"Red Tail":

Auswirkung eines zusätzlichen tiefroten Spektralanteils auf das Weißlicht von LED-Scheinwerfern

- am Beispiel der Beleuchtung von Hauttönen im TV-Bereich

Bachelor-Thesis zur Erlangung des akademischen Grades B.Sc.

Matthias Held

Erstprüfer: Prof. Dr. Roland Greule

Zweitprüfer: Dipl. Ing. (FH) Matthias Allhoff

vorläufige Fassung vom 25. Juni 2018

Inhaltsverzeichnis

1	Einleitung		
2			
3	Farbe und Farbräume 3.1 Sehen mit dem Auge 3.2 Sichtbares Spektrum 3.3 Farbe 3.4 RGB Farbraum 3.5 CIE-XYZ Farbraum 3.6 CIE-LUV Farbraum 3.7 CIE-LAB Farbraum		
4	Lichtechnische Parameter 4.1 CIE: Color Rendering Index (CRI)		
5	Leuchtmittel5.1Glühlampe5.2Halogenglühlampe5.3Entladungslampen5.4LEDs		
6	Vormessungen 6.1 Ziel		
7	Hauptmessung 7.1 Messaufbau		

In halts verzeichn is

8	Mes	sergebnisse		22		
	8.1	Unterkapitel mit Mathematik, Bildern und Querverweisen		22		
9	Umf	S		23		
	9.1	Unterkapitel mit Mathematik, Bildern und Querverweisen		23		
10	Umf	rageergebnisse		24		
	10.1	Unterkapitel mit Mathematik, Bildern und Querverweisen		24		
11	Auswertung aller Ergebnisse					
		Unterkapitel mit Mathematik, Bildern und Querverweisen		25 25		
	11.1	Onterkapiter init Mathematik, Bilderii diid Querverweisen		∠€		
12	Fazi	t		26		
		Unterkapitel mit Mathematik, Bildern und Querverweisen		26		
	12.1	ontonicipitor into materiality Brideria and Querver weison				
Ab	bildu	ngsverzeichnis		27		
Ta	belle	nverzeichnis		28		
Lit	eratı	ırverzeichnis		29		

Abstract

Form and layout of this LaTeX-template incorporate the guidelines for theses in the Media Technology Department "Richtlinien zur Erstellung schriftlicher Arbeiten, vorrangig Bachelor-Thesis (BA) und Master-Thesis (MA) im Department Medientechnik in der Fakultät DMI an der HAW Hamburg" in the version of December 6, 2012 by Prof. Wolfgang Willaschek.

The thesis should be printed single-sided (simplex). The binding correction (loss at the left aper edge due to binding) might be adjusted, according to the type of binding. This template incorporates a binding correction as BCOR=1mm (suitable for adhesive binding) in the LATEX document header.

This is the english version of the opening abstract (don't forget to set LATEX's language setting back to ngerman after the english text).

Zusammenfassung

Diese Arbeit befasst sich mit der Auswirkung eines zusätzlichen tiefroten Spektralanteils auf das kaltweiße Lichtspektrum von LED-Scheinwerfern. Es soll dabei überprüft werden, ob Personen unter diesen Umständen im Kamerabild natürlicher aussehen, wie es in der "Red Tail" - Theorie der mo2 design GmbH angenommen wird. Zunächst wird auf wichtige Kenngrößen der Lichttechnik eingegangen und verschiedene Leuchtmittel und lichttechnische Parameter werden erläutert. Im Folgeneden werden die Messungen beschrieben.

Bei diesen wird ein LED-Scheinwerfer und ein rotgefilterter PAR-Scheinwerfer, der den "Red Tail" simulieren soll, auf einen Messpunkt ausgerichtet. Der LED-Scheinwerfer wird zuerst allein auf eine kaltweiße Referenzlichtquelle bestmöglich abgeglichen und spektral vermessen. Anschließend wird der rotgefilterter PAR-Scheinwerfer dazugeschlatet und auch dieses Lichtgemisch wird auf die Referenzlichtquelle abgeglichen und spektral vermessen. Bei der Auswertung werden die gemessenen lichttechnischen Parameter betrachtet und zusätzlich werden bei einer Umfrage Bilder verglichen, auf denen Probanden verschiedener Hauttöne mit und ohne "Red Tail" beleuchtet wurden.

