

Math 673

Multigrid Methods: A Mostly Matrix-Based Approach

Chapter 09: Additive Preconditioners Based on Subspace Decompositions

Abner J. Salgado and Steven M. Wise

asalgad1@utk.edu swise1@.utk.edu University of Tennessee

Fall 2024

Chapter 09, Part 2 of 2 Additive Preconditioners Based on Subspace Decompositions

Hierarchical Basis Preconditioner

Now, we need to connect the spaces W_j to V_ℓ where $0 \le j \le \ell$. In so doing, we will have the tools to build a preconditioner based on the hierarchical basis. Be careful, the number of indices in this section can get a little overwhelming.

Proposition

Let $\mathcal{B}_{j}^{W}=\{\phi_{j,i}\}_{i=1}^{m_{j}}$ and $\mathcal{B}_{\ell}^{V}=\{\psi_{\ell,i}\}_{i=1}^{n_{\ell}}$ be the usual bases for W_{j} and V_{ℓ} , respectively. For each $0\leq j\leq \ell$, there are unique numbers

$$q_{j,k,i}^{\ell} \in \mathbb{R}, \quad 1 \leq k \leq n_{\ell}, \quad 1 \leq i \leq m_{j},$$

such that

$$\phi_{j,i} = \sum_{k=1}^{n_\ell} q_{j,k,i}^\ell \psi_{\ell,k}. \tag{1}$$

Proof.

Exercise.

Definition (Hierarchical Prolongation Matrix)

Define the matrix $\mathsf{Q}_j^\ell \in \mathbb{R}^{n_\ell imes m_j}$ via

$$\left[Q_j^\ell\right]_{i,k}:=q_{j,k,i}^\ell,\quad 1\leq k\leq n_\ell,\quad 1\leq i\leq m_j.$$

 Q_j^{ℓ} is called a **hierarchical prolongation matrix**.

Lemma

Suppose that Q_j^ℓ is a hierarchical prolongation matrix and $\mathbf{w}_j \in \mathbb{R}^{m_j}$ is the coordinate vector of the function $\mathbf{w}_j \in W_j$ with respect to the basis \mathcal{B}_j^W . Then,

$$\operatorname{rank}(\mathsf{Q}_j^\ell)=m_j,$$

and the coordinate vector of $\mathbf{w}_j \in V_\ell$ in the basis \mathcal{B}_ℓ^V is simply

$$Q_j^{\ell} \mathbf{w}_j \in \mathbb{R}^{n_{\ell}}$$
.

Proof.

Exercise.

Remark

Note that the family of spaces W_j are hierarchical, but are not nested

$$W_0 \not\subset W_1 \not\subset W_2 \cdots$$
.

Furthermore, it makes no sense to stack the prolongation matrices as we did in the past:

$$\mathsf{Q}_j^\ell \neq \mathsf{Q}_k^\ell \mathsf{Q}_j^k,$$

for $j < k < \ell$. In fact, the product on the right hand side is not usually defined.

T

Definition

Define the bilinear form $C_j:W_j\times W_j\to\mathbb{R}$ via

$$C_{j}\left(w_{j},v_{j}\right) \coloneqq \sum_{r=1}^{m_{j}} w_{j}\left(\boldsymbol{N}_{j,r}^{W}\right) v_{j}\left(\boldsymbol{N}_{j,r}^{W}\right), \quad \forall \ w_{j},v_{j} \in W_{j}.$$

Let $\mathcal{B}^W_j=\{\phi_{j,i}\}_{i=1}^{m_j}$ be the usual basis for W_j . Define the matrix $\mathsf{C}_j\in\mathbb{R}^{m_j\times m_j}$ via

$$[C_{j}]_{i,k} := C_{j} (\phi_{j,i}, \phi_{j,k})$$

$$= \sum_{r=1}^{m_{j}} \phi_{j,i} (\mathbf{N}_{j,r}^{W}) \phi_{j,k} (\mathbf{N}_{j,r}^{W})$$

$$= \sum_{r=1}^{m_{j}} \delta_{ir} \delta_{kr}$$

$$= \delta_{ik}. \tag{2}$$

Definition (Hierarchical Basis Preconditioner)

Suppose that $\mathcal{B}_{\ell}^V = \{\psi_{\ell,i}\}_{i=1}^{n_\ell}$ is the usual basis for the finite element space V_ℓ . Let $A_L \in \mathbb{R}^{n_L \times n_L}$ be the SPD matrix defined via

$$[\mathsf{A}_L]_{i,j} = \mathsf{a}(\psi_{L,j},\psi_{L,i}), \quad 1 \leq i,j \leq \mathsf{n}_L,$$

where

$$a(u,v) = (\nabla u, \nabla v)_{L^2}, \quad \forall \ u,v \in H_0^1(\Omega).$$

The hierarchical basis preconditioner for A_L is defined as

$$C_{H} = \sum_{\ell=0}^{L} Q_{\ell}^{L} C_{\ell}^{-1} Z_{\ell}^{L} = \sum_{\ell=0}^{L} Q_{\ell}^{L} Z_{\ell}^{L}, \tag{3}$$

where C_ℓ is as in (2), $Q_\ell^L \in \mathbb{R}^{n_L \times m_\ell}$ is the hierarchical prolongation matrix from a previous definition and

$$\mathsf{Z}_\ell^{\mathit{L}} = \left(\mathsf{Q}_\ell^{\mathit{L}}\right)^{ op}$$
 .

