

Pertemuan 12 Balanced Binary Tree Search

Oleh

Dr. Yoga Religia, S.Kom, M.Kom.

© 081390601900

Pencarian Pohon Biner Berimbang

Waktu pencariannya akan berbeda jika balance dari pohon biner tersebut lebih baik.

Average Search Time =
$$\frac{\sum (\sum V L_n * L + 1)}{\sum V}$$

- Pada gambar 1, Waktu rata-rata
 pencarian = (1*1 + 2*2 + 3*3) / 6 = 2.33
- Pencarian pada gambar 2, Waktu ratarata pencarian = (1*1 + 1*2 + 1*3 + 1*4 + 1*5 + 1*6) / 6 = 3.5

Contoh Balance Binary Tree

Jika Depth = 3, jumlah simpul = 15

Maka, Waktu rata-rata pencarian =
$$(1*1 + 2*2 + 4*3 + 8*4) / 15 = 3.27$$

Kedalaman	Jumlah Simpul	Waktu Rata-rata	Kenaikan
0	1	1.00	-
1	3	1.66	66 %
2	7	2.43	46 %
3	15	3.27	34 %
4	31	4.16	27 %
5	63	5.09	22 %

Meskipun jumlah simpul naik 2 kali lipat, karena pohon binernya *balance*, waktu rata-rata pencarian tidak naik 2 kali lipat.

Algoritma Balenching Binary Tree ada 4:

- 1. Right Rotation
- 2. Left Rotation
- 3. Right Rotation dilanjut Left Rotation
- 4. Left Rotation dilanjut Right Rotation

Algoritma Right Rotation & Left Rotation


```
Void RightRotation (){
   Simpul *Q;
   Q = Root -> Left;
   Root -> Left = Q -> Right;
   Q -> Right = Root;
   Root = Q;
}
```



```
Void LeftRotation ( ){
    Simpul *Q;
    Q = Root -> Right;
    Root -> Right = Q -> Left;
    Q -> Left = Root;
    Root = Q;
}
```


Latihan Individu: Buatlah algoritmanya agar binary tree tersebut dapat balance

Jawaban

Nomor 1.

$$R = Q \rightarrow Left$$

$$Q \rightarrow Left = R \rightarrow Right$$

$$R \rightarrow Right = Q$$

$$R \rightarrow Left = Root$$

$$Root = R$$

Nomor 2.

$$R = Q \rightarrow Right$$

$$Q \rightarrow Right = R \rightarrow Left$$

$$R \rightarrow Left = Q$$

$$Root = R$$