APRENDIZADO DE MÁQUINA - AM

Classificação: Problemas com Classes Difíceis e Avaliação de Desempenho de Classificadores

Tópicos

- Avaliação de Classificadores
 - Procedimentos de Teste e Validação
 - Holdout, Random Subsampling, Cross-Validation e Bootstrap
 - Matriz de Confusão, Curvas ROC e Métricas de Avaliação
- Problemas de Classificação com Classes Difíceis
 - Misturas de Classificadores (ensembles)
 - Bagging, Boosting e Outros
 - Técnicas Alternativas para Classes Desbalanceadas
 - Balanceamento por Sub- e/ou Sobre-Amostragem
 - Aprendizado com Custos Distintos Associados às Classes

Desempenho de Classificação

- Espera-se de um classificador que ele apresente desempenho adequado para dados não vistos
 - Acurácia
 - Pouca sensibilidade ao uso de diferentes amostras de dados
 - ...
- Desempenho do classificador deve ser avaliado
 - Para tanto utilizam-se conjuntos distintos de exemplos de treinamento e exemplos de teste
 - Permitem estimar a capacidade de generalização do classificador
 - Permitem avaliar a variância (estabilidade) do classificador

Avaliação de Desempenho

- Existem diferentes métodos para organização e utilização dos dados (exemplos) disponíveis em conjuntos de treinamento e teste
 - Holdout
 - Random Subsampling
 - Cross-Validation
 - Leave-One-Out
 - Bootstrap

Holdout

- Também conhecido como split-sample
- Técnica mais simples
- Faz uma única partição da amostra em:
 - Conjunto de treinamento
 - geralmente 1/2 ou 2/3 dos dados
 - Conjunto de teste
 - dados restantes

Holdout

- Indicado para grandes quantidades de dados
- Se aplicado em pequena quantidade de dados...
 - Poucos exemplos são usados no treinamento
 - Modelo pode depender da composição dos conjuntos de dados
 - Quanto menor o conjunto de treinamento, maior a variância (sensibilidade / instabilidade) do classificador a ser obtido
 - Quanto menor o conjunto de teste, menos confiável a acurácia estimada do classificador para dados não vistos
 - Conjuntos de treinamento e teste podem não ser independentes
 - Classe sub-representada em um será super-representada no outro

Métodos de Re-Amostragem

- Utilizam várias partições do conjunto original de dados para constituir os conjuntos de treinamento e teste
 - Random subsampling
 - Cross-validation
 - Leave-one-out
 - Bootstrap

Random Subsampling

- Múltiplas execuções de Holdout
 - Diferentes partições treinamento-teste são escolhidas de forma aleatória
 - Não pode haver interseção entre os dois conjuntos
 - Taxa de erro de classificação é calculada para cada partição
 - Erro de classificação estimado para dados não vistos é a média dos erros para as diferentes partições
- Permite uma estimativa de erro mais precisa
 - Porém, não controla número de vezes que cada exemplo é utilizado nos treinamentos e nos testes

Random Subsampling

- Exemplo:
 - Supor que o conjunto de dados original seja formado pelos dados: x1, x2, x3, x4, x5, x6, x7, x8
 - Possíveis partições:

	Treinamento	Teste
Part. 1	X_2, X_4, X_6, X_7	X_5, X_8, X_1, X_3
Part. 2	X_3, X_4, X_5, X_8	X_1, X_7, X_2, X_6
Part. 3	X_3, X_4, X_5, X_7	X_2, X_8, X_1, X_6

