Порядок выполнения лабораторной работы №1 «Получение случайных чисел с заданным законом распределения»

Задание (в качестве примера): получить числа с равномерным законом распределения в интервале [2,7].

1. Выбор метода получения случайных чисел (среди методов, приведенных в методических указаниях к лабораторной работе).

В задании указано, что случайные числа описываются равномерным законом распределения в интервале [a=2,b=7]. Плотность распределения для таких чисел задается формулой

$$f(y) = \begin{cases} 1/(b-a), \text{ если } y \in [a,b] \\ 0, \text{ вне } y \in [a,b] \end{cases}$$

Ситуация выбора	Решение				
метода получения случайных чисел	Maray afinaryay dayayayay (mayay				
Задана аналитически плотность	Метод обратной функции (прямой				
распределения случайной величины $f(y)$,	метод)				
можно аналитически в общем случае решить					
уравнение вида, взяв интеграл от f(y)					
$\int_{-\infty}^{y_j} f(x) dx = \xi_j$					
Получение случайных чисел с нормальным	Получение случайных чисел с				
законом распределения.	использованием предельных теорем теории				
Получение случайных чисел,	вероятностей				
распределённых по закону Пуассона.					
Пусть требуется получить	Приближенный универсальный способ				
последовательность случайных чисел {у _j } с	получения случайных				
функцией плотности f(y), возможные	чисел (метод кусочной аппроксимации				
значения которой лежат в интервале (c, d).	функции плотности)				
Функция плотности распределения f(y)					
представляется в виде кусочно-постоянных					
функций, т.е. интервал (c, d) разбивается на					
ℓ подинтервалов и на каждом подинтервале					
f(y) считается постоянной					

2. Решить уравнение вида $\int_{-\infty}^{y_j} f(x) dx = \xi_j$, где ξ_j – случайное число с равномерным законом распределения в интервале [0,1], которую программно можно определить, используя функцию генерации случайных чисел с равномерным законом распределения, имеющуюся в библиотеке используемого программного инструментария, например, =random(); y_j – неизвестная искомая случайная величина, распределенная по требуемому в задании закону.

В данном случае уравнение имеет вид $\int\limits_a^{y_j}$ (1/(b-a)) $dx=\xi_j$, если $x\in [a,b]$, вне данного интервала функция плотности распределения случайной величины равна f(x)=0. Решение имеет вид

 $y_{j=}a+(b-a)^*\xi_{j}$. Для интервала, указанного в задании, решение имеет вид $y_{j=}2+5^*\xi_{j}$. Это выражение и определяет формулу для получения случайного числа с равномерным законом распределения в интервале [2,7].

3. Сгенерируем 200 случайных чисел, построим гистограмму для полученной выборки и рассчитаем среднее значение и дисперсию.

Используем для простоты реализации MS Excel.

На рис.1 представлены основные результаты расчетов. Ниже приведены использованные формулы и пояснения к расчетам. При выполнении данного задания результаты изменятся, поскольку будут сгенерированы другие случайные числа. Это не влияет на порядок выполнения работы.

Рис. 1 Результаты расчета величины критерия согласия Пирсона (хи квадрат) для задания

Рассмотрим порядок расчетов, представленных на рис.1 по шагам в MS Excel. Можно взять любой программный инструмент для выполнения расчетов.

3.1. Предварительно необходимо сгенерировать 150 (число выбрано произвольно) чисел с равномерным законом распределения в интервале [0,1].

Выполнить команду ДАННЫЕ/АНАЛИЗ_ДАННЫХ/ГЕНЕРАЦИЯ_СЛУЧАЙНЫХ_ЧИСЕЛ. В открывшемся окне «Генерация случайных чисел» ввести исходные данные:

- В поле ввода «Число переменных» ввести в данном случае число 15. Это число определяет число ячеек по горизонтали, т.е. число столбцов, области ячеек, которая отводится под случайные числа.
- В поле ввода «Число случайных чисел» ввести в данном случае число 10. Это число определяет число ячеек по вертикали, т.е. число строк, области ячеек, которая отводится под случайные числа.
- Выбрать в раскрывающемся списке «Распределение» вариант «Равномерное». Автоматически в окне диалога «Генерация случайных чисел» появятся параметры равномерного распределения; интервал [0,1].
- Включить радиокнопку «Выходной интервал» и ввести в ставшее активным поле ввода адрес левой верхней ячейки области размером 15*10, в которой программа разместит все двести случайных чисел.

На рис.2 приведены все исходные данные в окне «Генерация случайных чисел».

Рис.2. Исходные данные в окне диалога «Генерация случайных чисел»

• Нажать командную кнопку «ОК». Результат представлен на рис.3.

