신약 개발에 필요한 머신러닝 이해

강원대학교

김화종

Contents

- Data Handling
- Molecule Representation
- Machine Learning
- Deep Learning
- Graph Neural Network
- Virtual Screening
- Generative Model-VAE
- Generative Model-GAN

Colab 실습 환경

선수지식

- ▶ 파이썬 기초
 - import
 - int, float, str
 - if, else, for, in, def, map, apply
- ▶ 데이터 다루기
 - list, tuple, dictionary, matplotlib, plot, range
- ▶ 데이터프레임
 - DataFrame, index, columns, drop, loc, iloc, concat
- ndarray
 - arange, reshape, concatenate

Epoch of Science

Science Paradigm Shift

Logic-driven

- Natural Science
 - Chemistry, Biology
- Experience-centric
 - Knowledge-based

2010~2020

Data-driven

- Data Science
 - End-to-end model
- Al-centric
 - Machine Learning

Bio Data Issues

- Phenotype data
- variant, noisy, hard to interpre
- Hard to understand
- Needs end-to-end models
- Real world data sharing
 - Privacy
- Multimodality

(Image: Daily Fintech)

Digital Biology

Al for Drug Discovery

- Reduces risk, time, and money
- Improves efficacy and safety
- Generates novel drug candidates
- De novo drug design
- New data types hugely accelerate progress
- multi-omics, personal immune profile, lifestyle data, etc.

Just getting started!

Al in Drug Discovery

- Drug Discovery Timeline을 줄일 수 있다
 - target identification
 - virtual screening
 - de novo drug design
 - drug repositioning
- Drug의 효능(efficacy) 및 안전성(safety) 예측 정확도 향상
 - ADME/T prediction
- ▶ Drug Discovery 파이프라인 다양화
 - Fast setup, fast failure
- Types:
 - → Predictive task
 - → Generative task

Al Technologies

