Ejercicio de clase:

Grupo:	5CDM1	Equipo No. <u>1</u>
Integrante	es:	
De Lu	ına Ocampo Yanina	
Medi	na Barreras Daniel Ivan	
Ánge	les Lomelí Felipe Alberto	
Garcí	a Rodríguez Diana Itzel	

Bhumika Gupta, Aditya Rawat, Akshay Jain, Arpit Arora, Naresh Dhami. (2017). Analysis of Various Decision Tree Algorithms for Classification in Data Mining. *International Journal of Computer Applications* (0975-8887). Volume 163 - No 8, April 2017.

Leer el artículo mencionado y responder las siguientes preguntas:

Ejercicio No. 1

a) Describa la minería de datos

Comprende la extracción de información de un dataset y los transforma en una estructura que sea entendible. Es el proceso computacional que descubre patrones en largos datasets que envuelven métodos de inteligencia artificial, aprendizaje máquina, estadística y sistemas de bases de datos.

Te ayuda a reducir el ruido de los datos y te ayuda a entender la información relevante para evaluar todos los resultados probables y posibles.

Hay 6 clases existentes:

- detección anómala (AS)
- aprendizaje de reglas de asociación (AS)
- clustering (ANS)
- clasificación (AS)
- regresión (ANS)
- b) Explique las razones por las cuales se utilizan los árboles de decisión
 - 1. Son fáciles de visualizar, de entenderlas e interpretarlas.
 - 2. Necesitan muy poca preparación de los datos y elimina los valores en blanco.
 - 3. El costo de usar el árbol es logarítmico en el número de puntos de datos usados para

entrenar el árbol.

- 4. Puede manejar datos categóricos y numéricos.
- 5. Maneja problemas de múltiples salidas.
- 6. Puede ser explicado fácilmente con lógica booleana cuando hay dos salidas.
- 7. Funciona bien incluso si las suposiciones son violadas por el conjunto de datos del que se toman los mismos.
- c) ¿Cuál es la diferencia entre un árbol de clasificación y un árbol de regresión?

El árbol de clasificación es en el que el análisis del resultado predicho es la clase a la que pertenecen los datos. Y el árbol de regresión es en el que el análisis del resultado previsto puede ser considerado un número real.

Ejercicio No. 2

Considerando los algoritmos: ID3, C4.5, CART y Random Forest. Realice un cuadro comparativo que considere los siguientes aspectos: descripción del algoritmo, criterio de partición que utiliza, si utiliza poda o no, tipo de datos que utiliza, ventajas y desventajas.

Criterio	ID3	C4.5	CART	Random Forest
Criterio Descripción	Es un algoritmo de aprendizaje que pretende modelar los datos mediante un árbol, llamado árbol de decisión. En este árbol los nodos intermedios son atributos de los ejemplos presentados, las ramas representan valores de dichos atributos y los nodos finales son los valores de la clase, como ya vimos al hablar de los árboles de decisión binarios. Su principal aplicación son los problemas de decisión. Su empleo se centra en los llamados problemas de clasificación.	Genera un árbol de decisión a partir de los datos mediante particiones realizadas recursivamente. Antes de cada partición de datos, el algoritmo considera todas las pruebas posibles que pueden dividir el conjunto de datos y selecciona la prueba que resulta en la mayor ganancia de información o en la mayor proporción de ganancia de información. Para cada atributo discreto, se considera una prueba con n resultados, siendo n el número de valores posibles que puede tomar el atributo. Para cada atributo. Para cada atributo continuo se	Se trata de un algoritmo basado en árbol que funciona examinando muchas diversas maneras de particionar o dividir localmente los datos en segmentos más pequeños con base en diferentes valores y combinaciones de predictores. CART selecciona las divisiones de mejor rendimiento y luego repite este proceso de forma recursiva hasta encontrar el conjunto óptimo. El resultado es un árbol de decisión representado por una serie de divisiones binarias que conducen a nodos terminales que pueden ser descritos por un	aleatoriamente un subconjunto de los atributos para que el bosque esté formado de árboles de decisión ligeramente distintos. Con este método se introducen pequeñas variaciones en los árboles que se crean en el bosque
Criterio partición		valores posibles que puede tomar el atributo. Para cada atributo continuo se realiza una prueba binaria sobre cada uno de los valores que toma el atributo en los datos.	binarias que conducen a nodos terminales que pueden ser descritos por un conjunto de reglas específicas. Funciona para	Con este método se introducen pequeñas variaciones en los árbole
Gricerio particioni	vencerás" y está basado en criterios de partición	y vencerás", utiliza la estrategia de profundidad-primero (depth-first). Y está basado en criterios de partición derivados de la ganancia (GainRatio)	estas dos particiones es la mejor el algoritmo CART define una función de costo que asigna un puntaje	vencerás" y está basado en criterios de partición derivados de la ganancia de información.

