

Índice

- 1. Small-world
- 2. Navigable Small Worlds (NSW)
- 3. Hierarchical Navigable Small Worlds (HNSW)

Social network

Peer to Peer

Neuroscience

Neuroscience

Small-world

Small-world

Small-world

Watts-Strogatz model

- *N* es la cantidad de nodos del grafo.
- k es la cantidad de enlaces entre nodos locales.
- β es la probabilidad de un enlace entre nodos distantes.

Social network

Watts-Strogatz Graph with N=500 nodes, K=25, and $\beta=0.15$

Watts-Strogatz Graph with N=500 nodes, K=25, and $\beta=0.50$

Watts-Strogatz Graph with N=500 nodes, K=25, and $\beta=1$

Watts-Strogatz model

Watts-Strogatz model

Real small-world

Kleinberg model

Enlaces de corto alcance:

Depende de la cuadrícula.

Podemos utilizar cuadrículas con dimensión 1,2,3,...

Enlaces de largo alcance :

La probabilidad de que dos nodos tengan un enlace de largo alcance:

$$P(u \to v) = \frac{1}{Z}d(u, v)^{-r}$$

donde r es el exponente de agrupación.

d(u, v) es la distancia Manhattan entre u y v.

$$Z = \sum_{\forall i \neq u} d(u, i)^{-r}$$
 coeficiente de normalización por suma

Kleinberg model

r = 0 Similar a un *uniform random graph*

r = d Óptimo

r < d Tendemos a seleccionar vecinos lejanos

r > d Tendemos a seleccionar vecinos cercanos

Kleinberg model

Kleinberg's Model

 $\mathcal{O}((\log n)^2)$

Watts-Strogatz Model

 $O(n^{\frac{2}{3}})$

Erdos-Renyi Model

 $\mathcal{O}(n)$

Navigable Small Worlds (NSW)

Navigable Small Worlds (NSW)

Hierarchical Navigable Small Worlds (HNSW)

Hierarchical Navigable Small Worlds (HNSW)

Hierarchical Navigable Small Worlds (HNSW)

