AutoML: Neural Architecture Search (NAS)

Part 2: One-shot Neural Architecture Search

Bernd Bischl <u>Frank Hutter</u> Lars Kotthoff Marius Lindauer Joaquin Vanschoren

Outline

- The One-Shot Model
- 2 DARTS: Differentiable Architecture Search
- 3 NASLib: A Modular and Extensible NAS Library
- 4 Practical Recommendations for NAS and HPO

AutoML: Neural Architecture Search (NAS) The One-Shot Model

Bernd Bischl <u>Frank Hutter</u> Lars Kotthoff Marius Lindauer Joaquin Vanschoren

One-shot models: convolutional neural fabrics [Saxena and Verbeek, 2017]

- A one-shot model is a big model that has all architectures in a search space as submodels
 - ► This allows weights sharing across architectures
 - One only needs to train the single one-shot model, and implicitly trains an exponential number of individual architectures
- The first type of one-shot models: convolutional neural fabrics

One-shot models for cell search spaces

- Directed acyclic multigraph to capture all (exponentially many) cell architectures
 - ► The nodes represent tensors
 - ► The edges represent computations (e.g., 3x3 conv, 5x5 conv, max pool, ...)
 - ► The results of operations on multiple edges between two nodes are combined (addition/concatenation)
- Individual architectures are subgraphs of this multigraph
 - ► Weights for the operation on an edge are shared across all (exponentially many) architectures that have that edge

Training the one-shot model – standard SGD [Saxena and Verbeek, 2017]

- One-shot model is an acyclic graph; thus, backpropagation applies
 - Simplest method: standard training with SGD
 - ► This implicitly trains an exponential number of architectures
- Potential issue: co-adaptation of weights
 - Weights are implicitly optimized to work well on average across all architectures
 - ▶ They are not optimized specifically for the top-performing architecture

Training the one-shot model – DropPath [Bender et al., 2018]

- To avoid coadaptation of weights, we can use DropPath, a technique analogous to Dropout [Srivastava et al., 2014]:
 - At each mini-batch iteration: for each operation connecting 2 nodes, zero it out with probability p
 - ScheduledDropPath: starts with p=0 and increases p linearly to p_{\max} at the end of training

One-shot model

Architecture for batch 1

Architecture for batch 2

Training the one-shot model – Sampling

- At each mini-batch iteration during the training of the one-shot model sample a single architecture from the search space
 - Random Search with Weight Sharing [Li and Talwalkar, 2020] → sample from uniform distribution
 - ENAS [Pham et al., 2018] → sample from the learned policy of a RNN controller
- Update the parameters of the one-shot model corresponding to only that architecture

One-shot model

Architecture for batch 1

Architecture for batch 2

How to utilize the trained one-shot model?

- After training the one-shot model we have to select the best individual architecture from it
- There are multiple ways one can approach this. Some of these are:
 - 1. Sample uniformly at random M architectures and rank them based on their validation error using the one-shot model parameters
 - 1b. (Optional) Select top K (K < M) and retrain them from scratch for a couple of epochs
 - 2. Return the top performing architecture to retrain from scratch for longer
- Pitfall: the correlation between architectures evaluated with the one-shot weights and retrained from scratch (stand-alone models) should be high
- If not, selecting the best architecture based on the one-shot weights is sub-optimal.

From [Bender et al., 2018]

Questions to Answer for Yourself / Discuss with Friends

• Repetition:

How are the weights shared in the one-shot model?

• Repetition:

What is the difference between Random Search with Weight Sharing and ENAS?

Discussion:

What migth be some downsides of using the one-shot model for NAS?

Outline

- The One-Shot Mode
- 2 DARTS: Differentiable Architecture Search
- 3 NASLib: A Modular and Extensible NAS Library
- 4 Practical Recommendations for NAS and HPO

AutoML: Neural Architecture Search (NAS) DARTS: Differentiable Architecture Search

Bernd Bischl <u>Frank Hutter</u> Lars Kotthoff Marius Lindauer Joaquin Vanschoren

DARTS: Differentiable Architecture Search [Liu et al, 2018]

ullet Use one-shot model with continuous architecture weight lpha for each operator

$$x^{(j)} = \sum_{i < j} \hat{o}^{(i,j)}(x^{(i)}) = \sum_{i < j} \sum_{o \in \mathcal{O}} \frac{\exp(\alpha_o^{(i,j)})}{\sum_{o' \in \mathcal{O}} \exp(\alpha_{o'}^{(i,j)})} o(x^{(i)})$$

