A ctsp $\{N(t), t \geq 0\}$ is a Poisson process with rate $\lambda > 0$ if

A ctsp $\{N(t), t \geq 0\}$ is a Poisson process with rate $\lambda > 0$ if

ightharpoonup N(0) = 0

A ctsp $\{N(t), t \geq 0\}$ is a Poisson process with rate $\lambda > 0$ if

- ightharpoonup N(0) = 0
- \triangleright N(t) is a counting process with stationary and independent increments

A ctsp $\{N(t), t \geq 0\}$ is a Poisson process with rate $\lambda > 0$ if

- ightharpoonup N(0) = 0
- \triangleright N(t) is a counting process with stationary and independent increments
- \triangleright X_i , the time interval between i-1th and ith event is exponentially distributed with parameter λ .

Definition $1/2 \implies Definition 3$

Proof:

Definition $1/2 \implies Definition 3$

Proof:

▶ What is $P(X_1 > t) = ?$

Definition $1/2 \implies Definition 3$

Proof:

▶ What is $P(X_1 > t) = ?$

$$P(X_1 > t) = P(N(0, t) = 0) = e^{-\lambda t}$$

Definition $1/2 \implies Definition 3$

Proof:

▶ What is $P(X_1 > t) = ?$

$$P(X_1 > t) = P(N(0, t) = 0) = e^{-\lambda t}$$

This implies $F_{X_1}(t) = P(X_1 \le t) = 1 - e^{-\lambda t}$ and hence X_1 has exponential distribution.

Definition $1/2 \implies Definition 3$

Proof:

▶ What is $P(X_1 > t) = ?$

$$P(X_1 > t) = P(N(0, t) = 0) = e^{-\lambda t}$$

- This implies $F_{X_1}(t) = P(X_1 \le t) = 1 e^{-\lambda t}$ and hence X_1 has exponential distribution.
- What is $P(X_2 > t | X_1 = s)$?

$$P(X_2 > t | X_1 = s) = P(N(s, t + s] = 0 | X_1 = s)$$

= $P(N(s, t + s] = 0)$ (indep. increments)
= $e^{-\lambda t}$ (stat. increments)

Definition $1/2 \implies Definition 3$

Proof:

▶ What is $P(X_1 > t) = ?$

$$P(X_1 > t) = P(N(0, t) = 0) = e^{-\lambda t}$$

- This implies $F_{X_1}(t) = P(X_1 \le t) = 1 e^{-\lambda t}$ and hence X_1 has exponential distribution.
- What is $P(X_2 > t | X_1 = s)$?

$$P(X_2 > t | X_1 = s) = P(N(s, t + s] = 0 | X_1 = s)$$

= $P(N(s, t + s] = 0)$ (indep. increments)
= $e^{-\lambda t}$ (stat. increments)

ightharpoonup This implies X_2 is exponential.

Definition $1/2 \implies Definition 3$

Proof:

▶ What is $P(X_1 > t) = ?$

$$P(X_1 > t) = P(N(0, t) = 0) = e^{-\lambda t}$$

- This implies $F_{X_1}(t) = P(X_1 \le t) = 1 e^{-\lambda t}$ and hence X_1 has exponential distribution.
- What is $P(X_2 > t | X_1 = s)$?

$$P(X_2 > t | X_1 = s) = P(N(s, t + s] = 0 | X_1 = s)$$

= $P(N(s, t + s] = 0)$ (indep. increments)
= $e^{-\lambda t}$ (stat. increments)

ightharpoonup This implies X_2 is exponential. Repeating the arguments yields the lemma.

Lemma

i.i.d exponential interarrival time implies N(0,t) has Poisson distribution with rate λt .

Lemma

i.i.d exponential interarrival time implies N(0,t) has Poisson distribution with rate λt .

▶ Let
$$S_0 = 0$$
 and $S_n = \sum_{i=1}^n X_i$

Lemma

i.i.d exponential interarrival time implies N(0, t) has Poisson distribution with rate λt .

- ▶ Let $S_0 = 0$ and $S_n = \sum_{i=1}^n X_i$
- ▶ If $S_n = t$, we say that the nth renewal happened at time t.

Lemma

i.i.d exponential interarrival time implies N(0, t) has Poisson distribution with rate λt .

