Interpolation: Interpolation is one of the fundaments operation in mathematics. It has been the foundation of classical numerical analysis. Finite difference play an important role in numerical techniques, where tabulated values of the unknown function are available. Finite Difference Operator:

Forward Difference operator. For a given table of values (X_k, j_k) , where k=0,1,2,...,n of a function y=f(n), with equally spaced abscissas. we define the Forward difference operator $\Lambda(Della)$ as follows. $\Delta j_i = j_{i+1} - j_i, i=0,1,2,3,...,(n-1)$

i-e, we have

$$\Delta y_0 = y_1 - y_0$$

$$\Delta y_1 = y_2 - y_1$$

$$\Delta y_{n-1} = y_n - y_{n-1}$$

where D is called forward difference operator. also known as first forward difference operator.

(1a) Similarly, the difference of first forward operator are called second forward difference operator and are denoted by
$$\Delta^2 y_0, \ \Delta^2 y_1, \dots \ \Delta^2 y_{n-1}, \text{ Thus in general}$$

$$\Delta^P y_r = \Delta^{P-1} y_{r+1} - \Delta^{P-1} y_r$$

Table

X	Ä	Δ	Δ^2 Δ^3	
No	J.			
X,	Jı	4. = y, -y.	$\Delta_{\mathcal{J}_0}^2 = \Delta_{\mathcal{J}_1} - \Delta_{\mathcal{J}_0}$	
		$\Delta J_1 = J_2 - J_1$	$\nabla_{3}^{2} = \nabla_{3}^{2} - \nabla_{3}$	Jo
1/2	J ₂	Л., ч Ч	$\Delta^2 y_1 = \Delta y_2 - \Delta y_1$	
13	y 3	$\Delta y_2 = y_3 - y_1$		

 $y_0 \Rightarrow leading Term$ $\Delta y_0, \Delta^2 y_0, \Delta^3 y_0 \Rightarrow leading differences.$ As we know y = f(n) $\Delta f(n) = f(x+h) - f(n)$

Blackward Difference Operator.

$$\nabla y_n = y_n - y_{n-1}$$

back ward difference

ie, we have

$$\nabla^2 y_3 = \nabla y_3 - \nabla y_2$$

$$\nabla^2 y_n = \nabla y_n - \nabla y_{n-1}$$

general,

$$\nabla_{y_i}^{k} = \nabla_{y_i}^{(c-1)} - \nabla_{y_{i-1}}^{(c-1)} / i = n, (n-1), ..., k$$

PalTable							
	X X ₀ X ₁ X ₃ X ₄	かかがかか	DJ1 DJ2 DJ3	V²J² V²J³ V²J³	V3 J4	V 74	
	Central	? dif	flerence	quetor.		Vfins = fl	x)-f(x-h)
	8 (sign	na)		Of The State of th		7/2 = 7 1	
``				{ f(n) = :	f(x+1/2)	- f dn.	$-h_{2}$
	Shift	t 0	perator	<u> </u>			
	E			Ef(n)=	· **.		
				E2f(n)=		_h)	
				Efect f	(n-h)		
				$E^{-2}f(n) =$	f(x-2)	-h)	
				E = f(n)	= f(x	1+/2)	

2)
$$\nabla = 1 - E^{-1}$$

$$\Delta f(n) = (E-1)f(n)$$

$$\nabla f(n) = f(n) - f(n-h)$$

= $f(n) - E^{-1}f(n)$

(3a) Newton's Forward difference formula For Equally spaced dates. let Jx = fm be a function, which takes the value Jo, y,, ,, yn corresponding to the values of xo, x,, ... ×n. The values of intervals. I be at equal distance $\chi_i = \chi_0 + ih$, i = 0, 1, 2, --hlet let y(n) be the polynomial of nth degree in N. y(n) = ao + a, (x-xo) + a2(x- 10) (x-x,) + az (n-no) (x-x,) (x-x2) + + an(x-20)(x-x,)-.-(x-xn-) here (n+1) => constants Now when $X = X_0$ y(x0) = a0 yo = ao When $\chi = \chi_{1}$. y, = a0 + a, (x, -x0) $y_1 = a_0 + a_1 h$ J, = Jo +a,h

