

Course Contents

- **OI About this Course**
- 02 What is Slurm
- 03 How to launch jobs in Slurm
- 04 Hands-on time!

Ol About this Course

AMDA x NYCU SDC \(\Sigma\)
GPU Programming Training Program

Course Information

Join the Discord First!

All the class information call discuss in Discord

https://discord.gg/wEGVXNT7Mh

Hosts

Nuss

HiPAC第一屆國網盃應用程式效能優化競賽冠軍

The 5th APAC HPC-Al competition second place

ASC世界大學生超級計算機競賽 ePrize算挑戰獎、一等獎

高速計算人工智慧冬令營擔任助教及講師

進階高效能計算叢集電腦實務助教

Isaac

ASC 世界大學生超級計算機競賽遠端組冠軍、 團隊競賽獎、應用創新獎

Atseng

2024 NCHC, NVIDIA, OpenACC Hackthon

AMD⊅ x NYCU SDC \(\overline{\overl

SCHEDULE

Tue

18:30

21:30

3/11	Week 4	⅓ Course Introduction && Slurm Intro	@atseng	
3/18	Week 5	ික OpenMP Intro	@atseng	
3/25	Week 6	Ba Lecture 1 What's ROCm (HW 1 announcement)	@atseng	
4/1	Week 7	期中週		
4/8	Week 8	期中週		
4/15	Week 9	₃ Lecture 2 GPU basic parallel programming && HIP intro	@atseng	
4/22	Week 10	AMD Invited Lecture (HW1 deadline 4/19)		
4/29	Week 11	⅓ Lecture 3 Deep into Memory	@atseng	
5/6	Week 12		@atseng	
5/13	Week 13	⅓ Lecture 5 Profiling & Optimization	@atseng	
5/20	Week 14	Final Presentation	@atseng	
5/27	Week 15	期末週		
6/3	Week 16		AMDA x NYCU SDC⊟	

GPU Programming Training Program

Memory management

GPU Kernels for Parallel Execution

HIP programming model

Basic Knowledge of AMD GPU Architecture (RDNA 3)

Synchronize CPU and GPU Workloads

Profiling & Optimization Skills, etc.

02 What is Slurm

AMDス x NYCU SDC \(\sigma\)
GPU Programming Training Program

Slurm Intro

Slurm = Simple Linux Utility for Resource Manager

An Open-source resource management and job scheduling system

Slurm's Mission

- Resource Management: Allocates designated computing resources to users.
- Job Scheduling: Allows resources to be allocated based on priority.

Slurm Architecture

User 1
User 2
.
.
.
.
.
.
.
.

Users

Client(user can using these command)

AMD X NYCU SDC S
GPU Programming Training Program

Client(user can using these command) Slurm Controller login node Architecture. (Head node) Controller daemons ary tld user can submit job in "login node" squeue User I slurmdbd sbatch (optional but recommended) srun User 2 Other sacctmgr clusters (optional) slurmd sacct **Database** User N Compute node daemons Compute node Users AMDA X NYCU SDC 5

GPU Programming Training Program

Slurm Architecture

User I
User 2
.
.
.
.
.
.

Users

Client(user can using these command)

AMDA x NYCU SDC =

GPU Programming Training Program

Slurm Architecture

User 1
User 2
.
.
.
.
.
.

Users

Client(user can using these command)

jobs excuted on "Compute node(s)"

u soc 등 ining Program

Login Node

- Provides users with an entry point to log in to the cluster (via SSH)
- Job Submission (sbatch, salloc, and srun)

Login node 負責發 job

- Provides basic resource queries (sinfo...)

!!! Please Don't run your code in Login Node !!!

Controller Node (head node) (master node)

- Handling job scheduling, resource allocation.
- Maintains communication with compute nodes, monitoring their health, job execution status, and resource usage.
- Handles node failures, job errors, and recovery events to ensure the stability and smooth operation of the cluster.

Compute Node

- The actual compute resources for executing jobs .
- Runs the Slurm execution daemon (slurmd), which accepts job tasks from the controller node and manages the job's runtime execution.
- Executes job steps as directed by the controller node, allocating CPU, memory, disk, and other resources as required.
- Sends job completion notifications or error messages to the controller node once a job finishes or encounters issues, aiding in monitoring and logging.

Life Cycle of a Job

Job

- The unit submitted by the user; the unit for which Slurm applies for and allocates resources.
- Represents the work to be executed on compute nodes.

Job Step

- A job can include one or more job steps.
- Typically consists of job commands. (sinfo ...)

Task

- An instance of a job execution, serving as the basic unit that performs the actual computation.
- A job step can include one or more tasks.
- Usually corresponds to a process. (one task \sim = one process run that task)

Job 1002

slurmd Job

slurmd

slurmd

slurmd

Partition 2

slurmd

slurmd

Job

- The unit submitted by the user; the unit for which !
- Represents the work to be executed on compute n

Job Step

- A job can include one or more job steps.
- Typically consists of job commands. (sinfo ...)