1 Einleitung

2 Grundlagen und Kenngrößen der Lichttechnik

- **2.1 Lichtstrom** Φ
- 2.2 Beleuchtungsstärke E
- 2.3 Lichtstärke I
- 2.4 Leuchtdichte L

3 Farbe und Farbräume

3.1 Sehen mit dem Auge

Um Farben und Farbräume erklären zu können, werden in diesem Kapitel die Grundlagen der Farbwahrnehmung beschrieben.

Im Auge gibt es zwei Arten von lichtempfindlichen Rezeptoren in der Netzhaut, die für unsere Farbwahrnehmung verantwortlich sind: Zapfen und Stäbchen.

Die Stäbchen nehmen verschiedene Helligkeitseindrücke wahr, können aber keine Farben unterscheiden. Daher sind sie für das skotopische Sehen (von 3 x $10^{-6} \frac{cd}{m^2}$ bis $0.03 \frac{cd}{m^2}$) verantwortlich 1 . Die verschiedenen spektralen Anteile des Lichts wirken sich auf die Zapfen aus und verantworten so den Farbeindruck. Außerdem sind die Zapfen für das photopische Sehen (ab einer Leuchtdichte von $3 \frac{cd}{m^2}$) zuständig 2 .

Abbildung 3.1: Zapfen und Stäbchen im Auge³

¹DocCheck Flexikon (2014)

²DocCheck Flexikon (2014)

 $^{^3}$ https://www.gigahertz-optik.de/assets/Uploads/Abb.-II.13-neu-v03.png

- 3.2 Sichtbares Spektrum
- 3.3 Farbe
- 3.4 RGB Farbraum
- 3.5 CIE-XYZ Farbraum
- 3.6 CIE-LUV Farbraum
- 3.7 CIE-LAB Farbraum

4 Lichtechnische Parameter

4.1 CIE: Color Rendering Index (CRI)

Da der Farbort allein keine eindeutige Aussage über die Zusammensetzung des Spektrums zulässt, wurde 1965 von der Commission Internationale de l'Eclairage ein Testverfahren entwickelt, mit dem man die Farbwiedergabe (Color Rendering Index) einer Leuchte bestimmen kann. Dafür hat man acht Referenzfarben festgelegt. Bei einer CRI-Messung überprüft man also, wie gut eine Lichtquelle diese Körperfarben wiedergeben kann. Es wird dabei zwischen einem schwarzen Strahler(< 5000K) und Tageslicht(> 5000K) differenziert. Die gemessenen Unterschiede zu den Referenzfarben werden mit Werten von 0 bis 100 gewichtet(R_1 - R_8), wobei ein Wert von 100 aussagt, dass die Farbe bestmöglich wiedergegeben wird. Zuerst werden die einzelnen Indexwerte R_i aus den Farbdifferenzen ΔE_i berechnet (Gleichung 4.1)¹.

$$R_i = 100 - 4, 6 \cdot \Delta E_i \tag{4.1}$$

Diese acht Werte werden schließlich arithmetisch gemittelt und es ergibt sich der Gesamtwert R_a (Gleichung 4.2)².

$$R_a = \frac{1}{8} \sum_{i=1}^{8} R_i \tag{4.2}$$

In der DIN 6169 werden zur besseren Beurteilung der Farbwiedergabe die R_a -Werte in verschiedene Stufen unterteilt (Tabelle 4.1).

