Q# 0.10 Language Quick Reference

Primitive Types		
64-bit integers	Int	
Double-precision floats	Double	
Booleans	Bool	
	e.g.: true or false	
Qubits	Qubit	
Pauli basis	Pauli	
	e.g.: PauliI, PauliX, PauliY, or PauliZ	
Measurement	Result	
results	e.g.: Zero or One	
Sequences of	Range	
integers	e.g.: 110 or 510	
Strings	String	
	e.g.: "Hello Quantum!"	
"Return no	Unit	
information" type	e.g.: ()	

Derived Types	
Arrays	elementType[]
Tuples	(type0, type1,) e.g.: (Int, Qubit)
Functions	<pre>input -> output e.g.: ArcCos : (Double) -> Double</pre>
Operations	<pre>input => output is variants e.g.: H : (Qubit => Unit is Adj)</pre>

User-Defined Type	pes				
Declare UDT with anonymous items	<pre>newtype Name = (Type, Type); e.g.: newtype Pair = (Int, Int);</pre>				
Define UDT literal	3 71 1 7				
Define ODT interal	<pre>Name(baseTupleLiteral) e.g.: let origin = Pair(0, 0);</pre>				
Unwrap operator!	VarName!				
(convert UDT to	<pre>e.g.: let originTuple = origin!;</pre>				
underlying type)	(now originTuple = (0, 0))				
Declare UDT with	newtype Name =				
named items	(Name1: Type, Name2: Type);				
	e.g.: newtype Complex =				
	(Re : Double, Im : Double);				
Accessing named	VarName::ItemName				
items of UDTs	e.g.: complexVariable::Re				
Update-and-	set VarName w/= ItemName <- val;				
reassign for named	e.g.: mutable $p = Complex(0., 0.);$				
UDT items set p w/= Re <- 1.0;					

Symbols and Variables				
Declare immutable symbol	let varName = value			
Declare mutable symbol (variable)	mutable varName = initialValue			
Update mutable symbol (variable)	set varName = newValue			
Apply-and-reassign	<pre>set varName operator= expression e.g.: set counter += 1;</pre>			

```
Functions and Operations
                    function Name(in0 : type0, ...)
Define function
(classical routine)
                    : returnType {
                        // function body
Call function
                    Name(parameters)
                    e.g.: let two = Sqrt(4.0);
                    operation Name(in0 : type0, ...)
Define operation
(quantum routine)
                    : returnType {
with explicitly
                        body { ... }
specified body,
                        adjoint { ... }
                        controlled { ... }
controlled and
adjoint variants
                        adjoint controlled { ... }
Define operation
                    operation Name(in0 : type0, ...)
with automatically
                    : returnType is Adj + Ctl {
generated adjoint
and controlled
variants
Call operation
                    Name(parameters)
                    e.g.: Ry(0.5 * PI(), q);
Call adjoint
                    Adjoint Name(parameters)
operation
                    e.g.: Adjoint Ry(0.5 * PI(), q);
Call controlled
                    Controlled Name(controlQubits,
operation
                        parameters)
                    e.g.: Controlled Ry(controls,
                        (0.5 * PI(), target));
```

```
Control Flow
Iterate over
                    for (index in range) {
a range of numbers
                         // Use integer index
                    e.g.: for (i in 0..N-1) { ... }
While loop
                    while (condition) {
(within functions)
Iterate over
                    for (val in array) {
an array
                         // Use value val
                    e.g.: for (q in register) { ... }
Repeat-until-
                    repeat { ... }
success loop
                    until (condition)
                    fixup { ... }
Conditional
                    if (cond1) { ... }
statement
                    elif (cond2) { ... }
                    else { ... }
                    condition ? caseTrue | caseFalse
Ternary operator
Return a value
                     return value
Stop with an error
                    fail "Error message"
Conjugations
                     within { ... }
(ABA^{\dagger} \text{ pattern})
                    apply { ... }
```

