

SEQUENCE LISTING

<110> DAHLQVIST, ANDERS
STAHL, ULF
LENMAN, MARIT
BANAS, ANTONI
RONNE, HANS
STYMNE, STEN

<120> PROCESSES FOR PRODUCING TRIACYLGLYCEROL USING GENES
THAT ENCODE PHOSPHOLIPID:DIACYLGLYCEROL
ACYLTRANSFERASES

<130> 0093/000003

<140> 09/937,779
<141> 2002-07-02

<150> PCT/EP00/002701
<151> 2000-03-28

<150> 60/180,687
<151> 2000-02-07

<150> EP 99111321.8
<151> 1999-06-10

<150> EP 99106656.4
<151> 1999-04-01

<160> 35

<170> PatentIn Ver. 3.3

<210> 1
<211> 1986
<212> DNA
<213> *Saccharomyces cerevisiae*

<220>
<221> CDS
<222> (1)..(1983)

<400> 1
atg ggc aca ctg ttt cga aga aat gtc cag aac caa aag agt gat tct 48
Met Gly Thr Leu Phe Arg Arg Asn Val Gln Asn Gln Lys Ser Asp Ser
1 5 10 15

gat gaa aac aat aaa ggg ggt tct gtt cat aac aag cga gag agc aga 96
Asp Glu Asn Asn Lys Gly Gly Ser Val His Asn Lys Arg Glu Ser Arg
20 25 30

aac cac att cat cat caa cag gga tta ggc cat aag aga aga agg ggt 144
Asn His Ile His His Gln Gln Gly Leu Gly His Lys Arg Arg Arg Gly
35 40 45

att agt ggc agt gca aaa aga aat gag cgt ggc aaa gat ttc gac agg Ile Ser Gly Ser Ala Lys Arg Asn Glu Arg Gly Lys Asp Phe Asp Arg	192
50 55 60	
aaa aga gac ggg aac ggt aga aaa cgt tgg aga gat tcc aga aga ctg Lys Arg Asp Gly Asn Gly Arg Lys Arg Trp Arg Asp Ser Arg Arg Leu	240
65 70 75 80	
att ttc att ctt ggt gca ttc tta ggt gta ctt ttg ccg ttt agc ttt Ile Phe Ile Leu Gly Ala Phe Leu Gly Val Leu Leu Pro Phe Ser Phe	288
85 90 95	
ggc gct tat cat gtt cat aat agc gat agc gac ttg ttt gac aac ttt Gly Ala Tyr His Val His Asn Ser Asp Ser Asp Leu Phe Asp Asn Phe	336
100 105 110	
gta aat ttt gat tca ctt aaa gtg tat ttg gat gat tgg aaa gat gtt Val Asn Phe Asp Ser Leu Lys Val Tyr Leu Asp Asp Trp Lys Asp Val	384
115 120 125	
ctc cca caa ggt ata agt tcg ttt att gat gat att cag gct ggt aac Leu Pro Gln Gly Ile Ser Ser Phe Ile Asp Asp Ile Gln Ala Gly Asn	432
130 135 140	
tac tcc aca tct tct tta gat gat ctc agt gaa aat ttt gcc gtt ggt Tyr Ser Thr Ser Ser Leu Asp Asp Leu Ser Glu Asn Phe Ala Val Gly	480
145 150 155 160	
aaa caa ctc tta cgt gat tat aat atc gag gcc aaa cat cct gtt gta Lys Gln Leu Leu Arg Asp Tyr Asn Ile Glu Ala Lys His Pro Val Val	528
165 170 175	
atg gtt cct ggt gtc att tct acg gga att gaa agc tgg gga gtt att Met Val Pro Gly Val Ile Ser Thr Gly Ile Glu Ser Trp Gly Val Ile	576
180 185 190	
gga gac gat gag tgc gat agt tct gcg cat ttt cgt aaa cgg ctg tgg Gly Asp Asp Glu Cys Asp Ser Ser Ala His Phe Arg Lys Arg Leu Trp	624
195 200 205	
gga agt ttt tac atg ctg aga aca atg gtt atg gat aaa gtt tgt tgg Gly Ser Phe Tyr Met Leu Arg Thr Met Val Met Asp Lys Val Cys Trp	672
210 215 220	
ttg aaa cat gta atg tta gat cct gaa aca ggt ctg gac cca ccg aac Leu Lys His Val Met Leu Asp Pro Glu Thr Gly Leu Asp Pro Pro Asn	720
225 230 235 240	
ttt acg cta cgt gca gca cag ggc ttc gaa tca act gat tat ttc atc Phe Thr Leu Arg Ala Ala Gln Gly Phe Glu Ser Thr Asp Tyr Phe Ile	768
245 250 255	
gca ggg tat tgg att tgg aac aaa gtt ttc caa aat ctg gga gta att Ala Gly Tyr Trp Ile Trp Asn Lys Val Phe Gln Asn Leu Gly Val Ile	816
260 265 270	

ggc tat gaa ccc aat aaa atg acg agt gct gcg tat gat tgg agg ctt		864	
Gly Tyr Glu Pro Asn Lys Met Thr Ser Ala Ala Tyr Asp Trp Arg Leu			
275	280	285	
gca tat tta gat cta gaa aga cgc gat agg tac ttt acg aag cta aag		912	
Ala Tyr Leu Asp Leu Glu Arg Arg Asp Arg Tyr Phe Thr Lys Leu Lys			
290	295	300	
gaa caa atc gaa ctg ttt cat caa ttg agt ggt gaa aaa gtt tgt tta		960	
Glu Gln Ile Glu Leu Phe His Gln Leu Ser Gly Glu Lys Val Cys Leu			
305	310	315	320
att gga cat tct atg ggt tct cag att atc ttt tac ttt atg aaa tgg		1008	
Ile Gly His Ser Met Gly Ser Gln Ile Ile Phe Tyr Phe Met Lys Trp			
325	330	335	
gtc gag gct gaa ggc cct ctt tac ggt aat ggt ggt cgt ggc tgg gtt		1056	
Val Glu Ala Glu Gly Pro Leu Tyr Gly Asn Gly Arg Gly Trp Val			
340	345	350	
aac gaa cac ata gat tca ttc att aat gca gca ggg acg ctt ctg ggc		1104	
Asn Glu His Ile Asp Ser Phe Ile Asn Ala Ala Gly Thr Leu Leu Gly			
355	360	365	
gct cca aag gca gtt cca gct cta att agt ggt gaa atg aaa gat acc		1152	
Ala Pro Lys Ala Val Pro Ala Leu Ile Ser Gly Glu Met Lys Asp Thr			
370	375	380	
att caa tta aat acg tta gcc atg tat ggt ttg gaa aag ttc ttc tca		1200	
Ile Gln Leu Asn Thr Leu Ala Met Tyr Gly Leu Glu Lys Phe Phe Ser			
385	390	395	400
aga att gag aga gta aaa atg tta caa acg tgg ggt ggt ata cca tca		1248	
Arg Ile Glu Arg Val Lys Met Leu Gln Thr Trp Gly Gly Ile Pro Ser			
405	410	415	
atg cta cca aag gga gaa gag gtc att tgg ggg gat atg aag tca tct		1296	
Met Leu Pro Lys Gly Glu Val Ile Trp Gly Asp Met Lys Ser Ser			
420	425	430	
tca gag gat gca ttg aat aac aac act gac aca tac ggc aat ttc att		1344	
Ser Glu Asp Ala Leu Asn Asn Asn Thr Asp Thr Tyr Gly Asn Phe Ile			
435	440	445	
cga ttt gaa agg aat acg agc gat gct ttc aac aaa aat ttg aca atg		1392	
Arg Phe Glu Arg Asn Thr Ser Asp Ala Phe Asn Lys Asn Leu Thr Met			
450	455	460	
aaa gac gcc att aac atg aca tta tcg ata tca cct gaa tgg ctc caa		1440	
Lys Asp Ala Ile Asn Met Thr Leu Ser Ile Ser Pro Glu Trp Leu Gln			
465	470	475	480
aga aga gta cat gag cag tac tcg ttc ggc tat tcc aag aat gaa gaa		1488	
Arg Arg Val His Glu Gln Tyr Ser Phe Gly Tyr Ser Lys Asn Glu Glu			
485	490	495	

gag tta aga aaa aat gag cta cac cac aag cac tgg tcg aat cca atg Glu Leu Arg Lys Asn Glu Leu His His Lys His Trp Ser Asn Pro Met	1536
500 505 510	
gaa gta cca ctt cca gaa gct ccc cac atg aaa atc tat tgt ata tac Glu Val Pro Leu Pro Glu Ala Pro His Met Lys Ile Tyr Cys Ile Tyr	1584
515 520 525	
ggg gtg aac aac cca act gaa agg gca tat gta tat aag gaa gag gat Gly Val Asn Asn Pro Thr Glu Arg Ala Tyr Val Tyr Lys Glu Glu Asp	1632
530 535 540	
gac tcc tct gct ctg aat ttg acc atc gac tac gaa agc aag caa cct Asp Ser Ser Ala Leu Asn Leu Thr Ile Asp Tyr Glu Ser Lys Gln Pro	1680
545 550 555 560	
gta ttc ctc acc gag ggg gac gga acc gtt ccg ctc gtg gcg cat tca Val Phe Leu Thr Glu Gly Asp Gly Thr Val Pro Leu Val Ala His Ser	1728
565 570 575	
atg tgt cac aaa tgg gcc cag ggt gct tca ccg tac aac cct gcc gga Met Cys His Lys Trp Ala Gln Gly Ala Ser Pro Tyr Asn Pro Ala Gly	1776
580 585 590	
att aac gtt act att gtg gaa atg aaa cac cag cca gat cga ttt gat Ile Asn Val Thr Ile Val Glu Met Lys His Gln Pro Asp Arg Phe Asp	1824
595 600 605	
ata cgt ggt gga gca aaa agc gcc gaa cac gta gac atc ctc ggc agc Ile Arg Gly Gly Ala Lys Ser Ala Glu His Val Asp Ile Leu Gly Ser	1872
610 615 620	
gcg gag ttg aac gat tac atc ttg aaa att gca agc ggt aat ggc gat Ala Glu Leu Asn Asp Tyr Ile Leu Lys Ile Ala Ser Gly Asn Gly Asp	1920
625 630 635 640	
ctc gtc gag cca cgc caa ttg tct aat ttg agc cag tgg gtt tct cag Leu Val Glu Pro Arg Gln Leu Ser Asn Leu Ser Gln Trp Val Ser Gln	1968
645 650 655	
atg ccc ttc cca atg taa Met Pro Phe Pro Met	1986
660	

<210> 2
<211> 661
<212> PRT
<213> *Saccharomyces cerevisiae*

<400> 2
Met Gly Thr Leu Phe Arg Arg Asn Val Gln Asn Gln Lys Ser Asp Ser
1 5 10 15
Asp Glu Asn Asn Lys Gly Ser Val His Asn Lys Arg Glu Ser Arg
20 25 30

Asn His Ile His His Gln Gln Gly Leu Gly His Lys Arg Arg Arg Gly
 35 40 45

Ile Ser Gly Ser Ala Lys Arg Asn Glu Arg Gly Lys Asp Phe Asp Arg
 50 55 60

Lys Arg Asp Gly Asn Gly Arg Lys Arg Trp Arg Asp Ser Arg Arg Leu
 65 70 75 80

Ile Phe Ile Leu Gly Ala Phe Leu Gly Val Leu Leu Pro Phe Ser Phe
 85 90 95

Gly Ala Tyr His Val His Asn Ser Asp Ser Asp Leu Phe Asp Asn Phe
 100 105 110

Val Asn Phe Asp Ser Leu Lys Val Tyr Leu Asp Asp Trp Lys Asp Val
 115 120 125

Leu Pro Gln Gly Ile Ser Ser Phe Ile Asp Asp Ile Gln Ala Gly Asn
 130 135 140

Tyr Ser Thr Ser Ser Leu Asp Asp Leu Ser Glu Asn Phe Ala Val Gly
 145 150 155 160

Lys Gln Leu Leu Arg Asp Tyr Asn Ile Glu Ala Lys His Pro Val Val
 165 170 175

Met Val Pro Gly Val Ile Ser Thr Gly Ile Glu Ser Trp Gly Val Ile
 180 185 190

Gly Asp Asp Glu Cys Asp Ser Ser Ala His Phe Arg Lys Arg Leu Trp
 195 200 205

Gly Ser Phe Tyr Met Leu Arg Thr Met Val Met Asp Lys Val Cys Trp
 210 215 220

Leu Lys His Val Met Leu Asp Pro Glu Thr Gly Leu Asp Pro Pro Asn
 225 230 235 240

Phe Thr Leu Arg Ala Ala Gln Gly Phe Glu Ser Thr Asp Tyr Phe Ile
 245 250 255

Ala Gly Tyr Trp Ile Trp Asn Lys Val Phe Gln Asn Leu Gly Val Ile
 260 265 270

Gly Tyr Glu Pro Asn Lys Met Thr Ser Ala Ala Tyr Asp Trp Arg Leu
 275 280 285

Ala Tyr Leu Asp Leu Glu Arg Arg Asp Arg Tyr Phe Thr Lys Leu Lys
 290 295 300

Glu Gln Ile Glu Leu Phe His Gln Leu Ser Gly Glu Lys Val Cys Leu
 305 310 315 320

Ile Gly His Ser Met Gly Ser Gln Ile Ile Phe Tyr Phe Met Lys Trp
 325 330 335

Val Glu Ala Glu Gly Pro Leu Tyr Gly Asn Gly Gly Arg Gly Trp Val
 340 345 350
 Asn Glu His Ile Asp Ser Phe Ile Asn Ala Ala Gly Thr Leu Leu Gly
 355 360 365
 Ala Pro Lys Ala Val Pro Ala Leu Ile Ser Gly Glu Met Lys Asp Thr
 370 375 380
 Ile Gln Leu Asn Thr Leu Ala Met Tyr Gly Leu Glu Lys Phe Phe Ser
 385 390 395 400
 Arg Ile Glu Arg Val Lys Met Leu Gln Thr Trp Gly Gly Ile Pro Ser
 405 410 415
 Met Leu Pro Lys Gly Glu Glu Val Ile Trp Gly Asp Met Lys Ser Ser
 420 425 430
 Ser Glu Asp Ala Leu Asn Asn Asn Thr Asp Thr Tyr Gly Asn Phe Ile
 435 440 445
 Arg Phe Glu Arg Asn Thr Ser Asp Ala Phe Asn Lys Asn Leu Thr Met
 450 455 460
 Lys Asp Ala Ile Asn Met Thr Leu Ser Ile Ser Pro Glu Trp Leu Gln
 465 470 475 480
 Arg Arg Val His Glu Gln Tyr Ser Phe Gly Tyr Ser Lys Asn Glu Glu
 485 490 495
 Glu Leu Arg Lys Asn Glu Leu His His Lys His Trp Ser Asn Pro Met
 500 505 510
 Glu Val Pro Leu Pro Glu Ala Pro His Met Lys Ile Tyr Cys Ile Tyr
 515 520 525
 Gly Val Asn Asn Pro Thr Glu Arg Ala Tyr Val Tyr Lys Glu Glu Asp
 530 535 540
 Asp Ser Ser Ala Leu Asn Leu Thr Ile Asp Tyr Glu Ser Lys Gln Pro
 545 550 555 560
 Val Phe Leu Thr Glu Gly Asp Gly Thr Val Pro Leu Val Ala His Ser
 565 570 575
 Met Cys His Lys Trp Ala Gln Gly Ala Ser Pro Tyr Asn Pro Ala Gly
 580 585 590
 Ile Asn Val Thr Ile Val Glu Met Lys His Gln Pro Asp Arg Phe Asp
 595 600 605
 Ile Arg Gly Gly Ala Lys Ser Ala Glu His Val Asp Ile Leu Gly Ser
 610 615 620
 Ala Glu Leu Asn Asp Tyr Ile Leu Lys Ile Ala Ser Gly Asn Gly Asp
 625 630 635 640

Leu Val Glu Pro Arg Gln Leu Ser Asn Leu Ser Gln Trp Val Ser Gln
645 650 655

Met Pro Phe Pro Met
660

```
<210> 3
<211> 2312
<212> DNA
<213> Schizosaccharomyces pombe
```