Poda Tipos do datos	procedimento de poda.	ramas que no contribuyen a la precisión y las reemplaza.	Uno de los métodos más usados es el de poda de complejidad de costos, que consiste en definir un hiperparámetro alpha que controla el nivel de overfitting: con un alpha igual a cero tendremos el árbol de decisión sin ningún recorte, y por tanto con un alto overfitting, mientras que a medida que aumenta alpha se eliminarán algunos nodos del árbol hasta lograr un balance adecuado entre la precisión con el set de entrenamiento y la que se logra con el de validación	
Tipos de datos que utiliza	Datos categóricos.	manejar el ruido y los	Datos nominales y continuos. Puede manejar datos faltantes.	Datos numéricos y categóricos.

Criterio	ID3	C4.5	CART	Random Forest
Ventajas		Es fácil de implementar construye modelos fáciles de interpretar Puede manejar datos categóricos y continuos. lidia con el ruido y datos faltantes.	vacíos automáticamente. Utiliza cualquier combinación de	Reconoce datos fuera de lo común y anomalías. Es uno de los algoritmos de aprendizaje más exactos. Da un estimado de las variables importantes en clasificación.
Desventajas	Para un dataset pequeño, se pueden obtener resultados sobre puestos o sobre clasificados. Solo un atributo es revisado al instante por lo que se consume mucho tiempo para la toma de decisiones.	en los datos pueden	de decisión inestables. Se divide solo por una variable.	Se puede producir un sobreajuste de datos, con lo que un solo árbol difícilmente predeciría datos futuros que no se hubieran utilizado para crear el árbol inicial. A veces las clasificaciones pueden ser difíciles de interpretar.

Ejercicio 3

Considerando los siguientes criterios de selección de atributo para particionamiento: *Entropy* (*Information Gain*), *Gain Ratio* and *Gini Index*. Realice una descripción con sus propias palabras de cada uno de ellos.

Criterio	Descripción
Entropy (Information Gain)	La entropía es el grado de incertidumbre, impureza o desorden de una variable aleatoria, o una medida de pureza. Caracteriza la impureza de una clase arbitraria de ejemplos. La entropía es la medida de las impurezas o la aleatoriedad de los puntos de datos. En este caso, si todos los elementos pertenecen a una única clase, se denomina "Pura", y si no, la distribución se denomina "Impura". Se calcula entre 0 y 1, pero dependiendo del número de grupos o
	clases presentes en el conjunto de datos, puede ser superior a 1, pero representando el mismo significado, es decir, un nivel extremo de desorden.
Gain Ratio	La Relación de Ganancia intenta disminuir el sesgo de la Ganancia de Información en los predictores altamente ramificados introduciendo un término normalizador llamado Información Intrínseca. La Información Intrínseca se define como la entropía de las proporciones del subconjunto de datos. En otras palabras, es dificil que nos resulte difícil adivinar en qué rama se encuentra una muestra seleccionada al azar.
Gini Index	El índice de gini, o coeficiente de gini, o impureza de gini, calcula el grado de probabilidad de que una variable específica esté mal clasificada cuando se elige al azar y una variación del coeficiente de gini. Funciona en variables categóricas, proporciona resultados ya sea "éxito" o "fracaso" y por lo tanto lleva a cabo la división binaria solamente.

