

Verifying Polytime Computability Automatically

Martin Avanzini

Institute of Computer Science University of Innsbruck, Austria

November 12, 2013

Outline

- preliminaries
- path orders
 - for runtime complexity analysis
 - applications in ICC
- 3 automation
- invariance theorem

Implicit Computational Complexity

implicit characterisations of complexity classes

in a nutshell

Example

term rewrite system (TRS) \mathcal{R}_{rev} consists of rules

```
1: [] @ ys \rightarrow ys 2: rev([]) \rightarrow []
```

 $3 \colon (x \colon xs) \otimes ys \to x \colon (xs \otimes ys) \qquad 4 \colon \operatorname{rev}(x \colon xs) \to \operatorname{rev}(xs) \otimes (x \colon [\,])$

in a nutshell

Example

term rewrite system (TRS) \mathcal{R}_{rev} consists of rules

```
1: [] @ ys \rightarrow ys 2: rev([]) \rightarrow []
```

 $3: (x:xs) @ ys \rightarrow x: (xs @ ys) \qquad 4: \quad \operatorname{rev}(x:xs) \rightarrow \operatorname{rev}(xs) @ (x:[])$

rewriting

```
rev(1:(2:(3:[]))) \rightarrow_{\mathcal{R}_{rev}} rev(2:(3:[])) @ (1:[])
```

in a nutshell

Example

term rewrite system (TRS) \mathcal{R}_{rev} consists of rules

```
1: [] @ ys \rightarrow ys 2: rev([]) \rightarrow [] 3: (x:xs) @ ys \rightarrow x: (xs @ ys) 4: rev(x:xs) \rightarrow rev(xs) @ (x:[])
```

rewriting

```
\begin{split} \operatorname{rev}(1:(2:(3:[]))) \to_{\mathcal{R}_{\operatorname{rev}}} \operatorname{rev}(2:(3:[])) & @ (1:[]) \\ \to_{\mathcal{R}_{\operatorname{rev}}} & \cdots \\ \to_{\mathcal{R}_{\operatorname{rev}}} & 3:(2:(1:[])) \end{split}
```

in a nutshell

Example

term rewrite system (TRS) \mathcal{R}_{rev} consists of rules

```
1: [] @ ys \rightarrow ys 2: rev([]) \rightarrow [] 3: (x:xs) @ ys \rightarrow x:(xs @ ys) 4: rev(x:xs) \rightarrow rev(xs) @ (x:[])
```

```
rewriting ≡ computation
```

```
\begin{split} \operatorname{rev}(1:(2:(3:[]))) \to_{\mathcal{R}_{\operatorname{rev}}} \operatorname{rev}(2:(3:[])) & @ (1:[]) \\ \to_{\mathcal{R}_{\operatorname{rev}}} & \cdots \\ \to_{\mathcal{R}_{\operatorname{rev}}} & 3:(2:(1:[])) \end{split}
```

in a nutshell

Example

term rewrite system (TRS) \mathcal{R}_{rev} consists of rules

```
1: [] @ ys \rightarrow ys 2: rev([]) \rightarrow []
```

3: (x:xs) @ $ys \rightarrow x:(xs$ @ ys) 4: $rev(x:xs) \rightarrow rev(xs)$ @ (x:[])

constructor TRS

```
rewriting ≡ computation
```

```
\operatorname{rev}(1:(2:(3:[]))) \to_{\mathcal{R}_{\operatorname{rev}}} \operatorname{rev}(2:(3:[])) @ (1:[])
\to_{\mathcal{R}_{\operatorname{rev}}} \cdots
\to_{\mathcal{R}_{\operatorname{rev}}} 3:(2:(1:[]))
\operatorname{constructor terms} \equiv \operatorname{values}
```

in a nutshell

Example

term rewrite system (TRS) \mathcal{R}_{rev} consists of rules

```
1: [] @ ys \rightarrow ys 2: rev([]) \rightarrow []
```

