Dicas VIP: Aprendizado Supervisionado

Afshine Amidi e Shervine Amidi 13 de Outubro de 2018

Traduzido por Leticia Portella. Revisado por Gabriel Fonseca e Flavio Clesio.

Introdução ao Aprendizado Supervisionado

Dado um conjunto de dados $\{x^{(1)},...,x^{(m)}\}$ associados a um conjunto de resultados $\{y^{(1)},...,y^{(m)}\}$, nós queremos construir um classificador que aprende como predizer y baseado em x.

 $\hfill\Box$ Tipos de predição - Os diferentes tipos de modelo de predição estão resumidos na tabela abaixo:

	Regressão	Classificador
Resultado	Contínuo	Classe
Exemplos	Regressão linear	Regressão logística, SVM, Naive Bayes

☐ Tipos de modelo – Os diferentes modelos estão resumidos na tabela abaixo:

	Modelo discriminativo	Modelo generativo	
Objetivo	Estimar diretamente $P(y x)$	Estimar $P(x y)$, deduzir $P(y x)$	
O que é aprendido	Fronteira de decisão	Probabilidade da dist. dos dados	
Ilustração			
Exemplos	Regressões, SVMs	GDA, Naive Bayes	

Notações e conceitos gerais

□ Hipótese – A hipótese é denominada h_{θ} e é o modelo que escolhemos. Para um determinado dado de entrada $x^{(i)}$ o resultado do modelo de predição é $h_{\theta}(x^{(i)})$.

□ Função de perda – A função de perda é definida como $L:(z,y)\in\mathbb{R}\times Y\longmapsto L(z,y)\in\mathbb{R}$ que recebe como entradas o valor z previsto correspondente ao valor real y e retorna o quão diferente eles são.

 \Box Função de custo – A função de custo J é normalmente usada para avaliar a performance de um modelo e é definida usando a função de perda L como:

$$J(\theta) = \sum_{i=1}^{m} L(h_{\theta}(x^{(i)}), y^{(i)})$$

 $\hfill \Box$ Gradiente descendente – Definindo $\alpha \in \mathbb{R}$ como a taxa de aprendizado, a regra de atualização para o gradiente descendente é expressa usando a taxa de aprendizado e a função de custo Jcomo:

$$\theta \longleftarrow \theta - \alpha \nabla J(\theta)$$

Observação: O gradiente descendente estocástico (GDE) atualiza o parâmetro baseado em cada exemplo de treinamento e o gradiente descendente em lote em um conjunto de exemplos de treinamento.

□ Probabilidade – A probabilidade de um modelo $L(\theta)$ dado os parâmetros θ é usada para encontrar os parâmetros ótimos θ pela maximização da probabilidade. Na prática, é usado o logaritimo da probabilidade (log-likelihood) $\ell(\theta) = \log(L(\theta))$ que é mais simples para se otimizar. Tem-se:

$$\theta^{\text{opt}} = \underset{\theta}{\text{arg max } L(\theta)}$$

□ Algoritimo de Newton – O algoritmo de Newton é um método numérico que encontra θ tal que $\ell'(\theta) = 0$. Sua regra de atualização é:

$$\theta \leftarrow \theta - \frac{\ell'(\theta)}{\ell''(\theta)}$$

Observação: a generalização multidimensional, também conhecida como o método de Newton-Raphson, tem a sequinte regra de atualização:

$$\theta \leftarrow \theta - \left(\nabla_{\theta}^2 \ell(\theta)\right)^{-1} \nabla_{\theta} \ell(\theta)$$

Regressão linear

Assume-se que $y|x; \theta \sim \mathcal{N}(\mu, \sigma^2)$

 \Box Equações normais – Definindo X como o desenho da matriz, o valor θ que minimiza a função de custo em uma solução de forma fechada é dado por:

$$\theta = (X^T X)^{-1} X^T y$$

 \square Algoritimo MMQ – Definindo α como a taxa de aprendizado, a regra de atualização do algoritmo de Média de Mínimos Quadrados para um conjunto de treinamento de m pontos, também conhecida como a regra de atualização de Widrow-Hoff, é dada por:

$$\forall j, \quad \theta_j \leftarrow \theta_j + \alpha \sum_{i=1}^m \left[y^{(i)} - h_{\theta}(x^{(i)}) \right] x_j^{(i)}$$

Observação: a regra de atualização é um caso particular do gradiente ascendente.

