CS189/CS289A Introduction to Machine Learning Lecture 9: Regression

Peter Bartlett

February 17, 2015

• Review: Decision theory.

- Review: Decision theory.
- Empirical risk minimization.

- Review: Decision theory.
- Empirical risk minimization.
 - Least squares.

- Review: Decision theory.
- Empirical risk minimization.
 - Least squares.
 - Normal equations.

- Review: Decision theory.
- Empirical risk minimization.
 - Least squares.
 - Normal equations.
- Linear model with additive Gaussian noise.

- Review: Decision theory.
- Empirical risk minimization.
 - Least squares.
 - Normal equations.
- Linear model with additive Gaussian noise.
 - Maximum likelihood is least squares.

- Review: Decision theory.
- Empirical risk minimization.
 - Least squares.
 - Normal equations.
- Linear model with additive Gaussian noise.
 - Maximum likelihood is least squares.
 - Distributions of parameter estimates.

- Review: Decision theory.
- Empirical risk minimization.
 - Least squares.
 - Normal equations.
- Linear model with additive Gaussian noise.
 - Maximum likelihood is least squares.
 - Distributions of parameter estimates.

Regression with quadratic loss

Outcomes are in $\mathcal{Y} = \mathbb{R}$.

We consider the quadratic loss function, $\ell(\hat{y}, y) = (\hat{y} - y)^2$.

Risk is expected squared error:

$$R(f) = \mathbb{E}\ell(f(X), Y) = \mathbb{E}(f(X) - Y)^{2}.$$

Regression with quadratic loss

Outcomes are in $\mathcal{Y} = \mathbb{R}$.

We consider the quadratic loss function, $\ell(\hat{y}, y) = (\hat{y} - y)^2$.

Risk is expected squared error:

$$R(f) = \mathbb{E}\ell(f(X), Y) = \mathbb{E}(f(X) - Y)^{2}.$$

Risk:

$$R(f) = \mathbb{E}\ell(f(X), Y) = \mathbb{E}(f(X) - Y)^{2}$$

Risk:

$$R(f) = \mathbb{E}\ell(f(X), Y) = \mathbb{E}(f(X) - Y)^2 = \mathbb{E}\mathbb{E}[(f(X) - Y)^2|X].$$

Risk:

$$R(f) = \mathbb{E}\ell(f(X), Y) = \mathbb{E}(f(X) - Y)^2 = \mathbb{E}\mathbb{E}[(f(X) - Y)^2|X].$$

For each X, we minimize the conditional expectation of the loss,

$$\mathbb{E}\left[(f(X)-Y)^2|X\right].$$

Risk:

$$R(f) = \mathbb{E}\ell(f(X), Y) = \mathbb{E}(f(X) - Y)^2 = \mathbb{E}\mathbb{E}[(f(X) - Y)^2|X].$$

For each X, we minimize the conditional expectation of the loss,

$$\mathbb{E}\left[(f(X)-Y)^2|X\right].$$

Bias-variance decomposition

$$R(f) = \mathbb{E}\left[\underbrace{\left[\left(f(X) - \mathbb{E}[Y|X]\right)^{2}\right]}_{\text{bias}^{2}} + \mathbb{E}\left[\underbrace{\left[\left(\mathbb{E}[Y|X] - Y\right)^{2}\right]}_{\text{variance}}\right]$$

Bias-variance decomposition

$$R(f) = \mathbb{E}\underbrace{\left[(f(X) - \mathbb{E}[Y|X])^2 \right]}_{\text{bias}^2} + \mathbb{E}\underbrace{\left[(\mathbb{E}[Y|X] - Y)^2 \right]}_{\text{variance}}$$
$$= \mathbb{E}\left[(f(X) - f^*(X))^2 \right] + \mathbb{E}\left[(f^*(X) - Y)^2 \right]$$

