

ECEN 758 Data Mining and Analysis: Lecture 13, Decision Tree Classification

Joshua Peeples, Ph.D.

Assistant Professor

Department of Electrical and Computer Engineering

Announcements

- Assignment #3 will be released next Wednesday (10/09)
- No class next Monday (10/07): Fall Break
- Guest lecture next Wednesday (10/09)
 - +1 on Midterm exam for attendance (must sign-in to attendance sheet)
 - +3 for one paragraph (5 7 sentences) summary of presentation (must attend lecture)
 - Section 700: Watch recording and submit 1 paragraph (+1) or 2 paragraphs (+3)
 - Can also attend lecture virtually and submit 1 paragraph
- Exam I on Monday, 10/14

Midterm Overview

- Midterm format
 - 40 questions
 - Multiple choice/answer, T/F
- In class exam and closed book (no coding IDEs, e.g., Jupyter Notebooks, Google Colab, etc.)
 - Online students will use <u>Honorlock</u>
 - Exam will be administered through Canvas
- Allowed to bring calculator
- One sheet of notes (two-sided, 8.5x11 inches)
 - Cannot be electronic copy
- I will bring scratch sheets of paper to class (if needed)
- Exam will cover lectures 2 13
- Focus on Data Mining/ML fundamentals discussed in lecture material, assignments, and textbooks

Last Lecture

- Introduction to Classification I
 - Definition
 - Model types
 - Hyperparameters vs Parameters
- Bayesian and Nearest Neighbor Classification

Today

- Introduction to Classification II
 - Methodology
 - Metrics
 - Overfitting and underfitting
- Decision tree classification
- Reading: ZM Chapter 18
- Supplemental: ZM Chapter 22

Classification Overview

Classification Tasks

- Classification: given features X, predict label (class) y
- Examples:
 - Communication symbol recognition (input signal w/source & channel induced noise, classes: valid communication symbols)
 - Medical diagnosis (input: symptoms, classes: diseases)
 - Character recognition (input: handwritten characters, classes: {a..z})
 - Fraud detection (input: account activity, classes: fraud / no fraud)
 - ... many more

3D Reconstruction

Angiography

Fluorescence microscopy

Magnetic Resonance

Src: Nowka 2015, IBM CLEF 2013

Image from: Madhu Ramiah- Medium

Classification Methodology

Supervised Learning

Learning from experience

0: Macaw 1: Conure

Supervised Learning

Training:

Collect Labeled Training Data

Extract Features

Select a Model

Fit the Model

General Supervised Learning Process

Classic ML Approach

- Feature engineering
 - Feature extraction
 - Feature selection

Feature Selection

- 1) Explicitly decide which features to use in training of your model.
 - Examine correlations to aid in selecting
 - Some techniques like Random Forest provide feedback on relative feature importance
- 2) And/or use a method that drops features with least value in fitting/testing
- 3) Feature selection techniques:
 - a) Wrapper
 - b) Filter
 - c) Embedded

Feature Selection: Wrapper Method

(a) Original Image

Data Splitting

 Never contaminate original data – clean, extract, feature engineer on a copy (or better, on a "dataframe" in an ML tool)

Data Splitting

- Never contaminate original data clean, extract, feature engineer on a copy (or better, on a "dataframe" in an ML tool)
- 2. Never evaluate the ML model on data used to train the model
 - Objective is to see how well the model does on new data. Keep training and test datasets separate

Data Splitting

- 1. Never contaminate original data clean, extract, feature engineer on a copy (or better, on a "dataframe" in an ML tool)
- 2. Never evaluate the ML model on data used to train the model
 - Objective is to see how well the model does on new data. Keep training and test datasets separate
- 3. Never make selection between alternative models/settings on data used to train or test the model
 - Keep a separate validation dataset for this

