머신러님을 위한 수학

02 기초 선형대수학

목차

- 01. 벡터의 정의와 의미
- 02. 벡터 연산, 단위 벡터, 직교성
- 03. 행렬의 정의와 의미
- 04. 행렬 연산과 역행렬

<u></u> 커리큘럼

1. 벡터의 정의와 의미

벡터의 정의와 이것의 활용 범위에 대해 학습합니다.

2. 벡터 **연**산, 단위 벡터, 직교성

벡터의 덧셈, 뺄셈, 곱셈 등의 연산에 대해 학습합니다. 단위 벡터, 벡터의 직교성의 정의와 활용에 대해 학습합니다.

3. 행렬의 정의와 의미

행렬의 정의와 이것의 활용 범위에 대해 학습합니다.

) **4.** 행렬 **연**산**과** 역행렬

행렬의 연산과 역행렬의 의미에 대해 학습합니다.

▼ 추천대상

1. 머신러닝 입문자

머신러닝을 얼핏 알지만, 이해는 못하는 사람

2. 데이터 분석 입문자

파이썬 라이브러리를 실용적으로 활용해보고 싶은사람

3. 벡터 행렬을 모르는 사람

머신러닝의 이해에 필수적인 벡터와 행렬에 대해모르는 사람

1. 머신러닝의 전반에 대해 이해합니다.

인공지능과 머신러닝의 차이를 알고, 일반적인머신러닝의 구조를 이해합니다.

2. 머신러닝 속의 본질적 수학 지식을 이해합니다.

막연하고 이해하기 어려웠던 지식을 체계적으로 배우며 익힙니다.

3. 어떤 머신러닝 기법을 마주하더라도 두렵지 않습니다.

익힌 수학 지식으로 머신러닝 속의 여러 기법들을 접해도 어렵지 않습니다. 01

벡터의 정의와 의미

벡터(Vector)

- 정의: 크기(Scale)와 방향(Direction)을 가진 물리량
- 일련의 숫자 리스트(list)
- 예시) 고차원에서의 좌표

벡터의 특성

- $\vec{A} = (2,4)$
- 크기는? 방향은?

크기:
$$\sqrt{2^2 + 4^2} = \sqrt{20}$$

방향:
$$\overrightarrow{U_A} = (\frac{2}{\sqrt{20}}, \frac{4}{\sqrt{20}})$$

$$\vec{B} = (\sqrt{20}, 0) 는 \vec{A}$$
와 같을까? $\vec{C} = (1,2) 는 \vec{A}$ 와 같을까?

왜 벡터를 알아야하나?

- 데이터는 대게 리스트의 형태로 저장되어 있음.
- 여러 리스트의 데이터를 기반으로 특징을 추출하고 분석해야함.
- 이 때, 벡터의 크기와 방향을 모두 고려함.

02

벡터 연산, 단위 벡터, 직교성

벡터의 연산(1)

- 벡터에서의 —는 음수를 의미하지 않음.
- 방향을 180도 반대로 만들어주는 역할임.

벡터의 연산(2)

- 0는 더해서 자기 자신이 나오게 하는 벡터임.
- 영벡터라고부름.
- 2,3차원에서는 (0,0) 그리고 (0,0,0)으로 표기할 수 있음.

$$\vec{A} + \vec{0} = \vec{0} + \vec{A} = \vec{A}$$

벡터의 연산(3)

- 벡터의 덧셈은 화살표를 평행이동해서 더해주는 방식으로 이해할 수 있음.
- 각 원소(element) 별로 대응되는 값들의 합으로 계산함.
- 예) $\vec{A} = (2,4), \vec{B} = (5,1)$

벡터의 연산(4)

- 벡터의 뺄셈은 덧셈의 응용.
- $\mathfrak{A} = (2,4), \vec{B} = (5,1)$
- $\vec{A} \vec{B} = (2 5, 4 1) = (-3, 3)$

벡터의 연산(5)

