COMMONWEALTH OF AUSTRALIA

Copyright Regulations 1969

Warning

This material has been reproduced and communicated to you by or on behalf of the University of Melbourne pursuant to Part VB of the Copyright Act 1968 (the Act).

The material in this communication may be subject to copyright under the Act. Any further copying or communication of this material by you may be the subject of copyright protection under the Act.

Do not remove this notice

CHEN20010 Material and Energy Balances

Compositions of Mixtures

Compositions of Mixtures – Module Learning Outcomes

A student is expected to be able to:

- Define and calculate: mole %, weight %, volume %, mole fractions, mass fractions, ratios, concentrations, partial pressures, average molecular weight of mixtures
- Perform calculations on a component free basis
- Convert between mole fractions and mass fractions

Chemical engineers rarely work with pure materials. They mostly work with mixtures. Chemical engineers need the ability to accurately and unambiguously define the compositions of any mixtures they work with.

The Coogee Energy plant converts Bass Strait natural gas into methanol.

But what is natural gas?

What is natural gas?

Natural gas is a hydrocarbon typically found with oil and water in petroleum reservoirs below ground.

Natural gas is a mixture of gases. The composition of the gas varies from location to location.

Dry Bass Strait natural gas has a typical composition of:

methane	CH_4	90.7 %
ethane	C_2H_6	5.9 %
propane	C_3H_8	0.6 %
butane	C_4H_{10}	0.1 %
nitrogen	N_2	0.9 %
carbon dioxide	CO_2	1.8 %

But when we refer to %'s are they %'s of the total mass, the total volume, the total number of moles?

Component-free:

(B)

ractional:

total amount of A

total amount of A

amount of A

amount of B

amount of A

amount of mixture - amount of B

Amounts may be MASS, MOLE or VOLUME

Mass fraction:
$$w_i = \frac{mass \text{ of } i}{mass \text{ of mixture}}$$

$$\% \text{ w/w}$$
 (% by weight) = 100 w_i

Mole fraction :
$$x_i = \frac{\text{moles of i}}{\text{total moles}}$$

$$= \frac{\sum_{i=1}^{W_i} w_j}{\sum_{i=1}^{W_i} w_j}$$

 $mol \% = 100 x_i$

Molar ratio:

$$x_i = \frac{\text{mol A}}{\text{mol B}}$$

(for binary mixtures)

Concentration: mass or mole of A

total volume of mixture

mass of i

Mass: $\rho_i = \frac{1}{\text{total volume of mixture}}$

Moles: moles of i

total volume of mixture e.g. molarity is mol/l

Volume Concentration (or Volume Fraction)

volume of component

total volume of mixture

Volume Concentration (or Volume Fraction)

volume of component

total volume of mixture

For gases the two volumes must be measured under identical conditions of temperature and pressure.

```
Volume Concentration ( or Volume Fraction )
= \frac{\text{volume of component}}{\text{total volume of mixture}}
% ^{\text{v/v}} = mol % = 100 ( volume fraction)
```

 $% ^{v}/_{v}$ is mainly used for gases

When the composition of a gas is given it is nearly always expressed as mol %. Where this is not explicitly stated it is usually safe to assume the composition is in mol %.

What is natural gas?

Dry Bass Strait natural gas has a typical composition of:

methane	CH_4	90.7 %
ethane	C_2H_6	5.9 %
propane	C_3H_8	0.6 %
butane	C_4H_{10}	0.1 %
nitrogen	N_2	0.9 %
carbon dioxide	CO_2	1.8 %

This composition is on a molar basis.

What is natural gas?

Dry Bass Strait natural gas has a typical composition of:

methane	CH_4	90.7 mol %
ethane	C_2H_6	5.9 mol %
propane	C_3H_8	0.6 mol %
butane	C_4H_{10}	0.1 mol %
nitrogen	N_2	0.9 mol %
carbon dioxide	CO_2	1.8 mol %

This composition is on a molar basis.

If you had 100 moles of this mixture then you would have 90.7 moles of CH_4 , 5.9 moles C_2H_6 , 0.6 moles C_3H_8 , 0.1 moles C_4H_{10} , 0.9 moles of N_2 and 1.8 moles CO_2 .

But in reality, there will be some moisture present in the gas too!

Every 100 moles of dry natural gas might be accompanied by 25.0 moles of water.

Compositions of Mixtures

Component-free: One component is omitted from the analysis.

