

厦门大学《《线性代数》 课程试卷

学年学期: 20211 主考教师: 线性代数教研组 A 卷 (√) B 卷 ()

注: A^T 表示矩阵 A 的转置矩阵, A^* 表示矩阵 A 的伴随矩阵,E 是单位矩阵,|A|表示方阵 A 的行列式,R(A)表示矩阵 A 的秩

一、 单项选择题(每小题 2 分, 共 20 分)

1. 令 $\alpha_1 = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$, $\alpha_2 = \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ 。下列选项中,()是 $\alpha_1, \alpha_2, \alpha_3$ 正交规范化

后的向量组。

$$\text{A.} \ \ e_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, e_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, e_3 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \quad \text{B.} \ \ e_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}, e_2 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, e_3 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$

C.
$$e_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}, e_2 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, e_3 = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$$
 D. $e_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}, e_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, e_3 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$

- 2. 设 Ax = 0 是非齐次线性方程组 Ax = b 对应的齐次线性方程组,则()。
 - A. Ax = 0 只有零解时,Ax = b 有一解
 - B. Ax = 0 有非零解时, Ax = b 有无穷多解
 - C. Ax = 0 有非零解时, $A^Tx = 0$ 也有非零解
 - D. 当 $\xi \in Ax = 0$ 的通解, $\eta \in Ax = b$ 的特解, $\xi + \eta \in Ax = b$ 的通解
- 3. 矩阵 $\begin{pmatrix} 1 & a & 1 \\ a & b & a \\ 1 & a & 1 \end{pmatrix}$ 和 $\begin{pmatrix} 2 & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & 0 \end{pmatrix}$ 相似的充分必要条件是 ()。

A.
$$a = 0$$
, $b = 2$

B. a = 0, b 为任意常数

C.
$$a = 2$$
, $b = 0$

D. a=2, b 为任意常数

- 4. 与矩阵 $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 2 \\ 0 & 2 & 2 \end{pmatrix}$ 合同的矩阵是 ()。
 - A. $\begin{pmatrix} 1 & & \\ & -1 & \\ & & 0 \end{pmatrix}$
- B. $\begin{pmatrix} 1 & & \\ & 1 & \\ & & -1 \end{pmatrix}$
- C. $\begin{pmatrix} 1 & & \\ & -1 & \\ & & -1 \end{pmatrix}$

- D. $\begin{pmatrix} -1 & & \\ & -1 & \\ & & -1 \end{pmatrix}$
- 5. 已知 3 阶矩阵 A 有特征值 $\lambda_1=1$, $\lambda_2=2$, $\lambda_3=3$, 则 $2A^*$ 的特征值是 ()。
 - A. 1, 2, 3
- B. 4, 6, 12
- C. 2, 4, 6
- D. 8, 16, 24
- 6. 已知 $\alpha = (1, -2, 3)^T$ 是矩阵 $A = \begin{pmatrix} 3 & 2 & -1 \\ a & -2 & 2 \\ 3 & b & -1 \end{pmatrix}$ 的特征向量,则()。
 - A. a = -2, b = 6

B. a = 2, b = -6

C. a = 2, b = 6

- D. a = -2, b = -6
- 7. 已知 A 是 n 阶可逆矩阵,那么与 A 有相同特征值的矩阵是()。
 - A. A^T
- B. A^2
- C. A^{-1}
- D. A E
- 8. 设 $\alpha_1 = \begin{pmatrix} 1 \\ 3 \\ -2 \end{pmatrix}$, $\alpha_2 = \begin{pmatrix} 0 \\ 1 \\ 3 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 1 \\ -1 \\ t \end{pmatrix}$, $\alpha_4 = \begin{pmatrix} -1 \\ 1 \\ -2 \end{pmatrix}$, 若向量组 α_1 , α_2 , α_3 , α_4 线性相
 - 关,则 *t* 必为 ()。
 - A. 2

B. 5

C. -14

- D. 任意常数
- 9. 设 A 是 4×3 矩阵,B 是 3×4 非零矩阵,满足 AB=0,其中 A=

- A. 当 t = 3 时,R(B) = 1
- B. 当 $t \neq 3$ 时,R(B) = 1

- C. 当 t = 3 时, R(B) = 2
- D. 当 $t \neq 3$ 时,R(B) = 2

10	三年	α , α , α , α .	为3维非零列向量,	加以下结论,
IU.	니게	$\alpha_1, \alpha_2, \alpha_3, \alpha_4$	刈 3 维非令列門里,	则以下细化:

