CS/DS 552: Class 14

Jacob Whitehill

Machine translation

- Suppose we want to translate from one language to another.
- Language 1 vocabulary: { a, b, . }.
- Language 2 vocabulary: { u, v, w, . }.
- We add to both vocabularies a "." symbol that means end-of-sentence (EOS).

- We can construct an RNN to translate from the source language to the target language.
- Note that the length T of the input sentence is generally not equal to the length T' of the output sentence; hence, we cannot simply output one x_t for each y_t.

- We can construct an RNN to translate from the source language to the target language:
 - 1. We first input the T words of the input sentence as y_1 , ..., y_T , followed by .

- We can construct an RNN to translate from the source language to the target language:
 - 1. We first input the T words of the input sentence as y_1 , ..., y_T , followed by .
 - 2. We then obtain the T' words of the output sentence autoregressively as $x_1, ..., x_{T'}$, until the model outputs.

- The RNN's hidden state h_t captures both the meaning of the input y and the summary of the output up to time t.
- \mathbf{h}_t effectively "compresses" the variable-length history into a fixed-length representation (i.e., O(1) space).

- This approach can work (and is the idea behind LLMs) but typically requires a very large model to be successful.
- Instead, it can be beneficial to break the machine translation problem into subtasks: "encoding" and "decoding".

 We construct a sequence-to-sequence model consisting of an encoder RNN and a decoder RNN:

The encoder ingests the input sequence y₁, ..., y_T and produces a context vector c that captures y's meaning.

- The encoder ingests the input sequence $y_1, ..., y_T$ and produces a context vector \mathbf{c} that captures \mathbf{y} 's meaning.
- The decoder uses the context vector to estimate $P(x_t | x_1, ..., x_{t-1}, y_1, ..., y_T)$ at each timestep t.

• Since each x_t belongs to a finite set, we can compute $P(x_t | x_1, ..., x_{t-1}, y_1, ..., y_T)$ using softmax.

• We can then autoregressively sample each $x_t \sim P(x_t | x_1, ..., x_{t-1}, y_1, ..., y_T)$ to generate the sentence.

Encoder-decoder model: training

 We train an encoder-decoder model to maximize the logprobability of producing the correct translation:

Encoder-decoder model: training

 We train an encoder-decoder model to maximize the logprobability of producing the correct translation:

$$\log P(x_1,\ldots,x_{T'}\mid y_1,\ldots,y_T) = \log \prod_{t=1}^{T'} P(x_t\mid x_1,\ldots,x_{t-1},y_1,\ldots,y_T)$$

$$\begin{array}{c} \text{Minimize CE loss to} \\ \text{maximize log-} \\ \text{likelihood} \end{array} = \sum_{t=1}^{T'} \log P(x_t\mid x_1,\ldots,x_{t-1},y_1,\ldots,y_T)$$

 Recall that the RNN auto-regressively feeds the predicted word x_t back to the decoder at timestep t+1.

- However, at training time, we can use an alternative strategy since the correct output words are known.
- Instead of feeding the decoder the NN's predictions,

- However, at training time, we can use an alternative strategy since the correct output words are known.
- Instead of feeding the decoder the NN's predictions, we can feed the ground-truth values at each timestep.

- This is called teacher forcing.
- Why helpful: we are feeding the NN the correct inputs rather than noisy ones.

 Why harmful: we are not training the NN consistently with how it will be used at test time.

 Unfortunately, teacher forcing does not increase parallelism since the span is still O(T+T') due to the hidden state dependency.

Encoder-decoder model: testing/inference

Sampling each xt

- Given each $P(x_t | x_1, ..., x_{t-1}, y_1, ..., y_T)$ estimated by the RNN, we can autoregressively sample a sentence **x**.
- Each such distribution is computed via softmax.

Sampling each xt

- Given each $P(x_t | x_1, ..., x_{t-1}, y_1, ..., y_T)$ estimated by the RNN, we can autoregressively sample a sentence **x**.
- Each such distribution is computed via softmax.

Sampling each xt

- Given each $P(x_t | x_1, ..., x_{t-1}, y_1, ..., y_T)$ estimated by the RNN, we can autoregressively sample a sentence **x**.
- Each such distribution is computed via softmax.

Temperature

• Sometimes we may want to increase/decrease the amount of noise in each x_t to yield *more likely* or *more diverse* outputs.

