Laboratorium Maszyn Elektrycznych

Ćwiczenie T1. Transformator trójfazowy - pomiary parametrów

Grupa laboratoryjna 1, zespół A Data wykonania ćwiczenia: 18.11.2023

lmię i nazwisko	Data zaliczenia	Ocena
1. Bartosz Ciepał		
2. Michał Druciak		
3. Maciej Duda		
4. Szymon Giernacki		
5. Kacper Gromala		
6. Patryk Krosta		

Dane znamionowe badanego transformatora

- 1) Moc pozorna $S_N = 7500 \, VA$,
- 2) Napięcia znamionowe $U_{1N} = 380 \, V$, $U_{2N} = 240 \, V$,
- 3) Prądy znamionowe $I_{1N} = 11, 4A, I_{2N} = 18, 1A,$
- 4) Układ połączeń Yy 0.

1. Przebieg ćwiczenia

W pierwszej kolejności po rozpoczęciu ćwiczenia zapoznaliśmy się ze stanowiskiem pomiarowym, jego wyposażeniem, aparaturą oraz dostępnymi w laboratorium materiałami. Następnie zmontowaliśmy układ do badania transformatora w stanie jałowym (przy zasilaniu strony wtórnej). W drugim kroku po zmodyfikowaniu układu przeprowadziliśmy doświadczenia w stanie zwarcia pomiarowego (zasilana strona pierwotna). Nadrzędnym celem ćwiczenia było wyznaczenie parametrów schematu zastępczego transformatora na podstawie zmierzonych a następnie wyliczonych wielkości. Dla ujednolicenia poniższych rozważań przyjęliśmy oznaczenia takie, że indeksem 1 oznaczamy stronę pierwotną, indeksem 2 natomiast stronę wtórną transformatora.

2. Pomiary w stanie biegu jałowego

Układ do badania transformatora w stanie biegu jałowego został zmontowany według schematu na rysunku 1. Badany transformator został zasilony od strony niższego napięcia z trójfazowej sieci elektrycznej o napięciu $U\!=\!230\,V$ i częstotliwości $f\!=\!50\,H\!z$ poprzez autotransformator, który umożliwiał płynną regulację napięcia. Zasilanie do układu dołączane było przez dwa styczniki W_1 (dołączenie zasilania do autotransformatora) oraz W_2 (dołączenie napięcia regulowanego do obwodu laboratoryjnego). Woltomierz V_1 wskazywał wartość skuteczną napięcia międzyfazowego na "wej-

ściu" układu), woltomierz V_2 analogicznie na "wyjściu". Poszczególne prądy oraz napięcia mierzone były przez zastosowane przekładniki prądowe o przekładni $5/5\,A$ oraz dołączony do nich cyfrowy miernik tablicowy N10.

Wyniki pomiarowe tj. wskazania miernika N10 takie jak średnie wartości napięć U_1 , U_2 (wskazania woltomierzy V_1 i V_2 - napięcia międzyfazowe), prądu jałowego I_0 oraz mocy czynnej P_0 , mocy pozornej S_0 oraz wartość współczynnika $\cos\phi_0$. Wyniki pomiarów dla stanu jałowego zamieszczono w tabeli 1. W tej serii pomiarowej przeprowadzono też pomiar dla warunków o parametrach bliskich znamionowym.

Rysunek 1. Schemat układu biegu jałowego (źródło: Instrukcja do ćwiczenia T1)

Lp.	$U_1[V]$	$U_{2}[V]$	I_0 [A]	P_0 $[W]$	S_0 [VA]	$\cos \phi_0$
1	242	412	1,010	114,2	425,6	0,269
2	230	389	0,855	101,6	340,7	0,300
3	225	382	0,818	98,4	319	0,309
4	208	349	0,645	82,6	230	0,360
5	109	317	0,520	69,0	169	0,410
6	102	300	0,468	62,5	143,4	0,437
7	188	271	0,395	52,2	109,6	0,478
8	147	249	0,352	45,2	89,7	0,505
9	130	220	0,303	36,5	68,1	0,537

