This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- /SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

Offenlegungsschrift 25 08 931

Aktenzeichen:

P 25 08 931.0

(1)

43)

(54)

1

Anmeldetag:

1. 3.75

Offenlegungstag:

9. 9.76

30 Unionspriorität:

39 33 31

Bezeichnung:

Schwefelorganische Silicium-Verbindungen - Verfahren zu deren

Herstellung und Verwendung als Haftvermittler

(f) Anmelder: Dynamit Nobel AG, 5210 Troisdorf

Erfinder: Seiler, Claus-Dietrich, Dipl.-Chem. Dr., 7888 Rheinfelden;

Vahlensieck, Hans-Joachim, Dipl.-Chem. Dr., 7867 Wehr;

Amort, Jürgen, Dipl.-Chem. Dr., 5210 Troisdorf

Troisdorf, den 24.2.1975 OZ 75 017 (2437) Dr. Ek/Ech

DYNAMIT NOBEL AKTIENCESELLSCHAFT

Troisdorf, Bez. Köln

Schwefelorganische Silicium-Verbindungen - Verfahren zu deren Herstellung und Verwendung als Haftvermittler

Gegenstand der vorliegenden Erfindung sind schwefelhaltige Organosilicium-Verbindungen, die als Haftvermittler zwischen organischen und anorganischen Medien geeignet sind. Die Erfindung betrifft weiterhin Verfahren zur Herstellung der schwefelhaltigen Organosilicium-Verbindungen.

Die neuen schwefelhaltigen Organosilicium-Verbindungen sind gekennzeichnet durch die allgemeine Formel

$$(R0)_{4-n}$$
-Si $\left[R'-S_{x}-C-C=CH_{2}\right]_{n}$, (1)

in der R einen C₁₋₈-Alkyl-, Cycloalkyl-, C₁₋₁₀-Alkyloxialkyl-, Phenyl-Rest

R' einen gegebenenfalls verzweigten Alkylenrest mit 1-6 C-Atomen, einen Cyclcalkylen, Phenylen- oder Benzylenrest

R'' 0;S

R: 11 H; CH₂

609837/0939

x 1 oder 2

n 1 oder 2

bedeuten.

Die Erfindung betrifft außerdem die aus der Formel (1) durch Hydrolyse entstehenden Siloxane.

Nach dem erfindungsgemäßen Verfahren erhält man die schwefelhaltigen Organosilicium-Verbindungen der angegebenen Formel (1),
indem man die entsprechenden Mercaptoalkyl-Silicium-Verbindungen
der allgemeinen Formel

(RO)₃-Si-R'-SH, (2)
worin R, R' die unter Formel (1) aufgeführten Bedeutungen
haben,

mit Methacrylsäure-, Acrylsäure-, Mono-thio-methacryl- bzw. -acrylsäure-Derivaten der allgemeinen Formel

$$X-C-C=CH_2,$$

$$R''R'''$$

worin R'' und R''' die unter der Formel (1) aufgeführten Bedeutungen besitzen und

X= für eine reaktive Gruppe, wie Cl, Br, -NH2, CH30-, steht.

in Gegenwart von Polymerisationsinhibitoren und tertiären Aminen in der Kälte zur Umsetzung bringt. Die reaktive Gruppe X muß in der Lage sein, mit dem am Schwefelatom sitzenden Proton zu reagieren; dabei wird die Verbindung HX frei und es wird eine 609837/0939

S-C-Bindung gebildet.

Besonders geeignete Mercaptosilicium-Verbindungen sind z. B. β -Mercaptoäthyltrimethoxisilan oder γ -Mercaptopropyltrimethoxisilan. Es lassen sich aber auch die entsprechenden ω -Mercaptobutyl- oder -Hexyl- oder ρ -Mercaptophenyltrimethoxi- oder triäthoxisilane einsetzen. Die Herstellung dieser Verbindungen erfolgt nach allgemein bekannten Verfahren.

Typische Acrylat- und Methacrylat-Verbindungen, die zum Einsatz gelangen, sind Methacrylsäurechlorid, Acrylsäurechlorid oder die Änide der Acryl- und Methacrylsäure.

