Congratulations! You passed!

received 100%

Latest Submission Grade 100%

To pass 80% or higher

Go to next item

1	Whatis	the var	iance of	f tha f	ollowi	ing da	taset?
1.	VVIIaLIS	tile vai	ialice oi	ı une i	Ollow	1112 U	ılasel:

1 / 1 point

$$\mathcal{D} = \{1, 2, 3, 2\}$$

Please use decimal numbers in your answer.

0.5

Well done!

2. What is the standard deviation of the dataset $\mathcal{D}=\{1,2,3,2\}$ which we already used in the previous question? You should provide a decimal number as your answer.

1 / 1 point

0.707

✓ Correct

Indeed: You just needed to take the square-root of the variance.

3. What would be the new variance if we added 1 to each element in the dataset $\mathcal{D}=\{1,2,3,2\}$ from Question 1? Please use decimal numbers in your answer.

1 / 1 point

0.5

⊘ Correct

Yes: adding a constant to the dataset does not change its variance.

4. What would be the new variance if we multiplied each sample in a dataset ${\mathcal D}$ by 2.

1 / 1 point

- O The variance of the new dataset will not change.
- \bigcirc The variance of the new dataset will be two times the variance of \mathcal{D} .
- lacktriangle The variance of the new dataset will be four times the variance of ${\mathcal D}.$

✓ Correct

Well done!

5. Assuming we have mean $ar x_{n-1}$ and variance σ_{n-1}^2 for some dataset $\mathcal D_{n-1}$ with n-1 samples. What would be the variance σ_n^2 if we add a new element x_* to the dataset (assuming you have computed the new sample mean \bar{x}_n)?

1 / 1 point

$$\bigcirc \sigma_n^2 = \frac{n-2}{n-1}\sigma_{n-1}^2 + \frac{1}{n}(x_* - \bar{x}_{n-1})(x_* - \bar{x}_n)$$

$$\bigcirc \sigma_n^2 = \frac{n-1}{n} \sigma_{n-1}^2 + \frac{1}{n-1} (x_* - \bar{x}_{n-1}) (x_* - \bar{x}_n)$$

$$\bigcirc \ \sigma_n^2 = \frac{n-1}{n} \sigma_{n-1}^2 + \frac{1}{n} (x_* - \bar{x}_{n-1})^2$$

Great job!