Tabela 1. Wyniki pomiarów w stanie jałowym

Wartości napięć U_1 i U_2 są wartościami międzyfazowymi, prąd jałowy I_0 jest to uśredniona wartość prądów fazowych/przewodowych w badanym układzie. Obliczenie przekładni napięciowej k_u

transformatora, na podstawie wzoru (1) (por. [1] s. 139) dla punktu pomiarowego o wartościach zbliżonych znamionowym (tabela 1, punkt pomiarowy 3).

$$k_u = \frac{U_{1Nf}}{U_{2Nf}} \tag{1}$$

Gdzie indeks 1 oznacza stronę zasilaną, a indeks 2 stronę nieobciążoną. Dla naszego przypadku mamy:

$$k_u = \frac{U_{10}}{U_2} = \frac{382 \, V}{225 \, V} = 1,698$$

Według wartości nominalnych: $k_u = \frac{U_{1N}}{U_{2N}} = \frac{380 \text{ V}}{240 \text{ V}} = 1,583$

3. Pomiary w stanie zwarcia pomiarowego

Układ do badania transformatora w stanie biegu jałowego został zmontowany według schematu na rysunku 2. W tym przypadku transformator zasilaliśmy od strony niższego napięcia poprzez używany wcześniej autotransformator. Pomiar napięć zrealizowany został przez przekładniku napięciowe o przekładni $30/150\,V$ oraz przekładniki prądowe o przekładni $20/5\,A$.

Wyniki pomiarowe tj. wskazania miernika N10 takie jak średnie wartości napięć U_k , (wskazania woltomierza V_1), prądu I_k oraz mocy czynnej P_k , mocy pozornej S_k oraz wartość współczynnika $\cos\phi_k$. Wyniki pomiarów dla stanu jałowego zamieszczono w tabeli 2.

Rysunek 2. Schemat układu biegu jałowego (źródło: Instrukcja do ćwiczenia T1)

Mnożniki pomiarowe:

$$c_u = \frac{1}{5} = 0.2$$
 $c_p = \frac{4}{5} = 0.8$ $c_s = \frac{4}{5} = 0.8$

W tabeli 2 zamieszczono wyniki pomiarów (wskazania przyrządów), w tabeli 3 przedstawiono wartości mierzonych wielkości przeskalowane przez odpowiednie współczynniki c_x (realne wartości).

Tabela 2. Wyniki pomiarów w stanie zwarcia pomiarowego

Lp.	U_z [V]	$I_z[A]$	$P_z[W]$	S_z [VA]	$\cos \phi_k$
1	74	3,02	340	391	0,86
2	71	2,86	308	356	0,86
3	62	2,54	240	279	0,86
4	54	2,18	178	206	0,86
5	48	1,93	140	163	0,86
6	38	1,53	89	102	0,86
7	29	1,22	55	65	0,86
8	26	1,01	39	46	0,86

$$U_k = U_z \cdot c_u$$
, $I_k = I_z \cdot c_i$, $P_k = P_z \cdot c_p$, $S_k = S_z \cdot c_s$

Tabela 3. Przeliczone wyniki pomiarów w stanie zwarcia pomiarowego

Lp.	$U_k[V]$	$I_k[A]$	$P_k [W]$	S_k [VA]	$\cos \phi_k$
1	14,4	12,08	272	313	0,86
2	14,2	11,44	246	285	0,86
3	12,4	10,16	192	223	0,86
4	10,8	8,72	142	165	0,86
5	9,6	7,72	112	130	0,86
6	7,6	6,12	71	82	0,86
7	5,8	4,88	44	132	0,86
8	5,2	4,04	31	37	0,86

4. Wyznaczenie parametrów schematu zastępczego transformatora

Na podstawie przedstawionych wcześniej danych pomiarowych obliczyliśmy parametry schematu zastępczego jednej fazy badanego transformatora przedstawionego na rysunku 3.

