Университет ИТМО Физико-технический мегафакультет Физический факультет

Группа Р3209		К работе допущен			
Студент	Кулагин Вячеслав	Работа выполнена	31/10/2024		
Преподават	ель <u> Агабабаев В. А.</u>	Отчет принят			

Рабочий протокол и отчет по лабораторной работе № 1.04

Маятник Обербека

1. Цель работы.

- 1. Проверка основного закона динамики вращения
- 2. Проверка зависимости момента инерции от положения масс относительно оси вращения

2. Задачи, решаемые при выполнении работы.

- 1. Измерение времени падения груза при разной массе груза и разном положении утяжелителей на крестовине
- 2. Расчёт ускорения груза, углового ускорения крестовины и момента силы натяжения нити
- 3. Расчёт момента инерции крестовины с утяжелителями и момента силы трения.
- 4. Исследование зависимости момента силы натяжения нити от углового ускорения. Проверка основного закона динамики вращения.
- 5. Исследование зависимости момента инерции от положения масс относительно оси вращения. Проверка теоремы Штейнера.

3. Объект исследования.

Маятник Обербека

4. Метод экспериментального исследования.

Измерение времени, за которое падает каретка с грузами определённой массы, связанная с вращающимся колесом

5. Рабочие формулы и исходные данные.

- Основной закон динамики вращения: $I_{\rm E} = M M_{_{
 m TD}}$
- Второй закон Ньютона в маятнике: ma = mg T
- Зависимость пройденного пути h от времени t при постоянном ускорении: $h=\frac{at^2}{2}$ $a=\frac{2h}{t^2}$
- Связь между угловым ускорением крестовины и линейным ускорением груза: $\mathcal{E} = \frac{2a}{d}$
- Осевой момент силы для силы натяжения нити: $M = \frac{Td}{2}$
- Из определения момента инерции и теоремы Штейнера: $I = I_0 + 4m_{vr}R^2$

6. Измерительные приборы.

№ п/п	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора
1	Линейка	Измерительный	[0,700] мм	0,5мм
2	Секундомер	Электронный измерительный	[0,01; 60] c	0,005c

7. Схема установки (перечень схем, которые составляют Приложение 1).

Рис. 2. Стенд лаборатории механики (общий вид)

Общий вид экспериментальной установки изображен на Рис. 2. В состав установки входят:

- 1. Основание
- 2. Рукоятка сцепления крестовин
- 3. Устройства принудительного трения
- 4. Поперечина
- 5. Груз крестовины
- 6. Трубчатая направляющая
- 7. Передняя крестовина
- 8. Задняя крестовина
- 9. Шайбы каретки
- 10. Каретка
- 11. Система передних стоек

8. Результаты прямых измерений и их обработки (*таблицы, примеры расчетов*).

Таблица 1: результаты прямых измерений

	Положение утяжелителей								
Масса груза, г	1 риска	2 риски	3 риски	4 риски	5 рисок	6 рисок			
	4,99	5,12	6,26	6,89	7,50	9,25			
m = 0.27	4,93	5,56	6,16	6,93	8,05	8,80			
$m_1 = 0,27$	4,91	5,10	6,21	7,03	7,87	8,89			
	4,94	5,26	6,21	6,95	7,81	8,98			
	3,53	3,89	4,24	5,26	6,03	7,25			
m =0.40	3,55	4,17	4,29	5,24	5,79	6,73			
$m_2 = 0.49$	3,58	4,07	4,69	5,36	5,83	7,25			
	3,55	4,04	4,41	5,29	5,88	7,08			
	2,90	3,32	4,03	4,21	4,55	5,45			
m =0.71	2,74	3,30	3,97	4,56	5,18	5,90			
m₃ =0,71	2,57	3,37	3,96	4,43	4,81	5,83			
	2,74	3,33	3,99	4,40	4,85	5,73			
	2,28	2,90	3,62	4,09	4,19	5,01			
m ₄ =0,93	2,33	2,62	3,56	3,96	4,34	5,13			
	2,37	2,89	3,51	4,10	4,37	4,91			
	2,33	2,80	3,56	4,05	4,30	5,02			

Примеры расчётов:

$$\langle t \rangle = \frac{1}{3}(t_1 + t_2 + t_3) = \frac{1}{3}(4,99 + 4,93 + 4,91) = 4,94 \text{ c}$$

9. Расчет результатов косвенных измерений (таблицы, примеры расчетов).

