

ELG 5125: Data Science Applications Assignment 2

Prof. Arya Rahgozar

GROUP: DSA_202101_13

Table of Contents

Abstract	7
Introduction	8
Methodology	8
Preprocessing and Data Cleaning	g
Installed Packages	g
Used Libraries	g
Data Selection	10
Data Cleaning	10
Feature Engineering	11
Creating Partitions	11
Frequency Distribution and Tokenization	11
Word Cloud	12
Modeling	13
Prediction Error Function	13
Working on all the features	14
Creating Bag of words	14
Naïve Bayes classifier	14
Passive aggressive classifier	15
Decision tree classifier	15
SVM classifier	16
K-nearest neighbors' classifier	16
Making ten-fold cross-validation for each classifier	17
Working with some of the features	17
Creating Bag of words of 2000 features only	17
Naïve Bayes classifier	18
Passive aggressive classifier	18
Decision tree classifier	18
SVM classifier	19
K-nearest neighbors' classifier	19
Making ten-fold cross-validation for each classifier	20
Applying TF-IDF	20

Creating TF-IDF vectorizer	20
Naïve Bayes classifier	20
Passive aggressive classifier	21
Decision tree classifier	21
SVM classifier	21
K-nearest neighbors' classifier	22
Making ten-fold cross-validation for each classifier	22
Applying TF-IDF with bigram	23
Creating Bag of words	23
Naïve Bayes classifier	23
Passive aggressive classifier	23
Decision tree classifier	23
SVM classifier	24
K-nearest neighbors' classifier	24
Making ten-fold cross-validation for each classifier	24
Topic Modeling	25
LDA	25
Applying LDA	25
Top 100 words after removing stop words	25
Sentiment Polarity Distribution	25
Model Description	25
Evaluation and Augmentation	26
Champion Model	26
AUC-ROC for champion model in each book	26
Precision-Recall curve of the champion model	26
Confusion Matrix of the champion model	27
Class Prediction Error of the champion model	27
Decision Boundaries of the champion model	27
General Evaluation of the champion model	27
Error Analysis of champion model LDA + Random Forest	28
Data Augmentation	29
Models' Scores	29
Champion Model	29

Error Analysis of champion model LDA + Random Forest with augmentation	31
Conclusion	32
References	33

Table of Figures

Figure 1 Frequency Distribution of 'austen-emma'	
Figure 2 Frequency Distribution of 'burgess-busterbrown'	11
Figure 3Word cloud of book	12
Figure 4 Word cloud of book 1	12
Figure 5 Word cloud of book 3	
Figure 6 Word cloud of book 4	12
Figure 7 Word cloud of book 5	
Figure 8 Bag of words output	
Figure 9 Naive Bayes Prediction Error	14
Figure 10 Naive Bayes confusion matrix	14
Figure 11 Naive Bayes train classification report	14
Figure 12 Naive Bayes test classification report	14
Figure 13 Passive agressive classifier test classification report	15
Figure 14 Passive agressive classifier train classification report	15
Figure 15 13 Passive agressive classifier Confusion matrix	15
Figure 16 13 Passive agressive classifier Prediction Error	15
Figure 17 Decision Tree Classifier Prediction error	15
Figure 18 Decision tree Confusion Matrix	15
Figure 19 Decision Tree Classifier test classification report	15
Figure 20 Decision Tree Classifier train classification report	15
Figure 21 SVM Classifier train classification report	16
Figure 22 SVM Classifier test classification report	16
Figure 23 SVM classifier Prediction Error	16
Figure 24 SVM classifier Confusion Matrix	16
Figure 25 KNN classifier Prediction Error	16
Figure 26 KNN classifier confusion matrix	16
Figure 27 KNN classifier test Classification report	16
Figure 28 KNN classifier train Classification report	16
Figure 29 Ten-Fold Cross-Validation with all features	17
Figure 30 Bag of words for 2000 features	17
Figure 31 Naive Bayes classifier test Classification report	18
Figure 32 Naive Bayes classifier train Classification report	18
Figure 33 Naive Bayes Classifier Prediction Error	18
Figure 34 Naive Bayes classifier Confusion Matrix	18
Figure 35 PA Test Classification Report	18
Figure 36 PA train classification report	18
Figure 37 PA Prediction Error	18
Figure 38 PA Confusion Matrix	18
Figure 39 DT Test Classification Report	18
Figure 40 DT Train Classification Report	18
Figure 41 DT Confusion Matrix	18

Figure 42 DT Prediction Error	
Figure 43 SVM Test Classification Report	19
Figure 44 SVM Train Classification Report	
Figure 45 SVM Prediction Error	
Figure 46 SVM Confusion Matrix	
Figure 47 KNN Train Classification Report	19
Figure 48 KNN Test Classification Report	19
Figure 49 KNN Prediction Error	19
Figure 50 KNN Confusion Matrix	
Figure 51 Ten-Fold Cross-Validation with 2000 features	
Figure 52 TF-IDF vectorizer	
Figure 53 NB Test Classification Report	20
Figure 54 NB Train Classification Report	20
Figure 55 NB Prediction Error	20
Figure 56 NB Confusion Matrix	
Figure 57 PA Test Classification Report	21
Figure 58 PA Train Classification Report	21
Figure 59 PA Prediction Error	
Figure 60 PA Confusion Matrix	
Figure 61 DT test Classification Report	
Figure 62 DT Train Classification Report	21
Figure 63 DT Confusion Matrix	21
Figure 64 DT Prediction Error	21
Figure 65 SVM Test Classification Report	21
Figure 66 SVM Train Classification Report	
Figure 67 SVM Prediction Error	
Figure 68 SVM Confusion Matrix	21
Figure 69 KNN Test Classification Report	22
Figure 70 KNN Train Classification Report	
Figure 71 KNN Prediction Error	22
Figure 72 KNN Confusion Matrix	
Figure 73 Ten-Fold Cross Validation of TF-IDF	22
Figure 74 TF-IDF Vectorizer with bigram	23
Figure 75 NB Test Classification Report	23
Figure 76 NB Train Classification Report	23
Figure 77 NB Prediction Error	
Figure 78 NB Confusion Matrix	23
Figure 79 PA Train Classification Report	23
Figure 80 PA Test Classification Report	23
Figure 81 PA Prediction Error	23
Figure 82 PA Confusion Matrix	23
Figure 83 DT Train Classification Report	
Figure 84 DT Test Classification Report	23
Figure 85 DT Prediction Error	23

Figure 86 DT Confusion Matrix	
Figure 87 SVM Test Classification Report	. 24
Figure 88 SVM Train Classification Report	. 24
Figure 89 SVM Prediction Error	. 24
Figure 90 SVM Confusion Matrix	
Figure 91 KNN Train Classification Report	. 24
Figure 92 KNN Test Classification Report	
Figure 93 KNN Prediction Error	
Figure 94 KNN Confusion Matrix	.24
Figure 95 Ten-Fold Cross-Validation for TF-IDF with bigram	. 24
Figure 96 Data to be used after applying LDA using 5 topics	. 25
Figure 97 Top 100 words after removing stop words	. 25
Figure 98 Sentiment Polarity Distribution	
Figure 99 Model Description with LDA data	
Figure 101 Models' Scores	
Figure 102 AUC-ROC of RF model	
Figure 103 Precision-Recall Curve of RF model	
Figure 104 Confusion matrix of RF model	
Figure 105 Class Prediction error of RF model	
Figure 106 Decision boundaries of RF model	
Figure 107 General evaluation of RF model	
Figure 108 Permutation Feature Importance	
Figure 109 Mean SHAP value	. 28
Figure 110 Morris Sensitivity Analysis	. 28
Figure 111 Partial Dependence Plots	
Figure 112 Models' Scores - Data augmentation	
Figure 113 AUC-ROC - Data augmentation	. 29
Figure 114 Precision-Recall curve of RF model - Data augmentation	
Figure 115 Confusion matrix of RC model - Data augmentation	
Figure 116 Class Prediction Error of RF model - Data augmentation	
Figure 117 General evaluation of RF model - Data augmentation	
Figure 118 Permutation Feature Importance - Data augmentation	
Figure 119 Mean SHAP values - Data augmentation	.31
Figure 120 Morris Sensitivity Analysis - Data augmentation	
Figure 121 Partial Dependence Plots - Data augmentation	.31

Abstract

Text classification is becoming a significantly effective part of real-life applications. In this report, five books have been selected from Gutenberg dataset. Preprocessing Data cleaning techniques have been used on the chosen set of books. Feature engineering techniques have also been applied for ease of use. Labeling the books' names will be done. A count vectorizer is later used to create a matrix of text and token counts into a bag of words. Five different classifier models will be used with all data features then only 2000 features will be used with building 5 models with previously used classifiers then TF-IDF will be applied with same five different classifier models. Random forest was chosen as the champion model and LDA was applied to it. Finally, data augmentation was done to increase training data and it gave the best outcome (Random Forest with LDA after data augmentation).

