# Reel Good Movie Recommender System

G4

Alireza Hatami Caitlin Dunne Jaz Zhou Precious Orekha



Image Source: Go on a thrill ride with action-packed movies like Extraction, The Gray Man, RRR, and The Old Guard.

. Accessed on [Feb 6 2025].

Available at [https://dnm.nflximg.net/api/v6/2DuQlx0fM4wd1nzqm5BFBi6lLa8/AAAAQRC29H19twWKcTZ9Zpg4biJbGNaHF2GGIYNeZ6fvwugUJbuKxTjjjMFPCS-y5P3ZePL57rupDtSkyUIJhv3P8leMJGMzszuG2CHNd65NwWPu5LeKxQkRNfNMHmxAwt7tmQZFk1VIrBd1aXr2AR5DM.jpq?r=5b1]

and interconnect everything.



IF YOU DON'T KNOW, NOW YOU KNOW



# Real Good Movie Recommender System

# Highlighted Features



# Algorithm Choice – Collaborative Filtering



- Domain-free: we don't need to construct the profiling.
- No privacy concern: we don't need explicit user profile.

# Algorithm Choice – KNN

• Recommend movies that are <u>similar</u> to the ones you already like.

#### KNN





# Algorithm Choice – KNN

• Recommend movies that are <u>similar</u> to the ones you already like.

#### KNN



$$\hat{r}_m = S_{am} r_a + S_{bm} r_b + S_{cm} r_c$$

# Algorithm Choice – SVD++

### Rating Matrix

### Latent Factor Space (k dim)



# Algorithm Choice – MLP



# The Dataset

- **Dataset:** Sourced from Kaggle, containing metadata and user ratings for 45,000 movies released on or before July 2017.
- **Details Included:** Cast, crew, plot keywords, budget, revenue, release dates, languages, production companies, and countries.
- Reason for Selection: Offers comprehensive metadata compared to typical movie datasets.
- This dataset includes three main files:
- ✓ movies\_metadata.csv Details for 45,000 movies (title, genre, budget, revenue, etc.).
- ✓ credits.csv Cast and crew information.
- ✓ ratings.csv 26 million ratings from 270,000 users.

