126 | 89.5      |

### Treinamento do modelo

```
In [187...
    model = LogisticRegression()
    model.fit(X_train, y_train)
    print("Modelo treinado")
```

Modelo treinado

#### Previsão dos dados de teste

```
In [188...
y_predicted = model.predict(X_test)
print("Previsão realizada")
```

Previsão realizada

### Acurácia do modelo

```
In [189...
    acuracia = model.score(X_test, y_test)
    print(f"A acurácia é de :{acuracia}")
```

A acurácia é de :0.9024390243902439

## Comparação da previsão com a realidade dos dados de teste

0 - Gás

#### 1 - Diesel

```
In [190...

df3_real = df3["fueltype"].filter(items=X_test.index)
previsao_realidade = pd.DataFrame((X_test))
previsao_realidade["previsao"] = y_predicted
previsao_realidade["realidade"] = df3_real
previsao_realidade
```

|     | wheelbase | previsao | realidade |
|-----|-----------|----------|-----------|
| 21  | 93.7      | 0        | 0         |
| 28  | 103.3     | 0        | 0         |
| 37  | 96.5      | 0        | 0         |
| 99  | 97.2      | 0        | 0         |
| 171 | 98.4      | 0        | 0         |
| 108 | 107.9     | 0        | 1         |
| 24  | 93.7      | 0        | 0         |
| 23  | 93.7      | 0        | 0         |
| 79  | 93.0      | 0        | 0         |
| 199 | 104.3     | 0        | 0         |
| 186 | 97.3      | 0        | 0         |
| 196 | 104.3     | 0        | 0         |
| 165 | 94.5      | 0        | 0         |
| 168 | 98.4      | 0        | 0         |
| 150 | 95.7      | 0        | 0         |
| 63  | 98.8      | 0        | 1         |
| 7   | 105.8     | 0        | 0         |
| 147 | 97.0      | 0        | 0         |
| 85  | 96.3      | 0        | 0         |
| 106 | 99.2      | 0        | 0         |
| 48  | 113.0     | 0        | 0         |
| 69  | 106.7     | 0        | 1         |
| 86  | 96.3      | 0        | 0         |
| 123 | 103.3     | 0        | 0         |
| 61  | 98.8      | 0        | 0         |
| 170 | 98.4      | 0        | 0         |
| 146 | 97.0      | 0        | 0         |
| 159 | 95.7      | 0        | 1         |
| 124 | 95.9      | 0        | 0         |
| 45  | 94.5      | 0        | 0         |
| 126 | 89.5      | 0        | 0         |

**DIABETES** (https://www.kaggle.com/datasets/mathchi/diabetes-data-set)

# - Nº de Gravidezes X Diabetes

|     | Pregnancies | Glucose | BloodPressure | SkinThickness | Insulin | вмі  | DiabetesPedigreeFunction | Age | Outcome |
|-----|-------------|---------|---------------|---------------|---------|------|--------------------------|-----|---------|
| 0   | 6           | 148     | 72            | 35            | 0       | 33.6 | 0.627                    | 50  | 1       |
| 1   | 1           | 85      | 66            | 29            | 0       | 26.6 | 0.351                    | 31  | 0       |
| 2   | 8           | 183     | 64            | 0             | 0       | 23.3 | 0.672                    | 32  | 1       |
| 3   | 1           | 89      | 66            | 23            | 94      | 28.1 | 0.167                    | 21  | 0       |
| 4   | 0           | 137     | 40            | 35            | 168     | 43.1 | 2.288                    | 33  | 1       |
| ••• |             |         |               |               | •••     |      |                          |     |         |
| 763 | 10          | 101     | 76            | 48            | 180     | 32.9 | 0.171                    | 63  | 0       |
| 764 | 2           | 122     | 70            | 27            | 0       | 36.8 | 0.340                    | 27  | 0       |
| 765 | 5           | 121     | 72            | 23            | 112     | 26.2 | 0.245                    | 30  | 0       |
| 766 | 1           | 126     | 60            | 0             | 0       | 30.1 | 0.349                    | 47  | 1       |
| 767 | 1           | 93      | 70            | 31            | 0       | 30.4 | 0.315                    | 23  | 0       |

768 rows × 9 columns

| Out[214 |       | Pregnancies | Glucose    | BloodPressure | SkinThickness | Insulin    | ВМІ        | DiabetesPedigreeFunction |     |
|---------|-------|-------------|------------|---------------|---------------|------------|------------|--------------------------|-----|
|         | count | 768.000000  | 768.000000 | 768.000000    | 768.000000    | 768.000000 | 768.000000 | 768.000000               | 768 |
|         | mean  | 3.845052    | 120.894531 | 69.105469     | 20.536458     | 79.799479  | 31.992578  | 0.471876                 | 33  |
|         | std   | 3.369578    | 31.972618  | 19.355807     | 15.952218     | 115.244002 | 7.884160   | 0.331329                 | 1'  |
|         | min   | 0.000000    | 0.000000   | 0.000000      | 0.000000      | 0.000000   | 0.000000   | 0.078000                 | 2   |
|         | 25%   | 1.000000    | 99.000000  | 62.000000     | 0.000000      | 0.000000   | 27.300000  | 0.243750                 | 24  |
|         | 50%   | 3.000000    | 117.000000 | 72.000000     | 23.000000     | 30.500000  | 32.000000  | 0.372500                 | 29  |
|         | 75%   | 6.000000    | 140.250000 | 80.000000     | 32.000000     | 127.250000 | 36.600000  | 0.626250                 | 4   |
|         | max   | 17.000000   | 199.000000 | 122.000000    | 99.000000     | 846.000000 | 67.100000  | 2.420000                 | 8   |

```
plt.figure()
   plt.scatter(diabetes["Pregnancies"], diabetes["Outcome"])
   plt.show()
```



