More on Theta Functions and the Generating Function

Chapter 10

Complex Function Theory 2

July 28, 2023

The modular character of Θ

Recall that \wp and E_k were reflected by

$$\tau \mapsto \tau + 1$$
 and $\tau \mapsto -1/\tau$.

Since
$$\Theta(z \mid \tau + 1) \neq \Theta(z \mid \tau)$$
, let $T : \tau \mapsto \tau + 2$ and $S : \tau \mapsto -1/\tau$.

We will study the transformation of $\Theta(z \mid \tau)$ under the mapping $\tau \mapsto -1/\tau$.

00000

The modular character of Θ

Theorem 1.6

If $\tau \in \mathbb{H}$, then

$$\Theta(z\mid -1/\tau) = \sqrt{\frac{\tau}{i}} e^{\pi i \tau z^2} \Theta(z\tau\mid \tau) \quad \text{for all } z\in \mathbb{C}.$$

where the branch is cut so that $\sqrt{ au/i}$ is defined on \mathbb{H} , and is positive when $\tau = it, t > 0.$

Corollaries

Corollary 1.7

If $\tau \in \mathbb{H}$, then $\theta(-1/\tau) = \sqrt{\tau/i}\theta(\tau)$.

Corollaries

Corollary 1.8

If $\tau \in \mathbb{H}$, then

$$\theta(1 - 1/\tau) = \sqrt{\frac{\tau}{i}} \sum_{n = -\infty}^{\infty} e^{\pi i (n + 1/2)^2 \tau}$$
$$= \sqrt{\frac{\tau}{i}} (2e^{\pi i \tau/4})$$

The second identity means that $\theta(1-1/\tau) \sim \sqrt{\tau/i} 2e^{i\pi\tau/4}$ as $\text{Im}(\tau) \to \infty$.

The Dedekind eta function

Definition

The Dedekind eta function is defined for $\mathrm{Im}(\tau)>0$ by

$$\eta(\tau) = e^{\pi i \tau / 12} \prod_{n=1}^{\infty} (1 - e^{2\pi i n \tau})$$

Proposition 1.9

If $Im(\tau) > 0$, then $\eta(-1/\tau) = \sqrt{\tau/i}\eta(\tau)$.

Generating functions

Given a sequence $\{F_n\}_{n=0}^{\infty}$, we define its generating function as

$$F(x) = \sum_{n=0}^{\infty} F_n x^n$$

Example

The partition function. If n is a positive integer, let p(n) denote the number of ways n can be written as a sum of positive integers. Now consider the sequence $\{p(n)\}$.

For |x|<1, we can write $1/(1-x^k)=\sum_{m=0}^{\infty}x^{km}$ and multiply these to obtain p(n) as the coefficient of x^n .

The partition sequence

Theorem 2.1

If
$$|x| < 1$$
, then $\sum_{n=0}^{\infty} p(n)x^n = \prod_{k=1}^{\infty} \frac{1}{1-x^k}$.

We may obtain this result by using the fact that $\frac{1}{1-x^k}=\sum_{m=0}^\infty x^{km}$. (Try yourself!)

The partition sequence

Now we consider $p_o(n)$, the number of partitions of n into odd parts, and $p_u(n)$, the number of partitions of n into unequal parts.

Remarkably, $p_o = p_u$.

The partition sequence

Note that $\prod (1+x^n)$ is the generating function for p_u , and $\prod 1/(1-x^{2n-1})$ is the generating function for p_o . To prove this, use the facts that

$$\prod_{n=1}^{\infty} (1+x^n) \prod_{n=1}^{\infty} (1-x^n) = \prod_{n=1}^{\infty} (1-x^{2n})$$

and

$$\prod_{n=1}^{\infty} (1 - x^{2n}) \prod_{n=1}^{\infty} (1 - x^{2n-1}) = \prod_{n=1}^{\infty} (1 - x^n)$$

Deeper into the partiton sequence

Let $p_{e,u}(n)$ denote the number of partitions of n into an even number of unequal parts, and $p_{o,u}(n)$ denote the number of partitions of n into an odd number of unequal parts.

Definition

Integers of the form k(3k+1)/2 are called **pentagonal numbers**

It is know that $p_{e,u}=p_{o,u}$ unless n is a pentagonal number. If n is a pentagonal number, then $p_{e,u}(n)-p_{o,u}(n)=(-1)^k$ for n=k(3k+1)/2.

Deeper into the partition sequence

Proposition 2.2

$$\prod_{n=1}^{\infty} (1 - x^n) = \sum_{k=-\infty}^{\infty} (-1)^k x^{k(3k+1)/2}$$

Deeper into the partition sequence

Proof

First observe that

$$\prod_{n=1}^{\infty} (1 - x^n) = \sum_{n=1}^{\infty} [p_{e,u}(n) - p_{o,u}(n)] x^n$$

^a If we set $x=e^{2\pi i u}$, then

$$\prod_{n=1}^{\infty} (1 - e^{2\pi i n u}) = \prod_{n=1}^{\infty} (1 - q^{2n})(1 + q^{2n-1}e^{2\pi i z})(1 + q^{2n-1}e^{-2\pi i z})$$

where $q=e^{3\pi i u}$ and z=1/2+u/2. Note that by Thm 1.3, the product is

$$\sum_{n=-\infty}^{\infty} e^{3\pi i n^2 u} (-1)^n e^{2\pi i n u/2}$$

a7