

Week 8

Data Analysis and Visualization — Using Python's NumPy for Analysis

Applied Data Science

Columbia University - Columbia Engineering

Course Agenda

- Week 1: Python Basics: How to Translate
 Procedures into Codes
- Week 2: Intermediate Python Data structures for Your Analysis
- Week 3: Relational Databases Where Big Data is Typically Stored
- Week 4: SQL Ubiquitous Database Format/Language
- Week 5: Statistical Distributions The Shape of Data
- ❖ Week 6: Sampling When You Can't or Won't Have ALL the Data

- Week 7:Hypothesis Testing Answering Questions about Your Data
- ♦ Week 8: Data Analysis and Visualization Using Python's NumPy for Analysis
- Week 9: Data analysis and visualization Using Python's Pandas for Data Wrangling
- Week 10: Text Mining Automatic Understanding of Text
- Week 11: Machine learning Basic Regression and Classification
- Week 12: Machine learning Decision Trees and Clustering

Python Libraries Supporting Data Analysis

- Numpy: supports numerical and array operations
- ⇒Scipy:
- →Pandas: supports data manipulation and analysis
- →Visualization libraries: matplotlib, seaborne, bokeh, plotly, gmplot, and many others provide support for charts and graphs

why numpy

- → Multi-dimensional arrays:
 - Faster and more space efficient than lists
- Can incorporate C/C++/Fortran code
- Linear algebra, Fourier transforms, Random number support

- ■The basic numpy data structure is an array
- →An array is a sequential collection of "like" objects
- unlike python lists, numpy arrays contain objects of the same type
 - →this makes indexed access faster
 - →and more memory efficient
- numpy arrays are mutable
- numpy are optimized for matrix operations
 - →much faster than lists
- numpy provides random number support

Pandas

```
In []: #installing pandas libraries
!pip install pandas-datareader
!pip install --upgrade html5lib==1.0b8

#There is a bug in the latest version of html5lib so install an earlier version
#Restart kernel after installing html5lib
```

Imports

```
In []: import pandas as pd #pandas library
from pandas_datareader import data #data readers (google, html, etc.)
#The following line ensures that graphs are rendered in the notebook
%matplotlib inline
import numpy as np
import matplotlib.pyplot as plt #Plotting library
import datetime as dt #datetime for timeseries support
```


numpy

Creating a numpy array

```
In [3]: import numpy as np
    ax = np.array([1,2,3,4,5])
    print(x,id(x),len(x))

[1 2 3 4 5] 4371008848 5
```

Specifying the type

Useful when reading a text stream directly into a numerical array

```
In [5]: x=['1','2','3']
    xi = np.array(x,'int')
    xf = np.array(x,'float')
    xs = np.array(x,'str')
    print(xi,xf,xs,sep='\n')

[1 2 3]
    [1. 2. 3.]
    ['1' '2' '3']
```


Specifying the type

Useful when reading a text stream directly into a numerical array

```
In [3]: x=['1','2','3']
    xi = np.array(x,'int')
    xf = np.array(x,'float')
    xs = np.array(x,'str')
    print(xi,xf,xs,sep='\n')

[1 2 3]
    [ 1.  2.  3.]
    ['1' '2' '3']
```

Basic operations

```
In [6]: x = np.array([13,24,21.2,17.6,21.7],'float')
print(x.sum(),x.mean(),x.std(),sep='\n')

97.5
19.5
3.84291555983
```

Multidimensional Arrays

Multi-dimensional arrays

Indexing

```
In [8]: ax[1,3] #indexing
Out[8]: 13.0
```

Slicing

Reshaping

```
In [12]: print(ax.shape)
#ax.reshape(9,2)
#ax.reshape(10,3)
(3, 6)
```

Creating Initialized Matrix

```
In [18]: ax = np.arange(10)
        print(ax)
        ay = np.array([np.arange(2,10,2),np.arange(10)])
        print(ay)
        [0 1 2 3 4 5 6 7 8 9]
        [array([2, 4, 6, 8]) array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])]
In [19]: ax = np.ones(10)
        print(ax)
        [ 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
In [20]: ax = np.arange(10)**2
        print(ax)
        [ 0 1 4 9 16 25 36 49 64 81]
In [21]: np.identity(10)
               [ 0., 0., 0., 0., 0., 0., 1., 0.,
               [ 0., 0., 0., 0., 0., 0., 0., 1., 0.],
               [0., 0., 0., 0., 0., 0., 0., 0., 0., 1.]])
```


