» Examples of Predicting A Number

- Predict price of a house given its location, floor area, #rooms etc
- Predict income of a person given their age, gender, handset model, web pages browsed
- Predict temperature outside tomorrow given weather forecast and past measurements at your location
- Predict whether distance between mobile handsets given Bluetooth recieved signal strength, handset models, type of location (house, bus, office, supermarket etc), whether handsets in a pocket/bag or not

» Example: Advertising Data

- Data https://www.statlearning.com/s/Advertising.csv
- Data consists of the advertising budgets for three media (TV, radio and newspapers) and the overall sales in 200 different markets.

TV	Radio	Newspaper	Sales
230.1	37.8	69.2	22.1
44.5	39.3	45.1	10.4
17.2	45.9	69.3	9.3
	:		:

» Example: Advertising Data

- st Suppose we want to predict sales in a new area ?
- st Predict sales when the TV advertising budget is increased to 350 ?
- * ... Draw a line that fits through the data points

» Some Notation

Training data:

TV (x)	Sales (y)	
230.1	22.1	
44.5	10.4	
17.2	9.3	
:	:	

- *m*=number of training examples
- * x="input" variable/features
- * y="output" variable/"target" variable

* $(x^{(i)}, y^{(i)})$ the *i*th training example

*
$$\mathbf{x}^{(1)} = 230.1$$
, $\mathbf{y}^{(1)} = 22.1$, $\mathbf{x}^{(2)} = 44.5$, $\mathbf{y}^{(2)} = 10.4$

» Model

- * Prediction: $\hat{\mathbf{y}} = \mathbf{h}_{\theta}(\mathbf{x}) = \theta_0 + \theta_1 \mathbf{x}$
- * θ_0 , θ_1 are (unknown) parameters
- * often abbreviate $h_{\theta}(x)$ to h(x)

$$\theta_0=15$$
, $\theta_1=0$

$$\theta_0 = 0$$
, $\theta_1 = 0.1$

$$\theta_0=15$$
, $\theta_1=0.1$

» Cost Function: How to choose model parameters θ ?

- * Prediction: $\hat{\pmb{y}} = \pmb{h}_{\theta}(\pmb{x}) = \theta_0 + \theta_1 \pmb{x}$
- * Idea: Choose θ_0 and θ_1 so that $h_{\theta}(\mathbf{x}^{(i)})$ is close to $\mathbf{y}^{(i)}$ for each of our training examples $(\mathbf{x}^{(i)},\mathbf{y}^{(i)})$, $i=1,\ldots,m$.
- * Least squares case: select the values for θ_0 and θ_1 that minimise cost function:

$$J(\theta_0, \theta_1) = rac{1}{m} \sum_{i=1}^m (h_{ heta}(\mathbf{x}^{(i)}) - \mathbf{y}^{(i)})^2$$

Note: cost function is a sum over prediction error at each training point so can also write as

$$J(\theta_0, \theta_1) = \frac{1}{m} \sum_{i=1}^{m} I_i(\theta_0, \theta_1)$$

where
$$l_i(\theta_0, \theta_1) = (h_{\theta}(\mathbf{x}^{(i)}) - \mathbf{y}^{(i)})^2$$
.

» Simple Example

- * Suppose our training data consists of just two observations: (3,1), (2,1), and to keep things simple we know that $\theta_0=0$.
- * The cost function is $\frac{1}{2}\sum_{j=1}^2 (y^{(j)} + \theta_1 x^{(j)})^2 = \frac{1}{2}(1 3\theta_1)^2 + (1 2\theta_1)^2$
- * What value of $heta_1$ minimises $(1-3 heta_1)^2+(1-2 heta_1)^2$?

» Example: Advertising Data

» Example: Advertising Data

- Least square linear fit
- Residuals are the difference between the value predicted by the fit and the measured value.
 - Do the residuals look "random" or do they have some "structure"? Is our model satisfactory?
 - We can use the residuals to estimate a confidence interval for the prediction made by our linear fit.

» Summary: Linear Regression With One Feature

- Feature: x
- * Linear Model: $h_{\theta}(x) = \theta_0 + \theta_1 x$
- * Parameters: θ_0 , θ_1
- * Cost Function: $J(\theta_0, \theta_1) = rac{1}{m} \sum_{i=1}^m (h_{\theta}(\mathbf{x}^{(i)}) \mathbf{y}^{(i)})^2$
- * Optimisation: Select θ_0 and θ_1 that minimise $J(\theta_0,\theta_1)$ "least squares" why?

» Gradient Descent

Need to select θ_0 and θ_1 that minimise $J(\theta_0, \theta_1)$. Brute force search over pairs of values of θ_0 and θ_1 is inefficient, can we be smarter?