Lemma

Assumption (SS1) holds for the hierarchical basis decomposition. In particular, for any object

$$u_L \in \mathbb{R}^{n_L} \overset{\mathcal{B}_L^V}{\leftrightarrow} u_L \in V_L$$

there exist unique objects

$$\mathbf{w}_{\ell} \in \mathbb{R}^{m_{\ell}} \overset{\mathcal{B}_{\ell}^{W}}{\leftrightarrow} \mathbf{w}_{\ell} \in W_{\ell}, \quad 0 \leq \ell \leq L,$$

such that

$$\mathbf{u} = \sum_{\ell=0}^{L} \mathsf{Q}_{\ell}^{L} \mathbf{w}_{\ell} \in \mathbb{R}^{n_{L}} \overset{\mathcal{B}_{L}^{V}}{\leftrightarrow} u_{L} = \sum_{\ell=0}^{L} w_{\ell} \in V_{L}.$$

Furthermore, the hierarchical basis preconditioner, B_H, defined in (3), is SPD.

Proof.

This follows from the lemmas on the last slide deck. The details are left for an exercise.

Remark

Our goal is now to show that

$$\lambda_{\min}(\mathsf{C}_{H}\mathsf{A}_{L}) \geq C_{1}\left(1+\left|\mathsf{log}(\mathit{h}_{L})\right|^{2}\right)^{-1},$$

and

$$\lambda_{\max}(C_HA_L) \leq C_2$$
,

where C_1 , $C_2 > 0$ are independent of L. If this is the case

$$\frac{\lambda_{\mathsf{max}}}{\lambda_{\mathsf{min}}} =: \kappa(\mathsf{C}_{\mathsf{H}}\mathsf{A}_{\mathsf{L}}) \leq \frac{C_2}{C_1} \left(1 + \left| \mathsf{log}(\mathit{h}_{\mathsf{L}}) \right|^2 \right).$$

This estimate is quite useful, since the logarithmic dependence on h_L is quite weak. For example, suppose

$$h_L=\frac{1}{2^L},$$

which is entirely reasonable. Then

$$|\log(h_L)|^2 = L^2 |\log(1/2)|^2$$
.

Our analysis that follows will only work for d = 2.

Now, we need some technical lemmas. For more details, see the book by Brenner and Scott.

Theorem (Mean-Zero Poincaré)

Suppose that Ω is an open polyhedral set in \mathbb{R}^d . Then, for every $u \in H^1(\Omega)$,

$$\|u - \bar{u}\|_{L^2(\Omega)} \le C \|\nabla u\|_{L^2(\Omega)},$$
 (4)

for some constant C>0 that is independent of u by dependent upon Ω , where \bar{u} is the average of u:

$$\bar{u} := \frac{1}{|\Omega|} \int_{\Omega} u(x) dx.$$

As a consequence, for every $u \in H^1(\Omega)$,

$$||u - \bar{u}||_{H^{1}(\Omega)} \le C |u - \bar{u}|_{H^{1}(\Omega)} = C |u|_{H^{1}(\Omega)},$$
 (5)

for some constant C > 0 that is independent of u by dependent upon Ω .

Theorem (Inverse inequality)

Suppose that Ω is an open polygonal domain in \mathbb{R}^d , \mathcal{T}_ℓ , $0 \leq \ell \leq L$ is a nested family of triangulations of Ω , and S_ℓ , $0 \leq \ell \leq L$, are the associated piecewise-linear finite element spaces. Assume that $1 \leq q \leq \infty$. Then, for all $v \in S_\ell$ and all $K \in \mathcal{T}_\ell$,

$$||v||_{H^1(K)} \le Ch_{\ell}^{-1+d/2-d/q} ||v||_{L^q(K)},$$
 (6)

for some constant C>0 that is independent of ℓ but depends on the shape of K.

Proof.

See Section 5.3 in the book by Brenner and Scott.

In two space dimensions $H^1\hookrightarrow L^p$, for any $1\leq p<\infty$. We cannot quite get control for $p=\infty$. But, if the function space is finite dimensional we can almost get control of the $p=\infty$ case. Here is the result from Section 4.9 in the book by Brenner and Scott.

Theorem

Suppose that Ω is an open polygonal domain in \mathbb{R}^2 and \mathcal{T}_ℓ , $0 \leq \ell \leq L$ is a nested family of triangulations of Ω . Then, for any $v_\ell \in V_\ell$,

$$\|v_\ell\|_{L^\infty(\Omega)} \leq C\sqrt{1+\left|\log(h_\ell)\right|}\left|v_\ell\right|_{H^1(\Omega)},$$

for some constant C>0 that is independent of ℓ but depends upon the shape of Ω . Further, for all $v_{\ell} \in S_{\ell}$ and any $K \in \mathcal{T}_{\ell}$,

$$\|v_{\ell} - \overline{v}_{\ell}\|_{L^{\infty}(K)} \leq C\sqrt{1 + \left|\log(h_{\ell})\right|} \left|v_{\ell}\right|_{H^{1}(K)},$$

for some constant C>0 that is independent of ℓ but depends upon the shape of the triangle $K\in \mathcal{T}_\ell$, where

$$\bar{v}_{\ell} = \frac{1}{|K|} \int_{K} v_{\ell}(x) dx.$$

Lemma

Suppose that $0 \le j < \ell$. For any $v_{\ell} \in S_{\ell}$,

$$\|v_{\ell} - \bar{v}_{j,\ell}\|_{L^{\infty}(\mathcal{K}_{j})} \leq C\sqrt{1 + \left|\log\left(\frac{h_{j}}{h_{\ell}}\right)\right|} |v_{\ell}|_{H^{1}(\mathcal{K}_{j})}, \tag{7}$$

for some constant C>0 that is independent of j and ℓ but depends upon the shape of the triangle $K_j\in\mathcal{T}_j$, where

$$\bar{v}_{j,\ell} = \frac{1}{|K_j|} \int_{K_j} v_\ell(x) dx.$$

Proof.

Exercise.

