

2025年8月

羚課文科数学月考

解答

問題I

問1
$$x^2 + y^2 = 4$$
 のとき、 $2x + y$ の最大値は **A** $\sqrt{$ **B**

2 次関数 $y = x^2 + 6x + 5$ のグラフを原点 (0,0) に関して対称移動してできるグラフの方程式は

$$y = \boxed{\mathbf{C}} x^2 + \boxed{\mathbf{D}} x + \boxed{\mathbf{E}}$$

解答

(1) $x^2+y^2=4$ によって、 これは円の中心が (0,0)、半径 r が 2 の円である。 2x+y の最大値を k とすると、 $2x+y=k\Longrightarrow y=-2x+k\Longrightarrow 2x+y-k=0$ ここで、円の上に 2x+y の最大値を得られる点 (x_0,y_0) が存在する。 よって、直線 2x+y-k=0 は円との関係は接する場合と交わる場合の 2 ケースだけである。 したがって、点と直線の距離の公式によって、円の中心座標を 2x+y-k=0 に代入すると $d=\frac{|2\times 0+0-k|}{\sqrt{2^2+1^2}}\leq 2=r\Longrightarrow |-k|\leq 2\sqrt{5}$ となる。 |-k|=|k| により、 $|k|\leq 2\sqrt{5}\Longrightarrow -2\sqrt{5}\leq k\leq 2\sqrt{5}$ 。以上より、 2x+y の最大値は $2\sqrt{5}$ である。

(2) 原点に関して対称移動: x を -x に、y を -y に変える。したがって、 $y=-f(-x)\Longrightarrow y=-x^2+6x-5$ すなわち $y=-x^2+6x-5$

問2 3a+1 が a^2+6 の約数となるような自然数 a を求めよう。

3a+1=b とする。このとき

$$a^2+6=\frac{b^2-\boxed{\textbf{F}}\ b+\boxed{\textbf{GH}}}{\boxed{\textbf{I}}} \qquad \cdots \qquad \textcircled{1}$$

である。また、b は a^2+6 の約数であるから、 a^2+6 はある自然数 c を用いて

$$a^2 + 6 = bc \qquad \cdots \qquad (2)$$

と表される。①、② から

$$b\left(\boxed{\mathbf{J}} \ c - b + \boxed{\mathbf{K}}\right) = \boxed{\mathbf{LM}}$$

を得る。したがって、b は $\overline{\text{LM}}$ の約数である。この中で、a が自然数となるのは $b=\overline{\text{NO}}$

である。したがって、a = |PQ|である

解答

$$(1) \quad 3a+1=b \ \texttt{とすると}, \\ a=\frac{b-1}{3} \ \texttt{となって}, \\ a \ \texttt{を} \ a^2+6 \ \texttt{に代入すると}, \\ a^2+6=\frac{(b-1)^2}{9}+6=\frac{b^2-2b+1+54}{9}=\frac{b^2-2b+55}{9} \ \texttt{となる}.$$

(2) ①と②の式から、
$$a^2+6=bc=\frac{b^2-2b+55}{9}\Longrightarrow 9bc-b^2+2b=55\Longrightarrow b(9c-b+2)=55$$
。

(3) b は 55 の約数である。したがって、b は 1,5,11,55 のいずれかである $(55=55\times 1=5\times 11\times 1)$ 。a が自然数それと b=3a+1 の条件によって、 $b\geq 4$ となる。したがって、b=5 の場合は、 $a=\frac{b-1}{3}=\frac{4}{3}$ であり、a の条件を満たさない。b=11 の場合は、 $a=\frac{b-1}{3}=\frac{10}{3}$ であり、a の条件を満たさない。b=55 の場合は、 $a=\frac{b-1}{3}=\frac{54}{3}=18$ であり、a の条件を満たす。したがって、b=55, a=18 が求める答えである。

問題II

- **問1** 異なる4つの箱がある。これらの箱に赤、黒、緑、黄の色を塗る。ただし、 どの箱にも1つの色のみを使い、また同じ色の箱が2枚以上あってもよいものとする。
 - (1) 全部で **ABC** 通りの塗り方がある。
 - (2) 全部の色を使う塗り方は **DE** 通りある。
 - (3) 2枚は赤で、1枚が黒、1枚が緑となるような塗り方は $\boxed{\textbf{FJ}}$ 通りある。
 - (4) 3 つの色を使う塗り方は **GHI** 通りある。
 - (5) 2 つの色を使う塗り方は **JK** 通りある。

