Álgebra Linear e Geometria Analítica

Espaços Vetoriais

Departamento de Matemática Universidade de Aveiro

Definição de espaço vetorial real

O conjunto \mathcal{V} , munido das operações \oplus (adição) e \odot (multiplicação por escalar real), é um espaço vetorial (e.v.) real se, $\forall X, Y, Z \in \mathcal{V}$ e $\forall \alpha, \beta \in \mathbb{R}$,

1. V é fechado relativamente a ⊕

 $X \oplus Y \in \mathcal{V}$

2. ⊕ é comutativa

 $X \oplus Y = Y \oplus X$

3. ⊕ é associativa

 $(X \oplus Y) \oplus Z = X \oplus (Y \oplus Z)$

4. existe (único) o el. neutro $0_{\mathcal{V}} \in \mathcal{V}$ (zero de \mathcal{V}) para \oplus

 $0_{\mathcal{V}} \oplus X = X$

5. existe (único) o simétrico $\ominus X \in \mathcal{V}$ de X em relação a \oplus

 $\ominus X \oplus X = 0_{\mathcal{V}}$

6. V é fechado relativamente a \odot

 $\alpha \odot X \in \mathcal{V}$

7. ⊙ é distributiva em relação a ⊕

 $\alpha \odot (X \oplus Y) = \alpha \odot X \oplus \alpha \odot Y$

8. \odot é "distributiva" em relação a +

 $(\alpha+\beta)\odot X = \alpha\odot X \oplus \beta\odot X$

9. os produtos (o de \mathbb{R} e \odot) são "associativos"

 $(\alpha\beta)\odot X=\alpha\odot(\beta\odot X)$

10. o escalar 1 é o "elemento neutro" para ⊙

 $1 \odot X = X$

Exemplos de espaços vetoriais reais

- 1. \mathbb{R}^n munido das operações adição e multiplicação por escalar usuais.
- 2. R⁺ munido das operações:

$$x \oplus y = xy$$
 e $\alpha \odot x = x^{\alpha}$, $\forall x, y \in \mathbb{R}^+, \ \forall \alpha \in \mathbb{R}$.

$$\forall x, y \in \mathbb{R}^+, \ \forall \alpha \in \mathbb{R}$$

- 3. O conjunto $\mathbb{R}^{m \times n}$ das matrizes $m \times n$ munido das operações adição de matrizes e multiplicação de uma matriz por um escalar real.
- 4. O conjunto de todas as funções reais de variável real munido da adição de funções e multiplicação de uma função por um escalar real.
- 5. Os conjuntos \mathcal{P} de todos os polinómios (de qualquer grau) e \mathcal{P}_n dos polinómios de grau menor ou igual a *n* com as operações usuais.

 $N\tilde{ao}$ é e.v. o conjunto dos polinómios de grau n com as operações usuais.

Propriedades básicas de um espaço vetorial real

Proposição: Seja ${\mathcal V}$ um e.v. real. Então

- (a) $0 \odot X = 0_{\mathcal{V}}, \forall X \in \mathcal{V};$
- **(b)** $\alpha \odot 0_{\mathcal{V}} = 0_{\mathcal{V}}, \forall \alpha \in \mathbb{R};$
- (c) $\alpha \odot X = 0_{\mathcal{V}} \Rightarrow \alpha = 0$ ou $X = 0_{\mathcal{V}}$;
- (d) $(-1) \odot X = \ominus X$ é o simétrico de X em relação a \oplus , $\forall X \in \mathcal{V}$.

Daqui em diante, escreve-se:

- i. X + Y em vez de $X \oplus Y$, para $X, Y \in \mathcal{V}$;
- ii. αX em vez de $\alpha \odot X$, para $\alpha \in \mathbb{R}$ e $X \in \mathcal{V}$;
- iii. -X em vez de ⊖X, para X ∈ V.

