

Video Stitching for Handheld Inputs via Combined Video Stabilization

Tan Su¹, Yongwei Nie², Zhensong Zhang¹, Hanqiu Sun¹, Guiqing Li²

¹The Chinese University of Hong Kong ²South China University of Technology

- Video Stitching
 - Larger field of view: more immersive viewing experience
 - One of the key techniques in producing panoramic video

- Video Stitching
 - Larger field of view: more immersive viewing experience
 - One of the key techniques in producing panoramic video
- Types of Input Settings
 - 1. Pre-calibrated camera arrays
 - 360 camera

2. Unstructured camer

Perazzi et. al.

Jiang and Gu Warping" [2]

3. Handheld / free-r

ctured Camera Arrays" [1] **Demporal Content-Preserving**

SA2016.SIGGRAPH.ORG

*GoPro Odyssey. www.gopro.com/odyssey

- Video Stitching
 - Larger field of view: more immersive viewing experience
 - One of the key techniques in producing panoramic video
- Types of Input Settings
 - 1. Pre-calibrated camera arrays
 - 360 cameras on the markets, for either present
 - 2. Unstructured camera array
 - Perazzi et. al. "Panoramic Video from Unstructured Camera Arrays" [1]
 - Jiang and Gu "Video Stitching with Spatial-Temporal Content-Preserving Warping"
 [2]
 - 3. Handheld / free-moving cameras

- Video Stitching
 - Larger field of view: more immersive viewing experience
 - One of the key techniques in producing panoramic video

Types of Input Settings

- 1. Pre-calibrated camera arrays
 - 360 cameras on the markets, for either professionals and average consumers
- Unstructured camera array
 - Perazzi et. al. "Panoramic Video from Unstructured Camera Arrays" [1]
 - Jiang and Gu "Video Stitching with Spatial-Temporal Content-Preserving Warping"
 [2]
- 3. Handheld / free-moving cameras

DIFFICULTIES OF HANDHELD CAMERAS INPUTS

- Difficulties of Handheld Cameras Inputs
 - The relative pose and parallax between cameras are dynamic
 - Input videos are shaky
- Frame-by-frame image stitching?
 - Cannot preserve temporal coherence jittering

DIFFICULTIES OF HANDHELD CAMERAS INPUTS

Previous work that handle free-moving cameras

 Lin et. al. – "Seamless Video Stitching from Handheld Camera Inputs" [3]

Our Method

OUR METHOD

Highlights of our method

- Stitching and stabilization in a unified framework
- ONE global alignment operation for ALL the frames
- Preserving temporal coherence

Video Capturing setting

- Use two handheld cameras (DVs or phones) to capture different parts of the same scene
- Cameras can be freely moved, but the parallax cannot be too large

VIDEO STITCHING FRAMEWORK PIPELINE

Framework Pipeline

Bundled Camera Path Estimation

Iterative Camera Path Optimization

OUR METHOD

Camera Path Estimation

- The "Bundled Camera Path"
 - Liu et. al. "Bundled Camera Paths for Video Stabilization" [4]
 - Camera paths are computed as $m \times m$ accumulated homography transformation

$$C_i(t) = F_i(t) \cdot F_i(t-1) \cdots F_i(1), 1 \le t \le T, 1 \le i \le m^2$$

BUNDLED PATH STABILIZATION

$$E^{stable} = \sum_{i} \sum_{t} \left(\|P_i(t) - C_i(t)\|^2 + \lambda \cdot \sum_{r \in \Omega_t} \omega_{t,r} \cdot \|P_i(t) - P_i(r)\|^2 + \sum_{j \in N(i)} \left\|P_i(t) - P_j(t)\right\|^2 \right)$$
Data term Smooth term Bundle term

Stabilize frames by the warping transformation

$$B_i(t) = P_i(t) \cdot C_i(t)^{-1}$$

BUNDLED PATH STABILIZATION

Optimize
$$C_i(t) \rightarrow P_i(t)$$

$$C(t)$$

$$B(t)$$

$$P(t)$$

$$E^{stable} = \sum_{i} \sum_{t} \left(\| P_i(t) - C_i(t) \|^2 + \lambda \cdot \sum_{r \in \Omega_t} \omega_{t,r} \cdot \| P_i(t) - P_i(r) \|^2 + \sum_{j \in N(i)} \left\| P_i(t) - B_j(t) C_i(t) \right\|^2 \right)$$
Data term

