BDA Project: Hurricane forecasting in Stan

José Miguel Ramírez & Jonas Lindblad Aalto University

• Destructive storms occurring in the late summer and fall in the northern hemisphere's tropical region.

- Destructive storms occurring in the late summer and fall in the northern hemisphere's tropical region.
- Classified by their wind intensity at the eye wall.

- Destructive storms occurring in the late summer and fall in the northern hemisphere's tropical region.
- Classified by their wind intensity at the eye wall.
- They can cause extreme levels of flooding and destroy many buildings.

- Destructive storms occurring in the late summer and fall in the northern hemisphere's tropical region.
- Classified by their wind intensity at the eye wall.
- They can cause extreme levels of flooding and destroy many buildings.
- Monetary damages and loss of lives increase with an almost exponential character as a function of storm intensity.

• Forecasters predict two quantities: track and intensity

- Forecasters predict two quantities: track and intensity
- Two kinds of models: dynamical and statistical

- Forecasters predict two quantities: track and intensity
- Two kinds of models: dynamical and statistical
 - Dynamical: simulate the laws of physics

- Forecasters predict two quantities: track and intensity
- Two kinds of models: dynamical and statistical
 - Dynamical: simulate the laws of physics
 - Statistical: estimate based on historical data

- Forecasters predict two quantities: track and intensity
- Two kinds of models: dynamical and statistical
 - Dynamical: simulate the laws of physics
 - Statistical: estimate based on historical data
- Dynamical vs. statistical: good at long- and short-range forecasts respectively

- Forecasters predict two quantities: track and intensity
- Two kinds of models: dynamical and statistical
 - Dynamical: simulate the laws of physics
 - Statistical: estimate based on historical data
- Dynamical vs. statistical: good at long- and short-range forecasts respectively
- ... but for hurricane forecasts short-range is usually more interesting

- Forecasters predict two quantities: track and intensity
- Two kinds of models: dynamical and statistical
 - Dynamical: simulate the laws of physics
 - Statistical: estimate based on historical data
- Dynamical vs. statistical: good at long- and short-range forecasts respectively
- ... but for hurricane forecasts short-range is usually more interesting
- Rapid intensification: forecasted better by dynamical models

- Forecasters predict two quantities: track and intensity
- Two kinds of models: dynamical and statistical
 - Dynamical: simulate the laws of physics
 - Statistical: estimate based on historical data
- Dynamical vs. statistical: good at long- and short-range forecasts respectively
- ... but for hurricane forecasts short-range is usually more interesting
- Rapid intensification: forecasted better by dynamical models
- This project: a statistical model for intensity

The US government forecasting agency, the National Hurricane Center (NHC), uses a large number of models operationally. The models (together: the *model ensemble*) are used together with experienced meteorologists' judgment to provide the official forecast.

 Surprisingly, the best single (short-range) model is a multiple linear regression!

- Surprisingly, the best single (short-range) model is a multiple linear regression!
- The NHC regression model: Statistical Hurricane Intensity Prediction Scheme (SHIPS)

- Surprisingly, the best single (short-range) model is a multiple linear regression!
- The NHC regression model: Statistical Hurricane Intensity Prediction Scheme (SHIPS)
- \bullet SHIPS: ${\sim}140$ covariates, many calculated from data sources more easily available to the NHC

- Surprisingly, the best single (short-range) model is a multiple linear regression!
- The NHC regression model: Statistical Hurricane Intensity Prediction Scheme (SHIPS)
- SHIPS: ~140 covariates, many calculated from data sources more easily available to the NHC
- SHIPS dataset: publically available with no restrictions (link: SHIPS Development)

- Surprisingly, the best single (short-range) model is a multiple linear regression!
- The NHC regression model: Statistical Hurricane Intensity Prediction Scheme (SHIPS)
- SHIPS: \sim 140 covariates, many calculated from data sources more easily available to the NHC
- SHIPS dataset: publically available with no restrictions (link: SHIPS Development)
- ... but the documentation is terrible

