

Rapport de laboratoire 0

Systèmes de communications

$\label{eq:présente and main def}$ M. Jean-Yves Chouinard

matricule	nom
910 055 897	Daniel Thibodeau
910 097 879	Francis Valois

Université Laval 21 septembre 2012

Chapitre 1

Préparation

Numéro 1

a)

Sachant que la fréquence d'échantillonnage minimale est donnée par :

$$f_s \ge 2f_{max} \tag{1.1}$$

il est possible de trouver que la fréquence de Nyquist est de 2000 Hz lorsque la fréquence du signal est de 1000 Hz.

b)

Sachant que le signal est une sinusoïde de 20 V d'amplitude crête à crête, alors V_{CAN} doit avoir une plage minimale de 20 V.

 $\mathbf{c})$

Pour trouver le rapport signal à bruit, il suffit de trouver dans l'ordre, la résolution, le bruit de quantification normalisé et la puissance du signal normalisée pour obtenir les valeurs nécessaires.

La résolution s'obtient comme suit :

$$q = \frac{V_{CAN}}{2^n} = \frac{20}{2^8} = 0.078125V \tag{1.2}$$

Le bruit de quantification comme suit :

$$N_Q = \frac{q^2}{12} = \frac{0.078125^2}{12} = 5.0862 \cdot 10^{-4} W \tag{1.3}$$

La puissance normalisée au travers d'une résistance de 1 Ω est donnée par l'équation suivante :

$$P_{norm} = \frac{V_{in}^2}{R} = \frac{10^2}{1} = 100W \tag{1.4}$$

Finalement, le ratio du signal à bruit est donnée par l'équation suivante :

$$SNR_Q = \frac{P_{norm}}{N_Q} = \frac{400}{5.0862 \cdot 10^{-4}} = 1.966 \cdot 10^5$$
 (1.5)

Pour obtenir la valeur en dB, il suffit d'utiliser l'équation suivante :

$$SNR_{Q_{dB}} = 10\log(SNR_Q) = 10\log(1.966 \cdot 10^5) = 52.94dB$$
 (1.6)

d)

Le débit peut-être obtenu à l'aide de l'équation suivante :

$$D = F_s \cdot n = 2000 \cdot 8 = 16kBits \tag{1.7}$$

Numéro 2

On peut réécrire le signal h(t) sour la forme suivante :

$$h(t) = \sum_{n = -\infty}^{\infty} \Pi\left(\frac{t - nT_s}{\tau}\right)$$
 (1.8)

On sait de 1.8 que le spectre de cet échantillonneur est donné par l'équation suivante :

$$H(F) = \tau Sa(\pi f \tau) \cdot \sum_{k=-\infty}^{\infty} \delta(f - kf_s)$$
 (1.9)

On a finalement le spectre résultant du signal échantillonné:

$$W(F) = S(F) * \tau Sa(\pi f \tau) \cdot \sum_{k=-\infty}^{\infty} \delta(f - kf_s)$$
(1.10)

Si l'on diminue la valeur de τ , donc que l'on diminue la largeur des impulsions lors de l'échantillonnage, on a que la fréquence de $Sa(\pi f \tau)$ diminue. Si la fréquence de $Sa(\pi f \tau)$ diminue, le lobe principal (situé à $\frac{1}{\tau}$) s'éloigne de l'origine. Ce qui signifie que pour un taux d'échantillonnage constant (f_s constant), on observe moins d'impact sur l'amplitude du spectre résultant.

Si l'on augmente la valeur de τ , donc que l'on augmente la largeur des impulsions lors de l'échantillonnage, on a que la fréquence de $Sa(\pi f \tau)$ augmente. Si la fréquence de $Sa(\pi f \tau)$ augmente, le lobe principal (situé à $\frac{1}{\tau}$) s'approche de l'origine. Ce qui signifie que pour un taux d'échantillonnage constant (f_s constant), on observe plus d'impact sur l'amplitude du spectre résultant. On a donc intérêt à avoir les impulsions les plus courtes possibles afin de réaliser un bon échantillonnage.

Numéro 3

Nous savons que:

$$V_{signal} = \frac{2^n q}{2} \tag{1.11}$$

$$N_q = \frac{q^2}{12} {(1.12)}$$

$$P_{signal} = V_{signal}^2 = \frac{4^n q^2}{4} \tag{1.13}$$

Ainsi,

$$SNR_{Q_{dB}} = 10 \log \left(\frac{P_{signal}}{N_q}\right) = 10 \log \left(\frac{\frac{4^n q^2}{4}}{\frac{q^2}{12}}\right)$$
 (1.14)

$$SNR_{Q_{dB}} = 10\log(3 \cdot 4^n) = 10\log(3) + 10\log(4^n) = 10\log(3) + 10n\log(4) \approx 4.77 + 6.02n$$
(1.15)

Nous remarquons ici que l'approximation donnée dans l'énoncé du laboratoire est erronée et que notre preuve donne le même résultat que dans le livre.