Stochastic Models for Networks

Mark S. Handcock

handcock@ucla.edu

Statistical Analysis of Networks

October 22, 2024

A *social network* is defined as a set of *n* social "actors" and a social relationship between each pair of actors.

A *social network* is defined as a set of *n* social "actors" and a social relationship between each pair of actors.

```
To fix ideas and easy of presentation: label the actors 1, . . . , n. focus on a single binary relationship
```

A *social network* is defined as a set of *n* social "actors" and a social relationship between each pair of actors.

To fix ideas and easy of presentation:
 label the actors 1,...,n.
 focus on a single binary relationship
 ⇒ valued and metric relationships ok
 the number of actors n is fixed and known
 ⇒ can be generalized

A *social network* is defined as a set of *n* social "actors" and a social relationship between each pair of actors.

To fix ideas and easy of presentation:

- label the actors $1, \ldots, n$.
- focus on a single binary relationship
- ⇒ valued and metric relationships ok the number of actors n is fixed and known
 - \Rightarrow can be generalized
- The presence or absence of a relationship is observed for each pair of actors
 - ⇒ census: no sampling or missing data

A *social network* is defined as a set of *n* social "actors" and a social relationship between each pair of actors.

To fix ideas and easy of presentation:

label the actors $1, \ldots, n$.

focus on a single binary relationship

- ⇒ valued and metric relationships ok the number of actors *n* is fixed and known
 - \Rightarrow can be generalized

The presence or absence of a relationship is observed for each pair of actors

⇒ census: no sampling or missing data cross-sectional (time aggregate/static) viewpoint

$$Y_{ij} = \begin{cases} 1 & \text{relationship from actor } i \text{ to actor } j \\ 0 & \text{otherwise} \end{cases}$$

$$Y_{ij} = \begin{cases} 1 & \text{relationship from actor } i \text{ to actor } j \\ 0 & \text{otherwise} \end{cases}$$

call $Y \equiv [Y_{ij}]_{n \times n}$ a sociomatrix; call the graphical representation of Y a sociogram – a N = n(n-1) array of binary random variables – Y represents a random network with nodes the actors and edges the relationship

$$Y_{ij} = \begin{cases} 1 & \text{relationship from actor } i \text{ to actor } j \\ 0 & \text{otherwise} \end{cases}$$

call $Y \equiv [Y_{ij}]_{n \times n}$ a sociomatrix; call the graphical representation of Y a sociogram – a N = n(n-1) array of binary random variables – Y represents a random network with nodes the actors and edges the relationship The basic problem of stochastic modeling is to specify a distribution for Y i.e., P(Y = y)

Model 1: Homogeneous Bernoulli graph Rényi and Erdős model

 Y_{ij} are independent and equally likely

$$P(Y_{ij} = 1) = p$$
 $\forall i, j = 1, ..., n$
for some $0 \le p \le 1$

Model 1: Homogeneous Bernoulli graph Rényi and Erdős model

 Y_{ij} are independent and equally likely

$$P(Y_{ij} = 1) = p \qquad \forall i, j = 1, \dots, n$$

for some $0 \le p \le 1$ Equivalently

$$\log \operatorname{odds}(Y_{ij} = 1) = \eta \qquad \forall i, j = 1, \dots, n$$

