Nipun Batra and the teaching staff

July 21, 2025

IIT Gandhinagar

Setup

• Output is continuous in nature.

- Output is continuous in nature.
- Examples of linear systems:

- Output is continuous in nature.
- Examples of linear systems:
 - *F* = *ma*

- Output is continuous in nature.
- Examples of linear systems:
 - *F* = *ma*
 - v = u + at

Task at hand

• TASK: Predict Weight = f(height)

Height	Weight
3	29
4	35
5	39
2	20
6	41
7	?
8	?
1	?

The first part of the dataset is the training points. The latter ones are testing points.

Scatter Plot

• $weight_1 \approx \theta_0 + \theta_1 \cdot height_1$

- $weight_1 \approx \theta_0 + \theta_1 \cdot height_1$
- $weight_2 \approx \theta_0 + \theta_1 \cdot height_2$

- $weight_1 \approx \theta_0 + \theta_1 \cdot height_1$
- $weight_2 \approx \theta_0 + \theta_1 \cdot height_2$
- $weight_N \approx \theta_0 + \theta_1 \cdot height_N$

- $weight_1 \approx \theta_0 + \theta_1 \cdot height_1$
- $weight_2 \approx \theta_0 + \theta_1 \cdot height_2$
- $weight_N \approx \theta_0 + \theta_1 \cdot height_N$

- $weight_1 \approx \theta_0 + \theta_1 \cdot height_1$
- $weight_2 \approx \theta_0 + \theta_1 \cdot height_2$
- $weight_N \approx \theta_0 + \theta_1 \cdot height_N$

weight;
$$\approx \theta_0 + \theta_1 \cdot height_i$$

$$\begin{bmatrix} weight_1 \\ weight_2 \\ \dots \\ weight_N \end{bmatrix} = \begin{bmatrix} 1 & height_1 \\ 1 & height_2 \\ \dots & \dots \\ 1 & height_N \end{bmatrix} \begin{bmatrix} \theta_0 \\ \theta_1 \end{bmatrix}$$

$$\begin{bmatrix} weight_1 \\ weight_2 \\ \dots \\ weight_N \end{bmatrix} = \begin{bmatrix} 1 & height_1 \\ 1 & height_2 \\ \dots & \dots \\ 1 & height_N \end{bmatrix} \begin{bmatrix} \theta_0 \\ \theta_1 \end{bmatrix}$$

$$\hat{\mathbf{y}}_{n\times 1} = \mathbf{X}_{n\times d} \boldsymbol{\theta}_{d\times 1}$$

$$egin{bmatrix} ext{weight}_1 \ ext{weight}_2 \ ext{...} \ ext{weight}_N \end{bmatrix} = egin{bmatrix} 1 & ext{height}_1 \ 1 & ext{height}_2 \ ext{...} & ext{...} \ 1 & ext{height}_N \end{bmatrix} egin{bmatrix} heta_0 \ heta_1 \end{bmatrix}$$

$$\hat{\mathbf{y}}_{n\times 1} = \mathbf{X}_{n\times d}\boldsymbol{\theta}_{d\times 1}$$

ullet $heta_0$ - Bias Term/Intercept Term

$$\begin{bmatrix} weight_1 \\ weight_2 \\ \dots \\ weight_N \end{bmatrix} = \begin{bmatrix} 1 & height_1 \\ 1 & height_2 \\ \dots & \dots \\ 1 & height_N \end{bmatrix} \begin{bmatrix} \theta_0 \\ \theta_1 \end{bmatrix}$$

$$\hat{\mathbf{y}}_{n\times 1} = \mathbf{X}_{n\times d}\boldsymbol{\theta}_{d\times 1}$$

- θ_0 Bias Term/Intercept Term
- θ_1 Slope

In the previous example y = f(x), where x is one-dimensional.

In the previous example y=f(x), where x is one-dimensional. Examples in multiple dimensions.

In the previous example y = f(x), where x is one-dimensional.

Examples in multiple dimensions.

One example is to predict the water demand of the IITGN campus

In the previous example y = f(x), where x is one-dimensional.

Examples in multiple dimensions.

One example is to predict the water demand of the IITGN campus

Demand = f(# occupants, Temperature)

In the previous example y = f(x), where x is one-dimensional.

Examples in multiple dimensions.

One example is to predict the water demand of the IITGN campus

Demand = f(# occupants, Temperature)

 $\mathsf{Demand} = \mathsf{Base} \ \mathsf{Demand} + \mathit{K}_1 \ \text{*} \ \# \ \mathsf{occupants} + \mathit{K}_2 \ \text{*} \ \mathsf{Temperature}$

Intuition

We hope to:

• Learn f: Demand = f(#occupants, Temperature)

7

Intuition

We hope to:

- Learn f: Demand = f(#occupants, Temperature)
- From training dataset

Intuition

We hope to:

- Learn f: Demand = f(#occupants, Temperature)
- From training dataset
- To predict the condition for the testing set

•
$$x_i = \begin{bmatrix} Temperature_i \\ \#Occupants_i \end{bmatrix}$$

We have

•
$$x_i = \begin{bmatrix} Temperature_i \\ \#Occupants_i \end{bmatrix}$$

• Estimated demand for i^{th} sample is

• Estimated demand for i^{th} sample is $de\hat{mand}_i = \theta_0 + \theta_1 Temperature_i + \theta_2 Occupants_i$

