Kabinet výuky obecné fyziky, UK MFF

# Fyzikální praktikum



Úloha č. A19

Název úlohy: Rentgenografické difrakční určení mřížového parametru

známé kubické látky

Jméno: Michal Grňo Obor: FOF

Datum měření: 19. 11. 2020 Datum odevzdání: 4. 12. 2020

Připomínky opravujícího:

|                              | Možný počet bodů | Udělený počet bodů |
|------------------------------|------------------|--------------------|
| Práce při měření             | 0-3              |                    |
| Teoretická část              | 0-2              |                    |
| Výsledky a zpracování měření | 0-9              |                    |
| Diskuse výsledků             | 0-4              |                    |
| Závěr                        | 0-1              |                    |
| Použitá literatura           | 0-1              |                    |
| Celkem                       | max. 20          |                    |

Posuzoval: dne:

## 1 Pracovní úkoly

- 1. Nalezněte standardní rtg práškový difraktogram v databázi PDF-2 na CD-ROM.
- 2. Určete vhodný úhlový obor měření.
- 3. Připravte vzorek pro měření a proveďte měření na komerčním práškovém difraktometru.
- 4. V průběhu měření zpracujte data dodaná z měření na stejném (obdobném) vzorku provedená většinou předcházející skupinou – nalezněte polohy difrakčních maxim
- 5. Z Braggovy rovnice vypočtěte mezirovinné vzdálenosti a mřížové parametry pro jednotlivé difraktující roviny.
- 6. Proveďte korekci na instrumentální efekty a určete mřížový parametr zadané kubické látky s maximální přesností.
- 7. Diskutujte odchylky mezi určeným parametrem konkrétního vzorku a tabelovaným mřížovým parametrem.

## 2 Teoretická část

Naším cílem bude proměřit difrakční obrazec polykrystalického vzorku pomocí Braggovy-Brentanovy metody. Podle difrakčního obrazce budeme následně chtít identifikovat, o jakou látku se jedná.

Při měření Braggovou-Brentanovou metodou měníme úhel  $\vartheta$ , pod kterým dopadá rentgenové záření na vzorek, a na druhé straně, symetricky také pod úhlem  $\vartheta$ , detekujeme intenzitu difraktovaného záření. Ve výsledcích z měření se místo úhlu  $\vartheta$  často uvádí úhel mezi emitorem a detektorem, který je roven  $2\vartheta$ . Schéma Braggovy-Brentanovy metody je na obrázku 1.

Při symetrické difrakci na dokonalém krystalu bychom naměřili nenulovou intenzitu I pouze v takových úhlech  $\vartheta$ , které pro nějaká  $h,k,\ell\in\mathbb{N}\cup\{0\}$  splňují tzv. Braggovu difrakční podmínku:



Obrázek 1: Konfigurace Braggovy-Brentanovy metody, převzato z [2].

$$2 d_{hk\ell} \sin \vartheta = \lambda , \qquad (1)$$

kde  $\lambda$  je vlnová délka vstupujícího rentgenového záření,  $\vartheta$  úhel mezi rovinou vzorku a  $d_{hk\ell}$  je mezirovinná vzdálenost roviny s difrakčními indexy  $h, k, \ell$ . Ve skutečnosti nenaměříme takto ostré hodnoty  $I(\vartheta)$  kvůli nedokonalé směrovosti zdroje, nedokonalému úhlovému rozlišení detektoru, konečné velikosti krystalů v práškovém vzorku a přítomnosti nečistot v krystalu. Předpokládáme, že budou teoretické  $\delta$  funkce konvolučně zhlazené (gaussovsky i lorentzovsky), a proto očekáváme píky ve tvaru Voigtovy funkce s maximem v hodnotách předpovídaných Braggovou podmínkou.

Budeme měřit krystaly s kubickou mříží, pro které platí vztah:

$$d_{hk\ell} = \frac{2\pi}{\|\vec{B}_{hk\ell}\|} = \frac{a}{\sqrt{h^2 + k^2 + \ell^2}} = \frac{a}{J},$$
 (2)

kde a je mřížková konstanta a  $J\coloneqq\sqrt{h^2+k^2+\ell^2}$  je index charakterizující skupinu krystalových rovin se stejnou mezirovinnou vzdáleností. Roviny se stejným J mohou být ekvivalentní a lišit se pouze prostorovou orientací:

Také ovšem může jít o neekvivalentní roviny, jejichž mezirovinné vzdálenosti koincidují:

$$(3,0,0), (2,1,0)$$
.

