GANNETT FLEMING CORDDRY AND CARPENTER INC HARRISBURG PA F/G 13/13 NATIONAL DAM INSPECTION PROGRAM. DAM G, (NDI ID NUMBER PA-00643--ETC(U) MAY 79 A C HOOKE DACW31-79-C-0015 AD-A078 932 UNCLASSIFIED NL 1 OF 2 AD A078932

AD A 0 78932

DELAWARE RIVER BASIN
DRECK CREEK, LUZERNE COUNTY

PENNSYLVANIA

DAM G

NDI ID NO. PA-00643 DER ID NO. 40-14

HAZLETON CITY AUTHORITY

PHASE I INSPECTION REPORT
NATIONAL DAM INSPECTION PROGRAM

Distribution Unlimited
Approved for Public Release
Contract No. DACW31-79-C-0015 ✓

Prepared by
GANNETT FLEMING CORDDRY AND CARPENTER, INC.

Consulting Engineers

Harrisburg, Pennsylvania 17105

ORIGINAL CONTAINS COLOR PLATER: ALL DDS REPRODUCTIONS WILL BE IN BLACK AND WHITE.

For

DEPARTMENT OF THE ARMY

Baltimore District, Corps of Engineers

Baltimore, Maryland 21203

MAY 1979

80-71044

DELAWARE RIVER BASIN

DRECK CREEK, LUZERNE COUNTY

PENNSYLVANIA

Prepared by

(12) 101

GANNETT FLEMING CORDDRY AND CARPENTER, INC.

Consulting Engineers P.O. Box 1963

Harrisburg, Pennsylvania 17105

DEPARTMENT OF THE ARMY Charles / Hooke

Baltimore District, Corps of Engineers Baltimore, Maryland 21203

MAY 1979

411004 DW

PREFACE

This report is prepared under guidance contained in the Recommended Guidelines for Safety Inspection of Dams, for Phase I Investigations. Copies of these guidelines may be obtained from the Office of Chief of Engineers, Washington, D.C. 20314. The purpose of a Phase I investigation is to identify expeditiously those dams which may pose hazards to human life or property. The assessment of the general condition of the dam is based upon available data and visual inspections. Detailed investigation, and analyses involving topographic mapping, subsurface investigations, testing, and detailed computational evaluations are beyond the scope of a Phase I investigation; however, the investigation is intended to identify any need for such studies.

In reviewing this report, it should be realized that the reported condition of the dam is based on observations of field conditions at the time of inspection along with data available to the inspection team. In cases where the reservoir was lowered or drained prior to inspection, such action, while improving the stability and safety of the dam, removes the normal load on the structure and may obscure certain conditions which might otherwise be detectable if inspected under the normal operating environment of the structure.

It is important to note that the condition of a dam depends on numerous and constantly changing internal and external conditions, and is evolutionary in nature. It would be incorrect to assume that the present condition of the dam will continue to represent the condition of the dam at some point in the future. Only through frequent inspections can unsafe conditions be detected and only through continued care and maintenance can these conditions be prevented or corrected.

Phase I inspections are not intended to provide detailed hydrologic and hydraulic analyses. In accordance with the established Guidelines, the spillway design flood is based on the estimated "Probable Maximum Flood" for the region (greatest reasonably possible storm runoff), or fractions thereof. The spillway design flood provides a measure of relative spillway capacity and serves as an aid in determining the need for more detailed hydrologic and hydraulic studies, considering the size of the dam, its general condition and

the downstream damage potential.

DELAWARE RIVER BASIN

DRECK CREEK, LUZERNE COUNTY

PENNSYLVANIA

DAM G

NDI ID No. PA-00643 DER ID No. 40-14

HAZLETON CITY AUTHORITY

PHASE I INSPECTION REPORT

NATIONAL DAM INSPECTION PROGRAM

MAY 1979

CONTENTS

	Description	Page
SECTION SECTION SECTION SECTION	<pre>1 - Project Information</pre>	13
	PLATES	
Plate	<u>Title</u>	
1 2 3	Location Map. Spillway. Outlet Works.	

APPENDICES

Append1x	<u>Title</u>
A	Checklist - Engineering Data.
В	Checklist - Visual Inspection.
C	Hydrology and Hydraulics
D	Photographs.
E	Geology.

PHASE I INSPECTION REPORT NATIONAL DAM INSPECTION PROGRAM

BRIEF ASSESSMENT OF GENERAL CONDITION

AND

RECOMMENDED ACTION

Name of Dam:

Dam G

NDI ID No. PA-00643/DER ID No. 40-14

Owner:

Hazleton City Authority

State Located:

Pennsylvania

County Located:

Luzerne

Stream:

Dreck Creek

Date of Inspection: 10 April 1979

Inspection Team:

Gannett Fleming Corddry and Carpenter, Inc.

Consulting Engineers

P.O. Box 1963

Harrisburg, Pennsylvania 17105

Based on visual inspection, available records, calculations, and past operational performance, and according to criteria established for these studies, Dam G is judged to be unsafe, nonemergency, because the spillway capacity is rated as seriously inadequate. The existing spillway can pass 27 percent of the Probable Maximum Flood (PMF) without overtopping of the dam. As a whole, the dam is judged to be in fair condition.

If the dam were raised 0.6 foot to its design elevation, the spillway could pass 35 percent of the PMF. The spill-way capacity would still be rated as seriously inadequate.

There is no evidence of serious stability problems on the embankment. However, because of the steep slopes, the stability of the embankment is only considered marginal. The maintenance at the dam is only marginal.

There is no evidence to suggest that the emergency drawdown outlet works is operational.

The following measures are recommended to be undertaken by the Owner, in approximate order of priority, immediately:

- (1) Remove the sandbags from the spillway crest.
- Engage the services of a professional engineer experienced in the design and construction of dams to perform the following studies: a study to more accurately determine the spillway capacity required at the dam and to determine the measures required to make the spillway hydraulically adequate, a study to determine the structural factors of safety for the embankment and the best means to raise the embankment to its design elevation, a study to determine the best means of making the outlet works operational, a study to repair the deficiencies in the spillway area, and a study to determine the best means of continually monitoring the wet areas at the dam. These studies will require, as a minimum, installation of observation wells or other instrumentation to determine water levels in the embankment, an exploration program to determine the engineering properties of the embankment and foundation materials, a complete survey of the embankment and adjacent area, and grading of the area downstream of the toe to more accurately assess the wet areas. Take appropriate action as required.
- (3) Provide closure facilities for the outlet works pipes upstream of the concrete core wall for periodic inspection and for use in the event the pipes leak severely, thereby endangering the embankment.
- (4) Remove the brush from the embankment slopes and the trees from near the downstream toe.
- (5) Monitor by any suitable means the heave and depression on the downstream slope. If conditions change, take immediate remedial action.

(6) Remove the pipe passing through the core-wall near the top of the dam. Repair the core-wall in this area.

In addition, the Owner should institute the following operational and maintenance procedures:

- (1) Develop a detailed emergency operation and warning system for Dam G. A similar system has been recommended in a separate report for Dam F, which is upstream.
- (2) During periods of unusually heavy rains, provide round-the-clock surveillance of Dam G and have personnel available as necessary to remove any debris that may collect at the spillway bridge.
- (3) When warnings of a storm of major proportions are given by the National Weather Service, the Owner should activate his emergency operation and warning system.
- (4) Institute an inspection program such that the embankment is inspected frequently. The program should include a formal annual inspection by a professional engineer experienced in the design and construction of dams. Utilize the results to determine if remedial measures are necessary.
- (5) Institute a maintenance program to properly maintain all features of the dam.

Submitted by:

GANNETT FLEMING CORDDRY AND CARPENTER, INC.

A. C. HOOKE Head, Dam Section

Date: 22 June 1979

Approved by:

DEPARTMENT OF THE ARMY BALTIMORE DISTRICT, CORPS OF ENGINEERS

DAMES W. PECK

Colonel, Corps of Engineers District Engineer

Overview

DELAWARE RIVER BASIN

DRECK CREEK, LUZERNE COUNTY

PENNSYLVANIA

DAM G

NDI ID No. PA-00643 DER ID No. 40-14

HAZLETON CITY AUTHORITY

PHASE I INSPECTION REPORT

NATIONAL DAM INSPECTION PROGRAM

MAY 1979

SECTION 1

PROJECT INFORMATION

1.1 General.

- a. Authority. The Dam Inspection Act, Public Law 92-367, authorized the Secretary of the Army, through the Corps of Engineers, to initiate a program of inspection of dams throughout the United States.
- b. <u>Purpose</u>. The purpose of the inspection is to determine if the dam constitutes a hazard to human life or property.

1.2 Description of Project.

a. Dam and Appurtenances. Dam G is a homogeneous earthfill embankment with a concrete core-wall. The embankment is 490 feet long and 19 feet high at maximum section. There are two outlet works at the dam. The first outlet works, which is near the right end of the embankment, consists of a concrete intake structure, two

CONT

24-inch diameter cast-iron pipes, and a valve house. This outlet works is connected to the water supply system. The second outlet works, which is near the left end of the dam, is similar to the first except it consists of a single 24-inch diameter pipe. The second outlet works provides the emergency drawdown capability.

The concrete chute spillway is at the left abutment of the dam. Its crest is 3.0 feet below the design elevation of the top of the dam and is 75 feet long. The approach channel is short and concrete paved. The exit channel is a continuation of the chute. A bridge extends across the spillway crest. It is supported by two piers. The various features of the dam are shown on the Plates at the end of the report and on the Photographs in Appendix D.

- b. <u>Location</u>. The dam is located on Dreck Creek, approximately 3.9 miles east of Hazleton, Pennsylvania. Dam G is shown on USGS Quadrangle, Hazleton, Pennsylvania, with coordinates N40°57'00" and W75°54'15" in Luzerne County, Pennsylvania. Dam F is located upstream of Dam G on Dreck Creek 0.3 mile west of Dam G. A location map is shown on Plate 1.
- c. <u>Size Classification</u>. Small (19 feet high, 179 acre-feet).
- d. <u>Hazard Classification</u>. High hazard. Downstream conditions indicate that a high hazard classification is warranted for Dam G (Paragraphs 3.1e and 5.1c.).
- e. Ownership. Hazleton City Authority, Hazleton, Pennsylvania.
 - f. Purpose of Dam. Water Supply for Hazleton.
- g. Design and Construction History. Dam G was constructed between 1910 and 1916. The dam was designed by S.D. Warriner, A.B. Jessup, Edgar Kudlich, W.H. Davies, J.H. Humphrey, and A.H. Lewis. All these gentlemen were staff members of the Hazleton Water Company, the original owner. The contractor was the Read Contracting Company. As originally designed, the dam had two spillways. One was located at the right abutment and the other at the left abutment. The spillway at the right abutment had a crest length of 21 feet and its crest was 1.75 feet below

top of dam. The spillway at the left abutment also had a crest length of 21 feet and its crest was 3.0 feet below top of dam. The Pennsylvania Water Supply Commission concluded that these spillways were apparently inadequate, as the dam was overtopped during construction in January, 1914. J.W. Ledoux, a consulting engineer of Philadelphia, was retained by the water company when the dam was under construction. He recommended modifying the left spillway to its present design configuration.

