статистическая физика

Юрий Голубев yura.winter@gmail.com

23 октября 2020 г.

Аннотация

Задачи по статической физике.

Содержание

Пр	едисловие	1
Ι	упражнения	2
II	задачи	9
Пј	редисловие	
	Здесь следующие есть интересные веши:	

Часть І

упражнения

Упражнение. 1

N молекул идеального газа в объеме V. Определить вероятность того, что в объеме v < V находится n молекул.

Получить приближенное выражение, когда $v \ll V$. Найти среднее число частиц \overline{n} в объеме v, его среднюю абсолютную и относительную флуктуации.

Вероятность попадания ровно одной молекулы в объем V равна $p=\frac{v}{V}$. Поэтому вероятность попадания ровно n молекул в объем V равна

$$p^n(1-p)^{N-n}$$

В объем сосуда могут попасть разные молекулы, всего нужных нам комбинаций:

$$C_N^n = \frac{N!}{n!(N-n)!}$$

Поэтому итоговая вероятность:

$$P(n) = \frac{N!}{n!(N-n)!}p^{n}(1-p)^{N-n}$$

Поищем предел $v\ll V$, для него можно считать, что $p\ll 1, n\gg 1$, также можно предположить, что $np=\lambda$, которое конечно и не слишком мало, не слишком велико. В таком случае имеется известный предел - распределение становится распределением Пуассона.

$$P(n) = \frac{\lambda^k}{k!} e^{-\lambda} = \frac{np^k}{k!} e^{-np}$$

Среднее значение \overline{n} найдется с помощью

$$\overline{n} = \frac{v}{V}N = Np$$

Флуктуации найдутся, зная дисперсию $D\hat{n} = En^2 - (En)^2 = N(p-p^2) = Npq$:

$$\frac{\sqrt{Dn}}{\overline{n}} = \frac{\sqrt{Npq}}{Np} = \sqrt{\frac{q}{Np}}.$$

Пусть $v \ll V, \overline{n} \gg 1$

$$P_u(v) = P(n, \lambda) = \frac{\lambda^n e^{\lambda}}{n!}$$

Используя формулу Стирлинга, получаем:

$$P_n(\sigma) \approx \frac{e^{-\lambda}}{\sqrt{2\pi n}} \left(\frac{e\lambda}{n}\right)^n = \frac{1}{\sqrt{2\pi n}} \exp\left(-\lambda + n + n \ln\left(\frac{\lambda}{n}\right)\right)$$

Просто преобразуем P(v), введя $x \equiv \lambda - n$, тогда логарифм раскрывается так: $\ln \frac{\lambda}{n} = \ln \left(\frac{n+x}{n} \right) = \ln \left(1 + \frac{x}{n} \right) \approx \frac{x}{n} - \frac{1}{2} \left(\frac{x}{n} \right)^2$

$$P_4(v) = \frac{1}{\sqrt{2\pi n}} \exp\left(-x + x - \frac{1}{2}\frac{x^2}{n}\right) = P_4(v) = \frac{1}{\sqrt{2\pi n}} \exp\left(\frac{(\lambda - n)^2}{2\lambda}\right)$$

это распределение Гаусса

Упражнение. 2

Вычислить $C_p - C_v$ в переменных V, T и P, T.

Определить $C_p - C_v$ для больцмановского газа, газа Ван-дер-Ваальса, ферми и бозе-газа и черного излучения.

Первое начало термодинамики:

$$\delta Q = dU + pdV,$$

поэтому:

$$C_V = \left(\frac{\partial U}{\partial T}\right)_V$$

Считая внутреннюю энергию U функцией температуры и объема, можем записать

$$C_p = C_V + \left[\left(\frac{\partial U}{\partial V} \right)_T + p \right] \left(\frac{\partial V}{\partial T} \right)_p \tag{1}$$

Выражение в квадратных скобках в правой части легко вычислить, воспользовавшись фундаментальным равенством Гиббса:

$$TdS = dU + pdV$$

Имеем:

$$T\left(\frac{\partial S}{\partial V}\right)_T = \left(\frac{\partial U}{\partial V}\right)_T + p$$

Далее, из соотношения

$$dF = -SdT - pdV$$

следует равенство

$$\left(\frac{\partial S}{\partial V}\right)_T = \left(\frac{\partial p}{\partial T}\right)_V$$

Поэтому

$$\left(\frac{\partial U}{\partial V}\right)_T + p = T \left(\frac{\partial p}{\partial T}\right)_V$$

