Evaluate the limit $\lim_{x\to 3} \frac{x^2 + x - 12}{x^2 - 9}$ using

(a) algebraic manipulation (factor and cancel)

Solution

$$\lim_{x \to 3} \frac{x^2 + x - 12}{x^2 - 9} = \lim_{x \to 3} \frac{(x - 3)(x + 4)}{(x - 3)(x + 3)} = \lim_{x \to 3} \frac{x + 4}{x + 3} = \frac{7}{6}$$

(b) L'Hopital's Rule

Solution

Since direct substitution gives $\frac{0}{0}$ we can use L'Hopital's Rule to give

$$\lim_{x \to 3} \frac{x^2 + x - 12}{x^2 - 9} \stackrel{H}{=} \lim_{x \to 3} \frac{2x + 1}{2x} = \frac{7}{6}$$

Example 2

Evaluate the limit $\lim_{x\to 0} \frac{\sin 3x}{\tan 4x}$ using

(a) the basic trigonometric limit $\lim_{x\to 0} \frac{\sin x}{x} = 1$ together with appropriate changes of variables

Solution

Write the limit as

$$\lim_{x \to 0} \frac{\sin 3x}{\tan 4x} = \left(\lim_{x \to 0} \frac{\sin 3x}{x}\right) \left(\lim_{x \to 0} \frac{x \cos 4x}{\sin 4x}\right)$$

In the first limit let u = 3x and in the second let v = 4x. Then the limit is

$$\lim_{x \to 0} \frac{\sin 3x}{\tan 4x} = \left(\lim_{u \to 0} \frac{3\sin u}{u}\right) \left(\lim_{v \to 0} \frac{v\cos v}{4\sin v}\right)$$
$$= \frac{3}{4} \left(\lim_{u \to 0} \frac{\sin u}{u}\right) \left(\lim_{v \to 0} \frac{v}{\sin v}\right) \left(\lim_{v \to 0} \cos v\right) = \frac{3}{4}$$

(b) L'Hopital's Rule

Solution

Since direct substitution gives $\frac{0}{0}$ we can use L'Hopital's Rule to give

$$\lim_{x \to 0} \frac{\sin 3x}{\tan 4x} \stackrel{H}{=} \lim_{x \to 0} \frac{3\cos 3x}{4\sec^2 4x} = \frac{3}{4}$$

Evaluate the limit $\lim_{x \to \frac{\pi}{2}} (x - \frac{\pi}{2}) \tan x$ using L'Hopital's Rule.

Solution

Write the limit as

$$\lim_{x \to \frac{\pi}{2}} \left(x - \frac{\pi}{2} \right) \tan x = \lim_{x \to \frac{\pi}{2}} \frac{x - \frac{\pi}{2}}{\cot x}$$

Then direct substitution gives $\frac{0}{0}$ so we can use L'Hopital's Rule to give

$$\lim_{x \to \frac{\pi}{2}} \left(x - \frac{\pi}{2} \right) \tan x \stackrel{\text{H}}{=} \lim_{x \to \frac{\pi}{2}} \frac{1}{\left(-\csc^2 x \right)} = -1$$

Example 4

Evaluate the limit $\lim_{x\to 1} \frac{\sqrt{2-x}-x}{x-1}$ using L'Hopital's Rule.

Solution

Since direct substitution gives $\frac{0}{0}$ use L'Hopital's Rule to give

$$\lim_{x \to 1} \frac{\sqrt{2-x} - x}{x - 1} \stackrel{\text{H}}{=} \lim_{x \to 1} \frac{-\frac{1}{\sqrt{2-x}} - 1}{1} = -\frac{3}{2}$$

Note that this result can also be obtained by rationalizing the numerator by multiplying top and bottom by the root conjugate $\sqrt{2-x} + x$.

Example 5

Evaluate the limit $\lim_{x\to 0} \frac{1-\cos x}{x^2}$ using L'Hopital's Rule.

