CS466 Final exam

Mingjun Zha

TOTAL POINTS

114 / 120

QUESTION 1

Problem 120 pts

1.1 2 / 2

- √ 0 pts Correct
 - 2 pts Incorrect

1.2 2/2

- √ 0 pts Correct
 - 2 pts incorrect

1.3 2/2

- √ 0 pts Correct
 - 2 pts Incorrect

1.4 2/2

- √ 0 pts Correct
 - 2 pts Incorrect

1.5 2/2

- √ 0 pts Correct
 - 2 pts Incorrect

1.6 2/2

- √ 0 pts Correct
 - 2 pts Incorrect

1.7 2/2

- √ 0 pts Correct
 - 2 pts Incorrect

1.8 2/2

- √ 0 pts Correct
 - 2 pts Incorrect

1.9 2/2

- √ 0 pts Correct
 - 2 pts Incorrect

1.10 2/2

- √ 0 pts Correct
 - 2 pts Incorrect

QUESTION 2

- 2 Problem 2 19 / 20
 - 0 pts Correct
 - 20 pts No answer provided
 - √ 1 pts minor calculation mistake
 - 15 pts Wrong table structure
 - 10 pts Correct table structure but wrong prob calculation and wrong inferred states
 - **5 pts** incorrect sequence of states and final probability
 - 1 pts Minor backtracing mistake

QUESTION 3

- 3 Problem 3 20 / 20
 - √ 0 pts Correct
 - 5 pts missed one or two labels
 - 10 pts missed multiple labels
 - 20 pts Did not provide an answer

QUESTION 4

- 4 Problem 4 20 / 20
 - √ 0 pts Correct
 - 4 pts Cannot find second mapping
 - 3 pts not separable second mapping

QUESTION 5

- 5 Problem 5 20 / 20
 - √ 0 pts Correct
 - 1 pts Cluster center incorrect / minor mistake /

suspected calculation mistake

- **3 pts** Missing distance calculations for the first iteration
- **3 pts** Missing distance calculations for the second iteration
- 2 pts Need to explicitly show cluster assignments (not just plot the points without labeling them)
 - 1 pts Minor mistake
 - 8 pts Second iteration not included
 - 1 pts Updated cluster centers not explicitly shown
 - 4 pts Incorrect new cluster centers

QUESTION 6

6 Problem 6 15 / 20

- 0 pts Correct
- √ 5 pts Ignores multi-edges / somewhat incorrect

construction

- **8 pts** Constructs overlap graph (or anything using 4mers) instead
 - 2 pts Does not label multiedges
 - 6 pts Incorrect construction
- 3 pts Does not find Euler path despite graph being correct
- 2 pts Needs to explicitly write out reconstructed string
- 2 pts Found Euler path does not correspond to the Graph

- 1. True
- 2. joint : P(x, Y) marginal: PCX)
- 2. Classification is predicting the odiscrete task.

 Regression is the task to predict continous quantity.
- 4. True
- 5. False
- 6. False
- 7. True
- 8. False
- 9. True.
- 10. True.

1.1 2/2

- √ 0 pts Correct
 - 2 pts Incorrect

- 1. True
- 2. joint : P(x, Y) marginal: PCX)
- 2. Classification is predicting the odiscrete task.

 Regression is the task to predict continous quantity.
- 4. True
- 5. False
- 6. False
- 7. True
- 8. False
- 9. True.
- 10. True.

1.2 2/2

- √ 0 pts Correct
 - 2 pts incorrect

- 1. True
- 2. joint : P(x, Y) marginal: PCX)
- 2. Classification is predicting the odiscrete task.

 Regression is the task to predict continous quantity.
- 4. True
- 5. False
- 6. False
- 7. True
- 8. False
- 9. True.
- 10. True.

1.3 2/2

- √ 0 pts Correct
 - 2 pts Incorrect

- 1. True
- 2. joint : P(x, Y) marginal: PCX)
- 2. Classification is predicting the odiscrete task.

