Parallel Graph Algorithms

Design and Analysis of Parallel Algorithms

5DV050 Spring 2012

Part 1

Introduction

Overview

- Graphs—definitions, properties, representation
- Minimal spanning tree
 - Prim's algorithm
- Shortest paths (1-to-all)
 - Dijkstra's algorithm
- Shortest paths (all-to-all)
 - Algorithm based on matrix multiplication
 - Dijkstra's algorithm
 - Source partitioned
 - Source parallel
 - Floyd's algorithm
- Transitive closure
- Connected components

Graphs: Definitions

Graphs

ightharpoonup G = (V, E): V is the set of vertices and E is the set of edges

Undirected graphs

▶ An edge $e \in E$ is an unordered pair $\{u, v\}$ where $u, v \in V$

Directed graphs

- ▶ An arc $e \in E$ is an ordered pair (u, v) directed from u to v
- ► A path from u to v is a sequence u,..., v of vertices where consecutive vertices correspond to an arc
 - Simple path: all vertices are distinct
 - ightharpoonup Cycle: u = v
 - ► Acyclic: contains no cycles

Examples of graphs

Graphs: Properties

- A graph is connected if it exists a path between every pair of vertices
- A graph is complete if it exists an edge between every pair of vertices
- ▶ G' = (V', E') is a *sub-graph* of G = (V, E) if $V' \subseteq V$ and $E' \subseteq E$
- A tree is a connected acyclic graph
- A forest consists of several trees
- lacktriangle A graph G=(V,E) is *sparse* if |E| is much smaller than $|V|^2$

Weighted graphs:

- ▶ G = (V, E, w), where w is a real-valued function defined on E (every edge/arc has a value)
- ▶ The weigh of a graph is the sum of the weights of its edges

Matrix representation of graphs

Non-weighted graphs:

$$a_{i,j} = \begin{cases} 1 & \text{if } (v_i, v_j) \in E, \\ 0 & \text{otherwise.} \end{cases}$$

Weighted graphs:

$$a_{i,j} = egin{cases} w(v_i,w_j) & ext{if } (v_i,v_j) \in E, \ 0 & ext{if } i=j, \ \infty & ext{otherwise}. \end{cases}$$

$$A = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 & 0 \end{bmatrix}$$

Suitable for dense graphs

List representation of graphs

- ▶ G = (V, E) is represented by the list Adj[1...|V|] of lists
- ▶ For each $v \in V$, Adj[v] is a linked list of all vertices that has an edge in common with v

Suitable for sparse graphs

Part II

Minimum Spanning Tree (MST)

Minimum Spanning Tree (MST)

- A spanning tree of a graph G = (V, E) is a sub-graph of G that is a tree and contains all vertices of G
- MST for a weighted graph is a spanning tree with minimum weight
- ▶ If G = (V, E) is not connected, then it cannot have an MST but instead has a minimum spanning forest
- ► Assume that *G* is connected, otherwise we find connected components and find an MST Of each component

Prim's algorithm

- Greedy algorithm: Add one edge at a time to the MST
- Select a vertex at random
- Choose an edge with minimum weight between the selected set and the unselected set (break ties arbitrarily)
- Select the unselected vertex
- Repeat until a spanning tree has been created
- ► The constructed tree is an MST

Prim's algorithm: Example (1/6)

Prim's algorithm: Example (2/6)

Prim's algorithm: Example (3/6)

Prim's algorithm: Example (4/6)

Prim's algorithm: Example (5/6)

	a	Ь	С	d	e	f
d[]	1	0	2	1	1	2

Prim's algorithm: Example (6/6)

Prim's algorithm

```
1: PRIM(V, E, w, r)
 2: V_T := \{r\}
 3: d[r] := 0
 4: for all v \in (V - V_T) do
      d[v] := w(r, v) if (r, v) \in E else d[v] := \infty
 6: end for
 7: while V_T \neq V do
 8: Find vertex u \in (V - V_T) such that
      d[u] = \min\{d[v] \mid v \in (V - V_T)\}\
 9: V_T := V_T \cup \{u\}
10: for all v \in (V - V_T) do
         d[v] := \min\{d[v], w(u, v)\}
11:
      end for
12:
13: end while
```

