Aplicações da Derivada

Irineu Lopes Palhares Junior

IMD/UFRN, irineu.palhares@imd.ufrn.br

Conteúdos

Informações sobre os conteúdos de limite e continuidade

- 1 O teorema do valor médio
- 2 Concavidade e pontos de inflexão
- Regras de L'Hospital
- Máximos e mínimos

O Teorema do valor médio

Theorem (Teorema do valor médio (TVM))

Se f for contínua em [a,b] e derivável em]a,b[, então existirá pelo menos um c em]a,b[tal que

$$\frac{f(b) - f(a)}{b - a} = f'(c) \tag{1}$$

Interpretação geométrica do TVM

Geometricamente, este teorema conta-nos que se s é uma reta passando pelos pontos (a, f(a)) e (b, f(b)), então existirá pelo menos um ponto (c, f(c)), com a < c < b, talque a reta tangente ao gráfico de f, neste ponto, é paralela à reta s. Como $\frac{f(b)-f(a)}{b-a}$ é o coeficiente angular de s e f'(c) o de T, $\frac{f(b)-f(a)}{b-a} = f'(c)$.

Figura 1: TVM.

Interpretação cinemática do TVM

Vejamos, agora, uma interpretação cinemática para o TVM. Suponhamos que x=f(t) seja a função de posição do movimento de uma partícula sobre o eixo Ox. Assim, $\frac{f(b)-f(a)}{b-a}$ será a velocidade média entre os instantes t=a e t=b. Pois bem, o TVM conta-nos que se f for contínua em [a,b] e derivável em [a,b], então tal velocidade média será igual à velocidade (instantânea) da partícula em algum instante c entre a e b.

Importância das hipóteses no TVM

As situações que apresentamos a seguir mostram-nos que as hipóteses "f contínua em [a,b] e f derivável em]a,b["são indispensáveis.

f não é derivável em p; não existe c verificando ①.

f não é contínua em [a, b]; não existe c verificando \bigcirc .

Figura 2: Casos particulares.

Função crescente e decrescente

Vamos relembrar as seguintes definições. Sejam f uma função e A um subconjunto do domínio de f. Dizemos que f é estritamente crescente (estritamente decrescente) em A se, quaisquer que sejam s e t em A,

$$s < t \Rightarrow f(s) < f(t) \quad (f(s) > f(t)). \tag{2}$$

Por outro lado, dizemos que f é crescente (decrescente) em A se, quaisquer que sejam s e t em A,

$$s < t \Rightarrow f(s) \le f(t) \quad (f(s) \ge f(t)).$$
 (3)

Intervalos de crescimento e de decrescimento

Como consequência do TVM temos o seguinte teorema.

Theorem (Intervalos de crescimento e de decrescimento)

Seja f contínua no intervalo I.

- a) Se f'(x) > 0 para todo x interior a I, então f será estritamente crescente em I.
- b) Se f'(x) < 0 para todo x interior a I, então f será estritamente decrescente em I.

Example

Determine os intervalos de crescimento e de decrescimento de $f(x) = x^3 - 2x^2 + x + 2$. Esboce o gráfico.

Example

Seja $f(x) = \frac{x^2 - x}{1 + 3x^2}$. Estude f com relação a crescimento e decrescimento. Esboce o gráfico.

Example

Determine os intervalos de crescimento e de decrescimento de $f(x) = \frac{x^2}{x^2 - 1}$. Esboce o gráfico.

Example

Suponha f''(x) > 0 em]a, b[e que existe c em]a, b[tal que f'(c) = 0. Prove que f é estritamente decrescente em]a, c[e estritamente crescente em]c, b[.

Example

Prove que $g(x) = 8x^3 + 30x^2 + 24x + 10$ admite uma única raiz real a, com -3 < a < -2.

Example

- a) Mostre que, para todo $x \ge 0$, $e^x > x$.
- b) Mostre que, para todo $x \ge 0$, $e^x > \frac{x^2}{2}$.
- c) Conclua de (b) que $\lim_{x\to +\infty} \frac{e^x}{x} = +\infty$.

Observação

Vamos mostrar, a seguite, que para $x \to +\infty$, e^x tende a $+\infty$ mais rapidamente que qualquer potência de x.

Seja $\alpha > 0$ um real dado. Observamos que

$$\lim_{x \to +\infty} \frac{e^{\frac{x}{\alpha}}}{x} = \lim_{x \to +\infty} \frac{e^{\frac{x}{\alpha}}}{\alpha \frac{x}{\alpha}} = \lim_{u \to +\infty} \frac{e^{u}}{\alpha u} = +\infty.$$
 (4)

Temos, agora,

$$\lim_{x \to +\infty} \frac{e^{x}}{x^{\alpha}} = \lim_{x \to +\infty} \left[\frac{e^{\frac{x}{\alpha}}}{x} \right]^{\alpha} = \lim_{u \to +\infty} u^{\alpha} = +\infty.$$
 (5)

Assim,

$$\lim_{x \to +\infty} \frac{e^x}{x^{\alpha}} = +\infty \ (\alpha > 0) \tag{6}$$

Para $x \to +\infty$, e^x tende a $+\infty$ mais rapidamente que qualquer potência de x.

