

Dynamic programming

Arnar Bjarni & Atli FF September 8, 2025

School of Computer Science Reykjavík University

What is dynamic programming?

- A problem solving paradigm
- Similar in some respects to both divide and conquer and backtracking
- Divide and conquer recap:
 - Split the problem into independent subproblems
 - Solve each subproblem recursively
 - Combine the solutions to subproblems into a solution for the given problem
- Dynamic programming:
 - Split the problem into overlapping subproblems
 - Solve each subproblem recursively
 - Combine the solutions to subproblems into a solution for the given problem

Dynamic programming formulation

- Formulate the problem in terms of smaller versions of the problem (recursively)
- Turn this formulation into a recursive function
- Memoize the function (remember results that have been computed)

Dynamic programming formulation

```
map<problem, value> memory;
value dp(problem P) {
    if (is_base_case(P)) {
        return base_case_value(P);
    if (memory.find(P) != memory.end()) {
        return memory[P];
    value result = some value;
    for (problem Q in subproblems(P)) {
        result = combine(result, dp(Q));
    memory[P] = result;
    return result;
```

The first two numbers in the Fibonacci sequence are 1 and 1. All other numbers in the sequence are defined as the sum of the previous two numbers in the sequence.

- Task: Find the *n*th number in the Fibonacci sequence
- Let's solve this with dynamic programming
- Formulate the problem in terms of smaller versions of the problem (recursively)

```
fibonacci(1) = 1

fibonacci(2) = 1

fibonacci(n) = fibonacci(n-2) + fibonacci(n-1)
```

2. Turn this formulation into a recursive function

```
int fibonacci(int n) {
   if (n < 2) {
      return n;
   }
   int res = fibonacci(n - 2) + fibonacci(n - 1);
   return res;
}</pre>
```

• What is the time complexity of this?

 \bullet What is the time complexity of this? Exponential, almost $O(2^n)$

3. Memoize the function (remember results that have been computed)

```
map<int, int> mem;
int fibonacci(int n) {
    if (n \le 2) {
        return 1;
    if (mem.find(n) != mem.end()) {
        return mem[n];
    int res = fibonacci(n - 2) + fibonacci(n - 1);
    mem[n] = res;
    return res;
```

```
int mem[1000];
for (int i = 0; i < 1000; i++)
   mem[i] = -1;
int fibonacci(int n) {
    if (n \le 2) {
        return 1;
    if (mem[n] != -1) {
        return mem[n];
    int res = fibonacci(n - 2) + fibonacci(n - 1);
    mem[n] = res;
    return res;
```

- What is the time complexity now?
- We have n possible inputs to the function: 1, 2, ..., n.
- Each input will either:
 - be computed, and the result saved
 - be returned from memory
- Each input will be computed at most once
- Time complexity is $O(n \times f)$, where f is the time complexity of computing an input if we assume that the recursive calls are returned directly from memory (O(1))
- \bullet Since we're only doing constant amount of work to compute the answer to an input, f=O(1)
- Total time complexity is O(n)

• Given an array arr[0], arr[1], ..., arr[n-1] of integers, find the interval with the highest sum

-15	8	-2	1	0	6	-3
-----	---	----	---	---	---	----

• Given an array arr[0], arr[1], ..., arr[n-1] of integers, find the interval with the highest sum

• The maximum sum of an interval in this array is 13

• Given an array arr[0], arr[1], ..., arr[n-1] of integers, find the interval with the highest sum

- ullet The maximum sum of an interval in this array is 13
- But how do we solve this in general?
 - \bullet Easy to loop through all $\approx n^2$ intervals, and calculate their sums, but that is $O(n^3)$
 - \bullet We could use our static range sum trick to get this down to $O(n^2)$
 - Can we do better with dynamic programming?