$$a = \frac{2h}{t^2} = \frac{2*0.7}{8.98^2} = 0.02 \text{ M/}_{\text{C}^2}$$

$$\varepsilon = \frac{2a}{d} = \frac{2*0.02}{0.046} = 0.75 \text{ pag/}_{\text{C}^2}$$

$$M = \frac{md}{2}(g-a) = \frac{0.22*0.046}{2}(9.81-0.02) = 0.06 \text{ H} * \text{M}$$

Таблица 2: результаты вычисления а, Μ, ε

Масса груза, г	Номер риски	t _{cp} , c	а, м/c²	ε, c ⁻²	М, Н*м
	1	4,94	0,06	2,49	0,06
	2	5,26	0,05	2,20	0,06
$m_1 = 0.27$	3	6,21	0,04	1,58	0,06
1111 - 0,27	4	6,95	0,03	1,26	0,06
	5	7,81	0,02	1,00	0,06
	6	8,98	0,02	0,75	0,06
	1	3,55	0,11	4,82	0,11
	2	4,04	0,09	3,72	0,11
$m_2 = 0.49$	3	4,41	0,07	3,13	0,11
1112 - 0,49	4	5,29	0,05	2,18	0,11
	5	5,88	0,04	1,76	0,11
	6	7,08	0,03	1,22	0,11
	1	2,74	0,19	8,13	0,16
m ₃ = 0,71	2	3,33	0,13	5,49	0,16
1113 – 0,71	3	3,99	0,09	3,83	0,16
	4	4,40	0,07	3,14	0,16

Масса груза, г	Номер риски	t _{cp} , c	а, м/c²	ε, c ⁻²	M, H*M
	5	4,85	0,06	2,59	0,16
	6	5,73	0,04	1,86	0,16
	1	2,33	0,26	11,24	0,20
	2	2,80	0,18	7,75	0,21
m = 0.02	3	3,56	0,11	4,79	0,21
m ₄ = 0,93	4	4,05	0,09	3,71	0,21
	5	4,30	0,08	3,29	0,21
	6	5,02	0,06	2,42	0,21

$$\begin{split} \overline{M} &= \frac{M_1 + M_2 + M_3 + M_4}{4} = \frac{0,06 + 0,11 + 0,16 + 0,21}{4} = 0,13 \ H * \text{м} \\ \bar{\varepsilon} &= \frac{\varepsilon_1 + \varepsilon_2 + \varepsilon_3 + \varepsilon_4}{4} = \frac{2,49 + 4,82 + 8,13 + 11,24}{4} = 6,67 \ \text{рад/c}^2 \\ I_1 &= \frac{\sum (\varepsilon_i - \overline{\varepsilon_i})(M_i - \overline{M})}{\sum (\varepsilon_i - \overline{\varepsilon_i})^2} = 0,02 \ \text{кг} * \text{м}^2 \\ M_{\text{TP}} &= \overline{M} - I_1 * \bar{\varepsilon} = 0,13 - 0,02 * 6,67 = 0,02 \ H * \text{M} \end{split}$$

Таблица 3: результаты вычисления I и Мтр

	1 риска	2 риски	3 риски	4 риски	5 рисок	6 рисок
I	0,02	0,03	0,05	0,06	0,06	0,09
$M_{ m Tp}$	0,02	0,01	0,02	0,02	0,00	0,00
\overline{M}	0,13	0,13	0,13	0,13	0,13	0,13
$ar{arepsilon}$	6,67	4,79	3,33	2,57	2,16	1,56

$$\bar{I} = \frac{I_0 + 4 m_{\rm yr} R^2}{6}$$

$$\bar{I} = \frac{I_1 + I_2 + I_3 + I_4 + I_5 + I_6}{6} = 0,05 \; {\rm Kr}*{\rm M}^2$$

Таблица 4: результаты вычисления R^2 и I

Номера рисок	1	2	3	4	5	6	Среднее
R	0,077	0,102	0,127	0,152	0,177	0,202	0,139
R ²	0,006	0,010	0,016	0,023	0,031	0,040	0,021
1	0,02	0,03	0,05	0,06	0,06	0,09	0,05

По данным таблицы получаем:

$$\overline{R^2} = \frac{R_1^2 + R_2^2 + R_3^2 + R_4^2 + R_5^2 + R_6^2}{6} = 0,021 \text{ м}^2$$

$$m_{\text{yT}} = \frac{\sum (R^2_{\ i} - \overline{R^2})(I_i - \overline{I})}{\sum (R^2_{\ i} - \overline{R^2})^2} = 0,47 \text{ кг}$$

$$I_0 = I - 4m_{\text{yT}}R^2 = 0,01 \text{ кг} * \text{м}^2$$

10. Расчет погрешностей измерений (для прямых и косвенных измерений).

