Associative algebra

Leandro Vendramin

Contents

Introduction		2
1.	Lecture: 26/09/2024	4
2.	Lecture: 03/10/2024	9
3.	Lecture: 17/10/2024	14
4.	Lecture: 24/02/2024	21
5.	Lecture: 31/10/2024	25
6.	Lecture: 07/11/2024	32
7.	Lecture: 14/11/2024	38
8.	Lecture: 21/11/2024	42
9.	Lecture: 28/11/2024	47
10.	Lecture: 05/11/2024	50
11.	Lecture: 12/12/2024	57
12.	Lecture: 19/12/2024	64
13.	Project: An analytic proof of Rickart's theorem	69
14.	Project: Hurewicz' theorem	72
15.	Project: Dedekind-finite rings	74
16.	Project: The Skolem–Noether theorem	76
17.	Project: The Brauer group	79
18.	Project: The Andrunakevic–Rjabuhin theorem	83
19.	Project: Kolchin's theorem	85
20.	Project: Passman's theorem	91
21.	Project: Gardam's theorem	97
22.	Project: When a group algebra is prime?	100
23.	Project: When a group algebra is local?	102
24.	Project: When a group algebra is reduced?	105
25.	Project: Bi-ordered groups	106
26.	Project: Locally indicable groups	109
27.	Project: Left-ordered groups	112
28.	Project: Unique product groups	114
29.		118
References		120
Index		122

Department of Mathematics and Data Science, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel

 $E ext{-}mail\ address:$ Leandro.Vendramin@vub.be.

Introduction

The notes correspond to the master course **Associative Algebra** of the Vrije Universiteit Brussel, Faculty of Sciences, Department of Mathematics and Data Sciences. The course is divided into twelve two-hour lectures.

Mandatory and bonus exercises. The notes include many exercises, some with full detailed solutions. Mandatory exercises have a green background, while optional ones (bonus exercises) have a yellow background.

Prerequisites and bibliography. The reader should have a solid understanding of an undergraduate-level abstract algebra course. For reference, you can review my notes for the VUB courses: Group Theory and Ring and Module Theory.

The content presented here draws heavily from [6], [15], and [31]. Additionally, I have followed the outstanding blog on abstract algebra by Yaghoub Sharif.

Final projects. The document contains various topics for final projects, including some that could be expanded into bachelor's or master's theses. Here are some additional topics.

The double centralizer theorem. Let R be a ring. The centralizer of a subring S of R is $C_R(S) = \{r \in R : rs = sr \text{ for all } s \in S\}$. Clearly, $C_R(C_R(S)) \supseteq S$, but equality does not always hold. The double centralizer theorem give conditions under which one can conclude that the equality occurs; see [6, Chapter 4].

The Amitsur-Levitzki theorem. The theorem states that if A is a commutative algebra, then the matrix algebra $M_n(K)$ satisfies the identity

$$s_{2n}(a_1,\ldots,a_{2n})=0,$$

where

$$s_n(X_1, \dots, X_n) = \sum_{\sigma \in \mathbb{S}_n} \operatorname{sign}(\sigma) X_{\sigma(1)} \cdots X_{\sigma(n)}.$$

See [6, Theorem 6.39] for the beautiful proof found by Rosset.

Non-commutative Hilbert's basis theorem. There exists a non-commutative version of the celebrated Hilbert's basis theorem. It is based on the theory of Ore's extensions (also known as **skew polynomial rings**). The theorem appears in [19, I.8.3]; see [19, I.7] for the basic theory of Ore's extensions.

The Golod-Shafarevich theorem. This is an important theorem of non-commutative algebra with several interesting applications, for example, in group theory. A quick proof (and some applications) can be found in the book [15] of Herstein.

The Weyl algebra. The Weyl algebra is the quotient of the free algebra on two generators X and Y by the ideal generated by the element YX - XY - 1. The Weyl algebra is a simple ring that is not a matrix ring over a division ring. It is also a non-commutative domain and an Ore extension. See [26] for more information. In 1968, Dixmier conjectured that any endomorphism of a Weyl algebra is an automorphism; the conjecture is still open.

The Jacobson-Herstein theorem. There exist more theorems similar to the Jacobson's commutativity theorem; see [26] and [32]. For example, the Jacobson-Herstein theorem states that if R is a ring such that for every $x, y \in R$ there exists some $n(x, y) \geq 2$ such that

$$(xy - yx)^{n(x,y)} = xy - yx,$$

then R is commutative.

 $\bf Acknowledgments.$ Thanks go to Ilaria Colazzo, Luca Descheemaeker, Silvia Properzi, Lukas Simons.

This version was compiled on October 22, 2024 at 15:07. Please send comments and corrections to me at Leandro.Vendramin@vub.be.

1. Lecture: 26/09/2024

- § 1.1. Semisimple algebras and the Artin–Wedderburn theorem. We will study finite-dimensional semisimple algebras. The main goal of the first two lectures is to prove the Artin–Wedderburn theorem.
- 1.1. DEFINITION. An algebra (over the field K) is a vector space (over K) with an associative multiplication $A \times A \to A$ such that

$$a(\lambda b + \mu c) = \lambda(ab) + \mu(ac)$$
 and $(\lambda a + \mu b)c = \lambda(ac) + \mu(bc)$

for all $a, b, c \in A$, and that contains an element $1_A \in A$ such that

$$1_A a = a 1_A = a$$

for all $a \in A$.

Note that a ring A is an algebra over K if and only if there is a ring homomorphism $K \to Z(A)$, where $Z(A) = \{a \in A : ab = ba \text{ for all } b \in A\}$ is the center of A, such that $1_K \to 1_A$.

1.2. Definition. An algebra A is commutative if ab = ba for all $a, b \in A$.

The dimension of an algebra A is the dimension of A as a vector space. This is why we want to consider algebras, as they are a linear version of rings. Often, our arguments will use the dimension of the underlying vector space.

1.3. Example. The field $\mathbb R$ is a real algebra and $\mathbb C$ is a complex algebra. Moreover, $\mathbb C$ is a real algebra.

Any field K is an algebra over K.

1.4. EXAMPLE. If K is a field, then K[X] is an algebra over K.

Similarly, the polynomial ring K[X,Y] and the ring K[X] of power series are examples of algebras over K.

- 1.5. EXAMPLE. If A is an algebra, then $M_n(A)$ is an algebra.
- 1.6. EXAMPLE. The set of continuous maps $[0,1] \to \mathbb{R}$ is a real algebra with the usual point-wise operations (f+g)(x) = f(x) + g(x) and (fg)(x) = f(x)g(x).
- 1.7. Example. Let $n \in \mathbb{Z}_{>0}$. Then $K[X]/(X^n)$ is a finite-dimensional K-algebra. It is the truncated polynomial algebra.
- 1.8. Example. Let G be a finite group. The vector space $\mathbb{C}[G]$ with basis $\{g:g\in G\}$ is an algebra with multiplication

$$\left(\sum_{g \in G} \lambda_g g\right) \left(\sum_{h \in G} \mu_h h\right) = \sum_{g,h \in G} \lambda_g \mu_h(gh).$$

Note that dim $\mathbb{C}[G] = |G|$ and $\mathbb{C}[G]$ is commutative if and only G is abelian. This is the **complex group algebra** of G.

If G is an infinite group, the complex group algebra $\mathbb{C}[G]$ is defined as the set of finite linear combinations of elements of G with the usual operations.

1.9. DEFINITION. Let K be a field and A and B be K-algebras. An algebra homomorphism is a ring homomorphism $f: A \to B$ that is also a K-linear map.

The complex conjugation map $\mathbb{C} \to \mathbb{C}$, $z \mapsto \overline{z}$, is a ring homomorphism that is not an algebra homomorphism over \mathbb{C} .

1.10. Exercise. Let G be a non-trivial finite group. Then $\mathbb{C}[G]$ has zero divisors.

If A is an algebra, then $\mathcal{U}(A)$ is the set of units of A.

- 1.11. EXERCISE. Let A be a K-algebra and G be a finite group. If $f: G \to \mathcal{U}(A)$ is a group homomorphism, then there exists an algebra homomorphism $\varphi \colon K[G] \to A$ such that $\varphi|_G = f$.
 - 1.12. Definition. An ideal of an algebra is an ideal of the underlying ring.

Similarly, one defines left and right ideals of an algebra.

If A is an algebra, then every left ideal of the ring A is a vector space. Indeed, if I is a left ideal of A and $\lambda \in K$ and $x \in I$, then

$$\lambda x = \lambda (1_A x) = (\lambda 1_A) x.$$

Since $\lambda 1_A \in A$, it follows that $\lambda I = (\lambda 1_A)I \subseteq I$. Similarly, every right ideal of the ring A is a vector space.

- If A is an algebra and I is an ideal of A, then the quotient ring A/I has a unique algebra structure such that the canonical map $A \to A/I$, $a \mapsto a + I$, is a surjective algebra homomorphism with kernel I.
- 1.13. DEFINITION. Let A be an algebra over the field K. An element $a \in A$ is algebraic over K if there exists a non-zero polynomial $f \in K[X]$ such that f(a) = 0.

If every element of A is algebraic, then A is said to be algebraic

In the algebra \mathbb{R} over \mathbb{Q} , the element $\sqrt{2}$ is algebraic, as $\sqrt{2}$ is a root of the polynomial $X^2 - 2 \in \mathbb{Q}[X]$. A famous theorem of Lindemann proves that π is not algebraic over \mathbb{Q} . Every element of the real algebra \mathbb{R} is algebraic.

1.14. Proposition. Every finite-dimensional algebra is algebraic.

PROOF. Let A be an algebra with dim A = n and let $a \in A$. Since $\{1, a, a^2, \dots, a^n\}$ has n+1 elements, it is a linearly dependent set. Thus there exists a non-zero polynomial $f \in K[X]$ such that f(a) = 0.

1.15. DEFINITION. A module over an algebra A is a module over the ring A.

Similarly, one defines **submodules** of A-modules.

1.16. DEFINITION. Let A be a K-algebra. A homomorphism of A-modules $f: M \to N$ is a K-linear map such that $f(a \cdot m) = a \cdot f(m)$ for all $a \in A$ and $m \in M$.

It is a straightforward exercise to prove the isomorphism theorems.

Let A be a finite-dimensional K-algebra. If M is a module over the ring A, then M is a vector space with

$$\lambda m = (\lambda 1_A) \cdot m,$$

where $\lambda \in K$ and $m \in M$. Moreover, M is finitely generated if and only if M is finite-dimensional.

1.17. Example. If M is a module over a finite-dimensional K-algebra A, one defines $\operatorname{End}_A(M)$ as the set of A-module homomorphisms $M \to M$. The set $\operatorname{End}_A(M)$ is indeed a K-algebra with

$$(f+g)(m)=f(m)+g(m), \quad (\lambda f)(m)=\lambda f(m) \quad \text{and} \quad (fg)(m)=f(g(m))$$
 for all $f,g\in \operatorname{End}_A(M),\ \lambda\in K$ and $m\in M.$

1.18. Example. An algebra A is a module over A with left multiplication, that is

$$a \cdot b = ab, \quad a, b \in A.$$

This module is the (left) regular representation of A and it will be denoted by ${}_{A}A$.

- 1.19. DEFINITION. Let A be an algebra and M be a module over A. Then M is simple if $M \neq \{0\}$ and $\{0\}$ and M are the only submodules of M.
- 1.20. Definition. Let A be a finite-dimensional algebra and M be a finite-dimensional module over A. Then M is semisimple if M is a direct sum of finitely many simple submodules.

By definition, the zero module is semisimple. Moreover, any finite direct sum of semisimples is semisimple.

1.21. Lemma (Schur). Let A be an algebra. If S and T are simple modules and $f: S \to T$ is a non-zero A-module homomorphism, then f is an isomorphism.

PROOF. Since $f \neq 0$, ker f is a proper submodule of S. Since S is simple, it follows that $\ker f = \{0\}$. Similarly, f(S) is a non-zero submodule of T and hence f(S) = T, as T is simple.

1.22. Proposition. If A is a finite-dimensional algebra and S is a simple A-module, then S is finite-dimensional.

PROOF. Let $s \in S \setminus \{0\}$. Since S is simple, $\varphi \colon A \to S$, $a \mapsto a \cdot s$, is a surjective module homomorphism. In particular, by the first isomorphism theorem, $A/\ker\varphi\simeq S$ and hence

$$\dim S = \dim(A/\ker\varphi) \le \dim A.$$

- 1.23. Proposition. Let M be a finite-dimensional module. The following statements are equivalent.
 - 1) M is semisimple.

 - 2) $M = \sum_{i=1}^{k} S_i$, where each S_i is a simple submodule of M. 3) If S is a submodule of M, then there is a submodule T of M such that $M = S \oplus T$.

PROOF. We first prove that 2) \implies 3). Let $N \neq \{0\}$ be a submodule of M. Since $N \neq \{0\}$ and dim $M < \infty$, there exists a submodule T of M of maximal dimension such that $N \cap T = \{0\}$. If $S_i \subseteq N \oplus T$ for all $i \in \{1, \dots, k\}$, then, as M is the sum of the S_i , it follows that $M = N \oplus T$. If, however, there exists $i \in \{1, \ldots, k\}$ such that $S_i \subseteq N \oplus T$, then $S_i \cap (N \oplus T) \subseteq S_i$. Since the module S_i is simple, it follows that $S_i \cap (N \oplus T) = \{0\}$. Thus $N \cap (S_i \oplus T) = \{0\}$, a contradiction to the maximality of dim T.

The implication $1) \implies 2$ is trivial.

Finally, we prove that 3) \implies 1). We proceed by induction on dim M. The result is clear if dim M=1. Assume that dim $M\geq 2$ and let S be a non-zero submodule of M of minimal dimension. In particular, S is simple. By assumption, there exists a submodule T

of M such that $M = S \oplus T$. We claim that T satisfies the assumptions. If X is a submodule of T, then, since T is also a submodule of M, there exists a submodule Y of M such that $M = X \oplus Y$. Thus

$$T = T \cap M = T \cap (X \oplus Y) = X \oplus (T \cap Y),$$

as $X \subseteq T$. Since dim $T < \dim M$ and $T \cap Y$ is a submodule of T, the inductive hypothesis implies that T is a direct sum of simple submodules. Hence M is a direct sum of simple submodules.

1.24. Proposition. If M is a semisimple module and N is a submodule, then N and M/N are semisimple.

PROOF. Assume that $M = S_1 + \cdots + S_k$, where each S_i is a simple submodule. If $\pi \colon M \to M/N$ is the canonical map, the techniques used in Schur's lemma imply that each restriction $\pi|_{S_i}$ is either zero or an isomorphism with the image. Since

$$M/N = \pi(M) = \sum_{i=1}^{k} (\pi|_{S_i})(S_i),$$

it follows that M/N is a direct sum of finitely many simples.

We now prove that N is semisimple. By assumption, there exists a submodule T of M such that $M = N \oplus T$. The quotient M/T is semisimple by the previous paragraph, so it follows that

$$N \simeq N/\{0\} = N/(N \cap T) \simeq (N \oplus T)/T = M/T$$

is also semisimple.

- 1.25. DEFINITION. An algebra A is **semisimple** if every finitely generated A-module is semisimple.
- 1.26. Proposition. Let A be a finite-dimensional algebra. Then A is semisimple if and only if the regular representation of A is semisimple.

PROOF. Let us prove the non-trivial implication. Let M be a finitely generated module, say $M = (m_1, \ldots, m_k)$. The map

$$\bigoplus_{i=1}^k A \to M, \quad (a_1, \dots, a_k) \mapsto \sum_{i=1}^k a_i \cdot m_i,$$

is a surjective homomorphism of modules, where A is considered as a module with the regular representation. Since A is semisimple, it follows that $\bigoplus_{i=1}^k A$ is semisimple. Thus M is semisimple, as it is isomorphic to the quotient of a semisimple module.

1.27. THEOREM. Let A be a finite-dimensional semisimple algebra. Assume that the regular representation can be decomposed as ${}_{A}A=\oplus_{i=1}^k S_i$ where each S_i is a simple submodule. If S is a simple module, then $S\simeq S_i$ for some $i\in\{1,\ldots,k\}$.

PROOF. Let $s \in S \setminus \{0\}$. The map $\varphi \colon A \to S$, $a \mapsto a \cdot s$, is a surjective module homomorphism. Since $\varphi \neq 0$, there exists $i \in \{1, \dots, k\}$ such that some restriction $\varphi|_{S_i} \colon S_i \to S$ is non-zero. By Schur's lemma, it follows that $\varphi|_{S_i}$ is an isomorphism.

As a corollary, a finite-dimensional semisimple algebra admits only finitely many isomorphism classes of simple modules. When we say that the S_1, \ldots, S_k are the simple modules of an algebra, this means that the S_i are the representatives of isomorphism classes of all simple modules of the algebra, that is that each simple module is isomorphic to some S_i and, moreover, $S_i \not\simeq S_j$ whenever $i \neq j$.

2. Lecture: 03/10/2024

2.1. EXERCISE. If A and B are algebras, M is a module over A and N is a module over B, then $M \oplus N$ is a module over $A \times B$ with

$$(a,b)\cdot(m,n)=(a\cdot m,b\cdot n).$$

A division algebra D is an algebra such that every non-zero element is invertible, that is for all $x \in D \setminus \{0\}$ there exists $y \in D$ such that xy = yx = 1. Modules over division algebras are very much like vector spaces. For example, every finitely generated module M over a division algebra has a basis. Moreover, every linearly independent subset of M can be extended into a basis of M.

2.2. PROPOSITION. Let D be a division algebra, and V be a finite-dimensional module over D. Then V is a simple module over $\operatorname{End}_D(V)$ and there exits $n \in \mathbb{Z}_{>0}$ such that $\operatorname{End}_D(V) \simeq nV$ is semisimple.

Sketch of the proof. Let $\{v_1, \ldots, v_n\}$ be a basis of V. A direct calculation shows that the map

$$\operatorname{End}_D(V) \to \bigoplus_{i=1}^n V = nV, \quad f \mapsto (f(v_1), \dots, f(v_n)),$$

is an injective homomorphism of $\operatorname{End}_D(V)$ -modules. Since

$$\dim_D \operatorname{End}_D(V) = n^2 = \dim_D(nV),$$

it follows that the map is an isomorphism. Thus

$$\operatorname{End}_D(V) \simeq \bigoplus_{i=1}^n V.$$

It remains to show that V is simple. It is enough to prove that $V = \operatorname{End}_D(V) \cdot v = (v)$ for all $v \in V \setminus \{0\}$. Let $v \in V \setminus \{0\}$. If $w \in V$, then there exists $f \in \operatorname{End}_D(V)$ such that $f \cdot v = f(v) = w$. Thus $w \in (v)$ and therefore V = (v).

The proposition states that if D is a division algebra, then D^n is a simple $M_n(D)$ -module and that $M_n(D) \simeq nD^n$ as $M_n(D)$ -modules.

2.3. EXERCISE. Let M, N, and X be modules. Prove that

(2.1)
$$\operatorname{Hom}_A(M \oplus N, X) \simeq \operatorname{Hom}_A(M, X) \times \operatorname{Hom}_A(N, X).$$

2.4. THEOREM. Let A be a finite-dimensional algebra and let S_1, \ldots, S_k be the simple modules over A. If

$$M \simeq n_1 S_1 \oplus \cdots \oplus n_k S_k,$$

then each n_j is uniquely determined.

PROOF. Since each S_j is a simple module and $S_i \not\simeq S_j$ if $i \neq j$, Schur's lemma implies that $\operatorname{Hom}_A(S_i, S_j) = \{0\}$ whenever $i \neq j$. For each $j \in \{1, \dots, k\}$, routine calculations show that

$$\operatorname{Hom}_A(M, S_j) \simeq \operatorname{Hom}_A\left(\bigoplus_{i=1}^k n_i S_i, S_j\right) \simeq n_j \operatorname{Hom}_A(S_j, S_j).$$

Since M and S_j are finite-dimensional vector spaces, it follows that $\operatorname{Hom}_A(M, S_j)$ and $\operatorname{Hom}_A(S_j, S_j)$ are both finite-dimensional vector spaces. Moreover, the identity id: $S_j \to S_j$ is a module homomorphism and hence $\dim \operatorname{Hom}_A(S_j, S_j) \geq 1$. Thus each n_j is uniquely determined, as

$$n_j = \frac{\dim \operatorname{Hom}_A(M, S_j)}{\dim \operatorname{Hom}_A(S_j, S_j)}.$$

2.5. DEFINITION. If A is an algebra, the **opposite algebra** A^{op} is the vector space A with multiplication $A \times A \to A$, $(a, b) \mapsto ba = a \cdot_{\text{op}} b$.

An algebra A is commutative if and only if $A = A^{op}$.

2.6. Lemma. If A is an algebra, then $A^{op} \simeq \operatorname{End}_A(A)$ as algebras.

PROOF. Note that $\operatorname{End}_A(A) = \{\rho_a : a \in A\}$, where $\rho_a : A \to A$, $x \mapsto xa$. Indeed, if $f \in \operatorname{End}_A(A)$, then $f(1) = a \in A$. Moreover, f(b) = f(b1) = bf(1) = ba and hence $f = \rho_a$. The map

$$A^{\mathrm{op}} \to \mathrm{End}_A(A), \quad a \mapsto \rho_a,$$

is bijective and it is an algebra homomorphism, as

$$\rho_a \rho_b(x) = \rho_a(\rho_b(x)) = \rho_a(xb) = x(ba) = \rho_{ba}(x).$$

2.7. LEMMA. If A is an algebra and $n \in \mathbb{Z}_{>0}$, then $M_n(A)^{op} \simeq M_n(A^{op})$ as algebras.

PROOF. Let $\psi: M_n(A)^{\text{op}} \to M_n(A^{\text{op}})$, $X \mapsto X^T$, where X^T is the transpose matrix of X. Since ψ is a bijective linear map, it is enough to see that ψ is a homomorphism. If $i, j \in \{1, \ldots, n\}$, $a = (a_{ij})$ and $b = (b_{ij})$, then

$$(\psi(a)\psi(b))_{ij} = \sum_{k=1}^{n} \psi(a)_{ik}\psi(b)_{kj} = \sum_{k=1}^{n} a_{ki} \cdot_{op} b_{jk}$$
$$= \sum_{k=1}^{n} b_{jk}a_{ki} = (ba)_{ji} = ((ba)^{T})_{ij} = \psi(a \cdot_{op} b)_{ij}.$$

2.8. Lemma. If S is a simple module and $n \in \mathbb{Z}_{>0}$, then

$$\operatorname{End}_A(nS) \simeq M_n(\operatorname{End}_A(S))$$

as algebras.

SKETCH OF THE PROOF. Let (φ_{ij}) be a matrix with entries in $\operatorname{End}_A(S)$. We define a map $nS \to nS$ as follows:

$$\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \mapsto \begin{pmatrix} \varphi_{11} & \cdots & \varphi_{1n} \\ \vdots \\ \varphi_{n1} & \cdots & \varphi_{nn} \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} \varphi_{11}(x_1) + \cdots + \varphi_{1n}(x_n) \\ \vdots \\ \varphi_{n1}(x_1) + \cdots + \varphi_{nn}(x_n) \end{pmatrix}.$$

The reader should prove that the map

$$M_n(\operatorname{End}_A(S)) \to \operatorname{End}_A(nS)$$

is an injective algebra homomorphism. It is surjective. Indeed, if $\psi \in \operatorname{End}_A(nS)$ and $i, j \in \{1, \ldots, n\}$ one defines ψ_{ij} by

$$\psi \begin{pmatrix} x \\ 0 \\ \vdots \\ 0 \end{pmatrix} = \begin{pmatrix} \psi_{11}(x) \\ \psi_{21}(x) \\ \vdots \\ \psi_{n1}(x) \end{pmatrix}, \dots, \psi \begin{pmatrix} 0 \\ 0 \\ \vdots \\ x \end{pmatrix} = \begin{pmatrix} \psi_{1n}(x) \\ \psi_{2n}(x) \\ \vdots \\ \psi_{nn}(x) \end{pmatrix}. \qquad \Box$$

- 2.9. Exercise. Prove Lemma 2.8.
- 2.10. Exercise. Let M, N, and X be modules. Prove that

(2.2)
$$\operatorname{Hom}_A(X, M \oplus N) \simeq \operatorname{Hom}_A(X, M) \times \operatorname{Hom}_A(X, N).$$

2.11. Theorem (Artin-Wedderburn). Let A be a finite-dimensional semisimple algebra with k isomorphism classes of simple modules. Then

$$A \simeq M_{n_1}(D_1) \times \cdots \times M_{n_k}(D_k)$$

for some $n_1, \ldots, n_k \in \mathbb{Z}_{>0}$ and some division algebras D_1, \ldots, D_k .

PROOF. Decompose the regular representation as a sum of simple modules and gather the simples by isomorphism classes to get

$$A = \bigoplus_{i=1}^{k} n_i S_i,$$

where each S_i is simple and $S_i \not\simeq S_j$ whenever $i \neq j$. Schur's lemma implies that

$$\operatorname{End}_A(A) \simeq \operatorname{End}_A\left(\bigoplus_{i=1}^k n_i S_i\right) \simeq \prod_{i=1}^k \operatorname{End}_A(n_i S_i) \simeq \prod_{i=1}^k M_{n_i}(\operatorname{End}_A(S_i)),$$

where each $D_i = \operatorname{End}_A(S_i)$ is a division algebra by Schur's lemma. Thus

$$\operatorname{End}_A(A) \simeq \prod_{i=1}^k M_{n_i}(D_i).$$

Since $\operatorname{End}_A(A) \simeq A^{\operatorname{op}}$, it follows that

$$A = (A^{\text{op}})^{\text{op}} \simeq \prod_{i=1}^k M_{n_i}(D_i)^{\text{op}} \simeq \prod_{i=1}^k M_{n_i}(D_i^{\text{op}}).$$

Since each D_i is a division algebra, each D_i^{op} is also a division algebra.

2.12. Corollary (Mollien). If A is a finite-dimensional complex semisimple algebra with k isomorphism classes of simple modules, then

$$A \simeq \prod_{i=1}^k M_{n_i}(\mathbb{C})$$

for some $n_1, \ldots, n_k \in \mathbb{Z}_{>0}$.

PROOF. By Wedderburn's theorem,

$$A \simeq \prod_{i=1}^k M_{n_i}(\operatorname{End}_A(S_i)^{\operatorname{op}}),$$

where S_1, \ldots, S_k are representatives of the isomorphism classes of simple modules and each $\operatorname{End}_A(S_i)$ is a division algebra. We claim that

$$\operatorname{End}_A(S_i) = \{\lambda \operatorname{id} : \lambda \in \mathbb{C}\} \simeq \mathbb{C}$$

for all $i \in \{1, ..., k\}$. If $f \in \operatorname{End}_A(S_i)$, then f has an eigenvalue $\lambda \in \mathbb{C}$. Since $f - \lambda$ id is not an isomorphism, Schur's lemma implies that $f - \lambda$ id = 0, that is $f = \lambda$ id. Thus $\operatorname{End}_A(S_i) \to \mathbb{C}$, $f \mapsto \lambda$, is an algebra isomorphism. In particular,

$$A \simeq \prod_{i=1}^k M_{n_i}(\mathbb{C}).$$

We conclude this section with a nice application of semisimplicity.

2.13. EXERCISE. Prove that there exists a homomorphism $M_n(\mathbb{R}) \to M_m(\mathbb{R})$ of \mathbb{R} -algebras if and only if n divides m.

§ 2.1. Simple algebras and Wedderburn's theorem.

- 2.14. DEFINITION. An algebra A is said to be **simple** if $A \neq \{0\}$ and $\{0\}$ and A are the only ideals of A.
- 2.15. Proposition. Let A be a finite-dimensional simple algebra. There exists a non-zero left ideal I of minimal dimension. This ideal is a simple A-module, and every simple A-module is isomorphic to I.

PROOF. Since A is finite-dimensional and A is a left ideal of A, there exists a non-zero left ideal of minimal dimension. The minimality of dim I implies that I is a simple A-module. Let M be a simple A-module. In particular, $M \neq \{0\}$. Since

$$Ann_A(M) = \{ a \in A : a \cdot M = \{0\} \}$$

is an ideal of A and $1 \in A \setminus \text{Ann}_A(M)$, the simplicity of A implies that $\text{Ann}_A(M) = \{0\}$ and hence $I \cdot M \neq \{0\}$ (because $I \cdot m = 0$ for all $m \in M$ yields $I \subseteq \text{Ann}_A(M)$ and I is non-zero, a contradiction). Let $m \in M$ be such that $I \cdot m \neq \{0\}$. The map

$$\varphi \colon I \to M, \quad x \mapsto x \cdot m,$$

is a module homomorphism. Since $I \cdot m \neq \{0\}$, the map φ is non-zero. Since both I and M are simple, Schur's lemma implies that φ is an isomorphism.

- If D is a division algebra, then $M_n(D)$ is a simple algebra. The previous proposition implies that the algebra $M_n(D)$ has a unique isomorphism class of simple modules. Each simple module is isomorphic to D^n .
- 2.16. Proposition. Let A be a finite-dimensional algebra. If A is simple, then A is semisimple.

PROOF. Let S be the sum of the simple submodules appearing in the regular representation of A. We claim that S is an ideal of A. We know that S is a left ideal, as the submodules of the regular representation are exactly the left ideals of A. To show that $Sa \subseteq S$ for all $a \in A$ we need to prove that $Ta \subseteq S$ for all simple submodule T of A and $a \in A$. If $T \subseteq A$ is a simple submodule and $a \in A$, let $f: T \to Ta$, $t \mapsto ta$. Since f is a surjective module homomorphism and T is simple, it follows that either $\ker f = \{0\}$ or $\ker f = T$. If $\ker f = T$, then $f(T) = Ta = \{0\} \subseteq S$. If $\ker f = \{0\}$, then $T \simeq f(T) = Ta$ and hence Ta is simple. Hence $Ta \subseteq S$.

Since S is an ideal of A and A is a simple algebra, it follows either $S = \{0\}$ or S = A. Since $S \neq \{0\}$, because there exists a non-zero left ideal I of A such that $I \neq \{0\}$ is of minimal dimension, it follows that S = A, that is, the regular representation of A is semisimple (because it is a sum of simple submodules). Therefore A is semisimple. \square

2.17. THEOREM (Wedderburn). Let A be a finite-dimensional algebra. If A is simple, then $A \simeq M_n(D)$ for some $n \in \mathbb{Z}_{>0}$ and some division algebra D.

PROOF. Since A is simple, it follows that A is semisimple. Artin–Wedderburn theorem implies that $A \simeq \prod_{i=1}^k M_{n_i}(D_i)$ for some n_1, \ldots, n_k and some division algebras D_1, \ldots, D_k . Moreover, A has k isomorphism classes of simple modules. Since A is simple, A has only one isomorphism class of simple modules. Thus k = 1 and hence $A \simeq M_n(D)$ for some $n \in \mathbb{Z}_{>0}$ and some division algebra D.

3. Lecture: 17/10/2024

§ 3.1. Group algebras. Let K be a field, and G be a group. The group algebra K[G] is the vector space (over K) with basis $\{g:g\in G\}$ and the algebra structure is given by the multiplication

$$\left(\sum_{g \in G} \lambda_g g\right) \left(\sum_{h \in G} \mu_h h\right) = \sum_{g,h \in G} \lambda_g \mu_h(gh).$$

Every element of K[G] is a finite sum of the form $\sum_{g \in G} \lambda_g g$.

- 3.1. EXERCISE. If G is non-trivial, then K[G] is not simple.
- 3.2. EXERCISE. Let $G = C_n$ be the (multiplicative) cyclic group of order n. Prove that $K[G] \simeq K[X]/(X^n 1)$.
- 3.3. Exercise. Let G be a finitely-generated torsion-free abelian group. Prove that K[G] is a domain.
- 3.4. Exercise. Let G be a group and $\alpha = \sum_{g \in G} \lambda_g g \in K[G]$. The support of α is the set

$$\operatorname{supp} \alpha = \{ g \in G : \lambda_g \neq 0 \}.$$

Prove that if $g \in G$, then $\operatorname{supp}(g\alpha) = g(\operatorname{supp} \alpha)$ and $\operatorname{supp}(\alpha g) = (\operatorname{supp} \alpha)g$.

- 3.5. EXERCISE. Let G be a group and H be a subgroup of G. Let $\alpha \in K[H]$. Prove that α is invertible (resp. a left zero divisor) in K[H] if and only if α is invertible (resp. a left zero divisor) in K[G].
- 3.6. EXERCISE. Let $G = C_2 = \langle g \rangle \simeq \mathbb{Z}/2$ the (multiplicative) group with two elements. Note that every element of K[G] is of the form a+bg for some $a,b \in K$. Prove the following statements:
 - 1) If the characteristic of K is different from two, then

$$K[G] \to K \times K, \quad a1 + bg \mapsto (a + b, a - b),$$

is an algebra isomorphism.

2) If the characteristic of K is two, then

$$K[G] \to \begin{pmatrix} K & K \\ 0 & K \end{pmatrix}, \quad a1 + bg \mapsto \begin{pmatrix} a+b & b \\ 0 & a+b \end{pmatrix},$$

is an algebra isomorphism.

If A is an algebra over K and $\rho: G \to \mathcal{U}(A)$ is a group homomorphism, where $\mathcal{U}(A)$ is the group of units of A, then the map

$$K[G] \to A, \quad \sum_{g \in G} \lambda_g g \mapsto \sum_{g \in G} \lambda_g \rho(g),$$

is an algebra homomorphism.

3.7. EXERCISE. Let $G = C_3$ be the (multiplicative) group of three elements. Prove that $\mathbb{R}[G] \simeq \mathbb{R} \times \mathbb{C}$.

- 3.8. Exercise. Let $G=\langle r,s:r^3=s^2=1,\,srs=r^{-1}\rangle$ be the dihedral group of six elements. Prove the following statements:
 - 1) $\mathbb{C}[G] \simeq \mathbb{C} \times \mathbb{C} \times M_2(\mathbb{C})$.
 - 2) $\mathbb{Q}[G] \simeq \mathbb{Q} \times \mathbb{Q} \times M_2(\mathbb{Q})$.

Maschke's theorem states that, if G is a finite group, then the group algebra $\mathbb{C}[G]$ is semisimple. By Mollien's theorem,

$$\mathbb{C}[G] \simeq \prod_{i=1}^k M_{n_i}(\mathbb{C}),$$

where k is the number of (isomorphism classes of) simple $\mathbb{C}[G]$ -modules. Moreover,

$$|G| = \dim \mathbb{C}[G] = \sum_{i=1}^k n_i^2.$$

3.9. THEOREM. Let G be a finite group. The number of simple modules of $\mathbb{C}[G]$ coincides with the number of conjugacy classes of G.

PROOF. By Mollien's theorem, $\mathbb{C}[G] \simeq \prod_{i=1}^k M_{n_i}(\mathbb{C})$. Thus

$$Z(\mathbb{C}[G]) \simeq \prod_{i=1}^k Z(M_{n_i}(\mathbb{C})) \simeq \mathbb{C}^k.$$

In particular, dim $Z(\mathbb{C}[G]) = k$. If $\alpha = \sum_{g \in G} \lambda_g g \in Z(\mathbb{C}[G])$, then $h^{-1}\alpha h = \alpha$ for all $h \in G$. Thus

$$\sum_{g \in G} \lambda_{hgh^{-1}} g = \sum_{g \in g} \lambda_g h^{-1} g h = \sum_{g \in G} \lambda_g g$$

and hence $\lambda_q = \lambda_{hqh^{-1}}$ for all $g, h \in G$. A basis for $Z(\mathbb{C}[G])$ is given by elements of the form

$$\sum_{g \in K} g,$$

where K is a conjugacy class of G. Therefore dim $Z(\mathbb{C}[G])$ is equal to the number of conjugacy classes of G.

- § 3.2. Which algebras are group algebras?
- 3.10. EXAMPLE. Let $G = C_4$ be the cyclic group of order four. Then G has four simple modules and $\mathbb{C}[G] \simeq \mathbb{C}^4$.
 - 3.11. EXAMPLE. Let $G = \mathbb{S}_3$. Then G has three simple modules and $\mathbb{C}[G] \simeq \mathbb{C} \times \mathbb{C} \times M_2(\mathbb{C})$.
 - 3.12. Open problem (Brauer). Which algebras are group algebras?

This question might be impossible to answer, but it is extremely interesting. Examples 3.10 and 3.11 show that \mathbb{C}^4 and $\mathbb{C}^2 \times M_2(\mathbb{C})$ are complex group algebras.

- 3.13. EXERCISE. Is $\mathbb{C}^2 \times M_2(\mathbb{C}) \times M_3(\mathbb{C})$ a complex group algebra?
- § 3.3. The isomorphism problem for group algebras. Recall that if R is a unitary commutative ring and G is a group, then one defines the group ring R[G] (see Appendix 14). Note that R[G] is a left R-module with

$$\lambda\left(\sum_{g\in G}\lambda_g g\right) = \sum_{g\in G}(\lambda\lambda_g)g.$$

In this section, we will briefly discuss the following natural problem:

3.14. QUESTION (The isomorphism problem). Let R be a ring and G and H be groups. Assume that $R[G] \simeq R[H]$ (as R-algebras). Does $G \simeq H$?

For general information on Question 3.14 we refer to the survey paper [28].

- 3.15. Exercise. Prove that if G and H are isomorphic groups, then $K[G] \simeq K[H]$.
- 3.16. EXERCISE. Let G and H be groups. Prove that if $\mathbb{Z}[G] \simeq \mathbb{Z}[H]$, then $R[G] \simeq R[H]$ for any commutative ring R.

The previous exercise suggest the importance of the following instance of Question 3.14:

3.17. QUESTION. Let G and H be groups. Does $\mathbb{Z}[G] \simeq \mathbb{Z}[H]$ imply $G \simeq H$?

Although there are several cases where the isomorphism problem has an affirmative answer (e.g. abelian groups, metabelian groups, nilpotent groups, nilpotent-by-abelian groups, simple groups, abelian-by-nilpotent groups), it is false in general. In 2001 Hertweck found a counterexample of order $2^{21}97^{28}$, see [16].

3.18. QUESTION (The modular isomorphism problem). Let p be a prime number. Let G and H be finite p-groups and let K be a field of characteristic p. Does $K[G] \simeq K[H]$ imply $G \simeq H$?

Question 3.18 has an affirmative answer in several cases. However, this is not true in general. This question was recently answered by García, Margolis and del Río [9]. They found two non-isomorphic groups G and H both of order 512 such that $K[G] \simeq K[H]$ for all field K of characteristic two.

- § 3.4. Primitive rings. We will consider (possibly non-unitary) rings. Thus a ring is an abelian group R with an associative multiplication $(x, y) \mapsto xy$ such that (x+y)z = xz+yz and x(y+z) = xy+xz for all $x, y, z \in R$. If there is an element $1 \in R$ such that x1 = 1x = x for all $x \in R$, we say that R is a unitary ring. A subring S of R is an additive subgroup of R closed under multiplication.
 - 3.19. EXAMPLE. \mathbb{Z} is a (unitary) ring and $2\mathbb{Z} = \{2m : m \in \mathbb{Z}\}$ is a (non-unitary) ring.

A left ideal (resp. right ideal) is a subring I of R such that $rI \subseteq I$ (resp. $Ir \subseteq I$) for all $r \in R$. An ideal (also two-sided ideal) of R is a subring I of R that is both a left and a right ideal of R.

3.20. Example. If I and J are both ideals of a ring R, then the sum

$$I + J = \{x + y : x \in I, y \in J\}$$

and the intersection $I \cap J$ are both ideals of R. The product IJ, defined as the additive subgroup of R generated by $\{xy : x \in I, y \in J\}$, is also an ideal of R.

- 3.21. EXAMPLE. If R is a ring, the set $Ra = \{xa : x \in R\}$ is a left ideal of R. Similarly, the set $aR = \{ax : x \in R\}$ is a right ideal of R. The set RaR, which is defined as the additive subgroup of R generated by $\{xay : x, y \in R\}$, is a ideal of R.
- 3.22. EXAMPLE. If R is a unitary ring, then Ra is the left ideal generated by a, aR is the right ideal generated by a and RaR is the ideal generated by a. If R is not unitary, the left ideal generated by a is $Ra + \mathbb{Z}a$, the right ideal generated by a is $aR + \mathbb{Z}a$ and the ideal generated by a is $RaR + Ra + aR + \mathbb{Z}a$.

The following exercise asks to prove the **Chinese Remainder Theorem** for arbitrary rings.

3.23. Bonus exercise. Let R be a ring and I_1, \ldots, I_n be ideals such that $I_j + I_k = R$ whenever $j \neq k$ and $R = I_j + R^2$ for all j. Prove that

$$R/(I_1 \cap \cdots \cap I_n) \simeq R/I_1 \times \cdots \times R/I_n$$
.

In the previous exercise, the condition $R = I_j + R^2$ trivially holds in the case of rings with one.

3.24. DEFINITION. A ring R is said to be **simple** if $R^2 \neq \{0\}$ and the only ideals of R are $\{0\}$ and R.

The condition $R^2 \neq \{0\}$ is trivially satisfied in the case of rings with identity, as

$$1 \in R^2 = \{r_1 r_2 : r_1, r_2 \in R\}.$$

3.25. Example. Division rings are simple.

Let S be a unitary ring. Recall that $M_n(S)$ is the ring of $n \times n$ square matrices with entries in S. If $A = (a_{ij}) \in M_n(S)$ and E_{ij} is the matrix such that $(E_{ij})_{kl} = \delta_{ik}\delta_{jl}$, then

$$(3.1) E_{ij}AE_{kl} = a_{jk}E_{il}$$

for all $i, j, k, l \in \{1, ..., n\}$.

3.26. EXAMPLE. If D is a division ring, then $M_n(D)$ is simple.

Let R be a ring. A left R-module (or module, for short) is an abelian group M together with a map $R \times M \to M$, $(r, m) \mapsto r \cdot m$, such that

$$(r+s)\cdot m = r\cdot m + s\cdot m, \qquad r\cdot (m+n) = r\cdot m + r\cdot s, \qquad r\cdot (s\cdot m) = (rs)\cdot m$$

for all $r, s \in R$, $m, n \in M$. If R has an identity 1 and $1 \cdot m = m$ holds for all $m \in M$, the module M is said to be **unitary**. If M is a unitary module, then $M = R \cdot M$.

- 3.27. Exercise. Let R be a simple unitary ring.
 - 1) Prove that the center Z(R) of R is a field.
 - 2) Prove that R is an algebra over Z(R).

3.28. DEFINITION. A module M is said to be **simple** if $R \cdot M \neq \{0\}$ and the only submodules of M are $\{0\}$ and M. If M is a simple module, then $M \neq \{0\}$.

If R is a unitary ring and M is a simple module, then M is unitary.

