

# Machine Learning and Computational Intelligence Lecture 7

Sanjeeb Prasad Panday, PhD
Associate Professor
Dept. of Electronics and Computer Engineering
Director (ICTC)
IOE, TU

## Probability

- Joint probability
  - $P(A\&B), P(A,B), P(A \cap B)$
- Conditional probability

$$-P(A|B) = \frac{P(A \cap B)}{P(B)}$$

$$-P(A \cap B) = P(A|B) * P(B)$$

Independent variables

$$-P(A|B) = P(A)$$

$$-P(A \cap B) = P(A) * P(B)$$

Bayes Rule

$$-P(A|B) = \frac{P(B|A) \cdot P(A)}{P(B)}$$

## Bayesian Networks: A Tutorial

Weng-Keen Wong
School of Electrical Engineering and Computer Science
Oregon State University

Modified by
Longin Jan Latecki
Temple University
latecki@temple.edu



Suppose you are trying to determine if a patient has inhalational anthrax. You observe the following symptoms:

- The patient has a cough
- The patient has a fever
- The patient has difficulty breathing



You would like to determine how likely the patient is infected with inhalational anthrax given that the patient has a cough, a fever, and difficulty breathing

We are not 100% certain that the patient has anthrax because of these symptoms. We are dealing with uncertainty!



Now suppose you order an x-ray and observe that the patient has a wide mediastinum.

Your belief that that the patient is infected with inhalational anthrax is now much higher.

- In the previous slides, what you observed affected your belief that the patient is infected with anthrax
- This is called reasoning with uncertainty
- Wouldn't it be nice if we had some methodology for reasoning with uncertainty? Well in fact, we do...

## Bayesian Networks



- In the opinion of many AI researchers, Bayesian networks are the most significant contribution in AI in the last 10 years
- They are used in many applications eg. spam filtering, speech recognition, robotics, diagnostic systems and even syndromic surveillance

#### Outline

Introduction



- 2. Probability Primer
  - 3. Bayesian networks

## Probability Primer: Random Variables

- A random variable is the basic element of probability
- Refers to an event and there is some degree of uncertainty as to the outcome of the event
- For example, the random variable A could be the event of getting a head on a coin flip

#### Boolean Random Variables

- We will start with the simplest type of random variables Boolean ones
- Take the values *true* or *false*
- Think of the event as occurring or not occurring
- Examples (Let A be a Boolean random variable):
  - A = Getting a head on a coin flip
  - A =It will rain today

## The Joint Probability Distribution

- Joint probabilities can be between any number of variables
   eg. P(A = true, B = true, C = true)
- For each combination of variables, we need to say how probable that combination is
- The probabilities of these combinations need to sum to 1

| A     | В     | C     | <b>P</b> ( <b>A</b> , <b>B</b> , <b>C</b> ) |
|-------|-------|-------|---------------------------------------------|
| false | false | false | 0.1                                         |
| false | false | true  | 0.2                                         |
| false | true  | false | 0.05                                        |
| false | true  | true  | 0.05                                        |
| true  | false | false | 0.3                                         |
| true  | false | true  | 0.1                                         |
| true  | true  | false | 0.05                                        |
| true  | true  | true  | 0.15                                        |

Sums to 1

## The Joint Probability Distribution

- Once you have the joint probability distribution, you can calculate any probability involving *A*, *B*, and *C*
- Note: May need to use marginalization and Bayes rule, (both of which are not discussed in these slides)

| A     | В     | C     | <b>P</b> ( <b>A</b> , <b>B</b> , <b>C</b> ) |
|-------|-------|-------|---------------------------------------------|
| false | false | false | 0.1                                         |
| false | false | true  | 0.2                                         |
| false | true  | false | 0.05                                        |
| false | true  | true  | 0.05                                        |
| true  | false | false | 0.3                                         |
| true  | false | true  | 0.1                                         |
| true  | true  | false | 0.05                                        |
| true  | true  | true  | 0.15                                        |

#### Examples of things you can compute:

- P(A=true) = sum of P(A,B,C) in rows with A=true
- $P(A=true, B=true \mid C=true) =$

$$P(A = true, B = true, C = true) / P(C = true)$$

## The Problem with the Joint Distribution

- Lots of entries in the table to fill up!
- For k Boolean random variables, you need a table of size 2<sup>k</sup>
- How do we use fewer numbers? Need the concept of independence

| A     | В     | С     | <b>P</b> ( <b>A</b> , <b>B</b> , <b>C</b> ) |
|-------|-------|-------|---------------------------------------------|
| false | false | false | 0.1                                         |
| false | false | true  | 0.2                                         |
| false | true  | false | 0.05                                        |
| false | true  | true  | 0.05                                        |
| true  | false | false | 0.3                                         |
| true  | false | true  | 0.1                                         |
| true  | true  | false | 0.05                                        |
| true  | true  | true  | 0.15                                        |

## Independence

Variables *A* and *B* are independent if any of the following hold:

• 
$$P(A,B) = P(A) P(B)$$

• 
$$P(A / B) = P(A)$$

• 
$$P(B / A) = P(B)$$

This says that knowing the outcome of *A* does not tell me anything new about the outcome of *B*.

## Independence

How is independence useful?

