Теория типов

Михайлов Максим

9 февраля 2022 г.

Оглавление стр. 2 из 50

Оглавление

Лекц	ия 1 7 сентября	4
1	Лямбда-исчисление	4
	1.1 Определение	4
	1.2 Булево исчисление	4
	1.3 Числа	5
	1.4 Типизированное лямбда-исчисление	6
	1.5 Y -комбинатор и противоречивость нетипизированного λ -исчисления .	6
Лекц	ия 2 14 сентября	8
2	Формализация λ -исчисления	8
Лекц	ия 3 21 сентября	12
3	Просто-типизированное λ -исчисление	12
	3.1 Исчисление по Карри	13
	3.2 Исчисление по Чёрчу	14
Лекц	ия 4 28 сентября	15
	3.3 Противоречивость нетипизированного λ -исчисления	15
4	Изоморфизм Карри-Ховарда	16
	4.1 Импликационный фрагмент ИИВ	16
Лекц	ия 5 б октября	19
5	Алгебраические термы	19
	5.1 Эквивалентность уравнений и систем	20
	5.2 Алгоритм унификации	21
	5.3 Вывод типов в $\lambda_{ ightarrow}$	21
	5.3.1 Построение уравнений	22
	5.3.2 Разрешение системы	22
6	Исчисление предикатов второго порядка	22
	·	24
7	Абстрактные типы данных	24
Лекц	ия 7 19 октября	25
8	Типовая система Хиндли-Милнера	25
	8.1 Алгоритм W	27
Лекц	ия 8 26 октября	29
9	λ -куб	29
	9.1 Обобщенные типовые системы	29
Лекц	ия 9 2 ноября	32

Оглавление стр. 3 из 50

10 Гомотопическая теория типов	32
Лекция 10 9 ноября	35
11 Равенство	35
Лекция 11 15 ноября	38
12 Классы	39
Лекция 12 23 ноября	41
13 Язык	41
13.1 Проблема	41
13.2 Естественность проблемы	41
13.3 Наивное решение проблемы	42
13.4 Предикативность	42
14 Аксиома выбора	
Лекция 13 30 ноября	45
15 Парадокс Жирара	45
15.1 Обобщение λ-куба	45
15.2 Парадокс Бурали-Форте	46
15.3 Множества всех множеств	
15.4 Парадоксальный универсум	47
Лекция 14 7 декабря	49
16 Теорема Диаконеску	49
16.1 Аксиома выбора (попытка 1)	50
	50
16.3 Закон исключенного третьего	50

7 сентября

1 Лямбда-исчисление

То, чем мы будем заниматься, можно назвать прикладной матлогикой.

В рамках курса матлогики мы рукомахательно рассмотрели изоморфизм Карри-Ховарда, в этом курсе мы его формализуем. Мы затронем систему типов Хиндли-Милнера (*Haskell*) и язык Arend, основанный на гомотопической теории типов.

1.1 Определение

В 20-30х годах XX века Алонзо Чёрчем была создана альтернатива теории множеств как основе математики — лямбда-исчисление. Основная идея — выбросить из языка все, кроме вызова функций.

В лямбда исчислении есть три конструкции:

- Функция (абстракция): $(\lambda x.A)$
- Применение функции (аппликация): (АВ)
- Переменная (атом): x

Большими буквами начала латинского алфавита мы будем обозначать термы, малыми буквам конца — переменные. λ жадная, как \forall и \exists в исчислении предикатов. Аппликация идёт слева направо, т.е. $\lambda p.p$ F $T = \lambda p.((p\ F)\ T)$

Вычисление происходит с помощью β -редукции, его мы определим позже, общее понимание у нас есть из вводной лекции функционального программирования.

1.2 Булево исчисление

Определим булево исчисление в λ -исчислении:

- $T := \lambda x. \lambda y. x$ истина
- $F := \lambda x. \lambda y. y$ ложь
- Not := $\lambda p.p F T$

Not
$$F \to_{\beta}$$

 $((\lambda x.\lambda y.y) F) T \to_{\beta}$
 $(\lambda y.y) T \to_{\beta} T$

• And $:= \lambda a. \lambda b. a \ b \ F$

And берёт свой второй аргумент, если первый аргумент истина и ложь иначе.

And использует идею **карринга** — функция от 2 аргументов есть функция от первого аргумента, возвращающая другую функцию от второго аргумента. Например, в выражении " $((+)\ 2)\ 3$ " $((+)\ 2)$ это функция, которая прибавляет к своему аргументу 2.

1.3 Числа

Числа в лямбда-исчислении кодируются **нумералами Чёрча**. Это только один из способов кодировки, есть и другие. Общая идея — число n применяет данную функцию к данному аргументу n раз.

- $0 = \lambda f.\lambda x.x$
- $1 = \lambda f. \lambda x. f x$
- $3 = \lambda f.\lambda x.f(f(fx))$
- $\overline{n+1} = \lambda f. \lambda x. f(\overline{n} f x)$
- $(+1) = \lambda n.\lambda f.\lambda x.n\ f\ (f\ x)$ функция инкремента.
- $(+)=\lambda a.\lambda b.b~((+)~\overline{1})~a:b$ раз прибавляет единицу к a.
- $(\cdot) = \lambda a.\lambda b.a \ ((+) \ b) \ \overline{0}$: a раз прибавляет b к 0.

Ходят легенды, что Клини изобрел декремент у зубного врача под действием наркоза. Существует много способов определить декремент различных степеней упоротости.

Рассмотрим декремент, основанный на следующей идее: пусть есть упорядоченная пара $\langle a,b\rangle$ и функция $(*):\langle a,b\rangle\mapsto\langle b,b+1\rangle$. Тогда применив (*) n раз к $\langle 0,0\rangle$ и взяв первый элемент, возьмём первый элемент пары.

 $^{^{1}}$ Аналогично для n аргументов.

Упорядоченная пара определяется следующим способом:

$$MkPair = \lambda a.\lambda b.(\lambda p.p \ a \ b)$$

Можно потрогать эмулятор лямбда-исчисления 1сі, будет полезно для домашних заданий.

1.4 Типизированное лямбда-исчисление

Лямбда-исчисление для нас будет просто языком программирования. Для начала мы его типизируем, потому что нетипизированное лямбда-исчисление противоречиво.

Пусть у каждого выражения A есть тип τ , что обозначается $A:\tau$. Также используется некоторый контекст с переменными и их типами, обозначаемый M. Все вместе это записывается как $M \vdash A:\tau$, что напоминает исчисление предикатов.

1.5 Y-комбинатор и противоречивость нетипизированного λ -исчисления

Мы хотим, чтобы \to_{β} сохраняло значения, т.к. иначе мы вообще не можем говорить о равенстве термов.

Определение. $Y \coloneqq \lambda f.(\lambda x.f\ (x\ x))(\lambda x.f\ (x\ x)) - Y$ -комбинатор, для него верно $Yf \approx f(Yf)$. Такое свойство называется "быть **комбинатором неподвижной точки**", т.е. он находит неподвижную точку функции: A такое, что f(A) = A.

Пусть мы добавили бинарную операцию (\supset) — импликацию с некоторыми аксиомами. Оказывается, что доказуемо любое A. Мы это докажем на последующих лекциях.

Y-комбинатор полезен тем, что позволяет реализовывать рекурсию.

Пример. Запишем факториал в неформальном виде:

Fact =
$$\lambda n$$
.
If (IsZero n) $\overline{1}$ (Fact $(n-1)\cdot n$)

На самом деле Fact есть неподвижная точка функции

$$\lambda f.\lambda n.$$
If (IsZero n) $\overline{1}$ ($f(n-1)\cdot n$)

по определению неподвижной точки функции. Тогда Fact это

$$Y(\lambda f.\lambda n. \text{If (IsZero } n) \ \overline{1} \ (f \ (n-1) \cdot n))$$

У нас появляется проблема: есть выражения, которым мы не можем приписать значение, например

$$Y(\lambda f.\lambda x.f (\text{Not } x))$$

Эта проблема происходит из-за того, что наш язык слишком мощный — мы написали решатель любых уравнений, даже тех, у которых нет решения. Логичный выход из этой ситуации — запретить то, из-за чего у нас возникают проблемы. Как запретить Y? Оказывается, это позволяют сделать типы — они будут делить выражения на добропорядочные и недобропорядочные.