Bias-variance decomposition

$$R(f) = \mathbb{E}\underbrace{\left[(f(X) - \mathbb{E}[Y|X])^2 \right]}_{\text{bias}^2} + \mathbb{E}\underbrace{\left[(\mathbb{E}[Y|X] - Y)^2 \right]}_{\text{variance}}$$

$$= \mathbb{E}\left[(f(X) - f^*(X))^2 \right] + \mathbb{E}\left[(f^*(X) - Y)^2 \right]$$

$$= \mathbb{E}\left[(f(X) - f^*(X))^2 \right] + R(f^*).$$

Bias-variance decomposition

$$R(f) = \mathbb{E}\underbrace{\left[(f(X) - \mathbb{E}[Y|X])^2 \right]}_{\text{bias}^2} + \mathbb{E}\underbrace{\left[(\mathbb{E}[Y|X] - Y)^2 \right]}_{\text{variance}}$$

$$= \mathbb{E}\left[(f(X) - f^*(X))^2 \right] + \mathbb{E}\left[(f^*(X) - Y)^2 \right]$$

$$= \mathbb{E}\left[(f(X) - f^*(X))^2 \right] + R(f^*).$$

$$R(f) - R^* = \mathbb{E}\left[(f(X) - f^*(X))^2 \right].$$

Consider $X \in \mathbb{R}^p$, $Y \in \mathbb{R}$, and consider linear (affine) prediction rules

Consider $X \in \mathbb{R}^p$, $Y \in \mathbb{R}$, and consider linear (affine) prediction rules,

$$F_{lin} := \{x \mapsto x'\beta + \beta_0 : \beta \in \mathbb{R}^p, \beta_0 \in \mathbb{R}\}.$$

Consider $X \in \mathbb{R}^p$, $Y \in \mathbb{R}$, and consider linear (affine) prediction rules,

$$F_{lin} := \left\{ x \mapsto x'\beta + \beta_0 : \beta \in \mathbb{R}^p, \beta_0 \in \mathbb{R} \right\}.$$

Two ways to motivate least squares:

Consider $X \in \mathbb{R}^p$, $Y \in \mathbb{R}$, and consider linear (affine) prediction rules,

$$F_{lin} := \left\{ x \mapsto x'\beta + \beta_0 : \beta \in \mathbb{R}^p, \beta_0 \in \mathbb{R} \right\}.$$

Two ways to motivate least squares:

Onsider the class of linear prediction rules. Minimize empirical risk over the class of linear prediction rules.

Consider $X \in \mathbb{R}^p$, $Y \in \mathbb{R}$, and consider linear (affine) prediction rules,

$$F_{lin} := \left\{ x \mapsto x'\beta + \beta_0 : \beta \in \mathbb{R}^p, \beta_0 \in \mathbb{R} \right\}.$$

Two ways to motivate least squares:

- Onsider the class of linear prediction rules. Minimize empirical risk over the class of linear prediction rules.
- ② Model the process generating the Y_i s as a linear function of the X_i s, plus additive Gaussian noise.
 - Compute the maximum likelihood estimate for the linear coefficients.

Consider $X \in \mathbb{R}^p$, $Y \in \mathbb{R}$, and consider linear (affine) prediction rules,

$$F_{lin} := \left\{ x \mapsto x'\beta + \beta_0 : \beta \in \mathbb{R}^p, \beta_0 \in \mathbb{R} \right\}.$$

Two ways to motivate least squares:

- Consider the class of linear prediction rules. Minimize *empirical risk* over the class of linear prediction rules.
- ② Model the process generating the Y_i s as a linear function of the X_i s, plus additive Gaussian noise.

Compute the maximum likelihood estimate for the linear coefficients.

In both cases, we arrive at the *normal equations*: the choice of β corresponds to a projection on to a linear sub-space.

- Review: Decision theory.
- Empirical risk minimization.
 - Least squares.
 - Normal equations.
- Linear model with additive Gaussian noise.
 - Maximum likelihood is least squares.
 - Distributions of parameter estimates.

Risk and empirical risk

Risk is the expected squared error:

$$R(f) = \mathbb{E}\ell(f(X), Y) = \mathbb{E}(f(X) - Y)^{2}.$$

Risk and empirical risk

Risk is the expected squared error:

$$R(f) = \mathbb{E}\ell(f(X), Y) = \mathbb{E}(f(X) - Y)^{2}.$$

Empirical risk is the sample average of squared error:

Risk and empirical risk

Risk is the expected squared error:

$$R(f) = \mathbb{E}\ell(f(X), Y) = \mathbb{E}(f(X) - Y)^{2}.$$

Empirical risk is the sample average of squared error:

$$\hat{R}(f) = \hat{\mathbb{E}}_n \ell(f(X), Y) = \frac{1}{n} \sum_{i=1}^n (f(X_i) - Y_i)^2.$$

Risk and empirical risk

Risk is the expected squared error:

$$R(f) = \mathbb{E}\ell(f(X), Y) = \mathbb{E}(f(X) - Y)^{2}.$$

Empirical risk is the sample average of squared error:

$$\hat{R}(f) = \hat{\mathbb{E}}_n \ell(f(X), Y) = \frac{1}{n} \sum_{i=1}^n (f(X_i) - Y_i)^2.$$

Here, $\hat{\mathbb{E}}_n$ means expectation under the *empirical distribution*, which puts mass 1/n at each (X_i, Y_i) pair in the sample.

