I. Régulation de niveau simple boucle (10 pts)						
1 Donner le schéma électrique correspondant au cahier des charges.	1	Α			1	
2 Programmer votre T2550 afin de réaliser la régulation représentée ci-dessus.	1	В			0,75	Je veux voir la boucle de régulation.
3 Régler le système pour avoir un niveau de 50% pour une commande de la vanne FV1 de 50%.	1	Α			1	
Relever l'évolution de la mesure X en réponse à un échelon de commande Y. En déduire le sens de fonctionnement du régulateur (inverse ou direct).	1	Α			1	
5 Régler la boucle de régulation, en utilisant une méthode par approches successives, en mode de régulation PI.	4	Α			4	
6 Enregistrer l'influence d'une variation du débit de sortie sur le niveau.	2	С			0,7	Perturbation mal choisie
II. Régulation parallèle (10 pts)						
1 Rappeler le fonctionnement d'une boucle de régulation parallèle.	1	С			0,35	
2 Programmer le regulateur pour obtenir le fonctionnement en regulation parrallele conformement au schema 11 ci-	3	Α			3	
3 Régler la boucle de niveau en utilisant la méthode de Ziegler & Nichols. On choisira un correcteur PI.	2	Х			0	
4 Enregistrer l'influence d'une variation du débit de sortie sur le niveau.	2	Х			0	
5 Expliquez l'intérêt d'une régulation parallèle en vous aidant de vos enregistrements. Citez un autre exemple pratique.	2	В		2/20	1,5	

Note: 13,3/20

I. Régulation de débit simple boucle

1)Donner le schéma électrique correspondant au cahier des charges.

2)Programmer votre T2550 afin de réaliser la régulation représentée ci-dessus.

entrée :

Туре	AI_UIO		DBase	<local></local>	
Task	3 (110ms)		Rate	0	
MODE	AUTO		Alarms		
Fallback	AUTO		Node	>00	
			SiteNo	1	
PV	0.0	%	Channel	1	
HR	100.0	%	InType	mA	
LR	0.0	%	HR_in	20.00	
			LR_in	4.00	
HiHi	100.0	%	AI	0.00	
Hi	100.0	%	Res	0.0 4.00	
Lo	0.0	%			
LoLo	0.0	%	CJ_type	Auto	
Hyst	0.5000	%	CJ_temp	0.000	
			LeadRes	0.000	
Filter	0.000	Secs	Emissiv	1.000	
Char	Linear		Delay	0.000	
UserChar					
			SBreak	Up	
PVoffset	0.000	%	PVErrAct	Up	
AlmOnTim	0.000	Secs	Options	>0000	
Alm0fTim	0.000	Secs	Status	>0000	

Block: 02P01_08 Comment Connections						
TagName	02P01_08		LIN Name	02P01_08		
Туре	AO_UIO		DBase	<local></local>		
Task	3 (110ms)		Rate	0		
MODE	AUTO		Alarms			
Fallback	AUTO		Node	>00		
ганраск	AUTO		SiteNo	2		
→ OP	0.0	%		1		
- OP	0.0	76	Channel	<u>'</u>		
HR	100.0	%	OutType	mA		
LR	0.0	%	HR_out	20.00		
			LR_out	4.00		
Out	0.0	%	AO	0.00		
Track	0.0	%				
Trim	0.000	mA	Options	>0000		
			Status	>0000		

	Block: PID1 Comment Connections					
TagName	PID1		LIN Name	PID1		
Туре	PID		DBase	<local></local>		
Task	3 (110ms)		Rate	0		
Mode	AUTO		Alarms			
FallBack	AUTO					
			HAA	100.0		
→PV	0.0	%	LAA	0.0		
SP	0.0	%	HDA	100.0		
OP	0.0	%	LDA	100.0		
SL	0.0	%				
TrimSP	0.0	%	TimeBase	Secs		
RemoteSP	0.0	%	XP	100.0		
Track	0.0	%	TI	0.00		
			TD	0.00		
HR_SP	100.0	%				
LR_SP	0.0	%	Options	00101100		
HL_SP	100.0	%	SelMode	00000000		
LL_SP	0.0	%				
			ModeSel	00000000		
HR_OP	100.0	%	ModeAct	00000000		
LR_OP	0.0	%				
HL_OP	100.0	%	FF_PID	50.0		
LL_OP	0.0	%	FB_OP	0.0		

