

Requested Patent: EP0116932A1

Title:

THIOPHENE-CARBOXYLIC-ACID ESTERS, PROCESS FOR THEIR PREPARATION AND THEIR USE AS HERBICIDES. ;

Abstracted Patent: EP0116932 ;

Publication Date: 1984-08-29 ;

Inventor(s):

ACKER ROLF-DIETER DR;; ROSSY PHILLIP A DR;; WUERZER BRUNO DIPL-LANDWIRT DR ;

Applicant(s): BASF AG (DE) ;

Application Number: EP19840101466 19840213 ;

Priority Number(s): DE19833305866 19830219 ;

IPC Classification: C07D333/38; A01N47/36 ;

Equivalents: DE3305866 ;

ABSTRACT:

Esters of the formula in which R is hydrogen, alkyl, alkenyl, alkynyl, halogenoalkyl, alkoxyalkyl, alkylthioalkyl, cycloalkyl, optionally substituted phenyl or benzyl and R is alkyl, alkenyl, alkynyl, optionally substituted phenylalkyl, halogenoalkyl, alkoxyalkyl, alkylthioalkyl, alkylaminoalkyl, dialkylaminoalkyl, cycloalkyl or optionally substituted phenyl, their preparation and their use for controlling undesired vegetation.

Europäisches Patentamt

(19)

European Patent Office

Office européen des brevets

(11) Veröffentlichungsnummer:

0 116 932

A1

(12)

EUROPÄISCHE PATENTANMELDUNG

(21) Anmeldenummer: 84101466.5

(51) Int. Cl.³: C 07 D 333/38
A 01 N 47/36

(22) Anmeldetag: 13.02.84

(30) Priorität: 19.02.83 DE 3305866

(71) Anmelder: BASF Aktiengesellschaft
Carl-Bosch-Strasse 38
D-6700 Ludwigshafen(DE)

(43) Veröffentlichungstag der Anmeldung:
29.08.84 Patentblatt 84/35

(72) Erfinder: Acker, Rolf-Dieter, Dr.
Tuchbleiche 8
D-6906 Leimen(DE)

(84) Benannte Vertragsstaaten:
DE FR GB IT

(72) Erfinder: Rossy, Phillip A., Dr.
39, Forest Drive
Hillsdale N.J. 07642(US)

(72) Erfinder: Wuerzer, Bruno, Dipl.-Landwirt, Dr.
Ruedigerstrasse 13
D-6701 Otterstadt(DE)

(54) Thiophen-carbonester, Verfahren zu ihrer Herstellung und ihre Verwendung zur Bekämpfung unerwünschten Pflanzenwuchses.

(57) Die Erfindung betrifft Thiophen-carbonester der Formel

in der

R¹ Wasserstoff, Alkyl, Alkenyl, Alkinyl, Halogenalkyl, Alkoxyalkyl, Alkythioalkyl, Cycloalkyl, gegebenenfalls substituiertes Phenyl oder Benzyl und

R² Alkyl, Alkenyl, Alkinyl, gegebenenfalls substituiertes Phenylalkyl, Halogenalkyl, Alkoxyalkyl, Alkythioalkyl, Alkylaminoalkyl, Dialkylaminoalkyl, Cycloalkyl oder gegebenenfalls substituiertes Phenyl bedeuten,

Verfahren zur ihrer Herstellung und ihre Verwendung zur Bekämpfung unerwünschten Pflanzenwuchses.

EP 0 116 932 A1

**Thiophen-carbonester, Verfahren zu ihrer Herstellung und ihre Verwendung
zur Bekämpfung unerwünschten Pflanzenwuchses**

05 Die Erfindung betrifft Thiophen-carbonester, Verfahren zu ihrer Herstellung, Herbizide, die diese Verbindungen als Wirkstoffe enthalten, sowie ein Verfahren zur Bekämpfung unerwünschten Pflanzenwuchses mit diesen Wirkstoffen.

10 Es wurde gefunden, daß Thiophen-carbonester der Formel

- in der
- R¹ Wasserstoff, C₁-C₁₀-Alkyl, C₂-C₁₀-Alkenyl, C₂-C₁₀-Alkinyl,
C₁-C₁₀-Halogenalkyl, C₂-C₁₀-Alkoxyalkyl, C₂-C₁₀-Alkylthioalkyl,
20 C₃-C₇-Cycloalkyl, gegebenenfalls durch Halogen oder C₁-C₄-Alkyl
substituiertes Phenyl oder gegebenenfalls durch Halogen substituiertes Benzyl und
- R² C₁-C₁₀-Alkyl, C₂-C₁₀-Alkenyl, C₂-C₁₀-Alkinyl, gegebenenfalls durch
Halogen substituiertes C₇-C₁₀-Phenylalkyl, C₁-C₁₀-Halogenalkyl,
25 C₂-C₁₀-Alkoxyalkyl, C₂-C₁₀-Alkylthioalkyl, durch Alkylamino oder
Dialkylamino mit 1 bis 4 C-Atomen in einer Alkylgruppe substituiertes
C₁-C₁₀-Alkyl, C₃-C₇-Cycloalkyl oder gegebenenfalls durch Halogen oder
C₁-C₄-Alkyl substituiertes Phenyl bedeuten,
herbizid wirksam sind.
- 30 R¹ und R² in Formel I bedeuten unverzweigtes oder verzweigtes
C₁-C₁₀-Alkyl, vorzugsweise C₁-C₄-Alkyl, unverzweigtes oder verzweigtes
C₂-C₁₀-Alkenyl, vorzugsweise C₃-C₄-Alkenyl, unverzweigtes oder verzweigtes
C₂-C₁₀-Alkinyl, vorzugsweise C₃-C₄-Alkinyl, gegebenenfalls durch
35 Halogen substituiertes C₇-C₁₀-Phenylalkyl, vorzugsweise C₈-C₉-Phenylalkyl,
unverzweigtes oder verzweigtes C₁-C₁₀-Halogenalkyl, vorzugsweise
C₁-C₄-Halogenalkyl, unverzweigtes oder verzweigtes C₂-C₁₀-Alkoxyalkyl
oder C₂-C₁₀-Alkylthioalkyl, vorzugsweise C₂-C₄-Alkoxyalkyl oder
C₂-C₄-Alkylthioalkyl, durch Alkylamino oder Dialkylamino mit 1 bis
40 4 C-Atomen in einer Alkylgruppe substituiertes C₁-C₁₀-Alkyl, vorzugsweise
C₁-C₄-Alkyl, oder C₃-C₇-Cycloalkyl, vorzugsweise C₅-C₆-Cycloalkyl, bei-
spielsweise Ethyl, n-Propyl, Isopropyl, n-Butyl, Isobutyl, sec-Butyl,
tert.-Butyl, n-Pentyl, n-Hexyl, Pentyl-3, 1,2-Dimethyl-n-propyl,
H/uw

1,3-Dimethyl-n-butyl, 1-Ethyl-2-methyl-n-propyl, 1,2,2-Trimethyl-n-propyl, 1,2-Dimethyl-n-hexyl, tert.-Amyl, Vinyl, Allyl, Methallyl, Crotyl, 2-Ethyl-hexen-2-yl, Hexen-5-yl, 2-Methyl-buten-2-yl, 2-Methyl-buten-1-yl-3, Butin-1-yl-3, Butin-2-yl, Buten-1-yl-3, Propargyl,