The dam was almost complete when the Commonwealth enacted the permit requirement for constructing dams. The dam was studied, when still under construction, by the Pennsylvania Water Supply Commission as part of their 1914 dam inspection program. As originally designed, the lower part of the upstream slope was 1V on 1.25H. The report recommended changing the 1V on 1.25H slope to 1V on 2.5H. The permit to continue construction was issued without the requirement to flatten the 1V on 1.25H slope. The permit did require that any indication of slope movement be reported immediately to the Commission. The report analyzed the hydraulics of the dam assuming that it had two spillways; however, the right spillway was never constructed.

The bridge across the spillway was constructed at some time between 1928 and 1931.

h. Normal Operational Procedure. The pool is maintained at spillway crest with excess inflow discharged over the spillway.

1.3 Pertinent Data.

a.	Drainage	Area.	(square	miles.)		2.8
					of	which 2.4
					is	controlled
					by	Dam F.

b. Discharge at Damsite. (cfs.)

Maximum known flood at damsite Outlet works at maximum pool	Unknown
elevation	64
Spillway capacity at maximum	
pool elevation	
Design conditions	1,170
Existing conditions	800

c.	<pre>Elevation. (feet above msl.)</pre>	
	Top of dam (design) Top of dam (existing) Maximum pool Normal pool (spillway crest) Upstream invert outlet works Downstream invert outlet works Streambed at toe of dam	1587.0 1586.4 1586.4 1584.0 Not available 1568.4 1568.0
d.	Reservoir Length. (miles.)	
	Normal pool Maximum pool	0.30 0.30
e.	Storage. (acre-feet.)	
	Normal pool Maximum pool (design)	138 179
f.	Reservoir Surface. (acres.)	
	Normal pool Maximum pool (design)	13 14
g.	Dam.	
	Type	Homogeneous earthfill with concrete core-wall.
	Length (feet)	490
	<pre>Height (feet)</pre>	19
	Topwidth (feet) Design Existing	varies, 6 to 8
	Side Slopes Design Upstream above El. 1578.0 Upstream below El. 1578.0 Downstream	1V on 2H 1V on 1.25H 1V on 1.5H See Appendix B for existing slopes.

Dam. (Continued) g.

Zoning

Core-wall.

Cutoff

Core-wall founded in trench with timber sheeting beneath.

Grout Curtain

None.

h. Diversion and Regulating Tunnel. None.

1. Spillway.

Type

Concrete chute.

Length of Weir (feet.)

75.0 Two triangularnosed bridge piers, 1.5 feet wide, are located at crest.

Crest Elevation

1584.0

Upstream Channel

Short concretepaved approach

Downstream Channel

Continuation of

chute.

j. Regulating Outlets.

Type

Single-24-inch diameter cast

iron pipe.

Length (feet.)

80

Closure

24-inch gate valve at downstream toe.

Access

Valve house at downstream toe. Also two 24-inch water supply lines connect to water supply system.

SECTION 2

ENGINEERING DATA

2.1 Design.

- a. Data Available. No engineering data were available for review for the structure as originally designed or as modified during construction. In a study performed in 1914 by the Pennsylvania Water Supply Commission, an account of design concepts, geology, construction materials and methods, and design features was prepared for the components of the dam from interviews with the Owner, visual inspection, and other sources. The 1914 study also included analyses for hydrology and hydraulics. A summary of the results of the analyses is on file.
- b. Design Features. The project is described in Paragraph 1.2g. The various features of the dam are shown on the Plates at the end of the Report and on the Photographs in Appendix D. The drawings available for the dam are limited. The spillway is shown on Plate 2 and on Photographs F and I. The water supply outlet works is shown on the upper half of Plate 3. The emergency drawdown outlet works is shown on the lower half of Plate 3. The valve house is shown on Photograph D. No plan or cross sections of the embankment are available in the records. A plan of the embankment is sketched on Plate B-1. Cross sections of the embankment obtained from a survey performed for this inspection are in Appendix B. A description of the core-wall, excerpted from the 1914 Pennsylvania Water Supply Commission Report, follows:

"The core-wall, of 1-2-4 concrete, is 18 inches thick on top, and the plans show it to be 4 feet thick at the base. In building the core wall a trench was excavated from 4 to 5 feet deep, in which a double row of 2" yellow pine sheet piling was driven to an additional depth of from 4 to 5 feet in the gravelly clay. The sheet piling was allowed to project about 3 feet into the base of the concrete wall. The crest of the wall is 3 feet above the flow line of the reservoir, extending to the top of the embankment, which has a downward slope toward the upstream edge of 1 foot in 8 feet." The embankment is shown on Photographs A, B, and C.

c. Design Considerations. As noted in Paragraph 1.2g, the staff of the Water Supply Commission was concerned about the steep upstream slope. The slopes of the embankment are discussed in Section 6.

2.2 Construction.

- Data Available. Construction data for the original structure that are available for review, consist of the information contained in the 1914 report prepared by the Pennsylvania Water Supply Commission. Site geology is discussed in Appendix E. The Report indicates that the embankment was constructed of a sandy and gravelly clay, with all stones larger than 6 inches removed. It was placed in 6 to 12 inch layers, sprinkled when necessary, and compacted by earth-hauling equipment. Core-wall foundation conditions have been previously noted in Paragraph 2.1b. The report also notes that the outlet pipes were originally laid directly on the earth foundation. A leak developed along one pipe. The pipe was excavated and found to be broken in two or three places. All the lines were then relaid on a concrete foundation and encased in 8 to 12 inches of concrete. The report did note that no expansion or contraction joints were provided in the spillway walls or paving; it was anticipated that cracking would occur.
- b. Construction Considerations. It appears that reasonable care was used in the construction of Dam G. Although the compaction of the embankment might have been better, it has existed for 63 years without any reported problems.
- 2.3 Operation. There are no formal records of operation. The Owner did not report any problems having occurred over the operational history of the dam.

2.4 Evaluation.

a. Availability. Engineering data were provided by the Bureau of Dam Safety, Obstructions, and Storm Water Management, Department of Environmental Resources, Commonwealth of Pennsylvania, and by the Owner, Hazleton City Authority. The Owner made available The General Manager for information during the week of the inspection. He also researched his files for additional data at the request of the inspection team.

- b. Adequacy. The type and amount of design data and other engineering data are limited, and the assessment must be based on the combination of available data, visual inspection, performance history, hydrologic assumptions, and hydraulic assumptions.
- c. <u>Validity</u>. There is no reason to question the validity of the available data.

SECTION 3

VISUAL INSPECTION

3.1 Findings.

- a. General. The overall appearance of the dam is fair. Some deficiencies were observed as noted below. A sketch of the dam with the location of deficiencies is presented in Appendix B on Plate B-1. Survey information acquired for this report is summarized in Appendix B. On the day of the inspection, the pool was at spillway crest.
- b. Embankment. The embankment is in fair condition. The downstream slope is thickly covered with low brush. A few mature trees are growing on the embankment at the toe of the slope. There is also brush on the upstream slope. It is thick but very low. The top of the concrete core-wall is exposed along almost the entire top of the dam. The top of the core-wall is very deteriorated (Photograph A). To the right of the water supply outlet works, a 6-inch diameter pipe extends across the embankment (Photograph C). The Owner did not know what function, if any, the pipe serves. The core-wall was chipped away to accommodate the pipe, which is covered with loose rock fill. On the downstream slope, there is a 0.5-foot high heave and a 1-foot deep depression. The approximate locations are shown on Plate B-1.

There are some wet areas downstream from the dam as shown on Plate B-l and on Photograph F. This plate also shows the location of a 2-foot deep ditch. The water in the ditch was flowing at about 10 gpm. The Owner stated that this was discharge from a sump in the pumphouse. The area downstream from the dam is poorly graded in many areas.

A survey performed for this inspection revealed that almost the entire top of the embankment is below its design elevation. The lowest area, directly above the left outlet works, is 0.6 foot below design elevation. The downstream design slope is 1V on 1.5H; it measured 1V on 1.28H and 1V on 1.33H at two separate locations. The

upstream design slope is 1V on 2H above normal pool. It measured 1V on 2.4H and 1V on 2.86H at two separate locations.

Appurtenant Structures. The right outlet works is used for water supply and it is in apparently good condition. Two pipes extend under the embankment at this outlet works. The valve house had previously deteriorated and was rebuilt with concrete block. No deficiencies were ob-The Owner stated that the valves on these two lines were adjusted as necessary for water supply purposes. The left outlet works is used for emergency drawdown and it is in poor condition (Photograph D). The concrete valve house had previously deteriorated and was rebuilt with timber. Access to the valve within would be gained by removing the roof. The roof appeared to be permanently attached to the structure. The Owner declined to operate this outlet works, out of concern that the valve would remain in the open position. The walls of the stilling basin downstream of this outlet works are so deteriorated that they are beyond repair.

The spillway is in fair condition. A few sandbags are placed sporadically across the crest (Photograph F). The remnants of others are at the toe of the spillway chute. The right spillway approach wall is peeling badly in areas. The left approach wall is spalled and peeling. The entire slab of the chute is scoured. One area is scoured 1.5 feet deep and the adjacent left wall is undermined for 2 feet (Photograph H). Where the wall is undermined, a 25-foot length of the wall has a near-horizontal crack with a 0.2-foot offset (Photograph G). The right wall of the chute is spalled and peeling. Trees are growing behind this wall. At the spillway crest, the bridge piers are in good condition. The low steel of the bridge is at the design elevation of the top of the dam. The bridge deck is missing for about a 4-foot length. The remainder of the deck is deteriorating.