Stufen des CRI					
1A	$R_a \ge 90$	sehr hohe Anforderung			
1B	$90 > R_a \ge 80$	sehr hohe Anforderung			
2A	$80 > R_a \ge 70$	hohe Anforderung			
2B	$70 > R_a \ge 60$	hohe Anforderung			
3	$60 > R_a \ge 40$	mittlere Anforderung			
4	$40 > R_a \ge 20$	geringe Anforderung			

Tabelle 4.1: R_a eingeteilt in verschiedene Stufen³

¹Davis & Ohno (2006)

²Production Partner (2018)

4 Lichtechnische Parameter

Ein hoher R_a -Wert beschreibt aber nur bedingt die Farbwiedergabe einer Leuchte, da beispielsweise keine Angabe über die Sättigung der Farben gemacht wird. Außerdem sind die acht Referenzfarben nur Pastelltöne, weil der CRI damals für Glühlicht entwickelt wurde. Gesättigte Farben fließen nicht in die Bewertung mit ein. Das wirkt sich auch auf die Vergleichbarkeit von Leuchten aus. Zwei Scheinwerfer mit dem selben R_a -Wert von 90 können sehr unterschiedliche Spektren haben und damit sehr unterschiedlich Farben darstellen, trotz gleichem Farbwiedergabeindex. Außerdem kann man nur schwer eine Aussage darüber machen, ob sich eine Leuchte mit einem guten CRI für Personenbeleuchtung eignet, weil Rottöne und Hauttöne in diesem Bewertungsverfahren fehlen.

Leuchtstofflampen nutzten den CRI aus, indem durch gezielte schmalbandige Peaks im Spektrum die Referenzfarben getroffen werden. Auf diese Weise kann zwar ein hoher CRI-Werte erreicht werden, aber kein breitbandiges und ausgefülltes Lichtspektrum entstehen. Daher sah sich die CIE gezwungen den Farbwiedergabeindex zu erweitern. In dem neueren R_e -Wert gibt es nun auch gesättigte Farben und eine Hautfarbe wird miteinbezogen (Abb. 4.1).

Abbildung 4.1: Alle Referenzfarben des Farbwiedergabeindexes: R_1 Altrosa, R_2 Senfgelb, R_3 Gelbgrün, R_4 Hellgrün, R_5 Türkisblau, R_6 Himmelblau, R_7 Asterviolett, R_8 Fliederviolett, R_9 Rot gesättigt, R_{10} Gelb gesättigt, R_{11} Grün gesättigt, R_{12} Blau gesättigt und R_{13} Rosa (Hautfarbe), R_{14} Blattgrün R_{12} Blau gesättigt und R_{13} Rosa (Hautfarbe)

Bei einer warmweißen LED konnte ein CRI von 82 gemessen werden (Abbildung 4.2). Der R_e -Wert ist naturgemäß schlechter als der R_a -Wert, aber auch dieser ist mit 77 noch akzeptabel, wenn man bedenkt, dass der R_9 -Wert nur 15 Punkte erbringt. Diese Leuchte entspricht "sehr hohen Anforderungen" (Tabelle 4.1) und ist damit nach Definition sehr gut in der Farbwiedergabe. Jedoch ist der R_9 -Wert ein Hinweis darauf, dass man mit dieser Aussage vorsichtig sein sollte.

³(Hentschel 1993:111)

⁴https://www.elementalled.com/wp/wp-content/uploads/2015/08/CRI_chart.jpg

Abbildung 4.2: Messung einer warmweißen LED-Leuchte (Ausschnitt aus dem Demofile des Programmes "LiVal"von der Firma JETI): Links ist das Lichtspektrum der Leuchte dargestellt, rechts die gemessenen CRI-Werte ⁵