Als Verbindungen der allgemeinen Formel (3) lassen sich aber auch die C₁₋₄-Alkylester der Acryl- oder Methacrylsäure einsetzen. Die bevorzugten Ester sind die Methylester.

Die bei der Umsetzung notwendigen Temperaturen, die Wahl des Lösungsmittels und der eventuell notwendigen Katalysatoren sind der besonderen Natur der jeweiligen Acryl- und Methacryl-Verbindungen anzupassen. So empfiehlt es sich, beim Einsatz der Säurehalogenide von Methacryl- bzw. Acrylsäure, die Umsetzungen in Gegenwart von tertiären Aminen, Polymerisationsinhibitoren und bei Temperaturen um 0 °C durchzuführen. Beim Einsatz von Estern der Methacryl- und Acrylsäure hingegen ist es vorteilhaft, in Gegenwart von an sich bekannten Umesterungskatalysatoren, Polymerisationsinhibitoren und bei Temperaturen zwischen 40 und 60 °C, gegebenenfalls unter Vakuum, zu arbeiten.

Typische Umesterungskatalysatoren sind z.B. Titanester; typische, für das erfindungsgemäße Verfahren einsetzbare Inhibitoren sind Hydrochinon, Ditertiärbutylparakresol.

Die neuen schwefelhaltigen Organosilicium-Verbindungen, lassen sich auch in der Weise herstellen, indem man Alkenyl-thioacrylat- und Alkenyl-thio-methacrylat-Verbindungen der allgemeinen Formel

$$CH_{2}=CH-\begin{pmatrix} R^{II} \\ C \\ R^{II} \end{pmatrix}_{a} -S_{x}-C-C=CH_{2}, \qquad (4)$$

in der

R'' = 0; S

 $R'''' = H; CH_3$

 $R^{\overline{M}}$ = oder verschieden $R^{\overline{M}}$ = H, Alkyl-, Cycloalkyl-, verzweigte Alkyl-, Phenylgruppe

und a = 1 - 4

mit Alkoxihydrogensilanen der allgemeinen Formel

$$(RO)_{4-b} - SiH_b,$$

b = 1,2

in Gegenwart der bereits obengenannten Inhibitoren mit Pt-Verbindungen in Anwesenheit oder Abwesenheit inerter organischer Lösungsmittel zur Umsetzung bringt.

Als typische Vertreter der einsetzbaren Alkenyl-thio-acrylate bzw. Alkenyl-thio-methacrylate seien folgende Verbindungen ge-

nannt:

$$CH_2 = CH - CH_2 - S - C - C = CH_2$$

$$(6)$$

$$CH_2 = CH - CH_2 - S - C - C = CH_2$$
O CH_3
(7)

$$CH_2 = C - CH_2 - S - C - C = CH_2$$

$$CH_3 \qquad CH_3 \qquad (8)$$

$$CH_2 = CH - CH_2 - CH_2 - C - C = CH_2$$
 (9)

Als Alkoxisilane eignen sich besonders gut Trimethoxisilan, Triäthoxisilan, Dimethoxisilan und Diäthoxisilan; die Reaktion läuft aber ebenfalls auch beim Einsatz von Tributoxisilan oder Triäthoximethoxisilan ab.

Als Platin-Verbindungen kommen H₂Pt CI₆ oder komplexe Pt{IV}-Verbindungen wie z. B. der Pt-Mesityloxid-Komplex (vgl. DBP 1.937.904) in Frage.

Als Polymerisationsinhibitoren sind Verbindungen wie Hydrochinon, Chinon in Verbindung mit Hydrochinon, Aminophenole einsetzbar.

Die erfindungsgemäßen Silanc sind in wäßrigem Medium unter Hydrolyse in geringer Konzentration löslich und können auf feste anorganische Oberflächen von Füll- und Verstärkerstoffen, Oxiden und Metallen durch Tauchen, Streichen oder Sprühen aufgebracht und durch einen Trocknungsvorgang verfestigt werden. Zur Vorbehandlung können aber auch wasserhaltige Lösungsmittel, in denen das Silan gelöst ist, verwendet werden.

