1 TITLE

14

15

16 17

Ilia Kohanovski^a, Uri Obolski^{b,c}, and Yoav Ram^{a,*} 2 3 ^aSchool of Computer Science, Interdisciplinary Center Herzliya, Herzliya 4610101, Israel ^bSchool of Public Health, Tel Aviv University, Tel Aviv 6997801, Israel 4 ^cPorter School of the Environment and Earth Sciences, Tel Aviv University, Tel Aviv 6997801, Israel 5 *Corresponding author: yoav@yoavram.com 6 May 4, 2020 7 8 **Abstract** 9 Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat 10 ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, 11 consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus 12 rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor 13

gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem

vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis

ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu,

accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

18 Introduction

- 19 The COVID-19 pandemic has resulted in implementation of extreme non-pharmaceutical interventions
- 20 (NPIs) in many affected countries. These interventions, from social distancing to lockdowns, are
- 21 applied in a rapid and widespread fashion. The NPIs are designed and assessed using epidemiological
- 22 models, which follow the dynamics of the viral infection to forecast the effect of different mitigation and
- 23 suppression strategies on the levels of infection, hospitalization, and fatality. These epidemiological
- 24 models usually assume that the effect of NPIs on disease transmission begins at the officially declared
- 25 date (e.g. Flaxman et al.⁵, Gatto et al.⁷, Li et al.⁹).
- 26 Adoption of public health recommendations is often critical for effective response to infectious dis-
- 27 eases, and has been studied in the context of HIV⁸ and vaccination^{3,12}, for example. However,
- 28 behavioral and social change does not occur immediately, but rather requires time to diffuse in the
- 29 population through media, social networks, and social interactions. Moreover, compliance to NPIs
- 30 may differ between different interventions and between people. For example, in a survey of 2,108
- adults in the UK during Mar 2020, Atchison et al. ² found that those over 70 years old were more likely
- 32 to adopt social distancing than young adults (18-34 years old), and that those with lower income were
- 33 less likely to be able to work from home and to self-isolate. Furthermore, compliance to NPIs may be
- 34 impacted by risk perception, as percieved by the number of domestic cases or even by reported cases in
- 35 other regions and countries. Interestingly, the perceived risk of COVID-19 infection has likely caused
- a reduction in the number of influenza-like illness cases in the US starting from mid-February ¹³.
- 37 Here, we hypothesize that there is a significant difference between the official start of NPIs and their
- 38 adoption by the public and therefore their effect on transmission dynamics. We use a Susceptible-
- 39 Exposed-Infected-Recovered (SEIR) epidemiological model and Markov Chain Monte Carlo (MCMC)
- 40 parameter estimation framework to estimate the effective start date of NPIs from publicly available
- 41 COVID-19 case data in several geographical regions. We compare these estimates to the official
- 42 dates and find both delayed and advanced effect of NPIs on COVID-19 transmission dynamics. We
- 43 conclude by demonstrating how differences between the official and effective start of NPIs can confuse
- 44 assessments of the effectiveness of the NPIs in a simple epidemic control framework.

45 Models and Methods

- 46 **Data.** We use daily confirmed case data $\mathbf{X} = (X_1, \dots, X_T)$ from several different countries. These
- 47 incidence data summarize the number of individuals X_t tested positive for SARS-CoV-2 RNA (using
- 48 RT-qPCR) at each day t. Data for Wuhan, China retrieved from Pei and Shaman 10, data for 11
- 49 European countries retrieved from Flaxman et al.⁵. Regions in which there were multiple sequences
- 50 of days with zero confirmed cases (e.g. France), we cropped the data to begin with the last sequence
- 51 so that our analysis focuses on the first sustained outbreak rather than isolated imported cases. For
- 52 dates of official NPI dates see Table 1.
- 53 **SEIR model.** We model SARS-CoV-2 infection dynamics by following the number of susceptible
- 54 S, exposed E, reported infected I_r , and unreported infected I_u individuals in a population of size N.
- 55 This model distinguishes between reported and unreported infected individuals: the reported infected
- are those that have enough symptoms to eventually be tested and thus appear in daily case reports, to
- 57 which we fit the model.
- 58 Susceptible (S) individuals become exposed due to contact with reported or unreported infected
- individuals $(I_r \text{ or } I_u)$ at a rate β_t or $\mu\beta_t$. The parameter $0 < \mu < 1$ represents the decreased transmission
- 60 rate from unreported infected individuals, who are often subclinical or even asymptomatic. The