- Suppose you have n coin flips and you want to calculate the joint distribution  $P(C_1, ..., C_n)$
- If the coin flips are not independent, you need 2<sup>n</sup> values in the table
- If the coin flips are independent, then

$$P(C_1,...,C_n) = \prod_{i=1}^n P(C_i)$$

Each  $P(C_i)$  table has 2 entries and there are n of them for a total of 2n values

## Conditional Independence

Variables *A* and *B* are conditionally independent given *C* if any of the following hold:

- P(A, B / C) = P(A / C) P(B / C)
- P(A / B, C) = P(A / C)
- P(B | A, C) = P(B | C)

Knowing C tells me everything about B. I don't gain anything by knowing A (either because A doesn't influence B or because knowing C provides all the information knowing A would give)

#### Outline

- 1. Introduction
- 2. Probability Primer
- 3. Bayesian networks

## A Bayesian Network

A Bayesian network is made up of:

1. A Directed Acyclic Graph



2. A set of tables for each node in the graph

| A     | P(A) | A     | В     | P(B A) |
|-------|------|-------|-------|--------|
| false | 0.6  | false | false | 0.01   |
| true  | 0.4  | false | true  | 0.99   |
|       |      | true  | false | 0.7    |
|       |      | true  | true  | 0.3    |

| В     | D     | P(D B) |
|-------|-------|--------|
| false | false | 0.02   |
| false | true  | 0.98   |
| true  | false | 0.05   |
| true  | true  | 0.95   |

| В     | C     | P(C B) |
|-------|-------|--------|
| false | false | 0.4    |
| false | true  | 0.6    |
| true  | false | 0.9    |
| true  | true  | 0.1    |

## A Directed Acyclic Graph

A

B

Each node in the graph is a random variable

A node *X* is a parent of another node *Y* if there is an arrow from node *X* to node *Y* eg. *A* is a parent of *B* 

Informally, an arrow from node *X* to node *Y* means *X* has a direct influence on *Y* 

#### A Set of Tables for Each Node



| A     | В     | P(B A) |
|-------|-------|--------|
| false | false | 0.01   |
| false | true  | 0.99   |
| true  | false | 0.7    |
| true  | true  | 0.3    |

| В     | C     | P(C B) |
|-------|-------|--------|
| false | false | 0.4    |
| false | true  | 0.6    |
| true  | false | 0.9    |
| true  | true  | 0.1    |

| A     | В     | P(B A) |
|-------|-------|--------|
| false | false | 0.01   |
| false | true  | 0.99   |
| true  | false | 0.7    |
| true  | true  | 0.3    |

Each node  $X_i$  has a conditional probability distribution  $P(X_i | Parents(X_i))$ that quantifies the effect of the parents on the node

The parameters are the probabilities in these conditional probability tables (CPTs)

| В     | D     | P(D B) |
|-------|-------|--------|
| false | false | 0.02   |
| false | true  | 0.98   |
| true  | false | 0.05   |
| true  | true  | 0.95   |

#### A Set of Tables for Each Node

## Conditional Probability Distribution for C given B

| В     | C     | P(C B) |
|-------|-------|--------|
| false | false | 0.4    |
| false | true  | 0.6    |
| true  | false | 0.9    |
| true  | true  | 0.1    |

For a given combination of values of the parents (B in this example), the entries for P(C=true | B) and P(C=false | B) must add up to 1 eg. P(C=true | B=false) + P(C=false |B=false)=1

If you have a Boolean variable with k Boolean parents, this table has  $2^{k+1}$  probabilities (but only  $2^k$  need to be stored)

## Bayesian Networks

#### Two important properties:

- 1. Encodes the conditional independence relationships between the variables in the graph structure
- 2. Is a compact representation of the joint probability distribution over the variables

## Conditional Independence

The Markov condition: given its parents  $(P_1, P_2)$ , a node (X) is conditionally independent of its non-descendants  $(ND_1, ND_2)$ 



## The Joint Probability Distribution

Due to the Markov condition, we can compute the joint probability distribution over all the variables  $X_1, ..., X_n$  in the Bayesian net using the formula:

$$P(X_1 = x_1, ..., X_n = x_n) = \prod_{i=1}^n P(X_i = x_i \mid Parents(X_i))$$

Where  $Parents(X_i)$  means the values of the Parents of the node  $X_i$  with respect to the graph

## Using a Bayesian Network Example

Using the network in the example, suppose you want to calculate:

```
P(A = true, B = true, C = true, D = true)
= P(A = true) * P(B = true | A = true) *
P(C = true | B = true) P(D = true | B = true)
= (0.4)*(0.3)*(0.1)*(0.95)
```



## Using a Bayesian Network Example

Using the network in the example, suppose you want to calculate:

$$P(A = true, B = true, C = true, D = true)$$

$$= P(A = true) * P(B = true | A = true) *$$

$$P(C = true \mid B = true) P(D = true \mid B = true)$$

$$= (0.4)*(0.3)*(0.1)*(0.95)$$

These numbers are from the conditional probability tables

This is from the graph structure



#### Joint Probability Factorization

For any joint distribution of random variables the following factorization is always true:

$$P(A, B, C, D) = P(A)P(B | A)P(C | A, B)P(D | A, B, C)$$

We derive it by repeatedly applying the Bayes' Rule P(X,Y)=P(X|Y)P(Y):

$$P(A, B, C, D) = P(B, C, D | A)P(A)$$

$$= P(C, D | B, A)P(B | A)P(A)$$

$$= P(D | C, B, A)P(C | B, A)P(B | A)P(A)$$

$$P(A)P(B | A)P(C | A, B)P(D | A, B, C)$$

#### Joint Probability Factorization

Our example graph carries additional independence information, which simplifies the joint distribution:

$$P(A, B, C, D) = P(A)P(B | A)P(C | A, B)P(D | A, B, C)$$
  
=  $P(A)P(B | A)P(C | B)P(D | B)$ 

This is why, we only need the tables for P(A), P(B|A), P(C|B), and P(D|B) and why we computed P(A = true, B = true, C = true, D = true)  $= P(A = \text{true}) * P(B = \text{true} \mid A = \text{true}) * P(C = \text{true} \mid B = \text{true}) P(D = \text{true} \mid B = \text{true})$  = (0.4)\*(0.3)\*(0.1)\*(0.95)