 Regression is the task to predict continous quantity.
- 4. True
- 5. False
- 6. False
- 7. True
- 8. False
- 9. True.
- 10. True.

1.4 2/2

- √ 0 pts Correct
 - 2 pts Incorrect

- 1. True
- 2. joint : P(x, Y) marginal: PCX)
- 2. Classification is predicting the odiscrete task.

 Regression is the task to predict continous quantity.
- 4. True
- 5. False
- 6. False
- 7. True
- 8. False
- 9. True.
- 10. True.

1.5 2/2

- √ 0 pts Correct
 - 2 pts Incorrect

- 1. True
- 2. joint : P(x, Y) marginal: PCX)
- 2. Classification is predicting the odiscrete task.

 Regression is the task to predict continous quantity.
- 4. True
- 5. False
- 6. False
- 7. True
- 8. False
- 9. True.
- 10. True.

1.6 2/2

- √ 0 pts Correct
 - 2 pts Incorrect

- 1. True
- 2. joint : P(x, Y) marginal: PCX)
- 2. Classification is predicting the odiscrete task.

 Regression is the task to predict continous quantity.
- 4. True
- 5. False
- 6. False
- 7. True
- 8. False
- 9. True.
- 10. True.

1.7 2/2

- √ 0 pts Correct
 - 2 pts Incorrect

- 1. True
- 2. joint : P(x, Y) marginal: PCX)
- 2. Classification is predicting the odiscrete task.

 Regression is the task to predict continous quantity.
- 4. True
- 5. False
- 6. False
- 7. True
- 8. False
- 9. True.
- 10. True.

1.8 2/2

- √ 0 pts Correct
 - 2 pts Incorrect

- 1. True
- 2. joint : P(x, Y) marginal: PCX)
- 2. Classification is predicting the odiscrete task.

 Regression is the task to predict continous quantity.
- 4. True
- 5. False
- 6. False
- 7. True
- 8. False
- 9. True.
- 10. True.

1.9 2/2

- √ 0 pts Correct
 - 2 pts Incorrect

- 1. True
- 2. joint : P(x, Y) marginal: PCX)
- 2. Classification is predicting the odiscrete task.

 Regression is the task to predict continous quantity.
- 4. True
- 5. False
- 6. False
- 7. True
- 8. False
- 9. True.
- 10. True.

1.10 2/2

- √ 0 pts Correct
 - 2 pts Incorrect

NARNEDCCEN

0.7 GHT 0.3 H- 60.8

	N	Α	R	N	R	D	1 c	10	R	N
H [†]	0	Max (0) (0.1 x 0.1 (x b. x)) = 0.004	Max (0.004 × 0.7 × 0.2), (0.04 & x 0.2 × 0.2) = 0.00192	0.60768×	1	13.2 40 20,7	23418,9	2. 47x10-7	7410-92	Max 5 (0),
11-	0.4 x 0.5=0.2	(0.2×0.8×	Maxs(0.00+x 0.3x0.x), (0.048x0.8	0.00192× 0.3×0.4), 0.00768×	Nax7(0), 10.002\$\$76 20.8x0,2) =3.9x/0-\$	0	1.18x 10-6,03	Max (1.65×10-) 0.94×1671	2.6×10 %	Nax 5 1.3×10-8

111) The probability would be 1.5 ×10 -8

(iii) H'H'H'H'H'H+H+H+H+ > the most likely hidden sequence

(i)

2 Problem 2 19 / 20

- **0 pts** Correct
- 20 pts No answer provided

√ - 1 pts minor calculation mistake

- **15 pts** Wrong table structure
- 10 pts Correct table structure but wrong prob calculation and wrong inferred states
- **5 pts** incorrect sequence of states and final probability
- 1 pts Minor backtracing mistake