Example

Suponha g derivável no intervalo aberto I =]p, q[, com g'(x) > 0 em I, e tal que $\lim_{x \to p^+} g(x) = 0$. Nestas condições, prove que, para todo $x \in I$, tem-se g(x) > 0.

Example

Sejam f e g duas funções deriváveis no intervalo aberto I=]p,q[, com g'(x)>0 em I, e tais que

$$\lim_{x \to p^+} f(x) = 0 \text{ e } \lim_{x \to p^+} g(x) = 0.$$
 (7)

Suponha, ainda, que existam constantes α e β tais que, para todo $x \in I$, $\alpha < \frac{f'(x)}{g'(x)} < \beta$. Nestas condições, mostre que, para todo $x \in I$, tem-se, também.

$$\alpha < \frac{f(x)}{g(x)} < \beta. \tag{8}$$

Example

Sejam f e g deriváveis no intervalo aberto I =]m, p[, com g'(x) > 0 em I, e tais que

$$\lim_{x \to p^{-}} f(x) = +\infty \text{ e } \lim_{x \to p^{-}} g(x) = +\infty. \tag{9}$$

Suponha, ainda, que existam constantes α e β tais que, para todo x em I, $\alpha < \frac{f'(x)}{g'(x)} < \beta$. Nestas condições, mostre que existem constantes M, N e s, com $s \in]m, p[$, tais que, para todo $x \in]s, p[$,

$$\frac{M}{g(x)} + \alpha < \frac{f(x)}{g(x)} < \beta + \frac{N}{g(x)}.$$
 (10)

Concavidade e pontos de inflexão

Seja f derivável no intervalo aberto I e seja p um ponto de I. A reta tangente em (p, f(p)) ao gráfico de f é

$$y - f(p) = f'(p)(x - p)$$
 ou $y = f(p) + f'(p)(x - p)$. (11)

Deste modo, a reta tangente em (p, f(p)) é o gráfico da função $\mathcal T$ dada por

$$T(x) = f(p) + f'(p)(x - p).$$
 (12)

Concavidade para cima

Definition

Dizemos que f tem a concavidae para cima no intervalo aberto I se

$$f(x) > T(x) \tag{13}$$

quaisquer que sejam x e p em I, com $x \neq p$.

Figura 3: Concavidade voltada para cima.

Concavidade para baixo

Definition

Dizemos que f tem concavidae para baixo no intervalo aberto I se

$$f(x) < T(x) \tag{14}$$

quaisquer que sejam x e p em I, com $x \neq p$.

Ponto de inflexão

Definition

Sejam f uma função e $P \in D_f$, com f contínua em p. Dizemos que p é ponto de inflexão de f se existir números reais a e b, com $p \in]a, b[\in D_f,$ tal que f tenha concavidades de nomes contrários em]a, p[e em]p, b[.

p é ponto de inflexão de f (ponto de inflexão horizontal)

Figura 4: Ponto de inflexão.

Teste da derivada segunda

Theorem

Seja f uma função que admite derivada até a 2ª ordem no intervalo aberto I.

- a) Se f''(x) > 0 em I, então f terá a concavidade para cima em I.
- b) Se f''(x) < 0 em I, então f terá a concavidade para baixo em I.

Example

Seja $f(x) = e^{-\frac{x^2}{2}}$. Estude f com relação à concavidae e determine os pontos de inflexão.

Example

Esboce o gráfico de $f(x) = e^{-\frac{x^2}{2}}$.

Example

Seja f derivável até a 3^a ordem no intervalo aberto I e seja $P \in I$. Suponha que f''(p) = 0, $f'''(p) \neq 0$ e que f''' seja contínua em p. Prove que p é ponto de inflexão.

Example

Seja f derivável até a 2^a ordem no intervalo aberto I e seja $p \in I$. Suponha f'' contínua em p. Prove que f''(p) = 0 é condição necessária (mas não suficiente) para p ser ponto de inflexão de f.

Regras de L'Hospital

As regras de L'Hospital, que vamos enunciar a seguir, aplicam-se a cálculos de limites que apresentam indeterminações dos tipos $\frac{0}{0}$ e $\frac{\infty}{\infty}$.