 $3: (x:xs) @ ys \rightarrow x: (xs @ ys) \qquad 4: \quad \operatorname{rev}(x:xs) \rightarrow \operatorname{rev}(xs) @ (x:[])$

```
rewriting \equiv {\color{red} computation}
```

```
\operatorname{rev}(\mathbf{1}:(\mathbf{2}:(\mathbf{3}:[]))) \to_{\mathcal{R}_{\operatorname{rev}}} \operatorname{rev}(\mathbf{2}:(\mathbf{3}:[])) @ (1:[])
\to_{\mathcal{R}_{\operatorname{rev}}} \cdots
\to_{\mathcal{R}_{\operatorname{rev}}} \mathbf{3}:(\mathbf{2}:(\mathbf{1}:[]))
```

constructor terms \equiv values

constructor TRS

in a nutshell

Example

term rewrite system (TRS) \mathcal{R}_{rev} consists of rules

```
1: [] @ ys \rightarrow ys 2: rev([]) \rightarrow []
```

$$3: (x:xs) @ ys \rightarrow x: (xs @ ys) \qquad 4: \quad \operatorname{rev}(x:xs) \rightarrow \operatorname{rev}(xs) @ (x:[])$$

5:
$$\operatorname{elem}(x:xs) \to x$$
 6: $\operatorname{elem}(x:xs) \to \operatorname{elem}(xs)$

rewriting \equiv computation

$$rev(1:(2:(3:[]))) \rightarrow_{\mathcal{R}_{rev}} rev(2:(3:[])) @ (1:[])$$

$$\to_{\mathcal{R}_{\text{rev}}} 3: (2:(1:[]))$$

constructor terms \equiv values

constructor TRS

Complexity of Term Rewrite Systems

lacktriangle derivation height of term t with respect to relation o

$$\mathsf{dh}(t, \rightarrow) = \mathsf{max}\{\textcolor{red}{\ell} \mid \exists (t_1, \dots, t_\ell). \ t \rightarrow t_1 \rightarrow \dots \rightarrow t_{\textcolor{red}{\ell}}\}$$

f 1 runtime complexity of TRS $\cal R$

```
rc_{\mathcal{R}}(n) = max\{ dh(f(\vec{s}), \rightarrow_{\mathcal{R}}) \mid f(\vec{s}) \text{ and } \vec{s} \text{ are values of size up to } n \}
```

Complexity of Term Rewrite Systems

ightharpoonup derivation height of term t with respect to relation ightarrow

$$\mathsf{dh}(t, \rightarrow) = \mathsf{max}\{\ell \mid \exists (t_1, \dots, t_\ell). \ t \rightarrow t_1 \rightarrow \dots \rightarrow t_\ell\}$$

f 1 runtime complexity of TRS $\cal R$

$$rc_{\mathcal{R}}(n) = max\{ dh(f(\vec{s}), \rightarrow_{\mathcal{R}}) \mid f(\vec{s}) \text{ and } \vec{s} \text{ are values of size up to } n \}$$

 $oldsymbol{2}$ innermost runtime complexity of TRS ${\cal R}$

$$\operatorname{rc}_{\mathcal{R}}^{i}(n) = \max\{\operatorname{dh}(f(\vec{s}), \overrightarrow{j}_{\mathcal{R}}) \mid f(\vec{s}) \text{ and } \vec{s} \text{ are values of size up to } n\}$$

innermost rewriting $\approx \operatorname{eager reduction}$

Part I

Runtime Complexity Analysis

- Small Polynomial Path Order
- Exponential Polynomial Path Order

Presented at...

M. Avanzini and N. Eguchi and G. Moser

A Path Order for Rewrite Systems that Compute Exponential Time Functions.

Proc. of 22nd RTA, LIPIcs, pages 123–138, 2011

M. Avanzini and N. Eguchi and G. Moser

A New Order-theoretic Characterisation of the Polytime Computable Functions.

