

โชคชะตา (Destiny)

2 second, 512 megabytes

หมายเหตุ มีคำอธิบายโจทย์แบบย่ออยู่ย่อหน้าสุดท้าย

ในช่วงแห่งอนาคต นักฟิสิกส์ได้ค้นพบกฎแห่งเวลาของธรรมชาติ ซึ่งเป็นเหตุและผลกันในที่สุด เราสามารถอธิบายทฤษฎี บางอย่างของชีวิตผ่านการวิเคราะห์ได้ ซึ่งถือว่านักฟิสิกส์สามารถ "ทำนาย" โชคชะตาของมนุษย์ได้อยู่พอสมควร

โชคชะตาของแต่ละคน คือต้นไม้ที่มีราก T ประกอบด้วยโหนดของเวลา โดยรากของต้นไม้แทนการเกิด และใบของ ต้นไม้แทนการตาย ในแต่ละโหนดของเวลา ที่ไม่ใช่ใบไม้ u จะมีโหนดย่อย v_1,v_2,\ldots,v_{c_u} หนึ่งโหนดขึ้นไป ซึ่งแสดง ความเป็นไปได้ต่าง ๆ ทั้งหมด c_u แบบ โดยเราสามารถเดินทางจากโหนดของเวลา u ไปโหนดของเวลา v_i ได้ก็ต่อเมื่อ มีเส้นขอบ (u,v_i) โดยที่ v_i เป็นโหนดลูกของ u

เส้นทางของโชคชะตาชีวิตของคน ๆ หนึ่ง ตั้งแต่การเกิด (นั่นคือ ราก) ไปจนถึงการตาย (นั่นคือ ใบบางใบของต้น) ที่ไม่ผ่านโหนดซ้ำ เส้นทางย่อยใด ๆ บนเส้นทางนี้จะมีอย่างน้อยหนึ่งขอบ คือประสบการณ์ชีวิตของคน ๆ นั้น และ ประสบการณ์ชีวิตของเขาที่เขาผ่านในเส้นทางที่เป็นไปได้ทั้งหมด เรียกว่าประสบการณ์ชีวิตที่มีคุณภาพ กล่าวอีกอย่าง คือเส้นทางที่เป็นไปได้ทั้งหมดจากโหนด u ถึง v ในต้นไม้ T โดยที่ $u \neq v$ และ u เป็นบรรพบุรุษของ v ซึ่งสามารถ เรียกได้เป็นคู่อันดับ (u,v) และเส้นทางของประสบการณ์ชีวิตที่เป็นไปได้ทั้งหมดใน T เรียกเป็น $\mathcal{P}_{\mathcal{T}}$

ทฤษฎีบางอย่างสามารถอธิบายประสบการณ์ชีวิตได้ว่าสิ่ง ๆ นั้น "สำคัญ" หรือไม่ หากจะบอกว่าประสบการณ์ชีวิต หนึ่งสำคัญได้ ก็ต่อเมื่อ ประสบการณ์ชีวิตนั้นได้เปรียบบนเส้นทางเดียวกัน กล่าวคือเราสามารถกล่าวว่าประสบการณ์ ชีวิตบางอย่างมีความสำคัญ เมื่อ $Q\subseteq \mathcal{P}_{\mathcal{T}}$ และ $(u,v)\in Q$

จงนับจำนวนเส้นทางสำหรับ $(u,v)\in\mathcal{Q}$ ใด ๆ ที่มีเส้นขอบที่มีความ "สำคัญ"

โจทย์อย่างย่อ คุณได้รับต้นไม้ T=(V,E) และเซตของคู่อันดับ $Q\subseteq V\times V$ เมื่อ $(u,v)\in\mathcal{Q},\ u\neq v$ และ u เป็นบรรพบุรุษของ v บนต้นไม้ T โดย V และ E แทนเซตของจุดยอดบนต้นไม้ T และเซตของเส้นเชื่อมบนต้นไม้ T ตามลำดับ

งานของคุณ

นับจำนวนฟังก์ชัน $f:E \to \{0,1\}$ ที่แตกต่างกันทั้งหมด (วิธีการกำหนดค่า 0 หรือ 1 ให้กับแต่ละเส้นเชื่อม $e \in E$) โดยสำหรับ $(u,v) \in Q$ จะมีเส้นเชื่อม e เป็นวิถีจาก u ไปยัง v จะมีค่า f(e)=1 เสมอ และเนื่องจากคำตอบอาจมี ขนาดใหญ่มากเกินไปจึงให้ตอบเศษจากการหารคำตอบด้วย $998\,244\,353$ (เป็นจำนวนเฉพาะ)

programming in th

ข้อมูลนำเข้า

บรรทัดแรก รับจำนวนเต็มบวก $N~(1 \leq N \leq 5 \times 10^5)$ แทนจำนวนจุดยอดบนต้นไม้ T โดยแต่ละจุดยอดแทนด้วย จำนวนเต็มบวกตั้งแต่ 1~ถึง N

