

2조 - 장재영(발표자), 조한영(팀장), 문성주, 신호준

Contents

01. 프로젝트 개요

팀 소개 (R&R) 프로젝트 주제 및 목표 **02.** 수행 내용

데이터 수집 및 분석 데이터 전처리 모델링 설명 모델링 방식 모델링 결과 **03.** 프로젝트 결과

서비스 구현 SWOT 분석 한계점 및 보완 방향 활용방안 04. 참고 사항

개발 환경 프로젝트 일정

01 프로젝트 개요

- 팀 소개 (R&R)
- 프로젝트 목표

팀 소개 (R&R)

프로젝트 주제 및 목표

프로젝트 주제

Ai 패션 코디네이터

프로젝트 목표

- 20 대 여성을 타겟으로 하는 서비스 개발
- 대화 기반 패션 코디 추천 모델
- 컨셉에 맞춘 코디(상의, 하의, 외투, 신발) 제안

02. 수행 내용

- 데이터 수집 및 분석
- 데이터 전처리
- 모델링 방식
- 모델링 탐색

데이터 수집 및 분석

- Mdata (Meta Data)의 구성 총 64,632개
 - 각 의상에 대한 디테일 데이터
 - 4가지로 설명 내용 분류 특징, 재질, 색상, 감성

- Ddata (Dialogue Data)의 구성 총 7,235 개
 - 사용자와 의상 추천 챗봇의 대화 데이터
 - 모든 문장에 **발화자를 표시**하는 Tag (CO, AC, US) 존재
 - 일부 문장에 **내용을 설명**하는 Tag (USER_SUCCESS, USER_FAIL 등) 존재

데이터 수집 및 분석

• 데이터 구성 정리

항목	약어	패션 아이템의 종류
겉옷	0	자켓, 점퍼, 코트, 가디건, 조끼
웃옷	Т	니트, 스웨터, 셔츠, 블라우스
아래옷	В	치마, 바지, 원피스
신발	S	신발

의상의 네 가지 분류

종류	약어
자켓	JK
코트	СТ
점퍼	JP
가디건	CD
조끼	VT
니트	KN
스웨터	SW
셔츠	SH
블라우스	BL
원피스	OP
치마	SK
바지	PT
신발	SE

의상의 세부 분류

특징 종류	약어
형태	F
소재	М
색채	С
감성	E

Mdata에서 사용

데이터 전처리

• 데이터 합치기 (Mdata)

```
단추 여밈의 전체 오픈형
            스탠드 칼라와 보이넥 네크라인의 결합스타일
            손목까지 내려오는 일자형 소매
            어깨에서 허리까지 세로 절개에 풍성한 러플 장식
            와이드 커프스
            면 100%
            구김이 가기 쉬운
            드라이클리닝 권장
            시원해 보이는 소라색(SKY BLUE)
            단색의 깔끔한 느낌
            여성스러운
            페미닌한
            세련된
            사랑스러운
            깔끔한
            오피스룩
            로맨틱한 데이트룩
            포멀한 이미지
            앞중심에 반 오픈 끈여밈있는 스타일
BL-002
```

데이터 전처리 예시

— Da	ta	
Data		
	id	exp
	BL-001	단추 여밈의 전체 오픈형 스탠드 칼라와 …
	BL-002	넓은 셔츠칼라 네크라인 앞중심에 반 …
Id (의상 아이디) BL-001		

exp (설명)

단추 여밈의 전체 오픈형 스탠드 칼라와 브이넥 네크라인의 결합스타일 손목까지 내려오는 일자형 소매 여유로운 핏 어깨에서 허리까지 세로 절개에 풍성한 러플 장식 와이드 커프스 면 100% 구김이 가기 쉬운 드라이클리닝 권장 시원해 보이는 소라색(SKY BLUE) 단색의 깔끔한 느낌 여성스러운 페미닌한 세련된 사랑스러운 깔끔한 오피스룩 로맨틱한 데이트룩 포멀한이미지 단정한 오피스걸 룩이미지

데이터 전처리

• 모델 입력값을 위한 데이터 처리 및 레이블링 (Ddata)

데이터 전처리 예시

Data

처음 대학교 들어가는데 입을 옷 코디해주세요. 신입생 코디에 어울리게 화사한 스웨터를 추천해드릴게요. 이 옷에 어울리는 치마로 추천해주세요. 라운드 네크라인 여밈이 없는 풀오버 스타일 전체 케이블 조직 드롭숄더 슬리브 손등까지 오는 길이의 소매 몸에 적당히 맞는 품 엉덩이를 살짝 덮는 길이 네크라인, 소매 끝, 밑단에고무단 처리 레이온52%,나일론20%,폴리에스터28% 꽈배기 조직, 플레인 조직이 섞여 있는 형태 드라이 크리닝 단색의 라임색 브라이트톤(고명도 고채도)의 옐로우그린 산뜻하고 발랄한 느낌 기본의 단정한 편안한 산뜻한 발랄한 경쾌한 따뜻한 데일리룩 캠퍼스룩

