Topic Proposal Beilinson-Bernstein Localisation

Tianqi Fan Discussed with Professor Matthew Emerton

Let G be a semisimple connected linear algebraic group over $k = \mathbb{C}$, \mathfrak{g} its Lie algebra. Beilinson-Bernstein Localisation theory sets up a equivalence between the category of \mathfrak{g} Modules with central character associated to a regular anti-dominant weight and the category of twisted \mathcal{D} modules on the flag variety.

1 Borel-Weil Theory

Let B be a Borel subgroup of G, X = G/B the flag variety, H a split maximal torus contained in B, U the unipotent radical of B, \mathfrak{h} the Cartan subalgebra, Δ the root system, Δ^+ the set of positive roots, S the set of simple roots, W the Weyl group. For $\alpha \in S$, denote $s_{\alpha} \in W$ the simple reflection associated to α . For α a root, let $u_{\alpha}: G_a \to U_{\alpha}$ be the corresponding root subgroup, where G_a is the 1 dimensional additive linear algebraic group.

There is an equivalence between G equivariant vector bundles on X and finite dimensional representations of B. Specifically, if \mathcal{V} is a G equivariant vector bundle over X, the fiber of \mathcal{V} at coset B is a B representation. Conversely, if we have $\rho: B \to Aut_k(V)$, then $G \times_B V = G \times B/\sim$, where $(gb, v) \sim (g, \rho(b)v)$ for $b \in B$ $g \in G$, is a G equivariant vector bundle on X with G acts by left multiplication. There is a equivalence between 1 dimensional representations of B and characters $H \to k^{\times}$. If $\lambda \in \mathfrak{h}^*$ is integral, we can exponentiate λ to get $\chi: H \to k^{\times}$. Denote \mathcal{L}_{λ} the line bundle associated to χ .

Theorem 1.1. If λ is integral dominant, then $H^0(G/B, \mathcal{L}_{-\lambda}) = V(\lambda)^*$, where $V(\lambda)$ is the irreducible G representation of highest weight λ .

Proof. Let $V = H^0(G/B, \mathcal{L}_{-\lambda}) = \{f : G \to k | f(gb) = \chi(b)f(g), \forall b \in B, g \in G\}$. The action of G on V is given by $g \cdot f(-) \to f(g^{-1} \cdot -)$. X is projective, so V is finite dimensional.

For every $w \in W$, fix $\dot{w} \in N_G(H)$ a representative of w. Let $C(w) = B\dot{w}B$ be the Bruhat cell associated to w. Then $U_{w^{-1}} \times B \to C(w)$, defined as $(u,b) \to u\dot{w}b$, is an isomorphism of varieties, where $U_{w^{-1}} = \prod_{\alpha \in \{\alpha \in \Delta^+ | w^{-1}.\alpha \in -\Delta^+\}} U_{\alpha}$. Let w_0 be the longest element in W, so $C(w_0) = U\dot{w_0}B$ is open dense in G. Consider $V_0 \subseteq V$ the subspace invariant under the action of U, i.e. V_0 is the highest weight space. $dim V_0 \leq 1$ since if $f \in V_0$, on $C(w_0)$ its value is uniquely determined by χ . We are reduced to showing that $dim V_0 = 1$ if and only if χ is dominant.

On $C(w_0)$, let us define a function f as $f(u\dot{w}_0b) = f(\dot{w}_0)\chi(b)$, for $u \in U$ and $b \in B$. We want to show that such f can be extend to G if and only if χ is dominant. It suffices to find a formula for f on cells of codimension 1, i.e. cells of the form $C(s_\alpha w_0)$ for $\alpha \in S$. Define $n_\alpha = u_\alpha(1)u_{-\alpha}(-1)u_\alpha(1)$, a representative of s_α , then $C(s_\alpha w_0) \subseteq n_\alpha C(w_0)$. Notice that if $u \in U = \prod_{\beta \in \Delta^+} U_\beta$, we can write $u = \prod_{\beta \in \Delta^+} u_\beta(c_\beta)$, for some scalar $c_\beta \in G_a$. When α is simple, c_α is independent of the ordering we chose for the product, so denote the scalar $c_\alpha(u)$. By

$$n_{\alpha}^2 = \alpha^{\vee}(-1)$$

$$u_{\alpha}(x)u_{-\alpha}(-x^{-1})u_{\alpha}(x) = \alpha^{\vee}(x)n_{\alpha}, x \in k^{\times}$$

direct calculation shows $C(w_0) \cap n_{\alpha}C(w_0) = \{x \in C(w_0) | x = u\dot{w_0}b, c_{\alpha}(u) \neq 0\}.$ On $n_{\alpha}C(w_0)$,

$$f(n_{\alpha}u\dot{w}_0b) = \chi(b)(-c_{\alpha}(u))^{-\langle\chi,w_0,\alpha^{\vee}\rangle}f(\dot{w}_0).$$

