esp@cenet document view

Page 1 of 1

MEDIUM OF FLUORINE-CONTAINING SILICON COMPOUND

Patent number:

JP7247293

Publication date:

1995-09-26

Inventor:

SEKIYA AKIRA; HOSHI NOBUHITO; KOBAYASHI

TSUTOMU

Applicant:

AGENCY IND SCIENCE TECHN;; CHIKYU KANKYO SANGYO GIJUTSU;; ASAHI CHEMICAL IND;; DAIKIN

IND LTD

Classification:

- International:

C07F7/18; C07F7/04; C08K5/54; C08L101/00;

C09K3/00; C09K5/00; C10M105/76; C10N30/08;

C10N40/16; C10N40/36

- european:

Application number: JP19940040923 19940311 Priority number(s): JP19940040923 19940311

Abstract of JP7247293

PURPOSE:To obtain a fluorine-containing silicon compound which shows good penetration and stability, when it is used as a lubricant, foaming agent, resin modifier, heat medium, inert medium or leveling agent, gives no adverse effect on the material, particularly plastics and causes no ozone depletion effect and reduced global warming. CONSTITUTION:The medium is represented by the formula: (R<1>O)nSiR<2>4-n (R<1> is a straight or branched fluoroalkyl of 2 to 8 carbon atoms, R<2> is an alkyl group, n is 1-4), namely a fluorine-containing silicon compound which has at least one hydrogen atom and fluoroalkoxy groups.

Data supplied from the esp@cenet database - Worldwide

(19)日本国特許庁 (JP) (12) 公 開 特 許 公 報 (A) (11)特許出顧公開番号

特開平7-247293

(43)公開日 平成7年(1995)9月26日

(51) Int.Cl. ⁶	識別配号 庁内	整理番号 FI	技術表示箇所
C07F 7/18	E		2
7/04	ĸ		
C08K 5/54	KCD		
C08L 101/00			
C09K 3/00	111 B		
		客查請求 有 請求項	頁の数9 OL (全 9 頁) 最終頁に続く
(21)出廢番号	待賽平6—40923	(71)出願人	000001144 工業技術院長
(22)出顧日	平成6年(1994)3月11日		東京都千代田区龍が関1丁目3番1号
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(74)上記14	名の復代理人 弁型士 小松 秀岳 (外4
		, , , , , , , , , , , , , , , , , , , ,	名)
		(71)出願人	591178012
			財団法人地球現境産業技術研究機構
			京都府相条部木净町木净川台9丁目2番地
		(71) 出願人	000000033
			旭化成工業株式会社
			大阪府大阪市北区堂島長1丁月2番6号
			最終頁に続く

(54) [発明の名称] 合フッ素ケイ素化合物からなる媒体

(57) 【要約】

*キシ基を省する含フッ索ケイ素化合物からなる媒体。

【梼成】 下記一般式(1)で表され、且つ分子内に少

【化1】

なくとも1個以上の水素原子を有する、フルオロアルコ*

 $(R^{1}O) \cdot SiR^{2}_{i-1}$ (1)

(式中、R¹は炭素原子数2~8の皮質虫たは分岐を有するフルオロア ルキル基を示し、R*はアルキル系を示し、ュニ1~4であることを承し **†**}

【効果】 翻滑剤、発泡剤、樹脂改質剤、離型剤、熱 **媒、絶縁媒体、不活性媒体、レベリング剤として用いた** 場合、浸透性や安定性が良好で、索材、特にプラスチッ

クに悪影響を与えず、またオゾン層の破壊を引き起こさ ず地球温暖化効果も小さい媒体を提供する。

(2)

特開平7-247293

1

【知識の永徳指辞】

キルコキシ基を有する合フッ素ケイ素化合物からなる媒

【簡求項1】 下記一般式(1)で表され、且つ分子内 に少なくとも1個以上の水業原子を有する、フルオロア*

[化1] (1)

(R10) aSiR24-4

(式中、R)は炭素原子数1~12の直鎖または分岐を有するフルオロ

アルキル基を示し、R²はアルキル基を示し、n=1~4であることを

からなる護滑剤。

【請求項3】 請求項1に記載の合フッ素ケイ素化合物 からなる発泡剤。

【請求項4】 請求項1に記載の含フッ米ケイ素化合物 からなる樹脂改質剤。

【請求項5】 請求項1に記載の含フッ素ケイ素化合物 からなる無型剤。

【諸求項6】 請求項1に記載の含フッポケイ素化合物 からなる熱媒。

からなる絶縁媒体。

【韶求項8】 請求項1に記載の含フッ索ケイ索化合物 からなる不活性媒体。

【請求項9】 請求項1に記載の含フッ素ケイ素化合物 からなるレベリング剤。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、フルオロアルコキシ基 を有する合フッ素ケイ素化合物からなる媒体に関する。 さらに詳しくは、該合フッ素ケイ案化合物からなる潤滑 30 剂、発泡剂、樹脂改質剂、離塑剂、热煤、絶縁媒体、不 活性媒体、レベリング剤に関する。

[0002]

【従来の技術】従来、酒粉剤、樹脂の発泡剤、樹脂改質 剤、能型剤、熱媒、絶縁媒体、電子部品のグロスリーク テスト、サーマルショックテスト、リキッドパーンイン テスト等のテスト被等に用いられる不活性媒体、イン ク、強料、ワックス等へ添加して用いられるレベリング 剤等として広く用いられる鉱物油系媒体やシリコーン油 不燃性の媒体が望まれる。その目的に適した媒体とし て、トリクロロフルオロメタン(CFC11)や1. 1. 2-トリクロロー1, 2. 2-トリフルオロエタン (CFC113) 等に代表される塩素化フッ素化炭化水 索や、鎖状または環状のパーフルオロアルカンやパーフ ロオロアミンやパーフルオロエーテル等のパーフルオロ

【舘求項2】 韽求項1に記載の含フッ素ケイ素化合物 10 化合物は、浸透性に優れ、不燃性、低毒性で、ゴムやブ ラスチックへの影響が小さく、熱・化学的にも安定であ るため優れた媒体として広く用いられている。