where

$$\eta = \text{logit}[P(Y_{ij} = 1)] = \log(\frac{p}{1 - p})$$

Model 1: Homogeneous Bernoulli graph Rényi and Erdős model

 Y_{ij} are independent and equally likely

$$P(Y_{ij} = 1) = p \qquad \forall i, j = 1, \dots, n$$

for some $0 \le p \le 1$

Equivalently

$$\log \operatorname{odds}(Y_{ij} = 1) = \eta$$

 $\forall i,j=1,\ldots,n$

where

$$\eta = \text{logit}[P(Y_{ij} = 1)] = \log(\frac{p}{1 - p})$$

Independent means, e.g.,

$$P(Y_{12} = 1, Y_{23} = 1) = p \times p$$

Model 1: Homogeneous Bernoulli graph Rényi and Erdős model

 Y_{ij} are independent and equally likely

$$P(Y_{ij} = 1) = p \qquad \forall i, j = 1, \dots, n$$

for some $0 \le p \le 1$ Equivalently

$$\log \operatorname{odds}(Y_{ii} = 1) = \eta$$

$$\forall i, j = 1, \ldots, n$$

where

$$\eta = \text{logit}[P(Y_{ij} = 1)] = \log(\frac{p}{1 - p})$$

Independent means, e.g.,

$$P(Y_{12} = 1, Y_{23} = 1) = p \times p = \left(\frac{e^{\eta}}{1 + e^{\eta}}\right)^{2}$$

Model 1: Homogeneous Bernoulli graph Rényi and Erdős model

 Y_{ij} are independent and equally likely

$$P(Y_{ij} = 1) = p \qquad \forall i, j = 1, \dots, n$$

for some $0 \le p \le 1$ Equivalently

$$\log \operatorname{odds}(Y_{ii} = 1) = \eta$$

$$\forall i, j = 1, \ldots, n$$

where

$$\eta = \text{logit}[P(Y_{ij} = 1)] = \log(\frac{p}{1 - p})$$

Independent means, e.g.,

$$P(Y_{12} = 1, Y_{23} = 1) = p \times p = \left(\frac{e^{\eta}}{1 + e^{\eta}}\right)^{2}$$

Multivariate distribution

More abstractly:

$$P(Y_{12} = y_{12}, Y_{21} = y_{21}) = p^{y_{12}} (1-p)^{1-y_{12}} \times p^{y_{21}} (1-p)^{1-y_{21}}$$

Multivariate distribution

More abstractly:

$$P(Y_{12} = y_{12}, Y_{21} = y_{21}) = p^{y_{12}} (1 - p)^{1 - y_{12}} \times p^{y_{21}} (1 - p)^{1 - y_{21}}$$
$$= \frac{e^{\eta(y_{12} + y_{21})}}{(1 + e^{\eta})^2}$$

Multivariate distribution

More abstractly:

$$P(Y_{12} = y_{12}, Y_{21} = y_{21}) = p^{y_{12}} (1 - p)^{1 - y_{12}} \times p^{y_{21}} (1 - p)^{1 - y_{21}}$$
$$= \frac{e^{\eta(y_{12} + y_{21})}}{(1 + e^{\eta})^2}$$

In general:

$$P(Y = y) = \frac{e^{\eta \sum_{i,j} y_{ij}}}{c(\eta)}$$
 $y \in \mathcal{Y}$ where $c(\eta) = [1 + \exp(\eta)]^N$

What is the network density?

What is the network density?

What is the probability that a randomly chosen possible tie exists?

What is the network density?

What is the probability that a randomly chosen possible tie exists?

What is the probability that a dyad is mutual?

What is the network density?

What is the probability that a randomly chosen possible tie exists?

What is the probability that a dyad is mutual?

What is the probability that a dyad is asymmetric?

What is the network density?

What is the probability that a randomly chosen possible tie exists?

What is the probability that a dyad is mutual?

What is the probability that a dyad is asymmetric?

Expression as Logistic regression

As the Y_{ij} are independent we recognize this as a logistic regression with just a constant term:

$$\log \operatorname{odds}(Y_{ij} = 1) = \eta$$
 $\forall i, j = 1, \dots, n$
$$\operatorname{ergm}(\operatorname{net1} \sim \operatorname{edges})$$

Model 2: Two type of actors

Suppose $1, ..., n_1$ are "red" and $n_1 + 1, ..., n$ are "blue" and the relationship is directed Y_{ij} are independent but depend on the color of the actors

Suppose actors of each color differ in their propensity to send ties (regardless of the color of the alters).

"activity"

$$x_{ij} = \begin{cases} 1 & \text{the color of } i \text{ is "red"} \\ 0 & \text{the color of } i \text{ is "blue"} \end{cases}$$

Model 2: Two type of actors

Suppose $1, ..., n_1$ are "red" and $n_1 + 1, ..., n$ are "blue" and the relationship is directed Y_{ij} are independent but depend on the color of the actors

Suppose actors of each color differ in their propensity to send ties (regardless of the color of the alters).

