东南大学电工电子实验中心 实验报告

课程名称: 数字与逻辑电路实验 A

第一次实验

				甩路	组合逻辑	俭名称:	头
	动化_	自喜	业:	_专	自动化	(系):	院
	305	080223	号:	学	邹滨阳	名:	姓
			组别:	实验		验室:_	实
日	月	年	対间:	实验		且人员:	同约
]教师:	审阅		定成绩:	

一、 实验目的

- 1、认识数字集成电路,能识别各种类型的数字器件和封装;
- 2、掌握小规模组合逻辑和逻辑函数的工程设计方法;
- 3、掌握常用中规模组合逻辑器件的功能和使用方法;
- 4、学习查找器件资料,通过器件手册了解器件;
- 5、了解实验箱的基本结构,掌握实验箱电源、逻辑开关和 LED 电平指示的用法;
- 6、学习基本的数字电路的故障检查和排除方法。

二、 实验原理 (预习报告内容)

- 1. 数值判别电路(只允许用与非门、非门设计电路)
 - a) 用与非门设计一个组合逻辑电路,接收 8421BCD 码 $B_3B_2B_1B_0$,当 $2 < B_3B_2B_1B_0$

<7 时输出 Y 为 1

根据要求列出真值表:

10/11/2010月出入	HT 141			
В3	B2	B1	В0	Υ
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	1
0	1	1	0	1
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0
1	0	1	0	无意义
1	1	1	1	无意义

卡诺图.

LUEI:			\sim		
B3B2\B1B0	00	01	11	10	
00	0	0	1	0	
01		1	0	1	
41	天意义	王意义	无意义	天意义	
10	0	0	无意义	无意义	

根据卡诺图得到表达式:

 $F = \overline{B_2}B_1B_0 + B_2\overline{B_1} + B_2\overline{B_0} = \overline{B_2}B_1B_0 + B_2(\overline{B_1} + \overline{B_0}) = \overline{B_2}B_1B_0 + B_2\overline{B_1B_0} = \overline{\overline{B_2}B_1B_0} = \overline{\overline{B_2}B_1B_0}$ 根据表达式画出逻辑原理图:

$$F = \overline{B_2}B_1B_0 + B_2\overline{B_0} + B_2\overline{B_1} - \overline{B_2}B_1B_0\overline{B_2}\overline{B_0}\overline{B_2}\overline{B_1}$$

$$= \overline{B_2}B_1B_0 + B_2(\overline{B_0} + \overline{B_1})$$

$$= \overline{B_2}B_1B_0 + B_2\overline{B_0}\overline{B_1}$$

$$= \overline{B_2}B_1B_0\overline{B_2}\overline{B_0}\overline{B_2}$$

$$= \overline{B_2}B_1B_0\overline{B_2}\overline{B_0}\overline{B_2}$$

$$= \overline{B_2}B_1B_0\overline{B_2}\overline{B_0}\overline{B_2}$$

$$= \overline{B_2}B_1B_0\overline{B_2}\overline{B_0}\overline{B_2}$$

$$= \overline{B_2}B_1B_0\overline{B_2}\overline{B_0}\overline{B_2}$$

预搭接硬件连接图(实物连线拍照):

b) 用与非门设计一个组合逻辑电路,接收 4 位 2 进制数 $B_3B_2B_1B_0$,当 $2 < B_3B_2B_1B_0$ < 7 时输出 Y 为 1

根据要求列出真值表:

B3	B2	B1	В0	Υ
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	1
0	1	1	0	1
0	1	1	1	0
1	1	1	1	0

卡诺图:

B3B2\B1B0	00	01	11	10	
00	0	0	1	0	
Q 1	40	1	0	1	
11	0	0	0	0	
10	0	0	0	0	

根据卡诺图得到表达式:

$$F=\overline{B_3} \ \overline{B_2} B_1 B_0 + \overline{B_3} B_2 \overline{B_0} + \overline{B_3} B_2 \overline{B_1} = \overline{\overline{B_3} \ \overline{B_2} B_1 B_0} \ \overline{\overline{B_3} B_2 \overline{B_0}} \ \overline{\overline{B_3} B_2 \overline{B_1}}$$

