Introductary Mathematical Physics

Marvin Kim Spanning Tree

$$\Gamma, J_{\alpha}, \pi$$

1. Gamma function

1. Gamma function

DEFINITION OF THE GAMMA FUNCTION

As you would probably know, the gamma function is an extension of the factorial function to the real numbers.

Definition of the Gamma Function

As you would probably know, the gamma function is an **extension of the factorial function to the real numbers.** It is given by

DEFINITION (GAMMA FUNCTION)

$$\Gamma(z) = \int_0^\infty t^{z-1} e^{-t} dt \tag{1}$$

DEFINITION OF THE GAMMA FUNCTION

As you would probably know, the gamma function is an extension of the factorial function to the real numbers. It is given by

DEFINITION (GAMMA FUNCTION)

$$\Gamma(z) = \int_0^\infty t^{z-1} e^{-t} dt \tag{1}$$

The function is shifted by one from the factorial function because Legendre wanted the pole to be at 0.

$$\Gamma(n) = (n-1)! \tag{2}$$

Tetsing

DEFINITION

This is a definition

Proof.

This is the proof

////

THEOREM

This is a theorem