LECTURE 14: BAYESIAN INFERENCE AND MONTE CARLO METHODS

STAT 545: INTRO. TO COMPUTATIONAL STATISTICS

Vinayak Rao Purdue University

November 1, 2018

Given a set of observations X, MLE maximizes the likelihood:

$$\theta_{MLE} = \operatorname{argmax} p(X|\theta)$$

Given a set of observations X, MLE maximizes the likelihood:

$$\theta_{MLE} = \operatorname{argmax} p(X|\theta)$$

What if we believe θ is close to 0, is sparse, or is smooth? Encode this with a 'prior' probability $p(\theta)$.

· Represents a priori beliefs about heta

Given a set of observations X, MLE maximizes the likelihood:

$$\theta_{MLE} = \operatorname{argmax} p(X|\theta)$$

What if we believe θ is close to 0, is sparse, or is smooth?

Encode this with a 'prior' probability $p(\theta)$.

· Represents a priori beliefs about heta

Given observations, we can calculate the 'posterior':

$$p(\theta|X) = \frac{p(X|\theta)p(\theta)}{P(X)}$$

Given a set of observations X, MLE maximizes the likelihood:

$$\theta_{MLE} = \operatorname{argmax} p(X|\theta)$$

What if we believe θ is close to 0, is sparse, or is smooth?

Encode this with a 'prior' probability $p(\theta)$.

· Represents a priori beliefs about heta

Given observations, we can calculate the 'posterior':

$$p(\theta|X) = \frac{p(X|\theta)p(\theta)}{P(X)}$$

We can calculate the maximum a posteriori (MAP) solution:

$$\theta_{MAP} = \operatorname{argmax} p(\theta|X)$$

Given a set of observations X, MLE maximizes the likelihood:

$$\theta_{MLE} = \operatorname{argmax} p(X|\theta)$$

What if we believe θ is close to 0, is sparse, or is smooth?

Encode this with a 'prior' probability $p(\theta)$.

· Represents a priori beliefs about heta

Given observations, we can calculate the 'posterior':

$$p(\theta|X) = \frac{p(X|\theta)p(\theta)}{P(X)}$$

We can calculate the maximum a posteriori (MAP) solution:

$$\theta_{MAP} = \operatorname{argmax} p(\theta|X)$$

Point estimate discards information about uncertainty in heta

Bayesian inference works with the entire distribution $p(\theta|X)$.

· Represents a posteriori beliefs about heta

Allows us to maintain and propagate uncertainty.

Bayesian inference works with the entire distribution $p(\theta|X)$.

· Represents a posteriori beliefs about θ

Allows us to maintain and propagate uncertainty.

E.g. consider the likelihood $p(X|\theta) = N(X|\theta, 1)$

• What is a good prior over θ ?

Bayesian inference works with the entire distribution $p(\theta|X)$.

· Represents a posteriori beliefs about heta

Allows us to maintain and propagate uncertainty.

E.g. consider the likelihood $p(X|\theta) = N(X|\theta, 1)$

- What is a good prior over θ ?
- What is a convenient prior over θ ?

The posterior distribution $p(\theta|X) \propto p(X|\theta)p(\theta)$ summarizes all new information about θ provided by the data In practice, these distributions are unwieldy. Need approximations.

The posterior distribution $p(\theta|X) \propto p(X|\theta)p(\theta)$ summarizes all new information about θ provided by the data

In practice, these distributions are unwieldy.

Need approximations.

An exception: 'Conjugate priors' for exponential family distributions.

Let observations come from an exponential-family:

$$p(x|\theta) = \frac{1}{Z(\theta)}h(x)\exp(\theta^{\top}\phi(x))$$
$$= h(x)\exp(\theta^{\top}\phi(x) - \zeta(\theta)) \quad \text{with } \zeta(\theta) = \log(Z(\theta))$$

Place a prior over θ :

Let observations come from an exponential-family:

$$p(x|\theta) = \frac{1}{Z(\theta)}h(x)\exp(\theta^{\top}\phi(x))$$
$$= h(x)\exp(\theta^{\top}\phi(x) - \zeta(\theta)) \quad \text{with } \zeta(\theta) = \log(Z(\theta))$$

Place a prior over θ :

$$p(\theta|a,b) \propto \eta(\theta) \exp(\theta^{\top}a - \zeta(\theta)b)$$

Let observations come from an exponential-family:

$$p(x|\theta) = \frac{1}{Z(\theta)}h(x)\exp(\theta^{\top}\phi(x))$$
$$= h(x)\exp(\theta^{\top}\phi(x) - \zeta(\theta)) \quad \text{with } \zeta(\theta) = \log(Z(\theta))$$