Introduction

Text processing challenges are one of the main provocations which can be compromised and dealt with by NLP (natural language processing) techniques. Gutenberg dataset is an online library of free electronic books which is very useful for learning projects. Generation of different models and picking a champion model for handling five sample books of different authors, nevertheless, analyzing the pros and cons of used machine learning algorithms and generate and link the insights using NLP techniques including removal of stop words, Bag-of-Words, TF-IDF, N-gram, cross-validation and more. Finally, Verification and validation.

Methodology

First of all, Gutenberg dataset is being used as the raw labelled data, five books have been stored in a data frame with the columns [Text] that's the content text of books and labels containing books' names. Clean the book text by replacing any character with space and also using regular expression and converting the text to lower case and split the text then removing stop words. Samples are then taken from text books and stored in the same data frame with column name text sample and frequency of words is then plotted. Encode the names of books with numbers that will represent the labels. A count vectorizer is later used to create a matrix of text and token counts into a bag of words. The data is then being split into train and test and some algorithms are applied like SVM Classifier, Decision Tree Classifier, Naïve Bayes Classifier, K-Nearest Neighbors Classifier and print classification report for every classifier. The previously mentioned steps are then being applied with only 2000 features. Moreover, TF-IDF is then used with the same steps following it. Likely, a Bi-gram model is being used with term TF-IDF with the previously mentioned steps for models running. Ten-Fold Cross-Validation is then used for the Bi-gram model with TF-IDF. After that, LDA is then used for dimensionality reduction to apply for topic modeling. Error analysis is then applied on the picked champion model with LDA which is random forest. Data augmentation is then applied to increase the training data by generating different versions of the real dataset. Finally, another error analysis of champion model with LDA after data augmentation.

Preprocessing and Data Cleaning

Installed Packages

```
! pip install interpret-community
! pip install mlxtend --upgrade
! pip install nlpaug==1.1.0 transformers==3.0.2
! pip install snorkel==0.9.8
! pip install pycaret[full]
! pip uninstall numpy
! pip install numpy==1.20.0
! pip uninstall Jinja2
! pip install Jinja2
```

Used Libraries

```
import nltk
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
import re
from nltk.corpus import stopwords
from nltk.stem import PorterStemmer
from nltk.probability import FreqDist
from wordcloud import WordCloud, STOPWORDS
from sklearn.feature extraction.text import CountVectorizer
from sklearn.model selection import train test split
from sklearn.naive bayes import MultinomialNB
from sklearn.metrics import confusion matrix
from sklearn.metrics import classification report
from mlxtend.evaluate import bias variance decomp
from sklearn import preprocessing
from sklearn.linear model import PassiveAggressiveClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.svm import SVC
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model selection import cross val score
from sklearn.feature extraction.text import TfidfVectorizer
from pycaret.utils import enable colab
from pycaret.nlp import *
from pycaret.classification import *
import nlpaug.augmenter.word as naw
from pycaret.nlp import *
from pycaret.classification import *
```

Data Selection

Choosing "gutenburg" list of books from NLTK library as the raw data to work on.

```
nltk.download('gutenberg')
nltk.corpus.gutenberg.fileids()
```

Picking five different books from the dataset.

```
book 1 = ' '.join(nltk.corpus.gutenberg.words('austen-emma.txt'))
book_2 = ' '.join(nltk.corpus.gutenberg.words('burgess-
busterbrown.txt'))
book_3 = ' '.join(nltk.corpus.gutenberg.words('carroll-alice.txt'))
book_4 = ' '.join(nltk.corpus.gutenberg.words('edgeworth-parents.txt'))
book_5 = ' '.join(nltk.corpus.gutenberg.words('bryant-stories.txt'))
df = pd.DataFrame({'Text':[book_1,book_2,book_3,book_4,book_5],'label':[
'austen-emma','burgess-usterbrown','carroll-alice','edgeworth-
parents','bryant-stories']})
```

Data Cleaning

Cleaning the data using Regex, removing stop words and applying stemming.

```
import re
from nltk.corpus import stopwords
from nltk.stem import PorterStemmer
nltk.download('stopwords')
def clean books(df):
 stemer=PorterStemmer()
 corpus = []
 for i in range(0,len(df)):
    \# replace any character with space and leave the from (a - z )
   text = re.sub('[^A-Za-z]',' ',df['Text'][i])
    text = text.lower()
    text = text.split()
    text = [stemer.stem(word) for word in text if word not in set(stopwo
rds.words('english'))]
    text = ' '.join(text)
    corpus.append(text)
  return corpus
```

Feature Engineering

Creating Partitions

Preparing the data by creating a function named "samples" for making 200 partitions out of each book with 100 words each.

```
corpus = clean_books(df)

def samples(book):
    l=[]
    count = 0

while count <200:
    sample = np.random.choice(book, 100)
    l.append(sample)
    count+= 1
    return 1</pre>
```

Frequency Distribution and Tokenization

Using frequency distribution for showing outcomes of an experiment and using sentence tokenizer "punct" on two labels.

```
from nltk.probability import FreqDist
nltk.download('punkt')
fdist = FreqDist(nltk.word tokenize(df final['Text sample'][df final['la
bel'] == 'austen-emma'][10]))
print(fdist)
print(fdist.most common(2))
fdist.plot(30,cumulative=False)
plt.show()
                                  Figure 1 Frequency Distribution of 'austen-emma' Samples
fdist = FreqDist(nltk.word_tokenize(df_final['Text_sample'][df_final['la
bel'] == 'burgess-busterbrown'] [250]))
print(fdist)
print(fdist.most common(2))
                                                      2.5
fdist.plot(30,cumulative=False)
plt.show()
                                             Figure 2 Frequency Distribution of 'burgess-busterbrown'
```

Word Cloud

Creating a function to create word cloud of any book.

```
from wordcloud import WordCloud, STOPWORDS
def worldcloud(df):
 comment words = ''
 stopwords = set(STOPWORDS)
    # iterate through the csv file
 for val in df:
      # typecaste each val to string
     val = str(val)
      # split the value
      tokens = val.split()
      # Converts each token into lowercase
      for i in range(len(tokens)):
          tokens[i] = tokens[i].lower()
      comment words += " ".join(tokens)+" "
  wordcloud = WordCloud(width = 800, height = 800,
                  background color ='white',
                  stopwords = stopwords,
                  min font size = 10).generate(comment words)
 # plot the WordCloud image
 plt.figure(figsize = (8, 8), facecolor = None)
 plt.imshow(wordcloud)
 plt.axis("off")
 plt.tight layout(pad = 0)
 plt.show()
```

Then applying the function on all of the five books to show most frequent words.

worldcloud(emma)

Figure 4 Word cloud of book 1

worldcloud(busterbrown)

Figure 3Word cloud of book

worldcloud(carroll_alice)

Figure 5 Word cloud of book 3

worldcloud(edgeworth parents)

Figure 6 Word cloud of book 4

worldcloud(bryant stories)

Figure 7 Word cloud of book 5

Modeling

Prediction Error Function

This is the main function for predicting mean squared error, bias and variance for models.

```
from mlxtend.evaluate import bias variance decomp
from sklearn import preprocessing
def PredictionError (Model X train, Model X test, Model Y train, Model Y
test, Model Y Prediction, model):
 ErrorsList = []
 TrueList = []
 PredictionList = []
 TestLabel = np.array(Model Y test)
 for i, z in enumerate(x test):
   if Model Y Prediction[i] != TestLabel[i]:
      err = z
      ErrorsList.append(err)
      correctLabel = TestLabel[i]
      TrueList.append(correctLabel)
     prediction = Model Y Prediction[i]
      PredictionList.append(prediction)
  data frame = pd.DataFrame()
  data frame['doc error'] = ErrorsList
 data frame['correct']
                        = TrueList
 data frame['Predicted'] = PredictionList
 #label encoder object knows how to understand word labels.
 Label Encoding = preprocessing.LabelEncoder()
 CopyOfXTrain = np.copy(Model X train)
 CopyOfXTest = np.copy(Model X test)
 CopyOfYTrain = np.copy(Model Y train)
 CopyOfYTest = np.copy(Model Y test)
 MSE, Bias, Variance = bias variance decomp (model,
np.array(CopyOfXTrain) , Label Encoding.fit transform(CopyOfYTrain)
np.array(CopyOfXTest) , Label Encoding.fit transform(CopyOfYTest),
num rounds=2, random seed=123)
 print('THE MSE ERROR IS : &.3f' % MSE)
 print('THE BIAS IS : %.3f' % Bias)
 print('THE VARIANCE IS : %.3f' % Variance)
```

Working on all the features

Creating Bag of words

```
from sklearn.feature_extraction.text import CountVectorizer
bow = CountVectorizer()
X_bow = bow.fit_transform(X).toarray()
pd.DataFrame(X_bow,columns=bow.get_feature_names())
```


