Can statistics help us to understand deep learning?

Hannes Smit

Introduction

Introduction 1/2

Machine Learning

- Successes
 - ▶ Self driving cars safer than human drivers
 - Computer vision facial recognition
 - Writing text
- Possible problems
 - Self driving cars what if they crash?
 - Parole decisions in the U.S. biases
 - ▶ GPT2 the algorithm 'too dangerous to release'

Introduction 2/3

The Black Box

- Machine learning is a black box
- We need to be able to open the black box
- Put the algorithms' decisions into human understandable terms

ntroduction 3/20

Artificial Neural Networks

Artificial Neural Networks 4/20

Neuron

- 1. Weighted sum
- 2. Bias term b
- 3. Nonlinear activation function ϕ
 - Identity (linear regression)
 - tanh
 - ReLU

$$y = \phi \left(b + \sum_{i=1}^{n} w_i x_i \right)$$

Artificial Neural Networks 5/20

Backpropogation

- Neural networks are arranged in layers
- Deep learning involves many layers
- Use gradient descent to optimise the weights
- In practice, stochastic batch gradient descent is used

Artificial Neural Networks 6/2

Simple Example

$$y = x + 5\sin(x) + \epsilon$$
 $\epsilon \sim N(0, 0.5)$

Artificial Neural Networks 7/20

Training

Artificial Neural Networks 8/20

Opening the Black Box

Opening the Black Box 9/20

Current Research

Opening the Black Box 10/20

Linear Regression

$$y = x + 5\sin(x) + \epsilon \quad \epsilon \sim N(0, 0.5)$$

$$y = \alpha + \beta_0 x + \beta_1 x^2 + \beta_2 \sin(x) + \beta_3 \sin(2x) + \beta_4 \sin(x/2) + \beta_5 \cos(x) + \beta_6 \cos(2x) + \beta_7 \cos(x/2) + \epsilon$$

Opening the Black Box 11/20

Linear Regression Results

$$y = x + 5\sin(x) + \epsilon$$
 $\epsilon \sim N(0, 0.5)$

	Estimate	Std. Error	t value	p value	
(Intercept)	0.1404	0.0695	2.02	0.0444	
X	1.0203	0.0053	193.86	0.0000	\leftarrow
x^2	0.0006	0.0007	0.87	0.3843	
sin(x)	4.7783	0.0643	74.31	0.0000	\leftarrow
$\sin(2x)$	0.0720	0.0636	1.13	0.2588	
$\sin(x/2)$	0.0099	0.0662	0.15	0.8808	
cos(x)	0.2785	0.0656	4.25	0.0000	\leftarrow
$\cos(2x)$	0.0654	0.0647	1.01	0.3130	
$\cos(x/2)$	0.0901	0.0705	1.28	0.2028	

Opening the Black Box 12/20

Stepwise Regression

	Estimate	Std. Error	t value	p value
(Intercept)	0.1840	0.0458	4.02	0.0001
X	1.0201	0.0052	195.05	0.0000
sin(x)	4.7815	0.0633	75.54	0.0000
cos(x)	0.2864	0.0652	4.40	0.0000
cos(x/2)	0.1146	0.0637	1.80	0.0732

Opening the Black Box 13/20

Stepwise Regression

Opening the Black Box 14/20

Lasso

- Least Absolute Shrinkage and Selection Operator
- Constrains the sum of the absolute values of the model parameters
- Regularises the least influential parameters to zero
- Use k-fold cross validation to find the optimal hyperparameter λ

Opening the Black Box 15/20

Lasso Results

Result of 10 fold CV: $\lambda = -2.232497$

ariable esti	mate
ercept)	0.20
X	1.01
sin(x)	4.64
cos(x)	0.13

Opening the Black Box 16/20

Gaussian Processes

- A Gaussian Process is the infinite dimensional analogue to the multivariate normal distribution
- Instead of a mean vector it uses a mean function and instead of a covariance matrix it uses a covariance function
- GPs have statistical properties that are understood

Opening the Black Box 17/20

Using a Gaussian Process

Opening the Black Box 18/20

Future Research

- Using these techniques on more complex and realistic problems
- Use the Lasso method as a mean function for a Gaussian process
- Sensitivity analysis can also find significant variables

Opening the Black Box 19/20

Thank you for listening

Thank you for listening 20/20