Cross-Validation

- Validação cruzada
- Classe de métodos para estimativa da taxa de erro verdadeira
 - k-fold cross-validation
 - Cada objeto participa o mesmo número de vezes do treinamento (k-1 vezes)
 - Cada objeto participa o mesmo número de vezes do teste (1 vez)

k-Fold Cross-Validation

- Divide conjunto de dados em k partições mutuamente exclusivas
 - A cada iteração, uma das k partições é usada para testar o modelo
 - As outras k 1 são usadas para treinar o modelo
 - Taxa de erro é tomada como a média dos erros de validação das k partições
- Exemplo Típico
 - 10-fold cross-validation

k-Fold Cross-Validation

- k-fold cross-validation estratificada
 - Mantém nas pastas as proporções de exemplos das classes presentes no conjunto total de dados
- Leave-one-out (LOO)
 - Caso particular com k = N
 - onde N = no. de exemplos

Leave-One-Out

- N pastas são utilizadas para uma amostra de tamanho N
 - N-fold cross-validation
 - A cada iteração, um dos exemplos é utilizado para testar o modelo
 - Os outros N 1 exemplos são utilizados para o treinamento
 - Taxa de erro é obtida dividindo por N o número total de erros de validação observados

Leave-One-Out

- Sua estimativa de erro é não tendenciosa
 - Média das estimativas tende à taxa verdadeira
- Porém, é computacionalmente caro
- Recomendado quando se dispõe de uma quantidade relativamente pequena de exemplos
 - Custo computacional pode ser viável
 - Usa-se quase todos os exemplos no treinamento
- 10-fold cross validation aproxima leave-oneout

5 x 2 Cross-Validation

- Conjuntos de treinamento e teste com mesmo tamanho
- Dietterich, 1998

Seja um conjunto de N exemplos

Para i = 1 até 5

Dividir N aleatoriamente em duas metades

Usar metade 1 para treinamento e metade 2 para teste

Usar metade 2 para treinamento e metade 1 para teste

5 x 2 Cross-Validation

- Mais que 5 folds
 - Sobreposição dos conjuntos se torna tão grande que não adiciona nova informação
- Menos que 5 folds
 - Não haverá exemplos suficientes para ajustar uma distribuição e testar hipóteses
 - Menos que 10 partições

Bootstrap

- Funciona melhor que cross-validation para conjuntos muito pequenos
- Forma mais simples de bootstrap:
 - Ao invés de usar sub-conjuntos dos dados, usa sub-amostras
 - Cada sub-amostra é retirada com reposição até a substituição do conjunto total de exemplos
 - Cada sub-amostra tem o mesmo no. de exemplos do conjunto original e é utilizada para treinamento
 - Os exemplos que restam são utilizados para teste

Bootstrap

- Se conjunto original tem N exemplos
 - Amostra de tamanho N tende a ter ~=63,2% dos exemplos originais (demais ~= 36,8% são réplicas)
- □ Processo é repetido b vezes
 - Resultado final = média dos b experimentos
- Existem diversas variações
 - Por exemplo, para estimar o erro do classificador
 - .632 bootstrap
 - **...**

.632 Bootstrap

- Leva em conta que há interseção entre as b amostras de teste, que envolvem apenas ~=36,8% dos exemplos cada
- Para estimar o erro do classificador, combina:
 - Acurácia de cada uma das b amostras (acc_i) com
 - □ Acurácia para o conjunto de treinamento que contém todos os dados originais (acc₁)

$$Acuracia = \frac{1}{b} \sum_{i=1}^{b} (0.632 \times acc_i + 0.368 \times acc_t)$$

Estimativa de Erro de Classificação

- Principal objetivo de um modelo é predizer com sucesso o valor de saída para novos exemplos
 - Errar o mínimo possível
- Geralmente não é possível medir com exatidão o erro do modelo para qualquer entrada
 - Sua taxa de erro deve ser estimada em um conjunto de exemplos não vistos durante o treinamento

Taxa de Classificação Incorreta

- A medida mais básica para estimar a taxa de erro de um classificador é denominada de taxa de classificação incorreta (misclassification rate):
 - É simplesmente a proporção dos exemplos de teste que são classificados incorretamente pelo classificador
 - Usualmente é mensurada indiretamente através do seu complemento, a taxa de classificação correta
 - Denominada de Acurácia
 - Acurácia = 1 taxa de classificação incorreta

