

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

MATHEMATISCHES INSTITUT



Dr. Ralf Gerkmann

Wintersemester 2018/19 14.02.2019

# Zahlentheorie

(Lehramt Gymnasium)

## Klausur

| Nachname:    | <br>Vorname:                |
|--------------|-----------------------------|
| Matrikelnr.: |                             |
| Studiengang: | Lehramt Gymnasium           |
|              | Master Wirtschaftspädagogik |

Ihr Klausurergebnis können Sie auf der Vorlesungshomepage mit Hilfe eines Benutzernamens, eines Passworts und einer vierstelligen Identifikationsnummer abrufen, die Ihnen persönlich zugeordnet ist. Sie erhalten diese Daten während der Klausur.

| Aufgabe | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | $\sum$ |
|---------|---|---|---|---|---|---|---|---|--------|
| Punkte  |   |   |   |   |   |   |   |   |        |

#### Hinweise:

- (a) Bitte überprüfen Sie, ob Sie neun Blätter (Deckblatt + 8 Aufgaben) erhalten haben.
- (b) Für die Klausur sind keine Hilfsmittel (z.B. Skripten, handschriftliche Notizen, Taschenrechner) zugelassen.
- (c) Schreiben Sie keine Lösungen zu unterschiedlichen Aufgaben auf dasselbe Blatt.
- (d) Füllen Sie das Deckblatt bitte in BLOCKSCHRIFT aus. Schreiben Sie auf jedes Blatt Ihren Vor- und Nachnamen.
- (e) Bitte denken Sie daran, jeden Schritt Ihrer Lösung zu begründen und explizit darauf hinzuweisen, wenn Sie Ergebnisse aus der Vorlesung verwenden. Die Verwendung von Ergebnissen aus Übungsaufgaben ist **nicht** zulässig.
- (f) Bitte achten Sie darauf, dass Sie zu jeder Aufgabe nur eine Lösung abgeben; streichen Sie deutlich durch, was nicht gewertet werden soll.
- (g) Bei Bedarf kann zusätzliches Schreibpapier angefordert werden. Bitte verwenden Sie keine eigenen Blätter.

Bearbeitungszeit: 120 Minuten

### Aufgabe 1. (3+2+2+3) Punkte

Wir betrachten den Ring  $R = \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$  mit der komponentenweisen Addition und Multiplikation.

- (a) Ist R ein Körper? Ist R ein Integritätsbereich? Bitte begründen Sie Ihre Antworten.
- (b) Geben Sie alle Einheiten von R an (ohne Nachweis).
- (c) Geben Sie einen Teilring  $S \subseteq R$  von R an. Auch hier ist kein Nachweis erforderlich.
- (d) Zeigen Sie, dass die Abbildung  $\phi: R \to R$ ,  $(\bar{a}, \bar{b}) \mapsto (\bar{b}, \bar{a})$  ein Ringautomorphismus ist.

Lösung:

- zu (a) Das Element  $(\bar{1}, \bar{0})$  ist ein von Null verschiedener Nullteiler in R, denn es gilt  $(\bar{0}, \bar{1}) \cdot (\bar{1}, \bar{0}) = (\bar{0} \cdot \bar{1}, \bar{1} \cdot \bar{0}) = (\bar{0}, \bar{0}) = 0_R$  und  $(\bar{0}, \bar{1}) \neq 0_R$ . Dies zeigt, dass R kein Integritätsbereich ist. Erst recht ist R kein Körper (da laut Vorlesung alle Körper auch Integritätsbereiche sind).
- zu (b) Die einzige Einheit in R ist das Element  $1_R = (\bar{1}, \bar{1})$ . (Wie man leicht überprüft, sind die anderen drei Elemente  $(\bar{0}, \bar{0})$ ,  $(\bar{1}, \bar{0})$  und  $(\bar{0}, \bar{1})$  Nullteiler in R, und laut Vorlesung kann ein Ringelement nicht zugleich Einheit und Nullteiler sein. Das Einselement ist dagegen in jedem Ring eine Einheit.)
- zu (c)  $S = \{(\bar{0}, \bar{0}), (\bar{1}, \bar{1})\}$ . (Jeder Teilring von R muss zumindest  $1_R$  und auf Grund der Abgeschlossenheit unter Subtraktion auch  $1_R 1_R = 0_R$  enthalten.)
- zu (d) Um zu zeigen, dass  $\phi$  ein Endomorphismus von R ist, müssen wir  $\phi(1_R)=1_R$  sowie  $\phi(\alpha+\beta)=\phi(\alpha)+\phi(\beta)$  und  $\phi(\alpha\beta)=\phi(\alpha)\phi(\beta)$  für alle  $\alpha,\beta\in R$  überprüfen. Nach Definition von  $\phi$  gilt  $\phi(1_R)=\phi((\bar{1},\bar{1}))=(\bar{1},\bar{1})=1_R$ . Seien nun  $\alpha,\beta\in R$  vorgegeben,  $\alpha=(\bar{a},\bar{b}),\,\beta=(\bar{c},\bar{d})$  mit  $\bar{a},\bar{b},\bar{c},\bar{d}\in\mathbb{Z}/2\mathbb{Z}$ . Dann gilt