3)Régler le système pour avoir un niveau de 50% pour une commande de la vanne FV1 de 50%.

	t Connections		1 1	1
TagName	PID1		LIN Name	PID1
Туре	PID		DBase	<local></local>
Task	3 (110ms)		Rate	0
Mode	MANUAL		Alarms	
FallBack	MANUAL			
			HAA	100.0
→ PV	50.6	%	LAA	0.0
SP	0.0	%	HDA	100.0
OP	50.0	%	LDA	100.0
SL	0.0	%		
TrimSP	0.0	%	TimeBase	Secs
RemoteSP	0.0	%	XP	100.0
Track	0.0	%	TI	0.00
			TD	0.00
HR_SP	100.0	%		
LR_SP	0.0	%	Options	00101100
HL_SP	100.0	%	SelMode	00000000
LL_SP	0.0	%		
			ModeSel	00100000
HR_OP	100.0	%	ModeAct	00100001
LR_OP	0.0	%		
HL_OP	100.0	%	FF_PID	50.0
LL_OP	0.0	%	FB_OP	50.0

4)Relever l'évolution de la mesure X en réponse à un échelon de commande Y. En déduire le sens de fonctionnement du régulateur (inverse ou direct)

le régulateur est inverse car le sens du procédé est direct.

5)Régler la boucle de régulation, en utilisant une méthode par <u>approches successives</u>, en mode de régulation PI.

6)Enregistrer l'influence d'une variation du débit de sortie sur le niveau.

II. Régulation parallèle

1)Rappeler le fonctionnement d'une boucle de régulation parallèle.

La régulation parallèle permet d'avoir une meilleure régulation par rapport au niveau en fonction du débit.

2)Programmer le régulateur pour obtenir le fonctionnement en régulation parrallèle conformément au schéma TI ci-dessus.

PÏD2:

Comment Connections LIN Name PID2 LIN Name PID2						
TagName	PID2 PID		DBase	<local></local>		
Type Task	3 (110ms)		Rate	0		
Task	3 (110ms)		Rate			
Mode	AUTO		Alarms			
FallBack	AUTO					
			HAA	100.0		
→PV	0.0	%	LAA	0.0		
SP	0.0	%	HDA	100.0		
OP	0.0	%	LDA	100.0		
SL	0.0	%				
TrimSP	0.0	%	TimeBase	Secs		
RemoteSP	0.0	%	XP	100.0		
Track	0.0	%	TI	0.00		
			TD	0.00		
HR_SP	100.0	%				
LR_SP	0.0	%	Options	00101100		
HL_SP	100.0	%	SelMode	00000000		
LL_SP	0.0	%				
			ModeSel	00000000		
→ HR_OP	100.0	%	ModeAct	00000000		
LR_OP	0.0	%				
HL_OP	100.0	%	FF_PID	50.0		
LL_OP	0.0	%	FB_OP	0.0		

entrée 2 :

- 3)Régler la boucle de niveau en utilisant la méthode de <u>Ziegler & Nichols</u>. On choisira un correcteur PI.
- 4)Enregistrer l'influence d'une variation du débit de sortie sur le niveau.
- 5)Expliquez l'intérêt d'une régulation parallèle <u>en vous aidant de vos enregistrements</u>. Citez un autre exemple pratique.

L'intérêt de la régulation cascade est de permettre de sécuriser la cuve pour que le niveau de l'eau ne dépasse pas comme sur le tp niveau.