

Page 1 of 48

TEST REPORT

Product

Tracker

Trade mark

9

Model/Type reference

PT-690

Serial Number

N/A

FCC ID

: 2AEPZ-PT-690

Report Number

EED32H000249-1

Date of Issue:

: May 07, 2015

Test Standards

47 CFR Part 2(2014) 47 CFR Part 22 subpart H(2014)

47 CFR Part 24 subpart E(2014)

Test result

PASS

Prepared for:

China Aerospace Telecommunications (ShenZhen) Limited
9th Floor, East Wing, Building A2, Longma Tech Industry City, Shixin
Community, Shiyan Street, Baoan, Shenzhen, China

Prepared by:

Centre Testing International (Shenzhen) Corporation Hongwei Industrial Zone, 70 Area, Bao'an District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Tested by:

Approved by:

Reviewed by: Sheek / 40

Date:

May 07, 2015

Jimmy

Lab manager

Check No.: 1727856131

Page 2 of 48

2 Version

Version No.	Date	Description
00	2015-03-01	Original
20%		

Page 3 of 48

3 Test Summary

3 Test Sullilla		(63)		
Test Item	Test Requirement	Test method	Result	
	GPRS 850			
Conducted output power	Part 2.1046(a)/Part 22.913(a) ITA-603-C-2004 & KDB 971168 D01v02r02		PASS	
Effective Radiated Power of Transmitter(ERP)	Part 2.1046(a)/Part 22.913(a) ITA-603-C-2004 & KDB 971168 D01v02r02		PASS	
99%&26dB Occupied Bandwidth	Part 2.1049(h)	Part 22.917(b) & KDB 971168 D01v02r02	PASS	
Band Edge at antenna terminals	Part 2.1051/Part 22.917(a)	Part 22.917(b) & KDB 971168 D01v02r02	PASS	
Spurious emissions at antenna terminals	Part 2.1051/ Part 2.1057/ Part 22.917(a)(b)	ITA-603-C-2004 & KDB 971168 D01v02r02	PASS	
Field strength of spurious radiation	Part 2.1053/ Part 2.1057/ Part 22.917(a)(b) Part 22.917(a)(b) ITA-603-C-2004 & KDB 971168 D01v02r02		PASS	
Frequency stability	Part 2.1055/ Part 22.355	ITA-603-C-2004 & KDB 971168 D01v02r02	PASS	
(25)	GPRS 1900	(23) (23)		
Conducted output power	Part 2.1046(a) /Part 24.232(c)	ITA-603-C-2004& KDB 971168 D01v02r02	PASS	
Effective Radiated Power of Transmitter(EIRP)	Part 2.1046(a) / Part 24.232(c)	ITA-603-C-2004 & KDB 971168 D01v02r02	PASS	
peak-to-average ratio	Part 24.232(d)	KDB 971168 D01v02r02	PASS	
99% &26dB Occupied Bandwidth	Part 2.1049(h)	Part 24.238(b) & KDB 971168 D01v02r02	PASS	
Band Edge at antenna terminals	Part 2,1051/ Part 24.238(a)	Part 24.238(b) & KDB 971168 D01v02r02	PASS	
Spurious emissions at antenna terminals	Part 2.1051/ Part 2.1057/ Part 24.238(a)(b)	ITA-603-C-2004 & KDB 971168 D01v02r02	PASS	
Field strength of spurious radiation	Part 2.1053 /Part 2.1057 / Part 24.238(a)(b)	ITA-603-C-2004 & KDB 971168 D01v02r02	PASS	
Frequency stability	Part 2.1055/Part 24.235	Part 2.1055/Part 24.235 ITA-603-C-2004 & KDB 971168 D01v02r02		

Remark:

Tx: In this whole report Tx (or tx) means transmitter.

Rx: In this whole report Rx (or rx) means receiver.

LCH: In this whole report LCH means low channel.

MCH: In this whole report LCH means middle channel.

HCH: In this whole report LCH means high channel.

VL: In this whole report Volt means low voltage. (DC 3.2V)

VN: In this whole report Volt means normal voltage. (DC 3.7V)

VH:In this whole report Volt means high voltage. (DC 4.2V)

TN: In this whole report Temp means normal temperature. (25 $^{\circ}$ C)

Humid: In this whole report Humid means humidity.

N/A: In this whole report not application.

