Introduction

Visualisation with the tidyverse

Relevelling factors

Increasing the complexity

References

Plotting model output with ggplot2

July 2019

Introduction

Visualisation with the tidyverse

Relevelling factors

Increasing the complexity

References

Introduction

Introduction

Visualisation with the tidyverse

Relevelling factors

complexity

References

Tidyverse

- The tidyverse suite of R packages is designed to make working with data as easy as possible
- The relevant packages from tidyverse for us are
 - ggplot2: for plotting data
 - dplyr: for manipulating data frames
 - tidyr: for making data tidy

library(tidyverse)

Introduction

Visualisatio with the tidyverse

Relevelling factors

Increasing th complexity

Reference

Principles of tidy data

- Every data set has its own quirks
- Tidy data frames consist of a number of observations (rows) of variables (columns), they can be either wide or long (Wickham 2014)
- Data needs to be the right shape for the functions being used
- ggplot2 usually requires long data

Introduction

Visualisation with the tidyverse

Relevelling factors

Increasing the complexity

References

Long and wide tidy data

 An example of a wide data frame which we might encounter is the output of an SIR model

time	S	l	R
0.00	0.9999990	1.0e-06	0e+00
0.05	0.9999989	1.1e-06	0e+00
0.10	0.9999988	1.1e-06	0e+00
0.15	0.9999988	1.2e-06	0e+00
0.20	0.9999987	1.3e-06	0e+00
0.25	0.9999986	1.4e-06	0e+00
0.30	0.9999985	1.5e-06	1e-07
0.35	0.9999984	1.6e-06	1e-07
0.40	0.9999983	1.7e-06	1e-07
0.45	0.9999981	1.8e-06	1e-07

• Here we have values of S(t), I(t), R(t) at given values of t

Introduction

Visualisation with the tidyverse

Relevelling factors

complexity

References

Long and wide tidy data

- Our numerical solution to the SIR model is a wide data frame
- We reshape our data to be long

- This says gather the columns in SIR as key-value pairs where
 - the new key column is called state and contains the names of the gathered columns
 - the *value* of each state at a given time is in the column called proportion
 - the S, I, R columns (not time) are the gathered variables

Long and wide tidy data

Introduction

visualisation with the tidyverse

Relevelling factors

Increasing the complexity

References

Wide data

time	S	ļ	R
0.00 0.05	0.9999990 0.9999989	1.0e-06 1.1e-06	0
0.10	0.9999988	1.1e-06	0

key: this state at this time

value: proportion

Long data

time	state	proportion
0.00	S	0.9999990
0.05	S	0.9999989
0.10	S	0.9999988
0.00	I	0.0000010
0.05	I	0.0000011
0.10	I	0.0000011
0.00	R	0.0000000
0.05	R	0.0000000
0.10	R	0.0000000

Introductio

Visualisation with the tidyverse

Relevelling factors

Increasing the complexity

References

Visualisation with the tidyverse

Introduction

Visualisation with the tidyverse

Relevelling factors

complexity

Reference

Grammar of graphics

- R package ggplot2 uses a grammar of graphics (Wickham 2010)
 - adding extra commands in a "do this, then do this" manner
 - assign variables in data frame to aesthetic options in the plot
 - choose a plotting style for how to display these variables
 - adjustments to axis scales
 - adjustments to colors, themes, etc.
 - additional annotation
- Focus is on visual relationships between variables rather than drawing points and lines
- Options are properties of the elements of the plot rather than of plot itself

Introduction

Visualisation with the tidyverse

Relevelling factors

Increasing the complexity

References

Building a plot

- How do we tell the ggplot() function to make a plot?
 - Load the ggplot2 package, which contains the ggplot() function
 - Specify a data frame to use, containing the variables we want to plot

```
library(ggplot2)
ggplot(data = my.data.frame)
```

Introduction

Visualisation with the tidyverse

Relevelling factors

Increasing the complexity

References

Building a plot

- How do we tell the ggplot() function to make a plot?
 - Then we set some **aesthetic options** to tell R which variables from my . data . frame to map to the x and y axes of the plot

Introduction

Visualisation with the tidyverse

Relevelling factors

Increasing th complexity

Reference

Building a plot

- How do we tell the ggplot() function to make a plot?
 - Geometries are the shapes we use to draw plots, e.g. lines, points, polygons, bars, boxplots
 - We will use the *line geometry* to build a time series plot

 We can set aesthetics aes(...) inside a geometry to modify the color, fill, alpha transparency, etc. according to a variable in the data frame

Introduction

Visualisation with the tidyverse

Relevelling factors

Increasing the complexity

References

time	state	proportion
0.00	S	0.9999990
0.05	S	0.9999989
0.10	S	0.9999988
0.00	I	0.0000010
0.05	1	0.0000011
0.10	1	0.0000011
0.00	R	0.0000000
0.05	R	0.0000000
0.10	R	0.0000000

