

Industrial Photonics

Laser beam Delivery System

Ariel Priarone

s274149

(a.y. 2022/2023)

Contents

1	Introduction	2							
2	Function	2							
3	Initialize the script								
4	Mirror design 4.1 Angle dependency	4 6 7							
5	Irradiance distribution	8							
6	Spot size 6.1 Beam waist approximated	10 10 13							
7	Design a processing head	15							
${f L}$	st of Figures								
	Nomenclature of the function response of a dichroic mirror for some different number of bilayers and values of the AOI response of the designed mirror around laser wavelength response of the designed mirror in visible spectrum irradiance distribution for the two lasers focusing heads in different configurations for both lasers, neglecting normalized frequency detail of focusing heads in different configurations for both lasers, neglecting normalized frequency focusing heads in different configurations for both lasers detail of focusing heads in different configurations for both lasers detail of focusing heads in different configurations for both lasers designed focusing heads in different configurations for laser 2 detail of designed focusing heads in different configurations for laser 2 detail of designed focusing heads in different configurations for laser 2	11 14 14 15							
${f L}$	st of Tables								
	Spot sizes for different configurations	10 13 16							

1 Introduction

This assignment is about a laser beam delivery system: it is asked to design a dichroic mirror that selectively reflect the laser beam into the working piece, while transmitting the light in the visible spectrum passing in the other direction so that it can reach a camera used for process control. The system is studied for two lasers, both working at $\lambda_0 = 1070$ nm:

Laser	Diameter [mm]	Power [kW]	M^2	BPP [mm·mrad]	Polarization
1	0.014	1	1.20	-	random
2	0.100	5	-	5	random

2 Function

Since a dichroic mirror is usually a device with a big number of interfaces, i will write a function that compute the input reflectivity for any multi layer structure. Since such a function is already provided for matlab in the course material, i will adopt the same procedure, implementing a function in pyhton, following the nomenclature shown in **Figure 1**.

Figure 1: Nomenclature of the function

```
def mLayerReflectivity(n,L,lam0,theta=0,pol='TE'):
1
        # compute the input reflectivity for a multilayer stack of materials (first and last mediums
2
          infinetely thick)
        # imputs:
                                     array of reflactive indeces (constant, no chromatic aberration
                : array-like,
           considered)
           L : array-like,
                                     array of thickness of layers (len(L)=len(n)-2)
            lamO : array-like,
                                     wavelength in vacuum to be tested
6
            theta: float,
                                     angle of incidence (deg), default=0 deg
            pol : str,
                                     "TE" if perpendicular polarization, "TM" for parallel
           polarization, default = "TE"
        # return:
9
                : array-like
                                     input reflectivity
10
11
        if not isinstance(n, np.ndarray):
                                                # convert to np.array if needed
12
           n = np.array(n)
13
        if not isinstance(L, np.ndarray): # convert to np.array if needed
14
              = np.array(L)
15
        if not isinstance(lam0, np.ndarray):
                                               # convert to np.array if needed
16
            lam0 = np.array(lam0)
17
        theta=theta*np.pi/180
                                       # from deg to rad
18
        if not len(L) == (len(n)-2):
                                     # check consistency of dimensions
19
```

```
raise Exception("len(L)!=len(n)-2")
20
        Z0
                120*np.pi
                                        # vacuum impedence
21
        R=[]
                                        # initialize empty reflectivity
22
        for lam in lam0:
                                        # iterate for all wavelength of interest
23
                        2*np.pi/lam
                                        # k0 inital wave number
24
                        k0*(n[1:-1]**2-n[0]**2*np.sin(theta)**2)**0.5
            k_vect =
25
            for ii in range(0,len(k_vect)):
26
                if np.imag(k_vect[ii])>0:
                                                 # fix k_z=-j*alpha
                    k_vect[ii]=k_vect[ii].conjugate()
            \# compute the z\_infs
29
            match pol:
30
                case "TE":
31
                    zinf = Z0/(n**2-n[0]**2*np.sin(theta)**2)**(0.5)
32
                case "TM":
33
                    zinf = Z0/(n**2)*(n**2-n[0]**2*np.sin(theta)**2)**(0.5)
34
                case _ :
35
                    raise Exception('pol is neither "TE" nor "TM"')
            for ii in range(0,len(zinf)):
                if np.imag(zinf[ii])<0:</pre>
                                               # fix z_inf
38
                    k_vect[ii]=k_vect[ii].conjugate()
39
            rho = (zinf[1:]-zinf[0:-1])/(zinf[1:]+zinf[0:-1])
40
            gamma=[rho[-1]]
                                              # initialize gamma array - last reflective coefficient
41
            \hookrightarrow is rho
            for r,k,l in zip(reversed(rho[:-1]),reversed(k_vect),reversed(L)):# reverse to propagate
42
            \hookrightarrow backward
                R.append(abs(gamma[-1]**2*100))
        return np.array(R) # reflectivity [%]
45
```

3 Initialize the script

In order to compute the solutions of this assignment, i used a python script, that i will include in this document. The following is just the preamble of that script.

```
import matplotlib.pyplot as plt
import matplotlib.colors as color
import numpy as np
import matplotlib
import tikzplotlib
import scipy.integrate as integrate
from matplotlib.lines import Line2D
matplotlib.use('Qt5Agg')

def tikzplotlib_fix_ncols(obj):
    """
    workaround for matplotlib 3.6 renamed legend's _ncol to _ncols, which breaks tikzplotlib
    """
```

```
if hasattr(obj, "_ncols"):
    obj._ncol = obj._ncols
for child in obj.get_children():
    tikzplotlib_fix_ncols(child)
```

4 Mirror design

The mirror should be designed to obtain ideally a reflectivity R = 1 at a wavelength $\lambda = \lambda_0$. In reality obtaining a really high reflectivity is crucial because, in high power applications, the portion of power that is not reflected, is transmitted and will be absorbed by the glass substrate, in part, and then by some other component in the chassis of the device.

On the other hand, obtaining an ideal reflectivity R = 0 among all the visible spectrum is quite impossible in reality, but in this case obtaining a good performance is less crucial because it will only affect the amount of radiation that reaches the camera (it is possible to compensate with high ISO).

A dichroic mirror is a device built stacking a large number of quarter wavelength layers (QWOT). The input reflectivity is function of the number of layers, the thicknesses, the refractive indices and, in the case of an angle of incidence not null, also on the polarization of the light.

I used the following script to analyze the behaviour of the mirror, ad wavelength around the one of design λ_0 (used to tune the QWOT layers). The analysis is carried out for different angle of incidence and different numbers of bi-layers, with random polarization (average reflectivity of the one obtained for both polarizations), as reported in **Figure 2**.

It's evident that increasing the number of bi-layers, the peak of the reflectivity increases, and for 80 bi-layers, the peak is practically 100% in a reasonable band around the design frequency (for $\theta = 0$). The materials were chosen such that the refractive indices¹ were not too different, because using two materials with close refractive indices increase the spacing of the peaks in the frequency periodic pattern of the reflectivity. In this case the materials are **silicon dioxide** and **magnesium fluoride**. As substrate a commonly available BK7 glass is considered.

```
# %% data of the problem
                 1070*10**(-9)
    lam0
                                               # design wavelength
2
    nair
                                               # left medim refr index
                 1
                                               # refr index layer H (silicon dioxide)
                 1.46
    nH
                 1.38
                                               # refr index layer L (magnesium fluoride)
    nL
5
                 1.5
                                               # right medim refr index (glass)
    ng
6
    dH
                 lam0/4/nH
                                               # thickness layer H
                 lam0/4/nL
    dL
                                               # thickness layer L
9
                 np.linspace(lam0*0.80,lam0*1.2,1000)
10
    lam
11
    fig, axs=plt.subplots(3, 1, sharex=True, sharey=True)
12
    fig.tight_layout()
13
    ii = 0
14
    for ncouples in [15,30,80]:
15
        for theta in np.linspace(0,45,5):
16
```

¹from now on i will neglect the chromatic dispersion, so the refractive indices of the materials will be constant at any wavelength

Figure 2: response of a dichroic mirror for some different number of bilayers and values of the AOI

```
n=np.tile([nH, nL],ncouples)
                                              # concatenate bilayers indeces
17
            d=np.tile([dH, dL],ncouples)
                                              # concatenate bilayers thicknesses
18
            n=np.concatenate(([nair],n))
                                              # add air medium
19
            n=np.concatenate((n,[ng]))
                                              # add glass medium
20
21
            Rtm=mLayerReflectivity(n,d,lam,theta, 'TM') # tm polarization reflectivity
22
            Rte=mLayerReflectivity(n,d,lam,theta,'TE') # te polarization reflectivity
23
            axs[ii].plot(lam/lam0,(Rte+Rtm)/2,label=f'$\\theta={round(theta,3)}^\\circ$')
            print(f'$\\theta={round(theta,3)}^\\circ$')
26
        axs[ii].grid(True, 'Both')
27
        axs[ii].set_title(f'{ncouples} bilayers')
28
        axs[ii].set_ylabel('$R$ [%]')
29
        ii+=1
30
    axs[-1].set_xlabel('$\\lambda/\\lambda_0$')
31
    axs[-1].legend(loc='lower right')
32
    tikzplotlib_fix_ncols(fig)
33
    tikzplotlib.save('Assignment3/fig1.tex',axis_width='0.9\\textwidth',axis_height ='7cm')
```

4.1 Angle dependency

At this point the mirror is designed for an AOI $\theta = 0$, but the problem constrain is to use a AOI $\theta = 45^{\circ}$. Looking at the **Figure 2**, it's possible to see that at this angle of incidence, the peak of the reflectivity has moved towards lower wavelength, so that the design has to be repeated for a corrected wavelength λ'_0 :

$$\frac{\lambda_{peak}}{\lambda_0} = 0.867 = \frac{\lambda_0}{\lambda_0'} \implies \lambda_0' = \frac{\lambda_0}{0.867}$$

The following script re-design the mirror for the corrected wavelength λ'_0 , and check the reflectivity for both the polarization. The result is displayed in **Figure 3**. At λ_0 , the average reflectivity is 99.6%, this means that for the two laser, 4W and 20W will be transmitted thru the mirror, respectively.

```
# %% design of the dichroic mirror
    # data of the problem
    lam0_c =
                1070*10**(-9)/0.867
                                             # design wavelength - compensated for the AOI
                lam0_c/4/nH
                                             # thickness layer H
                lam0_c/4/nL
                                             # thickness layer L
                                             # how many bilayers
    ncouples =
    theta
                                             # AOU - degrees
                np.linspace(lam0*0.9,lam0*1.1,1000) # around laser wavelength
    fig, axs=plt.subplots()
9
    fig.tight_layout()
10
    n=np.tile([nH, nL],ncouples)
                                     # concatenate bilayers indeces
11
    d=np.tile([dH, dL],ncouples)
                                     # concatenate bilayers thicknesses
12
    n=np.concatenate(([nair],n))
                                     # add air medium
13
    n=np.concatenate((n,[ng]))
                                     # add glass medium
14
    Rtm=mLayerReflectivity(n,d,lam,theta, 'TM') # tm polarization reflectivity
15
    Rte=mLayerReflectivity(n,d,lam,theta, 'TE') # te polarization reflectivity
16
```

```
axs.plot(lam,(Rte),label=f'$TE$')
17
    axs.plot(lam,(Rtm),label=f'$TM$')
18
    axs.plot(lam,(Rte+Rtm)/2,label=f'$average$')
19
    axs.vlines([lam0],-5,105,colors='red',linestyles='dashdot')
20
    axs.grid(True, 'Both')
21
    axs.set_title(f'{ncouples} bilayers')
22
    axs.set_ylabel('$R$ [%]')
23
    axs.set_xlabel('$\\lambda$ [m]')
24
    axs.legend(loc='upper right')
25
    tikzplotlib_fix_ncols(fig)
26
    tikzplotlib.save('Assignment3/fig2.tex',axis_width='0.9\\textwidth',axis_height ='7cm')
27
```


Figure 3: response of the designed mirror around laser wavelength

4.2 Check reflectivity in the visible spectrum

At this point it remains to check that the reflectivity is low enough in the visible spectrum range. The following script compute the reflectivity in this range. The result are reported in **Figure 4**. This values are not zero, but considering also that the material being welded will emit a lot of radiation in the visible spectrum, the reflectivity is low enough to allow for a camera to capture the image. The average reflectivity in the visible spectrum is 4%.