Lemma

Assume that $\Omega \subset \mathbb{R}^2$ is a polygonal domain. Suppose that $\mathcal{I}_\ell : C(\Omega) \to V_\ell$, $0 \le \ell \le L$, is the Lagrange nodal interpolation operator, and $\mathcal{I}_{-1} \equiv 0$. Then, for all $u_L \in V_L$,

$$\|\mathcal{I}_{\ell}u_{L} - \mathcal{I}_{\ell-1}u_{L}\|_{L^{2}(\Omega)} \leq Ch_{\ell}\left(1 + \sqrt{L - \ell}\right)|u_{L}|_{H^{1}(\Omega)}.$$
 (8)

for some constant C>0 that is independent of but depends upon the shape of Ω .

Proof.

Define the piecewise constant function \bar{u}_L^ℓ such that

$$ar{u}_L^\ell|_K := rac{1}{|K|} \int_K u_L(x) dx, \quad \forall \ K \in \mathcal{T}_\ell.$$

T

Then,

$$\begin{split} \|\mathcal{I}_{\ell} u_{L} - \mathcal{I}_{\ell-1} u_{L}\|_{L^{2}(\Omega)}^{2} &= \|\mathcal{I}_{\ell} u_{L} - \mathcal{I}_{\ell-1} \left[\mathcal{I}_{\ell} [u_{L}]\right]\|_{L^{2}(\Omega)}^{2} \\ &\leq C h_{\ell}^{2} \sum_{K \in \mathcal{T}_{\ell}} |\mathcal{I}_{\ell} [u_{L}]|_{H^{1}(K)}^{2} \\ &= C h_{\ell}^{2} \sum_{K \in \mathcal{T}_{\ell}} \left|\mathcal{I}_{\ell} u_{L} - \bar{u}_{L}^{\ell}\right|_{H^{1}(K)}^{2} \\ &\stackrel{(6)}{\leq} C h_{\ell}^{2} \sum_{K \in \mathcal{T}_{\ell}} \left\|\mathcal{I}_{\ell} u_{L} - \bar{u}_{L}^{\ell}\right\|_{L^{\infty}(K)}^{2} \\ &\leq C h_{\ell}^{2} \sum_{K \in \mathcal{T}_{\ell}} \left\|u_{L} - \bar{u}_{L}^{\ell}\right\|_{L^{\infty}(K)}^{2} \\ &\stackrel{(7)}{\leq} C h_{\ell}^{2} \sum_{K \in \mathcal{T}_{\ell}} \left(1 + \left|\log\left(\frac{h_{\ell}}{h_{L}}\right)\right|\right) |u_{L}|_{H^{1}(K)}^{2} \\ &= C h_{\ell}^{2} \left(1 + \left|\log\left(\frac{h_{\ell}}{h_{L}}\right)\right|\right) |u_{L}|_{H^{1}(\Omega)}^{2} \,. \end{split}$$

Now, notice that

$$h_\ell = h_0 2^{-\ell} \quad 1 \le \ell \le L.$$

So,

$$\log(h_\ell/h_L) = \log(2^{L-\ell}) = (L-\ell)\log(2).$$

The result follows.

Lemma

There is some constant $C_1 > 0$ such that

$$\lambda_{\min}(\mathsf{B}_H\mathsf{A}_L) \ge \frac{C_1}{1 + |\log(h_L)|^2}.$$
 (9)

Proof.

By definition, for any $w_{\ell,1}, w_{\ell,2} \in W_{\ell}$

$$C_{\ell}(w_{\ell,1},w_{\ell,2}) = \sum_{i=1}^{m_{\ell}} w_{\ell,1}(N_{\ell,i}^{W})w_{\ell,2}(N_{\ell,i}^{W}).$$

Let

$$\mathbf{w}_{\ell,\alpha} \in \mathbb{R}^{m_{\ell}} \overset{\mathcal{B}_{\ell}^{W}}{\leftrightarrow} \mathbf{w}_{\ell,\alpha}, \quad \alpha = 1, 2.$$

Then,

$$\begin{aligned} \left(\mathsf{C}_{\ell} \mathbf{w}_{\ell,1}, \mathbf{w}_{\ell,2}\right)_{\ell} &= \sum_{i=1}^{m_{\ell}} \left[\mathbf{w}_{\ell,1}\right]_{i} \left[\mathbf{w}_{\ell,2}\right]_{i} \\ &= \sum_{i=1}^{m_{\ell}} w_{\ell,1} (\mathbf{N}_{\ell,i}^{W}) w_{\ell,2} (\mathbf{N}_{\ell,i}^{W}) \\ &= C_{\ell} \left(w_{\ell,1}, w_{\ell,2}\right) \\ &= C_{\ell} \left(w_{\ell,2}, w_{\ell,1}\right) \\ &=: \left\langle w_{\ell,1}, w_{\ell,2} \right\rangle_{\mathsf{C}_{\ell}}. \end{aligned}$$

This last object is like a mass-lumping inner product. All that is missing is a factor of h_{ℓ}^2 .

There are constants $C_3 > 0$, $C_4 > 0$ such that, for all $0 \le \ell \le L$,

$$C_3 h_\ell^2 \langle w_\ell, w_\ell \rangle_{\mathsf{C}_\ell} \le \|w_\ell\|_{L^2(\Omega)}^2 \le C_4 h_\ell^2 \langle w_\ell, w_\ell \rangle_{\mathsf{C}_\ell}, \tag{10}$$

for all $w_{\ell} \in W_{\ell}$.

