

Geometrie 2 - ICPC Praktikum SS14

25. Juni 2014

<ロ > ← □

Problemstellung: Konvexe Hülle

Problem

Gegeben sei eine Menge M von Punkten in der Ebene. Die konvexe Hülle von M ist die kleinste konvexe Menge, in der M enthalten ist.

Hüllen

Fazit

Konvexe Hüllen haben nur links Abbiegungen.

990

Closed Pair

Idee: Graham Scan

- Bestimme den untersten Punkt P₀
- Sortiere die Punkte nach Winkel relativ zu P₀
- Füge den Punkt mit dem größten Winkel der konvexen Hülle hinzu
- Nimm nun jeweils den Punkt mit dem kleinsten Winkel und überprüfe mit CCW:
 - liegt er links des Vektors P_{k-1} P_k füge ihn der konvexen Hülle hinzu
 - liegt er rechts so entferne solange Punkte aus der Konvexen Hülle bis er links des letzten Vektors liegt
- Wurden alle Punkte betrachtet so hat man die konvexe Hülle gefunden.

Idee: Graham Scan

Sonderfälle

- Liegen drei Punkte auf einer Linie wird das als Linksknick interpretiert
- Haben zwei Punkte den gleichen Winkel so werden Sie lexikographisch sortiert.

Sweepline - Was ist das?

Sweepline

- Häufige Methode zum Lösen geometrischer Probleme
- Gesamte Ebene wird mit einer Linie gescannt (Scanline)
- Nur an bestimmten, wichtigen Punkten (Events) muss etwas getan werden

- Graham-Scan, Sweepline scannt um einen Punkt rotierend
- Closest-Pair, klassisch

Problemstellung

Aufgabe

- n Strecken in der Ebene, jeweils gegeben durch die beiden Endpunkte
- Aufgabe: Finde alle Schnittpunkte

Vereinfachungen

- keine zwei End-/Schnittpunkte haben die gleiche x-Koordinate
- kein Endpunkt liegt auf einer anderen Strecke
- max. 2 Strecken schneiden sich in einem Punkt

Closed Pair

Naiver Ansatz

Erinnerung

Schnitt
$$(p_1, p_2, p_3, p_4) = ccw(p_1, p_2, p_3) \cdot c$$

$$\begin{array}{l} \textit{ccw}(\textit{p}_{1},\textit{p}_{2},\textit{p}_{3}) \cdot \textit{ccw}(\textit{p}_{1},\textit{p}_{2},\textit{p}_{4}) \leq 0 \land \\ \textit{ccw}(\textit{p}_{3},\textit{p}_{4},\textit{p}_{1}) \cdot \textit{ccw}(\textit{p}_{3},\textit{p}_{4},\textit{p}_{2}) \leq 0 \end{array}$$

Algorithmus

- Teste f
 ür je zwei Strecken, ob sie sich schneiden
- Berechne Schnittpunkt (LGS)
- Laufzeit: O (n²)

Bentley-Ottmann Algorithmus

Idee

- Lasse Sweepline L von links nach rechts über die Ebene laufen.
- Zu jedem Zeitpunkt schneidet S eine Teilmenge der Strecken. Die vertikale Anordnung verändert sich dabei nur bei einem Schnittpunkt.
- Events sind
 - noch nicht gescannte Endpunkte
 - Schnittpunkte von Strecken, die in der vertikalen Anordnung nebeneinander liegen

Bentley-Ottmann Algorithmus

Algorithmus - Initialisierung

- Erstelle Priority Queue pq für zukünftige Events, priorisiert nach x-Koordinate. pq enthält zu Beginn alle Endpunkte.
- Erstelle Set T für vertikale Anordnung der Schnittpunkte zwischen den Strecken und der Sweepline. Sortierung nach y-Koordinate. Zu Beginn leer.

Bentley-Ottmann Algorithmus

Algorithmus - Fortsetzung

- Solange pq nicht leer ist, entferne erstes Element aus pq.
 - Linker Endpunkt einer Strecke s: Füge s in T ein. Suche Strecken r und t direkt über und unter s (falls sie existieren). Falls ihr Schnittpunk als Event in pq liegt, entferne ihn. Falls s die Strecken r oder t schneidet, füge die Schnittpunkte in pq ein.
 - Rechter Endpunkt einer Strecke s: Suche Strecken r und t direkt über und unter s. Falls sie sich noch schneiden, füge Schnittpunk zu pq hinzu. Entferne s aus T.
 - Schnittpunk zweier Strecken s, t: Tausche Positionen von s und t in T. Finde Strecken o und u darüber und darunter. Entferne Schnittpunkte mit diesen, füge neue ein.

Problemstellung: Closed Pair

Geben: n Punkte auf einer Ebene

Gesucht: die beiden am nähesten zusammenliegenden Punkte

Naiver Ansatz

Mit Vollständiger Suche.

Alle Distanzen zwischen allen möglichen Punktpaaren ausrechnen und davon das Minimum wählen.

Laufzeit: $\mathcal{O}(n^2)$

Idee: Divide and Conquer

Statt Vollständiger Suche: Divide & Conquer für eine Lösung in $\mathcal{O}(n \log n)$ Zeit.

Divide:

Sortieren der Punkte (Primär x-Koordinate, sekundär y-Koordinate). Aufteilen der Punktmenge in zwei Hälften

2 Conquer:

Größe der Punktmengen:

- |Punktmenge| = 1, return ∞
- |PunktMenge| = 2, return Euklidische Distanz der beiden Punkte
- 3 Combine:

Sei d_1 die kleinste Distanz innerhalb der Punktmenge A_1 . Sei d_2 die kleinste Distanz innerhalb der Punktmenge A_2 .

Sei d_3 die kleinste Distanz von 2 Punkte aus jeweils A_1 und A_2 .

ightarrow Die kleinste Distanz innerhalb $A_1 \cup A_2$ ist min (s_1, s_2, s_3)

Konvexe Hülle Sweepline Closed Pair

0000 0000 0000 0000 14/15

Geometrie 2 25. Juni 2014 14/15

Combine

Naiver Ansatz für Combine immer noch in Laufzeit $\mathcal{O}(n^2)$ Optimierbar!

Sei $d' = \min(d_1, d_2)$.

Für jeden Punkt in der unteren Punktmenge kann der nähere Punkt nur in einem Rechteck mit Breite d'und Höhe2 * d' liegen

Beweisbar

Es gibt maximal 6 solche Punkte im Rechteck.

Ohne Beweis

- \Rightarrow Maximal $\mathcal{O}(6n)$ Operationen für Combine
- ⇒ Gesamtlaufzeit:

$$T(n) = 2 * T(n/2) + \mathcal{O}(n)$$
, und es gilt: $T(n) \in \mathcal{O}(n \log n)$

