Magnetic Prandtl Number Dependence of the Kinetic-to-Magnetic Dissipation Ratio Presented by Andrés Cathey

Axel Brandenburg

KTH Royal institute of Technology and Stockholm University

2014

Overview

Magnetohydrodynamics

What exactly is MHD? Examples

Reynolds Numbers and the Magnetic Prandtl Number

Reynolds Numbers Magnetic Prandtl Number Energy dependence on Pr_M

DNS of Turbulent Dynamos

Governing Equations

Results

Shell and 1D Models

Shell Model Driven 1D Model

Conclusions

Overview

Magnetohydrodynamics What exactly is MHD? Examples

Reynolds Numbers and the Magnetic Prandtl Number Reynolds Numbers

Magnetic Prandtl Number Energy dependence on Pr_M

DNS of Turbulent Dynamos
Governing Equations
Results

Shell and 1D Models
Shell Model
Driven 1D Model

Conclusions

- ► Electrically conducting fluids.
 - Plasmas.
 - ► Liquid metals.
 - ► Electrolytes.

- ► Electrically conducting fluids.
 - Plasmas.
 - ► Liquid metals.
 - ► Electrolytes.
- Moving ρ generate currents.

- Electrically conducting fluids.
 - Plasmas.
 - Liquid metals.
 - ► Electrolytes.
- Moving ρ generate currents.
- Ampére's law: $\nabla \times \mathbf{B} = \mu_0 \mathbf{J}$.

- ► Electrically conducting fluids.
 - ▶ Plasmas.
 - Liquid metals.
 - ► Electrolytes.
- Moving ρ generate currents.
- Ampére's law: $\nabla \times \mathbf{B} = \mu_0 \mathbf{J}$.
- ► Faraday's law: $\nabla \times \mathbf{E} = -\partial_t \mathbf{B}$.

What exactly is MHD?

Navier-Stokes equations

What exactly is MHD?

Maxwell equations

Maxwell equations

$$\nabla \cdot E = \frac{\rho}{\varepsilon_0}$$

$$\nabla \cdot B = 0$$

$$\nabla \times E = -\frac{\partial B}{\partial t}$$

$$\nabla \times B = \mu_0 J + \mu_0 \varepsilon_0 \frac{\partial E}{\partial t}$$

What exactly is MHD?

Numerical simulations

Figure: Cosmological simulation showing dark matter halos.

What exactly is MHD?

Numerical simulations

Figure: Radial component of magnetic field amplitude in an unstable n=1 kink mode in DIII-D. MHD Stability code MARS.

Examples: Laboratory Plasma

Figure: Snapshot from a numerical simulation of plasma turbulence in the ASDEX Upgrade tokamak with the nonlinear gyrokinetic code GENE. Dr. Jenko

Examples: Magnetic Dynamos - Astrophysical Scales

Figure: Jupiter cut open (2014). Dr. Krummheuer & Dr. Wicht

Examples: MHD Turbulence - Astrophysical Scales

Figure: Ultra-high-resolution numerical simulation of a coronal mass ejection and associated flare. Solar and Space Physics (2010)

Overview

Magnetohydrodynamics What exactly is MHD? Examples

Reynolds Numbers and the Magnetic Prandtl Number Reynolds Numbers

Magnetic Prandtl Number

Energy dependence on Pr_M

DNS of Turbulent Dynamos Governing Equations Results

Shell and 1D Models
Shell Model
Driven 1D Model

Conclusions

$$Re = \frac{\text{inertial forces}}{\text{viscous forces}} = \frac{u L}{\nu}$$

Reynolds Number

Ideal MHD equations: Perfectly conducting fluids.

$$Re_M = \frac{\text{inertial forces}}{\text{diffusive forces}} = \frac{u L}{\eta}$$

Reynolds Numbers and the Magnetic Prandtl Number Magnetic Prandtl Number

$$Pr_M = rac{Re_M}{Re} = rac{
u}{\eta}$$

Magnetic Prandtl Number

Figure: Map of "typical" objects in the plane (Re, Re_M). Yellow dashed lines are Pr_M isolines. [1].

