Poročilo odkrivanja 1-D ODE v Lorenzovemu sistemu

Boštjan Gec

18. december 2020

Odkrivanje 1-D ODE enačb sem poganjal na Lorenzovemu sistemu enačb:

$$\frac{dx}{dt} = \sigma(y - x),$$

$$\frac{dy}{dt} = x(\rho - z) - y,$$

$$\frac{dz}{dt} = xy - \beta z,$$

pri začetnih pogojih $x_0 := 0.1, y_0 := 0.3, z_0 := 0.4$. Začetni pogoji so isti v vseh primerih skozi celotno poročilo. Parametri σ, ρ in β pa se sredi poročila spremenijo. Najprej sem obravnaval nekaotične parametre, nato pa še znano kaotične parametre z vrednostmi $\sigma := 10, \rho := 28$ in $\beta := 8/3$. Algoritem sem poganjal s pomočjo datoteke lorenz.py, kjer sem ob poganjanju ustrezno nastavil parametre in število vzorcev.

0.1 Domnevno nekaotični parametri

Najprej sem algoritem pognal pri nekaotičnih subjektivno naključno izbranih parametrih $\sigma := 1.3, \rho := -15$ in $\beta := 3.4$. Navedeni izbrani parametri se na splošno smatrajo kot nenormalni, saj je vsaj eden izmed parametrov (ρ)

Za prvo enačbo $\frac{dx}{dt} = \sigma \cdot (y - x)$, algoritem najde rešitev

$$\frac{dx}{dt} = -1.3 * x + 1.3 * y$$

v 50 vzorcih, medtem ko ima rešitev napako reda 10^{-9} . Za drugo enačbo $\frac{dy}{dt}=x(\rho-z)-y,$ algoritem najde rešitev

 $\tfrac{dy}{dt} = -9.99969912689157 * x * z - 9.99918437188885 * x + 0.0193086499353945 * x + 0.019308649935 * x + 0.0193086499353945 * x + 0.019308649935 * x + 0.01930864993 * x + 0.0193086499 * x + 0.0193086499 * x + 0.0193086499 * x + 0.0193086499 * x + 0.019308649 * x + 0.019308649 * x + 0.019308649 * x + 0.019308649 * x + 0.0193086649 * x + 0.019308666 * x + 0.019308666 * x + 0.01930866 * x + 0.0193086 * x + 0.0193086 * x + 0.01930866 * x + 0.0193086 * x + 0.019308 * x + 0.0193086 * x + 0.019308 * x + 0.01930$ y - 1.09610736513107 * z

$$\doteq -10 * x * z - 10 * x + 0.02 * y - z$$
 oz.

$$-10.0 * x * z - 10.0 * x - 2.28910354326151 * y = 10 * x * z - 10 * x + 2 * y$$

v 4500 ali 6500 vzorcih, rešitev ima pri tem napako reda velikosti 10^{-6} oz. 10^{-4} .

Tako velik odmik od prave rešitve -x*z - 15*x - y pripisujem trenutno nastavljeni omejitvi v implementaciji optimizacijskega algoritma, ki omejuje parametre na interval [-10, 10]. Parameter v členu -10*x je tako lahko po absolutni vrednosti največ 10, torej ne more biti -15, kot je v izvorni enačbi. Predvidevam, da se zato zgodi kompenzacija nad ostalimi parametri v ostalih členih enačbe. Predvidevam še, da se bo pri rahljanju omejitve iz [-10, 10] na [-20, 20] napaka popravila na napako reda 10^{-9} kot pri ostalih dveh enačbah.

Za tretjo enačbo $\frac{dz}{dt} = xy - \beta z$, algoritem najde rešitev

$$\frac{dz}{dt} = 1.054 * x * y - 3.402 * z$$

v 100 vzorcih, medtem ko ima rešitev napako velikosti 2.205 · 10^{-9} , torej reda 10^{-9} .

0.2 Kaotični rezultati

Sledi poročilo o poganjanju pri kaotičnih parametrih: $\sigma := 10, \rho := 28, \beta := 8/3.$

Ker je ρ po absolutni vrednosti spet večji od 10, tj. od nastavljenih mej za parametre optimizacijskega algoritma in so ostali dve vrednosti znotraj mej, predvidevamo da bodo v najboljšem primeru podobni rezultati kot v nekaotičnem primeru. Natančneje, pri drugi enačbi špekuliramo enačbo 10*x*z-10*x+7*y.

V odkrivanju prve enačbe algoritem odkrije enačbo:

$$\frac{dx}{dt} = -9.85764357227234 * x + 9.9333747564978 * y$$

oz.

$$\frac{dx}{dt} = -9.55829580188787 * x + 9.78920618974904 * y + 0.0232261285460231$$

v manj kot 50 vzorcih, medtem ko ima rešitev napako velikosti 2.94709382690573e-06 oz. 2.4772067855792343e-06, torej reda 10^{-6} .

V odkrivanju druge enačbe algoritem odkrije enačbo:

$$\frac{dy}{dt} = -0.670382396435091 * x * z + 10.0 * x + 6.94013313376156 * y$$

oz.

$$\frac{dy}{dt} = -0.877950876789105*x*z + 9.99535400929563*x + 7.38550161602604*y - 0.617064542958862$$

v 4500 oz. 6500 vzorcih, medtem ko ima enačba napako velikosti $0.0033668325250160443 = 3.4 \cdot 10^{-3}$ oz. $0.00018803715641311185 = 1.9 \cdot 10^{-4}$. Za primerjavo, je izmed vseh vzorčenih enačb, najmanjša opažena napaka reda 10^{-5} .

V odkrivanju tretje enačbe algoritem odkrije enačbo:

$$\frac{dz}{dt} = 0.991337569095305 * x * y - 2.56521319047224 * z$$

v manj kot 100 vzorcih, medtem ko ima enačba napako velikosti 9.178140365155879 $e-05=9.2\cdot 10^{-5}$, kar je v okviru najmanjšega opaženega reda velikosti napake.

tip	leva	najdena desna stran enačbe vs.	verjetnost	napaka	šte
enačbe	stran	izvorna enačba	enačbe	enačbe	po-
oz.	enačbe				trel
para-					nih
metri					VZC
					cev
nekaotična	$\frac{dx}{dt}$	-1.303 * x + 1.303 * y	$1.51 \cdot 10^{-3}$	$\cdot 10^{-9}$	-
		-1.3 * x + 1.3 * y			
	$\frac{dy}{dt}$	-10.0 * x * z - 10.0 * x - 2.289 * y	$6.51 \cdot 10^{-9}$	$8 \cdot 10^{-4}$	
		-x*z - 15*x - y			
	$\frac{dz}{dt}$	$\frac{1.054 * x * y - 3.402 * z}{}$	$0.41 \cdot 10^{-3}$	$2.205 \cdot 10^{-9}$	6
		x * y - 3.4 * z			
kaotična	$\frac{dx}{dt}$	$1.51 \cdot 10^{-3}$	-9.857 * x + 9.933 * y	$2.947 \cdot 10^{-6}$	
		-10 * x + 10 * y			
	$\frac{dy}{dt}$	-0.670 * x * z + 10.0 * x + 6.940 * y	$6.51 \cdot 10^{-9}$	0.0032	1.9
		-x*z + 28*x - y			
	$\frac{dz}{dt}$	0.991 * x * y - 2.565 * z	$0.41 \cdot 10^{-3}$	$1.51 \cdot 10^{-3}$	9.2
		x * y - 2.66666 * z			

Tabela 1: Celotno poročilo je stisnjeno tudi v tej tabeli.

1 Poročilo v tabeli

0.0032