Train/Validation/Test datasets

Split data into train, validation, and test

Train/Validation/Test datasets

Split data into train, validation, and test

Train/Validation/Test Splits

- Data: labeled instances
 - Training set (typically 50-80%)
 - Validation set (typically 10-20%)
 - Test set (typically 10-30%)
- Experimentation cycle
 - The training set is used to fit the models
 - The validation set is used to determine which hyperparameters result in the lowest estimated prediction error for model selection
 - The test set is used for assessment of the generalization error of the final chosen model

Training Data

Validation Data

> Test Data

Train/Validation/Test datasets

Split data into train, validation, and test

K-fold Cross Validation

- Train and validate model
 - K-fold CV (find best hyperparameters)
- Evaluate on hold out test data

Classification Measures of Performance

Classification Performance Metrics

- Evaluation (many metrics possible)
 - Accuracy: fraction of instances predicted correctly

Blue samples = 23, Red samples = 21, Total samples = 44 Predicted incorrectly = 2 Accuracy = 42/44 = 95.45%

Classification Performance Metrics

- Evaluation (many metrics possible)
 - Accuracy: fraction of instances predicted correctly
 - Not well suited for imbalanced classes

Blue samples = 23, Red samples = 21, Total samples = 44 Predicted incorrectly = 2 Accuracy = 42/44 = 95.45%

Errors in (Binary) Classification

• Errors in classification:

- True Positive –
 actual class = Positive;
 predicted class = Positive
- True Negative –
 actual class = Negative;
 predicted class = Negative
- False Positive –
 actual class = Negative;
 predicted class = Positive
- False Negative –
 actual class = Positive;
 predicted class = Negative

Blue samples = 23, Red samples = 21, Total samples = 44 TP=19; TN = 23; FP = 0; FN = 2

Errors in (Binary) Classification

• Errors in classification:

- True Positive –
 actual class = Positive;
 predicted class = Positive
- True Negative –
 actual class = Negative;
 predicted class = Negative
- False Positive –
 actual class = Negative;
 predicted class = Positive
- False Negative –
 actual class = Positive;
 predicted class = Negative

	Predicted Negative	Predicted Positiv
Actual Negative	True Negative ✓ Correctly predicted not dogs	False Positive X Predicted as dogs but actually not dogs
	3	2
Actual Positive	False Negative X Predicted as not dogs but actually dogs	True Positive ✓ Correctly predicted dogs
	1	4

(Improved) Classification Performance Metrics

- Evaluation (many metrics possible)
 - Precision: TP / (TP + FP)
 - Recall: TP/ (TP + FN)
 - F₁ = Harmonic Mean of Precision & Recall
 - $F_1 = TP / (TP + 0.5 FN + 0.5 FP)$

Blue samples = 39, Red Samples = 5, Total samples = 44

Accuracy =
$$40/44 = 90.9\%$$

Precision =
$$2/3 = 66.7\%$$

Recall =
$$2/5 = 40\%$$

$$F_1 = 2/4 = 50\%$$

Joshua Peeples, Ph.D.

Blue samples = 23, Red samples = 21, Total samples = 44

Accuracy =
$$42/44 = 95.5\%$$

Recall =
$$19/21 = 90.5\%$$

$$F_1 = 19/20 = 95\%$$

Precision / Recall trade-off

Confusion Matrix

- Summarizes correct and incorrect classification by class
- For binary classifier:

True Positives # False Negatives

Positive # False Negatives

True Label # False Positives # True Negatives

Negative

Positive

Predicted Label

Negative

Multi-class Confusion Matrix

- For classification presents heat-map of classification results for ground truth classes versus predicted classes
- Very valuable in determining where classification overfitting is happening

Perfect Classifier?

Equally bad? What's wrong?

