у2020-2-2. Дерево поиска

А. Простое двоичное дерево поиска

2 секунды, 512 мегабайт

Реализуйте просто двоичное дерево поиска.

Входные данные

Входной файл содержит описание операций с деревом, их количество не превышает 100. В каждой строке находится одна из следующих операций:

- insert \$\$\$x\$\$\$ добавить в дерево ключ \$\$\$x\$\$\$. Если ключ \$\$\$x\$\$\$ есть в дереве, то ничего делать не надо;
- delete \$\$\$x\$\$\$ удалить из дерева ключ \$\$\$x\$\$\$. Если ключа \$\$\$x\$\$\$ в дереве нет, то ничего делать не надо;
- exists \$\$\$x\$\$\$ если ключ \$\$\$x\$\$\$ есть в дереве выведите «true», если нет «false»;
- next \$\$\$x\$\$\$ выведите минимальный элемент в дереве, строго больший \$\$\$x\$\$\$, или «none» если такого нет;
- prev \$\$\$x\$\$\$ выведите максимальный элемент в дереве,
 строго меньший \$\$\$x\$\$\$, или «none» если такого нет.

В дерево помещаются и извлекаются только целые числа, не превышающие по модулю \$\$\$10^9\$\$\$.

Выходные данные

Выведите последовательно результат выполнения всех операций exists, next, prev. Следуйте формату выходного файла из примера.

входные данные insert 2 insert 5 insert 3 exists 2 exists 4 next 4 prev 4 delete 5 next 4 prev 4 выходные данные true false 5 3 none 3

В. Сбалансированное двоичное дерево поиска

2 секунды, 512 мегабайт

Реализуйте сбалансированное двоичное дерево поиска.

Входные данные

Входной файл содержит описание операций с деревом, их количество не превышает \$\$\$10^5\$\$\$. В каждой строке находится одна из следующих операций:

- insert \$\$\$x\$\$\$ добавить в дерево ключ \$\$\$x\$\$\$. Если ключ \$\$\$x\$\$\$ есть в дереве, то ничего делать не надо;
- delete \$\$\$x\$\$\$ удалить из дерева ключ \$\$\$x\$\$\$. Если ключа \$\$\$x\$\$\$ в дереве нет, то ничего делать не надо;
- exists \$\$\$x\$\$\$ если ключ \$\$\$x\$\$\$ есть в дереве выведите «true», если нет «false»;
- next \$\$\$x\$\$\$ выведите минимальный элемент в дереве, строго больший \$\$\$x\$\$\$, или «none» если такого нет;
- prev \$\$\$x\$\$\$ выведите максимальный элемент в дереве,
 строго меньший \$\$\$x\$\$\$, или «none» если такого нет.

В дерево помещаются и извлекаются только целые числа, не превышающие по модулю \$\$\$10^9\$\$\$.

Выходные данные

Выведите последовательно результат выполнения всех операций exists, next, prev. Следуйте формату выходного файла из примера.

```
входные данные
insert 2
insert 5
insert 3
exists 2
exists 4
next 4
prev 4
delete 5
next 4
prev 4
выходные данные
false
5
3
none
3
```

С. Добавление ключей

2 секунды, 256 мегабайт

Вы работаете в компании Макрохард и вас попросили реализовать структуру данных, которая будет хранить множество целых ключей.

Будем считать, что ключи хранятся в бесконечном массиве \$\$\$A\$\$\$, проиндексированном с \$\$\$1\$\$\$, исходно все его ячейки пусты. Структура данных должна поддерживать следующую операцию:

Insert(\$\$\$L\$\$\$, \$\$\$K\$\$\$), где \$\$\$L\$\$\$ — позиция в массиве, а \$\$\$K\$\$\$ — некоторое положительное целое число.

Операция должна выполняться следующим образом:

- Если ячейка \$\$\$A[L]\$\$\$ пуста, присвоить \$\$\$A[L] \gets K\$\$\$.
- Если \$\$\$A[L]\$\$\$ непуста, выполнить Insert(\$\$\$L+1\$\$\$, \$\$\$A[L]\$\$\$) и затем присвоить \$\$\$A[L] \gets K\$\$\$.

