Задача 1. При помощи метода наименьших квадратов найдите оценку неизвестного параметра θ в следующих моделях:

(a)
$$Y_i = \theta + \theta x_i + \varepsilon_i$$

(b)
$$Y_i = \theta - \theta x_i + \varepsilon_i$$

(c)
$$\ln Y_i = \theta + \ln x_i + \varepsilon_i$$

(d)
$$Y_i = \theta + x_i + \varepsilon_i$$

(e)
$$Y_i = 1 + \theta x_i + \varepsilon_i$$

(f)
$$Y_i = \theta/x_i + \varepsilon_i$$

(g)
$$Y_i = \theta x_{i1} + (1 - \theta) x_{i2} + \varepsilon_i$$

Задача 2. Покажите, что для моделей $Y_i = \alpha + \beta x_i + \varepsilon_i$, $Z_i = \gamma + \delta x_i + \upsilon_i$ и $Y_i + Z_i = \mu + \lambda x_i + \xi_i$ МНК-оценки связаны соотношениями $\hat{\mu} = \hat{\alpha} + \hat{\gamma}$ и $\hat{\lambda} = \hat{\beta} + \hat{\delta}$.

Задача 3. Найдите МНК-оценки параметров α и β в модели $Y_i = \alpha + \beta Y_i + \varepsilon_i$.

Задача 4. Рассмотрите модели $Y_i = \alpha + \beta(Y_i + Z_i) + \varepsilon_i$, $Z_i = \gamma + \delta(Y_i + Z_i) + \varepsilon_i$ и покажите, что $\hat{\alpha} + \hat{\gamma} = 0$ и $\hat{\beta} + \hat{\delta} = 1$.

Задача 5. Как связаны МНК-оценки параметров α, β и γ, δ в моделях $Y_i = \alpha + \beta x_i + \varepsilon_i$ и $Z_i = \gamma + \delta x_i + \upsilon_i$, если $Z_i = 2Y_i$.

Задача 6. Для модели $Y_i = \beta_1 x_{i1} + \beta_2 x_{i2} + \varepsilon_i$ решите условную задачу о наименьших квадратах: $Q(\beta_1, \beta_2) := \sum_{i=1}^n (Y_i - \beta_1 x_{i1} - \beta_2 x_{i2})^2 \to \min_{\beta_1 + \beta_2 = 1}$

Задача 7. Рассмотрите классическую линейную регрессионную модель $Y_i = \beta x_i + \varepsilon_i$. Найдите $\mathbb{E}\hat{\beta}$. Какие из следующих оценок параметра β являются несмещенными:

(a)
$$\hat{\beta} = \frac{Y_1}{x_1}$$

(b)
$$\hat{\beta} = \frac{1}{2} \frac{Y_1}{x_1} + \frac{1}{2} \frac{Y_n}{x_n}$$

(c)
$$\hat{\beta} = \frac{1}{n} \left(\frac{Y_1}{x_1} + \ldots + \frac{Y_n}{x_n} \right)$$

(d)
$$\hat{\beta} = \frac{\overline{Y}}{\overline{x}}$$

(e)
$$\hat{\beta} = \frac{Y_n - Y_1}{x_n - x_1}$$

(f)
$$\hat{\beta} = \frac{1}{2} \frac{Y_2 - Y_1}{x_2 - x_1} + \frac{1}{2} \frac{Y_n - Y_{n-1}}{x_n - x_{n-1}}$$

(g)
$$\hat{\beta} = \frac{1}{n} \frac{Y_2 - Y_1}{x_2 - x_1} + \frac{1}{n} \frac{Y_3 - Y_2}{x_3 - x_2} + \dots + \frac{1}{n} \frac{Y_n - Y_{n-1}}{x_n - x_{n-1}}$$

(h)
$$\hat{\beta} = \frac{1}{n-1} \left(\frac{Y_2 - Y_1}{x_2 - x_1} + \frac{Y_3 - Y_2}{x_3 - x_2} + \dots + \frac{Y_n - Y_{n-1}}{x_n - x_{n-1}} \right)$$