- ▶ Let $S_0 = 0$ and $S_n = \sum_{i=1}^n X_i$
- ▶ If $S_n = t$, we say that the nth renewal happened at time t.

$$F_{S_n}(t) = \lambda \left[\frac{(\lambda t)^{n-1} e^{-\lambda t}}{n-1!} \right] \text{ and } F_{S_n}(t) = \int_{x=0}^t \lambda \left[\frac{(\lambda x)^{n-1} e^{-\lambda x}}{n-1!} \right] dx$$

$$F_{S_n}(t) = \int_0^t \lambda \left[\frac{(\lambda x)^{n-1} e^{-\lambda x}}{n-1!} \right] dx$$

$$F_{S_n}(t) = \int_0^t \lambda \left[\frac{(\lambda x)^{n-1} e^{-\lambda x}}{n-1!} \right] dx$$

► Integration by parts $(u(x) = e^{-\lambda x}, v'(x) = \lambda \left[\frac{(\lambda x)^{n-1}}{n-1!}\right])$

- $F_{S_n}(t) = \int_0^t \lambda \left[\frac{(\lambda x)^{n-1} e^{-\lambda x}}{n-1!} \right] dx$
- ▶ Integration by parts $(u(x) = e^{-\lambda x}, v'(x) = \lambda \left[\frac{(\lambda x)^{n-1}}{n-1!}\right])$

$$\int_{a}^{b} u(x)v'(x)dx = [u(x)v(x)]_{a}^{b} - \int_{a}^{b} u'(x)v(x)dx$$

- $F_{S_n}(t) = \int_0^t \lambda \left[\frac{(\lambda x)^{n-1} e^{-\lambda x}}{n-1!} \right] dx$
- ▶ Integration by parts $(u(x) = e^{-\lambda x}, v'(x) = \lambda \left[\frac{(\lambda x)^{n-1}}{n-1!}\right])$

$$\int_{a}^{b} u(x)v'(x)dx = [u(x)v(x)]_{a}^{b} - \int_{a}^{b} u'(x)v(x)dx$$

$$F_{S_n}(t) = \left[\frac{(\lambda x)^n e^{-\lambda x}}{n!} \right]_0^t - \int_0^t \left[\frac{-\lambda e^{-\lambda x} (\lambda x)^n}{n!} \right] dx$$

- $F_{S_n}(t) = \int_0^t \lambda \left[\frac{(\lambda x)^{n-1} e^{-\lambda x}}{n-1!} \right] dx$
- ▶ Integration by parts $(u(x) = e^{-\lambda x}, v'(x) = \lambda \left\lceil \frac{(\lambda x)^{n-1}}{n-1!} \right\rceil)$

$$\int_{a}^{b} u(x)v'(x)dx = [u(x)v(x)]_{a}^{b} - \int_{a}^{b} u'(x)v(x)dx$$

$$F_{S_n}(t) = \left[\frac{(\lambda x)^n e^{-\lambda x}}{n!} \right]_0^t - \int_0^t \left[\frac{-\lambda e^{-\lambda x} (\lambda x)^n}{n!} \right] dx$$

$$F_{S_n}(t) = \frac{(\lambda t)^n e^{-\lambda t}}{n!} + F_{S_{n+1}}(t)$$

- $F_{S_n}(t) = \int_0^t \lambda \left[\frac{(\lambda x)^{n-1} e^{-\lambda x}}{n-1!} \right] dx$
- ▶ Integration by parts $(u(x) = e^{-\lambda x}, v'(x) = \lambda \left\lceil \frac{(\lambda x)^{n-1}}{n-1!} \right\rceil)$

$$\int_a^b u(x)v'(x)dx = [u(x)v(x)]_a^b - \int_a^b u'(x)v(x)dx$$

- $F_{S_n}(t) = \left[\frac{(\lambda x)^n e^{-\lambda x}}{n!} \right]_0^t \int_0^t \left[\frac{-\lambda e^{-\lambda x} (\lambda x)^n}{n!} \right] dx$
- $F_{S_n}(t) = \frac{(\lambda t)^n e^{-\lambda t}}{n!} + F_{S_{n+1}}(t)$

$$F_{S_n}(t) - F_{S_{n+1}}(t) = \frac{(\lambda t)^n e^{-\lambda t}}{n!}$$

$$N(t) = \sup\{n : S_n \leq t\}$$

$$N(t) = \sup\{n : S_n \leq t\}$$

$$N(t) \geq n \Leftrightarrow S_n \leq t$$

$$N(t) = \sup\{n : S_n \leq t\}$$

$$N(t) \geq n \Leftrightarrow S_n \leq t$$

► $P{N(t) \ge n} = P{S_n \le t}$

$$N(t) = \sup\{n : S_n \leq t\}$$

$$N(t) \geq n \Leftrightarrow S_n \leq t$$

- ► $P{N(t) \ge n} = P{S_n \le t}$
- ► $P{N(t) = n} = P{N(t) \ge n} P{N(t) \ge n + 1}.$