Parallelizing Prim's algorithm

- ightharpoonup d[v] is updated for all v
 - Cannot choose two vertices in parallel
 - ► Cannot parallelize outer while loop
 - Instead we parallelize the inner for loop
- Every process holds a block column of adjacency matrix A:

$$A = \begin{bmatrix} A_1 & A_2 & \cdots & A_p \end{bmatrix}$$

and corresponding part of vector d

- Process P_i holds vertex subset V_i
- ▶ Owner computes: Process P_i responsible for updating its part of d
- Find global minimum (line 8) with all-reduce
- ► Update *d* in parallel (line 10)

Analysis of the parallel Prim's algorithm

Per iteration:

- ▶ Computation (line 10): $\Theta(n/p)$
- ▶ All-reduce (line 8): $\Theta(\log_2 p)$

Total for *n* iterations:

- $T_P(n,p) = \Theta(n^2/p) + \Theta(n \log_2 p)$
- $T_S(n) = \Theta(n^2)$
- ▶ Iso-efficiency condition: $n = \Omega(p \log_2 p)$

Part III

Shortest paths (1-to-all)

Dijkstra's algorithm

Dijkstra's algorithm:

- Essentially identical to Prim's algorithm, except
 - ▶ Instead of d[u] store $\ell[u]$, which is the total weight from r to u

Parallel Dijkstra's algorithm:

- Identical to the parallel Prim's algorithm (with the change above)
- Analysis identical

Part IV

Shortest paths (all-to-all)

Shortest paths (all-to-all)

- Goal is to find the weight of the shortest path between all pairs of vertices
- ► The result is a square matrix $D = (d_{i,j})$ where $d_{i,j}$ is the weight of the shortest path from v_i to v_j

Algorithm based on matrix multiplication

- ▶ Let G = (V, E, w) be represented by the matrix A
- Let $d_{i,j}^{(k)}$ represent the weight of the shortest path from v_i to v_j that contains a maximum of k edges
- (Thus, $D_{i,i}^{(1)} = A$)
- \triangleright Let v_m be a vertex in that path
- ► Then $d_{i,j}^{(k)} = \min_{m} \{d_{i,m}^{(k-1)} + w(v_m, v_j)\}$

Matrix multiplication-based algorithm (continued)

▶ $D^{(k)}$ computed from $D^{(k-1)}$ using modified matrix multiplication:

$$c_{i,j} := \min_{k} a_{i,k} + b_{k,j}$$

(Find k that minimizes $a_{i,k} + b_{k,j}$)

- $D^{(k)} = \underbrace{AA \cdots A}_{k \text{ fact ors}}$
- ▶ But we only need $D^{(n-1)}$
- ▶ Compute $D^{(n-1)}$ using repeated squaring:

$$D^{(1)} \mapsto D^{(2)} \mapsto D^{(4)} \mapsto D^{(8)} \mapsto \cdots \mapsto D^{(n-1)}$$

- ▶ Complexity for matrix multiplication: $\Theta(n^3)$
- ▶ Number of steps: $\Theta(\log_2 n)$
- ▶ Total complexity: $T_P(n, p) = \Theta(n^3 \log_2 n)$

Dijkstra's algorithm applied to all-to-all shortest paths

Source-partitioned approach:

- Distribute the sources.
- Run sequential 1-vertex Dijkstra on all processors in parallel
- ► Complexity: $\Theta(n^2) \cdot \Theta(n/p) = \Theta(n^3/p)$
- Perfectly parallel
- ▶ Degree of concurrency limited to $p = \mathcal{O}(n)$
- ▶ Each processor must have access to the entire graph

Source-parallel approach:

