AI기반 물공급 시스템내 동파위험 조기경보를 위한 AI모델 개발 연구

(Development of an Al-based Early Warning System for Water Meter Freeze-Burst Detection Using Al Models)

K water Al Lab

이소령, 장현준, 이진욱 , 김성훈(K-water)

1. 연구배경 및 목적

연구배경

- ① 동파로 인한 계량기 교체 비용, 누수, 단수 등 사회적 문제
- ② 기존 동파 방지 노력 및 한계
 - 구조적·비구조적 대책
 (구조적) 동파방지형 계량기 설치 → 비용발생
 (비구조적) 기상청의 동파지도알림서비스 → 변수활용 한계
 - IoT온도센서 시범설치
 '22.01부터 IoT온도센서 설치 및 동파 위험 알림 지도 제공 중
 → 22개 지역(110개)에 한정, 전국 서비스로서 한계

동파 예보 기준

구분	관심	주의	경계	심각
온도	-5℃ 초과	-5℃ ~ -10℃	-10℃ ~ -15℃	-15°C 미만

연구목적

- → (가상센서) IoT온도센서 기반의 가상센서 개념 도입
- → (AI모델개발) IoT온도센서와 가상센서를 혼합한 **하이브리드형** 방식의 동파위험 조기경보 AI모델 개발

2. 모델 개발 프로세스

① 데이터 선정

	독립 변수 (X _n)								종속 변수(Y)					
구	기본 특성 자료 (*시간변동없음)				기상청 자료 (*시계열 자료)						환경부(자체)			
분	위/경도	고도	음/양지	보온재	외기	부 오	강	수	량	풍	속	습	도	계량기온도

○독립변수

- 고정자료: 위도, 경도, 고도, 음/양지, 보온재 (수도계량기함위치, 환경별 가설 설정 및 검증 후 선정)
- 시계열자료 : 기온, 강수량, 풍속, 습도 (기상청)
- ○종속변수
 - 수도계량기함 내부 실측 온도 데이터 (IoT센서)

② 전처리 및 군집화

- 결측치, 이상치 제거
- Scaling
- ③ 분류 / 군집
- 차원축소(PCA)
 - 4개 변수(위도,경도,고도,보온재여부) → 2개 변수
- 군집화(K-means)
 - 2개변수로 군집화 진행, 최적의 K=4
 - 군집의 특성은 **지역별 구분과 유사**

④ 학습/예측

- 데이터분리
 - 학습 데이터 : 테스트 데이터 = (90% : 10%), (80% : 20%)
- 회귀분석
 - (RF) Random Forest
 - (GBM) Gradient Boosting Machine
 - (SVR) Support Vector Regression

⑤ 최적화

- o K값
 - 1~7까지 확인, K=4 최적
- o Scaler 선택
 - MinMax와 Standard 비교 후, StandardScaler 선택
- 모델 비교 후 최종모델 선정

3. 결론

○ RandomForest 회귀모델 선정

- 모든 지표에서 랜덤 포레스트(RF) 모델이 적합

구분	R ²	MAE	MSE	RMSE
RF	0.8803	0.9882	2.1448	1.4645
GBM	0.7594	1.5814	4.3115	2.0764
SVR	0.6285	2.0263	6.6586	2.5804

- 평균 **결정계수 0.85내외, 오차 0.9℃ 수준**

구분	R²	MAE MSE		
그룹 0	0.8371	1.0426	2.4881	
그룹 1	0.8871	0.8633	1.5145	
그룹 2	0.8416	0.9917	2.2857	
그룹 3	0.8622	0.9736	1.8786	
전체	0.8570	0.9678	2.0417	

○ 알림 4개 기준 설정

- 예측된 온도에 따라 <u>양호·주의 ·위험 ·매우위험</u> 4개의 기준 설정

구분	양호	주의	위험	매우위험
온도	-1℃ 초과	-1℃ ~ -3℃	-3℃ ~ -5℃	-5°C 미만
알림 주기	없음	6시간이상 경과 시	2시간이상 경과 시	즉시

* K-water연구원 물에너지연구소 실험결과 활용

○ 기대효과

- IoT센서 미설치 지역 서비스 제공 가능→ **전국 288개 시군구 대상**
- 동파 예방 및 피해 최소화, 물절약 등

4. 결과 활용

- 수도계량기 동파위험정보 전국 서비스 시행
 - 개발된 AI모델을 활용, 2022년 10월부터 국가상수도정보시스템에서 동파위험정보 서비스 전국 단위 실행 중