14 сентября

2 Формализация λ -исчисления

Определение. Пред- λ **-терм** определяется индуктивно как одно из:

- 1. x переменная
- 2. (L L) применение
- 3. $(\lambda x.L)$ абстракция

Почему пред- λ -терм? Мы не хотим различать $\lambda x.x$ и $\lambda y.y.$

Определение. α -эквивалентность — обозначается $A =_{\alpha} B$ и выполняется, если 1 :

- 1. $A \equiv x, B \equiv x$ одна и та же переменная
- 2. $A \equiv P Q, B \equiv R S, P =_{\alpha} R, Q =_{\alpha} S$
- 3. $A \equiv \lambda x.P, B \equiv \lambda y.Q$ и существует t новая переменная, такая что $P[x \coloneqq t] =_{\alpha} Q[y \coloneqq t]$

Определение. Свобода для подстановки: $A[x\coloneqq B]$, никакое свободное вхождение переменной в B не станет связанным.

Определение (λ -терм). Множество всех λ -термов это $\Lambda/_{=_{\alpha}}$

Определение (β -редекс). Выражение вида ($\lambda x.A$) B

Определение (β -редукция). Обозначается $A \to_{\beta} B$ и выполняется, если выполняется одно из:

1.
$$A \equiv P\ Q, B \equiv R\ S$$
 и либо $P \to_{\beta} R$ и $Q =_{\alpha} S$, либо $P =_{\alpha} R$ и $Q \to_{\beta} S$.

 $^{^{1}}$ И только если.

- 2. $A \equiv \lambda x.P, B \equiv \lambda x.Q \text{ if } P \rightarrow_{\beta} Q$
- 3. $A \equiv (\lambda x.P) \; Q, B \equiv P[x \coloneqq Q]$ и Q свободно для подстановки.

Определение. Придуман Моисеем Шейнфинкелем.

 $I\coloneqq \lambda x.x-\mathrm{Identit\ddot{a}t^2}$

Определение.

- $K = \lambda x.\lambda y.x$
- $\Omega = \omega \omega$
- $\omega = \lambda x.x \ x$

Пример.

Определение. R обладает **ромбовидным свойством** (diamond), если для любых a,b,c, таких что:

- 1. aRb, aRc
- 2. $b \neq c$

существует d: bRd и cRd.

 $\mbox{\it Пример.} >$ на \mathbb{Z}^+ не ромбовидно: для a=3, b=2, c=1 выполнено условие, но $\nexists d.$

> на $\mathbb R$ ромбовидно.

² Тождество (с немецкого)

Определение (β -редуцируемость). Рефлексивное, транзитивное замыкание отношения \rightarrow_{β} , обозначается \rightarrow_{β} .

Теорема 1 (Чёрча-Россера). β -редуцируемость обладает ромбовидным свойством.

Определение. \Rightarrow_{β} — параллельная β -редукция, выполняется если:

- 0. $A =_{\alpha} B$
- 1. $A \equiv P Q, B \equiv R S \text{ if } P \Rightarrow_{\beta} R \text{ if } Q \Rightarrow_{\beta} S.$
- 2. Аналогично β -редукции.
- 3. Аналогично β -редукции.

Лемма 1. (\Rightarrow_{β}) обладает ромбовидным свойством.

Лемма 2. Если R обладает ромбовидным свойством, то R^* обладает ромбовидным свойством.

Доказательство. Две индукции.

Лемма 3.
$$(\Longrightarrow_{\beta})^* \subseteq (\twoheadrightarrow_{\beta})$$

Доказательство теоремы Чёрча-Россера. Заметим, что:

- 1. $(\rightrightarrows_{\beta})^* \subseteq (\twoheadrightarrow_{\beta})$ из леммы
- 2. $(\twoheadrightarrow_{\beta}) \subseteq (\rightrightarrows_{\beta})^*$ из определения
- 3. Т.к. $(\rightrightarrows_{\beta})^*$ обладает р.с., то и $(\twoheadrightarrow_{\beta})$ обладает р.с.

Спедствие 1.1. У λ -выражения существует не более одной нормальной формы.

Доказательство. Пусть A имеет две нормальные формы: $A \twoheadrightarrow_{\beta} B, A \twoheadrightarrow_{\beta} C$ и $B \neq_{\alpha} C$. Тогда есть $D: B \twoheadrightarrow_{\beta} D$ и $C \twoheadrightarrow_{\beta} D$. Противоречие.

Определение. Нормальный порядок редукции — редуцируем самый левый редекс.

Теорема 2. Если нормальная форма существует, она может быть получена нормальным порядком редукции.

Примечание. Нижеследующее объяснение — с практики.

Рассмотрим $Y =_{\beta} f (Y f) =_{\beta} f (f (Y f)) =_{\beta} \dots$ Можно считать, что у f сколько угодно аргументов, первый аргумент можно считать указателем на свой рекурсивный вызов.

Пример. Числа Фибоначчи:

```
fib a b n =

if n = 0 then a

else fib b (a + b) (n - 1)
```

Здесь решение уравнения заметано под ковер, в λ -исчислении оно видно:

$$Fib = \lambda f. \lambda a. \lambda b. \lambda n. (IsZero n) a (f f a (a + b) (n - 1))$$

Здесь f передается само себе, чтобы иметь ссылку на себя для рекурсивного вызова. Для работы Fib нужно дать его самому себе: Fib Fib 1 1 10.

21 сентября

В λ -исчислении можно сделать:

- 1. Целые числа, где $\langle a,b \rangle \leftrightarrow a-b$
- 2. Рациональные числа в виде дробей
- 3. Матлогику?

Попытки сделать матлогику всегда приводили к парадоксам.

Оказывается, нельзя относиться к любому выражению как к логическому.

Обозначение. \supset — импликация

Пример. Рассмотрим комбинатор $\Phi_A =_{\beta} A \supset \Phi_A$. Это $Y \ (\lambda f. \lambda a. a \supset f \ a).$

Добавим аксиому $(A\supset (A\supset B))\supset (A\supset B).$ Если такой аксиомы нет, то теория грустная.

Мы также хотим, чтобы если $X=_{\beta}Y$, то $X\supset Y$.

Каким-то образом мы получим парадокс.

3 Просто-типизированное λ -исчисление

Определение (типовые переменные).

- α, β, γ атомарные
- τ, σ составные

2 традиции:

1. Исчисление по Чёрчу

2. Исчисление по Карри

Мы сначала рассмотрим исчисление по Карри.

3.1 Исчисление по Карри

Типизация: $\Gamma \vdash A : \tau, \Gamma = \{x_1 : \tau_1, x_2 : \tau_2 \dots \}$

Правила:

1.
$$\frac{1}{\Gamma, x_1 : \tau_1 \vdash x_1 : \tau_1} Ax.$$

2.
$$\frac{\Gamma \vdash A : \sigma \to \tau \qquad \Gamma \vdash B : \sigma}{\Gamma \vdash A B : \tau}$$

3.
$$\frac{\Gamma, x : \tau \vdash A : \sigma}{\Gamma \vdash \lambda x . A : \tau \to \sigma}$$

Пример.

$$\lambda f^{\alpha \to \alpha} . \lambda x^{\alpha} . f(fx) : (\alpha \to \alpha) \to \alpha \to \alpha$$

Подгоним доказательство под результат:

$$\frac{f:\alpha \to \alpha \vdash f:\alpha \to \alpha}{f:\alpha \to \alpha} \frac{\overline{\Gamma \vdash f:\alpha \to \alpha} \quad \overline{\Gamma \vdash x:\alpha}}{\Gamma \vdash fx:\alpha}$$

$$\frac{f:\alpha \to \alpha, x:\alpha \vdash f(fx):\alpha}{\overline{f:\alpha \to \alpha \vdash \lambda x.f(fx):\alpha \to \alpha}}$$

$$\frac{\lambda f.\lambda x.f(fx):(\alpha \to \alpha) \to (\alpha \to \alpha)}{\lambda f.\lambda x.f(fx):(\alpha \to \alpha) \to (\alpha \to \alpha)}$$

Теорема 3. Если $\Gamma \vdash A : \tau$, то любое подвыражение имеет тип.

Доказательство. По индукции по длине.

База. Это правило 1.

Переход. Пусть любое выражение длиной < n символов обладает искомым свойством. Покажем искомое для A: |A| = n. Рассмотрим варианты того, по какому правилу доказана типизируемость A:

- 1. Второе правило: B и C короче A, следовательно для них искомое верно.
- 2. Третье правило: аналогично для x, B

Теорема 4 (Subject reduction, о редукции). Если $\Gamma \vdash A : \sigma$ и $A \twoheadrightarrow_{\beta} B$, то $\Gamma \vdash B : \sigma$

Доказательство. Скучно.

Самая интересная часть: рассмотрим $A \to_{\beta} B$. Случаи:

- 1. $\lambda x.A \rightarrow \lambda x.B$ индукция
- 2. *А В* индукция
- 3. $(\lambda x.A) B \to A[x := B]$

По теореме о типизации подвыражений, $(\lambda x^{\tau \to \sigma}.A^{\sigma})\ B^{\tau}:\sigma$. Кроме того, доказывается $(A[x\coloneqq B]):\sigma$.