- Surprisingly, the best single (short-range) model is a multiple linear regression!
- The NHC regression model: Statistical Hurricane Intensity Prediction Scheme (SHIPS)
- SHIPS: ~140 covariates, many calculated from data sources more easily available to the NHC
- SHIPS dataset: publically available with no restrictions (link: SHIPS Development)
- ... but the documentation is terrible
- SHIPS: only a point estimate; our project: a predictive distribution

The SHIPS developmental data is confusing!

```
55
25
                                                     249
                                                                         274
                                                                              274
                                                                         103
                                                              132
                                                                                     28
                                 69
                                     132
                                          215
                                                     267
                                                               258
                                                                         230
                                                                              198
9999 9999
                                                                         299
                                               158
                                                           94
                                                               125
                                                                     102
                                                                         132
                                      10
                                                19
                                                                     19
70
                                                                34
                                                                          89
                                                                82
                                                               -32
                                                                         -29
-48
                                                                              -30
-52
                                      14
                                           -9
                                                          -47
                                                                                     Θ
                                 51
                                     114
                                 12
                                                           -9
                                                                         254
                                                                              269
                                                                                         257
                                                839
                                                          840
                          63
                                      83
                                           67
                                                60
                                                     65
                                                          62
                                                                60
                                                                     51
                                                                         41
                                                                               32
                                                                                          18
                                                                                              16 9999 9999 9999 TWAC
                                                                         73 62 42 32 34 0000 0000 0000 0000 TWY
```

We are making synoptic models.