Рис. 3 Область ячеек А1:О10, в которой размещены случайные числа

- 3.2. Сгенерируем случайные числа с равномерным законом распределения в интервале [2,7]. Формула, с помощью которой рассчитываются случайные числа y_j , имеет вид
- $y_{j=}a+(b-a)*$ ξ_j , j=1,2,...,150, где a=2, b=7, ξ_j случайное число с равномерным законом распределения в интервале [0,1]:
- Ввести в ячейку A14 формулу =2+5*A1.
- Скопировать эту формулу в область ячеек A14:O23 (см. рис.1).
- 3.3. Рассчитать шаг для определения карманов при построении гистограммы. Карманы определяют точки, отмечаемые на оси абсцисс гистограммы.
- Определить максимальное случайное число в области A14:O23. Ввести в ячейку B25 формулу =MAKC(A14:O23).
- Сравнить полученное значение с максимальным значением случайных чисел с равномерным законом распределения в интервале [2,7], которое равно 7. Сравниваемые значения близки по величине, что свидетельствует о качестве сгенерированных чисел по данной выборке.
- Определить минимальное случайное число в области A14:O23. Ввести в ячейку B26 формулу =МИН(A14:O23).
- Сравнить полученное значение с минимальным значением случайных чисел с равномерным законом распределения в интервале [2,7], которое равно 2. Сравниваемые

значения близки по величине, что свидетельствует о качестве сгенерированных чисел по данной выборке.

- Определить среднее арифметическое число в области A14:O23. Ввести в ячейку B27 формулу =(B25-B26)/\$В\$29.
- Сравнить полученное значение с математическим ожиданием случайных чисел с равномерным законом распределения в интервале [2,7], которое определяется по формуле M=(a+в)/2=(7-2)/2=4,5. Полученные значения близки по величине, что свидетельствует о качестве сгенерированных чисел по данной выборке.
- Задать число карманов для построения гистограммы. Это число карманов (подинтервалов), на которое будет разделена область изменения сгенерированных случайных чисел. Ввести в ячейку В29 число 7. В общем случае рекомендуется делить на 5-20 карманов. Этот диапазон определен опытным путем.
- Определить величину шага, с которым будут определяться карманы на гистограмме по оси абсцисс. Ввести в ячейку B28 формулу =(B25-B26)/\$В\$29.
- Задать количество сгенерированных случайных чисел. Ввести в ячейку В30 число 150.
- В ячейки B25:B30, E25:E26? I34 введены комментарии к использованным данным и выполненным расчетам.

3.4. Построим гистограмму для полученной в области А14:О23 выборки случайных чисел:

- Ввести в ячейки Е27:Е33 порядковые номера карманов от 1 до 7.
- Определить точки окончания каждого кармана на оси абсцисс. Ввести в ячейку F27 формулу =2+\$B\$28*E27. Скопировать эту формулу в область ячеек F28:F33.
- Выполнить команду ДАННЫЕ/АНАЛИЗ ДАННЫХ.
- В открывшемся окне «Анализ данных» в списке «Инструменты анализа» выбрать команду «Гистограмма» нажать командную кнопку «ОК».
- В открывшемся окне «Гистограмма» ввести исходные данные:
 - о В поле ввода «Входной интервал» ввести адрес области A14:O23;
 - о В поле ввода «Интервал карманов» ввести адрес области E28:E33;
 - о Включить радиокнопку «Выходной интервал» и ввести адрес верхней левой ячейки, начиная с которой будут выведены результаты расчетов для построения гистограммы, G26.
 - Включить переключатель «Вывод графика». Результат представлен на рис.4

Рис.4. Исходные данные для ввода при построении гистограммы

о Нажать командную кнопку «ОК». Гистограмма построена. В области ячеек H27:H33 выведены соответственно количество сгенерированных случайных чисел, попавших по величине в соответствующий карман (частота).

- 3.5. Выбрать и рассчитать критерий согласия для проверки гипотезы о соответствии сгенерированных случайных чисел заданному закону распределения (вопрос качества построенного датчика случайных чисел).
- В таблице представлены типичные ситуации выбора критерия согласия. Для выполнения задания выберем третий вариант критерий согласия Пирсона.