Теперь с помощью соотношения 1 получаем

$$C_p - C_V = T \left(\frac{\partial p}{\partial T} \right)_V \left(\frac{\partial V}{\partial T} \right)_P$$

И используя

$$\left(\frac{\partial z}{\partial x}\right)_y \left(\frac{\partial x}{\partial y}\right)_z \left(\frac{\partial y}{\partial z}\right)_x = -1,$$

запишем:

$$C_p - C_V = -T \left(\frac{\partial V}{\partial T}\right)_n^2 \left(\frac{\partial V}{\partial p}\right)_T^{-1} \tag{2}$$

или

$$C_p - C_V = -T \left(\frac{\partial p}{\partial T}\right)_V^2 \left(\frac{\partial p}{\partial V}\right)_T^{-1} \tag{3}$$

Теперь применим эти формулы для больцмановского газа, для которого $pV=\nu RT,$ имеем:

$$\left(\frac{\partial V}{\partial T}\right)_p = \frac{\nu R}{p}$$

$$\left(\frac{\partial V}{\partial p}\right)_T = -\frac{\nu RT}{p^2}$$

Поэтому при подстановке в 2 много множителей сокращаются и имеем:

$$C_p - C_V = \nu R$$

Теперь применим эти формулы для газа Ван-дер-Ваальса, для которого $\left(p+\frac{a\nu^2}{V^2}\right)\left(\frac{V}{\nu}-b\right)=RT$. Будем для просто ты считать, что $\nu=1$. И также тут разумнее подставлять все в 3 Получаем:

$$\left(\frac{\partial p}{\partial T}\right)_V = \frac{R}{V - b}$$

$$\left(\frac{\partial p}{\partial V}\right)_T = -\frac{RT}{(V - b)^2} + \frac{2a}{V^3}$$

Таким образом, подставляем и получаем:

$$C_p - C_V = \frac{TR}{T - \frac{2a}{V^3} (V - b)^2}$$

Теперь применим эти формулы для фермии и бозе-газа, для которых $\frac{pV}{NT}=1\pm\alpha\left(\frac{T_0}{T}\right)^{3/2}$. Подставим, посчитаем производные, придем к ответу:

$$C_p - C_V = \frac{N(\alpha T_0^{3/2} N \mp 2T^{3/2} V)^2}{\pm 8\alpha T_0^{3/2} N T^{3/2} + 4T^3 V^2}$$

Теперь применим эти формулы для черного излучения. Для такого: $p=\frac{a}{3}T^4$. Поэтому для него $C_p-C_V \to \infty$

Упражнение. 3

Вычислить число состояний одноатомного больцмановского газа.

Пусть имеется частиц N частиц в объеме V. Поступательное движение частиц всегда квазиклассично. В классической механике состояние системы характеризуется точкой в 6N- мерном фазовом пространстве

$$\alpha = (\mathbf{r}_1, \mathbf{p}_1, \mathbf{r}_2, \mathbf{p}_2, \dots, \mathbf{r}_N, \mathbf{p}_N) \tag{4}$$

Число точек в элементе 6 -мерного фазового объема dr^3dp^3 согласно правилу Бора-Зоммерфельда равно отношению этого объема к $(2\pi\hbar)^3$. Обобщение этого правила на случай N одинаковых частиц дает дифференциал числа состояний

$$d\Gamma_{\alpha} = \frac{1}{N!} \prod_{i=1}^{N} \frac{d^3 r_i d^3 p_i}{(2\pi\hbar)^3}$$

Произведение дифференциалов поделено на N! для того, чтобы все конфигурации, положения частиц в 6N -мерном фазовом пространстве, отличающиеся друг от друга лишь перестановками тождествен ных частиц, учитывались только один раз. С помощью 4 произвольная сумма по состояниям может быть представлена в форме интеграла

$$\sum_{\alpha} F_{\alpha} = \int d\Gamma_{\alpha} F_{\alpha}$$

Полное число состоя ний - число точек в 6N -мерном пространстве с энерг ией

$$E_{\alpha} = \sum_{i=1}^{N} \frac{p_i^2}{2m}$$

А так как $\Gamma(E) = \sum_{\alpha} \theta \, (E - E_{\alpha})$, то в интервале между 0 и E выражается интегралом:

$$\Gamma(E) = \int d\Gamma_{\alpha}\theta \left(E - E_{\alpha}\right) = \frac{1}{N!} \int \prod_{i=1}^{N} \frac{d^3 r_i d^3 p_i}{(2\pi\hbar)^3} \theta \left(E - \sum_{i=1}^{N} \frac{p_i^2}{2m}\right)$$

