Модификации метода анализа сингулярного спектра для анализа временных рядов: Circulant SSA и Generalized SSA

Погребников Н. В., гр. 21.Б04-мм

Санкт-Петербургский государственный университет Прикладная математика и информатика Вычислительная стохастика и статистические модели

Научный руководитель: д. ф.-м. н., проф. Голяндина Н. Э.

Санкт-Петербург, 2025

Введение

Пусть $\mathsf{X}=(x_1,\ldots,x_N)$ – временной ряд длины $N,\ x_i\in\mathbb{R}$ – наблюдение в момент времени i.

 $X = X_{Trend} + X_{Periodics} + X_{Noise}$, где:

- X_{Trend} тренд, медленно меняющаяся компонента;
- X_{Periodics} сумма периодических компонент;
- X_{Noise} шум, случайная составляющая.

Методы: SSA — метод, позволяющий раскладывать временной ряда в сумму интерпретируемых компонент (Golyandina, Nekrutkin и Zhigljavsky 2001); GSSA — модификация SSA на основе добавления весов (Gu и др. 2024); CiSSA — модификация SSA на основе циркулярной матрицы (Bogalo, Poncela и Senra 2020).

Задача: Описание модификаций в контексте теории **SSA**, сравнение алгоритмов, реализация их на языке R.

Критерии сравнения методов

Пример
$${\sf X}={\sf S}+{\sf X}_{\rm Noise}={\sf S}^{(1)}+{\sf S}^{(2)}+{\sf X}_{\rm Noise}=e^{An}\sin{(2\pi\omega_1n)}+\cos{(2\pi\omega_2n)}+\varepsilon_n.$$
 ω_1,ω_2 — частоты; $\varepsilon_n\sim {\sf N}(0,\sigma^2)$ — шум; ${\sf S}$ — сигнал. $\hat{\sf S}$ — оценка выделения сигнала методом. $\hat{\sf S}^{(1)},\hat{\sf S}^{(2)}$ — оценки разделения компонент ${\sf S}^{(1)},{\sf S}^{(2)}$. ${\sf X}={\sf S}+{\sf X}_{\rm Noise}={\sf S}^{(1)}+{\sf S}^{(2)}+{\sf X}_{\rm Noise}=e^{An}\sin{(2\pi\omega_1n)}+\cos{(2\pi\omega_2n)}+\varepsilon_n.$ ω_1,ω_2 — частоты; $\varepsilon_n\sim {\sf N}(0,\sigma^2)$ — шум; ${\sf S}$ — сигнал. $\hat{\sf S}$ — оценка выделения сигнала методом. $\hat{\sf S}^{(1)},\hat{\sf S}^{(2)}$ — оценки разделения компонент ${\sf S}^{(1)},{\sf S}^{(2)}$.

Критерии сравнения методов:

- Выделение сигнала;
- Разделимость;
- Постановка задачи (для CiSSA частоты предполагаются

Разделимость

 ${\sf X}_N = {\sf X}_N^{(1)} + {\sf X}_N^{(2)}$. М — метод разделения ряда на компоненты с параметрами Θ . $\hat{\sf X}_N^{(1)}$ — восстановленная методом ${\sf M}$ компонента, отвечающая за ${\sf X}_N^{(1)}$.

Определение 1

Pяды $\mathsf{X}_N^{(1)}$ и $\mathsf{X}_N^{(2)}$ точно разделимы методом M , если существует такое Θ , что $\mathrm{MSE}\left(\mathsf{X}_N^{(1)},\hat{\mathsf{X}}_N^{(1)}\right)=0.$

Определение 2

Ряды ${\sf X}_N^{(1)}$ и ${\sf X}_N^{(2)}$ асимптотически разделимы методом ${\sf M}$, если существует последовательность $\Theta(N)$, $N \to \infty$, что ${\sf MSE}\left({\sf X}_N^{(1)},\hat{\sf X}_N^{(1)}\right) \to 0.$

Метод SSA. Алгоритм

 $X = (x_1, \dots, x_N)$ — временной ряд. 1 < L < N — длина окна. Алгоритм SSA:

Построение траекторной матрицы:

$$\mathbf{X} = \mathcal{T}_L(\mathbf{X}) = [\mathbf{X}_1 : \dots : \mathbf{X}_K], \ \mathbf{X}_i = (x_i, \dots, x_{i+L-1})^T,$$

 $1 \le i \le K, \quad K = N - L + 1.$

Сингулярное разложение (SVD) траекторной матрицы:

$$\mathbf{X} = \sum_{i=1}^d \sqrt{\lambda_i} U_i V_i^T = \sum_{i=1}^d \mathbf{X}_i, \ d = \mathsf{rank}(\mathbf{X}).$$

 \mathbf{X}_i — элементарные матрицы ранга 1. $(\sqrt{\lambda_i}, U_i, V_i^{\mathrm{T}}) - i$ -ая собственная тройка.