Line Number	Sequence 1	Sequence 2	Sequence 3	Sequence 4	Sequence 5	Sequence 6	Sequence 7	Sequence 8	Sequence 9	Sequence 10	Sequence 11	Sequence 12	Sequence 13	Sequence 14	Sequence 15	Sequence 16	Sequence 17	Sequence 18	Sequence 19	Sequence 20	Sequence 21	Sequence 22	Sequence 23	Sequence 24	Sequence 25	Sequence 26	Sequence 27	Sequence 28	Sequence 29	Sequence 30	Sequence 31	Sequence 32	Sequence 33	Sequence 34	Sequence 35	Sequence 36	Sequence 37	Sequence 38	Sequence 39	Sequence 40	Sequence 41	Sequence 42	Sequence 43	Sequence 44	Sequence 45	Sequence 46	Sequence 47	Sequence 48	Sequence 49	Sequence 50	Sequence 51	Sequence 52	Sequence 53	Sequence 54	Sequence 55	Sequence 56	Sequence 57	Sequence 58	Sequence 59	Sequence 60
1	atggcgtctt	ccaagaagag	caaaactcat	aagaaaaaaga	aagaagtcaa	atccctatc	60																																																					
2	gacttaccaa	attcaaagaa	accaactcgc	gctttgagtg	agcaaccctc	agcgtccgaa	120																																																					
3	acaacaatctg	tttcaaataa	atcaagaaaa	tctaaatttg	aaaaaagatt	gaattttata	180																																																					
4	ttggcgctta	tttgggaaat	atgcggtgct	tttttttcg	ctgttgagaa	cgacaatgtc	240																																																					
5	gttttcgacc	ctgctacgtt	agataaattt	gsgaatatgc	taggcttc	agacttgtt	300																																																					
6	gatgacatta	aaggatattt	atcttataat	gtgtttaagg	atgcaccc	tactacggac	360																																																					
7	aaggccttcg	agtcctctag	cggaaatgaa	gttcaagttg	gtcttgat	gtacaatgag	420																																																					
8	ggatatacgaa	gtgaccatcc	tgttattatg	gttcttggtg	ttatcagctc	aggattagaa	480																																																					
9	agttggctgt	ttaataattt	ctcgattcct	tacttttaga	aacgtctt	gggttagctgg	540																																																					
10	tctatgtga	aggcaatgtt	ccttgacaag	caatgcgtgc	ttgaacattt	aatgttgc	600																																																					
11	aaaaaaaaaccg	gcttggatcc	gaagggaaatt	aagctgcgag	cagctcaggg	gttgaagca	660																																																					
12	gctgattttt	ttatcacggg	ctattggatt	tggagtaaaag	taattgaaaa	ccttgctgca	720																																																					
13	attggttatg	agcctaataa	catgttaagt	gttcttacg	attggcggtt	atcatatgca	780																																																					
14	aatttagagg	aacgtgataa	atattttca	aagttaaaaa	tgttcattga	gtacagcaac	840																																																					
15	attgtacata	agaaaaaaggt	agtgttgatt	tctcactcca	tgggttcaca	ggttacgtac	900																																																					
16	tatTTTTT	agtgggttga	agctgagggc	tacggaaatg	gtggaccgac	ttgggttaat	960																																																					
17	gatcatattt	aagcatttat	aaatgtgagt	ctcgatggtt	gtttgactac	gtttctaact	1020																																																					
18	tttgaataga	tatcgggatc	tttgatttgg	gcacccaaaa	cagtggcagc	gcttttatcg	1080																																																					
19	ggtgaaatga	aagatacagg	tattgttaatt	acattaaaca	tgttaatatt	taatTTTGC	1140																																																					
20	taaccgtttt	aagctcaattt	gaatcagttt	tccgtctatg	ggtaagaat	aaattgttga	1200																																																					
21	gatttggta	taatTTTACTG	tttagtttgg	aaaaattttt	ttcccgttct	gaggtatatt	1260																																																					
22	caaaaataca	aatgtgctct	acttttcta	acttttaata	gagagccatg	atgggtcgca	1320																																																					
23	ctatggggagg	agttagtttct	atgcttctta	aaggaggcga	tgttgatgg	gaaaatgcca	1380																																																					
24	gttgggttaag	aaatatgtgc	tgttaatttt	ttattaat	ttaggtc	gatgtatcta	1440																																																					
25	atcaaacaaa	tttttccaat	ggtgcattt	ttcgatata	agaagacatt	gataaggacc	1500																																																					
26	acgatgaatt	tgacatagat	gatgcattac	aatttttaaa	aatgttaca	gatgacgatt	1560																																																					
27	ttaaagtcat	gctagcgaaa	aattatcccc	acggcttgc	ttggactgaa	aaagaagtgt	1620																																																					
28	taaaaaataaa	cggaaatgccg	tctaaatgg	taaatccgt	agaagtaaga	acattaaagt	1680																																																					
29	tactaaatta	tactaaaccc	aatagactag	tcttccttat	gctcctgata	tggaaatttt	1740																																																					
30	ttgcgttac	ggggctggaa	aaccacactg	gagaggttat	tattatacta	ataatcctga	1800																																																					
31	ggggcaacct	gtcatttgatt	cctcggtta	tgtatggaca	aaagttgaaa	atgtgagaga	1860																																																					
32	atttatgtt	caaacattct	attaactgtt	ttatttaggt	atgttatgg	atgtatgt	1920																																																					
33	tggaaacttta	ccaatattag	cccttggttt	ggtgtcata	aaagtttgc	aaacaaaaag	1980																																																					
34	gtttaatcct	gctaatacaa	gtatcacaaa	ttatgaaatc	aagcatgaa	ctgctgcgtt	2040																																																					
35	tgtatctgaga	ggaggacctc	gctcgccaga	acacgtcgat	atacttggac	attcagagct	2100																																																					
36	aaatgtatgt	tcatTTTAC	ttacaattt	ctattactaa	ctcttggaaat	aaggaaatta	2160																																																					
37	ttttaaaagt	ttcatcaggc	catggtgact	cgttacaaa	ccgttatata	tcagatatcc	2220																																																					
38	agtacggaca	taagtttgt	agattgcaat	taactaacta	accgaacagg	gaaataataa	2280																																																					
39	atagataaaa	tctcgataaa	ccttagaaatt	aa			2312																																																					

<210> 4
 <211> 3685
 <212> DNA
 <213> Arabidopsis thaliana

<400> 4
 atgcccctta ttcatcgaaa aaagccgacg gagaaaccat cgacgccgcc atctgaagag 60
 gtgggcacg atgaggattc gaaaaagaaa ccacacgaat cttccaaatc ccaccataag 120
 aaatcaacg gaggagggaa gtggcgtgc atcgattctt gttgtgggtt cattgggtgt 180
 gtgtgtgtaa cctgggtgggt tcttccttc cttaacaacg caatgcctgc gagcttcct 240
 cagtagttaa cggagcgaat cacgggtcct ttgcctgacc cgccccgtgt taagctcaa 300
 aaagaaggctc ttaaggcgaaa acatcctgtt gtcttcattc ctgggattgt caccgggtggg 360
 ctcgagctttt gggaaaggcaa acaatgcgcgt gatgggttat tttagaaaacg tttgtgggtt 420
 ggaacttttg gtgaagtcta caaaaaggtaa gctcaacaat tctcaactt cctttatatt 480
 gggatgttggaa ttggatctga tgagatcagc cacttgttgc ttcttcaaca tcactcaaac 540
 tttaattcca ttgttgtctg tcttacttctt tactttttgtat gtgaaacgc 600
 attttcttaa gagactattt ctgtatgtt aaggtaagcg ttccaaggac gtaattggct 660
 tggactattt ctgttgttattt gttaacttta gatataaaaa tagctgcctt ggaatttcaa 720
 gtcatcttatt tgccaaatctt gttgttagac atgcccctaga gtccgttcat aacaaggtaac 780
 ttcccttactt gtcgttgctgt gtagatttag ctttgttgcgt cgtataatga agtagtgc 840
 tatgtttgtt tggaaataga gaagttctaa ctacatctgtt ggaaagtgtt ttcaggctgt 900
 gatagaggac tggacttttta ttattcaact atgtatatgtt gtaattaaag ctatggctt 960
 ttgtatctt cagctcaatg tgctttctc aatttttttc tcaatttcaa agtttccat 1020
 cgagtttattt cacatgtttaa gaatttgcgc ttcctcgtt ctgttatcca gctttgaact 1080
 cctcccgacc ctgctatggaa tatattaaaaa aaaaagtgtt ttgtgggttg catctttgtt 1140
 acgatctgca tcttcattttt tcggctcagt gttcatgtt ttgtatgtt agagatgggc 1200
 aatgttatttgg ttgtatgttca cagttgtata gttgtatgtt tcttaactaa tcaattatct 1260
 ctgttatttca ggcctctatg ttgggtggaa cacatgtcac ttgacaatga aactgggttg 1320
 gatccagctg gtatttagagt tcgagctgtt tcaggactcg tggctgctga ctactttgtt 1380
 cctggctact ttgtctgggc agtgcgttattt gctaacccttgc cacatattgg atatgaagag 1440
 aaaaatatgtt acatggctgc atatgactgg cggccttctgtt tcagaacac agaggttctt 1500
 ttctcatctgtt tctttcttattt attctgttcc atgttacgtt tctttcttca ttacttaagg 1560
 cttaaatatgtt tttcatgttca aattaaatagg tacgtatgttca gactttagc cgtatgaaaa 1620
 gtaatataaga gttgtatgtt tctaccaacg gtggaaaaaaa agcgttata gttccgcatt 1680
 ccatgggggtt ctgttattttt ctacattttta tgaatgttgggt tgaggccatca gtcctctgg 1740
 gtgggggggggg tggggccatgtt gttgttgcataa agtataattaa ggcgtgtatg aacattgggt 1800
 gaccatttctt tgggttccaa aagctgttgc cagggttttctctgttgc gcaaaaggatg 1860
 ttgcgttgc caggatttgc atatctgttca atacttttgc ttgatcagaac cttggctctg 1920
 gaactcaaagg tattttctactt aaatatcaat tctaataaca ttgcttattt atcgctgca 1980
 ctgacatttgc ttgatttttgc ttgctgttca ttgtaactgttca actctcttgc gattagacaa 2040
 atgtatgttca gataatttgc acgcatttgc ctgtgtatgc cagtttcttgc gtttcgcacga 2100
 taacattttgtt catactgttca tttgggggc attgaattttt gctatggaaa ggcgtggagc 2160
 ttccatgttca gcatcttca ccaatttgc ttattctgtt tctttcaattt ttcttgcata 2220
 tgcacatctatgtt gtccttttattt tctttcaattt taaagacttgc ttggatttagt tgctcttata 2280
 gtcacttgcgtt tccttaatata agaacttttgc ttcttgcataa aatttgcagag cgattggccc 2340
 aggattttca gacaccgata tattttacttgc tcagacccgtt cagcatgttca tgagaatgtac 2400
 acgcacatgg gactcaacaa tgtctatgtt accgaaggaa ggtgacacgcgat tttggggccgg 2460
 gcttggatttgg tcacccggaga aaggccacac ctgttgcgtt gaaaaagcaaa agaacaacgc 2520
 aacttgcgtt gaaacggatgtt ttcacaaagaaa agtctgttca actatggaaag 2580
 gatgatatctt tttggggaaag aagtgcaga ggctgcgc tctgagatgttca ataatattgtt 2640
 ttttcgttgcaggatataa aatcataataa aaccttgcgttca attttgcgttca tttttgtatgttca 2700
 atatctgttca gatcttgcgttca gtcatttttgc ttatgttca gtcgttgcgttca ccaatcaca 2760
 cctgtgtgtca cgtgtggaca gatgttgcgttca gatgttgcgttca gatgttgcgttca aaagctatcg 2820
 ctgagttataa ggtcttgcgttca gtcatttttgc ttatgttca gtcgttgcgttca gatgttgcgttca 2880
 agatgtatggc ggcgtgggttca gtcatttttgc ttatgttca gtcgttgcgttca gatgttgcgttca 2940
 ccaagttataa agatcccaaa tactggtcaatccgttgcataa gacaaagttca gtcatttttgc ttatgttca 3000
 gatttcaactt gatcttgcgttca gtcatttttgc ttatgttca gtcgttgcgttca gatgttgcgttca 3060
 gatgttgcgttca gtcatttttgc ttatgttca gtcgttgcgttca gtcatttttgc ttatgttca gtcgttgcgttca 3120

ctcagtaata ttgagggtgct aaagttgata catgtgactc ttgcttataa atcctccgtt 3180
 tggtttgttc tgcttttca gattaccgaa tgctccttag atggaaatct actcattata 3240
 cgagtgaaaa ataccaacgg aacgagcata cgtataacaag cttaccagt ctcccgcacag 3300
 ttgcattcccc tttcagatata tcacttctgc tcacgaggag gacgaagata gctgtctgaa 3360
 agcaggagtt tacaatgtgg atggggatga aacagtaccc gtcctaagtgc cccggatcat 3420
 gtgtcaaaa gcgtggcggt gcaagacaag attcaaccct tccggaatca agacttatata 3480
 aagagaatac aatactctc cgccggctaa cctgttggaa gggcgcgggaa cgcagagtgg 3540
 tgcccatgtt gatatcatgg gaaactttgc tttgatcgaa gatatcatga gggttgccc 3600
 cggaggtaac gggctgtata taggacatga ccaggtccac tctggcatat ttgaatggc 3660
 ggagcgtatt gacctaagc tgtga 3685

<210> 5
 <211> 2427
 <212> DNA
 <213> Arabidopsis thaliana

 <220>
 <221> modified_base
 <222> (2363)
 <223> a, c, g, t, unknown, or other

<400> 5
 agaaacagct ctttgtctct ctcgactgat ctaacaatcc ctaatctgtg ttctaaattc 60
 ctggacgaga ttgacaaag tccgtatagc ttaacctgtt ttaatttcaa gtacagata 120
 tgcccttat tcacggaaa aagccgcggg agaaaccatc gacggcccca tctgaagagg 180
 tggtgacgaa tgaggattcg caaaagaaac cacacgaatc ttccaaatcc caccataaga 240
 aatcgaacgg aggagggaaag tggctgtc tgcattctg ttgttgggtt attgggtgtg 300
 tgggtgttaac ctgggtgtt cttctttcc ttacaacgc aatgcctgcg agcttccctc 360
 agtatgttaac ggagcgaatc acgggtcctt tgcctgaccc gcccgggtt aagctcaaaa 420
 aaagaagggtc ttaaggcgaa acatccgtt gtcttcattt ctgggattgtt caccgggtggg 480
 ctcgagctt gggaaaggcaa acaatgcgtt gatggttt ttagaaaacg tttgtgggtt 540
 ggaacttttggt gtaagtcata caaaaggcct ctatgttggg tggaaacat gtcacttgac 600
 aatgaaactg ggttggatcc agctgggtt agagttc gagatgttgcg ctgtatcagg actcgtggct 660
 gctgactact ttgctctgg ctacttgc tggcgttgc tgattgtt cttgcacat 720
 attggatatg aagagaaaa tatgtacatg gtcgtatgc actggcggtt ttcgtttcag 780
 aacacagagg tacgtgatca gacttttgc cgtatggaaa gtaatata gttgtatggg 840
 tctaccaacg gtggaaaaaaa agcagttata gttccgcatt ccatgggggtt cttgtatccc 900
 ctacattttt tgaagtgggt tgaggcacca gtcctctgg gtggcggtttt tggccagat 960
 tgggtgtcaaa agtatattaa ggccgggtatg aacattgggtt gaccattttt tgggtgttca 1020
 aaagctgttg cagggtttt ctctgctgaa gcaaaggatg ttgcgttgc cagagcgatt 1080
 gccccaggat tcttagacac cgatataattt agacttcaga cttgcagca tggatgaga 1140
 atgacacgcgca catgggactc aacaatgtct atgttaccga agggagggtga cacgatatgg 1200
 ggcgggtttt attggtcacc ggagaaaaggc cacacctgtt gtggaaaaaaa gcaaaagaac 1260
 aacgaaactt gtggtaagc aggtggaaaac ggagtttcca agaaaagtcc tggatactat 1320
 ggaaggatga tatctttgg gaaagaagta gcagaggctg cgccatctga gattaataat 1380
 attgatccc gaggtgttcaaa agtacccaa atcacacctg tcgtgacgtt 1440
 tggacagagt accatgacat gggattgtt gggatcaaaat gtcgttgc gtataaggc 1500
 tacactgctg gtgaagctat agatctacta cattatgtt ctcctaaat gatggcggtt 1560
 ggtggcgctc atttcttca tggatattgtt gatgtttttt atgacacccaa gatcaagat 1620
 cccaaataact ggtcaaatcc gtttagagaca aaattaccga atgcctctga gatggaaatc 1680
 tactcattat acggagtggtt gataccaacg gaacgagcat acgtataacaat gcttaaccag 1740
 tctcccgaca gttgcattttt ctttcagata ttcacttctg ctcacggagga ggacgaagat 1800
 agctgtctga aagcaggagt ttacaatgtt gatggggatg aaacagtacc cgtcctaagt 1860
 gcccgggtaca tgggtgtcaaa agcgtggcggtt ggcaagacaa gattcaaccc ttccggaaatc 1920
 aagacttata taagagaata caatcactt cccggcgatc acctgttggaa agggcgcggg 1980
 acgcagaggtg tggccatgt tgatcatgtt gggacttttgc tttgatcgaa agatatcatg 2040
 aggggttgcggc cccggaggtaa cgggtctgtt ataggacatg accaggtcca ctctggcata 2100

```
<210> 6
<211> 671
<212> PRT
<213> Arabidopsis thaliana
```

<400> 6
 Met Pro Leu Ile His Arg Lys Lys Pro Thr Glu Lys Pro Ser Thr Pro
 1 5 10 15
 Pro Ser Glu Glu Val Val His Asp Glu Asp Ser Gln Lys Lys Pro His
 20 25 30
 Glu Ser Ser Lys Ser His His Lys Lys Ser Asn Gly Gly Gly Lys Trp
 35 40 45
 Ser Cys Ile Asp Ser Cys Cys Trp Phe Ile Gly Cys Val Cys Val Thr
 50 55 60
 Trp Trp Phe Leu Leu Phe Leu Tyr Asn Ala Met Pro Ala Ser Phe Pro
 65 70 75 80
 Gln Tyr Val Thr Glu Arg Ile Thr Gly Pro Leu Pro Asp Pro Pro Gly
 85 90 95
 Val Lys Leu Lys Lys Glu Gly Leu Lys Ala Lys His Pro Val Val Phe
 100 105 110
 Ile Pro Gly Ile Val Thr Gly Gly Leu Glu Leu Trp Glu Gly Lys Gln
 115 120 125
 Cys Ala Asp Gly Leu Phe Arg Lys Arg Leu Trp Gly Gly Thr Phe Gly
 130 135 140
 Glu Val Tyr Lys Arg Pro Leu Cys Trp Val Glu His Met Ser Leu Asp
 145 150 155 160
 Asn Glu Thr Gly Leu Asp Pro Ala Gly Ile Arg Val Arg Ala Val Ser
 165 170 175
 Gly Leu Val Ala Ala Asp Tyr Phe Ala Pro Gly Tyr Phe Val Trp Ala
 180 185 190
 Val Leu Ile Ala Asn Leu Ala His Ile Gly Tyr Glu Glu Lys Asn Met
 195 200 205
 Tyr Met Ala Ala Tyr Asp Trp Arg Leu Ser Phe Gln Asn Thr Glu Val
 210 215 220
 Arg Asp Gln Thr Leu Ser Arg Met Lys Ser Asn Ile Glu Leu Met Val
 225 230 235 240