Daher ist auch mit einem einzigen Rot- und Hautton der CRI zu wenig ausschlaggebend, um damit eine Leuchte für Personenbeleuchtung zu bewerten (Kap. 3.1). Zusätzlich entsteht bei LED-Leuchtmitteln ein ähnliches Problem, wie bei den Leuchstoffröhren. Man kann das Spektrum mit den Peaks gut auf die Referenzfarben ausrichten, ohne das Gesamte Spektrum abdecken zu müssen. Gerade bei LED-Leuchten kann dieses Verhalten des CRI ausgenutzt werden, um kritische Bereiche zu verschleiern. Zusätzlich wird dies durch die arithmetische Mittlung der Referenzfarbwerte begünstigt. Ein, zwei schlechtere Werte mindern den R_a -Wert nicht beträchtlich. Beispielsweise wird bei Weißen-LEDs der fehlende Rotanteil nur am niedrigen R_9 -Wert sichtbar, aber im CRI-Wert sind diese Schwächen einer LED-Leuchte kaum erkennbar 6 . Der CRI kann daher eher als richtungsweisend betrachtet werden: Eine Leuchte mit guter Farbwiedergabe wird auch immer einen guten CRI-Wert haben. Zum Vergleich für Leuchten eignen sich andere Farbwiedergabewerte heutzutage besser 7 .

Aus diesen Gründen und der Erkenntnis der CIE, "dass die CRI-Methode generell nicht anwendbar ist, um eine Anzahl von Lichtquellen gemäß ihrer Farbwiedergabe einzuordnen, wenn weiße LEDs darunter sind"⁸, wird sich diese Arbeit hauptsächlich auf andere Farbwiedergabewerte konzentrieren, den CRI aber mit aufführen, weil dieser in der Scheinwerfer- und Fernsehbranche (noch) einen hohen Stellenwert inne hat.

⁶Davis & Ohno (2006)

⁷Production Partner (2018)

⁸(Commission Internationale de l'Eclairage 2007: VI)

4.2 NIST: Color Quality Scale (CQS)

Der Color Quality Scale, der von dem National Institute of Standards and Technology (NIST) erarbeitet wurde, orientiert sich an der Grundidee des CRI und versucht dessen Probleme anzugehen und ihn zu ersetzen. So gibt es fünfzehn voll saturierte Referenzfarben, die auch auf LED-Leuchten anwendbar sind. Über Skaleneffekte soll der CQS auch indirekt eine Aussage über die Farbwiedergabe von Pastelltönen ermöglichen (Abb. 4.3).

Abbildung 4.3: Alle Referenzfarben des CQS mit voller Sättigung⁹

Bei dem Farbvergleich des CRI wurden weniger Punkte für eine Farbe vergeben, wenn diese übersättigt wurde, also die Leuchte eine höhere Farbigkeit hatte als das Referenzlicht des CRI. Wenn beispielsweise eine Oberfläche eines Objekts beleuchtet wird, kann eine übersättigte Farbe jedoch hilfreich sein und ist daher nicht pauschal negativ einzuordnen. Deswegen wertet der CQS eine Übersättigung der Farbe nicht, nur eine Abweichung von Farbton oder Helligkeit wird bestraft. Außerdem errechnet sich der CQS aus dem quadratischen Mittel (root-means-square) der einzelnen Farben und es ist deutlicher erkennbarer, wenn einzelne Farbe schlechte Werte erzielen (Gleichung 4.3)¹⁰.

$$\Delta E_{rms} = \sqrt{\frac{1}{15} \sum_{i=1}^{15} \Delta E_i^2} \tag{4.3}$$

Aus diesem Farbdifferenzwert wird ähnlich wie beim CRI (Gleichung 4.1) ein Farbwiedergabewerte errechnet (Gleichung 4.4).

$$Q_{f,rms} = 100 - 3,0305 \cdot \Delta E_{rms} \tag{4.4}$$

Schließlich wird der CQS auf Werte von 0 bis 100 skaliert. Dadurch entfallen beim CQS negative Farbwerte, die beim CRI sehr schwierig zu interpretieren sind (Gleichung 4.5).

$$Q_f = 10\ln(e^{\frac{Q_{f,rms}}{10}} + 1) \tag{4.5}$$

⁹https://www.lemoledlight.com/wp-content/uploads/2016/04/LED-Lighting-CRI-5.jpg
10Davis & Ohno (2006)

Der CQS wird mit seinen fünfzehn Referenzfarborten (abhängig von der Farbtemperatur) im CIELAB-Farbraum eingezeichnet. Da die Abstände von Farborten in diesem Farbraum in etwa wahrgenommenen Farbunterschieden entsprechen (Kap. 3.7), kann man gut erkennen, wie stark sich die Farbwiedergabe einer Leuchte den Referenzwerten ähneln(Abb. 4.4 und 4.5).

