Abstract Algebra presentation on Tensor Product, Eric Fay Rutgers University.

For a digital copy for to see source visit github.com/PersonaErazed/tensors

0.1 A brief reminder of what Modules are

Definition 0.1. Module. Let R be a ring. A set M with a binary operation $+: M \times M \to M$ and a map $:: R \times M \to M$ is a *left R-module* iff

- 1. (M, +) is an Abelian group
- 2. .: $R \times M \to M$ defines a "ring action of R on M" (scalar multiplication) i.e. for all $r,s \in R$ and for all $m,n \in M$ that
 - (a) (r+s).m = r.m + s.m
 - (b) $(r \cdot s).m = r.(s.m)$
 - (c) r.(m+n) = r.m + r.n
- 3. if R is a ring with identity then 1.m = m for all $m \in M$

Example 0.1. Any ring

$$r.s = r \cdot s$$

Example 0.2. Abelian groups are \mathbb{Z} -modules

$$n.a = \begin{cases} a + \dots + a & (n-1) \text{ addition operations} & : n > 0 \\ 0 & : n = 0 \\ -a + \dots + -a & (-n-1) \text{ addition operations} & : n < 0 \end{cases}$$

Example 0.3. Vector spaces are R-modules where R is a field.

Example 0.4. Collection of maps from a set X to a R-module M

$$M^X = \{f: X \to M\}$$

where for all $f, g \in M^X$ and for all $x \in X$ and for all $r \in R$

$$(f+g)(x) = f(x) + g(x)$$
 $(r.f)(x) = r.f(x)$

Example 0.5. X is a finite set e.g. $X = [n] := \{1, 2, \dots, n\}$ for some natural number n.

Then ${\cal M}^X={\cal M}^{[n]}$ is a R-module for some ${\cal M}$ R-module i.e. direct product of R-modules

$$M^n = M \times \cdots \times M$$

Example 0.6. Smooth functions on a real smooth n-manifold X such as \mathbb{R}^n

$$\mathcal{C}^{\infty}(X) = \{ f : X \to \mathbb{R} | f \text{ is a smooth map } \} \subset \mathbb{R}^X$$

smooth map^1

Example 0.7. The smooth vector fields on a manifold X is a $\mathcal{C}^{\infty}(X)$ -module

$$\Gamma(TX) = \{v : X \to TX | \text{ smooth and } \pi \circ v = \mathrm{id}_X \}$$

where $\pi: TX \to X$ is the projection from the tangent bundle $TX = \coprod_{x \in X} T_x X$, the disjoint union of the tangent spaces, onto X.

$$(f.v)(x) = f(x).v_x$$

1 Tensor Product

Special Case: Extension of Scalar Ring 1.1

Let us consider the motivating problem presented by Dummit and Foote. Given a R-module such that the ring R is a subring of another ring S, what is the most general S-module which the given R-module can be embedded? i.e. when can a R-module to extended to a S-module? This is known as extension of scalars.

Let us call our R-module to be extended N. Recall the key elements of the definition for a R-module, a Abelian group structure and an action of the ring \mathcal{R} on the Abelian group. It is therefore natural to consider the free Abelian group $F(S \times N)$ as a candidate Abelian group to define a S ring action on and which N can be embedded.

Definition 1.1. For any ring \mathcal{R} , a \mathcal{R} -module F is free iff for some set X, there exists unique nonzero elements $r_1, \ldots, r_k \in \mathcal{R}$ and unique elements $x_1, \ldots, x_k \in \mathcal{R}$ X for each element $f \in F$, such that $f = r_1.x_1 + \cdots + r_k.x_k$

Example 1.1. Any ring \mathcal{R} and any set X let

$$F(X) = \{ f : X \to \mathcal{R} \mid X \setminus f^{-1}[0] \text{ finite} \} \subset \mathcal{R}^X$$

i.e. maps $X \to \mathcal{R}$ with finte support where support is defined as supp(f) := $\{x \in X : f(x) \neq 0\}$. The R-module structure is defined componentwise.