Page 4 of 48

4 Content

		DVER PAGE	••••••	1
2	VE	ERSION		2
3	TE	ST SUMMARY		3
4	CC	ONTENT		4
5	TE	ST REQUIREMENT		5
	5.1	TEST SETUP		5
	• • • •	1.1 For Conducted test setup		
		1.2 For Radiated Emissions test setup		
	5.2	TEST ENVIRONMENT		
	5.2 5.3	TEST CONDITION		
6	GE	ENERAL INFORMATION		7
	6.1	CLIENT INFORMATION		7
	6.2	GENERAL DESCRIPTION OF EUT		
	6.3	PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD		
	6.4	DESCRIPTION OF SUPPORT UNITS		
	6.5	TEST LOCATION		
	6.6	TEST FACILITY		
	6.7	DEVIATION FROM STANDARDS		
	6.8	ABNORMALITIES FROM STANDARD CONDITIONS		
	6.9	OTHER INFORMATION REQUESTED BY THE CUSTOMER		
7	EG	QUIPMENT LIST		10
8	R.A	ADIO TECHNICAL REQUIREMENTS SPECIFICATION		11
	An	opendix A) RF Power Output		12
	An	ppendix B) Peak-to-Average Ratio		14
		ppendix C) BandWidth		
		pendix D) Band Edges Compliance		
		ppendix E) Spurious Emission at Antenna Terminal		
		ppendix F) Frequency Stability		
		opendix G) Effective Radiated Power of Transmitter (ERP/EIRP)		
		ppendix H) Field strength of spurious radiation		
		TOGRAPHS OF TEST SETUP		
		TOGRAPHS OF EUT CONSTRUCTIONAL DETAILS		

Report No.: EED32H000249-1 Page 5 of 48

5 Test Requirement

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

Figure 1. 30MHz to 1GHz

Figure 2. above 1GHz

Figure 1. 30MHz to 1GHz

Figure 2. above 1GHz

5.2 Test Environment

Operating Environment:			
Temperature:	25.0 °C		
Humidity:	53 % RH	25	
Atmospheric Pressure:	995mbar	(243)	

5.3 Test Condition

Test channel:

Toot Mode	Tx/Rx	RF Channel			
Test Mode	TX/RX	Low(L)	Middle(M)	High(H)	
	Tx	Channel 128	Channel 190	Channel 251	
CDDC0E0	(824 MHz ~849 MHz)	824.2MHz	836.6 MHz	848.8 MHz	
GPRS850	Rx (869 MHz ~894 MHz)	Channel 128	Channel 190	Channel 251	
		869.2 MHz	881.6 MHz	893.8 MHz	
	Tx	Channel 512	Channel 661	Channel 810	
GPRS1900 -	(1850 MHz ~1910 MHz)	1850.2MHz	1880.0 MHz	1909.8 MHz	
	Rx	Channel 512	Channel 661	Channel 810	
	(1930 MHz ~1990 MHz)	1930.2 MHz	1960.0 MHz	1989.8 MHz	

Test mode:

Pre-scan under all rate at lowest middle and highest channel, find the transmitter power as below:

Conducted transmitter power measurement result.

band	120	GPRS850	S	713	GPRS1900	75
Channel	128	190	251	512	661	810
Frequency(MHz)	824.2MHz	836.6MHz	848.8MHz	1850.2MHz	1880MHz	1909.8MHz
GPRS Class 8	31.87dBm	31.86dBm	31.77dBm	28.8dBm	28.8dBm	28.96dBm
GPRS Class 10	31.78dBm	31.76dBm	31.64dBm	28.56dBm	28.57dBm	28.76dBm
GPRS Class 11	31.56dBm	31.55dBm	31.45dBm	28.44dBm	28.42dBm	28.66dBm
GPRS Class 12	31.5dBm	31.43dBm	31.34dBm	28.39dBm	28.31dBm	28.42dBm

Pre-scan all mode and data rates and positions, find worse case mode are chosen to the report , the warse case mode as below:

band	Radiated	Conducted
GPRS850	GPRS 8 Link	GPRS 8 Link
GPRS1900	GPRS 8 Link	GPRS 8 Link

Page 7 of 48

6 General Information

6.1 Client Information

Applicant:	China Aerospace Telecommunications (ShenZhen) Limited	
Address of Applicant:	9th Floor, East Wing, Building A2, Longma Tech Industry City, Shixin Community, Shiyan Street, Baoan, Shenzhen, China	
Manufacturer:	China Aerospace Telecommunications (ShenZhen) Limited	
Address of Manufacturer:	9th Floor, East Wing, Building A2, Longma Tech Industry City, Shixin Community, Shiyan Street, Baoan, Shenzhen, China	

6.2 General Description of EUT

Product Name:	Tracker			
Model No.(EUT):	PT-690			
Trade Mark:	E CASTEL			~°>
EUT Supports Radios application	GPRS900,GPRS1800	(4)		
Power Supply:	Input: 5V === 600mA, Class III, IPX0 Lithium battery: DC 3.7V			
Sample Received Date:	Mar. 13, 2015		15	
Sample tested Date:	Mar. 13, 2015 to May 06, 2015		(35)	

6.3 Product Specification subjective to this standard

Frequency Band:	GPRS850: Tx:824.20 -848.80MHz; Rx: 869.20 – 893.80MHz GPRS1900: Tx:1850.20 – 1909.80MHz; Rx:1930.20 – 1989.80MHz		
Modulation Type:	GMSK		
SIM	IEMI: 358888021163412		
Power class	3		
Antenna Type and Gain:	Type: temporary antenna Gain:0dBi		
Test Voltage:	DC 3.7V		

6.4 Description of Support Units

The EUT has been tested independently.