#### Inference

- Using a Bayesian network to compute probabilities is called inference
- In general, inference involves queries of the form:

```
P(X \mid E)
E = \text{The evidence variable(s)}
X = \text{The query variable(s)}
```

#### Inference



- An example of a query would be:
   P( HasAnthrax = true | HasFever = true, HasCough = true)
- Note: Even though *HasDifficultyBreathing* and *HasWideMediastinum* are in the Bayesian network, they are not given values in the query (ie. they do not appear either as query variables or evidence variables)
- They are treated as unobserved variables and summed out.

#### Inference Example

Supposed we know that A=true.

What is more probable C=true or D=true?

For this we need to compute

$$P(C=t \mid A=t)$$
 and  $P(D=t \mid A=t)$ .

Let us compute the first one.



$$P(C = t \mid A = t) = \frac{P(A = t, C = t)}{P(A = t)} = \frac{\sum_{b,d} P(A = t, B = b, C = t, D = d)}{P(A = t)}$$

0.3

true

| A     | P(A) | A     | В     | P(B A) |
|-------|------|-------|-------|--------|
| false | 0.6  | false | false | 0.01   |
| true  | 0.4  | false | true  | 0.99   |
|       | -    | true  | false | 0.7    |
|       |      |       |       |        |

true

| В     | D     | P(D B) |
|-------|-------|--------|
| false | false | 0.02   |
| false | true  | 0.98   |
| true  | false | 0.05   |
| true  | true  | 0.95   |

| В     | C     | P(C B) |
|-------|-------|--------|
| false | false | 0.4    |
| false | true  | 0.6    |
| true  | false | 0.9    |
| true  | true  | 0.1    |

#### What is P(A=true)?

$$P(A = t) = \sum_{b \in d} P(A = t, B = b, C = c, D = d)$$

$$= \sum_{a=0}^{\infty} P(A=t)P(B=b \mid A=t)P(C=c \mid B=b)P(D=d \mid B=b)$$

$$= P(A = t) \sum_{a=0}^{\infty} P(B = b \mid A = t) P(C = c \mid B = b) P(D = d \mid B = b)$$

$$= P(A = t) \sum_{b} P(B = b \mid A = t) \sum_{c \neq d} P(C = c \mid B = b) P(D = d \mid B = b)$$

$$= P(A = t) \sum_{b} P(B = b \mid A = t) \sum_{c} P(C = c \mid B = b) \sum_{d} P(D = d \mid B = b)$$

$$= P(A = t) \sum_{b} P(B = b \mid A = t) \sum_{c} P(C = c \mid B = b) *1$$

$$= 0.4(P(B=t \mid A=t)\sum P(C=c \mid B=t) + P(B=f \mid A=t)\sum P(C=c \mid B=f)) = \dots$$

| A     | P(A) | A     | В     | P(B A) |
|-------|------|-------|-------|--------|
| false | 0.6  | false | false | 0.01   |
| true  | 0.4  | false | true  | 0.99   |
|       |      | true  | false | 0.7    |
|       |      | true  | true  | 0.3    |

| В     | D     | P(D B) |
|-------|-------|--------|
| false | false | 0.02   |
| false | true  | 0.98   |
| true  | false | 0.05   |
| true  | true  | 0.95   |

| В     | C     | P(C B) |
|-------|-------|--------|
| false | false | 0.4    |
| false | true  | 0.6    |
| true  | false | 0.9    |
| true  | true  | 0.1    |

B

#### What is P(C=true, A=true)?

$$P(A = t, C = t) = \sum_{b,d} P(A = t, B = b, C = t, D = d)$$

$$= \sum_{b,d} P(A=t)P(B=b \mid A=t)P(C=t \mid B=b)P(D=d \mid B=b)$$

$$= P(A = t) \sum_{b} P(B = b \mid A = t) P(C = t \mid B = b) \sum_{d} P(D = d \mid B = b)$$

$$= 0.4(P(B = t \mid A = t)P(C = t \mid B = t)\sum_{d} P(D = d \mid B = t)$$

$$+P(B = f \mid A = t)P(C = t \mid B = f)\sum_{d} P(D = d \mid B = f)$$

$$= 0.4(0.3*0.1*1+0.7*0.6*1) = 0.4(0.03+0.42) = 0.4*0.45 = 0.18$$

| A     | P(A) | A     | В     | P(B A) |
|-------|------|-------|-------|--------|
| false | 0.6  | false | false | 0.01   |
| true  | 0.4  | false | true  | 0.99   |
|       |      | true  | false | 0.7    |
|       |      | true  | true  | 0.3    |

| В     | D     | P(D B) |
|-------|-------|--------|
| false | false | 0.02   |
| false | true  | 0.98   |
| true  | false | 0.05   |
| true  | true  | 0.95   |

| В     | C     | P(C B) |
|-------|-------|--------|
| false | false | 0.4    |
| false | true  | 0.6    |
| true  | false | 0.9    |
| true  | true  | 0.1    |

B

#### **BAYESIAN BELIEF NETWORKS – EXAMPLE – 1**

- You have a new burglar alarm installed at home.
- It is fairly reliable at detecting burglary, but also sometimes responds to minor earthquakes.
- You have two neighbors, John and Merry, who promised to call you at work when they hear the alarm.
- John always calls when he hears the alarm, but sometimes confuses telephone ringing with the alarm and calls too.
- Merry likes loud music and sometimes misses the alarm.
- Given the evidence of who has or has not called, we would like to estimate the probability of a burglary.