Subespaço vetorial

O subconjunto $\mathcal{S}\subseteq\mathcal{V}$ é um subespaço (vetorial) do e.v. real \mathcal{V} se, munido das mesmas operações de \mathcal{V} , for ele próprio um e.v. real.

Teorema: $S \subseteq V$ é um subespaço (vetorial) do e.v. real V se e só se

- 1. $\mathcal{S} \neq \emptyset$;
- **2.** \mathcal{S} é fechado em relação à adição de \mathcal{V} ;
- **3.** \mathcal{S} é fechado em relação à multiplicação por escalar de \mathcal{V} .

```
Proposição: Se \mathcal{S} é um subespaço de \mathcal{V}, então 0_{\mathcal{V}} \in \mathcal{S}. Corolário: Se 0_{\mathcal{V}} \notin \mathcal{S}, então \mathcal{S} <u>não</u> é um subespaço de \mathcal{V}.
```

```
Exemplos: \bullet \mathcal{V} e \{0_{\mathcal{V}}\} são os subespaços triviais de \mathcal{V}; \bullet \{(0,y,z): y,z\in \mathbb{R}\} é um subespaço de \mathbb{R}^3; \bullet \{(1,y): y\in \mathbb{R}\} não é subespaço de \mathbb{R}^2; \bullet \mathcal{N}(A), o espaço nulo da matriz A \ m \times n, é subespaço de \mathbb{R}^n.
```

Espaço gerado

Dados os vetores X_1, \ldots, X_k de \mathcal{V} e os escalares $\alpha_1, \ldots, \alpha_k \in \mathbb{R}$, o vetor $X \in \mathcal{V}$ tal que

$$X = \alpha_1 X_1 + \dots + \alpha_k X_k$$

é uma combinação linear dos vetores X_1, \ldots, X_k .

Seja $K = \{X_1, \dots, X_k\} \subset \mathcal{V}$. Chama-se espaço gerado por K ao conjunto

$$S = \langle K \rangle = \langle X_1, \dots, X_k \rangle = \{ X = \alpha_1 X_1 + \dots + \alpha_k X_k : \alpha_1, \dots, \alpha_k \in \mathbb{R} \}$$

formado por todas as combinações lineares de X_1, \ldots, X_k . Diz-se também que K gera S ou é um conjunto gerador de S.

Exercício: Confirme que S é um subespaço vetorial de V.

Exemplo: Dados os vetores não colineares $X_1, X_2 \in \mathbb{R}^3 \setminus \{(0,0,0)\}$,

- **1.** $\langle X_1 \rangle$ é a reta que passa pela origem e tem vetor director X_1 ;
- 2. $\langle X_1, X_2 \rangle$ é o plano que passa pela origem e que contém X_1 e X_2 .

Espaço das linhas e das colunas de uma matriz

A matriz
$$m \times n$$
 $A = \begin{bmatrix} L_1^T \\ \vdots \\ L_m^T \end{bmatrix} = \begin{bmatrix} C_1 & \cdots & C_n \end{bmatrix}$ tem linhas $L_1, \dots, L_m \in \mathbb{R}^n$ e colunas

 $C_1, \ldots, C_n \in \mathbb{R}^m$. Logo, o espaço das linhas e o espaço das colunas de A são os subespaços de \mathbb{R}^n e, respetivamente, \mathbb{R}^m

$$\mathcal{C}(A) = \langle C_1, \dots, C_n \rangle \subseteq \mathbb{R}^m$$
 e $\mathcal{L}(A) = \langle L_1, \dots, L_m \rangle \subseteq \mathbb{R}^n$.