- ① 如果 α_4 不能由 $\alpha_1,\alpha_2,\alpha_3$ 线性表出,则 $\alpha_1,\alpha_2,\alpha_3$ 线性相关;
- ② 如果 $\alpha_1, \alpha_2, \alpha_3$ 线性相关, $\alpha_2, \alpha_3, \alpha_4$ 线性相关,则 $\alpha_1, \alpha_2, \alpha_4$ 也线性相关;
- ③ 如果 $R(\alpha_1, \alpha_1 + \alpha_2, \alpha_2 + \alpha_3) = R(\alpha_4, \alpha_1 + \alpha_4, \alpha_2 + \alpha_4, \alpha_3 + \alpha_4),$ 则 α_4 可以由 $\alpha_1, \alpha_2, \alpha_3$ 线性表出。

其中正确的个数为()。

A. 0

B. 1

C. 2

D. 3

二、 填空题 (每题 3 分, 共 15 分)

- 1. 设 $a_1 = (1,2,-1,0)^T$, $a_2 = (1,1,0,2)^T$, $a_3 = (2,1,1,a)^T$, 若由 a_1 , a_2 , a_3 生成的向量空间维数是 2,则 a =_____。
- 2. 设 A 是 n 阶可逆矩阵, λ 是 A 的特征值,则 $(A^{-1})^2 + E$ 必有特征值 ______。
- 3. 若二次型 $f = x_1^2 + 2tx_1x_2 + x_2^2 2x_1x_3 + 2x_2x_3 + 2x_3^2$ 是正定的,则 t 的取值范围是
- 4. 设 3 阶矩阵 $A = \begin{pmatrix} 1 & 2 & -2 \\ 2 & 1 & 2 \\ 3 & 0 & 4 \end{pmatrix}$, $\alpha = (a, 1, 1)^T$, 已知 $A\alpha$ 与 α 线性相关,则 $\alpha =$ ______。
- 5. 设 A 是 4×6 矩阵,R(A) = 2,则齐次线性方程组 Ax = 0 的基础解系中所含向量的个数 是 _____。

三、 计算题(共50分)

(6分)设A是3阶实对称矩阵,将矩阵A的1、2两行互换后再将1、2两列互换得到的矩阵是B,试判断A与B是否等价、相似、合同?

- 2. (15 分) 己知 $\alpha_1 = (1,2,-3,1)^T$, $\alpha_2 = (5,-5,a,11)^T$, $\alpha_3 = (1,-3,6,3)^T$, $\alpha_4 = (2,-1,3,a)^T$ 。问:
 - (1) 当 a 为何值时,向量组 α_1 , α_2 , α_3 , α_4 线性相关;
 - (2) 当 a 为何值时,向量组 $\alpha_1,\alpha_2,\alpha_3,\alpha_4$ 线性无关;
 - (3) 当 a 为何值时, α_4 能由 $\alpha_1, \alpha_2, \alpha_3$ 线性表出,并写出它的表达式。
- 3. (13 分)设 $A = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix}$,求正交矩阵 Q,使得 $Q^{-1}AQ = \Lambda$ 。
- 4. (10 分)求出二次型 $f = (-2x_1 + x_2 + x_3)^2 + (x_1 2x_2 + x_3)^2 + (x_1 + x_2 2x_3)^2$ 的标准形及相应的可逆线性变换。
- 5. 设 3 阶实对称矩阵 A 的各行元素之和均为 3,向量 $\alpha_1 = (-1,2,-1)^T, \alpha_2 = (0,-1,1)^T$ 是 方程组 Ax = 0 的两个解,求 A 的特征值和对应的特征向量。(6 分)

四、 证明题 (每题 5 分, 共 15 分)

- 1. 设有两个 n 维非零列向量 $\boldsymbol{\alpha} = (a_1, a_2, \cdots, a_n)^T$, $\boldsymbol{\beta} = (b_1, b_2, \cdots, b_n)^T$, $\boldsymbol{C} = \boldsymbol{E} \alpha \boldsymbol{\beta}^T$, 其中 E 为 n 阶单位矩阵,证明: $\boldsymbol{C}^T \boldsymbol{C} = \boldsymbol{E} \boldsymbol{\beta} \boldsymbol{\alpha}^T \alpha \boldsymbol{\beta}^T + \boldsymbol{\beta} \boldsymbol{\beta}^T$ 的充要条件是 $\boldsymbol{\alpha}^T \boldsymbol{\alpha} = 1$ 。
- 2. 已知 η 是 Ax = b 的一个特解, ξ_1 , ξ_2 , …, ξ_{n-r} 是对应的齐次方程组 Ax = 0 的基础解系,证明: 方程组 Ax = b 的任一解均可由 η , $\eta + \xi_1$, $\eta + \xi_2$, …, $\eta + \xi_{n-r}$ 线性表出。
- 3. 设 A 为 $m \times n$ 实矩阵,E 为 n 阶单位矩阵,已知矩阵 $B = \lambda E + A^T A$,证明:当 $\lambda > 0$ 时,矩阵 B 为正定矩阵。