(19) **日本国特許庁(JP)**

(12) 公 開 特 許 公 報(A)

(11)特許出願公開番号

特開2004-154773 (P2004-154773A)

最終頁に続く

(43) 公開日 平成16年6月3日 (2004.6.3)

(51) Int.C1. ⁷	FI			テーマコード(参考)
BO5D 1/30	BO5D	1/30		4 D O 7 5
BO5D 1/34	B05D	1/34		4 L O 5 5
BO5D 7/00	B O 5 D	7/00	F	
D 2 1 H 23/48	D 2 1 H	23/48		
D21H 25/06	D 2 1 H	25/06		
	審查請求	未請求 請求	項の数 64 〇L	外国語出願 (全 32 頁)
(21) 出願番号 (22) 出願日 (31) 優先權主張番号 (32) 優先日 (33) 優先權主張国	特願2003-355433 (P2003-355433) 平成15年10月15日 (2003.10.15) PCT/US02/33113 平成14年10月15日 (2002.10.15) 世界知的所有権機関 (WO)	(71) 出願人	コーポレイティ アメリカ合衆国	l, ミシガン 48674, ワシントン ストリート,
		(74) 代理人	100099759 弁理士 青木 100077517	

(74) 代理人 100087413

(74) 代理人 100111903

弁理士 古賀 哲次

弁理士 永坂 友康

(54) 【発明の名称】被覆基材の製造方法

(57)【要約】 (修正有)

【課題】1種またはそれ以上の反応性化合物を含むコーティング剤を施用することの可能なコーティング方法、 及び互いに反応することが可能であるところのコーティング剤中の諸試薬の存在により、施用コーティング剤の 性質が悪影響されないコーティング方法を提供する。

【解決手段】a)複合多層の自由に流れるカーテン4を形成し、しかも該カーテンは少なくとも2つの層を有し、一方の層は少なくとも、他方の層に含まれた少なくとも第2成分と反応することが可能である第1成分を含み、そして、b)第1成分を含む層と第2成分を含む層の間に存在する少なくとも1つの内部層2を有し、c)該カーテンを連続ウエブ基材5と接触させ、被覆基材を製造する。

【選択図】 図1

【特許請求の範囲】

【請求項1】

a) 互いに反応することの可能な第1成分および第2成分を有する自由に流れるカーテンを形成する工程、および

b) 該カーテンを連続ウエブ基材と接触させる工程 からなる被覆基材の製造方法。

【請求項2】

a) 少なくとも2つの層を有し、1つの層は異なる層中の第2成分と反応することが可能である第1成分を含む複合多層の自由に流れるカーテンを形成する工程、および

b) 該カーテンを連続ウエブ基材と接触させる工程

からなることを特徴とする請求項1に記載の方法。

【請求項3】

工程 a)の多層の自由に流れるカーテンにおいて、少なくとも 1 層の内部層が、第 1 成分を含む層と第 2 成分を含む層の間に存在することを特徴とする請求項 2 に記載の方法。

【請求項4】

工程 a)の第 1 成分および第 2 成分が互いに反応する反応タイプが、アニオンーカチオン相互作用、架橋反応、フリーラジカル反応、段階成長反応、付加反応、U V 誘発硬化反応、電子ビーム誘発硬化反応、酸 - 塩基反応、凝集/凝固反応およびそれらの組合わせからなる群から選択されることを特徴とする請求項 2 または 3 に記載の方法。

【請求項5】

a) 反応することの可能な組成物を含む少なくとも1つの層を有する自由に流れるカーテンを形成する工程、および

b)該カーテンを連続ウエブ基材と接触させる工程

からなることを特徴とする請求項1に記載の方法。

【請求項6】

a) 互いに反応することの可能な第1成分および第2成分を含む少なくとも1つの層を 有する自由に流れるカーテンを形成する工程、および

b)該カーテンを連続ウエブ基材と接触させる工程

からなることを特徴とする請求項5に記載の方法。

【請求項7】

工程 a)の少なくとも第 1 成分および少なくとも第 2 成分が互いに反応する反応タイプが、アニオンーカチオン相互作用、フリーラジカル反応、段階成長反応、付加反応、U V 誘発硬化反応、電子ビーム誘発硬化反応、酸ー塩基反応、凝集/凝固反応およびそれらの組合わせからなる群から選択されることを特徴とする請求項 5 または 6 に記載の方法。

【請求項8】

工程 a)の自由に流れるカーテンが、複合多層の自由に流れるカーテンであることを特徴とする請求項 5 、 6 または 7 に記載の方法。

【請求項9】

工程 a)の第 1 成分と第 2 成分の間の反応が、自由に流れるカーテンにおいておよび/または基材に施用されたときに、ならびに/あるいは熱、圧力、放射線および/または酸素により開始されたときに起こることを特徴とする前記請求項のいずれか 1 項に記載の方法。

【請求項10】

工程 a)において、第 1 成分がポリビニルアルコールであり、かつ第 2 成分がホウ砂であることを特徴とする前記請求項のいずれか 1 項に記載の方法。

【請求項11】

工程 a)において、第 1 成分がカチオン性デンプンであり、かつ第 2 成分がアニオン性コーティング組成物であることを特徴とする前記請求項のいずれか 1 項に記載の方法。

【請求項12】

工程a)の自由に流れるカーテンが、印刷適性を保証する上層を含むことを特徴とする

20

10

30

40

前記請求項のいずれか1項に記載の方法。

【請求項13】

工程 b)の連続ウエブ基材が、 2 0 ~ 4 0 0 g / m 2 の 坪量を有することを特徴とする前記請求項のいずれか 1 項に記載の方法。

【請求項14】

工程 a)の多層カーテンの層のうちの少なくとも 1 つが、 3 0 g / m 2 未満、好ましくは 2 0 g / m 2 未満、最も好ましくは 1 0 g / m 2 未満の乾燥時コーティング質量を有することを特徴とする前記請求項のいずれか 1 項に記載の方法。

【請求項15】

工程 a)の多層カーテンが、6 0 g / m^2 未満の乾燥時コーティング質量を有することを特徴とする前記請求項のいずれか 1 項に記載の方法。

【請求項16】

工程 a)の多層カーテンが、少なくとも 3 層、好ましくは少なくとも 4 層、一層好ましくは少なくとも 5 層、最も好ましくは少なくとも 6 層を含むことを特徴とする前記請求項のいずれか 1 項に記載の方法。

【請求項17】

工程 a) の多層カーテンが、少なくとも 1 種の顔料を含む少なくとも 1 つの層を含むことを特徴とする前記請求項のいずれか 1 項に記載の方法。

【請求項18】

顔料が、粘上、カオリン、焼成粘土、タルク、炭酸カルシウム、二酸化チタン、サテンホワイト、合成ポリマー顔料、酸化亜鉛、硫酸バリウム、セッコウ、シリカ、アルミナ三水和物、雲母およびケイソウ土からなる群から選択されることを特徴とする請求項17に記載の方法。

【請 永 項 1 9 】

工程a)の多層の自由に流れるカーテンの少なくとも1つの層が結合剤を含むことを特徴とする前記請求項のいずれか1項に記載の方法。

【請求項20】

結合剤が、スチレンーブタジエンラテックス、スチレンーアクリレートラテックス、スチレンーアクリレートーアクリロニトリルラテックス、スチレンーブタジエンーアクリレートーアクリロニトリルラテックス、スチレンーアクリロニトリルラテックス、スチレンーマクリロニトリルラテックス、スチレンーマレイン酸無水物ラテックス、スチレンーアクリレートーマレイン酸無水物ラテックス、多糖、タンパク質、ポリビニルピロリドン、ポリビニルアルコール、ポリビニルアセテート、セルロース誘導体およびそれらの混合物からなる群から選択されることを特徴とする請求項19に記載の方法。

【請求項21】

工程 a)の多層の自由に流れるカーテンの少なくとも 1 つの層が、少なくとも 1 種の光 沢剤を含むことを特徴とする前記請求項のいずれか 1 項に記載の方法。

【請求項22】

工程 a)の多層の自由に流れるカーテンの少なくとも 1 つの層が、少なくとも 1 種の界面活性剤を含むことを特徴とする前記請求項のいずれか 1 項に記載の方法。

【請求項23】

工程 a)の多層の自由に流れるカーテンの少なくとも 1 つの層が、少なくとも 4 0 質量パーセント、好ましくは少なくとも 5 0 質量パーセント、最も好ましくは少なくとも 6 5 質量パーセントの固形分含有率を有することを特徴とする前記請求項のいずれか 1 項に記載の方法。

【請求項24】

工程 a)の多層の自由に流れるカーテンが、少なくとも 1 0 質量パーセント、好ましくは少なくとも 4 0 質量パーセント、最も好ましくは少なくとも 4 5 質量パーセントの固形分含有率を有することを特徴とする前記請求項のいずれか 1 項に記載の方法。

【請求項25】

50

10

20

30

20

30

50

工程 b)の連続ウエブ基材が原紙または板紙であることを特徴とする前記請求項のいずれか 1 項に記載の方法。

【請求項26】

工程 b)の連続ウエブ基材が、予備コーティングも予備カレンダー掛けもされていない ことを特徴とする前記請求項のいずれか 1 項に記載の方法。

【請求項27】

工程 b)の連続ウエブ基材が、少なくとも 3 0 0 m / m i n 、好ましくは少なくとも 4 0 0 m / m i n 、最も好ましくは少なくとも 5 0 0 m / m i n のウエブ速度を有することを特徴とする前記請求項のいずれか 1 項に記載の方法。

【請 永 項 2 8 】

前記請求項のいずれか1項に記載の方法により得ることができる被覆基材。

【請求項29】

被覆基材が被覆された紙または板紙であることを特徴とする請求項28に記載の被覆基材。

【請求項30】

a) それ自体とまたは別の化合物と反応することの可能な少なくとも1つの成分を有する自由に流れるカーテンを形成する工程、および

b) 該カーテンを連続ウエブ基材と接触させる工程

からなる被覆基材の製造方法であって、該カーテンの少なくとも 1 つの成分は、コーティング過程中に反応し始めかつコーティング過程が完了する前に本質的に完全に反応することを特徴とする方法。

【請求項31】

a) 互いに反応することの可能な第1成分および第2成分を含む少なくとも1つの層を 有する自由に流れるカーテンを形成する工程、および

b) 該カーテンを連続ウエブ基材と接触させる工程

からなるすることを特徴とする請求項30に記載の方法。

【請求項32】

工程a)の自由に流れるカーテンが複合多層の自由に流れるカーテンであることを特徴とする請求項30に記載の方法。

【請求項33】

工程 a)の第 1 成分および第 2 成分が互いに反応する反応タイプが、アニオンーカチオン相互作用、フリーラジカル反応、段階成長反応、付加反応、U V 誘発硬化反応、電子ビーム誘発硬化反応、酸一塩基反応、凝集/凝固反応およびそれらの組合わせからなる群から選択されることを特徴とする請求項 3 1 に記載の方法。

