

Thermo
Prof. Dr.-Ing. habil. Jadran Vrabec
Fachgebiet Thermodynamik
Fakultät III – Prozesswissenschaften

Aufgabe 10.1

- a) Zeichnen Sie qualitativ ein *p-v*-Diagramm des Zweiphasengebietes für ein reales Fluid und kennzeichnen Sie:
 - kritischer Punkt
 - Siedelinie, Taulinie, Tripellinie
 - Nassdampfgebiet, Flüssigkeits- und Gasgebiet, Überkritisches Gebiet
 - verschiedene Isothermen, insbesondere $T=T_{\rm krit.}$ und je mindestens einmal $T< T_{\rm krit.}$ und $T>T_{\rm krit.}$
- b) Zeichnen Sie qualitativ ein p-T-Diagramm des realen Fluids und kennzeichnen Sie:
 - kritischer Punkt, Tripelpunkt
 - Dampfdruckkurve
 - Flüssigkeits- und Gasgebiet, Überkritisches Gebiet
- c) Erläutern Sie den Zusammenhang (bzw. den Unterschied) zwischen p-v-Diagramm und p-T-Diagramm. Warum taucht im p-v-Diagramm eine "Tripellinie" auf, und im p-T-Diagramm nur ein "Tripelpunkt"?

Aufgabe 10.2

In einem verschlossenen Kessel mit $1000\,\mathrm{dm}^3$ Volumen befindet sich Wasser bei $T_1=140\,^\circ\mathrm{C}$. Der Dampfmassenanteil beträgt $x=10\,\%$.

- a) Wie groß ist das spezifische Volumen und die spezifische Enthalpie?
- b) Wieviel Wärme muss zugeführt werden, wenn das gesamte Wasser isochor verdampfen soll? Welcher Druck und welche Temperatur stellt sich auf der Taulinie ein?
- c) Wieviel Wärme wird bei einer isobaren Verdampfung von Zustand 1 bis zur Taulinie benötigt?
- d) Zeichnen Sie beide Verdampfungsprozesse ((b) und (c)) in einem p-V-Diagramm.

Stoffdaten für Wasser

Tabelle 1: Zweiphasengebiet:

Т	р	h'	h"	s'	s"	v'	v"
$[^{\circ}C]$	[bar]	[kJ/kg]	[kJ/kg]	[kJ/(kg K)]	[kJ/(kg K)]	$[\mathrm{dm}^3/\mathrm{kg}]$	$[m^3/kg]$
140	3.615	589.16	2733.4	1.7392	6.9293	1.0798	0.50845
245	36.51	1061.5	2802.2	2.7478	6.1072	1.2403	0.054654
250	39.76	1085.8	2800.9	2.7935	6.0721	1.2517	0.050083
255	43.23	1110.2	2799.1	2.8392	6.0369	1.2636	0.045938
260	46.92	1135.0	2796.6	2.8849	6.0016	1.2761	0.042173

 Thermo

Prof. Dr.-Ing. habil. Jadran Vrabec Fachgebiet Thermodynamik Fakultät III – Prozesswissenschaften

Aufgabe 10.3

Ein Wasserdampfstrom von $\dot{V}=2\,\mathrm{m}^3/\mathrm{s}$ mit $T_1=600\,^\circ\mathrm{C}$ und $p_1=40\,\mathrm{MPa}$ wird in einer Turbine entspannt.

- a) Welche Leistung könnte bei einer adiabaten, verlustlosen Entspannung bis auf die Taulinie gewonnen werden?
- b) Bei der realen, adiabaten Turbine endet die Expansion bei $T_2=250\,^{\circ}\mathrm{C},\ p_2=2.5\,\mathrm{MPa}.$ Wie groß ist die tatsächlich gewonnene Leistung? Wie groß ist der verlorene Exergiestrom? (Umgebungstemperatur $T_\mathrm{a}=290\,\mathrm{K}$)
- c) In einer anschließenden Überhitzung werden isobar bei $p_2 = 2.5 \,\mathrm{MPa}, \,\dot{Q} = 185 \,\mathrm{MW}$ Wärme zugeführt. Bis auf welche Temperatur T_3 erwärmt sich der Dampf?
- d) Eine zweite Turbinenstufe entspannt den Dampf von $T_3 = 574.45\,^{\circ}\text{C}$, $p_3 = 2.5\,\text{MPa}$ auf $T_4 = 80\,^{\circ}\text{C}$, $p_4 = 0.04\,\text{MPa}$. Welche Leistung gibt der Dampf bei adiabater Expansion ab?

Stoffdaten für Wasser

Tabelle 2: Zweiphasengebiet:

T	p	ho'	ho''	h'	h''	s'	s''
[°C]	[MPa]	$[\mathrm{kg/m^3}]$	$[\mathrm{kg/m^3}]$	[kJ/kg]	[kJ/kg]	$[\mathrm{kJ/(kgK)}]$	[kJ/(kg K)]
257	4.4679	788.3	22.528	1120.1	2798.2	2.858	6.023
257.1	4.4752	788.14	22.567	1120.6	2798.1	2.858	6.022
257.2	4.4826	787.99	22.605	1121.1	2798.1	2.859	6.021
257.3	4.4899	787.83	22.644	1121.6	2798	2.860	6.021
257.4	4.4973	787.68	22.683	1122.1	2798	2.861	6.020
257.5	4.5047	787.52	22.722	1122.6	2797.9	2.862	6.019
257.6	4.5121	787.37	22.76	1123.1	2797.9	2.863	6.019
257.7	4.5195	787.21	22.799	1123.6	2797.8	2.864	6.018
257.8	4.5269	787.06	22.838	1124	2797.8	2.865	6.017
257.9	4.5343	786.9	22.877	1124.5	2797.7	2.866	6.016
258	4.5417	786.75	22.917	1125	2797.7	2.867	6.016

Thermo

Prof. Dr.-Ing. habil. Jadran Vrabec Fachgebiet Thermodynamik Fakultät III – Prozesswissenschaften

Tabelle 3: Einphasengebiet:

		_		
T	p	ρ	h	s
[°C]	[MPa]	$[kg/m^3]$	[kJ/kg]	[kJ/(kg K)]
574.3	2.5	6.4774	3628.9	7.531
574.35	2.5	6.477	3629	7.531
574.4	2.5	6.4766	3629.1	7.531
574.45	2.5	6.4762	3629.2	7.531
574.5	2.5	6.4758	3629.3	7.531
574.55	2.5	6.4754	3629.4	7.531
574.6	2.5	6.475	3629.5	7.531
574.65	2.5	6.4746	3629.7	7.532
574.7	2.5	6.4742	3629.8	7.532
600	40	123.62	3350.4	6.017
250	2.5	11.487	2880.9	6.411
80	0.04	0.24737	2644.3	7.693