•
$$x_i = \begin{bmatrix} Temperature_i \\ \#Occupants_i \end{bmatrix}$$

- Estimated demand for i^{th} sample is $de\hat{mand}_i = \theta_0 + \theta_1 Temperature_i + \theta_2 Occupants_i$
- $demand_i = x_i'^T \theta$

•
$$x_i = \begin{bmatrix} Temperature_i \\ \#Occupants_i \end{bmatrix}$$

- Estimated demand for i^{th} sample is $de\hat{mand}_i = \theta_0 + \theta_1 Temperature_i + \theta_2 Occupants_i$
- $demand_i = x_i'^T \theta$ $\begin{bmatrix} \theta_0 \end{bmatrix}$
- ullet where $heta=egin{bmatrix} heta_0 \ heta_1 \ heta_2 \end{bmatrix}$

•
$$x_i = \begin{bmatrix} Temperature_i \\ \#Occupants_i \end{bmatrix}$$

- Estimated demand for i^{th} sample is $de\hat{mand}_i = \theta_0 + \theta_1 Temperature_i + \theta_2 Occupants_i$
- $demand_i = x_i'^T \theta$

$$ullet$$
 where $heta=egin{bmatrix} heta_0 \ heta_1 \ heta_2 \end{bmatrix}$

• and
$$x_i' = \begin{bmatrix} 1 \\ Temperature_i \\ \#Occupants_i \end{bmatrix} = \begin{bmatrix} 1 \\ x_i \end{bmatrix}$$

We have

•
$$x_i = \begin{bmatrix} Temperature_i \\ \#Occupants_i \end{bmatrix}$$

- Estimated demand for i^{th} sample is $de\hat{mand}_i = \theta_0 + \theta_1 Temperature_i + \theta_2 Occupants_i$
- $demand_i = x_i'^T \theta$
- ullet where $heta=egin{bmatrix} heta_0 \ heta_1 \ heta_2 \end{bmatrix}$

• and
$$x_i' = \begin{bmatrix} 1 \\ Temperature_i \\ \#Occupants_i \end{bmatrix} = \begin{bmatrix} 1 \\ x_i \end{bmatrix}$$

 Notice the transpose in the equation! This is because x_i is a column vector

We can expect the following

ullet Demand increases, if # occupants increases, then $heta_2$ is likely to be positive

We can expect the following

- Demand increases, if # occupants increases, then θ_2 is likely to be positive
- \bullet Demand increases, if temperature increases, then θ_1 is likely to be positive

We can expect the following

- Demand increases, if # occupants increases, then θ_2 is likely to be positive
- \bullet Demand increases, if temperature increases, then θ_1 is likely to be positive
- Base demand is independent of the temperature and the # occupants, but, likely positive, thus θ_0 is likely positive.

Normal Equation

Generalized Linear Regression Format

• Assuming *N* samples for training

- Assuming *N* samples for training
- # Features = M

- Assuming *N* samples for training
- # Features = M

- Assuming N samples for training
- # Features = M

$$\begin{bmatrix} \hat{y_1} \\ \hat{y_2} \\ \vdots \\ \hat{y_N} \end{bmatrix}_{N \times 1} = \begin{bmatrix} 1 & x_{1,1} & x_{1,2} & \dots & x_{1,M} \\ 1 & x_{2,1} & x_{2,2} & \dots & x_{2,M} \\ \vdots & \vdots & \vdots & \dots & \vdots \\ 1 & x_{N,1} & x_{N,2} & \dots & x_{N,M} \end{bmatrix}_{N \times (M+1)} \begin{bmatrix} \theta_0 \\ \theta_1 \\ \vdots \\ \theta_M \end{bmatrix}_{(M+1) \times 1}$$

- Assuming N samples for training
- # Features = M

$$\begin{bmatrix} \hat{y_1} \\ \hat{y_2} \\ \vdots \\ \hat{y_N} \end{bmatrix}_{N \times 1} = \begin{bmatrix} 1 & x_{1,1} & x_{1,2} & \dots & x_{1,M} \\ 1 & x_{2,1} & x_{2,2} & \dots & x_{2,M} \\ \vdots & \vdots & \vdots & \dots & \vdots \\ 1 & x_{N,1} & x_{N,2} & \dots & x_{N,M} \end{bmatrix}_{N \times (M+1)} \begin{bmatrix} \theta_0 \\ \theta_1 \\ \vdots \\ \theta_M \end{bmatrix}_{(M+1) \times 1}$$

$$\hat{Y} = X\theta$$

• There could be different $\theta_0, \theta_1 \dots \theta_M$. Each of them can represents a relationship.

- There could be different $\theta_0, \theta_1 \dots \theta_M$. Each of them can represents a relationship.
- Given multiples values of $\theta_0, \theta_1 \dots \theta_M$ how to choose which is the best?

- There could be different $\theta_0, \theta_1 \dots \theta_M$. Each of them can represents a relationship.
- Given multiples values of $\theta_0, \theta_1 \dots \theta_M$ how to choose which is the best?
- Let us consider an example in 2d

Out of the three fits, which one do we choose?