"activity"

$$x_{ij} = \begin{cases} 1 & \text{the color of } i \text{ is "red"} \\ 0 & \text{the color of } i \text{ is "blue"} \end{cases}$$

$$\log \operatorname{odds}(Y_{ij} = 1 | X_{ij}) = \eta_0 + \eta_1 X_{ij} \qquad \forall i, j = 1, \dots, n$$

ergm(net1 ∼ edges + nodeofactor("color"))

Two type of actors and popularity

Suppose $1, ..., n_1$ are "red" and $n_1 + 1, ..., n$ are "blue" and the relationship is directed Y_{ij} are independent but depend on the color of the actors

Suppose actors of each color differ in their propensity to receive ties (regardless of the color of the alters).

"popularity"

$$X_{ij} = \begin{cases} 1 & \text{the color of } j \text{ is "red"} \\ 0 & \text{the color of } j \text{ is "blue"} \end{cases}$$

Two type of actors and popularity

Suppose 1,..., n_1 are "red" and $n_1 + 1,...,n$ are "blue" and the relationship is directed Y_{ij} are independent but depend on the color of the actors

Suppose actors of each color differ in their propensity to receive ties (regardless of the color of the alters).

"popularity"

$$X_{ij} = \begin{cases} 1 & \text{the color of } j \text{ is "red"} \\ 0 & \text{the color of } j \text{ is "blue"} \end{cases}$$

$$\log \operatorname{odds}(Y_{ij} = 1 | X_{ij}) = \eta_0 + \eta_1 X_{ij} \qquad \forall i, j = 1, \dots, n$$

Two type of actors and homophily

Suppose 1,..., n_1 are "red" and $n_1 + 1,...,n$ are "blue" and the relationship is directed Y_{ij} are independent but depend on the color of the actors

Suppose actors of the same color prefer each other "homophily"

$$x_{ij} = \begin{cases} 1 & \text{the color of } i \text{ is the same as the color of } j \\ 0 & \text{the color of } i \text{ is the not the same as the color of } j \end{cases}$$

Two type of actors and homophily

Suppose $1, ..., n_1$ are "red" and $n_1 + 1, ..., n$ are "blue" and the relationship is directed Y_{ij} are independent but depend on the color of the actors

Suppose actors of the same color prefer each other "homophily"

$$x_{ij} = \begin{cases} 1 & \text{the color of } i \text{ is the same as the color of } j \\ 0 & \text{the color of } i \text{ is the not the same as the color of } j \end{cases}$$

$$\log \operatorname{odds}(Y_{ij} = 1 | X_{ij}) = \eta_0 + \eta_1 X_{ij} \qquad \forall i, j = 1, \dots, n$$

ergm(net1 ∼ edges + nodematch("color"))

Modeling Centrality of the actors

In lecture 7 we considered the concept of centrality of an actor and measures of it for a given undirected network.

Can we represent it in a statistical model directly?

$$logit[P(Y_{ij} = 1)] = \beta_i + \beta_j$$

So β_i is a measure of the centrality of actor i.

The difference $\beta_i - \beta_j$ indicates the log-odds ratio of a tie from *i* compared to *j*.

Note the lack of an edge parameter.

Modeling Centrality of the actors

In ergm:

```
ergm(flomarriage ~ sociality(base=0))
```

```
sociality1
                         1.0669 -1.862
             -1.9871
                                         0.0625 .
sociality2
             -0.5708
                         0.6991 -0.817
                                         0.4142
sociality3
             -1.1455
                         0.8038 -1.425
                                         0.1541
socialitv4
                         0.6991 - 0.817
             -0.5708
                                         0.4142
sociality12
                -Tnf
                         0.0000
                                  -Tnf
                                         <1e-04 ***
sociality16 -0.5708
                         0.6991 -0.817
                                         0.4142
```

Estimate Std. Error value Pr(>|z|)

Determining Individual Centrality

The centrality model provides the a relative measure of centrality, but it needs to be standardized to allow interpretation. Using the model we can predict the probability of a tie between two actors. From that we can calculate the model-based "eigenvalue" centrality.

$$c_i = \sum_{j=1}^g P(Y_{ij} = 1)c_j$$
$$\sum_{j=1}^g c_j = 0$$

Modeling the popularity of the actors

In lecture 4 we consider the concept of popularity of an actor and measures of it for a given directed graph.