Arrays					
Allocate array	<pre>mutable name = new Type[length] e.g.: mutable b = new Bool[2];</pre>				
Get array length	Length(name)				
Access k-th element	name[k] NB: indices are 0-based				
Assign k-th element (copy-and-update)	set name w/= k <- value e.g.: set b w/= 0 <- true;				
Array literal	[value0, value1,] e.g.: let b = [true, false, true];				
Array concatenation	array1 + array2 e.g.: let t = [1, 2, 3] + [4, 5];				
Slicing (subarray)	name[sliceRange] e.g.: if t = [1, 2, 3, 4, 5], then t[1 3] is [2, 3, 4] t[3] is [4, 5] t[1] is [1, 2] t[0 2] is [1, 3, 5] t[1] is [5, 4, 3, 2, 1]				

Debugging (cla	ssical)
Print a string	Message("Hello Quantum!")
Print an	<pre>Message(\$"Value = {val}")</pre>
interpolated string	

Resources

Documentation	
Quantum	https://docs.microsoft.com/
Development Kit	quantum
Q# Language	https://docs.microsoft.com/
Reference	quantum/language
Q# Libraries	https://docs.microsoft.com/
Reference	qsharp/api

Q# Code Repositories			
QDK Samples	https://github.com/microsoft/		
	quantum		
QDK Libraries	https://github.com/microsoft/		
	QuantumLibraries		
Quantum Katas	https://github.com/microsoft/		
(tutorials)	QuantumKatas		
Q# compiler and	https://github.com/microsoft/		
extensions	qsharp-compiler		
Simulation	https://github.com/microsoft/		
framework	qsharp-runtime		
Jupyter kernel and	https://github.com/microsoft/		
Python host	iqsharp		
Source code for	https://github.com/		
the documentation	MicrosoftDocs/quantum-docs-pr		

Debugging (quantum)

Print amplitudes of wave function Assert that a qubit is in $|0\rangle$ or $|1\rangle$ state DumpMachine("dump.txt") AssertQubit(Zero, zeroQubit) AssertQubit(One, oneQubit)

Measurements

Measure qubit in M(oneQubit)
Pauli Z basis yields a Result (Zero or One)
Reset qubit to $|0\rangle$ Reset(oneQubit)
Reset an array of qubits to $|0..0\rangle$

Working with Q# from command line

Command Line Basics

Change directory cd dirname
Go to home cd ~

Go up one directory dake new directory Open current directory in VS Code

Cd ..

Make new directory mkdir dirname

code .

Working with Q# Projects

Create new project	dotnet new console -lang Q#output project-dir
Change directory to project directory	cd project-dir
Build project	dotnet build
Run all unit tests	dotnet test

Math reference

Complex Arithmetic			
i^2	-1		
(a+bi) + (c+di)	(a+c) + (b+d)i		
(a+bi)(c+di)	$a \cdot b + a \cdot di + c \cdot bi + (b \cdot d)i^2 =$		
	$a \cdot b - b \cdot d + (a \cdot d + c \cdot b)i$		
Complex conjugate	$\overline{x} = a - bi$		
x = a + bi			
Complex division	$\frac{x}{y} = \frac{x}{y} \cdot 1 = \frac{x}{y} \cdot \frac{\overline{y}}{\overline{y}} =$		
$\frac{a+bi}{c+di}$	$= \frac{(a+bi)(c-di)}{(c+di)(c-di)} = \frac{(a+bi)(c+di)}{c^2+d^2}$		
- 1			
Modulus	$ x = \sqrt{a^2 + b^2}$		
x = a + bi			
$e^{i heta}$	$\cos(\theta) + i\sin(\theta)$		
e^{a+bi}	$e^a \cdot e^{bi} = e^a(\cos(b) + i\sin(b))$		
r^{a+bi}	$c^a \cdot c^{bi} = c^a \cdot e^{bi \ln c} =$		
	$= c^a(\cos(b\ln c) + i\sin(b\ln c))$		
Polar form	$re^{i\theta} = r(\cos(\theta) + i\sin(\theta))$		
a + bi	$r = \sqrt{a^2 + b^2}$		
	$\theta = \arctan(\frac{b}{a})$		

Linear Algebra Addition $\begin{bmatrix} a & b \end{bmatrix} \begin{bmatrix} e & f \end{bmatrix} \begin{bmatrix} a+e & b+f \end{bmatrix}$