- 05 2-Methyl-buten-2-yl-4, 2-Methyl-buten-2-yl-4, 3-Methyl-buten-1-yl-3, .
 2-Phenylethyl, Benzyl, am Phenylring durch Halogen, wie Fluor, Chlor,
 Brom, Jod, substituiertes Benzyl, wie 2,6-Dichlorbenzyl, 2-Chlor-6-fluor-
 -benzyl, 2,6-Difluorbenzyl, 3-Phenyl-n-propyl, 2-Chlorethyl, 2-Chlor-n-
 -propyl, 3-Chlor-n-propyl, 2-Chlor-isopropyl, 1-Chlormethyl-n-propyl;
 10 2-Chlorbutyl-3, 2-Chlor-2-methyl-n-propyl, 2-Fluorbutyl-3, 2-Fluor-2-
 -methyl-n-propyl, 2-Fluor-isopropyl, Chlor-tert-butyl, 2,2,2-Trifluor-
 -ethyl, Methoxyethyl, Ethoxyethyl, 3-Methoxy-n-propyl, Methoxyisopropyl,
 3-Methoxy-n-butyl, 1-Methoxy-butyl-2, Ethoxy-tert-butyl, Methoxy-tert-
 -butyl, 2-Methoxy-butyl, 4-Methoxy-n-butyl, Methylmercapto-ethyl, Ethyl-
 15 mercapto-ethyl, 3-Methylmercapto-n-propyl, 3-Methylmercapto-n-butyl,
 1-Methylmercapto-butyl-2, Methylmercapto-tert-butyl, 2-Methylmercapto-
 -n-butyl, 2-Dimethylamino-ethyl, 2-Methylamino-ethyl, 2-Diethylamino-
 -ethyl, Dimethylaminomethyl, Dimethylaminoethyl, Cyclopropyl, Cyclo-
 pentyl, Cyclohexyl, Cycloheptyl.
 20 R¹ und R² können auch einen gegebenenfalls durch Halogen, wie Fluor,
 Chlor, Brom, Iod, oder C₁-C₄-Alkyl substituierten Phenylrest, wie Phenyl,
 4-Chlorphenyl, 2,4-Dichlorphenyl, 4-Isopropylphenyl, 4-tert.-Butylphenyl,
 bedeuten.

25 Bevorzugte Thiophen-carbonester sind Verbindungen der Formel I, wobei R¹ C₁-C₄-Alkyl, insbesondere Methyl, und R² C₁-C₄-Alkyl oder C₅-C₆-Cycloalkyl bedeuten.

30 Man erhält die Thiophen-carbonester der Formel I

a) durch Umsetzung von Dihydrothiophencarbonestern der Formel

in der R¹ und R² die obengenannten Bedeutungen haben, mit Dehydrierungsmitteln, wie Sulfurylchlorid,

oder

b) durch Umsetzung von Aminoverbindungen der Formel

in der R¹ die obengenannten Bedeutungen hat, oder ihrer Salze mit einem Isocyanat der Formel

in der R² die obengenannten Bedeutungen hat.

Die Verfahrensvariante a) wird bei einer Temperatur im Bereich zwischen 0 und 150°C, vorzugsweise 20 und 60°C, gegebenenfalls unter Zusatz eines inerten organischen Lösungsmittels durchgeführt.

Geeignete Dehydrierungsmittel sind beispielsweise Sulfurylchlorid und Chloranil.

20 Zur Erhöhung der Ausbeute kann das entstehende Wasser azeotrop abdestilliert werden. Verbindung II kann in einem Überschuß oder Unterschuß von bis zu 25 Mol%, bezogen auf das Dehydrierungsmittel, eingesetzt werden.

25 Die Dihydrothiophen-carbonester der Formel II lassen sich beispielsweise durch Umsetzung von Ketoestern der Formel

in der

R¹ die obengenannten Bedeutungen hat, mit Harnstoffen der Formel

in der

R² die obengenannten Bedeutungen hat, herstellen.

40

Die Umsetzung wird bei einer Temperatur im Bereich zwischen 0 und 150°C, vorzugsweise 50 und 120°C, gegebenenfalls unter Zusatz eines inerten organischen Lösungsmittels durchgeführt. Zweckmäßigerweise wird dem

Reaktionsgemisch ein Kondensationsmittel zugesetzt, beispielsweise p-Toluolsulfinsäure, Phosphorsäure, Polyphosphorsäure oder Schwefelsäure. Die Menge an Kondensationsmittel beträgt 0,1 bis 20 Mol%, bezogen auf Verbindung V.

05

Zur Erhöhung der Ausbeute kann das entstehende Wasser azeotrop abdestilliert werden. Verbindung V kann in einem Überschuss oder Unterschuss von bis zu 25 Mol%, bezogen auf Verbindung VI, eingesetzt werden.

- 10 Ketoester der Formel V, in der R¹ Methyl bedeutet, sind bekannt (J. Org. Chem. 45, 617 (1980)). Ketoester der Formel V, in der R¹ die für Formel I genannten Bedeutungen; mit Ausnahme von Methyl und Wasserstoff, hat, werden durch Umesterung von C₁-C₃-Alkylestern der Formel V mit Hydroxylverbindungen der Formel R¹OH, in der R¹ die für Formel I genannten Bedeutungen, mit Ausnahme von Methyl und Wasserstoff, hat, erhalten.

Bei dieser Reaktion werden zweckmäßigerweise basische oder saure Katalysatoren in Mengen von 0,1 bis 20 Mol%, bezogen auf Verbindung V, zugesetzt.

20

- Geeignete saure Katalysatoren sind beispielsweise anorganische Säuren, wie Salzsäure, Schwefelsäure, Phosphorsäure, Polyphosphorsäure, oder auch aromatische Carbonsäuren oder Sulfonsäuren, insbesondere p-Toluolsulfinsäure. Als basische Katalysatoren kommen tertiäre Amine, Erdalkaliverbindungen, Ammoniumverbindungen und Alkaliverbindungen sowie entsprechende Gemische in Betracht. Auch Zinkverbindungen können verwendet werden. Beispiele hierfür sind: Kaliumhydroxid, Natriumhydroxid, Kaliumcarbonat, Natriumcarbonat, Lithiumhydroxid, Lithiumcarbonat, Natriumhydrogen-carbonat, Kaliumhydrogencarbonat, Calciumhydroxid, Calciumoxid, Barium-oxid, Magnesiumhydroxid, Magnesiumoxid, Bariumhydroxid, Calciumcarbonat, Magnesiumcarbonat, Magnesiumhydrogencarbonat, Magnesiumacetat, Zink-hydroxid, Zinkoxid, Zinkcarbonat, Zinkacetat, Natriumformiat, Natrium-acetat, Trimethylamin, Triethylamin, Tripropylamin, Triisopropylamin, Tributylamin, Triisobutylamin, Tri-sec-butylamin, Tri-tert.-butylamin, 35 Tribenzylamin, Tricyclohexylamin, Triamylamin, Diisopropylethylamin, Tri-hexylamin, N,N-Dimethylanilin, N,N-Diethylanilin, N,N-Dipropylanilin, N,N-Dimethyltoluidin, N,N-Diethyltoluidin, N,N-Dipropyltoluidin, N,N-Dimethyl-p-aminopyridin, N,N-Diethyl-p-aminopyridin, N,N-Dipropyl-p-amino-pyridin, N-Methylpyrrolidon, N-Ethylpyrrolidon, N-Methylpiperidin, 40 N-Ethylpiperidin, N-Methylpyrrolidin, N-Ethylpyrrolidin, N-Methyl-imidazol, N-Ethylimidazol, N-Methylpyrrol, N-Ethylpyrrol, N-Methyl-morpholin, N-Ethylmorpholin, N-Methylhexamethylenimin, N-Ethylhexa-methylenimin, Pyridin, Chinolin, alpha-Picolin, beta-Picolin, gamma-Pico-

lin, Isochinolin, Pyrimidin, Acridin, N,N,N^a,N^b-Tetramethylethylendiamin, N,N,N^a,N^b-Tetraethylendiamin, Chinoxalin, Chinazolin, N-Propyldiisopropylamin, N,N^a-Dimethylcyclohexylamin, 2,6-Lutidin, 2,4-Lutidin, Tri-furylamin, Triethylendiamin.