The computations are done with the following code:

```
# %% check reflectivity in visible range
# data of the problem

lam = np.linspace(380,700,1000)*10**(-9) # visible range

fig, axs=plt.subplots()

fig.tight_layout()

Rtm=mLayerReflectivity(n,d,lam,theta,'TM') # tm polarization reflectivity

Rte=mLayerReflectivity(n,d,lam,theta,'TE') # te polarization reflectivity

**Reflectivity**

**Reflectivity
```

```
axs.plot(lam,(Rte),label=f'$TE$')
9
    axs.plot(lam,(Rtm),label=f'$TM$')
10
    axs.plot(lam,(Rte+Rtm)/2,label=f'$average$')
11
    axs.grid(True, 'Both')
12
    axs.set_ylabel('$R$ [%]')
13
    axs.set_xlabel('$\\lambda$ [m]')
14
    axs.legend(loc='upper right')
15
    tikzplotlib_fix_ncols(fig)
16
    tikzplotlib.save('Assignment3/fig3.tex',axis_width='0.9\\textwidth',axis_height ='7cm')
17
```


Figure 4: response of the designed mirror in visible spectrum

5 Irradiance distribution

At this point the assignment asks to verify if the two lasers are powerful enough to weld, so if they are able to provide a power density of at least $1 \, \mathrm{kW/cm^2}$ at the focal point. This under the assumption that both lasers are equipped with a collimator that provide a collimated beam of 12mm and a focusing lens with focal length 200mm.

Regarding the first laser, the quality factor is known:

$$M_{L1}^2 = 1.2$$

and for the second laser it can be computed knowing the beam parameter product:

$$BPP = 5 \text{mm} \cdot \text{mrad} \implies M_{L2}^2 = \frac{BPP}{BPP_{gauss}} = \frac{BPP \cdot \pi}{\lambda_0} = 14.68$$

Knowing the quality factor, the spot size can be computed:

$$w_f = M^2 \frac{\lambda_0 \cdot f}{\pi \cdot w_l}$$

where w_l is the collimated radius before the lens with focal length f. The irradiance as function of the z axis and the radial position r follow as:

$$\frac{\mathrm{d}P}{\mathrm{d}\Sigma} = \frac{2 \cdot P}{\pi \cdot w(z)} e^{\frac{-2 \cdot r^2}{w(z)^2}} \tag{1}$$

Computing the irradiance at the focus point, the radial distribution is shown in **Figure 5**.

It is evident that the second laser, despite having higher power, produce a lower power density at the focusing point. This is due by the fact that the beam quality is really worse than the one of the first laser. In any case, also the second laser reaches the minimum requirement of 1kW/cm², but with a less sharp distribution, that will imply also a bigger spot size.

All computations carried out with the following code:

Figure 5: irradiance distribution for the two lasers

```
#%% compute the irradiance for the focus spot
    # first laser
    M2 = 1.2
                                          # quality factor
        = 0.2
                                          # focal length of lens [m]
        = 0.012/2
                                          # collimated beam radius[m]
        = M2*lam0*f/np.pi/wl
                                          # focused spot radius
                                                                    [m]
        = 1000
                                          # laser power
                                                                    [w]
        = np.linspace(-2*wf, 2*wf, 200)
                                          # radial distance from the focus point [m]
        = 2*P/np.pi/wf*np.exp(-2*r**2/(wf**2)) # irradiance distribution [w/m^2]
9
10
    fig, axs=plt.subplots()
11
    fig.tight_layout()
12
    axs.plot(r*10**3,I/10**7,label='first laser') # converted in kw/cm^2
13
    # second laser
15
    BPP = 5/10**6
                                          # beam parameter product [mm*rad]
16
        = BPP/lam0*np.pi
                                          # quality factor
17
        = M2*lam0*f/np.pi/wl
                                          # focused spot radius
                                                                    [m]
18
        = 5000
                                          # laser power
                                                                    \Gamma w 7
19
20
        = np.linspace(-2*wf,2*wf,200)
                                          # radial distance from the focus point [m]
21
```

```
= 2*P/np.pi/wf*np.exp(-2*r**2/(wf**2)) # irradiance distribution [w/m^2]
22
23
    axs.plot(r*10**3,I/10**7,label='second laser')
                                                                 # converted in kw/cm^2
24
    axs.grid(True, 'Both')
25
    axs.set_ylabel('Irradiance [kW/cm]')
26
    axs.set_xlabel('radial position $r$ [mm]')
27
    axs.legend()
28
29
    axs.grid(True, 'Both')
30
    axs.set_ylabel('Irradiance [kW/cm]')
31
    axs.set_xlabel('radial position $r$ [mm]')
32
    axs.legend()
33
34
35
    tikzplotlib_fix_ncols(fig)
36
37
    tikzplotlib.save('Assignment3/fig4.tex',axis_width='0.9\\textwidth',axis_height ='7cm')
```

