Guide to Convexity in Optimization

Mikhailova Olena

20.03.2025

1 Introduction to Convexity

Convexity is one of the most important concepts in optimization because it allows us to:

- Guarantee that local minima are global minima
- Develop efficient optimization algorithms
- Analyze problems theoretically

1.1 What Does "Convex" Mean?

Imagine a simple bowl shape - this is convex. A saddle shape is non-convex. The key property is that if you draw a line between any two points on a convex object, the line stays entirely within the object.

2 Convex Sets

2.1 Basic Definition

Definition 2.1 (Convex Set). A set $C \subseteq \mathbb{R}^n$ is **convex** if the line segment between any two points in C lies entirely in C:

$$\forall x, y \in C, \forall \theta \in [0, 1] : \theta x + (1 - \theta)y \in C$$

2.2 Advanced Examples

• Linear Matrix Inequality Solution Set:

$$\left\{ x \in \mathbb{R}^k : \sum_{i=1}^k x_i A_i \preceq B \right\}$$

where $A_i, B \in \mathbb{S}^n$. Convexity follows because it's an affine pre-image of the PSD cone.

• Conditional Probability Distributions: The set of conditional distributions derived from convex joint distributions remains convex through linear-fractional transformations.

2.3 Key Theorems

Theorem 2.2 (Separating Hyperplane). For disjoint convex sets C, D, there exists a, b such that:

$$C \subseteq \{x : a^{\top}x \le b\}, \quad D \subseteq \{x : a^{\top}x \ge b\}$$

Theorem 2.3 (Solution Set Convexity). For convex optimization problems, the set of optimal solutions X_{opt} is convex.

Proof. Let $x, y \in X_{\text{opt}}$. For $t \in [0, 1]$, define z = tx + (1 - t)y. By convexity:

$$g_i(z) \le tg_i(x) + (1-t)g_i(y) \le 0$$

 $Az = tAx + (1-t)Ay = b$
 $f(z) \le tf(x) + (1-t)f(y) = f^*$

Thus $z \in X_{\text{opt}}$.

2.4 Examples of Convex Sets

• Norm balls: All points within a certain distance from center

$$\{x: ||x|| \le r\}$$

Hyperplanes and halfspaces:

$$\{x : a^{\top}x = b\}, \quad \{x : a^{\top}x < b\}$$

• Polyhedrons: Solutions to systems of linear inequalities

$$\{x : Ax \leq b, Cx = d\}$$

• Positive semidefinite cone (for matrices):

$$\mathbb{S}^n_+ = \{X \in \mathbb{R}^{n \times n} : X = X^\top, X \succeq 0\}$$

2.5 Operations that Preserve Convexity

- Intersection: If C_1 and C_2 are convex, then $C_1 \cap C_2$ is convex
- Affine transformations: For convex C, the set $\{Ax + b : x \in C\}$ is convex
- Linear-fractional transformations: For convex C, the set $\left\{\frac{Ax+b}{c^{\top}x+d}:x\in C\right\}$ is convex

Convex Functions 3

Basic Definition 3.1

Definition 3.1 (Convex Function). A function $f: \mathbb{R}^n \to \mathbb{R}$ is convex if its domain is convex and:

 $f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y) \quad \forall x, y \in dom(f), \theta \in [0, 1]$

3.2 **Extended Properties**

Theorem 3.2 (Partial Minimization). If g(x,y) is convex and C is convex, then $f(x) = \min_{y \in C} g(x, y)$ is convex.

• Composition Rules:

- Convex + non-decreasing \circ convex = convex
- Convex + non-increasing \circ concave = convex
- Affine composition preserves convexity: f(Ax + b)

3.3 Important Properties

Theorem 3.3 (Epigraph Characterization). f is convex \iff its epigraph $epi(f) = \{(x, t) : f(x) \le t\}$ is convex.

Theorem 3.4 (First-Order Characterization). For differentiable f:

$$f \ convex \iff f(y) \ge f(x) + \nabla f(x)^{\top} (y - x) \quad \forall x, y$$

Theorem 3.5 (Second-Order Characterization). For twice differentiable f:

$$f \ convex \iff \nabla^2 f(x) \succeq 0 \quad \forall x$$

3.4 Important Function Classes

• Indicator Function:

$$I_C(x) = \begin{cases} 0 & x \in C \\ \infty & \text{otherwise} \end{cases}$$

Convex when C is convex

• Support Function:

$$I_C^*(x) = \sup_{y \in C} x^\top y$$

Always convex (even for non-convex C)

3.5 Examples of Convex Functions

• Affine functions: $f(x) = a^{T}x + b$

• Quadratic functions: $f(x) = \frac{1}{2}x^{T}Qx + b^{T}x + c$ (when $Q \succeq 0$)

• Norms: $||x||_p$ for $p \ge 1$

• Exponential: e^{ax}

• Log-sum-exp: $\log(\sum e^{x_i})$

3.6 Strong Convexity

Definition 3.6 (Strongly Convex Function). A function f is μ -strongly convex if:

$$f(y) \ge f(x) + \nabla f(x)^{\top} (y - x) + \frac{\mu}{2} ||y - x||^2$$

This means the function grows at least as fast as a quadratic function.

