Decision Trees (D3)

Ahmet Sacan

Decision Tree Example

a	Gene Pair	Interact?	Expression correlation	Shared localization?	Shared function?	Genomic distance
	A-B	Yes	0.77	Yes	No	1 kb
	A-C	Yes	0.91	Yes	Yes	10 kb
	C-D	No	0.1	No	No	1 Mb
	-					

b Expression correlation > 0.9? Shared cellular Shared localization? function? No Yes Genomic distance < 5 kb Yes

Decision Tree Example

Whether to issue a loan to a customer:

Structure of a Decision Tree

Logical Rules represented by D3

 Decision Trees represent a disjunction (OR) of conjunctions (AND) of constraints on the attribute values

```
(Outlook = Sunny \land Humidity = Normal)
\lor \qquad (Outlook = Overcast)
\lor \qquad (Outlook = Rain \land Wind = Weak)
high \ normal
high \ normal
V \qquad (P)
```

Training Instances

- Is it a good day to play soccer?
- Attributes:

outlook: sunny, overcast, rain

temperature: cool, mild, hot

humidity: high, normal

windy: true, false

Training instance:

<overcast, hot, normal, false>: play

sunny hot high false N sunny hot high true N	L
sunny hot high true N	
trus	
overcast hot high false P	
rain mild high false P	
rain cool normal false P	
rain cool normal true N	
overcast cool normal true P	
sunny mild high false N	
sunny cool normal false P	
rain mild normal false P	
sunny mild normal true P	
overcast mild high true P	
overcast hot normal false P	
rain mild high true N	

Random learner

- Arbitrarily pick an attribute to branch on, split the dataset by that attribute and repeat for each resulting node.
- Why is that a bad idea?

Occam's Razor

- Prefer simpler/shorter
 hypotheses/theories/explanations.
- Argument: There are fewer short hypotheses. Short hypotheses that fit data are unlikely to be coincidence

Top-Down Induction of D3s

- For data in each node:
 - Find best attribute to split by
 - Split data with that attribute
 - Repeat until all training examples are perfectly classified.

Split Criteria

Which attribute is best?

Split Criteria

Which test is more informative?

Split over whether Balance exceeds 50K

Split over whether applicant is employed

Entropy (disorder)

- Entropy is a measure of impurity/uncertainty in the data.
 - Multivalued attribute:
 - $entropy = -\sum_{i} p_i \log_2(p_i)$
 - Binary attribute: p+q=1.
 - $entropy = -(plog_2(p) + qlog_2(q))$

Very impure group

Less impure

Entropy

Entropy

Exercise

· Calculate the entropy of each of the nodes below.

Information Gain

- · The goal of a split is to minimize total entropy.
- Information Gain: Expected reduction in entropy due to splitting on an attribute 5:

$$Gain(S, A) = Entropy(S) - \sum_{v \in Values(A)} \frac{|S_v|}{|S|} Entropy(S_v)$$

- -Values(A): the set of all possible values for attribute A
- $-S_v$: subset of S for which attribute A has value v

Information Gain

Information Gain = entropy(parent) – [average entropy(children)]

(Weighted) Average Entropy of Children =
$$\left(\frac{17}{30} \cdot 0.787\right) + \left(\frac{13}{30} \cdot 0.391\right) = 0.615$$

Information Gain = 0.996 - 0.615 = 0.38

Information Gain

Exercise

- Information Gain A1:
- Information Gain A2:

ID3 (Iterative Dichotomizer) Algorithm

Which attribute should be tested here?

$$S_{sunny} = \{D1,D2,D8,D9,D11\}$$

 $Gain (S_{sunny}, Humidity) = .970 - (3/5) 0.0 - (2/5) 0.0 = .970$
 $Gain (S_{sunny}, Temperature) = .970 - (2/5) 0.0 - (2/5) 1.0 - (1/5) 0.0 = .570$
 $Gain (S_{sunny}, Wind) = .970 - (2/5) 1.0 - (3/5) .918 = .019$

Exercise

 Build a decision tree to predict whether two genes interact, using the sample data below. Build the tree using information gain as the split criteria.

