

MATHEMATICS BY

Dr. ANOOP DIXIT

B.Tech (Mech) M.Tech (P&I) PhD(NIT Kurukshetra)

DIFFERENTIATION (ASSIGNMENT-I)

Student's Name:	
Batch:	

DIFFERENTIATION-1

Differentiation

Introduction

Problem: 4

Problem: 1 If f(2) = 4, f'(2) = 1, then $\lim_{x \to 2} \frac{xf(2) - 2f(x)}{x - 2} = 1$

[Rajasthan PET 1995, 2000]

(a) 1

(b) 2

(c) 3

(d) - 2

Problem: 2 If f(x+y) = f(x). f(y) for all x and y and f(5) = 2, f'(0) = 3, then f'(5) will be

[IIT 1981; Karnataka CET 2000; UPSEAT 2002; MP PET 2002; AIEEE 2002]

(a) 2

(b) 4

(c) 6

(d) 8

Problem: 3 If f(a) = 3, f'(a) = -2, g(a) = -1, g'(a) = 4, then $\lim_{x \to a} \frac{g(x) f(a) - g(a) f(x)}{x - a}$

(a) - 5

(b) 10

(c)' - 1

[MP PET 1997]

If $5f(x) + 3f\left(\frac{1}{x}\right) = x + 2$ and y = xf(x) then $\left(\frac{dy}{dx}\right)_{x=1}$ is equal

(a) 14

(b) $\frac{7}{8}$

(c) 1

(d) None of these

Problem: 5 The derivative of $f(x) = |x|^3$ at x = 0 is [Rajasthan PET 2001; Haryana CEE 2002]

(a) o

(b) 1

(c) -

(d) Not defined

Problem: 6 The first derivative of the function $(\sin 2x \cos 2x \cos 3x + \log_2 2^{x-3})$ with respect to x at $x = \pi$ is

(a) 2

(b) -1

 $(c) - 2 + 2^{\pi} \log_{e}$

(d) $-2 + \log_e 2$

Problem: 7 If $y = |\cos x| + |\sin x|$ then $\frac{dy}{dx}$ at $x = \frac{2\pi}{3}$ is

(a) $\frac{1-\sqrt{3}}{2}$

b) (

(c) $\frac{1}{2}(\sqrt{3}-1)$

(d) None of these

Problem: 8 If $f(x) = \log_x(\log x)$, then f'(x) at x = e is

[HT 1985; Rajasthan PET 2000; MP PET 2000; Karnataka CET 2002]

(a) e

(b) 1/e

(c) 1

(d) None of these

Problem: 9 If $f(x) = |\log x|$, then for $x \ne 1$, f'(x) equals

(a) $\frac{1}{x}$

(b) $\frac{1}{|x|}$

(c) $\frac{-1}{4}$

(d) None of these

Problem: 10 $\frac{d}{dx} \left[\log \left\{ e^{x} \left(\frac{x-2}{x+2} \right)^{3/4} \right\} \right] \text{ equals to}$

(a) 1

(b) $\frac{x^2+1}{x^2-4}$

(c) $\frac{x^2-1}{x^2-4}$

(d) $e^x \frac{x^2 - 1}{x^2 - 4}$

Problem: 11 If $x = \exp\left\{\tan^{-1}\left(\frac{y-x^2}{x^2}\right)\right\}$ then $\frac{dy}{dx}$ equals

[MP PET 2002]

(a) $2x[1 + \tan(\log x)] + x \sec^2(\log x)$

(b) $x[1 + \tan(\log x)] + \sec^2(\log x)$

DIFFERENTIATION-1

(c)
$$2x[1 + \tan(\log x)] + x^2 \sec^2(\log x)$$

(d)
$$2x[1 + \tan(\log x)] + \sec^2(\log x)$$

Problem: 12 If
$$y = \sec^{-1} \left(\frac{\sqrt{x} + 1}{\sqrt{x} - 1} \right) + \sin^{-1} \left(\frac{\sqrt{x} - 1}{\sqrt{x} + 1} \right)$$
, then $\frac{dy}{dx} = \frac{1}{\sqrt{x} + 1} = \frac{1}{\sqrt{x}$

[UPSEAT 1999; AMU 2002]

(b)
$$\frac{1}{\sqrt{x}+1}$$

(d) None of these

 $\frac{d}{dx} \tan^{-1} \left[\frac{\cos x - \sin x}{\cos x + \sin x} \right]$ [AISSE 1985, 87; DSSE 1982, 84; MNR 1985; Karnataka CET 2002; Rajasthan PET Problem: 13

2002, 03]