1. Время t

$$\bar{t} = 4,94 \text{ c}$$

$$S_{\langle t \rangle} = \sqrt{\frac{1}{N(N-1)} \sum_{i=1}^{N} (t_i - \langle t \rangle)^2} = 0.02 \text{ c}$$

Доверительная вероятность: $\alpha = 0.95$, N = 3

Доверительный интервал: $\Delta t' = t_{\alpha,N} * S_t = 0.02 \text{ c}$

Абсолютная погрешность: $\Delta_t = 0.67$

Относительная погрешность: $\delta_{\bar{t}} = \frac{\Delta_{\bar{t}}}{\bar{t}} * 100\% = \frac{0,67}{4.94} * 100\% = 13\%$

2. Ускорение а

$$a = \frac{2h}{t^2}; \bar{a} = 0.04 \text{ m/c}^2; h = 70.0 \pm 0.1 \text{mm}; t = 4.94 \pm 0.67 \text{c}.$$

$$\Delta_a = \sqrt{\left(\frac{2}{t^2} * \Delta_h\right)^2 + \left(\frac{6*h}{t^3} * \Delta_t\right)^2} = 0.01 \text{m/c}^2$$

$$\delta_a = \frac{\Delta_a}{\bar{a}} * 100\% = 27\%$$

3. Момент силы натяжения нити М

$$M = md/2(g-a); \overline{M} = 0,13 \text{ H}*\text{м}; m = 220,0 \pm 0,5 \text{г}$$

$$\begin{split} &\Delta_{\mathrm{M}} = \sqrt{\left(\frac{md}{2} * \Delta_{a}\right)^{2} + \left(\frac{d}{2}(g-a)\Delta_{m}\right)^{2} + \left(\frac{m}{2}(g-a)\Delta_{d}\right)^{2}} \\ &= \sqrt{(0.22*0.046/2*0.008)^{2} + (0.046/2*9.74*0.001)^{2} + (0.22/2*9.74*0.001)^{2}} \\ &= 0.001 \text{H} \cdot \text{M} \\ &\delta_{\mathrm{M}} = \frac{\Delta_{\mathrm{M}}}{\mathrm{M}} * 100\% = \frac{0.001}{0.13} * 100\% = 0.8\% \end{split}$$

4. Угловое ускорение крестовины ε

$$\varepsilon = \frac{2a}{d}; \overline{\varepsilon} = 6,67; a = 0,04 \pm 0,01$$
m/ $c^2; d = 0,046 \pm 0,001$ m

$$\Delta_{\varepsilon} = \sqrt{\left(\frac{2}{d} * \Delta_{a}\right)^{2} + \left(\frac{4a}{d^{2}} \Delta_{d}\right)^{2}} = 0,67$$

$$\delta_{\varepsilon} = \frac{\Delta_{\varepsilon}}{\overline{\varepsilon}} * 100\% = 10\%$$

11. Графики (перечень графиков, которые составляют Приложение 2).

12. Окончательные результаты.

$$\begin{split} \bar{t} &= 4{,}94 \pm 0{,}67 \text{ c}; \; \delta_{\bar{t}} = 13\%; \; \alpha = 0{,}95 \\ \alpha &= 0{,}04 \pm 0{,}01 \frac{^{\text{M}}}{^{\text{c}^2}}; \; \delta_{\alpha} = 27\%; \alpha = 0{,}95 \\ \varepsilon &= 6{,}67 \pm 0{,}67 \frac{\text{pag}}{^{\text{c}^2}}; \; \delta_{\varepsilon} = 10\%; \alpha = 0{,}95 \\ \text{M} &= 0{,}13 \pm 0{,}001 \text{ H}*\text{m}; \delta_{M} = 0{,}8\%; \alpha = 0{,}95 \end{split}$$

13. Выводы и анализ результатов работы.

Проведя эту работу, удалось исследовать зависимость момента силы натяжения нити от углового ускорения и момента инерции от положения масс относительно оси вращения. Также были построены графики зависимостей и проведены необходимые расчеты. Из них видно, что теорема Штейнера подтверждается.