Country	First	Last
Austria	Mar 10 2020	Mar 16 2020
Belgium	Mar 12 2020	Mar 18 2020
Denmark	Mar 12 2020	Mar 18 2020
France	Mar 13 2020	Mar 17 2020
Germany	Mar 12 2020	Mar 22 2020
Italy	Mar 5 2020	Mar 11 2020
Norway	Mar 12 2020	Mar 24 2020
Spain	Mar 9 2020	Mar 14 2020
Sweden	Mar 12 2020	Mar 18 2020
Switzerland	Mar 13 2020	Mar 20 2020
United Kingdom	Mar 16 2020	Mar 24 2020
Wuhan	Jan 23 2020	Jan 23 2020

Table 1: Official start of non-pharmaceutical interventions. The date of the first intervention is for a ban of public events, or encouragement of social distancing, or for school closures. In all countries except Sweden, the date of the last intervention is for a lockdown. In Sweden, where a lockdown was not ordered during the studied dates, the last date is for school closures. Dates for European countries from Flaxman et al. ⁵, date for Wuhan, China from Pei and Shaman ¹⁰.

transmission rate $\beta_t \ge 0$ may change over time t due to behavioural changes of both susceptible and infected individuals. Exposed individuals, after an average incubation period of Z days, become reported infected with probability α_t or unreported infected with probability $(1 - \alpha_t)$. The reporting rate $0 < \alpha_t < 1$ may also change over time due to changes in human behavior. Infected individuals remain infectious for an average period of D days, after which they either recover, or becomes ill enough to be quarantined. They therefore no longer infect other individuals, and the model does not track their frequency. The model is described by the following equations:

$$\frac{dS}{dt} = -\beta_t S \frac{I_p}{N} - \mu \beta_t S \frac{I_s}{N}
\frac{dE}{dt} = \beta_t S \frac{I_p}{N} + \mu \beta_t S \frac{I_s}{N} - \frac{E}{Z}
\frac{dI_r}{dt} = \alpha_t \frac{E}{Z} - \frac{I_r}{D}
\frac{dI_u}{dt} = (1 - \alpha_t) \frac{E}{Z} - \frac{I_r}{D}.$$
(1)

The initial numbers of exposed E(0) and unreported infected $I_u(0)$ are considered model parameters, whereas the initial number of reported infected is assumed to be zero $I_r(0) = 0$, and the number of susceptible is $S(0) = N - E(0) - I_u(0)$. The vector θ of model parameters is

72
$$\theta = (Z, D, \mu, \{\beta_t\}, \{\alpha_t\}, \{p_t\}, E(0), I_u(0)).$$
 (2)

73 This model is inspired by Li et al. 9 and Pei and Shaman 10, who used a similar model with multiple 74 regions and constant transmission β and reporting rate α to infer COVID-19 dynamics in China and 75 the continental US, respectively.

76 **Likelihood function.** The *expected* cumulative number of reported infected individuals until day t

78

68

$$Y_t = \int_0^t \alpha_s \frac{E(s)}{Z} ds, \quad Y_0 = 0.$$
 (3)

We assume that reported infected individuals are confirmed and therefore observed in the daily case report of day t with probability p_t (note that an individual can only be observed once, and that p_t may change over time, but t is a specific date rather than the time elapsed since the individual was infected). Hence, we assume that the number of confirmed cases in day t is binomially distributed,

$$X_t \sim Bin(n_t, p_t),$$

where n_t is the *realized* (rather than expected) number of reported infected individuals yet to appear in daily reports by day t. The cumulative number of confirmed cases until day t is

$$\tilde{X}_t = \sum_{i=1}^t X_i, \quad X_0 = 0.$$

Given \tilde{X}_{t-1} , we assume n_t is Poisson distributed,

$$(n_t \mid \tilde{X}_{t-1}) \sim Poi(Y_t - \tilde{X}_{t-1}), \quad n_1 \sim Poi(Y_1).$$

Therefore, $(X_t \mid \tilde{X}_{t-1})$ is a binomial conditioned on a Poisson, which reduces to a Poisson with

$$(X_t \mid \tilde{X}_{t-1}) \sim Poi((Y_t - \tilde{X}_{t-1}) \cdot p_t), \quad X_1 \sim Poi(Y_1 \cdot p_1). \tag{4}$$

