Reference Sheet

Machining:

Material Removal Rate: $MRR = (\pi DN)(Feed)(depth \ of \ cut)$,

Feed = $\frac{V_a}{N}$, V_a : Tool axial velocity, N: rotation speed Shearing stress in turning: $\tau = G(\cot(\emptyset) + \tan(\emptyset - \alpha))$

Shearing angle: $\emptyset = \frac{\pi}{4} - \frac{\beta}{2} + \frac{\alpha}{2}$, α : Tool Rake angle Friction angle $\beta = \tan^{-1} \mu$ Power consumption $P = \frac{MRR.SCE}{e}$, SCE: Specific Cutting Energy, e: efficiency Shearing angle $\emptyset = tan^{-1} \left(\frac{rcos(\alpha)}{1 - rsin(\alpha)} \right)$

 $r = \frac{t_0}{t}$, t_0 : depth of cut, t_c :chip thickness

Feed per tooth in milling: $f = \frac{V}{Nn}$, n: number of teeth, V: tool velocity, N: rotation speed

Tools and Vibrations:

A milling tool can be modeled as a cantilever beam. Deflection of a cantilever beam with lateral force F at the tip: $\delta = \frac{Fl^3}{3FI}$, $I = \frac{\pi}{64}d^4$,

vibration of a single degree, non-damped, subjected to harmonic excitation: $x(t) = \frac{\frac{F}{K}}{1 - (\frac{\omega}{\kappa_{\text{min}}})^2} \sin \omega t$, resonance/chatter for tool happens

at ω_n or (number of flutes) $\times \omega_n$

Sheet Metal Forming:

Required force for cutting a sheet width b, thickness h: $F = \frac{1}{3}b.h.TS$, TS: tensile strength

Required force for forming:

• V-Bending: $F = \frac{4.TS.w.t^2}{3D}$ • Edge-bending: $F = \frac{TS.w.t^2}{3D}$ Springback: $\Delta K = 1.5K_y \left(1 - \frac{1}{3} \left(\frac{Ky}{K_L}\right)^2\right)$

 $K_{final} = K_L - \Delta K$

Yield curvature: $K_y = \frac{\sigma_y}{E_{\frac{L}{2}}^{H}}$, K_L : Mold curvature

Minimum allowable radius without tearing sheet stock: $r_{min} = \frac{E_{\frac{\pi}{2}}^{\frac{\pi}{2}}}{rc}$

Injection Molding:

Consider a rectangular mold $W \times L \times h$. The pressure drops across the cavity (length L) can be estimated by:

 $\Delta P = \frac{12\mu QL}{Wh^3}$, μ : molten plastic viscosity

The time to fill the mold: $t = \frac{LWh}{\rho}$, Q: flow rate

From these two equations, the required time to fill in a rectangular mold is: $t = \frac{12\mu}{\Lambda R} (\frac{L}{h})^2$

And the clamping force, can be estimated by: $F = \frac{1}{2}\Delta P \times WL$

Required time for injection molding parts to cool down: $t_{cool} = \frac{h^2}{10\alpha} Ln(\frac{4}{\pi} \times \frac{T_m - T_w}{T_o - T_w})$

 T_m : molten plastic temperature, T_w : wall of the mold temperature, T_e : ejection temperature, α (thermal diffusivity), $\alpha = \frac{\kappa}{\rho C_p}$, K: thermal conductivity, ρ :density, C_p :specific heat.