⑤ Группировка индексов $1, \ldots, d$ на m непересекающихся подмножеств I_1,\ldots,I_m . $\mathbf{X}_{I_k}=\sum \mathbf{X}_i$.

$$\mathbf{X} = \mathbf{X}_{I_1} + \cdots + \mathbf{X}_{I_m}$$
.

 $oldsymbol{0}$ Восстановление: $ilde{\mathsf{X}}_{I_{t}} = \mathcal{T}_{r}^{-1} \circ \mathcal{H}(\mathbf{X}_{I_{r}})$, $X = X_{I_1} + \cdots + X_{I_{--}}$

Вложенный вариант SSA. EOSSA

$$\mathsf{X} = \mathsf{S} + \mathsf{X}_{\mathrm{Noise}} = \mathsf{S}^{(1)} + \mathsf{S}^{(2)} + \mathsf{X}_{\mathrm{Noise}}$$

Определение 3 (Golyandina и Shlemov 2015)

Вложенный вариант SSA — двухэтапный метод:

- Задается r. $\tilde{\mathbf{S}}$ сумма первых r слагаемых SVD разложения траекторной матрицы сигнала \mathbf{S} с помощью базового \mathbf{SSA} .
- $oldsymbol{2}$ Применение другого метода к $ilde{\mathbf{S}}$ для улучшения разделимости: $ilde{\mathbf{S}} = ilde{\mathbf{S}}_1 + ilde{\mathbf{S}}_2$.

SSA EOSSA (Golyandina, Dudnik и Shlemov 2023) является вложенным вариантом **SSA**.

Метод GSSA. Алгоритм

$$\mathsf{X}=(x_1,\ldots,x_N)$$
 — временной ряд, параметры L и $lpha\geq 0$. $oldsymbol{w}^{(a)}=(w_1,w_2,\ldots,w_L)=\left(\left|\sin\left(rac{\pi n}{L+1}
ight)
ight|^lpha\right),\quad n=1,2,\ldots,L.$

Шаг 1 алгорима GSSA:

$$\mathbf{X}^{(\alpha)} = \mathcal{T}_{L}^{(\alpha)}(\mathbf{X}) = [\mathbf{X}_{1}^{(\alpha)} : \dots : \mathbf{X}_{K}^{(\alpha)}],$$

$$\mathbf{X}_{i}^{(\alpha)} = (w_{1}x_{i-1}, \dots, w_{L}x_{i+L-2})^{\mathrm{T}}, \ 1 \leq i \leq K.$$

Шаги 2-4: аналогичны SSA.

Замечание 1

При $\alpha=0$, **GSSA** — в точности базовый алгоритм **SSA**.

Замечание 2

 $oldsymbol{w}^{(a)}$ называются степенными синусными весами. Они могут иметь другой вид.

Сравнение SSA и GSSA. Линейные фильтры 1

Определение 4

Пусть $X = (..., x_{-1}, x_0, x_1, ...)$ — бесконечный временной ряд. **Линейный конечный фильтр** — оператор Φ , преобразующий X в $Y = (\dots, y_{-1}, y_0, y_1, \dots)$ по правилу:

$$y_j = \sum_{i=-r_1}^{r_2} h_i x_{j-i}, \quad j \in \mathbb{Z},$$

где r_1+r_2+1 — ширина фильтра, $h_i\in\mathbb{R}$ — коэффициенты.

Пример. При применении фильтра Φ к $x_i = \cos 2\pi \omega j$, получается ряд $y_i = A_{\Phi}(\omega) \cos{(2\pi\omega j + \phi_{\Phi}(\omega))}$. $\phi_{\Phi}(\omega)$ – фазово-частотная характеристика (ФЧХ). $A_{\Phi}(\omega)$ – амплитудно-частотная характеристика (AЧX).