#### **BAYESIAN BELIEF NETWORKS – EXAMPLE – 1**



1. What is the probability that the alarm has sounded but neither a burglary nor an earthquake has occurred, and both John and Merry call?



#### Solution:

$$P(j \land m \land a \land \neg b \land \neg e) = P(j \mid a) P(m \mid a) P(a \mid \neg b, \neg e) P(\neg b) P(\neg e)$$
  
= 0.90 × 0.70 × 0.001 × 0.999 × 0.998  
= 0.00062

2. What is the probability that John call?

Solution:



$$P(j) = P(j \mid a) P(a) + P(j \mid \neg a) P(\neg a)$$



$$= P(j|a)\{P(a|b,e)*P(b,e)+P(a|\neg b,e)*P(\neg b,e)+P(a|b,\neg e)*P(b,\neg e)+P(a|\neg b,\neg e)*P(\neg b,\neg e)\}$$
 
$$+ P(j|\neg a)\{P(\neg a|b,e)*P(b,e)+P(\neg a|\neg b,e)*P(\neg b,e)+P(\neg a|b,\neg e)*P(b,\neg e)+P(\neg a|\neg b,\neg e)*P(\neg b,\neg e)\}$$

= 0.90 \* 0.00252 + 0.05 \* 0.9974 = 0.0521



3. What is the probability that there is a burglary given that John and Merry calls?

- Suppose, we are given for the evidence variables E<sub>1</sub>,...,E<sub>m</sub>, their values e<sub>1</sub>,...,e<sub>m</sub>, and we want to predict whether the query variable X has the value x or not.
- For this we compute and compare the following:

$$P(x \mid e_1, ..., e_m) = \frac{P(x, e_1, ..., e_m)}{P(e_1, ..., e_m)} = \alpha P(x, e_1, ..., e_m)$$

$$P(\neg x \mid e_1, ..., e_m) = \frac{P(\neg x, e_1, ..., e_m)}{P(e_1, ..., e_m)} = \alpha P(\neg x, e_1, ..., e_m)$$

$$\alpha = \frac{1}{(P(x, e_1, ..., e_m) + P(\neg x, e_1, ..., e_m))}$$

P(E)

P(B)

3. What is the probability that there is a burglary given that John and

Merry calls?

$$P(b \mid j,m) = \alpha P(b) \sum_{a} P(j|a) P(m|a) \sum_{e} P(a|b,e) P(e)$$

$$= \alpha P(b) \sum_{a} P(j|a) P(m|a) \left\{ P(a|b,e) P(e) + P(a|b,\neg e) P(\neg e) \right\}$$

$$= \alpha P(b) \left[ P(j|a) P(m|a) \left\{ P(a|b,e) P(e) + P(a|b,\neg e) P(\neg e) \right\} \right]$$

$$= \alpha P(b) \left[ P(j|a) P(m|a) \left\{ P(a|b,e) P(e) + P(a|b,\neg e) P(\neg e) \right\} \right]$$

$$+ P(j|\neg a) P(m|\neg a) \left\{ P(\neg a|b,e) P(e) + P(\neg a|b,\neg e) P(\neg e) \right\} \right]$$

$$= \alpha P(b) \left[ P(j|a) P(m|a) \left\{ P(a|b,e) P(e) + P(a|b,\neg e) P(\neg e) \right\} \right]$$

$$= \alpha * .001*(.9*.7*(.95*.002 + .94*.998) + .05*.01*(.05*.002 + .71*.998))$$

 $= \alpha * .00059$ 

P(E)

.002

A P(M|A)

.70

Earthquake

MaryCalls

P(B)

Alarm

A P(J|A)

Burglary

3. What is the probability that there is a burglary given that John and

Merry calls?

 $= \alpha * .0015$ 

$$P(\neg b \mid j,m) = \alpha P(\neg b) \sum_{a} P(j|a) P(m|a) \sum_{e} P(a|\neg b,e) P(e)$$

$$= \alpha P(\neg b) \sum_{a} P(j|a) P(m|a) \left\{ P(a|\neg b,e) P(e) + P(a|\neg b,\neg e) P(\neg e) \right\}$$

$$= \alpha P(\neg b) \left[ P(j|a) P(m|a) \left\{ P(a|\neg b,e) P(e) + P(a|\neg b,\neg e) P(\neg e) \right\} \right]$$

$$+ P(j|\neg a) P(m|\neg a) \left\{ P(\neg a|\neg b,e) P(e) + P(\neg a|\neg b,\neg e) P(\neg e) \right\} \right]$$

$$= \alpha * .999*(.9*.7*(.29*.002 + .001*.998) + .05*.01*(.71*.002 + .999*.998))$$

3. What is the probability that there is a burglary given that John and Merry calls?

$$\alpha = \frac{1}{(P(b,j,m) + P(\neg b,j,m))}$$

$$\alpha = \frac{1}{(.00059 + .0015)}$$

= 478.5

P(b | j, m) = 
$$\propto * P(b, j, m)$$
  
= 478.5 \* .00059  
= 0.28  
P( $\neg b | j, m$ ) =  $\propto * P(\neg b, j, m)$   
= 478.5 \* .0015

#### Naïve Bayes Classifier

#### **QUIZZ**: Probability Basics

- Quiz: We have two six-sided dice. When they are rolled, it could end up with the following occurrence: (A) dice 1 lands on side "3", (B) dice 2 lands on side "1", and (C) Two dice sum to eight. Answer the following questions:
  - 1) P(A) = ?
  - 2) P(B) = ?
  - 3) P(C) = ?
  - 4) P(A | B) = ?
  - 5) P(C | A) = ?
  - 6) P(A, B) = ?
  - 7) P(A,C) = ?
  - 8) Is P(A,C) equals P(A) \* P(C)?