05

Außer den vorgenannten anorganischen Basen kommen außerdem z.B. Natrium-propionat, Natriumbutyrat, Natriumisobutyrat, Kaliumformiat, Kaliumacetat, Kaliumpropionat, Kaliumbutyrat, Kaliumisobutyrat, Natriummethylat, Natrium-ethylat, Natriumpropylat, Natriumisopropylat, Natriumbutylat, Natriumiso-butylat, Natrium-sec-butylat, Natrium-tert.-butylat, Natriummethylenglykolat, Natriumpropylen-(1,2)-glykolat, Natriumpropylen-(1,3)-glykolat, Natriumdiethylenglykolat, Natriumtriethylenglykolat, Natriumdipropylen-(1,2)-glykolat, Kaliummethylat, Kaliummethyleat, Kalium-n-propylat, Kalium-isopropylat, Kalium-n-butylat, Kalium-isobutylat, Kalium-sec-butylat, Kalium-tert.-butylat, Kaliummethylenglykolat, Natriumpropylen-(1,2)-glykolat, Natriumpropylen-(1,3)-glykolat, Natriumdiethylenglykolat, Natriumtriethylenglykolat, Natriumdipropylen-(1,2)-glykolat in Betracht.

Die Herstellung eines Dihydrothiophen-carbonesters der Formel II wird 20 durch folgendes Beispiel erläutert:

15,1 Gew.-Teile 3-Keto-1,5-dihydro-thiophen-4-carbonsäuremethylester, 14,2 Gew.-Teile Cyclohexylharnstoff und 0,5 Gew.-Teile p-Toluolsulfonsäure werden in 100 Gew.-Teilen Xylol 4 Stunden unter Rückfluß bei Verwendung eines Wasserabscheidens gekocht. Nach dem Abkühlen wird der Rückstand abgesaugt und aus Toluol umkristallisiert. Man erhält 20,3 Gew.-Teile N-Cyclohexyl-N^a-(3-methoxycarbonyl-2,5-dihydro-thien-4-yl)-harnstoff vom Fp. 154 bis 155°C.

30 Entsprechend können beispielsweise folgende Dihydrothiophen-carbonester der Formel II erhalten werden.

R ¹	R ²	Fp [°C]
CH ₃	CH ₃	203-212
CH ₃	C ₂ H ₅	118-120
CH ₃	n-C ₃ H ₇	160-161
CH ₃	i-C ₃ H ₇	123-125
CH ₃	n-C ₄ H ₉	135-137
40 CH ₃	Cyclohexyl	154-155
CH ₃	Phenyl	168-171
CH ₃	4-Chlorphenyl	184-187
CH ₃	3-Chlorphenyl	183-185

	R ¹	R ²	Fp [°C]
05	CH ₃	ClCH ₂ CH ₂	133-137
	CH ₃	CH ₃ CH(Cl)CH ₂	136-139
	C ₂ H ₅	CH ₃	154-157
	i-C ₃ H ₇	CH ₃	156-159
	CH ₃	2-Phenylethyl	117-119
	n-C ₄ H ₉	n-C ₄ H ₉	100-103

10

Die Verfahrensvariante b) wird mit ungefähr stöchiometrischen Substanzmengen, d.h. in einem Mengenverhältnis von etwa 0,8 bis 1,2 Mol Verbindung III zu Verbindung IV, gegebenenfalls in Gegenwart eines inerten organischen Lösungsmittels bei einer Temperatur von -20 bis +50°C durchgeführt. Falls Verbindung III als Salz vorliegt, kann eine Base zugesetzt werden. Es kann dann entweder das freie Amin isoliert werden, oder es werden Verbindungen der Formel IV direkt zugegeben. Nach dem Einengen der Lösung reinigt man die Verbindungen der Formel I durch Umkristallisation oder Chromatographie.

20

Geeignete Basen sind tertiäre Amine, Erdalkaliverbindungen, Ammoniumverbindungen und Alkaliverbindungen sowie entsprechende Gemische in Betracht. Auch Zinkverbindungen können verwendet werden. Beispiele hierfür sind: Kaliumhydroxid, Natriumhydroxid, Kaliumcarbonat, Natriumcarbonat, Lithiumhydroxid, Lithiumcarbonat, Natriumhydrogencarbonat, Kaliumhydrogencarbonat, Calciumhydroxid, Calciumoxid, Bariumoxid, Magnesiumhydroxid, Magnesiumoxid, Bariumhydroxid, Calciumcarbonat, Magnesiumcarbonat, Magnesiumhydrogencarbonat, Magnesiumacetat, Zinkhydroxid, Zinkoxid, Zinkcarbonat, Zinkacetat, Natriumformiat, Natriumacetat, Trimethylamin, Triethylamin, Tripropylamin, Triisopropylamin, Tributylamin, Triisobutylamin, Tri-sec-butylamin, Tri-tert.-butylamin, Tribenzylamin, Tricyclohexylamin, Triamylamin, Diisopropylethylamin, Trihexylamin, N,N-Dimethylanilin, N,N-Diethylanilin, N,N-Dipropylanilin, N,N-Dimethyltoluidin, N,N-Diethyltoluidin, N,N-Dipropyltoluidin, N,N-Dimethyl-p-aminopyridin, N,N-Diethyl-p-aminopyridin, N,N-Dipropyl-p-aminopyridin, N-Methylpyrrolidon, N-Ethylpyrrolidon, N-Methylpiperidin, N-Ethylpiperidin, N-Methylpyrrolidin, N-Ethylpyrrolidin, N-Methylimidazol, N-Ethylimidazol, N-Methylpyrrol, N-Ethylpyrrol, N-Methylmorpholin, N-Ethylmorpholin, N-Methylhexamethylenimin, N-Ethylhexamethylenimin, Pyridin, Chinolin, alpha-Picolin, beta-Picolin, gamma-Picolin, Isochinolin, Pyrimidin, Acridin, N,N,N',N'-Tetramethylethylenediamin, N,N,N',N'-Tetraethylethylenediamin, Chinoxalin, Chinazolin, N-Propyldiisopropylamin, N,N'-Dimethylcyclohexylamin, 2,6-Lutidin, 2,4-Lutidin, Trifurylamin, Triethylendiamin.

