Institut für Stochastik

Prof. Dr. D. Hug · Dr. F. Nestmann

Stochastische Geometrie (SS2019)

Übungsblatt 13

Aufgabe 1 (Voraussetzung (4.2.3))

Es seien $\gamma > 0$, \mathbb{Q} ein Wahrscheinlichkeitsmaß auf \mathcal{C}' mit

$$\int_{\mathcal{C}'} \lambda_d(K+C) \, \mathbb{Q}(\mathrm{d}K) < \infty, \qquad C \in \mathcal{C}^d,$$

und Ψ ein Poisson-Prozess in $\mathbb{R}^d \times \mathcal{C}'$ mit Intensitätsmaß $\gamma \lambda_d \otimes \mathbb{Q}$. Weiter seien $C \in \mathcal{C}'$ und

$$N_C := \int_{\mathbb{R}^d \times \mathcal{C}'} \mathbf{1}\{(K+x) \cap C \neq \emptyset\} \, \Psi(\mathrm{d}(x,K)).$$

Zeigen Sie:

$$\mathbb{E}\left[r^{N_C}\right] < \infty, \qquad r \in \mathbb{R}.$$

Lösung: Wir verwenden den Abbildungssatz für Poissonprozesse mit

$$T: \mathbb{R}^d \times \mathcal{C}' \to \mathcal{C}', \quad (x, K) \mapsto T(x, K) := K + x.$$

Dann gilt

$$N_C = \int_{\mathbb{R}^d \times \mathcal{C}'} \mathbb{1}\{(K+x) \in \mathcal{F}_C\} \, \Psi(\mathrm{d}(x,K)) = \int_{\mathbb{R}^d \times \mathcal{C}'} \mathbb{1}\{T(x,K) \in \mathcal{F}_C\} \, \Psi(\mathrm{d}(x,K)) = \Phi(\mathcal{F}_C),$$

wobei $\Phi = T(\Psi)$ ein stationärer Poissonprozess ist mit Intensitätsmaß

$$\Lambda(\cdot) = (T(\gamma \lambda_d \otimes \mathbb{Q}))(\cdot) := (\gamma \lambda_d \otimes \mathbb{Q})(T^{-1}(\cdot)) = \gamma \int_{\mathcal{C}'} \int_{\mathbb{R}^d} \mathbb{1}\{K + x \in \cdot\} dx \, \mathbb{Q}(dK).$$

Dann gilt nach Satz 1.1.2 $\Lambda(\mathcal{F}_C) < \infty$ (beachte: \mathcal{F}_C ist kompakt und Λ lokal-endlich) und folglich

$$\mathbb{E}\left[r^{N_C}\right] = \mathbb{E}\left[r^{\Phi(\mathcal{F}_C)}\right] = \sum_{k=0}^{\infty} r^k \,\mathbb{P}(\Phi(\mathcal{F}_C) = k) = \sum_{k=0}^{\infty} r^k \,\frac{e^{-\Lambda(\mathcal{F}_C)}\Lambda(\mathcal{F}_C)^k}{k!}$$
$$= e^{-\Lambda(\mathcal{F}_C)}e^{r\Lambda(\mathcal{F}_C)} = e^{(r-1)\Lambda(\mathcal{F}_C)} = \left(e^{\Lambda(\mathcal{F}_C)}\right)^{r-1} < \infty, \qquad r \in \mathbb{R}.$$

Aufgabe 2 (Vgl. Aufgabe 2, Übungsblatt 11)

Es seien $M, K, K_0 \in \mathcal{K}'$ mit $K \subset K_0, V_d(K_0) > 0$ und

$$A_{K_0} := \{ g \in G_d : K_0 \cap gM \neq \emptyset \}.$$

Weiter sei α eine G_d -wertige Zufallsvariable mit Verteilung $\frac{\mu(\cdot \cap A_{K_0})}{\mu(A_{K_0})}$.