- For each state, we want to plot a different *line* with its own colour
- ullet Line has proportion on y axis, time on x axis

Introduction

Visualisation with the tidyverse

Relevelling factors

Increasing the complexity

References

Introduction

Visualisation with the tidyverse

Relevelling factors

complexity

References

Using ggplot2

- This plot isn't especially pretty, so let's add some extra things to it (using + for our grammar of graphics)
 - xlab() and ylab() print their argument as axis labels
 - theme() sets options about the way the axis/background/legend annotations are drawn

```
sir_ggplot <- sir_ggplot +
  theme(legend.position = "bottom") +
  xlab("Time (days)") +
  ylab("Proportion of population")</pre>
```

 We are sequentially adding functions that modify the plot rather than passing arguments to a plot() to replace default options

Introduction

Visualisation with the tidyverse

Relevelling factors

Increasing the complexity

References


```
Plotting mode output with ggplot2
```

Introduction

Visualisation with the tidyverse

Relevelling factors

Increasing th complexity

References

Using ggplot2

• Consider a basic plot that we'll recycle

```
sir_ggplot_basic <-
ggplot(data = SIR_long,  # where data lives
    aes(x = time,  # set plot aesthetics...
    y = proportion)) + # ...specifying x&y vars
theme_bw() + # grey grid on white bg
xlab("Time (days)") + # replace time as x label
ylab("Population proportion") + # replace proportion as y
theme(legend.position = "bottom") # change legend placement</pre>
```

- NB no geometry specified
- theme_bw() is a collection of options for theme() that specify a white background with a light grey grid and black text

Introduction

Visualisation with the tidvverse

Relevelling factors

Increasing th complexity

References

geom_area() gives a filled polygon with a border

```
sir_ggplot_area <-
    sir_ggplot_basic +
    geom_area(
    aes(fill = state),
    color = "black")</pre>
```

color

- Mapping a variable, e.g. state, to part of our plot requires it is inside aes(...)
- Static options go outside aes(...)

Introductio

Visualisation with the tidvverse

Relevelling factors

Increasing th complexity

References

Draw small multiples with facet_wrap(), repeating the geometry for the levels of the grouping variable

We indicate grouping by the state variable with ~ state

Introduction

Visualisation with the

Relevelling factors

Increasing the complexity

References

Relevelling factors

Introductio

Visualisation with the tidyverse

Relevelling factors

complexity

References

Relevelling factors

- Default behaviours are:
 - gather() respects column order when reshaping
 - key column is character variable
 - character variables coerced to alphabetic factors
- We can set order of state variable by specifying levels

```
factor(state, levels = c("S","I","R"))
```

```
Plotting mode 
output with 
applot2
```

Introduction

Visualisation with the tidyverse

Relevelling factors

Increasing the complexity

References

Relevelling factors

Time (days)

```
SIR_long$state <-
                                       1.00
  factor(SIR_long$state,
          levels = c("S",
                       "R"))
                                       0.75
                                     Population proportion
sir_ggplot_lines <-
  ggplot(data = SIR_long,
          aes(x = time,
               y = proportion))
  theme_bw() +
  xlab("Time (days)") +
  ylab("Population proportion")
                                       0.25
  theme(
    legend.position = "bottom")
  geom_line(aes(color = state))
                                       0.00
                                                 10
                                                       20
                                                              30
```

Introduction

Visualisation with the

Relevelling factors

Increasing the complexity

References

Increasing the complexity

.

Visualisation with the tidyverse

Relevelling factors

Increasing the complexity

References

Using ggplot2

File all_sims_labelled_SIR.csv contains 4 SIR simulations with each combination of $\beta=1.42470, 1.56756$ and $\gamma=0.14286, 0.36508$, representing different parameter values from a factorial design, e.g.

gamma	time	proportion	state
0.14286	0.2	0.9999987	Susceptible
0.14286	0.2	0.0000013	Infectious
0.14286	0.2	0.0000000	Recovered
0.36508	0.2	0.9999987	Susceptible
0.36508	0.2	0.0000012	Infectious
0.36508	0.2	0.0000001	Recovered
	0.14286 0.14286 0.14286 0.36508 0.36508	0.14286 0.2 0.14286 0.2 0.14286 0.2 0.36508 0.2 0.36508 0.2	0.14286 0.2 0.9999987 0.14286 0.2 0.0000013 0.14286 0.2 0.0000000 0.36508 0.2 0.9999987 0.36508 0.2 0.0000012

Introduction

Visualisation with the tidyverse

Relevelling factors

Increasing the complexity

References

- We want to specify a line plot for each β, γ and state
- Use color = state as before
- Want a 2×2 grid of β, γ
 - facet_grid() allows us to specify the grouping structure as row_variables ~ column_variables
 - For a different beta on each row and gamma in each column we specify facet_grid(beta ~ gamma)

```
Plotting mode output with applot2
```