Temperature

- Sometimes we may want to increase/decrease the amount of noise in each x_t to yield *more likely* or *more diverse* outputs.
- We can achieve this by computing the softmax with a temperature V: softmax(\mathbf{z}, V) $_k = \frac{\exp(z_k/V)}{\sum_{k'=1}^K \exp(z_{k'}/V)}$
- Higher temperature V leads to more uniform probabilities.

Temperature

- Sometimes we may want to increase/decrease the amount of noise in each x_t to yield *more likely* or *more diverse* outputs.
- We can achieve this by computing the softmax with a temperature V: softmax(\mathbf{z}, V) $_k = \frac{\exp(z_k/V)}{\sum_{k'=1}^K \exp(z_{k'}/V)}$
- Higher temperature V leads to more uniform probabilities.

- We may wish to find the **most likely sentence** $x_1, ..., x_{T'}$ that corresponds to the input sentence $y_1, ..., y_T$.
- How can we compute the likelihood $P(x_1, ..., x_{T'} | y_1, ..., y_T)$?

- Since $P(x_1, ..., x_{T'} | y_1, ..., y_T)$ factorizes over t, we can:
 - 1. Pass a sentence $y_1, ..., y_T$ into the RNN.
 - 2. Obtain the probability of each symbol x_t .
 - 3. Multiply the probabilities together:

$$P(x_1, x_2, x_3 | y_1, y_2) = P(x_1 | y_1, y_2) P(x_2 | y_1, y_2, x_1) P(x_3 | y_1, y_2, x_1, x_2)$$

• Suppose $y_1=a$, $y_2=b$, $y_3=$. Then for $x_1=w$, $x_2=v$, we have:

• Suppose $y_1=a$, $y_2=b$, $y_3=$. Then for $x_1=w$, $x_2=v$, we have:

P("w v" | "a b.") = 0.1

• Suppose $y_1=a$, $y_2=b$, $y_3=$. Then for $x_1=w$, $x_2=v$, we have:

• Suppose $y_1=a$, $y_2=b$, $y_3=$. Then for $x_1=w$, $x_2=v$, we have:

$$P(\text{"w v"} \mid \text{"a b."}) = 0.1 * 0.7 = 0.07$$

- Unfortunately, to search over all translations, there are exponentially (in T') many different probabilities $P(x_1, ..., x_{T'} | y_1, ..., y_T)$ we would need to compute.
- Heuristic: perform a greedy **beam search** to keep track of the top-B most likely translations $x_1, ..., x_T$.

Beam search

Beam search

• Beam search is an efficient greedy heuristic that approximately optimizes:

$$\arg \max_{x_1,...,x_{T'}} p(x_1,...,x_{T'}|y_1,...,y_T)$$

Beam search

1. At each output timestep *t*, keep track of top-*B* most likely translations, where *B* is the **beam width**:

$$\{(x_1,\ldots,x_t)^{(1)},\ldots,(x_1,\ldots,x_t)^{(B)}\}$$

2. For each of our *B* candidates, we can compute:

$$P(x_{t+1} \mid x_1, ..., x_t, y_1, ..., y_T)$$

- 3. If the output vocabulary has K words, then this results in B^*K possible sequences of length t+1.
- 4. From these *B*K* choices, we select the top-*B* most likely translations of length *t*+1.

- Let input vocabulary={a, b, .} and output vocabulary={u, v, w, .}.
- Let beam width *B*=2.

- Beam at *t*=0: {}
- At *t*=1, pick top-*B* most likely possible symbols:

• Beam at t=1: { $(x_1=v)$, $(x_1=u)$ }

- 0.5 0.3 • Beam at *t*=1: { (**x**₁=**v**), (x₁=**u**) }
- At t=2, compute $P(x_2 \mid x_1, y_1=a, y_2=b)$ for each (x_1) in the beam:

- Beam at t=1: { $(x_1=v)$, $(x_1=u)$ }
- At t=2, compute $P(x_2 \mid x_1, y_1=a, y_2=b)$ for each (x_1) in the beam:

 This results in a total of B*K=2*4=8 possible sequences of length 2:

• We then pick the top-B most likely sequences as our next beam.

Beam at t=2: { $(x_1=v, x_2=.), (x_1=u, x_2=u)$ }

 We repeat this procedure until all beam hypotheses end with "." (end-of-sentence), or for a fixed maximum number of timesteps.

Exercise

 For the vocabulary { u, v, w, . }, can you devise a scenario over 2 timesteps where beamsearch does not give the optimal answer?

