

UNITED STATES PATENT AND TRADEMARK OFFICE

UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTS
P.O. Box 1450
Alexandria, Virginia 22313-1450
www.uspto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.	
09/896,783	06/29/2001	Clyde George Bethea	25-66-105-20-29-1-3-35-14	8896	
7590	05/24/2006	EXAMINER			
LI, SHI K					
		ART UNIT	PAPER NUMBER	2613	

DATE MAILED: 05/24/2006

Please find below and/or attached an Office communication concerning this application or proceeding.

Office Action Summary	Application No.	Applicant(s)	
	09/896,783	BETHEA ET AL.	
	Examiner	Art Unit	
	Shi K. Li	2613	

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --

Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) OR THIRTY (30) DAYS, WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION.

- Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication.
- If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication.
- Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133). Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b).

Status

- 1) Responsive to communication(s) filed on 20 March 2006.
- 2a) This action is FINAL. 2b) This action is non-final.
- 3) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under *Ex parte Quayle*, 1935 C.D. 11, 453 O.G. 213.

Disposition of Claims

- 4) Claim(s) 1-3 and 6-24 is/are pending in the application.
- 4a) Of the above claim(s) _____ is/are withdrawn from consideration.
- 5) Claim(s) _____ is/are allowed.
- 6) Claim(s) 1-3 and 6-24 is/are rejected.
- 7) Claim(s) _____ is/are objected to.
- 8) Claim(s) _____ are subject to restriction and/or election requirement.

Application Papers

- 9) The specification is objected to by the Examiner.
- 10) The drawing(s) filed on _____ is/are: a) accepted or b) objected to by the Examiner.
Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a).
Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d).
- 11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152.

Priority under 35 U.S.C. § 119

- 12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).
- a) All b) Some * c) None of:
1. Certified copies of the priority documents have been received.
 2. Certified copies of the priority documents have been received in Application No. _____.
 3. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)).

* See the attached detailed Office action for a list of the certified copies not received.

Attachment(s)

- | | |
|--|---|
| 1) <input checked="" type="checkbox"/> Notice of References Cited (PTO-892) | 4) <input type="checkbox"/> Interview Summary (PTO-413) |
| 2) <input type="checkbox"/> Notice of Draftsperson's Patent Drawing Review (PTO-948) | Paper No(s)/Mail Date. _____. |
| 3) <input checked="" type="checkbox"/> Information Disclosure Statement(s) (PTO-1449 or PTO/SB/08)
Paper No(s)/Mail Date _____. | 5) <input type="checkbox"/> Notice of Informal Patent Application (PTO-152) |
| | 6) <input type="checkbox"/> Other: _____. |

DETAILED ACTION

Claim Rejections - 35 USC § 103

1. The text of those sections of Title 35, U.S. Code not included in this action can be found in a prior Office action.
2. Claims 1, 6, 8, 10-13 and 15-19 are rejected under 35 U.S.C. 103(a) as being unpatentable over Paiella et al. (R. Paiella et al., "Generation and Detection of High-Speed Pulses of Mid-Infrared Radiation with Intersubband Semiconductor Lasers and Detectors", IEEE Transactions on Photonics Technology Letters, Vol. 12, No. 7, July 2000) in view of Christopher (U.S. Patent Application Pub. 2002/0181059 A1), Ionov et al. (U.S. Patent 6,816,682 B1), Miyauchi et al. (U.S. Patent 6,823,141 B2), Levi et al. (U.S. Patent 5,099,489) and Saini et al. (U.S. Patent 6,310,995 B1).