Acurácia

- □ Também chamada de accuracy (do inglês)
 - Trata as classes igualmente...
 - Pode não ser adequada para classes desbalanceadas
 - Classe rara é normalmente mais interessante que a majoritária
 - No entanto, a medida tende a privilegiar a classe majoritária

Limitation of Accuracy

- Consider a 2-class problem
 - Number of Class 0 examples = 9990
 - Number of Class 1 examples = 10

- If model predicts everything to be class 0, accuracy is 9990/10000 = 99.9 %
 - Accuracy is misleading because model does not detect any class 1 example

Tipos de Erros

- Em classificação binária, em geral se adota a convenção de rotular os exemplos da classe de maior interesse como positivos (+)
 - Normalmente a classe rara ou minoritária
 - Demais exemplos são rotulados como negativos (-)
- Em alguns casos, os erros têm igual importância
- □ Em muitos casos, no entanto, esse não é o caso
 - Ex. diagnóstico negativo para indivíduo doente...

Tipos de Erros

- Dois tipos de erro em classificação binária:
 - Classificação de um exemplo N como P
 - Falso Positivo (FP alarme falso)
 - Ex.: Diagnosticado como doente, mas está saudável
 - Classificação de um exemplo P como N
 - Falso Negativo (**FN**)
 - Ex.: Diagnosticado como saudável, mas está doente

Matriz de Confusão

- Matriz de Confusão (Tabela de Contingência)
 - Pode ser utilizada para distinguir os tipos de erros
 - Base de várias medidas de desempenho alternativas à accuracy
 - Pode ser utilizada com 2 ou mais classes

	Classe Verdadeira			
Classe Prevista	1	2	3	
1	25	10	0	
2	0	40	0	
3	5	0	20	

Avaliação de Desempenho

Matriz de confusão para 2 classes

Avaliação de Desempenho

Medidas de erro

Taxa de FP =
$$\frac{FP}{FP + VN}$$

Taxa de FN =
$$\frac{FN}{VP + FN}$$

Erro do tipo I

Erro do tipo II

Exemplo

Avaliação de 3 classificadores

ets Cla	asse V P	erdac N	leira
Previ	60	20	
Jasse Z	40	80	
\smile			

Classificador	1
TFN =	
TFP =	

Exemplo

Avaliação de 3 classificadores

Cla	asse V	erdac	leira
sta	Р	N	
Previ d	60	20	
lasse Z	40	80	
0			

Classificador 1		
TFN = 0.6		
TFP = 0.3		

Exercício

Avaliar os 3 classificadores abaixo:

Clas	sificador	1
TFN	=	
TFP	=	

Avaliação de Desempenho

Medidas freqüentemente utilizadas

Taxa de FP =
$$\frac{FP}{FP + VN}$$

(Erro tipo I)

$$Precisão = \frac{VP}{VP + FP}$$

Acurácia =
$$\frac{VP + VN}{VP + VN + FP + FN}$$

Taxa de VP =
$$\frac{VP}{VP + FN}$$

(Sensibilidade)

Revocação = $\frac{VP}{VP + FN}$

Medida-F =
$$\frac{2}{1/\operatorname{prec} + 1/\operatorname{rev}}$$

Revocação vs Precisão

- Revocação (recall, sensibilidade, taxa de VP)
 - Taxa com que classifica como positivos todos os exemplos que são de fato positivos
 - Só considera os exemplos positivos
 - Normalmente classe de major interesse
- Precisão (precision)
 - Taxa com que todos os exemplos classificados como positivos são realmente positivos
 - Só considera os exemplos classificados como positivos

Especificidade

- Especificidade (Especificity)
 - Taxa com que classifica como negativos todos os exemplos que são de fato negativos
 - Só considera os exemplos negativos