Solution

Since direct substitution gives $\frac{0}{0}$ use L'Hopital's Rule to give

$$\lim_{x \to 0} \frac{1 - \cos x}{x^2} \stackrel{\text{H}}{=} \lim_{x \to 0} \frac{\sin x}{2x}$$

Again direct substitution gives $\frac{0}{0}$ so use L'Hopital's Rule a second time to give

$$\lim_{x \to 0} \frac{1 - \cos x}{x^2} \stackrel{\text{H}}{=} \lim_{x \to 0} \frac{\cos x}{2} = \frac{1}{2}$$

Evaluate the limits at infinity

(a)
$$\lim_{x\to\infty} \frac{e^x}{x}$$

Solution

Direct "substitution" gives $\frac{\infty}{\infty}$ so we can use L'Hopital's Rule to give

$$\lim_{x \to \infty} \frac{e^x}{x} \stackrel{H}{=} \lim_{x \to \infty} \frac{e^x}{1} = \infty$$

(b)
$$\lim_{x \to \infty} x^2 e^{-x}$$

Solution

Write the limit as

$$\lim_{x \to \infty} x^2 e^{-x} = \lim_{x \to \infty} \frac{x^2}{e^x}$$

Then direct "substitution" gives $\frac{\infty}{\infty}$ so we can use L'Hopital's Rule to give

$$\lim_{x \to \infty} x^2 e^{-x} \stackrel{H}{=} \lim_{x \to \infty} \frac{2x}{e^x} \stackrel{H}{=} \lim_{x \to \infty} \frac{2}{e^x} = 0$$

(c)
$$\lim_{x\to\infty} \left(\sqrt{x^2+x+1}-x\right)$$

Solution

Direct "substitution" gives the indeterminate form $\infty - \infty$. Write the limit as

$$\lim_{x \to \infty} \left(\sqrt{x^2 + x + 1} - x \right) = \lim_{x \to \infty} x \left(\sqrt{1 + \frac{1}{x} + \frac{1}{x^2}} - 1 \right) = \lim_{x \to \infty} \frac{\left(\sqrt{1 + \frac{1}{x} + \frac{1}{x^2}} - 1 \right)}{\frac{1}{x}}$$

Now direct "substitution" gives $\frac{\infty}{\infty}$ so we can use L'Hopital's Rule to give

$$\lim_{x \to \infty} \left(\sqrt{x^2 + x + 1} - x \right) \stackrel{H}{=} \lim_{x \to \infty} \frac{\frac{1}{2} \left(1 + \frac{1}{x} + \frac{1}{x^2} \right)^{-1/2} \left(-\frac{1}{x^2} - \frac{2}{x^3} \right)}{-\frac{1}{x^2}}$$

$$= \lim_{x \to \infty} \frac{1 + \frac{2}{x}}{2 \left(1 + \frac{1}{x} + \frac{1}{x^2} \right)^{1/2}} = \frac{1}{2}$$

Example 7

Evaluate the limit $\lim_{x\to 2^+} \frac{\ln(x-2)}{\ln(x^2-4)}$ using L'Hopital's Rule.

Solution

Direct substitution gives $\frac{\infty}{\infty}$ so we can use L'Hopital's Rule

$$\lim_{x \to 2^{+}} \frac{\ln(x-2)}{\ln(x^{2}-4)} \stackrel{H}{=} \lim_{x \to 2^{+}} \frac{\frac{1}{x-2}}{\frac{2x}{x^{2}-4}} = \lim_{x \to 2^{+}} \frac{x^{2}-4}{2x(x-2)} = \lim_{x \to 2^{+}} \frac{x^{2}-4}{2x^{2}-4x}$$

$$\stackrel{H}{=} \lim_{x \to 2^{+}} \frac{2x}{4x-4} = 1$$

Evaluate the limit $\lim_{x\to\infty} (\ln x - x)$ using L'Hopital's Rule.

Solution

Direct "substitution" gives the indeterminate form $\infty - \infty$. Write the limit as

$$\lim_{x \to \infty} (\ln x - x) = \lim_{x \to \infty} \ln (xe^{-x})$$

Then, as in Example 6 (a) and (b),

$$\lim_{x \to \infty} x e^{-x} = \lim_{x \to \infty} \frac{x}{e^x} \stackrel{H}{=} \lim_{x \to \infty} \frac{1}{e^x} = 0$$

Now let $u = xe^{-x}$, then $x \to \infty \Rightarrow u \to 0^+$. Hence

$$\lim_{x \to \infty} (\ln x - x) = \lim_{u \to 0^+} \ln u = -\infty$$

Example 9

Evaluate the limit $\lim_{x\to 0^+} (\sin x)^{\sqrt{x}}$ using L'Hopital's Rule.

