Lezione del 27 aprile

Teorema 0.1 (dei residui).

Sia $D \subseteq \mathbb{C}$ un aperto, sia $f: D \setminus S$ olomorfa con S chiuso e discreto in D. Sia $R \subseteq D$ compatto con bordo C^1 a tratti, dunque $R \cap S = \{z_1, \ldots, z_k\}$ è finito, $\partial R \cap S = \emptyset$. Allora

$$\int_{\partial R} f(z) dz = 2\pi i \sum_{i=1}^{k} Res(f, z_i)$$

Dimostrazione. Lo dimostriamo solamente nel caso in cui D è omeomorfa ad un disco. Consideriamo i cammini come in figura dove α_i è una piccola circonferenza intorno a z_i percorsa

in senso antiorario.

Consideriamo il cammino

$$\beta = \gamma \star l_k \star \overline{\alpha_k} \star \overline{l_k} \star l_{k-1} \star \overline{\alpha_{k-1}} \star \overline{l_{k_1}} \star \cdots \star l_1 \star \overline{\alpha_1} \star \overline{l_1}$$

tale cammino è omotopicamente banale in $R\setminus S$ poichè borda un disco ed essendo f olomorfa $\omega=f$ dzè chiusa su $R\setminus S$ si ha

$$0 = \int_{\beta} \omega = \int_{\gamma} \omega + \sum_{i=1}^{k} \left(\int_{\overline{l_i}} \omega + \int_{\overline{\alpha_i}} \omega + \int_{l_i} \omega \right)$$

da cui otteniamo

$$\int_{\gamma} \omega = -\sum_{i=1}^{k} \int_{\overline{\alpha_i}} \omega = \sum_{i=1}^{k} \int_{\alpha_i} \omega = 2\pi i \sum_{i=1}^{k} Res(f, z_i)$$

La dimostrazione nel caso in cui R non sia un omemorfa ad un disco è simile ma non viene dimostrato

0.1 Calcolo di residui

Se z_0 è un polo semplice di f, allora

$$f(z) = \frac{a_{-1}}{z - z_0} + \sum_{n \ge 0} a_n (z - z_0)^n$$

dunque

$$(z-z-0)f(z) = a_{-1} \sum_{n>0} a_n (z-z_0)^{n+1}$$

da cui

$$Res(f, z_0) = a_{-1} = \lim_{z \to z_0} (z - z_0) f(z)$$

Nel caso $f = \frac{P}{Q}$ con P, Q olomorfe $P(z_0) \neq 0$ e z_0 zero semplice di Q otteniamo

$$Res(f, z_0) = \lim_{z \to z_0} \frac{(z - z_0)P(z)}{Q(z)} = \frac{P(z_0)}{Q'(z_0)}$$

Esempio 0.2. Calcolo dei residui di $f(z) = \frac{e^{iz}}{z^2+1}$ f(z) ha singolarità in $z_0 = i$ e $z_1 = -1$ inoltre tali singolarità sono poli semplici, essendo zero semplici di $z^2 + 1$.

Per quanto mostrato in precedenza otteniamo

$$Res(f, z_0) = \frac{e^{iz}}{2z}\bigg|_{z=i} = \frac{e^{i^2}}{2i} = \frac{-i}{2e}$$

In modo analogo otteniamo

$$Res(f, z_1) = \frac{e^{i \cdot (-i)}}{2(-i)} = \frac{ei}{2}$$

Mostriamo ora una strategia nel caso i poli non siano semplici.

Se f ha un polo di ordine k in z_0 si pone $g(z) = (z - z_0)^k f(z)$ che si estende ad una funzione olomorfa in z_0 (la denotiamo sempre con g).

Ora se

$$f(z) = \sum_{n \in \mathbb{Z}} a_n z^n$$

si ha che a_{-1} è il coefficiente di $(z-z_0)^{k-1}$ nello sviluppo di g. Essendo g olomorfa in z_0 si ha

$$Res(f, z_0) = a_{-1} = \frac{g^{(k-1)}(z_0)}{(k-1)!}$$

Esempio 0.3. $f(z) = \frac{e^{iz}}{z(z^2+1)^2}$ ha un polo semplice in 0 e due poli doppi in $\pm i$. Per calcolare il residuo in i consideriamo

$$g(z) = f(z)(z-i)^2 = (z-i)^2 \frac{e^{iz}}{z(z+i)^2(z-i)^2} = \frac{e^{iz}}{z(z+i)^2}$$

dunque

$$g'(z) = \frac{ie^{iz}z(z+1)^2 - e^{iz}((z+1)^2 + 2z(z+i))}{z^2(z+i)^4}$$

ovvero

$$g'(i) = -\frac{3}{4e} = \frac{g'(i)}{1!} = Res(f, i)$$

0.2 Applicazione del teorema dei residui

Esempio 0.4. Calcolare

$$\int_{-\infty}^{+\infty} \frac{\cos x}{x^2 + 1}$$

L'integrale richiesto è equivalente al calcolo di

$$\lim_{R \to +\infty} \int_{-R}^{R} \frac{\cos x}{x^2 + 1}$$

Notiamo ora che se $x \in \mathbb{R}$ allora $\frac{\cos x}{x^2+1} = Re\left(\frac{e^{iz}}{z^2+1}\right)$.

