Bansilal Ramnath Agarwal Charitable Trust's

# Vishwakarma Institute of Technology, Pune

Project on

# "Job Scheduling in Networked Manufacturing using Game Theory"

Project Group No: C 16

Sponsor Company: Persistent Systems Limited, Pune

Internal Guide: Prof. A. S. Shingare

<u>External Guide</u>: Mr. Jigar Shah

- Introduction
- Problem Statement
- **Motivation**
- Objective
- Literature Survey
- Methodology
- Alternatives
- Limitation
- Conclusion

## Introduction

Globalization – a new trend for enterprise.

Agile and rapid response

Need of manufacturing models characterized by

- globalization
- digitalization,

## Networked Manufacturing

Traditional Job Scheduling Approach

Networked Manufacturing Job Scheduling Approach

- Customer-centric job scheduling
- Geographically distributive machines

- Introduction
- Problem Statement
- Motivation
- Objective
- Literature Survey
- Methodology
- Alternatives
- Limitation
- Conclusion

## Problem Statement

"A series of jobs submitted by different customers competing with each other to occupy the corresponding machines according to their own respective objectives, e.g., minimal makespan"

- Introduction
- **Problem Statement**
- Motivation
- Objective
- Literature Survey
- Methodology
- Alternatives
- Limitation
- Conclusion

## Motivation

Decentralized jobs

Job scheduling problem

- optimization problem
- NP-complete problem
- complexity = (n!) ^ m

Automation needed

- Introduction
- Problem Statement
- Motivation
- Objective
- Literature Survey
- Methodology
- Alternatives
- Limitation
- Conclusion

## Objective

The goal of the project is

- to apply the sophisticated mathematical model

- to find the optimal schedule of jobs

- Introduction
- Problem Statement
- Motivation
- Objective
- Literature Survey
- Methodology
- Alternatives
- Limitation
- Conclusion

# Literature Survey

Operations Research - By P.K. Gupta and D.S. Hira. Genetic Algorithms in Search, Optimization, and Machine Learning - David Edward Goldberg Guanghui Zhou, Pingyu Jiang, George Q. Huang(2009) A game-theory approach for job scheduling in networked manufacturing. Int J Adv Manuf Technol (2009) 41:972–985 (Springer Paper)

- Introduction
- Problem Statement
- **Motivation**
- Objective
- Literature Survey
- Methodology
- Alternatives
- Limitation
- Conclusion

## Methodology

To apply N-person non co-operative strategy to solve the game

To find the NE point of game

To design a genetic algorithm to reach the NE point of game

# Nash's Equilibrium

#### Characteristic:

"An NE point is an N-tuple of strategies, one for each player, such that anyone who deviates from it unilaterally cannot possibly improve its expected payoff."

## Mathematical Model

#### The solution profile

$$s^{Nash} = (s_0^{Nash}, s_1^{Nash}, \cdots, s_{n-1}^{Nash})$$

#### is characterized by

 $U_{i}(s_{i}^{Nash}, s_{-i}^{Nash}) \leq U_{i}(s_{i}, s_{-1}^{Nash}),$ for  $i = 0, 1, \dots, n - 1, \forall s_{i} \in S_{i},$ where  $s_{-1}^{Nash} = (s_{0}^{Nash}, s_{0}^{Nash}, ..., s_{i-1}^{Nash}, s_{i+1}^{Nash}, ..., s_{n-1}^{Nash}).$ 

## Genetic Algorithm

- GA is heuristic, which means it estimates a solution.
- Can solve every optimization problem which can be described with the chromosome encoding
- Solves problems with multiple solutions
- Can be easily transferred to existing simulations and models

## Genetic Algorithm

- Emphasis on fitness function
- It should consider strategy of each player
- Those who are "fit" will be selected for "selection" "crossover" and "mutation"
- It should check ability to reduce makespan of itself and to increase makespan of others