$$\begin{array}{lll} \phi(\alpha+\beta) & = & \phi((\bar{a},\bar{b})+(\bar{c},\bar{d})) & = & \phi(\bar{a}+\bar{c},\bar{b}+\bar{d}) & = & (\bar{b}+\bar{d},\bar{a}+\bar{c}) \\ \\ & = & (\bar{b},\bar{a})+(\bar{d},\bar{c}) & = & \phi((\bar{a},\bar{b}))+\phi((\bar{c},\bar{d})) & = & \phi(\alpha)+\phi(\beta) \end{array}$$

und

$$\phi(\alpha\beta) = \phi((\bar{a}, \bar{b}) \cdot (\bar{c}, \bar{d})) = \phi(\bar{a}\bar{c}, \bar{b}\bar{d}) = (\bar{b}\bar{d}, \bar{a}\bar{c})$$

$$= (\bar{b}, \bar{a}) \cdot (\bar{d}, \bar{c}) = \phi((\bar{a}, \bar{b})) \cdot \phi((\bar{c}, \bar{d})) = \phi(\alpha)\phi(\beta).$$

Für jedes  $\alpha \in R$ ,  $\alpha = (\bar{a}, \bar{b})$  mit  $\bar{a}, \bar{b} \in \mathbb{Z}$  gilt auch

$$(\phi \circ \phi)((\bar{a}, \bar{b})) = \phi(\phi(\bar{a}, \bar{b})) = \phi(\bar{b}, \bar{a}) = (\bar{a}, \bar{b}) = \mathrm{id}_{B}(\bar{a}, \bar{b})$$

und somit  $\phi \circ \phi = \mathrm{id}_R$ . Dies zeigt, dass die Abbildung  $\phi$  mit ihrer eigenen Umkehrabbildung übereinstimmt. Also ist  $\phi$  auch bijektiv, insgesamt ein Automorphismus von R.

## Aufgabe 2. (6+4 Punkte)

(a) Zeigen Sie, dass die Teilmenge  $R \subseteq \mathbb{R}$  gegeben durch

$$R = \left\{ \frac{a}{6^n} \mid a \in \mathbb{Z}, n \in \mathbb{N}_0 \right\}$$

ein Teilring von  $\mathbb{R}$  ist.

(b) Beweisen Sie die Gleichung  $R = \mathbb{Z}[\frac{1}{2}, \frac{1}{3}].$ 

 $L\ddot{o}sung$ :

zu (a) Zunächst gilt  $1 \in R$ , denn setzen wir a = 1 und n = 0, dann gilt  $a \in \mathbb{Z}$ ,  $n \in \mathbb{N}_0$  und  $1 = \frac{a}{6^n}$ . Seien nun  $\alpha, \beta \in R$  vorgegeben. Zu zeigen ist  $\alpha - \beta \in R$  und  $\alpha\beta \in R$ . Wegen  $\alpha, \beta \in R$  gibt es  $a, b \in \mathbb{Z}$  und  $m, n \in \mathbb{N}_0$  mit  $\alpha = \frac{a}{6^m}$  und  $\beta = \frac{b}{6^n}$ . Dann liegt das Element

