Hierarchical spatial modelling for applied population and community ecology

Jeffrey W. Doser, Marc Kéry, Gesa von Hirschheydt 24-27 June 2024



Spatial hierarchical distance sampling models

Jeffrey W. Doser 24-27 June 2024



#### **Population**



#### **Population**



#### Sample



#### **Population**



#### Sample



Need to adjust our abundance estimate by our **detection probability** 

### Distance sampling

- A specialized protocol to estimate abundance/density while accounting for imperfect detection.
- Fundamental concept: use information on the observed distances of animals to estimate detection probability.
- One of the most common methods in ecology for density/abundance estimation.
- Two major "flavors" of distance sampling
  - 1. Conventional distance sampling
  - 2. Hierarchical distance sampling (and related approaches)









- A population is surveyed using a line transect or point transects (i.e., point counts).
- Observer records the distance to each individual observed.





- A population is surveyed using a line transect or point transects (i.e., point counts).
- Observer records the distance to each individual observed.



- Line transects or point counts are performed at a set of j = 1, 2, ..., J sites.
- Distances can be recorded in one of two ways:
  - Continuous distance measurement to each individual
  - Assign each individual to a distance bin

- Line transects or point counts are performed at a set of j = 1, 2, ..., J sites.
- Distances can be recorded in one of two ways:
  - Continuous distance measurement to each individual
  - Assign each individual to a distance bin

For analysis in spAbundance, we will always work with binned data (which can be derived from continuous measurements after data collection).

#### Continuous vs. Binned distances

#### Continuous

| Site | Distance (m) |  |
|------|--------------|--|
| 1    | 100          |  |
| 1    | 122          |  |
| 1    | 30           |  |
| 2    | 18           |  |
| 3    | 7            |  |
| 4    | 53           |  |
| 4    | 47           |  |

#### Continuous vs. Binned distances

#### Continuous

| Site | Distance (m) |  |
|------|--------------|--|
| 1    | 100          |  |
| 1    | 122          |  |
| 1    | 30           |  |
| 2    | 18           |  |
| 3    | 7            |  |
| 4    | 53           |  |
| 4    | 47           |  |

#### Binned

| Site | Distance bin (m) |  |
|------|------------------|--|
| 1    | 100-150          |  |
| 1    | 100-150          |  |
| 1    | 25-50            |  |
| 2    | 0-25             |  |
| 3    | 0-25             |  |
| 4    | 50-100           |  |
| 4    | 25-50            |  |

#### Continuous vs. Binned distances

#### Continuous



#### Binned

| Site | Distance (m) |  |
|------|--------------|--|
| 1    | 100          |  |
| 1    | 122          |  |
| 1    | 30           |  |
| 2    | 18           |  |
| 3    | 7            |  |
| 4    | 53           |  |
| 4    | 47           |  |

| Site    | Distance bin (m) |  |
|---------|------------------|--|
| 1       | 100-150          |  |
| 1       | 100-150          |  |
| 1       | 25-50            |  |
| 2       | 0-25             |  |
| 3       | 0-25             |  |
| 4       | 50-100           |  |
| 4 25-50 |                  |  |



# Binned distance sampling data

| Site | Distance bin (m) |  |  |  |
|------|------------------|--|--|--|
| 1    | 100-150          |  |  |  |
| 1    | 100-150          |  |  |  |
| 1    | 25-50            |  |  |  |
| 2    | 0-25             |  |  |  |
| 3    | 0-25             |  |  |  |
| 4    | 50-100           |  |  |  |
| 4    | 25-50            |  |  |  |

| Site | 0-25m | 25-50m | 50-100m | 100-150m |
|------|-------|--------|---------|----------|
| 1    | 0     | 1      | 0       | 2        |
| 2    | 1     | 0      | 0       | 0        |
| 3    | 1     | 0      | 0       | 0        |
| 4    | 0     | 1      | 1       | 0        |

### Binned distance sampling data

| Site | Distance bin (m) |  |  |
|------|------------------|--|--|
| 1    | 100-150          |  |  |
| 1    | 100-150          |  |  |
| 1    | 25-50            |  |  |
| 2    | 0-25             |  |  |
| 3    | 0-25             |  |  |
| 4    | 50-100           |  |  |
| 4    | 25-50            |  |  |

This is the format of distance sampling data we need for spAbundance.

| Site | 0-25m | 25-50m | 50-100m | 100-150m |
|------|-------|--------|---------|----------|
| 1    | 0     | 1      | 0       | 2        |
| 2    | 1     | 0      | 0       | 0        |
| 3    | 1     | 0      | 0       | 0        |
| 4    | 0     | 1      | 1       | 0        |

 Detection probability decreases as the distance of an individual from the observer increases.

