Computer Organization

Presented By:

S Mamatha Jajur

Text books

- •Carl Hamacher, Zvonko Vranesic, Safwat Zaky, **Computer Organization**, 5th Edition, Tata McGraw Hill, 2002.
- •William Stallings: Computer Organization & Architecture, 9th Edition, Pearson, 2015.

Course Topics

Introduction (Module 1): Basic Structure of Computers: Basic Operational Concepts, Bus Structures, Performance —Processor Clock, Basic Performance Equation, Clock Rate, Performance Measurement, Machine Instructions and Programs: Memory Location and Addresses, Memory Operations, Instructions and Instruction Sequencing, Addressing Modes, Assembly Language, Basic Input and Output Operations, Stacks and Queues, Subroutines, Additional Instructions, Encoding of Machine Instructions.

Input/Output Organization(Module 2): Input/Output Organization: Accessing I/O Devices, Interrupts – Interrupt Hardware, Direct Memory Access, Buses, Interface Circuits, Standard I/O Interfaces – PCI Bus, SCSI Bus, USB.

Memory System (Module 3): Memory System: Basic Concepts, Semiconductor RAM Memories, Read Only Memories, Speed, Size, and Cost, Cache Memories – Mapping Functions, Replacement Algorithms, Performance Considerations.

Arithmetic (Module 4): Arithmetic: Numbers, Arithmetic Operations and Characters, Addition and Subtraction of Signed Numbers, Design of Fast Adders, Multiplication of Positive Numbers, Signed Operand Multiplication, Fast Multiplication, Integer Division.

Basic Processing Unit: (Module 5): Basic Processing Unit: Some Fundamental Concepts, Execution of a Complete Instruction, Multiple Bus Organization, Hard-wired Control, Micro programmed Control. Pipelining: Basic concepts of pipelining

Module 1 Basic Structure of Computers

Learning Objectives

- Understand the basics of computer organization: structure and operation of computers and their peripherals
- Understand the concepts of programs as sequences or machine instructions.
- To analyse various addressing modes and machine instructions
- Assembly language
- To study basic IO operations and Stack operations

What is a computer?

- a computer is a sophisticated electronic calculating machine that:
 - Accepts input information,
 - Processes the information according to a list of internally stored instructions and
 - Produces the resulting output information.
- Functions performed by a computer are:
 - Accepting information to be processed as input.
 - Storing a list of instructions to process the information.
 - Processing the information according to the list of instructions.
 - Providing the results of the processing as output.
- What are the functional units of a computer?

Information Handled by a Computer

- Instructions specify commands to:
 - Transfer information within a computer (e.g., from memory to ALU)
 - Transfer of information between the computer and I/O devices (e.g., from keyboard to computer, or computer to printer)
 - Perform arithmetic and logic operations (e.g., Add two numbers, Perform a logical AND).
- A sequence of instructions to perform a task is called a **program**, which is stored in the memory.
- Processor fetches instructions that make up a program from the memory and performs the operations stated in those instructions.
- What do the instructions operate upon?

Information in a computer -- Data

- Data are the "operands" upon which instructions operate.
- Data could be:
 - Numbers,
 - Encoded characters.
- Data, in a broad sense means any digital information.
- Computers use data that is encoded as a string of binary digits called bits.

Functional Units

Functional Units

Figure 1.1. Basic functional units of a computer.

Input unit

Binary information must be presented to a computer in a specific format. This task is performed by the input unit:

- Interfaces with input devices.
- Accepts binary information from the input devices.
- Presents this binary information in a format expected by the computer.
- Transfers this information to the memory or processor.

Memory unit

- Memory unit stores instructions and data.
 - Recall, data is represented as a series of bits.
 - To store data, memory unit thus stores bits.
- Processor reads instructions and reads/writes data from/to the memory during the execution of a program.
 - In theory, instructions and data could be fetched one bit at a time.
 - In practice, a group of bits is fetched at a time.
 - Group of bits stored or retrieved at a time is termed as "word"
 - Number of bits in a word is termed as the "word length" of a computer.
- In order to read/write to and from memory, a processor should know where to look:
 - "Address" is associated with each word location.

