# An introduction to process calculi: Calculus of Communicating Systems (CCS)

#### Lecture 2 of Modelli Matematici dei Processi Concorrenti

Paweł Sobociński

University of Southampton, UK

#### Introduction

- In the first lecture we discussed behavioural preorders and equivalences, in particular bisimilarity.
- This lecture is an introduction to a well-known process-calculus, the Calculus of Communicating Systems (ccs) introduced by Robin Milner in the early 1980's.
- Process calculi:
  - a pseudo-programming language which usually focuses on a small language feature;
  - usually try to eliminate syntactic sugar and extra programmer-friendly features;
  - idea is to isolate basic principles and reasoning techniques.

#### CCS

- focuses on a very simple paradigm of synchronous handshakes.
- processes a?P and a!Q, when executing in parallel (a? $P \parallel a$ !Q);
  - can synchronise their execution by synchronising on channel a;
  - after the synchronisation continue as P and Q, respectively;
  - $a?P \parallel a!Q \rightarrow P \parallel Q;$

## **CCS** syntax

Assume that we have a set of names A and a countable set of process variables.

$$P ::= 0 \mid a?P \mid a!P \mid P \mid P \mid P + P \mid \nu aP \mid X \mid \mu X.P$$

NB. sometimes a?P is written aP and a!P is written  $\overline{a}$ P. In early texts  $\nu a$ P is written  $P \setminus a$ .

- a?P: input on a and proceed as P;
- a!P: output on a and proceed as P;
- $\tau P$ : perform an internal reduction and proceed as P;
- $P_1 \parallel P_2$ : put  $P_1$  and  $P_2$  in parallel;
- $P_1 + P_2$ : act either as  $P_1$  or as  $P_2$ ;
- $\nu aP$ : treat a as a local channel visible only in P;

#### Recursion

Infinite behaviour can be added to ccs in several (nonequivalent) ways.

$$P ::= \dots \mid X \mid \mu X.P$$

The expression  $\mu X.P$  stands for treats the X as a recursive variable in P.

Idea:

$$\bullet$$
  $\mu X.a?X$  " $\equiv$ "  $a?a?\ldots$ ;

$$\blacksquare \mu X.P \parallel X$$
 " $\equiv$ "  $P \parallel P \parallel \dots$ ;

## **Contexts and Congruences**

**Definition 1** (Contexts).

$$C ::= - |P| |C| C |P| C + P |P + C| \nu a C |a?C| a!C$$

**Definition 2** (Substitution). Given a term P and a context C, let C[P] denote the term obtained by substituting P for -. Free names may be captured!

**Definition 3.** A relation R on the terms of  $\cos$  is said to be a congruence when

$$PRQ \Rightarrow \sigma(P)R\sigma(Q)$$

for all operations  $\sigma$  of CCS. More formally, if PRQ then C[P]RC[Q] for all contexts C.

## Structural congruence

- $P \parallel Q$  denotes the same system as  $Q \parallel P$ ;
- We quotient the "raw" syntax via a relation which is a congruence with respect to the operations of CCS.

**Definition 4** (SC). Let  $\equiv$  be the smallest congruence which includes the following:

$$(P \parallel Q) \parallel R \equiv P \parallel (Q \parallel R) \quad P \parallel Q \equiv Q \parallel P \quad P \parallel 0 \equiv P$$

$$(P + Q) + R \equiv P + (Q + R) \quad P + Q \equiv Q + P \quad P + 0 \equiv P$$

$$\nu a(P \parallel Q) \equiv (\nu a P) \parallel Q \quad (a \notin Q) \quad \nu a P \equiv \nu b P[b/a] \quad (b \notin P)$$

$$\mu X.P \equiv P[\mu X.P/X]$$

**Remark 5.** Contexts are **not** quotiented by SC. This is because we want the contexts to have the power to bind.

#### **Reduction semantics 1**

Idea, basic reduction:

$$a?P_1 + P_2 \parallel a!Q_1 + Q_2 \rightarrow P_1 \parallel Q_1$$

Letting

$$l_{a,P_1,P_2,Q_1,Q_2} \stackrel{\text{def}}{=} a?P_1 + P_2 \parallel a!Q_1 + Q_2$$

$$r_{a,P_1,P_2,Q_1,Q_2} \stackrel{\text{def}}{=} P_1 \parallel Q_1$$

we want, for all  $a, P_1, P_2, Q_1, Q_2$ 

$$l_{a,P_1,P_2,Q_1,Q_2} \rightarrow r_{a,P_1,P_2,Q_1,Q_2}$$

#### **Reduction semantics 2**

But parallel composition shouldn't inhibit reduction, so that if  $P \to P'$  then for all Q we should also have  $P \parallel Q \to P' \parallel Q$ . Similarly,  $\nu a P \to \nu a P'$ .