Abbildung 4.4: Ausschnitt aus dem Programm "LiVal"von der Firma JETI: Demo Spektrum einer warmweißen LED (2942K) mit $Q_f=81$

Abbildung 4.5: Ausschnitt aus dem Programm "LiVal"von der Firma JETI: Die fünfzehn Referenzfarben(blau) im CIELAB-Farbraum im Vergleich zu den gemessenen Werten (rot)

Auf die in den Abbildung 4.4 und 4.5 erwähnten Werte Q_a (optimierter CQS-Wert für kaum übersättigte Farben), Q_p (optimierter CQS-Wert für viele übersättigte

4 Lichtechnische Parameter

Farben) und Q_g (optimierter CQS-Wert im Zusammenhang mit dem Gamut Area Index) wird in dieser Arbeit nicht weiter eingegangen, weil sie über den Rahmen dieser Bachelorarbeit hinaus gehen¹¹.

¹¹(Khanh & Bodrogi & Vinh 2007: 60-62)

4.3 EBU: Television Lighting Consistency Index (TLCI)

Der CRI-Wert einer Leuchte ist im Fernsehbereich kaum aussagekräftig, weil kein Bezug zur Videokamera besteht und die Farbwiedergabe von menschlichen Hauttöne kaum gemessen wird. Daher hat die European Broadcast Union (EBU) 2012 einen neuen Farbewiedergabe bestimmt, der auf den Film- und Fernsehbereich zugeschnitten ist, den Television Lighting Consistency Index. Wie eine Messung des TLCI vonstattengeht ist in diesem Blockschaltbild der EBU verdeutlicht (4.6):

Abbildung 4.6: Blockschaltbild einer TLCI-Wertbestimmung 12

Die von der Kamera gefilmten Farben werden dann in einem Datenfile gespeichert. Die Daten werden analysiert, um die Farbtemperatur zu bestimmen und so die Referenzdaten zu erstellen.

Zur Ermittlung des TLCI wird eine Testtafel mit 24 Farben von einer "Standartkamera"gefilmt. Diese Tafel wird von der zu testenden Leuchte bestrahlt. Die Kamera ist an einen "Standartbildschirm"angeschlossen, auf dem die TLCI-Merssergebnisse angezeigt werden. Im ersten Schritt gewichtet die Kamera die reflektierten Farben mit ihren \bar{r} -, \bar{g} - und \bar{b} -Kamerakurven und die Farbtemperatur wird bestimmt. Die so entstandenen R_C , G_C und B_C -Werte werden dann im zweiten Schritt farblich abgeglichen (R_{Cb} , G_{Cb} und B_{Cb}) und mit einer linearen Matrix M bewertet, um die Werte des RGB-Signals zu erhalten .

$$\begin{bmatrix}
R \\
G \\
B
\end{bmatrix} = \begin{bmatrix}
1,182 & -0,209 & 0,027 \\
0,107 & 0,890 & 0,003 \\
0,004 & -0,134 & 1,094
\end{bmatrix} \begin{bmatrix}
R_{Cb} \\
G_{Cb} \\
B_{Cb}
\end{bmatrix}$$
(4.6)

Ein Weißabgleich wird vorgenommen und die RGB-Werte werden in einer zweiten

¹²(Roberts 2015: 15)

