2-2-2 K

E Let A be the given materix with columns as a, , az , ... an

[a, az - · · an]

Plane sepresenting subspace which is the column space of A.

Any vector in this plane can be represented as a linear combination of columns of A.

Let so be the coefficient vector of that lineal combination which gives the dosest vector to b in collepace (A).

Terom the figure its clear that 6-Asi I plane Hence any vector in the plane is perpendicular to 6-Asi. a, az ... an are all in this plane. So we have

 $a_1^T(b-A\widehat{x})=0$, $a_2^T(b-A\widehat{x})=0$, ... $a_n^T(b-A\widehat{x})=0$ Hence, the name "normal equations" Rogether, we can write them as $A^{T}(b-Ax)=0$ $A^{T}b=A^{T}Ax$

It the column of A one linearly dependent one con home infainte solutions.

Becouse columns one dependent we have Ay = 0 for some $y \neq 0$.

For \widehat{SC} is the least equales solution $||A\widehat{SC} - b||_2^2 = \min_{SC \in \mathbb{R}^n} ||ASC - b||_2^2$

then any solution of the boun Si + dy is also a solution (d is any sed number)

because $A(\Re + \alpha y) - b$ $= A \Re + \alpha A y - b$ $= A \Re - b \quad [::, Ay = 0].$