When $c_{\alpha}(u) \to 0$, f is well defined if and only if $\langle \chi, w_0.\alpha^{\vee} \rangle$ is negative.

This theory gives a geometric meaning of highest weight representation. Later Bott generalized the theory by showing $H^n(G/B, \mathcal{L}_{-\lambda}) = 0$ for positive n. In the next section we shall see that Beilinson-Bernstein Localisation gives a generalization of Borel-Weil-Bott theorem as $\mathcal{L}_{-\lambda}$ is naturally a twisted \mathcal{D} module.

2 An Introduction to Beilinson-Bernstein Localisation

Let $\mathcal{U}\mathfrak{g}$ be the universal enveloping algebra with center Z, \mathfrak{b} a Borel subalgebra, $\rho = \frac{1}{2} \sum_{\alpha \in \Delta^+} \alpha$ half sum of the positive roots, P weight lattice, \mathcal{D}_X the sheaf of differential operators on X, \mathcal{T}_X the tangent sheaf, ω_X the sheaf of differentials, Ω_X the de Rham complex, T^*X the cotangent bundle over X.

Definition 2.1. A twisted ring of differential operators (or t.d.o) \mathcal{A} on X is a \mathcal{O}_X ring with an increasing filtration $F.\mathcal{A}$ that satisfies the following:

$$\mathcal{A} = \cup_{p=0}^{\infty} F_p(\mathcal{A})$$

$$\mathcal{O}_{X} \simeq F_{0}(\mathcal{A})$$

$$F_{p}(\mathcal{A}) = 0, p < 0$$

$$F_{p_{1}}(\mathcal{A})F_{p_{2}}(\mathcal{A}) \subseteq F_{p_{1}+p_{2}}(\mathcal{A})$$

$$[F_{p_{1}}(\mathcal{A}), F_{p_{2}}(\mathcal{A})] \subseteq F_{p_{1}+p_{2}-1}(\mathcal{A})$$

$$gr_{1}^{F}(\mathcal{A}) \simeq \mathcal{T}_{X}$$

$$F_{p}(\mathcal{A}) = F_{1}(\mathcal{A})F_{p-1}(\mathcal{A}), p \geq 1$$

The set of isomorphism classes of t.d.o is in bijection with $H^2(X, \tau_{\geq 1}\Omega_X)$, and $\mathcal{A}ut_{\mathcal{O}_X}(\mathcal{A})$ is in bijection with $H^1(X, \tau_{\geq 1}\Omega_X)$. In particular, if \mathcal{L} is a line bundle on X, then $\mathcal{L} \otimes_{\mathcal{O}_X} \mathcal{D}_X \otimes_{\mathcal{O}_X} \mathcal{L}^{\vee}$ is a t.d.o. It has a very concrete description as a subsheaf of $\mathcal{E}nd_{\mathbb{C}}(\mathcal{L})$, with the filtration given by

$$F_p(\mathcal{L} \otimes_{\mathcal{O}_X} \mathcal{D}_X \otimes_{\mathcal{O}_X} \mathcal{L}^{\vee}) = \{ P \in \mathcal{E} nd_{\mathbb{C}}(\mathcal{L}) | [P, f] \in F_{p-1}(\mathcal{L} \otimes_{\mathcal{O}_X} \mathcal{D}_X \otimes_{\mathcal{O}_X} \mathcal{L}^{\vee}), \forall f \in \mathcal{O}_X \}.$$

Let Φ be the Harish-Chandra isomorphism: $Z \to \mathcal{U}\mathfrak{h}^W$. For $\lambda \in \mathfrak{h}^*$, define a central character χ_{λ} as $\chi_{\lambda}(z) = \Phi(z)(\lambda)$, $\forall z \in Z$.

