report08.md 2024-10-15

Отчет к лабораторной работе №8

Common information

discipline: Основы информационной безопасности

group: НПМбд-02-21 author: Бабина Ю. О.

Цель работы

Освоить на практике применение режима однократного гаммирования на примере кодирования различных исходных текстов одним ключом.

Выполнение работы

Напишем код на языке программирования Python. Воспользуемся функциями из лабораторной работы №7 (для генерации ключа заданной длины и шифрования/дешифрования):

```
import random import string

[2]: def get_random_key(n):
    symbols = string.ascii_letters + string.digits
    return ''.join([random.choice(symbols) for i in range(n)])

[3]: def enc_dec(text, key):
    if len(text) != len(key):
        raise ValueError('Длины текста и ключа должны совпадать')
    return ''.join([chr(ord(text[i]) ^ ord(key[i % len(key)])) for i in range(len(text))])
```

Возьмем два текста равной длины, сгенерируем для них один ключ, получим зашифрованные тексты и проверим корректность дешифрования:

```
[4]: text1 = 'Пришла солнечная весна
     key = get_random_key(len(text1))
     enc_text1 = enc_dec(text1, key)
     print(f'Первый текст: {text1}')
     print(f'Ключ: {key}')
     print(f'Зашифрованный первый текст: {enc_text1}')
     print(f'Дешифрованный первый текст: {enc_dec(enc_text1, key)}')
     Первый текст: Пришла солнечная весна
     Ключ: SEKfEonJp1wc1FieLJbPUF
     Зашифрованный первый текст: ьЅөЮѾиNЋюЊъiѶољъlWïБѨѶ
     Дешифрованный первый текст: Пришла солнечная весна
 [5]: text2 = 'Пришла слякотная осень'
       enc_text2 = enc_dec(text2, key)
       print(f'Второй текст: {text2}')
       print(f'Зашифрованный второй текст: {enc_text2}')
       print(f'Дешифрованный второй текст: {enc_dec(enc_text2, key)}')
       Второй текст: Пришла слякотная осень
       Зашифрованный второй текст: ьЅөЮФуNЋыФэйөољъlVУжМЉ
Лешифрованный второй текст: Пришла слякотная осень
```

Теперь получим потенциальный ключ для дешифрования текстов, применив посимвольно XOR (исключающее ИЛИ) для текстов.

report08.md 2024-10-15

Теперь, получив ключ, мы можем применить его для расшифрования текстов. Особенность данного подхода в том, что в силу опреденности операции XOR применение нового ключа к первому шифротексту дает содержимое второго текста, а применение ко второму-первого.

```
[6]: new_key = enc_dec(text1, text2)
print(f'Первый текст, расшифрованный с помощью нового ключа: {enc_dec(text2, new_key)}')
print(f'Второй текст, расшифрованный с помощью нового ключа: {enc_dec(text1, new_key)}')

Первый текст, расшифрованный с помощью нового ключа: Пришла солнечная весна
Второй текст, расшифрованный с помощью нового ключа: Пришла слякотная осень
```

В итоге имеем данную программу:

```
import random
import string
def get_random_key(n):
    symbols = string.ascii_letters + string.digits
    return ''.join([random.choice(symbols) for i in range(n)])
def enc dec(text, key):
    if len(text) != len(key):
        raise ValueError('Длины текста и ключа должны совпадать')
    return ''.join([chr(ord(text[i]) ^ ord(key[i % len(key)])) for i in
range(len(text))])
text1 = 'Пришла солнечная весна'
key = get_random_key(len(text1))
enc_text1 = enc_dec(text1, key)
print(f'Первый текст: {text1}')
print(f'Ключ: {key}')
print(f'Зашифрованный первый текст: {enc text1}')
print(f'Дешифрованный первый текст: {enc_dec(enc_text1, key)}')
text2 = 'Пришла слякотная осень'
enc_text2 = enc_dec(text2, key)
print(f'Второй текст: {text2}')
print(f'Зашифрованный второй текст: {enc_text2}')
print(f'Дешифрованный второй текст: {enc_dec(enc_text2, key)}')
new key = enc dec(text1, text2)
print(f'Первый текст, расшифрованный с помощью нового ключа: {enc_dec(text2,
new key)}')
print(f'Второй текст, расшифрованный с помощью нового ключа: {enc dec(text1,
new_key)}')
```

Контрольные вопросы

- 1. Для определения другого текста (P_2) можно просто взять зашифрованные тексты $C_1 \oplus C_2$, далее применить XOR к ним и к известному тексту: $C_1 \oplus C_2 \oplus P_1 = P_2$.
- 2. При повторном использовании ключа мы получим дешифрованный текст.

report08.md 2024-10-15

3. Режим шифрования однократного гаммирования одним ключом двух открытых текстов осуществляется путем XOR-ирования каждого бита первого текста с соответствующим битом ключа или второго текста.

- 4. Недостатки шифрования одним ключом двух открытых текстов включают возможность раскрытия ключа или текстов при известном открытом тексте.
- 5. Преимущества шифрования одним ключом двух открытых текстов включают использование одного ключа для зашифрования нескольких сообщений без необходимости создания нового ключа и выделения на него памяти.

Вывод

В рамках выполнения данной лабораторной работы я освоила на практике применение режима однократного гаммирования на примере кодирования различных исходных текстов одним ключом.

Список литературы

- https://bugtraq.ru/library/books/crypto/chapter7/
- https://www.youtube.com/watch?v=tAjBULW_OjQ
- https://xakep.ru/2019/07/18/crypto-xor/