We want to choose a linear prediction rule $f \in F_{lin}$ to minimize risk.

We want to choose a linear prediction rule $f \in F_{lin}$ to minimize risk. One approach is to choose the linear prediction rule that minimizes empirical risk:

$$\hat{f} := \arg\min_{f \in F_{lin}} \hat{\mathbb{E}}_n \ell(f(X), Y)$$

We want to choose a linear prediction rule $f \in F_{lin}$ to minimize risk. One approach is to choose the linear prediction rule that minimizes empirical risk:

$$\hat{f} := \arg\min_{f \in F_{lin}} \hat{\mathbb{E}}_n \ell(f(X), Y)$$

$$= \arg\min_{f \in F_{lin}} \sum_{i=1}^n (f(X_i) - Y_i)^2.$$

FIGURE 3.1. Linear least squares fitting with $X \in \mathbb{R}^2$. We seek the linear function of X that minimizes the sum of squared residuals from Y.

Just as we did when we were considering linear classifiers, we'll simplify notation by bundling the offset term (β_0) into the parameter vector β and assuming that the covariates X_i include a constant 1 component.

Just as we did when we were considering linear classifiers, we'll simplify notation by bundling the offset term (β_0) into the parameter vector β and assuming that the covariates X_i include a constant 1 component.

Then $f \in F_{lin}$ is of the form $f(x) = x'\beta$.

We wish to find $\hat{f}: x \mapsto x'\hat{\beta}$

We wish to find $\hat{f}: x \mapsto x'\hat{\beta}$, where

$$\hat{\beta} = \arg\min_{eta \in \mathbb{R}^p} \sum_{i=1}^n (X_i' \beta - Y_i)^2$$

We wish to find $\hat{f}: x \mapsto x'\hat{\beta}$, where

$$\hat{\beta} = \arg\min_{\beta \in \mathbb{R}^p} \sum_{i=1}^n (X_i'\beta - Y_i)^2$$

$$= \arg\min_{\beta \in \mathbb{R}^p} ||X\beta - y||^2,$$
RSS

where the design matrix $X \in \mathbb{R}^{n \times p}$ and response vector $y \in \mathbb{R}^n$ are

$$X = \begin{pmatrix} X_1' \\ X_2' \\ \vdots \\ X_n' \end{pmatrix}, \qquad y = \begin{pmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{pmatrix}.$$

(Think of $n \gg p$, so X is tall.)

Defining

$$RSS(\beta) = \frac{1}{2} \|X\beta - y\|^2$$

Defining

$$RSS(\beta) = \frac{1}{2} \|X\beta - y\|^2$$
$$= \frac{1}{2} (X\beta - y)' (X\beta - y)$$

Defining

$$RSS(\beta) = \frac{1}{2} \|X\beta - y\|^2$$
$$= \frac{1}{2} (X\beta - y)' (X\beta - y)$$
$$= \frac{1}{2} \beta' X' X \beta - y' X \beta + \frac{1}{2} y' y,$$

Defining

$$RSS(\beta) = \frac{1}{2} \|X\beta - y\|^2$$
$$= \frac{1}{2} (X\beta - y)' (X\beta - y)$$
$$= \frac{1}{2} \beta' X' X \beta - y' X \beta + \frac{1}{2} y' y,$$

we can differentiate wrt β :

$$\nabla_{\beta} RSS(\beta) = X'X\beta - X'y, \qquad \nabla^{2}_{\beta} RSS(\beta) = X'X.$$

Defining

$$RSS(\beta) = \frac{1}{2} \|X\beta - y\|^2$$
$$= \frac{1}{2} (X\beta - y)' (X\beta - y)$$
$$= \frac{1}{2} \beta' X' X \beta - y' X \beta + \frac{1}{2} y' y,$$

we can differentiate wrt β :

$$\nabla_{\beta} RSS(\beta) = X'X\beta - X'y, \qquad \nabla^{2}_{\beta} RSS(\beta) = X'X.$$

