Pymol Practical Demo

1. Get the PDB files: 1ALC, 4LYZ and 1TIM

- i. Go to the Protein Data Bank (PDB) home page (https://www.rcsb.org/).
- ii. Enter the first PDB-ID "1ALC" in search box and click Go
- iii. In the result page, chose the link "Download files" and choose "PDB file (Text)" option to download the file
- iv. Repeat the steps (ii) and (iii) to download the remaining two PDB structures.

2. Open the file 1TIM and show in cartoon style (hide line style)

- i. Open the installed Pymol tool. In the file menu, choose the "open" option to load 1TIM pdb file.
- ii. After that, in the Pymol viewer panel, choose the Show option and select the "cartoon" style.
- iii. Choose the Hide option and select the "line" style.

3. Give different colors for different chains. How many chains are there?

Click the color option and choose the "by chain" style.

4. Remove one chain

Right click on the chain and choose Chain->Hide->everything option

5. Identify the secondary structures with different colors

Select the color option and choose "by ss"

6. Zoom and Rotate to get complete views

- i. Click and hold the right mouse button and drag the mouse to and fro to zoom in and out
- ii. Click and hold the left mouse button and drag the mouse to and fro to zoom in and out

7. Show the sequence

Click the "S" button in the right-side corner (below)

8. Select the residues 21 to 26: LGELIH

Select the given segment in the sequence displayed in the top of the viewer based on the residue numbers

9. Hide cartoon diagrams

- i. Choose the hide option and select "cartoon".
- ii. Choose the Show option and select "lines"

10. Color the selected residues based on different atoms

Choose the color option and select "by element"

11. Identify at least one salt bridge within the protein and list the details of interactions

- i. Select both the positive and negative charged residues using the command given: "select 1tim///GLU+ARG/"
- ii. Change the appearance to sticks and hide cartoon in the main structure. Now only the selected residues will display
- iii. Select Action->find->polar contacts->Involving side chains

12. Identify any aromatic stacking interaction and list the details of the interaction

- i. Select the aromatic residues using the command given below:
 - "select 1tim///PHE+TYR+TRP/"
- ii. Change the appearance to sticks and hide cartoon in the main structure. Now only the selected residues will display
- iii. Double right click on any two residue and enter the "dist" command

13. Label the residues using atom name and show their van der Waal radii.

- i. Select the Label option and choose "atom name"
- ii. Select the Label option and choose"vdw radius"

14. Compute the distance between CG and CD2 in LEU24

- i. Select the residue LEU 24 and show in sticks format.
- ii. Label based on the atom name
- iii. Select the "measurements" option under the wizard menu
- iv. Select the Distances option in the newly appeared Measurement option
- v. Left mouse click on the mentioned atoms to show the distance

15. Compute the angle formed by the atoms CD1, CG and CD in LEU24

- i. Select the option "Angles" in the Measurement option.
- ii. Left mouse click the mentioned atoms to show angle

16. Compute the dihedral angles of Leu24

Phi: C (from GLU 23) – N – CA – C; Psi: N – CA – C – N (from ILE25)

- i. Select the "Dihedrals" in the Measurement option
- ii. Left click the mentioned atoms to show phi angle. Repeat this for Psi angle

17. Change background white

Enter the command "bg color white"

18. Make high quality picture (use ray)

Click the "ray button" and save in PNG format

19. Show B-factors to see flexible and rigid regions

Select "color->spectrum->b-factor"

20. Compute the electrostatic potential

Select "Action->Generate->Vacuum statistics->protein contact potential"

21. Save the images in PNG format

Choose "File-> save image as ->PNG"

22. Open the files 1ALC and 4LYZ

Open the files one by one using file->open option

23. Align the structures

Command "align 1alc, 4lyz"

24. Compute RMSD

After the alignment, RMS value will be displayed in the command line

25. Save the aligned protein structures

File->save molecule

26. Download protein structure with ligand(s). Identify the ligand and select residues within 4A. show any one type of interaction between them

- i. Retrieve the protein structure from PDB "1AQ1"
- ii. Show the sequence and select the ligand. Right click and choose "Actions->around->residues within 4A.
- iii. Select ligand and choose the option "Action->find->polar contacts->within selection

27. Identify the ligand binidng sites and label them

- i. Select "Action->preset->ligands"
- ii. Select the interacting residues shown in "dashed lines" and label by residues

28. Mutate any one of the active site residues and describe the change in the interaction with the ligand before and after mutation

- i. Select "Mutagenesis" option under wizard.
- ii. Select "No Mutation->any residue"
- iii. Then choose the residue to mutate and give apply in the mutagenesis menu