- Detection probability decreases as the distance of an individual from the observer increases.
- E(n) = p \* N
  - n = sample count
  - N = true abundance
  - p = detection probability (the probability an individual in the population appears in our sample)

- Detection probability decreases as the distance of an individual from the observer increases.
- E(n) = p \* N
  - n = sample count
  - N = true abundance
  - p = detection probability (the probability an individual in the population appears in our sample)
- Detection probability p is determined by two components:
  - Detection function
  - Distribution of individuals in space with respect to the observer

Detection probability decreases as distance from observer increases



Kéry and Royle (2015) Chapter 8

$$\bar{p} = \int_0^B g(x)[x]dx$$



Average detection probability

Maximum detection distance



Average detection probability

Maximum detection distance



an individual at distance x, given it is there.





### Detection function g(x)

- More formally,  $g(x) = Pr(detect \mid x)$
- Distance sampling requires g(0) = 1 (there are models to relax this assumption, but not in spabundance).
- g(x) must be a monotonic decreasing function (i.e., starts at 1, then continuously decreases towards 0).
- Common detection functions:
  - Half normal
  - Negative exponential
  - Hazard rate (not available in spAbundance)

# Detection functions g(x)

Half normal

Negative exponential

$$g(x;\sigma) = \exp(-\frac{x^2}{2\sigma^2})$$
  $g(x;\sigma) = \exp(-\frac{x}{\sigma})$ 

 $\sigma$  is a scale parameter that takes positive values. It controls the shape of the detection curve.

#### Detection functions

- The average detection probability p is equal to the area under the detection curve!
- We can estimate other effects of covariates on detection using a GLM framework with the scale parameter  $\sigma$ .
- What link function makes sense for modeling  $\sigma$  as a function of covariates?





A probability distribution that determines the probability an individual occurs at distance x.

### Probability distribution of individual distances

- Most distance sampling approaches assume individuals are uniformly distributed across the line transect rectangle/point count circle.
- Uniformity can also be induced by design (i.e., randomly locating transects).
- This results in [x] taking the following forms:

Line transects: 
$$[x] = \frac{1}{B}$$
Point counts:  $[x] = \frac{2x}{B^2}$ 

# Conventional Distance Sampling





S. T. Buckland, D. R. Anderson, K. P. Burnham J. L. Laake, D. L. Borchers and L. Thomas



### Conventional Distance Sampling

- Long history of development.
- Focus is on estimating abundance/density in an area of interest, not on spatial variation in abundance.
- Assumes abundance is constant across all transects.
- Can model detection probability with many covariates (sometimes called multiple covariate distance sampling).







### Hierarchical distance sampling (HDS)

- Allows density/abundance to vary across transects (sites) using a GLM approach.
- Based on a similar hierarchical framework to occupancy models, N-mixture models.
- Similar approach:
  - Density surface modelling (Hedley and Buckland 2004; Miller et al. 2013)

Ecology, 85(6), 2004, pp. 1591–1597 © 2004 by the Ecological Society of America

#### MODELING ABUNDANCE EFFECTS IN DISTANCE SAMPLING

J. Andrew Royle, 1,4 Deanna K. Dawson, 2 and Scott Bates 3

### Hierarchical distance sampling (HDS)

- Allows density/abundance to vary across transects (sites) using a GLM approach.
- Based on a similar hierarchical framework to occupancy models, N-mixture models.
- Similar approach:
  - Density surface modelling (Hedley and Buckland 2004: Miller et al. 2013)
     This is the approach implemented in

Ecology, 85(6), 2004, pp. 1591–1597 © 2004 by the Ecological Society of America

#### MODELING ABUNDANCE EFFECTS IN DISTANCE SAMPLING

spAbundance.

J. Andrew Royle, 1,4 Deanna K. Dawson, 2 and Scott Bates 3

#### Hierarchical distance sampling

 As with N-mixture models, our HDS model is split into two components:

#### **Process model**

Model for the true abundance/density and how it varies spatially.