Place a prior over θ :

$$p(\theta|a,b) \propto \eta(\theta) \exp(\theta^{\top}a - \zeta(\theta)b)$$

Given a set of observations $X = \{x_1, \dots, x_N\}$

$$p(\theta|X) \propto \left(\prod_{i=1}^{N} h(x_i) \exp(\theta^{\top} \phi(x_i) - \zeta(\theta))\right) \eta(\theta) \exp(\theta^{\top} a - \zeta(\theta)b)$$

Let observations come from an exponential-family:

$$p(x|\theta) = \frac{1}{Z(\theta)}h(x)\exp(\theta^{\top}\phi(x))$$
$$= h(x)\exp(\theta^{\top}\phi(x) - \zeta(\theta)) \quad \text{with } \zeta(\theta) = \log(Z(\theta))$$

Place a prior over θ :

$$p(\theta|a,b) \propto \eta(\theta) \exp(\theta^{\top}a - \zeta(\theta)b)$$

Given a set of observations $X = \{x_1, \dots, x_N\}$

$$p(\theta|X) \propto \left(\prod_{i=1}^{N} h(x_i) \exp(\theta^{\top} \phi(x_i) - \zeta(\theta))\right) \eta(\theta) \exp(\theta^{\top} a - \zeta(\theta)b)$$
$$\propto \eta(\theta) \exp\left(\theta^{\top} \left(a + \sum_{i=1}^{N} \phi(x_i)\right) - \zeta(\theta)(b + N)\right)$$

CONJUGATE PRIORS (CONTD.)

Prior over θ : exp. fam. distribution with parameters (a, b).

Posterior: same family with parameters $(a + \sum_{i=1}^{N} \phi(x_i), b + N)$.

Rare instance where analytical expressions for posterior exists.

In most cases a simple prior quickly leads to a complicated posterior, requiring Monte Carlo methods.

CONJUGATE PRIORS (CONTD.)

Prior over θ : exp. fam. distribution with parameters (a, b).

Posterior: same family with parameters $(a + \sum_{i=1}^{N} \phi(x_i), b + N)$.

Rare instance where analytical expressions for posterior exists.

In most cases a simple prior quickly leads to a complicated posterior, requiring Monte Carlo methods.

Note the conjugate prior is an entire family of distributions.

- Actual distribution is chosen by setting the parameters (a, b) (a has the same dimension as ϕ , b is a scalar)
- · These might be set by e.g. talking to a domain expert.

Let $x_i \in \{0,1\}$ indicate if a new drug works for subject *i*.

The unknown probability of success is π : $x \sim \text{Bern}(\pi)$.

Let $x_i \in \{0,1\}$ indicate if a new drug works for subject i.

The unknown probability of success is π : $x \sim \text{Bern}(\pi)$.

$$p(x|\pi) = \pi^{\mathbb{1}(x=1)} (1-\pi)^{\mathbb{1}(x=0)}$$

$$= \exp(\mathbb{1}(x=1)\log(\pi) + (1-\mathbb{1}(x=1))\log(1-\pi))$$

$$= (1-\pi)\exp\left(\mathbb{1}(x=1)\log\frac{\pi}{1-\pi}\right)$$

$$= \frac{1}{1+\exp(\theta)}\exp(\phi(x)\theta)$$

Let $x_i \in \{0,1\}$ indicate if a new drug works for subject i.

The unknown probability of success is π : $x \sim \text{Bern}(\pi)$.

$$p(x|\pi) = \pi^{\mathbb{1}(x=1)} (1-\pi)^{\mathbb{1}(x=0)}$$

$$= \exp(\mathbb{1}(x=1)\log(\pi) + (1-\mathbb{1}(x=1))\log(1-\pi))$$

$$= (1-\pi)\exp\left(\mathbb{1}(x=1)\log\frac{\pi}{1-\pi}\right)$$

$$= \frac{1}{1+\exp(\theta)}\exp(\phi(x)\theta)$$

This is an exponential family distrib., with

$$\theta = \log \frac{\pi}{1-\pi}, \phi(x) = \mathbb{1}(x = 1), h(x) = 1, Z(\theta) = (1 + \exp(\theta)).$$

Let $x_i \in \{0,1\}$ indicate if a new drug works for subject i.

