Problem B. Binary Matrix

Input file: matrix.in
Output file: matrix.out
Time limit: 4 seconds
Memory limit: 256 megabytes

Grading system: only full solution for subtask receives points

Instead of a fairy tail about a king and his two sons, who try to share their father's inheritance, you are just given $N \times N$ binary matrix, i.e. matrix which consists of values 0 and 1. You have to find a number of ordered pairs of sub-matrices, that satisfy the following conditions:

- Both sub-matrices should contain only values 1 (one).
- The sub-matrices in the pair shouldn't intersect, i.e. they can not have a common cell.

Input

The first line of the input contains an integer number N ($1 \le N \le 4000$).

Each of next N lines contains N integers 0 or 1 without blanks.

Output

Print a number of pair sub-matrices by modulo 1000000007.

Examples

matrix.in	matrix.out
3	8
110	
000 001	
001	

Scoring

This problem has five subtasks:

- 1. $1 \le N \le 10$. This subtask costs 18 points.
- 2. $1 \le N \le 50$. This subtask costs 20 points.
- 3. $1 \le N \le 125$. This subtask costs 19 points.
- 4. $1 \le N \le 750$. This subtask costs 20 points.
- 5. $1 \le N \le 4000$. This subtask costs 23 points.

Each of the next subtasks will be scored in case of all the previous subtasks are successfully passed.