G acts on X by left translation, so it acts on \mathcal{O}_X . Differentiating this action we get a Lie algebra homomorphism $\alpha: \mathfrak{g} \to \mathcal{T}_X$. Define an \mathcal{O}_X ring $\underline{\mathcal{U}}\mathfrak{g} = \mathcal{O}_X \otimes_k \mathcal{U}\mathfrak{g}$ with the multiplication rule: $[A, f] = \alpha(A)f$, for $f \in \mathcal{O}_X$ and $A \in \mathfrak{g}$. Let $\underline{\mathfrak{b}}$ be the kernel of $\mathcal{O}_X \otimes_k \mathfrak{g} \to \mathcal{T}_X$. λ determines $\underline{\lambda}: \underline{\mathfrak{b}} \to \mathcal{O}_X$. Let $\mathcal{D}_{\lambda-\rho} = \underline{\mathcal{U}}\mathfrak{g}/\sum_{\xi \in \underline{\mathfrak{b}}} \underline{\mathcal{U}}\mathfrak{g}(\xi - \underline{\lambda}(\xi))$. We can verify that \mathcal{D}_λ is a t.d.o, since $\underline{\mathfrak{b}}$ is the G equivariant vector bundle associated to \mathfrak{b} , where \mathfrak{b} is viewed as a B representation with adjoint action. Moreover, if λ is integral, $\mathcal{D}_\lambda \simeq \mathcal{L}_{\lambda+\rho} \otimes_{\mathcal{O}_X} \mathcal{D}_X \otimes_{\mathcal{O}_X} \mathcal{L}_{\lambda+\rho}^{\vee}$.

Consider the localization functor from the category of \mathfrak{g} modules with central character χ_{λ} to the category of sheaves of \mathcal{D}_{λ} modules on X, quasicoherent as \mathcal{O}_{X} modules,

$$\Delta: \mathcal{M}od(\mathfrak{g}, \chi_{\lambda}) \to \mathcal{M}od_{X}(\mathcal{D}_{\lambda})$$
$$M \to \mathcal{D}_{\lambda} \otimes_{\mathcal{U}\mathfrak{g}} M$$

and the global section functor

$$\Gamma : \Gamma(X, \mathcal{M}) \leftarrow \mathcal{M}$$

 Δ is left adjoint to Γ .

To demonstrate the idea and have some pictures in mind, from now on let us assume λ is integral. By differentiating the action of G on $\mathcal{L}_{\lambda+\rho}$, we get an algebra homomorphism $\sigma(\lambda): \mathcal{U}\mathfrak{g} \to \Gamma(X, \mathcal{D}_{\lambda})$.

Theorem 2.2. If λ is regular anti-dominant, Δ and Γ induce equivalence between categories.

Lemma 2.3. $\sigma(\lambda)$ is surjective, with $ker\sigma(\lambda) = \mathcal{U}\mathfrak{g}(ker\chi_{\lambda})$.

Proof. (sketch)

First observe that $\sigma(\lambda)|_Z = \chi_\lambda$. Since $\mathcal{L}_{\lambda+\rho}$ is generated by global sections by Borel-Weil theory, it suffices to check that $\sigma(\lambda)|_Z$ acts on $\Gamma(X, \mathcal{L}_{\lambda+\rho})$ as χ_λ . Let $z \in Z$, notice that $\sigma(\lambda)(z)$ commutes with the G action on $\Gamma(X, \mathcal{L}_{\lambda+\rho})$, so it suffices to check that $\sigma(\lambda)(z)$ acts on the lowest weight vector by $\chi_\lambda(z)$, which can be proved by a direct calculation.

Let $F.\mathcal{U}\mathfrak{g}$ be the PBW filtration of $\mathcal{U}\mathfrak{g}$, so $gr^F\mathcal{U}\mathfrak{g} \simeq S\mathfrak{g} \simeq \mathbb{C}[\mathfrak{g}^*]$, where $S\mathfrak{g}$ is the symmetric algebra of \mathfrak{g} . Because $\sigma(\lambda)$ respects the grading, it induces a homomorphism $gr\sigma(\lambda): gr^F\mathcal{U}\mathfrak{g} \to \Gamma(X, gr^F\mathcal{D}_{\lambda})$. Let $\pi: T^*X \to X$ be the natural projection, then $gr^F\mathcal{D}_{\lambda} \simeq \pi_*\mathcal{O}_{T^*X}$. Thus, we can view $gr\sigma(\lambda)$ as a homomorphism $\mathbb{C}[\mathfrak{g}^*] \to \Gamma(X, \mathcal{O}_{T^*X})$.