【請求項34】

工程 a)の第 1 成分と第 2 成分の間の反応が、自由に流れるカーテンにおいておよび/または基材に施用された時に、並びに/あるいは熱、放射線および/または酸素により開始された時に起こることを特徴とする請求項 3 1 に記載の方法。

【請求項35】

工程 a)の自由に流れるカーテンが、印刷適性を保証する上層を含むことを特徴とする 40 請求項30 に記載の方法。

【請求項36】

「程 a)の多層カーテンの層のうちの少なくとも 1 つが、 3 0 g / m 2 未満、好ましくは 2 0 g / m 2 未満、最も好ましくは 1 0 g / m 2 未満の乾燥時コーティング質量を有することを特徴とする請求項 3 2 に記載の方法。

【請求項37】

工程 a)の多層カーテンが 6 0 g / m 2 未満の乾燥 時コーティング質量を有することを特徴とする請求項 3 2 に記載の方法。

【請求項38】

工程a)の多層カーテンが、少なくとも3層、好ましくは少なくとも4層、一層好まし

くは少なくとも 5 層、最も好ましくは少なくとも 6 層を含むことを特徴とする請求項 3 2 に記載の方法。

【請求項39】

工程 a) の多層カーテンが、少なくとも 1 種の顔料を含む少なくとも 1 つの層を含むことを特徴とする請求項 3 2 に記載の方法。

【請求項40】

顔料が、粘土、カオリン、焼成粘土、タルク、炭酸カルシウム、二酸化チタン、サテンホワイト、合成ポリマー顔料、酸化亜鉛、硫酸バリウム、セッコウ、シリカ、アルミナ三水和物、雲母およびケイソウ土からなる群から選択されることを特徴とする請求項32に記載の方法。

【請求項41】

工程 a)の多層の自由に流れるカーテンの少なくとも 1 つの層が結合剤を含むことを特徴とする請求項 3 2 に記載の方法。

【請 永 項 4 2 】

結合剤が、スチレンーブタジエンラテックス、スチレンーアクリレートラテックス、スチレンーアクリレートーアクリロニトリルラテックス、スチレンーブタジエンーアクリレートーアクリロニトリルラテックス、スチレンーアクリロニトリルラテックス、スチレンーマレイン酸無水物ラテックス、スチレンーアクリレートーマレイン酸無水物ラテックス、多糖、タンパク質、ポリビニルピロリドン、ポリビニルアルコール、ポリビニルアセテート、セルロース誘導体およびそれらの混合物からなる群から選択されることを特徴とする請求項41に記載の方法。

【請求項43】

工程 a)の多層の自由に流れるカーテンの少なくとも 1 つの層が、少なくとも 1 種の光 沢剤を含むことを特徴とする請求項 3 2 に記載の方法。

【請求項44】

工程 a)の多層の自由に流れるカーテンの少なくとも 1 つの層が少なくとも 1 種の界面活性剤を含むことを特徴とする請求項 3 2 に記載の方法。

【請求項45】

工程 a) の多層の自由に流れるカーテンの少なくとも 1 つの層が、少なくとも 4 0 質量パーセント、好ましくは少なくとも 5 0 質量パーセント、最も好ましくは少なくとも 6 5 質量パーセントの固形分含有率を有することを特徴とする請求項 3 2 に記載の方法。

【請求項46】

工程 a) の多層の自由に流れるカーテンが、少なくとも 1 0 質量パーセント、好ましくは少なくとも 4 0 質量パーセント、最も好ましくは少なくとも 4 5 質量パーセントの固形分含有率を有することを特徴とする請求項 3 2 に記載の方法。

【請求項47】

工程b)の連続ウエブ基材が原紙または板紙であることを特徴とする請求項30に記載の方法。

【請求項48】

工程 b) の連続ウエブ基材が予備コーティングも予備カレンダー掛けもされていないことを特徴とする請求項30に記載の方法。

【請求項49】

【請求項50】

工程 b)の連続ウエブ基材が、 2 0 ~ 4 0 0 g / m 2 の 坪量を有することを特徴とする請求項 3 0 に 記載の方法。

【請求項51】

請求項30に記載の方法により得ことができる被覆基材。

10

20

30

30

20

30

40

50

【請求項52】

被覆基材が被覆された紙または板紙であることを特徴とする請求項30に記載の被覆基材。

【請求項53】

カーテンをスロットダイで形成することを特徴とする請求項1に記載の方法。

【請求項54】

カーテンをスライドダイで形成することを特徴とする請求項1に記載の方法。

【請求項55】

カーテンの少なくとも 1 つの層がポリエチレンオキシドを含むことを特徴とする請求項 1 に記載の方法。

【請求項56】

カーテンが界面層においてポリエチレンオキシドを含むことを特徴とする請求項1に記載の方法。

【請求項57】

カーテンをスロットダイで形成することを特徴とする請求項30に記載の方法。

【請求項58】

カーテンをスライドダイで形成することを特徴とする請求項30に記載の方法。

【請求項59】

カーテンの少なくとも 1 つの層がポリエチレンオキシドを含むことを特徴とする請求項3 0 に記載の方法。

【請求項60】

カーテンが界面層においてポリエチレンオキシドを含むことを特徴とする請求項30に記載の方法。

【請求項61】

工程a)において、第1成分がデンプンであり、かつ第2成分がジアルデヒドであることを特徴とする前記請求項のいずれか1項に記載の方法。

【請求項62】

工程 a)において、第 1 成分がエポキシ官能性ポリマーであり、かつ第 2 成分がアミン硬化剤であることを特徴とする前記請求項のいずれか 1 項に記載の方法。

【請求項63】

工程 a)において、第 1 成分がポリオールであり、かつ第 2 成分がポリイソシアネートであることを特徴とする前記請求項のいずれか 1 項に記載の方法。

【請求項64】

工程 a)において、第 1 成分がアミノシランエステルであり、かつ第 2 成分がグリシジルシランエステルであることを特徴とする前記請求項のいずれか 1 項に記載の方法。

【発明の詳細な説明】

【技術分野】

[0001]

本発明は、被覆基材の製造方法に関する。更なる具体的態様において、本発明は、被覆された紙または板紙を製造する方法に関する。

【背景技術】

[00002]

被覆基材の製造において、コーティング組成物は、通常、該基材にたとえばブレード型、バー型または反転ロール型コーティング方法により施用される。線速度は、1,000m/minを越え得る。これらの方法のいずれかまたはすべては、通常、コーティング剤を移動基材に順次に施用するために用いられる。

[0003]

しかしながら、これらの施用方法の各々は、劣った被覆表面品質をもたらすことになり 得るところのそれ自身の一群の問題を固有的に有する。ブレード型コーティング方法の場 合、ブレードの下における粒子の溜まりはコーティング層に筋をもたらすことになり得、 しかしてこれは被覆された紙または板紙の品質を下げる。加えて、所望のコーティング質量を達成するためにブレードに適用されねばならない高圧が、基材に非常に高い応力をかけ、そして基材ウエブの破損をもたらすことになって、生産能率の低下をもたらすことになり得る。更に、顔料着色コーティング剤は高度に研摩性であるので、被覆表面の均一性を維持するために、ブレードは定期的に取り替えられねばならない。また、紙または板紙基材の表面上のコーティング剤の分布は、該基材の表面不整により影響される。紙または板紙表面を横断するコーティング剤の不均一な分布は、劣った印刷結果に通じ得るまだらのまたはぶちの表面外観をもたらすことになり得る。

[0004]

バー(ロッド)型コーティング方法は、施用されることになっている顔料着色コーティングカラーの固形分含有率および粘度に関して制限される。バー型コーティング方法によって施用される顔料着色コーティング剤は、典型的には、固形分含有率および粘度について、ブレード型方法によって施用される顔料着色コーティングカラーより低い。従って、バー型コーティング方法については、紙または板紙基材の表面に施用され得るコーティング剤の量を自由に変えることは可能でない。コーティング剤の固形分含有率、粘度およびコーティング質量のパラメーターが不均衡である場合、被覆された紙または板紙の表面の品質の望ましくない低下がもたらされることになり得る。更に、顔料着色コーティング剤によるバーの研摩により、被覆表面の均一性を維持するために、バーを定期的間隔にて取り替えることが必要とされる。

[0005]

ロール型(薄膜)コーティング方法は、各操作速度および各所望コーティング質量が達成されるように遵守されねばならないところの、基材表面特性、基材多孔度、コーティング剤固形分含有率およびコーティング剤粘度に関連した狭い範囲の操作条件があることにおいて、顔料着色コーティング剤を紙および板紙に施用する特に複雑な方法である。これらの変数間の不均衡は、劣った印刷結果に通じ得るところの被覆紙の表面上の不均一な薄膜裂け日模様、またはシートがコーティングニップを出る時コーティング剤の少量の液滴の排除に通じ得る。これらの液滴は、シート表面上に再付着される場合、劣った印刷結果に通じ得る。更に、ロール型コーティング方法を用いて1回のパスで紙または板紙表面に施用され得るコーティング剤の最大量は、典型的には、ブレードまたはバー型コーティング方法によって1回のパスで施用され得る最大量より小さい。このコーティング質量の制限は、高いコーティング速度において特に顕著である。

[0006]

すべてのこれらの方法の共通の特徴は、一般に凸部(hills)と凹部(valleys)のある不整表面を有する紙ウエブに施用されるコーティング液の量が凸部または凹部に施用されるかどうかに依存して異なることである。それ故、コーティング厚およびかくしてインク受容性は被覆紙の表面を横断して変動して、印刷画像に不整をもたらすことになる。これらのコーティング方法は、それらの欠点にもかかわらず、それらの経済性に因り、特に非常に高いライン速度が達成され得るので、紙工業において依然として主要な方法である。

[0.007]

挙げられたコーティング技法のすべてに共通な特徴は、過剰量のコーティング液が基材に施用されそして次いで計量除去されることである。互いに反応することの可能な諸試薬を含むコーティング剤である反応性コーティング剤の場合、計量された過剰コーティング剤において起こる反応はそれを無用にする。更に、これらのコーティング方法の各々は、既に挙げられたように、良好な走行性を得るためにレオロジー的拘束を受け、そのため反応性添加剤の添加はコーティング剤のレオロジープロフィールを変化させて、該レオロジープロフィールがコーティング適性の範囲外になり得る。官能性を被覆基材に付与するために反応性化学作用剤が用いられる場合がある。しかしながら、これらのコーティング剤は、複雑性および出費を加える後続のコーティングまたは転換工程の使用を通じて施用される。

[0008]

10

20

30

20

30

40

50

カーテンコーティングは、比較的新しいコーティング技法である。欧州特許出願公開第517,223号並びに日本国特許出願94-89437、93-311931、93-177816、93-131718、92-298683、92-51933、91-298229、90-217327および特開平8-310110号は、1層またはそれ以上の顔料着色コーティング層を移動紙表面に施用するために、カーテンコーティング方法の使用を開示する。一層特定的には、かかる先行技術は、次のものに関する。