To show F(X) is free define the injection $\iota: X \to F(X): x \mapsto \delta_x$ such that

$$\delta_x(y) = \begin{cases} 1 & y = x \\ 0 & y \neq x \end{cases}$$

It is easy to see for any $f \in F(X)$ there exists unique nonzero elements $r_1, \ldots, r_k \in$ \mathcal{R} and unquie elements $x_1, \ldots, x_k \in X$ such that

$$f = r_1.\delta_{x_1} + \dots + r_k.\delta_{x_k}$$

$$\phi^{-1} \circ f : \phi(U \cap V) \subset \mathbb{R}^n \to \mathbb{R}$$

 $f=r_1.\delta_{x_1}+\cdots+r_k.\delta_{x_k}$ f is a smooth map \iff for all smooth charts (ϕ,U) that the following is a smooth function

Remark 1.1. $\mathcal{R} = \mathbb{Z}$ then F a free \mathbb{Z} -module is called a free Abelian group.

With $F(S \times N)$ as our Abelian group let us define a ring action from S as for any $f \in F(S \times N)$ and $s \in S$

$$s.f := s.(s_1, n_1) + \dots + s.(s_k, n_k)$$

= $(s \cdot s_1, n_1) + \dots + (s \cdot s_k, n_k)$

Now considering the details of the definition of a general \mathcal{R} -module M the ring action must preserve both the ring's and Abelian group's structures. i.e.

$$(r_1 + r_2).m = r_1.m + r_2.m$$
 $(r_1 \cdot r_2).m = r_1.(r_2.m)$
 $r.(m_1 + m_2) = r.m_1 + r.m_2$

for any $r, r_1, r_2 \in \mathcal{R}$ and any $m, m_1, m_2 \in M$.

This leads us to define the equivalence relation \sim on $F(S \times N)$ as follows

$$(s_1 + s_2, n) \sim (s_1, n) + (s_2, n)$$
 $(s \cdot r, n) \sim (s, r.n)$
 $(s, n_1 + n_2) \sim (s, n_1) + (s, n_2)$

for any $s, s_1, s_2 \in S$, any $r \in R$, and any $n, n_1, n_2 \in N$. Note the subtle difference in the compatibility relation this is the case since N has a R-module structure.

Since equivalence relations give us a normal subgroup i.e. $a \sim b \iff a-b \in H$. Let us define the S-module we have constructed as

$$S \otimes_R N := F(S \times N) / \sim$$

let us call the cosets, tensors, the following is an example of a simple tensor

$$s \otimes n := \{ f \in F(S \times N) : f \sim (s, n) \}$$

The binary Abelian operation + is defined via the natural surjective group homomorphism $\pi: F(S\times N)\to F(S\times N)/\sim$

$$(s \otimes n) + (s' \otimes n') = \pi((s, n)) + \pi((s', n'))$$

= $\pi((s, n) + (s', n'))$
= $\{f \in F(S \times N) : f \sim (s, n) + (s', n')\}$

This yeilds the following relations

$$(s_1 + s_2) \otimes n = s_1 \otimes n + s_2 \otimes n$$

$$s \otimes (n_1 + n_2) = s \otimes n_1 + s \otimes n_2$$

$$(s \cdot r) \otimes n = s.(r.n)$$

Let us define the S ring action as

$$s_{\circ}\left(\sum_{i\in[n]}s_{i}\otimes n_{i}\right)=\sum_{i\in[n]}(s\cdot s_{i})\otimes n_{i}$$

Exercise check if this is well defined, note these are cosets and check for simple tensors $s \otimes n$ that this makes $S \otimes_R N$ a S-module.

The following theorem shows this is the most general S-module to embedded the R-module N into. First we need a lemma the Universal property of free modules.