(a)
$$\frac{1}{2(1+x^2)}$$
 (b) $\frac{1}{1+x^2}$

(b)
$$\frac{1}{1+y^2}$$

(d) - 1

Problem: 14

$$\frac{d}{dx} \left[\sin^2 \cot^{-1} \left\{ \sqrt{\frac{1-x}{1+x}} \right\} \right] \text{ equal} \qquad \text{[MP PET 2002; EAMCET 1996]}$$

(b)
$$\frac{1}{2}$$

(c)
$$-\frac{1}{2}$$

Problem: 15

If
$$y = \cos^{-1}\left(\frac{5\cos x - 12\sin x}{13}\right)$$
, $x \in \left(0, \frac{\pi}{2}\right)$, then $\frac{dy}{dx}$ is equal to

 $\frac{d}{dx}\cosh^{-1}(\sec x) =$ Problem: 16

(b) sin 2

asthan PET 199

(d) cosecx

 $\frac{d}{dx} \left(\frac{\tan^2 2x - \tan^2 x}{1 - \tan^2 2x \tan^2 x} \right) \cot 3x$ Problem: 17

[AMU 2000]

[Rajasthan PET 2000]

[IIT 1996]

(a) tan 2x tan x

(c) log 2

(d) $\sec x \tan x$

Problem: 18

(d) - log 2

Problem: 19

(c) o

(d) None of these

Problem: 20

 $\cos 4x.\cos 8x.\cos 16x$ then $f'\left(\frac{\pi}{4}\right)$

(b) $\frac{1}{\sqrt{2}}$

(c) 1

(d) None of these

Problem: 21

If $xe^{xy} = y + \sin^2 x$, then at x = 0, $\frac{dy}{dx} =$

(c) 1

(d) 2

Problem: 22

If $\sin(x+y) = \log(x+y)$, then $\frac{dy}{dx} =$

[Karnataka CET 1993; Rajasthan PET 1989, 1992; Roorkee 2000]

[IIT Screening 2004]

(b) - 2

(d) - 1

Problem: 23

If ln(x+y) = 2xy, then y'(0) =

(a) 1 (b) - 1

(c) 2

(d) o

DIFFERENTIATION-1

Problem: 24 If $x^m y^n = 2(x+y)^{m+n}$, the value of $\frac{dy}{dx}$ is

[MP PET 2003]

(a)
$$x + y$$

(b)
$$\frac{x}{v}$$

(c)
$$\frac{y}{x}$$

(d)
$$x-y$$

If $y = (\sin x)^{\tan x}$, then $\frac{dy}{dx}$ is equal to [IIT 1994; Rajasthan PET 1996] Problem: 25

(a)
$$(\sin x)^{\tan x}$$
. $(1 + \sec^2 x \cdot \log \sin x)$

(b)
$$\tan x \cdot (\sin x)^{\tan x - 1} \cdot \cos x$$

(c)
$$(\sin x)^{\tan x}$$
., $\sec^2 x \log \sin x$

(d)
$$\tan x \cdot (\sin x)^{\tan x - 1}$$

Problem: 26 If
$$x = a(\cos \theta + \theta \sin \theta)$$
, $y = a(\sin \theta - \theta \cos \theta)$, $\frac{dy}{dx} = a(\cos \theta + \theta \sin \theta)$

[DCE 1999]

(a)
$$\cos\theta$$

(c)
$$\sec \theta$$

(d) $cosec\theta$

Problem: 27

Problem: 31

If
$$\cos x = \frac{1}{\sqrt{1+t^2}}$$
 and $\sin y = \frac{t}{\sqrt{1+t^2}}$, then $\frac{dy}{dx} = \frac{t}{\sqrt{1+t^2}}$

(b)
$$\frac{1-t}{1+t^2}$$

$$(1+t^2)$$

Problem: 28 If
$$x = \frac{1 - t^2}{1 + t^2}$$
 and $y = \frac{2t}{1 + t^2}$, then $\frac{dy}{dx} = \frac{1 + t^2}{1 + t^2}$

$$\frac{1}{t^2}$$
, then $\frac{3}{dx}$

(a)
$$\frac{-y}{x}$$

(b)
$$\frac{y}{x}$$

T 2002]

