- (2) For all $h_1, h_2 \in H$, we have $h_1h_2 \in H$;
- (3) For all $h \in H$, we have $h^{-1} \in H$.

The proof of the following proposition is left as an exercise.

Proposition 2.5. Given a group G, a subset $H \subseteq G$ is a subgroup of G iff H is nonempty and whenever $h_1, h_2 \in H$, then $h_1h_2^{-1} \in H$.

If the group G is finite, then the following criterion can be used.

Proposition 2.6. Given a finite group G, a subset $H \subseteq G$ is a subgroup of G iff

- (1) $e \in H$;
- (2) H is closed under multiplication.

Proof. We just have to prove that Condition (3) of Definition 2.4 holds. For any $a \in H$, since the left translation L_a is bijective, its restriction to H is injective, and since H is finite, it is also bijective. Since $e \in H$, there is a unique $b \in H$ such that $L_a(b) = ab = e$. However, if a^{-1} is the inverse of a in G, we also have $L_a(a^{-1}) = aa^{-1} = e$, and by injectivity of L_a , we have $a^{-1} = b \in H$.

Example 2.2.

1. For any integer $n \in \mathbb{Z}$, the set

$$n\mathbb{Z} = \{nk \mid k \in \mathbb{Z}\}$$

is a subgroup of the group \mathbb{Z} .

2. The set of matrices

$$\mathbf{GL}^+(n,\mathbb{R}) = \{ A \in \mathbf{GL}(n,\mathbb{R}) \mid \det(A) > 0 \}$$

is a subgroup of the group $GL(n, \mathbb{R})$.

- 3. The group $SL(n, \mathbb{R})$ is a subgroup of the group $GL(n, \mathbb{R})$.
- 4. The group $\mathbf{O}(n)$ is a subgroup of the group $\mathbf{GL}(n,\mathbb{R})$.
- 5. The group SO(n) is a subgroup of the group O(n), and a subgroup of the group $SL(n,\mathbb{R})$.