- 81 For given vector θ of model parameters (Eq. (2)), we compute the expected cumulative number
- 82 of reported infected individuals $\{Y_t\}_{t=1}^T$ for each day (Eq. (3)). Then, since \tilde{X}_{t-1} is a function of
- 83 X_1, \ldots, X_{t-1} , we can use Eq. (4) to write the probability to observe the confirmed case data $\mathbf{X} =$
- 84 $(X_1, ..., X_T)$ as

85
$$\mathbb{L}(\theta \mid \mathbf{X}) = P(\mathbf{X} \mid \theta) = P(X_1 \mid \theta)P(X_2 \mid \tilde{X}_1, \theta) \cdots P(X_T \mid \tilde{X}_{T-1}, \theta). \tag{5}$$

- 86 This defines a *likelihood function* $\mathbb{L}(\theta \mid \mathbf{X})$ for the parameter vector θ given the data \mathbf{X} .
- 87 **NPI model.** To model non-pharmaceutical interventions (NPIs), we set the beginning of the NPIs
- 88 to day τ and define

89
$$\beta_t = \begin{cases} \beta, & t < \tau \\ \beta \lambda, & t \ge \tau \end{cases}, \quad \alpha_t = \begin{cases} \alpha_1, & t < \tau \\ \alpha_2, & t \ge \tau \end{cases}, \quad p_t = \begin{cases} 1/9, & t < \tau \\ 1/6, & t \ge \tau \end{cases}, \tag{6}$$

- where $0 < \lambda < 1$. The values for p_t follow Li et al. 9, who estimated the average time between infection
- 91 and reporting in Wuhan, China, at 9 days before the start of NPIs (Jan 23, 2020) and 6 days after start
- 92 of NPIs. The parameter τ is then added to the parameter vector θ (Eq. (2)).
- 93 **Parameter estimation.** To estimate the parameters θ of our model (Eq. (1)) from the data X, we
- 94 apply a Bayesian inference approach. We define the following flat priors on the model parameters
- 95 $P(\theta)$:

$$Z \sim Uniform(2,5)$$

$$D \sim Uniform(2,5)$$

$$\mu \sim Uniform(0.2,1)$$

$$\beta \sim Uniform(0.8,1.5)$$

$$\lambda \sim Uniform(0,1)$$

$$\alpha_{1}, \alpha_{2} \sim Uniform(0.02,1)$$

$$E(0) \sim Uniform(0,3000)$$

$$I_{u}(0) \sim Uniform(0,3000)$$

$$\tau \sim Uniform(1,T-1),$$

$$(7)$$

96

where T is the number of days in the data X. Most priors follow Li et al. 9 , except λ , which is used to enforce that the transmission rates are lower after the start of the NPIs ($\lambda < 1$). The likelihood function is defined in Eq. (5). The posterior distribution on the model parameters $P(\theta \mid X)$ is then estimated using an *affine-invariant ensemble sampler for Markov chain Monte Carlo* (MCMC) implemented in the emcee Python package 6 .

Model selection. We perform model selection using DIC (deviance information criterion) 11 ,

103
$$DIC(\theta, \mathbf{X}) = 2\mathbb{E}[D(\theta)] - D(\mathbb{E}[\theta])$$
$$= 2\log \mathcal{L}(\mathbb{E}[\theta] \mid \mathbf{X}) - 4\mathbb{E}[\log \mathcal{L}(\theta \mid \mathbf{X})],$$
(8)

where $D(\theta)$ is the Bayesian deviance, and expectations $\mathbb{E}[\cdot]$ are taken over the posterior distribution $P(\theta \mid \mathbf{X})$. We compare models by reporting their relative DIC; lower is better.

106 **Source code.** We use Python 3 (Anaconda) with the NumPy, Matplotlib, SciPy, Pandas, Seaborn, 107 and emcee packages. All source code will be publicly available under a permissive open-source 108 license at github.com/yoavram-lab/EffectiveNPI.

Figure 1: Official and effective start of non-pharmaceutical interventions.