Immediately downstream from the spillway, the channel crosses under the access road to the toe of the dam in two oblong culverts, each about 48 inches by 60 inches.

d. Reservoir Area. Dam F is at the upstream end of the reservoir. All of the watershed that is downstream from Dam F is steep and wooded. It is also undeveloped and uninhabited. It is owned and controlled by the Hazleton

City Authority. The access road to the dam, from Dam F, generally parallels the reservoir and is high above it.

e. <u>Downstream Conditions</u>. From Dam G, the stream flows for 1.2 miles, along an uninhabited and wooded reach, to its confluence with Hazle Creek. In this reach it crosses under what apparently is a low railroad embankment. Hazle Creek flows for 4.3 miles, along an uninhabited and wooded reach, to the community of Weatherly, where at least 40 dwellings are within the floodplain.

SECTION 4

OPERATIONAL PROCEDURES

- 4.1 Procedure. The reservoir is maintained at spillway crest, Elevation 1584.0, with excess inflow discharging over the spillway and into Dreck Creek. Water supply lines at the dam are connected directly to the Owner's distribution system. The emergency drawdown outlet works valve is normally closed.
- 4.2 <u>Maintenance of Dam</u>. The dam is visited daily by a caretaker who adjusts the water supply valves, if necessary. Inspections of the dam are not made. Brush is cut at irregular intervals.
- 4.3 Maintenance of Operating Facilities. The water supply outlet works is operated when required, and maintenance is performed as needed. The emergency drawdown outlet works is not maintained.
- 4.4 <u>Warning Systems in Effect</u>. The Owner stated that there is no emergency operation and warning system. He stated that, should the dam fail, no damage would result downstream.
- 4.5 Evaluation of Operational Adequacy. The maintenance of the embankment and spillway is marginal. The maintenance of the outlet works is poor. Inspections are necessary to detect hazardous conditions at the dam. As described hereafter, if the dam were to fail, damage would result downstream. An emergency operation and warning system is necessary to mitigate the hazards downstream, should evidence of stress become evident at the dam.

SECTION 5

HYDROLOGY AND HYDRAULICS

5.1 Evaluation of Features.

a. Design Data. The Pennsylvania Water Supply Commission prepared a report upon the application of the Owner, prior to issuing a permit for the continued construction of the dam. In that report, they estimated the design spillway capacity at 1,300 cfs. This was the combined capacity of both spillways. As noted in Paragraph 1.2g, the right spillway was never constructed.

For the existing spillway located at the left abutment, a design discharge of 1,170 cfs was used for this study. The existing spillway capacity was estimated including the effects of the low top of dam and the bridge piers (Appendix C).

b. Experience Data. No hydraulic problems were reported by the Owner. He stated that no records of maximum pool levels were available. The flood of record for Dam F, located upstream of Dam G, is Tropical Storm Agnes in June, 1972. This is probably the flood of record for Dam G also. There is no information available to estimate the flow.

c. Visual Observations.

- (1) <u>General</u>. The visual inspection of Dam G, which is described in Section 3, resulted in a number of observations relevant to hydrology and hydraulics. These observations are evaluated herein for the various features.
- (2) Embankment. The low areas along the top of the dam reduce the spillway capacity. The pipe through the embankment serves no purpose and provides a low area in the core-wall.
- (3) Appurtenant Structures. All the outlet works pipes extend under pressure through the embankment without upstream closure facilities. There is no evidence to suggest that the emergency drawdown outlet works is operational.

The Owner has used sandbags to increase the storage at other dams in his system. As noted in Paragraph 3.1c, a few sandbags are on the spillway crest and the remains of other sandbags are at the downstream end of the spillway chute. It is surmised that these sandbags are used to increase the storage. The use of sandbags on the spill-way crest is a serious hazard to the dam.

Large spillway discharges would obviously overtop the access road along the toe. The spillway bridge would then be the only access to the dam. The deteriorating bridge deck is therefore of concern. The bridge has a potential to collect debris during a flood.

(4) Reservoir Area. No conditions were observed in the reservoir area that might present significant hazard to the dam. The assessment of the dam is based on existing conditions and the effects of future development are not considered. The access to the damsite is good.

A Phase I Report for the National Dam Inspection Program is concurrently being prepared for Dam F, which is upstream of Dam G. Dam F is of small size and categorized as high hazard. It has a seriously inadequate spillway capacity. A failure of Dam F would cause the failure of Dam G.

(5) Downstream Conditions. No conditions that would present a hazard to the dam were observed downstream. The downstream conditions indicate that a high hazard classification is warranted for Dam G. The stream crossing under the railroad along the downstream channel was not observed on the day of the inspection. The available information indicates that the embankment is relatively low; it would not provide significant mitigating effects to floodflows.

d. Overtopping Potential.

(1) <u>Spillway Design Flood</u>. According to the criteria established by the Office of the Chief of Engineers (OCE), the Spillway Design Flood (SDF) for the size (Small) and hazard potential (High) of Dam G varies between the

Probable Maximum Flood (PMF) and the 1/2 PMF. Because of the large downstream population, the PMF is selected as the SDF.

(2) <u>Description of Model</u>. The watershed was modelled with the HEC-1DB computer program. The HEC-1DB computer program computes a PMF runoff hydrograph and routes the flows through both reservoirs and stream sections. In addition, it has the capability to simulate an overtopping dam failure.

The PMF inflow component to Dam F was computed and routed through the dam. The outflow was combined with the uncontrolled PMF inflow component to Dam G. The combined flow was routed through Dam G. Identical methods were used for various percentages of the PMF.

(3) Summary of Results. Pertinent results are tabularized at the end of Appendix C. The analysis reveals that Dam F can pass 29 percent of its component of the PMF. The analysis also reveals that Dam G can pass 27 percent of the PMF without overtopping.

If Dam G were raised to its design elevation, it could pass about 35 percent of the PMF.

(4) Spillway Adequacy. The criteria for rating a spillway is presented in Appendix C. Since the dam cannot pass the 1/2 PMF, without failure a further analysis was performed. For the occurence of the 1/2 PMF, it was assumed that Dam F would not fail. It was also assumed that no inflow occured downstream of Dam G. addition, it was assumed that Dam G would develop a breach 80 feet wide and 18 feet high 0.1 hour after being overtopped by 0.1 foot. A breach of this size results in an outflow of 16,600 cfs. The resulting outflow was routed downstream to Weatherly. The locations of cross sections used for routing are shown on Plate C-1. The water surface in Weatherly would increase $0.8\,$ foot over the water surface that would occur if the dam did not fail. Although this increase would cause damage, it is not certain it would cause loss of life. When the effects of a failure of Dam F, as described in its Phase I Report, are included, the water surface increases by 8.6 feet. Dam F and Dam G are considered to be a system for hydraulic purposes. There is an increased hazard to loss of life because of the combined failure of Dam F and Dam G. The spillway capacity of Dam G is rated as seriously inadequate. Probable Maximum Flood (PMF) and the 1/2 PMF. Because of the large downstream population, the PMF is selected as the SDF.

(2) <u>Description of Model</u>. The watershed was modelled with the HEC-1DB computer program. The HEC-1DB computer program computes a PMF runoff hydrograph and routes the flows through both reservoirs and stream sections. In addition, it has the capability to simulate an overtopping dam failure.

The PMF inflow component to Dam F was computed and routed through the dam. The outflow was combined with the uncontrolled PMF inflow component to Dam G. The combined flow was routed through Dam G. Identical methods were used for various percentages of the PMF.

(3) Summary of Results. Pertinent results are tabularized at the end of Appendix C. The analysis reveals that Dam F can pass 29 percent of its component of the PMF. The analysis also reveals that Dam G can pass 27 percent of the PMF without overtopping.

If Dam G were raised to its design elevation, it could pass about 35 percent of the PMF.

(4) Spillway Adequacy. The criteria for rating a spillway is presented in Appendix C. Since the dam cannot pass the 1/2 PMF, without failure a further analysis was performed. For the occurence of the 1/2 PMF, it was assumed that Dam F would not fail. It was also assumed that no inflow occured downstream of Dam G. addition, it was assumed that Dam G would develop a breach 80 feet wide and 18 feet high 0.1 hour after being overtopped by 0.1 foot. A breach of this size results in an outflow of 16,600 cfs. The resulting outflow was routed downstream to Weatherly. The locations of cross sections used for routing are shown on Plate C-1. The water surface in Weatherly would increase 0.8foot over the water surface that would occur if the dam did not fail. Although this increase would cause damage, it is not certain it would cause loss of life. When the effects of a failure of Dam F, as described in its Phase I Report, are included, the water surface increases by 8.6 feet. Dam F and Dam G are considered to be a system for hydraulic purposes. There is an increased hazard to loss of life because of the combined failure of Dam F and Dam G. The spillway capacity of Dam G is rated as seriously inadequate. If the dam were raised to its design elevation, the spillway capacity would still be rated as seriously inadequate.

SECTION 6

STRUCTURAL STABILITY

6.1 Evaluation of Structural Stability.

a. Visual Observations.

- (1) <u>General</u>. The visual inspection of Dam G, which is described in Section 3, resulted in a number of observations relevant to structural stability. These observations are evaluated herein for the various features.
- Embankment. Brush and trees growing on or near the embankment are undesirable. The concrete at the top of the core-wall is deteriorated because of exposure to the weather. The deterioration is not of major concern; however, as discussed in Section 5, the low areas at the top are of concern. The heave and depression on the downstream slope could be caused by poor construction grading. As they could also indicate more serious problems, careful monitoring of the areas is warranted. Although heavy rains two days before the inspection could have contributed to the wet areas, it is certain that the reservoir was also contributing to them. The periodic inspections by the Commonwealth note wet areas along the toe of the dam; they were first noted immediately after the dam was first filled. The flow emanating from the pumphouse sump is not considered a deficiency; however, the ditch could have been intercepting seepage, which would have been obscured by the flow from the sump. The slopes of the embankment are discussed in Paragraph 6.1b.
- (3) Appurtenant Structures. The conditions at the emergency drawdown outlet works are an indication of lack of maintenance. Although the valve house has been repaired, the lack of ready access indicates a lack of concern for the functioning of this feature.

The lack of contraction or expansion joints has contributed to the conditions in the spillway. Most of the conditions are an indication of the lack of maintenance. The crack, scour, and undermining near the left wall indicate that the wall may be near failure.

This would not be an immediate hazard to the dam, except it might cause the hillside to partially slide into the chute. This could interfere with flow in the chute.