Matrix multiplication

Comparing Numpy Arrays with List

Comparing numpy arrays with lists

dotproduct(10)

Out[27]: datetime.timedelta(0, 0, 18)

In [26]: n=10

```
print(ax)
         ay = ax.transpose()
         #print(ax)
         #print(ay)
         np.dot(ax,ay)
                        9 16 25 36 49 64 81]
                1 8 27 64 125 216 343 512 72911
Out[26]: array([[ 15333, 120825],
                [120825, 978405]])
          Functionalize this
In [27]: def dotproduct(n):
              ax = np.array([np.arange(n)**2,np.arange(n)**3])
              ay = ax.transpose()
              import datetime
              start = datetime.datetime.now()
              np.dot(ax,ay)
              end = datetime.datetime.now()
              return end-start
```

ax = np.array([np.arange(n)**2,np.arange(n)**3])

Do the same with python lists

```
In [29]:
          def dot product lists(n):
              x = [x**2 for x in range(n)]
              y = [x**3 for x in range(n)]
              ax = [x,y]
              ay = [list(i) for i in zip(*ax)]
              import datetime
              start = datetime.datetime.now()
              [[sum(a*b for a,b in zip(X row,Y col)) for Y col in zip(*ay)] for X row in ax]
              end = datetime.datetime.now()
              return end-start
          dot product lists(10)
Out[29]: datetime.timedelta(0, 0, 22)
In [30]: for n in [10,100,1000,10000]:
              numpy result = dotproduct(n)
             list result = dot product lists(n)
              print(n,numpy result, list result, sep='\t')
          10
                  0:00:00.000014 0:00:00.000016
                  0:00:00.000009 0:00:00.000068
          100
                  0:00:00.000013 0:00:00.000632
          1000
          10000
                  0:00:00.000129 0:00:00.012150
In [31]: for n in [10,100,1000,10000]:
             numpy result = dotproduct(n)
             list result = dot product lists(n)
             print(n,numpy result, list result, sep='\t')
         10
                 0:00:00.000016 0:00:00.000016
         100
                 0:00:00.000008 0:00:00.000100
                 0:00:00.000081 0:00:00.000670
         1000
         10000
                 0:00:00.000056 0:00:00.036216
```

Comparing Numpy Arrays with List

Selecting elements from an np array

Random number support in numpy

Random number support in numpy

```
In [42]: np.random.normal(size=10)
         np.random.normal(size=(100,100))
         #mp.random.exponential()
         #np.random.exponential(1.0, size=(6,3))
         #np.random.randint(-10,10,size=(9,9))
Out[42]: array([[ 1.05206221, 0.47781854, 2.89776774, ..., 0.3374305 ,
                 -0.49803948, 0.72237763],
                [ 0.60929371, -0.41048125, 0.20983578, ..., -1.640422 ,
                 -0.20119451, 1.09254855],
                [ 1.34244391, 1.09538764, -0.65353113, ..., 0.5886497 ,
                 -0.06382598, 1.50691536],
                [-0.61623743, 0.55130456, -1.00555482, ..., 0.5921164,
                  0.17721396, -0.440039291,
                [ 0.92331676, -0.60830634, 0.75547553, ..., -0.65687201,
                  0.38049825, 0.69859464],
                [ 1.21479891, 0.4068382 , 0.6057141 , ..., 0.1671013 ,
                 -0.6642757 , 1.3028350111)
```

Pandas

- Integrated data manipulation and analysis capabilities
- Integration with data visualization libraries
- →Built in time-series capabilities
- Optimized for speed
- ■Built-in support for grabbing data from multiple sources
 - ⇒csv, xls, html tables, yahoo, google, worldbank, FRED
- Pandas organizes data into two data objects
 - →Series: A one dimensional array object
 - ■DataFrame: A two dimensional table object
- Each column in a dataframe corresponds to a named series
- Rows in a dataframe can be indexed by a column of any datatype

Pandas

```
In []: #installing pandas libraries
| pip install pandas-datareader
| pip install --upgrade html5lib==1.0b8

#There is a bug in the latest version of html5lib so install an earlier version
#Restart kernel after installing html5lib
```