Лемма 4. Если $\Gamma, x: \tau \vdash A: \sigma, \Gamma \vdash B: \tau$, то $\Gamma \vdash A[x\coloneqq B]: \sigma$

Теорема 5 (Чёрча-Россера). Если $\Gamma \vdash M : \sigma$ и существуют $N,P:M \twoheadrightarrow_{\beta} N,M \twoheadrightarrow_{\beta} P$, то найдется такой S, что $\Gamma \vdash S : \sigma$ и $N \twoheadrightarrow_{\beta} S$ и $P \twoheadrightarrow_{\beta} S$

3.2 Исчисление по Чёрчу

Язык:

- *x* переменная
- A B аппликация
- $\lambda x^{\tau}.P$ абстракция

Обозначение. Когда нужно различить исчисления, будем писать ⊢ или ⊢

Теорема 6. Если контекст Γ и выражение P типизируется, то $\Gamma \vdash P : \sigma$

Пример.

$$\vdash \lambda x.x : \alpha \to \alpha$$
$$\vdash \lambda x.x : \beta \to \beta$$
$$\vdash \lambda x^{\sigma}.x : \sigma \to \sigma$$

28 сентября

3.3 Противоречивость нетипизированного λ -исчисления

???

- 1. Логические выражения
- 2. Запрещенные выражения

Y явно нехорошее выражение. $\Phi_A =_{\beta} \Phi_A \supset A$

Добавим очевидные аксиомы:

- 1. $A=_{\beta}B$, то $\vdash A\supset B, \vdash B\supset A$. Почему? Потому что мы хотим, чтобы $\sin 0=0$, а не только $\sin 0\to 0$
- 2. $(A \supset A \supset B) \supset (A \supset B)$
- 3. $A,A\supset B$, тогда B

Тогда заметим, что при любом $A, \vdash A$:

$$\Phi_{A} \supset \Phi_{A}$$

$$\Phi_{A} \supset (\Phi_{A} \supset A)$$

$$(\Phi_{A} \supset (\Phi_{A} \supset A)) \supset (\Phi_{A} \supset \Phi_{A})$$

$$\Phi_{A} \supset A$$

$$\Phi_{A}$$

$$A$$

4 Изоморфизм Карри-Ховарда

$$\frac{\overline{\Gamma,x:\tau\vdash x:\tau}}{\overline{\Gamma,x:\tau\vdash x:\tau}} x \notin \Gamma$$

$$\frac{\overline{\Gamma,\tau\vdash \tau}}{\overline{\Gamma,\tau\vdash \tau}}$$

$$\frac{\Gamma\vdash A:\sigma\to\tau \quad \Gamma\vdash B:\sigma}{\Gamma\vdash AB:\tau}$$

$$\frac{\Gamma\vdash \sigma\to\tau \quad \Gamma\vdash \sigma}{\Gamma\vdash \tau}$$

$$\frac{\Gamma,x:\sigma\vdash A:\tau}{\Gamma\vdash \lambda x.A:\sigma\to\tau} x \notin \Gamma$$

$$\frac{\Gamma,\sigma\vdash \tau}{\Gamma\vdash \sigma\to\tau}$$

Теорема 7 (об изоморфизме Карри-Ховарда).

- 1. $\Gamma \vdash_{\lambda \to} A : \tau$, to $|\Gamma| \vdash_{\to} \tau$
- 2. Если $\Delta \vdash_{\rightarrow} \tau$, то найдутся $\Gamma, A : |\Gamma| = \Delta, \Gamma \vdash A : \tau$

Определение.

$$|\Gamma| \coloneqq \{\tau \mid x : \tau \in \Gamma\}$$

4.1 Импликационный фрагмент ИИВ

У нас есть только импликация.

Есть три правила: $I_{\to}, E_{\to},$ Ax. Будет ли у нас всё работать? Утверждается, что да.

Обозначение. Доказуемость в И.Ф. ИИВ будем обозначать $\Gamma \vdash_{\rightarrow} \tau$

Определение (язык И.Ф. ИИВ).

$$\tau \coloneqq \alpha \mid (\tau \to \tau)$$

Теорема 8. Импликационный фрагмент ИИВ замкнут относительно доказуемости: Если $\Gamma \vdash \tau$ и τ содержит только пропозиционные переменные и импликацию, то $\Gamma \vdash_{\to} \tau$. Обратное очевидно верно.

Доказательство. Рассмотрим Γ^* — множество формул, замкнутых по доказуемости.

$$\tau \in \Gamma^* \Leftrightarrow \Gamma^* \vdash \tau$$

Обозначение. Γ — множество формул, тогда Γ^* — замыкание этого множества по доказуемости, а Γ^* — замыкание по доказуемости в ИФИИВ.

Рассмотрим множество миров: $\Gamma^{\stackrel{*}{\to}} \preceq \Delta^{\stackrel{*}{\to}}$, если $\Gamma^{\stackrel{*}{\to}} \subseteq \Delta^{\stackrel{*}{\to}}, \Delta^{\stackrel{*}{\to}} -$ замкн., $\Gamma^* \Vdash \tau$, если $\tau \in \Gamma^*$

 $Утверждение. \ \Gamma^*$ образует модель Крипке.

Определение (модель Крипке).

- 1. Множество миров, упорядоченных отношением ≤
- 2. \Vdash такое, что если $\Gamma \Vdash \alpha$, то $\Gamma \preceq \Delta$, то $\Delta \Vdash \alpha$.

Тогда $\Gamma \Vdash \tau \to \sigma$ тогда и только тогда, когда в любом $\Gamma \preceq \Delta$ из $\Delta \Vdash \tau$, следует $\Delta \Vdash \sigma$.

 $\mathit{Утверждение}.\ \tau \in \Gamma^{\overset{*}{ o}}$ тогда и только тогда, когда $\Gamma^{\overset{*}{ o}} \vdash \tau$

Доказательство. Индукция по структуре τ .

База.
$$\tau \equiv \alpha$$

$$\Rightarrow \alpha \in \Gamma \stackrel{*}{\rightarrow}$$
, to $\alpha \vdash \alpha$

 $\Leftarrow \alpha \vdash \alpha$, тогда очевидно $\alpha \in \Gamma \stackrel{*}{\rightarrow}$

Переход. $\tau \equiv \delta \rightarrow \pi$

$$\Rightarrow \ \sigma \rightarrow \pi \in \Gamma \stackrel{*}{\rightarrow}$$
 , to $\Gamma \stackrel{*}{\rightarrow} \vdash_{\rightarrow} \sigma \rightarrow \pi$

$$\Leftarrow \Gamma^* \vdash (\sigma \to \pi)$$
. Значит, $\Gamma^* \vdash \sigma \to \pi$.

Рассмотрим $\Gamma^{\stackrel{*}{\to}} \preceq \Delta: \Delta \Vdash \sigma$, то $\Delta \Vdash \pi$. Значит, $\Delta \vdash \sigma$. Значит, $\sigma \in \Delta$, т.е. $\Delta \vdash_{\to} \sigma$. Значит, $\Delta \vdash_{\to} \pi$ по М.Р., т.к. $\Gamma^{\stackrel{*}{\to}} \Vdash \sigma \to \pi \Rightarrow \Delta \Vdash \sigma \to \pi \Rightarrow \Delta \vdash_{\to} \sigma \to \pi$

Утверждение. $\Gamma \Vdash \tau \Leftrightarrow \Gamma|_{\rightarrow} \tau$

Доказательство.

$$\Rightarrow \Gamma \Vdash \tau$$
.

1.
$$\Gamma \Vdash \alpha$$
, r.e. $\alpha \in \Gamma$, r.e. $\alpha \vdash_{\rightarrow} \alpha$

2.
$$\Gamma \Vdash \sigma \to \pi$$
.

Рассмотрим $\Gamma \preceq \Delta$, причём $\Delta \Vdash \sigma$, тогда $\Delta \Vdash \pi$. Т.е. по индукционному предположению $\Delta \vdash_{\rightarrow} \sigma$. Пусть $\Delta = \{\Gamma, \sigma\}^*$. Тогда $\Gamma, \sigma \vdash_{\rightarrow} \sigma$.

Тогда $\Gamma, \sigma \Vdash \pi$ по индукционному предложил и определению \Vdash . Тогда $\Gamma, \sigma \vdash_{\to} \pi$, т.е. $\Gamma \vdash_{\to} \sigma \to \pi$

 \Leftarrow $\Gamma \vdash_{\rightarrow} \tau$, тогда $\Gamma \Vdash \tau$

- 1. $\tau \equiv \alpha$ очевидно.
- 2. $\tau \equiv \sigma \to \pi$. Дано, что $\Gamma_{\to} \vdash \sigma \to \pi$.