Lemma 1.1. Given any set X, any left R-module M, and any map $\psi: X \to M$. There exists a unique R-module homomorphism from the free R-module generated by X to M

$$\Psi: F(X) \to M$$
 s.t. $\psi(x) = \Psi(x) \forall x \in X$

The proof follows since X is a generating set of F(X) and each element of F(X) has a unique representation of the formal form $r_1x_1 + \cdots + r_kx_k$ see example 1.1

The map is

$$\Psi: \sum_{i\in[k]} r_i x_i \mapsto \sum_{i\in[k]} r_i \psi(x_i)$$

Theorem 1.1. Let $R \subset S$ be a subring, N be a R-module, and $\iota : N \to S \otimes_R N$ be the R-module homomorphism $n \mapsto 1 \otimes n$.

For any left S-module L and R-module homomorphism $\phi: N \to L$ there exists a unique S-module homomorphism $\Phi: S \otimes_R N \to L$ such that $\phi = \Phi \circ \iota$

$$N \xrightarrow{\iota} S \otimes_R N$$

$$\downarrow \downarrow \Phi$$

$$\downarrow I$$

Proof. Since L is a left S-module let us define the map

$$\psi: S \times N \to L: (s,n) \mapsto s.\phi(n)$$

By the universal property of free modules, see Lemma 1.1, there exist unquue \mathbb{Z} -module homomorphism from the free Abelian group to the left S-module L

$$\Psi: F(S \times N) \to L$$

Specifically

$$\Psi\left(\sum_{i\in[k]} a_i(s_i, n_i)\right) = \sum_{i\in[k]} a_i \psi((s_i, n_i))$$

$$= \sum_{i\in[k]} \sum_{j=1}^{a_i} \psi((s_i, n_i))$$

$$= \sum_{i\in[k]} \sum_{j=1}^{a_i} s_i \cdot \phi(n_i)$$

Since ϕ is an R-module homomorphism i.e.

$$\phi(x+y) = \phi(x) + \phi(y)$$
 and $\phi(r.x) = r.\phi(x)$

Then the generators for the subgroup from the equivalence relation \sim discussed previously map to zero in L. e.g. $(s_1 + s_2, n) \sim (s_1, n) + (s_2, n)$ gives a generatoring element $(s_1 + s_2, n) - (s_1, n) - (s_2, n)$ which maps to

$$\Psi((s_1 + s_2, n) - (s_1, n) - (s_2, n)) = \psi((s_1 + s_2, n)) - \psi((s_1, n)) - \psi((s_2, n))$$

$$= (s_1 + s_2).\phi(n) - s_1.\phi(n) - s_2.\phi(n)$$

$$= s_1.\phi(n) + s_2.\phi(n) - s_1.\phi(n) - s_2.\phi(n)$$

$$= 0$$

Similarly for $(s \cdot r, n) \sim (s, r \cdot n)$ and $(s, n_1 + n_2) \sim (s, n_1) + (s, n_2)$ Therefore there exists a well defined \mathbb{Z} -module homomorphism

$$\Phi: F(S \times N) / \sim = S \otimes_R N \to L$$

where $\Phi(\sum s_i \otimes n_i) = \sum s_i \cdot \phi(n_i) \in L$. Since L is a left S-module

$$s.\Phi\left(\sum s_i\otimes n_i\right) = s.\left(\sum s_i.\phi(n_i)\right)$$

$$= \sum s.(s_i.\phi(n_i))$$

$$= \sum (s\cdot s_i).\phi(n_i)$$

$$= \Phi\left(\sum (s\cdot s_i)\otimes n_i\right)$$

$$= \Phi\left(\sum s.(s_i\otimes n_i)\right)$$

From the above calculation we see Φ is a S-module homomorphism. Note any S-module homomorphism is uniquely determined by the values on elements of the generating set, e.g. $1 \otimes n$ and since $\Phi(1 \otimes n) = \phi(n)$ then Φ is uniquely determined by ϕ .