Ser Thr Asn Gly Gly Lys Lys Ala Val Ile Val Pro His Ser Met Gly
 245 250 255
 Val Leu Tyr Phe Leu His Phe Met Lys Trp Val Glu Ala Pro Ala Pro
 260 265 270
 Leu Gly Gly Gly Gly Pro Asp Trp Cys Ala Lys Tyr Ile Lys Ala
 275 280 285
 Val Met Asn Ile Gly Gly Pro Phe Leu Gly Val Pro Lys Ala Val Ala
 290 295 300
 Gly Leu Phe Ser Ala Glu Ala Lys Asp Val Ala Val Ala Arg Ala Ile
 305 310 315 320
 Ala Pro Gly Phe Leu Asp Thr Asp Ile Phe Arg Leu Gln Thr Leu Gln
 325 330 335
 His Val Met Arg Met Thr Arg Thr Trp Asp Ser Thr Met Ser Met Leu
 340 345 350
 Pro Lys Gly Gly Asp Thr Ile Trp Gly Gly Leu Asp Trp Ser Pro Glu
 355 360 365
 Lys Gly His Thr Cys Cys Gly Lys Lys Gln Lys Asn Asn Glu Thr Cys
 370 375 380
 Gly Glu Ala Gly Glu Asn Gly Val Ser Lys Lys Ser Pro Val Asn Tyr
 385 390 395 400
 Gly Arg Met Ile Ser Phe Gly Lys Glu Val Ala Glu Ala Ala Pro Ser
 405 410 415
 Glu Ile Asn Asn Ile Asp Phe Arg Gly Ala Val Lys Gly Gln Ser Ile
 420 425 430
 Pro Asn His Thr Cys Arg Asp Val Trp Thr Glu Tyr His Asp Met Gly
 435 440 445
 Ile Ala Gly Ile Lys Ala Ile Ala Glu Tyr Lys Val Tyr Thr Ala Gly
 450 455 460
 Glu Ala Ile Asp Leu Leu His Tyr Val Ala Pro Lys Met Met Ala Arg
 465 470 475 480
 Gly Ala Ala His Phe Ser Tyr Gly Ile Ala Asp Asp Leu Asp Asp Thr
 485 490 495
 Lys Tyr Gln Asp Pro Lys Tyr Trp Ser Asn Pro Leu Glu Thr Lys Leu
 500 505 510
 Pro Asn Ala Pro Glu Met Glu Ile Tyr Ser Leu Tyr Gly Val Gly Ile
 515 520 525
 Pro Thr Glu Arg Ala Tyr Val Tyr Lys Leu Asn Gln Ser Pro Asp Ser
 530 535 540

Cys Ile Pro Phe Gln Ile Phe Thr Ser Ala His Glu Glu Asp Glu Asp
 545 550 555 560

Ser Cys Leu Lys Ala Gly Val Tyr Asn Val Asp Gly Asp Glu Thr Val
 565 570 575

Pro Val Leu Ser Ala Gly Tyr Met Cys Ala Lys Ala Trp Arg Gly Lys
 580 585 590

Thr Arg Phe Asn Pro Ser Gly Ile Lys Thr Tyr Ile Arg Glu Tyr Asn
 595 600 605

His Ser Pro Pro Ala Asn Leu Leu Glu Gly Arg Gly Thr Gln Ser Gly
 610 615 620

Ala His Val Asp Ile Met Gly Asn Phe Ala Leu Ile Glu Asp Ile Met
 625 630 635 640

Arg Val Ala Ala Gly Gly Asn Gly Ser Asp Ile Gly His Asp Gln Val
 645 650 655

His Ser Gly Ile Phe Glu Trp Ser Glu Arg Ile Asp Leu Lys Leu
 660 665 670

<210> 7
<211> 643
<212> DNA
<213> Zea mays

<220>
<221> CDS
<222> (1)..(345)

<220>
<221> modified_base
<222> (601)
<223> a, c, g, t, unknown, or other

<220>
<221> modified_base
<222> (627)
<223> a, c, g, t, unknown, or other

<400> 7
cg¹ g⁵ a¹⁰ g¹⁵ l⁴⁸
g¹ a²⁰ a²⁵ c³⁰
t¹ g⁵ a¹⁰ g¹⁵ l⁴⁸
g¹ a²⁰ a²⁵ c³⁰

Arg Glu Lys Ile Ala Ala Leu Lys Gly Gly Val Tyr Leu Ala Asp Gly
 1 5 10 15

Asp Glu Thr Val Pro Val Leu Ser Ala Gly Tyr Met Cys Ala Lys Gly
 20 25 30

tgg cgt ggc aaa act cgt ttc agc cct gcc ggc agc aag act tac gtg
 Trp Arg Gly Lys Thr Arg Phe Ser Pro Ala Gly Ser Lys Thr Tyr Val
 35 40 45

48 96 144

aga gaa tac agc cat tcg cca ccc tct act ctc ctg gaa ggc agg ggc	192
Arg Glu Tyr Ser His Ser Pro Pro Ser Thr Leu Leu Glu Gly Arg Gly	
50 55 60	
acc cag agc ggt gca cat gtt gat ata atg ggg aac ttt gct cta att	240
Thr Gln Ser Gly Ala His Val Asp Ile Met Gly Asn Phe Ala Leu Ile	
65 70 75 80	
gag gac gtc atc aga ata gct gct ggg gca acc ggt gag gaa att ggt	288
Glu Asp Val Ile Arg Ile Ala Ala Gly Ala Thr Gly Glu Glu Ile Gly	
85 90 95	
ggc gat cag gtt tat tca gat ata ttc aag tgg tca gag aaa atc aaa	336
Gly Asp Gln Val Tyr Ser Asp Ile Phe Lys Trp Ser Glu Lys Ile Lys	
100 105 110	
ttg aaa ttg taacctatgg gaagttaaag aagtgccgac ccgttatttg	385
Leu Lys Leu	
115	
cgttccaaag tgtcctgcct gagtgcaact ctggatttg cttaaatatt gtaattttc	445
acgcttcatt cgtccctttg tcaaattac atttgacagg acgccaatgc gatacgatgt	505
tgtaccgcta tttcagcat tgtatattaa actgtacagg tgtaattgc atttgccagc	565
tgaaattgtg tagtcgtttt cttagcatt taatancaag tggccggagca gtgccccaaag	625
cnaaaaaaaa aaaaaaaaa	643
<210> 8	
<211> 115	
<212> PRT	
<213> Zea mays	
<400> 8	
Arg Glu Lys Ile Ala Ala Leu Lys Gly Gly Val Tyr Leu Ala Asp Gly	
1 5 10 15	
Asp Glu Thr Val Pro Val Leu Ser Ala Gly Tyr Met Cys Ala Lys Gly	
20 25 30	
Trp Arg Gly Lys Thr Arg Phe Ser Pro Ala Gly Ser Lys Thr Tyr Val	
35 40 45	
Arg Glu Tyr Ser His Ser Pro Pro Ser Thr Leu Leu Glu Gly Arg Gly	
50 55 60	
Thr Gln Ser Gly Ala His Val Asp Ile Met Gly Asn Phe Ala Leu Ile	
65 70 75 80	
Glu Asp Val Ile Arg Ile Ala Ala Gly Ala Thr Gly Glu Glu Ile Gly	
85 90 95	
Gly Asp Gln Val Tyr Ser Asp Ile Phe Lys Trp Ser Glu Lys Ile Lys	
100 105 110	

Leu Lys Leu
115

```

<210> 9
<211> 616
<212> DNA
<213> Neurospora crassa

<220>
<221> modified_base
<222> (15)
<223> a, c, g, t, unknown, or other

<220>
<221> modified_base
<222> (45)
<223> a, c, g, t, unknown, or other

<220>
<221> modified_base
<222> (83)
<223> a, c, g, t, unknown, or other

<220>
<221> modified_base
<222> (103)
<223> a, c, g, t, unknown, or other

<220>
<221> modified_base
<222> (107)
<223> a, c, g, t, unknown, or other

<220>
<221> modified_base
<222> (112)
<223> a, c, g, t, unknown, or other

<220>
<221> modified_base
<222> (210)
<223> a, c, g, t, unknown, or other

<400> 9
ggtaggcgaa acgaggcgaa aagtggagg ctaacgagaa tgacnctcgaa agatggatct 60
accctctaga gacacgacta ccnttgcacc cagcctcaag gtntacngtt tntatgggt 120
ggaagccgac ggagcgagcc tacatctatc tggcgcccgaa tcccgggacg acaacgcac 180
tttagatgac gatcgatacg actttgactn aggggcacat tgaccacggt gtgattttgg 240
gcgaaggcga tggcacagtg aaccttatga gtttgggtt cctgtgcaat aagggggtgga 300
aaatgaagag atacaatcct gcgggctcaa aaataaccgt ggtcgagatg ccgcattgaa 360
cagaacgggtt caatccgaga ggagggccga atacggcgaa tcacgtggat attcttaggaa 420
ggcagaatct aacgagtgac attcttaaag tggcgccagg tcgaggcgat acaattgagg 480
attttattac tagtaatatt cttaaatatg tagaaaaggt tgaaaatttat gaagagtaat 540
taaatacggc acataggtt ctcaatagta tgactaatta aaaaaaaaaatt tttttctaa 600
aaaaaaaaaaaaaaa aaaaaaa 616

```

<210> 10
 <211> 1562
 <212> DNA
 <213> Arabidopsis thaliana

<400> 10
 atgaaaaaaaa tatcttcaca ttattcggt a gtcatagcga tactcggtt ggtgacgatg 60
 acctcgatgt gtcaagctgt ggtagcaac gtgtaccctt tgattctgg tccaggaaac 120
 ggaggttaacc agcttagaggt acggctggac agagaataca agccaagtag tgcgtgggt 180
 agcagctggt tataatccgat tcataagaag agtgggtggat ggtttaggat atggttcgat 240
 gcagcagtgt tattgtctcc ctaccagg tgcttcagcg atcgaatgtt gttgtactat 300
 gaccctgatt tggatgatta ccaaataatgt cctgggtgtcc aaaccgggtt tcctcatttc 360
 ggttgcacca aatacttct atacatcgac cctcgatctcc ggtagtact ttccaagata 420
 tataatgggg ggacatttgca ataatgaaca aaatagacat aaattttttt gattattttt 480
 atataatcat ccatttatat gcttagtgcgtt aatgtgagttt ttagtttagt atagttatg 540
 tgagtgttat gtgattttcc atttttaatgt aagcttagaaaa gttgtcggtt aataatgtt 600
 ctatgtcatg aaaaattataa ggacactatg taaatgttagt ttaataataa gttttgattt 660
 gcagagatgc cacatcttac atggaacattt tgggtgaaagc tctagagaaaa aatgcgggt 720
 atgttaacga ccaaaccatc ctaggagctc catatgattt caggtacggc ctggctgctt 780
 cgggcacccc gtcccggtt gcctcacatg tccataaga cctcaaacaa ttgggtggaaa 840
 aaactagcag cgagaacgaa ggaaagccag tgataactcctt ctcccatagc ctaggaggac 900
 ttttgcgtt ccatttcctt aaccgttacca ccccttcatg ggcgcgcaag tacatcaaac 960
 acttttgtc actcgctgcg ccatgggggtt ggacgtatctc ttagatgaag acatttgcctt 1020
 ctggcaacac actcggtgtc ccttagtta accctttgtt ggtcagacgg catcagagga 1080
 cctccgagag taaccaatgg ctacttccat ctacccaaatgt gtttacgac agaactaaac 1140
 cgcttgcgt aactccccag gttaactaca cagttacga gatggatcgg tttttgcag 1200
 acattggatt ctcacaagga gttgtgcctt acaagacaag agtgggtgcctt ttaacagagg 1260
 agctgatgac tccggggatgtt ccagtcaat gcatatatgg gagaggagtt gatacaccgg 1320
 aggtttgtat gtatggaaaaa ggaggattcg ataagcaacc agagattaag tatggagatg 1380
 gagatgggac ggttaatttgc gcgagcttag cagtttggaa agtgcatacg ttgaacacccg 1440
 tagagattga tggagtttgc catacatcta tacttaaaaga cgagatcgca cttaaagaga 1500
 ttatgaagca gatttcaattt attaattatgt aattagccaa tggtaatgcc gtcataatgtt 1560
 1562

<210> 11
 <211> 3896
 <212> DNA
 <213> Arabidopsis thaliana

<400> 11
 atggagcga attcgaaatc agtaacggct tccttcacccg tcatcgccgt tttttcttg 60
 atttgcgggt gccgaactgc ggtggaggat gagaccgagt ttcacggcga ctactcgaaag 120
 ctatcggttta taatcattcc gggatttgcg tcgacgcagc tacgagcgtg gtcgatccctt 180
 gactgtccat acactccgtt ggacttcaat ccgctcgacc tcgtatggctt agacaccact 240
 aagggtccgtg atcttcattt ctttcgttcc ttattctgtc ggtcgagtca cttgttgatg 300
 aattccaagc gaaatatacg aatgaagcat gtctcgatcc tcttattgtat tcgttcatta 360
 gtcaacagtg acgcttctga atctgagttt agagtcatat aaaacagctg actcgccgag 420
 tttttccat cgctttgtt tcgctaaatgt tagcgaatg aatgtgtaat tagtctgcgc 480
 tttttattca actagatctg caagttttc agagtgcctca atagtagttt gaaaatgtt 540
 ggtcatttttta cttgtgcattt gtgatttttgc ttactgtatcg acgtgatgaa 600
 tggtttacag cttttttctg ctgtcaactg ctgggttaag tggatgggtgc tagatcctta 660
 taatcaaaaca gaccatcccg agtgtaaatc acggccgtac agtgggtctt cagccatcac 720
 agaattggat ccaggttaca taacaggttag tttcggttattt ttctttttt tgagttttt 780
 tcaatttgcgtt atcatcttgcgtt tggatataa tatggctaaat ttcattttt tggtaattt 840
 tcaggtcctt tttctactgtt ctggaaagag tggcttaatgtt ggtgtgttgc gttttggata 900
 gaagcaaatg caatttgcgtt tggatggatgtt gtcaccaac caaattggaa 960

gagcgtgacc	ttaactttca	caagctcaag	ttagtcctta	tcaggcataat	gtcttttac	1020
ttctctttt	atgtaaagata	agctaagagc	tctggcgctc	ttcccttttgc	cagggtgacc	1080
tttggaaactg	cttaaaact	ccgtggcgcc	ccttctatag	tatttgccca	ttcaatgggt	1140
aataatgtct	tcagatactt	tctggaatgg	ctgaggctag	aaattgcacc	aaaacattat	1200
tttgaagtggc	ttgatcagca	tatccatgtc	tatttcgctg	ttggtaccgg	cctactatcc	1260
ttaagttaacc	attttatttt	ttctctaatt	gggggagtt	tgttgtgact	tactggattg	1320
agctcgatc	ctgatttggt	gttatttag	gagctcctct	tcttggttct	gttggaggcaa	1380
tcaaatctac	tctctctggt	gtaacgttt	gccttcctgt	ttctgaggtg	acctctgact	1440
tctcttagt	ttaaagttagt	tgatatacac	caggtcttat	aactcaactgg	attttccctt	1500
tgaaaagtatt	acttttggta	attgaactgc	tgtacgcgt	atggtacttg	tagatcttg	1560
agtgcgtatt	atcaaagaac	atattgtggg	tagtatacc	gtcaggggcc	ttagctaata	1620
caaccaaacc	acatgtacac	tgatttagtt	ttcagattat	tatggtagac	ttaaagtgtg	1680
gaagaaaactt	tgactgaaat	ctttttat	taataggcta	tgatttggtt	attgaaatca	1740
tgtgacatat	tgacatgcgc	ttctcatgtt	tttgggtggc	aaggcttcag	ggaactgctc	1800
gggttgggtc	caattcttt	gcgtcgctat	tgtggcttt	gccatttca	aagaattgca	1860
agggtgataa	cacattctgg	acgcatttt	ctgggggtgc	tgcaaagaaa	gataagcgcg	1920
tataccatg	tgatgaagag	gaatatacaat	caaataattc	tggctggccg	acaatattt	1980
ttaacattga	aattccttcc	actagcggtt	agactctgt	tatgcaactg	taacactaac	2040
aaaagtttca	ccaaagaatgt	tcactctcat	attcgttcc	tttgatgtgt	atccatcagt	2100
tacagaaaca	gctctagtca	acatgaccag	catggaatgt	ggccttcca	ccctttgtc	2160
tttcacagcc	cgtgaacttag	cagatggac	tctttcaaa	gcaatagaag	actatgacc	2220
agatagcaag	aggatgttac	accagttaaa	gaagtacgta	ccttctttg	tgataagaaa	2280
tattgctcat	cgatcatcac	ttgctggctt	cttgcacgtc	aaattgtttt	gtttaaatct	2340
ctatatacaat	tgttcatatg	ctttgtctt	cttactataa	gaaacaagta	taatcagaaa	2400
ccttatttatt	gattatcagt	tctctctta	tattatggaa	tgtcttttc	gttacagtt	2460
atgaatgcaa	aagggggtat	tttagttgat	tgattctctc	attctctagt	ttgttttgac	2520
taatagcgtc	aattttgttt	ttctagaaaa	tcttggtaa	ttatataataa	catgctaact	2580
atactttca	ggttgtatca	tgatgaccct	gtttttaatc	ctctgactcc	ttggggagaga	2640
ccacctataa	aaaatgtatt	ttgcatatat	ggtgctcatc	taaagacaga	ggtatgatgc	2700
attctcaata	tcacattatg	cgttgacttt	gttattat	tccccat	ttgtgcataa	2760
tctttttgaa	ttatgattt	tcttctccct	tgcatctt	gctattaagc	gttaaaggta	2820
ctaaatgtat	gaagctgtct	gtcataggtt	ggttattact	ttgccccaa	tggcaaaac	2880
tatccgtata	attggatcat	cacggatatac	atttatgaaa	ctgaaggttc	cctcgtgtca	2940
aggtaatttt	ccgcaatggc	agaagtaaaa	caggaaggca	aagtctctg	tatcgtct	3000
gtggcatgtt	atctcagttt	cataagcaaa	tttataaaaa	actaaaattt	aagtactttt	3060
ttatcattcc	ttttgagctt	agtggatgt	cagtggctta	aagtggaaag	aggtgttgc	3120
tgaaaacatga	cacttgtatc	aaagataact	agcaaaacaa	aactaaacca	tttctgaatt	3180
tcatattatt	aggagtatgc	gtgctttaa	aaaatttttt	ttaagaaacc	gaaaaactag	3240
ttcataatctt	gattgtgcaa	tatctcgagg	tctggaaactg	tggttgatgg	gaacgctgga	3300
cctataactg	gggatgagac	ggttaagctca	gaagttgggt	ttgaaattat	cttcttgca	3360
actactgaag	actaagataa	tacttgcctc	tggAACACTG	cttgctatgt	tctctagttac	3420
actgcataat	tgactctccg	ctactttat	tgattatgaa	attgatctt	tataggtacc	3480
ctatcattca	ctctcttgg	gcaagaattt	gctcgacat	aaagttaaaca	taacaatggc	3540
tccccaggtt	ctcttttttta	gttcctcacc	ttatataagat	caaactttaa	gtgtactttt	3600
ctgggtatgt	gttgatttac	ctccaattt	ttctttctaa	aaatcatata	tctctgtact	3660
cctcaagaac	ttgtattat	ctaaacgaga	ttctcattgg	gaaaataaaa	caacagccag	3720
aacacgatgg	aagcgacgt	catgtggaaac	taaatgttga	tcatgaggat	gggtcagacaa	3780
tcatacgtaa	catgacaaaa	gcaccaaggg	ttaagtacat	aacctttat	gaagactctg	3840
agagcattcc	ggggaaagaga	accgcagtct	gggagcttga	taaaagtggg	tattaa	3896

