(1)
$$0.3x + 0.2y = -0.9$$

 $0.2x - 0.3y = -0.6$

$$\begin{bmatrix} 3 & 2 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -9 \\ -6 \end{bmatrix}$$

$$A \cdot \begin{bmatrix} x \\ y \end{bmatrix} = 6$$

$$\det A = 3.3 - 2.2 = 5$$

$$A^{-1} = \frac{1}{5} \begin{bmatrix} 3 & -2 \\ -2 & 3 \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \end{bmatrix} = \frac{1}{5} \begin{bmatrix} 3 & -2 \\ -2 & 3 \end{bmatrix} \begin{bmatrix} -9 \\ -6 \end{bmatrix} = \begin{bmatrix} 3 & -2 \\ -6 \end{bmatrix} \begin{bmatrix} -7 & -7 & -7 \\ -7 & 3 \end{bmatrix} \begin{bmatrix} -7 & -7 & -7 \\ -7 & 3 \end{bmatrix} \begin{bmatrix} -7 & -7 & -7 \\ -7 & -7 & -7 \end{bmatrix} = \begin{bmatrix} -7 & -7 & -7 & -7 \\ -7 & -7 & -7 & -7 \end{bmatrix} = \begin{bmatrix} -7 & -7 & -7 & -7 \\ -7 & -7 & -7 & -7 \end{bmatrix} = \begin{bmatrix} -7 & -7 & -7 & -7 \\ -7 & -7 & -7 & -7 \end{bmatrix} = \begin{bmatrix} -7 & -7 & -7 & -7 \\ -7 & -7 & -7 & -7 \end{bmatrix} = \begin{bmatrix} -7 & -7 & -7 & -7 \\ -7 & -7 & -7 & -7 \end{bmatrix} = \begin{bmatrix} -7 & -7 & -7 & -7 \\ -7 & -7 & -7 & -7 \end{bmatrix} = \begin{bmatrix} -7 & -7 & -7 & -7 \\ -7 & -7 & -7 & -7 \end{bmatrix} = \begin{bmatrix} -7 & -7 & -7 & -7 \\ -7 & -7 & -7 & -7 \end{bmatrix}$$

 $S = \{(-3,0)\}$

They will meet in two hours.

(3)
$$6y^2 - 2\sqrt{3}y - 1 = 0$$

$$\frac{2\sqrt{3}1 + \sqrt{12 + 4 \cdot 1 \cdot 6^{1}}}{2 \cdot 6} = \frac{2\sqrt{3}1 + 3}{2 \cdot 6} = \frac{2\sqrt{3}1 \cdot 2\sqrt{3}}{2\sqrt{3}1 \cdot 2\sqrt{3}}$$

$$S = \begin{cases} \frac{1+\sqrt{3}1}{2\sqrt{3}1} & \frac{1-\sqrt{3}1}{2\sqrt{3}1} \end{cases}$$

$$25^{3x-2} = 625^{2x+7}$$

 $(5^2)^{3x-2} = (5^4)^{2x+7}$
 $5^{6x-4} = 5^{8x+28}$ | log_5
 $6x-4 = 8x+28$
 $-32 = 2x$
 $x = -16$

S= {-16}

(4)