Energy dependence on Pr_M

Figure: Kinetic E_u and magnetic E_b energies as a function of Pr_M in the dynamic phase [2].

Energy dependence on Pr_M

Figure: Kinetic ϵ_K to magnetic ϵ_M dissipation rate as a function of Pr_M "after" asymptotical regime [3].

Overview

Magnetohydrodynamics
What exactly is MHD?
Examples

Reynolds Numbers and the Magnetic Prandtl Number Reynolds Numbers

Magnetic Prandtl Number

Energy dependence on Pr_M

DNS of Turbulent Dynamos Governing Equations Results

Shell and 1D Models
Shell Model
Driven 1D Model

Conclusions

Forced MHD turbulence of a gas with isothermal equation of state: $p = \rho c_s^2$.

$$\begin{split} \frac{D l n \rho}{D t} &= - \boldsymbol{\nabla} \cdot \mathbf{u} \\ \frac{D \mathbf{u}}{D t} &= - c_s^2 \boldsymbol{\nabla} l n \rho - 2 \boldsymbol{\Omega} \times \mathbf{u} + \mathbf{f} \\ &+ \rho^{-1} [\mathbf{J} \times \mathbf{B} + \boldsymbol{\nabla} \cdot (2 \nu \rho \boldsymbol{\mathcal{S}})] \\ \frac{\partial \mathbf{A}}{\partial t} &= \mathbf{u} \times \mathbf{B} - \eta \mu_0 \mathbf{J} \end{split}$$

Kinetic and Magnetic energies.

$$\begin{split} \frac{d}{dt} \langle \rho \mathbf{u}^2 / 2 \rangle &= \langle p \nabla \cdot \mathbf{u} \rangle + \langle \mathbf{u} \cdot (\mathbf{J} \times \mathbf{B}) \rangle + \langle \rho \mathbf{u} \cdot \mathbf{f} \rangle - \langle 2 \rho \nu \mathcal{S}^2 \rangle \\ \frac{d}{dt} \langle B^2 / 2\mu_0 \rangle &= -\langle \mathbf{u} \cdot (\mathbf{J} \times \mathbf{B}) \rangle - \langle \eta \mu_0 J^2 \rangle \end{split}$$

Kinetic and Magnetic energies.

$$\frac{d}{dt}\langle \rho \mathbf{u}^2/2 \rangle = \langle p \nabla \cdot \mathbf{u} \rangle + \langle \mathbf{u} \cdot (\mathbf{J} \times \mathbf{B}) \rangle + \langle \rho \mathbf{u} \cdot \mathbf{f} \rangle - \langle 2\rho \nu S^2 \rangle$$
$$\frac{d}{dt}\langle B^2/2\mu_0 \rangle = -\langle \mathbf{u} \cdot (\mathbf{J} \times \mathbf{B}) \rangle - \langle \eta \mu_0 J^2 \rangle$$

Dissipation rates.

$$\epsilon_K = \langle 2\rho\nu S^2 \rangle, \qquad \epsilon_M = \langle \eta\mu_0 J^2 \rangle$$

DNS of Turbulent Dynamos

Governing Equations

Figure: Flow of energy sketch [4].

DNS of Turbulent Dynamos

Simulations and Results

Pencil code (NORDITA)

Figure: Snapshot of Pencil-code GitHub repository.

DNS of Turbulent Dynamos

Simulations and Results

Energy ratio approximately independent on Pr_M .

Figure: Energy ratio E_K/E_M dependence on Pr_M for large-scale dynamo (blue) and smal-scale dynamos (orange and red) [4].

DNS of Turbulent Dynamos

Simulations and Results

Dissipation ratio dependency on Pr_M .

Figure: Dissipation ratio ϵ_K/ϵ_M dependence on Pr_M for non-helical forcing ($\sigma=0$) and for fully helical forcing ($\sigma=1$). [4].