Типовая ситуация выбора критерия согласия	Решение				
Имеется несколько групп статистических данных, собранных в разных условиях. Вопрос – можно ли объединить эти данные в одну группу?	Критерий Смирнова (определяет степень принадлежности статистических данных одной генеральной совокупности)				
Задан теоретически закон распределения случайной величины, а также заданы количественно параметры закона распределения	Критерий Колмогорова (используется функция распределения случайных величин с заданными теоретическими значениями количественных параметров закона распределения)				
Имеются статистические данные об объекте	Критерий Пирсона или хи квадрат (используется функция плотности распределения случайных величин с рассчитанными на основе статистических данных значениями количественных параметров закона распределения)				

Критерий рассчитывается по формуле

$$\chi^2 = \sum_{i=1}^k \! \frac{\left(m_i^{} - N P_i^{}\right)^{\!2}}{N P_i^{}}$$
 ,

где m_i – количество значений случайной величины, попавших в i-й карман (частота в области ячеек H27:H33); P_i – теоретическая вероятность попадания случайной величины в i-й карман, вычисленная по теоретическому распределению (область ячеек I27:I3, вероятности одинаковы для всех карманов 1/7, 7 – число карманов); k – количество карманов, на которые разбивается интервал изменения случайной величины; N=150 – количество сгенерированных случайных чисел.

- Для расчета критерия согласия Пирсона ввести в ячейку J27 формулу =(H27-\$B\$30*I27) $^2/(\$B\$30*I27)$.
- Скопировать формулу из ячейки J27 в область ячеек J28:J33 (см. рис.1).
- В ячейку J34 ввести формулу =СУММ(J27:J33). Расчет значения критерия согласия Пирсона выполнен.
- Далее проверяется гипотеза о соответствии сгенерированных случайных чисел теоретическому распределению (в данном случае равномерному закону распределения в интервале [2,7]).

При $N \to \infty$ закон распределения величины $U = \chi 2$ зависит только от числа карманов и приближается к закону распределения $\chi 2$.

Вычисляется U и определяется число степеней свободы n=k-r-1, где k- число карманов, r- количество явных параметром теоретического распределения (для равномерного

распределения r=0, для экспоненциального распределения r=1). В задании n=7-0-1=6. Это строка входа в таблицу $\chi 2$ - распределения.

Затем по таблицам χ 2- распределения (рис.5) определяют $P(\chi 2 \gamma \geq \chi 2)$. Если эта вероятность превышает некоторой уровень значимости у, то считается, что гипотеза о соответствии сгенерированных случайных чисел теоретическому распределению не опровергается.

math.semestr.ru				Таблица	распредел	ения хи-кв	адрат				
вой перспективную IT-профессию: еб-разработчик	n- 1	.995	.990	.975	.950	.900	.750	.500	.250	.100	дизайнов. √ Подключение онлайн-оплаты.
рограммист Java fobile-разработчик	1	0.00004	0.00016	0.00098	0.00393	0.01579	0.10153	9 94	1.32330	2.70554	Подробнее
lpoграммист Python	2	0.01003	0.02010	0.05064	0.10259	0.21072	0.57536	1.33629	2.77259	4.60517	
Записаться	3	0.07172	0.11483	0.21580	0.35185	0.58437 1.06362	1.21253	2.35597 3.35669	4.10834 5.38527	6.25139 7.77944	Биржа удаленной работы Для тех, кому нужен специалист: найти лучших фриланс специалистов среди 1 млн исполнителей. Программисты, дизайнеры,
	5	0.41174	0.55430	0.83121	1.14548	1.61031	2.67460	4.35146	6.62568	9.23636	
Бизнес курсы SkillBox	6	0.61			$\exists \supset$	2. 20413	3.45460	5.34812	7.84080	10.64464	
ань руководителем Digital-проектов	7	0.98926	1.23904	1.68987	2.16735	2.83311	4.25485	6.34581	9.03715	12.01704	художники, копирайтеры, юристы, бухгалтеры,
недель обучения и практики	8	1.34441	1.64650	2.17973	2.73264	3.48954	5.07064	7.34412	10.21885	13.36157	инженеры, фотографы - тысячи удаленных сотрудников по любым freelance
рвым записавшимся скидка 30%	9	1.73493	2.08790	2.70039	3.32511	4.16816	5.89883	8.34283	11.38875	14.68366	специализациям.
Программа курсов	10	2.15586	2.55821	3.24697	3.94030	4.86518	6.73720	9.34182	12.54886	15.98718	Тем, кто ищет работу на дом: для вас

Рис. 5 Фрагмент таблицы χ 2- распределения (URL: https://math.semestr.ru/group/xixi.php)

По таблице в строке с n=6 находим $\chi 2=5,34$, ближайшее большее к вычисленному значению $U=\chi 2=4,09$. Далее по столбцу вверх определяем вероятность y=0,5, с которой гипотеза о соответствии сгенерированных случайных чисел теоретическому распределению (в данном случае равномерному закону распределения в интервале [2,7]) не опровергается. Этот вывод свидетельствует о качестве построенного датчика случайных чисел с заданным законом определения. Данный датчик можно использовать для имитационного моделирования.