Table of Contents

- Base Notation
- Base Terminology
- Environments
- Agents

Base Notation

k: number of bandit arms, or size of the bandit environment

t: discrete time step

a: denotes an action. $a \in k$

 A_t : denotes the action taken at time point t

 $R_{t,a}$: realized (ex-post) reward at time point t, given that $A_t = a$

 $Q_t(a)$: reward estimate for action a at time point t

 $q_*(a) = E(R_t \mid A_t = a)$: expected reward of action a at time point t

 $N_t(a)$: number of times action a has been selected until time point t

Base Terminology

Agent: The instance/robot to solve the problem.

Environment: The problem to solve.

Exploitation (greedy action): Choosing the action with the highest estimated value $\operatorname{argmax} Q_t(a)$, for the purpose of maximising the (expected) total reward.

Exploration: Choosing non–greedy actions for optimising/updating the estimates $Q_t(a)$ for each a which is *not* argmax $Q_t(a)$. Exploration has the purpose of calculating better es-

timates for non–greedy actions, with the aim to minimize $|q_*(a)| - |Q_t(a)|$.

Valuation methods: Valuation methods define how the reward estimates $Q_t(a)$ are calculated.

valuation_mehtod = average: Considering a single action: $Q_{n+1} = \frac{R_1 + R_2 + ... + R_n}{n}$, where n denotes the n-th selection of the respective action. This can be re-written as $Q_{n+1} = Q_n + \frac{1}{n} [R_n - Q_n]$

valuation_mehtod = weighted: Considering a single action: $Q_{n+1} = Q_n + \alpha [R_n - Q_n]$

Environments

At the moment, the repository contains 3 bandit environments.

1. Stochastic Bandit Environment stochastic_bandit

The environment stochastic_bandit is a stationary bandit problem, where the reward of each arm is a random variable coming from either a gaussian normal or a log-normal distribution.

When initialising the environment, the expected rewards for each action $q_{(a)}$ * from a normal distribution, where μ and σ are argument inputs of the environment class (stochastic_moments = [0,1] per default.)

Arguments

size: the number of bandit arms k

reward_distribution: defines the theoretical distribution of rewards. Options: ["gaussian", "lognormal"].

stochastic_moments: Defines the first and second moment of the normal

distribution the expected rewards $q_*(1), \ldots, q_*(k)$ are sampled from $(\mu = 0 \text{ and } \sigma = 1 \text{ by default})$.

Explanation, 5-armed bandit case: If the environment is initialised with stochastic_moments = [1,2], the expected returns for each of the 5 reward distributions $q_*(1), \ldots, q_*(5)$ are random variables from a normal distribution with $\mu=1$ and $\sigma=2$ (N(1,2)). After the initialisation, let $q_*(5)=0.2$. Subsequently, $R_{t,5}\sim N(0.2,1)$ in case of normally distributed rewards $(\sim log N(0.2,1)$ applies if the user chose the log-normal distribution).

2. Custom Stochastic Bandit Environment stochastic_bandit_custom

The environment stochastic_bandit_custom is a stationary bandit problem. This environments grants more flexibility for defining the underlying problem, compared to stochastic_bandit.

Through the input argument mu and sigma, the user can customise the theoretical distributions which are used for reward sampling.

For stochastic_bandit_custom, the reward distribution are completely customisable, while stochastic_bandit *samples* the parameters of the rewards distributions during initialisation (i.e., the distribution parameters are stochastic itself).

Arguments

size: the number of bandit arms k

mu: an array of central values for the reward distributions, which are similar to the expected returns for each action $q_*(a)$.

sigma: an array of second stochastic moments for each reward distribution.

reward_distribution: defines the theoretical distribution of rewards. Options: ["gaussian", "lognormal"].

stochastic_moments: Defines the first and second moment of the normal distribution the expected rewards $q_*(1), \ldots, q_*(k)$ are sampled from $(\mu = 0 \text{ and } \sigma = 1 \text{ by default})$.

