Übungen zur Vorlesung Mathematik I für Studierende des Ingenieurwesens und der Informatik

Wintersemester 2015/16

Albert-Ludwigs-Universität Freiburg

Prof. Dr. S. Bartels, Dipl.-Math. P. Schön

Aufgabenblatt 10

Aufgabe 1 (3 Punkte)

Zeigen Sie, dass die Funktion $f: \mathbb{R} \to \mathbb{R}$, $x \mapsto x^2$ stetig ist im Sinne der ε - δ -Definition der Stetigkeit, d.h. für alle $x_0 \in \mathbb{R}$ und $\varepsilon > 0$ gibt es ein $\delta > 0$, so dass

$$|x - x_0| < \delta \implies |f(x) - f(x_0)| < \varepsilon$$

gilt (siehe Definition 5.2).

Aufgabe 2 (3 Punkte)

(a) Sei $I = \mathbb{R}$ und $f: I \to \mathbb{R}$ definiert durch $f(x) = x^2$. Zeigen Sie, dass f in allen Punkten $x_0 \in I$ differenzierbar ist, das heißt zeigen Sie, dass für jedes $x_0 \in I$ ein $a \in \mathbb{R}$ existiert, so dass

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = a$$

gilt. Geben Sie eine Formel für die Ableitung an.

(b) Beweisen Sie dieselbe Aussage für $I = (0, \infty)$ und $f(x) = x^{1/2}$.

Hinweis: Verwenden Sie eine binomische Formel.

Aufgabe 3 (3 Punkte)

- (a) Sei $f: I \to \mathbb{R}$ differenzierbar in $x_0 \in I$. Beweisen oder widerlegen Sie folgende Aussage: Gilt $f'(x_0) = 0$, so existiert für jedes $n \in \mathbb{N}$ ein $x_n \in I \setminus \{x_0\}$ mit $|x_n x_0| < \frac{1}{n}$ und $f(x_n) = f(x_0)$.
- (b) Beweisen oder widerlegen Sie die Umkehrung der obigen Implikation.

Aufgabe 4 (3 Punkte)

(a) Seien $x \in [0,1)$ eine reelle Zahl und $n \in \mathbb{N}$. Zeigen Sie mittels einer Intervallschachtelung, dass Zahlen $b_1, \ldots, b_n \in \{0,1\}$ existieren, mit

$$\left| x - \sum_{k=1}^{n} b_k 2^{-k} \right| \le 2^{-n}.$$

(b) Folgern Sie, dass für jede reelle Zahl $x \in \mathbb{R}$ eine Folge $q_n \subset \mathbb{Q}$ rationaler Zahlen existiert, so dass

$$q_n \to x \text{ für } n \to \infty.$$

(c) Angenommen Sie verwenden zum Speichern einer reellen Zahl $x \in [0,1)$ einen Datentyp mit 32 Bit Speicherbedarf. Ein Bit kann entweder den Wert true oder false annehmen. Geben Sie an, mit welcher Genauigkeit Sie x abspeichern können.