F-Measure

- Medida F (F-Measure)
 - Média harmônica ponderada da precisão e da revocação

$$\frac{(1+\alpha)\times(prec\times rev)}{\alpha\times prec+rev}$$

- Medida F₁
 - Média harmônica simples (precision e recall com mesmo peso

$$\frac{2 \times (prec \times rev)}{prec + rev} = \frac{2}{\frac{1}{prec} + \frac{1}{rev}}$$

Exemplo

- Seja um classificador com a seguinte matriz de confusão, definir:
 - Acurácia
 - Precisão
 - Revocação (sensibilidade)
 - Especificidade

Exemplo

Acurácia =
$$\frac{VP + VN}{VP + VN + FP + FN}$$

$$Precisão = \frac{VP}{VP + FP}$$

Revocação =
$$\frac{VP}{VP + FN}$$

Especificidade =
$$\frac{VN}{VN + FP}$$

Exemplo

Acurácia =
$$\frac{VP + VN}{VP + VN + FP + FN}$$
 = (70 + 60) / (70 + 30 + 40 + 60) = 0.65

Precisão =
$$\frac{VP}{VP + FP}$$
 = 70/(70+40) = 0.64

Revocação =
$$\frac{VP}{VP + FN}$$
 = 70/(70+30) = 0.70

Especificidade =
$$\frac{VN}{VN + FP}$$
 = 60/(40+60) = 0.60

- A precisão é uma medida de fidelidade
- A revocação (também conhecida como cobertura ou sensibilidade) é uma medida de completude.
- No contexto de recuperação de informação:
 - a precisão é o número de elementos relevantes recuperados divididos pelo número total de elementos recuperados

$$Precis\~ao = rac{N\'umero\ de\ elementos\ relevantes\ recuperados}{N\'umero\ total\ de\ elementos\ recuperados}$$

 a revocação é definida como o número de elementos relevantes recuperados dividido pelo número total de elementos relevantes existentes (que deveriam ter sido recuperados)

$$Revocação = \frac{Número\ de\ elementos\ relevantes\ recuperados}{Número\ total\ de\ elementos\ relevantes}$$

- O conceito de precisão x revocação é bastante utilizado no contexto de recuperação de imagens baseados no conteúdo
 - CBIR (do inglês Content Based Image Retrieval)
- A precisão mede a fração de folhas relevantes recuperadas (folhas da mesma espécie da consulta) pelo número de folhas recuperadas
- A revocação mede a fração de folhas relevantes pelo total de folhas relevantes existentes na base de dados.

DS: 2.7315

DS: 2.717

Viburnum opulus Viburnum opulus Viburnum opulus Viburnum opulus Viburnum opulus (Query) DS: 1.5985 DS: 1.971 DS: 2.7025 DS: 2.6602 Viburnum lantana Viburnum opulus Viburnum opulus Viburnum opulus Vibumum opulus

DS: 2.9172

DS: 2.9965

DS: 3.1047

Morus nigra (Query)

Tilia platyphyllos

DS: 2.6759

Morus nigra

DS: 1.8107

Tilia platyphyllos

DS: 2.7048

Morus nigra

DS: 1.9034

Tilia platyphyllos

DS: 2.7196

Syringa vulgaris

DS: 2.3599

Cornus mas

DS: 2.7909

Morus nigra

DS: 2.5631

Tilia platyphyllos

DS: 2.8151

- Para a precisão o valor de 1 significa que cada resultado obtido por uma pesquisa foi relevante (mas não diz nada sobre se todos os elementos relevantes foram recuperados), enquanto
- O valor 1 para revocação significa que todos os elementos relevantes foram recuperados pela pesquisa (mas nada diz sobre quantos elementos irrelevantes também foram recuperados).

- Por vezes pode existir uma relação inversa entre precisão e revocação, onde é possível aumentar uma ao custo de reduzir outra.
 - Pode-se, por exemplo, aumentar a revocação recuperando mais elementos, ao custo de um número crescente de elementos irrelevantes recuperados (diminuindo a precisão).