(i) 単層の顔料着色コーティング剤を原紙基材に施用して紙上に単層顔料着色被膜を生成させるために用いられるカーテンコーティング方法。

(ii)ブレード型コーティング方法によって施用される単層の顔料着色上塗りコーティング剤の施用に先だって、単一下塗り層の顔料着色コーティング剤を原紙基材に施用するために用いられるカーテンコーティング方法。かくして、紙の多層顔料着色被膜は、顔料着色コーティング剤の順次的施用により達成された。

(iii)ブレードまたは計量ロール型コーティング方法によって施川された単層の顔料着色下塗りコーティング剤で前もって下塗りされた原紙基材に単一上塗り層の顔料着色コーティング剤を施用するために用いられるカーテンコーティング方法。かくして、紙の多層顔料着色被膜は、顔料着色コーティング剤の順次的施用により達成された。

(iv) 2つの単層が逐次法にて施用されるように2つの単層の特殊顔料着色コーティング剤を原紙基材に施用するために用いられるカーテンコーティング方法。かくして、紙の多層顔料着色被膜は、顔料着色コーティング剤の順次的施用により達成された。

[0009]

上記に論考された先行技術に開示されているような、単層の顔料着色コーティング剤を紙の移動ウエブの表面に施用するためのカーテンコーティング方法の使用は、慣用手段によって生成されるものと比べて優れた品質の被覆紙表面をもたらす機会を呈すると言われる。しかしながら、カーテンコーティング技法を用いての複数の単層の顔料着色コーティング剤の順次的施用は、カーテンコーティング過程の動力学により拘束される。特定的には、軽量のコーティング剤の施用は、慣用のコーティング過程によって現在用いられているものより低いコーティング速度においてのみ成され得、何故なら高いコーティング速度においてはカーテンは不安定になり、そしてこれにより劣った被覆表面がもたらされるにおいてはカーテンは不安定になり、そしてこれにより劣った被覆表面がもたらされることになる。残念なことに、上記のコーティング方法のいずれかによろうとよるまいと、連続的コーティングステーションにおける紙または板紙への逐次的単層の顔料着色コーティング剤の施用は、必要とされるコーティングステーションの数、必要とされる補助的機械設備たとえば駆動装置、乾燥機、等の量およびかかる機械類を収容するのに必要とされるスペースに因り、資本集約的方法のままである。

[0010]

遮断性、印刷適性、接着性、剥離性および光学的性質(色、白色度、不透明度、光沢、等のような)のような機能的性質を付与するよう意図された添加剤を含有するコーティング剤を受理した被覆紙および板紙は機能製品と記載され、そしてそれらのコーティング剤は機能コーティング剤と称され得る。これらの性質を付与するコーティング成分もまた、機能添加剤と称され得る。機能製品は、粘着紙、切手用紙、壁紙、シリコーン剥離紙、食品包装用防脂紙、防湿紙および含浸テープ裏紙のような紙タイプを包含する。

[0011]

多層の同時コーティングのためのカーテンコーティング方法は周知であり、そして米国特許第3,508,947号および同第3,632,374号において、写真用組成物を紙およびプラスチックウエブに施用するために記載されている。しかしながら、写真用溶液または乳剤は低い粘度および低い固形分含有率を有し、また低いコーティング速度にて施用される。写真への適用に加えて、カーテンコーティング方法による多数のコーティング剤の同時施用は、感圧複写用紙を作製する技術から公知である。たとえば、米国特許第4,230,743号は、1つの具体的態様において、主成分としてマイクロカプセルを含む下塗りコーティング剤および主成分としてカラー現像剤を含む第2層の、走行ウエブ上への同時施用を開示する。しかしながら、生じた紙は、それらの層の順次的施用により

作製された紙と同じ特性を有すると報告されている。更に、カラー現像剤を含有するコーティング組成物は、22℃において10~20cPの間の粘度を有すると記載されている

[0012]

特開平 10-328613は、インキジェット用紙を作製するために、カーテンコーティングによる紙ウエブへの 2 層のコーティング層の同時施用を開示する。この参考文献の教示に従って施用されるコーティング組成物は、 8 質量パーセントという極めて低い固形分含有率を有する水溶液である。更に、コーティング溶液の非ニュートン挙動を得るために、増粘剤が添加される。特開平 10-328613における実施例は、容認され得るコーティング品質は 400 m/min未満のライン速度においてのみ達成されることを示している。コーティング過程の低い操作速度は、印刷用紙、特に汎用印刷用紙の経済的製造に適しない。

【発明の開示】

【発明が解決しようとする課題】

[0013]

慣用の商業的紙コーティング技法の欠点に鑑みて、生じた被覆基材の印刷品質のような被覆基材の性質を改善することの可能な方法があることが望ましい。

[0014]

本発明の根底にある技術的問題は、先行技術の不利を克服し、そしてかくして1種またはそれ以上の反応性化合物を含むコーティング剤を施用することの可能なコーティング方法を提供することである。本発明の更なる側面は、互いに反応することが可能であるところのコーティング剤中の諸試薬の存在により施用コーティング剤の性質が悪影響されないコーティング方法を提供することである。更に、本発明の更なる目的は、改善性質を有する被覆基材およびそれらを製造する方法を提供することである。

【課題を解決するための手段】

[0015]

本発明の技術的問題は、被覆基材を製造する方法であって、次の工程すなわち a) 自由に流れるカーテンを形成し、しかも該カーテンは少なくとも、互いに反応する ことの可能な第1成分および第2成分を有し、そして

b) 該カーテンを連続ウエブ基材と接触させる

工程を含む方法により解決される。

[0016]

1つの具体的態様において、本発明は、被覆基材を製造する方法であって、次の工程すなわち

a) 複合多層の自由に流れるカーテンを形成し、しかも該カーテンは少なくとも2つの層を有し、一方の層は少なくとも、他方の層に含まれた少なくとも第2成分と反応することが可能である第1成分を含み、そして

b) 該カーテンを連続ウエブ基材と接触させる

工程を含む方法である。

[0017]

好ましい具体的態様において、第1成分を含む層と第2成分を含む層の間に存在する少なくとも1つの内部層がある。

[0018]

更なる具体的態様において、本発明の問題は、被覆基材を製造する方法であって、次の 工程すなわち

- a) 自由に流れるカーテンを形成し、しかも該カーテンは、それ自体とまたは別の化合物と反応することの可能な少なくとも1つの成分を有し、そして
 - b) 該カーテンを連続ウエブ基材と接触させる

工程を含み、しかも該カーテンの少なくとも 1 つの成分は、コーティング過程中に反応し始めかつコーティング過程が完了する前に本質的に完全に反応する方法により解決される

10

20

30

40

О

[0019]

別の具体的態様において、本発明の問題は、被覆基材を製造する方法であって、次の工程すなわち

- a) 自由に流れるカーテンを形成し、しかも該カーテンは、反応することの可能な組成物を含む少なくとも1つの層を有し、そして
 - b)該カーテンを連続ウエブ基材と接触させる
- 工程を含む方法により解決される。

【発明を実施するための最良の形態】

[0020]

工程 a)の自由に流れるカーテンの少なくとも 1 つの層を形成する組成物は、互いに反応することの可能な少なくとも 1 つの第 1 成分および少なくとも 1 つの第 2 成分を含み得、あるいは少なくとも 1 つの反応性成分の反応が該組成物中に存在する触媒、開始剤もしくは活性剤によりまたは熱もしくは放射線のようなエネルギーへの暴露により誘発され得る反応系を含有し得る。本明細書において用いられる場合、用語「反応性成分」は、反応することの可能な物質および/または反応を開始させる、触媒するもしくは別の方法で関与する物質を意味する。本明細書において用いられる場合、用語「コーティング過程」は、コーティング剤が固定化されおよび/または被覆基材が仕上げられて販売の用意ができているような点まで基材をコーティングすることを含む過程を意味する。

[0021]

好ましくは、工程 a)の自由に流れるカーテンは、複合多層の自由に流れるカーテンである。

[0022]

好ましくは、反応性コーティング剤を施用するためにカーテンコーティングが用いられ 得る3つの主要な手段がある。すなわち、

- 1) コーティング前反応 互いに反応することの可能な第1および第2成分がコーティング液に、該コーティング液がカーテンコーティングへッドを通過する直前または時に添加される(おそらく、インライン混合の使用を通じて);
- 2) コーティング反応 2つまたはそれ以上の反応性層が作製されそして ・緒に落下カーテン中にもたらされ、その結果反応がコーティング施用過程中に始まり得る;および
- 3) コーティング後反応 少なくとも1つの反応性層がコーティング剤中に導入され、そして該コーティング剤が基材に施用された後しかし被覆基材がその完成形態にある前に反応が起こる。

[0023]

かくして、好ましくは、工程 a) の第 1 成分と第 2 成分の間の反応は、コーティングダイまたはヘッド内で、自由に流れるカーテンにおいておよび/または基材に施用された時に、並びに/あるいはたとえば圧力、熱、 p H 変化、放射線によりおよび/またはガスもしくは蒸気(酸素またはアンモニアのような)への暴露により開始された時に起こる。

[0024]

工程 a)の第 1 成分および第 2 成分が互いに反応する反応タイプは限定されず、そしてたとえばアニオンーカチオン相互作用;架橋反応;フリーラジカル反応;段階成長反応;付加反応;U V 誘発硬化反応、酸素誘発硬化反応、触媒反応もしくは電子ビーム誘発硬化反応のような硬化反応;酸ー塩基反応;グラフト反応;開環反応;沈殿;相変化;凝集/凝固反応;またはそれらの組合わせであり得る。反応性の第 1 および第 2 成分の組合わせの例は、たとえば、次のものを包含する。すなわち、ポリビニルアルコールとホウ砂、カチオン性デンプンとアニオン性コーティング組成物、デンプンとジアルデヒド、エポキシ官能性ポリマーとアミン硬化剤、およびポリイソシアネートとポリオール。本発明の好ましい具体的態様において、コーティング過程に関与する反応は、外部エネルギー源の実質的不存在下で室温にて容易に進行する。

10

20

40

20

30

40

50

[0025]

好ましい具体的態様において、架橋反応が少なくとも第1成分と少なくとも第2成分の間で起こることは、これらの成分が同じ層中に存在する場合排除される。好ましくは、本発明の方法は、電子ビーム線の実質的不存在下で行われる。

[0026]

更なる好ましい具体的態様において、塩化カルシウム溶液をコーティング組成物に添加することにより凝集が誘発され得ることは排除される。

[0027]

用語アニオンーカチオン相互作用は、コーティング液中におけるアニオン性化合物とカチオン性化合物との反応であって、該コーティング液の性質が該アニオンーカチオン相互作用に因り変化する反応を指す。かかる性質変化は、ブレード、ロッドまたはエアブラシ(エアナイフ)コーティング技法を用いて該コーティング剤を基材に施用することを不可能にする凝集であり得る。

[0028]