The unknown probability of success is π : $x \sim \text{Bern}(\pi)$.

$$p(x|\pi) = \pi^{\mathbb{1}(x=1)} (1-\pi)^{\mathbb{1}(x=0)}$$

$$= \exp(\mathbb{1}(x=1)\log(\pi) + (1-\mathbb{1}(x=1))\log(1-\pi))$$

$$= (1-\pi)\exp\left(\mathbb{1}(x=1)\log\frac{\pi}{1-\pi}\right)$$

$$= \frac{1}{1+\exp(\theta)}\exp(\phi(x)\theta)$$

This is an exponential family distrib., with

$$\theta = \log \frac{\pi}{1-\pi}, \phi(x) = \mathbb{1}(x=1), h(x) = 1, Z(\theta) = (1 + \exp(\theta)).$$

Defining $\zeta(\theta) = \log Z(\theta)$ as in the previous slide,

$$p(x|\theta) = \exp(\phi(x)\theta - \zeta(\theta))$$

When $\theta = \log \frac{\pi}{1-\pi}$ is unknown, a Bayesian places a prior on it.

As before, define an exp. fam. prior with parameters \vec{a} :

$$p(\theta|\vec{a}) \propto \exp(a_1\theta + a_2\zeta(\theta))$$

When $\theta = \log \frac{\pi}{1-\pi}$ is unknown, a Bayesian places a prior on it.

As before, define an exp. fam. prior with parameters \vec{a} :

$$p(\theta|\vec{a}) \propto \exp(a_1\theta + a_2\zeta(\theta))$$

Then given data $X = (x_1, \ldots, x_N)$,

$$p(\theta|\vec{a},X) \propto p(\theta,X|\vec{a})$$

$$\propto \exp\left(\left(a_1 + \sum_{i=1}^{N} \mathbb{1}(x_i = 1)\right)\theta + (a_2 - N)\zeta(\theta)\right)$$

When $\theta = \log \frac{\pi}{1-\pi}$ is unknown, a Bayesian places a prior on it.

As before, define an exp. fam. prior with parameters \vec{a} :

$$p(\theta|\vec{a}) \propto \exp(a_1\theta + a_2\zeta(\theta))$$

Then given data $X = (x_1, \ldots, x_N)$,

$$p(\theta|\vec{a},X) \propto p(\theta,X|\vec{a})$$

$$\propto \exp\left(\left(a_1 + \sum_{i=1}^{N} \mathbb{1}(x_i = 1)\right)\theta + (a_2 - N)\zeta(\theta)\right)$$

Thus, the posterior is in the same family as the prior, but with updated parameters $(a_1 + \sum_{i=1}^{N} \mathbb{1}(x_i = 1), a_2 - N)$.

Looking at the prior more carefully, we see:

$$p(\theta|\vec{a}) \propto \exp(a_1\theta + a_2\zeta(\theta))$$

$$\propto \exp\left(a_1\log\frac{\pi}{1-\pi} + a_2\log(1-\pi)\right)$$

$$\propto \pi^{a_1}(1-\pi)^{(a_2-a_1)}$$

$$= \pi^{b_1-1}(1-\pi)^{(b_2-1)}$$

This is just the Beta (b_1, b_2) distribution, and you can check that the posterior is Beta $(b_1 + \sum_{i=1}^{N} \mathbb{1}(x_i = 1), b_2 + \sum_{i=1}^{N} \mathbb{1}(x_i = 0))$.

Looking at the prior more carefully, we see:

$$p(\theta|\vec{a}) \propto \exp(a_1\theta + a_2\zeta(\theta))$$

$$\propto \exp\left(a_1\log\frac{\pi}{1-\pi} + a_2\log(1-\pi)\right)$$

$$\propto \pi^{a_1}(1-\pi)^{(a_2-a_1)}$$

$$= \pi^{b_1-1}(1-\pi)^{(b_2-1)}$$

This is just the Beta (b_1, b_2) distribution, and you can check that the posterior is Beta $(b_1 + \sum_{i=1}^{N} \mathbb{1}(x_i = 1), b_2 + \sum_{i=1}^{N} \mathbb{1}(x_i = 0))$.

 b_1 and b_2 are sometimes called pseudo-observations, and capture our prior beliefs: before seeing any x's our prior is as if we saw b_1 successes and b_2 failures. After seeing data, we factor actual observations into the pseudo-observations.

What about the situation when the posterior $p(\theta|X)$ is no longer simple/available in closed form?

What information about $p(\theta|X)$ do we really need?

Typically, expectations of different functions g:

$$\mathbb{E}_{\theta|X}[g] = \int d\theta g(\theta) p(\theta|X)$$

What about the situation when the posterior $p(\theta|X)$ is no longer simple/available in closed form?

What information about $p(\theta|X)$ do we really need?

Typically, expectations of different functions *g*:

$$\mathbb{E}_{\theta|X}[g] = \int d\theta g(\theta) p(\theta|X)$$

What is g for to calculate 1) mean, 2) variance, 3) $p(\theta > 10|X)$?