## Problem Formulation

| Job   | Operation           |                     |                     |                |                     |                     |  |  |
|-------|---------------------|---------------------|---------------------|----------------|---------------------|---------------------|--|--|
|       | $O_0$               | $O_1$               | O <sub>2</sub>      | O <sub>3</sub> | $O_4$               | O <sub>5</sub>      |  |  |
| $J_0$ | (0, 2) [4, 6]       | (1, 3, 5) [7, 5, 7] | (4, 0) [5, 4]       | (1, 2) [7, 4]  | (3, 4, 5) [3, 4, 5] | (1, 5) [5, 6]       |  |  |
| $J_1$ | (1) [4]             | (0, 2) [2, 6]       | (1, 3, 5) [4, 8, 5] | (2, 4) [7, 4]  | (1,2, 3) [3, 4, 6]  | (0, 5) [4, 5]       |  |  |
| $J_2$ | (1, 4) [8, 6]       | (0) [5]             | (2, 3, 5) [4, 6, 7] | (0, 5) [5, 5]  | (4, 3) [6, 7]       | (0, 1, 5) [8, 4, 6] |  |  |
| $J_3$ | (0, 3, 4) [3, 5, 5] | (1) [4]             | (2, 4) [5, 7]       | (3, 1)[5, 6]   | (1, 2, 5)[3, 4, 5]  | (2, 4) [6, 7]       |  |  |
| $J_4$ | (2, 3) [4, 4]       | (1, 3, 4) [3, 6, 3] | (0, 3, 5) [5, 6, 6] | (4) [7]        | (2, 3) [6, 4]       | (4, 5) [8, 7]       |  |  |
| $J_5$ | (1, 2, 5) [3, 6, 7] | (0, 2) [5, 6]       | (1, 3, 4) [4, 6, 7] | (2, 4)[5, 3]   | (0, 1) [5, 5]       | (3, 5) [3, 4]       |  |  |

| Machine | $f_0$ | $f_1$ | $f_2$ | $f_3$ | $f_4$ | $f_5$ |
|---------|-------|-------|-------|-------|-------|-------|
| $F_0$   | 0     | 1     | 2     | 1     | 2     | 2     |
| $F_1$   | 1     | 0     | 1     | 2     | 2     | 1     |
| $F_2$   | 2     | 1     | 0     | 2     | 1     | 2     |
| $F_3$   | 1     | 2     | 2     | 0     | 1     | 1     |
| $F_4$   | 2     | 2     | 1     | 1     | 0     | 2     |
| $F_5$   | 2     | 1     | 2     | 1     | 2     | 0     |

# Experimental Result

| Table 5 Feasible strategy profiles following FCFS rule |                                                                                                                          |  |  |  |  |
|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Generation                                             | Strategy profile                                                                                                         |  |  |  |  |
| 1st                                                    | ((2, 1, 4, 2, 3, 1), (1, 2, 3, 4, 1, 5), (4, 0, 3, 0, 4, 5), (3, 1, 4, 3, 5, 4), (3, 4, 0, 4, 3, 5), (5, 0, 3, 4, 0, 3)) |  |  |  |  |
| 120th                                                  | ((0, 5, 4, 1, 3, 1), (1, 0, 5, 4, 1, 0), (4, 0, 3, 0, 4, 0), (3, 1, 4, 3, 5, 4), (2, 4, 0, 4, 2, 5), (5, 0, 1, 2, 1, 3)) |  |  |  |  |
| 200th                                                  | ((0, 5, 4, 1, 3, 1), (1, 0, 5, 4, 1, 0), (4, 0, 3, 0, 4, 0), (3, 1, 4, 3, 5, 4), (2, 4, 0, 4, 2, 5), (5, 0, 1, 2, 1, 3)) |  |  |  |  |

#### 1st Generation



#### 200th Generation



# Comparision

| Job   | Payoff value (makespan) |                            |                  |
|-------|-------------------------|----------------------------|------------------|
|       | 1st generation          | 120th generation(NE point) | 200th generation |
| $J_0$ | 36                      | 38                         | 38               |
| $J_1$ | 45                      | 33                         | 33               |
| $J_2$ | 54                      | 46                         | 46               |
| $J_3$ | 50                      | 45                         | 45               |
| $J_4$ | 48                      | 41                         | 41               |
| $J_5$ | 51                      | 36                         | 36               |

- Introduction
- Problem Statement
- **Motivation**
- Objective
- Literature Survey
- Methodology
- Alternatives
- Limitation
- Conclusion

## Alternatives

A hierarchic approach for production planning and scheduling A holonics manufacturing scheduling architecture The branch-and-bound algorithm to deal with the scheduling problem in a flow shop An ant colony algorithm to model and deal with the permutation flowshop scheduling problems

- Introduction
- Problem Statement
- **Motivation**
- Objective
- Litreture Survey
- Methodology
- Alternatives
- Limitation
- Conclusion

## Limitations

No job preemption

No two jobs are scheduled on the same machine at the same time

The transportation time exists

Job availability at time zero

- Introduction
- Problem Statement
- Motivation
- Objective
- Literature Survey
- Methodology
- Alternatives
- Limitation
- Conclusion

## Conclusion

- Defined of conceptual model for job scheduling
- Formulated a job scheduling model for optimally scheduling the jobs adopting game theory
- Proposed and developed the GA-based solution algorithm to solve our optimization problem

# Thank You?