Kapitel 4 Flüsse in Graphen, Teil 2

Effiziente Algorithmen, SS 2018

Professor Dr. Petra Mutzel

VO 7 am 3. Mai 2018

Petra Mutzel VO 7 am 3. Mai 2018

Zusammenfassung Algo. von Ford und Fulkerson

- Korrektheit gezeigt im Theorem "Max Flow = Min Cut"
- Algorithmus von Ford-Fulkerson (FF) ist nur pseudopolynomiell (für ganzzahlige Kapazitäten): Laufzeit $O(B\cdot (|V|+|E|))$, mit B: obere Schranke für max. ϕ , z.B. $B=\sum_{e=(Q,\cdot)}c(e)$
- Rationale Kapazitäten können zu ganzzahligen Kapazitäten skaliert werden → FF klappt!
- Für irrationale Kapazitäten terminiert FF nicht!
- Lösung: Sucht man kürzeste FVWs (z.B. Breitensuche), dann sind alle obigen Probleme gelöst und die Laufzeit ist $O(ne^2) = O(n^5)$ [unabhängig gezeigt von Dinic 1970 und Edmonds, Karp 1972]
- Seitdem: Wettrennen um den schnellsten Max Flow Algorithmus

Alternative Flussalgorithmen

$$n = |V|, e = |E|, U = \max\{c(e) \mid e \in E\}$$

Jahr	Autoren	Zeit in n,e,U	Zeit bei $e=\Omega(n^2)$
1969	Edmonds/Karp	$O(ne^2)$	$O(n^5)$
1970	Dinic	$O(n^2e)$	$O(n^4)$
1974	Karzanov	$O(n^3)$	$O(n^3)$
1977	Cherkassky	$O(n^2e^{1/2})$	$O(n^3)$
1978	Malhotra/Pramodh Kumar/Maheshwari	$O(n^3)$	$O(n^3)$
1978	Galil	$O(n^{5/3}e^{2/3})$	$O(n^3)$
1978	Galil/Naamad, Shiloach	$O(ne\log^2 n)$	$O(n^3 \log^2 n)$
1980	Sleator/Tarjan	$O(ne \log n)$	$O(n^3 \log n)$
1982	Shiloach/Vishkin	$O(n^3)$	$O(n^3)$
1983	Gabow	$O(ne \log U)$	$O(n^3 \log U)$
1984	Tarjan	$O(n^3)$	$O(n^3)$
1985	Goldberg	$O(n^3)$	$O(n^3)$
1986	Goldberg/Tarjan	$O(ne\log(n^2/e))$	$O(n^3)$
1986	Ahuja/Orlin	$O(ne + n^2 \log U)$	$O(n^3 + n^2 \log U)$
1994	King, Rao, Tarjan	$O(ne\log_{e/(n\log n)} n)$	$O(n^3 \log_{n/\log n} n)$
1998	Goldberg, Rao	$O(\min(n^{2/3}, e^{1/2})e\log(n^2/e)\log U)$	$O(n^{8/3}\log U)$

Petra Mutzel VO 7 am 3. Mai 2018

Zwei Ideen zur Beschleunigung

ab jetzt Netzwerk
$$G=(V,E,c)$$
 mit $|V|=n$ und $|E|=e$

Beobachtung 1: Ford-Fulkerson braucht

Zeit O(n+e) für einen FVW

Frage Kann man (in der Zeit) vielleicht

mehrere disjunkte FVW berechnen?

Beobachtung 2: Kürzere FVW

wären besser gewesen.

Frage Nützt es etwas, nur

kürzeste FVW

zu benutzen?

Niveaunetzwerke

Intuition: Entferne Knoten/Kanten aus Rest $_{\Phi}$, welche nicht auf kürzestem Q-S-Weg liegen können.