Observação

- Do inglês, Receiver Operating Characteristics
- Medida de desempenho originária da área de processamento de sinais
 - Muito utilizada na área médica
 - Mostra relação entre custo (taxa de FP) e benefício (taxa de VP)
 - Taxa de FP = Erro do Tipo I (alarmes falsos)
 - Taxa de VP (Recall, Sensibilidade) = 1–Erro do Tipo II

Exemplo

 Plotar no gráfico ROC os 3 classificadores do exemplo anterior

Classificador 1

TVP = 0.4

TFP = 0.3

Classificador2

TVP = 0.7

TFP = 0.5

Classificador 3

TVP = 0.6

TFP = 0.2

- Informalmente, melhor classificador é aquele cujo ponto está mais a noroeste
 - Classificadores próximos do canto inferior esquerdo são conservadores
 - Só fazem classificações positivas com forte evidência
 - Assim, cometem poucos erros de FP
 - Classificadores próximos ao canto superior direito são liberais (sob risco de alarme falso)

- Alguns classificadores produzem saídas discretas
 - Por exemplo, ADs e SVMs
 - Atribuem cada exemplo a uma das classes
 - Produzem um ponto simples no gráfico ROC
- Outros classificadores produzem como saída um escore (e.g. uma probabilidade) associado a cada classe
 - Por exemplo, Naive Bayes e RNAs
 - Permitem gerar uma curva no gráfico ROC
- Curvas ROC permitem uma melhor comparação de classificadores
 - São insensíveis a mudanças na distribuição das classes

- Classificadores que geram escores:
 - Diferentes valores de limiar para os scores associados à classe Positiva podem ser utilizados para gerar um classificador
 - Cada valor produz um classificador diferente
 - Corresponde a um ponto diferente no gráfico ROC
 - Ligação dos pontos gera uma Curva ROC

Instância	Classe V.	Score P
6	Р	0.9
3	Р	0.8
2	N	0.7
9	Р	0.6
5	Р	0.6
1	N	0.5
7	N	0.3
8	N	0.2
4	N	0.2
10	N	0.1

- Ordenar exemplos em ordem decrescente por valor de predição (score) para a classe Positiva (P)
- Para cada limiar de decisão dado por cada valor de score:
 - Classificar todos os padrões
 - Calcular VP, VN, FP, FN
 - Calcular TVP e TFP

$$Classe = \begin{cases} predição \ge \theta, P \\ predição < \theta, N \end{cases}$$

How to Construct an ROC curve

Instance	Pr(+ x)	True Class			
1	0.95	+			
2	0.93	+			
3	0.87	-			
4	0.85	-			
5	0.85	-			
6	0.85	+			
7	0.76	-			
8	0.53	+			
9	0.43	-			
10	0.25	+			

- Use classifier that produces posterior probability Pr(+|x) for each test instance x
- Sort the instances according to Pr(+|x) in decreasing order
- Apply threshold at each unique value of Pr(+|x)
- Count the number of TP, FP, TN, FN at each threshold
- □ TP rate, TPR = TP/(TP+FN)
- FP rate, FPR = FP/(FP + TN)

Classe Verdadeira	+	1	+	1	1	-	+	1	+	+	
Score +	0.25	0.43	0.53	0.76	0.85	0.85	0.85	0.87	0.93	0.95	1.00
VP	5	4	4	3	3	3	3	2	2	1	0
FP	5	5	4	4	3	2	1	1	0	0	0
VN	0	0	1	1	2	3	4	4	5	5	5
FN	0	1	1	2	2	2	2	3	3	4	5
TVP	1	8.0	8.0	0.6	0.6	0.6	0.6	0.4	0.4	0.2	0
TFP	1	1	8.0	8.0	0.6	0.4	0.2	0.2	0	0	0

- Classificadores que geram valores discretos
 - Podem ser modificados para gerar escores
 - Para ADs, nós folhas podem conter a fração de exemplos de treinamento positivos
 - Para SVMs, saída pode ser distância do exemplo ao limiar de decisão (hiperplano separador)
 - Para K-NN, saída pode ser a fração dos k-vizinhos mais próximos que pertencem à classe Positiva

...