$$T = 0$$

Δ	LRE	8206	2 12	20	21.	7 8	37.1.1	1005 A	II 0119	182														HEAD	
	-12	-6	Θ	6	12	18	24	30	36	42	48	54	60	66	72	78	84	90	96	102	108	114	120	TIME	
		9999	20	25	30	40	50	75	65	55	45	40	30	25	25	25	25	25	20	9999	9999	9999	9999	VMAX	
9	999	9999	1005	1904	1003	1001	995	985	992	998	1002	1005	1007	1008	1009	1010	1010	1010	1010	9999	9999	9999	9999	MSLP	
9	999	9999	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	9999	9999	9999	9999	TYPE	
			1	0	Θ	Θ	0	0	Θ	Θ	0	0	Θ	0	0	0	0	0	0	Θ	0	0	0	HIST	
9	999	9999	Θ	5	10	20	30	55	45	35	25	20	10	5	5	5	5	5	0	9999	9999	9999	9999	DELV	
9	999	9999	9999	5	- 5	10	10	25	-10	-10	-10	-5	-10	-5	Θ	Θ	Θ	Θ	-5	9999	9999	9999	9999	INCV	
9	999	9999	217	222	226	228	232	240	248	249	249	250	251	252	253	254	255	255	255	9999	9999	9999	9999	LAT	
9	999	9999	871	865	858	850	842	836	834	841	848	842	841	840	839	836	833	830	826	9999	9999	9999	9999	LON	
9	999	9999	274	278	281	283	281	278	278	278	278	275	275	274	274	274	274	274	274	9999	9999	9999	9999	CSST	
9	999	9999	156	161	177	228	237	205	122	132	173	132	132	132	103	95	95	92	94	9999	9999	9999	9999	CD20	
		9999	56	56	66	102	110	88	40	45	64	45	45	45	31	28	28	28	29	9999	9999	9999	9999	CD26	
9	999	9999	31	33	43	72	81	65	25	28	39	28	28	28	17	16	16	16	18		9999				
		9999	21	93	136	84	69	132	215	241	267	255	258	244	230	198	166	139	105	9999	9999	9999	9999	DTL	
		9999	Θ	46	65	67	63	55	60	94	95	181	227	266	299	297	279	267			9999				
		9999	Θ	10	17	22	27	33	41	60	54	98	113	120	123	115	101	91			9999				
		9999	280	280	278	276	274	270	269	272	274	272	271	271	270	269	268	267			9999				Θ
		9999	267	279	280	272	267	267	270	273	270	273	273	272	272	272	272	272			9999			DSST	1
9	999	9999	271	278	279	272	267	268	270	272	270	272	272	272	271	271	272	272			9999			DSTA	1
			224	187	169	179	209	221	234	236	221	202	229	204	178	182	195	165			9999			U200	
			238	162	153	143	139	170	206	158	108	94	125	102	132	149	159	120			9999				
			99	96	163	101	134	164	126	-29	-39	3	-19	-68	-88	-54	-77	-149			9999				
			3528	3528			3488			3509	3512	3525	3524	3515	3505		3523	3483			9999				
			113	114	114	107	86	104	109	109	118	125	118	116	120	130	141	111			9999				
			- 8	9	8	9	11	10	10	10	10	10	9	10	11	11	10	14			9999				
			51	48	52	48	22	42	42	42	50	55	46	46	48	47	53	22			9999				
			16 70	20	18 70	18	21	23	21 67	19 67	18 68	22 68	20	19	19	25	23 59	28 56	26		9999				
				68 53		70	66	69	51				69	70	68	62 37	34		55						
			57 50	53	56 54	59 59	53 54	55 49	48	51 43	48 35	48 35	46 34	46 31	43 26	23	24	33 25	32 24		9999				
			548	31	23	24	13	28	16	40	23	64	82	77	89	92	85	208	200		9999				
			7	17	9	-14	-8	14	-9	-37	-60	-47	-32	-52	-29	-30	9	-4	-20		9999				
			64	65	84	70	51	114	42	27	-7	-47	-17	-37	-48	-52	-25	-32			9999				
			4	6	3	6	12	4	10	0	-16	-9	-17	-37	-40	- 52	-25	-32			9999				
			-1	0	-1	-1	-2	-1	9	1	1	1	1	2	3	2	3	4			9999				
			259	267	266	261	253	265	264	258	255	268	265	258	254	269	269	257	252		9999			T000	
			84	79	81	83	83	77	79	82	85	78	80	83	85	76	77	79			9999				
			-27	-24	-31	-20	-20	-8	-16	-10	-8	-2	-18	-8	-8	-3	-7	4	8		9999				
			207	218	217	227	232	239	242	248	249	250	249	251	248	248	251	251			9999			TLAT	
			873	867	862	849	840	844	839	839	843	840	839	839	841	840	837	835	839		9999				
			67	76	69	63	70	83	67	60	65	62	60	51	41	32	22	18			9999				
			100	104	106	110	110	138	114	102	109	101	98	84	73	62	42	32			9999				

We are making synoptic models and choosing variables.

