Normal nano processor

Inputs

Buttons

Reset (reset register bank and PC)—btnC
 (it takes a time of clock cycle to reset and button should be pressed until that.)

Clock signal

• Clk

Outputs

Leds

• Op_Led (Display the output of register7) -Led0-Led3

• Over_Flow (Display overflowing results) -Led 14

• Zero (Display zero result of 4bit adder and overflow) -Led 15

7 segment display

• Sev_7Seg - seg0-seg6

• anode(switch on rightmost 7-segment) - an0-an3

Program

 $\begin{array}{c} 101110000001 \ - \ MOV \ 1 \ TO \ REG \ 7 \\ (Seven \ segment \ OP - 1) \end{array}$

 $100010000010 - MOV\ 2\ TO\ REG\ 1$ $001110010000 - ADD\ REG\ 7\ VALUE\ AND\ REG\ 1\ VALUE$ (Seven segment OP-3)

011110000000 - NEGATION OF REG 7 (Seven segment OP – d)

101110000011 - MOV 3 TO REG 7 (Seven segment OP – 3)

010010000000 - NEGATE REG 1 VALUE

001110010000 - ADD REG 7 VALUE AND REG 1 VALUE (Seven segment OP-1) 110000000100 - JUMP TO LINE 4 IF REG 0 VALUE IS 0

Improved nano Processor

Special Instructions

 As a improvement we added some extra instructions (subtract and compare).

Instruction	Description	Format
ADD Ra ,Rb	Add values in registers Ra and Rb and store the result in Ra, i.e., Ra Ra + Rb	0 0 0 Ra Ra Ra Rb Rb Rb 0 0 0 0
NEG R	2's complement of registers R, i.e., R – R	001RRR0000000
MOVI R, d	Move immediate value <i>d</i> to register R, i.e., <i>R d</i>	010RRR000dddd
JZR R, d	Jump if value in register R is 0, i.e., If R == 0 PC d; Else PC PC + 1;	0 1 1 R R R 0 0 0 0 d d d
SUB Rb - Ra	Subtract values in registers Ra and Rb and store the result in Ra, i.e., Ra Rb - Ra	1 0 0 Ra Ra Ra Rb Rb Rb 0 0 0 0
COMP Ra ,Rb	Compare Ra value and Rb value	1 1 0 Ra Ra Ra Rb Rb Rb 0 0 0 0

Inputs

Buttons

• Reset – btnC

Clock signal

• Clk

Outputs

Leds

• Op_Led -Led0-Led3

• Over Flow -Led 14

• Zero -Led 15

• Equal (display the equality of 2 compared numbers) -Led7

• Max A(if A>B) - Led 6

• Max_B (if B>A) -Led 8

7 segment display

• Sev_7Seg -seg0-seg6

• anode - an0-an3

Program

0101110000001 - MOV 1 TO REG 7

(Seven segment OP - 1)

0100110000010 - MOV 2 TO REG 6

0001110110000 - ADD REG 7 VALUE AND REG 6 VALUE

(Seven segment OP - 3)

0011110000000 - GET NEG OF REG 7 VALUE

(Seven segment OP - d)

0101110000001 - MOV 1 TO REG 7

(Seven segment OP - 1)

1001110010000 - SUBTRACT REG 7 VALUE FROM REG 1 VALUE

(Seven segment OP - 1)