Therefore, for any $w_{\ell} \in W_{\ell} \overset{\mathcal{B}_{\ell}^{W}}{\longleftrightarrow} \mathbf{w}_{\ell} \in \mathbb{R}^{m_{\ell}}$,

$$(C_{\ell} \mathbf{w}_{\ell}, \mathbf{w}_{\ell})_{\ell} = h_{\ell}^{-2} h_{\ell}^{2} \langle w_{\ell}, w_{\ell} \rangle_{C_{\ell}}$$

$$\stackrel{(10)}{\leq} C_{3}^{-1} h_{\ell}^{-2} \| w_{\ell} \|_{L^{2}(\Omega)}^{2}$$

$$= C_{3}^{-1} h_{\ell}^{-2} \| w_{\ell} - \mathcal{I}_{\ell-1} w_{\ell} \|_{L^{2}(\Omega)}^{2}$$

$$(interp. err.)$$

$$\stackrel{(6)}{\leq} C_{3}^{-1} C \| w_{\ell} \|_{H^{1}(\Omega)}^{2}$$

$$\stackrel{(6)}{\leq} C_{3}^{-1} C h_{\ell}^{-2} \| w_{\ell} \|_{L^{2}(\Omega)}^{2}$$

$$\stackrel{(10)}{\leq} C_{3}^{-1} C C_{4} (C_{\ell} \mathbf{w}_{\ell}, \mathbf{w}_{\ell})_{\ell}. \tag{11}$$

Therefore, there are constants $C_5 > 0$, $C_6 > 0$, such that we have the equivalence

$$C_5 \sum_{\ell=0}^{L} |w_{\ell}|_{H^1(\Omega)}^2 \leq \sum_{\ell=0}^{L} (C_{\ell} \mathbf{w}_{\ell}, \mathbf{w}_{\ell})_{\ell} \leq C_6 \sum_{\ell=0}^{L} |w_{\ell}|_{H^1(\Omega)}^2,$$
 (12)

for any collection (w_ℓ) , with $w_\ell \in W_\ell$, in general. Now, let $u_L \in V_L$ be given and

$$u_L = \sum_{\ell=0}^L w_\ell, \quad \exists ! \ w_\ell \in W_\ell, \quad 0 \le \ell \le L.$$

Recall that

$$w_{\ell} = \mathcal{I}_{\ell} u_L - \mathcal{I}_{\ell-1} u_L, \quad 1 \leq \ell \leq L,$$

and

$$w_0 = \mathcal{I}_0 u_L$$
.

We make the usual identification $w_\ell \in W_\ell \overset{\mathcal{B}_\ell^W}{\leftrightarrow} w_\ell \in \mathbb{R}^{m_\ell}$, and we observe that

$$(\boldsymbol{w}_{\ell})_{\ell=0}^{L} \in \mathsf{Q}[\boldsymbol{u}_{L}].$$

Then, from (11)

$$\begin{split} \sum_{\ell=0}^{L} \left(\mathsf{C}_{\ell} \boldsymbol{w}_{\ell}, \boldsymbol{w}_{\ell} \right)_{\ell} & \leq & C_{3}^{-1} C \sum_{\ell=0}^{L} h_{\ell}^{-2} \left\| w_{\ell} \right\|_{L^{2}(\Omega)}^{2} \\ & \leq & C \sum_{\ell=0}^{L} \left(1 + \sqrt{L - \ell} \right)^{2} \left| u_{L} \right|_{H^{1}(\Omega)}^{2} \\ & \leq & C \sum_{\ell=0}^{L} \left(1 + L - \ell \right) \left| u_{L} \right|_{H^{1}(\Omega)}^{2} \\ & \leq & C \left(1 + L + L^{2} \right) \left| u_{L} \right|_{H^{1}(\Omega)}^{2} \\ & \leq & C L^{2} \left| u_{L} \right|_{H^{1}(\Omega)}^{2}. \end{split}$$

But

$$|u_L|_{H^1(\Omega)}^2 = a(u_L, u_L) = (A_L u_L, u_L)_L,$$

and

$$\begin{aligned} |\log(h_L)|^2 &= \left|\log(h_0 2^{-L})\right|^2 \\ &= |\log(h_0) - L \log(2)|^2 \\ &= \log^2(h_0) - 2 \log(h_0) L \log(2) + L^2 \log^2(2). \end{aligned}$$

So.

$$L^2 \leq C \left(1 + |\log(h_L)|^2\right), \quad \exists C > 0.$$

Thus,

$$\sum_{\ell=0}^{L} \left(\mathsf{C}_{\ell} \boldsymbol{w}_{\ell}, \boldsymbol{w}_{\ell} \right) \leq C \left(1 + \left| \mathsf{log}(h_{L}) \right|^{2} \right) \left(\mathsf{A} \boldsymbol{u}_{L}, \boldsymbol{u}_{L} \right)_{L},$$

and it follows from the big theorem of the last slide deck that

$$\lambda_{\mathsf{min}}(\mathsf{C}_{H}\mathsf{A}_{L}) \geq \mathit{C}_{1}\left(1 + \left|\mathsf{log}(\mathit{h}_{L})\right|^{2}\right)^{-1}.$$

For reference, here is that "big" theorem.

Theorem (Eigenvalues of CA)

Suppose that Assumption (SS1) holds for the set of prolongation matrices $\{Q_j\}_{j=0}^L$ and C is an additive subspace preconditioner with respect to $\{Q_j\}_{j=0}^L$. The eigenvalues of CA are positive, provided A is SPD with respect to $(\cdot\,,\,\cdot)$. Moreover

$$\lambda_{\max}(\mathsf{CA}) = \max_{\boldsymbol{u} \in \mathbb{R}_{\pi}^{n}} \frac{(\mathsf{A}\boldsymbol{u}, \boldsymbol{u})}{\min_{(\boldsymbol{w}_{\ell}) \in \mathsf{Q}[\boldsymbol{u}]} \sum_{\ell=0}^{L} (\mathsf{C}_{\ell}\boldsymbol{w}_{\ell}, \boldsymbol{w}_{\ell})_{\ell}},$$
(13)

$$\lambda_{\min}(\mathsf{CA}) = \min_{\boldsymbol{u} \in \mathbb{R}_{\star}^{n}} \frac{(\mathsf{A}\boldsymbol{u}, \boldsymbol{u})}{\min_{(\boldsymbol{w}_{\ell}) \in \mathsf{Q}[\boldsymbol{u}]} \sum_{\ell=0}^{L} (\mathsf{C}_{\ell}\boldsymbol{w}_{\ell}, \boldsymbol{w}_{\ell})_{\ell}}.$$
 (14)

Next, we need a little technical lemma, a kind of convolution result.

