Задачи к лекции 2

Задача 1. Докажите, что объединение двух отрезков, стыкующихся под некоторым углом, можно представить как образ гладкой параметрической кривой.

Задача 2. Докажите эквивалентность следующих двух определений длины $L(\gamma)$ гладкой кривой $\gamma\colon [a,b]\to \mathbb{R}^n$. (1) $L(\gamma)=\int_a^b|\dot{\gamma}(t)|\,dt,\,u$ (2) $L(\gamma)$ — точная верхняя грань длин вписанных в γ ломаных.

Задача 3. Вычислите длину кривой, заданной графиком функции $y=x^2$, $x \in [-1,1]$.

Задача 4. Эллиптические координаты λ , μ , z 6 \mathbb{R}^3 определяются c помощью формул

$$x = c\lambda\mu$$
, $y = c\sqrt{(\lambda^2 - 1)(1 - \mu^2)}$, $z = z$,

 $c \partial e \ c > 0$ — масштабный множитель.

- **а)** Приведите одну из максимальных областей определения эллиптических координат.
- **б)** Найдите и изобразите координатные кривые и координатные поверхности эллиптических координат.
- **в)** Вычислите якобианы перехода между эллиптическии и евклидовыми координатами.
- г) Запишите евклидову метрику в эллиптических координатах.

Задача 5. Эллипсоидальные координаты $6 \mathbb{R}^3$ вводятся с помощью уравнений (a > b > c):

$$\begin{split} \frac{x^2}{a^2 + \lambda} + \frac{y^2}{b^2 + \lambda} + \frac{z^2}{c^2 + \lambda} &= 1 \qquad (\lambda > -c^2) \\ \frac{x^2}{a^2 + \mu} + \frac{y^2}{b^2 + \mu} + \frac{z^2}{c^2 + \mu} &= 1 \quad (-c^2 > \mu > -b^2) \\ \frac{x^2}{a^2 + \nu} + \frac{y^2}{b^2 + \nu} + \frac{z^2}{c^2 + \nu} &= 1 \quad (-b^2 > \nu > -a^2) \end{split}$$

Докажите, что каждой точке $(x, y, z) \in \mathbb{R}^3$ соответствует не более одной системы значений λ, μ, ν . Выясните, каким точкам $(x, y, z) \in \mathbb{R}^3$ соответствует одна система значений λ, μ, ν .

Параметры λ , μ , ν называются эллипсоидальными координатами. Выразите декартовы координаты x, y, z через эллипсоидальные координаты λ , μ , ν .

Задача 6. Касательным вектором ξ к области $\Omega \subset \mathbb{R}^n$ в точке $P \in \Omega$ называется вектор скорости $\dot{\gamma}(0)$ гладкой кривой $\gamma(t)$ такой, что $\gamma(0) = P$. Координатами касательного вектора ξ в криволинейной системе координат называются координаты вектора $\dot{\gamma}(0)$ кривой γ , записанной в этой криволинейной системе координат.

Покажите, что координаты w касательного вектора ξ в точке $P \in \Omega$, вычисленные в криволинейной системе координат y^i , получаются из его координат v, вычисленных в евклидовой системе координат x^i , умножением на матрицу Якоби:

$$w = \left(\frac{\partial y^i}{\partial x^j}(P)\right)v, \quad w^i = \sum_i \frac{\partial y^i}{\partial x^j}(P) v^j.$$

Задача 7. Градиентом $\nabla f(P)$ гладкой функции $f:\Omega\to\mathbb{R}$ в точке $P\in\Omega,\,\Omega\subset\mathbb{R}^n$, называется касательный вектор, который в евклидовых координатах x^i имеет вид

$$\nabla f(P) = \left(\frac{\partial f}{\partial x^1}(P), \dots, \frac{\partial f}{\partial x^n}(P)\right).$$

Докажите, что координаты градиента $\nabla f(P)$ в криволинейной системе координат y^i могут быть вычислены по формуле

$$\left[\nabla f\right]^i = \sum_j g^{ij} \frac{\partial f}{\partial y^j},$$

где (g^{ij}) — матрица, обратная к матрице (g_{ij}) евклидовой метрики, записанной в координатах y^i .

Задача 8. Гладким векторным полем ξ на области $\Omega \subset \mathbb{R}^n$ называется семейство касательных векторов, заданное в евклидовых координатах гладким отображением $v \colon \Omega \to \mathbb{R}^n$. Дивергенцией $\operatorname{div} \xi$ поля ξ называется функция на Ω , которая в евклидовых координатах равна $\sum_i \frac{\partial v^i}{\partial x^i}$. Лапласианом Δf гладкой функции $f \colon \Omega \to \mathbb{R}$ называется функция, которая в евклидовых координатах равна $\sum_i \frac{\partial^2 f}{(\partial x^i)^2}$. Пусть y^i — криволинейные координаты в Ω , (w^1, \dots, w^n) — координаты поля ξ , вычисленные по отношению к y^i , (g_{ij}) — матрица евклидовой метрики, записанной в y^i , (g^{ij}) — матрица, обратная к (g_{ij}) , и $g = \det(g_{ij})$. Докажите, что

$$\operatorname{div} \xi = \frac{1}{\sqrt{g}} \sum_{i} \frac{\partial}{\partial y^{i}} (\sqrt{g} \, w^{i}), \quad \Delta f = \frac{1}{\sqrt{g}} \sum_{i,j} \frac{\partial}{\partial y^{i}} \left(\sqrt{g} \, g^{ij} \frac{\partial f}{\partial y^{j}} \right).$$