- Design and Construction Data. No record of design data or stability analysis for the embankment was available for review. Analysis of the embankment stability is beyond the scope of this study. Also, sufficient data on the engineering properties of the embankment material would have to be acquired before the analysis could be performed. No evidence of stability problems presently threatening the embankment were observed. However, the slopes of the embankment are much steeper than present standard practice would allow. The lower part of the upstream slope is 1V on 1.25H. As noted in Paragraph 1.2g, the Pennsylvania Water Supply Commission staff was concerned about the steepness of this slope. The design downstream slope is 1V on 1.5H. The slope is actually closer to 1V on 1.25H. Even with a core-wall, the stability of the embankment is considered marginal for any operating condition.
- c. Operating Records. There are no formal records of operation. No evidence of instability on any feature of the dam has been noted.
- d. <u>Postconstruction Changes</u>. There have been no postconstruction changes to Dam G that would affect its stability.
- e. Seismic Stability. Dam G is located in Seismic Zone l. Normally it can be considered that if a dam in this zone has adequate factors of safety under static loading conditions, it can be assumed safe for any expected earthquake loading. However, since there are no formal static stability analyses, and since there is the potential of earthquake forces moving or cracking the concrete corewall, the theoretical seismic stability of Dam G cannot be assessed.

SECTION 7

ASSESSMENT, RECOMMENDATIONS, AND

PROPOSED REMEDIAL MEASURES

7.1 Dam Assessment.

a. Safety.

(1) Based on the visual inspection, available records, calculations, and past operational performance, Dam G is judged to be in fair condition. The existing spillway will pass 27 percent of the PMF without overtopping of the dam. The spillway capacity is rated as seriously inadequate. According to criteria established for these studies, the dam must be rated as unsafe, nonemergency, because the spillway capacity is seriously inadequate.

If the dam were raised to its design elevation, the spillway could pass 35 percent of the PMF. The spillway capacity would still be rated as seriously inadequate.

- (2) There is no evidence of serious stability problems at the embankment. However, because of the steep slopes, the stability of the embankment is only considered marginal.
 - (3) The maintenance at the dam is only marginal.
- (4) There is no evidence to suggest that the emergency drawdown outlet works is operational.

The visual inspection revealed some deficiencies, which are summarized below for the various features.

Feature and Location

Observed Deficiency

Embankment

Top

Deteriorated concrete core-wall, low areas, pipe through embankment.

Upstream slope

Brush.

Downstream slope

Brush, trees, heave, and

depression.

Downstream toe

Trees, wet areas.

Spillway:

Crest

Scattered sandbags.

Slab and walls

Peeling, spalling, scour.

Left wall

Relative movement, under-

mining.

Outlet Works:

Pipes

Under pressure through

embankment.

Valve house

No ready access.

Stilling basin

Total deterioration.

- b. Adequacy of Information. The information available is such that an assessment of the condition of the dam can be inferred from the combination of visual inspection, past performance, and computations performed prior to and as part of this study.
- c. <u>Urgency</u>. The recommendations in Paragraph 7.2 should be implemented immediately.
- d. Necessity for Further Investigations. In order to accomplish some of the remedial measures outlined in Paragraph 7.2, further investigations by the Owner will be required.

7.2 Recommendations and Remedial Measures.

a. The following measures are recommended to be undertaken by the Owner, in approximate order of priority, immediately:

- (1) Remove the sandbags from the spillway crest.
- (2) Engage the services of a professional engineer experienced in the design and construction of dams to perform the following studies: a study to more accurately determine the spillway capacity required at the dam and to determine the measures required to make the spillway hydraulically adequate, a study to determine the structural factors of safety for the embankment and the best means to raise the embankment to its design elevation, a study to determine the best means of making the outlet works operational, a study to repair the deficiencies in the spillway area, and a study to determine the best means of continually monitoring the wet areas at the dam. These studies will require, as a minimum, installation of observation wells or other instrumentation to determine water levels in the embankment, an exploration program to determine the engineering properties of the embankment and foundation materials, a complete survey of the embankment and adjacent area, and grading of the area downstream of the toe to more accurately assess the wet areas. Take appropriate action as required.
- (3) Provide closure facilities for the outlet works pipes upstream of the concrete core wall for periodic inspection and for use in the event the pipes leak severely, thereby endangering the embankment.
- (4) Remove the brush from the embankment slopes and the trees from near the downstream toe.
- (5) Monitor by any suitable means the heave and depression on the downstream slope. If conditions change, take immediate remedial action.
- (6) Remove the pipe passing through the core-wall near the top of the dam. Repair the core-wall in this area.
- b. In addition, the Owner should institute the following operational and maintenance procedures:
- (1) Develop a detailed emergency operation and warning system for Dam G. A similar system has been recommended in a separate report for Dam F, which is upstream.

- (2) During periods of unusually heavy rains, provide round-the-clock surveillance of Dam G and have personnel available as necessary to remove any debris that may collect at the spillway bridge.
- (3) When warnings of a storm of major proportions are given by the National Weather Service, the Owner should activate his emergency operation and warning system.
- (4) Institute an inspection program such that the embankment is inspected frequently. The program should include a formal annual inspection by a professional Engineer experienced in the design and construction of dams. Utilize the results to determine if remedial measures are necessary.
- (5) Institute a maintenance program to properly maintain all features of the dam.

DELAWARE RIVER BASIN DRECK CREEK, LUZERNE COUNTY PENNSYLVANIA

DAM G

NDI ID No. PA-00643 DER ID No. 40-14

HAZLETON CITY AUTHORITY

PHASE I INSPECTION PROGRAM

MAY 1979

PLATES

5.64 3.84 344 144 14 111 1111 dig Hushlan Juli Ca Nyaming 1922 Italia Banka Ed Lessen Direck Greek Easervair G Proposing Change North Overflow Bend 124 Patadag 4 44 8 2 umph h 14 91 11 31 1

PHASE I INSPECTION REPORT NATIONAL DAM INSPECTION PROGRAM

DAM G

HAZELTON CITY AUTHORITY

SPILLWAY

MAY 1979

uniplies.

PLATE 2

DELAWARE RIVER BASIN DRECK CREEK, LUZERNE COUNTY PENNSYLVANIA

DAM G

NDI ID No. PA-00643 DER ID No. 40-14

HAZLETON CITY AUTHORITY

PHASE I INSPECTION REPORT

NATIONAL DAM INSPECTION PROGRAM

MAY 1979

APPENDIX A

CHECKLIST - ENGINEERING DATA

CHECKLIST

ENGINEERING DATA

3 DER ID NO.: 40-14 NAME OF DAM:

T PA-00643

ND8 ID NO.:

Sheet 1 of 4

DESIGN, CONSTRUCTION, AND OPERATION PHASE I

ITEM	REMARKS
AS-BUILT DRAWINGS	Nove
REGIONAL VICINITY MAP	See PLATE 1.
CONSTRUCTION HISTORY	Built 1910-1916
TYPICAL SECTIONS OF DAM	Nov e
OUTLETS: Plan Details Constraints Discharge Ratings	Sec PLATE 3 NO RATINGS

ENGINEERING DATA

ITEM	REMARKS
RAINFALL/RESERVOIR RECORDS	Nowe
DESIGN REPORTS	1914 PENNSYLVANIA WATER SUPPLY COMMISSION RePORT,
GEOLOGY REPORTS	1914 DENNSYLVANIA WATER SUPPLY COMMISSION REPORT
DESIGN COMPUTATIONS: Hydrology and Hydraulics (H⊄H) Dam Stability Seepage Studies	1914 PENNSYLVANIA WATER SUPPLY COMMISSION REPORT FOR HALF
MATERIALS INVESTIGATIONS: Boring Records Laboratory Field	Nove
POSTCONSTRUCTION SURVEYS OF DAM	Noze

	•	•	
	4		
« E	4		
***	AIA		
× + × ×	AIA		
2882	DAIA		
2547	DALA		
25.0	I DAIA		
(M. JAIA		
(NG DAIA		
(ING DAIA		
(KING DAIA	******	
(EKING DAIA		
(CERING DAIA		
(EERING DAIA		
(NEEKING DAIA		
(INCERING DAIA		
(JINEERING DAIA		
(GINEERING		
ALC TAMEDITAL DAMA	NGINEERING DAIA		
(SINGINEERING DAIA		
(ENGINEERING DAIA		

Sheet 3 of 4

ITEM	REMARKS
BORROW SOURCES	Not Noted
MONITORING SYSTEMS	Nove
MODIFICATIONS	Spirummy BRIDGE
HIGH POOL RECORDS	Nowe
POSTCONSTRUCTION ENGINEERING STUDIES AND REPORTS	None
PRIOR ACCIDENTS OR FAILURE OF DAM: Description Reports	None

<	1	
ב כ	4	
(FUZ IX IX IZ IT IZ I	
1	X	
	1	;
:		:

DENANDE	Nove	See PLATE 2.	Sec PLATE 3.	1915 - SMALL STREAMS ALONG FOE. 1920 - SWAMPY BELOW DAM. TOP OF WHICH IS CHISINTEGIZHTED. 1923 - SLIGHT SEEPAGE SOIL UNDER UPSTREAM RIPARD HAS SETTLED, SO RIPARD IS HACHED, CORE-WALL DER 1920. 1924- (BY OWNER) SETTLEMENT ALONG FOP OF DAM, SPALING OF CORE-WALL AND SPILLMAN, AND VALUE HOUSE CONCRETE.	1925 - DER 1923 EXCEPT NO SEEPHGE, 1928, NO deficiencies, upstrechm Riparp RELAID.
	MAINTENANCE AND OPERATION RECORDS	SPILLWAY: Plan Sections Details	OPERATING EQUIPMENT: Plans Details	PREVIOUS INSPECTIONS Dates Deficiencies	(CONTINUED)

ENGINEERING DATA

REMARKS	1931- SLICHT SEEPAGE, TWO BRIDGE PIERS IN SPILLMAY HORIZONTAL CRACK IN LEFT SPILLMAY WALL. 1934- SMALL FLOW FROM CHAIN AT LOWER FROM OIS SPILLWAY WHICH HAS & PIERS.	Some clarks in Spillumly Sidewalls. 1938 - per 1934 Except SEEPAGE NOTED ATERCH SIDE OF BLOWDER AND AT VALUE HOUSE.	1944 - LEAKAGE AT RICHT ABUMBUT DUE TO deterior. Mich is baouy HEAVED AND CRACKED. 1965 - No deficiencies.		
ITEM	PREVIOUS INSPECTIONS (CONTINUED).				