- st Start with some $heta_0$ and $heta_1$
- * Repeat:

Update θ_0 and θ_1 to new value which makes $J(\theta_0,\theta_1)$ smaller

 When curve is "bowl shaped" or convex then this must eventually find the minimum.

» Gradient Descent

- st Start with some $heta_0$ and $heta_1$
- * Repeat: Update θ_0 and θ_1 to new value which makes $J(\theta_0,\theta_1)$ smaller
- * When curve has several minima then we can't be sure which we will converge to.
- * Might converge to a local minimum, not the global minimum

* When x is scalar the *derivative* of a function $f(\cdot)$ at point x is the *slope* of the line that just touches the function at x e.g.

* When $x = [x_1, x_2]$ then the derivative is the *slope* of the plane that just touches the function at x e.g.

* And similarly when x has > 2 elements, but can't draw it.

* Equation of a line is y = mx + c. m is slope, c is intercept (when x = 0 then y = c).

* *Derivative* of a function $f(\cdot)$ at point x' is the *slope* of the line that just touches the function at x'

- * Equation of a line is mx + c, slope m and intercept c.
- * Line touches $f(\cdot)$ at point x', so mx' + c = f(x') i.e. c = f(x') mx'
- * Slope m of line is derivative, i.e. $m = \frac{df}{dx}(x')$ (this is just notation¹, the important point is that we can calculate $\frac{df}{dx}(x')$ and so m using standard tools).
- * Putting this together, equation of line is

$$\frac{df}{dx}(x')(x-x')+f(x')$$

and so

$$f(x) \approx f(x') + \frac{df}{dx}(x')(x-x')$$

¹sometimes f'(x) is used instead of $\frac{df}{dx}(x)$

- * Equation of a plane is $y = m_1 x_1 + m_2 x_2 + c$
- * Note: we now have two slopes m_1 , m_2 and intercept c
- * Notation: For plane just touching $f(\cdot)$ at point x'
 - * $m_1 = \frac{\partial f}{\partial x_1}(x')$, $m_2 = \frac{\partial f}{\partial x_2}(x')$
 - * $\frac{\partial f}{\partial x_1}(x')$ is the *partial derivative* of $f(\cdot)$ wrt x_1 at point x'
 - * $\frac{\partial f}{\partial x_2}(x')$ is the *partial derivative* of $f(\cdot)$ wrt x_2 at point x'
 - * $\nabla f(\mathbf{x}') = [\frac{\partial f}{\partial \mathbf{x}_1}(\mathbf{x}'), \frac{\partial f}{\partial \mathbf{x}_2}(\mathbf{x}'), \dots, \frac{\partial f}{\partial \mathbf{x}_n}(\mathbf{x}')]$, the vector of partial derivatives. And sometimes $\nabla_{\mathbf{x}_1} f(\mathbf{x}')$ is used for $\frac{\partial f}{\partial \mathbf{x}_1}(\mathbf{x}')$ etc.
- * This plane is an approximation to function $f(\cdot)$ near point x' i.e.

$$f(\mathbf{x}) \approx f(\mathbf{x}') + \frac{\partial f}{\partial \mathbf{x}_1}(\mathbf{x}')(\mathbf{x}_1 - \mathbf{x}'_1) + \frac{\partial f}{\partial \mathbf{x}_2}(\mathbf{x}')(\mathbf{x}_2 - \mathbf{x}'_2)$$

* If we choose $x_1 = x' - \alpha \frac{\partial f}{\partial x_1}$ and $x_2 = x' - \alpha \frac{\partial f}{\partial x_2}$ then moving from point x' to x tends to decrease function $f(\cdot)$ i.e. $f(x) \lesssim f(x')$

» Gradient Descent

Repeat:

$$\delta_0 := -\alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1), \ \delta_1 := -\alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$$
$$\theta_0 := \theta_0 + \delta_0, \ \theta_1 := \theta_1 + \delta_1$$

lpha is called the *step size* or *learning rate*, its value needs to be selected appropriately (not too large, not too small).

For
$$J(\theta_0, \theta_1) = \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(\mathbf{x}^{(i)}) - \mathbf{y}^{(i)})^2$$
 with $h_{\theta}(\mathbf{x}) = \theta_0 + \theta_1 \mathbf{x}$:

* $\frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) = \frac{2}{m} \sum_{i=1}^{m} (h_{\theta}(\mathbf{x}^{(i)}) - \mathbf{y}^{(i)})$

* $\frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1) = \frac{2}{m} \sum_{i=1}^{m} (h_{\theta}(\mathbf{x}^{(i)}) - \mathbf{y}^{(i)}) \mathbf{x}^{(i)}$