Ejercicio 4

Considerando el ejercicio de evaluación del artículo (laptop), aplique el proceso de cálculo de medidas de evaluación al conjunto de datos de carros (accesible, no accesible). Realizar el proceso de los cinco (*visto en clase*) pasos de los cálculos para la elección del atributo de particionamiento.

	А	В	С	D	Е	F	G
1	precioCompra	costoManto	noPuertas	NoPasajeros	tamCajuela	Seguridad	evalcarro
2	vhigh	med	dos	cuatro	small	low	acc
3	vhigh	med	dos	tres	med	high	acc
4	high	med	dos	cuatro	big	med	acc
5	med	low	dos	more	med	high	acc
6	high	med	dos	more	big	med	acc
7	vhigh	med	tres	cuatro	small	low	acc
8	high	low	tres	dos	med	high	acc
9	vhigh	med	tres	cuatro	big	med	acc
10	med	med	cuatro	cuatro	small	high	acc
11	high	med	cuatro	cuatro	med	med	acc
12	vhigh	low	cuatro	more	big	med	acc
13	vhigh	med	cuatro	more	big	high	acc
14	med	med	5more	cuatro	small	high	acc
15	high	med	5more	cuatro	med	med	acc
16	vhigh	med	5more	cuatro	med	high	acc
17	vhigh	vhigh	dos	dos	small	low	unacc
18	vhigh	vhigh	dos	tres	small	med	unacc
19	vhigh	vhigh	dos	more	small	high	unacc
20	high	low	cuatro	tres	med	high	unacc
21	high	low	tres	dos	big	low	unacc
22							

1. cálculo de la Entropía

$$E(s) = \sum_{i=1}^{c} -pi Log_{2}(pi)$$

eval carro					
acc	unacc				
15	5				

$$E(eval\ carro) = E(acc,\ unacc) = E(15,5)$$

= $(-15/20\ Log_2(15/20)) + (-5/20\ Log_2(5/20))$
= $0.0937 + 0.1505 = 0.2442 \rightarrow Entropía\ total$

2. Dividir el conjunto de datos en los diversos atributos.

Atributo objetivo	eval carro
Atributo	Dominio
precioCompra	med, high, vhigh
costoManto	low, med, vhigh
noPuertas	dos, tres, cuatro, 5more
NoPasajeros	dos, tres, cuatro, more
tamCajuela	small, med, big
Seguridad	low, med, high

3. Se calcula la entropía en cada rama y se suman proporcionalmente para calcular la entropía total

$$E(T,X) = \sum_{c \in x} p(c)E(C)$$
 ; $Gain(T,X) = E(T) - E(T,X)$

Para precioCompra

				Count
precioCompra	J	eval	acc	3
	med	carro	unacc	0
	high	eval	acc	5
	carro	unacc	2	
	vhigh	eval	acc	7
		carro	unacc	3

$$E(eval\ carro,\ precioCompra)\ =\ P(med)\ *\ E(3,0)\ +\ P(high)\ *\ E(5,2)\ +\ P(vhigh)\ *\ E(7,3)$$

-med:
$$P(3/20) = 0.15$$
 $E(3,0) = 0$
-high: $P(7/20) = 0.35$ $E(5,2) = (-5/20 \log_2(5/20)) + (-2/20 \log_2(2/20)) = 0.1505 + 0.1 = 0.2505$
-vhigh: $P(10/20) = 0.5$ $E(7,3) = (-7/20 \log_2(7/20)) + (-3/20 \log_2(3/20)) = 0.1595 + 0.1235 = 0.283$ $E(eval\ carro,\ precioCompra) = 0.15*0 + 0.35*0.2505 + 0.5*0.283 = 0.23$