7. 1

DELAWARE RIVER BASIN DRECK CREEK, LUZERNE COUNTY PENNSYLVANIA

DAM G

NDI ID No. PA-00643 DER ID No. 40-14

HAZLETON CITY AUTHORITY

PHASE I INSPECTION REPORT
NATIONAL DAM INSPECTION PROGRAM

MAY 1979

APPENDIX B

CHECKLIST - VISUAL INSPECTION

CHECKLIST VISUAL INSPECTION

PHASE I

G County: LUZGRAG State PA-00643 DER ID No.: 40-14	Type of Dam: Energic Works - While Hazard Category: High Date(s) Inspection: 10 April 1979 Weather: CLEMA - Willow Temperature: 45° Soil Conditions: Very Moist	Pool Elevation at Time of Inspection: /584,0 msl/Tailwater at Time of Inspection: N/A msl	D. Wolf (GFCC) R. Zientuk (HCA) D. Ebersole (GFCC)
Name of Dam:	Type of Dam: Date(s) Inspect	Pool Elevation	Inspection Pers D. Mole D. Ebers

A. WHITMAN (GFCC) Recorder

EMBANKMENT
Sheet 1 of 2

VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
SURFACE CRACKS	Nove	
UNUSUAL MOVEMENT OR CRACKING AT OR BEYOND THE TOE	None	
SLOUGHING OR EROSION: Embankment Slopes Abutment Slopes	None	
CREST ALIGNMENT: Vertical Horizontal	HORIZONTAL-NO DEFICIENCIES VERTICHL-SEE SURVEY dATA FOLLOWING INSpection FORMS.	
RIPRAP FAILURES	6" HIGH HEAVE IN DOWNSTREAM SLOPE	

EMBANKMENT
Sheet 2 of 2

TIONS REMARKS OR RECOMMENDATIONS	T. AREA BUTHIENT	AS SHOWN 5-1			on Stopes. IT TOE
OBSERVATIONS	No deficiencies except wer Area At LEFT ABUTHENT See Decom	WET ARGAS AS	Nove	N 20 N	BRUSH ON SLOPES. TREES AT TOE
VISUAL EXAMINATION OF	JUNCTION OF EMBANKMENT WITH: Abutment Spillway Other Features	ANY NOTICEABLE SEEPAGE	STAFF GAGE AND RECORDER	DRAINS	Вкисн

OUTLET WORKS
Sheet 1 of 1

VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
CRACKING AND SPALLING OF CONCRETE SURFACES IN OUTLET CONDUIT	CAST IRON PIPES	
INTAKE STRUCTURE	ನು ತಾತ್ರಿಗಳ ಕಾರ್ಡಿ	
OUTLET STRUCTURE	RIGHT OUTLET WORKS REBUILT VALVE HOUSE LEFT OUTLET WORKS REBUILT VALVE HOUSE	LEFT GUTLET WORKS STILLING BASIN WALLS TOTHLY DETERIORMIED.
OUTLET CHANNEL	MUCK - OBVIOUSLY	
EMERGENCY GATE	Owner declined TO OPERATE, CONCERNED THAT IT WOULD REMAIN	

UNGATED SPILLWAY
Sheet 1 of 1

VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
CONCRETE WEIR	Scarrege Sanobass	
APPROACH CHANNEL	waus peering	
DISCHARGE CHANNEL	Scour ALL ALONG SUAB. RIGHT WALL PEETING	LEFT WALL-HORIZONTAL CRACK AND 2' 15' UNDERMINING AT 1.5' deep scour Hole
BRIDGE AND PIERS	BRIDGE DECIC	

INSTRUMENTATION

Sheet 1 of 1

VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
MONUMENTATION/SURVEYS	None	
OBSERVATION WELLS	None	
WEIRS	None	
PIEZOMETERS	None	
OTHER	None	

RESERVOIR AND WATERSHED Sheet 1 of 1

VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
SLOPES	Steep Left Shore Genue Richt Shore	
SEDIMENTATION	No Reportes on observes peoblems.	
WATERSHED DESCRIPTION	DAM F immediately Upstream. Uncontraction DRAINAGE AREA WOODED & UNINHABITED.	Q.

DOWNSTREAM CHANNEL
Sheet 1 of 1

VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
CONDITION: Obstructions Debris Other	2-48"×60" CULVERTS UNDER ACLESS ROAD. Remains of Sandbags	
SLOPES	GENTLE AT DAM	
APPROXIMATE NUMBER OF HOMES AND POPULATION	40+ AWELLINGS IN WEATHERLY.	

GANNETT FLEMING CORDDRY
AND CARPENTER, INC.
HARRISBURG, PA.

FOR USCE-DAM INSPECTIONS

COMPUTED BY DRE DATE 4-16-79 CHECKED BY DATE

...

APPROXIMATE SCALE: I IN. = 50 FT.

DELAWARE RIVER BASIN DRECK CREEK, LUZERNE COUNTY PENNSYLVANIA

DAM G

NDI ID No. PA-00643 DER ID No. 40-14

HAZLETON CITY AUTHORITY

PHASE I INSPECTION REPORT

NATIONAL DAM INSPECTION PROGRAM

MAY 1979

APPENDIX C
HYDROLOGY AND HYDRAULICS

APPENDIX C

HYDROLOGY AND HYDRAULICS

In the recommended Guidelines for Safety Inspection of Dams, the Department of the Army, Office of the Chief of Engineers (OCE), established criteria for rating the capacity of spillways. The recommended Spillway Design Flood (SDF) for the size (small, intermediate, or large) and hazard potential (low, significant, or high) classification of a dam is selected in accordance with the criteria. The SDF for those dams in the high hazard category varies between one-half of the Probable Maximum Flood (PMF) and the PMF. If the dam and spillway are not capable of passing the SDF without overtopping failure, the spillway capacity is rated as inadequate. If the dam and spillway are capable of passing one-half of the PMF without overtopping failure, or if the dam is not in the high hazard category, the spillway capacity is not rated as seriously inadequate. A spillway capacity is rated as seriously inadequate if all of the following conditions exist:

- (a) There is a high hazard to loss of life from large flows downstream of the dam.
- (b) Dam failure resulting from overtopping would significantly increase the hazard to loss of life downstream from the dam from that which would exist just before overtopping failure.
- (c) The dam and spillway are not capable of passing one-half of the PMF without overtopping failure.

APPENDIX C

	DELAWARE River Basin
	Name of Stream: DRECK CREEK
	Name of Dam:
	ND ID No.: PA-00643
	DER ID No.: 40-14
Latitude:_	N 40°57′00" Longitude: W 75°54′15"
Top of Dan	(lew-spot) Elevation: 1587.0
Streambed	Elevation: 1568 Height of Dam: 19 ft
Reservoir	torage at Top of Dam Elevation: /79 acre-ft
Size Categ	ory: SMALL
Hazard Ca	egory: High (see Section 5)
Spillway D	esign Flood: VARIES 12 PMF TO PMF MORE THAN 40 DWELLINGS IN WEATHERLY DOWNSTREAM USE PMF UPSTREAM DAMS
Name	Distance Storage from at top of Dam Height Dam Elevation (miles) (ft) (acre-ft) Remarks
DAM F	0.3 31 885 PA-00642
	DGR 40-13
NONE	DOWNSTREAM DAMS

DELAWARE	River	Basin					
Name of Stream: De	RECKS CREEK						
Name of Dam:							
Latitude: N 40° 56′ 55″							
DETERMINATION OF PMF RAINFALL							
For Area							
which consists of Subareas	A1 of 2.	43 sq. mile					
	A2 .						
							
Total Davis	2.5						
Total Drainage Area 2.82 sq. mile							
PMF Rainfall Index = 22.5 in., 24 hr., 200 sq. mile							
	Hydromet, 40 (Susquehanna Basin)						
Zone	N/A	6					
Geographic Adjustment Factor	NIA	1.0					
Revised Index Rainfall	N/A	22.5					
RAINFALL DISTRIBUTION (percent)							
Time	Percent						
6 hours 12 hours	<u>//3</u> /24						
24 hours	132						
48 hours	143						
72 hours	N/A						
96 hours	NIA						

GANNETT FLEMING CORDDRY
AND CARPENTER, INC.
HARRISBURG, PA.

SUBJECT		FILE NO.
	SHE	ET NO OF SHEET
FOR		
COMPUTED BY		

SUBAREA AZ

DAM F

DAM G

FOR DOWNSTREAM

ROUTING SECTIONS,

SEE PLATE C-1

SKETCH OF System

See Sketch on Sheet C-4)	A1	
Name of Dam:		Sheet 1 of
Height: 30 FT (e	xisting)	
Spillway Data: FROM PHRISE I	Existing Conditions	Design Conditions
Top of Dam Elevation	1614.9	1614.5
Spillway Crest Elevation	1610.0	1610.0
Spillway Head Available (ft)	4.9	4.5
Type Spillway Conc.	LETE CHUTE	WITH CONTROL SECTION
"C" Value - Spillway	3.0	3,0
Crest Length - Spillway (ft)	29.0	29.0
Spillway Peak Discharge (cfs)	944	860
Auxiliary Spillway Crest Elevation	NONE	NONE
Auxiliary Spillway Head Available (ft)		
Type Auxiliary Spillway		
"C" Value - Auxiliary Spillway	-	
Crest Length - Auxiliary Spillway (ft)		
Auxiliary Spillway Peak Discharge (cfs)		
Combined Spillway Discharge (cfs)	≈ 940*	2 860
Spillway Rating Curve: ★ ≈ 830 c	CFS AT DESIGN	HEAD.
Elevation O Spillway (cfs) O Auxilia	ary Spillway (cfs)	Combined (cfs)

Data for Dam at Out	tlet of Subarea	A1		
Name of Dam:	F			Sheet 3 of
Storage Data: FR	om PHILE	I	REPORT	
	Area	million	age.	
Elevation	(acres)	gals	acre-ft	Remarks
1582.4 = ELEVO*	0	0	0	
1610.0 = ELEV1	64 = A1	192	589 = 81	
1614.5	67.6		885	
1620.0	72.2			
* ELEVO = ELEVI	- (3S ₁ /A ₁)			
** Planimetered c	ontour at least	10 feet	above top of d	am
Reservoir Area	at Top of Dam	1s <u>4</u>	_ percent of w	atershed.
Remarks:				

DELAWAKE River Basin
Name of Stream: DRECK CREEK
Name of Dam:
NDS ID No.:
DER ID-No.:
Latitude: N 40° 57' 00" Longitude: W 75° 54' 15
Drainage Area: 2.82 sq. mile
Data for Subarea: $A = A = A = A = A = A = A = A = A = A $
Name of Dam at Outlet of Subarea:
Drainage Area of Subarea: 2.43 sq. mile
Subarea Characteristics:
Assumed Losses: 1.0-inch initial abstraction + 0.05 in/hr
The following are measured from outlet of subarea to the point noted:
L = Length of Main Watercourse extended to the divide = 2.42 mile
L_{CA} = Length of Main Watercourse to the centroid = $\frac{1.14}{}$ mile
From NAB Data: AREA 2, PLATE B
Cp = 0.45
$C_{T} = 2.10$
$Tp = C_T \times (L \times L_{CA})^{0.3} = 2.547 \text{ (hrs)}$
Flow at Start of Storm = 1.5 cfs/sq. mile x Subarea D.A = 3.65 cfs
Computer Data:
QRCSN = -0.05 (5% of peak flow)
RTIOR = 2.0
Remarks:

Data for Dam at Outlet of Subare (see Sketch on Sheet C-4)	A A 2		
Name of Dam:		Sheet 1 of	
Height: 19 FT.	(existing)		
Spillway Data:	Existing Conditions	Design Conditions	
Top of Dam Elevation	1586.4	1587.0	
Spillway Crest Elevation	1584.0	1584.0	
Spillway Head Available (ft)	2.4	3.0	
Type Spillway Conc	RETS CHUTE W	SITH CONTROL !	SE
"C" Value - Spillway	3.0	3.0	
Crest Length - Spillway (ft)	71.8*	75	
Spillway Peak Discharge (cfs)	801	1169	
Auxiliary Spillway Crest Elevation		NONE	
Auxiliary Spillway Head Availabl	e (ft)		1
Type Auxiliary Spillway		-	200
"C" Value - Auxiliary Spillway			*
Crest Length - Auxiliary Spillwa	y (ft)		
Auxiliary Spillway Peak Discharge	(cfs)		(Table of the
Combined Spillway Discharge (c			T GET
Spillway Rating Curve:	* 2-1.5' p	iersi	367
Elevation O Spillway (cfs) OA	SEE NEXT	"MERT"	

GANNETT FLEMING CORDDRY AND CARPENTER, INC. HARRISBURG, PA.

FILE NO
SHEET NO OF SHEETS

DAM

DAN

EFFECTIVE SPILLINY LENGTH

L= L'-2(NKp + Ka)xHe

N= NUMBER OF PIERS

FROM IVES-111-5 FOR POINTER

NOSE JOIENS Kp=0.0

FROM IVES-111-3 FOR ABUTMENTS

NOT TROUBLE Ka=0.1

SINCE ONLY ONE ABUTMENT SUICE

HAVE EFFECT, USE Ka=0.05

L= (75-2×1.5) - 2 (2×0+0.05) x 2.4 = 71.76 USE 71.8'

LOW CHERU F ENDE

ASSUMING NO DEBRIS

LAIDSE SHOULD NOT

INTERFERE WITH FLOW

LET 10 100 01 days

THIS PAGE IS BEST QUALITY PRACTICALED.

Data for Dam at Outlet of Subarea	A2		
Name of Dam:G		She	et 2 of
Outlet Works Rating:	Outlet 1	Outlet 2	Outlet 3
Invert of Outlet	1568.4		
Invert of Inlet	NOT AV	HI. ALLE	
Туре	CIP		
Diameter (ft) = D	2		
Length (ft) = L	80±		
Area (sq. ft) = A	3.142		
N	.013		
K Entrance	0.5		
K Exit	1.0		
K Friction $\stackrel{*}{=} 29.1_{\text{N}}^2 \text{L/R}^{4/3}$	1.25	2	
Sum of K	2.75		
$(1/K)^{0.5} = C$	0.60		
Maximum Head (ft) = HM	18		
$Q = C A \sqrt{2g(HM)}$ (cfs)	64		
Q Combined (cfs)	64		

^{*} R = Hydraulic Radius = (Area/Wetted Perimeter) = D/4 for Circular Conduits.

Data for Dam at Ou	tlet of Subarea	<u>A</u>	2	
Name of Dam:	6			Sheet 3 of
Storage Data:	Area	Stor	age	
Elevation	(acres)	gals	acre-ft	Remarks
/552.1 = ELEVO*	0	0	0	-
1584.0 = ELEVI	13 = A1	45	<u>138</u> = \$1	
1586.4	13.8		170	INTERPOLATED
1587.0	14.0		179	INTERPOLATED
1600.0				
				``````````````````````````````````````
				
				
*				
* ELEVO = ELEVI	- (3s ₁ /A ₁)			
** Planimetered c	ontour at least	10 feet	above top of d	am
Reservoir Area			_ percent of w	atershed.
		-		

Data for Dam at Outlet of Subarea
Name of Dam: Sheet 4 of
Breach Data:
Sketch of Dam Profile (not to scale): 525't
Sketch of Top of Dam (not to scale): VALIES 6' TO 8'
Soil Type from Visual Inspection:SANDY SILT
Maximum Permissible Velocity (Plate 28, EM 1110-2-1601) $\frac{1.8}{1.8}$ fps (from Q = CLH ^{3/2} = V·A and depth = (2/3) x H) $A = L \cdot A$
HMAX = $(4/9 \text{ V}^2/\text{C}^2)$ = $/49$ ft., C = $/2$ ft., C = $/2$ ft., C = $/2$ HMAX + Top of Dam Elev. = $/2$ = FAILEL (Above is elevation at which failure would start)
Dam Breach Data:
BRWID = 80 ft (width of bottom of breach)
Z = (side slopes of breach)
ELBM = 1568.0 (bottom of breach elevation, minimum of zero storage elevation)
WSEL = 1584.0 (normal pool elevation)
T FAIL = 6 mins
= hrs (time for breach to develop)

DELAWARE River Basin
Name of Stream: DRECKS CREEK
Name of Dam:
N D6 1D No .:
DBR 10 No.:
Latitude: N 40° 57′00" Longitude: W 75° 54′15
Drainage Area: 2.82 sq. mile
Data for Subarea: <u>A2</u> (see Sketch on Sheet C- <u>4</u>)
Name of Dam at Outlet of Subarea:
Drainage Area of Subarea: sq. mile
Subarea Characteristics:
Assumed Losses: 1.0-inch initial abstraction + 0.05 in/hr
The following are measured from outlet of subarea to the point noted:
L = Length of Main Watercourse extended to the divide = $\frac{1.14}{1}$ mile
L_{CA} = Length of Main Watercourse to the centroid = mile
From NAB Data: AREA 2, PLATE B
Cp = 0.45
$C_{T} = 2.10$
$Tp = C_T \times (L \times L_{CA})^{0.3} = /./26$ (hrs)
Flow at Start of Storm = 1.5 cfs/sq. mile x Subarea D.A = 0.6 cfs
Computer Data:
QRCSN = -0.05 (5% of peak flow)
RTIOR = 2.0
Remarks:

GANNETT FLEMING CORDDRY AND CARPENTER, INC. HARRISBURG, PA.

SUBJECT	 	FILE NO		
		SHEET NO	OF	SHEETS
POR				
COMPUTED BY				

SELECTED COMPUTER OUTPUT

TIEM

PAGE

MULTI - RATIO ANALYSIS

I NOUT

System PEAK FLOWS

C-15

DAM F

DAM G

C-18

DAM BREAK ANALYSIS

NOTES: 1. FOR Y2 PMF

2. PLAN 1 - NO CHIM BREAK

PLAN 2 - ONLY DAM 6 FAILS

INPUT

SYSTEM PEHK FLOWS

C-21 TO C-22

DAM F (ASSUMED NOT TO FAIL)

C-23

DAM G

C-24

C-24

C-24

C-24

C-24

C-24

C-24

C-24

C-26

FLOOD HYDROGRAPH PACKACE (HEC-1) DAN SAFETY VESTON LAST HOUFFLATION 26 FER 79	ACKAGE (4FC-1) JULY 1074 N 26 FEB 70	1074								
-~	• • •		47	TIONAL	NATIONAL DAY INSPECTION PROGRAM DRECK CPFIX	CTION P.	OCRAH			
•	•			٥	DAMG					
	B 300	6	15	c	0	c	0	0	7-	0
. •		•	•							
	-		•	*	2.	•				
	E.	-					-			
• :	- ·	RUNDEF INTO								
2=		22.5	111	124	2.82	177			-	
12	-					?		2		
	V 2.847	99.0						co.		•
2:	×-1-	-•04	2.0							
•	- ·	~								
		OUTE THR	ROUTE THROUGH DAM F							
				-						
	- 1						-1610	0		
	0	70	2007							
: T	10170	0.01	0791							
22	\$01616.5	1.1								
23	2	~		2						
22	2	NCONTROLI	UNCONTROLLED PHHOFF		INTO DAM G					
23	-	-	0.30		2.82					
92	•	55.55	113	124	132	143				
	1-124	24.0					-	•00		• 00
56	X -1.5	05	2.0							
30	*	~								
	2	OMPINE IN	COMPINE INFLOW TO DAM G							
**	- '	~					•			
2 2		ROUTE THROUGH DAM								
35				-				,		
36		13	•				-1586	0		
77	8E1552.1	1584	1600							
8 5	1594	71.8	3.0	1.5						
	201586.4	90	;							
;	\$V1586.4	1586.66	1596.8	15.6.0	2 603					
.5	00			2000						

C-15

PEAK FLOW AND "TORAGE (END OF PLAIOU) SUMMARY FOR MULTIPLE PLAN-RATIO ECONOMIC COMPUTATIONS FLOW STOOM) AREA IN SQUARE MILES (SOUAPE KILOMFIRS)		
PEAK FLOW AND "TOKAGE (END OF PLATOD) SUMMARY FOR MULTIPLE PLAN-RATIO ECONOMIC. FLOWS IN CURIC FEET PER SFCCNO (CURIC PETERS PER SFCOND) AREA IN SQUARE MILES (SOUARE KILOMFTERS)	COMPUTATIONS	
PEAK	FLOW AND STOKAGE (END OF PLATOU) SUMMARY FOR MULTIPLE PLAN-RATIO ECONOMIC COM	FLOWS IN CURIC FEET PER SFCOND (CUPIC PEITHS PER SECOND) AREA IN SCHARE MILES (SOUARE MILOMFITES)
	PEAK	

				FLOWS IN	CUBIC FE	ET PER SFC	FLOWS IN CUBIC FEET PER SFCCNO (CUPIC METERS PER SFCOND) AREA IN SQUARE MILES (SOUAPE KILOMFTERS)	PETERS PER	SECOND	
UPERATION	2	STATION	AREA		1.00	PATIO 2	PLAN NATIO 1 PATIO 2 RATIOS APPLIED TO FLOUS 1.00 .50 .40 .30 .70 .10	PLIED TO FL RATIO 4	005 6AT10 5	RATIO 6
HVOROCPAPH AT	=	-	2.43		4068.	2434.	1627.	1627. 1220. 814. 46.nP)(34.56)(23.04)(23.04.)(11.523(
MO11ED 10		~~	2.43		114.7436	1985.	1501.	852.	528.	234.
HYDROGPAPH AT	=	~~	1.01)		1100.	\$50.	12.4630	330.	6.2330	3.1136
2 COMPINED		~~	7.8?	-	135.6830	2105.	1688.	25.933(\$67.	7.0510
90 031 no		~	7.82		4785.	2306.	1 4785, 2306, 1641, 911, 565,	9110	565.	248.