Lemma

Let $a_i, b_i \geq 0, -\infty < j < \infty$, with

$$s_1:=\sum_{j=-\infty}^{\infty}a_j\leq\infty,$$

and

$$s_2:=\sum_{j=-\infty}^{\infty}b_j\leq\infty.$$

Then

$$\sum_{j=-\infty}^{\infty} \left(\sum_{k=-\infty}^{\infty} a_{j-k} b_k \right)^2 \le s_1^2 s_2. \tag{15}$$

Proof.

Exercise.

Lemma

For any $v_{\ell} \in V_{\ell}$ and $v_{k} \in V_{k}$, $0 \le \ell \le k \le L$, and d=2, there is a constant C > 0 such that

$$\int_{\Omega} \nabla v_{\ell} \cdot \nabla v_{k} dx \leq 2^{(\ell-k)/2} C |v_{\ell}|_{H^{1}(\Omega)} \left(h_{k}^{-1} \|v_{k}\|_{L^{2}(\Omega)} \right). \tag{16}$$

Proof.

For any $K \in \mathcal{T}_{\ell}$, since $\Delta v_{\ell}|_{K} \equiv 0$,

$$\int_{K} \nabla v_{\ell} \cdot \nabla v_{k} dx = \int_{\partial K} \frac{\partial v_{\ell}}{\partial n} v_{k} ds$$

$$\leq C h_{\ell}^{-1} |v_{\ell}|_{H^{1}(K)} \int_{\partial K} |v_{k}| ds$$

$$\leq C h_{\ell}^{-1} |v_{\ell}|_{H^{1}(K)} \left(h_{k} \sum_{\mathbf{N}_{k} \in \partial K} |v_{k}(\mathbf{N}_{k})| \right)$$

$$\overset{\text{c.s.}}{\leq} C h_{\ell}^{-1} |v_{\ell}|_{H^{1}(K)} \left(h_{k} \left(\frac{h_{\ell}}{h_{k}} \right)^{1/2} \left(\sum_{\mathbf{N}_{k} \in \partial K} |v_{k}(\mathbf{N}_{k})|^{2} \right)^{1/2} \right)$$

$$\leq C \left(\frac{h_{k}}{h_{\ell}} \right)^{1/2} |v_{\ell}|_{H^{1}(K)} h_{k}^{-1} ||v_{k}||_{L^{2}(K)}.$$

Thus,

$$\begin{split} \int_{\Omega} \nabla v_{\ell} \cdot \nabla v_{k} dx &= \sum_{K \in \mathcal{T}_{\ell}} \int_{K} \nabla v_{\ell} \cdot \nabla v_{k} dx \\ &\leq C2^{(\ell-k)/2} \sum_{K \in \mathcal{T}_{\ell}} |v_{\ell}|_{H^{1}(K)} \, h_{k}^{-1} \, \|v_{k}\|_{L^{2}(K)} \\ &\overset{\text{C.s.}}{\leq} C2^{(\ell-k)/2} \, |v_{\ell}|_{H^{1}(\Omega)} \, h_{k}^{-1} \, \|v_{k}\|_{L^{2}(\Omega)} \, . \end{split}$$

Lemma (Strengthened Cauchy-Schwarz Inequality)

For any $w_\ell \in W_\ell$ and $w_k \in W_k$, $0 \le \ell \le k \le L$, there is a constant C > 0 such that

$$\int_{\Omega} \nabla w_{\ell} \cdot \nabla w_{k} d\mathbf{x} \leq 2^{(\ell-k)/2} C \left| w_{\ell} \right|_{H^{1}(\Omega)} \left| w_{k} \right|_{H^{1}(\Omega)}. \tag{17}$$

Proof.

Observe that

$$w_k = w_k - \mathcal{I}_{\ell-1}(w_k).$$

We use the interpolation error estimate

$$\|w_k - \mathcal{I}_{k-1}(w_k)\|_{L^2(\Omega)} \le Ch_k |w_k|_{H^1(\Omega)},$$

to conclude that

$$\|w_k\|_{L^2(\Omega)} \leq Ch_k |w_k|_{H^1(\Omega)}.$$

Now, we use the last result. Since $w_{\ell} \in V_{\ell}$ and $w_k \in V_k$,

$$\int_{\Omega} \nabla w_{\ell} \cdot \nabla w_{k} dx \leq C2^{(\ell-k)/2} |w_{\ell}|_{H^{1}(\Omega)} h_{k}^{-1} ||w_{k}||_{L^{2}(\Omega)}
\leq 2^{(\ell-k)/2} C |w_{\ell}|_{H^{1}(\Omega)} |w_{k}|_{H^{1}(\Omega)}$$

Lemma

There is a constant $C_2 > 0$ such that

$$\lambda_{\max}(\mathsf{B}_H\mathsf{A}_L) \leq C_2,$$

independent of L.

Proof.

Let $v_L \in V_L$ be arbitrary.

$$v_L \in V_L \stackrel{\mathcal{B}_L}{\leftrightarrow} \mathbf{v} \in \mathbb{R}^n$$
.