La funzione $f(z) = \frac{e^{iz}}{z^2+1}$ ha poli semplici in $\pm i$.

$$\Omega_R = \{ z \in \mathbb{C} : |z| \le R \ e \ Im(z) \ge 0 \}$$

Una parametrizzazione positiva di Ω_R è $\alpha_R\star\beta_R$ come in figura Per il teorema dei residui si ha

$$\int_{\alpha_R} f(z) dz + \int_{\beta_R} f(z) dz = 2\pi i Res(f, i) = 2\pi i \left(\frac{-i}{2e}\right) = \frac{\pi}{2}$$

Essendo

$$\alpha_R: [-R, R] \to \mathbb{C} \quad \alpha_R(t) = t$$

$$\beta_R: [0,\pi] \to \mathbb{C} \quad \beta_R(t) = Re^{it}$$

si ha

$$\int_{\alpha_R} f(z) dz = \int_{-R}^{R} f(t)\alpha'(t) = \int_{-R}^{R} f(t) dt = \int_{-R}^{R} \frac{\cos t + i \sin t}{t^2 + 1} dt$$

la cui parte reale è l'integrale richiesto (come limite).

Per concludere osserviamo che $\int_{\beta_R} f(z) dz = 0$.

Ora
$$\beta_R(t) = R^{e^i t} = R(\cos t + i \sin t) \ per \ cui$$

$$e^{i\beta_R(t)} = e^{iR(\cos t + i\sin t)} = e^{iR\cos t}e^{-R\sin t} \quad \Rightarrow \quad |f(\beta_R(t))| = e^{-R\sin t}$$

da cui

$$|f(\beta_R(t)\beta_R'(t))| = \left|\frac{e^{i\beta_R(t)}}{\beta_R(t)^2 + 1}iRe^{it}\right| = \frac{e^{-R\sin t}}{R^2e^{2it} + 1} \le \frac{R}{R^2 + 1}$$

per cui

$$\left| \int_{\beta_R} f(z) \, \mathrm{d}z \right| \le \int_0^\pi \frac{R}{R^2 + 1} \, \mathrm{d}t = \frac{R\pi}{R^2 + 1} \to 0 \ per \ R \to +\infty$$

Dunque abbiamo

$$\int_{-\infty}^{\infty} \frac{\cos x}{x^2 + 1} \, \mathrm{d}x = \frac{\pi}{e}$$

Osservazione 1. Per "complessificare" la funzione si sarebbe potuto prendere $\frac{\cos z}{z^2+1}$.

Il problema è che $\left|\frac{\cos z}{z^2+1}\right|$ non è stimabile facilmente lungo $\beta_R(t)$, inoltre $\cos(it)=\cosh t$ che non è limitato

Osservazione 2. In modo analogo (sempre integrando lungo $\partial\Omega_R$ con Ω_R come sopra) si calcola

$$\int_{-\infty}^{\infty} \frac{P(x)}{Q(x)} \text{ dove } P, Q \text{ polinomi, } Q(x) \neq 0 \text{ e } \deg Q > \deg P + 2$$

Esempio 0.5. Calcolare

$$\int_{-\infty}^{\infty} \frac{1}{1+x^4} \, \mathrm{d}x$$

Se consideriamo la funzione complessa $f(z) = \frac{1}{1+z^4}$ essa ha 4 poli, la regione Ω_R (come sopra) contiene solamente i poli $z_0 = e^{i\frac{\pi}{4}}$ e $z_1 = e^{i\frac{3}{4}\pi}$ che sono semplici. Ragionando come sopra otteniamo

$$\int_{\partial\Omega_R} f(z) dz = 2\pi i (Res(f, z_0) + Res(f, z_1)) = 2\pi i \left(-\frac{z_0}{4} - \frac{z_1}{4} \right) = \frac{\sqrt{2}}{2}\pi$$

come prima otteniamo che $\int_{\beta_R} f(z) \, \mathrm{d}z \to 0$ per $R \to +\infty$ da cui

$$\int_{-\infty}^{\infty} \frac{1}{1+x^2} \, \mathrm{d}x = \frac{\sqrt{2}}{2}\pi$$