Let us forget the posterior distribution $p(\theta|X)$, and consider some general probability distribution p(x). We want

$$\mu := \mathbb{E}_p[g] = \int_{\mathcal{X}} g(x)p(x)dx$$

Let us forget the posterior distribution $p(\theta|X)$, and consider some general probability distribution p(x). We want

$$\mu := \mathbb{E}_p[g] = \int_{\mathcal{X}} g(x)p(x)dx$$

Sampling approximation: rather than visit all points in \mathcal{X} , calculate a summation over a finite set.

$$\mu \approx \frac{1}{N} \sum_{i=1}^{N} g(x_i) := \hat{\mu}$$

Let us forget the posterior distribution $p(\theta|X)$, and consider some general probability distribution p(x). We want

$$\mu := \mathbb{E}_p[g] = \int_{\mathcal{X}} g(x)p(x)dx$$

Sampling approximation: rather than visit all points in \mathcal{X} , calculate a summation over a finite set.

$$\mu \approx \frac{1}{N} \sum_{i=1}^{N} g(x_i) := \hat{\mu}$$

Monte Carlo approximation:

- Obtain points by sampling from p(x): $x_i \sim p$
- · Approximate integration with summation

$$\hat{\mu} \approx \frac{1}{N} \sum_{i=1}^{N} g(x_i)$$

$$\hat{\mu} = \frac{1}{N} \sum_{i=1}^{N} g(x_i)$$

If $x_i \sim p$,

$$\mathbb{E}_{p}[\hat{\mu}] = \frac{1}{N} \sum_{i=1}^{N} \mathbb{E}_{p}[g] = \mu$$

Unbiased estimate

$$\hat{\mu} = \frac{1}{N} \sum_{i=1}^{N} g(x_i)$$

If $x_i \sim p$,

$$\mathbb{E}_{p}[\hat{\mu}] = \frac{1}{N} \sum_{i=1}^{N} \mathbb{E}_{p}[g] = \mu$$

Unbiased estimate

$$Var_p[\hat{\mu}] = \frac{1}{N} Var_p[g],$$

Error = StdDev $\propto N^{-1/2}$

$$\frac{1}{N}\sum_{i=1}^{N}f\to\mathbb{E}_{p}(g)=\mu\quad\text{ as }N\to\infty$$

Consistent estimate (LLN)

MONTE CARLO SAMPLING

Is this a good idea?

• In low-dims, worth considering numerical methods like quadrature. In high-dims, these quickly become infeasible.

MONTE CARLO SAMPLING

Is this a good idea?

• In low-dims, worth considering numerical methods like quadrature. In high-dims, these quickly become infeasible. Simpson's rule in *d*-dimensions, with *N* grid points:

error
$$\propto N^{-4/d}$$

Monte Carlo integration:

error
$$\propto N^{-1/2}$$

MONTE CARLO SAMPLING

Is this a good idea?

• In low-dims, worth considering numerical methods like quadrature. In high-dims, these quickly become infeasible. Simpson's rule in *d*-dimensions, with *N* grid points:

error
$$\propto N^{-4/d}$$

Monte Carlo integration:

error
$$\propto N^{-1/2}$$

Independent of dimensionality!

MONTE CARLO SAMPLING

Is this a good idea?

• In low-dims, worth considering numerical methods like quadrature. In high-dims, these quickly become infeasible. Simpson's rule in *d*-dimensions, with *N* grid points:

error
$$\propto N^{-4/d}$$

Monte Carlo integration:

error
$$\propto N^{-1/2}$$

Independent of dimensionality!

- · If unbiasedness is important to you.
- · Very simple.
- Very modular: easily incorporated into more complex models (Gibbs sampling)

MONTE CARLO SAMPLING (CONTD.)

An aside: Monte Carlo should be your method of last resort!

Don't hesitate using numerical integration

· Numerical integration can be much faster and more accurate

Contrast

- > integrate(function(x) x * exp(-x), lower = 0, upper = Inf) with
- > mean(rexp(1000))

- The simplest useful probability distribution Unif(0,1).
- · In theory, can be used to generate any other RV.
- Easy to generate uniform RVs on a deterministic computer?

- The simplest useful probability distribution Unif(0,1).
- In theory, can be used to generate any other RV.
- Easy to generate uniform RVs on a deterministic computer?

- The simplest useful probability distribution Unif(0,1).
- · In theory, can be used to generate any other RV.
- · Easy to generate uniform RVs on a deterministic computer?

No!

· Instead: pseudorandom numbers.