Solution

Direct substitution gives the indeterminate form 0^0 . First find the natural logarithm of the limit, as

$$\ln\left(\lim_{x\to 0^+} (\sin x)^{\sqrt{x}}\right) = \lim_{x\to 0^+} \sqrt{x} \ln\left(\sin x\right) = \lim_{x\to 0^+} \frac{\ln\left(\sin x\right)}{\frac{1}{\sqrt{x}}}$$

Now direct substitution gives $\frac{\infty}{\infty}$, so we can use L'Hopital's Rule

$$\lim_{x \to 0^{+}} \frac{\ln(\sin x)}{\frac{1}{\sqrt{x}}} \stackrel{H}{=} \lim_{x \to 0^{+}} \frac{\frac{\cos x}{\sin x}}{\left(-\frac{1}{2}\right) x^{-3/2}}$$

$$= -2 \lim_{x \to 0^{+}} \frac{x^{3/2} \cos x}{\sin x} = -2 \left(\lim_{x \to 0^{+}} \sqrt{x} \cos x\right) \left(\lim_{x \to 0^{+}} \frac{x}{\sin x}\right) = 0$$

since

$$\lim_{x \to 0^+} \sqrt{x} \cos x = 0$$

and we can use L'Hopital's Rule on the second limit to give

$$\lim_{x \to 0^+} \frac{x}{\sin x} \stackrel{H}{=} \lim_{x \to 0^+} \frac{1}{\cos x} = 1$$

Hence

$$\ln\left(\lim_{x\to 0^+} (\sin x)^{\sqrt{x}}\right) = 0$$

so that

$$\lim_{x \to 0^+} (\sin x)^{\sqrt{x}} = e^0 = 1$$

7.7 Indeterminate Forms and L'Hospital's Rule

A Click here for answers.

1-45 IIII Find the limit. Use l'Hospital's Rule where appropriate. If there is a more elementary method, use it. If l'Hospital's Rule doesn't apply, explain why.

1.
$$\lim_{x\to 2} \frac{x-2}{x^2-4}$$

2.
$$\lim_{x \to 1} \frac{x^2 + 3x - 4}{x - 1}$$

3.
$$\lim_{x \to -1} \frac{x^6 - 1}{x^4 - 1}$$

$$4. \lim_{x \to 0} \frac{\tan x}{x + \sin x}$$

$$5. \lim_{x \to 0} \frac{e^x - 1}{\sin x}$$

$$\mathbf{6.} \lim_{x \to 0} \frac{x + \tan x}{\sin x}$$

7.
$$\lim_{x\to 0} \frac{\sin x}{x^3}$$

8.
$$\lim_{x \to \pi} \frac{\tan x}{x}$$

9.
$$\lim_{x \to 3\pi/2} \frac{\cos x}{x - (3\pi/2)}$$

10.
$$\lim_{t \to 16} \frac{\sqrt[4]{t} - 2}{t - 16}$$

11.
$$\lim_{x \to a} \frac{\sqrt[3]{x} - \sqrt[3]{a}}{x - a}$$

12.
$$\lim_{x\to 0} \frac{6^x-2^x}{x}$$

13.
$$\lim_{x \to \infty} \frac{(\ln x)^3}{x^2}$$

$$14. \lim_{x\to 0} \frac{\sin x}{e^x}$$

$$15. \lim_{x \to 0} \frac{\tan \alpha x}{x}$$

16.
$$\lim_{x\to 0} \frac{\sin^2 x}{\tan(x^2)}$$

$$17. \lim_{x \to \infty} \frac{\ln \ln x}{\sqrt{x}}$$

18.
$$\lim_{x \to \infty} \frac{\ln(1 + e^x)}{5x}$$

19.
$$\lim_{x \to 0} \frac{\tan^{-1}(2x)}{3x}$$

20.
$$\lim_{x\to 0} \frac{x}{\sin^{-1}(3x)}$$

$$21. \lim_{x \to 0} \frac{\sin mx}{\sin nx}$$

22.
$$\lim_{x\to 0} \frac{\sin^{10}x}{\sin(x^{10})}$$

S Click here for solutions.