$$T = 0$$

			$\overline{}$	_																					
Α	LBE	8206	2 12	20	21	.7 8	87.1 :	005 A	L0119	982														HEAD	
_	-12	-6	ค	6	12	18	24	30	36	42	48	54		66	72	78	84	90				114			_
9	999	9999	20	25	30	40	50	75	65	55	45	40	30	25	25	25	25	25	20	9999	9999	9999	9999	VMAX	
			1005 1	904	1003	1001	995	985	992	998	1002	1005	1007		1009	1010	1010	1010				9999			
9	999	9999	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1					9999		
			1	0	Θ	Θ	0	Θ	Θ	Θ	0	0	Θ	0	0	Θ	Θ	0	0	Θ	Θ	0		HIST	
		9999	Θ	5	10	20	30	55	45	35	25	20	10	5	5	5	5	5	0		9999		9999		
		9999	9999	5	5	10	10	25	-10	-10	-10	-5	-10	-5	0	Θ	Θ	0				9999			
		9999	217	222	226	228	232	240	248	249	249	250	251	252	253	254	255	255				9999			
9	qqq	agag	871	865	858	850	842	836	834	841	848	842	841	840	830	836	833	830	826	gggg	agag	gggg	gaga	LON	_
9	999	9999	274	278	281	283	281	278	278	278	278	275	275	274	274	274	274	274	274	9999	9999	9999	9999	CSST	
		9999	156	161	1//	228	237	205	122	132	1/3	132	132	132	103	95	95	92				9999			
		9999	56	56	66	102	110	88	40	45	64	45	45	45	31	28	28	28		9999			9999		
		9999	31	33	43	72	81	65	25	28	39	28	28	28	17	16	16	16				9999			
		9999	21	93	136	84	69	132	215	241	267	255	258	244	230	198	166	139				9999			
		9999	Θ	46	65	67	63	55	60	94	95	181	227	266	299	297	279	267					9999		
		9999	0	10	17	22	27	33	41	60	54	98	113	120	123	115	101	91				9999			
		9999	280	280	278	276	274	270	269	272	274	272	271	271	270	269	268	267					9999		0
		9999	267	279	280	272	267	267	270	273	270	273	273	272	272	272	272	272					9999		1
9	999	9999	271	278	279	272	267	268	270	272	270	272	272	272	271	271	272	272		9999					1
			224	187	169	179	209	221	234	236	221	202	229	204	178	182	195	165	172	9999	9999	9999	9999	U200	
			238	162	153	143	139	170	206	158	108	94	125	102	132	149	159	120	212	9999	9999	9999	9999	U20C	
			99	96	163	101	134	164	126	-29	-39	3	-19	-68	-88	-54	-77	-149	-189	9999	9999	9999	9999	V20C	
			3528 3	528	3535	3523	3488	3506	3513	3509	3512	3525	3524	3515	3505	3514	3523	3483					9999		
			113	114	114	107	86	104	109	109	118	125	118	116	120	130	141	111				9999			
			8	9	8	9	11	10	10	10	10	10	9	10	11	11	10	14				9999			
			51	48	52	48	22	42	42	42	50	55	46	46	48	47	53	22				9999			
_			16	20	18	18	21	23	21	19	18	22	20	19	19	25	23	28	26	9999	9999	9999	9999	FNSS	_
			70	68	70	70	66	69	67	67	68	68	69	70	68	62	59	56				9999			
			57	53	56	59	53	55	51	51	48	48	46	46	43	37	34	33				9999			
			50	51	54	59	54	49	48	43	35	35	34	31	26	23	24	25				9999			
			548	31	23	24	13	28	16	40	23	64	82	77	89	92	85	208	200			9999			
			7	17	Θ	-14	-8	14	-9	-37	-60	-47	-32	-52	-29	-30	Θ	-4	-20			9999			
			64	65	84	70	51	114	42	27	-7	8	-17	-37	-48	-52	-25	-32				9999			
			4	6	3	6	12	4	10	Θ	-16	-9	-3	-3	-2	2	7	0				9999			
			-1	0	-1	-1	-2	-1	Θ	1	1	1	1	2	3	2	3	4	6	9999	9999	9999	9999	PEFC	
			259	267	266	261	253	265	264	258	255	268	265	258	254	269	269	257					9999		
			84	79	81	83	83	77	79	82	85	78	80	83	85	76	77	79	81	9999	9999	9999	9999	R000	
			-27	-24	-31	-20	-20	-8	-16	-10	-8	-2	-18	-8	-8	-3	-7	4	8	9999	9999	9999	9999	Z000	
			207	218	217	227	232	239	242	248	249	250	249	251	248	248	251	251	263	9999	9999	9999	9999	TLAT	
			873	867	862	849	840	844	839	839	843	840	839	839	841	840	837	835	839	9999	9999	9999	9999	TLON	
			67	76	69	63	70	83	67	60	65	62	60	51	41	32	22	18	16	9999	9999	9999	9999	TWAC	
			100	104	106	110	110	138	114	102	109	101	98	84	73	62	42	32	34	9999	9999	9999	9999	TWXC	

We have not done statistical variable selection. Choice of variable subset is based on theory.