Memory unit (contd..)

- Processor reads/writes to/from memory based on the memory address:
 - Access any word location in a short and fixed amount of time based on the address.
 - Random Access Memory (RAM) provides fixed access time independent of the location of the word.
 - Access time is known as "Memory Access Time".
- Memory and processor have to "communicate" with each other in order to read/write information.
 - In order to reduce "communication time", a small amount of RAM (known as Cache) is tightly coupled with the processor.
- Modern computers have three to four levels of RAM units with different speeds and sizes:
 - Fastest, smallest known as Cache
 - Slowest, largest known as Main memory.

Memory unit (contd..)

- Primary storage of the computer consists of RAM units.
 - Fastest, smallest unit is Cache.
 - Slowest, largest unit is Main Memory.
- Primary storage is insufficient to store large amounts of data and programs.
 - Primary storage can be added, but it is expensive.
- Store large amounts of data on secondary storage devices:
 - Magnetic disks and tapes,
 - Optical disks (CD-ROMS).
 - Access to the data stored in secondary storage in slower, but take advantage of the fact that some information may be accessed infrequently.
- Cost of a memory unit depends on its access time, lesser access time implies higher cost.

Arithmetic and Logic Unit (ALU)

- Most computer operations are executed in ALU of the processor.
 - Arithmetic operations such as addition, subtraction.
 - Logic operations such as comparison of numbers.
- In order to execute an instruction, operands need to be brought into the ALU from the memory.
 - Operands are stored in general purpose registers available in the ALU.
 - Access times of general purpose registers are faster than the cache.
- Results of the operations are stored back in the memory or retained in the processor for immediate use.

Control Unit

- All computer operations are controlled by the control unit.
- The timing signals that govern the I/O transfers are also generated by the control unit.
- Control unit is usually distributed throughout the machine instead of standing alone.
- Operations of a computer:
- Accept information in the form of programs and data through an input unit and store it in the memory
- Fetch the information stored in the memory, under program control, into an ALU, where the information is processed
- Output the processed information through an output unit
- Control all activities inside the machine through a control unit.
- Operations of Input unit, Memory, ALU and Output unit are coordinated by Control unit.
- Instructions control "what" operations take place (e.g. data transfer, processing).
- Control unit generates timing signals which determines "when" a particular operation takes place.

Output unit

- •Computers represent information in a specific binary form. Output units:
 - Interface with output devices.
 - Accept processed results provided by the computer in specific binary form.
 - Convert the information in binary form to a form understood by an output device.

Basic Operational Concepts

- Activity in a computer is governed by instructions.
- To perform a task, an appropriate program consisting of a list of instructions is stored in the memory.
- Individual instructions are brought from the memory into the processor, which executes the specified operations.
- Data to be used as operands are also stored in the memory.

A Typical Instruction

Add LOCA, R0

- Add the operand at memory location LOCA to the operand in a register R0 in the processor.
- Place the sum into register R0.
- The original contents of LOCA are preserved.
- The original contents of R0 is overwritten.
- Instruction is fetched from the memory into the processor the operand at LOCA is fetched and added to the contents of R0 the resulting sum is stored in register R0.

Instruction with memory access operation with an ALU operation.

Load LOCA, R1 Add R1, R0

• Whose contents will be overwritten?