Сравнение SSA и GSSA. Линейные фильтры 2

$$\mathbf{X}=(x_1,\ldots,x_N)$$
, $(\sqrt{\lambda},\,U,\,V)$ — собственная тройка SSA. $U=(u_1,\ldots,u_L)$. $\widetilde{\mathbf{X}}=\mathcal{T}_L\circ\mathcal{H}(\sqrt{\lambda}UV^T)$.

Запись SSA через линейный фильтр для средних точек:

$$\widetilde{x}_s = \sum_{j=-(L-1)}^{L-1} \left(\sum_{k=1}^{L-|j|} u_k u_{k+|j|} / L \right) x_{s-j}, \quad L \le s \le K.$$

Аналогичное представление для GSSA:

$$\widetilde{x}_s = \sum_{j=-(L-1)}^{L-1} \left(\sum_{k=1}^{L-|j|} u_k^{(\alpha)} u_{k+|j|}^{(\alpha)} w_k / \sum_{i=1}^L w_i \right) x_{s-j}, \quad L \le s \le K.$$

Замечание 1

Представление через линейные фильтры можно получить и для остальных точек ряда.

Сравнение SSA и GSSA. Пример

 ${\sf X}={\sf X}_{\sin}+{\sf X}_{\cos}=\sin\left(rac{2\pi}{12}n
ight)+rac{1}{2}\cos\left(rac{2\pi}{19}n
ight)$. $N=96\cdot 2-1$, L=48. Группировка: для ${\sf X}_{\sin}$ 1-2 SVD, для ${\sf X}_{\cos}$ 3-4 SVD.

АЧХ для суммы фильтров собственных троек синуса

 $\alpha = 0.5$: шире полоса пропускания фильтра, чем при $\alpha = 0$, но нет волнообразного поведения на краях.

Сравнение SSA и GSSA. Пример, продолжение

Таблица 1: $X_{\rm sin} + X_{\rm cos}$, MSE оценок

Метод/Ошибка	X_{\sin}	X_{\cos}	Χ
SSA	5.15e-03	5.15e-03	6.01e-30
${\rm GSSA,}\ \alpha=0.5$	3.68e-04	3.68e-04	9.53e-30

Без шума **GSSA** выдает результаты на порядок лучше **SSA**.

Таблица 2:
$$\mathsf{X}_{\sin} + \mathsf{X}_{\cos} + \varepsilon_n$$
, $\varepsilon_n \sim \mathrm{N}(0, 0.1^2)$, MSE оценок

Метод/Ошибка	X_{\sin}	X_{\cos}	X	
SSA	5.68e-03	5.44e-03	7.48e-04	
GSSA, $\alpha = 0.5$	1.21e-03	1.25e-03	1.04e-03	

С шумом выигрыш на порядок у **GSSA** пропал, но теперь **SSA** выделил сигнал на порядок лучше.

Вывод. Вложенный вариант SSA + GSSA

Можно объединить преимущества обоих алгоритмов, выделив сигнал с помощью SSA, а затем разделив компоненты друг от друга благодаря GSSA:

Метод/Ошибка	X_{\sin}	X_{\cos}	Х
SSA	5.68e-03	000	7.48e-04
GSSA, $\alpha = 0.5$	1.21e-03	1.25e-03	1.04e-03
SSA + GSSA, $\alpha = 0.5$	1.06e-03	1.12e-03	7.15e-04

Получается вложенный вариант SSA.

Метод CiSSA. Алгоритм

 $\mathsf{X} = (x_1, \dots, x_N)$ — временной ряд. 1 < L < N — длина окна. **Алгоритм CiSSA**:

- **1** Построение траекторной матрицы: как в SSA.
- ② l=1:L, $U_l=L^{-1/2}(u_{l,1},\dots,u_{l,L}),\ u_{l,j}=\exp\left(-\mathrm{i}2\pi(j-1)\frac{l-1}{L}\right).$ Элементарное разложение: $\omega_k=\frac{k-1}{L},\ k=1:\lfloor\frac{L+1}{2}\rfloor$

$$egin{aligned} \mathbf{X}_{\omega_k} &= U_k U_k^H \mathbf{X} + U_{L+2-k} U_{L+2-k}^H \mathbf{X}; \ \mathbf{X}_{\omega_{\frac{L}{2}+1}} &= U_{\frac{L}{2}+1} U_{\frac{L}{2}+1}^H \mathbf{X}, \ \text{если } L \mod 2 = 0, \end{aligned}$$

Разложение:
$$\mathbf{X} = \sum\limits_{k=1}^d \mathbf{X}_{\omega_k}, \ d = \lfloor \frac{L+1}{2} \rfloor$$
 (или $\frac{L}{2}+1$).