<210> 12
<211> 709
<212> DNA
<213> *Lycopersicon esculentum*

<400> 12 ctggggccaa aagtgaacat aacaaggaca ccacagtcag agcatgtatgt tcagatgtac 60

aagtgcacatc aaatatagag catcaacatg gtgaagatat cattccaaat atgacaaagt 120
 tacctacaat gaagtacata acctattatg aggattctga aagtttcca gggacaagaa 180
 cagcagtttg ggagcttcat aaagcaaattc acaggaacat tgcagatct ccagcttga 240
 tgccggagct gtggctttag atgtggcatg atattcatcc tgataaaaag tccaaatgg 300
 ttacaaaagg tggtgtctga tcctcaactat tttcttctat aaatgttga gtttgtattg 360
 acattttaag tatttcaaca aaaagcaaag cgtggccctc tgagggatga ggactgctat 420
 tgggattacg ggaaagctcg atgtgcattt gctgaacatt gtgaatacag gttagaatata 480
 tcaaaattata ttttgcaaaa tatttctt tttgttattt aggccacatt tccccggc 540
 caacgatgca gatatgtatt cggggatgtt cacctggac agagttgcag attgaagagt 600
 tctacatctc acatcctgtc acactatgtg tgatatttaa gaaactttgt ttggcggAAC 660
 aacaagtttg cacaacatt tgaagaagaa agcggaaatgaa ttccagagag 709

<210> 13

<211> 623

<212> PRT

<213> Schizosaccharomyces pombe

<400> 13

Met	Ala	Ser	Ser	Lys	Lys	Ser	Lys	Thr	His	Lys	Lys	Lys	Glu	Val
1				5				10					15	

Lys	Ser	Pro	Ile	Asp	Leu	Pro	Asn	Ser	Lys	Lys	Pro	Thr	Arg	Ala	Leu
			20					25				30			

Ser	Glu	Gln	Pro	Ser	Ala	Ser	Glu	Thr	Gln	Ser	Val	Ser	Asn	Lys	Ser
							35		40			45			

Arg	Lys	Ser	Lys	Phe	Gly	Lys	Arg	Leu	Asn	Phe	Ile	Leu	Gly	Ala	Ile
						50		55			60				

Leu	Gly	Ile	Cys	Gly	Ala	Phe	Phe	Ala	Val	Gly	Asp	Asp	Asn	Ala	
						65		70		75		80			

Val	Phe	Asp	Pro	Ala	Thr	Leu	Asp	Lys	Phe	Gly	Asn	Met	Leu	Gly	Ser
								85		90		95			

Ser	Asp	Leu	Phe	Asp	Asp	Ile	Lys	Gly	Tyr	Leu	Ser	Tyr	Asn	Val	Phe
						100		105			110				

Lys	Asp	Ala	Pro	Phe	Thr	Thr	Asp	Lys	Pro	Ser	Gln	Ser	Pro	Ser	Gly
						115		120			125				

Asn	Glu	Val	Gln	Val	Gly	Leu	Asp	Met	Tyr	Asn	Glu	Gly	Tyr	Arg	Ser
						130		135			140				

Asp	His	Pro	Val	Ile	Met	Val	Pro	Gly	Val	Ile	Ser	Ser	Gly	Leu	Glu
						145		150			155			160	

Ser	Trp	Ser	Phe	Asn	Asn	Cys	Ser	Ile	Pro	Tyr	Phe	Arg	Lys	Arg	Leu
								165		170		175			

Trp	Gly	Ser	Trp	Ser	Met	Leu	Lys	Ala	Met	Phe	Leu	Asp	Lys	Gln	Cys
							180		185			190			

Trp	Leu	Glu	His	Leu	Met	Leu	Asp	Lys	Lys	Thr	Gly	Leu	Asp	Pro	Lys
							195		200			205			

Gly Ile Lys Leu Arg Ala Ala Gln Gly Phe Glu Ala Ala Asp Phe Phe
 210 215 220

Ile Thr Gly Tyr Trp Ile Trp Ser Lys Val Ile Glu Asn Leu Ala Ala
 225 230 235 240

Ile Gly Tyr Glu Pro Asn Asn Met Leu Ser Ala Ser Tyr Asp Trp Arg
 245 250 255

Leu Ser Tyr Ala Asn Leu Glu Glu Arg Asp Lys Tyr Phe Ser Lys Leu
 260 265 270

Lys Met Phe Ile Glu Tyr Ser Asn Ile Val His Lys Lys Lys Val Val
 275 280 285

Leu Ile Ser His Ser Met Gly Ser Gln Val Thr Tyr Tyr Phe Phe Lys
 290 295 300

Trp Val Glu Ala Glu Gly Tyr Gly Asn Gly Gly Pro Thr Trp Val Asn
 305 310 315 320

Asp His Ile Glu Ala Phe Ile Asn Ile Ser Gly Ser Leu Ile Gly Ala
 325 330 335

Pro Lys Thr Val Ala Ala Leu Leu Ser Gly Glu Met Lys Asp Thr Gly
 340 345 350

Ile Val Ile Thr Leu Asn Ile Leu Glu Lys Phe Phe Ser Arg Ser Glu
 355 360 365

Arg Ala Met Met Val Arg Thr Met Gly Gly Val Ser Ser Met Leu Pro
 370 375 380

Lys Gly Gly Asp Val Ala Pro Asp Asp Leu Asn Gln Thr Asn Phe Ser
 385 390 395 400

Asn Gly Ala Ile Ile Arg Tyr Arg Glu Asp Ile Asp Lys Asp His Asp
 405 410 415

Glu Phe Asp Ile Asp Asp Ala Leu Gln Phe Leu Lys Asn Val Thr Asp
 420 425 430

Asp Asp Phe Lys Val Met Leu Ala Lys Asn Tyr Ser His Gly Leu Ala
 435 440 445

Trp Thr Glu Lys Glu Val Leu Lys Asn Asn Glu Met Pro Ser Lys Trp
 450 455 460

Ile Asn Pro Leu Glu Thr Ser Leu Pro Tyr Ala Pro Asp Met Lys Ile
 465 470 475 480

Tyr Cys Val His Gly Val Gly Lys Pro Thr Glu Arg Gly Tyr Tyr Tyr
 485 490 495

Thr Asn Asn Pro Glu Gly Gln Pro Val Ile Asp Ser Ser Val Asn Asp
 500 505 510

Gly Thr Lys Val Glu Asn Gly Ile Val Met Asp Asp Gly Asp Gly Thr
 515 520 525

Leu Pro Ile Leu Ala Leu Gly Leu Val Cys Asn Lys Val Trp Gln Thr
 530 535 540

Lys Arg Phe Asn Pro Ala Asn Thr Ser Ile Thr Asn Tyr Glu Ile Lys
 545 550 555 560

His Glu Pro Ala Ala Phe Asp Leu Arg Gly Gly Pro Arg Ser Ala Glu
 565 570 575

His Val Asp Ile Leu Gly His Ser Glu Leu Asn Glu Ile Ile Leu Lys
 580 585 590

Val Ser Ser Gly His Gly Asp Ser Val Pro Asn Arg Tyr Ile Ser Asp
 595 600 605

Ile Gln Glu Ile Ile Asn Glu Ile Asn Leu Asp Lys Pro Arg Asn
 610 615 620

<210> 14

<211> 432

<212> PRT

<213> Arabidopsis thaliana

<400> 14

Met Lys Lys Ile Ser Ser His Tyr Ser Val Val Ile Ala Ile Leu Val
 1 5 10 15

Val Val Thr Met Thr Ser Met Cys Gln Ala Val Gly Ser Asn Val Tyr
 20 25 30

Pro Leu Ile Leu Val Pro Gly Asn Gly Gly Asn Gln Leu Glu Val Arg
 35 40 45

Leu Asp Arg Glu Tyr Lys Pro Ser Ser Val Trp Cys Ser Ser Trp Leu
 50 55 60

Tyr Pro Ile His Lys Lys Ser Gly Gly Trp Phe Arg Leu Trp Phe Asp
 65 70 75 80

Ala Ala Val Leu Leu Ser Pro Phe Thr Arg Cys Phe Ser Asp Arg Met
 85 90 95

Met Leu Tyr Tyr Asp Pro Asp Leu Asp Asp Tyr Gln Asn Ala Pro Gly
 100 105 110

Val Gln Thr Arg Val Pro His Phe Gly Ser Thr Lys Ser Leu Leu Tyr
 115 120 125

Leu Asp Pro Arg Leu Arg Asp Ala Thr Ser Tyr Met Glu His Leu Val
 130 135 140

Lys Ala Leu Glu Lys Lys Cys Gly Tyr Val Asn Asp Gln Thr Ile Leu
 145 150 155 160

Gly Ala Pro Tyr Asp Phe Arg Tyr Gly Leu Ala Ala Ser Gly His Pro
 165 170 175
 Ser Arg Val Ala Ser Gln Phe Leu Gln Asp Leu Lys Gln Leu Val Glu
 180 185 190
 Lys Thr Ser Ser Glu Asn Glu Gly Lys Pro Val Ile Leu Leu Ser His
 195 200 205
 Ser Leu Gly Gly Leu Phe Val Leu His Phe Leu Asn Arg Thr Thr Pro
 210 215 220
 Ser Trp Arg Arg Lys Tyr Ile Lys His Phe Val Ala Leu Ala Ala Pro
 225 230 235 240
 Trp Gly Gly Thr Ile Ser Gln Met Lys Thr Phe Ala Ser Gly Asn Thr
 245 250 255
 Leu Gly Val Pro Leu Val Asn Pro Leu Leu Val Arg Arg His Gln Arg
 260 265 270
 Thr Ser Glu Ser Asn Gln Trp Leu Leu Pro Ser Thr Lys Val Phe His
 275 280 285
 Asp Arg Thr Lys Pro Leu Val Val Thr Pro Gln Val Asn Tyr Thr Ala
 290 295 300
 Tyr Glu Met Asp Arg Phe Phe Ala Asp Ile Gly Phe Ser Gln Gly Val
 305 310 315 320
 Val Pro Tyr Lys Thr Arg Val Leu Pro Leu Thr Glu Glu Leu Met Thr
 325 330 335
 Pro Gly Val Pro Val Thr Cys Ile Tyr Gly Arg Gly Val Asp Thr Pro
 340 345 350
 Glu Val Leu Met Tyr Gly Lys Gly Phe Asp Lys Gln Pro Glu Ile
 355 360 365
 Lys Tyr Gly Asp Gly Asp Gly Thr Val Asn Leu Ala Ser Leu Ala Ala
 370 375 380
 Leu Lys Val Asp Ser Leu Asn Thr Val Glu Ile Asp Gly Val Ser His
 385 390 395 400
 Thr Ser Ile Leu Lys Asp Glu Ile Ala Leu Lys Glu Ile Met Lys Gln
 405 410 415
 Ile Ser Ile Ile Asn Tyr Glu Leu Ala Asn Val Asn Ala Val Asn Glu
 420 425 430

<210> 15
 <211> 552
 <212> PRT
 <213> Arabidopsis thaliana

<400> 15
 Met Gly Ala Asn Ser Lys Ser Val Thr Ala Ser Phe Thr Val Ile Ala
 1 5 10 15

Val Phe Phe Leu Ile Cys Gly Gly Arg Thr Ala Val Glu Asp Glu Thr
 20 25 30

Glu Phe His Gly Asp Tyr Ser Lys Leu Ser Gly Ile Ile Ile Pro Gly
 35 40 45

Phe Ala Ser Thr Gln Leu Arg Ala Trp Ser Ile Leu Asp Cys Pro Tyr
 50 55 60

Thr Pro Leu Asp Phe Asn Pro Leu Asp Leu Val Trp Leu Asp Thr Thr
 65 70 75 80

Lys Leu Leu Ser Ala Val Asn Cys Trp Phe Lys Cys Met Val Leu Asp
 85 90 95

Pro Tyr Asn Gln Thr Asp His Pro Glu Cys Lys Ser Arg Pro Asp Ser
 100 105 110

Gly Leu Ser Ala Ile Thr Glu Leu Asp Pro Gly Tyr Ile Thr Gly Pro
 115 120 125

Leu Ser Thr Val Trp Lys Glu Trp Leu Lys Trp Cys Val Glu Phe Gly
 130 135 140

Ile Glu Ala Asn Ala Ile Val Ala Val Pro Tyr Asp Trp Arg Leu Ser
 145 150 155 160

Pro Thr Lys Leu Glu Glu Arg Asp Leu Tyr Phe His Lys Leu Lys Leu
 165 170 175

Thr Phe Glu Thr Ala Leu Lys Leu Arg Gly Gly Pro Ser Ile Val Phe
 180 185 190

Ala His Ser Met Gly Asn Asn Val Phe Arg Tyr Phe Leu Glu Trp Leu
 195 200 205

Arg Leu Glu Ile Ala Pro Lys His Tyr Leu Lys Trp Leu Asp Gln His
 210 215 220

Ile His Ala Tyr Phe Ala Val Gly Ala Pro Leu Leu Gly Ser Val Glu
 225 230 235 240

Ala Ile Lys Ser Thr Leu Ser Gly Val Thr Phe Gly Leu Pro Val Ser
 245 250 255

Glu Gly Thr Ala Arg Leu Leu Ser Asn Ser Phe Ala Ser Ser Leu Trp
 260 265 270

Leu Met Pro Phe Ser Lys Asn Cys Lys Gly Asp Asn Thr Phe Trp Thr
 275 280 285

His Phe Ser Gly Gly Ala Ala Lys Lys Asp Lys Arg Val Tyr His Cys
 290 295 300

Asp Glu Glu Glu Tyr Gln Ser Lys Tyr Ser Gly Trp Pro Thr Asn Ile
 305 310 315 320

Ile Asn Ile Glu Ile Pro Ser Thr Ser Ala Arg Glu Leu Ala Asp Gly
 325 330 335

Thr Leu Phe Lys Ala Ile Glu Asp Tyr Asp Pro Asp Ser Lys Arg Met
 340 345 350

Leu His Gln Leu Lys Lys Tyr Val Pro Phe Phe Val Ile Arg Asn Ile
 355 360 365

Ala His Arg Ser Ser Leu Ala Gly Phe Leu Leu Tyr His Asp Asp Pro
 370 375 380

Val Phe Asn Pro Leu Thr Pro Trp Glu Arg Pro Pro Ile Lys Asn Val
 385 390 395 400

Phe Cys Ile Tyr Gly Ala His Leu Lys Thr Glu Val Gly Tyr Tyr Phe
 405 410 415

Ala Pro Ser Gly Lys Pro Tyr Pro Asp Asn Trp Ile Ile Thr Asp Ile
 420 425 430

Ile Tyr Glu Thr Glu Gly Ser Leu Val Ser Arg Ser Gly Thr Val Val
 435 440 445

Asp Gly Asn Ala Gly Pro Ile Thr Gly Asp Glu Thr Val Pro Tyr His
 450 455 460

Ser Leu Ser Trp Cys Lys Asn Trp Leu Gly Pro Lys Val Asn Ile Thr
 465 470 475 480

Met Ala Pro Gln Ile Leu Ile Gly Lys Ile Lys Gln Gln Pro Glu His
 485 490 495

Asp Gly Ser Asp Val His Val Glu Leu Asn Val Asp His Glu His Gly
 500 505 510

Ser Asp Ile Ile Ala Asn Met Thr Lys Ala Pro Arg Val Lys Tyr Ile
 515 520 525

Thr Phe Tyr Glu Asp Ser Glu Ser Ile Pro Gly Lys Arg Thr Ala Val
 530 535 540

Trp Glu Leu Asp Lys Ser Gly Tyr
 545, 550

<210> 16
 <211> 661
 <212> PRT
 <213> *Saccharomyces cerevisiae*

<400> 16
Met Gly Thr Leu Phe Arg Arg Asn Val Gln Asn Gln Lys Ser Asp Ser
1 5 10 15
Asp Glu Asn Asn Lys Gly Gly Ser Val His Asn Lys Arg Glu Ser Arg
20 25 30
Asn His Ile His His Gln Gln Gly Leu Gly His Lys Arg Arg Arg Gly
35 40 45
Ile Ser Gly Ser Ala Lys Arg Asn Glu Arg Gly Lys Asp Phe Asp Arg
50 55 60
Lys Arg Asp Gly Asn Gly Arg Lys Arg Trp Arg Asp Ser Arg Arg Leu
65 70 75 80
Ile Phe Ile Leu Gly Ala Phe Leu Gly Val Leu Leu Pro Phe Ser Phe
85 90 95
Gly Ala Tyr His Val His Asn Ser Asp Ser Asp Leu Phe Asp Asn Phe
100 105 110
Val Asn Phe Asp Ser Leu Lys Val Tyr Leu Asp Asp Trp Lys Asp Val
115 120 125
Leu Pro Gln Gly Ile Ser Ser Phe Ile Asp Asp Ile Gln Ala Gly Asn
130 135 140
Tyr Ser Thr Ser Ser Leu Asp Asp Leu Ser Glu Asn Phe Ala Val Gly
145 150 155 160
Lys Gln Leu Leu Arg Asp Tyr Asn Ile Glu Ala Lys His Pro Val Val
165 170 175
Met Val Pro Gly Val Ile Ser Thr Gly Ile Glu Ser Trp Gly Val Ile
180 185 190
Gly Asp Asp Glu Cys Asp Ser Ser Ala His Phe Arg Lys Arg Leu Trp
195 200 205
Gly Ser Phe Tyr Met Leu Arg Thr Met Val Met Asp Lys Val Cys Trp
210 215 220
Leu Lys His Val Met Leu Asp Pro Glu Thr Gly Leu Asp Pro Pro Asn
225 230 235 240
Phe Thr Leu Arg Ala Ala Gln Gly Phe Glu Ser Thr Asp Tyr Phe Ile
245 250 255
Ala Gly Tyr Trp Ile Trp Asn Lys Val Phe Gln Asn Leu Gly Val Ile
260 265 270