□ LWR – Regressão Ponderada Localmente (Locally Weighted Regression), também conhecida como LWR, é uma variação da regressão linear que sempre pondera cada exemplo de treinamento em sua função de custo por $w^{(i)}(x)$, que é definida com o parâmetro $\tau \in \mathbb{R}$ como:

$$w^{(i)}(x) = \exp\left(-\frac{(x^{(i)} - x)^2}{2\tau^2}\right)$$

Classificação e regressão logística

 $\hfill\Box$ Função sigmoide – A função sigmoide g, também conhecida como função logística, é definida como:

$$\forall z \in \mathbb{R}, \quad \boxed{g(z) = \frac{1}{1 + e^{-z}} \in]0,1[}$$

 \square Regressão logística – Se assume que $y|x;\theta \sim \text{Bernoulli}(\phi)$. Tem-se a seguinte fórmula:

$$\phi = p(y = 1|x; \theta) = \frac{1}{1 + \exp(-\theta^T x)} = g(\theta^T x)$$

Observação: não existe uma fórmula de solução fechada para o caso de regressão logística.

 \square Regressão softmax – A regressão softmax, também chamada de regressão logística multiclasse, é usada para generalizar a regressão logística quando existem mais de 2 classes. Por convenção, definimos $\theta_K=0$, que faz com que o parâmetro de Bernoulli ϕ_i de cada classe i seja igual a:

$$\phi_i = \frac{\exp(\theta_i^T x)}{\sum_{j=1}^K \exp(\theta_j^T x)}$$

Modelos Lineares Generalizados

□ Família exponencial – Uma classe de distribuições é chamada de família exponencial se ela puder ser escrita em termos de um parâmetro natural, também chamado de parâmetro canônico ou função de link η , uma estatítica suficiente T(y) e de uma função de partição de log $a(\eta)$ e é dada por:

$$p(y; \eta) = b(y) \exp(\eta T(y) - a(\eta))$$

Observação: em geral tem-se T(y) = y. Também, $\exp(-a(\eta))$ pode ser definido como o parâmetro de normalização que garantirá que as probabilidades somem um.

Na tabela a seguir estão resumidas as distribuições exponenciais mais comuns:

Distribuição	η	T(y)	$a(\eta)$	b(y)
Bernoulli	$\log\left(\frac{\phi}{1-\phi}\right)$	y	$\log(1 + \exp(\eta))$	1
Gaussiana	μ	y	$\frac{\eta^2}{2}$	$\frac{1}{\sqrt{2\pi}}\exp\left(-\frac{y^2}{2}\right)$
Poisson	$\log(\lambda)$	y	e^{η}	$\frac{1}{y!}$
Geométrica	$\log(1-\phi)$	y	$\log\left(\frac{e^{\eta}}{1-e^{\eta}}\right)$	1

□ Suposições de GLMs – Modelos Lineares Generalizados (GLM) visa predizer uma variável aleatória y através da função $x \in \mathbb{R}^{n+1}$ e conta com as 3 seguintes premissas:

(1)
$$y|x; \theta \sim \text{ExpFamily}(\eta)$$

(2)
$$h_{\theta}(x) = E[y|x;\theta]$$

$$(3) \quad \eta = \theta^T x$$

Observação: mínimos quadrados ordinários e regressão logística são casos especiais de modelos lineares que realizados.

Máquinas de Vetores de Suporte

O objetivo das máquinas de vetores de suporte (support vector machines) é encontrar a linha que maximiza a distância mínima até a linha.