Regarding claims 1, 6 and 13, Paiella et al. discloses in FIG. 2 a transmitter comprising a mid-infrared laser (QC laser) for generating a stream of optical pulses according to a stream of input signal. As illustrated in FIG. 2, the QC laser is directly modulated to generate high and low optical power levels as illustrated in FIG. 3. The difference between Paiella et al. and the claimed invention is that Paiella et al. does not teach to use the transmitter to transmit pulses to a remote receiver for free space communication. Christopher teaches in FIG. 23 a free space communication system using 10-micro optical link. Christopher teaches in paragraph [0058] that mid-infrared wavelength is preferable over near-infrared for free-space communication because it has less attenuation over fog conditions. One of ordinary skill in the art would have been motivated to combine the teaching of Christopher with the mid-IR transmitter of Paiella et al. and apply the mid-IR transmitter to transmit optical pulses over free space channel to a remote

receiver because mid-IR pulses have less attenuation over fog conditions and the transmitter of Paiella et al. generates short pulses and supports high data-rate communication. Thus it would have been obvious to one of ordinary skill in the art at the time the invention was made to use the mid-IR transmitter of Paiella et al. for free space communication, as taught by Christopher, because mid-IR pulses have less attenuation over fog conditions and the transmitter of Paiella et al. generates short pulses and supports high data-rate communication.

The modified free space communication system of Paiella et al. and Christopher still fails to teach receiving a stream of input data signals since Paiella et al. only uses FIG. 2 to demonstrate the operation theory. Ionov et al. discloses in FIG. 2 a real optical transmitter 48 that received input data signals from sorter 42. One of ordinary skill in the art would have been motivated to combine the teaching of Ionov et al. with the modified free space communication system of Paiella et al. and Christopher because a real system transmits data and generates revenue. Thus it would have been obvious to one of ordinary skill in the art at the time the invention was made to transmit real data signals received by the optical transmitter, as taught by Ionov et al., in the modified free space communication system of Paiella et al. and Christopher because a real system transmits data and generates revenue.

The modified free space communication system of Paiella et al., Christopher and Ionov et al. still fails to teach RZ-coded transmission. It is well known in the art that digital data can be transmitted using NRZ signal or RZ signal. For example, Miyauchi et al. teaches explains the in FIG. 3A and FIG. 3B NRZ and RZ signals. FIG. 3A shows that in RZ signal the duration of a non-lasing state representing 0 is longer than the lasing interval representing 1. One of ordinary skill in the art would have been motivated to use RZ format for digital transmission because RZ-

coded signal is lesser affected by the inter-symbol interference due to the increase of the width of pulses on the transmission line than the NRZ coded signal (see col. 5, lines 49-51 of Miyauchi et al.). Thus it would have been obvious to one of ordinary skill in the art at the time the invention was made to use RZ-coded signal for digital data transmission, as taught by Miyauchi et al., in the modified free space communication system of Paiella et al., Christopher and Ionov et al. because RZ-coded signal is lesser affected by the inter-symbol interference due to the increase of the width of pulses on the transmission line than the NRZ coded signal.

The modified free space communication system of Paiella et al., Christopher, Ionov et al. and Miyauchi et al. still fails to teach a DC bias of 0.001 volt to 0.1 volt from a lasing threshold. However, it is well known in the art to bias a laser near lasing threshold to reduce switching time. For example, Levi et al. teaches in col. 7, lines 5-7 a switching voltage of 30 mV. As another example, Saini et al. teaches in col. 9, lines 30-33 a switch voltage of 0.1 Volt. One of ordinary skill in the art would have been motivated to combine the teaching of Levi et al. or Saini et al. with the modified free space communication system of Paiella et al., Christopher, Ionov et al. and Miyauchi et al. because biasing near lasing threshold reduces switching time and supports high switching data rate. Thus it would have been obvious to one of ordinary skill in the art at the time the invention was made to bias the laser near the lasing threshold to within 0.001 volt to 0.1 volt, as taught by Levi et al. or Saini et al., in the modified free space communication system of Paiella et al., Christopher, Ionov et al. and Miyauchi et al. because biasing near lasing threshold reduces switching time and supports high switching data rate.

Regarding claims 8 and 17-18, Christopher suggests a wavelength of 10 microns.

Regarding claims 10 and 19, both Christopher and Paiella et al. teach that mid-infrared light has low atmospheric losses (see p. 781, second paragraph of Paiella et al.).

Regarding claim 11-12, Paiella et al. teaches a QC laser which operates at around 3 GHz (see p. 781, right col., first paragraph).