[0003]

【発明が解決しようとする課題】しかしながら、このよ うに優れた特徴を有する塩素化フッ素化炭化水素は、こ の構成元素の1つである塩素原子が触媒となり、地球を 取り巻くオゾン層を破壊することが明らかになったこと から、CFC11やCFC113は1996年に全廃さ れることが国際的に取り決められた。一方パーフルオロ 【節求項7】 節求項1に記載の含フッ素ケイ素化合物 20 化合物は、その優れた安定性が故に、大気中に放出され た場合の安命が極めて長く、従って地球温暖化効果が複 めて大きくその使用は好ましいものではない。このよう な問題に対処するためにはこれらに代わる新しい媒体の 開発が不可欠であるが、未だ有効な代替物が見いだされ ていない状況にある。本発明は、以上の状況に鑑みてな されたものであり、オゾン層の破壊を引き起こすことな く、地球温暖化効果も小さい、優れた媒体を提供するも のである.

[0004]

【無題を解決するための手段】本発明は、上記従来技術 の現状に鑑みて鋭意研究を重ねた結果、特定の構造を有 する合フッ素ケイ素化合物、即ちフルオロアルコキシ基 を有する下記一般式(1)の含フッ森ケイ案化合物から なる媒体が、分子中に塩素を含有しないのでオゾン層を 破壊する恐れが全くなく、また分子中に水素原子を含有 するので大気中寿命が短い、即ち地球温暖化効果が小さ く、従来使用されていたCFC113等と同様の優れた 浸透性や安定性を有し、低温流動性にも優れ、金属、ブ ラスチック、エラストマーを受すことのない優れた媒体 は可燃性であるため、防災面からより難燃性、あるいは 40 であることを見いだし、本発明を完成するに至った。即 ち、本発明は下配一般式(1)で表され、且つ分子内に 少なくとも1個以上の水素原子を有する、フルオロアル コキシ基を有する含フッ素ケイ素化合物からなる媒体を 提供するものである。

[0005]

【化2】

(E)

特別平7-247293

3 (R10) nSiR24-1

(1)

(式中、R¹は炭素原子数1~12の直鎖または分岐を有するフルオロ アルキル基を示し、R²はアルキル基を示し、n=1~4であることを 示す)

【0006】本発明における媒体とは物質そのものの移 **町や物質間の熱移勁等を媒介する化合物であって、具体** 的には潤滑剤、発泡剤、樹脂砂質剤、離型剤、熱媒、絶 検能性液体をいう。本発明において提示される一般式 (1) 中で、R1で表される炭素原子数1~12の直鎖 または分岐を有するフルオロアルキル基としては、例え ば、2、2-ジフルオロエチル基、2、2、2-トリフ ルオロエチル基、3,3-ジフルオロプロビル基、3, 3,3-トリフルオロロビル基、2,2,3,3-テト ラフルオロプロビル基、2、2、3、3、3ーペンタフ ルオロプロビル基、1、1、1、3、3、3-ヘキサフ ルオロイソプロピル基、1, 1, 3, 3-テトラフルオ 3-トリフルオロプロピル基、2、2、3、4、4、4、4 - ヘキサフルオロブチル基、ノナフルオロー t ープチル 基、2、2、3、3、4、4、4-ヘブタフルオロプチ ル基、2, 2, 3, 3, 4, 4, 5, 5, 5-ノナフル オロペンチル基、2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 6-ウンデカフルオロヘキシル基等が挙げら れ、何えば2ーパーフルオロプロポキシー2, 3, 3, 3 - テトラフルオロプロポキシ基のように鎖中に脱森原 子を合んでいてもよい。これらの甚のうち、フッ森原子 原子を持たない、炭条原子数2~9の直鎖または分岐を 有するフルオロアルキル基が好ましく、中でもフッ素原 子が5個以上のフルオロアルキル基を有する化合物は加 水分解しにくいのでさらに好ましい。

【0007】また本発明においてR2のアルキル基とし ては、同一または相異なるアルキル基で、具体的にはメ チル基、エチル基、プロピル基、イソプロピル基、プチ ル基、イソブチル基、2-プチル基、t-プチル基、ペ ンチル基、ヘキシル基、ヘプチル基、オクチル基等が挙

【0008】本発明の上記一般式(1)で表される、フ ルオロアルコキシ基を有する含フッ素ケイ素化合物とし ては、具体的には、2,2,2-トリフルオロエトキシ トリメチルシラン、2、2、3、3、3ーペンタフルオ ロプロポキシトリメチルシラン、2, 2, 3, 3, 4, 4. 4-ヘプタフルオロプトキシトリメチルシラン、 2. 2, 3, 3, 4, 4, 5, 5, 5 - ノナフルオロペ ンチルオキシトリメチルシラン、2, 2, 3, 3, 3-ペンタフルオロプロポキシトリエチルシラン、2, 2, 3, 3, 3-ペンタフルオロプロポキシジメチルエチル 50 索アルコール (例えば、ROH: Rは前記R'と同じ)

