4. Stochastic Processes (cont'd)

4.6. Generating function and branching processes (cont'd)

4.6.1. Branching Process (cont'd)

4.6.1.2. Extinction Probability (cont'd)

Draw $\psi(s)$ and function f(s)=s between 0 and 1, we have two cases:

The extinction probability u will be the smallest intersection of $\psi(s)$ and f(s). Equivalently, it is the smallest solution of the equation $\psi(s)=s$ between 0 and 1.

$$ightarrow \infty$$

Reason: See the dynamics on a graph

Case 1:
$$u < 1$$

Case 2:
$$u = 1$$
 (extinction happens for sure.)

Q: How to tell if we are in case 1 or in case?

A: check
$$\psi'(1) = \mathbb{E}(Y)$$

$$\psi'1(1) > 1 \rightarrow \text{Case } 1$$

$$\psi'1(1) \leq 1 \quad o ext{Case 2}$$

Thus, we conclude:

- ullet $\mathbb{E}(Y)>1$: an average more than 1 offspring
 - $\circ \; \Rightarrow$ extinction with certain probability smaller than 1. u is the smallest/unique solution between 0 and 1 of $\psi(s)=s$
- $\mathbb{E}(Y) \leq 1$: an average less than or equal to 1 offspring
 - $\circ \ \Rightarrow$ extinction happens for sure (with probability 1)

5. Poisson Processes

5.1. Counting Process

DTMC is a discrete-time process. That is, the index set $T=\{0,1,2,...\}$ and $\{X_n\}_{n=01,2,3,\cdots}$

We also want to consider the cases where time can be continuous,

Continuous-time processes: $T = [0, \infty]$

$${X_t}_{t>0}$$
 or ${X_{(t)}}_{t>0}$

The simplest type of continuous-time process is counting process, which counts the number of occurrence of certain event before time t.

Definition 5.1.1. Counting Process N(t)

Let $0 \leq S_1 \leq S_2 \leq \cdots$ be the time of occurrence of some events. Then, the process

$$egin{aligned} N(t) &:= \#\{n: S_n \leq t\} \ &= \sum_{n=1}^\infty 1\!\!\!\perp_{\{S_n \leq t\}} \end{aligned}$$

is called the counting process (of the events $\{S_n\}_{n=1,2,\ldots}$)

Equivalently, $N(t) = n \iff S_n \le t < S_{n+1}$

Example 5.1.1

Calls arrive at a call center.

- ullet S_n : arrival time of the n-th call
- ullet N(t) : the number of calls received before time t

Other examples: cars passing a speed reader, atoms having radioactive decay, ...

Properties of a counting process

- 1. N(t) > 0, t > 0
- 2. N(t) takes integer values
- 3. N(t) is increasing.

$$\circ \ \ N(t_1) \leq N(t_2)$$
 if $t_1 \leq t_2$

- 4. N(t) is right-continuous
 - $\circ \ \ N(t) = \lim_{s\downarrow t} N(s)$

We also assume:

- ullet N(0)=0 (No event happens at time 0)
- N(t) only has jumps at size 1.
 - (No two events happen at exactly the same time)

5.2. Definition of Poisson Process

Interarrival Times

- W_1, W_2, \dots
- $W_1 = S_1$
- ullet $W_n=S_n-S_{n-1}$: interarrival time between n-1-th and the n-th event

Definition 5.2.1. Renewal Process

A renewal process is a counting process for which the interarrival times W_1,W_2,\ldots are independent and identical

ALI the three processes examples of counting processes can be reasonably modeled as renewal processes.

Definition 5.2.2. Poisson Process

Poisson Process $\{X_{(t)}\}_{t\geq 0}$ is a renewal process for which the interarrival times are exponentially distributed:

$$W_n \overset{i.i.d}{\sim} Exp(\lambda)$$

A Poisson process $\{N(t)\}_{t\geq 0}$ can be denoted as

$$\{N(t)\} \sim Poi(\underbrace{\lambda}_{intensity} t)$$