Midterm I Review Solutions

MATH 100

[1] Show that $P \implies Q$ is equivalent to

(i)
$$(\sim P) \vee Q$$

(ii)
$$(\sim Q) \implies (\sim P)$$

(iii)
$$(P \land \sim Q) \implies (R \land \sim R)$$

Proof.

(i) To prove the equivalence use a truth table:

P	Q	$\sim P$	$(\sim P) \lor Q$	$P \implies Q$
\mathbf{T}	\mathbf{T}	\mathbf{F}	T	\mathbf{T}
\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{F}
\mathbf{F}	\mathbf{T}	${f T}$	\mathbf{T}	${f T}$
\mathbf{F}	\mathbf{F}	${f T}$	$oxed{\mathbf{T}}$	\mathbf{T}

(ii) Using the previous equivalence we can avoid using a truth table:

$$(\sim Q) \implies (\sim P) \equiv Q \lor (\sim P)$$

 $\equiv (\sim P) \lor Q$
 $\equiv P \implies Q$

(iii) Once again we avoid using a truth table:

$$\begin{split} (P \wedge \sim Q) \implies (R \wedge \sim R) &\equiv (P \wedge \sim Q) \implies \mathbf{F} \\ &\equiv \sim (P \wedge \sim Q) \vee \mathbf{F} \\ &\equiv (\sim P) \vee Q \\ &\equiv P \implies Q \end{split}$$

[2] (1) Construct a truth table for $(P \implies Q) \lor (Q \implies P)$. Is this a tautology?

(2) Construct a truth table for $\{(\sim P) \implies [Q \land (\sim Q)]\} \implies P$.

Proof.

(1) The truth table takes the form:

P	Q	$P \Longrightarrow Q$	$Q \Longrightarrow P$	$(P \implies Q) \lor (Q \implies P)$
\mathbf{T}	${f T}$	\mathbf{T}	\mathbf{T}	${f T}$
\mathbf{T}	\mathbf{F}	\mathbf{F}	${f T}$	${f T}$
\mathbf{F}	${f T}$	\mathbf{T}	${f F}$	${f T}$
\mathbf{F}	\mathbf{F}	\mathbf{T}	${f T}$	${f T}$

Since all possible choices for P and Q produce the truth value T this implies that $(P \Longrightarrow Q) \lor (Q \Longrightarrow P)$ is indeed a tautology.

(2) The truth table takes the form:

P	Q	$\sim P$	$\sim Q$	$Q \wedge (\sim Q)$	$(\sim P) \implies [Q \land (\sim Q)]$	$ \left \left\{ (\sim P) \implies \left[Q \land (\sim Q) \right] \right\} \implies P \right $
\mathbf{T}	\mathbf{T}	${f F}$	\mathbf{F}	${f F}$	\mathbf{T}	\mathbf{T}
\mathbf{T}	\mathbf{F}	\mathbf{F}	${f T}$	${f F}$	$oldsymbol{ ext{T}}$	\mathbf{T}
\mathbf{F}	\mathbf{T}	${f T}$	\mathbf{F}	${f F}$	\mathbf{F}	${f T}$
\mathbf{F}	\mathbf{F}	${f T}$	${f T}$	${f F}$	\mathbf{F}	$oxed{T}$

Notice that we could have also arrived at the logical equivalence:

$$\{(\sim P) \implies [Q \land (\sim Q)]\} \implies P \equiv \{(\sim P) \implies \mathbf{F}\} \implies P$$

$$\equiv \{P \lor \mathbf{F}\} \implies P$$

$$\equiv P \implies P$$

$$\equiv (\sim P) \lor P$$

$$\equiv \mathbf{T}$$

- [3] Write the converse, contrapositive, and negation of the following conditional statements:
 - (1) If n is even, then n^2 is even.
 - (2) If $ab \neq 0$, then a = 0 or b = 0.
 - (3) If $a \neq 0$ or $b \neq 0$, then $ab \neq 0$.

Proof. Given $P \implies Q$ recall the following definitions:

- Converse: $Q \implies P$
- Contrapositive: $(\sim Q) \implies (\sim P)$
- Negation: $P \wedge (\sim Q)$

Now we proceed to identify P and Q for each part:

- (1) Let P := n is even and $Q := n^2$ is even.
 - * Converse: If n^2 is even, then n is even.
 - * Contrapositive: If n^2 is not even, then n is not even.
 - * Negation: n is even and n^2 is not even.
- (2) Let $P := (ab \neq 0)$ and Q := (a = 0 or b = 0).
 - * Converse: If a = 0 or b = 0, then $ab \neq 0$.
 - * Contrapositive: If $a \neq 0$ and $b \neq 0$, then ab = 0.
 - * Negation: $ab \neq 0$, $a \neq 0$, and $b \neq 0$
- (3) Let $P := (a \neq 0 \text{ or } b \neq 0)$ and $Q := (ab \neq 0)$.
 - * Converse: If $ab \neq 0$, then $a \neq 0$ or $b \neq 0$.
 - * Contrapositive: If ab = 0, then a = 0 and b = 0.
 - * Negation: $a \neq 0$ or $b \neq 0$, and ab = 0.

[4] A sequence $\{x_n\}$ is a Cauchy sequence provided that for each $\epsilon > 0$, there is a natural number N such that if m, n > N, then $|x_n - x_m| < \epsilon$. Without using any negative words, state what it means that $\{x_n\}$ is not a Cauchy sequence.