シラン、1-H-ヘキサフルオロイソプロポキシトリメ **ゲルシラン、ノナフルオロー t ープトキシトリメチルシ** ラン、1、1-ビス (トリフルオロメチル) エトキシト 緑媒体、不活性媒体、レペリング剤等として用いられる 10 リメチルシラン、2、2、3、3-テトラフルオロプロ ポキシトリメチルシラン、2, 2, 3, 4, 4, 4-へ キサフルオロプトキシトリメチルシラン、ジメチルピス (2, 2, 2-トリフルオロエトキシ)シラン、メチル トリス(2, 2, 2ートリフルオロエトキシ)シラン、 エチルトリス (2. 2. 2-トリフルオロエトキシ) シ ラン、プロピルトリス(2、2、2-トリフルオロエト キシ) シラン、ジエチルピス (2, 2, 2-トリフルオ ロエトキシ) シラン、ジメチルピス (1, 1, 1, 3, 3、3-ヘキサフルオロイソプロポキシ)シラン、ジェ ロイソプロビル基、2ートリフルオロメチルー3、3、 20 チルビス (1、1、1、3、3、3ーヘキサフルオロイ ソプロボキシ) シラン、メチルトリス (2, 2, 3, 3 ーテトラフルオロプロポキシ) シラン、ジメチルピス (1, 1, 3, 8-テトラフルオロイソプロポキシ)シ ラン、ジメチルピス(2, 2, 3, 4, 4, 4-ヘキサ フルオロプトキシ)シラン、ジメチルピス(2.2. 3, 3, 4, 4, 4-ヘプタフルオロプトキシ) シラ ン、ジメチルピス(2, 2, 3, 3, 3-ペンタフルオ ロプロポキシ) シラン、メチルトリス (2, 2, 3, 3, 3 - ペンタフルオロプロポキシ) シラン、ジエチル が2個以上で、酸素原子と隣接した炭素原子上にフッ素 30 ピス (2, 2, 3, 3, 3 ーペンタフルオロプロポキ シ) シラン、エチルトリス(2, 2, 3, 3, 3-ペン タフルオロプロポキシ) シラン、エチルメチルビス (2, 2, 3, 3, 3-ベンタフルオロプロポキシ)シ ラン、プロピルトリス(2, 2, 3, 3, 3-ペンタフ ルオロプロポキシ) シラン、プチルトリス (2, 2, 3. 3. 3 - ペンタフルオロプロポキシ) シラン、テト ラキス(2, 2, 2-トリフルオロエトキシ)シラン、 テトラキス(2, 2, 3, 3, 3-ペンタフルオロプロ ポキシ) シラン、テトラキス (1、1, 1, 3, 3, 3 40 -ヘキサフルオロイソプロポキシ) シラン、メチルトリ ス(1, 1, 1, 3, 3, 3-ヘキサフルオロイソプロ ポキシ) シラン、ジメチルピス (ノナフルオローt-プ トキシ) シラン、メチルトリス (ノナフルオローtープ トキシ)シラン等が挙げられる。

> 【0009】これらの中で、フルオロアルコキシ基の数 が2~3個である化合物が、不燃または難燃性で、且つ 加水分解しにくいのでより好ましい。これらのフルオロ アルコキシ基を有する合フッ素ケイ素化合物は、公知の 方法により製造することができる。一般的には、合フッ

(4)

特開平7-247293

5

を相当するクロロシランと反応させることで極めて容易 に得られる (例えば、J. Polab、Collec t. Czech, Chem. Commun. 、44卷、 750~755ページ、1979年)。

【0010】 該含フッ索ケイ素化合物からなる媒体は、 **鉛点範囲が適当な範囲にあり、表面張力が小さいために** 浸透性に優れ、熱及び化学的にも安定で、プラスチック 等の案材に悪影響を与えず、低毒性で、フッ素を多く含 むため難嫌または不燃の媒体である。従って、潤滑剤と 好な資料性を発揮する上、低温での流動性にも優れてい る。また、樹脂の発泡剤として、例えば押し出し発泡に 用いた場合には、高温で樹脂との適度な相接性を有する ため好適に用いることができる。樹脂改質剤として樹脂 に混合した場合は、樹脂に耐薬品性、潤滑性、離型性、 非粘着性、撥水・最油性を付与することができる。 酸型 剤としてはゴムの成型や樹脂の成型時の付着防止剤とし て用いた場合には良好な利能性が得られる。熱鍵として 用いた場合は、低融点、低粘度なため、低温槽や恒温槽 の媒体として好適に用いることができる。絶縁媒体とし 20 実施例1~12及び比較例1~2 て用いた場合には、高い絶縁性能を示し、低温での流動 性にも優れている。不活性媒体としては、低温での流動 性にも優れた安定な媒体として、グロスリークテスト、 サーマルショックテスト、リキッドパーンインテスト祭 のテスト液や電子部品用保存液として用いることができ る。またレベリング剤としてインク、食料、ワックスへ 添加した場合には、濡れ性が著しく改善される。

【0011】これらの媒体は単独あるいはそれぞれ提合 して使用することができる。また、従来使用されている

鉱油系媒体やシリコーン油、フルオロカーポン系媒体と 混合して使用することもできる。また、必要により安定 化剤を用いてもよい。酸安定化剤としては、ニトロ化合 物、不飽和炭化水素、エポキシ化合物、フェノール化合 物、アルケニルアミン、環状空素化合物、不飽和アルコ ール等が挙げられる。その他、目的により各種界面活性 剤を添加してもよい。

【0012】本発明の媒体は、分子内にフッ素原子を多 く有する化合物を含むため不燃性もしくは難燃性であ して用いた場合、その表面エネルギーが小さいため、良 10 り、安定性に優れ、従来のCFC113と同程度の浸透 性を有することから媒体として好適に用いることができ る。本発明の上配合フッ素ケイ素化合物からなる媒体 は、浸透性、安定性が良好で、不燃または膨燃性であ る。また、塩米原子を持たないため、オゾン層の破墟間 題を生じることはなく、分子中に水素原子を含有するの で地球温暖化効果も小さい。

[0013]

【実施例】以下、本発明の実施例を示すが、本発明はこ れに限定されるものではない。

含フッ素系媒体の特性として最も重要である程序性の指 標として、表面張力がある。表1に本発明の媒体の23 でにおける表面張力、沸点、低温流動性の指標となる融 点および23℃における粘度を示した。また比較のた め、CFC113およびシリコーン化合物であるオクタ メデルシクロテトラシロキサンの約定値または文献値も 示した。

[0014]

【表1】

(5)