По заданным \$\$\$\$\\$\$\$ целым числам \$\$\$L_1, L_2, \\dots, L_N\$\$\$ выведите массив после выполнения последовательности операций:

Insert(\$\$\$L_1\$\$\$, \$\$\$1\$\$\$) Insert(\$\$\$L_2\$\$\$,
\$\$\$2\$\$\$) \$\$\$\dots\$\$\$ Insert(\$\$\$L_N\$\$\$, \$\$\$N\$\$\$)

Входные данные

Первая строка входного файла содержит числа \$\$\$N\$\$\$ — количество операций Insert, которое следует выполнить и \$\$\$M\$\$\$ — максимальную позицию, которая используется в операциях Insert (\$\$\$1 \le N \le 131\,072\$\$\$).

Следующая строка содержит \$\$\$N\$\$\$ целых чисел $$$$L_i$$$$, которые описывают операции Insert, которые следует выполнить ($$$$1 \le L$ i $\$ i $\$

Выходные данные

Выведите содержимое массива после выполнения всех сделанных операций Insert. На первой строке выведите \$\$\$W\$\$\$— номер максимальной непустой ячейки в массиве. Затем выведите \$\$\$W\$\$\$ целых чисел— \$\$\$A[1], A[2], \ldots, A[W]\$\$\$. Выводите нули для пустых ячеек.

входные данные	
5 4 3 3 4 1 3	
выходные данные	
6 4 0 5 2 3 1	

D. И снова сумма

3 секунды, 256 мегабайт

Реализуйте структуру данных, которая поддерживает множество S целых чисел, с котором разрешается производить следующие операции:

- add(i) добавить в множество S число i (если он там уже есть, то множество не меняется);
- $\operatorname{sum}(l,r)$ вывести сумму всех элементов x из S, которые удовлетворяют неравенству $l \le x \le r$.

Входные данные

Исходно множество S пусто. Первая строка входного файла содержит n — количество операций ($1 \le n \le 300\ 000$).Следующие n строк содержат операции. Каждая операция имеет вид либо «+ i», либо «? l r». Операция «? l r» задает запрос $\mathrm{sum}(l,r)$.

Если операция «+ i» идет во входном файле в начале или после другой операции «+», то она задает операцию $\mathrm{add}(i)$. Если же она идет после запроса «?», и результат этого запроса был y, то выполняется операция $\mathrm{add}((i+y) \mod 10^9)$.

Во всех запросах и операциях добавления параметры лежат в интервале от 0 до 10^9 .

Выходные данные

Для каждого запроса выведите одно число — ответ на запрос.

вход	цные ,	данные			
6					
+ 1					
+ 3					
+ 3					
? 2 4	ļ				
+ 1					
? 2 4	Į.				
выхс	одные	данные			
3					
7					

\$\$\$K\$\$\$-й максимум

2 секунды, 512 мегабайт

Напишите программу, реализующую структуру данных, позволяющую добавлять и удалять элементы, а также находить \$\$\$k\$\$-й максимум.

Входные данные

Первая строка входного файла содержит натуральное число \$\$\$n\$\$\$ — количество команд (\$\$\$n \le 100\,000\$\$\$). Последующие \$\$\$n\$\$\$ строк содержат по одной команде каждая. Команда записывается в виде двух чисел \$\$\$c_i\$\$\$ и \$\$\$k_i\$\$\$ — тип и аргумент команды соответственно (\$\$\$|k_i| \le 10^9\$\$\$). Поддерживаемые команды:

- 1: Добавить элемент с ключом \$\$\$k_i\$\$\$.
- 0: Найти и вывести \$\$\$k i\$\$\$-й максимум.
- -1: Удалить элемент с ключом \$\$\$k i\$\$\$.

Задачи - Codeforces

Гарантируется, что в процессе работы в структуре не требуется хранить элементы с равными ключами или удалять несуществующие элементы. Также гарантируется, что при запросе \$\$\$k_i\$\$\$-го максимума, он существует.

Выходные данные

Для каждой команды нулевого типа в выходной файл должна быть выведена строка, содержащая единственное число — \$\$\$k_i\$\$\$-й максимум.

входные данные	
11	
1 5	
1 3	
1 7	
0 1	
0 2	
0 3	
-1 5	
1 10	
0 1	
0 2	
0 3	
выходные данные	
7	
5	
3	
10	
7	
3	

F. Неявный ключ

2 секунды, 256 мегабайт

Научитесь быстро делать две операции с массивом: \circ add $i \times m$ добавить после i-го элемента x ($0 \le i \le n$) \circ del i — удалить i-й элемент ($1 \le i \le n$)

Входные данные

На первой строке n_0 и m ($1 \le n_0$, $m \le 10^5$) — длина исходного массива и количество запросов. На второй строке n_0 целых чисел от 0 до 10^9 - 1 — исходный массив. Далее m строк, содержащие запросы. Гарантируется, что запросы корректны: например, если просят удалить i-й элемент, он точно есть.

