```
In [ ]: # CS985MLDAGroup9
         # HARSHAN RETHINAVELU SELVAKUMAR - 202480548
         # MANOJ KUMAR DHARMARAJ - 202468855
         # JHANSI VELURI - 202384615
         # PRATHUSHA PUNJARLA - 202351330
         # MAISAM BARKAT ALI DOHTA - 202359049
In [19]: import numpy as np #numpy library is imported and an alias 'np' is assigned to
         import pandas as pd # pandas library is imported and an alias 'pd' is assigned
         import os
                                                                 # os library is imported
         for dirname, _, filenames in os.walk('/kaggle/input'): # Initialization of a lo
                                                                # Iterates over each and
             for filename in filenames:
                 print(os.path.join(dirname, filename))
                                                                # Prints the full path o
       /kaggle/input/cs9856-spotify-regression-problem-2024/CS98XRegressionTest.csv
       /kaggle/input/cs9856-spotify-regression-problem-2024/CS98XRegressionTrain.csv
In [20]: spotify_tr = pd.read_csv("/kaggle/input/cs9856-spotify-regression-problem-2024/C
         spotify_tr # Displays the dataframe
```

Out	[20]	:

	ld	title	artist	top genre	year	bpm	nrgy	dnce	dB	live	val	dur
0	1	My Happiness	Connie Francis	adult standards	1996	107	31	45	-8	13	28	150
1	2	Unchained Melody	The Teddy Bears	NaN	2011	114	44	53	-8	13	47	139
2	3	How Deep Is Your Love	Bee Gees	adult standards	1979	105	36	63	-9	13	67	245
3	4	Woman in Love	Barbra Streisand	adult standards	1980	170	28	47	-16	13	33	232
4	5	Goodbye Yellow Brick Road - Remastered 2014	Elton John	glam rock	1973	121	47	56	-8	15	40	193
•••				•••								•••
448	449	But Not For Me	Ella Fitzgerald	adult standards	1959	80	22	18	-17	10	16	214
449	450	Surf City	Jan & Dean	brill building pop	2010	148	81	53	-13	23	96	147
450	451	Dilemma	Nelly	dance pop	2002	168	55	73	-8	20	61	289
451	452	It's Gonna Be Me	*NSYNC	boy band	2000	165	87	64	-5	6	88	191
452	453	In The Army Now	Status Quo	album rock	2002	105	73	68	-8	14	94	281

453 rows × 15 columns

spotify te = pd.read csv("/kaggle/input/cs9856-spotify-regression-problem-2024/C spotify te.head(2) # Displays the first two rows of the dataframe Out[11]: top ld title artist year bpm nrgy dnce dB live val dur acous s genre The Black dance 2005 **0** 454 Pump It 154 93 65 -3 75 74 213 1 Eyed pop Peas Circle of Life -From "The Elton glam **1** 455 1994 161 39 30 -15 11 14 292 26 Lion John rock King"/ Soundtra... spotify_tr = spotify_tr.dropna() # Removes the rows with missing values and ass In [21]: In [22]: spotify_tr.columns # Displays the list of columns in the dataframe Out[22]: Index(['Id', 'title', 'artist', 'top genre', 'year', 'bpm', 'nrgy', 'dnce', 'dB', 'live', 'val', 'dur', 'acous', 'spch', 'pop'], dtype='object') In [23]: columns = ['bpm','nrgy','dnce','dB','live','val','dur','acous','spch','pop'] spotify_tr = spotify_tr[columns] # Assigns only the selected columns in the li spotify_tr.head() # Displays the first five rows of the dataframe

Out[23]:		bpm	nrgy	dnce	dB	live	val	dur	acous	spch	pop
	0	107	31	45	-8	13	28	150	75	3	44
	2	105	36	63	-9	13	67	245	11	3	77
	3	170	28	47	-16	13	33	232	25	3	67
	4	121	47	56	-8	15	40	193	45	3	63
	5	110	56	71	-7	12	23	223	15	6	74

In [24]: spotify_tr.shape # Returns a tuple consisting of the number of rows and columns

Out[24]: (438, 10)

In [26]: import matplotlib.pyplot as plt # matplotlib.pyplot is imported and given an
%matplotlib inline
spotify_tr.hist(bins=50,figsize=(8,10)) # Generates histograms for numerical att
plt.show() # Displays the generated histograms

In [27]: x = spotify_tr.drop('pop',axis=1) # Creates a new dataframe 'x' where the column
y = spotify_tr['pop'] # Creates a new dataframe 'y' where the column 'pop' is s
x # Displays the dataframe 'x'

Out[27]:		bpm	nrgy	dnce	dB	live	val	dur	acous	spch
	0	107	31	45	-8	13	28	150	75	3
	2	105	36	63	-9	13	67	245	11	3
	3	170	28	47	-16	13	33	232	25	3
	4	121	47	56	-8	15	40	193	45	3
	5	110	56	71	-7	12	23	223	15	6
	•••					•••				
	448	80	22	18	-17	10	16	214	92	4
	449	148	81	53	-13	23	96	147	50	3
	450	168	55	73	-8	20	61	289	23	14
	451	165	87	64	-5	6	88	191	5	8
	452	105	73	68	-8	14	94	281	11	2

438 rows × 9 columns

```
In [28]: y
             # Displays the dataframe 'y'
Out[28]: 0
               44
               77
         2
         3
               67
         4
               63
               74
         448
               45
         449
               50
         450
               77
         451
               62
         452
               59
         Name: pop, Length: 438, dtype: int64
In [29]: | from sklearn.model_selection import train_test_split # Imports train_test_spl
         x_train,x_test,y_train,y_test = train_test_split(x,y,test_size = 0.2,random_stat
         print(x_train.shape) # Displays a tuple consisting of the number of rows and c
                              # Displays a tuple consisting of the number of rows and c
         print(x_test.shape)
       (350, 9)
       (88, 9)
In [30]: from sklearn.preprocessing import StandardScaler
                                                        # Imports StandardScaler fro
         scaler = StandardScaler() # Creates an instance of StandardScaler class
         scaler.fit(x_train) # Calculates the mean and standard deviation of each feature
         x_{train} = x_{train}
         x_test_scaled = scaler.transform(x_test) # Transforms the testing data 'x_test
         x_test_scaled = pd.DataFrame(x_test_scaled, columns=['bpm','nrgy','dnce','dB','l
         x_test_scaled
         x_train_scaled = pd.DataFrame(x_train_scaled, columns=['bpm','nrgy','dnce','dB',
```

