Analytical Geometry and Linear Algebra I, Class #12

Innopolis University, November 2022

1 Polar coordinates

- 1. Find the equation of the line joining the points $\begin{bmatrix} \frac{2}{\pi} \\ \frac{1}{3} \end{bmatrix}$ and $\begin{bmatrix} \frac{3}{\pi} \\ \frac{1}{6} \end{bmatrix}$. It should deduce that this line also passes through the point $\begin{bmatrix} \frac{6}{3\sqrt{3}-2} \\ \frac{\pi}{2} \end{bmatrix}$.
- 2. Find the equation of the line perpendicular to $\frac{l}{r} = \cos(\theta \alpha) + e \, \cos(\theta)$ and passing through the point $\begin{bmatrix} r_1 \\ \theta_1 \end{bmatrix}$.
- 3. Show that the feet of the perpendiculars from the origin on the sides of the triangle formed by the points with vectorial angles α , β , γ and which lie on the circle $r = 2a\cos(\theta)$ lie on the straight line $2a\cos(\alpha)\cos(\beta)\cos(\gamma) = r\cos(\pi \alpha \beta \gamma)$.
- 4. A focal chord SP of an ellipse is inclined at an angle α to the major axis. Prove that the perpendicular from the focus on the tangent at P makes with the axis an angle $\arctan(\frac{\sin(\alpha)}{e+\cos(\alpha)})$