3.29. Lemma. Let M be a non-zero module. Then M is simple if and only if $M = R \cdot m$ for all $0 \neq m \in M$.

PROOF. Assume that M is simple. Let $m \neq 0$. Since $R \cdot m$ is a submodule of the simple module M, either $R \cdot m = \{0\}$ or $R \cdot m = M$. Let $N = \{n \in M : R \cdot n = \{0\}\}$. Since N is a submodule of M and $R \cdot M \neq \{0\}$, $N = \{0\}$. Therefore $R \cdot m = M$, as $m \neq 0$. Now assume that $M = R \cdot m$ for all $m \neq 0$. Let L be a non-zero submodule of M and let $0 \neq x \in L$. Then M = L, as $M = R \cdot x \subseteq L$.

- 3.30. EXAMPLE. Let D be a division ring and let V be a non-zero vector space (over D). If $R = \operatorname{End}_D(V)$, then V is a simple R-module with fv = f(v), $f \in R$. $v \in V$.
 - 3.31. Example. Let $n \geq 2$. If D is a division ring and $R = M_n(D)$, then each

$$I_k = \{(a_{ij}) \in R : a_{ij} = 0 \text{ for } j \neq k\}$$

is an R-module isomorphic to D^n . Thus $M_n(D)$ is a simple ring that is not a simple $M_n(D)$ module.

3.32. DEFINITION. A left ideal L of a ring R is said to be **minimal** if $L \neq \{0\}$ and L does not properly contain non-zero left ideals of R.

Similarly one defines right minimal ideals and minimal ideals.

- 3.33. EXAMPLE. Let D be a division ring and let $R = M_n(D)$. Then $L = RE_{11}$ is a minimal left ideal.
- 3.34. EXAMPLE. Let L be a non-zero left ideal. If $RL \neq \{0\}$, then L is minimal if and only if L is a simple R-module.
- 3.35. DEFINITION. A left (resp. right) ideal L of R is said to be **regular** if there exists $e \in R$ such that $r re \in L$ (resp. $r er \in L$) for all $r \in R$.

If R is a ring with identity, every left (or right) ideal is regular.

3.36. DEFINITION. A left (resp. right) ideal I of R is said to be **maximal** if $I \neq R$ and I is not properly contained in a proper left (resp. right) ideal of R.

Similarly, one defines maximal ideals.

A standard application of Zorn's lemma proves that every unitary ring contains a maximal left (or right) ideal.

3.37. PROPOSITION. Let R be a ring and M be a module. Then M is simple if and only if $M \simeq R/I$ for some maximal regular left ideal I.

PROOF. Assume that M is simple. Then $M=R\cdot m$ for some $m\neq 0$ by Lemma 3.29. The map $\phi\colon R\to M,\ r\mapsto r\cdot m$, is a surjective homomorphism of R-modules, so the first isomorphism theorem implies that $M\simeq R/\ker \phi$. Since $\ker \phi$ is an ideal of R, it is in particular a left ideal of R.

We claim that $I = \ker \phi$ is a maximal left ideal. The correspondence theorem and the simplicity of M imply that I is a maximal left ideal (because each left ideal J such that $I \subseteq J$ yields a submodule of R/I).

We claim that I is regular. Since $M = R \cdot m$, there exists $e \in R$ such that $m = e \cdot m$. If $r \in R$, then $r - re \in I$ since $\phi(r - re) = \phi(r) - \phi(re) = r \cdot m - r \cdot (e \cdot m) = 0$.

Now assume that I is a maximal left ideal that is regular. The correspondence theorem implies that R/I has no non-zero proper submodules.

We claim that $R \cdot (R/I) \neq \{0_{R/I}\}$. Assume that $R \cdot (R/I) = \{0_{R/I}\}$ and let $r \in R$. The regularity of I implies that there exists $e \in R$ such that $r - re \in I$. Hence $r \in I$, as

$$I = r \cdot (e+I) = re + I = r + I,$$

a contradiction to the maximality of I.

Let R be a ring and M be a left R-module. For a subset $N \subseteq M$ we define the **annihilator** of N as the subset

$$\operatorname{Ann}_R(N) = \{ r \in R : r \cdot n = 0 \text{ for all } n \in N \}.$$

3.38. Example. Ann_{\mathbb{Z}}(\mathbb{Z}/n) = $n\mathbb{Z}$.

3.39. EXERCISE. Let R be a ring and M be a module. If $N \subseteq M$ is a subset, then $\operatorname{Ann}_R(N)$ is a left ideal of R. If $N \subseteq M$ is a submodule of R, then $\operatorname{Ann}_R(N)$ is an ideal of R.

- 3.40. Definition. A module M is said to be faithful if $Ann_R(M) = \{0\}$.
- 3.41. EXAMPLE. If K is a field, then K^n is a faithful unitary $M_n(K)$ -module.
- 3.42. EXAMPLE. If V is vector space over a field K, then V is faithful unitary $\operatorname{End}_K(V)$ -module.
- 3.43. DEFINITION. A ring R is said to be **primitive** if there exists a faithful simple R-module.

Since we are considering left modules, our definition of primitive rings is that of left primitive rings. By convention, a primitive ring will always mean a left primitive ring. The use of right modules yields to the notion of right primitive rings.

- 3.44. Exercise. If R is a simple unitary ring, then R is primitive.
- 3.45. EXERCISE. If R is a commutative ring (maybe without identity), then R is primitive if and only if R is a field.
 - 3.46. Example. The ring \mathbb{Z} is not primitive.
- 3.47. DEFINITION. An ideal P of a ring R is said to be **primitive** if $P = \operatorname{Ann}_R(M)$ for some simple R-module M.

As we work with left modules, our definition of primitive rings refers to left primitive rings. Of course, one can also define right primitive rings. As Bergman showed, there exist rings that are right primitive but not left primitive; see [2, 3].

3.48. Lemma. Let R be a ring and P be an ideal of R. Then P is primitive if and only if R/P is a primitive ring.

PROOF. Assume that $P = \operatorname{Ann}_R(M)$ for some R-module M. Then M is a simple (R/P)-module with

$$(r+P) \cdot m = r \cdot m, \quad r \in R, \ m \in M.$$

This operation is well-defined, as $P = \operatorname{Ann}_R(M)$. Since M is a simple R-module, it follows that M is a simple (R/P)-module. Moreover, $\operatorname{Ann}_{R/P} M = \{0\}$. Indeed, if $(r+P) \cdot M = \{0\}$, then $r \in \operatorname{Ann}_R M = P$ and hence r + P = P.

Assume now that R/P is primitive. Let M be a faithful simple (R/P)-module. Then

$$r \cdot m = (r + P) \cdot m, \quad r \in R, \ m \in M,$$

turns M into an R-module. It follows that M is simple and that $P = \operatorname{Ann}_R(M)$.

3.49. EXAMPLE. Let R_1, \ldots, R_n be primitive rings and $R = R_1 \times \cdots \times R_n$. Then each

$$P_i = R_1 \times \cdots \times R_{i-1} \times \{0\} \times R_{i+1} \times \cdots \times R_n$$

is a primitive ideal of R since $R/P_i \simeq R_i$.

3.50. Lemma. Let R be a ring. If P is a primitive ideal, there exists a regular maximal left ideal I such that $P = \{x \in R : xR \subseteq I\}$. Conversely, if I is a regular maximal left ideal, then $\{x \in R : xR \subseteq I\}$ is a primitive ideal.

PROOF. Assume that $P = \operatorname{Ann}_R(M)$ for some simple R-module M. By Proposition 3.37, there exists a regular maximal left ideal I such that $M \simeq R/I$. Then

$$P = \operatorname{Ann}_R(R/I) = \{ x \in R : xR \subseteq I \}.$$

Conversely, let I be a regular maximal left ideal. By Proposition 3.37, R/I is a simple R-module. Then

$$\operatorname{Ann}_R(R/I) = \{ x \in R : xR \subseteq I \}$$

is a primitive ideal.

- 3.51. Exercise. Maximal ideals of unitary rings are primitive.
- 3.52. Exercise. Prove that every primitive ideal of a commutative ring is maximal.
- 3.53. Bonus exercise. Prove that $M_n(R)$ is primitive if and only if R is primitive.

4. Lecture: 24/02/2024

§ 4.1. Jacobson's radical.

4.1. DEFINITION. Let R be a ring. The **Jacobson radical** J(R) is the intersection of all the annihilators of simple left R-modules. If R does not have simple left R-modules, then J(R) = R.

From the definition, it follows that J(R) is an ideal. Moreover,

$$J(R) = \bigcap \{P : P \text{ left primitive ideal}\}.$$

If I is an ideal of R and $n \in \mathbb{Z}_{>0}$, I^n is the additive subgroup of R generated by the set $\{y_1 \dots y_n : y_i \in I\}$.

4.2. Definition. An ideal I of R is nilpotent if $I^n = \{0\}$ for some $n \in \mathbb{Z}_{>0}$.

Similarly, one defines right or left nilpotent ideals. Note that an ideal I is nilpotent if and only if there exists $n \in \mathbb{Z}_{>0}$ such that $x_1 x_2 \cdots x_n = 0$ for all $x_1, \ldots, x_n \in I$.

- 4.3. DEFINITION. An element x of a ring is said to be **nil** (or nilpotent) if $x^n = 0$ for some $n \in \mathbb{Z}_{>0}$.
 - 4.4. DEFINITION. An ideal I of a ring is said to be nil if every element of I is nil.

Similarly, one defines right or left nil ideals. Note that every nilpotent ideal is nil, as $I^n = \{0\}$ implies $x^n = 0$ for all $x \in I$.

4.5. Example. Let

$$R = \mathbb{C}[X_1, X_2, \dots]/(X_1, X_2^2, X_3^3, \dots).$$

The ideal

$$I = (X_1, X_2, X_3, \dots)$$

is nil in R, as it is generated by nilpotent element. However, it is not nilpotent. Indeed, if I is nilpotent, then there exists $k \in \mathbb{Z}_{>0}$ such that $I^k = \{0\}$ and hence $x_i^k = 0$ for all i, a contradiction since $x_{k+1}^k \neq 0$.

4.6. Proposition. Let R be a ring. Then every nil left ideal is contained in J(R).

PROOF. Assume that there is a nil left ideal I such that $I \nsubseteq J(R)$. There exists a simple R-module M such that $n = x \cdot m \neq 0$ for some $x \in I$ and some $m \in M$. Since M is simple, $R \cdot n = M$ and hence there exists $r \in R$ such that

$$(rx) \cdot m = r \cdot (x \cdot m) = r \cdot n = m$$

Thus $(rx)^k \cdot m = m$ for all $k \ge 1$, a contradiction since $rx \in I$ is a nilpotent element. \square

Similarly, one proves that every nil right ideal is contained in the Jacobson radical.

4.7. DEFINITION. Let R be a ring. An element $a \in R$ is said to be **left quasi-regular** if there exists $r \in R$ such that r + a + ra = 0. Similarly, a is said to be **right quasi-regular** if there exists $r \in R$ such that a + r + ar = 0.

Let R be a ring. A direct calculation shows that the Jacobson circle operation

$$R \times R \to R$$
, $(r,s) \mapsto r \circ s = r + s + rs$,

is an associative operation with neutral element 0.

4.8. EXAMPLE. Let $R = \mathbb{Z}/3 = \{0, 1, 2\}$ be the ring of integers modulo 3. The Jacobson circle operation of R is shown in Table 1.

Table 1. The table of a radical ring over $\mathbb{Z}/3$.

If R is unitary, an element $x \in R$ is left quasi-regular (resp. right quasi-regular) if and only if 1 + x is left invertible (resp. right invertible). In fact, if $r \in R$ is such that r + x + rx = 0, then (1 + r)(1 + x) = 1 + r + x + rx = 1. Conversely, if there exists $y \in R$ such that y(1 + x) = 1, then

$$(y-1) \circ x = y-1+x+(y-1)x = 0.$$

- 4.9. EXAMPLE. If $x \in R$ is a nilpotent element, then $y = \sum_{n \geq 1} x^n \in R$ is left quasi-regular. In fact, if there exists N such that $x^N = 0$, then the sum defining y is finite and y + (-x) + y(-x) = 0. Is right quasi-regular?
- 4.10. DEFINITION. A left ideal I of R is said to be **left quasi-regular** (resp. right quasi-regular) if every element of I is left quasi-regular (resp. right quasi-regular). A left ideal is said to be **quasi-regular** if is left and right quasi-regular.

Similarly one defines right quasi-regular ideals and quasi-regular ideals.

4.11. Lemma. Let I be a left ideal of R. If I is left quasi-regular, then I is quasi-regular.

PROOF. Let $x \in I$. Let us prove that x is right quasi-regular. Since I is left quasi-regular, there exists $r \in R$ such that $r \circ x = r + x + rx = 0$. Since $r = -x - rx \in I$, there exists $s \in R$ such that $s \circ r = s + r + sr = 0$. Then s is right quasi-regular and

$$x = 0 \circ x = (s \circ r) \circ x = s \circ (r \circ x) = s \circ 0 = s.$$

The following result uses Zorn's lemma.

4.12. LEMMA. Let R be a ring, and $x \in R$ be an element that is not left quasi-regular Then there exists a maximal left ideal M such that $x \notin M$. Moreover, R/M is a simple R-module and $x \notin Ann_R(R/M)$.

PROOF. Let $T = \{r + rx : r \in R\}$. A straightforward calculation shows that T is a left ideal of R such that $x \notin T$ (if $x \in T$, then r + rx = -x for some $r \in R$, a contradiction since x is not left quasi-regular).

The only left ideal of R containing $T \cup \{x\}$ is R. Indeed, if there exists a left ideal U containing T, then $x \notin U$, since otherwise every $r \in R$ could be written as

$$r = (r + rx) + r(-x) \in U.$$

Let \mathcal{S} be the set of proper left ideals of R containing T partially ordered by inclusion. If $\{K_i : i \in I\}$ is a chain in \mathcal{S} , then $K = \bigcup_{i \in I} K_i$ is an upper bound for the chain $(K \text{ is a proper, as } x \notin K)$. Zorn's lemma implies that \mathcal{S} admits a maximal element M. Thus M is a maximal left ideal such that $x \notin M$.

Moreover, M is regular since $r - r(-x) \in T \subseteq M$ for all $r \in R$. Therefore R/M is a simple R-module by Proposition 3.37. Since $x \cdot (x + M) \neq \{0\}$ (if $x^2 \in M$, then $x \in M$, as $x + x^2 \in T \subseteq M$), it follows that $x \notin \operatorname{Ann}_R(R/M)$.

If $x \in R$ is not left quasi-regular, the lemma implies that there exists a simple R-module M such $x \notin \operatorname{Ann}_R(M)$. Thus $x \notin J(R)$.

- 4.13. THEOREM. Let R be a ring and $x \in R$. The following statements are equivalent:
- 1) The left ideal generated by x is quasi-regular.
- 2) Rx is quasi-regular.
- **3)** $x \in J(R)$.

PROOF. The implication (1) \implies (2) is trivial, as Rx is included in the left ideal generated by x.

We now prove (2) \Longrightarrow (3). If $x \notin J(R)$, by definition, there exists a simple R-module M such that $x \cdot m \neq 0$ for some $m \in M$. The simplicity of M implies that $(Rx) \cdot m = M$. Thus there exists $r \in R$ such that $(rx) \cdot m = -m$. There is an element $s \in R$ such that s + rx + s(rx) = 0 and hence

$$-m = (rx) \cdot m = (-s - srx) \cdot m = -s \cdot m + s \cdot m = 0,$$

a contradiction.

Finally, to prove $(3) \implies (1)$, it is enough to note that x is left quasi-regular. If $x \in J(R)$, then x is left quasi-regular by the previous lemma. Thus the left ideal generated by x is quasi-regular by Lemma 4.11.

The theorem immediately implies the following corollary.

4.14. COROLLARY. If R is a ring, then J(R) is a quasi-regular ideal that contains every quasi-regular left ideal.

The following result is somewhat what we all had in mind. We first need a lemma.

4.15. LEMMA. Let R be such that $J(R) \neq R$. If I is a left quasi-regular left ideal of R, then $I \subseteq J(R)$.

PROOF. Assume that $I \nsubseteq J(R)$. There exists a simple R-module N such that $I \cdot N \neq \{0\}$. In particular, $I \cdot n \neq \{0\}$ for some $0 \neq n \in N$. Since I is a left ideal, $I \cdot n$ is a non-zero submodule of N. Then $I \cdot n = N$, as N is simple. There exists $x \in I$ such that $x \cdot n = -n$. Since I is left quasi-regular, there exists $r \in R$ such that r + x + rx = 0. Thus

$$0 = 0 \cdot n = (r+x+rx) \cdot n = r \cdot n + x \cdot n + (rx) \cdot n = r \cdot n - n - r \cdot n = -n,$$
 a contradiction. \Box

The following exercise uses Zorn's lemma and will be used in the proof of Theorem 4.17.

- 4.16. EXERCISE. Let R be a ring. Prove that every proper left ideal of R that is regular is contained in a maximal ideal that is regular.
 - 4.17. THEOREM. Let R be a ring such that $J(R) \neq R$. Then

$$J(R) = \bigcap \{I : I \text{ regular maximal left ideal of } R\}.$$

Proof. Let

$$K = \bigcap \{I : I \text{ regular maximal left ideal of } R\}.$$

Let us prove that $K \subseteq J(R)$. By Lemma 4.15, it is enough to prove that K is left quasi-regular. Let $a \in K$ and $T = \{r + ra : r \in R\}$. If T = R, then -a = r + ra for some $r \in R$ and hence a is left quasi-regular. So we need to prove that T = R. Note that T is a regular left ideal with e = -a (see Definition 3.35). If $T \neq R$, then T is contained in a maximal left ideal J by the previous exercise. Then $a \in K \subseteq J$ and hence $ra \in J$ for all $r \in R$. Since $r + ra \in T \subseteq J$ for all $r \in R$, it follows that J = R, a contradiction. Therefore T = R.

Now we prove that $J(R) \subseteq K$. By Proposition 3.37,

$$J(R) = \bigcap \{ \operatorname{Ann}_R(R/I) : I \text{ regular maximal left ideal of } R \}.$$

Let I be a regular maximal left ideal. If $r \in J(R) \subseteq \operatorname{Ann}_R(R/I)$, then, since I is regular, there exists $e \in R$ such that $r - re \in I$. Since

$$re + I = r(e + I) = \{0\},\$$

 $re \in I$ and hence $r \in I$. Thus $J(R) \subseteq K$.

4.18. EXAMPLE. Each maximal ideals of \mathbb{Z} is of the form $p\mathbb{Z} = \{pm : m \in \mathbb{Z}\}$ for some prime number p. Thus $J(\mathbb{Z}) = \cap_p p\mathbb{Z} = \{0\}$.

We now review some basic results useful to compute radicals.

4.19. Proposition. Let $\{R_i : i \in I\}$ be a family of rings. Then

$$J\left(\prod_{i\in I}R_i\right)=\prod_{i\in I}J(R_i).$$

PROOF. Let $R = \prod_{i \in I} R_i$ and $x = (x_i)_{i \in I} \in R$. The left ideal Rx is quasi-regular if and only if each left ideal R_ix_i is quasi-regular in R_i , as x is quasi-regular in R if and only if each x_i is quasi-regular in R_i . Thus $x \in J(R)$ if and only if $x_i \in J(R_i)$ for all $i \in I$.

For the next result, we shall need a lemma.

4.20. Lemma. Let R be a ring and $x \in R$. If $-x^2$ is a left quasi-regular element, then so is x.

PROOF. Let $r \in R$ be such that $r + (-x^2) + r(-x^2) = 0$ and s = r - x - rx. Then x is left quasi-regular, as

$$s + x + sx = (r - x - rx) + x + (r - x - rx)x$$
$$= r - x - rx + x + rx - x^{2} - rx^{2} = r - x^{2} - rx^{2} = 0.$$

4.21. Proposition. If I is an ideal of R, then $J(I) = I \cap J(R)$.

PROOF. Note that $I \cap J(R)$ is an ideal of I. Let $x \in I \cap J(R)$ and $r \in R$. Since rx is left quasi-regular in R, there exists $s \in R$ such that s + rx + srx = 0. Since $s = -rx - srx \in I$, rx is left quasi-regular in I. Thus $I \cap J(R) \subseteq J(I)$.

Let $x \in J(I) \subseteq I$ and $r \in R$. Since $-(rx)^2 = (-rxr)x \in I(J(I)) \subseteq J(I)$, the element $-(rx)^2$ is left quasi-regular in I. Thus rx is left quasi-regular by Lemma 4.20. \square

5. Lecture: 31/10/2024

- 5.1. Definition. A ring R is said to be radical if J(R) = R.
- 5.2. EXAMPLE. If R is a ring, then J(R) is a radical ring, by Proposition 4.21.
- 5.3. Example. The Jacobson radical of $\mathbb{Z}/8$ is $\{0, 2, 4, 6\}$.

There are several characterizations of radical rings.

- 5.4. Theorem. Let R be a ring. The following statements are equivalent:
- 1) R is radical.
- 2) R admits no simple R-modules.
- **3)** R does not have regular maximal left ideals.
- 4) R does not have primitive left ideals.
- **5)** Every element of R is quasi-regular.
- **6)** (R, \circ) is a group.
- 5.5. Exercise. Prove Theorem 5.4.
- 5.6. Example. Let

$$A = \left\{ \frac{2x}{2y+1} : x, y \in \mathbb{Z} \right\}.$$

Then A is a radical ring, as the inverse of the element $\frac{2x}{2y+1}$ with respect to the circle operation \circ is

$$\left(\frac{2x}{2y+1}\right)' = \frac{-2x}{2(x+y)+1}.$$

- § 5.1. Commutative rings with no maximal ideals. There are rings with no maximal ideals.
- 5.7. Exercise. Prove that the additive group of rational numbers is an abelian group with no maximal subgroups.

One can turn the additive group \mathbb{Q} of rational into a non-unitary ring by considering the zero multiplication xy = 0 for all $x, y \in \mathbb{Q}$. This ring has no maximal ideals.

- 5.8. EXERCISE. Let R be a commutative ring and I be an ideal of R. Prove that I is maximal if and only if R/I is a field or a ring isomorphic to \mathbb{Z}/p with zero multiplication for some prime number p.
- 5.9. EXERCISE. Let R be a commutative ring. Prove that J(R) equals the intersection of maximal ideals such that R/M is a field.

Recall that the **characteristic of a ring** is defined as the least positive integer n such that nx = 0 for all x. If no such n exists, then we say that the ring is of characteristic zero.

5.10. EXERCISE. Let R be a ring such and p be a prime number. If px = 0 for all $x \in R$, then R has characteristic p.

We now characterize commutative rings with no maximal ideals. The result appeared in [13].

5.11. THEOREM (Henriksen). Let R be a commutative ring. Then R has no maximal ideals if and only if J(R) = R and $R^2 + pR = R$ for all prime number p.

PROOF. Assume first that R has no maximal ideals. Then J(R)=R by Exercise 5.9. Let p be a prime number such that $I=R^2+pR\neq R$. Then I is a proper ideal of R. Let $\pi\colon R\to R/I$ be the canonical map. Since $R^2\subseteq I$, $0=\pi(xy)=\pi(x)\pi(y)$ for all $x,y\in R$. Thus R/I has zero multiplication. Moreover, by Exercise 5.10, R/I has characteristic p, as $pR\subseteq I$. Thus R/I is a vector space over the field \mathbb{Z}/p . Let $\{x_\alpha:\alpha\in\Lambda\}$ be a basis of R/I. Every element $x\in R/I$ can be written uniquely as a finite sum of the form $x=\sum \lambda_\alpha x_\alpha$ for scalars λ_α . Let A be the ring with underlying additive group \mathbb{Z}/p and zero multiplication. For a fixed $\beta\in\Lambda$, the map

$$\gamma \colon R/I \to A, \quad x = \sum \lambda_{\alpha} x_{\alpha} \mapsto \lambda_{\beta}$$

is a ring homomorphism. The composition $f = \gamma \pi \colon R \to R/I \to A$ is a ring homomorphism. By Exercise 5.8, ker f is a maximal ideal, a contradiction.

Conversely, let M be a maximal ideal of R. If R/M is a field, then $J(R) \subseteq M \neq R$, a contradiction. By Exercise 5.8, there exists a prime number p such that $R/M \simeq \mathbb{Z}/p$ as abelian groups and zero multiplication (i.e. $xy \in M$ for all $x, y \in R$). Let us write A to denote this ring and $\pi: R \to R/M$ be the canonical map. Note that $R^2 \subseteq M$. Moreover, $pR \subseteq M$, as $\pi(px) = p\pi(x) = 0$ for all $x \in R$. Thus $R^2 + pR \subseteq M \neq R$, a contradiction. \square

We now present a non-trivial concrete example of a ring with no maximal ideals. For that purpose, we will use the field of fractions $\mathbb{R}(X)$ of the real polynomial ring $\mathbb{R}[X]$.

- 5.12. EXERCISE. Let R be the set of rational real functions of the form f(X)/g(X), where $f(X), g(X) \in \mathbb{R}(X)$ and $g(0) \neq 0$. Prove the following statements:
 - 1) R is an integral domain with a unique maximal ideal M = XR.
 - 2) M has no maximal ideals.
- 5.13. DEFINITION. A ring R is said to be nil if for every $x \in R$ there exists n = n(x) such that $x^n = 0$.
 - 5.14. Exercise. Prove that a nil ring is a radical ring.
- 5.15. EXERCISE. Let $\mathbb{R}[\![X]\!]$ be the ring of power series with real coefficients. Prove that the ideal $X\mathbb{R}[\![X]\!]$ consisting of power series with zero constant term is a radical ring that is not nil.
 - 5.16. THEOREM. If R is a ring, then $J(R/J(R)) = \{0\}$.

PROOF. If R is radical, the result is trivial. Suppose then that $J(R) \neq R$. Let M be a simple R-module. Then M is a simple module over R/J(R) with

$$(x + J(R)) \cdot m = x \cdot m, \quad x \in R, m \in M.$$

If $x + J(R) \in J(R/J(R))$, then $x \cdot M = (x + J(R)) \cdot M = \{0\}$. Then $x \in J(R)$, as x annihilates any simple module over R.

5.17. THEOREM. Let R be a ring and $n \in \mathbb{Z}_{>0}$. Then $J(M_n(R)) = M_n(J(R))$.

PROOF. We first prove that $J(M_n(R)) \subseteq M_n(J(R))$. If J(R) = R, the theorem is clear. Let us assume that $J(R) \neq R$ and let J = J(R). If M is a simple R-module, then M^n is a simple $M_n(R)$ -module with the usual multiplication. Let $x = (x_{ij}) \in J(M_n(R))$ and $m_1, \ldots, m_n \in M$. Then

$$x \begin{pmatrix} m_1 \\ \vdots \\ m_n \end{pmatrix} = 0.$$

In particular, $x_{ij} \in \operatorname{Ann}_R(M)$ for all $i, j \in \{1, ..., n\}$. Hence $x \in M_n(J)$. We now prove that $M_n(J) \subseteq J(M_n(R))$. Let

$$J_1 = \begin{pmatrix} J & 0 & \cdots & 0 \\ J & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ J & 0 & \cdots & 0 \end{pmatrix} \quad \text{and} \quad x = \begin{pmatrix} x_1 & 0 & \cdots & 0 \\ x_2 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ x_n & 0 & \cdots & 0 \end{pmatrix} \in J_1.$$

Since x_1 is quasi-regular, there exists $y_1 \in R$ such that $x_1 + y_1 + x_1y_1 = 0$. If

$$y = \begin{pmatrix} y_1 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix},$$

then u = x + y + xy is lower triangular, as

$$u = \begin{pmatrix} 0 & 0 & \cdots & 0 \\ x_2 y_1 & 0 & \cdots & 0 \\ x_3 y_1 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ x_n y_1 & 0 & \cdots & 0 \end{pmatrix}.$$

Since $u^n = 0$, the element

$$v = -u + u^2 - u^3 + \dots + (-1)^{n-1}u^{n-1}$$

is such that u + v + uv = 0. Thus x is right quasi-regular, as

$$x + (y + v + yv) + x(y + v + yv) = 0,$$

and therefore J_1 is right quasi-regular. Similarly one proves that each J_i is right quasi-regular and hence $J_i \subseteq J(M_n(R))$ for all $i \in \{1, ..., n\}$. In conclusion,

$$J_1 + \cdots + J_n \subseteq J(M_n(R))$$

and therefore $M_n(J) \subseteq J(M_n(R))$.

5.18. Exercise. Let R be a unitary ring. Then

$$J(R) = \bigcap \{M : M \text{ is a left maximal ideal}\}.$$

5.19. Exercise. Let R be a unitary ring. The following statements are equivalent:

- **1)** $x \in J(R)$.
- 2) $x \cdot M = \{0\}$ for all simple R-module M.
- 3) $x \in P$ for all primitive left ideal P.
- 4) 1 + rx is invertible for all $r \in R$.
- 5) $1 + \sum_{i=1}^{n} r_i x s_i$ is invertible for all n and all $r_i, s_i \in R$.
- 6) x belongs to every maximal ideal maximal.

The following exercise is entirely optional. It somewhat shows a recent application of radical rings to solutions of the celebrated Yang–Baxter equation.

5.20. Bonus exercise. A pair (X, r) is a solution to the Yang–Baxter equation if X is a set and $r: X \times X \to X \times X$ is a bijective map such that

$$(r \times id) \circ (id \times r) \circ (r \times id) = (id \times r) \circ (r \times id) \circ (id \times r).$$

The solution (X, r) is said to be **involutive** if $r^2 = id$. By convention, we write

$$r(x,y) = (\sigma_x(y), \tau_y(x)).$$

The solution (X,r) is said to be **non-degenerate** $\sigma_x \colon X \to X$ and $\tau_x \colon X \to X$ are bijective for all $x \in X$.

1) Let X be a set and $\sigma: X \to X$ be a bijective map. Prove that the pair (X, r), where $r(x, y) = (\sigma(y), \sigma^{-1}(x))$, is an involutive non-degenerate solution.

Let R be a radical ring. For $x, y \in R$ let

$$\lambda_x(y) = -x + x \circ y = xy + y,$$

$$\mu_y(x) = \lambda_x(y)' \circ x \circ y = (xy + y)'x + x$$

Prove the following statements:

- 2) $\lambda: (R, \circ) \to \operatorname{Aut}(R, +), x \mapsto \lambda_x$, is a group homomorphism.
- 3) $\mu \colon (R, \circ) \to \operatorname{Aut}(R, +), y \mapsto \mu_y$, is a group antihomomorphism.
- 4) The map

$$r: R \times R \to R \times R, \quad r(x,y) = (\lambda_x(y), \mu_y(x)),$$

is an involutive non-degenerate solution to the Yang–Baxter equation.

- 5.21. EXERCISE. If D is a division ring and $R = D[X_1, \ldots, X_n]$, then $J(R) = \{0\}$.
- 5.22. Example. A commutative and unitary ring R is local if it contains only one maximal ideal. If R is a local ring and M is its maximal ideal, then J(R) = M. Some particular cases:
 - 1) If K is a field and R = K[X], then J(R) = (X).
 - 2) If p is a prime number and $\tilde{R} = \mathbb{Z}/p^n$, then J(R) = (p).

We finish the discussion on the Jacobson radical with some results in the case of unitary algebras. We first need an application of Zorn's lemma.

5.23. EXERCISE. Let I be a proper left ideal that is left regular. Prove that I is contained in a maximal left ideal which is regular.

5.24. Proposition. Let A be a K-algebra and I be a subset of A. Then I is a regular maximal left ideal of the algebra A if and only if I is a regular maximal left ideal of the ring A.

PROOF. Let I be a left regular maximal ideal of the ring A. We claim that $\lambda I \subseteq I$ for all $\lambda \in K$. Assume that $\lambda I \not\subseteq I$ for some λ . Then $I + \lambda I$ is an ideal of the ring A that contains I, as

$$a(I + \lambda I) = aI + a(\lambda I) \subseteq I + \lambda(aI) \subseteq I + \lambda I.$$

Since I is maximal, it follows that $I + \lambda I = A$. The left regularity of I implies that there exists $e \in A$ such that $a - ae \in I$ for all $a \in A$. Write $e = x + \lambda y$ for $x, y \in I$. Then

$$e^{2} = e(x + \lambda y) = ex + e(\lambda y) = ex + (\lambda e)y \in I.$$

Since $e - e^2 \in I$ and $e^2 \in I$, it follows that $e \in I$. Thus A = I, as $a - ae \in I$ for all $a \in A$, a contradiction.

Conversely, if I is a left regular maximal ideal of the algebra A, then I is a left regular ideal of the ring A. We claim that I is a maximal left ideal of the ring of A. There exists a regular maximal left ideal M of the ring A that contains I. Since M is regular, it follows that M is a regular maximal ideal of the algebra A. Thus M = I because I is a maximal left ideal of the algebra A.

For algebras, the Jacobson radical of an algebra can be defined as the intersection of the left ideals (of the algebra) that are maximal and regular. The previous proposition then implies that the Jacobson radical of an algebra coincides with the Jacobson radical of the underlying ring.

- § 5.2. Amitsur's theorem. We now prove an important result of Amitsur that has several interesting applications. We first need a lemma.
- 5.25. Lemma. Let A be an algebra with one and let $x \in J(A)$. Then x is algebraic if and only if x is nilpotent.

PROOF. Since x is algebraic, there exist $a_0, \ldots, a_n \in K$ not all zero such that

$$a_0 + a_1 x + \dots + a_n x^n = 0.$$

Let r be the smallest integer such that $a_r \neq 0$. Then

$$x^r(1+b_1x+\cdots+b_mx^m)=0,$$

for some $b_1, \ldots, b_m \in K$. Since $1 + b_1 x + \cdots + b_m x^m$ is a unit by Exercise 5.19, it follows that $x^r = 0$.

An application:

5.26. Proposition. If A is an algebraic algebra with one, then J(A) is the largest nil ideal of A.

PROOF. The previous lemma implies that J(A) is a nil ideal. Proposition 4.6 now implies that J(A) is the largest nil ideal of A.

5.27. THEOREM (Amitsur). Let A be a K-algebra with one such that $\dim_K A < |K|$ (as cardinals). Then J(A) is the largest nil ideal of A.

PROOF. If K is finite, then A is a finite-dimensional algebra. In particular, A is algebraic and hence J(A) is a nil ideal by Proposition 5.26.

Assume that K is infinite and let $a \in J(A)$. Exercise 5.19 implies that every element of the form $1 - \lambda^{-1}a$, $\lambda \in K \setminus \{0\}$, is invertible. Thus

$$a - \lambda = -\lambda(1 - \lambda^{-1}a)$$

is invertible for all $\lambda \in K \setminus \{0\}$. Let $S = \{(a - \lambda)^{-1} : \lambda \in K \setminus \{0\}\}$. Since

$$(a - \lambda)^{-1} = (a - \mu)^{-1} \Longleftrightarrow \lambda = \mu,$$

it follows that $|S| = |K \setminus \{0\}| = |K| > \dim_K A$. Then S a is linearly dependent set, so there are $\beta_1, \ldots, \beta_n \in K$ not all zero and distinct elements $\lambda_1, \ldots, \lambda_n \in K$ such that

(5.1)
$$\sum_{i=1}^{n} \beta_i (a - \lambda_i)^{-1} = 0.$$

Multiplying (5.1) by $\prod_{i=1}^{n} (a - \lambda_i)$ we get

$$\sum_{i=1}^{n} \beta_i \prod_{j \neq i} (a - \lambda_j) = 0.$$

We claim that a is algebraic over K. Indeed,

$$f(X) = \sum_{i=1}^{n} \beta_i \prod_{j \neq i} (X - \lambda_j)$$

is non-zero, as, for example, if $\beta_1 \neq 1$, then $f(\lambda_1) = \beta_1(\lambda_1 - \lambda_2) \cdots (\lambda_1 - \lambda_n) \neq 0$ and f(a) = 0. Since $a \in J(A)$ is algebraic, it follows a is nilpotent by Lemma 5.25.

Amitsur's theorem implies the following result.

- 5.28. COROLLARY. Let K be a non-countable field. If A is an algebra over K with a countable basis, then J(A) is the largest nil ideal of A.
- § 5.3. Jacobson's conjecture. We now conclude the lecture with two big open problems related to the Jacobson radical. The first one is Jacobson's conjecture.
 - 5.29. Open problem (Jacobson). Let R be a noetherian ring. Is then

$$\bigcap_{n\geq 1} J(R)^n = \{0\}?$$

Open problem 5.29 was originally formulated by Jacobson in 1956 [18] for one-sided noetherian rings. In 1965 Herstein [14] found a counterexample in the case of one-sided noetherian rings and reformulated the conjecture as it appears here.

5.30. EXERCISE (Herstein). Let D be the ring of rationals with odd denominators. Let $R = \begin{pmatrix} D & \mathbb{Q} \\ 0 & \mathbb{Q} \end{pmatrix}$. Prove that R is right noetherian and $J(R) = \begin{pmatrix} J(D) & \mathbb{Q} \\ 0 & 0 \end{pmatrix}$. Prove that $J(R)^n \supseteq \begin{pmatrix} 0 & \mathbb{Q} \\ 0 & 0 \end{pmatrix}$ and hence $\bigcap_n J(R)^n$ is non-zero.

§ 5.4. Köthe's conjecture. The following problem is maybe the most important open problem in non-commutative ring theory.

5.31. OPEN PROBLEM (Köthe). Let R be a ring. Is the sum of two arbitrary nil left ideals of R is nil?

Open problem 5.31 is the well-known Köthe's conjecture. The conjecture was first formulated in 1930, see [22]. It is known to be true in several cases. In full generality, the problem is still open. In [24] Krempa proved that the following statements are equivalent:

- 1) Köthe's conjecture is true.
- 2) If R is a nil ring, then R[X] is a radical ring.
- 3) If R is a nil ring, then $M_2(R)$ is a nil ring.
- 4) Let $n \geq 2$. If R is a nil ring, then $M_n(R)$ is a nil ring.

In 1956 Amitsur formulated the following conjecture, see for example [1]: If R is a nil ring, then R[X] is a nil ring. In [35] Smoktunowicz found a counterexample to Amitsur's conjecture. This counterexample suggests that Köthe's conjecture might be false. A simplification of Smoktunowicz's example appears in [30]. See [36, 37] for more information on Köthe's conjecture and related topics.

6. Lecture: 07/11/2024

- § 6.1. Gilmer's theorem. Hilbert's theorem states that if R is a noetherian commutative unitary ring, then R[X] is noetherian. Following [12], we now present the converse of Hilbert's theorem.
- 6.1. Theorem (Gilmer). Let R be a commutative ring. If R[X] is noetherian, then R is unitary.

PROOF. Let $a \in R$. For $m \ge 0$, let

$$I_m = (a, aX, aX^2, \dots, aX^m)$$

= $R[X]a + R[X]aX + \dots + R[X]aX^m + \mathbb{Z}a + \mathbb{Z}aX + \dots + \mathbb{Z}aX^m.$

Then $I_0 \subseteq I_1 \subseteq \cdots I_m \subseteq I_{m+1} \subseteq \cdots$ is a sequence of ideals of R[X]. Since R[X] is noetherian, $I_n = I_{n+1}$ for some n. In particular, $aX^{n+1} \in I_{n+1} = I_n$. Thus

$$aX^{n+1} = \sum_{i=1}^{n+1} aX^{i-1} f_i(X) + \sum_{i=1}^{n+1} k_i aX^{i-1}$$

for some $f_1(X), \ldots, f_n(X) \in R[X]$ and $k_1, \ldots, k_n \in \mathbb{Z}$. Comparing the coefficient of X^{n+1} one gets that a = ar for some $r \in R$. Thus

(6.1) for every $a \in R$ there exists $r \in R$ such that a = ra.

CLAIM. For every $a_1, \ldots, a_n \in R$ there exists $r \in R$ such that $a_i = ra_i$ for all i.

We proceed by induction on n. The case n=1 is (6.1). Assume that the result holds for $n-1\geq 1$. By the inductive hypothesis, there exists $r_1\in R$ such that $a_i=r_1a_i$ for all $i\in\{1,\ldots,n-1\}$. Moreover, there exists $r_2\in R$ such that $a_n=ra_n$. Let $r=r_1+r_2-r_1r_2$. Then

$$ra_n = r_1 a_n + r_2 a_n - r_1 r_2 a_n = r_1 a_n + a_n - r_1 a_n = a_n$$

Moreover, for $i \in \{1, \ldots, n-1\}$

$$ra_i = r_1a_i + r_2a_i - r_1r_2a_i = a_i + r_2a_i - r_2r_1a_i = a_i + r_2a_i - r_2a_i = a_i$$

We now finish the proof of the theorem. Let $R[X] \to R$, $f(X) \mapsto f(0)$, be an evaluation map. Since it is a surjective ring homomorphism, R is noetherian. In particular, R is finitely generated, say

$$R = (a_1, \dots, a_n) = Ra_1 + \dots + Ra_n + \mathbb{Z}a_1 + \dots + \mathbb{Z}a_n$$

for some $a_1, \ldots, a_n \in R$.

We now prove that the element r from the claim we proved turns R into a unitary ring, that is $r = 1_R$. We need to show that rb = b for all $b \in R$. If $b \in R$, then

$$b = t_1 a_1 + \dots + t_n a_n + m_1 a_1 + \dots + m_n a_n$$

for some $t_1, \ldots, t_n \in R$ and $m_1, \ldots, m_n \in \mathbb{Z}$. Since $a_i = ra_i$ for all $i \in \{1, \ldots, n\}$, it immediately follows that rb = b.

6.2. Example. The polynomial ring $(2\mathbb{Z})[X]$ is not noetherian, as the ring $2\mathbb{Z}$ is not unitary.

§ 6.2. Artinian modules.

6.3. DEFINITION. Let R be a ring. A module N is artinian if every decreasing sequence $N_1 \supseteq N_2 \supseteq \cdots$ of submodules of N stabilizes, that is there exists $n \in \mathbb{Z}_{>0}$ such that $N_n = N_{n+k}$ for all $k \in \mathbb{Z}_{\geq 0}$.

Let X be a set and S be a set of subsets of X. We say that $A \in S$ is a minimal element of S if there is no $Y \in S$ such that $Y \subseteq A$.

6.4. Proposition. A module N is artinian if and only if every non-empty subset of submodules of N contains a minimal element.

PROOF. Assume that N is artinian. Let \mathcal{S} be a non-empty set of submodules of N. Suppose that \mathcal{S} has no minimal element and let $N_1 \in \mathcal{S}$. Since N_1 is not minimal, there exists $N_2 \in \mathcal{S}$ such that $N_1 \supseteq N_2$. Now assume the submodules

$$N_1 \supseteq N_2 \supseteq \cdots \supseteq N_k$$

we chosen. Since N_k is not minimal, there exists N_{k+1} such that $N_k \supseteq N_{k+1}$. This procedure produces a sequence $N_1 \supseteq N_2 \supseteq \cdots$ that cannot stabilize, a contradiction.

If $N_1 \supseteq N_2 \supseteq \cdots$ is a sequence of submodules, then $\mathcal{S} = \{N_j : j \geq 1\}$ has a minimal element, say N_n . Then $N_n = N_{n+k}$ for all k.