特開平7-247293

	7			8	
	媒体化合物	游点 ℃	点協って	表面張力 dyn/cg	档度cP
実施例1	CF, CH, OSiNo,	8 2	-86	10,0	0.49
実施例 2	CF.CP.CH.OSIMe.	9 3	-107	15. 2	0. 51
実施例8	(CP.) CHOSINE	8 9	-80	14. 8	0. 69
実施例4	CHF:CF:CH:081Me:	115	~ 8 8	18.7	0. 69
実施例 5	(CF.CH.O).SiMe.	1 8 1	-50	18. 2	0. 91
実施例 6	(CP.CH.O),SIMe	1 4 7	-131	18.9	1. 38
実施例 7	(CF,CB,0),51	1 6 5	- 2 5	1.8. 9	1. 94
実施例8	(CF.CF.CH.O),SiMe.	1 4 0	- 7 4	16.5	1, 32
突迫例 9	(GF.CF.CH.O).SiNe	171	-87	17.0	2. 28
突旋例10	(CF.CF.CH.Q),S1	191	-50	1 6. 9	8. 52
突施例11	[(CP.).CHO],SiMe,	1 8 1	-53	15, 7	1, 51
実施例12	[(CF.),CO],SiMe,	1 4 7	- z 4	14, 9	3. 32
比較例I	CPC118	48*)	- 3 5 *)	1 3. 7	0. 50 (47°C)'
比較例 2	<i>\$9915499</i> 051590449	176	1 7 *)	1 B. 6	2. 9 1

a)文献值

【0015】表1の結果から、本発明の媒体は表面張力 がCFC113やオクタメチルシクロテトラシロキサン と同等のレベルであることから長透性に優れ、潤滑剤、 樹脂改質剤、離型剤、レベリング剤として有用である。 また低粘度で融点が充分に低いことから、オクタメチル シクロテトラシロキサンに比べ低温流動性が優れ、潤滑 40 【0016】 剤、熱媒は特に低温槽の媒体として、また絶縁媒体、不

活性媒体として有用である。

実施例13~21

本発明の媒体を、水とともに空温で1時間、または80 でで1時間振とうし、GC分析により分解の有無を測定 した。結果はまとめて多2に示した。

【表2】

(6)

特開平7-247293

9

			20
.4	媒体化合物	空温、1時間 の加水分解性	80℃、4時間 の加水分解性
実施例13	CF,CH,OSiNe,	分解せず	一部分解
実施例14	(CF,CH:O):SiMe:	分解せず	一部分解
実施例15	(CF.CE,O),SiMe	分解せず	一部分解
実施例16	CF.CF.CH.OS!We.	分解せず	分解せず
実施例17	(CF,CF,CE,O),SINe,	分解せず	分解せず
與施例18	(CP.CF.CH.O).SiNe	分解せず	分解せず
実施例19	(CF.), CHOSIMe.	分解せず	分解せず
実施例20	[(CP,),CHO],SiMe,	分解せず	分解せず
実施例21	[(CP:):CO]:SiMe:	分解せず	分解せず

【0017】 数2の結果から、本発明の媒体は化学的安定性に優れ、従って潤滑剤、発泡剤、樹脂改質剤、健型剤、熱媒、絶縁媒体、不活性媒体、レベリング剤として有用である。

集施例22~28及び比較例3

本発明の媒体の引火点をタグ密閉式で測定した。但し80℃以下に引火点を持たない化合物についてはさらにク 30

リープランド開放式で測定した。また比較のため、シリコーン化合物であるオクタメチルシクロテトラシロキサンについても同様に測定した。結果はまとめて安3に示した。

[0018]

[波3]

(7)

特別平7-247293

		į

	拼体化合 物	第点 で	引火点 ℃
実施例 2 2	(CF.CE.O),SIMe	1 4 7	5 6
実施例23	(CF_CE_0).S1	166	· 75
実施例 2 4	(CF_CF_CH_O),SiMe	171	7 5
実施例 2 5	(CP=CP=CH=O)4Si	191	なし
実施例20	[(CF:):CHO],SiMe	1 4 7	なし
実施例 2 7	[(CF.).CRO].S1	1 6 2	なし
実施例28	[(CF.).CO].SiNe.	1 4 7	なし
比較例 3	オナタメチルシタロテトラシロキャン	176	5 4

【0019】表3の結果から、本発明の媒体は不燃また は高引火点液体で、従って潤滑剤、発泡剤、離型剤、熱 媒、絶縁媒体、不活性媒体として用いた場合に安全性に 優れる。

11

実施例29~34及び比較例4

各プラスチックのテストピースを、本発明の穏々の媒体

に45℃で1時間を渡し、重量変化率は空温で2時間放置後に、寸法変化率は取り出し直後に測定した。また比較のため、CFC113についても同様の試験を行った。結果はまとめて表4に示した。

[0020]

【表4】

(8)

特別平7-247293

13

				14	
	媒体化合物	プラステック	重量変化率 (分)	寸法変化率 (%)	外観
実施例 29	(CP _a CH ₂ O);SiMe ₂	ABS ポリウーポネート アクリル ポリスチレン	0 0 - 0. 1 0	0 -0, 2 0 0	変化なし 変化なし 変化なし 変化なし
突地例 30	(CF:CH:O).SiMe	ABS ポリカーポキート アクリル ポリスチレン	0 .0 -0, 1	0 0 0	変化なし 変化なし 変化なし 変化なし
実施 例 31	(CP_CH_O).Si	ABS ポソカーポネート アクリル ポリスチレン	0 0 0	0 0 0	変化なし 変化なし 変化なし 変化なし
実施 例 32	(CF,CF,CH.O),SiNe,	ABS ポリカーポキート アクリル ポリスチレン	0 0 0	0 0 + 0 , 2	変化なし 変化なし 変化なし 変化なし
実施 例 33	(CF_CF_CE_D) =51Me	ABS ポリカーポネート アクリル ポリスチレン	0 0 0	0 0 0 +0.2	変化なし 変化なし 変化なし 変化なし
突施例 31	[(CF ₂) ₂ CHO] ₂ SiNe ₂	ABS ポリカーポネート アクリル ポリスチレン	0 0 0 0	0 0 0 0	変化なし 変化なし 変化なし 変化なし
比較例4	CFC113	ABS ポリカーポネート アクリル ポリスチレン	0 0 · 0 0. 3	0 0 0	変化なし 変化なし 変化なし 変化なし