$$\alpha + \beta = \frac{a}{6^m} + \frac{b}{6^n} = \frac{6^n a + 6^m b}{6^{m+n}}$$

in R we gen  $6^na+6^mb\in\mathbb{Z}$  und  $m+n\in\mathbb{N}_0$ . Ebenso gilt  $\alpha\beta=\frac{a}{6^m}\cdot\frac{b}{6^n}=\frac{ab}{6^{m+n}}\in R$  we gen  $ab\in\mathbb{Z}$  und  $m+n\in\mathbb{N}_0$ .

zu (b) (Zu überprüfen sind die charakteristischen Eigenschaften des Rings  $\mathbb{Z}[\frac{1}{2}, \frac{1}{3}]$ , wie sie in Satz (3.4) der Vorlesung angegeben sind.) Aus Teil (a) wissen wir bereits, dass R ein Teilring von  $\mathbb{R}$  ist. Wir überprüfen nun  $\mathbb{Z} \cup \{\frac{1}{2}, \frac{1}{3}\} \subseteq \mathbb{R}$ . Für jedes  $a \in \mathbb{Z}$  gilt  $a = \frac{a}{6^0} \in R$  (nach Definition von R, wegen  $a \in \mathbb{Z}$  und  $0 \in \mathbb{N}_0$ ). Außerdem gilt  $\frac{1}{2} = \frac{3}{6^1} \in R$  und  $\frac{1}{3} = \frac{2}{6^1} \in R$ .

Sei nun S ein weiterer Teilring von  $\mathbb{R}$  mit  $S \supseteq \mathbb{Z} \cup \{\frac{1}{2}, \frac{1}{3}\}$ . Zu zeigen ist  $S \supseteq R$ . Sei dazu  $\alpha \in R$  vorgegeben,  $\alpha = \frac{a}{6^n}$  mit  $a \in \mathbb{Z}$  und  $n \in \mathbb{N}_0$ . Wegen  $\mathbb{Z} \subseteq S$  gilt  $a \in S$ . Mit  $\frac{1}{2}$  und  $\frac{1}{3}$  ist auch  $\frac{1}{2} \cdot \frac{1}{3} = \frac{1}{6}$  in S enthalten, auf Grund der Abgeschlossenheit von S unter Multiplikation. Damit liegen auch  $(\frac{1}{6})^n = \frac{1}{6^n}$  und  $a \cdot \frac{1}{6^n} = \frac{a}{6^n} = \alpha$  im Teilring S von  $\mathbb{R}$ .

## Aufgabe 3. (6+4 Punkte)

(a) Bestimmen Sie mit dem Euklidischen Algorithmus  $x, y \in \mathbb{Z}$ , so dass 64x + 137y = 1 gilt.

(b) Begründen Sie, dass  $\overline{64}$  im Restklassenring  $\mathbb{Z}/137\mathbb{Z}$  eine Einheit ist, und bestimmen Sie ein  $a \in \mathbb{Z}$  mit  $\overline{64}^{-2} = \bar{a}$ .

(Hierbei bezeichnet  $\bar{c}$  für jedes  $c \in \mathbb{Z}$  jeweils das Bild von c unter dem kanonischen Epimorphismus  $\mathbb{Z} \to \mathbb{Z}/137\mathbb{Z}$ ,  $c \mapsto c + 137\mathbb{Z}$ .)

 $L\ddot{o}sung:$ 

zu (a) Durch Anwendung des Euklidischen Algorithmus erhalten wir die Tabelle

| q | $a_n$ | $x_n$ | $y_n$ |
|---|-------|-------|-------|
| _ | 137   | 1     | 0     |
| _ | 64    | 0     | 1     |
| 2 | 9     | 1     | -2    |
| 7 | 1     | -7    | 15    |
| 9 | 0     | _     | _     |

Es gilt also ggT(137,64) = 1, und die Gleichung 64x + 137y = 1 wird durch x = 15 und y = -7 gelöst.