4. Ganancia de información

$$GAIN = 0.24 - 0.23 = 0.01$$

Para costoManto

	Count			
costoManto	lovy	eval	acc	3
	IOW	low carro	unacc	2
	med	eval	acc	12
		eval	unacc	0
	vhigh		acc	0
		carro	unacc	3

 $E(eval\ carro,\ costoManto) = P(low) * E(3,2) + P(med) * E(12,0) + P(vhigh) * E(0,3)$

-low: P(5/20) = 0.25 $E(3,2) = (-3/20 \log_2(3/20)) + (-2/20 \log_2(2/20)) = 0.1235 + 0.1 = 0.2235$

-med: P(12/20) = 0.6 E(12,0) = 0

-vhigh: P(3/20) = 0.15 E(0,3) = 0

 $E(eval\ carro,\ costoManto) = 0.25*0.2235+0.6*0+0.15*0 = 0.5$

4. Ganancia de información

GAIN = 0.24 - 0.5 = -0.26

Para noPuertas

				Count
noPuertas	J	eval	acc	5
	dos carro	unacc	3	
	tres	eval	acc	3
		carro ro eval	unacc	1
	cuatro		acc	4
		carro	unacc	1
	5more	eval	acc	3
		carro	unacc	0

 $E(eval\ carro,\ noPuertas)\ =\ P(dos)\ *\ E(5,3)\ +\ P(tres)\ *\ E(3,1)\ +\ P(cuatro)\ *\ E(4,1)\ +\ P(5more)\ *\ E(3,0)$ $-dos:\ P(8/20)\ =\ 0.4\ E(5,3)\ =\ (-\ 5/20\ Log_2(5/20))\ +\ (-\ 3/20\ Log_2(3/20))\ =\ 0.1505\ +\ 0.1235\ =\ 0.274$

-tres:
$$P(4/20) = 0.2$$
 $E(3,1) = (-3/20 \log_2(3/20)) + (-1/20 \log_2(1/20)) = 0.1235 + 0.0650 = 0.1885$ -cuatro: $P(5/20) = 0.25$ $E(4,1) = (-4/20 \log_2(4/20)) + (-1/20 \log_2(1/20)) = 0.1397 + 0.0650 = 0.2047$ -5more: $P(3/20) = 0.15$ $E(3,0) = 0$ $E(eval\ carro,\ noPuertas) = 0.4 * 0.274 + 0.2 * 0.1885 + 0.25 * 0.2047 + 0.15 * 0 = 0.1096 + 0.0377 + 0.0511 + 0 = 0.205$

4. Ganancia de información

GAIN = 0.24 - 0.205 = 0.035

Para NoPasajeros

				Count
	l			Gount
NoPasajeros	3	eval	acc	1
	dos	carro	unacc	2
	tres	eval	acc	1
		carro	unacc	2
	cuatro	1	acc	9
		carro	unacc	0
	more eval carro		acc	4
		unacc	1	

$$E(eval\ carro,\ NoPasajeros) = P(dos) * E(1,2) + P(tres) * E(1,2) + P(cuatro) * E(9,0) + P(more) * E(4,1)$$

$$-dos: P(3/20) = 0.15 \qquad E(1,2) = (-1/20\ log_2(1/20)) + (-2/20\ log_2(2/20)) = 0.0650 + 0.1 = 0.165$$

$$-tres: P(3/20) = 0.15 \qquad E(1,2) = (-1/20\ log_2(1/20)) + (-2/20\ log_2(2/20)) = 0.0650 + 0.1 = 0.165$$

$$-cuatro: P(9/20) = 0.45 \qquad E(9,0) = 0$$

$$-more: P(5/20) = 0.25 \qquad E(4,1) = (-4/20\ log_2(4/20)) + (-1/20\ log_2(1/20)) = 0.1397 + 0.0650 = 0.2047$$

$$E(eval\ carro,\ NoPasajeros) = 0.15 * 0.165 + 0.15 * 0.165 + 0 + 0.25 * 0.2047 = 0.0247 + 0.0247 + 0 + 0.0511 = 0.1005$$

4. Ganancia de información

GAIN = 0.24 - 0.1005 = 0.1395

Para tamCajuela

				Count
tamCajuela	mCajuela eval small carro	acc	4	
		carro	unacc	3
	med	eval carro eval	acc	6
			unacc	1
	big		acc	5
		carro	unacc	1

 $E(eval\ carro,\ tamCajuela) = P(small) * E(4,3) + P(med) * E(6,1) + P(big) * E(5,1)$

-small:
$$P(7/20) = 0.35$$
 $E(4,3) = (-4/20 \log_2(4/20)) + (-3/20 \log_2(3/20)) = 0.1397 + 0.1235 = 0.2632$

-med:
$$P(7/20) = 0.35$$
 $E(6,1) = (-6/20 \log_2(6/20)) + (-1/20 \log_2(1/20)) = 0.1568 + 0.0650 = 0.2218$

-big:
$$P(6/20) = 0.3$$
 $E(5,1) = (-5/20 \log_2(5/20)) + (-1/20 \log_2(1/20)) = 0.1505 + 0.0650 = 0.2155$

 $E(eval\ carro,\ tamCajuela) = 0.35*0.2632+0.35*0.2218+0.3*0.2155 = 0.0921+0.0776+0.0646 = 0.2343$

4. Ganancia de información

GAIN = 0.24 - 0.23 = 0.01

Para Seguridad

				Count
Seguridad	lovy	eval v carro	acc	2
	low		unacc	2
	med	eval carro eval carro	acc	6
			unacc	1
	high		acc	6
			unacc	2

$$E(eval\ carro,\ Seguridad)\ =\ P(low)\ *\ E(2,2)\ +\ P(med)\ *\ E(6,1)\ +\ P(high)\ *\ E(6,2)$$

-low:
$$P(4/20) = 0.2$$
 $E(2,2) = (-2/20 \log_2(2/20)) + (-2/20 \log_2(2/20)) = 0.1 + 0.1 = 0.2$
-med: $P(7/20) = 0.35$ $E(6,1) = (-6/20 \log_2(6/20)) + (-1/20 \log_2(1/20)) = 0.1568 + 0.0650 = 0.0650 = 0.$

0.2218

-high:
$$P(8/20) = 0.4$$
 $E(6,2) = (-6/20 \log_2(6/20)) + (-2/20 \log_2(2/20)) = 0.1568 + 0.1 = 0.2568$ $E(eval\ carro,\ Seguridad) = 0.2*0.2+0.35*0.2218+0.4*0.2568 = 0.4+0.0776+0.1027=0.5803$

4. Ganancia de información

GAIN =
$$0.24 - 0.6 = -0.36$$

5. Elegir el atributo con mayor ganancia de información.

Variable	Ganancia	(acc, unacc)
precioCompra	0.01	med = (3,0), high= (5,2), vhigh= (7,3)
costoManto	-0.26	low= (3,2), med= (12,0), vhigh= (0,3)
noPuertas	0.035	dos= (5,3), tres= (3,1), cuatro= (4,1), 5more= (3,0)
noPasajeros	0.1395	dos= (1,2), tres= (1,2), cuatro= (9,0), more= (4,1)
tamCajuela	0.01	small= (4,3), med= (6,1), big= (5,1)
Seguridad	-0.36	low= (2,2), med= (6,1), high= (6,2)

noPasajeros es la variable que brinda la mayor ganancia de información, por tal, será la primera en ser elegida.