Ответительный по частотам:

$$\bigsqcup_{j=1}^{m} \Omega_j = \bigsqcup_{j=1}^{m} \left[\omega_j^{(l)}, \omega_j^{(r)} \right] = [0, 0.5]. \ \mathbf{X}_{\Omega_j} = \sum_{\omega_k \in \Omega_j} \mathbf{X}_{\omega_k}.$$

Диагональное усреднение: как в SSA.

Метод CiSSA. Особенности

ullet SSA: базис подпространства которого зависит от ${\sf X}, L, N$ (адаптивный).

CiSSA: базис зависит от L, N (фиксированный).

• В CiSSA группировка производится по диапазонам частот, поэтому алгоритм применим только в случае, когда заранее известны частоты интересующих компонент.

Метод CiSSA. Свойства: связь с разложением Фурье

Определение 5

Разложение

$$x_n = c_0 + \sum_{k=1}^{\lfloor \frac{N+1}{2} \rfloor} (c_k \cos(2\pi nk/N) + s_k \sin(2\pi nk/N)),$$

где $1 \le n \le N$ и $s_{N/2} = 0$ для четного N, называется разложением Фурье ряда X.

Разложение Фурье ряда – разложение по базису из синусов и косинусов.

CiSSA — разложения Фурье для K векторов матрицы ${f X}$ с последующим диагональным усреднением слагаемых.

Сравнение SSA, Фурье, CiSSA. Точная разделимость

Фиксируем временной ряд
$$X = X_1 + X_2 =$$

= $A_1 \cos(2\pi\omega_1 n + \varphi_1) + A_2 \cos(2\pi\omega_2 n + \varphi_2)$.

Условия точной разделимости X для разложения Фурье: $N\omega_1,N\omega_2\in\mathbb{N},\;\omega_1\neq\omega_2.$

Условия точной разделимости X для CiSSA: $L\omega_1, L\omega_2 \in \mathbb{N}. \ \omega_1 \neq \omega_2.$

Условия точной разделимости X для **SSA**: $L\omega_1, L\omega_2, K\omega_1, K\omega_2 \in \mathbb{N}, \ \omega_1 \neq \omega_2, \ A_1 \neq A_2.$

Условия точной разделимости X для SSA EOSSA: $\omega_1 \neq \omega_2$.

Таким образом, условия на разделение косинусов, слабее у методов CiSSA и Фурье, чем у SSA.

Сравнение SSA, Фурье, CiSSA. Асимптотическая разделимость

Асимптотически разделимы в методе **SSA** полиномы, гармонические, экспоненциально-модулированные функции (Golyandina, Nekrutkin и Zhigljavsky 2001).

Для **разложения Фурье** асимптотически разделимы только гармонические функции.

Для **CiSSA** асимптотически разделимы гармонические, экспоненциально-модулированные функции.

Пример 1. Гармоничесикие функции

Пример 1: $X = X_{\sin} + X_{\cos} = A_1 \sin(2\pi\omega_1 n) + A_2 \cos(2\pi\omega_2 n)$. Группировка: $\delta = 1/L$, для X_{\sin} 1-2 SVD или $(\omega_1 \pm 2\delta)$; для X_{\cos} 3-4 SVD или $(\omega_2 \pm 2\delta)$;

Метод	Параметры	$\mathrm{MSE}\left(X_{\mathrm{sin}}\right)$	$\mathrm{MSE}\left(X_{\mathrm{cos}}\right)$	MSE(X)
SSA	$L\omega_i \in \mathbb{N}, K\omega_i \in \mathbb{N}, A_1 \neq A_2$	6.8e-30	1.5e-29	1.8e-29
SSA EOSSA	$L\omega_i \in \mathbb{N}, K\omega_i \in \mathbb{N}, A_1 \neq A_2, r = 4$	8.2e-30	6.5e-30	5.5e-30
Fourier	$N\omega_i \in \mathbb{N}$	3.4e-28	9.8e-29	4.0e-28
CiSSA	$L\omega_i \in \mathbb{N}, A_1 \neq A_2$	1.1e-29	6.5e-30	7.8e-30
SSA	$L\omega_i \in \mathbb{N}, K\omega_i \in \mathbb{N}, A_1 = A_2$	3.8e-04	3.8e-04	6.0e-29
SSA	$L\omega_i \in \mathbb{N}, \ K\omega_i \notin \mathbb{N}, \ A_1 = A_2$	4.9e-03	3.4e-03	5.9e-29
SSA EOSSA	$L\omega_i \in \mathbb{N}, \ K\omega_i \notin \mathbb{N}, \ A_1 = A_2, \ r = 4$	1.4e-29	2.9e-29	1.1e-29
Fourier	$N\omega_i \notin \mathbb{N}$	7.6e-03	3.3e-03	5.6e-03

По таблице видно, что при нарушении условий точной разделимости, результаты значительно ухудшаются. SSA EOSSA исправляет ситуацию для SSA.

