Ιόνιο Πανεπιστήμιο – Τμήμα Πληροφορικής Αρχιτεκτονική Υπολογιστών 2015-16

Εισαγωγή στην Αρχιτεκτονική Η/Υ

(θεμελιώδεις αρχές λειτουργίας των υπολογιστών)

http://di.ionio.gr/~mistral/tp/comparch/

Μ. Στεφανιδάκης

Το μάθημα συνοπτικά (1)

• Το μάθημα

- Θεωρητικό μέρος
 - Ψηφιακή Τεχνολογία
 - Αρχιτεκτονική οργάνωση
 - Επεξεργαστή
 - κύριας και κρυφής μνήμης
 - Διαύλων και συσκευών Ε/Ε
 - Θέματα απόδοσης σε ένα υπολογιστικό σύστημα
 - Εισαγωγή στις προηγμένες αρχιτεκτονικές
 Η/Υ
 - Βαθμολόγηση: γραπτές εξετάσεις

Το μάθημα συνοπτικά (2)

• Το μάθημα

• Εργαστήριο

- Σχεδίαση απλής κεντρικής μονάδας επεξεργασίας και προσομοίωση
- Βαθμολόγηση: με τη μορφή bonus
 - προϋπόθεση: παρουσία στο εργαστήριο!

• Προτεινόμενα Βιβλία

- D.A.Patterson & J.L.Hennessy, "Οργάνωση και Σχεδίαση Υπολογιστών (Τόμος Α΄)", Κλειδάριθμος, 2010.
- W. Stallings, "Οργάνωση και αρχιτεκτονική υπολογιστών", ΤΖΙΟΛΑ, 2011.

Τι είναι ένα "υπολογιστικό σύστημα";

• Υπολογιστικά Συστήματα

- Οι κλασικοί υπολογιστές...
 - Τύπου Desktop, Laptop, Notebook
 - Υπερυπολογιστές
 - Supercomputers
- Αλλά επίσης και...
 - Tablets και Smartphones
 - e-book readers
- Ο κατάλογος δεν σταματά εδώ
 - Τι συμβαίνει με τις συσκευές που δεν είναι αλλά περιέχουν υπολογιστές;

Ενσωματωμένα συστήματα: κάτι διαφορετικό(;)

• Υπολογιστικά Συστήματα

- Μια πολύ μεγάλη αγορά
 - 95% των μικροεπεξεργαστών που πωλούνται ανά έτος καταλήγει σε ένα ενσωματωμένο σύστημα!
- Υπολογιστικά συστήματα ελέγχου
 - Συστήματα ειδικών απαιτήσεων
 - Ιατρικά, συγκοινωνίες, εργοστάσια, συλλογή πληροφοριών, δικτυακές συσκευές...
 - Καταναλωτικά προϊόντα
 - Αυτοκίνητα
 - Το σύνολο σχεδόν των σύγχρονων οικιακών συσκευών

Ποια είναι η αρχιτεκτονική του μικροεπεξεργαστή που παράγεται σε μεγαλύτερο αριθμό ανά έτος;

Αρχιτεκτονική Η/Υ

- Υπολογιστικά Συστήματα
- Αρχιτεκτονική Η/Υ

Ανήκει το λογισμικό στο διπλανό σχήμα; Υπολογιστικό σύστημα

Αρχιτεκτονική Η/Υ

Διαθέσιμη τεχνολογία

- Η αρχιτεκτονική συγκροτεί υπολογιστικά συστήματα χρησιμοποιώντας την υπάρχουσα τεχνολογία
 - και προδιαγράφει τη μελλοντική τεχνολογία!

Αρχιτεκτονική: υλικό μόνο ή και λογισμικό;

- Υπολογιστικά Συστήματα
- Αρχιτεκτονική Η/Υ

Σε ποια συστήματα έχει ιδιαίτερη σημασία η αρχιτεκτονική του λογισμικού;

- Το λογισμικό είναι σημαντικό μέρος ενός υπολογιστικού συστήματος
 - Ορίζει τον τρόπο χρήσης του υλικού
 - Συνεπώς (συν-)διαμορφώνει
 - την απόδοση
 - την κατανάλωση ενέργειας
 - την αξιοπιστία
- "Η αρχιτεκτονική ασχολείται με το υλικό"
 - Η παραδοσιακή αντίληψη
- "Πρέπει να λαμβάνεται υπ'όψη και το λογισμικό"
 - Η σύγχρονη αντίληψη

Ο υπολογιστής ως ιεραρχία επιπέδων

- Υπολογιστικά Συστήματα
- Αρχιτεκτονική H/Y

•

Τι ακριβώς είναι μια διεπαφή (interface); Γιατί είναι τόσο σημαντική έννοια;

- Αρχιτεκτονική Συνόλου Εντολών
 - Instruction Set Architecture (ISA)
 - Η διεπαφή υλικού-λογισμικού

