

Magnetic fields	Electromagnetic induction	
SHOULD (7)	Define magnetic flux, magnetic flux density and magnetic flux linkage	
COULD (8/9)	Calculate magnetic flux in given situations	
An emf is induced when there is a <i>change</i> in the magnetic flux		

An emf is induced when there is a *change* in the magnetic flux linking the circuit. You need to be able to distinguish between magnetic flux and magnetic flux density.

Quantity	Definition	Unit
Magnetic flux density, B	The strength of a magnetic field, defined by B = F/IL	Т
Magnetic flux,Φ	The product of the component of the magnetic flux density perpendicular to a given area and that cross-sectional area	Wb

$$\Phi = (B\cos\theta) A$$

When the field is normal to the area....

 $\Phi = BA$

▲ Figure 5 Magnetic flux φ is the product of the component of the magnetic flux density perpendicular to the area and the cross-sectional area

[1]

Magnetic flux linkage

magnetic flux linkage = number of turns on a coil x magnetic flux

magnetic flux linkage = $N\Phi$

magnetic flux linkage = BANcosθ

A coil has 200 turns and a core of cross-sectional area $1.0 \times 10^{-4} \, \text{m}^2$. The coil is placed at right angles to a magnetic field of flux density 0.30 T. Calculate the magnetic flux and magnetic flux linkage for the coil.

Step 1: Calculate the magnetic flux. At right angles, magnetic flux $\phi = BA = 0.30 \times 1.0 \times 10^{-4} = 3.0 \times 10^{-5}$ Wb

Step 2: The magnetic flux linkage is $N\phi$. Therefore Magnetic flux linkage = $N\phi = 200 \times 3.0 \times 10^{-5} = 6.0 \times 10^{-3}$ Wb

Now try summary questions 3-6 in section 23.4

3
$$\phi = BA \cos\theta = 0.02 \times 1.4 \times 10^{-4} \times \cos^{\circ}$$
 [1]

$$\phi = 2.8 \times 10^{-6} \approx 3 \times 10^{-6} \,\text{Wb}$$
 [1]

4
$$\phi = BA \cos\theta = 0.20 \times [\pi \times 0.014^2] \times \cos 30^\circ$$
 [1]

 $\phi = 1.07 \times 10^{-4} \,\text{Wb}$

$$N\phi = 400 \times 1.07 \times 10^{-4} \approx 4.3 \times 10^{-2} \text{ Wb turns}$$
 [1]

5 *B* is a vector quantity, hence the change in the flux density is 0.40 T. [1]

change in flux = $2 \times 1.07 \times 10^{-4}$ Wb

change in flux linkage = $400 \times 2 \times 1.07 \times 10^{-4} \approx 8.6 \times 10^{-2}$ Wb turns

6 radius of coin $\approx 1.0 \text{ cm}$; $A = \pi \times 0.01^2 \text{ (allow } \pm 30 \%)$ [1]

 $\phi = BA \cos\theta = 4.9 \times 10^{-5} \times [\pi \times 0.01^2] \times \cos 24^{\circ}$ [1]

 $\phi = 1.41 \times 10^{-8} \,\text{Wb} \approx 1.4 \times 10^{-8} \,\text{Wb}$ [1]