Пусть $\Delta \Vdash \sigma$. $\Gamma \preceq \Delta$. Тогда $\Delta \vdash_{\to} \sigma$ по индукционному предположению. $\Gamma \vdash_{\to} \sigma \to \pi$, т.е. $\Delta \vdash_{\to} \sigma \to \pi$. По М.Р. $\Delta \vdash_{\to} \pi$. По индукционному предположению $\Delta \Vdash \pi$. Т.е. $\Gamma \vdash_{\to} \sigma \to \pi$. В лекции было \models .

Схема доказательства:

- 1. $\tau \in \Gamma^*$, если $\Gamma^* \vdash_{\mathsf{u}} \tau$
- 2. $\Gamma^* \Vdash \tau$
- 3. $\Gamma^* \Vdash \tau$ тогда и только тогда, когда $\Gamma^* \vdash_{\rightarrow} \tau$

Обозначение. $\lambda_{
ightarrow}$ — типизированное λ -исчисление.

- 1. Обитаемость: $\overset{?}{\Gamma} \vdash$? : τ по изоморфизму Карри-Ховарда и теореме об эквивалентности $\Gamma \vdash \tau$
- 2. Вывод (реконструкция): $\Gamma \vdash A$:?
- 3. Проверка: $\Gamma \vdash A : \tau$

Пункты 2 и 3 это одно и то же.

5 октября

5 Алгебраические термы

Определение (алгебраические термы).

$$T ::= \underbrace{a}_{\text{переменная}} | \underbrace{f}_{\text{функциональный}} T_1 \dots T_n$$

Функциональные символы $\in F$, переменные $\in T$

Пример. $f(f_2 a b) c$

Определение. Подстановка переменных — отображение $S_0: V \to T$, являющееся тождественным почти всюду¹, то есть \exists фиксированные $a_1 \dots a_n$, для которых S_0 не тождественна: $S_0(a_i) = T_i$, а для $b \notin \{a_i\}$ $S_0(b) = b$.

Тогда можно определить определить подстановку $S:T\to T$:

$$S(f T_1 \dots T_n) = f (S(T_1)) (S(T_2)) \dots (S(T_n))$$
$$S(a) = S_0(a)$$

Определение. Рассмотрим уравнение $T_1=T_2$. Его **решение** — такая подстановка S, что $S(T_1)\equiv S(T_2)$, где \equiv обозначается равенство строк.

Пример.

$$f \ a \ (g \ b) = f \ (g \ c) \ d$$

 $S_0(a) = g \ c \quad S_0(d) = g \ b$
 $S(f \ a \ (g \ b)) = f \ (g \ c) \ (g \ b)$

¹ Кроме конечного количества.

Определение (система уравнений).

$$\begin{cases} T_1 = P_1 \\ T_2 = P_2 \\ \vdots \\ T_n = P_n \end{cases}$$

Эквивалентность уравнений и систем 5.1

Определение. Две системы $E_1: \begin{cases} T_1 = P_1 \\ \vdots \\ T_n = P_n \end{cases}$ и $E_2: \begin{cases} T_1' = P_1' \\ \vdots \\ T_n' = P_n' \end{cases}$ называются эквива-

лентными, если любое решение системы E_1 подходит к E_2 и наоборот.

Утверждение. Для любой системы существует эквивалентное уравнение.

Доказательство. Выберем новый n-местный функциональный символ h, построим уравнение $h T_1 \dots T_n = h P_1 \dots P_n$.

Определение.

$$(U \circ T)(P) = U(T(P))$$

Определение. Определим порядок на подстановках. $S \leq T$, если S — частный случай T, τ .e. $\exists U : S = U \circ T$

Определение. Наиболее общим решением уравнения T = P назовём подстановку S, такую что S(T)=S(P) и для любой S_1 : $S_1(T)\equiv S_1(P)$ выполнено $S_1\preceq S$

Теорема 9. У уравнения в алгебраических термах T = P всегда есть наиболее общее решение, если есть хоть какое-то.

Определение. Несовместная система — система с уравнениями вида $f T_1 \dots T_n =$ $g P_1 \dots P_k$, где $f \not\equiv g$, либо $x = \dots x \dots$

В OCaml и Haskell это называется "occurs check".

Определение. Система в разрешённой форме — система вида $\begin{cases} a_1 = T_1 \\ \vdots \\ a_n = T_n \end{cases}$, где:

- 1. Все a_i различны
- 2. T_i не содержит a_i для $i \neq j$

Альтернативное определение — каждый a_i входит по одному разу.

5.2 Алгоритм унификации

Рассмотрим систему
$$\begin{cases} T_1 = P_1 \\ \vdots \\ T_n = P_n \end{cases}$$

Применяем одно из следующих:

- 1. x = x отбрасываем.
- 2. T=x, где $T\not\equiv x$, тогда заменяем на x=T

3.
$$\begin{cases} x = P \\ \vdots \\ T_2 = P_2 \\ \vdots \\ T_n = P_n \end{cases} \Rightarrow \begin{cases} T_2[x \coloneqq P] = P_2[x \coloneqq P] \\ \vdots \\ T_n[x \coloneqq P] = P_n[x \coloneqq P] \\ x = P \end{cases}$$

4.
$$f T_1 \dots T_n = f P_1 \dots P_n \Rightarrow \begin{cases} T_1 = P_1 \\ \vdots \\ T_n = P_n \end{cases}$$

Теорема 10. Применяя шаги алгоритма унификации, за конечное время можно получить систему либо в разрешенной форме, либо несовместную.

Доказательство. Рассмотрим тройку $\left\langle \begin{array}{c} _{\text{количество}} \\ _{\text{неразрешенных}} \right\rangle$, $\left\langle \begin{array}{c} _{\text{максимальная}} \\ _{\text{сложность}} \\ _{\text{слева}} \end{array} \right\rangle$, $\left\langle \begin{array}{c} _{\text{количество}} \\ _{\text{уравнений}} \\ _{\text{максимальной}} \\ _{\text{сложности}} \\ _{\text{сложности}} \end{array} \right\rangle$. Сложность — вложенность.

- 1. Применения правил уменьшают тройку.
- 2. $\langle 0, 0, t \rangle$ система в разрешенной форме.
- 3. Количество применений правил конечно, т.к. каждая из троек $\in \omega^3$ и любая последовательность убывающих ординалов конечна.

5.3 Вывод типов в λ_{\rightarrow}

 $(\to) - 2$ -местный функциональный символ.

Проведём индукцию по структуре λ -выражения. Результатом разбора будет пара \langle система, тип \rangle

5.3.1 Построение уравнений

Структура	Комментарий	Система	Тип
x	Введём тип α_x	Ø	$lpha_x$
A B	Рекурсивный вызов на A и B даст $\langle E_A, \tau_A \rangle$, $\langle E_B, \tau_B \rangle$. Вводим β — новый тип.	$E_A, E_B, \tau_B \to \beta = \tau_A$	β
$\lambda x.A$	Рекурсивный вызов на A даст $\langle E_A, \tau_A \rangle$. Берём тип для $x:\alpha_x$.	E_A	$\alpha_x \to \tau_A$

Несложно заметить, что эти правила соответствуют правилом вывода в типизированном λ -исчислении.

5.3.2 Разрешение системы

Это унификация.

Пример. Разберём $B = \lambda x$. $\stackrel{A}{\overbrace{x}}$.

- $E_A = \varnothing, \tau_A = \alpha_x$
- $E_B = \varnothing, \tau_B = \alpha_x \to \alpha_x$

Разрешим систему уравнений τ_A, τ_B . Оказывается, эта система уже в разрешенной форме. Таким образом, $\vdash \lambda x.x: \alpha \to \alpha$. Контекст пустой, т.к. свободных переменных нет $(E_A, E_B = \varnothing)$.

Определение. Терм называется **слабо-нормализуемым**, если существует последовательность β -редукций, приводящих его в нормальную форму.

Определение. Терм называется **сильно-нормализуемым**, если не существует бесконечной последовательности β -редукций, нигде не приводящая его в нормальную форму.

Пример. $K \ I \ \Omega$ — слабо нормализуемый, но не сильно нормализуемый

Теорема 11. λ_{\rightarrow} сильно нормализуемо.

Примечание. Это сильно ограничивает выразительность λ_{\rightarrow} .

6 Исчисление предикатов второго порядка

Второй порядок — это когда переменные есть предикаты.