 $\begin{bmatrix} a & b \\ c & d \end{bmatrix} + \begin{bmatrix} e & f \\ g & h \end{bmatrix} \qquad \begin{bmatrix} a+e & b+f \\ c+g & d+h \end{bmatrix}$ Scalar multiplication $a \cdot \begin{bmatrix} b & c \\ d & e \end{bmatrix} \qquad \begin{bmatrix} a \cdot b & a \cdot c \\ a \cdot d & a \cdot e \end{bmatrix}$

Transpose $\begin{bmatrix} a & b & c \\ a & b & c \\ d & e & f \end{bmatrix}^T \qquad \begin{bmatrix} a & d \\ b & e \\ c & f \end{bmatrix}$ Adjoint $\begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix}^{\dagger} \qquad \begin{bmatrix} \overline{a} & \overline{e} \\ \overline{b} & \overline{d} \\ \overline{c} & \overline{f} \end{bmatrix}$ Inner product $\begin{bmatrix} a \end{bmatrix}^{\dagger} \begin{bmatrix} c \\ d \end{bmatrix} = [\overline{a} & \overline{b}] \begin{bmatrix} c \\ d \end{bmatrix} = \begin{bmatrix} c \\ d \end{bmatrix}$

Gates reference

Single	Single Qubit gates						
Gate	Matrix representation	Ket-bra representation	Applying to $ \psi\rangle=\alpha 0\rangle+\beta 1\rangle$	Applying to basis states:	$ 0\rangle, 1\rangle, +\rangle, -\rangle$ and	$ \pm i\rangle = \frac{1}{\sqrt{2}}(0\rangle \pm i 1\rangle)$	
Χ	$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$	$ 0\rangle \langle 1 + 1\rangle \langle 0 $	$\left \psi\right\rangle =\alpha\left 1\right\rangle +\beta\left 0\right\rangle$	$X 0\rangle = 1\rangle X 1\rangle = 0\rangle$	$X \mid + \rangle = \mid + \rangle$ $X \mid - \rangle = - \mid - \rangle$	$egin{aligned} X\left i ight> &= i\left -i ight> \ X\left -i ight> &= -i\left i ight> \end{aligned}$	
Y	$\begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$	$i(\left 1\right\rangle \left\langle 0\right -\left 0\right\rangle \left\langle 1\right)$	$Y \psi\rangle = i(\alpha 1\rangle - \beta 0\rangle)$	$\begin{array}{l} Y \left 0 \right\rangle = i \left 1 \right\rangle \\ Y \left 1 \right\rangle = -i \left 0 \right\rangle \end{array}$	$Y \mid + \rangle = -i \mid - \rangle$ $Y \mid - \rangle = i \mid + \rangle$	$Y i\rangle = i\rangle$ $Y -i\rangle = - -i\rangle$	
Z	$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$	$ 0\rangle\left\langle 0 - 1\right\rangle\left\langle 1 $	$Z \psi\rangle = \alpha 0\rangle - \beta 1\rangle$	$Z 0\rangle = 0\rangle Z 1\rangle = - 1\rangle$	$Z \mid + \rangle = \mid - \rangle$ $Z \mid - \rangle = \mid + \rangle$	$egin{array}{l} Z \ket{i} = \ket{-i} \ Z \ket{-i} = \ket{i} \end{array}$	
1	$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$	$ 0\rangle \langle 0 + 1\rangle \langle 1 $	$I\ket{\psi}=\ket{\psi}$				
