

步進馬達一對八驅動電路 與控制研發計畫 第二季報告

報告人:陳廷宇、蕭崇仁

指導教授:余國瑞博士

報告日期:民國111年8月11日

大綱

- 1. 到貨狀況
- 2. 韌體與訊號量測
- 3. 整合電路實測
- 4. 馬達實測影片
- 5. 第一季未來工作執行現況
- 6. 第三季未來工作

大綱

1. 到貨狀況

- 2. 韌體與訊號量測
- 3. 整合電路實測
- 4. 馬達實測影片
- 5. 第一季未來工作執行現況
- 6. 第三季未來工作

驅動晶片

驅動晶片型號:DRV8424PPWPR

購買廠商:Mouser electronics(25個)

數量: Mouser electronics: 共25個。

到貨日期:民國111年7月20日

民國111年7月20日

貿澤的零件到了, 有空再找我拿

下午 5:54

型號	中文名稱	數量
ST4118M1404B + WEDL5541B14	馬達+編碼器	10
ST4118M1804B + WEDL5541B14	馬達+編碼器	10
CL3E20F	控制板	10
ZKXHP2500S	電源線	10
ZKXHP4500	電機轉接線	10
ZKGHR3500S	RS232通訊線	10
ZKGHR12500S	I/O線	10
ZKGHR8500S	編碼器線	10
ZKPD4CCAN4500S	Can通訊線	10

- 7/29 申請免稅令在海關進行移倉作業
- 8/05 馬達到實驗室

ST4118M1404B

馬達+編碼器

ST4118M1804B

馬達+編碼器

控制板

ST4118M1404B Datasheet

CONNECTION	BIPOLAR				
SPECIFICATION		PERMISSIBLE RADIAL	+AXIAL F	ORCE	
VOLTAGE (VDC)	1.7	ROTOR SPRING-		SPRING	.
AMPS/PHASE	1.4	MOUNTED IN AXIAL DIRECTION		WASHER	' 7
RESISTANCE/PHASE (Ohms)@25*C	1.2±15%	AXIAL DIRECTION	BEARIN	IG	/
INDUCTANCE/PHASE (mH) @1KHz	1.7±20%] Fr [_/ \	\setminus	´
HOLDING TORQUE (Nm) [lb-in]	0.24 [2.124]] Fa .	7	\square	l
DETENT TORQUE (Nm) [lb-in]	9.8x10 ⁻³ [8.673x10 ⁻²]	<u> </u>	7	H	
STEP ANGLE (*)	1.8	1 1	_		
STEP ACCURACY (NON-ACCUM)	±5%	T 4			
ROTOR INERTIA (Kg-m²) [lb-in²]	5.7x10 ⁻⁶ [1.95x10 ⁻²]] a [
WEIGHT (Kg) [lb]	0.24 [0.53]				
TEMPERATURE RISE: MAX.80°C (MOTO	R STANDSTILL; FOR 2 PHASE ENERGIZED)	AXIAL-FORCE Fa (N)	Fa=	7	
AMBIENT TEMPERATURE −10°~ 50°C	[14°F ~ 122°F]	DISTANCE a (mm)	5 10	15	20
INSULATION RESISTANCE 100 MOhm ((UNDER NORMAL TEMPERATURE AND HUMIDITY)	RADIAL-FORCE Fr (N)	58 36	26	20
INSULATION CLASS B 130° [266°F]			AXIAL	RAI	DIAL
DIELECTRIC STRENGTH 500VAC FOR 1 MIN.	(BETWEEN THE MOTOR COILS AND THE MOTOR CASE)	SHAFT PLAY (mm)	0.08	0.0	2
AMBIENT HUMIDITY MAX. 85% (NO CO	ONDENSATION)	AT LOAD MAX: (N)	4.5	4.5	

TYPE (OF CONNECTION EXTERN)		MOTOR
PIN NO	BIPOLAR	LEADS	WINDING
1	A —	BRN	A
2	A\ —	ORG	A\
3	В —	RED	В
4	B\ —	YEL	В\

WIRING DIAGRAM

FULL WHEN					END	(X)	(A)BRN
STEP	Α	В	Α\	B∖		CCW	(A\)ORG
1	+	+	-	_		4	(//()0//0
2	-	+	+	-			
3	-	-	+	+			
4	+	_	-	+	CW		

ı	7					711 E071B 1111 011 (11)	1.0	,			
					A BA	Vanote	-e	APVD	S.Ha.	26.02.07	STEPPING MOTOR
١	2	rework draw/change depth M2.5/M3	09.02.16	A.S.	49 4	PLUG & D		CHKD			BIBITING MOTOR
	1	NEW UL NO.	18.06.12	J.W.	Surface	General	Work piece	DRN	J.W.	30.11.06	DWG.NO
ĺ	REV	DESCRIPTION	DATE	DRN	specification DIN ISO 1302	tolerances DIN ISO 2768- cH	edge DIN ISO 13715	SIGN	IATURE	DATE	ST4118M1404-B

