Mitschrieb: Algebraic Groups SS 20

Akin

August 5, 2020

Vorwort

Contents

1	Introduction	3
2	Algebraic Groups and Hopf Algebras	5
3	Actions	10
4	Connected Components	14
5	Jordan Decomposition	20
6	Non-Commutative Algebra	33
7	Unipotent Groups	38
8	Tori	42
9	Trigonalization	51
10	Commutative Groups	54
11	Connected Solvable Groups	57
12	Semisimple Elements of nilpotent Groups	62

13 Algebraic Geometry	66
14 Homogenous Spaces	84
15 Borel and Parabolic Groups	89

1 Introduction

Let k be an algebraically closed field.

Definition 1. For $I \subseteq k[X] := k[X_1, \dots, X_n]$, we define its **vanishing set** by

$$V(I) := \{ p \in k^n \mid \forall f \in I : f(p) = 0 \}.$$

A set $S \subset k^n$ is called **algebraic**, if

$$S = V(I)$$

for some $I \subseteq k[X]$.

Example 1. The group $\mathsf{GL}_n(k)$ is not an algebraic subset of $k^{n \times n}$. But, we can identify it with an algebraic subset of $(k^{n \times n})^2$ by

$$\mathsf{GL}_n(k) \cong \left\{ (x,y) \in k^{n \times n} \mid xy = 1_n \right\} = V(X \cdot Y - 1_n).$$

Definition 2. Let $\iota : \mathsf{GL}_n(k) \hookrightarrow k^{n \times n^2}$ be the injection

$$A \mapsto (A, A^{-1}).$$

A linear algebraic group over k is a subgroup $U \subseteq \mathsf{GL}_n(k)$ s.t. $\iota(k)$ is an algebraic subset of k^{2n^2} .

I.e., a linear algebraic group is a matrix-group which can be defined by polynomials over the entries of a matrix and its inverse.

Example 2. The following groups are linear algebraic groups:

- 1. The multiplicative group $\mathcal{G}_m(k) := k^{\times} = k \setminus \{0\} = \mathsf{GL}_1(k)$.
- 2. The general linear group $\mathsf{GL}_n(k)$.
- 3. The special linear group

$$\mathsf{SL}_n(k) := \{ A \in \mathsf{GL}_n(k) \mid \det(A) = 1 \}.$$

4. The orthogonal group

$$\mathcal{O}_n(k) := \left\{ A \in \mathsf{GL}_n(k) \mid A^T \cdot A = 1 \right\}.$$

5. The special orthogonal group

$$SO_n(k) := \mathcal{O}_n(k) \cap SL_n(k).$$

6. The upper triangle-matrix group

$$\left\{ \begin{pmatrix} a_{1,1} & \cdots & a_{1,n} \\ & \ddots & \vdots \\ & & a_{n,n} \end{pmatrix} \mid a_{i,j} \in k \right\} \cap \mathsf{GL}_n(k).$$

7. The normed upper triangle-matrix group

$$\left\{ \begin{pmatrix} 1 & \cdots & a_{1,n} \\ & \ddots & \vdots \\ & & 1 \end{pmatrix} \mid a_{i,j} \in k \right\} \cap \mathsf{GL}_n(k).$$

8. The group of n-th roots of unity

$$\mu_n(k) := \{ x \in k \mid x^n = 1 \}.$$

9. The additive group (k, +) is not a subgroup of $\mathsf{GL}_n(k)$, but it can be identified with the linear algebraic group

$$\left\{ \begin{pmatrix} 1 & a \\ & 1 \end{pmatrix} \mid a \in k \right\} \subset \mathsf{GL}_2(k)$$

10. For $k = \mathbb{C}$, the unit sphere and the unitary groups are NOT linear algebraic groups.

2 Algebraic Groups and Hopf Algebras

Definition 3. A morphism $f: X \to Y$ of algebraic sets $X \subset k^m, Y \subset k^n$ is a map which is coordinatewise described by polnomials.

Definition 4. An **algebraic group** is an algebraic set $G \subset k^n$ together with a fixed element $e \in G$ and morphisms $m: G \times G \to G, i: G \to G$ s.t. (G, m, i, e) is a group.

A morphism of algebraic groups is a morphism of algebraic sets that is also a group homomorphism.

Definition 5. Let $V \subset k^n$ be any subset. Then, we define the vanishing ideal of V by

$$I(V) := \{ f \in k[x] \mid f(V) = 0 \}.$$

Definition 6. For a commutative ring R we define the **radical** of an ideal $I \subseteq R$ by

$$\sqrt{I} := \{ r \in R \mid r^m \in I \text{ for some } m \in \mathbb{N}_0 \}.$$

R is called **reduced**, if $\sqrt{0} = 0$.

Lemma 1 (Zariskis Lemma). Let $L \supseteq k$ be fields. If L is finitely generated as a k-algebra, then the extension $L \supseteq k$ is finite, i.e., L is a finitely-generated k-vector space.

Theorem 1 (Hilberts Nullstellensatz). For any ideal $I \subseteq k[x]$, we have

$$I(V(I)) = \sqrt{I}.$$

Proof. It is easy to see that

$$I\subset \sqrt{I}\subset I(V(I)).$$

Now, let $f \in I(V(I))$ and assume – for the sake of contradiction – that $f \notin \sqrt{I}$. Since \sqrt{I} is the intersection of its upper prime ideals, there is a prime ideal $p \supset I$, s.t. $f \notin p$. Now, define the zero divisor-free ring

$$R := (k[x]/p)[f^{-1}].$$

And let $\phi: k[x] \to R$ be the corresponding ring homomorphism.

Let $m \subseteq R$ be a maximal ideal in R. Then, R/m is a field, which contains k and is finitely generated as k-algebra. According to Zariski's lemma, R/m is a finite (ergo algebraic) extension of k. Since k is algebraically closed, we have R/m = k. Let $\pi_m : R \to k$ be the corresponding ring homomorphism.

Now, for x_1, \ldots, x_n , set

$$t_i := \pi_m(\phi(x_i)).$$

Then, $t = (t_1, \dots, t_n) \in k^n$. We now have

1. $t \in V(I)$: For each $g \in I$, we have $\phi(g) = 0$. On the other hand

$$g(t) = g(\pi_m \circ \phi(x)) = \pi_m \circ \phi(g) = 0.$$

2. $f(t) \neq 0$: $\phi(f)$ is invertible in R, therefore $\phi(f) \neq 0$ and $\phi(f) \notin m$. Ergo

$$f(t) = \pi_m \circ \phi(f) \neq 0.$$

Ergo, there is a point $t \in V(I)$ s.t. $f(t) \neq 0$. This yields a contradiction, since we assumed $f \in I(V(I))$.

Definition 7. For an algebraic set $X \subset k^n$, we define its **coordinate ring** by

$$k[X] := k[x_1, \dots, x_n]/I(X).$$

Lemma 2. For a morphism $f: X \to Y$ of algebraic sets define the following homomorphism of k-algebras.

$$f^*: k[Y] \longrightarrow k[X]$$

 $p \longmapsto p \circ f.$

We have a contravariant functor $_*$ from the categories of algebraic sets over k to the category of k-algebras:

$$X \longmapsto k[X]$$

$$\operatorname{Hom}(X,Y) \longmapsto \operatorname{Hom}_k(k[Y],k[X])$$

$$f \longmapsto f^*.$$

Lemma 3. We have

$$k[X \times Y] \cong k[X] \otimes k[Y].$$

Proof.

$$k[X] \otimes k[Y] = k[x]/I(X) \otimes_k k[y]/I(Y) = k[x,y]/I(X) \otimes k[y] + k[x] \otimes I(Y).$$

But

$$V(I(X)\otimes k[y]+k[x]\otimes I(Y))=V(I(X)\otimes k[y])\cap V(k[x]\otimes I(Y))=X\times Y.$$

Theorem 2. Every finitely generated reduced k-algebra A is isomorphic to some k[X] for some algebraic X.

Proof. Choose some $\pi: k[x_1, \ldots, x_n] \twoheadrightarrow A$ and set $X := V(\ker \pi)$. Then $\ker \pi = I(X)$, since π 's kernel is radical since A is reduced.

Corollary 1. The contravariant functor $_^* : \mathcal{C}_{algSets} \to \mathcal{C}_{k-alg.s}$ gives an antiequivalence of categories.

Lemma 4. An algebraic set X is isomorphic to some algebraic subset of Y iff there is an epimorphism $k[Y] \rightarrow k[X]$.

Lemma 5. Let $G \subset k^n$ be an algebraic group. Then, we have maps

$$m: G \times G \longrightarrow G$$
$$i: G \longrightarrow G$$
$$e: * \longrightarrow G.$$

They induce dual maps in the category of k-algebras:

$$\Delta := m^* : k[G] \longrightarrow k[G] \otimes_k k[G]$$
$$\iota := i^* : k[G] \longrightarrow k[G]$$
$$\varepsilon := e^* : k[G] \longrightarrow k$$

Definition 8. A **Hopf-algebra** over k is a (reduced?!) k-algebra together with maps $\Delta, \varepsilon, \iota$ as above s.t. the following holds:

$$(\Delta \otimes \operatorname{Id})\Delta = (\operatorname{Id} \otimes \Delta)\Delta$$
$$s^* \circ (\iota \otimes \operatorname{Id})\Delta = s^* \circ (\operatorname{Id} \otimes \iota)\Delta = \varepsilon$$
$$(\varepsilon \otimes \operatorname{Id})\Delta = (\operatorname{Id} \otimes \varepsilon)\Delta = \operatorname{Id}$$

where $s: G \to G \times G, g \mapsto (g, g)$ is the diagonal map.

A morphism of Hopf-algebras is a homomorphism of k-algebra $F: A \to B$ s.t.

$$\Delta \circ F = (F \otimes F) \circ \Delta.$$

Theorem 3. The contravariant functor $_*$ gives an anti-equivalence of the categories of algebraic groups and the categories of finitely generated Hopf-algebras over k.

Example 3. 1. Let $G = \mathcal{G}_a = (k, +)$. Then, k[G] = k[x], since I(x) = 0. Then, we have

$$\Delta(x) = x \otimes 1 + 1 \otimes x$$
$$\iota(x) = -x$$
$$\varepsilon(x) = 0.$$

2. Let $G = \mathcal{G}_m = \{(a, a^{-1}) \mid a \neq 0\} \cong k^{\times}$. Then, $k[G] = k[x, y]/(xy - 1) = k[x, x^{-1}]$. Then, we have

$$\Delta(x) = x \otimes x$$
$$\iota(x) = x^{-1}$$
$$\varepsilon(x) = 1.$$

3. Let $G = \mathsf{GL}_n(k)$. Then, $k[G] = k[x,y]/(xy-1_n) = k[x_{i,j},\frac{1}{\det}]$. Then, we have

$$\Delta(x_{i,j}) = \sum_{k} x_{i,k} \otimes x_{k,j}$$

$$\Delta(\frac{1}{\det(x)}) = \frac{1}{\det(x)} \otimes \frac{1}{\det(x)} \iota(x_{i,j}) \qquad = (x^{-1})_{i,j}$$

$$\varepsilon(x_{i,j}) = \delta_{i,j}.$$

2.1 An Aside on the General Group

Let $G = \mathsf{GL}_n(k) = \{(x, y) \mid xy = \mathrm{Id}_n\}$. Since we have

$$x^{-1} = \frac{1}{\det(x)} \cdot \operatorname{adj}(x)$$

where the adjoint adj(x) can be expressed by polnomials in the entries of x, we have isomorphisms

$$k[x,y]/(xy-1_n) \longrightarrow k[x,1/\det(x)] = k[x,t]/(\det(x) \cdot t = 1)$$

 $(x,y) \longmapsto (x,\det(y))$

and

$$k[x, 1/\det(x)] \longrightarrow k[x, y]/(xy - 1_n)$$

 $(x, t) \longmapsto (x, t \cdot \operatorname{adj}(x)).$

Lemma 6.

$$k[GL_n(k)] \cong k[x_{i,j}, \frac{1}{\det(x)}].$$

Lemma 7. Let V be a finite-dimensional k-vector space. If we choose a basis for V, we get an isomorphism GL(V). Hence, GL(V) is an algebraic group whose structure is up to a unique isomorphism independent of the choice of basis.

3 Actions

Remark 1. Let $G \curvearrowright M$ be a group action of algebraic sets, then the morphism

$$G \times M \longrightarrow M$$

yields an homomorphism

$$\Delta: k[M] \to k[G] \otimes k[M].$$

This turns k[M] to a **comodule** of the Hopf-Algebra k[G].

Definition 9. Let V be vector space and G an algebraic group. A morphism r_V : $G \to \mathsf{GL}(V)$ of groups is called **representation** of G, if there is a linear map

$$\Delta: V \to V \otimes_k k[G] (= \mathsf{Hom}_{alg}(G, V))$$

s.t. we have for each $v \in V$ and $g \in G$

$$r_V(g) \cdot v = \sum_i v_i \cdot f_i(g)$$

where $\Delta v = \sum_{i} v_i \otimes f_i$.

That is, V is a comodule for k[G].

A map $\phi: V \to W$ is called **equivariant** for two representations r_V, r_W of G, if

$$\phi(r_V(g)v) = r_W(g)\phi(v)$$

for all g, v.

Example 4. Let $G = \mathsf{GL}_n(k), \ V = k^n$ and r_V be the canonical representation. For an orthonormal basis $(b_i)_{i=1,\dots,n}$, we for example can set

$$\Delta v = \sum_{i=1}^{n} b_i \otimes f_i$$

where

$$f_i(A) := b_i^T A v.$$

Then, we have

$$r_V(A) \cdot v = A \cdot v = \sum_{i=1}^n b_i \cdot b_i^T A v = \Delta(v)(A).$$

Example 5. Let M be a right G-set. Then, G also acts on k[M], therefore we have a map

$$\rho: G \to \mathsf{GL}(k[M])$$

by, for $v \in k[M]$,

$$(\rho(g)v)(m) := v(m.g).$$

Further, we have an algebra morphism

$$\Delta: k[M] \to k[M] \otimes k[G] = k[M \times G]$$

with

$$(\Delta v)(m,g) = v(m.g).$$

With $\Delta v = \sum_{i} v_i \otimes f_i$

$$\rho(g)v(m) = v(mg) = \Delta v(m,g) = \sum_{i=1}^{n} f_i(g)v_i(m).$$

Ergo, g is a representation of G.

When M = G with action given by the right translation, then $\rho : G \to \mathsf{GL}(k[G])$ is called the **right regular representation** of G.

Lemma 8. Let G be an algebraic group and V a finite-dimensional k-vector space. Then $\rho: G \to GL(V)$ is morphism of algebraic groups iff it is a representation.

Definition 10. Let G be an algebraic group and V a representation of G. A subspace $W \subset V$ is called **invariant** or **subrepresentation**, if we have W.G = W.

Lemma 9. The following are equivalent:

- 1. W is invariant.
- 2. $\Delta(W) \subseteq W \otimes k[G]$.

Lemma 10. Any representation V is a filtered union of its finite-dim. subrepresentations:

- 1. Each $v \in V$ is contained in some fin.-dim. subrep.
- 2. Any two finite-dim. subrep. are contained in some bigger fin.-dim. subrep.

Theorem 4. Every algebraic group G is isomorphic to a linear algebraic group.

Proof. Let $\rho: G \to \mathsf{GL}(k[G])$ be the right regular representation. k[G] is a finitely-generated k-algebra. Then, there is a finite-dim. subrepresentation $V \subseteq k[G]$ s.t. V generates k[G] as k-algebra. Then

$$\phi: G \longrightarrow \mathsf{GL}(V)$$

is morphism of algebraic groups.

Consider the dual map

$$\phi^*: k[\mathsf{GL}(V)] \to k[G].$$

We need to show that ϕ^* is surjective. It is enough to show that $V \subset \mathsf{Img}\phi^*$. Define

$$l: V \subset k[G] \longrightarrow k$$
$$f \longmapsto f(e).$$

Let $f \in V$ and set $a(g) := l(g \cdot f)$ for $g \in \mathsf{GL}(V)$. Then $a \in k[\mathsf{GL}(V)]$ is regular. Further,

$$\phi^*(a)(g) = a(\rho(g)) = l(\rho(g)f) = f(eg) = f(g).$$

Therefore, $f = \phi^*(a) \in \mathsf{Img}(\phi^*)$. Since V generates k[G], the surjectivity of ϕ^* follows.

Theorem 5. Let H be an algebraic subgroup of an algebraic group G. There is a finite-dim. representation V of G and a line $L \subset V$ s.t. H is the stabilizer in G of L, i.e.

$$H = \{ g \in G \mid L.g = g \}.$$

Proof. Let V be like in the previous proof. Consider

$$I \hookrightarrow k[G] \twoheadrightarrow k[H].$$

We can now set $L' := V \cap I$. We then have for $g \in G$.

$$I.g \subseteq I \iff g \in H.$$

Now, in general L' is not of dimension one. Set $d = \dim(L')$ and consider the one-dimensional subspace $L := \Lambda^d(L') \subseteq \Lambda^d(V)$. G acts on $\Lambda^d(V)$ in the natural way.

It is clear, that H stabilizes L. For the other direction, let $g \notin H$ and let e_1, \ldots, e_n be a basis of V s.t. $L' = \langle e_1, \ldots, e_d \rangle$. Then,

$$L = \langle e_1 \wedge \ldots \wedge e_d \rangle$$

and, since g does not stabilize L', w.l.o.g. we can assume $e_1.g = e_{d+1}$. Then, we have $g(e_1 \wedge \ldots \wedge e_d) = g(e_1) \wedge \ldots \wedge g(e_d) =: v$. Now, v cannot be zero and it cannot lie L because $e_1.g = e_{d+1}$. Therefore, $g \notin H$ does not stabilize L.

Theorem 6. Let H be a normal algebraic subgroup of an algebraic group G. Then, there is a finite-dimensional $\rho: G \to GL(V)$ s.t. $H = \ker(\rho)$.

Proof. Let V, L and $\phi: G \to \mathsf{GL}(V)$ be like in the preceding theorem. Set

$$V_H := \{ v \in V \mid H.v \subset \langle v \rangle \}.$$

Then, V_H is G-invariant, since

$$h.(q.v) = (hq).v = (qh').v = q.(h'v) = q.(\kappa \cdot v) = \kappa \cdot q.v$$

for all $g \in G, h \in H, v \in V_H$ and fitting $h' \in H, \kappa \in k^{\times}$. W.l.o.g. we have $V = V_H$. V is not trivial, because $L \subset V$.

Let χ range through all homorphism $H \to k^{\times}$, then we have

$$V = \bigotimes_{\mathbf{Y}} V_{\mathbf{Y}}$$

where

$$V_{\chi} = \{ v \in V \mid h.v = \chi(h) \cdot v \}.$$

Then each $g \in G$ permutes those eigenspaces by

$$g.V_{\chi} = V_{\chi(g^{-1} \ g)}.$$

Now, let $W := \bigoplus_{\chi} \operatorname{End}(V_{\chi}) \subset \operatorname{End}(V)$. For $g \in G$ and $\chi \in \operatorname{End}(V)$, define

$$\widetilde{\gamma}: G \longrightarrow \mathsf{GL}(\mathsf{End}(V))$$

$$q \longmapsto \widetilde{\gamma}(q): [\lambda \mapsto \phi(q) \circ \lambda \circ \phi(q)^{-1}].$$

The action $\widetilde{\gamma}(g)$ stabilizes W, since each $\phi(g)$ just permutes the V_{χ} and $\phi(g)^{-1}$ permutes them back. Therefore, we have a subrepresentation

$$\gamma:G\to \mathsf{GL}(W).$$

We now have to show

$$\ker(\gamma) = H.$$

Since elements of H don't permute V_{χ} , we have $\gamma(H) = \mathrm{Id}$.

One the other side, let $g \in G$ with $\gamma(g) = \mathrm{Id}$. Then, we can choose the projection $\pi: V \twoheadrightarrow L$ in W and get

$$\phi(g)\circ\pi=\pi\circ\phi(g).$$

Therefore, g leaves each L invariant. But now, we have $g \in H$.

4 Connected Components

Lemma 11. Let $I_1, I_2, I_{\lambda} \subset k[x]$ be ideals, then

$$V(I_1 \cap I_2) = V(I_1) \cup V(I_2)$$
$$V(\bigcup_{\lambda} I_{\lambda}) = \bigcap_{\lambda} V(I_{\lambda}).$$

Definition 11. A topological space X is called **connected**, if any of the following equivalent condition holds:

- There is no pair of non-empty closed subsets $Z_1, Z_2 \subseteq X$, s.t. $X = Z_1 \dot{\cup} Z_2$.
- There is no pair of non-empty open closed subsets $U_1, U_2 \subseteq X$, s.t. $X = U_1 \dot{\cup} U_2$.
- \bullet Each nonempty open subset of X is dense.

Definition 12. A topological space X is called **irreducibel**, if any of the following equivalent condition holds:

- There is no pair of proper closed subsets $Z_1, Z_2 \subseteq X$, s.t. $X = Z_1 \cup Z_2$.
- For each pair $U_1, U_2 \subseteq X$ of non-empty open subsets we have $U_1 \cap U_2 \neq \emptyset$.
- \bullet Each nonempty open subset of X is dense.

Example 6. V(xy) is connected but not irreducible.

Lecture from 03.03.2020

Recall: Last time we introduced the **Zariski-Topology** on X.

There, algebraic sets equal closed sets.

We called a set X irreducible iff each open subset lies dense in X.

Lemma 12. For an algebraic set X, the following are equivalent:

- (1) X is irreducible.
- (2) $k[X] = k[x_1, \dots, x_n]/I(X)$ is an (integral) domain.
- (3) I(X) is a prime ideal.

The proof of $(2) \iff (3)$ is a basic algebraic result.

Lemma 13. An open base for the Zariski-Topology on an algebraic set X is given by sets:

$$D(f) := \{ p \in X \mid f(p) \neq 0 \}$$

for each $f \in k[X]$. We call the D(f) basic open sets.

Proof. Suppose $U \subseteq X$ is nonempty and open. Set

$$Z := X \setminus U$$

then Z is closed. Thus

$$Z = \{x \in X \mid f(x) = 0 \ \forall f \in I\} = V(I)$$

for some ideal $I \subseteq k[X]$. Let $p \in U$, then there is an $f \in Z$ s.t.

$$f(p) \neq 0$$
.

Also, $D(f) \cap Z = 0$, thus $p \in D(f) \subseteq U$.

Proof: Lemma 1. It is clear that (2) is equivalent to (3).

(1) is equivalent to

 \forall nonempty, open $U_1,U_2\subset X:U_1\cap U_2\neq\emptyset$

 $\stackrel{\text{Lemma }}{\iff} {}^2 \forall$ nonempty, basic open $D(f_1), D(f_2) \subset X : D(f_1) \cap D(f_2) \neq \emptyset$

Since $D(f_1) \cap D(f_2) = D(f_1f_2)$, this is equivalent to the statement

$$\forall f_1, f_2 \in k[X]: f_1, f_2 \neq 0 \implies f_1 f_2 \neq 0.$$

Which states that k[X] is a domain.

Lemma 14. Let X be an algebraic set. We have bijections

$$\{closed\ subsets\ Z\subseteq X\}\leftrightarrow \{\ radical\ ideals\ I\subset k[X]\}$$

and

 $\{irreducible, closed subsets Z \subseteq X\} \leftrightarrow \{prime ideals I \subset k[X]\}$

and

$$\{points\ of\ X\} \leftrightarrow \{maximum\ ideals\ I\subset k[X]\}.$$

Lemma 15 (Primary Decompositions, Atiyah, Macdonald Ch. 4). For an ideal I we call $P \supseteq I$ a **minimal prime** of I if P is a prime ideal and we have for each prime ideal Q:

$$P \supseteq Q \supseteq I \implies P = Q.$$

Any radical ideal I of $k[x_1, \ldots, x_n]$ has only finitely many **minimal** primes P_1, \ldots, P_r . Inparticular,

$$I = \bigcap_{i=1}^{r} P_i$$

and for each i

$$P_j \not\supseteq \bigcap_{i:j \neq i} P_j$$
.

Definition 13. An (irreducible) component Z of X is a maximal irreducible closed subset, i.e., an irreducible closed $Z \subseteq X$ s.t. there does not exist an irreducible closed $Y \subset X$ s.t. $Y \supsetneq Z$.

Then, we have the bijection

{irreducible components of X} \leftrightarrow { minimal primes of I(X)}.

Lemma 16. Any algebraic set X has finitely many irreducible components Z_1, \ldots, Z_r . We have

$$X = Z_1 \cup \ldots \cup Z_r$$

and for each i

$$Z_i \not\subset \bigcup_{j:j\neq i} Z_j.$$

Example 7. 1. Let $X = V(x \cdot y) \subset k^2$. Then $X = Z_1 \cup Z_2$ where $Z_1 = V(x), Z_2 = V(y)$.

X is connected, but not irreducible (D(x) does not lie dense in X).

2. Let X be a **finite** algebraic set. It is easy to check that every subset of X is closed:

$$\{p\} = V(x_1 - p_1, \dots, x_n - p_n)$$

for each $p \in X$. Further

$$X = \{p_1\} \cup \ldots \cup \{p_r\}.$$

Moreover: Any function $f: X \to k$ is regular (i.e. given by polynomials).

Lemma 17. We call an element $e \in k[X]$ idempotent iff $e^2 = e$.

Let X be an algebraic set. Then

 $X \ connected \iff the \ only \ idempotents \ e \in k[X] \ are \ 0 \ and \ 1$ $\iff k[X] \not\cong A \times B \ for \ any \ k-algebras \ A, B.$

Lemma 18. Morphisms of algebraic sets are continuous.

Proof. Let $\phi: X \to Y$ be a morphism. It suffices to show that for all closed $Z \subset Y$ that $\phi^{-1}(Z) \subset X$ is closed.

But, if

$$Z = V_Y(S) := \{ q \in Y \mid f(q) = 0 \forall f \in S \}$$

for some ideal $S \subset k[Y]$, then

$$\phi^{-1}(Z) = V_X(\phi^*(S)) = \{\phi^*(f) = f \circ \phi \mid f \in S\}.$$

Lemma 19. Isomorphisms of algebraic sets are homeorphisms. In particular, any isomorphism of algebraic sets $\phi: X \to X$ permutes the irreducible components Z_1, \ldots, Z_r of X:

$$\forall i \exists j : \phi(Z_i) = Z_j.$$

Theorem 7. Let G be an algebraic group.

- (i) There is a unique irreducible component G^0 of G with $e \in G^0$.
- (ii) Every irreducible component Z of G is a coset gG^0 of G for some $g \in Z$.
- (iii) G^0 is a normal algebraic subgroup of G.
- (iv) G^0 is of finite index, i.e.

$$[G:G^0] = \#(G/G^0) < \infty.$$

(v) The irreducible components are also the connected components.

Proof. Let $G = Z_1 \cup ... \cup Z_r$ be the decomposition into components. We may assume that $e \in Z_1$.

Recall that $Z_1 \not\subset \bigcup_{j\geq 2} Z_j$. Then, there is an $x\in Z_1\setminus \bigcup_{j\geq 2} Z_j$. Thus, for all algebraic set isomorphisms $\phi:G\to G$, we have by some previous lemma that $\phi(x)$ is likewise contained in some unique component of G. For example, we may take ϕ to be

$$\phi_g: G \to G$$
$$y \longmapsto gy$$

for any $g \in G$. Then, for all $g \in G$, the element $gx = \phi_g(x)$ is contained in only one component of G. Ergo, each $g \in G$ is contained in exactly one component.

- (i) Take g = e.
- (iii) G^0 is an algebraic subset, by construction. Denote by $m: G \times G \to G$ and $i: G \to G$ the continuous multiplication and inversion map on G. Why is G^0 a subgroup? We need to show

$$m(G^0 \times G^0) \subseteq G^0.$$

 $i(G^0) \subseteq G^0.$

We know that $i(G^0)$ is some component of G, since i is an isomorphism. But it contains the identity e, since $e^{-1} = e$. Therefore, $i(G^0) = G^0$.

If $g \in G$, then gG^0 is some component of G. Suppose $g \in G^0$. Then $gG^0 \cap G^0 \supseteq \{g\}$, therefore $gG^0 = G^0$. Ergo, G^0 is closed under multiplication.

Why is G^0 a normal? If $g \in G$, then gG^0g^{-1} is a component that contains e, therefore $G^0 = gG^0g^{-1}$.

(Alternative proof that $m(G^0 \times G^0) = G^0$: Consider

- any continuous image of an irreducible set is irreducible.
- $\bullet\,$ the closure of any irreducible set is irreducible.

Ergo $\overline{m(G^0 \times G^0)}$ is a closed irreducible set containing e. Ergo, $\overline{m(G^0 \times G^0)} = G^0$.

(ii) Let $Z \subset G$ be a component. Let $g \in Z$. Then $g \in (gG^0 \cap Z)$, so $gG^0 = Z$.

- (iv) This follows from some previous lemma.
- (v) This is left as a topological exercise. It is true whenever the irreducible components do not intersect.

It now follows:

$$\{ \text{finite algebraic groups} \} \longleftrightarrow \{ \text{finite groups} \}$$

where the above arrow is an equivalence of categories.

Example 8. • Let $G = \{g_1, \ldots, g_r\}$ be a finite algebraic group. Then,

$$G^0 = \{e\}.$$

• Without proofs:

$$G \in \{ \mathsf{GL}_n(k), \mathsf{SO}_n(k), \mathsf{SL}_n(k) \} \implies G^0 = G.$$

Further,

$$G = O_n(k) \implies G^0 = \mathsf{SO}_n(k).$$

And if -1 = 1 i.e. $\mathsf{char} k = 2$, then $[G : G^0] = 1$. Otherwise $[G : G^0] = 2$.

5 Jordan Decomposition

As usual, $k = \overline{k}$ is an algebraically closed field.

Definition 14. Let V be a finite-dimensional vector space.

An element $x \in \text{End}(V)$ is **semisimple**, if it is diagonalizable, i.e. it has a basis of eigenvectors, or equivalently, if the minimal polynomial of x is square-free.

Then, there is a decomposition $V = \bigoplus_{i=1}^r V_i$ and distinct elements $\lambda_1, \ldots, \lambda_n \in k$ s.t.

$$x|_{V_i} = \lambda_i$$
.

If $\dim(V_i) = n_i$, then

char polynomial of
$$x = \prod_{i=1}^{r} (T_i - \lambda_i)^{n_i} \in k[T]$$

and

minimal polynomial of
$$x = \prod_{i=1}^{r} (T_i - \lambda_i) \in k[T].$$

(Where the minimal polynomial of x is defined as the least degree monic polynomial $m \in k[T]$ s.t. m(x) = 0.)

Remark 2. Let $m(T) \in k[T]$ be the minimal polynomial of $x \in k^{n \times n}$.

The theorem of Cayley and Hamilton states that we have for each $p \in k[T]$:

$$p(x) = 0 \implies m|p.$$

Definition 15. $x \in End(V)$ is **nilpotent** if $x^n = 0$ for some n. x is **unipotent**, if x - 1 is nilpotent.

Lemma 20. x is nilpotent iff the characteristic polynomial of x is $T^{\dim(V)}$. (Use Cayley-Hamilton for one of the directions).

Lemma 21. If x is semisimple and nilpotent, then x = 0. If x is semisimple and unipotent, then x = 1.

Lemma 22. If x, y are commuting elements, that are semisimple resp. unipotent resp. nilpotent, then so is xy.

Proof. It is easy to see, that this is true for nilpotent x, y. Now, let x, y be unipotent and commuting. Then, we have

$$xy - 1 = (x + 1)(y - 1) + (x - y).$$

Since x, y commute, (x+1)(y-1) must be nilpotent. (x-y) must be nilpotent because the sum of commuting nilpotent elements must be nilpotent. Because everything commutes, also xy - 1 as the sum of two commuting, nilpotent elements must be nilpotent.

Now, let $A, B \in k^{n \times n}$ be two diagonalizable and commuting matrices. Let $\lambda_1, \ldots, \lambda_r$ be different eigenvectors of A and let E_i be the corresponding eigenspaces. We then have

$$A \cdot (BE_i) = BAE_i = \lambda_i \cdot BE_i.$$

Ergo, each E_i is invariant under B. Since $B_{|E_i}$ stays diagonalizable, we can simply choose a basis of eigenvectors $b_1, \ldots, b_n \in \bigcup_i E_i$ of B. Since each b_i lies in a E_j , those vectors are also eigenvectors for A. Therefore, b_1, \ldots, b_n is basis of eigenvectors for both matrices.

Theorem 8 (Goal). For all algebraic groups G and for all $g \in G$, there exist unique group elements $g_s, g_u \in G$ s.t.

$$g = g_s g_u = g_u g_s$$

and for all finite-dimensional representations $\rho: G \to GL(V)$, $\rho(g_s)$ is semisimple and $\rho(g_u)$ is unipotent.

Example 9. If
$$g = \begin{pmatrix} \lambda & 1 & 0 \\ & \lambda & 1 \\ & & \lambda \end{pmatrix} \in G = \mathsf{GL}_3(k)$$
, then $g_s = \begin{pmatrix} \lambda & 0 & 0 \\ & \lambda & 0 \\ & & \lambda \end{pmatrix}$, $g_u = \begin{pmatrix} 1 & \lambda^{-1} & 0 \\ & 1 & \lambda^{-1} \\ & & 1 \end{pmatrix}$.

Lecture from 09.03.2020

Theorem 9 (Goal Theorem). Let G an algebraic group. For all $g \in G$ there is exactly one pair $g_s, g_u \in G$ s.t.

$$g = g_s g_u = g_u g_s$$

and for all finite-dimensional representations $r: G \to GL_n(V)$, the element $r(g_s)$ resp. $r(g_u)$ is semisimple resp. unipotent.

Last time, we saw:

ullet If g,h are commuting and semisimple resp. commuting and unipotent then so is gh.

• If g is semisimple and unipotent, then g = 1.

Proposition 1. Let V be a finite-dimensional vector space and $g \in GL(V)$. There exist unique elements $g_s, g_u \in GL(V)$ s.t.

$$g = g_s g_u = g_u g_s$$

and g_s is semisimple and g_u is unipotent. Moreover, $g_s, g_u \in k[g] = \{\sum_{i=1}^m a_i g^i \mid a_i \in k\} \subseteq \mathit{End}(V)$.

Proof. Existence (Sketch): Say

$$g = \begin{pmatrix} \lambda & 1 & 0 \\ & \lambda & 1 \\ & & \lambda \end{pmatrix}$$

then take

$$g_s = \begin{pmatrix} \lambda & \\ & \lambda & \\ & & \lambda \end{pmatrix}, \quad g_u = \begin{pmatrix} 1 & \lambda^{-1} & 0 \\ & 1 & \lambda^{-1} \\ & & 1 \end{pmatrix}.$$

For $\lambda \in k$, define the **generalized** λ -eigenspace of g by

$$V_{\lambda} := \{ v \in V \mid \exists n \in \mathbb{N}_0 : (g - \lambda)^n v = 0 \}.$$

Then

$$V = \bigoplus_{\lambda \in k} V_{\lambda}.$$

Here $V_{\lambda} = \text{sum of domains of all Jordan blocks with } \lambda \text{s on the diagonal.}$ (It follows from the Jordan Decomposition for matrices that such a decomposition exist.)

Let's define $g_s \in \mathsf{GL}(V)$ by

$$g_s|_{V_\lambda} = \lambda \cdot \mathrm{Id}.$$

Note that $gV_{\lambda} \subset V_{\lambda}$, hence g commutes with g_s , hence g, g_s commutes with $g_u := gg_s^{-1}$. Then, $g = g_s g_u = g_u g_s$.

Write $\det(T-g) = \prod_{\lambda} (T-\lambda)^{n(\lambda)}$, $n(\lambda) = \dim(V_{\lambda})$. Since the polynomials $T-\lambda$ for $\lambda \in k$ are coprime, the chinese remainder theorem implies that there is a $Q \in k[T]$ s.t.

$$Q \equiv \lambda \mod (T - \lambda)^{n(\lambda)}$$

for each $\lambda \in k$.

We claim that

$$Q(g) = g_s$$
.

Indeed, since $gV_{\lambda} \subseteq V_{\lambda}$, we have

$$Q(g)V_{\lambda} \subseteq V_{\lambda}$$
.

So, it suffices to show for all $v \in V_{\lambda}$

$$Q(g)v = g_s v = \lambda v.$$

Note that, by Cayley-Hamilton,

$$V_{\lambda} = \left\{ v \in V \mid (g - \lambda)^{n(\lambda)} v = 0. \right\}$$

Write

$$Q = \lambda + R \cdot (T - \lambda)^{n(\lambda)}$$

for some $R \in k[T]$. Since $(g - \lambda)^{n(\lambda)}v = 0$, deduce that $Q(g)v = \lambda v$, as required. If $P \equiv \lambda^{-1} \mod (T - \lambda)^{n(\lambda)}$, then $P(g) = g_s^{-1}$. Therefore,

$$g_u = g \cdot P(g)$$

for $T \cdot P(T) \in k[T]$.

Uniqueness: Suppose given some other decomposition

$$g = g_s' g_u' = g_u' g_s'$$

with g'_s semisimple and g'_u unipotent. Then g'_s commutes with g'_s and g'_u , hence with g, hence also with any element in k[g]. Ergo, g'_s commutes with g_s and g_u . Similarly, g'_u commutes with g_s and g_u .

Consider

$$h := g_s' g_s^{-1} = g_s' g_u' (g_u')^{-1} g_s^{-1} = g(g_u')^{-1} g_s^{-1} = g_u(g_u')^{-1}.$$

Then $h = g'_s g_s^{-1}$ is a product of semisimple elements and $h = g_u(g'_u)^{-1}$ is a product of unipotent elements. By proceeding lemmas, h is semisimple and unipotent, ergo trivial. It follows $g'_s = g_s$ and $g'_u = g_u$.

Corollary 2. Let $g \in GL(V)$, let $W \subset V$ be any g-invariant subspace, i.e. $gW \subseteq W$.

Then, W is g_s -invariant and g_u -invariant.

Proof. This is clear, since g_s and g_u are algebraically generated by g over g.

Lemma 24. Let $\phi: V \to W$ be a linear map between finite-dimensional vector spaces.

Let $\alpha \in GL(W)$ and $\beta \in GL(W)$ s.t.

$$V \xrightarrow{\alpha} V$$

$$\downarrow^{\phi} \qquad \downarrow^{\phi}$$

$$W \xrightarrow{\beta} W,$$

i.e. $\phi \circ \alpha = \beta \circ \phi$.
Then,

$$\phi \circ \alpha_s = \beta_s \circ \phi,$$
$$\phi \circ \alpha_u = \beta_u \circ \phi.$$

Proof. Write $V = \bigoplus_{\lambda \in k} V_{\lambda}$, $W = \bigoplus_{\lambda \in k} W_{\lambda}$ where V_{λ} are the generalized α -eigenspaces and W_{λ} are the generalized β -eigenspaces.

We claim that

$$\phi(V_{\lambda}) \subset W_{\lambda}$$
.

Indeed, let $v \in V_{\lambda}$, then

$$(\beta - \lambda)^n \phi(v) = \phi((\alpha - \lambda)^n v) = 0.$$

Since $(\alpha - \lambda)^n v = 0$, the claim follows.

Since, $\alpha_s|_{V_{\lambda}} = \lambda \mathrm{Id}$ and $\beta_s|_{W_{\lambda}} = \lambda \mathrm{Id}$, deduce that

$$\phi \circ \alpha_s = \beta_s \circ \phi.$$

Indeed, both sides are given on V_{λ} by $\lambda \cdot \phi$. Thus

$$\phi \circ \alpha_u = \phi \circ \alpha \alpha_s^{-1}$$

$$= \beta \beta_s^{-1} \circ \phi$$

$$= \beta_u \circ \phi.$$

Lemma 25. Let $\alpha \in GL(V)$, $\beta \in GL(W)$. Then the **tensor** $\alpha \otimes \beta \in GL(V \otimes W)$ is defined by

$$(\alpha \otimes \beta)(u \otimes v) = \alpha(u) \otimes \beta(v).$$

Then, we have

$$(\alpha \otimes \beta)_s \stackrel{(1)}{=} \alpha_s \otimes \beta_s$$
$$(\alpha \otimes \beta)_u \stackrel{(2)}{=} \alpha_u \otimes \beta_u.$$

Proof. It suffices to prove (1), since

$$(\alpha \otimes \beta)_u = (\alpha \otimes \beta) \circ (\alpha \otimes \beta)_s^{-1}$$

$$\stackrel{(1)}{=} (\alpha \otimes \beta) \circ (\alpha_s \otimes \beta_s)^{-1}$$

$$= \alpha \alpha_s^{-1} \otimes \beta \beta_s^{-1}$$

$$= \alpha_u^{-1} \otimes \beta_u^{-1}$$

For (1), consider

$$V = \bigoplus_{\lambda \in k} V_{\lambda},$$
$$W = \bigoplus_{\lambda \in k} W_{\lambda}.$$

It follows

$$V \otimes W = \bigoplus_{\lambda, \mu \in k} V_{\lambda} \otimes W_{\mu}.$$

Now,

$$\alpha_s \otimes \beta_s|_{V_\lambda \otimes W_\mu} = \lambda \mu \cdot \mathrm{Id}.$$

Ergo, $\alpha_s \otimes \beta_s$ is semisimple. By Proposition, we reduce to checking that $\alpha_u \otimes \beta_u$ is unipotent. Indeed,

$$\alpha_u \otimes \beta_u - 1 = (\alpha_u - 1) \otimes (\beta_u - 1) + 1 \otimes (\beta_u - 1) + (\alpha_u - 1) \otimes 1$$

is nilpotent (You can also check that $\alpha_u \otimes \beta_u = (\alpha_u \otimes 1) \circ (1 \otimes \beta_u)$ is unipotent.) \square **Example 10.** Let $1 \in \mathsf{GL}(V)$. Then $1_s = 1$ and $1_u = 1$.

Summary: Let G be an algebraic group. Let $r_V: G \to \mathsf{GL}(V)$ be a finite-dimensional representation. Also, fix $g \in G$.

Let $\lambda_V := r_V(g)_s$ (or $r_V(g)_u$).

We get a family of operators $\lambda_V \in \mathsf{End}(V)$ with the following properties:

- (i) if V = k and $r_V(g') = 1$ for all $g' \in G$, then $\lambda_V = 1$.
- (ii) for any two representations in V and W, we have

$$\lambda_{V\otimes W}=\lambda_V\otimes\lambda_W.$$

(iii) for all G-equivariant $\phi: V \to W$ we have

$$\phi \circ \lambda_V = \lambda_W \circ \phi$$
.

Theorem 10. Let G be an algebraic group. Let $\lambda_V \in End(V)$ (i.e. $V = (r_V, V)$ is a finite-dim. representation of G) be a family of operations satisfying (i), (ii), (iii). Then, there is exactly one $g \in G$ s.t. $\lambda_V = r_V(g)$ for all V.

Note, that this theorem implies our goal theorem.

Applying the theorem to $\lambda_V = r_V(g)_s$ implies

$$\exists_1 g_s \in G : r_V(g_s) = r_V(g)_s$$

and

$$\exists_1 g_u \in G : r_V(g_u) = r_V(g)_u.$$

Proof of Goal Theorem. There exist unique $g_s, g_u \in G$ s.t.

$$g \stackrel{(*)}{=} g_u g_s = g_s g_u,$$

Then, $r_V(g) = r_V(g_s)r_V(g_u) = r_V(g_u)r_V(g_s)$.

Since $r_V(g_u)$ is unipotent and $r_V(g_s)$ is semisimple, it follows $r_V(g_u) = r_V(g)_u$ and $r_V(g_s) = r_V(g)_s$.

To deduce (*), take any $r_V: G \hookrightarrow \mathsf{GL}(V)$. We know for each V

$$r_V(g) = r_V(g_s)r_V(g_u) = r_V(g_u)r_V(g_s).$$

Proof of Theorem 10. We first extend the assignment

$$V \mapsto \lambda_V$$

to all representations of G.

Say $V = \bigcup_j W_j$ where each W_j is a finite-dimensional G-invariant subspace. Try to define $\lambda_V \in \operatorname{End}(V)$ by

$$\lambda_V|_{W_i} := \lambda_{W_i}$$
.

For this to be well-defined, we need to show for each i, j

$$\lambda_{W_i}|_{W_i \cap W_j} \stackrel{(*)}{=} \lambda_{W_j}|_{W_i \cap W_j}.$$

Proof of (*): Apply assumption (iii) to the G-equivariant linear maps

$$W_i \cap W_j \stackrel{\phi}{\hookrightarrow} W_i,$$

 $W_i \cap W_j \stackrel{\phi'}{\hookrightarrow} W_j.$

Then,

$$\lambda_{W_i}|_{W_i \cap W_j} = \lambda_{W_i} \circ \phi$$

$$\stackrel{(iii)}{=} \phi \circ \lambda_{W_i \cap W_j}$$

$$= \phi' \circ \lambda_{W_i \cap W_i}$$

and

$$\lambda_{W_i}|_{W_i\cap W_i} = \lambda_{W_i} \circ \phi' = \phi' \circ \lambda_{W_i\cap W_i}.$$

Recall here that any finite-dimensional G-invariant $W \subset V$ is a representation. \square

 $[\]overline{}^0$ Not necessarily finite-dimensional, but may be written as a filtered union of finite-dimensional G-invariant subspaces of W.

Let G be an algebraic group.

Lecture from 11.03.2020

Easy Exercise: If V_1, V_2 are representations r_1, r_2 of G, then $V_1 \otimes V_2$ is also a representation with

$$r = r_1 \otimes r_2 : G \to \mathsf{GL}(V_1 \otimes V_2)$$

given by

$$r(g)(v_1 \otimes v_2) = (r_1(g)v_1) \otimes (r_2(g)v_2).$$

Proof. Given $\Delta_j: V_j \to V_j \otimes k[G]$, define

$$\Delta: V_1 \otimes V_2 \longrightarrow V_1 \otimes V_2 \otimes k[G]$$

by: if

$$\Delta_1 u = \sum_i u_i \otimes f_i, \quad \Delta_2 v = \sum_j v_j \otimes h_j,$$

then

$$\Delta(u \otimes v) = \sum_{i} \sum_{j} u_i \otimes v_j \otimes f_i h_j.$$

Set A := k[G], then

 $r_A := \text{right regular representation with } r_A(g)f(x) = f(xg).$

The map

$$A \otimes A \xrightarrow{m} A$$
$$f_1 \otimes f_2 \longmapsto f_1 f_2$$

defines a morphism of representations

$$(A, r_A) \otimes (A, r_A) \rightarrow (A, r_A).$$

Indeed,

$$m((r_A \otimes r_A)(g)(f_1 \otimes f_2))(x) = f_1(xg)f_2(xg),$$

= $f_1f_2(xg) = r_A(g)(m(f_1 \otimes f_2))(x),$

since
$$f_1(_g) \otimes f_2(_g) = (r_A \otimes r_A)(g)(f_1 \otimes f_2)$$
.
Ergo $m \circ (r_A \otimes r_A)(g) = r_A(g) \circ m$.

Recall: We stated to prove the following theorem

Theorem 11. Let $\lambda_V \in End(V)$ be given s.t. for all finite-dim. rep.s V of G s.t.:

- (i) $\lambda_k = 1$
- (ii) $\lambda_{V \otimes W} = \lambda_V \otimes \lambda_W$
- (iii) for all morphisms of rep.s $\phi: V \to W$ we have

$$\phi \circ \lambda_V = \lambda_W \circ \phi.$$

Then, there is exactly one $g \in G$ s.t. $\lambda_V = r_V(g)$ for all V.

Proof. Last time, we saw that any such family $V \mapsto \lambda_V$ extends to **all** rep.s V of G. Let's note also that, if (V_0, r_0) is any representation of G with trivial action, i.e. r(g) = 1 for all g, then $\lambda_{V_0} = 1$. Indeed, let $v \in V_0$. We must check that $\lambda_{V_0} v = v$. Since the action is trivial, any subsapce of V_0 is G-invariant.

Consider the map

$$\phi: k \longrightarrow V_0$$
$$\alpha \longmapsto \alpha v$$

where $v = \phi(1)$. Then, ϕ is a morphism of rep.s because the action is trivial. Thus,

$$\lambda_V v = (\lambda_V \circ \phi)(1) \stackrel{(iii)}{=} (\phi \circ \lambda_k)(1) \stackrel{(i)}{=} \phi(1) = v.$$

Consider $\lambda_A \in \operatorname{End}(A)$. Then,

$$\lambda_{A\otimes A}=\lambda_A\otimes\lambda_A.$$

It is an easy exercise to see that $m:(A,r_A)\otimes(A,r_A)\to(A,r_A)$ is a morphism of rep.s.

By (iii) it follows, $m \circ (\lambda_A \otimes \lambda_A) = \lambda_A \circ m$, i.e.

$$\lambda_A(f_1f_2) = \lambda_A(f_1)\lambda_A(f_2)$$

for all $f_1, f_2 \in A$. Thus, λ_A is an algebra morhism (check, using the morphism $k \hookrightarrow A$, that $\lambda_A(1) = 1$).

Thus, $\lambda_A = \phi^*$ for some unique morphism ϕ of algebraic sets $\phi: G \to G$. We claim that ϕ commutes left multiplication i.e.

$$\phi(hx) = h\phi(x)$$

for all $h, x \in G$. Indeed, let's consider the map

$$A \longrightarrow A$$
$$f \longmapsto f(h \cdot \underline{\hspace{0.1cm}}).$$

This induces a morphism

$$(A, r_A) \xrightarrow{\psi} (A, r_A).$$

By (ii), $\psi \circ \lambda_A = \lambda_A \circ \psi$.

Since $\lambda_A = \phi^*$, this implies the claim.

Now, set $g := \phi(e)$. Then for all $h \in G$,

$$\phi(h) = \phi(he) = hg.$$

Thus, $\lambda_A = \phi^* = r_A(g)$.

(It remains to show that

$$\lambda_V = r_V(g)$$

for each finite-dim. rep. V.)

Let V = (V, r) be any rep. This induces a map

$$\Delta: V \longrightarrow V \otimes A$$
.

If $\Delta v = \sum v_i \otimes f_i$, then

$$hv = \sum f_i(h_i) \otimes v_i.$$

Let

$$\varepsilon: V \otimes A \longrightarrow V$$
$$v \otimes f \longmapsto f(1)v.$$

It follows $\varepsilon \circ \Delta : V \to V$ is the identity map.

Let (V_0, r_0) be the representation of G with $V_0 := V$ and r_0 the trivial action.

Then, $\Delta: V \to V_0 \otimes A$ is a morphism of representations.

(Indeed, if $\Delta v = \sum v_i \otimes f_i$, then

$$\Delta(r(h)v) \stackrel{?}{=} (r_0(h) \otimes r_A(h)) \Delta v$$

since

$$\Delta v = \sum v_i \otimes f_i$$

$$\iff xv = \sum f_i(x_i)v_i \ \forall x \in G$$

$$\iff xhv = \sum f_i(xh)v_i \ \forall x, h \in G.$$

Since r(h)v = hv, it follows

$$\Delta(hv) = \sum v_i \otimes f_i(\cdot h) \implies (?).)$$

We want to show

$$\lambda_V = r_V(g).$$

We have

$$\Delta \circ \lambda_V \stackrel{(iii)}{=} \lambda_{V_0 \otimes A} \circ \Delta$$

$$\stackrel{(ii)}{=} \lambda_{V_0} \otimes \lambda_A$$

$$= 1 \otimes \lambda_A = 1 \otimes r_A(g).$$

This implies

$$\Delta \circ \lambda_V = (1 \otimes r_A(g)) \circ \Delta$$

but also

$$\Delta \circ r_V(g) = (1 \otimes r_A(g)) \circ \Delta.$$

Because of the injectivity of Δ it now follows

$$\lambda_V = r_V(g).$$

Corollary 3. Let $\phi: G \to H$ be any morphism of algebraic groups. Then, for all $g \in G$

$$\phi(g)_s = \phi(g_s)$$
$$\phi(g)_u = \phi(g_u).$$

Proof. Let V be any **faithful** representation of H, i.e. $r_V : H \to \mathsf{GL}(V)$ is injective, (for a finite-dim. V).

Then, $r_V \circ \phi$ is a rep. of G. To prove (i), it suffices to show

$$r_V(\phi(g)_s) = r_V(\phi(g_s))$$

since H operates faithfully on V.

We know that

$$r_V(\phi(g)_s) = r_V(\phi(g))_s$$

(characterizing property of h_s for $h \in H$). On the other hand,

$$r_V(\phi(g_s)) = (r_V \circ \phi)(g_s) = r_V(\phi(g))_s.$$

Therefore, claim (i) follows. (ii) works analogously.

Definition 16. Let $g \in G$ where G is an algebraic group. We call g semisimple, if $g = g_s$.

We call g unipotent, if $g = g_u$.

Lemma 26. For $g \in G$, the following are equivalent:

- (i) g is semisimple.
- (ii) $r_V(g)$ is semisimple for all finite-dim. rep. V.
- (iii) $r_V(g)$ is semisimple for at least one faithful f.d. rep. V of G.

We get an analogous lemma for unipotent group elements.

Proof. We have

(i)
$$\iff$$
 $g = g_s$

Def. of g_s by goal thm. $r_V(g) = r_V(g)_s \forall$ f.d. V
 \iff $r_V(g)$ is semisimple

 \iff (ii) \implies (iii) .

On the other hand,

$$(iii) \implies \exists \text{ faithful f.d. } V \text{ s.t. } r_V(g) = r_V(g)_s = r_V(g_s) \implies g = g_s.$$

6 Non-Commutative Algebra

Definition 17. A ring R (for now) is unital, associative but not necessarily commutative.

Example 11. The ring of matrices over some field or ring.

Definition 18. A **left ideal** $I \subset R$ is a subset that is an abelian subgroup of (R, +) s.t. $ra \in I$ for all $r \in R$, $a \in I$.

A **right ideal** $I \subset R$ is a subset that is an abelian subgroup with

$$IR \subset I$$
.

A two-sided ideal I is a subset that is a left and a right ideal of R.

It is easy to check that for any homomorphism of rings $\phi: R \to S$, Kern ϕ is a two-sided ideal. Also, if $J \subset R$ is any two-sided ideal, then there exists a unique ring structure on R/J s.t. the projection $R \to R/J$ is a ring homomorphism.

Definition 19. A **left module** M for R is an abelian group equipped with a ring homomorphism

$$R \stackrel{\alpha}{\longrightarrow} \operatorname{End}(M)$$

where End(M) acts on the left of M. We write

$$rm := \alpha(r)m$$
.

We have

$$(r_1r_2)(m) = r_1(r_2(m)).$$

If R acts on M by the left, we write

$$R \curvearrowright M$$
.

Example 12. $M_n(k) \curvearrowright k^n$ where k^n is the space of column vectors. If k^n denotes the space of row vectors, we have $k^n \curvearrowleft M_n(k)$.

Definition 20. A (left) submodule $N \subset M$ is an algebraic subgroup s.t.

$$RN \subset N$$
.

It follows that N is itself is a left module.

Definition 21. A (left) module M of R is **simple** (or irreducible) if it has exactly the two submodules: $0 = \{0\}$ and M.

Definition 22. A ring R is a **division ring** (aka skew field) if it satisfies any of the following equivalent requirements:

- (i) $R^{\times} = R \setminus \{0\}$ where $R^{\times} = \{r \in R \mid \exists a, b \in R : ar = rb = 1.\}$
- (ii) R has no nontrivials left or right ideals.

Definition 23. If $R \curvearrowright M$, then we can define

$$\operatorname{End}_R(M) := \left\{ \phi \in \operatorname{End}(M) \mid \phi(rm) = r\phi(m) \ \forall r \in R, m \in M \right\}.$$

Note, that $\operatorname{End}_R(M)$ is a ring.

Lemma 27 (Schur's Lemma). If M is simple, then $End_R(M)$ is a division ring.

Lemma 28. Let k be a field. Then, $M_n(k)$ has no nontrivial twosided ideals.

Theorem 12 (Jacobson Density Theorem (Double Commutant Theorem)). Suppose M is a simple left module which is finitely generated as a right D-module for $D = End_R(M)$.

Assume that R acts faithfully on M, i.e. $R \to \operatorname{End}_R(M)$ is injective. Then, the map $R \to \operatorname{End}_D(M)$ is an isomorphism.

¹If ar = rb = 1, then a = arb = b.

Recap:

- Basics: definitions, Hopf-algebras, ...

– Jordan decomposition

- Primer on non-commutative algebra

• Jacobson density theorem

- Unipotent groups

- Tori

We had last week

$$\operatorname{End}_D(M) := \{ \phi \in \operatorname{End}(M) \mid \phi \circ d = d \circ \phi \ \forall d \in D \} .$$

Let k be an algebraically closed field, V a non-trivial finite-dimensional k-vector space and let G be a subgroup of $\mathsf{GL}(V)$ that acts **irreducibly** on V, i.e., V is G-**irreducible**, i.e., the only G-invariant subspaces of V are 0 and V.

Set

$$D := \left\{ d \in \operatorname{End}_k(V) \mid dg = gd \ \forall g \in G \right\} = \operatorname{span}(G) = \left\{ \sum_{i=1}^n c_i g_i \mid c_i \in k, g_i \in G, n \in \mathbb{N}_0 \right\}.$$

Then,

$$D = \operatorname{End}_R(V)$$

where R is the k-subalgebra of End(V) that is generated by G.

Lemma 29 (Schur's Lemma). We understand $k \hookrightarrow End(V)$ as the inclusion of operations which operate by scalar multiplication

$$k \xrightarrow{\cong} \{\phi : V \to V \mid \phi : v \mapsto t \cdot v \text{ for some } t \in k\}.$$

Let V be G-irreducible. Then, we have

$$D \cong k$$
.

Lecture from 16.03.2020 (Corona-Madness started here...) *Proof.* Let $d \in D$. Since $V \neq 0$, there is an eigenspace $V_{\lambda} \neq 0$ for d. Observe that V_{λ} has to be G-invariant:

if $g \in G$ and $v \in V_{\lambda}$, then $gv \in V_{\lambda}$, since

$$dqv = qdv = q(\lambda v) = \lambda qv.$$

Since V_{λ} is a non-trivial G-invariant subspace and V is irreducible under G, we have

$$V_{\lambda} = V$$
.

Ergo $d = \lambda$ in the sense of $k \hookrightarrow \text{End}(V)$.

Consequence of the Jacobson Density Theorem: $R = \text{End}_k(V)$, i.e., G generates all linear operations on V, if V is G-irreducible.

We will prove this after a lemma.

Lemma 30. Let V be G-irreducible.

Let $n \in \mathbb{N}$. Set

$$V^n := V \oplus V \oplus \ldots \oplus V = V_1 \oplus \ldots \oplus V_n$$

where each $V_i = V$.

Let $v = (v_1, \dots, v_n) \in V^n$ and set

$$Rv := \{(rv_1, \dots, rv_n) \mid r \in R\} = \text{span}\{(gv_1, \dots, gv_n) \mid g \in G\}.$$

Then, $Rv \neq V^n$ iff the v_i are linearly dependent over k.

Consequence: Take $n := \dim(V)$. Let $\{e_1, \ldots, e_n\}$ be a basis of V and set

$$e := (e_1, \dots, e_n) \in V^n.$$

Since the $(e_i)_i$ are linearly independent, the lemma states that $Re = V^n$. Now, let $x \in \mathsf{End}_k(V)$. Choose $r \in R$ s.t.

$$re = (xe_1, \dots, xe_n).$$

Then $re_i = xe_i$ for all i, thus x = r. Hence, $R = \operatorname{End}_k(V)$.

Proof. For $v = (v_1, \ldots, v_n) \in V^n$ choose $J \in \{1, \ldots, n\}$ as large as possible with

$$Rv + V_1 + V_2 + \ldots + V_{J-1} =: U \neq V^n$$
.

Such an J does exist, since we know that $Rv \neq V^n$.

Then, $V_J \not\subseteq U$, otherwise we may increase J. Also, U is invariant by the diagonal action of G on V^n . Thus, $V_J \cap U \subseteq V_J$ is a proper G-invariant subspace of the G-irreducible $V_J \cong V$. Therefore, $V_J \cap U = 0$.

On the other hand, by maximality of J, we have

$$U \oplus V_I = V^n$$
.

Ergo, the map (composition)

$$V \cong V_J \hookrightarrow V^n \twoheadrightarrow V^n/U$$

is a G-equivariant isomorphism, since U is G-invariant.

Let $z:V^n/U\stackrel{\cong}{\to} V$ be the inverse isomorphism. Let l be the G-equivariant map given by

$$V^n \xrightarrow{l} V$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad V$$

$$V^n/U$$

and let l_j be the G-equivariant maps by restricting l on V_j . Then $l_j \in D \cong k$. Say $l_j = t_j \in k$. Then,

$$l(w) = t_1 w_1 + \dots t_n w_n.$$

Since z is an isomorphism, l is nonzero and $(t_1, \ldots, t_n) \neq (0, \ldots, 0)$. Since $l|_U = 0$, we can deduce for all $u \in U$

$$t_1u_1 + \ldots + t_nu_n = 0.$$

But $v \in Rv \subseteq U$, so we may conclude – as required – that the $(v_i)_i$ are linearly dependent (l(v) = 0).

7 Unipotent Groups

Let G be a subgroup of $\mathsf{GL}(V)$ where V is a finite-dimensional vector space and k an algebrically closed field.

Definition 24. We say that G is **unipotent** if one of the following equivalent conditions hold for each $g \in G$:

- g is unipotent (i.e. $(g-1)^n = 0$ for some $n \in \mathbb{N}$).
- all eigenvalues of g are 1.
- g is conjugate to $\begin{pmatrix} 1 & \star & \star \\ 0 & \ddots & \star \\ 0 & 0 & 1 \end{pmatrix}.$

Theorem 13. Any unipotent subgroup of $GL_n(k)$ is conjugate to a subgroup of

$$U_n := \left\{ \begin{pmatrix} 1 & \star & \star \\ 0 & \ddots & \star \\ 0 & 0 & 1 \end{pmatrix} \right\} = \left\{ U \in M_n(k) \mid U_{i,j} = \begin{cases} 0, & \text{if } i > j \\ 1, & \text{if } i = j \\ \text{arbitrary, otherwise.} \end{cases} \right\}.$$

Definition 25. For two subgroups G, H of some common supergroup, define their **commutator** by

$$[G,H] := \langle ghg^{-1}h^{-1} \mid g \in G, h \in H \rangle.$$

A group G is called **nilpotent**, if one of its commutators is trivial, i.e. if we set

$$G_0 := G \text{ and } G_{i+1} := [G_i, G],$$

then G is called nilpotent iff there is an $j \in \mathbb{N}$ with $G_j = 1$.

Corollary 4. Any unipotent subgroup of GL(V) is nilpotent.

Definition 26. A group G is called **solvable**, if $G^{(n)} = 1$ for some n where

$$G^{(0)} := G,$$

 $G^{(i+1)} := [G^{(i)}, G^{(i)}].$

Note that nilpotent groups are solvable, since $G^{(i)} \subset G_i$.

Notation 1. In the following, we will write G' := [G, G].

Definition 27. Let $n := \dim(V)$. A **complete flag** is a maximal strictly increasing chain of subspaces

$$0 = V_0 \subsetneq V_1 \subsetneq \ldots \subsetneq V_n = V.$$

Any complete flag is of the form

$$V_i := \operatorname{span}\{e_1, \dots, e_i\}$$

for some basis e_1, \ldots, e_n of V.

Let B be the basis of some flag $0 = V_0 \subsetneq V_1 \subsetneq \ldots \subsetneq V_n = V$. For $x \in \mathsf{End}(V)$, we have that x is upper-triangle with respect to B iff x leaves each member V_i of the flag invariant, i.e. $xV_i \subseteq V_i$.

Proposition 2 (Key Proposition). Let G be a unipotent subgroup of GL(V). Then there is a complete flag $V_0 \subsetneq V_1 \subsetneq \ldots \subsetneq V_n$ consisting of G-invariant subspaces, i.e., each V_i is G-invariant.

Proof. Recall, that G is a unipotent subgroup of $\mathsf{GL}_n(V)$. We will give an induction on $n = \dim V$.

If n = 0, there is nothing to show.

Let $n \geq 1$. We may assume that V is G-irreducible. Because, if not, there is a G-invariant subspace $0 \neq W \subset V$ s.t. W and V/W have dimension < n. Then there exist complete G-invariant flags in W and V/W and the claim – that there is a complete G-invariant flag in V – follows by the induction hypothesis.

By Jacobson Density Theorem, we have

$$R := \operatorname{span}(G) = \operatorname{End}(V) := \operatorname{End}_k(V).$$

Since G is unipotent, we have for each $g \in G$

$$trace(q) = n$$
.

Ergo, for $g, h \in G$

$$trace(gh) = trace(h)$$

and

$$\operatorname{trace}((g-1)h) = \operatorname{trace}(gh) - \operatorname{trace}(h) = 0.$$

Since span(G) = End(V), it now in particularly follows for all $g \in G, \phi \in End(V)$

$$\operatorname{trace}((g-1)\phi) = 0.$$

Since the above holds for all $\phi \in \text{End}(V)$, it must hold

$$q - 1 = 0$$

for all $g \in G$ (take for example the elementary matrices $\phi = E_{i,j}$). Ergo, G is trivial. Then, any complete flag is trivially G-invariant.

Remark 3. This gives the group analogue of Engel's Theorem.

Proof Goal Theorem. Let B be a basis of V s.t. G leaves each subspace in the corresponding flag invariant. Then, G is upper-triangle with respect to this basis.

On the other hand, each $g \in G$ is unipotent, hence its diagonal (i.e. eigenvalues) are all 1. Thus, with respect to B

$$G \subseteq \left\{ \begin{pmatrix} 1 & \star & \star \\ 0 & \ddots & \star \\ 0 & 0 & 1 \end{pmatrix} \right\} = U_n.$$

Remark 4. Tori are of the form $(k^{\times})^n$. In the case $k = \mathbb{C}$, $(\mathbb{C}^{\times})^n$ are the complexification of $U(1)^n$. This equals tori in top. sense.

$$\begin{pmatrix} 1 & \mathbb{Z} \\ 0 & 1 \end{pmatrix} \subseteq \mathsf{GL}_2(\mathbb{C})$$

is a non-algebraic unipotent group.

Exercise. (to be discussed next time)

it would have sufficed to prove the Goal theorem in the special case that G is algebraic.

Corollary of Proof: If $G \subset \mathsf{GL}(V)$ (with $V \neq 0$) is unipotent and V is G-irreducible, then G = 1, dim V = 1.

Lecture from 18.03.2020

Answer to last Exercise: Recall that the main point was to show that any unipotent subgroup $G \subseteq GL(V)$ leaves invariant some complete flag $\mathcal{F} = (V_0 \subset V_1 \ldots)$. But by some homework (problem 1), the group

$$\mathsf{GL}(V)_{\mathcal{F}} := \{ g \in \mathsf{GL}(V) \mid g\mathcal{F} = \mathcal{F} \}$$

is algebraic.

Proof: If \mathcal{F} is the standard flag with $V_i = \operatorname{span}(e_1, \ldots, e_i)$ for the standard basis $\{e_1, \ldots, e_n\}$, then

$$\mathsf{GL}(V)_{\mathcal{F}} = \{ A \in \mathsf{GL}(V) \mid A \text{ is upper-triangle} \}.$$

The condition that A is upper triangle can be realized by polynomials. \Box Thus,

$$G \text{ fixes } \mathcal{F}$$

$$\iff G \subseteq \mathsf{GL}(V)_{\mathcal{F}}$$

$$\iff \overline{G} \subseteq \mathsf{GL}(V)_{\mathcal{F}}$$

$$\iff \overline{G} \text{ fixes } \mathcal{F}.$$

Now, the Zariski-Closure \overline{G} of any group G is an algebraic group (shown in some homework).

Further, if G is unipotent, then \overline{G} is unipotent.

8 Tori

Definition 28. A **torus** is an algebraic group that is isomorphic to \mathcal{G}_m^n for some $n \in \mathbb{N}_0$ where $\mathcal{G}_m = k^{\times} = \mathsf{GL}_1(k)$ is the unit group of k.

We think of $\mathcal{G}_m^n \subseteq \mathsf{GL}_n(k)$ as the subgroup of diagonal matrices.

Lemma 31. Let G be a commutative algebraic group. Then the following are equivalent:

- (i) each $g \in G$ is semisimple.
- (ii) for each finite-dimensional representation V of G and for each $g \in G$, the operator $r_V(g)$ is diagonalizable.
- (iii) for all finite-dimensional representations V of G, there is a basis of common eigenvectors for $r_V(G)$, i.e. a basis s.t.

$$r_V(G) \subseteq \mathcal{G}_m^n$$
.

(iv) G is isomorphic to an algebraic subgroup of a torus.

Proof. We show:

- (i) \iff (ii): This follows from the Jordan decomposition and definition of semisimple.
- (ii) \implies (iii) : This is homework. Note that any commutative subset S of $\mathsf{GL}(V)$ consisting of semisimple operators may be diagonalized simultaneously.
- (iii) \Longrightarrow (iv) : Take any faithful representation V of G and diagonalize it simultaneously. Then, $G \cong r_V(G) \subseteq \mathcal{G}_m^n$.
- (iv) \implies (i) : Any diagonal matrix is semisimple.

Definition 29. A commutative algebraic group G is called **diagonalizable**, if it satisfies one of the above equivalent conditions.

Definition 30. A character χ of an algebraic group G is an element $\chi \in \mathsf{Hom}_{\mathsf{alg.grp.}}(G, k^{\times})$, i.e., a homomorphism $\chi : G \to k^{\times}$ of algebraic groups.

Notation 2. For an algebraic group G, set $\mathfrak{X}(G) := \mathsf{Hom}_{\mathsf{alg.grp.}}(G, k^{\times})$.

Also denote now by $\mathcal{O}(X) := k[T]/I(X)$ the coordinate ring of an algebraic set X (rather than k[X]).

Lemma 32. There is a bijection

$$\mathfrak{X}(G) = \{ characters \ \chi \ of \ G \} \longleftrightarrow \{ x \in \mathcal{O}(G)^{\times} \mid \Delta(x) = x \otimes x \}.$$

Proof. Note, that any $x \in O(G)^{\times}$ can be thought of as a map $x : G \to k^{\times} \subset k$. We have

$$\mathsf{Hom}_{\mathrm{alg.grp.}}\left(G,\mathcal{G}_{m}\right) = \left\{\phi \in \mathsf{Hom}_{\mathrm{alg.sets}}\left(G,\mathcal{G}_{m}\right) \mid \phi(gh) = \phi(g)\phi(h) \; \forall g,h\right\} \\ = \left\{\phi \in \mathsf{Hom}_{k-\mathrm{alg.}}\left(\mathcal{O}(\mathcal{G}_{m}),\mathcal{O}(G)\right) \mid (\phi \otimes \phi) \circ \Delta = \Delta \circ \phi\right\}.$$

Recall: $\mathcal{O}(\mathcal{G}_m) \cong k[t, \frac{1}{t}]$ with $\Delta(t) = t \otimes t$.

Thus for any k-algebra A, $\operatorname{\mathsf{Hom}}_{k-\operatorname{alg.}}(\mathcal{O}(\mathcal{G}_m),A) \stackrel{A}{\cong}^{\times} \operatorname{via}$

$$[t \mapsto a, (t^{-1} \mapsto a^{-1})] \longleftrightarrow a.$$

Thus,

$$\mathsf{Hom}_{\mathrm{alg.grp.}}\left(G,\mathcal{G}_{m}\right)\cong\left\{ a\in\mathcal{O}(G)^{\times}\mid a\otimes a=\Delta(a)\right\} .$$

Therefore, it suffices to test the condition $(\phi \otimes \phi) \circ \Delta = \Delta \circ \phi$ on the generators t, t^{-1} of $\mathcal{O}(\mathcal{G}_m)$. Now, the above isomorphism is given by

$$\phi \mapsto a = \phi(t)$$

which is equivalent or regarding $\chi: G \to \mathcal{G}_m$ as a map $\chi: G \to k$.

Example 13. Let $G = \mathcal{G}_m$, then $\mathcal{O}(G) = k[t, \frac{1}{t}]$.

Which $x = \sum_{m \in \mathbb{Z}} c_m t^m \in \mathcal{O}(G)$ – with almost all $c_m = 0$, but not all of them – have the property

$$\Delta(x) = x \otimes x?$$

We have

$$x \otimes x = \sum_{m,n \in \mathbb{Z}} c_m c_n t^m \otimes t^n,$$
$$\Delta(x) = \sum_{m \in \mathbb{Z}} c_m t^m \otimes t^m.$$

Those sums equal, if

$$c_m c_n = o$$
 for all $m \neq n$,
 $c_m^2 = c_m$ for all m.

By those conditions, it follows

$$x = t^m$$
.

Therefore

$$\mathfrak{X}(G) = \{\chi_m \mid m \in \mathbb{Z}\} \cong \mathbb{Z}$$

with

$$\chi_m(y) = y^m$$
.

Example 14. Let $T \cong \mathcal{G}_m^n$ be a torus. Then,

$$\mathfrak{X}(T) = \{ \chi_m \mid m \in \mathbb{Z}^n \} \cong \mathbb{Z}^n$$

where $\chi_m(y) = y^m = y_1^{m_1} \cdots y_n^{m_n}$.

Note: For each algebraic group $G, \mathfrak{X}(G)$ is naturally an abelian group:

$$(\chi_1 \cdot \chi_2)(g) := \chi_1(g) \cdot \chi_2(g).$$

Given a morphism of algebraic groups $f:G\to H,$ we get a morphism of abelian groups

$$f^*: \mathfrak{X}(H) \longrightarrow \mathfrak{X}(G)$$

 $\chi \longmapsto \chi \circ f =: f^*(\chi).$

This induces a contravariant functor from the category of algebraic groups to the category of abelian groups.

Lemma 33. Let G be a diagonalizable algebraic group. Then, $\mathfrak{X}(G)$ is a k-vector space basis for $\mathcal{O}(G)$.

Example 15. Let $G = \mathcal{G}_m^n$ be a torus. Then, we have the embedding

$$\mathfrak{X}(G) \longrightarrow \mathcal{O}(G)$$

 $\chi_{(m_1,\ldots,m_n)} \longmapsto t^{(m_1,\ldots,m_n)}.$

The lemma is obvious in this case: each elment of $\mathcal{O}(G) = k[t_1, \dots, t_n, t_1^{-1}, \dots, t_n^{-1}]$ can be written uniquely as a linear combination of monomials.

Proof. (i) $\mathfrak{X}(G)$ spans $\mathcal{O}(G)$:

Choose an embedding $G \subset \mathcal{G}_m^n$ of algebraic groups. Then, by restriction, we get

$$\mathcal{O}(\mathcal{G}_m^n) \twoheadrightarrow \mathcal{O}(G).$$

Since the $\chi_m, m \in \mathbb{Z}^n$, span $\mathcal{O}(\mathcal{G}_m^n)$, their images $\chi_m|_G \in \mathfrak{X}(G)$ span $\mathcal{O}(G)$.

(ii) $\mathfrak{X}(G)$ is linearly independent:

Suppose otherwise and let ϕ_1, \ldots, ϕ_m be a linearly dependent subset of $\mathfrak{X}(G)$ with $m \geq 1$ chosen minimally, with $c_1, \ldots, c_m \in k^{\times}$ s.t.

$$\sum_{i=1}^{m} c_i \phi_i = 0.$$

We distinguish the following cases:

m=1: In this case, we have $\phi_1=0$, but $\phi_1(1)=1$, a contradiction.

m>1: We can assume $\phi_1\neq\phi_2$, so there is an $h\in G$ s.t. $\phi_1(h)\neq\phi_2(h)$. Then,

$$\phi_1(h)\sum_{i=1}^m c_i\phi_i = 0,$$

but also for all $h, g \in G$

$$\sum_{i=1}^{m} c_i \phi_i(hg) = \sum_{i=1}^{m} c_i \phi_i(h) \phi_i(g) = 0.$$

This implies

$$\sum_{i=1}^{m} c_i \phi_i(h) \phi = 0.$$

Ergo

$$\sum_{i=1}^{m} c_j(\phi_i(h) - \phi_1(h))\phi_i = \sum_{i=2}^{m} c_j(\phi_i(h) - \phi_1(h))\phi_i = 0.$$

Now, $\phi_i(h) - \phi_1(h)$ is zero if i = 1 and non-zero, if i = 2. Therefore, this yields a shorter linear dependency for the elements

$$\phi_2,\ldots,\phi_m,$$

which contradicts our requirement.

Definition 31. Let M be an abelian group. The **group algebra** on M is the k-algebra k[M] (not a coordinate ring!) defined as follows:

k[M] := the k-vector space with basis M

$$:= \left\{ \sum_{m \in M} c_m \cdot m \mid c_m \in k, \text{ almost all } c_m = 0 \right\},\,$$

where the multiplication on k[M] extends that on M:

$$(\sum_{m \in M} c_m m)(\sum_{n \in M} d_n n) = \sum_{m,n \in M} c_m d_n m n.$$

Corollary 5. For a diagonalizable G, we have

$$\mathcal{O}(G) \cong k[\mathfrak{X}(G)].$$

Fact: For an abelian group M, there is exactly one Hopf algebra structure on k[M] given by $\Delta(m) = m \otimes m$ for all $m \in M$.

With this definition, the above isomorphism is one of Hopf algebras.

Lemma 34. If G, H are diagonalizable algebraic groups, then

$$\operatorname{\mathsf{Hom}}_{\operatorname{alg.grp.s}}(G,H) \xrightarrow{f \mapsto f^*} \operatorname{\mathsf{Hom}}_{\operatorname{grp.s}}(\mathfrak{X}(H),\mathfrak{X}(G))$$

is a bijection.

Proof.

$$\begin{split} \operatorname{Hom}\left(G,H\right) & \cong \operatorname{Hom}_{\operatorname{Hopf-alg.}}\left(\mathcal{O}(H),\mathcal{O}(G)\right) \\ & \cong \left\{\phi \in \operatorname{Hom}_{k-\operatorname{alg.}}\left(\mathcal{O}(H),\mathcal{O}(G)\right) \mid (\phi \otimes \phi) \circ \Delta = \Delta \circ \phi\right\}. \end{split}$$

Since $\operatorname{\mathsf{Hom}}_{k-\operatorname{alg.}}(\mathcal{O}(H),\mathcal{O}(G)) \cong \operatorname{\mathsf{Hom}}(k[\mathfrak{X}(H)],k[\mathfrak{X}(G)])$, this reduces to the following lemma:

Lemma 35. Let M_1, M_2 be two abelian groups. Then

$$\operatorname{Hom}(M_1, M_2) \stackrel{\cong}{\longrightarrow} \operatorname{Hom}_{\operatorname{Hopf-alg.}}(k[M_1], k[M_2])$$

$$\phi \longmapsto \left[\sum c_m m \mapsto \sum c_m \phi(m) \right].$$

Proof. We have to show that

$$M = \left\{ x \in K[M]^{\times} \mid \Delta(x) = x \otimes x \right\}.$$

Then, by this, it follows for each $\phi \in \mathsf{Hom}_{\mathsf{Hopf-alg.}}(k[M_1], k[M_2])$,

$$\phi(M_1) \subseteq M_2$$
.

Ergo, $\phi|_{M_1} \in \text{Hom}(M_1, M_2)$. Therefore, the surjectivity of the claimed bijection is shown. The injectivity is clear, since M generates k[M] as a k-algebra.

To show

$$M = \left\{ x \in K[M]^{\times} \mid \Delta(x) = x \otimes x \right\},\,$$

let

$$x = \sum c_m m \in K[M]^{\times}$$
$$\Delta(x) = \sum c_m m \otimes m$$
$$x \otimes x = \sum c_m c_n m \otimes n.$$

If $\Delta(x) = x \otimes x$, then it follows

$$x = m$$

for some $m \in M$.

Lecture from 25.03.2020

Recall: We have seen that for diagonalizable algebraic groups G, H

$$\mathsf{Hom}\,(G,H)\cong\mathsf{Hom}\,(\mathfrak{X}(H),\mathfrak{X}(G))$$
.

If G is diagonalizable, then

$$\mathcal{O}(G) \cong k[\mathfrak{X}(G)].$$

Theorem 14. The functor

$$G \longrightarrow \mathfrak{X}(G)$$
$$f \longmapsto f^*$$

defines an equivalence of categories:

 $\{diagonalizable\ alg.\ groups\}\cong\{finite-dim.\ abelian\ groups\ with\ no\ char(k)-torsion\}.$

This amounts to the bijection above between Hom-spaces and the following lemma.

- **Lemma 36.** (i) Let G be a diagonalizable alg. group. Then, $\mathfrak{X}(G)$ is a finitely generated abelian group with no char(k)-torsion.
- (ii) Let Γ be a finitely generated abelian group with no char(k)-torsion. Then, there is a diagonalizable algebraic group G s.t. $\mathfrak{X}(G) \cong \Gamma$.

Proof. We will use the following facts:

• Let $n \in \mathbb{N}$. Then, $t^n - 1$ is square-free in k[t] iff the ideal $(t^n - 1)$ is radical in k[t] iff $t^n - 1$ has not repetitive root iff either $\operatorname{char}(k) = 0$ or $\operatorname{char}(k) = p > 0$ and $p \not| n$.

(Proof: Galois Theory, seperable/inseperable extensions.)

• Let $M := \mathbb{Z}/n\mathbb{Z}$. Then, the k-group-algebra generated by M

$$k[M] \cong k[t]/(t^n - 1)$$

is reduced iff either char(k) = 0 or $char(k) = p > 0, p \not| n$.

• If M_1, M_2 are abelian groups, then we have the following isomorphism of Hopf algebras

$$k[M_1] \otimes_k k[M_2] \xrightarrow{\cong} k[M_1 \oplus M_2]$$

 $m_1 \otimes m_2 \longmapsto m_1 m_2$

where $M_1 \oplus M_2 \cong M_1 \times M_2$.

- (i) Embed $G \hookrightarrow T := \mathcal{G}_m^n$ for some n. Then, we have a surjection $\mathbb{Z}^n \cong \mathfrak{X}(T) \twoheadrightarrow \Xi(G)$. Ergo, $\mathfrak{X}(G)$ is finitely generated. Suppose $\operatorname{char}(k) = p > 0$. Let $\chi \in \mathfrak{X}(G)$ with $\chi^p = 1$. Then, for all $g \in G$, $\chi^p(g) = \chi(g^p) = 1$. The unit group k^{\times} has not p-torsion, therefore $G \hookrightarrow T = (k^{\times})^n$ has also no p-torsion. Therefore, the frobenius $g \mapsto g^p$ is an isomorphism on G. Therefore, $\chi = 1$ is a trivial character. Ergo $\mathfrak{X}(G)$ has no p-torsion.
- (ii) Let Γ be a finitely generated abelian group with no char(k)-torsion. Then,

$$\Gamma \cong \mathbb{Z}^r \oplus \mathbb{Z}/n_1\mathbb{Z} \oplus \ldots \oplus \mathbb{Z}/n_l\mathbb{Z}$$

where $char(k) \not| n_1, \ldots, n_l$. We may reduce to the cases:

- (a) $\Gamma = \mathbb{Z}$: take $G = \mathcal{G}_m$, then $\Xi(G) \cong \mathbb{Z} \cong \Gamma$.
- (b) $\Gamma = \mathbb{Z}/n\mathbb{Z}$ with $\operatorname{char}(k) =: p \not| n$: take $G := \mu_n := \{ y \in k^{\times} \mid y^n = 1 \}$. Then, since $p \not| n$, $(t^n - 1)$ is radical. So,

$$\mathcal{O}(\mu_n) \stackrel{\text{Nullstellensatz}}{=} k[t]/(t^n - 1) \stackrel{\text{as Hopf algebras}}{\cong} k[\Gamma]$$

where t gets mapped to the generator of Γ .

Corollary 6. We have the bijection

 $\{\mathit{tori}\} \cong \{ \mathit{ finitely generated free abelian groups} (\cong \mathbb{Z}^n) \}.$

Remark 5.

{algebraic group schemes/k} $\stackrel{\text{not necessarily natural}}{\cong}$ { f.g. Hopf algebras}.

by

$$G \mapsto \mathcal{O}(G)$$

 $\quad \text{and} \quad$

{diagonalizable algebraic group schemes/k} \cong \{ \text{ f.g. abelian groups} \}.

by

$$G \mapsto \mathfrak{X}(G)$$
.

Where μ_p in the left hand term gets mapped to $\mathcal{O}(\mu_p) = k[t]/(t^p-1)$ with p = chark.

9 Trigonalization

We say a representation $r: G \to \mathsf{GL}(V)$ of a group G on a finite-dimensional k-vectorspace V is **trigonalizable** if it admits a basis with respect to which r(V) is upper-triangular:

$$r(G) \subseteq \left\{ \begin{pmatrix} * & \dots & * \\ 0 & \ddots & \vdots \\ 0 & 0 & * \end{pmatrix} \right\}$$

Definition 32. We call a subgroup $G \subseteq \mathsf{GL}(V)$ **trigonalizable**, if the identity representation is.

Lemma 37. Let G be an algebraic group. The following are equivalent:

- (i) Every finite-dimensional representation $r: G \to \mathsf{GL}(V)$ is trigonalizable.
- (ii) Every irreducible representation of G is 1-dimensional.
- (iii) G is isomorphic to an algebraic subgroup of

$$B_n := \left\{ \begin{pmatrix} * & \dots & * \\ 0 & \ddots & \vdots \\ 0 & 0 & * \end{pmatrix} \right\} \subseteq GL_n(k).$$

(iv) There is a normal unipotent algebraic subgroup U of G s.t. G/U is diagonalizable.

Proof. We prove as follows:

(i) \Longrightarrow (ii): Let V be an irreducible representation. Then, $V \neq 0$. Choose a basis e_1, \ldots, e_n of V s.t.

$$r(G) \subseteq B_n$$
.

Then, $r(G)e_1 \subseteq ke_1$, so $V_0 := ke_1$ is G-invariant. Ergo $V = V_0$ is 1-dimensional.

(ii) \Longrightarrow (i): Let V be a f.d. representation. We show by induction on $\dim(V)$ that $r:G\to \mathsf{GL}(V)$ is trigonalizable:

In the cases $\dim(V) = 0, 1$, there is nothing to show.

In the case $\dim(V) \geq 2$, assume that V is not irreducible. Then, there is a G-invariant V_0 with $0 \neq V_0 \neq V$.

By the induction hypothesis, V_0 and V/V_0 are trigonalizable. Ergo, V is trigonalizable.

(**Recall:** we used this criterion above in the proof that unipotent groups are trigonalizable by showing that every ??? of each G is trivial.)

(i) \implies (iii): Choose a faithful representation V of G. Then, $G \cong r(G)$. Since r is trigonalizable, there is a basis of V s.t.

$$r(G) \subseteq B_n \subseteq \mathsf{GL}_n(k)$$
.

(iii) \implies (ii): Suppose $G \subseteq B_n \subseteq \mathsf{GL}_n(k)$. Set

$$A_n := \left\{ \begin{pmatrix} * & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & * \end{pmatrix} \right\} \subseteq \mathsf{GL}_n(k),$$

$$U_n := \left\{ \begin{pmatrix} 1 & \dots & * \\ 0 & \ddots & \vdots \\ 0 & 0 & 1 \end{pmatrix} \right\} \subseteq \mathsf{GL}_n(k) \text{ normal algebraic subgroup of } B_n,$$

 $U := G \cap U_n$ normal unipotent algebraic subgroup of G.

Let V be an irreducible representation of G, then V is not zero. Consider the subspace of V fixed by U

$$V^U := \{ v \in V \mid r(u)v = v \forall u \in U \}.$$

Then, we get a representation

$$r|_U:U\longrightarrow \mathsf{GL}(V).$$

Then, r(U) is a unipotent algebraic group of $\mathsf{GL}(V)$. Ergo,

$$r(U) \subseteq \left\{ \begin{pmatrix} 1 & \dots & * \\ 0 & \ddots & \vdots \\ 0 & 0 & 1 \end{pmatrix} \right\}.$$

Ergo, $V^U \neq 0$. Since U is normal in G, the subspace V^U of V is G-invariant: if $v \in V^U, g \in G$, then for all $u \in U$ we have

$$r(u)r(q)v = r(q)r(q^{-1}uq)v = r(q)v$$

since $v \in V^U$. Ergo $r(g)v \in V^U$.

Since V is irreducible, $V = V^U$, i.e. U acts trivially on V. Ergo, r descends to a representation of the group G/U.

But $G/U \hookrightarrow B_n/U_n \cong A_n$. Therefore, G/U and r(G) are commutative. Moreover, for all $g \in G$, $r(g) \in \mathsf{GL}(V)$ is semisimple:

if $g = g_s g_u$, then $g_u \in U$, because U_n is the group of unipotent elements of B_n . Hence, $r(g) = r(g_s)r(g_u) = r(g_s)$ is semisimple.

It follows that r(G) is commutative and consists of semisimple elements. By some HW: r(G) is trigonalizable. It is easy to show now that V is one-dimensional. (Since V is irreducible and ke_1 is G-invariant.)

Definition 33. G is **trigonalizable**, if it satisfies one of the above equivalent conditions.

Later, we will see, that if G is connected, then being trigonalizable implies being solvable.

10 Commutative Groups

Let G be an algebraic group. Denote by G_s resp. G_u the subsets of semisimple resp. unipotent elements of G.

Then, G_u is always algebraical i.e. closed: if $G \hookrightarrow \mathsf{GL}_n(k)$, then $G_u = \{g \mid (g-1)^n = 0\}$. G_u does not need to be closed under multiplication (for example, take $G = \mathsf{SL}_2(k)$,

$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$
 and $\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$).

 G_s needs not to be algebraic: for example, take $G = \mathsf{SL}_2(k)$ and if G_s were algebraic, then

$$\left\{\lambda \in k^{\times} \mid \begin{pmatrix} \lambda & 1 \\ 0 & \lambda^{-1} \end{pmatrix} \in G_s \right\} = \left\{\lambda \mid \lambda \neq \lambda^{-1} \right\}$$

but the last set is not algebraic. Also, G_s does not need to be a group.

We have the a surjective map of sets

Lecture from 30.03.2020

$$G_s \times G_u \longrightarrow G$$

 $(g_1, g_2) \longmapsto g_1 g_2.$

Example 16 (Non-Example). Take generic $g \in G_s, h \in G_u$ for $G = \mathsf{SL}_2(k)$. Then, g, h do not commute and we have

$$((gh)_s, (gh_u)) \neq (g, h)$$

because Jordan components don't commute.

Theorem 15. Let G be a commutative algebraic group. Then:

- (i) G_s, G_u are closed subgroups and the multiplicative map $G_s \times G_u \to G$ is an isomorphism of algebraic groups.
- (ii) G is trigonalizable. Moreover, for each finite dimensional representation $r: G \to GL(V)$ there is a basis s.t.

$$r(G_s) \subseteq \left\{ \begin{pmatrix} * & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & * \end{pmatrix} \right\} \qquad r(G_u) \subseteq \left\{ \begin{pmatrix} 1 & * & * \\ 0 & \ddots & * \\ 0 & 0 & 1 \end{pmatrix} \right\}.$$

- (iii) G_s is diagonalizable.
- *Proof.* (ii) Let V be any irreducible representation of G. We have seen that commuting semisimple operators may be simultaneously diagonalizable, then

$$V = \bigoplus_{\chi: G_s \to \mathcal{G}_m} V_{\chi}$$

where

$$V_{\chi} = \{ v \in V \mid r(h)v = \chi(h)v \ \forall h \in G_s \}.$$

Since G is commutative, each subspace V_{χ} is G-invariant $(r(h)r(g)v = r(g)r(h)v = r(g)\chi(h)v = \chi(h)r(g)v)$.

Since V is irreducible, we must have $V = V_{\chi}$ for some χ .

Recall that $G \cong G_s \times G_u$ as abstract groups. We have seen that $r(G_s) \subseteq \mathcal{G}_m^n$. We proved a while ago that any unipotent group, such as G_u , is trigonalizable. Ergo, V is trigonalizable. Since V is irreducible, we have dim V = 1.

If we apply the same argument without assuming that V is irreducible, then we see that V is the coproduct of V_{χ} 's as above and that each V_{χ} admits a basis s.t.

$$r(G_s)|_{V_\chi} \subseteq \left\{ \begin{pmatrix} * & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & * \end{pmatrix} \right\} \qquad r(G_u)|_{V_\chi} \subseteq \left\{ \begin{pmatrix} 1 & * & * \\ 0 & \ddots & * \\ 0 & 0 & 1 \end{pmatrix} \right\}.$$

This yields the same conclusion for V.

(i) We have to show that G_s and G_u are closed and $j: G_s \times G_u \to G$ is an isomorphism of groups. Take any faithful representation

$$G \xrightarrow{\cong,r} r(G) \subseteq \mathsf{GL}(V)$$

and apply (ii). Then we have

$$r(G) \subseteq \left\{ \begin{pmatrix} * & * & * \\ 0 & \ddots & * \\ 0 & 0 & * \end{pmatrix} \right\} =: B$$

$$B_u = \left\{ \begin{pmatrix} 1 & * & * \\ 0 & \ddots & * \\ 0 & 0 & 1 \end{pmatrix} \right\},$$

$$r(G_s) \subseteq \left\{ \begin{pmatrix} * & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & * \end{pmatrix} \right\} =: A.$$

In fact, $r(G_s) = r(G) \cap A$, because if $g \in G$ with $r(g) \in A$, then r(g) is semisimple, so $g \in G_s$.

Therefore, G_s is closed in G. Ergo, G_s and G_u are closed subgroups.

Then, the map j is a morphism of algebraic groups.

We need to show that j^{-1} is a morphism of algebraic groups. For this, it suffices to verify that the projection $G \to G_s$ is a morphism. But this map is given under r by the morphism:

$$t := \begin{pmatrix} a_1 & * & * \\ 0 & \ddots & * \\ 0 & 0 & a_n \end{pmatrix} \longmapsto \begin{pmatrix} a_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & a_n \end{pmatrix} =: t_s.$$

This suffices because if $g = g_s g_u$, then $g_u = g_s^{-1} g$, so if the map $g \mapsto g_s$ is a morphism, so is $g \mapsto g g_s^{-1} = g_u$, hence so is $g \mapsto (g_s, g_u)$.

(iii) We have seen that G_s is a closed subgroup. Hence G_s is a commutative algebraic group where elements are semisimple. Ergo, G_s is diagonalizable.

11 Connected Solvable Groups

Theorem 16 (Lie-Kolchin). Let G be a connected solvable algebraic group. Then G is trigonalizable.

(By comparison, recall that we have seen so far that, if G is commutative or unipotent, then G is trigonalizable.) We can reformulate this theorem as: Any connected solvable subgroup of GL(V) stabilizes some complete flag $\mathcal{F} = (V_0 \subsetneq \ldots \subsetneq V_n)$.

Generalization (Borel's Fixed Point Theorem): Any connected algebraic group G acting on a projective variety X has a fixed point in X.

We get a relation between complete flags and projective varieties.

Proof. Induct on the number n s.t. $G^{(n)} = 1$.

For n = 0, there is nothing to show.

If n = 1, (G, G) = 1, then G is commutative, ergo trigonalizable.

Let $n \geq 2$. Then, we have $G' := (G, G) \neq 1$. We will show the following lemma:

Lemma 38. Let $G \subseteq GL(V)$ be a subgroup.

If G is connected, then the group G' with the induced topology is connected (\iff the Zariski Closure of G' is connected).

Proof. We have the following facts:

- An increasing union of connected spaces is connected.
- A continuous image of a connected space is connected.

We have

$$G' = \langle (g, h) := ghg^{-1}h^{-1} \mid g, h \in G \rangle$$

= $\bigcup_{j \ge 0} \bigcup_{g_1, h_1, \dots, g_j, h_j \in G} \{ (g_1, h_1) \cdots (g_j, h_j) \}.$

Since

$$\bigcup_{g_1,h_1,...,g_j,h_j \in G} \{(g_1,h_1)\cdots(g_j,h_j)\} = \text{Img}\phi_j$$

for some continuous map $\phi_j: G^{2j} \to G$, the claim follows. Ergo, G' is connected. \square

Remark 6. It is equivalent to show that (*) any subgroup G of GL(V) – s.t. G is connected and solvable – is trigonalizable in GL(V).

Indeed, the theorem implies (*): the Zariski closure of G is a connected algebraic group that is solvable (which extends by continuity). If Zcl(G) is trigonalizable, then also G is trigonalizable.

On the other hand: (*) implies the theorem, since if G is given as in the theorem, apply (*) to $r(G) \subseteq \mathsf{GL}(V)$.

Proof of Theorem. If $G^{(n)} = 1$, then $(G')^{(n-1)} = G^{(n)} = 1$. By induction, we may assume that G' satisfies the following:

For all finite dimensional representations $r: G \to \mathsf{GL}(V)$, r(G') is trigonalizable. Our aim is to show that any irreducible representation V of G has dimension 1.

The induction hypothesis implies that r(G') is trigonalizable. In particular, there exists an eigenspace $V_{\chi} \subseteq V$ for G' for some character $\chi : G' \to k^{\times}$. Since G' is normal in G we know that G acts from the left on

{eigenspaces
$$V_{\chi}$$
 in V for G' }.

Ergo, $\bigoplus_{\chi:G'\to k^\times} V_\chi$ is G-invariant. Since V is G-irreducible, we have

$$V = \bigoplus_{\chi: G' \to k^{\times}} V_{\chi} = \bigoplus_{\chi \in \mathfrak{X}'} V_{\chi}$$

for some finite subset $\mathfrak{X}' = \{\chi \mid V_{\chi} \neq 0\}$ of $\mathsf{Hom}(G', \mathcal{G}_m)$, since V is finite dimensional.

Claim: Let $h \in G'$. Then, the map

$$G \longrightarrow \mathsf{GL}(V)$$

 $g \longmapsto r(ghg^{-1})$

has a finite image.

Proof. Denote by $\chi \mapsto \chi^g$ the action of $g \in G$ in $\text{Hom}(G', \mathcal{G}_m)$ given by $\chi^g(h) := \chi(ghg^{-1})$. This is an action, since G' is normal.

Note, that $\mathfrak{X}' \subseteq \mathsf{Hom}(G', \mathcal{G}_m)$ is a finite subset.

Also note, that the action $\chi \mapsto \chi^g$ descends to an action $G \curvearrowright \mathfrak{X}'$.

Now, let $\mathfrak{X}' = \{\chi_1, \ldots, \chi_r\}$. The matrix r(h) is totally determined by the values $\chi_1(h), \ldots, \chi_r(h)$. Then, the element $r(ghg^{-1})$ is totally determined by the values $\chi_1^g(h), \ldots, \chi_r^g(h)$. It follows

$$\#\left\{r(ghg^{-1})\mid g\in G\right\}\leq r!.$$

The following lemma is easy to show:

Lemma 39. Let G be an algebraic set. Then, G is connected iff for each finite algebraic set X, and for each morphism $f: G \to X$ of algebraic sets, we have that f is constant.

Claim with the Lemma implies that the map $g \mapsto t(ghg^{-1})$ is constant. This implies that $r(ghg^{-1}) = r(h)$ for all $g \in G, h \in G'$. Ergo, G stabilizes each eigenspace V_{χ} for G'. Ergo, $V = V_{\chi_0}$, since V is irreducible.

Lemma 40. Let G be any group with a finite dimensional representation $r: G \to GL(V)$. Then, the subspaces V_{χ} for $\chi \in Hom(G, k^{\times})$ are linearly independent, i.e., the map

$$\oplus V_{\chi} \longrightarrow V$$

is injective.

Proof. The spaces V_{χ} are G-invariant. Suppose, there exist distinct χ_1, \ldots, χ_n of non-zero $v_j \in V_{\chi_j}$ s.t. $\sum_j v_j = 0$.

We may assume that n, the number of v_j , is minimal. W.l.o.g., $n \geq 2$.

Choose $g \in G$ s.t. $\chi_1(g) \neq \chi_2(g)$. Use that $0 = g \sum_j v_j = \sum_j gv_j$ and take the linear combination as in the proof of linear independence of characters to contradict the minimality of n.

$$(g - \chi_1(g) \text{ is not zero, but reduces } \sum_j v_j \text{ by one summand.})$$

Lecture from 01.04.2020

Finishing Proof of Theorem. Since $G' = \langle ghg^{-1}h^{-1} \mid g, h \in G \rangle$, so $\det(r(G')) = 1$. On the other hand, for each $g \in G'$, we have

$$r(g) = \begin{pmatrix} \chi_0(g) & & \\ & \ddots & \\ & & \chi_0(g) \end{pmatrix}$$

since $V = V_{\chi_0}$. This implies

$$1 = \det(r(q)) = \chi_0(q)^d$$
.

Ergo, χ_0 defines a morphism

$$\chi_0: G' \longrightarrow \mu_d \subseteq \mathcal{G}_m.$$

But G' is connected and μ_d is finite. Since χ_0 is a morphism, χ_0 must be constant, ergo the trivial character.

As a consequence, we get r(G') = 1 on $V = V_{\chi_0}$.

Lemma 41. Let G be an algebraic group, $r: G \to GL(V)$ a representation. $v \in V$ shall be a simultaneous non-zero eigenvector for r(G).

Then, for each $g \in G$, there is a value $\chi(g) \in k^{\times}$ s.t.

$$r(g)v =: \chi(g)v.$$

Then, the mapping $\chi: G \to \mathcal{G}_m$ is a morphism of algebraic groups.

Therefore, r descends to a representation of the commutative group

$$\overline{r}: G/G' \longrightarrow \mathsf{GL}(V).$$

Ergo, r(G/G') = r(G) is commutative and therefore trigonalizable (because of irreducibility).

Example 17 (Non-Example). • Take $G = D_4 \hookrightarrow \mathsf{GL}_2(\mathbb{C})$ which is solvable and has an irreducible and faithful representation over \mathbb{C}^2 .

• Consider the solvable group

$$G = \left\langle \begin{pmatrix} \pm 1 & \\ & \pm 1 \end{pmatrix}, \begin{pmatrix} & 1 \\ 1 & \end{pmatrix} \right\rangle$$

which is a finite subgroup of $\mathsf{GL}_2(\mathbb{C})$, s.t. \mathbb{C}^2 defines an irreducible representation of G.

Lemma 42 (Form of Schur's Lemma). Let S be any commutative subset of GL(V) for a finite-dimensional $0 \neq V$ over an algebrically closed field k. Let V be S-irreducible. Then, dim V = 1.

Proof. There is nothing to show if S is empty.

Let $s \in S$ and denote by $V_{\lambda} \subseteq V$ the λ -eigenspace for s. Then, since S is commutative, V_{λ} is S-invariant. Therefore, $V = V_{\lambda}$ for one $\lambda \in k^{\times}$.

Thus, every $s \in S$ acts by scaling, therefore every subspace of V is S-invariant. Since V is invariant, we get $\dim V = 1$.

Corollary 7. Let G be a connected algebraic group. Then, G is solvable iff G is trigonalizable.

Proposition 3. If G is trigonalizable, then G_u is a normal algebraic subgroup.

Proof. We have

$$G \hookrightarrow B := \left\{ \begin{pmatrix} * & \dots & * \\ & \ddots & \vdots \\ & & * \end{pmatrix} \right\} \subseteq \mathsf{GL}_n(k).$$

B has the normal subgroup $U := \left\{ \begin{pmatrix} 1 & \dots & * \\ & \ddots & \vdots \\ & & 1 \end{pmatrix} \right\}$ and we have $G_u = G \cap U$. Now,

U is the kernel of the multiplicative morphism

$$\begin{pmatrix} a_1 & \dots & * \\ & \ddots & \vdots \\ & & a_n \end{pmatrix} \longmapsto \begin{pmatrix} a_1 & \\ & & \\ & & a_n \end{pmatrix}.$$

Corollary 8. If G is connected and solvable, then G_u is a normal algebraic subgroup.

12 Semisimple Elements of nilpotent Groups

Theorem 17. Let G be a connected nilpotent algebraic group. Then, we have

$$G_s \subseteq Z(G)$$

where Z(G) denotes the **center** of G, i.e.

$$Z(G) = \{ g \in G \mid \forall h \in G : gh = hg \}.$$

Theorem 18 (Lie-algebraic Analogue). Let V be a finite-dimensional vectorspace. Let \mathfrak{g} be the Lie-Subalgebra of End(V), i.e. \mathfrak{g} is a subspace s.t. we have for each $x, y \in \mathfrak{g}$

$$[x,y] := xy - yx \in \mathfrak{g}.$$

Assume that \mathfrak{g} is nilpotent, i.e. there is an $n \in \mathbb{N}_0$ s.t.

$$[x_1, [x_2, [\dots, [x_{n-1}, x_n]]]] = 0$$

for all $x_1, \ldots, x_n \in \mathfrak{g}$.

Then, any semisimple (semisimple in End(V) that is) $x \in \mathfrak{g}$ is **central** in \mathfrak{g} , i.e. [x,y]=0 for each $y \in \mathfrak{g}$.

Remark 7. The Lie-algebraic Analogue implies the general theorem if – for example – $k=\mathbb{C}$.

Proof. Let $g \in G_s$. We want to show $Z_G(g) = G$.

Fact from the theory of Lie-Algebras: For the Lie-Algebra $Lie Z_G(g)$ we have

$$\operatorname{Lie} Z_G(g) = \ker(\operatorname{\mathsf{Ad}}(g))$$

where Ad is the map

$$\mathsf{Ad}: G \longrightarrow \mathsf{GL}(\mathfrak{g})$$
$$x \longmapsto qxq^{-1}.$$

Since G is connected, it suffices to verify

$$\ker(\mathsf{Ad}(g)) = \mathfrak{g}$$

i.e. Ad(g) = 1.

Since g is semisimple, we have for suitable basis

$$g = \begin{pmatrix} a_1 & & \\ & \ddots & \\ & & a_n \end{pmatrix}$$

with $a_j \in \mathbb{C}^{\times}$. This is $\exp(x)$ for a suitable diagonal matrix $x \begin{pmatrix} x_1 & & \\ & \ddots & \\ & & x_n \end{pmatrix} \in \mathsf{GL}_n(\mathbb{C}).$

Fact: We may assume that $x \in \mathfrak{g} := \text{Lie}(G)$.

Since G is nilpotent, it can be shown that \mathfrak{g} is nilpotent.

By the theorem, x is central in \mathfrak{g} . By the properties of exp we have

$$\mathsf{Ad}(g) = \exp(\operatorname{ad}(g)) = 1$$

ergo ad(x) = 0 where $ad : \mathfrak{g} \to \mathfrak{g}$ is defined by

$$ad(x) \cdot y := [x, y].$$

Proof. If \mathfrak{g} is nilpotent, then $ad(x) \in \mathsf{End}(\mathfrak{g})$ is nilpotent.

Since x is semisimple, ad(x) is semisimple, because ad(x) is the restriction to \mathfrak{g} of the map

$$\operatorname{End}(V) \longrightarrow \operatorname{End}(V)$$

$$y \longmapsto [x,y]$$

and, if e_1, \ldots, e_n are a basis of eigenvectors for x, then $E_{i,j}$ is a basis of eigenvectors for ℓ .

So, ad(x) is nilpotent and semisimple, therefore ad(x) = 0.

Proof Theorem. Let G be a connected nilpotent algebraic group, $G \stackrel{\mathsf{GL}}{\hookrightarrow} (V)$.

Let $g \in G_s$, we want to show that $g \in Z(G)$.

Assume otherwise, then we have a $h \in G$ s.t. $(g,h) = ghg^{-1}h^{-1} \neq 1$.

Since G is connected and nilpotent (ergo solvable), we know by Lie-Kolchin that G stabilizes some complete flag $V_0 \subset \ldots \subset V_n$.

We have $g|_{V_i}, h|_{V_i} \in \mathsf{GL}(V_i)$. They commute, if i = 0, but not if i = n.

So, there is an i s.t. $g|_{V_i}$, $h|_{V_i}$ commute but $g|_{V_{i+1}}$, $h|_{V_{i+1}}$ don't commute. W.l.o.g. $V = V_{i+1}$, $g = g|_{V_{i+1}}$, $h = h|_{V_{i+1}}$. Set $a := g|_{V_i}$, $b := h|_{V_i} \in \mathsf{GL}(V_i)$. a will be semisimple, since g is.

Since g is semisimple, there is an eigenvector $v \in V_{i+1}$ for g s.t.

$$V_{i+1} = V_i \oplus \langle v \rangle$$
.

We have an isomorphism of vector spaces

$$\mathsf{End}(V_{i+1}) \cong \mathsf{End}(V_i) \oplus \mathsf{Hom}\left(\langle v \rangle, V_i\right) \oplus \mathsf{Hom}\left(V_i, \langle v \rangle\right) \oplus \mathsf{End}(\langle v \rangle)$$

with

$$\operatorname{End}(\langle v \rangle) \cong k \text{ and } \operatorname{Hom}(\langle v \rangle, V_i) \cong V_i.$$

So, we can write $g|_{V_{i+1}}, h|_{V_{i+1}}$ write as

$$g = \begin{pmatrix} a & \\ & * \in k \end{pmatrix}$$
 and $h = \begin{pmatrix} b & c \in V_i \\ & * \end{pmatrix}$.

We may replace g, h with scalar multiples to reduce to the case that * = 1. Then, So, we can write $g|_{V_{i+1}}, h|_{V_{i+1}}$ write as

$$g = \begin{pmatrix} a \\ 1 \end{pmatrix}$$
 and $h = \begin{pmatrix} b & c \\ 1 \end{pmatrix}$.

Then,

$$h \neq ghg^{-1} = \begin{pmatrix} b & ac \\ & 1 \end{pmatrix}.$$

Ergo, $c \neq ac$, i.e. $c \notin \ker(a-1)$. Define

$$h_1 := h^{-1}ghg^{-1} = \begin{pmatrix} 1 & b^{-1}(a-1)c \\ & 1 \end{pmatrix}.$$

We claim that h_1 does not commute with g. This claim implies the theorem, since we can iterate the claim to obtain elements h_i by $h_{i+1} := h_i^{-1}gh_ig^{-1}$. Then, h_i does not commute with g. But G is nilpotent, therefore $h_i = 1$ for some large enough i.

We can prove the claim as follows: By some calculation as for h and g, we see, that h_1 and g don't commute iff $b^{-1}(a-1)c \notin \ker(a-1)$. This is equivalent to

$$\iff (a-1)b^{-1}(a-1)c \neq 0$$

$$\iff b^{-1}(a-1)^2c \neq 0$$

$$\iff (a-1)^2c \neq 0$$

$$\iff c \notin \ker((a-1)^2).$$

But a being semisimple implies a-1 being semisimple, therefore

$$\ker((a-1)^2) = \ker(a-1).$$

So h_1, g don't commute iff $c \in \ker(a-1)$ iff h, g don't commute.

Lecture from 06.04.2020

13 Algebraic Geometry

13.1 Projective Algebraic Sets

Let V be a finite-dimensional vector space. Then $\mathcal{G}_m = k^{\times}$ acts on V by scalar multiplication. $\{0\}$ is a \mathcal{G}_m -invariant subspace of V. We are interested on the orbits of \mathcal{G}_m on $V \setminus \{0\}$.

Define the **projective space** over V by

$$\mathbb{P}V := \mathcal{G}_m \setminus (V - 0) = (V - 0) / \sim \cong \{ \text{lines in } V \}$$

where for $a, b \in V - 0$ we set

$$a \sim b : \iff \exists \lambda \in k^{\times} : \lambda a = b.$$

If $V = k^{n+1}$, we denote the *n*-dimensional projective space by $\mathbb{P}^n := \mathbb{P}V$.

Given $a = (a_0, a_1, \dots, a_n) \in k^{n+1} - 0$, we denote the \sim -class of a by

$$[a] = [a_0, \dots a_n] \in \mathbb{P}^n.$$

Define S to be the graded algebra of polynomials in k

$$S := k[x_0, \dots, x_n] = \bigoplus_{d \ge 0} S_d$$

where each S_d is the space of homogenous polynomials of degree d, i.e.

$$S_d = \bigoplus_{i_1, \dots, i_d \in \{0, \dots, n\}} k \cdot x_{i_1} \cdots x_{i_d}.$$

We identify k with the space of constant polynomials $S_0 \subseteq S$.

We have

$$S_d = \left\{ f \in S \mid f(\lambda X) = \lambda^d f(X) \ \forall \lambda \in k^{\times} \right\}.$$

Given $f \in S_d$, the set

$$\left\{a \in k^{n+1} \mid f(a) = 0\right\}$$

is \mathcal{G}_m -invariant. In other words, given $a \in \mathbb{P}^n$ and $f \in S^d$, it is well-defined to state f(a) = 0 and $f(a) \neq 0$.

Definition 34. A projective algebraic subset $X \subseteq \mathbb{P}^n$ is a set of the form

$$X = V(\Sigma) := V_{\mathbb{P}^n}(\Sigma)$$

where Σ is a collection of homogenous elements of S, where

$$V_{\mathbb{P}^n}(\Sigma) := \{ a \in \mathbb{P}^n \mid f(a) = 0 \ \forall f \in \Sigma \}.$$

Facts:

• Hilbert's basis theorem states

$$V(\Sigma) = V(f_1, \ldots, f_m)$$

for some finite collection $f_1, \ldots, f_m \in \Sigma$.

• It is useful to extend the meaning of "f(a) = 0" for $a \in \mathbb{P}^n$ to general elements $f \in S$ by requiring that f(a') = 0 for each $a' \in [a]$.

If we write $f = \sum_{d \geq 0} f_d$, $f_d \in S_d$, then we have

$$f(a) = 0 \iff f_d(a) = 0 \ \forall d \ge 0.$$

Therefore, we can extend the definition of $V(\Sigma)$ to any $\Sigma \subseteq S$.

- We have $V(\Sigma) = V((\Sigma))$ where (Σ) is the ideal generated by some finite subset of Σ .
- We call an ideal $I \subseteq S$ homogenous if it is the direct sum of its d-homogeneous components, i.e.

$$I = \sum_{d>0} I_d$$

where $I_d = \{ f \in I \mid f \text{ is homogenous of degree } d \}.$

I is homogeneous iff it is generated by homogeneous elements.

ullet We have the following Null stellen satz:

For any $X \subseteq \mathbb{P}^n$, set I(X) to be the ideal generated by all homogeneous polynomials of S vanishing on X.

Let $I \subseteq S$ be a homogeneous ideal which is not equal to (x_0, \ldots, x_n) . Then, we have

$$I(V_{\mathbb{P}^n}(I)) = \sqrt{I}.$$

Example 18 (Anti-example). The second property is necessary:

Set $I = (x_0, \ldots, x_n)$. Then $V_{k^{n+1}}(I) = 0$. Therefore, $V_{\mathbb{P}^n}(I) = \emptyset$. However,

$$I(V_{\mathbb{P}^n}(I)) = S.$$

• The above point induces a bijection between algebraic subsets of \mathbb{P}^n and radical ideals $I \subset S$ which are not (x_0, \ldots, x_n) .

For i = 0, ..., n, set $D(x_i) := \{a \in \mathbb{P}^n \mid a_i \neq 0\}$. $D(x_i)$ is an open set homeomorphic to k^n by mapping

$$\phi_i: a \longmapsto (\frac{a_0}{a_i}, \dots, \frac{a_{i-1}}{a_i}, \frac{a_{i+1}}{a_i}, \dots, \frac{a_n}{a_i}).$$

The $D(x_i)$ cover $\mathbb{P}^n = \bigcup_i D(x_i)$.

Given a projective algebraic subset $X \subset \mathbb{P}^n$, define $X^{(i)} \subset k^n$ by

$$X^{(i)} := \phi_i(X \cap D(x_i)).$$

If $X = V_{\mathbb{P}^n}(I)$, then

$$X^{(i)} = V_{k^n}(I^{(i)})$$

where

$$I^{(i)} := \{ f^{(i)} \mid f \in I \}$$

where $f^{(i)}(t_1,\ldots,t_n):=f(t_1,\ldots,t_{i-1},1,t_i,\ldots,t_n)$. Thus, $X^{(i)}$ is an algebraic subset of k^n .

Definition 35. The **Zariski topology** on \mathbb{P}^n is defined by setting the set of closed sets to be the set of projective algebraic sets.

Facts:

- $D(x_i)$ is open in \mathbb{P}^n , since $D(x_i) = \mathbb{P}^n V(x_i)$.
- The bijections $D(x_i) \cong k^n$ are homeomorphims.

Definition 36. A quasi-projective algebraic set Y is an open subset of a projective algebraic set $X \subseteq \mathbb{P}^n$.

Example 19. Any algebraic set in k^n is quasi-projective.

Definition 37. A quasi-projective variety is defined as an irreducible quasi-projective algebraic set.

Lemma 43 (Products). Define the Segre-embedding by

$$S^{n,m}: \mathbb{P}^n \times \mathbb{P}^m \longrightarrow \mathbb{P}^{nm+n+m}$$
$$(a,b) \longmapsto [(a_ib_j)_{i,j=0,\dots,n}].$$

We have:

- 1. $S^{n,m}$ is injective.
- 2. $S^{n,m}$ has a closed image.

3.
$$k^n \times k^m \cong D(z_{00}) \cap S^{n,m}(\mathbb{P}^n \times \mathbb{P}^m) = S^{n,m}(D(x_0) \times D(y_0)).$$

Definition 38. For quasi-projective algebraic sets $X \subset \mathbb{P}^n, Y \subset \mathbb{P}^m$, we define their product by

$$X \times Y := S^{n,m}(X,Y) \subseteq \mathbb{P}^{nm+n+m}$$
.

Then, $X \times Y$ is a quasi-projective algebraic subset of \mathbb{P}^{nm+n+m} .

13.2 Flag Varieties

Definition 39. We define the Grassmannian manifold by

$$G(n,d) := \{W \subset k^n \mid W \text{ is a } d\text{-dimensional subvectorspace}\}.$$

Then, we have the **Plücker-embedding** by

$$P_d: G(n,d) \longrightarrow \mathbb{P}\left(\bigwedge^d k^n\right) = \mathbb{P}^{\binom{n}{d}}$$
$$W \longmapsto [w_1 \wedge w_d]$$

where w_1, \ldots, w_d is a basis of W.

Lemma 44. P_d is injective and has a closed image. Therefore, we can see G(n, d) as a projective algebraic set.

Definition 40. Let V be a finite-dimensional vector space of dimension n. Set

$$Gr_d(V) := \{d\text{-dim. subspaces of } V\} \cong G(n, d).$$

Define further the flag manifold to be

$$\operatorname{Flag}(V) := \{ \operatorname{complete flags} \mathcal{F} = (0 = V_0 \subseteq V_1 \subseteq \ldots \subseteq V_n = V) \}.$$

Then, we have a map

$$P_v : \operatorname{Flag}(V) \longrightarrow \operatorname{Gr}_0(V) \times \ldots \times \operatorname{Gr}_n(V)$$

$$\mathcal{F} \longmapsto (V_0, \ldots, V_n).$$

Lemma 45. P_V has a closed image and is injective.

Thus, we can see Flag(V) as a projective algebraic set.

Lemma 46. $Gr_d(V)$ and Flag(V) are both irreducible, hence projetive alg. varieties. Flag(V) is called the **variety of complete flags**.

13.3 Local Rings and Function Fields

Definition 41. An **affine variety** is an irreducible algebraic subset of k^n .

Definition 42. If X is an affine variety, then the coordinate ring $\mathcal{O}(X)$ is a domain. Define the **function field** of X by

$$k(X) := \operatorname{Frac}(\mathcal{O}(X)) := \left\{ \frac{a}{b} \mid a, b \in \mathcal{O}(X), b \neq 0 \right\}.$$

Definition 43. Let $p \in X$. We define the local ring of $\mathcal{O}(X)$ at p by

$$\mathcal{O}_{X,p} := \left\{ \frac{a}{b} \mid a \in O(X), 0 \neq b \in O(X), b(p) \neq 0 \right\} \subset k(X).$$

We have an **evaluation** map

$$\operatorname{eval}_p: \mathcal{O}_{X,p} \longrightarrow k$$

$$\frac{a}{b} \longmapsto \frac{a(p)}{b(p)}.$$

Lemma 47. Let X be an affine variety. Then

$$\mathcal{O}(X) = \bigcap_{p \in X} \mathcal{O}_{X,p}.$$

Definition 44. Let $X \subset \mathbb{P}^n$ be a projective variety. Denote by $I_{\mathbb{P}}(X)$ its homogenous vanishing ideal.

Define its **function field** by

$$k(X) := R/M$$
.

where

$$R := \left\{ \frac{f}{g} \mid f, g \in k[x_0, \dots, x_n] \text{ homogen., deg } f = \deg g, g \notin I_{\mathbb{P}}(X) \right\},$$

$$M := \left\{ \frac{f}{g} \in R \mid f \in I_{\mathbb{P}}(X) \right\}.$$

Lemma 48. M is a maximal ideal in R and R/M is a field.

Lemma 49. If X is a projective variety, then $X^{(i)} \subset k^n$ is an affine variety. If $X^{(i)} \neq \emptyset$, then

$$k(X) \cong k(X^{(i)}).$$

Definition 45. Let X be a projective variety. For $p \in X$, we define its **local ring** at p by

$$\mathcal{O}_{X,p} := \left\{ \frac{f}{g} \in k(X) \mid g(p) \neq 0 \right\} \subset k(X).$$

Lemma 50. For a projective variety X, we have:

- 1. For $p \in X^{(i)}$: $\mathcal{O}_{X,p} \cong \mathcal{O}_{X^{(i)},p}$.
- 2. For $p \in X^{(i)} \cap X^{(j)}$: $\mathcal{O}_{X^{(j)},p} \cong \mathcal{O}_{X^{(i)},p}$.

Definition 46. If $X \subset \mathbb{P}^n$ is quasi-projective variety, there is a minimal projective variety $\overline{X} \subset \mathbb{P}^n$ which contains X as an open subset.

Then, we can set

$$k(X) := k(\overline{X})$$

 $\mathcal{O}_{X,p} := \mathcal{O}_{\overline{X},p}.$

13.4 Regular Functions and Morphisms

Definition 47. Let X be quasi-projective variety. Let $U \subseteq X$ be open. Then, we define the **ring of regular functions** on U by

$$\mathcal{O}(U) := \bigcap_{P \in U} \mathcal{O}_{X,P} \subseteq k(X).$$

Definition 48. Let X, Y be two quasi-projective varieties. A map $f: X \to Y$ is called a **morphism**, if f is continuous and we have

$$f^*\mathcal{O}(U) := \{h \circ f \mid h \in \mathcal{O}(U)\} \subseteq \mathcal{O}(f^{-1}(U)).$$

Remark 8. Let X, Y be affine varieties and $f: X \to Y$ be a map. Then we have

$$f^*\mathcal{O}(U) \subseteq \mathcal{O}(f^{-1}(U))$$

iff f is given by polynomials.

Lemma 51. Let X be a quasi-projective variety and let $p \in X$.

Then there is an open neighborhood U of p in X s.t. U is isomorphic (as quasi-projetive varieties) to an affine variety $U' \subset k^n$.

Proof. Let Y be a projective variety s.t. X lies open in Y. By replacing $X \hookrightarrow Y$ with $X^{(i)} \hookrightarrow Y^{(i)}$, we may assume that X is an open subset of an affine variety Y in k^n .

Since the sets D(f) give an open basis of k^n , there is a $f \in O(Y)$ s.t.

$$p \in D_Y(f) := \{ y \in Y \mid f(y) \neq 0 \} \subset X.$$

Now, $D_Y(f)$ is affine, because the map

$$D_Y(f) \longrightarrow \left\{ (q, r) \in k^{n+1} \mid q \in Y, f(q)r = 1 \right\}$$

$$q \longmapsto \left(q, \frac{1}{f(q)} \right)$$

is an isomorphism of quasi-projective varieties.

13.5 Dimensions

Definition 49. Let X be a quasi-projective variety. We define its **dimension** as the transcendency degree of its function field, i.e.

$$\dim(X) := \operatorname{tr.-deg}_k(k(X)).$$

Remark 9. If X is affine, then

$$\dim(X) = \operatorname{tr.-deg}_{k}(k(X))$$

$$= \dim_{\operatorname{Krull}}(\mathcal{O}(X))$$

$$= \sup \{ n \in \mathbb{N}_{0} \mid P_{0} \subsetneq P_{1} \subsetneq \dots P_{n}, P_{i} \text{ prime in } \mathcal{O}(X) \}$$

$$= \sup \{ n \in \mathbb{N}_{0} \mid Z_{n} \subsetneq \dots Z_{0}, Z_{i} \text{ closed, irreducible in } X \}$$

Remark 10. If $U \subset X$ is open, then k(U) = k(X) and $\dim(U) = \dim(X)$.

Lemma 52. Let $\phi: X \to Y$ be a surjective morphism of quasi-projective varieties. Then,

$$\dim X \ge \dim Y$$
.

Proof. ϕ induces an inclusion

$$\phi^* : k(Y) \longrightarrow k(X)$$
$$[(U_i, \alpha_i)_i] \longmapsto [(\phi^{-1}(U_i), \alpha_i \circ \phi)].$$

This map is indeed injective, since ϕ is surjective. Therefore, the claim follows. \square

Lemma 53. Let X be a quasi-projective variety and Y a proper, closed subvariety. Then,

$$\dim(Y) < \dim(X)$$
.

Proof. By going from X to its closure \widetilde{X} and from there to $\widetilde{X}^{(i)}$, we can assume that X is affine.

Then, $I_X(Y)$ is a non-trivial prime ideal in $\mathcal{O}(X)$. Therefore, we have

$$\dim_{\mathrm{Krull}}(\mathcal{O}(Y)) = \dim_{\mathrm{Krull}}(\mathcal{O}(X)/I_X(Y)) \le \dim_{\mathrm{Krull}}(\mathcal{O}(X)),$$

since A is a finitely generated k-algebra and a domain.

Lemma 54. Let X be an affine variety and $f \in \mathcal{O}(X)$ be non-zero.

Then, the set

$$V_X(f) := \{ p \in X \mid f(p) = 0 \}$$

is a proper, closed subset of X and we can decompose it into irreducible components

$$V_X(f) = Z_1 \cup \ldots \cup Z_l$$
.

For each of those Z_i , we have

$$\dim(Z_i) = \dim(X) - 1.$$

Proof. The Z_i correspond to minimal prime ideals P_i in $\mathcal{O}(X)$ which contain (f). Since, they are minimal, we have

$$height(P_i) = 1.$$

Lemma 55. Let X be an quasi-projective algebraic set. Then – as in the affine case – we may write

$$X = Z_1 \cup \ldots \cup Z_l$$

where each $Z_i \subseteq X$ is an **irreducible component**, i.e. a maximal closed irreducible subset

We then define

$$\dim(X) := \max_{i} \dim(Z_{i}).$$

Lemma 56. Let $\phi: X \xrightarrow{Y}$ be a morphism of quasi-projective varieties. Further, let ϕ be **dominant**, i.e., $Img\phi$ is dense.

Then, for all $p \in Img(\phi)$, we have the following for the fiber of ϕ along p:

$$\dim(\phi^{-1}(p)) \ge \dim(X) - \dim(Y).$$

13.6 Images of Morphisms

Lemma 57. Let Y be a quasi-projective set. Then for each $p \in Y$, there is an open, affine neighborhood $Y_0 \subset Y$ which contains Y.

Proof. Denote by \overline{Y} the algebraic closure of Y in \mathbb{P}^n . Assume that $p_i \neq 0$. Then, the affine sets $Y^{(i)} = Y \cap D(x_i)$ and $\overline{Y}^{(i)} = \overline{Y} \cap D(x_i)$ lie dense in Y and \overline{Y} .

Now, $Y^{(i)}$ is open in $\overline{Y}^{(i)}$. Since the $D_{\overline{Y}^{(i)}}(f)$, $f \in \mathcal{O}(\overline{Y}^{(i)})$, give a basis of the topology of $\overline{Y}^{(i)}$, there is an $f \in \mathcal{O}(\overline{Y}^{(i)})$ s.t.

$$p \in D_{\overline{Y}^{(i)}}(f) \subseteq Y^{(i)} \subset Y.$$

The neighborhood $D_{\overline{V}^{(i)}}(f)$ is, in particular, affine.

Lemma 58. Let Y be a quasi-projective algebraic set. Then the diagonal

$$\Delta Y := \{ (y, y) \mid y \in Y \}$$

is closed in $Y \times Y$.

Proof. If we cover Y by affine open subsets, then, we can reduce the claim to the case, where Y is affine, i.e. closed in k^n .

Then, $\Delta Y = (Y \times Y) \cap \Delta k^n \subset k^n \times k^n$. Since $Y \times Y$ is algebraic, it suffices to show that Δk^n is algebraic. And, indeed,

$$\Delta k^n = \{(x, y) \mid x - y = 0\}.$$

Theorem 19 (Thm2). Let X be a projective variety and Y be a quasi-projective variety. Then, the projection

$$\pi_{Y}: X \times Y \longrightarrow Y$$

is **closed**, i.e. $\pi_Y(Z)$ is closed for each $Z \subseteq X \times Y$ closed.

Proof. Since $X \hookrightarrow \mathbb{P}^n$ is a closed map (since X is closed in \mathbb{P}^n), it suffices to show the claim for $X = \mathbb{P}^n$.

Actually, at this point, we are done, since \mathbb{P}^n with the Zariski-topology is topologically quasi-compact.

Theorem 20 (Thm1). Let X be a projective variety and Y be a quasi-projective variety. Then, for each morphism $\phi: X \to Y$, the image $\phi(X)$ is closed in Y.

Proof. First, we show that

$$\Gamma := \{(x, y) \in X \times Y \mid \phi(x) = y\}$$

is closed in $X \times Y$. In fact, we have

$$\Gamma = (\phi \times 1)^{-1}(\Delta Y)$$

where $\Delta Y \subseteq Y \times Y$ is closed.

Now, we can consider the chain

$$X \stackrel{\operatorname{Id} \times \phi}{\longrightarrow} X \times Y \stackrel{\pi_Y}{\longrightarrow} Y.$$

We have $\phi(X) = \pi_Y(\Gamma)$. Since π_Y and Γ are closed, the claim follows.

Example 20. 1. The condition that X is a *projective* variety is necessary. Consider

$$\pi_x : \{(x,y) \mid xy = 1\} \longrightarrow k.$$

The image $k^{\times} = \pi_x(\{(x,y) \mid xy = 1\})$ is not closed in k.

2. Let $Y = k \subset_o \mathbb{P}^1$. Then any morphism $\phi: X \to k$ is constant.

This is, because $\phi(X)$ must be closed in \mathbb{P}^1 , ergo a finite set. Now, this finite set cannot contain multiple elements. Otherwise, X would not be irreducible.

Corollary 9. Let X be a projective variety and Y be an affine variety. Then, any morphism $X \to Y$ is constant.

Proof. We have the chain

$$X \longrightarrow Y \longrightarrow k^m \xrightarrow{\pi_i} k.$$

For each π_i this chain must be constant.

Theorem 21 (Thm3). Let $\phi: X \to Y$ be a morphism of quasi-projective varieties. Assume that ϕ is **dominant**, i.e. $\phi(X)$ is dense in Y.

Then, $\phi(X)$ contains a nonempty open (hence dense) subset of Y.

Corollary 10. Let $\phi: G \to H$ be a morphism of algebraic groups. Then, $\phi(G)$ is closed.

Proof. Since G can be reduced to finite many irreducible components and since $\phi(G) = \bigcup_i \phi(g_i)\phi(G^o)$, it suffices to show the claim in the case where $G = G^o$ is irreducible.

Set $Y = \overline{\phi(G)}$. Y is irreducible and closed. Further, Y is a subgroup of H.

We are finished, if we can show $\phi(G) = \overline{\phi(G)}$.

