Laboratório de controle

Sintonia de controladores PID

Objetivos

- Conhecer métodos de sintonia de controladores
- Avaliar o desempenho dos controladores
- Verificar as condições em que a metodologia é aplicável

Conteúdo

- 1. Modelos FOPTD no Matlab
- 2. Aproximação por modelo FOPTD
- 3. Parâmetros de qualidade para resposta ao degrau
- 4. Análise da integral absoluta do erro
- 5. Métodos de sintonia
- 6. Simulação do controlador em malha fechada
- 7. Sobre o relatório 5

1. Modelos de primeira ordem mais tempo morto (FOPTD) no Matlab

Definição do modelo como função de transferência:

```
g=tf(1,[3 1],'InputDelay',1)
g =

1

exp(-1*s) * -----
3 s + 1
```

Continuous-time transfer function.

1. Modelos de primeira ordem mais tempo morto (FOPTD) no Matlab

2. Aproximação por modelo FOPTD

A aproximação por modelo de primeira ordem mais tempo morto (first order plus time delay – FOPTD) é muito utilizada quando a resposta ao degrau se aproxima do formato de uma resposta de sistema de primeira ordem e o tempo morto pode ser usado para melhorar esta aproximação.

2. Aproximação por modelo FOPTD

Usando um tempo morto igual a 2, e considerando que a saída começa em 2s, obtem-se a constante de tempo e o ganho da FT FOPTD.

Neste exemplo, foi utilizada uma FT de ordem 4 para produzir a curva azul, que foi aproximada pelo modelo de ordem 1 (curva vermelha)

2. Aproximação por modelo FOPTD

A aproximação permite utilizar muitos métodos de sintonia de controladores além de permitir um tratamento mais simplificado, por uma FT de menor ordem (menos polos, menos parâmetros, etc)

Essa será a estratégia utilizada nas aulas.

IMPORTANTE: a FT de ordem 1 será usada para sintonizar o controlador PID, mas a simulação será feita na FT original, para obter uma resposta mais fidedigna.

Se uma planta real estivesse sendo utilizada, o teste seria feito nela, e não no modelo de primeira ordem.

3. Parâmetros de qualidade para resposta ao degrau

Os principais parâmetros de qualidade da resposta ao degrau de um sistema de segunda ordem são:

- Sobreelevação
- Tempo de estabelecimento
- Tempo de subida
- Erro em regime

Essa é a resposta analisada, pois ao se adicionar o controlador, respostas desta natureza são geradas.

Este índice permite juntar os 2 tempos e a sobreelevação e o errgo em regime em um único índice.

A desvantagem é que fica mais difícil interpreter seu valor, que é usado sempre de forma comparativa, usando uma mesma janela de tempo para a integração.

A área em azul representa a integral do erro absoluto, obtido integrando a diferença absoluta entre a entrada (=1) e a saída em cada instante

O aumento da sobreelevação e maiores tempos de resposta fazem o IAE ser maior

Relação do IAE com parâmetros de qualidade da resposta ao degrau

Em geral tempos maiores têm mais efeito no IAE do que a sobreelevação

O cálculo do IAE no Matlab pode ser feito usando a função trapz, que realiza a integração usando aproximação trapezoidal.

Se g é a FT de malha fechada, sua resposta ao degrau é

```
[y,t]=step(g)
e o erro é E=1-y.
IAE=trapz(t,abs(E));
```

Seja a resposta ao degrau mostrada.

O modelo é definido por:

$$G(s) = \frac{Ke^{-\theta s}}{\tau s + 1}$$

$$K = 2.5/1=2.5$$

 $\theta=1$
 $\tau = 4 - 1 = 3$

O conhecimento dos parâmetros:

- Tempo morto heta
- Ganho K
- Constante de tempo au

permite calcular os parâmetros do controlador que garantem a estabilidade em malha fechada e certo desempenho.

Esses métodos assumem o controlador PID na forma série:

$$C(s) = K_p(1 + \frac{1}{T_I s} + K_D s)$$

Caso a implementação seja feita um controlador PID na estrutura paralela,

$$C(s) = K_p 1 + \frac{1}{T_I s} + K_D s$$

Basta dividir os ganhos K_I e K_D do método por K_p antes de aplicar.