Ejercicio 5

Plantee un conjunto de datos, con 15 registros y 5 atributos, cuyo atributo objetivo sea dicotómico y aplique las actividades que realizó en el ejercicio número 4 de esta guía.

	raza	tamaño	color	tieneCasa	comió
1	Pura	chico	miel	si	no
2	única	chico	blanco	no	no
3	única	grande	negro	no	no
4	pura	chico	miel	si	si
5	única	mediano	miel	no	si
6	pura	chico	negro	si	si
7	única	grande	blanco	no	no

8	única	mediano	miel	no	si
9	única	chico	blanco	si	si
10	pura	chico	negro	no	si
11	única	grande	miel	si	si
12	única	chico	miel	si	si
13	pura	mediano	negro	no	no
14	pura	mediano	blanco	no	si
15	única	grande	miel	si	no

1. cálculo de la Entropía

$$E(s) = \sum_{i=1}^{c} -pi Log_{2}(pi)$$

comió				
si	no			
9	6			

$$E(comi\acute{o}) = E(si, no) = E(9, 6)$$

= $(-9/15 Log_2(9/15)) + (-6/15 Log_2(6/15))$
= $0.4421 + 0.5287 = 0.9708 \rightarrow \text{Entrop\'a}$ total

2. Dividir el conjunto de datos en los diversos atributos.

Atributo objetivo	comió
Atributo	Dominio
raza	pura, única
tamaño	chico, mediano, grande
color	miel,blanco,negro
tieneCasa	si, no
comió	si, no

3. Se calcula la entropía en cada rama y se suman proporcionalmente para calcular la entropía total

$$E(T,X) = \sum_{c \in x} p(c)E(C)$$
 ; $Gain(T,X) = E(T) - E(T,X)$

Para raza

				Count
raza		comió	si	4
	pura		no	2
	única	comió	si	5
			no	4

$$E(comi\acute{o}, raza) = P(pura) * E(4,2) + P(\acute{u}nica) * E(5,4)$$

-pura:
$$P(6/15) = 0.4$$
 $E(4,2) = (-4/15 \log_2(4/15)) + (-2/15 \log_2(2/15)) = 0.5085 + 0.3875 = 0.8955$

-única:
$$P(9/15) = 0.6$$
 $E(5,4) = (-5/15 \log_2(5/15)) + (-4/15 \log_2(4/15)) = 0.5283 + 0.5085 = 1.0368$

$$E(comi\acute{o}, raza) = 0.4 * 0.8955 + 0.5 * 1.0368 = 0.8766$$

4. Ganancia de información

$$GAIN = 0.9708 - 0.8766 = 0.0942$$

Para tamaño

$$E(comió, tamaño) = P(chico) * E(5,2) + P(mediano) * E(3,1) + P(grande) * E(1,3)$$

-chico:
$$P(7/15) = 0.46$$
 $E(5,2) = (-5/15 \log_2(5/15)) + (-2/15 \log_2(2/15)) = 0.5283 + 0.3857 = 0.914$ -mediano: $P(4/15) = 0.2$ $E(3,1) = (-3/15 \log_2(3/15)) + (-1/15 \log_2(1/15)) = 0.4643 + 0.2604 = 0.7247$

-grande:
$$P(4/15) = 0.2$$
 $E(1,3) = (-1/15 Log_2(1/15)) + (-3/15 Log_2(3/15)) = 0.2604 + 0.4643 = 0.7247$

 $E(comi\acute{o}, tama\~no) = 0.46 * 0.914 + 0.2 * 0.7247 + 0.2 * 0.7247 = 0.7103$

4. Ganancia de información

GAIN = 0.9708 - 0.7103 = 0.2605

Para color

				Count
color	mai al		si	5
	miel	comió	no	2
	blance	comió	si	2
	blanco	COIIIIO	no	2
			si	2
	negro	comió	no	2

$$E(comio, color) = P(miel) * E(5,2) + P(blanco) * E(2,2) + P(negro) * E(2,2)$$

-miel:
$$P(7/15) = 0.46$$
 $E(5,2) = (-5/15 \log_2(5/15)) + (-2/15 \log_2(2/15)) = 0.5283 + 0.3857 = 0.914$

-blanco:
$$P(4/15) = 0.2$$
 $E(2,2) = (-2/15 \log_2(2/15)) + (-2/15 \log_2(2/15)) = 0.3857 + 0.3857 + 0.3857 = 0.3857 +$