6 Spot size

6.1 Beam waist approximated

At this point the task is to study how real beams are propagated thru a lens system. In particular three cases are considered, a firs lens with 100mm focal length, and a second lens with 125mm, 150mm and 200mm focal length respectively.

In the previous assignment, a function to propagate a beam thru a system of three lenses, has been developed. The problem of having only two lenses can be solved setting the focal length of one of the three lenses to a number that approach infinity, in this case the second lens with $f_2 = 10^{50} mm$. The distance between the two remaining lens is almost irrelevant because the first lens, if placed at a distance from the beam waist equal to his focal length, collimate the beam.

In this case i neglected the effect of the Gaussian focal shift. I also approximate the beam waist diameter with the core diameter itself.

The result is shown in the **Figure 6**. As expected, the first laser, that has a smaller beam waist, is focused into smaller spot, but has also a narrower depth of focus. The solid lines in the figures represent the ideal Gaussian beam radius, while the shading represent the real beam radius, considering its quality factor.

On the other hand, the second laser start from a bigger waist, so in this setup is focused into bigger spots. To obtain the same spot size of the previous it would require much bigger lenses diameters and a firs lens with a greater focal length. In the **Figure 7** it is provided a detail view of the focusing points for both lasers.

The numeric results are resumed in the **Table 1**

Lagor	Diameter [mm]	M^2	Spot size [mm]			
Laser			$f_3 = 125$	$f_3 = 150$	$f_3 = 200$	
1	0.014	1.20	0.009585	0.011502	0.015336	
2	0.100	14.68	0.239468	0.287361	0.383149	

Table 1: Spot sizes for different configurations

Figure 6: focusing heads in different configurations for both lasers, neglecting normalized frequency

Figure 7: detail of focusing heads in different configurations for both lasers, neglecting normalized frequency

The code to calculate the spot sizes is the following.

```
# %% study the lasers with three heads
    # first laser
    w0 = 14/2/10**3
                                              # approximate the waist with the core radius [mm]
    MS = 1.2
                                              # quality factor
    (d0,d1,d2) = (100,0,100)
                                              # spacing configuration
    (f1,f2,f3) = (100,10**50,125)
                                              # lenses configuration 1
    fig, axs, Mag, d3, div, w_out, w_end =
     \rightarrow BeamExpander(lam0*10**3,w0,d0,d1,d2,f1,f2,f3,npoint=1001,MS=MS)
    print(w_out*10**3)
    (f1,f2,f3) = (100,10**50,150)
                                              # lenses configuration 2
    fig, axs, Mag, d3, div, w_out, w_end =
10
     \rightarrow BeamExpander(lam0*10**3,w0,d0,d1,d2,f1,f2,f3,npoint=1001,MS=MS,fig=fig,axs=axs)
    print(w_out*10**3)
11
    (f1,f2,f3) = (100,10**50,200)
                                              # lenses configuration 3
    fig, axs, Mag, d3, div, w_out, w_end =
13
     \rightarrow BeamExpander(lam0*10**3,w0,d0,d1,d2,f1,f2,f3,npoint=1001,MS=MS,fig=fig,axs=axs)
    print(w_out*10**3)
14
15
    # second laser
16
    w0 = 100/2/10**3
                                              # approximate the waist with the core radius [mm]
17
    BPP = 5/10**6
                                              # beam parameter product [m*rad]
18
    MS = BPP/lam0*np.pi
                                              # quality factor
19
    (f1,f2,f3) = (100,10**50,125)
                                              # lenses configuration 1
    fig, axs, Mag, d3, div, w_out, w_end =
     \rightarrow BeamExpander(lam0*10**3,w0,d0,d1,d2,f1,f2,f3,npoint=1001,MS=MS,fig=fig,axs=axs)
    print(w_out*10**3)
22
    (f1,f2,f3) = (100,10**50,150)
                                              # lenses configuration 2
23
    fig, axs, Mag, d3, div, w_out, w_end =
24
    \hookrightarrow BeamExpander(lam0*10**3,w0,d0,d1,d2,f1,f2,f3,npoint=1001,MS=MS,fig=fig,axs=axs)
    print(w_out*10**3)
25
    (f1,f2,f3) = (100,10**50,200)
                                              # lenses configuration 3
    fig, axs, Mag, d3, div, w_out, w_end =
     \rightarrow BeamExpander(lam0*10**3,w0,d0,d1,d2,f1,f2,f3,npoint=1001,MS=MS,fig=fig,axs=axs)
    print(w_out*10**3)
28
29
    axs.set_ylim([0,5.5])
30
    axs.legend().remove
31
    legend_elements = [Line2D([0], [0], color='#1f77b4', label='$f_3=125$, laser 1'),
32
                        Line2D([0], [0], color='#ff7f0e', label='$f_3=150$, laser 1'),
33
                        Line2D([0], [0], color='#2ca02c', label='$f_3=200$, laser 1'),
34
35
                        Line2D([0], [0], color='#d62728', label='$f_3=125$, laser 2'),
                        Line2D([0], [0], color='#9467bd', label='$f_3=150$, laser 2'),
36
                        Line2D([0], [0], color='#8c564b', label='$f_3=200$, laser 2')]
37
    axs.legend(handles=legend_elements, loc='upper right')
38
    tikzplotlib_fix_ncols(fig)
39
    tikzplotlib.save('Assignment3/fig5.tex',axis_width='0.9\\textwidth',axis_height ='9cm')
40
```