- The simplest useful probability distribution Unif(0,1).
- · In theory, can be used to generate any other RV.
- · Easy to generate uniform RVs on a deterministic computer?

- · Instead: pseudorandom numbers.
- · Map a seed to a 'random-looking' sequence.

- The simplest useful probability distribution Unif(0,1).
- · In theory, can be used to generate any other RV.
- Easy to generate uniform RVs on a deterministic computer?

- · Instead: pseudorandom numbers.
- · Map a seed to a 'random-looking' sequence.
- Downside: http://boallen.com/random-numbers.html

- The simplest useful probability distribution Unif(0,1).
- · In theory, can be used to generate any other RV.
- · Easy to generate uniform RVs on a deterministic computer?

- · Instead: pseudorandom numbers.
- Map a seed to a 'random-looking' sequence.
- Downside: http://boallen.com/random-numbers.html
- Upside: Can use seeds for reproducibility or debuggingset.seed(1)

- The simplest useful probability distribution Unif(0,1).
- · In theory, can be used to generate any other RV.
- Easy to generate uniform RVs on a deterministic computer?

- · Instead: pseudorandom numbers.
- Map a seed to a 'random-looking' sequence.
- Downside: http://boallen.com/random-numbers.html
- Upside: Can use seeds for reproducibility or debuggingset.seed(1)
- · Careful with batch/parallel processing.

R has a bunch of random number generators.

rnorm, rgamma, rbinom, rexp, rpoiss etc.

What if we want samples from some other distribution?

Inverse transform sampling

Let X have pdf
$$p(x)$$
, and cdf $F(x) = P(X \le x) = \int_{-\infty}^{x} p(u) du$

Let:

$$X \sim p(\cdot)$$

$$U = F(X)$$

Inverse transform sampling

Let X have pdf
$$p(x)$$
, and cdf $F(x) = P(X \le x) = \int_{-\infty}^{x} p(u) du$

Let:

$$X \sim p(\cdot)$$

$$U = F(X)$$

Then U is Unif(0,1)

Inverse transform sampling

Let X have pdf
$$p(x)$$
, and cdf $F(x) = P(X \le x) = \int_{-\infty}^{x} p(u) du$

Let:

$$X \sim p(\cdot)$$

$$U=F(X)$$

Then U is Unif(0,1)

Equivalently, sample $U \sim \text{Unif}(0,1)$, and let $X = F^{-1}(U)$

Then $X \sim p(\cdot)$ (see wikipedia for proof)

Inverse transform sampling

Let X have pdf
$$p(x)$$
, and cdf $F(x) = P(X \le x) = \int_{-\infty}^{x} p(u) du$

Let:

$$X \sim p(\cdot)$$

$$U = F(X)$$

Then U is Unif(0,1)

Equivalently, sample $U \sim Unif(0,1)$, and let $X = F^{-1}(U)$

Then $X \sim p(\cdot)$ (see wikipedia for proof)

E.g. $-\log(U)$ is Exponential(1).

Inverse transform sampling

Let X have pdf
$$p(x)$$
, and cdf $F(x) = P(X \le x) = \int_{-\infty}^{x} p(u) du$

Let:

$$X \sim p(\cdot)$$

$$U=F(X)$$

Then U is Unif(0,1)

Equivalently, sample $U \sim \text{Unif}(0,1)$, and let $X = F^{-1}(U)$

Then $X \sim p(\cdot)$ (see wikipedia for proof)

E.g. $-\log(U)$ is Exponential(1).

Usually hard to compute F^{-1} .

Let $p(x) = \frac{f(x)}{Z}$. Probability of a sample in $[x_0, x_0 + \Delta x] = p(x_0)\Delta x$.

If we sample points uniformly below the curve Mf(x):

Let $p(x) = \frac{f(x)}{Z}$. Probability of a sample in $[x_0, x_0 + \Delta x] = p(x_0)\Delta x$.

If we sample points uniformly below the curve Mf(x): Probability of a sample in $[x_0, x_0 + \Delta x] = \frac{Mf(x_0)\Delta X}{\int_X Mf(x_0)dx} = p(x_0)\Delta x$.

Let $p(x) = \frac{f(x)}{Z}$. Probability of a sample in $[x_0, x_0 + \Delta x] = p(x_0)\Delta x$.

If we sample points uniformly below the curve Mf(x): Probability of a sample in $[x_0, x_0 + \Delta x] = \frac{Mf(x_0)\Delta X}{\int_X Mf(x_0)dx} = p(x_0)\Delta x$. How to do this (without sampling from p)?

Let $p(x) = \frac{f(x)}{Z}$. Probability of a sample in $[x_0, x_0 + \Delta x] = p(x_0)\Delta x$.

