UCLA Extension Data Science Intensive

Instructor: William Yu

Project 2

updated 7/9/2019

• Submit your results (including R script/notebook/markdown with explanations and interpretations and any outputs you got) through Canvas.

A. Regression: An Example of Turning A Small Dataset Into Knowledge

- Read my article: "Will A Lower Corporate Tax Rate Boost Economic Growth?"
- In the Course Website, download p02_Corporate tax.csv and save it into your computer.
- Write a R script/notebook/markdown to answer the following questions:
- On Page 55, there are three equations. Replicate these regression results by using R. Note: Beta 2 should be -0.00002.
- Based on Equation 3, use its coefficients (alpha and betas) to predict to a hypothetical GDP per capita growth rate when this country has corporate tax rate = 20%, GDP per capita in 2000 = \$10,000, and debt to GDP ratio = 35%.
- Plot a chart similar to Figure 4 by using R. (The red line is a regression, fitted line). Note: the R output chart you got might be a bit different from that (a bit distorted) in the book. No worries.
- Think in the Next: Why do I use corporate tax rates averaged from 2000 to 2008 instead of from 2000 to 2015?
- The dataset provide more variables (description as follows). Play around by adding these variables. And present the best model and briefly explain why.

	OECD 35 Countries	
Variable	Description	
ypcg	GDP per capita growth rate, average from 2000 to 2015	
ctax	Corporate tax rate (%), average from 2000 to 2008	
урс2000	GDP per capita (US\$) in 2000	
dty	Debt to GDP ratio (%), average from 2000 to 2008	
trade	Trade (imports and exports) as percentage of GDP (%)	
ihc	Index of country's human capital	
y2000	GDP in 2000 (economy size, US billion \$)	

B. Calculate the City Human Capital Index (CHCI) from the American Community Survey (ACS) Data

- Browse the following webpage about CHCI developed by me:
- We want to calculate the CHCI by a weighting average of educational attainment of local adult residents. See the following table. The data is from the 5-year American Community Survey summary file (DP02) from 2009 to 2017. Note: in addition, there are DP03, DP04, and DP05 files. And the data is obtained through American Fact Finder

- (https://factfinder.census.gov/faces/nav/jsf/pages/searchresults.xhtml?refresh=t). We might revisit these dataset later on.
- Download all the ACS data into your computer. The data is shown by all the counties in the U.S. _metadata is the documentation for variables. _with_ann is the data file.
- Hint: To import an ideal data format from the original data, you could use "skip" setting in read.csv function.
- You need to use the following variables: #2: Id2, #3: Geography, #232: Adult population, #238: % in less than 9th grade, #242: % in 9th to 12th grade, #246, #250, #254, #258, and #262.
- Hint: the formula for calculating CHCI is: 50 * % in less than 9th grade + 100 * % in 9th to 12th grade + ... (see the table below).
- Add two variables into the data frame: CHCI growth from 2009 to 2017, and CHCI growth rate from 2009 to 2017.
- Your expected output should look like chci.csv attached in the folder.
- Reorder the data based on the following variables (e.g. you can use "arrange" function under library dplyr.
- Calculate the growth rates of CHCI and population for all the counties. Which counties are the top ten counties for growth rates of CHCI and population?
- In the class (in D02d_map), we plot the U.S. county map with color for CHCI in 2016 (period: '12-'16; midyear: 2014). Now apply it to plot the similar chart for CHCI in 2017. Export the chart as a pdf file and save it into your excel output file. (Above the chart, click Export → Save as image, choose the directory).
- Plot a similar colorful county map in Tableau and save it into your excel output file. *Note:* Tableau can automatically recognize "county" variable as a graphic variable. But it might not help you to get the map we want to see. Instead, you could use "id" or "fips" variable (5-digit number). And then click "geographic role" and choose "county" to force Tableau to recognize it as a geographic variable. But for 5 or 6 states, the fips begins with 0 digit and it will be presented in csv file as only 4-digit number. Tableau cannot recognize it. Solution: you could save the fips as a text variable in say C2 by typing "=text(B2, "00000")" and save the file as a xlsx file.

The CHCI is calculated based on the following education attainment data (**multiplied by 10**) for adult residents in each area:

	Assigned Schooling	Calculation weight
Education Attainment	Year	
Less than 9th grade	5	50
9th to 12th grade, no diploma	10	100
High school graduate (includes equivalency)	12	120
Some college, no degree	13	130
Associate's degree	14	140
Bachelor's degree	19	190
Graduate or professional degree	23	230