

Rohan Fossé

November, 27th. 2020

Univ. Bordeaux, Bordeaux INP, CNRS, LaBRI, UMR-5800

Table of Contents

- 1. The Boolean Satisfiability Problem
- 2. Applications
- 3. How do SAT solvers work?
- 4. Our work
- 5. Examples of SAT solvers
- 6. Conclusion

The Boolean Satisfiability

Problem

Propositional formula

Definition

Let $\mathcal V$ be a finite set of Boolean valued variables. A *propositional formula* on $\mathcal V$ is defined inductively as follows:

- each of the constants false, true is a propositional formula on V;
- if ϕ and ϕ' are propositional formulas on $\mathcal V$ then $\neg \phi$, $\phi \wedge \phi'$, $\phi \vee \phi', \phi \Leftrightarrow \phi', \phi \rightarrow \phi'$ are propositional formulas on $\mathcal V$ as well.
- ullet An assignment on ${\mathcal V}$ is any map from ${\mathcal V}$ to $\{\mathit{false}, \mathit{true}\}$

Satisfiability

Definition

Let V be a finite set of Boolean variables and let ϕ be a propositional formula on V.

- An assignment \mathbf{v} on \mathcal{V} is a satisfying assignment for ϕ if we have $\mathbf{v}(\phi) = true;$
- The propositional formula ϕ is said satisfiable if there exists a satisfying assignment for ϕ .
- Deciding whether or not a propositional formula is satisfiable is called the Boolean satisfiability problem, denoted by SAT.

Conjunctive normal form

Literals

A literal (a, b, ...) is either a boolean variable x or this negation $\neg x$

Clauses

A clause *C* is a disjunction of literals *i.e*:

$$C = a \lor b \lor .. \lor z$$

Formula

A formula Φ is a conjunction of clauses *i.e.*

$$\Phi = C_1 \wedge C_2 \wedge ... \wedge C_m$$

Example

$$\Phi = (a \vee \neg b) \wedge a \wedge (\neg a \vee \neg b)$$

Resolution of a **SAT** formula

Let
$$\Phi_1 = (a \vee \neg b) \wedge a \wedge (\neg a \vee \neg b)$$

Resolution

$$a = ?$$

$$b = ?$$

Resolution of a SAT formula

Let
$$\Phi_1 = (a \vee \neg b) \wedge a \wedge (\neg a \vee \neg b)$$

Resolution

$$b = ?$$

Resolution of a SAT formula

Let
$$\Phi_1 = (a \vee \neg b) \wedge a \wedge (\neg a \vee \neg b)$$

Resolution

- a = True
- b = False
- Φ_1 is SAT \odot

Another resolution of a **SAT** formula

Let
$$\Phi_2 = (a \vee \neg b) \wedge b \wedge (\neg a \vee \neg b)$$

Resolution

$$a = ?$$

$$b = ?$$

Another resolution of a SAT formula

Let
$$\Phi_2 = (a \vee \neg b) \wedge b \wedge (\neg a \vee \neg b)$$

Resolution

$$a = ?$$

$$b = True$$

Another resolution of a **SAT** formula

Let
$$\Phi_2 = (a \vee \neg b) \wedge b \wedge (\neg a \vee \neg b)$$

Resolution

$$a = \odot$$

$$b = True$$

Complexity and restricted versions

Complexity

- First known **NP-complete** problem, as proved by *Stephen Cook* in 1971 and *Leonid Levin* in 1973;
- Every decision problem in NP can be reduced to the SAT problem;
- Cook's reduction preserves the number of accepting answers.

Some restricted versions

- 3-SAT: each clause is limited to at most 3 literals → NP-complete
- 2-SAT: each clause is limited to at most 2 literals → Polynomial
- MAX-SAT: the problem of determining the maximum number of clauses that can be made true by an assignment. → APX-Complete

Complexity and restricted versions

Some resctricted versions

- 3-SAT: each clause is limited to at most 3 literals → NP-complete
- 2-SAT: each clause is limited to at most 2 literals → **Polynomial**
- MAX-SAT: the problem of determining the maximum number of clauses that can be made true by an assignment. → APX-Complete

MAX-SAT

$$\phi = (x_0 \vee x_1) \wedge (x_0 \vee \neg x_1) \wedge (\neg x_0 \vee x_1) \wedge (\neg x_0 \vee \neg x_1)$$

 ϕ is not satisfiable \odot . However, there exists an assignation of ϕ s.t 3 of 4 clauses are true.