A module N is **noetherian** if for every sequence $N_1 \subseteq N_2 \subseteq \cdots$ of submodules of N there exists $n \in \mathbb{Z}_{>0}$ such that $N_n = N_{n+k}$ for all $k \in \mathbb{Z}_{\geq 0}$.

- 6.5. Exercise. Let M be a module. The following statements are equivalent:
 - 1) M is noetherian.
 - 2) Every submodule of M is finitely generated.
 - 3) Every non-empty subset \mathcal{S} of submodules of M contains a maximal element, that is an element $X \in \mathcal{S}$ such that there is no $Z \in \mathcal{S}$ such that $X \subsetneq Z$.
- 6.6. EXERCISE. Prove that a ring R is left noetherian if every sequence of left ideals $I_1 \subseteq I_2 \subseteq \cdots$ stabilizes.
 - 6.7. Exercise. Let

$$0 \longrightarrow A \xrightarrow{f} B \xrightarrow{g} C \longrightarrow 0$$

be an exact sequence of modules. Prove that B is noetherian (resp. artinian) if and only if A and C are noetherian (resp. artinian).

6.8. Definition. A ring R is left artinian if the module $_RR$ is artinian.

Similarly one defines right artinian rings.

6.9. EXAMPLE. The ring \mathbb{Z} is noetherian. It is not artinian, as the sequence

$$2\mathbb{Z} \supset 4\mathbb{Z} \supset 8\mathbb{Z} \supset \cdots$$

does not stabilize.

6.10. EXERCISE. Prove that a ring R is left artinian if every sequence of left ideals $I_1 \supseteq I_2 \supseteq \cdots$ stabilizes.

6.11. Definition. A composition series of the module M is a sequence

$$\{0\} = M_0 \subsetneq M_1 \subsetneq M_2 \subsetneq \cdots \subsetneq M_n = M$$

of submodules of M such that each M_i/M_{i-1} is non-zero and has no non-zero proper submodules. In this case n is the length of the composition series.

The previous definition makes sense also for non-unitary rings. That is why it is required that each quotient M_i/M_{i-1} has no proper submodules.

6.12. Theorem. A non-zero module admits a composition series if and only if it is artinian and noetherian.

PROOF. Let M be a non-zero module and let $\{0\} = M_0 \subsetneq M_1 \subsetneq \cdots \subsetneq M_n = M$ be a composition series for M. We claim that each M_i is artinian and noetherian. We proceed by induction on i. The case i = 0 is trivial. Let us assume that M_i is artinian and noetherian. Since M_i/M_{i+1} has no proper submodules and the sequence

$$0 \longrightarrow M_i \longrightarrow M_{i+1} \longrightarrow M_{i+1}/M_i \longrightarrow 0$$

is exact, it follows that M_{i+1} is artinian and noetherian, see Exercise 6.7.

Conversely, let M be a non-zero artinian and noetherian module. Let $M_0 = \{0\}$ and M_1 be minimal among the non-zero submodules of M (it exists by Proposition 6.4). If $M_1 \neq M$, let M_2 be minimal among those submodules of M such that $M_1 \subsetneq M_2$. This procedure produces a sequence

$$\{0\} = M_0 \subsetneq M_1 \subsetneq M_2 \subsetneq \cdots$$

of submodules of M, where each M_{i+1}/M_i is non-zero and admits no proper submodules. Since M is noetherian, the sequence stabilizes and hence it follows that $M_n = M$ for some n.

6.13. DEFINITION. Let M be a module. We say that the composition series

$$M = V_0 \supseteq V_1 \supseteq \cdots \supseteq V_k = \{0\}, \quad M = W_0 \supseteq W_1 \supseteq \cdots \supseteq W_l = \{0\},$$

are equivalent if k = l and there exists $\sigma \in \mathbb{S}_k$ such that $V_i/V_{i-1} \simeq W_{\sigma(i)}/W_{\sigma(i)-1}$ for all $i \in \{1, \ldots, k\}$.

- 6.14. Exercise. Find all composition series for the \mathbb{Z} -module $\mathbb{Z}/6$.
- 6.15. Theorem (Jordan-Hölder). Any two composition series for a module are equivalent.

PROOF. Let M be a module and

$$M = V_0 \supseteq V_1 \supseteq \cdots \supseteq V_k = \{0\}, \quad M = W_0 \supseteq W_1 \supseteq \cdots \supseteq W_l = \{0\},$$

be composition series of M. We claim that these composition series are equivalent. We proceed by induction on k. The case k = 1 is trivial, as in this case M has no proper submodules and $M \supseteq \{0\}$ is the only possible composition series for M. So assume the result holds for modules with composition series of length k. If k if k

 $V_1 + W_1$ is also a submodule of M. Moreover, M/V_1 has no non-zero proper submodules and hence $V_1 + W_1 = V$. Then

$$M/V_1 = \frac{V_1 + W_1}{V_1} \simeq \frac{V_1}{V_1 \cap W_1}.$$

Since V_1 has a composition series, V_1 is artinian and noetherian by Theorem 6.12. The submodule $U = V_1 \cap W_1$ is also artinian and noetherian and hence, by Theorem 6.12, admits a composition series

$$U = U_0 \supseteq U_1 \supseteq \cdots \supseteq U_r = \{0\}.$$

Thus $V_1 \supseteq \cdots \supseteq V_k = \{0\}$ and $V_1 \supseteq U \supseteq U_1 \supseteq \cdots \supseteq U_r = \{0\}$ are both composition series for V_1 . The inductive hypothesis implies that k-1=r+1 and that these composition series are equivalent. Similarly,

$$W_1 \supseteq W_2 \supseteq \cdots \supseteq W_l = \{0\}, \quad W_1 \supseteq U \supseteq U_1 \supseteq \cdots \supseteq U_r = \{0\},$$

are both composition series for W_1 and hence l-1=r+1 and these composition series are equivalent. Therefore l=k and the proof is completed.

Jordan–Hölder theorem allows us to define the length of modules that admit a composition series.

6.16. DEFINITION. Let M be a module with a composition series. The length $\ell(M)$ of M is defined as the length of any composition series of M.

A module is said to be of finite length if it admits a composition series.

6.17. Exercise. If N and Q are modules with composition series and

$$0 \longrightarrow N \stackrel{f}{\longrightarrow} M \stackrel{g}{\longrightarrow} Q \longrightarrow 0$$

is an exact sequence of modules, then $\ell(M) = \ell(N) + \ell(Q)$.

6.18. Exercise. If A and B are finite-length submodules of M, then

$$\ell(A+B) + \ell(A \cap B) = \ell(A) + \ell(B).$$

6.19. THEOREM. If R is a left artinian ring, then J(R) is nilpotent.

PROOF. Let J = J(R). Since R is a left artinian ring, the sequence $(J^m)_{m \in \mathbb{Z}_{>0}}$ of left ideals stabilizes. There exists $k \in \mathbb{Z}_{>0}$ such that $J^k = J^l$ for all $l \geq k$. We claim that $J^k = \{0\}$. If $J^k \neq \{0\}$ let S the set of left ideals I such that $J^k I \neq \{0\}$. Since

$$J^k J^k = J^{2k} = J^k \neq \{0\},\,$$

the set S is non-empty. Since R is left artinian, S has a minimal element I_0 . Since $J^k I_0 \neq \{0\}$, let $x \in I_0 \setminus \{0\}$ be such that $J^k x \neq \{0\}$. Moreover, $J^k x$ is a left ideal of R contained in I_0 and such that $J^k x \in S$, as $J^k (J^k x) = J^{2k} x = J^k x \neq \{0\}$. The minimality of I_0 implies that, $J^k x = I_0$. In particular, there exists $r \in J^k \subseteq J$ such that rx = x. Since $-r \in J(R)$ is left quasi-regular, there exists $s \in R$ such that s - r - sr = 0. Thus

$$x = rx = (s - sr)x = sx - s(rx) = sx - sx = 0,$$

a contradiction.

6.20. COROLLARY. Let R be a left artinian ring. Each nil left ideal is nilpotent and J(R) is the unique maximal nilpotent ideal of R.

PROOF. Let L be a nil left ideal of R. By Proposition 4.6, L is contained in J(R). Thus L is nilpotent, as J(R) is nilpotent by Theorem 6.19.

- § 6.3. Akizuki's theorem. We now prove that if R is a unitary commutative artinian ring, then R is noetherian.
- 6.21. EXERCISE. Let R be a unitary commutative ring, I be an ideal of R and M be an R-module such that $I \cdot M = \{0\}$. Prove that if M is finitely generated, then M is a finitely generated (R/I)-module with

$$(r+I) \cdot m = r \cdot m, \quad r \in R, m \in M.$$

Recall that an ideal I of a commutative ring R is said to be **prime** if $xy \in I$ implies that $x \in I$ or $y \in I$.

- 6.22. Exercise. Let R be an unitary commutative artinian ring.
 - 1) Prove that if R is a domain, then R is a field.
 - 2) Prove that prime ideals of R are maximal.
- 6.23. Theorem (Akizuki). Let R be a unitary commutative ring. If R is artinian, then R is noetherian.

PROOF. Assume that the result is not true, so there exists an ideal of R that is not finitely generated. Let X be the set of ideals of R that are not finitely generated. Since $X \neq \emptyset$ and R is artinian, there exists a minimal element $I \in X$. The minimality of I implies that if J is an ideal of R such that $J \subseteq I$, then J is finitely generated.

CLAIM. Either
$$RI = \{0\}$$
 or $RI = I$.

If not, let $r \in R$ be such that $rI \neq \{0\}$ and $rI \neq I$. Since rI is an ideal of R and $rI \subsetneq I$, the minimality of I implies that rI is finitely generated. Let $f: I \to rI$, $x \mapsto rx$. Then f is a surjective module homomorphism. Since $RI \neq \{0\}$, f is non-zero. In particular, ker f is finitely generated, again by the minimality of I. By the first isomorphism theorem, $I/\ker f \simeq rI$ as R-modules. Since $\ker f$ and $I/\ker f \simeq rI$ are finitely generated, I is finitely generated, a contradiction.

CLAIM.
$$M = \{r \in R : rI = \{0\}\}\$$
 is a maximal ideal of R .

Routine calculations show that M is an ideal. Since R is artinian, it is enough to show that M is a prime ideal. Let $rs \in M$. Then $(rs)I = \{0\}$. If $r \notin M$, then $rI \neq \{0\}$. By the previous claim, rI = I. Thus

$$\{0\} = (rs)I = s(rI) = sI$$

and hence $s \in M$.

Since M is maximal, K = R/M is a field. Since $MI = \{0\}$, I is an (R/M)-module, that is I is a K-vector space. By Exercise 6.21, $\dim_K I = \infty$. Let B be a basis of I (as a K-vector space) and $x_0 \in B$. Let J be the subspace of I generated by $B \setminus \{x_0\}$. A direct calculation shows that J is an ideal of R. Since $\dim_K J = \infty$, it follows that J is not a

finitely generated ideal of R (Exercise 6.21). This is a contradiction, because J is an ideal of R such that $J \subsetneq I$.

7. Lecture: 14/11/2024

§ 7.1. Semiprimitive rings.

7.1. Definition. A ring R is semiprimitive (or Jacobson semisimple) if $J(R) = \{0\}$.

In Lecture 3 we defined primitive rings as those rings that have a faithful simple module. We claim that primitive rings are semiprimitive. If R is primitive, then $\{0\}$ is a primitive ideal. Since J(R) is the intersection of primitive ideals, it follows that $J(R) = \{0\}$.

7.2. Example. If $R = \prod_{i \in I} R_i$ is a direct product of semiprimitive rings, then R is semiprimitive. In fact,

$$J(R) = J\left(\prod_{i \in I} R_i\right) = \prod_{i \in I} J(R_i) = \{0\}.$$

- 7.3. Example. \mathbb{Z} is semiprimitive, as $J(\mathbb{Z}) = \bigcap_p p\mathbb{Z} = \{0\}.$
- 7.4. EXAMPLE. Let R = C[a, b] be the ring of continuous maps $f: [a, b] \to \mathbb{R}$. In this case J(R) is the intersection of all maximal ideals of R. Note that each maximal ideal of R is of the form

$$U_c = \{ f \in C[a, b] : f(c) = 0 \}$$

for some $c \in [a, b]$. Thus $J(R) = \bigcap_{a \le c \le b} U_c = \{0\}$.

We proved in Theorem 5.16 (Lecture 4) that R/J(R) is semiprimive.

7.5. DEFINITION. Let $\{R_i : i \in I\}$ be an arbitrary family of rings. For each $j \in I$, let

$$\pi_j \colon \prod_{i \in I} R_i \to R_j$$

be the canonical map. We say that R is a subdirect product of $\{R_i : i \in I\}$ if the following conditions hold:

- 1) There exists an injective ring homomorphism $f: R \to \prod_{i \in I} R_i$.
- 2) For each j, the composition $\pi_j f: R \to R_j$ is surjective.

Direct products and direct sums of rings are all examples of subdirect products of rings.

- 7.6. Exercise. Write (if possible) $\mathbb Z$ as a non-trivial subdirect product.
- 7.7. EXAMPLE. Let R be a ring, $\{I_j:j\}$ be a collection of ideals of R and

$$f \colon R \to \prod_i R/I_i, \quad r \mapsto (r+I_i)_i.$$

For each i, let $R_i = R/I_i$. Then R is a subdirect product of the R_i if and only if f is injective.

7.8. Theorem. Let R be a non-zero ring. Then R is semiprimitive if and only if R is isomorphic to a subdirect product of primitive rings.

PROOF. Suppose first that R is semiprimitive and let $\{P_i : i \in I\}$ be the collection of primitive ideals of R. This collection is non-empty, as R is non-zero and semiprimitive. Each R/P_i is primitive and

$$\{0\} = J(R) = \cap_{i \in I} P_i.$$

For j let $\lambda_j \colon R \to R/P_j$ and $\pi_j \colon \prod_{i \in I} R/P_i \to R/P_j$ be canonical maps. The ring homomorphism

$$\phi \colon R \to \prod_{i \in I} R/P_i, \quad r \mapsto \{\lambda_i(r) : i \in I\},$$

is injective and satisfies $\pi_i \phi(R) = R/P_i$ for all j.

Assume now that R is isomorphic to a subdirect product of primitive rings R_i and let

$$\varphi \colon R \to \prod_{i \in I} R_i$$

be an injective homomorphism such that $\pi_j(\varphi(R)) = R_j$ for all j. For j let $P_j = \ker \pi_j \varphi$. Since $R/P_j \simeq R_j$, each P_j is a primitive ideal. If $x \in \cap_{i \in I} P_i$, then $\varphi(x) = 0$ and thus x = 0. Hence $J(R) \subseteq \cap_{i \in I} P_i = 0$.

- 7.9. EXAMPLE. The ring C[a,b] of Example 7.4 is isomorphic to a subdirect product of the fields $C[a,b]/U_c \simeq \mathbb{R}$.
- § 7.2. Jacobson's density theorem. At this point, it is convenient to recall that modules over division rings are pretty much as vector spaces over fields. Modules over division rings are usually called vector spaces over division rings.
- 7.10. DEFINITION. Let D be a division ring, and V be a vector space over D. A subring $R \subseteq \operatorname{End}_D(V)$ is a **dense ring of linear operators** of V (or simple, **dense** in V) if for every $n \in \mathbb{Z}_{>0}$, every linearly independent set $\{u_1, \ldots, u_n\} \subseteq V$ and every (not necessarily linearly independent) subset $\{v_1, \ldots, v_n\} \subseteq V$ there exists $f \in R$ such that $f(u_j) = v_j$ for all $j \in \{1, \ldots, n\}$.
- 7.11. PROPOSITION. Let D be a division ring and V be a finite-dimensional D-vector space. Then $\operatorname{End}_D(V)$ is the only dense ring of V.

PROOF. Let R be dense in V and let $\{v_1, \ldots, v_n\}$ be a basis of V. By definition,

$$R \subseteq \operatorname{End}_D(V)$$
.

If $g \in \operatorname{End}_D(V)$ then, since R is dense in V, there exists $f \in R$ such that $f(v_j) = g(v_j)$ for all $j \in \{1, \ldots, n\}$. Hence $g = f \in R$.

7.12. Theorem (Jacobson). A ring is primitive if and only if it is isomorphic to a dense ring on a vector space over a division ring.

PROOF. Let R be a ring. If R is isomorphic to a dense ring in V, where V is a D-vector space for some division ring D, then R is primitive, as V is a simple and faithful R-module. Why faithful? If $f \in \operatorname{Ann}_R(V)$, then f = 0 since f(v) = 0 for all $v \in V$. Why simple? If $W \subseteq V$ is a non-zero submodule, let $v \in V$ and $w \in W \setminus \{0\}$. There exists $f \in R$ such that $v = f(w) \in W$.

Assume now that R is a primitive ring. We further assume that R has a unit (the proof, with minor variations, also works for non-unital rings). Let V be a simple faithful module. Schur's lemma implies that $D = \operatorname{End}_R(V)$ is a division ring. Thus V is a D-vector space with

$$D \times V \to V$$
, $(\delta, v) \mapsto \delta v = \delta(v)$.

For $r \in R$ let

$$\gamma_r \colon V \to V, \quad v \mapsto rv.$$

A straightforward calculation shows that $\gamma_r \in \operatorname{End}_D(V)$ and that $\gamma \colon R \to \operatorname{End}_D(V)$, $r \mapsto \gamma_r$, is a ring homomorphism. Since V is faithful, $R \simeq \gamma(R) = \{\gamma_r : r \in R\}$. In fact, if $\gamma_r = \gamma_s$, then $rv = \gamma_r(v) = \gamma_s(v) = sv$ for all $v \in V$ and hence r = s, as (r - s)v = 0 for all $v \in V$.

To prove that R is dense we proceed by induction on n. Assume first that n = 1. Since V is simple, $Rx_1 = V$ since $x_1 \neq 0$. Then there exists $r \in R$ such that $rx_1 = y_1$.

Assume now that the theorem holds for all sets of size $\leq n$.

CLAIM. There exist $\lambda_1, \ldots, \lambda_n \in R$ such that $\lambda_i \cdot x_i \neq 0$ for all $i \in \{1, \ldots, n\}$ and $\lambda_i \cdot x_j = 0$ for all $i, j \in \{1, \ldots, n\}$ with $i \neq j$.

We first note that the claim implies the theorem. As the theorem holds for n = 1, for each $i \in \{1, ..., n\}$ there exists $r_i \in R$ such that $r_i \lambda_i x_i = y_i$. Let $r = r_1 \lambda_1 + \cdots + r_n \lambda_n \in R$. Then

$$rx_i = (r_1\lambda_1 + \dots + r_n\lambda_n)x_i = r_i\lambda_i x_i = y_i$$

for all $i \in \{1, ..., n\}$.

It remains to prove the claim. To prove it, suppose that it is not true. Then $\lambda x_i = 0$ for all $i \in \{1, \ldots, n-1\}$ implies that $\lambda x_n = 0$. By the inductive hypothesis, given $z_1, \ldots, z_{n-1} \in R$, there exists $r \in R$ such that $rx_i = z_i$ for all $i \in \{1, \ldots, n-1\}$. Let

$$\phi \colon V^{n-1} \to V, \quad \phi(z_1, \dots, z_{n-1}) = rx_n.$$

The map ϕ is well-defined: if $sx_i = z_i$ for all $i \in \{1, \ldots, n-1\}$, then, since $(r-s)x_i = 0$ for all $i \in \{1, \ldots, n-1\}$, it follows that $(r-s)x_n = 0$. Hence $rx_n = sx_n$. Moreover, a direct calculation shows that ϕ is an R-module homomorphism.

For $i \in \{1, ..., n-1\}$, let

$$\xi_i \colon V \xrightarrow{\iota_i} V^{n-1} \xrightarrow{\phi} V,$$

where the map $\iota_i: V \to V^{n-1}$ denotes the inclusion in the *i*-th component. By the inductive hypothesis, for $j \in \{1, \ldots, n-1\}$, there exists $r_i \in R$ such that

$$r_j x_i = \begin{cases} x_i & \text{if } i = j, \\ 0 & \text{otherwise.} \end{cases}$$

In particular, for example,

$$\xi_1(x_1) = \phi(x_1, 0, \dots, 0) = \phi(r_1 x_1, \dots, r_1 x_{n-1}) = r_1 x_n.$$

More generally, $\xi_i(x_i) = r_i x_n$ for all $j \in \{1, \dots, n-1\}$. Note that, on the one hand,

$$\phi(x_1,\ldots,x_{n-1})=\phi(r_1x_1,r_2x_2,\ldots,r_{n-1}x_{n-1})=\xi_1x_1+\cdots+\xi_{n-1}x_{n-1}.$$

On the other hand,

$$x_n = 1x_n = \phi(x_1, \dots, x_{n-1}) = \xi_1 x_1 + \dots + \xi_{n-1} x_{n-1},$$

a contradiction to the linear independence of the set $\{x_1, \ldots, x_{n-1}\}$.

7.13. EXERCISE. Let D be a division ring and V be a D-vector space. Prove that if R is dense in V and I is a non-zero ideal of R, then I is dense on V.

7.14. COROLLARY. If R is a primitive ring, then either there exists a division ring D such that $R \simeq \operatorname{End}_D(V)$ for some finite-dimensional vector space V over D or for all $m \in \mathbb{Z}_{>0}$ there exists a subring R_m of R and a surjective ring homomorphism $R_m \to \operatorname{End}_D(V_m)$ for some vector space V_m over D such that $\dim_D V_m = m$.

PROOF. The ring R admits a simple faithful module V. Furthermore, by Jacobson's density theorem we may assume that there exists a division ring D such that R is dense in a vectoe space V over D. Let $\gamma \colon R \to \operatorname{End}_D(V)$, $r \mapsto \gamma_r$, where $\gamma_r(v) = rv$. Since V is faithful, γ is injective. Thus $R \simeq \gamma(R)$.

If $\dim_D V < \infty$, the result follows from Proposition 7.11. Assume that $\dim_D V = \infty$ and let $\{u_1, u_2, \dots\}$ be a linearly independent set. For each $m \in \mathbb{Z}_{>0}$ let V_m be the subspace generated by $\{u_1, \dots, u_m\}$ and $R_m = \{r \in R : rV_m \subseteq V_m\}$. Then R_m is a subring of R. Since R is dense in V, the map

$$R_m \to \operatorname{End}_D(V_m), \quad r \mapsto \gamma_r|_{V_m}$$

is a surjective ring homomorphism.

8. Lecture: 21/11/2024

- § 8.1. Prime rings. In commutative algebra, domains play a fundamental role. In non-commutative algebra, certain things could be quite different. For example, the ring $M_n(\mathbb{C})$ is not a domain. We need a non-commutative generalization of domains.
- 8.1. DEFINITION. Let R be a ring (not necessarily with one). Then R is **prime** if for $x, y \in R$ such that $xRy = \{0\}$ it follows that x = 0 or y = 0.

A ring R is a **domain** if xy = 0 implies x = 0 or y = 0. Each domain is trivially a prime ring.

- 8.2. EXAMPLE. A commutative ring is prime if and only if it is a domain, as ab = 0 if and only if $aRb = \{0\}$.
 - 8.3. Example. A non-zero ideal of a prime ring is a prime ring.
 - 8.4. Exercise. A ring is a domain if and only if it is both prime and reduced.

A characterization of prime rings:

- 8.5. Proposition. Let R be a ring. The following statements are equivalent:
 - 1) R is prime.
 - 2) If I and J are left ideals such that $IJ = \{0\}$, then $I = \{0\}$ or $J = \{0\}$.
 - 3) If I and J are ideals such that $IJ = \{0\}$, then $I = \{0\}$ or $J = \{0\}$.

PROOF. We first prove that $1) \implies 2$). Let I and J be left ideals such that $IJ = \{0\}$. Then $IRJ = I(RJ) \subseteq IJ = \{0\}$. If $J \neq \{0\}$, $u \in I$ and $v \in J \setminus \{0\}$, then $uRv \in IRJ = \{0\}$. Hence u = 0.

The implication $2) \implies 3$ is trivial.

Let us prove that $3) \implies 1$). Let $x, y \in R$ be such that $xRy = \{0\}$. Let I = RxR and J = RyR. Since $IJ = (RxR)(RyR) \subseteq R(xRy)R = \{0\}$, we may assume that $I = \{0\}$. In particular, Rx and xR are ideals, as $R(xR) = (Rx)R = \{0\}$. Then $\mathbb{Z}x$ is an ideal of R such that $(\mathbb{Z}x)R = \{0\}$. Thus x = 0.

Simple rings are trivially prime. The converse is not true. For example, \mathbb{Z} is a domain, so it is a prime ring but is not simple.

8.6. EXAMPLE. If R_1 and R_2 are rings, $R = R_1 \times R_2$ is not prime, as $I = R_1 \times \{0\}$ and $J = \{0\} \times R_2$ are non-zero ideals such that $IJ = \{0\}$.

A theorem of Connel states (see Theorem 22.5) that if K is a field of characteristic zero and G is a group, then K[G] is prime if and only if G does not contain non-trivial finite normal subgroups.

8.7. Lemma. Let R be a prime ring and L be a minimal left ideal of R. Then R is primitive.

PROOF. Since L is a minimal left ideal, it is simple as a module over R. We claim that L is faithful. Let $y \in L \setminus \{0\}$ and $x \in \operatorname{Ann}_R(L)$. Since $xRy \in xRL \subseteq xL = \{0\}$, it follows that x = 0.

8.8. Lemma. Let D be a division ring and R be a dense ring in a module V over D. If R is left artininian, then $\dim_D V < \infty$.

PROOF. Assume that $\dim_D V = \infty$ and let $\{u_1, u_2, \dots, \}$ be a linearly independent set. Since $R \subseteq \operatorname{End}_D(V)$, it follows that V is a module over R with $f \cdot v = f(v)$, where $f \in R$ y $v \in V$. For $n \in \mathbb{Z}_{>0}$ let

$$I_n = \operatorname{Ann}_R(\{u_1, \dots, u_n\}).$$

Each I_j is a left ideal of R and $I_1 \supseteq I_2 \supseteq \cdots \supseteq I_n \supseteq \cdots$. Let $n \in \mathbb{Z}_{>0}$ and $v \in V \setminus \{0\}$. Since R is dense in V, there exists $f \in R$ such that $f(u_j) = 0$ for all $j \in \{1, \ldots, n\}$ and $f(u_{n+1}) = v \neq 0$. Thus $I_1 \supseteq I_2 \supseteq \cdots \supseteq I_n \supseteq \cdots$, a contradiction.

- 8.9. Theorem (Wedderburn). Let R be a left artinian ring. The following statements are equivalent:
 - 1) R is simple.
 - 2) R is prime.
 - 3) R is primitive.
 - **4)** $R \simeq M_n(D)$ for some n and some division ring D.

PROOF. The implication 1) \implies 2) is trivial.

To show that 2) \implies 3) first note that R contains a minimal left ideal, as R is left artinian. By Lemma 8.7, R is primitive.

Now we prove that 3) \Longrightarrow 4). If R is primitive, Jacobson's density theorem implies that there exists a division ring D such that R is isomorphic to a ring S that is dense in a vector space V over D. Since R is left artinian, Lemma 8.8 implies that $R = \operatorname{End}_D(V) \simeq M_n(D)$, as $\dim_D V < \infty$.

Finally, 4)
$$\implies$$
 1) is trivial, as $M_n(D)$ is simple.

We now prove Artin–Wedderburn theorem. We will assume that our ring is a unitary left artinian ring. One could prove Artin–Wedderburn's theorem for arbitrary rings –see for example [17]– but when dealing with unitary rings, the proof is simpler. We will prove that left artinian semiprimitive unitary rings are isomorphic to a direct product of finitely many matrix rings. The idea of the proof goes as follows. We know that if R is semiprimitive, then R is a subdirect product of primitive rings; that is there exists an injective map

$$R \to \prod_{i \in I} R/I_i$$

where each I_i is a primitive ideal. Since R is left artinian, the set I will be finite. Moreover, by Wedderburn's theorem, $R/I_i \simeq M_{n_i}(D_i)$ for some division ring D_i . Finally, a non-commutative version of the Chinese remainder theorem implies that the map is fact surjective.

8.10. DEFINITION. An ideal I of R is **prime** if $xRy \subseteq I$ implies $x \in I$ or $y \in I$.

Note that a ring R is prime if and only if $\{0\}$ is a prime ideal. Moreover, an ideal I of R is prime if and only if the ring R/I is prime.

8.11. Lemma. If R is left artinian and I is a primitive ideal, then I is prime.

PROOF. Since I is primitive, then R/I is primitive. By Wedderburn theorem, R/I is prime and hence I is prime.

8.12. THEOREM (Artin-Wedderburn). Let R be a semiprimitive left artinian unitary ring. Then $R \simeq \prod_{i=1}^k M_{n_i}(D_i)$ for finitely many division rings D_1, \ldots, D_k .

We shall need the following lemmas.

8.13. Lemma. Let R be a left artinian ring and I be a primitive ideal. Then I is maximal.

PROOF. If I is a primitive ideal of R, then R/I is a primitive ring by Lemma 3.48. By Wedderburn's theorem, R/I is simple. Thus I is maximal by Proposition 3.37.

8.14. LEMMA. Let R be a left artinian unitary ring. Let I_1, \ldots, I_k be finitely many distinct maximal ideals of R. Then $I_2 \cdots I_k \not\subseteq I_1$.

PROOF. Suppose the result is not true and let k be minimal such that $I_2 \cdots I_k \subseteq I_1$. Since the result is clearly true for two distinct maximal ideals, $k \geq 3$. Let $I = I_2 \cdots I_{k-1}$. Since $I \not\subseteq I_1$, there exists $x \in I \setminus I_1$. Moreover, there exists $y \in I_k \setminus I_1$, as $I_k \neq I_1$. Then $(xR)y \subseteq II_k \subseteq I_1$. Note that I_1 is prime: if $xy \in xRy \subseteq I_1$ and $x \not\in I_1$, then (x,M)=R. Thus 1=rx+m for some $r \in R$ and $m \in M$. By multiplying by y on the left, $y=r(xy)+my \in M$. Now that we know that I_1 is prime, it follows that either $x \in I_1$ or $y \in I_1$, a contradiction.

8.15. Lemma. Let R be a left artinian unitary ring. Then R has only finitely many primitive ideals.

PROOF. If $I_1, I_2...$ are infinitely many primitive ideals. Since R is left artinian, the sequence $I_1 \supseteq I_1 I_2 \supseteq \cdots$ stabilizes, so there exists n such that

$$I_1I_2\cdots I_n=I_1I_2\cdots I_nI_{n+1}\subseteq I_{n+1}.$$

This contradicts the previous lemma, as each I_i is a maximal ideal.

Now we are ready to prove the theorem.

PROOF OF THEOREM 8.12. Let I_1, \ldots, I_k be the (distinct) primitive ideals of R. We know that each I_i is a maximal ideal. Thus $I_i + I_j = R$ for $i \neq j$. Since R is semiprimitive, $I_1 \cap \cdots \cap I_k = J(R) = \{0\}$. Let

$$\varphi \colon R \to \prod_{i=1}^k R/I_i, \quad x \mapsto (x+I_1, \dots, x+I_k).$$

Then φ is a ring homomorphism with kernel $I_1 \cap \cdots \cap I_k = \{0\}$, so φ is injective. We need to prove that φ is surjective.

We first claim that $I_1 + (I_2 \cdots I_k) = R$. In fact, since I_1, \ldots, I_k are maximal ideals, $I_2 \cdots I_k \not\subseteq I_1$. This implies that $I_1 + (I_2 \cdots I_k)$ is an ideal of R that contains I_1 . Since I_1 is maximal,

$$I_1 + (I_2 \cdots I_k) = R.$$

Since $I_1 + (I_2 \cdots I_k) = R$, there exists $x_1 \in \prod_{j=2}^k I_j$ such that $1 \in x_1 + I_1$. Note that

$$x_1 = (1 + I_1) \cap (I_2 \cdots I_k) \subseteq I_j$$

for all $j \in \{2, \dots, k\}$. Thus

$$\varphi(x_1) = (x + I_1, x + I_2, \dots, x + I_k) = (1 + I_1, I_2, \dots, I_k).$$

Similarly, there exists $x_2 \in 1 + I_2, \dots, x_k \in 1 + I_k$ such that

$$\varphi(x_2) = (I_1, 1 + I_2, \dots, I_k),$$

 \vdots
 $\varphi(x_k) = (I_1, I_2, \dots, 1 + I_k).$

From this, it follows that φ is surjective. Each R/I_i is primitive and hence isomorphic to $M_{n_i}(D_i)$ for some n_i and some division ring D_i . Therefore

$$R \simeq R/I_1 \times \cdots \times R/I_k \simeq \prod_{i=1}^k M_{n_i}(D_i).$$

- § 8.2. Semisimple modules. In the first lectures, we studied semisimple modules over finite-dimensional algebras. Let us now review the theory of semisimple modules over rings. A (finitely generated) module M (over a ring R) is semisimple if it is isomorphic to a (finite) direct sum of simple modules.
- 8.16. DEFINITION. Let R be a ring. A left ideal L is said to be **minimal** if $L \neq \{0\}$ and there is no left ideal L_1 such that $\{0\} \subsetneq L_1 \subsetneq L$.

The ring \mathbb{Z} contains no minimal left ideals. If I is a non-zero left ideal of \mathbb{Z} , then I = (n) for some n > 0 and $I = (n) \supseteq (2n)$.

8.17. Proposition. Let R be a left artinian ring. Then every non-zero left ideal contains a minimal left ideal.

PROOF. Let I be a non-zero left ideal and X be the family of non-zero left ideals contained in I. Then X is non-empty, as $I \in X$. Then X contains a minimal element by Proposition 6.4.

8.18. Definition. A ring R with identity is semisimple if it is a direct sum of (finitely many) minimal left ideals.

Why finitely many minimal left ideals? Suppose that $R = \bigoplus_{i \in I} L_i$, where $\{L_i : i \in I\}$ is a collection of minimal left ideals of R. Since R is unitary, $1 = \sum_{i \in I} e_i$ (finite sum) for some $e_i \in L_i$. This means that the set $J = \{i \in I : e_i \neq 0\}$ is finite. Note that $R = \bigoplus_{j \in J} L_j$, as if $x \in R$, then

$$x = x1 = \sum_{j \in J} xe_j \in \bigoplus_{j \in J} L_j.$$

Note that $_RR$ is finitely generated by $\{1\}$. Minimal left ideals of R are exactly the simple submodules of $_RR$. This means that the ring R is semisimple if and only if the module $_RR$ is semisimple.

8.19. Proposition. Let R be a semisimple ring. Then $_RR$ is noetherian and artinian.

PROOF. Write R as a direct sum $R = L_1 \oplus \cdots \oplus L_n$ of minimal left ideals. Since each L_j is a simple submodule of R, it follows that

$$L_1 \oplus \cdots \oplus L_n \supsetneq L_2 \oplus \cdots \oplus L_n \supsetneq \cdots \supsetneq L_n \supsetneq \{0\}$$

is a composition series for ${}_{R}R$ with composition factors L_1, \ldots, L_n . Since the module ${}_{R}R$ admits a composition series, it is artinian and noetherian by Theorem 6.12.

The previous proposition shows that every semisimple ring is left artinian and left noetherian.

- 8.20. Exercise. If R is a semisimple ring, every R-module is semisimple.
- 8.21. EXERCISE. Prove that if D is a division ring, then $M_n(D)$ is semisimple.

To see a concrete example, note that $M_2(\mathbb{R})$ is semisimple, as

$$M_2(\mathbb{R}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \right\} = \left\{ \begin{pmatrix} a & 0 \\ b & 0 \end{pmatrix} \right\} \oplus \left\{ \begin{pmatrix} 0 & c \\ 0 & d \end{pmatrix} \right\} \simeq D \oplus D$$

and D is a minimal left ideal of $M_2(\mathbb{R})$.

8.22. THEOREM. Let R be a unitary ring. Then R is semisimple if and only if R is left artinian and $J(R) = \{0\}$.

PROOF. If R is semisimple, then R is left artinian by the previous proposition. Moreover, there are finitely many minimal left ideals L_1, \ldots, L_k of R such that $R \simeq L_1 \oplus \cdots \oplus L_k$. We claim that for each $i \in \{1, \ldots, k\}$, the left ideal $M_i = \sum_{j \neq i} L_j$ of R is maximal. For example, let us prove that M_1 is maximal. If not, there exists a left ideal I of R such that $M_1 \subseteq I$. Let $x \in I \setminus M_1$ and write

$$x = x_1 + x_2 + \dots + x_k$$

for $x_j \in L_j$. Since $x_2 + \cdots + x_k \in M_1 \subseteq I$, it follows that $x_1 \in I \cap L_1$, a contradiction. Now the claim follows, as $J(R) \subseteq M_1 \cap \cdots \cap M_k = \{0\}$.

Conversely, if R is left artinian and $J(R) = \{0\}$, then $R \simeq M_{n_1}(D_1) \times \cdots \times M_{n_k}(D_k)$ for division rings D_1, \ldots, D_k , this is Artin–Wedderburn theorem. Since each $M_{n_j}(D_j)$ is semisimple, it follows that R is semisimple.

§ 8.3. The Hopkins–Levitski theorem.

8.23. Theorem (Hopkins-Levitszki). Let R be a unitary left artinian ring. Then R is left noetherian.

PROOF. Let J = J(R). Since R is left artinian, J is a nilpotent ideal by Theorem 6.19. Let n be such that $J^n = \{0\}$. Now consider the sequence

$$R \supseteq J \supseteq J^2 \supseteq \cdots \supseteq J^{n-1} \supseteq J^n = \{0\}.$$

Each J^i/J^{i+1} is a module over R annihilated by J, that is $J \cdot (J^i/J^{i+1}) = \{0\}$, as

$$x \cdot (y + J^{i+1}) = xy + J^{i+1} \subseteq JJ^i + J^{i+1} = J^{i+1}$$

if $x \in J$ and $y \in J^i$. Thus each J^i/J^{i+1} is a module over R/J. Since R/J is left artinian and $J(R/J) = \{0\}$ by Theorem 5.16, it follows that R/J is semisimple. In particular, since every (R/J)-module is semisimple, each J^i/J^{i+1} is semisimple and hence it is left noetherian.

Now suppose that R is not left noetherian. Let m be the largest non-negative integer such that J^m is not left noetherian. Note that $0 \le m < n$. The sequence

$$0 \longrightarrow J^{m+1} \longrightarrow J^m \longrightarrow J^m/J^{m+1} \longrightarrow 0$$

is exact. Since J^{m+1} is left noetherian by the definition of m and J^m/J^{m+1} is left noetherian, it follows that J^m is noetherian, a contradiction.

9. Lecture: 28/11/2024

- § 9.1. Local rings. In this section, we will consider arbitrary rings with one.
- 9.1. Definition. A ring is said to be local if it contains only one maximal left ideal.

Division rings are local rings.

- 9.2. THEOREM. Let R be a ring and $I = R \setminus \mathcal{U}(R)$. The following statements are equivalent:
 - 1) R is local.
 - **2)** R/J(R) is a division ring.
 - **3)** I = J(R).
 - 4) I is an ideal of R.

PROOF. We first prove 1) \implies 2). Let M be the maximal left ideal of R. Then J(R) = M. Let $x \notin M$. Then R = Rx + M, so 1 = rx + m for some $r \in R$ and $m \in M$. Thus r + M is a left inverse of x + M. In particular, $r \notin M$. Since R = Rr + M, there exists $y \in R$ such that 1 = yr. Therefore y + M is a left inverse of r + M. Thus

$$y + M = (y + M)(1 + M) = (y + M)(r + M)(x + M)$$
$$= (yr + M)(x + M) = (1 + M)(x + M) = x + M$$

and hence x + M is invertible.

Now we prove 2) \implies 3). Clearly $J(R) \subseteq I$.

Conversely, let $x \in I$. If $x \notin J(R)$, then $x+J(R) \neq J(R)$. Since R/J(R) is a division ring, $x+J(R) \in \mathcal{U}(R/J(R))$. In particular, $1-xy \in J(R)$ and hence $xy=1-(1-xy) \in \mathcal{U}(R)$. Thus 1=(xy)z=x(yz) for some $z \in R$ and therefore $x \notin I$, a contradiction.

It is trivial that $3) \implies 4$.

Finally, we prove 4) \Longrightarrow 1). Let M be a maximal left ideal of R. Then $M \subseteq I$. Since M is maximal and I is in particular a left ideal of R, it follows that M = I.

9.3. Definition. An element x of a ring is said to be **idempotent** if $x^2 = x$.

Examples of idempotents are 0 and 1. An idempotent x is said to be **non-trivial** if $x \notin \{0,1\}$.

- 9.4. EXERCISE. Let p be a prime number and m > 0. Prove that the only idempotents of \mathbb{Z}/p^m are 0 and 1.
 - 9.5. Exercise. How many idempotent does \mathbb{Z}/n have?
- 9.6. EXERCISE. Let R be a ring with one and I be an ideal of R. We say that an idempotent $x \in R/I$ can be lifted if x = e + I for some idempotent e of R. Prove that if every element of I is nilpotent, then every idempotent of R/I can be lifted.

The previous exercise shows that if R is left artinian, every idempotent of R/J(R) can be lifted to R.

9.7. Lemma. Let R be a left artinian ring. Then J(R) is nil.

PROOF. Let $x \in J(R)$. The sequence $Rx \supseteq Rx^2 \supseteq \cdots$ stabilizes, so $Rx^n = Rx^{n+1}$ for some n. In particular, there exists $r \in R$ such that $x^n = rx^{n+1}$. This implies that $(1-rx)x^n = 0$. Since $x \in J(R)$, the element 1-rx is invertible. Hence $x^n = 0$.

9.8. Theorem. Let R be a left artinian ring. Then R is local if and only if R has no non-trivial idempotents.

PROOF. Let us first prove \implies . For this implication, we do not need to use that R is left artinian. Let $x \in R$ be an idempotent. Then x(1-x)=0. If $x \in \mathcal{U}(R)$, then x=1. If $1-x \in \mathcal{U}(R)$, then x=0. If $x \notin \mathcal{U}(R)$ and $1-x \notin \mathcal{U}(R)$, then, since $R \setminus \mathcal{U}(R)$ is an ideal of R, it follows that $1=x+1-x \notin \mathcal{U}(R)$, a contradiction.

Now we prove \iff . By the previous lemma, J(R) is nil. By the previous exercise, every idempotent of R/J(R) can be lifted. Thus R/J(R) has no non-trivial idempotents. On the other hand, by Artin–Wedderburn theorem,

$$R/J(R) \simeq \prod_{i=1}^{k} M_{n_i}(D_i)$$

for some $n_1, \ldots, n_k \geq 1$ and division rings D_1, \ldots, D_k . Then $k = n_1 = 1$, as R/J(R) has no non-trivial idempotents. Since R/J(R) is a division ring, R is local by the previous theorem.

