Relations and Functions

Cartesian Product

- Let A, B be sets, $a \in A, b \in B$.
- An **ordered pair** (a, b) is a pair of elements with the property.

$$(a,b) = (c,d) \Leftrightarrow a = c \land b = d$$

- NOTE: The open internal $(a, b) = \{x \in \mathbb{R} : a < x < b\}$ uses the same notation, but context makes it clear.
- The **Cartesian product** of *A* and *B*, denoted by $A \times B$, is the set of all ordered pairs (a, b) with $a \in A, b \in B$.

$$A \times B = \{(a, b) : a \in A \land b \in B\}$$

Exercise:

Let $A = B = \mathbb{R}$. What is $A \times B$?

Exercise:

Let $A = \{3\}, B = \{2, 3\}$. What is $A \times B$?

$$A \times B = \{(3,2), (3,3)\}$$

Exercise:

Let $A = \{x, y\}, B = \{1, 2, 3\}, C = \{a, b\}$. What are $A \times B$ and $(A \times B) \times C$?

$$A \times B = \{(x,1), (x,2), (x,3), (y,1), (y,2), (y,3)\}$$

$$(A \times B) \times C = \{(x,1), \alpha\}, (x,1,6), (x,2,a), (x,2,6), (x,3,a), (x,3,6), (y,1,a), (y,1,b), (y,2,a), (y,2,6), (y,3,a), (y,3,6)\}$$

Exercise:

Let
$$A = \{1, 2\}, B = \{\pi, e\}$$
. Is $A \times B = B \times A$?

Relations

- We say that R is a **(binary) relation** from A to B if R is a subset of $A \times B$.
- If $R \subseteq A \times A$, then R is called a **relation of A**.
- We say that a is related to b by R if $(a, b) \in R$.
- This is denoted by aRb.

Exercise:

Let $X = \{0, 1, 2, 3\}, R = \{(x, y): \exists z \in \mathbb{N} \ni x + z = y\}$

- a) What is an easier way of expressing *R*?
- b) List all the elements of *R*.
- c) Sketch $X \times X$ and circle the elements of R.

b)
$$N = \{(0,1), (0,2), (0,3), (1,2), (1,3), (2,3)\}$$

Exercise:

Let *R* on $\mathbb{Z}\setminus\{0\}$ be given by $R = \{(x, y): \exists z \in \mathbb{Z} \ni xz = y\}$.

- a) Describe the relation R.
- b) True or false?

a) It's the set
$$\{(x,y): x \text{ is a divisor af } y\}$$

b) $(2,-4) \in \mathbb{R} \longrightarrow 2|-4 \vee T$

Let R on \mathbb{Z} be given by $R = \{(m, n) : m - n \text{ is even}\}$

- a) Give another description of *R*.
- b) Which are elements of *R*?
 - a. (0,3)
 - b. (-5, -6)
 - c. (2, -11)
 - d. (17, 1)
- c) Prove that $n \text{ odd} \Rightarrow nR1$.

a)
$$\frac{5}{2}$$
 (n,n): m and n have the same parity $\frac{3}{3}$ i.e. $4-2=2$, 2 is even $2-4=-2$, -2 is also even $\frac{1}{2}$ b) (17,1)

c) Let $m=1$, and $n=3$ $1-3=-2$ -2 is even $\frac{1}{2}$ even

Union and Intersection of Relations

• Relations are sets, so the set operations apply.

Exercise:

Let R_1 , R_2 on \mathbb{R} by given by $R_1 = \{(x, y) : x = y\}$, $R_2 = \{(x, y) : x = -y\}$. Write expressions for $R_1 \cup R_2$ and $R_1 \cap R_2$.

$$R_1 \cup R_2 = \{(x_1y): x = y \lor x = -y \}$$

 $R_1 \cap R_2 = \emptyset$

Definition (Domain and Range)

- Let *R* be a relation from *A* to *B*.
- The **domain** of *R* and the **range** of *R*, denoted respectively by *domR* and *ranR*, are defined:

$$dom R = \{x : \exists y \ni xRy\}$$

$$ran R = \{y : \exists x \ni xRy\}$$

• Note that $dom R \subseteq A$ and $ran R \subseteq B$.

Let $A = \{0, 1, 2, 3\}, R = \{(0,0), (0,1), (0,2), (3,0)\}$. Write dom R and ran R.

dom
$$R = \{0, 33\}$$

van $K = \{0, 1, 23\}$

Exercise:

Find domain and range of *R* on $\mathbb{Z} \times \mathbb{Q}$, $R = \{(x, y) : x \neq 0 \land y = \frac{1}{x}\}$.

dom
$$R = Z \setminus \xi \circ 3$$

ran $K = \xi \mid_{1} = \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots 3$ $0 \xi \cdot 1, -\frac{1}{2}, -\frac{1}{3}, -\frac{1}{4}, \dots 3$

Exercise:

Find domain and range of *R* on \mathbb{Z} , $R = \{(x, y) : xy \neq 0\}$.

The Inverse of a Relation

• If R is on $A \times B$, then a relation R^{-1} on $B \times A$ can be defined by interchanging the elements of the ordered pairs of R.

Definition:

• Let *R* be on $A \times B$. The inverse relation of *R* is:

$$R^{-1} = \{ (y, x) \in B \times A : (x, y) \in R \}$$

• Note that $dom R^{-1} = ran R$ and $ran R^{-1} = dom R$.