Component-free analysis

Component-free analysis

Component-free: One component is omitted from the analysis.

e.g. coal		
	% w/w	% ^w / _w , dry
С	61.5	
Н	4.5	
0	7.1	
N+S	1.9	
Ash	10.0	
H_2O	15.0	
	100.0	

Composition on a dry basis

Component-free analysis

Component-free: One component is omitted from the analysis.

e.g. coa	I		
	% w/w	% ^w / _w , dry	% w/w , dry, ash-free
C H O N+S Ash H ₂ O	61.5 4.5 7.1 1.9 10.0 15.0	72.5 5.3 8.4 2.2 11.8	This means we delete the water and ash components from the analysis and scale up the other components.
	100.0	100.0	

Component-free analysis

Component-free: One component is omitted from the analysis.

e.g. coa	ıl		
	% w/w	$\%$ $^{\text{w}}/_{\text{w}}$, dry	% w/w , dry, ash-free
С	61.5	72.5	
Н	4.5	5.3	
O	7.1	8.4	
N+S	1.9	2.2	
Ash	10.0	11.8	
H_2O	15.0		
	100.0	100.0	100.0

Composition on a dry, ash-free basis

0.0%

0.0%

0.0%

Average Molecular Weights of Mixtures

Average Molecular Weight =
$$\sum_{\text{all components}} \left(\begin{array}{c} \text{mol fraction}_i \text{ x Mol. Weight}_i \end{array} \right)$$

Example: If a mixture has a composition of 17 mol % HCl, 51

mol % H₂O and 32 mol % HNO₃, what is the average

molecular weight of the mixture?

MW (HCl) = 36.5 MW (H_2O) = 18.0 MW (HNO_3) = 63.0

Average Molecular Weights of Mixtures

Example 1: Mass fractions ⇒ Mole fractions

A hydrocarbon mixture has a composition of 3.9 % $^{\rm w}/_{\rm w}$ H₂, 40.2 % $^{\rm w}/_{\rm w}$ CH₄ and 55.9 % $^{\rm w}/_{\rm w}$ C₂H₆. What is its composition on a molar basis ?

	MW	Mass (g)	Moles	Mole fraction
H_2	2.0			
CH ₄	16.0			
C_2H_6	30.0			

These calculations were performed assuming the total mass of the mixture was 100.0 g. Do the results change if a different total mass is used?

Let's use 1000.0 g.

	MW	Mass (g)	Moles	Mole fraction
H_2	2.0			
	16.0			
CH_4 C_2H_6	30.0			
		1000		

The composition we calculate is independent of the basis of calculation, i.e., the amount of mixture.

Example 2: Mole fractions ⇒ Mass fractions

A gas mixture has a composition of 27.0 mol % CO₂, 21.0 mol % CO and 52.0 mol % He. What is its composition on a mass basis ?

	MW
CO ₂	44.0
CO	28.0
He	4.0

Example 3: Molar basis ⇒ Dry, weight basis

The composition of air after it has been exhaled from the human body is typically 16.0 mol % O_2 , 75.9 mol % N_2 , 0.9 mol % Ar, 4.4 mol % CO_2 and 2.8 mol % H_2O . Express this composition on a dry, mass basis.

Example 3:

	MW	Moles
O ₂	32.0	16.0
N_2	28.0	75.9
Ar	39.9	0.9
CO_2	44.0	4.4
H ₂ O	18.0	2.8
		100.0

Example 4: Mole fractions ⇒ Mass fractions

Dry Bass Strait natural gas has a composition of 90.7 mol % CH_4 , 5.9 mol % C_2H_6 , 0.6 mol % C_3H_8 , 0.1 mol % C_4H_{10} , 0.9 mol % N_2 and 1.8 mol % CO_2 . What is its composition on a mass basis ?

 CH_4 16.0 C_2H_6 30.0 C_3H_8 44.1 C_4H_{10} 58.1 N_2 28.0 CO_2 44.0

MW

Gas Partial Pressures

Dalton's Law:

$$\sum_{\text{all components}}$$
 (partial pressure) = total pressure

$$\sum$$
 (pp) = P_T

For any component of a gas mixture:

$$PP_i = x_i P_T$$

Gas Partial Pressures

For any component of a gas mixture:

$$PP_i = x_i P_T$$

Consider air with the composition : 79 mol % N₂ 21 mol % O₂

Partial pressure of N₂ on a day when the total pressure is 102.1 kPa

$$= 0.79 \times 102.1 = 80.7 \text{ kPa}$$

Compositions of Mixtures – Module Learning Outcomes

A student is expected to be able to:

- Define and calculate: mole %, weight %, volume %, mole fractions, mass fractions, ratios, concentrations, partial pressures, average molecular weight of mixtures
- Perform calculations on a component free basis
- Convert between mole fractions and mass fractions