zu (b) Nach Teil (a) gilt  $64 \cdot 15 + 137 \cdot (-7) = 1$ , im Restklassenring  $\mathbb{Z}/137\mathbb{Z}$  also  $\overline{64} \cdot \overline{15} + \overline{137} \cdot \overline{-7} = \overline{1}$ . Wegen  $\overline{137} = \overline{0}$  folgt  $\overline{64} \cdot \overline{15} = \overline{1}$ . Dies zeigt, dass das Element  $\overline{64}$  im Ring  $\mathbb{Z}/137\mathbb{Z}$  invertierbar ist und  $\overline{64}^{-1} = \overline{15}$  gilt. (Alternativ kann die Invertierbarkeit des Elements auch mit dem Ergebnis ggT(137,64) = 1 begründet werden aus Teil (a) begründet werden.) Aus der Gleichung  $\overline{64}^{-1} = \overline{15}$  wiederum folgt

$$\overline{64}^{-2} = (\overline{64}^{-1})^2 = \overline{15}^2 = \overline{15} \cdot \overline{15} = \overline{225} = \overline{88}$$

wobei im letzten Schritt  $225 = 137 + 88 \equiv 88 \mod 137$  verwendet wurde. Die Gleichung  $\overline{64}^{-2} = \bar{a}$  wird also durch a = 88 erfüllt.

## **Aufgabe 4.** (2+4+4 Punkte)

- (a) Begründen Sie, dass  $x^2 + 2$  ein irreduzibles Element im Polynomring  $\mathbb{Q}[x]$  ist.
- (b) Zeigen Sie mit Hilfe geeigneter Sätze aus der Vorlesung, dass es sich bei dem Faktorring  $R = \mathbb{Q}[x]/(x^2 + 2)$  um einen Körper handelt.
- (c) Sei  $\alpha = x + (x^2 + 2) \in R$ . Bestimmen Sie ein  $c \in \mathbb{Z}$ , so dass die Gleichung  $\alpha^6 = c + (x^2 + 2)$  in R erfüllt ist (mit Nachweis).

- zu (a) Wäre das Polynom  $x^2 + 2$  über  $\mathbb{Q}[x]$  reduzibel, dann müsste es wegen  $\operatorname{grad}(x^2 + 2)$  in zwei Linearfaktoren zerfallen. Dies würde bedeuten, dass die beiden Nullstellen von  $x^2 + 2$  in  $\mathbb{Q}$  liegen. Aber die Nullstellen  $\pm i\sqrt{2}$  des Polynoms sind nicht in  $\mathbb{R}$ , erst recht nicht in  $\mathbb{Q}$  enthalten. (Alternativ könnte man hier das Eisenstein-Kriterium verwenden.)
- zu (b) Laut Vorlesung ist  $\mathbb{Q}[x]$  als Polynomring über einem Körper ein Hauptidealring. In einem solchen Ring ist für jedes irreduzible Element  $a \in R$  das Hauptideal (a) maximal. Also ist nach Teil (a) das Ideal  $(x^2 + 2)$  in  $\mathbb{Q}[x]$  ein maximales Ideal. Daraus folgt laut Vorlesung, dass der Faktorring  $R = \mathbb{Q}[x]/(x^2 + 2)$  ein Körper ist.
- zu (c) Wegen  $x^2 + 2 \in (x^2 + 2)$  gilt in R die Gleichung  $(x^2 + (x^2 + 2)) + (2 + (x^2 + 2)) = x^2 + 2 + (x^2 + 2) = 0 + (x^2 + 2)$ , was zu  $x^2 + (x^2 + 2) = (-2) + (x^2 + 2)$  umgestellt werden kann. Es folgt  $\alpha^2 = \alpha \cdot \alpha = (x + (x^2 + 2))(x + (x^2 + 2)) = x^2 + (x^2 + 2) = -2 + (x^2 + 2)$ . Daraus wiederum folgt  $\alpha^6 = (\alpha^2)^3 = ((-2) + (x^2 + 2))^3 = (-2)^3 + (x^2 + 2) = (-8) + (x^2 + 2)$ . Also ist c = -8 eine ganze Zahl mit der gewünschten Eigenschaft.

