配布資料5:繰り返しゲーム

(参考文献 12「ゲーム理論」(岡田章著,有斐閣) 205 - 232 ページ参照)

1. 繰り返しゲーム

- (a) 成分ゲーム (n 人戦略形ゲーム)
 - $G = (N = \{1, ..., n\}, \{X^i\}_{i \in N}, \{f^i\}_{i \in N})$
 - N:プレイヤーの集合
 - Xⁱ: プレイヤー i の戦略の集合
 - $-f^i:X=X^1 imes\ldots imes X^n o \Re$ プレイヤー i の利得関数
 - 注意

$$* X^{-i} = X^1 \times \ldots \times X^{i-1} \times X^{i+1} \times \ldots \times X^n$$

*
$$x^{-i} = (x^1, \dots, x^{i-1}, x^{i+1}, \dots, x^n) \in X^{-i}$$

• 成分ゲームにおけるミニマックス行動 成分ゲーム $G=(N,\{X^i\}_{i\in N},\{f^i\}_{i\in N})$ において,

$$max_{x^i}f^i(x^i, \hat{x}^{-i}) = min_{x^{-i}}(max_{x^i}f^i(x^i, x^{-i}))$$

を満たす i 以外のプレイヤーの行動の組 $\hat{x}^{-i}=(\hat{x}^1,...,\hat{x}^{i-1},\hat{x}^{i+1},...,\hat{x}^n)$ を (i 以 外のプレイヤーの) i に対する <u>ミニマックス行動</u> という. $\max_{x^i}f^i(x^i,\hat{x}^{-i})$ を i の ミニマックス利得 といい , v^i と書く. $v=(v^1,...,v^n)$ を ミニマックス点 という.

- 成分ゲームにおける個人合理的行動 行動の組 $x=(x^1,...,x^n)$ が 個人合理的 $\leftrightarrow f^i(x) \geq v^i \ \forall i=1,...,n$ 行動の組 $x=(x^1,...,x^n)$ が 強く個人合理的 $\leftrightarrow f^i(x)>v^i \ \forall i=1,...,n$
- <u>命題</u>: G のナッシュ均衡を $e=(e^1,...,e^n)\in X$ とすると , $f^i(e)\geq v^i \ \forall i=1,...,n$ である .
- (b) 有限回繰り返しゲーム G^T
 - 成分ゲーム G を有限回 (T回)繰り返す.各プレイヤーは過去のプレイを完全に 知る.
 - プレイヤーの集合 N
 - 各プレイヤー i の戦略
 - -t-1 期目までの各プレイヤーの選択の結果をすべて知った上で,t 期目の選択を行う.
 - $-X_{t-1}=X imes... imes X$ (t-1個) $X_0=\{\emptyset\}$
 - $-h_{t-1}=(x_1,...,x_{t-1})\in X_{t-1}:t-1$ 期目までの 履歴
 - i の t 期目の選択: $s_t^i: X_{t-1} \to X^i$
 - i の(純粋)戦略 $s^i = (s_t^i)_{t=1}^T$
 - -i の戦略の全体 X^{Ti} , 戦略の組 $(s^1, ..., s^n)$ の全体 $X^T = X^{T1} \times ... \times X^{Tn}$
 - 各プレイヤー *i* の利得
 - 戦略の組 $s=(s^1,...,s^n)$ によって,各期の選択の組が以下のように定まる

- * $x_1(s) = (s_1^1(\emptyset), ..., s_1^n(\emptyset))$
- * $x_2(s) = (s_2^1(x_1(s)), ..., s_2^n(x_1(s))$
- * $x_t(s) = (s_t^1(x_1(s), ..., x_{t-1}(s)), ..., s_t^n(x_1(s), ..., x_{t-1}(s))), t = 3, 4, ...$
- 選択の組の列 $\,x(s)=(x_t(s))_{t=1}^T\,$ における各期の利得の割引因子 $\,\delta\,$ による 割引利得和

$$f^{Ti}(s) = \sum_{t=1}^{T} \delta^{t-1} f^{i}(x_{t}(s))$$

- (平均利得 $\frac{1}{T} \sum_{t=1}^{T} f^{i}(x_{t}(s))$)
- 成分ゲームGの割引因子 δ を持つT回繰り返しゲーム $G^T(\delta)=(N,\{X^{Ti}\}_{i\in N},\{f^{T^i}\}_{i\in N})$
- <u>定理</u>:成分ゲームが唯一つのナッシュ均衡 x^* を持つとする.このとき,T 回繰り返しゲームの部分ゲーム完全均衡 s^* は唯一つ存在し, $x(s^*)=(x^*,...,x^*)$ である.
- (c) 無限回繰り返しゲーム G^{∞}
 - i の (純粋) 戦略 $s^i = (s_t^i)_{t=1}^{\infty}$
 - 選択の組の列 $x(s)=(x_t(s))_{t=1}^\infty$ における各期の利得の割引因子 δ $(0<\delta<1)$ による割引利得和 $\bar{f}^i(s)=\sum_{t=1}^\infty \delta^{t-1}f^i(x_t(s))$
 - 正規化利得 (平均利得) $(1-\delta)\sum_{t=1}^{\infty}\delta^{t-1}f^i(x_t(s))$
- (d) フォーク定理
 - ・ 無限回繰り返しゲームのナッシュ均衡 $G^{\infty}(\delta)$ において,戦略の組 $s^*=(s^{*1},...,s^{*n})\in \bar{X}$ が ナッシュ均衡 \leftrightarrow すべての i=1,...,n に対して $\bar{f}^i(s^*)>\bar{f}^i(s,s^{*-i})$ $\forall s^i\in \bar{X}^i$
 - 定理 (フォーク定理):成分ゲーム G の強く個人合理的な任意の行動の組 $x=(x^1,...,x^n)$ をとる.このとき,

$$\delta \geq \frac{\max_{y^{i}} f^{i}(y^{i}, x^{-i}) - f^{i}(x)}{\max_{y^{i}} f^{i}(y^{i}, x^{-i}) - v^{i}} \ \forall i = 1, ..., n$$

が成り立つならば,繰り返しゲーム $G^\infty(\delta)$ のナッシュ均衡 $s^*=(s^{*1},...,s^{*n})$ が存在して $x(s^*)=(x,x,...)$ が成り立つ.