อีก N-1 **บรรทัดต่อมา** รับจำนวนเต็มบวก x_i และ y_i $(1 \le x_i, y_i \le N)$ แทนการมีเส้นเชื่อมระหว่างจุดยอด x_i และ y_i แต่ไม่ได้กำหนดทิศทางของเส้นเชื่อมนี้

บรรทัดที่ N+1 รับจำนวนเต็มบวก M $(1 \le 5 \times 10^5)$ แทนจำนวนข้อมูลที่ต้องการสังเกต

อีก M บรรทัดต่อมา จำนวนเต็มบวก u_i และ v_i $(1 \le u_i, v_i \le N)$ แทนการมี $(u_i, v_i) \in Q$ โดยที่อาจมี $u_i = u_j$ และ $v_i = v_j$ เมื่อ $i \ne j$

ข้อมูลส่งออก

มีบรรทัดเดียว แสดงเศษจากการหารจำนวนฟังก์ชัน f(e) ทั้งหมดที่เป็นไปได้ด้วย $998\,244\,353$

programming in.th

ตัวอย่างข้อมูลนำเข้าและข้อมูลส่งออก

ตัวอย่างข้อมูลนำเข้า	ตัวอย่างข้อมูลส่งออก
5	10
1 2	
2 3	
3 4	
3 5	
2	
1 3	
2 5	
15	960
2 1	
3 1	
4 3	
5 2	
6 3	
7 6	
8 4	
9 5	
10 7	
11 5	
12 10	
13 3	
14 9	
15 8	
6	
3 12	
5 11	
2 5	
3 13	
8 15	
1 13	

คำอธิบาย

ตัวอย่างที่หนึ่ง

programming

มีวิธีที่เป็นไปได้ทั้งหมด 16 วิธี โดยมี 6 วิธีที่ไม่ถูกเงื่อนไขคือ

- 1. $(1,2),\,(2,3)$ และ (3,5) เป็นเส้นเชื่อมที่ไม่สำคัญและ (3,4) เป็นเส้นเชื่อมที่สำคัญ ซึ่งไม่ถูกเงื่อนไขของ Q
- 2. $(1,2),\,(2,3)\,\,(3,4)\,$ และ $(3,5)\,$ เป็นเส้นเชื่อมที่ไม่สำคัญ ซึ่งไม่ถูกเงื่อนไขของ Q
- 3. (1,2) และ (2,3) เป็นเส้นเชื่อมที่ไม่สำคัญและ (3,4) และ (3,5) เป็นเส้นเชื่อมที่สำคัญ ซึ่งไม่ถูกเงื่อนไขของ Q
- 4. (1,2), (2,3) และ (3,4) เป็นเส้นเชื่อมที่ไม่สำคัญและ (3,5) เป็นเส้นเชื่อมที่สำคัญ ซึ่งไม่ถูกเงื่อนไขของ Q
- 5. (2,3) และ (3,5) เป็นเส้นเชื่อมที่ไม่สำคัญและ (1,2) และ (3,4) เป็นเส้นเชื่อมที่สำคัญ ซึ่งไม่ถูกเงื่อนไขของ Q
- 6. $(2,3) \ (3,4)$ และ (3,5) เป็นเส้นเชื่อมที่ไม่สำคัญและ (1,2) เป็นเส้นเชื่อมที่สำคัญ ซึ่งไม่ถูกเงื่อนไขของ Q

อีก 10 วิธีที่เหลือเป็นวิธีที่สามารถทำให้ถูกเงื่อนไขของ Q ได้

การให้คะแนน

16% ของข้อมูลทดสอบ $N \leq 10$ และ $M \leq 10$

4% ของข้อมูลทดสอบ $N \leq 500$ และ $M \leq 15$

4% ของข้อมูลทดสอบ $N \leq 10^4$ และ $M \leq 10$

4% ของข้อมูลทดสอบ $N \leq 10^5$ และ $M \leq 16$

4% ของข้อมูลทดสอบ $N \leq 5 imes 10^5$ และ $M \leq 16$

4% ของข้อมูลทดสอบ $N \leq 10^5$ และ $M \leq 22$

4% ของข้อมูลทดสอบ $M \leq 22$

4% ของข้อมูลทดสอบ $N \leq 600$ และ $M \leq 600$

4% ของข้อมูลทดสอบ $N \leq 1\,000$ และ $M \leq 1\,000$

8% ของข้อมูลทดสอบ $N \leq 2\,000$

8% ของข้อมูลทดสอบ $M \leq 2\,000$

8% ของข้อมูลทดสอบ $N \leq 10^5~M \leq 10^5$ และ T เป็น Complete Binary Tree

programming in.th

4% ของข้อมูลทดสอบ $N \leq 5 imes 10^4$ และ $M \leq 10^5$

4% ของข้อมูลทดสอบ $N \leq 8 imes 10^4$ และ $M \leq 10^5$

8% ของข้อมูลทดสอบ $N \leq 10^5$

12% ของข้อมูลทดสอบ ไม่มีเงื่อนไขเพิ่มเติม

แหล่งที่มา

The 37th CCF National Olympiad in Informatics (NOI 2020)