Proc. of 10th APLAS, LNCS, pages 280–295, 2012

basics

▶ TRS \mathcal{R} compatible with $>_{\mathsf{spop}*}$ if

$$\mathcal{R}\subseteq >_{\mathsf{spop}*}$$

 $l>_{\mathsf{spop}*} r \quad \mathsf{for all rules} \ l \to r \in \mathcal{R}$

basics

lacktriangle TRS ${\cal R}$ compatible with $>_{\sf spop*}$ if

$$\mathcal{R}\subseteq >_{\mathsf{spop}*}$$

$$l >_{\mathsf{spop}*} r$$
 for all rules $l \to r \in \mathcal{R}$

 $oldsymbol{1}$ ensures termination of $\mathcal R$

basics

▶ TRS \mathcal{R} compatible with $>_{\mathsf{spop}*}$ if

$$\mathcal{R} \subseteq >_{\mathsf{spop}*}$$

$$l >_{\mathsf{spop}*} r$$
 for all rules $l \to r \in \mathcal{R}$

- $oldsymbol{0}$ ensures termination of \mathcal{R}
- $oldsymbol{2}$ embodies predicative recursion on $\mathcal R$

Stephen Bellantoni and Stephen A. Cook

A New Recursion-Theoretic Characterization of the Polytime Functions.

Computational Complexity, Vol. 2, pages 97–110, 1992

basics

ightharpoonup TRS ${\cal R}$ compatible with $>_{\sf spop*}$ if

$$\mathcal{R}\subseteq >_{\mathsf{spop}*}$$

$$l >_{\mathsf{spop}*} r$$
 for all rules $l \to r \in \mathcal{R}$

- $oldsymbol{0}$ ensures termination of \mathcal{R}
- $oldsymbol{2}$ embodies predicative recursion on $\mathcal R$

ingredients

• precedence > on function symbols

constructors are minimal

$$f > g$$
 \approx "f uses g"

2 separation of arguments

$$f(\underbrace{n_1,\ldots,n_l}_{normal};\underbrace{n_{l+1},\ldots,n_{l+k}}_{safe})$$

with parameter substitution

Definition

$$s = f(s_1, \dots, s_k; s_{k+1}, \dots, s_{k+l}) >_{\text{spop}^*} t \text{ if }$$

- **1** $s_i \geqslant_{\text{spop}^*} t$ for some argument s_i
- 2 $t = g(t_1, ..., t_m; t_{m+1}, ..., t_{m+n})$ where f > g
 - $f(s_1, \ldots, s_k; s_{k+1}, \ldots, s_{k+l}) \triangleright_n t_j$ for all normal arguments t_j
 - $f(s_1, \ldots, s_k; s_{k+1}, \ldots, s_{k+l}) >_{\text{spop}^*} t_j$ for all safe arguments t_j
 - t contains symbol f at most once
- 3 $t = f(t_1, \ldots, t_k; t_{k+1}, \ldots, t_{k+l})$ where $f \in \mathcal{D}_{rec}$
 - $\langle s_1, \ldots, s_k \rangle >_{\mathsf{spop}^*}^{\mathsf{prod}} \langle t_1, \ldots, t_k \rangle$
 - $s>_{\mathsf{spop}^*} t_{k+1}, \ldots, s>_{\mathsf{spop}^*} t_{k+l}$, f does not occur in t_{k+1}, \ldots, t_{k+l} .

main result

Theorem

Suppose $\mathcal R$ is constructor TRS compatible with or $>_{\mathsf{spop}^*}$.

Then

▶ the *innermost runtime complexity* of \mathcal{R} is polynomially bounded.

main result

Theorem

Suppose $\mathcal R$ is *constructor* TRS compatible with or $>_{\mathsf{spop}^*}$. Then

- ▶ the *innermost runtime complexity* of \mathcal{R} is polynomially bounded.
- ▶ degree of the polynomial is given by the maximal depth of recursion.

"counts nestings of recursive definitions"

applications in ICC

Definition

constructor TRS R is predicative recursive (of degree d) if

- $\textbf{1} \ \mathcal{R} \ \text{is compatible with} >_{\mathsf{spop}^*}$
- ${f 2}$ recursion depth of ${\cal R}$ is ${\it d}$

applications in ICC

Definition

constructor TRS R is predicative recursive (of degree d) if

- ${\bf 1} {\bf 1} {\bf R}$ is compatible with $>_{\sf spop^*}$
- $oldsymbol{2}$ recursion depth of \mathcal{R} is d

Theorem

characterisation of FP

The following classes of functions are equivalent:

- The class of functions computed by predicative recursive TRSs.
- The class FP of functions computable in polynomial time on deterministic Turing machines.