9.9. Theorem. The center of a local ring is local.

PROOF. Let R be a local ring. By Theorem 9.2, $J(R) = R \setminus \mathcal{U}(R)$. We need to prove that $Z(R) \setminus \mathcal{U}(Z(R)) = J(Z(R))$. We first note that

(9.1)
$$\mathcal{U}(Z(R)) = Z(R) \cap \mathcal{U}(R).$$

We claim that $Z(R) \cap J(R) \subseteq J(Z(R))$. Let $x \in Z(R) \cap J(R)$. Let $z \in Z(R)$. Since $x \in J(R)$, $1 - zx \in \mathcal{U}(R)$. Moreover, $1 - zx \in Z(R)$. Thus

$$1 - zx \in Z(R) \cap \mathcal{U}(R) = \mathcal{U}(Z(R)).$$

Hence $x \in J(Z(R))$.

To prove the theorem it is enough to show that $Z(R) \setminus \mathcal{U}(Z(R)) = J(Z(R))$. Let us prove the non-trivial inclusion. Let $x \in Z(R) \setminus \mathcal{U}(Z(R))$. Then (9.1) implies that $x \notin \mathcal{U}(R)$. By Theorem 9.2, $x \in J(R)$. Then $x \in J(R) \cap Z(R) \subseteq J(Z(R))$.

- 9.10. Exercise. Let R be a local ring. Prove that $Z(R) \cap J(R) = J(Z(R))$.
- 9.11. EXERCISE. Prove that a ring is local if and only if it contains only one maximal right ideal.
 - 9.12. Exercise. Find a non-local ring with a unique maximal ideal.
- 9.13. Exercise. Let R be a ring with at least three elements. If $|\mathcal{U}(R)| = 1$, then R is not local.
- 9.14. EXERCISE. A ring R is said to be **Von Neumann regular** if for every non-zero $r \in R$, r = rxr for some $x \in R$. Prove that a local Von Neumann ring is a division ring.

9.15. EXERCISE. Let R be a ring such that every element of R is either nilpotent or a unit. Prove that R is local.

- 9.16. Bonus exercise. A ring R is said to be semilocal if R/J(R) is left artinian. Prove the following statements:
 - 1) Every local ring is semilocal.
 - 2) R is semilocal if and only if R/J(R) is semisimple.
 - 3) If R has finitely many maximal left ideals, then R is semilocal.
 - 4) If R_1, \ldots, R_k are rings, then $\bigoplus_{i=1}^k R_i$ is semilocal if and only if each R_i is semilocal.
- 9.17. Bonus exercise. Let R be a ring such that R/J(R) is commutative. Prove that R is semilocal if and only if R has finitely many maximal ideals.

10. Lecture: 05/11/2024

§ 10.1. Rickart's theorem. We now consider Jacobson's semisimplicity problem.

10.1. QUESTION. Let G be a group and K be a field. When $J(K[G]) = \{0\}$?

As an application of Amitsur's theorem 5.27, we prove that complex group algebras have null Jacobson radical. This is known as Rickart's theorem. The original proof found by Rickart uses complex analysis. Here, however, we present an algebraic proof.

10.2. Theorem (Rickart). Let G be a group. Then $J(\mathbb{C}[G]) = \{0\}$.

To prove the theorem, we need a lemma.

10.3. Lemma. Let G be a group. Then $J(\mathbb{C}[G])$ is nil.

PROOF. We need to show that every element of $J(\mathbb{C}[G])$ is nilpotent. If G is countable, then the result follows from Amitsur's theorem 5.27. So assume that G is not countable. Let $\alpha \in J(\mathbb{C}[G])$, say

$$\alpha = \sum_{i=1}^{n} \lambda_i g_i,$$

where $\lambda_1, \ldots, \lambda_n \in \mathbb{C}$ and $g_1, \ldots, g_n \in G$. Let $H = \langle g_1, \ldots, g_n \rangle$. Then $\alpha \in \mathbb{C}[H]$ and H is countable. We claim that $\alpha \in J(\mathbb{C}[H])$. Decompose G as a disjoint union

$$G = \bigcup_{\lambda} x_{\lambda} H$$

of cosets of H in G. Then $\mathbb{C}[G] = \bigoplus_{\lambda} x_{\lambda}\mathbb{C}[H]$ and hence $\mathbb{C}[G] = \mathbb{C}[H] \oplus K$ for some right module K over $\mathbb{C}[H]$ (this follows from the fact that one of the cosets is that of H). Since $\alpha \in J(\mathbb{C}[G])$, for each $\beta \in \mathbb{C}[H]$ there exists $\gamma \in \mathbb{C}[G]$ such that $\gamma(1 - \beta\alpha) = 1$. Write $\gamma = \gamma_1 + \kappa$ for $\gamma_1 \in \mathbb{C}[H]$ and $\kappa \in K$. Then

$$1 = \gamma(1 - \beta\alpha) = \gamma_1(1 - \beta\alpha) + \kappa(1 - \beta\alpha)$$

and hence $\kappa(1-\beta\alpha) \in K \cap \mathbb{C}[H] = \{0\}$, as $\beta \in \mathbb{C}[H]$. Since $1 = \gamma_1(1-\beta\alpha)$, it follows that $\alpha \in J(\mathbb{C}[H])$ and the lemma follows from Amitsur's theorem 5.27.

We now prove the theorem.

PROOF OF THEOREM 10.2. For $\alpha = \sum_{i=1}^n \lambda_i g_i \in \mathbb{C}[G]$ let

$$\alpha^* = \sum_{i=1}^n \overline{\lambda_i} g_i^{-1}.$$

Then $\alpha\alpha^* = 0$ if and only if $\alpha = 0$ and, moreover, $(\alpha\beta)^* = \beta^*\alpha^*$ for all $\beta \in \mathbb{C}[G]$. Assume that $J(\mathbb{C}[G]) \neq \{0\}$ and let $\alpha \in J(\mathbb{C}[G]) \setminus \{0\}$. Then $\beta = \alpha\alpha^* \in J(\mathbb{C}[G])$, as $J(\mathbb{C}[G])$ is an ideal of $\mathbb{C}[G]$. Moreover, the previous lemma implies that β is nilpotent. Note that $\beta \neq 0$, as $\alpha \neq 0$. Since $\beta^* = \beta$,

$$(\beta^m)^* = (\beta^*)^m = \beta^m$$

for all $m \geq 1$. If there exists $k \geq 2$ such that $\beta^k = 0$ and $\beta^{k-1} \neq 0$, then

$$\beta^{k-1} \left(\beta^{k-1} \right)^* = \beta^{2k-2} = 0$$

and hence $\beta^{k-1} = 0$, a contradiction. Thus $\beta = 0$ and therefore $\alpha = 0$.

- 10.4. EXERCISE. If G is a group, then $J(\mathbb{R}[G]) = 0$.
- 10.5. Definition. A ring R semiprime if $aRa = \{0\}$ implies a = 0.
- 10.6. Proposition. Let R be a ring. The following statements are equivalent:
 - 1) R is semiprime.
- 2) If I is a left ideal such that $I^2 = \{0\}$, then $I = \{0\}$.
- **3)** If I is an ideal such that $I^2 = \{0\}$, then $I = \{0\}$.
- 4) R does not contain non-zero nilpotent ideals.

PROOF. We first prove that $1) \implies 2$). If $I^2 = \{0\}$ y $x \in I$, then $xRx \subseteq I^2 = \{0\}$ and thus x = 0. The implications $2) \implies 3$ and $4) \implies 3$ are both trivial. Let us prove that $3) \implies 4$). If I is a non-zero nilpotent ideal, let $n \in \mathbb{Z}_{>0}$ be minimal such that $I^n = \{0\}$. Since $(I^{n-1})^2 = \{0\}$, it follows that $I^{n-1} = \{0\}$, a contradiction. Finally, we prove that $3) \implies 1$). Let $a \in R$ be such that $aRa = \{0\}$. Then I = RaR is an ideal of R such that $I^2 = \{0\}$. Thus $RaR = \{0\}$. This means that Ra and Ra are ideals such that $Ra = Ra = \{0\}$ and $Ra = \{0\}$. This implies that $Ra = \{0\}$ and ideal of $Ra = \{0\}$. Now $(\mathbb{Z}a)(\mathbb{Z}a) \subseteq (\mathbb{Z}a)R = \{0\}$ and hence $Ra = \{0\}$.

Two consequences:

- 10.7. Exercise. A commutative ring is semiprime if and only if it does not contain non-zero nilpotent elements.
 - 10.8. Exercise. Let D be a division ring.
 - 1) D[X] is semiprime and semiprimitive.
 - 2) D[X] is semiprime and it is not semiprimitive.
 - 10.9. COROLLARY. The ring $\mathbb{C}[G]$ is semiprime.

PROOF. Since $J(\mathbb{C}[G]) = \{0\}$ by Rickart's theorem and the Jacobson radical contains every nil ideal by Proposition 4.6, it follows that $\mathbb{C}[G]$ does not contain non-trivial nil ideals. Thus $\mathbb{C}[G]$ does not contain non-trivial nilpotent ideals and hence $\mathbb{C}[G]$ is semiprime. \square

10.10. EXERCISE. Prove that $Z(\mathbb{C}[G])$ is semiprime.

We now characterize when complex group algebras are left artinian. For that purpose, we need a lemma. This is similar to one of the implications proved in Proposition 1.23. However, in the arbitrary setting we are considering, we need to use Zorn's lemma.

10.11. Lemma. Let M be a semisimple module and N be a submodule. Then N is a direct summand.

SKETCH OF THE PROOF. Let $M = \bigoplus_{i \in I} M_i$ be a direct sum of simple submodules. Since each $N \cap M_i$ is a submodule of M_i and M_i is simple, it follows that $N \cap M_i = \{0\}$ or $N \cap M_i = M_i$. If $N \cap M_i = M_i$ for all $i \in I$, then N = M and the lemma is proved. So we may assume that there exists $i \in I$ such that $N \cap M_i = \{0\}$. Let X be the set of subsets I

of I such that $N \cap (\bigoplus_{j \in J} M_j) = \{0\}$. Our assumptions imply that X is non-empty. Zorn's lemma implies the existence of a maximal element K. Let $N_1 = \bigoplus_{k \in K} M_k$. We claim that $N \oplus N_1 = M$. If not, there exists $i \in I$ such that $M_i \nsubseteq N \oplus N_1$. The simplicity of M_i implies that $M_i \cap (N \oplus N_1) = \{0\}$, which contradicts the maximality of K.

A direct application of the lemma proves that complex group algebras of infinite groups are never semisimple.

10.12. PROPOSITION. If G is an infinite group, then $\mathbb{C}[G]$ is not semisimple.

PROOF. Assume that $R = \mathbb{C}[G]$ is semisimple. Let I be the augmentation ideal of R, that is

$$I = \left\{ \alpha = \sum_{g \in G} \lambda_g g \in R : \sum_{g \in G} \lambda_g = 0 \right\}.$$

By the previous lemma, there exists a non-zero left ideal J such that $R = I \oplus J$. Since R is unitary, there exist $e \in I$ and $f \in J$ such that 1 = e + f. If $x \in I$, then x = xe + xf and hence $xf = x - xe \in I \cap J = \{0\}$. Since x = xe for all $x \in I$, it follows that $e = e^2$. Similarly, one proves that $f^2 = f$. Moreover, ef = 0, as $ef \in I \cap J = \{0\}$. Since I is the augmentation ideal of R and $If = (Re)f = R(ef) = \{0\}$ (note that I = Re because x = xe for all $x \in I$), we conclude that (g - 1)f = 0 for all $g \in G$, as $g - 1 \in I$ for all $g \in G$. If $f = \sum_{h \in G} \lambda_h h$ (finite sum) and $g \in G$, then

$$f = gf = \sum_{h \in G} \lambda_h(gh) = \sum_{h \in G} \lambda_{g^{-1}h}h.$$

Thus $\lambda_h = \lambda_{g^{-1}h}$ for all $g, h \in G$. Since G is infinite, some $\lambda_g = 0$ and hence f = 0. Thus e = 1 and $I = \mathbb{C}[G]$, a contradiction.

10.13. THEOREM. Let G be a group. Then $\mathbb{C}[G]$ is left artinian if and only if G is finite.

PROOF. If G is finite, then $\mathbb{C}[G]$ is left artinian because $\dim \mathbb{C}[G] = |G| < \infty$. So assume that G is infinite. By Rickart's theorem, $J(\mathbb{C}[G]) = 0$. Moreover, $\mathbb{C}[G]$ is not semisimple by the previous proposition. Thus $\mathbb{C}[G]$ is not left artinian by Theorem 8.22.

- § 10.2. Maschke's theorem. We now present another instance of the semisimplicity problem. In this case, our result is for finite groups.
- 10.14. THEOREM (Maschke). Let G be a finite group. Then $J(K[G]) = \{0\}$ if and only if the characteristic of K is zero or does not divide the order of G.

PROOF. Assume that $G = \{g_1, \dots, g_n\}$, where $g_1 = 1$. Let

$$\rho \colon K[G] \to K, \quad \alpha \mapsto \operatorname{trace}(L_{\alpha}),$$

where $L_{\alpha}(\beta) = \alpha \beta$. Then

$$\rho(g_i) = \begin{cases} n & \text{if } i = 1, \\ 0 & \text{if } 2 \le i \le n, \end{cases}$$

as $L_{g_i}(g_j) = g_i g_j \neq g_j$ if $i \neq j$ and hence the matrix of L_{g_i} in the basis $\{g_1, \ldots, g_n\}$ contains zeros in the main diagonal.

Assume that J = J(K[G]) is non-zero and let $\alpha = \sum_{i=1}^{n} \lambda_i g_i \in J \setminus \{0\}$. Without loss of generality we may assume that $\lambda_1 \neq 0$ (if $\lambda_1 = 0$ there exists some $\lambda_i \neq 0$ and we need to take $g_i^{-1}\alpha \in J$). Then

$$\rho(\alpha) = \sum_{i=1}^{n} \lambda_i \rho(g_i) = n\lambda_1.$$

Since G is finite, K[G] is a finite-dimensional algebra and hence K[G] is left artinian. Since J is a nilpotent ideal, in particular, α is a nilpotent element. Then L_{α} is nilpotent and hence $0 = \rho(\alpha) = n\lambda_1$. This implies that the characteristic of the field K divides n.

Conversely, let K be a field of prime characteristic and that this prime divides n. Let $\alpha = \sum_{i=1}^{n} g_i$. Since $\alpha g_j = g_j \alpha = \alpha$ for all $j \in \{1, \ldots, n\}$, the set $I = K[G]\alpha$ is an ideal of K[G]. Since, moreover,

$$\alpha^2 = \sum_{i=1}^n g_i \alpha = n\alpha = 0$$

in the field K, it follows that I is a nilpotent non-zero ideal. Thus $J(K[G]) \neq \{0\}$, as Proposition 4.6 yields $I \subseteq J(K[G])$.

Since the Jacobson radical of a group algebra of a finite group contains every nil left ideal, the following consequence of the theorem follows immediately:

- 10.15. COROLLARY. Let G be a finite group. Then K[G] does not contain non-zero nil left ideals.
- § 10.3. Herstein's theorem. Our aim now is to answer the following question: When a group algebra is algebraic? Herstein's theorem provides a solution in the case of fields of characteristic zero. In prime characteristic, the problem is still open.
- 10.16. DEFINITION. A group G is **locally finite** if every finitely generated subgroup of G is finite.

If G is a locally finite group, then every element $g \in G$ has finite order, as the subgroup $\langle g \rangle$ is finite because it is finitely generated.

- 10.17. Example. Every finite group is locally finite
- 10.18. Example. The group \mathbb{Z} is not locally finite because it is torsion-free.
- 10.19. Example. Let p be a prime number. The Prüfer's group

$$\mathbb{Z}(p^{\infty}) = \{ z \in \mathbb{C} : z^{p^n} = 1 \text{ for some } n \in \mathbb{Z}_{>0} \},$$

is locally finite.

10.20. EXAMPLE. Let X be an infinite set and \mathbb{S}_X be the set of bijective maps $X \to X$ moving only finitely many elements of X. Then \mathbb{S}_X is locally finite.

A group G is a **torsion** group if every element of G has finite order. Locally finite groups are torsion groups.

10.21. EXAMPLE. Abelian torsion groups are locally finite. Let G be a locally finite abelian group and H be a finitely generated subgroup. Since G is an abelian torsion group, so is H. Thus H is finite by the structure theorem of abelian groups.

10.22. PROPOSITION. Let G be a group and N be a normal subgroup of G. If N and G/N are locally finite, then G is locally finite.

PROOF. Let $\pi: G \to G/N$ be the canonical map and $\{g_1, \ldots, g_n\}$ be a finite subset of G. Since G/N is locally finite, the subgroup Q of G/N generated by $\pi(g_1), \ldots, \pi(g_n)$ is finite, say

$$Q = \{\pi(g_1), \dots, \pi(g_n), \pi(g_{n+1}), \dots, \pi(g_m)\}\$$

for some $g_{n+1}, \ldots, g_m \in G$.

For each $i, j \in \{1, ..., n\}$ there exist $u_{ij} \in N$ and $k \in \{1, ..., m\}$ such that

$$g_i g_j = u_{ij} g_k.$$

Let U be the subgroup of N generated by $\{u_{ij}: 1 \leq i, j \leq n\}$. Since N is locally finite, U is finite. Moreover, since each $q_iq_jq_l$ can be written as

$$g_i g_j g_l = u_{ij} g_k g_l = u_{ij} u_{kl} g_t = u g_t$$

for some $u \in U$ and $t \in \{1, ..., m\}$, it follows that the subgroup H of G generated by $\{g_1, ..., g_n\}$ is finite, as $|H| \leq m|U|$.

A group G is solvable if there exists a sequence of subgroups

$$\{1\} = G_0 \subsetneq G_1 \subsetneq \cdots \subsetneq G_n = G$$

where each G_i is normal in G_{i+1} and each quotient G_i/G_{i-1} is abelian.

10.23. Example. Abelian groups are solvable.

Subgroups and quotients of solvable groups are solvable.

- 10.24. Example. Groups of order < 60 are solvable.
- 10.25. Example. \mathbb{A}_5 and \mathbb{S}_5 are not solvable.

A famous theorem of Burnside states that groups of order $p^a q^b$ for prime numbers p and q are solvable A much harder theorem proved by Feit and Thompson states that groups of odd order are solvable.

10.26. Proposition. If G is a solvable torsion group, then G is locally finite.

PROOF. We proceed by induction on n, the length of the sequence (10.1). If n = 1, then G is finite because it is abelian and a torsion group. Now assume the result holds for solvable groups of length n-1 and let G be a solvable group with a sequence (10.1). Since G_{n-1} is a solvable torsion group, the inductive hypothesis implies that G_{n-1} is locally finite. Since G/G_{n-1} is an abelian torsion group, it is locally finite. The result now follows from Proposition 10.22.

We now prove Herstein's theorem.

10.27. THEOREM (Herstein). If G is a locally finite group, then K[G] is algebraic. Conversely, if K[G] is algebraic and K has characteristic zero, then G is locally finite.

PROOF. Assume that G is locally finite. Let $\alpha \in K[G]$. The subgroup $H = \langle \operatorname{supp} \alpha \rangle$ is finite, as it is finitely generated. Since $\alpha \in K[H]$ and $\dim_K K[H] < \infty$, the set $\{1, \alpha, \alpha^2, \dots\}$ is linearly dependent. Thus α is algebraic over K.

Let $\{x_1,\ldots,x_m\}$ be a finite subset of G. Adding inverses if needed, we may assume that $\{x_1,\ldots,x_m\}$ generates the subgroup $H=\langle x_1,\ldots,x_m\rangle$ as a semigroup. Let

$$\alpha = x_1 + \dots + x_m \in K[G].$$

Since α is algebraic over K, there exist $b_0, b_1, \ldots, b_{n+1} \in K$ such that

$$b_0 + b_1 \alpha + \dots + b_{n+1} \alpha^{n+1} = 0,$$

where $b_{n+1} \neq 0$. Since K has characteristic zero, we can rewrite this as

$$\alpha^{n+1} = a_0 + a_1 \alpha + \dots + a_n \alpha^n$$

for some $a_0, \ldots, x_n \in K$. Note that

$$\alpha^k = (x_1 + \dots + x_m)^k = \sum x_{i_1} \cdots x_{i_k}$$

for all k. Two words $x_{i_1} \cdots x_{i_k}$ and $x_{j_1} \cdots x_{j_l}$ could represent the same element of the group

H. In this case, the coefficient of $x_{i_1}\cdots x_{i_k}=x_{j_1}\cdots x_{j_l}$ in α^k will be a positive integer ≥ 2 . Let $w=x_{i_1}\cdots x_{i_{n+1}}\in H$ be a word of length n+1. Since K is of characteristic zero, it follows that $w\in \operatorname{supp}(\alpha^{n+1})$. Since, moreover, $\alpha^{n+1}=\sum_{j=0}^n a_j\alpha^j$, it follows that $w \in \operatorname{supp}(\alpha^j)$ for some $j \in \{0, \dots, n\}$. Thus each word in the letters x_j of length n+1 can be written as a word in the letters x_i of length $\leq n$. Therefore H is finite and hence G is locally finite.

§ 10.4. Formanek's theorem, I. We start with some exercises.

10.28. EXERCISE. Let K be a field. Let A be a K-algebra algebraic over K and $a \in A$.

- 1) a is a left zero divisor if and only if a is a right zero divisor.
- 2) a is left invertible if and only if a is right invertible.
- **3)** a is invertible if and only if a is not a zero divisor.

10.29. Exercise. For $\alpha = \sum_{g \in G} \alpha_g g \in \mathbb{C}[G]$ let $|\alpha| = \sum_{g \in G} |\alpha_g| \in \mathbb{R}$. Prove the following statements:

- 1) $|\alpha + \beta| \leq |\alpha| + |\beta|$, and
- 2) $|\alpha\beta| < |\alpha||\beta|$

for all $\alpha, \beta \in \mathbb{C}[G]$.

10.30. Theorem (Formanek). Let G be a group. If every element of $\mathbb{Q}[G]$ is invertible or a zero divisor, then G is locally finite.

PROOF. Let $\{x_1, \ldots, x_n\}$ be a finite subset of G. Adding inverses if needed, we may assume that $\{x_1,\ldots,x_n\}$ generates the subgroup $H=\langle x_1,\ldots,x_n\rangle$ as a semigroup. Let

$$\alpha = \frac{1}{2n}(x_1 + \dots + x_n) \in \mathbb{Q}[G]$$

Note that $|\alpha| \leq 1/2$. We claim that $1 - \alpha \in \mathbb{Q}[G]$ is invertible. If not, then it is a zero divisor. If there exists $\delta \in \mathbb{Q}[G]$ such that $\delta(1-\alpha)=0$, then $\delta=\delta\alpha$. Since

$$|\delta| = |\delta \alpha| \le |\delta| |\alpha| \le |\delta|/2,$$

it follows that $\delta = 0$. Similarly, $(1 - \alpha)\delta = 0$ implies $\delta = 0$.

Let
$$\beta = (1 - \alpha)^{-1} \in \mathbb{Q}[G]$$
. For each k let

$$\gamma_k = (1 + \alpha + \dots + \alpha^k) - \beta.$$

Then

$$\gamma_k(1-\alpha) = (1+\alpha+\dots+\alpha^k-\beta)(1-\alpha)$$
$$= (1+\alpha+\dots+\alpha^k)(1-\alpha) - \beta(1-\alpha) = -\alpha^{k+1}$$

and thus $\gamma_k = -\alpha^{k+1}\beta$. Since

$$|\gamma_k| = |-\alpha^{k+1}\beta| \le |\beta||\alpha^{k+1}| \le \frac{|\beta|}{2^{k+1}},$$

it follows that $\lim_{k\to\infty} |\gamma_k| = 0$.

We now prove that $H \subseteq \operatorname{supp} \beta$. This will finish the proof of the theorem, as $\operatorname{supp} \beta$ is a finite subset of G by definition. If $H \not\subseteq \operatorname{supp} \beta$, let $h \in H \setminus \operatorname{supp} \beta$. Assume that $h = x_{i_1} \cdots x_{i_m}$ is a word in the letters x_j of length m. Let c_j be the coefficient of h in α^j . Then $c_0 + \cdots + c_k$ is the coefficient of h in γ_k , but

$$|\gamma_k| \ge c_0 + c_1 + \dots + c_k \ge c_m > 0$$

for all $k \geq m$, as each c_j is non-negative, a contradiction to $|\gamma_k| \to 0$ si $k \to \infty$.

11. Lecture: 12/12/2024

§ 11.1. Tensor products. The tensor product of the vector spaces (over K) U and V is the quotient vector space $K[U \times V]/T$, where $K[U \times V]$ is the vector space with basis

$$\{(u,v): u \in U, v \in V\}$$

and T is the subspace generated by elements of the form

$$(\lambda u + \mu u', v) - \lambda(u, v) - \mu(u', v), \quad (u, \lambda v + \mu v') - \lambda(u, v) - \mu(u, v')$$

for $\lambda, \mu \in K$, $u, u' \in U$ and $v, v' \in V$. The tensor product of U and V will be denoted by $U \otimes_K V$ or $U \otimes V$ when the base field is clear from the context. For $u \in U$ and $v \in V$ we write $u \otimes v$ to denote the coset (u, v) + T.

11.1. Theorem. Let U and V be vector spaces. Then there exists a bilinear map

$$U \times V \to U \otimes V$$
, $(u, v) \mapsto u \otimes v$,

such that each element of $U \otimes V$ is a finite sum of the form

$$\sum_{i=1}^{N} u_i \otimes v_i$$

for some $u_1, \ldots, u_N \in U$ and $v_1, \ldots, v_N \in V$. Moreover, if W is a vector space and

$$\beta \colon U \times V \to W$$

is a bilinear map, there exists a linear map $\overline{\beta} \colon U \otimes V \to W$ such that $\overline{\beta}(u \otimes v) = \beta(u,v)$ for all $u \in U$ and $v \in V$.

PROOF. By definition, the map

$$U \times V \to U \otimes V$$
, $(u, v) \mapsto u \otimes v$,

is bilinear. From the definitions, it follows that $U \otimes V$ is a finite linear combination of elements of the form $u \otimes v$, where $u \in U$ and $v \in V$. Since $\lambda(u \otimes v) = (\lambda u) \otimes v$ for all $\lambda \in K$, the first claim follows.

Since the elements of $U \times V$ form a basis of $K[U \times V]$, there exists a linear map

$$\gamma \colon K[U \times V] \to W, \quad \gamma(u, v) = \beta(u, v).$$

Since β is bilinear by assumption, $T \subseteq \ker \gamma$. It follows that there exists a linear map $\overline{\beta} \colon U \otimes V \to W$ such that

$$K[U \times V] \longrightarrow W$$

$$\downarrow \qquad \qquad \downarrow$$

$$U \otimes V$$

commutes. In particular, $\overline{\beta}(u \otimes v) = \beta(u, v)$.

11.2. Exercise. Prove that the properties of the previous theorem characterize tensor products up to isomorphism.

Some properties:

11.3. PROPOSITION. Let $\varphi: U \to U_1$ and $\psi: V \to V_1$ be linear maps. There exists a unique linear map $\varphi \otimes \psi: U \otimes V \to U_1 \otimes V_1$ such that

$$(\varphi \otimes \psi)(u \otimes v) = \varphi(u) \otimes \psi(v)$$

for all $u \in U$ and $v \in V$.

PROOF. Since $U \times V \to U_1 \otimes V_1$, $(u, v) \mapsto \varphi(u) \otimes \psi(v)$, is bilinear, there exists a linear map $U \otimes V \to U_1 \otimes V_1$, $u \otimes v \to \varphi(u) \otimes \psi(v)$. Thus

$$\sum u_i \otimes v_i \mapsto \sum \varphi(u_i) \otimes \psi(v_i)$$

is well-defined.

- 11.4. Exercise. Prove the following statements:
 - 1) $(\varphi \otimes \psi)(\varphi' \otimes \psi') = (\varphi \varphi') \otimes (\psi \psi').$
 - 2) If φ and ψ are isomorphisms, then $\varphi \otimes \psi$ is an isomorphism.
 - 3) $(\lambda \varphi + \lambda' \varphi') \otimes \psi = \lambda \varphi \otimes \psi + \lambda' \varphi' \otimes \psi$.
 - 4) $\varphi \otimes (\lambda \psi + \lambda' \psi') = \lambda \varphi \otimes \psi + \lambda' \varphi \otimes \psi'$.
 - 5) If $U \simeq U_1$ and $V \simeq V_1$, then $U \otimes V \simeq U_1 \otimes V_1$.

The following proposition is extremely useful:

11.5. Proposition. If U and V are vector spaces, then $U \otimes V \simeq V \otimes U$.

PROOF. Since $U \times V \to V \otimes U$, $(u, v) \mapsto v \otimes u$, is bilinear, there exists a linear map

$$U \otimes V \to V \otimes U$$
, $u \otimes v \mapsto v \otimes u$.

Similarly, there exists a linear map

$$V \otimes U \to U \otimes V$$
, $v \otimes u \mapsto u \otimes v$.

Thus $U \otimes V \simeq V \otimes U$.

- 11.6. Exercise. Prove that $(U \otimes V) \otimes W \simeq U \otimes (V \otimes W)$.
- 11.7. Exercise. Prove that $U \otimes K \simeq U \simeq K \otimes U$.
- 11.8. PROPOSITION. Let U and V be vector spaces. If $\{u_1, \ldots, u_n\}$ is a linearly independent subset of U and $v_1, \ldots, v_n \in V$ is such that $\sum_{i=1}^n u_i \otimes v_i = 0$, then $v_i = 0$ for all $i \in \{1, \ldots, n\}$.

PROOF. Let $i \in \{1, ..., n\}$ and

$$f_i \colon U \to K$$
, $f_i(u_j) = \delta_{ij} = \begin{cases} 1 & \text{if } i = j, \\ 0 & \text{otherwise.} \end{cases}$

Since the map

$$U \times V \to V$$
, $(u, v) \mapsto f_i(u)v$,

is bilinear, there exists a linear map $\alpha_i : U \otimes V \to V$ such that $\alpha_i(u \otimes v) = f_i(u)v$. Thus

$$v_i = \sum_{j=1}^n \alpha_i(u_j \otimes v_j) = \alpha_i \left(\sum_{j=1}^n u_j \otimes v_j\right) = 0.$$

11.9. Exercise. Prove that $u \otimes v = 0$ and $v \neq 0$ imply u = 0.

11.10. THEOREM. Let U and V be vector spaces. If $\{u_i : i \in I\}$ is a basis of U and $\{v_i : j \in J\}$ is a basis of V, then $\{u_i \otimes v_j : i \in I, j \in J\}$ is a basis of $U \otimes V$.

PROOF. The $u_i \otimes v_j$ are generators of $U \otimes V$, as $u = \sum_i \lambda_i u_i$ and $v = \sum_j \mu_j v_j$ imply

$$u \otimes v = \sum_{i,j} \lambda_i \mu_j u_i \otimes v_j.$$

We now prove that the $u_i \otimes v_j$ are linearly independent. We need to show that each finite subset of the $u_i \otimes v_j$ is linearly independent. If $\sum_k \sum_l \lambda_{kl} u_{i_k} \otimes v_{j_l} = 0$, then

$$0 = \sum_{k} u_{i_k} \otimes \left(\sum_{l} \lambda_{kl} v_{j_l} \right).$$

Since the u_{i_k} are linearly independent, Proposition 11.8 implies that $\sum_{l} \lambda_{kl} v_{j_l} = 0$. Thus $\lambda_{kl} = 0$ for all k, l, as the v_{j_l} are linearly independent.

If U and V are finite-dimensional vector spaces, then

$$\dim(U \otimes V) = (\dim U)(\dim V).$$

11.11. COROLLARY. If $\{u_i : i \in I\}$ is a basis of U, then every element of $U \otimes V$ can be written uniquely as a finite sum $\sum_i u_i \otimes v_i$.

PROOF. Every element of the tensor product $U \otimes V$ is a finite sum of the form $\sum_i x_i \otimes y_i$, where $x_i \in U$ and $y_i \in V$. If $x_i = \sum_j \lambda_{ij} u_j$, then

$$\sum_{i} x_{i} \otimes y_{i} = \sum_{i} \left(\sum_{j} \lambda_{ij} u_{j} \right) \otimes y_{i} = \sum_{j} u_{j} \otimes \left(\sum_{i} \lambda_{ij} y_{i} \right). \quad \Box$$

11.12. Exercise. Let A and B be algebras. Prove that $A \otimes B$ is an algebra with

$$(a \otimes b)(x \otimes y) = ax \otimes by.$$

- 11.13. EXERCISE. Let K be a field and A,B,C be K-algebras. Prove the following statements:
 - 1) $A \otimes B \simeq B \otimes A$.
 - 2) $(A \otimes B) \otimes C \simeq A \otimes (B \otimes C)$.
 - 3) $A \otimes K \simeq A \simeq K \otimes A$.
 - 4) If $A \simeq A_1$ and $B \simeq B_1$, then $A \otimes B \simeq A_1 \otimes B_1$.

Some examples:

11.14. PROPOSITION. If G and H are groups, then $K[G] \otimes K[H] \simeq K[G \times H]$.

PROOF. The set $\{g \otimes h : g \in G, h \in H\}$ is a basis of $K[G] \otimes K[H]$ and the elements of $G \times H$ form a basis of $K[G \times H]$. There exists a linear isomorphism

$$K[G] \otimes K[H] \to K[G \times H], \quad g \otimes h \mapsto (g, h),$$

that is multiplicative. Thus $K[G] \otimes K[H] \simeq K[G \times H]$ as algebras.

11.15. Proposition. If A is an algebra, then $A \otimes K[X] \simeq A[X]$.

PROOF. Each element of the tensor product $A \otimes K[X]$ can be written uniquely as a finite sum of the form $\sum a_i \otimes X^i$. Routine calculations show that $A \otimes K[X] \mapsto A[X]$, $\sum a_i \otimes X^i \mapsto \sum a_i X^i$, is a linear algebra isomorphism.

11.16. EXERCISE. Prove that if A is an algebra, then $A \otimes M_n(K) \simeq M_n(A)$. In particular, $M_n(K) \otimes M_m(K) \simeq M_{nm}(K)$.

Proposition 11.15 and Exercise 11.16 are examples of a procedure known as scalar extensions.

11.17. THEOREM. Let A be an algebra over K and E be an extension of K (this just simply means that K is a subfield of E). Then $A^E = E \otimes_K A$ is an algebra over E with respect to the scalar multiplication

$$\lambda(\mu \otimes a) = (\lambda \mu) \otimes a,$$

for all $\lambda, \mu \in E$ and $a \in A$.

PROOF. Let $\lambda \in E$. Since $E \times A \to E \otimes_K A$, $(\mu, a) \mapsto (\lambda \mu) \otimes a$, is K-bilinear, there exists a linear map $E \otimes_K A \to E \otimes_K A$, $\mu \otimes a \mapsto (\lambda \mu) \otimes a$. The scalar multiplication is then well-defined and

$$\lambda(u+v) = \lambda u + \lambda v$$

for all $\lambda \in E$ and $u, v \in E \otimes_K A$. Moreover,

$$(\lambda + \mu)u = \lambda u + \mu u, \quad (\lambda \mu)u = \lambda(\mu u), \quad \lambda(uv) = (\lambda u)v = u(\lambda v)$$

for all $u, v \in E \otimes_K A$ and $\lambda, \mu \in E$.

- 11.18. Exercise. Prove the following statements:
 - 1) $\{1\} \otimes A$ is a subalgebra of A^E isomorphic to A.
 - 2) If $\{a_i : i \in I\}$ is a basis of A, then $\{1 \otimes a_i : i \in I\}$ is a basis of A^E .
- 11.19. EXERCISE. Prove that if G is a group and K is a subfield of E, then

$$E \otimes_K K[G] \simeq E[G].$$

- § 11.2. Formanek's theorem, II. The combination of technique known as extensions of scalars we have seen in the previous section and Formanek's theorem for rational group algebras yield the following general result.
- 11.20. THEOREM (Formanek). Let K be a field of characteristic zero and let G be a group. If every element of K[G] is invertible or a zero divisor, then G is locally finite.

PROOF. Since K is of characteristic zero, $\mathbb{Q} \subseteq K$. Then $K[G] \simeq K \otimes_{\mathbb{Q}} \mathbb{Q}[G]$. Each $\beta \in K \otimes_{\mathbb{Q}} \mathbb{Q}[Q]$ can be written uniquely as

$$\beta = 1 \otimes \beta_0 + \sum k_i \otimes \beta_i,$$

where $\{1, k_1, k_2, ..., \}$ is a basis of K as a \mathbb{Q} -vector space. Let $\alpha \in \mathbb{Q}[G]$ and let $\beta \in K[G]$ be such that $\alpha\beta = 1$. Since

$$1 \otimes 1 = (1 \otimes \alpha)\beta = 1 \otimes \alpha\beta_0 + \sum k_i \otimes \alpha\beta_i,$$

it follows that $\alpha\beta_0 = 1$. Similarly, if $\alpha\beta = 0$, then $\alpha\beta_j = 0$ for all j. Since each $\alpha \in \mathbb{Q}[G]$ is invertible or a zero divisor, Formanek's theorems for \mathbb{Q} applies.

§ 11.3. Wedderburn's little theorem.

11.21. Definition. The n-th cyclotomic polynomial is defined as the polynomial

(11.1)
$$\Phi_n(X) = \prod (X - \zeta),$$

where the product is taken over all n-th primitive roots of one.

Some examples:

$$\Phi_2 = X - 1,$$

$$\Phi_3 = X^2 + X + 1,$$

$$\Phi_4 = X^2 + 1,$$

$$\Phi_5 = X^4 + X^3 + X^2 + X + 1,$$

$$\Phi_6 = X^2 - X + 1,$$

$$\Phi_7 = X^6 + X^5 + \dots + X + 1.$$

11.22. Lemma. If $n \in \mathbb{Z}_{>0}$, then

$$X^n - 1 = \prod_{d|n} \Phi_d(X).$$

PROOF. Write

$$X^{n} - 1 = \prod_{j=1}^{n} (X - e^{2\pi i j/n}) = \prod_{\substack{d \mid n \\ \gcd(j,n) = d}} (X - e^{2\pi i j/n}) = \prod_{\substack{d \mid n \\ d \mid n}} \Phi_{d}(X).$$

11.23. Lemma. If $n \in \mathbb{Z}_{>0}$, then $\Phi_n(X) \in \mathbb{Z}[X]$.

PROOF. We proceed by induction on n. The case n=1 is trivial, as $\Phi_1(X)=X-1$. Assume that $\Phi_d(X) \in \mathbb{Z}[X]$ for all d < n. Then

$$\prod_{d|n,d\neq n} \Phi_d(X) \in \mathbb{Z}[X]$$

is a monic polynomial. Thus $\Phi_n(X)/\prod_{d|n,d< n} \Phi_d(X) \in \mathbb{Z}[X]$.

11.24. Theorem (Wedderburn). Every finite division ring is a field.

PROOF. Let D be a finite division ring and K=Z(D). Then K is a finite field, say |K|=q. We claim that $|q-\zeta|>q-1$ for all n-th root of one $\zeta\neq 1$. In fact, write $\zeta=\cos\theta+i\sin\theta$. Then $\cos\theta<1$ and

$$|q - \zeta|^2 = q^2 - (2\cos\theta)q + 1 > (q - 1)^2.$$

Note that D is a K-vector space. Let $n = \dim_K D$. We claim that n = 1. If n > 1, the class equation for the group $D^* = D \setminus \{0\}$ implies that

(11.2)
$$q^{n} - 1 = q - 1 + \sum_{i=1}^{m} \frac{q^{n} - 1}{q^{d_{i}} - 1},$$

where $1 < \frac{q^n-1}{q^{d_j}-1} \in \mathbb{Z}$ for all $j \in \{1, \ldots, m\}$. Since $d^{d_j} - 1$ divides $q^n - 1$, each d_j divides n. In particular, (11.1) implies that

$$(11.3) X^n - 1 = \Phi_n(X)(X^{d_j} - 1)h(X)$$

for some $h(X) \in \mathbb{Z}[X]$. By evaluating (11.3) in X = q we obtain that $\Phi_n(q)$ divides $q^n - 1$ and that $\Phi_n(q)$ divides $\frac{q^n - 1}{q^{d_j} - 1}$. By (11.2), $\Phi_n(q)$ divides q - 1. Thus

$$|q-1| \ge |\Phi_n(q)| = \prod |q-\zeta| > q-1,$$

as each $|q - \zeta| > q - 1$, a contradiction.

There are several proofs of Wedderburn's theorem. For example, [38] contains a proof that uses only elementary linear algebra. In [34, Chapter 14] the theorem is proved using group theory.

11.25. THEOREM. Let D be a division ring of characteristic p > 0. If G is a subgroup of $D \setminus \{0\}$, then G is cyclic.

We shall need a lemma. The lemma uses a well-known result from elementary number theory: If φ is the Euler function that counts the positive integers up to a given integer n that are relatively prime to n, then

$$\sum_{d|n} \varphi(d) = n.$$

Let us present a quick group-theoretical proof. Let $G = \langle g \rangle$ be the cyclic group of order n. Then

$$n = |G| = \sum_{1 \le d \le n} |\{g \in G : |g| = d\}| = \sum_{d|n} |\{g \in G : |g| = d\}|$$

by Lagrange's Theorem. Since G is cyclic, for each $d \mid n, \langle g^{n/d} \rangle$ is the unique subgroup of G of order d. Now the claim follows, as each subgroup of the form $\langle g^{n/d} \rangle$ has $\varphi(d)$ generators.

11.26. Lemma. Let K be a field. Any finite subgroup of $K \setminus \{0\}$ is cyclic.

PROOF. Let G be a finite subgroup of $K \setminus \{0\}$ and n = |G|. For a divisor d of n, let f(d) be the number of elements of G of order d. Then

$$(11.4) \qquad \sum_{d|n} f(d) = n.$$

We claim that if $d \mid n$ is such that $f(d) \neq 0$, then $f(d) = \varphi(d)$, where φ is the Euler function. In fact, if $f(d) \neq 0$, then there exists $g \in G$ such that |g| = d. Let $H = \langle g \rangle$ be the subgroup of G generated by g. Every element of H is a root of the polynomial $p(X) = X^d - 1 \in K[X]$. Since p(X) has at most d roots, H is the set of roots of p(X). In particular, $g^m \in H$ and $|g^m| = d$ if and only if $\gcd(m, d) = 1$. Hence $f(d) = \varphi(d)$.

Since $\sum_{d|n} \varphi(d)$ and (11.4), it follows that $f(n) = \varphi(n) \neq 0$. Hence there exists $g \in G$ such that |g| = n = |G| and G is cyclic.

PROOF OF THEOREM 11.25. Let $F = \sum_{g \in G} (\mathbb{Z}/p)g$. Then F is a finite subring of D. Since D is a domain, F is a domain. Let $\alpha \in F \setminus \{0\}$. Then $\{\lambda \alpha : \lambda \in F\} = F$. Since $\lambda \alpha = 1$ for some $\lambda \in F$, F is a division ring. By Wedderburn's theorem, F is a field. Note that $G \subseteq F$. Therefore G is cyclic by the previous lemma.

