Тема 7

Градиентные методы обучения нейронных сетей

Equation Chapter (Next) Section 7

В предыдущей лекции был рассмотрен алгоритм обучения методом обратного распространения ошибки. Этот алгоритм является исторически одним из первых градиентных алгоритмов обучения НС. В текущей лекции будет рассмотрен ряд других эффективных градиентных алгоритмов обучения НС.

Общая постановка задачи обучения НС с нелинейными элементами эквивалентна задаче построения приближения (аппроксимации) некоторой функции $\overline{y} = r(\overline{x})$, где r нелинейная функция аппроксимируемая некоторой нейронной сетью. При условии априорности и неизменности архитектуры этой НС, задача обучения сводится к поиску некоторого вектора параметров \overline{w} , для которого функция $\overline{y} = f(\overline{w}, \overline{x})$ наилучшим образом приближает значения искомой функции r.

Постановка задачи

Для некоторой функции r(x), заданной обучающей выборкой $(\overline{x}^i, \overline{d}^i)$, i=1,...,N, необходимо найти вектор параметров \overline{w}' такой, что HC реализующая функцию $\overline{y}=f(\overline{w}',\overline{x})$ наилучшим образом аппроксимирует функцию r, т. е. верно

$$D_r(f(\overline{w}', \overline{x})) = \sum_{n=1}^{N} e_n = \min_{\overline{w}} D_r(f(\overline{w}, \overline{x})), \qquad (7.1)$$

где $e_{\scriptscriptstyle n}$ - ошибка HC на n-й паре выборки.

Как правило, для вычисления ошибки на одной паре применяют формулу

$$e_n = \frac{1}{2} \| \overline{y}^n - f(\overline{w}, \overline{x}^n) \|^2.$$
 (7.2)

В этом случае, функционал D_r будем обозначать $D_r(f(\overline{w},\overline{x})\equiv E(\overline{w})$, и формула его вычисления примет вид

$$E(\overline{w}_k) = \frac{1}{2} \sum_{n=1}^{N} \left(\overline{y}^n - f(\overline{w}_k, \overline{x}^n) \right)^2.$$
 (7.3)

Большинство градиентных методов первого порядка опираются на вычисления по формуле

$$\overline{W}_{k+1} = \overline{W}_k + \eta_k \overline{p}_k, \tag{7.4}$$

где $\overline{p}_{\scriptscriptstyle k}$ задаёт направление, а $\,\eta_{\scriptscriptstyle k}\,$ - размер шага.

Обобщённый алгоритм нелинейной оптимизации состоит из следующих шагов [1].

- 1. Выбираем начальное направление движения \overline{p}_0 (например, случайным образом) и начальный шаг $\eta_0 \approx 1$.
- 2. На очередном шаге определяем направление движения \overline{p}_k , основываясь на требуемой для этого информации например, векторе \overline{p}_{k-1} или градиенте функционала ошибки в точке.
- 3. Определяем очередной шаг η_k , обычно определяя минимум функционала ошибки в направлении \overline{p}_k с некоторой точностью.
- **4**. Вычисляем новое значение \overline{w}_k по формуле (7.4).
- 5. Если ошибка, вычисляемая по формуле (7.3) недостаточно мала, и не выполнено какое-либо правило останова, то переход на шаг 2, иначе конец.

Таким образом, конкретизация параметров η_k и \overline{p}_k даёт нам некоторый конкретный алгоритм. При этом, в зависимости от способа вычисления параметра \overline{p}_k методы делятся на методы нулевого порядка — те которые не требуют вычисления градиента функционала ошибки, методы первого порядка — требующие вычисления первых частных производных Φ О и методы второго порядка — требующие вычисления оценки матрицы частных производных второго порядка и обратной к ней. Использование частных производных более высоких порядков для вычисления направления движения оказалось крайне неэффективным.

Методы первого порядка

Рассмотрим некоторые способы вычисления величина шага и направления.

Метод наискорейшего спуска

Основные шаги алгоритма следующие.

- 1. В качестве начального значения p_0 выбирается некоторый случайный вектор. В качестве η_0 , обычно берётся число близкое к 0,1.
- 2. На втором шаге $\overline{p}_k = \overline{g}_k \equiv -\nabla E(\overline{w}_k)$.
- 3. Шаг η_k определяется из условия минимума функции $E(\overline{w}_k + \eta_k \overline{p}_k)$.
- **4**. Вычисляем новое значение \overline{w}_k по формуле (7.4).
- 5. Ошибка считается в соответствии с формулой (7.3) и осуществляется либо переход на шаг 2, либо остановка алгоритма.