Figure 8 Bag of words output

Naïve Bayes classifier

```
from sklearn.naive_bayes import MultinomialNB
nb = MultinomialNB()
nb.fit(x_train, y_train)
y_pred=nb.predict(x_test)
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test, y_pred)
cm
from sklearn.metrics import classification_report
print(classification_report(y_test, y_pred))
print(classification_report(y_train, nb.predict(x_train)))
```

array([[4	10,	0,	0,	0,	0],
]	0,	40,	0,	0,	0],
]	0,	0,	40,	0,	0],
]	0,	0,	0,	40,	0],
]	0,	0,	0,	0,	40]])

Figure 10 Naive Bayes confusion matrix

```
THE BIAS IS: 0.000
THE VARIANCE IS: 0.000
```

Figure 9 Naive Bayes Prediction Error

	precision	recall	f1-score	support		precision	recall	f1-score	support
0	1.00	1.00	1.00	160	0	1.00	1.00	1.00	40
1	1.00	1.00	1.00	160	1	1.00	1.00	1.00	40
2	1.00	1.00	1.00	160	2	1.00	1.00	1.00	40
3	1.00	1.00	1.00	160	3	1.00	1.00	1.00	40
4	1.00	1.00	1.00	160	4	1.00	1.00	1.00	40
accuracy			1.00	800	accuracy			1.00	200
macro avg	1.00	1.00	1.00	800	macro avg	1.00	1.00	1.00	200
weighted avg	1.00	1.00	1.00	800	weighted avg	1.00	1.00	1.00	200

Figure 11 Naive Bayes train classification report

Figure 12 Naive Bayes test classification report

Passive aggressive classifier

```
from sklearn.linear_model import PassiveAggressiveClassifier
pc = PassiveAggressiveClassifier()
pc.fit(x_train, y_train)
y_pred_pc=pc.predict(x_test)
cm = confusion_matrix(y_test, y_pred_pc)
cm
print(classification_report(y_train,pc.predict(x_train)))
print(classification_report(y_test, y_pred_pc))
PredictionError(x train, x test, y train, y test, y pred,pc.fit(x train, y train))
```

pre	cision	recall	f1-score	support		precision	recall	f1-score	support	array([[40, 0, 0, 0, 0],	
0 1 2 3	1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00	160 160 160 160	0 1 2	1.00 1.00 1.00 1.00	1.00 1.00 1.00	1.00 1.00 1.00	40 40 40 40	[0, 40, 0, 0, 0], [0, 0, 40, 0, 0], [0, 0, 0, 40, 0], [0, 0, 0, 0, 40]])	THE BIAS IS : 0.000 THE VARIANCE IS : 0.000
4	1.00	1.00	1.00	160	4	1.00	1.00	1.00	40	Figure 15 13 Passive	Figure 16 13 Passive
macro avg weighted avg	1.00	1.00	1.00 1.00 1.00	800 800 800	accuracy macro avg weighted avg	1.00 1.00	1.00	1.00 1.00 1.00	200 200 200	agressive classifier Confusion matrix	agressive classifier Prediction Error

Figure 14 Passive agressive classifier train classification report

Figure 13 Passive agressive classifier test classification report

Decision tree classifier

```
from sklearn.tree import DecisionTreeClassifier
dt = DecisionTreeClassifier()
dt.fit(x_train, y_train)
y_pred_dt=dt.predict(x_test)
cm = confusion_matrix(y_test, y_pred_dt)
cm
print(classification_report(y_train, dt.predict(x_train)))
print(classification_report(y_test, y_pred_dt))
PredictionError(x_train, x_test, y_train, y_test, y_pred, dt.fit(x_train, y_train))
```

	precision	recall	f1-score	support		precision	recall	f1-score	support	array([[40, 0, 0, 0, 0],	
0 1 2 3 4	1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00	160 160 160 160	0 1 2 3 4	1.00 0.95 0.97 0.93 0.97	1.00 1.00 0.97 0.97 0.88	1.00 0.98 0.97 0.95 0.92	40 40 40 40 40	[0,40,0,0,0], [0,0,39,0,1], [0,0,1,39,0], [0,2,0,3,35]])	THE BIAS IS: 0.065 THE VARIANCE IS: 0.022
accuracy macro avg weighted avg	1.00	1.00 1.00	1.00 1.00 1.00	800 800 800	accuracy macro avg weighted avg	0.97 0.97	0.97 0.96	0.96 0.96 0.96	200 200 200	Figure 18 Decision tree Confusion Matrix	Figure 17 Decision Tree Classifier Prediction error

Figure 20 Decision Tree Classifier train classification report

Figure 19 Decision Tree Classifier test classification report

SVM classifier

```
from sklearn.svm import SVC

svm = SVC()
svm.fit(x train,y train)

y_pred_svm=svm.predict(x_test)
cm = confusion_matrix(y_test,y_pred_svm)
cm

print(classification_report(y_train,svm.predict(x_train)))
print(classification_report(y_test,y_pred_svm))

PredictionError(x train,x test,y train,y test,y pred,svm.fit(x train,y train))
```

ŗ	recision	recall	f1-score	support		precision	recall	f1-score	support	array([[40, 0, 0, 0, 0],	THE BIAS IS : 0.000
0	1.00	1.00	1.00	160	0	1.00	1.00	1.00	40	[0,40,0,0,0],	THE VARIANCE IS: 0.000
1	1.00	1.00	1.00	160	1	1.00	1.00	1.00	40	[0, 0, 40, 0, 0].	THE VANITABLE IS 1 01000
2	1.00	1.00	1.00	160	2	1.00	1.00	1.00	40	[0, 0, 0, 40, 0],	
3	1.00	1.00	1.00	160	3	1.00	1.00	1.00	40		Figure 23 SVM
4	1.00	1.00	1.00	160	4	1.00	1.00	1.00	40	[0, 0, 0, 0, 40]])	rigure 23 3 VIVI
											classifier Prediction
accuracy			1.00	800	accuracy			1.00	200	E: 24 C) (14 1 : C:	crassifier i realection
macro avg	1.00	1.00	1.00	800	macro avg	1.00	1.00	1.00	200	Figure 24 SVM classifier	Error
weighted avg	1.00	1.00	1.00	800	weighted avg	1.00	1.00	1.00	200	Confusion Matrix	

Figure 21 SVM Classifier train classification report

Figure 22 SVM Classifier test classification report

K-nearest neighbors' classifier

```
from sklearn.neighbors import KNeighborsClassifier
knn = KNeighborsClassifier()
knn.fit(x_train,y_train)

y_pred_knn=knn.predict(x_test)
cm = confusion_matrix(y_test,y_pred_knn)
cm

print(classification_report(y_train,knn.predict(x_train)))
print(classification_report(y_test,y_pred_knn))

PredictionError(x_train,x_test,y_train,y_test,y_pred_knn.fit(x_train,y_train))
```

p	recision	recall	f1-score	support		precision	recall	f1-score	support	
0 1 2 3 4	0.98 1.00 1.00 0.99 0.99	0.99 1.00 1.00 0.97 1.00	0.98 1.00 1.00 0.98 1.00	160 160 160 160 160	0 1 2 3 4	0.95 1.00 0.98 0.97 1.00	1.00 1.00 1.00 0.93 0.97	0.98 1.00 0.99 0.95 0.99	40 40 40 40 40	array([[40, 0, 0, 0, 0], [0, 40, 0, 0, 0], THE BIAS IS : 0.025 [0, 0, 40, 0, 0], THE VARIANCE IS : 0.02 [2, 0, 1, 37, 0], [0, 0, 0, 1, 39]])
accuracy macro avg weighted avg	0.99 0.99	0.99 0.99	0.99 0.99 0.99	800 800 800	accuracy macro avg weighted avg	0.98 0.98	0.98 0.98	0.98 0.98 0.98	200 200 200	[18, 6, 6, 1, 39]]/

Figure 28 KNN classifier train Classification report

Figure 27 KNN classifier test Classification report

Figure 26 KNN classifier confusion matrix

Figure 25 KNN classifier Prediction Error

Making ten-fold cross-validation for each classifier

```
from sklearn.model_selection import cross_val_score
nb_cv = MultinomialNB()
scores_nb = cross_val_score(nb_cv, x_train, y_train, cv=10)
scores_nb
array([1., 1., 1., 1., 1., 1., 1., 1., 1., 1.])
pc_cv = PassiveAggressiveClassifier()
scores_pc = cross_val_score(pc_cv, x_train, y_train, cv=10)
scores_pc
array([1., 1., 1., 1., 1., 1., 1., 1., 1.])
dt cv = DecisionTreeClassifier()
scores_dt = cross_val_score(dt_cv, x_train, y_train, cv=10)
scores dt
array([0.9375, 0.9375, 0.975 , 0.95 , 0.8875, 0.8875, 0.9625, 0.925 ,
      0.9375, 0.975 ])
svm_cv = SVC()
scores_svm = cross_val_score(svm_cv, x_train, y_train, cv=10)
scores sym
array([1. , 1. , 1. , 1. , 0.9875, 1. , 1.
          , 1.
                   ])
knn_cv = KNeighborsClassifier()
scores_knn = cross_val_score(knn_cv, x_train, y_train, cv=10)
scores_knn
array([0.9875, 1.
                   , 1. , 1. , 1. , 0.9625, 1. , 1.
      0.9625, 0.9625])
```