Therefore, if this formula is given as an instance of the MAX-SAT problem, the solution to the problem is $3 \odot$.

Applications

Example of a application (in real life)

The Sudoku problem

Figure 1: A typical Sudoku puzzle

Rules

The objective is to fill a 9×9 grid with digits so that each column, each row, and each of the nine 3×3 subgrids that compose the grid contain all of the digits from 1 to 9.

Reduce Sudoku to SAT

Goal: Reduce an instante of Sudoku to an instance (formula) ϕ_G of SAT

Rules

- <u>Definedness</u>: each <u>cell</u>, each <u>row</u>, each <u>column</u> and each <u>block</u> having <u>at least</u> one number from 1 to n;
- Uniqueness: same but with at most one number from 1 to n.

Rules

- <u>Definedness</u>: each <u>cell</u>, each <u>row</u>, each <u>column</u> and each <u>sub-grid</u> having <u>at least</u> one number from 1 to n;
- Uniqueness: same but with at most one number from 1 to n.

Variable s_{xyz} is assigned true *iff* the entry in row x and column y is assigned to number z.

Definedness

Uniqueness

Rules

- <u>Definedness</u>: each cell, each row, each column and each sub-grid having at least one number from 1 to n;
- Uniqueness: same but with at most one number from 1 to n.

	Definedness	Uniqueness
Cell	$\bigwedge_{x=1}^{9} \bigwedge_{y=1}^{9} \bigvee_{z=1}^{9} s_{xyz}$	$\bigwedge_{x=1}^{9} \bigwedge_{y=1}^{9} \bigwedge_{z=1}^{8} \bigwedge_{i=z+1}^{9} \left(\neg S_{xyz} \vee \neg S_{xyi} \right)$

Rules

- <u>Definedness</u>: each <u>cell</u>, each <u>row</u>, each <u>column</u> and each <u>sub-grid</u> having <u>at least</u> one number from 1 to n;
- Uniqueness: same but with at most one number from 1 to n.

	Definedness	Uniqueness
Cell	$\bigwedge_{x=1}^{9} \bigwedge_{y=1}^{9} \bigvee_{z=1}^{9} s_{xyz}$	$\bigwedge_{x=1}^{9} \bigwedge_{y=1}^{9} \bigwedge_{z=1}^{8} \bigwedge_{i=z+1}^{9} (\neg s_{xyz} \vee \neg s_{xyi})$
Row	$\bigwedge_{y=1}^{9} \bigwedge_{z=1}^{9} \bigvee_{x=1}^{9} s_{xyz}$	

Rules

- <u>Definedness</u>: each <u>cell</u>, each <u>row</u>, each <u>column</u> and each <u>sub-grid</u> having <u>at least</u> one number from 1 to n;
- Uniqueness: same but with at most one number from 1 to n.

	Definedness	Uniqueness	
Cell	$\bigwedge_{x=1}^{9} \bigwedge_{y=1}^{9} \bigvee_{z=1}^{9} s_{xyz}$	$\bigwedge_{x=1}^{9} \bigwedge_{y=1}^{9} \bigwedge_{z=1}^{8} \bigwedge_{i=z+1}^{9} (\neg s_{xyz} \vee \neg s_{xyi})$	
Row	$\bigwedge_{y=1}^{9} \bigwedge_{z=1}^{9} \bigvee_{x=1}^{9} s_{xyz}$	$\bigwedge_{y=1}^{9} \bigwedge_{z=1}^{9} \bigwedge_{x=1}^{8} \bigwedge_{i=x+1}^{9} (\neg s_{xyz} \vee \neg s_{iyz})$	
Column	$\bigwedge_{x=1}^{9} \bigwedge_{z=1}^{9} \bigvee_{y=1}^{9} s_{xyz}$	$\bigwedge_{x=1}^{9} \bigwedge_{z=1}^{9} \bigwedge_{y=1}^{8} \bigwedge_{i=y+1}^{9} (\neg s_{xyz} \vee \neg s_{xiz})$	

Rules

- <u>Definedness</u>: each cell, each row, each column and each sub-grid having at least one number from 1 to n;
- Uniqueness: same but with at most one number from 1 to n.