Exercise: Solution

 For the vocabulary { u, v, w, . }, can you devise a scenario over 2 timesteps where beamsearch does not give the optimal answer?

- In practice, the hidden states { h_t } of basic RNNs have difficulty storing information long-term.
- Basic RNNs are also highly unstable to train.

• To see why, suppose we remove non-linearity and consider what happens when we repeatedly multiply \mathbf{h}_t by \mathbf{W} .

$$\mathbf{h}_t = \mathbf{W}^t \mathbf{h}_1 + \dots$$

• To see why, suppose we remove non-linearity and consider what happens when we repeatedly multiply \mathbf{h}_t by \mathbf{W} .

$$\mathbf{h}_t = \mathbf{W}^t \mathbf{h}_1 + \dots$$
 $= \mathbf{U} \mathbf{\Lambda}^t \mathbf{U}^ op \mathbf{h}_1 + \dots$ if \mathbf{W} is diagonalizable

Unless all W's eigenvalues have magnitude ≈1, h₁'s contribution to h_t will tend to explode to infinity or vanish to 0.

$$\mathbf{h}_t = \mathbf{W}^t \mathbf{h}_1 + \dots$$

$$= \mathbf{U} \mathbf{\Lambda}^t \mathbf{U}^{ op} \mathbf{h}_1 + \dots$$

$$\downarrow \mathbf{h}_1 \qquad \qquad \downarrow \mathbf{h}_2 \qquad \qquad \downarrow \mathbf{h}_3 \qquad \qquad \downarrow \mathbf{h}_t$$

- A long short-term memory (LSTM) RNN improves on this by making it easy to store information over long timespans.
- It contains both a hidden state \mathbf{h}_t and a **cell state** \mathbf{c}_t , using the input \mathbf{y}_t .

- Input gates i_t control what parts of input y_t are allowed into c_t .
- Forgetting gates f_t control what parts of c_{t-1} are allowed into c_t .
- Output gates o_t control what parts of c_t are allowed into h_t .

• If the $\mathbf{f}_t = \mathbf{1}$, then \mathbf{c}_t will maintain its value over time without exploding/vanishing.

- If the $f_t=1$, then c_t will maintain its value over time without exploding/vanishing.
- Which components of \mathbf{c}_t are "retrieved" from long-term storage depends on \mathbf{y}_t and \mathbf{h}_{t-1} .

- In practice, LSTMs are much easier to train than basic RNNs.
- The memory cell \mathbf{c}_t selectively stores & forgets information from the input.
- It is still limited since it tries to summarize an entire history in one vector.

- Input gates i_t control what parts of input x_t are allowed into c_t .
- Forgetting gates f_t control what parts of c_{t-1} are allowed into c_t .
- Output gates o_t control what parts of c_t are allowed into h_t .

• If the $\mathbf{f}_{t}=\mathbf{1}$, then \mathbf{c}_{t} will maintain its value over time without exploding/vanishing.

- If the $\mathbf{f}_t = \mathbf{1}$, then \mathbf{c}_t will maintain its value over time without exploding/vanishing.
- Which components of \mathbf{c}_t are "retrieved" from long-term storage depends on \mathbf{x}_t and \mathbf{h}_{t-1} .

- In practice, LSTMs are much easier to train than basic RNNs.
- However, the memory cell \mathbf{c}_t provides only limited storage since it summarizes an entire memory history into a single vector.

 The simplest way to sum up n numbers is sequential (with O(n) time):

```
total = 0
for i in range(n):
    total += nums[i]
```

$$total = 13$$

3	1	0	2	4	1	0	2	
---	---	---	---	---	---	---	---	--

 However, we can also parallelize this by computing sums in a tree:

Rule: parent = child1 + child2

3	1	0	2	4	1	0	2

 However, we can also parallelize this by computing sums in a tree:

Rule: parent = child1 + child2

 4
 2
 5
 2

 3
 1
 0
 2
 4
 1
 0
 2

 However, we can also parallelize this by computing sums in a tree:

Rule: parent = child1 + child2

 6
 7

 4
 2
 5
 2

 3
 1
 0
 2
 4
 1
 0
 2

 However, we can also parallelize this by computing sums in a tree:

Now the computational cost is only O(log n).

What if we also want to compute all the prefix-sums?

p	3	4	4	6	10	11	11	13
X	3	1	0	2	4	1	0	2

- What if we also want to compute all the prefix-sums?
- A simple sequential algorithm is:

$$p[0] = x[0]$$

for i in range(1, n):
 $p[i] = p[i-1] + x[i]$

• Total work is O(n) and span is O(n).

p	3	4	4	6	10	11	11	13
X	3	1	0	2	4	1	0	2

Can we parallelize this?