Figure 29 Ten-Fold Cross-Validation with all features

Working with some of the features

By using only 2000 features

Creating Bag of words of 2000 features only

```
bow= CountVectorizer(max_features= 2000)
X_bow_2000 = bow.fit_transform(X).toarray()
pd.DataFrame(X bow 2000,columns=bow.get feature names())
```


Figure 30 Bag of words for 2000 features

Naïve Bayes classifier

nb 2000 = MultinomialNB()		precision	recall	f1-score	support		precision	recall	f1-score	support 40
nb 2000.fit(x train,y train)	1 2	1.00 1.00 1.00	1.00 1.00 1.00	1.00 1.00 1.00	160 160 160	1 2	1.00 1.00 1.00	1.00 1.00 1.00	1.00 1.00 1.00	40 40 40
y pred=nb 2000.predict(x test)	4 accuracy	1.00	1.00	1.00	160	4	1.00	1.00	1.00	40
cm = confusion_matrix(y_test,y_pred)	macro avg weighted avg	1.00	1.00	1.00	800 800 800	accuracy macro avg weighted avg	1.00	1.00	1.00 1.00 1.00	200 200 200
cm	Figure 32 Nai Classification	,	classif	ier train)	Figure 31 Naiv Classification I	,	classifie	r test	
<pre>print(classification_report(y_test,y_</pre>	pred))									
<pre>print(classification_report(y_train,r</pre>	nb_2000	.pre	dic	t(x_	_tra:	in)))				
<pre>PredictionError(x_train,x_test,y_train)</pre>	in,y_te	st,y	_pr	ed,	nb_2(00.fit(x_tr	rain,	y_t	rain	า))

Figure 34 Naive Bayes classifier Confusion Matrix

erray([[48, 8, 8, 8, 8], [9, 40, 9, 9, 9], [8, 8, 40, 8, 8], [9, 9, 40, 9], Figure 33 Naive Bayes THE BIAS IS: 0.800 Classifier Prediction Error THE VARIANCE IS: 0.800

Passive aggressive classifier

<pre>pc 2000 = PassiveAggressiveClassifier()</pre>	F	recision		f1-score	support	į.	precision			support
- =	1	1.00	1.00	1.00	160 160	0	1.00	1.00	1.00	40
<pre>pc 2000.fit(x train, y train)</pre>	2	1.00	1.00	1.00	160	2	1.00	1.00	1.00	49 49 49 49
pe_zooo.fre(n_crafii, y_crafii)	3	1.00	1.00	1.00	160	3	1.00	1.00	1.00	40
<pre>y_pred_pc=pc_2000.predict(x_test)</pre>	accuracy macro avg	1.00	1.00	1.00	800 800	accuracy macro ave	1.00	1.00	1.00	200 200
<pre>cm = confusion matrix(y test, y pred pc)</pre>	weighted avg	1.00	1.00	1.00	800	weighted avg	1.00	1.00	1.00	200
	Figure 3	S DA +	rain c	laccifi	cation	Figure 35 PA T	est Cla	assific	ation	
cm	rigure 30) FA (I	uiii c	iussijii	cation	rigare 33 Tre 1	cot cre	a o o i ji re	.a crorr	
<pre>print(classification report(y train,pc 2</pre>	2000.p	red	ict	(x t	rain))))				
print(classification report(y test, y pre	ed pc))		_						
print(classification_report(y_train,pc_2	_ 2000.p	red	ict	(x_t	rain))))				
<pre>print(classification_report(y_test,y_pre</pre>	ed_pc))								
<pre>PredictionError(x_train,x_test,y_train,y</pre>	_test	, Y_]	pre	d,pc	2000	O.fit(x_tra	in,	y_t:	rair	1))

Figure 38 PA Confusion Matrix

y([]48, 6, 8, 8, 8], [0, 40, 0, 6, 8], [0, 6, 40, 0, 0], [0, 0, 0, 40, 0], [0, 0, 0, a, 40]]) Figure 37 PA Prediction

THE EINS IS : 0.000 THE WORLDHIE IS | 0.000

Decision tree classifier

<pre>dt 2000 = DecisionTreeClassifier()</pre>	10	recision		f1-score		р	recision	recall	f1-score	support
dt_2000.fit(x_train,y_train)	1 2 3	1.00 1.00 1.00	1.00 1.00 1.00	1.00 1.00 1.00 1.00	160 160 160 160	0 1 2	1.00 1.00 1.00	1.00 1.00 1.00	1.00 1.00 1.00	40 40 40
y_pred_dt=dt_2000.predict(x_test)	accuracy macro avg	1.00	1.00	1.00 1.00 1.00	160 800	accuracy	1.00	1.00	1.00 1.00 1.00 1.00	40 40 200 200
<pre>cm = confusion_matrix(y_test,y_pred_dt)</pre>	eighted avg	1.00	1.00	1.00	800 800	macro avg weighted avg	1.00	1.00	1.00	200
С	Figure 40	DT Tr	ain Ci	lassific	cation	Figure 39 D	T Test	Class	sificati	on
<pre>print(classification_report(y_train,dt_2</pre>	2000.p	redi	.ct(x_t	rain)))				
<pre>print(classification_report(y_test,y_pre</pre>	ed_dt))								
<pre>PredictionError(x_train,x_test,y_train,y</pre>	_test	, у_р	red	l, dt	2000	.fit(x_tr	ain	, У_	trai	n))

Figure 41 DT Confusion Matrix erray([[38, 8, 8, 2, 8], [0, 37, 0, 3, 0], [8, 8, 87, 1, 2], [3, 8, 1, 34, 2], [6, 8, 9, 1, 39])

Figure 42 DT Prediction THE V

THE BIAS IS: 0.890 THE VARIANCE IS: 0.830

SVM classifier

svm 2000 = SVC()	51	precision		fl-score	support		precision	recall	f1-score	support
svm_2000.fit(x_train,y_train)	2	1.00 1.00 1.00	1.88	1.00 1.00 1.00	160 160 160	1 2 3	1.00 1.00 1.00 1.00	1.00 1.00 1.00	1.00 1.00 1.00	40 40 40 40 40
y pred svm=svm 2000.predict(x test)	4	1.00	1.00		160	4 accuracy	1.00	1.00	1.00	
<pre>cm = confusion_matrix(y_test,y_pred_svm)</pre>	accuracy macro avg weighted avg	1.00	1,00	1.00 1.00 1.00	800 800 800	macro avg weighted avg	1.00	1.00	1.00	200 200 200
cm	Figure 44 SVI	M Train	Classij	ficatio	n F	igure 43	SVM T	est C	assific	ation
<pre>print(classification_report(y_train,svm_</pre>	2000.pred	dict(x_tı	rain)))					
<pre>print(classification_report(y_test,y_pred_svm))</pre>										
<pre>PredictionError(x train,x test,y train,y</pre>	test, v r	ored,	svm	200	0.fi	t(x t	rain	, V	tra	in))

Figure 46 SVM Confusion Matrix array([]48, 0, 0, 0, 0], [0, 40, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 40, 0], [0, 0, 0, 0, 40]] Figure 45 SVM Prediction Error THE BIAS IS : 0.800 THE VARIANCE IS : 0.800

K-nearest neighbors' classifier

knn 2000 = KNeighborsClassifier()		precision	recall	f1-score	support		precision	recall	f1-score	support
KIII_2000 - KNEIGIDOISCIASSIIIEI()	0	0.99	0.99	0.99	160	0	0.97	0.95	0.96	40
	1	1.00	1.00	1.00	160 160	1	1.00	1.00	1.00	40
	2	1.00	0.99	1.00		2	1.00	1.00	1.00	40
	3	8.99	0.99		160	3	0.93	0.97	0.95	40
knn 2000.fit(x train,y train)	4	1.00	1.00	1.00	160	.4	1.00	0.97	0.99	40
	accuracy			1.00	808 808	accuracy			0.98	200
y pred knn=knn 2000.predict(x test)	macro avg	1.00	1.00	1.00	800	macro avg	0.98	0.98	0.98	200
y_pred_kiiii-kiiii_2000.predict(x_test)	weighted avg	1.00	1.00	1.00	800	weighted avg	0.98	0.98	0.98	200
<pre>cm = confusion matrix(y test, y pred knn)</pre>	5: 47.14		cı :			E: 40 (A)				
	Figure 47 KI	IIN Irain	Classif	ication R	eport	Figure 48 KNN	i lest cid	issifica	иоп кер	ort
cm										
<pre>print(classification_report(y_train,knn_2</pre>	2000.pr	edic	t (x	_tra	in)))				
<pre>print(classification report(y test, y pred</pre>	J 1 \ \									
print(classification report(y test,y pred	ı KIIII))									

