Akademia Nauk Stosowanych Wydział Nauk Inżynieryjnych Kierunek: Informatyka studia I stopnia, semestr 2

Systemy operacyjne

WYKŁAD 4

dr inż. Stanisława Plichta splichta@ans-ns.edu.pl

autor: dr inż. Stanisława Plichta

Metody przydziału miejsca na dysku

- System plików zwartych (przydział ciągły).
- Łańcuch powiązanych bloków (przydział listowy).
- Mapa plików (tablica alokacji).
- Bloki indeksów.

Metody przydziału miejsca na dysku

autor: dr inż. Stanisława Plichta

Metody przydziału miejsca na dysku

blok początkowy: 1 rozmiar: 4

blok początkowy: 10 rozmiar: 5

blok początkowy: 20 rozmiar: 2

Właściwości - zalety i wady

- Łatwo implementować dostęp swobodny i sekwencyjny.
- Trudno uniknąć fragmentacji zewnętrznej.
- Umożliwia najbardziej elastyczną organizację danych zniszczenie jednego bloku powoduje tylko lokalną utratę danych.
- Odpowiednie do takich zastosowań jak bazy danych.

Przydział listowy

autor: dr inż. Stanisława Plichta

Przydział listowy

blok początkowy: 1 rozmiar: 4

blok początkowy: 10 rozmiar: 5

blok początkowy: 20

rozmiar: 2

Właściwości - zalety i wady

- Kilka bajtów, każdego bloku w pliku służy jako wskaźnik do następnego bloku.
- Wada konieczność uzyskania dużej liczby dostępów do dysku, zanim znajdzie się koniec pliku.
- Dostęp do pliku jest z konieczności sekwencyjny.
- Metoda ta jest mało elastyczna skutki uszkodzenia jednego bloku mogą niespodziewanie rozszerzyć się na cały system plików.
- Nie ma fragmentacji zewnętrznej.

Mapa plików

Właściwości - zalety i wady

- Każdy blok na dysku pozycja w mapie.
- Bloki nieużywane 0 w tablicy.
- Uszkodzenie mapy plików może spowodować poważne straty danych - dwie kopie mapy w różnych rejonach dysku, aby w razie awarii sprzętu nie zniszczyć wszystkich kopii.
- Znaczny ruch głowic dyskowych.
- Polepszenie czasu dostępu swobodnego.

Przydział indeksowy

Przydział indeksowy

blok indeksowy: 3 rozmiar: 4 bloki

blok indeksowy: 10 rozmiar: 2 bloki

blok indeksowy: 7 rozmiar: 3

Struktura bloku indeksowego

Schemat listowy

Struktura bloku indeksowego

indeks wielopoziomowy

Struktura bloku indeksowego

indeks kombinowany

Właściwości - zalety i wady

- Wskaźniki dowiązań do każdego pliku są pamiętane w odrębnych blokach indeksów na dysku.
- Dla dużego pliku trzeba przeznaczyć kilka bloków indeksów.
 - schemat listowy
 - indeks wielopoziomowy
 - schemat kombinowany
- Brak fragmentacji zewnętrznej.
- Umożliwia dostęp bezpośredni.

Wydajność

- Metody przydziału różnice w zapotrzebowaniu na pamięć i czas dostępu do bloków danych.
- Przydział ciągły pobranie danych wymaga jednego kontaktu z dyskiem (dostęp sekwencyjny i swobodny).
- Przydział listowy (dostęp do i-tego bloku i operacji czytania z dysku -- dostęp sekwencyjny).
- Struktura pliku zależna od deklarowanego typu dostępu.
- Konwersja typu pliku kopiowanie do nowego pliku o wymaganym typie.

Zarządzanie wolną przestrzenią

- Ponieważ obszar dysku jest ograniczony, więc w miarę możliwości należy dbać o wtórne zagospodarowanie dla nowych plików przestrzeni po plikach usuniętych.
- Lista wolnych obszarów może być implementowana w postaci:
 - wektora binarnego
 - listy powiązanej
 - grupowania
 - zliczania

Zarządzanie wolną przestrzenią wektor bitowy

0000111110000011111001111111 12 14 wektor bitowy superbloku

Każdy blok dyskowy jest reprezentowany przez jeden bit w wektorze.

Wartość 1 oznacza, że dany blok jest wolny, natomiast wartość 0 oznacza, że dany blok jest zajęty

- mało wydajne
- tylko dla małych dysków

Zarządzanie wolną przestrzenią lista powiązana

indeks pierwszego wolnego bloku

Powiązanie wszystkich wolnych bloków w ten sposób, że w bloku poprzednim znajduje się indeks bloku następnego.