(i)
$$\hat{\beta} = \frac{x_1 Y_1 + \dots + x_n Y_n}{x_1^2 + \dots + x_n^2}$$

(j)
$$\hat{\beta} = \frac{1}{2} \frac{Y_n - Y_1}{x_n - x_1} + \frac{1}{2n} \left(\frac{Y_1}{x_1} + \dots + \frac{Y_n}{x_n} \right)$$

(k)
$$\hat{\beta} = \frac{1}{2} \frac{Y_n - Y_1}{x_n - x_1} + \frac{1}{2} \frac{x_1 Y_1 + \dots + x_n Y_n}{x_1^2 + \dots + x_n^2}$$

(1)
$$\hat{\beta} = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(Y_i - \overline{Y})}{\sum_{i=1}^{n} (x_i - \overline{x^2})^2}$$

(m)
$$\hat{\beta} = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(\overline{Y} - Y_i)}{\sum_{i=1}^{n} (x_i - \overline{x}^2)^2}$$

(n)
$$\hat{\beta} = \frac{Y_1 + 2Y_2 + \dots + nY_n}{x_1 + 2x_2 + \dots + nx_n}$$

(o)
$$\hat{\beta} = \frac{\sum_{i=1}^{n} i(Y_i - \overline{Y})}{\sum_{i=1}^{n} i(x_i - \overline{x})}$$

(p)
$$\hat{\beta} = \frac{1}{n} \sum_{i=1}^{n} \frac{Y_i}{x_i}$$

(q)
$$\hat{\beta} = \frac{1}{n} \sum_{i=1}^{n} \frac{Y_i - \overline{Y}}{x_i - \overline{x}}$$

Задача 8. Рассмотрите классическую линейную регрессионную модель $Y_i = \beta x_i + \varepsilon_i$. Найдите $\text{var}(\hat{\beta})$. *HET BOПРОСА!*

(a)
$$\hat{\beta} = \frac{Y_1}{x_1}$$

(b)
$$\hat{\beta} = \frac{1}{2} \frac{Y_1}{x_1} + \frac{1}{2} \frac{Y_n}{x_n}$$

(c)
$$\hat{\beta} = \frac{1}{n} \left(\frac{Y_1}{x_1} + \ldots + \frac{Y_n}{x_n} \right)$$

(d)
$$\hat{\beta} = \frac{\overline{Y}}{\overline{x}}$$

(e)
$$\hat{\beta} = \frac{Y_n - Y_1}{x_n - x_1}$$

(f)
$$\hat{\beta} = \frac{1}{2} \frac{Y_2 - Y_1}{x_2 - x_1} + \frac{1}{2} \frac{Y_n - Y_{n-1}}{x_n - x_{n-1}}$$

(g)
$$\hat{\beta} = \frac{x_1 Y_1 + \dots + x_n Y_n}{x_1^2 + \dots + x_n^2}$$

(h)
$$\hat{\beta} = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(Y_i - \overline{Y})}{\sum_{i=1}^{n} (x_i - \overline{x}^2)^2}$$

(i)
$$\hat{\beta} = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(\overline{Y} - Y_i)}{\sum_{i=1}^{n} (x_i - \overline{x}^2)^2}$$

(j)
$$\hat{\beta} = \frac{Y_1 + 2Y_2 + \dots + nY_n}{x_1 + 2x_2 + \dots + nx_n}$$

(k)
$$\hat{\beta} = \frac{\sum_{i=1}^{n} i(Y_i - \overline{Y})}{\sum_{i=1}^{n} i(x_i - \overline{x})}$$

(1)
$$\hat{\beta} = \frac{1}{n} \sum_{i=1}^{n} \frac{Y_i}{x_i}$$

(m)
$$\hat{\beta} = \frac{1}{n} \sum_{i=1}^{n} \frac{Y_i - \overline{Y}}{x_i - \overline{x}}$$

Задача 9. Рассмотрите классическую линейную регрессионную модель $Y_i = \beta \cdot i + \varepsilon_i, \ i = 1, \dots, n$. Какая из оценок $\hat{\beta}$ и $\tilde{\beta}$ является более эффективной?

