Komisja Egzaminacyjna dla Aktuariuszy

XLIV Egzamin dla Aktuariuszy z 3 grudnia 2007 r.

Część I

Matematyka finansowa

imię i nazwisko	osoby	egzamın	iowane	յ։

Czas egzaminu: 100 minut

- 1. Rachunki oszczędnościowe A i B założono w chwili 0 wpłacając na nie odpowiednio kwoty początkowe A_0 i B_0 w taki sposób, że łączna wpłata początkowa wyniosła 1. Następnie na rachunek A dokonywane są w sposób ciągły wpłaty z roczną intensywnością $C_t = \frac{1}{1+t}A_t$, gdzie A_t oznacza wartość rachunku w chwili t>0. Ciągła intensywność oprocentowania środków na rachunku wynosi $\delta_t^A = \frac{t}{1+t}$. Na rachunek B nie są już dokonywane żadne dodatkowe wpłaty, natomiast środki na tym rachunku są oprocentowane w sposób ciągły ze zmienną intensywnością $\delta_t^B = \frac{1}{\overline{S_{3-t}}}$ dla $0 < t \le 3$. We wzorze tym $\frac{1}{\overline{S_{3-t}}}$ obliczamy przy założeniu innej stałej ciągłej intensywności $\delta 0$, odpowiadającej stopie i = 10% (służy ona wyłącznie do wyznaczenia $\overline{S_{3-t}}$). Suma zakumulowanych wartości rachunków po 2 latach wynosi 5. Wyznacz A_0 i B_0 . Odpowiedź (podaj najbliższą wartość).
 - A) 0.61 i 0.39
 - B) 0.55 i 0.45
 - C) 0.32 i 0.68
 - D) 0.44 i 0.56
 - E) 0.49 i 0.51

2. Natężenie oprocentowania zadane jest wzorem:

$$\delta_t = \frac{1}{t+1} + \frac{3}{1+2 \cdot \exp(2t)}.$$

Oblicz efektywną stopę zwrotu w 5 roku trwania inwestycji, to jest w okresie od $t_1 = 4.0\,$ do $t_2 = 5.0.$

- A) 14%
- B) 16%
- C) 18%
- D) 20%
- E) 22%

3. Inwestor kupuje w momencie emisji 10 letnią obligację o wartości nominalnej 100 000 z 5% kuponami rocznymi i wartością wykupu równą nominalnej. Inwestor natychmiast sprzedaje jednak tę obligację i za uzyskaną kwotę kupuje w momencie emisji 7 letnią obligację z rocznymi kuponami, której wartość wykupu równa się wartości nominalnej. Pierwszy kupon tej obligacji stanowi 3% wartości nominalnej, a każdy następny wzrasta o 2 punkty procentowe.

Znajdź wartość nominalną obligacji 7 letniej jeżeli oprocentowanie wynosi 6% (wskaż najbliższą wartość).

- A) 81 135
- B) 81 145
- C) 81 155
- D) 81 165
- E) 81 175

- **4.** Dokonano 20 letniej inwestycji w kwocie, która powinna pozwolić na wypłatę 100 na koniec każdego roku przy zakładanej stopie procentowej 5%. W pierwszym roku faktyczna stopa zwrotu była zgodna z zakładaną i wypłacona została kwota 100.
 - Począwszy od drugiego roku stopa zwrotu z inwestycji wzrosła do poziomu 6% i utrzymała się na tej wysokości aż do końca 20 letniego okresu. Pozwoliło to na zwiększenie corocznej wypłaty do poziomu X począwszy od końca drugiego roku. Znajdź wartość X (wskaż najbliższą wartość).
 - A) 108.3
 - B) 108.5
 - C) 108.7
 - D) 108.9
 - E) 108.1

- 5. Mamy nieskończony ciąg płatności dokonywanych na końcu każdego roku, przy czym płatność na koniec roku n wynosi $a \cdot n + 5$. Jaką wartość powinien mieć parametr a, aby duration tego ciągu płatności, przy stopie procentowej i = 4%, była równa 50.
 - A) 3.4
 - B) 4.0
 - C) 4.6
 - D) 5.2
 - E) 5.8

- 6. Rozważmy europejską opcję sprzedaży na rynku Blacka-Scholesa. Termin wygaśnięcia tej opcji upływa za 3 miesiące. Bieżąca cena akcji wynosi 60, cena wykonania opcji 80, zmienność cen akcji σ =3, a roczna, ciągła, stopa wolna od ryzyka r = 4%. Bieżąca cena tej opcji wynosi:
 - A) 35
 - B) 29
 - C) 52
 - D) 48
 - E) 50