If $Mf(x) \leq Nq(x) \ \forall x$ for constant N and distribution $q(\cdot)$ Sample points uniformly under Nq(x). (sample $x_0 \sim q(\cdot)$, and assign it a uniform height in $[0, Nq(x_0)]$

Let $p(x) = \frac{f(x)}{Z}$. Probability of a sample in $[x_0, x_0 + \Delta x] = p(x_0)\Delta x$.

If $Mf(x) \leq Nq(x) \ \forall x$ for constant N and distribution $q(\cdot)$ Sample points uniformly under Nq(x). Keep only points under Mf(x).

Let $p(x) = \frac{f(x)}{Z}$. Probability of a sample in $[x_0, x_0 + \Delta x] = p(x_0)\Delta x$.

Equivalent algorithm: (convince yourself)

- Propose $x^* \sim q(\cdot)$
- Accept with probability $Mf(x^*)/Nq(x^*)$

Let $p(x) = \frac{f(x)}{Z}$. Probability of a sample in $[x_0, x_0 + \Delta x] = p(x_0)\Delta x$.

We need a bound on f(x). A loose bound leads to lots of rejections. Probability of acceptance = $\frac{MZ}{N}$.

INTRACTABLE NORMALIZATION CONSTANTS

A probability density takes the form $p(x) = \frac{f(x)}{Z}$

- $Z = \int_{\mathcal{X}} f(x) dx$ is the normalization contant
- · Ensures probability integrates to 1

INTRACTABLE NORMALIZATION CONSTANTS

A probability density takes the form $p(x) = \frac{f(x)}{Z}$

- $Z = \int_{\mathcal{X}} f(x) dx$ is the normalization contant
- Ensures probability integrates to 1

Often Z is difficult to calculate (intractable integral over f(x))

Consequently, evaluating p(x) is hard

INTRACTABLE NORMALIZATION CONSTANTS

A probability density takes the form $p(x) = \frac{f(x)}{Z}$

- $Z = \int_{\mathcal{X}} f(x) dx$ is the normalization contant
- Ensures probability integrates to 1

Often Z is difficult to calculate (intractable integral over f(x))

Consequently, evaluating p(x) is hard

However, rejection sampling doesn't need Z or p(x)

REJECTION SAMPLING (CONTD.)

Example 1:

$$p(x) \propto \exp(-x^2/2)|\sin(x)|$$

Example 2 (truncated normal):

$$p(x) \propto \exp(-x^2/2) \mathbf{1}_{\{x > c\}}$$

What is M for each case? What can we say about efficiency?

Rather that accept/reject, assign weights to samples.

Rather that accept/reject, assign weights to samples. Observe:

$$\mathbb{E}_p[g] = \int g(x)p(x)\mathrm{d}x = \int g(x)\frac{p(x)}{q(x)}q(x)\mathrm{d}x = \mathbb{E}_q\left[\frac{g(x)p(x)}{q(x)}\right]$$

Rather that accept/reject, assign weights to samples. Observe:

$$\mathbb{E}_{p}[g] = \int g(x)p(x)\mathrm{d}x = \int g(x)\frac{p(x)}{q(x)}q(x)\mathrm{d}x = \mathbb{E}_{q}\left[\frac{g(x)p(x)}{q(x)}\right]$$

Use Monte Carlo approximation to the latter expectation:

• Draw proposal x from $q(\cdot)$ and calculate weight $w(x) = \frac{p(x)}{q(x)}$.

$$\int g(x)p(x)\mathrm{d}x \approx \frac{1}{N}\sum_{s=1}^{N}w(x_s)g(x_s)$$

Rather that accept/reject, assign weights to samples. Observe:

$$\mathbb{E}_{p}[g] = \int g(x)p(x)\mathrm{d}x = \int g(x)\frac{p(x)}{q(x)}q(x)\mathrm{d}x = \mathbb{E}_{q}\left[\frac{g(x)p(x)}{q(x)}\right]$$

Use Monte Carlo approximation to the latter expectation:

• Draw proposal x from $q(\cdot)$ and calculate weight $w(x) = \frac{p(x)}{q(x)}$.

$$\int g(x)p(x)\mathrm{d}x \approx \frac{1}{N}\sum_{s=1}^{N}w(x_s)g(x_s)$$

Since
$$w(x) = p(x)/q(x) = \frac{f(x)}{Zq(x)}$$
:

- · We don't need a bounding envelope.
- · We need normalizn constant Z (but see later).

