MATRICES

Exercice 1 (d'après ESLSCA 99)

On considère les matrices :
$$A = \begin{pmatrix} 1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3 \end{pmatrix}$$
 $I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ $P = \begin{pmatrix} 1 & 2 & 1 \\ -1 & -1 & -1 \\ 0 & -2 & -2 \end{pmatrix}$.

Partie A

- 1) Calculer les matrices A^2 et A^3 .
- 2) Déterminer des réels a, b et c tels que $A^3 = aA^2 + bA + cI$.
- 3) En déduire que la matrice A est inversible et calculer son inverse.
- 4) En déduire la résolution du système : $\begin{cases} x z = 2 \\ x + 2y + z = 8 \\ 2x + 2y + 3z = 13 \end{cases}$

Partie B

- 1) Montrer (par la méthode de Gauss) que la matrice *P* est inversible et calculer son inverse.
- 2) Calculer la matrice $B = P^{-1}AP$. En déduire B^n pour $n \in \mathbb{N}$.
- 3) Montrer que : $\forall n \in \mathbb{N}$ $A^n = PB^nP^{-1}$.
- 4) En déduire la matrice A^n pour $n \in \mathbb{N}$.

Partie C

L'objectif de cette partie est de déterminer l'ensemble \mathscr{E} des matrices M appartenant à $\mathscr{M}_3(\mathbb{R})$ qui commutent avec A, c'est-à-dire qui vérifient : AM = MA.

- 1) Montrer que l'ensemble \mathscr{E} contient la matrice nulle, les matrices I et A^{-1} , ainsi que toutes les puissances A^n de la matrice A pour $n \in \mathbb{N}^*$.
- 2) Montrer que si M et N sont deux matrices qui appartiennent à l'ensemble \mathscr{E} , alors les matrices M+N et MN appartiennent à l'ensemble \mathscr{E} .
- 3) Montrer que si M est une matrice inversible qui appartient à l'ensemble $\mathscr E$, alors son inverse M^{-1} appartient à l'ensemble $\mathscr E$.
- 4) Montrer qu'une matrice M appartient à l'ensemble \mathcal{E} si et seulement si la matrice

$$M' = P^{-1}MP$$
 commute avec la matrice $D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$.

- 5) Démontrer que les seules matrices qui commutent avec D sont les matrices diagonales.
- 6) En déduire la forme générale des matrices M qui appartiennent à l'ensemble $\mathscr E$.

Exercice 2

On considère la suite (u_n) définie par $u_0 = 3$, $u_1 = 1$, $u_2 = -1$ et :

$$\forall n \in \mathbb{N} \quad u_{n+3} = 5u_{n+2} - 8u_{n+1} + 4u_n$$

On pose:
$$\forall n \in \mathbb{N}$$
 $X_n = \begin{pmatrix} u_n \\ u_{n+1} \\ u_{n+2} \end{pmatrix}$ et $P = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 4 & 8 \end{pmatrix}$.

1) Montrer qu'il existe une matrice A telle que : $\forall n \in \mathbb{N}$ $X_{n+1} = AX_n$.

- 2) En déduire que : $\forall n \in \mathbb{N}$ $X_n = A^n X_0$.
- 3) Montrer que la matrice *P* est inversible et calculer son inverse.
- 4) Montrer que la matrice $T = P^{-1}AP$ se décompose en somme d'une matrice D diagonale et d'une matrice J qui a un seul élément non nul.
- 5) En déduire T^n pour tout entier naturel n.
- 6) Montrer que : $\forall n \in \mathbb{N}$ $A^n = PT^nP^{-1}$.
- 7) En déduire A^n pour tout entier naturel n.
- 8) En déduire l'expression du terme général u_n en fonction de n.

Exercice 3 (d'après HEC 98 voie T)

Partie A : Dérivées successives d'une fonction f

On considère la fonction f définie pour tout réel x par : $f(x) = (x^2 + x + 1)e^{-x}$.

- 1) Calculer les dérivées d'ordre 1 et d'ordre 2 de la fonction f.
- 2) Montrer par récurrence que pour tout entier $p \ge 1$, il existe des réels a_p , b_p et c_p tels que : $\forall x \in \mathbb{R}$ $f^{(p)}(x) = (a_p x^2 + b_p x + c_p)e^{-x}$.
- 3) Exprimer a_{p+1} , b_{p+1} et c_{p+1} en fonction de a_p , b_p et c_p pour tout entier $p \ge 1$.

Partie B: Puissances d'une matrice

On considère les matrices $I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ et $A = \begin{pmatrix} -1 & 0 & 0 \\ 2 & -1 & 0 \\ 0 & 1 & -1 \end{pmatrix}$.

