

école
normale
supérieure
paris-saclay

PUBLIC POLICY EVALUATION LECTURE 1: RANDOMISED CONTROL TRIAL

Yao Thibaut Kpegli

Licence 3 in Economics, ENS Paris-Saclay 2023-2024

March 2024

Outline

1 RCT

2 Regression equivalent

3 Application

Set up

Targeted population

• Job seekers

Treatment

• Enhanced support $(T_i = 1)$ rather than standard support $(T_i = 0)$

Potential outcomes

- Employment status with enhanced support: Y_{1i}
- Employment status without enhanced support: Y_{0i}

Treatment Effect

$$\Delta_i = Y_{1i} - Y_{0i}$$

Random draw

Independence — law of large numbers

$$E[X|T = 1] = E[X|T = 0] = E[X]$$
 for all X

Examples:

Observables:

```
\begin{split} E[\mathbf{household}|T=1] &= E[\mathbf{household}|T=0] = E[\mathbf{household}] \\ E[\mathbf{education}|T=1] &= E[\mathbf{education}|T=0] = E[\mathbf{education}] \\ E[\mathbf{age}|T=1] &= E[\mathbf{age}|T=0] = E[\mathbf{age}] \\ [...] \end{split}
```

Unobservables:

```
\begin{split} E[\mathbf{motivation}|T=1] &= E[\mathbf{motivation}|T=0] = E[\mathbf{motivation}] \\ E[\mathbf{network}|T=1] &= E[\mathbf{network}|T=0] = E[\mathbf{network}] \end{split}
```

• including potentials outcomes:

$$E[Y_0|T=1] = E[Y_0|T=0] = E[Y_0]$$

 $E[Y_1|T=1] = E[Y_{1i}|T=0] = E[Y_1]$

$\overline{NE} = \overline{ATT} = \overline{ATE}$

Naive estimator

NE =
$$E[Y|T=1] - E[Y|T=0]$$

= $E[Y_1|T=1] - E[Y_0|T=0]$

• As $E[Y_0|T=1] = E[Y_0|T=0]$, then:

$$\begin{array}{lll} {\rm NE} & = & E[Y_1|T=1] - E[Y_0|T=1] \\ & = & {\rm ATT} \\ \end{array}$$

• As $E[Y_0|T=1] = E[Y_0]$ and $E[Y_1|T=1] = E[Y_1]$, then:

$$\begin{array}{rcl}
\text{NE} & = & E[Y_1] - E[Y_0] \\
& = & \text{ATE}
\end{array}$$

Outline

2 Regression equivalent

3 Application

Regression equivalent

• Linear model

$$\mathbf{Y}_i = a + b\mathbf{T}_i + e_i$$

$$b_{OLS} = E[Y_i|T_i = 1] - E[Y_i|T_i = 0]$$

- OLS is unbiased:
 - out of random draw $E[\epsilon_i|T_i] = 0$
- Often, we add controls:

$$\mathbf{Y}_i = a + b\mathbf{T}_i + \mathbf{X}_i c + u_i$$

- But why to add controls?
 - randomization may fail (in small samples)
 - with interactions, it allows to estimate heterogeneous treatment effects
 - additional controls decreases the variance of b_{OLS} if they have explanatory power over Y_i (see next slide)

Controls reduce variance

• Consider the two models:

$$\mathbf{Y_i} = \mathbf{a} + \mathbf{b} \mathbf{T_i} + \mathbf{e_i}$$
 (1)
 $\mathbf{Y_i} = \mathbf{a} + \mathbf{b} \mathbf{T_i} + \mathbf{X_i} \mathbf{c} + \mathbf{u_i}$ (2)

- If treatment assignment is truly random, then conditioning on x_i does not affect point estimate: b_{OLS}
- But controls reduce variance:
 - $V(b_{OLS}) = V(\epsilon_i)(TT')^{-1}$
 - $V(\epsilon_i) = V(\mathbf{X}_i c + u_i) = V(\mathbf{X}_i c) + V(u_i) > V(u_i)$

RCT in pratice

- Define the population of interest
- 2 Randomly divide the population of interest into treatment and control groups
- 3 Collect baseline data (before the treatment is implemented)
- Oheck the randomization (balance check)
- Process to the treatment implementation
- Collect endline data
- Run OLS regressions

Outline

3 Application

Application

The Demand and Impact of Learning HIV Status - ecampus