# Probabilistic Classification

#### **Probabilistic Classification**

- Establishing a probabilistic model for classification
  - Discriminative model

$$P(C \mid \mathbf{X}) \quad C = c_1, \dots, c_L, \mathbf{X} = (X_1, \dots, X_n)$$

What is a discriminative Probabilistic Classifier?



#### Example

- C<sub>1</sub> benign mole
- $C_2$  cancer

#### Probabilistic Classification

- Establishing a probabilistic model for classification (cont.)
  - Generative model



#### Background: Methods to create classifiers

There are three methods to establish a classifier

#### a) Model a classification rule directly

Examples: k-NN, decision trees, perceptron, SVM

#### b) Model the probability of class memberships given input data

Example: Perceptron with the cross-entropy cost

#### c) Make a probabilistic model of data within each class

Examples: Naive Bayes, model based classifiers

- a) and b) are examples of discriminative classification
- c) is an example of generative classification
- b) and c) are both examples of probabilistic classification

GOOD NEWS: You can create your own hardware/software classifiers!

#### **Probability Basics**

- We defined prior, conditional and joint probability for random variables
  - Prior probability: P(X)
  - Conditional probability:  $P(X_1 | X_2), P(X_2 | X_1)$
  - Joint probability:  $\mathbf{X} = (X_1, X_2), P(\mathbf{X}) = P(X_1, X_2)$
  - Relationship:  $P(X_1, X_2) = P(X_2 | X_1)P(X_1) = P(X_1 | X_2)P(X_2)$
  - Independence:  $P(X_2 \mid X_1) = P(X_2)$ ,  $P(X_1 \mid X_2) = P(X_1)$ ,  $P(X_1, X_2) = P(X_1)P(X_2)$
- Bavesian Rule

$$P(C \mid \mathbf{X}) = \frac{P(\mathbf{X} \mid C)P(C)}{P(\mathbf{X})}$$
  $\longrightarrow$  Posterior =  $\frac{Likelihood \times Prior}{Evidence}$ 

#### Method: Probabilistic Classification with MAP

- MAP classification rule
  - MAP: Maximum A Posterior

We use this rule in many applications

- Assign x to  $c^*$  if

$$P(C = c^* | \mathbf{X} = \mathbf{x}) > P(C = c | \mathbf{X} = \mathbf{x}) \quad c \neq c^*, \ c = c_1, \dots, c_L$$

- Method of Generative classification with the MAP rule
  - 1. Apply Bayesian rule to convert them into posterior probabilities

$$P(C = c_i \mid \mathbf{X} = \mathbf{x}) = \frac{P(\mathbf{X} = \mathbf{x} \mid C = c_i)P(C = c_i)}{P(\mathbf{X} = \mathbf{x})}$$

$$\propto P(\mathbf{X} = \mathbf{x} \mid C = c_i)P(C = c_i)$$
for  $i = 1, 2, \dots, L$ 

2. Then apply the MAP rule

### Naïve Bayes

#### Naïve Bayes

For a class, the previous generative model can be decomposed by **n** generative models of a single input.

probabilities

#### Bayes classification

$$P(C \mid \mathbf{X}) \propto P(\mathbf{X} \mid C)P(C) = P(X_1, \dots, X_n \mid C)P(C)$$

Difficulty: learning the joint probability  $P(X_1, \dots, X_n \mid C)$ 

#### Naïve Bayes classification

Assumption that all input attributes are conditionally independent!

$$P(X_{1}, X_{2}, \dots, X_{n} \mid C) = P(X_{1} \mid X_{2}, \dots, X_{n}, C)P(X_{2}, \dots, X_{n} \mid C)$$

$$= P(X_{1} \mid C)P(X_{2}, \dots, X_{n} \mid C)$$

$$= P(X_{1} \mid C)P(X_{2} \mid C) \dots P(X_{n} \mid C)$$
Product of individual

– MAP classification rule: for  $\mathbf{x} = (x_1, x_2, \dots, x_n)$ 

$$[P(x_1 | c^*) \cdots P(x_n | c^*)]P(c^*) > [P(x_1 | c) \cdots P(x_n | c)]P(c), c \neq c^*, c = c_1, \dots, c_L$$

#### Naïve Bayes Algorithm

- Naïve Bayes Algorithm (for discrete input attributes) has two phases
  - Learning Phase: Given a training set S,

Learning is easy, just create probability tables.