	Definedness	Uniqueness	
Cell	$\bigwedge_{x=1}^{9} \bigwedge_{y=1}^{9} \bigvee_{z=1}^{9} s_{xyz}$	$\bigwedge_{x=1}^{9} \bigwedge_{y=1}^{9} \bigwedge_{z=1}^{8} \bigwedge_{i=z+1}^{9} (\neg s_{xyz} \vee \neg s_{xyi})$	
Row	$\bigwedge_{y=1}^{9} \bigwedge_{z=1}^{9} \bigvee_{x=1}^{9} s_{xyz}$	$\bigwedge_{y=1}^{9} \bigwedge_{z=1}^{9} \bigwedge_{x=1}^{8} \bigwedge_{i=x+1}^{9} (\neg s_{xyz} \vee \neg s_{iyz})$	
Column	$\bigwedge_{x=1}^{9} \bigwedge_{z=1}^{9} \bigvee_{y=1}^{9} s_{xyz}$	$\bigwedge_{x=1}^{9} \bigwedge_{z=1}^{9} \bigwedge_{y=1}^{8} \bigwedge_{i=y+1}^{9} (\neg s_{xyz} \vee \neg s_{xiz})$	
Sub-grid	$\bigwedge_{i=0}^{2} \bigwedge_{j=0}^{2} \bigwedge_{x=1}^{3} \bigwedge_{y=1}^{3}$	Not enough space to write it down	
	$\bigvee_{z=1}^{9} s_{(3i+x)(3j+y)z}$	but you have the idea ©	

Table 1: Rule table

What do we get ?

The same Soduko problem solved

Figure 2: A typical Sudoku puzzle

Steps

- 1. Create the SAT formula using the different rules seen above;
- 2. Give this formula to a SAT solver;
- 3. Interpreting the result (i.e $s_{134} = true$ means there is a 4 in the 1st line and 3rd column.)

Tseytin tranformation

Problem

How to transform any logical formula into CNF?

The tseytin transformation

Consider the following formula Φ:

$$\Phi = ((p \lor q) \land r) \to (\neg s)$$

Consider all subformulas (without variables):

$$\begin{array}{c}
\neg s \\
p \lor q \\
(p \lor q) \land r) \\
((p \lor q) \land r) \to (\neg s)
\end{array}$$

Tseytin tranformation

$$\Phi = ((p \lor q) \land r) \to (\neg s)$$

Introduce a new variable for each subformula:

$$X_1 \leftrightarrow \neg S$$

$$X_2 \leftrightarrow p \lor q$$

$$X_3 \leftrightarrow X_2 \land r$$

$$X_4 \leftrightarrow X_3 \rightarrow X_1$$

Conjunct all substitutions:

$$x_4 \land \left(x_4 \leftrightarrow x_3 \rightarrow x_1\right) \land \left(x_3 \leftrightarrow x_2 \land r\right) \land \left(x_2 \leftrightarrow p \lor q\right) \land \left(x_1 \leftrightarrow \neg s\right)$$

All substitutions can be transformed into CNF, e.g:

$$x_{2} \leftrightarrow p \lor q \equiv (x_{2} \rightarrow (p \lor q)) \land ((p \lor q) \rightarrow x_{2})$$
$$\equiv (\neg x_{2} \lor p \lor q) \land ((\neg p \land \neg q) \lor x_{2})$$
$$\equiv (\neg x_{2} \lor p \lor q) \land (\neg p \lor x_{2}) \land (\neg q \lor x_{2})$$

Polynomial-time Reduction

Definition

Problem Y is polynomial-time reductible to problem X if arbitraty instances of problem Y cans be solved using:

- Polynomial number of standard computational steps;
- Polynomial number of calls to the algorithm that solves problem X.

We note that $Y \leq_p X$

Consequences of $Y \leq_p X$

- if X can be solved in polynomial-time, then Y can alors be solved in polynomiam time;
- If Y cannot be solved in polynomial-time, then X cannot be solved in polynomial time.

Claim

 $3-SAT \leq_p INDEPENDENT-SET$

Proof

Given an instance Φ of 3-SAT, we construct an instance (G,K) of INDEPENDENT-SET that has an independent set of size k iff Φ is satisfiable.

