Homework due Thursday, April 23, 9:00 pm, on Gradescope.

Throughout, A is a ring (commutative with 1).

- (1) Assume A is non-trivial.
 - (a) Show that the set of prime ideals in A contain a minimal ele-
 - (b) Let $\mathfrak{a}_1, \ldots, \mathfrak{a}_n \triangleleft A$ and $\mathfrak{p} \in \operatorname{Spec}(A)$. Assume $\cap_i \mathfrak{a}_i \subset \mathfrak{p}$. Then $\mathfrak{a}_i \subset \mathfrak{p}$ for some i. If $\cap_i \mathfrak{a}_i = \mathfrak{p}$, then $\mathfrak{p} = \mathfrak{a}_i$ for some i.
- (2) Suppose for every $a \in A$ we have $a^{n(a)} = a$ for some integer n(a) > 1. Show that $\max(A) = \operatorname{Spec}(A)$.
- (3) Let $\varphi: M \to N$ be a homomorphism of A-modules. The following are equivalent
 - (a) φ is onto.
 - (b) $\varphi_{\mathfrak{p}}: M_{\mathfrak{p}} \to N_{\mathfrak{p}}$ is onto for every prime ideal $\mathfrak{p} \triangleleft A$.
 - (c) $\varphi_{\mathfrak{m}}: M_{\mathfrak{m}} \to N_{\mathfrak{m}}$ is onto for every maximal ideal $\mathfrak{m} \triangleleft A$.
- (4) Let $\mathfrak{p} \in \operatorname{Spec}(A)$ and let $S \subset A$ be a multiplicatively closed subset so that $\mathfrak{p} \cap S = \emptyset$. Then

$$\theta: A_{\mathfrak{p}} \to (S^{-1}A)_{S^{-1}\mathfrak{p}}$$

defined as $\theta(\frac{a}{t}) = \frac{a/1}{t/1}$ is an isomorphism of rings.

(5) Suppose for any $\mathfrak{m} \in \operatorname{Spec}(A)$ we have $\operatorname{Nil}(A_{\mathfrak{m}}) = 0$. Prove or disprove Nil(A) = 0.

(Hint: Let $a \in Nil(A)$ and consider Ann(a).)

- (6) Let X be a set and let A = P(X) be the power set of X together with $X_1 + X_2 = X_1 \Delta X_2$ and $X_1 \cdot X_2 = X_1 \cap X_2$. Then $a^2 = a$ for
 - (a) Prove that for any $\mathfrak{p} \in \operatorname{Spec}(A)$ we have $A/\mathfrak{p} \simeq \mathbb{Z}/2\mathbb{Z}$.

1

- (b) Prove that for any $\mathfrak{p} \in \operatorname{Spec}(A)$ we have $A_{\mathfrak{p}} \simeq \mathbb{Z}/2\mathbb{Z}$. (Hint: If $a \in \mathfrak{p}, \ \frac{a}{1} = \frac{a(1-a)}{1-a} = 0.)$ (c) Show that A is Noetherian if and only if X is finite. Conclude
- that being Noetherian is not a local property.
- (d) Assume X is infinite. Does the ideal $\{0\} \triangleleft A$ have a primary decomposition?