Интегрирование по пространственным координатам каждой частицы дает объем V, и с учетом формулы Стильтьеса получаем

$$\Gamma(E) = \left(\frac{Ve}{N(2\pi\hbar)^3}\right)^N J_{3N}(E)$$

$$J_{3N}(E) = \int \prod_{i=1}^N d^3p_i \theta \left(E - \sum_{i=1}^N \frac{p_i^2}{2m}\right) - \text{объем 3n мерного шара радиусом р}$$

$$V_{3N}(p) = \frac{\pi^{3N/2}}{\Gamma(\frac{3N}{2}+1)} p^n \approx \left(\frac{2e\pi p^2}{3N}\right)^{3N/2}$$

Тогда:

$$\Gamma(E) = \left(\frac{Ve}{N(2\pi\hbar)^3}\right)^N \left(\frac{4e\pi mE^2}{3N}\right)^{3N/2}$$

Упражнение. 4

Вычислить число состояний системы N независимых спинов 1/2.

Систему N спинов $S=\frac{1}{2},$ находящихся в магнит ном поле B, будем описывать гамильтонианом

$$H = -2\mu B \sum_{i=1}^{N} \left(s_i^z - \frac{1}{2} \right)$$

Энергия одного спина в магнитном поле, равная $-2\mu B s^z \left(s^z=\pm \frac{1}{2}\right)$, сдвинута на константу, чтобы минимальная энергия была равна нулю. Если $(\vec{N}-M)$ спинов находятся в основном состоя нии $(s^z=1/2)$, а M спинов — в возбужденном $(s^z=-1/2)$, то система имеет энергию $E=M\Delta E$, где $\Delta E=2\mu B$. Такая энергия может быть полу чена числом способов, равным:

$$\Delta\Gamma_M = \frac{N!}{M!(N-M)!} \tag{5}$$

Это и есть наше требуемое число состояний.

При больших значениях аргумента по формуле Стирлинга факториал приближенно равен

$$N! \approx (N/e)^N$$

и выражение 5 принимает вид

$$\Delta\Gamma = \left(\frac{N}{e}\right)^N \left(\frac{e}{M}\right)^M \left(\frac{e}{N-M}\right)^{N-M} = \frac{N^N}{M^M(N-M)^{N-M}}$$

Из этого выражения можно найти энтропию и другие характеристики, но о них не спрашивается, так что задача решена.

Упражнение. 5

Вычислить число состояний системы N одинаковых независимых осцилляторов. За вычетом энергии нулевых колебаний энергия системы равна

$$E = \Delta E \sum_{i=1}^{N} n_i, \quad \Delta E = \hbar \omega$$

где n_i - номер возбуждения i -того осциллятора. Это значение энергии может быть получено числом способов, которое следует из комбинаторики

$$\Gamma = \frac{(N+M-1)!}{(N-1)!M!} \approx \frac{(N+M)^{N+M}}{N^N M^M}$$

Упражнение. 6

Получить выражения для неравновесной энтропии ферми- и бозе-газов Вероятность произвольного состояния:

$$w_{\alpha} = w\left(p_{1}\right) \cdot w\left(u_{p_{2}}\right) w\left(u_{p_{3}}\right) \cdot \dots$$

$$S = -\sum_{x} w_{\alpha} ln w_{\alpha} = -\sum_{n_{p_1}} \sum_{n_{p_2}} \sum_{n_{p_3}} \dots (w(u_{p_2}) w(u_{p_3}) \cdot \dots) (\ln w(n_{p_1}) + \ln w(n_{p_2}) + \dots)$$

$$S = -\sum_{n_{p_1}} w(n_{p_1}) \ln w(n_{p_1}) + \dots$$

Для ферми газа: $n_p = \{0, 1\}$

$$-\sum_{n_p} w(n_p) \ln w(n_p) = -w(n_{p_1}) \ln w(n_{p_1}) + w(n_{p_0}) \ln w(n_{p_0})$$

среднее число частиц с импульсом $p:\overline{n_p}=\sum_{n_p}w(n_p)n_p=w(1_p)$

$$w(0_p) = 1 - \overline{n_p}$$

поэтому:

$$-\sum_{n_p} w(n_p) \ln w(n_p) = -(1 - \overline{n_p}) \ln(1 - \overline{n_p}) - \overline{n_p} \ln \overline{n_p}$$

В итоге энтропия для ферми газа равна:

$$S_F = -\sum_{p} \left((1 - \overline{n_p}) \ln(1 - \overline{n_p}) + \overline{n_p} \ln \overline{n_p} \right)$$

