11.6 Equations to/from circuits

Equations to circuits

An equation is one way to represent a Boolean function. Another way is using a circuit.

An equation can be converted to a circuit by converting each operation to a gate. Conversion is done first for items within parentheses. In a term like cd', NOT is converted before AND or OR. Converting behavior (like an equation) to a circuit is called **design**.

Example: Airbag enabler

Figure 11.6.1: Airbags deployed.

Cars have airbags that deploy during an accident to reduce injuries to occupants. Airbags can harm kids, and aren't needed for non-human objects. Thus, cars have sensors to help detect whether an airbag should be enabled by a large enough human being seated. In one car, a seat back sensor detects a heartbeat (h = 1). A seat bottom sensor indicates if over 60 pounds is detected (w = 1). A switch can be used to manually disable the airbags (d = 1). An output e indicates that the airbag is enabled (e = 1).

A designer specifies the system as: e = hwd' (heartbeat detected, and enabled if weight over 60, and not manually disabled).

PARTICIPATION ACTIVITY	11.6.3: Airbag example.	
	a heartbeat is detected?	Ū
Check	Show answer	
2) What is w if pounds? Check	f the sensed weight is 30 Show answer	Ū
3) What is e if	h = 1, w = 1, and d = 1?	D
Check	Show answer	
the airbag of system has hard front-e system's ou collision is o	an input to another system, deployment system. That is another input to detect a end collision (c = 1). That utput a should be 1 if a hard detected and the airbag is rite the equation for a. Show answer	
(a = 1) only 1) and the a variables h,	uation to deploy the airbag if a collision is detected (c = airbag is enabled. Use input w, d, c only (do not use e). variables alphabetically. Do entheses.	
disabled. W	ninates if the airbag is fhich is the appropriate turn on the light (o = 1)?	

Example: Aircraft lavatory sign

Airplanes typically have a lighted sign to let passengers know if at least one of several lavatories (bathrooms) is available, so that passengers can choose to stay seated until a bathroom becomes available. A designer may think about the logic as follows: If all doors are locked, the sign should be off, otherwise the sign should be on. From that thought, the designer may create an equation.

Circuits to equations

A circuit can be converted to an equation. Starting from the inputs, the process replaces gates by terms while moving towards the output, labeling gate outputs along the way. Converting a circuit to behavior (like an equation) is called **analysis**.

A circuit whose output value is determined solely by the present *combination* of input values is called a *combinational circuit*. A combinational circuit is also called *combinational logic*.

A circuit whose output values may depend on the past sequence of input values, and not just the present input values, is called a **sequential** circuit. This material discusses sequential circuits later.

O Sequi	ential t in an elevator exce	ade			
	s, sound an alarm.	eus			Ų
O Sequ					
released, tu	mode button is pres n phone ringer off u button is pressed a	ıntil the			
O Comb					
4) Turn faucet	on while motion is o	detected.			
O Comb	oinational				
O Sequ	ential				
	e door button is pres on until garage door				
O Comb					
O Sequ	ential				
CHALLENGE					
ACTIVITY	1.6.1: Convert the eq	quation to a circuit.			
Convert the eq	uation provided to a	circuit.			
Create w Toggle in	to workspace: Click re: Drag from a pin. put between 0 and 1 te or wire: Select ite	I: Click on input.			
Create w Toggle in Delete ga	re: Drag from a pin. put between 0 and 1	I: Click on input.			
Create w Toggle in	re: Drag from a pin. put between 0 and 1	I: Click on input.			
Create w Toggle in Delete ga	re: Drag from a pin. put between 0 and 1	I: Click on input.			1 0
Create w Toggle in Delete ga	re: Drag from a pin. put between 0 and 1	I: Click on input.			
Create w Toggle in Delete ga	re: Drag from a pin. put between 0 and 1	I: Click on input.		n(s)*.	toted item a
Create w Toggle in Delete ga	re: Drag from a pin. put between 0 and 1	I: Click on input.		n(s)*.	1 2 2 3 4
Create w Toggle in Delete ga	re: Drag from a pin. put between 0 and 1	I: Click on input.		Delete sele	1 2 cotted item a 3 4 4 5 6
Create w Toggle in Delete ga	re: Drag from a pin. put between 0 and 1	I: Click on input.		n(s)*. Delete sele	1 2 2 3 4 4 5 6 6
Create w Toggle in Delete ga	re: Drag from a pin. put between 0 and 1	I: Click on input.	te selected item	Delete sele	1 2 2 School Ren a 5 6 6 7 7
Create w Toggle in Delete ga	re: Drag from a pin. put between 0 and 1	I: Click on input.	te selected item	Delete sele	1 2 2 3 4 4 5 6 5 7
Create w Toggle in Delete ga	re: Drag from a pin. put between 0 and 1	I: Click on input.	te selected item	Delete sele	cted item a s s o 6 o 7
Create w Toggle in Delete ga	re: Drag from a pin. put between 0 and 1	I: Click on input.	te selected item	Delete sele	cted item 3 \$ \$ \$ 6 \$ \$ 7
Create w Toggle in Delete ga	re: Drag from a pin. put between 0 and 1	I: Click on input.	te selected item	Delete sele	cited item 3 3 4 5 5 5 7
Create w Toggle in Delete ga Start a 1 0 0 c 1 0 0	re: Drag from a pin. put between 0 and 1 te or wire: Select iter	I: Click on input. m then click "Delet	te selected item	Delete sele	7

Provide feedback on this section