

## Force Distribution Sensor Based on Externally Observable Three-Dimensional Shape Deformation Information

2024/10/22 SENSORS2024

Ryuichi Ikeya and Yoshifumi Nishida

Institute of Science Tokyo

## Social background



It has become possible to easily extract the shape of an object

Software Developments



Hardware Developments



3D data of the object



Open a new way of estimating force only by observing deformations

[1] Kirillov et al, Segment Anything., 2023

## Conventional sensing











### Conventional: Sensorization by sensor embedding





## Future sensing





Sensorization of PET bottle



Sensorization of wall

Future: Sensorization by deformation observation



Sensorization of sofa and bed



Sensorization of desk

### Previous research



#### Vision sensors that estimate forces from images are attracting attention

Single-point force estimation from images using an experimentally generated dataset [1]

Models can be easily created and inference can be performed in real time



#### Limitations

- > Not flexible to changes in the experimental environment
  - Changes in background, changes in lighting, presence of humans.
- > Single-point force estimation limits application possibilities

## Research objective and method



#### **Objective**

Proposing a new force sensor principle that estimates force distribution from observable shape deformation information and verifying its feasibility

#### **Method**



#### **Novelty**

- Flexible to environmental changes by extracting shape deformation imformation
- Expressing force in image format allows for multi-point estimation



## Details of the proposed method (Inference process)

Shape deformation information is extracted from two images and force distribution is inferred using a trained machine learning model (CNN)





## Details of the proposed method (Training process)

Learns the relationship between shape deformation information and force distribution.



# Tokyo Tech

## Idea: Expressing shape deformation information

|                                      | Before<br>deformed | After<br>deformed | Contact position |
|--------------------------------------|--------------------|-------------------|------------------|
| Binary image [0 or 1] Object contour |                    |                   | -                |
| Binary image [0 to 1] Object depth   |                    |                   |                  |
|                                      |                    |                   |                  |





A typical encoder-decoder model which is used for tasks with image inputs and output



## Creating a Dataset

Sensor

Tokyo Tech

- 1. Extraction of shape deformation information using image processing
- 2. Creating teacher data using force sensor information



# Tokyo Tech

### Extraction of shape deformation information by image processing



## Creating a Dataset

Sensor

Tokyo Tech

- 1. Extraction of shape deformation information using image processing
- 2. Creating teacher data using force sensor information



## Creating teacher data





11 finger skeleton points

### Proposal of a 3D visualization system for estimated forces





Visibility is poor in 2D images

Display as vectors on 3D points



## Evaluation on training and test data

#### Balance ball



|               | Error in force distribution of model output |                             |                             |  |
|---------------|---------------------------------------------|-----------------------------|-----------------------------|--|
|               | Mean Square error $(mN^2)$                  | Mean absolute error( $mN$ ) | Mean relative error( $\%$ ) |  |
| Training Data | $2.93 \times 10^4$                          | 92.3                        | 11.9                        |  |
| Test Data     | $2.13 \times 10^5$                          | 176                         | 17.7                        |  |

#### Cushion



|               | Mean Square error $(mN^2)$ | Mean absolute error $(mN)$ | Mean relative error $(\%)$ |
|---------------|----------------------------|----------------------------|----------------------------|
| Training Data | $1.07 \times 10^4$         | 71.6                       | 12.3                       |
| Test Data     | $6.61 \times 10^4$         | 147                        | 20.3                       |

### [Balance Ball] Visual comparison of model output and ground truth



#### Example with average error





model output

ground truth

### [Balance Ball] Visual comparison of model output and ground truth



#### Example with large error





model output

ground truth

### [Cushion] Visual comparison of model output and ground truth



#### Example with average error





model output

ground truth

### [Cushion] Visual comparison of model output and ground truth



#### Example with large error





model output

ground truth

#### Discussion of error factors



#### Image processing noise

Noise on the contours of shapes

#### Loss of information due to the nature of depth cameras

The nature of depth cameras causes defects

#### Occlusion issues

Occlusion issues occurs behind hands and objects

#### Insufficient accuracy of contact judgment

cases where a non-touched position is recognized as touched





contour and depth images



Occlusion Issues



False contact detection

### Conclusions



We proposed a new force sensor based on shape deformation information

# Experiments with an integrated system for measuring and estimating shape change information

- Build a system that can automatically extract data sets using image processing
- For realistic 3D deformations
  - For the balance ball, the system was able to infer the position with an error of about 18%
  - For cushions, the system was able to infer with an error of about 20%.

#### Discussion of error factors

Present several sources of error

## Prospects for the future







Turning a chair into a sensor by observing deformation







Ayano Nomura, et.al., "Visualization of Body Supporting Force Field of the Elderly in Everyday Environment," Proc. of IEEE International Conference on Sensors, 2022

Turning a bed into a sensor by observing its deformation