0.7714

-negro:
$$P(4/15) = 0.2$$
 $E(2,2) = (-2/15 \log_2(2/15)) + (-2/15 \log_2(2/15)) = 0.3857 + 0.3857 = 0.7714$

E(comio, color) = 0.46 * 0.914 + 0.2 * 0.7714 + 0.2 * 0.7714 = 0.729

4. Ganancia de información

GAIN =
$$0.9708 - 0.729 = 0.2418$$

Para tieneCasa

				Count
tieneCasa		comió	si	5
	si		no	2
	no	comió	si	4

		no	1
		110	4

$$E(comió, tieneCasa) = P(si) * E(5,2) + P(no) * E(4,4)$$

-si:
$$P(7/15) = 0.46$$
 $E(5,2) = (-5/15 \log_2(5/15)) + (-2/15 \log_2(2/15)) = 0.5283 + 0.3857 = 0.914$

-no:
$$P(8/15) = 0.53$$
 $E(4,4) = (-4/15 \log_2(4/15)) + (-4/15 \log_2(4/15)) = 0.5085 + 0.5085 = 1.017$ $E(comió, tieneCasa) = 0.46 * 0.914 + 0.53 * 1.017 = 0.9594$

4. Ganancia de información

$$GAIN = 0.9708 - 0.9594 = 0.0113$$

5. Elegir el atributo con mayor ganancia de información.

Variable	Ganancia	(acc, unacc)
raza	0.0942	pura = (4, 2), única = (5. 4)
tamaño	0.2605	chico = (5, 2), mediano = (3, 1), grande = (1, 3)
color	0.2418	miel = (5, 2), blanco = (2, 2), negro = (2, 2)
tieneCasa	0.0942	si = (5, 2), no = (5, 4)

tamaño es la variable que brinda la mayor ganancia de información, por tal, será la primera en ser elegida.

Ejercicio 6

Suponga que tiene la siguiente matriz de confusión de la evaluación de carros.

Original/Predicción	Accesible	No accesible
Accesible	40	5
No accesible	2	3
	42	8

Calcule y explique las diversas medidas que puede generar con base en los datos de la matriz de confusión.

Medida	Cálculo	Explicación
Negativo verdadero	40	El valor real es negativo y la prueba predijo también que el resultado era negativo
Positivo falso	5	El valor real es negativo, y la prueba predijo que el resultado es positivo.
Negativo falso	2	El valor real es positivo, y la prueba predijo que el resultado es negativo

Positivo verdadero	3	El valor real es positivo y la prueba predijo también que era positivo.
Tasa de exactitud	(40+3)/(40+5+2+3) = 43/50 = 0.86	La cantidad de predicciones positivas que fueron correctas fue del 86%
Tasa de error	(5+2)/(40+5+2+3) = 7/50 = 0.14	La cantidad de predicciones que fueron incorrectas es del 14%

Tasa de error	(5+2)/(40+5+2+3) = 7/50 = 0.14	La cantidad de predicciones que fueron incorrectas es del 14%
Precisión	3/(5+3) = 3/8 = 0.375	El porcentaje de casos positivos detectados fue 37.5%
Sensibilidad (<i>Recall</i>)	3/(2+3) = 3/5 = 0.6	En este caso la sensibilidad apenas es capaz de detectar correctamente, con un porcentaje del 60%
Tasa de positivos falsos	5/(40+5) = 5/45 = 0.11	La probabilidad de que se produzca una falsa alarma: que se dé un resultado positivo cuando el valor verdadero sea negativo es del 11%
Tasa de negativos falsos	2/(2+3) = 2/5 = 0.4	La probabilidad de que la prueba pase por alto un verdadero positivo es del 4%
Especificidad	40/(40+5) = 40/45 = 0.88	La probabilidad de los casos negativos que el algoritmo ha clasificado correctamente es del 88%