- 1) Calculer J = A + I, J^2 et J^3 , puis J^p pour tout entier $p \ge 3$.
- 2) En déduire que : $\forall p \ge 2$ $A^p = (-1)^p \left[I pJ + \frac{p(p-1)}{2} J^2 \right]$.
- 3) En déduire la matrice A^p pour $p \ge 2$. La formule est-elle encore vraie pour p = 1?

Partie C : Retour aux dérivées de f

- 1) Montrer par récurrence que pour tout entier $p \ge 1$: $\begin{pmatrix} a_p \\ b_p \\ c_p \end{pmatrix} = A^p \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$.
- 2) En déduire a_p , b_p et c_p , puis l'expression de $f^{(p)}(x)$ en fonction de p et de x.

Exercice 4 (d'après Ecricome 2003 voie E)

On considère les matrices :

$$A = \begin{pmatrix} 3 & -2 & 3 \\ 1 & 0 & 2 \\ 0 & 0 & 2 \end{pmatrix} \qquad P = \begin{pmatrix} 1 & 2 & 1 \\ 1 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \qquad T = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix} \qquad I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Partie A: Inversion de la matrice P

- 1) Calculer P^2 et P^3 .
- 2) Démontrer qu'il existe des réels a, b et c tels que : $P^3 = aP^2 + bP + cI$.
- 3) En déduire que la matrice P est inversible et calculer son inverse P^{-1} .
- 4) Vérifier le calcul de P^{-1} par la méthode de Jordan-Gauss.

Partie B : Puissances de la matrice A

- 1) Calculer la matrice $P^{-1}AP$.
- 2) Démontrer que T est somme d'une matrice diagonale D et d'une matrice J qui n'a qu'un seul élément non nul.
- 3) En déduire la matrice T^n pour tout entier naturel n.

- 4) Démontrer que : $\forall n \in \mathbb{N}$ $A^n = PT^nP^{-1}$.
- 5) En déduire la matrice A^n pour tout entier naturel n.

Partie C : Commutant de la matrice A

On appelle commutant d'une matrice A l'ensemble des matrices M qui commutent avec la matrice $A: \mathcal{C}(A) = \{M \in \mathcal{M}_3(\mathbb{R}) \mid AM = MA\}$.

- 1) Démontrer que si M et M' sont deux éléments de $\mathscr{C}(A)$, alors M+M' et MM' appartiennent aussi à $\mathscr{C}(A)$.
- 2) Soit M une matrice carrée d'ordre 3 et $Q = P^{-1}MP$. Démontrer que AM = MA si et seulement si TQ = QT.
- 3) Démontrer qu'une matrice Q carrée d'ordre 3 vérifie TQ = QT si et seulement si

il existe des réels
$$a$$
, b et c tels que : $Q = \begin{pmatrix} a & 0 & 0 \\ 0 & b & c \\ 0 & 0 & b \end{pmatrix}$.

- 4) En déduire la forme générale des matrices M qui appartiennent à $\mathcal{C}(A)$.
- 5) En déduire qu'il existe trois matrices K, L et N que l'on précisera telles que :

$$\mathscr{C}(A) = \left\{ aK + bL + cN / (a, b, c) \in \mathbb{R}^3 \right\}$$

Exercice 5 (d'après Ecricome 99 voie S)

On définit les matrices :
$$M = \begin{pmatrix} 1 & 0 & 0 & 0 \\ -1 & 4 & 1 & -2 \\ 2 & 1 & 2 & -1 \\ 1 & 2 & 1 & 0 \end{pmatrix}$$
, $V = \begin{pmatrix} 4 & 1 & -2 \\ 1 & 2 & -1 \\ 2 & 1 & 0 \end{pmatrix}$ et $I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.

1) Soient H et H' deux matrices carrées d'ordre 4 écrites sous forme de blocs :

$$H = \begin{pmatrix} 1 & O \\ C & A \end{pmatrix} \text{ avec } O = \begin{pmatrix} 0 & 0 & 0 \end{pmatrix}, \ C = \begin{pmatrix} a \\ b \\ c \end{pmatrix} \text{ et } A = (a_{i,j}) \text{ dans } \mathscr{M}_3(\mathbb{R}).$$

$$H' = \begin{pmatrix} 1 & O \\ C' & A' \end{pmatrix} \text{ avec } O = \begin{pmatrix} 0 & 0 & 0 \end{pmatrix}, \ C' = \begin{pmatrix} a' \\ b' \\ c' \end{pmatrix} \text{ et } A' = (a'_{i,j}) \text{ dans } \mathscr{M}_3(\mathbb{R}).$$

Montrer que leur produit s'écrit par blocs : $HH' = \begin{pmatrix} 1 & O \\ C'' & AA' \end{pmatrix}$ avec C'' = C + AC'.

