CS3230 AY21/22 SEM 2

github/jovyntls

01. COMPUTATIONAL MODELS

- algorithm → a well-defined procedure for finding the correct solution to the input
- correctness
 - worst-case correctness \rightarrow correct on every valid input
 - other types of correctness: correct on random input/with high probability/approximately correct
- efficiency / running time
 → measures the number of steps executed by an algorithm as a function of the input size (depends on computational model used)
- number input: typically the length of binary representation
- **worst-case** running time \rightarrow *max* number of steps executed when run on an input of size n

Comparison Model

- algorithm can **compare** any two elements in one time unit (x > y, x < y, x = y)
- running time = number of comparisons made
- · array can be manipulated at no cost

Maximum Problem

- ullet problem: find the largest element in an array A of n distinct elements
- proof that n-1 comparisons are needed:
 - fix an algorithm M that solves the Maximum problem on all inputs using < n-1 comparisons. construct graph G where nodes i and j are adjacent iff M compares i and j.

- M cannot differentiate A and A'.
- adversary argument

 inputs are decided such that they have different solutions

Second Largest Problem

- problem: find the second largest element in < 2n 3 comparisons (2x Maximum $\Rightarrow (n-1) + ((n-1)-1) = 2n-3$)
- solution: knockout tournament $\Rightarrow n + \lceil \lg n \rceil 2$

- 1. bracket system: n-1 matches
 - · every non-winner has lost exactly once
- 2. then compare the elements that have lost to the largest
 - the second-largest element must have lost to the winner
 - compares $\lceil \lg n \rceil$ elements that have lost to the winner using $\lceil \lg n \rceil 1$ comparisons

Sorting

- there is a sorting algorithm that requires $\leq n \lg n n + 1$ comparisons.
- proof: every sorting algorithm must make $\geq \lg(n!)$ comparisons.
- 1. let set $\mathcal U$ be the set of all permutations of the set $\{1,\dots,n\}$ that the adversary could choose as array A. $|\mathcal U|=n!$
- 2. for each query "is $A_i > A_j$?", if $\mathcal{U}_{yes} = \{A \in \mathcal{U} : A_i > A_j\}$ is of size $\geq |\mathcal{U}|/2$, set $\mathcal{U} := \mathcal{U}_{yes}$. else: $\mathcal{U} := \mathcal{U} \backslash \mathcal{U}_{yes}$
- 3. the size of $\ensuremath{\mathcal{U}}$ decreases by at most half with each comparison
- 4. for $> \lg(n!)$ comparisons, $\mathcal U$ will still contain at least 2 permutations

$$n! \ge \left(\frac{n}{e}\right)^n$$

$$\Rightarrow \lg(n!) \ge n \lg\left(\frac{n}{e}\right) = n \lg n - n \lg e$$

$$\approx n \lg n - 1.44n$$

 \Rightarrow roughly $n\lg n$ comparisons are **required** and **sufficient** for sorting n numbers

String Model

- input: string of *n* bits
- each query: find out one bit of the string
- n queries are necessary and sufficient to check if the input string is all 0s.

Graph Model

- input: (symmetric) adjacency matrix of an n-node undirected graph
- each query: find out if an edge is present between two chosen nodes
- proof: $\binom{n}{2}$ queries are necessary to decide whether the graph is connected or not
 - 1. suppose M is an algorithm making $\leq \binom{n}{2}$ queries.
 - 2. whenever M makes a query, the algorithm tries not adding this edge, but adding all remaining unqueried edges.
 - 2.1. if the resulting graph is connected, M replies 0 (i.e. edge does not exist)
 - 2.2. else: replies 1 (edge exists)
 - 3. after $<\binom{n}{2}$ queries, at least one entry of the adjacency matrix is unqueried.