We have $\hat{y} = 2 + 1x$ as one relationship.

How far is our estimated \hat{y} from ground truth y?

•
$$y_i = \hat{y}_i + \epsilon_i$$
 where $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$

- $y_i = \hat{y}_i + \epsilon_i$ where $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$
- ullet y_i denotes the ground truth for i^{th} sample

- $y_i = \hat{y}_i + \epsilon_i$ where $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$
- y_i denotes the ground truth for i^{th} sample
- \hat{y}_i denotes the prediction for i^{th} sample, where $\hat{y}_i = \mathbf{x}_i^{ op} oldsymbol{ heta}$

- $y_i = \hat{y}_i + \epsilon_i$ where $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$
- y_i denotes the ground truth for i^{th} sample
- \hat{y}_i denotes the prediction for i^{th} sample, where $\hat{y}_i = \mathbf{x}_i^{\top} \boldsymbol{\theta}$
- $\bullet \ \epsilon_i$ denotes the error/residual for i^{th} sample

- $y_i = \hat{y}_i + \epsilon_i$ where $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$
- y_i denotes the ground truth for i^{th} sample
- \hat{y}_i denotes the prediction for i^{th} sample, where $\hat{y}_i = \mathbf{x}_i^{\top} \boldsymbol{\theta}$
- ϵ_i denotes the error/residual for i^{th} sample
- θ_0, θ_1 : The parameters of the linear regression

- $y_i = \hat{y}_i + \epsilon_i$ where $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$
- y_i denotes the ground truth for i^{th} sample
- \hat{y}_i denotes the prediction for i^{th} sample, where $\hat{y}_i = \mathbf{x}_i^{\top} \boldsymbol{\theta}$
- ϵ_i denotes the error/residual for i^{th} sample
- θ_0, θ_1 : The parameters of the linear regression
- $\bullet \ \epsilon_i = y_i \hat{y}_i$

- $y_i = \hat{y}_i + \epsilon_i$ where $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$
- y_i denotes the ground truth for i^{th} sample
- \hat{y}_i denotes the prediction for i^{th} sample, where $\hat{y}_i = \mathbf{x}_i^{ op} oldsymbol{ heta}$
- ullet ϵ_i denotes the error/residual for i^{th} sample
- θ_0, θ_1 : The parameters of the linear regression
- $\bullet \ \epsilon_i = y_i \hat{y}_i$
- $\bullet \ \epsilon_i = y_i (\theta_0 + x_i \cdot \theta_1)$

Good fit

 $\bullet \ |\epsilon_1|, \ |\epsilon_2|, \ |\epsilon_3|, \ \dots \ \mbox{should be small}.$

Good fit

- $|\epsilon_1|$, $|\epsilon_2|$, $|\epsilon_3|$, ... should be small.
- ullet minimize $\epsilon_1^2+\epsilon_2^2+\cdots+\epsilon_N^2$ L_2 Norm

Good fit

- $|\epsilon_1|$, $|\epsilon_2|$, $|\epsilon_3|$, ... should be small.
- minimize $\epsilon_1^2 + \epsilon_2^2 + \cdots + \epsilon_N^2$ L_2 Norm
- minimize $|\epsilon_1| + |\epsilon_2| + \cdots + |\epsilon_n|$ L_1 Norm

$$Y = X\theta + \epsilon$$

$$Y = X\theta + \epsilon$$

To Learn: θ

$$Y = X\theta + \epsilon$$

To Learn: θ

Objective: minimize $\epsilon_1^2 + \epsilon_2^2 + \dots + \epsilon_N^2$

$$\epsilon = \begin{bmatrix} \epsilon_1 \\ \epsilon_1 \\ \vdots \\ \epsilon_N \end{bmatrix}$$

$$\epsilon = \begin{bmatrix} \epsilon_1 \\ \epsilon_1 \\ \vdots \\ \epsilon_N \end{bmatrix}$$

Objective: Minimize $\epsilon^T \epsilon$

Derivation of Normal Equation

$$\epsilon = \mathsf{y} - \mathsf{X}\theta$$

$$\boldsymbol{\epsilon}^{ op} \boldsymbol{\epsilon} = (\mathbf{y} - \mathbf{X} \boldsymbol{\theta})^{ op} (\mathbf{y} - \mathbf{X} \boldsymbol{\theta})$$

$$= \mathbf{y}^{\top} \mathbf{y} - 2 \mathbf{y}^{\top} \mathbf{X} \boldsymbol{\theta} + \boldsymbol{\theta}^{\top} \mathbf{X}^{\top} \mathbf{X} \boldsymbol{\theta}$$

This is what we wish to minimize

Minimizing the objective function

$$\frac{\partial \boldsymbol{\epsilon}^{\top} \boldsymbol{\epsilon}}{\partial \boldsymbol{\theta}} = 0$$

$$\bullet \ \ \tfrac{\partial}{\partial \boldsymbol{\theta}} \mathbf{y}^{\top} \mathbf{y} = \mathbf{0}$$

Substitute the values in the top equation

Minimizing the objective function

$$\frac{\partial \boldsymbol{\epsilon}^{\top} \boldsymbol{\epsilon}}{\partial \boldsymbol{\theta}} = 0$$

