REPUBLIQUE ISLAMIQUE DE MAURITANIE
MINISTERE DE L'EDUCATION NATIONALE
DIRECTION DE L'ENSEIGNEMENT SECONDAIRE
SERVICE DES EXAMENS

BACCALAUREAT 2002

Honneur - Fraternité - Justice

Séries: C & TMGM Sujet: Mathématiques Durée: 4 heures Coefficients: 9 & 6

### Exercice1 (4points)

On considère le cube **ABCDEFGH** de centre **O** et d'arête a; (a > 0) (ne pas refaire la figure).

 Montrer que les triangles BED et CHF sont équilatéraux. (1pt)

 Soient I et J les centres de gravités respectifs des triangles BED et CHF.

a)Prouver que:

$$\overrightarrow{AI} = \frac{1}{3} \overrightarrow{AG} \text{ et } \overrightarrow{GJ} = \frac{1}{3} \overrightarrow{GA}$$
. (0,5pt)

b) En déduire que:  $\overrightarrow{AI} = \overrightarrow{IJ} = \overrightarrow{JG}$  et que O est le milieu de  $\overrightarrow{IJ}$ . (0,5pt)



- 3. Soit  $s_1$  la réflexion de plan (BAG) et soit  $s_2$  la réflexion de plan (DAG); on pose  $f = s_1 o s_2$ .
- a) Montrer que f est une rotation puis déterminer f(G) et f(A), que peut-on en déduire? (1pt)
- b) Montrer que la droite (AG) est perpendiculaire aux deux plans (BED) et (CHF). (0,25pt)
- c) Montrer que f laisse globalement invariant les triangles BED et CHF. (0, 5pt)
- d) En déduire l'angle de f par rapport à un axe orienté dont-on donnera le sens. (0,25pt)

# Exercice2 (5points)

On considère un triangle ABC direct, rectangle et isocèle en A et soit  $\Sigma$  et  $\Gamma$  deux cercles passant par A et de centres respectifs B et C. Soit G le deuxième point d'intersection de  $\Sigma$  et  $\Gamma$  et soit D le point de  $\Sigma$  diamétralement opposé à A.

- a) Faire une figure illustrant les données précédantes à compléter au fur et à mesure (On prend pour la construction AB = 4cm).

  (1pt)
- b) Prouver l'existence d'une unique rotation r qui transforme A en Det C en B, donner ses éléments caractéristiques. (1pt)
- 2. Pour tout point M de  $\Gamma$ , distinct de G on pose r(M) = M'; la droite (GM) coupe  $\Sigma$  en N'et la droite (GM') coupe  $\Gamma$  en N.
  - a) Construire les deux points Ret S tels que les deux quadrilatères M'GMR et N'GNS soient des carrés, puis déterminer les éléments caractéristiques de la similitude directe s qui transforme M en Ret N en S. (0,75pt)
  - b) Prouver que la droite (RS) passe par un point fixe lorsque M décrit Γ privé de G. (0.25pt)
- 3. Soit s' la similitude directe qui transforme D en B et B en C; et soit I son centre.
  - a) Déterminer l'angle et le rapport de s' . (1pt)
  - b) Démontrer que (ID, IB) = (GD, GB)  $\pi$  (1) et (ID, IC) = (AD, AC)  $\pi$  (2) (0.5pt)
- c) Déduire de (1) et de (2) la position du point I centre de s'puis déterminer la nature du quadrilatère ACID. (0,25pt)
- On posef = sos'; montrer quef est une homothétie et déterminer son rapport et son centre. (0,25pt)

Baccalauréat 2002 Session Normale Epreuve de Maths Séries Mathématiques & Techniques 1/2

### Problème (11points)

### N.B: La partie C de ce problème peut être traitée avant la partie B.

# Partie A

On considère la fonction numérique f définie par:

$$\begin{cases} f(x) = \frac{1}{\ln x}; & x \in ]0; 1[\cup]t; +\infty[\\ f(0) = 0 \end{cases}$$

Soit  $C_0$  sa courbe représentative dans un repère orthonormé  $(O; \hat{i}, \hat{j})$ , (Unité 1cm).

