PART 1 The Tate Pairing

Corollary. Let 2^n divide p+1 for some prime p, and take a supersingular Montgomery curve over \mathbb{F}_{p^2} given by

$$E_A: y^2 = x^3 + Ax^2 + x, \quad \text{with } A \in \mathbb{F}_{p^2}.$$

If a point $P=(x_P,y_P)\in E(\mathbb{F}_{p^2})$ has x_P non-square, then P has order divisible by 2^n

PART 1 The Tate Pairing

Tate Pairing?

Corollary. Let 2^n divide p+1 for some prime p, and take a supersingular Montgomery curve over \mathbb{F}_{p^2} given by

$$E_A: y^2 = x^3 + Ax^2 + x, \quad \text{with } A \in \mathbb{F}_{p^2}.$$

If a point $P=(x_P,y_P)\in E(\mathbb{F}_{p^2})$ has x_P non-square, then P has order divisible by 2^n