Gly Tyr Glu Pro Asn Lys Met Thr Ser Ala Ala Tyr Asp Trp Arg Leu
 275 280 285
 Ala Tyr Leu Asp Leu Glu Arg Arg Asp Arg Tyr Phe Thr Lys Leu Lys
 290 295 300
 Glu Gln Ile Glu Leu Phe His Gln Leu Ser Gly Glu Lys Val Cys Leu
 305 310 315 320
 Ile Gly His Ser Met Gly Ser Gln Ile Ile Phe Tyr Phe Met Lys Trp
 325 330 335
 Val Glu Ala Glu Gly Pro Leu Tyr Gly Asn Gly Gly Arg Gly Trp Val
 340 345 350
 Asn Glu His Ile Asp Ser Phe Ile Asn Ala Ala Gly Thr Leu Leu Gly
 355 360 365
 Ala Pro Lys Ala Val Pro Ala Leu Ile Ser Gly Glu Met Lys Asp Thr
 370 375 380
 Ile Gln Leu Asn Thr Leu Ala Met Tyr Gly Leu Glu Lys Phe Phe Ser
 385 390 395 400
 Arg Ile Glu Arg Val Lys Met Leu Gln Thr Trp Gly Gly Ile Pro Ser
 405 410 415
 Met Leu Pro Lys Gly Glu Glu Val Ile Trp Gly Asp Met Lys Ser Ser
 420 425 430
 Ser Glu Asp Ala Leu Asn Asn Asn Thr Asp Thr Tyr Gly Asn Phe Ile
 435 440 445
 Arg Phe Glu Arg Asn Thr Ser Asp Ala Phe Asn Lys Asn Leu Thr Met
 450 455 460
 Lys Asp Ala Ile Asn Met Thr Leu Ser Ile Ser Pro Glu Trp Leu Gln
 465 470 475 480
 Arg Arg Val His Glu Gln Tyr Ser Phe Gly Tyr Ser Lys Asn Glu Glu
 485 490 495
 Glu Leu Arg Lys Asn Glu Leu His His Lys His Trp Ser Asn Pro Met
 500 505 510
 Glu Val Pro Leu Pro Glu Ala Pro His Met Lys Ile Tyr Cys Ile Tyr
 515 520 525
 Gly Val Asn Asn Pro Thr Glu Arg Ala Tyr Val Tyr Lys Glu Glu Asp
 530 535 540
 Asp Ser Ser Ala Leu Asn Leu Thr Ile Asp Tyr Glu Ser Lys Gln Pro
 545 550 555 560
 Val Phe Leu Thr Glu Gly Asp Gly Thr Val Pro Leu Val Ala His Ser
 565 570 575

Met Cys His Lys Trp Ala Gln Gly Ala Ser Pro Tyr Asn Pro Ala Gly
 580 585 590
 Ile Asn Val Thr Ile Val Glu Met Lys His Gln Pro Asp Arg Phe Asp
 595 600 605
 Ile Arg Gly Gly Ala Lys Ser Ala Glu His Val Asp Ile Leu Gly Ser
 610 615 620
 Ala Glu Leu Asn Asp Tyr Ile Leu Lys Ile Ala Ser Gly Asn Gly Asp
 625 630 635 640
 Leu Val Glu Pro Arg Gln Leu Ser Asn Leu Ser Gln Trp Val Ser Gln
 645 650 655
 Met Pro Phe Pro Met
 660

<210> 17
 <211> 387
 <212> PRT
 <213> Arabidopsis thaliana

<400> 17
 Val Gly Ser Asn Val Tyr Pro Leu Ile Leu Val Pro Gly Asn Gly Gly
 1 5 10 15
 Asn Gln Leu Glu Val Arg Leu Asp Arg Glu Tyr Lys Pro Ser Ser Val
 20 25 30
 Trp Cys Ser Ser Trp Leu Tyr Pro Ile His Lys Lys Ser Gly Gly Trp
 35 40 45
 Phe Arg Leu Trp Phe Asp Ala Ala Val Leu Leu Ser Pro Phe Thr Arg
 50 55 60
 Cys Phe Ser Asp Arg Met Met Leu Tyr Tyr Asp Pro Asp Leu Asp Asp
 65 70 75 80
 Tyr Gln Asn Ala Pro Gly Val Gln Thr Arg Val Pro His Phe Gly Ser
 85 90 95
 Thr Lys Ser Leu Leu Tyr Leu Asp Pro Arg Leu Arg Asp Ala Thr Ser
 100 105 110
 Tyr Met Glu His Leu Val Lys Ala Leu Glu Lys Lys Cys Gly Tyr Val
 115 120 125
 Asn Asp Gln Thr Ile Leu Gly Ala Pro Tyr Asp Phe Arg Tyr Gly Leu
 130 135 140
 Ala Ala Ser Gly His Pro Ser Arg Val Ala Ser Gln Phe Leu Gln Asp
 145 150 155 160
 Leu Lys Gln Leu Val Glu Lys Thr Ser Ser Glu Asn Glu Gly Lys Pro
 165 170 175

Val Ile Leu Leu Ser His Ser Leu Gly Gly Leu Phe Val Leu His Phe
 180 185 190
 Leu Asn Arg Thr Thr Pro Ser Trp Arg Arg Lys Tyr Ile Lys His Phe
 195 200 205
 Val Ala Leu Ala Ala Pro Trp Gly Gly Thr Ile Ser Gln Met Lys Thr
 210 215 220
 Phe Ala Ser Gly Asn Thr Leu Gly Val Pro Leu Val Asn Pro Leu Leu
 225 230 235 240
 Val Arg Arg His Gln Arg Thr Ser Glu Ser Asn Gln Trp Leu Leu Pro
 245 250 255
 Ser Thr Lys Val Phe His Asp Arg Thr Lys Pro Leu Val Val Thr Pro
 260 265 270
 Gln Val Asn Tyr Thr Ala Tyr Glu Met Asp Arg Phe Phe Ala Asp Ile
 275 280 285
 Gly Phe Ser Gln Gly Val Val Pro Tyr Lys Thr Arg Val Leu Pro Leu
 290 295 300
 Thr Glu Glu Leu Met Thr Pro Gly Val Pro Val Thr Cys Ile Tyr Gly
 305 310 315 320
 Arg Gly Val Asp Thr Pro Glu Val Leu Met Tyr Gly Lys Gly Phe
 325 330 335
 Asp Lys Gln Pro Glu Ile Lys Tyr Gly Asp Gly Asp Gly Thr Val Asn
 340 345 350
 Leu Ala Ser Leu Ala Ala Leu Lys Val Asp Ser Leu Asn Thr Val Glu
 355 360 365
 Ile Asp Gly Val Ser His Thr Ser Ile Leu Lys Asp Glu Ile Ala Leu
 370 375 380
 Lys Glu Ile
 385

 <210> 18
 <211> 389
 <212> PRT
 <213> Arabidopsis thaliana

 <400> 18
 Leu Lys Lys Glu Gly Leu Lys Ala Lys His Pro Val Val Phe Ile Pro
 1 5 10 15
 Gly Ile Val Thr Gly Gly Leu Glu Leu Trp Glu Gly Lys Gln Cys Ala
 20 25 30
 Asp Gly Leu Phe Arg Lys Arg Leu Trp Gly Gly Thr Phe Leu Cys Trp
 35 40 45

Val Glu His Met Ser Leu Asp Asn Glu Thr Gly Leu Asp Pro Ala Gly
 50 55 60

Ile Arg Val Arg Ala Val Ser Gly Leu Val Ala Ala Asp Tyr Phe Ala
 65 70 75 80

Pro Gly Tyr Phe Val Trp Ala Val Leu Ile Ala Asn Leu Ala His Ile
 85 90 95

Gly Tyr Glu Glu Lys Asn Met Tyr Met Ala Ala Tyr Asp Trp Arg Leu
 100 105 110

Ser Phe Gln Asn Thr Glu Arg Asp Gln Thr Leu Ser Arg Met Lys Ser
 115 120 125

Asn Ile Glu Leu Met Val Ser Thr Asn Gly Gly Lys Lys Ala Val Ile
 130 135 140

Val Pro His Ser Met Gly Val Leu Tyr Phe Leu His Phe Met Lys Trp
 145 150 155 160

Val Glu Ala Pro Ala Pro Leu Gly Gly Gly Pro Asp Trp Cys
 165 170 175

Ala Lys Tyr Ile Lys Ala Val Met Asn Ile Gly Gly Pro Phe Leu Gly
 180 185 190

Val Pro Lys Ala Val Ala Gly Leu Phe Ser Ala Glu Ala Lys Asp Met
 195 200 205

Arg Met Thr Arg Thr Trp Asp Ser Thr Met Ser Met Leu Pro Lys Gly
 210 215 220

Gly Asp Thr Ile Trp Gly Gly Leu Asp Trp Ser Pro Glu Leu Pro Asn
 225 230 235 240

Ala Pro Glu Met Glu Ile Tyr Ser Leu Tyr Gly Val Gly Ile Pro Thr
 245 250 255

Glu Arg Ala Tyr Val Tyr Lys Leu Asn Gln Ser Pro Asp Ser Cys Ile
 260 265 270

Pro Phe Gln Ile Phe Thr Ser Ala His Glu Glu Asp Glu Asp Ser Cys
 275 280 285

Leu Lys Ala Gly Val Tyr Asn Val Asp Gly Asp Glu Thr Val Pro Val
 290 295 300

Leu Ser Ala Gly Tyr Met Cys Ala Lys Ala Trp Arg Gly Lys Thr Arg
 305 310 315 320

Phe Asn Pro Ser Gly Ile Lys Thr Tyr Ile Arg Glu Tyr Asn His Ser
 325 330 335

Pro Pro Ala Asn Leu Leu Glu Gly Arg Gly Thr Gln Ser Gly Ala His
 340 345 350

Val Asp Ile Met Gly Asn Phe Ala Leu Ile Glu Asp Ile Met Arg Val
355 360 365

Ala Ala Gly Gly Asn Gly Ser Asp Ile Gly His Asp Gln Val His Ser
370 375 380

Gly Ile Phe Glu Trp
385

```
<210> 19
<211> 1986
<212> DNA
<213> Saccharomyces cerevisiae
```

<220>
<221> CDS
<222> (1)..(1983)

```

<400> 19
atg ggc aca ctg ttt cga aga aat gtc cag aac caa aag agt gat tct 48
Met Gly Thr Leu Phe Arg Arg Asn Val Gln Asn Gln Lys Ser Asp Ser
          1           5           10          15

```

gat gaa aac aat aaa ggg ggt tct gtt cat aac aag cga gag agc aga 96
 Asp Glu Asn Asn Lys Gly Gly Ser Val His Asn Lys Arg Glu Ser Arg
 20 25 30

aac cac att cat cat caa cag gga tta ggc cat aag aga aga agg ggt 144
Asn His Ile His His Gln Gln Gly Leu Gly His Lys Arg Arg Arg Gly
35 40 45

```

att agt ggc agt gca aaa aga aat gag cgt ggc aaa gat ttc gac agg      192
Ile Ser Gly Ser Ala Lys Arg Asn Glu Arg Gly Lys Asp Phe Asp Arg
      50           55           60

```

```

aaa aga gac ggg aac ggt aga aaa cgt tgg aga gat tcc aga aga ctg      240
Lys Arg Asp Gly Asn Gly Arg Lys Arg Trp Arg Asp Ser Arg Arg Leu
   65           70           75           80

```

att ttc att ctt ggt gca ttc tta ggt gta ctt ttg ccg ttt agc ttt 288
Ile Phe Ile Leu Gly Ala Phe Leu Gly Val Leu Leu Pro Phe Ser Phe
85 90 95

```

ggc gct tat cat gtt cat aat agc gat agc gac ttg ttt gac aac ttt      336
Gly Ala Tyr His Val His Asn Ser Asp Ser Asp Leu Phe Asp Asn Phe
          100           105           110

```

```

gta aat ttt gat tca ctt aaa gtg tat ttg gat gat tgg aaa gat gtt      384
Val Asn Phe Asp Ser Leu Lys Val Tyr Leu Asp Asp Trp Lys Asp Val
           115          120          125

```

ctc cca caa ggt ata agt tcg ttt att gat gat att cag gct ggt aac 432
 Leu Pro Gln Gly Ile Ser Ser Phe Ile Asp Asp Ile Gln Ala Gly Asn
 130 135 140

tac tcc aca tct tct tta gat gat ctc agt gaa aat ttt gcc gtt ggt	480
Tyr Ser Thr Ser Ser Leu Asp Asp Leu Ser Glu Asn Phe Ala Val Gly	
145 150 155 160	
aaa caa ctc tta cgt gat tat aat atc gag gcc aaa cat cct gtt gta	528
Lys Gln Leu Leu Arg Asp Tyr Asn Ile Glu Ala Lys His Pro Val Val	
165 170 175	
atg gtt cct ggt gtc att tct acg gga att gaa agc tgg gga gtt att	576
Met Val Pro Gly Val Ile Ser Thr Gly Ile Glu Ser Trp Gly Val Ile	
180 185 190	
gga gac gat gag tgc gat agt tct gcg cat ttt cgt aaa cgg ctg tgg	624
Gly Asp Asp Glu Cys Asp Ser Ser Ala His Phe Arg Lys Arg Leu Trp	
195 200 205	
gga agt ttt tac atg ctg aga aca atg gtt atg gat aaa gtt tgt tgg	672
Gly Ser Phe Tyr Met Leu Arg Thr Met Val Met Asp Lys Val Cys Trp	
210 215 220	
ttg aaa cat gta atg tta gat cct gaa aca ggt ctg gac cca ccg aac	720
Leu Lys His Val Met Leu Asp Pro Glu Thr Gly Leu Asp Pro Pro Asn	
225 230 235 240	
ttt acg cta cgt gca gca cag ggc ttc gaa tca act gat tat ttc atc	768
Phe Thr Leu Arg Ala Ala Gln Gly Phe Glu Ser Thr Asp Tyr Phe Ile	
245 250 255	
gca ggg tat tgg att tgg aac aaa gtt ttc caa aat ctg gga gta att	816
Ala Gly Tyr Trp Ile Trp Asn Lys Val Phe Gln Asn Leu Gly Val Ile	
260 265 270	
ggc tat gaa ccc aat aaa atg acg agt gct gcg tat gat tgg agg ctt	864
Gly Tyr Glu Pro Asn Lys Met Thr Ser Ala Ala Tyr Asp Trp Arg Leu	
275 280 285	
gca tat tta gat cta gaa aga cgc gat agg tac ttt acg aag cta aag	912
Ala Tyr Leu Asp Leu Glu Arg Arg Asp Arg Tyr Phe Thr Lys Leu Lys	
290 295 300	
gaa caa atc gaa ctg ttt cat caa ttg agt ggt gaa aaa gtt tgt tta	960
Glu Gln Ile Glu Leu Phe His Gln Leu Ser Gly Glu Lys Val Cys Leu	
305 310 315 320	
att gga cat tct atg ggt tct cag att atc ttt tac ttt atg aaa tgg	1008
Ile Gly His Ser Met Gly Ser Gln Ile Ile Phe Tyr Phe Met Lys Trp	
325 330 335	
gtc gag gct gaa ggc cct ctt tac ggt aat ggt ggt cgt ggc tgg gtt	1056
Val Glu Ala Glu Gly Pro Leu Tyr Gly Asn Gly Gly Arg Gly Trp Val	
340 345 350	
aac gaa cac ata gat tca ttc att aat gca gca ggg acg ctt ctg ggc	1104
Asn Glu His Ile Asp Ser Phe Ile Asn Ala Ala Gly Thr Leu Leu Gly	
355 360 365	

gct cca aag gca gtt cca gct cta att agt ggt gaa atg aaa gat acc Ala Pro Lys Ala Val Pro Ala Leu Ile Ser Gly Glu Met Lys Asp Thr 370 375 380	1152
att caa tta aat acg tta gcc atg tat ggt ttg gaa aag ttc ttc tca Ile Gln Leu Asn Thr Leu Ala Met Tyr Gly Leu Glu Lys Phe Phe Ser 385 390 395 400	1200
aga att gag aga gta aaa atg tta caa acg tgg ggt ggt ata cca tca Arg Ile Glu Arg Val Lys Met Leu Gln Thr Trp Gly Gly Ile Pro Ser 405 410 415	1248
atg cta cca aag gga gaa gag gtc att tgg ggg gat atg aag tca tct Met Leu Pro Lys Gly Glu Val Ile Trp Gly Asp Met Lys Ser Ser 420 425 430	1296
tca gag gat gca ttg aat aac aac act gac aca tac ggc aat ttc att Ser Glu Asp Ala Leu Asn Asn Thr Asp Thr Tyr Gly Asn Phe Ile 435 440 445	1344
cga ttt gaa agg aat acg acg gat gct ttc aac aaa aat ttg aca atg Arg Phe Glu Arg Asn Thr Ser Asp Ala Phe Asn Lys Asn Leu Thr Met 450 455 460	1392
aaa gac gcc att aac atg aca tta tcg ata tca cct gaa tgg ctc caa Lys Asp Ala Ile Asn Met Thr Leu Ser Ile Ser Pro Glu Trp Leu Gln 465 470 475 480	1440
aga aga gta cat gag cag tac tcg ttc ggc tat tcc aag aat gaa gaa Arg Arg Val His Glu Gln Tyr Ser Phe Gly Tyr Ser Lys Asn Glu Glu 485 490 495	1488
gag tta aga aaa aat gag cta cac cac aag cac tgg tcg aat cca atg Glu Leu Arg Lys Asn Glu Leu His His Lys His Trp Ser Asn Pro Met 500 505 510	1536
gaa gta cca ctt cca gaa gct ccc cac atg aaa atc tat tgt ata tac Glu Val Pro Leu Pro Glu Ala Pro His Met Lys Ile Tyr Cys Ile Tyr 515 520 525	1584
ggg gtg aac aac cca act gaa agg gca tat gta tat aag gaa gag gat Gly Val Asn Asn Pro Thr Glu Arg Ala Tyr Val Tyr Lys Glu Glu Asp 530 535 540	1632
gac tcc tct gct ctg aat ttg acc atc gac tac gaa aag caa cct Asp Ser Ser Ala Leu Asn Leu Thr Ile Asp Tyr Glu Ser Lys Gln Pro 545 550 555 560	1680
gta ttc ctc acc gag ggg gac gga acc gtt ccg ctc gtg gcg cat tca Val Phe Leu Thr Glu Gly Asp Gly Thr Val Pro Leu Val Ala His Ser 565 570 575	1728
atg tgt cac aaa tgg gcc cag ggt gct tca ccg tac aac cct gcc gga Met Cys His Lys Trp Ala Gln Gly Ala Ser Pro Tyr Asn Pro Ala Gly 580 585 590	1776

att aac gtt act att gtg gaa atg aaa cac cag cca gat cga ttt gat		1824	
Ile Asn Val Thr Ile Val Glu Met Lys His Gln Pro Asp Arg Phe Asp			
595	600	605	
ata cgt ggt gga gca aaa agc gcc gaa cac gta gac atc ctc ggc agc		1872	
Ile Arg Gly Gly Ala Lys Ser Ala Glu His Val Asp Ile Leu Gly Ser			
610	615	620	
gcg gag ttg aac gat tac atc ttg aaa att gca agc ggt aat ggc gat		1920	
Ala Glu Leu Asn Asp Tyr Ile Leu Lys Ile Ala Ser Gly Asn Gly Asp			
625	630	635	640
ctc gtc gag cca cgc caa ttg tct aat ttg agc cag tgg gtt tct cag		1968	
Leu Val Glu Pro Arg Gln Leu Ser Asn Leu Ser Gln Trp Val Ser Gln			
645	650	655	
atg ccc ttc cca atg taa		1986	
Met Pro Phe Pro Met			
660			

