UNIVERSIDADE ESTADUAL DE CAMPINAS Instituto de Matemática, Estatística e Computação Científica LINICAMP IMECC EXAME – MA211 – Quinta-feira (TARDE), 15/01/2015

O. 1.0 A.M.		Quinta iona (111122), 10/01/1010					
						Q3	
ALUNO				RA	Turma	 4 5	
						Q4	
						\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
EXAME - MA211 - Quinta-feira (TARDE). 15/01/2015						Q5	
EXAME = MAZII = GIIMLA-IERA HARDEI. 13/01/2013							

Q1 Q2

 \sum_{i}^{n}

INSTRUCÕES

NÃO É PERMITIDO DESTACAR AS FOLHAS DA PROVA É PROIBIDO O USO DE CALCULADORAS SERÃO CONSIDERADAS SOMENTE AS QUESTÕES ESCRITAS DE FORMA CLARA E DEVIDAMENTE JUSTIFICADAS

Questão 1.

(a) Seja $g(x,y)=\psi(x/y)$, em que $\psi:\mathbb{R}\to\mathbb{R}$ é uma função diferenciável de uma variável real. Verifique que

$$xg_x(x,y) + yg_y(x,y) = 0,$$

para todo $(x, y) \in \mathbb{R}^2$ com $y \neq 0$.

(b) Verifique que o elipsoide $3x^2 + 2y^2 + z^2 = 9$ e a esfera $x^2 + y^2 + z^2 - 8x - 6y - 8z + 24 = 0$ se tangenciam (ou seja, possuem o mesmo plano tangente) no ponto (1, 1, 2).

Questão 2. Determine os valores máximo e mínimo absolutos de

$$f(x,y) = x^2 + y^2 + x^2y + 4,$$

no conjunto $D = \{(x, y) \in \mathbb{R}^2 : |x| \le 1, |y| \le 1\}.$

Questão 3. Determine o volume da esfera sólida $\rho \leq a$ que está entre os cones $\phi = \pi/3$ e $\phi = 2\pi/3$.

Questão 4. Cacule o trabalho realizado pela força $\mathbf{F} = xy\mathbf{i} + y^2\mathbf{j}$ ao mover uma partícula da origem ao longo da reta y = x até (1,1) e então de volta à origem ao longo da curva $y = x^2$.

Questão 5. Use o teorema de Stokes para calcular a integral \iint_S rot $\mathbf{F} \cdot d\mathbf{S}$, em que

$$\mathbf{F}(x, y, z) = -y\mathbf{i} + x\mathbf{j} + x^2\mathbf{k},$$

e S é o cilindro $x^2+y^2=a^2,\,0\leq z\leq 2,$ junto com seu topo $x^2+y^2\leq a^2,\,z=2.$