本発明の基材は、好ましくは、原紙または板紙であり、従ってそれに応じて被覆原紙または板紙が製造される。

[0029]

好ましい具体的態様において、印画紙および/または感圧複写用紙は、本発明の範囲から排除される。用語「印画紙を排除する」は、本発明の実施において用いられるカーテンの諸層のいずれもが銀化合物を含まないという意味で解釈されるべきである。用語「感圧複写用紙を排除する」は、該カーテンの諸層がマイクロカプセル化発色剤とカラー現像剤の組合わせを単層においてまたは異なる層において含有しないという意味で解釈されるべきである。

[0030]

諸カーテン層は、多数の液体層を送出して連続多層カーテンを形成するためのスライドノズル集成装置を備えたカーテンコーティング装置を用いることにより、本発明に従って同時に施用され得る。その代わりに、数個の隣接押出ノズルを有するスロットダイまたはノズルのような押出型供給ヘッドが、本発明の実施において用いられ得る。好ましい具体的態様において、カーテンコーティング装置を通過する全コーティング液が、基材に施用される。好ましくは、形成されたカーテンの縁部において、小量部分のみのコーティング液が、該カーテンが基材に施用される前に除去される。カーテンコーティング装置を通過しかつ基材に施用されないコーティング液は捨てられ得る。

[0031]

本発明の好ましい具体的態様によれば、自由に落下するカーテンの少なくとも1つのカーテン層は、少なくとも1種の顔料を含む。好ましくは、印刷日的用の紙の作製において、諸コーティング層の少なくとも2つは、少なくとも1種の顔料を含む。好ましくは、印刷適性を保証する上層が存在する。この層は、光沢または平滑性のような表面特性を改善し、また随意に顔料着色されていない。汎用印刷用紙の製造については、2層の顔料着色層でのコーティングは、たいていの日的のために十分である。

[0032]

改善された特性を有する紙および板紙のような被覆基材が、反応性成分を含むコーティング処方物を用いて、本発明の方法によって容易に作製され得る、ということを本発明者は驚くべきことに見出した。

[0033]

本発明において用いられるカーテンは、下層すなわち界面層並びに随意に上層および/または随意に1層もしくはそれ以上の内部層を有する。各層は、液体、乳濁液、懸濁液、分散体または溶液を含む。本発明のコーティングカーテンは適当には少なくとも1つの層を含み、そしてまた少なくとも2層、少なくとも3層、少なくとも4層、少なくとも5層、または少なくとも6層もしくはそれ以上を有する具体的態様を包含する。カーテンの諸層は、1層もしくはそれ以上の削刷層、1層もしくはそれ以上の機能層、1層もしくはそ

30

40

50

れ以上のスペーサー層、1層もしくはそれ以上のコーティング層および1層もしくはそれ以上の反応性官能基付与層、等、またはそれらのいずれかの組合わせを含み得る。スペーサー層は、少なくとも2層の他の層を分離する層である。たとえば、スペーサー層は、反応性成分を有する層間において、かかる成分間の反応の開始を遅延させるために用いられ得る。

[0034]

本発明のコーティング層は、好ましくは、少なくとも1種の顔料および/または結合剤を含み、そして慣用の紙用コーティング処方物と同じまたは異なるように処方され得る。コーティング層の主機能は、紙コーティング技術において周知であるように、基材の表面を覆うことである。当業界においてコーティングカラーと称されている慣用のコーティング処方物は、該コーティング層として用いられ得る。本発明の方法において有用な顔料の例は、粘土、カオリン、タルク、炭酸カルシウム、二酸化チタン、サテンホワイト、合成ポリマー顔料、酸化亜鉛、硫酸バリウム、セッコウ、シリカ、アルミナ三水和物、雲母およびケイソウ土を包含する。カオリン、タルク、炭酸カルシウム、二酸化チタン、サテンホワイトおよび合成ポリマー顔料(中空ポリマー顔料を含めて)が特に好ましい。

[0035]

本発明の実施において有用な結合剤は、たとえば、スチレンーブタジエンラテックス、スチレンーアクリレートラテックス、スチレンーアクリロニトリルラテックス、スチレンーアクリロニトリルラテックス、スチレンーアクリロニトリルラテックス、スチレンーアクリロニトリルラテックス、スチレンーアクリロニトリルラテックス、スチレンーアクリロニトリルラテックス、スチレンーアクリロニトリルラテックス、スチレンーアクリロニトリルラテックス、スチレンーアクリロニトリルラテックス、ポリビニルアルコール、ポリビニルアセテート、エポキシ樹脂、セルロース・ロリドン、ポリビニルアルコール、ポリビニルアセテート、エポキシル化スチレンニンがは、カルボキシル化スチレンーアクリレートラテックス、カルボキシル化スチレンーブタジエンーアクリロニトリルラテックス、カルボキシル化スチレンーブタジエンーアクリロニトリルラテックス、カルボキシル化スチレンルがよびがは、カルボキシル化デンプルは、アレイン酸無水物ラテックス、カルボキシル化多糖、タンパク質、ポリビニルアルコードのルボン酸ナトリウムおよびデンプン(熱変性デンプン、カルボキシメチル化デンプンに含までカルボン酸ナトリウムおよびデンプン(熱変性デンプン、カルボキシメチル化デンプンに含まな変性デンプンを含めて)を包含る。本発明の方法において用いられ得るタンパク質の例は、アルブミン、大豆タンパクおよびカゼインを包含する。広く様々な適当な結合剤が商業的に入下できる。

[0036]

多層カーテンが用いられる場合、カーテンの各層のコーティング質量は、所望の被覆基材特性を得るために調整され得る。多層カーテンの諸層の少なくとも 1 つは、望ましくは、3 0 g / m 2 未満、好ましくは 2 0 g / m 2 未満、一層好ましくは 1 0 g / m 2 、更に一層好ましくは 5 g / m 2 未満、最も好ましくは 3 g / m 2 未満の乾燥コーティング質量を有する。

[0037]

本発明のカーテンは、界面層、すなわち、被覆される基材と接触することになる層を含む。界面層の1つの重要な機能は、基材紙の濡れを促進することであり得る。界面層は、1つより多い機能を有し得る。たとえば、濡れに加えて、それは、基材の塗坪、並びに接着、サイジング、剛性または機能の組合わせのような改善機能性能を与え得る。界面層は、反応性成分を含み得または反応性化合物不含であり得る。この層は、好ましくは、多層カーテンにおいて用いられる場合比較的薄い層である。多層カーテンにおいて用いられる場合、界面層のコーティング質量は好ましくは 0.01~5g/m²であり、そして一層好ましくは 1~3g/m²である。

[0038]

本発明の好ましい具体的態様において、界面層は、次のものの1つまたはそれ以上を含む。すなわち、ラテックス(アルカリ膨潤性ラテックスを含めて)のような分散液、デンプンとポリ(エチレンアクリル酸)コポリマーのブレンド、等、またはたとえばポリビニ

30

40

50

ルアルコールのような水溶性ポリマー、デンプン、アルカリ溶性ラテックス、ポリエチレンオキシドもしくはポリアクリルアミド。界面層は随意に顔料着色され得、そしてこれは或る用途については好ましい。

[0039]

本発明のカーテンは、1層またはそれ以上の機能層を含み得る。機能層の目的は、被覆紙に所望の機能性を付与することである。機能層は、たとえば、次のものの少なくとも1つを与えるように選択され得る。すなわち、印刷適性;湿気遮断、香気遮断、水および/または水蒸気遮断、溶媒遮断、油遮断、脂遮断および酸素遮断特性のような遮断特性;シート剛性;折畳み亀裂抵抗性;紙サイジング性;剥離性;接着性;および光学特性(色、白色度、不透明度および光沢のような);等。本発明の1つの具体的態様において、第1および第2反応性成分は、コーティング剤中の層に機能性を付与するように反応し得る。特性上非常に粘着性である機能コーティング剤は、通常、粘着性のコーティング物質が基材を案内ロールまたは他のコーティング表置に接着させる傾向にある故、慣用の逐次コーティング方法によりコーティングされない。他方、本発明の同時多層コーティング方法は、かかる機能コーティング剤が置かれることを可能にする。

[0040]

機能層の固形分含有率は、所望機能に依存して広範に変動し得る。本発明の機能層は、好ましくは、機能層の総質量を基準として75質量パーセントまでの固形分含有率および10,000 c P(ブルックフィールド、スピンドル5、100 r p m、25 °C)以下、一層好ましくは50 ~ 3,000 c P の粘度を有する。好ましくは、機能層のコーティング質量は、0.1 ~ 30 g / m^2 、一層好ましくは0.5 ~ 10 g / m^2 、最も好ましくは1 ~ 3 g / m^2 である。たとえば染料層が用いられる場合またはホウ砂のような或る反応体の場合においてのような或る状況において、機能層のコーティング質量は、0.1 g / m^2 未満であり得る。

[0041]

本発明の機能層は、たとえば、次のものの少なくとも1つを含有し得る。すなわち、エチレンアクリル酸のポリマー;ポリエチレン;他のポリオレフィン;ポリウレタン;エポキシ樹脂;ポリエステル;スチレンブタジエンラテックス、スチレンアクリレートラテックス、カルボキシル化ラテックス、デンプン、タンパク質、等のような接着剤;デンプン、スチレンーアクリルコポリマー、スチレンーマレイン酸無水物、ポリビニルアルコール、ポリビニルアセテート、カルボキシメチルセルロース、等のようなサイズ剤;およびシリコーン、ロウ、等のような遮断剤。

[0042]

各機能層は、コーティング層について先に記載されたような少なくとも 1 種の顔料および/もしくは結合剤、並びに/または 1 種もしくはそれ以上の反応性成分を含み得るが、しかしそれらに限定されない。

[0043]

所望される場合、たとえば少なくとも1種の分散剤、少なくとも1種の滑剤、少なくとも1種の保水剤、少なくとも1種の界面活性剤、少なくとも1種の光沢剤、少なくとも1種の顔料、染料または着色剤、少なくとも1種の増粘剤、少なくとも1種の消泡剤、少なくとも1種の資料を含めて)、等のような少なくとも1種ので変性染料をは着色剤(これらのもののいずれかの組合わせを含めて)、等のような少なくとも1種の流性染料をは着色剤(これらのもののいずれかの組合わせを含めて)、等のような少なくとも1種のが変けまたが好ましい添加剤の例であり、そしていずれの層においても用いられ得る。ポリエチレンオキシドが好ましい添加剤の例であり、そしていずれの層においても用いられ得る。好ましいは少なくとも500、000、好ましくは少なくとも100、000、一層好ましくは少なくとも500、000、最も好ましくは少なくとも800、000の質量平均分子量を有する。好ましくは、用いられるポリエチレンオキシドの量はクレーター形成を防止するのに十分であり、そして好ましく

20

30

40

50

はそれが用いられる層中の固形分の質量を基準として2質量パーセント未満である。

[0044]