By the natural G equivariant isomorphism: $T^*X \simeq G \times_B (\mathfrak{g}/\mathfrak{b})^*$, we shall see that $gr\sigma(\lambda)$ is precisely the pull back of $\mu: G \times_B (\mathfrak{g}/\mathfrak{b})^* \to \mathfrak{g}^*$, for $\mu(g, \alpha) = g\alpha g^{-1}$. If \mathfrak{g} is identified with \mathfrak{g}^* by the Killing form, the morphism μ factors through

$$T^*X \xrightarrow{\pi} \mathcal{N} \xrightarrow{closed} \mathfrak{g} \xrightarrow{\simeq} \mathfrak{g}^*,$$

where \mathcal{N} is the nilpotent cone in \mathfrak{g} . The morphism π is proper and birational, and \mathcal{N} is a closed irreducible normal subvariety of \mathfrak{g} . Let $\mathbb{C}[\mathfrak{g}]_+^G$ be the G invariant polynomials on \mathfrak{g} without constant terms. By a result due to Kostant, an element $x \in \mathfrak{g}$ is nilpotent if and only if x vanishes at $\mathbb{C}[\mathfrak{g}]_+^G$. Thus, $\Gamma(X, \mathcal{O}_{T^*X}) \simeq S\mathfrak{g}/S\mathfrak{g}S\mathfrak{g}_+^G$, where $S\mathfrak{g}S\mathfrak{g}_+^G = (\mathfrak{g}S\mathfrak{g})^G$.

Let $\mathcal{U}_{\lambda} = \mathcal{U}\mathfrak{g}/\mathcal{U}\mathfrak{g}(\ker\chi_{\lambda})$, and let $F.\mathcal{U}_{\lambda}$ be the filtration induced from $F.\mathcal{U}\mathfrak{g}$. Then $gr^F\mathcal{U}_{\lambda} \simeq S\mathfrak{g}/S\mathfrak{g}S\mathfrak{g}_{+}^G$. Consider the commutative diagram:

$$0 \longrightarrow F_{m-1}\mathcal{U}_{\lambda} \longrightarrow F_{m}\mathcal{U}_{\lambda} \longrightarrow gr_{m}^{F}\mathcal{U}_{\lambda} \longrightarrow 0$$

$$\downarrow^{\sigma(\lambda)} \qquad \qquad \downarrow^{\sigma(\lambda)} \qquad \qquad \downarrow^{\simeq}$$

$$0 \longrightarrow \Gamma(X, F_{m-1}\mathcal{D}_{\lambda}) \longrightarrow \Gamma(X, F_{m}\mathcal{D}_{\lambda}) \longrightarrow \Gamma(X, gr_{m}^{F}\mathcal{D}_{\lambda})$$
We can complete the proof by induction and diagram chasing.

Lemma 2.4. Let \mathcal{M} be a \mathcal{D}_{λ} module, quasicoherent as \mathcal{O}_{X} module, then $H^{n}(X, \mathcal{M}) = 0$ for $n \neq 0$, and \mathcal{M} is generated by global sections.

Proof. Since $H^n(X, \mathcal{M}) = \lim_{\to} H^n(X, \mathcal{F})$, where \mathcal{F} ranges over coherent \mathcal{O}_X submodules of \mathcal{M} , it suffices to show that $H^n(X, \mathcal{F}) \to H^n(X, \mathcal{M})$ is the zero map.

Let μ be an integral anti-dominant weight, $V^{-}(\mu)$ the irreducible finite dimensional representation of lowest weight μ . $V^{-}(\mu)$ has a filtration by B modules:

$$V^-(\mu) = V_0 \supseteq V_1 \supseteq \cdots \supseteq V_N \supseteq V_{N+1} = 0$$

such that $V_i/V_{i+1} \simeq \mathbb{C}_{\mu_i}$, where \mathbb{C}_{μ_i} is the 1 dimensional B representation coming from weight μ_i . We have $\mu_i \geq \mu$, and $\mu_i = \mu$ if and only if i = 0.