Теперь то же для бозе-газа. Для него $n_p \in \{0,...\infty\}$

Сумма $\left[-\sum_{n_p} w(n_p) \ln(n_p)\right]$ принимает максимальное значение при заданном $\overline{n_p}$ при условии на функцию Лагранжа:

$$L = -\sum_{n_p} w(n_p) \ln(n_p) - \lambda_1 \sum_n nw(n) - \lambda_2 \sum_n w(n)$$

$$\frac{\partial L}{\partial w(n)} = -\ln w(n) - 1 - \lambda_1 n - \lambda_2$$

$$w(n) = \exp\left(-1 - \lambda_1 n - \lambda_2\right)$$

$$\sum w_n = 1 \Rightarrow \exp\left(-1 - \lambda_1 n - \lambda_2\right) = 1$$

$$\sum \exp\left(-1 - \lambda_2\right) \sum_n \exp(-\lambda_1 n) = 1$$

$$\sum_n \exp\left(-\lambda_1 n\right) = \frac{1}{1 - e^{-\lambda_1}} \Rightarrow \exp\left(-1 - \lambda_2\right) = 1 - e^{-\lambda_1}$$

$$\bar{n} = \sum_n w(n) n = \exp\left(-1 - \lambda_2\right) \sum_n n \exp\left(-\lambda_1 n\right) = \exp\left(-1 - \lambda_2\right)$$

$$\left(-\frac{d}{d\lambda_1} \sum_n \exp\left(-\lambda_1 n\right)\right) = -\exp\left(-1 - \lambda_2\right) \frac{d}{d\lambda_1} \frac{1}{1 - e^{-\lambda_1}}$$

$$\bar{n} = \frac{1}{e^{\lambda_1} - 1}$$

$$e^{-\lambda_1} = \frac{\bar{n}}{\bar{n} + 1}$$

Поэтому после преобразований получаем:

$$w(n) = \frac{1}{\bar{n}+1} \left(\frac{\bar{n}}{\bar{n}+1}\right)^n$$

$$S = -\sum_{n} w(n) \ln w(n) = \sum_{n} w(n) (\lambda_{1} n + \lambda_{2} + 1) =$$

$$= \sum_{n} w_{n} (\lambda_{2} + 1) + \sum_{n} n w_{n} \lambda_{1} = (\lambda_{2} + 1) + \bar{n} \lambda_{1} =$$

$$= (\bar{n} + 1) \ln(\bar{n} + 1) - \bar{n} \ln \bar{n} \quad (6)$$

В итоге:

$$S = \sum_{p} \left[(1 + \bar{n}_p) \ln (1 + \bar{n}_p) - n_p \ln \overline{n_p} \right]$$

Упражнение. 7

Вычислить основные термодинамические величины ферми- и бозе-газов при T=0

$$\begin{split} N &= \sum_{p} \left(N_{p} \right) \approx \frac{2V}{(2\pi\hbar)^{3}} \int_{0}^{p_{F}} n_{p} 4\pi p^{2} d(p) = \frac{V}{3\pi^{2}\hbar^{3}} p_{F}^{3} \\ E &= \sum_{p} \left(E_{p} n_{p} \right) \approx \frac{2V4\pi}{(2\pi\hbar)^{3} 2m} \int_{0}^{p_{F}} p^{4} d(p) = \frac{3}{5} N E_{F} \\ P &= -\frac{\partial(E)}{\partial(V)} = -\frac{\partial}{\partial(V)} \left(\frac{3}{10} \left(3\pi^{2} \right)^{\frac{2}{3}} \frac{\hbar^{2}}{m} \frac{N^{\frac{5}{3}}}{V_{3}^{\frac{2}{3}}} \right) = \frac{1}{5} \left(3\pi^{2} \right)^{\frac{2}{3}} \frac{\hbar^{2}}{m} n^{\frac{5}{3}} = \frac{2}{5} n E_{F} \end{split}$$

Упражнение. 8

Из функционала Гинзбурга—Ландау получить выражение для плотности тока в магнитном поле, получить уравнение Лондонов и квантование магнитного потока в сверхпроводящем кольце.

Упражнение. 9

Вычислить среднее от произведения четырех ферми-операторов $\langle \hat{a}_k^+ \hat{a}_p^+ \hat{a}_u \hat{a}_v \rangle$, где $\langle \cdots \rangle$ – усреднение по состоянию невзаимодействующих частиц с заданной температурой и химпотенциалом.

Упражнение. 10

Записать оператор взаимодействия электронов с внешними электрическим и магнитным полями в представлении вторичного квантования.