- $\begin{aligned} \bullet & & \frac{\partial}{\partial \theta} \mathbf{y}^{\top} \mathbf{y} = 0 \\ \bullet & & \frac{\partial}{\partial \theta} (-2 \mathbf{y}^{\top} \mathbf{X} \theta) = -2 \mathbf{X}^{\top} \mathbf{y} \end{aligned}$

Substitute the values in the top equation

Minimizing the objective function

$$\frac{\partial \boldsymbol{\epsilon}^{\top} \boldsymbol{\epsilon}}{\partial \boldsymbol{\theta}} = 0$$

- $\frac{\partial}{\partial \boldsymbol{\theta}} \mathbf{y}^{\mathsf{T}} \mathbf{y} = 0$
- $\bullet \ \ \tfrac{\partial}{\partial \boldsymbol{\theta}} (-2\mathbf{y}^{\top} \mathbf{X} \boldsymbol{\theta}) = -2 \mathbf{X}^{\top} \mathbf{y}$
- $\bullet \ \ \tfrac{\partial}{\partial \boldsymbol{\theta}} (\boldsymbol{\theta}^\top \mathbf{X}^\top \mathbf{X} \boldsymbol{\theta}) = 2 \mathbf{X}^\top \mathbf{X} \boldsymbol{\theta}$

Substitute the values in the top equation

Normal Equation derivation

$$0 = -2\mathbf{X}^{\top}\mathbf{y} + 2\mathbf{X}^{\top}\mathbf{X}\boldsymbol{\theta}$$

$$\mathbf{X}^{\top}\mathbf{y} = \mathbf{X}^{\top}\mathbf{X}\boldsymbol{\theta}$$

$$\hat{\boldsymbol{\theta}}_{OLS} = (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{y}$$

X	У
0	0
1	1
2	2
3	3

Given the data above, find θ_0 and θ_1 .

Scatter Plot

$$\mathbf{X} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 2 \\ 1 & 3 \end{bmatrix}$$
$$\mathbf{X}^{\top} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 \end{bmatrix}$$

$$\mathbf{X}^{ op}\mathbf{X} = \begin{bmatrix} 4 & 6 \\ 6 & 14 \end{bmatrix}$$

Given the data above, find θ_0 and θ_1 .

$$(\mathbf{X}^{\top}\mathbf{X})^{-1} = \frac{1}{20} \begin{bmatrix} 14 & -6 \\ -6 & 4 \end{bmatrix}$$

$$\mathbf{X}^{\top}\mathbf{y} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 6 \\ 14 \end{bmatrix}$$

$$\theta = (X^T X)^{-1} (X^T y)$$

$$\begin{bmatrix} \theta_0 \\ \theta_1 \end{bmatrix} = \frac{1}{20} \begin{bmatrix} 14 & -6 \\ -6 & 4 \end{bmatrix} \begin{bmatrix} 6 \\ 14 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

Scatter Plot

Effect of outlier

X	У
1	1
2	2
3	3
4	0

Compute the θ_0 and θ_1 .

Scatter Plot

Worked out example

$$X = \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 3 \\ 1 & 4 \end{bmatrix}$$
$$X^{T} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \end{bmatrix}$$
$$X^{T}X = \begin{bmatrix} 4 & 10 \\ 10 & 30 \end{bmatrix}$$

Given the data above, find θ_0 and θ_1 .

Worked out example

$$(\mathbf{X}^{\top}\mathbf{X})^{-1} = \frac{1}{20} \begin{bmatrix} 30 & -10 \\ -10 & 4 \end{bmatrix}$$

$$\mathbf{X}^{\top}\mathbf{y} = \begin{bmatrix} 6 \\ 14 \end{bmatrix}$$

Worked out example

$$\boldsymbol{\theta} = (\mathbf{X}^{\top}\mathbf{X})^{-1}(\mathbf{X}^{\top}\mathbf{y})$$

$$\begin{bmatrix} \theta_0 \\ \theta_1 \end{bmatrix} = \begin{bmatrix} 2 \\ (-1/5) \end{bmatrix}$$

Scatter Plot

Basis Expansion

Transform the data, by including the higher power terms in the feature space.

t	S
0	0
1	6
3	24
4	36

The above table represents the data before transformation

Add the higher degree features to the previous table

t	t ²	S
0	0	0
1	1	6
3	9	24
4	16	36

Add the higher degree features to the previous table

t	t ²	S
0	0	0
1	1	6
3	9	24
4	16	36

The above table represents the data after transformation

Add the higher degree features to the previous table

t	t ²	S
0	0	0
1	1	6
3	9	24
4	16	36

The above table represents the data after transformation Now, we can write $\hat{s}=f(t,t^2)$

Add the higher degree features to the previous table

t	t ²	S
0	0	0
1	1	6
3	9	24
4	16	36

The above table represents the data after transformation Now, we can write $\hat{s} = f(t, t^2)$

Other transformations: $log(x), x_1 \times x_2$

1.
$$\hat{s} = \theta_0 + \theta_1 * t$$
 is linear

¹https://stats.stackexchange.com/questions/8689/what-does-linear-stand-for-in-linear-regression

- 1. $\hat{s} = \theta_0 + \theta_1 * t$ is linear
- 2. Is $\hat{s} = \theta_0 + \theta_1 * t + \theta_2 * t^2$ linear?