 $\label{lem:predictionError} \texttt{PredictionError}(\texttt{x_train}, \texttt{x_test}, \texttt{y_train}, \texttt{y_test}, \texttt{y_pred}, \texttt{knn_2000.fit}(\texttt{x_train}, \texttt{y_train}))$

Figure 50 KNN Confusion Matrix array([[38, 0, 0, 2, 0], [0, 40, 0, 0, 0], [0, 0, 40, 0, 0], [1, 0, 0, 39, 0], [0, 0, 0, 1, 39]])

Figure 49 KNN Prediction Error HE BIAS IS : 0.030 HE VARIANCE IS : 0.013

Making ten-fold cross-validation for each classifier

Try different ten fold cross validation folds to test our models' accuracies using only 2000 words.

```
nb_cv_2000 = MultinomialNB()
scores_nb = cross_val_score(nb_cv_2000, x_train, y_train, cv=10)
scores nb
array([1., 1., 1., 1., 1., 1., 1., 1., 1.])
pc_cv_2000 = PassiveAggressiveClassifier()
scores_pc = cross_val_score(pc_cv_2000, x_train, y_train, cv=10)
\mathsf{array}([1.,\,1.,\,1.,\,1.,\,1.,\,1.,\,1.,\,1.,\,1.,\,1.])
dt cv 2000 = DecisionTreeClassifier()
scores_dt = cross_val_score(dt_cv_2000, x_train, y_train, cv=10)
scores dt
array([0.8875, 0.95 , 0.95 , 0.925 , 0.9375, 0.9875, 0.9375, 0.9
       0.95 , 0.925 ])
svm_cv_2000 = SVC()
scores_svm = cross_val_score(svm_cv_2000, x_train, y_train, cv=10)
scores_svm
array([1., 1., 1., 1., 1., 1., 1., 1., 1., 1.])
knn_cv_2000 = KNeighborsClassifier()
scores_knn = cross_val_score(knn_cv_2000, x_train, y_train, cv=10)
scores_knn
array([1.
             , 0.9875, 1.
                             , 0.975 , 0.975 , 1. , 0.9875, 0.9875,
```

0.9875, 0.9875])

Figure 51 Ten-Fold Cross-Validation with 2000 features

Applying TF-IDF

Creating TF-IDF vectorizer

```
from sklearn.feature_extraction.text import TfidfVectorizer
tf = TfidfVectorizer()
X_tf=tf.fit_transform(X).toarray()
pd.DataFrame(X_tf,columns=tf.get_feature_names())
```

abbey abbot abhor abid abil abject abl ablaz abomin 0.0 3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 995 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 996 00 00 00 00 00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 998 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 000 00 00 00 00 00 00 00 Figure 52 TF-IDF vectorizer

Naïve Bayes classifier

	p)	recision	recall	f1-score	support					
<pre>nb tf = MultinomialNB()</pre>		1 00	1.00	1.00	*50	()	precision	recall	f1-score	support
-	1	1.00	1.00	1.00	160 160	Ð	1.00	1.00	1.00	40 40
<pre>nb tf.fit(x train, y train)</pre>	2	1.00	1.00	1.00	160	1	1.00	1.00	1.00	
	3	1.00	1.00	1.00	160	2	1.00	1.00	1.00	40 40
y pred=nb tf.predict(x test)	4	1.00	1.00	1.00	160	4	1.00	1.00	1.00	40
y_pred-mb_cr.predict(x_test)	accuracy			1.00	800					
	macro avg	1.00	1.00	1.00	800	accuracy			1.00	200
<pre>cm = confusion matrix(y test, y pred)</pre>	weighted avg	1.00	1.00	1.00	800	macro avg weighted avg	1.00	1.00	1.00	200
						werghten avg	1.00	2100	2.00	200
CM	Figure 54	NB Tro	ain Cla	ssifica	tion					
	Poport			-		Figure 5.	3 NB Te	est Clo	issifica	tion
	Report					-			,	
						Report				
						керогт				
print(classification report(v train.	lb t.f.r	ored	ict(x t.	rain))	,				
<pre>print(classification_report(y_train,r</pre>			ict(x_t	rain))	,				
<pre>print(classification_report(y_train,r print(classification report(y test,y))</pre>			ict(x_t	rain))	,				

| PredictionError(x train,x test,y train,y test,y pred,nb tf.fit(x train,y train))

Figure 56 NB Confusion Matrix Figure 55 NB Prediction Error

THE BIAS IS : 0.005 THE VARIANCE IS : 0.003

Passive aggressive classifier

> Figure 60 PA Confusion Matrix

arcay([]40, 0, 0, 0, 0], 0], [0, 40, 0, 0, 0], [0, 0, 40, 0, 0], [0, 0, 0, 40, 0], [0, 0, 0, 0, 40, 0],

Figure 59 PA
Prediction Error

THE BIAS IS: 0.800 THE VARIANCE IS: 0.800

Decision tree classifier

<pre>dt_tf = DecisionTreeClassifier()</pre>	8	precision 1.00	recall	1.00	support 160	е	precision 0.95	0.90	f1-score 0.92	40
dt_tf.fit(x_train,y_train)	1 2 3 4	1.00 1.00 1.00	1.00 1.00 1.00	1.00 1.00 1.00	160 160 160 160	1 2 3	0.97 1.00 0.80 0.88	0.95 0.93 0.90	0.96 0.96 0.85 0.89	40 40 40 40
<pre>y_pred_dt=dt_tf.predict(x_test)</pre>	accuracy macro avg weighted avg	1.00	1.00	1.00 1.00 1.00	800 800	accuracy macro avg weighted avg	0.92 0.92	8.92 8.92	0.92 0.92 0.92	200 200 200
cm = confusion_matrix(y_test,y_pred_dt)						F: C4.1	D.T	···		
CM	Figure 62 DT Train Classification Report Figure 61 DT test Report							.lassifi	cation	
<pre>print(classification_report(y_train,dt_t</pre>	f.pre	dic	t (x	_tra	ain)))					
<pre>print(classification_report(y_test,y_pre</pre>	d_dt))								
<pre>PredictionError(x_train,x_test,y_train,y</pre>	_test	, Y_1	pre	d, di	t_tf.f	it(x_tra	in,	y_t	rain	า))

Figure 63 DT = confusion Matrix array([[36, 0, 0, 4, 0], [1, 38, 0, 1, 0], [0, 0, 37, 1, 2], [0, 1, 0, 36, 3], [1, 0, 0, 3, 36]])

Figure 64 DT Prediction Error THE BIAS IS : 0.000 THE VARIANCE IS : 0.037

SVM classifier

svm tf = SVC()	,	rectsion	recall.	f1-score	support	p	recision	recall	f1-score	support
SVIII_CI - SVC()	9	1,88	1,88	1.00	168	0	1.00	1.00	1.00	40
<pre>svm tf.fit(x train,y train)</pre>	1	1.88	1.00	1.00	168 168 168	2	1.00	1.00	1.00	40
SVIII_CI.IIC(X_CIGIII, y_CIGIII)	3	1.88	1,00	1.00	100	3	1.00	1.00	1.00	40
y prod sym-sym tf prodict (y tost)	4	1.00	1.00	1.00	160	4	1.00	1.00	1.00	40
<pre>y_pred_svm=svm_tf.predict(x_test)</pre>	ассигасу			1.00	888	accuracy			1.00	200
	macro avg	1.88	1.00	1.00	888 888	macro avg weighted avg	1.00	1.00	1.00	200
<pre>cm = confusion_matrix(y_test,y_pred_svm)</pre>	weighted avg	1.88	1.88	1.00	888	neaghtee org	2.00		2.00	
cm	Figure 6	S SVIV	1 Trair	7	Figure 65 S	VM T	est Cl	assific	ation	
	Classifica	ation I	Repor	t		Report				
<pre>print(classification_report(y_train,svm_t</pre>	f.pred	lict	(x_	tra	in)))					
<pre>print(classification_report(y_test,y_pred_svm))</pre>										
PredictionError(x train.x test.v train.v	test.	, pr	ed.	svm	t.f.f	it(x tra	in.	v +	raii	n))

Figure 68 SVM Confusion Matrix ap([[40, 8, 0, 0, 0]]) [0, 40, 0, 0, 0], [0, 0, 40, 0, 0], [0, 0, 0, 40, 0], [0, 0, 0, 0, 40, 0]])