Η σπουδαιότητα των διεπαφών

- Υπολογιστικά Συστήματα
- Αρχιτεκτονική H/Y

•

Αντιστοιχία με γλώσσες προγραμματισμού;

- Αντιμετώπιση πολυπλοκότητας σχεδιασμού
- Επαναχρησιμοποίηση τμημάτων
- Αξιόπιστος σχεδιασμός

Αρχιτεκτονική: ο τελικός στόχος

- Υπολογιστικά Συστήματα
- Αρχιτεκτονική Η/Υ

Ποια η διαφορά μεταξύ γρήγορης εκτέλεσης και αξιόπιστης εκτέλεσης;

- Η αξιοποίηση με τον καλύτερο δυνατό τρόπο του υλικού και λογισμικού για την ανάπτυξη
 - Αποδοτικών συστημάτων
 - Γρήγορη εκτέλεση προγραμμάτων γενικού σκοπού
 - Υπερυπολογιστές, προσωπικοί υπολογιστές
 - Αξιόπιστων συστημάτων
 - Ασφαλής εκτέλεση προγραμμάτων ειδικού σκοπού
 - Συστήματα πραγματικού χρόνου
 - Προσιτών συστημάτων
 - Ικανοποιητική εκτέλεση με μικρό κόστος-ενέργεια
 - Καταναλωτικές συσκευές

Οι βασικές μονάδες κάθε υπολογιστή

- Υπολογιστικά Συστήματα
- Αρχιτεκτονική H/Y
- Οι βασικές μονάδες

Η διπλανή εικόνα είναι απλοποιημένη!

Η μονάδα ελέγχου, η διαδρομή (μονοπάτι datapath) δεδομένων και μέρος του συστήματος
μνήμης βρίσκονται σήμερα μέσα στον
μικροεπεξεργαστή (ΚΜΕ)

The Electronic Numerical Integrator and Computer (ENIAC) 1946

- Υπολογιστικά Συστήματα
- Αρχιτεκτονική H/Y
- Οι βασικές μονάδες

Ο ΕΝΙΑC, ο πρώτος ηλεκτρονικός υπολογιστής, διέθετε 18.000 λυχνίες για τα λογικά του κυκλώματα. Δεν υπήρχε μνήμη προγράμματος!

Ένα τυπικό υπολογιστικό σύστημα

- Υπολογιστικά Συστήματα
- Αρχιτεκτονική Η/Υ
- Οι βασικές μονάδες

Ο ρυθμός μεταφοράς δεδομένων ανάμεσα στα διάφορα μέρη του υπολογιστή επηρεάζει καθοριστικά τη

συνολική απόδοση του συστήματος!

οι ρυθμοί μεταφοράς που δίνονται είναι οι θεωρητικά μέγιστοι!

Ηλεκτρονικά κυκλώματα

- Υπολογιστικά Συστήματα
- Αρχιτεκτονική H/Y
- Οι βασικές μονάδες
- Ηλεκτρονικά κυκλώματα

- Σε κάθε υπολογιστή απαιτούνται
 - Λογικά κυκλώματα
 - Για την εκτέλεση πράξεων
 - Για τη σύγκριση και λήψη αποφάσεων
 - Κυκλώματα μνήμης
 - Για την αποθήκευση δεδομένων
 - Για την αποθήκευση εντολών
 - Κυκλώματα διασύνδεσης
 - Για τη μεταφορά δεδομένων μεταξύ των μονάδων του υπολογιστή
 - Για τη μεταφορά μεταξύ των τμημάτων ενός ολοκληρωμένου κυκλώματος (chip)

Πριν τα σύγχρονα ηλεκτρονικά

- Υπολογιστικά Συστήματα
- Αρχιτεκτονική H/Y
- Οι βασικές μονάδες
- Ηλεκτρονικά κυκλώματα

- Παλαιότερα χρησιμοποιήθηκαν...
 - Λογικά κυκλώματα
 - Μηχανικά συστήματα (γρανάζια)
 - Ηλεκτρομηχανικά (ρελέ)
 - Λυχνίες κενού
 - Κυκλώματα μνήμης
 - Τα ίδια, αλλά και...
 - Γραμμές υδραργύρου (!) καθοδική οθόνη (!)
 - Κυκλώματα διασύνδεσης
 - Καλώδια!

Το τρανζίστορ MOS(FET)

- Υπολογιστικά Συστήματα
- Αρχιτεκτονική H/Y
- Οι βασικές μονάδες
- Ηλεκτρονικά κυκλώματα

- Ο μικροσκοπικός διακόπτης των σύγχρονων κυκλωμάτων
 - Η θεωρία λειτουργίας του είναι γνωστή από το 1925...
 - ...αλλά τα πρώτα λειτουργικά τρανζίστορMOS κατασκευάστηκαν στη δεκαετία του 60

Το τρανζίστορ MOS(FET)

- Υπολογιστικά Συστήματα
- Αρχιτεκτονική Η/Υ
- Οι βασικές μονάδες
- Ηλεκτρονικά κυκλώματα

Το τρανζίστορ αυτό είναι τύπου NMOS. Υπάρχει και το συμπληρωματικό PMOS.