C-16

==	HAK OL	401	42.	43.	63.	. 59		
DURATION	OVF K TOP	HOURS	11.50	6.75	\$1.9	1,25	0.00	
MAYIMIN	OUTFLOW	5.13	*025	1085.	1501.	852.	528.	
HAKIMUM	STOPACE	AC -F T	.650	071.	010.	RR7.	•00•	
MANTALIN	DEP TH	UNER DAM	1.04	.53	.37	•03	00.0	
MAXIMIM	PESE PVOIR	N.S.FLEV	1615.58	1615.03	1614.87	1614.53	1617.33	
	MAXING MAXINGM MAXIMED DURATION	MAXIMUM MAXIMUM MAXIMUM DURATION PFF TO STOPE	R OFFTH STOPACE OF THE ACT OF THE	MAXIMUM MAXIMUM MAXIMUM DURATION R DEPTH SIDPACE DUFFLOW OVER TOP V OVER DAM AC-FT CFS HOUKS 1-DR 059, 4057- 11-50	MAXIMUM MAXIMUM MAXIMUM DURATION R DFFH STOPACE DUFFLOW DVFK TOP V OVER DAM AC-FT CFS HOUKS 1.08 059, 4.057, 11.50 53 021, 1085, 6.75	MAXIMUM MAXIMUM MAXIMUM DURATION R DEPTH SIDPACE DUFFLOW OVER TOP 1.00	MAXINUM MAXINUM WAYINUM DURATION	NETHUM MAXIMUM MAXIMUM DURATION OFFTH SIDPACE DUFFLOW OVER TOP OVER TOP

.C.-!7.

		ns	DAY	M CHELT AN	SISATI		
	ELFVATION STORAGE OUTFLOU	1884	VALUF OO 3A. 0.	1844.00 1594.00 1594.00 158. 00 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	. 104	10 01 14H 154640 170*	
2 110 2 110	RESERVOIR V.S.FLEV	MAKINUM DFP TH OVER DAM	STOPAGE AC-FT	MAXIMUM OUTFLOW CFS	CURATION OVER TOP HOURS	TIME OF YAY OUTFLOW HOURS	FAILUR HOURS
1.00	1580,32	1.92	100.	1785.	11.75	5	6
.50	1587.51		186.	2306.	9.25	00.53	
07.	1587.24	.84	142.	1681.	7.25	43.75	0.0
010	1586.61	15.	173.	911.	10.24	\$2.24	0.00
02.	15890	00.7	164.	\$64.	0000	15.25	00.0
.10	1585.10	0.00	153.	24.0	n.0n	16.00	0.00

. . Ç-/8. .

750 1500 1500 1500 1500 1500 1500 000 150		4				-	77.77				
137C 1560 1560 1570 1600 1 1700 1700 1 1 1 1 1 1 1 1 1 1 1 1 1		•	1706	75.0	1600	000	15.60	068	1540	076	1540
## FEAT URECK CREEK ## 1	-	2001	1560	1460	1580	1700	1600				
1450		-	7								
1450 1550 550 1480 1520 3000 m183 1450 1550 550 1560 1100 1100 1200 1450 1550 550 1560 1100 1100 1100 1100 1450 1550 550 1560 1100 1100 11480 1440 1480 1480 1440 1480 1560 1750 1500 1750 1750 1480 000 1140 1200 1570 1460 1750 1500 1780 0800 00588 1570 1460 1750 1780 1780 080588 1570 1570 1780 1780 1400 1150 00588 1570 1770 1750 1780 0500 1050 11500 115	-	F		CRFEK							
1450 1550 5.09 1480 1520 3000 .n183 1480 1200 1450 11450 1200 1450 1550 11450 1200 11450 1550 11450 1200 11450 1550 11450 1200 11500											
1450	-	-						7			
1550 1500 1540 950 1500 1100 1480 1200 1550 1800 1540 2200 1560 1 1	9	00.	200	60.	1480	15.20	3000	.0183			
1450 1500 1800 1540 2200 1540 1		ت	1550	650	1540	056	1500	1100	1480	1200	1480
## ## ## ## ## ## ## ## ## ## ## ## ##		1450	1500	1800	1540	2200	15 AC				
##ZIE CRIEK-STEFF REACH *09		-						•			
1520 1560 400 1440 1480 5200 60183 1520 1460 1750 1500 700 1480 900 1440 1200 1520 1460 1750 1500 7200 1480 900 1440 1200 1520 1460 1750 1500 7200 1480 900 1360 5080 100 1400 1380 4000 1380 6800 90558 1360 620 1380 6200 1360 5260 1370 600 1260 450 1220 6200 9029 1270 1200 400 1260 450 1220 600 1220 620 1440 1750 1760 470 1780 6200 9029 1430 1100 1100 1100 1100 1100 1400 1400	-	H	ZLE CREE		PEACH						
-00 -0.7 -0.0 1440 1480 -5200 -0.183 1520 1460 1750 1500 7200 14.0 14.80 -0.0 114.0 1200 1520 1460 1750 1500 7200 14.0 1 1 1 1 1 1 -00 -0.7 -0.0 1740 1780 6800 -0.0588 0 1400 1380 400 1380 5000 1380 5080 5950 1360 6420 1780 7080 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.											
**************************************	-	-						7			
1520 1560 400 1570 1480 000 1440 1200 1520 1660 1750 1540 2200 1480 000 1440 1200 1520 1660 1750 1540 2200 1480 000 1800 1300 1400 1400 1380 6800 1360 5250 1340 5680 5950 1360 6420 1380 6400 1400 1400 1220 620 1500 007 007 00 1260 450 1240 600 1220 620 1500 007 007 00 1260 450 1260 600 1220 620 1500 007 007 00 1260 450 1300 1200 1200 600 1440 1100 1100 1100 1100 1100 1436	9.	•00•	200	60.	0771	34.80	4200	- P. P. P.			
1520 1460 1750 1500 7200 1700 1 1	1	0	1560	204	15.20	200	1480	000	1440	4200	3776
## ## ## ## ## ## ## ## ## ## ## ## ##		1520	1460	1750	1500	2200	1400	20.		0031	
#AZLE CPEEK-FLAT RFACH ***O********************************		-	*								
90 1470 1780 6800 00558 1340 5680 5950 1360 5950 1360 5950 1360 5950 1360 5950 1360 5950 1360 5950 1360 5950 1360 5950 1360 5950 1360 5950 1360 5950 1360 5950 1360 5950 1360 5950 1360 5950 1360 1260 5950 1260 5950 1260 5950 1260 5950 1260 5950 1260 5950 1260 5950 1360 1260 5950 1360 1360 1436 1400 1100 1400 1086 1401 1080 1436 1437 1086 1550 1100 2150 1260 1260 1250 1260 1260 1260 1260 1260 1260 1260 126	-	*	716 7 917	TA TA TAN	7						
-09 -07 -09 1340 1380 6800 -00588 1340 5680 5950 1360 5250 1360 5680 5950 1360 6420 1380 4000 1360 5250 1360 5680 5950 1360 6420 1380 1400 1400 120 6200 5950 1360 5680 1360 6420 1260 6200 6200 520 520 520 520 520 520 520 520 520						•					
5050 14.00 500 13.80 68.00 0.005.88 5050 14.00 13.60 5250 134.0 5680 5050 13.60 64.20 13.80 14.00 13.60 5250 13.60 64.20 13.80 14.00 14.00 13.60 5250 3.00 0.07 0.09 12.20 12.80 62.00 0.02.9 3.20 13.00 4.00 12.60 4.50 12.40 6.00 12.20 6.20 600 12.00 770 12.60 78.0 13.00 11.00						-					
**************************************								-			
9 14 0	9	60.	•04	60.	1340	1180	6800	•00588			
5950 1360 6420 1340 7080 1400 1		0	1600	3600	1380	0007	1360	5250	1340	5680	1340
1 HAZLE CREEK-NARROW APPROACH TO WEATHERLY -00 -07 -09 1220 1280 6200 .029 320 1300 400 1260 450 1240 600 1220 620 640 1240 770 1260 780 1300 1		050	1360	0279	1380	7080	1400				
HAZLE CREEK-WARROW APPROACH TO WEATHERLY -00		-	1					•			
### 1	-	-	ZIE CREE	K-NARROW		TO MEA	THERIY				
-00 -07 -609 1220 1280 6200 -029 320 1300 600 1260 450 1260 600 1220 620 690 1240 770 1260 450 1260 600 1220 620 1						-					
320 1300 400 1220 1280 6200 6229 320 1300 400 1260 450 1240 600 1220 620 690 1240 770 1260 450 1260 1300 1	-	-						7			
320 1300 400 1260 450 1240 600 1220 620 600 1220 620 600 1220 620 600 1220 620 600 1220 620 600 1220 620 600 1220 620 620 600 1220 620 620 620 620 620 620 620 620 620	9	00.	200	60.	1220	1280	6200	.020			
690 1240 770 1260 780 1300 1 WEATHERLY 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	320	1300	00 9	1260	057	1260	900	1220	420	1220
1 S VEATHERLY 1 1 1 -1 -1 -1 -1 -1 1 1 1 1 1 1 1 1 1	1	009	1240	770	1260	787	1300		2	070	
#FATHERLY 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1		-	•								
1 .07 .1 10AO 1120 4200 .0238 0 1160 1100 1400 10A6 1401 1080 1436 1437 1086 1550 1100 2150 1200	-	NF.	ATHERIT								
1 .07 .1 1080 1120 4200 .0238 0 1160 1100 1100 1400 1086 1401 1080 1436 1437 1086 1550 1100 2150 1200											
1437 1086 1550 1100 2150 1200 1200 1401 1080 1436						-					
1437 1086 1550 1100 2150 4200 -0238 1437 1086 1550 1100 2150 1200 1200	-		THE PERSON					-			
1437 1086 1550 1100 2150 1200 1401 1080 1436	9	-	•02	•	1080	1120	4200	•0238			
1437 10%6 1550 1100 2150 1200		c	1160	1100	1100	14 00	1086	1401	1080	1436	1080
		1437	1086	1550	1100	2150	1200			!	
		00									

PEAK FLOW AND STORAGE (FND OF PERIOD) SUMMARY FOR MULTIPLE PLAN-PATIO ECONOMIC COMPUTATIONS FLOW AND THE PER SECOND (CUBIC METERS PER SECOND)
AREA IN SOUARE MILES (SOUARE KILOMETERS)

2 2.43 (6.29) (6.29) (7.30) (7.30)	IN RATIO 1 SATIOS APPLIED TO FLOWS	1 2019. 2 2019. 1 57-16)(1 1457. (41-27)(2 1457. (41-27)(1 555. (15.72)(2 555. (15.72)(1 1589. (45.00)(2 1589. (45.00)(1 1589. (44.09)(2 16636. (471.08)(1 1588. (44.97)(2 9397. (266.09)(1 1589. (44.96)(2 6787. (192.19)(1 1582. (44.80)(? 4122. (116.73)(1 1551. (43.93)(2 2023. (57.28)(
M L	AREA PLAN	2.43	2.43	1.01)	2.82	2.82	2.82 7.30)	2.82	2.82 7.30)	2.82 7.30)
	STATION		~~	~~	~~	~~	F ~	•	•	•~

. . .