Theorem 3.7 (Hessian Characterization). For twice differentiable f:

$$f \text{ μ-strongly convex} \iff \nabla^2 f(x) \succeq \mu I \quad \forall x$$

3.7 Algorithmic Implications

• Enables linear convergence rates

• Provides error bounds:

$$\frac{1}{2\mu}\|\nabla f(x)\|^2 \geq f(x) - f^*$$

• Guarantees unique global minimum

• Leads to faster convergence in optimization algorithms

• For twice differentiable f, equivalent to $\nabla^2 f(x) \succeq \mu I$

4 Convex Optimization Problems

4.1 Standard Form

A convex optimization problem has the form:

$$\min_{x} \quad f(x)$$
 s.t. $g_{i}(x) \leq 0, \quad i = 1, ..., m$
$$a_{i}^{\top} x = b_{j}, \quad j = 1, ..., p$$

where:

- f and g_i are convex functions
- Equality constraints are affine

4.2 Problem Transformations

- Eliminating Equality Constraints: Express $x = My + x_0$ where M spans nullspace of A
- Introducing Slack Variables: Convert $g_i(x) \le 0$ to $g_i(x) + s_i = 0$ with $s_i \ge 0$
- **Geometric Programming**: Non-convex posynomials become convex after log-transform:

$$\min_{y} \log \sum e^{a_k^{\top} y + b_k} \quad \text{s.t.} \quad \log \sum e^{c_i^{\top} y + d_i} \le 0$$

4.3 Key Properties

Theorem 4.1 (Global Optimality). For convex problems, any local minimum is global.

Theorem 4.2 (Solution Uniqueness). If f is strictly convex, the solution is unique.

Theorem 4.3 (Optimality condition). : For differentiable f, x^* is optimal iff

$$\nabla f(x^*)^{\top} (y - x^*) \ge 0 \quad \forall y \ feasible$$

4.4 Solution Characteristics

- Feasibility: A point x is feasible if $x \in \bigcap \text{dom}(g_i)$, $g_i(x) \leq 0$, and Ax = b
- Active Constraints: Inequality g_i is active at x if $g_i(x) = 0$
- ϵ -Suboptimality : x is ϵ -suboptimal if $f(x) \leq f^* + \epsilon$

4.5 Important Examples

• Linear Programs (LP):

$$\min_{x} c^{\top} x$$
 s.t. $Ax \le b$

• Quadratic Programs (QP):

$$\min_{x} \frac{1}{2} x^{\top} Q x + c^{\top} x \quad \text{s.t.} \quad A x \le b$$

• Semidefinite Programs (SDP):

$$\min_{X} \langle C, X \rangle$$
 s.t. $\mathcal{A}(X) = b, X \succeq 0$

5 Applications

5.1 Lasso Regression

$$\min_{\beta} \|y - X\beta\|_2^2 + \lambda \|\beta\|_1$$

- \bullet Convex despite non-differentiable $\ell_1\text{-norm}$
- Promotes sparse solutions

5.2 Robust Lasso Variant

With Huber loss for outlier resistance:

$$\min_{\beta} \sum_{i=1}^{n} \rho(y_i - x_i^{\top} \beta) + \lambda \|\beta\|_1$$

where $\rho(z) = \begin{cases} \frac{1}{2}z^2 & |z| \leq \delta \\ \delta |z| - \frac{1}{2}\delta^2 & \text{otherwise} \end{cases}$. Remains convex as Huber loss is convex.

5.3 Support Vector Machines

$$\min_{w,b} \frac{1}{2} \|w\|_2^2 + C \sum_{i=1}^n \max(0, 1 - y_i(w^\top x_i + b))$$

- Convex objective with piecewise linear constraints
- Can be rewritten as a quadratic program

5.4 SVM Duality

The dual SVM formulation reveals convex structure:

$$\max_{\alpha} \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j x_i^{\top} x_j \quad \text{s.t.} \quad 0 \le \alpha_i \le C$$

Demonstrates convex quadratic programming structure.

6 Why Convexity Matters

- Reliable optimization: No need to worry about getting stuck in local minima
- Efficient algorithms: Specialized methods (gradient descent, interior point) work well
- Theoretical guarantees: Can prove convergence rates and complexity bounds
- Recognizable structure: Many problems can be reformulated as convex programs

7 Algorithmic Implications

7.1 Why Convexity Helps Optimization

- No Spurious Local Minima: Gradient descent won't get stuck in poor solutions
- Predictable Convergence:
 - $-O(1/\epsilon)$ iterations for convex + smooth
 - Linear convergence $(O(\log 1/\epsilon))$ for strongly convex
- Simple Stopping Criteria: $\|\nabla f(x)\| < \epsilon$ guarantees near-optimality

7.2 Hierarchy of Convex Programs

Linear Programentic Programment Programment (CP)

Each class extends the previous one while maintaining convexity properties.

8 Recognizing Convexity

To verify if a problem is convex:

- 1. Check if the objective is convex (use definitions or derivative tests)
- 2. Verify all inequality constraints are convex
- 3. Ensure equality constraints are affine
- 4. Confirm the domain is convex
- **Significant Counterexample**: Geometric programs appear non-convex but become convex under logarithmic transformation

9 Common Mistakes

- Assuming all quadratics are convex (must check $Q \succeq 0$)
- Forgetting to verify convexity of constraints
- Treating equality constraints as inequalities
- Overlooking domain issues (e.g., log(x) requires x ¿ 0)

10 Conclusion

Convexity provides a powerful framework for optimization problems:

- Clear geometric interpretation
- Strong theoretical guarantees
- Wide range of applications
- Systematic approach to problem formulation