There exist unique $w_\ell \in W_\ell \overset{\mathcal{B}_\ell^W}{\overset{\ell}{\leftarrow}} \mathbf{w}_\ell \in \mathbb{R}^{m_\ell}$ such that

$$v_L = \sum_{\ell=0}^L w_\ell \leftrightarrow \boldsymbol{v} = \sum_{\ell=0}^L Q_\ell^L \boldsymbol{w}_\ell.$$

Then

$$(\mathbf{v}, \mathbf{v})_{A_{L}} = (\mathbf{v}, A_{L}\mathbf{v})$$

$$= a(\mathbf{v}, \mathbf{v})$$

$$= a\left(\sum_{\ell=0}^{L} w_{\ell}, \sum_{k=0}^{L} w_{k}\right)$$

$$= \int_{\Omega} \left(\nabla \sum_{\ell=0}^{L} w_{\ell}\right) \cdot \left(\nabla \sum_{k=0}^{L} w_{k}\right) dx$$

$$= \sum_{\ell,k=0}^{L} \int_{\Omega} \nabla w_{\ell} \cdot \nabla w_{k} dx$$

$$\stackrel{(17)}{\leq} C \sum_{\ell,k=0}^{L} 2^{-|\ell-k|/2} |w_{\ell}|_{H^{1}(\Omega)} |w_{k}|_{H^{1}(\Omega)}$$

$$\leq C \sum_{\ell=0}^{L} \left(\sum_{k=0}^{L} 2^{-|\ell-k|/2} |w_{k}|_{H^{1}(\Omega)} \right) |w_{\ell}|_{H^{1}(\Omega)}$$

$$\stackrel{C.s.}{\leq} C \left\{ \sum_{\ell=0}^{L} \left(\sum_{k=0}^{L} 2^{-|\ell-k|/2} |w_{k}|_{H^{1}(\Omega)} \right)^{2} \right\}^{1/2} \left\{ \sum_{\ell=0}^{L} |w_{\ell}|_{H^{1}(\Omega)}^{2} \right\}^{1/2}$$

$$\stackrel{(15)}{\leq} C \left\{ \sum_{\ell=0}^{L} |w_{\ell}|_{H^{1}(\Omega)}^{2} \right\}^{1/2} \left\{ \sum_{\ell=0}^{L} |w_{\ell}|_{H^{1}(\Omega)}^{2} \right\}^{1/2}$$

$$= C \sum_{k=0}^{L} |w_{\ell}|_{H^{1}(\Omega)}^{2} \leq C_{2} \sum_{k=0}^{L} (w_{\ell}, w_{\ell})_{C_{\ell}}.$$

Recall that, since decomposition are unique

$$\lambda_{\max}(\mathsf{B}_{H}\mathsf{A}_{L}) \stackrel{\text{(13)}}{=} \max_{\boldsymbol{u} \in \mathbb{R}_{*}^{n}} \frac{(\boldsymbol{u}, \boldsymbol{u})_{\mathsf{A}_{L}}}{\sum_{\ell=0}^{L} (\boldsymbol{w}_{\ell}, \boldsymbol{w}_{\ell})_{\mathsf{C}_{\ell}}}$$

$$\stackrel{\text{(18)}}{=} \max_{\boldsymbol{u} \in \mathbb{R}_{*}^{n}} \frac{\mathbb{C}_{2} \sum_{\ell=0}^{L} (\boldsymbol{w}_{\ell}, \boldsymbol{w}_{\ell})_{\mathsf{C}_{\ell}}}{\sum_{\ell=0}^{L} (\boldsymbol{w}_{\ell}, \boldsymbol{w}_{\ell})_{\mathsf{C}_{\ell}}}$$

$$\leq C_{2}.$$

Theorem

There is a constant C > 0 independent of L, such that

$$\kappa(\mathsf{B}_{H}\mathsf{A}_{L}) = \frac{\lambda_{\mathsf{max}}(\mathsf{B}_{H}\mathsf{A}_{L})}{\lambda_{\mathsf{min}}(\mathsf{B}_{H}\mathsf{A}_{L})} \le C\left(1 + |\mathsf{log}(h_{L})|^{2}\right). \tag{19}$$

independent of L.

Proof.

Exercise.

The BPX Preconditioner

The BPX Preconditioner

The BPX preconditioner has a slightly better perforance than the hierarchical basis preconditioner, in the sense that the logarithmic dependence on h_L can be removed. For this method we choose

$$W_{\ell} := V_{\ell}, \quad 0 \leq \ell \leq L.$$

Thus $W_L = V_L$ and

$$m_\ell = n_\ell, \quad 0 \le \ell \le L.$$

T

Definition

Define the operator $\mathsf{C}_\ell:V_\ell o V'_\ell$ via

$$C_{\ell}[v_{\ell,1}](v_{\ell,2}) = \sum_{i=1}^{n_{\ell}} v_{\ell,1}(N_{\ell,i}^{W})v_{\ell,2}(N_{\ell,i}^{W}).$$

The matrix $C_{\ell} \in \mathbb{R}^{m_{\ell} \times m_{\ell}}$ is defined as

$$\left[\mathsf{C}_{\ell}\right]_{j,k} = \mathsf{C}_{\ell}\left[\phi_{\ell,j}\right]\left(\phi_{\ell,k}\right) = \delta_{j,k}, \quad 1 \leq j,k \leq \mathsf{n}_{\ell},$$

where $\mathcal{B}_\ell=\{\phi_{\ell,j}\}_{j=1}^{n_\ell}$ is the Lagrange nodal basis for the piecewise linear FE space $V_\ell, 0 \leq \ell \leq L$. The BPX preconditioner is

$$C_{BPX} := \sum_{\ell=0}^{L} \mathsf{P}_{\ell}^{L} \mathsf{C}_{\ell}^{-1} \mathcal{R}_{\ell}^{L} = \sum_{\ell=0}^{L} \mathsf{P}_{\ell}^{L} \mathcal{R}_{\ell}^{L}, \tag{20}$$

where $P_\ell^L \in \mathbb{R}^{n \times n_\ell}$ is the standard prolongation matrix from Chapter 6 and $\mathcal{R}_\ell^L = \left(P_\ell^L\right)^T$.

Assumption (SS1) holds for the BPX framework, i.e., for every $u_L \in V_L$, there exists $v_\ell \in V_\ell, 0 \le \ell \le L$, such that

$$u_L = \sum_{\ell=0}^L v_\ell,$$

or, equivalently

$$\boldsymbol{u} = \sum_{\ell=0}^{L} \mathsf{P}_{\ell}^{\prime} \boldsymbol{v}_{\ell},$$

with

$$V_{\ell} \ni v_{\ell} \stackrel{\mathcal{B}_{\ell}}{\leftrightarrow} v_{\ell} \in \mathbb{R}^{n},$$

and

$$V_L \ni u_L \overset{\mathcal{B}_\ell}{\leftrightarrow} \boldsymbol{u} \in \mathbb{R}^n$$
.