So gradient descent algorithm is:

$$\begin{array}{l} * \; \mathsf{repeat:} \\ \delta_0 := -\frac{2\alpha}{m} \sum_{i=1}^m (h_\theta(\mathbf{x}^{(i)}) - \mathbf{y}^{(i)}) \\ \delta_1 := -\frac{2\alpha}{m} \sum_{i=1}^m (h_\theta(\mathbf{x}^{(i)}) - \mathbf{y}^{(i)}) \mathbf{x}^{(i)} \\ \theta_0 := \theta_0 + \delta_0, \; \theta_1 := \theta_1 + \delta_1 \end{array}$$

» Practicalities: Normalising Data

- * When using gradient descent (and also more generally) its a good idea to *normalise* your data i.e. scale and shift the inputs and outputs so that they lie roughly between 0 \rightarrow 1 or -1 \rightarrow 1
- * Its ok if data range spans 1 o 100, problem is when range is v large e.g $1 o 10^6 o$ large ranges (i) mess up numerics, (ii) larger valued data tends to dominate cost function and training focusses on that data

				Age	Income
			Person 1	0.00	0.00
			Person 2	0.05	0.14
			Person 3	0.16	0.24
			Person 4	0.27	0.31
			Person 5	0.27	0.34
	Age	Income	Person 6	0.23	0.38
1	18	5,000 €	Person 7	0.64	0.41
rson 2	20	25,000 €	Person 8	0.91	0.45
son 3	25	40,000 €	Person 9	1.00	0.52
son 4	30	50,000 €	Person 10	0.98	0.66
on 5	30	55,000 €	Person 11	0.02	1.00
son 6	28	60,000 €			
son 7	46	65,000 €		Age	Income
rson 8	58	70,000 €	Person 1	-1.09	-1.60
erson 9	62	80,000 €	Person 2	-0.97	-1.05
erson 10	61	100,000 €	Person 3	-0.67	-0.64
erson 11	19	150,000 €	Person 4	-0.37	-0.37
			Person 5	-0.37	-0.24
n	18	5000	Person 6	-0.49	-0.10
<	62	150000	Person 7	0.60	0.04
ean	36.09	63636	Person 8	1.32	0.17
Dev	16.54	36748	Person 9	1.57	0.45
			Person 10	1.51	0.99

» Practicalities: Normalising Data

- * Commonly replace x_j with $\frac{x_j \mu_j}{\sigma_j}$ where:
 - * Shift $\mu_j = \frac{1}{m} \sum_{i=1}^n x_j^{(i)}$ tries to make features have approximately zero mean (do not apply to $x_0 = 1$ though)
 - * Scaling factor $\sigma_j = \sqrt{\frac{1}{m} \sum_{i=1}^m (x_j^{(i)} \mu)^2}$ tries to make features mostly lie between -1 and 1

or:

- $\overline{*}$ Shift $\mu_j=\overline{\textit{min}(\pmb{x}_i^{(i)})}$ (do not apply to $\pmb{x}_0=1$ though)
- * Scaling factor $\sigma_j = max(x_j) min(x_j)$
- * E.g. in advertising data TV budget values lie in range 0.7 to 296.4, so rescaling as $\frac{7V-0.7}{296-0.7}$ gives a feature with values in interval $0 \le x_1 \le 1$

» Practicalities: When to stop?

- * "Debugging": How to make sure gradient descent is working correctly $o J(\theta)$ should decrease after every iteration
- * Stopping criteria: stop when decreases by less than e.g. 10^{-2} or after a fixed number of iterations e.g. 200, whichever comes first.

» Practicalities: Selecting Step Size

- st Selecting step size lpha too small will mean it takes a long time to converge to minimum
- st But selecting lpha too large can lead to us overshooting the minimum
- st We need to adjust lpha so that algorithm converges in a reasonable time.
- * There are also many automated approaches for adjusting α at each iteration. E.g. using *line search* (at each gradient descent iteration try several values of α until find one that causes descent).

» Python sklearn

- We'll use python and usually sklearn
 https://scikit-learn.org/stable/index.html in examples and assignments
 - Sometimes you'll be asked to implement things from scratch rather than calling the sklearn function → to help you understand what's happening "under the hood"
- * Linear regression:

Typical output: 0.0175381 9.77234168

» Python sklearn

Plotting model predictions:

```
import matplotlib.pyplot as plt
plt.rc(font', size=18)
plt.rcParams['figure.constrained_layout.use'] = True
plt.scatter(Xtrain, ytrain, color=black')
plt.plot(Xtrain, ypred. color='blue', linewidth=3)
plt.xlabel("input x"); plt.ylabel("output y")
plt.legend(['predictions'', "training data''])
plt.show()
```


» Notes On Presenting Plots

In your assignments and individual project reports:

- * Always label axes in plots
- * Make sure text and numbers are legible and plot is easy to read (use colours, adjust line width/marker size etc). If really illegible, you should expect to lose marks.
- * Always clearly explain what data a plot shows giving code is not enough, you must explain in english.

If you don't do this you should expect to lose marks.

