For a real-world facial recognition task, in which the photos do not come precropped into nice grids, the only difference in the facial classification scheme is the feature selection: you would need to use a more sophisticated algorithm to find the faces, and extract features that are independent of the pixellation. For this kind of application, one good option is to make use of OpenCV, which among other things, includes pretrained implementations of state-of-the-art feature extraction tools for images in general and faces in particular.

Support Vector Machine Summary

We have seen here a brief intuitive introduction to the principals behind support vector machines. These methods are a powerful classification method for a number of reasons:

- Their dependence on relatively few support vectors means that they are very compact models, and take up very little memory.
- Once the model is trained, the prediction phase is very fast.
- Because they are affected only by points near the margin, they work well with high-dimensional data—even data with more dimensions than samples, which is a challenging regime for other algorithms.
- Their integration with kernel methods makes them very versatile, able to adapt to many types of data.

However, SVMs have several disadvantages as well:

- The scaling with the number of samples N is $\mathcal{O}[N^3]$ at worst, or $\mathcal{O}[N^2]$ for efficient implementations. For large numbers of training samples, this computational cost can be prohibitive.
- The results are strongly dependent on a suitable choice for the softening parameter *C*. This must be carefully chosen via cross-validation, which can be expensive as datasets grow in size.
- The results do not have a direct probabilistic interpretation. This can be estimated via an internal cross-validation (see the probability parameter of SVC), but this extra estimation is costly.

With those traits in mind, I generally only turn to SVMs once other simpler, faster, and less tuning-intensive methods have been shown to be insufficient for my needs. Nevertheless, if you have the CPU cycles to commit to training and cross-validating an SVM on your data, the method can lead to excellent results.

In-Depth: Decision Trees and Random Forests

Previously we have looked in depth at a simple generative classifier (naive Bayes; see "In Depth: Naive Bayes Classification" on page 382) and a powerful discriminative classifier (support vector machines; see "In-Depth: Support Vector Machines" on page 405). Here we'll take a look at motivating another powerful algorithm—a non-parametric algorithm called *random forests*. Random forests are an example of an *ensemble* method, a method that relies on aggregating the results of an ensemble of simpler estimators. The somewhat surprising result with such ensemble methods is that the sum can be greater than the parts; that is, a majority vote among a number of estimators can end up being better than any of the individual estimators doing the voting! We will see examples of this in the following sections. We begin with the standard imports:

```
In[1]: %matplotlib inline
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns; sns.set()
```

Motivating Random Forests: Decision Trees

Random forests are an example of an *ensemble learner* built on decision trees. For this reason we'll start by discussing decision trees themselves.

Decision trees are extremely intuitive ways to classify or label objects: you simply ask a series of questions designed to zero in on the classification. For example, if you wanted to build a decision tree to classify an animal you come across while on a hike, you might construct the one shown in Figure 5-67.

Figure 5-67. An example of a binary decision tree