Fundamentals of Machine Learning

VARIATIONAL AUTOENCODERS

Amit K Roy-Chowdhury

Autoencoders vs VAEs

VAEs as Generative Models

Evidence Lower Bound (ELBO)

$$\begin{split} \ln p(\mathbf{x}) &= \ln \int p(\mathbf{x}|\mathbf{z}) p(\mathbf{z}) \, \mathrm{d}\mathbf{z} \\ &= \ln \int \frac{q_{\phi}(\mathbf{z})}{q_{\phi}(\mathbf{z})} p(\mathbf{x}|\mathbf{z}) p(\mathbf{z}) \, \mathrm{d}\mathbf{z} \\ &= \ln \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z})} \left[\frac{p(\mathbf{x}|\mathbf{z}) p(\mathbf{z})}{q_{\phi}(\mathbf{z})} \right] \\ &\geq \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z})} \ln \left[\frac{p(\mathbf{x}|\mathbf{z}) p(\mathbf{z})}{q_{\phi}(\mathbf{z})} \right] \\ &= \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z})} \left[\ln p(\mathbf{x}|\mathbf{z}) + \ln p(\mathbf{z}) - \ln q_{\phi}(\mathbf{z}) \right] \\ &= \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z})} \left[\ln p(\mathbf{x}|\mathbf{z}) \right] - \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z})} \left[\ln q_{\phi}(\mathbf{z}) - \ln p(\mathbf{z}) \right] \end{split}$$

Jensen's Inequality

convex function
$$f$$

$$f(\sum_{i=1}^{n} \lambda_i x_i) \leq \sum_{i=1}^{n} \lambda_i f(x_i)$$

$$\lambda_i \geq 0$$
 and $\sum_{i=1}^n \lambda_i = 1$

Evidence Lower Bound (ELBO)

Considering $q_{\phi}(\mathbf{z}|\mathbf{x})$ instead of $q_{\phi}(\mathbf{z})$

$$\ln p(\mathbf{x}) \geq \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z}|\mathbf{x})} \left[\ln p(\mathbf{x}|\mathbf{z}) \right] - \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z}|\mathbf{x})} \left[\ln q_{\phi}(\mathbf{z}|\mathbf{x}) - \ln p(\mathbf{z}) \right]$$
Reconstruction Error KL Divergence