Área Sob a Curva ROC (AUC)

- Estimativa do desempenho de classificadores
- Gera um valor contínuo no intervalo [0,1]
 - Quanto maior melhor
 - Adição de áreas de sucessivos trapezóides
 - Possível provar que equivale à probabilidade do classificador atribuir um score Pr(+|x) maior a um exemplo x positivo (classe +) escolhido aleatoriamente que a um exemplo x negativo escolhido aleatoriamente

Nenhuma Discriminação

Discriminação Perfeita

- Nota: um classificador com maior AUC pode apresentar AUC pior em trechos da curva...
 - AUC não deve ser vista como um critério absoluto
 - Deve ser vista como uma medida de desempenho auxiliar às demais vistas anteriormente!

Using ROC for Model Comparison

- No model consistently outperform the other
 - M₁ is better for small FPR
 - M₂ is better for large FPR
- Area Under the ROC curve
 - Ideal:
 - Area = 1
 - Random guess:
 - \blacksquare Area = 0.5

Nota:

- Para maior confiabilidade da análise, usualmente utiliza-se algum dos procedimentos de avaliação de desempenho vistos anteriormente (e.g. validação cruzada) para gerar múltiplas curvas ROC
 - AUC mais confiável é tomada a partir de uma curva gerada a partir de algum tipo de média das curvas
 ROC
 - Variância das curvas é um outro fator de avaliação

Análise ROC

- Cuidado!
 - Curva ROC ideal (AUC = 1) não é obtida apenas por classificador que discrimine perfeitamente as classes
 - Qualquer classificador que produza scores maiores para os exemplos positivos que para os exemplos negativos (sem exceção) possui AUC = 1!!!
 - Exercício: Pense e explique o porquê!

Análise ROC

Nota:

- Distribuição das classes é dada pela proporção entre os valores da 1ª e 2ª colunas da matriz de confusão
- Ao contrário de outras medidas, o gráfico ROC não se modifica com alterações nessa proporção
 - Sendo taxas, a Taxa de VP e a Taxa de FP são insensíveis às quantidades de exemplos P e N nas respectivas colunas da matriz
 - Logo, são insensíveis à distribuição das classes
 - (Des)balanceamento não afeta o gráfico ROC!
- Quais medidas de desempenho vistas possuem essa propriedade ?

Análise ROC

Nota:

- Existem análises ROC para problemas multiclasses, porém são muito mais complexas que para problemas binários
- Por exemplo, pode-se considerar as relações ROC existentes entre cada par de classes...
- Ou considerar as relações ROC existentes entre cada classe e as demais classes
 - Uma classe vista como positiva e as demais como classe negativa

Comparações de Classificadores

- Métodos vistos até aqui permitem avaliar e portanto comparar o desempenho de dois ou mais classificadores em um mesmo conjunto de teste, de uma mesma base de dados
- Para uma avaliação mais confiável, com rigor estatístico, envolvendo diferentes conjuntos de teste e/ou bases de dados
 - vide próxima aula...

Classes Difíceis

 Alguns problemas de classificação são caracterizados por possuírem classes difíceis de serem aprendidas por um classificador

- Duas das principais razões são:
 - Distribuição espacial complexa no espaço dos atributos
 - Classes desbalanceadas
 - Classes raras

Classes Desbalanceadas

- No. de exemplos varia para as diferentes classes
 - Natural ao domínio; ou
 - Problema com geração / coleta de dados
- Várias técnicas de AM não conseguem ou têm dificuldade para lidar com esse problema
 - Tendência a classificar na(s) classe(s) majoritária(s)

Classes Difíceis / Desbalanceadas

- Principais Alternativas:
 - Balanceamento Artificial
 - sobre-amostragem, sub-amostragem, híbrido
 - Classificação com Custos Associados
 - Classificação com 1 Classe (1 Class Problem)
 - Múltiplos Classificadores (Ensembles)
 - bagging, boosting, random-forests, ...