Claim 3-SAT \leq_p INDEPENDENT-SET

Construction

- G contains 3 vertices for each clause, one for each literal;
- Connect the 3 literals in a clause in a triangle;
- Connect literal to each of its negations.

$$\Phi = \left(\neg x_1 \vee x_2 \vee x_3\right) \wedge \left(x_1 \vee \neg x_2 \vee x_3\right) \wedge \left(\neg x_1 \vee \neg x_2 \vee \neg x_3\right)$$

Claim

 $3-SAT \leq_p INDEPENDENT-SET$

Proof of if-part

Let s be independent set of size k.

- S must contrain exactly one vertex in each triangle;
- Set these literals to true;
- Truth assignment is consistent and all clauses are satisfied.

$$\Phi = \left(\neg x_1 \vee x_2 \vee x_3 \right) \wedge \left(x_1 \vee \neg x_2 \vee x_3 \right) \wedge \left(\neg x_1 \vee \neg x_2 \vee \neg x_3 \right)$$

Claim

 $3-SAT \leq_p INDEPENDENT-SET$

Proof of only-if partGiven satisfying assignment, select one true literals from each triangle.

This is an independent set of size k.

$$\Phi = \left(\neg x_1 \vee x_2 \vee x_3 \right) \wedge \left(x_1 \vee \neg x_2 \vee x_3 \right) \wedge \left(\neg x_1 \vee \neg x_2 \vee \neg x_3 \right)$$

Many other applications

Example of applications

- Cryptography;
- Planification:
- Resolving software package dependencies

How do SAT solvers work?

The naive method

Using a truth table

The most obvious way to solve a SAT problem is to go through the truth table of the problem.

Example

$$\Phi = (a \lor b) \land (\neg a \lor \neg b)$$

а	b	a∨b	$\neg a \lor \neg b$	Ф
true	true	true	false	false
true	false	true	true	true
false	true	true	true	true
false	false	false	true	false

 \implies Complexity : $0(2^n)$

The DPLL algorithm (1962)

The Davis–Putnam–Logemann–Loveland (DPLL) algorithm is a complete, backtracking-based search algorithm for deciding the satisfiability of propositional logic formulae Φ

Major innovations

- Unit propagation
- Pure literal elimination
- Backtracking

Unit propagation

Unit propagation

If a clause is a **unit clause**, i.e. it contains only a single literal *I*, We can apply the following two rules:

- Every clause (other than the unit clause itself) containing / is removed;
- in every clause that contains $\neg I$, this literal is deleted.

Example

$$\Phi = (a \lor b) \land (\neg a \lor c) \land (\neg c \lor d) \land a$$

$$a \lor b$$
 $\neg a \lor c$
 $\neg c \lor d$
 a

The following set of clauses can be simplified by unit propagation because it contains the unit clause a.

Unit propagation

Unit propagation

If a clause is a **unit clause**, i.e. it contains only a single literal *I*, We can apply the following two rules:

- Every clause (other than the unit clause itself) containing / is removed;
- in every clause that contains $\neg I$, this literal is deleted.

Example

The following set of clauses can be simplified by unit propagation because it contains the unit clause a.

Unit propagation

Unit propagation

If a clause is a **unit clause**, i.e. it contains only a single literal *I*, We can apply the following two rules:

- Every clause (other than the unit clause itself) containing / is removed;
- in every clause that contains $\neg I$, this literal is deleted.

Example

$$c$$
 $\neg c \lor d$
 a

The following set of clauses can be simplified by unit propagation because it contains the unit clause c.

Unit propagation

Unit propagation

If a clause is a **unit clause**, i.e. it contains only a single literal *I*, We can apply the following two rules:

- Every clause (other than the unit clause itself) containing / is removed;
- in every clause that contains $\neg I$, this literal is deleted.

Example

С

d

а

The following set of clauses can be simplified by unit propagation because it contains the unit clause contains the unit

Pure literal elimination

Pure literal elimination

If a literal / occurs with only one polarity in the formula, it is called **pure**. Pure literals can always be assigned in a way that makes all clauses containing them true.