- (a) Die inneren Volumina von M, K und K_0 seien bekannt. Bestimmen Sie damit die Wahrscheinlichkeit $\mathbb{P}(\alpha M \cap K \neq \emptyset)$.
- (b) Nun sei $d=2, \, e \in S^1, \, 0 < r \leq 1$ und $K_0=B^2.$ Bestimmen Sie die Wahrscheinlichkeit

$$\mathbb{P}(\alpha([0,1]^2) \cap [-re, re] \neq \emptyset).$$

Hinweis: Verwenden Sie die Formel

$$V_i([0,1]^d) = \binom{d}{i}.$$

Lösung:

(a) Es gilt wegen $A_K \subset A_{K_0}$ und der kinematischen Hauptformel

$$\mathbb{P}(\alpha M \cap K \neq \emptyset) = \frac{\mu(A_K \cap A_{K_0})}{\mu(A_{K_0})} = \frac{\mu(A_K)}{\mu(A_{K_0})} = \frac{\int_{G_d} \mathbb{1}\{gM \cap K \neq \emptyset\} \, \mu(\mathrm{d}g)}{\int_{G_d} \mathbb{1}\{gM \cap K_0 \neq \emptyset\} \, \mu(\mathrm{d}g)}$$
$$= \frac{\sum_{k=0}^d c_{0,d}^{k,d-k} V_k(K) V_{d-k}(M)}{\sum_{k=0}^d c_{0,d}^{k,d-k} V_k(K_0) V_{d-k}(M)}.$$

(b) Aus (a), Aufgabe 3 von Übungsblatt 9 und dem Hinweis folgt

$$\mathbb{P}(\alpha([0,1]^2) \cap [-re, re] \neq \emptyset) = \frac{\sum_{k=0}^{2} c_{0,2}^{k,2-k} V_k([-re, re]) V_{2-k}([0,1]^2)}{\sum_{k=0}^{2} c_{0,2}^{k,2-k} V_k(B^2) V_{2-k}([0,1]^2)}$$

$$= \frac{c_{0,2}^{0,2} V_0([-re, re]) V_2([0,1]^2) + c_{0,2}^{1,1} V_1([-re, re]) V_1([0,1]^2) + 0}{\sum_{k=0}^{2} c_{0,2}^{k,2-k} \binom{2}{k} \frac{\kappa_2}{\kappa_{2-k}} \binom{2}{2-k}}$$

$$= \frac{1 + \frac{8r}{\pi}}{\sum_{k=0}^{2} \kappa_k \binom{2}{k}} = \frac{1 + \frac{8r}{\pi}}{1 + 4 + \pi} \approx 0.12 + 0.31r.$$

Aufgabe 3

Es seien $K \in \mathcal{K}^3$ mit $K \subset [0,1]^3$ und X_1 eine zufällige Gerade in $[0,1]^3$, definiert wie in Aufgabe 2 von Übungsblatt 11. Nehmen Sie an, Sie können für Realisierungen $X_1(\omega)$ der zufälligen Gerade feststellen, ob der Schnitt $X_1(\omega) \cap K$ leer ist und außerdem die Länge von $X_1(\omega) \cap K$ bestimmen. Konstruieren Sie nun erwartungstreue Schätzer für die Oberfläche und das Volumen von K.

Lösung: Nach Aufgabe 2 von Übungsblatt 11 besitzt X_1 die Verteilung $\frac{\mu_1(\cdot \cap A_{[0,1]^3})}{\mu_1(A_{[0,1]^3})}$, wobei

$$A_{K_0} := \{ E \in A(3,1) : K_0 \cap E \neq \emptyset \}, \qquad K_0 \in \mathcal{K}^3.$$