Matrix verrechnet, damit die Sättigungswerte der Farben stimmen (Empfehlung der EBU: 90 % Sättigung). Im nächsten Schritt werden die R_M , G_M und B_M -Werte der einzelnen Farben von der Gammakurve der Kamera vorverzerrt. Beim Bildschirm angekommen werden die R'G'B'-Werte der Farben mit der Gammakurve des Bildschirm wieder entzerrt (Empfehlung der EBU: $\gamma = 2,4$). Für die 24 Farben werden dann im vorletzten Schritt mit der XYZ()-Matrix die Farbkoordinaten X,Y und Z für den Bildschirm errechnet. Schließlich wird mit den Referenzenfarbwerten der selben Farbtemperatur die Farbunterschiede ermittelt (Gleichung 4.7).

$$\Delta E_a^* = \left(\sum_{i=1}^{18} (\Delta E_i^*)^4\right)^{\frac{1}{4}} \tag{4.7}$$

Das Ergebnis wird als TLCI-Wert ausgegeben. Für optimale Werte wird mit k=3,16 (eine Tageslichtleuchtstoffröhre erreicht dabei den TLCI-Wert 50) und p=4 (für ein balanciertes Verhältnis zwischen hohen und niedrigen Werten) gerechnet (Gleichung 4.8).

$$Q = \frac{100}{1 + (\frac{\Delta E^*}{k})^p} \tag{4.8}$$

Der TLCI lässt wie der CQS keine negativen Ergebnisse zu (Kapitel 4.2) und die Werte von 0-100 sind für den Coloristen in der Nachbearbeitung des Videomaterials wie folgt zu deuten(Tabelle 4.2):

Abstufungen des TLCI				
$100 \ge Q_a \ge 85$	Farben korrigierbar bzw. nicht notwendig			
$85 > Q_a \ge 75$	nach Korrektur noch akzeptabel			
$75 > Q_a \ge 50$	Aufbereitung sehr zeitaufwendig			
$50 > Q_a \ge 25$	nicht mehr zu retten - verbesserbar			
$25 > Q_a \ge 0$	ist und bleibt nicht akzeptierbar			

Tabelle 4.2: Q_a eingeteilt in verschiedene Stufen¹⁴

Anhand der Tabelle ist eine Art Kostenvergleich möglich, in dem die Farbwiedergabequalität einer Leuchte gegen den Nachbearbeitungsaufwand des Coloristen gegengerechnet werden kann. Der TLCI gibt sogar eine Empfehlung ab, an welchen Paramtern der Colorist Verbesserungen vornehmen muss (Abbildung 4.7).

¹³(Roberts 2015: 16-22)

¹⁴Production Partner (2018)

Die Messung des TLCI-Werts ergibt ein Ergebnisprotokoll, bestehend aus drei Abschnitten: eine Farbtafel mit den 24 Farbfeldern, eine Empfehlung für den Coloristen zur nachträglichen Bildbearbeitung und ein Vergleich von Referenz- und Testspektrum (Abbildung 4.7):

Abbildung 4.7: TLCI-Ergebnisprotokoll eines Arri L7-C LED Fresnelscheinwerfers¹⁵

Oben links ist der Name der Leuchte angegeben, die gemessene korrelierte Farbtemperatur (CCT) und die Abweichung vom Plank'schen Kurvenzug (3.2) mit einer Gewichtung von 0.0054 (Empfehlung EBU). Ist der Abweichungswert kleiner als -1 wird die Zahl in magenta dargestellt (magentastichtiges weiß), ist sie größer als +1, in grün (grünstichiges weiß). Im Beispiel ist die Zahl daher schwarz. Eine Zeile darunter steht der gemessene TLCI-Wert. Der Arri L7-C ist mit $Q_a = 86$ in die beste Farbwiedergabekategorie einzuordnen (Tabelle 4.2).