(5)
$$\log_8(x+1) - \log_8 x = \log_8 4$$

 $\log_8 \frac{x+1}{x} = \log_8 4$ | 8^{17}

$$\frac{x+1}{x} = 4$$

$$x+1 = 4x$$

$$1 = 3x$$

$$S = \left\{ \frac{3}{3} \right\}$$

(6)
$$Sin2x cos x - Sin x = 0$$
 $2 Sinx cos x \cdot Coj x - Sin x = 0$
 $2 Sin x (1 - Sin^2 x) - Sin x = 0$
 $2 Sin x - 2 Sin^3 x - Sin x = 0$
 $5 In x - 2 Sin^3 x = 0$
 $5 In x - 2 Sin^3 x = 0$
 $5 In x - 2 Sin^3 x = 0$
 $5 In x - 2 Sin^3 x = 0$
 $5 In x - 2 Sin^3 x = 0$
 $5 In x - 2 Sin^3 x = 0$
 $5 In x - 2 Sin^3 x = 0$
 $5 In x - 2 Sin^3 x = 0$
 $5 In x - 2 Sin^3 x = 0$
 $5 In x - 2 Sin^3 x = 0$
 $5 In x - 2 Sin^3 x = 0$
 $5 In x - 2 Sin^3 x = 0$
 $5 In x - 2 Sin^3 x = 0$
 $5 In x - 2 Sin^3 x = 0$
 $5 In x - 2 Sin^3 x = 0$
 $5 In x - 2 Sin^3 x = 0$
 $5 In x - 2 Sin^3 x = 0$
 $5 In x - 2 Sin^3 x = 0$
 $5 In x - 2 Sin^3 x = 0$
 $5 In x - 2 Sin^3 x = 0$
 $5 In x - 2 Sin^3 x = 0$
 $5 In x - 2 Sin^3 x = 0$
 $5 In x - 2 Sin^3 x = 0$
 $5 In x - 2 Sin^3 x = 0$
 $5 In x - 2 Sin^3 x = 0$
 $5 In x - 2 Sin^3 x = 0$
 $5 In x - 2 Sin^3 x = 0$
 $5 In x - 2 Sin^3 x = 0$
 $5 In x - 2 Sin^3 x = 0$
 $5 In x - 2 Sin^3 x = 0$
 $5 In x - 2 Sin^3 x = 0$
 $5 In x - 2 Sin^3 x = 0$
 $5 In x - 2 Sin^3 x = 0$
 $5 In x - 2 Sin^3 x = 0$
 $5 In x - 2 Sin^3 x = 0$
 $5 In x - 2 Sin^3 x = 0$
 $5 In x - 2 Sin^3 x = 0$
 $5 In x - 2 Sin^3 x = 0$
 $5 In x - 2 Sin^3 x = 0$
 $5 In x - 2 Sin^3 x = 0$
 $5 In x - 2 Sin^3 x = 0$
 $5 In x - 2 Sin^3 x = 0$
 $5 In x - 2 Sin^3 x = 0$
 $5 In x - 2 Sin^3 x = 0$
 $5 In x - 2 Sin^3 x = 0$
 $5 In x - 2 Sin^3 x = 0$
 $5 In x - 2 Sin^3 x = 0$
 $5 In x - 2 Sin^3 x = 0$
 $5 In x - 2 Sin^3 x = 0$
 $5 In x - 2 Sin^3 x = 0$
 $5 In x - 2 Sin^3 x = 0$
 $5 In x - 2 Sin^3 x = 0$
 $5 In x - 2 Sin^3 x = 0$
 $5 In x - 2 Sin^3 x = 0$
 $5 In x - 2 Sin^3 x = 0$
 $5 In x - 2 Sin^3 x = 0$
 $5 In x - 2 Sin^3 x = 0$
 $5 In x - 2 Sin^3 x = 0$
 $5 In x - 2 Sin^3 x = 0$
 $5 In x - 2 Sin^3 x = 0$
 $5 In x - 2 Sin^3 x = 0$
 $5 In x - 2 Sin^3 x = 0$
 $5 In x - 2 Sin^3 x = 0$
 $5 In x - 2 Sin^3 x = 0$
 $5 In x - 2 Sin^3 x = 0$
 $5 In x - 2 Sin^3 x = 0$
 $5 In x - 2 Sin^3 x = 0$
 $5 In x - 2 Sin^3 x = 0$
 $5 In x - 2 Sin^3 x = 0$
 $5 In x - 2 Sin^3 x = 0$
 $5 In x - 2 Sin^3 x = 0$
 $5 In x - 2 Sin^3 x = 0$
 $5 In x - 2 Sin^3 x = 0$
 $5 In x - 2 Sin^3 x = 0$
 $5 In x - 2 Sin^3 x = 0$
 $5 In x - 2 Sin^3 x = 0$
 $5 In x -$

(7)
$$3x+2y=1T$$

$$2y=-3x+T$$

$$y=-\frac{3}{2}x+\frac{17}{2}$$
Slope: $-\frac{3}{2}$ y-intercept: $\frac{17}{2}$
(8) $\frac{1}{50}$

$$\frac{1}{50}$$

$$\frac{$$

The required angle is 89.445 degrees.

