1	2	3	4	5

APELLIDO Y NOMBRE:

No. de libreta:

Carrera:

ALGEBRA - FINAL (**/02/02)

1.— Sea $A=\{1,2,3,4,5,6,7,8,9,10\}$. Determinar cuántas relaciones de equivalencia \Re de A satisfacen que

$$\{ (1,1), (1,3), (3,2), (4,5), (7,6), (8,10), (9,10) \} \subseteq \Re$$

$$(1,7) \notin \Re \quad , \quad (1,8) \notin \Re \quad \text{y} \quad (10,7) \notin \Re$$

- **2.** Probar que $(7 \cdot 3^n 5^{n+1} : 3^{n+1} + 7 \cdot 5^n) = 2 \text{ o } 4$.
- 3.- Resolver completamente la ecuación

$$7x^{49} \equiv 57 \pmod{65}$$
.

4.— Determinar todos los $z \in \mathbb{C}$ que verifican que

$$z^2 + z = \frac{2 \operatorname{arg}(z)}{\pi}.$$

5.— Sea $(f_n)_{n\in\mathbb{N}}$ una sucesión de polinomios en $\mathbb{Q}[X]$ definida por

$$f_1 := X^5 - X^4 - X + 1$$
 , $f_{n+1} := X f_n^2 + X^{n+1} - (n+1)X + n$.

Probar que para todo $n \in \mathbb{N}$, 1 es raíz exactamente doble de f_n .

Se considerarán solo las respuestas bien justificadas.