

ELETROMAGNETISMO EE

Mestrados Integrados em:

Eng^a de Materiais, Eng^a de Polímeros e Eng^a de Telecomunicações e informática

2º Teste (Global) 12 de Janeiro de 2016 Duração: 1h45min

- 1. Uma carga pontual $q=-5.0~\mu\text{C}$ é colocada no ponto **P**, equidistante das superfícies equipotenciais **A** e **B** de um campo elétrico uniforme \vec{E}_{ℓ} sendo d=2.5~dm.
 - a) Determine a energia potencial da carga quando se encontra no ponto P.
 - **b)** Determine o vetor campo eléctrico \vec{E} na região entre as duas superfícies equipotenciais.
 - c) Calcule o vetor força elétrica a que a carga q está sujeita.

2. Considere uma casca esférica metálica, com uma carga $\mathbf{Q_c}$ = + 8.85 μ C, centrada no ponto \mathbf{O} e com raio \mathbf{R} = 1 \mathbf{m} .

Na figura: $R_A = R/2$; $R_B = 3R/2$.

- **a)** Compare o campo eléctrico, provocado por esta casca, nos pontos A e B.
- **b)** Se uma carga pontual $\mathbf{Q} = \mathbf{-5.00}~\mu\mathbf{C}$ for colocada no ponto \mathbf{O} , qual a consequência na distribuição de carga eléctrica na casca?

3. Dois condutores rectilíneos, paralelos e muito compridos, estão separados por uma distância de **4 cm**, e transportam correntes de **10 A** e **15 A**, de sentidos contrários, como pode ser observado na figura. Os condutores estão dispostos perpendicularmente ao plano da figura. Calcule:

- **a)** A intensidade da força por unidade de comprimento que os condutores exercem entre si.
- b) O ponto ou pontos onde o campo magnético criado pelos 2 condutores é nulo.

4. Uma espira condutora, rectangular, é constituída por uma parte em forma de U, fixa, e por uma barra condutora que se move livremente na direção do eixo x, como

se ilustra na figura. A base do U da parte fixa da espira, localizada em x=0, tem um comprimento $\mathbf{D}=\mathbf{20}$ cm. Existe um campo magnético uniforme $(\vec{B}=0.2\,\hat{\jmath}\ \text{T})$, em todos os pontos do plano xz. A barra condutora desloca-se no sentido +x (ver figura), a uma velocidade constante $\mathbf{v=0.5}$ m/s. Calcular a intensidade e sentido da corrente elétrica induzida

sabendo que a resistência da espira se mantém constante e igual $R=4.0~\Omega$. Justifique.

Faça os problemas 5 e 6 numa folha de prova independente

5. As placas representadas na figura geram um campo eléctrico uniforme ($E=2\times10^5~{\rm N/C}$), numa região onde existe um campo magnético uniforme ($B=0.3~{\rm T}$), com sentido para trás do plano do papel. Um electrão entra na região entre as placas, com uma velocidade \vec{v}_0 , e não sofre qualquer desvio da sua trajectória.

- a) Determine o valor da velocidade $v_{\rm 0}$ do electrão.
- b) Represente na folha de prova os vetores força eléctrica (\vec{F}_E) e força magnética (\vec{F}_B) que actuam sobre o electrão.
- c) Suponha agora que o electrão é substituído por um protão que entra na região entre as placas com uma velocidade de módulo igual a $2v_0$. Represente na folha de prova os vetores força eléctrica (\vec{F}_E) e força magnética (\vec{F}_B) que actuam sobre o protão e calcule a magnitude da sua aceleração.
- 6. Considere que o circuito esquematizado na figura se encontra no estado estacionário.
- a) Determine a corrente que percorre a resistência de 2 Ω .
- b) Calcule a diferença de potencial entre os pontos A e B do circuito.
- c) Calcule a carga acumulada no condensador.

Quando finalizar o teste entregue o enunciado com as folhas de prova.

Carga elementar: $e = 1.6 \times 10 - 19$ C;

Permitividade elétrica do vazio: $\varepsilon_0 = 8.85 \times 10^{-12}$ (SI)

Permeabilidade magnética do vazio: $\mu_0 = 4\pi \times 10^{-7}$ (SI)

1 μ C = 10⁻⁶ C; $m_{prot\tilde{a}o} = 1.7 \times 10^{-27}$ kg; $m_{eletr\tilde{a}o} = 9.1 \times 10^{-31}$ kg