Task

- An instance of a job execution, serving as the bas
- A job step can include one or more tasks.
- Usually corresponds to a process. (one task \sim =

Figure 2. Slurm entities

Node

- A compute node is a node where slurmd is installed and correctly configured.
- A node with slurmctld installed is known as the Slurm Master node (Head node) .

Partition/Queue

- A collection of multiple nodes grouped based on hardware configuration, job runtime, job type, user permissions, etc.
- If compute nodes have different hardware configurations, partitions help users select the appropriate node.
- Each partition has its unique configuration and restrictions, such as maximum runtime, user access limits, or node count limits.

Workflow

Request resources from Slurm. -> Specify resource requirements using parameters.

- -> Execute the job ->
- -> Run the job within the allocated environment.

Common commands (monitor job)

- sinfo : Displays the existing nodes and partitions available in the cluster.
- squeue : Shows all jobs under Slurm management that are either waiting in the queue or currently running.
- scontrol: A management tool used to view and modify Slurm configurations; most commands require root privileges.
- sacct : Lists the current state of jobs related to the active account, such as Pending, Running, Completed, Failed, etc.
- sstat : Monitors the status of a running job, including details like CPU usage, physical memory consumption , and virtual memory (VM)

Common commands (Launch jobs)

– salloc : Allocates resources for interactive jobs and opens a new shell.

When you exit the shell, the job terminates automatically (be sure to exit!).

(Suitable for development and debugging of computational programs that require frequent testing.)

- srun : Directly executes tasks under the Slurm management environment and waits for the command to complete

Can be used with both sbatch (non-interactive) and salloc (interactive)

(Suitable for debugging tasks that require real-time output.)

- sbatch : Submits a job in batch mode by specifying resources and commands in a job script.

(Ideal for multi-node computational tasks)

- scancel: Used to cancel one or more running jobs.

Specify the job ID to cancel, or use -u \$USER to remove all jobs belonging to the current user.

Parameters

- -A, --account : Specify the job's account (wallet) ID.
- -p, --partition: Specify the queue (partition) to which the job will be submitted.
- -J, --job-name: Set the job's name.
- -N, --nodes: Specify the number of nodes required for the job. partition 內的幾個 node
- -n, --ntasks : Specify the total number of tasks for the job.
- -c, --cpus-per-task: Specify the number of CPUs required per task.
- -o, --output: Specify the path to the output file.
- -e, --error: Specify the path to the error output file.

Parameters

- --mem : Specify the memory requirement for each node.
- --gres: Request generic resources, such as GPUs or Infiniband.
- --gpus-per-node: Specify the number of GPUs required per node.
- --pty: Run the command in terminal mode.
- -t, --time: Set the maximum runtime for the job.
- --exclusive: Request exclusive access to nodes, ensuring that resources are not shared with other jobs.
- --constraint: Request compute nodes with a specific hardware configuration.

03 How to launch jobs in Slurm

Non-interactive Jobs (sbatch)

2. Using

sbatch hello_world.sh to submit job.

I.Create a file called { xxxxxxxx.sh }

```
#!/bin/bash
#SBATCH -A my account # -A, --account : Specify the job's account (wallet) ID
#SBATCH -p my partition # -p, --partition : Specify the job queue (partition)
#SBATCH -J HelloWorld # -J, --job-name : Set the job name
#SBATCH -N 1 # -N, --nodes : Specify the number of nodes (1 node)
#SBATCH -n 4 # -n, --ntasks : Specify the total number of tasks (4 tasks)
#SBATCH -c 1 # -c. --cpus-per-task: Specify the number of CPUs per task (1 CPU per task)
#SBATCH -o hello world.out # -o, --output : Specify the output file path
#SBATCH -e hello world.err # -e, --error : Specify the error output file path
# Simple operation:
echo "Hello world" to a file named hello output.txt echo "Hello world" > hello output.txt
```

AMD A X NYCU SDC S
GPU Programming Training Program

Interactive Jobs (srun, salloc)

- Use salloc or srun to launch jobs through the terminal.

Interactive Session with Two Separate Commands

a. Request an interactive allocation using salloc:

```
salloc -A my_account -p my_partition -N 1 -n 4 -c 1
```

requests an allocation of I node with 4 tasks (each with I CPU) under the specified account and partition. Once granted, you'll get an interactive shell on the allocated node(s).

b. Run the command using srun.

```
srun echo "Hello world" > hello_output.txt
```

This runs the command echo "Hello world" on the allocated resources and redirects the output to a file named hello output.txt

Summary

How to submit a Interactive job?

- salloc { parameters }
- srun { parameters } < your program >

How to submit a batch job?

- write a job script (xxxxx.sh)
- sbatch { parameters } < your job script >

04 Hands-on time!

AMDA x NYCU SDC \(\sigma\)
GPU Programming Training Program

SSH to the login node

ssh {user}@{hostname}

Course Reference

https://slurm.schedmd.com/quickstart_admin.html

https://slurm.schedmd.com/quickstart.html

https://genomicsaotearoa.github.io/Workshop-Bash_Scripting_And_HPC_Job_Scheduler/5_working_with_job_scheduler/

https://jhpce.jhu.edu/slurm/about-jobs/