Definition 4.9

Betrachte (G=(V,E),c) mit Fluss Φ , Rest $_{\Phi}$, Distanzen d(v)= Länge (#Kanten) des kürzesten Q-v-Wegs mit $v\in V$.

$$\begin{aligned} & \text{F\"{u}r } 0 \leq i \leq d(S) \text{ definiere } i\text{-tes Niveau} \\ & V_i := \begin{cases} \{v \in V \mid d(v) = i\} & \text{f\"{u}r } i < d(S), \\ \{S\} & \text{f\"{u}r } i = d(S). \end{cases} \end{aligned}$$

Definiere Niveaunetzwerk $N_\Phi = (V_\Phi, E_\Phi, r_\Phi)$ durch $V_\Phi := \bigcup_{i=0}^{\infty} V_i$,

$$E_i := \{(v,w) \in V_{i-1} \times V_i \mid (v,w) \in \mathsf{Rest}_\Phi\}, \ E_\Phi := \bigcup_{i=1}^{d(S)} E_i, \ \mathsf{und}_\Phi := \bigcup_{i=1}^{d($$

 r_{Φ} wie in Rest_{Φ}.

klar

Niveaunetzwerk berechenbar in Zeit O(n+e)

Petra Mutzel VO 7 am 3. Mai 2018 7

Beispiel Niveaunetzwerk

Noch ein Beispiel Niveaunetzwerk

Sperrflüsse

Wir wollen "möglichst viel Fluss" auf einmal addieren ...

Definition 4.10

Sei ψ ein Fluss **im Niveaunetzwerk** zum Fluss ϕ in G. Eine Kante e heißt saturiert durch ψ , wenn $\psi(e)=r_{\phi}(e)$ gilt. Der Fluss ψ heißt Sperrfluss, wenn auf jedem Q-S-Weg in N_{Φ} mindestens eine saturierte Kante liegt.

Analog zu FVW sieht man ein:

- Ein Sperrfluss ψ kann zum Fluss ϕ "addiert" werden.
- Dabei wird zu Vorwärtskanten addiert und von Rückwärtskanten subtrahiert.
- Das Resultat ist ein Fluss ϕ' mit $w(\phi') > w(\phi)$.

Idee der Sperrflussberechnung: Iterierte Tiefensuche

- Beginne mit dem leeren Sperrfluss Ψ
- Wiederhole solange, bis Q in N_{Φ} keine ausgehende Kante mehr besitzt:
 - DFS(Q) im Niveaunetzwerk N_{Φ} , wobei Knoten, die als Sackgasse identifiziert werden, aus N_{Φ} entfernt werden.
 - Sobald ein Q-S-Weg gefunden wird, wird die kleinste Restkapazität entlang des Weges zu Ψ hinzuaddiert. Dabei werden saturierte Kanten aus N_{Φ} entfernt.

Petra Mutzel VO 7 am 3. Mai 2018

Sperrflussberechnung

Algorithmus 4.11 (Sperrflussberechnung)

- 1. $\Psi := 0$
- 2. i := 0; $v_i := Q \{* i: aktuelles Niveau, <math>v_i: aktueller Knoten *\}$
- 3. While $v_i \neq S$
- 4. If $\exists (v_i, w) \in N_{\Phi}$
- 5. Then i := i + 1; $v_i := w$
- 6. Else
- 7. Entferne v_i und Kanten (\cdot, v_i) aus N_{Φ} .
- 8. i := i 1; If i < 0 Then Exit mit Ausgabe Ψ .
- 9. $r := \min\{r_{\Phi}((v_j, v_{j+1})) \Psi((v_j, v_{j+1})) \mid 0 \le j < i\}$
- 10. Für alle $j \in \{0, 1, \dots, i-1\}$
- 11. $\Psi((v_j, v_{j+1})) := \Psi((v_j, v_{j+1})) + r$
- 12. If $\Psi((v_j, v_{j+1})) = r_{\Phi}((v_j, v_{j+1}))$ Then Entferne (v_i, v_{j+1}) aus N_{Φ} .
- 13. Weiter bei 2.

