# LECTURE 2





#### Introduction

- ♦ Plaintext Message to be transformed.
- ♦ Ciphertext Transformed message.
- ♦ Encryption Plaintext → Ciphertext
- ◆ Decryption Ciphertext → Plaintext
- ★ Key Information used in cipher known only to sender and receiver.
- ♦ Encryption & decryption are done using keys.



- ◆ Cipher A particular encryption scheme.
- ◆ Cryptography Study of algorithms used for encryption.
- ◆ Cryptanalysis Techniques for deciphering the encrypted data without prior knowledge of which key has been used.
- Cryptology consists of the areas of cryptography and cryptanalysis together.



- ◆ Two general approaches for attacking a conventional encryption scheme.
  - Cryptanalysis
  - Brute-force attack Tries every possible key on a piece of ciphertext.
- Cryptanalytic attacks are of four types:
  - Ciphertext only attack
  - Known plaintext attack
  - Chosen plaintext attack
  - Chosen ciphertext attack



#### Ciphertext only attack

- Attacker has access to a set of ciphertexts.
- Attacker has the least amount of information to work with.

 Attack is successful if the corresponding plaintexts and key can be deduced.



♦ Known plaintext attack

 Attacker has samples of both the plaintext and the corresponding ciphertext.

Aim is to deduce the key using this information.

#### Chosen plaintext attack

- Attacker is able to define his own plaintext, feed it into the cipher & analyze the resulting ciphertext.
- This attack requires the attacker to be able to send data to the encryption device & view the output from the device.
- Impossible to attempt in most cases.
- But it can happen if attacker gets access to the encryption device.



♦ Chosen ciphertext attack

-Attacker choose the cipher text feed it to the cipher and get the plain text.

- It can happen if he has the access to the cipher.



◆ Cipher text only attack < known plaintext attack < chosen plaintext attack < chosen cipher text attack



◆ Unconditionally secure :- If the ciphertext generated doesn't contain enough information to decrypt.

#### Computationally secure :-

- The cost of breaking cipher exceeds the value of encrypted information.
- The time required to break the cipher exceeds the useful lifetime of information.



# Classification of Cryptographic Algorithms

- Classification based on the number of keys.
- Symmetric Key Encryption
  - Same key is used for encryption & decryption.
  - Also termed as Private Key Cryptography.
- Asymmetric Key Encryption
  - Two different keys are used for encryption & decryption.
  - Also termed as Public Key Cryptography.



#### Conventional vs Public-Key Encryption

| Public-Key Encryption                                                                                                                                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Needed to Work:                                                                                                                                             |
| One algorithm is used for encryption and decryption with a pair of keys, one for encryption and one for decryption.                                         |
|                                                                                                                                                             |
| <ol><li>The sender and receiver must each have<br/>one of the matched pair of keys (not the</li></ol>                                                       |
| same one).                                                                                                                                                  |
| Needed for Security:                                                                                                                                        |
| One of the two keys must be kept secret.                                                                                                                    |
| It must be impossible or at least impractical to decipher a message if no                                                                                   |
| other information is available.                                                                                                                             |
| <ol> <li>Knowledge of the algorithm plus one of<br/>the keys plus samples of ciphertext must<br/>be insufficient to determine the other<br/>key.</li> </ol> |
|                                                                                                                                                             |



## Classical cipher systems

 Classification based on the type of operations used for transforming.

#### ◆ Two types:

 Substitution Ciphers – Letters of plaintext are replaced by other letters.

 Transposition Ciphers – Letters of plaintext are rearranged.



 Substitution ciphers are two types mono alphabetic and poly alphabetic.

◆ The relationship between a character in the plaintext to character in the ciphertext is always one to one.

◆ The relationship between a character in the plaintext to character in the ciphertext is always one to many.



## Classical cipher systems

◆ Can also be classified as based on the way in which the plaintext is processed.

 Stream Ciphers – Converts one symbol of plaintext immediately into a symbol of ciphertext.

 Block Ciphers – Converts a block of plaintext symbols to blocks of ciphertext.