#### **Observation model**

Model that relates our imperfect observations to the true abundance/density.

$$N_j \sim \text{Poisson}(\mu_j A_j)$$
  
 $\log(\mu_j) = \boldsymbol{x}_j^{\top} \boldsymbol{\beta}$ 

True abundance at site j

$$N_j \sim \mathrm{Poisson}(\mu_j A_j)$$
 $\log(\mu_j) = oldsymbol{x}_j^ op oldsymbol{eta}$ 

True abundance at site j

An offset to convert  $\mu$  to abundance per unit area (density)

 $N_j \sim \text{Poisson}(\mu_j A_j)$ 

$$\log(\mu_j) = \boldsymbol{x}_j^{\top} \boldsymbol{\beta}$$

True abundance at site j



An offset to convert  $\mu$  to

abundance per unit area

Expected abundance (or abundance per unit area) at site j

True abundance at site j



 $\log(\mu_j) = \boldsymbol{x}_j^{\mathsf{T}} \boldsymbol{\beta}$ 

Expected abundance (or abundance per unit area) at site j

Covariates (including an intercept)

Covariate effects

An offset to convert  $\mu$  to

(density)

abundance per unit area

# Spatial HDS process model

$$N_j \sim \text{Poisson}(\mu_j A_j)$$
  
 $\log(\mu_j) = \boldsymbol{x}_j^{\top} \boldsymbol{\beta} + w_j$   
 $\mathbf{w} \sim \text{Multivariate Normal}(\mathbf{0}, \tilde{\boldsymbol{C}}(d, \phi, \sigma^2))$ 

# Spatial HDS process model

$$N_j \sim \text{Poisson}(\mu_j A_j)$$
  
 $\log(\mu_j) = \boldsymbol{x}_j^{\top} \boldsymbol{\beta} + w_j$   
 $\mathbf{w} \sim \text{Multivariate Normal}(\mathbf{0}, \tilde{\boldsymbol{C}}(d, \phi, \sigma^2))$ 

For spatial models, we use our usual NNGP approach. All of our previous discussion on spatial models applies!

- For HDS, we use "binned" distance sampling data.
- If you collected continuous distances, you should just bin the data. There is minimal loss of information.
- k = 1, 2, ..., K distance bins.
- $y_{j,k}$  = number of individuals observed at site j in distance bin k

$$\mathbf{y}_j = [y_{j,1}, y_{j,2}, \dots, y_{j,K}]$$



| Site | 0-25m | 25-50m | 50-100m | 100-150m |
|------|-------|--------|---------|----------|
| 1    | 0     | 1      | 0       | 2        |
| 2    | 1     | 0      | 0       | 0        |
| 3    | 1     | 0      | 0       | 0        |
| 4    | 0     | 1      | 1       | 0        |

- For our observation model (likelihood) we will use the multinomial distribution.
- For our context, the multinomial distribution distributes the  $N_j$  individuals across the distance bins, assigning each individual to only one bin.
- However, we need to also have an "unobserved" bin.

| Site | 0-25m | 25-50m | 50-100m | 100-150m |
|------|-------|--------|---------|----------|
| 1    | 0     | 1      | 0       | 2        |
| 2    | 1     | 0      | 0       | 0        |
| 3    | 1     | 0      | 0       | 0        |
| 4    | 0     | 1      | 1       | 0        |

$$\mathbf{y}_j = [y_{j,1}, y_{j,2}, \dots, y_{j,K}]$$

| Site | True<br>(unobserved)<br>abundance |
|------|-----------------------------------|
| 1    | 5                                 |
| 2    | 2                                 |
| 3    | 1                                 |
| 4    | 4                                 |

$$N_j$$

| Site | 0-25m | 25-50m | 50-100m | 100-150m | Unobserved |
|------|-------|--------|---------|----------|------------|
| 1    | 0     | 1      | 0       | 2        | 2          |
| 2    | 1     | 0      | 0       | 0        | 1          |
| 3    | 1     | 0      | 0       | 0        | 0          |
| 4    | 0     | 1      | 1       | 0        | 2          |

$$\mathbf{y}_{j}^{*} = [y_{j,1}, y_{j,2}, \dots, y_{j,K}, y_{j,K+1}]$$

| Site | True<br>(unobserved)<br>abundance |
|------|-----------------------------------|
| 1    | 5                                 |
| 2    | 2                                 |
| 3    | 1                                 |
| 4    | 4                                 |

