

Master 2 ATAL

Signal et Langue

Digit Recognizer

Étudiants : Coraline Marie Romain Rincé

Encadrants : Harold Mouchère Christian Viard-Gaudin

15 novembre 2014

Table des matières

	Introduction		2
1	Hidden Markov Models		
	1.1	Extraction de séquences	
	1.2	Création et initialisation d'un HMM	
	1.3	Entraînement des modèles	
	1.4	Performances de la reconnaissance	
2	Rés	seaux de neurones	
	Cor	nclusion	

Introduction

1 Hidden Markov Models

1.1 Extraction de séquences

Pour cette première partie, seul quelques extraits de codes seront présentés. L'intégralité du code source se trouve dans le fichier src/hmmPart1.r du projet.

Extension de la fonction simu_symbol

La fonction simu_symbol permet de construire et d'afficher des chiffres. Pour cela, elle récupère un ensemble de 30 points différents, qu'elle relie ensuite dans un odre précis. L'extension de cette fonction par le code ci-dessous, permet désormais de construire le chiffre 6.

```
simu symbol <- function()</pre>
 2 3
 4
         digit 6 <- rbind(
 5
             stroke(-0.5,1.0,-0.5,-0.5,10),
             stroke (-0.4, -0.5, 0.5, -0.5, 7),
             stroke (0.5, -0.4, 0.5, 0.4, 6),
             stroke (0.4, 0.4, -0.5, 0.4, 7)
 8
 9
          \begin{array}{l} \mathbf{dimnames}(\ \mathrm{digit\_6}) <& -\mathbf{list}(\ \mathrm{num}=1:\mathbf{nrow}(\ \mathrm{digit\_6})\ , \mathbf{point=c}(\ "x"\ , "y")) \\ \mathbf{plot}(\ \mathrm{digit}\ \ 6\ , \mathbf{type="l"}\ "\ , \mathbf{col="red"}\ , \mathbf{xlim=c}(-1\ , \overline{1})\ , \mathbf{ylim=c}(-1\ , 1)) \end{array} 
10
11
12
         points (digit 6)
13
         return(list(\overline{d}1=digit_1,d2=digit_4,d3=digit_6))
14 }
```

Analyse de la fonction compute_symbol

La fonction compute_symbol prend trois paramêtres en entrée : le tracé d'un chiffre, un nombre de lignes (5) et un nombre de colonnes (3). Elle commence par construire une matrice, ayant pour dimmension le nombre de lignes et de colonnes précisés précédemment. Cette matrice servira à positionner les points du tracé analysé :

$$\begin{pmatrix}
13 & 14 & 15 \\
10 & 11 & 12 \\
7 & 8 & 9 \\
4 & 5 & 6 \\
1 & 2 & 3
\end{pmatrix}$$

Elle calcule ensuite le nombre de points présents dans le tracé du chiffre, puis les positions horizontales et verticales de chacun de ces points. Pour finir, elle détermine la position de chaque point dans la matrice qu'elle a créée, et les affiche.

Voici les resultats donnés par cette fonction pour les trois tracés créés par la fonction simu_symbol :

Ce qui donne pour le chiffre "6", les positions suivantes :

$$\begin{pmatrix}
13 & 14 & 15 \\
10 & 11 & 12 \\
7 & 8 & 9 \\
4 & 5 & 6 \\
1 & 2 & 3
\end{pmatrix}$$

Avec une matrice contenant suffisamment de lignes et de colonnes, cette méthode permet de déterminer efficacement la position de chaque point d'un caractère. Cependant, si le caractère analysé est mal positionné (décalage à gauche ou à droite), toutes les positions sont également décalées au niveau de la matrice. Il faut donc faire un gros prétraitement pour que le caractère soit bien découpé et bien positionné. De plus, l'ordre de chaque points est essentiel pour la construction de la séquence.

Analyse de la fonction compute_symbol_dir

La fonction compute_symbol_dir prend deux paramêtres en entrée : le tracé d'un chiffre et un nombre d'angles qui serviront de direction (ici 8). Chaque direction est numérotées telles que :

Ainsi, la direction 1 indique un déplacement vers la droite, la direction 5 vers la gauche, etc...

Voici les resultats donnés par cette fonction pour les trois tracés créés par la fonction simu_symbol_dir :

Ce qui donne pour le chiffre "1" deux tracés : le premier allant vers le 2 et le second allant vers le 7.

L'un des principaux avantages de cette méthode est que la taille de la séquence, ainsi que sa position (avec ou sans décalage) n'affectent pas les résultats.

Cette fonction arrive à déterminer précisément l'angle de la direction du tracé. Cependant, si l'image n'est pas dans le bon sens ou si l'écriture est inclinée ou en italique, la reconnaissance de l'angle sera faussée. De plus, le chiffre "1" et le chiffre "7" peuvent être facilement confondu à cause de certaines polices d'écriture. L'ordre de chaque points est également essentiel pour la construction de la séquence.

- 1.2 Création et initialisation d'un HMM
- 1.3 Entraînement des modèles
- 1.4 Performances de la reconnaissance

2 Réseaux de neurones

Conclusion