- ▶ Partition processors into groups (e.g., of size \sqrt{p})
- Distributed sources over the groups
- ▶ Run parallel 1-vertex Dijkstra on all processor groups in parallel
- ► Complexity: $\left[\Theta(n^2/\sqrt{p}) + \Theta(n\log_2\sqrt{p})\right] n/\sqrt{p} =$ $\Theta(n^3/p) + \Theta((n^2/\sqrt{p})\log_2 p)$
- ▶ Degree of concurrency $p = \mathcal{O}(n^2)$ (much better)
- ► Each processor needs access only to a sub-graph

Floyd's algorithm

- Given G = (V, E, w)
- ▶ Let $V_k := \{v_1, \dots, v_k\}$ (first k vertices of G)
- For any pair $v_i, v_j \in V$, consider all paths whose intermediate vertices belong to the subset V_k
- Let $p_{i,j}^{(k)}$ be the shortest such path and let $d_{i,j}^{(k)}$ be the corresponding weight
- ▶ If the vertex v_k is *not* in the path, then $p_{i,j}^{(k)} = p_{i,j}^{(k-1)}$
- ▶ If the vertex v_k is in the path, then it can be split into two paths: One from v_i to v_k and one from v_k to v_j where both paths uses vertices only from V_{k-1}
- ▶ In that case, the weight of the path is $d_{i,j}^{(k)} := d_{i,k}^{(k-1)} + d_{k,j}^{(k-1)}$

Floyd's algorithm

```
1: FLOYD(A)

2: D^{(0)} := A

3: for k = 1 to n do

4: for i = 1 to n do

5: for j = 1 to n do

6: d_{i,j}^{(k)} := \min\{d_{i,j}^{(k-1)}, d_{i,k}^{(k-1)} + d_{k,j}^{(k-1)}\}

7: end for

8: end for

9: end for
```

- Similar in structure to matrix multiplication
- Parallelized using SUMMA-style algorithm

Part V

Transitive closure

Transitive closure

▶ If G = (V, E) is a graph, then its *transitive closure* is the graph $G^* = (V, E^*)$, where

$$E^* := \{(v_i, v_j) \mid \text{ exists path from } v_i \text{ to } v_j \text{ in } G\}$$

▶ Computes the connectivity matrix A^* such that $a_{i,j} = 1$ if i = j or a path from v_i to v_j exists in G and $a_{i,j} = \infty$ otherwise

Method 1:

► Set the weights in *G* to 1 and compute all-pairs shortest paths followed by re-interpreting the output

Method 2:

► Modify Floyd's algorithm by replacing min with *logical or* and + with *logical and*:

$$d_{i,j}^{(k)} := d_{i,j}^{(k-1)} \quad \text{or} \quad (d_{i,k}^{(k-1)} \quad \text{and} \quad d_{k,j}^{(k-1)})$$

Part VI

Connected components

Connected components

- ▶ Partition V into maximal disjoint subsets C_1, C_2, \ldots, C_r such that $V = C_1 \cup C_2 \cup \cdots \cup C_r$ and $u, v \in C_i$ if and only if u is reachable from v and vice versa
- ► The graph below has three connected components

Depth-first search based algorithm

- Perform depth-first traversal of the graph to generate a spanning forest
- ► Each tree in the forest defines a connected component

Parallel formulation:

- ▶ Give sub-graph $G_i = (V, E_i)$ to process P_i
- Perform sequential algorithm on each sub-graph in parallel
- Merge forests pair-wise using log₂ p steps

Forest merging

- find(x): Tree to which x belongs
- ▶ union(u, v): Merge trees to which u and v belong
- Merge forest A into forest B:
 - ► Send *A* to processor holding *B*
 - ▶ For each edge (u, v) (there are at most n-1) in A:
 - find(u) in B
 - ▶ find(v) in B
 - Same tree? Do nothing
 - ▶ Different trees? union(u, v) in B
 - Discard A, continue with B
- ▶ Using appropriate set data structure and algorithms, find(x) and union(u, v) have expected constant time complexity
- Complexity (1D block partitioning):

$$T_P(n, p) = \Theta(n^2/p) + \Theta(n \log_2 p)$$

Part VII

Johnson's algorithm

Johnson's algorithm (1-to-all shortest paths)

