Logistic Regression with Lasso Penalty

Guangwei Weng

University of Minnesota wengx076@umn.edu

April 27, 2017

Background and Application of Lasso

As datasets grow wide, cases of large p become more usual...

- **Document classification:** bag-of-words can leads to p = 20K features and N = 5K documents.
- Image classification: features are p = 65K pixels.
- Genomics: p = 40K genes.

Regularization and Variable Selection are needed.

Existing Algorithms for Lasso

Objective function:

- Linear Regression: $f(\beta) = \frac{1}{2N}RSS(\beta) + \lambda \sum_{j=1}^{p} d_j |\beta_j|$.
- Logistic Regression: $f(\beta) = -\frac{1}{N}l(\beta) + \lambda \sum_{j=1}^{p} d_j |\beta_j|$.

Competitors in solving Lasso:

- lars Using LARS algorithm proposed by Efron to solve least square problems.
- **glmnet** Fortan based R package using coordinate descent.
- lllogreg Lasso-logistic regression package by Koh, Kim and Boyd, using state-of-art interior point methods.
- BBR Bayesian binomial regression package by Genkin, Lewis and Madigan.

Speed Trials

Linear Regression — Dense Features

	0	Average 0.1	e Correla 0.2	0.5	ween Featu 0.9	res 0.95		
	$N = 5000, \ p = 100$							
glmnet	0.05	0.05	0.05	0.05	0.05	0.05		
lars	0.29	0.29	0.29	0.30	0.29	0.29		
			37 4					

	N = 100, p = 50000					
\mathbf{glmnet}	2.66	2.46	2.84	3.53	3.39	2.43
lars	58.68	64.00	64.79	58.20	66.39	79.79

Timings (secs) for glmnet and lars algorithms for linear regression with lasso penalty. Total time for 100 λ values, averaged over 3 runs.

Speed Trials

	Logistic Regression — Sparse Features							
	0	0.1	0.2	0.5	0.9	0.95		
	$N=10,000,\ p=100$							
$_{ m glmnet}$	3.21	3.02	2.95	3.25	4.58	5.08		
BBR	11.80	11.64	11.58	13.30	12.46	11.83		
11lognet	45.87	46.63	44.33	43.99	45.60	43.16		
	$N = 100, \ p = 10,000$							
\mathbf{glmnet}	10.18	10.35	9.93	10.04	9.02	8.91		
BBR	45.72	47.50	47.46	48.49	56.29	60.21		
BBR l1lognet	11.80 45.87	11.64 46.63		$ \begin{array}{c} 13.30 \\ 43.99 \end{array} $ $ \begin{array}{c} p = 10,0 \\ 10.04 \end{array} $	12.46 45.60 9.00 9.02	11.8		

Timings (seconds) for logistic model with lasso penalty and sparse features (95% zeros in X). Total time for ten-fold cross-validation over a grid of 100 λ values.

129.84

137.21

124.88 124.18

159.54

l1lognet

130.27

Newton's method with coordinate descent

Outer Loop: Given current estimated coefficients $\beta^{(k)}$, by Taylor expansion,

$$\begin{split} \beta^{(k+1)} &= \arg\min_{\beta} \left\{ -\frac{1}{2} (\beta - \beta^{(k)})^T \nabla^2 l(\beta^{(k)}) (\beta - \beta^{(k)}) \\ &- \nabla l(\beta^{(k)})^T (\beta - \beta^{(k)}) + N \lambda \sum_{j=1}^p d_j |\beta_j| \right\} \\ &= \arg\min_{\beta} \left\{ \frac{1}{2} \sum_{i=1}^N w_i^{(k)} (Z_i^{(k)} - X_i^T \beta)^2 + N \lambda \sum_{j=1}^p d_j |\beta_j| \right\}, \end{split}$$

with
$$p_i^{(k)} = \text{ilogit}(X_i^T \beta^{(k)})$$
, $w_i^{(k)} = p_i^{(k)} (1 - p_i^{(k)})$, $Z_i^{(k)} = X_i^T \beta^{(k)} + \frac{y_i - p_i^{(k)}}{v_i^{(k)}}$.