Introduction

Visualisation with the tidyverse

Relevelling factors

Increasing the complexity

References

```
SIR_plot_bg_basic <-
 ggplot(data =
      all sims labelled SIR.
       aes(x = time,
           y = proportion)) +
 xlab("Time (days)") +
 ylab("Population proportion") +
 theme_bw() +
  theme(legend.position = "bottom")
SIR plot bg grid <-
  SIR plot bg basic +
  geom_line(aes(color = state)) +
  facet_grid(beta ~ gamma) +
  scale_color_brewer(
    palette = "Dark2",
    name = "State")
```



```
State - Susceptible - Infectious - Recovered
```

Introductio

Visualisation with the tidyverse

Relevelling factors

Increasing the complexity

References

- Grammar of graphics means we can keep adding things to our plot to make it more complex
- We can keep adding more elements and options to show more details of the data
- e.g. to change the theme options to have a white background, different colours

```
my palette <- c("#3A49C9", "#FC8E62", "#B05633")
names(my_palette) <- c("Susceptible", "Infectious", "Recovered")</pre>
SIR plot bg2 <- SIR plot bg basic +
  geom line(aes(color = state).
            alpha = 0.5, # semi-transparent
            size = 1) + # thicker lines
  # let's use a custom color palette
  scale_color_manual(values = my_palette,
  # name = NULL omits the name in the legend for color
                            = NULL) +
                     name
  # custom labeller to include greek characters
  facet_grid(beta ~ gamma,
             labeller =
               label_bquote(cols = gamma == .(gamma),
                             rows = beta == .(beta)))
```

Introduction

Visualisation with the

Relevelling factors

Increasing the complexity

References

Introduction

Visualisation with the tidyverse

Relevelling factors

Increasing the complexity

References

Grouping and summarising

Consider instead of a factorial design for an SIR we have 100 simulations of an SIR model from a Monte Carlo simulation. 102 of the 10100 rows are shown below:

sim	time	S	I	R
1	0.0	99.000	1.000	0.000
1	0.1	98.867	1.102	0.031
1	0.2	98.721	1.213	0.066
2	0.0	99.000	1.000	0.000
2	0.1	98.875	1.093	0.031
2	0.2	98.740	1.195	0.065
3	0.0	99.000	1.000	0.000
3	0.1	98.856	1.113	0.032
3	0.2	98.696	1.237	0.067
4	0.0	99.000	1.000	0.000
4	0.1	98.862	1.106	0.031
4	0.2	98.710	1.224	0.066

Introduction

Visualisation with the tidyverse

Relevelling factors

Increasing the complexity

References

Introduction

Visualisation with the

Relevelling factors

Increasing the complexity

References

- We can group by simulation index, sim, to show each as a line
- Use alpha transparency so we don't have a giant blob of black

Introduction

Visualisation with the

Relevelling factors

Increasing the complexity

References

Introduction

Visualisation with the tidyverse

Relevellin factors

Increasing the complexity

References

- To simplify this plot, we could calculate a 95% interval at each time for S, I, R and show these
- Use dplyr's
 - group_by() to define a grouping structure, and
 - summarise() to calculate summary statistics for each group (here we want the median and upper and lower bounds of a 95% interval)

Introduction

Visualisatio with the tidyverse

Relevelling factors

Increasing the complexity

References

```
plot_sim_summarised_ribbon <-</pre>
  ggplot(data = sol_sim_summarised,
        aes(x = time)) +
  geom_ribbon(aes(ymin = L, # lower edge of ribbon
                 ymax = U), # upper edge of ribbon
             alpha = 0.5, # make semi-transparent
             fill = "skyblue", # fill blue
             color = NA) + # no border color
  geom_line(aes(y = M)) + # line for median
  theme bw() +
                           # nicer theme
  facet_wrap( ~ state) + # repeat for each state
 xlab("Time (days)") + # human friendly axis label
 ylab("Population") + # human friendly axis label
  scale_x_continuous(breaks = c(0, 5, 10)) # neater axis
```

Introduction

Visualisation with the

Relevelling factors

Increasing the complexity

References

Introduction

Visualisation with the tidyverse

Relevelling factors

Increasing the complexity

References

References

Introduction

Visualisation with the tidyverse

Relevelling factors

Increasing the complexity

References

References

- More help on ggplot2 and the tidyverse is available
- The #r4ds community have TidyTuesday
- Chang (2012) is very useful if a little out of date

Chang, W. 2012. *R Graphics Cookbook: Practical Recipes for Visualizing Data*. O'Reilly Media. https://books.google.co.uk/books?id=fxL4tu5bzAAC.

Wickham, Hadley. 2010. "A Layered Grammar of Graphics." *Journal of Computational and Graphical Statistics* 19 (1):3–28. https://doi.org/10.1198/jcgs.2009.07098.

---. 2014. "Tidy Data." *Journal of Statistical Software* 59 (1):1–23. https://doi.org/10.18637/jss.v059.i10.