PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2004-072628

(43) Date of publication of application: 04.03.2004

(51)Int.Cl.

HO4N 7/18 GO6T 7/00 GO6T 7/20

(21)Application number: 2002-232005

(71)Applicant: UNIV WASEDA

(22)Date of filing:

08.08.2002

(72)Inventor: KOMATSU NAOHISA

NISHIGORI YUTAKA TAGUCHI YOICHI EJIMA MASAYUKI

(54) MOVING BODY TRACKING SYSTEM USING A PLURALITY OF CAMERAS AND ITS METHOD

(57)Abstract:

PROBLEM TO BE SOLVED: To perform cooperation processing of moving body tracking by a plurality of cameras to be autonomously operated, and efficient collection and management of information distributed to the plurality of cameras.

SOLUTION: This moving body tracking system is provided with an in-camera tracking means for tracking persons in a distributive manner by every one of a plurality of video cameras, an intercamera tracking means consisting of a main tracking element which performs tracking and a sub-tracking element which supplies featured values of the moving body to the main tracking element and for tracking the moving body in cooperation among the plurality of cameras, and a moving body searching means for searching the mobile object by being autonomously transferred for over the plurality of in-camera tracking means. Thus, tracking of the moving body for over the entire system and overall management of information distributed by every one of the plurality of video cameras are efficiently performed.

LEGAL STATUS

[Date of request for examination]

30.06.2005

[Date of sending the examiner's decision of rejection

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

(19) 日本国特許庁(JP)

(12)公開特許公報(A)

(11)特許出顧公開番号

特開2004-72628 (P2004-72628A)

最終頁に続く

(43) 公開日 平成16年3月4日(2004.3.4)

				(43)	(43) 公開日		テーマコード (参考)		
(51) Int.C1.7		FI							
HO4N	7/18	HO4N	7/18	G		5 C (054		
GOST	7/00	GOGT	7/00	300F		5 L (096		
G06T	7/20	GO6T	7/20	В					
		GO6T	7/20	100					
			審查訊	開求 未謂求	謂求項	の数 3	OL	(全 1	6 頁)
(21) 出願番号 (22) 出願日		特願2002-232005 (P2002-232005) 平成14年8月8日 (2002.8.8)	(71) 出願(74) 代理(72) 発明(72) 発明(72) 発明	学東1000775 学東1000775 大小東法西東法田東 大都京人口京 大田東 大田東 大田東 大田東 大田東	人所33 尚所福置所福尔。 场外宿里 像人宿田 宿田 医大 区大 区大	塚 義 久理 久理 久 町 仁 保工 保工 保 工 保 3 学 3 学 3	丁目 4 番 部内 丁目 4 番 部内 丁目 4 番	·1号	学校学校

(54) 【発明の名称】複数カメラを用いた移動体追跡システム及びその方法

(57)【要約】 (修正有)

【課題】自律的に動作する複数カメラによる移動体追跡の協調処理、及び複数カメラに分散された情報の効率的な収集・管理が行えるようにする。

【解決手段】複数ピデオカメラの毎に分散的に人物追跡するカメラ内追跡手段と、追跡を行うメイン追跡要素と 移動体の特徴量をメイン追跡要素に供給するサブ追跡要素とからなり複数のカメラ内追跡手段間で連携して移動体を追跡するカメラ間追跡手段と、複数のカメラ内追跡手段に亙り自律的に移動して移動体を探索する移動体探索手段とを具える。これにより、システム全体にわたる移動体の追跡及び複数のピデオカメラ毎に分散された情報の統括的管理を効率よく行うことができる。

【選択図】図1

【特許請求の範囲】

【請求項1】

ネットワーク上に接続され追跡環境の画像を撮影する複数のピデオカメラと、前記複数のピデオカメラの各々に接続され、ピデオ撮影した画像を画像処理する複数のプロセッサとを具え、

前記ピデオ撮影した画像から追跡すべき移動体を特定し、前記特定した移動体の特徴量を抽出して、前記ピデオカメラの撮影範囲内において前記特徴量に基づく移動体追跡を、前記複数のピデオカメラの各々毎に分散的に行うカメラ内追跡手段と、

複数の前記カメラ内追跡手段で抽出された複数の特徴量を統合して特定の移動体の追跡処理を行うメイン追跡要素と、個々の前記カメラ内追跡手段毎に抽出される前記特定の移動体の特徴量を前記メイン追跡要素に供給するサブ追跡要素とからなり、複数の前記カメラ内追跡手段間で連携して前記特定の移動体を追跡するカメラ間追跡手段と、

