

- PROBLEM STATEMENT
- 2 SUBMODULARITY
- 3 PROPOSED SOLUTIONS
- EXPERIMENTAL RESULTS
- CONCLUSION
- REFERENCES

TABLE OF CONTENT

This is the material point that will be delivered in the presentation.

PROBLEM STATEMENT

Given m billboard slots and n tags, select k slots from m and I tags from n to maximize an influence function, which returns a positive value for two subsets. The goal is to find the best subsets of slots and tags, considering constraints on m, n, k, and I.

$$pr(t, \mathcal{BS}|\mathcal{H}') = 1 - \prod_{b_i \in \mathcal{BS}} (1 - pr(t, b_i|\mathcal{H}'))$$

SUBMODULARITY

SET FUNCTIONS?

Definition 1.1 (Discrete derivative) For a set function $f: 2^V \to \mathbb{R}$, $S \subseteq V$, and $e \in V$, let $\Delta_f(e \mid S) := f(S \cup \{e\}) - f(S)$ be the discrete derivative of f at S with respect to e.

Where the function f is clear from the context, we drop the subscript and simply write $\Delta(e \mid S)$.

Definition 1.2 (Submodularity) A function $f: 2^V \to \mathbb{R}$ is submodular if for every $A \subseteq B \subseteq V$ and $e \in V \setminus B$ it holds that

$$\Delta(e \mid A) \ge \Delta(e \mid B)$$
.

Equivalently, a function $f: 2^V \to \mathbb{R}$ is submodular if for every $A, B \subseteq V$,

$$f(A \cap B) + f(A \cup B) \le f(A) + f(B).$$

SUBMODULARITY

BISUBMODULARITY

Definition 4 (Simple Bisubmodularity). $f: 2^{2V} \to \mathbb{R}$ is simple bisubmodular iff for each $(A, B) \in 2^{2V}$, $(A', B') \in 2^{2V}$ with $A \subseteq A'$, $B \subseteq B'$ we have for $s \notin A'$ and $s \notin B'$:

$$f(A+s,B) - f(A,B) \ge f(A'+s,B') - f(A',B'),$$

 $f(A,B+s) - f(A,B) \ge f(A',B'+s) - f(A',B').$

Equivalently, $\forall (A, B), (A', B') \in 2^{2V}$,

$$f(A, B) + f(A', B') \ge f(A \cup A', B \cup B') + f(A \cap A', B \cap B')$$

PROPOSED SOLUTIONS

INCREMENTAL GREEDY

Theorem 1.5 (Nemhauser et al. 1978) Fix a nonnegative monotone submodular function $f: 2^V \to \mathbb{R}_+$ and let $\{S_i\}_{i\geq 0}$ be the greedily selected sets defined in Eq. (2). Then for all positive integers k and ℓ ,

$$f(S_{\ell}) \ge \left(1 - e^{-\ell/k}\right) \max_{S:|S| \le k} f(S).$$

In particular, for $\ell = k$, $f(S_k) \ge (1 - 1/e) \max_{|S| \le k} f(S)$.

INCREMENTAL GREEDY ON BISUBMODULAR

FUNCTIONS

3.2 Coordinate-wise Maximization

Simple bisubmodular functions can also be maximized using a coordinate-wise procedure. Consider

$$\max_{A,B} f(A,B)$$

subject to $(A,B) \in 2^{2V}, |A| \le k_1, |B| \le k_2.$

If f is simple then it suffices to solve the following pair of submodular optimizations:

$$A^* = \underset{A \subseteq V: |A| \le k_1}{\operatorname{argmax}} f(A, \emptyset),$$
$$B^* = \underset{B \subseteq V: |B| \le k_2}{\operatorname{argmax}} f(A^*, B),$$

STOCHASTIC GREEDY

Algorithm 1 Stochastic-Greedy

```
Input: f: 2^V \to \mathbb{R}_+, k \in \{1, \dots, n\}. Output: A set A \subseteq V satisfying |A| \leq k.
```

- 1: $A \leftarrow \emptyset$.
- 2: **for** $(i \leftarrow 1; i \leq k; i \leftarrow i + 1)$ **do**
- 3: $R \leftarrow$ a random subset obtained by sampling s random elements from $V \setminus A$.
- 4: $a_i \leftarrow \operatorname{argmax}_{a \in R} \Delta(a|A)$.
- 5: $A \leftarrow A \cup \{a_i\}$
- 6: **return** A.

COST EFFECTIVE LAZY FORWARD (CELF)

GREEDY

CELF exploits the sub-modularity property of the spread function, which implies that the marginal spread of a given node in one iteration of the Greedy algorithm cannot be any larger than its marginal spread in the previous iteration.

EXPERIMENTAL DATASETS

NEW YORK
TRAJECTORY
DATASET

Publicly Available

LAMAR BILLBOARD DATASET

Crawled from LAMAR Website

LOS ANGELES
TRAJECTORY
DATASET

Publicly Available

EXPERIMENTAL RESULTS

CELF GREEDY

Results of Lamar Dataset						
No. of Slots	K=25	K=50	K=100	K=150	K= 200	
Time Taken in Sec	61485.57943	61854.74085	62689.64432	63214.32614	63785.55542	
Result	353.7404895	369.5898047	394.9954823	417.6126929	437.559641	

STOCHASTIC E=0.01

GREEDY

ε=0.1

Results of Lamar Dataset							
No. of Slots	K=25	K=50	K=100	K=150	K= 200		
Time Taken in Sec	194298.4948	193833.562	194488.2101	194766.0431	194082.7281		
Result	353.3561835	368.7431633	390.7733548	415.4038416	434.214302		

Results of Lamar Dataset						
No. of Slots	K=25	K=50	K=100	K=150	K= 200	
Time Taken in Sec	126879.7828	126276.4872	125925.3747	124943.1319	126094.7665	
Result	328.8263501	315.0778075	377.0743121	376.2403809	415.3912859	

CONCLUSION

- 1. On the experimental dataset, it is evident that CELF Greedy consumes significantly less time compared to both Incremental Greedy and Stochastic Greedy.
- 2. While the worst-case scenario for CELF Greedy is comparable to Incremental Greedy, experimental results demonstrate that CELF Greedy performs notably better.
- 3. Stochastic Greedy is independent of the values of k and l, showcasing its consistent behavior across various parameter settings.

PROPOSED BASELINE ALGORITHMS

- 1.TOP K TOP L
- 2.TOP K RANDOM
- 3.RANDOM TOP L
- 4. MAXIMUM COVERAGE

REFERENCES

- 1. Krause, A., & Golovin, D. (Submodular Function Maximization, 2010).
- 2. Singh, A. P., Guillory, A., & Bilmes, J. (On Bisubmodular Maximization, University of Washington, 2012).
- 3. Ali, D., Banerjee, S., & Prasad, Y. (Influential Billboard Slot Selection using Pruned Submodularity Graph, IIT Jammu, 2022).
- 4. Ali, D., Banerjee, S., & Prasad, Y. (Influential Billboard Slot Selection using Spatial Clustering and Pruned Submodularity Graph, 2023).
- 5. Mirzasoleiman, B., Badanidiyuru, A., Karbasi, A., Vondrák, J., & Krause, A. (Lazier Than Lazy Greedy, ETH Zurich, Google Research, Yale University, IBM Almaden, 2015).