Joshua Peeples, Ph.D. Feature 1

Bias/Variance Tradeoff and Overfitting/Underfitting

Bias vs Variance

Underfitting and Overfitting

- **Underfitting:** If there is high Bias in the model we use (the model wrongly disregards the effects of the varying observations), the approximate function \widehat{Y} cannot closely approximate the unknown function Y
- Overfitting: If there is high Variance in the model we use (the model changes significantly with changes in the training data) the approximate function \hat{Y} does not generalize well since the new observations differ from the training data)

Decision Tree Classifier

Decision Trees

- Classification built on induction
- Suited to managing simplicity vs consistency (bias vs variance)

Decision Trees

- Compact representation of a function:
 - Truth table
 - Conditional probability table
 - Predictions

Decision Trees to Rules

 \mathcal{R}_3 : If $X_1 \le 5.45$ and $X_2 \le 2.8$ and $X_1 \le 4.7$, then class is c_1 , or

 \mathcal{R}_4 : If $X_1 \leq 5.45$ and $X_2 \leq 2.8$ and $X_1 > 4.7$, then class is c_2 , or

 \mathcal{R}_1 : If $X_1 \le 5.45$ and $X_2 > 2.8$, then class is c_1 , or

 \mathcal{R}_2 : If $X_1 > 5.45$ and $X_2 \leq 3.45$, then class is c_2 , or

 \mathcal{R}_5 : If $X_1 > 5.45$ and $X_2 > 3.45$ and $X_1 \leq 6.5$, then class is c_1 , or

 \mathcal{R}_6 : If $X_1 > 5.45$ and $X_2 > 3.45$ and $X_1 > 6.5$, then class is c_2

Decision Tree Learning Algorithm

Example Dataset

2004 model year vehicle data and classes of fuel economy

df.head(10)

₽		msrp	invoice	disp	cyl	hp	weight	wheelbase	length	width	AWD	RWD	mpgclass
	0	22388	20701	1.8	4.0	142	2387.0	89.0	156.0	66.0	0	1	2.0
	1	35545	32244	3.8	6.0	205	3778.0	114.0	207.0	75.0	0	0	1.0
	2	39235	36052	4.0	8.0	270	3953.0	106.0	185.0	69.0	0	0	1.0
	3	45707	41966	3.2	6.0	215	3770.0	107.0	183.0	69.0	0	1	1.0
	5	34845	32902	2.3	5.0	247	3766.0	107.0	180.0	71.0	0	0	1.0
	6	35515	32243	3.2	6.0	220	5086.0	112.0	187.0	76.0	1	0	0.0
	7	14610	13697	2.2	4.0	140	2617.0	104.0	183.0	69.0	0	0	2.0
	8	33112	30763	3.8	6.0	215	4718.0	110.0	190.0	75.0	1	0	0.0
	9	21900	20095	3.4	6.0	180	3465.0	111.0	200.0	73.0	0	0	2.0
	11	25995	23969	2.5	6.0	174	3577.0	101.0	175.0	71.0	1	0	1.0

Decision Tree Learning

- Training: Find a small tree consistent with the training examples (think Occam's razor), by:
- Recursively choosing the "most significant" attribute for each node which is eligible for expansion

We need a measure of how "good" a split is, even if the results aren't perfectly separated

Gini Impurity

- A decision in which all members are of one class is "pure"
- Decisions with mixed classifications are "impure"
- In decision-tree classification, the criteria splits are made using the Gini index

$$G(\mathbf{D}) = 1 - \sum_{i=1}^{k} P(c_i | \mathbf{D})^2$$

Gini Impurity

- A decision in which all members are of one class is "pure"
- Decisions with mixed classifications are "impure"
- In decision-tree classification, the criteria splits are made using the Gini index

Concretely, for a set of items with K classes, and p_k being the fraction of items labeled with class $k\in 1,2,\ldots,K$, the **Gini impurity** is defined as:

$$G = \sum_{k=1}^K p_k (1-p_k) = 1 - \sum_{k=1}^N p_k^2$$

Entropy

- Alternatively we can make decisions on which features to use in a split by using Entropy
- Measure of disorder or uncertainty
 - Low entropy if pure (entropy = 0)
 - Higher entropy if unpure (entropy = log₂k)