Gene pair	e: Expression correlation >=0.5?	s: Subcellular co-localization	f: Shared function	Interact?
A-B	0	0	0	NO
C-D	0	0	1	YES
E-F	0	1	0	YES
G-H	0	1	1	NO
I-J	1	0	0	YES
K-L	1	1	0	NO

Gene pair	e: Expression correlation >=0.5?	s: Subcellular co-localization	f: Shared function	Interact?
A-B	0	0	0	NO
C-D	0	0	1	YES
E-F	0	1	0	YES
G-H	0	1	1	NO
I-J	1	0	0	YES
K-L	1	1	0	NO

Gene pair	e: Express ion correlat ion >=0.5?	Subcell		Interact ?
A-B	0	0	0	NO
C-D	0	0	1	YES
E-F	0	1	0	YES
G-H	0	1	1	NO
I-J	1	0	0	YES
K-L	1	1	0	NO

Gene pair	e: Express ion correlat ion >=0.5?	f: Shared functio n	
A-B	0	0	NO
C-D	0	1	YES
I-J	1	0	YES

Gene pair	e: Express ion correlat ion >=0.5?	s: Subcell ular co- localiza tion	f: Shared functio n	Interact ?
A-B	0	0	0	NO
C-D	0	0	1	YES

Gene pair	e: Express ion correlat ion >=0.5?	s: Subcell ular co- localiza tion	f: Shared functio n	Interact ?
I-J	1	0	0	YES

Gene pair		f: Shared functio n	
E-F	0	0	YES
G-H	0	1	NO
K-L	1	0	NO

Gene pair			Interact ?
A-B	0	0	NO
C-D	0	1	YES
I-J	1	0	YES

Problems with information gain

- It prefers attributes with MANY values
- Solution: "GainRatio" to penalize multiple-valued attributes.
 - Used in C4.5

$$SplitInfo(S, A) = -\sum_{v \in Values(A)} \frac{|S_v|}{|S|} \log_2 \frac{|S_v|}{|S|}$$

$$Gain(S, A) = Entropy(S) - \sum_{v \in Values(A)} \frac{|S_v|}{|S|} Entropy(S_v)$$

$$GainRatio(S, A) = \frac{Gain(S, A)}{SplitInfo(A)}$$

- Attribute with the highest gain ratio is selected for the next split.

Overfitting

Avoiding Overfitting

- During tree construction:
 - Stop growing when classification is "good enough" rather than when it is perfect.
 - Grow full tree, then post-prune (works better).
- Selecting the "best" tree:
 - Use a validation set to evaluate performance of alternatives
 - Minimum Description Length (MDL)
 - SizeOfTree + NumberOfMisclassifications

Node post-pruning

- For each node:
 - Evaluate performance on validation set when this node is pruned out
- Remove the node whose removal gives the best performance on the validation set.
- · Repeat until further pruning is harmful.

Rule post-pruning

- · Convert the tree into equivalent set of rules
- Prune each rule independently of others.
 - Remove condition(s) whose removal does not worsen the accuracy.
- Gives a chance to remove a branch from a specific rule (whereas in node-pruning, removing a branch removes it from all descendants).
- Gives better classification accuracy then node-pruning.
 When you prune rules, they may no longer form a single decision tree.

Handling Continuous-Valued Attributes

• Find the partitioning of the continuous attribute that gives the <u>best separation</u> (e.g., using information gain criteria) of positive and negative samples.

Handling missing values

- Fill in the missing value by examining other samples sorted to a node.
 - Assign most common value for that attribute.
 - Or, assign the most common value for that attribute among the samples having the same target class.

Attributes with Costs

- Figuring out the value of an attribute may be costly. Consider:
 - cost of blood test: \$100
 - cost of fMRI scan: \$1000
- Can we optimize the tree so it prefers "cheaper" tests (without undermining the predictive quality)?
- Use splitting criteria that integrate Gain and Cost:
 - Tan and Schlimmer (unweighted)

$$\frac{Gain^2(S,A)}{Cost(A)}$$

- Nunez (weighted)

$$\frac{(2^{Gain(S,A)}-1)}{(Cost(A)+1)^w}$$

• where $w \in [0,1]$ determines importance of cost.

Commonly Used Implementations

- C4.5: Extension of ID3 to account for missing values, continuous attributes, tree pruning, and rule pruning.
- CART (Classification and Regression Trees) uses Gini Index
 - Gini measure "impurity" of the data.
 - $-Gini(S) = 1 \sum_{i} p_i^2$
 - Gini index of a binary split on attribute A

$$Gini(S,A) = \frac{S_1}{S}Gini(S_1) + \frac{S_2}{S}Gini(S_2)$$

- Maximize the reduction in Gini index.

Entropy vs. Gini Index

Image by MIT OpenCourseWare, adapted from Hastie et al., The Elements of Statistical Learning, Springer, 2009.

Attribute Selection Strategies

- Information Gain
 - Biased toward multi-valued attributes
- Gini Index
 - -??Biased toward multi-valued attributes
 - Problematic when number of classes is large
 - Tends to give balanced (equal-sized, equal-purity) partitions.
- Gain Ratio
 - Tends to give unbalanced partitions

Decision Trees vs. Others

- Biggest advantage is interpretability.
 - Easy to state and understand classification rules.
- Fast learning
- Scalability is an issue for large datasets.
 - Need to distribute samples to partitions at each split and recalculate the gain criteria for each partition.