Algebra II (ISIM), lista 2 (19.10.2017).

p oznacza liczbę pierwszą, F, G, H sa grupami.

Teoria: Podgrupy $\langle a \rangle$ i $\langle A \rangle$ dla $a \in G, A \subseteq G$. Rząd ord(a) elementu w grupie. Grupy cykliczne: definicja, wyliczenie. Warstwy podgrupy. $|G| = [G:K] \cdot |K|$. Twierdzenie Lagrange'a: rząd podgrupy dzieli rząd grupy. Rząd elementu grupy dzieli rząd grupy.

Homomorfizmy grup: jądro, obraz, własności. Dzielnik normalny (podgrupa normalna). Grupa ilorazowa. Zasadnicze twierdzenie o homomorfizmie grup.

- 1. Załóżmy, że $f: G \to H$ jest homomorfizmem grup Udowodnic, że
 - (a) $f(e_G) = e_H$.
 - (b) $f(x^{-1}) = f(x)^{-1}$.
 - (c) Ker(f) < G, Im(f) < H.
- 2. (Małe tw. Fermata) Załóżmy, że liczba całkowita n nie jest podzielna przez p. Udowodnić, że $p|n^{p-1}-1$ (wsk: sprowadzić zadanie do przypadku, gdy $n \in \mathbb{Z}_p^*$).
- 3. (a) W grupie $(\mathbb{Z}_p^*, \cdot_p)$ obliczyć iloczyn wszystkich elementów.
 - (b) Udowodnić twierdzenie Wilsona: p|(p-1)! + 1.
- 4. Załóżmy, że H < G oraz [G:H] = 2. Udowodnić, że $H \triangleleft G$.
- 5. Załóżmy, że $Y \subseteq X$. Udowodnić, że $(\mathcal{P}(X), \triangle)/(\mathcal{P}(Y), \triangle) \cong (\mathcal{P}(X \setminus Y), \triangle)$.
- 6. (Twierdzenie o faktoryzacji homomorfizmu grup). załóżmy, że $N \triangleleft G$ oraz $j:G \rightarrow G/N$ jest homomorfizmem ilorazowym. Załóżmy, że $f:G \rightarrow H$ jest homomorfizmem grup. Udowodnić, że następujące warunki są równoważne:
 - (a) Istnieje homomorfizm $\bar{f}: G/N \to H$ taki, że $f = \bar{f} \circ j$.
 - (b) N < Ker(f).
- 7. Załóżmy, że $F \triangleleft G$, H < G. Udowodnic, że:
 - (a) FH < G oraz $F \triangleleft FH$.
 - (b) $F \cap H \triangleleft H$.
 - (c) $H/(H \cap F) \cong (FH)/F$.
- 8. Załóżmy, że $F < H \triangleleft G$ oraz $F \triangleleft G$. Udowodnić, że $G/H \cong (G/F)/(H/F)$. (wsk. do tego zadania i zadania poprzedniego (c): zastosować odpowiednio twierdzenie o faktoryzacji).
- 9. * Załóżmy, że H jest podgrupą skończonego indeksu w G. Udowodnić, że istnieje podgrupa N < H skończonego indeksu w G, normalna w G.
- 10. Niech $S = \{z \in \mathbb{C} : |z| = 1\} < (\mathbb{C}^*, \cdot).$
 - (a) Określić epimorfizm grup $f:(\mathbb{R},+)\to S$ taki, że $Ker(f)=\mathbb{Z}$.
 - (b) Udowodnić, że grupa ilorazowa $(\mathbb{Q}, +)/(\mathbb{Z}, +)$ jest izomorficzna z grupą wszystkich zespolonych pierwiastków z jedności.
 - (c) W grupie $(\mathbb{R}, +)/(\mathbb{Z}, +)$ wskazać elementy (1) rzędu nieskończoność (jakikolwiek) i (2) rzędu 5 (wszystkie).