Label

SW (1차 모델의 경우) or SW-009 (2차 모델의 경우)

데이터 전처리

- 텍스트 전처리
 - 형태소 분석
 - Mecab, Okt 등 활용 -> 최종적으로 Mecab으로 통일
 - 불용어 제거
 - 정규 표현식을 활용해 **한글, 영어, 숫자 제외 모두 삭제**

```
trainset["contents"] = trainset["contents"].str.replace("[^A-Za-z0-9¬-ㅎㅏ-ㅣ가-힣 ]","")
```

- **사용자 정의 사전**을 직접 구축

```
stopwords = []
with open('./data/불용어사전.txt', mode='rt', encoding='utf-8') as f:
for word in f.readlines():
    word = word.strip()
    stopwords.append(word)
```

모델링 설명 - RNN

- 순환 신경망(Recurrent Neural Network)의 의미
 - 순서가 있는 데이터를 다루기 위해 사용하는 신경망 구조 (시퀀스 모델)
 - 바로 이전 시점의 값과 현재 값을 함께 고려하여 예측하는 형태

모델링 설명 - 장 · 단기 메모리 (LSTM)

• 장 • 단기 메모리(Long Short-Term Memory)의 의미

■ RNN의 한계점을 극복하기 위해 제시된 신경망 구조 알고리즘

■ forget Gate, Input Gate, Output Gate가 존재

<일반 RNN의 내부 구조>

모델링 설명 – RNN 계열

- RNN 계열 신경망의 문제점
 - Gradient Vanishing으로 인한 장기 의존성
 - 뒤로 갈 수록 초기 셀의 값이 희미해 짐 (시간 격차가 클 때 불리)
 - 많은 연산과 느린 학습 속도

모델링 설명 - BERT

- 특징
 - Transformer 기반 사전 학습 모델
 - Encoder 만을 사용
- 사용한 임베딩
 - Token Embedding
 - Segment Embedding
 - Position Embedding
 - 위세 개의 임베딩에 Classification Layer 추가

<Transformer 구성도>

<Bert 구성도>

모델링 방식

• 탐색해 본 모델링 방식

모델링 방식

• 최종선정 모델링 방식

모델링 방식

• 모델 검증법

• 1단계 RNN 계열 모델 비교 그래프

*1단계: 의상 타입 분류 모델

• 1단계 모델 BERT와 LSTM 비교 그래프

• 2단계 RNN 계열 모델 정확도 그래프

의상 별 2단계 분류 모델 최종 Accuracy

• 2단계 RNN 계열 모델 Loss 그래프

의상 별 2단계 분류 모델 최종 Loss

- 두 번째 모델링 방식 선정
 - 1단계 분류 모델 BERT 선정
 - 2단계 분류 모델 RNN 계열 선정 (각 의상별로 가장 성능이 높게 나오는 모델 선정)

03 프로젝트 결과

- 서비스 구현
- 기대효과
- SWOT 분석
- 한계점 및 보완 방향
- 향후 계획

서비스 구현

- 챗봇 구현 API & Framework
 - Telegram 8.1.2
 - Flask 2.0.1
 - Ngrok 2.3.40

<텔레그램 챗봇 구현 화면>

서비스 구현 – 시연 영상

SWOT 분석

Strengths

- 딥러닝 기술 활용
- 카테고리의 다양성
- 의상 타입별로 추천 모델 구축

- 패션 시장의 확대
- 패션에 대한 관심 확대

Opportunities

Weakness

- 이미지만으로는 분석 못함
- 기존 데이터에 있는 옷만 추천할 수 있음

- 경쟁 기업의 존재
- 불리한 정책, 법규

Treats

한계점 및 보완 방향

- Data Augmentation
- DB 고도화
- 네트워크 관계 형성
- 사용자 기반 추천모델 구현
- 언어모델 fine-tunning 작업

[한계점]

- 세부 카테고리 데이터 수 부족 -
- 사용자의 다양한 요구 반영 어려움 -
 - 언어모델 이용시 -
 - 세부 분류 모델의 정확도 낮음

활용방안

의상 쇼핑몰 구입 링크와 연결

멀티 모달 구조 활용하여 모델 고도화

사용자 데이터 축적 및 학습을 통해 맞춤 서비스 제공

패션업계와의 제휴

04. 참고사항

- 개발 환경
- 프로젝트 일정

개발 환경

Ver. 2021.2.1

Ver. 2.3.0

Ver. 2.0.16

Ver. 8.1.2

Ver. 2.3.40

Ver. 19042.1052

Ver. 2.3.0

LTS 20.01

Ver. 2.0.1

프로젝트 일정

<Ai 패션 코디네이터 서비스> 세부 일정

Q & A