前記カメラ内追跡手段にて抽出した特定の移動体の特徴量に基づき、複数の該カメラ内追跡手段に亙り自律的に移動して、該特徴量によって同定される移動体を探索することで、前記複数のピデオカメラ毎に分散された移動体追跡情報の統括的管理を可能とする移動体探索手段と、

を含むことを特徴とする移動体追跡システム。

【請求項2】

前記カメラ間追跡手段において、前記複数のカメラ内追跡手段間で連携して特定の移動体を追跡するために実施するプログラムであって、

前記メイン追跡要素が前記複数のカメラ内追跡手段で抽出された複数の特徴量を統合して特定の移動体の追跡処理を行う手順と、

前記サプ追跡要素が、自身の担当する前記カメラ内追跡手段毎に抽出される前記特定の移動体の特徴量を、前記メイン追跡要素に供給する手順と、

カメラ内追跡手段における前記移動体の抽出精度に応じて前記メイン追跡要素と前記サプ 追跡要素の役割を遷移する手順と

を含むプログラム。

【請求項3】

前記移動体探索手段において、特定の移動体を複数の該カメラ内追跡手段に亙り探索する ために実施するプログラムであって、

前記カメラ内追跡手段にて抽出した特定の移動体の特徴量に基づき、該特徴量によって同定される移動体を任意のカメラ内追跡手段にて探索する手順と、

前記特定の移動体が発見されるまで複数のカメラ内追跡手段に亙って自律的に移動して移動体の探索を繰り返す手順と

を含むプログラム。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、例えば人物や車両等のような移動体を画像上から認識し、追跡する移動体追跡システム及びせの方法に関する。

[0002]

【従来の技術】

従来から、広域監視や設備監視を行うために、ピデオカメラ(以下単にカメラとも言う)を用いた監視システムが広く利用されている。従来のピデオカメラによる監視システムは、例えば、複数の監視用カメラにて撮影した画像を、人がリアルタイムでモニタリングすることで実現していた。近年、画像処理技術の進展に伴い、ピデオカメラによりピデオ撮影された画像に含まれる特定の移動体(追跡すべき人物像等)の認識、追跡を行う研究が盛んに行われており、単一のピデオカメラによりピデオ撮影された画像中から移動体を抽出し、この抽出された移動体を該単一のピデオカメラを用いて追跡すること自体は可能である。

10

20

30

[0003]

【発明が解決しようとする課題】

しかし、単一のピデオカメラによって撮影可能な範囲は、比較的狭い範囲に限られてしまう。また、単一視点により得られる画像精報だけは、実際に人物追跡に利用するには、オクルージョン(陰蔽物)や画像解析精度等の点で不十分である。 すなわち、比較的広域にわたる環境の監視をピデオカメラを用いて行うためには、複数台のカメラを用いて移動体追跡システムを構築する必要がある。

この複数のカメラを具える移動体追跡システムは、システム全体の制御方式の点から、個々のピデオカメラにて取得した情報を統合するためのサーバコンピュータを具える集中制御型と、個々のピデオカメラが自律分散して動作する処理方式(分散型)の2種類に分類される。集中制御型の場合、各カメラに分散した情報の統合が容易である反面、全ての情報をサーバに集約する必要があるので、判断処理速度が遅く、また、システムの拡張性・柔軟性に乏しい。加えて、システム規模が大きい場合、サーバに対する負担が大きくなってしまうため、比較的大規模なシステムに適用するには、不向きである。

一方、分散型処理方式に基づくシステムは、前記集中制御型に較べて、システムの拡張性・柔軟性に優れ、システム規模が大きい場合も、ネットワークへの負荷が少ないので有利であるが、この場合は、特に、複数のカメラの協調方法並びに複数のカメラに分散された情報の収集・管理方法が課題となる。

[0004]

本発明は、上述の点に鑑みてなされたもので、システム全体での自律的な移動体追跡を可能とし、また、複数のカメラに分散された情報の収集・管理を効率的に行えるようにした複数カメラを用いた移動体追跡システム及びその方法を提供しようとするものである。

[0005]

【課題を解決する手段】

[0006]

