AdaptSize: Orchestrating the Hot Object Memory Cache in a CDN

<u>Daniel S.</u> <u>Berger</u>

Mor Harchol-Balter

Ramesh K. Sitaraman

USENIX NSDI. Boston, March 28, 2017.

CDN Caching Architecture

Optimizing CDN Caches

Two caching levels:

- Disk Cache (DC)
- Hot Object Cache (HOC)

HOC performance metric object hit ratio = OHR =

Goal: maximize OHR

Prior Approaches to Cache Management

Frequent decisions required
What to admit
What to evict

Today in practice e.g., Nginx, Varnish

everything

LRU

2000s in academia e.g., Modha, Zhang, Kumar

everything

mixtures of LRU/LFU

2010s in academia e.g., Kaminsky, Lim, Andersen

everything

concurrent LRU

We Are Missing a Key Issue

Not all objects are the same

- Should we admit every object? (no, we should favor small objects)
- A few key companies know this (but don't know how to it well)
- Academia has not been helpful (almost all theoretical work assumes equal-sized objects)

What's Hard About Size-Aware Admission

Fixed Size Threshold: admit if size < Threshold c

How to pick c: pick c to maximize OHR

The best threshold changes with traffic mix

Can we avoid picking a threshold c

Probabilistic admission:

Unfortunately, many curves example: exp(c) family

Which curve makes big difference

We need to adapt c

The AdaptSize Caching System

adapt with traffic

First system that **continuously adapts** the parameter of size-aware admission

adapt with time

Take traffic measurements

Calculate the best c

Enforce admission control

How to Find Best c Within Each Δ Interval

Traditional approach

Hill climbing

Local optima on OHR-vs-c curve

AdaptSize approach

Markov model

Enables speedy global optimization

How AdaptSize Gets the OHR-vs-c curve

track IN/OUT for each object

Algorithm

For every Δ interval and for every value of c

- use Markov chain to solve for OHR(c)
- find c to maximize OHR

Why hasn't this been done?

Too slow: exponential state space 需要枚举所有object的in、out的可能,是很大的action space

New technique: approximation with linear state space

Implementing AdaptSize

Incorporated into Varnish

highly concurrent HOC system, 40+ Gbit/s

Take traffic measurements

Calculate the best c

Enforce admission control

没有考虑 latency

Implementing AdaptSize

Incorporated into Varnish

highly concurrent HOC system, 40+ Gbit/s

Take traffic measurements

Calculate the best c

Enforce admission control

Challenges

- 1) Concurrent write conflicts
- 40% objects requests
- 2) Locks too slow [NSDI'13 & 14]

AdaptSize: producer/consumer + ring buffer

Lock-free implementation

Implementing AdaptSize

Incorporated into Varnish

highly concurrent HOC system, 40+ Gbit/s

Take traffic measurements

Calculate the best c

Enforce admission control

AdaptSize: admission is really simple

- given c, and the object size
- admit with P(c, size)

Enables lock free & low overhead implementation

AdaptSize Evaluation Testbed

Origin: emulates 100s of web servers 55 million / 8.9 TB unique objects

DC: unmodified Varnish 4x 1TB/ 7200 Rpm

HOC systems:

unmodified Varnish

1.2 GB

NGINX cache

16 threads

AdaptSize

Clients: replay Akamai requests trace 440 million / 152 TB total requests

Comparison to Production Systems

Comparison to Research-Based Systems

Robustness of AdaptSize

Size-Aware OPT: offline parameter tuning

AdaptSize: our Markovian tuning model

HillClimb: local-search using shadow queues

Conclusion

Goal: maximize OHR of the Hot Object Cache

Approach: size-based admission control

Conclusion

Goal: maximize OHR of the Hot Object Cache

Approach: size-based admission control

Key insight: need to adapt parameter c

AdaptSize: adapts c via a Markov chain

Result: 48-92% higher OHRs

Varnish -

Nginx -

0.0

AdaptSize -

regs

OHR=

served by HOC

total

Conclusion

Goal: maximize OHR of the Hot Object Cache

Approach: size-based admission control

Key insight: need to adapt parameter c

AdaptSize: adapts c via a Markov chain

Result: 48-92% higher OHRs

In our paper

- Throughput
- Disk utilization
- Byte hit ratio
- Request latency

र्के BSD-2-Clause