【0021】表4の結果から、本発明の媒体はプラスチックに感影響を与えることがなく、プラスチック素材と 挟触させて用いる資情剤、離型剤、熱媒、絶縁媒体、不 活性媒体として特に有用である。

[0022]

【発明の効果】本発明のフルオロアルコキシ基を有する 含フッ素ケイ素化合物からなる媒体は、浸透性や安定性

が良好で、素材、特にプラスチックに悪影響を与えることがない。さらに複素原子を持たないため、オゾン層の破壊問題を生じることはなく、また水素原子を含有するので地球温暖化効果も小さい。従来のCFCやパーフルオロカーボンと同等に適用できるので極めて価値の高いものである。

フロントページの統合

(51) Int. Cl. 6

識別配号 庁内整理番号

FI

技術表示簡所

C 0 9 K 5/00 C 1 0 M 105/76

_

ZAB 9159-4H

E

(9)

特別平7-247293

// C10N 30:08

40:16

40:36

(71)出題人 000002853

ダイキン工業株式会社

大阪府大阪市北区中崎西2丁目4番12号

梅田センタービル

(74)上記3名の代理人 弁理士 小松 秀伝 (外3名

)

(72) 発明者 関屋 章

茨城県つくば市東1丁目1番 工業技術院

物質工学工業技術研究所內

(72) 発明者 星 佰人

東京都文京区本郷2-40-17 本郷若井ビ

ル 財団法人 地球環境産業技術研究機構

内

(72)発明者 小林 勉

東京都文京区本郷2-40-17 本郷若井ビ

ル 財団法人 地球環境産業技術研究機構

内

Searching PAJ

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

07-247293

(43) Date of publication of application: 26.09.1995

(51)Int_CI.

CO7F 7/18 CO7F 7/04 CO8K 5/54 CO8L101/00 CO9K 3/00 CO9K 5/00 C10M105/76

/ C10N 30:08 C10N 40:16 C10N 40:36

(21)Application number: 06-040923

(71)Applicant : AGENCY OF IND SCIENCE &

TECHNOL

CHIKYU KANKYO SANGYO GIJUTSU

KENKYU KIKO

ASAHI CHEM IND CO LTD

DAIKIN IND LTD

(22)Date of filing:

11.03.1994

(72)Inventor: SEKIYA AKIRA

HOSHI NOBUHITO

KOBAYASHI TSUTOMU

(54) MEDIUM OF FLUORINE-CONTAINING SILICON COMPOUND

(57)Abstract:

PURPOSE: To obtain a fluorine—containing silicon compound which shows good penetration and stability, when it is used as a lubricant, foaming agent, resin modifier, heat medium, inert medium or leveling agent, gives no adverse effect on the material, particularly plastics and causes no ozone depletion effect and reduced global warming.

CONSTITUTION: The medium is represented by the formula: (R10)nSiR24-n (R1 is a straight or branched fluoroalkyl of 2 to 8 carbon atoms, R2 is an alkyl group, n is 1-4), namely a fluorine-containing silicon compound which has at least one hydrogen atom and fluoroalkoxy groups.

LEGAL STATUS

[Date of request for examination] 24.02.1995

[Date of sending the examiner's decision of

rejection]

[Kind of final disposal of application other than

the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]
[Date of registration]

2756410

06.03.1998

Searching PAJ

Page 2 of 2

[Number of appeal against examiner's decision of rejection]
[Date of requesting appeal against examiner's decision of rejection]
[Date of extinction of right]

Copyright (C): 1998,2003 Japan Patent Office

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

CLAIMS

[Claim(s)]

[Claim 1] The medium which consists of a fluorine-containing silicon compound which has the fluoro alkoxy group which is expressed with the following general formula (1), and has at least one or more hydrogen atoms in intramolecular.

[Formula 1]

$$(R^{1}O)_{n}SiR^{2}_{4-n}$$
 (1)

(式中、 R^1 は炭素原子数 $1\sim 1$ 2 の直鎖または分岐を有するフルオロアルキル基を示し、 R^2 はアルキル基を示し、 $n=1\sim 4$ であることを示す)

[Claim 2] Lubricant which consists of a fluorine-containing silicon compound according to claim 1.

[Claim 3] The foaming agent which consists of a fluorine-containing silicon compound according to claim 1.

[Claim 4] The resin modifier which consists of a fluorine-containing silicon compound according to claim 1.

[Claim 5] The release agent which consists of a fluorine-containing silicon compound according to claim 1.

[Claim 6] The heat carrier which consists of a fluorine-containing silicon compound according to claim 1.

[Claim 7] The insulating medium which consists of a fluorine-containing silicon compound according to claim 1.

[Claim 8] The inactive medium which consists of a fluorine-containing silicon compound according to claim 1.

[Claim 9] The leveling agent which consists of a fluorine-containing silicon compound according to claim 1.

[Translation done.]

DETAILED DESCRIPTION

[Detailed Description of the Invention]

[Industrial Application] This invention relates to the medium which consists of a

fluorine-containing silicon compound which has a fluoro alkoxy group. It is related with the lubricant which consists of this fluorine-containing silicon compound, a foaming agent, a resin modifier, a release agent, a heat carrier, an insulating medium, an inactive medium, and a leveling agent in more detail.

[0002]

[Description of the Prior Art] Conventionally, since the straight-mineral-oil system medium and silicon oil which add to the inactive medium used for test liquid, such as a gross leak test of lubricant, the foaming agent of resin, a resin modifier, a release agent, a heat carrier, an insulating medium, and electronic parts, a thermal-shock test, and a liquid-burn-in test, etc., ink, a coating, a wax, etc., and are used and which are widely used as a leveling agent etc. are inflammability, a fire-resistant or noncombustible medium is desired from a disaster prevention side. As a medium suitable for the purpose, perfluoro compounds, such as chlorination fluorinated hydrocarbon, the shape of a chain and the annular perfluoro alkane and par FUROORO amine which are represented by trichlorofluoromethane (CFC11), 1,1,2-trichloro-1,2,2-trifluoroethane (CFC113), etc., and the perfluoro ether, are excellent in permeability, and they are incombustibility and low toxicity, and its effect on rubber or plastics is small, and they are widely used as a medium which was excellent since it was chemically stable, heat and.