- \bullet By optimizing the architecture weights $\alpha,$ DARTS assigns importance to each operation
 - $\,\blacktriangleright\,$ Since the α are continuous, we can optimize them with gradient descent
- In the end, DARTS discretizes to obtain a single architecture (c)

DARTS: Architecture Optimization

• The optimization problem (a \rightarrow b) is a bi-level optimization problem:

$$\begin{aligned} \min_{\alpha} \mathcal{L}_{\mathsf{val}}(w^*(\alpha), \alpha) \\ s.t. \ w^*(\alpha) \ \in \ \operatorname{\mathsf{argmin}}_w \mathcal{L}_{\mathsf{train}}(w, \alpha) \end{aligned}$$

 \bullet This is solved using alternating SGD steps on architectural parameters α and weights w

Algorithm: DARTS 1st order

while not converged do

Update one-shot weights \mathbf{w} by $\nabla_{\mathbf{w}} \mathcal{L}_{train}(\mathbf{w}, \alpha)$

Update architectural parameters α by $\nabla_{\alpha}\mathcal{L}_{valid}(\mathbf{w}, \alpha)$

return $\arg\max_{o\in\mathcal{O}}\alpha_o^{(i,j)}$ for each edge (i,j)

• Note: there is no theory showing that this process converges

Strong performance on some benchmarks

- E.g., original CNN search space
 - 8 operations on each MixedOp
 - ▶ 28 MixedOps in total
 - $ightharpoonup > 10^{23}$ possible architectures
- Performance
 - ightharpoonup < 3% error on CIFAR-10 in less than 1 GPU day of search

Figure 4: Normal cell learned on CIFAR-10.

Figure 5: Reduction cell learned on CIFAR-10.

Issues – Non-robust behaviour

- \bullet DARTS is very sensitive w.r.t. its own hyperparameters (e.g. one-shot learning rate, L_2 regularization, etc.)
 - Tuning these hyperparameters for every new task/search space is computationally expensive
 - DARTS may return degenerate architectures, e.g., cells composed with only skip connections

- RobustDARTS [Zela et al, 2020] tracks the curvature of the validation loss and stops the search early based on that
- SmoothDARTS [Chen and Hsieh, 2020] applies random perturbation and adversarial training to avoid bad regions

Issues – Memory constraints

- DARTS keeps the entire one-shot model in memory, together with its computed tensors
 - This constrains the search space size and the fidelity used to train the one-shot model
 - Impossible to run on large datasets as ImageNet

A lot of research aims to fix this issue:

- GDAS [Dong et al, 2019] samples from a Gumbel Softmax distribution to keep only a single architecture in memory
- ProxylessNAS [Cai et al, 2019] computes approximate gradients on α keeping only 2 edges between two nodes in memory at a time
- PC-DARTS [Xu et al, 2020] performs the search on a subset of the channels in the one-shot model

Questions to Answer for Yourself / Discuss with Friends

Repetition:

What is the main difference between DARTS and the other one-shot NAS methods we saw before?

• Repetition:

How does DARTS optimize the architectural weights and one-shot weights?

Repetition:

What are DARTS' main issues and how can they be fixed?

• Discussion:

RobustDARTS stops the architecture optimization early, before the curvature of the validation loss becomes high. Why do you think this works?
[Hint: think about the discretization step after the DARTS search.]

Outline

- 1 The One-Shot Mode
- 2 DARTS: Differentiable Architecture Search
- 3 NASLib: A Modular and Extensible NAS Library
- 4 Practical Recommendations for NAS and HPO

AutoML: Neural Architecture Search (NAS) NASLib: A Modular and Extensible NAS Library

Bernd Bischl <u>Frank Hutter</u> Lars Kotthoff Marius Lindauer Joaquin Vanschoren

Motivation for NASLib [Zela et al., 2020]

NASLib is a framework for easily implementing different NAS methods, aiming to:

- Allow fair comparisons without confounding factors, which could be due to
 - Different codebases
 - Different search and evaluation pipelines
 - Different hyperparameter settings
 - Other confounding factors, e.g., library versions, GPU types, etc.
- Modularize different components of NAS optimizers to allow combining them
- Offer researchers a convenient way of prototyping new NAS methods
- Offer users reliable implementations of NAS methods
 - ► Facilitate the use of NAS for new search spaces
 - Develop a robust true AutoML framework