Упражнение. 11

Вычислить $\langle \exp(-iq\hat{x}) \rangle$, гДе \hat{x} оператор смещения одномерного гармонического осциллятора.

Упражнение. 12

Определить температурную зависимость среднеквадратичного смещения атомов от положения равновесия Rk Rp, где ··· обозначают усреднение по состоянию невзаимодействующих фононов с заданной температурой, Rk –с мещениеатомав k-направлении. Объяснить происхождение нулевых колебаний.

Упражнение. 13

Используя результаты предыдущей задачи, вычислить среднее от произведения четырех операторов смещения, относяпихся к одной и той же ячейке: $\left\langle \hat{R}_k \hat{R}_p \hat{R}_i \hat{R}_j \right\rangle$, где $\langle \cdots \rangle$ обозначают усреднение по состоянию невзаимодействующих фононов с заданной температурой, \hat{R}_k- смещение атома в k-направлении (k=x,y,z)

Упражнение. 14

Для электронов, находящихся под поверхностью Ферми, произвести переход к дырочному представлению. Записать полный гамильтониан идеального ферми-газа, используя операторы рождения и уничтожения квазичастиц (электронов над поверхностью Ферми и дырок под поверхностью Ферми). Определить химический потенциал и энергетический спектр полученных квазичастиц.

Упражнение. 15

Вычисляя первую поправку термодинамической теории возмущений, найти вклад прямого и обменного взаимодействия для ферми- и бозе-частиц. Сравнить результаты

Упражнение. 16

В преобразовании Боголюбова для электронов получить при Т Тс связь операторов поглощения квазичастиц и поглощения голых электронов.

Часть II

задачи

Задача. 1

Показать, что замкнутая система из двух равновесных подсистем имеет максимальную энтропию, когда у подсистемы равны температура, давление и химические потенциалы.

Энтропию замкнутой системы, образованной из двух равновесных подсистем, определим как:

$$S = S_1(E_1) + S_2(E_2)$$

Такая энтропия максимальна, когда обе подсистемы имеют одинаковую температуру, химический потенциал и давление. Действительно: при постоянстве полной энергии $E = E_1 + E_2$ будет выполняться:

$$\frac{dS}{dE_1} = \frac{dS_1}{dE_1} + \frac{dS_2}{dE_2} \frac{d(E - E_1)}{dE_1} = \frac{1}{T_1} - \frac{1}{T_2} = 0$$

$$\frac{d^2S}{dE^2} = -\left(\frac{1}{T^2C_V}\right)_1 - \left(\frac{1}{T^2C_V}\right)_2 < 0$$

Поэтому в случае максимума энтропии температуры подсистем одинаковы.

Аналогично, варьируя энтропию системы по объему и числу част иц одной из подсистем при условии постоянства полного объема и полного числа частиц (Используя $\frac{\partial S}{\partial V} = \frac{\partial S}{\partial E} \frac{\partial E}{\partial V} = \frac{1}{T} (-p), \frac{\partial S}{\partial N} = \frac{\partial S}{\partial E} \frac{\partial E}{\partial N} = \frac{1}{T} \mu)$, находим, что Энтропия максимальна, когда равны друг другу давления и химические потенциалы подсистем.

Задача. 2

Найти кривую фазового равновесия газ-жидкость p(T).

При изменении T и P выполняются равенства

$$d\mu_1 = -s_1 dT' + v_1 dP, \quad d\mu_2 = -s_2 dT + v_2 dP$$

Поскольку $\mu_1(P,T) = \mu_2(P,T')$, то $d\mu_1 = d\mu_2$, отку да следует

$$(s_2 - s_1) dT = (v_2 - v_1) dP$$
 или $\frac{dp}{dT} = \frac{s_2 - s_1}{v_2 - v_1}$

Введем обозначение: $q_{12} = T\left(s_2 - s_1\right)$. Тогда последнее уравнение примет вид

$$\frac{dP}{dT} = \frac{q_{12}}{T\left(v_2 - v_1\right)}$$

????

Задача. 3

Определить энтропию газа N невзаимодействующих спинов $\sigma=1/2$ в магнитном поле при заданной энергии. Определить понятие температуры и показать, что она может быть отрицательной. Обсудить температурную зависимость теплоемкости. Сравнить с задачей о системе невзаимодействующих двухуровневых частиц.