Zur Erzeugung verstärkter oder gefüllter Gegenstände werden die mit den erfindungsgemäßen Silanen vorbehandelten Stoffe mit Harzen, die aliphatische ungesättigte Monomere enthalten, wie z. B. Polyesterstyrolharze, benetzt und der Verbund durch Polymerisation verfestigt.

Die Grenzfläche zwischen Harz und anorganischem Material wird einerseits durch Umsetzung der ungesättigten Doppelbindungen des Harzes und des Silans und zweitens durch Umsetzung der bei der Hydrolyse entstehenden Silanolgruppen mit der anorganischen metallischen Oberfläche gebildet. Die erhaltenen Formkörper besitzen dann sehr hohe Festigkeiten, wobei die erfindungsgemäßen Silane gegenüber den bisher bekannten und eingesetzten Produkten (Methacrylester- und Vinylsilanen) überlegen sind, wie die nachstehenden Versuche zeigen.

Zu den aliphatischen ungesättigten Monomeren, die zur Erzeugung der obengenannten beschriebenen verstärkten oder gefüllten Verbundstoffe geeignet sind, gehören beispielsweise Styrol, Acrylnitril-Butadienstyrol, Acrylnitril-Styrol, Styrol-Butadien, Isobuten, Äthylen, Propylen, Vinylacetat, Vinylchlorid, Vinyldenchlorid und Methylmethacrylat. Die durch Polymerisation erzeugten Polymeren können starre Stoffe z. B. Polyesterharze oder

elastomere Stoffe z. B. Styrol-Butadien-Kautschuk sein.

Die oxydischen/metallischen Oberflächen, zu deren Vorbehandlung die genannten Silane erfindungsgemäß verwendet werden, umfassen sowohl oxydische und metallische Oberflächen als auch solche synthetisch hergestellter Produkte. Beispiele mineralischer Produkte sind Asbest, Flimmer, Guarz, Korund, Diatomenerde, sowie Eisenoxide, Chromoxide, Titanoxide.

Als Beispiele für die synthetischen, oxidischen Oberflächen enthaltende Produkte seien Glasfasern, Glasgespinste, Glaskugeln, Elektrokorund, Calciumcarbonat, Fe₂0₃, Cro₂genannt. Als Metalle kommen beispielsweise Al, Fe, Zn, Mg, Sn, Ti infrage sowie deren Legierungen, die diese Metalle als Hauptbestandteile enthalten.

Die Silanlösungen werden in Konzentraten zwischen 0,05 - 5 % angewendet, je nachdem wie hoch die spezifische Oberfläche des zu behandelnden Stoffes ist. Normalerweise wird die oxidische/metallische Oberfläche mit dem betreffenden Silan vorbehandelt, um einen festeren Verbund mit dem Polymeren zu erhalten. Es ist aber auch möglich, den gleichen Effekt zu erhalten, indem man dem Polymeren geringe Mengen (0,1 - 5 Gew.-% bez.auf das Polymer) des entsprechenden Silans untermischt. Dabei kann das Polymere sowohl ein Duroplast als auch ein Thermoplast sein.

Beispiel 1

In einem 2-1-Dreihalskolben, ausgerüstet mit einem Rückfluß-kühler, einem Tropftrichter, einem Rühren und einer Kühlvorrichtung für den Kolben, werden 196 g (1 mol) γ-Mercaptoprobyltrimethoxisilan, 106 g (1,05 mol) Triäthylamin, 10 g Hydrochinon und 1000 ml Xylol vorgelegt und auf 0 °C unter Rühren abgekühlt. Anschließend werden 104 g (1 mol) Methacrylsäurechlorid im Verlaufe einer Stunde aus dem Tropftrichter zugetropft. Nach Entfernung der Kühlvorrichtung wird noch 1 Stunde nachgerührt und dann das ausgefallene Triäthylammonium-Hydrochlorid abfiltriert. Das Filtrat wird der fraktionierten Destillation unterworfen. Bei 127 °C und einem Druck von 2 Torr gehen 135 g (51 %) einer farblosen Flüssigkeit über, die nachfolgende Eigenschaften besitzt:

Molekulargewicht:	theoretisch	264
·	gefundėn	268
Brechungsindex n _D ²⁵ :	•	1,4511
Dichte (d ₄):		1,077
Elementaranalyse:	theoret.	gefunden
· C	45,4 %	45,2 %
H	7,6 %	7,7 %
o .	24,2 %	24,0 %
Si	10,6 %	10,7 %
S	12,1 %	12,0.%

Das gefundene Produkt besitzt demzufolge die Formel (CH₃-0)₃-Si-CH₂-CH₂-CH₂-CH₂-CH₂-CH₂ O CH₃

Boisviel 2

In die unter Beispiel 1) beschriebene Apparatur werden 224 g (1 mol) ß-Mercaptoäthyltriäthoxisilan, 106 g (1,05 mol) Triäthylamin, 10 g Hydrochinon und 1000 ml Xylol vorgelegt und auf -5 °C abgekühlt. Im Verlaufe von 1,5 Stunden werden 104 g (1 mol) Metracrylsäurechlorid zugetropft. Unter Aufhebung der Kühlung wird noch 1 Stunde nachgerührt; das Triäthylammonium-Hydrochlorid wird abfiltriert und das Filtrat der fraktionierten Destillation im Vakuum unterworfen.

Bei 104 °C und einem Druck von 2 Torr gehen 157 g (54 %) einer farblosen Flüssigkeit über, die nachfolgende Eigenschaften besitzt:

Molekulargewicht:	theoretisch	292
	gefunden	311
Brechungsindex n _D ²⁵ :		1,4691
Dichte $(d_{l_i}^{25})$:		1,097
Elementaranalyse:	theoret.	gefunden
С	49,3 %	49,0 %
H	8,2 %	7,9 %
0 .	21,9 %	22,3 %
Si	9,6 %	10,0 %
S	11,6 %	11,65 %

Das gefundene Produkt besitzt demzufolge die Formel (C2H5-0)3-Si-CH2-CH2-S-C-C=CH2 0 CH3

Beisniel 3

In die unter Beispiel 1) beschriebene Apparatur werden 196 g (1 mol) %-Mercaptopropyltrimethoxisilan, 106 g (1,05 mol) Triäthylamin, 10 g Hydrochinon und 1000 ml Xylol vorgelegt und auf -10 °C abgekühlt. Im Verlaufe von 1,5 Stunden werden unter starkem Rühren 90 g (1 mol) Acrylsäurechlorid zugetropft. Bei +5 °C wird 1 Stunde nachgerührt und anschließend von Triäthylammonium-Hydrochlorid abfiltriert. Nach Zusatz von 5 g Hydrochinon zum Filtrat wird im Vakuum fraktioniert aufdestilliert. Bei 125 °C und einem Druck von 2 Torr gehen 120 g (48 %) einer farblosen Flüssigkeit über, die nachfolgende Eigenschaften besitzt:

Molekulargewicht:	theoretisch	250
	gefunden	248
Brechungsindex n _D ²⁵ :		1,4491
Dichte (d_4^{25}) :		1,056
Elementaranalyse:	theoret.	gefunden
C	43,2 %	43,3 %
_ H	7,2 %	7,3 %
O .	25,6 %	25,2 %
Si ·	11,2 %	10,9 %
S	12,8 %	12,7 %

Das gefundene Produkt hat die Formel (CH30)3-Si-(CH2)3-S-C-CH=CH2

Beispiel 4:

In die unter Beispiel 1) geschriebene Apparatur werden 196 g

(1 mol) 7-Mercaptopropyltrimethoxisilan, 106 g (1,05 mol) Triäthylamin, 10 g Hydrochinon und 1000 ml Xylol vorgelegt und auf
-10 °C abgekühlt. Im Verlauf von 2 Stunden werden unter intensivem Rühren und Konstanthalten der Reaktionstemperatur 120 g
(1,0 mol) Thiomethacrylsäurechlorid zugetropft. Bei +5 °C wird
noch 1 Stunde nachgerührt und anschließend das TriäthylammoniumHydrochlorid vom Filtrat abgetrennt. Das Filtrat wird mit weiteren 14 g Hydrochinin versetzt und im Vakuum fraktioniert aufdestilliert. Bei 140 °C und einem Druck von 2 Torr gehen 59 g
(21 %) einer leicht gelblich gefärbten Flüssigkeit über, die
nachfolgende Eigenschaften besitzt:

theoretisch	280
gefunden	278
	1,4702
	1,10
theoret.	gefunden
42,8 %	42,5. %
. 7,1 %	7,0 %
17,1 %	16,9 %
10,0 %	9,8 %
11,4 %	11,5 %
	theoret. 42,8 % 7,1 % 17,1 % 10,0 %

