#### Master's Thesis Presentation

# Concept Drift Detection and Adaptation in Federated Learning

Iftekhar Rahman Matr. Nr. 21863027

Supervisors:

Prof. Dr.-Ing. Stefan Schulte
Institute for Data Engineering
TU Hamburg

Prof. Dr. Pierre-Alexandre Murena Human-Centric Machine Learning TU Hamburg





# **Table of Contents**

| 1. | Introduction and Motivation |
|----|-----------------------------|
| 2. | Related Work                |
| 3. | Methodology                 |
| 4. | Design and Implementation   |
| 5. | Evaluation                  |
| 6. | Conclusion and Future Work  |

### **Introduction and Motivation**



### Introduction and Motivation



- Privacy Issue
- high communication cost
- latency

- ✓ Privacy Issue
- √ high communication cost
- ✓ latency

# Introduction and Motivation (FeDAvg Algorithm)



# Introduction and Motivation (Concept Drift)



# Related Work (Drift Detection Algorithms)



# Related Work (Comparison of FL Concept Drift Adaptation Methods)

| Methods             | Sudden    | Incremental | Gradual   | Recurring | Robust to Outliers | Mixed Drift |
|---------------------|-----------|-------------|-----------|-----------|--------------------|-------------|
| FedAvg              | No        | No          | No        | No        | No                 | No          |
| Adaptive-FedAvg [5] | Yes       | No          | No        | No        | No                 | No          |
| Saile et al. [17]   | Yes       | Partially   | No        | No        | No                 | No          |
| CDA-FedAvg [18]     | Yes       | Partially   | Yes       | Yes       | No                 | No          |
| FedNN [19]          | Yes       | Partially   | No        | No        | No                 | Partially   |
| FedDrift [20]       | Yes       | Partially   | Partially | Partially | No                 | Partially   |
| Salazar et al. [21] | Yes       | Partially   | Partially | Partially | No                 | Partially   |
| FLAME [22]          | Partially | Partially   | Partially | Partially | Yes                | No          |
| Our Approach        | Yes       | Yes         | Partially | Partially | Yes                | Yes         |

| Methods         | Implementation | Detection Method Used     | Adaptation Method Used                                        |
|-----------------|----------------|---------------------------|---------------------------------------------------------------|
| FedAvg          | Server-Side    | No                        | No                                                            |
| Adaptive-FedAvg | Server-Side    | No                        | Adaptive Learning Rate                                        |
| Saile et al.    | Client-Side    | No                        | Adaptive Learning Rate                                        |
| CDA-FedAvg      | Client-Side    | Distribution Based Method | Memory Retention                                              |
| FedNN           | Client-Side    | No                        | Weight Normalization (WN), Adaptive Group Normalization (AGN) |
| FedDrift        | Server-Side    | Global Loss               | Multiple Global Model (Clusters)                              |
| Salazar et al.  | Server-Side    | Group Loss (Clusters)     | Multiple Global Model (Clusters)                              |
| FLAME           | Server-Side    | Client Validation Loss    | Memory Retention                                              |
| Our Approach    | Server-Side    | Client Training Loss      | Multiple Global Model Approach based on type of Concept Drift |

# Methodology (Dataset and Model architecture)

#### Dataset used for Experiments

[11]





#### CNN Model used for Experiments

[12]







128

the magnitude of the gradients,  $v_{+} =$ 

 $\beta_1 \cdot m_{t-1} + (1 - \beta_1) \cdot g_t$ 

the magnitude of the gradients,  $v_t = \beta_2 \cdot v_{t-1} + (1-\beta_2) \cdot {g_t}^2$ 