Exercise:

Let $A = \{a, b, c\}, B = \{1, 2, 3, 4\}, R = \{(a, 1), (b, 2), (c, 3), (a, 4)\}.$ Find R^{-1} .

$$N^{-1} = \{(1,a), (2,b), (3,c), (4,a)\}$$

Exercise:

Define R on \mathbb{N} by $R = \{(x, y) : y = 2x\}$. Write 3 elements of R and 3 elements of R^{-1} . Write a definition of R^{-1} .

$$R = \{(1, 2), (2, 4), (3, 6), ... \}$$

 $R^{-1} = \{(2, 1), (4, 2), (6, 3), ... \}$
 $R^{-1} = \{(y, x) : x = 2y\}$

The identity relation on \mathbb{R} is $R = \{(x, x) : x \in \mathbb{R}\}$. What is R^{-1} ?

Properties of Relations

- Let *R* be a relation on *A*. Then:
 - 1) R is **reflexive** on A IFF $\forall x \in A, (x, x) \in R$.
 - 2) *R* is **symmetric** on *A* IFF $\forall x, y \in A, (x, y) \in R \Rightarrow (y, x) \in R$.
 - 3) *R* is **transitive** on *A* IFF $\forall x, y, z \in A$, $(x, y) \in R \land (y, z) \in R \Rightarrow (x, z) \in R$.

Exercise:

Which properties do the following relations satisfy?

- a) On \mathbb{N} , $R = \{(x, y) : x \text{ is a factor of } y\}$ reflexive, transitive
- b) On \mathbb{R} , the identity relation all 3
- c) On \mathbb{Z} , $R = \{(x, y) : x < y\}$ transitive
- d) On \mathbb{R} , $R = \{(x, y) : y = x^2\}$ None
- e) On the set of all people, $R = \{(x, y) : x \text{ is in the family of } y\} Symmetric, reflexive$
- f) On the set of all people, $R = \{(x,y) : x \text{ loves } y\}$ we flexive

Equivalence Relations

Definition

• Let *R* be a relation on *A*. Then *R* is an equivalence relation of *A* IFF *R* is *reflexive*, *symmetric*, and *transitive* on *A*.

Exercise:

Prove or disprove that the identity relation on \mathbb{R} is an equivalence relation.

Reflexive: by definition of the identity relation on IR, XRX XX EIR

Symmetric: $\forall x, y \in \mathbb{R}, xky \Rightarrow x = y \Rightarrow ykx$

Transitive: $\forall x, y, z \in \mathbb{R}$, $\chi ky \Rightarrow \chi = y$ $y \in \mathbb{R}$ $y \in \mathbb{R}$ $y \in \mathbb{R}$

$$\Rightarrow \chi = Z$$

$$\therefore (\chi, Z) \in \mathcal{R}$$

: The identity relation on R is an equivalence relation because it satisfies reflexivity, symmetric, and transitivity.

On \mathbb{Z} , prove that $R = \{(a, b) : a \equiv b \pmod{n}\}$ is an equivalence relation.

a = b (mod n)

$$n \mid (b-a)$$

For example, suppresse $\chi = 13$, $(13, 13) \in \mathbb{R}$
 $n \mid (13-13) = n \mid 0$, $\frac{0}{n} = 0$, $0 \in \mathbb{Z}$

Reflexive V
 $n \mid (b-a)$, $n \mid (a-b) \Rightarrow n \mid (-1)(a-b) \Rightarrow n \mid (b-a)$

Symmetric V

If (a, b) and $(b, c) \in \mathbb{R}$, then prove $(a, c) \in \mathbb{R}$
 $(a, b) \in \mathbb{R} \Rightarrow n \mid (b-a) \Rightarrow b-a = np$, $p \in \mathbb{Z}$
 $(b, c) \in \mathbb{R} \Rightarrow n \mid (c-b) \Rightarrow c-b = nq$, $q \in \mathbb{Z}$
 $(a, c) \in \mathbb{R} \Rightarrow n \mid (c-a) \Rightarrow c-a+b-b = (c-b)+(b-a) = np+nq$

Add zero rearrange $= n \mid (p+e)$

• To disprove an equivalence relation, you only need to show that one of the properties does not hold.

Exercise:

On \mathbb{Z} , prove that $R = \{(a, b) : ab = 0\}$ is not an equivalence relation.

Equivalence Classes

Definition

• Let R be an equivalence relation on A. For each $a \in A$, the **equivalence class** of a, denoted [a], is the set:

$$[a] = \{x \in A : xRa\}$$

- Equivalence classes have the following properties:
 - 1) For any $a, b \in A$, we have either [a] = [b] or $[a] \cap [b] = \emptyset$.
 - 2) All distinct equivalence classes form a **partition** of *A*
 - a. The *union* of all classes is *A*, and the *intersection* of any 2 classes is empty.

Let
$$A = \{0,1,2\}, R = \{(0,0), (1,\underline{1}), (2,2), (0,1), (1,\underline{0})\}$$
. Find $[0], [1], [2]$.

$$\begin{bmatrix} 6 \end{bmatrix} = \{0,1,3\}$$

$$\begin{bmatrix} 1 \end{bmatrix} = \{0,1,3\}$$

$$\begin{bmatrix} 2 \end{bmatrix} = \{0,1,3\}$$

Exercise:

What do the equivalence classes of the identity relation on \mathbb{R} look like?

Exercise:

Let *R* on \mathbb{Z} be defined by $R = \{(a, b) : a \equiv b \pmod{3}\}$. Find [0], [1], [2].

$$3|(b-0) = \sum_{0} [-3,0,3,6,...]$$

 $3|(b-1) = \sum_{0} [-3,0,3,6,...]$
 $3|(b-1) = \sum_{0} [-3,-2,1,4,7,...]$
 $3|(b-2) = \sum_{0} [2] = \sum_{0} [-7,-4,-1,2,5,...]$