Н	$\frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1\\ 1 & -1 \end{bmatrix}$	$ 0\rangle\left\langle + + 1\rangle\left\langle - \right\rangle$	$\begin{array}{l} H \left \psi \right\rangle = \alpha \left + \right\rangle + \beta \left - \right\rangle = \\ \frac{\alpha + \beta}{\sqrt{2}} \left 0 \right\rangle + \frac{\alpha - \beta}{\sqrt{2}} \left 1 \right\rangle \end{array}$	$H 0\rangle = +\rangle$ $H 1\rangle = -\rangle$	$\begin{array}{l} H \left + \right\rangle = \left 0 \right\rangle \\ H \left - \right\rangle = \left 1 \right\rangle \end{array}$	$\begin{array}{l} H\left i\right\rangle = e^{i\pi/4}\left -i\right\rangle \\ H\left -i\right\rangle = e^{-i\pi/4}\left i\right\rangle \end{array}$	
S	$\begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix}$	$\left 0\right\rangle \left\langle 0\right +i\left 1\right\rangle \left\langle 1\right $	$S\ket{\psi} = \alpha\ket{0} + i\beta\ket{1}$	$S 0\rangle = 0\rangle$ $S 1\rangle = i 1\rangle$	$S \mid + \rangle = \mid i \rangle$ $S \mid - \rangle = \mid -i \rangle$	$S i\rangle = -\rangle$ $S -i\rangle = +\rangle$	
Т	$\begin{bmatrix} 1 & 0 \\ 0 & e^{i\pi/4} \end{bmatrix}$	$\left 0\right\rangle \left\langle 0\right +e^{i\pi/4}\left 1\right\rangle \left\langle 1\right $	$T\left \psi\right\rangle = \alpha\left 0\right\rangle + e^{i\pi/4}\beta\left 1\right\rangle$	$\begin{array}{l} T \left 0 \right\rangle = \left 0 \right\rangle \\ T \left 1 \right\rangle = e^{i \pi / 4} \left 1 \right\rangle \end{array}$			
$R_x(\theta)$	$\begin{bmatrix} \cos\frac{\theta}{2} & -i\sin\frac{\theta}{2} \\ -i\sin\frac{\theta}{2} & \cos\frac{\theta}{2} \end{bmatrix}$		$\begin{array}{l} R_x(\theta) \left \psi \right> = \ (\alpha \cos \frac{\theta}{2} - i\beta \sin \frac{\theta}{2}) \left 0 \right> + \\ + \left(\beta \cos \frac{\theta}{2} - i\alpha \sin \frac{\theta}{2}\right) \left 1 \right> \end{array}$	$R_x(\theta) \left 0 \right> = \cos rac{ heta}{2} \left 0 \right> - i \sin rac{ heta}{2} \left 1 \right>$	$R_x(heta)\ket{1} = \cos rac{ heta}{2}\ket{1} - i \sin rac{ heta}{2}\ket{0}$		
$R_y(\theta)$	$\begin{bmatrix} \cos\frac{\theta}{2} & -\sin\frac{\theta}{2} \\ \sin\frac{\theta}{2} & \cos\frac{\theta}{2} \end{bmatrix}$		$\begin{split} R_y(\theta) \left \psi \right\rangle &= (\alpha \cos \frac{\theta}{2} - \beta \sin \frac{\theta}{2}) \left 0 \right\rangle + \\ &+ (\beta \cos \frac{\theta}{2} + \alpha \sin \frac{\theta}{2}) \left 1 \right\rangle \end{split}$	$R_y(heta)\ket{0} = \cos rac{ heta}{2}\ket{0} + \sin rac{ heta}{2}\ket{1}$	$R_y(heta)\ket{1} = \cos rac{ heta}{2}\ket{1} - \sin rac{ heta}{2}\ket{0}$		
$R_z(\theta)$	$\begin{bmatrix} e^{-i\theta/2} & 0\\ 0 & e^{i\theta/2} \end{bmatrix}$		$R_{z}(\theta) \psi\rangle = \alpha e^{-i\theta/2} 0\rangle + \beta e^{i\theta/2} 1\rangle$	$R_z(\theta) 0\rangle = e^{-i\theta/2} 0\rangle$	$R_z(\theta) 1\rangle = e^{i\theta/2} 1\rangle$		
$R_1(\theta)$	$\begin{bmatrix} 1 & 0 \\ 0 & e^{i\theta} \end{bmatrix}$		$R_1(\theta) \psi\rangle = \alpha 0\rangle + \beta e^{i\theta} 1\rangle$	$R_1(\theta) 0\rangle = 0\rangle$	$R_1(\theta) 1\rangle = e^{i\theta} 1\rangle$		