

# **UN** MiniARM2300 基础驱动库开发

Rev 1.0 Date: 20007/07/12

产品用户手册

# 文件信息

| 类别  | 内容 |
|-----|----|
| 关键词 |    |
| 摘要  |    |







| 版本      | 日期 | 原因 |
|---------|----|----|
| Rev 1.0 |    |    |

应用设计笔记 Rev 1.0 © 2007 Zhiyuan Electronics CO., LTD. Date: 2007/07/12

# 目录

| 1. | VIC | 管理 API              | 3 |
|----|-----|---------------------|---|
|    | 1.1 | 概述                  | 3 |
|    |     | IRQ 管理              |   |
|    |     | 1.2.1 设置并使能 IRQ 中断  | 3 |
|    |     | 1.2.2 释放 IRQ 中断资源   | 4 |
|    |     | 1.2.3 获取 IRQ 中断配置信息 | 4 |
|    |     | 1.2.4 禁能 IRQ 中断     | 5 |
|    |     | 1.2.5 重新使能 IRQ 中断   | 5 |
|    | 1.3 | FIQ 管理              | 6 |
|    |     | 1.3.1 设置并使能 FIQ 中断  | 6 |
|    |     | 1.3.2 释放 FIQ 中断资源   | 6 |

# 1. VIC 管理 API

# 1.1 概述

VIC 是处于 ARM 外设和内核之间的一个模块,对芯片所有外设中断进行管理,其设置的安全性与否直接影响着系统的安危。所以,在安全性较高的系统,VIC 不应该在用户程序中修改或者访问,以防止用户操作不当而造成系统出错或崩溃。

在 μC/OS-II 操作系统中,用户程序往往运行在用户模式,VIC 保护使能寄存器可以对 VIC 进行保护,设置该寄存器可以限制用户程序访问 VIC。在用户需要设置某外设中断时,必须进入特权模式下操作,本节中 VIC 管理便在此原理下实现。

ARM 处理器内核具有两个中断输入,向量中断请求(IRQ)和快速中断请求(FIQ)。 所以,VIC 的管理就分为 IRQ 和 FIQ 两组进行。

## 1.2 IRQ 管理

在 IRQ 模式的管理中,总共提供了如下五组函数供用户调用:

## 1.2.1 设置并使能 IRQ 中断

表 1.1 设置中断使用说明

| 函数名称   | SetVICIRQ                                                       |
|--------|-----------------------------------------------------------------|
| 函数原型   | uint32 SetVICIRQ(uint32 channel, uint32 PRI, uint32 ISRFuction) |
| 功能描述   | 设置所选外设的中断优先级、中断服务函数地址,并使能中断                                     |
| 输入参数   | channel : 外设对应的中断通道号 PRI : 中断优先级 ISRFuction : 中断服务函数地址          |
| 输出参数   | 操作成功 : 返回 1<br>操作失败 : 返回 0                                      |
| 使用注意事项 | 支持不同外设共享同一优先级                                                   |

程序清单 1.1 设置并使能中断示例

//设定定时器 1 为 IRQ 中断,优先级为 1 SetVICIRQ (5, 1, (uint32) Usr\_TIMER1\_ISR);

Date: 2007/07/12

应用设计笔记 Rev 1.0





# 1.2.2 释放 IRQ 中断资源

表 1.2 释放中断资源使用说明

| 函数名称   | FreeVICIRQ                        |
|--------|-----------------------------------|
| 函数原型   | uint32 FreeVICIRQ(uint32 channel) |
| 功能描述   | 释放所选外设的 IRQ 资源                    |
| 輸入参数   | channel : 外设对应的中断通道号              |
| 输出参数   | 操作成功 : 返回 1<br>操作失败 : 返回 0        |
| 使用注意事项 | 只能释放已设定的中断,与 SetVICIRQ 配对使用       |

#### 程序清单 1.2 释放 IRQ 中断资源

//释放定时器 1 的 IRQ 中断资源 FreeVICIRQ (5);

# 1.2.3 获取 IRQ 中断配置信息

表 1.3 获取中断配置信息使用说明

| 函数名称   | GetVICIRQState                                                                                                                                                           |  |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 函数原型   | uint32 GetVICIRQState (uint32 channel, pVIC_Config pISRConfig)                                                                                                           |  |
| 功能描述   | 获取所选外设的中断通道号、优先级、中断服务函数地址及中断使能状态                                                                                                                                         |  |
| 输入参数   | channel : 外设对应的中断通道号 pISRConfig : IRQ 配置信息结构体指针                                                                                                                          |  |
| 输出参数   | 操作成功 : 返回 1,并填充配置信息结构体<br>操作失败 : 返回 0                                                                                                                                    |  |
| 使用注意事项 | 配置信息结构体定义如下: typedef struct{     uint32 Channel;  // 外设对应的中断通道号     uint32 PRI;  // 已设定优先级     uint32 ISRFunction;  // 中断服务函数地址     uint8 State;  // 中断是否使能 }VIC_Config; |  |