For each target value of  $c_i$  ( $c_i = c_1, \dots, c_L$ )

$$\hat{P}(C = c_i) \leftarrow \text{estimate } P(C = c_i) \text{ with examples in } \mathbf{S};$$

For every attribute value  $x_{jk}$  of each attribute  $X_j$   $(j = 1, \dots, n; k = 1, \dots, N_j)$ 

$$\hat{P}(X_j = x_{jk} \mid C = c_i) \leftarrow \text{estimate } P(X_j = x_{jk} \mid C = c_i) \text{ with examples in } \mathbf{S};$$

Output: conditional probability tables; for  $X_i, N_i \times L$  elements

**2. Test Phase**: Given an unknown instance  $X' = (a'_1, \dots, a'_n)$ , Look up tables to assign the label  $c^*$  to X' if

$$[\hat{P}(a'_1 \mid c^*) \cdots \hat{P}(a'_n \mid c^*)]\hat{P}(c^*) > [\hat{P}(a'_1 \mid c) \cdots \hat{P}(a'_n \mid c)]\hat{P}(c), c \neq c^*, c = c_1, \dots, c_L$$

Classification is easy, just multiply probabilities

#### Tennis Example

• Example: Play Tennis

*PlayTennis*: training examples

|     |          | J           | 0        |        |            |
|-----|----------|-------------|----------|--------|------------|
| Day | Outlook  | Temperature | Humidity | Wind   | PlayTennis |
| D1  | Sunny    | Hot         | High     | Weak   | No         |
| D2  | Sunny    | Hot         | High     | Strong | No         |
| D3  | Overcast | Hot         | High     | Weak   | Yes        |
| D4  | Rain     | Mild        | High     | Weak   | Yes        |
| D5  | Rain     | Cool        | Normal   | Weak   | Yes        |
| D6  | Rain     | Cool        | Normal   | Strong | No         |
| D7  | Overcast | Cool        | Normal   | Strong | Yes        |
| D8  | Sunny    | Mild        | High     | Weak   | No         |
| D9  | Sunny    | Cool        | Normal   | Weak   | Yes        |
| D10 | Rain     | Mild        | Normal   | Weak   | Yes        |
| D11 | Sunny    | Mild        | Normal   | Strong | Yes        |
| D12 | Overcast | Mild        | High     | Strong | Yes        |
| D13 | Overcast | Hot         | Normal   | Weak   | Yes        |
| D14 | Rain     | Mild        | High     | Strong | No         |

*PlayTennis*: training examples

| rayrenner training examples |          |             |          |        |            |
|-----------------------------|----------|-------------|----------|--------|------------|
| Day                         | Outlook  | Temperature | Humidity | Wind   | PlayTennis |
| D1                          | Sunny    | Hot         | High     | Weak   | No         |
| D2                          | Sunny    | Hot         | High     | Strong | No         |
| D3                          | Overcast | Hot         | High     | Weak   | Yes        |
| D4                          | Rain     | Mild        | High     | Weak   | Yes        |
| D5                          | Rain     | Cool        | Normal   | Weak   | Yes        |
| D6                          | Rain     | Cool        | Normal   | Strong | No         |
| D7                          | Overcast | Cool        | Normal   | Strong | Yes        |
| D8                          | Sunny    | Mild        | High     | Weak   | No         |
| D9                          | Sunny    | Cool        | Normal   | Weak   | Yes        |
| D10                         | Rain     | Mild        | Normal   | Weak   | Yes        |
| D11                         | Sunny    | Mild        | Normal   | Strong | Yes        |
| D12                         | Overcast | Mild        | High     | Strong | Yes        |
| D13                         | Overcast | Hot         | Normal   | Weak   | Yes        |
| D14                         | Rain     | Mild        | High     | Strong | No C       |

| Outlook  | Play=Yes | Play=No |
|----------|----------|---------|
| Sunny    | 2/9      | 3/5     |
| Overcast | 4/9      | 0/5     |
| Rain     | 3/9      | 2/5     |

| Humidity | Play=Yes | Play=N<br>o |
|----------|----------|-------------|
| High     | 3/9      | 4/5         |
| Normal   | 6/9      | 1/5         |

### The <u>learning phase</u> for tennis example

$$P(\text{Play=Yes}) = 9/14$$

$$P(\text{Play}=No) = 5/14$$

We have four variables, we calculate for each we calculate the conditional probability table

| Temperature | Play=Yes | Play=No |
|-------------|----------|---------|
| Hot         | 2/9      | 2/5     |
| Mild        | 4/9      | 2/5     |
| Cool        | 3/9      | 1/5     |

| Wind   | Play=Yes | Play=No |
|--------|----------|---------|
| Strong | 3/9      | 3/5     |
| Weak   | 6/9      | 2/5     |

#### Formulation of a Classification Problem

Given the data as found in last slide:

 Find for a new point in space (vector of values) to which group it belongs (classify)

#### The **test phase** for the tennis example

#### Test Phase

Given a new instance of variable values,

```
x'=(Outlook=Sunny, Temperature=Cool, Humidity=High, Wind=Strong)
```

Given calculated Look up tables

```
P(Outlook=Sunny | Play=Yes) = 2/9 \qquad P(Outlook=Sunny | Play=No) = 3/5 \\ P(Temperature=Cool | Play=Yes) = 3/9 \qquad P(Temperature=Cool | Play==No) = 1/5 \\ P(Huminity=High | Play=Yes) = 3/9 \qquad P(Huminity=High | Play=No) = 4/5 \\ P(Wind=Strong | Play=Yes) = 3/9 \qquad P(Wind=Strong | Play=No) = 3/5 \\ P(Play=Yes) = 9/14 \qquad P(Play=No) = 5/14
```

#### **Use the MAP rule to calculate Yes or No**

```
 \begin{array}{l} \textbf{P(Yes | x'):} & [P(Sunny | Yes)P(Cool | Yes)P(High | Yes)P(Strong | Yes)]P(Play=Yes) = 0.0053 \\ \textbf{P(No | x'):} & [P(Sunny | No) P(Cool | No)P(High | No)P(Strong | No)]P(Play=No) = 0.0206 \\ \end{array}
```

Given the fact P(Yes | x') < P(No | x'), we label x' to be "No".

### Issues Relevant to Naïve Bayes

#### Issues Relevant to Naïve Bayes

1. Violation of Independence Assumption

2. Zero conditional probability Problem

#### Issues Relevant to Naïve Bayes

#### First Issue

1. Violation of Independence Assumption

Events are correlated

- For many real world tasks,  $P(X_1,\dots,X_n \mid C) \neq P(X_1 \mid C) \dots P(X_n \mid C)$
- Nevertheless, naïve Bayes works surprisingly well anyway!

#### Issues Relevant to Naïve Bayes

#### Second Issue

#### 1. Zero conditional probability Problem

- Such problem exists when no example contains the attribute value  $P(X_1, \dots, X_n \mid C) \neq P(X_1 \mid C) \dots P(X_n \mid C)$ 

$$\hat{P}(x_1 \mid c_i) \cdots \hat{P}(a_{ik} \mid c_i) \cdots \hat{P}(x_n \mid c_i) = 0$$

- In this circumstance,  $X_i = a_{jk}$ ,  $\hat{P}(X_i = a_{jk} \mid C = c_i) = 0$  during test
- For a remedy, conditional probabilities are estimated with

$$\hat{P}(X_j = a_{jk} \mid C = c_i) = \frac{n_c + mp}{n + m}$$

 $n_c$ : number of training examples for which  $X_i = a_{jk}$  and  $C = c_i$ 

*n*: number of training examples for which  $C = c_i$ 

p: prior estimate (usually, p = 1/t for t possible values of  $X_i$ )

m: weight to prior (number of "virtual" examples,  $m \ge 1$ )

#### 1 The Classifier

The Bayes Naive classifier selects the most likely classification  $V_{nb}$  given the attribute values  $a_1, a_2, \dots a_n$ . This results in:

$$V_{nb} = \operatorname{argmax}_{v_j \in V} P(v_j) \prod P(a_i | v_j)$$
(1)

We generally estimate  $P(a_i|v_j)$  using m-estimates:

$$P(a_i|v_j) = \frac{n_c + mp}{n+m} \tag{2}$$

where:

n = the number of training examples for which  $v = v_j$ 

 $n_c$  = number of examples for which  $v = v_j$  and  $a = a_i$ 

p = a priori estimate for  $P(a_i|v_j)$ 

m = the equivalent sample size

#### 2 Car theft Example

Attributes are Color, Type, Origin, and the subject, stolen can be either yes or no.

#### 2.1 data set

| Example No. | Color  | Type   | Origin          | Stolen? |
|-------------|--------|--------|-----------------|---------|
| 1           | Red    | Sports | Domestic        | Yes     |
| 2           | Red    | Sports | Domestic        | No      |
| 3           | Red    | Sports | Domestic        | Yes     |
| 4           | Yellow | Sports | Domestic        | No      |
| 5           | Yellow | Sports | Imported        | Yes     |
| 6           | Yellow | SUV    | <b>Imported</b> | No      |
| 7           | Yellow | SUV    | <b>Imported</b> | Yes     |
| 8           | Yellow | SUV    | Domestic        | No      |
| 9           | Red    | SUV    | <b>Imported</b> | No      |
| 10          | Red    | Sports | <b>Imported</b> | Yes     |

#### 2.2 Training example

We want to classify a Red Domestic SUV. Note there is no example of a Red Domestic SUV in our data set. Looking back at equation (2) we can see how to compute this. We need to calculate the probabilities

```
P(Red|No) , P(SUV|No), and P(Domestic|No)
```

and multiply them by P(Yes) and P(No) respectively . We can estimate these values using equation (3).

```
Yes:
                         No:
    Red:
                             Red:
        n = 5
                                  n = 5
        n c = 3
                                  nc = 2
        p = .5
                                  p = .5
        m = 3
                                  m = 3
    SUV:
                             SUV:
        n = 5
                                  n = 5
        nc = 1
                                  nc = 3
        p = .5
                                  p = .5
        m = 3
                                  m = 3
    Domestic:
                             Domestic:
        n = 5
                                  n = 5
        n c = 2
                                  nc = 3
        p = .5
                                  p = .5
        m = 3
                                  m = 3
```

P(Red Yes), P(SUV Yes), P(Domestic Yes),

Looking at P(Red|Yes), we have 5 cases where  $v_j$  = Yes , and in 3 of those cases  $a_i$  = Red. So for P(Red|Yes), n = 5 and  $n_c$  = 3. Note that all attribute are binary (two possible values). We are assuming no other information so, p = 1 / (number-of-attribute-values) = 0.5 for all of our attributes. Our m value is arbitrary, (We will use m = 3) but consistent for all attributes. Now we simply apply equation (3) using the precomputed values of n,  $n_c$ , p, and m.