Метод тяжёлого шарика

Направление задается следующим образом

$$\overline{p}_k = \overline{g}_k + \beta \overline{p}_{k-1}; \ \overline{p}_0 = \overline{g}_0 = -\nabla E(\overline{w}_0), \tag{7.5}$$

где β - некоторая константа из интервала [0,1], задаваемая пользователем.

В этом алгоритме, в отличие от алгоритма наискорейшего спуска, скорость сходимости намного быстрее, так как даже при резко меняющемся векторе направления, процесс имеет инерционность.

Методы сопряженных градиентов

Если отказаться от постоянности коэффициента β , то из метода тяжёлого шарика можно получить один из методов сопряженных градиентов. Приведем параметры этих алгоритмов в виде таблицы.

Таблица 7.1

Параметры алгоритма		Название
$\overline{p}_k = \overline{g}_k + \beta_k \overline{p}_{k-1};$ $\overline{p}_0 = \overline{g}_0 = -\nabla E(\overline{w}_0)$	$\beta = const \in [0,1]$	метод тяжёлого шарика
	$\beta_k = \frac{(\overline{g}_k, \overline{g}_k)}{(\overline{g}_{k-1}, \overline{g}_{k-1})}$	метод Флетчера-Ривса
	$\beta_k = \frac{(\overline{g}_k - \overline{g}_{k-1}, \overline{g}_k)}{(\overline{g}_k - \overline{g}_{k-1}, \overline{p}_k)}$	метод Хестенса- Штифеля
	$\beta_k = \frac{(\overline{g}_k - \overline{g}_{k-1}, \overline{g}_k)}{(\overline{g}_{k-1}, \overline{g}_{k-1})}$ $\beta_k = \frac{(\overline{g}_k - \overline{g}_{k-1}, \overline{g}_k)}{(\overline{g}_{k-1}, \overline{g}_k)}$	метод Полака- Рибьера
	(g_{k-1}, p_{k-1})	без названия
	$\beta_k = \frac{(\overline{g}_k, \overline{g}_k)}{(\overline{g}_{k-1}, \overline{p}_{k-1})}$	без названия
	$\beta_{k} = \begin{cases} \gamma \beta_{k-1}, & (\overline{g}_{k}, \overline{p}_{k-1}) \ge 0; \\ \min \left(\beta_{k-1}, -\frac{1}{2} \frac{(\overline{g}_{k}, \overline{g}_{k})}{(\overline{g}_{k}, \overline{p}_{k-1})} \right), & (\overline{g}_{k}, \overline{p}_{k-1}) < 0 \end{cases}$	Метод тяжёлого шарика регулируемой массы
	$\gamma > 1$.	
$\overline{p}_0 = \overline{g}_0 = -\nabla E(\overline{w}_0),$ $\overline{p}_k = \overline{g}_k + \beta_k \overline{p}_{k-1} - \gamma_k \overline{q}_k,$ $\overline{q}_k = \overline{g}_k - \overline{g}_{k-1}.$	$\beta_k = \frac{(\overline{q}_k, \overline{g}_k) + (\overline{g}_k, \overline{p}_{k-1}) \left(\eta_{k-1} + \frac{(\overline{q}_k, q_k)}{(q_k, p_{k-1})} \right)}{(\overline{q}_k, \overline{p}_{k-1})},$	BFGS с конечной памятью
	$\gamma_k = \frac{(\overline{g}_k, \overline{p}_{k-1})}{(\overline{q}_k, \overline{p}_{k-1})}$	

Алгоритм RProp.

Обозначим $\Delta w_{k,i} = w_{k,i} - w_{k,i}$.

- 1. Устанавливаем начальные значения $\overline{w}_0, \overline{p}_0$.
- 2. Первый шаг делается в направлении антиградиента $\Delta \overline{w}_k = \lambda \overline{g}_0$, $\lambda = 1/N$.
- 3. На очередном шаге переменные пересчитываются в соответствии с формулой

$$\Delta w_{k+1,i} = \begin{cases} \gamma_1 \Delta w_{k,i}, & g_{k,i} g_{k-1,i} > 0, \\ \gamma_2 \Delta w_{k,i}, & g_{k,i} g_{k-1,i} < 0, \\ \Delta w_{k,i}, & g_{k,i} g_{k-1,i} = 0. \end{cases}$$
(7.6)

где $\gamma_1 > 1$, $\gamma_2 < 1$ (например, 1,2 и 0,5).

- **4**. Вычисляем новое значение \bar{w}_k по формуле (7.4).
- 5. Проверяется ошибка и в случае необходимости осуществляется переход на 3-й шаг.