应用设计笔记 Rev 1.0 Date: 2007/07/12

#### 程序清单 1.3 获取 IRQ 中断配置信息

VIC\_Config Time1Config; //定义配置信息结构体变量

GetVICIRQStatus (5, &Time1Config); //获取定时器 1 的 IRQ 中断配置信息

# 1.2.4 禁能 IRQ 中断

#### 表 1.4 禁能中断使用说明

| 函数名称   | DisableVICIRQ                        |  |
|--------|--------------------------------------|--|
| 函数原型   | uint32 DisableVICIRQ(uint32 channel) |  |
| 功能描述   | 禁止相应外设的中断                            |  |
| 輸入参数   | channel : 外设对应的中断通道号                 |  |
| 输出参数   | 操作成功 : 返回 1<br>操作失败 : 返回 0           |  |
| 使用注意事项 | 只能禁止已设定的中断,否则,操作失败                   |  |

程序清单 1.4 禁止所选通道的 IRQ 中断

//禁止定时器 1 的 IRQ 中断 DisableVICIRQ (5);

# 1.2.5 重新使能 IRQ 中断

### 表 1.5 重新使能中断使用说明

| 函数名称   | ReEnableVICIRQ                                           |
|--------|----------------------------------------------------------|
| 函数原型   | uint32 ReEnableVICIRQ (uint32 channel)                   |
| 功能描述   | 重新使能相应外设的中断                                              |
| 输入参数   | channel : 外设对应的中断通道号                                     |
| 输出参数   | 操作成功 : 返回 1<br>操作失败 : 返回 0                               |
| 使用注意事项 | 只能重新使能先前被禁止,但并未被释放的外设中断,否则,操作失败;<br>与 DisableVICIRQ 配对使用 |

应用设计笔记 Rev 1.0 Date: 2007/07/12

#### 程序清单 1.5 重新使能所选通道 IRQ 中断

//重新使能定时器 1 的 IRQ 中断 DisableVICIRQ (5); //已禁止

//....

ReEnableVICIRQ (5); //重新使能

# 1.3 FIQ 管理

在 FIQ 模式的管理中,总共提供了如下两组函数供用户调用:

### 1.3.1 设置并使能 FIQ 中断

表 1.6 设置中断使用说明

| 函数名称   | SetVICFIQ                                              |
|--------|--------------------------------------------------------|
| 函数原型   | uint32 SetVICFIQ (uint32 channel)                      |
| 功能描述   | 设置并使能所选中断通道号为 FIQ 中断                                   |
| 输入参数   | channel : 外设对应的中断通道号                                   |
| 输出参数   | 操作成功 : 返回 1<br>操作失败 : 返回 0                             |
| 使用注意事项 | 支持不同外设共享 FIQ 中断,但为了尽量减少 FIQ 中断的响应时间,建议只分配 1 个中断源为 FIQ。 |

#### 程序清单 1.6 使能所选通道 FIQ 中断

//设定定时器 1 为 FIQ 中断

SetVICFIQ(5);

Date: 2007/07/12

### 1.3.2 释放 FIQ 中断资源

表 1.7 释放中断使用说明

| 函数名称 | FreeVICFIQ                        |  |
|------|-----------------------------------|--|
| 函数原型 | uint32 FreeVICFIQ(uint32 channel) |  |
| 功能描述 | 释放所选中断通道号的 FIQ 中断                 |  |
| 输入参数 | channel : 外设对应的中断通道号              |  |

应用设计笔记 Rev 1.0

# 广州致远电子有限公司

基础驱动库函数参考手册

: 返回1 操作成功 输出参数 : 返回 0 操作失败

使用注意事项 与 SetVICFIQ 配对使用

程序清单 1.7 释放所选通道 FIQ 中断

//释放定时器 1 的 FIQ 中断

FreeVICFIQ (5);

# 驱动库开发

基础驱动库函数参考手册

公司: 广州致远电子有限公司 工业通讯网络事业部 地址: 广州市天河区车陂路黄洲工业区七栋二楼

邮编: 510660

网址:www.embedcontrol.com销售电话:+86 (020) 2264-4249技术支持电话:+86 (020) 2264-4253传真:+86 (020) 3860-1859

销售 E-mail: 技术支持 E-mail: