ANÁLISIS MATEMÁTICO I (LC) - CÁLCULO I (LMA) PARCIAL 2

13 de mayo de 2022

Nombres y Apellido: TOMAS ACHAUAL

Comisión: 3

1	2	3	4	TOTAL	NOTA
2.5	2.5	7.5	2.5	10	10 (die)

- En cada ejercicio JUSTIFIQUE CLARAMENTE sus respuestas.
- No está permitido el uso de calculadoras.
- Enumere todas las hojas y escriba su nombre y apellido en cada una.
- Ejercicio 1 (2.5 Pts.)
- (a) Sea $f(x) = e^{Kx-2}$, con $K \in \mathbb{R}$. Halle el valor de K tal que f(2) = 1.
- (b) Halle la solución de la siguiente ecuación $\ln(5x) \ln(x) = \ln(x+2) + \ln(x-2)$.
 - Ejercicio 2 (2.5 Pts.) Calcule los siguientes límites, si existen. De no existir explique por qué.
 - (a) $\lim_{x \to 4} \frac{4-x}{|x-4|}$
 - (b) $\lim_{x\to 0} \frac{\sin(3x)}{x(x+1)}$
 - Ejercicio 3 (2.5 Pts.) Considere la función $f(x) = \frac{9x^2 1}{3x^2 x}$. Halle, en caso de existir, las asíntotas horizontales y/o verticales de la gráfica de f.
 - Ejercicio 4 (2.5 Pts.)
 - (a) Analice la continuidad de la siguiente función en el punto x=-1. En caso de encontrar una discontinuidad, clasifíquela.

$$f(x) = \begin{cases} \frac{x^2 + 4x + 3}{x + 1} & x < -1\\ \ln(x + 2) - 4 & x \ge -1 \end{cases}$$

(b) Demuestre que la ecuación $\sqrt{x} = x - 1$ tiene al menos una solución en el intervalo (0,1)