$$\frac{y_1 - y_0 = \alpha_1 h}{\alpha_1 = \frac{y_1 - y_0}{h}}$$

$$\frac{\alpha_1 = \frac{\lambda y_0}{h}}{h}$$

when x=x2

$$y_{2} = a_{0} + a_{1} (x_{2} - x_{0}) + a_{2}(x_{2} - x_{0}) (x_{2} - x_{1})$$

$$= a_{0} + a_{1}(2h) + a_{2}(2h)(2h)$$

$$y_{2} = a_{0} + 2a_{1}h + 2h^{2}a_{2}$$

$$y_{2} = y_{0}$$

$$y_{2} - y_{1} = a_{0} + 2a_{1}h + 2h^{2}a_{2} - y_{1}$$

$$= a_{0} + 2a_{1}h + 2h^{2}a_{2} - a_{0} = a_{1}h$$

$$= a_{1}h + 2h^{2}a_{2}$$

$$\Delta y_{1} = a_{1}h + 2h^{2}a_{2}$$

$$\Delta y_{1} - \Delta y_{0} = 2h^{2}a_{2}$$

$$a_{2} = \frac{\Delta^{2}y_{0}}{2!h^{2}}$$

$$a_{2} = \frac{\Delta^{2}y_{0}}{2!h^{2}}$$

Similarly.

$$a_3 = \frac{\Delta^2 y_0}{3! h^3}$$
 and so on.

(4a) By substituting a, , a, az, -- a in D, we get y(n)= yo + (\(\lambda \frac{1}{n} \right) (x-\tau_0) + \(\lambda \frac{1}{21 \lambda 2} \left(n-\ta_0) \left(\ta-\ta_1 \right) \) + 33 + (x-x0)(x-x1)(x-x2)+--+ 3"70 (x-x0)(x-x1)--(x - xn-1) let us put $\chi - \chi_6 = ph$ x = ph+xo x-x, = (x-x) + x0 -x, NOW = ph + (-h) = (p-1)hAlso $\chi - \chi_2 = \chi - \chi_0 + \chi_0 - \chi_2$ = Ph - 2h = (p-2)h and so on. By putting in J(x0+ph) = Jo+ (\(\frac{\Delta}{K} \) (pK) + \(\frac{\Delta'}{21 KZ} \) (pK(p-1)K) + 3'70 [PK(P-1)K(P-2)K) + ---Jp = J. + P DJ0 + P(P-1) D2 J0 + PP0 P(P-1) (P-2) D3 J0 +-+. P(P-1)(P-2)--- (**(n-1)) Dnyo

Note: i) First two terms of this series give

the sesults for the linear interpolation.

ii) First three => parabolic interpolation.

Example: Estimate the value of sino at

Example: Venton Forward difference

0=35°, using Newton Forward difference

formula using given table.

Sino 0.1736 0.3420 0.5000 0.6428 0.7660

	Formation	of Folward	Difference	Table
,	x y by	187	\ \nambda_3 \rangle	13 18 18 18 18 18 18 18 18 18 18 18 18 18
	x, yo 12% = 7	1, - yo - by - b	- KA 16	9.,
	12 13 Y	1 4 - 47 -	00. 3.	\\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
	0.3	- KA - KA	- Dg.] 2	N'11=
	25 /35 074 = 8	15-94	D. 1 1	
	Q# Find Takes	the Cubic	Polinomis	al which
	X 0	1 2 3	wes.	วก
	for) 1	2 1 10		-
į	Sal Forward	f(4) and f(1) difference to	uble 2	
	$x_0 = 0$ $y_1 = 1$	Dy = 1 D'	$\int_{0}^{\pi} \int_{0}^{\pi} \Delta d$	
	2 2	1-2=-1	= 10	
	3 10			

hele
$$x_0 = 0$$
, $y_0 = 1$ $h = 1 = 3$ $P = \frac{x - x_0}{h} = \frac{y - x_0}{h}$

P = x

Now by Niewton Forward Difference intellibration formula.

$$\begin{cases}
(x) = y_0 + P \Delta y_0 + \frac{P(P-1)}{21} \Delta^2 y_0 + \frac{P(P-1)(P-2)}{32} \Delta^3 y_0 - \frac{y}{21} \\
\Rightarrow f(x) = 1 + x \cdot 1 + \frac{x(x-1)}{21} (-2) + \frac{x(x-1)(x-2)}{3 \cdot 2 \cdot 1} (12)
\end{cases}$$

$$= 1 + x + \left(-\frac{x(x^2 - x)}{x}\right) + \frac{12}{2} \left(x^3 - 2x^2 - x^2 + 2x\right)$$

$$= 1 + x - x^2 + x + 2 \left(x^3 - 3x^2 + 2x\right)$$

$$= 1 + 2x - x^2 + 2x^3 - 6x^2 + 4x$$

$$f(x) = 2x^3 - 7x^2 + 6x + 1$$

$$f'(x) = 6x^2 - 14x + 6$$

$$f(4) = 2(4)^3 - 7(4)^2 + 6(4) + 1$$

$$= 128 - 113 + 24 + 1$$

$$f(4) = 92$$

$$f'(4) = 6(4)^2 - 14(4) + 6$$

$$= 96 - 56 + 6$$

$$= 96$$