<210> 20
<211> 661
<212> PRT
<213> *Saccharomyces cerevisiae*

<400> 20			
Met Gly Thr Leu Phe Arg Arg Asn Val Gln Asn Gln Lys Ser Asp Ser			
1	5	10	15
Asp Glu Asn Asn Lys Gly Ser Val His Asn Lys Arg Glu Ser Arg			
20	25	30	
Asn His Ile His His Gln Gln Gly Leu Gly His Lys Arg Arg Arg Gly			
35	40	45	
Ile Ser Gly Ser Ala Lys Arg Asn Glu Arg Gly Lys Asp Phe Asp Arg			
50	55	60	
Lys Arg Asp Gly Asn Gly Arg Lys Arg Trp Arg Asp Ser Arg Arg Leu			
65	70	75	80
Ile Phe Ile Leu Gly Ala Phe Leu Gly Val Leu Leu Pro Phe Ser Phe			
85	90	95	
Gly Ala Tyr His Val His Asn Ser Asp Ser Asp Leu Phe Asp Asn Phe			
100	105	110	
Val Asn Phe Asp Ser Leu Lys Val Tyr Leu Asp Asp Trp Lys Asp Val			
115	120	125	
Leu Pro Gln Gly Ile Ser Ser Phe Ile Asp Asp Ile Gln Ala Gly Asn			
130	135	140	
Tyr Ser Thr Ser Ser Leu Asp Asp Leu Ser Glu Asn Phe Ala Val Gly			
145	150	155	160

Lys Gln Leu Leu Arg Asp Tyr Asn Ile Glu Ala Lys His Pro Val Val
 165 170 175

 Met Val Pro Gly Val Ile Ser Thr Gly Ile Glu Ser Trp Gly Val Ile
 180 185 190

 Gly Asp Asp Glu Cys Asp Ser Ser Ala His Phe Arg Lys Arg Leu Trp
 195 200 205

 Gly Ser Phe Tyr Met Leu Arg Thr Met Val Met Asp Lys Val Cys Trp
 210 215 220

 Leu Lys His Val Met Leu Asp Pro Glu Thr Gly Leu Asp Pro Pro Asn
 225 230 240

 Phe Thr Leu Arg Ala Ala Gln Gly Phe Glu Ser Thr Asp Tyr Phe Ile
 245 250 255

 Ala Gly Tyr Trp Ile Trp Asn Lys Val Phe Gln Asn Leu Gly Val Ile
 260 265 270

 Gly Tyr Glu Pro Asn Lys Met Thr Ser Ala Ala Tyr Asp Trp Arg Leu
 275 280 285

 Ala Tyr Leu Asp Leu Glu Arg Arg Asp Arg Tyr Phe Thr Lys Leu Lys
 290 295 300

 Glu Gln Ile Glu Leu Phe His Gln Leu Ser Gly Glu Lys Val Cys Leu
 305 310 320

 Ile Gly His Ser Met Gly Ser Gln Ile Ile Phe Tyr Phe Met Lys Trp
 325 330 335

 Val Glu Ala Glu Gly Pro Leu Tyr Gly Asn Gly Arg Gly Trp Val
 340 345 350

 Asn Glu His Ile Asp Ser Phe Ile Asn Ala Ala Gly Thr Leu Leu Gly
 355 360 365

 Ala Pro Lys Ala Val Pro Ala Leu Ile Ser Gly Glu Met Lys Asp Thr
 370 375 380

 Ile Gln Leu Asn Thr Leu Ala Met Tyr Gly Leu Glu Lys Phe Phe Ser
 385 390 395 400

 Arg Ile Glu Arg Val Lys Met Leu Gln Thr Trp Gly Gly Ile Pro Ser
 405 410 415

 Met Leu Pro Lys Gly Glu Val Ile Trp Gly Asp Met Lys Ser Ser
 420 425 430

 Ser Glu Asp Ala Leu Asn Asn Asn Thr Asp Thr Tyr Asn Phe Ile
 435 440 445

 Arg Phe Glu Arg Asn Thr Ser Asp Ala Phe Asn Lys Asn Leu Thr Met
 450 455 460

Lys Asp Ala Ile Asn Met Thr Leu Ser Ile Ser Pro Glu Trp Leu Gln
 465 470 475 480

Arg Arg Val His Glu Gln Tyr Ser Phe Gly Tyr Ser Lys Asn Glu Glu
 485 490 495

Glu Leu Arg Lys Asn Glu Leu His His Lys His Trp Ser Asn Pro Met
 500 505 510

Glu Val Pro Leu Pro Glu Ala Pro His Met Lys Ile Tyr Cys Ile Tyr
 515 520 525

Gly Val Asn Asn Pro Thr Glu Arg Ala Tyr Val Tyr Lys Glu Glu Asp
 530 535 540

Asp Ser Ser Ala Leu Asn Leu Thr Ile Asp Tyr Glu Ser Lys Gln Pro
 545 550 555 560

Val Phe Leu Thr Glu Gly Asp Gly Thr Val Pro Leu Val Ala His Ser
 565 570 575

Met Cys His Lys Trp Ala Gln Gly Ala Ser Pro Tyr Asn Pro Ala Gly
 580 585 590

Ile Asn Val Thr Ile Val Glu Met Lys His Gln Pro Asp Arg Phe Asp
 595 600 605

Ile Arg Gly Gly Ala Lys Ser Ala Glu His Val Asp Ile Leu Gly Ser
 610 615 620

Ala Glu Leu Asn Asp Tyr Ile Leu Lys Ile Ala Ser Gly Asn Gly Asp
 625 630 635 640

Leu Val Glu Pro Arg Gln Leu Ser Asn Leu Ser Gln Trp Val Ser Gln
 645 650 655

Met Pro Phe Pro Met
 660

<210> 21
 <211> 1986
 <212> DNA
 <213> *Saccharomyces cerevisiae*

<220>
 <221> CDS
 <222> (1)...(1983)

<400> 21 48
 atg ggc aca ctg ttt cga aga aat gtc cag aac caa aag agt gat tct
 Met Gly Thr Leu Phe Arg Arg Asn Val Gln Asn Gln Lys Ser Asp Ser
 1 5 10 15

gat gaa aac aat aaa ggg ggt tct gtt cat aac aag cga gag agc aga 96
 Asp Glu Asn Asn Lys Gly Ser Val His Asn Lys Arg Glu Ser Arg
 20 25 30

aac cac att cat cat caa cag gga tta ggc cat aag aga aga agg ggt	144
Asn His Ile His His Gln Gln Gly Leu Gly His Lys Arg Arg Arg Gly	
35 40 45	
att agt ggc agt gca aaa aga aat gag cgt ggc aaa gat ttc gac agg	192
Ile Ser Gly Ser Ala Lys Arg Asn Glu Arg Gly Lys Asp Phe Asp Arg	
50 55 60	
aaa aga gac ggg aac ggt aga aaa cgt tgg aga gat tcc aga aga ctg	240
Lys Arg Asp Gly Asn Gly Arg Lys Arg Trp Arg Asp Ser Arg Arg Leu	
65 70 75 80	
att ttc att ctt ggt gca ttc tta ggt gta ctt ttg ccg ttt agc ttt	288
Ile Phe Ile Leu Gly Ala Phe Leu Gly Val Leu Leu Pro Phe Ser Phe	
85 90 95	
ggc gct tat cat gtt cat aat agc gat agc gac ttg ttt gac aac ttt	336
Gly Ala Tyr His Val His Asn Ser Asp Ser Asp Leu Phe Asp Asn Phe	
100 105 110	
gta aat ttt gat tca ctt aaa gtg tat ttg gat gat tgg aaa gat gtt	384
Val Asn Phe Asp Ser Leu Lys Val Tyr Leu Asp Asp Trp Lys Asp Val	
115 120 125	
ctc cca caa ggt ata agt tcg ttt att gat gat att cag gct ggt aac	432
Leu Pro Gln Gly Ile Ser Ser Phe Ile Asp Asp Ile Gln Ala Gly Asn	
130 135 140	
tac tcc aca tct tct tta gat gat ctc agt gaa aat ttt gcc gtt ggt	480
Tyr Ser Thr Ser Ser Leu Asp Asp Leu Ser Glu Asn Phe Ala Val Gly	
145 150 155 160	
aaa caa ctc tta cgt gat tat aat atc gag gcc aaa cat cct gtt gta	528
Lys Gln Leu Leu Arg Asp Tyr Asn Ile Glu Ala Lys His Pro Val Val	
165 170 175	
atg gtt cct ggt gtc att tct acg gga att gaa agc tgg gga gtt att	576
Met Val Pro Gly Val Ile Ser Thr Gly Ile Glu Ser Trp Gly Val Ile	
180 185 190	
gga gac gat gag tgc gat agt tct gcg cat ttt cgt aaa cgg ctg tgg	624
Gly Asp Asp Glu Cys Asp Ser Ser Ala His Phe Arg Lys Arg Leu Trp	
195 200 205	
gga agt ttt tac atg ctg aga aca atg gtt atg gat aaa gtt tgt tgg	672
Gly Ser Phe Tyr Met Leu Arg Thr Met Val Met Asp Lys Val Cys Trp	
210 215 220	
ttg aaa cat gta atg tta gat cct gaa aca ggt ctg gac cca ccg aac	720
Leu Lys His Val Met Leu Asp Pro Glu Thr Gly Leu Asp Pro Pro Asn	
225 230 235 240	
ttt acg cta cgt gca gca cag ggc ttc gaa tca act gat tat ttc atc	768
Phe Thr Leu Arg Ala Ala Gln Gly Phe Glu Ser Thr Asp Tyr Phe Ile	
245 250 255	

gca ggg tat tgg att tgg aac aaa gtt ttc caa aat ctg gga gta att Ala Gly Tyr Trp Ile Trp Asn Lys Val Phe Gln Asn Leu Gly Val Ile 260 265 270	816
ggc tat gaa ccc aat aaa atg acg agt gct gcg tat gat tgg agg ctt Gly Tyr Glu Pro Asn Lys Met Thr Ser Ala Ala Tyr Asp Trp Arg Leu 275 280 285	864
gca tat tta gat cta gaa aga cgc gat agg tac ttt acg aag cta aag Ala Tyr Leu Asp Leu Glu Arg Arg Asp Arg Tyr Phe Thr Lys Leu Lys 290 295 300	912
gaa caa atc gaa ctg ttt cat caa ttg agt ggt gaa aaa gtt tgt tta Glu Gln Ile Glu Leu His Gln Leu Ser Gly Glu Lys Val Cys Leu 305 310 315 320	960
att gga cat tct atg ggt tct cag att atc ttt tac ttt atg aaa tgg Ile Gly His Ser Met Gly Ser Gln Ile Phe Tyr Phe Met Lys Trp 325 330 335	1008
gtc gag gct gaa ggc cct ctt tac ggt aat ggt ggt cgt ggc tgg gtt Val Glu Ala Glu Gly Pro Leu Tyr Gly Asn Gly Arg Gly Trp Val 340 345 350	1056
aac gaa cac ata gat tca ttc att aat gca gca ggg acg ctt ctg ggc Asn Glu His Ile Asp Ser Phe Ile Asn Ala Ala Gly Thr Leu Leu Gly 355 360 365	1104
gct cca aag gca gtt cca gct cta att agt ggt gaa atg aaa gat acc Ala Pro Lys Ala Val Pro Ala Leu Ile Ser Gly Glu Met Lys Asp Thr 370 375 380	1152
att caa tta aat acg tta gcc atg tat ggt ttg gaa aag ttc ttc tca Ile Gln Leu Asn Thr Leu Ala Met Tyr Gly Leu Glu Lys Phe Phe Ser 385 390 395 400	1200
aga att gag aga gta aaa atg tta caa acg tgg ggt ggt ata cca tca Arg Ile Glu Arg Val Lys Met Leu Gln Thr Trp Gly Gly Ile Pro Ser 405 410 415	1248
atg cta cca aag gga gaa gag gtc att tgg ggg gat atg aag tca tct Met Leu Pro Lys Gly Glu Val Ile Trp Gly Asp Met Lys Ser Ser 420 425 430	1296
tca gag gat gca ttg aat aac aac act gac aca tac ggc aat ttc att Ser Glu Asp Ala Leu Asn Asn Thr Asp Thr Tyr Gly Asn Phe Ile 435 440 445	1344
cga ttt gaa agg aat acg agc gat gct ttc aac aaa aat ttg aca atg Arg Phe Glu Arg Asn Thr Ser Asp Ala Phe Asn Lys Asn Leu Thr Met 450 455 460	1392
aaa gac gcc att aac atg aca tta tcg ata tca cct gaa tgg ctc caa Lys Asp Ala Ile Asn Met Thr Leu Ser Ile Ser Pro Glu Trp Leu Gln 465 470 475 480	1440

aga aga gta cat gag cag tac tcg ttc ggc tat tcc aag aat gaa gaa Arg Arg Val His Glu Gln Tyr Ser Phe Gly Tyr Ser Lys Asn Glu Glu 485 490 495	1488
gag tta aga aaa aat gag cta cac cac aag cac tgg tcg aat cca atg Glu Leu Arg Lys Asn Glu Leu His His Lys His Trp Ser Asn Pro Met 500 505 510	1536
gaa gta cca ctt cca gaa gct ccc cac atg aaa atc tat tgt ata tac Glu Val Pro Leu Pro Glu Ala Pro His Met Lys Ile Tyr Cys Ile Tyr 515 520 525	1584
ggg gtg aac aac cca act gaa agg gca tat gta tat aag gaa gag gat Gly Val Asn Asn Pro Thr Glu Arg Ala Tyr Val Tyr Lys Glu Glu Asp 530 535 540	1632
gac tcc tct gct ctg aat ttg acc atc gac tac gaa agc aag caa cct Asp Ser Ser Ala Leu Asn Leu Thr Ile Asp Tyr Glu Ser Lys Gln Pro 545 550 555 560	1680
gta ttc ctc acc gag ggg gac gga acc gtt ccg ctc gtg gcg cat tca Val Phe Leu Thr Glu Gly Asp Gly Thr Val Pro Leu Val Ala His Ser 565 570 575	1728
atg tgt cac aaa tgg gcc cag ggt gct tca ccg tac aac cct gcc gga Met Cys His Lys Trp Ala Gln Gly Ala Ser Pro Tyr Asn Pro Ala Gly 580 585 590	1776
att aac gtt act att gtg gaa atg aaa cac cag cca gat cga ttt gat Ile Asn Val Thr Ile Val Glu Met Lys His Gln Pro Asp Arg Phe Asp 595 600 605	1824
ata cgt ggt gga gca aaa agc gcc gaa cac gta gac atc ctc ggc agc Ile Arg Gly Gly Ala Lys Ser Ala Glu His Val Asp Ile Leu Gly Ser 610 615 620	1872
gcg gag ttg aac gat tac atc ttg aaa att gca agc ggt aat ggc gat Ala Glu Leu Asn Asp Tyr Ile Leu Lys Ile Ala Ser Gly Asn Gly Asp 625 630 635 640	1920
ctc gtc gag cca cgc caa ttg tct aat ttg agc cag tgg gtt tct cag Leu Val Glu Pro Arg Gln Leu Ser Asn Leu Ser Gln Trp Val Ser Gln 645 650 655	1968
atg ccc ttc cca atg taa Met Pro Phe Pro Met 660	1986
<210> 22	
<211> 661	
<212> PRT	
<213> <i>Saccharomyces cerevisiae</i>	
<400> 22	
Met Gly Thr Leu Phe Arg Arg Asn Val Gln Asn Gln Lys Ser Asp Ser 1 5 10 15	

Asp Glu Asn Asn Lys Gly Gly Ser Val His Asn Lys Arg Glu Ser Arg
 20 25 30

Asn His Ile His His Gln Gln Gly Leu Gly His Lys Arg Arg Arg Gly
 35 40 45

Ile Ser Gly Ser Ala Lys Arg Asn Glu Arg Gly Lys Asp Phe Asp Arg
 50 55 60

Lys Arg Asp Gly Asn Gly Arg Lys Arg Trp Arg Asp Ser Arg Arg Leu
 65 70 75 80

Ile Phe Ile Leu Gly Ala Phe Leu Gly Val Leu Leu Pro Phe Ser Phe
 85 90 95

Gly Ala Tyr His Val His Asn Ser Asp Ser Asp Leu Phe Asp Asn Phe
 100 105 110

Val Asn Phe Asp Ser Leu Lys Val Tyr Leu Asp Asp Trp Lys Asp Val
 115 120 125

Leu Pro Gln Gly Ile Ser Ser Phe Ile Asp Asp Ile Gln Ala Gly Asn
 130 135 140

Tyr Ser Thr Ser Ser Leu Asp Asp Leu Ser Glu Asn Phe Ala Val Gly
 145 150 155 160

Lys Gln Leu Leu Arg Asp Tyr Asn Ile Glu Ala Lys His Pro Val Val
 165 170 175

Met Val Pro Gly Val Ile Ser Thr Gly Ile Glu Ser Trp Gly Val Ile
 180 185 190

Gly Asp Asp Glu Cys Asp Ser Ser Ala His Phe Arg Lys Arg Leu Trp
 195 200 205

Gly Ser Phe Tyr Met Leu Arg Thr Met Val Met Asp Lys Val Cys Trp
 210 215 220

Leu Lys His Val Met Leu Asp Pro Glu Thr Gly Leu Asp Pro Pro Asn
 225 230 235 240

Phe Thr Leu Arg Ala Ala Gln Gly Phe Glu Ser Thr Asp Tyr Phe Ile
 245 250 255

Ala Gly Tyr Trp Ile Trp Asn Lys Val Phe Gln Asn Leu Gly Val Ile
 260 265 270

Gly Tyr Glu Pro Asn Lys Met Thr Ser Ala Ala Tyr Asp Trp Arg Leu
 275 280 285

Ala Tyr Leu Asp Leu Glu Arg Arg Asp Arg Tyr Phe Thr Lys Leu Lys
 290 295 300

Glu Gln Ile Glu Leu Phe His Gln Leu Ser Gly Glu Lys Val Cys Leu
 305 310 315 320

Ile Gly His Ser Met Gly Ser Gln Ile Ile Phe Tyr Phe Met Lys Trp
 325 330 335

Val Glu Ala Glu Gly Pro Leu Tyr Gly Asn Gly Gly Arg Gly Trp Val
 340 345 350

Asn Glu His Ile Asp Ser Phe Ile Asn Ala Ala Gly Thr Leu Leu Gly
 355 360 365

Ala Pro Lys Ala Val Pro Ala Leu Ile Ser Gly Glu Met Lys Asp Thr
 370 375 380

Ile Gln Leu Asn Thr Leu Ala Met Tyr Gly Leu Glu Lys Phe Phe Ser
 385 390 395 400

Arg Ile Glu Arg Val Lys Met Leu Gln Thr Trp Gly Gly Ile Pro Ser
 405 410 415

Met Leu Pro Lys Gly Glu Glu Val Ile Trp Gly Asp Met Lys Ser Ser
 420 425 430

Ser Glu Asp Ala Leu Asn Asn Asn Thr Asp Thr Tyr Gly Asn Phe Ile
 435 440 445

Arg Phe Glu Arg Asn Thr Ser Asp Ala Phe Asn Lys Asn Leu Thr Met
 450 455 460

Lys Asp Ala Ile Asn Met Thr Leu Ser Ile Ser Pro Glu Trp Leu Gln
 465 470 475 480

Arg Arg Val His Glu Gln Tyr Ser Phe Gly Tyr Ser Lys Asn Glu Glu
 485 490 495

Glu Leu Arg Lys Asn Glu Leu His His Lys His Trp Ser Asn Pro Met
 500 505 510

Glu Val Pro Leu Pro Glu Ala Pro His Met Lys Ile Tyr Cys Ile Tyr
 515 520 525

Gly Val Asn Asn Pro Thr Glu Arg Ala Tyr Val Tyr Lys Glu Glu Asp
 530 535 540

Asp Ser Ser Ala Leu Asn Leu Thr Ile Asp Tyr Glu Ser Lys Gln Pro
 545 550 555 560

Val Phe Leu Thr Glu Gly Asp Gly Thr Val Pro Leu Val Ala His Ser
 565 570 575

Met Cys His Lys Trp Ala Gln Gly Ala Ser Pro Tyr Asn Pro Ala Gly
 580 585 590

Ile Asn Val Thr Ile Val Glu Met Lys His Gln Pro Asp Arg Phe Asp
 595 600 605

Ile Arg Gly Gly Ala Lys Ser Ala Glu His Val Asp Ile Leu Gly Ser
 610 615 620

Ala Glu Leu Asn Asp Tyr Ile Leu Lys Ile Ala Ser Gly Asn Gly Asp
 625 630 635 640

Leu Val Glu Pro Arg Gln Leu Ser Asn Leu Ser Gln Trp Val Ser Gln
 645 650 655

Met Pro Phe Pro Met
 660

<210> 23
 <211> 2312
 <212> DNA
 <213> Schizosaccharomyces pombe

<400> 23
 atggcgtctt ccaagaagag caaaactcat aagaaaaaaga aagaagtcaa atctcctatc 60
 gacttaccaa attcaaagaaa accaactcgc gctttgagtg agcaaccctc a诶cgtccgaa 120
 acacaatctg tttcaataaa atcaagaaaa tctaaatttg gaaaaagatt gaattttata 180
 ttggcgcta ttttggaaat atgcgtgct tttttttcg ctgttggaga cgacaatgct 240
 gtttcgacc ctgctacgtt agataaattt gggatatgc taggctctc agacttgtt 300
 gatgacatta aaggatattt atcttataat gtgttaagg atgcacctt tactacggac 360
 aaggccttcgc agtctcttag cggaaatgaa gttcaagttg gtcttgatat gtacaatgag 420
 ggatatcgaa gtgaccatcc ttttattatg gttcctggg ttatcagctc aggattagaa 480
 agttggctgt ttaataattt ctcgattcct tacttttaga aacgtctttt gggtagctgg 540
 tctatgctga aggcaatgtt cttgacaag caatgctggc ttgaacattt aatgcttgat 600
 aaaaaaaaaaccg gtttggatcc gaagggatt aagctgcgag cagctcaggg gtttgaagca 660
 gctgatcccc ttatcacggg ctattggatt tggagtaaag taattgaaaa ctttgcgtca 720
 attgggtatg agcctaataa catgttaagt gtttcttaag attggcggtt atcatatgca 780
 aatttagagg aacgtgataa atattttca aagttaaaaa tgttcattga gtacagcaac 840
 attgtacata agaaaaagggt agtgggttatt tctcaactcca tgggttcaca gtttacgtac 900
 tatttttta agtgggttga agtgggggc tacggaaatg gtggaccgac ttgggttaat 960
 gatcatatttgc aacatttttat aaatgtgatg ctcgatggg gtttactac gtttctaact 1020
 ttgtataga tatcgggatc tttgatttgg gcacccaaaa cagtggcgc gcttttatcg 1080
 ggtgaaatgaa agatatacagg tattttaattt acattaaaca tgttaatattt taatttttgc 1140
 taaccgtttt aagctcaattt aatgttgc tttttttttt ttcccgttct gaggtatattt 1200
 gattttttaatc tttttttttt tttttttttt ttcccgttct gaggtatattt 1260
 caaaaaataca aatgtgcctt actttttcta acttttaataa gagagccatg atgggtcgca 1320
 ctatggggagg agtttagtttctt atgcttccta aaggaggcga ttttttatgg gggaaatgc 1380
 gttgggttgc aatatgtgc ttgttattttt ttattttttt tttagtccca gatgtctt 1440
 atcaaacaaa tttttccaaat ggtgcattttt ttcgatataa agaagacatt gataaggacc 1500
 acgatgaatt tgacatagat gatgcattttt aattttttttt aatgttaca gatgacgatt 1560
 ttttttttttcaat gtttttttttcaat gtttttttttcaat gtttttttttcaat gtttttttttcaat 1620
 taaaaataaa cggaaatgcgg tctaaatggta taaatccgct agaagtaaga acattaaatgtt 1680
 tactaaattt tactaaccctt aatagacttag tttttttttt tttttttttt tttttttttt 1740
 ttgcgttccat ggggtcgaa aaccaacttgc gagaggttattt ttttttttttcaat 1800
 gggggcaacccctt gtcatttgcattt ctttttttttcaat gtttttttttcaat gtttttttttcaat 1860
 attttatgtttt caaacatttttcaat gtttttttttcaat gtttttttttcaat gtttttttttcaat 1920
 tggaaacttttcaat gtttttttttcaat gtttttttttcaat gtttttttttcaat gtttttttttcaat 1980
 gtttttttttcaat gtttttttttcaat gtttttttttcaat gtttttttttcaat gtttttttttcaat 2040
 ttttttttttcaat gtttttttttcaat gtttttttttcaat gtttttttttcaat gtttttttttcaat 2100
 aatgttatgtt tcatttttacc ttacaaattttcaat gtttttttttcaat gtttttttttcaat gtttttttttcaat 2160
 ttttttttttcaat gtttttttttcaat gtttttttttcaat gtttttttttcaat gtttttttttcaat 2220
 agtacggaca taagttttgtt agatttgcatttttttttcaat gtttttttttcaat gtttttttttcaat 2280
 atgagataaaa ttttttttttcaat gtttttttttcaat gtttttttttcaat gtttttttttcaat 2312

```

<210> 24
<211> 3685
<212> DNA
<213> Arabidopsis thaliana

<400> 24
atgcccctta ttcatcgaa aaagccgacg gagaaaccat cgacgccgcc atctgaagag 60
gtgggcacg atgaggattc gcaaaaagaaa ccacacgaat cttccaaatc ccaccataag 120
aaatcgaacg gaggaggaa gtggctgtc atcgattctt gttgttggtt cattgggtgt 180
gtgtgttaa cctgggtgtt tcttccttc cttacaacg caatgcgtc gagcttccct 240
cagtagttaa cggagcgaat cacgggtcct ttgcgtacc cggccgggtgt taagctcaa 300
aaagaaggta ttaaggcgaa acatccgtt gtcttcattt ctgggattgt caccgggtgg 360
ctcgagctt gggaggcaa acaatgcgt gatggtttat tttagaaaaacg ttgtgggg 420
ggaactttg gtgaagtcta caaaagggtga gctcaacaat tctcactt ccttttattt 480
gggattttga ttgatgtga tgagatcacg cactgttgc ttcttcaca tcaactaaac 540
ttaattcca tggatgtctt tcttactt tttttttt tttttttagt gtgaaacgc 600
atttcttaa gagacttta ctgtatgtt aaggttaagcg ttccaaaggac gtaattggct 660
tggactattt ctgtttgatt gtttaactta ggtatataaa tagctgcctt ggaatttcaa 720
gtcatctt tgccaaatact gttgctagac atgcctttaga gtccgttcat aacaagttac 780
ttccttact gtcgttgcgt gtagatttag cttgtgttag cgtataatga agtagtgtt 840
tatgtttgt tggaaataga gaagttctaa ctacatctgt ggaaagtgtg ttcaaggctgt 900
gatagaggac tggatgttta ttattcaact atgtatatgt gtaattaaag ctatgttcc 960
tttgatctt cagctcaatg tgctttctc aatttttttc tcaatttcaa agtttccat 1020
cgagtttatt cacatgttta gaatttcgtc catcctcggt ctgttatcca gctttaact 1080
cctcccgacc ctgctatggaa tatattaaaa aaaaagtgtt ttgtgggtt catcttgg 1140
acgatctgca tcttcttctt tcggctcagt gttcatgttt ttgctatggt agagatggc 1200
aatgttattt ttgatggtaa cagtggtata gttgatagta tcttaactaa tcaatttact 1260
ctttgattca ggccctctatg ttgggtggaa cacatgtcac ttgacaatga aactgggtt 1320
gatccagctg gtatttagatg tcgagctgtt tcaggactcg tggctgtca ctacttgc 1380
cctggctact ttgtctgggc agtgcgtatt gctaaccctt cacatattgg atatgaagag 1440
aaaaatatgt acatggctgc atatgactgg cggctttcg ttcagaacac agaggttctt 1500
ttctcatctg tctttctatt attctgttcc atgttacgtt tctttcttca ttacttaagg 1560
cttaaatatg tttcatgtt aattaatagg tacgtgtaca gactcttagc cgtatgaaaa 1620
gtaatataga gttgatggtt tctaccaacg gtggaaaaaa agcaggatata gttccgcatt 1680
ccatgggggt ctgttattttt ctacattttt tgaagtgggt tgaggcacca gctcctctgg 1740
gtggcggggg tggccagat tgggtgtca agatattaa ggcgggtatg aacattgggt 1800
gaccatttct tgggttcca aaagctgtt cagggctttt ctctgtcaa gcaaaggatg 1860
ttgcagggtc caggtattga atatctgtt atactttgt tgcatacgtt ctggctctg 1920
gaactcaaag ttattctact aaatataat tctaataaca ttgcataattt atcgctgcaa 1980
ctgacattgg ttgattattt ttgctgttta tgaactgtt actctcttga gattgacaaa 2040
atgatgaatt gataattctt acgcattgtt ctgtgtatgc cagtttcttca gttcgcacca 2100
taacatttgt catactgtct ttggggggc atgaattttt gctatggaaa ggcgtggagc 2160
ttccatgtt gcattttta ccaatttagcg tattctgtt tctttcaattt ttcttgata 2220
tgcattctatg gtctttttt tcttcttaat taaagactcg ttggatttagt tgctcttata 2280
gtcaacttgt tccttaatat agaactttac ttcttcgtt aattgcagag cgattgcccc 2340
aggatttta gacaccgata tatttagact tcagacctt cagcatgtaa tgagaatgac 2400
acgcacatgg gactcaacaa tgtctatgtt accgaaggaa ggtgacacga tatggggcgg 2460
gcttggattgg tcaccggaga aaggccacac ctgttgggg aaaaagcaaa agaacaacga 2520
aacttgttgtt gaagcagggtg aaaacggagt ttccaagaaa agtccgttta actatggaa 2580
gatgatatct ttggggaaag aagttagcaga ggctgcgtca tctgagatataatattga 2640
tttcgagta aggacatata aatcataata aacccctgtac attttgtat gttatgtatg 2700
atatctgtac attttatctg gtgaagggtt ctgtcaaaagg tcagagtatc ccaatcaca 2760
cctgtgtga cgtgtggaca gagtaccatg acatggaaat tgctggatc aaagctatcg 2820
ctgagtagttaa ggtctacact gctgggtgaag ctatagatct actacattat gttgctccta 2880
agatgatggc gctgtgtgcc gctcattttt cttatggaaat tgctgtatgat ttggatgaca 2940
ccaagtatca agatccaaa tactggtcaa atccgtttaga gacaagtaa gtgatttctt 3000
gattccaact gtatcctcg tcctgtatca ttatcgtt ttttttttgc gtcgtgttgc 3060
gatgatggttt tcagctcaaa gcttacaaag ctgtttctgtca gccttctca aaaaggctgt 3120

```

ctcagtaata ttgagggtgct aaagtgtata catgtgactc ttgcttataaa atcctccgtt 3180
 tggtttgttc tgcttttca gattaccgaa tgctccttag atggaaatct actcattata 3240
 cggagtgaaa ataccaacgg aacgagcata cgtataacaag cttaaccagt ctcccgcacag 3300
 ttgcattcccc tttcagatata tcacttctgc tcacgaggag gacgaagata gctgtctgaa 3360
 agcaggagtt tacaatgtgg atggggatga aacagtaccc gtcctaagtgc cccggatcat 3420
 gtgtgcaaaa gcgtggcggt gcaagacaag attcaaccct tccgaaatca agacttatata 3480
 aagagaatac aatcaacttc cggccgctaa cctgttggaa gggcgccggg cgcagagttgg 3540
 tgcccatgtt gatatcatgg gaaacttgc tttgatcgaa gatatcatga gggttgccgc 3600
 cggaggtaac gggctgtata taggacatga ccaggtccac tctggcatat ttgaatggtc 3660
 ggagcgtatt gacctgaagc tgtga 3685

<210> 25
 <211> 402
 <212> DNA
 <213> Arabidopsis thaliana

<220>
 <221> CDS
 <222> (120) .. (401)

<220>
 <221> modified_base
 <222> (240)
 <223> a, c, g, t, unknown, or other

<220>
 <221> modified_base
 <222> (385)
 <223> a, c, g, t, unknown, or other

<400> 25
 agaaacagct ctttgtctt ctcgactgat ctaacaatcc ctaatctgtg ttctaaattc 60
 ctggacgaga tttgacaaag tccgtatagc ttaacctgggt ttaatttcaa gtgacagat 119
 atg ccc ctt att cat cgg aaa aag ccg acg gag aaa cca tcg acg ccg 167
 Met Pro Leu Ile His Arg Lys Lys Pro Thr Glu Lys Pro Ser Thr Pro
 1 5 10 15

cca tct gaa gag gtg gtg cac gat gag gat tcg caa aag aaa cca cac 215		
Pro Ser Glu Val Val His Asp Glu Asp Ser Gln Lys Lys Pro His		
20	25	30

gaa tct tcc aaa tcc cac cat aag naa tcg aac gga gga ggg aag tgg 263
 Glu Ser Ser Lys Ser His His Lys Xaa Ser Asn Gly Gly Lys Trp
 35 40 45

tcg tgc atc gat tct tgt tgg ttc att ggg tgt gtg tgt gta acc 311	
Ser Cys Ile Asp Ser Cys Cys Trp Phe Ile Gly Cys Val Cys Val Thr	
50 55 60	

tgg tgg ttt ctt ctc ttc ctt tac aac gca atg cct gcg agc ttc cct 359
 Trp Trp Phe Leu Leu Phe Leu Tyr Asn Ala Met Pro Ala Ser Phe Pro
 65 70 75 80

cag tat gta acg gag ccg aat cac gng tcc ttt gcc tta ccc g 402
 Gln Tyr Val Thr Glu Pro Asn His Xaa Ser Phe Ala Leu Pro
 85 90

<210> 26
<211> 643
<212> DNA
<213> Zea mays

<220>
<221> CDS
<222> (1) .. (345)