» Linear Regression with Multiple Variables

Advertising example:

TV	Radio	Newspaper	Sales	
\varkappa_1	\varkappa_2	X 3	у	
230.1	37.8	69.2	22.1	
44.5	39.3	45.1	10.4	
17.2	45.9	69.3	9.3	
:		:	:	

- * *n*=number of features (3 in this example)

*
$$(\mathbf{x}^{(i)}, \mathbf{y}^{(i)})$$
 the *i*th training example e.g. $\mathbf{x}^{(1)} = [230.1, 37.8, 69.2]^T = \begin{bmatrix} 230.1 \\ 37.8 \\ 69.2 \end{bmatrix}$

* $x_i^{(i)}$ is feature j in the ith training example, e.g. $x_2^{(1)} = 37.8$

» Linear Regression with Multiple Variables

$$\begin{array}{l} \text{Model: } h_{\theta}(\textbf{\textit{x}}) = \theta_0 + \theta_1 \textbf{\textit{x}}_1 + \theta_2 \textbf{\textit{x}}_2 + \theta_3 \textbf{\textit{x}}_3 \\ \text{e.g. } \underbrace{h_{\theta}(\textbf{\textit{x}})}_{\textit{Sales}} = 15 + 0.1 \underbrace{\textbf{\textit{x}}_1}_{\textit{TV}} - 5 \underbrace{\textbf{\textit{x}}_2}_{\textit{Radio}} + 10 \underbrace{\textbf{\textit{x}}_3}_{\textit{Newspapel}} \\ \end{array}$$

* For convenience, define $x_0 = 1$

Feature vector
$$\mathbf{x} = \begin{bmatrix} \mathbf{x}_0 \\ \mathbf{x}_1 \\ \mathbf{x}_2 \\ \vdots \\ \mathbf{x}_n \end{bmatrix}$$

 $\theta =$

$$\begin{bmatrix} \vdots \\ \theta_n \end{bmatrix}$$
* $h_{\theta}(\mathbf{x}) = \theta_0 \mathbf{x}_0 + \theta_1 \mathbf{x}_1 + \theta_2 \mathbf{x}_2 + \cdots + \theta_n \mathbf{x}_n = \theta^T \mathbf{x}$

* Parameter vector

» Linear Regression with Multiple Variables

* Model: $h_{\theta}(x) = \theta^T x$ (with θ , x now n+1-dimensional vectors)

Optimisation: Select θ that minimises $J(\theta)$

- * Cost Function: $J(\theta_0, \theta_1, \dots, \theta_n) = J(\theta) = \frac{1}{m} \sum_{i=1}^m (h_{\theta}(\mathbf{x}^{(i)}) \mathbf{y}^{(i)})^2$
- * As before, can find θ using e.g using gradient descent:
 - * Start with some θ
 - * Repeat: for j=0 to n $\{\delta_j := -\alpha \frac{\partial}{\partial \theta_j} J(\theta)\}$

for
$$j$$
=0 to n { $\theta_i := \theta_i + \delta_i$ }

» Gradient Descent with Multiple Variables

For
$$J(\theta) = \sum_{i=1}^{m} (h_{\theta}(\mathbf{x}^{(i)}) - \mathbf{y}^{(i)})^{2}$$
 with $h_{\theta}(\mathbf{x}) = \theta_{0} + \theta_{1}\mathbf{x}_{1} + \dots + \theta_{n}\mathbf{x}_{n}$:

* $\frac{\partial}{\partial \theta_{0}} J(\theta) = \frac{2}{m} \sum_{i=1}^{m} (h_{\theta}(\mathbf{x}^{(i)}) - \mathbf{y}^{(i)})$

* $\frac{\partial}{\partial \theta_{1}} J(\theta) = \frac{2}{m} \sum_{i=1}^{m} (h_{\theta}(\mathbf{x}^{(i)}) - \mathbf{y}^{(i)}) \mathbf{x}_{1}^{(i)}$

* $\frac{\partial}{\partial \theta_{j}} J(\theta) = \frac{2}{m} \sum_{i=1}^{m} (h_{\theta}(\mathbf{x}^{(i)}) - \mathbf{y}^{(i)}) \mathbf{x}_{j}^{(i)}$

So gradient descent algorithm is:

- * Start with some heta
- * Repeat:

for
$$j$$
=0 to n $\{\delta_j := -\frac{2\alpha}{m} \sum_{i=1}^m (h_\theta(\mathbf{x}^{(i)}) - \mathbf{y}^{(i)}) \mathbf{x}_j^{(i)} \}$ for j =0 to n $\{\theta_j := \theta_j + \delta_j \}$

» Example: Advertising Data

- * How is the impact of the advertising spend on TV and radio related, if at all ?
- Perhaps a quadratic fit would be better? If so, what does that imply for how we allocate our advertising budget?

