Name

TOPOLOGY QUALIFYING EXAM Fall 1998

(Maginnis and Strecker)

Choose and work any 6 of the following 15 problems. Start each problem on a new sheet of paper. <u>Do not turn in more than six problems</u>. In the problems below, a space always means a topological space.

- **1.** Prove or disprove: For any space X with topology \mathcal{J} , the family $\mathcal{B} = \{A \subseteq X \mid A \text{ equals the interior of its closure}\}$ forms a base for some topology \mathcal{J}' on X.
- 2. Prove that a quotient space of a locally connected space is locally connected.
- **3.** Let $f: X \to Y$ be an open map between the spaces X and Y. Let $B \subseteq Y$ and $A = f^{-1}[B]$. Prove that the restriction $\overline{f}: A \to B$ (i.e., $\overline{f}(a) = f(a)$) is an open map from A to B.
- 4. (a) State the Axiom of Choice.
 - (b) State the Well-Ordering Theorem.
 - (c) Either use the Axiom of Choice to prove the Well-Ordering Theorem or use the Well-Ordering Theorem to prove the Axiom of Choice.
- 5. Prove that the plane \mathbb{R}^2 with its usual topology is not equal to a countable union of straight lines.
- **6.** Prove that the Sorgenfrey line $X = \mathbb{R}$ with basis $\{[a,b) \mid a,b \in \mathbb{R}\}$ is a paracompact space.

- 7. Let $f:[a,b]\to\mathbb{R}$ be a real-valued function on a closed interval and let $G=\{(x,f(x))\in\mathbb{R}\times\mathbb{R}\ |\ a\leq x\leq b\}$ be its graph. Prove or give a counterexample for the following.
 - (a) If G is connected, then f is continuous.
 - (b) If f is continuous, then G is connected.
- 8. Prove that the net based on an ultrafilter is an ultranet.
- **9.** Let Y be a compact space. Prove that the projection map $\pi_1: X \times Y \to X$ is a closed map.
- 10. Let A be a subset of a complete metric space X. Prove that A is totally bounded if and only if the closure \overline{A} is compact.
- 11. Let X be a completely regular T_1 space (i.e., one point sets are closed, and for each closed set C and point $x \notin C$, there exists a continuous function $f: X \to [0,1]$ with f(x) = 1 and $f[C] = \{0\}$). Prove that the Stone-Čech compactification $\beta(X)$ is connected if and only if X is connected.
- 12 Let $f: X \to Y$ be a continuous surjective map from a compact space X to a Hausdorff space Y. Prove that f is a quotient map.
- **13.** Let D be a dense subset of a metric space X, and let Y be a complete metric space. Prove that any uniformly continuous function $f:D\to Y$ can be extended to a uniformly continuous function $F:X\to Y$ (i.e., $F|_D=f$).
- **14.** Prove that a metric space is compact if and only if every sequence has a convergent subsequence.
- **15.** Prove that each metric space is a normal space.