

Computer Architecture

LAB 5

Fasiha Tariq - 53289

BS-CS 4

Submitted to: Ma'am Ayesha Ikram

Date: March 13th,2025

1. Write a detailed explanation of how the Fetch-Decode-Execute cycle works.

Fetch Phase:

- The PC provides the MAR with the instruction's address.
- The MAR accesses the main memory and fetches the instruction stored at that address.
- The instruction is transferred to the MDR for temporary storage.
- The PC is incremented and jumps to the next instruction.
- The instruction is being sent to the Instruction Register (IR) for decoding.

Decode Phase:

- IR sends the instruction to the control unit.
- The Control Unit analyzes the instruction to determine the operation, location of data, and any additional information needed.
- The CPU retrieves extra information (operands) from memory or registers as needed.

Execute Phase:

- Performs arithmetic or logical operations.
- Transferring information between registers or memory locations.
- Modifying the program's control flow (e.g., jumping to another instruction).
- Storing the result in the register or memory.

Once an instruction is executed, the PC is updated to the next instruction. The FDE cycle continues indefinitely.

2. Use a simple instruction as an example and describe each step.

Adding Two Numbers: ADD R1, R2, R3

Add the values in registers R2 and R3 and store the result in R1.

- o Fetch: The instruction ADD R1, R2, R3 is retrieved from memory into the IR.
- o **Decode:** The CU identifies that this is an ADD operation and that operands R2 and R3 are needed.
- o **Execute:** The ALU adds the values in R2 and R3, and the result is stored in R1.

3. Explain the role of PC, AR, IR, AC, and DR in your own words.

Role of PC, AR, IR, AC, and DR

- o <u>Program Counter (PC)</u>: Stores the address of the next instruction and increments automatically after each instruction fetch.
- o <u>Address Register (AR):</u> Holds the memory address the CPU needs to access (for fetching an instruction).
- o Instruction Register (IR): Stores fetched instruction and is being decoded and executed.
- o Accumulator (AC): Used for arithmetic and logic operations.
- o <u>Data Register (DR):</u> Holds processed data temporarily.
- **4.** What is the function of the Arithmetic Logic Unit (ALU) in CPU operations? How does ALU interact with registers and memory?

The **Arithmetic Logic Unit** performs mathematical and logical operations within the CPU.

Function of ALU:

- Arithmetic Operations (Addition, Subtraction, Multiplication, Division)
- Logical Operations (AND, OR, NOT, XOR)
- Comparison Operations (Greater than, Less than, Equal to)
- Bitwise Operations (Shift left, Shift right, and rotate)
- Performs operations on data stored in registers or memory.

ALU plays a crucial role in the FDE instruction cycle and performs calculations in the CPU.

How ALU interacts with registers and memory:

- ALU fetches operands from registers (e.g., Accumulator Registers) and fetches data from memory through Load operations.
- ALU stores results in registers and stores data in memory through Store operations.
- ALU transfers data between registers.
- ALU generates memory addresses for data access.

ALU interacts with the register and memory to perform operations, transfer data and access memory location.

5. Create a new base machine and change the bit width of a register (e.g., make AC 8-bit instead of 16-bit)