¹https://stats.stackexchange.com/questions/8689/what-does-linear-stand-for-in-linear-regression

- 1. $\hat{s} = \theta_0 + \theta_1 * t$ is linear
- 2. Is $\hat{s} = \theta_0 + \theta_1 * t + \theta_2 * t^2$ linear?
- 3. Is $\hat{s} = \theta_0 + \theta_1 * t + \theta_2 * t^2 + \theta_3 * \cos(t^3)$ linear?

¹https://stats.stackexchange.com/questions/8689/what-does-linear-stand-for-in-linear-regression

- 1. $\hat{s} = \theta_0 + \theta_1 * t$ is linear
- 2. Is $\hat{s} = \theta_0 + \theta_1 * t + \theta_2 * t^2$ linear?
- 3. Is $\hat{s} = \theta_0 + \theta_1 * t + \theta_2 * t^2 + \theta_3 * \cos(t^3)$ linear?
- 4. Is $\hat{s} = \theta_0 + \theta_1 * t + e^{\theta_2} * t$ linear?

¹https://stats.stackexchange.com/questions/8689/what-does-linear-stand-for-in-linear-regression

- 1. $\hat{s} = \theta_0 + \theta_1 * t$ is linear
- 2. Is $\hat{s} = \theta_0 + \theta_1 * t + \theta_2 * t^2$ linear?
- 3. Is $\hat{s} = \theta_0 + \theta_1 * t + \theta_2 * t^2 + \theta_3 * \cos(t^3)$ linear?
- 4. Is $\hat{s} = \theta_0 + \theta_1 * t + e^{\theta_2} * t$ linear?
- 5. All except #4 are linear models!

¹https://stats.stackexchange.com/questions/8689/what-does-linear-stand-for-in-linear-regression

A big caveat: Linear in what?!¹

- 1. $\hat{s} = \theta_0 + \theta_1 * t$ is linear
- 2. Is $\hat{s} = \theta_0 + \theta_1 * t + \theta_2 * t^2$ linear?
- 3. Is $\hat{s} = \theta_0 + \theta_1 * t + \theta_2 * t^2 + \theta_3 * \cos(t^3)$ linear?
- 4. Is $\hat{s} = \theta_0 + \theta_1 * t + e^{\theta_2} * t$ linear?
- 5. All except #4 are linear models!
- 6. Linear refers to the relationship between the parameters that you are estimating (θ) and the outcome

¹https://stats.stackexchange.com/questions/8689/what-does-linear-stand-for-in-linear-regression

• Linear regression only refers to linear in the parameters

- Linear regression only refers to linear in the parameters
- We can perform an arbitrary nonlinear transformation $\phi(x)$ of the inputs x and then linearly combine the components of this transformation.

- Linear regression only refers to linear in the parameters
- We can perform an arbitrary nonlinear transformation $\phi(x)$ of the inputs x and then linearly combine the components of this transformation.
- $\phi: \mathbb{R}^D \to \mathbb{R}^K$ is called the basis function

Some examples of basis functions:

• Polynomial basis: $\phi(x) = \{1, x, x^2, x^3, \dots\}$

Some examples of basis functions:

- Polynomial basis: $\phi(x) = \{1, x, x^2, x^3, \dots\}$
- Fourier basis: $\phi(x) = \{1, \sin(x), \cos(x), \sin(2x), \cos(2x), \dots\}$

Some examples of basis functions:

- Polynomial basis: $\phi(x) = \{1, x, x^2, x^3, \dots\}$
- Fourier basis: $\phi(x) = \{1, \sin(x), \cos(x), \sin(2x), \cos(2x), \dots\}$
- Gaussian basis: $\phi(x) = \{1, \exp(-\frac{(x-\mu_1)^2}{2\sigma^2}), \exp(-\frac{(x-\mu_2)^2}{2\sigma^2}), \dots\}$

Some examples of basis functions:

- Polynomial basis: $\phi(x) = \{1, x, x^2, x^3, \dots\}$
- Fourier basis: $\phi(x) = \{1, \sin(x), \cos(x), \sin(2x), \cos(2x), \dots\}$
- Gaussian basis: $\phi(x) = \{1, \exp(-\frac{(x-\mu_1)^2}{2\sigma^2}), \exp(-\frac{(x-\mu_2)^2}{2\sigma^2}), \dots\}$
- Sigmoid basis: $\phi(x)=\{1,\sigma(x-\mu_1),\sigma(x-\mu_2),\dots\}$ where $\sigma(x)=\frac{1}{1+e^{-x}}$

Geometric Interpretation

Linear Combination of Vectors

Let $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \dots, \mathbf{v}_i$ be vectors in \mathbb{R}^D , where D denotes the dimensions.

Linear Combination of Vectors

Let $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \dots, \mathbf{v}_i$ be vectors in \mathbb{R}^D , where D denotes the dimensions.

