Metodologia Ecológica

- Análise de Covariância ANCOVA
- Partição da variação explicada por cada fator em ANOVA
- Fatores fixos e fatores aleatórios em ANOVA

Source	Degrees of freedom (df)	Sum of squares (SS)	Mean square (MS)	Expected mean square	F-ratio	P-value
Among groups	a-1	$\sum_{i=1}^{a} \sum_{j=1}^{n} (\overline{Y}_i - \overline{Y})^2$	$\frac{SS_{among\ groups}}{(a-1)}$	$\sigma^2 + n\sigma_A^2$	MS _{among groups} MS _{within groups}	F-distribution
						with $(a-1)$ $a(n-1)$ degrees of freedom
Within groups (residual)	a(n-1)	$\sum_{i=1}^{a} \sum_{j=1}^{n} (Y_{ij} - \overline{Y}_{i})^{2}$	$\frac{SS_{within\ groups}}{a(n-1)}$	σ^2		
Total	an-1	$\sum_{i=1}^{a} \sum_{i=1}^{n} (Y_{ij} - \overline{Y})^{2}$	$\frac{SS_{total}}{(an-1)}$	σ_{γ}^2		

TABLE 10.3 One-way ANOVA table for the hypothetical data in Table 10.1

Source	Degrees of freedom (df)	Sum of squares (SS)	Mean square (MS)	F-ratio	P-value
Among groups	2	22.17	11.08	5.11	0.033
Within groups (residual)	9	19.50	2.17		
Total	11	41.67			

$$Var Proporcional_A = \frac{\sigma_A^2}{\sigma_A^2 + \sigma_e^2}$$

$$\sigma_e^2 = QM_{dentro}$$

$$\sigma_e^2 + n\sigma_A^2 = QM_{entre}$$

$$\sigma_A^2 = \frac{QM_{entre} - QM_{dentro}}{n}$$

$$\sigma_A^2 = \frac{(QM_{entre} - QM_{dentro})(a-1)}{na}$$

Component of variance	Fixed effects model (A fixed, B fixed)	Random effects model (A random, B random)	Mixed effects model (A fixed, B random)
A	$\frac{(MS_A - MS_{residual})(a-1)}{abn}$	$\frac{(MS_A - MS_{A \times B})}{bn}$	$\frac{(MS_A - MS_{A \times B})(a-1)}{bna}$
В	$\frac{(MS_B - MS_{residual})(b-1)}{abn}$	$\frac{(MS_B - MS_{A \times B})}{an}$	$\frac{(MS_B - MS_{A \times B})}{an}$
$A \times B$	$\frac{(MS_{A\times B}-MS_{residual})(a-1)(b-1)}{abn}$	$\frac{(MS_{A\times B} - MS_{residual})}{n}$	$\frac{(MS_{A\times B} - MS_{residual})}{n}$
Residual	MS _{residual}	MS _{residual}	MS _{residual}

Prof. Marcus Vinícius Vieira - Instituto de Biologia UFRJ

Source	Degrees of freedom (df)	Sum of squares (SS)	Mean square (MS)	Expected mean square	F-ratio	P-value
Factor A	a-1	$\sum_{i=1}^a \sum_{j=1}^b \sum_{k=1}^n (\overline{Y}_i - \overline{Y})^2$	$\frac{SS_A}{(a-1)}$	$\sigma^2 + n\sigma_{AB}^2 + nb\sigma_A^2$	$\frac{MS_A}{MS_{AB}}$	Tail of the F-distribution with $(a-1)$ (a-1)(b-1) degrees of freedom
Factor B	b-1	$\sum_{i=1}^a \sum_{j=1}^b \sum_{k=1}^n (\overline{Y}_j - \overline{Y})^2$	$\frac{SS_B}{(b-1)}$	$\sigma^2 + n\sigma_{AB}^2 + na\sigma_B^2$	$\frac{MS_B}{MS_{AB}}$	Tail of the F-distribution with $(b-1)$ (a-1)(b-1) degrees of freedom
Interaction $(A \times B)$	(a-1)(b-1)		$\frac{SS_{AB}}{(a-1)(b-1)}$	$\sigma^2 + n\sigma_{AB}^2$	MS _{AB} MS _{within groups}	Tail of the F-distribution with $(a-1)(b-1)$, $ab(n-1)$ degrees of freedom
Within groups (residual)	ab(n-1)	$\sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{n} (Y_{ijk} - \overline{Y}_{ij})^{2}$	$\frac{SS_{within groups}}{ab(n-1)}$	σ ²		
Total	abn-1	$\sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{n} (Y_{ijk} - \overline{Y})^{2}$	$\frac{SS_{total}}{(abn-1)}$	σ_{γ}^2		

Source	Degrees of freedom (df)	Sum of squares (SS)	Mean square (MS)	Expected mean square	F-ratio	P-value
Factor A	a-1	$\sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{n} (\overline{Y}_{i} - \overline{Y})^{2}$	$\frac{SS_A}{(a-1)}$	$\sigma^2 + nb\sigma_A^2$	MS _A MS _{within groups}	Tail of the F-distribution with $(a-1)$, $ab(n-1)$ degrees of freedom
Factor B	b-1	$\sum_{i=1}^a \sum_{j=1}^b \sum_{k=1}^n (\overline{Y}_j - \overline{Y})^2$	$\frac{SS_B}{(b-1)}$	$\sigma^2 + n\alpha\sigma_B^2$	$\frac{MS_B}{MS_{within\ groups}}$	Tail of the F-distribution with $(b-1)$, $ab(n-1)$ degrees of freedom
Interaction $(A \times B)$	(a-1)(b-1)	$\sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{n} (\overline{Y}_{ij} - \overline{Y}_{i} - \overline{Y}_{j} + \overline{Y})^{2}$	$\frac{SS_{AB}}{(a-1)(b-1)}$	$\sigma^2 + n\sigma_{AB}^2$	$\frac{MS_{AB}}{MS_{within\ groups}}$	Tail of the F-distribution with $(a-1)(b-1)$ ab(n-1) degrees of freedom
Within groups (residual)	ab(n-1)	$\sum_{i=1}^a \sum_{j=1}^b \sum_{k=1}^n (Y_{ijk} - \overline{Y}_{ij})^2$	$\frac{SS_{within\ groups}}{ab(n-1)}$	σ².		
Total	abn-1	$\sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{n} (Y_{ijk} - \overline{Y})^{2}$	$\frac{SS_{total}}{(abn-1)}$	σ_{γ}^{2}		

Prof. Marcus Vinícius Vieira - Instituto de Biologia UFRJ

ANCOVA

Modelo linear

Objetivos:

Remover de Y a variação devido a uma covariável X

Ajustar a média de Y para um valor padrão da variável X (desta forma "fixando" o valor de X)

Como fazer isso? Como medir a variação comum de *X* e *Y* e descontá-la de *Y*?

ANOVA de um fator:

$$Y_{ij} = \mu + A_i + \varepsilon_{ij}$$

Hipótese nula:

$$Y_{ij} = \mu + \varepsilon_{ij}$$

ANCOVA, inclinações diferentes:

$$Y_{ij} = \mu + A_i + B_i (X_{ij} - \bar{X}_{ij}) + \varepsilon_{ij}$$

ANCOVA, inclinação Comum:

$$Y_{ij} = \mu + A_i + B_C(X_{ij} - \bar{X}_{ij}) + \varepsilon_{ij}$$

Prof. Marcus Vinícius Vieira - Instituto de Biologia UFRJ