- Dijkstra's algorithm
 - ▶ Find unprocessed *u* such that

$$d[u] = \min\{d[v] \mid v \text{ unprocessed}\}$$

Update for all unprocessed vertices v:

$$d[v] := \min\{d[v], d[u] + w(u, v)\}$$

- ► For sparse graph, store unprocessed vertices in a priority queue based on d[v] (smallest first)
- ► Take minimum weight vertex from the priority queue
- Update adjacent vertices

Johnson's algorithm

```
1: JOHNSON(V, E, r)
2: Q := V
 3: for all v \in Q do
4: d[v] := \infty
5: end for
6: d[r] := 0
7: while Q \neq \emptyset do
   u := \mathsf{ExtractMin}(Q)
   for each v adjacent to u do
if v \in Q and d[u] + w(u, v) < d[v] then
11:
          d[v] := d[u] + w(u, v)
      end if
12:
   end for
13:
14: end while
```

Parallel Johnson's (centralized queue)

- ► Maintain Q at a centralized location
- Processors compute new values and request updates of Q
- Major bottleneck
- No asymptotic speedup, since $\mathcal{O}(|E|)$ updates that are serialized and each take time $\mathcal{O}(\log_2 n)$ leading to the same complexity as the sequential formulation
- Moreover, only |E|/|V| vertices can be updated in parallel in each iteration, and this number is small since the graph is assumed sparse

Parallel Johnson's (distributed queue)

Distributed queue:

- Manage Q using distributed algorithm
- ► Requires a machine with very low latency to be practical
- ▶ Even if the update complexity is reduced from $\mathcal{O}(\log_2 n)$ to $\mathcal{O}(1)$, we can expect no more than a $\mathcal{O}(\log_2 n)$ speedup since the updates are applied sequentially

Safe vertices:

- ▶ Let u be a vertex with minimal d[u]
- ▶ All vertices v with d[v] = d[u] can be processed in parallel
- If we know that the minimum edge weight is m, then we can relax this to all vertices v with

$$d[v] \le d[u] + m$$

Parallel Johnson's (unsafe vertices)

- Process also unsafe vertices in parallel
- Leads to an algorithm that is no longer equivalent to the sequential algorithm
- Process p vertices at the top of Q in parallel
- Each process maintains its own priority queue
- ▶ The distances might no longer correspond to the shortest paths
- Detect instances of wrongly computed distances and re-process the corresponding vertices

Part VIII

Weighted matchings

Weighted matchings

- ▶ A matching M(G) of a graph G = (V, E) is any sub-graph of G where each vertex is incident to at most one edge
- Let w(e) be the weight of an edge e
- ▶ We define the weight w(G) of a graph G as the sum of all edge weights
- ▶ A maximum weighted matching $M^*(G)$ of G is a matching whose weight $w(M^*(G))$ is maximum among all matchings of G

Matchings and parallel graph partitioning

Sequential greedy weighted matching algorithm

- 1: MATCHING(V, E)
- 2: $M(G) := \emptyset$
- 3: while $E \neq \emptyset$ do
- 4: Pick locally heaviest edge e from E
- 5: Add e to M(G)
- 6: Remove $e = \{u, v\}$ and all edges incident to u and v from E
- 7: end while

Approximates a maximal matching within a factor 2

Parallel greedy weighted matching algorithm

For each vertex v in parallel:

- 1: PMATCHING(V, E)
- 2: $R := \emptyset$
- 3: Initialize N to the neighborhood of v (all vertices adjacent to v)
- 4: Let the *candidate c* be the vertex connected to *v* by the *locally heaviest edge* in *N*
- 5: if $c \neq \bot$ then
- 6: Send req to c
- 7: end if
- 8: while $N \neq \emptyset$ do
- 9: Receive message *m* from vertex *u*
- 10: If m = req, then $R := R \cup \{u\}$
- 11: If m = drop, then $N := N \{u\}$ and update c if u = c and if $c \neq \bot$ send req to c
- 12: If $c \neq \bot$ and $c \in R$, send drop to all vertices in N except c
- 13: end while