Wegen $K \subset [0,1]^3$, gilt für $j \in \{0,1,2,3\}$

$$\mathbb{E}[V_j(K \cap X_1)] = \frac{\int_{A(3,1)} V_j(K \cap E) \,\mu_1(\mathrm{d}E)}{\int_{A(3,1)} V_0([0,1]^3 \cap E) \,\mu_1(\mathrm{d}E)} = \frac{c_{j,3}^{1,2+j} V_{2+j}(K)}{c_{0,3}^{1,2} V_2([0,1]^3)},$$

wobei die letzte Gleichung durch zweimaliges Anwendung der Crofton-Formel folgt. Es gilt also für $j \in \{0, 1, 2, 3\}$

$$V_{2+j}(K) = \frac{c_{0,3}^{1,2}}{c_{j,3}^{1,2+j}} V_2([0,1]^3) \mathbb{E}[V_j(K \cap X_1)] = \frac{2\pi j! \kappa_j}{(2+j)! \kappa_{2+j}} \mathbb{E}[3V_j(K \cap X_1)].$$

Setzt man j = 0 ein, so erhält man mit

$$\widehat{V}_2(K) := 3V_0(K \cap X_1)$$

einen erwartungstreuen Schätzer für $V_2(K)$ und für j=1 erhält man mit

$$\widehat{V}_3(K) := \frac{3}{2} V_1(K \cap X_1)$$

einen erwartungstreuen Schätzer für das Volumen von K.

Aufgabe 4 (Lemma 5.1.3)

Es seien m ein Mosaik und $K \in m$.

(a) Zeigen Sie, dass es endlich viele Zellen $K_1, \ldots, K_k \in m \setminus \{K\}$ gibt mit $K_i \cap K \neq \emptyset$ für $i = 1, \ldots, k$ und dass gilt

$$\mathrm{bd}\,K = \bigcup_{i=1}^k (K_i \cap K).$$

(b) Für jedes $i \in \{1, ..., k\}$ gibt es wegen int $K \cap \text{int } K_i = \emptyset$ eine Hyperebene H_i , die K und K_i trennt, das heißt sie erfüllt $K \subset H_i^+$ und $K_i \subset H_i^-$, wobei H_i^+ und H_i^- die beiden durch H_i berandeten abgeschlossenen Halbräume sind. Zeigen Sie, dass K ein Polytop ist, das heißt

$$K = \bigcap_{i=1}^{k} H_i^+.$$

Hinweis: Ist $A \subset \mathbb{R}^d$ konvex, $x \in \operatorname{cl} A$ und $y \in \operatorname{relint} A$, so gilt $(x, y] \subset \operatorname{relint} A$.

Lösung:

(a) Wegen der lokalen Endlichkeit von m (Eigenschaft (i) in Definition 5.1.1) gibt es nur endlich viele Zellen $K_1, \ldots, K_k \in m \setminus \{K\}$ mit $K_i \cap K \neq \emptyset$ für $i = 1, \ldots, k$.

Sei zunächst $x \in \operatorname{bd} K$. Es existiert eine Folge $(x_n)_{n \in \mathbb{N}}$ aus $\mathbb{R}^d \setminus K$ mit $x_n \to x$. Die Menge $\{x_n : n \in \mathbb{N}\} \cup \{x\}$ ist kompakt und hat daher nur mit endlich vielen $K'_1, \ldots, K'_l \in m$ einen nichtleeren Schnitt. Daher muss es insbesondere ein $K' \in m \setminus \{K\}$ und eine unendliche Teilfolge $(x'_n)_{n \in \mathbb{N}}$ von $(x_n)_{n \in \mathbb{N}}$ geben mit $x'_n \in K'$, $n \in \mathbb{N}$. Aus der Konvergenz der Folge $(x_n)_{n \in \mathbb{N}}$ erhalten wir $x'_n \to x$ und aus der Kompaktheit von K' folgt $x \in K'$. Also gilt $x \in \bigcup_{i=1}^k (K_i \cap K)$.