解答

(1) 各カードに 4 色のうち 1 色を塗るので、4 枚のカードに対しては $4^4 = 256$ 通りの塗り方がある。したがって、全部で 256 通りの塗り方がある。

(2) 4 色全てが最低 1 回は使われる塗り分けである。カードを A,B,C,D とすると、最初 A は 4 択を選べられ、まず 赤を塗るとする。次の B は赤抜きの 3 色しか選べられないので、3 通りがあって、黒を塗るとする。C は赤と黒抜き の 2 色しか選べられないので、2 通りがあって、ここで緑を塗るとする。最後の黄色を D に塗るしかないので、合計 で $4!=4\times3\times2\times1=24$ 通りがある。

(3) 最初は 4 枚のカードから 2 枚を選んで赤を塗ると、 $_4\mathrm{C}_2=\frac{4!}{2!2!}=6$ 通りがある。次に、残りの 2 枚カードから 1 枚を選んで黒を塗ると、 $_2\mathrm{C}_1=2$ 通りがある。最後の 1 枚カードは緑を塗ると、1 通りがある。したがって、合計で $6\times2\times1=12$ 通りである。

- (4) 最初 4 色から 3 色を選んで、 $_4$ C $_3 = 4$ 通りがある。次に、選んだ 3 色の中で 1 つの色が 2 回使われた選び方は $_3$ C $_1 = 3$ 通りがある。次の塗り方は (3) と同じであって、合計で $4 \times 3 \times 12 = 144$ 通りである。
- (5) 1 つの色の塗り方は ${}_4C_1 \times {}_4C_4 = 4$ 通り。よって、2 つの色を使う塗り方は 256 (24 + 144 + 4) = 84 通り。

問2 2つの2次関数

 $\ell: \quad y = ax^2 + 2bx + c$

 $m: y = (a+2)x^2 + 2(b+4)x + c + 6$

を考える。点 A, B, C, D が右図のような位置関係にあるとする。 このとき,この 2 つの 2 次関数のうち,一方は,3 点 A, B, C を 通り,もう一方は,3 点 B, C, D を通るとする。

- (1) 3 点 A, B, C を通る放物線は **L** である。ただし、
- L には、次の①か①のどちらか適するものを選びなさい。
 - ① 2次関数 ℓ
 - ① 2次関数 m
- (2) 2 つの 2 次関数 ℓ , m は、どちらも 2 点 B, C を通るので、点 B, C の座標は、2 次方程式

$$x^2 + \boxed{\mathbf{M}} \ x + \boxed{\mathbf{N}} = 0$$

の解である。よって、点 B の x 座標は $\overline{\mathbf{OP}}$, 点 \mathbf{C} の x 座標は $\overline{\mathbf{QR}}$ である。

(3) 特に、AB = BC, CO = OD のとき、a, b, c の値を求めよう。

2 点 C, D は y 軸に関して対称であるから, $b = \square$ である。また、AB = BC より、

直線 $x = \boxed{\textbf{TU}}$ が $\boxed{\textbf{L}}$ の軸である。したがって,a = - $\boxed{\textbf{V}}$ である。よって,

$$c = \boxed{\frac{\mathbf{X}}{\mathbf{Y}}} \ \mathtt{Tbd}_{\diamond}$$

解答

- (1) 問題の条件から、 ℓ と m の 2 次関数の傾きの正負は異なる。よって、 $a \le 0 \le a+2$ が成り立つ (逆に成り立たない)。したがって、3 点 A, B, C を通る 2 次関数は1の m 関数である。
- (2) 3点 A,B,C を通る 2 次関数は m である。 3点 B,C,D を通る 2 次関数は ℓ である。 したがって、m と ℓ の方程式は点 B,C を通るので、 $y=ax^2+bx+c=(a+2)x^2+2(b+4)x+c+6 \Longrightarrow x^2+4x+3=0$ 。 この方程式の解は、点 B,C の x 座標であるので、 $\Longrightarrow x^2+4x+3=0 \Longrightarrow (x+1)(x+3)=0$ 図の点の位置によって、点 B の x 座標は -3, 点 C の x 座標は -1 となる。
- (3) 点 C,D は y 軸に関して対称であるから、 ℓ の頂点 x 座標は $-\frac{2b}{2a}=-\frac{b}{a}=0$ である。したがって、b=0 となる。AB=BC より、直線 x=-3 が m の軸である。したがって、m の 2 次関数の頂点 x 座標により、 $-\frac{2(b+4)}{2(a+2)}=-\frac{0+4}{a+2}=-3$ である。よって、 $c=\frac{1}{2}$ である。点 C:(-1,0) を ℓ の方程式に代入すると、 $a\times(-1)^2+2\times0\times x+c=0$ \Longrightarrow $-\frac{2}{3}+c=0$ \Longrightarrow $c=\frac{2}{3}$ である。