#### Adaptive Moment Estimation (Adam)



Adam uses two moment estimates to adaptively update learning rates for each parameter:

the average direction of the gradients  $m_t =$ 

# Methodology (Introduction of Drift)



# Methodology (Introduction of Drift)



| • | trancition progress - | current_epoch - start_epoch |
|---|-----------------------|-----------------------------|
|   | transition_progress = | end_epoch – start_epoch     |

rotation\_angle = transition\_progress× max\_rotation

$$f_r = \frac{current\_epoch - start\_epoch}{end\_epoch - start\_epoch}, n_r = [fr \times N]$$

| Epoch | Rotation Angle (degrees) | Transition Progress |
|-------|--------------------------|---------------------|
| 11    | 1.5                      | 0.05                |
| 15    | 7.5                      | 0.25                |
| 20    | 15                       | 0.5                 |
| 25    | 22.5                     | 0.75                |
| 30    | 30                       | 1                   |
|       |                          |                     |





$$\begin{aligned} \textit{Client Model Accurcay} &= \frac{\textit{Number of correct predictions}}{\textit{Total number of predictions}} \\ & \textit{Client Loss Value:} \\ & l\left(\widehat{y},y\right) = L = [l_1,\dots,l_N], \\ & \text{Where }, l_n = -w_{y_n} \log(\frac{\exp(\widehat{y}_{n,y_n})}{\sum_{c=1}^{M} \exp(\widehat{y}_{n,c})}) \cdot 1\left\{y_n \neq igore\_index\right\} \\ & l\left(\widehat{y},y\right) = \begin{cases} \frac{\sum_{n=1}^{N} l_n}{\sum_{n=1}^{N} l_n \neq ignore\_index}, & \textit{if reduction} = "mean" \\ \sum_{n=1}^{N} l_n, & \textit{if reduction} = "sum" \end{cases} \end{aligned}$$

Fig: Federated Learning (FedAvg) client accuracy and loss monitoring for 60 clients and 40 global epochs without any drift

# Design and Implementation (Analyzing the Effect of Concept Drift)



# Design and Implementation (Strategies for Concept Drift Detection)



# Design and Implementation (Strategies for Concept Drift Detection)



# Design and Implementation (Strategies for Concept Drift Adaptation)



# Design and Implementation (Strategies for Concept Drift Detection)

#### Optimizer settings based on drift detection

| Client Drift Type                 | LR    | Beta 1  | Beta 2  |
|-----------------------------------|-------|---------|---------|
| Incremental Drift Only            | 0.001 | 0.6     | 0.7     |
| Both Sudden and Incremental Drift | 0.001 | 0.6     | 0.7     |
| Sudden Drift Only                 | 0.001 | Default | Default |
| No Drift                          | 0.001 | Default | Default |

#### Global Optimum Model

for a single drift:

$$G_{opt} = \alpha G_d + (1 - \alpha)G$$

for sudden, icremental and both drift:

$$G_{opt} = \alpha_s G_s + \alpha_g G_g + \alpha_m G_m + (1 - \alpha_s - \alpha_g - \alpha_m) G,$$
  
 $where \ \alpha_s + \alpha_g + \alpha_m \le 1$ 

#### **Performance Metrics**

• Accuracy = 
$$\frac{Number\ of\ correct\ detection}{Total\ number\ of\ detection\ counts} = \frac{TP+TN}{TP+FP+TN+FN}$$

Precision = 
$$\frac{Number\ of\ correct\ positive\ detection}{Total\ number\ of\ positive\ detection} = \frac{TP}{TP+FP}$$

• Recall = 
$$\frac{Number\ of\ correct\ positive\ detection}{Total\ number\ of\ actual\ drifts\ and\ no-drifts} = \frac{TP}{TP+FN}$$

• F1 Score = 
$$2 \times \frac{Precision \times Recall}{Precision + Recall}$$

#### Hardware and Software used

Environment : Kaggle

Implementation of algoritms and FL: Python, Pytorch [16], Scikit-

Multiflow [15]

Number of clients, Local Epochs, Global Epochs, batch size, Training 60, 1, 40, 32, 60000, 1000

Samples, Client Samples:

# **Evaluation (**Sudden Drift Detection)

| Parameters           | Exp 1 | Exp 2          |
|----------------------|-------|----------------|
| Class labels swapped | 3 ,8  | {3, 8}, {5, 6} |
| Drifted Clients      | 3     | 10             |

| Detection       | Algorit | Algorithm 4.1 DDM+HD |               |
|-----------------|---------|----------------------|---------------|
| Classification  | Exp 1   | Exp 2                | Exp 2         |
| True Positives  | 87      | 290                  | 116 (11+113)  |
| True Negatives  | 2010    | 1800                 | 1800          |
| False Positives | 0       | 0                    | 0             |
| False Negatives | 3       | 10                   | 184 (289+187) |

| Detection | Algorit | :hm 4.1 | DDM+HDDM |
|-----------|---------|---------|----------|
| Metric    | Exp 1   | Exp 2   | Exp 2    |
| Accuracy  | 0.998   | 0.995   | 0.9123   |
| Precision | 1.0     | 1.0     | 1.0      |
| Recall    | 0.966   | 0.966   | 0.386    |
| F1 Score  | 0.983   | 0.983   | 0.557    |

#### Algorithm 4.1 Detection Breakdown



#### DDM + HDDM Detection



# **Evaluation (Incremental Drift Detection)**

| Parameters                  | Exp 3 | Exp 4 | Exp 5 |
|-----------------------------|-------|-------|-------|
| Drifted Clients             | 6     | 16    | 30    |
| Percentage of total clients | 0.1   | 0.26  | 0.5   |

| Detection       | А     | lgorithm 4 | .2    | DDM+  | DDM+HDDM |  |
|-----------------|-------|------------|-------|-------|----------|--|
| Classification  | Exp 3 | Exp 4      | Exp 5 | Exp 4 | Exp 5    |  |
| True Positives  | 59    | 145        | 270   | 73    | 62       |  |
| True Negatives  | 1378  | 1275       | 1097  | 1280  | 1140     |  |
| False Positives | 2     | 5          | 43    | 0     | 0        |  |
| False Negatives | 1     | 15         | 30    | 87    | 28       |  |

| Detection | А       | lgorithm 4. | 2      | DDM+HDDM |        |  |
|-----------|---------|-------------|--------|----------|--------|--|
| Metrics   | Exp 3   | Exp 4       | Exp 5  | Exp 4    | Exp 5  |  |
| Accuracy  | 0.9979  | 0.9861      | 0.9493 | 0.9395   | 0.8347 |  |
| Precision | 0.9672  | 0.9666      | 0.8626 | 1.0      | 1.0    |  |
| Recall    | 0.98333 | 0.90625     | 0.9    | 0.45625  | 0.2066 |  |
| F1 Score  | 0.9752  | 0.93548     | 0.8809 | 0.6266   | 0.3425 |  |

#### Algorithm 4.2 False Detections Breakdown



#### DDM + HDDM Detection



# **Evaluation (**Mixed Drift Detection**)**

| Parameters                | Exp 6                 | Exp 7                 |
|---------------------------|-----------------------|-----------------------|
| incremental_drift_clients | {2, 6, 9, 13, 15, 27} | {2, 6, 9, 13, 15, 27} |
| class_swap_drift_clients  | {3, 10, 18, 41, 55}   | {2, 6, 9, 41, 55}     |

| Detection       | Algorithm | 1 4.1 + 4.2 | DDM+F         | DDM+HDDM    |  |
|-----------------|-----------|-------------|---------------|-------------|--|
| Classification  | Exp 6     | Exp 7       | Exp 6         | Exp 7       |  |
| True Positives  | 147       | 119         | 55 (24+43)    | 52 (17+47)  |  |
| True Negatives  | 1285      | 1314        | 1285          | 1315        |  |
| False Positives | 0         | 1           | 0             | 0           |  |
| False Negatives | 8         | 6           | 100 (131+112) | 73 (108+78) |  |

| Detection Metrics | Algorithm 4.1 + 4.2 |        | DDM+HDDM |        |
|-------------------|---------------------|--------|----------|--------|
|                   | Exp 6               | Exp 7  | Exp 6    | Exp 7  |
| Accuracy          | 0.9944              | 0.9951 | 0.9305   | 62     |
| Precision         | 1.0                 | 0.9916 | 1.0      | 1.0    |
| Recall            | 0.9438              | 0.952  | 0.3548   | 0.416  |
| F1 Score          | 0.9735              | 0.9714 | 0.5238   | 0.5875 |