NASLib building blocks: Search Spaces, Optimizers, Evaluators

- NASLib implements a broad range of NAS optimizers
 - ▶ Blackbox NAS methods, e.g., Regularized Evolution
 - One-shot NAS methods, e.g., DARTS
- The optimizers are modularized
 - ▶ This allows to switch from, e.g., DARTS to GDAS or PC-DARTS by just one method call
- The evaluators are agnostic to the origin of an architecture
 - ▶ The final architecture is run using exactly the same object to evaluate on the test set
- NASLib's main building block is the graph object represented as a NetworkX ¹ graph
 - Easily manipulate the graph by adding/removing nodes/edges
 - Hide complexity of dealing with the PyTorch computational graph
 - Easy high-level way of creating complex structures, e.g., hierarchical search spaces

¹https://networkx.github.io/

NASLib building blocks: Search Spaces, Optimizers, Evaluators

- The optimizers are agnostic to the search space they are running on
 - ▶ This facilitates their use for new types of search spaces
- An optimizer takes the search space as a NetworkX object and builds the PyTorch computational graph

- Depending on the optimizer, each operation choice in the NetworkX object becomes:
 - a MixedOp for one-shot NAS optimizers, e.g. DARTS
 - a CategoricalOp for black-box optimizers, e.g. Regularized Evolution

NASLib: Overview

Tabular benchmarks for one-shot NAS

- NAS-Bench-101 [Ying et al. 2019] is not directly compatible with one-shot NAS methods
 - ▶ Mainly due to the constraint of at most 9 edges in the cell
- NAS-Bench-1Shot1 [Zela et al. 2020]
 - 3 sub-spaces of NAS-Bench-101 that are compatible with one-shot methods
 - ★ 6240, 29160, and 363648 architectures, respectively
 - Currently the largest one-shot NAS tabular benchmark
- NAS-Bench-201 [Dong and Yang. 2020]
 - Much smaller than NAS-Bench-101 and largest NAS-Bench-1Shot1 subspace
 - ★ 15 625 architectures
 - Every architecture in the search space evaluated on 3 image classification datasets

NASLib case study: Results on NAS-Bench-201

- NAS-Bench-201 is already integrated in NASLib and we can run any one-shot optimizer on it
- We can also combine random perturbations [Chen and Hsieh, 2020] with any one-shot optimizer
- We can also evaluate black-box optimizers cheaply with a tabular benchmark

Opportunities with NASLib

Room for many interesting projects and theses

- Applications of NAS to your problem of interest, with interesting search spaces
 - NASLib is the first library that separates the NAS method from the search spaces
 - ★ Therefore, no changes are required in the NAS methods
 - * This should make new applications much easier
- Studying hierarchical search spaces in detail
- Combining different components of existing NAS methods
 - ▶ So far, it has been very hard on a code level to mix and match components
 - ▶ It ought to be possible to design the world's best NAS method by combining the right components

Room for interesting Hiwi projects

Not everything is perfect yet, we can use lots of support by great programmers

Questions to Answer for Yourself / Discuss with Friends

Repetition:

What would one have to do in order to apply the methods in NASLib to a new search space?

• Discussion:

Is there a problem of your interest that you would you like to apply the methods in NASLib to?

Discussion:

Given that NASLib's modular design allows mixing and matching components of one-shot NAS methods, which of the methods we discussed might make sense to combine?

Outline

- 1 The One-Shot Mode
- 2 DARTS: Differentiable Architecture Search
- 3 NASLib: A Modular and Extensible NAS Library
- 4 Practical Recommendations for NAS and HPO

AutoML: Neural Architecture Search (NAS) Practical Recommendations for NAS and HPO

Bernd Bischl <u>Frank Hutter</u> Lars Kotthoff Marius Lindauer Joaquin Vanschoren

Maturity of the Fields of NAS and HPO

- Hyperparameter optimization is a mature field
 - Blackbox HPO has been researched for decades; there are many software packages
 - Multi-fidelity HPO has also become quite mature
- Neural architecture search is still a very young field
 - Blackbox is quite mature, but slow
 - Multi-fidelity NAS is also quite mature and faster
 - Meta-learning + multi-fidelity NAS is fast, but is still a very young field
 - Gradient-based NAS is fast, but can have failure modes with terrible performance
 - Gradient-based NAS hasn't reached the hands-off AutoML stage yet
- NAS is mainly used to create new architectures that many others can reuse
- Given a new dataset, HPO is crucial for good performance; NAS may not be necessary
 - The biggest gains typically come from tuning key hyperparameters (learning rate, etc)
 - Reusing a previous achitecture often yields competitive results