(a)
$$\frac{x}{2y-1}$$

(b)
$$\frac{2}{2y-1}$$

$$(d) \ \frac{1}{2y-1}$$

Problem: 30 If $y = x^{x^{x} ext{....} ext{...}}$, then

 $(c) \frac{xy}{y-x^2}$

(d) $\frac{2x}{2+\frac{x^2}{x^2}}$

Problem: 32

(a)
$$\frac{1+x}{x}$$

(c)
$$\frac{1-x}{x}$$

(d)
$$\frac{x}{1+x}$$

If f(x) = |x-2| and g(x) = f(f(x)), then for x > 20, g'(x) equals Problem: 33

$$(a) -1$$

(d) None of these

If g is inverse of f and $f'(x) = \frac{1}{1 + x^n}$, then g'(x) equals Problem: 34

(a)
$$1 + x^n$$

(b)
$$1 + [f(x)]^n$$

(c)
$$1+[g(x)]^n$$

(d) None of these

The differential coefficient of $tan^{-1} \frac{2x}{1-x^2}$ w.r.t. $sin^{-1} \frac{2x}{1+x^2}$ is Problem: 35

DIFFERENTIATION-1

[Roorkee 1966; BIT Mesra 1996; Karnataka CET 1994; MP PET 1999; UPSEAT 1999, 2001]

(a) 1

(b) -1

(d) None of these

The first derivative of the function $\left|\cos^{-1}\left(\sin\frac{\sqrt{1+x}}{2}\right) + x^x\right|$ with respect to x at x = 1 is Problem: 36

(b) o

Problem: 37 If $y = \left(x + \sqrt{1 + x^2}\right)^n$, then $(1 + x^2)\frac{d^2y}{dx^2} + x\frac{dy}{dx}$ is

[AIEEE 2002]

(a) $n^2 y$

(d) $2x^2y$

If $f(x) = x^n$, then the value of $f(1) - \frac{f'(1)}{1!} + \frac{f''(1)}{2!} - \frac{f'''(1)}{3!} + \dots + \frac{(-1)^n f''(1)}{n!}$ Problem: 38

[AIEEE 2003]

(a) 2^{n}

If $f(x) = \tan^{-1} \left\{ \frac{\log \left(\frac{e}{x^2} \right)}{\log(ex^2)} \right\} + \tan^{-1} \left(\frac{3 + 2\log x}{1 - 6\log x} \right)$, then $\frac{d^n y}{dx^n}$ is $(n \ge 1)$

(a) $tan^{-1}\{(log x)^n\}$

(b) o

None of these

Problem: 40 If $f(x) = (\cos x + i \sin x)(\cos 3x + i \sin 3x)....$ (cos 2)

(d) $n^4 f(x)$

If $y = \frac{x^4}{x^2 - 3x + 2}$, then for n > 2 the value of y_n Problem: 41

(a) $(-1)^n n! [16(x-2)^{-n-1} - (x-2)^{-n-1}]$

 $(-1)^n n! [16(x-2)^{-n-1} + (x-1)^{-n-1}]$

(c) $n![16(x-2)^{-n-1}]$

3 are polynomials in x such that $f_r(a) = g_r(a) = h_r(a), r = 1,2,3$ and Problem: 42 If $f_r(x), g_r(x), h_r(x), r$

[IIT 1985]

(a)

(c) 1

(d) None of these

Problem: 43

where) is a constant. Then $\frac{d^3}{dx^3}[f(x)]$ at x = 0 is

(d) Independent of p

If $F(x) = \int_{x^2}^{x^3} \log t \, dt \, (x > 0)$, then F(x) =Problem: 44

[MP PET 2001]

[IIT 1997]

(a) $(9x^2 - 4x)\log x$

(b) $(4x - 9x^2)\log x$

(c) $(9x^2 + 4x)\log x$

(d) None of these

Problem: 45 If $x = \int_0^y \frac{1}{\sqrt{1+4t^2}} dt$, then $\frac{d^2y}{dx^2}$ is

(a) 2y

(c) 8y

(d) 6 y

Problem: 46 If $y = x^2 e^x$, then value of y_n is

(a) $\{x^2 - 2nx + n(n-1)\}e^x$ (b) $\{x^2 + 2nx + n(n-1)\}e^x$ (c) $\{x^2 + 2nx - n(n-1)\}e^x$

(d) None of these

DIFFERENTIATION-1

Problem: 47 If $y = x^2 \log x$, then value of y_n is

(a)
$$\frac{(-1)^{n-1}(n-3)!}{x^{n-2}}$$

(a)
$$\frac{(-1)^{n-1}(n-3)!}{x^{n-2}}$$
 (b) $\frac{(-1)^{n-1}(n-3)!}{x^{n-2}}.2$ (c) $\frac{(-1)^{n-1}(n-2)!}{x^{n-2}}$

(c)
$$\frac{(-1)^{n-1}(n-2)!}{x^{n-2}}$$

(d) None of these