1^a regra de L'Hospital

Definition (1^a regra de L'Hospital)

Sejam f e g deriváveis em]p-r,p[e em]p,p+r[(r>0), com $g'(x)\neq 0$ para 0<|x-p|< r. Nestas condições, se

$$\lim_{x \to p} f(x) = 0, \ \lim_{x \to p} g(x) = 0 \tag{15}$$

e se $\lim_{x\to p} \frac{f'(x)}{g'(x)}$ existir (finito ou infinito), então $\lim_{x\to p} \frac{f(x)}{g(x)}$ existirá e

$$\lim_{x \to p} \frac{f(x)}{g(x)} = \lim_{x \to p} \frac{f'(x)}{g'(x)}.$$
 (16)

Observamos que a 1ª regra de L'Hospital continua válida se substituirmos " $x \to p$ " por " $x \to p^+$ " ou por " $x \to p^-$ " ou por " $x \to \pm \infty$ ".

2ª regra de L'Hospital

Definition (2^a regra de L'Hospital)

Sejam f e g deriváveis em]m,p[, com $g'(x) \neq 0$ em]m,p[. Nestas condições, se

$$\lim_{x \to p^{-}} f(x) = +\infty, \quad \lim_{x \to p^{-}} g(x) = +\infty \tag{17}$$

e se $\lim_{x\to p} \frac{f'(x)}{g'(x)}$ existir (finito ou infinito), então $\lim_{x\to p} \frac{f(x)}{g(x)}$ existirá e

$$\lim_{x \to p^{-}} \frac{f(x)}{g(x)} = \lim_{x \to p^{-}} \frac{f'(x)}{g'(x)}.$$
 (18)

Observamos que a 2^a regra de L'Hospital continua válida se substituirmos " $x \to p^-$ " por " $x \to p^+$ " ou por " $x \to p^-$ " ou por " $x \to \pm \infty$ ". A regra permanece válida se substituirmos um dos símbolos $+\infty$, ou ambos, por $-\infty$.

Example

Calcule

- a) $\lim_{x\to 1} \frac{x^5 6x^3 + 8x 3}{x^4 1}$
- b) $\lim_{x\to+\infty} \frac{e^x}{x}$
- c) $\lim_{x \to +} x \ln x$.

Example

Calcule

- a) $\lim_{x\to 0^+} x^2 e^{\frac{1}{x}}$
- b) $\lim_{x\to 0^+} \left(\frac{1}{x^2} \frac{1}{\sin x}\right)$
- c) $\lim_{x\to 0} \left(\frac{1}{x} \frac{1}{\sin x}\right)$

Example

Calcule $\lim_{x\to+\infty} e^x \left[e - \left(1 + \frac{1}{x}\right)^x\right]$.

Example

Calcule

- a) $\lim_{x\to 0^+} x^x$
- b) $\lim_{x\to+\infty} \left[1+\frac{1}{x^2}\right]^x$

Example

Calcule

- a) $\lim_{x\to+\infty} \left(1+\frac{3}{x}\right)^x$
- b) $\lim_{x\to+\infty} (x+1)^{\frac{1}{\ln x}}$

Example

Calcule $\lim_{x\to+\infty} \left(\frac{1}{\ln x}\right)^{x+1}$.

Example

Suponha f derivável no intervalo]p-r, p+r[, r>0, e que a derivada de 2^a ordem de f exista em p. Mostre que se

$$\lim_{x \to p} \frac{f(x) - \left[f(p) + f'(p) (x - p) + a (x - p)^2 \right]^2}{(x - p)^2} = 0$$
 (19)

então
$$a = \frac{f''(p)}{2}$$
.

Gráficos

Para o esboço do gráfico de um função f, sugerimos o roteiro:

- a) Explicitar o domínio;
- Determinar os intervalos de crescimento e decrescimento;
- c) Estudar a concavidade e destacar os pontos de inflexão;
- d) Calcular os limites laterias de f, em p, nos casos:
 - i) $p \notin D_f$, mas p é extremo de um dos intervalos que compõe D_f ,
 - ii) $p \in D_f$, mas f não é contínua em p.
- e) Calcular os limites para $x \to +\infty$ e $x \to -\infty$.
- f) Determinar ou localizar as raízes de f.

Example

Esboce o gráfico de $f(x) = x^3 - x^2 - x + 1$.

Example

Esboce o gráfico de $f(x) = \frac{x^4+1}{x^2}$.

Example

Esboce o gráfico de $f(x) = \frac{4x+5}{x^2-1}$.

Máximos e mínimos

Definition

Sejam f uma função, $A \in D_f$ e $p \in A$. Dizemos que f(p) é o valor máximo de f em A ou que p um ponto de máximo de f em A se $f(x) \le f(p)$ para todo $x \in A$. Se $f(x) \ge f(p)$ para todo x em A, dizemos então que f(p) é o valor mínimo de f em A ou que p é um ponto de mínimo de f em A.