Strukturformel:
$$(CH_3-0)_3$$
-Si- CH_2 - CH_3 - $CH_$

Beispiel 5:

In einem an einen Thermostaten angeschlossenen 2-1-Doppel- .
mantel-Dreihalskolben, ausgestattet mit einem Rührer, einem

Tropftrichter, einem Rückflußkühler, werden 122 g (1 mol) Trimethoxisilan und 250 ml Tolucl vorgelegt. Dem vorgelegten Gemisch
werden 50 mg H₂PtCl₆·6 H₂O, gelöst in 10 ml Aceton, und 10 g
Hydrochinon zugesetzt.

Bei einer Temperatur des Kolbeninhalts von 68 °C wird mit der Zugabe von 132 g (1,05 mol) Allylmethacrylat begonnen. Die Zugabe ist nach 15 Min. beendet. Während der Zugabe des Allylmethacrylats wird die Temperatur durch Kühlung konstant bei 72 °C gehalten. Das Reaktionsgemisch wird anschließend noch 15 Min. ausreagieren gelassen und damauf Zimmertemperatur abgekühlt. Nach Zusatz von 15 g Hydrochinon wird das Gemisch im Reaktionsverdampfer unter Vakuum aufgearbeitet. Bei 123 °C und einem Druck von 1 Torr gehen 145 g (54 %) einer farblosen Flüssigkeit über, die in ihren Eigenschaften übereinstimmt mit den Eigenschaften, die die in Beispiel 1) erhaltene Substanz besaß.

Beispiel 6

Styrol wurde mit 1 Gew.-% des Silans der Formel

H₂C=CH-COS-(CH₂)₃Si(OCH₃)₃
sowie mit Benzoylperoxid versetzt und auf einer Glasplatte polymerisiert. Das erhaltene Polymer klebt wesentlich fester aufder Glasoberfläche als eine entsprechende Probe ohne Silan. Dieser gute Verbund bleibt auch bei einer Lagerung in Wasser (4 h bei 30 °C) erhalten.

Beispiel 7

Wassergeschlichtete Glasfäden werden in eine 0,25 %igen äthano-609837/0939 lische Lösung von K-Methacrylthiopropyltrimethoxisilan getaucht, abtropfen gelässen und dan 15 min. lang in einem Umluftschrank bei 130 °C getrocknet. Anschließend werden die so vorbehandelten Glasfäden mit ungesättigten Polyesterharz benetzt und in 4 mm starke Glasrohre hineingezogen und bei 100 °C 2 Std. gehärtet. Nach dem Herauslösen der fertigen GFK-UP-Harzrundstäbe werden diese 15 Std. bei 130 °C nachgehärtet und die Biegefestigkeit der Stäbe nach der Prüfvorschrift DIN 53 452 bestimmt.

Ferner wird die Biegefestigkeit von Proben ermittelt, die 72 Std. in siedendem Wasser lagen und trocken gewicht wurden. Zum Vergleich wurden die gleichen Tests bei Verwendung von X-Methacryloxipropyltrimethoxisilan durchgeführt.