# **Evaluation (Mixed Drift Detection)**



# **Evaluation (**Adaptation**)**

Exp 8: Sudden Drift Adaptation using Algorithm 4.3, {2, 6, 9, 28, 41, 56}



Exp 8: Incremental Drift Adaptation using Algorithm 4.3, {2, 6, 9, 28, 41, 56}



Exp 6: Mixed Drift Adaptation using Algorithm 4.3, {2, 6, 9, 13, 15, 27}, {3, 10, 18, 41, 55}



Exp 7: Mixed Drift adaption using Adaptation 4.3, {2, 6, 9, 13, 15, 27}, {2, 6, 9, 41, 55}



# **Evaluation (**Global Optimum Model**)**

$$G_{opt} = \alpha G_d + (1 - \alpha)G$$
 
$$G_{opt} = \alpha_s G_s + \alpha_g G_g + \alpha_m G_m + (1 - \alpha_s - \alpha_g - \alpha_m)G, \quad where \alpha_s + \alpha_g + \alpha_m \leq 1$$

#### Comparison of FedAvg and Optimized Model Accuracy for Incremental Drift Experiments

| Exp No. | Fraction of test data with drift | FedAvg Model<br>Accuracy | Optimized<br>Model Accuracy | Alpha | No. of Clients<br>with drift |
|---------|----------------------------------|--------------------------|-----------------------------|-------|------------------------------|
| Exp 9   | 0.2                              | 0.9594                   | 0.9602                      | 0.35  | 3                            |
| Exp 10  | 0.4                              | 0.935                    | 0.9387                      | 0.35  | 3                            |
| Exp 11  | 0.6                              | 0.917                    | 0.9279                      | 0.35  | 3                            |
| Exp 12  | 0.8                              | 0.8858                   | 0.9163                      | 0.35  | 3                            |
| Exp 13  | 1.0                              | 0.8544                   | 0.9066                      | 0.35  | 3                            |
| Exp 14  | 1.0                              | 0.8451                   | 0.9037                      | 0.35  | 6                            |
| Exp 15  | 1.0                              | 0.851                    | 0.9056                      | 0.35  | 16                           |
| Exp 16  | 1.0                              | 0.7644                   | 0.9109                      | 0.35  | 30                           |
| Exp 17  | 1.0                              | 0.6279                   | 0.9143                      | 0.35  | 42                           |

# **Evaluation (**Global Optimum Model**)**

#### Comparison of FedAvg and Optimized Model Accuracy for Sudden Drift Experiments

| Exp No. | Fraction of test data with drift | FedAvg Model<br>Accuracy | Optimized<br>Model Accuracy | Alpha | No. of Clients<br>with drift |
|---------|----------------------------------|--------------------------|-----------------------------|-------|------------------------------|
| Exp 18  | 0.2                              | 0.9482                   | 0.942                       | 0.35  | 3                            |
| Exp 19  | 0.4                              | 0.912                    | 0.9064                      | 0.35  | 3                            |
| Exp 20  | 0.6                              | 0.8703                   | 0.8667                      | 0.35  | 3                            |
| Exp 21  | 1.0                              | 0.7921                   | 0.9785                      | 1.00  | 3                            |

#### Comparison of FedAvg and Optimized Model Accuracy for Mixed Drift Experiments

| Ехр No. | Fraction of test data with drift | FedAvg Model<br>Accuracy | Optimized Model<br>Accuracy | $(\alpha_s, \alpha_{g,}\alpha_m)$ | No. of Clients with drift (sudden, incremental, both) |
|---------|----------------------------------|--------------------------|-----------------------------|-----------------------------------|-------------------------------------------------------|
| Exp 22  | 1                                | 0.7924                   | 0.8924                      | (0.16, 0.16, 0.16)                | (5, 5, 3)                                             |
| Exp 23  | 1                                | 0.7913                   | 0.8936                      | (0.13, 0.13, 0.13)                | (10, 10, 6)                                           |
| Exp 24  | 1                                | 0.7872                   | 0.8943                      | (0.13, 0.13, 0.13)                | (16, 16, 9)                                           |

# Evaluation (Replacing Multiple Models with Optimized Model )



#### Conclusion

- We particularly focused on local dataset drift in this thesis.
- We proposed an active approach to adapt to these drifts by first classifying the type of drift each client faces. Which has shown:
  - excellent precision and accuracy, outperforming DDM and HDDM.
  - Reduced client losses and faster convergence with non-drifted clients.
  - Computationally efficient, placing no additional burden on client devices.
  - The optimized global model consistently outperformed the FedAvg.