Nestas equações

$$C(s) = K_p 1 + \frac{1}{T_I s} + K_D s$$

$$K_I = \frac{1}{T_I} e$$

$$K_D = T_D$$
,

por razões históricas e ainda usadas na indústria.

$$G(s) = \frac{Ke^{-\theta s}}{\tau s + 1}$$

Tabela 1. Sintonia via segundo método de Ziegler Nichols

Controlador	$\mathbf{K}_{\mathbf{P}}$	T_{I}	T_{D}
P	au	-	-
DI	$\overline{K\theta}$	2 220	
PI	$\frac{0.9\tau}{K\theta}$	3.33θ	
PID	$\frac{1.2\tau}{K\theta}$	2θ	0.5θ

Pode-se escolher um controlador na forma proporcional (P), proporcional+integral (PI) ou proporcional+integral+derivativo (PID).

$$G(s) = \frac{Ke^{-\theta s}}{\tau s + 1}$$

Como $K_p = \frac{\tau}{\kappa \theta}$:

Quanto maior o tempo morto ou o ganho K, menor K_p

Quanto maior a constante de tempo, maior K_p

Na figura ao lado o tempo morto é t_1 .

A constante de tempo é t_2 - t_1 . Tempo morto maior implica em constante de tempo menor

Como o ganho proporcional é dado por $K_p = \frac{\tau}{K\theta} = \frac{t_2 - t_1}{Kt_1}$

Conclui-se que aumentar t_1 reduz o ganho K_p

Método CHR(Chein, Hrones, Reswick, 1952).

Propõe 2 sintonias:

- Rápida sem sobresinal
- Mais rápida com 20% de sobresinal

Tabela 2. Sintonia via método CHR. Critério: sem sobressinal – problema servo

Controlador	$\mathbf{K}_{\mathbf{P}}$	$T_{\mathbf{I}}$	$T_{\mathbf{D}}$
P	0.3τ	-0	_
	$K\theta$		
PI	0.35τ	1.16θ	
	$K\theta$		
PID	0.6τ	au	0.5θ
	$K\theta$		

Problema servo: seguir uma referência

Sintonia via método CHR. Critério: 20% de sobressinal – problema servo

Controlador	$\mathbf{K}_{\mathbf{P}}$	T_{I}	T_{D}
P	0.7τ	-	-
	$K\theta$		
PI	0.6τ	au	
	$\overline{K\theta}$		
PID	0.95τ	1.357τ	0.473θ
	$K\theta$		

Método Cohen-Coon

Produz melhores respostas com sistemas com tempo morto maior,

$$\frac{\theta}{\tau} > 0.3$$

Tabela 5. Sintonia segundo o método de Cohen e Coon

Controlador	$\mathbf{K}_{\mathtt{P}}$	$T_{\rm I}$	$T_{\mathbf{D}}$
P	$(1.03 + 0.35 \frac{\theta}{\tau}) \frac{\tau}{K\theta}$	=	
PI	$(0.9 + 0.083 \frac{\theta}{\tau}) \frac{\tau}{K\theta}$	$\frac{(0.9+0.083\frac{\theta}{\tau})}{1.27+0.6\frac{\theta}{}}\theta$	-
PID	$(1.35 + 0.25 \frac{\theta}{\tau}) \frac{\tau}{K\theta}$	$\frac{\tau}{(1.35+0.25\frac{\theta}{\tau})}$ $\frac{0.54+0.33\frac{\theta}{\tau}}{0.54+0.33\frac{\theta}{\tau}}$	$\frac{0.5\theta}{1.35 + 0.25 \frac{\theta}{\tau}}$

Sintonia ótima: minimiza algum critério de desempenho: IAE, ITAE,

Método	K_C	T_{I}	T_D
ITAE - s	$\frac{0.965}{K} \cdot \left(\frac{\tau}{\theta}\right)^{0.85}$	$\frac{\tau}{0,796-0,1465\cdot\frac{\theta}{\tau}}$	$0,308 \cdot \tau \cdot \left(\frac{\theta}{\tau}\right)^{0,929}$
ITAE - r	$\frac{1,357}{K} \cdot \left(\frac{\tau}{\theta}\right)^{0,947}$	$\frac{\tau}{0,842} \cdot \left(\frac{\theta}{\tau}\right)^{0,738}$	$0.381 \cdot \tau \cdot \left(\frac{\theta}{\tau}\right)^{0.995}$

Muito importante:

A sintonia é ótima se o controlador é aplicado ao modelo utilizado para o projeto.

Não há garantia de otimalidade se for aplicado ao processo original.

Por exemplo,
$$G_1(s) = \frac{e^{-s}}{2.3s+1}$$
 aproxima $G(s) = \frac{1}{(s+1)(s+1)(s+1)}$.