23.
$$\lim_{x \to 0} \frac{x + \sin 3x}{x - \sin 3x}$$

24.
$$\lim_{x\to 0} \frac{e^{4x}-1}{\cos x}$$

25.
$$\lim_{x\to 0} \frac{\tan x - \sin x}{x^3}$$

26.
$$\lim_{x \to 0} \frac{x + \tan 2x}{x - \tan 2x}$$

27.
$$\lim_{x\to 0} \frac{\tan 2x}{\tanh 3x}$$

28.
$$\lim_{x \to 0} \frac{2x - \sin^{-1}x}{2x + \cos^{-1}x}$$

29.
$$\lim_{x \to 0} \frac{2x - \sin^{-1}x}{2x + \tan^{-1}x}$$

30.
$$\lim_{x \to -\infty} xe^x$$

31.
$$\lim_{x \to \infty} e^{-x} \ln x$$

32.
$$\lim_{x \to (\pi/2)^{-}} \sec 7x \cos 3x$$

33.
$$\lim_{x \to 0^+} \sqrt{x} \sec x$$

$$\mathbf{34.} \ \lim_{x \to \pi} (x - \pi) \cot x$$

35.
$$\lim_{x\to 1^+} (x-1)\tan(\pi x/2)$$
 36. $\lim_{x\to 0} \left(\frac{1}{x^4} - \frac{1}{x^2}\right)$

36.
$$\lim_{x\to 0} \left(\frac{1}{x^4} - \frac{1}{x^2}\right)$$

37.
$$\lim_{x \to \infty} (x - \sqrt{x^2 - 1})$$

38.
$$\lim \left(\sqrt{x^2 + x + 1} - \sqrt{x^2 - x} \right)$$

39.
$$\lim_{x \to \infty} \left(\frac{1}{x} - \frac{1}{e^x - 1} \right)$$

40.
$$\lim_{x \to \infty} \left(\frac{x^3}{x^2 - 1} - \frac{x^3}{x^2 + 1} \right)$$

41.
$$\lim_{x \to 0^+} (\sin x)^{\tan x}$$

42.
$$\lim_{x \to \infty} \left(1 + \frac{1}{x^2} \right)^x$$

43.
$$\lim_{x\to 0^+} (\cot x)^{\sin x}$$

44.
$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^{x^2}$$

45.
$$\lim_{x \to 0^{-}} (-\ln x)^{x}$$

E Click here for exercises.

2. 5

S Click here for solutions.

7. ∞

8. 0

9. 1

- 10. $\frac{1}{32}$
- 11. $\frac{1}{3a^{2/3}}$
- 12. $\ln 3$

13. 0

14. 0

15. α

16. 1

17. 0

19. $\frac{2}{3}$

20. $\frac{1}{3}$

22. 1

23. -2

24. 0

26. -3

28. 0

25. $\frac{1}{2}$ **27.** $\frac{2}{3}$ **29.** $\frac{1}{3}$

30. 0

31. 0

32. $\frac{3}{7}$

33. 0

34. 1

35. $-\frac{2}{\pi}$

36. ∞

37. 0

38. 1

39. 0

40. 0

41. 1

42. 1

43. 1

44. ∞

45. 1

Solutions

E Click here for exercises.

The use of l'Hospital's Rule is indicated by an H above the equal sign: $\stackrel{\mathrm{H}}{=}$

1.
$$\lim_{x \to 2} \frac{x-2}{x^2 - 4} = \lim_{x \to 2} \frac{x-2}{(x-2)(x+2)} = \lim_{x \to 2} \frac{1}{x+2} = \frac{1}{4}$$

2.
$$\lim_{x \to 1} \frac{x^2 + 3x - 4}{x - 1} = \lim_{x \to 1} \frac{(x - 1)(x + 4)}{x - 1}$$
$$= \lim_{x \to 1} (x + 4) = 5$$

3.
$$\lim_{x \to -1} \frac{x^6 - 1}{x^4 - 1} \stackrel{\text{H}}{=} \lim_{x \to -1} \frac{6x^5}{4x^3} = \frac{-6}{-4} = \frac{3}{2}$$

4.
$$\lim_{x\to 0} \frac{\tan x}{x + \sin x} \stackrel{\text{H}}{=} \lim_{x\to 0} \frac{\sec^2 x}{1 + \cos x} = \frac{1}{1 + 1} = \frac{1}{2}$$