前記カメラ間追跡手段は、複数の前記カメラ内追跡手段間で連携して特定の移動体を追跡することにより、各々自律分散的に動作する複数のピデオカメラ間で協調した追跡跡が行われる。これにより、当該システム全体での自律的な移動体追跡が可能となる。また、前記移動体探索手段は、カメラ内追跡手段にて抽出した特定の移動体の特徴量に基ま、複数のカメラ内追跡手段に亙り自律的に移動して、特定の移動体を探索する。これにおりなり、移動体追跡がラステム全体における、特定の移動体の現在位置等の移動体追跡情報を上握できる。従って、本発明に係る移動体追跡システムは、分散型処理方式によるシステム構成でありながら、複数のピデオカメラ毎に分散された特定の移動体の移動体追跡情報の統括的管理を効率よく行うことができる。

[0007]

本発明は、方法の発明として構成し実施することができ、また、 そのような方法を実行する ためのプログラムても実施可能である。

10

20

30

[0008]

【発明の実施の形態】

以下、添付図面を参照して本発明に係る移動体追跡システムの一実施例について説明する。この実施例では、追跡対象たる移動体の一例として、追跡環境内に侵入した人物を追跡する例について説明する。なお、本発明の実施形態は、これに限定されるものではない。 【0009】

[0010]

このシステムによる人物追跡処理全体の流れは、図1(b)に示すように、概ね下記のようである。

- 1)画像の取得
- 2)人物(追跡対象)抽出及びその特徴量の抽出
- 3)カメラ内追跡
- 4)カメラ間追跡

カメラエージェント10では、カメラ11にて撮影した動画像を各フレーム毎にプロセッサ12に入力(図1(6)に示す「画像の取得」)し、プロセッサ12により前記フレーム画像を分析して、該画像中の人物領域の抽出及びその特徴量の抽出(図1(6)に示す「人物抽出及びその特徴量の抽出」)して、抽出した特徴量に基づき、時間軸上でフレーム間のマッチングを取ることにより、人物の追跡(図1(6)の「カメラ内追跡」)を行う。この「カメラ内追跡」は、人物像及び特徴量の抽出を実現するための所定の制御プログラムを含むソフトウェアを実行することにより実施される。

[0011]

前記カメラエージェント10にて人物が検出されると、その人物に対してカメラエージェント10上にトラッキングエージェント20が生成される。トラッキングエージェント20かは成立れる。トラッキングエージェと20は、複数カメラ間に亙って特定の人物を追跡するための所定の制御プログラムを含まり、カーション(追跡をジュール)である。詳しなからは後述するが、ののよう、有数のトラッキングエージェント20は、インと複数のサブからなるグループを形成し、メインとなったトラッキングエージェントが、複数のカメラエージェント10から得られる人物の特徴量のデータを統合・分析して、が、複数視点(ビデオカメラ)からのデータを取り纏めることで、分散配置されたラント10の協調動作が行われるのである。この複数のトラッキングエージェント10の協調動作が行われるのである。この複数のトラッキングエージェント20の連携処理により、システム全体でのシームレスな人物追跡(図1(b)のカメラ間追跡)が実現される。

[0012]

また、サーチエージェント30は、カメラエージェント10で抽出した人物の特徴量に基づき、カメラエージェント10間を自律的に移動して特定人物の現在位置の探索を行うモ

10

20

30

40

[0013]

[0014]

[0015]

(1) 単一カメラによる撮影範囲が複数カメラの重複領域が

40

10

20

(2) 撮影範囲中の内部 が端部 が

という2つの基準に従って、ピデオカメラ110の撮影範囲は、カメラ110でのみ撮影する単一撮影領域13及び単一境界領域142、カメラ110、116の重複領域である複数撮影領域15、第1の複数境界領域16及び第2の複数境界領域17の、5つに分類される。上記「境界領域」とは、ピデオカメラ撮影範囲の端部付近を指しており、第1の複数境界領域16はカメラ110の撮影範囲の端部を含み、第2の複数境界領域16はカメラ110の撮影範囲の端部を含み、第2の複数境界領域16はカメラ110の撮影範囲の端部を含む領域である。後述のカメラ間追跡の際には、この環境マップを参照して、前記5つの領域の分類に応じて、トラッキングエージェント20のメイントラッカの権限委譲(カメラ間の移動)タイミングを決定している。

[0016]

なお、ステップ812のフレーム画像中から人物領域の抽出を行う処理方法としては、前述の背景差分法に限らず、フレーム差分法、テンプレートマッチング法、オプティカルロール法等、適宜の画像処理方法を採用しうる。