Figura 5: Ponto de máximo e mínimo em A.

Máximo e mínimo global

Definition

Sejam f uma função e $p \in D_f$. Dizemos que f(p) é o valor máximo global de f ou que p é um ponto de máximo global de f se, para todo x em D_f , $f(x) \le f(p)$. Se, para todo x em D_f , $f(x) \ge f(p)$, diremos que f(p) é o valor mínimo global de f ou que p é um ponto de mínimo global de f.

Máximo e mínimo local

Definition

Sejam f uma função e $p \in D_f$. Dizemos que p é ponto de máximo local de f se existir f > 0 tal que

$$f(x) \le f(p) \tag{20}$$

para todo x em $]p-r, p+r[\cap D_f]$. Por outro lado, dizemos que p é ponto de mínimo local de f se existir r>0 tal que

$$f(x) \ge f(p) \tag{21}$$

para todo x em $]p-r, p+r[\cap D_f]$.

Comantários adicionais

Uma boa maneira de se determinar os pontos de máximo e de mínimo de uma função f é estudá-la com relação a crescimento e decrescimento. Sejam a < c < b; se f for crescente em]a,c[e decrescente em]c,b[, então c será um ponto de máximo local de f; se f fpr decrescente em]a,c[e crescente em [c,b[então c será um ponto de mínimo local de f.

 p_1,p_3 e p_5 são pontos de máximo local; $f(p_5)$ é o valor máximo global de f p_2,p_4 e p_6 são pontos de mínimo local; $f(p_2)$ é o valor mínimo global de f

Figura 6: Máximos e mínimos locais.

Example

Seja
$$f(x) = x^3 - 3x^2 + 3$$
.

- a) Estude f com relação a máximos e mínimos.
- b) Determine os valores máximo e mínimo de f em [-2,3]. Em que pontos estes valores são atingidos?

Example

Determine dois números positivos cuja soma seja 4 e tal que a soma do cubo menor com o quadrado do maior seja mínima.

Example

Pede-se construir um cilindro circular reto de área total S dada e cujo volume seja máximo.

Exercícios

• Certa pessoa que se encontra em A, para atingir C, utilizará a travessia do rio (de 100 m de largura) um barco com velocidade máxima de 10 km/h; de B a C utilizará uma bicicleta com velocidade máxima de 15 km/h. Determine B para que o tempo gasto no percurso seja o menor possível.

Figura 7: Travessia do rio.

Exercícios

2. Um sólido será construído acoplando-se a um cilindro circular reto, de altura h e raio r, uma semiesfera de raio r. Deseja-se que a área da superfície do sólido seja 5π . Determine r e h para que o volume seja máximo.

Figura 8: Solido.

Condição necessária e condições suficientes para máximo e mínimos locais

Sejam f uma função e p um ponto interior a D_f (p interior a D_f \Longleftrightarrow existe um intervalo aberto I, com $I \subset D_f$ e $p \in I$). Suponhamos f derivável em p. O nosso próximo teorema conta-nos que uma condição necessária, mas não suficiente, para que p seja ponto de máximo ou mínimo local é que f'(p) = 0. A figura abaixo dá-nos uma ideia geométrica do que falamos acima.

 p_1 é o ponto de mínimo local: $f'\left(p_1\right)=0$ p_2 é o ponto de máximo local: $f'\left(p_2\right)=0$ $f'\left(p_3\right)=0$, mas p_3 nem é ponto de máximo, nem de mínimo: p_3 é ponto de inflexão horizontal p_4 é ponto de máximo local, mas $f'\left(p_4\right)\neq 0$; p_4 não é ponto interior.

Teorema - condição necessária para máximo e mínimo

Theorem

Seja f uma função derivável em p, em que p é um ponto interior a D_f . Uma condição necessária para que p seja ponto de máximo ou de mínimo local é que f'(p) = 0.

Um ponto $p \in D_f$ se diz ponto crítico ou ponto estacionário de f se f'(p)=0. O teorema anterior conta-nos, então, que se p for interior a D_f e f derivável em p, então uma condição necessária para que p seja ponto de máximo ou de mínimo local de f é que p seja ponto crítico de f.

Condição suficiente para ponto de máximo e mínimo

Vamos, agora, estabelecer uma condição suficiente para que um ponto p seja ponto de máximo ou de mínimo local.

Theorem

Sejam f uma função que admite derivada de 2^a ordem contínua no intervalo aberto I e $p \in I$.

- a) f'(p) = 0 e $f''(p) > 0 \Rightarrow p$ é ponto de mínimo local.
- b) f'(p) = 0 e $f''(p) < 0 \Rightarrow p$ é ponto de máximo loca.