- § 11.4. Zsigmondy's theorem. One of Wedderburn's original proof of Theorem 11.24 uses a result proved by Zsigmondy [40]. Zsigmondy's theorem is quite popular in mathematical contests.
- 11.27. THEOREM (Zsigmondy). Let $a > b \ge 1$ be such that gcd(a, b) = 1 and $n \ge 2$. Then there exists a prime divisor of $a^n b^n$ that does not divide $a^k b^k$ for all $k \in \{1, ..., n-1\}$ except when n = 2 and a + b is a power of two or (a, b, n) = (2, 1, 6).

PROOF. See for example [39].

We now quickly sketch a proof of Wedderburn's theorem 11.24 based on Zsigmondy's theorem.

Let D be a division ring of dimension n over \mathbb{Z}/p for a prime number p. Assume first that there exists a prime number q such that $q \nmid p$ and the order of p modulo q is n. Let $x \in D \setminus \{0\}$ be an element of order q and F be the subring of D generated by g. Note that F is a finite-dimensional (\mathbb{Z}/p) -vector space. Let $m = \dim F$. Since $g^{p^m-1} = 1$, q divides $p^m - 1$. Thus m = n and hence D = F is commutative.

Assume now that there is no prime number q such that $q \nmid p$ and the order of p modulo q is n. By Zsigmondy's theorem, n=2 or n=6 and p=2. If n=2, then D is commutative, as it is the subring generated by any element of $D \setminus \mathbb{Z}/p$. If n=6 and p=2, then the order of 2 modulo 9 is 6. Since $D \setminus \{0\}$ contains a subgroup of order 9 and all groups of order 9 are abelian, we can use the previous argument to complete the proof.

§ 11.5. Fermat's last theorem in finite rings.

11.28. THEOREM. Let K be a finite field and A be a finite-dimensional K-algebra. For $n \geq 1$, there exist $x, y, z \in A \setminus \{0\}$ such that $x^n + y^n = z^n$ if and only if A is not a division algebra.

PROOF. Assume first that A is a division algebra. By Wedderburn's theorem, A is a finite field, say |A|=q. Then $x^{q-1}=1$ for all $x\in A\setminus\{0\}$. Hence $x^n+y^n=z^n$ does not have a solution.

Conversely, assume that A is not a division algebra. In particular, A is not a field and |A| > 2. The equation x + y = z has a solution in $A \setminus \{0\}$ (for example, x = 1, y = z - 1 and $z \notin \{0,1\}$ is a solution). Since dim $A < \infty$, the Jacobson radical J(A) is nilpotent. There are two cases to consider.

If $J(A) \neq \{0\}$, then there exists $a \in A \setminus \{0\}$ such that $a^2 = 0$. Thus $a^n = 0$ for all $n \geq 2$. Hence $x^n + y^n = z^n$ has a non-trivial solution in $A \setminus \{0\}$ for all $n \geq 2$ (for example, take x = a and y = z = 1).

If $J(A) = \{0\}$, then A is semisimple and $A \simeq \prod_{i=1}^k M_{n_i}(D_i)$ for (finite) division rings D_1, \ldots, D_k and integers n_1, \ldots, n_k . By Wedderburn's theorem, each D_i is a finite field. We consider two possible cases.

If there exists $i \in \{1, ..., k\}$ such that $n_i > 1$, then $M_{n_i}(D_i)$ has non-zero elements such that their squares are zero. Thus there exists $x \in A \setminus \{0\}$ such that $x^2 = 0$. In particular, $x^n + y^n = z^n$ has a solution.

If $k \geq 2$, then $x = (1, 0, 0, \dots, 0)$, $y = (0, 1, 0, \dots, 0)$ and $z = (1, 1, 0, \dots, 0)$ is a solution of $x^n + y^n = z^n$.

12. Lecture: 19/12/2024

§ 12.1. Frobenius's theorem.

12.1. Theorem (Frobenius). Every finite-dimensional real division algebra is isomorphic to \mathbb{R} , \mathbb{C} or \mathbb{H} .

We present an elementary proof. We shall need some lemmas.

12.2. LEMMA. Let D be a real division algebra such that dim D = n. If $x \in D$, then there exists $\lambda \in \mathbb{R}$ such that $x^2 + \lambda x \in \mathbb{R}$.

PROOF. Since dim D=n, the set $\{1,x,x^2,\ldots,x^n\}$ is linearly dependent. So there exists a non-zero polynomial $f(X) \in \mathbb{R}[X]$ of degree $\leq n$ such that f(x)=0. Without loss of generality, we may assume that the leading coefficient of f(X) is one. Then we can write f(X) as a product of polynomials of degree ≤ 2 , say

$$f(X) = (X - \alpha_1) \cdots (X - \alpha_r)(X^2 + \lambda_1 X + \mu_1) \cdots (X^2 + \lambda_s X + \mu_s).$$

Since D is a division algebra and f(x) = 0, some factor of f(X) is zero at x. If $x - \lambda_j \neq 0$ for all j, then x is a root of some $X^2 + \lambda_k X + \mu_k$. In any case, there exists $\lambda \in \mathbb{R}$ such that $x^2 + \lambda x \in \mathbb{R}$.

12.3. Lemma. Let D be a real division algebra of dimension n. Then

$$V = \{x \in D : x^2 \in \mathbb{R}_{\le 0}\}$$

is a subspace of D such that $D = \mathbb{R} \oplus V$.

PROOF. If $x \in D \setminus V$ is such that $x^2 \in \mathbb{R}$, then, since $x^2 > 0$, it follows that $x^2 = \alpha^2$ for some $\alpha \in \mathbb{R}$. Thus $x = \pm \alpha \in \mathbb{R}$, as D is a division algebra and

$$(x - \alpha)(x + \alpha) = x^2 - \alpha^2 = 0.$$

We claim that V is a subspace of D. Note that $0 \in V$ and that if $x \in V$, then $\lambda x \in V$ for all $\lambda \in \mathbb{R}$. Let $x, y \in V$. If $\{x, y\}$ is linearly dependent, then $x + y \in V$. If not, we claim that $\{1, x, y\}$ is linearly independent. If there exist $\alpha, \beta, \gamma \in \mathbb{R}$ such that $\alpha x + \beta y + \gamma = 0$, then

$$\alpha^2 x^2 = \beta^2 y^2 + 2\beta \gamma y + \gamma^2 = (-\beta y - \gamma)^2.$$

This implies that $2\beta\gamma y \in \mathbb{R}$ and thus $\beta\gamma = 0$, as $0 \le 4\beta^2\gamma^2 y^2 \le 0$. Hence $\alpha = \beta = \gamma = 0$. (If $\beta = 0$, then $0 \le \gamma^2 = \alpha^2 x^2 \le 0$. If $\gamma = 0$, then $\alpha = \beta = 0$ because $\{x, y\}$ is linearly independent.) The previous lemma implies that there exist $\lambda, \mu \in \mathbb{R}$ such that

$$(x+y)^2 + \lambda(x+y) \in \mathbb{R}, \quad (x-y)^2 + \mu(x-y) \in \mathbb{R}.$$

Since

$$(x+y)^2 + (x-y)^2 = 2x^2 + 2y^2 \in \mathbb{R},$$

it follows that $(\lambda + \mu)x + (\lambda - \mu)y \in \mathbb{R}$. Since $\{1, x, y\}$ is linearly independent, $\lambda = \mu = 0$. Thus $(x+y)^2 \in \mathbb{R}$. If $x+y \notin V$, then, the first paragraph of the proof implies that $x+y \in \mathbb{R}$, a contradiction.

Clearly, $\mathbb{R} \cap V = \{0\}$. If $x \in D \setminus \mathbb{R}$, then the previous lemma implies that $x^2 + \lambda x \in \mathbb{R}$ for some $\lambda \in \mathbb{R}$. We claim that $x + \lambda/2 \in V$. If not, since

$$(x + \lambda/2)^2 = x^2 + \lambda x + (\lambda/2)^2 \in \mathbb{R},$$

it follows that $x + \lambda/2 \in \mathbb{R}$ and thus $x \in \mathbb{R}$, a contradiction. Hence

$$x = -\lambda/2 + (x + \lambda/2) \in \mathbb{R} \oplus V.$$

12.4. LEMMA. Let D be a real division algebra of (real) dimension n. If n > 2, then there exist $i, j, k \in D$ such that $\{1, i, j, k\}$ is linearly independent and

(12.1)
$$i^2 = j^2 = k^2 = -1$$
, $ij = -ji = k$, $ki = -ik = j$, $jk = -kj = i$.

PROOF. Let $V=\{x\in D: x^2\in\mathbb{R}, x^2\leq 0\}$ be the subspace of Lemma 12.3. For $x,y\in V$ let $x*y=xy+yx=(x+y)^2-x^2-y^2\in\mathbb{R}$. If $x\neq 0$, then $x*x=2x^2\neq 0$. Since $\dim V=n-1$, there exist $y,z\in V$ such that $\{y,z\}$ is linearly independent. Let

$$x = z - \frac{z * y}{y * y}y.$$

Since $\{y, z\}$ is linearly independent, $x \neq 0$. Moreover, since

$$x * y = \left(z - \frac{z * y}{y * y}\right) * y = zy - \frac{z * y}{y * y}y^2 + yz - \frac{z * y}{y * y}y^2 = z * y - \frac{z * y}{y * y}y * y = 0,$$

it follows that xy = -yx. Let

$$i = \frac{1}{\sqrt{-x^2}}x$$
, $j = \frac{1}{\sqrt{-y^2}}y$, $k = ij$.

A direct calculation shows that the formulas of (12.1) hold. For example,

$$ji = \frac{1}{\sqrt{-y^2}} \frac{1}{\sqrt{-x^2}} yx = \frac{1}{\sqrt{-x^2}} \frac{1}{\sqrt{-y^2}} (-xy) = -k.$$

Now we are finally ready to prove the theorem:

PROOF OF 12.1. Let D be a real division algebra and let $n = \dim D$. If n = 1, then $D \simeq \mathbb{R}$. If n = 2, the subspace V of Lemma 12.3 is non-zero and thus there exists $i \in D$ such that $i^2 = -1$. Hence $D \simeq \mathbb{C}$. Lemma 12.4 implies that $n \neq 3$. If n = 4, then $D \simeq \mathbb{H}$. Suppose that n > 4. By Lemma 12.4 there exist $i, j, k \in D$ such that $\{1, i, j, k\}$ is linearly independent and that the formulas of (12.1) hold. Let

$$V = \{x \in D : x^2 \in \mathbb{R}_{\le 0}\}.$$

By Lemma 12.3, dim V = n - 1. Thus there exists $x \in V \setminus \langle i, j, k \rangle$. Let

$$e = x + \frac{i * x}{2}i + \frac{j * x}{2}j + \frac{k * x}{2}k \in V \setminus \{0\}.$$

A direct calculation shows that i * e = j * e = k * e = 0. Then

$$ek = e(ij) = (ei)j = -(ie)j = -i(ej) = i(je) = (ij)e = ke,$$

a contradiction. \Box

- § 12.2. Jacobson's commutativity theorem. We start with an easy exercise.
- 12.5. EXERCISE. A ring R is boolean if $x^2 = x$ for all $x \in R$. Prove that boolean rings are commutative.

To prove this fact, note that $1 = (-1)^2 = -1$. This means that R has characteristic two. Let $x, y \in R$. Since $x + y = (x + y)^2 = x^2 + xy + yx + y^2$. it follows that 0 = xy + yx and hence xy = yx.

12.6. EXERCISE. Let $n \ge 1$ and R be a ring such that $x^{3 \cdot 2^n} = x$ for all $x \in R$. Prove that R is commutative. R is commutative.

Hint: note that R has characteristic two and that $x^{2^{n+1}} = x^{2^n}$ for all $x \in R$. Thus R is a boolean ring.

12.7. PROPOSITION. Let R be a finite ring such that for each $x \in R$ there exists $n(x) \ge 2$ such that $x^{n(x)} = x$. Then R is commutative.

PROOF. Since R is finite, R is artinian and hence J(R) is nil. Since R is reduced, $J(R) = \{0\}$. By the Artin-Wedderburn theorem, $R \simeq \prod_{i=1}^k M_{n_i}(D_i)$ for some division rings D_1, \ldots, D_k . Since R is finite, each D_i is finite. By Wedderburn's theorem, every D_i is a field. Again, since R is reduced, $n_i = 1$ for all i. Therefore R is commutative, as it is a direct product of finitely many fields.

In this lecture, we will prove extend the result of Proposition 12.7 to arbitrary (i.e. non-finite) rings.

12.8. Theorem (Jacobson). Let R be a ring such that for each $x \in R$ there exists $n(x) \ge 2$ such that $x^{n(x)} = x$. Then R is commutative.

We shall need the following lemma.

12.9. LEMMA. Let K be a finite field of characteristic p > 0. There exists $n \in \mathbb{Z}_{>0}$ such that $|K| = p^n$ and $x^{p^n} = x$ for all $x \in K$. Moreover, if $K \setminus \{0\} = \{x_1, \dots, x_{p^n-1}\}$, then $X^{p^n} - X = (X - x_1) \cdots (X - x_{p^n-1})X$.

PROOF. The field K is a (\mathbb{Z}/p) -vector space. If $\dim_{\mathbb{Z}/p} K = n$, then $|K| = p^n$. In particular, $K \setminus \{0\}$ is an abelian group of order $p^n - 1$ and hence, by Lagrange's theorem, $x^{p^n-1} = 1$ for all $x \in K \setminus \{0\}$. Thus $x^{p^n} = x$ for all $x \in K$ and hence every $x \in K$ is a root of the polynomial $X^{p^n} - X$ of degree p^n .

Let R be a ring. For each $r \in R$ the map $\operatorname{ad} r : R \to R$, $x \mapsto rx - xr$, is a derivation. This means that $\operatorname{ad}(xy) = (\operatorname{ad} x)y + x(\operatorname{ad} y)$ for all $x, y \in R$. By induction one proves that

(12.2)
$$(\operatorname{ad} r)^{n}(x) = \sum_{k=0}^{n} (-1)^{k} {n \choose k} r^{n-k} x r^{k}$$

for all $x \in R$ and $n \in \mathbb{Z}_{>0}$. If p is a prime number, p divides $\binom{p}{k}$ for all $k \in \{1, \ldots, p-1\}$. This fact is needed to solve the following exercise:

12.10. EXERCISE. Let p be a prime number and R be a ring of characteristic p. Prove that $(\operatorname{ad} r)^{p^n} = \operatorname{ad} r^{p^n}$.

Now we are ready to prove Jacobson's commutativity theorem.

PROOF OF THEOREM 12.8. We divide the proof into several steps and claims. We may assume that R is non-zero.

CLAIM.
$$J(R) = \{0\}.$$

Let $x \in J(R)$ and n = n(x). Since $-x^{n-1} \in J(R)$, there exists $y \in R$ such that $-x^{n-1} \circ y = -x^{n-1} + y - x^{n-1}y = 0$. Thus

$$-x^{n-1} + y = x^{n-1}y \implies -x + xy = x(-x^{n-1} + y) = x^n y = xy.$$

This implies that x = 0.

Claim. Without loss of generality, we may assume that R is primitive.

Let $\{P_i : i \in I\}$ be the collection of primitive ideals of R. The map $R \to \prod_{i \in I} R/P_i$, $r \mapsto (r + P_i)_{i \in I}$, is an injective homomorphism, since its kernel is

$$\bigcap_{i \in I} P_i = J(R) = \{0\}.$$

Note that R is commutative if each R/P_i is commutative. Moreover, each R/P_i satisfies the assumption, that is $(x + P_i)^{n(x)} = x^{n(x)} + P_i = x + P_i$, and and is a primitive ring.

CLAIM. R is a division ring.

By Jacobson's density theorem, there exists a division ring D and a D-vector space V such that R is dense in V. We claim that $\dim_D V = 1$. If $\dim_D V \geq 2$, let $\{v_1, v_2\} \subseteq V$ be a linearly independent set. Then there exists $f \in R$ such that $f(v_1) = v_2$ and $f(v_2) = 0$. This implies that $f^k(v_1) = 0$ for all $k \geq 2$ and $f(v_1) \neq 0$. This contradicts the fact that $f^n = f$ for n = n(f). Thus $R \simeq D^{op}$, a division ring.

CLAIM. R has positive characteristic.

Since R is a division ring, $2 = 1 + 1 \in R$. There exists $n \ge 2$ such that $2^n = 2$. In particular, $2(2^{n-1} - 1) = 0$. This implies the claim.

CLAIM. Every non-zero subring of R is a division ring.

Let $S \subseteq R$ is a non-zero subring of R. If $x \in S \setminus \{0\}$, then $x^{n(x)} = x$. In particular,

$$x^{-1} = x^{n(x)-2} \in S.$$

CLAIM. R is commutative.

Let us assume that R is not commutative. Let $x \in R \setminus Z(R)$. Since R has positive characteristic, there exists m > 0 such that mx = 0. Moreover, since R is a division ring and $x^{n(x)} = x$, it follows that $x^{n(x)-1} = 1$. These facts imply that the subring K of R generated by x is finite. By Wedderburn's theorem, K is a finite field. Thus $|K| = p^k$ for some prime number p and some k > 0 and

$$x^{p^k} = x.$$

Note that R is a K-vector space and $\delta = \operatorname{ad} x \colon R \to R, \ y \mapsto xy - yx$, is a K-linear map. Moreover, by the exercise,

$$\delta^{p^k} = (\operatorname{ad} x)^{p^k} = \operatorname{ad} \left(x^{p^k} \right) = \operatorname{ad} x = \delta$$

and

(12.3)
$$\delta(\delta - x_1 \operatorname{id}) \cdots (\delta - x_{p^{k-1}} \operatorname{id}) = 0$$

if $K = \{0, x_1, \dots, x_{p^k-1}\}$. Since x is not central, δ is non-zero. So there exists $y \in R$ such that $\delta(y) \neq 0$. Evaluating (12.3) in y and using that R is a division ring we obtain that

$$x_i y = \delta(y) = xy - yx$$

for some i. Let R_0 be the subring of R generated by x and y. Since $xy - yx = \delta(y) \neq 0$, the ring R_0 is a non-commutative division ring. Note that $yx = (x - x_i)y \in Ky$, as $x \in K$ and $x_i \in K$. By induction one proves that $yx^j \subseteq Ky$ for all $j \geq 1$ and hence $y^iK \subseteq Ky^i$ for all $i \geq 1$. This implies that

$$K + Ky + \dots + Ky^{n(y)-2} \subseteq R$$

is a subring. It follows that $K + Ky + \cdots + Ky^{n(y)-2} = R_0$, as it is a subring of R included in R_0 that contains x and y. Since R_0 is a finite division ring, it is a field by Wedderburn's theorem, a contradiction since it is non-commutative.

There are elementary proofs of Jacobson's commutativity theorem. See for example [29].

Associative algebra Final projects

13. Project: An analytic proof of Rickart's theorem

We will present a different proof of Rickart's theorem 10.2.

13.1. DEFINITION. Let R be a ring. An **involution** in R is an additive map $R \to R$, $x \mapsto x^*$, such that $x^{**} = x$ and $(xy)^* = y^*x^*$ for all $x, y \in R$.

It follows that if R is a unitary ring, then $1^* = 1$.

- 13.2. Example. The conjugation $z \mapsto \overline{z}$ is an involution of \mathbb{C} .
- 13.3. Example. The transpose map $X \mapsto X^T$ is an involution of $M_n(K)$.
- 13.4. Example. Let G be a group. Then

$$\left(\sum_{g \in G} \alpha_g g\right)^* = \sum_{g \in G} \overline{\alpha_g} g^{-1}$$

is an involution of the group ring $\mathbb{C}[G]$.

For a group G, one defines the trace of an element

$$\alpha = \sum_{g \in G} \alpha_g g \in K[G]$$

as $trace(\alpha) = \alpha_1$. One proves that the map

trace:
$$K[G] \to K$$
, $\alpha \mapsto \text{trace}(\alpha)$

is K-linear such that $\operatorname{trace}(\alpha\beta) = \operatorname{trace}(\beta\alpha)$ for all $\alpha, \beta \in K[G]$.

- 13.5. EXERCISE. Let G be a finite group and K be a field of characteristic not dividing the order of G. Prove the following statements:
 - 1) If $\alpha \in K[G]$ is nilpotent, then $\operatorname{trace}(\alpha) = 0$.
 - 2) If $\alpha \in K[G]$ is idempotent, then $\operatorname{trace}(\alpha) = \dim(K[G]\alpha)/|G|$.
- 13.6. EXERCISE. Prove that $\langle \alpha, \beta \rangle = \operatorname{trace}(\alpha \beta^*), \ \alpha, \beta \in \mathbb{C}[G]$, defines an inner product in $\mathbb{C}[G]$.
- 13.7. LEMMA. Let G be a group. Prove that if $J(\mathbb{C}[G]) \neq 0$, then there exists $\alpha \in J(\mathbb{C}[G])$ such that $\operatorname{trace}(\alpha^{2^m}) \in \mathbb{R}_{\geq 1}$ for all $m \geq 1$.

Proof. Let $\alpha = \sum_{g \in G} \alpha_g g \in \mathbb{C}[G]$. Then

$$\operatorname{trace}(\alpha^*\alpha) = \sum_{g \in G} \overline{\alpha_g} \alpha_g = \sum_{g \in G} |\alpha_g|^2 \ge |\alpha_1|^2 = |\operatorname{trace}(\alpha)|^2.$$

By induction, one proves that, if α is such that $\alpha^* = \alpha$, then

$$\operatorname{trace}(\alpha^{2^m}) \ge |\operatorname{trace}(\alpha)|^{2^m}$$

for all $m \geq 1$.

Let $\beta = \sum_{g \in G} \beta_g g \in J(\mathbb{C}[G])$ be such that $\beta \neq 0$. Since $\operatorname{trace}(\beta^* \beta) = \sum_{g \in G} |\beta_g|^2 \neq 0$ and $J(\mathbb{C}[G])$ is an ideal,

$$\alpha = \frac{\beta^* \beta}{\operatorname{trace}(\beta^* \beta)} \in J(\mathbb{C}[G]).$$

Then α is such that $\alpha^* = \alpha$ and $\operatorname{trace}(\alpha) = 1$. Hence $\operatorname{trace}(\alpha^{2^m}) \ge 1$ for all $m \ge 1$.

Exercise 10.29 implies that $\mathbb{C}[G]$ with $\operatorname{dist}(\alpha, \beta) = |\alpha - \beta|$ is a metric space. In this metric space, the map $\mathbb{C}[G] \to \mathbb{C}$, $\alpha \mapsto \operatorname{trace}(\alpha)$, is a continuous map.

13.8. Lemma. Let $\alpha \in J(\mathbb{C}[G])$. The map

$$\varphi \colon \mathbb{C} \to \mathbb{C}[G], \quad \varphi(z) = (1 - z\alpha)^{-1},$$

is continuous, differentiable and $\varphi(z) = \sum_{n \geq 0} \alpha^n z^n \in \mathbb{C}[G]$ if |z| is sufficiently small.

PROOF. Let $y, z \in \mathbb{C}$. Since $\varphi(y)$ and $\varphi(z)$ commute,

(13.1)
$$\varphi(y) - \varphi(z) = ((1 - z\alpha) - (1 - y\alpha)) (1 - y\alpha)^{-1} (1 - z\alpha)^{-1}$$
$$= (y - z)\alpha\varphi(y)\varphi(z).$$

Hence $|\varphi(y)| \le |\varphi(z)| + |y-z| |\alpha \varphi(y)| |\varphi(z)|$ and therefore

$$|\varphi(y)| (1 - |y - z||\alpha\varphi(z)|) \le |\varphi(z)|.$$

Fix z and choose y sufficiently close to z in such a way that $1 - |y - z| |\alpha \varphi(z)| \ge 1/2$. Then $|\varphi(y)| \le 2|\varphi(z)|$. Using (13.1) one obtains that $|\varphi(y) - \varphi(z)| \le 2|y - z| |\alpha| |\varphi(z)|^2$. Hence φ is continuous. By (13.1),

$$\varphi'(z) = \lim_{y \to z} \frac{\varphi(y) - \varphi(z)}{y - z} = \lim_{y \to z} \alpha \varphi(y) \varphi(z) = \alpha \varphi(z)^2$$

for all $z \in \mathbb{C}$.

If z is such that $|z||\alpha| = |z\alpha| < 1$, then

$$\varphi(z) - \sum_{n=0}^{N} z^n \alpha^n = \varphi(z) \left(1 - (1 - z\alpha) \sum_{n=0}^{N} z^n \alpha^n \right) = \varphi(z) (z\alpha)^{N+1}.$$

Then

$$\left| \varphi(z) - \sum_{n=0}^{N} z^n \alpha^n \right| \le |\varphi(z)| |z\alpha|^{N+1}.$$

Since $\varphi(z)$ is bounded close to z=0, we conclude that

$$\left| \varphi(z) - \sum_{n=0}^{N} z^n \alpha^n \right| \to 0$$

if $N \to \infty$.

We now provide an alternative proof of Rickart's theorem:

13.9. THEOREM (Rickart). If G is a group, then $J(\mathbb{C}[G]) = \{0\}$.

PROOF. Let $\alpha \in J(\mathbb{C}[G])$ and $\varphi(z) = (1 - \alpha z)^{-1}$. Let

$$f \colon \mathbb{C} \to \mathbb{C}, \quad f(z) = \operatorname{trace} \varphi(z) = \operatorname{trace} \left((1 - z\alpha)^{-1} \right).$$

By Lemma 13.8, f(z) is an entire function such that $f'(z) = \operatorname{trace}(\alpha \varphi(z)^2)$ and

(13.2)
$$f(z) = \sum_{n=0}^{\infty} z^n \operatorname{trace}(\alpha^n)$$

if |z| is sufficiently small. In particular, (13.2) is the Taylor series of f(z) around the origin. This implies that the series converges to f(z) for all $z \in \mathbb{C}$. In particular,

(13.3)
$$\lim_{n \to \infty} \operatorname{trace}(\alpha^n) = 0.$$

On the other hand, if $\alpha \neq 0$, Lemma 13.7 implies that $\operatorname{trace}(\alpha^{2^m}) \geq 1$ for all $m \geq 0$. This contradicts the limit computed in (13.3). Hence $\alpha = 0$.

For a corollary, we need two lemmas.

13.10. LEMMA (Nakayama). Let R be a unitary ring and M be a finitely generated R-module. If J(R)M = M, then $M = \{0\}$.

PROOF. Assume that M is generated by x_1, \ldots, x_n . Since $x_n \in M = J(R)M$, there exist $r_1, \ldots, r_n \in J(R)$ such that $x_n = r_1x_1 + \cdots + r_nx_n$, that is $(1 - r_n)x_n = \sum_{j=1}^{n-1} r_jx_j$. Since $1 - r_n$ is invertible, there exists $s \in R$ such that $s(1 - r_n) = 1$. Then $x_n = \sum_{j=1}^{n-1} sr_jx_j$ and hence M is generated by x_1, \ldots, x_{n-1} . After repeating this procedure sufficiently many times (finitely many times), one gets $M = \{0\}$.

13.11. LEMMA. Let R and S be unitary rings and $\iota: R \to S$ be a ring homomorphism. If $S = \iota(R)x_1 + \cdots + \iota(R)x_n$,

where each x_i is such that $x_i y = y x_i$ for all $y \in \iota(R)$, then $\iota(J(R)) \subseteq J(S)$.

PROOF. We claim that $J = \iota(J(R))$ acts trivially on each simple S-module M. Let M be a simple S-module. Write M = Sm for some $m \neq 0$. Then M is an R-module with $r \cdot m = \iota(r)m$. Since

$$M = Sm = (\iota(R)x_1 + \dots + \iota(R)x_n)m = \iota(R)(x_1m) + \dots + \iota(R)(x_nm),$$

M is finitely generated as an $\iota(R)$ -module. Moreover, $J(R) \cdot M = JM = \iota(J)M$ is an S-submodule of M, as

$$x_j(JM) = (x_jJ)M = (Jx_j)M = J(x_jM) \subseteq JM.$$

Since $M \neq \{0\}$, Nakayama's lemma implies that $J(R) \cdot M \subsetneq M$. Since M is a simple S-module, we conclude that $J(R)M = \{0\}$.

13.12. COROLLARY. If G is a group, then $J(\mathbb{R}[G]) = \{0\}.$

PROOF. Let $\iota \colon \mathbb{R}[G] \to \mathbb{C}[G]$ be the canonical inclusion. Since

$$\mathbb{C}[G] = \mathbb{R}[G] + i\mathbb{R}[G],$$

Now Lemma 13.11 and Rickart's theorem imply that $\iota(J(\mathbb{R}[G])) \subseteq J(\mathbb{C}[G]) = \{0\}$. We conclude that $J(\mathbb{R}[G]) = 0$, as the map ι is injective.

Associative algebra Final projects

14. Project: Hurewicz' theorem

Let R be a unitary commutative ring and G be a group. Recall that **group ring** is a free R-module which is also a ring. As a free R-module, G is a basis for R[G]. Thus every element $\alpha \in R[G]$ can be written uniquely as a sum of the form

$$\alpha = \sum_{g \in G} r_g g, \quad r_g \in R.$$

Note that the elements of R (more precisely, the elements of the form $r1_G$ for $r \in R$) are central in R[G].

14.1. Exercise. Let R be a commutative ring and G be a group. Let

$$f \colon R[G] \to R, \quad \sum_{g \in G} r_g g \mapsto \sum_{g \in G} r_g.$$

Prove the following statements:

- 1) f is a surjective ring homomorphism.
- 2) $\{g-1_G: 1_G \neq g \in G\}$ is a basis for the free R-module ker f.

The kernel of the homomorphism of Exercise 14.1 is called the **augmentation ideal** of the group ring. We used this ideal before (e.g. Propositions 10.12 and Appendix 23).

14.2. THEOREM (Hurewicz). Let G be a group and I be the augmentation ideal of $\mathbb{Z}[G]$. Then $G/[G,G] \simeq I/I^2$ as (abelian) groups.

PROOF. Let $\varphi \colon G \to I/I^2$, $g \mapsto g - 1_G + I^2$. Since $g - 1_G \in I$ for all $g \in G$, φ is well-defined. The map φ is a group homomorphism. Since $(g - 1_G)(h - 1_G) \in I^2$,

$$\varphi(gh) = gh - 1_G + I^2$$

$$= gh - 1_G - (g - 1_G)(h - 1_G) + I^2 + I^2$$

$$= g - 1_G + h - 1_G + I^2$$

$$= \varphi(g) + \varphi(h)$$

holds for all $g, h \in G$.

Since $[G, G] \subseteq \ker \varphi$, there exists a group homomorphism

$$\overline{\varphi} \colon G/[G,G] \to I/I^2, \quad g[G,G] \mapsto g - 1_G + I^2.$$

We claim that $\overline{\varphi}$ is an isomorphism. Let us construct the inverse of $\overline{\varphi}$. Let

$$\psi \colon I \to G/[G,G], \quad \sum_{g \in G} m_g(g-1_G) \mapsto \left(\prod_{g \in G} g^{m_g}\right)[G,G].$$

Since G/[G,G] is abelian, the map ψ is well-defined, that is the order of the factors in $\prod_{g\in G}g^{m_g}$ does not matter. Note that $I^2\subseteq \ker \psi$, as $\{(g-1_G)(h-1_G):g,h\in G\}$ generates the additive group I^2 and

$$\psi((g-1_G)(h-1_G)) = \psi((gh-1_G) - (g-1_G) - (h-1_G))$$
$$= (ghg^{-1}h^{-1})[G, G]$$
$$= [G, G].$$

Therefore there exists a group homomorphism

$$\overline{\psi} \colon I/I^2 \to G/[G,G], \quad \sum_{g \in G} m_g(g-1_G) + I^2 \mapsto \left(\prod_{g \in G} g^{m_g}\right)[G,G].$$

A direct calculation shows that $\overline{\psi}$ is the inverse of $\overline{\varphi}$.

15. Project: Dedekind-finite rings

A standard reference for Dedekind-finite rings is Lam's book [27].

15.1. DEFINITION. Let R be a ring with one. We say that R is **Dedekind-finite** if for $a, b \in R$ such that ab = 1 one has ba = 1.

Trivially, commutative rings are Dedekind finite.

- 15.2. Exercise. Give an example of a ring that is not Dedekind-finite.
- 15.3. EXERCISE. Let R be a commutative unitary ring. Prove that $M_n(R)$ is Dedekind-finite.
- 15.4. PROPOSITION. Let R be a unitary ring. Then R is Dedekind-finite if and only if the left regular module $_RR$ is Hopfian, that is every surjective R-module homomorphism $R \to R$ is injective.

PROOF. Assume first that R is Dedekind-finite. Let $f: R \to R$ be a surjective R-module homomorphism. There exists $a \in R$ such that 1 = f(a) = af(1) and hence f(1)a = 1. Let $x \in \ker f$. Then 0 = f(x)a = xf(1)a = x. Thus f is injective. Conversely, let $a, b \in R$ be such that ab = 1. Let $f: R \to R$, f(r) = rb. Then f is surjective, as f(ra) = (ra)b = r(ab) = r for all $r \in R$. By assumption, f is injective. In particular, ba = 1, as b = f(1) = f(ba).

- 15.5. EXERCISE. Let R be a unitary ring. An R-module is said to be **Dedekind-finite** if $M \simeq M \oplus N$ for some R-module N implies that $N = \{0\}$. Prove the following statements:
 - 1) M is Dedekind-finite if and only if the ring End(M) is Dedekind-finite.
 - 2) $_{R}R$ is Dedekind-finite if and only if the ring R is Dedekind-finite.
- 15.6. EXERCISE. Prove that an R-module that is not Dedekind-finite contains a sub-module of the form $N \oplus N \oplus N \oplus \cdots$ for some non-zero R-module N.
 - 15.7. Exercise. Let R be a unitary ring.
 - 1) Let $a, b \in R$ be such that ab = 1. For $i, j \ge 1$, let $e_{ij} = b^{i-1}a^{j-1} b^ia^j$. Prove that $e_{ij}e_{kl} = \delta_{jk}e_{il}$, where δ_{ij} is the Kronecker function.
 - 2) Prove that e_{1n} is nilpotent for all $n \geq 2$.
 - 3) Prove that if R is not Dedekind-finite, then R contains infinitely many nilpotent elements.
- 15.8. EXERCISE. A ring R is said to be reversible if for all $a, b \in R$ ab = 0 implies ba = 0. Prove that a unitary reversible ring is Dedekind-finite.

The previous exercise implies that reduced rings are Dedekind-finite.

15.9. Exercise. Prove that every left noetherian ring is Dedekind-finite.

The previous exercise and the Hopkins-Levitzki theorem imply that artinian unitary rings are Dedekind-finite. Can you write a proof without using the Hopkins-Levitzki theorem?

15.10. EXERCISE. Prove that every algebraic algebra is a Dedekind-finite ring. In particular, finite-dimensional algebras are Dedekind-finite.

15.11. EXERCISE. Let R be a unitary ring. Prove that if R/J(R) is Dedekind-finite, then R is Dedekind finite.

Recall that an element a of a ring admits a right inverse if there exists an element b such that ab = 1.

- 15.12. EXERCISE. Let R be a unitary ring and $a \in R$ that admits a right inverse. Prove that the following statements are equivalent:
 - 1) a admits at least two right inverses.
 - 2) a is not a unit.
 - **3)** a is a left zero divisor.

Note that an element that admits at least two right inverses cannot be a unit.

15.13. Theorem (Kaplansky). Let R be a unitary ring. If $u \in R$ has more than one right inverse, then u has infinitely many right inverses.

PROOF. Let $S = \{x \in R : ux = 1\}$. Assume that u admits finitely right inverses, that is S is a finite set. Let $s \in S$ and $T = \{xy - 1 + s : x \in S\}$. By assumption, $|S| \ge 2$. Note that $T \subseteq S$, as

$$u(xu - 1 + s) = (ux)u - u + us = 1.$$

Let $f: S \to T$, $x \mapsto xu - 1 + s$. Then f is injective:

$$f(x) = f(y) \implies xu - 1 + s = yu - 1 + s \implies xu = yu \implies xy,$$

because u admits a right inverse. Then $|S| \leq |T| \leq |S| < \infty$ and hence S = T. In particular, $s \in T$ and therefore s = xu - 1 + s for some $x \in s$, that is xu = 1. For $t \in S \setminus \{x\}$,

$$x = x(ut) = (xu)t = t,$$

a contradiction. Therefore S is an infinite set.

The following exercise gives another elementary proof of Kaplansky's theorem; see [33].

15.14. Bonus exercise. Let R be a unitary ring. Prove the following statements:

1) If $a_1, \ldots, a_n \in R$ are distinct elements such that $ba_i = 1$, then the set

$${a_1 - a_i : 1 \le i \le n} \cup {1 - a_i b : 1 \le i \le n}$$

contains at least n+1 solutions of bx=0.

2) If b has $n \ge 2$ right inverses, then bx = 0 has at least n + 1 solutions and hence b has n + 1 right inverses.

16. Project: The Skolem-Noether theorem

We now present an elementary proof of the Skolem–Noether theorem. We refer to [6] for more information.

- 16.1. DEFINITION. Let K be a field. An algebra A (over K) is central if Z(A) = K.
- If K is a field, then $M_n(K)$ is a central algebra.
- 16.2. PROPOSITION. Let A be a unitary algebra and $n \ge 1$. Then A is central if and only if $M_n(A)$ is central.

PROOF. If $M_n(A)$ is central and $z \in Z(A)$, then $zI \in Z(M_n(A)) = KI$. Thus $z \in K$. Conversely, if $X \in Z(M_n(A))$, then, since $XE_{kl} = E_{kl}X$ for all $k \neq l$, X = aI for some $a \in A$. Moreover, $XaE_{11} = aE_{11}X$. Hence $a \in Z(A) = K1$.

- 16.3. Example. H is a real central algebra.
- 16.4. Example. C is a complex central algebra but it is not a real central algebra.

A celebrated theorem by Frobenius states that every finite-dimensional real central division algebra is isomorphic to \mathbb{R} or \mathbb{H} (see Theorem 12.1).

16.5. Proposition. Every simple unitary ring is an algebra over its center.

PROOF. Let R be a simple unitary ring. It is enough to show that Z(R) is a field. If $z \in Z(R) \setminus \{0\}$ then zR is a non-zero ideal of R. Since R is simple, zR = R. Thus z is invertible.

For an algebra A, let $L: A \to \operatorname{End}_K(A)$, $a \mapsto L_a$, and $R: A \to \operatorname{End}_K(A)$, $a \mapsto R_a$, be given by $L_a(x) = ax$ and $R_a(x) = xa$. Then both L and R are linear maps such that

$$L_{ab} = L_a L_b, L_a R_b = R_b R_a, L_a R_b = R_b L_a$$

for all $a, b \in A$.

16.6. Definition. Let A be an algebra. The algebra of multipliers of A is

$$M(A) = \left\{ \sum_{j=1}^{n} L_{a_i} R_{b_i} : n \in \mathbb{Z}_{\geq 0}, a_1, \dots, a_n, b_1, \dots, b_n \in A \right\}.$$

It is an exercise to show that M(A) is a subalgebra of $\operatorname{End}_K(A)$. Moreover, if A is unitary, then M(A) is generated by the L_a and the R_b for $a, b \in A$.

16.7. LEMMA. Let A be an algebra and $f \in M(A)$. Then there exists $n \geq 0$ and $a_1, \ldots, a_n \in A$ and $b_1, \ldots, b_n \in A$ such that

$$f = \sum_{i=1}^{n} L_{a_i} R_{b_i}$$

and $\{b_1, \ldots, b_n\}$ is linearly independent.

PROOF. Write $f = \sum_{i=1}^n L_{a_i} R_{b_i}$ with n be minimal. If $b_n = \sum_{j=1}^{n-1} \lambda_j b_j$, then

$$f = \sum_{i=1}^{n-1} L_{a_i + \lambda_i a_n} R_{b_i},$$

a contradiction.

16.8. LEMMA. Let A be a central simple algebra. If $\sum_{i=1}^n L_{a_i} R_{b_i} = 0$ and $\{b_1, \ldots, b_n\}$ (resp. $\{a_1, \ldots, a_n\}$) is linearly independent, then $a_i = 0$ (resp. $b_i = 0$) for all i.

PROOF. The result holds for n=1. We want to prove that if $a_1xb_1=0$ for all $x\in A$ and $b_1\neq 0$, then $a_1=0$. Assume that $a_1\neq 0$. The ideal of A generated by a_1 is non-zero, and hence it is equal to A. Thus there exist $u_1,\ldots,u_m,v_1,\ldots,v_m\in A$ such that $1=\sum_{j=1}^m u_ja_1v_j$. Write

$$0 = \sum_{j=1}^{m} L_{u_j}(L_{a_1}R_{b_1})L_{v_j} = \sum_{j=1}^{m} L_{u_ja_1v_j}R_{b_1} = R_{b_1}.$$

Hence $b_1 = 0$.

Assume that the lemma is not true and let n>1 be the smallest positive integer where the lemma is false. Assume that $a_n\neq 0$. Since A is simple, the ideal generated by a_n is A. Then there exist $u_1,\ldots,u_m,v_1,\ldots,v_m\in A$ such that $1=\sum_{j=1}^m u_ja_1v_j$ and

$$0 = \sum_{j=1}^{m} L_{u_j} \left(\sum_{i=1}^{n} L_{a_i} R_{b_i} \right) L_{v_j} = \sum_{i=1}^{n} \sum_{j=1}^{m} L_{u_j a_i v_j} R_{b_i} = \sum_{i=1}^{n} L_{c_i} R_{b_i},$$

where $c_i = \sum_{j=1}^m u_j a_i v_j$ and $c_n = 1$. Since

$$0 = L_x \left(\sum_{i=1}^n L_{c_i} R_{b_i} \right) - \left(\sum_{i=1}^n L_{c_i} R_{b_i} \right) L_x = \sum_{i=1}^{n-1} L_{xc_i - c_i x} R_{b_i}$$

for all $x \in A$, it follows that $xc_i - c_i x = 0$ for all $x \in A$. Since A is central, $c_i \in k$ for all $i \in \{1, \ldots, n-1\}$. Evaluate $0 = \sum_{i=1}^n L_{c_i} R_{b_i}$ in 1_A we obtain that $0 = c_1 b_1 + \cdots + c_n b_n$, a contradiction since $\{b_1, \ldots, b_n\}$ is linearly independent.

16.9. Lemma. If A is a finite-dimensional central simple algebra, then

$$M(A) = \operatorname{End}_K(A).$$

PROOF. Let $\{a_1, \ldots, a_n\}$ be a basis of A. We claim that $\{L_{a_i}R_{a_j}: 1 \leq i, j \leq n\}$ is linearly independent. If

$$\sum_{i,j=1}^{n} \lambda_{ij} L_{a_i} R_{a_j} = 0,$$

then $\sum_{i=1}^{n} L_{a_i} R_{c_i} = 0$, where $c_i = \sum_{j=1}^{n} \lambda_{ij} R_{a_j}$. Since the a_i 's are linearly independent, Lemma 16.8 implies that $c_i = 0$ for all $i \in \{1, \ldots, n\}$, a contradiction since the a_j 's are linearly independent. Hence $\dim_k M(A) \geq n^2 = \dim \operatorname{End}_K(A)$.