[0017]

次いで、ステップ818では、前記ステップ812にて抽出した人物領域を、複数フレーム間で同定するための特徴量を示すパラメータを抽出する。本実施例では、この特徴量の一例として、該当人物の位置情報と色情報とを抽出する。また、前記位置情報としては、複数カメラエージェント間で情報の比較・統合することに鑑みて、画像上の画像座標からワールド座標に変換した(カメラキャリプレーションした)値を求める。

[0018]

ここで、位置情報取得処理について簡単に説明する。本実施例では、抽出した人物領域の見におけるサイズ(ドット数等)から該当人物の身長を想定して対象スレーム関係における。人物の身長を想定を行う。人物の力を生成しておき、この身長情報を利用して位置情報の算出処理を行う。人物の人物領域の足元部分は越教によりが隠れてしまいる。そる人物の人ではある。とができる。位置情報とを用いて、自動の世界とで、高精度の位置情報を得ることができる。位置情報とを用いて、画像の出土を表別の画像座標と、前記頭部位置の画像点と、前記身長情報とを用いて、画像部は自人物立ち位置の推測処理を行う。から、身長情報に基づく身重直に関係を確定をできる。なお、前記身長規定処理は、所定の制環境中の人物の位置情報を得ることができる。なお、前記身長規定処理は、所定の制プログラムを実行することで実施できる。

[0019]

また、人物の特徴量として抽出される色精報には、例えば、人物領域のRGB値をHSV変換した際の色相を、パラメータとして用いることができる。すなわち、抽出した前記人物領域において、特徴的な色の色相範囲を頻出領域としてパラメータ化することで、特定の人物について大まかな色情報が得られるようにする。この色情報は、後述のサーチエー

10

20

30

40

ジェント 2 0 による人物探索処理等、位置情報を用いない人物同定処理に用いたり、或いは、人物同定処理の際に信頼度を付与すること、異なる色情報を有する複数人物を相対的に比較して個々の人物を特定すること等に利用しうる。

[0020]

ところで、前記ステップ S 1 2 で抽出した人物領域の抽出精度は、背景や机等やの他のオプジェクトの影響によって、各フレーム毎に差異が生じ、一様ではない。そこで、各フレームにおける人物領域の抽出精度を評価するパラメータ値として、抽出精度の評価値Wを各カメラエージェント 1 0 において人物抽出処理の際に算出する。評価値Wは、抽出された人物領域の縦横比R と頭部領域のピクセル密度 D により、下記の数 1 から求める。 【数 1 】

 $W = \{F(R) + D\} / 2$

上記の数1において、F(R)は人物領域の縦横比Rの評価関数である。この評価関数F(R)の一例を図示すると図5のようである。縦横比Rの評価関数F(R)は、図5において横軸に示す縦横比Rが1:3~3.5である場合に縦横比評価値(図5において縦軸に示す値)が高くなるよう設定されており、このとき抽出された人物領域の抽出精度は高いことになる。この抽出精度評価値Wを用いることで複数のカメラエージェント間での同一人物に対する抽出精度の比較が可能となり、これはカメラ間追跡におけるメイントラッカ権限委譲のパラメータの一つとなる。

[0021]

ステップ S 1 4 では、ステップ S 1 8 で抽出した特徴量のパラメータを用いて、抽出した人物領域を、時間軸上でフレーム間のマッチングを取ることにより、同一人物であるが否かの同定処理を行ことで、カメラ内追跡を実現する。すなわち、現在フレームにて抽出された人物を、前述の位置精報や色精報といったパラメータに基づき過去フレームにて既に追跡されてきた人物(つまり、同定済みである人物)と対応付けすることで、フレーム間での同定処理(マッチング)が行われる。

このカメラ内追跡は、基本的にはワールド座標上の対象人物の位置情報をパラメータとして用いて実行されるが、障害物等のオクルージョン(遮蔽)による影響で正確なワールド座標上の位置情報を得ることが困難な場合には、画像座標上の人物位置に基づき追跡を継続できる。また、カメラ内追跡において、色情報を併用することで、複数人物のすれ違いた対応した処理が可能となる。すなわち、フレーム内で複数の人物がすれ違った場合に、カメラエージェントが該複数の人物を1つのオプジェクト(人物領域)であると認識しても、色情報による人物識別を行うことで、人物すれ違い後の個々の人物の特定が可能になる。