問題 III

n は 2 $\stackrel{
m K}{
m H}$ の自然数であり、 n^3 を 78 で割ったときの余りは n であるという。このような n の個数と、このような n のうち素数であるものを求めよう。

条件より、 n^3 を 78 で割ったときの商を p とすると

$$n^3 = \boxed{\mathsf{AB}} \ p + n \qquad \left(0 < n \le \boxed{\mathsf{CD}}\right)$$

と表せる。これを変形して

$$n(n-1)(n+1) =$$
AB p

を得る。

ここで、n-1,n のどちらか一方は \blacksquare の倍数、n-1,n,n+1 のうち 1 つは \blacksquare の倍数であり、

E と **F** は互いに素であるから、n(n-1)(n+1) は **G** の倍数である。

ただし、 $1 < \mathbf{E} < \mathbf{F} < \mathbf{G}$ とする。よって、n-1,n,n+1 のいずれか 1 つが $\boxed{\mathbf{HI}}$ の倍数となる場合を考えればよい。

いま、 $n \leq \lceil \mathbf{CD} \rceil$ であるから、n-1 が $\lceil \mathbf{HI} \rceil$ の倍数である n の個数は $\lceil \mathbf{J} \rceil$ 、n が $\lceil \mathbf{HI} \rceil$ の倍数である n の個数

は \mathbf{K} 、n+1 が \mathbf{HI} の倍数である n の個数は \mathbf{L} である。

よって、求める n の個数は $\boxed{\mathsf{MN}}$ であり、このうち、素数である n は小さい順に $\boxed{\mathsf{OP}}$ 、 $\boxed{\mathsf{QR}}$ 、 $\boxed{\mathsf{ST}}$ である。

解答

- (1) n^3 を 78 で割ったときの商を p とし、その余りは n である。したがって、 多項式の割り算 (整式の除法) の定義 により、 $n^3=78p+n$ (0 < $n\leq 77$) となる。
- (2) $n^3-n=78p$ \implies $n(n^2-1)=78p$ \implies n(n-1)(n+1)=78p を得る。ここで、 $0< n \le 77$ 、 $n-1 \le 76$ 、 $n+1 \le 78$ であるので、 n-1,n のどちらか一方は 2 の倍数であり、 n-1,n,n+1 のいずれかは 3 の倍数であり、 $2 \ge 3$ は互いに素である。したがって、 n(n-1)(n+1) は $2 \times 3 = 6$ の倍数である。
- (3) ただし、1 < 2 < 3 < 6 とする。よって、n-1,n,n+1 のいずれか 1 つが 13 の倍数である場合を考えればよい。なぜかと言うと、 $78 = 1 \times 2 \times 3 \times 13$ だからである。今、 $n \le 77$ であるから、n-1 が 13 の倍数であるケースは n-1 = 13, 26, 39, 52, 65 である。 $\implies n = 14, 27, 40, 53, 66$ であり、合わせて n の個数は 5 である。n が 13 の倍数であるケースは n = 13, 26, 39, 52, 65 であり、合わせて n の個数は n = 13, 26, 39, 52, 65 である。 n = 12, 25, 38, 51, 64 であり、合わせて n の個数は n = 13, 26, 39, 52, 65 である。 n = 12, 25, 38, 51, 64 であり、合わせて n = 13, 26, 39, 52, 65 である。
- (4) よって、求める n の個数は 5+5+5=15 であり、このうち、素数である n は小さい順に 13,51,53 である。

問題IV

2 つの実数 x,y が方程式

$$3x^2 + 2xy + 3y^2 = 50 \qquad \cdots$$

を満たしている。このとき、x+y および xy がとる値の範囲を求めよう。(結果は既約分数で表せよ。)

まず

$$x + y = a$$
 $\cdots 2$

とおく。①、② より y を消去して、x の 2 次方程式

A
$$x^2 -$$
 B $ax +$ **C** $a^2 - 50 = 0$

を得る。x は実数であるから

$$\boxed{\textbf{DE}} \leq a \leq \boxed{\textbf{F}} \qquad \cdots \cdots \textcircled{3}$$