Sobre-Amostragem

- Sobre-amostragem (oversampling) é uma técnica de balanceamento artificial dos dados
 - Consiste em aumentar artificialmente os exemplos da classe minoritária (positiva) até que os dados de treinamento estejam balanceados
 - Duas Abordagens:
 - Replicação
 - Repovoamento
 - Pode potencializar ruído e risco de overfitting

Sobre-Amostragem

- Sobre-amostragem (oversampling) é uma técnica de balanceamento artificial dos dados
 - Replicação:
 - Não insere informação nova, apenas aumenta a representatividade de padrões já existentes, fazendo com que esses sejam mais significativos para o algoritmo de AM
 - Repovoamento:
 - Cria padrões novos intermediários aos padrões já existentes e seus k vizinhos mais próximos. Logo, insere informação nova, porém artificial ...

Sobre-Amostragem

Mauricio Falvo, Joao Batista Florindo, and Odemir Martinez Bruno. A Method to Generate Artificial 2D Shape Contour Based in Fourier Transform and Genetic Algorithms. Advanced Concepts for Intelligent Vision Systems, 207-215, 2011

Sub-Amostragem

- Sub-amostragem (undersampling) é uma técnica de balanceamento artificial dos dados
 - Consiste em diminuir artificialmente os exemplos da classe majoritária (negativa) até que os dados de treinamento estejam balanceados
 - Pode descartar informação útil sobre a classe majoritária, especialmente se houver apenas um número muito pequeno de exemplos da minoritária. Solução:
 - Repetir amostragem várias vezes; ou
 - Fazer amostragem informada
 - Desprivilegiar casos seguros; privilegiar exemplos de fronteira

Amostragem Híbrida

 Amostragem híbrida mescla oversampling e undersampling para amenizar os possíveis problemas de cada abordagem

Classificação com Custos Associados

Cost Matrix

	PREDICTED CLASS		
ACTUAL CLASS	C(i j)	Class=Yes	Class=No
	Class=Yes	C(Yes Yes)	C(No Yes)
	Class=No	C(Yes No)	C(No No)

C(i|j): Cost of misclassifying class j example as class i

Computing Cost of Classification

Cost Matrix	PREDICTED CLASS		
ACTUAL CLASS	C(i j)	+	•
	+	-1	100
	-	1	0

Confusion Matrix

Model M ₁	PREDICTED CLASS		
ACTUAL CLASS		+	•
	+	150	40
	•	60	250

Accuracy = 80%

Cost = 3910

Confusion Matrix

Model M ₂	PREDICTED CLASS		
ACTUAL CLASS		+	-
	+	250	45
	•	5	200

Accuracy = 90%

Cost = 4255

Cost vs Accuracy

Count	PREDICTED CLASS		
ACTUAL CLASS		Class=Yes	Class=No
	Class=Yes	а	b
	Class=No	С	d

Cost is a linear function of Accuracy if

1. C(Yes|No)=C(No|Yes) = q

2. C(Yes|Yes)=C(No|No) = p

N = a + b + c + d

1.
$$C(Yes|No)=C(No|Yes)=q$$

$$N = a + b + c + d$$

Cost	PREDICTED CLASS		
ACTUAL CLASS		Class=Yes	Class=No
	Class=Yes	р	q
	Class=No	q	р

Accuracy =
$$(a + d)/N$$

Cost = p (a + d) + q (b + c)
= p (a + d) + q (N - a - d)
= q N - (q - p)(a + d)
= N [q - (q - p)
$$\times$$
 Accuracy]

