Lecture 13: Linear Regression via Least Squares

Professor Ilias Bilionis

Linear regression with a single variable

Synthetic example

Regression model

$$y = (w_0 + (w_1)x)$$

weights

(parameters)

 $w = (w_0, w_1)$: weight rector

 $w = ?$ using data

Least squares loss function

$$L(w) := \sum_{i=1}^{n} [y_i - (w_0 + w_i x_i)]^2$$

$$Find w by min L(w).$$

$$w^* = arg min L(w).$$

Minimizing the loss function

L(
$$\underline{u}$$
) = $\hat{\Sigma}$ (\underline{y} ; $-\underline{u}$, $-\underline{w}$, \underline{x} ; \underline{u} * = $agmin L(\underline{u})$
($akulus$ =) $\nabla_{\underline{u}}L(\underline{u}$ *) = 0 =) \underline{u} * = ?
 \underline{y} = $\begin{pmatrix} \underline{u} \\ \underline{y} \\ \end{pmatrix}$, $design matrix \underline{X} = $\begin{pmatrix} 1 & x_1 \\ \underline{x} \\ \underline{x} \\ \end{pmatrix}$ ($n \times 2$)
$$= \underbrace{\begin{pmatrix} \underline{y} \\ \underline{y} \\ \end{pmatrix}}_{1} + \underbrace{\begin{pmatrix} \underline{y} \\ \underline{y} \\ \end{pmatrix}}_{2} = \underbrace{\begin{pmatrix} \underline{y} \\ \underline{y} \\ \underline{y} \\ \end{pmatrix}}_{2} + \underbrace{\begin{pmatrix} \underline{y} \\ \underline{y} \\ \underline{y} \\ \end{pmatrix}}_{2} + \underbrace{\begin{pmatrix} \underline{y} \\ \underline{y} \\ \underline{y} \\ \underline{y} \\ \end{pmatrix}}_{2} + \underbrace{\begin{pmatrix} \underline{y} \\ \underline{y$$$

Example