Proof.

This is trivial because of the nestedness of the the spaces

$$V_0 \subset V_1 \subset V_2 \subset \cdots \subset V_{L-1} \subset V_I$$
.

Remark

Note that the decomposition is no longer unique.

For any $v_j \in V_j, v_\ell \in V_\ell$,

$$\int_{\Omega} \nabla v_{j} \cdot \nabla v_{\ell} dx \leq C 2^{-|j-\ell|/2} \left(h_{j}^{-1} \| v_{j} \|_{L^{2}(\Omega)} \right) \left(h_{\ell}^{-1} \| v_{\ell} \|_{L^{2}(\Omega)} \right), \tag{21}$$

for some C > 0.

Proof.

This is follows from (16) and the inverse inequality

$$|v_j|_{H^1(\Omega)} \le ch_j^{-1} \|v_j\|_{L^2(\Omega)}$$
.

For some $C_2 > 0$ that is independent of L,

$$\lambda_{\max}\left(B_{BPX}A_{L}\right)\leq C_{2}.$$

for some C > 0.

Proof.

Let $u_L \in V_L$ be arbitrary. There exists $v_\ell \in V_\ell, 0 \le \ell \le L$, such that

$$u_L = \sum_{\ell=0}^L v_\ell,$$

or

$$\boldsymbol{u} = \sum_{\ell=0}^{L} \mathsf{P}_{\ell}^{\prime} \boldsymbol{v}_{\ell}.$$

The decomposition is not unique, however. Then

$$\begin{aligned} (\boldsymbol{u}, \boldsymbol{u})_{\mathsf{A}_{L}} &= & (\boldsymbol{u}, A_{L} \boldsymbol{u}) \\ &= & a(\boldsymbol{u}, \boldsymbol{u}) \\ &= & a\left(\sum_{j=0}^{L} v_{j}, \sum_{\ell=0}^{L} v_{\ell}\right) \\ &= & \sum_{\ell,j=0}^{L} a(v_{j}, v_{\ell}) \\ &\stackrel{(21)}{\leq} & C \sum_{\ell,j=0}^{L} 2^{-|j-\ell|/2} h_{j}^{-1} \|v_{\ell}\|_{L^{2}(\Omega)} h_{\ell} \|v_{k}\|_{L^{2}(\Omega)} \\ &\stackrel{(15)}{\leq} & C \sum_{j=0}^{L} h_{j}^{-2} \|v_{j}\|_{L^{2}(\Omega)} \\ &\stackrel{\mathsf{MG Norm Equiv.}}{\leq} & C_{2} \sum_{i=0}^{L} (\boldsymbol{v}_{j}, \boldsymbol{v}_{j})_{C_{j}} = C_{2} \sum_{i=0}^{L} (C_{j} \boldsymbol{v}_{j}, \boldsymbol{v}_{j})_{j} \end{aligned}$$

Now,

$$\lambda_{\max}(C_{BPX}A_L) \stackrel{\text{Eigenvalues of CA}}{=} \max_{\boldsymbol{u} \in \mathbb{R}^n_*} \frac{\left(\boldsymbol{u}, \boldsymbol{u}\right)_{A_L}}{\min_{\boldsymbol{u} = \sum_{\ell=0}^L \mathsf{P}_\ell^L \boldsymbol{v}_\ell^\ell} \sum_{\ell=0}^L \left(\boldsymbol{u}_\ell^\ell, \boldsymbol{u}_\ell^\ell\right)_{C_\ell}}$$

$$\leq \max_{\boldsymbol{u} \in \mathbb{R}^n_*} \frac{C_2 \sum_{\ell=0}^L \left(\mathsf{C}_\ell \boldsymbol{w}_\ell, \boldsymbol{w}_\ell\right)_\ell}{\min_{\boldsymbol{v}_\ell^\prime} \sum_{\ell=0}^L \left(\mathsf{C}_\ell \boldsymbol{w}_\ell, \boldsymbol{w}_\ell\right)}$$

$$\leq C_2.$$

Recall that the minimum was achievable, so we could take $\mathbf{v}_\ell = \mathbf{v}_\ell'$.

There is a constant $C_1 > 0$ that is independent of L, such that

$$\lambda_{min}\left(B_{BPX}A_{L}\right)\geq C_{1}.$$

for some C > 0.

Proof.

Let $u_L \in V_L$ be arbitrary. Set

$$v_{\ell} =: \mathcal{R}_{\ell} u_L - R_{\ell-1} u_L, \quad 0 \leq \ell \leq L,$$

where $\mathcal{R}_{\ell}: \mathcal{H}_0^1(\Omega) \to V_{\ell}$ is the Ritz projection for $0 \leq \ell \leq L$ and $R_{-1} \equiv 0$. Since

$$\mathcal{R}_{\ell}u_{L}=u_{L},$$

it follows that

$$u_L = \sum_{\ell=0}^L v_\ell \overset{\mathcal{B}_\ell}{\leftrightarrow} \boldsymbol{u}_\ell = \sum_{\ell=0}^L \mathsf{P}_\ell^L v_\ell.$$

Moreover,

$$a(v_j, v_\ell) = 0, \quad 0 \le j \ne \ell \le L. \tag{22}$$

To see this, recall that, in general,

$$a(R_j u_L, v_i') = a(u_L, v_i'), \quad \forall v_i' \in V_j.$$

Suppose $j < \ell$, for definiteness. Then

$$a(R_j u_L, v'_\ell) = a(u_L, v'_\ell), \quad \forall v'_\ell \in V_\ell.$$

In particular, since

$$v_j:=R_ju_L-R_{j-1}u_L\in V_j\subset V_\ell,$$

and

$$a(\mathcal{R}_{\ell}u_L,v_j)=a(u_L,v_j),$$

likewise

$$a(R_{\ell-1}u_L,v_j)=a(u_L,v_j),$$

Subtracting, we have

$$a(\mathcal{R}_{\ell}u_L - R_{\ell-1}u_L, v_j) = 0$$

T

Proof (Cont.)

