DÔSLEDKOVÉ ÚPRAVY ROVNÍC (DUR)

RNDr. M. Jenisová

Obory rovníc

O ... Obor premennej rovnice:

množina čísel, v ktorej danú rovnicu riešime

D ... Definičný obor rovnice:

■ podmnožina oboru premennej x € O, pre ktoré je rovnica (nerovnica) definovaná, určujeme ho určením podmienok

P=K ... Obor pravdivosti (koreňov) rovnice:

■ podmnožina definičného oboru x € D, pre ktoré sa rovnica (nerovnica) stáva pravdivým výrokom. Je to množina všetkých koreňov rovnice

Pr.: Riešte rovnicu v R:
$$\frac{1}{x} = 1$$

$$O = R$$

$$O = R$$
 $D = R - \{0\}$ $K = \{1\}$

$$K = \{1\}$$

Dôsledkové úpravy rovníc sú také, ktorými môžeme zmeniť počet koreňov rovnice, preto je nutnou súčasťou riešenia skúška (dôsledok úpravy).

- DUR 1 : Vynásobenie (vydelenie) oboch strán rovnice neznámym výrazom
 - Pozn. Výraz by mohol nadobúdať nulové hodnoty a nulou nemôžeme deliť (nezmysel) ani násobiť (vynuluje obe strany rovnice).
- DUR 2 : Umocnenie oboch strán rovnice na druhú (párnym mocniteľom)
 - Pozn. Úprava by mohla zmeniť záporný výraz na kladný.

Pr 1.: Riešte rovnicu: $\sqrt{x^2+3}=x-1$

Určíme podmienky: P.:
$$x^2+3 \ge 0 \implies x^2 \ge -3$$

ale to platí vždy, preto podmienku nepíšeme!

Ďalej určíme definičný obor rovnice : D = R

odpočítame x^2 od oboch strán rovnice EUR 5: 3 = -2x + 1

pripočítame k obom stranám x EUR 5:

vydelíme obe strany -2 EUR 4:

vymeníme strany rovnice EUR 1:

SKÚŠKA:
$$L'(-1) = \sqrt{(-1)^2 + 3} = 2$$

$$P(-1) = -1 - 1 = -2$$

$$L' \neq P$$

$$x^2 + 3 = x^2 - 2x + 1$$

$$2 = -2x$$

$$-1 = x$$

$$x = -1$$

Skúška nevychádza, preto množina koreňov rovnice

Pr 2. : Riešte rovnicu:
$$\frac{2x+1}{x-1} + \frac{x+1}{x-1} = \frac{11}{2}$$

Určíme podmienky: P.: $x - 1 \neq 0 = P$.: $x \neq 1$ potom určíme definičný obor : $D = R - \{1\}$

vynásobíme výrazom (x – 1) **DUR 1**:
$$2x + 1 + x + 1 = \frac{11(x-1)}{2}$$

vynásobíme 2 EUR 4: 4x + 2 + 2x + 2 = 11(x - 1)

upravíme obe strany rovnice EUR 2: 6x + 4 = 11x - 11

doriešime rovnicu x=3

SKÚŠKA:
$$L'(3) = \frac{2.3+1}{3-1} + \frac{3+1}{3-1} = \frac{11}{2}$$

$$P(3) = \frac{11}{2}$$

$$L' = P$$

Podmienka vychádza a výsledok patrí do Def. oboru, preto

 $K = \{3\}$

Kedy sa dôsledkové úpravy stávajú ekvivalentnými

- ak pri umocnení mám istotu, že obe strany rovnice sú kladné, stáva sa táto úprava ekvivalentnou
- ak pri násobení výrazom mám istotu, že výraz je nenulový, stáva s táto úprava ekvivalentnou (v pr. 2 mi definičný obor dáva istotu, že výraz je nenulový, čiže nemusím robiť skúšku, úprava je ekvivalentná)