Results

109

Several studies have described the effects of non-pharmaceutical interventions in different geographical regions ^{5,7,9}. These studies have assumed that the parameters of the epidemiological model change at a specific date, as in Eq. (6), and set the change date τ to the official NPI date τ^* (Table 1). They then fit the model once for time $t < \tau^*$ and once for time $t \ge \tau^*$. For example, Li et al. ⁹ estimate the dynamics in China before and after τ^* at Jan 23. Thereby, they effectively estimate (β , α_1) and (λ , α_2) separately.

- Here we estimate the posterior distribution $P(\tau \mid \mathbf{X})$ of the effective start date of the NPIs by jointly
- estimating τ , β , λ , α_1 , α_2 on the entire data per region (e.g. Italy, Austria), rather than splitting the data 116
- at τ^* . We then compute the maximum a posteriori estimate $\hat{\tau} = argmax_{\tau}P(\tau \mid \mathbf{X})$. 117
- We find that a model that considers an NPI (Eq. (6)) is a better fit to the data than a model without an
- NPI, i.e. with constant β and α ($\Delta DIC > ?$ for all regions.) We compare the official τ^* and effective
- $\hat{\tau}$ start of NPIs and find that in most regions the effective start of NPI significantly differs from the
- official date (Figure 1): the $\frac{75\%}{6}$ confidence interval on $\hat{\tau}$ does not include τ^* , and the DIC of the 121
- model with free τ parameter is lower than that of a model with a fixed $\tau \equiv \tau^*$ ($\Delta DIC > ?$.) The 122
- exception that proves the rule is Switzerland. 123
- In the following, we describe our findings on delayed and advanced start of NPI in detail. 124

Figure 2: Delayed effect of non-pharmaceutical interventions in Italy and Wuhan, China.

Delayed effective start of NPI. In both Wuhan, China, and in Italy we find that our estimated effective start of NPI $\hat{\tau}$ is significantly later than the official date τ^* (Figure 1).

In Italy, the first case officially confirmed on Feb 21, a lockdown was declared in Northern Italy on 127 Mar 8, with social distancing implemented in the rest of the country, and the lockdown was extended 128 to the entire nation on Mar 11⁷. That is, the official date τ^* is either Mar 8 or 11. However, we estimate the effective date $\hat{\tau}$ at Mar 16 (the posterior probability that τ is later than Mar 11 is $(P(\tau > \tau^*) = ???)$ 130 (Figure 2). Similarly, in Wuhan, China, lockdown was declared on Jan 239, but we estimate the 131 effective start of NPIs to be 3-4 days layer $(P(\tau > \tau^*) = ????)$ (Figure 2). 132

Figure 3: Advanced effect of non-pharmaceutical interventions in Spain and France.

Advanced effective start of NPIs. In contrast, in some regions we estimate an effective start of 133 NPIs $\hat{\tau}$ that is earlier then the official date τ^* (Figure 1). For example, in Spain social distancing 134 was encouraged starting on Mar 8⁵, but mass gatherings still occurred on Mar 8, including a march of 120,000 people for the International Women's Day, and a football match between Real Betis and Real Madrid (2:1) with a crowd of 50,965 in Seville. A national lockdown was only announced on 137 Mar 14⁵. Nevertheless, we estimate the effective start of NPI $\hat{\tau}$ at Mar 8 or 9, rather than Mar 14 138

 $(P(\tau < \tau^*) = ???)$ 139

140 Similarly, in France the official lockdown started at Mar 17 (τ^*), with initial NPIs at Mar 13⁵. However,

141 we estimate the effective start of NPIs $\hat{\tau}$ at Mar 8, with 95% confidence interval between Mar 2 and

142 Mar 14, still three days before the lockdown (Figure 3).

143 **The exception that proves the rule.** We find one case in which the official and effective dates 144 match: Switzerland ordered a national lockdown on Mar 20, after banning public evens and closing 145 schools on Mar 13 and 14^5 . Indeed, our MAP estimate $\hat{\tau}$ is Mar 20, and the posterior distribution 146 shows two density peaks: a smaller one between Mar 10 and Mar 14, and a taller one between Mar 17 and Mar 22. It's also worth mentioning that Switzerland was the first to mandate self isolation of 148 confirmed cases⁵.

