Paraopt algorithm & Runge-Kutta methods

Norbert D. Tognon

djahou-norbert.tognon@inria.fr

Supervisor : Julien Salomon

INRIA Paris & Sorbonne University (France)

Joint work with Félix Kwok, Laval University (Canada)

21st Copper Mountain Conference On Multigrid Methods

16-20 April 2023, Copper Mountain (USA)

Table of contents

- 1 Optimal control problem
- Paraopt algorithm
- 3 Discrete formulation
- 4 Convergence analysis
- 6 Numerical results

Optimal control problem

 Let us consider the following Cauchy problem on [0, T],

$$\dot{y}(t) - f(y(t)) = u(t),$$

$$y(0) = y_i.$$

- $y, u \in \mathbb{R}^r$.
- y_i: the initial state,
- y_{tg} : the target state.

Assumption

We assume that this equation is controllable, i.e, the application $u \longmapsto y(T)$ is subjective.

Optimal control problem

Find the optimal control u such that

$$y(T) = y_{tg}$$
.

Optimal control problem

 The optimal control problem becomes the following optimization problem.

Minimization problem

$$\min_{u} \mathfrak{J}(u) := \frac{1}{2} \|y(T) - y_{tg}\|^{2} + \frac{\alpha}{2} \int_{0}^{T} \|u\|^{2}(t) dt,$$

subject to

$$\dot{y}(t) - f(y(t)) = u(t), t \in [0, T]$$

 $y(0) = y_i.$

Optimality system

ullet Using an adjoint variable λ , the Lagrange operator becomes

$$\mathfrak{L}(u,y,\lambda) = \mathcal{J}(u) - \int_0^T (\dot{y} - f(y) - u)^T \lambda dt.$$

• Taking $\nabla \mathfrak{L} = 0$, we get the optimality system

$$\begin{cases} \dot{y} - f(y) = u \\ y(0) = y_i, \end{cases} \begin{cases} \dot{\lambda} + [f'(y)]^T \lambda = 0 \\ \lambda(T) = y(T) - y_{tg}, \end{cases}$$

Reduced optimality system

$$\begin{cases} \dot{y}(t) = f(y(t)) - \frac{1}{\alpha}\lambda(t), \\ \dot{\lambda}(t) = -\left[f'(y(t))\right]^T \lambda(t), \end{cases}$$
(1)

with the initial and final conditions $y(0) = y_i$ and $\lambda(T) = y(T) - y_{tg}$ respectively.

Multiple shooting

- Partition of [0,T] into $[T_{\ell-1},T_{\ell}],\ T_0=0,\ T_{\ell}=\ell\Delta T$ and $\ell=1,\ldots,L$.
- Subproblem notation on $[T_{\ell-1}, T_{\ell}]$

$$(\mathcal{S}_{\ell}): egin{cases} \dot{y}_{\ell} = f(y_{\ell}) - rac{1}{lpha}\lambda_{\ell} \ \dot{\lambda}_{\ell} = -\left[f'(y_{\ell})
ight]^{T}\lambda_{\ell}, \end{cases}$$

with initial and final conditions $y_{\ell}(T_{\ell-1}) = Y_{\ell-1}$ and $\lambda_{\ell}(T_{\ell}) = \Lambda_{\ell}$ respectively.

Multiple shooting

• Introduce the solution operators to solve the subproblems.

$$y(T_{\ell}) = P(Y_{\ell-1}, \Lambda_{\ell})$$
$$\lambda(T_{\ell-1}) = Q(Y_{\ell-1}, \Lambda_{\ell}).$$

• The solutions must match at interfaces, which lead to the equations

Nonlinear system

 \bullet Collecting the unknowns in the vector X we obtain the nonlinear system

$$\mathcal{F}(X) := \begin{pmatrix} Y_{0} - y_{i} \\ Y_{1} - P(Y_{0}, \Lambda_{1}) \\ Y_{2} - P(Y_{1}, \Lambda_{2}) \\ \vdots \\ Y_{L} - P(Y_{L-1}, \Lambda_{L}) \\ \Lambda_{1} - Q(Y_{1}, \Lambda_{2}) \\ \Lambda_{2} - Q(Y_{2}, \Lambda_{3}) \\ \vdots \\ \Lambda_{L} - Y_{L} + y_{tg} \end{pmatrix} = 0, \quad X := \begin{pmatrix} Y_{0} \\ \vdots \\ \vdots \\ Y_{L} \\ \hline \Lambda_{1} \\ \vdots \\ \vdots \\ \Lambda_{L} \end{pmatrix}. \tag{2}$$