Regarding claim 15, Paiella et al. teaches in FIG. 2 and FIG. 3 that the laser output is at a high optical power level when the laser is driven above a lasing threshold, and the laser output is at a low optical power level when the laser is below the lasing threshold. Paiella et al. teaches on page 781, right col., last paragraph that the laser is biased at approximately 80% of its CW threshold value.

Regarding claim 16, Paiella et al. teaches a quantum cascade laser.

3. Claims 2, 7 and 9 are rejected under 35 U.S.C. 103(a) as being unpatentable over Paiella et al. (R. Paiella et al., "Generation and Detection of High-Speed Pulses of Mid-Infrared Radiation with Intersubband Semiconductor Lasers and Detectors", IEEE Transactions on Photonics Technology Letters, Vol. 12, No. 7, July 2000) in view of Christopher (U.S. Patent Application Pub. 2002/0181059 A1), Ionov et al. (U.S. Patent 6,816,682 B1), Levi et al. (U.S. Patent 5,099,489) and Saini et al. (U.S. Patent 6,310,995 B1).

Regarding claim 2, Paiella et al. discloses in FIG. 2 a transmitter comprising a mid-infrared laser (QC laser) for generating a stream of optical pulses according to a stream of input signal. As illustrated in FIG. 2, the QC laser is directly modulated to generate high and low optical power levels as illustrated in FIG. 3. Paiella et al. teaches in FIG. 2 and FIG. 3 that the laser output is at a high optical power level when the laser is driven above a lasing threshold, and the laser output is at a low optical power level when the laser is below the lasing threshold.

Paiella et al. teaches on page 781, right col., last paragraph that the laser is biased at approximately 80% of its CW threshold value. The difference between Paiella et al. and the claimed invention is that Paiella et al. does not teach to use the transmitter to transmit pulses to a remote receiver for free space communication. Christopher teaches in FIG. 23 a free space communication system using 10-micro optical link. Christopher teaches in paragraph [0058] that mid-infrared wavelength is preferable over near-infrared for free-space communication because it has less attenuation over fog conditions. One of ordinary skill in the art would have been motivated to combine the teaching of Christopher with the mid-IR transmitter of Paiella et al. and apply the mid-IR transmitter to transmit optical pulses over free space channel to a remote receiver because mid-IR pulses have less attenuation over fog conditions and the transmitter of Paiella et al. generates short pulses and supports high data-rate communication. Thus it would have been obvious to one of ordinary skill in the art at the time the invention was made to use the mid-IR transmitter of Paiella et al. for free space communication, as taught by Christopher, because mid-IR pulses have less attenuation over fog conditions and the transmitter of Paiella et al. generates short pulses and supports high data-rate communication.

The modified free space communication system of Paiella et al. and Christopher still fails to teach receiving a stream of input data signals since Paiella et al. only uses FIG. 2 to demonstrate the operation theory. Ionov et al. discloses in FIG. 2 a real optical transmitter 48 that received input data signals from sorter 42. One of ordinary skill in the art would have been motivated to combine the teaching of Ionov et al. with the modified free space communication system of Paiella et al. and Christopher because a real system transmits data and generates revenue. Thus it would have been obvious to one of ordinary skill in the art at the time the

invention was made to transmit real data signals received by the optical transmitter, as taught by Ionov et al., in the modified free space communication system of Paiella et al. and Christopher because a real system transmits data and generates revenue.

The modified free space communication system of Paiella et al., Christopher and Ionov et al. still fails to teach a DC bias of 0.001 volt to 0.1 volt from a lasing threshold. However, it is well known in the art to bias a laser near lasing threshold to reduce switching time. For example, Levi et al. teaches in col. 7, lines 5-7 a switching voltage of 30 mV. As another example, Saini et al. teaches in col. 9, lines 30-33 a switch voltage of 0.1 Volt. One of ordinary skill in the art would have been motivated to combine the teaching of Levi et al. or Saini et al. with the modified free space communication system of Paiella et al., Christopher and Ionov et al. because biasing near lasing threshold reduces switching time and supports high switching data rate. Thus it would have been obvious to one of ordinary skill in the art at the time the invention was made to bias the laser near the lasing threshold to within 0.001 volt to 0.1 volt, as taught by Levi et al. or Saini et al., in the modified free space communication system of Paiella et al., Christopher and Ionov et al. because biasing near lasing threshold reduces switching time and supports high switching data rate.