Example

$$\phi = (a \lor b) \land (\neg a \lor c) \land (\neg c \lor d \lor b) \land a$$

We have the following variable assignment:

Let's take the following $\mbox{ formula }\Phi,$ represented by a set of clauses :

$$a \lor b \lor c$$

$$a \lor \neg b \lor \neg c$$

$$a \lor b \lor \neg c$$

$$\neg a \lor \neg b \lor c$$

Action taken

First of all, we choose arbitrarily a variable

$$a \lor b \lor c$$

 $a \lor \neg b \lor \neg c$
 $a \lor b \lor \neg c$
 $\neg a \lor \neg b \lor c$

Action taken

We make a **choice**, the variable takes the value $\mathbf{0}$. Some clauses become **true** \checkmark .

$$a \lor b \lor c$$

$$a \lor \neg b \lor \neg c$$

$$a \lor b \lor \neg c$$

$$\neg a \lor \neg b \lor c \checkmark$$

Action taken

After severals decisions, we have a conflict conflit x

Action taken

We make an backtrack to the upper level and try to assign the variable by the **opposite** value.

Action taken

Actions are repeated until all clauses are true or have gone through the tree.

Action taken

Actions are repeated until all clauses are true or have gone through the tree.

DPLL algorithm

Satisfiability

- To prove the satisfiability, it is enough to find an assignment of the variables valid.
- To prove the non-satisfiability, one must go through the tree entirely.

```
    function DPLL(a set of clause Φ)

        if \Phi is a consistent set of literals then
 3:
             return true;
        end if
 4:
        if \Phi contains an empty clause then
             return false:
 6.
        end if
 7.
        for every unit clause L in \Phi do
9:
             \Phi \leftarrow unit\text{-}propagate(L, \Phi);
        end for
10:
        for every literal l that occurs pure in \Phi do
11.
             \Phi \leftarrow pure-literal-assign(l, \Phi);
12:
13:
        end for
14:
        l \leftarrow choose-literal(\Phi);
        return DPLL(\Phi \wedge l) or DPLL(\Phi \wedge \bar{l});
15:
16: end function
```

Algorithme CDCL (conflict-driven clause learning)

Innovations

• Learning phase: Thanks to the resolution rule, we can create new clauses, which are called learned clauses;

Resolution rule [Robinson '65]

Let C_1 and C_2 two clauses such that:

$$C_1 = a \lor b \lor c \lor d$$

 $C_2 = \neg d \lor e \lor f$

We apply the resolution rule on d:

Resolution rule [Robinson '65]

More formally,

Let C_1 and C_2 be two clauses, the resolution rule gives us:

$$(C_1 \vee x) \wedge (C_2 \vee \neg x) \vdash C_1 \vee C_2$$

We call $C_1 \vee C_2$ the resolvent of $C_1 \vee x$ and $C_2 \vee \neg x$.

Resolution rule [Robinson '65]

More formally,

Let C_1 and C_2 be two clauses, the resolution rule gives us:

$$(C_1 \vee x) \wedge (C_2 \vee \neg x) \vdash C_1 \vee C_2$$

We call $C_1 \vee C_2$ the resolvent of $C_1 \vee x$ and $C_2 \vee \neg x$.

Figure 3: Graphical representation of the resolution

Algorithme CDCL (conflict-driven clause learning)

Innovations

- Learning phase: Thanks to the resolution rule, we can create new clauses, which are called learned clauses;
- non-chronological backtracking: It becomes possible to go back to a decision more old than the last decision:
- restarts: It is permitted for the solver to start the search again at any time.

modern SAT solvers

```
\Phi: set of initials clauses \Sigma: set of learnts clauses.
```

Algorithm 1 modern SAT solvers

```
While \Box \notin \Phi \cup \Sigma do
C \leftarrow learntClause()
\Sigma = \Sigma \cup C
If Full(\Sigma) Then
\Delta = DeleteClause(\Sigma)
\Sigma = \Sigma \backslash \Delta
End If
End While
```

Our work

Formula

Let $\Phi = C_1 \wedge C_2 \wedge ... \wedge C_{11}$, s.t. $\forall i \in [1..11], C_i$ any clause.

Resolution graph

Definition

The resolution graph is a directed acyclic graph (or **DAG**) such that:

- Leaves are **initials** clauses;
- Internal nodes are learnts clauses;
- The root is the **empty** clause.

We call it the proof produced by the SAT solver.

