

# 中国矿业大学

# China University of Mining and

# **Technology**

# 《GNSS 理论与应用 B》课程实验报告

姓 名: \_\_\_\_ 马骁

班 级: 21级地信1班

学 号: \_\_\_\_\_07212393

指导教师: \_\_\_\_\_赵东升\_\_\_\_\_

中国矿业大学环境与测绘学院

2023年10月18日

# GPS 静态测量

# 一、 实验目的与任务:

练习GPS天线的整平、对中、安装:

练习GPS接收机静态系统配置与连接;

了解GPS接收机静态系统参数设置;

熟悉GPS接收机静态数据采集观测信息评价方法

掌握GPS外业测量的基本工作,掌握GPS外业作业基本流程。

通过课程实验,加深对卫星导航定位基本理论的理解,提高综合创新能

力。熟练掌握GPS仪器设备的使用方法,并且能独立完成GPS数据后处理工

作,得到可靠的点位坐标。

# 二、 实验仪器及装置:

- 1. 华测 GPS X90接收机一台
- 2. 脚架一个
- 3. 电池两块
- 4. 基座一个
- 5. 2米钢卷尺一把

# 三、实验内容:

- 1. 认识华测 GPS X90接收机的各个部件。
- 2. 掌握GPS接收机各个部件之间的连接方法。
- 3. 熟悉GPS接收机前面板各个按键的功能。
- 4. 熟悉GPS接收机后面板各个接口的作用。

# 四、实验步骤:

#### 一、外业采集

- 1. 将三脚架至视线开阔,观测条件良好的地方,撑开三脚架,并且调至水平
- 2. 把接收机安装在三脚架上,接收机上方有天线,小三角形定向标,用它 指北
- 3. 在进行接收工作时,对GPS接收机进行两次测量斜高

- 4. 在接收任务结束以后再对仪器进行第三次测量斜高:
- 5. 准备工作结束以后,按下电源键,进行接收工作;
- 6. 长按切换键,等电台灯变成绿灯亮,就松开,切换至静态测量模式;
- 7. 等待一个小时以上,进行关机操作;

### 二、数据处理

- 1. 根据点号,把采集到的数据传送入电脑
- 2. 修改点号名称和仪器高
- 3. 修改时间为当地时间,基线处理配置中进行相应修改



图 1 基线处理配置

4. 进行基线解算,得到结果



#### 图 2 基线解算结果图

## 5. 更改残差序列图,减小误差



图 3 更改残差序列图

# 6. 转为控制点

将3个已知点转为控制点,对控制点坐标进行约束。



图 4 控制点约束

#### 7. 网平差

选择手动-二维约束平差进行平差,得到二维约束平差报告。



图 5 控制网平差

## 三、平差结果

控制网平差结果合格。



图 6 控制网平差结果

设计的平差网图和选取的控制点如下所示。

#### 控制网图



图 7 控制网图

#### 解算后的各点平面坐标:

| 点ID  | 北坐标(m)       | 北坐标中误差(m) | 东坐标(m)      | 东坐标中误差(m) | 高程(m)   | 高程误差(m) |
|------|--------------|-----------|-------------|-----------|---------|---------|
| T002 | 3788102.8220 | 0.0000    | 513267.5500 | 0.0000    | 41.4836 | 0.0014  |
| T010 | 3787438.3260 | 0.0000    | 513104.1250 | 0.0000    | 44.4210 | 0.0027  |
| T071 | 3787870.8972 | 0.0028    | 513109.7765 | 0.0022    | 43.1252 | 0.0026  |
| T074 | 3787855.7171 | 0.0035    | 513309.5798 | 0.0025    | 41.3019 | 0.0029  |
| T031 | 3786905.4640 | 0.0000    | 512398.9020 | 0.0000    | 54.6853 | 0.0015  |
| T021 | 3787653.3989 | 0.0018    | 512650.6581 | 0.0013    | 52.5908 | 0.0017  |

图 8 解算后的各点平面坐标

### 五、野外现场研讨内容

# (1) 此次实验的目的是什么? 最终提交的具体成果是什么? 这些成果在测绘 领域有什么用?

通过 GNSS 接收器记录的各个测量站点的经纬度、高度等坐标信息;

最终提交的结果有:基线向量,数据质量分析报告,最终的测量站点坐标解算结果;

