Day 4

Centre for the Mathematical Modelling of Infectious Diseases London School of Hygiene & Tropical Medicine

centre for the mathematical modelling of infectious diseases

The point of all of this

posterior probabilities

$$p(\theta|\text{data}) = \frac{p(\text{data}|\theta)p(\theta)}{p(\text{data})}$$

We interpret $p(\theta|\text{data})$ as the probability distribution of a random variable θ , from which we *sample* (via MCMC)

Why sample?

- 1. explore parameter space
- 2. samples can be useful
 - explore interventions, forecasts

MCMC: Sampling from a distribution

• We can calculate (in a deterministic model) $p(\theta|\text{data})$ given any θ – how do we sample?

MCMC: Sampling from a distribution

• We can calculate (in a deterministic model) $p(\theta|\text{data})$ given any θ – how do we sample?

MCMC: Sampling from a distribution

• We can calculate (in a deterministic model) $p(\theta|\text{data})$ given any θ – how do we sample?

Stochastic models

- one θ can lead to many possible outcomes X
- we can
 - 1. sample from $p(x|\theta)$ (via simulation)
 - 2. evaluate the trajectory likelihood $p(\text{data}|x,\theta)$
- we can't directly evaluate the likelihood $p(\text{data}|\theta)$

$$p(\text{data}|\theta) = \sum_{x} p(\text{data}|x, \theta) p(x|\theta)$$

▶ The number of possible trajectories X for one value of θ is large, potentially infinite

Sequential Monte Carlo (SMC) / Particle Filter I

To approximate

$$p(\mathrm{data}|\theta) = \sum_{x} p(\mathrm{data}|x,\theta) p(x|\theta)$$

we sample n trajectories x_n from

$$p(y_{1:(T-1)}|x,\theta)p(x|\theta)$$

Sequential Monte Carlo (SMC) / Particle Filter II We then calculate

$$p(y_T|y_{1:(T-1)}|x_n,\theta)$$

for each of the particles. The sum of these values is

$$\sum_{T_{-}} p(y_{1:T}|x_n,\theta) p(x_n|\theta)$$

which is a sample estimate of the likelihood.

$$\label{eq:log-likelihood:log} \textit{Log-Likelihood:} \log\{p(y_{1:T}|\theta)\} = \sum_{x} \log\{p(y_{t}|y_{1:t-1},\theta)\}$$

Sequential Monte Carlo (SMC) / Particle Filter III

We can also retrieve filtered trajectories, that is samples from

$$p(x|\text{data})$$

by following the particles from the last point backwards.

pMCMC

- Once we can estimate $p(\text{data}|\theta)$, we can combine this with the prior to evaluate the posterior $p(\theta|\text{data})$ for any θ .
- ▶ We can then use MCMC to sample from this -> pMCMC

MCMC

Stimating the likelihood NWC NWC NWC

	Sampling normane posterior		
the od .		МСМС	SMC
\square	SMC	РМСМС	SMC ²

		•	
the	МСМС	SMC	
hoo swc	PMCMC V	SMC ²	
itima likeli	ABC-MCMC	ABC-SMC	