 \square Classificador de margem ideal – O classificador de margem ideal h é definido por:

$$h(x) = \operatorname{sign}(w^T x - b)$$

onde $(w,b) \in \mathbb{R}^n \times \mathbb{R}$ é a solução para o seguinte problema de otimização:

$$\min \frac{1}{2}||w||^2 \qquad \text{tal como} \qquad \boxed{y^{(i)}(w^Tx^{(i)} - b) \geqslant 1}$$

2

□ Perda de Hinge – A perda de articulação é usada na configuração das máquinas de vetores de suporte (SVMs) e é definida como:

$$L(z,y) = [1 - yz]_{+} = \max(0,1 - yz)$$

 \square Kernel – Dado um mapeamento de parâmetro ϕ , o kernel K é definido como:

$$K(x,z) = \phi(x)^T \phi(z)$$

Na prática, o kernel K definido por $K(x,z)=\exp\left(-\frac{||x-z||^2}{2\sigma^2}\right)$ é chamado de kernel Gaussiano e é comumente usado.

□ Lagrangiano – O Lagrangiano L(w,b) é definido por:

$$\mathcal{L}(w,b) = f(w) + \sum_{i=1}^{l} \beta_i h_i(w)$$

Observação: os coeficientes β_i são chamados de multiplicadores Lagrangeanos.

Aprendizado Generativo

Um modelo generativo primeiro tenta aprender como o dado é gerado estimando P(x|y), o que pode ser usado para estimar P(y|x) usando a regra de Bayes.

Análise Discriminante Gaussiana

 $\hfill \Box$ Configuração – A Análise Discriminante Gaussiana assume que y e x|y=0 e x|y=1são tais que:

$$\boxed{y \sim \text{Bernoulli}(\phi)}$$

$$\boxed{x|y=0 \sim \mathcal{N}(\mu_0, \Sigma)} \quad \text{et} \quad \boxed{x|y=1 \sim \mathcal{N}(\mu_1, \Sigma)}$$

☐ Estimativa — A tabela a seguir resume as estimativas que encontramos ao maximizar a probabilidade:

$\widehat{\phi}$	$\widehat{\mu_j}$ $(j=0,1)$	$\widehat{\Sigma}$
$\frac{1}{m} \sum_{i=1}^{m} 1_{\{y^{(i)}=1\}}$	$\frac{\sum_{i=1}^{m} 1_{\{y^{(i)}=j\}} x^{(i)}}{\sum_{i=1}^{m} 1_{\{y^{(i)}=j\}}}$	$\frac{1}{m} \sum_{i=1}^{m} (x^{(i)} - \mu_{y^{(i)}}) (x^{(i)} - \mu_{y^{(i)}})^{T}$

Naive Bayes

 $\hfill \Box$ Premissas – O modelo de Naive Bayes assume que os parâmetros (features) de cada dado do conjunto são independentes:

$$P(x|y) = P(x_1, x_2, ...|y) = P(x_1|y)P(x_2|y)... = \prod_{i=1}^{n} P(x_i|y)$$

 $\hfill\Box$ Soluções – Maximizar o logaritimo da probabilidade nos dá as seguintes soluções, com $k\in\{0,1\},l\in[\![1,L]\!]$

$$P(y=k) = \frac{1}{m} \times \#\{j|y^{(j)} = k\}$$
 et
$$P(x_i = l|y = k) = \frac{\#\{j|y^{(j)} = k \text{ et } x_i^{(j)} = l\}}{\#\{j|y^{(j)} = k\}}$$

Observação: Naive Bayes é amplamente utilizado para classificação de texto e detecção de spam.

Métodos em conjunto e baseados em árvore

Esses métodos podem ser usados tanto para problemas de regressão quanto de classificação.

□ CART – Árvores de Classificação e Regressão (CART), normalmente conhecida como árvores de decisão (decision trees), podem ser representadas como árvores binárias. Elas tem a vantagem de serem facilmente interpretadas.

□ Floresta aleatória – É uma técnica baseada em árvore que usa um grande número de árvores de decisão construídas a partir de um conjunto aleatórios de parâmetros. Ao contrário de uma

simples árvore de decisão, esta técnica é de difícil interpretação mas geralmente alcança uma boa performance, sendo um algorítimo popular.

Observação: florestas aleatórias são um tipo de métodos de conjunto.