16.10. DEFINITION. Let R be a unitary ring. An automorphism $f \in \text{Aut}(R)$ is inner is there exists an invertible $r \in R$ such that $f(x) = rxr^{-1}$ for all $x \in R$.

For example, $\mathbb{C} \to \mathbb{C}$, $z \mapsto \overline{z}$, is not inner.

16.11. EXAMPLE. Let $\lambda \in k \setminus \{0\}$ and R = k[X]. Then

$$k[X] \to k[X], \quad f(X) \mapsto f(X + \lambda),$$

is not inner.

16.12. EXAMPLE. Let R be a ring. Then $R \times R \to R \times R$, $(x,y) \mapsto (y,x)$, is not inner.

16.13. Theorem (Skolem-Noether). If A is a finite-dimensional central simple algebra, every automorphism of A is inner.

PROOF. Let $f \in \text{Aut}(A)$. By Lemma 16.9, $f = \sum_{i=1}^n L_{a_i} R_{b_i}$. Without loss of generality, we may assume that $a_1 \neq 0$ and that $\{b_1, \ldots, b_n\}$ is linearly independent. Since f is a homomorphism, $L_{f(x)} f = f L_x$ for all $x \in A$. Then

$$0 = \sum_{i=1}^{n} L_{f(x)a_i - a_i x} R_{b_i}.$$

By Lemma 16.8, $f(x)a_1 - a_1x = 0$ for all $x \in A$. We claim that a_1 is invertible. Since $a_1 \neq 0$ and A is simple, the ideal of A generated by a_1 is A. Write $1 = \sum_{i=1}^m u_i a_i v_j$. Thus a_1 is invertible, as

$$\left(\sum_{j=1}^{m} u_j f(v_j)\right) a_1 = a_1 \left(\sum_{j=1}^{m} f^{-1}(u_j) v_j\right) = 1.$$

17. Project: The Brauer group

Fix a field K. Recall that a K-algebra A is simple if $\{0\}$ and A are the only ideals of A. For example, if D is a division algebra, then D and $M_n(D)$ are simple algebras.

17.1. EXAMPLE. If $a, b \in K \setminus \{0\}$, let $H_K(a, b)$ be the K-algebra with basis $\{1, i, j, k\}$ and multiplication given by

$$i^2 = a$$
, $j^2 = b$, $ij = -ji = k$.

The quaternion algebra $H_K(a, b)$ is a simple K-algebra, as either $H_K(a, b)$ is a division algebra or $H_K(a, b) \simeq M_2(K)$.

A well-known particular case: $\mathbb{H} = H_{\mathbb{R}}(-1, -1)$.

17.2. DEFINITION. A central simple algebra is a finite-dimensional algebra K-algebra such that A is simple and Z(A) = K.

For example, \mathbb{C} is a complex central simple algebra and it is not a real central simple algebra, as $\mathbb{Z}(\mathbb{C}) = \mathbb{C}$. Moreover, \mathbb{H} and \mathbb{R} are central simple algebras over \mathbb{R} .

17.3. EXERCISE. Prove that $\mathbb{H} \otimes_{\mathbb{R}} \mathbb{H} \simeq M_4(\mathbb{R})$.

The previous exercise shows that the tensor product of central simple algebras is not necessarily a central simple algebra.

Wedderburn's theorem states that every finite-dimensional simple algebra is isomorphic to $M_n(D)$ for some n and some division algebra D.

17.4. EXERCISE. Prove that the n in Wedderburn's theorem is unique and the division algebra D is unique up to isomorphism.

Let A and B be central simple K-algebras. By Wedderburn's theorem, $A \simeq M_n(D)$ and $B \simeq M_m(E)$ for some m, n > 0 and division algebras D and E. We define

$$A \sim B \iff D \simeq E$$
.

17.5. Exercise. Prove that \sim is an equivalence relation.

If D is a central division K-algebra, then $D = M_1(D) \sim M_n(D)$ for all n.

17.6. EXERCISE. Let D be a K-algebra. Prove that $D \otimes_K M_n(K) \simeq M_n(D)$ as K-algebras

17.7. EXERCISE. Prove that $M_n(K) \otimes_K M_m(K) \simeq M_{nm}(K)$.

If A is a central simple algebra, [A] will denote the equivalence class of A under the relation \sim , that is $[A] = \{B : B \sim A\}$.

17.8. Exercise. Prove that the collection of equivalence classes of central simple algebras is a set.

One way to solve the previous exercise is to recall that, by definition, central simple algebras are finite-dimensional. Then that the underlying vector space of a central simple

algebra over K is K^n for some n. Algebra structures over K^n form a set, as they are indeed a subset of $\text{Hom}(K^n \otimes K^n, K^n)$.

17.9. THEOREM. Let Br(K) be the set of equivalence classes of central simple K-algebras. Then Br(K) with the operation

$$[A][B] = [A \otimes_K B]$$

is an abelian group.

Sketch of the proof. We need to show that the product of Br(K) is well-defined. There are several things to prove:

- 1) $A \otimes_K B$ is a finite-dimensional central simple K-algebra.
- 2) The multiplication $[A][B] = [A \otimes_K B]$ is well-defined, that is $A \sim A_1$ and $B \sim B_1$ imply that $A \otimes_K B \sim A_1 \otimes_K B_1$.

To prove 1) we note that $A \otimes_K B$ is a finite-dimensional K-algebra, as

$$\dim_K(A \otimes_K B) = (\dim_K A)(\dim_K B).$$

It is central, as $Z(A \otimes_K B) \simeq Z(A) \otimes_K Z(B)$. Finally, it is simple, as there exists a bijective correspondence between ideals of A and ideals of $A \otimes_K B$.

Let us prove 2). Write $A \simeq M_n(D)$, $A_1 \simeq M_{n_1}(D)$, $B \simeq M_m(E)$ and $B_1 \simeq M_{m_1}(E)$ for some division K-algebras D and E. Since the tensor product is associative and commutative,

$$A \otimes_K B \simeq M_n(D) \otimes_K M_m(E)$$

$$\simeq D \otimes_K M_n(K) \otimes_K E \otimes_K M_m(K)$$

$$\simeq D \otimes_K E \otimes_K M_{nm}(K)$$

$$\simeq M_{nm}(D \otimes_K E).$$

Note that $D \otimes_K E$ is maybe not a division algebra, but it is indeed a finite-dimensional central simple algebra. By Wedderburn's theorem, $D \otimes_K E \simeq M_p(F)$ for some division K-algebra F and some p. This implies that

$$A \otimes_K B \simeq M_{nmp}(F).$$

Similarly, $A_1 \otimes_K B_1 \simeq M_{n_1 m_1 p}(F)$ and thus $A \otimes_K B \sim A_1 \otimes_K B_1$.

Now we need to prove that Br(K) is a group. The multiplication (17.1) is associative and commutative since the tensor product \otimes_K is associative and multiplicative. The identity of Br(K) is [K], as $[A][K] = [A \otimes_K K] = [A]$. Finally, the inverse of [A] is $[A^{op}]$, as

$$[A][A^{\operatorname{op}}] = [A \otimes_K A^{\operatorname{op}}] = [M_n(K)].$$

17.10. EXERCISE. Let D be a division algebra. Compute the center of $M_n(D)$.

Let us compute some examples:

17.11. Proposition. $Br(\mathbb{C}) = \{0\}.$

PROOF. Let A be a complex central simple algebra. Then $A \simeq M_n(D)$ for some complex division algebra D. We claim that $D \simeq \mathbb{C}$. Let $m = \dim D$ and $\alpha \in D$. Since $\{1, \alpha, \ldots, \alpha^m\}$ has m+1 elements, it is a linearly dependent set. This means that there exists $\lambda_0, \ldots, \lambda_m \in \mathbb{C}$ not all zero such that $0 = \sum_{i=0}^m \lambda_i \alpha^i$. Thus the non-zero polynomial $f = \sum_{i=0}^m \lambda_i X^i \in \mathbb{C}[X]$

is such that $f(\alpha) = 0$. Since \mathbb{C} is algebraically closed, there exist $\alpha_0, \ldots, \alpha_N \in \mathbb{C}$ and $a \in \mathbb{C} \setminus \{0\}$ such that

$$f = a \prod_{i=0}^{N} (X - \alpha_i).$$

Since D is a division algebra, there exists $i \in \{0, ..., m\}$ such that $\alpha = \alpha_i$. In particular, $\alpha \in \mathbb{C}$. Therefore $[A] = [\mathbb{C}]$ and hence $Br(A) = \{0\}$.

An application of Wedderburn's little theorem:

17.12. Proposition. Let F be a finite field. Then $Br(F) = \{0\}$.

PROOF. Let A be a central simple algebra over F. Then $A \simeq M_n(D)$ for some division F-algebra D. Since $\dim_F D < \infty$ and F is finite, $F = Z(A) \simeq Z(M_m(D)) \simeq Z(D) = D$ by Wedderburn's little theorem and hence [A] = [F].

An application of Frobenius' theorem:

17.13. PROPOSITION. Br(\mathbb{R}) is the cyclic group of order two.

PROOF. Let A be a central simple real algebra. Then $A \simeq M_n(D)$ where either $D \simeq \mathbb{R}$ or $D \simeq \mathbb{H}$ by Frobenius' theorem, as

$$\mathbb{R} \simeq Z(A) \simeq Z(M_n(D)) \simeq Z(D)$$

and $\mathbb{Z}(\mathbb{C}) = \mathbb{C}$. Thus $Br(\mathbb{R})$ has only two elements, that is $Br(\mathbb{R}) = \{ [\mathbb{R}], [\mathbb{H}] \}$.

Let L/K be a Galois extension of degree n. Extending scalars we obtain a group homomorphism

res:
$$Br(K) \to Br(L)$$
, $[A] \mapsto [A \otimes_K L]$,

known as the restriction homomorphism.

17.14. Exercise. Prove that res is well-defined.

17.15. DEFINITION. Let L/K be a Galois extension of degree n. The restricted Brauer group is Br(L/K) is defined as the kernel of the restriction homomorphism.

Recall that the Galois group G of L/K is a finite group. Let $Z^2(G, L^{\times})$ be the set of maps $\alpha \colon G \times G \to L^{\times}$ such that

$$\alpha(g,h)\alpha(gh,k) = g(\alpha(h,k))\alpha(g,hk)$$

for all $g, h, k \in G$.

We say that $\alpha \in Z^2(G, L^{\times})$ and $\beta \in Z^2(G, L^{\times})$ are equivalent if and only if there exists $\{\delta_q : g \in G\} \subseteq L$ such that

$$\beta(g,h) = \delta_g g(\delta_h) \alpha(g,h) \delta_{gh}^{-1}$$

for all $g, h \in G$.

The second cohomology group $H^2(G, L^{\times})$ is defined as the set of equivalence classes of $Z^2(G, L^{\times})$. One proves that $H^2(G, L^{\times})$ is indeed an abelian group.

17.16. EXERCISE. Let G be a finite group. For $\alpha \in Z^2(G, L^{\times})$ let us consider the crossed product $L_t^{\alpha}G$ of G by K given by

$$L_t^{\alpha}G = \left\{ \sum_{g \in G} \lambda_g e_g : \lambda_g \in L \right\}.$$

1) Prove that the product

$$(\lambda_q e_q)(\lambda_h e_h) = \lambda_q g(\lambda_q) \alpha(g, h) e_{qh}.$$

is associative.

- 2) Prove that $e = \alpha(1,1)^{-1}e_1$ is such that $ee_g = e_g e = e_g$ for all $g \in G$.
- 3) Prove that each e_g is invertible with inverse

$$e_g^{-1} = \alpha(g^{-1}, g)^{-1}\alpha(1, 1)^{-1}e_{g^{-1}}.$$

17.17. Theorem. Let L/K be a Galois extension of degree n and group G. Then

$$Br(L/K) \simeq H^2(G, L^{\times}).$$

The isomorphism of the theorem is given by

$$H^2(G, L^{\times}) \to \operatorname{Br}(L/K) \subseteq \operatorname{Br}(K), \quad [\alpha] \mapsto [L_t^{\alpha}G],$$

We do not have time to prove the theorem in detail, as it requires some tools that are outside the scope of our course.

17.18. COROLLARY. Br(K) is a torsion group.

Sketch of the proof. The theorem implies that for every finite Galois extension L/K one has $Br(L/K) \simeq H^2(G, L^{\times})$ is a torsion group, as $|G|H^2(G, L^{\times}) = \{0\}$. To finish the proof note that $Br(K) = \bigcup Br(L/K)$, where the union is taken over all finite Galois extensions L/K.

The theorem can be used to compute Brauer groups. Let us give an example. We know that \mathbb{C}/\mathbb{R} is a Galois extension with Galois group isomorphic to $\mathbb{Z}/2$. Thus

$$\operatorname{Br}(\mathbb{R}) = \operatorname{Br}(\mathbb{C}/\mathbb{R}) \simeq H^2(\mathbb{Z}/2, \mathbb{C}^{\times}) \simeq \mathbb{Z}/2.$$

18. Project: The Andrunakevic-Rjabuhin theorem

18.1. DEFINITION. A ring R is reduced if has no non-zero nilpotent elements.

Every commutative domain is reduced.

- 18.2. Example. The ring $\mathbb{Z} \times \mathbb{Z}$ with the usual operations is reduced but not a domain.
- 18.3. Example. The ring $\mathbb{Z}/6$ is reduced. However, $\mathbb{Z}/4$ is not reduced.
- 18.4. EXERCISE. Prove that a ring R is reduced if and only if for all $r \in R$ such that $r^2 = 0$ one has r = 0.
- 18.5. EXERCISE. Let R be a commutative ring that is reduced but not a domain. Prove that R[X] is reduced but not a domain.

The previous exercise and induction shows that if R is reduced but not a domain, then so is $R[X_1, \ldots, X_n]$.

18.6. Example. Let $R = \mathbb{Z}/3 \times \mathbb{Z}/3$ with operations

$$(a,b) + (c,d) = (a+c,b+d), (a,b)(c,d) = (ac,ad+bc).$$

Then R is a commutative ring with identity (1,0). Since (0,1) is a non-zero nilpotent element, R is not reduced.

18.7. DEFINITION. Let R be a ring and I be an ideal of R. Then I is **reduced** if R/I is a reduced ring.

Let R be a ring and I be a reduced ideal of R. If $ab \in I$, then $ba \in I$. In fact, since $ab \in I$, $(ba)^2 = b(ab)a \in I$. Since R/I is reduced, $ba \in I$.

18.8. Theorem (Andrunakevic-Rjabuhin). Let R be a non-zero ring. If R is reduced, there exists an ideal I of R such that then R/I has no non-zero zero-divisors.

Let R be a ring and I be an ideal of R. If S is a subset of R, the **left annihilator** of S modulo I is the set $\{r \in R : rS \subseteq I\}$.

18.9. Lemma. Let R be a ring and I be a reduced ideal. If $S \subseteq R$ is a subset, then the left annihilator of S modulo I is a reduced ideal.

PROOF. We need to show that $A = \{r \in R : rS \subseteq I\}$ is a reduced ideal. A straightforward calculation shows that A is a left ideal. We claim that A is a right ideal. Let $r \in R$ and $a \in A$. Then $as \in I$ for all $s \in S$. Since I is reduced, $sa \in I$ for all $s \in S$. Since I is an ideal of R, $sar \in I$ for all $s \in S$. Using again that I is reduced, $ars \in I$ for all $s \in S$. Thus $ar \in A$.

We now claim that A is reduced. If $a^2 \in A$, then $aas = a^2s \in I$ for all $s \in S$. Since I is reduced, $asa \in I$ for all $s \in S$. Thus $(as)^2 = (asa)s \in I$ for all $s \in S$. Since I is reduced, $as \in I$ for all $s \in S$. Hence $a \in A$.

Similarly, if S is a subset of a ring R, then the **right annihilator** $\{r \in R : Sr \subseteq I\}$ of S modulo I is a reduced ideal.

PROOF OF THEOREM 18.8. Let $x \in R \setminus \{0\}$. Let X be the set of reduced ideals I such that $x \notin I$. Since R is reduced, $\{0\}$ is a reduced ideal and hence $X \neq \emptyset$. A standard application of Zorn's lemma shows that there exists a maximal element $M \in X$.

We claim that R/M has no non-zero divisors. If not, there exist $a, b \in R$ such that $ab \in M$, $a \notin M$ and $b \notin M$. Let A be the left annihilator of $\{b\}$ modulo M and B be the right annihilator of $\{a\}$ modulo M. By the previous lemma, A and B are reduced ideals of R. Since $a \in A$, $M \subsetneq A$. Similarly, since $b \in B$, $M \subsetneq B$. Moreover, $AB \subseteq M$. Since $x \in A \cap B$, $x^2 \in AB \subseteq M$. Since M is reduced, $x \in M$, a contradiction. \square

18.10. Exercise. Prove that a reduced ring is a subdirect product of rings without no non-zero divisors.

19. Project: Kolchin's theorem

In this section it will be useful to consider non-unitary algebras.

19.1. DEFINITION. Let A be an algebra (possibly without one). An element $a \in A$ is said to be **nilpotent** if $a^n = 0$ for some $n \ge 1$. The algebra A is said to be **nil** if every element $a \in A$ is nilpotent.

Nilpotent elements are also called nil elements.

19.2. Example. Let
$$A = M_2(\mathbb{R})$$
. Then $a = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ is nilpotent.

19.3. DEFINITION. An algebra A is said to be **nilpotent** if there exists $n \ge 1$ such that every product $a_1 a_2 \cdots a_n$ of n elements of A is zero.

Nilpotent algebras are trivially nil, whereas nil algebras may not be nilpotent.

19.4. Exercise. Give an example of a nil algebra that is not nilpotent.

Note that nil algebras cannot be unitary.

- 19.5. EXERCISE. Let A be an algebra. There exists an algebra B with one 1_B and an ideal I of B such that $B/I \simeq \mathbb{C}$ and $I \simeq A$.
- 19.6. EXERCISE. Let A_1, \ldots, A_k be algebras. Prove that the ideals of $A_1 \times \cdots \times A_k$ are of the form $I_1 \times \cdots \times I_k$, where each I_j is an ideal of A_j .
 - 19.7. EXERCISE. Prove that the non-zero ideals of $\prod_{i=1}^k M_{n_i}(\mathbb{C})$ are unitary algebras.
- 19.8. Proposition. Let A be non-zero algebra (possibly without one). If A does not have non-zero nilpotent ideals, then A is a unitary algebra.

PROOF. Let B be a unitary algebra such that there exists an ideal I of B with $B/I \simeq \mathbb{C}$ and $I \simeq A$ (see Exercise 19.5). Let J be a nilpotent ideal of B. Since $J \cap I \subseteq I$ is a nilpotent ideal of A, $J \cap I = \{0\}$. Thus

$$J \simeq J/(J \cap I) \simeq (I+J)/I$$

is a nilpotent ideal of $B/I \simeq \mathbb{C}$. Thus $J = \{0\}$ and hence B is semisimple. By Artin–Wedderburn, $B \simeq \prod_{i=1}^k M_{n_i}(\mathbb{C})$. Since A is isomorphic to an ideal of B, Exercise 19.7 shows that A is a unitary algebra.

Now we prove another nice result of Wedderburn:

19.9. Theorem (Wedderburn). Let A be a complex finite-dimensional algebra. If A is generated (as a vector space) by nilpotent elements, then A is nilpotent.

We shall need a lemma.

19.10. Lemma. The vector space $M_n(\mathbb{C})$ does not have a basis of nilpotent matrices.

PROOF. If $\{A_1, \ldots, A_{n^2}\}$ is a basis of $M_n(\mathbb{C})$ consisting of nilpotent matrices, then there exist $\lambda_1, \ldots, \lambda_{n^2} \in \mathbb{C}$ such that

(19.1)
$$E_{11} = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix} = \sum_{i=1}^{n^2} \lambda_i A_i.$$

Note $\operatorname{trace}(A_i) = 0$ for all $i \in \{1, \dots, n\}$, as every A_i is nilpotent. Apply trace to (19.1) to obtain that $1 = \operatorname{trace}(E_{11}) = \sum \lambda_i \operatorname{trace}(A_i) = 0$, a contradiction.

Now we prove Wedderburn's theorem. Note that the theorem can be extended to any algebraically closed field. We state and prove Wedderburn's theorem in the case of complex numbers to simplify the presentation.

PROOF OF THEOREM 19.9. We proceed by induction on dim A. If dim A = 1 and there exists a nilpotent element $a \in A$ such that $\{a\}$ is a basis of A, then A is nilpotent, as every element of A is nilpotent, as it is of the form λa for some $\lambda \in \mathbb{C}$.

Assume now that dim A > 1. Since J(A) is nilpotent, $J(A)^n = \{0\}$ for some n.

If J(A) = A, the result trivially holds.

If $J(A) \neq \{0\}$, dim $A/J(A) < \dim A$ and hence A/J(A) is nilpotent by the inductive hypothesis, say $(A/J(A))^m = \{0\}$. Let

$$\pi\colon A\to A/J(A)$$

be the canonical map and N = nm. We claim that $A^N = \{0\}$. Let $a_1, \ldots, a_N \in A$. Write $a_1 \cdots a_N = x_1 \cdots x_n$ for some $x_1 \cdots x_n \in A$. For example,

$$x_1 = a_1 a_2 \cdots a_m,$$

 $x_2 = a_{m+1} a_{m+2} \cdots a_{2m},$
:

Since

$$\pi(x_1) = \pi(a_1 a_2 \cdots a_m) = \pi(a_1) \pi(a_2) \cdots \pi(a_m) = 0,$$

it follows that $x_1 \in J(A)$. Similarly, $\pi(x_j) \in J(A)$ for every $j \in \{1, \ldots, n\}$. Thus,

$$a_1 a_2 \cdots a_N = x_1 x_2 \cdots x_n \in J(A)^n = \{0\}.$$

Thus A is nilpotent.

If $J(A) = \{0\}$, then A is semisimple. By Artin-Wedderburn, $A \simeq \prod_{i=1}^k M_{n_i}(\mathbb{C})$, a contradiction to the previous lemma.

19.11. DEFINITION. Let $V = \mathbb{C}^n$ (column vectors). A **complete flag** in V is a sequence (V_1, V_2, \ldots, V_n) of vector spaces such that

$$\{0\} \subsetneq V_1 \subsetneq V_2 \subsetneq \cdots \subsetneq V_n = V.$$

If (V_1, \ldots, V_n) is a complete flag, then $\dim V_i = i$ for all $i \in \{1, \ldots, n\}$. Let $\{e_1, \ldots, e_n\}$ be the standard basis of \mathbb{C}^n . The **standard flag** is defined as the sequence (E_1, \ldots, E_n) , where $E_i = \langle e_1, \ldots, e_i \rangle$ for all $i \in \{1, \ldots, n\}$.

Note that $\mathbf{GL}_n(\mathbb{C})$ acts on the set of complete flags of V by

$$g\cdot (V_1,\ldots,V_n)=(T_g(V_1),\ldots,T_g(V_n)),$$

where $T_q: V \to V, x \mapsto gx$.

The action is **transitive**, which means that if (V_1, \ldots, V_n) is a complete flag, then there exists $g \in \mathbf{GL}_n(\mathbb{C})$ such that

$$g \cdot (E_1, \dots, E_n) = (V_1, \dots, V_n).$$

In fact, the matrix $g = (v_1|v_2|\cdots|v_n)$, where $\{v_1,\ldots,v_n\}$ is a basis of V, satisfies $ge_i = v_i$ for all $i \in \{1,\ldots,n\}$.

Let $B_n(\mathbb{C})$ be the stabilizer

$$G_{(E_1,\dots,E_n)} = \{g \in \mathbf{GL}_n(\mathbb{C}) : T_g(E_i) = E_i \text{ for all } i\} = \{(b_{ij}) : b_{ij} = 0 \text{ if } i > j\}$$

of the standard flag. Then $B_n(\mathbb{C})$ is known as the **Borel subgroup**.

Let $U_n(\mathbb{C})$ be the subgroup of $\mathbf{GL}_n(\mathbb{C})$ of matrices (u_{ij}) such that

$$u_{ij} = \begin{cases} 1 & \text{if } i = j, \\ 0 & \text{if } i > j. \end{cases}$$

Let $T_n(\mathbb{C})$ be the subgroup of $\mathbf{GL}_n(\mathbb{C})$ diagonal matrices.

19.12. Proposition. $B_n(\mathbb{C}) = U_n(\mathbb{C}) \rtimes T_n(\mathbb{C})$.

PROOF. It is trivial that $U_n(\mathbb{C}) \cap T_n(\mathbb{C}) = \{I\}$, where I is the $n \times n$ identity matrix. Clearly, $U_n(\mathbb{C})$ is a subgroup of $B_n(\mathbb{C})$. To prove that $U_n(\mathbb{C})$ is normal in $B_n(\mathbb{C})$ note that $U_n(\mathbb{C})$ is the kernel of the group homomorphism

$$f \colon B_n(\mathbb{C}) \to T_n(\mathbb{C}), \quad (b_{ij}) \mapsto \begin{pmatrix} b_{11} & & & \\ & b_{22} & & \\ & & \ddots & \\ & & & b_{nn} \end{pmatrix}.$$

It remains to show that $B_n(\mathbb{C}) = U_n(\mathbb{C})T_n(\mathbb{C})$. Let us prove that $B_n(\mathbb{C}) \subseteq U_n(\mathbb{C})T_n(\mathbb{C})$, as the other inclusion is trivial. Let $b \in B_n(\mathbb{C})$. Then $bf(b)^{-1} \in \ker f = U_n(\mathbb{C})$ and therefore $b = (bf(b)^{-1})f(b) \in U_n(\mathbb{C})T_n(\mathbb{C})$.

19.13. DEFINITION. A matrix $a \in \mathbf{GL}_n(\mathbb{C})$ is said to be **unipotent** if its characteristic polynomial is of the form $(X-1)^n$.

The matrix $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ is unipotent, as its characteristic polynomial is $(X-1)^2$.

19.14. DEFINITION. A subgroup G of $\mathbf{GL}_n(\mathbb{C})$ is said to be **unipotent** if each $g \in G$ is unipotent.

Now an application of Wedderburn's theorem:

19.15. PROPOSITION. Let G be a unipotent subgroup of $\mathbf{GL}_n(\mathbb{C})$. Then there exists a non-zero $v \in \mathbb{C}^n$ such that gv = v for all $g \in G$.

PROOF. Without loss of generality, we may assume that G is non-trivial. Let V be the subspace of $\mathbb{C}^{n\times n}$ generated by $\{g-I:g\in G\}$. If $g\in G$, then $(g-I)^n=0$, as g is unipotent. Thus, every element of V is nilpotent. If $g,h\in G$, then

$$(g-I)(h-I) = (gh-I) - (g-I) - (h-I) \in V.$$

This means that V is closed under multiplication and hence V is an algebra generated (as a vector space) by nilpotent elements. By Wedderburn's theorem, V is nilpotent. Let m be minimal such that $(g_1 - I) \cdots (g_m - I) = 0$ for all $g_1, \ldots, g_m \in G$. The minimality of m implies that there exist $h_1, \ldots, h_{m-1} \in G$ such that

$$(h_1 - I) \cdots (h_{m-1} - I) \neq 0.$$

In particular, there exists a non-zero $w \in C^n$ such that $v = (h_1 - I) \cdots (h_{m-1} - I) w \neq 0$. For every $g \in G$,

$$(g-I)v = (g-I)(h_1-I)\cdots(h_{m-1}-I)w = 0$$

and hence qv = v.

19.16. THEOREM (Kolchin). Every unipotent subgroup of $\mathbf{GL}_n(\mathbb{C})$ is conjugate to some subgroup of $U_n(\mathbb{C})$.

PROOF. Let G be an unipotent subgroup of $\mathbf{GL}_n(\mathbb{C})$. Assume first that there exists a complete flag (V_1, \ldots, V_n) of \mathbb{C}^n such that $G \subseteq G_{(V_1, \ldots, V_n)}$. Let $g \in \mathbf{GL}_n(\mathbb{C})$ be such that $g \cdot (E_1, \ldots, E_n) = (V_1, \ldots, V_n)$. Then

$$G \subseteq G_{g \cdot (E_1, \dots, E_n)} = gG_{(E_1, \dots, E_n)}g^{-1} = gB_n(\mathbb{C})g^{-1}.$$

Since every unipotent element of $B_n(\mathbb{C})$ belongs to $U_n(\mathbb{C})$, it follows that

$$G \subseteq gU_n(\mathbb{C})g^{-1}$$
.

We claim that $G \subseteq G_{(V_1,\ldots,V_n)}$ for some complete flag (V_1,\ldots,V_n) . We proceed by induction on n. If n=1, the result is trivial. Assume the result holds for n-1. By the previous proposition, there exists a non-zero $v \in \mathbb{C}^n$ such that gv = v for all $g \in G$. Let $Q = \mathbb{C}^n/\langle v \rangle$ and $\pi \colon \mathbb{C}^n \to Q$ be the canonical map. Then dim Q = n-1. The group G acts on Q by

$$g \cdot (w + \langle v \rangle) = gw + \langle v \rangle.$$

The action is well-defined: if $w + \langle v \rangle = w_1 + \langle v \rangle$, then $w - w_1 = \lambda v$ for some $\lambda \in \mathbb{C}$. This implies that

$$gw - gw_1 = g(w - w_1) = \lambda(gv) = \lambda v \in \langle v \rangle$$

and hence $gw + \langle v \rangle = gw_1 + \langle v \rangle$.

By the inductive hypothesis, G stabilizes a complete flag (Q_1, \ldots, Q_{n-1}) , where

$$Q_1 = \langle \pi(v_1) \rangle, \quad Q_2 = \langle \pi(v_1), \pi(v_2) \rangle, \quad \dots \quad Q_{n-1} = \langle \pi(v_1), \dots, \pi(v_{n-1}) \rangle.$$

Let

$$W_0 = \langle v \rangle, \quad W_1 = \langle v, v_1 \rangle, \quad W_2 = \langle v, v_1, v_2 \rangle, \quad \dots \quad W_{n-1} = \langle v, v_1, \dots, v_{n-1} \rangle.$$

Since (Q_1, \ldots, Q_{n-1}) is a complete flag, the set $\{\pi(v_j) : 1 \le j \le n-1\}$ is linearly independent. We claim that $\{v, v_1, \ldots, v_{n-1}\}$ is linearly independent. In fact, since $v \ne 0$, one obtains that

$$\sum_{i=1}^{n-1} \lambda_i v_i + \lambda v = 0 \implies \sum_{i=1}^{n-1} \lambda_i \pi(v_i) = 0 \implies \lambda_1 = \dots = \lambda_{n-1} = 0 \implies \lambda = 0.$$

Thus dim $W_i = i + 1$ for all i.

Let $g \in G$. Clearly, $gW_0 \subseteq W_0$, as gv = v. Let $j \in \{1, \ldots, n-1\}$. There exist $\lambda_1, \ldots, \lambda_j \in \mathbb{C}$ such that $\pi(gv_j) = \sum_{i \leq j} \lambda_i \pi(v_i)$. This means that

$$gv_j - \sum_{i \le j} \lambda_i v_i = \lambda v \in \langle v \rangle$$

for some $\lambda \in \mathbb{C}$. In particular,

$$gv_j = \sum_{i \le j} \lambda_i v_i + \lambda v \in \langle v, v_1, \dots, v_j \rangle = W_j.$$

Therefore, $G \subseteq G_{(W_0,\dots,W_{n-1})}$.

The ideas behind the theorem are somewhat connected to Sylow's theory. The key is to consider an explicit version of Sylow's theorem for the group $\mathbf{GL}_n(p)$ of invertible matrices with coefficients in the field \mathbb{F}_p with p elements.

A group G acts linearly on a vector space V if $g \cdot (v + w) = g \cdot v + g \cdot w$ for all $g \in G$ and $v, w \in V$. Proposition 19.15 has the following version:

19.17. PROPOSITION. Let P be a finite p-group acting on a finite-dimensional \mathbb{F}_p -vector space V linearly. Then there exists a non-zero $v \in V$ such that $x \cdot v = v$ for all $x \in P$.

PROOF. Let $n = \dim V$. There are $p^n - 1$ non-zero vectors in V. Since the action is linear, P acts on $X = V \setminus \{0\}$. We decompose V into orbits and collect those orbits with only one element, say

$$X = X_0 \cup O(v_1) \cup \cdots \cup O(v_m),$$

where $|O(v_j)| \geq 2$ for all $j \in \{1, ..., m\}$. Since p divides the order of each $O(v_j)$ and $|X| = p^n - 1$ is not divisible by p, it follows that $X_0 \neq \emptyset$. In particular, there exists $v \in V$ such that $x \cdot v = v$ for all $x \in G$.

The analog of Kolchin's theorem is the following result:

19.18. Proposition. Every p-subgroup of $\mathbf{GL}_n(p)$ is conjugate to a subgroup of the unipotent subgroup $U_n(p)$.

SKETCH OF THE PROOF. Let P be a p-subgroup of $\mathbf{GL}_n(p)$. Then P acts linearly on an n-dimensional \mathbb{F}_p -vector space V by left multiplication. The previous proposition implies that there exists a non-zero $v_1 \in V$ such that $xv_1 = v_1$ for all $x \in P$. Let $V_1 = \langle v_1 \rangle$. The group P acts on the (n-1)-dimensional vector space V/V_1 by

$$x \cdot (v + V_1) = xv + V_1.$$

This action is well-defined. As before, there exists a non-zero vector of V/V_1 fixed by P. Thus there exists $v_2 \in V \setminus V_1$ such that $xv_2 + V_1 = v_2 + V_1$. Note that $\{v_1, v_2\}$ is linearly independent, as applying the canonical map $V \to V/V_1$ to $\alpha v_1 + \beta v_2 = 0$ one obtains that $\beta = 0$ and therefore $\alpha = 0$. This process produces a basis $\{v_1, \ldots, v_n\}$ of V and a sequence $\{0\} \subsetneq V_1 \subsetneq V_2 \subsetneq \cdots \subsetneq V_n = V$, where $V_j = \langle v_1, \ldots, v_j \rangle$ for all $j \in \{1, \ldots, n\}$. Moreover, $PV_j \subseteq V_j$ and $Pv_j = v_j + V_{j-1}$ for all j. This means precisely that in the basis $\{v_1, \ldots, v_n\}$ every element of P is an upper triangular matrix with ones in the main diagonal. \square

Proposition 19.18 is deeply connected to Sylow's theorems.

19.19. EXERCISE. Prove that the normalizer of $U_n(p)$ in $\mathbf{GL}_n(p)$ is the Borel subgroup $B_n(p)$ of upper triangular matrices.

Now we have the following explicit Sylow theory for $\mathbf{GL}_n(p)$. The first two Sylow theorems appear in the following result.

19.20. EXERCISE. Prove that $U_n(p)$ is a Sylow p-subgroup of $\mathbf{GL}_n(p)$.

What about the third Sylow's theorem? First, note that the number n_p of conjugates of $U_n(p)$ in $\mathbf{GL}_n(p)$ is the number of complete flags in \mathbb{F}_p^n .

19.21. Exercise. Prove that $n_p \equiv 1 \mod p$.

20. Project: Passman's theorem

Let K be a field and G be a group. A unit $u \in K[G]$ is said to be **trivial** if $u = \lambda g$ for some $\lambda \in K \setminus \{0\}$ and $g \in G$.

20.1. EXERCISE. Prove that $\mathbb{C}[C_2]$ and $\mathbb{C}[C_5]$ have non-trivial units.

The following question is usually attributed to Kaplansky.

20.2. QUESTION (Units in groups algebras). Let K be a field and G be a torsion-free group. Is it true that all units of K[G] are trivial?

Question 20.2 was negatively answered by Gardam.

20.3. THEOREM (Gardam). Let \mathbb{F}_2 be the field of two elements. Consider the elements $x = a^2$, $y = b^2$ and $z = (ab)^2$ of P and let

$$p = (1+x)(1+y)(1+z^{-1}), q = x^{-1}y^{-1} + x + y^{-1}z + z,$$

$$r = 1+x+y^{-1}z + xyz, s = 1 + (x+x^{-1}+y+y^{-1})z^{-1}.$$

Then u = p + qa + rb + sab is a non-trivial unit in $\mathbb{F}_2[P]$.

Proof. See
$$[10]$$
.

20.4. DEFINITION. A ring R is reduced if for all $r \in R$ such that $r^2 = 0$ one has r = 0.

Integral domains and boolean rings are reduced. The ring $\mathbb{Z}/8$ of integers modulo eight and $M_2(\mathbb{R})$ are not reduced.

20.5. Example. The ring over the abelian group \mathbb{Z}^n with multiplication

$$(a_1, \ldots, a_n)(b_1, \ldots, b_n) = (a_1b_1, \ldots, a_nb_n)$$

is reduced.

The structure of reduced rings is described by the Andrunakevic–Rjabuhin theorem. It states that a ring is reduced if and only if it is a subdirect products of domains. See [11, 3.20.5] for a proof.

20.6. QUESTION (Reduced group algebras). Let K be a field and G be a torsion-free group. Is it true that K[G] is reduced?

Recall that if R is a unitary ring, one proves that the Jacobson radical J(R) is the set of elements x such that $1 + \sum_{i=1}^{n} r_i x s_i$ is invertible for all n and all $r_i, s_i \in R$.

20.7. QUESTION (Semisimple group algebras). Let K be a field and G be a torsion-free group. It is true that $J(K[G]) = \{0\}$ if G is non-trivial?

Recall that an element e of a ring is said to be **idempotent** if $e^2 = e$. Examples of idempotents are 0 and 1 and these are known as the **trivial idempotents**.

20.8. QUESTION (Idempotents in group algebras). Let G be a torsion-free group and $\alpha \in K[G]$ be an idempotent. Is it true that $\alpha \in \{0,1\}$?

20.9. EXERCISE. Prove that if K[G] has no zero-divisors and $\alpha \in K[G]$ is an idempotent, then $\alpha \in \{0,1\}$.

20.10. EXERCISE. Let K be a field of characteristic two. Prove that $K[C_4]$ contains non-trivial zero divisors and every idempotent of $K[C_4]$ is trivial. What happens if the characteristic of K is not two?

For completeness, let us recall the following important question.

20.11. QUESTION (Zero divisors in group algebras). Let K be a field and G be a torsion-free group. Is it true that K[G] is a domain?

Our goal is the prove the following implications:

$$20.7 \Longleftrightarrow 20.2 \Longrightarrow 20.6 \Longleftrightarrow 20.11$$

We first prove that an affirmative solution to Question 20.2 yields a solution to Question 20.6.

20.12. THEOREM. Let K be a field of characteristic $\neq 2$ and G be a non-trivial group. Assume that K[G] has only trivial units. Then K[G] is reduced.

PROOF. Let $\alpha \in K[G]$ be such that $\alpha^2 = 0$. We claim that $\alpha = 0$. Since $\alpha^2 = 0$,

$$(1 - \alpha)(1 + \alpha) = 1 - \alpha^2 = 1,$$

it follows that $1-\alpha$ is a unit of K[G]. Since units of K[G] are trivial, there exist $\lambda \in K \setminus \{0\}$ and $g \in G$ such that $1-\alpha = \lambda g$. We claim that g = 1. If not,

$$0 = \alpha^2 = (1 - \lambda g)^2 = 1 - 2\lambda g + \lambda^2 g^2,$$

a contradiction. Therefore g=1 and hence $\alpha=1-\lambda\in K$. Since K is a field, one concludes that $\alpha=0$.

20.13. Exercise. What happens in Theorem 20.12 if K is a field of characteristic two?

We now prove that an affirmative solution to Question 20.2 also yields a solution to Question 20.7.

20.14. THEOREM. Let K be a field and G be a non-trivial group. Assume that K[G] has only trivial units. If |K| > 2 or |G| > 2, then $J(K[G]) = \{0\}$.

PROOF. Let $\alpha \in J(K[G])$. There exist $\lambda \in K \setminus \{0\}$ and $g \in G$ such that $1 - \alpha = \lambda g$. We claim that g = 1. Assume $g \neq 1$. If $|K| \geq 3$, then there exist $\mu \in K \setminus \{0,1\}$ such that

$$1 - \alpha \mu = 1 - \mu + \lambda \mu q$$

is a non-trivial unit, a contradiction. If $|G| \geq 3$, there exists $h \in G \setminus \{1, g^{-1}\}$ such that

$$1 - \alpha h = 1 - h + \lambda g h$$

is a non-trivial unit, a contradiction. Thus g=1 and hence $\alpha=1-\lambda\in K$. Therefore $1+\alpha h$ is a trivial unit for all $h\neq 1$ and hence $\alpha=0$.

20.15. EXERCISE. Prove that if $G = \langle g \rangle \simeq \mathbb{Z}/2$, then $J(\mathbb{F}_2[G]) = \{0, g-1\} \neq \{0\}$.

We now want to prove that an affirmative answer to Question 20.6 yields an affirmative answer to Question 20.11. We first need some preliminaries.

For a group G we consider

$$\Delta(G) = \{ g \in G : (G : C_G(g)) < \infty \}.$$

20.16. Exercise. Prove that $\Delta(\Delta(G)) = \Delta(G)$.

20.17. Proposition. If G is a group, then $\Delta(G)$ is a characteristic subgroup of G.

PROOF. We first prove that $\Delta(G)$ is a subgroup of G. If $x, y \in \Delta(G)$ and $g \in G$, then

$$g(xy^{-1})g^{-1} = (gxg^{-1})(gyg^{-1})^{-1}.$$

Moreover, $1 \in \Delta(G)$. Let us show now that $\Delta(G)$ is characteristic in G. If $f \in \operatorname{Aut}(G)$ and $x \in G$, then, since

$$f(gxg^{-1}) = f(g)f(x)f(g)^{-1},$$

it follows that $f(x) \in \Delta(G)$.

20.18. Exercise. Prove that if $G = \langle r, s : s^2 = 1, srs = r^{-1} \rangle$ is the infinite dihedral group, then $\Delta(G) = \langle r \rangle$.

The following exercise uses the transfer map and is need in Proposition 20.20.

20.19. EXERCISE. If G is a group such that Z(G) has finite index n, then $(gh)^n = g^n h^n$ for all $g, h \in G$.

20.20. Proposition. If G is a torsion-free group such that $\Delta(G) = G$, then G is abelian.

PROOF. Let $x,y \in G = \Delta(G)$ and $S = \langle x,y \rangle$. The group $Z(S) = C_S(x) \cap C_S(y)$ has finite index, say n, in S. By Exercise 20.19, the map $S \to Z(S)$, $s \mapsto s^n$, is a group homomorphism. Thus

$$[x,y]^n = (xyx^{-1}y^{-1})^n = x^ny^nx^{-n}y^{-n} = 1$$

as $x^n \in Z(S)$. Since G is torsion-free, [x, y] = 1.