Effect of delays and advances of real-time assessment. The success of non-pharmaceutical inter-149 ventions is assessed by health officials using various metrics, such as the decline in the growth rate 150 of daily cases. These assessments are made a specific number of days after the intervention began, 151 to accommodate for the expected serial interval (i.e. time between successive cases in a chain of 152 transmission), which is estimated at about 4-7 days⁷. However, we hypothesize that a significant 153 difference between the beginning of the intervention and the effective change in transmission rates 154 155 invalidates assessments that assume 4-7 days. What are good metrics for assessment of intervention success? growth rate of daily cases, hospitalisations, deaths? 156

Figure 4: Delayed effective start of NPI causes leads to under-estimation of daily confirmed cases. The red and black lines show model predictions when NPIs start on the official date τ^* or on the effective date $\hat{\tau}$, respectively, with 95% confidence intervals. This demonstrates Δ the assessment error seven days after the official start of NPIs, which in this case is about 40%. Parameters are MAP estimates for Italy (TABLE).

Discussion

- 158 We have estimated the effective start date of NPIs in several geographical regions using an SEIR
- 159 epidemiological model and an MCMC parameter estimation framework. We find examples of both
- advanced and delayed response to NPIs (Figure 1).
- 161 For example, in Italy and Wuhan, China, the effective start of the lockdowns seems to have occurred
- 162 3-5 after the official date (Figure 2). This could be explained by low compliance. In Italy, for example,
- a leak about the intent to lockdown Northern provinces results in people leaving those provinces.
- 164 However, delayed effect of NPIs could also be due to the time required by both the government and
- the citizens to organize for a lockdown.
- 166 In contrast, in most investigated countries, such as Spain and France, transmission rates seem to
- 67 have been reduced even before official lockdowns were implemented (Figure 3). This advanced
- 168 response is possibly due to adoption of social distancing and similar behavioral adaptations in parts
- 169 of the population, maybe in response increased risk perception due to domestic or international
- 170 COVID-19-related reports. This finding may also suggest that severe NPIs, such as lockdowns,
- 171 were unnecessary, and that milder measures that were adopted by the population, possibly due to
- 172 government recommendations, media coverage, and social networks, could have been sufficient for
- epidemic control. check if this is true Indeed, the evidence supports a change in transmission dynamics
- 174 (i.e. a model with τ) even for Sweden, in which a lockdown was not implemented⁵, suggesting that
- 175 lockdowns may not be necessary if other NPIs are adopted early enough during the outbreak (Sweden
- 176 banned public events on Mar 12, encouraged social distancing on Mar 16, and closed schools on
- 177 Mar 18⁵.)
- 178 We have found that the evidence supports a model in which the parameters change at a specific
- 179 time point τ over a model without such a change-point. It may be interesting to investigate if the
- evidence favors a model with *two* change-points, rather than one. Two such change-points could reflect
- 181 escalating NPIs (e.g. school closures followed by lockdowns), a mix of NPIs and changes in weather,
- 182 a mix of domestic and international effects on risk perception, or other similar factors.
- 183 As several countries (e.g. Austria, Israel) begin to relieve lockdowns and ease restrictions, we expect
- similar delays and advances to occur: in some countries people will begin to behave as if restrictions
- 185 were eased even before the official date, and in some countries people will continue to self-restrict
- 186 even after restrictions are officially removed. Such delays and advances could confuse analyses and
- 187 lead to wrong conclusions about the effects of NPI removals.
- 188 Conclusions. We have estimated the effective start date of NPIs and found that they often differ
- 189 from the official dates. Our results emphasize the complex interaction between personal, regional,
- 190 and global determinants of behavioral. Thus, our results highlight the need to further study variability
- 191 in compliance and behavior over both time and space. This can be accomplished both by surveying
- 192 differences in compliance within and between populations², and by incorporating specific behavioral
- 193 models into epidemiological models ^{1,4}.

94 Acknowledgements

195 This work was supported in part by the Israel Science Foundation 552/19 and 1399/17.

196 References

- [1] Arthur, R. F., Jones, J. H., Bonds, M. H. and Feldman, M. W. 2020, 'Complex dynamics induced by delayed adaptive behavior during outbreaks', *bioRxiv* pp. 1–23.
- [2] Atchison, C. J., Bowman, L., Vrinten, C., Redd, R., Pristera, P., Eaton, J. W. and Ward, H. 2020, 'Perceptions and behavioural responses of the general public during the COVID-19 pandemic: A cross-sectional survey of UK Adults', *medRxiv* p. 2020.04.01.20050039.
- [3] Dunn, A. G., Leask, J., Zhou, X., Mandl, K. D. and Coiera, E. 2015, 'Associations between exposure to and expression of negative opinions about human papillomavirus vaccines on social media: An observational study', *J. Med. Internet Res.* 17(6), e144.
- [4] Fenichela, E. P., Castillo-Chavezb, C., Ceddiac, M. G., Chowellb, G., Gonzalez Parrae, P. A., Hickling, G. J., Holloway, G., Horan, R., Morin, B., Perrings, C., Springborn, M., Velazquez, L. and Villalobos, C. 2011, 'Adaptive human behavior in epidemiological models', *Proc. Natl. Acad.* Sci. U. S. A. 108(15), 6306–6311.
- [5] Flaxman, S., Mishra, S., Gandy, A., Unwin, J. T., Coupland, H., Mellan, T. A., Zhu, H., Berah, T., Eaton, J. W., Guzman, P. N. P., Schmit, N., Cilloni, L., Ainslie, K. E. C., Baguelin, M., Blake, I., Boonyasiri, A., Boyd, O., Cattarino, L., Ciavarella, C., Cooper, L., Cucunubá, Z., Cuomo-Dannenburg, G., Dighe, A., Djaafara, B., Dorigatti, I., Van Elsland, S., Fitzjohn, R., Fu, H., Gaythorpe, K., Geidelberg, L., Grassly, N., Green, W., Hallett, T., Hamlet, A., Hinsley, W., Jeffrey, B., Jorgensen, D., Knock, E., Laydon, D., Nedjati-Gilani, G., Nouvellet, P., Parag, K., Siveroni, I., Thompson, H., Verity, R., Volz, E., Gt Walker, P., Walters, C., Wang, H., Wang, Y., Watson, O., Xi, X., Winskill, P., Whittaker, C., Ghani, A., Donnelly, C. A., Riley, S., Okell, L. C., Vollmer, M. A. C., Ferguson, N. M. and Bhatt, S. 2020, 'Estimating the number of infections and the impact of non-pharmaceutical interventions

- on COVID-19 in 11 European countries', *Imp. Coll. London* (March), 1–35.
- [6] Foreman-Mackey, D., Hogg, D. W., Lang, D. and Goodman, J. 2013, 'emcee: The MCMC Hammer', Publ. Astron. Soc. Pacific 125(925), 306– 312.
- [7] Gatto, M., Bertuzzo, E., Mari, L., Miccoli, S., Carraro, L., Casagrandi, R. and Rinaldo, A. 2020, 'Spread and dynamics of the COVID-19 epidemic in Italy: Effects of emergency containment measures', *Proc. Natl. Acad. Sci.* p. 202004978.
- [8] Kaufman, M. R., Cornish, F., Zimmerman, R. S. and Johnson, B. T. 2014, 'Health behavior change models for HIV prevention and AIDS care: Practical recommendations for a multilevel approach', *J. Acquir. Immune Defic. Syndr.* 66(SUPPL.3), 250–258.
- [9] Li, R., Pei, S., Chen, B., Song, Y., Zhang, T., Yang, W. and Shaman, J. 2020, 'Substantial undocumented infection facilitates the rapid dissemination of novel coronavirus (SARS-CoV2)', Science (80-.). p. eabb3221.
- [10] Pei, S. and Shaman, J. 2020, 'Initial Simulation of SARS-CoV2 Spread and Intervention Effects in the Continental US', *medRxiv* p. 2020.03.21.20040303.
- [11] Spiegelhalter, D. J., Best, N. G., Carlin, B. P. and Van Der Linde, A. 2002, 'Bayesian measures of model complexity and fit', *J. R. Stat. Soc. Ser. B Stat. Methodol.* **64**(4), 583–616.
- [12] Wiyeh, A. B., Cooper, S., Nnaji, C. A. and Wiysonge, C. S. 2018, 'Vaccine hesitancy âĂŸoutbreaks': using epidemiological modeling of the spread of ideas to understand the effects of vaccine related events on vaccine hesitancy', *Expert Rev. Vaccines* **17**(12), 1063–1070.
- [13] Zipfel, C. M. and Bansal, S. 2020, 'Assessing the interactions between COVID-19 and influenza in the United States', *medRxiv* (February), 1–13.