Оптимизатор	Формулы
Gradient Descent (GD)	$\theta_{t+1} = \theta_t - \alpha \cdot \nabla_\theta J(\theta_t)$
Stochastic Gradient Descent (SGD)	$\theta_{t+1} = \theta_t - \alpha \cdot \nabla_{\theta} J(\theta_t, sample)$
Mini-Batch GD	$\theta_{t+1} = \theta_t - \alpha \cdot \nabla_{\theta} J(\theta_t, Nsamples)$
$\mathbf{SGD} + \mathbf{Momentum}$	$v_{t+1} = \gamma \cdot v_t + \eta \cdot \nabla_{\theta} J(\theta_t)$
	$\theta_{t+1} = \theta_t - v_{t+1}$
NAG (Nesterov Accelerated Gradient)	$v_{t+1} = \gamma \cdot v_t + \eta \cdot \nabla_{\theta} J \left(\theta_t - v_t\right)$
	$\theta_{t+1} = \theta_t - v_{t+1}$
Adagrad	$g_t = \nabla_{\theta} J\left(\theta_t\right)$
	$G_t = G_{t-1} + g_t^2$
	$\theta_{t+1} = \theta_t - \frac{\eta}{\sqrt{G_t + \varepsilon}} g_t$
	$\varepsilon \ll 1$
RMSprop	$g_{t} = \nabla_{\theta} J\left(\theta_{t}\right)$
	$G_t = \gamma G_{t-1} + (1 - \gamma) g_t^2$
	$\theta_{t+1} = \theta_t - \frac{\eta}{G_t + \varepsilon_t} g_t$
Adadelta	$g_{t} = \nabla_{\theta} J\left(\theta_{t}\right)$
	$RMS\left[g^{2}\right]_{t} = \sqrt{E\left[g^{2}\right]_{t} + \varepsilon}$
	$\theta_{t+1} = \theta_t - \frac{RMS[\Delta\theta]_{t-1}}{RMS[g^2]} g_t$
Adam	$g_{t} = \nabla_{\theta} J\left(\theta_{t}\right)$
Adam	
	$\widehat{m}_t = \frac{m_t}{1 - \beta_t^t}$
	$v_t = \beta_2 v_{t-1} + (1 - \beta_2) g_t^2$
	$\widehat{v}_t = \frac{v_t}{1 - \beta_2^t}$
	$\theta_{t+1} = \theta_t - \frac{\eta}{\sqrt{\widehat{v}_t + \varepsilon}} \widehat{m}_t$

Оптимизатор	Преимущества	Недостатки
Gradient Descent (GD)	Поскольку все данные берутся за один раз, они достигают глобальных минимумов без какоголибо шума, но подходят только для небольших наборов данных.	- Вычисление происходит очень медленно, т.к. используются все данные; - Может сходится к глобальному минимуму для выпуклых функций и перейти к локальному минимуму для невыпуклых функций.
Stochastic Gradient Descent (SGD)	 - Быстрее GD; - Новые samples могут быть добавлены по мере поступления новых данных. 	- Большие колебания функции потерь из-за частого изменения данных.
Mini-Batch GD	Может в полной мере использовать матричные операции, которые высоко оптимизированы в библиотеке глубокого обучения для более эффективных вычислений градиента.	 Уменьшение скорость обучения может привести к замедлению схождения; Большая скорость обучения может привести к флуктуации скорости потерь.
SGD + Momentum	 Повышенная стабильность Обучение происходит быстрее; Возможность избавиться от локальной оптимизации. 	- Долгое обучение при малом угле наклона поверхности функции потерь.
NAG (Nesterov Accelerated Gradient)	Более надежный (лучше сходимость, чем SGD + Momentum)	- Высокая вычислительная сложность
Adagrad	Устраняет необходимость ручной настройки скорости обучения	 Продолжительное снижение скорости обучения, что приводит к минимальной скороски обучения в конце обучения.
RMSprop	Замедляет затухание скорости обучения	- Подбор начальной скорости обучения.
Adadelta	Не требуется задавать скорость обучения	- Риск возникновения колебаний в районе локальных минимумов.
Adam	- Коррекция смещения - Границы размера шага ограничены	- Колебание скорости обучения => Сложность схождения в конце обучения.