$$N(t) = \sup\{n : S_n \leq t\}$$

$$N(t) \geq n \Leftrightarrow S_n \leq t$$

- ► $P{N(t) \ge n} = P{S_n \le t}$
- ► $P{N(t) = n} = P{N(t) \ge n} P{N(t) \ge n + 1}.$
- ► $P{N(t) = n} = P{S_n \le t} P{S_{n+1} \le t}.$

$$N(t) = \sup\{n : S_n \leq t\}$$

$$N(t) \geq n \Leftrightarrow S_n \leq t$$

- ► $P{N(t) \ge n} = P{S_n \le t}$
- ► $P{N(t) = n} = P{N(t) \ge n} P{N(t) \ge n + 1}.$
- ► $P{N(t) = n} = P{S_n \le t} P{S_{n+1} \le t}.$
- $P\{N(t) = n\} = Poisson(\lambda t).$

$$N(t) = \sup\{n : S_n \leq t\}$$

$$N(t) \geq n \Leftrightarrow S_n \leq t$$

- ► $P{N(t) \ge n} = P{S_n \le t}$
- ► $P{N(t) = n} = P{N(t) \ge n} P{N(t) \ge n + 1}.$
- ► $P{N(t) = n} = P{S_n \le t} P{S_{n+1} \le t}.$
- $P\{N(t) = n\} = Poisson(\lambda t).$

Lemma

Exponential interarrival times imply N(t) has Poisson distribution with rate λt

Properties of Poisson Process (Self Study)

Properties of Poisson Process (Self Study)

Merging: Merging two independent Poisson processes with rate λ_1 and λ_2 leads to a Poisson process with rate $\lambda_1 + \lambda_2$.

Properties of Poisson Process (Self Study)

Merging: Merging two independent Poisson processes with rate λ_1 and λ_2 leads to a Poisson process with rate $\lambda_1 + \lambda_2$.

Splitting: If you label each event point of a Poisson(λ) process as type A or type B with probability p or 1-p respectively, then Events of type A form a Poisson $(p\lambda)$ process. Similarly Events of type B form a Poisson $((1-p)\lambda)$ process.

Conditional distribution of Arrival times

Conditional distribution of Arrival times

Lemma

Given that 1 event of $P.P.(\lambda)$ has happened by time t, it is equally likely to have happened anywhere in [0, t] i.e.,

$$P\{X_1 < s | N(t) = 1\} = \frac{s}{t}.$$

Conditional distribution of Arrival times

Lemma

Given that 1 event of $P.P.(\lambda)$ has happened by time t, it is equally likely to have happened anywhere in [0, t] i.e.,

$$P\{X_1 < s | N(t) = 1\} = \frac{s}{t}.$$

Proof.

$$P\{X_1 < s | N(t) = 1\} = \frac{P\{X_1 < s, N(t) = 1\}}{P(N(t) = 1)}$$

Conditional distribution of Arrival times

Lemma

Given that 1 event of $P.P.(\lambda)$ has happened by time t, it is equally likely to have happened anywhere in [0, t] i.e.,

$$P\{X_1 < s | N(t) = 1\} = \frac{s}{t}.$$

Proof.

$$P\{X_1 < s | N(t) = 1\} = \frac{P\{X_1 < s, N(t) = 1\}}{P(N(t) = 1)}$$

$$= \frac{P\{N[0, s) = 1, N[s, t] = 0\}}{P(N(t) = 1)}$$

Conditional distribution of Arrival times

Lemma

Given that 1 event of $P.P.(\lambda)$ has happened by time t, it is equally likely to have happened anywhere in [0, t] i.e.,

$$P\{X_1 < s | N(t) = 1\} = \frac{s}{t}.$$

Proof.

$$P\{X_1 < s | N(t) = 1\} = \frac{P\{X_1 < s, N(t) = 1\}}{P(N(t) = 1)}$$

$$= \frac{P\{N[0, s) = 1, N[s, t] = 0\}}{P(N(t) = 1)}$$

$$= \frac{P\{N[0, s) = 1\}P\{N[s, t] = 0\}}{P(N(t) = 1)}$$

Conditional distribution of Arrival times

Lemma

Given that 1 event of $P.P.(\lambda)$ has happened by time t, it is equally likely to have happened anywhere in [0,t] i.e.,

$$P\{X_1 < s | N(t) = 1\} = \frac{s}{t}.$$

Proof.

