Clifford theory (in ten minutes)

February 29, 2008

(See appendix A of [RR] for full details.)

Let A be an algebra, G a group acting on A by automorphisms. Then

$$A \rtimes G = \left\{ \sum_{g} a_g g \mid a_g \in A \right\}$$

with product $(a_q g)(a_h h) = a_q(a_h)^h gh$. Define $A^G = \{a \in A \mid g(a) = a, \forall g \in G\}$. Then

$$A \rtimes G \supset A \rtimes 1 = A \supset A^G$$
.

Suppose that the representation theory of A and G are known. Then the game is to find the representation theory of $A \rtimes G$ and A^G .

Let M be a simple $A \rtimes G$ module. Then

$$\operatorname{Res}_{A}^{A \rtimes G} M = \sum_{\lambda \in \tilde{A}} A^{\lambda} \otimes L^{\lambda},$$

where A^{λ} is an irrep of A. Let A^{λ} be a simple submodule in M. Then

$$\sum_{g \in G} gA^{\lambda} \subset M$$

is an $A \rtimes G$ submodule of M. SInce M is simple, $\sum_{g \in G} g A^{\lambda} = M$ so

$$\operatorname{Ind}_A^{A \rtimes G}(A^{\lambda}) = M.$$

It happens that $\operatorname{Ind}_A^{A\rtimes G}(A^\lambda)$ is sometimes isomorphic to $\operatorname{Ind}_A^{A\rtimes G}(A^\mu)$. When is this true? If $g\in G$, then

$$q:A\to A$$
.

So $g^*: A$ modules $\to A$ modules by $M \mapsto g^*(M)$ (so G acts on the set of A modules, and permutes the simples). Need to check that $gA^{\lambda} \cong g^*(A^{\lambda})$. The *inertia group* of A^{λ} is

$$H = \{ g \in G \mid g^*(A^\lambda) \cong A^\lambda \}$$

So in fact A^{λ} is an $A \rtimes_{\theta} H$ -module (where the product in $A \rtimes_{\theta} H$ is $(a_1h_1)(a_2h_2) = a_1h_1(a_2)\theta(h_1,h_2)h_1h_2$, where $\theta: H \times H \to A$).

Theorem 0.1. Then $M \cong \operatorname{Ind}_{A\rtimes_{\theta}H}^{A\rtimes G}(A^{\lambda})$ and these are the simple $A\rtimes G$ -modules.

Example 1 Let N be a normal subgroup of G. Then G acts by conjugation on $\mathbb{C}N$ (and $\mathbb{C}G \cong \mathbb{C}N \rtimes_{\theta} G/N$).

Example 2 $G_{r,1,n}$ is the *imprimitive complex reflection group*. Then

$$G_{r,1,n} = S_n \ltimes (\mathbb{Z}/r\mathbb{Z})^n$$
.

where S_n is acting on $(\mathbb{Z}/r\mathbb{Z})^n$ by place permutations. Somtimes this is called the wreath product of S_n and $\mathbb{Z}/r\mathbb{Z}$. Examples: $G_{2,1,n} = WB_n$, signed permutation matrices, and $G_{2,2,n} = WD_n$, signed permutation matrices with even number of signs.

$$1 \to G_{r,p,n} \to G_{r,1,n} \to \mathbb{Z}/p\mathbb{Z} \to 1$$

where $G_{r,p,n}$ is also complex refl groups.

Other examples include $H_r, 1, n$ is the Hecke alg of $G_{r,1,n}, H_r, p, n$ is the Hecke alg of $G_{r,p,n}$, and $H_r, p, n = (H_r, 1, n)^{\mathbb{Z}/p\mathbb{Z}}$.

References

[RR] A. Ram and J. Ramagge, Affine Hecke algebras, cyclotomic Hecke algebras and Clifford theory, in A tribute to C.S. Seshadri: Perspectives in Geometry and Representation theory, V. Lakshimibai et al eds., Hindustan Book Agency, New Delhi (2003), 428–466, http://www.math.wisc.edu/~ram/pub/2003Seshadrip428.pdf