AS1056 - Mathematics for Actuarial Science. Chapter 17, Tutorial 2.

Emilio Luis Sáenz Guillén

Bayes Business School. City, University of London.

April 04, 2024

Numerical methods for finding roots

In this tutorial we discuss the problem of finding approximate solutions of the equation

$$f(x) = 0 (1)$$

- In some cases it is possible to find the *exact roots* of the equation 1, for example, when f(x) is a quadratic or cubic polynomial.
- Otherwise, in general, one is interested in finding approximate solutions using some (numerical) methods
 - 1. Fixed-Point/Function Iteration Method)
 - 2. Newton-Raphson

Example:

Consider $f(x) = e^x - 3x$, how do you solve for x?

 \longrightarrow This equation <u>does not have a closed form solution</u>. This means we can't solve it just through algebraic manipulation. Instead, we must employ some numerical method to find an approximate solution.

Fixed-Point/Function Iteration Method

In this method, we first rewrite equation 1 as:

$$x = g(x) \tag{2}$$

Therefore, any solution of equation 2, which is a fixed-point of g —i.e. a point s.t. x=g(x) holds—, is a solution of equation 1. Since, if x^* is a solution of x=g(x), then, $f(x^*)=x^*-g(x^*)=0$.

Then consider the following algorithm...

Algorithm 1 Fixed-Point/Function Iteration

Start from any point x_0 and consider the recursive process

$$x_{n+1} = g(x_n), \quad n = 0, 1, 2, \dots$$
 (3)

which gives rise to the sequence x_0 , x_1 , x_2 , ... of iterated function applications x_0 , $g(x_0)$, $g(g(x_0))$, ...

If f is continuous and the sequence (x_n) converges to some x^* , then it is clear that x^* is a fixed-point of g and hence it is a solution of equation 1.

Theorem

Let $g:[a,b] \rightarrow [a,b]$ be a differentiable function such that

$$|g'(x)| \le k < 1 \text{ for all } x \in [a, b]. \tag{4}$$

Then g has exactly one fixed-point x^* in [a,b] and the sequence (x_n) defined by the process 3, with starting point $x_0 \in [a,b]$, converges to x^* .

Newton-Raphson

If f is differentiable, $f'(x_0) \neq 0$, and the initial guess is close to the solution, then,

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$$

is a better approximation of the root than x_0 . Then, iterating...

Algorithm 2 Newton-Raphson

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$
 $n = 0, 1, 2, \dots$

until a sufficiently precise value is reached.

Note that we can write $g(x)=x-rac{f(x)}{f'(x)}$ then Algorithm 2 is a particular case of Algorithm 1. That is, convergence is guaranteed if |g'(x)|<1. In particular,

$$|g'(x)| = \left| 1 - \frac{f'(x)f'(x) - f(x)f''(x)}{f'(x)^2} \right| = \left| \frac{f'(x)^2 - f'(x)^2 + f(x)f''(x)}{f'(x)^2} \right|$$
$$= \left| \frac{f(x)f''(x)}{f'(x)^2} \right| < 1 \implies \left| |f(x)f''(x)| < |f'(x)|^2 \right|$$

Please, keep in mind that Newton-Raphson requires $f'(x) \neq 0$.

Fixed-Point Iteration Method vs. Newton-Raphson

Sufficient but not necessary

The *convergence conditions* we have presented for the Fixed-Point/Function Iteration Method and the Newton-Raphson Method respectively are sufficient but not necessary. In other words, convergence is guaranteed if we pick an initial point x_0 that fulfils the respective convergence conditions. However, this doesn't mean that convergence cannot occur for some other x_0 that does not fulfil these conditions.

Fixed-Point Iteration Method vs. Newton-Raphson

- Fixed-Point Method: If $g'(x^*) \neq 0$, the sequence converges *linearly* to the fixed-point x^* ; if $g'(x^*) = 0$, the convergence is at least *quadratic*.
- Newton-Raphson's method converges quadratically.

Exercise 17.10

- (i) Sketch the function $f(x)=e^x-3x$ on the domain $0\leq x\leq 5$. How many roots does it have?
- (ii) Find the function roots using the fixed-point/function iteration method. Draw a function iteration diagram.
- (iii) Find the function roots using Newton-Raphson method.