Consequently, $\mathcal{O}_X \otimes_{\mathbb{C}} V^-(\mu)$ has a filtration by locally free G equivariant sheaves:

$$\mathcal{O}_X \otimes_{\mathbb{C}} V^-(\mu) = \mathcal{V}_0 \supseteq \mathcal{V}_1 \supseteq \cdots \supseteq \mathcal{V}_N \supseteq \mathcal{V}_{N+1} = 0$$

such that $V_i/V_{i+1} \simeq \mathcal{L}_{\mu_i}$

Apply $- \otimes_{\mathcal{O}_X} \mathcal{M}$, we get a filtration as $\mathcal{U}\mathfrak{g}$ modules for $V^-(\mu) \otimes_{\mathbb{C}} \mathcal{M}$ with subquotients isomorphic to $\mathcal{L}_{\mu_i} \otimes_{\mathcal{O}_X} \mathcal{M}$. Notice $\mathcal{V}_0 \to \mathcal{V}_0/\mathcal{V}_1$ induce a surjection:

$$p_{\mathcal{M}}: V^{-}(\mu) \otimes_{\mathbb{C}} \mathcal{M} \to \mathcal{L}_{\mu} \otimes_{\mathcal{O}_{X}} \mathcal{M}$$

The key fact is that $p_{\mathcal{M}}$ splits as a morphism between sheaves of abelian groups. Since $\mathcal{L}_{\mu_i} \otimes_{\mathcal{O}_X} \mathcal{M}$ is a $\mathcal{D}_{\lambda+\mu_i}$ module, the center Z acts by $\chi_{\lambda+\mu_i}$. The Z action on $V^-(\mu) \otimes_{\mathbb{C}} \mathcal{M}$ is locally finite, so $V^-(\mu) \otimes_{\mathbb{C}} \mathcal{M}$ decompose into a direct sum of generalized Z eigenspaces. When λ is anti-dominant, the property of central character implies that $\chi_{\lambda+\mu_i} = \chi_{\lambda+\mu}$ if and only if i = 0. Thus $(V^-(\mu) \otimes_{\mathbb{C}} \mathcal{M})^{\chi_{\lambda+\mu}} \simeq \mathcal{L}_{\mu} \otimes_{\mathcal{O}_X} \mathcal{M}$.

Similarly, $V(-\mu)$ has a filtration by B module:

$$0 = W_{-1} \subset W_0 \subset \cdots \subset W_M = V(-\mu)$$

such that $W_j/W_{j-1} \simeq \mathbb{C}_{\xi_j}$. We have $\xi_j \leq -\mu$, and $\xi_j = -\mu$ if and only if j = 0. Thus, we get a filtration of $\mathcal{L}_{\mu} \otimes_{\mathbb{C}} V(-\mu)$ by locally free G equivariant sheaves:

$$0 = \mathcal{W}_{-1} \subseteq \mathcal{W}_0 = \mathcal{O}_X \subseteq \cdots \subseteq \mathcal{W}_M = \mathcal{L}_{\mu} \otimes_{\mathbb{C}} V(-\mu)$$

Apply $- \otimes_{\mathcal{O}_X} \mathcal{M}$, we get a $\mathcal{U}\mathfrak{g}$ filtration of $\mathcal{L}_{\mu} \otimes_{\mathbb{C}} V(-\mu) \otimes_{\mathcal{O}_X} \mathcal{M}$ with subquotients isomorphic to $\mathcal{L}_{\mu+\xi_i} \otimes_{\mathcal{O}_X} \mathcal{M}$. Notice $\mathcal{W}_0 \to \mathcal{W}_M$ gives an injection:

$$i_{\mathcal{M}}: \mathcal{M} \to \mathcal{L}_{\mu} \otimes_{\mathbb{C}} V(-\mu) \otimes_{\mathcal{O}_X} \mathcal{M}$$

 $i_{\mathcal{M}}$ also splits as a morphism between sheaves of abelian groups, by checking the Z action and noticing that $\chi_{\lambda+\mu+\xi_j}=\chi_{\lambda}$ if and only if j=0.