Regarding claims 7 and 9, Christopher suggests a wavelength of 10 microns.

4. Claim 3 is rejected under 35 U.S.C. 103(a) as being unpatentable over Paiella et al., Christopher, Ionov et al., Levi et al. and Saini et al. as applied to claim 2, 7 and 9 above, and further in view of Hwang et al. (U.S. Patent 6,549,556 B1).

Paiella et al., Christopher, Ionov et al., Levi et al. and Saini et al. have been discussed above in regard to claims 2, 7 and 9. The difference between Paiella et al., Christopher, Ionov et

al., Levi et al. and Saini et al. and the claimed invention is that Paiella et al., Christopher, Ionov et al., Levi et al. and Saini et al. do not teach electrical pumping and optical pumping for laser operation. Hwang et al. teaches in col. 1, lines 50-65 operation of semiconductor lasers. A semiconductor laser includes a gain region for building up energy. Various forms of pumping energy may be utilized to cause the active region to emit photons including electrical pumping, optical pumping and electron beam pumping. These are equivalent mechanisms for pumping energy to a semiconductor laser. Where the claimed differences involve the substitution of interchangeable or replaceable equivalents and the reason for the selection of one equivalent for another was not to solve an existent problem, such substitution has been judicially determined to have been obvious. See *In re Ruff*, 118, USPQ 343 (CCPA 1958). Therefore, it would have been obvious to one of ordinary skill in the art at the time of the invention to use either electrical pumping or optical pumping to build up energy in the active region of a semiconductor laser in the modified free space communication system of Paiella et al., Christopher, Ionov et al., Levi et al. and Saini et al.

5. Claim 20 is rejected under 35 U.S.C. 103(a) as being unpatentable over Paiella et al., Christopher, Ionov et al., Miyauchi et al., Levi et al. and Saini et al. as applied to claims 1, 6, 8, 10-13 and 15-19 above, and further in view of Durant et al. (U.S. Patent 6,016,212).

Paiella et al., Christopher, Ionov et al., Miyauchi et al., Levi et al. and Saini et al. have been discussed above in regard to claims 1, 6, 8, 10-13 and 15-19. The difference between Paiella et al., Christopher, Ionov et al., Miyauchi et al., Levi et al. and Saini et al. and the claimed invention is that the modified free space communication of Paiella et al., Christopher, Ionov et al., Miyauchi et al., Levi et al. and Saini et al. does not teach collimating optics. However, it is

well known in the art to use optics to change the geometry of light beams. For example, Durant et al. teaches in FIG. 1 and col. 3, lines 5-10 to use collimating optics to form a light beam of a diameter of half an inch (13 mm). One of ordinary skill in the art would have been motivated to combine the teaching of Durant et al. with the modified free space optical communication system of Paiella et al., Christopher, Ionov et al., Miyauchi et al., Levi et al. and Saini et al. because an appropriate light beam size makes it easy for alignment while maintains a reasonable size for the optics such as telescope. Thus it would have been obvious to one of ordinary skill in the art at the time the invention was made to use collimating optics to obtain an appropriate geometry for the light beam, as taught by Durant et al., in the modified free space optical communication system of Paiella et al., Christopher, Ionov et al., Miyauchi et al., Levi et al. and Saini et al. because an appropriate light beam size makes it easy for alignment while maintains a reasonable size for the optics such as telescope.

6. Claims 21-22 are rejected under 35 U.S.C. 103(a) as being unpatentable over Paiella et al., Christopher, Ionov et al., Miyauchi et al., Levi et al. and Saini et al. as applied to claim 1, 6, 8, 10-13 and 15-19 above, and further in view of Hwang et al. (U.S. Patent 6,549,556 B1).