| Name:     |  |  |
|-----------|--|--|
| 1,0011101 |  |  |

### Aufgabe 5. (6+4 Punkte)

- (a) Bestimmen Sie ein  $r \in \mathbb{N}$  und zyklische Gruppen  $C_1, ..., C_r$ , so dass die prime Restklassengruppe  $(\mathbb{Z}/48\mathbb{Z})^{\times}$  zu  $C_1 \times ... \times C_r$  isomorph ist. Geben Sie dabei an, durch welche Sätze aus der Vorlesung die Isomorphie gewährleistet ist.
- (b) Ist  $(\mathbb{Z}/48\mathbb{Z})^{\times}$  selbst zyklisch? Bitte begründen Sie Ihre Antwort.

- zu (a) Weil die Faktoren 16 und 3 in der Zerlegung  $48 = 16 \cdot 3$  teilerfremd sind, kann der Chinesische Restsatz angwendet werden und liefert  $(\mathbb{Z}/48\mathbb{Z})^{\times} \cong (\mathbb{Z}/16\mathbb{Z})^{\times} \times (\mathbb{Z}/3\mathbb{Z})^{\times}$ . Für jede ungerade Primzahl p gilt laut Vorlesung  $(\mathbb{Z}/p\mathbb{Z})^{\times} \cong \mathbb{Z}/(p-1)\mathbb{Z}$ , also insbesondere  $(\mathbb{Z}/3\mathbb{Z})^{\times} \cong \mathbb{Z}/2\mathbb{Z}$ . Für alle  $r \in \mathbb{N}$  mit  $r \geq 3$  gilt außerdem  $(\mathbb{Z}/2^{r}\mathbb{Z})^{\times} \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2^{r-2}\mathbb{Z}$ . Wenden wir dies auf r = 4 an, so erhalten wir  $(\mathbb{Z}/16\mathbb{Z})^{\times} \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}$ . Insgesamt gilt also  $(\mathbb{Z}/48\mathbb{Z})^{\times} \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}$ . Setzen wir also r = 3,  $C_1 = C_2 = \mathbb{Z}/2\mathbb{Z}$  und  $C_3 = \mathbb{Z}/4\mathbb{Z}$ , dann ist  $(\mathbb{Z}/48\mathbb{Z})^{\times} \cong C_1 \times C_2 \times C_3$  erfüllt.
- zu (b) Wäre  $(\mathbb{Z}/48\mathbb{Z})^{\times}$  zyklisch, dann müsste dies auch für die Gruppe  $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}$  mit  $2 \cdot 2 \cdot 4 = 16$  Elementen gelten. Es gäbe in dieser Gruppe also ein Element der Ordnung 16. Aber für alle Gruppenelemente  $(\bar{a}, \bar{b}, \bar{c})$  mit  $\bar{a}, \bar{b} \in \mathbb{Z}/2\mathbb{Z}$  und  $\bar{c} \in \mathbb{Z}/4\mathbb{Z}$  gilt  $4 \cdot (\bar{a}, \bar{b}, \bar{c}) = (\bar{4a}, \bar{4b}, \bar{4c}) = (\bar{0}, \bar{0}, \bar{0})$ . Die Ordnung jedes Elements ist also ein Teiler von 4 und damit ungleich 16. Dies zeigt, dass weder  $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}$  noch  $(\mathbb{Z}/48\mathbb{Z})^{\times}$  zyklisch ist.

## Aufgabe 6. (2+4+4 Punkte)

- (a) Geben Sie die Definitionen der Begriffe "Primideal" und "maximales Ideal" an.
- (b) Zeigen Sie direkt anhand der Definition, dass im Ring  $R = \mathbb{Z}[i]$  der Gaußschen Zahlen das Hauptideal (5) kein Primideal ist.
- (c) Begründen Sie (unter anderem mit Hilfe geeigneter Sätze), dass das Hauptideal (3) in R ein Primideal ist.