6.5 Test Location

All tests were performed at:

Centre Testing International (Shenzhen) Corporation Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China 518101

Telephone: +86 (0) 755 3368 3668 Fax:+86 (0) 755 3368 3385

No tests were sub-contracted.

Page 8 of 48

6.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L1910

Centre Testing International (Shenzhen) Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories.

A2LA-Lab Cert. No. 3061.01

Centre Testing International (Shenzhen) Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC-Registration No.: 756231

Centre Testing International (Shenzhen) Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files. Registration 756231.

IC-Registration No.: 7408A

The 3m Alternate Test Site of Centre Testing International (Shenzhen) Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408A.

IC-Registration No.: 7408B

The 10m Alternate Test Site of Centre Testing International (Shenzhen) Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408B.

NEMKO-Aut. No.: ELA503

Centre Testing International (Shenzhen) Co., Ltd. has been assessed the quality assurance system, the testing facilities, qualifications and testing practices of the relevant parts of the organization. The quality assurance system of the Laboratory has been validated against ISO/IEC 17025 or equivalent. The laboratory also fulfils the conditions described in Nemko Document NLA-10.

VCCI

The Radiation 3 &10 meters site of Centre Testing International (Shenzhen) Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-4096.

Main Ports Conducted Interference Measurement of Centre Testing International (Shenzhen) Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: C-4563.

Telecommunication Ports Conducted Disturbance Measurement of Centre Testing International (Shenzhen) Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: T-2146.

The Radiation 3 meters site of Centre Testing International (Shenzhen) Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-758

Page 9 of 48

None.

6.8 Abnormalities from Standard Conditions

None.

6.9 Other Information Requested by the Customer

None.

Report No. : EED32H000249-1 Page 10 of 48

7 Equipment List

Equipment List	RF Test	Equipments		
Equipment	Manufacturer	Model	Serial No.	Due Date
Spectrum Analyzer	Agilent	E4440A	MY46185649	08/03/2015
Signal Generator	Agilent	E4438C	MY45095744	08/03/2015
Communication test set	Agilent	E5515C	GB47050533	08/03/2015
Signal Generator	Keysight	E8257D	N/A	08/03/2015
Communication test set	Agilent	E5515C	GB47050533	08/03/2015
Temperature & Humidity Chamber	ESPEC	EL-04KA	N/A	08/03/2015
High-pass filter(3-18GHz)	Sinoscite	FL3CX03WG18NM 12-0398-002	N/A	08/03/2015
High-pass filter(5-18GHz)	MICRO-TRONICS	SPA-F-63029-4	N/A	08/03/2015
band rejection filter (GPRS900)	Sinoscite	FL5CX01CA09CL1 2-0395-001	N/A	08/03/2015
band rejection filter (GPRS850)	Sinoscite	FL5CX01CA08CL1 2-0393-001	N/A	08/03/2015
band rejection filter (GPRS1800)	Sinoscite	FL5CX02CA04CL1 2-0396-002	N/A	08/03/2015
band rejection filter (GPRS1900)	Sinoscite	FL5CX02CA03CL1 2-0394-001	N/A	08/03/2015
DC Power	Keysight	E3642A	N/A	08/03/2015
Communication Automatic control	JS Tonscend	JS0806-1	N/A	08/03/2015
LTE Automatic test software	JS Tonscend	JSTS1120-1	N/A	08/03/2015
WCDMA Automatic test software	JS Tonscend	JSTS1120-3	N/A	08/03/2015
GPRS Automatic test software	JS Tonscend	JSTS1120-3	N/A	08/03/2015
3M Chamber & Accessory Equipment	TDK	SAC-3		06/01/2016
Receiver	R&S	ESCI	100435	07/08/2015
Spectrum Analyzer	R&S	FSP40	100416	07/06/2015
Signal Generator	R&S	SMB 100A	3008A02145	01/15/2016
Vector Signal Generator	R&S	SMBV 100A	3636A01004	01/15/2016
Signal Analyzer	R&S	FSV	100263	01/15/2016
TRILOG Broadband Antenna	schwarzbeck	VULB 9163	618	06/17/2015
TRILOG Broadband Antenna	schwarzbeck	VULB 9163	617	07/13/2015
Multi device Controller	maturo	NCD/070/1071111 2		N/A
Horn Antenna	ETS-LINGREN	3117	00057407	07/07/2015
Horn Antenna	ETS-LINGREN	3117	00057362	07/07/2015
Microwave Preamplifier	Agilent	8449B	3008A02425	03/19/2016