Пример 1. Шум

Пример 1: X =
$$X_{\sin} + X_{\cos} + X_{\mathrm{Noise}} =$$
 = $A_1 \sin(2\pi\omega_1 n) + A_2 \cos(2\pi\omega_2 n) + \varepsilon_n$, $\varepsilon_n \sim \mathrm{N}(0, 0.1^2)$ Группировка: $\delta = 1/L$,

для X_{\sin} 1-2 SVD или $(\omega_1\pm2\delta)$; для X_{\cos} 3-4 SVD или $(\omega_2\pm2\delta)$;

Метод	Параметры	$\mathrm{MSE}\left(X_{\sin}\right)$	$\mathrm{MSE}\left(X_{\mathrm{cos}}\right)$	MSE(X)
SSA	$L\omega_i \in \mathbb{N}, K\omega_i \in \mathbb{N}$	2.7e-04	3.3e-04	6.0e-04
SSA EOSSA	$L\omega_i \in \mathbb{N}, K\omega_i \in \mathbb{N}$	2.7e-04	3.3e-04	6.0e-04
Fourier	$N\omega_i\in\mathbb{N}$	1.5e-04	2.1e-04	3.6e-04
CiSSA	$L\omega_i \in \mathbb{N}$	1.6e-04	2.8e-04	4.3e-04
SSA	$L\omega_i \in \mathbb{N}, K\omega_i \in \mathbb{N}, A_1 = A_2$	2.5e-04	3.3e-04	6.0e-04
SSA	$L\omega_i \in \mathbb{N}, K\omega_i \notin \mathbb{N}, A_1 = A_2$	4.9e-03	3.4e-03	6.0e-04
SSA EOSSA	$L\omega_i \in \mathbb{N}, K\omega_i \notin \mathbb{N}, A_1 = A_2$	2.7e-04	3.4e-04	6.0e-04
Fourier	$N\omega_i \notin \mathbb{N}$	2.6e-02	7.3e-02	9.8e-02

Результаты ухудшились.

Пример 2. Экспоненциально-модулированные функции

Пример 2:

$$\mathsf{X}=\mathsf{X}_{e\cdot\sin}+\mathsf{X}_{e\cdot\cos}=e^{A_1n}\sin(2\pi\omega_1n)+e^{A_2n}\cos(2\pi\omega_2n).$$
 Группировка: $\delta=1/L$,

для X_{\sin} 1-2 SVD или $(\omega_1\pm2\delta)$; для X_{\cos} 3-4 SVD или $(\omega_2\pm2\delta)$;

Метод	Параметры	$MSE(X_{e\cdot sin})$	$MSE(X_{e \cdot cos})$	MSE (X)
SSA	$L\omega_i \in \mathbb{N}, K\omega_i \in \mathbb{N}$	5.3e-05	5.3e-05	1.2e-27
SSA EOSSA	$L\omega_i \in \mathbb{N}, K\omega_i \in \mathbb{N}, r = 4$	3.0e-28	4.4e-28	7.4e-29
Fourier	$N\omega_i \in \mathbb{N}$	6.7e-02	1.4e-02	4.9e-02
CiSSA	$L\omega_i \in \mathbb{N}$	3.8e-03	2.6e-02	1.5e-02
SSA	$L\omega_i \in \mathbb{N}, K\omega_i \notin \mathbb{N}$	4.8e-04	4.8e-04	1.1e-27
SSA EOSSA	$L\omega_i \in \mathbb{N}, K\omega_i \notin \mathbb{N}, r=4$	2.8e-28	4.2e-28	7.5e-29
Fourier	$N\omega_i \notin \mathbb{N}$	3.7e-02	1.1e-01	1.1e-01

При домножении на экспоненты периодик, все результаты ухудшились кроме SSA EOSSA. Фурье и CiSSA значительно ухудшились в точности разделения.