IMPORTANCE SAMPLING VS SIMPLE MONTE CARLO

Simple Monte Carlo/MCMC (left) uses sampling approximation Importance sampling (right) weights the samples

IMPORTANCE SAMPLING (CONTD)

When does this make sense? Sometimes it's easier to simulate from q(x) than p(x).

IMPORTANCE SAMPLING (CONTD)

When does this make sense? Sometimes it's easier to simulate from q(x) than p(x).

Sometimes it's better to simulate from q(x) than p(x)!

To reduce variance. E.g. rare event simulation.

IMPORTANCE SAMPLING (CONTD)

When does this make sense? Sometimes it's easier to simulate from q(x) than p(x).

Sometimes it's better to simulate from q(x) than p(x)!

To reduce variance. E.g. rare event simulation.

Let
$$x \sim (0, 1)$$

• What is P(X > 5)?

Let $X = (x_1, ..., x_{100})$ be a hundred dice. What is $p(\sum x_i \ge 550)$?

IMPORTANCE SAMPLING:

Let $X = (x_1, \dots, x_{100})$ be a hundred dice. What is $p(\sum x_i \ge 550)$?

Rejection sampling (from p(x)) leads to high rejection.

IMPORTANCE SAMPLING:

Let $X = (x_1, \dots, x_{100})$ be a hundred dice. What is $p(\sum x_i \ge 550)$?

Rejection sampling (from p(x)) leads to high rejection.

A better choice might be to bias the dice.

E.g.
$$q(x_i = v) \propto v$$
 (for $v \in \{1, ... 6\}$)

IMPORTANCE SAMPLING:

Define $S_X = \sum x_i$

$$p(S \ge 550) = \sum_{y \in \text{ all configs of 100 dice}} \delta(\sum y \ge 550) p(y)$$
$$= \sum_{y \in \text{ all configs of 100 dice}} \frac{p(y)}{q(y)} \delta(\sum y \ge 550) q(y)$$

For a proposal $X^* \sim q$,

$$w(X^*) = \frac{p(X^*)}{q(X^*)} = \frac{(1/6)^{100}}{\prod_i q(X_i^*)}$$

Use approximation $p(S \ge 550) \approx \sum_{j=1}^{N} w(X_j) \delta(\sum x_j^j \ge 550)$

$$Var[\mu_{imp}] = \mathbb{E}[\mu_{imp}^2] - \mu^2$$
$$= \mathbb{E}\left[\left(\frac{1}{N}\sum_{i=1}^N w_i g(x_i)\right)^2\right] - \mu^2$$

$$Var[\mu_{imp}] = \mathbb{E}[\mu_{imp}^2] - \mu^2$$

$$= \mathbb{E}\left[\left(\frac{1}{N}\sum_{i=1}^N w_i g(x_i)\right)^2\right] - \mu^2$$

$$= \mathbb{E}\left[\left(\frac{p(x)g(x)}{q(x)}\right)^2\right] - \mu^2$$

$$\begin{aligned} \text{Var}[\mu_{imp}] &= \mathbb{E}[\mu_{imp}^2] - \mu^2 \\ &= \mathbb{E}\left[\left(\frac{1}{N}\sum_{i=1}^N w_i g(x_i)\right)^2\right] - \mu^2 \\ &= \mathbb{E}\left[\left(\frac{p(x)g(x)}{q(x)}\right)^2\right] - \mu^2 \\ &= \int_{\mathcal{X}} q(x) \left(\frac{p(x)g(x)}{q(x)}\right)^2 dx - \mu^2 \end{aligned}$$

$$\begin{aligned} \text{Var}[\mu_{imp}] &= \mathbb{E}[\mu_{imp}^2] - \mu^2 \\ &= \mathbb{E}\left[\left(\frac{1}{N}\sum_{i=1}^N w_i g(x_i)\right)^2\right] - \mu^2 \\ &= \mathbb{E}\left[\left(\frac{p(x)g(x)}{q(x)}\right)^2\right] - \mu^2 \\ &= \int_{\mathcal{X}} q(x) \left(\frac{p(x)g(x)}{q(x)}\right)^2 dx - \mu^2 \\ &\geq \left(\int_{\mathcal{X}} q(x) \frac{p(x)g(x)}{q(x)} dx\right)^2 - \mu^2 \end{aligned}$$

$$\operatorname{Var}[\mu_{imp}] = \mathbb{E}[\mu_{imp}^{2}] - \mu^{2}$$

$$= \mathbb{E}\left[\left(\frac{1}{N}\sum_{i=1}^{N}w_{i}g(x_{i})\right)^{2}\right] - \mu^{2}$$

$$= \mathbb{E}\left[\left(\frac{p(x)g(x)}{q(x)}\right)^{2}\right] - \mu^{2}$$

$$= \int_{\mathcal{X}}q(x)\left(\frac{p(x)g(x)}{q(x)}\right)^{2}dx - \mu^{2}$$

$$\geq \left(\int_{\mathcal{X}}q(x)\frac{p(x)g(x)}{q(x)}dx\right)^{2} - \mu^{2}$$

$$= 0 \qquad (!)$$

We achieve this lower bound when $q(x) \propto p(x)g(x)$. A slightly useless result, because

$$q(x) = \frac{p(x)g(x)}{\int_{\mathcal{X}} p(x)g(x)dx}$$

requires solving the integral we care about.