Newton Method

Newton method

$$\mathcal{F}'\left(X^{k}\right)\left(X^{k+1}-X^{k}\right)=-\mathcal{F}\left(X^{k}\right),$$

where

Jacobian approximation and Parareal Idea

- Like in Parareal the remaining expensive fine grid $P(Y_{\ell-1}, \Lambda_{\ell})$ and $Q(Y_{\ell-1}, \Lambda_{\ell})$ can now all be performed in parallel.
- Derivative Parareal idea [Gander & Hairer 2014]:

$$\begin{split} P_{y}(Y_{\ell-1}^{k}, \Lambda_{\ell}^{k})(Y_{\ell-1}^{k+1} - Y_{\ell-1}^{k}) &\approx \ P_{y}^{G}(Y_{\ell-1}^{k}, \Lambda_{\ell}^{k})(Y_{\ell-1}^{k+1} - Y_{\ell-1}^{k}), \\ P_{\lambda}(Y_{\ell-1}^{k}, \Lambda_{\ell}^{k})(\Lambda_{\ell}^{k+1} - \Lambda_{\ell}^{k}) &\approx \ P_{\lambda}^{G}(Y_{\ell-1}^{k}, \Lambda_{\ell}^{k})(\Lambda_{\ell}^{k+1} - \Lambda_{\ell}^{k}), \\ Q_{\lambda}(Y_{\ell-1}^{k}, \Lambda_{\ell}^{k})(\Lambda_{\ell}^{k+1} - \Lambda_{\ell}^{k}) &\approx \ Q_{\lambda}^{G}(Y_{\ell-1}^{k}, \Lambda_{\ell}^{k})(\Lambda_{\ell}^{k+1} - \Lambda_{\ell}^{k}), \\ Q_{y}(Y_{\ell-1}^{k}, \Lambda_{\ell}^{k})(Y_{\ell-1}^{k+1} - Y_{\ell-1}^{k}) &\approx \ Q_{y}^{G}(Y_{\ell-1}^{k}, \Lambda_{\ell}^{k})(Y_{\ell-1}^{k+1} - Y_{\ell-1}^{k}). \end{split}$$

→ **Derivative Parareal**: M. Gander and E. Hairer, Analysis for parareal algorithms applied to Hamiltonian differential equations, 2014.

Paraopt algorithm

- Application to the Jacobian \mathcal{F}' by solving linear subproblems in parallel using a coarse solver.
- \mathcal{J}^{G} is the coarse approximation of \mathcal{F}' .

Paraopt algorithm

$$\mathcal{J}^{G}\left(X^{k}\right)\left(X^{k+1}-X^{k}\right)=-\mathcal{F}\left(X^{k}\right).$$

→ **ParaOpt**: M. Gander, F. Kwok, J. Salomon, ParaOpt: A Parareal algorithm for optimal control systems, 2020.

Discrete cost functional

• Let $M_0, M \in \mathbb{N}$, $\delta t = T/M_0$, $\Delta T = M\delta t$, $M_0 = ML$ and $t_n = n\delta t$, $n = 0, \dots, M_0$.

• We consider a quadrature formula (d, c). Discrete cost functional :

$$\mathfrak{J}_{\delta t}(u) = \frac{1}{2} \|y_{M_0} - y_{tg}\|^2 + \frac{\alpha}{2} \delta t \sum_{n=0}^{M_0 - 1} \sum_{i=1}^{s} d_i \|u_{n,i}\|^2,$$
 (3)

with $y_{M_0} \approx y(T)$ and $u_{n,j} = u(t_n + c_j \delta t)$.