Imports

```
In []: import pandas as pd #pandas library
from pandas_datareader import data #data readers (google, html, etc.)
#The following line ensures that graphs are rendered in the notebook
%matplotlib inline
import numpy as np
import matplotlib.pyplot as plt #Plotting library
import datetime as dt #datetime for timeseries support
```

The Structure of a Dataframe

The structure of a dataframe

Accessing columns and rows

Out[5]:

	row_label	A	В	С
0	r1	00	01	02
1	r2	10	11	12
2	r3	20	21	22

The Structure of a Dataframe


```
In [7]: df = pd.DataFrame([['r1','00','01','02'],['r2','10','11','12'],['r3','20','21','22']],columns=['row_label','A','B','
        print(id(df))
        print(df)
        x = df.set_index('row_label',inplace=True)
        print(id(df))
        print(x)
        df
        4636485392
          row label
                        01 02
                 r2
                        11 12
                 r3 20 21 22
        4636485392
                    A B
        row label
        r1
        r2
                   10 11 12
        r3
                   20 21 22
Out[7]:
          row_label A B C
                   00 01 02
        0 r1
        1 r2
                   10 11 12
        2 r3
                   20 21 22
```

Getting column data

```
In [12]: df['B']
                                     In [10]: type(df['B'])
In [9]: df['B']
                                                                                Out[12]: row label
                                    Out[10]: pandas.core.series Series
Out[9]: row label
                                                                                         r1
                                                                                                01
        r1
              01
                                                                                         r2
                                                                                               11
              11
        r2
                                                                                          r3
                                                                                                21
              21
                                                                                         Name: B, dtype: object
        Name: B, dtype: object
```

Getting row data

The Structure of a Dataframe

Getting a row by row number

Getting multiple columns

```
In [20]: df[['B','A']] #Note that the column identifiers are in a list

Out[20]:

B A

row_label

r1 01 00

r2 11 10

r3 21 20
```

Getting a specific cell

Slicing

Pandas Datareader

Pandas datareader

- · Access data from html tables on any web page
- · Get data from google finance
- · Get data from the federal reserve

```
c1
```

HTML Tables

- · Pandas datareader can read a table in an html page into a dataframe
- . the read_html function returns a list of all dataframes with one dataframe for each html table on the page

Example: Read the tables on the google finance page

```
In [27]: df_list = pd.read_html('http://www.bloomberg.com/markets/currencies/major')
    print(len(df_list))
```

The page contains only one table so the read_html function returns a list of one element

```
In [28]: df = df list[0]
         print(df)
                           Value
                                   Change Net Change Time (EDT)
            Currency
                                                                  2 Day
             EUR-USD
                          1.1193
                                   0.0048
                                              +0.43%
                                                        1:33 PM
                                                                   NaN
             USD-JPY
                       110.7900
                                  -0.1400
                                              -0.13%
                                                        1:33 PM
                                                                    NaN
             GBP-USD
                                                        1:32 PM
                         1.2793
                                   0.0035
                                              +0.27%
                                                                    NaN
             AUD-USD
                          0.7623
                                   0.0044
                                              +0.58%
                                                        1:32 PM
                                                                    NaN
             USD-CAD
                         1.3223 -0.0046
                                              -0.35%
                                                        1:32 PM
                                                                    NaN
                                                        1:33 PM
             USD-CHF
                          0.9737
                                  -0.0016
                                              -0.16%
                                                                    NaN
             EUR-JPY
                       124.0200
                                   0.3800
                                              +0.31%
                                                        1:33 PM
                                                                   NaN
                                                        1:33 PM
             EUR-GBP
                          0.8749
                                   0.0012
                                              +0.14%
                                                                    NaN
                          7.8003 -0.0013
                                              -0.02%
                                                        1:33 PM
             USD-HKD
                                                                    NaN
                                   0.0029
                                              +0.27%
                                                        1:32 PM
             EUR-CHF
                         1.0899
                                                                    NaN
             USD-KRW 1134.1800 10.0200
                                              +0.89%
                                                        2:29 AM
                                                                    NaN
```

Pandas Datareader

The page contains only one table so the read_html function returns a list of one element

In [30]: df = df_list[0]
df

Out[30]:

