

Set2Box: Similarity Preserving Representation Learning of Sets

Geon Lee

Chanyoung Park

Kijung Shin

Similarity Between Sets is Used Everywhere

- Similarity between sets has been employed in many areas:
 - Recommendation
 - Graph compression
 - Medical analysis
 - Other examples include plagiarism detection and gene expression.

Do user A and user B have similar preferences?

Do node 3 and node 4 have similar sets of neighbors?
Should we merge them as a supernode?

Do two MRI images have similar keypoints?

Why Do We Embed Sets?

- Sets grow in numbers and sizes.
 - E.g., 1. Millions of users rate tens of thousands of movies.
 - E.g., 2. Many nodes in graphs have thousands of neighbors.
 - → Computation of **set similarity** requires substantial **storage** and **time**.

How can we represent sets accurately, concisely, and fast?

Similarity Preserving Set Embedding

- **Given:** (1) a set S of sets and (2) a budget b
- Find: a latent representation z_s of each set $s \in S$
- to Minimize: $||sim(s, s') \widehat{sim}(z_s, z_{s'})||$ Accuracy
- Subject to: the total encoding cost $Cost(\{z_s: s \in S\}) \le b$ Conciseness
- Desired to: compute set similarity in a constant time Speed

Set of Sets

Embedding Space

Similarity Preserving Set Embedding (cont.)

- There are diverse set similarity measures.
 - It is desirable to be used for various similarity measures.

Versatility

	Similarity of Pair (A, B) of Sets		
Jaccard Index	$\frac{ A \cap B }{ A \cup B }$		
Overlap Coefficient	$\frac{ A \cap B }{\min(A , B)}$		
Dice Index	$\frac{2 \cdot A \cap B }{ A + B }$		
Cosine Similarity	$\frac{ A \cap B }{\sqrt{ A \cdot B }}$		

Roadmap

1. Concepts

- 2. Basic Method: <u>Set2Box</u>
- 3. Advanced Method: Set2Box⁺
- 4. Experimental Results
- 5. Conclusion

Box Embedding

- Set2Box is an accurate algorithm for similarity preserving set embedding.
 - We represent sets as **boxes** (**ranges**) instead of vectors (points).

Box Embedding (cont.)

A **box** B_X consists of two vectors:

- Center $c_X = (4,3)$
- Offset $f_X = (3,2)$

From c_X and r_X , we can obtain min/max vectors:

- Min point $m_X = c_X f_X = (1,1)$
- Max point $M_X = c_X + f_X = (7.5)$

The **volume** of the box is computed by:

$$V(B_X) = \prod_{i=1}^d (M_X[i] - m_X[i]) = 6 \cdot 4 = 24$$

Conclusion

Box Embedding (cont.)

The min/max vectors of box B_X are:

- Min point $m_X = c_X f_X = (1,4)$
- Max point $M_X = c_X + f_X = (5,6)$

The min/max vectors of box B_Y are:

- Min point $m_Y = c_Y f_Y = (2,1)$
- Max point $M_Y = c_Y + f_Y = (6.5)$

The min/max vectors of box $B_X \cap B_Y$ are:

- Min point $m_{X \cap Y} = \max(m_X, m_Y) = (2,4)$
- Max point $M_{X \cap Y} = \min(M_X, M_Y) = (5,5)$

Box Embedding (cont.)

Several set operations hold in box embedding.

1. Transitivity Law	$A \subset B, B \subset C \to A \subset C$
2. Idempotent Law	$A \cup A = A$ $A \cap A = A$
3. Commutative Law	$A \cup B = B \cup A$ $A \cap B = B \cap A$
4. Associative Law	$A \cup (B \cup C) = (A \cup B) \cup C$ $A \cap (B \cap C) = (A \cap B) \cap C$
5. Absorption Law	$A \cup (A \cap B) = A$ $A \cap (A \cup B) = A$
6. Distributive Law	$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

Roadmap

- 1. Concepts
- 2. Basic Method: Set2Box
- 3. Advanced Method: Set2Box⁺
- 4. Experimental Results
- 5. Conclusion

Set2Box: Representing Sets as Boxes

- We learn a pair of embedding matrices of **entities** \mathcal{E} :
 - $Q^{c} \in \mathbb{R}^{|\mathcal{E}| \times d}$: centers of entities
 - $Q^{\mathrm{f}} \in \mathbb{R}^{|\mathcal{E}| \times d}$: offsets of entities
- We aggregate (i.e., pool) entities' embeddings to obtain the box B_S of the set S.

Set2Box: Representing Sets as Boxes (cont.)

- We aim to preserve relations among triple $\{s_1, s_2, s_3\}$ of sets.
 - Preserve the cardinalities of the subsets by the volumes of the boxes.

Set2Box: Representing Sets as Boxes (cont.)