Representation of a real proof

Figure 4: Force-Directed layout of the Dependency Graph for the benchmark een-pico-prop-05. The color shows the **degree** of each node.

Information

Formula

clauses:

55585

variables:

50076

Conflicts

conflicts:

59792

CPU time: 6s

Graph

vertices:

51274

edges:

960620

Examples of SAT solvers

Pysat: A toolkit for SAT-based prototyping in Python

PySAT

PySAT is a Python (2.7, 3.4+) toolkit, which aims at providing a simple and unified interface to a number of state-of-art SAT solvers.

Pros:

- In Python;
- Great documentation;
- Easy to install (pipinstallpython SAT)

(Major) Cons:

Less powerful than other solvers

Pysat: A toolkit for SAT-based prototyping in Python

```
>>> from pysat.solvers import Glucose3
>>> g = Glucose3()
>>> g.add_clause([-1, 2])
>>> g.add_clause([-2, 3])
>>> print g.solve()
>>> print g.get_model()
...
True
[-1, -2, -3]
```

Figure 5: Trivial example using PySAT

Glucose

Glucose

Glucose is a winning award SAT solvers developped in LaBRI and CRIL by Laurent Simon and Gilles Audemard.

Pros:

- Developped in LaBRI ©
- Powerful;
- Relatively easy to implement.

Glucose

```
./glucose ~/Desktop/These/Benchs-POS14/2008-satrace/satelited/een-pico-prop05-75.satelited.cnf.gz
 This is glucose 4.0 -- based on MiniSAT (Many thanks to MiniSAT team)
  Number of variables:
                             18188
    Number of clauses:
                             87504
   Parse time:
                             0.05 s
   Preprocesing is fully done
   Eliminated clauses:
                             0.01 Mb
   Simplification time:
                             0.05 s
                -----[ MAGIC CONSTANTS ]------
  | Constants are supposed to work well together :-)
   however, if you find better choices, please let us known...
   Adapt dynamically the solver after 100000 conflicts (restarts, reduction strategies...)
   - Restarts:
                               - Reduce Clause DB:
                                                            - Minimize Asserting:
    * LBD Queue
                                 * First
                                               2000
                                                              * size < 30
                                               300
                                                              * 1bd < 6
     * Trail Queue :
                                 * Inc
     * K
                     0.80
                                 * Special :
                                              1000
     * R
                                 * Protected : (1bd)< 30
  RESTARTS
                                    ORIGINAL
                                                                LEARNT
                                                                                 | Progress
        NB Blocked Avg Cfc
                               Vars Clauses Literals
                                                                     LBD2 Removed
                                                      Red Learnts
                        263
                              18131
                                      87321
                                             328060 I
                                                             5160
                                                                     2076
                                                                            4716 | 0.236 % |
        89
                85
                              18119
                                      87230
                                             327836
                                                        3
                                                             8927
                                                                     3811
                                                                            10918
                                                                                   0.302 %
       129
                161
                       232
                              18113
                                      87198
                                            327772 İ
                                                            18921
                                                                     5193
                                                                            10918
                                                                                   0.335 %
       200
                227
                        200
                              18111
                                      87186
                                             327748
                                                            19552
                                                                     5975
                                                                            20285
       243
                        205
                              18108
                                      87165
                                             327694 i
                                                            29479
                                                                     6770
       324
                376
                       185
                              18108
                                      87165
                                             327694
                                                            26139
                                                                     7200
                                                                            33625
       418
                486
                              18105
                                      87149
                                             327621
                                                            35439
                                                                     7494
                                                                            33625 I
                                                                                   9.379 %
                    : 451 (167 conflicts in avg)
 blocked restarts
                    : 419 (multiple: 149)
c last block at restart : 451
c nb ReduceDB
c nb removed Clauses
                    : 33625
c nb learnts DL2
                    : 7613
c nb learnts size 2
                    : 2311
c nb learnts size 1
c conflicts
                    : 75590
                                   (28861 /sec)
 decisions
                    : 338134
                                   (0.00 % random) (129101 /sec)
c propagations
                    : 22747444
                                   (8685068 /sec)
c nb reduced Clauses
c CPU time
                    : 2.61914 s
s UNSATISFIABLE
```

Conclusion

Thank you!
Questions? ©