Now, $X'X \succeq 0$

Defining

$$RSS(\beta) = \frac{1}{2} \|X\beta - y\|^2$$
$$= \frac{1}{2} (X\beta - y)' (X\beta - y)$$
$$= \frac{1}{2} \beta' X' X \beta - y' X \beta + \frac{1}{2} y' y,$$

we can differentiate wrt β :

$$\nabla_{\beta} RSS(\beta) = X'X\beta - X'y, \qquad \nabla^{2}_{\beta} RSS(\beta) = X'X.$$

Now, $X'X \succeq 0$, so setting $\nabla_{\beta}RSS(\beta) = 0$ gives a minimum of RSS

Defining

$$RSS(\beta) = \frac{1}{2} \|X\beta - y\|^2$$
$$= \frac{1}{2} (X\beta - y)' (X\beta - y)$$
$$= \frac{1}{2} \beta' X' X \beta - y' X \beta + \frac{1}{2} y' y,$$

we can differentiate wrt β :

$$\nabla_{\beta} RSS(\beta) = X'X\beta - X'y, \qquad \nabla^{2}_{\beta} RSS(\beta) = X'X.$$

Now, $X'X\succeq 0$, so setting $\nabla_{\beta}RSS(\beta)=0$ gives a minimum of RSS when

$$X'X\beta = X'y$$
.

Normal equations

$$X'X\beta=X'y.$$

Normal equations

$$X'X\beta = X'y$$
.

$$\hat{\beta} = (X'X)^{-1}X'y.$$

A projection viewpoint

We are aiming to find β to minimize $||y - X\beta||$.

A projection viewpoint

We are aiming to find β to minimize $||y - X\beta||$.

Writing

$$X=\begin{pmatrix}x_1&x_2&\cdots&x_p\end{pmatrix},$$

A projection viewpoint

We are aiming to find β to minimize $||y - X\beta||$.

Writing

$$X = \begin{pmatrix} x_1 & x_2 & \cdots & x_p \end{pmatrix},$$

we have

$$y - X\beta = y - \sum_{j=1}^{p} \beta_j x_j.$$

A projection viewpoint

We are aiming to find β to minimize $||y - X\beta||$.

Writing

$$X = \begin{pmatrix} x_1 & x_2 & \cdots & x_p \end{pmatrix},$$

we have

$$y - X\beta = y - \sum_{j=1}^{p} \beta_j x_j.$$

That is, we want to find a linear combination of the columns $x_j \in \mathbb{R}^n$ of X that minimizes Euclidean distance to $y \in \mathbb{R}^n$.

FIGURE 3.2. The N-dimensional geometry of least squares regression with two predictors. The outcome vector \mathbf{y} is orthogonally projected onto the hyperplane spanned by the input vectors \mathbf{x}_1 and \mathbf{x}_2 . The projection $\hat{\mathbf{y}}$ represents the vector of the least squares predictions

Projection Theorem

The optimal approximation \hat{y} in the space spanned by the columns x_j of X has an error $y - \hat{y}$ that is orthogonal to that column space.

Projection Theorem

The optimal approximation \hat{y} in the space spanned by the columns x_i of X has an error $y - \hat{y}$ that is orthogonal to that column space.

$$(y - \hat{y})'X = 0$$
 \Leftrightarrow $X'(y - X\beta) = 0$ \Leftrightarrow $X'y = X'X\beta$.

$$X'(y-X\beta)=0$$

$$\Leftrightarrow$$

$$X'y = X'X\beta.$$

Projection Theorem

The optimal approximation \hat{y} in the space spanned by the columns x_i of Xhas an error $y - \hat{y}$ that is orthogonal to that column space.

$$\zeta = 0$$
 \Leftrightarrow

$$(y-\hat{y})'X=0$$
 \Leftrightarrow $X'(y-X\beta)=0$ \Leftrightarrow $X'y=X'X\beta.$

$$\Leftrightarrow$$

$$X'y = X'X\beta.$$

Normal equations

$$X'X\beta = X'y$$
.