Oben rechts ist eine Tabelle mit Korrekturwerten für den Coloristen angegeben. Für 12 verschiedene Farbtöne wird jeweils ein Verbesserungsvorschlag für die Helligkeit, die Sättigung und die Farbtonabweichung angegeben. Da es nicht möglich ist, die Abweichung der Werte mit exakten Zahlen zu definieren, werden mit "+", "0"und "-"die verschiedenen Korrekturrichtungen aufgezeigt. Eine "0"zeigt an, dass der Fehler zu klein ist, um ihn zu korrigieren. Die Anzahl der "+"und "-"wiederum ist ein Hinweis darauf, wie viel Aufwand der Colorist für die Anpassung benötigt. Der Arri L7-C hat beispielsweise Bedarf es vorallem im Bereich des Cyan, Blau/Magenta, Magenta und Magenta/Rot in der Farbtonabweichung einer Aufbesserung. Auch im Green/Cyanund Cyan/Blau-Bereich sollte der Farbton angepasst werden. Die restlichen Verbes-

¹⁵https://tech.ebu.ch/tlci-2012

4 Lichtechnische Parameter

serungsvorschläge bei Helligkeit und Sättigung sollte der Colorist zügig bewältigen können.

Links unten ist eine Farbtafel mit den 24 Farben des TLCI sichtbar. Im großen Farbfeld ist die Farbe zusehen, wie das Licht des Arri L7-C diese Farbe wiedergibt. In der Mitte jeder Farbtafel ist ein kleineres Viereck, in dem die Referenzfarbe gezeigt wird. Je deutlicher also das Referenzviereck in dem Farbfeld zu sehen ist, desto schlechter ist die Farbwiedergabe der Testleuchte. Im Beispiel ist im roten Farbfeld zu erkennen, dass der Arri L7-C diese Farbe nicht so gut wiedergibt wie andere Farben.

Rechts unten ist auf dem TLCI-Ergebnisprotokoll das Referenzspektrum von 380nm bis 740nm Wellenlänge abgebildet (schwarz) und dazu wird das geteste Spektrum geplotet (cyan). In dieser Ansicht kann man gut erkennen, inwieweit das Licht des Arri L7-C das Referenzspektrum abdeckt ¹⁶.

4.4 IES Method for Evaluating Light Source Color Rendition (TM-30-15)

Auch der TM-30 wurde 2015 von der "Illuminating Engineering Society" (IES) ausgearbeitet um eine Alternative zum CRI zu finden. Wie beim CRI werden ebenso bei der Messung des TM-30 Farbunterschiede zwischen einer Testleuchte und Referenzwerten der selben Farbtemperatur aufgezeigt. Der TM-30 differenziert ähnlich, ob es sich bei der Testleuchte um einen Plank'schen Strahler ($CCT \leq 4500$) oder einem Tageslicht handelt ($CCT \geq 5500$).

16	Ro	ber	ts	20	15:	15)

5 Leuchtmittel

- 5.1 Glühlampe
- 5.2 Halogenglühlampe
- 5.3 Entladungslampen
- 5.4 LEDs

6 Vormessungen

- **6.1 Ziel**
- 6.2 Aufbau
- 6.3 Fazit aus der Vormessung

7 Hauptmessung

7.1 Messaufbau

8 Messergebnisse

9 Umfrage

10 Umfrageergebnisse

11 Auswertung aller Ergebnisse

12 Fazit

Abbildungsverzeichnis

3.1	Zapfen und Stäbchen im Auge ¹	7
4.1	Alle Referenzfarben des Farbwiedergabeindexes: R_1 Altrosa, R_2 Senfgelb, R_3 Gelbgrün, R_4 Hellgrün, R_5 Türkisblau, R_6 Himmelblau, R_7 Asterviolett, R_8 Fliederviolett, R_9 Rot gesättigt, R_{10} Gelb gesättigt, R_{11} Grün gesättigt, R_{12} Blau gesättigt und R_{13} Rosa (Hautfarbe), R_{14}	
	Blattgrün ²	10
4.2	Messung einer warmweißen LED-Leuchte (Ausschnitt aus dem Demo-	
	file des Programmes "LiVal"von der Firma JETI): Links ist das Licht-	
	spektrum der Leuchte dargestellt, rechts die gemessenen CRI-Werte	
	3	11
4.3	Alle Referenzfarben des CQS mit voller Sättigung ⁴	12
4.4	Ausschnitt aus dem Programm "LiVal"von der Firma JETI: Demo	
	Spektrum einer warmweißen LED (2942K) mit $Q_f = 81 \dots \dots$	13
4.5	Ausschnitt aus dem Programm "LiVal"von der Firma JETI: Die fünf-	
	zehn Referenzfarben(blau) im CIELAB-Farbraum im Vergleich zu den	
	gemessenen Werten (rot)	13
4.6	Blockschaltbild einer TLCI-Wertbestimmung 5	15
4.7	TLCI-Ergebnis protokoll eines Arri L7-C LED Fresnelscheinwerfers 6 .	17