ιδανικό σχήμα..

Λειτουργία του τρανζίστορ MOS(FET)

- Υπολογιστικά Συστήματα
- Αρχιτεκτονική Η/Υ
- Οι βασικές μονάδες
- Ηλεκτρονικά κυκλώματα

9 Τι συμβαίνει στο τρανζίστορ PMOS;

Κατασκευή ολοκληρωμένων κυκλωμάτων

- Υπολογιστικά Συστήματα
- Αρχιτεκτονική H/Y
- Οι βασικές μονάδες
- Ηλεκτρονικά κυκλώματα

Λόγω της απαιτούμενης ακρίβειας, μια γραμμή παραγωγής κοστίζει δισ. \$

- Γραμμές παραγωγής
 - Φωτολιθογραφία με μάσκες
 - Διεργασίες στα εκτεθειμένα μέρη
 - Οξείδωση, απόξεση, απόθεση μετάλλου, εμφύτευση ιόντων...(βλ. και μάθημα "Εισαγωγή στους Η/Υ")
 - Επανάληψη βημάτων
- Ένα σύγχρονο ολοκληρωμένο κύκλωμα μικροεπεξεργαστή
 - Έχει επιφάνεια περίπου 280mm²
 - Και περιέχει από 100 εκ. έως >1 δισ.
 τρανζίστορ!

Η συρρίκνωση του τρανζίστορ

- Υπολογιστικά Συστήματα
- Αρχιτεκτονική H/Y
- Οι βασικές μονάδες
- Ηλεκτρονικά κυκλώματα

Νόμος του Moore: ο αριθμός των τρανζίστορ ανά ολοκληρωμένο διπλασιάζεται κάθε 1,5-2 χρόνια

- Πλεονεκτήματα
 - Ταχύτερη λειτουργία
 - Πιο γρήγοροι χρόνοι ON-OFF
 - Μικρότερη κατανάλωση ενέργειας
 - Για τον ίδιο αριθμό τρανζίστορ!
 - Μεγαλύτερη ολοκλήρωση
 - Μείωση κόστους παραγωγής και αύξηση λειτουργικότητας
- Τρέχουσα εμπορική τεχνολογία:
 - Μέγεθος (καναλιού) τρανζίστορ = 14-22nm
- Το άμεσο μέλλον: 10 nm
 - μετά: έρευνα για νέα υλικά για "διακόπτες";

Ψηφιακά Ηλεκτρονικά: Ιεραρχία σχεδίασης

- Υπολογιστικά Συστήματα
- Αρχιτεκτονική Η/Υ
- Οι βασικές μονάδες
- Ηλεκτρονικά κυκλώματα

Ψηφιακά Ηλεκτρονικά και Δυαδική λογική

- Υπολογιστικά Συστήματα
- Αρχιτεκτονική H/Y
- Οι βασικές μονάδες
- Ηλεκτρονικά κυκλώματα

- Η δυαδική λογική ταιριάζει με την τεχνολογία του τρανζίστορ
 - 2 καταστάσεις: ON-OFF, 1-0
 - Ψηφιακά ηλεκτρονικά (2 στάθμες)
- Δυαδική άλγεβρα Boole
 - Λογική άλγεβρα
 - Συσχέτιση με διακοπτικά κυκλώματα
 - Η εργασία του Shannon (1938)

Άλγεβρα Boole: επανάληψη

- Υπολογιστικά Συστήματα
- Αρχιτεκτονική Η/Υ
- Οι βασικές μονάδες
- Ηλεκτρονικά κυκλώματα
- Άλγεβρα Boole

- A + B (A OR B)
- A B (ή απλά AB, A AND B)
- \overline{A} (NOT A)
 - A + 0 = A $\kappa \alpha \iota$ A 1 = A
 - A + 1 = 1 $\kappa \alpha 1$ A 0 = 0
 - $A + \overline{A} = 1$ $\kappa \alpha \iota$ $A \bullet \overline{A} = 0$
 - A + B = B + A kat $A \bullet B = B \bullet A$
 - A+(B+C)=(A+B)+C και
 - -A(BC)=(AB)C

Άλγεβρα Boole: επανάληψη

- Υπολογιστικά Συστήματα
- Αρχιτεκτονική Η/Υ
- Οι βασικές μονάδες
- Ηλεκτρονικά κυκλώματα
- Άλγεβρα Boole

- $A(B+C) = (AB)+(AC) \kappa \alpha \iota$
- A+(BC) = (A+B)(A+C)
- $\overline{(A+B)} = \overline{A} \bullet \overline{B} \kappa \alpha \iota$
- $(\overline{A \cdot B}) = \overline{A} + \overline{B}$ (DeMorgan)