Practical Recommendations for NAS and HPO

- Recommendations for a new dataset
 - → Always run HPO
 - \rightarrow Try NAS if you can
- How to combine NAS & HPO
 - If the compute budget suffices, optimize them jointly, e.g., using BOHB
 - + Auto-PyTorch Tabular [Zimmer, Lindauer & Hutter, 2020]
 - + Auto-RL [Runge et al, 2019]
 - Else
 - + If you have decent hyperparameters: run NAS, followed by HPO for fine-tuning [Saikat et al, 2019]
 - + If you don't have decent hyperparameters: first run HPO to get competitive

Case Study: NAS & HPO in Auto-PyTorch Tabular [Zimmer, Lindauer & Hutter, 2020]

group

- Joint Architecture Search and Hyperparameter Optimization
 - Purely using HPO techniques: very similar methods as in Auto-sklearn 2.0
 - Multi-fidelity optimization with BOHB
 - Meta-learning with task-independent recommendations
 - Ensembling of neural nets and traditional ML

	Name	Range	log	type	cond
Archi- tecture	network type	[ResNet, MLPNet]	-	cat	-
	num layers (MLP)	[1, 6]	-	int	✓
	max units (MLP)	[64, 1024]	✓	int	✓
	max dropout (MLP)	[0, 1]	-	float	✓
	num groups (Res)	[1, 5]	-	int	✓
	blocks per group (Res)	[1, 3]	-	int	✓
	max units (Res)	[32, 512]	✓	int	√
	use dropout (Res)	[F, T]	-	bool	✓
	use shake drop	[F, T]	-	bool	√
	use shake shake	[F, T]	-	bool	✓
	max dropout (Res)	[0, 1]	-	float	✓
	max shake drop (Res)	[0, 1]	-	float	√
Hyper- para- meters	batch size	[16, 512]	✓	int	-
	optimizer	[SGD, Adam]	-	cat	-
	learning rate (SGD)	[1e-4, 1e-1]	✓	float	√
	L2 reg. (SGD)	[1e-5, 1e-1]	-	float	√
	momentum	[0.1, 0.999]	-	float	✓.
	learning rate (Adam)	[1e-4, 1e-1]	✓	float	✓.
	L2 reg. (Adam)	[1e-5, 1e-1]	-	float	√
	training technique	[standard, mixup]	-	cat	-
	mixup alpha	[0, 1]	-	float	✓
	preprocessor	[none, trunc. SVD]	-	cat	-
	SVD target dim	[10, 256]	-	int	✓

	Auto-PyTorch	AutoGluon	AutoKeras	Auto-Sklearn	hyperopt-sklearn
covertype	96.86 ± 0.41	-	61.61 ± 3.52	-	
volkert	79.46 ± 0.43	68.34 ± 0.10	44.25 ± 2.38	67.32 ± 0.46	
higgs	73.01 ± 0.09	72.6 ± 0.00	71.25 ± 0.29	72.03 ± 0.33	
car	99.22 ± 0.02	97.19 ± 0.35	93.39 ± 2.82	98.42 ± 0.62	98.95 ± 0.96
mfeat-factors	99.10 ± 0.18	98.03 ± 0.23	97.73 ± 0.23	98.64 ± 0.39	97.88 ± 38.48
apsfailure	99.32 ± 0.01	99.5 ± 0.03	-	99.43 ± 0.04	-
phoneme	90.59 ± 0.13	89.62 ± 0.06	86.76 ± 0.12	89.26 ± 0.14	89.79 ± 4.54
dibert	99.04 ± 0.15	98.17 ± 0.05	96.51 ± 0.62	98.14 ± 0.47	

Case Study: NAS & HPO in Auto-DispNet

- Problem: disparity estimation
 - Estimate depth from stereo images
- Background: U-Net
 - Skip connections from similar spatial resolution to avoid loosing information
- Search space for DARTS
 - 3 cells: keeping spatial resolution, downsampling, and new upsampling cell that supports U-Net like skip connections
- Both NAS and HPO improved the state of the art [Saikat et al, 2019]:
 - ▶ End-point-error (EPE) on Sintel dataset: $2.36 \rightarrow 2.14$ (by DARTS)
 - ► Subsequent HPO: 2.14 → 1.94 (by BOHB)

Questions to Answer for Yourself / Discuss with Friends

- Repetition:
 If you want to use both HPO and NAS for your problem, how could you proceed?
- Discussion:
 Think of a problem of your particular interest. For that problem, which approach would you use to combine HPO and NAS, and why?

Further Reading

Survey on NAS: [Elsken and Metzen and Hutter, 2019]