р	3	4	4	6	10	11	11	13	
X	3	1	0	2	4	1	0	2	

• Can we parallelize this? Yes, using a two-pass recursion.

p	3	4	4	6	10	11	11	13
X	3	1	0	2	4	1	0	2

• We first recursively compute sums pairwise.

- We first recursively compute sums pairwise.
- At this point, we can set p [7]=13.
 13

6 7

4 2 5 2

p 13

x 3 1 0 2 4 1 0 2

• We then descend down the tree and fill in the entries of **p**.

- We then descend down the tree and fill in the entries of p.
- From 13's left child, we know the sum up to *i*=4 must be 6.

13
6 7
4 2 5 2
p 13
x 3 1 0 2 4 1 0 2

- We then descend down the tree and fill in the entries of p.
- From 13's left child, we know the sum up to *i*=4 must be 6.

13

• Thus, p[3]=6.

6

7

	4	1	2	2	5	5		2
p				6				13
X	3	1	0	2	4	1	0	2

• Recursing into 13's right sub-tree (7)

• Recursing into 13's right sub-tree (7), we know that the sum of x [4:6] was 5.

• Recursing into 13's right sub-tree (7), we know that the sum of x [4:6] was 5.

• Thus, p[6]=p[4]+5.

13

6

7

		1	2	2	Ę	5	2	2
p				6		11		13
X	3	1	0	2	4	1	0	2

• By similar logic, we can compute:

13
6
7

4
2
5
2

p
6
10
11
13

x
3
1
0
2
4
1
0
2

• By similar logic, we can compute:

p X

• By similar logic, we can compute:

p X

• Using this **parallel scan**, we reduce the span to $O(\log n)$.

p X

 Clearly, we can generalize this approach to the prefix-sum of *vectors* by performing (and parallelizing) the scan channel-wise, e.g.:

P	3, -1	4, 3	4, 5	6, 3	10, 3	11, 6	11, 7	13, 8
X	3, -1	1, 4	0, 2	2, -2	4, 0	1, 3	0, 1	2, 1

• We can also generalize it to the prefix-sums of multiples of the **X**, i.e., $p_i = \sum_{i'=1}^i (a \times x_i) = p_{i-1} + a \times x_i$.

• The example below is for a=2.

P	6, -2	8, 6	8, 10	12, 6	12, 6	22, 12	22, 14	26, 16
X	3, -1	1, 4	0, 2	2, -2	4, 0	1, 3	0, 1	2, 1

- We can further generalize this idea from addition (+) to any binary associative operator ⊕.
- \oplus is associative iff $x \oplus (y \oplus z) = (x \oplus y) \oplus z \quad \forall x, y, z$
- Examples include scalar addition, scalar multiplication, matrix addition, matrix multiplication.

P	0, -1	4, 3	4, 5	6, 3	6, 3	11, 6	11, 7	13, 8
X	3, -1	1, 4	0, 2	2, -2	4, 0	1, 3	0, 1	2, 1

• What if we want to compute $p_i = b \times p_{i-1} + x_i$ for all i?

P								
X	3	1	0	2	4	1	0	2

Exercise

- What if we want to compute $p_i = b \times p_{i-1} + x_i$ for all *i*?
- Manually compute the answers for b=2:

P								
X	3	1	0	2	4	1	0	2

Solution

- What if we want to compute $p_i = b \times p_{i-1} + x_i$ for all i?
- Manually compute the answers for b=2:

P	3	7	14	30	64	129	258	518
X	3	1	0	2	4	1	0	2

- Can we parallelize $p_i = b \times p_{i-1} + x_i$ for all i?
- We need an associative operator. Maybe $x \oplus y = bx + y$?
- Let's try it out...

P	3	7	14	30	64	129	258	518
X	3	1	0	2	4	1	0	2

- Our operator: $x \oplus y = bx + y$
 - $3 \oplus 1 = b * 3 + 1 = 2 * 3 + 1 = 7$

P

X

3 7

• Our operator: $x \oplus y = bx + y$

•
$$3 \oplus 1 = b * 3 + 1 = 2 * 3 + 1 = 7$$

•
$$7 \oplus 0 = 2 * 7 + 0 = 14$$

_	
	Ì

3	7	14
3	1	0

• Our operator: $x \oplus y = bx + y$

•
$$3 \oplus 1 = b * 3 + 1 = 2 * 3 + 1 = 7$$

•
$$7 \oplus 0 = 2 * 7 + 0 = 14$$

Looking good so far!