根据表达式画出逻辑原理图:

预搭接硬件连接图 (实物连线拍照):

2、用三种方案设计实现 3 位二进制原码转补码电路(3 位二进制数仅考虑 0 和负数, 且已省去符号位)

根据题意列出真值表

A2	A1	A0	S2	S1	S0
0	0	0	0	0	0
0	0	1	1	1	1
0	1	0	1	1	0
0	1	1	1	0	1
1	0	0	1	0	0

1	0	1	0	1	1
1	1	0	0	1	0
1	1	1	0	0	1

a) 全部用门电路实现

卡诺图:

S2

00	01	11	10
	1	(1)	1
1			
00	<u>p</u>	11	10
	1		1
	1		1)
00	01	11	10
	1	1	
	1	1	
	00	00 01 1 1	00 01 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

根据卡诺图得到表达式:

$$S_2 = A_2\overline{A_1}\,\overline{A_0} + \overline{A_2}A_1 + \overline{A_2}A_0 = \overline{A_2}\overline{A_1}\,\overline{A_0}\,\overline{\overline{A_2}A_1}\,\overline{\overline{A_2}A_1}\,\overline{\overline{A_2}A_1}$$
 $S_1 = \overline{A_1}A_0 + A_1\overline{A_0} = \overline{\overline{A_1}A_0}\,\overline{\overline{A_1}A_0}\,\overline{\overline{A_1}A_0}$ $S_0 = A_0$

根据表达式画出逻辑原理图:

预搭接硬件连接图 (实物连线拍照):

b) 用数据选择器 74151+门电路实现

结合 151 功能得到逻辑表达式:

$$S_2 = \overline{A2} \ \overline{A1} \ A0 + \overline{A2} \ A1 \ \overline{A0} + \overline{A2} \ A1 \ A0 + A2 \ \overline{A1} \ \overline{A0}$$

$$S_1 = \overline{A2} \ \overline{A1} \ A0 + \overline{A2} \ A1 \ \overline{A0} + A2 \ \overline{A1} \ A0 + A2 \ A1 \ \overline{A0} \ S_0 = \overline{A2} \ \overline{A1} \ A0 + \overline{A2} \ A1 \ A0 + A2 \ \overline{A1} \ A0 + A2 \ A1 \ A0$$

根据表达式画出逻辑原理图:

预搭接硬件连接图 (实物连线拍照):

c) 用三八译码器 74138+门电路实现

结合 138 功能得到逻辑表达式:

$$S_2 = \cdot \overline{D_1 \cdot D_2 \cdot D_3 \cdot D_4}$$

$$S_1 = \overline{D_1 \cdot D_2 D_5 \cdot D_6}$$

$$S_2 = \overline{D_1 \cdot D_3 \cdot D_5 \cdot D_5}$$

根据表达式画出逻辑原理图:

预搭接硬件连接图 (实物连线拍照):

3、 人类有四种血型: A、B、AB 和 O 型。输血时,输血者与受血者必须符合下图的规定,否则有生命危险, 利用数据选择器和最少数量的与非门,完成血型配对任务。

设 01 (或 10,00,目的最简) 代表 A 型血, 10 代表 B 型血, 00 代表 O 型血, 11 代表 AB 型血, A1B1 1 代表输血, A2B2 0 代表受血, Y 代表输出。列出真值表:

A1	B1	输血	A2	B2	受血	Υ
0	0	1	0	0	0	1
		1	0	1	0	1
		1	1	0	0	1
		1	1	1	0	1
0	1	1	0	0	0	0
		1	0	1	0	1
		1	1	0	0	0
		1	1	1	0	1

1	0	1	0	0	0	0
		1	0	1	0	0
		1	1	0	0	1
		1	1	1	0	1
1	1	1	0	0	0	0
		1	0	1	0	0
		1	1	0	0	0
		1	1	1	0	1

得到卡诺图,并降维化简:

