Newton Raphson for Optimization, Attempt 3

Evan L. Ray March 2, 2018

Exponential Model Example

Model: $X_1, \dots, X_n \sim \operatorname{Exp}(\lambda)$

Example: X_i is a waiting time in minutes for individual i who goes to the emergency room. λ is the number of patients they see per minute, on average.

$$f(x_i|\lambda) = \lambda e^{-\lambda x_i}$$
 $L(\lambda|x_1,\ldots,x_n) = \cdots = n\log(\lambda) - \lambda \sum_{i=1}^n x_i$ $rac{d}{d\lambda}L(\lambda|x_1,\ldots,x_n) = rac{n}{\lambda} - \sum_{i=1}^n x_i$ $rac{d^2}{d\lambda^2}L(\lambda|x_1,\ldots,x_n) = rac{-n}{\lambda^2}$

Log-likelihood function, maximum likelihood estimate

The purple line is at the MLE.

...But what if we couldn't solve for the MLE directly?

Taylor Series Approximation to ${\cal L}$

Pick a value λ_0 . The second-order Taylor Series approximation to $L(\lambda|x_1,\ldots,x_n)$ around λ_0 is

$$egin{aligned} P_2(\lambda) &= L(\lambda_0|x_1,\ldots,x_n) + rac{d}{d\lambda} L(\lambda_0|x_1,\ldots,x_n) (\lambda-\lambda_0) \ &+ rac{1}{2} rac{d^2}{d\lambda^2} L(\lambda_0|x_1,\ldots,x_n) (\lambda-\lambda_0)^2 \end{aligned}$$

The maximum of $P_2(\lambda)$ is at $\lambda_1=\lambda_0-rac{rac{d}{d\lambda}L(\lambda_0|x_1,\ldots,x_n)}{rac{d^2}{d\lambda^2}L(\lambda_0|x_1,\ldots,x_n)}$

Now repeat, but centering the Taylor Series approximation at λ_1 .

Pick λ_0

$$\lambda_0=0.1$$

Approximate L around λ_0 , get λ_1

$$\lambda_0=0.1, \lambda_1=\lambda_0-rac{rac{d}{d\lambda}L(\lambda_0|x_1,\ldots,x_n)}{rac{d^2}{d\lambda^2}L(\lambda_0|x_1,\ldots,x_n)}=0.196$$

Approximate L around λ_1 , get λ_2

$$\lambda_0 = 0.1, \, \lambda_1 = 0.196,$$

$$\lambda_2 = \lambda_1 - rac{rac{d}{d\lambda}L(\lambda_1|x_1,\ldots,x_n)}{rac{d^2}{d\lambda^2}L(\lambda_1|x_1,\ldots,x_n)} = 0.375$$

Approximate L around λ_2 , get λ_3

$$\lambda_0 = 0.1, \, \lambda_1 = 0.196, \lambda_2 = 0.375$$

$$\lambda_3 = \lambda_2 - rac{rac{d}{d\lambda}L(\lambda_2|x_1,\ldots,x_n)}{rac{d^2}{d\lambda^2}L(\lambda_2|x_1,\ldots,x_n)} = 0.691$$

Approximate L around λ_3 , get λ_4

$$\lambda_0 = 0.1, \, \lambda_1 = 0.196, \lambda_2 = 0.375, \lambda_3 = 0.691$$

$$\lambda_4 = \lambda_3 - rac{rac{d}{d\lambda}L(\lambda_3|x_1,\ldots,x_n)}{rac{d^2}{d\lambda^2}L(\lambda_3|x_1,\ldots,x_n)} = 1.181$$

Approximate L around λ_4 , get λ_5

$$\lambda_0 = 0.1, \, \lambda_1 = 0.196, \lambda_2 = 0.375, \lambda_3 = 0.691, \lambda_4 = 1.181$$

$$\lambda_5 = \lambda_4 - rac{rac{d}{d\lambda}L(\lambda_4|x_1,\ldots,x_n)}{rac{d^2}{d\lambda^2}L(\lambda_4|x_1,\ldots,x_n)} = 1.775$$

Approximate L around λ_5 , get λ_6

$$\lambda_0 = 0.1, \, \lambda_1 = 0.196, \lambda_2 = 0.375, \lambda_3 = 0.691, \lambda_4 = 1.181$$

$$\lambda_5=1.775,\, \lambda_6=\lambda_5-rac{rac{d}{d\lambda}L(\lambda_5|x_1,\ldots,x_n)}{rac{d^2}{d\lambda^2}L(\lambda_5|x_1,\ldots,x_n)}=2.223$$