- CSST: (climatological) sea surface temperature
- RHLO: low-altitude relative humidity
- **T200**: air temperature at 200 mb (very high altitude)
- SHRD: wind shear between 850 and 200 mb
- VMPI: maximum potential intensity

- for testing, we have variable sets A, B, C
- A: LAT/LON, VMAX, CSST, SHRD
- B: LAT/LON, VMAX, CSST, SHRD, VMPI
- C: LAT/LON, VMAX, CSST, SHRD, VMPI, RHLO, T200

The SHIPS Blunder: a simple linear regression

Model 2: regression with skewness

errors not symmetric around the mean prediction!

Model 2: regression with skewness

- errors not symmetric around the mean prediction!
- rapid intensification!

Model 3: regression with a linear model for standard deviation

fewer storms reach higher values of VMAX

Model 3: regression with a linear model for standard deviation

- fewer storms reach higher values of VMAX
- allow for higher variance to account for larger historical uncertainty

• SHIPS: predict V_{max} ; our models: predict ΔV_{max}

- SHIPS: predict V_{max} ; our models: predict ΔV_{max}
- we also decided to include latitude and longitude as variables; geographic region is known to be important for storm development

- SHIPS: predict V_{max} ; our models: predict ΔV_{max}
- we also decided to include latitude and longitude as variables; geographic region is known to be important for storm development
- reminder: we do 12-hour forecasts

- SHIPS: predict V_{max} ; our models: predict ΔV_{max}
- we also decided to include latitude and longitude as variables; geographic region is known to be important for storm development
- reminder: we do 12-hour forecasts.
- we standardized all of our data; priors chosen to be weak in standardized scale

- SHIPS: predict V_{max} ; our models: predict ΔV_{max}
- we also decided to include latitude and longitude as variables; geographic region is known to be important for storm development
- reminder: we do 12-hour forecasts
- we standardized all of our data; priors chosen to be weak in standardized scale
- SHIPS data: 1982-2019; our restriction: 2017-2019

Models: some remarks

- SHIPS: predict V_{max} ; our models: predict ΔV_{max}
- we also decided to include latitude and longitude as variables; geographic region is known to be important for storm development
- reminder: we do 12-hour forecasts.
- we standardized all of our data; priors chosen to be weak in standardized scale
- SHIPS data: 1982-2019; our restriction: 2017-2019
- poor problem setup! True model is the laws of physics, but we are fitting a regression

- SHIPS: predict V_{max} ; our models: predict ΔV_{max}
- we also decided to include latitude and longitude as variables; geographic region is known to be important for storm development
- reminder: we do 12-hour forecasts
- we standardized all of our data; priors chosen to be weak in standardized scale
- SHIPS data: 1982-2019; our restriction: 2017-2019
- poor problem setup! True model is the laws of physics, but we are fitting a regression
- models were programmed in Stan; sampling with rstan resulted in no divergences or issues except for the skew model and the issue was solved by increasing max tree depth to 15

Forecasting: Model Comparison

Forecasting: Model Comparison

Dataset comparison for the linear regression model (LOOCV)

Dataset	elpd_diff	se_diff
С	0.0	0.0
В	-25.0	6.5
Α	-27.4	6.3

Forecasting: Model Comparison (2)

Dataset comparison for the skewed regression model (LOOCV)

Dataset	elpd_diff	se_diff
С	0.0	0.0
В	-23.2	6.2
Α	-28.7	6.2

Forecasting: Model Comparison (3)

Dataset comparison for the **Changing variance model** (LOOCV)

Dataset	elpd_diff	se_diff
С	0.0	0.0
В	-32.6	8.2
Α	-37.1	8.2

Forecasting: Model Comparison (4)

Model comparison using the Dataset C (LOOCV)

