UFPR Virtual

Cálculo 2 - ERE 4 - CM042+CMA211+CMI031

Painel Minhas salas 2021_02_CM042_CMA211_CMI031 Módulo 5 - Cálculo Vetorial Prova Módulo 5 - Cálculo Vetorial

Iniciado em Tuesday, 7 Dec 2021, 15:53

Estado Finalizada

Concluída em Tuesday, 7 Dec 2021, 19:23

Tempo 3 horas 30 minutos

empregado

Avaliar 2,55 de um máximo de 10,00(26%)

Questão **1**Parcialmente correto
Atingiu 0,60

de 1,00

Marca
questão

Sejam f e \vec{F} um campo escalar e um campo vetorial, respectivamente, definidos em todo espaço. Para cada uma das afirmações abaixo marque Verdadeira ou Falsa.

ullet A integral $\int_C
abla f$ é igual à zero para toda curva fechada C no espaço.

ullet $(
abla f) \cdot ec F$ é um campo escalar.

• A função $\phi(u,v)=(u,v,3)$, com $u^2+v^2\leq 4$ é uma parametrização de um círculo de raio 4 que está contido no plano z=3.

ullet Se ec F é conservativo então $\iiint_E
abla \cdot ec F = 0 \,$ para todo sólido E.

- Se $\vec{F}(x,y,z)=f(x,y,z)\vec{k}~$ e S é o cilindro $x^2+y^2=1$, $-1\leq z\leq 2~$ então $\iint_S \vec{F}=0$

Verdadeira ◆

Verdadeira \$

Falsa \$

Você selecionou corretamente 3.

A resposta correta é:

- ullet A integral $\int_C
 abla f$ é igual à zero para toda curva fechada C no espaço.
- → Verdadeira,
- ullet $(
 abla f) \cdot ec F$ é um campo escalar.
- → Verdadeira,
- A função $\phi(u,v)=(u,v,3)$, $\cos u^2+v^2\leq 4$ é uma parametrização de um círculo de raio 4 que está contido no plano z=3.
- Ealea
- ullet Se ec F é conservativo então $\iiint_E
 abla \cdot ec F = 0 \,$ para todo sólido E .
- → Falsa
- ullet Se ec F(x,y,z)=f(x,y,z)ec k e S é o cilindro $x^2+y^2=1$, $-1\leq z\leq 2$ então $\iint_S ec F=0$
- → Verdadeira

Questão 2
Incorreto
Atingiu 0,00
de 1,00

Marcar
questão

Sendo r>0, suponha que a integral $\int_C (\arctan(x^5)-8y)\,dx+\sqrt[5]{2+y^3}\,dy\,$ seja igual à 11π para toda circunferência de raio r, percorria no sentido anti-horário. Qual é o valor de r?

(OBS.: escreva sua resposta com precisão de 3 casas decimais)

Resposta: 0,000

A resposta correta é: 1,17

Questão 3
Incorreto
Atingiu 0,00
de 1,00

questão

Uma partícula se movimenta no espaço sobre a ação do campo

$$ec{F}(x,y,z) = rac{20}{(\sqrt{x^2+y^2+z^2})^3}(x,y,z).$$

Suponha que ela percorre um trajeto sem passar pela origem do espaço. Ela inicia o movimento em um ponto na esfera de raio 12 com centro na origem, e termina seu trajeto em um ponto na esfera de raio R com centro na origem. Se o trabalho realizado pelo campo \vec{F} ao movimentar a partícula tem valor numérico igual à 21, qual é o valor do raio R?

(Escreva sua resposta com precisão de 3 casas decimais)

Resposta: 0,000

A resposta correta é: -1,03

Questão 4
Incorreto
Atingiu 0,00
de 1,00

Marcar

questão

Sendo $\alpha>0$, considere a superficie S dada parte do cone $z=\alpha\sqrt{x^2+y^2}$ delimitada por $x^2+y^2=8x$. Sabendo que a densidade superficial de S é dada por $f(x,y,z)=4y^2+1$ e que o valor numérico da massa é igual à 3952, quanto vale $\sqrt{\alpha^2+1}$?

(OBS.: escreva sua resposta com precisão de 3 casas decimais)

Resposta: 0,000

Questão **5**Incorreto
Atingiu 0,00
de 1,00

Marcar
questão

Seja E o cubo sólido $[-\alpha;\alpha] imes [-\alpha,\alpha] imes [-\alpha;\alpha]$, onde $\alpha>0$. Sabendo que o fluxo do campo $\vec{F}(x,y,z)=(\sqrt[3]{1-zy^3},e^{21\,{\rm sen}\,y}\, {\rm sen}\,x^3,z(37+{\rm arctg}\,x^3))$ através da fronteira de E, orientada positivamente, é igual à 21, qual é o valor de α ?

(OBS.: escreva sua resposta com precisão de 3 casas decimais)

Resposta: 0,000

A resposta correta é: 0,41

Questão **6**Incorreto
Atingiu 0,00
de 1,50

V Marcar
questão

Seja o campo $\vec{F}=\left(\ln(1+x^{14})-14y,e^{\sqrt{1+y^{14}}},\sqrt[3]{1-z^3}\right)$. Considere a curva C dada pela intersecção do plano z=58y+7 com o parabolóide $z=x^2+y^2$. Calcule $\int_C \vec{F}$ onde C está orientada de modo que sua projeção no plano xy esteja no sentido anti-horário.