We have the following commutative diagram:

$$H^n(X, \mathcal{F}) \longrightarrow H^n(X, \mathcal{M})$$

$$\downarrow^{i_{\mathcal{M}*}}$$

 $H^n(X, \mathcal{L}_{\mu} \otimes_{\mathbb{C}} V(-\mu) \otimes_{\mathcal{O}_X} \mathcal{F}) \longrightarrow H^n(X, \mathcal{L}_{\mu} \otimes_{\mathbb{C}} V(-\mu) \otimes_{\mathcal{O}_X} \mathcal{M})$

By Serre's theorem, we can assume that $H^n(X, \mathcal{L}_{\mu} \otimes_{\mathbb{C}} V(-\mu) \otimes_{\mathcal{O}_X} \mathcal{F}) = 0$. Because $i_{\mathcal{M}*}$ is injective, we conclude that $H^n(X, \mathcal{M}) = 0$.

To finish the proof, we need to show that $\mathcal{D}_{\lambda} \otimes_{\mathcal{U}_{\mathfrak{g}}} \Gamma(X, \mathcal{M}) \to \mathcal{M}$ is surjective. It basically follows from that $p_{\mathcal{M}_*}$ induces surjection on H^0 and \mathcal{L}_{μ} is ample.

Proof of Theorem 2.2 From the vanishing of higher cohomology, we know Γ is an exact functor and $id \simeq \Gamma \Delta$. From modules in $\mathcal{M}od_X(\mathcal{D}_{\lambda})$ are generated by global sections we know $\Delta\Gamma \simeq id$.

3 (\mathfrak{g}, K) Modules and Holonomic \mathcal{D} Modules

Let K be a closed subgroup of G, with \mathfrak{k} its Lie algebra. G acts on its flag variety X by left multiplication. In this section we follow the notation for \mathcal{D} modules given by Bernstein[3]. If f is a morphism between smooth varieties, denote f! the inverse image functor with shift, and f_* the direct image functor.

Recall that a coherent \mathcal{D}_X module \mathcal{M} is holonomic if its singular support has dimension $\dim X$. Holonomic \mathcal{D} modules have nice visible shape because the following are equivalent:

- 1. \mathcal{M} is holonomic.
- 2. \exists a sequence of closed subsets of X: $X = X_0 \supseteq X_1 \supseteq \cdots \supseteq X_m = \emptyset$ such that $X_r \setminus X_{r+1}$ is smooth, and if we denote $i_r : X_r \setminus X_{r+1} \to X$ locally closed imbedding, $H^k(i_r^!\mathcal{M})$ is locally free of finite rank.
 - 3. $\forall x \in X, i_x : \{x\} \to X, H^k(i_x^! \mathcal{M})$ is finite dimensional.

Definition 3.1. A (\mathfrak{g}, K) module M is a locally finite K module which is also \mathfrak{g} module such that k.(A.u) = (Ad(k)A).(k.u), and two \mathfrak{k} actions, differentiating the action of K and restricting \mathfrak{g} , agree.

By Beilinson-Bernstein Localisation, in the language of \mathcal{D} modules, a (\mathfrak{g}, K) module M with central character $\chi_{-\rho}$ corresponds to a K equivariant \mathcal{D}_X module \mathcal{M} which is quasi coherent as \mathcal{O}_X module. Moreover, M is finitely generated as a $\mathcal{U}\mathfrak{g}$ module if and only if \mathcal{M} is a coherent \mathcal{D}_X module.

Proposition 3.2. If K has finite many orbits on X, a K equivariant coherent \mathcal{D}_X module \mathcal{M} is holonomic.

Proof. We will prove the proposition by induction on the number of K-orbits on $supp \mathcal{M}$.

Suppose there is only one orbit. Let $x_0 \in supp\mathcal{M}$, and define $p: K \to X$ by $p(k) = kx_0$. Let $i_{x_0}: \{x_0\} \to X$ be the natural embedding. By the K equivariance of \mathcal{M} , $p!\mathcal{M} = \mathcal{O}_K \otimes_{\mathbb{C}} (i^!_{x_0}\mathcal{M})$. Since p restricting to the orbit of x_0 is a smooth morphism, the module $p!\mathcal{M}$ is coherent, which implies that $(i^!_{x_0}\mathcal{M})$ must be finite dimensional. As a result, \mathcal{M} is holonomic.