# Preprocessing

#### Movies Metadata:

|   | adult        |             | be                       | elongs_      | _to_collect     | tion       | budget         |             |                  |               | genres       |                          | homepage                 |
|---|--------------|-------------|--------------------------|--------------|-----------------|------------|----------------|-------------|------------------|---------------|--------------|--------------------------|--------------------------|
| 0 | False        | {'id        | ': 10194, 'name':        | 'Toy Sto     | ory Collection  | n',        | 30000000       | [{'id':     | 16, 'name': '/   | Animation'},  | {'id': 35, ' | http://toystory.disr     | ney.com/toy-story        |
| 1 | False        |             |                          |              |                 | NaN        | 65000000       | [{"id":     | 12, 'name': '/   | Adventure'},  | {'id': 14, ' |                          | NaN                      |
| 2 | False        | {'id': 11   | 9050, 'name': 'Gr        | rumpy C      | Old Men Colle   | ect        | 0              | [{'id': 107 | 749, 'name':     | 'Romance'}    | , {'id': 35, |                          | NaN                      |
| 3 | False        |             |                          |              |                 | NaN        | 16000000       | [{'id': 35, | , 'name': 'Co    | medy'}, {'id' | 18, 'nam     |                          | NaN                      |
| 4 | False        | {'id':      | 96871, 'name': 'l        | Father o     | of the Bride (  | Col        | 0              |             | [{'id':          | 35, 'name':   | 'Comedy'}]   |                          | NaN                      |
|   | id i         | imdb_id     | original_langua          | ge           | original_       | title      |                |             |                  | overview      | popularity   |                          | poster_path              |
| 0 | 862 tt0      | 0114709     | (                        | en           | Toy             | Story      | Led by V       | Voody, And  | y's toys live ha | ppily in his  | 21.946943    | /rhIRbceoE9IR4veE        | EXuwCC2wARtG.jpg         |
| 1 | 8844 tt0     | 0113497     | •                        | en           | Ju              | umanji     | When sibling   | gs Judy and | d Peter discove  | r an encha    | 17.015539    | /vzmL6fP7aPKNKI          | PRTFnZmiUfciyV.jpg       |
| 2 | 15602 tt0    | 0113228     | •                        | en           | Grumpier Ol     | d Men      | A family v     | wedding rei | gnites the anci  | ent feud be   | 11.7129      | /6ksm1sjKMFLbO7          | UY2i6G1ju9SML.jpg        |
| 3 | 31357 tt0    | 0114885     | (                        | en           | Waiting to E    | Exhale     | Cheated on,    | mistreated  | and stepped o    | n, the wom    | 3.859495     | /16XOMpEaLWkrcPd         | gSQqhTmeJuqQl.jpg        |
| 4 | 11862 tt0    | 0113041     | •                        | en Fath      | er of the Bride | Part II    | Just when G    | eorge Bank  | s has recovere   | ed from his   | 8.387519     | /e64sOI48hQXyru          | 7naBFyssKFxVd.jpg        |
|   |              |             | production_com           | npanies      |                 |            | production_    | countries   | release_dat      | e reve        | nue runtime  |                          | spoken_languages         |
| 0 | [{'na        | ame': 'Pixa | ar Animation Studios     | ', 'id': 3}] | [{"iso_3166_1"  | ': 'US', ' | name': 'United | States o    | 1995-10-3        | 0 37355403    | 3.0 81.0     | [{'iso_639_1': 'e        | en', 'name': 'English'}] |
| 1 | [{'na        | ame': 'TriS | tar Pictures', 'id': 559 | 9}, {'na     | [{"iso_3166_1"  | ': 'US', ' | name': 'United | States o    | 1995-12-1        | 5 26279724    | 9.0 104.0    | [{"iso_639_1": 'en', 'na | me': 'English'}, {'iso   |
| 2 | [{'name      | e': 'Warne  | r Bros.', 'id': 6194}, { | name'        | [{"iso_3166_1"  | ': 'US', ' | name': 'United | States o    | 1995-12-2        | 2             | 0.0 101.0    | [{'iso_639_1': 'e        | en', 'name': 'English'}] |
| 3 | [{'name': 'T | Twentieth   | Century Fox Film Co      | rporat       | [{'iso_3166_1'  | ': 'US', ' | name': 'United | States o    | 1995-12-2        | 2 8145215     | 6.0 127.0    | [{'iso_639_1': 'e        | en', 'name': 'English'}] |
| 4 | [{'name      | e': 'Sandol | lar Productions', 'id':  | 5842}        | [{'iso_3166_1'  | ': 'US', ' | name': 'United | States o    | 1995-02-1        | 0 7657891     | 1.0 106.0    | [{'iso_639_1': 'e        | en', 'name': 'English'}] |
|   | sta          | tus         |                          |              |                 |            | taglin         | e           |                  | title         | video        | vote_average             | vote_count               |
| 0 | Releas       | sed         |                          |              |                 |            | Na             | N           |                  | Toy Story     | / False      | 7.7                      | 5415.0                   |
| 1 | Releas       | sed         | Roll the                 | dice a       | and unleast     | h the      | excitemen      | t!          |                  | Jumanj        | i False      | 6.9                      | 2413.0                   |
| 2 | Releas       | sed         | Still Yell               | ling. St     | till Fighting.  | Still      | Ready for.     |             | Grumpie          | er Old Mer    | n False      | 6.5                      | 92.0                     |
| 3 | Releas       | sed         | Friends are the          | e peop       | le who let y    | you b      | e yourself.    |             | Waiting          | to Exhale     | False        | 6.1                      | 34.0                     |
| 4 | Releas       | sed J       | ust When His \           | World I      | ls Back To      | Norm       | nal He's .     | Fath        | er of the B      | ride Part I   | I False      | 5.7                      | 173.0                    |