[0022]

次にトラッキングエージェント20によるカメラ間追跡について説明する。

トラッキングエージェント 2 0 は、上述の通り、或る人物がカメラエージェント 1 0 に検出されると、該人物に対して生成されるもので、その人物が複数のカメラエージェント 1 0 で検出された場合は、各カメラエージェント 1 0 毎に複数のトラッキングエージェント 2 0 が生成されることになる。そのような同一の人物を追跡すべき複数のトラッキングエージェント 2 0 は、一つのメイントラッカMT(以下、単にMTと略称する)と、1 以上複数のサプトラッカST(以下単に、STと略称する)からなるネットワークグループ(トラッキングエージェントグループ)を形成する。

STは、各自の存在するカメラエージェントにて抽出した該当人物の橋報(人物抽出処理結果や位置橋報、色橋報のような前記特徴量パラメータであり、以降、これらを纏めて出出データという)を、前記グループのMTに送信する。MTでは、自身の存在するカメラエージェントにて取得する抽出データ及び、各STから送信された抽出データをあが、合して、該人物の位置特定を行う。このMTVSTの関係は動的に変化するものであり、同一対象を追跡するトラッキングエージェントにMTの権限を委譲することで、特定の人物に追従して、MTが複数のカメラエージェント上を遷移する。こうして、複数のカメ

10

20

30

10

20

30

40

ラ間にわたる特定の人物追跡が実現される。

[0023]

先ず、複数トラッキングエージェント間の連携処理に際して送受信されるデータバケット について説明する。トラッキングエージェント間の連携が必要な状況としては、下記の4 通りの状況がある。

- 1)新規トラッキングエージェント生成時のメイン/サブ判断
- 2)MTの権限委譲
- 3)STのグループ離脱
- 4)複数カメラ重複領域でのグループ再形成確認

送受信される各データ内容はとしては、「位置精報」、「色精報」、「画像取得時刻」、 「人物抽出精度」といった抽出データや、「トラッキングエージェントID」等が含まれ る。「トラッキングエージェントID」は、個々のトラッキングエージェントを識別する IDであて、例えば新規生成時に付与されるものであり、また、「要求種別」とは、上記 4通りの状況の何れかを表すものである。こうした各種データ内容は、夫々所定のメッセ ーシIDにより識別できるようにするとよい。

[0024]

図6は、それぞれネットワークに接続されたカメラエージェント10c~10cの撮影範 囲内を人物Pが移動した際に生成されるトラッキングエージェント200~20cからな るネットワークグループにおいて、メイントラッカMTとサプトラッカST関係の遺移を 示す概念図である。また、図7は、トラッキングエージェントの状態遷移及び連携処理を 説明するためのプロック図である。以下、トラッキングエージェントの状態遷移について 、図6及ひ図7を参照して説明する。

図6に示すように、カメラエージェント10のにおいて、カメラ撮影範囲内に侵入した人 物Pが抽出されると、カメラエージェント10の上には、該人物Pに対してトラッキング

エージェント20のが新規生成される(図7において「EXthのct」で示す流れ)。 図7に示すように、新規に生成されたトラッキングエージェントは、ネットワーク上に存 在する他のMTに対して、獲得した人物Pの抽出データを通知し(「BKodcaSt」)、同一の対象人物を追跡中のMTが存在するが否かを問い合わせる。前記通知を受けた 他のMTは、自身が追跡中の人物と、前記受信した抽出データとの対応付け(同定処理) を行う。これにより、前記新規トラッキングエージェントと同一の対象人物を追跡するト ラッキングエージェントが既に存在するか否かの判定が行われる(図7の「1denti fication」)。このときカメラエージェント(図6ではカメラエージェント10 照 し 、 抽 出 人 物 P の 存 在 す る 撮 影 領 域 区 分 (図 3 参 照) を 求 め て お く 。

[0025]

前記新規トラッキングエージェントが追跡する人物と同一の人物を追跡するトラッキング エージェントが既に存在する場合(図7の「1dentified」)は、新規トラッキ ングエージェントには人物同定Ack(肯定応答)が送信され、該新規トラッキングエー ジェントはSTとなる(「GetAck」で示す流れ)。また、人物同定Ackが送信さ れなくとも、トラッキングエージェントにて環境マップを参照した結果、人物Pが環境マ ップ上の複数カメラ重複領域(図3に示す複数撮影領域15、第1の複数境界領域16及 び第2の複数境界領域17)に位置している場合は、新規トラッキングエージェントは、 該当人物を追跡中のトラッキングエージェントが既に存在していると判断し、該当するM Tと接続して、STとなる。

