Quick Sort

(Class 13)

From Book's Page No 182 (Chapter 7)

- Our next sorting algorithm is Quicksort.
- It is one of the fastest sorting algorithms known and is the method of choice in most sorting libraries.
- Quicksort is based on the divide and conquer strategy.
- Here is the algorithm:

```
QUICKSORT (array A, int p, int r)
1 \text{ if } (p < r)
    i ← a random index from [p…r]
    swap A[i] with A[p]
4 q \leftarrow PARTITION(A, p, r)
5 QUICKSORT(A, p, q-1)
    QUICKSORT(A, q+1, r)
```

Partition Procedure

- Recall that the partition algorithm partitions the array $A[p \dots r]$ into three sub arrays about a pivot element x.
 - A[p ... q 1] whose elements are less than or equal to x.
 - A[q] = x was pivot.
 - A[q+1...r] whose elements are greater than x.

Choosing the Pivot

- In quick sort, we will choose the first element of the array as the pivot, i.e., x = A[p].
- If a different rule is used for selecting the pivot, we can swap the chosen element with the first element.
- We will choose the pivot randomly.

- The algorithm works by maintaining the following invariant condition.
 - A[p] = x is the pivot value.
 - A[p...q-1] contains elements that are less than x.
 - A[q+1...s-1] contains elements that are greater than or equal to x.
 - A[s...r] contains elements whose values are currently unknown.

```
PARTITION (array A, int p, int r)
1 x \leftarrow A[p]
2 q ← p
3 for s \leftarrow p+1 to r
  if (A[s] < x)
        q \leftarrow q+1
6
        swap A[q] with A[s]
   swap A[p] with A[q]
8
   return q
```


Quick Sort Example

- With the help of a diagram, we trace out the quick sort algorithm.
- The first partition is done using the last element, 10, of the array.
- The left portion are then partitioned about 5 while the right portion is partitioned about 13.
- Notice that 10 is now at its final position in the eventual sorted order.
- The process repeats as the algorithm recursively partitions the array eventually sorting it.

7	6	12	3	11	8	7	1	15	13	17	5	16	14	9	4	10
								\Downarrow								
7	6	12	3	11	8	7	1	15	13	17	5	16	14	9	4	10
7	6	4	3	9	8	2	1	5	10	17	15	16	14	11	12	13
\downarrow																
7	6	12	3	11	8	7	1	15	13	17	5	16	14	9	4	10
7	6	4	3	9	8	2	1	5	10	17	15	16	14	11	12	13
								\Downarrow								
7	6	12	3	11	8	7	1	15	13	17	5	16	14	9	4	10
7	6	4	3	9	8	2	1	5	10	17	15	16	14	11	12	13
1	2	4	3	5	8	6	7	9	10	12	11	13	14	15	17	16

7	6	12	3	11	8	7	1	15	13	17	5	16	14	9	4	10
7	6	4	3	9	8	2	1	5	10	17	15	16	14	11	12	13
1	2	4	3	5	8	6	7	9	10	12	11	13	14	15	17	16

7	6	12	3	11	8	7	1	15	13	17	5	16	14	9	4	10
7	6	4	3	9	8	2	1	5	10	17	15	16	14	11	12	13
1	2	4	3	5	8	6	7	9	10	12	11	13	14	15	17	16
1	2	3	4	5	8	6	7	9	10	11	12	13	14	15	16	17

7	6	12	3	11	8	7	1	15	13	17	5	16	14	9	4	10
7	6	4	3	9	8	2	1	5	10	17	15	16	14	11	12	13
1	2	4	3	5	8	6	7	9	10	12	11	13	14	15	17	16
1	2	3	4	5	8	6	7	9	10	11	12	13	14	15	16	17
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17

7	6	12	3	11	8	7	1	15	13	17	5	16	14	9	4	10
7	6	4	3	9	8	2	1	5	10	17	15	16	14	11	12	13
1	2	4	3	5	8	6	7	9	10	12	11	13	14	15	17	16
1	2	3	4	5	8	6	7	9	10	11	12	13	14	15	16	17
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17

Analysis of Quicksort

- The running time of quicksort depends heavily on the selection of the pivot.
- If the rank of the pivot is very large or very small, then the partition (BST) will be unbalanced.
- Since the pivot is chosen randomly in our algorithm, the expected running time is $O(n \log n)$.
- The worst-case time, however, is $O(n^2)$.
- Luckily, this happens rarely.

Worst Case Analysis of Quick Sort

- Let's begin by considering the worst-case performance because it is easier than the average case.
- Since this is a recursive program, it is natural to use a recurrence to describe its running time.
- But unlike Merge-Sort, where we had control over the sizes of the recursive calls, here we do not.
- It depends on how the pivot is chosen.

- Suppose that we are sorting an array of size n, A[1:n], and further suppose that the pivot that we select is of rank q, for some q in the range 1 to n.
- It takes O(n) time to do the partitioning and other overhead, and we make two recursive calls.

- The first is to the subarray A[1:q-1] which has q-1 elements.
- And the other call is to the subarray A[q+1:n] which has n-q elements.
- So, if we ignore the O(n) (as usual) we get the recurrence:

$$T(n) = T(q-1) + T(n-q) + n$$

- This depends on the value of q.
- To get the worst case, we maximize over all possible values of q.
- Putting is together, we get the recurrence.

$$T(n) = \begin{cases} 1, & if \ n \le 1 \\ \max_{1 \le q \le n} (T(q-1) + T(n-q) + n), & if \ n \ge 2 \end{cases}$$

- Recurrences that have max's and min's embedded in them are very messy to solve.
- The key is determining which value of q gives the maximum.
- A rule of thumb of algorithm analysis is that the worst-cases tends to happen either at the extremes or in the middle.

- So, we would plug in the value q=1, q=n, and $q=\frac{n}{2}$ and work each out.
- In this case, the worst case happens at either of the extremes.
- If we expand the recurrence for q=1, we get:

$$T(n) = T(0) + T(n-1) + n$$
$$= 1 + T(n-1) + n$$
$$T(n) = T(n-1) + (n+1)$$

Following are the iterations:

$$= T(n-2) + n + (n+1)$$

$$= T(n-3) + (n-1) + n + (n+1)$$

$$= T(n-4) + (n-2) + (n-1) + n + (n+1)$$

$$T(n) = T(n-k) + \sum_{i=-1}^{k-2} (n-i)$$

- As the pivot is 1^{st} element, there will be 1 element in left subarray and n-1 elements in right subarray at each recursion.
- For the basis T(1) = 1 we set k = n 1 and get:

$$T(n) = T(1) + \sum_{i=-1}^{n-3} (n-i)$$

$$= 1 + (3+4+5+...+(n-1)+n+(n+1))$$

$$\leq \sum_{i=1}^{n+1} i = \frac{(n+1)(n+2)}{2}$$

$$T(n) \in O(n^2)$$

• In the next class we will discuss the average-case running time of the quick sort.