Определение (предикат).

$$\Phi_{\Pi} := p \mid \Phi_{\Pi} \cup \Phi_{\Pi} \mid \Phi_{\Pi} \& \Phi_{\Pi} \mid \Phi_{\Pi} \to \Phi_{\Pi} \mid \forall p. \Phi_{\Pi} \mid \exists p. \Phi_{\Pi}$$

Утверждение. Можно выразить:

$$\begin{split} a \ \& \ b & ::= \forall p.(a \to b \to p) \to p \\ a \lor b & ::= \forall p.(a \to p) \to (b \to p) \to p \\ \bot & ::= \forall p.p \\ \exists p.A ::= \forall x.(\forall p.p \to x) \to x \end{split}$$

Это исчисление также называется "Система F", оно же L_2 .

$$L_2 ::= x \mid \lambda x^{\alpha}.A \mid P Q \mid P\tau \mid \lambda \alpha.A$$

12 октября

7 Абстрактные типы данных

 $ОО\Pi = ATД + наследование.$

Пример (стек).

$$\begin{split} \text{push}: \alpha \to \alpha & \text{stack} \to \alpha & \text{stack} \\ \text{pop}: \alpha & \text{stack} \to (\alpha \cdot \alpha & \text{stack}) \\ & \text{empty}: \alpha & \text{stack} \end{split}$$

Что мы понимаем под $\exists \alpha. \varphi$? φ — интерфейс и существует где-то в природе тип, который этому интерфейсу соответствует.

Для стека:

$$\exists \alpha. \underbrace{(\eta \to \alpha \to \alpha)}_{\text{push}} \& \underbrace{(\alpha \to \alpha \& \eta)}_{\text{pop}} \& \underbrace{\eta}_{\text{empty}}$$

Правила вывода:

$$\frac{\Gamma \vdash \varphi[x \coloneqq \theta]}{\exists x. \varphi}$$

$$\frac{\Gamma, \psi \vdash \varphi \quad \Gamma \vdash \exists x. \psi}{\Gamma \vdash \varphi} \ x \not\in \mathrm{FV}(\Gamma)$$

$$\frac{\Gamma \vdash M : \sigma[\alpha \coloneqq \tau]}{\Gamma \vdash \mathrm{pack} \ \tau, M \ \mathrm{to} \ \exists \alpha. \sigma : \exists \alpha. \sigma}$$

TBD.

19 октября

8 Типовая система Хиндли-Милнера

Мы рассмотрели две системы типов:

- 1. Просто типизированное лямбда исчисление: недостаточно выразительно
- 2. Система F: местами выразительна, местами недостаточно. Кроме того, потеряна разрешимость.

Ограничим излишнюю свободу системы F.

Определение (ранг типа). Пусть σ — тип без кванторов. $R \subset \text{тип} \times \mathbb{N}_0$, такое что:

- 1. $R(\sigma,0)$
- 2. Если $R(\tau, k)$, то $R(\forall \alpha. \tau, \max(k, 1))$
- 3. Если $R(\tau_0, k)$ и $R(\tau_1, k+1)$, то $R(\tau_0 \to \tau_1, k+1)$.

Пример.

$$R(\alpha,0) \Rightarrow R(\alpha,5) \Rightarrow R(\forall \alpha.\alpha,5)$$

$$R(\alpha \to \alpha, 0) \Rightarrow R(\forall \alpha. \alpha \to \alpha, 1)$$

Определение (Типовая система Хиндли-Милнера). Рассмотрим λ -исчисление 2 порядка по Карри.

Типы:

- 1. Типы без кванторов: $au = lpha \mid (au
 ightarrow au)$
- 2. Типовые схемы: $\sigma = \forall \alpha. \sigma \mid \tau$

Определение (Отношение "быть частным случаем" (специализация)). $\sigma_1 \sqsubseteq \sigma_2$ (σ_2 — частный случай σ_1), если $\sigma_1 \equiv \forall \alpha_1 \dots \forall \alpha_n. \tau_1$, $\sigma \equiv \forall \beta_1 \dots \beta_k. \tau_1 [\alpha_1 \coloneqq \theta_1 \dots \alpha_n \coloneqq \theta_n]$ и новые $\beta_1 \dots \beta_k$ не входят свободно в σ_1 .

Пример. $\tau \sqsubseteq \text{string}$

Пример.

$$\forall \alpha. \alpha \to \alpha \sqsubseteq \forall \beta. (\beta \to \beta) \to (\beta \to \beta)$$

Правила вывода:

Казалось бы, let похож на $(\lambda x.B)$ A. Однако, мы разрешаем кванторы в A.

Пример.

$$I \equiv \lambda x.x: \forall \alpha.\alpha \to \alpha$$

$$\sphericalangle (I\ 1, I\ "a") \quad I\ 1: \mathrm{int}, I\ "a": \mathrm{string}$$

1.

$$\text{let } \underbrace{I = \lambda x.x}_{I: \forall \alpha.\alpha \rightarrow \alpha} \text{ in } (I \ 1, I \ \texttt{"a"})$$

2. То же самое, но без let:

$$(\lambda i.(i\ 1, i\ "a"))\ (\lambda x.x)$$

В этом варианте тип внутри лямбды без кванторов. В силу этого операцию $(i\ 1, i\ "a")$ сложно выполнить — нужно угадать, какой тип подставлять.

Эта система очевидно у́же, чем System F. Мы её сузили, чтобы получить разрешимость.

8.1 Алгоритм W

Мы хотим решить ? $\vdash A$:?, т.е найти контекст и тип выражения, притом наиболее общие. $W(\Gamma, E) \Rightarrow (\tau, S)$ — по контексту и выражению получаем тип и подстановку.

1. $E\equiv x,x\in\Gamma,x:\sigma_x=\forall\alpha_1\dots\alpha_n. au.$ Тогда введём новые переменные $\beta_1\dots\beta_n$ и результатом будет:

$$W(\Gamma, E) = (\forall \beta_1 \dots \beta_n . \tau, \varnothing)$$

2. $E \equiv \lambda x.P$. Пусть $W(\Gamma \cup \{x : \gamma\}, P) = (\tau_P, S_1)$.

$$W(\Gamma, E) = (S_1(\gamma \to \tau_P), S_1)$$

3. $E \equiv P \; Q$. Введём новый тип γ . Пусть \mho — вызов алгоритма унификации и:

$$W(\Gamma, P) = (\tau_P, S_1)$$
 $W(S_1\Gamma, Q) = (\tau_Q, S_2)$ $\mho(S_2\tau_P, \tau_Q \to \gamma) = S_3$

Тогда:

$$W(\Gamma, E) = (S_3\gamma, S_3 \circ S_2 \circ S_1)$$

4. $E \equiv \text{let } x = P \text{ in } Q$. Пусть:

$$W(\Gamma, P) = (\tau_P, S_1) \quad W(S_1\Gamma \cup \{x : \forall^1.\tau_f\}, Q) = (S_2, \tau_Q)$$
$$W(\Gamma, E) = (\tau_Q, S_2 \circ S_1)$$

Пример.

let
$$I = \lambda x.x$$
 in $(I 1, I ")$

Согласно 4 пункту алгоритма:

$$I: \forall \alpha.\alpha \rightarrow \alpha \vdash (I\ 1, I\ ")$$

Мы теряем полноту по Тьюрингу, т.к. это частный случай системы F. Мы такого не хотим, поэтому добавим чего-нибудь, что её нам даст.

 $^{^1}$ Кванторы по всем свободным в au_f переменным.

1. Правило для Y:

$$Y: \forall \alpha.(\alpha \to \alpha) \to \alpha$$

Теория становится противоречивой — вместо $\alpha \to \alpha$ всегда можно подставить id и получить любое α .

2. \sphericalangle IntList = (int & IntList) \lor Nil. Это какое-то уравнение. Как его решить? Введём μ -оператор: μ η .(int & η) \lor Nil или в общем случае μ η . τ — тип, решающий уравнение $\eta=\tau$

Есть две традиции решения таких уравнений:

- 1. Экви-рекурсивные: μ существует как тип (Java).
- 2. Изо-рекурсивные: ищем $\mu\eta. au(\eta)$ вводятся две операции
 - (a) Roll: $\tau(\eta) \to \eta$
 - (b) Unroll: $\eta \to \tau(\eta)$

Итого мы взяли систему F и:

- 1. Запретили типы с неповерхностными кванторами
- 2. Добавили let-полиморфизм
- 3. Добавили противоречивость через Y-комбинатор и решение уравнений на типах.

26 октября

Это последняя лекция, посвященная части "Матлогика в языках программирования". Вторая часть — "Языки программирования в матлогике и математике".

9 λ -куб

Мы упустили теорию первого порядка.

9.1 Обобщенные типовые системы

$$\mathcal{F} ::= x \mid \underbrace{\mathcal{F} \mathcal{F}}_{\lambda -} \mid \underbrace{\lambda x : \mathcal{F} . \mathcal{F}}_{\lambda -} \mid \Pi x : \mathcal{F} . \mathcal{F} \mid \underbrace{C}_{C}$$
$$C ::= * \mid \Box$$

Мы решили, что типы и выражения должны сосуществовать, например в C++ можно написать Array<int, 23+7>.