Paiella et al., Christopher, Ionov et al., Miyauchi et al., Levi et al. and Saini et al. have been discussed above in regard to claims 1, 6, 8, 10-13 and 15-19. The difference between Paiella et al., Christopher, Ionov et al., Miyauchi et al., Levi et al. and Saini et al. and the claimed invention is that Paiella et al., Christopher, Ionov et al., Miyauchi et al., Levi et al. and Saini et al. do not teach electrical pumping and optical pumping for laser operation. Hwang et al. teaches in col. 1, lines 50-65 operation of semiconductor lasers. A semiconductor laser includes a gain region for building up energy. Various forms of pumping energy may be utilized to cause the

active region to emit photons including electrical pumping, optical pumping and electron beam pumping. These are equivalent mechanisms for pumping energy to a semiconductor laser.

Where the claimed differences involve the substitution of interchangeable or replaceable equivalents and the reason for the selection of one equivalent for another was not to solve an existent problem, such substitution has been judicially determined to have been obvious. See *In re Ruff*, 118, USPQ 343 (CCPA 1958). Therefore, it would have been obvious to one of ordinary skill in the art at the time of the invention to use either electrical pumping or optical pumping to build up energy in the active region of a semiconductor laser in the modified free space communication system of Paiella et al., Christopher, Ionov et al., Miyauchi et al., Levi et al. and Saini et al.

7. Claims 14 and 23-24 are rejected under 35 U.S.C. 103(a) as being unpatentable over Paiella et al., Christopher, Ionov et al., Miyauchi et al., Levi et al. and Saini et al. as applied to claim 1, 6, 8, 10-13 and 15-19 above, and further in view of Ramaswami et al. ("Optical Networks: a Practical Perspective" by Ramaswami et al., Academic Press, 1998, pp. 177-180).

Paiella et al., Christopher, Ionov et al., Miyauchi et al., Levi et al. and Saini et al. have been discussed above in regard to claims 1, 6, 8, 10-13 and 15-19. The difference between Paiella et al., Christopher, Ionov et al., Miyauchi et al., Levi et al. and Saini et al. and the claimed invention is that Paiella et al., Christopher, Ionov et al., Levi et al. and Saini et al. do not teach percentage of lasing interval. Firstly, percentage of lasing interval depends on data rate. Secondly, Ramaswami et al. teaches in FIG. 4.1 short pulse format which minimize the effects of chromatic dispersion. One of ordinary skill in the art would have been motivated to use short pulse format for digital data transmission because it minimizes chromatic dispersion. Thus it

would have been obvious to one of ordinary skill in the art at the time the invention was made to use short pulse format, as taught by Ramaswami et al., in the modified space communication system of Paiella et al., Christopher, Ionov et al., Miyauchi et al., Levi et al. and Saini et al. because it minimizes chromatic dispersion. Paiella et al. teaches in FIG. 3(a) that the pulse width is 89 psec. For a data rate of 1 GHz, the lasing interval is less than 10% of the data period.

Response to Arguments

8. Applicant's arguments with respect to claims 1-3 and 6-24 have been considered but are moot in view of the new ground(s) of rejection.

Conclusion

9. Applicant's amendment necessitated the new ground(s) of rejection presented in this Office action. Accordingly, **THIS ACTION IS MADE FINAL**. See MPEP § 706.07(a). Applicant is reminded of the extension of time policy as set forth in 37 CFR 1.136(a).

A shortened statutory period for reply to this final action is set to expire THREE MONTHS from the mailing date of this action. In the event a first reply is filed within TWO MONTHS of the mailing date of this final action and the advisory action is not mailed until after the end of the THREE-MONTH shortened statutory period, then the shortened statutory period will expire on the date the advisory action is mailed, and any extension fee pursuant to 37 CFR 1.136(a) will be calculated from the mailing date of the advisory action. In no event, however, will the statutory period for reply expire later than SIX MONTHS from the date of this final action.

Any inquiry concerning this communication or earlier communications from the examiner should be directed to Shi K. Li whose telephone number is 571 272-3031. The examiner can normally be reached on Monday-Friday (8:30 a.m. - 5:00 p.m.).

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Jason Chan can be reached on 571 272-3022. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see <http://pair-direct.uspto.gov>. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free).

skl
15 May 2006

Shi K. Li
Patent Examiner