[真题][答案] 2015年上半年 软件设计师 下午试卷 案例

试题数量:6道

以下所有试题由 软考在线 免费智能真题库 提供

难度系数 错误率 由 软考在线 用户做题大数据支撑 最后更新日期: 2016-09-05

本文档最后更新日期:2016-09-05

难度系数 错误率 题目 文档 更新频率:每天

软考在线 http://www.rkpass.cn -- 最专业的一站式软考复习平台全网独家 免费智能真题库 定制学习计划专业致力于全国计算机技术与软件专业资格(水平)考试

第1题 2015年上半年 下午试卷案例 软件设计师

阅读下列说明和图,回答问题1至问题4,将解答填入答题纸的对应栏内。

【说明】

某大学为进一步推进无纸化考试,欲开发一考试系统。系统管理员能够创建包括专业方向、课程编号、任课教师等相关考试基础信息,教师和学生进行考试相关的工作。系统与考试有关的主要功能如下。

- (1)考试设置。教师制定试题(题目和答案),制定考试说明、考试时间和提醒时间等考试信息,录入参加考试的学生信息,并分别进行存储。
- (2)显示并接收解答。根据教师设定的考试信息,在考试有效时间内向学生显示考试说明和题目,根据设定的考试提醒时间进行提醒,并接收学生的解答。
- (3)处理解答。根据答案对接收到的解答数据进行处理,然后将解答结果进行存储。
- (4)生成成绩报告。根据解答结果生成学生个人成绩报告,供学生查看。
- (5)生成成绩单。对解答结果进行核算后生成课程成绩单供教师查看。
- (6)发送通知。根据成绩报告数据,创建通知数据并将通知发送给学生;根据成绩单数据,创建通知数据并将通知发送给教师。

现采用结构化方法对考试系统进行分析与设计,获得如图1-1所示的上下文数据流图和图1-2所示的0层数据流图。

图 1-1 上下文数据流图

问题1.1 (2分)

使用说明中的词语,给出图1-1中的实体E1~E2的名称。

参考答案:E1:教师;

E2:学生。

问题1.2 (4分)

使用说明中的词语,给出图1-2中的数据存储D1~D4的名称。

参考答案:D1:试题;

D2:学生信息; D3:考试信息; D4:解答结果。

问题1.3 (4分)

根据说明和图中词语,补充图1-2中缺失的数据流及其起点和终点。

参考答案:数据流名称:题目,起点:D1,终点:2显示并接收解答。

数据流名称:答案,起点:D1,终点:3处理解答。

问题1.4 (5分)

图1-2所示的数据流图中,功能(6)发送通知包含创建通知并发送给学生或老师。请分解图1-2中加工(6),将分解出的加工和数据流填入答题纸的对应栏内。(注:数据流的起点和终点须使用加工的名

图 1-2 0 层数据流图

参考答案:分解为:创建通知数据,发送通知给学生或老师

数据流名称:通知数据;起点:创建通知数据;终点:发送通知给学生或老师。

第2题 2015年上半年 下午试卷案例 软件设计师

阅读下列说明,回答问题1至问题3,将解答填入答题纸的对应栏内。

【说明】

某省针对每年举行的足球联赛,拟开发一套信息管理系统,以方便管理球队、球员、主教练、主裁判、比赛等信息。

【需求分析】

(1)系统需要维护球队、球员、主教练、主裁判、比赛等信息。

球队信息主要包括:球队编号、名称、成立时间、人数、主场地址、球队主教练。

球员信息主要包括:姓名、身份证号、出生日期、身高、家庭住址。

主教练信息主要包括:姓名、身份证号、出生日期、资格证书号、级别。

主裁判信息主要包括:姓名、身份证号、出生日期、资格证书号、获取证书时间、级别。

- (2)每支球队有一名主教练和若干名球员。一名主教练只能受聘于一支球队,一名
- 球员只能效力于一支球队。每支球队都有自己的唯一主场场地,且场地不能共用。
- (3)足球联赛采用主客场循环制,一周进行一轮比赛,一轮的所有比赛同时进行。
- (4) 一场比赛有两支球队参加,一支球队作为主队身份、另一支作为客队身份参与