#### Lösung:

- zu (a) Sei R ein Ring und I ein Ideal in R. Man nennt I ein Primideal, wenn  $I \neq (1)$  gilt und für alle  $a, b \in R$  mit  $ab \in I$  jeweils  $a \in I$  oder  $b \in I$  erfüllt ist. Ein Ideal I wird maximales Ideal genannt, wenn  $I \neq (1)$  gilt und kein Ideal I mit  $I \subsetneq I \subsetneq (1)$  existiert.
- zu (b) Setzen wir  $\alpha=2+i$  und  $\beta=2-i$ , dann gilt  $\alpha\beta=(2+i)(2-i)=5\in(5)$ . Wäre (5) ein Primideal, dann müsste  $\alpha\in(5)$  oder  $\beta\in(5)$  gelten. Betrachten wir zunächst den Fall  $\alpha\in(5)$ . Dann gibt es ein  $\gamma\in R$  mit  $\alpha=5\gamma,\ \gamma=c+di$  mit  $c,d\in\mathbb{Z}$ . Es folgt 2+i=5(c+di)=5c+5di, und der Vergleich von Real- und Imaginärteil liefert 2=5c und 1=5d, also  $c=\frac{2}{5}$  und  $d=\frac{1}{5}$ , im Widerspruch zu  $c,d\in\mathbb{Z}$ . Also ist  $\alpha\in(5)$  ausgeschlossen. Nehmen wir nun  $\beta=2-i\in(5)$  an. Dann gibt es  $c,d\in\mathbb{Z}$  mit  $\beta=5(c+id)$ , was zu 2=5c und -1=5d führt, also  $c=\frac{2}{5}$  und  $d=-\frac{1}{5}$ , im Widerspruch zu  $c,d\in\mathbb{Z}$ . Es gilt also weder  $\alpha\in(5)$  noch  $\beta\in(5)$ . Dies zeigt, dass (5) kein Primideal ist.
- zu (c) Wir zeigen zunächst, dass 3 in R irreduzibel ist. Laut Vorlesung ist dies der Fall, wenn N(3) Quadrat einer Primzahl p und die Gleichung  $a^2 + b^2 = p$  mit  $a, b \in \mathbb{Z}$  nicht lösbar ist. Tatsächlich gilt  $N(3) = 9 = 3^2$ , und  $a^2 + b^2 = 3$  besitzt keine ganzzahlige Lösung. Denn aus  $b^2 \leq 3$  folgt  $|b| \leq 1$ , also  $b \in \{-1, 0, 1\}$  und somit  $b^2 \in \{0, 1\}$ ; aber keine der Gleichungen  $a^2 + 1 = 3$  oder  $a^2 + 0 = 3$  ist mit  $a \in \mathbb{Z}$  lösbar.

Laut Vorlesung ist  $R = \mathbb{Z}[i]$  ein euklidischer Ring, damit insbesondere faktoriell und ein Integritätsbereich. In einem faktoriellen Ring sind die irreduziblen Elemente genau die Primelemente, also ist 3 in R ein Primelement. Daraüber hinaus ist bekannt, dass in jedem Integritätsbereich das Hauptideal eines Primelements ein Primideal ist. Dies zeigt, dass (3) in R ein Primideal ist.

## Aufgabe 7. (2+4+4 Punkte)

- (a) Formulieren Sie den Chinesischen Restsatz für beliebige Ringe.
- (b) Weisen Sie nach, dass die Ideale I=(3) und J=(2+i) im  $R=\mathbb{Z}[i]$  teilerfremd sind. Hinweis: Eventuell sind die Gleichungen  $(-3)\cdot 3+2\cdot 5=1$  und 5=(2-i)(2+i) dabei hilfreich.
- (c) Bestimmen Sie ein  $\alpha \in R$  mit  $\alpha \equiv 2 \mod I$  und  $\alpha \equiv 3 \mod J$ .