6.2 Beam waist computed

In the previous result, I assumed the beam waist to be the size of the core of the fibers, this is an approximation that does not exploit the fact that one fiber is multi-mode, while the other is single-mode.

In order to exploit the different fiber properties, we can notice that single-mode fiber usually have very small normalized frequency V, in any case V < 2.405. In this case i assumed the single mode fiber to have a normalized frequency V=2, and for the multi-mode fiber V=50.

This is a useful piece of information because it is possible to compute the numerical aperture NA, and then the divergence of the beam and consequently the beam waist:

$$V = k_0 \cdot a \cdot NA = \frac{2\pi}{\lambda} NA = \frac{2\pi}{\lambda} \cdot n_0 \sin \theta \tag{2}$$

$$\theta = \sin^{-1} \left(\frac{V \cdot \lambda}{2\pi \cdot a \cdot n_0} \right) \tag{3}$$

$$\theta = \sin^{-1}\left(\frac{V \cdot \lambda}{2\pi \cdot a \cdot n_0}\right)$$

$$w_0 = \frac{BPP}{\sin^{-1}\left(\frac{V \cdot \lambda}{2\pi \cdot a \cdot n_0}\right)}$$
(3)

where a is the core radius. The results are shown along all the system in **Figure 8**, and around the focal points in **Figure 9**. The numerical results are resumed in **Table 2**: it is worth noticing that the first laser produce a beam that appears to be emanated from a waist bigger than it's core radius, while the second laser appears to be emanated from a waist smaller than the actual core of the beam.

This modification is easily implemented just modifying the previous code block:

```
# first laser
    MS
            1.2
                                              # quality factor
                                              # BPP m*rad
    BPP =
            MS*lam0/np.pi
                                              # normalized freq of the fiber
            7*10**-6
                                              # radius of the fiber core
            BPP/np.arcsin(V*lam0/(2*np.pi*a))*10**3 # beam waist at the fiber output [mm]
    wΟ
6
    # second laser
            5/10**6
                                              # beam parameter product [m*rad]
    BPP =
                                              # quality factor
    MS
            BPP/lam0*np.pi
10
            50
                                              # normalized freq of the fiber
11
            50*10**-6
                                              # radius of the fiber core
12
            BPP/np.arcsin(V*lam0/(2*np.pi*a))*10**3 # beam waist at the fiber output [mm]
    wΟ
13
```

Lagor	Laser Diam [mm]		M^2 BPP [mm·mrad]	Spot size [mm]			Type	I/	l au- [mm]
Laser		1 [111111] 1VI	Di i [mm·mad]	$f_3 = 125$	$f_3 = 150$	$f_3 = 200$	Type		w_0 [mm]
1	0.014	1.20	0.409	0.011497	0.013797	0.018396	SM	2	0.008396
2	0.100	14.68	5.000	0.139930	0.167907	0.223823	MM	50	0.029217

Table 2: Spot sizes for different configurations

Figure 8: focusing heads in different configurations for both lasers

Figure 9: detail of focusing heads in different configurations for both lasers

7 Design a processing head

At this point, i will pretend that for the application, the spot size is more important that the depth of focus, so the second laser is the one that has worst performance.