(a)
$$\hat{\beta} = Y_1$$
 и $\tilde{\beta} = Y_2/2$

(b)
$$\hat{\beta} = Y_1 \text{ if } \tilde{\beta} = \frac{1}{2}Y_1 + \frac{1}{2}\frac{Y_2}{2}$$

(c)
$$\hat{\beta} = \frac{1}{n} \left(\frac{Y_1}{1} + \ldots + \frac{Y_n}{n} \right)$$
 и $\tilde{\beta} = \frac{1 \cdot Y_1 + \ldots + n \cdot Y_n}{1^2 + \ldots + n^2}$

Задача 10. Известно, что случайные величины X_1, X_2 и X_3 имеют следующие характеристики:

1.
$$\mathbb{E}(X_1) = 5$$
, $\mathbb{E}(X_2) = 10$, $\mathbb{E}(X_3) = 8$

2.
$$var(X_1) = 6$$
, $var(X_2) = 14$, $var(X_3) = 1$

3.
$$cov(X_1, X_2) = 3$$
, $cov(X_1, X_3) = 1$, $cov(X_2, X_3) = 0$

Пусть случайные величины Y_1 , Y_2 и Y_3 , представляют собой линейные комбинации случайных величин X_1 , X_2 и X_3 :

$$Y_1 = X_1 + 3X_2 - 2X_3$$
$$Y_1 = 7X_1 - 4X_2 + X_3$$
$$Y_1 = -2X_1 - X_2 + 4X_3$$

- (a) Выпишите математическое ожидание и ковариационную матрицу случайного вектора $X = \begin{pmatrix} X_1 & X_2 & X_3 \end{pmatrix}^T$
- (b) Напишите матрицу A, которая позволяет перейти от случайного вектора $X=(X_1X_2X_3)^T$ к случайному вектору $Y=\begin{pmatrix} Y_1 & Y_2 & Y_3 \end{pmatrix}^T$
- (c) С помощью матрицы A найдите математическое ожидание и ковариационную матрицу случайного вектора $Y=\left(\begin{array}{cccc} Y_1 & Y_2 & Y_3 \end{array}\right)^T$

Задача 11. Пусть $X=\begin{pmatrix} X_1 & X_2 \end{pmatrix}^T-$ случайный вектор, имеющий двумерное нормальное распределение с математическим ожиданием $\mu=\begin{pmatrix} 1 & 2 \end{pmatrix}^T$ и ковариационной матрицей $\Sigma=\begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$.

- (a) Найдите Σ^{-1}
- (b) Найдите $\Sigma^{-1/2}$
- (c) Найдите математическое ожидание и ковариационную матрицу случайного вектора $Y = \Sigma^{-1/2} \cdot (X \mu)$
- (d) Какое распределение имеет вектор Y из предыдущего пункта?
- (e) Найдите распределение случайной величины $Q = (X \mu)^T \cdot \Sigma^{-1} \cdot (X \mu)$

Задача 12. Пусть
$$Z = \begin{pmatrix} Z_1 & Z_2 & Z_3 \end{pmatrix}^T \sim N(0, I_{3x3}), b = \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}^T,$$
 $A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}, K = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1/2 & 1/2 \\ 0 & 1/2 & 1/2 \end{pmatrix}.$

- (a) Найдите $\mathbb{E} X$ и $\mathrm{var}(X)$ случайного вектора $X = A \cdot Z + b$
- (b) Найдите распределение случайного вектора X
- (c) Найдите $\mathbb{E} Q$ случайной величины $Q = Z^T \cdot K \cdot Z$
- (d) Найдите распределение случайной величины Q

