Factor Oracle for Machine Improvisation

Jaime Arias

Université de Bordeaux, LaBRI, UMR 5800 Inria - Bordeaux Sud-Ouest

Septembre 2016

Preliminaries

Word

A word s is a finite sequence $s = s_1 s_2 \dots s_m$ of length |s| = m on a finite alphabet Σ .

Factor

A word $x \in \Sigma^*$ is a factor of s if and only if s can be written s = uxv with $u, v \in \Sigma^*$. Given integers i, j where $1 \le i \le j \le m$, we denote a factor of s as $s[i...j] = s_i s_{i+1} ... s_j$.

Preliminaries

Prefix

A factor x of s is a prefix of s if s = xu with $u \in \Sigma^*$. The ith prefix of s, denoted $pref_s(i)$, is the prefix s[1 ... i].

Suffix

A factor x of s is a suffix of s if s = ux with $u \in \Sigma^*$. The ith suffix of s, denoted $suff_s(i)$, is the suffix s[i ... m].

Preliminaries

Longest Repeated Suffix (LRS)

A factor x of s is the longest repeated suffix of s if x is a suffix of s and |x| is maximal.

Overview

Factor Oracle

The factor oracle of a word s of length m is a deterministic finite automaton (Q, q_0, F, δ) where $Q = \{0, 1, \dots, m\}$ is the set of states, $q_0 = 0$ is the starting state, F = Q is the set of terminal states and δ is the transition function.

Overview

Suffix Link

The suffix link of a state i of the factor oracle of a word s, is equal to the state in which the *longest repeated suffix* (lrs) of s[1 ... i] is recognized.

Overview

Suffix Links

• s = abbcabcdabc

Overview

Suffix Links

- s = abbcabcdabc
- lrs(s) = abc

Overview

Suffix Links

- s = abbcabcdabc
- lrs(s) = abc
- S(11) = 7

Algorithm - Improvisation

Algorithm I FO-Generate function

- 1: Generate uniformly distribute random number u
- 2: if u < q then
- $3: \quad i \leftarrow i+1 \quad v \leftarrow vp_i$
- 4: else
- 5: Choose at random a symbol $\sigma \in \{\sigma_i \mid \delta(S(i), \sigma_i) \neq \bot\}$
- 6: $i \leftarrow \delta(S(i), \sigma)$ $v \leftarrow v\sigma$
- 7: end if
- 8: **return** Sequence *v*

Algorithm - Improvisation

Algorithm I FO-Generate function

- 1: Generate uniformly distribute random number u
- 2: if u < q then
 - 3: $i \leftarrow i + 1$ $v \leftarrow vp_i$
- 4: else
- 5: Choose at random a symbol $\sigma \in \{\sigma_i \mid \delta(S(i), \sigma_i) \neq \bot\}$
- 6: $i \leftarrow \delta(S(i), \sigma)$ $v \leftarrow v\sigma$
- 7: end if
- 8: return Sequence v

Algorithm - Improvisation

Algorithm I FO-Generate function

- 1: Generate uniformly distribute random number u
- 2: if u < q then
 - 3: $i \leftarrow i + 1$ $v \leftarrow vp_i$
- 4: else
- 5: Choose at random a symbol $\sigma \in \{\sigma_i \mid \delta(S(i), \sigma_i) \neq \bot\}$
- 6: $i \leftarrow \delta(S(i), \sigma)$ $v \leftarrow v\sigma$
- 7: end if
- 8: return Sequence v

Algorithm - Improvisation

Algorithm I FO-Generate function

- 1: Generate uniformly distribute random number u
- 2: if u < q then
- 3: $i \leftarrow i + 1$ $v \leftarrow vp_i$
- 4: else
- 5: Choose at random a symbol $\sigma \in \{\sigma_i \mid \delta(S(i), \sigma_i) \neq \bot\}$
- 6: $i \leftarrow \delta(S(i), \sigma)$ $v \leftarrow v\sigma$
- 7: end if
- 8: **return** Sequence *v*

Algorithm - Improvisation

Algorithm I FO-Generate function

- 1: Generate uniformly distribute random number u
- 2: if u < q then
- 3: $i \leftarrow i + 1$ $v \leftarrow vp_i$
- 4: else
- 5: Choose at random a symbol $\sigma \in \{\sigma_i \mid \delta(S(i), \sigma_i) \neq \bot\}$
- 6: $i \leftarrow \delta(S(i), \sigma)$ $v \leftarrow v\sigma$
- 7: end if
- 8: **return** Sequence *v*

Thank you for your attention! ©

Factor Oracle for Machine Improvisation

Jaime Arias

Université de Bordeaux, LaBRI, UMR 5800 Inria - Bordeaux Sud-Ouest

Septembre 2016

