CSE - 5526

Homework 3

Submitted by

Utkarsh Pratap Singh Jadon (500711257) $_{\rm jadon.1@osu.edu}$

Contents

1	Question 1	2
2	Question 2	5

1 Question 1

Given the following linerally separable training patterns:

$$\mathbf{x}_1 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, d_1 = 1$$

$$\mathbf{x}_2 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, d_2 = -1$$

$$\mathbf{x}_3 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, d_3 = -1$$

- 1. Find \mathbf{w}_o and b_o for the optimal hyperpane by optimizing the Lagrangian function.
- 2. Write down the discriminant function.
- 3. Specify which of the input patterns are support vectors.

Solution

1)

The SVM Dual Problem is given by:

$$Q(\alpha) = \sum \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j d_i d_j x_i^T x_j$$
 (1)

subject to:

$$1. \sum_{i=1}^{N} \alpha_i d_i = 0$$

$$2. \ \alpha_i \ge 0$$

Only the points x_i that lie on the supporting hyperplane have $\alpha_i > 0$. These Support Vectors determine the decision boundary.

$$W_0 = \sum_{i=1}^{N_s} \alpha_i d_i x_i$$

Substituting the values of x_i , x_j , d_i , and d_j in Eq (1), we get:

$$Q(\alpha) = -\frac{1}{2}[\alpha_2^2 + \alpha_3^2] + \alpha_1 + \alpha_2 + \alpha_3$$

such that
$$\alpha_1 - \alpha_2 - \alpha_3 = 0$$

Now, substituting the value of α_1 , we get:

$$Q(\alpha) = -\frac{1}{2}[\alpha_2^2 + \alpha_3^2] + 2\alpha_2 + 2\alpha_3$$

To maximize the cost function $Q(\alpha)$, we take partial derivatives with respect to α_2 and α_3 , as follows:

$$\begin{array}{l} \frac{\mathrm{d}Q(\alpha)}{\mathrm{d}\alpha_2} = -\alpha_2 + 2 = 0 \\ \Longrightarrow \alpha_2 = 2 \end{array}$$

Similarly,

$$\frac{\mathrm{d}Q(\alpha)}{\mathrm{d}\alpha_3} = -\alpha_3 + 2 = 0$$

$$\Longrightarrow \alpha_3 = 2$$

We know that $\alpha_1 - \alpha_2 - \alpha_3 = 0$

$$\implies \alpha_1 = 4$$

We know that, $W_0 = \sum_{i=1}^{N_s} \alpha_i d_i x_i$. Substituting the values of α_i , d_i , and x_i , we get:

$$W_0 = (4)(1)(0,0)^T + (2)(-1)(1,0)^T + (2)(-1)(0,1)^T$$

$$\Longrightarrow W_0 = (-2, -2)^T$$

Width of the margin is given by:

$$d = \frac{2}{\|W_0\|} = \frac{2}{2\sqrt{2}} = \frac{1}{\sqrt{2}}$$

To get the bias b, we substitute the values in $d(W_0^T x_i + b) = 1$ for any data point. For $(1,0)^T$, d = -1

$$(-1)((-2,-2)(1,0)^T + b) = 1$$

$$\Longrightarrow b = 1$$

2) Discriminant function is given by:

$$g(x) = 0$$

$$\Longrightarrow \mathbf{W}_0^T x + b = 0$$

$$\implies \left[-2 - 2 \right] \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + b = 0$$

3) All the input patterns with non-zero α values are support vectors. In this case, since all the obtained α values are non-zero, all three given data points $[0,0]^T,[1,0]^T$, and $[0,1]^T$ are the support vectors.

2 Question 2

Prove that the kernel matrix \mathbf{K} is positive semidefinite (for a definition, see p. 283 of the textbook) for inner-product kernel functions.

Solution

Kernel matrix K for inner-product kernel function is given by:

$$K = k(x_i, x_j)_{i,j=1}^N$$

where inner-product kernel function k is defined as:

$$k(x_i, x_j) = x_i^T x_j$$

Therefore, for a data-set with N=2, kernel matrix K can be written as:

$$K = \begin{bmatrix} K(x_1, x_1) & K(x_1, x_2) \\ K(x_2, x_1) & K(x_2, x_2) \end{bmatrix}$$

$$K = \begin{bmatrix} x_1^T x_1 & x_1^T x_2 \\ x_2^T x_1 & x_2^T x_2 \end{bmatrix}$$

We can prove K matrix to be Positive Semi-definite if following conditions are met:

- 1. K is symmetric
- $2. \ a^t Ka \geq 0$

Now, K^T is given by:

$$K^T = \begin{bmatrix} x_1^T x_1 & x_2^T x_1 \\ \\ x_1^T x_2 & x_2^T x_2 \end{bmatrix}$$

Here, $x_1^T x_2 = x_2^T x_1$ since dot product is commutative. Therefore, $K = K^T$, and hence K is symmetric.

Now, for $a^TKa \ge 0$, a is any real valued non-zero vector whose dimension is compatible with that of K.:

$$a = \begin{bmatrix} a_1 \\ a_2 \end{bmatrix}$$

$$a^T K a = \begin{bmatrix} a_1 \ a_2 \end{bmatrix} \begin{bmatrix} x_1^T x_1 & x_1^T x_2 \\ x_2^T x_1 & x_2^T x_2 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \end{bmatrix}$$

$$= \begin{bmatrix} a_1 x_1^T x_1 + a_2 x_2^T x_1 & a_1 x_1^T x_2 + a_2 x_2^T x_2 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} a_1^2 x_1^T x_1 + a_1 a_2 x_2^T x_1 + a_1 a_2 x_1^T x_2 + a_2^2 x_2^T x_2 \end{bmatrix}$$

$$= a_1^2 ||x_1||^2 + a_1 a_2 (x_1^T x_2 + x_2^T x_1) + a_2^2 ||x_2||^2$$

$$= a_1^2 ||x_1||^2 + 2a_1 a_2 x_1^T x_2 + a_2^2 ||x_2||^2$$

$$\Rightarrow (a_1 x_1 + a_2 x_2)^2 > 0$$

Hence, it is proved that kernel matrix K is Positive Semi-definite.