Distributed Nash Equilibrium Seeking On a Consensus based Gaming

Ryan J. Kung

ryankung@ieee.org

April 29, 2018

Introduction

- Game
- Nash Equilibrium
- Distributed Game

Game

Consider a game with N players. The set of players is denoted by $\mathbb{N}=1,2,...,N$. The payoff function of player i is $f_i(x)$, where $x=[x_1,x_2,...,x_N]^T\in R^N$ is the vector of players' actions and $x_i\in R$ is the action of player i, then player i has no direct access to player j's action.

Nash Equilibrium

Nash equilibrium is an action profile on which no player can gain more payoff by unilaterally changing its own action.

$$\forall i, x_i \in S_i : f_i(x_i^*, x_{-i}^*) \geq f_i(x_i, x_{-i}^*)$$

Cournot's duopoly Model

- the players are the firms
- the actions of each firm are the set of possible outputs Q
- the payoff of each firm is its profit.

where:

```
p:= Price, Inverse demand function
```

 u_i := Profit of player i

 c_i := Total Cost Function

Cournot's duopoly Model

p:= Price, Inverse demand function

 u_i := Profit of player i

 c_i := Total Cost Function

We have:

$$u_i(q_1,q_2)=q_ip(q)-c_i(q_i)$$

Thus the response function $\dot{r}_i: Q_1 \rightarrow Q_2$:

$$\dot{r}_1=\dot{r}_2=\frac{1-c}{3}$$

Distributed

A system is distributed if the message transmission delay is not negligible compared to the time between events in a single process. [1]

Figure: Lamport Timestamp

Distributed Game

We defined Distributed Gaming as a series of Game Behaviors and Strategis which is Distributed. A Gaming is Distributed if the message transaction delay is not negligible compared to the time between event in classic gaming behavior.

Formalize

Consider a game with N players. The set of players is denoted by $\mathbb{N}=1,2,...,N$. The payoff function of player i is $f_i(x)$, where $x=[x_1,x_2,...,x_N]^T\in R^N$ is the vector of players' actions and $x_i\in R$ is the action of player i, then player i has no direct access to player j's action.

Suppose that if player j is not a neighbor of player i, then player i has no direct access to player j's action

- Sensitive Game
- Distributed Network

Example A

	L	R
U	(1,3)	(-3,0)
М	(-2,0)	(1,3)
D	(0,1)	(0,1)

With Repeated Advantage Solution:

But when we discuss Mixed Strategy, if more than 1% players₂ chose R, D is better than U:

Example A :: Mixed Strategy

Mixed Strategy σ is a probability distribution over pure strategy.

A Mixed Strategy for player i can be present as a vector:

$$(\sigma_i(U), \sigma_i(M), \sigma_i(D))$$

Payoff Function u_i over σ :

$$\sum_{i\in S} \left(\prod_{j=i}^{l} \sigma_i(s_u)\right) u_j(s)$$

Example A:: Mixed Strategy

	L	R
U	(1,3)	(-3,0)
М	(-2,0)	(1,3)
D	(0,1)	(0,1)

Let:

$$\sigma_2 = (0.99, 0.01)$$

Then:

$$u_1 = -5.94 \iff \sigma_1 = (1,0,0)$$

 $u_1 = 2 \iff \sigma_1 = (0,0,1)$

Example B

Prisoner's Dilemma

	M	S
М	(1,1)	(-1, 2)
S	(2,-1)	(0,0)

If players are sensitive on the uncertainty of s_{-1} , they may not choose the rational strategy.

The action of player i is updated according to

$$\dot{x} = k_i \frac{\partial f_i}{\partial x_i}(y_i), i \in \mathbb{N}$$
 (0)

where

$$\dot{y}_i = [y_{i1}, y_{i2}, ..., y_{iN}]^T \in R$$

 $k_i = \delta \bar{k}$

 δ as a small positive parameter, \bar{k}_i is a fixed positive parameter. $y_{ij}, \forall i,j \in \mathbb{N}$ is player i's estimate on player j's action, which are generated by:

$$\dot{y_{ij}} = -\left(\sum_{k=1}^{N} a_{ik}(y_{ik} - y_{kj}) + a_{ij}(y_{ij} - x_y)\right)$$

Let $\tau = \delta t$, at the τ -time scale:

$$\frac{dx_i}{d\tau} = \bar{k}_i \frac{\partial f_i}{\partial x_i}(y_i)$$

$$\delta \frac{dy_{ij}}{d\tau} = -\left(\sum_{k=1}^{N} a_{ik}(y_{ik} - y_{kj}) + a_{ij}(y_{ij} - x_y)\right) [?] \tag{1}$$

Easy to know, by setting δ to zero, The reduced system is:

$$\frac{dx_i}{d\tau} = \bar{k}_i \frac{\partial f_i}{\partial x_i}(x) \quad \forall i \in \mathbb{N}$$
 (2)

Under Switching Topologies

Fig. 1. Communication graph in (a) is \mathcal{G}^1 and the communication graph in (b) is \mathcal{G}^2 .

Player i can be regarded as a virtual leader, who provides its action as a reference signal to be followed by -i, For each X^* , there is a constant δ that for every $\delta \in (\delta_{max}, \delta_{min})$, Nash Equilibrium X^* is asymptotically stable. [2]

On loss of Communication

Player i can be regarded as a virtual leader, who provides its action as a reference signal to be followed by -i, For each X^* , there is a constant δ that for every $\delta \in (\delta_{max}, \delta_{min})$, Nash Equilibrium X^* is asymptotically stable. [2]

Conclusions

- Exists Distributed Nash Equilibrium
- Distributed Nash Equilibrium can be sensitive
- Distributed Nash Equilibrium is stable under different network Topologies

Reference

- 🔋 Leslie Lamport.
 - Time, clocks and the ordering of events in a distributed system. pages 558–565, July 1978.
- M. Ye and G. Hu.
 Distributed nash equilibrium seeking by a consensus based approach.

 IEEE Transactions on Automatic Control, 62(9):4811–4818, Sept
 2017.
- M. Ye and G. Hu.
 - Distributed nash equilibrium seeking in multiagent games under switching communication topologies.
 - IEEE Transactions on Cybernetics, PP(99):1-10, 2017.

Thanks

Repository of this Slides:

 $-\ https://github.com/RyanKung/dneq4eos$