- 벡터의 곱셈은 흔히 내적(inner product)가 있음.
- 흥미롭게, 벡터의 내적은 벡터를 출력하지 않음.
- 벡터 \vec{A} 와 \vec{B} 의 내적은 $\vec{A} \cdot \vec{B}$ 으로 표기함.
- 길이가 같은 두 벡터 사이의 각도를 나타내는 방식임.
- 각 차원 별로 대응되는 원소(element)간의 곱의 합으로 계산함.
- $\vec{A} = (2,4), \vec{B} = (5,1)$
- $\vec{A} \cdot \vec{B} = 2 * 5 + 4 * 1 = 14$

벡터의 연산(6)

■ 내적은 다르게 표현할 수 있음. 아래와 같음.

$$\vec{A} \cdot \vec{B} = ||\vec{A}|| ||\vec{B}|| \cos \theta$$

- \bullet θ : \vec{A} 와 \vec{B} 사이의 사이각
- ||·||: 괄호 안에 있는 벡터의 크기임.
- \blacksquare 두 벡터가 영벡터가 아니라면, $\cos \theta = \frac{\vec{A} \cdot \vec{B}}{|\vec{A}||\vec{B}|}$ 으로 표현됨.

단위 벡터 (unit vector)-(1)

- \vec{u} 로 일반적으로 표현함.
- 벡터의 크기가 1인 벡터이며, $\|\vec{u}\| = 1$ 임.
- 두 단위 벡터의 내적은 $\cos\theta$ 임.

단위 벡터 (unit vector)-(2)

- cosine 값을 내적과 단위 벡터의 활용으로 구할 수 있음.
- Cosine 값을 알면 두 벡터 사이의 각도도 역함수를 통해 알 수 있음.
- 단, 두 벡터는 영벡터가 아니여야함.
- 이를 cosine similarity라고도 부름.

$$cos\theta = \frac{\vec{A} \cdot \vec{B}}{\left| |\vec{A}| \right| \left| |\vec{B}| \right|}$$

직교성(Orthogonal)

- "두 벡터가 직교한다"의 정의는 $\cos\theta = 0$ 인 경우를 의미함.
- 내적이 0일 때, 두 벡터가 영벡터가 아니라면 서로 직교한다고 이야기 할 수 있음.

03

행렬의정의와의미

- 행렬(Matrix)는 벡터와 굉장히 유사함.
- 수의 나열을 직사각형 모양으로 배열한 것임.

행렬(Matrix)

- 리스트의 형태로 각 유저(user)별 데이터가 벡터로 저장되어 있다면,
- 모든 유저들의 데이터를 합치면 행렬의 형태로 바라볼 수 있음.

$$\begin{pmatrix} 150 & 52 & 5 \\ 187 & 69 & 21 \end{pmatrix}$$

행렬의 특성

•
$$A = \begin{pmatrix} 150 & 52 & 5 \\ 187 & 69 & 21 \end{pmatrix}$$

- 행렬 A의 크기(norm)는? $\sqrt{150^2 + 52^2 + 5^2 + 187^2 + 69^2 + 21^2}$
- 행렬의 형태(shape)은? 2 x 3
- 열(row)과 행(column) vector를 분리할 수 있음.
- Row vector: (150 52 5), (187 69 21)
- Column vector: $\binom{150}{187}$, $\binom{52}{69}$, $\binom{5}{21}$

04

행렬 연산과 역행렬

행렬 연산(1)

- O 영행렬은 더해서 자기 자신이 나오게 하는 행렬임.
- 행렬의 모든 원소(element)가 0인 행렬을 의미함.

$$A + O = O + A = A$$

행렬 연산(2)

- 행렬의 덧셈과 뺄셈은 각 원소에 대응되는 것끼리 더하고 빼면 됨.
- 서로 다른 형태의 행렬이나 벡터 간의 덧셈과 뺄셈은 할 수 없음.

$$A = \begin{pmatrix} 10 & 2 & 5 \\ 7 & 9 & 1 \end{pmatrix}, B = \begin{pmatrix} -1 & 2 & 3 \\ 7 & -5 & 0 \end{pmatrix}, C = \begin{pmatrix} 5 & -8 \\ 1 & 9 \end{pmatrix}$$

$$A + B = \begin{pmatrix} 10 - 1 & 2 + 2 & 5 + 3 \\ 7 + 7 & 9 - 5 & 1 + 0 \end{pmatrix} = \begin{pmatrix} 9 & 4 & 8 \\ 14 & 4 & 1 \end{pmatrix}$$