Sei nun $x \in K_i \cap K$ für ein $i \in \{1, ..., k\}$. Eigenschaft (iv) des Mosaiks besagt int $K_i \cap \text{int } K = \emptyset$. Es gilt also insbesondere $x \notin \text{int } K_i \cap \text{int } K$. Angenommen $x \in \text{bd } K_i \cap \text{int } K$. Da die Zellen eines Mosaiks ein nichtleeres Inneres haben, existiert ein $y \in \text{int } K_i$. Wegen dem Hinweis gilt $[y, x) \subset \text{int } K_i$. Andererseits gilt jedoch $x \in \text{int } K$, woraus sich int $K_i \cap \text{int } K \neq \emptyset$ ergibt, was ein Widerspruch zur Mosaik-Definition ist. Insgesamt gilt damit $x \notin \text{int } K$, also $x \in \text{bd } K$.

(b) Die Aussage $K \subset \bigcap_{i=1}^k H_i^+$ ist trivial. Sei also $x \in \bigcap_{i=1}^k H_i^+$. Angenommen es gilt $x \notin K$. Da die Zellen eines Mosaiks innere Punkte haben, existiert ein

$$y \in \operatorname{int} K \subset \operatorname{int} \bigcap_{i=1}^{k} H_i^+.$$

Wegen des Hinweises gilt $(x,y) \subset \operatorname{int} \bigcap_{i=1}^k H_i^+$. Außerdem gibt es einen Punkt

$$z \in ((x,y) \cap \operatorname{bd} K) \subset \operatorname{int} \bigcap_{i=1}^{k} H_i^+.$$

Wegen Teil (a) ist dann $z \in K_i$ für ein $i \in \{1, ..., k\}$. Die Hyperebene H_i war jedoch so gewählt, dass (int H_i^+) $\cap K_i = \emptyset$ gilt, was ein Widerspruch zu $z \in \text{int } \bigcap_{i=1}^k H_i^+$ ist.

Aufgabe 5 (Beispiel 5.1.7)

Es sei $\varphi \in N_s(\mathbb{R}^d) \setminus \{0\}$ und für $x \in \varphi$ sei

$$C(\varphi, x) := \{ z \in \mathbb{R}^d : ||z - x|| \le ||z - y|| \ \forall y \in \varphi \}$$

die Voronoi-Zelle von x. Zeigen Sie, dass alle Voronoi-Zellen beschränkt sind, falls $\operatorname{conv}(\varphi) = \mathbb{R}^d$ gilt.

Lösung: Angenommen, es gibt eine unbeschränkte Voronoi-Zelle $C(\varphi, x)$ mit $x \in \varphi$. Da $C(\varphi, x)$ konvex ist, existiert eine Richtung $u \in S^{d-1}$, sodass der Strahl

$$S := \{x + \alpha u : \alpha \ge 0\}$$

in $C(\varphi, x)$ enthalten ist. Sei $\alpha > 0$. Es gilt $x \in \operatorname{bd} B(x + \alpha u, \alpha)$. Angenommen, es gibt ein

$$y \in \varphi \cap \operatorname{int} B(x + \alpha u, \alpha),$$

dann gelten

$$||y - (x + \alpha u)|| < \alpha$$
 und $||x - (x + \alpha u)|| = \alpha$

und somit

$$x + \alpha u \in C(\varphi, y)$$
 und $x + \alpha u \notin C(\varphi, x)$,

was einen Widerspruch zu $S \subset C(\varphi, x)$ darstellt. Damit folgt insgesamt

int
$$B(x + \alpha u, \alpha) \cap \varphi = \emptyset$$

für alle $\alpha > 0$. Wir erhalten, dass der offene Halbraum

$$\bigcup_{n=1}^{\infty} \operatorname{int} B(x + nu, n)$$

keinen Punkt aus φ enthält, was der Voraussetzung $\operatorname{conv}(\varphi) = \mathbb{R}^d$ widerspricht.