CS & IT ENGINEERING

Theory of Computation

Finite Automata

Lecture No. 23

By- DEVA Sir

9) Symmetric Difference for Regulars

$$= (l_1 \cup l_2) - (l_1 \cap l_2)$$

X Q X X If L, M2 = \$\frac{1}{2} + \text{hen } \lambda \lambda

$$f = \{1, 2, 3\}$$

Subsets of A

$$S_1 = \{1\}$$
 $S_2 = \{1\}$
 $S_3 = \{1,2\}$
 $S_6 = \{1,3\}$
 $S_6 = \{1,3\}$
 $S_7 = \{2\}$
 $S_7 = \{2,3\}$
 $S_8 = \{3\}$
 $S_8 = \{1,2,3\}$

No.of Subsets of A

II) Every Subset of Infinite Language is cited subject subject to

III) Every Subset of Not regular language is effect Regular notes

For string:

prefix
$$(\omega) = \int U | UV = W$$
 pref(ab) = $\int \int E \cdot a \cdot a \cdot b$
Suffix $(\omega) = \int V | UV = W$ Suffix $(ab) = \int \int E \cdot b \cdot a \cdot b$
Substring $(\omega) = \int U | XYZ = W$ Substring $(ab) = \int E \cdot a \cdot b \cdot a \cdot b$

$$L = \left\{abc\right\}$$

$$\rightarrow \left(1 - a\right)\left(2 - b\right)\left(3 - c\right)\left(4\right)$$

I From initial to final state parkmake every state is final

Prefix(L)={E, a, ab, abc}

(12) Suffix (Reg) is Reg

$$L = \{abc\}$$

$$\downarrow 1$$

$$\downarrow 1$$

$$\downarrow 1$$

$$\downarrow 2$$

$$\downarrow 3$$

$$\downarrow 4$$

From Initial to
final stake palk,
add & moves from
initial to every stake

Suffix(1)= {Ec, bc, abc}

(3) Substring (Reg)

L= fabc}

Combine bolls

Prefix Algo

Subtra Algo

Substring (L)= dE, a, b, c, abc)

H.W .:

$$(a)$$
 $L = a^* \Rightarrow$

 $Q \sum_{x=a(a+b)}^{x}$ = {a, aa, ab, aaa, aab, aba, abb, ...} Substim(L) Prefix(L) de a, aa, ab, aaa,. $=6+at^*$

Pw

t = {ab, abba} $f(L) = {\text{tol(n)}^*, \text{tol(n)}^*}^*$ f: Set of Syraball, Set of languages $f: \sum_{j=1}^{\infty} 2^{j}$

Strange Say $f(a) = 1 \times 4$ $f(b) = 01(11)^{*}$

It is a mapping In given Reg, every symbol over I is Substituted
Wilk Some Ray lang over D D=40,16 I= fab

$$\Sigma = \{0,1\}$$

$$\sum_{i=1}^{k} \{ \mathcal{E}_{i}, 0, 1, 00, 01, 10, 11, \cdots \} = (0+1)^{k}$$

$$2^{\pm} = \text{Dowerk+}(\pm^{*}) = \text{Set of all subsets of } \pm^{*}$$

$$= \text{Set of languages} = \text{Set of all languages over} \pm^{*}$$

$$= \text{set, ls, ls, ---}$$

1)
$$L = (ab)^{*}$$
 and $f(a) = f(3)$, $f(b) = o^{*}$

$$f(L) = (f(a), f(b))^{*}$$

$$= (E.o^{*})^{*}$$

2) $L = a.(a+b)^*, f(a)=o^*, f(b)=i^*$

$$f(L) - f(a(a+b)) \times = f(a) + f(a) \times = f(a) \cdot (b+1) \times = f(a) \cdot (b+1) \times = f(a+1) \times = f(a+$$

Devalue Enverse

(15) Homomorphism [String substitution]

1(a): ston)

h(L): In given reg L over Σ, every symbol is substituted wilk Some String over Δ.

h. Set of storys

(16) &-free Homomorphism: +

non empty sterry (olker tean e)

(000) (00) PW Inverse Homomorphism for Regular languages 4(0)=11

$$\bar{k}'(1), \bar{k}'(1), \bar{k}'(1) \neq aaa$$
 $\bar{k}'(1), \bar{k}'(1), \bar{k}'(1), \bar{k}'(1) \neq ab$
 $\bar{k}'(1), \bar{k}'(1), \bar{k}'(1) \Rightarrow ba$
 $\bar{k}'(1), \bar{k}'(1) \Rightarrow ba$

Eventing, s simp. Difficult => Imp to rear

De Celpina Celpina Sight war

Knowledge & confidence & performance d - 100015 Kacapacto Best Romk

Pw

1)
$$abc/\varepsilon = abc$$

$$42/(2) = 4$$

$$L_1 = \overset{*}{a}$$

$$L_2 = \overset{*}{b}$$

$$l_2 = b^*$$

i) $l_1/l_2 = a/b^* = \{a/e, a/6, a/6, a/6\}$

ii)
$$L_2/L_1 = \frac{1}{b}/a^* = \frac{1}{b}$$

3)
$$\frac{\alpha}{\alpha} = \frac{\{\varepsilon, \alpha, \alpha\alpha, \dots\}/\alpha}{\{\varepsilon, \alpha, \alpha\alpha, \dots\}/\alpha}$$