Обозначение. s := множество $(*, \square)$

$$\cfrac{\Gamma \vdash A:s}{\Gamma,x:A \vdash x:A}$$
 начальное правило, $x \notin FV(\Gamma)$
$$\cfrac{\Gamma \vdash \varphi: (\Pi x^A.B):s \qquad \Gamma \vdash a:A}{\Gamma \vdash (\varphi \ a): (B[x:=A])}$$
 применение
$$\cfrac{\Gamma \vdash A:B \qquad \Gamma \vdash B':s \qquad B=_{\beta} B'}{\Gamma \vdash A:B'}$$
 преобразование
$$\cfrac{\Gamma \vdash B:C \qquad \Gamma \vdash A:s}{\Gamma,x:A \vdash B:C}$$
 ослабление, $x \notin FV(\Gamma)$

* — тип, \square — тип типа.

Пример. array [a..b] of Т. Можно рассматривать array [a..b] of как оператор над типами. Его тип $* \to *$. Это также называется не тип, а род.

Примечание.

$$7$$
 : int : $*$: \square знач. $type$ $type$ $kind$ $sort$

Пусть $S \subseteq C \times C$ параметризует типовую систему. Здесь и далее (s_1, s_2) пробегает все пары $\in S$.

$$\frac{\Gamma \vdash A: s_1 \quad \Gamma, x: A \vdash B: s_2}{\Gamma \vdash (\Pi x^A.B): s_2} \ \Pi\text{-правило}$$

$$\frac{\Gamma \vdash A: s_1 \quad \Gamma, x: A \vdash b: B \quad \Gamma, x: A \vdash B: s_2}{\Gamma \vdash (\lambda x^A.b): (\Pi x^A.B)} \ \lambda\text{-правило}$$

Обозначение. Будем писать $\Pi x^{\varphi}.\pi$ вместо $\varphi \to \pi$, если $x \notin FV(\pi)$.

Обозначение.

$$x:y:z\Rightarrow x:y,y:z$$

Примечание. Пусть $x \notin FV(B)$. Тогда рассмотрим следующее правило:

$$\frac{\Gamma \vdash A : * \qquad \Gamma, x : A \vdash b : B \qquad \Gamma, x : A^1 \vdash B : *}{\Gamma \vdash (\lambda x^A.b) : A \rightarrow B}$$

А что если $x \in FV(B)$? Тогда мы получаем **зависимый тип**.

 Π ример. sprintf("%d", "a") — так нельзя.

 ${\tt sprintf}:(x:{\tt string})\to F(x)$ — так мы не пишем, не сложилось по традиции. Мы будем писать $\Pi x^{\tt string}.F(x)$

 $\mathtt{sprintf} \ \texttt{"\%s"} : \mathtt{string} \to \mathtt{string}$

Рассмотрим S из определения.

 $[\]overline{\ }^1$ Можно убрать, т.к. $x \notin FV(B)$

S	Название системы типов	Характерный представитель
(*,*)	$\lambda_{ ightarrow}$	$\lambda x.x$
$(*,*), (\square,*)$	$\lambda_{ ightarrow}$	$\Lambda \alpha . \lambda x^{\alpha} . x$
$(*,*), (\square,*)$	$\lambda \ \omega$ слабая	<pre>Int[]</pre>
$(*,*),(\square,*),(\square,\square)$	$\lambda \ \omega$	
$(*,*),(*,\square)$		int[n]
$(*,*),(*,\square),(\square,*),(\square,\square)$	λC : исчисление конструкций 2	

Объектно-ориентированное программирование не описывается через S.

Дальше в лекции были примеры, которые не записаны.

 $[\]overline{^2}$ Языки доказательств

2 ноября

10 Гомотопическая теория типов

Первые полчаса лекции пропущены.

Определение. Путь между a и b в пространстве X — функция $f:[0,1] \to X, f(0) = a, f(1) = b$ и f непрерывно. Если есть путь из a в b, то мы считаем a и b равными.

Определение. Интервальный тип: I = [left, right]

Почему не $I = \{left, right\}$?

Пример. Докажем, что 2+1=1+2. Рассмотрим f — потенциальный путь f(left)=1+2, f(right)=2+1

Определение. Отображение **непрерывно**, если 1 прообразо открытого множества открыт.

Пример. $f:\{0,1\} \to \{2,3\}$, дискретная топология. Непрерывна ли fx=x+2?

Открытые в $\{2,3\}:\{\},\{2\},\{3\},\{2,3\}$

$$f^{-1}(\{\}) = \{\}, f^{-1}(\{2\}) = \{0\}, f^{-1}(\{3\}) = \{1\}, f^{-1}(\{2,3\}) = \{0,1\}$$

Таким образом f непрерывна.

Пример. $\triangleleft f: \mathbb{R} \to \mathbb{R}, f(x) = \lfloor x \rfloor$

 $f^{-1}((0.1,0.2))=0$, что не является открытым множеством.

Кроме того, $f^{-1}([0,5])=\{0,1,2,3,4,5\}$

 $^{^{1}}$ И только если.

Определение. Пространство X **не связно**, если существует $P,Q: X = P \cup Q, P \cap Q = \varnothing, P \neq X, Q \neq X, P, Q$ открыты.

Множество **связно**, если является связным пространством под индуцированной топологией (или при сужении топологии на него, то же самое).

```
Пример. (0,1) \cup (2,3) — не связно.
```

```
Пример. (0,1) \cup (2,3] — тоже не связно, т.к. (2,3] открыто в (0,1) \cup (2,3]
```

Пример. $(0,1) \cup (2,3)$ в дискретной топологии — не связно.

Упражнение 1. Предложите топологию, в которой пространство (0,1)+(2,3) связно. Тривиальная топология.

Определение. Пространство **линейно связно**, если существует путь из любой точки в любую.

Первое определение гласит, что мы не можем провести границу, а второе — что не можем ???.

Определение. Равенство — тип пути из a:X в b:X. Равенство обитаемо, если такой путь существует.

Такое определение сложно уместить в язык программирования, т.к. [0,1] не влезает в компьютер, поэтому придуман интервальный тип I = [left, right].

Рассмотрим Path в Arend:

```
\data Path (A : I -> \Type) (a : A left) (a' A right)
| path (\Pi (i : I) -> A i)
```

I — интервальный тип, A — отображение интервал \to тип. path — единственный конструктор, принимает функцию, сопоставляющую точки интервала значение A в этой точке.

Докажем в Arend, что 1 = 1:

```
\func oneone : (1 = 1) \Rightarrow idp
```

Если мы не знаем, что сделать, мы можешь написать?, то выражение условно принимается. Иногда работают рефакторинги, которые заменят? на доказательство.

Фигурные скобки вокруг аргумента обозначают, что аргумент неявный. Запишем в явном виде:

```
\func oneone : (1 = 1) \Rightarrow idp \{Nat\} \{1\}
```

oneone — значение зависимого типа равенства.

```
\func arar : ((1 \text{ Nat.} + 2) = (2 \text{ Nat.} + 1)) \Rightarrow idp
idp \exists t \in \mathbb{N}
```

У нас интенсиональное равенство.

Построим фукнцию с типовым параметром:

```
\func second (t : \Type) (ttt : \Pi (x : t) -> t) (y : t) : t => ttt y 
Здесь ttt — функция t \to t, мы её применяем к y : t и получаем ttt y : t 
\func third (t : \Type) (ttt : \Pi (x : t) -> t) (y : t) => ttt y = ttt y
```

9 ноября

11 Равенство

Напоминание: a=b по определению выполнено тогда и только тогда когда существует путь $a\leadsto b$. Путь можно определить так:

Определение. Пусть I — интервальный тип. Если существует непрерывная функция $f:I\to A$, такая что f left $=_{\beta}a,f$ right $=_{\beta}b$, то $a\leadsto b$.

То же самое в рамках Arend:

```
\data Path
  path (f : I -> A) : f left = f right
```

Когда мы говорим о любом типе данных, у нас есть две конструкции:

- 1. Построение
- 2. Удаление

Для Path есть построение — конструктор. Мы хотим получить ещё и элиминатор.

Пример (элиминатор для ∨).

| left => a

Т.к. все значения на пути равны, то мы возвращаем значение на left.

 $\ensuremath{\verb|Velim|}$ это паттерн матчинг. Т.к. I- особый тип, нам не нужно расписывать все случаи.