V případě primitivní krychlové mříže jsou povoleny všechny hodnoty  $h,k,\ell\in\mathbb{N}\cup\{0\}$  a bude tedy možné naměřit píky odpovídající všem kombinacím. U ostatních krychlových mřížích ovšem dochází k tomu, že některé kombinace destruktivně interferují, proto jsou "povolené" pouze některé kombinace  $h,k,\ell$ . Přehled povolených kombinací je v tabulce 1.

| typ mříže             | podmínka na $h,k,\ell$                            | hodnoty $J^2$              |
|-----------------------|---------------------------------------------------|----------------------------|
| primitivní            | libovolná                                         | $1, 2, 3, 4, 5, \dots$     |
| prostorově centrovaná | $h + k + \ell = 2n$                               | $2, 4, 6, 8, 12, \dots$    |
| plošně centrovaná     | všechna sudá, nebo všechna lichá                  | $3, 4, 8, 11, 12, \dots$   |
| typ diamantu          | všechna sudá a $h+k+\ell=4n$ , nebo všechna lichá | $3, 11, 16, 19, 20, \dots$ |

Tabulka 1: Typy kubických mříží podle [1]

V experimentu naměříme  $I(\vartheta)$ , identifikujeme píky a pomocí (1) jim přiřadíme odpovídající hodnoty mezirovinné vzdálenosti d. Z těchto hodnot budeme chtít identifikovat, o jaký typ kubické mříže se jedná. K tomu se nám bude hodit hodnota

$$Q_i := \frac{{d_1}^2}{{d_i}^2} \approx \frac{{J_i}^2}{{J_1}^2} \tag{3}$$

kde  $d_i$  je i-tá naměřená hodnota d a  $J_i$  je hodnota J příslušící i-tému teoreticky naměřitelnému píku. V tabulce 2 jsou vypsané teoretické hodnoty  $Q_i$  pro různé typy mříží.

| typ mříže             | $Q_i$ |      |      |      |      |      |      |       |
|-----------------------|-------|------|------|------|------|------|------|-------|
| primitivní            | 1.00  | 2.00 | 3.00 | 4.00 | 5.00 | 6.00 | 8.00 | 9.00  |
| prostorově centrovaná | 1.00  | 2.00 | 3.00 | 4.00 | 5.00 | 6.00 | 7.00 | 8.00  |
| plošně centrovaná     | 1.00  | 1.33 | 2.66 | 3.67 | 4.00 | 5.33 | 6.33 | 6.67  |
| typ diamantu          | 1.00  | 2.66 | 3.67 | 5.33 | 6.33 | 8.00 | 9.00 | 10.67 |

Tabulka 2: Teoretické hodnoty  $Q_i$  pro kubické mříže podle [1]

Nakonec budeme chtít určit hodnotu mřížkové konstanty a. Zdálo by se, že se znalostí d a J ji můžeme přímo vypočítat pomocí vzorce (2), tím ovšem dostaneme pouze odhad  $a_{\rm e}$ , který je zatížený systematickou chybou. Podle [1] pro kubickou mříž platí vztah:

$$a = a_{e} + s \cos \theta \cot \theta , \tag{4}$$

kde s je (neznámá) konsanta úměrnosti.

## 3 Výsledky měření

Naměřená data (viz obrázek 2) jsme nahráli do programu WinPLOTR, ve kterém jsme nalezli polohu píků. Použité rentgenové záření pocházelo z rentgenky s měděnou anodou, proto dostáváme dvojité píky odpovídající dubletům mědi. Při zpracování jsme použili hodnoty výchozí  $\lambda$  přednastavené ve WinPLOTRu:

$$\lambda_1 = 1.54059803 \,\text{Å}$$
 $\lambda_2 = 1.54438996 \,\text{Å}$ 

Program WinPLOTR z důvodu numerické náročnosti používal pro fitování pseudo-Voigtovu funkci, která je lineární kombinací Gaussovy a Lorentzovy funkce (místo teoreticky předpovídané Voigtovy funkce, která je jejich konvolucí). Volné parametry fitu píků byly: hodnota šumu nalevo a napravo od píku, poloha maxima, FWHM, intenzita píku a parametr  $\eta$  pseudo-Voigtovy funkce. Detail jednoho z fitů je na obrázku 3.