Page 11 of 48

8 Radio Technical Requirements Specification

Reference documents for testing:

- 10.0	ionoc accamione	- 101 tootii.ig.
No.	Identity	Document Title
1	PART 22 (2014)	PART 22 – PUBLIC MOBILE SERVICES Subpart H – Cellular Radiotelephone Service
	DADT 04 (0044)	PART 24 – PERSONAL COMMUNICATIONS SERVICES
2	2 PART 24 (2014)	Subpart E – Broadband PCS
3	PART 2 (2014)	Frequency allocations and radio treaty matters; general rules and regulations
4	TIA 602 C 2004	Land Mobile FM or PM - Communications Equipment -Measurement and
4	4 TIA-603-C-2004	Performance Standards
5	KDB971168 D01	KDB971168 D01 Power Meas License Digital Systems v02r02

Test Results List:

Test Requirement	Test method	Test item	Verdict	Note	
Part 2.1046(a)/Part 22.913(a)/ part 24.232(c)	ITA-603-C& KDB 971168 D01v02r02	Conducted output power	PASS	Appendix A)	
Part 24.232(d)	KDB 971168 D01v02r02	peak-to-average ratio	PASS	Appendix B)	
Part 2.1049(h)	Part 22.917(b)/ Part 24.238(b) & KDB 971168 D01v02r02	99% &26dB Occupied Bandwidth	PASS	Appendix C)	
Part 2.1051/Part 22.917(a)/ Part 24.238(a)	Part 22.917(b)/ Part 24.238(b) & KDB 971168 D01v02r02	Band Edge at antenna terminals	PASS	Appendix D	
Part 2.1051/ Part 2.1057/ Part 22.917(a)(b)/ Part 24.238(a)(b)	ITA-603-C & KDB 971168 D01v02r02	Spurious emissions at antenna terminals	PASS	Appendix E)	
Part 2.1055/ Part 22.355/ Part 24.235	ITA-603-C & KDB 971168 D01v02r02	Frequency stability	PASS	Appendix F)	
Part 2.1053/ Part 2.1057/ Part 22.917(a)(b)/ Part 24.238(a)(b)	ITA-603-C & KDB 971168 D01v02r02	Field strength of spurious radiation	PASS	Appendix G	
Part 2.1046(a)/Part 22.913(a)/ Part 24.232(c)	ITA-603-C & KDB 971168 D01v02r02	Effective Radiated Power of Transmitter(ERP)	PASS	Appendix H)	

Test Mode	Test Modes description
GPRS/TM2	GPRS,GMSK modulation

Page 12 of 48

Appendix A) RF Power Output

GPRS Class 8:									
Test Band	d Test Mode Test Channel Measured (dBm)		Measured (dBm)	Limit (dBm)	Verdict				
	(6,0)	LCH	31.87	38.45	PASS				
GPRS850	GPRS850 GPRS/TM2		31.86	38.45	PASS				
	·		0.4.77	00.45	5466				

	16.4		18.4			
	Test Band	Test Mode	Test Channel	Measured (dBm)	Limit (dBm)	Verdict
			LCH	28.8	33.01	PASS
0	GPRS1900	GPRS/TM2	MCH	28.8	33.01	PASS
2		0	НСН	28.96	33.01	PASS

GPRS Class 10:

Test Band	Test Mode	Test Channel	Measured (dBm)	Limit (dBm)	Verdict
		LCH	31.78	38.45	PASS
GPRS850	GPRS/TM2	MCH	31.76	38.45	PASS
		НСН	31.64	38.45	PASS

Test Band	Test Mode	Test Channel	Measured (dBm)	Limit (dBm)	Verdict
(30)	GPRS/TM2	LCH	28.56	33.01	PASS
GPRS1900		MCH	28.57	33.01	PASS
		НСН	28.76	33.01	PASS

Page 13 of 48

GPRS Class 11:

Test Band	Test Mode	Test Channel	Measured (dBm)	Limit (dBm)	Verdict
		LCH	31.56	38.45	PASS
GPRS850	GPRS/TM2	GPRS/TM2 MCH	31.55	38.45	PASS
	(6,0)	НСН	31.45	38.45	PASS

Test Band	Test Mode	Test Channel	Measured (dBm)	Limit (dBm)	Verdict
(81)		LCH	28.44	33.01	PASS
GPRS1900	GPRS/TM2	MCH	28.42	33.01	PASS
		НСН	28.66	33.01	PASS

GPRS Class 12:

Test Band	Test Mode	Test Channel	Measured (dBm)	Limit (dBm)	Verdict
	GPRS/TM2	LCH	31.5	38.45	PASS
GPRS850		MCH	31.43	38.45	PASS
		НСН	31.34	38.45	PASS