Это все весьма странно, но это единственная конструкция подобного рода.

```
\func transport {A : \Type} (B : A -> \Type) {a a' : A} (p : a = a') (b : B a) : B a' => coe (\lam i => B (p @ i)) b right

Обозначение. Если p : a = a', то:

1. p @ left это a

2. p @ right это a'
```

Примечание. Фигурные скобки означает типы, которые компилятор сам выведет из контекста. Рассчитывать на него нельзя, т.к. выведение типов неразрешимо в общем случае.

```
Пример (доказательство равенства).
\func inv (A : \Type) \{a a' A\} (p : a = a') : a' = a
    => transport (\lam x => x) p idp
\func idp \{A : \Type\} \{a : A\} : a = a
    => path (\lam _ => a)
Пример (конгруэнтность).
\func pmap (A B : \Type) (f : A \rightarrow B) (a a' : A) {p : a = a'} : f a = f a'
    => transport (\lam x => f a = f x) p idp
Пример (натуральные числа).
\data Nat
    zero
    | suc (k : Nat)
\data Empty
Not (A : \Type) : A -> Empty
Not (zero = suc zero)
\func proof_ne (a : Nat) : \Type \elim a
    | zero => 0 = 0
    | suc x => Empty
\func zne (x : 0 = 1) : Empty
    => transport proof_ne {0} {1} x idp
```

Примечание. В стандартной библиотеке это доказано немного по-другому, вместо 0 = 0 используется \Sigma тип кортежа из нуля элементов, то есть () из Haskell.

15 ноября

Все, что мы доказывали, как-то не очень интересно — это тождества. Что если мы хотим доказать например $a \leq b$? Для этого для начала надо уметь это записать.

Определение (меньше или равно). $a \le b$ это $\exists x.a + b = b$

Несложно догадаться, что у нас экзистенциальный тип. В Arend все экзистенциальные типы это пары вида $(x:A,a+x=b:A\to \mathbb{T}_y)$. Таким образом, наш тип это $\operatorname{Sigma}(x:\operatorname{Nat})(a+x=b)$.

Пример. Хотим доказать $5 \le 12$, тогда доказательство это (7, idp) : Nat(x : Nat) (5 + x = 12)

Определим наш тип "≤" индуктивно:

 Π римечание. base и next — конструкторы типа, а не магическая вещь для индукции.

Пример.

```
base: loe 0 15next (next (base)): loe 1 16
```

Эти два определения эквивалентны. Докажем это.

Из индуктивного в экзистенциальный тип:

```
\func f1 {a b : Nat} (p1 : loe a b) : loe' a b
| {0}, {b}, base => (b, idp)
| {suc a}, {suc b}, next (pr1) =>
| \let (pb, ppr) => f1 pr1 \in (pb, pmap suc ppr)
```

В обратную сторону:

```
\func f2 {a b : Nat} (p1 : loe' a b) : loe a b
| {0}, _ => base
| {suc a}, {0}, (x, p) => absurd (transport (\lam t => \case t \with {
| 0 => Empty
| suc n => \Sigma}) p ())
```

Это не удобно писать, поэтому напишем contradiction¹. Эта конструкция умеет доказывать противоречия за 1–2 шага. Таким образом:

```
\func f2 {a b : Nat} (p1 : loe' a b) : loe a b
| {0}, _ => base
| {suc a}, {0}, (x, p) => contradiction
| {suc a}, {suc b}, (x, p) => next (f2 (x, pmap minus1 p))
```

Докажем часть домашнего задания:

```
\func plus-assoc {a b c : Nat} : (a + b) + c = a + (b + c) \elim c
| 0 => idp
| suc c => {?}
```

Можно вместо $\{?\}$ написать pmap suc (plus-assoc), но это скучно. Можем написать rewrite plus-assoc idp, который докажет нам suc ((a + b) + c) = suc (a + (b + c)), переписав (a + b) + c на a + (b + c), т.к. есть доказательство (a + b) + c = a + (b + c). Это звучит как магия, но на самом деле делается так:

```
transport (\lambda = x = x = x = x) plus-assoc idp
```

12 Классы

Пример. Группа: $\langle R, +, e, ^{-1} \rangle$, такие что:

- e + x = x
- x + e = x
- $x + x^{-1} = e$
- $x^{-1} + x = e$

Попробуем описать что-то подобное в Arend.

```
\instance OrdNat : Preorder Nat
| <= (a b : Nat) => TruncP (\Sigma (r : Nat) (r + a = b))
| <=-reflexive => inP (0, idp)
| <=-transitive {x} {y} {z} =>
```

¹ Для этого надо добавить dependencies: [arend-lib] в arend.yaml

```
\lam (t1 : TruncP (\Sigma (r : Nat) (r + x = y)))
   (t2 : TruncP (\Sigma (r : Nat) (r + y = z))) =>
\case t1, t2 \with {
   | inP (d1, p1), inP (d2, p2) => inP (d2 + d1, plus-assoc *> (rewrite p1 p2)
}
```

У TruncP есть математическое объяснение, и есть программистское. У нас есть различные доказательства и мы их все объявляем равными.

План дальнейших лекций:

- 1. Set/Prop
- 2. Теорема Диаконеску: теория множеств + ИИВ + аксиома выбора это классическая логика.

Дальше есть несколько вариантов:

- 1. Гомотопическая теория типов (математически)
- 2. Другие языки: возможно Idris, Coq
- 3. Другие исчисления, возможно F_{Ω} , линейные типы.

23 ноября

13 Язык

Какой язык мы обсуждали? Это примерно λ_C , но это не совсем так.

13.1 Проблема

Пример.

```
\func id (x : *) : * = x
\func idid => id id
```

Написать idid нельзя, потому что вместо * мы подставили * → *. Это можно исправить:

```
\func id2 (x : \Type) : (x -> x) => \lam a => a \func idid2 => id2 (\Type -> \Type) (id2 \Type)
```

Тогда получается, что \Туре -> \Туре : \Туре. Таким образом, выразительная сила этого языка выше, чем λ_C .

13.2 Естественность проблемы

Такие конструкции не искусственны и встречаются в природе:

Пример.

```
\func Church => (x : \Type) -> (x -> x) -> (x -> x)
\func inc (n : Church) : Church => \{?\}
\func add m n => m Church inc n
```

Таким образом, несложно догадаться, что у нас будут встречаться функции высших родов. Таким образом, тип это в том числе и род. Как это типизировать?

13.3 Наивное решение проблемы

Очевидная идея: \Туре это \Туре. Это невозможно в силу парадокса Жирара, который будет рассмотрен на отдельной лекции.

13.4 Предикативность

Пусть типы организуют не один универсум, а множество вложенных универсумов.

У \Туре теперь есть натуральный аргумент n, называемый предикативностью:

- Туре 0 базовые типы.
- \Туре 1 все, включая \Туре 0.
- :
- \Type (k + 1) все, включая \Туре k.

При этом если некоторая функция принимает аргумент $x: \$: \Туре n и возвращает $x \to x$, то она имеет предикативность n + 1.

Примечание. В большинстве случаев компилятор выводит предикативность сам, но иногда он не справляется и ему нужно помочь.

Пример.

$$m \text{ Church} : \underbrace{(\underbrace{\text{Church}}_{\text{\begin{subarray}{c}}} \to \text{Church}) \to (C \to C)}_{\text{\end{subarray}}}$$

Число \1h пока что не рассматриваем.

Пусть \Ргор — вселенная пропозиций, т.е. "чистых утверждений".

Определение. x : Туре - x : Ргор, если все элементы x равны.

Грубо говоря, это тип доказательств, которые не зависят от выбора представителей.

Пример.

- 1. Доказательство равенства Nat это Prop.
- 2. a : \Prop, b : \Prop, тогда (a, b) : \Prop
- 3. Either a b не \Prop , потому что можно доказывать через inLeft a, либо через inRight b и эти доказательства не равны.
- 4. Σ не Prop.

Определение. $\$ Set - тип, в котором равенство это $\$ Prop.

Гомотопический уровень типа — +1 от уровня равенства на нём.

Пропозициональное урезание: ||x|| : \Prop.

Пример.

- ||Either a b|| => a || b
- ||Sigma (x : N) (T(x))|| => $\exists x^N.T(x)$

B Arend | | | | обозначается как TruncP : \Type -> \Prop.

Пример.

В этом типе есть два нуля — положительный и отрицательный. Так нельзя. Нужно объявить, что эти два нуля равны:

Также можно писать \truncated \data ... и тогда не нужно будет писать TruncP, все элементы типа уже будут равны между собой.

| right => inR a'

14 Аксиома выбора

- p семейство множеств
- $p:A\to B$

Тогда

$$(\forall x \in A. \exists t \in p(x)) \to \exists f : \forall x \in A. f(x) \in p(A)$$

То же самое, но в Arend:

$$(A : \operatorname{Set}) \to (P : A \to \operatorname{Set}) \to (\operatorname{Pi}(x : A) \to ||P(x)||) \to ||\operatorname{Pi}(x : A) \to P(x)||$$

Это влечёт Decide (Either a b) — закон исключенного третьего, где Decide это:

, то есть по типу можно алгоритмически определить его обитаемость.

30 ноября

15 Парадокс Жирара

 λ -куб был придуман только в 1991 году. Начиналось всё с интуиционистской типовой системы (Мартин — Лёф), которая была разработана в 1977,78гг., а сам парадокс Жирара был найден ещё в 1972 году. Поэтому тот парадокс, который мы будем рассматривать — не совсем тот, что был представлен в то время.