In general, we know there is a closed orbit Y. Denote $i:Y\to X$ the closed embedding and $j:X\setminus Y\to X$ the open embedding. By Kashiwari's theorem, we have an exact triangle :

$$i_*i^!\mathcal{M} \to \mathcal{M} \to j_*(\mathcal{M}|_{X\setminus Y})$$

By induction hypothesis $i^!\mathcal{M}$ and $\mathcal{M}|_{X\setminus Y}$ are holonomic, and the direct image functor preserves holonomicity, so \mathcal{M} is holonomic.

We want to work with the category of holonomic \mathcal{D} modules because it is Artinian. Consequently, as an application of Beilinson-Bernstein Localisation, we see that Harish-Chandra modules with central character $\chi_{-\rho}$ have finite length.

4 The Story of SL_2

In this section we shall see some explicit calculation for SL_2 . Let $h = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, $e = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $f = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, the standard basis for \mathfrak{sl}_2 . Take upper triangular Borel, and identify the flag variety X as \mathbb{P}^1 . Set $U_0 = \mathbb{P}^1 \setminus \{\infty\}$ with coordinate z, and $U_1 = \mathbb{P}^1 \setminus \{0\}$ with coordinate $w = \frac{1}{z}$. G act on \mathbb{P}^1 by linear fractional transformation. The Casimir is $c = \frac{1}{2}h^2 + ef + fe$.

The invertible sheaf $\mathcal{O}(-n)$ is isomorphic to $\mathcal{L}_{n\rho}$. We can describe this line bundle by gluing $U_0 \times \mathbb{C}$ and $U_1 \times \mathbb{C}$, with the identification: (z, u) = (w, v) if and only if $w = \frac{1}{z}$ and $v = w^{-n}u$.

For $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2$, on $U_0 \times \mathbb{C}$, the SL_2 equivaraint structure is given by:

$$(z,u) \rightarrow (\frac{az+b}{cz+d},(cz+d)^n u).$$

The t.d.o $\mathcal{D}_{(n-1)\rho}$ when restrict to U_0 (resp. U_1) is isomorphic to \mathcal{D}_{U_0} (resp. \mathcal{D}_{U_1}), and the gluing information is given by: $\partial_w = -z^2 \partial_z - nz$.

To see what is $\sigma((n-1)\rho): \mathcal{U}\mathfrak{sl}_2 \to \Gamma(X, \mathcal{D}_{n\rho})$, let us take $A \in \mathfrak{sl}_2$, then $(\sigma((n-1)\rho)(A))s = \frac{d}{dt}|_{t=0}(exp(tA)s)$ for $s \in \mathcal{L}_{n\rho}$. We have

$$h \to -2z\partial_z - n,$$

 $e \to -\partial_z,$
 $f \to z^2\partial_z + nz.$

The Casimir c acts by the scalar $\frac{n^2}{2} - n$. Finally, set n = 0. Let $\mathcal{D}_X \delta$ be the \mathcal{D}_X module generated by the δ -function supported at ∞ . Then $\Gamma(X, \mathcal{D}_X \delta) \simeq \mathbb{C}[f]\delta$, with the relations $h\delta = -2\delta$ and $e\delta = 0$. Thus, $\Gamma(X, \mathcal{D}_X \delta)$ is isomorphic to the Verma module with highest weight -2.

References

- [1] Beilinson, Alexander, and Joseph Bernstein. "Localisation de g-modules." CR Acad. Sci. Paris 292, no.1 (1981): 15-18.
- [2] Kashiwara, Masaki. Representation theory and D-modules on flag varieties. Kyoto University, Research Institute for Mathematical Sciences, 1988.
- [3] Bernstein, Joseph. "Algebraic theory of D-modules." preprint (1982).
- [4] Hotta, Ryoshi, and Toshiyuki Tanisaki. D-modules, perverse sheaves, and representation theory. Birkhuser, 2008.
- [5] Gelfand, Sergei Izrailevich, and Yuri Manin. Methods of homological algebra: Springer monographs in mathematics. Springer, 2003.
- [6] Springer, Tonny Albert. Linear algebraic groups. Birkhuser Boston, 2008.
- [7] Chriss, Neil, and Victor Ginzburg. Representation theory and complex geometry. Springer, 2009.