Вспомним упражнение, в котором мы вычисляли число состояний для системы спинов. Это число оказалось равным

$$\Delta\Gamma = \left(\frac{N}{e}\right)^N \left(\frac{e}{M}\right)^M \left(\frac{e}{N-M}\right)^{N-M} = \frac{N^N}{M^M(N-M)^{N-M}}$$

Логарифм этой величины можно представить в форме

$$\sigma^* = \ln \Delta \Gamma = -N(n \ln(n) + (1-n) \ln(1-n))$$

Величина

$$n = \frac{M}{N} = \frac{E}{(N\Delta E)}$$

Определим температуру au с помощью формул статистической физики:

$$\frac{1}{\tau} = \frac{d\sigma}{dE} = \frac{1}{\Delta E} \ln\left(\frac{1-n}{n}\right)$$
$$\frac{d^2\sigma}{dE^2} = -\frac{1}{N(\Delta E)^2 n(1-n)}$$

Обратим внимание, что с ростом среднего числа возбужденных спинов n от нуля до половины температура τ растет от нуля до бесконечности, а при дальнейшем возрастании числа n в интервале 1/2 < n < 1 "температура" τ отрицательна.

Состояние с отрицательной температурой возможно только для систем с конечным числом всех состоя ний системы. В данном случае это число равно 2^N .

Вроде бы итог этой задачи такой же, как и итоге задачи о двухуровневых частицах.

Задача. 4

Определить энтропию газа N невзаимодействующих осцилляторов при заданной энергии E. Получить связь между энергией и температурой T. Обсудить отличие температурного поведения теплоемкости от предыдущей задачи.

Из упражнения про осциллятор мы имеем значение числа состояний:

$$\frac{(N+M-1)!}{(N-1)!M!} \approx \frac{(N+M)^{N+M}}{N^N M^M}$$

Статистическая энтропия системы равен логарифму формулы выше:

$$\sigma = \ln \Delta \Gamma = N(-n\ln(n) + (1+n)\ln(1+n)), \quad n = \frac{M}{N}$$

здесь $n=M/N=E/(N\Delta E)$ — среднее число возбуждений, приходящихся на Один осциллятор. Производные статистической энтропии равны

$$\frac{d\sigma}{dE} = \frac{1}{\Delta E} \ln \left(\frac{1+n}{n} \right)$$
$$\frac{d^2\sigma}{dE^2} = -\frac{1}{N(\Delta E)^2 n(1+n)}$$

Число состоя ний системы осцилляторов бесконечно, и состояния с отрицательной температурой отсутствуют.

Задача. 5

Вычислить магнитную восприимчивость одноатомного парамагнитного газа $\chi(T)$ с моментом J.

Задача. 6

Вычислить для парамагнитного газа изменение температуры при адиабатическом изменении магнитного поля $(\partial T/\partial H)_S$, если его свободная энергия может быть представлена в виде: $F = F_0(T) - -(1/2)\chi(T)H^2$

Задача. 7 Найти флуктуации

$$\overline{\Delta E^2}, \overline{\Delta N^2}, \overline{\Delta S^2}, \overline{\Delta P^2}, \overline{\Delta S \Delta P}, \overline{\Delta V \Delta P}, \overline{\Delta S \Delta T}, \overline{\Delta T^2}, \overline{\Delta V^2}, \overline{\Delta T \Delta V}, \overline{\Delta T \Delta P}, \overline{\Delta S \Delta V}$$

Используя гауссову теорию флуктуаций, выразим в формуле $w \sim \exp \frac{\Delta p \Delta V - \Delta T \Delta S}{2kT}$ величины ΔS и Δp через флуктуации независимых переменных V и T:

$$\Delta S = \left(\frac{\partial S}{\partial V}\right)_T \Delta V + \left(\frac{\partial S}{\partial T}\right)_V \Delta T$$

$$\Delta p = \left(\frac{\partial p}{\partial V}\right)_T \Delta V + \left(\frac{\partial p}{\partial T}\right)_V \Delta T$$
(7)

С помощью равенства dF = -SdT - pdV имеем $\left(\frac{\partial S}{\partial V}\right)_T = = \left(\frac{\partial p}{\partial T}\right)_V \cdot Далее, \left(\frac{\partial S}{\partial T}\right)_V = \frac{C_V}{T}$. Подставляя эти значения в 7 имеем

$$\Delta S = \left(\frac{\partial p}{\partial T}\right)_V \Delta V + \frac{C_V}{T} \Delta T$$

Теперь выражение для плотности вероятности w после подстановки найденных выражений для ΔS и Δp принимает гауссов вид в переменных V и T:

$$w \sim \exp\left[-\frac{C_V}{2kT^2}(\Delta T)^2 + \frac{1}{2kT}\left(\frac{\partial p}{\partial V}\right)_T(\Delta V)^2\right]$$
 (8)

Из8 видно, что плотность вероятности распалась на произведение...