■ *A* + *C* = ? 불가능

행렬 연산(3)

- 행렬의 덧셈과 뺄셈은 교환법칙이 성립함. (A + B = B + A)
- 곱셈은 그렇지 않음.
- 첫째 행렬의 열 갯수와 둘째 행렬의 행 갯수가 동일할 때 행렬곱(matrix product)
 를 할 수 있음.
- 행렬 A와 C의 곱은 간단히 AC 로 나타냄.

$$A = \begin{pmatrix} 10 & 2 & 5 \\ 7 & 9 & 1 \end{pmatrix}, B = \begin{pmatrix} -1 & 2 & 3 \\ 7 & -5 & 0 \end{pmatrix}, C = \begin{pmatrix} 1 & 0 \\ -1 & 1 \\ 1 & 0 \end{pmatrix}$$

- *AB* =?:불가능
- $AC \neq CA$

$$AC = \begin{pmatrix} 10 * 1 + 2 * (-1) + 5 * 1 & 10 * 0 + 2 * 1 + 5 * 0 \\ 7 * 1 + 9 * (-1) + 1 * 1 & 7 * 0 + 9 * 1 + 1 * 0 \end{pmatrix} = \begin{pmatrix} 13 & 2 \\ -1 & 9 \end{pmatrix}$$

행렬 연산(4)

- 정사각행렬: 행과 열의 수가 같은 행렬 n차 정사각행렬이라고 부름.
- 주대각(Diagonal): 정사각행렬의 대각선에 위치한 성분 diag(A)라고 표현함.
- 대각합(Trace): 정사각행렬의 주대각 성분(element)의 합. Trace(A)로 표현함.

$$A = \begin{pmatrix} 9 & 2 \\ 0 & 1 \end{pmatrix}$$

$$diag(A) = \begin{pmatrix} 9 \\ 1 \end{pmatrix}$$

$$Trace(A) = 10$$

행렬 연산(5)

- 단위행렬(Identity matrix) 주대각선의 원소가 모두 1이고 나머지가 0인 정사각행렬. 주로 I로 표기함.
- 특징: AI = IA = A 이 성립함.

$$I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

행렬 연산(6)

- 정사각행렬 A와 B의 곱은 일반적으로 교환법칙이 성립하지 않음. $(AB \neq BA)$
- 정사각행렬 A에 대해 곱해서 단위행렬 I가 나오게하는 행렬을 역행렬이라고함.
- A^{-1} 이라고 표기함. $AA^{-1} = A^{-1}A = I$
- 모든 정사각행렬이 역행렬을 가지지 않음. 아래의 값이 0이 아니여야함.
- 2차 행렬이 아닌 3,4차 정사각행렬에 대해서도 마찬가지임.
- Deteminant 계산식은 차원별로 조금씩 다름. 2차 정사각행렬의 계산은 아래 같음.
- 행렬 A의 determinant는 Det(A) (또는|A|)로 표현함.

$$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}$$

$$Det(A) = A_{11}A_{22} - A_{12}A_{21}$$

$$A^{-1} = \frac{1}{A_{11}A_{22} - A_{12}A_{21}} \begin{pmatrix} A_{22} & -A_{12} \\ -A_{21} & A_{11} \end{pmatrix}$$

행렬 연산(7)

$$\bullet \quad \text{All:} A = \begin{pmatrix} 9 & 2 \\ 0 & 1 \end{pmatrix}$$

■
$$Det(A) = 9 * 1 - 2 * 0 = 7 \neq 0$$

$$A^{-1} = \frac{1}{7} \begin{pmatrix} 1 & -2 \\ 0 & 9 \end{pmatrix} = \begin{pmatrix} 1/7 & -2/7 \\ 0 & 9/7 \end{pmatrix}$$

크레딧

/* elice */

코스 매니저

콘텐츠 제작자

강사

감수자

디자이너

연락처

TEL

070-4633-2015

WEB

https://elice.io

E-MAIL

contact@elice.io