Can we represent it in a statistical model directly?

$$logit[P(Y_{ij} = 1)] = \beta_i + \gamma_j$$

So β_i is a measure of the centrality of actor i. and γ_j is a measure of the prestige of actor j.

Modeling the Prestige of the actors

- The difference $\beta_i \beta_j$ indicates the log-odds ratio of an outtie from i compared to j.
- The difference $\gamma_i \gamma_j$ indicates the log-odds ratio of an intie from i compared to j.
- Note the lack of an edge parameter.

Modeling the Prestige of the actors

In ergm:

```
ergm(samplike ~ receiver(base=0) + sender)
```

Examples: Friends and Acquaintances

	Estimate	Std. Error	z-score	Pr(> z)
receiver1	1.11537	0.75579	1.476	0.1400
receiver2	0.84327	0.72575	1.162	0.2453
receiver3	-1.10099	0.82058	-1.342	0.1797
receiver5	0.35509	0.71816	0.494	0.6210
receiver18	-1.08076	0.82026	-1.318	0.1876
sender2	-0.31750	0.77797	-0.408	0.6832
sender3	-0.45453	0.78233	-0.581	0.5612
sender18	-0.14531	0.76409	-0.190	0.8492

The General Bernoulli graph model

 Y_{ij} are independent but have arbitrary distributions

logit[
$$P(Y_{ij} = 1)$$
] = η_{ij} $i, j = 1, ..., n$

Based on independence:

$$P(Y = y) = \frac{\exp\left\{\sum_{i,j} \eta_{ij} y_{ij}\right\}}{c(\eta)} \qquad y \in \mathcal{Y}$$
$$c(\eta) = \prod_{i,j} [1 + \exp(\eta_{ij})]$$

one term per ij pair

Dyad-independence models with attributes

 Y_{ij} are independent but depend on dyadic covariates $X_{k,ij}$, k = 1, ..., K.

 $x_{k,ij}$ is the kth covariate for the ijth pair

$$\log [P(Y = y)] = \sum_{i,j} \eta_{ij} y_{ij} - c(\eta) \qquad y \in \mathcal{Y}$$

where Y_{ij} can depend on dyadic covariates $X_{k,ij}$

$$\eta_{ij} = \eta_1 X_{1,ij} + \eta_2 X_{2,ij} \ldots + \eta_K X_{K,ij}$$

and
$$c(\eta) = \log[c(\eta)]$$
.

logit[
$$P(Y_{ij} = 1)$$
] = $\eta_1 X_{1,ij} + \eta_2 X_{2,ij} ... + \eta_K X_{K,ij}$

By independence, the joint distribution can be expressed as:

$$P(Y = y) = \frac{\exp \left\{ \eta_1 g_1(y) + \eta_2 g_2(y) \dots + \eta_K g_K(y) \right\}}{c(\eta)} \qquad y \in \mathcal{Y}$$
$$g_k(y) = \sum_{i,j} X_{k,ij} y_{ij}, \quad k = 1, \dots, K \qquad q = K$$
$$c(\eta) = \prod_{i,j} [1 + \exp(\sum_k \eta_k X_{k,ij})]$$

Interpreting the parameters in the model

$$P(Y = y) = \frac{\exp\left\{\sum_{k=1}^{K} \eta_k g_k(y)\right\}}{c(\eta)}$$

where $\eta_{1,2...k}$ are parameters $g_{1,2...k}(y)$ are statistics, and $c(\eta)$ is a normalizing constant:

$$C(\eta) = \sum_{y \in \mathcal{Y}} \exp \left\{ \sum_{k=1}^{K} \eta_k g_k(y) \right\}$$