[Problem(s) to be Solved by the Invention] However, since it became clear that the chlorine atom whose chlorination fluorinated hydrocarbon which has the description which was excellent in this way is one of the configuration element of this destroys the ozone layer which surround the earth by becoming a catalyst, it was fixed internationally that CFC11 and CFC113 will be abolished in 1996. On the other hand, a perfluoro compound bas a very long life when the outstanding stability is therefore emitted into atmospheric air, therefore the global warming effectiveness is very large, and the use is not desirable. Although development of the new medium which replaces these is indispensable in order to cope with such a problem, it is in the situation that the still effective alternative is not found out. This invention offers the outstanding medium also with the small global warming effectiveness, without being made in view of the above situation and causing destruction of an ozone layer.

[Means for Solving the Problem] The fluorine-containing silicon compound which has specific structure as a result of this invention's repeating research wholeheartedly in view of the present condition of the above-mentioned conventional technique, Namely, the medium which consists of a fluorine-containing silicon compound of the following general formula (1) which has a fluoro alkoxy group There is no possibility of destroying an ozone layer since chlorine is not contained in a molecule. Moreover, the global warming effectiveness is short [in atmospheric air], since a hydrogen atom is contained in a molecule, namely, small. It has the same outstanding permeability and stability as the CFC113 grade currently used conventionally, excels also in cold-temperature fluidity, finds out that they are a metal, plastics, and the outstanding medium that does not invade an elastomer, and came to complete this invention. That is, this invention offers the medium which consists of a fluorine-containing silicon compound which has the fluoro alkoxy group which is expressed with the following general formula (1), and has at least one or more hydrogen atoms in intramolecular.

[0005] [Formula 2]

 $(R^{1}O)_{B}SiR^{2}_{4-3}$ (1)

(式中、R¹は炭素原子数 1~12の直鎖または分岐を有するフルオロアルキル基を示し、R²はアルキル基を示し、n=1~4であることを示す)

[0006] The medium in this invention is a compound which carries migration of the matter itself, the heat transfer between matter, etc., and the functional fluid specifically used as lubricant, a foaming agent, a resin modifier, a release agent, a heat carrier, an insulating medium, an inactive medium, a leveling agent, etc. is said. As a fluoro alkyl group which has the straight chain of the carbon atomic numbers 1-12 expressed with R1, or branching in the general formula (1) shown in this invention For example, a 2 and 2-difluoro ethyl group, 2 and 2, 2-trifluoro ethyl group, A 3 and 3-difluoro propyl group, 3 and 3, 3trifluoro ROPIRU radical, 2, 2, 3, and 3-tetrafluoro propyl group, 2, 2, 3 and 3, a 3pentafluoro propyl group, A 1, 1, 1, 3, 3, and 3-hexafluoro isopropyl group, 1, 1 and 3, 3tetrafluoro isopropyl group, 2-trifluoromethyl - 3, 3, and 3-trifluoro propyl group, 2, 2, 3, 4 and 4, 4-hexafluoro butyl, Nona fluoro-t-butyl, 2, 2, 3, 3, 4 and 4, 4-heptafluoro butyl, A 2, 2, 3, 3, 4, 4, 5, 5, and 5-nona fluoro pentyl radical, 2, 2, 3, 3, 4, 4, 5, 5, 6 and 6, 6undeca fluoro hexyl group, etc. are mentioned. For example, 2-perfluoro propoxy - The oxygen atom may be included in the chain like 2, 3, 3, and 3-tetrafluoro propoxy group. The fluoro alkyl group which has the straight chain of the carbon atomic numbers 2-9 or branching whose fluorine atom does not have a fluorine atom on the carbon atom contiguous to an oxygen atom by two or more pieces among these radicals is desirable. and since it is hard to hydrolyze, the compound with which a fluorine atom has five or more fluoro alkyl groups especially is still more desirable. [0007] Moreover, in this invention, it is the same or the alkyl group which is different from each other as an alkyl group of R2, and a methyl group, an ethyl group, a propyl group, an isopropyl group, butyl, an isobutyl radical, 2-butyl, t-butyl, a pentyl radical, a hexyl group, a heptyl radical, an octyl radical, etc. are specifically mentioned. [0008] As a fluorine-containing silicon compound which has the fluoro alkoxy group expressed with the above-mentioned general formula (1) of this invention Specifically 2. 2, and 2-trifluoroethoxy trimethyl silane, A 2, 2, 3, 3, and 3-pentafluoro propoxy trimethyl silane, 2, 2, 3, 3, 4, 4, and 4-heptafluoro butoxy trimethyl silane, 2, 2, 3, 3, 4, 4, 5, 5, and 5-NONAFURUORO pentyloxy trimethyl silane, A 2, 2, 3, 3, and 3-pentafluoro propoxy triethyl silane, 2, 2, 3, 3, and 3-pentafluoro propoxy dimethyl ECHIRUSHIRAN, A 1-H-hexafluoro isopropoxy trimethyl silane, a nona fluoro-t-butoxy trimethyl silane, 1 and 1-screw (trifluoromethyl) ethoxy TORIME chill silane, 2, 2 and 3, and 3-tetrafluoro propoxy trimethyl silane, A 2, 2, 3, 4, 4, and 4-hexafluoro butoxy trimethyl silane, A dimethyl screw (2, 2, and 2-trifluoroethoxy) silane, a methyl tris (2, 2, and 2trifluoroethoxy) silane, An ethyl tris (2, 2, and 2-trifluoroethoxy) silane, a propyl tris (2, 2, and 2-trifluoroethoxy) silane, A diethyl screw (2, 2, and 2-trifluoroethoxy) silane, a dimethyl screw (1, 1, 1, 3, 3, and 3-hexafluoro isopropoxy) silane, A diethyl screw (1, 1,