### Credits:

|   | cast                                           | crew                                           | id    |
|---|------------------------------------------------|------------------------------------------------|-------|
| 0 | [{'cast_id': 14, 'character': 'Woody (voice)', | [{'credit_id': '52fe4284c3a36847f8024f49', 'de | 862   |
| 1 | [{'cast_id': 1, 'character': 'Alan Parrish', ' | [{'credit_id': '52fe44bfc3a36847f80a7cd1', 'de | 8844  |
| 2 | [{'cast_id': 2, 'character': 'Max Goldman', 'c | [{'credit_id': '52fe466a9251416c75077a89', 'de | 15602 |
| 3 | [{'cast_id': 1, 'character': "Savannah 'Vannah | [{'credit_id': '52fe44779251416c91011acb', 'de | 31357 |
| 4 | [{'cast_id': 1, 'character': 'George Banks', ' | [{'credit_id': '52fe44959251416c75039ed7', 'de | 11862 |

### Ratings:

|   | userId | movieId | rating | timestamp  |
|---|--------|---------|--------|------------|
| 0 | 1      | 110     | 1.0    | 1425941529 |
| 1 | 1      | 147     | 4.5    | 1425942435 |
| 2 | 1      | 858     | 5.0    | 1425941523 |
| 3 | 1      | 1221    | 5.0    | 1425941546 |
| 4 | 1      | 1246    | 5.0    | 1425941556 |

# Preprocessing – Feature Selection

#### • Movies metadata:

- ✓ id: Primary key for table joins.
- ✓ imdbId: Used for retrieving missing data via IMDB API.
- ✓ genre, release\_date, original\_language: Key for filtering and capturing user preferences.
- ✓ title: Ensures meaningful recommendations.

#### • Credits:

- ✓ cast: Helps recommend movies with favorite actors.
- ✓ crew: Only the director is retained for relevance.

# • Ratings:

✓ Since we focus on CF algorithms, ratings naturally become the main feature

# Preprocessing - Handling Duplicates, Missing Values, Feature Cleaning

#### **Duplicate Removal:**

• Duplicate entries are identified and removed to ensure data integrity.

### Handling Missing Values

- Missing values exist in both movies\_metadata.csv and credits.csv, we retrieve missing values using imdbId as a key from the IMDB API.
- While a large portion of missing data is recovered, a few values are unavailable on IMDB. The missing data are minimal and, therefore, dropped without significant impact on the dataset.

#### **Feature Cleaning**

- Raw feature data is cleaned for improved usability. For example, we needed to convert a nested list of dictionaries into a list of genre names:
- "[{'id': 16, 'name': 'Animation'}, {'id': 35, 'name': 'Comedy'}]"  $\rightarrow$  ['Animation', 'Comedy'].

# Preprocessing - Movies Metadata

#### 1. 'id', 'imdbId', 'title', 'original\_language':

- Convert to string format to ensure consistency.

#### 2. 'genre':

- Convert nested lists of dictionaries into a list of genre names.
- Example: "[{'id': 16, 'name': 'Animation'}, {'id': 35, 'name': 'Comedy'}]" → ['Animation', 'Comedy']

#### 3. 'release\_date':

- Extract only the year from the full date format.
- Example: "1994-06-15" → "1994"

#### 4. 'cast':

- Convert nested lists of dictionaries into a list of actor names (three actors).
- Example: "[{'cast\_id': 14, 'name': 'Tom Hanks'}, {'cast\_id': 2, 'name': 'Tim Allen'}]"  $\rightarrow$  ['Tom Hanks', 'Tim Allen']

#### 5. 'crew':

- Extract only the director's name from the list of crew members.
- Example: "[{'job': 'Director', 'name': 'Joe Johnston'}, {'job': 'Producer', 'name': 'Jane Doe'}]"  $\rightarrow$  ['Joe Johnston']

```
import ast
def extract_genres(genres):
    try:
        genres_list = ast.literal_eval(genres)
        return [genre['name'] for genre in genres_list]
    except (ValueError, TypeError):
        return []
```

```
def get_first_three_actors(cast):
    try:
        cast_list = ast.literal_eval(cast)
        return [actor['name'] for actor in cast_list[:3]]
    except (ValueError, TypeError):
        return []
```

