4 Ортогональные дополнения и ортогональное проектирование

Опр. Пусть M — непустое подмножество евклидова (унитарного) пространства E. Множество

$$M^{\perp} = \{ x \in E \mid (x, y) = 0 \quad \forall y \in M \}$$

называется ортогональным дополнением к M.

Заметим, что $E^{\perp}=O$ и $O^{\perp}=E.$

Действительно,

$$x \in E^{\perp} \Leftrightarrow (x,y) = 0 \quad \forall y \in E \Rightarrow (x,x) = 0 \Rightarrow x = 0 \Rightarrow E^{\perp} = O.$$

 $x \in O^{\perp} \Leftrightarrow (x,0) = 0 \Rightarrow E = O^{\perp}.$

Предложение 4.1. M^{\perp} является замкнутым подпространством в E.

Доказательство. Пусть $x_1, x_2 \in M^{\perp}$. Тогда

$$(\alpha x_1 + \beta x_2, y) = \alpha(x_1, y) + \beta(x_2, y) = 0 \quad \forall y \in M.$$

Следовательно M^{\perp} является подпространством в E.

Пусть теперь $\{x_n\}_{n=1}^{\infty} \subset M^{\perp}$ и $x_n \to x$. Тогда

$$0 = (x_n, y) \to (x, y) \quad \forall y \in M \Rightarrow (x, y) = 0 \quad \forall y \in M.$$

Значит, $x \in M^{\perp}$, откуда следует замкнутость M^{\perp} .

Предложение доказано.

Всюду ниже H – гильбертово пространство.

Теорема 4.1. Пусть L – замкнутое подпространство в H и $f \in H$. Тогда существует единственный элемент $g \in L$, для которого

$$||f - g|| = \min_{y \in L} ||f - y||. \tag{4.1}$$

Кроме того, $h = f - g \in L^{\perp}$.

Доказательство. Существование и единственность элемента g следует из теоремы 3.2 о существовании и единственности элемента наилучшего приближения.

Покажем, что $h \in L^{\perp}$. Для этого возьмем произвольный элемент $w \in L$, $w \neq 0$ и покажем, что $h \perp w$.

Так как $h-\lambda w=f-(g+\lambda w)$, где $g+\lambda w\in L$, то из (4.1) следует, что

$$||h||^2 = ||f - g||^2 \le ||f - (g + \lambda w)||^2 = ||h - \lambda w||^2$$

Следовательно

$$0 \leqslant -\lambda(w,h) - \overline{\lambda(w,h)} + |\lambda|^2 ||w||^2 \Rightarrow 2\operatorname{Re}\left[\lambda(w,h)\right] \leqslant |\lambda|^2 ||w||^2.$$

Возьмем
$$\lambda = \frac{\overline{(w,h)}}{\|w\|^2}$$
 и получим

$$\frac{2|(w,h)|^2}{\|w\|^2} \leqslant \frac{|(w,h)|^2}{\|w\|^4} \|w\|^2 \Rightarrow (w,h) = 0.$$

Теорема доказана.

Опр. Элемент g называется ортогональной проекцией элемента f на подпространство L, а элемент h = f - g называется ортогональной составляющей.

Обратим внимание на следующую важную теорему, говорящую о том, что гильбертово пространство H разлагается в прямую сумму всякого своего замкнутого подпространства L и его ортогонального дополнения L^{\perp} . Это разложение принято называть *ортогональным разложением гильбертова пространства*.

Теорема 4.2. Пусть L – замкнутое подпространство в H. Тогда справедливо разложение

$$H = L \oplus L^{\perp} \tag{4.2}$$

Доказательство. Если L = H, то $L^{\perp} = O$ и равенство (4.1) очевидно.

Пусть теперь $L \neq H$. Пусть $f \in H, g$ — ортогональная проекция f на L и $h = f - g \Leftrightarrow f = g + h$.

Таким образом, всякий элемент $f \in H$ допускает представление

$$f = g + h, \quad g \in L, \quad h \in L^{\perp}. \tag{4.3}$$

Докажем, что это представление единственно. Предположим, что есть еще одно представаление

$$f = g' + h', \quad g' \in L, \quad h' \in L^{\perp}.$$

Тогда, учитывая, что $g - g' \in L$, $h - h' \in L^{\perp}$, имеем

$$0 = (g - g') + (h - h') \Rightarrow ||g - g'||^2 + ||h - h'||^2 = 0 \Rightarrow g = g', \ h = h'.$$

Теорема доказана.

Замечание 4.1. Из представления (4.3) следует, что

$$||f||^2 = ||g||^2 + ||h||^2. (4.4)$$

Следствие 4.1. Пусть L – замкнутое подпространство в H. Тогда

$$(L^{\perp})^{\perp} = L.$$

Доказательство. Ясно, что $L \subset (L^{\perp})^{\perp}$. Покажем, что $(L^{\perp})^{\perp} \subset L$. Пусть $f \in (L^{\perp})^{\perp}$. Тогда справедливо представление

$$f = g + h, \quad g \in L, \quad h \in L^{\perp}.$$

Отсюда

$$0 = (f, h) = (g, h) + (h, h) \Rightarrow (h, h) = 0 \Rightarrow h = 0 \Rightarrow f = g \in L.$$

Следствие доказано.

Следствие 4.2. Пусть L – конечномерное подпространство в H. Тогда L^{\perp} имеет коразмерность, равную dim L.

Следствие 4.3. B сепарабельном гильбертовом пространстве H любую ортонормированную систему можно достроить до полной ортонормированной системы.

Доказательство. Пусть $\{e_n\}$ — ортонормированная система. Положим

$$L = \overline{\operatorname{span}\{e_n\}}$$

Подпространство сепарабельного пространства H само является сепарабельным. Поэтому в L^{\perp} существует полная ортонормированная система $\{g_k\}$. В силу разложения

$$H = L \oplus L^{\perp}$$

для всякого $f \in H$ имеем

$$f = g + h, \quad g \in L, \quad h \in L^{\perp}.$$

Поэтому для всякого $\varepsilon>0$ существуют $g_N=\sum\limits_{n=1}^N\alpha_ne_n$ и $h_K=\sum\limits_{k=1}^K\beta_kg_k$ такие, что $\|g-g_N\|<\varepsilon/2$ и $\|h-h_K\|<\varepsilon/2$. Поэтому

$$||f - \sum_{n=1}^{N} \alpha_n e_n - \sum_{k=1}^{K} \beta_k g_k|| \le ||g - g_N|| + ||h - h_k|| < \varepsilon.$$

Следствие доказано.

Опр. Оператор P, ставящий в соответствие элементу f его ортогональную проекцию g на замкнутое подпространство L, называется оператором ортогонального проектирования на подпространство L.

Теорема 4.3. Оператор ортогонального проектирования линеен.

Доказательство. Пусть
$$f_1, f_2 \in H$$
 и $g_1 = Pf_1, g_2 = Pf_2$. Тогда

$$f_1 = g_1 + h_1, \quad g_1 \in L, \quad h_1 \in L^{\perp},$$

 $f_2 = g_2 + h_2, \quad g_2 \in L, \quad h_2 \in L^{\perp}.$

Следовательно

$$\alpha f_1 + \beta f_2 = (\alpha g_1 + \beta g_2) + (\alpha h_1 + \beta h_2), \quad \alpha g_1 + \beta g_2 \in L, \quad \alpha h_1 + \beta h_2 \in L^{\perp}.$$

Таким образом,

$$P(\alpha f_1 + \beta f_2) = \alpha P f_1 + \beta P f_2.$$

Теорема доказана.