Rysunek 3

Gdzie zaciski 1-1' oznaczają stronę napięcia $380\,V$, a 2-2' stronę $240\,V$. W niniejszych rozważaniach sprowadzamy wszystkie wartości na stronę wyższego napięcia. Przekładnia napięciowa badanego transformatora ma wartość k_u =1,698. Zakładamy, że R_1 = R_2 ' oraz X_{S1} = X_{S2} '. Zależności użyte do poniższych obliczeń na podstawie: [1]–[3]

- Stan zwarcia pomiarowego¹: $U_{1k} = 14,2V$, $I_{1k} = 11,4A$, $P_k = 246W$, $\cos \phi_k = 0,860$
- Stan jałowy²: $U_2 = 225 V$, $U_{10} = 382 V$, $I_0 = 0.818 A$, $P_0 = 98.4 W$, $\cos \phi_0 = 0.301$

$$Z_{k} = \frac{U_{1k}}{I_{1k}} = \frac{14.2 V}{\sqrt{3} \cdot 11.4 A} = 0,720 \Omega$$

$$R_{k} = \frac{P_{k}}{3 I_{1k}^{2}} = \frac{246 W}{3 \cdot 11.4^{2}} = 0,603 \Omega$$

$$X_{k} = \sqrt{Z_{k}^{2} - R_{k}^{2}} = \sqrt{0,720^{2} - 0,603^{2}} = 0,393 \Omega$$

$$R_{1} = R_{2}' = \frac{R_{k}}{2} = \frac{0,603 \Omega}{2} = 0,302 \Omega$$

$$R_{2} = \frac{R_{2}'}{k_{u}^{2}} = \frac{0,302 \Omega}{1,698^{2}} = 0,105 \Omega$$

 $^{^{\}scriptscriptstyle 1}$ W tym przypadku zasilana strona napięcia $380\,V$ - użyto indeksu 1

 $^{^{2}}$ W tym przypadku zasilana strona napięcia $240\,V$ - użyto indeksu 2

$$X_{S1} = X_{S2}' = \frac{X_k}{2} = \frac{0.393 \,\Omega}{2} = 0.197 \,\Omega$$
$$X_{S2} = \frac{X_{S2}'}{k^2} = \frac{0.197 \,\Omega}{1.698^2} = 0.068 \,\Omega$$

$$P_{0Fe} = P_0 - 3 \cdot R_2 \cdot I_0^2 = 98,4 - 3 \cdot 0,105 \cdot 0,818^2 = 98,20 W$$

$$R_{Fe} = \frac{\left(\frac{U_2}{\sqrt{3}}\right)^2}{\frac{P_{0Fe}}{3}} = 515,53\,\Omega$$

$$I_{Fe} = \frac{U_2}{\sqrt{3} \cdot R_{Fe}} = 0,252 A$$

$$I_{\nu} = \sqrt{I_0^2 - I_{Fe}^2} = \sqrt{0.818^2 - 0.252^2} = 0.778 A$$

$$X_{\mu} = \frac{U_2}{\sqrt{3} \cdot I_{\mu}} = 166,97 \,\Omega$$

Badany transformator ma następujące parametry schematu zastępczego:

1)
$$R_1 = 0.302 \Omega, X_{S1} = 0.197 \Omega$$

2)
$$R_2 = 0.105 \Omega$$
, $X_{S2} = 0.068 \Omega$

3)
$$R_{Fe} = 515,53\Omega, X_{\mu} = 166,97\Omega$$

Bibliografia i źródła

- [1] A. M. Plamitzer, *Maszyny elektryczne*, Wyd. 8 popr. Warszawa: Wydawnictwa Naukowo-Techniczne, 1986.
- [2] W. Rams i J. Skwarczyński, *Laboratorium maszyn elektrycznych*, t. SU 1710. w Skrypty Uczelniane, Kraków: Wydawnictwo AGH, 2009.
- [3] P. Dybowski, Red., *Układy elektromechaniczne i transformatory: obliczenia i zadania*. Kraków: Wydawnictwo AGH, 2010.