Overview

Magnetohydrodynamics What exactly is MHD? Examples

Reynolds Numbers and the Magnetic Prandtl Number Reynolds Numbers

Magnetic Prandtl Number

Energy dependence on Pr_M

DNS of Turbulent Dynamos Governing Equations Results

Shell and 1D Models
Shell Model
Driven 1D Model

Shell and 1D Models

Shell Model

Similar equations than before - same conserved quantities. Time integration scheme: Adams-Bashforth

Shell and 1D Models

Shell Model

Dissipation ratio dependency on Pr_M .

Figure: Dissipation ratio ϵ_K/ϵ_M dependence on Pr_M [4]. Red shows simulations made by Plunian and Stepanov [5].

Neglecting gas pressure:

$$\frac{\partial u}{\partial t} = -uu' - bb' + \tilde{\nu}u''$$
$$\frac{\partial b}{\partial t} = -ub' - bu' + \eta b''$$

Shell and 1D Models

Driven 1D Model

Dissipation ratio dependency on Pr_M .

Figure: Dissipation ratio ϵ_K/ϵ_M dependence on Pr_M [4]. Red shows simulations made by Plunian and Stepanov [5].

Overview

Magnetohydrodynamics What exactly is MHD?

Reynolds Numbers and the Magnetic Prandtl Number Reynolds Numbers

Magnetic Prandtl Number Energy dependence on Pr_M

DNS of Turbulent Dynamos Governing Equations Results

Shell and 1D Models
Shell Model
Driven 1D Model

1. Obtained relations for the kinetic-to-magnetic dissipation ratio for a broad range of Pr_M values.

- 1. Obtained relations for the kinetic-to-magnetic dissipation ratio for a broad range of Pr_M values.
- 2. Confirmed earlier results that for large-scale dynamos, the ratio ϵ_K/ϵ_M is proportionate to $Pr_M^{0.6}$.

- 1. Obtained relations for the kinetic-to-magnetic dissipation ratio for a broad range of Pr_M values.
- 2. Confirmed earlier results that for large-scale dynamos, the ratio ϵ_K/ϵ_M is proportionate to $Pr_M^{0.6}$.
- 3. Discovered scaling laws $(\epsilon_K/\epsilon_M \sim Pr_M^q)$ for fully helical and non-helical forcing. Where $q \approx [0.6-2/3]$ for the former and $q \approx 1/3$ for the latter.

- 1. Obtained relations for the kinetic-to-magnetic dissipation ratio for a broad range of Pr_M values.
- 2. Confirmed earlier results that for large-scale dynamos, the ratio ϵ_K/ϵ_M is proportionate to $Pr_M^{0.6}$.
- 3. Discovered scaling laws $(\epsilon_K/\epsilon_M \sim Pr_M^q)$ for fully helical and non-helical forcing. Where $q \approx [0.6-2/3]$ for the former and $q \approx 1/3$ for the latter.
- 4. Consistent results to previous simulations regarding the kinetic-to-magnetic dissipation ratio were acquired.

References

- F. Plunian, R. Stepanov, and P. Frick, "Shell models of magnetohydrodynamic turbulence," *Physics Reports*, vol. 523, no. 1, pp. 1–60, 2013.
- [2] C. Guervilly, D. W. Hughes, and C. A. Jones, "Generation of magnetic fields by large-scale vortices in rotating convection," *Physical Review E*, vol. 91, no. 4, p. 041001, 2015.
- [3] A. Brandenburg, "Dissipation in dynamos at low and high magnetic prandtl numbers," *Astronomische Nachrichten*, vol. 332, no. 1, pp. 51–56, 2011.
- [4] A. Brandenburg, "Magnetic prandtl number dependence of the kinetic-to-magnetic dissipation ratio," *The Astrophysical Journal*, vol. 791, no. 1, p. 12, 2014.
- [5] F. Plunian and R. Stepanov, "Cascades and dissipation ratio in rotating magnetohydrodynamic turbulence at low magnetic prandtl number," *Physical Review E*, vol. 82, no. 4, p. 046311, 2010.

Shell Models

Energy profiles with shell model

Figure: Compensated time-averaged kinetic and magnetic energy spectra for shell models at three values of Pr_M [4].