- First step is to formulate this recursively
- \bullet Let $\max_{\operatorname{sum}}(i)$ be the maximum sum interval in the range $0,\dots,i$
- Base case: $\max_{} sum(0) = \max(0, arr[0])$
- What about max_sum(i)?
- What does $\max_{} sum(i-1)$ return?
- Is it possible to combine solutions to subproblems with smaller i into a solution for i?
- At least it's not obvious...

- Let's try changing perspective
- Let $\max_{} sum(i)$ be the maximum sum interval in the range $0, \ldots, i$, that ends at i
- Base case: $\max_{\underline{}} sum(0) = arr[0]$
- $\bullet \ \max_{\operatorname{sum}(i)} = \max(\operatorname{arr}[i], \operatorname{arr}[i] + \max_{\operatorname{sum}(i-1)})$
- Then the answer is just $\max_{0 \le i \le n} \{ \max_{sum}(i) \}$

• Next step is to turn this into a function

```
int arr[1000];
int max_sum(int i) {
    if (i == 0) {
        return arr[i];
    }
    int res = max(arr[i], arr[i] + max_sum(i - 1));
    return res;
```

Final step is to memoize the function

```
int arr[1000];
int mem[1000];
bool comp[1000];
memset(comp, 0, sizeof(comp));
int max_sum(int i) {
    if (i == 0) {
        return arr[i];
    if (comp[i]) {
        return mem[i];
    }
    int res = max(arr[i], arr[i] + max_sum(i - 1));
    mem[i] = res;
    comp[i] = true;
    return res;
```

• Then the answer is just the maximum over all interval ends

```
int maximum = 0;
for (int i = 0; i < n; i++) {
    maximum = max(maximum, max_sum(i));
}
printf("%d\n", maximum);</pre>
```

• If you want to find the maximum sum interval in multiple arrays, remember to clear the memory in between

- What about time complexity?
- ullet There are n possible inputs to the function
- \bullet Each input is processed in O(1) time, assuming recursive calls are O(1)
- Time complexity is O(n)

- Given an array of coin denominations $d_0, d_1, \ldots, d_{n-1}$, and some amount x: What is minimum number of coins needed to represent the value x?
- Remember the greedy algorithm for Coin change?
- It didn't always give the optimal solution, and sometimes it didn't even give a solution at all...
- What about dynamic programming?

First step: formulate the problem recursively

- Let $\operatorname{opt}(i,x)$ denote the minimum number of coins needed to represent the value x if we're only allowed to use coin denominations d_0, \ldots, d_i
- Base case: $opt(i, x) = \infty$ if x < 0
- Base case: opt(i, 0) = 0
- Base case: $opt(-1, x) = \infty$
- opt $(i, x) = \min \begin{cases} 1 + \text{opt}(i, x d_i) \\ \text{opt}(i 1, x) \end{cases}$

```
int INF = 100000;
int d[10];
int opt(int i, int x) {
    if (x < 0) return INF;
    if (x == 0) return 0;
    if (i == -1) return INF;
    int res = INF;
    res = min(res, 1 + opt(i, x - d[i]));
    res = min(res, opt(i - 1, x));
    return res;
```

```
int INF = 100000:
int d[10];
int mem[10][10000];
memset(mem, -1, sizeof(mem));
int opt(int i, int x) {
    if (x < 0) return INF;
    if (x == 0) return 0;
    if (i == -1) return INF;
    if (mem[i][x] != -1) return mem[i][x];
    int res = INF;
    res = min(res, 1 + opt(i, x - d[i]));
    res = min(res, opt(i - 1, x));
    mem[i][x] = res;
    return res;
```

- Time complexity?
- Number of possible inputs are $n \times x$
- ullet Each input will be processed in O(1) time, assuming recursive calls are constant
- Total time complexity is $O(n \times x)$

- How do we know which coins the optimal solution used?
- We can store backpointers, or some extra information, to trace backwards through the states
- See example...

