ex01. 데이터 수집 (Web Crawling)

- kewords.txt 파일에서 키워드를 읽고 구글 이미지에 키워드를 자동 검색 후 이미지 저장 (대략 각 키워드 100 장)
- keyword.txt (banana, kiwi, orange, pineapple, watermelon 5 가지)

ex02. Data Split

- ex01 에서 저장한 이미지 데이터를 읽고 train 과 validation 데이터를 9:1 비율로 분리
- 분리 후 train 폴더와 val 폴더에 이미지 저장

ex03. Image Pretreatment

- expand2square() 함수를 사용해 기존 이미지를 정사각형화 후, padding하여 400 x
 400 사이즈로 Resize -> dataset/images 폴더에 저장
- 각 카테고리 별 데이터의 수를 출력 (총 460장)

```
      Banana
      : 129

      Kiwi
      : 58

      Orange
      : 81

      Pineapple
      : 111

      Watermelon
      : 81

      Total
      : 460
```

ex04. CustomDataset 생성

- data/train 에 있는 5 개 카테고리의 모든 이미지 데이터를 불러와 리스트 한 후, 이미지에 해당하는 label 값을 읽어와 image, label 데이터 반환

ex05. Main

- 서로 다른 augmentation transform 모델을 불러오고 훈련이 진행
- hy_parameter.py 에서 parameter 값을 가져옴
- transform_list.py 에서 image augmentation 리스트를 불러와 훈련 모두 실행
- utils.py의 train() 함수를 사용하여 모델 훈련 후 model save 폴더에 pt 파일 저장

hy_parameter.py

hy_parameter.py

```
transform_train0 = A.Compose([
   A.Resize(height= 256, width= 256),
   ToTensorV2()])
transform_train1 = [
   A.Resize(height=256, width=256),
   A.RandomCrop(height= 224, width= 224), # 랜덤 crop 224 x 224
   A.HorizontalFlip(p= 0.5),
                                         # 좌우
   ToTensorV2()]
transform_train2 = [
   A.Resize(height=256, width=256),
   A.RandomCrop(height= 224, width= 224), # 랜덤 crop 224 x 224
   A.OneOf([
       A.HorizontalFlip(p = 1), # 좌우 반전
       A.VerticalFlip(p = 1), # 상하 반전
A.RandomRotate90(p = 1), # 회전
    ], p= 1),
   ToTensorV2()]
transform_train3 = [
   A.Resize(height=256, width=256),
   A.RandomCrop(height= 224, width= 224), # 랜덤 crop 224 x 224
   A.OneOf([
       A.MotionBlur(p=1),
       A.OpticalDistortion(p=1), # 광학 외곡
                                  # 가우시안 블러 필터
       A.GaussNoise(p=1),
   ], p= 1),
   ToTensorV2()1
```

```
transform_train4 = [
   A.Resize(height=256, width=256),
   A.RandomCrop(height= 224, width= 224), # 랜덤 crop 224 x 224
   A.OneOf([
       A.HorizontalFlip(p = 1), # 좌우 반전
      A.VerticalFlip(p = 1), # 상하 반전
      A.RandomRotate90(p = 1),
   ], p= 1),
   A.OneOf([
      A.MotionBlur(p=1),
                            # 모션 블러 필터
      A.OpticalDistortion(p=1), # 광학 외곡
      A.GaussNoise(p=1),
   ], p= 1),
   ToTensorV2()]
transform_val = [
   A.Resize(height=256, width=256),
   ToTensorV2()
```

ex06. Test

- model_save 폴더의 서로 다른 augmentation 을 적용해 훈련시켜 저장한 pt 파일들을 읽고 정확도 출력
- pt 모델들을 비교하여 정확도가 가장 높은 pt 파일을 best.pt 로 저장

```
### The Result of transform0 =====

acc for 49 image : 91.84%

transform0이 None보다 정확도가 높습니다

#### The Result of transform1 =====

acc for 49 image : 95.92%

transform1이 transform0보다 정확도가 높습니다

#### The Result of transform2 =====

acc for 49 image : 93.88%

transform1의 정확도가 더 높습니다

#### The Result of transform3 =====

acc for 49 image : 95.92%

transform3이 transform1보다 정확도가 같습니다

#### The Result of transform4 =====

acc for 49 image : 93.88%

transform1의 정확도가 더 높습니다
```

Result

		Transform 0	Transform 1	Transform 2		Transform 3		Transform 4	
적용한 Albu 종류	1	Resize(256,256)	Resize(256,256)	Resize(256,256)		Resize(256,256)		Resize(256,256)	
	2		RandomCrop(224, 224)	RandomCrop(224, 224)		RandomCrop(224, 224)		RandomCrop(224, 224)	
	3		HorizontalFlip(p=0.5)	OneOf(p=1)	HorizontalFlip(p=1)	OneOf(p=1)	MotionBlur(p=1)	OneOf(p=1)	HorizontalFlip(p=1)
					VerticalFlip(p=1)		OpticalDistortion(p=1)		VerticalFlip(p=1)
					RandomRotate90(p=1)		GaussNoise(p=1)		RandomRotate90(p=1)
	4							OneOf(p=1)	MotionBlur(p=1)
									OpticalDistortion(p=1)
									GaussNoise(p=1)
Accuracy		91.84%	95.92%	93.88%		95.92%		93.88%	