Proof. The given definition can be reformulated as:

A sequence
$$\{x_n\}$$
 is a Cauchy sequence provided that $\forall \epsilon > 0$, $\exists N \in \mathbb{N}$ such that $\forall m, n > N$ we have $|x_n - x_m| < \epsilon$

Negation of this formulation leads to:

A sequence
$$\{x_n\}$$
 is not a Cauchy sequence provided that $\exists \ \epsilon > 0$, $\forall \ N \in \mathbb{N}$ such that $\exists \ m, n > N$ and $|x_n - x_m| \ge \epsilon$

[5] An integer x has property P provided that for all integers a and b, whenever $x \mid ab$, $x \mid a$ or $x \mid b$. Explain what it means to say that x does not have property P.

Proof. To say that x does not have property P is equivalent to stating that $\exists a,b \in \mathbb{Z}$ such that whenever $x \mid ab$, $x \nmid a$ and $x \nmid b$.

[6] Prove that for sets A, B, and $C: A - (B \cup C) = (A - B) \cap (A - C)$.

Proof. A direct proof can be easily obtained by starting on the right-hand side:

$$(A - B) \cap (B - C) = (A \cap B^c) \cap (A \cap C^c)$$
$$= A \cap B^c \cap C^c$$
$$= A \cap (B^c \cap C^c)$$
$$= A \cap (B \cup C)^c$$
$$= A - (B \cup C)$$

[7] Prove that for any sets A and B: $\mathcal{P}(A) \subset \mathcal{P}(B) \implies A \subset B$.

Proof. Let us consider the contrapositive $A \not\subset B \Longrightarrow \mathscr{P}(A) \not\subset \mathscr{P}(B)$ instead. Proving this is logically equivalent to the original statement and we proceed via proof by contradiction. Assuming that $A \not\subset B$ we aim to show that $\mathscr{P}(A) \subset \mathscr{P}(B)$. The initial assumption tells us that there exists some $x \in A$ such that $x \not\in B$. By the definition of a power set, $\{x\} \in \mathscr{P}(A)$ yet $\{x\} \not\in \mathscr{P}(B)$. Having found an element that belongs to one set but not the other provides us with the contradiction because $\mathscr{P}(A) \not\subset \mathscr{P}(B)$.

- [8] Let x be a positive real number. Prove that if $x \frac{2}{x} > 1$, then x > 2 by the following methods:
 - (1) a direct proof.
 - (2) a proof by contrapositive.
 - (3) A proof by contradiction.

Proof.

(1) For a direct proof we can consider the following algebraic manipulation:

$$x - \frac{2}{x} > 1$$

$$x^{2} - 2 > x$$

$$x^{2} - x - 2 > 0$$

$$(x - 2)(x + 1) > 0$$

The polynomial on the left-hand has roots at x=-1,2 giving us the two intervals of interest (0,2) and $(2,\infty)$. For $x\in(0,2)$ we have that x-2<0 and x+1>0 implying the original inequality is false. For $x\in(2,\infty)$ we have that x-2>0 and x+1>0 implying the original inequality holds true. Therefore, it follows that x>2.

- (2) For a proof by contrapositive we consider the statement: If $x \le 2$, then $x \frac{2}{x} \le 1$. From the algebraic manipulation from above we can see that if $x \le 2$, then $(x 2)(x + 1) \le 0$ from which it follows that $x \frac{2}{x} \le 1$.
- (3) For a proof by contradiction we assume that $x \frac{2}{x} > 1$ and $x \le 2$. Once again, using the algebraic manipulation from above we know that the first inequality is equivalent to (x-2)(x+1) > 0. The second inequality tells us x-2 < 0 and x+1 > 0 when used in combination with the fact that x > 0. Hence, the product is negative, which is a contradiction. Therefore, it must be that x > 2.

[9] Let $n \in \mathbb{Z}$. Prove that $3 \mid (2n^2 + 1)$ iff $3 \nmid n$.

Proof.

Begin by assuming that $3 \mid (2n^2 + 1)$. This is equivalent to saying $2n^2 + 1 \equiv 0 \pmod{3}$ and can be reduced into:

$$2n^{2} + 1 \equiv 0 \pmod{3}$$

$$2n^{2} \equiv -1 \pmod{3}$$

$$2n^{2} \equiv 2 \pmod{3}$$

$$4n^{2} \equiv 4 \pmod{3}$$

$$n^{2} \equiv 1 \pmod{3}$$

$$n^{2} - 1 \equiv 0 \pmod{3}$$

$$(n-1)(n+1) \equiv 0 \pmod{3}$$

For the last line to be satisfied we need $n-1\equiv 0\pmod 3$ or $n+1\equiv 0\pmod 3$. These two equations are satisfied when n=1+3k and n=2+3k for some $k\in\mathbb{Z}$ respectively. More specifically we that when n=3k the equation becomes $-1\equiv 0\pmod 3$ which is of course a contradiction, thereby implying that $n\neq 3k$, or rather $3\nmid n$.

Assuming that $3 \nmid n$, it must be that $n \equiv 1 \pmod 3$ or $n \equiv 2 \pmod 3$. In both cases it follows that $n^2 \equiv 1 \pmod 3$ and so:

$$n^2 \equiv 1 \pmod{3}$$

 $2n^2 \equiv 2 \pmod{3}$
 $2n^2 + 1 \equiv 3 \pmod{3}$
 $2n^2 + 1 \equiv 0 \pmod{3}$

Reading off the last line tells us that $3 \mid (2n^2 + 1)$.