Problem 3

1) \(\times \frac{y}{-3} \quad \frac{labe1}{-3} \\
\frac{3}{3} \quad \tau \quad \frac{1}{3} \quad \frac{1}{3

	3	- + - +	?		
-3	0 ,	- +	2. 3	4	<i>─</i> 7
	7		(10)	4.4	

*	y	Label
-4	0	_
3	3	+
0	2	+

3 Problem 3 20 / 20

- √ 0 pts Correct
 - **5 pts** missed one or two labels
 - 10 pts missed multiple labels
 - 20 pts Did not provide an answer

1:
$$(x,y) \rightarrow (x,y,x^2+y^2)$$

2:
$$(x,y) \rightarrow (x,y, \pm xy)$$

4 Problem 4 20 / 20

- √ 0 pts Correct
 - 4 pts Cannot find second mapping
 - 3 pts not separable second mapping

$$k=2$$
 $d=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$

P1: (0,0)

P2: (2,2)

	P,	P2
(1,0.5)	1.12	1.80
(2,5,3)	3.91	1.12
(1,1)	2.24	
(3,1)	3.61	
(3.5,2)	4.03	1.5
(-0.5,0)	0.5	3.2
(-0.5,1)	1.12	2.69
(-1,0.5)	1.12	3.35
(1,-1)	1.41	3.16
(0.5,-1)	1.12	3.35
		- 4,

P1: (1,0.5), (-0.5,0), (-0.5,1), (-1,0.5), (1,-1), (0.5,-1)

P2: (2.5,3), (2,1), (3,2), (3.5,2)

we repeated previous step, find P. & Pr. depending on mean.

P1: ((1-0.5-0.5-1+1+0.5)/6, (0.5+0+1+0.5-1-1)/6) = (0.083, 0)

P2: ((2.5+2+3+35)/4, (3+1+2+2)/4) = (2.75,2)

We use the new P, and P2, to find each distance.

	10,083,0)	(2.75, 2)
	P,	P2
(1.6.5)	1,04	2.30
(2.5, 3)	3.85	7.03
(2,1)	2.16	1.25
(3,2)	3.54	0.25
(3.5,2)	3.96	0.75
(0,2.0-)	0.583	3.82
(-0.5,1)	1.16	3. ¥
(-1,0.5)	1.19	4.04
(1,-1)	1.36	3. 47
(0.5,-1)	1.08	3.75
	and the second s	

Pi: (1,0.5), (-0.5,0), (-0.5,1), (-1,0.5), (1,-1), (0.5,-1)

Pz: (2.5,3), (2,1), (3.2), (3.5,2)

The predication is same as previous one, this algorithm is converge.

5 Problem 5 20 / 20

√ - 0 pts Correct

- 1 pts Cluster center incorrect / minor mistake / suspected calculation mistake
- 3 pts Missing distance calculations for the first iteration
- **3 pts** Missing distance calculations for the second iteration
- 2 pts Need to explicitly show cluster assignments (not just plot the points without labeling them)
- 1 pts Minor mistake
- 8 pts Second iteration not included
- 1 pts Updated cluster centers not explicitly shown
- 4 pts Incorrect new cluster centers

Problem 6: String: ATTTGGGC ATTTGGGC

a) ATTT
TTTG
TTGG
TGGG
GGGC
GGCA
GCAT
CATT

CI

string: ATTT GAG CATT

d) No, they are not identical. Eulerian walk visits each edge exactly once and the p them balanced the original one have so many oluplicated nodes.

6 Problem 6 15 / 20

- **0 pts** Correct
- \checkmark 5 pts Ignores multi-edges / somewhat incorrect construction
 - 8 pts Constructs overlap graph (or anything using 4mers) instead
 - 2 pts Does not label multiedges
 - 6 pts Incorrect construction
 - 3 pts Does not find Euler path despite graph being correct
 - 2 pts Needs to explicitly write out reconstructed string
 - 2 pts Found Euler path does not correspond to the Graph