% Silan in der Schlichte Biegefestigkeit von GFK-UP-Harzrundstäben in kp/cm² Biegefestigkeit

	trocken	feucht
0,25 % y-Methacryloxipropyl trimethoxisilan	10800	7400
0,25 % y-Methacrylthiopropy trimethoxisilan	1 - 12400	9200

Beispiel 8

Analog den in Beispiel 7 angegebenen Vorschriften wurden von GFK-UP-Harzrundstäben unter Verwendung von 0,5 %igen Lösungen des 8-Methacrylthioäthyltriäthoxisilan Biegefestigkeiten ge-

messen und folgende Werte erhalten

trocken: 11400 kp/cm² feucht: 10300 kp/cm²

Beispiel 9

Wassergeschlichtete Glasfasern werden wie in Beispiel 7 mit UP-Harzen, denen 0,5 % des ß-Acrylthioäthyltriäthoxisilan zugemischt wurde, benetzt und zu GFK-UP-Harzrundstäben verarbeitet. Die gemessenen Biegefestigkeitswerte entsprechen denen im Beispiel 7.

Beispiel 10

CH3

Ein Gewichtsprozent von H₂C=C - C-S(CH₂)₃-Si(OCH₃)₃

wurde einem handelsüblichen Lack auf Basis Methacrylsäureester zugesetzt und dieser dann auf Glasplatten aufgebracht und 24 Std. luftgetrocknet. Anschließend wurde der Lack 1 Std. auf 120 °C erwärmt und die Lackhaftung durch Erichsen-Gitterschnitt geprüft. Die Haftung war sehr gut. Im Gegensatz dazu war die Lackhaftung auf unvorbehandelten Glasplatten sehr gering.

Analoge Versuchsergebnisse wurden mit Aluminiumplatten erhalten.

Troisdorf, den 25. Febr. 1975 0Z 75 017 (2437) Dr. Sk/Sch

Patentansprüche

1. Schwefelhaltige Organosilicium-Verbindungen der Formel

$$(R0)_{4-n}$$
-Si $\begin{bmatrix} R' - S_x - C - C = CH_2 \\ R''' \end{bmatrix}_n$

in der R einen C₁₋₈Alkyl-, Cycloalkyl-, C₁₋₁₀Alkyloxialkyl- oder den Phenyl-Rest,

> R' einen gegebenenfalls verzweigten Alkylenrest mit 1-6 C-Atomen, einen Cycloalkylen- Phenylen oder Benzylenrest,

R' ein Sauerstoff- oder Schwefelatom,

R'" ein Wasserstoffatom oder eine Methylgruppe,

n 1 oder 2

x · 1 oder 2

bedeuten,

und die von diesen Verbindungen ableitbaren Kondensationsprodukte.

2. Verfahren zur Herstellung von schwefelhaltigen Organosilicium-Verbindungen der allgemeinen Formel

$$(RO)_{4-n}$$
-Si $\begin{bmatrix} R'' & R''' \\ R'-S_3 - C - C = CH_2 \\ R'''' \end{bmatrix}_n$

worin R, R', R'', R''', x und n'die in Anspruch 1 aufgeführte Bedeutung haben, dadurch gekennzeichnet, daß man

a) die Mercapto-Verbindung der allgemeinen Formel

(II) $(RO)_3$ -Si-R'-SH,

in der R und R' die obengenannte Bedeutung haben, mit einer Verbindung der allgemeinen Formel

in der R'' und R'' die obengenannte Bedeutung besitzen und X eine Gruppe bedeutet, die ein Halogenatom, eine Alkoxi-Gruppe, eine Amidogruppe oder eine
Hydrazidgruppe ist

auf an sich bekannte Weise miteinander reagieren läßt.

b) Mercapto-Verbindungen der allgemeinen Formel

in der R'' und R''' die unter 1) aufgeführte Bedeutung besitzen, a Werte von 0 - 4 und x Werte von 1 und 2 besitzen kann,

mit einer Verbindung der allgemeinen Formel

$$(RO)_{4-n}$$
-Si-H_n,

in der R die unter 1) angegebenen Bedeutung besitzt,

in Gegenwart von Platin-Verbindungen zur Umsetzung bringt, wobei Verbindungen der allgemeinen Formel, wie unter 1) aufgezeigt, entstehen (I).

3. Verwendung der unter Anspruch 1) aufgeführten Verbindungen

17

als Haftvermittler, zwischen anorganischen oxidischen oder metallischen Oberflächen und Polymeren aus ungesättigten aliphatischen Verbindungen und/oder Styrol.

Troisdorf, den 25. Febr. 1975 OZ 75 017(2437) Dr.Sk/Sch