Remark 1.2. The converse of this theorem is true. If $\Phi: S \otimes_R N \to L$ is a S-module homomorphism then $\phi = \Phi \circ \iota : N \to L$ is a R-module homomorphism.

Corollary 1.1. $\frac{N}{ker\iota}$ is the unique largest quotient of N that can be embedded in any S-module.

1.2 General Tensor

Let us consider only the necessary properties from the construction of the most general module for a given scalar extension and apply it to a construct of a space in which the product of elements from two spaces can have a group structure and given sufficient conditions have a module structure.

Observing the relations used in the extension of scalars when note the requirements of the constituent spaces of the construct needs an abelian group

structure. By the relation $(x.r, y) \sim (x, r.y)$ the constituent spaces need a right and left ring action respectively. This leads us to the construction of the abelian group known as the tensor product.

Definition 1.2. Tensor Product

Let M be any right module-R and N any left R-module. Consider the equivalence relation \sim on $F(M\times N)$ free Abelian group generated from $M\times N$ where

$$(m_1 + m_2, n) \sim (m_1, n) + (m_2, n)$$
 $(m.r, n) \sim (s, r.n)$
 $(m, n_1 + n_2) \sim (m, n_1) + (m, n_2)$

The abelian group $M \otimes_R N = F(M \times N) / \sim$ is called the **tensor product of** M and N over R

Remark 1.3. In the above definition of tensor product if the right module-R was a bimodule or has a left ring action by another ring S then the tensor product has a natural module structure. Defining it on a simple tensor as $s.(m \otimes n) := (s.m) \otimes n$

If R is a commutative ring we define m.r := r.m for a right module-R M which can be shown that M is a R-bimodule. Note we can see R must be commutative since

$$(r \cdot r').m = m.(r \cdot r') = (m.r).r' = r'.(r.m) = (r' \cdot r).m$$

In the special case in extension of scalars we considered R-module homomorphisms to any S-module where S contained R. In the general case we consider a more general type of map, one which still sends the generators of kernel of $\pi: F(M \times N) \to M \otimes_R N$ e.g. $(m_1 + m_2, n) - (m_1, n) - (m_2, n)$.

Definition 1.3. R-balanced map

Let M be any right module-R, N any left R-module, and L any Abelian group.

 $\phi: M \times N \to L$ is R-balanced iff

$$\phi(m_1 + m_2, n) = \phi(m_1, n) + \phi(m_2, n) \qquad \phi(m, r.n) = \phi(m.r, n)$$

$$\phi(m, n_1 + n_2) = \phi(m, n_1) + \phi(m, n_2)$$

Theorem 1.2. Universal Property of Tensor Product

Let R be any ring with 1, M right module-R, N left R-module, and L any Abelian group.

If $\phi: M \times N \to L$ is a R-balanced map then there exists a unique group homomorphism $\Phi: M \otimes_R N \to L$ such that $\phi = \Phi \circ \iota$.

If $\Phi: M \otimes_R N \to L$ any group homomorphism then $\phi = \Phi \circ \iota : M \times N \to L$ is a R-balanced map.

Since the product of sets is associative it seems likely that the tensor product is also associative. The next theorem shows this is the case.

Theorem 1.3. Associativity of the Tensor Product

Let M be any right S-module-R, N any R-module-T, and L any left T-module.

There exists a unique S-module isomorphism

$$(M \otimes_R N) \otimes_T L \cong M \otimes_R (N \otimes_T L)$$

$$m \otimes (n \otimes l) \mapsto (m \otimes n) \otimes l$$

Proof. Note that $M \otimes_R N$ is S-module-T and $N \otimes_T L$ left R-module. For each $l \in L$ define $\phi_l^L : M \times N \to M \otimes_R (N \otimes_T L)$

$$\phi_l^L(m,n) = m \otimes (n \otimes l)$$

$$\phi_l^L(m.r,n) = m.r \otimes (n \otimes l)$$

$$= m \otimes r.(n \otimes l)$$

$$= m \otimes (r.n \otimes l)$$

$$= \phi_l^L(m,r.n)$$

The above calculation shows ϕ_l^L is R-balanced. By the universal property of tensor product there exist a unique homomorphism

$$\Phi_I^L: M \otimes_R N \to M \otimes_R (N \otimes_T L)$$

and therefore the following map is well defined

$$\Phi^{L}: (M \otimes_{R} N) \times L \to M \otimes_{R} (N \otimes_{T} L)$$
$$: (m \otimes n, l) \mapsto \Phi^{L}_{l}(m \otimes n)$$