ST4118M1804B Datasheet

CONNECTION		BIPOLAR							Γ
SPECIFICATION				PERMISSIBLE RADIAL	+AXIA	L FOR	RCE		
VOLTAGE (VDC)	2.0			ROTOR SPRING-		SF	PRING		
AMPS/PHASE	1.8			MOUNTED IN AXIAL DIRECTION		WA	SHER	7	
RESISTANCE/PHASE (Ohms)@25*C	1.1±15%	76		AKIAL DIRECTION	BE	ARING	١,		
INDUCTANCE/PHASE (mH) @1KHz	1.85±20)%		Fr	_/	/	_/		
HOLDING TORQUE (Nm) [lb-in]	0.28 [2	.478]		Fa_ d	7	ŗ	7	_	
DETENT TORQUE (Nm) [lb-in]	9.8x10 ⁻³	³ [8.673)	x10 ^{−2}]		<u> </u>		-JJ-		
STEP ANGLE (*)	1.8				_				
STEP ACCURACY (NON-ACCUM)	±5% 24	<u> </u>	Â] 4					H
ROTOR INERTIA (Kg-m²) [lb-in²]	5.7x10 ^{-€}	i [1.95x1	10 ⁻²]				_		
WEIGHT (Kg) [lb]	0.24 [0								
TEMPERATURE RISE: MAX.80°C (MOTO	R STANDSTILL; FOR	2 PHAS	e energized)	AXIAL-FORCE Fa (N)		Fa=7			
AMBIENT TEMPERATURE −10°~ 50°C	[14°F ~ 122°F]			DISTANCE a (mm)	5	10	15	20	
INSULATION RESISTANCE 100 MOhm (UNDER NORMAL TEM	I PERATU	RE AND HUMIDITY)	RADIAL-FORCE Fr (N)	58	36	26	20	
INSULATION CLASS B 130° [266°F]					AX	IAL	RAI	DIAL	
DIELECTRIC STRENGTH 500VAC FOR 1 MIN.	(BETWEEN THE MOTOR	COILS AN	D THE MOTOR CASE)	SHAFT PLAY (mm) 0.08			0.0	2	
AMBIENT HUMIDITY MAX. 85% (NO CO)NDENSATION)			AT LOAD MAX: (N)	4.5	5	4.5		L
			484	3/				\ AD\/	n

TYPE (OF CONNECTION EXTERN)		MOTOR			
PIN NO	BIPOLAR	LEADS	WINDING			
1	A —	BRN	Α 🔒			
2	A\ —	ORG	A\			
3	В —	RED	В			
4	в/ —	YEL B\				

FULL STEP 2 PHASE—Ex., (A)BRN —										
WHEN FACING MOUNTING END (X)										
STEP	Α	В	Α\	B∖		CCW	//\\ana \{ \			
1	+	+	-	_		4	(A\)ORG			
2	١	+	+	-						
3	Ī	ı	+	+						
4	+	-	-	+	CW		(B)RED (B\)YEL			
							Э Э			

						()				
				A BA	Vanote	• • • • • • • • • • • • • • • • • • •	APVD	S.Ha.	26.02.07	STEPPING MOTOR
2	rework draw/change depth M2.5/M3	09.02.16	A.S.		PLUG & DI		CHKD			SIEITING MOTOR
1	VALUE OF BACK-EMF+UL NO.	22.07.11	LB	Surface	General	Work piece	DRN	J.W.	30.11.06	DWG.NO
REV	DESCRIPTION	DATE	DRN	specification DIN ISO 1302	tolerances DIN ISO 2768- cH	edge DIN ISO 13715	SIGN	ATURE	DATE	ST4118M1804-B