	Currency	Value	Change	Net Change	Time (EDT)	2 Day
0	EUR-USD	1.1193	0.0048	+0.43%	1:33 PM	NaN
1	USD-JPY	110.7900	-0.1400	-0.13%	1:33 PM	NaN
2	GBP-USD	1.2793	0.0035	+0.27%	1:32 PM	NaN
3	AUD-USD	0.7623	0.0044	+0.58%	1:32 PM	NaN
4	USD-CAD	1.3223	-0.0046	-0.35%	1:32 PM	NaN
5	USD-CHF	0.9737	-0.0016	-0.16%	1:33 PM	NaN
6	EUR-JPY	124.0200	0.3800	+0.31%	1:33 PM	NaN
7	EUR-GBP	0.8749	0.0012	+0.14%	1:33 PM	NaN
8	USD-HKD	7.8003	-0.0013	-0.02%	1:33 PM	NaN
9	EUR-CHF	1.0899	0.0029	+0.27%	1:32 PM	NaN
10	USD-KRW	1134.1800	10.0200	+0.89%	2:29 AM	NaN

Note that the read_html function has automatically detected the header columns

If an index is necessary, we need to explicitly specify it

In [31]: df.set_index('Currency',inplace=True)
 print(df)

	Value	Change	Net	Change	Time (EDT)	2	Day
Currency								
EUR-USD	1.1193	0.0048		+0.43%	1:3	3 PM		NaN
USD-JPY	110.7900	-0.1400		-0.13%	1:3	3 PM		NaN
GBP-USD	1.2793	0.0035		+0.27%	1:3	2 PM		NaN
AUD-USD	0.7623	0.0044		+0.58%	1:3	2 PM		NaN
USD-CAD	1.3223	-0.0046		-0.35%	1:3	2 PM		NaN
USD-CHF	0.9737	-0.0016		-0.16%	1:3	3 PM		NaN
EUR-JPY	124.0200	0.3800		+0.31%	1:3	3 PM		NaN
EUR-GBP	0.8749	0.0012		+0.14%	1:3	3 PM		NaN
USD-HKD	7.8003	-0.0013		-0.02%	1:3	3 PM		NaN
EUR-CHF	1.0899	0.0029		+0.27%	1:3	2 PM		NaN
USD-KRW	1134.1800	10.0200		+0.89%	2:2	9 AM		NaN

Now we can use .loc to extract specific currency rates

In [33]: df.loc['EUR-CHF','Change']

Out[33]: 0.002899999999999998

Pandas: Working with Views and Copies

Chained indexing creates a copy and changes to the copy won't be reflected in the original dataframe

```
In [34]: eur usd = df.loc['EUR-USD']['Change'] #This is chained indexing
         df.loc['EUR-USD']['Change'] = 1.0 #Here we are changing a value in a copy of the dataframe
         print(eur usd)
         print(df.loc['EUR-USD']['Change']) #Neither eur usd, nor the dataframe are changed
         0.0048
         0.0048
         /Users/cvn-mm-pbs-001/anaconda/lib/python3.6/site-packages/ipykernel/ main .py:2: SettingWit
         A value is trying to be set on a copy of a slice from a DataFrame
         See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.htm
         sus-copy
           from ipykernel import kernelapp as app
  In [35]: eur usd = df.loc['EUR-USD', 'Change'] #eur usd points to the value inside the dataframe
            df.loc['EUR-USD','Change'] = 1.0 #Change the value in the view
            print(eur usd) #eur usd is changed (because it points to the view)
            print(df.loc['EUR-USD']['Change']) #The dataframe has been correctly updated
            0.0048
            1.0
```

Historical Stock Prices from Google Finance

```
COLUMBIA ENGINEERING EXECUTIVE EDUCATION
```

```
In [36]: from pandas_datareader import data
   import datetime
   start=datetime.datetime(2017, 1, 1)
   end=datetime.datetime.today()

print(start,end)

df = data.DataReader('IBM', 'google', start, end)

2017-01-01 00:00:00 2017-06-16 13:42:46.441450
```

2017-06-02	153.07	153.20	151.80	152.05	3585701
2017-06-05	151.82	152.93	151.68	152.41	3975268
2017-06-06	152.00	152.89	152.00	152.37	3797173
2017-06-07	153.05	154.20	150.80	150.98	4865712
2017-06-08	151.00	152.82	150.92	152.10	3708962
2017-06-09	152.00	154.26	151.88	154.10	4361460
2017-06-12	154.19	157.20	154.02	155.18	6471479
2017-06-13	155.44	155.48	154.15	154.25	3523529
2017-06-14	153.97	154.94	152.94	153.81	3049726
2017-06-15	153.29	154.69	153.29	154.22	4654297