Это означает, что флуктуации температуры и объема статистически Независимы:

$$\langle \Delta V \Delta T \rangle = 0$$

Сравнивая 8 с соотношением $\langle x^2 \rangle = \int_{-\infty}^{\infty} x^2 w(x) dx = \alpha^{-1}$ находим

$$\langle (\Delta T)^2 \rangle = \frac{kT^2}{C_Y}$$
$$\langle (\Delta V)^2 \rangle = -kT \left(\frac{\partial V}{\partial p} \right)_T$$

Для вычисления средних значений комбинаций, содержащих одну из выбранных независимых переменных, удобно выразить флуктуации второй величины через ΔV и ΔT . Тогда получим, например, для $\langle \Delta T \Delta p \rangle$

$$\langle \Delta T \Delta p \rangle = \left(\frac{\partial p}{\partial V}\right)_T \langle \Delta T \Delta V \rangle + \left(\frac{\partial p}{\partial T}\right)_V \langle (\Delta T)^2 \rangle$$

Подставляя сюда соотношения (найдем

$$\langle \Delta T \Delta p \rangle = \frac{kT^2}{C_V} \left(\frac{\partial p}{\partial T} \right)_V$$

Аналогично

$$\langle \Delta V \Delta p \rangle = \left(\frac{\partial p}{\partial V}\right)_T \left\langle (\Delta V)^2 \right\rangle + \left(\frac{\partial p}{\partial T}\right)_V \left\langle \Delta V \Delta T \right\rangle$$

Подставляя $\langle (\Delta T)^2 \rangle$ и $\langle \Delta V \Delta T \rangle = 0$ имеем

$$\langle \Delta V \Delta p \rangle = -kT$$

Далее,

$$\begin{split} \langle \Delta S \Delta V \rangle &= \left(\frac{\partial S}{\partial V}\right)_T \langle \ (\Delta V)^2 \rangle + \left(\frac{\partial S}{\partial T}\right)_V \langle \Delta V \Delta T \rangle = \\ &= -kT \left(\frac{\partial V}{\partial p}\right)_T \left(\frac{\partial p}{\partial T}\right)_V = kT \left(\frac{\partial V}{\partial T}\right)_p \end{split}$$

Для вычисления флуктуации $\langle (\Delta S)^2 \rangle$, $\langle (\Delta p)^2 \rangle$, и $\langle \Delta p \Delta S \rangle$, можно выразить их через ΔV и ΔT . Например,

$$\left\langle (\Delta S)^2 \right\rangle = \left\langle \left[\left(\frac{\partial p}{\partial T} \right)_V \Delta V + \frac{C_V}{T} \Delta T \right]^2 \right\rangle$$

Раскрывая квадрат суммы и учитывая формулы других флуктуаций найдем

$$\left\langle (\Delta S)^2 \right\rangle = -\left(\frac{\partial p}{\partial T}\right)_V^2 \left(\frac{\partial V}{\partial p}\right)_T kT + \frac{C_V^2}{T^2} \frac{kT^2}{C_V}$$

Учитывая соотношение

$$C_p - C_V = -T \left(\frac{\partial p}{\partial T}\right)_V^2 \left(\frac{\partial V}{\partial p}\right)_T \tag{9}$$

окончательно получаем

$$\langle (\Delta S)^2 \rangle = kC_p$$

Аналогично

$$\langle (\Delta p)^2 \rangle = \left\langle \left[\left(\frac{\partial p}{\partial V} \right)_T \Delta V + \left(\frac{\partial p}{\partial T} \right)_V \Delta T \right]^2 \right\rangle =$$

$$= -kT \left(\frac{\partial p}{\partial V} \right)_T + \left(\frac{\partial p}{\partial T} \right)_V^2 \frac{kT^2}{C_V}$$
(10)

С помощью 9 имеем

$$\left(\frac{\partial p}{\partial T}\right)_{V}^{2} = -\frac{C_{p} - C_{V}}{T} \left(\frac{\partial p}{\partial V}\right)_{T}$$

Подставим это выражение в 10 и приведем подобные члены:

$$\left\langle (\Delta p)^2 \right\rangle = -kT \frac{C_p}{C_V} \left(\frac{\partial p}{\partial V} \right)_T = -kT \left(\frac{\partial p}{\partial V} \right)_S$$