C-21

10 M. 17

2 10420 (55.55)(55.55)(7.50) (43.87)(2 1049)

C-22

٠ ۽ ١

SUMMARY OF DAM SAFETY ANALYSIS

		TIME OF FAILURE HOURS	00•0		FAILURE HOURS	0.00
	10P OF DAM 1614.50 885.	TIME OF MAX OUTFLOW HOURS	20.90	TOP OF DAM 1614.50 885. 830.	TIME OF MAX OUTFLOW HOURS	20.90
		DURATION OVER TOP HOURS	7.70		DURATION OVER TOP HOURS	7.70
DAM F	SPILLWAY CREST 1610-00 589-	HAXIMUM OUTFLOW CFS	1457.	SPILLWAY CREST 1610.00	MAXIMUM OUTFLOW CFS	1457.
0.0	1610.00 1610.00 589.	HAXIHUM STORAGE AC-FT	1025.	INITIAL VALUE 1610-00 589-	HAX IHUM STORAGE AC-FT	1025.
	111N1 161	DEPTH OVER CAM	2.04	A11111 161	DEPTH OFFTH OVER DAM	2.05
	ELEVATION STORAGE OUTFLOA	MAXIMUM RESERVOIR U.S.FLEV	1616.55	ELEVATION STORAGE DUTFLOW	MAXIMUM RESFROIR W.S.ELEV	1616.55
4	PLAN 1	PATTO PER	• 50	PLAN 2	RATIO OF PMF	•\$0
				2		

SUMMARY OF GAM SAFETY ANALYSIS

		TIME OF FAILURE HOURS	00.0		TIME OF FAILURE HOURS	16.90									•			
	TOP OF DAM 1586.40 170. RN1.	TIME OF HAX OUTFLOW HOURS	20.50	10P OF DAM 1586.40 170. 801.	TIME OF HAX OUTFLOW HOURS	17.00												
		DURATION OVER TOP HOURS	09.6		DURATION OVER TOP HOURS	•32	m	TIME	20.60	'n	TIME	17.10		TIME	20.70		TIME	17.20
6	SPILLWAY CPEST 1584.00 178.	MAXIMUM OUTFLOW CFS	1589.	SPILLWAY CREST	MAXIMUM OUTFLOW CFS	16636.	STATION	STAGESFT	1543.3	STATION	STAGESFT	1547.6	STATION	STAGESFT	1482.5	STATION	STAGESFT	1485.7
DAM		HAXIMUM STORAGE AC-FT	182.		STORAGE AC-FT	172.	PLAN 1	FLOUSCFS	1588.	PLAN 2	FLONACFS	9397.	PLAN 1	FLOWACFS	1588.	PLAN 2	FLOW, CFS	6787.
	INITIAL VALUF 1584.00 139. 0.	HAXIMUM DEPTH OVER DAM	04.	INITIAL VALUE 1584.00 1384	HAXIMUM DEPTH OVER DAM	.15	•	RAT 10	•\$0	•	RATIO	05.	•	RATIO	•50	•	RATIO	•\$0
	FLEVATION STORAGE DUTFLOW	MAXIMUM RESERVOIR V.S.ELFV	1587.19	ELEVATION STORAGE OUTFLOW	RESERVOIR N.S. ELEV	1586.55												
		RAT10 0F PHF	•\$0	2	RATIO OF PHF	0.												
				2														

																•		DAMAGE CENT			ACE CENTE	
					•													0			000000	
2	TIME	21.00	5	TIME	17.30	•	TIME	21.80	•	TIME	17.80		TIME	21.90	~	TIME	18.10	•	TIME	22 •00	•	TIME
STATION	STAGESET	1441.1	STATION	STAGESFT	1442.4	STATION	STAGESFT	1341.3	STATION	STACESET	1341.7	STATION	STAGESFT	1224.3	STATION	STAGESFT	1224.8	STATION	STAGESFT	1085.1	STATION	MANIMUM
PLAN 1	FLOULTS	1582.	PLAN 2	FLOUSCFS	4122.	PLAN 1	FLOUSCFS	1551.	PLAN 2	FLOW, CFS	2023.	PLAN 1	FLOWACFS	1550.	PLAN ?	FLOW,CFS	1962.	PLAN 1	FLOWACFS	1549.	PLAN 2	MAKIMUM
a	PAT 10	• 50	4	RATIO	0.0	ă	RATIO	•\$0	τ.	RAT 10	•\$0	Š	RA 110	• 50	۵	PATIO	• 50	•	PAT 10	•\$0	ā	

C-25

SO 1940. 1085.9 18.20 DAMAGE CENTER

C-26

GANNETT	FLEMING	CORDDRY
AND C	ARPENTE	R. INC.
HA	RRISBURG.	PA.

SUBJECT		PILE N	D	
		SHEET NO.	OF	
FOR				r'
COMPUTED BY	DATE	CHECKED BY	DATE	

TABLE OF PERTINENT RESULTS

PMF RAINFALL : 25.74"

	PMF	1/2 PMF
RUNDEF (INCHES) DAM F	23.46	11.73
OUTFLOW (CFS)	4068	2034
DAM G:	4032	1985
INFLOW (CFS)	4792	2305
OUTFLOW (CFS)	4785	2306
HEIGHT OF OVERTOPH	16(FT) 1.92	1.11
DURATION OF OVERTOPP	ping (HES.) 13.75	9.25

DELAWARE RIVER BASIN DRECK CREEK, LUZERNE COUNTY PENNSYLVANIA

DAM G

NDI ID No. PA-00643 DER ID No. 40-14

HAZLETON CITY AUTHORITY

PHASE I INSPECTION REPORT

NATIONAL DAM INSPECTION PROGRAM

MAY 1979

APPENDIX D
PHOTOGRAPHS

A. Top of Dam

B. Upstream Slope

C. Pipe through Embankment

D. Outlet Works at Toe of Embankment

E. Wet Area at Toe of Embankment

F. Spillway Crest

G. Crack in Left Spillway Wall

H. Scour Hole at Left Spillway Wall

AD-A078 932

GANNETT FLEMING CORDDRY AND CARPENTER INC HARRISBURG PA F/G 13/13
NATIONAL DAM INSPECTION PROGRAM. DAM G, (NDI ID NUMBER PA-00643--ETC(U)
MAY 79 A C HOOKE
DACW31-79-C-0015
NL

UNCLASSIFIED

END DATE FILMED

I. Spillway Chute

J. Weatherly - downstream of Dam G

DELAWARE RIVER BASIN DRECK CREEK, LUZERNE COUNTY PENNSYLVANIA

DAM G

NDI ID No. PA-00643 DER ID No. 40-14

HAZLETON CITY AUTHORITY

PHASE I INSPECTION REPORT

NATIONAL DAM INSPECTION PROGRAM

MAY 1979

APPENDIX E
GEOLOGY

DAM G

APPENDIX E

GEOLOGY

l. General Geology. The damsite and reservoir are located in Luzerne County. The rock formations exposed in Luzerne County range from the Post-Pottsville formations, of Pennsylvanian Age, down to the Onondaga formation, of Middle Devonian Age. The Wisconsin terminal moraine crosses the southern part of the County, and the greater part of the County is covered by glacial drift. Extensive deposits of glacial outwash occur along the Susquehanna River and less extensive deposits along the smaller streams.

Nearly all of Luzerne County lies in the Valley and Ridge Province in which nearly all the rocks have been strongly folded. In going from north to south across the County, five major folds are encountered, all of which trend northeast. The first of these is a shallow syncline on the crest of North Mountain, forming the Mehoopnay coal basin. The second is the Milton Anticline, which exposes the Portage group in the northwestern part of the County and gradually flattens out toward the northeast. The third and most pronounced is the Lackawanna Syncline, which originates in Lackawanna County to the north, and has preserved the post-Pottsville formations throughout the Wyoming Valley. The maximum depth of this syncline is reached in the vicinity of Wilkes-Barre and Plymouth. The double rim of this syncline is formed by the resistant Pottsville formation and Pocono sandstone, separated by the less resistant Mauch Chunk shale. The fourth fold is the Berwick (Montour) Anticline, which exposes a few feet of the Onondag formation in the vicinity of Beach Haven. This fold reaches its maximum development farther west and only the eastern portion reaches Luzerne County. The fifth major fold comprises a series of anticlines and synclines forming the Eastern Middle Anthracite Field in the vicinity of Hazleton. synclinal basins in this region are relatively shallow and there are large areas from which all coalbeds have been eroded.

The general dips of the region vary from 0° to 40°, and the maximum dips are found on the rims and within the synclinal coal basins. The relatively soft Post-Pottsville beds in their cores are severely folded and contorted with numerous minor faults. The northern and easternmost parts of the County border the Appalachian Plateau Province and are characterized by horizontal, or nearly horizontal strata. The Catskill continental group of rocks underlies those parts of Luzerne County that are outside of the five major folds.

2. Site Geology. Dam G is founded on the Pottsville sandstone of Pennsylvanian Age. The southern shore line of the reservoir delineates the contract between the Pottsville and Llewellym Formations. The Pottsville Formation is composed of hard coarse quartz conglomerate, sandstone, and a few thin shale and coal beds. This formation forms a ridge around the Wyoming Valley coal basin and is folded into a series of small anticlines and synclines striking east northeast in the extreme southeastern portion of Luzerne County. Bedding is generally well developed in the area with cross-bedding common in the sandstones. The sandstones and conglomerates of this formation are moderate to highly resistant to weathering.