Задача 13. Пусть регрессионная модель $Y_i = \alpha + \beta_1 x_{i1} + \beta_2 x_{i2} + \varepsilon_i$, $i = 1, \ldots, n$, задана в матричном виде при помощи уравнения $Y = X\beta + \varepsilon$, где $\beta = \begin{pmatrix} \alpha & \beta_1 & \beta_2 \end{pmatrix}^T$. Известно, что $\mathbb{E}\varepsilon = 0$ и $\mathrm{var}(\varepsilon) = 4 \cdot I$. Известно также, что:

$$Y = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{pmatrix}, X = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}$$

Для удобства расчётов ниже приведены матрицы:

$$X^T X = \begin{pmatrix} 5 & 3 & 1 \\ 3 & 3 & 1 \\ 1 & 1 & 1 \end{pmatrix} \text{ if } (X^T X)^{-1} = \begin{pmatrix} 0.5 & -0.5 & 0 \\ -0.5 & 1 & -0.5 \\ 0 & -0.5 & 1.5 \end{pmatrix}.$$

Найдите:

- (a) $var(\varepsilon_1)$
- (b) $var(\alpha)$
- (c) $var(\hat{\alpha})$
- (d) $\widehat{\text{var}}(\hat{\alpha})$
- (e) $\mathbb{E}(\hat{\alpha}^2) \alpha^2$
- (f) $\operatorname{cov}(\hat{\beta}_1, \hat{\beta}_2)$
- (g) $\widehat{\text{cov}}(\hat{\beta}_1, \hat{\beta}_2)$
- (h) $\operatorname{var}(\hat{\beta}_1 \hat{\beta}_2)$
- (i) $\widehat{\text{var}}(\hat{\beta}_1 \hat{\beta}_2)$
- (j) $var(\beta_1 \beta_2)$
- (k) $\operatorname{corr}(\hat{\beta}_1, \hat{\beta}_2)$
- (l) $\widehat{\operatorname{corr}}(\hat{\beta}_1, \hat{\beta}_2)$
- (m) $\mathbb{E}(\hat{\sigma}^2)$
- (n) $\hat{\sigma}^2$

Задача 14. Пусть ξ_1, ξ_2, ξ_3 — случайные величины, такие что $\operatorname{var}(\xi_1) = 2$, $\operatorname{var}(\xi_2) = 3$, $\operatorname{var}(\xi_3) = 4$, $\operatorname{cov}(\xi_1, \xi_2) = 1$, $\operatorname{cov}(\xi_1, \xi_3) = -1$, $\operatorname{cov}(\xi_2, \xi_3) = 0$. Пусть $\xi = \begin{pmatrix} \xi_1 & \xi_2 & \xi_3 \end{pmatrix}^T$. Найдите $V(\xi)$ и $\operatorname{var}(\xi_1 + \xi_2 + \xi_3)$.

Решение. По определению ковариационной матрицы:

$$V(\xi) = \begin{pmatrix} var(\xi_1) & cov(\xi_1, \xi_2) & cov(\xi_1, \xi_3) \\ cov(\xi_2, \xi_1) & var(\xi_2) & cov(\xi_2, \xi_3) \\ cov(\xi_3, \xi_1) & cov(\xi_3, \xi_2) & var(\xi_3) \end{pmatrix} = \begin{pmatrix} 2 & 1 & -1 \\ 1 & 3 & 0 \\ -1 & 0 & 4 \end{pmatrix}$$