Lema: Dados $X_1, \ldots, X_k \in \mathcal{V}$ e $i, j \in \{1, \ldots, k\}$, com $i \neq j$,

i.
$$\langle X_1, \ldots, X_i, \ldots, X_j, \ldots, X_k \rangle = \langle X_1, \ldots, X_j, \ldots, X_i, \ldots, X_k \rangle;$$

ii.
$$\langle X_1, \ldots, X_i, \ldots, X_k \rangle = \langle X_1, \ldots, \alpha X_i, \ldots, X_k \rangle$$
, $\alpha \in \mathbb{R} \setminus \{0\}$;

iii.
$$\langle X_1,\ldots,X_i,\ldots,X_k\rangle=\langle X_1,\ldots,X_i+\beta X_j,\ldots,X_k\rangle$$
, $\beta\in\mathbb{R}$.

É claro que $\mathcal{C}(A)$ é $\mathcal{L}(A^T)$.

Teorema: Se as matrizes A e B são equivalentes por linhas, $\mathcal{L}(A) = \mathcal{L}(B)$.

Observa-se que

$$B \in \mathcal{C}(A) \Leftrightarrow \exists \alpha_1, \dots, \alpha_n \in \mathbb{R} : B = \alpha_1 C_1 + \dots + \alpha_n C_n \Leftrightarrow AX = B \text{ é um sistema possível,}$$

visto que para $X = [\alpha_1 \cdots \alpha_n]^T$ se tem

$$AX = \alpha_1 C_1 + \cdots + \alpha_n C_n$$

(vide exercício 13 da Folha Prática 1) .

8 / 20

Independência linear

 $\mathcal{K} \!=\! \{X_1,\ldots,X_k\} \!\subseteq\! \mathcal{V}$ é linearmente independente (l.i.) no e.v. real \mathcal{V} se

$$\alpha_1 X_1 + \dots + \alpha_k X_k = 0_{\mathcal{V}} \qquad \Rightarrow \quad \alpha_1 = \dots = \alpha_k = 0.$$

Caso contrário, K é linearmente dependente (l.d.) em V, ou seja,

- existem $\alpha_1, \ldots, \alpha_k \in \mathbb{R}$ não todos nulos tais que $\alpha_1 X_1 + \cdots + \alpha_k X_k = 0_{\mathcal{V}}$;
- ▶ existe $X \in \mathcal{K}$ tal que X é combinação linear dos vetores de $\mathcal{K} \setminus \{X\}$.

Nota: $0_{\mathcal{V}} \in \mathcal{K} \implies \mathcal{K}$ é linearmente dependente.

Exemplos:

- ightharpoonup Dois vetores não nulos de \mathbb{R}^2 ou \mathbb{R}^3 são colineares se e só se são l.d.
- ightharpoonup Três vetores não colineares de \mathbb{R}^3 definem um plano se e só se são l.d.

Geradores e independência linear

Sejam
$$\mathcal{V}$$
 um e.v. real, $\mathcal{K} = \{X_1, \dots, X_k\} \subset \mathcal{V}$ e $\mathcal{S} = \langle \mathcal{K} \rangle$.

Lema: Seja $X \in \mathcal{K}$. Então, as afirmações são equivalentes:

- **1.** X é combinação linear dos vetores de $\mathcal{K} \setminus \{X\}$;
- **2.** S é gerado por $K \setminus \{X\}$.

Teorema: K é um conjunto linearmente

- ▶ dependente \iff existe $X \in \mathcal{K}$ que satisfaz 1. ou 2. do lema anterior;
- ▶ independente \iff para cada $X \in \mathcal{V} \setminus \mathcal{S}$, o conjunto $\mathcal{K} \cup \{X\}$ é l.i.

Corolário:

- Se \mathcal{K} gera \mathcal{V} e não é l.i., o conjunto obtido retirando um oportuno elemento de \mathcal{K} ainda é gerador de \mathcal{V} .
- ightharpoonup Se $\mathcal K$ é l.i. e não gera $\mathcal V$, é possível acrescentar um oportuno elemento a $\mathcal K$ mantendo a independência linear.

Base de um espaço vetorial

Uma base de um e.v. $V \neq \{0_V\}$ é um conjunto (a) l.i. e (b) gerador de V.