Connection Between the Processor and the Memory

Registers

- Instruction register (IR)
- Program counter (PC)
- General-purpose register $(R_0 R_{n-1})$
- Memory address register (MAR)
- Memory data register (MDR)

Typical Operating Steps

- Programs reside in the memory through input devices
- PC is set to point to the first instruction
- The contents of PC are transferred to MAR
- A Read signal is sent to the memory
- The first instruction is read out and loaded into MDR
- The contents of MDR are transferred to IR
- Decode and execute the instruction

Typical Operating Steps (Cont')

- Get operands for ALU
 - ➤ General-purpose register
 - ➤ Memory (address to MAR Read MDR to ALU)
- Perform operation in ALU
- Store the result back
 - > To general-purpose register
 - To memory (address to MAR, result to MDR Write)
- During the execution, PC is incremented to the next instruction

Interrupt

- Normal execution of programs may be preempted if some device requires urgent servicing.
- The normal execution of the current program must be interrupted the device raises an *interrupt* signal.
- Interrupt-service routine
- Current system information backup and restore (PC, general-purpose registers, control information, specific information)

How are the functional units connected? Bus Structures

- •For a computer to achieve its operation, the functional units need to communicate with each other.
- •In order to communicate, they need to be connected.

- •Functional units may be connected by a group of parallel wires.
- ·The group of parallel wires is called a bus.
- ·Each wire in a bus can transfer one bit of information.
- •The number of parallel wires in a bus is equal to the word length of a computer

Bus Structures

- ·Single bus
 - ·Low cost
 - Flexibility
- Multiple bus
 - ·More transfers to be carried out same time
 - ·Better performance but at an increased cost

Speed Issue

- •The devices connected to bus vary widely in their speed of operation.
- •To smooth out the differences in timing among processor, memories and external devices, buffer registers are used.

Software

- Translating programs from source form prepared by the user into object form consisting of machine instructions
- Linking and running user-written application programs with existing standard library routines, such as numerical computation packages
- System software is thus responsible for the coordination of all activities in a computing system

Operating System

- Operating system (OS)
 - This is a large program, or actually a collection of routines, that is
 used to control the sharing of and interaction among various computer
 units as they perform application programs
- The OS routines perform the tasks required to assign computer resource to individual application programs
 - These tasks include assigning memory and magnetic disk space to program and data files, moving data between memory and disk units, and handling I/O operations
- In the following, a system with one processor, one disk, and one printer is given to explain the basics of OS
 - Assume that part of the program's task involves reading a data file from the disk into the memory, performing some computation on the data, and printing the results

User Program and OS Routine Sharing

Multiprogramming or Multitasking

Performance

- The speed with which a computer executes programs is affected by the design of its hardware and its machine language instructions
- Because programs are usually written in a high-level language, performance is also affected by the compiler that translates programs into machine languages
- For best performance, the following factors must be considered
 - Compiler
 - Instruction set
 - Hardware design

Performance

- Processor circuits are controlled by a timing signal called a clock
 - The clock defines regular time intervals, called clock cycles
- To execute a machine instruction, the processor divides the action to be performed into a sequence of basic steps, such that each step can be completed in one clock cycle
- Let the length P of one clock cycle, its inverse is the clock rate, R=1/P
- Basic performance equation
 - T=(NxS)/R, where T is the processor time required to execute a program, N is the number of instruction executions, and S is the average number of basic steps needed to execute one machine instruction

Performance Improvement

- Pipelining and superscalar operation
 - Pipelining: by overlapping the execution of successive instructions
 - Superscalar: different instructions are concurrently executed with multiple instruction pipelines. This means that multiple functional units are needed
- Clock rate improvement
- Improving the integrated-circuit technology makes logic circuits faster, which reduces the time needed to complete a basic step

Performance Improvement

- Reducing amount of processing done in one basic step also makes it possible to reduce the clock period, P.
- However, if the actions that have to be performed by an instruction remain the same, the number of basic steps needed may increase
- Reduce the number of basic steps to execute
 - Reduced instruction set computers (RISC) and complex instruction set computers (CISC)

Performance Measurement

- T is difficult to compute.
- Measure computer performance using benchmark programs.
- System Performance Evaluation Corporation (SPEC) selects and publishes representative application programs for different application domains, together with test results for many commercially available computers.
- Compile and run (no simulation)
- Reference computer

$$SPEC \ rating = \frac{\text{Running time on the reference computer}}{\text{Running time on the computer under test}}$$

SPEC rating =
$$(\prod_{i=1}^{n} SPEC_i)^{\frac{1}{n}}$$