Zur Sperrflussberechnung

Lemma 4.12

Algorithmus 4.11 berechnet in Zeit $O(n \cdot e)$ einen Sperrfluss.

Beweis.

zur Korrektheit

- Algorithmus terminiert ⇔ ∄ Q-S-Weg
- entfernte Knoten/Kanten saturiert oder in Sackgassen
- also am Ende Sperrfluss

zur Laufzeit

- bei jeder (erfolgreichen und erfolglosen) Pfadkonstruktion ≥ 1 Kante entfernt
- $\leq e$ Pfadkonstruktionen
- je Pfadkonstruktion Zeit O(Pfadlänge)
- Länge jedes Q-S-Weges $\leq n$
- also insgesamt Zeit $O(n \cdot e)$

Der Algorithmus von Dinic

Algorithmus 4.13 (Algorithmus von Dinic)

- 1. $\Phi := 0$
- 2. Repeat
- 3. Berechne Niveaunetzwerk N_{Φ} .
- 4. Berechne Sperrfluss Ψ mit Algorithmus 4.11.
- 5. " $\Phi := \Phi + \Psi$ "
- 6. Until $\Psi = 0$
- 7. Ausgabe Φ

Theorem 4.14

Der Algorithmus von Dinic berechnet in Zeit $O(n^2 \cdot e) = O(n^4)$ einen maximalen Fluss.

Zum Algorithmus von Dinic

Beobachtung Erinnerung Korrektheit und Optimalität offensichtlich $\sqrt{}$ Sperrflussberechnung in Zeit $O(n \cdot e)$

Distanzen in Graphen

Betrachte gerichteten Graphen G=(V,E), Knoten $Q\in V$. Für $v\in V$ bezeichnet d(v) die Länge (=Anzahl Kanten) eines kürzesten Weges von Q nach v.

Lemma 4.8

Gegeben $v,w\in V$, Distanzen d, nach Einfügen von (v,w): Distanzen d^+ , nach Entfernen von (v,w): Distanzen d^- .

- $(d(v) \ge d(w) 1) \Rightarrow (\forall u \in V : d^+(u) = d(u))$
- **2** $\forall u \in V \text{ mit } d(u) \leq d(w) 1 \colon d^{-}(u) = d(u)$
- $\exists \forall u \in V \colon d^-(u) \ge d(u)$

Beweis von Lemma 4.8

```
Erinnerung d^+: nach Einfügen von (v,w), d^-: nach Entfernen von (v,w)
```

- 1 zu zeigen $(d(v) \geq d(w) 1) \Rightarrow (\forall u \in V : d^+(u) = d(u))$ trivial $\forall u \in V : d^+(u) \leq d(u)$ klar $(d^+(u) < d(u)) \Rightarrow (v, w)$ liegt auf kürzestem Weg Beobachtung $d(w) = d^+(w)$ weil Länge des Weges $(Q \leadsto v \to w) = d(v) + 1 \geq d(w)$ also Kante (v, w) keine Abkürzung \checkmark
- 2 zu zeigen $\forall u \in V \text{ mit } d(u) \leq d(w) 1 \colon d^-(u) = d(u)$ Voraussetzung (v,w) existiert in G also $d(w) \leq d(v) + 1 \Leftrightarrow d(w) 1 \leq d(v)$ wir haben $d(u) \leq d(w) 1 \leq d(v)$ also (v,w) auf kürzestem Weg zu u nicht vorhanden \checkmark
- 3 $\forall u \in V : d^-(u) \geq d(u)$: trivial

Zum Algorithmus von Dinic

Beobachtung Korrektheit und Optimalität offensichtlich \checkmark Erinnerung Sperrflussberechnung in Zeit $O(n \cdot e)$

Also genügt zu zeigen O(n) Sperrflussberechnungen

Wir zeigen: kürzeste Q-S-Wege werden in jeder Runde länger Da Weglänge $\leq n \Rightarrow O(n)$ Sperrflussberechnungen

Betrachte dazu Fluss Φ und Nachfolger $\Phi' = \Phi + \Psi$ mit $\Psi \neq 0$ und Rest $_{\Phi'}$

Annahme: P ist kürzester Q-S-Weg in $\mathsf{Rest}_{\Phi'}$ und ist nicht länger als die kürzesten Wege in Rest_{Φ} .