ELBO - Interpretation

$$\begin{split} & \ln p(\mathbf{x}) = \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z}|\mathbf{x})} \left[\ln p(\mathbf{x}) \right] \\ & = \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z}|\mathbf{x})} \left[\ln \frac{p(\mathbf{z}|\mathbf{x})p(\mathbf{x})}{p(\mathbf{z}|\mathbf{x})} \right] \\ & = \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z}|\mathbf{x})} \left[\ln \frac{p(\mathbf{x}|\mathbf{z})p(\mathbf{z})}{p(\mathbf{z}|\mathbf{x})} \right] \\ & = \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z}|\mathbf{x})} \left[\ln \frac{p(\mathbf{x}|\mathbf{z})p(\mathbf{z})}{p(\mathbf{z}|\mathbf{x})} \frac{q_{\phi}(\mathbf{z}|\mathbf{x})}{q_{\phi}(\mathbf{z}|\mathbf{x})} \right] \\ & = \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z}|\mathbf{x})} \left[\ln p(\mathbf{x}|\mathbf{z}) \frac{p(\mathbf{z})}{q_{\phi}(\mathbf{z}|\mathbf{x})} \frac{q_{\phi}(\mathbf{z}|\mathbf{x})}{p(\mathbf{z}|\mathbf{x})} \right] \\ & = \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z}|\mathbf{x})} \left[\ln p(\mathbf{x}|\mathbf{z}) - \ln \frac{q_{\phi}(\mathbf{z}|\mathbf{x})}{p(\mathbf{z})} + \ln \frac{q_{\phi}(\mathbf{z}|\mathbf{x})}{p(\mathbf{z}|\mathbf{x})} \right] \\ & = \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z}|\mathbf{x})} \left[\ln p(\mathbf{x}|\mathbf{z}) - \ln \frac{q_{\phi}(\mathbf{z}|\mathbf{x})}{p(\mathbf{z})} + \ln \frac{q_{\phi}(\mathbf{z}|\mathbf{x})}{p(\mathbf{z}|\mathbf{x})} \right] \\ & = \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z}|\mathbf{x})} \left[\ln p(\mathbf{x}|\mathbf{z}) - \ln \frac{q_{\phi}(\mathbf{z}|\mathbf{x})}{p(\mathbf{z})} + \ln \frac{q_{\phi}(\mathbf{z}|\mathbf{x})}{p(\mathbf{z}|\mathbf{x})} \right] \\ & = \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z}|\mathbf{x})} \left[\ln p(\mathbf{x}|\mathbf{z}) - \ln \frac{q_{\phi}(\mathbf{z}|\mathbf{x})}{p(\mathbf{z})} + \ln \frac{q_{\phi}(\mathbf{z}|\mathbf{x})}{p(\mathbf{z}|\mathbf{x})} \right] \\ & = \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z}|\mathbf{x})} \left[\ln p(\mathbf{x}|\mathbf{z}) - \ln \frac{q_{\phi}(\mathbf{z}|\mathbf{x})}{p(\mathbf{z})} + \ln \frac{q_{\phi}(\mathbf{z}|\mathbf{x})}{p(\mathbf{z}|\mathbf{x})} \right] \\ & = \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z}|\mathbf{x})} \left[\ln p(\mathbf{x}|\mathbf{z}) - \ln \frac{q_{\phi}(\mathbf{z}|\mathbf{x})}{p(\mathbf{z})} + \ln \frac{q_{\phi}(\mathbf{z}|\mathbf{x})}{p(\mathbf{z}|\mathbf{x})} \right] \\ & = \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z}|\mathbf{x})} \left[\ln p(\mathbf{x}|\mathbf{z}) - \ln \frac{q_{\phi}(\mathbf{z}|\mathbf{x})}{p(\mathbf{z})} + \ln \frac{q_{\phi}(\mathbf{z}|\mathbf{x})}{p(\mathbf{z}|\mathbf{x})} \right] \\ & = \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z}|\mathbf{x})} \left[\ln p(\mathbf{x}|\mathbf{z}) - \ln \frac{q_{\phi}(\mathbf{z}|\mathbf{x})}{p(\mathbf{z}|\mathbf{x})} + \ln \frac{q_{\phi}(\mathbf{z}|\mathbf{x})}{p(\mathbf{z}|\mathbf{x})} \right] \\ & = \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z}|\mathbf{x})} \left[\ln p(\mathbf{x}|\mathbf{z}) - \ln \frac{q_{\phi}(\mathbf{z}|\mathbf{x})}{p(\mathbf{z}|\mathbf{x})} \right] \\ & = \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z}|\mathbf{x})} \left[\ln p(\mathbf{x}|\mathbf{z}) - \ln \frac{q_{\phi}(\mathbf{z}|\mathbf{x})}{p(\mathbf{z}|\mathbf{x})} \right] \\ & = \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z}|\mathbf{x})} \left[\ln \frac{q_{\phi}(\mathbf{z}|\mathbf{x})}{p(\mathbf{z}|\mathbf{x})} \right] \\ & = \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z}|\mathbf{x})} \left[\ln \frac{q_{\phi}(\mathbf{z}|\mathbf{x})}{p(\mathbf{z}|\mathbf{x})} \right] \\ & = \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z}|\mathbf{x})} \left[\ln \frac{q_{\phi}(\mathbf{z}|\mathbf{x})}{p(\mathbf{z}|\mathbf{x})} \right]$$

 $\ln p_{\theta}(\mathbf{x})$

Reparametrization

How to choose the distribution of latent variables?

$$q_{\phi}(\mathbf{z}|\mathbf{x}) = \mathcal{N}\left(\mathbf{z}|\mu_{\phi}(\mathbf{x}), \mathrm{diag}\left[\sigma_{\phi}^{2}(\mathbf{x})
ight]
ight) \ p(\mathbf{z}) = \mathcal{N}\left(\mathbf{z}|0, \mathbf{I}
ight)$$

How to sample from $\mathcal{N}(z|\mu,\sigma)$?

$$\epsilon \sim \mathcal{N}(\epsilon|0,1)$$
 $z = \mu + \sigma \cdot \epsilon$

Computation of VAE

