Linear Algebra

1. Vector

- Scalar Multiplication: Multiplying the vector by a real number If the vector x is represented by an arrow, then $\forall t \neq 0$, the vector tx is represented by an arrow in the same direction if t > 0, and in the opposite direction if t < 0. The length of the arrow tx is |t| times the length of the arrow x
- x and y are parallel if y = tx for some $t \neq 0$

2. Fields

(a) Definition of a field

A field F is a set on which two operation addition and multiplication are defined so that $\forall x,y\in F, \exists$ unique elements $x+y\in F$ and $xy\in F$. The following conditions hold for all elements $a,b,c\in F$

- i. Commutativity of addition and multiplication
- ii. Associativity of addition and multiplication
- iii. Identity elements for addition and multiplication. \exists distinct elements 0 and 1 in F such that

$$0 + a = a$$

$$1 \cdot a = a$$

iv. Additive Inverse: $\forall a \in F, \exists c \in F \text{ such that }$

$$a + c = 0$$

Multiplicative Inverse: \forall nonzero $b \in F$, $\exists d \in F$ such that

$$b \cdot d = 1$$

v.
$$a \cdot (b+c) = a \cdot b + a \cdot c$$

(b) Cancellation Law

 $\forall a, b, c \in \text{field } F$, the following statements hold

- (a) If a + b = c + b, then a = c
- (b) If $a \cdot b = c \cdot d$, then a = b