Oral Exam of Geometry and Topology

Team Problems

1. (a) Describe the loop space ΩS^2 and path space PS^2 of the sphere S^2 in the following fibration:

$$\Omega S^2 \longrightarrow PS^2$$

$$\downarrow$$

$$S^2.$$

- (b) Compute the cohomology of the loop space ΩS^2 . What is the ring structure of $H^*(\Omega S^2)$?
- ${f 2}$ (Synge theorem). Let M be an even-dimensional compact Riemannian manifold with positive sectional curvature.
 - (a) When M is orientable, show that M is simply connected.
 - (b) When M is unorientable, what is $\pi_1(M)$?
- **3.** (a) Let C be a smooth curve on the sphere. The Crofton formula expresses the arc length L(C) of the curve C as

$$L(C) = \frac{1}{4} \int_{S^2} n(C \cap W^\perp) dW.$$

Here W^{\perp} is the plane with normal W going through the origin and $n(C \cap W^{\perp})$ is the number of points in the intersection of C and W^{\perp} .

- (b) Sketch a proof of Crofton formula.
- **4.** Let $\Omega = xdy \wedge dz + ydz \wedge dx + zdx \wedge dy$ and $\alpha > 0$. Suppose D is the surface in \mathbb{R}^3 defined by $\{(x,y,z) \mid x^2 + y^2 + z^2 = 1, z \geq \alpha \sqrt{x^2 + y^2}\}.$
- (a) Show that $\Omega|_D$ is an orientation form and makes D an oriented manifold with boundary.

1

(b) Evaluate $\int_D \Omega$. Your answer should be in terms of α .