Obrázek 2: Naměřený difrakční obrazec

| $2\vartheta$ [ $^{\circ}$ ] | d [Å] | I               | FWHM [°]          | $ \hspace{.05cm}\eta$ |
|-----------------------------|-------|-----------------|-------------------|-----------------------|
| $35.762 \pm 0.002$          | 2.51  | $126.8 \pm 1.7$ | $0.203 \pm 0.005$ | $0.48 \pm 0.02$       |
| $41.578 \pm 0.001$          | 2.17  | $214.9 \pm 2.2$ | $0.214\pm0.004$   | $0.39 \pm 0.01$       |
| $60.320 \pm 0.002$          | 1.53  | $126.5 \pm 1.7$ | $0.153\pm0.004$   | $0.62\pm0.02$         |
| $72.251 \pm 0.003$          | 1.31  | $68.7 \pm 1.3$  | $0.198 \pm 0.009$ | $0.67 \pm 0.03$       |
| $76.021 \pm 0.003$          | 1.25  | $31.9 \pm 0.9$  | $0.168\pm0.010$   | $0.78 \pm 0.05$       |
| $90.746 \pm 0.003$          | 1.08  | $26.5\pm0.8$    | $0.153\pm0.013$   | $0.96 \pm 0.06$       |
| $101.637 \pm 0.003$         | 0.99  | $39.3 \pm 1.0$  | $0.200\pm0.005$   | $0.84 \pm 0.03$       |
| $105.390 \pm 0.003$         | 0.97  | $43.8\pm1.0$    | $0.200\pm0.005$   | $0.84 \pm 0.03$       |

Tabulka 3: Výstup programu WinPLOTR

Výstupní data z programu WinPLOTR jsou v tabulce 3, společně s vypočítanou mřížkovou vzdáleností d odpovídající naměřenému  $2\vartheta$ . Chybu d můžeme dopočítat pomocí vzorce pro propagaci malé chyby z (1) jako:

$$\sigma(d) = d \frac{\sigma(\vartheta)}{\vartheta}$$

Dále jsme podle (2) dopočítali hodnoty  $Q_i$ . Vyšlo nám:

Porovnáním s tabulkou 2 jsme zjistili, že naměřená data velmi dobře odpovídají plošně centrované kubické mříži.

Protože z tabulky 1 víme, že první naměřitelný pík plošně centrované mřížky má index  $J_1=3$ , můžeme snadno dopočítat  $J_i$  pro všechny naměřené hodnoty  $d_i$ :

$$J_i \approx \sqrt{3 \, Q_i}$$

Teď už můžeme podle vzorce (2) vypočítat  $a_{\rm e}$ . Dostáváme hodnoty:

| d [Å]                 | J    | $a_{\mathrm{e}} \ [\mathrm{\AA}]$ |
|-----------------------|------|-----------------------------------|
| $2.50880 \pm 0.00011$ | 1.73 | $4.3454 \pm 0.0002$               |
| $2.17032 \pm 0.00006$ | 2.00 | $4.3406 \pm 0.0001$               |
| $1.53319 \pm 0.00004$ | 2.83 | $4.3365 \pm 0.0001$               |
| $1.30658 \pm 0.00005$ | 3.32 | $4.3334 \pm 0.0002$               |
| $1.25088 \pm 0.00006$ | 3.46 | $4.3332 \pm 0.0002$               |
| $1.08234 \pm 0.00004$ | 4.00 | $4.3294 \pm 0.0002$               |
| $0.99375 \pm 0.00003$ | 4.36 | $4.3317 \pm 0.0001$               |
| $0.96842 \pm 0.00003$ | 4.47 | $4.3309 \pm 0.0001$               |

Tabulka 4: Vypočítané odhady mřížkové konstanty

Úpravou vztahu (4) získáme závislost vhodnout pro lineární regresi:

$$a_{\rm e} = -s \cos \vartheta \cot \vartheta + a$$

Odhady  $a_{\rm e}$  v závislosti na  $\cos \vartheta \cot \vartheta$  jsme vynesli do grafu v obrázku 4 a proložili přímkou. Tím jsme dostali hodnoty:

$$a = (4.3312 \pm 0.0006) \text{ Å}$$
  
 $s = (-0.012 \pm 0.001) \text{ Å}$ 

Nakonec seřadíme naměřené píky podle intenzity a provnáme je s krystalografickými tabulkami pro látky s plošně cetrovanou kubickou mříží – to je poměrně účinný způsob, jak určit, jakou látkou je náš vzorek tvořen. Toto porovnání pro nejpodobnější látky je v tabulce 5.



