EXERCISE 1: LINEAR REGRESSION

The data in the accompanying table relate heart rate at rest Y to kilograms body weight X.

х	90	86	67	89	81	75
у	62	45	40	55	64	53

- a. Graph these data. Does it appear that there is a linear relation-ship between body weight and heart rate at rest?
- b. Compute *a*, *b* and write the regression equation for these data. Plot the regression line on the graph from Part (a). Interpret the estimated regression coefficients.
- c. Now examine the data point (67, 40). If this data point were removed from the data set, what changes would occur in the estimates of a and b?
- d. Predict the heart rate for a particular subject weighing 88kg.
- e. Without doing the computations, for which measured X would the corresponding Y have the smallest variance? Why?
- f. What would happen if you apply a polynomial fitting $y = ax^2 + bx + c$?
- g. And computing this fitting $y = ax^3 + bx^2 + cx + d$?
- h. Calculate the operation y = 1./(y.*y) to obtain a new vector and compute a new fitting y = a * exp(-b * x)
- i. Calculate the operation x2 = x/100; y2 = 3* x2.* exp(2 * x2); and compute a new fitting

$$v = C \cdot x \cdot e^{Ax}$$

What are the values of C and A? Does it seems to C = 3 and A = 2? Why not?

IMPORTANT: Plot the results in all cases.

EXERCISE 2: POLINOMIAL FUNCTION IN MATLAB

- a. Calculate the paragraphs b), f), g), h) and i) using the following MATLAB functions:
 - polyfit: to calculate polynomial coefficients
 - polyval: to evaluate polynomials
- b. Use the function roots to find the polynomial roots in f and g exercises.