比赛。一场比赛只能有一名主裁判,每场比赛有唯一的比赛编码,每场比赛都记录比分和日期。

【概念结构设计】

根据需求分析阶段的信息,设计的实体联系图(不完整)如图2-1所示。

【逻辑结构设计】

根据概念结构设计阶段完成的实体联系图,得出如下关系模式(不完整): 球队(球队编号,名称,成立时间,人数,主场地址) 球员(姓名,身份证号,出生日期,身高,家庭住址,(1)) 主教练(姓名,身份证号,出生日期,资格证书号,级别,(2)) 主裁判(姓名,身份证号,出生日期,资格证书号,获取证书时间,级别) 比赛(比赛编码,主队编号,客队编号,主裁判身份证号,比分,日期) 问题2.1(6分) 补充图2-1中的联系和联系的类型。 图2-1中的联系"比赛"应具有的属性是哪些?

参考答案:

比赛联系应具有的属性包括:比赛编码,比分,日期。

问题2.2 (4分)

根据图2-1,将逻辑结构设计阶段生成的关系模式中的空(1)~(2)补充完整。

参考答案:(1)球队编号;

(2) 球队编号。

问题2.3 (5分)

现在系统要增加赞助商信息,赞助商信息主要包括赞助商名称和赞助商编号。

赞助商可以赞助某支球队,一支球队只能有一个赞助商,但赞助商可以赞助多支球队。赞助商也可以单独赞助某些球员,一名球员可以为多个赞助商代言。请根据该要求,对图2-1进行修改,画出修改后的实体间联系和联系的类型。

参考答案:

第3题 2015年上半年 下午试卷案例 软件设计师

阅读下列说明和图,回答问题1至问题3,将解答填入答题纸的对应栏内。

【说明】

某物品拍卖网站为参与者提供物品拍卖平台,组织拍卖过程,提供在线或线下交易服务。网站主要功能描述如下:

- (1)拍卖参与者分为个人参与者和团体参与者两种。不同的团体也可以组成新的团体参与拍卖活动。 网站记录每个参与者的名称。
- (2)一次拍卖中,参与者或者是买方,或者是卖方。
- (3)一次拍卖只拍出来自一个卖方的一件拍卖品;多个买方可以出价:卖方接受其中一个出价作为成交价,拍卖过程结束。
- (4)在拍卖结算阶段,买卖双方可以选择两种成交方式:线下成交,买卖双方在事 先约定好的成交地点,当面完成物价款的支付和拍卖品的交付;在线成交,买方通过网上支付平台 支付物价款,拍卖品由卖方通过快递邮寄给买方。
- 一次拍卖过程的基本事件流描述如下:
- (1)卖方在网站上发起一次拍卖,并设置本次拍卖的起拍价。
- (2)确定拍卖标的以及拍卖标的保留价(若在拍卖时间结束时,所有出价均低于拍卖标的保留价,则本次拍卖失败)。
- (3)在网站上发布本次拍卖品的介绍。
- (4)买方参与拍卖,给出竟拍价。
- (5)卖方选择接受一个竟拍价作为成交价,结束拍卖。
- (6)系统记录拍卖成交价,进入拍卖结算阶段。
- (7)卖方和买方协商拍卖品成交方式,并完成成交。

现采用面向对象方法对系统进行分析与设计,得到如表3-1所示的类列表以及如图3-1所示的类图,类中关键属性与方法如表3-2所示。

表3-1 物品拍卖网站类列表

序号	类名	说明	
CI	SellerRole	一次拍卖中的卖方	
C2	Item	拍卖品	
C3	Auction	拍卖活动	
C4	Sale	拍卖结算	
C5	AuctionParticipant	拍卖参与者	
C6	Interchange	成交方式	
C7	OneParticipant	个人参与者	
C8	OfflinePay	线下成交	
C9	CompositeParticipant	团体参与者	
C10	OnlinePay	在线成交	
C11	Bid	拍卖标的	
C12	BuyerRole	一次拍卖中的买方	