本発明の目的のために、多層カーテンにおいて、基材紙から最も遠い層は、上層と称される。この層は典型的には印刷される層であるけれども、本発明の被覆紙はまた、ロッド、ブレード、ロール、バーまたはエアナイフ(エアブラシ)コーティング技法、等のような慣用手段を用いて更にコーティングされ得る。上層はコーティング層または機能層(光沢層を含めて)であり得、また反応性成分を含有し得る。本発明の好ましい具体的態様において、上層は非常に薄くて、たとえば $0.5\sim3$ g / m² のコーティング質量を有する。これは、有利なことに、上層の下に比較的高価でない物質の使用を可能にする一方、良好な印刷特性を有する紙を依然生成する。1つの具体的態様において、上層は、鉱物顔料不含である。

[0045]

特に好ましい具体的態様によれば、上層は、光沢付与用処方物を含む。光沢付与処方と同時的多層カーテンコーティングの新規な組合わせは、カーテンコーティングの利点と良好な光沢とを合わせ持つ。

[0046]

本発明において有用な光沢付与用処方物は、重合(たとえば、スチレン、アクリロニトリルおよび/またはアクリルモノマーの)により製造された合成ポリマー顔料(中空または中実ポリマー顔料を含めて)のような、光沢添加剤を含む。合成ポリマー顔料は、好ましくは $40\sim200$ ℃、一層好ましくは $50\sim130$ ℃のガラス転移温度および $0.02\sim10\mu$ m、一層好ましくは $0.05\sim2\mu$ mの粒子サイズを有する。光沢付与用処方物は、固形分を基準として $5\sim100$ 質量パーセント、一層好ましくは $60\sim100$ 質量パーセントの光沢添加剤を含有する。別のタイプの光沢付与用処方物は、エポキシアクリレート、ポリエステル、ポリエステルアクリレート、ポリウレタン、ポリエーテルアクリレート、プリエステル、ポリエステルアクリレート、ポリウレタン、ポリエーテルアクリレート、含油樹脂、ニトロセルロース、ポリアミド、ビニルコポリマーおよび様々な形態のポリアクリレートを基剤としたもののような、光沢ワニスを含む。本発明の好ましい制度的態様によれば、上層の粘度は、20c P(25 ℃において)より大きい。好ましい粘度範囲は、 $20\sim2$,000 C P、一層好ましくは $200\sim1$,000 C Pである。

[0047]

カーテンが少なくとも3層を有する場合は、それは少なくとも1つの内部層を有する。内部層の粘度および固形分含有率は、安定なカーテンが維持され得る限り、決定的には重要でない。内部層は、好ましくは、機能層またはコーティング層である。1層より多い内部層が存在する場合、機能層およびコーティング層の組合わせが用いられ得る。たとえば、内部層は、同一もしくは異なる機能層の組合わせ、同一もしくは異なるコーティング層の組合わせ、またはコーティング層と機能層の組合わせを含み得る。内部層は、反応性成分を含有し得る。

[0048]

本発明の方法は紙コーティング技術の限界を広げ、被覆紙製造者に空前の融通性および新規な被覆紙を作製する能力を与える。

[0049]

好ましくは、自由に流れるカーテンは、望ましくは、少なくとも10質量パーセント、 好ましくは少なくとも40質量パーセント、一層好ましくは少なくとも45質量パーセント、最も好ましくは少なくとも50質量パーセントの固形分含有率を有する。有利には、 自由に流れるカーテンは、10~80質量パーセントの固形分含有率を有する。本発明の 多層の自由に流れるカーテンの少なくとも1層は、好ましくは、少なくとも40質量パー セント、好ましくは少なくとも50質量パーセント、最も好ましくは少なくとも65質量 パーセントの固形分含有率を有する。

[0050]

本発明の1つの具体的態様の特定の利点は、カーテンコーティングによる少なくとも2 つのコーティング層の同時施用により、非常に薄い諸層すなわち換言すればそれぞれの層 の非常に低いコーティング質量が非常に高い施用速度にてさえ得られ得ることである。たとえば、複合カーテンにおける各層のコーティング質量は、 $0.01\sim10\,\mathrm{g/m^2}$ 、一層好ましくは $0.1\sim3\,\mathrm{g/m^2}$ であり得る。各層のコーティング質量はその他の層と同じであり得、またはその他の層から広範に変動し得る。かくして、多くの組合わせが可能である。

[0051]

本発明の方法は、広範囲のコーティング質量を有する基材を製造し得る。好ましくは、製造された紙上のコーティング剤のコーティング質量は、 $3\sim60~\rm g/m^2$ 、一層好ましくは $5\sim25~\rm g/m^2$ である。カーテンから作製された被膜は、望ましくは、 $60~\rm g/m^2$ 未満、その代わりに $30~\rm g/m^2$ 未満、その代わりに $20~\rm g/m^2$ 未満、その代わりに $15~\rm g/m^2$ 未満、その代わりに $12~\rm g/m^2$ 未満、その代わりに $10~\rm g/m^2$ 未満、最も好ましくは $5~\rm g/m^2$ 未満の乾燥コーティング質量を有する。

[0052]

本発明の1つの具体的態様において、上層のコーティング質量は、原紙または原板紙と接触する層のコーティング質量より低い。好ましくは、上層のコーティング質量は、原紙または原板紙と接触する層のコーティング質量の75パーセント未満、一層好ましくは50パーセント未満である。かくして、紙および板紙のコーティング操作において、より大きいコーティング原料効率が達成される。別の具体的態様において、上層のコーティング質量は、その下の(諸)層のコーティング質量より高い。慣用のコーティング方法とは異なり、本発明の同時多層コーティング方法は、完成被覆製品の品質を傷つけることなく、たとえば比較的高価な原料の極めて薄い上層の下においてまたは高価な反応体(硬化剤のような)との組合わせにてのような、はるかに多量の比較的安価な原料の使用を可能にする。加えて、本発明の方法は、決して以前には製造されなかった紙の作製を可能にする。たとえば、粘着性の機能内部層が、カーテン中に含められ得る。

[0053]

どの具体的態様が用いられるかに関係なく、本発明の顕著な利点は、これまで印刷用紙の製造においてブレード、バーまたはロール施用方法を用いてしか達成され得なかった非常に高いコーティング速度にて本発明の方法が実施され得ることである。本発明の方法における通常のライン速度は、少なくとも300m/min、好ましくは少なくとも400m/min、一層好ましくは少なくとも500m/min (600~3, 200m/min nの範囲においてのように)、一層好ましくは少なくとも800m/min (800~2, 500m/min の範囲においてように)である。本発明の10m/min の態様において、ライン速度すなわち移動基材の速度は、少なくとも1, 000m/min 、好ましくは少なくとも1, 500m/min である。

[0054]

好ましくは、工程 b)の連続ウエブ基材は、予備コーティングも予備カレンダー掛けもされていない。別の具体的態様において、工程 b)の連続ウエブ基材は予備コーティングされておらず、そして更なる具体的態様において、工程 b)の連続ウエブ基材は予備カレンダー掛けされていない。工程 b)の連続ウエブ基材は、好ましくは、20~400g/m²の坪量すなわち単位面積あたりの質量を有する。

[0055]

図1は、カーテン層の多数の流れ3を送出して連続多層カーテン4を形成するためのスライドノズル集成装置2を備えたカーテンコーティング装置1の横断面説明図である。動的平衡状態が達成される時、スライドノズル集成装置2に流入するカーテン層の流量は、該スライドノズル集成装置から流出する流量と完全に均衡する。自由に落下する多層カーテン4は、連続的に走行しているウエブ5と接触するようになり、そしてかくしてウエブ5はカーテンの多層でコーティングされる。ウエブ5の走行方向は、速く移動するウエブ5に随伴する気流の影響を最小にするために、ローラー6によりコーティング域の直前で変えられる。

[0056]

10

20

30

20

30

40

50

先行技術に対する本発明の方法の利点は、少なくとも2種の反応性化合物を含むカーテンを基材に施用することにより、特異的性質を有する被覆基材が得られ得ることである。該方法は、該反応性化合物の反応に因り特異的性質を付与する特異的層を有する被覆基材を作製することを可能にする。先行技術において知られた方法は過剰量のコーティングカラーを施用するので、それらは、反応性化合物を含むコーティング剤を基材に効果的に施用し得ない。好ましくは、被覆基材は、当業者に知られたいかなる印刷方法を用いても印刷され得る。

[0057]

本発明は、次の実施例により例示される。別段特記されていなければ、部および百分率はすべて質量による。

【実施例】

[0058]

次の物質が、反応性コーティング構造における諸層を作るために用いられた。

- Ameo: 3-アミノプロピルートリエトキシシラン(独国ハーナウのDegussa社から入手できるDYNASYLAN AMEO)。
- ・ 炭酸塩(A): 90パーセント<2 μ mの粒子サイズを有する炭酸カルシウムの水中分散液(Pluess-Staufferから入手できるHYDROCARB 90 ME), 固形分77パーセント。
- ・ 炭酸塩(B): 60パーセント<2 μ mの粒子サイズを有する炭酸カルシウムの水中分散液(スイス国オフトリンゲンの Pluess-Staufferから入手できる HYDROCARB 60 ME), 固形分 77パーセント。
- ・ 触媒: ジブチルスズジラウレートの有機スズ錯体(米国ペンシルベニア州アレンタウンのAir Productsから入手できる)。
- ・ 粘土: 98パーセント $< 2 \mu$ m の粒子サイズを有する No. 1 高白色度カオリン粘上の水中分散液(米国メリーランド州ハブ・デ・グレースの J. M Huber社から入手できる HYDRAGLOSS 90), 固形分 71パーセント。
- ・ エポキシ: 固形分基準で500のエポキシ当量を有するビスフェノールA系エポキシ樹脂の分散液,水中固形分55パーセント。
- DSP: エチレンアクリル酸コポリマーの分散液(Dow Chemical社から入手できるDSP 70),水中固形分15パーセント。
- ・ グリオキサール: 反応性ポリヒドロキシル化ジアルデヒド樹脂(独国レラハのClariant社から入手できるCartabound GH Liquid)。
- ・ 硬化剤: 固形分基準で240のアミノーエポキシ当量を有するアミノ系エポキシ用硬化剤(Dow Chemical社から入手できるXZ92441.01), 水中固形分75パーセント。
- イソシアネート: ヘキサメチレン-1,6-ジイソシアネートの脂肪族ポリイソシアネート(独国レーバークーゼンのBayer社から入手できるBayhydur VPLS 2319)。
- ・ ラテックス (A): カルボキシル化スチレン-ブタジエンラテックス (Dow Chemical 社から入手できる DL966),水中固形分 50パーセント。
- ・ ラテックス (B): カルボキシル化スチレンーブタジエンラテックス (Dow Chemical 社から入手できる DL 980), 水中固形分 50パーセント。
- ラテックス(C): アルカリ膨潤性カルボキシル化アクリレートラテックス(Dow Chemical社から入手できるXZ92338),水中固形分27パーセント。
- ・ ラテックス (D): カルボキシル化アクリレートラテックス (Dow Chemical社から入手できる XU31215.5), 水中固形分 51パーセント。
- ・ ラテックス E: カルボキシル化アクリレートラテックス(Dow Chemical 1 社から入手できる UCAR Latex DT 211), 水中固形分50.5パーセ