Smooth term

Improvement

Our modification:

• Let $B_i(t)$ be similar to neighboring grids \rightarrow reduce distortion

$$B_j(t) = P_j(t) \cdot C_j(t)^{-1}$$

Optimize camera paths in a unified video stitching and stabilization framework $P_i^A = P_i^B$

- 2+1 variables to be optimized
 - \checkmark Camera path P_i^A and P_i^B
 - ✓ ONE single and global homography H for alignment
 - Enough for stitching ALL the frames
 - Temporal coherence can be well preserved

• Optimize two camera paths P^A and P^B in a unified video stabilization framework

$$E(P_i^A, P_i^B, H) = E_A^{stable}(P_i^A) + E_B^{stable}(P_i^B) + \beta \cdot E^{stitch}(P_i^A, P_i^B, H)$$

Stabilization Terms

Stitching Term

- Stitching Term
 - Ensure the matched SIFT features as close as possible in the stabilized and aligned videos

$$E^{stitch}(P_i^A, P_i^B, H) = \sum_t \sum_k \|P_u^A(t) \cdot C_u^A(t)^{-1} \cdot p_k^A(t) - H \cdot P_v^B(t) \cdot C_v^B(t)^{-1} \cdot p_k^B(t)\|^2$$
Feature's new Feature's new location in video A location in video B

ITERATIVE OPTIMIZATION STRATEGY

 $E(P_i^A, P_i^B, H)$

- Optimize E_A^{stable} and E_B^{stable} $= E_A^{stable}(P_i^A) + E_B^{stable}(P_i^B) + \beta \cdot E^{stitch}(P_i^A, P_i^B, H)$ separately at very beginning, obtain initially optimized P_i^A and P_i^B ;
- 2. Optimize H with temporally optimized P_i^A and P_i^B ;
- 3. Optimize P_i^A with temporally optimized H and P_i^B ;
- 4. Optimize P_i^B with temporally optimized H and P_i^A ;
- 5. Go to step 2 until convergence.

Time cost: ~20 minutes for a 15s video

Handling parallax

- Mesh-based camera path model
- Features that cannot be aligned are excluded after every iteration
 - Usually foreground objects
- Spatial-temporal Seam [4]
 - Eliminate ghosting effect

[4] Jiang, W. and Gu, J., 2015. Video stitching with spatial-temporal content-preserving warping. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops* (pp. 42-48).

Results and Comparison

COMPARISON

Compare to the state-of-the-art image stitching method APAP [5]

[5] Zaragoza, J., Chin, T.J., Brown, M.S. and Suter, D., 2013. As-projective-as-possible image stitching with moving DLT. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 2339-2346).

COMPARISON

Compare to LPVW with 3D reconstruction [6]

[6] Lin, K., Liu, S., Cheong, L.F. and Zeng, B., 2016, May. Seamless Video Stitching from Hand-held Camera Inputs. In *Computer Graphics Forum* (Vol. 35, No. 2, pp. 479-487).

COMPARISON

Compare to LPVW with 3D reconstruction [6]

[6] Lin, K., Liu, S., Cheong, L.F. and Zeng, B., 2016, May. Seamless Video Stitching from Hand-held Camera Inputs. In *Computer Graphics Forum* (Vol. 35, No. 2, pp. 479-487).

CONCLUSION

- A lightweight video stitching framework for videos captured by handheld cameras
- Solve video stitching via a unified framework combined with stabilization
- No 3D reconstruction is needed

THANK YOU!

Tan Su, Zhensong Zhang, Hanqiu Sun

- {tsu, zszhang, hanqiu}@cse.cuhk.edu.hk

Yongwei Nie, Guiqing Li

- {nieyongwei, ligq}@scut.edu.cn

