Cálculo Numérico (MS211) - Turmas A e B

PROVA 1 (19/04/2011)

Nome: With de O. Compra

RA: 073805

Questão 1	Questão 2	Questão 3	Questão 4	Total
0.0	05	0.5	0.5	1-5

1. (2,0 pontos) Dada a matriz
$$A = \begin{pmatrix} 5 & 2 & 2 \\ 10 & 7 & 3 \\ 5 & -10 & 7 \end{pmatrix}$$
,

- (a) calcule sua fatoração LU sem pivoteamento.
- (b) Utilize a fatoração LU de A para resolver $A[x_1|x_2] = C$ de forma econômica, onde x_1 e x_2 são colunas de $X: 3 \times 2$ e $C = \begin{pmatrix} 1 & 2 \\ 7 & 7 \\ -18 & -10 \end{pmatrix}$.
- 2. (2,0 pontos) O número de operações aritméticas realizadas ao se resolver um sistema linear com n equações e n incógnitas usando eliminação gaussiana é $\frac{2}{3}n^3 + \frac{3}{2}n^2 \frac{7}{6}n$.
 - (a) Pretende-se resolver um sistema linear em que n=100 usando um método iterativo. Supondo que este método seja convergente, estabeleça o número de iterações necessárias para torná-lo competitivo com o método de eliminação gaussiana.
 - (b) Que critério de parada você usaria no programa deste método iterativo? Justifique.
- 3. (3,0 pontos) Resolva os itens a seguir, justificando tudo o que você fizer:
 - (a) Descreva o método das secantes geometricamente.
 - (b) Cite duas diferenças entre esse método e o método de Newton.
 - (c) Começando com $x_0 = -1$ e $x_1 = 1$, encontre x_3 , aproximação da solução de $f(x) = x^3 5x^2 + 17x + 21 = 0$ pelo método das secantes.
- - (a) Após plotar os valores (x_i, y_i) , escolha um dos modelos abaixo para ajustá-lo aos dados: $\varphi_1(x) = c_1 x + c_2 x^2; \quad \varphi_2(x) = c_1 + c_2 \ln(x 0.5); \quad \varphi_3(x) = c_1 x + c_2 \sin(x) + c_3 \cos(x).$ Justifique a sua escolha.
 - (b) Escolhido o modelo, encontre a melhor aproximação para os dados, no sentido de quadrados mínimos. Calcule os resíduos.
 - (c) Se usássemos o modelo $\varphi_4(x) = \frac{c_1 x}{c_2 + x}$ (crescimento populacional com saturação), o ajuste pela linearização para a tabela acima nos daria $c_1 = 1.95$ e $c_2 = 0.492$. Como você poderia decidir se este ajuste é melhor do que o encontrado em (b)?