Projection Theorem

The optimal approximation \hat{y} in the space spanned by the columns x_i of X has an error $y - \hat{y}$ that is orthogonal to that column space. That is,

$$\Leftrightarrow$$

$$(y - \hat{y})'X = 0$$
 \Leftrightarrow $X'(y - X\beta) = 0$ \Leftrightarrow $X'y = X'X\beta$.

$$\Leftrightarrow$$

$$X'y=X'X\beta.$$

Normal equations

$$X'X\beta = X'y$$
.

$$\hat{\beta} = (X'X)^{-1}X'y.$$

Risk versus empirical risk

$$R(f) = \mathbb{E}\ell(f(X), Y) = \mathbb{E}(f(X) - Y)^{2},$$

Risk versus empirical risk

$$R(f) = \mathbb{E}\ell(f(X), Y) = \mathbb{E}(f(X) - Y)^{2},$$

$$\hat{R}(f) = \hat{\mathbb{E}}_n \ell(f(X), Y) = \frac{1}{n} \sum_{i=1}^n (f(X_i) - Y_i)^2.$$

Risk versus empirical risk

$$R(f) = \mathbb{E}\ell(f(X), Y) = \mathbb{E}(f(X) - Y)^{2},$$

$$\hat{R}(f) = \hat{\mathbb{E}}_{n}\ell(f(X), Y) = \frac{1}{n} \sum_{i=1}^{n} (f(X_{i}) - Y_{i})^{2}.$$

When is the risk of the empirical risk minimizer \hat{f} close to the minimal risk?

Risk versus empirical risk

$$R(f) = \mathbb{E}\ell(f(X), Y) = \mathbb{E}(f(X) - Y)^{2},$$

$$\hat{R}(f) = \hat{\mathbb{E}}_{n}\ell(f(X), Y) = \frac{1}{n}\sum_{i=1}^{n}(f(X_{i}) - Y_{i})^{2}.$$

When is the risk of the empirical risk minimizer \hat{f} close to the minimal risk?

Risk versus empirical risk

$$R(f) = \mathbb{E}\ell(f(X), Y) = \mathbb{E}(f(X) - Y)^{2},$$

$$\hat{R}(f) = \hat{\mathbb{E}}_{n}\ell(f(X), Y) = \frac{1}{n} \sum_{i=1}^{n} (f(X_{i}) - Y_{i})^{2}.$$

When is the risk of the empirical risk minimizer \hat{f} close to the minimal risk?

It suffices if

the X come from a compact set,

Risk versus empirical risk

$$R(f) = \mathbb{E}\ell(f(X), Y) = \mathbb{E}(f(X) - Y)^{2},$$

$$\hat{R}(f) = \hat{\mathbb{E}}_{n}\ell(f(X), Y) = \frac{1}{n}\sum_{i=1}^{n}(f(X_{i}) - Y_{i})^{2}.$$

When is the risk of the empirical risk minimizer \hat{f} close to the minimal risk?

- the X come from a compact set,
- ② the Y_i s have tails that are not too heavy (e.g., sub-Gaussian),

Risk versus empirical risk

$$R(f) = \mathbb{E}\ell(f(X), Y) = \mathbb{E}(f(X) - Y)^{2},$$

$$\hat{R}(f) = \hat{\mathbb{E}}_{n}\ell(f(X), Y) = \frac{1}{n} \sum_{i=1}^{n} (f(X_{i}) - Y_{i})^{2}.$$

When is the risk of the empirical risk minimizer \hat{f} close to the minimal risk?

- 1 the X come from a compact set,
- ② the Y_i s have tails that are not too heavy (e.g., sub-Gaussian),
- $||\hat{\theta}||$ is not too large, and

Risk versus empirical risk

$$R(f) = \mathbb{E}\ell(f(X), Y) = \mathbb{E}(f(X) - Y)^{2},$$

$$\hat{R}(f) = \hat{\mathbb{E}}_{n}\ell(f(X), Y) = \frac{1}{n} \sum_{i=1}^{n} (f(X_{i}) - Y_{i})^{2}.$$

When is the risk of the empirical risk minimizer \hat{f} close to the minimal risk?

- the X come from a compact set,
- ② the Y_i s have tails that are not too heavy (e.g., sub-Gaussian),
- $0 n \gg p$.

Outline

- Review: Decision theory.
- Empirical risk minimization.
 - Least squares.
 - Normal equations.
- Linear model with additive Gaussian noise.
 - Maximum likelihood is least squares.
 - Distributions of parameter estimates.