$$var(\xi_1 + \xi_2 + \xi_3) = V(\xi_1 + \xi_2 + \xi_3) = V\begin{pmatrix} (1 & 1 & 1) & \begin{pmatrix} \xi_1 \\ \xi_2 \\ \xi_3 \end{pmatrix} \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix} V\begin{pmatrix} \xi_1 \\ \xi_2 \\ \xi_3 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix} V\begin{pmatrix} \xi_1 \\ \xi_2 \\ \xi_3 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix} V\begin{pmatrix} \xi_1 \\ \xi_2 \\ \xi_3 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix} V\begin{pmatrix} \xi_1 \\ \xi_2 \\ \xi_3 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix} V\begin{pmatrix} \xi_1 \\ \xi_2 \\ \xi_3 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix} V\begin{pmatrix} \xi_1 \\ \xi_2 \\ \xi_3 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix} V\begin{pmatrix} \xi_1 \\ \xi_2 \\ \xi_3 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix} V\begin{pmatrix} \xi_1 \\ \xi_2 \\ \xi_3 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix} V\begin{pmatrix} \xi_1 \\ \xi_2 \\ \xi_3 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix} V\begin{pmatrix} \xi_1 \\ \xi_2 \\ \xi_3 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix} V\begin{pmatrix} \xi_1 \\ \xi_2 \\ \xi_3 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix} V\begin{pmatrix} \xi_1 \\ \xi_2 \\ \xi_3 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix} V\begin{pmatrix} \xi_1 \\ \xi_2 \\ \xi_3 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix} V\begin{pmatrix} \xi_1 \\ \xi_2 \\ \xi_3 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix} V\begin{pmatrix} \xi_1 \\ \xi_2 \\ \xi_3 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix} V\begin{pmatrix} \xi_1 \\ \xi_2 \\ \xi_3 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix} V\begin{pmatrix} \xi_1 \\ \xi_2 \\ \xi_3 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix} V\begin{pmatrix} \xi_1 \\ \xi_2 \\ \xi_3 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix} V\begin{pmatrix} \xi_1 \\ \xi_2 \\ \xi_3 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix} V\begin{pmatrix} \xi_1 \\ \xi_2 \\ \xi_3 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix} V\begin{pmatrix} \xi_1 \\ \xi_2 \\ \xi_3 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix} V\begin{pmatrix} \xi_1 \\ \xi_2 \\ \xi_3 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix} V\begin{pmatrix} \xi_1 \\ \xi_2 \\ \xi_3 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix} V\begin{pmatrix} \xi_1 \\ \xi_2 \\ \xi_3 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix} V\begin{pmatrix} \xi_1 \\ \xi_2 \\ \xi_3 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix} V\begin{pmatrix} \xi_1 \\ \xi_2 \\ \xi_3 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix} V\begin{pmatrix} \xi_1 \\ \xi_2 \\ \xi_3 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix} V\begin{pmatrix} \xi_1 \\ \xi_2 \\ \xi_3 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix} V\begin{pmatrix} \xi_1 \\ \xi_2 \\ \xi_3 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix} V\begin{pmatrix} \xi_1 \\ \xi_2 \\ \xi_3 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix} V\begin{pmatrix} \xi_1 \\ \xi_2 \\ \xi_3 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix} V\begin{pmatrix} \xi_1 \\ \xi_2 \\ \xi_3 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix} V\begin{pmatrix} \xi_1 \\ \xi_2 \\ \xi_3 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix} V\begin{pmatrix} \xi_1 \\ \xi_2 \\ \xi_3 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix} V\begin{pmatrix} \xi_1 \\ \xi_2 \\ \xi_3 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix} V\begin{pmatrix} \xi_1 \\ \xi_2 \\ \xi_3 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix} V\begin{pmatrix} \xi_1 \\ \xi_2 \\ \xi_3 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix} V\begin{pmatrix} \xi_1 \\ \xi_2 \\ \xi_3 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix} V\begin{pmatrix} \xi_1 \\ \xi_2 \\ \xi_3 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix} V\begin{pmatrix} \xi_1 \\ \xi_2 \\ \xi_3 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix} V\begin{pmatrix} \xi_1 \\ \xi_2 \\ \xi_3 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix} V\begin{pmatrix} \xi_1 \\ \xi_2 \\ \xi_3 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix} V\begin{pmatrix} \xi_1 \\ \xi_2 \\ \xi_3 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix} V\begin{pmatrix} \xi_1 \\ \xi_1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix} V\begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix} V\begin{pmatrix} \xi_1 \\ \xi_1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix} V\begin{pmatrix} \xi_1 \\ \xi_1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix} V\begin{pmatrix} \xi_1 \\ \xi_1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix} V\begin{pmatrix} \xi_1 \\ \xi_1 \end{pmatrix} =$$

