DESIGN ENVIRONMENT FOR FPGA-BASED DESIGNS BOTTOM-LEVEL DESIGN

OUTLINE

- > Introduction
- ➤ Top-Level code generator
- ➤ Bitstream generator
- > CPU communication module
- ➤ Summary

OUTLINE

- > Introduction
- ➤ Top-Level code generator
- ➤ Bitstream generator
- > CPU communication module
- > Summary

- ➤ Main purpose:
 - Develop a software environment allowing user to accomplish their design on it.

- ➤ Main purpose:
 - Develop a software environment allowing user to accomplish their design on it.
- > System specification

- ➤ Main purpose:
 - Develop a software environment allowing user to accomplish their design on it.
- > System specification
 - A user interface

- ➤ Main purpose:
 - Develop a software environment allowing user to accomplish their design on it.
- > System specification
 - A user interface
 - Conclude user design into codes

- ➤ Main purpose:
 - Develop a software environment allowing user to accomplish their design on it.
- > System specification
 - A user interface
 - Conclude user design into codes
 - Program codes into device

- ➤ Main purpose:
 - Develop a software environment allowing user to accomplish their design on it.
- > System specification
 - A user interface
 - Conclude user design into codes
 - Program codes into device
 - Manage data transmit during run-time

User interface

Conclude user design into class

Program codes into device

User interface

Graphics User interface(GUI)

Conclude user design into class

Program codes into device

INTRODUCTION - GRAPHICS USER INTERFACE (GUI)

- ➤ Graphics User Interface (GUI)
 - A graphics interface allowing user to build their customized system
 - User is able to embed IP cores into design
 - GUI collect system information for other modules

User interface

Graphics User interface(GUI)

Conclude user design into class

Program codes into device

Conclude user design into class

Program codes into device

INTRODUCTION - TOP-LEVEL CODE GENERATOR

- ➤ Top-level code generator
 - Take system information collected by GUI as input
 - Analyse the information
 - Generator top-level entity code of entire system in VHDL

INTRODUCTION - BIT-STREAM GENERATOR

- ➤ Bit-stream generator
 - Based on software provided by Lattice which is "Diamond Lattice"
 - Take system information as input such as workspace path, Lattice directory.
 - Bit-stream generator generates the bit-stream used for programming FPGA

INTRODUCTION - CPU COMMUNICATION MODULE

- ➤ CPU communication module
 - By previous modules, user is able to generate the bit-stream used for programming FPGA
 - This module is used to transmit data between CPU and FPGA in run-time

DataBase

Graphics User interface(GUI)

Top-Level code generator

Bit-stream generator

DataBase

Graphics User interface(GUI)

Top-Level code generator

Bit-stream generator

DataBase

Graphics User interface(GUI)

Top-Level code generator

Bit-stream generator

Top-Level

DataBase

Design

Graphics User interface(GUI)

Top-Level code generator

Bit-stream generator

Top-Level

DataBase

Design

Graphics User interface(GUI)

Top-Level code generator

Bottom-Level

Bit-stream generator

Design

Top-Level

Design

DataBase

By group 9

Graphics User interface(GUI)

Top-Level code generator

Bottom-Level

Design

Bit-stream generator

Top-Level

Design

By group 9

Graphics User interface(GUI)

Top-Level code generator

Bottom-Level

Design

Bit-stream generator

By our group

OUTLINE

- > Introduction
- ➤ Top Level code generator
- ➤ Bitstream generator
- > CPU communication module
- > Summary

TOP LEVEL CODE GENERATOR

- ➤ Top-level entity generator is designed for generating top-level entity VHDL codes of the entire system by the system information collected by GUI.
- This module is supposed to be used when user finished constructing the entire system.