- 2) Montrer que, pour tout $n \in \mathbb{N}^*$, il existe une matrice colonne U_n à trois lignes telle que : $M^n = \begin{pmatrix} 1 & O \\ U_n & V^n \end{pmatrix}$.
- 3) On pose W = V 2I. Pour tout $n \in \mathbb{N}^*$, calculer W^n et en déduire V^n .
- 4) On pose: $U_n = \begin{pmatrix} a_n \\ b_n \\ c_n \end{pmatrix}$ et $X = \begin{pmatrix} 1 \\ 1 \\ -4 \\ -1 \end{pmatrix}$. Calculer MX, puis $M^n X$. En déduire a_n ,

 b_n et c_n , puis l'expression de M^n .

Algèbre linéaire 4

Exercice 6 (EM Lyon 2009 voies E et S)

L'objectif du problème est d'étudier sur des cas particuliers et par diverses méthodes la notion de racine carrée d'une matrice.

Une matrice $R \in \mathscr{M}_n(\mathbb{R})$ est une racine carrée d'une matrice $A \in \mathscr{M}_n(\mathbb{R})$ si $R^2 = A$.

Partie A

- 1) Soit θ un réel et $R_{\theta} = \begin{pmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{pmatrix}$. Calculer $(R_{\theta})^2$ et en déduire que la matrice $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ admet une infinité de racines carrées.
- 2) Montrer que la matrice $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ n'admet pas de racine carrée.

Partie B

- 1) Démontrer que : $\lim_{t \to 0} \frac{\sqrt{1+t} 1 \frac{1}{2}t}{t^2} = -\frac{1}{8}$.
- 2) Démontrer qu'il existe un polynôme Q tel que : $1 + X = \left(1 + \frac{1}{2}X \frac{1}{8}X^2\right)^2 + X^3Q(X)$.
- 3) En déduire une racine carrée de la matrice I + N si N est une matrice telle que $N^3 = 0$ et I la matrice unité.
- 4) En déduire une racine carrée de la matrice $A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$.

Partie C

On considère une matrice $A \in \mathcal{M}_n(\mathbb{R})$ et une matrice $P \in \mathcal{M}_n(\mathbb{R})$ inversible telle que $D = P^{-1}AP$ soit une matrice diagonale dont tous les éléments diagonaux sont distincts et strictement positifs.

- 1) Démontrer qu'une matrice R est une racine carrée de A si et seulement si la matrice $S = P^{-1}RP$ est une racine carrée de D.
- 2) Démontrer que si S est une racine carrée de D, alors SD = DS. En déduire que les racines carrées de D sont des matrices diagonales.
- 3) En déduire que A admet 2^n racines carrées (on ne demande pas de les calculer).
- 4) On considère les matrices : $A = \frac{1}{2} \begin{pmatrix} 13 & 5 & -5 \\ 8 & 10 & -8 \\ 3 & -3 & 5 \end{pmatrix}$, $P = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$ et $I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.
 - a) Déterminer des réels a et b tels que $P^2 = aP + bI$.
 - b) En déduire que P est inversible et calculer P^{-1} .
 - c) Démontrer que $D = P^{-1}AP$ est une matrice diagonale.
 - d) Déterminer les racines carrées de A.

Partie D

On considère maintenant la matrice $A = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}$ symétrique (car ${}^{t}A = A$).

On se propose de chercher les racines carrées de A qui sont symétriques.

- 1) On note $P = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & -1 \\ 1 & -1 & 0 \end{pmatrix}$. Montrer que P est inversible et déterminer son inverse.
- 2) Montrer que $D = P^{-1}AP$ est une matrice diagonale dont les éléments sont positifs.

- 3) On admet le résultat de la partie \mathbb{C} : « une matrice R est racine carrée de A si et seulement si la matrice $S = P^{-1}RP$ est une matrice dont le carré est D et donc qui commute avec D ».
 - a) En utilisant la relation SD = DS, montrer que la matrice S est de la forme

$$S = \begin{pmatrix} a & 0 & 0 \\ 0 & b & c \\ 0 & d & e \end{pmatrix}$$
 où a, b, c, d et e sont des réels.

- b) Montrer que R est symétrique si et seulement si $P^2S = (^tS)P^2$. En déduire e en fonction de b, c et d.
- c) En utilisant la relation $S^2 = D$, montrer que la matrice S est de la forme

$$S = \begin{pmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & b \end{pmatrix} \text{ avec } \begin{cases} a^2 = 4 \\ b^2 = 1 \end{cases} \text{ ou } S = \begin{pmatrix} a & 0 & 0 \\ 0 & b & c \\ 0 & c - b & -b \end{pmatrix} \text{ avec } \begin{cases} a^2 = 4 \\ b^2 + c^2 - bc = 1 \end{cases}.$$

4) En déduire les racines carrées de A qui sont symétriques