

Experiment / Assignment / Tutorial No. 4

Grade: AA / AB / BB / BC / CC / CD /DD

Signature of the Staff In-charge with date

Batch: B1 Roll No.: 1711072 Experiment / assignment / tutorial No.: 4

Title: 4 bit Magnitude Comparator

Objective: Design a 2-bit comparator using logic gates and verify 4-bit magnitude comparator using IC 7485

Expected Outcome of Experiment:

CO2: Use different minimization technique and solve combinational circuits, synchronous & asynchronous sequential circuits.

Books/ Journals/ Websites referred:

- R. P. Jain, "Modern Digital Electronics", Tata McGraw Hill
- M. Morris Mano, "Digital Logic & computer Design", PHI
- http://elnsite.teilam.gr/ebooks/digital_design/lab/dataSheets_page/7485.pdf

Pre Lab/ Prior Concepts:

The comparison of two numbers is an operator that determines one number is greater than, less than (or) equal to the other number. A magnitude comparator is a combinational circuit that compares two numbers A and B and determines their relative magnitude. The outcome of the comparator is specified by three binary variables that indicate whether A>B, A=B (or) A<B.

Department of Computer Engineering

Two Bit Magnitude Comparator Implementation Details:

Truth Table

A1	A0	B1	B0	$A > B \qquad A = B$		A < B
0	0	0	0	0	1	0
0	0	0	1	0	0	1
0	0	1	0	0	0	1
0	0	1	1	0	0	1
0	1	0	0	1	0	0
0	1	0	1	0	1	0
0	1	1	0	0	0	1
0	1	1	1	0	0	1
1	0	0	0	1	0	0
1	0	0	1	1	0	0
1	0	1	0	0	1	0
1	0	1	1	0	0	1
1	1	0	0	1	0	0
1	1	0	1	1	0	0
1	1	1	0	1	0	0
1	1	1	1	0	1	0

From the Truth Table:

$$(A < B) = A_1'A_0'B_0 + A_1'B_1 + A_0'B_1B_0$$

$$(A=B)=(A_1 \oplus B_1)(A_0 \oplus B_0)$$

$$(A>B)=A_0B_1'B_0'+A_1A_0B_0'+A_1B_1'$$

Logic Diagram of 2 bit Comparator

Four Bit Magnitude Comparator Implementation Details

Pin Diagram of IC 7485

4 **Department of Computer Engineering**

Logic Diagram of IC 7485

Comparing Table

Comparing inputs						Casc	ading in	puts		Outputs			
A3	В3	A2	B2	A1	B1	A0	В0	A>B	A <b< td=""><td>A=B</td><td>A>B</td><td>A<b< td=""><td>A=B</td></b<></td></b<>	A=B	A>B	A <b< td=""><td>A=B</td></b<>	A=B
A32	>B3	Σ	K	X		X		X	X	X	1	0	0
A3 <b3 td="" x<=""><td>У</td><td>ζ</td><td colspan="2">X</td><td>X</td><td>X</td><td>X</td><td>0</td><td>1</td><td>0</td></b3>		У	ζ	X		X	X	X	0	1	0		
A3=	A3=B3 A2>B2 2		ζ	X		X	X	X	1	0	0		
A3=	=B3	A2<	<b2< td=""><td colspan="2">B2 X</td><td>Σ</td><td>ζ</td><td>X</td><td>X</td><td>X</td><td>0</td><td>1</td><td>0</td></b2<>	B2 X		Σ	ζ	X	X	X	0	1	0
A3=	=B3	A2=	=B2	A1>	A1>B1		ζ	X	X	X	1	0	0
A3=	=B3	A2=	=B2	A1<	<b1< td=""><td>Σ</td><td>ζ</td><td>X</td><td>X</td><td>X</td><td>0</td><td>1</td><td>0</td></b1<>	Σ	ζ	X	X	X	0	1	0
A3=	=B3	A2=	=B2	A1=	=B1	A0>	>B0	X	X	X	1	0	0
A3=	=B3	A2=	=B2	A1=	=B1	A0 <b0< td=""><td>X</td><td>X</td><td>X</td><td>0</td><td>1</td><td>0</td></b0<>		X	X	X	0	1	0
A3=	=B3	A2=	=B2	A1=	=B1	A0=B0		1	0	0	0	1	0
A3=	=B3	A2=	=B2	A1=	=B1	A0=B0		0	1	0	0	1	0

5 **Department of Computer Engineering**

A3=B3	A2=B2	A1=B1	A0=B0	0	0	1	0	0	1
A3=B3	A2=B2	A1=B1	A0=B0	X	X	1	0	0	1
A3=B3	A2=B2	A1=B1	A0=B0	1	1	0	0	0	0
A3=B3	A2=B2	A1=B1	A0=B0	0	0	0	1	1	0

Conclusion:

1-bit and 2-bit comparators were successfully designed using gates, whereas 4-bit comparator was verified successfully using IC 7485. We also learned that cascading can be done using (C 7485 for designing higher bits comparators like 8-bit and so on.

Post Lab Descriptive Questions

1. Design a 1- bit magnitude comparator using logic gates.

Ans.