# Monoalphabetic Substitution Ciphers

- Additive Cipher
  - Caesar Cipher or Shift Cipher Each letter is replaced by a letter standing at a fixed number of places after it in the alphabet.

o Plaintext: a b c d e .....x y z



- ♦ We can assign numerical equivalent to each letter.
- ◆ Plaintext, ciphertext and key are integers in Z 26
- ♦ General Caeser algorithm
  - $C = E(p) = (p+k) \mod 26$
- Decryption algorithm is
  - $p = D(C) = (C-k) \mod 26$
- ♦ If we use a shift of 3 then
  - $C = E(p) = (p + 3) \mod 26$

◆ Use the additive cipher with key = 15 to encrypt the message "hello".

| Plaintext: $h \rightarrow 07$ | Encryption: $(07 + 15) \mod 26$ | Ciphertext: $22 \rightarrow W$ |
|-------------------------------|---------------------------------|--------------------------------|
| Plaintext: $e \rightarrow 04$ | Encryption: $(04 + 15) \mod 26$ | Ciphertext: $19 \rightarrow T$ |
| Plaintext: $1 \rightarrow 11$ | Encryption: $(11 + 15) \mod 26$ | Ciphertext: $00 \rightarrow A$ |
| Plaintext: $1 \rightarrow 11$ | Encryption: $(11 + 15) \mod 26$ | Ciphertext: $00 \rightarrow A$ |
| Plaintext: $o \rightarrow 14$ | Encryption: $(14 + 15) \mod 26$ | Ciphertext: $03 \rightarrow D$ |



◆ Use the additive cipher with key = 15 to decrypt the message "WTAAD".

| Ciphertext: W $\rightarrow$ 22 | Decryption: (22 – 15) mod 26 | Plaintext: $07 \rightarrow h$ |
|--------------------------------|------------------------------|-------------------------------|
| Ciphertext: $T \rightarrow 19$ | Decryption: (19 – 15) mod 26 | Plaintext: $04 \rightarrow e$ |
| Ciphertext: A $\rightarrow$ 00 | Decryption: (00 – 15) mod 26 | Plaintext: $11 \rightarrow 1$ |
| Ciphertext: A $\rightarrow$ 00 | Decryption: (00 – 15) mod 26 | Plaintext: $11 \rightarrow 1$ |
| Ciphertext: D $\rightarrow$ 03 | Decryption: (03 – 15) mod 26 | Plaintext: $14 \rightarrow 0$ |



 Vulnerable to Ciphertext only attack using Bruteforce attack.

♦ There are only 25 keys to try.

♦ They are also vulnerable to statistical attacks.



#### Table: Frequency of characters in English

| Letter | Frequency | Letter | Frequency | Letter | Frequency | Letter | Frequency |
|--------|-----------|--------|-----------|--------|-----------|--------|-----------|
| Е      | 12.7      | Н      | 6.1       | W      | 2.3       | K      | 0.08      |
| Т      | 9.1       | R      | 6.0       | F      | 2.2       | J      | 0.02      |
| A      | 8.2       | D      | 4.3       | G      | 2.0       | Q      | 0.01      |
| О      | 7.5       | L      | 4.0       | Y      | 2.0       | X      | 0.01      |
| I      | 7.0       | С      | 2.8       | P      | 1.9       | Z      | 0.01      |
| N      | 6.7       | U      | 2.8       | В      | 1.5       |        |           |
| S      | 6.3       | M      | 2.4       | V      | 1.0       |        |           |

#### Table: Frequency of diagrams and trigrams

| Digram  | TH, HE, IN, ER, AN, RE, ED, ON, ES, ST, EN, AT, TO, NT, HA, ND, OU, EA, NG, AS, OR, TI, IS, ET, IT, AR, TE, SE, HI, OF |
|---------|------------------------------------------------------------------------------------------------------------------------|
| Trigram | THE, ING, AND, HER, ERE, ENT, THA, NTH, WAS, ETH, FOR, DTH                                                             |



#### Eve has intercepted the following ciphertext

XLILSYWIMWRSAJSVWEPIJSVJSYVQMPPMSRHSPPEVWMXMWASVX-LQSVILY-VVCFIJSVIXLIWIPPIVVIGIMZIWQSVISJJIVW

When Eve tabulates the frequency of letters in this ciphertext, she gets: I = 14, V = 13, S = 12, and so on.