20

30

40

50

ント。

- ・ ラテックス F: カルボキシル化スチレンーブタジエンラテックス (Dow Che mical 社から入手できる <math>DL939), 水中 固形分 50パーセント。
- ・ ポリエチレンオキシド: 分子量300のポリエチレンオキシド (Fluka) から人手できるPEG300)。
- ・ PVOH: 低分子量合成ポリビニルアルコールの15パーセント溶液(スイス国バーゼルのClariant社から入手できるMOWIOL 6/98)。
- ・ 界面活性剤(A): ジアルキルスルホコハク酸ナトリウムの水溶液(米国ニュージャージー州のウェインの Cyanamidから入手できる AEROSOL OT), 固形分 75パーセント。
- ・ 界面活性剤(B): トリメチルノナノールエトキシレート6EOの水溶液であるTERGITOL TMN 6(Dow Chemical社から入手できる), 固形分9 0パーセント。
- 増粘剤: 分子量900,000の非イオン性水溶性ポリ(エチレンオキシド)ポリマー(Dow Chemical社から入手できるPOLYOX WSR-1105),水中固形分4パーセント。
- 増白剤: ジアミノースチルベンジスルホン酸から誘導された蛍光増白剤 (スイス国バーゼルのCiba Specialty Chemicals社から人手できるTINEPOL ABP/Z)。
- ・ ホウ砂: 純度>98パーセントの四ホウ酸ナトリウム、FLUKAから入手できる。
- ・ デンプン (A): カチオン性デンプン (独国クレーフェルトの<math>Cerestarh ら入手できるCSizeSP 5855)。
- ・ デンプン (B): アニオン性デンプン (独国クレーフェルトのCerestarから入手できるC Film 07311)。

[0059]

<u>コーティング方法</u>

上記の諸成分を、下記の表に与えられた量(別段指摘されていなければ、部はすべて乾燥質量に基づいている。)にて混合した。これらの顔料着色コーティング処方物のpHを、表1に指摘されたように、NaOH溶液(1Oパーセント)を添加することにより調整した。処方物の固形分含有率を調整するために、必要に応じて水を添加した。次の手順の1つに従って、処方物を紙上にコーティングした。

[0060]

コーティング手順1: 「Troller Schweizer Engineering(TSE,スイス国マーゲンタル)により製造された多層スライドダイ型カーテンコーターを用いた。このカーテンコーティング装置は、水の細流で潤滑されるエッジガイドと、このエッジ潤滑水を被覆紙の縁のすぐ上の該エッジガイドの底にて除去するための真空吸引装置とを備えていた。所望のコーティング質量を達成するために、容量計量ポンプを用いて精確な容量をダイに供給した。加えて、該カーテンコーターは、カーテン衝突帯域の上流で紙基材から界面の表面空気を除去するための真空吸引装置を備えていた。カーテンの高さは、300mmであった。コーティング処方物は、気泡を除去するために、使用に先だって脱気された。ウエブ上にコーティングした後、紙を熱風乾燥機で乾燥した。

[0061]

<u>コーティング手順2:</u> この手順は、次の相違以外はコーティング手順1と同一である。 Leuthold社により製造された多層スライドダイ型カーテンコーターを用いて、処方物を紙上にコーティングした。揮発性成分が処方物中に存在する場合、処方物を、自然脱気が起こり得るように、施川の少なくとも12時間前に撹拌することなく供給容器巾に注いだ。2種のコーティング処方物が反応する必要がある場合、スライドダイに入る直前に、それらを小さい密閉容器にポンプ輸送し、そして600rpm以下で櫂により掻き混ぜた。

20

30

40

50

[0062]

試験方法

[0063]

ブルックフィールド粘度

Brookfield RVT粘度計(米国マサチューセッツ州ストートンのBrookfield Engineering Laboratories社から入手できる)を用いて、粘度を測定する。粘度決定については、サンプル600mLを1,000mLビーカー中に注ぎ、そして粘度を100rpmのスピンドル速度にて25℃において測定する。

[0064]

紙の光沢

Zehntner ZLR-1050計器を用いて75°の入射角にて、紙の光沢を測定する。

[0065]

インキの光沢

Lorrilleux Red Ink No. 8588でもって、Pruefbau 試験印刷装置にて、試験を行う。長いゴム裏打ち圧盤上に載置された被覆紙試験片に、鋼製印刷ディスクでもって 0. 8g/ m^2 (または 1. 6g/ m^2 、それぞれ)の量のインキを施用する。インキ施用圧は 1, 000Nであり、そして速度は 1 m/s である。印刷された試験片を、 20℃にて 55パーセントの最小室内湿度において 12時間乾燥する。次いで、2ehntner 2LR-1050計器を用いて 75°の入射角にて、光沢を測定する。

[0066]

インキの裏移り

Pruefbau試験印刷装置にて、試験を行う。インキ(Huber no 520068)250mm³を、インキ練りローラー(distributor)上に1分間練り延ばす。このインキ練りローラー上に15秒間置くことにより、金属製印刷ディスクにインキを着ける。このディスクを、第1印刷ステーションに置く。第2印刷ステーションに、インキが着けられていない金属製印刷ディスクを置き、400Nの圧力をかける。ゴム裏打ち圧盤上に載置された被覆紙試験片に、1.5m/sの速度にて1,000Nの印刷圧でもって印刷をする。印刷が起こる時を時間0と取る。該試験片が第1ステーションにて印刷された後、ハンドレバーを動かすことにより、この試験片を第2印刷ステーションすなわち裏移りステーションの方へ移動させる。裏移りステーションにおいて、印刷された紙とディスクの間に白紙試験片を置く。15、30、60および120秒において、ハンドレバーを動かすことにより、裏移りステーションにおける印刷されたサンプルに該白紙を押しつける。印刷された紙から白紙へ移った非固定インキの量を、光学濃度測定によって与えられるようなインキ濃度により測定する。

[0067]

白色度

ZeissElrepho2000にて、白色度を測定する。シート東について、白色度をISO標準規格2469に従って測定する。その結果は、R457として与えられる。

[0068]

不透明度

Zeiss Elrepho 2000にて、不透明度を測定する。黒色標準板により 裏当てされた単一シート(R_0)についておよびシート東(R_∞)について、不透明度を 測定する。その結果は、 $R_0/R_\infty \times 100$ (百分率)として与えられる。

[0069]

バーンアウト試験

未印刷紙または印刷紙(優秀なフルトーン試験片)について被膜の分布および一様性を

例証するために、この試験を用いる。

手順:

- 1. 4×4 c m の紙サンプルを、10パーセント(質量/質量)N H₄ C 1 水溶液中に1分間浸漬する。
 - 2. この試験紙を、オーブン中で120℃にて3分間乾燥する。
- 3. この紙をホットプレートから $5 \sim 10$ cm上にて動かすことにより、煙が消失するまで該紙を焦がす(サンプルは燃えるべきではない)。
- 4. 白色度を測定する。この手順はコーティング繊維を汚し、しかしてこれらの繊維は暗く見え、従ってより高い白色度値はコーティング剤による改善塗坪を示しており、しかして黒くされた繊維と比べて白く見える。
- [0070]

接触角

Fibro 1100動的吸収試験機(スウェーデン国のFibro Systems AB)でもって、TAPPI T-558の方法に従って、接触角を測定する。

[0071]

乾燥紙むけ抵抗(IGT)

この試験は、紙表面が紙むけなしにインキの転写を受容する能力を測定する。 I G T R e p r o t e s t B V から商業的に人手できるA 2 型印刷適性試験機にて、この試験を行う。振了駆動システムおよびR e p r o t e s t B V からの高粘度試験油(赤色)を用いて、3 6 N の印刷圧にて、インキが着けられたアルミニウム製ディスクでもって、被覆紙試験片(4 m m × 2 2 m m)を印刷する。印刷が完了した後、被膜が紙むけを示し始める距離を、立体顕微鏡下でマークする。次いで、マークされた距離を I G T 速度曲線に転写し、そして c m / s にての速度を対応する駆動曲線から読み取る。高い速度は、乾燥紙むけに対する高い抵抗を意味する。

[0072]

紙の粗さ

Parker PrintSurf粗さ試験機でもって、被覆紙表面の粗さを測定する。被覆紙のサンプルシートを、1,000kPaの締付け圧にて、コルクーメリネックス(cork-melinex)定盤と測定ヘッドの間に把持する。この計器に圧縮空気を400kPaにて供給し、そして測定ヘッドと被覆紙表面の間の空気の漏出量を測定する。より高い数字は、被覆紙表面のより高い粗さ度を示す。

[0073]

紙の剛性

コダック剛性法すなわち T A P P I 5 3 5 - P M - 7 9 またはガーレー剛性法すなわち T A P P I 5 4 3 を用いて、紙の剛性を測定する。

[0074]

コーティング質量

コーティング剤をカーテンコーティングヘッドに送出するポンプの既知容積流量、紙の連続ウエブがカーテンコーティングヘッドの下で移動する速度、カーテンの密度および固形分パーセント、並びにカーテンの幅から、各コーティング実験において達成されたコーティング質量を算出する。

[0075]

耐水性

被覆紙が水を吸収した後の被膜破損に対する被覆紙の抵抗を、アダムズ湿潤擦り試験でもって試験する。45秒または60秒のどちらかの間蒸留水を含有する皿中に浸るゴムロール上を一定の速度および荷重下で回転する青銅車輪上に、紙の試験片(24×2.5 cm)を固定する。該回転は、被膜が破損する場合、皿中の水を濁った状態にする。回転が完了した後、皿からの水の光透過を、濁度計でもって測定する。低い透過読取り値は、有意な被膜破損を示す。

[0076]

50

10

20

30

比較例 A および実施例 1 ~ 4

これらの例は、1つの層中のホウ砂と別の層中のPVOHの間の反応を用いた。この反応は、粘度の急速な増加およびゲルの形成を引き起こした。処方物の詳細は、表1に示されている。

[0077]

【表1】

	比較例A	A le	実施例1	911	実施例2	例2	実施例3	例3		実施例4	
	上層	上層	下層	上層	下層	上層	下層	上層	下層	中間層	上層
炭酸塩 (A)	100	70	100	70	100	70		70	100		70
格井		30		30		30		30			30
ラテックス (A)		11		11		11		11			1
ラテックス(B)	50		20		20				20		
РУОН		2.5		2.5		2.5		2.5			2.5
ラテックス (C)	0.5		0.5		0.5		66.4		0.5	66. 4	
お かめ			0.25		0.5		33.3			33. 3	
増白剤		1	0	1	0	1		1			1
界面活性剤(A)	0.4	0.2	0.4	0.2	0.4	0.2		0.2	0.4		0.2
Н ф	8.5	8.5	8.5	8.5	8.5	8.5	6	8.5	8.5	6	8, 5
密度(9/cc)	1.32	1.53	1.32	1. 53	1.34	1.53	1.0	1.53	1.32	1.0	1.53
ブルックフィール	100	520	06	520	100	520		520	100		520
F粘度 (mPa·s)											
固形分パーセント	45.0	62.0	45.0	62.0	45.0	62.0	1.0	62.0	45.0	1.0	62.0