Наконец,

$$\begin{split} \langle \Delta p \Delta S \rangle &= \langle \left[\left(\frac{\partial p}{\partial V} \right)_T \Delta V + \left(\frac{\partial p}{\partial T} \right)_V \Delta T \right] \left[\left(\frac{\partial p}{\partial T} \right)_V \Delta V + \frac{C_V}{T} \Delta V \right] \right\rangle = \\ &= \left(\frac{\partial p}{\partial V} \right)_T \left(\frac{\partial p}{\partial T} \right)_V \left\langle (\Delta V)^2 \right\rangle + \frac{C_V}{T} \left(\frac{\partial p}{\partial T} \right)_V \left\langle (\Delta T)^2 \right\rangle \end{split}$$

Подставляя сюда $\langle (\Delta T)^2 \rangle$ и $\langle (\Delta V)^2 \rangle$ приходим к равенству

$$\langle \Delta p \Delta S \rangle = 0$$

Задача. 8

Вычислить для одноатомного и двухатомного больцмановских газов $F, \mu, P, S, C, (\partial P)(\partial \rho)_S$

Задача. Найти теплоемкость идеального газа без внутренних степеней свободы, помещенного в однородное гравитационное поле в коническом сосуде высоты h (основание конуса расположено внизу, вверху). Рассмотреть случаи:

Задача. 10. Вычислить температурную зависимость теплоемкости двухатомного больцмановского газа, учесть диссоциацию молекул.

Задача. 11. Построить изохоры, изобары и изотермы для бозе-газа.

Задача. 12. Построить изохоры, изобары и изотермы для ферми-газа.

Задача. 13. Вычислить теплоемкость двумерного вырожденного идеального ферми-газа.

Задача. 14.

Вычислить теплоемкость черного излучения.

Задача. 15

Найти равновесную плотность и теплоемкость акустических фононов в кристалле при температурах выше T и ниже T дебаевской

Задача. 16

Используя представление оператора смещения гармонического осциллятора $\hat{x} = \left(\frac{\hbar}{2m\omega}\right)^{1/2} \left(\hat{b}^+ + \hat{b}\right),$ получить формулу $\left\langle e^{ik\hat{x}} \right\rangle = e^{-\frac{k^2\hbar}{4m\omega}}$ при температуре T=0

Задача. 17

Описать парамагнетизм Паули и диамагнетизм Ландау. Рассмотреть эффект де Гааза-ван Альфена в двумерном металле.

Задача. 18. Сравнить низкотемпературные зависимости теплоемкости идеальных бозеи ферми-газов, черного излучения и твердого тела, парамагнетика и ферромагнетика, неидеального бозе-газа и, наконец, сверхпроводника.

Задача. 19. Показать, что фазовая скорость элементарного возбуждения в бозе-конденсате равна гидродинамической скорости звука.

Задача. 20

. Найти распределение частиц по импульсам и полное число надконденсатных частиц в идеальном и неидеальном бозе-газах при T=0 и низких температурах.

Задача. 21

Определить свободную энергию одномерной цепочки спинов 1/2 с гамильтонианом

$$\hat{H} = -J \sum_{k=1}^{N} \hat{\sigma}_{k}^{z} \hat{\sigma}_{k+1}^{z}, \quad \hat{\sigma}_{N+1}^{z} = \hat{\sigma}_{1}^{z}$$

Вычислить теплоёмкость и объяснить причину отсутствия фазового перехода при $X \neq 0$

Задача. 22. Для ферромагнетика в модели Гейзенберга при Т Тс определить спектр возбуждений (магнонов) и найти температурную зависимость намагниченности и теплоемкости спиновых волн.

Задача. 23. Для ферромагнетика в модели Гейзенберга в приближении самосогласованного поля определить температуру Кюри Тс, температурную зависимость магнитной восприимчивости и спонтанной намагниченности вблизи Тс. Сравнить с результатами теории Ландау.

Задача. Определить корреляционный радиус флуктуации параметра порядка в нулевом внешнем поле вблизи точки фазового перехода II рода. Найти флуктуационную поправку к теплоемкости при T=Tc в теории Γ инзбурга– Π андау.

Задача. 25. Доказать, что плотность сверхтекучей компоненты электронного газа при Т = 0 равна полной плотности числа частиц.

Задача. 26. В модели БКШ определить скачок теплоемкости.

Задача. 27. Диагонализуя гамильтониан для фотонов и экситонов с учетом гибридизации, получить спектр поляритонов.

Задача. 28. Мешок Нагаоки (спиновый полярон большого радиуса в антиферромагнетике)