In other words,

$$P(Y = y) \propto \eta_1 g_1(y) + \eta_2 g_2(y) + \eta_3 g_3(y) + ... + \eta_k g_k(y)$$

Intuition: the ERGM places more/less weight on graphs with certain features, as determined by η,g

Interpreting the parameters in the model

We can also re-express it in terms of the odds of tie y_{ij}

$$\frac{Pr(Y_{ij} = 1)}{Pr(Y_{ij} = 0)} = \exp\left\{\sum_{k=1}^{K} \eta_k(g_k(y_{ij}^+) - g_k(y_{ij}^-))\right\}$$

where y_{ij}^+ is the graph with $Y_{ij} = 1$, y_{ij}^- is the graph with $Y_{ij} = 0$

Implications:

Log-odds only depend on the "change-score", $\Delta_{ij}=g_k(y_{ij}^+)-g_k(y_{ij}^-)$

Interpreting the parameters in the model

We can also re-express it in terms of the odds of tie y_{ij}

$$\frac{Pr(Y_{ij} = 1)}{Pr(Y_{ij} = 0)} = \exp\left\{\sum_{k=1}^{K} \eta_k(g_k(y_{ij}^+) - g_k(y_{ij}^-))\right\}$$

where y_{ij}^+ is the graph with $Y_{ij} = 1$, y_{ij}^- is the graph with $Y_{ij} = 0$

Implications:

- Each unit change in g_k for (i,j) tie present (versus absent) increases the log-odds of (i,j) by η_k
- η is the impact of the covariate on the log-odds of a tie

Modeling Mutuality within the graph

In lecture 2 we considered the concept of mutuality of ties between actors and measures of it for a given graph.

Can we represent it in a statistical model directly?

$$logit[P(Y_{ij} = y_{ij}, Y_{ji} = y_{ji})] = \theta(y_{ij} + y_{ji}) + \rho y_{ij}y_{ji}$$

So ρ is the propensity for ties to match.

As the dyad pairs (Y_{ij}, Y_{ji}) are independent of (Y_{kl}, Y_{lk}) , $i, j \neq k, l$

The full model is

$$P(Y = y) = \prod_{i < j} P(Y_{ij} = y_{ij}, Y_{ji} = y_{ji})$$
$$= \frac{\exp\{\rho \sum_{i < j} y_{ij} y_{ji} + \theta \sum_{i,j} y_{ij}\}}{C(\rho, \theta)}$$

where

 θ controls the expected number of edges ρ represent the expected tendency toward reciprocation

In ergm:

ergm(samplike \sim edges + mutual)

Including covariates in the mutual model

Recall the dyadic covariates $x_{k,ij}$, k = 1, ..., K:

 $x_{k,ij}$ is the kth covariate for the ijth pair

We can include them in the model as:

logit[
$$P(Y_{ij} = y_{ij}, Y_{ji} = y_{ji} | X_{1,ij}, \dots, X_{K,ij})$$
] = $\sum_{k=1}^{K} \beta_k X_{k,ij} y_{ij} + \rho y_{ij} y_{ji}$

$$P(Y = y) = \frac{\exp\{\sum_{k=1}^{K} \beta_k \sum_{i,j} X_{k,ij} y_{ij} + \rho \sum_{i < j} y_{ij} y_{ji} + \theta \sum_{i,j} y_{ij}\}}{c(\rho, \theta)}$$

where

 β are the regression parameters θ controls the expected number of edges ρ represent the expected tendency toward

Some history of models for social networks

Holland and Leinhardt (1981) proposed a general dyad independence model

Also an homogeneous version they refer to as the "p1" model

$$P(Y = y) = \frac{\exp\{\rho \sum_{i < j} y_{ij} y_{ji} + \theta \sum_{i,j} y_{ij} + \sum_{i} \alpha_{i} \sum_{j} y_{ij} + \sum_{j} \beta_{j} \sum_{i} y_{ij}\}}{c(\rho, \alpha, \beta, \theta)}$$

where

 θ controls the expected number of edges ρ represent the expected tendency toward reciprocation α_i productivity of node i; β_i attractiveness of node j

Much related work and generalizations

27