Fits to DT superlayers 1 and 3 super-residuals fit to Δx residuals fit to φ_v residuals δx: peak of the distribution, independent of impact φ_{V} peak of the distribution δz: dependence of the peak on dx/dz track angle slope vs. dy/dz: control for φ_7 φ_7 : dependence of the peak on y impact point σ , Γ : width of the distribution σ , Γ : width of the distribution slope of Δx vs. φ_v : model scattering Fits to DT superlayer 2 super-residuals fit to ∆y residuals fit to ϕ_x residuals δy: peak of the distribution, independent of impact ϕ_x peak of the distribution φ_7 : dependence of the peak on x impact point σ, Γ: width of the distribution σ , Γ : width of the distribution slope of Δy vs. φ_x : model scattering Fits to CSC super-residuals fit to Δrφ residuals fit to φ_v residuals $r\delta \varphi$: peak of the distribution, independent of impact φ_{V} peak of the distribution δz : dependence of the peak on $d(r\phi)/dz$ track angle φ_z : dependence of the peak on y impact point σ , Γ : width of the distribution σ , Γ : width of the distribution slope of Δx vs. φ_v : model scattering Accessible parameters DT δ_{x} δ_{v} δ_{r} φ_{z} (two ways) ϕ_{x} ϕ_{V}

Figure 12: The six independent fits needed to align one DT chamber and one CSC.

inaccessible

 ϕ_{V}

 ϕ_z

δ

inaccessible

CSC

 δ_{x}