20.21. LEMMA (Neumann). Let H_1, \ldots, H_m be subgroups of G. Assume there are finitely many elements $a_{ij} \in G$, $1 \le i \le m$, $1 \le j \le n$, such that

$$G = \bigcup_{i=1}^{m} \bigcup_{j=1}^{n} H_i a_{ij}.$$

Then some H_i has finite index in G.

PROOF. We proceed by induction on m. The case m=1 is trivial. Let us assume that $m \geq 2$. If $(G: H_1) = \infty$, there exists $b \in G$ such that

$$H_1b \cap \left(\bigcup_{j=1}^n H_1a_{1j}\right) = \emptyset.$$

Since $H_1b \subseteq \bigcup_{i=2}^m \bigcup_{j=1}^n H_i a_{ij}$, it follows that

$$H_1 a_{1k} \subseteq \bigcup_{i=2}^m \bigcup_{j=1}^n H_i a_{ij} b^{-1} a_{1k}.$$

Hence G can be covered by finitely many cosets of H_2, \ldots, H_m . By the inductive hypothesis, some of these H_j has finite index in G.

We now consider a projection operator of group algebras. If G is a group and H is a subgroup of G, let

$$\pi_H \colon K[G] \to K[H], \quad \pi_H \left(\sum_{g \in G} \lambda_g g \right) = \sum_{g \in H} \lambda_g g.$$

If R and S are rings, a (R, S)-bimodule is an abelian group M that is both a left R-module and a right S-module and the compatibility condition

$$(rm)s = r(ms)$$

holds for all $r \in R$, $s \in S$ and $m \in M$.

20.22. EXERCISE. Let G be a group and H be a subgroup of G. Prove that if $\alpha \in K[G]$, then π_H is a (K[H], K[H])-bimodule homomorphism with usual left and right multiplications,

$$\pi_H(\beta \alpha \gamma) = \beta \pi_H(\alpha) \gamma$$

for all $\beta, \gamma \in K[H]$.

20.23. Lemma. Let X be a left transversal of H in G. Every $\alpha \in K[G]$ can be written uniquely as

$$\alpha = \sum_{x \in X} x \alpha_x,$$

where $\alpha_x = \pi_H(x^{-1}\alpha) \in K[H]$.

PROOF. Let $\alpha \in K[G]$. Since supp α is finite, supp α is contained in finitely many cosets of H, say x_1H, \ldots, x_nH , where each x_j belongs to X. Write $\alpha = \alpha_1 + \cdots + \alpha_n$, where $\alpha_i = \sum_{g \in x_i H} \lambda_g g$. If $g \in x_i H$, then $x_i^{-1}g \in H$ and hence

$$\alpha = \sum_{i=1}^{n} x_i(x_i^{-1}\alpha_i) = \sum_{x \in X} x\alpha_x$$

with $\alpha_x \in K[H]$ for all $x \in X$. For the uniqueness, note that for each $x \in X$ the previous exercise implies that

$$\pi_H(x^{-1}\alpha) = \pi_H\left(\sum_{y \in X} x^{-1}y\alpha_y\right) = \sum_{y \in X} \pi_H(x^{-1}y)\alpha_y = \alpha_x,$$

as

$$\pi_H(x^{-1}y) = \begin{cases} 1 & \text{if } x = y, \\ 0 & \text{if } x \neq y. \end{cases}$$

20.24. LEMMA. Let G be a group and H be a subgroup of G. If I is a non-zero left ideal of K[G], then $\pi_H(I) \neq \{0\}$.

PROOF. Let X be a left transversal of H in G and $\alpha \in I \setminus \{0\}$. By Lemma 20.23 we can write $\alpha = \sum_{x \in X} x \alpha_x$ with $\alpha_x = \pi_H(x^{-1}\alpha) \in K[H]$ for all $x \in X$. Since $\alpha \neq 0$, there exists $y \in X$ such that $0 \neq \alpha_y = \pi_H(y^{-1}\alpha) \in \pi_H(I)$ ($y^{-1}\alpha \in I$ since I is a left ideal).

Lemma 20.24 can also be proved directly, without using Lemma 20.23. The proof goes as follows: if $\alpha \neq 0$, then by taking g in the support of α , we have that $\pi_H(g^{-1}\alpha) \neq 0$.

20.25. EXERCISE. Let G be a group, H be a subgroup of G and $\alpha \in K[H]$. The following statements hold:

- 1) α is invertible in K[H] if and only if α is invertible in K[G].
- 2) α is a zero divisor of K[H] if and only if α is a zero divisor of K[G].

20.26. LEMMA (Passman). Let G be a group and $\gamma_1, \gamma_2 \in K[G]$ be such that $\gamma_1 K[G] \gamma_2 = \{0\}$. Then $\pi_{\Delta(G)}(\gamma_1)\pi_{\Delta(G)}(\gamma_2) = \{0\}$.

PROOF. It is enough to show that $\pi_{\Delta(G)}(\gamma_1)\gamma_2 = \{0\}$, as in this case

$$\{0\} = \pi_{\Delta(G)}(\pi_{\Delta(G)}(\gamma_1)\gamma_2) = \pi_{\Delta}(\gamma_1)\pi_{\Delta(G)}(\gamma_2).$$

Write $\gamma_1 = \alpha_1 + \beta_1$, where

$$\alpha_1 = a_1 u_1 + \dots + a_r u_r, \qquad u_1, \dots, u_r \in \Delta(G),$$

$$\beta_1 = b_1 v_1 + \dots + b_s v_s, \qquad v_1, \dots, v_s \notin \Delta(G),$$

$$\gamma_2 = c_1 w_1 + \dots + c_t w_t, \qquad w_1, \dots, w_t \in G.$$

The subgroup $C = \bigcap_{i=1}^r C_G(u_i)$ has finite index in G. Assume that

$$0 \neq \pi_{\Delta}(\gamma_1)\gamma_2 = \alpha_1\gamma_2.$$

Let $g \in \text{supp}(\alpha_1 \gamma_2)$. If v_i is a conjugate in G of some gw_j^{-1} , let $g_{ij} \in G$ be such that $g_{ij}^{-1}v_ig_{ij} = gw_j^{-1}$. If v_i and gw_j^{-1} are not conjugate, we take $g_{ij} = 1$.

For every $x \in C$ it follows that $\alpha_1 \gamma_2 = (x^{-1} \alpha_1 x) \gamma_2$. Since

$$x^{-1}\gamma_1 x \gamma_2 \in x^{-1}\gamma_1 K[G]\gamma_2 = 0,$$

it follows that

$$(a_1u_1 + \dots + a_ru_r)\gamma_2 = \alpha_1\gamma_2 = x^{-1}\alpha_1x\gamma_2 = -x^{-1}\beta_1x\gamma_2$$

= $-x^{-1}(b_1v_1 + \dots + b_sv_r)x(c_1w_1 + \dots + c_tw_t).$

Now $g \in \text{supp}(\alpha_1 \gamma_2)$ implies that there exist i, j such that $g = x^{-1} v_i x w_j$. Thus v_i and $g w_j^{-1}$ are conjugate and hence $x^{-1} v_i x = g w_j^{-1} = g_{ij}^{-1} v_i g_{ij}$, that is $x \in C_G(v_i) g_{ij}$. This proves that

$$C \subseteq \bigcup_{i,j} C_G(v_i)g_{ij}.$$

Since C has finite index in G, it follows that G can be covered by finitely many cosets of the $C_G(v_i)$. Every $v_i \notin \Delta(G)$, so each $C_G(v_i)$ has infinite index in G, a contradiction to Neumann's lemma.

20.27. Exercise. Let K be a field and G be a torsion-free abelian group. Prove that K[G] has no non-zero divisors.

20.28. THEOREM (Passman). Let K be a field and G be a torsion-free group. If K[G] is reduced, then K[G] is a domain.

PROOF. Assume that K[G] is not a domain. Let $\gamma_1, \gamma_2 \in K[G] \setminus \{0\}$ be such that $\gamma_2 \gamma_1 = 0$. If $\alpha \in K[G]$, then

$$(\gamma_1 \alpha \gamma_2)^2 = \gamma_1 \alpha \gamma_2 \gamma_1 \alpha \gamma_2 = 0$$

and thus $\gamma_1 \alpha \gamma_2 = 0$, as K[G] is reduced. In particular, $\gamma_1 K[G] \gamma_2 = \{0\}$. Let I be the left ideal of K[G] generated by γ_2 . Since $I \neq \{0\}$, it follows from Lemma 20.24 that $\pi_{\Delta(G)}(I) \neq \{0\}$. Hence $\pi_{\Delta(G)}(\beta \gamma_2) \neq \{0\}$ for some $\beta \in K[G]$. Similarly, $\pi_{\Delta(G)}(\gamma_1 \alpha) \neq \{0\}$ for some $\alpha \in K[G]$. Since

$$\gamma_1 \alpha K[G] \beta \gamma_2 \subseteq \gamma_1 K[G] \gamma_2 = \{0\},$$

it follows that $\pi_{\Delta(G)}(\gamma_1 \alpha) \pi_{\Delta(G)}(\beta \gamma_2) = \{0\}$ by Passman's lemma. Hence $K[\Delta(G)]$ has zero divisors, a contradictions since $\Delta(G)$ is an abelian group.

21. Project: Gardam's theorem

The unit problem is still open for fields of characteristic zero. However, it was recently solved by Gardam [10] in the case of K the field of two elements. We will present Gardam's theorem as a computer calculation. We will use GAP [8].

21.1. LEMMA. The group $G = \langle a, b : a^{-1}b^2a = b^{-2}, b^{-1}a^2b = a^{-2} \rangle$ is torsion-free. Moreover, the subgroup $N = \langle a^2, b^2, (ab)^2 \rangle$ is normal in G, free-abelian of rank three and $G/N \simeq C_2 \times C_2$.

PROOF. We first construct the group.

```
gap> F := FreeGroup(2);;
gap> A := F.1;;
gap> B := F.2;;
gap> rels := [(B^2)^A*B^2,(A^2)^B*A^2];;
gap> G := F/rels;;
gap> a := G.1;;
gap> b := G.2;;
```

Now we construct the subgroup N generated by a^2 , b^2 and $(ab)^2$. It is easy to check that N is normal in G and that $G/N \simeq C_2 \times C_2$. It is even easier to do this with the computer.

```
gap> N := Subgroup(G, [a^2,b^2,(a*b)^2]);;
gap> IsNormal(G,N);
true
gap> StructureDescription(G/N);
"C2 x C2"
```

It is easy to check by hand that N is abelian, and not so easy to do it with the computer. For example,

$$b^{-2}a^2b^{-2} = b^{-1}a^{-2}b = (b^{-1}a^2b)^{-1} = (a^{-2})^{-1} = a^2.$$

We use the computer to show that N is free abelian of rank three.

```
gap> AbelianInvariants(N);
[ 0, 0, 0 ]
```

Let us prove that G is torsion-free. Let $x=a^2, y=b^2$ and $z=(ab)^2$. Since (G:N)=4, the group G decomposes as a disjoint union $G=N\cup aN\cup bN\cup (ab)N$. Let $g\in G$ be a non-trivial element of finite order. Since N is torsion-free, $g\in aN\cup bN\cup (ab)N$. Without loss of generality we may assume that $g\in aN$, so g=an for some $n\in N$. Let $\pi\colon G\to G/N$ be the canonical map. Since $g\not\in N$ and $\pi(g)\in G/N\simeq C_2\times C_2$,

$$\pi(g^2) = \pi(g)^2 = 1$$

so $g^2 \in N$ and hence $g^2 = 1$, as N is torsion-free. Thus

$$1 = g^{2} = (an)^{2} = (an)(an) = a^{2}(a^{-1}na)n = x(a^{-1}na)n.$$

Write $n = x^i y^j z^k$ for some $i, j, k \in \mathbb{Z}$. Then

$$a^{-1}na = (a^{-1}x^{i}a)(a^{-1}y^{j}a)(a^{-1}z^{k}a) = x^{i}t^{-j}z^{-k}$$

and hence $(a^{-1}na)n = x^{2i}$. Then $1 = g^2 = x(a^{-1}na)n = x^{2i+1}$, a contradiction.

Let P be the group generated by

$$a = \begin{pmatrix} 1 & 0 & 0 & 1/2 \\ 0 & -1 & 0 & 1/2 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \quad b = \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1/2 \\ 0 & 0 & -1 & 1/2 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

The group P appears in the literature with various names. For us P will be the **Promislow** group. It is easy to check that there exists a surjective group homomorphism $G \to P$.

21.2. Exercise. Prove that $G \simeq P$.

A solution to Exercise 21.2 appears in [31].

21.3. THEOREM (Gardam). Let \mathbb{F}_2 be the field of two elements. Consider the elements $x = a^2$, $y = b^2$ and $z = (ab)^2$ of P and let

$$p = (1+x)(1+y)(1+z^{-1}), q = x^{-1}y^{-1} + x + y^{-1}z + z,$$

$$r = 1 + x + y^{-1}z + xyz, s = 1 + (x + x^{-1} + y + y^{-1})z^{-1}.$$

Then u = p + qa + rb + sab is a non-trivial unit in $\mathbb{F}_2[P]$.

PROOF. We claim that the inverse of u is the element $v = p_1 + q_1 a + r_1 b + s_1 a b$, where $p_1 = x^{-1}(a^{-1}pa), q_1 = -x^{-1}q, r_1 = -y^{-1}r, s_1 = z^{-1}(a^{-1}sa).$

We only need to show that uv = vu = 1. We will perform this calculation with GAP. We first need to create the group $P = \langle a, b \rangle$.

```
gap> a := [[1,0,0,1/2],[0,-1,0,1/2],[0,0,-1,0],[0,0,0,1]];;
gap> b := [[-1,0,0,0],[0,1,0,1/2],[0,0,-1,1/2],[0,0,0,1]];;
gap> P := Group([a,b]);
```

Now we create the group algebra F[P] and the embedding $P \hookrightarrow F[P]$. The field \mathbb{F}_2 will be GF(2) and the embedding will be denoted by f.

```
gap> R := GroupRing(GF(2),P);;
gap> f := Embedding(P, R);;
```

We first need the elements x, y and z that were defined in the statement.

```
gap> x := Image(f, a^2);;
gap> y := Image(f, b^2);;
gap> z := Image(f, (a*b)^2);;
```

Now we define the elements p, q, r and s. Note that the identity of the group algebra \mathbf{R} is $One(\mathbf{R})$.

```
gap> p := (One(R)+x)*(One(R)+y)*(One(R)+Inverse(z));;
gap> r := One(R)+x+Inverse(y)*z+x*y*z;;
gap> q := Inverse(x)*Inverse(y)+x+Inverse(y)*z+z;;
gap> s := One(R)+(x+Inverse(x)+y+Inverse(y))*Inverse(z);
```

Rather than trying to compute the inverse of u we will show that uv = vu = 1. For that purpose we need to define p_1 , q_1 , r_1 and s_1 .

```
gap> p1 := Inverse(x)*p^Image(f, a);;
gap> q1 := -Inverse(x)*q;;
gap> r1 := -Inverse(y)*r;;
gap> s1 := Inverse(z)*s^Image(f, a);;
```

Now it is time to prove the theorem.

```
gap> u := p+q*a+r*b+s*a*b;;
gap> v := p1+q1*a+r1*b+s1*a*b;;
gap> IsOne(u*v);
true
gap> IsOne(v*u);
```

This completes the proof of the theorem.

Our proof of Theorem 21.3 is exactly as that of [10].

21.4. Bonus exercise. Let p be a prime number and \mathbb{F}_p be the field of size p. Use the technique for proving Gardam's theorem to prove Murray's theorem on the existence on non-trivial units in $\mathbb{F}_p[P]$. Reference: arXiv:2106.02147.

22. Project: When a group algebra is prime?

If S is a finite subset of a group G, then we define $\widehat{S} = \sum_{x \in S} x$.

22.1. LEMMA. Let N be a finite normal subgroup of G. Then $\widehat{N} = \sum_{x \in N} x$ is central in K[G] and $\widehat{N}(\widehat{N} - |N|1) = 0$.

PROOF. Assume that $N = \{n_1, \ldots, n_k\}$. Let $g \in G$. Since $N \to N$, $n \mapsto gng^{-1}$, is bijective,

$$g\widehat{N}g^{-1} = g(n_1 + \dots + n_k)g^{-1} = gn_1g^{-1} + \dots + gn_kg^{-1} = \widehat{N}.$$

Since nN = N if $n \in N$, it follows that $n\widehat{N} = \widehat{N}$. Thus $\widehat{N}\widehat{N} = \sum_{j=1}^k n_j \widehat{N} = |N|\widehat{N}$.

If G is a group, let

$$\Delta^+(G) = \{x \in \Delta(G) : x \text{ has finite order}\}.$$

- 22.2. EXERCISE (Dietzmann's theorem). Let G be a group and $X \subseteq G$ be a finite subset of G closed by conjugation. If there exists n such that $x^n = 1$ for all $x \in X$, then $\langle X \rangle$ is a finite subgroup of G.
 - 22.3. Proposition. If G is a group, then $\Delta^+(G)$ is a characteristic subgroup of G.

PROOF. Clearly, $1 \in \Delta^+(G)$. Let $x, y \in \Delta^+(G)$ and H be the subgroup of G generated by the set G formed by all finite conjugates of X and Y. If |X| = n and |Y| = m, then $C^{nm} = 1$ for all $C \in G$. Since G is finite and closed under conjugation, Dietzmann's theorem (Exercise 22.2) implies that H is finite and hence $H \subseteq \Delta^+(G)$. In particular, $xy^{-1} \in \Delta^+(G)$. It is now clear that $\Delta^+(G)$ is a characteristic subgroup, as for every $f \in \operatorname{Aut}(G)$ and $X \in \Delta^+(G)$ it follows that $X \in \Delta^+(G)$.

To prove Connel's theorem we need a lemma.

22.4. Lemma. Let G be a group and $x \in \Delta^+(G)$. There exists a finite normal subgroup H of G such that $x \in H$.

PROOF. Let H be the subgroup generated by the conjugates of x. Since x has finitely many conjugates, H is finitely generated. Moreover, H is normal in G and it is generated by torsion elements. All these generators of H have the same order, say n. By Dietzmann's theorem (Exercise 22.2), H is finite.

Recall that a ring R is said to be **prime** if for $x, y \in R$ such that $xRy = \{0\}$ it follows that x = 0 or y = 0. Prime rings are non-commutative analogs of domains.

- 22.5. Theorem (Connell). Let K be a field of characteristic zero. Let G be a group. The following statements are equivalent:
 - 1) K[G] is prime.
 - **2)** Z(K[G]) is prime.
 - 3) G does not contain non-trivial finite normal subgroups.
 - 4) $\Delta^+(G) = \{1\}.$

PROOF. We first prove that 1) \implies 2). Since Z(K[G]) is commutative, we need to prove that there are no non-trivial zero divisors. Let $\alpha, \beta \in Z(K[G])$ be such that $\alpha\beta = 0$. Let $A = \alpha K[G]$ and $B = \beta K[G]$. Since both α and β are central, both A and B are ideals

of K[G]. Since $AB = \{0\}$, it follows that either $A = \{0\}$ or $B = \{0\}$, as K[G] is prime by assumption. Thus either $\alpha = 0$ or $\beta = 0$.

We now prove that 2) \Longrightarrow 3). Let N be a normal finite subgroup of G. By Lemma 22.1, $\widehat{N} = \sum_{x \in N} x$ is central in K[G] and $\widehat{N}(\widehat{N} - |N|1) = 0$. Since $\widehat{N} \neq 0$ (recall that K has characteristic zero) and Z(K[G]) is a domain, $\widehat{N} = |N|1$, that is $N = \{1\}$.

Let us prove that 3) \implies 4). Let $x \in \Delta^+(G)$. By Lemma 22.4, there exists a finite normal subgroup H of G that contains x. By assumption, H is trivial. Hence x = 1.

Finally, let us prove that $4) \implies 1$). Let A and B be ideals of K[G] such that $AB = \{0\}$. Assume that $B \neq \{0\}$ and let $\beta \in B \setminus \{0\}$. If $\alpha \in A$, then, since

$$\alpha K[G]\beta \subseteq \alpha B \subseteq AB = \{0\},\$$

Passman's lemma (see Lemma 20.26) implies that $\pi_{\Delta(G)}(\alpha)\pi_{\Delta(G)}(\beta) = \{0\}$. By assumption, $\Delta^+(G)$ is trivial. Thus $\Delta(G)$ is torsion-free. As $\Delta(\Delta(G)) = \Delta(G)$, it follows from Proposition 20.20 that $\Delta(G)$ is abelian. Therefore $K[\Delta(G)]$ has no zero divisors and therefore $\alpha = 0$.

We now need to recall Hopkins–Levitzky's theorem. The theorem states that unitary left artinian rings are left noetherian.

22.6. Theorem (Connel). Let K be a field of characteristic zero. If G is a group, then K[G] is left artinian if and only if G is finite.

PROOF. If G is finite, K[G] is left artinian, as it is a finite-dimensional algebra.

Let us assume that K[G] is left artinian. If K[G] is prime, Wedderburn's theorem implies that K[G] is simple and hence G is trivial (otherwise, K[G] is not simple as the augmentation ideal is a non-zero ideal of K[G]).

Since K[G] is left artinian, it is left noetherian by the Hopkins–Levitzky theorem. Thus K[G] admits a composition series. We proceed by induction on the length of this composition series of K[G]. If the length is one, $\{0\}$ is the only ideal of K[G] and hence the result follows as K[G] is prime. If we assume the result holds for length n and K[G] is not prime, then, Connel's theorem implies that G contains a finite non-trivial normal subgroup H. The canonical map $K[G] \to K[G/H]$ implies that K[G/H] is left artinian and has length $K[G] \to K[G/H]$ in a finite group. Since $K[G] \to K[G/H]$ is a finite, it follows that $K[G] \to K[G/H]$ is a finite group.

23. Project: When a group algebra is local?

23.1. Proposition. Let R be a commutative ring with one. Let $f: G \to H$ be a group homomorphism with kernel K. Then

$$\varphi \colon R[G] \to R[H], \quad \sum \lambda_i g_i \mapsto \sum \lambda_i f(g),$$

is a ring homomorphism with kernel the ideal of R[G] generated by $\{k-1: k \in K\}$.

PROOF. A direct calculation shows that the map φ is a well-defined ring homomorphism. Let $S = \{k-1 : k \in K\}$. Then $(S) \subseteq \ker \varphi$.

Let us show that $\ker \varphi \subseteq (S)$. Let $\alpha = \sum r_i g_i \in \ker \varphi$. Then

$$\varphi(\alpha) = \sum r_i f(g_i) = 0.$$

Let $\{Kg_{i_1}, \ldots, Kg_{i_k}\}$ be the subset of pairwise distinct cosets of Kg_1, \ldots, Kg_n . Write

$$\alpha = \sum \sum s_{ij} k_{ij} g_{i_j}$$

for some $s_{ij} \in R$ and $k_{ij} \in K$. Then

(23.1)
$$0 = \varphi(\alpha) = \sum \sum s_{ij} \varphi(k_{ij} g_{ij}) = \sum \sum s_{ij} f(g_{ij}),$$

as $K = \ker f$. Note that

$$f(g_{i_j}) = f(g_{i_k}) \implies g_{i_j} g_{i_k}^{-1} \in K \implies g_{i_j} K = g_{i_k} K.$$

Thus $f(g_{i_j}) \neq f(g_{i_k})$ for $j \neq k$. Since R[H] is a free R-module with basis $\{h : h \in H\}$, Equality (23.1) implies that $\sum_i s_{ij} = 0$ for all j. Thus

$$\alpha = \sum \sum s_{ij} k_{ij} g_{ij} = \sum \sum s_{ij} (k_{ij} - 1) g_{ij} \in (S).$$

23.2. Corollary. Let R be a commutative ring with one. If G is a group and N is a normal subgroup of G, then

$$R[G/N] \simeq R[G]/I$$
,

where I is the ideal of R[G] generated by $\{n-1 : n \in N\}$.

PROOF. Apply the previous proposition to the canonical map $\pi: G \to G/N$ to get a ring homomorphism $\varphi: R[G] \to R[G/N]$. The kernel of φ is the ideal I generated by the set

$$\{g-1:g\in\ker\pi=N\}.$$

Since π is surjective, φ is surjective. By the first isomorphism theorem, the claim follows. \square

Let K be a field and G be a group. We write A(K[G]) to denote the ideal of K[G] generated by the set $\{g-1:g\in G\}$. This ideal is known as the **augmentation ideal** of K[G].

23.3. COROLLARY. Let K be a field. Let G be a group and N be a central subgroup of G. If K[N] and K[G/N] are local, then K[G] is local.

PROOF. By Corollary 23.2, $K[G/N] \simeq K[G]/I$, where I is the ideal of K[G] generated by $\{n-1: n \in N\}$. Since $N \subseteq Z(G)$, I is central in K[G]. Note that

$$I = A(K[N])K[G].$$

Let $\alpha \in A(K[G])$. Since K[G/N] is local, A(K[G/N]) is nil by Theorem 9.2. Since

$$K[G]/I \simeq K[G/N],$$

this implies that there exists m such that $\alpha^m \in I$. Since K[N] is local, A(K[N]) is nil by Theorem 9.2. Moreover, K[N] is central in K[G], because $N \subseteq Z(G)$. This implies that I = A(K[N])K[G] is also nil. In particular, α is nil. Hence K[G] is nil and therefore K[G] is local by Theorem 9.2.

- 23.4. EXERCISE. Let R be a unitary commutative ring and G be a group. Prove that the map $R[G] \to R$, $\sum_{g \in G} r_g g \mapsto \sum_{g \in G} r_g$, is a surjective ring homomorphism with kernel A(R[G]).
- 23.5. Lemma. Let K be a field and G be a finite group. The following statements are equivalent:
 - 1) K[G] is local.
 - 2) $A(K[G]) \subseteq J(K[G])$.
 - 3) A(K[G]) is nil.
 - **4)** A(K[G]) = J(K[G]).

PROOF. Let us prove that 1) \implies 2). Since K[G] is local, $R \setminus \mathcal{U}(K[G]) = J(K[G])$ by Theorem 9.2. Since $K[G] \setminus \mathcal{U}(K[G])$ contains every proper ideal of K[G],

$$A(K[G]) \subseteq J(K[G]).$$

We now prove that 2) \implies 3). Since G is finite, K[G] is artinian. By Lemma 9.7, J(K[G]) is nil. Hence A(K[G]) is nil.

We now prove that $3) \implies 4$). Since J(K[G]) contains every nil ideal (see Proposition 4.6), $A(K[G]) \subseteq J(K[G])$. On the other hand, $K[G]/A(K[G]) \simeq K$. Since K is a field, the correspondence theorem implies that A(K[G]) = J(K[G]).

Finally, we prove that $4) \implies 1$). Since A(K[G]) = J(K[G]), Exercise 23.4 implies that $K[G]/J(K[G]) \simeq K$. Since K is a field, it is, in particular, a division ring. Thus K[G] is local by Theorem 9.2.

- 23.6. EXERCISE. Let p be a prime number, K be a field of characteristic p and G be a cyclic group of order p. Prove that K[G] is local.
- 23.7. EXERCISE. Let K be a field and G be a finite group. Then K[G] is a domain if and only if |G| = 1.
- 23.8. Theorem. Let K be a field and G be a non-trivial finite group. Then K[G] is local if and only if K is of characteristic p > 0 and G is a p-group.

PROOF. Let us first prove \implies . Assume first that K is a field of characteristic zero. By Maschke's theorem, $J(K[G]) = \{0\}$. By Theorem 9.2, K[G] is a division ring. In particular, K[G] is a domain, a contradiction (see Exercise 23.7).

Assume now that K is of characteristic p > 0. Let q be a prime divisor of |G| and $g \in G$ an element of order q. Since

$$(1-g)(1+\cdots+g^{q-1})=1-g^q=0,$$

 $1-g \notin \mathcal{U}(K[G])$ and $1+\cdots+g^{q-1} \notin \mathcal{U}(K[G])$. It follows that $1-g^m \notin \mathcal{U}(K[G])$ for all $m \geq 0$. By Theorem 9.2, $K[G] \setminus J(K[G])$ is an ideal. Thus

$$q1_G = 1 + \dots + g^{q-1} + \sum_{m=1}^{q-1} (1 - g^m) \notin \mathcal{U}(K[G])$$

If $q \neq 0$ in K, then $q1_G \in \mathcal{U}(K[G])$. Hence q = 0 in K and therefore p divides q. We conclude that G is a p-group.

We now prove \Leftarrow . Let G be a p-group and K be a field of characteristic p>0. We proceed by induction on |G|. If |G|=p, K[G] is a local ring (see Exercise 23.6). If |G|>p, let Z=Z(G). Since G is a p-group, $|Z|\geq p$. Let N be a subgroup of Z of order p. Then |N|<|G| and |G/N|<|G|. By the inductive hypothesis, both K[N] and K[G/N] are local. By Corollary 23.3, K[G] is local too.

24. Project: When a group algebra is reduced?

24.1. EXERCISE. Is the ring $\mathbb{C}[\mathbb{Z}/2]$ reduced?

24.2. Open problem. Let G be a torsion-free group. Is K[G] is reduced?

Problem 24.2 is related to other important open problems about group algebras (e.g. zero-divisors, units, indempotents and semisimplicity of group rings).

24.3. Exercise. Prove that idempotents of reduced rings are central.

The previous exercise is used to solve the following problem.

24.4. EXERCISE. Let R be a ring such that $x^3 = x$ for all $x \in R$. Prove that R is commutative.

Exercise 24.4 is hard. Even harder is the following exercise:

24.5. EXERCISE. Let R be a ring such that $x^4 = x$ for all $x \in R$. Prove that R is commutative.

24.6. Exercise. Reduced rings are semiprime.

24.7. THEOREM. Let K be a field and G be a group. If K[G] is reduced, then every finite subgroup of G is normal.

PROOF. Let $H = \{h_1, \ldots, h_n\}$ be a finite normal subgroup of G. We claim that n = |H| is invertible in K. If char K = 0, this is clear. If char K = p > 0 and n is not invertible in K, then p divides n = |H|. By Cauchy's theorem, there exists an element $h \in H$ of order n, that is |h| = n. Since $(1 - h)^p = 1 - h^p = 0$ and K[G] is reduced, h = 1, a contradiction.

Let $\alpha = \frac{1}{n} \sum_{i=1}^{n} h_i \in K[G]$. Then

$$\alpha^{2} = \frac{1}{n^{2}} \sum_{i=1}^{n} \sum_{j=1}^{n} h_{i} h_{j} = \frac{1}{n^{2}} \sum_{j=1}^{n} n \alpha = \alpha.$$

Thus α is idempotent. As idempotent element of reduced rings are central (Exercise 24.3), $g\alpha g^{-1} = \alpha$ for all $g \in G$. If $g \in G$, then

$$\sum_{i=1}^{n} gh_i g^{-1} = \sum_{i=1}^{n} h_i.$$

It follows that H is normal in G, as for each $i \in \{1, ..., n\}$ there exists $j \in \{1, ..., n\}$ such that $gh_ig^{-1} = h_j \in H$.

24.8. Example. If K is a field, then $K[S_3]$ is not reduced. In fact, if

$$\alpha = (12) + (123) - (132) - (13),$$

then $\alpha^2 = 0$.

24.9. EXERCISE. Prove that the converse of Theorem 24.7 does not hold.

25. Project: Bi-ordered groups

Recall that a total order is a partial order in which any two elements are comparable. This means that a total order is a binary relation \leq on some set X such that for all $x, y, z \in X$ one has the following properties:

- 1) x < x.
- 2) $x \le y$ and $y \le z$ imply $x \le z$.
- 3) $x \le y$ and $y \le x$ imply x = y.
- 4) $x \leq y$ or $y \leq x$.

A set equipped with a total order is a totally ordered set.

- 25.1. DEFINITION. A group G is bi-ordered if there exists a total order < in G such that x < y implies that xz < yz and zx < zy for all $x, y, z \in G$.
 - 25.2. Example. The group $\mathbb{R}_{>0}$ of positive real numbers is bi-ordered.

The multiplicative group $\mathbb{R} \setminus \{0\}$ is not bi-ordered. Why?

25.3. EXERCISE. Let G be a bi-ordered group and $x, x_1, y, y_1 \in G$. Prove that x < y and $x_1 < y_1$ imply $xx_1 < yy_1$.

Clearly, bi-orderability is preserved under taking subgroups.

25.4. EXERCISE. Let G be a bi-ordered group and $g, h \in G$. Prove that $g^n = h^n$ for some n > 0 implies g = h.

The following result goes back to Neumann.

25.5. EXERCISE. Let G be a bi-ordered group and $g, h \in G$. Prove that $g^n \in C_G(h)$ if and only if $g \in C_G(h)$.

Bi-ordered groups do not behave nicely under extensions:

- 25.6. EXERCISE. Let $1 \to K \to G \to Q \to 1$ be an exact sequence of groups. Assume that K and Q are bi-ordered. Prove that G is bi-ordered if and only if x < y implies $gxg^{-1} < gyg^{-1}$ for all $x, y \in K$ and $g \in G$.
- 25.7. DEFINITION. Let G be a bi-ordered group. The **positive cone** of G is the set $P(G) = \{x \in G : 1 < x\}.$
 - 25.8. Proposition. Let G be a bi-ordered group and let P be its positive cone.
 - 1) P is closed under multiplication, i.e. $PP \subseteq P$.
 - **2)** $G = P \cup P^{-1} \cup \{1\}$ (disjoint union).
 - 3) $xPx^{-1} = P$ for all $x \in G$.

PROOF. If $x, y \in P$ and $z \in G$, then, since 1 < x and 1 < y, it follows that 1 < xy. Thus $1 = z1z^{-1} < zxz^{-1}$. It remains to prove the second claim. If $g \in G$, then g = 1 or g > 1 or g < 1. Note that g < 1 if and only if $1 < g^{-1}$, so the claim follows.

The previous proposition admits a converse statement.

25.9. Proposition. Let G be a group and P be a subset of G such that P is closed under multiplication, $G = P \cup P^{-1} \cup \{1\}$ (disjoint union) and $xPx^{-1} = P$ for all $x \in G$. Let x < ywhenever $yx^{-1} \in P$. Then G is bi-ordered with positive cone is P.

PROOF. Let $x, y \in G$. Since $yx^{-1} \in G$ and $G = P \cup P^{-1} \cup \{1\}$ (disjoint union), either $yx^{-1} \in P \text{ or } xy^{-1} = (yx^{-1})^{-1} \in P \text{ or } yx^{-1} = 1.$ Thus either x < y or y < x or x = y. If x < y and $z \in G$, then zx < zy, as $(zy)(zx)^{-1} = z(yx^{-1})z^{-1} \in P$ and $zPz^{-1} = P$. Moreover, xz < yz since $(yz)(xz)^{-1} = yx^{-1} \in P$. To prove that P is the positive cone of G note that $x1^{-1} = x \in P$ if and only if 1 < x.

An important property:

25.10. Proposition. Bi-ordered groups are torsion-free.

PROOF. Let G be a bi-ordered group and $g \in G \setminus \{1\}$. If g > 1, then $1 < g < g^2 < \cdots$. If g < 1, then $1 > g > g^2 > \cdots$. Hence $g^n \neq 1$ for all $n \neq 0$.

The converse of the previous proposition does not hold.

25.11. EXERCISE. Let $G = \langle x, y : yxy^{-1} = x^{-1} \rangle$.

- 1) Prove that x and y are torsion-free.
- 2) Prove that G is torsion-free.
- 3) Prove that $G \simeq \langle a, b : a^2 = b^2 \rangle$.

25.12. Example. The torsion-free group $G = \langle x, y : yxy^{-1} = x^{-1} \rangle$ is not bi-ordered. If not, let P be the positive cone. If $x \in P$, then $yxy^{-1} = x^{-1} \in P$, a contradiction. Hence $x^{-1} \in P$ and $x = y^{-1}x^{-1}y \in P$, a contradiction.

Bi-ordered groups provide an answer to Kaplansky's unit problem (see Question 20.2).

25.13. Theorem. Let G be a bi-ordered group. Then K[G] is a domain such that only has trivial units. Moreover, if G is non-trivial, then $J(K[G]) = \{0\}.$

PROOF. Let $\alpha, \beta \in K[G]$ be such that

$$\alpha = \sum_{i=1}^{m} a_i g_i, \qquad g_1 < g_2 < \dots < g_m, \qquad a_i \neq 0 \qquad \forall i \in \{1, \dots, m\},$$

$$\beta = \sum_{j=1}^{n} b_j h_j, \qquad h_1 < h_2 < \dots < h_n, \qquad b_j \neq 0 \qquad \forall j \in \{1, \dots, n\}.$$

$$\beta = \sum_{j=1}^{n} b_j h_j, \qquad h_1 < h_2 < \dots < h_n, \qquad b_j \neq 0 \qquad \forall j \in \{1, \dots, n\}.$$

Then

$$g_1 h_1 \le g_i h_j \le g_m h_n$$

for all i, j. Moreover, $g_1h_1=g_ih_j$ if and only if i=j=1. The coefficient of g_1h_1 in $\alpha\beta$ is $a_1b_1 \neq 0$. In particular, $\alpha\beta \neq 0$. If $\alpha\beta = \beta\alpha = 1$, then the coefficient of g_mh_n in $\alpha\beta$ is $a_m b_n$. Hence m=n=1 and therefore $\alpha=a_1g_1$ and $\beta=b_1h_1$ with $a_1b_1=b_1a_1=1$ in K and $g_1h_1=1$ in G.

25.14. Theorem (Levi). Let A be an abelian group. Then A is bi-ordered if and only if A is torsion-free.

PROOF. If A is bi-ordered, then A is torsion-free. Let us prove the non-trivial implication, so assume that A is torsion-free abelian. Let S be the class of subsets P of A such that $0 \in P$, are closed under the addition of A and satisfy the following property: if $x \in P$ and $-x \in P$, then x = 0. Clearly, $S \neq \emptyset$, as $\{0\} \in S$. The inclusion turns S into a partially ordered set and $\bigcup_{i \in I} P_i$ is an upper bound for the chain $\{P_i : i \in I\}$. By Zorn's lemma, S admits a maximal element $P \in S$.

CLAIM. If $x \in A$ is such that $kx \in P$ for some k > 0, then $x \in P$.

Let $Q = \{x \in A : kx \in P \text{ for some } k > 0\}$. We will show that $Q \in \mathcal{S}$. Clearly, $0 \in Q$. Moreover, Q is closed under addition, as $k_1x_1 \in P$ and $k_2x_2 \in P$ imply $k_1k_2(x_1 + x_2) \in P$. Let $x \in A$ be such that $x \in Q$ and $-x \in Q$. Thus $kx \in P$ and $l(-x) \in P$ for some l > 0. Since $klx \in P$ and $kl(-x) \in P$, it follows that klx = 0, a contradiction since A is torsion-free. Hence $x \in Q \subseteq P$.

CLAIM. If $x \in A$ is such that $x \notin P$, then $-x \in P$.

Assume that $-x \notin P$ and let $P_1 = \{y + nx : y \in P, n \ge 0\}$. We will show that $P_1 \in \mathcal{S}$. Clearly, $0 \in P_1$ and P_1 is closed under addition. If $P_1 \notin \mathcal{S}$, there exists

$$0 \neq y_1 + n_1 x = -(y_2 + n_2 x),$$

where $y_1, y_2 \in P$ and $n_1, n_2 \geq 0$. Thus $y_1 + y_2 = -(n_1 + n_2)x$. If $n_1 = n_2 = 0$, then $y_1 = -y_2 \in P$ and $y_1 = y_2 = 0$, so it follows that $y_1 + n_1x = 0$, a contradiction. If $n_1 + n_2 > 0$, then, since

$$(n_1 + n_2)(-x) = y_1 + y_2 \in P,$$

it follows from the first claim that $-x \in P$, a contradiction. Let us show that $P_1 \in \mathcal{S}$. Since $P \subseteq P_1$, the maximality of P implies that $x \in P = P_1$.

By Proposition 25.9, $P^* = P \setminus \{0\}$ is the positive cone of a bi-order in A. In fact, P^* is closed under addition, as $x, y \in P^*$ implies that $x + y \in P$ and x + y = 0 implies x = y = 0, as $x = -y \in P$. Moreover, $G = P^* \cup -P^* \cup \{0\}$ (disjoint union), as the second claim states that $x \notin P^*$ implies $-x \in P$.

Our proof of Passman's theorem (see Theorem 20.28) used the fact that the group algebra K[G] of a torsion-free abelian group G has no non-zero divisors.

25.15. EXERCISE. Let A be a non-trivial torsion-free abelian group. Prove that K[A] is a domain that only admits trivial units and $J(K[A]) = \{0\}$.

25.16. EXERCISE. Let N be a central subgroup of G. If N and G/N are bi-ordered, then G is bi-ordered. Prove with an example that N needs to be central, normal is not enough.

25.17. Exercise. Let G be a group that admits a sequence

$$\{1\} = G_0 \subseteq G_1 \subseteq \dots \subseteq G_n = G$$

such that each G_k is normal in G_{k+1} and each quotient G_{k+1}/G_k is torsion-free abelian. Prove that G is bi-ordered.

25.18. Exercise. Prove that torsion-free nilpotent groups are bi-ordered.

26. Project: Locally indicable groups

26.1. Definition. A group G is **indicable** if there exists a non-trivial group homomorphism $G \to \mathbb{Z}$.

We know that braid groups are indicable. The free group F_n in n letters is indicable.

- 26.2. Definition. A group G is locally indicable if every non-trivial finitely generated subgroup is indicable.
- 26.3. Theorem (Burns-Hale). Let G be a group. Then G is left ordered if and only if for each finitely generated non-trivial subgroup H of G there exists a left ordered group L and a non-trivial group homomorphism $H \to L$.

PROOF. If G is a left ordered group, take L = G.