<220>
<221> modified_base
<222> (601)
<223> a, c, g, t, unknown, or other

<220>
<221> modified_base
<222> (627)
<223> a, c, g, t, unknown, or other

<400> 26 48
cgg gag aaa ata gct gct ttg aag ggg ggt gtt tac tta gcc gat ggt
Arg Glu Lys Ile Ala Ala Leu Lys Gly Gly Val Tyr Leu Ala Asp Gly
1 5 10 15

gat gaa act gtt cca gtt ctt agt gcg ggc tac atg tgt gcg aaa gga 96
Asp Glu Thr Val Pro Val Leu Ser Ala Gly Tyr Met Cys Ala Lys Gly
20 25 30

tgg cgt ggc aaa act cgt ttc agc cct gcc ggc agc aag act tac gtg 144
Trp Arg Gly Lys Thr Arg Phe Ser Pro Ala Gly Ser Lys Thr Tyr Val
35 40 45

aga gaa tac agc cat tcg cca ccc tct act ctc ctg gaa ggc agg ggc 192
Arg Glu Tyr Ser His Ser Pro Pro Ser Thr Leu Leu Glu Gly Arg Gly
50 55 60

acc cag agc ggt gca cat gtt gat ata atg ggg aac ttt gct cta att 240
Thr Gln Ser Gly Ala His Val Asp Ile Met Gly Asn Phe Ala Leu Ile
65 70 75 80

gag gac gtc atc aga ata gct gct ggg gca acc ggt gag gaa att ggt 288
Glu Asp Val Ile Arg Ile Ala Ala Gly Ala Thr Gly Glu Glu Ile Gly
85 90 95

ggc gat cag gtt tat tca gat ata ttc aag tgg tca gag aaa atc aaa 336
Gly Asp Gln Val Tyr Ser Asp Ile Phe Lys Trp Ser Glu Lys Ile Lys
100 105 110

ttg aaa ttg taacctatgg gaagttaaag aagtgccgac ccgtttattg 385
Leu Lys Leu
115

cgttccaaag tgcctgcct gagtgcaact ctggatttg cttaaatatt gtaattttc 445
 acgcttcatt cgccctttg tcaaattac atttgacagg acgccaatgc gatacgatgt 505
 tgtaccgcta tttcagcat tgtatattaa actgtacagg tgtaagttgc atttgccagc 565
 taaaaattgtg tagtcgtttt cttaacgatt taatancaag tggcggagca gtgccccaaag 625
 cnaaaaaaaaaaaaaaa 643

<210> 27
 <211> 115
 <212> PRT
 <213> Zea mays

<400> 27
 Arg Glu Lys Ile Ala Ala Leu Lys Gly Gly Val Tyr Leu Ala Asp Gly
 1 5 10 15
 Asp Glu Thr Val Pro Val Leu Ser Ala Gly Tyr Met Cys Ala Lys Gly
 20 25 30
 Trp Arg Gly Lys Thr Arg Phe Ser Pro Ala Gly Ser Lys Thr Tyr Val
 35 40 45
 Arg Glu Tyr Ser His Ser Pro Pro Ser Thr Leu Leu Glu Gly Arg Gly
 50 55 60
 Thr Gln Ser Gly Ala His Val Asp Ile Met Gly Asn Phe Ala Leu Ile
 65 70 75 80
 Glu Asp Val Ile Arg Ile Ala Ala Gly Ala Thr Gly Glu Glu Ile Gly
 85 90 95
 Gly Asp Gln Val Tyr Ser Asp Ile Phe Lys Trp Ser Glu Lys Ile Lys
 100 105 110
 Leu Lys Leu
 115

<210> .28
 <211> 516
 <212> DNA
 <213> Neurospora crassa

<220>
 <221> modified_base
 <222> (15)
 <223> a, c, g, t, unknown, or other

<220>
 <221> modified_base
 <222> (45)
 <223> a, c, g, t, unknown, or other

```

<220>
<221> modified_base
<222> (83)
<223> a, c, g, t, unknown, or other

<220>
<221> modified_base
<222> (103)
<223> a, c, g, t, unknown, or other

<220>
<221> modified_base
<222> (107)
<223> a, c, g, t, unknown, or other

<220>
<221> modified_base
<222> (112)
<223> a, c, g, t, unknown, or other

<220>
<221> modified_base
<222> (210)
<223> a, c, g, t, unknown, or other

<400> 28
ggtaggcgaa acgaggcgg aagttggagg ctaacgagaa tgacnctcg agatggatct 60
accctctaga gacacgacta ccnttgcacc cagcctcaag gtntacngtt tntatggta 120
ggaagccgac ggagcggacc tacatctatc tggcgccccga tcccgggacg acaacgcac 180
tttagatgac gatcgatacg actttgactn agggggcacat tgaccacggt gtgattttgg 240
gcgaaggcga tggcacagtg aaccttatga gtttgggta cctgtgcaat aagggggtgga 300
aaatgaagag atacaatctt gcgggctcaa aaataaccgt ggtcgagatg ccgcattgaac 360
cagaacgggtt caatccgaga ggagggccga atacggcggta cttaaatatg tagaaaaggt 420
tggaaatttat gaagagtaat taaatacggc acataggtta ctcaatagta tgactaattt 480
aaaaaaaaattt tttttctaa aaaaaaaaaa aaaaaaa 516

<210> 29
<211> 1562
<212> DNA
<213> Arabidopsis thaliana

<400> 29
atgaaaaaaaa tatcttcaca ttattcggtt gtcatagcga tactcggtt ggtgacgatg 60
acctcgatgt gtcaagctgt gggtagcaac gtgtaccctt tgattctgggt tccaggaaac 120
ggaggttacc accgttaggtt acggctggac agagaataca agccaagttag tgtctgggt 180
agcagctgggtt tataatccat tcataagaag agtgggtggat ggtttaggct atgggtcgat 240
gcagcgtgtt tattgtctcc ctccaccagg tgcttcagcg atcgaatgtat gttgtactat 300
gaccctgtt tggatgttta cccaaatgtt cctgggttcc aaaccgggtt tcctcatttc 360
ggttcgacca aatcacttctt atacccgttcc cctcgatctt ggttagtact ttccaaagata 420
tatcattttggacattttgc ataatgaaca aaatagacat aaatttgggg gattattgtt 480
atatcaatat ccattttat gctatcggtt aatgtgagttt ttatgttagt atagttatg 540
tgagttttat gtgatttttcc attttaaatg aagcttagaaa gtttcgtttt aataatgtt 600
ctatgtcatg agaatttttttggacactatg taaatgttcc ttaataataa ggtttgtt 660
gcagagatgc cacatcttac atggaaacattt tggtgaaagc tcttagagaaa aaatgcgggt 720
atgttaacgca cccaaaccatc ctaggagctc catatgattt caggtacggc ctggctgtt 780
cggggccaccc gttcccggtt gcttcacatgtt tcctacaaga cctcaaacaa ttgggtggaaa 840
aaacttagcag cgagaacgaa ggaaagccag tgatacttctt ctcccatagc ctaggaggac 900

```

ttttcgtcct ccatttcctc aaccgtacca ccccttcatg ggcggcaag tacatcaaac 960
 acttttgtc actcgctcg ccatgggtg ggacgatctc tcagatgaag acatttgctt 1020
 ctggcaacac actcggtgtc ccttagtta acccttgcgt ggtcagacgg catcagagga 1080
 cctccgagag taaccaatgg ctacttccat ctaccaaagt gttcacgac agaactaaac 1140
 cgcttgcgt aactccccag gttaactaca cagcttacga gatggatcg tttttgcag 1200
 acattggatt ctcacaagga gttgtcctt acaagacaag agtgttgctt ttaacagagg 1260
 agctgatgac tccgggagtg ccagtcattt gcataatatgg gagaggagtt gatacacccg 1320
 aggtttgat gtatggaaaa ggaggattcg ataagcaacc agagattaag tatggagatg 1380
 gagatggac ggtaatttg gcgagcttag cagcttggaa agtcgatagc ttgaacaccg 1440
 tagagattga tggagttcg catacatcta tacttaaaga cgagatcgca cttaaagaga 1500
 ttatgaagca gatttcaattt attaattatg aattagccaa tgtaatgcc gtcaatgaat 1560
 ga 1562

<210> 30
 <211> 3896
 <212> DNA
 <213> Arabidopsis thaliana

<400> 30
 atgggagcga attcgaaatc agtaacggct tccttcaccc tcatcgccgt tttttcttg 60
 atttcggtg gccgaactgc ggtggaggat gagaccgagt ttacacggca ctactcgaaag 120
 ctatcggtta taatcattcc gggatttgcg tcgacgcgc tacgacgtg gtcgatcctt 180
 gactgtccat acactccgtt ggacttcaat ccgctcgacc tcgtatggct agacaccact 240
 aagggtccgtg atcttcattt ccttcgtcc ttattctgtc ggtcgagtca cttgttgatg 300
 aattccaagc gaaatatacg aatgaagcat gtctcgctc tcttattgtat tcgttcatta 360
 gtcaacagtg acgcttctga atctgagttt agagtcataat aaaacagctg actcggcgag 420
 tgtttccat cgctttgggt tcgctaaatg tagcgcataat aatgtgtat tagtctgcgc 480
 tttttattca actagatctg caagttttc agagtgcata atagtagtta gaaaatgtta 540
 ggtcatttta cttgtgcatt gtgattctt tgggttgc ttactgatcg acgtgatgga 600
 tggtttacag cttctttctg ctgtcaactg ctgggttaag tgtatgggc tagatcctta 660
 taatcaaaca gaccatccc agtgtaaatc acggcctgac agtggcttt cagccatcac 720
 agaattggat ccaggttaca taacaggtag ttccggattt ttctttttt tgagttttct 780
 tcaatttgc atcatcttgc tgcataatc tatggctaaat ttcatattt tggtaattt 840
 tcaggtccctc tttctactgt ctggaaagag tggcttaatg ggtgtgttgc gtttggata 900
 gaagcaaatacg caattgtcgc tgttccatata gattggagat tgcaccaac caaattggaa 960
 gagcgtgacc ttactttca caagtcataat ttagtcttgc ttagtcttgcat gtcctttatc 1020
 ttctttttt atgtaagata agctaagagc ttcgttcgtc ttcccttttgc caggttgcacc 1080
 ttgtaaaactg cttaaaaact ccgtggcgcc cttctatag tatttgccttca ttcaatgggt 1140
 aataatgtct tcagatactt tctggaatgg ctgaggcttag aaattgcacc aaaacattat 1200
 ttgaagtggc ttgatcagca tatccatgtt tatttcgttgc ttggtaccgg cctactatcc 1260
 ttaagttacc attttatattt ttctctaatt gggggaggtt tgcgttgcact tactggattt 1320
 agctcgatac ctgattttgtt gttgatttag gagcttcctt tcttgggttgc tttgaggccaa 1380
 tcaaatctac tctctctgggt gtaacgtttt gccttcctgt ttctgagggtt acctctgact 1440
 tctcttttagt ttaagttgtt tgatataac caggtcttat aactcactgg attttccctt 1500
 tgaaagtatt acttttgttta attgaactgc tgcgttgcgtat atggatctg tagatcttgc 1560
 agtgcgtatgtt atcaaagaac atattgtggg tagtataacct gtcagcgcc ttgcataata 1620
 caaccaaacc acatgtacac tgatttagtt ttcaatgtt tgcgttgc ttttgcattttt 1680
 gaagaaaactt tgactgaaat cttttattt taataggctt tgatttgcattttt attgaaatca 1740
 tgcgttgcgtat tgacatgcgc ttctcatgtt ttttgcgttgc aaggcttcag ggaactgctc 1800
 ggttgcgttgc caattttttt gcgttcgtat tgcgttgcattt gcaatttca aagaattgca 1860
 aggggtataa cacattctgg acgcattttt ctgggggtgc tgcaagaaaa gataagcgccg 1920
 tataccactg tgatgaagag gaatataatc tggctggccg acaaataatata 1980
 ttaacattga aattcccttc actagcggtt agactctgtt tatgcacttgc taacactaac 2040
 aaaagttca ccaagaatgt tcactctcat atttcgttcc tttgatgtgtt atccatcagt 2100
 tacagaaaaca gctctagtc acatgaccag catggatgtt ggcctccca ccctttgtc 2160
 ttccacagcc cgtgaacttag cagatggac tctttcaaa gcaatagaag actatgaccc 2220
 agatagcaag aggtatgttac accgttaaa gaagtacgtt ccttcttttgc tgcataagaaa 2280

tattgctcat	cgatcatcac	ttgctggctt	cttgtaacgtc	aaattgtttt	gtttaaatct	2340
ctatatcaat	tgttcatatg	cttgccttt	cttactataa	gaaacaagta	taatcagaaa	2400
ccttattatt	gattatcagt	tctccctta	tattatggaa	tgtcttttc	gttacagtt	2460
atgaatgcaa	aagggggtat	tttagttgat	tgattctctc	attctctagt	ttgttttgac	2520
taatagcgtc	aattttgttt	ttctagcaaa	tctttgtgaa	ttatataaa	catgctaact	2580
atactttca	ggtgttatca	tgatgaccct	gttttaatc	ctctgactcc	ttgggagaga	2640
ccacctataa	aaaatgtatt	ttgcatatat	ggtgctcatc	taaagacaga	ggtatgatgc	2700
attctcaata	tcacattatg	cgttgacttt	gttattatat	tccccatgg	gtttgcaata	2760
tcttttgaa	ttatgattta	tcttccttct	tgcatcttat	gctattaagc	gttaaaggta	2820
ctaaatgtat	gaagctgtct	gtcataggtt	ggttattact	ttgccccaaag	tggcaaaccct	2880
tatcctgata	attggatcat	cacggatatc	atttatgaaa	ctgaaggttc	cctctgtgtca	2940
aggttaattt	ccgcaatggc	agaagtaaaa	cagaaggca	aagtctctg	tatcgtctta	3000
gtggcatgtt	atccagttt	cataagcaaa	ttattaaaca	actaaaattt	aagtactttt	3060
ttatcatcc	ttttgagctt	agtggatgtat	cagtggctt	aagtggaaag	agggtttgca	3120
tgaaacatga	cacttgtatc	aaagataact	agcaaaacaa	aactaaccctt	tttctgaattt	3180
tcatattatt	aggagtagtc	gtgcctttaa	aaaattttgtt	ttaagaaacc	gaaaaacttag	3240
ttcatatctt	gatgtgcaa	tatctgcagg	tcttgaactgt	tgggtgtatgg	gaacgcttgg	3300
cctataactg	gggatgagac	ggtaagctca	gaagttggtt	ttgaaattat	cttcttgcaa	3360
actactgaag	actaaagataa	tacttgcctt	tggaaacactg	cttgctatgt	tctctagttac	3420
actgcaatata	tgactctccg	ctacttttat	tgattatgaa	attgatctct	tataggttacc	3480
ctatcattca	ctctcttggt	gcaagaattt	gctcggacct	aaagtttaca	taacaatggc	3540
tccccaggtt	ctcttttta	gttcctcacc	ttatataagat	caaactttaa	gtgtactttt	3600
ctggttatgt	gttgatttac	ctccaatttg	ttctttctaa	aaatcatata	tctctgtact	3660
cctcaagaac	ttgttataat	ctaaacgaga	ttctcattgg	gaaaataaaa	caacagccag	3720
aacacgatgg	aagcgacgta	catgtggaac	taaatgttga	tcatgagcat	gggtcagaca	3780
tcatacgtaa	catgacaaaaa	gcacccaaggg	ttaagtacat	aacctttat	gaagactctg	3840
agagcattcc	ggggaaagaga	accgcagttct	gggagcttga	taaaagtggg	tattaa	3896

```
<210> 31
<211> 709
<212> DNA
<213> Lycopersicon esculentum
```

```

<400> 31
ctggggccaa aagtgaacat aacaaggaca ccacagtcag agcatgatgt tcagatgtac 60
aagtgcacatc aaatatagag catcaacatg gtgaagatat cattcccaat atgacaaaagt 120
tacctacaat gaagtacata accttattatg aggattctga aagtttcca gggacaagaaa 180
cagcagtttg ggagcttgat aaagcaatc acaggaacat tgtcagatct ccagcttta 240
tgcgggagct gtggctttag atgtggcatg atattcatcc tgataaaaaag tccaagtttg 300
ttacaaaagg tggtgtctga tcctcactat ttcttcttat aaatgtttag gtttgtattt 360
acattgttaag tatttgcacaa aaaagcaaag cgtgggcctc tgagggatga ggactgctat 420
tgggattacg ggaagctcg atgtgcattt gctgaacatt gtgaatatacg gttagaatat 480
tcaaattata ttttgcaaaa tattctttt ttgtgtattt aggccacattt tccccggctca 540
caacgatgca gatatgtatt cggggatgtt cacctggac agagttgcag attgaagagt 600
tctacatctc acatcctgtc acactatgtt tgatattaa gaaactttgt ttggcggaaac 660
aacaagtttgc cacaacatt tgaagaagaa agcgaaatga ttcagagag 709

```

```
<210> 32
<211> 7
<212> PRT
<213> Artificial Sequence
```

<220>
<223> Description of Artificial Sequence: Synthetic peptide motif

```

<220>
<221> MOD_RES
<222> (2)
<223> Variable amino acid

<400> 32
Phe Xaa Lys Trp Val Glu Ala
    1           5

<210> 33
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
      primer

<400> 33
tctccatctt ctgcaaaacc t                               21

<210> 34
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
      primer

<400> 34
cctgtcaaaa accttctcct c                               21

<210> 35
<211> 94
<212> PRT
<213> Arabidopsis thaliana

<220>
<221> MOD_RES
<222> (41)
<223> Variable amino acid

<220>
<221> MOD_RES
<222> (89)
<223> Variable amino acid

<400> 35
Met Pro Leu Ile His Arg Lys Lys Pro Thr Glu Lys Pro Ser Thr Pro
    1           5           10          15

Pro Ser Glu Glu Val Val His Asp Glu Asp Ser Gln Lys Lys Pro His
    20          25          30

```

Glu Ser Ser Lys Ser His His Lys Xaa Ser Asn Gly Gly Gly Lys Trp
35 40 45

Ser Cys Ile Asp Ser Cys Cys Trp Phe Ile Gly Cys Val Cys Val Thr
50 55 60

Trp Trp Phe Leu Leu Phe Leu Tyr Asn Ala Met Pro Ala Ser Phe Pro
65 70 75 80

Gln Tyr Val Thr Glu Pro Asn His Xaa Ser Phe Ala Leu Pro
85 90