GNSS 测量提供了高精度的地理空间数据,可用于制图、地理信息系统(GIS)、土地测量、建筑工程、导航、自然资源管理等各种应用。

#### (2) 其他各组(班)成员此时此刻在完成什么任务?

首先选取测量站点,进行仪器的对中整平,然后各个组应同时开机和关机, 保证测量时段的完整,通过仪器进行 GNSS 数据的记录。

## (3) 如果你进行本次测量的技术设计,应该有哪些内容?

- 1、站点选择:选择合适的测量站点
- 2、GNSS设备的选择:选择测量精度较高的设备

- 3、观测时间设计:确定观测时间的统一性和连续性
- 4、 基线设计: 规划不同站点之间的基线, 保证测量数据的充足
- 5、 数据处理:对 GNSS 数据进行相应的处理和分析,进行控制网平差
- 6、 质量分析: 制定测量的误差等级, 对数据进行分析和精度评估
- 7、 撰写报告: 对测量实验内容进行撰写, 详细描述方法、结果。

#### 六、数据处理要求讨论

- (1) 讨论与视频中的设置参数相比,你所采用的设置参数哪些是相同的,哪 些是不同的? 原因是什么?
  - 相同参数:

坐标系统参数中的东方向加常数,基线处理设置参数相同。

● 不同参数:

坐标系统参数如椭球体的选择、中央子午线的设置、北方向加常数的设置、时间系统都选择当地时间但是时区不同,测站点的仪器高,控制点坐标约束。

● 原因:

视频中 GNSS 数据为肯尼亚数据,坐标系统和所处经度不同,所处时区不同,测量的点也不同,需要自行修改对应的参数。

- (2) 讨论数据处理中基线、闭合环不合格的原因。
- 1、系统误差:测量过程中可能受到对流层和电离层的影响,卫星钟差、接收机钟差的影响。
- 2、 基线长度过长: 过长的基线可能导致精度下降。
- 3、测量数据较差,卫星数量不足:可能受到建筑物、树木的遮挡,在数据 传输记录的过程中发生数据缺失。
- 4、 仪器精度:接收机接收信号的准确度不够,波动误差较大。
- 5、 人员操作问题: 在讲行数据采集、处理的过程中, 操作不当。
- 6、观测时间不充足:观测时间不够接收到的信号不充足,进行解算时误差较大。
- (3) 讨论解算出来的验证点坐标与给出点坐标的一致性,并分析影响解算坐标准确度的因素有哪些?

|   | 点ID     | 北坐标(m)       | 北坐标中误差(m) | 东坐标(m)      | 东坐标中误差(m) | 高程(m)   |
|---|---------|--------------|-----------|-------------|-----------|---------|
|   | T002    | 3788102.8220 | 0.0000    | 513267.5500 | 0.0000    | 41.4836 |
|   | T010    | 3787438.3260 | 0.0000    | 513104.1250 | 0.0000    | 44.4210 |
|   | T071    | 3787870.8972 | 0.0028    | 513109.7765 | 0.0022    | 43.1252 |
|   | T074    | 3787855.7171 | 0.0035    | 513309.5798 | 0.0025    | 41.3019 |
|   | T031    | 3786905.4640 | 0.0000    | 512398.9020 | 0.0000    | 54.6853 |
| 验 | 证点 T021 | 3787653.3989 | 0.0018    | 512650.6581 | 0.0013    | 52.5908 |

| 点名(新) | 点名(原) | 北方向          | 东方向         | H高程      | 备注  |
|-------|-------|--------------|-------------|----------|-----|
| T002  | I1    | 3788102.822  | 513267. 550 | 31.027   | 已知点 |
| T010  | 163   | 3787438. 326 | 513104. 125 | 33. 934  | 已知点 |
| T031  | 139   | 3786905.464  | 512398. 902 | 44. 246  | 已知点 |
| T021  | I22   | 3787653. 393 | 512650. 650 | 42. 1438 | 验证点 |
| T037  | I34   | 3787266. 767 | 512208.077  | 47. 5837 | 验证点 |

图 9 验证点给出坐标与解算坐标对比

影响坐标解算准确度的因素有:

- 1、卫星几何:卫星的几何位置分布会影响定位精度
- 2、 对流层、电离层误差
- 3、 多路径效应: 建筑物反射信号, 信号经过多次反射, 精度降低
- 4、卫星钟差和接收机钟差
- 5、 基线长度: 较长的基线可能误差较大
- 6、 外部原因: 天气条件, 环境影响
- 7、卫星信号强弱

#### 七、实验心得

在进行 GNSS 静态实验的过程中,我们小组利用接收机接收卫星信号,并进行数据处理,数据处理的过程中让我了解到影像 GNSS 信号质量的原因,比如建筑物遮挡,树木遮挡等(多路径误差)。此外在处理基线和闭合差时,观察到有的数据质量很差,分析了可能的原因,如观测时间不足等。这次实验加深了我对GNSS 的理解,将书本的内容待到实践中,达到了学以致用的效果。