$$P\{X_{1} < s | N(t) = 1\} = \frac{P\{X_{1} < s, N(t) = 1\}}{P(N(t) = 1)}$$

$$= \frac{P\{N[0, s) = 1, N[s, t] = 0\}}{P(N(t) = 1)}$$

$$= \frac{P\{N[0, s) = 1\}P\{N[s, t] = 0\}}{P(N(t) = 1)}$$

$$= \frac{\lambda s e^{-\lambda s} e^{-\lambda(t-s)}}{\lambda t e^{-\lambda t}} = \frac{s}{t}$$

Imagine a system with infinite servers and jobs arrive to this system according to $PP(\lambda)$.

- Imagine a system with infinite servers and jobs arrive to this system according to $PP(\lambda)$.
- ightharpoonup Every arriving job has a independent service requirement with distribution G and is immediately assigned a server for service.

- Imagine a system with infinite servers and jobs arrive to this system according to $PP(\lambda)$.
- ightharpoonup Every arriving job has a independent service requirement with distribution G and is immediately assigned a server for service.
- ▶ When the job receives service, he leaves the system.

- Imagine a system with infinite servers and jobs arrive to this system according to $PP(\lambda)$.
- ► Every arriving job has a independent service requirement with distribution *G* and is immediately assigned a server for service.
- ▶ When the job receives service, he leaves the system.
- ightharpoonup Let N(t) denote the number of arrivals till time t.

- Imagine a system with infinite servers and jobs arrive to this system according to $PP(\lambda)$.
- ► Every arriving job has a independent service requirement with distribution *G* and is immediately assigned a server for service.
- ▶ When the job receives service, he leaves the system.
- ightharpoonup Let N(t) denote the number of arrivals till time t.
- Let X(t) denote the number of customers present in this system at time t.

- Imagine a system with infinite servers and jobs arrive to this system according to $PP(\lambda)$.
- ► Every arriving job has a independent service requirement with distribution *G* and is immediately assigned a server for service.
- ▶ When the job receives service, he leaves the system.
- ightharpoonup Let N(t) denote the number of arrivals till time t.
- Let X(t) denote the number of customers present in this system at time t.
- Example of such systems: Malls, Tourist spots, Gardens, number of active phone calls, etc

▶ What is the pmf of X(t), i.e., P(X(t) = k)?

- ▶ What is the pmf of X(t), i.e., P(X(t) = k)?
- First condition on N(t).

- ▶ What is the pmf of X(t), i.e., P(X(t) = k)?
- ▶ First condition on N(t). What is P(X(t) = k | N(t) = n) ?

- ▶ What is the pmf of X(t), i.e., P(X(t) = k)?
- ▶ First condition on N(t). What is P(X(t) = k | N(t) = n) ?
- Of the n jobs that arrived (uniformly placed in the interval [0, t]), k are yet to complete service.

- ▶ What is the pmf of X(t), i.e., P(X(t) = k)?
- ▶ First condition on N(t). What is P(X(t) = k | N(t) = n) ?
- Of the n jobs that arrived (uniformly placed in the interval [0, t]), k are yet to complete service.
- Let *p* denote the probability that an arbitrary of these customers is still receiving service at time *t*.

- ▶ What is the pmf of X(t), i.e., P(X(t) = k)?
- ▶ First condition on N(t). What is P(X(t) = k | N(t) = n) ?
- Of the n jobs that arrived (uniformly placed in the interval [0, t]), k are yet to complete service.
- Let *p* denote the probability that an arbitrary of these customers is still receiving service at time *t*.
- ► Then $P(X(t) = k | N(t) = n) = \binom{n}{k} p^k (1-p)^{n-k}$.

- ▶ What is the pmf of X(t), i.e., P(X(t) = k)?
- ▶ First condition on N(t). What is P(X(t) = k | N(t) = n) ?
- Of the n jobs that arrived (uniformly placed in the interval [0, t]), k are yet to complete service.
- Let *p* denote the probability that an arbitrary of these customers is still receiving service at time *t*.
- ► Then $P(X(t) = k | N(t) = n) = \binom{n}{k} p^k (1-p)^{n-k}$.
- Now unconditioning on N(t), we get

$$P(X(t) = k) = \sum_{n=k}^{\infty} P(X(t) = k | N(t) = n) P(N(t) = n)$$
$$= e^{-\lambda t p} \frac{(\lambda t p)^{j}}{j!}$$

where
$$p = \int_0^t (1 - G(t - x)) \frac{dx}{t}$$
.