5.
$$\lim_{x \to 0} \frac{e^x - 1}{\sin x} \stackrel{\text{H}}{=} \lim_{x \to 0} \frac{e^x}{\cos x} = \frac{1}{1} = 1$$

6.
$$\lim_{x \to 0} \frac{x + \tan x}{\sin x} \stackrel{\text{H}}{=} \lim_{x \to 0} \frac{1 + \sec^2 x}{\cos x} = \frac{1 + 1^2}{1} = 2$$

7.
$$\lim_{x\to 0} \frac{\sin x}{x^3} \stackrel{\mathrm{H}}{=} \lim_{x\to 0} \frac{\cos x}{3x^2} = \infty$$

8.
$$\lim_{x \to \pi} \frac{\tan x}{x} = \frac{\tan \pi}{\pi} = \frac{0}{\pi} = 0$$
. L'Hospital's Rule does not apply because the denominator doesn't approach 0.

9.
$$\lim_{x \to 3\pi/2} \frac{\cos x}{x - 3\pi/2} \stackrel{\text{H}}{=} \lim_{x \to 3\pi/2} \frac{-\sin x}{1} = -\sin \frac{3\pi}{2} = 1$$

$$\begin{aligned} \textbf{10.} & \lim_{t \to 16} \frac{\sqrt[4]{t} - 2}{t - 16} = \lim_{t \to 16} \frac{\sqrt[4]{t} - 2}{\left(\sqrt{t} + 4\right)\left(\sqrt{t} - 4\right)} \\ & = \lim_{t \to 16} \frac{\sqrt[4]{t} - 2}{\left(\sqrt{t} + 4\right)\left(\sqrt[4]{t} + 2\right)\left(\sqrt[4]{t} - 2\right)} \\ & = \lim_{t \to 16} \frac{1}{\left(\sqrt{t} + 4\right)\left(\sqrt[4]{t} + 2\right)} \\ & = \frac{1}{(4 + 4)(2 + 2)} = \frac{1}{32} \end{aligned}$$

11.
$$\lim_{x \to a} \frac{x^{1/3} - a^{1/3}}{x - a} \stackrel{\text{H}}{=} \lim_{x \to a} \frac{(1/3)x^{-2/3}}{1} = \frac{1}{3a^{2/3}}$$

12.
$$\lim_{x \to 0} \frac{6^x - 2^x}{x} \stackrel{\text{H}}{=} \lim_{x \to 0} \frac{6^x (\ln 6) - 2^x (\ln 2)}{1}$$

$$= \ln 6 - \ln 2 = \ln \frac{6}{2} = \ln 3$$

13.
$$\lim_{x \to \infty} \frac{(\ln x)^3}{x^2} \stackrel{\text{H}}{=} \lim_{x \to \infty} \frac{3(\ln x)^2 (1/x)}{2x} = \lim_{x \to \infty} \frac{3(\ln x)^2}{2x^2}$$

$$\stackrel{\text{H}}{=} \lim_{x \to \infty} \frac{6(\ln x) (1/x)}{4x} = \lim_{x \to \infty} \frac{3\ln x}{2x^2}$$

$$\stackrel{\text{H}}{=} \lim_{x \to \infty} \frac{3/x}{4x} = \lim_{x \to \infty} \frac{3}{4x^2} = 0$$

14.
$$\lim_{x\to 0} \frac{\sin x}{e^x} = \frac{0}{1} = 0$$
. L'Hospital's Rule does not apply.

15.
$$\lim_{x \to 0} \frac{\tan \alpha x}{x} \stackrel{\mathrm{H}}{=} \lim_{x \to 0} \frac{\alpha \sec^2 \alpha x}{1} = \alpha$$

A Click here for answers.