$$N_j$$

| Site | 0-25m | 25-50m | 50-100m | 100-150m | Unobserved |
|------|-------|--------|---------|----------|------------|
| 1    | 0     | 1      | 0       | 2        | 2          |
| 2    | 1     | 0      | 0       | 0        | 1          |
| 3    | 1     | 0      | 0       | 0        | 0          |
| 4    | 0     | 1      | 1       | 0        | 2          |

| Site | True<br>(unobserved)<br>abundance |
|------|-----------------------------------|
| 1    | 5                                 |
| 2    | 2                                 |
| 3    | 1                                 |
| 4    | 4                                 |

$$\mathbf{y}_{j}^{*} = [y_{j,1}, y_{j,2}, \dots, y_{j,K}, y_{j,K+1}]$$

$$N_j$$

$$\mathbf{y}_{j}^{*} \sim \text{Multinomial}(N_{j}, \boldsymbol{\pi}_{j}^{*})$$

$$\boldsymbol{\pi}_{i}^{*} = [\pi_{j,1}, \pi_{j,2}, \dots, \pi_{j,K}, \pi_{j,K+1}]$$

$$\boldsymbol{y}_{j}^{*} \sim \operatorname{Multinomial}(N_{j}, \boldsymbol{\pi}_{j}^{*})$$

$$\boldsymbol{\pi}_{i}^{*} = [\pi_{j,1}, \pi_{j,2}, \dots, \pi_{j,K}, \pi_{j,K+1}]$$

- $\pi_{j,k}$  is the probability of detecting an individual in the kth distance band at site j.
- $\pi_{j,K+1}$  is the probability of not detecting an individual at site j.

# Multinomial cell probabilities visually

K = 5 distance bands



$$\pi_{j,k} = \bar{p}_{j,k} \cdot \psi_k$$

$$\pi_{j,k} = \bar{p}_{j,k} \cdot \psi_k$$

Probability of of detecting an individual at site j in distance band k, given the individual is there

Probability an individual occurs in distance band k



Probability of of detecting an individual at site j in distance band k, given the individual is there

$$\pi_{j,k} = \bar{p}_{j,k} \cdot \psi_k$$

Upper distance limit for band k

$$\bar{p}_{j,k} = \int_{b_k}^{b_{k+1}} g(x)[x]dx$$

Lower distance limit for band k

$$\pi_{j,k} = \bar{p}_{j,k} \cdot \psi_k$$

Upper distance limit for band k

$$\bar{p}_{j,k} = \int_{b_k}^{b_{k+1}} g(x)[x]dx$$

Lower distance limit for band k

Line transects

$$\psi_k = \frac{b_{k+1} - b_k}{B}$$

Point counts

$$\psi_k = \frac{b_{k+1}^2 - b_k^2}{B^2}$$

## Cell probabilities depend on $\sigma$



$$\log(\sigma_j) = \boldsymbol{v}_j^{\top} \boldsymbol{\alpha}$$

# Spatial HDS: putting it all together



$$N_j \sim \text{Poisson}(\mu_j A_j)$$

$$\log(\mu_j) = \boldsymbol{x}_j^{\top} \boldsymbol{\beta} + \mathbf{w}_j$$

$$\mathbf{w} \sim \text{Multivariate Normal}(\mathbf{0}, \mathbf{C}(d, \phi, \sigma^2))$$

$$\boldsymbol{y}_{j}^{*} \sim \operatorname{Multinomial}(N_{j}, \boldsymbol{\pi}_{j}^{*})$$

$$\log(\sigma_j) = \boldsymbol{v}_j^{\top} \boldsymbol{\alpha}$$

# Spatial HDS: putting it all together



# Fitting hierarchical distance sampling models in spabundance

- Non-spatial models: DS()
- Spatial models: spDS()
- Family argument can be Poisson or NB (aiming to have zero-inflated Poisson in the future)
- Detection function (det.func) can be either half-normal or negative exponential.
- Supports both circular (point count) transects and linear transects via the transect argument.



# A note on what we mean by "spatial hierarchical distance sampling"

- Hierarchical distance sampling allows for abundance to vary across transects (sites) but not within a transect.
- When we fit a spatial model, we still assume abundance is uniform within a transect/site. We account for spatial autocorrelation across transects/sites.
- This differs from "spatial distance sampling" in Section 9.8 of Kéry and Royle (2015), in which the objective is to account for within-transect spatial variation in abundance.

# Exercise: Estimating density of an island endemic

13-spatial-hds-issj.R