A linear combination of $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \dots, \mathbf{v}_i$ is of the following form

Linear Combination of Vectors

Let $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \dots, \mathbf{v}_i$ be vectors in \mathbb{R}^D , where D denotes the dimensions.

A linear combination of $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \dots, \mathbf{v}_i$ is of the following form

$$\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \alpha_3 \mathbf{v}_3 + \dots + \alpha_i \mathbf{v}_i$$

where $\alpha_1, \alpha_2, \alpha_3, \dots, \alpha_i \in \mathbb{R}$

Let v_1, v_2, \ldots, v_i be vectors in \mathbb{R}^D , with D dimensions.

Let v_1, v_2, \ldots, v_i be vectors in \mathbb{R}^D , with D dimensions. The span of v_1, v_2, \ldots, v_i is denoted by $\mathsf{SPAN}\{v_1, v_2, \ldots, v_i\}$

Let v_1, v_2, \ldots, v_i be vectors in \mathbb{R}^D , with D dimensions. The span of v_1, v_2, \ldots, v_i is denoted by $\mathsf{SPAN}\{v_1, v_2, \ldots, v_i\}$

$$\{\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \dots + \alpha_i \mathbf{v}_i \mid \alpha_1, \alpha_2, \dots, \alpha_i \in \mathbb{R}\}$$

Let v_1, v_2, \ldots, v_i be vectors in \mathbb{R}^D , with D dimensions. The span of v_1, v_2, \ldots, v_i is denoted by $\mathsf{SPAN}\{v_1, v_2, \ldots, v_i\}$

$$\{\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \dots + \alpha_i \mathbf{v}_i \mid \alpha_1, \alpha_2, \dots, \alpha_i \in \mathbb{R}\}$$

It is the set of all vectors that can be generated by linear combinations of v_1, v_2, \ldots, v_i .

Let v_1, v_2, \ldots, v_i be vectors in \mathbb{R}^D , with D dimensions. The span of v_1, v_2, \ldots, v_i is denoted by $\mathsf{SPAN}\{v_1, v_2, \ldots, v_i\}$

$$\{\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \dots + \alpha_i \mathbf{v}_i \mid \alpha_1, \alpha_2, \dots, \alpha_i \in \mathbb{R}\}$$

It is the set of all vectors that can be generated by linear combinations of v_1, v_2, \ldots, v_i .

If we stack the vectors v_1, v_2, \ldots, v_i as columns of a matrix V, then the span of v_1, v_2, \ldots, v_i is given as $V\alpha$ where $\alpha \in \mathbb{R}^i$

Example

We have $v_3 = v_1 + v_2$ We have $v_4 = v_1 - v_2$

Simulating the above example in python using different values of α_1 and α_2

$$\mathsf{Span}((v_1,v_2)) \in \mathcal{R}^2$$

Find the span of
$$\begin{bmatrix} 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 2 \\ 4 \end{bmatrix}$$
)

Find the span of
$$\begin{bmatrix} 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 2 \\ 4 \end{bmatrix}$$

Can we obtain a point (x, y) s.t. x = 3y?

Find the span of
$$\begin{bmatrix} 1 \\ 2 \end{bmatrix}$$
, $\begin{bmatrix} 2 \\ 4 \end{bmatrix}$)
Can we obtain a point (x, y) s.t. $x = 3y$?

Find the span of $\begin{bmatrix} 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 2 \\ 4 \end{bmatrix}$)

Can we obtain a point (x, y) s.t. x = 3y?

No

Span of the above set is along the line y=2x

Find the span of
$$\begin{bmatrix} 1\\1\\1 \end{bmatrix}$$
, $\begin{bmatrix} 2\\-2\\2 \end{bmatrix}$)

The span is the plane z = x or $x_3 = x_1$

Consider X and y as follows.

$$\mathbf{X} = \begin{pmatrix} 1 & 2 \\ 1 & -2 \\ 1 & 2 \end{pmatrix}, \quad \mathbf{y} = \begin{pmatrix} 8.8957 \\ 0.6130 \\ 1.7761 \end{pmatrix}$$

• We are trying to learn θ for $\hat{\mathbf{y}} = \mathbf{X}\theta$ such that $||\mathbf{y} - \hat{\mathbf{y}}||_2$ is minimised

Consider **X** and **y** as follows.

$$\mathbf{X} = \begin{pmatrix} 1 & 2 \\ 1 & -2 \\ 1 & 2 \end{pmatrix}, \quad \mathbf{y} = \begin{pmatrix} 8.8957 \\ 0.6130 \\ 1.7761 \end{pmatrix}$$

- We are trying to learn θ for $\hat{\mathbf{y}} = \mathbf{X}\theta$ such that $||\mathbf{y} \hat{\mathbf{y}}||_2$ is minimised
- ullet Consider the two columns of old X. Can we write old X heta as the span

of
$$\begin{bmatrix} 1\\1\\1 \end{bmatrix}$$
, $\begin{bmatrix} 2\\-2\\2 \end{bmatrix}$)?