TOP LEVEL CODE GENERATOR - HOW DOES IT WORK

OUTLINE

- > Introduction
- ➤ Top-Level code generator
- Bitstream generator
- > CPU communication module
- > Summary

BITSTREAM GENERATOR

- ➤ Based on the function of Diamond Lattice
- ➤ To accomplish this function we learn to how to generate the bitstream in Diamond Lattice manually.
- ➤ Then we develop a program to automate this progress

Bitstream generater

Bitstream generater

OUTLINE

- > Introduction
- ➤ Top-Level code generator
- ➤ Bitstream generator
- ➤ CPU communication module
- > Summary

CPU COMMUNICATION MODULE

- ➤ Transmit data between CPU and FPGA in run-time
- ➤ It provides a small library which contains functions to manage data transmission between CPU and FPGA
- ➤ Since in our project, we don't need to do anything about simulation, GUI won't provide the interface to invoke this module.
- ➤ It could be a useful module for the future work.

CPU COMMUNICATION MODULE - WHY WE NEED THIS MODULE

- We check the data sheet of SECUBE. We find CPU communicates with FPGA by GPIO.
- ➤ Till now there is not any
 function to handle data
 transmission between GPIO

MachXO2-7000 FPGA	PB31A	CPU_FPGA_BUS_A0	PEO	PF0 PF1 PF2 PF3 PF4 PF5 PD14 PD15 P00 PD1 PE7
	PB31B	CPU_FPGA_BUS_A1		
	PB31D	CPU_FPGA_BUS_A2		
	PB35A	CPU_FPGA_BUS_A3		
	PB35B	CPU_FPGA_BUS_A4		
	PB37A	CPU_FPGA_BUS_AS		
	PB4A	CPU_FPGA_BUS_D0		
	PB4B	CPU_FPGA_BUS_D1		
	PB6A	CPU_FPGA_BUS_D2		
	PB6B	CPU_FPGA_BUS_D3		
		CPU_FPGA_BUS_D4		
	PB9A PB9B	CPU_FPGA_BUS_D5	PE8	
	PB13A	CPU_FPGA_BUS_D6	PE9	
	PB13A	CPU_FPGA_BUS_D7	PE10	
	PB138 PB18A	CPU_FPGA_BUS_D8	PE10	
	PB18B	CPU_FPGA_BUS_D9	PE12	
	PB23A	CPU_FPGA_BUS_D10	PE13 PE14 PE15 PD8 PD9 PD10	
	P823B	CPU_FPGA_BUS_D11		
	P826A	CPU_FPGA_BUS_D12		
	P8268	CPU_FPGA_BUS_D13		
	P829A	CPU_FPGA_BUS_D14		
	PB29B	CPU_FPGA_BUS_D15		
		CPU_FPGA_BUS_NOE		STM32F4
	PT28A	CPU FPGA BUS NWE	PD4	PDS CPU PD7 PG9 PA8 PA9 PG2 PE3
	PT28B	CPU_FPGA_BUS_NE1		
	PT33B	CPU_FPGA_BUS_NE2		
	PT35A	CPU_FPGA_CLK		
	PB16A	CPU FPGA INT N		
	PT35B	CPU FPGA RST		
	PT25B	CPU_FPGA_JTAG_TDI		
	PT14D	CPU_FPGA_JTAG_TDO		
	PT14C	CPU_FPGA_JTAG_TMS	PE2	
	PT17B	CPU_FPGA_JTAG_TCK	PE5	
	PT17C	CPU FPGA PROGRAMN	PE4	

of CPU and input buffer of FPGA. User need to control each corresponding bit of GPIO. It is not convenient.

PC

CPU

FPGA

PC

Data is collected by PC

CPU

FPGA

PC

CPU

FPGA

CPU invoke functions of library to send data to FPGA input buffer by GPIO

PC

CPU

FPGA

FPGA process data depending on user design

PC

CPU

FPGA

CPU invoke functions of library to read data from FPGA input buffer by GPIO

OUTLINE

- > Introduction
- ➤ Top-Level code generator
- ➤ Bitstream generator
- > CPU communication module
- > Summary

SUMMARY

➤ Gnatt

MILESTONES - DELIVERABLES

➤ Milestone 1: Finish top-level code generator

Deliverables: Source files of top-level code generator

Accomplished on April 25

➤ Milestone 2: Finish CPU communication module

Deliverables: Source files of CPU communication module

➤ Milestone 3: Finish bitstream generator

Deliverables: Source files of bitstream generator

Accomplished on June 1

➤ Milestone 4: Submit project

Deliverables: 1. Source files of entire project

2. Documentation

Thank you!