EDGI: Equivariant Diffusion for Planning with Embodied Agents

Johann Brehmer*¹, Joey Bose*^{1,2}, Pim de Haan¹, and Taco Cohen¹
*equal contribution ¹Qualcomm Al Research ²McGill University and Mila

Idea: Embodied AI is full of symmetries

- Embodied agents face a structured world with spatial, temporal, and permutation symmetries
- We introduce EDGI, a planning algorithm that takes these symmetries into account
- Based on the Diffuser approach [1], EDGI treats planning as an **equivariant generative modelling** problem [2-3]

• It solves this through a new SE(3) \times \mathbb{Z} \times S_n-equivariant denoising network + soft symmetry breaking at test time

Background: Planning as diffusion

• Diffuser [1] unifies learning a world model and a policy into a generative modelling problem over state-action trajectories

$$\tau = \begin{bmatrix} s_0 & s_1 & \dots & s_T \\ a_0 & a_1 & \dots & a_T \end{bmatrix}$$

 A diffusion model trained on such trajectories can later be conditioned on the current state, goal states, and guided by reward models, sampling from

$$\tilde{p}_{\theta}(\tau) \propto p_{\theta}(\tau)h(\tau)$$

Method: $SE(3) \times \mathbb{Z} \times S_n$ -equivariant denoising network

• Unify state-action trajectories into internal representation

- New equivariant layers along each symmetry axis:
 - Temporal layers: convolutions over time
 - Geometric layers: fully expressive mixing between vectors and scalars [4]

$$S_{to} = \{s_{toc}\}_c \cup \{v_{toc} \cdot v_{toc'}\}_{c,c'} \qquad w'_{toc} = \left(\phi(S_{to})_c, \sum_{c'} \psi(S_{to})_{cc'} v_{toc'}\right)$$

• Permutation layers: self-attention over objects

$$\mathbf{K}_{toc} = \sum_{c'} \mathbf{W}_{cc'}^{K} w_{toc}, \mathbf{Q}_{toc} = \sum_{c'} \mathbf{W}_{cc'}^{Q} w_{toc}, \mathbf{V}_{toc} = \sum_{c'} \mathbf{W}_{cc'}^{V} w_{toc}$$
$$w'_{toc} \propto \sum_{o'} \operatorname{softmax}_{o'} \left(\frac{\mathbf{Q}_{to} \cdot \mathbf{K}_{to'}}{\sqrt{d}} \right) \mathbf{V}_{to'c}$$

- Train on expert demonstrations with standard diffusion loss
- At test time, plug into (open or closed) **planning loop**
 - Conditioning on current state and reward guidance **softly break symmetries**

Experiments: **EDGI improves data efficiency and robustness**

- We test EDGI in two environments:
 - Goal-conditioned navigation with obstacles
 - Three different block stacking tasks with a Kuka robotic arm [1]

• We learn behaviours from expert demonstrations, assuming access to the true state (positions and orientations of objects)

EDGI generalizes across the symmetry group

	Standard setting				SO(3) generalization	
Environment	BCQ	CQL	Diffuser	EDGI (ours)	Diffuser	EDGI (ours)
Navigation	_	_	$94.9_{\pm 3.9}$	$95.1_{\pm 3.4}$	$\overline{5.6_{\pm 4.4}}$	$83.3_{\pm 3.5}$
Unconditional	0.0	24.4	$59.7_{\pm 2.6}$	$68.7_{\pm 2.5}$	$38.7_{\pm 2.3}$	$69.0_{\pm 2.7}$
Conditional	0.0	0.0	$46.0{\scriptstyle\pm3.4}$	${f 52.0}_{\pm 3.6}$	$16.7_{\pm2.0}$	$35.9_{\pm 3.5}$
Rearrangement	0.0	0.0	${f 49.2}_{\pm 3.3}$	${f 47.2}_{\pm 3.9}$	$17.8_{\pm2.3}$	${f 45.0}_{\pm 3.6}$
Average	0.0	8.1	$51.6_{\pm 1.8}$	${f 56.0}_{\pm 2.0}$	$24.4_{\pm 1.3}$	${f 50.0}_{\pm 1.9}$

• EDGI is more sample-efficient

^[1] M. Janner et al, "Planning with Diffusion for Flexible Behavior Synthesis", ICML 2022

^[2] J. Köhler et al, "Equivariant flows: Exact likelihood generative learning for symmetric densities", ICML 2020

^[3] J. Bose et al, "Equivariant Finite Normalizing Flows", arXiv:2110.08649

^[4] S. Villar et al, "Scalars are universal: Equivariant machine learning, structured like classical physics", NeurIPS 2021