- 1. Etudier la continuité et la dérivabilité de  $\mathbf{f}$  au point d'abscisse  $\mathbf{x}_0 = \mathbf{0}$ . (1pt)
- 2. Dresser le tableau de variation de f . (1,5pt)
- 3. Démontrer que C<sub>a</sub> admet un point d'inflexion dont on donnera les coordonnées. (0,75pt)
- 4. Construire C<sub>0</sub> dans le repère (O; i, j). (0,75pt)

# Partie B

Soit  $\mathbf{f}_n$  de la fonction définie sur  $\mathbf{IR}^*$ ,  $\left\{ \mathbf{e}^n \right\}$  par:  $\mathbf{f}_n(\mathbf{x}) = \frac{\mathbf{e}^n}{-\mathbf{n} + \ln \mathbf{x}}$  où  $\mathbf{n}$  est un entier naturel et soit  $\mathbf{C}_n$  sa courbe représentative dans le repère orthonormé  $(\mathbf{O}; \hat{\mathbf{i}}, \hat{\mathbf{j}})$ .

- Démontrer que C<sub>n</sub> est l'image de C<sub>0</sub> par une homothétie h<sub>n</sub> de centre O dont on donnera le rapport. (0,5pt)
- 2. Dresser le tableau de variation de f<sub>n</sub>. (On pourra le déduire de celui de f). (0,5pt)
- 3. Démontrer que la courbe C<sub>n+1</sub> de f<sub>n+1</sub> est l'image de C<sub>n</sub> par h<sub>1</sub>. (0,5pt)
- 4. a) Démontrer que les deux courbes  $C_n$  et  $C_{n+1}$  se coupent en un point  $M_n$  d'abscisse  $x_n = e^{n-\frac{1}{e-1}}$  (0,5pt)
- b) Démontrer que les points M<sub>n</sub> appartiennent à une droite fixe passant par O. (0,25pt)
  - c) Construire, dans un même repère, une allure de C<sub>n</sub> et C<sub>n+t</sub>, en déduire la position relative de ces deux courbes ( à résumer dans un tableau).
     (0,75pt)
- 5. Soit gla fonction définie sur  $IR^*_+ \setminus \{e\}$  par:  $g(x) = \frac{e}{-1 + \ln x}$ . Comment déduire de  $C_0$  une construction de la courbe  $\Gamma$  représentative de g (sans étudier g)? Construire  $C_0$  et  $\Gamma$  dans un nouveau repère. (0,5pt)

#### Partie C

Soit F la fonction numérique définie par:

$$\begin{cases} F(x) = \int_{x}^{x-1} f(t)dt; & x > 1 \\ F(1) = 0 \end{cases}$$

où f est la fonction définie à la partie A (le calcul de l'intégrale F(x) n'est pas demandé).

1. Montrer que pour tout x > 1 on a:  $e^{x-1} \ge x$  puis justifier l'existence de F(x) pour tout  $x \ge 1$ . (1pt)

2.a) Montrer que pour tout 
$$x > 1$$
 on a:  $\frac{e^{x-1} - x}{x-1} \le F(x) \le \frac{e^{x-1} - x}{\ln x}$  (\*). (0,5pt)

- b) En déduire que  $\mathbf{F}$  est continue au point d'abscisse  $\mathbf{x}_1 = 1$ . (0,5pt)
- 3. Soit G la restriction de F sur [2; +∞].
  - a) Calculer G'(x) et G''(x) puis montrer que  $\forall x \ge 2$ ; G'(x) > 0. (0,5pt)
  - b) Calculer  $\lim_{x \to +\infty} G(x)$  et  $\lim_{x \to +\infty} \frac{G(x)}{x}$  (on pourra utiliser l'inégalité (\*)). (0,5pt)
- c) Dresser le tableau de variation de G puis construire une allure de sa courbe représentative dans un nouveau repère orthonormé.
   (0,5pt)

Fin.

Baccalauréat 2002 Session Normale Epreuve de Maths Séries Mathématiques & Techniques 2/2