- Nota: Por convenção, o e.v. trivial $\{0_{\mathcal{V}}\}$ tem como base o conjunto vazio.
 - Um conjunto l.i. é base do espaço por ele gerado.

Exemplos:

- 1. Sejam $e_1 = (1, 0, ..., 0)$, $e_2 = (0, 1, ..., 0)$, ..., $e_n = (0, ..., 0, 1)$. Então $\mathcal{C}_n = \{e_1, e_2, ..., e_n\}$ é a base canónica de \mathbb{R}^n .
- 2. Seja E_{ij} a matriz $m \times n$ que tem a entrada (i,j) igual a 1 e todas as outras iguais a 0. Então $\mathbb{C}_{m \times n} = \{E_{ij} : i = 1, \dots, m, j = 1, \dots, n\}$ é a base canónica de $\mathbb{R}^{m \times n}$.
- **3.** A base canónica do e.v. \mathcal{P}_n dos polinómios na variável x de grau menor ou igual a n é $\mathcal{P}_n = \{1, x, \dots, x^n\}$. O e.v. \mathcal{P} de todos os polinómios não admite uma base com um número finito de elementos.

Base de um espaço vetorial

Sejam \mathcal{V} um e.v. real e $\mathcal{K} = \{X_1, \dots, X_k\} \subset \mathcal{V}$.

Proposição:

- ▶ Se \mathcal{K} gera \mathcal{V} , então qualquer elemento de \mathcal{V} pode escrever-se como combinação linear dos elementos de \mathcal{K} , de pelo menos uma maneira.
- ▶ Se \mathcal{K} é l.i., então qualquer elemento de \mathcal{V} pode escrever-se como combinação linear dos elementos de \mathcal{K} , de no máximo uma maneira.

Proposição: Se \mathcal{K} é uma base de \mathcal{V} , então cada vetor de \mathcal{V} escreve-se de forma única como combinação linear dos elementos de \mathcal{K} .

Dimensão de um espaço vetorial

Teorema: V tem uma base de n elementos e $K \subset V$ contém r vetores.

- i. \mathcal{K} l.i. $\Rightarrow r \leq n$ (ou seja, $r > n \Rightarrow \mathcal{K}$ linearmente dependente) Neste caso, existe uma base de \mathcal{V} que contém \mathcal{K} .
- ii. \mathcal{K} gera $\mathcal{V} \Rightarrow r \geq n$ (ou seja, $r < n \Rightarrow \mathcal{K}$ não gera \mathcal{V}) Neste caso, existe um subconjunto de \mathcal{K} que é uma base de \mathcal{V} .

Corolário: Duas bases de ${\cal V}$ possuem o mesmo número de elementos.

A dimensão de V, dim V, é o número de elementos de qualquer base dele.

Exemplos: $\dim\{0_{\mathcal{V}}\}=0$, $\dim\mathbb{R}^n=n$, $\dim\mathbb{R}^{m\times n}=mn$ e $\dim\mathcal{P}_n=n+1$.

Teorema: Se $\mathcal{K} = \{X_1, \dots, X_n\} \subset \mathcal{V}$ e dim $\mathcal{V} = n$, então

- i. \mathcal{K} l.i. $\Rightarrow \mathcal{K}$ é base de \mathcal{V} ;
- ii. \mathcal{K} gera $\mathcal{V} \Rightarrow \mathcal{K}$ é base de \mathcal{V} .

Exemplo – Espaços $\mathcal{L}(A)$ e $\mathcal{N}(A)$

Seja
$$A = \begin{bmatrix} 1 & -2 & -4 & 3 \\ 2 & -4 & -7 & 5 \\ 1 & -2 & -3 & 2 \end{bmatrix} \sim A_e = \begin{bmatrix} 1 & -2 & -4 & 3 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \sim A_r = \begin{bmatrix} 1 & -2 & 0 & -1 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
, sendo A_e e A_r as formas escalonada e, respetivamente, reduzida de A .