Consider X and y as follows.

$$\mathbf{X} = \begin{pmatrix} 1 & 2 \\ 1 & -2 \\ 1 & 2 \end{pmatrix}, \quad \mathbf{y} = \begin{pmatrix} 8.8957 \\ 0.6130 \\ 1.7761 \end{pmatrix}$$

- We are trying to learn θ for $\hat{\mathbf{y}} = \mathbf{X}\theta$ such that $||\mathbf{y} \hat{\mathbf{y}}||_2$ is minimised
- ullet Consider the two columns of old X. Can we write old X heta as the span

of
$$\begin{bmatrix} 1\\1\\1 \end{bmatrix}$$
, $\begin{bmatrix} 2\\-2\\2 \end{bmatrix}$)?

ullet We wish to find $\hat{\mathbf{y}}$ such that

$$\mathop{\arg\min}_{\hat{\mathbf{y}} \in \textit{SPAN}\{\bar{x_1}, \bar{x_2}, \dots, \bar{x_D}\}} ||\mathbf{y} - \hat{\mathbf{y}}||_2$$

Span of
$$\begin{bmatrix} 1\\1\\1 \end{bmatrix}$$
, $\begin{bmatrix} 2\\-2\\2 \end{bmatrix}$)

 \bullet We seek a $\hat{\boldsymbol{y}}$ in the span of the columns of \boldsymbol{X} such that it is closest to \boldsymbol{y}

ullet This happens when $\mathbf{y} - \hat{\mathbf{y}} \perp \mathbf{x}_j \forall j$ or $\mathbf{x}_j^{ op}(\mathbf{y} - \hat{\mathbf{y}}) = 0$

- ullet This happens when $\mathbf{y} \hat{\mathbf{y}} \perp \mathbf{x}_j orall j$ or $\mathbf{x}_j^ op (\mathbf{y} \hat{\mathbf{y}}) = 0$
- $\bullet \ \mathbf{X}^{\top}(\mathbf{y} \mathbf{X}\boldsymbol{\theta}) = 0$

- ullet This happens when $\mathbf{y} \hat{\mathbf{y}} \perp \mathbf{x}_j \forall j$ or $\mathbf{x}_i^{ op}(\mathbf{y} \hat{\mathbf{y}}) = 0$
- $\bullet \ \mathbf{X}^{\top}(\mathbf{y} \mathbf{X}\boldsymbol{\theta}) = 0$
- ullet $\mathbf{X}^{ op}\mathbf{y}=\mathbf{X}^{ op}\mathbf{X}oldsymbol{ heta}$ or $\hat{oldsymbol{ heta}}=(\mathbf{X}^{ op}\mathbf{X})^{-1}\mathbf{X}^{ op}\mathbf{y}$

Dummy Variables and Multicollinearity

There can be situations where inverse of X^TX is not computable.

There can be situations where inverse of X^TX is not computable. This condition arises when the $|X^TX| = 0$.

$$X = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 2 & 4 \\ 1 & 3 & 6 \end{bmatrix} \tag{1}$$

There can be situations where inverse of X^TX is not computable. This condition arises when the $|X^TX| = 0$.

$$X = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 2 & 4 \\ 1 & 3 & 6 \end{bmatrix} \tag{1}$$

The matrix X is not full rank.

It arises when one or more predictor variables/features in X can be expressed as a linear combination of others

How to tackle it?

• Regularize

It arises when one or more predictor variables/features in X can be expressed as a linear combination of others

How to tackle it?

- Regularize
- Drop variables

It arises when one or more predictor variables/features in X can be expressed as a linear combination of others

How to tackle it?

- Regularize
- Drop variables
- Avoid dummy variable trap

Say Pollution in Delhi = P

Say Pollution in Delhi = P

$$P = \theta_0 \, + \, \theta_1 \text{*\#Vehicles} \, + \, \theta_1 \text{* Wind speed} \, + \, \theta_3 \text{* Wind Direction}$$

Say Pollution in Delhi = P

$$P = \theta_0 + \theta_1 *\# Vehicles + \theta_1 *\ Wind\ speed + \theta_3 *\ Wind\ Direction$$

But, wind direction is a categorical variable.

Say Pollution in Delhi = P

$$P = \theta_0 + \theta_1 *\# Vehicles + \theta_1 *\ Wind\ speed + \theta_3 *\ Wind\ Direction$$

But, wind direction is a categorical variable.

It is denoted as follows {N:0, E:1, W:2, S:3 }

Say Pollution in Delhi = P

$$P = \theta_0 + \theta_1 *\# Vehicles + \theta_1 *\ Wind\ speed + \theta_3 *\ Wind\ Direction$$

But, wind direction is a categorical variable.

It is denoted as follows {N:0, E:1, W:2, S:3 }

Can we use the direct encoding?

Say Pollution in Delhi = P

$$P = \theta_0 + \theta_1 * \# Vehicles + \theta_1 * Wind speed + \theta_3 * Wind Direction$$

But, wind direction is a categorical variable.

It is denoted as follows {N:0, E:1, W:2, S:3 }

Can we use the direct encoding? Then this implies that S>W>E>N

N-1 Variable encoding

	Is it N?	Is it E?	Is it W?
N	1	0	0
Ε	0	1	0
W	0	0	1
S	0	0	0

N Variable encoding

	Is it N?	Is it E?	Is it W?	Is it S?
N	1	0	0	0
E	0	1	0	0
W	0	0	1	0
S	0	0	0	1

Which is better N variable encoding or N-1 variable encoding?