- Außer den vorgenannten anorganischen Basen kommen außerdem z.B. Natriumpropionat, Natriumbutyrat, Natriumisobutyrat, Kaliumformiat, Kaliumacetat, Kaliumpropionat, Kaliumbutyrat, Kaliumisobutyrat, Natrium-methylat, Natriumethylat, Natriumpropylat, Natriumisopropylat, Natriumbutylat, Natriumisobutylat, Natrium-sec-butylat, Natrium-tert.-butylat, Natriummethyleglykolat, Natriumpropylene-(1,2)-glykolat, Natriumpropylene-(1,3)-glykolat, Natriumdiethyleglykolat, Natriumtriethyleglykolat, Natriumdipropylene-(1,2)-glykolat, Kaliummethylat, Kaliumethylat, Kalium-n-propylat, Kaliumisopropylat, Kalium-n-butylat, Kalium-isobutylat, Kalium-sec-butylat, Kalium-tert.-butylat, Kaliummethyleglykolat, Kaliumpropylene-(1,2)-glykolat, Kaliumpropylene-(1,3)-glykolat, Kaliumdiethyleglykolat, Kaliumtriethyleglykolat, Kaliumdipropylene-(1,2)-glykolat in Betracht.
- 15 Als Lösungsmittel kommen für beide Verfahrensvarianten a) und b) sowie für das Verfahren zur Herstellung der Dihydrothiophen-carbonester der Formel II z.B. Halogenkohlenwasserstoffe, insbesondere Chlorkohlenwasserstoffe, z.B. Tetrachlorethylen, 1,1,2,2- oder 1,1,1,2-Tetrachlorethan, Dichlorpropan, Methylenchlorid, Dichlorbutan, Chloroform, Chlornaphthalin, Dichlornaphthalin, Tetrachlorkohlenstoff, 1,1,1- oder 1,1,2-Trichlorethan, Trichlorethylen, Pentachlorethan, o-, m-, p-Difluorbenzol, 1,2-Dichlorethan, 1,1-Dichlorethan, 1,2-cis-Dichlorethylen, Chlorbenzol, Fluorbenzol, Brombenzol, Jodbenzol, o-, m- und p-Dichlorbenzol, o-, p-, m-Dibrombenzol, o-, m-, p-Chlortoluol, 1,2,4-Trichlorbenzol; Ether, z.B. Ethylpropylether, Methyl-tert.-butylether, n-Butylethylether, Di-n-butyl-ether, Diisobutylether, Diisoamylether, Diisopropylether, Anisol, Phenetol, Cyclohexylmethylether, Diethylether, Ethylenglycoldimethylether, Tetrahydrofuran, Dioxan, Thioanisol, beta,beta'-Dichlordiethyl-ether; Nitrokohlenwasserstoffe, wie Nitromethan, Nitroethan, Nitrobenzol, o-, m-, p-Chlornitrobenzol, o-Nitrotoluol; Nitrile, wie Acetonitril, Butyronitril, Isobutyronitril, Benzonitril, m-Chlorbenzonitril; aliphatische, cycloaliphatische oder aromatische Kohlenwasserstoffe, z.B. Heptan, Pinan, Nonan, o-, m-, p-Cymol, Benzinfraktionen innerhalb eines Siedepunktintervalls von 70 bis 190°C, Cyclohexan, Methylcyclohexan, Dekalin, Petrolether, Hexan, Ligroin, 2,2,4-Trimethylpentan, 2,2,3-Tri-methylpentan, 2,3,3-Trimethylpentan, Octan, Toluol, o-, m-, p-Xylool, Tetralin; Ester, z.B. Ethylacetat, Acetessigester, Isobutylacetat; Amide, z.B. Formamid, Methylformamid, Dimethylformamid; Ketone, z.B. Aceton, Methylethyleketon; und entsprechende Gemische in Betracht. Zweckmäßigerweise verwendet man das Lösungsmittel in einer Menge von 100 bis 2000 Gew.%, vorzugsweise von 200 bis 700 Gew.%, bezogen auf Ausgangsstoff II bzw. IV.

Beide Verfahren können kontinuierlich oder diskontinuierlich, drucklos oder unter Druck, durchgeführt werden; der Einfachheit halber wird Atmosphärendruck bevorzugt.

05 Beispiel 1

9,3 Gew.-Teile 3-Amino-4-methoxycarbonyl-thiophen-hydrochlorid, 6,0 Gew.-Teile Triethylamin, 7,4 Gew.-Teile Cyclohexylisocyanat und 30 Gew.-Teile Acetonitril werden zusammengegeben und 3 Stunden bei 25°C gerührt. Nach dem Einengen wird der Rückstand mit Wasser gewaschen und aus Toluol umkristallisiert. Man erhält 4,5 Gew.-Teile N-Cyclohexyl-N⁺-(3-methoxycarbonyl-thien-4-yl)-harnstoff vom Fp. 108 bis 114°C.

Beispiel 2

15 9,0 Gew.-Teile N-(n-Propyl)-N⁺-(3-isobutoxycarbonyl-2,5-dihydro-thien-4-yl)-harnstoff werden in 55 Teilen trockenem Chloroform vorgelegt. 2,6 Teile Sulfurylchlorid werden bei 30 bis 40°C zugetropft. Die Mischung wird 7 Stunden bei 40°C gehalten. Nach dem Abdestillieren des Lösungsmittels bleibt ein viskoses Öl zurück, das durch Verteilung in Wasser/Methylenchlorid gereinigt werden kann. Man erhält 7,6 Teile N-(n-Propyl)-N⁺-(3-isobutoxycarbonyl-thien-4-yl)-harnstoff.

¹H-NMR: δ = 7,7 und 8,0 (2 Doublets, 2 Thiophen-H)

25 Entsprechend können beispielsweise folgende Thiophen-carbonester der Formel I erhalten werden.

Nr.	R ¹	R ²	Fp [°C]
30	1 CH ₃	CH ₃	113-114
	2 CH ₃	C ₂ H ₅	94- 99
	3 CH ₃	n-C ₃ H ₇	152-155
	4 CH ₃	i-C ₃ H ₇	122-124
35	5 CH ₃	n-C ₄ H ₉	117-119
	6 CH ₃	s-C ₄ H ₉	
	7 CH ₃	t-C ₄ H ₉	
	8 CH ₃	n-C ₅ H ₁₁	
40	9 CH ₃	i-C ₅ H ₁₁	
	10 CH ₃	Cyclohexyl	108-144
	11 CH ₃	Allyl	
	12 CH ₃	Propargyl	
	13 CH ₃	Phenyl	

Nr.	R ¹	R ²	Fp [°C]
14	CH ₃	4-Chlorphenyl	
15	CH ₃	3-Chlorphenyl	
05 16	CH ₃	CH ₃ OCH ₂ CH ₂	
17	CH ₃	CH ₃ SCH ₂ CH ₂	
18	CH ₃	ClCH ₂ CH ₂	
19	CH ₃	CH ₃ CH(Cl)CH ₂	
20	CH ₃	(CH ₃) ₂ NCH ₂ CH ₂	
10 21	H	CH ₃	
22	H	C ₂ H ₅	
23	H	n-C ₃ H ₇	
24	H	i-C ₃ H ₇	
25	H	n-C ₄ H ₉	
15 26	H	i-C ₄ H ₉	
27	C ₂ H ₅	CH ₃	
28	C ₂ H ₅	C ₂ H ₅	
29	C ₂ H ₅	n-C ₃ H ₇	
30	C ₂ H ₅	i-C ₃ H ₇	
20 31	C ₂ H ₅	n-C ₄ H ₉	
32	n-C ₃ H ₇	CH ₃	
33	n-C ₃ H ₇	C ₂ H ₅	
34	n-C ₃ H ₇	Cyclohexyl	
35	i-C ₃ H ₇	CH ₃	
25 36	i-C ₃ H ₇	C ₂ H ₅	
37	i-C ₃ H ₇	n-C ₃ H ₇	
38	i-C ₃ H ₇	i-C ₃ H ₇	
39	n-C ₄ H ₉	CH ₃	
40	n-C ₄ H ₉	n-C ₃ H ₇	
30 41	n-C ₄ H ₉	C ₂ H ₅	
42	Cyclohexyl	CH ₃	
43	Cyclohexyl	C ₂ H ₅	
44	Phenyl	CH ₃	
45	Phenyl	C ₂ H ₅	
35 46	Phenyl	i-C ₃ H ₇	
47	Phenyl	n-C ₃ H ₇	
48	4-Chlorphenyl	CH ₃	
49	3-Chlorphenyl	CH ₃	
50	4-Fluorphenyl	CH ₃	
40 51	4-Isopropyl-phenyl	CH ₃	
52	CH ₃	2-Phenyl-ethyl	153-157
53	i-C ₃ H ₇	2-Phenyl-ethyl	