• Runge-Kutta method (A, b^T, c) for the linear dynamic

$$g_{i} = f\left(y_{n} + \delta t \sum_{j=1}^{s} a_{i,j}g_{j}\right) + u_{n,i}, \quad i = 1, \dots, s,$$

$$y_{n+1} = y_{n} + \delta t \sum_{i=1}^{s} b_{i}g_{j}, \ y_{n} \approx y(t_{n}).$$

Discrete constraint

Matrix notation

$$y_{n+1} = y_n + \delta t(b_1 I, \dots, b_s I)(g_1^T, \dots, g_s^T)^T.$$

We consider the linear dynamic given by

$$\dot{y}(t) - \mathcal{L}y(t) = u(t).$$

The stage approximations g_i satisfy

$$\begin{pmatrix} g_1 \\ \vdots \\ g_s \end{pmatrix} = (I - \delta t A \otimes \mathcal{L})^{-1} \begin{pmatrix} \mathcal{L} y_n + u_{n,1} \\ \vdots \\ \mathcal{L} y_n + u_{n,s} \end{pmatrix}.$$

• Setting $(W_1, W_2, \ldots, W_s) = (b_1 I, \ldots, b_s I)(I - \delta t A \otimes \mathcal{L})^{-1}$

$$y_{n+1} = y_n + \delta t(W_1, W_2, \dots, W_s) \begin{pmatrix} \mathcal{L} y_n + u_{n,1} \\ \vdots \\ \mathcal{L} y_n + u_{n,s} \end{pmatrix}.$$

The discrete constraint:

$$y_{n+1} = (I + \delta t W \mathcal{L}) y_n + \delta t \sum_{i=1}^{s} W_j u_{n,j}, \quad W = \sum_{i=1}^{s} W_i.$$
 (4)

Discrete optimality system

The optimality system

$$y_{0} = y_{i}$$

$$y_{n+1} = (I + \delta t W \mathcal{L}) y_{n} + \delta t \sum_{j=1}^{s} W_{j} u_{n,j}$$

$$\lambda_{n} = (I + \delta t W \mathcal{L})^{T} \lambda_{n+1}$$

$$\lambda_{M_{0}} = y_{M_{0}} - y_{tg}$$

$$\alpha d_{j} u_{n,j} = -W_{j}^{T} \lambda_{n+1}.$$

Reduced optimality system

$$y_{n+1} = (I + \delta t W \mathcal{L}) y_n - \frac{\delta t}{\alpha} \left(\sum_{j=1}^s \frac{1}{d_j} W_j W_j^T \right) \lambda_{n+1}$$
$$\lambda_n = (I + \delta t W \mathcal{L})^T \lambda_{n+1},$$

with initial and final conditions $y_0 = y_i$ and $\lambda_{M_0} = y_{M_0} - y_{tg}$ respectively.

Discrete optimality system

• Eliminating the interior unknowns (y_n) and (λ_n) on each subinterval $[T_\ell, T_{\ell+1}]$

where

$$S_{\delta t} := (I + \delta t W \mathcal{L})^{M},$$

$$\mathcal{R}_{\delta t} := \delta t \sum_{n=0}^{M-1} (I + \delta t W \mathcal{L})^{n} \left(\sum_{j=1}^{s} \frac{1}{d_{j}} W_{j} W_{j}^{T} \right) [(I + \delta t W \mathcal{L})^{T}]^{n}.$$

Discrete optimality system

• The function $\mathcal{F}_{\delta t}(X) := \mathcal{M}_{\delta t}X - \mathbf{f} = 0$;

Discrete formulation

• We introduce the coarse time step $\Delta t = \Delta T/N$ with

$$\delta t < \Delta t < \Delta T$$
.

The Paraopt algorithm becomes the following iteration

$$\mathcal{M}_{\Delta t}\left(X^{k+1} - X^{k}\right) = -\left(\mathcal{M}_{\delta t}X^{k} - \mathbf{f}\right),\tag{5}$$

or

$$X^{k+1} = \mathcal{M}_{\Delta t}^{-1} \left(\mathcal{M}_{\Delta t} - \mathcal{M}_{\delta t} \right) X^k + \mathcal{M}_{\Delta t}^{-1} \mathbf{f}.$$

• How do behave the convergence factor of the iteration matrix $\mathcal{M}_{\Delta_{+}}^{-1}(\mathcal{M}_{\Delta_{t}}-\mathcal{M}_{\delta_{t}})$?