Teorema: As linhas não nulas de A_e e A_r formam bases de $\mathcal{L}(A)$.

Seja
$$X = (x_1, x_2, x_3, x_4)$$
. Então, $X \in \mathcal{N}(A) \iff AX = 0 \iff A_rX = 0 \iff$

$$\begin{cases} x_1 = 2x_2 + x_4 \\ x_3 = x_4 \end{cases} \iff X = \begin{bmatrix} 2x_2 + x_4 \\ x_2 \\ x_4 \\ x_4 \end{bmatrix} = x_2 \begin{bmatrix} 2 \\ 1 \\ 0 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} 1 \\ 0 \\ 1 \\ 1 \end{bmatrix} = x_2 N_2 + x_4 N_4,$$

$$x_2, x_4 \in \mathbb{R}.$$

Os vetores na combinação linear de X (N_2 e N_4) são uma base de $\mathcal{N}(A)$. Teorema: Assim, chamando nulidade de A, $\mathrm{nul}(A)$, à dimensão do espaço nulo, tem-se $\dim \mathcal{N}(A) = \mathrm{nul}(A) = \mathrm{n}^o$ de inc. livres do sistema AX = 0.

Exemplo – Espaço C(A)

$$B = (a, b, c) \in C(A) \iff$$
 o sistema $AX = B$ é possível. Logo, sendo $[A|B] =$

$$\begin{bmatrix} 1 & -2 & -4 & 3 & | & a \\ 2 & -4 & -7 & 5 & | & b \\ 1 & -2 & -3 & 2 & | & c \end{bmatrix} \sim \begin{bmatrix} 1 & -2 & -4 & 3 & | & a \\ 0 & 0 & 1 & -1 & | & a \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{pmatrix} a & a & b \\ a - b + c & a \end{pmatrix}, B \in \mathcal{C}(A) \iff a - b + c = 0.$$

Assim, $C(A) = \langle (1,1,0), (-1,0,1) \rangle$.

Mas, ainda podemos usar o resultado:

Teorema: $\dim \mathcal{C}(A) = \dim \mathcal{L}(A)$ (coincidente com $\operatorname{car}(A)$) e as colunas de A que correspondem às colunas dos pivots da sua forma escalonada, formam uma base de $\mathcal{C}(A)$.

Assim, as colunas 1 e 3 de A são l.i. e $\mathcal{C}(A) = \langle (1,2,1), (-4,-7,-3) \rangle$. Nota: Se $A \in m \times n$, $\operatorname{car}(A) + \operatorname{nul}(A) = n$.

Corolários: • A característica de uma matriz é o máximo número de linhas (colunas) I.i.

• Uma matriz quadrada é invertível se e só se o conjunto das suas linhas (colunas) é l.i.

Coordenadas de um vetor numa base

Seja $\mathcal{B} = (X_1, \dots, X_n)$ uma base ordenada de um e.v. \mathcal{V} .

Teorema: Cada vetor $X \in \mathcal{V}$ escreve-se de forma única como combinação linear dos elementos de \mathcal{B} , ou seja, existem $a_1, \ldots, a_n \in \mathbb{R}$, tais que

$$X = a_1 X_1 + \cdots + a_n X_n.$$

Estes coeficientes a_1, \ldots, a_n dizem-se as coordenadas de X na base \mathcal{B} .

O vetor das coordenadas de X na base \mathfrak{B} é $[X]_{\mathfrak{B}} = \begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix}$.

Exemplo: Verifique que, relativamente à base
$$\mathcal{B}=\big((1,1),(1,2)\big)$$
,
$$[(0,1)]_{\mathcal{B}}=\begin{bmatrix}-1\\1\end{bmatrix}\qquad \text{e}\qquad [(1,-1)]_{\mathcal{B}}=\begin{bmatrix}3\\-2\end{bmatrix}.$$

Mudança de base

Nota: Para
$$Y_1, \ldots, Y_r \in \mathcal{V}$$
, \mathcal{S} base ordenada de \mathcal{V} e $a_1, \ldots, a_r \in \mathbb{R}$, $[a_1Y_1 + \cdots + a_rY_r]_{\mathcal{S}} = a_1[Y_1]_{\mathcal{S}} + \cdots + a_r[Y_r]_{\mathcal{S}}$.

