DIFFERENTIAL GEOMETRY

Contents

Ι	Prerequisites	1
1	Matrices	1
2	Vectors 2.1 GramSchmidt process	1 2
II	Conics and Quadrics	2
3	Quadratic form	3

Prerequisites

PART

Ι

transition matrices are

always square and invertible ($\det P \neq 0$)

Section 1

Matrices

Theorem 1

To prove a system of vectors $\{\vec{\mathbf{u}}_1, \vec{\mathbf{u}}_2, \dots, \vec{\mathbf{u}}_n\}$ is free we prove:

$$\det \begin{bmatrix} \begin{vmatrix} & & & & \\ \vec{\mathbf{u}}_1 & \vec{\mathbf{u}}_2 & \vec{\mathbf{u}}_3 & \cdots & \vec{\mathbf{u}}_1 \\ & & & & & \end{bmatrix} \neq 0.$$

Theorem 2

A transition matrix $P_{B\to B'}$ between 2 basis $B = \{\vec{\mathbf{u}}_1, \vec{\mathbf{u}}_2, \vec{\mathbf{u}}_3\}$ and $B' = \{\vec{\mathbf{v}}_1, \vec{\mathbf{v}}_2, \vec{\mathbf{v}}_3\}$ we start by solving the system

$$\begin{bmatrix} \begin{vmatrix} & & & & \\ \vec{\mathbf{u}}_1 & \vec{\mathbf{u}}_2 & \vec{\mathbf{u}}_3 & \cdots & \vec{\mathbf{u}}_n \end{bmatrix} \begin{bmatrix} \alpha_n \\ \beta_n \\ \gamma_n \end{bmatrix} = \begin{bmatrix} \begin{vmatrix} & \\ \vec{\mathbf{v}}_n \\ & \end{vmatrix} \end{bmatrix}.$$

or in other words finding

$$\begin{cases} \vec{\mathbf{v}}_1 &= \alpha_1 \vec{\mathbf{u}}_1 + \beta_1 \vec{\mathbf{u}}_2 + \gamma_1 \vec{\mathbf{u}}_3 \\ \vec{\mathbf{v}}_2 &= \alpha_2 \vec{\mathbf{u}}_1 + \beta_2 \vec{\mathbf{u}}_2 + \gamma_2 \vec{\mathbf{u}}_3 \\ \vec{\mathbf{v}}_3 &= \alpha_3 \vec{\mathbf{u}}_1 + \beta_3 \vec{\mathbf{u}}_2 + \gamma_3 \vec{\mathbf{u}}_3 \end{cases}$$

Finally we say that

$$P_{B \to B'} = \begin{bmatrix} \alpha_1 & \alpha_2 & \alpha_3 \\ \beta_1 & \beta_2 & \beta_3 \\ \gamma_1 & \gamma_2 & \gamma_3 \end{bmatrix}.$$

Remark

To find the transition matrix in the inverse direction (from B^\prime to B) we simply do

$$P_{B'\to B} = P_{B\to B'}^{-1}.$$

Section 2

Vectors

$$\langle \cdot, \cdot \rangle : \mathbb{R}^n \times \mathbb{R}^n \longrightarrow \mathbb{R}$$

$$\vec{\mathbf{u}}, \vec{\mathbf{v}} \longmapsto \langle \vec{\mathbf{u}}, \vec{\mathbf{v}} \rangle = \sum_{n=1}^n v_i \cdot u_i.$$

Definition 2 We define the usual norm on
$$\mathbb{R}$$
 to be

$$\|\cdot\|: \mathbb{R}^n \longrightarrow \mathbb{R}$$

$$\vec{\mathbf{u}} \longmapsto \|\vec{\mathbf{u}}\| = \sqrt{\langle \vec{\mathbf{u}}, \vec{\mathbf{u}} \rangle}.$$

Theorem 3 The projection of a vector
$$\vec{\mathbf{u}}$$
 on to another vector $\vec{\mathbf{v}}$ is

$$\mathrm{proj}_{\vec{\mathbf{v}}}\left(\vec{\mathbf{u}}\right) = \frac{\langle \vec{\mathbf{u}}, \vec{\mathbf{v}} \rangle}{\|\vec{\mathbf{v}}\|^2} \vec{\mathbf{v}}.$$

Subsection 2.1

GramSchmidt process

The aim of this process is to find a new basis $\Gamma = \{\hat{\mathbf{e}}_1, \hat{\mathbf{e}}_2, \dots, \hat{\mathbf{e}}_n\}$ derived from a basis $B = \{\vec{\mathbf{v}}_1, \vec{\mathbf{v}}_2, \dots, \vec{\mathbf{v}}_n\}$ such that it is orthonormal or in other words

$$\forall \hat{\mathbf{x}}, \hat{\mathbf{y}} \in \Gamma : \langle \hat{\mathbf{x}}, \hat{\mathbf{y}} \rangle = 0 \text{ and } \|\hat{\mathbf{x}}\| = 1.$$

We find it as follows

$$\vec{\mathbf{u}}_{1} = \vec{\mathbf{v}}_{1}$$

$$\hat{\mathbf{e}}_{1} = \frac{\vec{\mathbf{u}}_{1}}{\|\vec{\mathbf{u}}_{1}\|}$$

$$\vec{\mathbf{e}}_{2} = \frac{\vec{\mathbf{u}}_{2}}{\|\vec{\mathbf{u}}_{2}\|}$$

$$\vec{\mathbf{u}}_{3} = \vec{\mathbf{v}}_{3} - \operatorname{proj}_{\vec{\mathbf{u}}_{1}}(\vec{\mathbf{v}}_{3}) - \operatorname{proj}_{\vec{\mathbf{u}}_{2}}(\vec{\mathbf{v}}_{3})$$

$$\hat{\mathbf{e}}_{3} = \frac{\vec{\mathbf{u}}_{3}}{\|\vec{\mathbf{u}}_{3}\|}$$

$$\vdots$$

$\vec{\mathbf{u}}_n = \vec{\mathbf{v}}_n - \operatorname{proj}_{\vec{\mathbf{u}}_1}(\vec{\mathbf{v}}_n) - \operatorname{proj}_{\vec{\mathbf{u}}_2}(\vec{\mathbf{v}}_n) - \dots - \operatorname{proj}_{\vec{\mathbf{u}}_{n-1}}(\vec{\mathbf{v}}_n) \quad \hat{\mathbf{e}}_n = \frac{\vec{\mathbf{u}}_n}{\|\vec{\mathbf{u}}_n\|}$

Conics and Quadrics

Section 3

Quadratic form

PART

 \prod

We define a quadric form to be a mapping q

$$q: \mathbb{R}^n \longrightarrow \mathbb{R}$$

$$\vec{\mathbf{u}} \longmapsto q(\vec{\mathbf{u}}) = \left[\underline{}^T \vec{\mathbf{u}} \ \underline{} \right] A \begin{bmatrix} | \\ \vec{\mathbf{u}} \\ | \end{bmatrix}.$$

Where the matrix A is a symmetric matrix.¹ The conics understudy are

 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ ellipse (circle if a = b) $\frac{x^2}{a^2} + \frac{y^2}{b^2} = -1$ imaginary ellipse $\frac{x^2}{a^2} - \frac{y^2}{b^2} = \pm 1$ hyperbola with asymptote $y = \pm \frac{b}{a}x$ $y^2 = \pm 2px \quad p > 0$ $x^2 = \pm 2py \quad p > 0$ parabolas $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 0$ union of two straight lines x = const y = const straight lines

¹symmetric matrices $(A = ^T A)$ is always diagonalizable