(OBS.: escreva sua resposta com precisão de 3 casas decimais)

Resposta: 0,000

A resposta correta é: 37296,988

Questão **7**Parcialmente correto
Atingiu 0,75 de 1,50

Atingiu 0,75 c 1,50 Marcar questão Considere o campo

$$ec{F}(x,y,z) = rac{(x,y,z)}{(\sqrt{x^2 + y^2 + z^2})^3}$$

Para cada uma das afirmações abaixo marque Verdadeira ou Falsa

- ullet $abla imesec{F}$ é um campo vetorial constante.
- ullet Sendo S_1 uma esfera com centro na origem, temos $\int_C \vec{F} = 0\,$ para toda curva fechada C que está em S_1 .
- Sejam S_1,S_2 esferas com centro na origem com raios R_1,R_2 , respectivamente, com $R_1>R_2$. Suponha que S_1,S_2 estão ambas orientadas para fora. Então vale $\iint_{S_1} \vec{F} > \iint_{S_2} \vec{F}$.
- $\bullet~$ Sendo $S_2~$ o cilindro $x^2+y^2=1$, $-1\leq z\leq 1~$ orientado para dentro, temos $\iint_{S_2} \vec{F}>0$.

Verdadeira \$

Verdadeira **♦**

× Verdadeira \$

Você selecionou corretamente 2.

A resposta correta é:

- ullet $abla imes ec{F}$ é um campo vetorial constante.
- → Verdadeira,
- ullet Sendo S_1 uma esfera com centro na origem, temos $\int_C ec F = 0\,$ para toda curva fechada C que está em S_1 .
- → Verdadeira
- Sejam S_1,S_2 esferas com centro na origem com raios R_1,R_2 , respectivamente, com $R_1>R_2$. Suponha que S_1,S_2 estão ambas orientadas para fora. Então vale $\iint_{S_1} \vec{F} > \iint_{S_2} \vec{F}$.
- → Falsa
- ullet Sendo S_2 o cilindro $x^2+y^2=1$, $-1\leq z\leq 1$ orientado para dentro, temos $\iint_{S_2} \vec{F}>0$.
- → Falsa

Questão **8**Parcialmente correto
Atingiu 1,20 de 2,00

P Marcar questão

Para cada uma das afirmações abaixo marque Verdadeira ou Falsa

- Sendo $\vec{F}(x,y)=\left(rac{x}{x^2+y^2},rac{y}{x^2+y^2}
 ight)$ então $\int_C \vec{F}$ apenas depende dos pontos inicial e final de C, onde C é uma curva que não passa pela origem.
- Se $\vec{F}=P\vec{i}+Q\vec{j}$ é um campo com $\nabla\cdot\vec{F}(x,y)=0$ para todo (x,y) no domínio de \vec{F} , então $\iint_R \vec{F}=0$ para toda região R no domínio de \vec{F}
- Se \vec{F} é um campo vetorial tal que $abla\cdot\vec{F}$ é ímpar com relação à x, então $\iint_{\partial E}\vec{F}=0$ para todo sólido E simétrico com relação ao plano y=0.
- Seja $\vec{F}(x,y,z)=a(x,y,z)$ um campo no espaço com a constante $a\neq 0$. Então $\iint_S \vec{F}>0$, onde S é dado por $x^2+y^2=1$, $|z|\leq 1$, orientado para fora.
- Se f é um campo escalar definido em todo espaço tal que $\nabla f=0$, então $\int_{C_1}f=\int_{C_2}f$ para todas as curvas C_1 , C_2 com comprimento iguais.

‡

‡

Falsa

f para False

Falsa *

Você selecionou corretamente 3

A resposta correta é:

- Sendo $\vec{F}(x,y) = \left(\frac{x}{x^2+y^2}, \frac{y}{x^2+y^2}\right)$ então $\int_C \vec{F}$ apenas depende dos pontos inicial e final de C, onde C é uma curva que não passa pela origem.
- → Verdadeira
- Se $\vec{F}=P\vec{i}+Q\vec{j}$ é um campo com $\nabla\cdot\vec{F}(x,y)=0$ para todo (x,y) no domínio de \vec{F} , então $\iint_R \vec{F}=0$ para toda região R no domínio de \vec{F}

- → Verdadeira,
- Se \vec{F} é um campo vetorial tal que $abla \cdot \vec{F}$ é ímpar com relação à x, então $\iint_{\partial E} \vec{F} = 0$ para todo sólido E simétrico com relação ao plano y = 0.
- → Falsa
- Seja $\vec{F}(x,y,z)=a(x,y,z)\,$ um campo no espaço com a constante $a\neq 0$. Então $\iint_S \vec{F}>0$, onde S é dado por $x^2+y^2=1$, $|z|\leq 1$, orientado para fora.
- Falsa
- Se f é um campo escalar definido em todo espaço tal que $\nabla f=0$, então $\int_{C_1}f=\int_{C_2}f$ para todas as curvas C_1,C_2 com comprimento iguais.
- → Verdadeira.

Terminar revisão

₹

Navegação do questionário

Terminar revisão

Obter o aplicativo para dispositivos móveis

CIPEAD - Coordenadoria de Integração de Políticas de Educação a Distância da Universidade Federal do Paraná Praça Santos Andrade, 50 - Centro - Telefone:(41)3310-2657 - CEP:80.020-300 - Curitiba/PR

Política de privacidade Direitos autorais - ícones: Flat Icon