Aprendizado Sensível a Custo

- Existem diferentes maneiras de incorporar custos em um sistema classificador
- Em árvores de decisão, por exemplo, custos podem ser incorporados de diferentes maneiras:
 - Nas medidas de escolha dos atributos
 - minimizar custos, não somente a impureza
 - Nos critérios para poda da árvore ou regras
 - Na determinação do limiar de decisão em cada folha

ADs com Custos Associados

- ADs com custos associados às classes via escolha do limiar de decisão nas folhas:
 - Uma das formas mais simples e intuitivas
 - Consiste em atribuir a cada nó folha o rótulo da classe com custo total mínimo, ao invés do rótulo da classe da maioria. Por exemplo:
 - Nó com 3 exemplos positivos com custo de classificação incorreta = 10 e 15 exemplos negativos com custo = 1
 - Rótulo da Maioria (negativo)=> Custo = 30
 - Rótulo de Custo Mínimo (positivo) => Custo = 15

Classificação com 1 Classe

- Classes raras
 - Obter dados positivos:
 - Difícil; e/ou
 - Custoso
 - Por exemplo:
 - Mulheres grávidas de gêmeos

Classificação com 1 Classe

- Aprendizado apenas de uma das classes
 - ou de ambas as classes separadamente
- Normalmente interesse maior é pelo aprendizado da classe rara (positiva)
 - Por exemplo, indução de regras que descrevam somente os exemplos positivos
 - Qualquer exemplo que não satisfaça as premissas das regras induzidas é classificado como negativo por default

Ensemble Methods

Construct a set of base classifiers from the training data

- Predict class label of previously unseen records by aggregating predictions made by multiple classifiers
 - Diversity is required

General Idea

Why does it work?

- Suppose there are 25 base classifiers
 - □ Each classifier has error rate, E = 0.35
 - Assume classifiers are independent
 - From a Bernoulli Trial perspective, the probability that the ensemble classifier makes a wrong prediction is:

$$\sum_{i=13}^{25} {25 \choose i} \varepsilon^{i} (1 - \varepsilon)^{25 - i} = 0.06$$

Ensembles

- Existem diferentes maneiras de introduzir a diversidade necessária aos classificadores base
 - Depende do(s) tipo(s) de classificador(es) usados
 - Algumas das abordagens principais são:
 - Bagging
 - Boosting
 - Random Forests

Bagging

- Realiza bootstrap para gerar uma coleção de bases de dados com o mesmo tamanho da base original de treinamento (~37% réplicas)
- Utiliza classificadores base instáveis
 - Sensíveis a perturbações pequenas nos dados
 - portanto às diferentes amostras de dados bootstrap
 - Exemplos: K-NN (K pequeno), ADs sem poda, RNAs,...
 - Caso contrário, ensemble pode desempenhar pior que classificador único treinado na base original!

Boosting

- Procedimento iterativo voltado para melhorar o desempenho de classificação através do enfoque progressivo em classes mais difíceis
 - A cada rodada um classificador é treinado
 - Exemplos classificados incorretamente recebem um aumento nos seus pesos (inicialmente todos iguais)
 - Pesos podem ser usados na rodada subsequente:
 - Por classificador com custos distintos associados aos exemplos
 - Como distribuição de probabilidade para amostragem (bootstrap)
- Ao contrário de bagging, são muito susceptíveis a overfitting por enfocar exemplos particulares, especialmente em dados com ruído
- Exemplo: AdaBoost

Random Forests

- São ensembles constituídos de ADs
- ADs são algoritmos determinísticos, porém aleatoriedade pode ser inserida. Por exemplo:
 - Bagging com ADs
 - Forest-RI: restrição dos atributos teste elegíveis em cada nó a um sub-conjunto dos atributos candidatos originais (sub-conjunto selecionado aleatoriamente)
 - Seleção aleatória do atributo teste em cada nó dentre os F melhores atributos, ao invés do melhor