# **Future Work**

- Usage of the optimized global model
- Communication Cost
- Using more Dataset

# Thank you

#### References



Online and Non-Parametric Drift Detection Meth-ods Based on Hoeffding's Bounds. In IEEE Transactions on Knowledge and Data

29

Engineering, volume 27 (3), 2015, pages 810–823. DOI:10.1109/TKDE.2014.2345382.

# References

| [11] | Li Deng: The MNIST Database of Handwritten Digit Images for Machine Learning Research [Best of the Web]. In IEEE Signal ProcessingMagazine, volume 29 (6), 2012, pages 141–142. DOI: 10.1109/MSP.2012.2211477.                                                                                          |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [12] | PyTorch Tutorial: Training a Classifier. https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html. Accessed: 2024-08-12. 2024.                                                                                                                                                                |
| [13] | Ruslan Abdulkadirov, Pavel Lyakhov, and Nikolay Nagornov: Survey of Optimization Algorithms in Modern Neural Networks. InMathematics, volume 11 (11), 2023. ISSN: 2227-7390. DOI: 10 .3390 / math11112466. URL: https://www.mdpi.com/2227-7390/11/11/2466.                                              |
| [14] | PyTorch: CrossEntropyLoss. https://pytorch.org/docs/stable / generated / torch . nn . CrossEntropyLoss .html. Accessed: 2024-08-07.                                                                                                                                                                     |
| [15] | Jacob Montiel, Jesse Read, Albert Bifet, and Talel Abdessalem: Scikit-Multiflow: A Multi-output Streaming Framework. In Journalof Machine Learning Research, volume 19 (72), 2018, pages 1–5.URL: http://jmlr.org/papers/v19/18-251.html.                                                               |
| [16] | Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al.: Pytorch: An imperative style, high-performance deep learning library. In Advances in neural informationprocessing systems, volume 32, 2019    |
| [17] | Finn Saile, Julius Thomas, Dominik Kaaser, and Stefan Schulte: Client-Side Adaptation to Concept Drift in Federated Learning. In 2024 Federated Learning and Trustworthy AI (FLTA) Confer-ence. FLTA Press, 2024, pages 123–134. URL: https://flta-conference.org/paper123.                             |
| [18] | Fernando E. Casado, Dylan Lema, Marcos F. Criado, Robertolglesias, Carlos V. Regueiro, and Senén Barro: Concept drift detec-tion and adaptation for federated and continual learning. In Multime-dia Tools and Applications, volume 81 (3), 2022, pages 3397–3419.DOI: 10.1007/s11042-021-11219-x       |
| [19] | Myeongkyun Kang, Soopil Kim, Kyong Hwan Jin, Ehsan Adeli, Kilian M. Pohl, and Sang Hyun Park: FedNN: Federated learning on concept drift data using weight and adaptive group normalizations. In Pattern Recognition, volume 149, 2024, pages 110230. DOI:https://doi.org/10.1016/j.patcog.2023.110230. |

# References

| [20] | Ellango Jothimurugesan, Kevin Hsieh, Jianyu Wang, Gauri Joshi, and Phillip B Gibbons: Federated learning under distributed con-cept drift. In International Conference on Artificial Intelligence and Statistics. PMLR, 2023, pages 5834–5853. |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [21] | Teresa Salazar, João Gama, Helder Araújo, and Pedro HenriquesAbreu: Unveiling Group-Specific Distributed Concept Drift: A Fairness Imperative in Federated Learning. 2024. arXiv: 2402.07586[cs.LG].                                           |
| [22] | Ioannis Mavromatis, Stefano De Feo, and Aftab Khan: FLAME:Adaptive and Reactive Concept Drift Mitigation for Federated Learning Deployments. 2024. arXiv: 2410.01386 [cs.LG].                                                                  |

# Appendix

# Concept Drift Detection Using SHAP Values (SHAP Computation)



# Concept Drift Detection Using SHAP Values