16.
$$\lim_{x \to 0} \frac{\sin^2 x}{\tan(x^2)} \stackrel{\text{H}}{=} \lim_{x \to 0} \frac{2 \sin x \cos x}{2x \sec^2(x^2)}$$

$$= \lim_{x \to 0} \frac{\sin x}{x} \lim_{x \to 0} \frac{\cos x}{\sec^2(x^2)} = 1 \cdot 1 = 1$$

17.
$$\lim_{x\to\infty} \frac{\ln\ln x}{\sqrt{x}} \stackrel{\mathrm{H}}{=} \lim_{x\to\infty} \frac{1/(x\ln x)}{1/(2\sqrt{x})} = \lim_{x\to\infty} \frac{2}{\sqrt{x}\ln x} = 0$$

18.
$$\lim_{x \to \infty} \frac{\ln(1 + e^x)}{5x} \stackrel{\text{H}}{=} \lim_{x \to \infty} \frac{e^x / (1 + e^x)}{5}$$

$$= \lim_{x \to \infty} \frac{e^x}{5(1 + e^x)} \stackrel{\text{H}}{=} \lim_{x \to \infty} \frac{e^x}{5e^x} = \frac{1}{5}$$

19.
$$\lim_{x \to 0} \frac{\tan^{-1}(2x)}{3x} \stackrel{\text{H}}{=} \lim_{x \to 0} \frac{2/(1+4x^2)}{3} = \frac{2}{3}$$

20.
$$\lim_{x \to 0} \frac{x}{\sin^{-1}(3x)} \stackrel{\text{H}}{=} \lim_{x \to 0} \frac{1}{3/\sqrt{1 - (3x)^2}}$$
$$= \lim_{x \to 0} \frac{1}{3}\sqrt{1 - 9x^2} = \frac{1}{3}$$

21.
$$\lim_{x\to 0} \frac{\sin mx}{\sin nx} \stackrel{\text{H}}{=} \lim_{x\to 0} \frac{m\cos mx}{n\cos nx} = \frac{m}{n}$$

22.
$$\lim_{x \to 0} \frac{\sin^{10} x}{\sin(x^{10})} \stackrel{\text{H}}{=} \lim_{x \to 0} \frac{10 \sin^9 x \cos x}{10x^9 \cos(x^{10})}$$
$$= \left[\lim_{x \to 0} \frac{\sin x}{x}\right]^9 \lim_{x \to 0} \frac{\cos x}{\cos(x^{10})}$$
$$= 1^9 \cdot 1 = 1$$

23.
$$\lim_{x\to 0} \frac{x+\sin 3x}{x-\sin 3x} \stackrel{\text{H}}{=} \lim_{x\to 0} \frac{1+3\cos 3x}{1-3\cos 3x} = \frac{1+3}{1-3} = -2$$

24.
$$\lim_{x\to 0} \frac{e^{4x}-1}{\cos x} = \frac{0}{1} = 0$$

25.
$$\lim_{x \to 0} \frac{\tan x - \sin x}{x^3} \stackrel{\text{H}}{=} \lim_{x \to 0} \frac{\sec^2 x - \cos x}{3x^2}$$

$$\stackrel{\text{H}}{=} \lim_{x \to 0} \frac{2\sec^2 x \tan x + \sin x}{6x}$$

$$\stackrel{\text{H}}{=} \lim_{x \to 0} \frac{4\sec^2 x \tan^2 x + 2\sec^4 x + \cos x}{6}$$

$$= \frac{0 + 2 + 1}{6} = \frac{1}{2}$$

26.
$$\lim_{x \to 0} \frac{x + \tan 2x}{x - \tan 2x} \stackrel{\text{H}}{=} \lim_{x \to 0} \frac{1 + 2\sec^2 2x}{1 - 2\sec^2 2x}$$
$$= \frac{1 + 2(1)^2}{1 - 2(1)^2} = -3$$

27.
$$\lim_{x\to 0} \frac{\tan 2x}{\tanh 3x} \stackrel{\text{H}}{=} \lim_{x\to 0} \frac{2\sec^2 2x}{3\operatorname{sech}^2 3x} = \frac{2}{3}$$

28.
$$\lim_{x \to 0} \frac{2x - \sin^{-1} x}{2x + \cos^{-1} x} = \frac{2(0) - 0}{2(0) + \pi/2} = 0$$
. L'Hospital's Rule does not apply.

