13. Integration by Parts and Trig Integrals

Lec 12 mini review.

Substitution: $\int F'(g(x))g'(x)dx = \int F'(u)du = F(u) + C = F(g(x)) + C$

Integrals with Even Symmetry: If f(-x) = f(x), then $\int_{-a}^{a} f(x) dx = 2 \int_{0}^{a} f(x) dx$

Integrals with Odd Symmetry: If f(-x) = -f(x), then $\int_{-a}^{a} f(x) dx = 0$

"Undoing" the Product Rule

Example 13.1. $\int xe^x dx$

Recall the Chain Rule: $\frac{d}{dx}[f(g(x))] = f'(g(x))g'(x)$.

Some clues that might indicate we should try integration by substitution:

- o we might see a composition in the integrand
- \circ we might notice a function that could be the "inner" function g(x), and its derivative will also be a factor of the integrand.
- me might see what looks like the aftermath of a Chain Rule derivative (like power chain rule, exponential chain rule, log chain rule, etc.)

In contrast, the Product Rule is $\frac{d}{dx}[f(x)g(x)] = f'(x)g(x) + f(x)g'(x)$.

"Undoing" the product rule is less obvious than "undoing" the chain rule:

- \circ If we want to integrate $\int \big(f'(x)g(x)+f(x)g'(x)\big)dx$, we might be lucky enough to recognize f and g
- if the integrand is the result of a product rule, then the factors need not be related to each other whatsoever

^{*} These notes are solely for the personal use of students registered in MAT1320.

INTEGRATION BY PARTS

Guidelines for I.B.P.

- $\circ\,$ you choose the "parts" u and v'
- $\circ\,$ when you choose u , you need to be able to calculate its derivative u'
- $\circ\,$ when you choose v' , you need to be able to calculate its antiderivative v
- $\circ\,$ Goal: the "new" integral $\int u'v$ should be no worse than the original integral $\int uv'$

Example 13.2. $\int xe^x dx$

Example 13.3. $\int x^3 e^{2x} \, dx$

Example 13.4. $\int \ln(x) dx$

Example 13.5. $\int (x^4 + 2x - 9) \ln(x) dx$

Common "Parts"

$$\int x^n e^{kx} \, dx$$

$$\int x^n (\ln x)^m \, dx$$

Example 13.6.
$$\int x^3 (\ln x)^2 dx$$

Sometimes, when choosing "parts" there seem to be ties...

Example 13.7. $\int e^x \sin(x) dx$

TRIG INTEGRALS

[♦] For certain integrals involving trig functions, the trick is to make use of trig identities before integrating.

Example 13.8. $\int \sin^{17}(x) dx$

Example 13.9. $\int \sin^4(x) dx$

STUDY GUIDE

- strategy for integration by substitution
- \diamond integration by parts: $\int uv' = uv \int u'v$
- making use of trig identities before integrating