Linear model

Linear model

Model the conditional distribution of Y given X = x as

$$P(Y|X=x) = \mathcal{N}(x'\beta, \sigma^2).$$

Linear model

Model the conditional distribution of Y given X = x as

$$P(Y|X=x) = \mathcal{N}(x'\beta, \sigma^2).$$

Equivalently: $Y = x'\beta + \epsilon$, where $\epsilon \sim \mathcal{N}(0, \sigma^2)$.

Linear model

Model the conditional distribution of Y given X = x as

$$P(Y|X = x) = \mathcal{N}(x'\beta, \sigma^2).$$

Equivalently: $Y = x'\beta + \epsilon$, where $\epsilon \sim \mathcal{N}(0, \sigma^2)$.

How to estimate β ?

How to estimate β ?

```
Maximum likelihood
```

How to estimate β ?

Maximum likelihood

Conditional likelihood:

$$L(\beta) = \prod_{i=1}^{n} p(Y_i|X_i,\beta) = \frac{1}{(2\pi\sigma^2)^{n/2}} \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^{n} (y_i - X_i'\beta)^2\right).$$

How to estimate β ?

Maximum likelihood

Conditional likelihood:

$$L(\beta) = \prod_{i=1}^{n} p(Y_i|X_i,\beta) = \frac{1}{(2\pi\sigma^2)^{n/2}} \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^{n} (y_i - X_i'\beta)^2\right).$$

Log likelihood:

$$\ell(\beta) = (\text{function of } \sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - X_i'\beta)^2.$$

How to estimate β ?

Maximum likelihood

Conditional likelihood:

$$L(\beta) = \prod_{i=1}^{n} p(Y_i|X_i, \beta) = \frac{1}{(2\pi\sigma^2)^{n/2}} \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^{n} (y_i - X_i'\beta)^2\right).$$

Log likelihood:

$$\ell(\beta) = (\text{function of } \sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - X_i'\beta)^2.$$

Maximum likelihood is least squares.

Bias and variance of \hat{eta}

Fix X.

Bias and variance of $\hat{\beta}$

Fix X. Provided $\mathbb{E}y = X\beta$ and $Cov(y) = \sigma^2 I$,

Fix X. Provided
$$\mathbb{E}y = X\beta$$
 and $Cov(y) = \sigma^2 I$,

$$\mathbb{E}\hat{\beta}$$

Fix X. Provided
$$\mathbb{E}y = X\beta$$
 and $Cov(y) = \sigma^2 I$,

$$\mathbb{E}\hat{\beta} = \mathbb{E}\left[(X'X)^{-1}X'y \right]$$

Fix X. Provided
$$\mathbb{E}y = X\beta$$
 and $Cov(y) = \sigma^2 I$,

$$\mathbb{E}\hat{\beta} = \mathbb{E}\left[(X'X)^{-1}X'y \right]$$
$$= (X'X)^{-1}X'\mathbb{E}y$$

Fix X. Provided
$$\mathbb{E}y = X\beta$$
 and $Cov(y) = \sigma^2 I$,

$$\mathbb{E}\hat{\beta} = \mathbb{E}\left[(X'X)^{-1}X'y \right]$$
$$= (X'X)^{-1}X'\mathbb{E}y$$
$$= (X'X)^{-1}X'X\beta$$

Fix X. Provided
$$\mathbb{E}y = X\beta$$
 and $Cov(y) = \sigma^2 I$,

$$\mathbb{E}\hat{\beta} = \mathbb{E}\left[(X'X)^{-1}X'y \right]$$
$$= (X'X)^{-1}X'\mathbb{E}y$$
$$= (X'X)^{-1}X'X\beta$$
$$= \beta.$$

Bias and variance of $\hat{\beta}$

Fix X. Provided
$$\mathbb{E}y = X\beta$$
 and $Cov(y) = \sigma^2 I$,

$$\mathbb{E}\hat{\beta} = \mathbb{E}\left[(X'X)^{-1}X'y \right]$$
$$= (X'X)^{-1}X'\mathbb{E}y$$
$$= (X'X)^{-1}X'X\beta$$
$$= \beta.$$