Figure 67 SVM
Prediction Error

THE BIAS IS : 0.800 THE VARIANCE IS : 0.800

K-nearest neighbors' classifier

```
knn_tf = KNeighborsClassifier()
knn_tf.fit(x_train,y_train)

y_pred_knn=knn_tf.predict(x_test)
cm = confusion_matrix(y_test,y_pred_knn)
cm

predictionError(x_train, report(y_train, knn_tf.pred_knn))

print(classification_report(y_train, x_test,y_train, y_test,y_pred_knn))

PredictionError(x_train,x_test,y_train, y_test,y_pred_knn))

predictionError(x_train,x_test,y_train,y_test,y_pred_knn_tf.)

knn_tf = KNeighborsClassification recall fl-score support
prediction flow color position color position flow color position flow
```

```
Figure 72 KNN Confusion

[ 0, 48, 0, 0 0] Figure 71 KNN THE BIAS IS : 0.025

Matrix

Figure 71 KNN THE BIAS IS : 0.025

THE VARIANCE IS : 0.010
```

Making ten-fold cross-validation for each classifier

Try different ten fold cross validation folds to test our models accuracies that use tf-idf vectorization technique.

```
PredictionError(x_train,x_test,y_train,y_test,y_pred,knn_tf.fit(x_train,y_train))
nb_cv_tf = MultinomialNB()
scores_nb = cross_val_score(nb_cv_tf, x_train, y_train, cv=10)
scores_nb
array([1., 1., 1., 1., 1., 1., 1., 1., 1.])
pc_cv_tf = PassiveAggressiveClassifier()
 scores_pc = cross_val_score(pc_cv_tf, x_train, y_train, cv=10)
scores_pc
array([1., 1., 1., 1., 1., 1., 1., 1., 1.])
dt_cv_tf = DecisionTreeClassifier()
scores_dt = cross_val_score(dt_cv_tf, x_train, y_train, cv=10)
 scores_dt
array([0.9625, 0.95 , 0.9125, 0.925 , 0.9125, 0.9 , 0.9375, 0.925 , 0.8875, 0.875 ])
svm cv tf = SVC()
scores_svm = cross_val_score(svm_cv_tf, x_train, y_train, cv=10)
scores svm
\mathsf{array}([1.,\,1.,\,1.,\,1.,\,1.,\,1.,\,1.,\,1.,\,1.,\,1.])
knn_cv_tf = KNeighborsClassifier()
scores_knn = cross_val_score(knn_cv_tf, x_train, y_train, cv=10)
scores_knn
{\sf array}( \texttt{[0.9875, 0.975, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875,
```

Figure 73 Ten-Fold Cross Validation of TF-IDF

Applying TF-IDF with bigram

Creating Bag of words

tf = TfidfVectorizer(ngram_range=(2,2))
X tf bi=tf.fit transform(X).toarray()
pd.DataFrame(X_tf_bi,columns=tf.get_feature_names())

Figure 74 TF-IDF Vectorizer with bigram

abbey abbey abbey abbey cord cri draw hal happi

Naïve Bayes classifier

<pre>nb tf bi = MultinomialNB()</pre>		precision	recall	f1-score	support		precision	recall	f1-score	support
nb_tf_bi.fit(x_train,y_train)	0 1 2	1.00 1.00 1.00	1.00 1.00 1.00	1.00 1.00 1.00	160 160 160	0 1 2	0.82 0.80 0.61	0.90 1.00 1.00	0.86 0.89 0.75	40 40 40
<pre>y_pred=nb_tf_bi.predict(x_test)</pre>	3 4	1.00	1.00	1.00	160 160	3 4	1.00 0.80	0.38 0.50	0.55 0.62	40 40
<pre>cm = confusion_matrix(y_test,y_pred) cm</pre>	accuracy macro avg weighted avg	1.00	1.00	1.00 1.00 1.00	800 800 800	accuracy macro avg weighted avg	0.80 0.80	0.76 0.76	0.76 0.73 0.73	200 200 200
	Figure 76 NB	Train Cla	ssificatio	on Report			Figure 75 N	B Test C	lassificatio	n Report

print(classification_report(y_train,nb_tf_bi.predict(x_train)))
print(classification_report(y_test,y_pred))

PredictionError(x train,x_test,y_train,y_test,y_pred,nb_tf_bi.fit(x_train,y_train))

Figure 78 NB Confusion Matrix Figure 77 NB Prediction Error

THE BIAS IS : 0.475 THE VARIANCE IS : 0.398

Passive aggressive classifier

<pre>pc tf bi = PassiveAggressiveClassifier()</pre>		precision	recall	f1-score	support		precision	recall	f1-score	support
pc_ci_bi = rassiveAgglessiveCtassifier()	0	1.00	1.00	1.00	160	0	0.75	1.00	0.86	40
+ f lai fit (ti ti)	1	1.00	1.00	1.00	160	1	0.87	1.00	0.93	40
<pre>pc tf bi.fit(x train, y train)</pre>	2	1.00	1.00	1.00	160	2	0.80	1.00	0.89	40
	3	1.00	1.00	1.00	160	3	0.81	0.42	0.56	40
y pred pc=pc tf bi.predict(x test)	4	1.00	1.00	1.00	160	4	0.87	0.65	0.74	40
	accuracy			1.00	800	accuracy			0.81	200
<pre>cm = confusion matrix(y test, y pred pc)</pre>	macro avg	1.00	1.00	1.00	800	macro avg	0.82	0.82	0.80	200
cm confusion_macrix(y_cese,y_prea_pe)	weighted avg	1.00	1.00	1.00	800	weighted avg	0.82	0.81	0.80	200
cm	Figure 79 PA	Train Cl	assificat	ion Repo	ort	Figur	e 80 PA T	est Clas	sification	Report

print(classification_report(y_train,pc_tf_bi.predict(x_train)))
print(classification_report(y_test,y_pred_pc))

PredictionError(x train,x test,y train,y test,y pred,pc tf bi.fit(x train,y train))

Figure 82 PA Confusion array([[40, 0, 0, 0, 0],

Matrix [0, 40, 0, 0, 0],
[13, 2, 4, 17, 4],
[0, 4, 6, 4, 26]]

Figure 81 PA THE BIAS IS: 0.240 Prediction Error THE VARIANCE IS: 0.113

Decision tree classifier

<pre>dt tf bi = DecisionTreeClassifier()</pre>		recision	recall	f1-score	support	31	precision	recall	f1-score	support
	0	1.00	1.00	1.00	160	0	0.75	0.23	0.35	40
dt tf bi.fit(x train, y train)	1	1.00	1.00	1.00	160	1	0.86	0.62	0.72	40
de_ci_bi:lic(x_clain, y_clain)	2	1.00	1.00	1.00	160	2	0.86	0.45	0.59	40
	3	1.00	1.00	1.00	160	3	0.30	0.88	0.45	40
<pre>y_pred_dt=dt_tf_bi.predict(x_test)</pre>	4	1.00	1.00	1.00	160	4	0.45	0.25	0.32	40
<pre>cm = confusion matrix(y test, y pred dt)</pre>	accuracy			1.00	800	accuracy			0.48	200
cm - confusion_matrix(y_test,y_pred_dt)	macro avg	1.00	1.00	1.00	800	macro avg	0.65	0.48	0.49	200
	weighted avg	1.00	1.00	1.00	800	weighted avg	0.65	0.48	0.49	200
CM	Figure 83 DT	Train Clas	ssificatio	n Report		Figure	84 DT Tes	st Classij	fication R	eport

print(classification_report(y_train,dt_tf_bi.predict(x_train)))
print(classification_report(y_test,y_pred_dt))

PredictionError(x train, x test, y train, y test, y pred, dt tf bi.fit(x train, y train))