We want a small variance in the weights $w(x_i)$. Easy to check at $\mathbb{E}_a[w(x)] = 1$.

$$Var_q[w(x)] = \mathbb{E}_q[w(x)^2] - \mathbb{E}_q[w(x)]^2$$

$$= \int_{\mathcal{X}} \left(\frac{p(x)}{q(x)}\right)^2 q(x) dx - 1 \qquad = \int_{\mathcal{X}} \frac{p(x)^2}{q(x)} dx - 1$$

Can be unbounded. E.g. $p = \mathcal{N}(0,2)$ and $q = \mathcal{N}(0,1)$.

A popular diagnosis statistic: effective sample size (ESS).

$$ESS = \frac{\left(\sum_{i=1}^{N} w(x_i)\right)^2}{\sum_{i=1}^{N} w(x_i)^2}$$

Small ESS \rightarrow Large variability in w's \rightarrow bad estimate. Large ESS promises you nothing!

Importance weights are w(x) = p(x)/q(x), where p(x) = f(x)/Z.

Importance weights are w(x) = p(x)/q(x), where p(x) = f(x)/Z. How can we estimate $Z = \int f(x) dx$?

Importance weights are w(x) = p(x)/q(x), where p(x) = f(x)/Z.

How can we estimate $Z = \int f(x) dx$?

$$Z = \int f(x) dx = \int \frac{f(x)q(x)}{q(x)} dx$$

Importance weights are w(x) = p(x)/q(x), where p(x) = f(x)/Z.

How can we estimate $Z = \int f(x) dx$?

$$Z = \int f(x) dx = \int \frac{f(x)q(x)}{q(x)} dx$$

Reuse samples from the proposal distribution q(x):

$$\hat{Z} = \frac{1}{N} \sum_{i=1}^{N} \frac{f(x_i)}{q(x_i)} = \frac{1}{N} \sum_{i=1}^{N} \tilde{w}(x_i)$$

Can use to approximate importance sampling weights $w(x_i)$:

$$w(x_i) = \frac{p(x_i)}{q(x_i)} = \frac{f(x_i)}{Zq(x_i)} \approx \frac{1}{2}\tilde{w}(x_i)$$

Importance weights are w(x) = p(x)/q(x), where p(x) = f(x)/Z.

How can we estimate $Z = \int f(x) dx$?

$$Z = \int f(x) dx = \int \frac{f(x)q(x)}{q(x)} dx$$

Reuse samples from the proposal distribution q(x):

$$\hat{Z} = \frac{1}{N} \sum_{i=1}^{N} \frac{f(x_i)}{q(x_i)} = \frac{1}{N} \sum_{i=1}^{N} \tilde{w}(x_i)$$

Can use to approximate importance sampling weights $w(x_i)$:

$$w(x_i) = \frac{p(x_i)}{q(x_i)} = \frac{f(x_i)}{Zq(x_i)} \approx \frac{1}{2}\tilde{w}(x_i)$$

Use $\tilde{w}(x)$ instead of w(x) in the Monte Carlo approximation.

Importance weights are w(x) = p(x)/q(x), where p(x) = f(x)/Z.

How can we estimate $Z = \int f(x) dx$?

$$Z = \int f(x) dx = \int \frac{f(x)q(x)}{q(x)} dx$$

Reuse samples from the proposal distribution q(x):

$$\hat{Z} = \frac{1}{N} \sum_{i=1}^{N} \frac{f(x_i)}{q(x_i)} = \frac{1}{N} \sum_{i=1}^{N} \tilde{w}(x_i)$$

Can use to approximate importance sampling weights $w(x_i)$:

$$w(x_i) = \frac{p(x_i)}{q(x_i)} = \frac{f(x_i)}{Zq(x_i)} \approx \frac{1}{2}\tilde{w}(x_i)$$

Use $\tilde{w}(x)$ instead of w(x) in the Monte Carlo approximation. Is biased for finite N, but consistent as $N \to \infty$.