 $Cov(\hat{\beta})$

Fix X. Provided
$$\mathbb{E}y = X\beta$$
 and $Cov(y) = \sigma^2 I$,

$$\mathbb{E}\hat{\beta} = \mathbb{E}\left[(X'X)^{-1}X'y \right]$$

$$= (X'X)^{-1}X'\mathbb{E}y$$

$$= (X'X)^{-1}X'X\beta$$

$$= \beta.$$

$$\operatorname{Cov}(\hat{\beta}) = \mathbb{E}\left[(\hat{\beta} - \beta)(\hat{\beta} - \beta)' \right]$$

Fix X. Provided
$$\mathbb{E}y = X\beta$$
 and $Cov(y) = \sigma^2 I$,

$$\mathbb{E}\hat{\beta} = \mathbb{E}\left[(X'X)^{-1}X'y \right]$$

$$= (X'X)^{-1}X'\mathbb{E}y$$

$$= (X'X)^{-1}X'X\beta$$

$$= \beta.$$

$$\operatorname{Cov}(\hat{\beta}) = \mathbb{E}\left[(\hat{\beta} - \beta)(\hat{\beta} - \beta)' \right]$$

$$= \mathbb{E}\left[((X'X)^{-1}X'y - \beta) ((X'X)^{-1}X'y - \beta)' \right]$$

Fix X. Provided
$$\mathbb{E}y = X\beta$$
 and $Cov(y) = \sigma^2 I$,

$$\mathbb{E}\hat{\beta} = \mathbb{E}\left[(X'X)^{-1}X'y \right]$$

$$= (X'X)^{-1}X'\mathbb{E}y$$

$$= (X'X)^{-1}X'X\beta$$

$$= \beta.$$

$$\operatorname{Cov}(\hat{\beta}) = \mathbb{E}\left[(\hat{\beta} - \beta)(\hat{\beta} - \beta)' \right]$$

$$= \mathbb{E}\left[((X'X)^{-1}X'y - \beta) ((X'X)^{-1}X'y - \beta)' \right]$$

$$\vdots$$

$$= \sigma^{2}(X'X)^{-1}.$$

Statistical tests

If the data is generated by a linear model with $\mathcal{N}(0,\sigma^2)$ noise,

Statistical tests

If the data is generated by a linear model with $\mathcal{N}(0, \sigma^2)$ noise, then:

Statistical tests

If the data is generated by a linear model with $\mathcal{N}(0, \sigma^2)$ noise, then:

• We can compute distributions of parameter estimates:

$$\hat{\beta} \sim \mathcal{N}(\beta, (X'X)^{-1}\sigma^2)$$

Statistical tests

If the data is generated by a linear model with $\mathcal{N}(0, \sigma^2)$ noise, then:

• We can compute distributions of parameter estimates:

$$\hat{\beta} \sim \mathcal{N}(\beta, (X'X)^{-1}\sigma^2)$$

• We can calculate approximate confidence sets for the parameters: the standardized coefficient is

$$z_j = \frac{\hat{\beta}_j}{\sigma \sqrt{\mathsf{v}_j}},$$

which is normal (here, v_i is the jth diagonal entry of $(X'X)^{-1}$).

Statistical tests

If the data is generated by a linear model with $\mathcal{N}(0, \sigma^2)$ noise, then:

We can compute distributions of parameter estimates:

$$\hat{\beta} \sim \mathcal{N}(\beta, (X'X)^{-1}\sigma^2)$$

 We can calculate approximate confidence sets for the parameters: the standardized coefficient is

$$z_j = \frac{\hat{\beta}_j}{\sigma \sqrt{\mathbf{v}_j}},$$

which is normal (here, v_j is the *j*th diagonal entry of $(X'X)^{-1}$).

• In particular, we can design tests for non-zero values of parameters.

Statistical tests

If the data is generated by a linear model with $\mathcal{N}(0, \sigma^2)$ noise, then:

We can compute distributions of parameter estimates:

$$\hat{\beta} \sim \mathcal{N}(\beta, (X'X)^{-1}\sigma^2)$$

• We can calculate approximate confidence sets for the parameters: the standardized coefficient is

$$z_j = \frac{\hat{\beta}_j}{\sigma \sqrt{\mathsf{v}_j}},$$

which is normal (here, v_j is the jth diagonal entry of $(X'X)^{-1}$).

• In particular, we can design tests for non-zero values of parameters.

Outline

- Review: Decision theory.
- Empirical risk minimization.
 - Least squares.
 - Normal equations.
- Linear model with additive Gaussian noise.
 - Maximum likelihood is least squares.
 - Distributions of parameter estimates.