3	7	14	30	64	129	258	518
3	1	0	2	4	1	0	2

• Unfortunately, $x \oplus y = bx + y$ is not associative:

•
$$1 \oplus 0 = 2 * 1 + 0 = 2$$

•
$$3 \oplus 2 = 2 * 3 + 2 = 8$$

• Hence, $(3 \oplus 1) \oplus 0 \neq 3 \oplus (1 \oplus 0)$.

3	7	14	30	64	129	258	518
3	1	0	2	4	1	0	2

• Unfortunately, $x \oplus y = bx + y$ is not associative:

•
$$1 \oplus 0 = 2 * 1 + 0 = 2$$

•
$$3 \oplus 2 = 2 * 3 + 2 = 8$$
 Needed to multiply by $b^2!$

• Hence, $(3 \oplus 1) \oplus 0 \neq 3 \oplus (1 \oplus 0)$.

P	3	7	14	30	64	129	258	518
X	3	1	0	2	4	1	0	2

- We need a way of storing the current power of b.
- Hence, we will use 2 numbers (u,v) to represent each step of the computation.
- Operator: $(u, v) \oplus (u', v') = (b^{v'}u + u', v + v')$
- We initialize $(u, v)=(x_i, 1)$ for each i.

P	3	7	14	30	64	129	258	518
X	3	1	0	2	4	1	0	2

• Operator: $(u, v) \oplus (u', v') = (b^{v'}u + u', v + v')$

•
$$(3,1) \oplus (1,1) = (2^1 * 3 + 1, 2) = (7,2)$$

• $(7,2) \oplus (0,1) = (2^1 * 7 + 0,3) = (14,3)$

P	3	7	14	30	64	129	258	518
X	3	1	0	2	4	1	0	2

• Operator: $(u, v) \oplus (u', v') = (b^{v'}u + u', v + v')$

•
$$(1,1) \oplus (0,1) = (2^1,2) = (2,2)$$

•
$$(3,1) \oplus (2,2) = (2^2 * 3 + 2,3) = (14,3)$$

This operator is associative.

P	3	7	14	30	64	129	258	518	
X	3	1	0	2	4	1	0	2	

• We can thus use a parallel scan to compute $p_i = b \times p_{i-1} + x_i$ with span $O(\log n)$.

(518,8)

(30,4)

(38,4)

(7,2)

(2,2)

(9,2)

(2,2)

P

3	7	14	30	64	129	258	518
3	1	0	2	4	1	0	2

• Putting all the parts together, we can use a parallel scan to compute prefix-sums of the form $p_i = b \times p_{i-1} + ax_i$.

P	3	7	14	30	64	129	258	518
X	3	1	0	2	4	1	0	2

• Putting all the parts together, we can use a parallel scan to compute prefix-sums of the form $p_i = b \times p_{i-1} + ax_i$.

• Putting all the parts together, we can use a parallel scan to compute prefix-sums of the form $\mathbf{p}_i = \mathbf{B}\mathbf{p}_{i-1} + \mathbf{A}x_i$.

- Putting all the parts together, we can use a parallel scan to compute prefix-sums of the form $\mathbf{p}_i = \mathbf{B}\mathbf{p}_{i-1} + \mathbf{A}x_i$.
- This is equivalent to a linear RNN.

 While not sufficient by itself, it can be a powerful component in a larger NN with nonlinearities, e.g.:

• It is also one of the key ideas behind structured state space models (S3), e.g., Mamba.

Exercises

Exercise 1

- Suppose that, in a diffusion, we want to "merge" two faces $\mathbf{x}^{(1)}$ and $\mathbf{x}^{(2)}$ at some timestep t by computing $\mathbf{z}_{t}^{(1)}$ and $\mathbf{z}_{t}^{(2)}$, averaging to get $\mathbf{z}_{t} = (\mathbf{z}_{t}^{(1)} + \mathbf{z}_{t}^{(2)})/2$, and then sampling $\mathbf{x} \sim P(\mathbf{x} \mid \mathbf{z}_{t})$?
- What is (slightly) wrong with this?

Exercise 2

- Consider the statement:
 - The fundamental goal of a VAE is to minimize reconstruction error while also keeping the KL divergence between Q(z | x) and P(z) low.
- In which sense is this statement true?
- In which sense is it false?