$$P(Red|Yes) = \frac{3+3*.5}{5+3} = .56$$

$$P(Red|No) = \frac{2+3*.5}{5+3} = .43$$

$$P(SUV|Yes) = \frac{1+3*.5}{5+3} = .31$$

$$P(SUV|No) = \frac{3+3*.5}{5+3} = .56$$

$$P(Domestic|Yes) = \frac{2+3*.5}{5+3} = .43$$

$$P(Domestic|No) = \frac{3+3*.5}{5+3} = .56$$

We have P(Yes) = .5 and P(No) = .5, so we can apply equation (2). For v = Yes, we have  $P(Yes) * P(Red \mid Yes) * P(SUV \mid Yes) * P(Domestic \mid Yes)$  = .5 \* .56 \* .31 \* .43 = .037

and for v = No, we have

Since 0.069 > 0.037, our example gets classified as 'NO'

### Naïve Bayesian Classifier: Training Dataset



#### **Class:**

C1:buys\_computer = 'yes' C2:buys\_computer = 'no'

#### **New Data:**

X = (age <=30,
Income = medium,
Student = yes
Credit\_rating = Fair)</pre>

| age  | income | student | <mark>credit_ratin</mark> | <mark>ig_com</mark> i |
|------|--------|---------|---------------------------|-----------------------|
| <=30 | high   | no      | fair                      | no                    |
| <=30 | high   | no      | excellent                 | no                    |
| 3140 | high   | no      | fair                      | yes                   |
| >40  | medium | no      | fair                      | yes                   |
| >40  | low    | yes     | fair                      | yes                   |
| >40  | low    | yes     | excellent                 | no                    |
| 3140 | low    | yes     | excellent                 | yes                   |
| <=30 | medium | no      | fair                      | no                    |
| <=30 | low    | yes     | fair                      | yes                   |
| >40  | medium | yes     | fair                      | yes                   |
| <=30 | medium | yes     | excellent                 | yes                   |
| 3140 | medium | no      | excellent                 | yes                   |
| 3140 | high   | yes     | fair                      | yes                   |
| >40  | medium | no      | excellent                 | no                    |



Given X (age=youth, income=medium, student=yes, credit=fair)

Maximize P(X | Ci)P(Ci), for i=1,2

**First step**: Compute P(C) The prior probability of each class can be computed based on the training tuples:

P(buys\_computer=yes)=9/14=0.643

P(buys\_computer=no)=5/14=0.357



```
Given X (age=youth, income=medium, student=yes, credit=fair)
Maximize P(X | Ci)P(Ci), for i=1,2
Second step: compute P(X|Ci)
P(X|buys_computer=yes)= P(age=youth|buys_computer=yes)x
                        P(income=medium|buys_computer=yes) x
                        P(student=yes|buys_computer=yes)x
                        P(credit rating=fair|buys_computer=yes)
                        = 0.044
P(age=youth|buys_computer=yes)=0.222
P(income=medium|buys_computer=yes)=0.444
P(student=yes|buys_computer=yes)=6/9=0.667
P(credit_rating=fair|buys_computer=yes)=6/9=0.667
```



```
Given X (age=youth, income=medium, student=yes, credit=fair)
Maximize P(X | Ci)P(Ci), for i=1,2
Second step: compute P(X|Ci)
P(X|buys_computer=no)= P(age=youth|buys_computer=no)x
                        P(income=medium|buys_computer=no) x
                        P(student=yes|buys_computer=no) x
                        P(credit rating=fair|buys_computer=no)
                        = 0.019
P(age=youth|buys_computer=no)=3/5=0.666
P(income=medium|buys_computer=no)=2/5=0.400
P(student=yes|buys_computer=no)=1/5=0.200
P(credit_rating=fair|buys_computer=no)=2/5=0.400
```



Given X (age=youth, income=medium, student=yes, credit=fair)

Maximize P(X|Ci)P(Ci), for i=1,2

#### We have computed in the first and second steps:

P(buys\_computer=yes)=9/14=0.643

P(buys\_computer=no)=5/14=0.357

P(X|buys\_computer=yes)= 0.044

P(X|buys\_computer=no)= 0.019

Third step: compute P(X | Ci)P(Ci) for each class

P(X|buys\_computer=yes)P(buys\_computer=yes)=0.044 x 0.643=0.028 P(X|buys\_computer=no)P(buys\_computer=no)=0.019 x 0.357=0.007

The naïve Bayesian Classifier predicts **X belongs to class ("buys\_computer = yes")** 

#### **Avoiding the 0-Probability Problem**



- If one of the conditional probability is zero, then the entire expression becomes zero
- Probability estimation:

Original: 
$$P(A_i \mid C) = \frac{N_{ic}}{N_c}$$

Laplace: 
$$P(A_i \mid C) = \frac{N_{ic} + 1}{N_c + c}$$

m - estimate : 
$$P(A_i \mid C) = \frac{N_{ic} + mp}{N_c + m}$$

c: number of classes

p: prior probability

m: parameter

#### Naïve Bayes (Summary)



#### Advantage

- Robust to isolated noise points
- Handle missing values by ignoring the instance during probability estimate calculations
- Robust to irrelevant attributes

#### Disadvantage

- Assumption: class conditional independence, which may cause loss of accuracy
- Independence assumption may not hold for some attribute.
   Practically, dependencies exist among variables
  - Use other techniques such as Bayesian Belief Networks (BBN)

#### Remember



- Bayes' rule can be turned into a classifier
- Maximum A Posteriori (MAP) hypothesis estimation incorporates prior knowledge; Max Likelihood (ML) doesn't
- Naive Bayes Classifier is a simple but effective Bayesian classifier for vector data (i.e. data with several attributes) that assumes that attributes are independent given the class.
- Bayesian classification is a generative approach to classification



## Thank you for your attention