Nr.	R ¹	R ²	Fp [°C]
54	i-C ₃ H ₇	Cyclohexyl	114-118
55	n-C ₄ H ₉	n-C ₄ H ₉	viskos
05 56	i-C ₄ H ₉	n-C ₃ H ₇	
57	n-C ₃ H ₇	n-C ₄ H ₉	

Die Thiophen-carbonester der Formel I können beispielsweise in Form von
 10 direkt versprühbaren Lösungen, Pulvern, Suspensionen, auch hochprozen-
 tigen wässrigen, öligen oder sonstigen Suspensionen oder Dispersionen,
 Emulsionen, Öldispersionen, Pasten, Stäubemitteln, Streumitteln oder
 Granulaten durch Versprühen, Vernebeln, Verstäuben, Verstreuen oder
 Gießen angewendet werden. Die Anwendungsformen richten sich ganz nach
 15 den Verwendungszwecken; sie sollten in jedem Fall möglichst die feinste
 Verteilung der erfindungsgemäßigen Wirkstoffe gewährleisten.

Zur Herstellung von direkt versprühbaren Lösungen, Emulsionen, Pasten
 oder Öldispersionen kommen Mineralölfraktionen von mittlerem bis hohem
 20 Siedepunkt, wie Kerosin oder Dieselöl, ferner Kohlenteeröle sowie Öle
 pflanzlichen oder tierischen Ursprungs, aliphatische, cyclische und
 aromatische Kohlenwasserstoffe, z.B. Benzol, Toluol, Xyol, Paraffin,
 Tetrahydronaphthalin, alkylierte Naphthaline oder deren Derivate, z.B.
 Methanol, Ethanol, Propanol, Butanol, Chloroform, Tetrachlorkohlenstoff,
 25 Cyclohexanol, Cyclohexanon, Chlorbenzol, Isophoron, stark polare Lösungs-
 mittel, wie z.B. Dimethylformamid, Dimethylsulfoxid, N-Methylpyrrolidon,
 Wasser, in Betracht.

Wässrige Anwendungsformen können aus Emulsionskonzentraten, Pasten oder
 30 netzbaren Pulvern (Spritzpulvern, Öldispersionen) durch Zusatz von Wasser
 bereitet werden. Zur Herstellung von Emulsionen, Pasten oder Öldisper-
 sionen können die Substanzen als solche oder in einem Öl oder Lösungs-
 mittel gelöst, mittels Netz-, Haft-, Dispergier- oder Emulgiermittel in
 Wasser homogenisiert werden. Es können aber auch aus wirksamer Substanz
 35 Netz-, Haft-, Dispergier- oder Emulgiermittel und eventuell Lösungsmittel
 oder Öl bestehende Konzentrate hergestellt werden, die zur Verdünnung mit
 Wasser geeignet sind.

Als oberflächenaktive Stoffe kommen Alkali-, Erdalkali-, Ammoniumsalze
 40 von Ligninsulfonsäure, Naphthalinsulfonsäure, Phenolsulfonsäure, Alkyl-
 arylsulfonate, Alkylsulfate, Alkylsulfonate, Alkali- und Erdalkalisalze
 der Dibutynaphthalinsulfonsäure, Laurylethersulfat, Fettalkoholsulfate,
 fettsaure Alkali- und Erdalkalisalze, Salze sulfatisierter Hexadecanole,

Heptadecanole, Octadecanole, Salze von sulfatiertem Fettalkoholglykol-
ether, Kondensationsprodukte von sulfonierte Naphthalin und Naphtha-
linderivaten mit Formaldehyd, Kondensationsprodukte des Naphthalins bzw.
der Naphthalinsulfinsäuren mit Phenol und Formaldehyd, Polyoxyethylenoc-
tylphenolether, ethoxyliertes Isooctylphenol, Octylphenol, Nonylphenol,
05 Alkylphenolpolyglykolether, Tributylphenylpolyglykolether, Alkylarylpoly-
etheralkohole, Isotridecylalkohol, Fettalkoholethylenoxid-Kondensate,
ethoxyliertes Rizinusöl, Polyoxyethylenalkylether, ethoxyliertes Polyoxy-
propylen, Laurylalkoholpolyglykoletheracetal, Sorbitester, Lignin, Sulfit-
10 ablaugen und Methylcellulose in Betracht.

Pulver-, Streu- und Stäubemittel können durch Mischen oder gemeinsames
Vermahlen der wirksamen Substanzen mit einem festen Trägerstoff herge-
stellt werden.

15 Granulate, z.B. Umhüllungs-, Imprägnierungs- und Homogengranulate, können
durch Bindung der Wirkstoffe an festen Trägerstoffen hergestellt werden.
Feste Trägerstoffe sind Mineralerde wie Silicagel, Kieselsäuren, Kiesel-
gele, Silikate, Talkum, Kaolin, Attaclay, Kalkstein, Kalk, Kreide, Bolus,
20 Löß, Ton, Dolomit, Diatomeenerde, Calcium- und Magnesiumsulfat, Magnesium-
oxid, gemahlene Kunststoffe, Düngemittel, wie z.B. Ammoniumsulfat,
Ammoniumphosphat, Ammoniumnitrat, Harnstoffe und pflanzliche Produkte,
wie Getreidemehl, Baumrinden-, Holz- und Nußschalenmehl, Cellulosepulver
und andere feste Trägerstoffe.

25 Die Formulierungen enthalten zwischen 0,1 und 95 Gewichtsprozent, vorzugs-
weise zwischen 0,5 und 90 Gewichtsprozent, Wirkstoff.

Beispiele für Formulierungen sind:

- 30 I. Man vermischt 90 Gewichtsteile der Verbindung Nr. 1 mit 10 Gewichts-
teilen N-Methyl-alpha-pyrrolidon und erhält eine Lösung, die zur
Anwendung in Form kleinster Tropfen geeignet ist.
- 35 II. 20 Gewichtsteile der Verbindung Nr. 3 werden in einer Mischung
gelöst, die aus 80 Gewichtsteilen Xylol, 10 Gewichtsteilen des
Anlagerungsproduktes von 8 bis 10 Mol Ethylenoxid an 1 Mol Ölsäure-
-N-mono-ethanolamid, 5 Gewichtsteilen Calciumsalz der Dodecylbenzol-
sulfonsäure und 5 Gewichtsteilen des Anlagerungsproduktes von
- 40 40 Mol Ethylenoxid an 1 Mol Ricinusöl besteht. Durch Ausgießen und
feines Verteilen der Lösung in 100 000 Gewichtsteilen Wasser erhält
man eine wässrige Dispersion, die 0,02 Gewichtsprozent des Wirk-
stoffs enthält.

