

AMENDMENTS TO THE SPECIFICATION

Please amend the specification as indicated hereafter. It is believed that the following amendments and additions add no new matter to the present application.

In the Specification:

Please amend the paragraph starting on p. 4, line 1 as follows:

The present invention may also be viewed as providing a method for controlling communication with a host computer connected to a first communication network and a plurality of communication devices that define a second communication network associated with a plurality of remote devices that are to be monitored and controlled by the host computer. Briefly, one such method involves the steps of: determining a unique address for each of the plurality of communication devices by receiving an initialization message; determining with which of the plurality of communications devices that each of the plurality of communication devices has a communication link; based on the plurality of unique addresses and which of the plurality of communications devices each of the plurality of communication devices has a communication link with, determining one or more communication paths associated with each of the plurality of communication devices; managing communication with each of the plurality of communication devices, via a first communication protocol, based on one or more of the communication paths associated with each of the plurality of communication devices; and managing communication with the host computer via a second communication protocol.

Please amend the paragraph starting on p. 7, line 19 as follows:

As is further illustrated in FIG. 1, automated monitoring system 100 may comprise a plurality of stand-alone wireless transceiver/repeaters 125. Each stand-alone wireless transceiver/repeater 125, as well as each wireless transceiver 135, may be configured to receive one or more incoming transmissions (transmitted by a remote transmitter 145 or transceiver 135) and to transmit an outgoing signal. This outgoing signal may be any wireless transmission

signal, such as, for example, a low-power RF transmission signal, or a higher-power RF transmission signal. Alternatively, where a wired ~~econfigured~~ configuration is employed, the outgoing signal may be transmitted over a conductive wire, fiber optic cable, or other transmission media. One of ordinary skill in the art will appreciate that if an integrated wireless communication device (*e.g.*, a wireless transmitter 145, a wireless transceiver 135, or a wireless transceiver/ repeater 125) is located sufficiently close to site controller 150 such that its output signal can be received by at least one site controller 150, the data transmission signal need not be processed and repeated through either a wireless transceiver/repeater 125 or wireless transceivers 135.

Please amend the paragraph starting on p. 13, line 18 as follows:

The antenna 220 radiates the signal transmitted by the transceiver 225 to the various wireless communication devices located within coverage area 165. A specific antenna type may be selected based on the frequency at which the signal is to be transmitted. In addition, the antenna 220 may be adjustably oriented as required to maximize both transmission and signal characteristics. Non-limiting examples of antenna types that may be used by the site controller 150 include dipoles, spiral, ~~logarithmic~~ logarithmic, etc.

Please amend the paragraph starting on p. 14, line 11 as follows:

In one embodiment of automated monitoring system 100, an applications server 110 (FIG. 1) collects, formats, and stores client specific data from each of the integrated wireless transmitters 145, wireless transceivers 135, and/or wireless transceiver/repeaters 125 for later retrieval and/or access from, for example, workstation 160 or laptop 155. Workstation 160 or laptop 155 may be used to access the stored information in a variety of ways, such as via a web browser. In another embodiment, the applications server 110 may host application specific functions associated with automated monitoring system 100, thereby replacing site controller 150 by generating required control signals for appropriate distribution via the WAN 120 and the site controller ~~120~~ 150 to the sensor/actuators 130 and the sensors 140. In a further embodiment, clients may elect, for proprietary reasons, to host control applications on their own workstation

160 that is connected to WAN 120. In this manner, database 115 and applications server 110 may function solely as data collection and reporting devices with the client workstation 160 generating control signals for the system.

Please amend the paragraph starting on p. 14, line 26 as follows:

Reference is now made to FIG. 3, which illustrates the external connectivity of WAN 120 of FIG. 1 in accordance with the present invention. Site controller 150 may be configured to transmit control signals and receive data signals using the open data packet protocol described in detail below. Site controller 150 is preferably interconnected permanently on WAN 120 and configured to receive data signals from the wireless communication devices and translate the data signals for transfer to applications servers 110 via WAN 120. Site controller 150 may translate the received data signals into any appropriate protocol for delivery via WAN 120. For example, in one embodiment site controller 150 translates the received data signals into transmission control protocol/internet protocol (TCP/IP) for delivery via WAN 120. As stated above, applications server 110 may be configured for communication with WAN 120 via, for example, router 310 and further protected and buffered by firewall 320. Applications server 110 may also be configured with web applications and client specific applications as needed for operation of automated monitoring system 100. Consistent with the concepts and teachings of the present invention, applications server 110 may be assisted in its task of storing and making available client specific data by database 115.

Please amend the paragraph starting on p. 19, line 3 as follows:

FIG. 5 sets illustrates one embodiment of a byte assignment for the “to” address 400 of FIG. 4. One of ordinary skill in the art will appreciate that various byte assignments may be used within “to” address field 400. For example, in one embodiment, “to” address 400 consists of six bytes. The first byte (Byte 1) may indicate the device type. The second byte (Byte 2) may indicate the manufacturer or the owner. The third byte (Byte 3) may be a further indication of the manufacturer or owner. The fourth byte (Byte 4) may indicate either that the message is for all devices or that the message is for a particular device. If the message is for all devices, the fourth

by may be a particular code. If the message is for a particular device, the fourth, fifth, and sixth bytes (Byte 5 and Byte 6) may include the unique identifier for that particular device.