

The 34th IEEE International Symposium on Industrial Electronics

June 20-23, 2025 | Toronto, Canada

Enhancing Low-Light Image Reconstruction via Non-Autoregressive Transformers: A Mask-Aware Latent Integration Framework

Qianyue Wang¹

¹Mcmaster University

OUTLINE

Motivation & introduction - 3

Background & method - 5

Experiment & evaluation - 8

Conclusion & future work - 13

MOTIVATION & INTRODUCTION

IEEE ISIE 2025

Motivation

- ✓ Low-light images suffer from low contrast, noise, and color distortion.
- ✓ Traditional enhancement methods rely heavily on local context.
- ✓ Lack of global reasoning limits structural and perceptual recovery.
- ✓ Real-world applications demand reliable enhancement under poor illumination.
- ✓ We propose using Non-Autoregressive Transformers to globally refine uncertain regions.

MOTIVATION & INTRODUCTION

contribution

- ✓ We propose a dual-path enhancement framework that integrates Non-Autoregressive Transformers (NAT) into the GLARE model.
- ✓ Our design introduces mask-aware refinement at both the latent representation stage and the decoder feature level, targeting uncertain or degraded regions.
- ✓ Extensive experiments on GLARE and LOL datasets demonstrate consistent improvements in PSNR, SSIM, and LPIPS, validating the effectiveness of multi-level NAT integration.

BACKGROUND AND METHOD

IEEE ISIE 2025

Glare Framework

Original GLARE structure

BACKGROUND AND METHOD

IEEE ISIE 2025

Our Method Overview (Dual NAT Integration)

- ✓ We embed a Non-Autoregressive Transformer (NAT) after latent alignment in Stage 2 of GLARE.
- ✓ The NAT module refines uncertain latent tokens using mask-aware iterative decoding.
- ✓ The masking schedule selects low-confidence tokens based on entropy and re-masks them across decoding rounds.
- ✓ We also apply a second NAT module in Stage 3 (decoder branch) to enhance spatial features, not shown here.

BACKGROUND AND METHOD

NAT Strategy – Masking and Iteration

- ✓ We identify uncertain tokens using entropy computed from predicted distributions.
- ✓ Tokens with entropy above a threshold τ are replaced with a learnable [MASK] token.
- √ The NAT module predicts all masked tokens in parallel at each iteration.
- ✓ After each round, tokens with low confidence are re-masked and refined again.
- √ This strategy enables progressive correction of degraded regions using global context.

$$H(V_i) = -\sum_k \hat{p}(V_i = k) \log \hat{p}(V_i = k)$$

if
$$H(V_i) > \tau$$
, then $V_i \leftarrow \texttt{[MASK]}$

Training Strategy and Efficiency

- ✓ Datasets: GLARE and LOL (paired low-/normal-light samples)
- ✓ Metrics: PSNR, SSIM, LPIPS, FID (for generalization test)
- ✓ Optimizer: Adam, learning rate 4×10⁻⁴, batch size 8
- ✓ Training steps: 60,150 (≈ 300 epochs), NAT runs 4 iterations
- ✓ Hardware: NVIDIA RTX 3090, 18 hours for full training
- ✓ NAT modules introduce only ~12% extra memory and <60 ms inference overhead</p>

Quantitative Results on GLARE

Model	PSNR	SSIM	LPIPS
GLARE (baseline)	25.52	0.8462	0.1299
LLFlow [8]	26.03	0.8518	0.1275
Restormer [13]	31.00	0.9620	0.0880
+ NAT on latent	26.60	0.8573	0.1247
+ NAT on latent & decoder	27.08	0.8678	0.1162

- ✓ Our method improves PSNR by +1.56 dB over GLARE baseline.
- ✓ Both structural (SSIM) and perceptual (LPIPS) metrics are improved.
- ✓ Dual-path NAT outperforms LLFlow with fewer architectural changes.
- ✓ Performance is close to Restormer while using a simpler, faster model.

Enhancing Low-Light Image Reconstruction via Non-Autoregressive

Transformers: A Mask-Aware Latent Integration Framework - Qianyue Wang

Ablation Study: NAT Iterations

TABLE II: Effect of NAT decoding iterations on GLARE dataset.

Iterations	PSNR	SSIM	LPIPS
2	26.33	0.8551	0.1261
4	26.60	0.8573	0.1247
6	26.62	0.8576	0.1246

✓ Increasing the number of NAT decoding iterations improves performance up to 4 rounds.

Enhancing Low-Light Image Reconstruction via Non-Autoregressive

Transformers: A Mask-Aware Latent Integration Framework - Qianyue Wang

- ✓ Gains saturate beyond 4 iterations, indicating stable convergence.
- ✓ 4 iterations offer a good trade-off between quality and inference time.
- ✓ We use 4 iterations during both training and inference in all experiments.

Cross-Dataset Generalization: LOL

LOL	FID	LOL graph	final result
0.3	9.89		
0.7	9.38		
1.0	8.47		

Fig. 2: Qualitative results on the LOL dataset under different brightness levels.

- ✓ Robust enhancement under brightness ×0.3, ×0.7, and ×1.0
- ✓ FID scores remain low: $9.89 \rightarrow 9.38 \rightarrow 8.47$
- ✓ NAT-enhanced model maintains perceptual quality even on unseen data
- ✓ Demonstrates strong generalization without retraining or fine-tuning

IEEE ISIE 2@25

Visual Results: Qualitative Comparison

Fig. 3: Visual comparisons on representative scenes. Each row shows one test sample. Left: low-light input. Middle: GLARE baseline output. Right: NAT-enhanced result. NAT yields sharper details, higher contrast, and more accurate color restoration.

CONCLUSION AND FUTURE WORK

- ✓ We propose a dual-path NAT-enhanced framework for low-light image reconstruction.
- ✓ Two mask-aware NAT modules are integrated into GLARE at latent and decoder levels.
- ✓ Our method improves both structural fidelity (SSIM) and perceptual quality (LPIPS/FID).
- ✓ NAT enables efficient global reasoning with minimal computational overhead.
- ✓ Future work: explore diffusion-based priors, unsupervised training, and deployment in mobile vision systems.

Thank you for your attention. I'm happy to take any questions.

