Aufgabe

Überprüfe die folgenden Funktionen auf Injektivität, Surjektivität und Bijektivität:

- 1. $f_1: \mathbb{Z} \to \mathbb{Z}, z \mapsto z$
- 2. $f_2: \mathbb{Z} \to \mathbb{Q}, z \mapsto z$
- 3. $f_3: \mathbb{Z} \to \mathbb{N}, z \mapsto \binom{n}{z}$ für gegebenes $n \in \mathbb{N}$
- 4. $f_4: \mathbb{R} \to f_4(\mathbb{R}), \ y \mapsto y^2$

Lösung

1. Funktion $f_1: \mathbb{Z} \to \mathbb{Z}, z \mapsto z$

Diese Funktion ist die Identitätsfunktion auf den ganzen Zahlen. Injektivität: Seien $z_1, z_2 \in \mathbb{Z}$ mit $f_1(z_1) = f_1(z_2)$. Dann gilt:

$$f_1(z_1) = f_1(z_2) \Rightarrow z_1 = z_2$$

Also ist f_1 injektiv.

Surjektivität: Sei $y \in \mathbb{Z}$ beliebig. Wir müssen ein $z \in \mathbb{Z}$ finden mit $f_1(z) = y$. Wähle z = y. Dann gilt:

$$f_1(z) = f_1(y) = y$$

Also ist f_1 surjektiv.

Bijektivität: Da f_1 sowohl injektiv als auch surjektiv ist, ist f_1 bijektiv.

2. Funktion $f_2: \mathbb{Z} \to \mathbb{Q}, z \mapsto z$

Diese Funktion bettet die ganzen Zahlen in die rationalen Zahlen ein.

Injektivität: Seien $z_1, z_2 \in \mathbb{Z}$ mit $f_2(z_1) = f_2(z_2)$. Dann gilt:

$$f_2(z_1) = f_2(z_2) \Rightarrow z_1 = z_2$$

(in \mathbb{Q} , aber da z_1, z_2 ganze Zahlen sind, folgt die Gleichheit auch in \mathbb{Z}). Also ist f_2 injektiv.

Surjektivität: Die Funktion f_2 ist nicht surjektiv. Gegenbeispiel: Es gibt kein $z \in \mathbb{Z}$ mit $f_2(z) = \frac{1}{2}$, da $\frac{1}{2} \notin \mathbb{Z}$.

Bijektivität: Da f_2 nicht surjektiv ist, ist f_2 auch nicht bijektiv.

3. Funktion $f_3: \mathbb{Z} \to \mathbb{N}, z \mapsto \binom{n}{z}$ für gegebenes $n \in \mathbb{N}$

Zunächst müssen wir klären, wie der Binomialkoeffizient $\binom{n}{z}$ für $z \in \mathbb{Z}$ definiert ist. Für z < 0 oder z > n ist $\binom{n}{z} = 0$ per Definition. Für $0 \le z \le n$ ist $\binom{n}{z} = \frac{n!}{z!(n-z)!}$.

Injektivität: Die Funktion f_3 ist im Allgemeinen nicht injektiv. Gegenbeispiel: Für $n \ge 1$ gilt $f_3(-1) = \binom{n}{-1} = 0$ und $f_3(n+1) = \binom{n}{n+1} = 0$. Da $-1 \ne n+1$ aber $f_3(-1) = f_3(n+1)$, ist f_3 nicht injektiv.

Surjektivität: Die Funktion f_3 ist im Allgemeinen nicht surjektiv. Für n=0 gilt $f_3(z)=\binom{0}{z}=1$ für z=0 und $f_3(z)=0$ für $z\neq 0$. Also nimmt f_3 nur

die Werte 0 und 1 an, aber nicht alle natürlichen Zahlen. Selbst für größere nwerden nicht alle natürlichen Zahlen erreicht.

Bijektivität: Da f_3 weder injektiv noch surjektiv ist, ist f_3 nicht bijektiv. **4. Funktion** $f_4: \mathbb{R} \to f_4(\mathbb{R}), y \mapsto y^2$ Zunächst bestimmen wir $f_4(\mathbb{R})$: Da $y^2 \ge 0$ für alle $y \in \mathbb{R}$, ist $f_4(\mathbb{R}) = \mathbb{R}_{\ge 0} = 0$ $[0,\infty)$.

Injektivität: Die Funktion f_4 ist nicht injektiv. Gegenbeispiel: $f_4(2) = 4 =$ $f_4(-2)$, aber $2 \neq -2$.

 $Surjektivit \ddot{a}t:$ Per Definition des Zielbereichs als $f_4(\mathbb{R})$ ist f_4 surjektiv. Für jedes $z \in f_4(\mathbb{R}) = [0, \infty)$ existiert ein $y \in \mathbb{R}$ mit $f_4(y) = z$, nämlich $y = \sqrt{z}$ $(\text{oder } y = -\sqrt{z}).$

Bijektivität: Da f_4 nicht injektiv ist, ist f_4 nicht bijektiv.