[0026]

トラッキングエージェントが環境マップを参照した結果、人物Pが環境マップ上の単一カ メラ領域(図3に示す単一撮影領域13、単一境界領域14)に位置しており、人物同定 A c k が送信されない場合(「Don`tGetAck」)は、新規トラッキングエージ ェントは、人物Pはシステム全体で新規に発見された(人物Pを追跡するトラッキングエ ージェントが存在しない)ものと判断して、自らが新しいMTとして動作する。図6の例 では、トラッキングエージェント20のは、先ずMTとして起動する。人物Pがカメラエージェント10の内で移動する間、トラッキングエージェント20のは既述のカメラ内追跡により獲得した抽出データを収集する。

[0027]

図6において、人物Pが移動して、カメラエージェント106の撮影範囲内に侵入すると、カメラエージェント106上にはトラッキングエージェント206が新規生成され、上述したようなメイン/サブの判断(「Identification」)処理が行われる。この場合は、既にトラッキングエージェント20aがMTの権限を有しているので、トラッキングエージェント206は、その8Tとなる。

[0028]

次に、MTの権限委譲について説明する。追跡対象人物がMTたるカメラエージェントの 撮影範囲外に出る前に適切なSTにメイントラッカMTの権限を引き継ぐ処理が行われる 。MT権限の委譲は、▲1▼現時点でのMTにおける環境マップの第1の複数境界領域1 6(図3参照)に存在し、且つ、▲2▼STでの人物領域の抽出精度がMTを上回った(或いはMTでの次期フレーム予測位置が撮影範囲外である)場合、の2条件が満たされた ときに実行される。例えば、図6において、追跡対象人物Pが、カメラエーシェント10 のの環境マップ中の第1の複数境界領域16(図3参照)に侵入すると、MT左るトラッ キングエージェント20のはメイン権限移動判断(図7の「MOVeDeciSion」)を行う。そして、MT(トラッキングエージェント20丸)は、人物抽出精度がMTょ りも優れているSTを検索し、該当するSTに対してMTへの権限委譲要求(図7の「M OVeRe9ueSt」)を送信し、サプ移行待機状態(図7の「Waitfokack 」)になる。また、MTは、このとき同時に、グループ内のその他のSTに対してメイン トラッカ入れ替わりの通知を行す。前記メイン権限委譲要求を受けたSTは、メイン移行 待機状態となり(「WaitforMove」)、MTに対して権限引継Ackを送信し 、MTからのAck受信通知(GetAck)を受信すると、MTの保持する追跡対象人 物データを受け取り、新規にMTとなる。一方、旧MTは、前記権限引継Ackを受信し た時点でSTへ移行し、新規MTに接続する。

このように、複数のトラッキングエージェント間で、人物追跡を担うMTの権限を委譲することで、実質的にトラッキングエージェントによる複数カメラ間での移動が実現される

[0029]

追跡対象人物がカメラエージェントの撮影範囲から外れる等して、追跡処理が終了すると、該カメラエージェント上のトラッキングエージェントは消滅する。例えば、図6において、トラッキングエージェント200がMTの権限を引継いで、トラッキングエージェント200か8Tへ移行した後、更なる人物Pの移動に伴い、人物Pがカメラエージェント

20

10

30

40

100の撮影範囲から外れて(図7の「Can'tExtract」)、図6において、トラッキングエージェント20bがMTの権限を引継いで、トラッキングエージェント20aがSTへ移行した後、更なる人物Pの移動に伴い、人物Pがカメラエージェント10aの撮影範囲から外れて、カメラエージェント10aでのカメラ内追跡処理が終了すると、トラッキングエージェント20bに対して消滅する旨を通知した後、消滅する(図7の「VaniSk」)。

なお、MTの時点でトラッキングエージェントが消滅する場合は、適切なSTに対してメイン権限委譲をした後に消滅する。但し、STが存在せず、メイン権限委譲が行われない場合は、追跡対象が当該システムから退出したものと見なして、システム全体での該当人物の追跡を終了する。

[0030]

