MIDL 2020 – Short Paper

An interpretable automated detection system for FISH-based HER2 oncogene amplification testing in histo-pathological routine images of breast and gastric cancer diagnostics

Sarah Schmell, Falk Zakrzewski, Walter de Back, Martin Weigert, Uwe Schmidt, Torsten Wenke, Silke Zeugner, Robert Mantey, Christian Sperling, Ingo Roeder, Pia Hoenscheid, Daniela Aust and Gustavo Baretton

Complex Diagnostics and Increasing Workload

FISH HER2 amplification testing

1. Step: Nucleus Filtering with the Nucleus Detector

2. Step: Grading Nuclei with the Nucleus Classifier

3. Step: Second Opinion from the Signal Detector

4. Step: Reviewing the Report

Nucleus Detector Extracted nucleus images

Nucleus Classifier
Nucleus-wide classifications
Class activation maps
Image-wide classification

Signal Detector
Signal occurrences
HER2/CEP17 ratios
Nucleus-wide classifications
Image-wide classification

Enhancements to the Al assistance

THANK YOU

An interpretable automated detection system for FISH-based HER2 oncogene amplification testing in histo-pathological routine images of breast and gastric cancer diagnostics