A simple calculatin shows that Φ^L is R-balanced and therefore by the universal property of tensor product there exist a unique homomorphism $\Phi: (M \otimes_R N) \otimes_T$ $L \to M \otimes_R (N \otimes_T L)$. Repeat with ψ_m^M maps to get the inverse homomorphism.

To complete the proof note that S action is compatible with the T action

$$s.((m \otimes n).t) = s.(m \otimes n.t) = s.m \otimes n.t = (s.m \otimes n).t = (s.(m \otimes n)).t$$

so $M \otimes_R N$ is a S-module-T making $(M \otimes_R N) \otimes_T L$ a S-module. By the isomorphism constructed above $\Phi(s.(m \otimes n) \otimes l) = \Phi((s.m \otimes n) \otimes l) = s.m \otimes l$ $(n \otimes l) = s.(m \otimes (n \otimes l))$

Most spaces of interest for which we construct a tensor product have a have action by a commutative ring and therefore are bimodules. Such as vector spaces. In this case the R-balanced maps are multilinear maps.

Definition 1.4. Multilinear Map

Consider R commutative ring and M_1, \ldots, M_n and L be R-modules. Then a map $\phi: M_1 \times \cdots \times M_n \to L$ is a multilinear map if and only if for each component $i \in [n]$ the map where the other entries are fixed is a R-module homomorphism.

$$\phi(m_1, \dots, m_{i-1}, r.m_i + r'.m'_i, m_{i+1}, \dots, m_n) = r.\phi(m_1, \dots, m_{i-1}, m_i, m_{i+1}, \dots, m_n) + r'.\phi(m_1, \dots, m_{i-1}, m'_i, m_{i+1}, \dots, m_n)$$

Corollary 1.2. Let R be a commutative ring and M_1, \dots, M_n be R-modules. Let $M_1 \otimes \dots \otimes M_n$ be any bracketing of the tensor product of the aforementioned modules. Let

$$\iota: M_1 \times \cdots \times M_n \to M_1 \otimes \cdots \otimes M_n$$

: $(m_1, \dots, m_n) \mapsto m_1 \otimes \cdots \otimes m_n$

For any R-module L there is a bijection between multilinear maps and R-module homomorphism

$$\left\{\phi: M_1 \times \cdots \times M_n \to L\right\} \left\{ \Phi: M_1 \otimes \cdots \otimes M_n \to L \right\}$$

$$\left\{ \Phi: M_1 \otimes \cdots \otimes M_n \to L \right\}$$

$$R\text{-module homomorphism}$$

such that the following diagram commutes

$$M_1 \times \cdots \times M_n \xrightarrow{\iota} M_1 \otimes \cdots \otimes M_n$$

$$\downarrow \vdots \\ \Phi$$

$$\downarrow L$$

Theorem 1.4. Tensor product commutes with Direct Sum Let M,M' be any right modules-R and N,N' be any left R-modules.

There exists a unique group isomorphisms

$$(M \oplus M') \otimes_R N \cong (M \otimes_R N) \oplus (M' \otimes N)$$

$$M \otimes_R (N \oplus N') \cong (M \otimes_R N) \oplus (M \otimes_R N')$$

such that $(m, m') \otimes n \mapsto (m \otimes n, m' \otimes n)$ and $m \otimes (n, n') \mapsto (m \otimes n, m \otimes n')$ respectively.

And if M, M' S-module-R then there exists a S-module isomorphism.