A1B1\A2B2	00	01	11	10
00 <	1	X		1
01		1	1	
11			1	
10			1	1

$$Y=\overline{A_1}\,\overline{B_1}+A_2B_2+A_2\overline{B_1}+\overline{A_1}B_2$$

结合 74151 数据选择器的逻辑表达式:

$$Y=(A_2+\overline{A_1})B_2+(\overline{A_1}\ \overline{B_1}+A_2\overline{B_1})\overline{B_2}$$

其中 A₁B₁A₂ 对应 74151 的 421 接口

$$Y=(A_2+\overline{A_1})B_2\ (\overline{A_1}\ \overline{B_1}+A_2\overline{B_1})\overline{B_2}$$

对于 B2 对应的 74151

	- / · • / / / - · · - · - · - ·		
A1	B1	A2	74151 输出
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

对于 B2 非对应的 74151

A1	B1	A2	74151 输出
0	0	0	1
0	0	1	1

0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	0

逻辑原理图

4、选做实验

保险箱数字密码锁

设计一个保险箱的数字密码锁,该锁有规定的 4 位代码 A1, A2, A3, A4 的输入端和一个开箱钥匙孔信号 E 的输出端,锁的代码由实验者自编(例如 1011),当用钥匙开箱时(E=1),如果输入代码符合锁规定代码,保险箱被打开(Z1=1);如果不符,电路将发生报警信号(Z2=1)。要求使用最少数量的与非门实现电路,检测并记录实验结果

设置密码为

,根据要求列出真值表:

卡诺图:

根据卡诺图得到表达式:

根据表达式画出原理图:

三、 实验仪器 (实验过程中用到的仪器设备型号,使用情况,使用软件)

四、 实验记录

- 1、数值判别电路
 - a) 8421BCD 码

验证表格如下:

B3	B2	B2	B1	В0
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	1
0	1	0	0	1
0	1	0	1	1
0	1	1	0	1
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0

b) 4 位 2 进制数

验证表格如下:

B3	B2	B2	B1	В0
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	1
0	1	0	0	1
0	1	0	1	1
0	1	1	0	1
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0

1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

2、二进制原码转补码电路

a) 全部用门电路实现

验证表格如下:

B2	B1	В0	S2	S1	S0
0	0	0	0	0	0
0	0	1	1	1	1
0	1	0	1	1	0
0	1	1	1	0	1
1	0	0	1	0	0
1	0	1	0	1	1
1	1	0	0	1	0
1	1	1	0	0	1

b) 用数据选择器 74151+门电路实现

验证表格如下:

B2	B1	В0	S2	S1	S0
0	0	0	0	0	0
0	0	1	1	1	1
0	1	0	1	1	0
0	1	1	1	0	1
1	0	0	1	0	0
1	0	1	0	1	1
1	1	0	0	1	0
1	1	1	0	0	1

c) 用三八译码器 74138+门电路实现

验证表格如下:

B2	B1	В0	S2	S1	S0	
0	0	0	0	0	0	
0	0	1	1	1	1	
0	1	0	1	1	0	
0	1	1	1	0	1	
1	0	0	1	0	0	
1	0	1	0	1	1	
1	1	0	0	1	0	
1	1	1	0	0	1	

3、血型判别 验证表格如下:

A1	B1	A2	B2	Υ
0	0	0	0	1
		0	1	1
		1	0	1
		1	1	1
0	1	0	0	0
		0	1	1
		1	0	0
		1	1	1
1	0	0	0	0
		0	1	0
		1	0	1
		1	1	1
1	1	0	0	0
		0	1	0
		1	0	0
		1	1	1

4、选做实验密码锁验证表格如下:

五、实验分析 (根据实验记录分析描述各实验结果是否符合设计要求)

六、 实验小结(总结实验完成情况,对设计方案和实验结果做必要的讨论,简述实验 收获和体会)

七、 参考资料 (记录实验过程阅读的有关资料,包含资料名称、作者等)

(PS: 模板部分为蓝色字,自己描述的部分用黑色字,5号字,便于区别,完成报告时此行字删除)