**Evaluation contexts:** 

$$E := - \parallel P \mid \nu a -$$

**Definition 6.**  $P \to P'$  iff  $\exists a, P_1, P_2, Q_1, Q_2$  and evaluation context E such that  $P \equiv E[l_{a,P_1,P_2,Q_1,Q_2}]$  and  $P' \equiv E[r_{a,P_1,P_2,Q_1,Q_2}]$ .

#### SOS

There is a useful way of presenting the reduction semantics using structural operational semantics (sos).

$$\overline{a?P_1 + P_2 \|a!Q_1 + Q_2 \rightarrow P_1 \|Q_1}$$

$$\underline{P \rightarrow P'}$$

$$P \rightarrow P'$$

$$\overline{P \|Q \rightarrow P' \|Q}$$

$$\overline{p \rightarrow P'}$$

$$\overline{p \rightarrow P'}$$

$$\overline{p \rightarrow P'}$$

- The rules above generate a transition system (which we can think of as an LTS with only one label);
- we will refer to this as the reduction transition system.

### **Examples**



$$M_1 \stackrel{\text{def}}{=} s?(c! + t!) \quad M_2 \stackrel{\text{def}}{=} s?c! + s?t!$$

- Coffee drinker  $C_1 \stackrel{\text{def}}{=} s!c?0$ ;
- **Simulation 1:**  $C_1 \parallel M_1 \rightarrow c?0 \parallel (c!0 + t!0) \rightarrow 0$
- **●** Simulation 2:  $C_1 \parallel M_2 \rightarrow c?0 \parallel t!0$

### Process equivalence?

- What is a good notion of process equivalence?
  - we can try bisimilarity on the reduction LTS...
  - but then, for instance,  $a!P \sim b!P$ . In fact, all processes which do not reduce are bisimilar. Clearly, this is not sufficient.

## Contextual equivalence

A canonical process equivalence for a process language is **contextual equivalence**. The idea originally arose in the theory of the  $\lambda$ -calculus.

**Idea:** Processes P and Q can be distinguished if in some context C they "behave differently".

- we can try taking the largest bisimulation which is also a congruence;
- this almost works, the problem is that processes which can always reduce are equated;

### Reduction barbed congruence

One sensible definition of a contextual equivalence for ccs is **reduction barbed congruence**.

**Definition 7.** A barb is a basic observation. In CCS it makes sense to take the instantaneous ability to input or output on a name. We say that  $P \downarrow_a$  iff  $P \equiv \nu \overline{k} (a!P_1 + P_2 \parallel P_3)$  or  $P \equiv \nu \overline{k} (a?P_1 + P_2 \parallel P_3)$  and  $a \notin k$ .

**Definition 8.** Reduction barb congruence Let  $\cong$  be the largest equivalence relation which is

- a congruence;
- ullet barb-closed: if  $P\cong Q$  and  $P\downarrow_a$  then  $Q\downarrow_a$ ;
- reduction-closed: if  $P\cong Q$  and  $P\to P'$  then  $\exists Q',Q\to Q'$  and  $Q\cong Q'$  (for all contexts C,  $C[P]\cong C[Q]$ , bisimulation on the reduction LTS)

# **Examples**

Claim 9 (Firewall).  $\nu a.a! \cong 0$ .

Proof. ?

## Problems with contextual equivalence

- $\bullet$   $\simeq$  is a priori defined to be a congruence;
- thus, in principle, to check that  $P \cong Q$  we have to have a proof which takes into account an infinite number of arbitrarily complex contexts C

#### LTS characterisation

We will give a labelled transition system on which bisimulation characterises contextual equivalence, ie

- it is sound: ~⊆≅;
- ullet it is complete:  $\cong\subseteq\sim$ .

#### LTS for CCS

$$\frac{1}{a^{?}P \xrightarrow{a^{?}}P} (IN) \qquad \frac{1}{a^{!}P \xrightarrow{a!}P} (OUT) \qquad \frac{P \xrightarrow{a!}P' \qquad Q \xrightarrow{a?}Q'}{P \|Q \xrightarrow{\alpha}P'\|Q'} (TAU)$$

$$\frac{1}{P} \xrightarrow{\alpha}P' \qquad (PAR) \qquad \frac{P \xrightarrow{\alpha}P' \qquad (a \notin \alpha)}{P \|Q \xrightarrow{\alpha}P'\|Q} (NU)$$

$$\frac{1}{P} = P' \qquad P' \xrightarrow{\alpha}Q' \qquad Q' \equiv Q \qquad (STRCONG)$$

# Example

**Lemma 10** (Firewall).  $\nu a.a! \sim 0$ 

*Proof.* Obvious, since both sides do not have any transitions.

