Определение 1. Метрическим пространством (M,d) называется пара, состоящая из множества Mи функции «расстояния» (метрики) $d \colon M \times M \to \mathbb{R}$, удовлетворяющей следующим аксиомам:

- (M1) d(x,y) = 0 тогда и только тогда, когда x = y;
- (M2) d(x,y) = d(y,x) (симметричность);
- (M3) $d(x,z) \leq d(x,y) + d(y,z)$ (неравенство треугольника).

Подмножество N метрического пространства M, рассматриваемое как метрическое пространство (с той же метрикой), называется nodnpocmpahcmsom пространства M.

Задача 1. Пусть (M,d) — метрическое пространство. Докажите, что $d(x,y) \ge 0$ для любых $x,y \in M$.

Задача 2. Поездка на московском метрополитене от станции A до станции B требует времени, которое зависит от выбранного маршрута, времени ожидания поездов и т. п. Выберем из всех возможных случаев тот, при котором затраченное время окажется наименьшим, и назовём это время расстоянием от станции А до станции В. Является ли такое расстояние метрикой на множестве станций московского метро? Если нет, предложите дополнительные условия, при которых введённое расстояние будет метрикой.

Определение 2. Множество последовательностей $x = (x_1, x_2, \dots, x_n)$ длины n, состоящих из действительных чисел, называется n-мерным арифметическим пространством \mathbb{R}^n . (Обычные прямая, плоскость и пространство — это \mathbb{R}^1 , \mathbb{R}^2 и \mathbb{R}^3 соответственно).

Задача 3. Является ли метрическим пространством \mathbb{R}^n с метрикой

a)
$$d_1(x,y) = \sum_{k=1}^n |y_k - x_k|;$$

6)
$$(e \ s \ k \ n \ do s \ mem \ m \ do s \ do \ do \ (x,y) = \sqrt{\sum_{k=1}^{n} (y_k - x_k)^2};$$
B) $d_{\infty}(x,y) = \max_{1 \leqslant k \leqslant n} |y_k - x_k|?$

B)
$$d_{\infty}(x,y) = \max_{1 \le k \le n} |y_k - x_k|$$
?

Задача 4. (Дискретная метрика) Пусть M — любое множество. Положим d(x,y) = 0, если x = yи d(x,y) = 1, если $x \neq y$. Докажите, что таким образом получается метрика (называемая дискретной). Метрическое пространство (M, d) также называется дискретным.

Задача 5. (Mетрика Хэмминга) Пусть M- множество слов некоторого алфавита, состоящих из какогото фиксированного числа букв. Расстоянием d(x,y) между словами x и y назовём количество букв, в которых эти слова отличаются, если написать их одно под другим. Например, d(нос, сон) = 2. Докажите, что d является метрикой.

Задача 6. (p-адическая метрика) Пусть p — простое число. Для $x,y\in\mathbb{N}$ положим $d_p(x,y)=0,$ если x = y, и $d_p(x,y) = p^{-n}$, если $x \neq y$ и n — наибольший показатель степени числа p, при котором разность x-y делится на p^n . Проверьте, что (\mathbb{N}, d_p) — метрическое пространство.

Задача 7. (Равномерная метрика) Пусть M — множество ограниченных функций $f:[a,b] \to \mathbb{R}$. Положим $d(f,g) = \sup |f(x) - g(x)|$. Проверьте, что это метрика.

1	2	3 a	3 6	3 B	4	5	6	7

Определение 3. Пусть M — метрическое пространство, $x_0 \in M$ — произвольная точка, $\varepsilon > 0$ — вещественное число. Множество $U_{\varepsilon}(x_0) = \{x \in M \mid d(x,x_0) < \varepsilon\}$ называется ε -окрестностью точки x_0 (или открытым шаром с центром x_0 и радиусом ε). Множество $B_{\varepsilon}(x_0) = \{x \in M \mid d(x,x_0) \leqslant \varepsilon\}$ называется замкнутым шаром с центром x_0 и радиусом ε .

Задача 8. Как выглядят шары в пространствах \mathbb{R}^2 и \mathbb{R}^3 относительно метрик из задачи 3?

Задача 9. ($Xayc\partial op\phi osocm b$ метрического пространства) Пусть x_1, x_2 — различные точки метрического пространства M. Докажите, что существует такое $\varepsilon > 0$, что $U_{\varepsilon}(x_1) \cap U_{\varepsilon}(x_2) = \varnothing$.

Задача 10. Докажите, что если два открытых шара метрического пространства имеют общую точку, то существует шар, лежащий в их пересечении.

Задача 11. Докажите, что если $U_{\varepsilon}(x) \cap U_{\varepsilon}(y) \neq \emptyset$, то $d(x,y) < 2\varepsilon$. Верно ли обратное (в произвольном метрическом пространстве)?

Задача 12. Докажите, что если $d(x,y) < \varepsilon$, то $U_{\varepsilon}(x) \subset U_{2\varepsilon}(y)$.

Задача 13. Шары с радиусами r_1 и $r_2 = 179r_1$ пересекаются. Радиусы шаров увеличили вдвое, не меняя их центров. Докажите, что один из полученных шаров содержится в другом.

Задача 14. Могут ли в метрическом пространстве существовать два шара разных радиусов, таких что шар большего радиуса содержится в шаре меньшего радиуса и не совпадает с ним?

Задача 15.

- а) Сколько элементов содержит замкнутый шар радиуса 1 на множестве слов длины n с метрикой Хэмминга для алфавита $\{0,1\}$? А если в алфавите m букв?
- **б)** Написано несколько последовательностей из нулей и единиц длины n, причём любые две из них отличаются по крайней мере в трех местах. Докажите, что их число не превосходит $\frac{2^n}{n+1}$.

Определение 4. Два метрических пространства (M_1, d_1) и (M_2, d_2) называются *изометричными*, если существует взаимно однозначное отображение $f: M_1 \to M_2$, такое что для любых точек $x_1, x_2 \in M_1$ выполняется равенство $d_1(x_1, x_2) = d_2(f(x_1), f(x_2))$. Отображение f в этом случае называется *изометрией*.

Задача 16. Придумайте такую метрику на прямой \mathbb{R} , чтобы прямая относительно этой метрики и интервал (0;1) относительно стандартной метрики были изометричны.

Задача 17. Изометричны ли (\mathbb{R}^n, d_2) и (\mathbb{R}^n, d_∞) ?

Определение 5. Говорят, что метрическое пространство N *вкладывается* в метрическое пространство M, если N изометрично некоторому подпространству в M.

Задача 18. Докажите, что (\mathbb{R}^n, d_2) вкладывается в (\mathbb{R}^N, d_2) при $n \leqslant N$.

Задача 19. Докажите, что (\mathbb{R}^n, d_∞) вкладывается в метрическое пространство из задачи 7.

Задача 20. Верно ли, что любое конечное метрическое пространство M вкладывается в (\mathbb{R}^n, d_2) при $n \gg 0$? Если да, то как можно оценить n, зная |M|?

8	9	10	11	12	13	14	15 a	15 б	16	17	18	19	20