MÈTODES NUMÈRICS I

Grau de Matemàtiques. Curs 2016/17. Semestre de tardor

PRÀCTICA 3

L'objectiu és explorar de quina manera depenen les arrels d'un polinomi d'un dels seus coeficients. Concretament, es calcularà la **propagació de l'error relatiu** d'una dada cap a diversos resultats.

Pel que fa a eines del llenguatge C, caldrà usar vectors i funcions.

Exercici 1 [Pertorbació d'un polinomi]

Primera part

Feu un programa main tal que:

• Llegeixi un valor enter n > 0 i, seguidament, n valors reals: $z_0, z_1, z_2, \ldots, z_{n-1}$. Els valors z_k es guardaran en un vector z.

Nota. No doneu cap $z_i = 0$, ja que, per a calcular la variació relativa del resultat, caldrà dividir per z_i .

• Calculi i escrigui els coeficients c_i del polinomi

$$p(x) = \prod_{k=0}^{n-1} (x - z_k) = c_0 + c_1 x + c_2 x^2 + \ldots + c_n x^n.$$

Els coeficients c_i es guardaran en un vector c. El seu càlcul es fa recurrentment:

- Inicialment p(x) = 1 o, equivalentment, $c = (1, 0, 0, \dots, 0)$.
- Per a cada k = 0, 1, 2, ..., n 1, s'actualitza p(x) multiplicant-lo per $(x z_k)$. Realment, heu d'actualitzar les components del vector c:
 - * Després de multiplicar per $(x-z_0)$ ha de ser $c=(-z_0,1,0,\ldots,0)$.
 - * Després de multiplicar per $(x-z_1)$ ha de ser $c=(z_0z_1,-z_0-z_1,1,0,\ldots,0)$.
 - * etc.

Deduïu les fórmules d'actualització dels coeficients c_i i programeu-les.

Segona part (continuació del programa anterior)

Llegiu un valor $\epsilon \approx 0$ (per exemple 1.e-6) i modifiqueu lleugerament el polinomi p(x) així: el coeficient c_{n-1} es multiplica per $(1+\epsilon)$. O sigui, es fa una pertorbació del coeficient del monomi x^{n-1} , d'error relatiu $|\epsilon|$.

Heu de programar la cerca de les noves arrels de p(x) (siguin y_k), les quals seran pròximes a les arrels inicials z_k , i després calcular la variació relativa que han tingut $\delta_k \equiv (y_k - z_k)/z_k$. El **factor de propagació de l'error relatiu** de l'arrel k-èsima és, doncs, δ_k/ϵ .

Per a trobar les noves arrels heu de fer:

• $\forall k = 0, 1, ..., n-1$, crideu una funció que apliqui el *mètode de Newton-Raphson* a l'equació p(x) = 0, a partir de l'aproximació inicial $x_0 = z_k$. El prototipus seria int newton(int n, double *c, double *x);

La funció retorna un valor int, el qual indica si hi ha hagut, o no, convergència (segons els criteris del punt que ve a continuació). Si n'hi ha hagut, l'arrel és a x.

• A la funció, heu d'implementar la fórmula de Newton-Raphson

$$x_{i+1} = x_i - \frac{p(x_i)}{p'(x_i)}, \ \forall i \ge 0.$$

Fixeu una precisió desitjada (1.e-10 per exemple), i un nombre màxim d'iteracions permeses (8, per exemple). Es pararan les iteracions,

- o bé quan la distància entre els dos últims iterats sigui menor que la precisió: llavors es considerarà l'últim iterat com la solució buscada;
- o bé quan s'esgotin les iteracions permeses sense aconseguir la precisió desitjada:
 llavors es considerarà que no s'ha pogut trobar l'arrel.
- L'avaluació del polinomi p(x) i de la seva derivada p'(x) en un valor x = r s'ha de programar mitjançant una funció de prototipus

void horner(int n, double *c, double z, double p[2]);
en la qual s'implementa l'algorisme de Horner (amb derivada primera):

- Inicialització:

$$\begin{cases} p = c_n \\ p' = 0 \end{cases}$$

- Recurrència:

$$\forall j = n - 1, n - 2, \dots, 1, 0 \begin{cases} p \leftarrow c_j + r * p \\ p' \leftarrow p + r * p' \end{cases}$$

Exercici 2 (voluntari)

Feu una explotació sistemàtica del programa de l'exercici 1 per tal d'obtenir gràfiques de les funcions $z_k = z_k(\epsilon)$ en un entorn de $\epsilon = 0$ (continuació de les arrels).

Nota. Depenent de quan gran és n, de la posició relativa dels zeros inicials z_k i del pas de variació de ϵ , hi ha problemes en la convergència de Newton-Raphson.

Un exemple amb pocs problemes és: n = 6, $x_k = k + 1 \ \forall k = 0 \div 5$, i ϵ variant amb pas 1.e - 6 fins al valor 1.e - 3.