Test Band	Test Mode	Test Channel	Measured (dBm)	Limit (dBm)	Verdict
	0	LCH	28.39	33.01	PASS
GPRS1900	GPRS/TM2	MCH	28.31	33.01	PASS
(20)		HCH	28.42	33.01	PASS

Page 14 of 48

PASS

Appendix B) Peak-to-Average Ratio

ė	Test Band	Test Mode	Test Channel	Measured (dBm)	Limit (dBm)	Verdict
			LCH	9.26	13	PASS
	GPRS1900	GPRS/TM2	MCH	8.24	13	PASS

13

HCH

8.54

Page 15 of 48

Appendix C) BandWidth

	Test Band	Test Mode	Test Channel	99% Bandwidth (kHz)	26dB Bandwidth (kHz)	Verdict
		GPRS850 GPRS/TM2	LCH	229.46	295.72	PASS
	GPRS850		MCH	248.63	307.27	PASS
			НСН	237.80	300.05	PASS

Test Band	Test Mode	Test Channel	99% Bandwidth (kHz)	26dB Bandwidth (kHz)	Verdict
GPRS 1900	GPRS/TM2	LCH	236.86	299.49	PASS
		MCH	252.38	324.77	PASS
		HCH	253.99	314.45	PASS

Page 16 of 48

Test Band=GPRS850 Test Mode=GPRS/TM2

Test Channel=LCH

Page 17 of 48

Test Channel=HCH

Test Band=GPRS1900
Test Mode=GPRS/TM2
Test Channel=LCH

Page 18 of 48

Test Channel=MCH

Page 19 of 48

Appendix D) Band Edges Compliance

Test Band=GPRS850
Test Mode=GPRS/TM2

Test Channel=LCH

Page 20 of 48

Test Band=GPRS1900 Test Mode=GPRS/TM2 Test Channel=LCH

Page 21 of 48

Appendix E) Spurious Emission at Antenna Terminal

Test Band=GPRS850

Test Mode=GPRS/TM2

Page 22 of 48

Page 23 of 48

Page 24 of 48

Page 25 of 48

Page 26 of 48

* Agilent

Page 27 of 48

Test Band=GPRS1900 Test Mode=GPRS/TM2 Test Channel=LCH

Freq/Channel

#VBW 10 kHz

Sweep 411.6 ms (1000 pts)

#Res BW 1 kHz

Page 28 of 48

Page 29 of 48

Page 30 of 48

Page 31 of 48

Page 32 of 48

Page 33 of 48

Page 34 of 48

Page 35 of 48

Page 36 of 48

Appendix F) Frequency Stability

Frequency Error vs. Voltage:

Test Band	Test Mode	Test Channel	Test Temp.	Test Volt.	Freq.Error (Hz)	Freq.vs.rated (ppm)	Limit (ppm)	Verdict
GPRS850	TM2	LCH	TN	VL	25.27	0.03	±2.5	PASS
			TN	VN	15.99	0.02	±2.5	PASS
			TN	VH	23.19	0.03	±2.5	PASS
		МСН	TN	VL	12.76	0.02	±2.5	PASS
			TN	VN	10.89	0.01	±2.5	PASS
			TN	VH	1.82	0.00	±2.5	PASS
		НСН	TN	VL	19.92	0.02	±2.5	PASS
			TN	VN	10.29	0.01	±2.5	PASS
			TN	VH	16.34	0.02	±2.5	PASS

Test Band	Test Mode	Test Channel	Test Temp.	Test Volt.	Freq.Error (Hz)	Freq.vs.rated (ppm)	Limit (ppm)	Verdict
)	TM2	LCH	TN	VL	51.99	0.03	±2.5	PASS
GPRS 1900			TN	VN	22.16	0.01	±2.5	PASS
			TN	VH	26.91	0.01	±2.5	PASS
		MCH	TN	VL	15.39	0.01	±2.5	PASS
			TN	VN	17.56	0.01	±2.5	PASS
			TN	VH	15.67	0.01	±2.5	PASS
		НСН	TN	VL	14.39	0.01	±2.5	PASS
			TN	VN	1.08	0.00	±2.5	PASS
			TN	VH	0.62	0.00	±2.5	PASS

Page 37 of 48

Frequency Error vs. Temperature:

Frequenc	y Error	' vs. Temp	peratur	e:				
Test Band	Test Mode	Test Channel	Test Volt.	Test Temp. (°C)	Freq.Error (Hz)	Freq.vs.rated (ppm)	Limit (ppm)	Verdict
			VN	-30	16.23	0.02	±2.5	PASS
		13	VN	-20	12.13	0.01	±2.5	PASS
20			VN	-10	13.66	0.02	±2.5	PASS
		(6)	VN	0	14.56	0.02	±2.5	PASS
GPRS850	TM2	LCH	VN	10	27.07	0.03	±2.5	PASS
			VN	20	21.34	0.03	±2.5	PASS
			VN	30	14.54	0.02	±2.5	PASS
/3			VN	40	27.30	0.03	±2.5	PASS
(23			VN	50	21.59	0.03	±2.5	PASS
6	/		VN	-30	19.32	0.02	±2.5	PASS
			VN	-20	5.66	0.01	±2.5	PASS
			VN	-10	7.57	0.01	±2.5	PASS
			VN	0	16.53	0.02	±2.5	PASS
GPRS850	TM2	MCH	VN	10	8.83	0.01	±2.5	PASS
(*)			VN	20	13.08	0.02	±2.5	PASS
			VN	30	16.45	0.02	±2.5	PASS
			VN	40	19.48	0.02	±2.5	PASS
			VN	50	18.28	0.02	±2.5	PASS
			VN	-30	15.07	0.02	±2.5	PASS
			VN	-20	8.12	0.01	±2.5	PASS
(6)			VN	-10	11.14	0.01	±2.5	PASS
			VN	0	12.15	0.01	±2.5	PASS
GPRS850	TM2	HCH	VN	10	1.28	0.00	±2.5	PASS
			VN	20	15.89	0.02	±2.5	PASS
		-1-	VN	30	13.50	0.02	±2.5	PASS
10		100	VN	40	9.31	0.01	±2.5	PASS
•)		(6)	VN	50	9.20	0.01	±2.5	PASS

Page 38 of 48

	150	Ø1		12900		(2021)	1.2%	21	
	est and	Test Mode	Test Channel	Test Volt.	Test Temp. (°C)	Freq.Error (Hz)	Freq.vs.rated (ppm)	Limit (ppm)	Verdict
1			1.5	VN	-30	9.90	0.01	±2.5	PASS
(50)				VN	-20	12.59	0.01	±2.5	PASS
2/				VN	-10	6.14	0.00	±2.5	PASS
C	PRS			VN	0	-4.06	0.00	±2.5	PASS
	900	TM2	LCH	VN	10	36.40	0.02	±2.5	PASS
18	300			VN	20	35.58	0.02	±2.5	PASS
				VN	30	-16.02	-0.01	±2.5	PASS
	(80			VN	40	0.77	0.00	±2.5	PASS
	160			VN	50	1.32	0.00	±2.5	PASS
				VN	-30	3.15	0.00	±2.5	PASS
				VN	-20	9.81	0.01	±2.5	PASS
				VN	-10	7.92	0.00	±2.5	PASS
0.5	200			VN	0	19.03	0.01	±2.5	PASS
	PRS 900	TM2	MCH	VN	10	10.40	0.01	±2.5	PASS
18	900			VN	20	29.17	0.02	±2.5	PASS
				VN	30	-23.77	-0.01	±2.5	PASS
				VN	40	-32.22	-0.02	±2.5	PASS
				VN	50	-7.83	0.00	±2.5	PASS
	14	1//		VN	-30	15.75	0.01	±2.5	PASS
	(C)			VN	-20	5.36	0.00	±2.5	PASS
				VN	-10	15.79	0.01	±2.5	PASS
	200			VN	0	18.06	0.01	±2.5	PASS
	PRS 900	TM2	HCH	VN	10	30.95	0.02	±2.5	PASS
18	000			VN	20	24.73	0.01	±2.5	PASS
10%			(4)	VN	30	0.81	0.00	±2.5	PASS
3"/			(3)	VN	40	-8.46	0.00	±2.5	PASS
				VN	50	-15.47	-0.01	±2.5	PASS

Report No. : EED32H000249-1 Page 39 of 48

Appendix G) Effective Radiated Power of Transmitter (ERP/EIRP)