Obrázek 3: Detail píku na  $2\vartheta=105^\circ$ . Červené kruhy značí naměřená data, černá spojitá čára fit pseudo-Voigtovou funkcí, fialovomodrá čára pod grafem ukazuje rozdíl fitu a naměřených dat. Vidíme, že naměřený pík je asymetrický – oproti fitu je nakloněný doleva.



Obrázek 4: Lineární regrese odhadů mřížkové konstanty v závislosti na předpokládané systematické chybě

| I     | $d \ [ \ 	ext{Å} ]$ | MnO  | TiC  | FeO  |
|-------|---------------------|------|------|------|
| 214.9 | 2.17                | 2.22 | 2.16 | 2.15 |
| 126.8 | 2.51                | 2.57 | 2.50 | 2.49 |
| 126.5 | 1.53                | 1.57 | 1.53 | 1.52 |
| 68.7  | 1.31                | 1.34 | 1.30 | 1.30 |
| 43.8  | 0.97                | 0.99 | 0.97 | 1.24 |
| 39.3  | 0.99                | 0.91 | 0.88 | 1.08 |
| 31.9  | 1.25                | 1.28 | 1.25 | 0.96 |
| 26.5  | 1.08                | 0.86 | 0.83 | 0.99 |

Tabulka 5: Porovnání difrakčních maxim s krystalografickými tabulkami [3]

Až na poslední hodnotu naměřená data velmi dobře odpovídají TiO. Podle tabulek [3] má TiO plošně centrovanou mříž s mřížkovou konstantou:

$$a = 4.3274 \,\text{Å}$$

## 4 Diskuse

Jak je vidět v obrázku 3, konvoluční zhlazení ostrých hodnot, které předpovídá Braggova podmínka, nebylo  $voigtovsk\acute{e}$ , jak jsme předpokládali v teorii, ale asymetrické. To do všech vypočítaných hodnot  $(\vartheta,d,a_{\rm e},a)$  zaneslo systematickou chybu, kterou jsme nedokázali odstranit. Důvod takového asymetrického zhlazení není autorovi zřejmý, mimo jiné proto, že mu nejsou známy okolnosti měření tohoto vzorku.

#### 5 Závěr

Z naměřených dat se podařilo odečíst hodnoty difrakčních maxim. Z nich se podařilo vypočítat mezirovinné vzdálenosti d, určit, že vzorek má plošně centrovanou mřížkum, a následně vypočítat odhady mřížkové konstanty  $a_{\rm e}$  pro jednotlivé píky. Podařilo se kvantifikovat systematickou chybu způsobenou instrumentálními efekty jako:

$$a = a_e + (-0.012 \pm 0.001) \text{ Å} \cdot \cos \vartheta \cot \vartheta$$
.

Po započítání této systematické chyby jsme určili nejlepší odhad mřížkové konstanty:

$$a = (4.3312 \pm 0.0006) \,\text{Å}$$
.

Pomocí krystalografických tabulek se podařilo určit, že vzorek byl TiC, jehož tabulková mřížková konstanta je:

$$a = 4.3274 \,\text{Å}$$
.

Námi určená hodnota není v souladu s tabulkovou hodnotou, konkrétně je naměřená hodnota o 0.8 ‰ vyšší než tabulková hodnota, ačkoliv její statistická chyba je pouze 0.1 ‰.

### 6 Literatura

- [1] Praktikum částicové a jaderné fyziky. Objevování částic v detektoru ATLAS v CERN.

  Dostupné z: https://physics.mff.cuni.cz/vyuka/zfp/\_media/zadani/texty/txt\_401.pdf. 26. září 2019.
- [2] DANIŠ, Stanislav. *Atomová fyzika a elektronová struktura látek*. Praha: MatfyzPress, 2019. ISBN 978-80-7378-376-1. Kapitola Struktura pevných látek.
- [3] SWANSON, H.E. and E. Tatge. Standard X-ray Difraction Powder Patterns. National Bureau of Standards. 1953.