- zu (a) Sei R ein Ring,  $r \in \mathbb{N}$  mit  $r \geq 2$ , und seien  $I_1, ..., I_r$  paarweise teilerfremde Ideale in R. Sei  $I = I_1 \cdot ... \cdot I_r$ . Dann gibt es einen Isomorphismus  $\bar{\phi}: R/I \to R/I_1 \times ... \times R/I_r$  mit  $\bar{\phi}(a+I) = (a+I_1, ..., a+I_r)$  für alle  $a \in R$ .
- zu (b) Es gilt  $-9 = (-3) \cdot 3 \in (3)$  und  $10 = 2 \cdot 5 = 2 \cdot (2 i) \cdot (2 + i) \in (2 + i)$ , also  $-9 \in I$  und  $10 \in J$ . Daraus folgt  $1 = (-9) + 10 \in I + J$  und damit I + J = (1). Diese Gleichung wiederum bedeutet nach Definition, dass I und J teilerfremd sind.
- zu (c) Die Gleichung 1=(-9)+10 kann zu 1+9=10 umgestellt werden. Wegen  $9\in I$  und  $10\in J$  zeigt die Gleichung, dass  $10\equiv 1\mod I$  und  $10\equiv 0\mod J$  gilt. Ebenso gilt 1+(-10)=-9. Wegen  $-9\in I$  und  $-10\in J$  zeigt dies  $-9\equiv 0\mod I$  und  $-9\equiv 1\mod J$ . Setzen wir nun  $\alpha=2\cdot 10+3\cdot (-9)=20-27=-7$ , dann gilt  $\alpha\equiv 2\cdot 1+3\cdot 0\equiv 2\mod I$  und  $\alpha\equiv 2\cdot 0+3\cdot 1\equiv 3\mod J$ .

### Aufgabe 8. (2+3+5) Punkte

- (a) Wie sind in einem Integritätsbereich R die *irreduziblen Elemente* und die *Primelemente* definiert?
- (b) Begründen Sie: Sind p und q Primelemente in einem Integritätsbereich R, dann ist das Element pq kein Primelement.
- (c) Stellen Sie das Element 100 im Ring  $R = \mathbb{Z}[i]$  der Gaußschen Zahlen als Produkt von Primelementen dar, und weisen Sie nach, dass es sich bei den Faktoren tatsächlich um Primelemente des Rings R handelt.

- zu (a) Ein Element  $p \in R$  heißt irreduzibel, wenn  $p \neq 0$  und  $p \notin R^{\times}$  gilt, und wenn für alle  $a, b \in R$  mit p = ab jeweils  $a \in R^{\times}$  oder  $b \in R^{\times}$  gilt. Man nennt  $p \in R$  ein Primelement, wenn  $p \neq 0$ ,  $p \notin R^{\times}$  gilt, und wenn für alle  $a, b \in R$  aus  $p \mid (ab)$  jeweils  $p \mid a$  oder  $p \mid b$  folgt.
- zu (b) Seien  $p, q \in R$  Primelemente, und nehmen wir an, dass auch pq ein Primelement ist. Dann wäre pq insbesondere irreduzibel (denn in einem Integritätsbereich sind Primelemente immer irreduzibel). Daraus wiederum würde  $p \in R^{\times}$  oder  $q \in R^{\times}$  folgen. Aber als Primelement kann weder p noch q eine Einheit in R sein.
- zu (c) Es gilt  $100 = 2^2 \cdot 5^2 = (1+i)^2 (1-i)^2 (2+i)^2 (2-i)^2$ . Bezeichnen wir mit N die Normfunktion auf R gegeben durch  $R \to \mathbb{N}_0$ ,  $\alpha \mapsto \alpha \bar{\alpha}$ , dann gilt N(1+i) = N(1-i) = 2 und N(2+i) = N(2-i) = 5. Laut Vorlesung ist ein Element in einem Ring der Form  $\mathbb{Z}[\sqrt{-d}]$  mit  $d \in \mathbb{N}$ , dessen Norm eine Primzahl ist, ein irreduzibles Element. Also sind  $1 \pm i$  und  $2 \pm i$  irreduzible Elemente in  $\mathbb{Z}[i]$ . Außerdem ist  $\mathbb{Z}[i]$  laut Vorlesung euklidisch und damit auch faktoriell, und in einem solchen Ring sind die irreduziblen Elemente genau die Primelemente. Dies zeigt, dass die Faktoren  $1 \pm i$  und  $2 \pm i$  in der Zerlegung von oben alles Primelemente in  $\mathbb{Z}[i]$  sind.