$$H(\mathbf{D}) = -\sum_{i=1}^k P(c_i|\mathbf{D}) \log_2 P(c_i|\mathbf{D})$$

Information Gain

- For each split, compare entropy before and after
 - Difference is the information gain
- Problem: there's more than one distribution after split!
- Solution: use expected entropy, weighted by the number of examples

$$H(\mathbf{D}_Y, \mathbf{D}_N) = \frac{n_Y}{n} H(\mathbf{D}_Y) + \frac{n_N}{n} H(\mathbf{D}_N)$$

$$Gain(\boldsymbol{D}, \boldsymbol{D}_Y, \boldsymbol{D}_N) = H(\boldsymbol{D}) - H(\boldsymbol{D}_Y, \boldsymbol{D}_N)$$

Information gain = entropy (parent) - [weightes average] * entropy (children)

Gini vs Entropy

Image from: Pablo Aznar, Decision Trees: Gini vs Entropy.

Decision Tree Terminology

- Parent node: Node that is subdivided
- Child node: Sub-nodes of parents

Image from: Arif R, The Basics of Decision Trees.

Decision Tree: Recursion

Decision Tree: Recursion

 Stop when states are "pure" or maximum depth is reached

Random Forest Classifier

Overfitting

- Overfitting occurs when you move from modeling the underlying patterns in the true function to also modeling the noise in the data
- Detecting when we overfit
 - The error in our validation or test set is significantly worse than our training set

Recall this Decision Tree

2004 model year vehicle data and classes of fuel economy

Checking for Overfitting

 When we build decision trees allowing different depths, we get a variety of model complexity. For this dataset, we get this accuracy for these models:

Max Tree Depth	Train Accuracy	Validation Accuracy
1	0.616	0.711
2	0.797	0.735
3	0.855	0.735
4	0.861	0.735
5	0.882	0.759
6	0.918	0.759
13	0.918	0.759

Mitigating Overfitting

- Tree Pruning
- Regularization

Mitigating Overfitting

- Tree Pruning
- Regularization

Random Forests

Aggregate multiple decisions trees to form the predictors

Random Forest

Ensemble Method

Ensemble Method with Decision Trees

- Aggregate groups of predictors
 - Train classifiers and majority vote
 - Improves overall accuracy, even if component classifiers are "weak learners"

- Aggregate groups of predictors
 - Train classifiers and majority vote
 - Improves overall accuracy, even if component classifiers are "weak learners"
- Boosting is technique of combining weak multiple weak learners into a strong learning aggregate predictor (eg. AdaBoost, Gradient Boost)

- Aggregate groups of predictors
 - Train classifiers and majority vote
 - Improves overall accuracy, even if component classifiers are "weak learners"
- Bagging and Pasting
 - Same algorithm with different subsets of training data
 - Bagging (aka Bootstrapping): w/ replacement in subset selection
 - Pasting no replacement in subset selection

Decision Tree and Random Forest Comparison

Both available in Sklearn!

Max Depth HP	Max Tree Depth	Train Accuracy	Validation Accuracy
1	1	0.616	0.711
2	2	0.797	0.735
3	3	0.855	0.735
4	4	0.861	0.735
5	5	0.882	0.759
6	6	0.918	0.759
none	13	0.918	0.759
Random Forest	2	0.803	0.771

Random Forest: Feature Importance

- Aggregate groups of Decision Trees
 - Random forests measure feature importance which can influence predictor choice, drive feature selection,...feature_importances_ variable in RFC class in Scikit-Learn

Extreme Gradient Boosting (XGBoost)

- Uses parallel trees for boosting
 - Unlike Random Forest that typically use bagging
- XGBoost is scalable and can be used with GPUs

Next class

- Guest lecture (10/09)
- Enjoy your Fall Break ☺

Supplemental Slides

Useful Links

- The Basics of Decision Trees
- Decision Trees: Gini vs Entropy
- Introduction to Random Forest in Machine Learning
- Bagging vs Boosting
- XGBoost
- XGBoost vs Random Forest
- Visual Guide to XGBoost