	Lecture 18
_	
	Z = XW
	NXQ NXP PXQ
	$A = W \mid X \mid$
Fire	LW to
	max total var
	Tot Var (2) = 2 Var(Zi) } max tr (A)
	10F Var (5 / 1 = 1
	subject to
	(2) Cor(Zi,Zj)=O fer itj } A diag.
	3) Wi = ith col of W is a wit vec.
Hav	do me de this?
	$A = W^T X^T X W = A$
	= WTVPUTUDYTW = [D* B]
	$= W^{T} V D^{T} D V^{T} W $
	$= WTVX^2VTW \qquad p_* = diag(\sigma_1,, \sigma_r)$
Idea:	$=V + \text{then} \qquad \left(\begin{array}{c} 2 & T \\ \Delta = DD \end{array} \right) = \left[\begin{array}{c} 2 & O \\ X \end{array} \right]$
= \	$= \operatorname{diag}(6^2, \dots, 6^2, 0, \dots, 9)$
Ξ	$\Delta^2 = dias$

Sohi. Choose cols of W to be some Subset of Cols of V Claim! W= [\frac{1}{2} \frac{1}{3} \frac{1}{3} \frac{1}{3} \frac{1}{3} \frac{1}{3} \frac{1}{3} \frac{1}{3} = \frac{1}{3} \frac{1}{3} \frac{1}{3} = \frac{1}{3} = \frac{1}{3} \frac{1}{3} = \frac{1}{3} $A = W^{T} V \Delta^{2} V^{T} W$ $\frac{1}{1} > \frac{1}{1} = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$ $=\begin{bmatrix} 6_2 & 2 & 2 \\ 0_5 & 6_3 \end{bmatrix}$ Want to Choose cols of V to max $tr(A) = \frac{2}{\text{cols chosen}}$ Choose first g cols of V to be W b/c then $f(A) = \frac{3}{2} \frac{2}{5j}$. Pureline: PCA Typically, center cols of X (sometres divide cds by SD)

(2) $X = UDV^T$

pt proj. onto col W Xg = XPw W= Vg = \times \vee φ \vee φ coords basis = UDVTVqVq Xg = Ug Dg Vg < Therem: Eckart - Young Theorem Xg is the best rank = 2 approx. of X $X_g = \underset{B: rak(B)=g}{argmin} \| X - B \|$