- III. 20 Gewichtsteile der Verbindung Nr. 2 werden in einer Mischung gelöst, die aus 40 Gewichtsteilen Cyclohexanon, 30 Gewichtsteilen Isobutanol, 20 Gewichtsteilen des Anlagerungsproduktes von 7 Mol Ethylenoxid an 1 Mol Isooctylphenol und 10 Gewichtsteilen des Anlagerungsproduktes von 40 Mol Ethylenoxid an 1 Mol Ricinusöl besteht. Durch Eingießen und feines Verteilen der Lösung in 100 000 Gewichtsteilen Wasser erhält man eine wässrige Dispersion, die 0,02 Gewichtsprozent des Wirkstoffs enthält.
- IV. 20 Gewichtsteile der Verbindung Nr. 4 werden in einer Mischung gelöst, die aus 25 Gewichtsteilen Cyclohexanol, 65 Gewichtsteilen einer Mineralölfraktion vom Siedepunkt 210 bis 280°C und 10 Gewichtsteilen des Anlagerungsproduktes von 40 Mol Ethylenoxid an 1 Mol Ricinusöl besteht. Durch Eingießen und feines Verteilen der Lösung in 100 000 Gewichtsteilen Wasser erhält man eine wässrige Dispersion, die 0,02 Gewichtsprozent des Wirkstoffs enthält.
- V. 20 Gewichtsteile der Verbindung Nr. 10 werden mit 3 Gewichtsteilen des Natriumsalzes der Diisobutylnaphthalin-alpha-sulfonsäure, 17 Gewichtsteilen des Natriumsalzes einer Ligninsulfonsäure aus einer Sulfit-Ablauge und 60 Gewichtsteilen pulverförmigem Kiesel säuregel gut vermischt und in einer Hammermühle vermahlen. Durch feines Verteilen der Mischung in 20 000 Gewichtsteilen Wasser erhält man eine Spritzbrühe, die 0,1 Gewichtsprozent des Wirkstoffs enthält.
- VII. 30 Gewichtsteile der Verbindung Nr. 2 werden mit einer Mischung aus 92 Gewichtsteilen pulverförmigem Kiesel säuregel und 8 Gewichtsteilen Paraffinöl, das auf die Oberfläche dieses Kiesel säuregels gesprührt wurde, innig vermischt. Man erhält auf diese Weise eine Aufbereitung des Wirkstoffs mit guter Haftfähigkeit.
- VIII. 20 Teile der Verbindung Nr. 1 werden mit 2 Teilen Calciumsalz der Dodecylbenzolsulfonsäure, 8 Teilen Fettalkohol-polyglykolether, 2 Teilen Natriumsalz eines Phenol-Harnstoff-Formaldehyd-Kondensates und 68 Teilen eines paraffinischen Mineralöls innig vermischt. Man erhält eine stabile ölige Dispersion.

Die Applikation der Wirkstoffe bzw. der Mittel kann im Vorauflaufverfahren oder im Nachauflaufverfahren erfolgen. Sind die Wirkstoffe für die Kulturpflanzen weniger verträglich, so können auch Ausbringungstechniken angewandt werden, bei welchen die herbiziden Mittel mit Hilfe der Spritzgeräte so gespritzt werden, daß die Blätter der empfindlichen Kulturpflanzen nach Möglichkeit nicht getroffen werden, während die Wirkstoffe auf die Blätter darunter wachsender unerwünschter Pflanzen oder die unbedeckte Bodenfläche gelangen (post-directed, lay-by).

- 10 Die Aufwandmengen an Wirkstoff betragen je nach Bodenart, Jahreszeit, Zielpflanzen und Wachstumsstadium 0,1 bis 5 kg/ha und mehr, vorzugsweise 0,5 bis 3 kg/ha.

Die herbizide Wirkung von Verbindungen der Formel I wird durch Gewächshausversuche gezeigt:

Als Kulturgefäße dienen Plastikblumentöpfe mit 300 cm³ Inhalt und lehmigem Sand mit etwa 1,5 % Humus als Substrat.

- 20 Die Samen der Testpflanzen werden nach Arten getrennt flach eingesät. Unmittelbar danach werden die Wirkstoffe bei Vorauflaufbehandlung auf die Erdoberfläche aufgebracht. Sie werden hierzu in Wasser als Verteilungsmittel suspendiert oder emulgiert und mittels fein verteilender Düsen gespritzt. Die Aufwandmengen betragen dabei 3,0 und 1,0 kg Wirkstoff/ha.
- 25 Nach dem Aufbringen der Mittel werden die Gefäße leicht beregnet, um Keimung und Wachstum in Gang zu bringen. Danach werden die Gefäße mit durchsichtigen Plastikhauben abgedeckt, bis die Pflanzen angewachsen sind. Diese Abdeckung bewirkt ein gleichmäßiges Keimen der Testpflanzen, sofern dies nicht durch die Wirkstoffe beeinträchtigt wird.
- 30 Für die Nachauflaufbehandlung werden die Testpflanzen je nach Wuchsform erst bis zu einer Wuchshöhe von 3 bis 15 cm angezogen und danach behandelt. Die für die Nachauflaufanwendung eingesetzten Soja- und Reispflanzen werden in einem mit Torfmull (peat) angereicherten Substrat
- 35 angezogen, um ein günstigeres Wachstum zu gewährleisten. Zur Nachauflaufbehandlung werden entweder direkt gesäte und in den gleichen Gefäßen aufgewachsene Pflanzen ausgewählt, oder aber sie werden erst als Keimpflanzen getrennt angezogen und einige Tage vor der Behandlung in die Versuchsgefäße verpflanzt. Eine Abdeckung unterbleibt bei der Nachauflaufbehandlung. Die Aufwandmenge beträgt beispielsweise 1,0 kg Wirkstoff/ha.

Die Versuchsgefäße werden im Gewächshaus aufgestellt, wobei für wärmliebende Arten wärmere Bereiche (20 bis 30°C) und für solche gemäßigter

Klima 15 bis 25°C bevorzugt werden. Die Versuchsperiode erstreckt sich über 2 bis 4 Wochen. Während dieser Zeit werden die Pflanzen gepflegt, und ihre Reaktion auf die einzelnen Behandlungen wird ausgewertet. Bewertet wird nach einer Skala von 0 bis 100. Dabei bedeutet 0 keine Schädigung oder normaler Auflauf und 100 kein Aufgang der Pflanzen bzw. völlige Zerstörung zumindest der oberirdischen Teile.

Die Testpflanzen setzen sich aus folgenden Arten zusammen:
Arachys hypogaea (Erdnüsse), Avena fatua (Flughäfer), Chenopodium album
10 (Weißer Gänsefuß), Galium aparine (Klettenlabkraut), Gossypium hirsutum
(Baumwolle), Lamium simplexicaule (stengelumfassende Taubnessel), Mercurialis annua (einjähriges Bingelkraut), Oryza sativa (Reis), Sinapis alba
(weißer Senf), Solanum nigrum (schwarzer Nachtschatten), Triticum aestivum
(Weizen) und Veronica spp. (Ehrenpreisarten).