29.
$$\lim_{x \to 0} \frac{2x - \sin^{-1} x}{2x + \tan^{-1} x} \stackrel{\text{H}}{=} \lim_{x \to 0} \frac{2 - 1/\sqrt{1 - x^2}}{2 + 1/(1 + x^2)}$$
$$= \frac{2 - 1}{2 + 1} = \frac{1}{3}$$

30.
$$\lim_{x \to -\infty} x e^x = \lim_{x \to -\infty} \frac{x}{e^{-x}} \stackrel{\text{H}}{=} \lim_{x \to -\infty} \frac{1}{-e^{-x}}$$
$$= \lim_{x \to -\infty} -e^x = 0$$

31.
$$\lim_{x \to \infty} e^{-x} \ln x = \lim_{x \to \infty} \frac{\ln x}{e^x} \stackrel{\text{H}}{=} \lim_{x \to \infty} \frac{1/x}{e^x}$$
$$= \lim_{x \to \infty} \frac{1}{xe^x} = 0$$

32.
$$\lim_{x \to (\pi/2)^{-}} \sec 7x \cos 3x = \lim_{x \to (\pi/2)^{-}} \frac{\cos 3x}{\cos 7x}$$
$$\stackrel{\text{H}}{=} \lim_{x \to (\pi/2)^{-}} \frac{-3\sin 3x}{-7\sin 7x} = \frac{3(-1)}{7(-1)} = \frac{3}{7}$$

33.
$$\lim_{x \to 0^+} \sqrt{x} \sec x = 0 \cdot 1 = 0$$

34.
$$\lim_{x \to \pi} (x - \pi) \cot x = \lim_{x \to \pi} \frac{x - \pi}{\tan x} \stackrel{\text{H}}{=} \lim_{x \to \pi} \frac{1}{\sec^2 x}$$
$$= \frac{1}{(-1)^2} = 1$$

35.
$$\lim_{x \to 1^+} (x - 1) \tan(\pi x/2) = \lim_{x \to 1^+} \frac{x - 1}{\cot(\pi x/2)}$$

$$\stackrel{\text{H}}{=} \lim_{x \to 1^+} \frac{1}{-\csc^2(\pi x/2)^{\frac{\pi}{2}}} = -\frac{2}{\pi}$$

36.
$$\lim_{x \to 0} \left(\frac{1}{x^4} - \frac{1}{x^2} \right) = \lim_{x \to 0} \frac{1 - x^2}{x^4} = \infty$$

37.
$$\lim_{x \to \infty} (x - \sqrt{x^2 - 1})$$

$$= \lim_{x \to \infty} (x - \sqrt{x^2 - 1}) \frac{x + \sqrt{x^2 - 1}}{x + \sqrt{x^2 - 1}}$$

$$= \lim_{x \to \infty} \frac{x^2 - (x^2 - 1)}{x + \sqrt{x^2 - 1}}$$

$$= \lim_{x \to \infty} \frac{1}{x + \sqrt{x^2 - 1}} = 0$$

38.
$$\lim_{x \to \infty} \left(\sqrt{x^2 + x + 1} - \sqrt{x^2 - x} \right)$$

$$= \lim_{x \to \infty} \left(\sqrt{x^2 + x + 1} - \sqrt{x^2 - x} \right) \frac{\sqrt{x^2 + x + 1} + \sqrt{x^2 - x}}{\sqrt{x^2 + x + 1} + \sqrt{x^2 - x}}$$

$$= \lim_{x \to \infty} \frac{(x^2 + x + 1) - (x^2 - x)}{\sqrt{x^2 + x + 1} + \sqrt{x^2 - x}}$$

$$= \lim_{x \to \infty} \frac{2x + 1}{\sqrt{x^2 + x + 1} + \sqrt{x^2 - x}}$$

$$= \lim_{x \to \infty} \frac{2x + 1}{\sqrt{x^2 + x + 1} + \sqrt{x^2 - x}}$$

$$= \lim_{x \to \infty} \frac{2 + 1/x}{\sqrt{1 + 1/x + 1/x^2} + \sqrt{1 - 1/x}}$$

$$= \frac{2}{1 + 1} = 1$$

39.
$$\lim_{x \to \infty} \left(\frac{1}{x} - \frac{1}{e^x - 1} \right) = \lim_{x \to \infty} \frac{1}{x} - \lim_{x \to \infty} \frac{1}{e^x - 1}$$
 (since both limits exist) $= 0 - 0 = 0$