Definição de amostras para treinar o modelo e para testar o modelo

In [193... X\_train, X\_test, y\_train, y\_test = train\_test\_split(diabetes[["Pregnancies"]], diabetes["Ot

### Dados de Teste

| In [194 | X_test |  |  |  |
|---------|--------|--|--|--|
|         |        |  |  |  |

| ut[194 |     | Pregnancies |
|--------|-----|-------------|
| 2      | 183 | 0           |
| 6      | 581 | 0           |
| 6      | 597 | 0           |
| 3      | 349 | 5           |
| 7      | 720 | 4           |
|        | ••• |             |
|        | 78  | 0           |
| 6      | 588 | 1           |
| 7      | 759 | 6           |
|        | 75  | 1           |
| 1      | 197 | 3           |

154 rows × 1 columns

### Treinamento do modelo

```
In [195...
    model = LogisticRegression()
    model.fit(X_train, y_train)
    print("Modelo treinado")
```

Modelo treinado

## Previsão dos dados de teste

Previsão realizada

## Acurácia do modelo

```
In [197...
    acuracia = model.score(X_test, y_test)
    print(f"A acurácia é de :{acuracia}")
```

A acurácia é de :0.6688311688311688

## Comparação da previsão com a realidade dos dados de teste

1 - Diabética

#### 0 - Não Diabética

```
In [198... diabetes_real = diabetes["Outcome"].filter(items=X_test.index)
    previsao_realidade = pd.DataFrame((X_test))
```

```
previsao_realidade["previsao"] = y_predicted
previsao_realidade["realidade"] = diabetes_real
previsao_realidade
```

| Out[198 |     | Pregnancies | previsao | realidade |
|---------|-----|-------------|----------|-----------|
|         | 483 | 0           | 0        | 0         |
|         | 681 | 0           | 0        | 1         |
|         | 697 | 0           | 0        | 0         |
|         | 349 | 5           | 0        | 1         |
|         | 720 | 4           | 0        | 0         |
|         | ••• |             |          |           |
|         | 78  | 0           | 0        | 1         |
|         | 688 | 1           | 0        | 0         |
|         | 759 | 6           | 0        | 1         |
|         | 75  | 1           | 0        | 0         |
|         | 197 | 3           | 0        | 1         |

154 rows × 3 columns

## - Glicose X Diabetes

```
In [199...
    plt.figure()
    plt.scatter(diabetes["Glucose"], diabetes["Outcome"])
    plt.show()
```



# Definição de amostras para treinar o modelo e para testar o modelo

```
In [200... X_train, X_test, y_train, y_test = train_test_split(diabetes[["Glucose"]], diabetes["Outcor
```

## Dados de Teste

```
In [201... X_test
```

Out[201... Glucose

|     | Glucose |  |
|-----|---------|--|
| 237 | 179     |  |
| 29  | 117     |  |
| 158 | 88      |  |
| 494 | 80      |  |
| 223 | 142     |  |
| ••• |         |  |
| 712 | 129     |  |
| 221 | 158     |  |
| 369 | 133     |  |
| 766 | 126     |  |
| 411 | 112     |  |

154 rows × 1 columns

### Treinamento do modelo

```
In [202...
    model = LogisticRegression()
    model.fit(X_train, y_train)
    print("Modelo treinado")
```

Modelo treinado

## Previsão dos dados de teste

```
In [203...
y_predicted = model.predict(X_test)
print("Previsão realizada")
```

Previsão realizada

#### Acurácia do modelo

```
In [204...
    acuracia = model.score(X_test, y_test)
    print(f"A acurácia é de :{acuracia}")
```

A acurácia é de :0.7142857142857143

## Comparação da previsão com a realidade dos dados de teste

1 - Diabética

### 0 - Não Diabética

```
Out[205... Glucose previsao realidade

237 179 1 1
```

|     | Glucose | previsao | realidade |
|-----|---------|----------|-----------|
| 29  | 117     | 0        | 0         |
| 158 | 88      | 0        | 0         |
| 494 | 80      | 0        | 0         |
| 223 | 142     | 0        | 0         |
| ••• |         |          |           |
| 712 | 129     | 0        | 1         |
| 221 | 158     | 1        | 1         |
| 369 | 133     | 0        | 1         |
| 766 | 126     | 0        | 1         |
| 411 | 112     | 0        | 0         |

154 rows × 3 columns

# Conclusão

Portanto, nota-se que a regressão logística é uma técnica que apresenta grandes utilidades dentro da análise de dados. A partir dela, é possível verificar a possibilidade de resultado de uma variável binária. Apesar de não ter sempre uma acurácia alta constantemente, é uma técnica de simples utilização e aplicação, além de possuir uma fácil visualização como um todo.