O resultado ótimo é obtido aplicando o controlador a $G_1(s)$

Sintonia ótima: minimiza algum critério de desempenho

Integral do erro (<i>IE</i>): integral do sinal de erro no tempo. Este índice não é usual pois erros positivos cancelam erros negativos, podendo mascarar o resultados para respostas subamortecidas (MARLIN, 1995).	$IE = \int_{0}^{\infty} e(t)dt$
Integral do erro absoluto (<i>IAE</i>): integral do valor absoluto do sinal de erro no tempo. É equivalente à soma das áreas acima e abaixo do valor de referência (MARLIN, 1995).	$IAE = \int_{0}^{\infty} e(t) dt$
Integral do erro absoluto ponderado no tempo (ITAE): integral do tempo multiplicado pelo valor absoluto do sinal de erro no tempo. Este índice penaliza erros que se mantém no tempo (MARLIN, 1995).	$ITAE = \int_{0}^{\infty} t \cdot \left e(t) \right dt$
Integral do erro quadrático (ISE): integral do quadrado do sinal de erro no tempo. Este índice, por definição, penaliza mais, valores maiores do sinal de erro (MARLIN, 1995).	$ISE = \int_{0}^{\infty} \left[e\left(t\right) \right]^{2} dt$

Sintonia Lambda (λ):

$$\frac{Y(s)}{R(s)} = \frac{G_p(s)C(s)}{1 + G_p(s)C(s)}$$

Neste método, tem-se controle sobre o tempo de resposta, escolhendo λ .

Pode-se escolher:
$$\frac{Y(s)}{P(s)} = \frac{1}{2s+1}$$

Observe que λ é a constante de tempo de malha fechada desejada

Sistema em malha fechada

$$\frac{Y(s)}{R(s)} = \frac{1}{\lambda s + 1} = \frac{G_P(s)C(s)}{1 + G_P(s)C(s)}$$

Com o controlador dado por

$$C(s) = \frac{1}{G_{P}(s)\lambda s}$$

Obviamente, este controlador pode não existir (não ser causal)

Sintonia lambda para FOPTD

Tabela 7. Sintonia do PID segundo Rivera,	Morari e Skogestad para	processos com tempo morto

Controlador	K _P	$T_{\mathbf{I}}$	T_{D}	Sugestão para o Desempenho
PID	$\frac{2\tau + \theta}{K \times (2\lambda + \theta)}$	$\tau + \left(\frac{\theta}{2}\right)$	$\frac{\tau \times \theta}{(2\tau + \theta)}$	$\frac{\lambda}{\theta} > 0.8$
PI	$\frac{(2\tau + \theta)}{K \times 2\lambda}$	$\tau + \left(\frac{\theta}{2}\right)$	-	$\frac{\lambda}{\theta} > 1.7$

Sintonia lambda para outras FTs:

Tabela 6. Sintonia do PID segundo Rivera, Morari e Skogestad

Modelo do Processo	K_{P}	$T_{\rm I}$	$T_{\mathbf{D}}$
K	τ	τ	_
$\overline{\tau s+1}$	$\overline{K \times \lambda}$		
K	$(\tau_1 + \tau_2)$	$(\tau_1 + \tau_2)$	$\tau_1 \times \tau_2$
$(\tau_1 s + 1)(\tau_2 s + 1)$	$K \times \lambda$		$\overline{(\tau_1 + \tau_2)}$
K	_2ξτ	$2\xi au$	
$\overline{\tau^2 s^2 + 2\xi \tau \times s + 1}$	$\overline{K \times \lambda}$		$rac{ au}{2 \xi}$
K	1	-	=
S	$\overline{K \times \lambda}$		
K	1	, .	au
$\overline{s(\tau s+1)}$	$\overline{K \times \lambda}$		

Rotina fornecida: calcula os parâmetros de controladores usando as tabelas fornecidas

function [C, iae] = sintonia(G, tipo, metodo, lambda)

- G é a FT, definida via comando tf
- tipo = P, PI, PID (entre aspas)
- metodo = cohen, chr, chr20, zie, iae, lam (entre aspas)'
- lambda = constante de tempo de malha fechada se usado metodo lambda, senão não precisa fornecer

Saídas: C é o controlador e iae é a integral do erro absoluto

0.8455

Exemplo:

```
>> g=tf(1,[5 1],'InputDelay',0.2)
g =
Continuous-time transfer function.
>> [C,iae]=sintonia(g,'PI', 'zie')
C =
  with Kp = 22.5, Ki = 33.8
Continuous-time PI controller in parallel form.
iae =
```

Se a rotina sintonia for usada sem argumento de saída, retorna a simulação gráfica (resposta ao degrau).

6. Simulação do controlador em malha fechada

É importante avaliar tanto a resposta a entrada de referência SP quando a rejeição ao distúrbio (d).

Para um processo dado por G(s) e um controlador dado por C(s),

$$\frac{Y(s)}{SP(s)} = \frac{C(s)G(s)}{1 + C(s)G(s)}$$

$$\frac{Y(s)}{D(s)} = \frac{G(s)}{1 + C(s)G(s)}$$