Exponential Path Order

Definition

$$s = f(s_1, \dots, s_k; s_{k+1}, \dots, s_{k+l}) >_{\text{epo}*} t \text{ if }$$

- **1** $s_i \geqslant_{spop*} t$ for some argument s_i
- 2 $t = g(t_1, ..., t_m; t_{m+1}, ..., t_{m+n})$ where f > g
 - $f(s_1, \ldots, s_k; s_{k+1}, \ldots, s_{k+l}) \triangleright_n t_i$ for all normal arguments t_i
 - $f(s_1, \ldots, s_k; s_{k+1}, \ldots, s_{k+l}) >_{\text{epo}*} t_i$ for all safe arguments t_i
 - t contains symbol f at most once
- **3** $t = f(t_1, \ldots, t_k; t_{k+1}, \ldots, t_{k+l})$ where

 - $\begin{array}{l} \bullet \ \langle s_1, \ldots, s_k \rangle >_{\text{epo}\star}^{\text{lex}'} \ \langle t_1, \ldots, t_k \rangle \\ \bullet \ s >_{\text{epo}\star} \ t_{k+1}, \ \ldots, \ s >_{\text{epo}\star} \ t_{k+l}, \ f \ \text{does not occur in} \ t_{k+1}, \ldots, \end{array}$

Exponential Path Order

main result

Theorem

Suppose $\mathcal R$ is constructor TRS compatible with $>_{\text{epo}\star}$.

Then the *innermost runtime complexity* of \mathcal{R} is in $2^{\mathcal{O}(n^k)}$ $(k \in \mathbb{N})$.

Exponential Polynomial Path Orders

order-theoretic characterisation of FEXP

Definition

constructor TRS $\mathcal R$ is predicative nested recursive if $\mathcal R$ is compatible with $>_{\mathtt{epo}\star}$

Theorem

The following classes of functions are equivalent:

- The class of functions computed by predicative nested recursive TRSs.
- The class FEXP of functions computable in exponential time on deterministic Turing machines.

Part II

Automation

- ► TCT
- Complexity Framework
- Complexity Processors

Presented at...

Automated Implicit Computational Complexity Analysis (System Description).

Proc. of 4th IJCAR, LNCS, pages 132–138, 2008

M. Avanzini and G. Moser

A Combination Framework for Complexity. Proc. of 24th RTA, LIPIcs, pages 55–70, 2013

M. Avanzini and G. Moser

Tyrolean Complexity Tool: Features and Usage (System Description). Proc. of 24th RTA, LIPIcs, pages 71–80, 2013

Tyrolean Complexity Tool

http://cl-informatik.uibk.ac.at/software/tct

Tyrolean Complexity Tool

history

2008 version 1.0

extension to termination prover T_TT_2

3 dedicated complexity techniques

2009 version 1.5

new implementation

- ▶ in Haskell
- 9 methods implemented
- \triangleright \approx 3.400 lines of code

2013 version 2.0

current version

- ▶ 23 methods implemented
- $\triangleright \approx 21.000$ lines of code, of which 4.000 lines of comment

complexity problem

- ▶ complexity problem \mathcal{P} is tuple $\langle \rightarrow, \mathcal{T} \rangle$
 - $oldsymbol{0}
 ightarrow ext{is binary relation on terms}$

- $oldsymbol{0}{\mathcal{T}}$ is set of starting terms
- ightharpoonup complexity function of $\mathcal P$ is

$$\operatorname{cp}_{\mathcal{P}}(n) := \max\{\operatorname{dh}(t, \to) \mid t \in \mathcal{T} \text{ is term of size upto } n\}$$

complexity problem

- ightharpoonup complexity problem \mathcal{P} is tuple $\langle \mathcal{S}/\mathcal{W}, , \mathcal{T} \rangle$
 - $\mathbf{0} \rightarrow \mathsf{is} \mathsf{ binary relation on terms}$

$$\longrightarrow_{\mathcal{S}/\mathcal{W}} := \longrightarrow_{\mathcal{W}}^* \cdot \longrightarrow_{\mathcal{S}} \cdot \longrightarrow_{\mathcal{W}}^*$$

- \mathcal{S}, \mathcal{W} are TRSs
- \bigcirc \mathcal{T} is set of starting terms
- ightharpoonup complexity function of \mathcal{P} is

$$\operatorname{cp}_{\mathcal{P}}(n) := \max\{\operatorname{dh}(t, \to) \mid t \in \mathcal{T} \text{ is term of size upto } n\}$$

complexity problem

- ightharpoonup complexity problem \mathcal{P} is tuple $\langle \mathcal{S}/\mathcal{W}, , \mathcal{T} \rangle$
 - $\mathbf{0} \rightarrow \mathsf{is} \mathsf{ binary relation on terms}$

$$\longrightarrow_{\mathcal{S}/\mathcal{W}} := \longrightarrow_{\mathcal{W}}^* \cdot \longrightarrow_{\mathcal{S}} \cdot \longrightarrow_{\mathcal{W}}^*$$

- S,W are TRSs
- \bigcirc \mathcal{T} is set of starting terms
- ightharpoonup complexity function of \mathcal{P} is

$$\operatorname{cp}_{\mathcal{P}}(n) := \max\{\operatorname{dh}(t, \to) \mid t \in \mathcal{T} \text{ is term of size upto } n\}$$

 \triangleright runtime complexity problem if in terms of \mathcal{T} , arguments are values

complexity problem

- ▶ complexity problem \mathcal{P} is tuple $\langle \mathcal{S}/\mathcal{W}, \mathcal{Q}, \mathcal{T} \rangle$
 - $0 \rightarrow is binary relation on terms$

$$\underline{\mathcal{Q}}_{\mathcal{S}/\mathcal{W}} := \underline{\mathcal{Q}}_{\mathcal{W}}^* \cdot \underline{\mathcal{Q}}_{\mathcal{S}} \cdot \underline{\mathcal{Q}}_{\mathcal{W}}^*$$

- \mathcal{S}, \mathcal{W} are TRSs
- $s \xrightarrow{\mathcal{Q}}_{\mathcal{R}} t$ if $s \to_{\mathcal{R}} t$ and arguments of redex in s are \mathcal{Q} normal forms
- $2 \mathcal{T}$ is set of starting terms
- ightharpoonup complexity function of \mathcal{P} is

$$\operatorname{cp}_{\mathcal{P}}(n) := \max\{\operatorname{dh}(t, \to) \mid t \in \mathcal{T} \text{ is term of size upto } n\}$$

- runtime complexity problem if in terms of \mathcal{T} , arguments are values
- ▶ innermost complexity problem if normal forms of $\mathcal Q$ are normal forms of $\mathcal S \cup \mathcal W$

processors and proofs

complexity processor is inference rule

$$\frac{\vdash \mathcal{P}_1 \colon f_1 \quad \cdots \quad \vdash \mathcal{P}_n \colon f_n}{\vdash \mathcal{P} \colon f}$$

- ▶ complexity judgement is statement $\vdash P$: f
 - ullet $\mathcal P$ is a complexity problem
 - $f: \mathbb{N} \to \mathbb{N}$ is bounding function
 - valid if $cp_{\mathcal{P}}(n) \in \mathcal{O}(f(n))$

A Framework For Complexity Analysis of TRSs

processors and proofs

complexity processor is inference rule

$$\frac{\vdash \mathcal{P}_1 \colon f_1 \quad \cdots \quad \vdash \mathcal{P}_n \colon f_n}{\vdash \mathcal{P} \colon f}$$

- ▶ complexity judgement is statement $\vdash \mathcal{P}$: f
 - ullet ${\cal P}$ is a complexity problem
 - $f: \mathbb{N} \to \mathbb{N}$ is bounding function
 - valid if $cp_{\mathcal{P}}(n) \in \mathcal{O}(f(n))$
- ▶ complexity proof of $\vdash P$: f is a deduction using sound processors

Small Polynomial Path Order

as complexity processor

$$\frac{\mathcal{S} \subseteq >_{\mathsf{spop}^*} \quad \mathcal{W} \subseteq \geqslant_{\mathsf{spop}^*}}{\vdash \langle \mathcal{S}/\mathcal{W}, \mathcal{Q}, \mathcal{T} \rangle \colon n^d}$$

for innermost runtime complexity problem $\langle \mathcal{S}/\mathcal{W}, \mathcal{Q}, \mathcal{T} \rangle$, where

- d is maximal depth of recursion
- $ightharpoonup \mathcal{S} \cup \mathcal{W}$ is a constructor TRS

Small Polynomial Path Order

as complexity processor

$$\frac{\mathcal{S} \subseteq >_{\mathsf{spop}^*} \quad \mathcal{W} \subseteq \geqslant_{\mathsf{spop}^*}}{\vdash \langle \mathcal{S}/\mathcal{W}, \mathcal{Q}, \mathcal{T} \rangle \colon n^d}$$

for innermost runtime complexity problem $\langle \mathcal{S}/\mathcal{W}, \mathcal{Q}, \mathcal{T} \rangle$, where

- d is maximal depth of recursion
- $\triangleright S \cup W$ is a constructor TRS

Extensions...

- permutation of argument positions
- quasi-precedences
- argument filterings

Further Processors

- complexity pairs
 P-monotone complexity pairs
- dependency pairs
 weak dependency pairs, dependency tuples
- simplifications
 usable rules, rule simplifications, predecessor estimation, relative
 decomposition
- call graph analysis dependency graph decomposition

generalisednovel

Experimental Evaluation

testsuite

- ▶ RC: set of runtime complexity examples
- ► RaML: straight forward translations of first-order ML programs

setup

- ▶ 16 Intel[®] Core[™] i7-3930K (3.20GHz), 32Gb RAM
- ▶ 300 secs timeout

tools

► AProVE for innermost rewriting

http://aprove.informatik.rwth-aachen.de/

► C_aT for full rewriting

http://cl-informatik.uibk.ac.at/software/cat/

Experimental Results

		R	RaML			
	full		innermost		innermost	
Answer	TCT	C_aT	TCT	AProVE	TCT	AProVE
$\mathcal{O}(1)$	1/0.90	_	1/0.09	1/1.06	_	_
$\mathcal{O}(n^1)$	7/9.22	6/0.42	8/0.91	8/2.05	3/10.21	2/2.89
$\mathcal{O}(n^2)$	2/4.61	_	11/13.02	11/2.53	13/17.45	6/11.01
$\mathcal{O}(n^3)$	1/44.64	_	3/22.59	3/6.20	3/63.08	1/11.95
$\mathcal{O}(n^4)$	1/52.85	_	2/77.99	_	1/159.03	_
$\mathcal{O}(n^5)$	-	_	2/84.33	_	1/149.30	-
Success	12/14.35	6/0.42	27/20.11	23/2.78	21/34.32	8/9.31
Maybe	_	_	_	1/168.07	_	_
Timeout	18	_	3	6	1	13

Table: Overview experimental evaluation on data set RC and RaML.

Experimental Results

		R	RaML innermost			
	full				innermost	
Answer	TCT	C_aT	TCT	AProVE	TCT	AProVE
$\mathcal{O}(1)$	1/0.90	_	1/0.09	1/1.06	_	_
$\mathcal{O}(n^1)$	7/9.22	6/0.42	8/0.91	8/2.05	3/10.21	2/2.89
$\mathcal{O}(n^2)$	2/4.61	_	11/13.02	11/2.53	13/17.45	6/11.01
$\mathcal{O}(n^3)$	1/44.64	_	3/22.59	3/6.20	3/63.08	1/11.95
$\mathcal{O}(n^4)$	1/52.85	_	2/77.99	_	1/159.03	_
$\mathcal{O}(n^5)$	_	_	2/84.33	-	1/149.30	_
Success	12/14.35	6/0.42	27/20.11	23/2.78	21/34.32	8/9.31
Maybe	_	_	_	1/168.07	_	_
Timeout	18	_	3	6	1	13
due to DGD	25%	_	44%	-	57%	-

Table: Overview experimental evaluation on data set RC and RaML.

Part III

Invariance Theorem

Presented at...

M. Avanzini and G. Moser

Closing the Gap Between Runtime Complexity and Polytime

Computability.

Proc. of 21st RTA, LIPIcs, pages 33-48, 2010

Invariance Thesis

"... reasonable universal machines can simulate each other within a polynomially bounded overhead in time and a constant-factor overhead in space."

Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity (A), pp. 1-66, 1990

Invariance Thesis

unitary cost model a priory not invariant

Invariance Thesis

unitary cost model a priory not invariant

solution

Term Graph Rewriting

in a nutshell

► allow sharing in terms

term graphs

Term Graph Rewriting

in a nutshell

► allow sharing in terms

term graphs

never duplicate, introduce sharing instead

Term Graph Rewriting

in a nutshell

allow sharing in terms

term graphs

- never duplicate, introduce sharing instead
- runtime complexity is an invariant cost model for term graph rewriting

Adequacy

connecting term rewriting and term graph rewriting

Definition

Let G be a set of term graphs.

Relation $\longrightarrow_{\mathcal{G}}$ on graphs is adequate (wrt. G) for relation $\rightarrow_{\mathcal{R}}$ on terms if

1 Surjectivity of unfolding on G:

every term t has a graph representation in G

2 Closure under reductions of G:

$$S \in G \text{ and } S \longrightarrow_G T \implies T \in G$$

3 Preservation of reductions:

$$S \in G \text{ and } S \longrightarrow_G T \implies \operatorname{term}(S) \rightarrow_{\mathcal{R}} \operatorname{term}(T)$$

4 Simulation of reductions:

$$S \in G$$
 and $\operatorname{term}(S) \to_{\mathcal{R}} t \implies S \longrightarrow_{\mathcal{G}} T$ where $\operatorname{term}(T) = t$

Sources of Inadequacy

(i) shared redexes

on term graphs ...

...on terms

Sources of Inadequacy

(ii) graph matching

on terms ...

...on term graphs

Adequacy

by folklore

for every TRS $\mathcal{R},$ there exists a GRS $\mathcal{G}_{\mathcal{R}}$ such that the relation

$$\longrightarrow_{\mathcal{G}_{\mathcal{R}}} + \text{sharing} + \text{unsharing}$$

is adequate for $o_{\mathcal R}$

Adequacy

by folklore

for every TRS $\mathcal{R},$ there exists a GRS $\mathcal{G}_{\mathcal{R}}$ such that the relation

$$\longrightarrow_{\mathcal{G}_{\mathcal{R}}}$$
 + sharing + unsharing

is adequate for $o_{\mathcal R}$

however...

uncontrolled unsharing might blow up graph sizes exponentially

restricted sharing and unsharing

define for term graphs S, T

restricted sharing and unsharing

define for term graphs S, T

- **1** S ▶ $_p$ T : \Leftrightarrow $S <math>\sqsupset_v^u T$ for nodes $u, v \in S$ strictly below position p
- **2** $T \triangleleft_p S : \Leftrightarrow T \stackrel{u}{\vee} \sqsubseteq S$ and $u \in S$ unshared node above position p

restricted sharing and unsharing

define for term graphs S, T

- **1** $S \triangleright_p T : \Leftrightarrow S \sqsupset_v^u T$ for nodes $u, v \in S$ strictly below position p
- 2 $T \triangleleft_p S :\Leftrightarrow T \stackrel{u}{\vee} \sqsubset S$ and $u \in S$ unshared node above position p

restricted sharing and unsharing

define for term graphs S, T

- **1** S ▶ $_p$ T : \Leftrightarrow $S \supseteq_v^u T$ for nodes $u, v \in S$ strictly below position p
- 2 $T \triangleleft_p S :\Leftrightarrow T \stackrel{u}{\vee} \sqsubseteq S$ and $u \in S$ unshared node above position p

Adequacy Theorem

full rewriting

Theorem

the following relations are adequate for $\rightarrow_{\mathcal{R}}$:

▶ in general

$$S \leadsto_{\mathcal{G}_{\mathcal{R}}} T : \iff S \lhd_p^! \cdot \blacktriangleright_p^! \cdot \longrightarrow_{\mathcal{G}_{\mathcal{R}},p} T$$

 \blacktriangleright when \mathcal{R} is left-linear

$$S \longleftrightarrow_{\mathcal{G}_{\mathcal{R}}} T :\iff S \lhd_{p}^{!} \cdot \longrightarrow_{\mathcal{G}_{\mathcal{R}},p} T$$

Adequacy Theorem

full rewriting

Theorem

the following relations are adequate for $\rightarrow_{\mathcal{R}}$:

▶ in general

$$S \leadsto_{\mathcal{G}_{\mathcal{R}}} T : \iff S \lhd_p^! \cdot \blacktriangleright_p^! \cdot \longrightarrow_{\mathcal{G}_{\mathcal{R}}, p} T$$

 \blacktriangleright when \mathcal{R} is left-linear

$$S \longleftrightarrow_{\mathcal{G}_{\mathcal{R}}} T :\iff S \lhd_{p}^{!} \cdot \longrightarrow_{\mathcal{G}_{\mathcal{R}},p} T$$

Lemma space lemma

$$S \Leftrightarrow_{G_{\mathcal{D}}}^{\ell} T \text{ or } S \Leftrightarrow_{G_{\mathcal{D}}}^{\ell} T \implies \text{size}(T) \in \mathcal{O}(\ell \cdot \text{size}(S) + \ell^2)$$

Adequacy Theorem

innermost rewriting

Theorem

the following relations are adequate for $\xrightarrow{i}_{\mathcal{R}}$ on NF-sharing graphs:

▶ in general

$$S \overset{\mathsf{i}}{\longmapsto}_{\mathcal{G}_{\mathcal{R}}} T :\iff S \overset{\mathsf{i}}{\longmapsto}_{p} \cdot \overset{\mathsf{i}}{\longrightarrow}_{\mathcal{G}_{\mathcal{R}},p} T$$

 \triangleright when \mathcal{R} is left-linear

$$S \xrightarrow{i}_{\mathcal{G}_{\mathcal{P}}} T$$

Lemma space lemma

$$S \stackrel{i}{\mapsto}_{G_{\mathcal{D}}}^{\ell} T$$
 or $S \stackrel{i}{\longrightarrow}_{G_{\mathcal{D}}}^{\ell} T \implies \operatorname{size}(T) \in \mathcal{O}(\operatorname{size}(S) + \ell)$

deterministic case

Theorem

deterministic invariance theorem

Let \mathcal{R} be a confluent TRS with $rc_{\mathcal{R}}(n) \in \mathcal{O}(g(n))$.

Any function computed by \mathcal{R} is computable in time p(n, g(n)) on a *deterministic Turing machine*, where

$$p(n,\ell) \in \mathcal{O}(\log(\ell+n)^3 \cdot (\ell \cdot n^3 + \ell^4))$$

deterministic case

Theorem

deterministic invariance theorem

Let \mathcal{R} be a confluent TRS with $rc_{\mathcal{R}}(n) \in \mathcal{O}(g(n))$.

Any function computed by \mathcal{R} is computable in time p(n,g(n)) on a *deterministic Turing machine*, where

$$p(n,\ell) \in \mathcal{O}(\log(\ell+n)^3 \cdot (\ell \cdot n^3 + \ell^4))$$

Corollary

Polynomial Time

Let \mathcal{R} be a confluent TRS with $rc_{\mathcal{R}}(n) \in \mathcal{O}(n^k)$ for some $k \ge 0$.

Then all functions computed by \mathcal{R} are computable in polynomial time, i.e, are in FP.

non-deterministic case

Theorem

non-deterministic invariance theorem

Let \mathcal{R} be a TRS with $rc_{\mathcal{R}}(n) \in \mathcal{O}(g(n))$.

Any relation computed by \mathcal{R} is computable in time p(n,g(n)) on a non-deterministic Turing machine, where

$$p(n,\ell) \in \mathcal{O}(\log(\ell \cdot n)^2 \cdot (\ell^3 \cdot n^2 + \ell^5))$$

non-deterministic case

Theorem

non-deterministic invariance theorem

Let \mathcal{R} be a TRS with $rc_{\mathcal{R}}(n) \in \mathcal{O}(g(n))$.

Any relation computed by $\mathcal R$ is computable in time p(n,g(n)) on a non-deterministic Turing machine, where

$$p(n,\ell) \in \mathcal{O}(\log(\ell \cdot n)^2 \cdot (\ell^3 \cdot n^2 + \ell^5))$$

Corollary

function problems computable in non-deterministic time

Let \mathcal{R} be a TRS with $rc_{\mathcal{R}}(n) \in \mathcal{O}(n^k)$ for some $k \geq 0$.

Then the function problem associated with any relation computed by ${\mathcal R}$ is in ENP.

Thanks!