表3-2 关键属性与方法列表

序号	名称	说明
M1	name	属性名,用户名称
M2	description	属性名,拍卖品描述
М3	minBidPrice	属性名,拍卖的起拍价
M4	agreePrice	属性名,拍卖成交价
M5	bidPrice	属性名,拍卖标的保留价
M6	address	属性名,线下成交地点
M7	sellerAccount	属性名,卖方网上支付账户名
M8	buyerAddress	属性名,买方邮寄地址
M9	placeBidForAuction	方法名, 为拍卖品出竞拍价
M10	sellNewArticle	方法名,发起一次拍卖

问题3.1 (7分)

根据说明中的描述,给出图3-1中(1)~(7)所对应的类名(类名使用表3-1中给出的序号)。

参考答案: (1) C5;

(2)C9;

```
(3) C7;
(4) C6;
(5) (6) C8, C10;
(7) C2,
```

问题3.2 (5分)

根据说明中的描述,确定表3-2中的属性/方法分别属于哪个类(类名、方法/属性名使用表3-1、3-2中给出的序号)。

```
参考答案: M1: C5;
M2: C2;
M3: C3;
M4: C3;
M5: C3;
M6: C8;
M7: C10;
M8: C10;
M9: C12;
M10: C1。
```

问题3.3 (3分)

在图3-1采用了何种设计模式?以100字以内文字说明采用这种设计模式的原因。

参考答案:组合模式,在本题中由于拍卖者分为个人参与者和团体参与者两种,而团体也可以组成新的团体参与拍卖活动。这样的整体部分关系,适合于使用组合模式表达。

第4题 2015年上半年 下午试卷案例 软件设计师

阅读下列说明和C代码,回答问题1至问题3,将解答写在答题纸的对应栏内。

【说明】

n-皇后问题是在n行n列的棋盘上放置n个皇后,使得皇后彼此之间不受攻击,其规则是任意两个皇后不在同一行、同一列和相同的对角线上。

拟采用以下思路解决n-皇后问题:第i个皇后放在第i行。从第一个皇后开始,对每个皇后,从其对应行(第i个皇后对应第i行)的第一列开始尝试放置,若可以放置,确定该位置,考虑下一个皇后;若与之前的皇后冲突,则考虑下一列;若超出最后一列,则重新确定上一个皇后的位置。重复该过程,直到找到所有的放置方案。

【C代码】

下面是算法的C语言实现。

(1)常量和变量说明

```
pos:一维数组, pos[i]表示第i个皇后放置在第i行的具体位置
count:统计放置方案数
i,j,k:变量
N:皇后数
(2)C程序
#include <stdio.h>
#include <math.h>
#define N4
/*判断第k个皇后目前放置位置是否与前面的皇后冲突*/
in isplace(int pos[], int k) {
int i;
for(i=1; i<k; i++) {
if( (1) || fabs(i-k)
                     fabs(pos[i] - pos[k])) {
return();
}
}
return 1;
}
int main() {
int i,j,count=1;
int pos[N+1];
//初始化位置
for(i=1; i\<=N; i++) {
pos[i]=0;
}
(2);
while(j>=1) {
pos[j] = pos[j] + 1;
/*尝试摆放第i个皇后*/
while(pos[j]<=N&amp;&amp; (3)_) {
pos[j] = pos[j] + 1;
}
/*得到一个摆放方案*/
if(pos[j]<=N&amp;&amp;j
                            N) {
printf("方案%d: ",count++);
for(i=1; i\<=N; i++){
printf("%d ",pos[i]);
printf("\n");
}
```

```
/*考虑下一个皇后*/
if(pos[j]<=N&amp;&amp; (4)) {
j=j+1;
} else{ //返回考虑上一个皇后
pos[j]=0;
(5);
}
}
return 1;
问题4.1 (10分)
根据以上说明和C代码,填充C代码中的空(1)~(5)。
参考答案: (1) pos[i] ==pos[k]
(2) j=1
(3) isplace(pos,j)==0
(4) j<N
(5) j=j-1
问题4.2 (2分)
根据以上说明和C代码,算法采用了(6)设计策略。
参考答案:(6)回溯法
问题4.3 (3分)
上述C代码的输出为: (7)。
参考答案:(7)
方案1:2413;
方案2:3142。
```

