Тмнма Mа Θ нматік Ω NΚΑΙ ΕΦΑΡΜΟΣΜΕΝΩΝ Μαθηματικών, ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ, ΗΡΑΚΛΕΙΟ ΚΡΗΤΗΣ

МЕМ-254 АРІӨМНТІКН ГРАММІКН АЛГЕВРА XEIMEPINO EEAMHNO 2016 Εργαστηρίο 7 13-12-2016 Η ΜΕΘΟΔΟΣ ΤΩΝ ΔΥΝΑΜΕΩΝ

- 1. Εισαγωγή. Έστω $M\in\mathbb{N}$ φυσικός αριθμός και $A\in\mathbb{R}^{M\times M}$ ένας διαγωνοποιήσιμος πίνακας ο οποίος να έχει ιδιοτιμή που να είναι απλή, θετική και κατάπόλυτη τιμή μεγαλύτερη από τις υπόλοιπες.
- 2. Περιγραφή του αλγορίθμου. Ο αλγόριθμος αποτελείται από τα ακόλουθα βήματα:

Βήμα 2.1. Επιλέγουμε αρχική τιμή $z\in\mathbb{R}^{\scriptscriptstyle M}$ τέτοια ώστε $\|z\|_\infty=1$, π.χ. $z=e^1$. Επίσης επιλέγουμε θετική ανοχή $\varepsilon>0$, π.χ. $\varepsilon=10^{-6}$ και θέτουμε $x^{(0)}=z$.

Βήμα 2.2. Για $n \in \mathbb{N}$, υπολογίζουμε τα διανύσματα

$$y = Ax^{(n-1)}, \quad x^{(n)} := \frac{y}{\|y\|_{\infty}}.$$

Αν $\|x^{(m)} - x^{(m-1)}\|_{\infty} < \varepsilon$ τότε σταματάμε.

 ${f B}$ ήμα ${f 2.3.}$ Όταν τερματίζει ο αλγόριθμος τότε το $\lambda=\|y\|_\infty$ είναι μια προσέγγιση της ιδιοτιμής και το $x^{(m)}$ μια προσέγγιση του αντιστοιχου ιδιοδιανύσματος.

3. Παράδειγμα.

$$A = \begin{pmatrix} 1 & -3 \\ -3 & 1 \end{pmatrix} \in \mathbb{R}^{2 \times 2}$$

 $A=\left(\begin{array}{cc} 1 & -3\\ -3 & 1 \end{array}\right)\in \mathbb{R}^{2\times 2}.$ Ο A έχει ιδιοτιμές $\lambda\in\{4,-2\}$ και αντίστοιχα ιδιοδιανύσματα $v^1=(1,-1)^{\scriptscriptstyle T},\,v^2=(1,1)^{\scriptscriptstyle T}.$