Смысл метода — использовать только знак координат градиента, что позволяет стабилизировать скорость движения, что позволяет не оставаться в неглубоких локальных минимумах.

Алгоритм QuiqProp

- 1. Устанавливаем начальные значения \bar{w}_0, \bar{p}_0 .
- 2. Первый шаг делается в направлении антиградиента $\Delta \overline{w}_k = \lambda \overline{g}_0$, $\lambda = 1/N$.
- 3. На очередном шаге переменные пересчитываются в соответствии с формулой

$$\Delta w_{k+1,i} = \begin{cases} \beta_k \Delta w_{k,i}, & \beta_k \leq \beta, \\ \tilde{\beta}_k \Delta w_{k,i}, & \beta_k > \beta. \end{cases}$$

$$\beta_k = \frac{g_{k,i}}{g_{k,i} - g_{k-1,i}}, & \tilde{\beta}_k = \beta \cdot sign(\beta_k).$$
(7.7)

где β - некоторое число, заданное пользователем.

- 4. Вычисляем новое значение \overline{w}_{k} по формуле (7.4).
- 5. Проверяется ошибка и в случае необходимости осуществляется переход на 3-й шаг.

Алгоритм Delta-delta

- 1. Устанавливаем начальные значения \bar{w}_0, \bar{p}_0 .
- 2. Первый шаг делается в направлении антиградиента $\Delta \overline{w}_k = \lambda \overline{g}_0$, $\lambda = 1/N$.
- 3. На очередном шаге переменные пересчитываются в соответствии с формулой

$$\Delta \overline{w}_{k+1} = \gamma_k \overline{g}_k,
\gamma_{k+1,i} = \gamma_k + \delta \overline{g}_k g_{k+1}^T,
\delta = \delta_0 / g_{0,i}^2, \gamma_{0,i} = \gamma_0 / |g_{0,i}|.$$
(7.8)

Здесь константы δ_0, γ_0 задаются пользователем.

- **4**. Вычисляем новое значение \overline{w}_{k} по формуле (7.4).
- 5. Проверяется ошибка и в случае необходимости осуществляется переход на 3-й шаг.

Методы второго порядка

Метод Ньютона

Пусть нам надо решить уравнение $\nabla E(\overline{w}) = 0$. Если мы имеем некоторое приближение к решению \overline{w}_k , тогда в окрестности этой точки

$$\nabla E(\overline{w}) = \nabla E(\overline{w}_k + \overline{w} - \overline{w}_k) \approx \nabla E(\overline{w}_k) + \nabla^2 E(\overline{w}_k)(\overline{w} - \overline{w}_k). \tag{7.9}$$

Будем искать \overline{w}_{k+1} следующим образом

$$\overline{w}_{k+1} = \overline{w}_k - \nabla^2 E^{-1}(\overline{w}_k) \nabla E(\overline{w}_k) = \overline{w}_k + \nabla^2 E^{-1}(\overline{w}_k) g_k. \tag{7.10}$$

Из этого равенства следует, что E должна быть дважды дифференцируема по всем компонентам \overline{w} , а матрица вторых производных $\nabla^2 E(\overline{w}_k)$ положительно определена и обратима. Таким образом, для вычисления нового значения \overline{w}_{k+1} требуется рассчитать градиент, матрицу вторых производных и обратить её. Это довольно затратные операции, поэтому на практике, как правило, использую либо приближенное значение $\nabla^2 E^{-1}(\overline{w}_k)$, либо рассчитывают его итеративно. В общем виде, такие схемы требуют расчёта направления движения по формуле

$$\overline{p}_k = H_k \overline{g}_k, \tag{7.11}$$

где H^k - некоторая матрица, заменяющая $\nabla^2 E^{-1}(\overline{w}_k)$, т. е. матрица заменяющая обратную к гессиану.

Рассмотрим некоторые конкретные алгоритмы, так как они приведены в [1].

Алгоритм сопряженных направлений

- 1. Выбираем начальные значения подбираемых переменных \overline{w}_{0} и параметры алгоритма.
- 2. Вычисляем антиградиент по формуле $\ \overline{g}_{\scriptscriptstyle k} = \nabla E(\overline{w}_{\scriptscriptstyle k})$.
- 3. Вычисляем матрицу по формуле

$$H_{k+1} = H_k - \frac{\overline{z}_k \overline{z}_k^T}{(\overline{z}_k, \overline{g}_k - \overline{g}_{k+1})}, \tag{7.12}$$

$$\bar{z}_{k+1} = H_k(\bar{g}_k - \bar{g}_{k+1}). \tag{7.13}$$

- 4. Вычисляем направление по формуле $\overline{p}_k = H_k \overline{g}_k$.
- 5. Вычисляем шаг η_k каким либо методом одномерной минимизации.
- 6. Вычисляем ошибку E на обучающей выборке и если ошибка существенна, повторяем шаги 2-5.