Wir führen diese Annahme zum Widerspruch

Beweis zur Laufzeit des Algorithmus von Dinic

wir zeigen: kürzeste Q-S-Wege werden in jeder Runde länger

Betrachte dazu Fluss Φ und Nachfolger $\Phi' = \Phi + \Psi$ mit $\Psi \neq 0$ und Rest $_{\Phi'}$

Annahme: P ist kürzester Q-S-Weg in $\mathrm{Rest}_{\Phi'}$ und ist nicht länger als die kürzesten Wege in Rest_{Φ} .

Welche Möglichkeiten gibt es (bezogen auf P)?

- 1. Fall P benutzt nur Kanten in Rest Φ
- \Rightarrow alle kürzesten Q-S-Wege in Rest $_{\Phi}$ waren saturiert
- \Rightarrow diese sind also nicht mehr in Rest $_{\Phi'}$ vorhanden
- $\Rightarrow P$ muss also echt länger sein \Rightarrow Widerspruch \checkmark
- 2. Fall Es gibt Kante in P, die in Rest $_{\Phi}$ nicht vorhanden ist

klar

also

2. Fall Es gibt Kante in P, die in Rest $_{\Phi}$ nicht vorhanden ist

```
Betrachte e = (v, u) in P, e in Rest_{\Phi}, e nicht in Rest_{\Phi}
Entweder (v,u) \in E, also in Rest<sub>\Phi</sub> Rückwärtskante (u,v) benutzt
          (v,u) \notin E, also in \mathsf{Rest}_\Phi "normale Kante" (u,v) benutzt
       in N_{\Phi} nur Kanten (u,v) mit d(v)=d(u)+1
klar
also
       alle neu eingefügten Kanten in Rest<sub>⊕</sub>, erfüllen
       die Voraussetzung zu Lemma 4.8(1)
also
       Wege werden nicht kürzer
klar
       Wege werden durch entfernen saturierter Kanten
       höchstens länger (Lemma 4.8(3))
```

Widerspruch ✓

P muss mind. 2 länger sein als kürz. Q-S-Wege in Rest_{Φ} \Rightarrow

so ein Weg ist: $P = Q \leadsto v \to u \leadsto S$

Beispiel Algorithmus von Dinic

Übersicht – Flussalgorithmen

Algorithmus von Ford und Fulkerson

- berechnet FVW im Restgraphen
- Laufzeit $O(B \cdot (n+e))$
- Variante: berechne kürzeste FVW mit Breitensuche: Laufzeit $O(n \cdot e^2) = O(n^5)$

Algorithmus von Dinic

- neue Idee: Niveaunetzwerk, Sperrflüsse
- Laufzeit $O(n^2 \cdot e) = O(n^4)$
 - ullet O(n) Sperrfluss-Berechnungen
 - $O(n \cdot e)$ für eine Sperrflussberechnung ... ziemlich lang!

Algorithmus von Malhotra, Pramodh Kumar & Maheshwari

Zeit $O(n \cdot e)$ für nur eine Sperrflussberechnung ist ziemlich lang.

Kann man hier Zeit sparen?