15 Bei Vorauflaufanwendung zeigen beispielsweise die Verbindungen Nr. 1, 2, 3 und 10 eine beachtliche herbizide Aktivität, insbesondere gegen Sinapis alba. Ferner bekämpft Verbindung Nr. 4 bei dieser Anwendungsmethode unerwünschte breitblättrige Pflanzen selektiv in Weizen.

20 Bei Nachauflaufanwendung bekämpft beispielsweise Verbindung Nr. 1 eine ganze Reihe unerwünschter breitblättriger Pflanzen.

In Anbetracht der Verträglichkeit und der Vielseitigkeit der Applikationsmethoden, können die erfindungsgemäßen Verbindungen noch in einer weiteren Zahl von Kulturpflanzen zur Beseitigung unerwünschter Pflanzen eingesetzt werden.

In Betracht kommen beispielsweise folgende Kulturen:

30	Botanischer Name	Deutscher Name
	Allium cepa	Küchenzwiebel
	Ananas comosus	Ananas
35	Arachis hypogaea	Erdnuss
	Asparagus officinalis	Spargel
	Avena sativa	Hafer
	Beta vulgaris spp. altissima	Zuckerrübe
	Beta vulgaris spp. rapa	Futterrübe
40	Beta vulgaris spp. esculenta	Rote Rübe
	Brassica napus var. napus	Raps
	Brassica napus var. napobrassica	Kohlrübe
	Brassica napus var. rapa	Weisse Rübe

	Botanischer Name	Deutscher Name
	<i>Brassica rapa</i> var. <i>silvestris</i>	Rübsen
	<i>Camellia sinensis</i>	Teestrauch
05	<i>Carthamus tinctorius</i>	Saflor - Färberdistel
	<i>Carya illinoiensis</i>	Pekannußbaum
	<i>Citrus limon</i>	Zitrone
	<i>Citrus maxima</i>	Pampelmuse
	<i>Citrus reticulata</i>	Mandarine
10	<i>Citrus sinensis</i>	Apfelsine, Orange
	<i>Coffea arabica</i> (<i>Coffea canephora</i> , <i>Coffea liberica</i>)	Kaffee
	<i>Cucumis melo</i>	Melone
	<i>Cucumis sativus</i>	Gurke
15	<i>Cynodon dactylon</i>	Bermudagrass
	<i>Daucus carota</i>	Möhre
	<i>Elaeis guineensis</i>	Ölpalme
	<i>Fragaria vesca</i>	Erdbeere
	<i>Glycine max</i>	Sojabohne
20	<i>Gossypium hirsutum</i> (<i>Gossypium arboreum</i> <i>Gossypium herbaceum</i> <i>Gossypium vitifolium</i>)	Baumwolle
	<i>Helianthus annuus</i>	Sonnenblume
25	<i>Helianthus tuberosus</i>	Topinambur
	<i>Hevea brasiliensis</i>	Parakautschukbaum
	<i>Hordeum vulgare</i>	Gerste
	<i>Humulus lupulus</i>	Hopfen
	<i>Ipomoea batatas</i>	SÜßkartoffeln
30	<i>Juglans regia</i>	Walnussbaum
	<i>Lactua sativa</i>	Kopfsalat
	<i>Lens culinaris</i>	Linse
	<i>Linum usitatissimum</i>	Faserlein
	<i>Lycopersicon lycopersicum</i>	Tomate
35	<i>Malus spp.</i>	Apfel
	<i>Manihot esculenta</i>	Maniok
	<i>Medicago sativa</i>	Luzerne
	<i>Mentha piperita</i>	Pfefferminze
	<i>Musa spp.</i>	Obst- u. Mehlbanane
40	<i>Nicotiana tabacum</i> (<i>N. rustica</i>)	Tabak
	<i>Olea europaea</i>	Ölbaum
	<i>Oryza sativa</i>	Reis

	Botanischer Name	Deutscher Name
	Panicum miliaceum	Rispenhirse
	Phaseolus lunatus	Mondbohne
05	Phaseolus mungo	Erdbohne
	Phaseolus vulgaris	Buschbohnen
	Pennisetum glaucum	Perl- oder Röhrkolbenhirse
	Petroselinum crispum	Wurzelpetersilie
	spp. tuberosum	
10	Picea abies	Rotfichte
	Abies alba	Weißtanne
	Pinus spp.	Kiefer
	Pisum sativum	Gartenerbse
	Prunus avium	Süßkirsche
15	Prunus domestica	Pflaume
	Prunus dulcis	Mandelbaum
	Prunus persica	Pfirsich
	Pyrus communis	Birne
	Ribes sylvestre	Rote Johannisbeere
20	Ribes uva-crispa	Stachelbeere
	Ricinus communis	Rizinus
	Saccharum officinarum	Zuckerrohr
	Secale cereale	Roggen
	Sesamum indicum	Sesam
25	Solanum tuberosum	Kartoffel
	Sorghum bicolor (s. vulgare)	Mohrenhirse
	Sorghum dochna	Zuckerhirse
	Spinacia oleracea	Spinat
	Theobroma cacao	Kakaobaum
30	Trifolium pratense	Rotklee
	Triticum aestivum	Weizen
	Vaccinium carymbosum	Kulturheidelbeere
	Vaccinium vitis-idaea	Preißelbeere
	Vicia faba	Pferdebohnen
35	Vigna sinensis (V. unguiculata)	Kuhbohne
	Zea mays	Mais

Zur Verbreiterung des Wirkungsspektrums und zur Erzielung synergistischer Effekte können die Thiophen-carbonester der Formel I mit zahlreichen 40 Vertretern anderer herbizider oder wachstumsregulierender Wirkstoffgruppen gemischt und gemeinsam ausgebracht werden. Beispielsweise kommen als Mischungspartner Diazine, 4H-3,1-Benzoxazinderivate, Benzothiadiazinone, 2,6-Dinitroaniline, N-Phenylcarbamate, Thiolcarbamate, Halogen-

carbonsäuren, Triazine, Amide, Harnstoffe, Diphenylether, Triazinone, Uracile, Benzofuranderivate, Cyclohexan-1,3-dionederivate und andere in Betracht.

- 05 Außerdem kann es von Nutzen sein, die Thiophen-carbonester der Formel I bzw. sie enthaltende herbizide Mittel allein oder in Kombination mit anderen Herbiziden auch noch mit weiteren Pflanzenschutzmitteln gemischt gemeinsam auszubringen, beispielsweise mit Mitteln zur Bekämpfung von Schädlingen oder phytopathogenen Pilzen bzw. Bakterien. Von Interesse ist 10 ferner die Mischbarkeit mit Mineralsalzlösungen, welche zur Behebung von Ernährungs- oder Spurenelementmängeln eingesetzt werden. Es können auch nichtphytotoxische Öle und Ölkonzentrate zugesetzt werden.