Выходные данные

Выведите конечное состояние массива. На первой строке количество элементов, на второй строке сам массив.

```
входные данные

3 4
1 2 3
del 3
add 0 9
add 3 8
del 2

выходные данные

3 9 2 8
```

G. Переместить в начало

6 секунд, 512 мегабайт

Вам дан массив $a_1=1,\,a_2=2,\,...,\,a_n=n$ и последовальность операций: переместить элементы с l_i по r_i в начало массива. Например, для массива 2, 3, 6, 1, 5, 4, после операции (2,4) новый порядок будет 3, 6, 1, 2, 5, 4. А после применения операции (3,4) порядок элементов в массиве будет 1, 2, 3, 6, 5, 4.

Выведите порядок элементов в массиве после выполнения всех операций.

Входные данные

6/13/22, 11:25 PM

В первой строке входного файла указаны числа n и m ($2 \le n \le 100\ 000$, $1 \le m \le 100\ 000$) — число элементов в массиве и число операций. Следующие m строк содержат операции в виде двух целых чисел: l_i и r_i ($1 \le l_i \le r_i \le n$).

Выходные данные

Выведите n целых чисел — порядок элементов в массиве после применения всех операций.

входные данные			
6 3			
2 4			
3 5			
2 2			
выходные данные			
1 4 5 2 3 6			

Н. Развороты

1 секунда, 512 мегабайт

Вам дан массив $a_1=1, a_2=2, ..., a_n=n$ и последовательность операций: переставить элементы с l_i по r_i в обратном порядке. Например, для массива 1,2,3,4,5, после операции (2,4) новый порядок будет 1,4,3,2,5. А после применения операции (3,5) порядок элементов в массиве будет 1,4,5,2,3.

Выведите порядок элементов в массиве после выполнения всех операций.

Входные данные

В первой строке входного файла указаны числа n и m ($2 \le n \le 100~000$, $1 \le m \le 100~000$) — число элементов в массиве и число операций. Следующие m строк содержат операции в виде двух целых чисел: l_i и r_i ($1 \le l_i \le r_i \le n$).

Выходные данные

Выведите n целых чисел — порядок элементов в массиве после применения всех операций.

_

І. Эх, дороги

2 секунды, 256 мегабайт

В многострадальном Тридесятом государстве опять готовится дорожная реформа. Впрочем, надо признать, дороги в этом государстве находятся в довольно плачевном состоянии. Так что реформа не повредит. Одна проблема — дорожникам не развернуться, поскольку в стране действует жесткий закон — из каждого города должно вести не более двух дорог. Все дороги в государстве двусторонние, то есть по ним разрешено движение в обоих направлениях (разумеется, разметка отсутствует). В результате реформы некоторые дороги будут строиться, а некоторые другие закрываться на бессрочный ремонт.

Задачи - Codeforces

Петя работает диспетчером в службе грузоперевозок на дальние расстояния. В связи с предстоящими реформами, ему необходимо оперативно определять оптимальные маршруты между городами в условиях постоянно меняющейся дорожной ситуации. В силу большого количества пробок и сотрудников дорожной полиции в городах, критерием оптимальности маршрута считается количество промежуточных городов, которые необходимо проехать.

Помогите Пете по заданной последовательности сообщений об изменении структуры дорог и запросам об оптимальном способе проезда из одного города в другой, оперативно отвечать на запросы.

Входные данные

В первой строке входного файла заданы числа n — количество городов, m — количество дорог в начале реформы и q — количество сообщений об изменении дорожной структуры и запросов $(1 \le n, m \le 100\ 000, q \le 200\ 000)$. Следующие m строк содержат по два целых числа каждая — пары городов, соединенных дорогами перед реформой. Следующие q строк содержат по три элемента, разделенных пробелами. «+ i j» означает строительство дороги от города i до города j, «- i j» означает закрытие дороги от города i до города i, «? i j» означает запрос об оптимальном пути между городами i и j.

Гарантируется, что в начале и после каждого изменения никакие два города не соединены более чем одной дорогой, и из каждого города выходит не более двух дорог. Никакой город не соединяется дорогой сам с собой.

Выходные данные

На каждый запрос вида «? $i\ j$ » выведите одно число — минимальное количество промежуточных городов на маршруте из города i в город j. Если проехать из i в j невозможно, выведите -1.