Datareader Documentation

Datareader documentation

http://pandas-datareader.readthedocs.io/en/latest/

Working with a timeseries data frame

. The data is organized by time with the index serving as the timeline

Creating new columns

- · Add a column to a dataframe
- . Base the elements of the column on some combination of data in the existing columns

Example: Number of Days that the stock closed higher than it opened
• We'll create a new column with the header "UP"

- . And use np.where to decide what to put in the column

2017-01-03	167.00	167.87	166.01	167.19	2934299	1
2017-01-04	167.77	169.87	167.36	169.26	3381432	1
2017-01-05	169.25	169.39	167.26	168.70	2682301	0
2017-01-06	168.69	169.92	167.52	169.53	2945536	1
2017-01-09	169.47	169.80	167.62	167.65	3189891	0
2017-01-10	167.98	168.09	165.34	165.52	4118694	0
2017-01-11	166.05	167.76	165.60	167.75	3599464	1
2017-01-12	167.77	168.01	165.56	167.95	2927973	1
2017-01-13	167.97	168.48	166.88	167.34	2875433	0
2017-01-17	166.69	168.18	166.12	167.89	3315655	1
2017-01-18	167.45	168.59	166.69	166.80	4007779	0
2017-01-19	166.96	167.45	165.80	166.81	6963386	0

Get Summary Statistics

In [39]: df.describe()

Out[39]:

	Open	High	Low	Close	Volume	UP
coun	114.000000	114.000000	114.000000	114.000000	1.140000e+02	114.000000
mean	167.589474	168.500351	166.695702	167.618246	4.178610e+06	0.482456
std	10.567480	10.590303	10.481766	10.572472	2.160995e+06	0.501898
min	150.300000	151.150000	149.790000	150.370000	1.825048e+06	0.000000
25%	156.265000	157.685000	155.202500	156.042500	3.095110e+06	0.000000
50%	170.365000	171.275000	169.725000	170.620000	3.571548e+06	0.000000
75%	176.177500	177.007500	175.540000	175.890000	4.353095e+06	1.000000
max	182.000000	182.790000	180.920000	181.950000	1.928428e+07	1.000000

Calculate the percentage of days that the stock has closed higher than its open

```
In [40]: df['UP'].sum()/df['UP'].count()|
Out[40]: 0.48245614035087719
```

Calculate percent changes

- The function pct_change computes a percent change between successive rows (times in timeseries data)
- · Defaults to a single time delta
- With an argument, the time delta can be changed

```
In [42]: df['Close'].pct change() #One timeperiod percent change
Out[42]: Date
         2017-01-03
                             NaN
         2017-01-04
                       0.012381
         2017-01-05
                      -0.003309
         2017-01-06
                       0.004920
         2017-01-09
                       -0.011089
         2017-01-10
                      -0.012705
         2017-01-11
                       0.013473
         2017-01-12
                       0.001192
         2017-01-13
                      -0.003632
         2017-01-17
                       0.003287
         2017-01-18
                       -0.006492
         2017-01-19
                       0.000060
         2017-01-20
                       0.022421
In [43]: n=13
         df['Close'].pct change(n) #n timeperiods percent change
Out[43]: Date
         2017-01-03
                             NaN
         2017-01-04
                             NaN
         2017-01-05
                             NaN
         2017-01-06
                             NaN
         2017-01-09
                             NaN
         2017-01-10
                             NaN
         2017-01-11
                             NaN
         2017-01-12
                             NaN
         2017-01-13
                             NaN
         2017-01-17
                             NaN
         2017-01-18
                             NaN
         2017-01-19
                             NaN
         2017-01-20
                             NaN
         2017-01-23
                        0.022968
         2017-01-24
                        0.039230
         2017-01-25
                        0.056846
         2017-01-26
                        0.053855
```

NaN Support

NaN support

Pandas functions can ignore NaNs

```
In [44]: n=13
    df['Close'].pct_change(n).mean()
Out[44]: -0.011193964480185867
```