Задача 15. Пусть
$$H=\left(\begin{array}{c} \xi_1\\ \xi_2 \end{array}\right); \mathbb{E}(H)=\left(\begin{array}{c} 1\\ 2 \end{array}\right); \mathrm{V}(H)=\left(\begin{array}{cc} 2 & 1\\ 1 & 2 \end{array}\right); Z_1=\left(\begin{array}{c} \eta_1\\ \eta_2 \end{array}\right)=\left(\begin{array}{cc} 0 & 0\\ 0 & 1 \end{array}\right)\left(\begin{array}{c} \xi_1\\ \xi_2 \end{array}\right).$$
 Найдите $\mathbb{E}(Z_1)$ и $\mathrm{V}(Z_1)$.

Решение.
$$\mathbb{E}(Z_1)$$
 и $V(Z_1)$.

 $\mathbb{E}(Z_1) = \mathbb{E}\left(\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix} \right) = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \mathbb{E}\begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$

$$V(Z_1) = V\left(\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix}\right) = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} V\left(\begin{matrix} \xi_1 \\ \xi_2 \end{pmatrix}\right) \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}^T = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}^T$$

$$\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 2 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 2 \end{pmatrix}$$

Задача 16. Пусть
$$H = \begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix}; \mathbb{E}(H) = \begin{pmatrix} 1 \\ 2 \end{pmatrix}; V(H) = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}; Z_2 = \begin{pmatrix} \eta_1 \\ \eta_2 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
. Найдите $\mathbb{E}(Z_2)$ и $V(Z_2)$

Решение.
$$\mathbb{E}(Z_2) = \mathbb{E}\left(\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix}, + \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \mathbb{E}\begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix}, + \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \end{pmatrix}, + \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 2 \end{pmatrix}, + \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$$

Поскольку $Z_2=Z_1+\left(egin{array}{c}1\\1\end{array}
ight)$, где Z_1- случайный вектор из предыдущей задачи, то $\mathrm{V}(Z_2)=$ $V(Z_1)$ (сдвиг случайного вектора на вектор-константу не меняет его ковариационную матpuuy).

Задача 17. Пусть
$$H=\left(\begin{array}{c} \xi_1\\ \xi_2 \end{array}\right); \ \mathbb{E}(H)=\left(\begin{array}{c} 1\\ 2 \end{array}\right); \ \mathrm{V}(H)=\left(\begin{array}{c} 2 & 1\\ 1 & 2 \end{array}\right); \ Z_3=\left(\begin{array}{c} \eta_1\\ \eta_2 \end{array}\right)=\left(\begin{array}{c} \xi_1\\ \xi_2 \end{array}\right)-\left(\begin{array}{c} \mathbb{E}\xi_1\\ \mathbb{E}\xi_2 \end{array}\right).$$
 Найдите $\mathbb{E}(Z_3)$ и $\mathrm{V}(Z_3)$

Решение. В данном примере проиллюстрирована процедура центрирования случайного вектора — процедура вычитания из случайного вектора его математического ожидания.

