Les Modèles Linéaires Mixtes

HMMA 307 : Modèles Linéaires Avancés

KANDOUCI Walid

https://github.com/WalidKandouci/ HMMA307--How-Linear-Mixed-Model-Works.git

Université de Montpellier

Sommaire

Introduction

Exemple: sleepstudy

Application

Conclusion

Introduction

▶ Modèles mixtes: des modèles comportant à la fois des facteurs à effets fixes (ces effets entrant dans la définition de la moyenne du modèle) et des facteurs à effets aléatoires (ces effets entrant, quant à eux, dans la définition de la variance du modèle)

$$y = X\beta + Zu + \epsilon$$

- X: Matrice $(N \times p)$
- β: Les coefficients de régression pour chaque variable indépendante du modèle
- epsilon: Contient les erreurs (résidus) du modèle
- Z: Matrice qui contient les valeurs observées pour chaque individu N pour chaque covariable q des effets aléatoires.
- u est un vecteur $(q \times 1)$ qui contient les effets aléatoires des q covariables de Z

Exemple: sleepstudy

0 308
0 300
1 308
2 308
3 308
4 308

- ► 180 individus × 3 variables
- Reaction: Temps de réaction en moyenne (en milisecondes)
- Days: Nombre de jours de privation de sommeil
- Subject: Numéro du sujet sur lequel l'observation a été faite.

Nos variables "Reactions" et "Days"

- ► Reaction: Temps de réaction en moyenne (en milisecondes)
- ▶ Days: Nombre de jours de privation de sommeil

Évolution du temps de réaction en fonctiondes jours

Figure: violins-plots de nos données, jours /réactions.

▶ Le temps réaction par rapport aux jours a une tendance à la hausse avec des variations entre les jours et les individus.

Évolution du temps de réaction en fonction des jours

Figure: Représentation du temps de réaction en fonctions des jours

► Le temps réaction par rapport aux jours a une tendance à la hausse avec des variations entre les jours et les individus.

Application

- Nous allons implémenter maintenant les méthodes MML,
 OLS et GLM
- Nous allons comparer leurs erreur quadratique moyenne (RMSE)
- Analayser le résultat obtenue grace a la méthode MML

Application

```
# OLS
modelOLS = smf.ols("Reaction ~ Days",
                data, groups=data["Subject"])
resultOLS = modelOLS.fit()
print(resultOLS.summary())
# GI.M
modelGLM = smf.glm("Reaction ~ Days",
                data, groups=data["Subject"])
resultGLM = modelGLM.fit()
print(resultGLM.summary())
#T.MM
md = smf.mixedlm("Reaction ~ Days",
              data, groups=data["Subject"])
mdf = md.fit()
print(mdf.summary())
```

Application

OLS Regression Results

	Coef.	Std.Err.	Z	P > z	[0.0250.975]	
Intercept	251.4051	6.610	38.033	0.000	238.361 264.449	
Days	10.4673	1.238	8.454	0.000	8.024 12.911	
Generalized Linear Model Regression Results						
	Coef.	Std.Err.	Z	P > z	[0.0250.975]	
Intercept	251.4051	6.610	38.033	0.000	238.449 264.361	
Days	10.4673	1.238	8.454	0.000	8.040 12.894	
Mixed Linear Model Regression Results						
	Coef.	Std.Err.	Z	P > z	[0.0250.975]	
Intercept	251.405	9.747	25.794	0.000	232.302 270.508	
Days	10.467	0.804	13.015	0.000	8.891 12.044	
Group Var	1378.176	17.156				

Comparaison des RMSE

$$RMSE = \sqrt{\sum_{i=1}^{n} \frac{(\hat{y}_i - y_i)^2}{n}}$$

Method	RMSE
LMM	29.410624
GLM	47.448898
OLS	47.448898

► On remarque que l'erreur quadratique moyenne du **MML** est la plus petite.

LMM Résultat

Figure: Représentation du temps de réaction en fonctions des jours

► Le temps de réactions étant mieux répartis en fonction des jours.

Conclusion

- Les modèles linéaires mixtes sont utilisé pour tenir compte de la non-indépendance des données
- le modèle fourni généralement un meilleur ajustement et expliquent plus de variation dans les données.