Tabellenverzeichnis

4.1	R_a eingeteilt in verschiedene Stufen ⁷	 	Ĉ
4.2	Q_a eingeteilt in verschiedene Stufen ⁸	 1	16

Literaturverzeichnis

- Commission Internationale de l'Eclairage: "Technical Report 177:2007 : Color Rendering of White LED Light Sources" https://de.scribd.com/document/125319182/CIE-177-2007, 2007, letzter Zugriff 20.06.2018
- Davis, Wendy L. & Ohno, Yoshihiro: "Development of a Color Quality Scale" http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.568. 8399&rep=rep1&type=pdf, 08.02.2006, letzter Zugriff 20.06.2018
- DocCheck Flexikon: "Skotopisches Sehen" http://flexikon.doccheck.com/de/ Skotopisches Sehen, 24.01.2014, letzter Zugriff 18.06.2018
- DocCheck Flexikon: "Photopisches Sehen" http://flexikon.doccheck.com/de/ Photopisches_Sehen, 10.05.2016, letzter Zugriff 18.06.2018
- Production Partner: "Farbwiedergabe: TM-30-15, CRI und Co." https://www.production-partner.de/basics/farbwiedergabe-tm-30-15-cri-und-co/, 22.02.2018, letzter Zugriff 20.06.2018
- Gigahertz-Optik: "Grundladen der Lichtmesstechnik" https://www.gigahertz-optik.de/de-de/grundlagen-lichtmesstechnik/, letzter Zugriff 20.06.2018
- Dooley, Wesley L. & Streicher, Ronald D.: "M–S Stereo: A Powerful Technique for Working in Stereo", *Journ. Audio Engineering Society* vol. 30 (10), 1982
- Roberts, Alan: TELEVISION LIGHTING CONSISTENCY INDEX (TLCI-2012), Version 2.015e, 18.04.2015
- Hentschel, Hans-Jürgen: Licht und Beleuchtung Theorie und Praxis der Lichttechnik, 4. Aufl., Hüthig 1994
- Spehr, Georg (Hrsg.): Funktionale Klänge, transcript 2009
- Greule, Roland (Autor): Licht und Beleuchtung im Medienbereich, Hanser 2015
- Khanh, Tran Quoc (Autor) & Bodrogi, Peter (Autor) & Vinh, Trinh Quang (Autor): Color Quality of Semiconductor and Conventional Light Sources, Wiley-VCH 2017
- Sowodniok, Ulrike: "Funktionaler Stimmklang Ein Prozess mit Nachhalligkeit", in: Spehr, Georg (Hrsg.): Funktionale Klänge, transcript 2009

Literaturverzeichnis

Stephenson, Uwe: "Comparison of the Mirror Image Source Method and the Sound Particle Simulation Method", $Applied\ Acoustics\ vol.\ 29,\ 1990$

Ich versichere, die vorliegende Arbeit selbstständig ohne fremde Hilfe verfasst und keine anderen Quellen und Hilfsmittel als die angegebenen benutzt zu haben. Die aus anderen Werken wörtlich entnommenen Stellen oder dem Sinn nach entlehnten Passagen sind durch Quellenangaben eindeutig kenntlich gemacht.

Ort, Datum

Matthias Held