**Lemma 11** (Expansion). If  $a \neq b$  then  $a? \parallel b! \sim a?b! + b!a?$ .

*Proof.*  $\{(a? \parallel b!, a?b! + b!a?), (b!, b!), (a?, a?), (0, 0)\}$  is a bisimulation.

#### **Proof of soundness**

**Theorem 12.**  $\sim$  is a congruence.

*Proof.* We'll do the case  $-\parallel Q$ . We will prove that  $\mathcal{R} = \{(P_1 \parallel R, P_2 \parallel R), P_1 \sim P_2\}$  is a bisimulation.

Suppose that  $P_1 \parallel Q \xrightarrow{\alpha} R$ . We'll do the case  $\alpha = \tau$ . If  $P_1 \xrightarrow{\tau} P_1'$  and

 $R \equiv P_1' \parallel Q$  then also  $P_2 \xrightarrow{\tau} P_2'$  such that  $P_1' \sim P_2'$ . Then

 $P_2 \parallel Q \xrightarrow{\tau} P_2' \parallel Q$ , but  $(R, P_2' \parallel Q) \in \mathcal{R}$ .

The case  $Q \xrightarrow{\tau} Q'$  such that  $R \equiv P_1 \parallel Q'$  is similar.

The other possibility is,  $P_1 \xrightarrow{a!} P_1'$  and  $Q \xrightarrow{a?} Q'$  and  $R \equiv P_1' \parallel Q'$ . But

then  $P_2 \xrightarrow{a!} P_2'$  such that  $P_1' \sim P_2'$  and so  $P_2 \parallel Q \xrightarrow{\tau} P_2' \parallel Q'$ .

(note the case  $P_1 \xrightarrow{a?} P_1'$ ,  $Q \xrightarrow{a!} Q'$  is symmetric)

## Congruent bisimilarities

- Having a congruent bisimilarity is quite useful because it allows the use of a familiar algebraic principle – substituting "equal for equal".
- It can also reduce the burden of constructing bisimulations since bisimulations can be deconstructed:

**Example 13.** If  $P_1 \sim Q_1$  and  $P_2 \sim Q_2$  then  $P_1 \parallel P_2 \sim Q_1 \parallel Q_2$ .

*Proof.*  $P_1 \parallel P_2 \sim Q_1 \parallel P_2 \sim Q_1 \parallel Q_2$ .

#### **Proof of soundness**

**Lemma 14.**  $P \downarrow_a \text{ iff } P \xrightarrow{a!} \text{ or } P \xrightarrow{a?}$ .

Lemma 15.  $P \xrightarrow{\tau} P'$  iff  $P \to P'$ .

Theorem 16.  $\sim \subseteq \cong$ .

*Proof.* Recall that  $\cong$  is defined to be the largest barb and reduction closed congruence.  $\sim$  is reduction and barbed closed (the two lemmas) and is a congruence. Hence  $\sim \subseteq \cong$ .

### **Proof of completeness**

Theorem 17.  $\cong \subseteq \sim$ .

We need to make sure that the label transitions do not observe too much about the processes. Hence for each label  $\alpha$ , we'll find a context which "observes" the label.

# Weak equivalences

"Weak" in the jargon of process calculists means that internal reductions are not observable.

**Definition 18** (Weak bisimulation). A relation R is a **weak bisimulation** when

- lacksquare PRQ and  $P \xrightarrow{ au} P'$  then  $Q \xrightarrow{ au}^* Q'$
- PRQ and  $P \xrightarrow{\alpha} P'$   $(\alpha \neq \tau)$  then  $Q \xrightarrow{\tau}^* \xrightarrow{\alpha} \xrightarrow{\tau}^* Q'$ ;
- the symmetric versions of the above hold.

**Definition 19.** We will write  $\tau P$  for  $\nu a(a! || a? P)$  where a is fresh for P. **Example 20.** 

 $\bullet$   $\tau a! \approx a!$ 

### Weak bisimilarity not a congruence

The counterexample is very simple, we have  $\tau a! \approx a!$ , but  $\tau a! + b! \not\approx a! + b!$ . Weak bisimilarity behaves better with respect to other operators.