Idee neue Sperrflusskonstruktion: Knoten-basiert

Zentraler Begriff Potenzial pot(v) eines Knotens v: im Niveaunetzwerk N_ϕ bei aktuellem Fluss ψ (zum Fluss ϕ und Restgraphen Rest $_\phi$)

Intuition $pot(v) \approx$ wieviel Fluss höchstens durch v zusätzlich kann

$$\mathsf{pot}(v) := \begin{cases} \min\left\{\sum_{e=(v,\cdot)} r_\phi(e) - \psi(e), \sum_{e=(\cdot,v)} r_\phi(e) - \psi(e)\right\} & \text{für } v \notin \{Q,S\} \\ \sum_{e=(Q,\cdot)} r_\phi(e) - \psi(e) & \text{für } v = Q \\ \sum_{e=(\cdot,S)} r_\phi(e) - \psi(e) & \text{für } v = S \end{cases}$$

Beispiel Potenzial

Idee zur Sperrflussberechnung

Intuition $\operatorname{pot}(v) \approx \operatorname{wieviel}$ Fluss höchstens durch v zusätzlich kann Idee

- Wähle den Knoten v mit minimalem pot(v).
- Treibe Fluss pot(v) bis zur Senke S. (Forward)
- Treibe Fluss pot(v) zurück bis zur Quelle Q. (Backward)

Wir berechnen Sperrflüsse im Niveaunetzwerk → azyklisch!

Fluss $v \leadsto S$

Forward(v)

- 1. Für alle $w \in V$ Überschuss[w] := 0
- 2. Überschuss[v] := pot(v)
- 3. $Qu := \emptyset$; Qu. Enqueue(v) {* Qu: Knoten mit Überschuss > 0 *}
- 4. While $Qu \neq \emptyset$
- 5. $u := Qu.\mathsf{Dequeue}() \{* u: aktiver Knoten *\}$
- 6. Für alle $e=(u,w)\in E_\phi$ {* und solange Überschuss[u]>0 *}
- 7. $\delta := \min\{r_{\Phi}(e) \Psi(e), \ddot{\mathsf{U}}\mathsf{berschuss}[u]\}$
- 8. $\Psi(e) := \Psi(e) + \delta$
- 9. Update pot(u), pot(w)
- 10. If Überschuss[w] = 0 und $\delta > 0$ und $w \neq S$ Then Qu.Enqueue(w)
- 11. Uberschuss $[w] := \text{Uberschuss}[w] + \delta;$ Überschuss $[u] := \text{Überschuss}[u] \delta$
- 12. If $\Psi(e) = r_{\Phi}(e)$ Then Entferne e aus E_{ϕ}
- 13. If Überschuss[u] = 0 Then break

Fluss $v \leadsto Q$

$\mathsf{Backward}(v, p_v)$

- 1. Für alle $w \in V$ Überschuss[w] := 0
- 2. Überschuss $[v] := p_v$
- 3. $Qu := \emptyset$; Qu. Enqueue(v) {* Qu: Knoten mit Überschuss > 0 *}
- 4. While $Qu \neq \emptyset$
- 5. $u := Qu.\mathsf{Dequeue}() \ \{*\ u: \ \mathsf{aktiver} \ \mathsf{Knoten}\ *\}$
- 6. Für alle $e = (w, u) \in E_{\phi}$ {* und solange Überschuss[u] > 0 *}
- 7. $\delta := \min\{r_{\Phi}(e) \Psi(e), \ddot{\mathsf{U}}\mathsf{berschuss}[u]\}$
- 8. $\Psi(e) := \Psi(e) + \delta$
- 9. Update pot(u), pot(w)
- 10. If $\ddot{\text{U}}\text{berschuss}[w]=0$ und $\delta>0$ und $w\neq Q$ Then Qu.Enqueue(w)
- 11. Uberschuss $[w] := \text{Uberschuss}[w] + \delta;$ Überschuss $[u] := \text{Überschuss}[u] \delta$
- 12. If $\Psi(e) = r_{\Phi}(e)$ Then Entferne e aus E_{ϕ}
- 13. If Überschuss[u] = 0 Then break

Schnellere Sperrflussberechnung

Algorithmus 4.16 (Forward-Backward-Propagation)