Алгоритм BFGS

Этот алгоритм полностью повторяет алгоритм сопряженных направлений и отличается от него лишь способом вычисления значения на 3-м шаге:

$$H_{k+1} = H_k - \frac{1}{(\overline{p}_k, \overline{g}_k - \overline{g}_{k+1})} \cdot \left(\left(\eta_k + \frac{(\overline{z}_k, \overline{g}_k - \overline{g}_{k+1})}{(\overline{p}_k, \overline{g}_k - \overline{g}_{k+1})} \right) \overline{p}_k \overline{p}_k^T - \overline{z}_k \overline{p}_k^T - \overline{p}_k \overline{z}_k^T \right). \quad (7.14)$$

Алгоритм Левенберга-Марквардта

Для описания этого метода напомним представление функции E:

$$E(\overline{w}) = \frac{1}{2} \sum_{n=1}^{M} (\overline{y}^n - f(\overline{w}, \overline{x}^n))^2 \equiv \frac{1}{2} \sum_{n=1}^{M} e_n^2(\overline{w}).$$
 (7.15)

Обозначим

$$\overline{e}(\overline{w}) = (e_1(\overline{w}), e_2(\overline{w}), \dots, e_N(\overline{w})), \tag{7.16}$$

$$J(\overline{w}) = \begin{pmatrix} \frac{\partial e_1}{\partial w_1} & \frac{\partial e_1}{\partial w_2} & \cdots & \frac{\partial e_1}{\partial w_n} \\ \frac{\partial e_2}{\partial w_1} & \frac{\partial e_2}{\partial w_2} & \cdots & \frac{\partial e_2}{\partial w_n} \\ \cdots & \cdots & \cdots & \cdots \\ \frac{\partial e_N}{\partial w_1} & \frac{\partial e_N}{\partial w_2} & \cdots & \frac{\partial e_N}{\partial w_n} \end{pmatrix}.$$
(7.17)

В этих обозначениях шаги алгоритма выглядят следующим образом.

- 1. Выбираем начальные значения подбираемых переменных \overline{w}_0 , r > 1, $v_0 \square 1$.
- 2. Вычисляем антиградиент по формуле

$$\overline{g}_k = \overline{e}(\overline{w}_k)J(\overline{w}_k). \tag{7.18}$$

3. Вычисляем матрицу $G(\bar{w}_{k})$ по формуле

$$G(\overline{w}_k) = J(\overline{w}_k)J^T(\overline{w}_k) + v_k \cdot I. \tag{7.19}$$

4. Вычисляем направление по формуле

$$\overline{p}_k = -G^{-1}(\overline{w}_k)\overline{g}_k. \tag{7.20}$$

5. Вычисляем значение

$$v_{k} = \begin{cases} \frac{v_{k} - 1}{r}, & E\left(\frac{v_{k-1}}{r}\right) \leq E_{k}; \\ v_{k} = v_{k-1}, & E\left(\frac{v_{k-1}}{r}\right) > E_{k} \ u \ E(v_{k-1}) < E_{k}; \\ v_{k} = v_{k-1}r^{m}, & E\left(\frac{v_{k-1}}{r}\right) > E_{k} \ u \ E(v_{k-1}) > E_{k}. \end{cases}$$

$$(7.21)$$

6. Вычисляем ошибку E на обучающей выборке и если ошибка существенна, повторяем шаги 2-6.

В этом алгоритме $v_k \cdot I$ называется параметром Левенберга-Марквардта, является скалярной величиной, изменяющейся в процессе оптимизации. В начале процесс, когда \overline{w}_k далеко от искомого решения, значение v_k значительно превосходит собственное значение матрицы $J(\overline{w}_k)J^T(\overline{w}_k)$, следовательно

$$G(\overline{w}_k) \cong v_k \cdot I, \tag{7.22}$$

И

$$p_k = -\frac{\overline{g}_k}{v_k} \,. \tag{7.23}$$

По мере уменьшения погрешности и приближения к искомому решению величина параметра v_k понижается, и первое слагаемое в формуле (7.19) начинает играть всё более важную роль.

Литература

1. Д. А. Тархов. Нейронные Сети. Модели и алгоритмы. Кн. 18. – М.: Радиотехника, 2005.