By the previous theorem, $\phi(G)$ contains a nonempty open subset U of Y, hence $\phi(G)$ is dense in Y. Now, assume there are any $h \in Y - \phi(G)$. The map $y \mapsto hy$ is an isomorphism, hence $h\phi(G)$ lies dense in Y. Ergo

$$\phi(G) \cap (h\phi(G)) \neq \emptyset.$$

Take $u_1, u_2 \in \phi(G)$ s.t.

$$u_1 = hu_2.$$

Then, it follow $h = u_1 u_2^{-1} \in \phi(G)$. A contradiction.

13.7 Borel's Fixed Point Theorem (special case)

Theorem 22. Let G be a connected solvable algebraic subgroup of GL(V), where V is a finite-dimensional non-trivial vector space.

Then, G acts algebraically on $\mathbb{P}(V)$.

Let $X \subseteq be$ a non-empty, closed G-stable subset. Then, G has a fixed point in X.

Proof. We prove this by an induction on $n = \dim(V)$:

- n = 1: In this case, $\mathbb{P}(V)$ contains only one element.
- n=2:

We have $\mathbb{P}V \cong \mathbb{P}^1$. If $X = \mathbb{P}(V)$, then there is a complete invariant flag $0 \subset \langle v \rangle \subset V$ which is G-stable.

Then, [v] is fixed by G.

If X is finite, let $x \in X$. Then, G.x is a connected subset of X, hence $G.x = \{x\}$.

• $n \geq 3$: Take again a complete G-stable flag $0 \subset \langle v \rangle \subset \ldots \subset V$. If $[v] \in X$, we are done.

Otherwise, consider the morphism

$$\phi: X \longrightarrow \mathbb{P}(V/\langle v \rangle).$$

Since $\langle v \rangle$ is G-invariant, G acts on $\mathbb{P}(V/\langle v \rangle)$ and ϕ is G-equivariant.

The image $\phi(X)$ is closed by a theorem in the preceding subsection. By the induction hypothesis, there is a fixed point $[w + \langle v \rangle] \in \phi(X) \subseteq \mathbb{P}(V/\langle v \rangle)$.

In particular, $[w + \langle v \rangle]$ has a preimage [w] in X. Consider the subset

$$W:=\langle w,v\rangle\subseteq V.$$

W is G-stable and we have $\mathbb{P}W \cap X \neq \emptyset$. Since $\mathbb{P}W \cap X$ is closed in $\mathbb{P}W \cong \mathbb{P}^2$, it follows from a previous case that there is a G-fixed point in $\mathbb{P}W \cap X$.

13.8 Orbits

Definition 50. Let G be an algebraic group and Y a quasi-projective variety. An **action** $G \curvearrowright Y$ is an action described by a morhism²

$$\phi: G \times Y \longrightarrow Y$$
.

Lemma 59. Let G be an algebraic group which acts on a quasi-projective algebraic set Y. For an orbit $O \subset Y$, we have that O is open in \overline{O} .

Proof. Let G_i be an irreducible component of G. For a point $p \in O$, the map

$$G_i \longrightarrow \overline{G_i.p}$$

 $g \longmapsto g.p$

is dominant. Ergo, $G_i.p$ contains a nonempty open subset of $\overline{G_i.p}$. Ergo, the set O = G.p contains a nonempty open subset U of $\overline{O} = \overline{G.p}$.

Now, for $q \in O$, there is some isomorphism $g \in G$ s.t. $q \in q.U$. Ergo, O is open.

Definition 51. If O is a G-orbit in a quasi-projective variety Y, we can consider it to be a quasi-projective set. Therefore, the notion of the dimension of an orbit O is well-defined.

Lemma 60 (Minimal Orbit Lemma). Let G be an algebraic group. Let Y be a quasi-projective variety s.t. Y is projective or affine.

Let O be a G-orbit in Y s.t. the dimension of O is minimal among all G-orbits in Y.

Then, O is closed.

Proof. Since the action of an element of G does not change the dimension of a quasi-projective set, we can reduce the claim to the case that G is connected.

Then, O is irreducible. Further \overline{O} is reduced and, because of the previous lemma, $\overline{O} - O$ is closed. It is easy to see, that G operates on $\overline{O} - O$.

Let Z be an irreducible component of $\overline{O} - O$. Since Z is a proper closed subset of \overline{O} , we have

$$\dim(Z) < \dim(\overline{O}) = \dim(O).$$

Since O is dimensionally minimal, we must have $Z = \emptyset$. Ergo, $O = \overline{O}$.

Corollary 11. Let G be an algebraic group. Let Y be a quasi-projective variety s.t. Y is projective or affine.

Then G has a closed orbit in Y.

²If G is connected, ϕ shall be a morphism of quasi-projective varieties. Otherwise, we just require that $G^o \times Y \to Y$ is a morphism of quasi-projective varieties.

13.9 Borel's Fixed Point Theorem (General Case)

Theorem 23. Let G be a connected solvable algebraic group which acts on a projective variety X.

Then, there exists a G-fixed point in X.

Proof. Since orbits of minimal dimensions are closed, we can replace X by a G-orbit. That is, we can assume that G acts transitively on X.

For $p \in X$, the G-stabilizer set

$$Stab_G(p) = \{ g \in G \mid g.p = p \}$$

is a closed subgroup in G, since it is the preimage of p under the continuous map $g \mapsto g.p.$

We showed earlier, that there exist a finite-dimensional representation $\rho: G \to \mathsf{GL}(V)$ with a one-dimensional subspace $L \subset V$ s.t.

$$G_p = \{ g \in G \mid gL = L \} .$$

Let $q = [L] \in \mathbb{P}(V)$. Then G operates on $\mathbb{P}V$ and

$$G_q := \operatorname{Stab}_G(q) = \{ g \in G \mid g.q = q \} = G_p.$$

Now, define

$$Y := G.q \subset \mathbb{P}V$$

$$Z := G.(p,q) \subset X \times \mathbb{P}V.$$

Y and Z are quasi-projective varieties, since G is connected. We then have a G-equivariant diagram of quasi-projective varieties:

$$X \Longleftarrow Z \xrightarrow{\pi} Y$$

via

$$X \longleftarrow X \times \mathbb{P}(V) \stackrel{\pi}{\longrightarrow} \mathbb{P}(V).$$

Since X is projective, π is closed. Since $G_p = G_q$, the maps are bijective. Since all maps are bijective an G-equivariant, we need only to show that Y has a fixed point.

Since π is closed, the existence of a G-fixed point Y follows by the closedness of Z, because of Borel's special fixed point theorem.

The closedness of Z in $X \times \mathbb{P}(V)$ follows, if we can show that Z is an orbit of minimal dimension in $X \times \mathbb{P}(V)$. Indeed, we have.

• If $O \subset X \times \mathbb{P}(V)$ is a G-orbit, the projection $O \to X$ is G-equivariant and surjective, because X is a G-orbit. Since X,Y are quasi-procetive varieties, it then follows

$$\dim(X) \le \dim(O)$$
.

• The map $X \to Z$ is bijective, hence

$$\dim(*) \ge \dim(Z) - \dim(X).$$

Ergo

$$\dim(Z) \leq \dim(X)$$
.

13.10 Generic Openness

Proposition 4. Let $\phi: X \to Y$ be a dominant morphism of quasi-projective varieties.

Then, there is an open nonempty set $U \subset X$, s.t., $\phi_{|U}$ is open, that is, it maps open sets to open sets.

Corollary 12. Let G be a connected algebraic group.

Then, $[G,G] = \langle aba^{-1}b^{-1} \mid a,b \in G \rangle$ is a closed subgroup of G.

Proof. For $a, b \in G$, set

$$[a, b] = aba^{-1}b^{-1}.$$

For $n \geq 0$, define

$$\phi_n: G^{2n} \longrightarrow G$$

$$(a_1, b_1, \dots, a_n, b_n) \longmapsto [a_1, b_1] \cdots [a_n, b_n].$$

Let $Z_n := \overline{\mathsf{Img}\phi_n}$. Then, we have an ascending chain

$$Z_1 \subseteq Z_2 \subseteq \dots$$

Each Z_n is closed and irreducible, because G^{2n} is connected.

Then, at some point the chains of Z_i 's must become stationary, because $\dim(G) < \infty$, because $\mathcal{O}(G)$ is a fintely generated k-algebra.

Let N be s.t.

$$Z_N = Z_{N+1} = \dots$$

Since $[G, G] = \bigcup_n \mathsf{Img}(\phi_n)$, we have then

$$Z_N = \bigcup_n Z_n = \overline{[G, G]}.$$

Since $\phi_n:G^{2n}\to Z_n$ is dominant and since G^{2n} and Z_n are quasi-projective varieties, $\text{Img}\phi_n=[G,G]$ contains a nonempty open subset U.

Now, let $h \in \overline{[G,G]}$. Then, $hU \cap U \neq \emptyset$, since both are nonempty open and $\overline{[G,G]}$ is irreducible. Therefore, we have $u_1, u_2 \in U \subseteq [G,G]$ with

$$hu_1=u_2.$$

Ergo, h lies in [G, G].

14 Homogenous Spaces

Definition 52. Let G be a connected algebraic group. A homogenous space for G is a quasi-projective variety X equipped with a **transitive** action $G \curvearrowright X$.

Let G be now disconnected. Then, we only demand that X is a finite union of irreducible components. Still G needs to act transitively on X.

A morphism of G-homogenous spaces is a **morphism** of quasi-projective varieties/sets which is G-equivariant.

Corollary 13. If $\phi: X \to Y$ is a morphism of G-homogenous spaces, then ϕ is an open map.

Proof. It suffices, if we show this statement for an irreducible X. Note, that ϕ must be surjective, ergo dominant.

By a previous proposition, X must contain an open nonempty subset U s.t. $\phi_{|U}$ is an open map. Since G acts transitively on X, we can cover X with such open sets gU.

Proposition 5. Let G be an algebraic group and H a closed subgroup. Then, there is a homogenous space X for G and a point $p \in X$ s.t.

$$H = \operatorname{Stab}_G(p)$$

and the map

$$G/H \longrightarrow X$$
 $qH \longmapsto q.p$

is a bijection.

Proof. There is a faithful representation $\rho: G \to \mathsf{GL}(V)$ with V finite-dimensional s.t. there is a one-dimensional subspace $L \subset V$ with

$$H = \left\{g \in G \mid gL = L\right\}.$$

Set $p := [L] \in \mathbb{P}(V)$. Then, we can set

$$X := G.p.$$

Then, X is an orbit of G, ergo a quasi-projective set/variety.

14.1 Quotients

Definition 53. A (left) **quotient** of an algebraic group G by a closed group H is a pair (X, ρ) s.t.

- (1) X is a quasi-projective variety.
- (2) $\rho: G \to X$ is a morphism with

$$\rho(hg) = \rho(g)$$

for all $h \in H, g \in G$.

Further, we demand that a quotient is **initial** in the category of all objects satisfying the above conditions. I.e. for each pair (X', ρ') there must be a unique morphism ϕ s.t. the following diagram commutes:

$$G \downarrow^{\rho} \stackrel{\rho'}{\searrow} X \xrightarrow{----} X'$$

Remark 11. Set theoretically, we just have X = G/H.

Lemma 61. Let (X, ρ) satisfy conditions (1) and (2) from the above definition. Suppose further

- (i) $\{fibers\ of\ \rho\} = \{left\ H\text{-}cosets\ of\ G\},\$
- (ii) X is a G-homogenous space and ρ is G-equivariant,
- (iii) for each open $U \subset X$ the pullback map

$$\rho^*: \mathcal{O}(U) \longrightarrow \mathcal{O}(\rho^{-1}(U))$$
$$f \longmapsto f \circ \rho$$

defines an isomorphism

$$\mathcal{O}(U) \cong \left\{ f \in \mathcal{O}(\rho^{-1}U) \mid f(Hg) = f(g) \right\} =: \mathcal{O}(\rho^{-1}(U))^{H}.$$

Then, (X, ρ) is a quotient of G by H.

Proof. We have to show that (X, ρ) is initial. Let (X', ρ') be another object satisfying (1), (2). Because of (i), we have a unique settheoretic map $\phi: X \to X'$ s.t. the diagram

$$G \downarrow^{\rho} \stackrel{\rho'}{\searrow} X \xrightarrow{-\stackrel{\phi}{\longrightarrow}} X'$$

commutes. We need to check that ϕ is a morphism:

- ϕ is continuous, since ρ' is continuous and ρ is open (since X is a G-homogenous space). Therefore, $\phi = \rho' \circ \rho^{-1}$ is continuous.
- Let $U' \subset X'$ be open. We need to show

$$\phi^* \mathcal{O}(U') \subseteq \mathcal{O}(\phi^{-1}U').$$

Let $f \in \mathcal{O}(U')$ and set $U := \phi^{-1}U'$. Since ρ' is a morphism, we have

$${\rho'}^*(f) \in \mathcal{O}({\rho'}^{-1}U').$$

Because of (iii), we have

$$\mathcal{O}(U) \cong \mathcal{O}(\rho^{-1}U)^H$$
.

Therefore, it suffices to show

$${\rho'}^*(f) \in \mathcal{O}(\rho^{-1}U)^H.$$

And, indeed

$$f\circ\rho'(hg)=f\circ\rho'(g)$$

for $g \in G, h \in H$.

Theorem 24. Let G be an algebraic group with a closed subgroup H.

- A quotient (X, ρ) exists and X is a homogenous space for G s.t. $H = \operatorname{Stab}_G(p)$ for some $p \in X$.
- If $\operatorname{char}(k) = 0$, then each G-homogenous space X together with a point $p \in X$ s.t. $H = \operatorname{Stab}_G(p)$ gives a quotient of G by H, where $\rho(g) = g.p.$

Proof. We only prove the theorem for the case $\operatorname{char} k = 0$. We construct X as in a previous proposition, i.e. X = G.p for a point $p \in \mathbb{P}(V)$ s.t. $H = \operatorname{Stab}_G(p)$.

It is then clear, that conditions (i) and (ii) of the previous lemma are met. We only need to show

$$\rho^* \mathcal{O}(U) = \mathcal{O}(\rho^{-1}U)^H.$$

Naturally, $\rho^*\mathcal{O}(U)$ is contained in $\mathcal{O}(\rho^{-1}U)^H$.

Let $f \in \mathcal{O}(\rho^{-1}U)^H$. W.l.o.g., we can assume that U is affine. Consider the diagram

$$\rho^{-1}U \xrightarrow{f} k$$

$$\downarrow^{\rho} \qquad \qquad \downarrow^{g}$$

$$U$$

 $g := f \circ \rho^{-1}$ is well-defined, because f is H-invariant. We need to show, that g is regular, i.e. $g \in \mathcal{O}(\rho^{-1}U)$.

We can blow up the diagram as follows:

Then V is a quasi-projective variety and p is dominant and injective, hence birational. Therefore, we have

$$k(U) \cong k(V)$$
.

In particular, do we have $\pi_2 \in \mathcal{O}(V)$ and therefore

$$g = p^*(\pi_2) \in \mathcal{O}(U).$$

Example 21 (Non-Example). The proof of the theorem does not hold, if char(k) = p > 0.

Consider,

$$G := \mathcal{G}_a$$
$$H := 1$$
$$V = k^2$$

and

$$G \longrightarrow \mathsf{GL}(V)$$
$$x \longmapsto \begin{pmatrix} 1 & x^{p^n} \\ & 1 \end{pmatrix}$$

for some $n \in \mathbb{N}_0$.

For $q = [1, 0] \in \mathbb{P}(V)$, we have

$$X := G.q = \{[1, x^{p^n}] \mid x \in k\} \cong k.$$

Define ρ by by

$$\rho: G \longrightarrow X$$
$$g \longmapsto g.q.$$

Then, (ρ, X) fulfills the conditions of the above theorem, but it is NOT a quotient for $n \ge 1$.

Indeed, for $n_1 \geq n_2$, we have non-isomorphic maps

$$X_{n_2} \longrightarrow X_{n_1}$$
$$x \longmapsto x^{p^{n_1 - n_2}}.$$

15 Borel and Parabolic Groups

Let G be a connected algebraic group.

Definition 54. A subgroup $B \subset G$ is called **Borel**, if B is maximal among all connected solvable closed subgroups.

Since $\dim(G) < \infty$, Borel subgroups exist.

Definition 55. A subgroup $P \subset G$ is called **parabolic**, if the quasi-projective variety G/P is **projective**, i.e. closed in \mathbb{P}^n .

Lemma 62. Let G connected, P parabolic, B Borel. Then, P contains some conjugate of B.

Proof. B acts on the projective variety G/P. According to Borel's fixed point theorem, there is a fixed point $gP \in G/P$ s.t.

$$bqP = qP$$

for each $b \in B$. Ergo

$$g^{-1}bg \in P$$

for each $b \in B$.

Theorem 25. Let G be connected.

Any two Borel subgroups are conjugate.

Proof. Take a faithful representation $G \hookrightarrow \mathsf{GL}(V)$ with a finite-dimensional V. Let $\mathcal{F} = \mathrm{Flag}(V)$ be the flag variety of V.

Choose $F \in \mathcal{F}$ s.t. the orbit G.F has a minimal dimension. Then, G.F is closed, hence projective. If we set

$$H := \operatorname{Stab}_G(F),$$

then H is parabolic. Therefore, each Borel group B has a conjugate in H. Since B is connected, its conjugate is contained in an irreducible component H^o of the neutral element.

Since H is solvable³, H^o is a connected, solvable, closed subrgoup. Ergo H^o is the conjugate of B.

Proposition 6. Let G be connected. Then, each Borel group is parabolic.

 $^{^{3}}$ Why is H solvable?

Proof. Let B be a Borel subgroup of G.

Take a representation $G \to \mathsf{GL}(V)$ with a finite-dimensional V s.t. there is a one-dimensional $L \subseteq V$ s.t.

$$B = \{ g \in G \mid gL = L \} .$$

B acts on V/L. Since B is connected and solvable there must be a complete B-invariant flag \overline{F} in V/L. We can lift \overline{F} to a complete flag $F = (L = V_1 \subset \ldots \subset V_n)$ of V. Then, it is easy to see

$$B = \operatorname{Stab}_G(F)$$
.

Choose $F' \in \text{Flag}(V)$ s.t. the orbit G.F' has a minimal dimension. Then, G.F' is closed, hence projective. If we set

$$H := \operatorname{Stab}_G(F'),$$

we have (by conjugating)

$$B = H^o$$
.

Consider the map

$$G/B = G/H^o \rightarrow G/H$$
.

This map has finite fibers, because $[H:B] < \infty$. Ergo

$$\dim(G/B) \le \dim(G/H).$$

Ergo, G/B is of minimal dimension, hence closed. Hence, B is parabolic.

Corollary 14. Let P be an algebraic subgroup of a connected algebraic group G. Then, P is parabolic iff it contains a Borel group.

Proof. The direction to the right is known.

Let P contain a Borel group B. Consider the maps

$$G/B \twoheadrightarrow G/P \hookrightarrow \mathbb{P}^n$$
.

Since B is parabolic, G/B is closed. Therefore, the morphism $G/B \to \mathbb{P}^n$ has a closed image. But its image is exactly G/P. Ergo, P is parabolic.

Corollary 15. Let B be an algebraic subgroup of a connected algebraic group G. Then, B is Borel iff it is a minimal parabolic subgroup.