Uwaga. Przybliżone wartości dystrybuanty rozkładu N(0,1) podaje tablica:

t	0	0.05	0.1	0.15	0.2	0.25	0.3	0.35
N(t)	0.5000	0.5199	0.5398	0.5596	0.5793	0.5987	0.6179	0.6368
t	0.4	0.45	0.5	0.55	0.6	0.65	0.7	0.75
N(t)	0.6554	0.6736	0.6915	0.7088	0.7257	0.7422	0.7580	0.7734
t	0.8	0.85	0.9	0.95	1	1.05	1.1	1.15
N(t)	0.7881	0.8023	0.8159	0.8289	0.8413	0.8531	0.8643	0.8749
t	1.2	1.25	1.3	1.35	1.4	1.45	1.5	1.55
N(t)	0.8849	0.8944	0.9032	0.9115	0.9192	0.9265	0.9332	0.9394
t	1.6	1.65	1.7	1.75	1.8	1.85	1.9	1.95
N(t)	0.9452	0.9505	0.9554	0.9599	0.9641	0.9678	0.9713	0.9744
t	2	2.05	2.1	2.15	2.2	2.25	2.3	2.35
N(t)	0.9772	0.9798	0.9821	0.9842	0.9861	0.9878	0.9893	0.9906
t	2.4	2.45	2.5	2.55	2.6	2.65	2.7	2.75
N(t)	0.9918	0.9929	0.9938	0.9946	0.9953	0.9960	0.9965	0.9970
t	2.8	2.85	2.9	2.95	3	3.05	3.1	3.15
N(t)	0.9974	0.9978	0.9981	0.9984	0.9987	0.9989	0.9990	0.9992

7. Inwestor rozważa inwestycję w akcje dwóch spółek oraz obligacje. Na podstawie dotychczasowych obserwacji kursów akcji obu spółek, wiadomo, że roczne stopy zwrotu z tych akcji, S_1 i S_2 , cechują następujące parametry:

$$ES_1 = 8\%$$
, $\sigma S_1 = 3\%$, $ES_2 = 10\%$, $\sigma S_2 = 4\%$, $\rho(S_1, S_2) = 0.25$,

natomiast obligacje są instrumentem wolnym ryzyka, dla którego oczekiwana stopa zwrotu $ES_3=S_3=4\%$.

Inwestor konstruuje portfel w taki sposób aby ryzyko portfela, mierzone odchyleniem standardowym stopy zwrotu, było jak najmniejsze, a kwota zainwestowana w obligacje stanowiła połowę kwoty zainwestowanej w akcje. Jaka jest oczekiwana stopa zwrotu z tego portfela?

- A) 6.7%
- B) 8.0%
- C) 7.1%
- D) 7.7%
- E) 7.4%

- **8.** Rozpatrzmy amerykańską opcję kupna na akcję nie płacącą dywidendy, dla której termin wygaśnięcia upływa za 4 miesiące. Obecna cena akcji wynosi 20 a cena wykonania opcji 24. Wiadomo, że w ciągu każdego miesiąca kurs akcji rośnie bądź spada o 20%. Zakładamy ponadto, że rynek nie dopuszcza arbitrażu. Stopa wolna od ryzyka w ujęciu miesięcznym wynosi 1%. Przy podanych założeniach cena tej opcji wynosi, w przybliżeniu:
 - A) 1.9
 - B) 1.7
 - C) 2.2
 - D) 3.4
 - E) 6.8

9. Wiadomo, że na 31.12.2006 krzywa stóp spot opisana jest przez następującą funkcję:

$$Y(0,T) = \frac{1}{100} \left(0.01 \cdot T^4 - 0.05 \cdot T^3 + 0.1 \cdot T^2 - 0.05 \cdot T + 3.86 \right), \ 0 \le T \le 4,$$

gdzie Y(0,T) oznacza T-letnią stopę spot w chwili 0, czyli 31.12.2006. Niech f(0,T) oznacza krzywą forward odpowiadającą krzywej Y(0,T). Ile wynoszą stopy forward f(0,0.9), f(0,2.1), f(0,3.2)? Podać najbliższą odpowiedź:

A)
$$f(0,0.9) = 3.900\%$$
, $f(0,2.1) = 4.093\%$, $f(0,3.2) = 5.301\%$

B)
$$f(0,0.9) = 3.956\%$$
, $f(0,2.1) = 4.137\%$, $f(0,3.2) = 4.454\%$

C)
$$f(0,0.9) = 3.910\%, f(0,2.1) = 4.060\%, f(0,3.2) = 4.910\%$$

D)
$$f(0,0.9) = 5.301\%$$
, $f(0,2.1) = 4.093\%$, $f(0,3.2) = 3.900\%$

E)
$$f(0,0.9) = 4.370\%, f(0,2.1) = 4.120\%, f(0,3.2) = 3.970\%$$

10. Pożyczka ma być spłacona w ciągu 30 lat rocznymi ratami w wysokości 10 000, płatnymi z dołu, przy efektywnej stopie oprocentowania równej 8%. Po 10 płatnościach pożyczkobiorca chciałby wpłacić jednorazowo kwotę X, w takiej wysokości, aby pozostały dług mógł spłacić w ciągu 10 lat ratami płatnymi co pół roku w wysokości 5000, przy nominalnej półrocznej stopie oprocentowania 4%.

Znajdź wartość X (wskaż najbliższą wartość).

- A) 30 210
- B) 30 230
- C) 30 250
- D) 30 270
- E) 30 290

Egzamin dla Aktuariuszy z 3 grudnia 2007 r.

Matematyka finansowa

Arkusz odpowiedzi*

Imię i nazwisko:
Pesel:
OZNACZENIE WERSJI TESTU

Zadanie nr	Odpowiedź	Punktacja*
1	E	
2	D	
3	C	
4	A	
5	C	
6	D	
7	C	
8	C	
9	A	
10	В	

^{*} Oceniane są wyłącznie odpowiedzi umieszczone w *Arkuszu odpowiedzi*.
* Wypełnia Komisja Egzaminacyjna.