10

20

30

40

[0078]

コーティング剤は、コーティング手順 1 を用いて、 4 . 3 ミクロンの粗さを有する木材含有原紙上に、 1 , 0 0 0 m / m i n にて施用された。 2 つのコーティング条件が、実施例 1 、 2 および 3 について用いられた。すなわち、コーティング条件 1 - 下層コーティング質量が 1 g / m 2 であり、そして上層コーティング質量が 7 g / m 2 であった。並びにコ

ーティング条件 2 ー下層コーティング質量が 2 g / m 2 であり、そして上層コーティング質量が 6 g / m 2 であった。これらの 2 つのコーティング条件は、反応性下層の量を増加する効果を試験した。比較例は同じ 2 つのコーティング条件を用いたが、反応性成分(ホウ砂)は除いた。実施例 4 は、ホウ砂を含有する薄い中間層を有する三層被膜を用いた。実施例 4 については、下層コーティング質量は 1 g / m 2 に固定し、そして上層コーティング質量は 7 g / m 2 であった。一方、中間層のコーティング質量は 0 . 0 1 8 g / m 2 (条件 1) から 0 . 0 3 6 g / m 2 (条件 2) に変動された。これらの例についての被覆紙の特性は、表 2 および 3 に示されている。

[0079]

【表2】

表 2

	比較例A	実施例1	実施例2	実施例3	実施例4
被覆紙の特性	コーティン	コーティン	コーティン		コーティン
	グ条件1	グ条件 1	グ条件 1	グ条件1	グ条件 1
紙の光沢 75° (パーセント)	43	43	45	43	37
インキの光沢 75° 0.8g/m²のインキ (パーセント)	58	62	62	58	51
インキの光沢 75° 1.6g/m²のインキ (パーセント)	65	69	68	71	63
粗さPPS(μ)	1.8	1. 7	1. 7	1.6	1.8
IS0白色度R457 (パーセント)	76. 8	78. 4	77. 1	77. 2	78. 4
不透明度 (パーセント)	92. 8	92. 8	93. 5	93. 6	93. 8
15秒後のインキ裏移 り(濃度)	0. 08	0. 11	0. 11	0. 05	0. 09
30秒後のインキ裏移 り(濃度)	0. 00	0. 00	0. 01	0. 00	0. 00
60秒後のインキ裏移 り(濃度)	0. 00	0. 00	0. 00	0. 00	0. 00
120秒後のインキ裏 移り(濃度)	0. 00	0. 00	0. 00	0. 00	0. 00
バーンアウト試験 白色度	28. 4	30. 8	28. 9	31. 3	30. 5
曲げ剛性 機械方向 (mNm)	0. 050	0. 049	0. 055	0. 056	0. 060

20

10

30

【表3】

表3

	比較例A	実施例1	実施例2	実施例3	実施例4
被覆紙の特性	コーティン	コーティン	コーティン	コーティン	コーティン
似復和の付注	グ条件2	グ条件2	グ条件2	グ条件2	グ条件2
紙の光沢 75° (パーセント)	37	39	41	41	32
(ハーセント) インキの光沢 75°				i	
1 クキの元沢 /5 0.8g/m² のインキ	52	58	56	54	47
(パーセント)	32	36	30	J- 1	7,
インキの光沢 75°					
1. 6g/m² のインキ	63	69	70	62	60
(パーセント)					
粗さPPS(µ)	2. 0	1.8	1. 7	1.4	1.9
1S0白色度R457 (パーセント)	77. 0	77. 8	76. 6	77. 3	78. 3
不透明度	92. 6	93. 3	92. 9	92. 3	93. 7
(パーセント) 15秒後のインキ裏					
移り(濃度)	0. 06	0. 12	0. 19	0. 24	0. 22
30秒後のインキ裏 移り(濃度)	0. 01	0. 01	0. 00	0. 01	0. 05
60秒後のインキ裏 移り(濃度)	0. 00	0. 00	0. 00	0. 00	0. 01
120秒後のインキ裏 移り(濃度)	0. 00	0. 00	0. 00	0. 00	0. 00
バーンアウト 白色度	27. 4	27. 9	29. 5	29. 9	29. 4
曲げ剛性 機械方向 (Mnm)	0. 049	0. 057	0. 057	0. 064	0. 057

20

10

30

[0081]

ホウ砂と P V O H の間の反応は、ホウ砂含有層の厚さに依存して、紙の光沢に対する小さい効果、紙の粗さに対する小さい効果、インキの光沢の有意な改善、インキセッティングに対する減速効果、不透明度の有意な改善、剛性の有意な改善、バーンアウト試験により決定されたコーティング剤の塗坪の有意な改善、および白色度に対するいくらかの効果があった、ということをこれらの結果は示している。コーティング条件1とコーティング条件2との比較において、ホウ砂の量を二倍にすることはインキの裏移りおよび剛性の特性に有意的に影響を及ぼすことが分かった。

[0082]

比較例 B および実施例 5

この例は、慣用のアニオン性紙コーティング上層と反応させるために、下層においてカチオン性デンプンを用いた。比較<u>例</u>は、該カチオン性デンプンを慣用のアニオン性コーティングデンプンで置き換えた。コーティング処方物の詳細は、表4に与えられている。

50

[0083]

【表4】

表 4

	比較	例B	実施例5	
	下層	上層	下層	上層
炭酸塩(A)		70		70
粘土		30		30
ラテックス(A)		11		11
PVOH		2. 5		2. 5
デンプン(A)			100	
デンプン(B)	100			
増白剤(A)		1	0	1
界面活性剤(B)	2	0. 4	2	0. 4
рН	8. 5	8. 5	8. 5	8. 5
密度	1. 08	1. 53	1. 10	1.53
ブルックフィールド粘度	920	580	120	580
固形分パーセント	20. 0	62. 0	20. 0	62. 0

20

10

[0084]

コーティング剤は、コーティング手順 1 を用いて、 6 . 2 ミクロンの粗さを有する木材含有原紙上に、 1 , 0 0 0 m/m i nにて施用された。下層コーティング質量は 0 . 5 g/m²であり、そして上層コーティング質量は 6 . 5 g/m²であった。被覆紙の特性は表 5 にある。

[0085]

【表5】

表 5

我 5		
被覆紙の特性	比較例B	実施例5
紙の光沢 75° (パーセント)	35	37
インキの光沢 75°; 0.8g/m²のインキ(パーセント)	47	52
インキの光沢 75°; 1.6g/m²のインキ(パーセント)	58	68
IGT乾燥紙むけ (cm/s)	52	57
15秒後のインキ裏移り(濃度)	0. 48	0. 57
30秒後のインキ裏移り(濃度)	0. 20	0. 25
60秒後のインキ裏移り(濃度)	0. 07	0. 09
120秒後のインキ裏移り(濃度)	0. 04	0. 01
曲げ剛性 機械方向 (mNm)	0. 042	0. 050

40

30

[0086]

カチオン性デンプンの使用は、剛性およびIGT乾燥紙むけにより測定されるコーティング強さの有意な改善をもたらした。加えて、インキの裏移りは、より低くなった。

[0087]

実施例6

この実施例は、デンプン含有処方物と、該デンプンと反応することの可能なジアルデヒド溶液 (グリオキサール) との界面反応を実証した。デンプンは下層中に配合され、そしてグリオキサール溶液は中間層であった。この処方物において用いられた総グリオキサールは、デンプン量の15パーセントであった。被膜の上層は、慣用の顔料着色された印刷層であった。グリオキサールなしのデンプン含有二層参照品が、対照としてコーティングされた。コーティング処方物の詳細は、表6に与えられている。

[0088]

【表 6】

表 6

<u> </u>	反応性	生層	
	デンプン層	グリオキ サール層	上層
粘土	0	0	20
炭酸塩(A)	0	0	80
ラテックスA	0	0	11
デンプンB	100	0	0
DSP	10	0	0
グリオキサール	0	100	0
PVOH	0	0	2. 5
界面活性剤A	0. 4	0	0. 3
固形分(パーセント)	30. 0	10.0	63. 0
コーティング重量 (g /m²)	1	0. 14	12

参照	品				
デンプン層	上層				
0	20				
0	80				
0	11				
100	0				
10	0				
0	0				
0	2. 5				
0. 4	0. 3				
24. 1	63.0				
1	12				

[0089]

コーティング剤は、コーティング手順2を用いて、表6に示されたコーティング質量にて、木材含有原紙上に700m/minにて施用された。カレンダー掛けされたおよびカレンダー掛けされていない被覆紙の両方が、IGT乾燥紙むけ抵抗について試験された。それらの結果は、表7に示されている。

[0090]

【表7】

表 7

カレンダー掛けされていない	IGT (cm/s)
参照品	9 5
グリオキサール含有品	108
カレンダー掛けされ <u>た</u>	
参照品	6 2
グリオキサール含有品	76

[0091]

反応性デンプン/グリオキサール系の使用は、IGT乾燥紙むけにより測定されるコー

20

10

30

40

ティング強さを改善した。

[0092]

カレンダー掛けされた紙の剛性および耐水性を、それぞれガーレー剛性試験(横機械方向において)およびアダムズ湿潤擦り試験でもって試験した。

[0093]

【表8】

表8

サンプル	ガーレー剛性 (ガーレー単位)	湿潤擦り結果 (透過パーセント)
参照品	375. 5	4.7
グリオキサール含有品	397. 8	83. 5

[0094]

グリオキサールを含有するサンプルは、剛性の増加および優秀な耐水性を示した。

[0095]

実施例7

この例は、被覆紙の特性を改善するために、急速硬化性ラテックスの使用を実証した。 急速硬化反応についての引き金は、紙のコーティングおよび/または乾燥中処方物からの アンモニアの蒸発時に p H が変化するので、中性状態からカチオン荷電状態への窒素含有 ポリマーの転換であると、信じられた。処方物の詳細は、表 9 に示されている。

[0096]

【表9】

表 9

処方物		反応性			比較例	
	下層	中間層	上層	下層	中間層	上層
粘土	100	100	70	100	100	70
炭酸塩A			30			30
ラテックスA	13	13		13	13	
ラテックスE			20			
ラテックスD						20
PVOH	1	1	0. 8	1	1	0. 8
界面活性剤A	0. 4	0. 4	0. 2	0. 4	0. 4	0. 2
рΗ	8. 2	8. 2	8. 5	8. 2	8. 2	9. 9
固形分(パーセント)	65. 2	65. 2	56	65. 2	65. 2	47. 7
速度 (m/min)	1, 000				1, 000	
コーティング質量	6	6	5	6	6	5
(g/m^2)					<u> </u>	