1, 3, 3, and 3-hexafluoro isopropoxy) silane, A methyl tris (2, 2, 3, and 3-tetrafluoro propoxy) silane, A dimethyl screw (1, 1, 3, and 3-tetrafluoro isopropoxy) silane, A dimethyl screw (2, 2, 3, 4, 4, and 4-hexafluoro butoxy) silane, A dimethyl screw (2, 2, 3, 3, 4, 4, and 4-heptafluoro butoxy) silane, A dimethyl screw (2, 2, 3, 3, and 3-pentafluoro propoxy) silane, A methyl tris (2, 2, 3, 3, and 3-pentafluoro propoxy) silane, A diethyl screw (2, 2, 3, 3, and 3-pentafluoro propoxy) silane, An ethyl tris (2, 2, 3, 3, and 3pentafluoro propoxy) silane, An ethyl methyl screw (2, 2, 3, 3, and 3-pentafluoro propoxy) silane, A propyl tris (2, 2, 3, 3, and 3-pentafluoro propoxy) silane, A butyl tris (2, 2, 3, 3, and 3-pentafluoro propoxy) silane, A tetrakis (2, 2, and 2-trifluoroethoxy) silane, a tetrakis (2, 2, 3, 3, and 3-pentafluoro propoxy) silane, A tetrakis (1, 1, 1, 3, 3, and 3-hexafluoro isopropoxy) silane, A methyl tris (1, 1, 1, 3, 3, and 3-hexafluoro isopropoxy) silane, a dimethyl screw (nona fluoro-t-butoxy) silane, a methyl tris (nona fluoro-t-butoxy) silane, etc. are mentioned. [0009] Since the compound whose number of fluoro alkoxy groups is 2-3 is nonflammable or fire retardancy and it is hard to hydrolyze it in these, it is more desirable. The fluorine-containing silicon compound which has these fluoro alkoxy groups can be manufactured by the well-known approach. It is obtained very easily by making fluorinecontaining alcohol (for example, ROH:R being the same as said R1) react with corresponding chlorosilicane generally (for example, J.Pola et al., Collect.Czech.Chem.Commun., 44 volumes, 750-755 pages, 1979). [0010] The medium which consists of this fluorine-containing silicon compound has a boiling range in the suitable range, since surface tension is small, it is excellent in permeability, and it is chemically stable, and does not have a bad influence on materials. such as plastics, but is low toxicity, and heat and since many fluorines are included, it is fire retardancy or a nonflammable medium. Therefore, when it uses as lubricant and good lubricity is demonstrated since the surface energy is small, it excels also in the fluidity in low temperature. Moreover, as a foaming agent of resin, when it uses for example, for extrusion foaming, since it has moderate compatibility with resin at an elevated temperature, it can use suitably. When it mixes to resin as a resin modifier, chemical resistance, lubricity, a mold-release characteristic, non-adhesiveness, and hydrofuge and oil repellency can be given to resin. Good detachability is acquired when it uses as an abherent at the time of molding of rubber, or molding of resin as a release agent. When it uses as a heat carrier, the low melting point and since hypoviscosity, it can use suitably as a medium of a cryostat or a thermostat. When it uses as an insulating medium, the high insulating engine performance is shown and it excels also in the fluidity in low temperature. As an inactive medium, it can use as a stable medium excellent also in the fluidity in low temperature as test liquid, such as a gross leak test, a thermal-shock test, and a liquid-burn-in test, or preservation liquid for electronic parts. Moreover, when it adds to ink, a coating, and a wax as a leveling agent, wettability is improved remarkably. [0011] these media are independent -- or it can be used, mixing, respectively. Moreover, it can also be used, mixing with the mineral oil system medium currently used conventionally, or silicon oil and a fluorocarbon system medium. Moreover, a stabilizing agent may be used as occasion demands. As this stabilizing agent, a nitro compound, unsaturated hydrocarbon, an epoxy compound, a phenolic compound, an alkenyl amine, an annular nitride, unsaturated alcohol, etc. are mentioned. In addition, various

surfactants may be added for the purpose.

[0012] Since the compound which has many fluorine atoms is included in intramolecular, and it is incombustibility or fire retardancy, it excels in stability and it has permeability comparable as conventional CFC113, the medium of this invention can be suitably used as a medium. The medium which consists of the above-mentioned fluorine-containing silicon compound of this invention has permeability and good stability, and they are nonflammable or fire retardancy. Moreover, since it does not have a chlorine atom, and the destructive problem of an ozone layer is not produced and a hydrogen atom is contained in a molecule, the global warming effectiveness is also small.

[Example] Hereafter, although the example of this invention is shown, this invention is not limited to this.

There is surface tension as an index of the most important permeability as a property of examples 1-12 and the example 1 of a comparison - 2 fluorine-containing ******. The surface tension in 23 degrees C of the medium of this invention, the boiling point, the melting point used as the index of cold-temperature fluidity, and the viscosity in 23 degrees C were shown in Table 1. Moreover, the measured value or the reference value of octamethylcyclotetrasiloxane which is CFC113 and a silicone compound was also shown for the comparison.

[0014] [Table 1]

	媒体化合物 .	はなり	克爾 3	表面强力 dyn/cm	粘度 cP
実施例 1	CP+CU4OSiNe+	8 2	-86	16.0	0. 49
实施例 2	CP+CP+CH+OSiMe+	9 8	-107	1 5. 2	0. 61
皮胞例 8	(CF.) CHOSING.	8 9	~ 6 O	14. B	0. 69
実施例 4	CRF, CF, CH, OSIMe,	115	-83	18.7	0. 89
実施例 5	(CF:CB:O)-SiMe.	1 2 1	-50	10.2	0. 91
完施例 6	(CF.CB.0).3[Mg	147	-131	18.9	1. 38
突旋例 7	(CF.CB.O) 48 i	165	- 2 5	18.9	1. 94
奨絕例8	(GF,CF,CH20)251Me2	140	-74	16.5	1, 82
灾炮例9	(CF.CF.CE.O).SiMe	171	- 87	17.0	2. 28
突施例1 D	(CF,CF,CH,O)4Si	191	-50	1 8. 9	8. 52
突施例11	[(CP:):CHO]:SIMe:	181	-53	15, 7	1. 5 I
资施例12	[(CP.).CO], SiMe.	1 4 7	- 2 4	14, 9	3. 32
比較例1	CFC113	48"	- 3 5 4)	19.7	0. 5 0 (47°C)"
比較例 2	<i>\$}}}{ff##</i>	176	1 7 *1	18.6	2. 8 1

0015] From the result of Table 1, since surface tension is level equivalent to CFC113 or octamethylcyclotetrasiloxane, the medium of this invention is excellent in permeability, and it is useful as lubricant, a resin modifier, a release agent, and a leveling agent. Moreover, since the melting point is fully low at hypoviscosity, compared with octamethylcyclotetrasiloxane, cold-temperature fluidity is excellent, and lubricant and especially a heat carrier are useful as the medium of a cryostat, and an insulating medium and an inactive medium.