 Figure 85 DT Prediction Error

THE BIAS IS: 0.560 THE VARIANCE IS: 0.185

SVM classifier

```
precision
                                                                                        recall
                                                                                                                    precision
                                                                                             f1-score
                                                                                                                            recall
svm tf bi = SVC()
svm tf bi.fit(x train,y train)
y pred svm=svm tf bi.predict(x test)
cm = confusion matrix(y test, y pred svm)
                                                                                                           macro avg
weighted avg
cm
                                                                                                            Figure 87 SVM Test Classification Report
                                                                      Figure 88 SVM Train Classification Report
print(classification report(y train,svm tf bi.predict(x train)))
print(classification report(y test,y pred svm))
PredictionError(x train,x test,y train,y test,y pred,svm tf bi.fit(x train,y train))
                                             array([[23,
                                                       0, 0, 17, 0],
                       Figure 90 SVM
                                                  [ 0, 18, 0, 16, 6],
[ 0, 0, 15, 21, 4],
                                                                                 Figure 89 SVM
                                                                                                   THE BIAS IS: 0.645
                       Confusion Matrix
                                                                                                   THE VARIANCE IS: 0.492
                                                                                 Prediction Error
                                                  [0, 0, 0, 14, 26]])
     K-nearest neighbors' classifier
                                                                             precision
                                                                                     recall f1-score
                                                                                                                     precision
                                                                                                                             recall
                                                                                                                                  f1-score
                                                                                                 support
knn tf bi = KNeighborsClassifier()
                                                                                                                              1.00
0.97
0.25
0.45
                                                                                                                        0.58
knn tf bi.fit(x train,y train)
                                                                                                                        0.65
0.83
0.72
y pred knn=knn tf bi.predict(x test)
cm = confusion matrix(y test, y pred knn)
cm
                                                                                                        Figure 92 KNN Test Classification Report
                                                                    Figure 91 KNN Train Classification Report
print(classification report(y train,knn tf bi.predict(x train)))
print(classification report(y test, y pred knn))
PredictionError(x train,x test,y train,y test,y pred,knn tf bi.fit(x train,y train))
                                            array([[23, 4, 8, 2, 3],
                  Figure 94 KNN Confusion
                                                                                Figure 93 KNN
                                                                                                  THE BIAS IS: 0.435
                                                  [0, 40, 0, 0, 0],
                                                                                                 THE VARIANCE IS: 0.228
                                                  [0, 1, 39, 0, 0],
                                                                                Prediction Error
                  Matrix
                                                  [11, 9, 6, 10, 4],
                                                  [0, 15, 7, 0, 18]])
    Making ten-fold cross-validation for each classifier
                                                                              nb_cv_tf_bi = MultinomialNB()
                                                                              scores_nb = cross_val_score(nb_cv_tf_bi, x_train, y_train, cv=10)
                                                                              scores nb
                                                                              array([0.7125, 0.725 , 0.7875, 0.7375, 0.775 , 0.8 , 0.8 , 0.75 , 0.7625, 0.7375])
                                                                              pc cv tf bi = PassiveAggressiveClassifier()
                                                                              scores_pc = cross_val_score(pc_cv_tf_bi, x_train, y_train, cv=10)
                                                                              scores pc
                                                                              array([0.8 , 0.725 , 0.825 , 0.7875, 0.8125, 0.8375, 0.8 , 0.8375, 0.8875, 0.775 ])
                                                                              dt_cv_tf_bi = DecisionTreeClassifier()
scores_dt = cross_val_score(dt_cv_tf_bi, x_train, y_train, cv=10)
                                                                              scores_dt
                                                                              array([0.4625, 0.525 , 0.45 , 0.5 , 0.575 , 0.475 , 0.4625, 0.55 ,
                                                                                   0.425 , 0.4 1)
                                                                              scores_svm = cross_val_score(svm_cv_tf_bi, x_train, y_train, cv=10)
                                                                              scores_svm
                                                                              array([0.625 , 0.575 , 0.5625, 0.475 , 0.625 , 0.625 , 0.55  , 0.65  , 0.5375, 0.525 ])
                                                                              knn_cv_tf_bi = KNeighborsClassifier()
                                                  Figure 95 Ten-Fold Cross-
                                                                              scores_knn = cross_val_score(knn_cv_tf_bi, x_train, y_train, cv=10)
                                                  Validation for TF-IDF with
                                                                              scores_knn
                                                  bigram
```

Topic Modeling

LDA

Applying LDA

<pre>m1 = create_model(model='lda', num_topics = 5,</pre>
multi_core=True)
lda_data = assign_model(m1)
lda_data.head()
lda_data.Dominant_Topic .value_counts()

Top 100 words after removing stop words

plot model(m1, plot = 'frequency')

words after words

Figure 97 Top 100 removing stop

Figure 96 Data to be used after

using 5

Figure 98 Sentiment Polarity Distribution

Topic 0: Sentiment Polarity Distribution

Sentiment Polarity Distribution

plot model(m1, plot = 'sentiment')

Model Description

<pre>model = setup(data = lda</pre>	_da	ata, targe	et = 'la	bel', sessi	on_id = 123)
	0	session_id	123 29	Normalize	False
	31	Target	label 30	Normalize Method	None
	2	Target Type	Multiclass 31	Transformation	False
	3	Label Encoded austen-errma.	0. bryant-stories: 1. burgess-bus 32	Transformation Method	None
	4	Original Data	(1000.6) 33	PCA	False
		Missing Values	Falsa 34	PCA Method	None
		Numerio Features	5 35	PCA Components	None
	7	Categorical Features	0 36	Ignore Low Variance	False
	8	Ordinal Features	False 37	Combine Rare Levels	False
	9	High Cardinality Features	Faise 38	Rare Level Threshold	None
	10	High Cardinality Method	None 39	Numeric Binning	False
	11	Transformed Train Set	(599.5) 40	Remove Outliers	False
	12	Transformed Test Set	(301, 5) 41	Outliers Threshold	None
	13	Shuffle Train-Test	True 42	Remove Multicollinearity	False
	14	Stratify Train-Test	False 43	Multicollinearity Threshold	None
	15	Fold Generator	StratfiedKFold 44	Remove Perfect Collinearity	True
	16	Fold Number	¹⁰ 45	Clustering	False
	17	CPU Jobs	-1 46	Clustering iteration	None
	18	Use GPU	Faise 47	Polynomial Features	False
	19	Log Experiment	False 48	Polynomial Degree	None
	20	Experiment Name	cif-default-name 49	Trignometry Features	False
	21	USI	a590 50	Polynomial Threshold	None
	22	Imputation Type	simple 51	Group Features	False
	23	Iterative Imputation Iteration	None 62	Feature Selection	False
	24	Numeric Imputer	mean 63	Feature Selection Method	classic
Figure 00 Model		terative Imputation Numeric Model	None 54	Features Selection Threshold	None
Figure 99 Model	26	Categorical Imputer	constant 55	Feature Interaction	False
Description with	27 Ites 28	ative Imputation Categorical Model Unknown Categoricals Handling	None 56	Feature Ratio	False
Description with			least_frequent 67	Interaction Threshold	None
LDA data	29	Normalize Normalize Method	False None 58	Fix imbalance	False
LDA data	20	reprinciple Method	None 59	Fix imbalance Method	SMOTE

Models' Scores

compare models()

Using compare_models() function to compare multiple models average performance metrics such as accuracy, AUC, Recall and etc.

	Model	Accuracy	AUC	Recall	Prec.	F1	Карра	MCC	TT (Sec)
knn	K Neighbors Classifier	0.7424	0.9330	0.7427	0.7474	0.7382	0.6773	0.6806	0.118
et	Extra Trees Classifier	0.7410	0.9387	0.7430	0.7484	0.7398	0.6757	0.6774	0.552
catboost	CatBoost Classifier	0.7410	0.9404	0.7418	0.7499	0.7373	0.6755	0.6791	7.137
lightgbm	Light Gradient Boosting Machine	0.7381	0.9393	0.7397	0.7435	0.7371	0.6721	0.6738	0.360
rf	Random Forest Classifier	0.7309	0.9399	0.7328	0.7370	0.7283	0.6631	0.6657	0.524
xgboost	Extreme Gradient Boosting	0.7309	0.9393	0.7324	0.7367	0.7282	0.6631	0.6656	0.570
lr	Logistic Regression	0.7267	0.9328	0.7116	0.6342	0.6595	0.6547	0.6875	0.507
lda	Linear Discriminant Analysis	0.7210	0.9321	0.7058	0.6318	0.6531	0.6475	0.6812	0.025
dt	Decision Tree Classifier	0.7181	0.8231	0.7192	0.7216	0.7164	0.6470	0.6487	0.019
gbc	Gradient Boosting Classifier	0.7038	0.9332	0.7057	0.7058	0.7016	0.6291	0.6307	0.918
nb	Naive Bayes	0.7023	0.9335	0.7230	0.7399	0.6501	0.6307	0.6631	0.018
qda	Quadratic Discriminant Analysis	0.7009	0.9324	0.7217	0.7016	0.6478	0.6290	0.6620	0.018
svm	SVM - Linear Kernel	0.6710	0.0000	0.6756	0.6484	0.5926	0.5885	0.6327	0.063
ridge	Ridge Classifier	0.6381	0.0000	0.6239	0.5783	0.5238	0.5429	0.5898	0.017
ada	Ada Boost Classifier	0.5952	0.8979	0.5845	0.4034	0.4655	0.4892	0.5479	0.119
dummy	Dummy Classifier	0.2218	0.5000	0.2000	0.0492	0.0806	0.0000	0.0000	0.015

Figure 100 Models' Scores

Evaluation and Augmentation Champion Model

AUC-ROC for champion model in each book

plot model(rf, plot = 'auc')

Precision-Recall curve of the champion model

plot model(rf, plot = 'pr')

Figure 102 Precision-Recall Curve of RF model

Confusion Matrix of the champion model

plot_model(rf, plot = 'confusion_matrix')

Class Prediction Error of the champion model

plot_model(rf, plot = 'error')

Decision Boundaries of the champion model

plot_model(rf, plot = 'boundary')

General Evaluation of the champion model

evaluate model(rf)