$$= \frac{\{\varepsilon, \alpha, \alpha\alpha, \dots\}/\alpha}{\{\varepsilon, \alpha, \alpha, \alpha, \alpha, \alpha, \dots\}}$$

$$= \frac{\{\varepsilon, \alpha, \alpha\alpha, \dots\}/\alpha}{\{\varepsilon, \alpha, \alpha, \alpha, \alpha, \alpha, \dots\}}$$

$$= \frac{\{\varepsilon, \alpha, \alpha\alpha, \dots\}/\alpha}{\{\varepsilon, \alpha, \alpha, \alpha, \alpha, \alpha, \dots\}}$$

$$= \frac{\{\varepsilon, \alpha, \alpha\alpha, \dots\}/\alpha}{\{\varepsilon, \alpha, \alpha, \alpha, \alpha, \alpha, \dots\}}$$

$$= \frac{\{\varepsilon, \alpha, \alpha\alpha, \dots\}/\alpha}{\{\varepsilon, \alpha, \alpha, \alpha, \alpha, \alpha, \dots\}}$$

$$= \frac{\{\varepsilon, \alpha, \alpha\alpha, \dots\}/\alpha}{\{\varepsilon, \alpha, \alpha, \alpha, \alpha, \alpha, \dots\}}$$

$$= \frac{\{\varepsilon, \alpha, \alpha\alpha, \dots\}/\alpha}{\{\varepsilon, \alpha, \alpha, \alpha, \alpha, \alpha, \dots\}}$$

$$= \frac{\{\varepsilon, \alpha, \alpha\alpha, \dots\}/\alpha}{\{\varepsilon, \alpha, \alpha, \alpha, \alpha, \dots\}}$$

$$= \frac{\{\varepsilon, \alpha, \alpha, \alpha, \alpha, \alpha, \alpha, \dots\}}{\{\varepsilon, \alpha, \alpha, \alpha, \alpha, \alpha, \dots\}}$$

$$= \frac{\{\varepsilon, \alpha, \alpha, \alpha, \alpha, \alpha, \alpha, \alpha, \dots\}}{\{\varepsilon, \alpha, \alpha, \alpha, \alpha, \alpha, \alpha, \dots\}}$$

$$= \frac{\{\varepsilon, \alpha, \alpha, \alpha, \alpha, \alpha, \alpha, \alpha, \dots\}}{\{\varepsilon, \alpha, \alpha, \alpha, \alpha, \alpha, \alpha, \dots\}}$$

$$= \frac{\{\varepsilon, \alpha, \alpha, \alpha, \alpha, \alpha, \alpha, \alpha, \dots\}}{\{\varepsilon, \alpha, \alpha, \alpha, \alpha, \alpha, \dots\}}$$

$$= \frac{\{\varepsilon, \alpha, \alpha, \alpha, \alpha, \alpha, \alpha, \alpha, \dots\}}{\{\varepsilon, \alpha, \alpha, \alpha, \alpha, \alpha, \dots\}}$$

$$= \frac{\{\varepsilon, \alpha, \alpha, \alpha, \alpha, \alpha, \alpha, \dots\}}{\{\varepsilon, \alpha, \alpha, \alpha, \alpha, \alpha, \dots\}}$$

$$= \frac{\{\varepsilon, \alpha, \alpha, \alpha, \alpha, \alpha, \alpha, \alpha, \dots\}}{\{\varepsilon, \alpha, \alpha, \alpha, \alpha, \dots\}}$$

$$= \frac{\{\varepsilon, \alpha, \alpha, \alpha, \alpha, \alpha, \alpha, \alpha, \dots\}}{\{\varepsilon, \alpha, \alpha, \alpha, \alpha, \dots\}}$$

$$= \frac{\{\varepsilon, \alpha, \alpha, \alpha, \alpha, \alpha, \alpha, \dots\}}{\{\varepsilon, \alpha, \alpha, \alpha, \alpha, \dots\}}$$

$$= \frac{\{\varepsilon, \alpha, \alpha, \alpha, \alpha, \alpha, \dots\}}{\{\varepsilon, \alpha, \alpha, \alpha, \alpha, \dots\}}$$

$$= \frac{\{\varepsilon, \alpha, \alpha, \alpha, \alpha, \alpha, \dots\}}{\{\varepsilon, \alpha, \alpha, \alpha, \alpha, \dots\}}$$

$$= \frac{\{\varepsilon, \alpha, \alpha, \alpha, \alpha, \alpha, \dots\}}{\{\varepsilon, \alpha, \alpha, \alpha, \dots\}}$$

 $\hat{\alpha}$

 $\frac{x}{a}/\alpha = \alpha$

H.W.:
$$L_{1} = ab \} \Rightarrow i) L_{1}/L_{2} = L_{2} = ab \} \Rightarrow ii) L_{2}/L_{1} = ab \}$$

$$(19) \frac{1}{2}(L) = \{\xi, \alpha, ab, abb \}$$

(21)
$$\frac{1}{3}(L) = \{\xi, 0, ab\}$$

(9)
$$\frac{1}{2}(L) = \frac{1}{2}$$
 $x = \frac{1}{2}$ x

L= (a+b)

Finite subsets

Yesult must be finite set

(35) Infinite Substitution of Regular =>

Summary

-> closure prop

Next: Revision of Regulars

Ry Exp