ところで、追跡対象の人物が環境マップ上の単一撮影領域(図2において符号18で示す領域)にいる時に、複数のトラッキングエージェントでネットワークグループを形成していた場合は、該グループ中に異なる人物を追跡しているトラッキングエージェントが含まれている可能性が高い。このような場合、MTは、STから送信された抽出データと、自身のカメラエージェントで取得した抽出データを比較して、異なる人物を追跡しているトラッキングエージェントを検出でき、そのようなトラッキングエージェントに対して、グループ離脱要求を行う。グループ離脱要求を受けたトラッキングエージェントは、新規トラッキングエージェント生成時と同様の処理を行い、自身と同じ人物を追跡中のMTを検索する。

[0031]

また、追跡対象の人物が環境マップ上の複数撮影領域(図2において符号15~17で示す領域)にいる場合、当該人物を追跡しているトラッキングエージェントがグループ外にも存在する可能性があるため、MTは、自らの存在を通知するパケット(複数カメラ重複領域でのグループ再形成確認)をネットワーク上に配信する。パケットを受信したトラッキングエージェントでは、自身が追跡中の人物と受信したパケットに基づく人物との同定処理を行う。その結果、両者が同一人物であった場合、該トラッキングエージェントは、該当するグループに加わる。これは、新規トラッキングエージェント生成時等における同定処理の失敗を補償する処理である。

[0032]

[0033]

前記サーチエージェント30による特定人物の現在位置探索処理の一例について図8のフローチャートを参照して説明する。

ステップS20において、ユーザ(システム監視者)や人物追跡中のトラッキングエージェントから発生される特定の人物の探索要求に応じて、該探索要求を受けたカメラエージェントでは、サーチエージェントと、該サーチエージェントに固有の探索IDが生成される。この探索IDは、探索要求を発生したトラッキングエージェントのID、カメラエー

10

20

30

40

ジェントのID、該要求の発生時刻並びに該カメラエージェント内でユニークな乱数を含んで成る。これにより、要求の発生時刻と、探索要求の発生源とを、このサーチエージェントを受け入れたカメラエージェントに通知することができる。次いで、ステップS21では、現在着目しているカメラエージェント内にて探索すべき人物の探索・同定処理を行い、該当する人物が存在するか否かを確認する。前記人物の探索要求が発生された時点では、先ず、該要求を受信したカメラエージェントにて人物探索を行う。該当する人物が発見されれば、ステップS22に分岐して、この人物探索処理を終了する。人物が発見されない場合は、ステップS23に処理を進め、サーチエージェントの移動処理を行う。

[0034]

ところで、サーチエージェント20は、ネットワークを移動する性質上、保持する情報量が少なくい方が好ましい。この実施例では、人物探索処理の実行コードは各カメラエージェント10が所持し、且つ、サーチエージェントによる探索が既に済んだカメラエージェントには、サーチエージェントの移動履歴(探索済み情報)を記憶させることで、サーチエージェント20が持つ情報量を可及的抑制している。これにより、サーチエージェントの探索処理を効率的に行うことができる。

また、この実施例では、サーチエージェント20の移動先決定の要素として、カメラエージェントにおける人物の移動ログと、カメラエージェントに対する人物の移動確率(或るカメラエージェントにおける人物存在確率)とを用いる。

[0035]

[0036]

サーチエージェントが移動先を決定する状況としては、以下の四通りの状況が挙げられる

20

10

30

10

20

30

40

50

- 1. 未探索の隣接カメラエージェントがある。
- 2. 未探索の隣接カメラエージェントなはく、サーチエージェント記憶領域内に未探索カメラエージェントの情報がある。
- 3. 隣接カメラエージェント、記憶領域内共に未探索カメラエージェントの精報なし。 4. 移動ログがある。

先ず、ステップS26では、カメラエージェントに記憶された前記移動口グを確認し、経過時間下が所定の 値T1より小さい場合は、ステップS27に進み、該移動口グに沿ってカメラエージェントを移動し、移動先のカメラエージェントにて前記ステップS21以降の処理を繰り返す。一方、該当する人物の移動が移動口グにない場合、若しくは、経過時間下が所定の 値T1より大きい場合は、ステップS28に処理を進める。ステップS28で処理を進める。ステップS28では、隣接した未探索カメラエージェント(これをCAnとする)の人物移動確率の高いカメラをまり移動予定先以外)の隣接カメラエージェントにおいて、人物移動確率の高いカメラエージェント(これをCA×とする)のIDをサーチエージェントの記憶領域内に記憶させる。