Figure 103 Confusion matrix of RF model

Figure 104 Class Prediction error of RF model

Figure 105 Decision boundaries of RF model

Plot Type:	Hyperparameters		AUC	Confusion Matrix	Threshold		
	Precision Recall		Prediction Error	Class Report	Feature Selection		
	Learning Curve	N	tanifold Learning	Calibration Curve	Validation Curv		
	Dimensions	Feature Importance		Feature Importance	Decision Bounds		
	Lift Chart		Gain Chart	Decision Tree	KS Statistic Pio		
	Para	meters					
boots	trap	True					
ccp_a	lpha	0.0					
class_v	reight	None					
criter	ion	gini					
max_d	epth	None					
max_fe	atures	auto					
max_leaf	nodes	None					
max_leaf_nodes max_samples		None					
min_impurity_decrease		0.0					
min_impurity_split		None					
min_samples_leaf		1					
min_samp	les_split	2					
min_weight_f	raction_leaf	0.0					
n_estin	ators	100					
n_jobs		-1					
oob_s	core	False					
random	state	123					
verb	ose	0					
warm	start	False					

Figure 106 General evaluation of RF model

Error Analysis of champion model LDA + Random Forest

```
# Permutation Feature Importance
interpret model(rf, plot = 'pfi')
```

using Feature permutation importance to show importance of features

The bar chart shows the model's view of the relative feature importance

```
interpret_model(rf)
```

The bar chart shows the model's view of the relative feature importance

#Morris Sensitivity Analysis
interpret model(rf, plot = 'msa')

interpret_model(rf, plot = 'pdp')
Partial dependence plots.
Partial dependence plots (PDP)
 show the dependence between the
 target response and a set of input
 features of interest, marginalizing
 over the values of all other input
 features

Figure 107 Permutation Feature Importance

Figure 108 Mean SHAP value

Figure 109 Morris Sensitivity Analysis

Figure 110 Partial Dependence Plots

Data Augmentation

```
import nlpaug.augmenter.word as naw
substitution = naw.ContextualWordEmbsAug(model_path="distilbert-base-
uncased", action="substitute")
insertion = naw.ContextualWordEmbsAug(model_path="distilbert-base-
uncased", action="insert")

corpus = []
for i in range(len(df_final['Text_sample'])):
   augmented_text = insertion.augment(str(df_final['Text_sample'][i]))
   corpus.append(augmented_text)

df = pd.DataFrame(corpus)
```

After going through same procedures before using data augmentation which are:

Models' Scores

compare models()

Using compare_models() function to compare multiple models average performance metrics such as accuracy, AUC, Recall and etc..

	Model	Accuracy	AUC	Recall	Prec.	F1	Карра	MCC	TT	(Sec)
xgboost	Extreme Gradient Boosting	0.9871	0.9999	0.9642	0.9884	0.9868	0.9814	0.9817		0,400
rf	Random Forest Classifier	0.9843	0.9998	0.9596	0.9858	0.9839	0.9773	0.9776		0.52
ightgbm	Light Gradient Boosting Machine	0.9843	0.9998	0.9644	0.9858	0.9840	0.9773	0.9778		0.28
catboost	CatBoost Classifier	0.9843	0.9998	0.9702	0.9862	0.9843	0.9774	0.9777		6.97
ridge	Ridge Classifier	0,9828	0.0000	0.9293	0.9842	0.9816	0.9750	0.9755		0.01
svm	SVM - Linear Kernel	0.9814	0.0000	0.9548	0.9846	0.9811	0.9733	0.9739		0.08
gbc	Gradient Boosting Classifier	0.9814	0.9997	0.9473	0.9824	0.9807	0.9730	0.9734		0.71
lda	Linear Discriminant Analysis	0.9814	0.9998	0.9872	0.9876	0.9829	0.9735	0.9741		0.01
et	Extra Trees Classifier	0.9814	0.9998	0.9508	0.9834	0.9809	0.9731	0.9735		0.45
knn	K Neighbors Classifier	0.9800	0.9987	0.9481	0.9818	0.9794	0.9710	0.9714		0.11
dt	Decision Tree Classifier	0.9786	0.9859	0.9598	0.9814	0.9788	0.9692	0.9697		0.01
Ir	Logistic Regression	0.9785	0.9997	0.9217	0.9798	0.9771	0.9687	0.9692		0.50
ada	Ada Boost Classifier	0.9714	0.9956	0.9395	0.9735	0.9713	0.9587	0.9591		0.11
nb	Naive Bayes	0.9814	0.9989	0.9708	0.9734	0.9642	0.9452	0.9467		0.01
qda	Quadratic Discriminant Analysis	0.9528	0.9979	0.9567	0.9663	0.9560	0.9331	0.9348		0.01

Figure 111 Models' Scores - Data augmentation

Champion Model

AUC-ROC for champion model in each book

```
plot model(rf, plot = 'auc')
```


plot model(rf, plot = 'pr')

Confusion Matrix of the champion model

plot model(rf, plot = 'confusion matrix')

Figure 114 Confusion matrix of RC model -Data augmentation

Class Prediction Error of the champion model

plot_model(rf, plot = 'error')

General Evaluation of the champion model

evaluate model(rf)

Figure 116 General evaluation of RF model - Data augmentation

Error Analysis of champion model LDA + Random Forest with augmentation

Permutation Feature Importance
interpret model(rf, plot = 'pfi')

using Feature permutation importance after data augmentation to show importance of features

The bar chart shows the model's view of the relative feature importance

interpret model(rf)

#Morris Sensitivity Analysis
interpret model(rf, plot = 'msa')

Figure 117 Permutation Feature Importance - Data augmentation

Figure 118 Mean SHAP values - Data augmentation

Figure 119 Morris Sensitivity Analysis - Data augmentation

interpret_model(rf, plot = 'pdp')
Partial dependence plots.
Partial dependence plots (PDP) show
 the dependence between the target
response and a set of input features
 of interest, marginalizing over the
values of all other input features

Figure 120 Partial Dependence Plots - Data augmentation

Conclusion

Finally, five models have been built for the classification task. These models are Naive Bayes Classifier, Passive Aggressive Classifier, SVM Classifier, Decision Tree Classifier, and K-nearest neighbor Classifier (KNN). The champion model is KNN which has more than 97% accuracy. After that, data augmentation was used to increase data size to enhance the models' accuracies and apply latent Dirichlet allocation (LDA) for topic modeling task and then Random Forest algorithm is applied to classify the topic of each document in corpus and it showed an outstanding result as it has AUC-ROC of approximately 0.999 and accuracy of approximately 0.984. At last, some error analyses were performed on the champion model which is Random Forest with LDA and data augmentation which was better than TF-IDF and TF-IDF with bigram model, also, Topic 3 was found to be the most important feature compared to others and also Random Forest model was found to be frequently confused when trying to classify "burgess-busterbrown" and "carroll-alice" books.

References

- [1] Amato, F., Coppolino, L., Cozzolino, G., Mazzeo, G., Moscato, F., & Nardone, R. (2021). Enhancing random forest classification with NLP in DAMEH: A system for DAta Management in eHealth Domain. *Neurocomputing*, 444, 79–91. https://doi.org/10.1016/j.neucom.2020.08.091
- [2] Build software better, together. (n.d.). GitHub. Retrieved May 29, 2022, from https://github.com/topics/svm-classifier
- [3] Feng, S. Y., Gangal, V., Wei, J., Chandar, S., Vosoughi, S., Mitamura, T., & Hovy, E. (2021). A Survey of Data Augmentation Approaches for NLP. *ArXiv:2105.03075*[Cs]. https://arxiv.org/abs/2105.03075
- [4] Maier, D., Waldherr, A., Miltner, P., Wiedemann, G., Niekler, A., Keinert, A., Pfetsch, B., Heyer, G., Reber, U., Häussler, T., Schmid-Petri, H., & Adam, S. (2018). Applying LDA Topic Modeling in Communication Research: Toward a Valid and Reliable Methodology. *Communication Methods and Measures*, 12(2-3), 93–118. https://doi.org/10.1080/19312458.2018.1430754
- [5] Pal, K., & Patel, Biraj. V. (2020, March 1). Data Classification with k-fold Cross Validation and Holdout Accuracy Estimation Methods with 5 Different Machine Learning Techniques. IEEE Xplore. https://doi.org/10.1109/ICCMC48092.2020.ICCMC-00016
- [6] Riza, L. S., Pertiwi, A. D., Rahman, E. F., Munir, M., & Abdullah, C. U. (2019).
 Question Generator System of Sentence Completion in TOEFL Using NLP and K-Nearest Neighbor. *Indonesian Journal of Science and Technology*, 4(2), 294–311.
 https://doi.org/10.17509/ijost.v4i2.18202

- [7] Walkowiak, T., Datko, S., & Maciejewski, H. (2018). Bag-of-Words, Bag-of-Topics and Word-to-Vec Based Subject Classification of Text Documents in Polish A Comparative Study. Contemporary Complex Systems and Their Dependability, 526–535. https://doi.org/10.1007/978-3-319-91446-6 49
- [8] Yang, F.-J. (2018, December 1). *An Implementation of Naive Bayes Classifier*. IEEE Xplore. https://doi.org/10.1109/CSCI46756.2018.00065