- 1. $\Psi := 0$
- 2. Für alle $v \in V_{\phi}$ berechne $\mathsf{pot}(v)$
- 3. While $\{Q, S\} \subseteq V_{\phi}$
- 4. Wähle $v \in V_{\phi}$ mit minimalem Potenzial; $p_v := \mathsf{pot}(v)$
- 5. If $p_v > 0$ Then Forward(v); Backward (v, p_v)
- 6. Entferne v aus V_{ϕ} und Kanten (\cdot,v) , (v,\cdot) aus E_{ϕ} und update $\mathsf{pot}(u) \ \forall u \ \mathsf{mit} \ (u,v) \in E_{\phi} \ \mathsf{oder} \ (v,u) \in E_{\phi}$

Lemma 4.17

Algorithmus 4.16 berechnet in Zeit $O(n^2)$ einen Sperrfluss in N_{Φ} .

Petra Mutzel VO 7 am 3. Mai 2018

Korrektheit von Forward-Backward-Propagation

Beobachtung $p_v = \min \left\{ \mathsf{pot}(v) \mid v \in V_\phi \right\}$

also gesamter Überschuss/Potenzial als Fluss zur Senke und Quelle transportierbar

Beobachtung nachher alle eingehenden oder

alle ausgehenden Kanten von \boldsymbol{v} saturiert

also v entfernbar

Beobachtung wenn Q oder S so saturiert \to Sperrfluss \checkmark

schwieriger Laufzeitschranke $O(n^2)$

Laufzeit Sperrflussberechnung

```
Initialisierung in Zeit O(n+e) = O(n^2)
                 Potenzial wird in Forward/Backward korrigiert
Beobachtung
                p_v = \min \left\{ \mathsf{pot}(v) \mid v \in V_\phi \right\} \text{ in } O(n)
Beobachtung
                 da O(n) Iterationen \Rightarrow O(n^2)
Nun
       Analyse Forward (Backward analog):
                 nur w mit Überschuss(w) = 0 (\delta > 0)
Beobachtung
                 kommen in die Queue (Zeile 10)
               nur für u selbst sinkt Überschuss (Zeile 11)
Beobachtung
       kein Knoten in einem Durchlauf mehrfach in Queue
                                       (da Niveaunetzwerk azyklisch)
       je Forward-Durchlauf O(n) Knoten in Queue \Rightarrow O(n^2)
es fehlt noch Schleife über Kanten in Forward
```

Forward: Die innere Schleife

Beobachtung für jede betrachtete Kante e=(u,w) gilt: entweder wird e saturiert oder Schleife endet

Aufteilung Laufzeit auf sat. und nicht-sat. Kanten

klar saturierte Kanten werden entfernt

also insgesamt Laufzeit O(e) für saturierte Kanten

fehlen noch nicht-saturierte Kanten:

Beobachtung pro Knoten u nur eine nicht-saturierte Kante

da anschließend Überschuss[u]=0

da $\leq n$ Forward-Aufrufe: insgesamt Laufzeit $O(n^2)$ für nicht-saturierte Kanten

zusammen Laufzeit $O(n^2 + e) = O(n^2)$

Algo. von Malhotra, Pramodh Kumar & Maheshwari

Algorithmus 4.18 (Algorithmus von Malhotra, Pramodh Kumar & Maheshwari)

- 1. $\Phi := 0$
- 2. Repeat
- 3. Berechne Niveaunetzwerk N_{Φ} .
- 4. Berechne Sperrfluss Ψ mit Algorithmus 4.16.
- 5. $\Psi := \Phi + \Psi''$
- 6. Until $\Psi = 0$
- 7. Ausgabe Φ

Beobachtung wie Dinic mit anderer Sperrflussberechung

Über den Algorithmus von Malhotra et. al

Theorem 4.19

Der Algorithmus von Malhotra, Pramodh Kumar und Maheshwari berechnet einen maximalen Fluss in Zeit $O(n^3)$.

Korrektheit wie bei Dinic

Anzahl Sperrflussberechnungen wie bei Dinic: O(n)

also Gesamtlaufzeit $O(n \cdot n^2) = O(n^3)$

Beispiel Algorithmus von Malhotra, Pramodh Kumar und Maheshwari