x_train_scaled # Displays the dataframe

Out[30]:		bpm	nrgy	dnce	dB	live	val	dur	aco		
	0	0.523661	0.539952	-0.655430	0.773540	0.977251	1.175234	-1.307662	0.1819(
	1	-0.777325	-0.940685	0.331947	-0.870624	0.610494	-0.644087	-0.647064	0.18190		
	2	-1.605225	-0.895818	-0.852906	-0.322569	-0.343075	-1.925881	0.351889	1.0285		
	3	0.247694	1.392440	0.331947	1.321594	0.243736	1.009841	0.222992	-0.3260		
	4	-0.422511	1.123233	0.463597	0.773540	0.170385	0.306922	2.059777	-1.0372		
	•••		•••								
	345	0.089999	-1.613702	0.595247	-1.966732	-0.783184	-1.719140	0.464674	0.5882{		
	346	0.168847	1.571911	-1.247857	0.773540	-0.563129	-0.023864	0.835254	-1.1388;		
	347	-0.383087	-0.940685	-0.852906	-0.322569	-0.123021	-0.354649	-1.629905	1.63809		
	348	0.405389	0.315613	0.858548	0.225485	0.903899	1.547368	0.222992	-0.3260		
	349	-0.383087	-1.030421	0.990198	-0.322569	-0.269724	1.257930	-0.630952	1.6042		
	545	0.303007	1.030 12 1	0.550150	0.522505	0.203721	1.237330	0.030332	1.00 121		
	350 rows × 9 columns										
In [31]: Out[31]:	<pre>lin_model = LinearRegression() # Creates an instance of LinearRegression class lin_model.fit(x_train_scaled,y_train) # Fits the Linear Regression model to th</pre>										
	Line	arRegress	ion()								
In [32]:	lin_r	model.inte	rcept_ #	Gives the	y-interce _l	ot of the	regression	line			
Out[32]:	60.4	3285714285	714								
040[32].	00.4	3203714203	, 1								
In [33]:			•	. —	c_scaled) values of			r model'l	in_mode		
Out[33]:	array	58.7747 60.0183 66.8449 71.7801 67.6377 69.3017 47.5055	5102, 64.4 4558, 66.7 4661, 55.9 7772, 56.4 0349, 69.4 442, 63.8 527, 61.6	40914852, 6 70411854, 6 91212988, 5 19859335, 6 19316391, 7 19893284, 6 192277876, 6	56.8328784 56.68978224 53.1645799 58.8808163 54.74742966 77.15162238 53.55487133 51.71478734 59.66241433	4, 74.1684 , 72.5550 , 57.7318 5, 67.7316 8, 51.6455 1, 48.6701 4, 62.4766	818 , 63.2 9398, 62.2 369 , 70.5 139 , 59.8 1074, 64.9 0685, 74.0 5313, 60.3	0342286, 799904, 2580966, 6863871, 1868346, 8130523, 5567329,			

```
In [34]: from sklearn.metrics import mean_squared_error # Imports mean_squared_error fr
         lin_rmse = mean_squared_error(y_test, y_preds, squared=False) # Calculates RMS
                    # Displays the RMSE Value
         lin rmse
Out[34]: 10.905634132063183
In [35]: len(y_preds) # Displays the Length of 'y_preds'
Out[35]: 88
In [36]: from sklearn.ensemble import RandomForestRegressor # Imports RandomForestRegres
         rfr_model = RandomForestRegressor(random_state=1) # Creates an instance of the
         rfr_model.fit(x_train_scaled, y_train) # Trains the Random forest regression mo
Out[36]: ▼
                  RandomForestRegressor
         RandomForestRegressor(random_state=1)
In [37]: rfr pred = rfr model.predict(x test scaled) # Make predictions on the scaled te
         rfr_pred
Out[37]: array([65.42, 67.83, 70.24, 66.14, 64.23, 56.4, 65.41, 65.32, 69.01,
                68.34, 62.42, 63.28, 66.53, 63. , 59.01, 66.82, 53.16, 57.01,
                67.63, 65.82, 62.92, 56.58, 65.99, 61.65, 55.15, 62.62, 69.58,
                66.33, 51.28, 68.4, 69.23, 60.55, 59.13, 54.79, 67.78, 46.89,
                64.13, 64.84, 67.31, 65.97, 64.09, 49.42, 65.68, 59.34, 67.48,
                67.22, 59.86, 63.82, 70.34, 63.78, 69.41, 67.39, 66.9, 68.13,
                67.31, 68.74, 71.21, 40.4, 62.25, 61.24, 46.96, 50.18, 44.97,
                53.89, 52.96, 68.9 , 50.19, 66.11, 61.62, 46.86, 57.56, 65.58,
                66.63, 62.15, 49.09, 50.26, 69.52, 69.42, 64.57, 68.97, 61.48,
                61.49, 57.99, 62.18, 69.02, 49.6, 57.65, 44.02])
In [38]: rfr mse = mean squared error(y test,rfr pred) # Calculates the mean squared error
         rfr_rmse = np.sqrt(rfr_mse) # RMSE = \footnote{MSE}
         rfr_rmse # Displays the RMSE value
Out[38]: 10.814271032045824
In [40]: | spotify_test_scaled = scaler.transform(spotify_te[['bpm','nrgy','dnce','dB','liv
         spotify_test_scaled = pd.DataFrame(spotify_test_scaled, columns=['bpm','nrgy','d
         spotify_test_scaled
```

y_preds_csv = rfr_model.predict(spotify_test_scaled) # The trained Random For

```
In [41]: y preds csv # Displays the predicted values
Out[41]: array([67.02, 61.08, 52.37, 60.46, 50.17, 64.81, 54.52, 42.31, 62.69,
                59.93, 62.44, 65.91, 58.68, 60.3 , 61.64, 64.11, 62.06, 64.4 ,
                67.31, 65.22, 51.79, 59.94, 60.69, 45.48, 53.54, 68.23, 59.57,
                57.09, 48.72, 66.93, 68.53, 53.63, 66.81, 68.03, 64.56, 68.46,
                63.94, 50.76, 65.41, 65.96, 64.34, 63.34, 63.58, 44.11, 64.08,
                60.82, 65.99, 60.03, 58.16, 63.04, 48.34, 66.09, 61.4, 50.7,
                62.21, 64.23, 63.31, 51.1 , 69.2 , 42.1 , 64.55, 66.19, 68.12,
                66.49, 68.71, 65.65, 65.83, 55.16, 62.55, 60.33, 65.24, 54.34,
                56.79, 61.98, 59.39, 67.04, 68.7, 67.67, 56.07, 52.76, 67.99,
                62.41, 47.19, 68.24, 49.11, 61.66, 64.04, 67.18, 43.32, 71.32,
                40.98, 61.87, 68.3, 68.67, 67.05, 68.76, 60.73, 58.23, 65.77,
                48.86, 56.26, 60.95, 68.97, 55.15, 47.2, 66.2, 66.61, 64.6,
                56.42, 66.54, 60.85, 60.76, 63.35, 62.69])
In [42]: | submission = pd.DataFrame({'Id': spotify_te.iloc[:,0], 'pop': y_preds_csv })
         submission.to_csv('submission.csv', index=False) # Saves the 'submission' dataf
```