Explanation, 2-armed bandit case: If the environment is initialised with mu = [0,0.5] and sigma = [2,1], the rewards for both actions follow $R_{t,1} \sim N(0,2)$ and $R_{t,2} \sim N(0.5,1)$ if reward_distribution = "gaussian".

3. Adversarial (non-stationary) Bandit adversarial_bandit

The environment adversarial_bandit is a non-stationary version of the sto-chastic_bandit environment.

Arguments

size: the number of bandit arms k

reward_distribution: defines the theoretical distribution of rewards. Options: ["gaussian", "lognormal"].

stochastic_moments: Defines the first and second moment of a normal distribution which is used for sampling the stationary component of the expected rewards $q_*(1), \ldots, q_*(k)$ ($\mu = 0$ and $\sigma = 1$ by default).

Explanation, 3-armed bandit case: Given is an initiation with stochastic_moments = [1,2]. The expected rewards are then defined as $E(R_t | A_t = a) \sim N(1,2)$ for every action $a \in [1,...,k]$, implying that the expected reward $q_*(a)$ is constant over time and not dependent on t (note that k=3 for this example). Let $q_*(3) = 1.2$. We can write $R_{t,3} \sim N(1,2,0,1t)$, indicating that rewards will fluctuate stronger with increasing t.

Agents

There are currently 3 different agents available in the repository. Generally, agents differ on how to select the next action *a*.

1. Random agent RandomAgent

The RandomAgent class selects action a randomly $(a \sim U(1, k))$.

Arguments

env: a bandit environment.

q_initialisation: an array of length k with initial q-estimates. None indicates initiation with zeros.

valualtion_method: Defines how q-estimates are calculated. Must be either average or weighted.

alpha: Scale parameter, weights importance of last reward observation when calculating q-estimates. Required if valuation_method = weighted. name: Custom name for your agent (optional).

2. Epsilon-greedy agent EpsilonGreedyAgent

This agent selects a greedy action with probability a given probability, which is defined by a constant (ε). The agent uses exploitation with a probability of $1-\varepsilon$ and subsequently choose a (random) non–greedy action with probability ε . The probability for exploitation can be written as

$$P\left(A_t = \underset{a}{\operatorname{argmax}} Q_t(a)\right) = 1 - \varepsilon$$

Arguments

env: a bandit environment.

epsilon: Constant, input for ε (see above)

q_initialisation: an array of length k with initial q-estimates. None indicates initiation with zeros.

valualtion_method: Defines how q-estimates are calculated. Must be either average or weighted.

alpha: Scale parameter, weights importance of last reward observation when calculating q-estimates. Required if valuation_method = weighted. name: Custom name for your agent (optional).

3. Upper-Confidence-Bound Agent UCBAgent

The UCB-Agent takes into account how "confident" it is in his Q-estimates by taking into account how ofen the respective action has been selected. The selection method can be written as:

$$A_t = \underset{a}{\operatorname{argmax}} \left[Q_t(a) + c \sqrt{\frac{\ln t}{N_t(a)}} \right]$$

, where $N_t(a)$ is the number of times action a has been selected until time point \$t \$.

Thus, the term $\sqrt{\frac{\ln t}{N_t(a)}}$ (the uncertainty term) puts the number of times an action a

has been selected in relation to the total number of steps t, resulting in an addition to its estimate $Q_t(a)$ for actions which are less frequently selected. The constant c is a fixed parameters for scaling the uncertainty term.

Arguments

env: a bandit environment.

c: Constant, input for *c* (see above)

q_initialisation: an array of length k with initial q-estimates. None indicates initiation with zeros.

valualtion_method: Defines how q-estimates are calculated. Must be either average or weighted.

alpha: Scale parameter, weights importance of last reward observation when calculating q-estimates. Required if valuation_method = weighted.

name: Custom name for your agent (optional).