Which is better N variable encoding or N-1 variable encoding? The N-1 variable encoding is better because the N variable encoding can cause multi-collinearity.

Which is better N variable encoding or N-1 variable encoding? The N-1 variable encoding is better because the N variable encoding can cause multi-collinearity.

Is it
$$S = 1$$
 - (Is it $N + Is$ it $W + Is$ it E)

Binary Encoding

N	00	
Е	01	
W	10	
S	11	

Binary Encoding

N	00
Е	01
W	10
S	11

 $\ensuremath{\mathsf{W}}$ and $\ensuremath{\mathsf{S}}$ are related by one bit.

Binary Encoding

N	00
E	01
W	10
S	11

W and S are related by one bit.

This introduces dependencies between them, and this can cause confusion in classifiers.

Gender	height
F	
F	
F	
М	
М	

Gender	height
F	
F	
F	
M	
М	

Encoding

Gender	height
F	
F	
F	
M	
M	

Encoding

Is Female	height
1	
1	
1	
0	
0	

Is Female	height
1	5
1	5.2
1	5.4
0	5.8
0	6

Is Female	height
1	5
1	5.2
1	5.4
0	5.8
0	6

$$\textit{height}_i = \theta_0 + \theta_1 * (\text{Is Female}) + \epsilon_i$$

Is Female	height
1	5
1	5.2
1	5.4
0	5.8
0	6

$$\textit{height}_i = \theta_0 + \theta_1 * (\text{Is Female}) + \epsilon_i$$

We get
$$\theta_0=5.9$$
 and $\theta_1=$ -0.7

Is Female	height
1	5
1	5.2
1	5.4
0	5.8
0	6

$$\textit{height}_i = \theta_0 + \theta_1 * (\text{Is Female}) + \epsilon_i$$

We get
$$\theta_0 = 5.9$$
 and $\theta_1 = -0.7$

$$\theta_0 = \text{Avg height of Male} = 5.9$$

Is Female	height
1	5
1	5.2
1	5.4
0	5.8
0	6

$$\textit{height}_i = \theta_0 + \theta_1 * (\text{Is Female}) + \epsilon_i$$

We get $\theta_0=5.9$ and $\theta_1=-0.7$

 $heta_0 = \mathsf{Avg} \; \mathsf{height} \; \mathsf{of} \; \mathsf{Male} = 5.9$

 $\theta_0 + \theta_1$ is chosen based (equal to) on 5, 5.2, 5.4 (for three records).

Is Female	height
1	5
1	5.2
1	5.4
0	5.8
0	6

$$height_i = \theta_0 + \theta_1 * (Is Female) + \epsilon_i$$

We get $\theta_0=5.9$ and $\theta_1=-0.7$

 $\theta_0 = \text{Avg height of Male} = 5.9$

 $\theta_0 + \theta_1$ is chosen based (equal to) on 5, 5.2, 5.4 (for three records).

 θ_1 is chosen based on 5-5.9, 5.2-5.9, 5.4-5.9

Is Female	height
1	5
1	5.2
1	5.4
0	5.8
0	6

$$height_i = \theta_0 + \theta_1 * (Is Female) + \epsilon_i$$

We get $\theta_0 = 5.9$ and $\theta_1 = -0.7$ $\theta_0 = \text{Avg height of Male} = 5.9$ $\theta_0 + \theta_1$ is chosen based (equal to) on 5, 5.2, 5.4 (for three records). θ_1 is chosen based on 5-5.9, 5.2-5.9, 5.4-5.9 $\theta_1 = \text{Avg. female}$ height (5+5.2+5.4)/3 - Avg. male height(5.9)

Alternatively, instead of a $0/1\ \text{coding}$ scheme, we could create a dummy variable

Alternatively, instead of a 0/1 coding scheme, we could create a dummy variable

$$x_i = \begin{cases} 1 & \text{if } i \text{ th person is female} \\ -1 & \text{if } i \text{ th person is male} \end{cases}$$

Alternatively, instead of a 0/1 coding scheme, we could create a dummy variable

$$x_i = \begin{cases} 1 & \text{if } i \text{ th person is female} \\ -1 & \text{if } i \text{ th person is male} \end{cases}$$

$$y_i = \theta_0 + \theta_1 x_i + \epsilon_i = \begin{cases} \theta_0 + \theta_1 + \epsilon_i & \text{if } i \text{ th person is female} \\ \theta_0 - \theta_1 + \epsilon_i & \text{if } i \text{ th person is male.} \end{cases}$$

Alternatively, instead of a 0/1 coding scheme, we could create a dummy variable

$$x_i = \begin{cases} 1 & \text{if } i \text{ th person is female} \\ -1 & \text{if } i \text{ th person is male} \end{cases}$$

$$y_i = \theta_0 + \theta_1 x_i + \epsilon_i = \begin{cases} \theta_0 + \theta_1 + \epsilon_i & \text{if } i \text{ th person is female} \\ \theta_0 - \theta_1 + \epsilon_i & \text{if } i \text{ th person is male.} \end{cases}$$

Now, θ_0 can be interpreted as average person height. θ_1 as the amount that female height is above average and male height is below average.