40.
$$\lim_{x \to \infty} \left(\frac{x^3}{x^2 - 1} - \frac{x^3}{x^2 + 1} \right)$$

$$= \lim_{x \to \infty} \frac{x^3 (x^2 + 1) - x^3 (x^2 - 1)}{(x^2 - 1) (x^2 + 1)}$$

$$= \lim_{x \to \infty} \frac{2x^3}{x^4 - 1} = \lim_{x \to \infty} \frac{2/x}{1 - 1/x^4}$$

$$= 0$$

41.
$$y = (\sin x)^{\tan x} \Rightarrow \ln y = \tan x \ln (\sin x)$$
, so
$$\lim_{x \to 0^+} \ln y = \lim_{x \to 0^+} \tan x \ln (\sin x) = \lim_{x \to 0^+} \frac{\ln (\sin x)}{\cot x}$$

$$\stackrel{\text{H}}{=} \lim_{x \to 0^+} \frac{(\cos x) / \sin x}{-\csc^2 x}$$

$$= \lim_{x \to 0^+} (-\sin x \cos x) = 0 \Rightarrow$$

$$\lim_{x \to 0^+} (\sin x)^{\tan x} = \lim_{x \to 0^+} e^{\ln y} = e^0 = 1.$$

42. Let
$$y = \left(1 + \frac{1}{x^2}\right)^x$$
. Then $\ln y = x \ln \left(1 + \frac{1}{x^2}\right) \implies \lim_{x \to \infty} \ln y = \lim_{x \to \infty} x \ln \left(1 + \frac{1}{x^2}\right) = \lim_{x \to \infty} \frac{\ln \left(1 + \frac{1}{x^2}\right)}{1/x}$

$$\stackrel{\text{H}}{=} \lim_{x \to \infty} \frac{\left(-\frac{2}{x^3}\right) / \left(1 + \frac{1}{x^2}\right)}{-1/x^2}$$

$$= \lim_{x \to \infty} \frac{2/x}{1 + 1/x^2} = 0,$$
so $\lim_{x \to \infty} \left(1 + 1/x^2\right)^x = \lim_{x \to \infty} e^{\ln y} = e^0 = 1.$

43.
$$y = (\cot x)^{\sin x}$$
 \Rightarrow $\ln y = \sin x \ln (\cot x)$ \Rightarrow

$$\lim_{x \to 0^{+}} \ln y = \lim_{x \to 0^{+}} \frac{\ln (\cot x)}{\csc x} \stackrel{\text{H}}{=} \lim_{x \to 0^{+}} \frac{(-\csc^{2} x)/\cot x}{-\csc x \cot x}$$

$$= \lim_{x \to 0^{+}} \frac{\csc x}{\cot^{2} x} = \lim_{x \to 0^{+}} \frac{\sin x}{\cos^{2} x} = 0$$
so $\lim_{x \to 0^{+}} (\cot x)^{\sin x} = \lim_{x \to 0^{+}} e^{\ln y} = e^{0} = 1$.

44. Let
$$y = (1 + 1/x)^{x^2}$$
. Then $\ln y = x^2 \ln (1 + 1/x) \Rightarrow \lim_{x \to \infty} \ln y = \lim_{x \to \infty} x^2 \ln (1 + 1/x) = \lim_{x \to \infty} \frac{\ln (1 + 1/x)}{1/x^2}$

$$\stackrel{\text{H}}{=} \lim_{x \to \infty} \frac{\left(-1/x^2\right) / (1 + 1/x)}{-2/x^3}$$

$$= \lim_{x \to \infty} \frac{x}{2(1 + 1/x)} = \infty \Rightarrow \lim_{x \to \infty} (1 + 1/x)^{x^2} = \lim_{x \to \infty} e^{\ln y} = \infty.$$

45.
$$y = (-\ln x)^x \implies \ln y = x \ln (-\ln x)$$
, so
$$\lim_{x \to 0^+} \ln y = \lim_{x \to 0^+} x \ln (-\ln x) = \lim_{x \to 0^+} \frac{\ln (-\ln x)}{1/x}$$

$$\stackrel{\text{H}}{=} \lim_{x \to 0^+} \frac{(1/-\ln x)(-1/x)}{-1/x^2}$$

$$= \lim_{x \to 0^+} \frac{-x}{\ln x} = 0 \implies$$

$$\lim_{x \to 0^+} (-\ln x)^x = e^0 = 1.$$