- We aim to preserve relations among triple {s₁, s₂, s₃} of sets.
 - Learn the relative sizes of the following seven subsets:

• The objective is to preserve the sizes by the **box volumes**:

$$|s_1| \propto \mathbb{V}(\boldsymbol{B}_{s_1}) \qquad |s_1 \cap s_2| \propto \mathbb{V}(\boldsymbol{B}_{s_1} \cap \boldsymbol{B}_{s_2})$$

$$|s_2| \propto \mathbb{V}(\boldsymbol{B}_{s_2}) \qquad |s_2 \cap s_3| \propto \mathbb{V}(\boldsymbol{B}_{s_2} \cap \boldsymbol{B}_{s_3})$$

$$|s_3| \propto \mathbb{V}(\boldsymbol{B}_{s_3}) \qquad |s_3 \cap s_1| \propto \mathbb{V}(\boldsymbol{B}_{s_3} \cap \boldsymbol{B}_{s_1})$$

$$|s_1 \cap s_2 \cap s_3| \propto \mathbb{V}(\boldsymbol{B}_{s_1} \cap \boldsymbol{B}_{s_2} \cap \boldsymbol{B}_{s_3})$$

Roadmap

- 1. Concepts
- 2. Basic Method: Set2Box
- 3. Advanced Method: Set2Box⁺
- 4. Experimental Results
- 5. Conclusion

Set2Box⁺: Even More Concise & Accurate

- We propose **Set2Box**⁺ to derive better conciseness and accuracy.
 - **Set2Box**⁺ consists of two effective schemes:
 - ☐ Box quantization makes boxes more concise.
 - ☐ **Joint training** improves the accuracy.

Basic Method

- Box quantization (BQ) compresses boxes.
 - Divide the box $B \in \mathbb{R}^d$ into **D** subspaces where each dimension is $\mathbb{R}^{d/D}$.
 - In each subspace, there are K key boxes.

- Box quantization (BQ) compresses boxes.
 - To encode n number of d-dimensional boxes: (Original) 64nd bits \gg (BQ) $64DKd + nD \log_2 K$ bits

How does box quantization find the closest key box?

To compute box similarities, we define **Box Overlap Ratio**:

$$\mathbf{BOR}(B_X, B_Y) = \frac{1}{2} \left(\frac{\mathbb{V}(B_X \cap B_Y)}{\mathbb{V}(B_X)} + \frac{\mathbb{V}(B_X \cap B_Y)}{\mathbb{V}(B_Y)} \right)$$

$$2 = \arg\max_{i} \mathbf{BOR}\left(x^{(2)}, K_i^{(2)}\right)$$

- An overview of box quantization (BQ).
 - £: Similarity preserving MSE loss

Box Quantization

Speed of Set2Box⁺

Set2Box⁺ computes estimated set similarity sets in a constant time.

Lemma (Time Complexity of Similarity Estimation)

Given a pair of sets s and s' and their boxes B_s and $B_{s'}$, respectively, it takes O(d)

time to compute the estimated similarity $\widehat{sim}(B_S, B_{S'})$, where d is a user-defined

constant that does not depend on the sizes of s and s'.

Other Details

- In the paper, you can find:
 - ✓ Set context pooling
 - ✓ End-to-end discrete code learning
 - ✓ Joint training original and reconstructed boxes
 - ✓ Box smoothing for effective learning

Roadmap

- 1. Concepts
- 2. Basic Method: Set2Box
- 3. Advanced Method: Set2Box⁺
- 4. Experimental Results
- 5. Conclusion

Accuracy & Conciseness of Set2Box⁺

- Set2Box⁺ preserves set similarities most accurately compared to baselines.
 - Set2Box⁺ gives up to 40.8X smaller estimation error while requiring about 60% fewer bits to encode sets.

Accuracy & Conciseness of Set2Box⁺ (cont.)

 For example, Set2Box⁺ preserves the Overlap Coefficient between sets more accurately with smaller encoding cost.

Effects of Box Quantization & Joint Training

- We compare following variants:
 - **Set2Box-PQ:** Product quantization for center & offset
 - Set2Box-BQ: Box quantization without joint training
 - **Set2Box**⁺: The proposed method with box quantization and joint training

Method	OC	CS	JI	DI
Set2Box-PQ	0.0129	0.0028	0.0012	0.0023
Set2Box-BQ	0.0106 (-17%)	0.0023 (-17%)	0.0009 (-26%)	0.0019 (-17%)
Set2Box ⁺	0.0077 (-40%)	0.0016 (-44%)	0.0007 (-41%)	0.0013 (-42%)

Box quantization and **joint training** of **Set2Box**⁺ incrementally improves the accuracy (in terms of MSE) averaged over all datasets.

Roadmap

- 1. Concepts
- 2. Basic Method: Set2Box
- 3. Advanced Method: Set2Box⁺
- 4. Experimental Results
- 5. Conclusion

Conclusion

 We propose Set2Box⁺, an effective and efficient representation learning method for preserving similarities between sets.

Set2Box⁺ is:

- ✓ Accurate: yields smaller estimation error while requiring smaller encoding cost.
- ✓ Concise: requires smaller encoding cost to achieve the same performance.
- ✓ Fast: computes set similarities in a constant time.
- ✓ Versatile: estimates various set similarity measures with a single set embedding.

Code & datasets: https://github.com/geon0325/Set2Box

Set2Box: Similarity Preserving Representation Learning of Sets

Geon Lee

Chanyoung Park

Kijung Shin