Convergence analysis

- The Dahlquist problem case where $\mathcal{L} \in \mathbb{R}^-$.
- Backward Euler method: $(A, b^T, c) = (1, 1, 1)$.
- Quadrature formula: backward Euler method (d, c) = (1, 1).

Theorem (Gander et al)

Let $\Delta T, \Delta t, \delta t$ and α be fixed. Then for all $\mathcal{L} < 0$, the spectral radius of $\mathcal{M}_{\Delta t}^{-1}(\mathcal{M}_{\Delta t} - \mathcal{M}_{\delta t})$ satisfies

$$\max_{\mathcal{L}<0} \rho(\mathcal{L}) \leq \frac{0.79\Delta t}{\alpha + \sqrt{\alpha \Delta t}} + 0.3.$$

Thus, if $\alpha > 0.4544\Delta t$, then the linear Paraopt algorithm converges.

Convergence analysis

Definition

• Let \mathcal{E}_i , $i \in \{0,1\}$ be the finite sequence set

$$\mathcal{E}_i := \{ Y = (Y_\ell)_{\ell=i,...,L} : Y_\ell \in \mathbb{R}^r \text{ and } \|Y\|_{\Delta T}^2 = \Delta T \sum_{\ell=i}^L \|Y_\ell\|^2 < \infty \}.$$

• For $X = \begin{pmatrix} Y \\ \Lambda \end{pmatrix} \in \mathcal{E}_0 \times \mathcal{E}_1$,

$$\|X\|_*^2 := \|Y\|_{\Delta T}^2 + \alpha^{-2} \|\Lambda\|_{\Delta T}^2 = \Delta T \left(\sum_{\ell=0}^L \|Y_\ell\|^2 + \alpha^{-2} \sum_{\ell=1}^L \|\Lambda_\ell\|^2 \right).$$

The induced matrix norm

$$\|\mathcal{M}_{\delta t}\|_* = \inf\{\kappa; \ \|\mathcal{M}_{\delta t}X\|_* \le \kappa \|X\|_*, X \in \mathcal{E}_0 \times \mathcal{E}_1\}.$$

Stability condition

Assumption 1

We assume that the Runge-Kutta method satisfies the stability condition

$$||I + \Delta t W \mathcal{L}|| < 1.$$

- Let $\{\nu_j, j=1,\ldots,r\}$ be the spectrum of $\mathcal L$ and F the stability function of the Runge-Kutta method.
- The assumption 1 means that

$$\{\Delta t.\nu_j, j=1,\ldots,r\}\subset\{z\in\mathbb{C}; |F(z)|<1\}.$$

Convergence results

Lemma (Kwok, Salomon, T)

Let the integers p,q be given, $k=\min\{p,q\}$ and the assumption 1 holds. We assume that the Runge-Kutta method and the quadrature formula are of order p and q respectively. Then there exist $c_{\mathcal{S}}>0$ and $c_{\mathcal{R}}>0$ independent on δt and Δt such that

$$\|\mathcal{S}_{\Delta t} - \mathcal{S}_{\delta t}\| \leq c_{\mathcal{S}}(\Delta t - \delta t)\Delta t^{p-1} \text{ and } \|\mathcal{R}_{\Delta t} - \mathcal{R}_{\delta t}\| \leq c_{\mathcal{R}}(\Delta t - \delta t)\Delta t^{k-1}.$$

Theorem (Kwok, Salomon, T)

Let the integers p,q be given, $k=\min\{p,q\}$ and the assumption 1 holds. We assume that the Runge-Kutta method and the quadrature formula are of order p and q respectively. Then there exists $c_{\mathcal{M}}>0$ independent on δt and Δt such that

$$\|\mathcal{M}_{\Delta t} - \mathcal{M}_{\delta t}\|_* \leq c_{\mathcal{M}}(\Delta t - \delta t)\Delta t^{k-1}.$$

Convergence results

Theorem (Kwok, Salomon, T)

Let us assume that the assumption 1 holds. Then there exists $c_{\mathcal{M}^{-1}}>0$ independent on Δt such that

$$\|\mathcal{M}_{\Delta t}^{-1}\|_* \leq \frac{c_{\mathcal{M}^{-1}}}{\Delta T} (1 + \alpha^{-1}).$$

•
$$\rho \leq \|\mathcal{M}_{\Delta t}^{-1} \left(\mathcal{M}_{\Delta t} - \mathcal{M}_{\delta t}\right)\|_*$$
.

Spectral radius

$$\rho \leq c_0(\Delta t - \delta t)\Delta t^{k-1},$$

$$c_0 = \frac{1}{\Delta T} c_{\mathcal{M}} c_{\mathcal{M}^{-1}} (1 + \alpha^{-1}).$$

Numerical results

We consider the heat equation in one dimension

$$\partial_t y(x,t) - \partial_x^2 y(x,t) = u(x,t), \quad 0 \le t \le T$$

 $y(x,0) = y_0(x), \quad 0 \le x \le 1,$
 $y(0,t) = y(1,t) = 0.$

A semi-discretization in space of this equation gives

$$\partial_t y(t) = \mathcal{L}y(t) + u(t), t \in [0, T]$$
$$y(0) = y_0$$

where $y = (y_n)_{n=1,...,r}$ and $u = (u_n)_{n=1,...,r}$ and

$$\mathcal{L} = -\frac{1}{\delta x^2} \operatorname{tridiag}(-1, 2, -1).$$

Test 1

• The spectral radius ρ of the iteration matrix $\mathcal{M}_{\Delta t}^{-1}\left(\mathcal{M}_{\Delta t}-\mathcal{M}_{\delta t}\right)$ satisfies

$$\rho \leq c_0 \Delta t^k$$

• Singly Diagonal Implicit Runge-Kutta (SDIRK) of order 3, $\gamma = \frac{3-\sqrt{3}}{6}$

$$A = \begin{pmatrix} \gamma & 0 \\ 1 - 2\gamma & \gamma \end{pmatrix} \quad b = \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix} \quad c = \begin{pmatrix} \gamma \\ 1 - \gamma \end{pmatrix}$$

- The stability condition is satisfied for $\delta t, \Delta t < \frac{1}{2} \left(3 + 2\sqrt{3} \right) \delta x^2$.
- Problem parameters: T = 10, $\alpha = 1$.
- Discretization parameters: $L = 20, r = 10, \delta x = 0.1, \Delta T = 0.5, \delta t = \Delta T/2^{16}, \Delta t = \Delta T/2^{n}, n = 4, \dots, 14.$
- We plot the $\log \rho$ on y-axis and $\log \Delta t$ on x-axis.

Test 2

• The spectral radius ρ of the iteration matrix $\mathcal{M}_{\Delta t}^{-1}\left(\mathcal{M}_{\Delta t}-\mathcal{M}_{\delta t}\right)$ satisfies

$$\rho \leq c_0 \Delta t^k.$$

Heun method of order 2,

$$A = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} b = \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix} c = \begin{pmatrix} 0 \\ 1 \end{pmatrix}.$$

- The stability condition is satisfied for δt , $\Delta t < \frac{\delta x^2}{2}$.
- Optimal control problem parameters: $T = 10, \alpha = 1.$
- Discretization parameters: $L = 20, r = 4, \delta x = 0.25, \Delta T = 0.5, \delta t = \Delta T/(10 \times 2^{16}), \Delta t = \Delta T/(10 \times 2^{n}), n = 4, \dots, 14.$
- We plot the $\log \rho$ on y-axis and $\log \Delta t$ on x-axis

Thanks

Thank you!

References

M. Gander, S. Vandewalle

Analysis of the parareal time-parallel time-integration method, *SIAM*, 2007.

E Hairer, M. Gander,

Analysis for parareal algorithms applied to Hamiltonian differential equations, *Computational and Applied Mathematics*, 2014.

M. Gander, J. Salomon, F. Kwok.

Paraopt: A Parareal algorithm for optimality system, *SIAM*, 2020.