である。

さらに

$$xy = b$$
 $\cdots \cdot 4$

とおくと、①、②、④より

を得る。よって、③、⑤より

$$\frac{ \boxed{\mathsf{KLM}}}{ \boxed{\mathsf{N}}} \leq b \leq \frac{ \boxed{\mathsf{OP}}}{ \boxed{\mathsf{Q}}}$$

となる

解答

(1) ①と②により、
$$\begin{cases} 3x^2+2xy+3y^2=50\\ x+y=a \end{cases}$$
 によって、 $y=a-x$ とおいて、①の式に代入すると、 $3x^2+2x(a-x)+3(a-x)^2=50$ ⇒ $3x^2+2ax-2x^2+3a^2-6ax+3x^2=50$ ⇒ $4x^2-4ax+3a^2-50=0$ となる。

- (2) したがって、x は実数であるから、関数 $Ax^2 + Bx + C$ の判別式 ($\Delta = B^2 4AC$) は非負である。 したがって、 $(-4a)^2 4 \times 4 \times (3a^2 50) \ge 0 \Longrightarrow 16a^2 16(3a^2 50) \ge 0 \Longrightarrow -32a^2 + 800 \ge 0 \Longrightarrow a^2 \le 25 \Longrightarrow -5 \le a \le 5$ となる。
- (3) さらに、xy = b とおくと、①、②、④より、 $\begin{cases} 3x^2 + 2xy + 3y^2 = 50 \\ x + y = a \end{cases}$ となる。 $x^2 + y^2 = (x + y)^2 2xy$ に xy = b

より、 $x^2+y^2=a^2-2b$ となる。したがって、①の式に代入すると、 $3(x^2+y^2)+2xy=50$ ⇒ $3(a^2-2b)+2b=50$ ⇒ $3a^2-6b+2b=50$ ⇒ $3a^2-4b=50$ ⇒ $b=\frac{3a^2-50}{4}$ となる。

$$(4) \quad \mbox{\sharp} \mbox{\circ} \$$

したがって、 $-5 \le a \le 5$ より、

$$b=rac{3a^2-50}{4}$$
 の最小値は $a=-rac{B}{2A}=-rac{0}{2 imesrac{3}{4}}=0$ の時、 $b=-rac{50}{4}=-rac{25}{2}$ 。
$$b=rac{3a^2-50}{4}$$
 の最大値は端点 $a=\pm 5$ の時、 $b=rac{3 imes(\pm 5)^2-50}{4}=rac{75-50}{4}=rac{25}{4}$ 。

従って、bの範囲は $-\frac{25}{2} \le b \le \frac{25}{4}$ となる。

付録

◆◆補足◆◆

1.1 2次関数の軸と頂点の求め方

二次関数 $y = ax^2 + bx + c$ を平方完成して $y = a(x-p)^2 + q$ という形にすれば、軸と頂点がわかります。具体的には、軸は x = p で頂点は (p,q) になります。

例題 1: 二次関数の軸の方程式と頂点の座標

2 次関数 $y = 2x^2 + 3x - 1$ の軸の方程式と頂点の座標を求めよ。

解答

 $y=2x^2+3x-1$ を平方完成する。

$$y = 2\left(x^2 + 2 \cdot \frac{3}{4}x\right) - 1$$
$$= 2\left(x + \frac{3}{4}\right)^2 - \frac{9}{8} - 1$$
$$= 2\left(x + \frac{3}{4}\right)^2 - \frac{17}{8}$$

8

よって,

- 軸の方程式は $x = -\frac{3}{4}$
- 頂点の座標は $\left(-\frac{3}{4}, -\frac{17}{8}\right)$

1.2 2次関数の軸と頂点を求める公式

二次関数 $y = ax^2 + bx + c$ において,

軸の方程式は $x=-\frac{b}{2a}$

頂点の座標は
$$\left(-\frac{b}{2a}, \frac{-b^2+4ac}{4a}\right)$$

証明

これは証明できます。まず、二次関数の一般形 $y=ax^2+bx+c$ を考えます。平方完成を用いると、次のように変形できます。

$$y = a\left(x^2 + 2 \times \frac{b}{2a}x\right) + c$$
$$= a\left(x^2 + \frac{b}{2a}x\right)^2 - \left(\frac{b}{2a}\right)^2 + c$$
$$= a\left(x + \frac{b}{2a}\right)^2 + \frac{-b^2 + 4ac}{4a}$$

よって、軸の方程式は $x=-\frac{b}{2a}$ 、頂点の座標が $\left(-\frac{b}{2a},\frac{-b^2+4ac}{4a}\right)$ であることがわかります。