[0037]

ステップ880では、前記カメラエージェントCANと前記カメラエージェントCAXの移動確率の比較を行い、より確率の高いカメラエージェントに移動先を決定する。カメラエージェントCANの移動確率をRXとし、CAXとCANの距離をDとすると、CAXに移動する場合の条件は下記の式(2)で表せる。

【数2】

 $R n < R \times * D * \alpha$

すなわち、カメラエージェントCANの移動確率RNが、CAXの移動確率RXの関数より、小さい場合は、移動先はカメラエージェントCAXとされ、その反対に、移動確率RNが移動確率RXの関数よりも大きい場合は、カメラエージェントCANを移動先とする。なお、係数αを適宜変更することで、移動先決定の条件を変更して、サーチエージェントの非効率的移動を抑制することができる。例えば、確率差が小さいとサーチエージェントの移動効率が惡くなる場合等に、係数αを大きくとって、確率差が大きい場合以外は採用しないようにできる。

[0038]

前記ステップ S 3 0 における移動確率の比較の結果、移動確率 R n が移動確率 R ×の関数よりも大きい(R n > R × * D * α)場合は、ステップ S 3 1 に進み、サーチエージェントは、カメラエージェント C A n にて前記ステップ S 2 1 以降の処理を行う。また、移動確率 R n が移動確率 R × より小さい(R n < R × * D * α)場合は、ステップ S 3 2 に進み、サーチエージェントは、カメラエージェント C A × に移動して、カメラエージェント C A × にで前記ステップ S 2 1 以降の処理を行う

以上の処理を、目的とする追跡対象人物を発見するまで繰り返すことで、システム全体における人物(現在位置)の探索が実施されるのである。

[0039]

このようにして、カメラエージェントとトラッキングエージェントとサーチエージェントとが協調動作することで、精報を集約するサーバを備えない分散的システム構成において、複数カメラが連携したシステム全体でのシームレスな人物追跡を行い、また、複数カメラに分散した精報を効率的に統合・管理できる。

[0040]

なお、上述の実施例で説明した人物(移動体)追跡システムは、例えば老人ホーム内でのカメラ監視等、建造物内等に配備される一般的な人物追跡システムに好適である。また、例えば、商店店舗等において、人物(顧客)の移動を監視・追跡し、該人物の動きを分析することに利用でき、これは、商品の戦略的な陳列・配置位置の検討、及びその改善等に

有益である。また、本システムは不特定多数の移動体を追跡できるので、交差点等における交通監視システムでの応用にも好適である。

[0041]

【発明の効果】

以上説明した通り、本発明によれば、分散配置された複数のカメラが連携動作することで、システム全体での自律的な移動体追跡が可能とされ、また、複数のカメラに分散された精報の収集・管理を効率的に行えるという優れた効果を奏する。

【図面の簡単な説明】

【図1】(の)は、本発明の一実施例に係る移動体追跡システムの全体構成を示す概念図、(b)は、同実施例に係る当該システムにおける追跡処理全体の流れの一例を示すフローチャート。

【図2】同実施例に係るピデオカメラの配置例を示す平面図。

- 【図3】同実施例に係るカメラエージェントにて作成される環境マップの一例を示す図。
- 【図4】同実施例に係るカメラエージェントにて実施されるカメラ内追跡処理の一例を示すフローチャート。
- 【図5】図4に示すカメラ内追跡処理において抽出した人物領域の評価関数ド(R)の一例を示す図。
- 【図6】同実施例に係るトラッキングエージェントの動作例を説明するための概念図。
- 【図7】同実施例に係るトラッキングエージェントにおけるメイントッラカとサプトラッカの状態連移を説明するためのプロック図。
- 【図8】同実施例に係るサーチエージェントにて実施される人物探索処理の一例を示すフローチャート。

【符号の簡単な説明】

- 10 カメラエージェント
- 11 ビデオカメラ
- 12 プロセッサ
- 20 トラッキングエージェント
- 30 サーチエージェント

10

[27]

[28]

フロントページの続き

(72)発明者 江島 公志

東京都新宿区大久保3丁目4番1号 学校法人早稲田大学理工学部内 Fターム(参考) 5C054 AA05 CE16 FC00 FC01 FC12 HA31 5L096 BA02 CA05 FA15 FA59 FA64 FA69 HA04 HA05 HA07 JA11