Очевидно, выразительность λ -куба ограничена.

Пример. Что такое топология? $X, \Omega \subseteq \mathcal{P}(X)$. $\mathcal{P}(X)$ это $\mathcal{P}(X): X \to *$. Возьмём $x \in \mathcal{P}(X)$, это $x: X \to *$. Где оно может жить в λ -кубе?

Топология это $(X \to *) \to *$, т.е. мы про подмножество говорим, подходит ли оно.

Сорт	Объекты	Тип
0	Все значения (λ -термы)	
1	Типы (утверждения)	*
2	Рода	$* \rightarrow *$
3	Сорта	
4		\triangle

Таким образом, у нас типовая система с 5 уровнями:

$$1,2,x:* *: \square \square: \triangle$$

15.1 Обобщение λ -куба

 $\triangleleft \lambda \mathrm{HOL}$, которая оперирует над $*, \Box, \triangle$ и $S = \{(*,*), (\Box, \Box), (\Box, *)\}$. Утверждается, что если добавить $(\triangle, *)$, то система не является противоречивой.

Что такое $(\triangle,*)$? Это конструкции в стиле Πx^\square . значения.

Добавление (\triangle, \square) делает систему противоречивой.

$$\underbrace{\underbrace{(*,*),(\square,\square),(\square,*)}_{U}\quad (\triangle,\square)\quad (\triangle,*)}_{U}$$

 U^- тоже противоречива.

Можно рассмотреть систему *: *, в ней будут $*, , * \to *$. Тем самым мы добавляем себе ещё возможность появления парадоксов, например парадокса Рассела.

Вспомним топологию: $\underbrace{(X \to *)}_{\square} \to *$. Мы хотим делать что-то с топологиями, то есть

уметь оперировать над \square . На самом деле топология — квантор всеобщности:

$$\forall \alpha^T . \varphi(\alpha) = A(T, \varphi) \quad S : A(T) \approx (T \to *) \to *$$

Гениальная идея: не будем заводить \square , а скажем, что $X \to * : \square$. К сожалению, в таком случае опять возникает парадокс.

Что делает наличие пра вила (\triangle, \square) ? Оно позволяет написать выражение F с типом φ , причём φ — любой, которое не заканчивает исполнение. Таким образом, любой тип обитаем. Противоречивость из этого очевидна.

15.2 Парадокс Бурали-Форте

1. "Не существует максимального ординала" или "не существует множества всех ординалов".

Определение. Ординал — транзитивное, вполне упорядоченное множество.

Пусть S — множество всех ординалов. Оно является ординалом. Получается, что $S \in S$. Это парадокс Кантора. Не хотелось бы его использовать, ибо в типовых системах с ним сложно.

2. Фундированное множество X — множество, где нет бесконечной цепочки " \in ":

$$X \ni x_1 \ni x_2 \ni x_3 \ni \cdots \ni x_n$$

Множество всех фундированных множеств W фундировано, т.е. $W\ni W.$ Но тогда оно не фундировано, т.к. $W\ni W\ni\dots$ Теперь мы не используем парадокс Кантора.

15.3 Множества всех множеств

Рассмотрим две операции, σ и τ .

$$\sigma: X \to \mathcal{P}X \quad \tau: \mathcal{P}X \to X$$

 $\sigma X = \{a \mid a < X\}$ — начальные отрезки до X.

 τX — ординал, соответствующий X.

Пример. $X = \{0, 1, 2, 3\}, \tau X = 4$

$$\sigma \tau X = \{ \beta \mid \beta < \tau X \} = \{ \tau \sigma \alpha \mid \alpha \in X \}$$

15.4 Парадоксальный универсум

Определение. Пусть U — универсум, $\sigma: U \to \mathcal{P}U, \tau: \mathcal{P}U \to U$. Если для всех $x \in \mathcal{P}U$ $\sigma\tau X = \{\tau\sigma x \mid x \in X\}$, то U называется парадоксальным универсумом.

Определение. Если $y = \sigma x$, то y < x.

Можем заметить, что $\tau \sigma y < \tau \sigma x$.

Определение. Будем говорить, что множество X **индуктивно**, если для каждого x : $y < x \Rightarrow y \in X$ верно что $x \in X$. Таким образом, это множество, на котором выполнена трансфинитная индукция, т.е. индукция по большим ординалам, чем натуральные числа.

Определение. *х* фундировано, если *х* принадлежит всем индуктивным множествам.

$$\triangleleft \Omega = \tau \{x \mid x \}$$

1. Ω фундировано.

Доказательство. Опустим.

2. Ω не фундировано.

Доказательство. Опустим.

Как это выразить в системе типов U^1 ?

- $\mathcal{P}X:X\to *$
- *U* : □
- $\sigma: U \to \mathcal{P}U$

 $^{^{1}}$ Да, у нас коллизия обозначений с универсумом, очень жаль.

- $\tau: \mathcal{P}U \to U$
- $\bullet \ o: \forall S^{\mathcal{P}U}.\sigma(\tau(x)) = \lambda u^U.\exists x^U.(S\ x)\ \&\ u = \tau(\sigma(x))$

В этом контексте можно доказать 1 и 2. Получить такое противоречие можно только в U, т.к. $\mathcal{P}U: \square \to *$ мы не умеем строить без правила (\square, \triangle)

Спасаться от этого парадокса можно тем, что у нас типы живут в разных вселенных.

7 декабря

16 Теорема Диаконеску

Теорема 12 (Диаконеску). Интуиционистское исчисление предикатов + аксиомы ZF + аксиома выбора влекут закон исключённого третьего, т.е. при любом P выполнено $P \vee \neg P$.

Доказательство. Рассмотрим переменную P и множества:

- $\mathbb{B} := \{0, 1\}$
- $U := \{x \in \mathbb{B} \mid x = 0 \lor P\}$
- $V := \{x \in \mathbb{B} \mid x = 1 \lor P\}$

U и V непустые, т.к. в U есть 0, а в V есть 1. Тогда по аксиоме выбора для семейства $\{U,V\}$ $\exists f: \{U,V\} \to \mathbb{B}$, такое что $f(U) \in U, f(V) \in V$. Рассмотрим случаи:

- 1. f(U) = f(V)
 - (a) f(U) = 0

Тогда f(V) = 0 и P истинно.

(b) f(U) = 1

Тогда P истинно.

2. $f(U) \neq f(V)$

Тогда $U \neq V$.

(a) $U = \{0, 1\}, V = \{1\}$

Тогда P и истинно, и ложно — противоречие.

(b)
$$U = \{0\}, V = \{0, 1\}$$

Тогда P и истинно, и ложно — противоречие.

(c)
$$U = \{0\}, V = \{1\}$$

Пусть
$$P$$
. Тогда $U=V$. Но $(U=V)\to \perp$, поэтому $P\to \perp$.

Итого $P \vee \neg P$.

16.1 Аксиома выбора (попытка 1)

Пусть A B : \Set, где A — индексы (S), а B — множества $(\bigcup S)$. Пусть Q : A -> B -> \Prop — функция, которая по индексу перечисляет подмножества, т.е. это отношение "принадлежит подмножеству": $Q(a,b) \Leftrightarrow b \in a$.

```
\func Choice (A B : \Set) (Q : A -> B -> \Prop)

(not_empty : \Pi (x : A) -> \Sigma (y : B) (Q x y)):
\Sigma (f : \Pi (x : A) -> B) (\Pi (x : A) -> Q x (f x))
```

На самом деле это не аксиома выбора, потому что как тело функции подходит:

```
(\lam x^A \Rightarrow \text{not_empty } x.1, \lambda x^A \Rightarrow \text{not_empty } x.2)
```

Проблема в том, что наше определение подмножества слишком конструктивно. Победим это тем, что мы сделаем равенство неразрешимым.

Определение. Сетоид — упорядоченная пятерка S, E, E-trans, E-refl, E-symm, rде E — отношение эквивалентности на S, r.e. E : S -> S -> \Prop.

16.2 Переформулировка аксиомы выбора

B Arend есть библиотека Logic. Classical, где есть доказательство этой теоремы.

```
\func (A : \Set) (B : A -> \Set):
   (\Pi (x : A) -> TruncP (B x)) -> TruncP (\Pi (x : A) -> B x)
```

Почему то, что слева от -> (обозначим это P), это доказательство непустоты наших подмножеств? Пусть y: A и P y = Empty. Тогда мы докажем все что угодно. Поэтому B x не пусто для всех x: A. Мы не знаем, какой именно объект есть B B x, T.K. Y нас навешено TruncP.

16.3 Закон исключенного третьего

```
lem (P : \Prop) : Dec P
```