[0097]

コーティング剤は、 $120g/m^2$ の坪量を有する木材不含原紙上に、表9に示されたコーティング質量でもって、1, 000m/minにて三層構成で施用された。コーティング手順2が用いられた。上層は、反応性系を含有していた。比較例においては、窒素含

30

20

10

40

有ポリマーは存在しなかった。急速硬化系を含有する紙の接触角は74°であり、そして比較紙については64°であった。急速硬化ポリマーは、明らかに、紙をより耐水性にする疎水性結合の化合を形成するよう働いた。

[0098]

実施例8

この実施例は、アミノーエトキシシラン(Ameo)およびグリシジル官能化エトキシシラン(Glyeo)を用いるコーティングを実証した。多数の反応が起こり得る。アミノ基とグリシジル基の間の反応に加えて、pHが十分に高くてエトキシシランを加水分解する場合、それ自体と反応してシロキサン結合を形成するグリシジル官能化シランによって、加水分解/縮合反応が起こった。紙をコーティングするための3つの手法が実証された。第1にGlyeoの自己反応が実証され、次いで自己反応に加えて、AmeoとGlyeoの間の反応が層状構造において起こる同時界面反応が実証された。第3に、インライン手法が用いられ、しかしてAmeoとGlyeoのブレンドがダイの単層スロットに供給された。処方物の詳細は、表10に示されている。

[0099]

【表10】

表 1 0

表 1 0							
処方物	対照	Glyeo			多層		インライン
				Glyeo	/Ameo/G	lyeo	Glyeo/Ameo
炭酸塩(A)	100	100	T	100	100	100	100
ラテックスF	11	11		11	11	11	11
Ameo			П		1. 5		1.5
Glyeo		1. 5	П	3		3	3
界面活性剤A	0.4	0.4	Π	0. 2		0. 4	0. 6
固形分	64. 9	64	П	63. 2	63. 9	63. 1	66. 1
(パーセント)							
速度(m/min)	700	700	П		700		700
コーティング	17	17	П	4. 5	9	4. 5	18
質量(g/m²)	1		Ш				

[0100]

コーティング剤は、コーティング手順 2 を用いて、木材含有原紙に施用された。コーティング質量およびコーター速度は、表 1 0 に示されているとおりであった。カレンダー掛けされていないおよびカレンダー掛けされた紙の光沢は、表 1 1 に示されているとおりであった(表 1 1 は、インキの光沢結果の比較も含む)。紙の光沢は、これらの反応系でもって減少された。インキの光沢は、有意的に改善された。この改善は、カレンダー掛けされた紙について最大であった。反応したサンプルは、2 つのインキコーティング量について、インキの光沢とシートの光沢の間のデルタにおいて改善を示した。

[0101]

20

30

【表11】

表11

サンプル	対照	Glyeo	Glyeo Ameo	Glyeo Ameo	対照	Glyeo	Glyeo Ameo	Glyeo Ameo
			多層	インラ			多層	インラ
				インブ レンド				インブ レンド
カレンダー掛け	無	無	無	無	有	有	有	有
紙の光沢75°	30	24	25	27	75	69	67	69
1. 6g/㎡ のコーティ ング量におけるイ ンキの光沢75°	52	54	52	53	75	85	84	85
0.8g/m²のコーティ ング量におけるイ ンキの光沢75°	46	46	47	47	72	80	77	82

20

10

[0102]

紙表面のアダムズ湿潤擦り抵抗が、カレンダー掛けされていないおよびカレンダー掛けされたサンプルの両方について測定された。2つの擦り時間についての生じた濁度測定値が、表12に示されている(この表は、接触角測定も示す)。それらの結果は、反応されていない対照と比べて、被膜の耐水性の増加を示した。

[0103]

【表12】

表 1 2

実験		アダムズ湿潤擦り 実験時間:60s	アダムズ湿潤擦り 実験時間:45s	接触角(度)
		(透過パーセント)	(透過パーセント)	(152.)
対照	カレンダー	26. 7	32. 6	58. 5
Glyeo	掛けされて	92. 3	95	60. 7
多層	いない	90. 2	95	78
インライン ブレンド]	84. 0	92. 6	73. 9
対照	カレンダー		49. 3	61.6
Glyeo	掛けされた		87. 9	63. 4
多層		1	93.8	77. 5
インライン ブレンド			91.8	73. 6

30

40

[0104]

耐水性は、Glyeoでコーティングされた紙についておよびGlyeoとAmeoの反応性系について増大した。最高の接触角は、両方の反応性官能基が存在した場合に得られた。

[0105]

実施例9

この実施例は、アミノ系エポキシ用硬化剤とエポキシドの間の反応を実証した。この実施例はインライン手法を用い、しかして硬化剤とエポキシドのブレンドがダイの単層スロットに供給された。参照品サンプルは、硬化剤またはエポキシドを含有しない。処方物の詳細は、表13に示されている。

[0106]

【表13】

表13

	参照品			エポキシ/硬化剤			
処方物	層 1	層2	層 1	層 2 インラインブレント			
炭酸塩(A)	100		100				
ラテックスA	13	99. 8	13				
PVOH	1		1				
エポキシ					99. 8		
硬化剤				99. 8			
界面活性剤A	0. 4	0. 2	0. 4	0. 2	0. 2		
固形分(パーセント)	65. 2	49. 4	65. 2	36. 7	53. 7		
速度(m/min)	1, (000	;	1, 000			
コーティング重量 (g / m²)	24	3	24	0. 6	1. 8		

[0107]

処方物は、コーティング手順2を用いて、表13に示されたコーター速度およびコーティング質量にて、木材含有原紙に施用された。紙を機械にて乾燥した後、サンプルは更に120℃にて15分間硬化されて、反応を完了した。接触角および紙の剛性が測定された。それらの結果は、表14に示されている。

[0108]

【表14】

表14

	参照品	エポキシ/硬化剤
接触角(度)	60. 5	78. 2
紙の剛性(mNm)	0. 778	0. 993

[0 1 0 9]

被覆紙の耐水性および剛性は、エポキシ/硬化剤反応でもって増大した。

[0110]

<u> 実施例10</u>

この実施例は、多層構造においてポリウレタン層を形成するために、イソシアネートとポリオールの間の反応を実証した。この実施例は、コーターのダイに入る前に、反応性化学物質のインラインブレンドを用いた。処方物の詳細は、表15に示されている。

10

20

30

40

【 0 1 1 1 】 【表 1 5 】

表15

処方物	反応性					比較例			
	下層	中間 インライン		上層		下層	中間層	上層	
炭酸塩(A)	70			70	\Box	100	50	70	
粘土	30			30				30	
炭酸塩(B)							50		
ラテックス(A)	11			11		13	10	11	
PVOH	0.8			0.8		1	0.8	0.8	
増粘剤	0. 1			0.1		0. 1	0. 1	0. 1	
イソシアネート		23							
ポリエチレンオ キシド			7						
触媒			0. 02						
増白剤	1			1			1	1	
界面活性剤(A)	0. 4			0, 4		0. 4		0. 2	
固形分 (パーセント)	62	100	100	62		60	70	62	
速度(m/min)	1,000					1,000			
コーティング質 量(g/m²)	3	6	2	10		3	6	5	

[0112]

コーティング剤は、コーティング手順2を用いて、木材含有原紙に施用された。生じた 紙の特性は、表16に示されている。

[0113]

【表 1 6】

表16

	反応性	比較例
アダムズ湿潤擦り(透過パーセント)	99. 3	32. 8
乾燥紙むけ抵抗(cm/s)	紙むけ無し	46
カレンダー掛けされていない光沢	45	28

[0114]

ポリウレタンを含有する紙は、良好な乾燥紙むけ抵抗および良好な耐水性を示した。ポリウレタンはまた、カレンダー掛けされていない光沢を高めた。

【図面の簡単な説明】

[0115]

【図1】カーテン層の多数の流れ3を送出して連続多層カーテン4を形成させするための

10

20

30

40

スライドノズル集成装置2を備えたカーテンコーティング装置1の横断面説明図である。

【図1】

フロントページの続き

(74)代理人 100082898

介理上 西山 雅也

(72)発明者 ロベルト ウルシェラー

スイス国, ツェーハー-8810 ホルゲン, ヒンテレ リーツビース 60

(72)発明者 ジョン エー. ローパー ザ サード

アメリカ合衆国、ミシガン 48642、ミッドランド、ジョージタウン ドライブ 2805

(72) 発明者 ペッカ ヨット. サルミネン

スイス国,8854 ガルゲニン,ヨステンシュトラーセ 12

(72)発明者 フランシス ドブラー

スイス国, 8122 ビンツ, イム ガッサッカー 7

Fターム(参考) 4D075 AC15 AC72 AC80 AC92 AC94 AE23 CA35 CA38 CA47 CB04

DAO4 DB18 DC27 EA10 EA19 EA21 EB07 EB12 EB14 EB19

EB20 EB22 EB33 EB35 EB37 EB38 EB45 EB56 EC01 EC02

EC03 EC04 EC05 EC07 EC11 EC35 EC37 EC54

4L055 AG04 AG08 AG11 AG12 AG17 AG18 AG19 AG20 AG25 AG26

AG27 AG44 AG46 AG48 AG54 AG56 AG57 AG63 AG64 AG70

AJO2 AJO4 BEO9 BE20 EA08 EA14 EA25 EA26 FA15 FA22

FA23 GA05 GA19

【外国語明細書】 2004154773000001.pdf **PAT-NO:** JP02004154773A

DOCUMENT- JP 2004154773 A

IDENTIFIER:

TITLE: METHOD FOR

MANUFACTURING

COATED SUBSTRATE

PUBN-DATE: June 3, 2004

INVENTOR-INFORMATION:

NAME COUNTRY

URSCHELER, ROBERT N/A

ROPER, III JOHN A N/A

SALMINEN, PEKKA J N/A

DOBLER, FRANCIS N/A

ASSIGNEE-INFORMATION:

NAME COUNTRY

DOW GLOBAL TECHNOLOGIES INC N/A

APPL-NO: JP2003355433

APPL-DATE: October 15, 2003

PRIORITY-DATA: 2002US200233113 (October 15, 2002)

INT-CL (IPC): B05D001/30 , B05D001/34 , B05D007/00 , D21H023/48 , D21H025/06

ABSTRACT:

PROBLEM TO BE SOLVED: To provide a coating method which permits application of a coating agent containing one or more reactive compounds and a coating method which prevents the nature of the applied coating agent from being adversely affected by the presence of various reagents, reactive with each other, in the coating agent.

SOLUTION: The method for manufacturing the coated substrate comprises the steps of: (a) forming a composite, multilayer freely flowing curtain 4, the curtain having at least two layers, wherein the one layer contains at least a first component which can react with at least a second component included in the other layer; (b) preparing at least one inside layer 2 existing between the layer containing the first component and the layer containing the second component; and (c) contacting the curtain with a continuous web substrate 5.

COPYRIGHT: (C)2004,JPO