Conversely, suppose that for each finitely generated non-trivial subgroup H of G there exists a left ordered group L and a non-trivial group homomorphism $H \to L$. We claim that for all $\{x_1, \ldots, x_n\} \subseteq G \setminus \{1\}$ there exist $\epsilon_1, \ldots, \epsilon_n \in \{-1, 1\}$ such that

$$1 \not\in S(x_1^{\epsilon_1}, \dots, x_n^{\epsilon_n}),$$

where $S(x_1^{\epsilon_1},\ldots,x_n^{\epsilon_n})$ denotes the semigroup generated by the set $\{x_1^{\epsilon_1},\ldots,x_n^{\epsilon_n}\}$. We proceed by induction on n. If n=1, then $x_1\in G\setminus\{1\}$. Let $\epsilon_1=1$. If $1\in S(x_1)$, then x_1 is an element of finite order and hence $\langle x_1\rangle\to L$ is the trivial homomorphism for every left ordered group L. Hence $1\notin S(x_1)$. Now assume that the claim holds for some $n\geq 1$. Let $\{x_1,\ldots,x_{n+1}\}\subseteq G\setminus\{1\}$. By assumption, there exists a non-trivial group homomorphism $h\colon \langle x_1,\ldots,x_{n+1}\rangle\to L$ for some left ordered group L. In particular, $h(x_i)\neq 1$ for some $i\in\{1,\ldots,n+1\}$. Without loss of generality, we may assume that there exists an integer $1\leq k\leq n+1$ such that $h(x_j)\neq 1$ for all $j\in\{1,\ldots,k\}$ and $h(x_j)=1$ for all j>k. Suppose that L is left ordered with respect to a total order \leq . Since $h(x_j)\neq 1$ for all $j\leq k$, there are elements $\epsilon_j\in\{-1,1\}$ such that $1\leq h(x_j^{\epsilon_j})$ for all $j\leq k$. By the inductive hypothesis, there are elements $\epsilon_{k+1},\ldots,\epsilon_{n+1}\in\{-1,1\}$ such that $1\notin S(x_{k+1}^{\epsilon_{k+1}},\ldots,x_{n+1}^{\epsilon_{n+1}})$. Note that for every $x\in S(x_1^{\epsilon_1},\ldots,x_{n+1}^{\epsilon_{n+1}})\setminus S(x_{k+1}^{\epsilon_{k+1}},\ldots,x_{n+1}^{\epsilon_{n+1}})$, $1\leq h(x)\neq 1$. Hence $1\notin S(x_1^{\epsilon_1},\ldots,x_{n+1}^{\epsilon_{n+1}})$, and the claim follows by induction.

Consider the set \mathcal{F} of pairs (F, f), where F is a finite subset of $G \setminus \{1\}$ and $f: F \to \{-1, 1\}$ is a map such that for every finite subset B of $G \setminus \{1\}$ containing F, there exists a map $g: B \to \{-1, 1\}$ such that $1 \notin S(a^{g(a)}: a \in B)$ and g(x) = f(x) for all $x \in F$.

Let $C = \{(A, f) : A \subseteq G \setminus \{1\} \text{ and } f : A \to \{-1, 1\} \text{ such that } (F, f|_F) \in \mathcal{F} \text{ for all finite subset } F \text{ of } A\}$. We define and order on C by $(A, f) \leq (B, g)$ if and only if $A \subseteq B$ and g(a) = f(a) for all $a \in A$, i. e. $f = g|_A$. Note that there is a unique map $f_\emptyset \colon \emptyset \to \{-1, 1\}$. We have shown that $(\emptyset, f_\emptyset) \in C$. Hence $C \neq \emptyset$. Furthermore, every chain of elements in C has an upper bound in C. Thus, by Zorn's lemma, there exists a maximal element $(A, f) \in C$. Suppose that $A \neq G \setminus \{1\}$. Let $x \in G \setminus (A \cup \{1\})$. Let $g_1 \colon A \cup \{x\} \to \{-1, 1\}$ and $g_{-1} \colon A \cup \{x\} \to \{-1, 1\}$ be the maps defined $g_i(a) = f(a)$ for all $a \in A$ and $g_i(x) = i$ for $i \in \{-1, 1\}$. By the maximality of (A, f), we have that $(A \cup \{x\}, g_i) \notin C$. Hence there exist finite subsets F_1 and F_{-1} of $A \cup \{x\}$ and finite subsets B_1 and B_{-1} of $G \setminus \{1\}$ such that $F_1 \subseteq B_1$, $F_{-1} \subseteq B_{-1}$, $1 \in S(a^{h_1(a)} : a \in B_1)$ and $1 \in S(a^{h_{-1}(a)} : a \in B_2)$ for all $h_1 \colon B_1 \to \{-1, 1\}$ and all $h_{-1} \colon B_{-1} \to \{-1, 1\}$ such that $g_i(a) = h_i(a)$ for all $a \in F_i$. Let $C = \bigcup_{i \in \{-1, 1\}} (A \cap F_i)$. Note that $C \cup \{x\} = F_1 \cup F_{-1} \subseteq B_1 \cup B_{-1}$. Since $(C, f|_C) \in \mathcal{F}$, there exists $h \colon B_1 \cup B_{-1} \to \{-1, 1\}$ such that $1 \notin S(a^{h(a)} : a \in B_1 \cup B_{-1})$ and h(a) = f(a) for

all $a \in C$. Let $i = h(x) \in \{-1, 1\}$. We have that $h(x) = g_i(x)$, and thus $h(a) = g_i(a)$ for all $a \in F_i$, a contradiction because $S(a^{h(a)} : a \in B_i) \subseteq S(a^{h(a)} : a \in B_1 \cup B_{-1})$. Therefore $A = G \setminus \{1\}$.

Let $P = \{a \in G \setminus \{1\} : f(a) = 1\}$. Note that if $b \in G \setminus \{1\}$ then

$$1 \notin S(b^{f(b)}, (b^{-1})^{f(b^{-1})}),$$

and thus $f(b)f(b^{-1}) = -1$. Hence G is the disjoint union of P, $P^{-1} = \{a^{-1} : a \in P\}$ and $\{1\}$. Note that for all $a, b \in P$, $1 \notin S(a, b, (ab)^{f(ab)})$. Hence f(ab) = 1 and thus $ab \in P$. This proves that P is a subsemigroup of G. We define a binary relation \leq on G by, for all $a, b \in G$,

$$a \le b$$
 if and only if $a^{-1}b \in P \cup \{1\}$.

It is straightforward to check that \leq is a total order on G and that G is a left ordered group with respect to \leq .

As a consequence, locally indicable groups are left-ordered.

26.4. EXAMPLE. Since subgroups of free groups are free, it follows that F_n is locally indicable.

There are groups that are left-ordered and not locally indicable, see for example [4]. The braid group \mathbb{B}_n for $n \geq 5$ is another example of a left-ordered group that is not locally indicable.

26.5. Proposition. Let

$$1 \longrightarrow K \stackrel{\alpha}{\longrightarrow} G \stackrel{\beta}{\longrightarrow} Q \longrightarrow 0$$

be an exact sequence of groups and group homomorphisms. If K and Q are locally indicable, then G is locally indicable.

PROOF. Let $g_1, \ldots, g_n \in G$ and $L = \langle g_1, \ldots, g_n \rangle$. Assume first that $\beta(L) \neq \{1\}$. Since Q is locally indicable, there exists a non-trivial group homomorphism $\beta(L) \to \mathbb{Z}$. Then the composition $L \to \beta(Q) \to \mathbb{Z}$ is then a non-trivial group homomorphism. Assume now that $\beta(L) = \{1\}$. Then there exist $k_1, \ldots, k_n \in K$ such that $\alpha(k_i) = g_i$ for all $i \in \{1, \ldots, n\}$. Note that $\alpha: \langle k_1, \ldots, k_n \rangle \to L$ is a group isomorphism. Since K is locally indicable, there exits a non-trivial group homomorphism $\langle k_1, \ldots, k_n \rangle \to \mathbb{Z}$. Thus the composition

$$L \to \langle k_1, \dots, k_n \rangle \to \mathbb{Z}$$

is a non-trivial group homomorphism and hence G is locally indicable.

As a consequence of the previous proposition, if G and H are locally indicable groups and $\sigma: G \to \operatorname{Aut}(H)$ is a group homomorphism, then $G \rtimes_{\sigma} H$ is locally indicable. In particular, the direct product of locally indicable groups is locally indicable.

26.6. EXAMPLE. The group $G = \langle x, y : x^{-1}yx = y^{-1} \rangle$ is locally indicable. We know that G is torsion-free. Let $K = \langle y \rangle \simeq \mathbb{Z}$. Then $G/K \simeq \mathbb{Z}$ and then, since there is an exact sequence $1 \to \mathbb{Z} \to G \to \mathbb{Z} \to 1$ it follows from Proposition 26.5 that G is locally indicable.

26.7. Exercise. Prove that \mathbb{B}_3 is locally indicable.

The previous exercise uses the fact that $[\mathbb{B}_3, \mathbb{B}_3]$ is isomorphic to the free group in two letters, see Exercise 29.7. An alternative solution to the previous fact goes as follows: \mathbb{B}_3

Associative algebra Final projects

is the fundamental group of the trefoil knot and fundamental groups of knots are locally indicable.

26.8. EXERCISE. Prove that \mathbb{B}_4 is locally indicable.

The previous exercise might be harder than Exercise 26.7. One possible solution is based on using the Reidemeister–Schreier method to prove that $[\mathbb{B}_4, \mathbb{B}_4]$ is a certain semidirect product between free groups in two generators. Another solution: Let $f: \mathbb{B}_4 \to \mathbb{B}_3$ be the group homomorphism given by $f(\sigma_1) = f(\sigma_3) = \sigma_1$ and $f(\sigma_2) = \sigma_2$. Then

$$\ker f = \langle \sigma_1 \sigma_3^{-1}, \sigma_2 \sigma_1 \sigma_3^{-1} \sigma_2^{-1} \rangle$$

is isomorphic to the free group in two letters. Now use the exact sequence

$$1 \to \ker f \to \mathbb{B}_4 \to \mathbb{B}_3 \to 1.$$

26.9. Exercise. Let $n \geq 5$. Consider the elements of \mathbb{B}_n given by

$$\beta_1 = \sigma_1^{-1} \sigma_2, \qquad \beta_2 = \sigma_2 \sigma_1^{-1}, \qquad \beta_3 = \sigma_1 \sigma_2 \sigma_1^{-2}, \qquad \beta_4 = \sigma_3 \sigma_1^{-1}, \qquad \beta_5 = \sigma_4 \sigma_1^{-1}.$$

Prove the following relations:

- 1) $\beta_1\beta_5 = \beta_5\beta_2$.
- **2)** $\beta_2\beta_5 = \beta_5\beta_3$.
- 3) $\beta_1\beta_3 = \beta_2$.
- **4)** $\beta_1 \beta_4 \beta_3 = \beta_4 \beta_2 \beta_4$.
- **5)** $\beta_4\beta_5\beta_4 = \beta_5\beta_4\beta_5$.

26.10. EXERCISE. Let $n \geq 5$. Prove that \mathbb{B}_n is not locally indicable.

For the previous exercise one needs to show that every group homomorphism

$$f: \langle \beta_1, \ldots, \beta_5 \rangle \to \mathbb{Z}$$

is trivial. Hint: consider the abelianization of $\langle \beta_1, \ldots, \beta_5 \rangle$.

27. Project: Left-ordered groups

27.1. DEFINITION. A group G is left-ordered if there is a total order < in G such that x < y implies zx < zy for all $x, y, z \in G$.

If G is left-ordered, the **positive cone** of G is defined as $P(G) = \{x \in G : 1 < x\}$.

- 27.2. EXERCISE. Let G be left-ordered with positive cone P. Prove that P is closed under multiplication and that $G = P \cup P^{-1} \cup \{1\}$ (disjoint union).
- 27.3. EXERCISE. Let G be a group and P be a subset closed under multiplication. Assume that $G = P \cup P^{-1} \cup \{1\}$ (disjoint union). Prove that x < y if and only if $x^{-1}y \in P$ turns G into a left-ordered group with positive cone P.

Left-ordered groups behave nicely with respect to extensions. Let G be a group and N be a left-ordered normal subgroup of G. If $\pi\colon G\to G/N$ is the canonical map and G/N is left-ordered, then G is left-ordered with x< y if and only if either $\pi(x)<\pi(y)$ or $\pi(x)=\pi(y)$ and $1< x^{-1}y$.

27.4. Proposition. Let G be a group and N be a normal subgroup of G. If N and G/N are left-ordered, then so is G.

PROOF. Since N and G/N are both left-ordered, there exist positive cones P(N) and P(G/N). Let $\pi: G \to G/N$ be the canonical map and

$$P(G) = \{x \in G : \pi(x) \in P(G/N) \text{ or } x \in P(N)\}.$$

A routine calculation shows that P(G) is closed under multiplication and that G decomposes as $G = P(G) \cup P(G)^{-1} \cup \{1\}$ (disjoint union). It follows from Exercise 27.3 that G is left-ordered.

We now present a criterion for detecting left-ordered groups. We shall need a lemma.

27.5. Lemma. Let G be a finitely generated group. If H is a finite-index subgroup, then H is finitely generated.

PROOF. Assume that G is generated by $\{g_1, \ldots, g_m\}$. Assume that for each i there exists k such that $g_i^{-1} = g_k$. Let $\{t_1, \ldots, t_n\}$ be a transversal of H in G. For $i \in \{1, \ldots, n\}$ and $j \in \{1, \ldots, m\}$ write

$$t_i g_j = h(i,j) t_{k(i,j)}.$$

We claim that H is generated by the h(i, j). For $x \in H$, write

$$x = g_{i_1} \cdots g_{i_s}$$

$$= (t_1 g_{i_1}) g_{i_2} \cdots g_{i_s}$$

$$= h(1, i_1) t_{k_1} g_{i_2} \cdots g_{i_s}$$

$$= h(1, i_1) h(k_1, i_2) t_{k_2} g_{i_3} \cdots g_{i_s}$$

$$= h(1, i_1) h(k_1, i_2) \cdots h(k_{s-1}, g_{i_s}) t_{k_s},$$

where $k_1, \ldots, k_{s-1} \in \{1, \ldots, n\}$. Since $t_{k_s} \in H$, it follows that $t_{k_s} = t_1 \in H$.

Now the theorem.

27.6. Theorem. Let G be a finitely generated torsion-free group. If A is an abelian normal subgroup such that G/A is finite and cyclic, then G is left-ordered.

PROOF. Note that if A is trivial, then so is G. Let us assume that $A \neq \{1\}$. Since (G:A) is finite, A is finitely generated by the previous lemma. We proceed by induction on the number of generators of A. Since G/A is cyclic, there exists $x \in G$ such that $G = \langle A, x \rangle$. Then $[x,A] = \langle [x,a] : a \in A \rangle$ is a normal subgroup of G such that $A/C_A(x) \simeq [x,A]$ (because $a \mapsto [x,a]$ is a group homomorphism $A \to A$ with image [x,A] and kernel $C_A(x)$). If $\pi: G \to G/[x,A]$ is the canonical map, then $G/[x,A] = \langle \pi(A), \pi(x) \rangle$ and thus G/[x,A] is abelian, as $[\pi(x), \pi(A)] = \pi[x,A] = 1$. Moreover, G/[x,A] is finitely generated, as G is finitely generated. Since (G:A) = n and G is torsion-free, it follows that $1 \neq x^n \in A$. Hence $x^n \in C_A(x)$ and therefore $1 \leq \operatorname{rank} C_A(x) < \operatorname{rank} A$ (if $\operatorname{rank} C_A(x) = \operatorname{rank} A$, then [x,A] would be a torsion subgroup of A, a contradiction since $x \notin A$). So

$$\operatorname{rank}[x, A] = \operatorname{rank}(A/C_A(x)) \le \operatorname{rank} A - 1$$

and hence $\operatorname{rank}(A/[x,A]) \geq 1$. We proved that A/[x,A] is infinite and hence G/[x,A] is infinite.

Since G/[x,A] is infinite, abelian and finitely generated, there exists a normal subgroup H of G such that $[x,A] \subseteq H$ and $G/H \simeq \mathbb{Z}$. The subgroup $B = A \cap H$ is abelian, normal in H and such that H/B is cyclic (because it is isomorphic to a subgroup of G/A). Since rank $B < \operatorname{rank} A$, the inductive hypothesis implies that H is left-ordered. Hence G is left-ordered.

Lagrange and Rhemtulla proved that the integral isomorphism problem has an affirmative solution for left-ordered groups. More precisely, if G is left-ordered and H is a group such that $\mathbb{Z}[G] \simeq \mathbb{Z}[H]$, then $G \simeq H$, see [25].

27.7. THEOREM (Malcev-Neumann). Let G be left-ordered group. Then K[G] has no zero divisors and no non-trivial units.

PROOF. If $\alpha = \sum_{i=1}^n a_i g_i \in K[G]$ and $\beta = \sum_{j=1}^m b_j h_j \in K[G]$, then

(27.1)
$$\alpha \beta = \sum_{i=1}^{n} \sum_{j=1}^{m} a_i b_j(g_i h_j).$$

Without loss of generality we may assume that $a_i \neq 0$ for all i and $b_j \neq 0$ for all j. Moreover, we may assume that $g_1 < g_2 < \cdots < g_n$. Let i, j be such that

$$g_i h_j = \min\{g_i h_j : 1 \le i \le n, 1 \le j \le m\}.$$

Then i=1, as i>1 implies $g_1h_j < g_ih_j$, a contradiction. Since $g_1h_j \neq g_1h_k$ whenever $k \neq j$, there exists a unique minimal element in the left hand side of Equality (27.1). The same argument shows that there is a unique maximal element in (27.1). Thus $\alpha\beta \neq 0$, as $a_1b_j \neq 0$, and therefore K[G] has no zero divisors. If, moreover, n>1 or m>1, then (27.1) contains at least two terms than cancel out and thus $\alpha\beta \neq 1$. It follows that units of K[G] are trivial.

Formanek proved that the zero divisors conjecture is true in the case of torsion-free super solvable. Brown and, independently, Farkas and Snider proved that the conjecture is true in the case of groups algebras (over fields of characteristic zero) of polycyclic-by-finite torsion-free groups. These results can be found in Chapter 13 of Passman's book [31].

28. Project: Unique product groups

Let G be a group and $A, B \subseteq G$ be non-empty subsets. An element $g \in G$ is a **unique product** in AB if $g = ab = a_1b_1$ for some $a, a_1 \in A$ and $b, b_1 \in B$ implies that $a = a_1$ and $b = b_1$.

- 28.1. DEFINITION. A group G has the unique product property if for every finite non-empty subsets $A, B \subseteq G$ there exists at least one unique product in AB.
 - 28.2. Proposition. Left-ordered groups have the unique product property.

PROOF. Let G be a left-ordered group. Let A be a non-empty finite subset of G and $B = \{b_1, \ldots, b_n\} \subseteq G$. Assume that $b_1 < b_2 < \cdots < b_n$. Let $c \in A$ be such that cb_1 is the minimum of $Ab_1 = \{ab_1 : a \in A\}$. We claim that cb_1 admits a unique representation of the form $\alpha\beta$ with $\alpha \in A$ and $\beta \in B$. If $cb_1 = ab$, then, since $ab = cb_1 \leq ab_1$, it follows that $b \leq b_1$. Hence $b = b_1$ and a = c.

28.3. Exercise. Prove that groups with the unique product property are torsion-free.

The converse does not hold. Promislow's group is a celebrated counterexample.

28.4. Theorem (Promislow). The group $G=\langle a,b:a^{-1}b^2a=b^{-2},b^{-1}a^2b=a^{-2}\rangle$ does not have the unique product property.

PROOF. Let

$$(28.1) \quad S = \{a^2b, b^2a, aba^{-1}, (b^2a)^{-1}, (ab)^{-2}, b, (ab)^2a, (ab)^2, (aba)^{-1}, \\ bab, b^{-1}, a, aba, a^{-1}\}.$$

We use [8] and the representation $G \to \mathbf{GL}_4(\mathbb{Q})$ given by

$$a \mapsto \begin{pmatrix} 1 & 0 & 0 & 1/2 \\ 0 & -1 & 0 & 1/2 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \quad b \mapsto \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1/2 \\ 0 & 0 & -1 & 1/2 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

to check that G does not have unique product property, as each

$$s \in S^2 = \{s_1 s_2 : s_1, s_2 \in S\}$$

admits at least two different decompositions of the form s = xy = uv for $x, y, u, v \in S$. We first create the matrix representations of a and b.

```
gap> a := [[1,0,0,1/2],[0,-1,0,1/2],[0,0,-1,0],[0,0,0,1]];;
gap> b := [[-1,0,0,0],[0,1,0,1/2],[0,0,-1,1/2],[0,0,0,1]];;
```

Now we create a function that produces the set S.

```
gap> Promislow := function(x, y)
> return Set([
> x^2*y,
> y^2*x,
> x*y*Inverse(x),
> (y^2*x)^(-1),
> (x*y)^(-2),
> y,
> (x*y)^2*x,
```

```
> (x*y)^2,
> (x*y*x)^(-1),
> y*x*y,
> y^(-1),
> x,
> x*y*x,
> in the second content of the second content
```

So the set S of (28.1) will be Promislow(a,b). We now create a function that checks whether every element of a Promislow subset admits more than one representation.

```
gap> is_UPP := function(S)
> local 1,x,y;
> 1 := [];
> for x in S do
> for y in S do
> Add(1,x*y);
> od;
> od;
> if ForAll(Collected(1), x->x[2] <> 1) then
> return false;
> else
> return fail;
> fi;
> end;;
```

Finally, we check whether every element of S^2 admits more than one representation.

```
gap> S := Promislow(a,b);;
gap> is_UPP(S);
false
```

This completes the proof.

28.5. Exercise. Let G be a group and $A, B \subseteq G$ be finite non-empty subsets. Prove that if |A| = 1, then AB contains a unique product.

The size of the set A can be extended.

28.6. EXERCISE. Let G be a group and $A, B \subseteq G$ be finite non-empty subsets. Prove that AB has no unique products if and only if (gA)(Bh) has no unique product for all $g, h \in G$.

28.7. EXERCISE. Let G be a torsion-free group and $A, B \subseteq G$ be finite non-empty subsets. Prove that if |A| = 2, then AB contains a unique product.

The case where the set A has size three is still open. One can prove, for example, that if |A| = 3, then $|B| \ge 7$.

28.8. DEFINITION. A group G has the double property of unique products if for every finite non-empty subsets $A, B \subseteq G$ such that |A| + |B| > 2 there are at least two unique products in AB.

28.9. Theorem (Strojnowski). Let G be a group. The following statements are equivalent:

- 1) G has the double property of unique products.
- 2) Every non-empty finite subset $A \subseteq G$ contains at least one unique product in

$$AA = \{a_1a_2 : a_1, a_2 \in A\}.$$

3) G has the unique product property.

PROOF. The implication $(1) \implies (2)$ is trivial.

We now prove that $(2) \implies (3)$. Suppose that G satisfies (2). Let A, B be finite non-empty subsets of G. Let C = BA. By (2), there exist a unique $g \in G$ such that $g = (b_1a_1)(b_2a_2)$ for unique $b_1a_1, b_2a_2 \in C$, where $a_1, a_2 \in A$ and $b_1, b_2 \in B$. Note that this implies that $a_1b_2 = ab$ for $a \in A$ and $b \in B$ if and only if $a = a_1$ and $b = b_2$. Hence G satisfies the unique product property.

We finally prove that $(3) \Longrightarrow (1)$. Suppose that G satisfies the unique product property but not the double unique product property. Thus there exist finite non-empty subsets $A, B \subseteq G$ with |A| + |B| > 2 and there is a unique $g \in G$ such that g = ab for unique elements $a \in A$ and $b \in B$. Let $C = a^{-1}A$ and $D = Bb^{-1}$. Then $1 \in C \cap D$. Note that if $c \in C$, $d \in D$ and $cd \ne 1$, then there exist $a_1 \in A$ and $b_1 \in B$ such that $c = a^{-1}a_1$, $d = b_1b^{-1}$ and $ab \ne a_1b_1$. Hence there exist $a_2 \in A \setminus \{a_1\}$ and $b_2 \in B \setminus \{b_1\}$ such that $a_1b_1 = a_2b_2$. Let $c_1 = a^{-1}a_2$ and $d_1 = b_2b^{-1}$. We have that $c \ne c_1$, $d \ne d_1$ and

$$cd = a^{-1}a_1b_1b^{-1} = a^{-1}a_2b_2b^{-1} = c_1d_1.$$

Let $E = D^{-1}C$ and $F = DC^{-1}$. Every element of EF is of the form $(d_1^{-1}c_1)(d_2c_2^{-1})$, where $c_1, c_2 \in C$ and $d_1, d_2 \in D$. Suppose that $c_1d_2 \neq 1$. We have seen that then there exist $c_3 \in C \setminus \{c_1\}$ and $d_3 \in D \setminus \{d_2\}$ such that $c_1d_2 = c_3d_3$. Hence $d_1^{-1}c_3 \in E \setminus \{d_1^{-1}c_1\}$, $d_3c_2^{-1} \in F \setminus \{d_2c_2^{-1}\}$ and

$$(d_1^{-1}c_1)(d_2c_2^{-1}) = (d_1^{-1}c_3)(d_3c_2^{-1}).$$

Suppose that $c_2d_1 \neq 1$. Then there exist $c_4 \in C \setminus \{c_2\}$ and $d_4 \in D \setminus \{d_1\}$ such that $c_2d_1 = c_4d_4$. Hence $d_4^{-1} \cdot 1 \in E \setminus \{d_1^{-1} \cdot 1\}, \ 1 \cdot c_4^{-1} \in F \setminus \{1 \cdot c_2^{-1}\}$ and

$$(d_1^{-1} \cdot 1)(1 \cdot c_2^{-1}) = (d_4^{-1} \cdot 1)(1 \cdot c_4^{-1}).$$

Since |C| + |D| = |A| + |B| > 2, either there exists $c \in C \setminus \{1\}$ or there exists $d \in D \setminus \{1\}$. In the first case, we have

$$(1 \cdot 1)(1 \cdot 1) = (1 \cdot c)(1 \cdot c^{-1}),$$

and in the second case, we have

$$(1 \cdot 1)(1 \cdot 1) = (d^{-1} \cdot 1)(d \cdot 1).$$

Thus, we have found two finite non-empty subsets $E, F \subseteq G$ such that for every $e \in E$ and $f \in F$, there exist $e_1 \in E \setminus \{e\}$ and $f_1 \in F \setminus \{f\}$ such that $ef = e_1f_1$, a contradiction, because G satisfies the unique product property. Therefore G also satisfies the double unique product property.

28.10. Exercise. Prove that if a group G satisfies the unique product property, then K[G] contains only trivial units.

In general it is extremely hard to check whether a given group has the unique product property. As a geometrical way to attack this problem, Bowditch introduced diffuse groups. If G is a torsion-free group and $A \subseteq G$ is a subset, we say that A is antisymmetric if

Associative algebra Final projects

 $A \cap A^{-1} \subseteq \{1\}$, where $A^{-1} = \{a^{-1} : a \in A\}$. The set of **extremal elements** of A is defined as $\Delta(A) = \{a \in A : Aa^{-1} \text{ is antisymmetric}\}$. Thus

 $a \in A \setminus \Delta(A) \iff$ there exists $g \in G \setminus \{1\}$ such that $ga \in A$ and $g^{-1}a \in A$.

28.11. DEFINITION. A group G is diffuse if for every finite subset $A \subseteq G$ such that $2 \le |A| < \infty$ one has $|\Delta(A)| \ge 2$.

This means that a group G is diffuse if for every finite non-empty subset $A \subseteq G$ there exists $a \in A$ such that for all $g \in G \setminus \{1\}$ either $ga \notin A$ or $g^{-1}a \notin A$.

28.12. Proposition. Left-ordered groups are diffuse.

PROOF. Let G be a left-ordered group and $A = \{a_1, \ldots, a_n\}$ be such that

$$a_1 < a_2 < \cdots < a_n$$
.

We claim that $\{a_1, a_n\} \subseteq \Delta(A)$. If $a_1 \in A \setminus \Delta(A)$, there exists $g \in G \setminus \{1\}$ such that $ga_1 \in A$ and $g^{-1}a_1 \in A$. Thus $a_1 \leq ga_1$ and $a_1 \leq g^{-1}a_1$. It follows that $1 \leq a^{-1}ga_1$ and $1 \leq a_1^{-1}g^{-1}a_1 = (a_1^{-1}ga_1)^{-1}$, a contradiction. Similarly, $a_n \in \Delta(A)$.

There are diffuse groups that are not left-ordered, see [21].

28.13. Proposition. Diffuse groups have double unique products.

PROOF. Let G be a diffuse group that does not have double unique products. There exist non-empty subsets $A, B \subseteq G$ with |A| + |B| > 2 such that C = AB admits at most one unique product. Then $|C| \ge 2$. Since G is diffse, $|\Delta(C)| \ge 2$. If $c \in \Delta(C)$, then c admits a unique expression of the form c = ab with $a \in A$ and $b \in B$ (otherwise, if $c = a_0b_0 = a_1b_1$ with $a_0 \ne a_1$ and $b_0 \ne b_1$). If $g = a_0a_1^{-1}$, then $g \ne 1$,

$$gc = a_0 a_1^{-1} a_1 b_1 = a_0 b_1 \in C.$$

Moreover, $g^{-1}c = a_1a_0^{-1}a_0b_0 = a_1b_0 \in C$. Hence $c \notin \Delta(c)$, a contradiction.

28.14. Open problem. Find a non-diffuse group with the unique product property.

Associative algebra Final projects

29. Project: The braid group

29.1. DEFINITION. Let $n \geq 1$. The braid group \mathbb{B}_n is the group with generators $\sigma_1, \ldots, \sigma_{n-1}$ and relations

$$\begin{split} \sigma_i \sigma_{i+1} \sigma_i &= \sigma_{i+1} \sigma_i \sigma_{i+1} & \text{if } 1 \leq i \leq n-2, \\ \sigma_i \sigma_j &= \sigma_j \sigma_i & \text{if } |i-j| > 1. \end{split}$$

Note that $\mathbb{B}_1 = \{1\}$ and $\mathbb{B}_2 \simeq \mathbb{Z}$. The braid group \mathbb{B}_3 is generated by σ_1 and σ_2 with relations $\sigma_1 \sigma_2 \sigma_1 = \sigma_2 \sigma_1 \sigma_2$.

29.2. EXERCISE. Prove that there exists a group homomorphism $\mathbb{B}_n \to \mathbb{S}_n$ given by $\sigma_i \mapsto (i \, i + 1)$ for all $i \in \{1, \dots, n - 1\}$.

Note that if $n \geq 3$, then \mathbb{B}_n is a non-abelian group, as there exists a surjective group homomorphism $\mathbb{B}_n \to \mathbb{S}_n$.

29.3. EXERCISE. Let $n \geq 2$. Prove that the map deg: $\mathbb{B}_n \to \mathbb{Z}$, $\sigma_i \mapsto 1$, is a group homomorphism. Moreover, ker deg = $[\mathbb{B}_n, \mathbb{B}_n]$.

The previous result implies, in particular, that \mathbb{B}_n is an infinite group for all $n \geq 2$. Moreover, $\sigma_i^m \neq 1$ for all $m \in \mathbb{Z} \setminus \{0\}$ and all i.

- 29.4. EXERCISE. Prove that $\mathbb{B}_3 \simeq \langle x, y : x^2 = y^3 \rangle$ and that $\mathbb{B}_3/Z(\mathbb{B}_3) \simeq \mathbf{PSL}_2(\mathbb{Z})$.
- 29.5. EXERCISE. Prove that the center $Z(\mathbb{B}_3)$ of \mathbb{B}_3 is the cyclic group generated by $(\sigma_1\sigma_2\sigma_1)^2$.

More generally, one can prove that the center of \mathbb{B}_n is generated by Δ_n^2 , where

$$\Delta_n = (\sigma_1 \cdots \sigma_{n-1})(\sigma_1 \cdots \sigma_{n-2}) \cdots (\sigma_1 \sigma_2)\sigma_1,$$

see for example [20, Theorem 1.24]. As a corollary, $\mathbb{B}_n \simeq \mathbb{B}_m$ if and only if n = m.

29.6. EXERCISE. Let $n \geq 3$. Prove that \mathbb{B}_n is not bi-ordered.

One can prove that the natural map $\mathbb{B}_n \to \mathbb{B}_{n+1}$ is an injective group homomorphism, this is not an easy proof (see [20, Corollary 1.14]). Moreover, the diagram

$$\mathbb{B}_n \longrightarrow \mathbb{S}_n$$

$$\downarrow \qquad \qquad \downarrow$$

$$\mathbb{B}_{n+1} \longrightarrow \mathbb{S}_{n+1}$$

commutes.

29.7. EXERCISE. Use the Reidemeister–Schreier's method to prove that $[\mathbb{B}_3, \mathbb{B}_3]$ is isomorphic to the free group in two letters.

A celebrated theorem of Dehornov states that the braid group \mathbb{B}_n is left-ordered (see for example [20, Theorem 7.15]). The proof of this fact is quite hard. However, there is a nice short proof of the fact that \mathbb{B}_3 is left-ordered, see [7, §7.2].

29.8. OPEN PROBLEM (Burau's representation). Let $\mathbb{B}_4 \to \mathbf{GL}_4(\mathbb{Z}[t, t^{-1}])$ be the group homomorphism given by

$$\sigma_1 \mapsto \begin{pmatrix} 1-t & t & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \quad \sigma_2 \mapsto \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1-t & t & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \quad \sigma_3 \mapsto \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1-t & t \\ 0 & 0 & 1 & 0 \end{pmatrix}.$$

Is this homomorphism injective?

In general, the Burau's representation $\mathbb{B}_n \to \mathbf{GL}_n(\mathbb{Z}[t,t^{-1}])$ is defined by

$$\sigma_j \mapsto I_{j-1} \oplus \begin{pmatrix} 1-t & t \\ 1 & 0 \end{pmatrix} \oplus I_{n-j-1},$$

where I_k denotes the $k \times k$ identity matrix.

It is known that the Burau's representation of \mathbb{B}_n is faithful for $n \leq 3$ and not faithful for $n \geq 5$. Only the case n = 4 remains open.

Using a different representation, Krammer [23] and Bigelow [5] independently proved that braid groups are linear.

References

- [1] S. A. Amitsur. Nil radicals. Historical notes and some new results. In *Rings, modules and radicals (Proc. Internat. Colloq., Keszthely, 1971)*, pages 47–65. Colloq. Math. Soc. János Bolyai, Vol. 6, 1973.
- [2] G. M. Bergman. Errata: "A ring primitive on the right but not on the left". Proc. Amer. Math. Soc., 15:1000, 1964.
- [3] G. M. Bergman. A ring primitive on the right but not on the left. *Proc. Amer. Math. Soc.*, 15:473–475, 1964.
- [4] G. M. Bergman. Right orderable groups that are not locally indicable. Pacific J. Math., 147(2):243-248, 1991.
- [5] S. J. Bigelow. Braid groups are linear. J. Amer. Math. Soc., 14(2):471–486, 2001.
- [6] M. Brešar. Introduction to noncommutative algebra. Universitext. Springer, Cham, 2014.
- [7] A. Clay and D. Rolfsen. Ordered groups and topology, volume 176 of Graduate Studies in Mathematics.
 American Mathematical Society, Providence, RI, 2016.
- [8] The GAP Group. GAP Groups, Algorithms, and Programming, Version 4.13.1, 2024.
- [9] D. García-Lucas, L. Margolis, and A. del Río. Non-isomorphic 2-groups with isomorphic modular group algebras. J. Reine Angew. Math., 783:269–274, 2022.
- [10] G. Gardam. A counterexample to the unit conjecture for group rings. Ann. of Math. (2), 194(3):967–979, 2021.
- [11] B. J. Gardner and R. Wiegandt. Radical theory of rings, volume 261 of Monographs and Textbooks in Pure and Applied Mathematics. Marcel Dekker, Inc., New York, 2004.
- [12] R. W. Gilmer, Jr. If R[X] is Noetherian, R contains an identity. Amer. Math. Monthly, 74:700, 1967.
- [13] M. Henriksen. A simple characterization of commutative rings without maximal ideals. *Amer. Math. Monthly*, 82:502–505, 1975.
- [14] I. N. Herstein. A counterexample in Noetherian rings. Proc. Nat. Acad. Sci. U.S.A., 54:1036–1037, 1965.
- [15] I. N. Herstein. *Noncommutative rings*, volume 15 of *Carus Mathematical Monographs*. Mathematical Association of America, Washington, DC, 1994. Reprint of the 1968 original, With an afterword by Lance W. Small.
- [16] M. Hertweck. A counterexample to the isomorphism problem for integral group rings. Ann. of Math. (2), 154(1):115–138, 2001.
- [17] T. W. Hungerford. *Algebra*, volume 73 of *Graduate Texts in Mathematics*. Springer-Verlag, New York-Berlin, 1980. Reprint of the 1974 original.
- [18] N. Jacobson. Structure of rings. American Mathematical Society Colloquium Publications, Vol. 37. American Mathematical Society, Providence, R.I., revised edition, 1964.
- [19] C. Kassel. Quantum groups, volume 155 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1995.
- [20] C. Kassel and V. Turaev. *Braid groups*, volume 247 of *Graduate Texts in Mathematics*. Springer, New York, 2008. With the graphical assistance of Olivier Dodane.
- [21] S. Kionke and J. Raimbault. On geometric aspects of diffuse groups. Doc. Math., 21:873–915, 2016. With an appendix by Nathan Dunfield.
- [22] G. Köthe. Die Struktur der Ringe, deren Restklassenring nach dem Radikal vollständig reduzibel ist. Math. Z., 32(1):161–186, 1930.
- [23] D. Krammer. Braid groups are linear. Ann. of Math. (2), 155(1):131–156, 2002.
- [24] J. Krempa. Logical connections between some open problems concerning nil rings. Fund. Math., 76(2):121–130, 1972.
- [25] R. H. Lagrange and A. H. Rhemtulla. A remark on the group rings of order preserving permutation groups. Canad. Math. Bull., 11:679–680, 1968.
- [26] T. Y. Lam. A first course in noncommutative rings, volume 131 of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition, 2001.
- [27] T. Y. Lam. Exercises in modules and rings. Problem Books in Mathematics. Springer, New York, 2007.
- [28] L. Margolis. The modular isomorphism problem: a survey. Jahresber. Dtsch. Math.-Ver., 124(3):157–196, 2022.
- [29] T. Nagahara and H. Tominaga. Elementary proofs of a theorem of Wedderburn and a theorem of Jacobson. Abh. Math. Sem. Univ. Hamburg, 41:72–74, 1974.

- [30] P. P. Nielsen. Simplifying Smoktunowicz's extraordinary example. Comm. Algebra, 41(11):4339–4350, 2013.
- [31] D. S. Passman. *The algebraic structure of group rings*. Robert E. Krieger Publishing Co., Inc., Melbourne, FL, 1985. Reprint of the 1977 original.
- [32] J. Pinter-Lucke. Commutativity conditions for rings: 1950-2005. Expo. Math., 25(2):165-174, 2007.
- [33] I. Rosenholtz. A pigeonhole proof of Kaplansky's theorem. Amer. Math. Monthly, 99(2):132–133, 1992.
- [34] W. R. Scott. Group theory. Dover Publications, Inc., New York, second edition, 1987.
- [35] A. Smoktunowicz. Polynomial rings over nil rings need not be nil. J. Alqebra, 233(2):427–436, 2000.
- [36] A. Smoktunowicz. On some results related to Köthe's conjecture. Serdica Math. J., 27(2):159–170, 2001.
- [37] A. Smoktunowicz. Some results in noncommutative ring theory. In *International Congress of Mathematicians*. Vol. II, pages 259–269. Eur. Math. Soc., Zürich, 2006.
- [38] D. E. Taylor. Some classical theorems on division rings. Enseign. Math. (2), 20:293–298, 1974.
- [39] M. Teleuca. Zsigmondy's theorem and its applications in contest problems. *Internat. J. Math. Ed. Sci. Tech.*, 44(3):443–451, 2013.
- [40] K. Zsigmondy. Zur Theorie der Potenzreste. Monatsh. Math. Phys., 3(1):265–284, 1892.

\mathbf{Index}

Akizuki's theorem, 36 Algebra, 4 algebraic, 5 central, 76 central simple, 79 commutative, 4 dimension, 4 ideal, 5 of multipliers, 76 opposite, 10 semisimple, 7	Group bi-ordered, 106 diffuse, 117 double unique product, 115 indicable, 109 left-ordered, 112 locally finite, 53 locally indicable, 109 solvable, 54 torsion, 53 unique product, 114
simple, 12 Algebraic element, 5 Amitsur's theorem, 29 Andrunakevic-Rjabuhin theorem, 83 Artin-Wedderburn theorem, 11 Artin-Wedderburn's theorem, 43 Automorfism inner, 77	Henriksen's theorem, 26 Herstein's theorem, 54 Homomorphism of algebras, 5 Hopkins-Levitski theorem, 46 Hopkins-Levitzky's theorem, 101 Hurewicz' theorem, 72
Braid group, 118 Brauer's problem, 15 Brown's theorem, 113 Burau's representation, 119 Burns-Hale theorem, 109 Burnside's theorem, 54	Ideal maximal, 18 nil, 21 nilpotent, 21 prime, 43 primitive, 19 reduced, 83
Characteristic of a ring, 25 Chinese Remainder Theorem, 17 Composition series equivalence, 34 Connel's theorem, 100, 101	regular, 18 Idempotent, 47, 91 Involution, 69 Jacobson conjecture, 30
Dehornoy's theorem, 118 Dietzmann's theorem, 100 Division algebra, 9 Domain, 42	Jacobson radical, 21 Jacobson's commutativity theorem, 66 Jacobson's density theorem, 39 Jacobson-Herstein conjecture, 30 Jordan-Hölder theorem, 34
Element left quasi-regular, 21 quasi-regular, 21	Köthe conjecture, 31 Kaplansky's theorem, 75 Kolchin's theorem, 88
Farkas–Snider theorem, 113 Feit–Thompson's theorem, 54 Fermat's last theorem for finite rings, 63 Flag complete, 86 standard, 86 Formanek's theorem, 55, 60, 113	Lagrange-Rhemtulla's theorem, 113 Left ideal maximal, 18 nil, 21 nilpotent, 21 regular, 18 Levi's theorem, 107
Frobenius' theorem, 64 Gardam's theorem, 91, 98 Gilmer's theorem, 32	Malcev-Neumann theorem, 113 Maschke's theorem, 52 Minimal element, 33 Minimal left ideal, 18

Module, 5 artinian, 33 composition series, 34 Dedekind-finite, 74 faithful, 19	Trivial idempotent, 47 Trivial units in group algebras, 91	
	Unipotent element, 87 Unipotent group, 87	
homomorphism, 5 length, 35	Wedderburn's little theorem, 61 Wedderburn's theorem, 13, 43, 85	
noetherian, 33 of finite length, 35 semisimple, 6 simple, 6 Mollien's theorem, 11	Zsigmondy's theorem, 63	
Nakayama's lemma, 71 Neumann's lemma, 93 Nil algebra, 85 element, 85 Nilpotent algebra, 85		
element, 85 Passman's lemma, 95 theorem, 96 Prüfer's group, 53 Promislow's group, 97 Promislow's theorem, 114		
Reidemeister–Schreier's method, 118 Rickart's theorem, 50, 70 Ring boolean, 65 Dedekind-finite, 74 left artinian, 33 local, 28, 47 nil, 26 prime, 42, 100 primitive, 19 radical, 25 reduced, 74, 83, 91 reversible, 74 semilocal, 49 semiprime, 51 semisimple, 45 simple, 17 Von Neumann regular, 48 with an involution, 69		
Schur's lemma, 6 Skolem–Noether theorem, 78 Strojonowski's theorem, 116 Subdirect product, 38 Sylow's theorems, 89		