Indeks pierwszego bloku znajduje się w specjalnym miejscu w systemie plików.

metoda niewydajna - aby przejrzeć listę trzeba odczytać każdy blok

Zarządzanie wolną przestrzenią grupowanie

indeks bloku pierwszej grupy wolnych bloków

indeks bloku drugiej grupy wolnych bloków

Pierwszy wolny blok zawiera indeksy n innych wolnych bloków, z których n-1 dotyczy wolnych bloków do alokacji, a n-ty blok zawiera z znowu n-1 indeksów kolejnych wolnych bloków

umożliwia szybkie odnajdywanie większej liczby wolnych bloków

Zarządzanie wolną przestrzenią zliczanie

W przypadku kilku kolejnych (przylegających do siebie) wolnych bloków pamiętany jest tylko indeks pierwszego z nich oraz liczba wolnych bloków znajdujących się bezpośrednio za nim.

Wykaz wolnych obszarów jest ciągiem wpisów składających się z indeksu bloku oraz licznika

Katalogi plików

Podstawowym zagadnieniem w przypadku dostępu do pliku jest odwzorowanie symbolicznej nazwy pliku na jego adres fizyczny w pamięci pomocniczej - służy do tego katalog plików.

Katalog wykonywane operacje

- Odnajdywanie pliku
- Tworzenie pliku
- Usuwanie pliku
- Przemianowywanie pliku
- Wyprowadzanie zawartości katalogu
- Obchód systemu plików

Struktury katalogowe

- Katalog jednopoziomowy.
- Katalog dwupoziomowy.
- Struktury drzewiaste.
- Acykliczne grafy katalogów.
- Graf ogólny katalogów.

Struktury katalogowe

Katalog o strukturze drzewiastej

Acykliczne grafy katalogów

Graf ogólny katalogów

Implementacja katalogu

Katalog składa się z ciągu wpisów katalogowych w ogólnej postaci:

nazwa pliku

inne atrybuty

- Lokalizacja wpisu katalogowego polega na poszukiwaniu liniowym (sprawdzane są kolejne pozycje zaczynając od pierwszej).
- Poszukiwanie wpisu można przyspieszyć poprzez posortowanie wg nazwy.

Implementacja katalogu – tablica haszowana

- Wpisy ułożone są na pozycjach odpowiadających wartościom funkcji haszującej.
- Funkcja haszująca odwzorowuje nazwę pliku na wartość z określonego przedziału, traktowaną jako indeks wpisu.
- Ta sama funkcja haszująca wykorzystywana jest do lokalizacji wpisu.
- Przy usuwaniu konfliktów w katalogu mogą być potrzebne dodatkowe struktury.

Implementacja katalogu – struktura indeksowa

- Wpisy katalogowe powiązane są w strukturę drzewiastą przyspieszającą wyszukiwanie (np. drzewo binarne, B-drzewo).
- Lokalizacja wpisu polega na przejściu drzewa zgodnie z zasadami jego budowy.
- Struktura drzewa jest zoptymalizowana w taki sposób, żeby minimalizować liczbę operacji dyskowych podczas przeszukiwania.

Semantyka spójności

 Ważne kryterium oceny dowolnego systemu plików, który realizuje dzielenie plików.

 Określa warunki, przy których zmiany danych wykonywane przez jednego użytkownika są obserwowalne przez innych użytkowników.

Warstwowy system plików

Programy użytkowe Logiczny system plików Moduł organizacji pliku Podstawowy system plików Sterowanie WE/WY Urządzenia

- System plików składa się na ogół z wielu poziomów, warstw.
- Każdy poziom korzysta z właściwości niższych poziomów do wytworzenia nowych właściwości, używanych przez poziomy wyższe.

System Linux

autor: dr inż. Stanisława Plichta

Struktura systemu plików

Struktura systemu plików

- System plików jest podzielony na grupy.
- Każda grupa ma określoną stałą wielkość za wyjątkiem ostatniej.

Systemy plików Linuxa

	NTFS	Ext2	Ext3	ReiserFS	XFS	JFS
Maksymalny rozmiar zbioru	16EB	16 GB-2 TB*	16 GB-2 TB*	1 EB	9 EB	8 EB
Maksymalny rozmiar partycji	16EB	2 TB-31 TB*	2 TB-31 TB*	16 TB	9 EB	512 TB-4 PB*
Posiada księgowanie	tak	nie	tak	tak	tak	tak
system operacyjny	Windows NT /Unix	Unix	Unix	Unix	Unix	Unix
zapewnia mechanizm praw dostępu	tak	tak	tak	tak	tak	tak
wraźliwy na wielkość liter	nie	tak	tak	tak	tak	tak

autor: dr inż. Stanisława Plichta

Format patrycji - UNIX

blok nadrzędny

tablica i-węzłów

bloki danych

Struktura wpisu katalogowego

Struktura i-węzła

- identyfikator właściciela oraz grupy pliku
- typ pliku
- prawa dostępu
- rozmiar pliku w bajtach ostatni czas dostępu, modyfikacji
- czas utworzenia i skasowania
- liczba dowiązań
- liczba bloków dyskowych zajmowanych przez plik
- adresy dyskowe

Adresowanie bloków dyskowych

autor: dr inż. Stanisława Plichta