Receiver Setup:	Freque	ency	Detector	RBW	VBW	Remark	
	30MHz-	1GHz	peak	100 kHz	300kHz	Peak	
0	Above	1GHz	Peak	1MHz	3MHz	Peak	
Measurement Procedure:	Anechoic (length. mo of the trans 2) The EUT w interference antenna to 3) The disturb raising and the turntab	vas powered Chamber. The dulation mosmitter under vas set 3 mede-receiving wer. Dance of the dilowering from the control of the dilowering from the chamber of the control	ode and the mean of test. eters(above 180 antenna, which transmitter was om 1m to 4m the fundamental el	ne transmitter asuring received BHz the distantian was mounted as maximized one receive anterestical services.	was extender er shall be tunce is 1 meter on the top or the test recent and by its contract of the test recent of the test	d to its maximum aned to the frequency and a variable-height ceiver display by rotating through 360°	
	 4) Steps 1) to and horizo 5) The transmathe antenn 6) A signal at radiating compolarized, at the test field streng 	o 3) were per ntal polariza nitter was th a was appro the disturba able. With b the receive receiver. Th oth level in s	rformed with the ation. en removed and eximately at the ance was fed to oth the substitue antenna was rate level of the sitep 3) is obtained	d replaced wit same location the substitution and the reised and lowe gnal generatoed for this set	h another and n as the cente on antenna by eceive antenr red to obtain r was adjuste of conditions		
	8) Steps 6) at 9) Calculate properties ERP(dresselection EIRP=1 where:	nd 7)were re power in dBr Bm) = Pg(d IBm) = Pg(d ERP+2.15dl	power into the	th antennas p ng formula: s (dB) + anter ss (dB) + anter substitution ar	olarized. nna gain (dBo nna gain (dBi ntenna.	d) ()	
	11) The radiati operation r	on measure mode,And fo	west channel, the ments are perfo bund the X axis ures until all fre	ormed in X, Y, positioning wl	Z axis position zero zero zero zero zero zero zero zero	oning for EUT se case.	
Limit:	(25)		(25)	(12		
_	Mode	GPRS 850 /HSUPA I	D/WCDMA/HSD Band V	_	RS 1900/WC	CDMA/HSDPA V	
	Frequency 824 – 849MHz 1850 – 1910MHz						
						12	

Page 40 of 48

Measurement Data

	/	6	GPRS	850 Class			
Channel/fc (MHz)	Height (cm)	Azimuth (deg)	ERP (dBm)	Limit (dBm)	Over Limit (dB)	Result	Antenna Polaxis.
128/824.2	150	182	32.67	38.45	-5.78	Pass	Н
120/024.2	150	190	32.09	38.45	-6.36	Pass	V
100/026 6	150	187	32.45	38.45	-6	Pass	Н
190/836.6	150	195	32.35	38.45	-6.1	Pass	V
054/040 0	150	174	32.47	38.45	-5.98	Pass	Н
251/848.8	150	181	32.41	38.45	-6.04	Pass	V

			GPRS	1900 Clas	s 8		
Channel/fc (MHz)	Height (cm)	Azimuth (deg)	EIRP (dBm)	Limit (dBm)	Over Limit (dB)	Result	Antenna Polaxis.
	150	254	29.24	33.01	-3.77	Pass	н
512/1850.2	150	246	29.09	33.01	-3.92	Pass	V
100	150	249	29.11	33.01	-3.90	Pass	Н
661/1880.0	150	238	29.32	33.01	-3.69	Pass	V
(0)	150	244	29.32	33.01	-3.69	Pass	Н
810/1909.8	150	252	29.39	33.01	-3.62	Pass	V

Appendix H) Field strength of spurious radiation

Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	0.009MHz-30MHz	Peak	10kHz	30kHz	Peak	
	30MHz-1GHz	Peak	100 kHz	300kHz	Peak	10
(*)	Above 1GHz	Peak	1MHz	3MHz	Peak	(65)
Measurement	1. Scan up to 10 th harmo					
Procedure:	 The technique used to antenna substitution mactual ERP/EIRP emiss. Test procedure as below: The EUT was powered Anechoic Chamber. The length. modulation material material materials. The EUT was set 3 materials. The EUT was set 3 materials. The EUT was set 3 materials. The disturbance of the raising and lowering from the substitution. 	find the Spurionethod. Substitutions of the sistence of the si	us Emission ution method ne EUT. d on a 1.5m ne transmitte asuring rece t. GHz the dist was mount s maximized ne receive an	hight table er was exterior shall be ance is 1 med on the testerna and	at a 3 meter nded to its made tuned to the neter) away from the treceiver disp	fully aximum the le-height olay by rough
	360° the turntable. After measurement was ma. 4) Steps 1) to 3) were per and horizontal polarization. 5) The transmitter was the the antenna was approximated approximately approximatel	de. rformed with the ation. en removed an eximately at the ance was fed to oth the substituantenna was raciver. The level in step 3 the substitution epeated with bom by the following by - cable los Bm) - cable los	d replaced versame locate the substitution and the ised and low of the signal antenna wath antennas ng formula: s (dB) + antensame enter antensame formula:	with another ion as the contion antenral receive an exercise ob a generator d for this seas then mean polarized.	antenna in bo r antenna. The center of the to na by means of tennas horizon tain a maximu was adjusted et of condition asured.	th vertical e center of ransmitter. of a non- ontally um I until the
9	where: Pg is the generator out 10) Test the EUT in the low 11) The radiation measure	west channel, th	ne middle ch	annel the H	Highest chann	

Attenuated at least 43+10log(P)

operation mode, And found the X axis positioning which it is worse case.

12) Repeat above procedures until all frequencies measured was complete.