# Preprocessing – ratings

### Downsizing

- Drop movies that are not in the metadata.
- Drop users that has less than 20 ratings.

|    | userld | movield | rating | timestamp  |
|----|--------|---------|--------|------------|
| 0  | 1      | 110     | 1.0    | 1425941529 |
| 1  | 1      | 147     | 4.5    | 1425942435 |
| 2  | 1      | 858     | 5.0    | 1425941523 |
| 3  | 1      | 1221    | 5.0    | 1425941546 |
| 4  | 1      | 1246    | 5.0    | 1425941556 |
| •• |        |         |        |            |
|    |        |         |        | • •        |

|   | userld | movield | rating | timestamp  |
|---|--------|---------|--------|------------|
| 0 | 4      | 223     | 4.0    | 1042668576 |
| 1 | 4      | 415     | 4.0    | 1042667925 |
| 2 | 4      | 648     | 4.0    | 1042674800 |
|   |        |         | ••     |            |
|   |        |         |        |            |

# Preprocessing – ratings

### Leave-Last-Out Splitting

- •Mimics Real-World Prediction Trains on past interactions, tests on the most recent ones.
- •Prevents Data Leakage Ensures the model doesn't "see" future interactions during training.
- •Standard Benchmarking Common in research, enabling direct performance comparison.

Training the first N-2 items

Validation the (N-1)-th item

Testing the N-th item

Train size 9972455

Validation size 120147

# Preprocessing – ratings

# Training Matrix

| userId<br>movieId | 4 | 7 | 8 | 9 | 11 | 12 | 15  | 16 | 20 | 22 | <br>270<br>879 | 270<br>881 | 270<br>883 | 270<br>885 | 270<br>887 | 270<br>891 | 270<br>892 | 270<br>893 | 270<br>894 | 270<br>896 |
|-------------------|---|---|---|---|----|----|-----|----|----|----|----------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| 2                 | / | / | / | / | /  | /  | /   | /  | /  | /  | <br>3.5        | /          | /          | /          | 5.0        | /          | /          | /          | /          | /          |
| 3                 | / | / | / | / | /  | /  | /   | /  | /  | /  | <br>/          | /          | /          | /          | 4.0        | 3.0        | /          | /          | /          | /          |
| 5                 | / | / | / | / | /  | /  | /   | /  | /  | /  | <br>/          | /          | /          | /          | /          | /          | /          | /          | /          | /          |
| 6                 | / | / | / | / | /  | /  | 4.0 | /  | /  | /  | <br>/          | /          | /          | /          | 5.0        | /          | /          | /          | /          | /          |
| 11                | / | / | / | / | /  | /  | /   | /  | /  | /  | <br>/          | /          | /          | /          | 4.0        | 4.0        | /          | /          | /          | 3.5        |
|                   |   |   |   |   |    |    |     |    |    |    | <br>           |            |            |            |            | :          | :          |            |            |            |

Shape: (7486 movies, 120147 users)

Sparsity: 98.89%

# Next Stages

#### EDA

- Correlations between movie metadata vs user preference Justify metadata features choice.
- Rating distribution per item Identify highly-rated vs. poorly-rated items.  $b_i$
- Rating distribution per user Detect users who rate too generously or harshly.  $b_u$
- Time-based trends Check if ratings change over time (e.g., new releases get higher ratings).
- Cluster similar items- See if similarity measurement makes sense.

#### Feature Engineering

- Similarity matrix of movies → KNN
- Global bias ( $\mu$ )
- Item biases ( $b_i$ )  $\rightarrow$  SVD++
- User biases  $(b_u)$
- One-hot encoding of genre/language → MLP
- TDIDF of actors/director