第5题 2015年上半年 下午试卷案例 软件设计师

阅读下列说明和C++代码,将应填入(n)处的字句写在答题纸的对应栏内。

【说明】

某图书管理系统中管理着两种类型的文献:图书和论文。现在要求统计所有馆藏文献的总页码(假设图书馆中有一本540页的图书和两篇各25页的论文,那么馆藏文献的总页码就是590页)。采用 Visitor(访问者)模式实现该要求,得到如图5-1所示的类图。

图 5-1 Visitor 模式类图

【C++代码】 class Library Visitor; class LibraryItemInterface{ public: (1): class Article : public LibraryItemInterface { private: string m_title; //论文名 string m_author; //论文作者 int m_start_page; int m_end_page; public: Article(string p_author, string p_title, int p_start_page,int p_end_page); int getNumber()fPages(); void accept(Library Visitor* visitor); class Book : public LibraryItemInterface { private: string m_title; //书名 string m_author; //作者 int m_pages; //页数 public: Book(string p_author, string p_title, int p_pages); int getNumber()fPages(); void accept(LibraryVisitor* visitor); **}**;

```
class Library Visitor {
public:
(2);
(3);
virtual void printSum() = 0;
};
class LibrarySumPrintVisitor: public LibraryVisitor { //打印总页数
private:
int sum;
public:
LibrarySumPrintVisitor();
void visit(Book* p_book);
void visit(Article* p_article);
void printSum();
};
// visitor.cpp
int Article: :getNumber()fPages(){
retum m_end_page - m_start_page;
void Article::accept(LibraryVisitor* visitor) { (4) ;}
Book: :Book(string p_author, string p_title, int p_pages ) {
m_title = p_title;
m_author = p_author;
m_pages = p_pages;
int Book::getNumberOfPages(){ return m_pages; }
void Book::accept(LibraryVisitor* visitor){ (5) ; }
//其余代码省略
问题5.1 阅读上述说明和C++代码,将应填入(n)处的字句写在答题纸的对应栏内。
参考答案: (1) virtual void accept(Library Visitor* visitor)=0
(2) virtual void visit(Book* p_book)=0
(3) virtual void visit(Article* p_article)=0
(4) (Library Visitor*) visitor->visit(this)
(5) (Library Visitor*) visitor->visit(this)
```

第6题 2015年上半年 下午试卷案例 软件设计师

阅读下列说明和Java代码,将应填入 (n) 处的字句写在答题纸的对应栏内。

【说明】

某图书管理系统中管理着两种类型的文献:图书和论文。现在要求统计所有馆藏文献的总页码(假设图书馆中有一本540页的图书和两篇各25页的论文,那么馆藏文献的总页码就是590页)。采用 Visitor(访问者)模式实现该要求,得到如图6-1所示的类图。

【Java 代码】 import java.util.*; interface Library Visitor { (1) (2) void printSum(); class LibrarySumPrintVisitor implements LibraryVisitor { //打印总页数 private int sum = 0; public void visit(Book p_book) { sum = sum + p_book.getNumberOfPages(); public void visit(Article p_article) { sum = sum + p_article.getNumberOfPages0; } public void printSum(){ System.out.println("SUM = " + sum); } } interface LibraryItemInterface { (3);} class Article implements LibraryItemInterface{

```
private String m_title; //价仑文名。
private String m_author; //仑文作者
private int m_start_page;
private int m_end_page;
public Article(String p_author, String p_title,int p_start_page,int p_end_page){
m_title=p_title;
m_author= p_author;
m_end_page=p_end_page;
public int getNumbelOfPages(){
rctum m_end_page - m_start_page;
}
public void accept(LibraryVisitor Visitor){
(4):
}
class Book implements LibraryItemInterfacc{
private String m title; //书名
private String m_author; //书作者
private int m_pages; //页教
public Book(String p_author, String p_title,int p_ pages){
m_title= p_title;
m_author= p_author;
m_pages= p_pages;
public int getNumberOfPages(){
return m_pages;
}
public void accept(LibraryVisitor visitor){
(5)_{--};
}
问题6.1 阅读上述说明和Java代码,将应填入(n)处的字句写在答题纸的对应栏内。
参考答案: (1) void visit(Book p_book)
(2) void visit(Article p_article)
(3) void accept(LibraryVisitor visitor)
(4) visitor.visit(this)
(5) visitor.visit(this)
```