Model	elpd_diff	se_diff
Variance	0.0	0.0
Skew	-176.3	27.8
Linear	-205.5	34.9

Marginal posteriors

- θ_1 : constant term
- θ_2, θ_3 : latitude, longitude
- θ_4 : sea surface temperature (CSST)
- θ_5 : relative humidity (RHLO)
- θ_6 : wind shear (SHRD)
- θ_7 : maximum potential intensity (VMPI)
- θ_8 : air temperature at 200 mb (T200)
- θ_9 : intensity at storm core (VMAX)

Forecasting: checking predictions

Hurricane Dorian 2019. The image shows a 90% credible interval. Black dotted line: true VMAX

Forecasting: checking predictions

Hurricane Florence 2018. The image shows a 90% credible interval. Black dotted line: true VMAX

Forecasting: checking predictions

Hurricane Helene 2018. The image shows a 90% credible interval. Black dotted line: true VMAX

Further development ideas:

variable selection in full SHIPS dataset

Further development ideas:

- variable selection in full SHIPS dataset
- more time series autoregressive components

Further development ideas:

- variable selection in full SHIPS dataset
- more time series autoregressive components
- use LGEM model (will explain)

A final takeaway

"The hurricane will be moving through an environment of low vertical wind shear, a moist mid-level atmosphere, and increasing upper-ocean heat content, and this is ideal for some additional intensification. However, given that the SHIPS models do not show any significant change in the intensity, the NHC forecast keeps Irma a powerful hurricane through five days."

— NHC 5AM advisory Sep. 5th

While the NHC published the advisory, Irma was undergoing rapid intensification from 130 to 175 knots over a span of only a few hours.

Conclusions & contact info

- Takeaway: the SHIPS model is terrible!
- Simple changes to the predictive distribution can improve the model
- Further development using Bayesian methods seems promising and there are several possible directions

More at our Github repo:

https://github.com/jnlb/bda-hurricane-modeling

The SHIPS website: http://rammb.cira.colostate.edu/research/tropical_cyclones/ships/index.asp

Contact info:

José Miguel Ramírez

Jonas Lindblad

rocket-chat: @jnlb

Additional information

The SHIPS model:

$$y_i \sim \mathcal{N}(\alpha + X_i \cdot \beta_{N-1}, \sigma), i = 1, \dots, r,$$

where we let X_i denote the i:th row of the data, β_{N-1} is an N-1-dimensional parameter vector, and r is the number of observations (rows) in the data. Its priors were

$$\begin{bmatrix} \alpha_0 \\ \beta_{N-1,0} \end{bmatrix} \sim \mathcal{N}(\mathbf{0}_N, 10 \cdot \mathbf{I}_N), \sigma_0 \sim \text{Inv-}\chi^2(\frac{1}{10}).$$

The skew-normal regression model:

$$y_i \sim \text{SkewNormal}(\alpha + X_i \cdot \beta_{N-1}, \sigma, \psi), \quad i = 1, \dots, r,$$

with priors

$$\begin{bmatrix} \alpha_0 \\ \beta_{N-1,0} \end{bmatrix} \sim \mathcal{N}(\mathbf{0}_N, 10 \cdot \mathbf{I}_N), \sigma_0 \sim \text{Inv-}\chi^2(\frac{1}{10}), \ \psi_0 \sim \mathcal{N}(0, 1).$$

Additional information

The variance model:

$$y_i \sim \mathcal{N}(\alpha + X_i \cdot \beta_{N-1}, \sigma + \gamma | V_{\max,i} |), i = 1, \dots, r,$$

where, again, we use the same notation as before and let $V_{max,i}$ denote the V_{max} -value of the i:th row. The priors that were fed into Stan were

$$\begin{bmatrix} \alpha_0 \\ \beta_{N-1,0} \end{bmatrix} \sim \mathcal{N}(\mathbf{0}_N, 10 \cdot \mathbf{I}_N), \ \sigma_0 \sim \text{Inv-}\chi^2(\frac{1}{10}), \ \gamma_0 \sim \Gamma(1,1).$$

Additional information

The variance regression was run in rstan with the following options