Homework 5 for MATH 104

Brief solutions to selected exercises

Problem 1

For $x, y \in \mathbb{R}$, define

$$\begin{split} d_1(x,y) &= (x-y)^2 & d_3(x,y) = |x^2-y^2| & d_5(x,y) = \frac{|x-y|}{1+|x-y|} \\ d_2(x,y) &= \sqrt{|x-y|} & d_4(x,y) = |x-2y| \end{split}$$

Determine, for each of these, whether it is a metric on \mathbb{R} or not. Justify your answer.

Problem 2

Consider the real line \mathbb{R} with the standard metric d(x,y) = |x-y|.

(a) Prove that the set $\{\frac{1}{n}: n \in \mathbb{N}\} \cup \{0\}$ is compact directly from the definition (without using the Heine-Borel Theorem).

 $\label{eq:solution.} \begin{array}{ll} \textit{Solution.} & \text{Let } \mathcal{U} \text{ be an open cover of } \{\frac{1}{n}: n \in \mathbb{N}\} \cup \{0\}. \text{ Let } U_0 \in \mathcal{U} \text{ be such that } 0 \in U_0. \text{ Since } U_0 \text{ is open, there exists an } r > 0 \text{ such that } B_r(0) = (-r,r) \subseteq U_0. \text{ Since } \lim_n \frac{1}{n} = 0, \text{ there exists } N \in \mathbb{N} \text{ such that for all } n > N, \frac{1}{n} < r. \text{ For } 1 \leqslant i \leqslant N, \text{ choose } U_i \in \mathcal{U} \text{ such that } \frac{1}{i} \in U_i. \text{ Then, } \{U_0, U_1, \dots, U_N\} \text{ is a finite subcover of } \{\frac{1}{n}: n \in \mathbb{N}\} \cup \{0\}. \end{array}$

(b) Give an example of a compact subset K of \mathbb{R} such that K has countably many limit points.

Solution. The set $\{\frac{1}{n}: n \in \mathbb{N}\} \cup \{0\}$ is countable, closed and bounded. By the Heine-Borel Theorem, it is compact, and has countably many limit points.

Problem 3

Let (X, d) be a metric space.

(a) Define the $diameter\delta(A)$ of a set $A \subseteq X$ as

$$\delta(A)=\sup\{d(x,y):\, x,y\in A\}$$

Consider the metric space (\mathbb{R}^n, d_2) , where d_2 denotes the Euclidean metric. Show that for any compact subset K of \mathbb{R}^n , there exists $x, y \in K$ such that $\delta(K) = d(x, y)$.

Solution. If K is compact, then it is closed and bounded by the Heine-Borel Theorem. Therefore, $\delta(A) = \sup\{d(x,y) : x,y \in A\}$ is finite. For any $n \in \mathbb{N}$, there exist $x_n,y_n \in K$ such that $\delta(K) - \frac{1}{n} \leq d(x_n,y_n) \leq \delta(K)$. Since (x_n) is in K, it is bounded. By the Bolzano-Weierstrass Theorem, there exists a convergent subsequence (x_{n_k}) of (x_n) . Apply the Bolzano-Weierstrass Theorem again to obtain a convergent subsequence $(y_{n_{k_1}})$ of (y_{n_k}) . Assume the limits of the subsequences are x and y, respectively. Then $\lim_{k \to \infty} d(x_{n_{k_1}}, y_{n_{k_1}}) = d(x,y) = \delta(K)$. But, by closedness of K, K contains all its limit points, and hence $x,y \in K$.

(b) Define the distance $\delta(A, B)$ of two sets as

$$\delta(A, B) = \inf\{d(x, y) : x \in A, y \in B\}.$$

Give an example of two closed subsets of \mathbb{R} (with respect to the standard metric) such that $\delta(A, B) < d(x, y)$ for all $x \in A$, $y \in B$. (As always, justify your answer.)

Solution. Consider the sets $A = \{n : n \in \mathbb{N}\}$ and $B = \{n + \frac{1}{2n} : n \in \mathbb{N}\}$. Then $\delta(A, B) = 0$, but d(a, b) > 0 for all $a \in A, b \in B$, as is easily seen. Also, A and B are both closed, since their complements are clearly open.

Problem 4

Let (X, d) be a metric space. A set $D \subset X$ is called *dense* if every point in X is a limit point of D. A metric space (X, d) is called *separable* if it contains a countable dense subset.

(a) Prove that (\mathbb{R}^n, d_2) is separable. (Hint: consider the set $\mathbb{Q}^n = \{(q_1, \dots, q_n) : q_i \in \mathbb{Q} \text{ for } 1 \leq i \leq n\}$.)

Solution. Idea: Use the density of \mathbb{Q} in \mathbb{R} and the fact that a sequence $(x^{(k)})$ in \mathbb{R}^n converges iff each sequence $(x_i^{(k)})$ converges in \mathbb{R} .

(b) Show that every compact metric space is separable.

Solution. Let (X,d) be a compact metric space. For each $n \in \mathbb{N}$, consider the family of open sets $\mathcal{U}_n = \{B_{1/n}(x) : x \in X\}$. Obviously, \mathcal{U}_n is an open cover of X. By compactness, for each n there exists a finite subcover $\{U_1^{(n)}, \ldots, U_{n_k}^{(n)}\}$ of \mathcal{U}_n .

Let \mathcal{V} be the set of all such $U_i^{(n)}$. Note that \mathcal{V} is countable. Furthermore, each $U_i^{(n)}$ is an open ball, so let D be the set of all centers of these balls. Now it is clear that D is countable, and it is straightforward to verify that D is dense in X.