電源線

電機轉接線 RS232通訊線

I/O線

編碼器線

Can通訊線

大綱

- 1. 到貨狀況
- 2. 韌體與訊號量測
- 3. 整合電路實測
- 4. 馬達實測影片
- 5. 第一季未來工作執行現況
- 6. 第三季未來工作

驅動晶片輸入訊號量測流程

• 目的:設計馬達正轉、反轉與調整轉速之程式碼。


```
20 int i = 0, j = 0, act, step;
21
22 void main(){
23
      InitSysCtrl();
24
      EALLOW;
25
      GpioCtrlRegs.GPAMUX1.all = 0x0000;
26
      GpioCtrlRegs.GPAMUX2.all = 0x0000;
27
      GpioCtrlRegs.GPBMUX1.all = 0x0000;
                                           GPIO控制暫存器
      GpioCtrlRegs.GPBMUX2.all = 0x0000;
28
29
      GpioCtrlRegs.GPADIR.all = 0xFFFF;
      GpioCtrlRegs.GPBDIR.all = 0xFFFF;
30
31
      EDIS;
32
      GpioDataRegs.GPADAT.all = 0x0000;
33
      GpioDataRegs.GPBDAT.all = 0x0000;
34
      IER = 0x00000;
35
      IFR = 0x00000;
36
      DINT;
```



```
37
     while(i >= 0){
38
         act = act stepmotor[i]; //驅動馬達動作編碼
39
         switch(act){
40
         case 0: //結束
                          程序結束
41
             i = -1;
42
             break;
43
                   //馬達正轉
44
         case 1:
45
             i++;
46
             step = act stepmotor[i];
                                       //紀錄步數
47
             i++;
             while(step > 0){
48
                             紀錄馬達真值
49
                j++;
                 if(i == 4) i=0:
50
                 if(i == 0){
51
52
                     A1 On(); B1 On(); A2 Off(); B2 Off();
53
                    dt = act stepmotor[i];
54
                    DELAY US(dt);
                                   //調整轉速
55
                     step--;
56
                 else if(j == 1){
57
58
                     A1_Off(); B1_On(); A2_On(); B2_Off();
59
                     dt = act stepmotor[i];
60
                     DELAY US(dt);
61
                     step--;
62
```

```
else if(j == 2){
64
                       A1_Off(); B1_Off(); A2_On(); B2_On();
65
                       dt = act_stepmotor[i];
66
                       DELAY US(dt);
67
68
                       step--;
69
70
                   else if(j == 3){
71
                       A1_On(); B1_Off(); A2_Off(); B2_On();
72
                       dt = act stepmotor[i];
73
                       DELAY US(dt);
74
                       step--;
75
76
77
              i++;
78
              break;
```

馬達正轉一個步進角 以及調整轉速


```
else if(j == 2){
                                                                 99
79
          case 2:
                    //馬達反轉
                                                                100
                                                                                       A1_Off(); B1_Off(); A2_On(); B2_On();
              i++;
80
                                                                101
                                                                                       dt = act_stepmotor[i];
81
              step = act_stepmotor[i];
                                                                102
                                                                                       DELAY US(dt);
82
              i++;
                                                                103
                                                                                       step--;
              while(step > 0){
83
                  ]--;
if(j < 0) j = 3;
                                                                104
84
                                                                105
                                                                                   else if(j == 3){
85
                                                                106
                                                                                       A1_On(); B1_Off(); A2_Off(); B2_On();
86
                   if(j == 0){
                                                                107
                                                                                       dt = act_stepmotor[i];
                       A1_On(); B1_On(); A2_Off(); B2_Off();
87
                                                                108
                                                                                       DELAY US(dt);
                       dt = act_stepmotor[i];
88
                                                                109
                                                                                       step--;
89
                       DELAY US(dt); //調整轉速
                                                                110
90
                       step--;
                                                                111
91
                                                                112
                                                                               i++;
                   else if(j == 1){
92
                                                                113
                                                                               break;
                       A1_Off(); B1_On(); A2_On();
                                                                                     //馬達停止
93
                                                    B2 Off();
                                                                114
                                                                           case 3:
94
                       dt = act stepmotor[i];
                                                                115
                                                                               i++;
                      DELAY US(dt);
                                                                116
                                                                               dt = act_stepmotor[i];
95
                                                                117
                                                                               DELAY_US(dt);
96
                       step--;
                                                                118
                                                                               i++;
97
                                                                119
                                                                               break;
```

馬達反轉一個步進角以及調整轉速

• 正轉波型:

設定一個步進角的時間為0.1秒,

週期為0.4秒,振幅為9V。

```
12 static const unsigned int act_stepmotor[] = 13 { 1, 50, 100000, // case1:馬達正轉, 50為步數, 14 // 10萬為與下一步間隔時間0.1秒 15 0 // case0:程序結束 16 };
```