Newton's method with coordinate descent

Inner Loop: Begin with $\tilde{\beta} = \beta^{(k)} r_i = Z_i^{(k)} - X_i^T \beta^{(k)}$ and apply coordinate descent.

For $j = 1, ..., p, 1, ..., p, 1, ..., given current value <math>\tilde{\beta}$,

$$\begin{aligned} \text{Update} \quad \beta_j^{\text{update}} &= S\left(\tilde{\beta}_j + \frac{\sum_{i=1}^N w_i^{(k)} x_{ij} r_i}{\sum_{i=1}^N w_i^{(k)} x_{ij}^2}, \frac{N \lambda d_j}{\sum_{i=1}^N w_i^{(k)} x_{ij}^2}\right) \\ \text{Update} \quad r_i &= r_i - X_j (\beta_j^{\text{update}} - \tilde{\beta}_j), i = 1, \dots N \end{aligned}$$

until convergence.

Warm Start and Active Set Update

Need to give the solution path for $\lambda = \lambda_1, \lambda_2, \dots, \lambda_n$.

- Warm start: Let the initial value of β be β_{λ_l} when solving problem for $\lambda = \lambda_{l+1}$.
- Active set update: Let A_l be the set of indexes of non-zero coefficients in $\{\beta_{\lambda_l}\}$. To solve for $\lambda = \lambda_{l+1}$, solve the following problem first,

$$\min_{\beta_{A_l}} -\frac{1}{N} l(\beta_{A_l}; X_{A_l}, y) + \lambda \sum_{j \in A_l} d_j |\beta_j|.$$

Then update active set by adding index of coefficients with non-zero subgradient.

glmlasso

Output: an object of S3 class "glmlasso" mainly containing

- lambda: The lambda sequence used.
- beta.matrix: Solution of β of each lambda.

```
plot.glmlasso(x)
```

for displaying the solution path.

Real Data Examples

Prostate Data

Figure: Soultion path given my glmnet (left) and glmlass (right)

Real Data Examples

South Africa Heart Disease Data

Figure: Soultion path given my glmnet (left) and glmlass (right)

Speed Trial: glmlasso VS glmnet

	N	p	nlam	rep	glmlasso	glmnet
Case 1	100	10	100	100	0.872	0.368
Case 2	1000	100	100	3	0.856	0.196
Case 3	100	1000	100	3	1.096	0.072
Case 4	1000	1000	10	1	3.8	0.45
Case 5	1000	1000	1	100	1.512	1.52

Table: Comparison of glmnet and glmlasso over binary data. Time is recorded in seconds

Why?

According to Hastie and Tibshirani...

- Covariance Updates:
 - $\sum_{i=1}^{N} x_{ij} r_i = \langle X_j, y \rangle \sum_{k:|\beta_k|>0} \langle x_j, x_k \rangle \beta_k.$ Cross-covariance terms are computed one for active variables and stored.
- Sparse Updates: If data is sparse, inner products can be computed efficiently.
- Active Set Convergence: After one cycle of *p* variable, restrict further iterations to the active set till convergence + one more cycle to check if active set has changes.
- FFT:

Why?

According to Hastie and Tibshirani...

- Covariance Updates: $\sum_{i=1}^{N} x_{ij} r_i = \langle X_j, y \rangle \sum_{k:|\beta_k|>0} \langle x_j, x_k \rangle \beta_k$. Cross-covariance terms are computed one for active variables and stored.
- Sparse Updates: If data is sparse, inner products can be computed efficiently.
- Active Set Convergence: After one cycle of p variable, restrict further iterations to the active set till convergence + one more cycle to check if active set has changes.
- FFT: Friedman + Fortran +Tricks.

Thanks!