#### Corresponding plaintext

the house is now for sale for four million dollars it is worth more hurry before the seller receives more offers



# Multiplicative Ciphers

- ◆ Encryption multiplication of the plaintext by the key.
- $\bullet$  C = (P × K) mod 26
- ♦ Decryption division of the ciphertext by the key.
- $P = (C \times K^{-1}) \mod 26$
- ♦ Since the operations are in Z<sub>26</sub>, decryption is done by multiplying the multiplicative inverse of the key.
- ♦ Key domain ?



| Plaintext: $h \rightarrow 07$ | Encryption: (07 × 07) mod 26         | ciphertext: $23 \rightarrow X$ |
|-------------------------------|--------------------------------------|--------------------------------|
| Plaintext: $e \rightarrow 04$ | Encryption: $(04 \times 07) \mod 26$ | ciphertext: $02 \rightarrow C$ |
| Plaintext: $1 \rightarrow 11$ | Encryption: $(11 \times 07) \mod 26$ | ciphertext: $25 \rightarrow Z$ |
| Plaintext: $1 \rightarrow 11$ | Encryption: $(11 \times 07) \mod 26$ | ciphertext: $25 \rightarrow Z$ |
| Plaintext: $0 \rightarrow 14$ | Encryption: $(14 \times 07) \mod 26$ | ciphertext: $20 \rightarrow U$ |



# Affine Cipher

♦ It's a combination of additive and multiplicative cipher with a pair of keys.

◆ The first key is used with multiplicative cipher and the second one with the additive one.



#### Fig: Affine Cipher



$$C = (P \times k_1 + k_2) \bmod 26$$

$$P = ((C - k_2) \times k_I^{-1}) \mod 26$$

where  $k_1^{-1}$  is the multiplicative inverse of  $k_1$  and  $-k_2$  is the additive inverse of  $k_2$ 

#### Size of the key domain?

# 27

Use an affine cipher to encrypt the message "hello" with the key pair (7, 2).

| P: $h \rightarrow 07$ | Encryption: $(07 \times 7 + 2) \mod 26$ | $C: 25 \rightarrow Z$ |
|-----------------------|-----------------------------------------|-----------------------|
| P: $e \rightarrow 04$ | Encryption: $(04 \times 7 + 2) \mod 26$ | $C: 04 \rightarrow E$ |
| $P: 1 \rightarrow 11$ | Encryption: $(11 \times 7 + 2) \mod 26$ | $C: 01 \to B$         |
| $P: 1 \rightarrow 11$ | Encryption: $(11 \times 7 + 2) \mod 26$ | $C: 01 \rightarrow B$ |
| P: $o \rightarrow 14$ | Encryption: $(14 \times 7 + 2) \mod 26$ | $C: 22 \rightarrow W$ |

#### Corresponding decryption

| $C: Z \rightarrow 25$ | Decryption: $((25 - 2) \times 7^{-1}) \mod 26$ | $P:07 \rightarrow h$ |
|-----------------------|------------------------------------------------|----------------------|
| $C: E \rightarrow 04$ | Decryption: $((04-2) \times 7^{-1}) \mod 26$   | $P:04 \rightarrow e$ |
| $C: B \rightarrow 01$ | Decryption: $((01-2) \times 7^{-1}) \mod 26$   | $P:11 \rightarrow 1$ |
| $C: B \rightarrow 01$ | Decryption: $((01-2) \times 7^{-1}) \mod 26$   | $P:11 \rightarrow 1$ |
| $C: W \rightarrow 22$ | Decryption: $((22-2)\times7^{-1}) \mod 26$     | $P:14 \rightarrow 0$ |

#### Chosen plaintext attack

- ightharpoonup Algorithm 1: PT = et CT = WC
- $\bullet$  Algorithm 2 : PT = et CT = WF
- ◆ Alg 1: 4 -> 22 and 19 -> 02
- $\bullet$  (04 ×k1 + k2) = 22 mod 26
- $\bullet (19 \times k1 + k2) \equiv 02 \mod 26$

 $\star$  k1 = 16 and k2 = 10

- $\bullet$  Alg 2: 4 -> 22 and 19 -> 05
- $(04 \times k1 + k2) \equiv 22 \mod 26$
- $(19 \times k1 + k2) \equiv 05 \mod 26$

- k1 = 11 and k2 = 4
- ♦ Now using the inverse of these key values attacker is able to decrypt.

#### Statistical attack

- Suppose the frequency of letters in CT is as follows R=8,D=7, E,H,K=5, F,S,V=4
- $\bullet$  R <- e and D <- t
- ♦ 17 <- 4 and 03 <- 19
- $\bullet (04 \times k1 + k2) \equiv 17 \mod 26$
- $(19 \times k1 + k2) \equiv 03 \mod 26$
- $\star$  k1 = 6 and k 2 = 19
- Since k1 doesn't have a multiplicative inverse we go for the next guess



- $\bullet$  Next guess R -> e and E -> t, k1 = 13
- Next guess R -> e and H -> t, k1 = 8
- Next guess R -> e and K -> t, k1 = 3 and k2 = 5
- Now the message can be decrypted using the inverse of these key values.