STEP	1	2	3	4
AIN1	+	-	-	+
AIN2	-	+	+	-
BIN1	+	+	-	-
BIN2	-	-	+	+

• 反轉波型:

設定一個步進角的時間為0.1秒,

週期為0.4秒,振幅為9V。

```
12 static const unsigned int act_stepmotor[] = 13 { 2, 50, 100000, // case2:馬達反轉,50為步數, 14 // 10萬為與下一步間隔時間0.1秒 15 0 // case0:程序結束 16 };
```

STEP	1	2	3	4
AIN1	+	•	-	+
AIN2	-	+	+	-
BIN1	+	+	-	-
BIN2	-	-	+	+

• 正轉波型:

設定一個步進角的時間為0.05秒,

週期為0.2秒,振幅為9V。

```
12 static const unsigned int act_stepmotor[] = 13 { 1, 50, 50000, // case1:馬達正轉, 50為步數, // 5萬為與下一步間隔時間0.05秒 15 0 // case0:程序結束 16 };
```

STEP	1	2	3	4
AIN1	+	•	-	+
AIN2	-	+	+	-
BIN1	+	+	-	-
BIN2	-	-	+	+

• 正轉波型:

設定一個步進角的時間為0.2秒,

週期為0.8秒,振幅為9V。

```
12 static const unsigned int act_stepmotor[] = 13 { 1, 50, 200000, // case1:馬達正轉,50為步數, // 20萬為與下一步間隔時間0.2秒 15 0 // case0:程序結束 16 };
```

STEP	1	2	3	4
AIN1	+	-	-	+
AIN2	-	+	+	-
BIN1	+	+	-	-
BIN2	-	-	+	+

大綱

- 1. 到貨狀況
- 2. 韌體與訊號量測
- 3. 整合電路實測
- 4. 馬達實測影片
- 5. 第一季未來工作執行現況
- 6. 第三季未來工作

兩顆步進馬達驅 動晶片電路

緩衝器電路

Layout圖

TMS320F28069

兩顆步進馬達驅 動晶片電路

正面

背面

四顆步進馬達驅動晶片電路

通訊接口 JTAG通訊

LED電路

電源測試電路

Reset電路

USB

端子臺

兩顆步進馬達驅 動晶片電路

緩衝器電路

緩衝器電路

兩顆步進馬達驅 動晶片電路

端子臺

● Layout送洗,民國111年8月4日到貨,尚須將TI晶片、馬達驅動晶片、 緩衝電路、端子座以及周邊電路焊接以及測試。

正面

背面

端子臺

兩顆步進馬達驅 動晶片電路

緩衝器電路

緩衝器電路

兩顆步進馬達驅 動晶片電路

端子臺

大綱

- 1. 到貨狀況
- 2. 韌體與訊號量測
- 3. 整合電路實測
- 4. 馬達實測影片
- 5. 第一季未來工作執行現況
- 6. 第三季未來工作

馬達實測流程圖

直流電源供應器

Ti 控制板

接線圖

馬達正轉90度(轉速為3rpm),停止5秒,共轉一圈

馬達反轉180度(轉速為3rpm),停止5秒,共轉一圈

馬達正轉360度(轉速為30rpm),停止5秒,共轉一圈

大綱

- 1. 到貨狀況
- 2. 韌體與訊號量測
- 3. 整合電路實測
- 4. 馬達實測影片
- 5. 第一季未來工作執行現況
- 6. 第三季未來工作

第一季未來工作執行現況

- 1. 驅動板優化:
 - (A) 新增nFault腳位
 - (B) DIP電容換成SMD電容
 - (C) 排針改成端子臺
- 2. 控制板與驅動板進行整合。
- 3. 馬達到貨後,接上步進馬達進行驅動實測。

第一季未來工作執行現況

1. 驅動板優化:新增nFault腳位、DIP電容換成SMD電容、排針改成端子座。

2. 控制板與驅動板進行整合。

大綱

- 1. 到貨狀況
- 2. 韌體與訊號量測
- 3. 整合電路實測
- 4. 馬達實測影片
- 5. 第一季未來工作執行現況
- 6. 第三季未來工作

第三季未來工作

- 1. 控制迴路測試
- 2. 步進馬達一對四整合電路測試
- 3. 一對八Layout

Thanks for listening.