Пример 2. Шум

Пример 2:
$$\mathbf{X} = \mathbf{X}_{e \cdot \sin} + \mathbf{X}_{e \cdot \cos} + \mathbf{X}_{\text{Noise}} = e^{A_1 n} \sin(2\pi w_1 n) + e^{A_2 n} \cos(2\pi w_2 n) + \varepsilon_n$$
, $\varepsilon_n \sim \mathbf{N}(0, 0.1^2)$

Метод	Параметры	$MSE(X_{e \cdot sin})$	$\mathrm{MSE}\left(X_{e\cdot\cos}\right)$	$\mathrm{MSE}\left(X\right)$
SSA	$Lw \in \mathbb{N}, Kw \in \mathbb{N}$	3.1e-04	3.6e-04	5.6e-04
SSA EOSSA	$Lw \in \mathbb{N}, Kw \in \mathbb{N}$	2.2e-04	3.4e-04	5 6e-04
Fourier	$Nw \in \mathbb{N}$	1.5e-02	7.2e-02	7.2e-02
CiSSA	$Lw \in \mathbb{N}$	5.2e-03	3.4e-02	3.3e-02
SSA	$L\omega_i \in \mathbb{N}, K\omega_i \notin \mathbb{N}$	7.7e-04	8.7e-04	5.6e-04
SSA EOSSA	$L\omega_i \in \mathbb{N}, K\omega_i \notin \mathbb{N}, r=4$	5.8e-04	5.6e-04	7 1e-04
Fourier	$N\omega_i \notin \mathbb{N}$	4.2e-02	3.3e-01	3.5e-01

Результаты ухудшились.

Сравнение SSA, Фурье, CiSSA. Выводы

По полученным результатам, можно следующие выводы:

- Изменение амплитуды периодических компонент временного ряда со временем значительно затрудняет выделение сигнала и разделение компонент при использовании методов CiSSA и разложения Фурье;
- СiSSA показывает себя лучше Фурье;
- На разделение периодических компонент для базового SSA накладываются более строгие ограничения относительно CiSSA. В остальных случаях SSA работает лучше;
- SSA EOSSA исправляет недостатки базового SSA.
- **5** Имеет смысл вложенный вариант с **CiSSA**.

Итоги

Результаты данного исследования:

- Выявлены сильные и слабые стороны методов;
- Предложены собственные вложенные модификации;
- Методы реализованы на языке R.

Последующие действия:

- Рассмотрение других модификаций;
- Добавление к списку примеров рядов с трендом;
- Реализация вложенного варианта с CiSSA.

Список литературы І

Bogalo, Juan, Pilar Poncela и Eva Senra (2020). «Circulant singular spectrum analysis: A new automated procedure for signal extraction». B: Signal Processing 177. ISSN: 0165-1684. DOI: 10.1016/j.sigpro.2020.107750. URL: http://www.sciencedirect.com/science/article/pii/S0165168420303264.

Golyandina, Nina, Pavel Dudnik μ Alex Shlemov (2023).
«Intelligent Identification of Trend Components in Singular Spectrum Analysis». B: Algorithms 16.7, c. 353. DOI: 10.3390/a16070353. URL: https://doi.org/10.3390/a16070353.

Погребников Н. В., гр. 21.Б04-мм

Список литературы ||

- Golyandina, Nina, Vladimir Nekrutkin и Anatoly Zhigljavsky (2001). Analysis of Time Series Structure: SSA and Related Techniques. Chapman и Hall/CRC. URL: https://www.academia.edu/34626051/Analysis_of_Time_Series_Structure_-_SSA_and_Related_Techniques.
- Golyandina, Nina u Alex Shlemov (2015). «Variations of singular spectrum analysis for separability improvement: non-orthogonal decompositions of time series». B: Statistics and Its Interface 8.3, c. 277—294. ISSN: 1938-7997. DOI: 10.4310/sii.2015.v8.n3.a3. URL: http://dx.doi.org/10.4310/SII.2015.v8.n3.a3.

Список литературы III

Gu, Jialiang и др. (2024). «Generalized singular spectrum analysis for the decomposition and analysis of non-stationary signals». В: Journal of the Franklin Institute Accepted/In Press. ISSN: 0016-0032. DOI: 10.1016/j.jfranklin.2024.106696. URL: https://doi.org/10.1016/j.jfranklin.2024.106696.