Rolling windows

- "rolling" function extracts rolling windows
- . For example, the 21 period rolling window of the 13 period percent change

```
In [45]: df['Close'].pct_change(n).rolling(21)
Out[45]: Rolling [window=21, center=False, axis=0]
```

Calculate something on the rolling windows

Example: mean (the 21 day moving average of the 13 day percent change)

```
In [46]: n=13
         df['Close'].pct change(n).rolling(21).mean()
Out[46]: Date
         2017-01-03
                            NaN
         2017-01-04
                            NaN
         2017-01-05
                            NaN
         2017-01-06
                            NaN
         2017-01-09
                            NaN
         2017-01-10
                            NaN
         2017-01-11
                            NaN
         2017-01-12
                            NaN
         2017-01-13
                            NaN
         2017-01-17
                            NaN
         2017-01-18
                            NaN
         2017-01-19
                            NaN
         2017-01-20
                            NaN
         2017-01-23
                            NaN
         2017-01-24
                            NaN
         2017-01-25
                            NaN
         2017-01-26
                            NaN
         2017-01-27
                            NaN
```

Calculate several moving averages and graph them

```
In [47]: ma_8 = df['Close'].pct_change(n).rolling(window=8).mean()
    ma_13= df['Close'].pct_change(n).rolling(window=13).mean()
    ma_21= df['Close'].pct_change(n).rolling(window=21).mean()
    ma_34= df['Close'].pct_change(n).rolling(window=34).mean()
    ma_55= df['Close'].pct_change(n).rolling(window=55).mean()
In [48]: ma_8.plot()
ma_34.plot()
Out[48]: <matplotlib.axes. subplots.AxesSubplot at 0x115b1f940>
```


Linear Regression with Pandas

Example: TAN is the ticker for a solar ETF. FSLR, RGSE, and SCTY are tickers of companies that build or lease solar panels. Each has a different business model. We'll use pandas to study the risk reward tradeoff between the 4 investments and also see how correlated they are

```
import datetime
In [49]:
         import pandas datareader as data
         start = datetime.datetime(2015,7,1)
         end = datetime.datetime(2016,6,1)
         solar_df = data.DataReader(['FSLR', 'TAN', 'RGSE', 'SCTY'], 'google', start=start,end=end)['Close']
```

In [51]: rets = solar df.pct change()

In [50]: solar df

Out[50

•		FSLR	RGSE	SCTY	TAN
	Date				- ~
	2015-07-01	46.04	1128.00	52.40	38.84
	2015-07-02	45.17	1200.00	52.27	38.55
	2015-07-06	44.19	1008.00	51.75	36.37
	2015-07-07	45.12	984.00	53.21	36.10
	2015-07-08	43.27	852.00	51.48	33.67
	2015-07-09	43.65	876.00	51.98	35.23
	2015-07-10	44.03	942.00	53.00	36.49
	2015-07-13	46.01	978.00	53.39	37.37
	2015-07-14	45.81	906.00	54.26	37.86
	2015 07 15	44 40	000 00	50.54	27.00

Let's calculate returns (the 1 day percent change)

	FSLR	RGSE	SCTY	TAN
Date				
2015-07-01	NaN	NaN	, NaN	NaN
2015-07-02	-0.018897	0.063830	-0.002481	-0.007467
2015-07-06	-0.021696	-0.160000	-0.009948	-0.056550
2015-07-07	0.021045	-0.023810	0.028213	-0.007424
2015-07-08	-0.041002	-0.134146	-0.032513	-0.067313
2015-07-09	0.008782	0.028169	0.009713	0.046332
2015-07-10	0.008706	0.075342	0.019623	0.035765
2015-07-13	0.044969	0.038217	0.007358	0.024116
2015-07-14	-0.004347	-0.073620	0.016295	0.013112
2015-07-15	-0.028815	-0.019868	-0.031699	-0.021130
2015-07-16	0.006069	0.006757	0.004949	0.012142

Let's visualize the relationship between each stock and the ETF

In [52]: import matplotlib.pyplot as plt plt.scatter(rets.FSLR,rets.TAN)

Out[52]: <matplotlib.collections.PathCollection at 0x115186710>

Linear Regression with Pandas

The correlation matrix

In [55]:		_corr = re (solar_cor				
		FSLR	RGSE	, SCTY	TAN	
	FSLR	1.000000	0.249923	0.272612	0.670114	
	RGSE	0.249923	1.000000	0.236604	0.389566	
	SCTY	0.272612	0.236604	1.000000	0.559854	
	TAN	0.670114	0.389566	0.559854	1.000000	