I will aim the design a head that provide the same spot size of the first laser with the current processing head. To do that i would need to compensate for both the higher beam quality factor and the higher initial beam waist.

The compensation could be just to start from a bigger collimated beam. Since the beam waist is very small compared with the longitudinal direction size of the head, the relation of the beam size w.r.t. the distance can be considered linear (proportional).

This correction coefficient will be applied to the focal length of the leftmost lens, again, neglecting the Gaussian focal shift:

$$c = \frac{w_2}{w_1} \cdot \frac{M_2}{M_1}$$

The results are shown in **Figure 10** and **Figure 11**, as usual the solid line is the Gaussian beam, the shade is the propagation of the real beam. This processing head produce the desired beam spot size, but has the problem of needing lenses with a diameter of at least 11cm, and the apparatus has a length of almost 1.5m. I can imagine that in a real situation, if the laser head needs to move, this design would be impractical. The depth of focus become worse of the one achieved with the original head by the first laser.

As far as concern the numeric result about the spot size, the designed head produce with the second laser, the same performance that the first laser had with the first head. The numeric results are resumed in **Table 3**.

Another approach for the design could have been, instead of increasing the focal length of the first lens, decrease the focal length of the second lens. This approach would have avoided to increase the diameter and length of the system, it would have shorten a lot the distance in between the last lens and the welding spot. I assumed that, in a real application, this effect would have been even less desirable.

Figure 10: designed focusing heads in different configurations for laser 2

Figure 11: detail of designed focusing heads in different configurations for laser 2

Lagor	Diameter [mm]	M^2	Spot size [mm]			
Laser			$f_3 = 125$	$f_3 = 150 \mid f_3 = 200$		
1	0.014	1.20	0.011497	0.013797 0.018396		
2	0.100	14.68	0.011497	0.013796 0.018395		

Table 3: Spot sizes for different configurations

as usual i paste below the code used to design the new processing head:

```
# %% design head for second laser
            5/10**6
                                              # beam parameter product [m*rad]
    MS
            BPP/lam0*np.pi
                                              # quality factor
    V
            50
                                              # normalized freq of the fiber
            50*10**-6
                                              # radius of the fiber core
            BPP/np.arcsin(V*lam0/(2*np.pi*a))*10**3 # beam waist at the fiber output [mm]
    corr=0.029217/0.008396*(MS**0.5/1.2**0.5)
                                                  # correction factor for both the wors quality
    → factor and the bigger waist
                                                   # spacing configuration
    (d0,d1,d2) = (100*corr,0,100)
    (f1,f2,f3) = (100*corr,10**50,125)
                                                   # lenses configuration 1
    fig, axs, Mag, d3, div, w_out, w_end =
10
    \rightarrow BeamExpander(lam0*10**3,w0,d0,d1,d2,f1,f2,f3,npoint=300,MS=MS)
    print(w_out)
11
    (f1,f2,f3) = (100*corr,10**50,150)
                                                  # lenses configuration 2
12
    fig, axs, Mag, d3, div, w_out, w_end =
13
    \rightarrow BeamExpander(lam0*10**3,w0,d0,d1,d2,f1,f2,f3,npoint=300,MS=MS,fig=fig,axs=axs)
    print(w_out)
    (f1,f2,f3) = (100*corr,10**50,200)
                                                   # lenses configuration 3
15
    fig, axs, Mag, d3, div, w_out, w_end =
16
    \rightarrow BeamExpander(lam0*10**3,w0,d0,d1,d2,f1,f2,f3,npoint=300,MS=MS,fig=fig,axs=axs)
    print(w_out)
17
    axs.set_ylim(0,60)
18
    axs.legend(loc='upper left')
19
```