1 Definitions

Definition 1.1. The *Boolean space* B is the set with elements $\{0,1\}$.

Definition 1.2. A Boolean variable is either the constant $0 \in B$ or $1 \in B$.

Definition 1.3. The *negation* of a Boolean variable b is denoted \bar{b} and is such that: $\bar{0} = 1$ and $\bar{1} = 0$.

Definition 1.4. A *literal* is a Boolean variable or its negation, e.g. a, \bar{b} .

Definition 1.5. A product, or cube is a Boolean product of literals, e.g. $b\bar{c} \in B^2$.

Definition 1.6. A *cover* is a set of products, e.g. $\{b\bar{c},b\}\subset B^2$.

Definition 1.7. The *cardinality* of a cover C is the number of cubes in the cover. It is denoted |C|, e.g. $|\{ab\bar{c},b\}|=2$.

Definition 1.8. A completely specified Boolean function (CSF) is a function of the form $f: B^k \to B$ for some $k \in \mathbb{N}$.

Definition 1.9. The Boolean function 1 is the constant boolean function that always maps to $1 \in B$.

Definition 1.10. A *complement*, or a negative phase, of a cover C is a cover D such that $C \cup D$ is a *tautology*, that is, the Boolean function 1.