To make further progress, let us assume that Ω is convex. Then the standard regularity condition holds. And, for $1 \le \ell \le L$,

$$h_{\ell}^{-2} \|v_{\ell}\|_{L^{2}(\Omega)}^{2} = h_{\ell}^{-2} \|\mathcal{R}_{\ell} u_{L} - R_{\ell-1} u_{L}\|_{L^{2}(\Omega)}^{2}$$

$$= h_{\ell}^{-2} \|\mathcal{R}_{\ell} u_{L} - R_{\ell-1} \mathcal{R}_{\ell} u_{L}\|_{L^{2}(\Omega)}^{2}$$

$$\stackrel{(??)}{\leq} C h_{\ell}^{-2} h_{\ell}^{2} |\mathcal{R}_{\ell} u_{L} - R_{\ell-1} \mathcal{R}_{\ell} u_{L}|_{H^{1}(\Omega)}^{2}$$

$$= C |\mathcal{R}_{\ell} u_{L} - R_{\ell-1} \mathcal{R}_{\ell} u_{L}|_{H^{1}(\Omega)}^{2}$$

$$= C |v_{\ell}|_{H^{1}(\Omega)}^{2}.$$
(23)

To see that $R_{\ell-1}=R_{\ell-1}\mathcal{R}_{\ell}$, let $u\in H^1_0(\Omega)$ be arbitrary. Then

$$a(R_{\ell-1}(\mathcal{R}_{\ell}u), v'_{\ell-1}) = a(\mathcal{R}_{\ell}u, v'_{\ell-1}), \quad \forall v'_{\ell-1} \in V_{\ell-1}.$$

But,

$$a(\mathcal{R}_{\ell}u, v'_{\ell-1}) = a(u, v'_{\ell-1}), \quad \forall v'_{\ell-1} \in V_{\ell-1}.$$

Since

$$a(\mathcal{R}_{\ell}u, v'_{\ell}) = a(u, v'_{\ell}), \quad \forall v'_{\ell} \in V_{\ell},$$

and

$$V_{\ell-1} \subset V_{\ell}$$
.

But

$$a(R_{\ell-1}u,v'_{\ell-1})=a(u,v'_{\ell-1}), \quad \forall v'_{\ell-1} \in V_{\ell-1}.$$

Hence

$$a(R_{\ell-1}(\mathcal{R}_{\ell}u), v'_{\ell-1}) = a(R_{\ell-1}u, v'_{\ell-1}), \quad \forall v'_{\ell-1} \in V_{\ell-1}.$$

And we conclude that $R_{\ell-1}=R_{\ell-1}\mathcal{R}_\ell$ since

$$R_{\ell-1}(\mathcal{R}_{\ell}u), R_{\ell-1}u \in V_{\ell-1}.$$

Estimate (22) holds trivially for $\ell = 0$.

Finally,

$$\sum_{\ell=0}^{L} (C_{\ell} \mathbf{v}_{\ell}, \mathbf{v}_{\ell})_{\ell} \stackrel{\text{MG Norm Equiv.}}{\leq} C \sum_{\ell=0}^{L} h_{\ell}^{-2} \| \mathbf{v}_{\ell} \|_{L^{2}(\Omega)}^{2}$$

$$\stackrel{(23)}{\leq} C_{1}^{-1} \sum_{\ell=0}^{L} | \mathbf{v}_{\ell} |_{H^{1}(\Omega)}^{2}$$

$$\stackrel{(22)}{=} C_{1}^{-1} | \mathbf{u}_{L} |_{H^{1}(\Omega)}^{2}.$$
(24)

T

Proof (Cont.)

Also,

$$\lambda_{\min}(C_{BPX}A_{L}) = \min_{\boldsymbol{u} \in \mathbb{R}^{n}_{+}} \frac{(\boldsymbol{u}, \boldsymbol{u})_{A_{L}}}{\min_{\boldsymbol{u} = \sum_{\ell=0}^{L} P_{\ell}^{L} \boldsymbol{v}_{\ell}'} \sum_{\ell=0}^{L} (\boldsymbol{u}_{\ell}', \boldsymbol{u}_{\ell}')_{C_{\ell}}}$$

$$\geq \min_{\boldsymbol{u} \in \mathbb{R}^{n}_{+}} \frac{(A_{L}\boldsymbol{u}, \boldsymbol{u})_{L}}{\min_{\boldsymbol{v}_{\ell}} \sum_{\ell=0}^{L} (C_{\ell}\boldsymbol{v}_{\ell}, \boldsymbol{v}_{\ell})}$$

$$\geq \min_{\boldsymbol{u} \in \mathbb{R}^{n}_{+}} \frac{(A_{L}\boldsymbol{u}, \boldsymbol{u})_{L}}{C_{1}^{-1} |\boldsymbol{u}_{L}|_{H^{1}(\Omega)}}$$

$$= C_{1}.$$

Theorem

$$\kappa\left(\mathcal{B}_{\mathit{BPX}}\mathcal{A}_{\mathit{L}}\right) = \frac{\lambda_{\mathsf{max}}\left(\mathcal{B}_{\mathit{BPX}}\mathcal{A}_{\mathit{L}}\right)}{\lambda_{\mathsf{min}}\left(\mathcal{B}_{\mathit{BPX}}\mathcal{A}_{\mathit{L}}\right)} \leq \frac{C_2}{C_1}.$$

Proof.

Follows from previous Lemmas. The details are left for an exercise.