Sejam S, $T = (Y_1, ..., Y_n)$ duas bases ordenadas de V e $X \in V$. Qual a relação entre $[X]_S$ e $[X]_T$?

$$[X]_{\mathfrak{T}} = \begin{bmatrix} a_{1} \\ \vdots \\ a_{n} \end{bmatrix} \quad \Rightarrow \qquad \qquad X = a_{1}Y_{1} + \dots + a_{n}Y_{n}$$

$$\Rightarrow \qquad [X]_{\mathbb{S}} = a_{1}[Y_{1}]_{\mathbb{S}} + \dots + a_{n}[Y_{n}]_{\mathbb{S}}$$

$$= \underbrace{[[Y_{1}]_{\mathbb{S}} \quad \dots \quad [Y_{n}]_{\mathbb{S}}]}_{M_{\mathbb{S}\leftarrow \mathfrak{T}}} \underbrace{\begin{bmatrix} a_{1} \\ \vdots \\ a_{n} \end{bmatrix}}_{[X]_{\mathfrak{T}}}$$

Matriz de mudança de base

Teorema: Sejam $S \in \mathfrak{T} = (Y_1, \dots, Y_n)$ duas bases ordenadas de V.

Para cada $X \in \mathcal{V}$,

$$[X]_{S} = M_{S \leftarrow T}[X]_{T}$$

onde

$$M_{\mathbb{S}\leftarrow\mathfrak{T}}=\begin{bmatrix} [Y_1]_{\mathbb{S}} & \cdots & [Y_n]_{\mathbb{S}} \end{bmatrix}$$

é a Matriz de mudança de base de ${\mathfrak T}$ para ${\mathcal S}$

cujas colunas são os vetores das coordenadas na base S dos elementos da base T

Mudança de base - Exemplo

Sejam $\mathbb{S}=\big((1,1),(1,2)\big)$ e $\mathbb{T}=\big((0,1),(1,-1)\big)$ bases ordenadas de $\mathbb{R}^2.$

Dado
$$X \in \mathbb{R}^2$$
 tal que $[X]_{\mathfrak{T}} = \begin{bmatrix} a \\ b \end{bmatrix}$, tem-se que

$$X = a(0,1) + b(1,-1).$$

Logo, $[X]_{\mathbb{S}} = \mathbf{a}[(0,1)]_{\mathbb{S}} + \mathbf{b}[(1,-1)]_{\mathbb{S}}$. Pelo exemplo anterior,

$$[(0,1)]_{\mathbb{S}} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} \qquad e \qquad [(1,-1)]_{\mathbb{S}} = \begin{bmatrix} 3 \\ -2 \end{bmatrix}.$$

então

$$[X]_{S} = a \begin{bmatrix} -1 \\ 1 \end{bmatrix} + b \begin{bmatrix} 3 \\ -2 \end{bmatrix} = \underbrace{\begin{bmatrix} -1 & 3 \\ 1 & -2 \end{bmatrix}}_{M_{S \leftarrow T}} \underbrace{\begin{bmatrix} a \\ b \end{bmatrix}}_{[X]_{T}}.$$

Invertibilidade de uma matriz de mudança de base

Teorema: Sejam \mathcal{S} e \mathcal{T} duas bases de \mathcal{V} . Então $M_{\mathcal{S}\leftarrow\mathcal{T}}$ é invertível e

$$M_{\mathbb{S}\leftarrow\mathcal{I}}^{-1}=M_{\mathcal{I}\leftarrow\mathcal{S}}.$$