□ Boosting – A ideia dos métodos de boosting é combinar vários tipo de aprendizes fracos (weak learners) para formar um mais forte. Os principais tipos estão resumidos na tabela abaixo:

Boosting adaptativo	Gradiente de boosting
- De grands coefficients sont mis sur les erreurs pour s'améliorer à la prochaine étape de boosting - Connu sous le nom d'Adaboost	- Les modèles faibles sont entrainés sur les erreurs résiduelles

Outras abordagens não paramétricas

 \square k-vizinhos próximos — O algortimo de k-vizinhos próximos, normalmente conhecido como k-NN, é uma abordagem não paramétrica onde a resposta do dado é determinada pela natureza dos seus k vizinhos no conjunto de treinamento. Ele pode ser usado tanto em configurações de classificação como regressão.

Observação: Quanto maior o parâmetro k, maior o viés, e quanto menor o parâmetro k, maior a variância.

Teoria de Aprendizagem

□ Limite de união – Dado que $A_1, ..., A_k$ são k eventos. Temos que:

□ Desigualdade de Hoeffding – Dado que $Z_1,..,Z_m$ são m iid variáveis extraídas de uma distribuição de Bernoulli do parâmetro ϕ . Seja $\widehat{\phi}$ a média amostral deles e fixado $\gamma>0$. Temos que:

$$P(|\phi - \widehat{\phi}| > \gamma) \le 2 \exp(-2\gamma^2 m)$$

Observação: essa desigualdade também é chamada de fronteira Chernoff.

 \square Erro de treinamento – Para um dado classificador h, é definido o erro de treinamento $\widehat{\epsilon}(h)$, também conhecido como o risco ou o erro empírico, como:

$$\widehat{\epsilon}(h) = \frac{1}{m} \sum_{i=1}^{m} 1_{\{h(x^{(i)}) \neq y^{(i)}\}}$$

 \square Provavelmente Aproximadamente Correto (PAC) – PAC é uma estrutura (framework) em que numerosos resultados da teoria de aprendizagem foram provados, e tem o seguinte conjunto de premissas:

- o conjunto de treino e teste seguem a mesma distribuição
- os exemplos de treinamento foram extraídos de forma independente

 \Box Shattering – Dado um conjunto $S = \{x^{(1)},...,x^{(d)}\}$, e um conjunto de classificadores \mathcal{H} , diz-se que \mathcal{H} destrói (shatters) S se para qualquer conjunto de rótulos $\{y^{(1)},...,y^{(d)}\}$, temos:

$$\exists h \in \mathcal{H}, \quad \forall i \in [1,d], \quad h(x^{(i)}) = y^{(i)}$$

□ Teorema da fronteira superior – Seja \mathcal{H} uma class de hipótese finita tal que $|\mathcal{H}| = k$ e seja δ e o tamanho da amostra m fixado. Então, com a probabilidade de ao menos $1 - \delta$, temos:

$$\widehat{\epsilon(h)} \leqslant \left(\min_{h \in \mathcal{H}} \epsilon(h)\right) + 2\sqrt{\frac{1}{2m}\log\left(\frac{2k}{\delta}\right)}$$

 \square Dimensão VC – A dimensão Vapnik-Chervonenkis (VC) de uma classe de hipótese infinita \mathcal{H} , denominada VC(\mathcal{H}) é o tamanho do maior conjunto que é destruído (shattered) por \mathcal{H} .

Observação: a dimensão VC de $\mathcal{H} = \{ set \ of \ linear \ classifiers \ in \ 2 \ dimensions \} \ \acute{e} \ 3$

□ Teorema (Vapnik) – Dado \mathcal{H} , com $VC(\mathcal{H}) = d$ e m o número de exemplos de treinamento. Com a probabilidade de ao menos $1 - \delta$, temos que:

$$\epsilon(\widehat{h}) \leqslant \left(\min_{h \in \mathcal{H}} \epsilon(h)\right) + O\left(\sqrt{\frac{d}{m}\log\left(\frac{m}{d}\right) + \frac{1}{m}\log\left(\frac{1}{\delta}\right)}\right)$$