Basic Risk Analysis


```
In [58]: rets.std()
Out[58]: FSLR
                 0.030188
         RGSE
                 0.081405
         SCTY
                 0.058234
                 0.025696
         dtype: float64
In [56]: plt.scatter(rets.mean(), rets.std())
         plt.xlabel('Expected returns')
         plt.ylabel('Standard deviations')
         for label, x, y in zip(rets.columns, rets.mean(), rets.std()):
             plt.annotate(
                 label,
                 xy = (x, y), xytext = (20, -20),
                 textcoords = 'offset points', ha = 'right', va = 'bottom',
                 bbox = dict(boxstyle = 'round,pad=0.5', fc = 'yellow', alpha = 0.5),
                 arrowprops = dict(arrowstyle = '->', connectionstyle = 'arc3,rad=0'))
         plt.show()
```



```
In [62]: plt.scatter(rets.mean(), rets.std())
plt.xlabel('Expected returns')
plt.ylabel('Standard deviations')
for label, x, y in zip(rets.columns, rets.mean(), rets.std()):
    plt.annotate(
        label,
        xy = (x, y), xytext = (20, -20),
        textcoords = 'offset points', ha = 'right', va = 'bottom',
        bbox = dict(boxstyle = 'round,pad=0.5', fc = 'yellow', alpha = 0.5),
        arrowprops = dict(arrowstyle = '->', connectionstyle = 'arc3,rad=0'))
plt.show()
```


Steps for Regression

- Construct y (dependent variable series)
- Construct matrix (dataframe) of X (independent variable series)
- Add intercept
- Model the regression
- Get the result

The statsmodel library contains various regression packages. We'll use the OLS (ordinary Least Squares) model

```
In [63]: import numpy as np
   import statsmodels.api as sm
   X=solar_df[['FSLR','RGSE','SCTY']]
   X = sm.add_constant(X)
   y=solar_df['TAN']
   model = sm.OLS(y,X,missing='drop')
   result = model.fit()
   print(result.summary())
```

		OLS Rec	ressi	on Re	sults		
Dep. Varia	ble:		AN	R-squ	ared:		0.851
Model:		(DLS	Adj.	R-squared:		0.849
Method:		Least Squar			tistic:		435.1
Date:	Fr	i, 16 Jun 20	17	Prob	(F-statistic):		4.89e-94
Time:		14:08:	31	Log-I	ikelihood:		-464.33
No. Observ	ations:		232	AIC:			936.7
Df Residua	ls:		228	BIC:			950.4
Df Model:			3				
Covariance	Type:	nonrobu	ıst				
	coef	std err		t	P> t	[95.0% Cor	f. Int.
const	15.2915	1.180	12.	956	0.000	12.966	17.617
FSLR	0.0087		7000	C10-01-01-01	0.603	-0.024	
RGSE	0.0073		900.3		0.000	0.006	
SCTY	0.2156	8 TH G 10 TH THE	14.		0.000	0.186	0.246
Omnibus:		4.1	153	Durbi	n-Watson:		0.109
Prob(Omnib	us):	0.1	125	Jarqu	ne-Bera (JB):		3.754
Skew:	F.S.	0.2		Prob(0.153
Kurtosis:		2.6	500	Cond.	the contract of the contract o		5.88e+03

Fit the Plotted Line with Actual y Values


```
In [64]: fig, ax = plt.subplots(figsize=(8,6))
    ax.plot(y)
    ax.plot(result.fittedvalues)
```

Out[64]: [<matplotlib.lines.Line2D at 0x11bdeac18>]

Kurtosis:		2.6	500 Cond.	No.		5.88e+03
Skew:		0.2	239 Prob(J	TB):		0.153
Prob(Omnib	us):	0.1	125 Jarque	-Bera (JB):		3.754
Omnibus:		4.3	153 Durbin	-Watson:		0.109
SCTY	0.2156	0.015	14.177	0.000	0.186	0.246
RGSE	0.0073	0.001	9.684	0.000	0.006	0.009
FSLR	0.0087	0.017	0.521	0.603	-0.024	0.041
const	15.2915	1.180	12.956	0.000	12.966	17.617

www.emeritus.org