$$\mathbb{E}(Z_3) = \mathbb{E}\left(\begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix} - \begin{pmatrix} \mathbb{E}\xi_1 \\ \mathbb{E}\xi_2 \end{pmatrix}\right) = \mathbb{E}\begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix} - \mathbb{E}\begin{pmatrix} \mathbb{E}\xi_1 \\ \mathbb{E}\xi_2 \end{pmatrix} = \begin{pmatrix} \mathbb{E}\xi_1 \\ \mathbb{E}\xi_2 \end{pmatrix} - \begin{pmatrix} \mathbb{E}\xi_1 \\ \mathbb{E}\xi_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
 Заметим, что вектор Z_3 отличается от вектора Z_1 (из задачи 15) сдвигом на вектор-константу $\mathbb{E}\xi_1$

 $\begin{pmatrix} \mathbb{E}\xi_1 \\ \mathbb{E}\xi_2 \end{pmatrix}$, поэтому $V(Z_3) = V(Z_1)$.

 ${\bf 3a'_{j}a'_{4}a}$ 18. Пусть $r_1,\ r_2$ и r_3 — годовые доходности трёх рисковых финансовых инструментов. Пусть α_1 , α_2 и α_3 — доли, с которыми данные инструменты входят в портфель инвестора. Считаем, что $\sum_{i=1}^3 \alpha_i = 1$ и $\alpha_i \geqslant 0$ для всех i = 1, 2, 3. Пусть $r = \begin{pmatrix} r_1 & r_2 & r_3 \end{pmatrix}^T$, $\mathbb{E}(r) = \begin{pmatrix} a_1 & a_2 & a_3 \end{pmatrix}^T$, $\mathbb{V}(r) = \begin{pmatrix} c_{11} & c_{12} & c_{13} \\ c_{21} & c_{22} & c_{23} \\ c_{31} & c_{32} & c_{33} \end{pmatrix}$. Параметры $\{a_i\}$ и $\{c_i\}$ известны.

$$\mathbb{E}(r) = \begin{pmatrix} a_1 & a_2 & a_3 \end{pmatrix}^T$$
, $V(r) = \begin{pmatrix} c_{11} & c_{12} & c_{13} \\ c_{21} & c_{22} & c_{23} \\ c_{31} & c_{32} & c_{33} \end{pmatrix}$. Параметры $\{a_i\}$ и $\{c_i\}$ известны.

- (а) Найдите годовую доходность портфеля П инвестора
- (b) Докажите, что дисперсия доходности портфеля Π равна $\sum_{i=1}^{3} \sum_{j=1}^{3} \alpha_i c_{ij} \alpha_j$

(c) Для случая
$$\alpha_1=0.1,\ \alpha_2=0.5,\ \alpha_3=0.4,\ \mathbb{E}(r)=\left(\begin{array}{ccc}a_1&a_2&a_3\end{array}\right)^T=\left(\begin{array}{ccc}0.10&0.06&0.05\end{array}\right)^T,$$

$$V(r)=\left(\begin{array}{cccc}0.04&0&-0.005\\0&0.01&0\\-0.005&0&0.0025\end{array}\right)$$
 найдите $\mathbb{E}(\Pi)$ и $\mathrm{var}(\Pi)$

Задача 19. Пусть
$$H = \begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix}$$
; $\mathbb{E}(H) = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$; $V(H) = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$; $Z_3 = \begin{pmatrix} \eta_1 \\ \eta_2 \end{pmatrix} = \begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix} - \begin{pmatrix} \mathbb{E}\xi_1 \\ \mathbb{E}\xi_2 \end{pmatrix}$; $Z_4 = V(H)^{-1/2}Z_3$. Найдите $\mathbb{E}(Z_4)$ и $V(Z_4)$

Задача 20. Пусть $H = \begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix}$; $\mathbb{E}(H) = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$; $V(H) = \begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix}$; $Z_3 = \begin{pmatrix} \eta_1 \\ \eta_2 \end{pmatrix} = \begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix} - \begin{pmatrix} \mathbb{E}\xi_1 \\ \mathbb{E}\xi_2 \end{pmatrix}$; $Z_4 = V(H)^{-1/2}Z_3$. Найдите $\mathbb{E}(Z_4)$ и $V(Z_4)$