Advanced Game Thoerie

Prof. Dr. Clemens Puppe

(inoffizielles Skript)

Wintersemester 2016/17

Karlsruher Institut für Technologie

Inhaltsverzeichnis

1	Noncooperative Games				
	1.1	Basic Elements of Noncooperative Games	2		
	1.2	Rationalisable Strategies	7		
	1.3	Nash Equilibrium	7		
	1.4	Subgame Perfection in Dynamic Games	7		
	1.5	Excercises	7		
2	Koo	operative Spiele	8		
	2.1	Der Kern	8		
	2.2	Der Shapley-Wert	8		
	2.3	Einfache Spiele	8		
	2.4	Konvexe Spiele	8		
	2.5	Übungen	8		
3	Evo	lutionäre Spieltheorie	9		

Kapitel 1

Noncooperative Games

1.1 Basic Elements of Noncooperative Games

Definition: A game is a formal representation of a situation in which a number of individuals interact in a setting of strategic interdependence.

- The players: Who is involved?
- The rules: Who moves when? What do they know when they move? What can they do?
- The outcomes: For each possible set of actions by the players, what is the outcome of the game?
- The payoffs: What are the players' preferences over the possible outcomes?

Example (of simultaneous move games):

a) Matching Pennies

Player 2 Heads Tails

Player 1 Heads
$$-1, 1$$
 $1, -1$

Tails $1, -1$ $-1, 1$

b) Meeting in New York

Player 2

		Empire State	Grand Central
Player 1	Empire State	100, 100	0,0
1 layer 1	Grand Central	0,0	100, 100

c) Examples of (simple) dynamic games

Prisoner's Dilemma in Extensive-form

d) Matching Pennies Version C

Definition (Information):

- a) Information Set: A player doesn't know which of the nodes in the information set she is actually at. Therefore, at any decision node in a player's information set, there must be the same possible actions.
- b) Perfect Information: A game is said to be of perfect information if each information set contains a single decision node. Otherwise, it is a game of imperfect information.

Definition (Extensive Form Game): A game in **extensive form** consists of:

- (i) A finite set of nodes \mathcal{X} , a finite set of possible actions \mathcal{A} , and a finite set of players $\{1,\ldots,l\}$.
- (ii) A funktion p: X → {X∪∅} specifying a single immediate predecessor of each node x;
 p(x) ∈ X expect for one element x₀, the initial node. The immediate successor node of x are s(x) = p⁻¹(x).
 To have a tree structure, a predecessor can never be a successor and vice versa.
 The set of terminal nodes T = {x ∈ X: s(x) = ∅}. All other nodes X \ T are decision nodes.
- (iii) A function $\alpha : \mathcal{X} \setminus \{x_0\} \to \mathcal{A}$ giving the action that leads to any non-initial node x from its immediate predecessor p(x) with $x', x'' \in s(x); x' \neq x'' \Rightarrow \alpha(x') \neq \alpha(x'')$. The set of choices at decision node x is $c(x) = \{a \in \mathcal{A} : a = \alpha(x') \text{ for some } x' \in s(x)\}$.
- (iv) A collection of information sets \mathcal{H} , and a function $H \colon \mathcal{X} \to \mathcal{H}$ assigning each decision node x to an information set $H(x) \in \mathcal{H}$ with c(x) = c(x') if H(x) = H(x').

 The choices available at information set H can be written as

$$C(H) = \{a \in \mathcal{A} : a \in c(x) \text{ for } x \in H\}.$$

(v) A function $\iota: \mathcal{H} \to \{0, 1, \dots, l\}$ assigning a player to each information set (i = 0) 'nature').

The collection of player i's information set is denoted by

$$\mathcal{H}_i = \{ H \in \mathcal{H} : i = \iota(H) \}.$$

- (vi) A function $\rho: \mathcal{H}_0 \times \mathcal{A} \to [0,1]$ assigning a probability to each action of nature with $\rho(H,a) = 0$ if $a \notin C(H)$ und $\sum_{a \in C(H)} \rho(H,a) = 1$ for all $H \in \mathcal{H}_0$.
- (vii) A collection of payoff function $u = \{u_1(\cdot), \dots, u_l(\cdot)\}$, where $u_i : T \to \mathbb{R}$.

A game in extensive form: $\Gamma_E = \{\mathcal{X}, \mathcal{A}, I, p(\cdot), \alpha(\cdot), \mathcal{H}, H(\cdot), \iota(\cdot), \rho(\cdot), u\}.$

Comment: Restrictions of this definition:

- a) Finite set of actions
- b) Finite number of moves
- c) Finite number of players

Definition (Strategy): Let \mathcal{H}_i denote the collection of player i's information sets, \mathcal{A} the set of possible actions in the game, and $C(H) \subset \mathcal{A}$ the set of actions possible at information set H. A strategy for player i is a function $s_i \colon \mathcal{H}_i \to \mathcal{A}$ such that $s_i(H) \in C(H)$ for all $H \in \mathcal{H}_i$.

Definition (Normal Form Representation): For a game with I players, the **normal** form representation Γ_N specifies for each player i a set of strategies S_i (with $s_i \in S_i$) and a payoff function $u_i(s_1, \ldots, s_l)$, formally

$$\Gamma_N = [I, \{S_i\}, \{u_i(\cdot)\}].$$

Definition:

- a) $s_i \colon \mathcal{H}_i \to \mathcal{A}$ describes deterministic choices at each $H \in \mathcal{H}_i$ and is called a **pure** strategy
- b) a **mixed strategy** is a probability distribution over all pure strategies $\sigma_i \colon \mathcal{S}_i \to [0, 1]$, with $\sigma_i(s_i) \geq 0$ and $\sum_{s_i \in \mathcal{S}_i} \sigma_i(s_i) = 1$.
- c) player i's set of possible mixed strategies can be associated with the points of the simplex $\Delta(S_i)$, called the **mixed extension** of S_i .
- d) since we assume that individuals are expected utility maximisers, player i's utility of a profile of mixed strategies $\sigma = (\sigma_i, \dots, \sigma_l)$ is given by

$$u_i(\sigma) = \sum_{s \in \mathcal{S}} [\sigma_1(s_1) \cdot \sigma_2(s_2) \cdot \ldots \cdot \sigma_l(s_l)] \cdot u_i(s),$$

where $s = (s_1, ..., s_l)$.

Definition (Behaviour Strategy): Given an extensive form game Γ_E , a **behaviour** strategy for player i specifies for every information set $h \in \mathcal{H}_i$ and action $a \in C(H)$, a probability $\lambda_i(a, H) \geq 0$, with

$$\sum_{a \in C(H)} \lambda_i(a, H) = 1 \text{ for all } H \in \mathcal{H}_i.$$

Definition (Perfect Recall): A player has **perfect recall** if he doesn't "forget" what she once knew, including her own actions.

Theorem 1.1: If Γ_E is an extensive form game with perfect recall, then for any mixed strategy there is an outcome equivalent behaviour strategy and vice versa.

- 1.2 Rationalisable Strategies
- 1.3 Nash Equilibrium
- 1.4 Subgame Perfection in Dynamic Games
- 1.5 Excercises

Kapitel 2

Kooperative Spiele

- 2.1 Der Kern
- 2.2 Der Shapley-Wert
- 2.3 Einfache Spiele
- 2.4 Konvexe Spiele
- 2.5 Übungen

Kapitel 3

Evolutionäre Spieltheorie