The medium of 13 to example 21 this invention was shaken at 1 hour or 80 degrees C with the room temperature with water for 4 hours, and the existence of decomposition was measured by GC analysis. The result was collectively shown in Table 2. [0016]

[Table 2]

[10010 2]			
	媒体化合物	室温、1時間 の加水分解性	80℃、4時間 の加水分解性
実施例13	CP ₃ CB ₇ OSiNe ₃	分解せず	一部分解
実施例14	(CF_CH.O)2SiMe.	分解せず	一部分解
実施例15	(CF:CH:O):SIMe	分解せず	一部分解
実施例16	CF.CF.CH.OSiMe.	分解せず	分解せず
実施例17	(CP.CP.CH.O) aSiMe.	分解せず	分解せず
実施例18	(CF_CF_CH_O)_SIMe	分解せず	分解せず
実施例19	(CFa);CHOSiMea	分解せず	分解せず
実施例20	[(CF ₃) ₃ CHO] ₃ SiMe ₂	分解せず	分解せず
実施例21	[(CF ₃):CO]:SiMe:	分解せず	分解せず

0017] From the result of Table 2, the medium of this invention is excellent in chemical stability, therefore useful as lubricant, a foaming agent, a resin modifier, a release agent, a heat carrier, an insulating medium, an inactive medium, and a leveling agent. The flash point of the medium of examples 22-28 and example of comparison 3 this invention was measured by the tag direct vent system. However, about the compound which does not have the flash point in 80 degrees C or less, it measured by the Cleveland unvented system further. Moreover, it measured similarly about the octamethylcyclotetrasiloxane which is a silicone compound for the comparison. The result was collectively shown in Table 3.

[Table 3]

14010 0			
	媒体化合物	沸点 ℃	引火点
実施例22	(CF.CH.O),SiMe	1 4 7	5 6
実施例23	(CF.CH.O).Si	1 6 5	7 5
実施例24	(CF_CF_CH_O)_SiMe	171	7 5
実施例25	(CF = CF = CH = 0) 4Si	1 9 1	・なし
実施例 2 6	[(CF ₁) ₂ CH0] ₄ SiMe	1 4 7	なし
実施例27	[(CF.)2CH0]4Si	162	なし
実施例28	[(CF.),CO].SiMe.	1 4 7	なし
比較例 3	オクタメチルシクロテトラシロキテン	176	5 4

[0019] When the medium of this invention is nonflammable or a high flash point liquid, therefore it uses from the result of Table 3 as lubricant, a foaming agent, a release agent, a heat carrier, an insulating medium, and an inactive medium, it excels in safety. It was immersed in the various media of this invention at 45 degrees C for 1 hour, and at the room temperature, after 2-hour neglect, weight rate of change took out the rate of a dimensional change, and measured the test piece of examples 29-34 and example of comparison 4 each plastics immediately after. Moreover, the trial with the same said of CFC113 was performed for the comparison. The result was collectively shown in Table 4. [0020]

[Table 4]

Lac	ole 4]				
	.媒体化合物	ブラスチック	軍量変化率 (%)	寸法変化率 (%)	外観
英施例 29	(CF ₃ CH ₂ O) ₃ SiMe ₂	ABS ポリカーポネート ナクリル ポリスチレン	0 0 0 1	0 -0.2 0	変化なし 変化なし 変化なし 変化なし
美施例 30	(CP_CII_O),SiMe	ABS ポリカーポネート アクリル ポリスチレン	0 0 - 0 . 1 0	0 0 0	変化なし 変化なし 変化なし 変化なし
実施例	(CF,CH,O),Si	ABS ポワカーポネート アクリル ポリスチレン	0 0 0	0 0 0 0	変化なし 変化なし 変化なし 変化なし
赛 施 例 82	(CF,CF2CB10)zSiMe1	ABS なりかっぱネート アクリル ポリスチレン	0 0 0	0 0 +0.2 0	変化なし 変化なし 変化なし 変化なし
実施 例 33	(CP.CP.CE.O).SiNe	ABS ポリカーポキート アクリル ポリスチレン	0 0 0	0 0 0 +0.2	変化なし 変化なし 変化なし 変化なし
実 施 例 34	[(CF ₃) ₂ CHO] ₂ SiWe ₃	ABS まりかまキート アクリル ポリステレン	0 0 0 0	0 0 0	変化なし 変化なし 変化なし 変化なし
比較例4	CFC113	ABS ポリカーポネート アクリル ポリスチレン	0 0 · 0 0.3	0 0 0	変化なし 変化なし 変化なし 変化なし

0021] The medium of the result of Table 4 to this invention is useful especially as the lubricant which does not have a bad influence on plastics, is contacted for a plastics material, and is used, a release agent, a heat carrier, an insulating medium, and an inactive medium.

[0022]

[Effect of the Invention] The medium which consists of a fluorine-containing silicon compound which has the fluoro alkoxy group of this invention has permeability and good stability, and it does not have a bad influence on a material, especially plastics. Since it furthermore does not have a chlorine atom, and the destructive problem of an ozone layer is not produced and a hydrogen atom is contained, the global warming effectiveness is also small. Since it is applicable to CFC, conventional perfluorocarbon, and a conventional EQC, it is very worthy.