Cy reject because X>28+36

$$(9) \quad (2x^{2} - (x-5)(x+5) - 10x =$$

$$(2x^{2} - x^{2} + 25 - 10x) =$$

$$(7x^{2} - x^{2} + 25 - 10x) =$$

(10)
$$\frac{1}{2}y^{2} + \frac{5}{2} = x^{2} + 6x + 5y$$

 $-x^{2} - 6x + \frac{1}{2}y^{2} - 5y + \frac{5}{2} = 0$
 $-(x^{2} + 6x + 9 - 9) + \frac{1}{2}(y^{2} - 10y + 25 - 25) + \frac{5}{2} = 0$
 $\frac{1}{2}(y - 5)^{2} - (x + 3)^{2} = 1$
 $\frac{(y - 5)^{2}}{(27)^{2}} - \frac{(x + 3)^{2}}{(x + 3)^{2}} = 1$
 $M = (-3, 5)$ $Q = 1$ $D = 1$

Example 2 An airplane travels on a bearing of 100° at a 180-km/h airspeed while a wind is blowing 45 km/h from 220°. Find the speed of the airplane over the ground and the direction of its track over the ground.

Solution We first make a drawing. The wind is represented by OC and the velocity vector of the airplane by OA. The resultant velocity is \mathbf{v} , the sum of the two vectors. We denote the length of \mathbf{v} by $|\mathbf{v}|$.

The measure of $\angle COA$ is 60°, so $\angle CBA = 60^\circ$. Now since the sum of all the angles of the parallelogram is 360° and $\angle OCB$ and $\angle OAB$ have the same measure, each must be 120°. By the law of cosines in $\triangle OAB$, we have

$$|\mathbf{v}|^2 = 45^2 + 180^2 - 2 \cdot 45 \cdot 180 \cos 120^\circ$$

= 42,525.

Thus, |v| is 206 km/h. By the law of sines in the same triangle,

$$\frac{45}{\sin \theta} = \frac{206}{\sin 120^{\circ}},$$

or

$$\sin \theta = \frac{45 \sin 120^{\circ}}{206}$$

= 0.1892.

Thus, $\theta = 11^{\circ}$, to the nearest degree. The ground speed of the airplane is 206 km/h, and its track is in the direction of $100^{\circ} - 11^{\circ}$, or 89° .

(12)
$$N = 600$$
 $p = 0.3$
approximate binomial using normal

 $N = 600 \cdot 0.3 = 180$
 $0 = 600 \cdot 0.3 \cdot 0.7 = 11.225$
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180
 180

The probability that this year between 175 and 200 challenges will be upheld is approximately 65.43% (by the way, the precise binomial probability is rounded to 7 significant digits 65.14208%).

 $\mu = 489$ (minutes) $\alpha = 52$

The probability of getting less than seven hours of sleep is 9.18%.

$$7 = 0.67$$

 $7 = 0.67 \cdot 52 + 489 = 0.67 \cdot 52 + 4$

523.84

25% of the time you get more than 8 hours and 44 minutes of sleep.

(14)(a)
$$a = 67^{\circ}19^{1}30^{11}$$
 $b = 52^{\circ}18^{1}20^{11}$ $c = 37^{\circ}13^{1}30^{11}$

ABC-type

 $cosc = cosa cosb + sina sinb cosc$
 $\Rightarrow cosC = \frac{cosc - cosa cosb}{sina sinb} = 0.76767$
 $\Rightarrow C = \frac{39^{\circ}51^{1}18^{11}}{sinb sinc}$
 $cosA = \frac{cosa - cosb cosc}{sinb sinc} = -0.21167$
 $A = 102^{\circ}13^{1}14^{11}$
 $cosB = \frac{cosb - cosa cosc}{sina sinc} = 0.54546$

B = 56° 56° 37"

RIGHT TRIANGLE

$$\cos c_1 = \cos a_1 \cdot \cos b = 0.90216$$
 $c_1 = 25.556^{\circ}$
 $\cos c_2 = \cos a_2 \cdot \cos b = 0.90216$ $c_2 = 154.44^{\circ}$