Limit:

Page 42 of 48

Measurement Data

6	GP	RS 850 (Cla	ass 8) 128 channe	l/824.2 MH	lz(lower chan	nel)	
Frequency (MHz)	Height (cm)	Azimuth (deg)	Spurious Emission Level (dBm)	Limit (dBm)	Over Limit (dB)	Result	Antenna Polaxis.
1648.4	182	184	-38.56	-13	-25.56	Pass	н
2472.6	150	192	-37.12	-13	-24.12	Pass	н
3296.8	175	172	-38.09	-13	-25.09	Pass	Н
1648.4	185	198	-35.47	-13	-22.47	Pass	V
2472.6	170	211	-39.56	-13	-26.56	Pass	V
3296.8	184	206	-38.12	-13	-25.12	Pass	V

	GPRS 850 (Class 8) 190 channel/836.6MHz (middle channel)											
Frequency (MHz)	Height (cm)	Azimuth (deg)	Spurious Emission Level (dBm)	Limit (dBm)	Over Limit (dB)	Result	Antenna Polaxis.					
1673.2	170	207	-37.34	-13	-24.34	Pass	Н					
2509.8	171	220	-36.23	-13	-23.23	Pass	Н					
3346.4	180	195	-38.23	-13	-25.23	Pass	Н					
1673.2	175	210	-37.23	-13	-24.23	Pass	V					
2509.8	180	212	-39.23	-13	-26.23	Pass	V					
3346.4	173	181	-38.44	-13	-25.44	Pass	V					

	GPF	RS 850 (Cla	ss 8) 251 channel	/848.8MHz	z(highest char	nnel)	16
Frequency (MHz)	Height (cm)	Azimuth (deg)	Spurious Emission Level (dBm)	Limit (dBm)	Over Limit (dB)	Result	Antenna Polaxis.
1697.6	174	224	-37.34	-13	-24.34	Pass	Н
2546.4	175	201	-38.12	-13	-25.12	Pass	Н
3395.2	180	212	-38.33	-13	-25.33	Pass	Н
1697.6	180	196	-36.98	-13	-23.98	Pass	V
2546.4	184	197	-39.12	-13	-26.12	Pass	V
3395.2	192	213	-39.49	-13	-26.49	Pass	V

Page 43 of 48

Report No.: EED32H000249-1

6	GPRS 1900 (Class 8) 512 channel/1850.2MHz(lower channel)											
Frequency (MHz)	Height (cm)	Azimuth (deg)	Spurious Emission Level (dBm)	Limit (dBm)	Over Limit (dB)	Result	Antenna Polaxis.					
3701.4	170	222	-36.89	-13	-23.89	Pass	Н (Д					
5550.6	177	201	-36.13	-13	-23.13	Pass	н					
7400.8	180	212	-37.29	-13	-24.29	Pass	Н					
3701.4	180	190	-37.45	-13	-24.45	Pass	V					
5550.6	180	190	-37.29	-13	-24.29	Pass	V					
7400.8	192	210	-38.23	-13	-25.23	Pass	V					

	GPF	RS 1900(Cla	ss 8) 661 channe	/1880.0MF	lz(middle cha	nnel)	
Frequency (MHz)	Height (cm)	Azimuth (deg)	Spurious Emission Level (dBm)	Limit (dBm)	Over Limit (dB)	Result	Antenna Polaxis.
3760	170	245	-36.45	-13	-23.45	Pass	Н
5640	175	251	-37.23	-13	-24.23	Pass	Н
7520	180	238	-38.23	-13	-25.23	Pass	Н
3760	174	257	-37.12	-13	-24.12	Pass	V
5640	182	245	-37.33	-13	-24.33	Pass	V
7520	170	249	-38.45	-13	-25.45	Pass	V

	GPR	S 1900(Cla	ss 8) 810 channel	/1909.8MH	lz(highest cha	nnel)	
Frequency (MHz)	Height (cm)	Azimuth (deg)	Spurious Emission Level (dBm)	Limit (dBm)	Over Limit (dB)	Result	Antenna Polaxis.
3819.6	180	217	-37.45	-13	-24.45	Pass	Н
5729.4	170	243	-37.22	-13	-24.22	Pass	Н
7639.2	178	258	-36.98	-13	-23.98	Pass	Н
3819.6	180	239	-36.88	-13	-23.88	Pass	V
5729.4	175	237	-37.34	-13	-24.34	Pass	V
7639.2	182	244	-39.45	-13	-26.45	Pass	V

Note:

- 1) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 2) All class have been tested, Only worst case is reported.

Page 44 of 48

PHOTOGRAPHS OF TEST SETUP

Radiated spurious emission Test Setup-1 (Below 1GHz)

Radiated spurious emission Test Setup-2(Above 1GHz)

Page 45 of 48

PHOTOGRAPHS OF EUT CONSTRUCTIONAL DETAILS

View of external EUT-2

Page 46 of 48

View of internal EUT-1

View of internal EUT-2

View of internal EUT-4

View of internal EUT-5

View of internal EUT-6

*** End of Report ***

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.