Patentansprüche

1. Thiophen-carbonester der Formel

05

in der

- 10 R^1 Wasserstoff, $\text{C}_1\text{-}\text{C}_{10}$ -Alkyl, $\text{C}_2\text{-}\text{C}_{10}$ -Alkenyl, $\text{C}_2\text{-}\text{C}_{10}$ -Alkinyl,
 $\text{C}_1\text{-}\text{C}_{10}$ -Halogenalkyl, $\text{C}_2\text{-}\text{C}_{10}$ -Alkoxyalkyl, $\text{C}_2\text{-}\text{C}_{10}$ -Alkylthioalkyl,
 $\text{C}_3\text{-}\text{C}_7$ -Cycloalkyl, gegebenenfalls durch Halogen oder $\text{C}_1\text{-}\text{C}_4$ -Alkyl
 substituiertes Phenyl oder gegebenenfalls durch Halogen substi-
 tuiertes Benzyl und
- 15 R^2 $\text{C}_1\text{-}\text{C}_{10}$ -Alkyl, $\text{C}_2\text{-}\text{C}_{10}$ -Alkenyl, $\text{C}_2\text{-}\text{C}_{10}$ -Alkinyl, gegebenenfalls
 durch Halogen substituiertes $\text{C}_7\text{-}\text{C}_{10}$ -Phenylalkyl, $\text{C}_1\text{-}\text{C}_{10}$ -Halogen-
 alkyl, $\text{C}_2\text{-}\text{C}_{10}$ -Alkoxyalkyl, $\text{C}_2\text{-}\text{C}_{10}$ -Alkylthioalkyl, durch Alkyl-
 amino oder Dialkylamino mit 1 bis 4 C-Atomen in einer Alkyl-
 gruppe substituiertes $\text{C}_1\text{-}\text{C}_{10}$ -Alkyl, $\text{C}_3\text{-}\text{C}_7$ -Cycloalkyl oder gegebe-
 nenfalls durch Halogen oder $\text{C}_1\text{-}\text{C}_4$ -Alkyl substituiertes Phenyl
 bedeuten.

2. Thiophen-carbonester der Formel I gemäß Anspruch 1, dadurch gekenn-
zeichnet, daß

- 25 R^1 Wasserstoff, $\text{C}_1\text{-}\text{C}_4$ -Alkyl, $\text{C}_3\text{-}\text{C}_4$ -Alkenyl, $\text{C}_3\text{-}\text{C}_4$ -Alkinyl,
 $\text{C}_1\text{-}\text{C}_4$ -Halogenalkyl, $\text{C}_2\text{-}\text{C}_4$ -Alkoxyalkyl, $\text{C}_2\text{-}\text{C}_4$ -Alkylthioalkyl,
 $\text{C}_5\text{-}\text{C}_6$ -Cycloalkyl und
- 30 R^2 $\text{C}_1\text{-}\text{C}_4$ -Alkyl, $\text{C}_3\text{-}\text{C}_4$ -Alkenyl, $\text{C}_3\text{-}\text{C}_4$ -Alkinyl, $\text{C}_8\text{-}\text{C}_9$ -Phenylalkyl,
 $\text{C}_1\text{-}\text{C}_4$ -Halogenalkyl, $\text{C}_2\text{-}\text{C}_4$ -Alkoxyalkyl, $\text{C}_2\text{-}\text{C}_4$ -Alkylthioalkyl,
 durch Alkylamino oder Dialkylamino mit 1 bis 4 C-Atomen sub-
 stituierter $\text{C}_1\text{-}\text{C}_4$ -Alkyl oder $\text{C}_5\text{-}\text{C}_6$ -Cycloalkyl bedeuten.

35 3. Thiophen-carbonester der Formel I gemäß Anspruch 1, dadurch gekenn-
zeichnet, daß R^1 $\text{C}_1\text{-}\text{C}_4$ -Alkyl und R^2 $\text{C}_1\text{-}\text{C}_4$ -Alkyl oder $\text{C}_5\text{-}\text{C}_6$ -Cyclo-
 alkyl bedeuten.40 4. Thiophen-carbonester der Formel I gemäß Anspruch 3, dadurch gekenn-
zeichnet, daß R^1 Methyl bedeutet.40 5. Verfahren zur Herstellung von Thiophen-carbonestern der Formel I
 gemäß Anspruch 1, dadurch gekennzeichnet, daß man

- a) einen Dihydrothiophen-carbonester der Formel

05

in der
 R^1 und R^2 die im Anspruch 1 genannten Bedeutungen haben,

10

mit einem Dehydrierungsmittel oder

- b) eine Aminoverbindung der Formel

15

in der
 R^1 die im Anspruch 1 genannten Bedeutungen hat, oder Salze
 dieser Aminoverbindung mit einem Isocyanat der Formel

25

in der R^2 die im Anspruch 1 genannten Bedeutungen hat, gegebenenfalls in Gegenwart einer Base in einem inerten Lösungsmittel umgesetzt.

30

6. Herbizid, enthaltend einen Thiophen-carbonester der Formel I gemäß Anspruch 1.

7. Herbizid, enthaltend inerte Zusatzstoffe und einen Thiophen-carbonester der Formel I gemäß Anspruch 1.

35

8. Herbizid nach Anspruch 6, dadurch gekennzeichnet, daß es einen Thiophen-carbonester der Formel I enthält, wobei R^1 $\text{C}_1\text{-C}_4$ -Alkyl und R^2 $\text{C}_1\text{-C}_4$ -Alkyl oder $\text{C}_5\text{-C}_6$ -Cycloalkyl bedeuten.

40

9. Verfahren zur Bekämpfung unerwünschten Pflanzenwuchses, dadurch gekennzeichnet, daß man die unerwünschten Pflanzen und/oder die von unerwünschtem Pflanzenwuchs freizuhaltenden Flächen mit einer herbizid wirksamen Menge eines Thiophen-carbonesters der Formel I gemäß Anspruch 1 behandelt.

Europäisches
Patentamt

EUROPÄISCHER RECHERCHENBERICHT

0116932

Nummer der Anmeldung

EP 84 10 1466

EINSCHLÄGIGE DOKUMENTE

Kategorie	Kennzeichnung des Dokuments mit Angabe, soweit erforderlich, der maßgeblichen Teile	Betrifft Anspruch	KLASSIFIKATION DER ANMELDUNG (Int. Cl.?)
Y	DE-A-2 040 579 (MAY & BAKER) * Ansprüche *	1-9	C 07 D 333/38 A 01 N 47/36
Y	DE-A-2 122 636 (ESSO) * Seiten 3,4; Ansprüche *	1-9	
Y	US-A-3 931 204 (P. CROISIER) * Spalte 8, Zeilen 50-60; Spalte 12, Zeilen 15-23 *	1,5	
A	US-A-2 453 564 (B.R. BAKER) * Ansprüche *	1	
P, Y	EP-A-0 090 309 (BASF) * Ansprüche *	1-9	RECHERCHIERTE SACHGEBiete (Int. Cl.?)
	-----		C 07 D 333/00 A 01 N 47/00 A 01 N 43/00
Der vorliegende Recherchenbericht wurde für alle Patentansprüche erstellt.			
Recherchenort DEN HAAG	Abschlußdatum der Recherche 22-05-1984	Prüfer CHOULY J.	
KATEGORIE DER GENANNTEN DOKUMENTEN X : von besonderer Bedeutung allein betrachtet Y : von besonderer Bedeutung in Verbindung mit einer anderen Veröffentlichung derselben Kategorie A : technologischer Hintergrund O : nichtschriftliche Offenbarung P : Zwischenliteratur T : der Erfindung zugrunde liegende Theorien oder Grundsätze		E : älteres Patentedokument, das jedoch erst am oder nach dem Anmelde datum veröffentlicht worden ist D : in der Anmeldung angeführtes Dokument L : aus andern Gründen angeführtes Dokument & : Mitglied der gleichen Patentfamilie, übereinstimmendes Dokument	