- Given an array a[0], a[1], ..., a[n-1] of integers, what is the length of the longest increasing subsequence?
- First, what is a subsequence?
- \bullet If we delete zero or more elements from a, then we have a subsequence of a
- Example: a = [5, 1, 8, 1, 9, 2]
- [5, 8, 9] is a subsequence
- [1,1] is a subsequence
- [5, 1, 8, 1, 9, 2] is a subsequence
- [] is a subsequence
- [8, 5] is **not** a subsequence
- [10] is **not** a subsequence

- Given an array a[0], a[1], ..., a[n-1] of integers, what is the length of the longest increasing subsequence?
- An increasing subsequence of a is a subsequence of a such that the elements are in (strictly) increasing order
- [5,8,9] and [1,8,9] are the longest increasing subsequences of a=[5,1,8,1,9,2]
- How do we compute the length of the longest increasing subsequence?
- ullet There are 2^n subsequences, so we can go through all of them
- \bullet That would result in an $O(n2^n)$ algorithm, which can only handle $n \leq 23$
- What about dynamic programming?

- Let lis(i) denote the length of the longest increasing subsequence of the array $a[0], \ldots, a[i]$
- Base case: lis(0) = 1
- What about lis(i)?
- We have the same issue as in the maximum sum problem, so let's try changing perspective

- Let lis(i) denote the length of the longest increasing subsequence of the array $a[0], \ldots, a[i]$, that ends at i
- Base case: we don't need one
- $\operatorname{lis}(i) = \max(1, \max_{j < i \text{ s.t. } a[j] < a[i]} \{1 + \operatorname{lis}(j)\})$

```
int a[1000];
int mem[1000];
memset(mem, -1, sizeof(mem));
int lis(int i) {
    if (mem[i] != -1) {
       return mem[i];
    int res = 1;
    for (int j = 0; j < i; j++) {
        if (a[j] < a[i]) {
            res = max(res, 1 + lis(j));
    mem[i] = res;
    return res;
```

 And then the longest increasing subsequence can be found by checking all endpoints:

```
int mx = 0;
for (int i = 0; i < n; i++) {
    mx = max(mx, lis(i));
}
printf("%d\n", mx);</pre>
```

- Time complexity?
- There are n possible inputs
- Each input is computed in O(n) time, assuming recursive calls are O(1)
- Total time complexity is $O(n^2)$
- This will be fast enough for $n \le 10~000$, much better than the brute force method!
- (It can be done faster $(\mathcal{O}(n\log(n)))$) with dynamic programming optimizations, but we're not covering that right now)

Longest common subsequence

- Given two strings (or arrays of integers) $a[0], \ldots, a[n-1]$ and $b[0], \ldots, b[m-1]$, find the length of the longest subsequence that they have in common.
- a = "bananinn"
- b = "kaninan"
- ullet The longest common subsequence of a and b, "aninn", has length 5

Longest common subsequence

- Let lcs(i,j) be the length of the longest common subsequence of the strings $a[0], \ldots, a[i]$ and $b[0], \ldots, b[j]$
- Base case: lcs(-1, j) = 0
- Base case: lcs(i, -1) = 0

•
$$lcs(i, j) = max \begin{cases} lcs(i, j - 1) \\ lcs(i - 1, j) \\ 1 + lcs(i - 1, j - 1) \text{ if } a[i] = b[j] \end{cases}$$

Longest common subsequence

```
string a = "bananinn",
       b = "kaninan":
int mem[1000][1000];
memset(mem, -1, sizeof(mem));
int lcs(int i, int j) {
    if (i == -1 || j == -1) {
        return 0;
    if (mem[i][j] != -1) {
        return mem[i][j];
    }
    int res = 0;
    res = max(res, lcs(i, j - 1));
    res = max(res, lcs(i - 1, j));
    if (a[i] == b[i]) {
        res = \max(\text{res}, 1 + \text{lcs}(i - 1, j - 1));
    }
    mem[i][j] = res;
```

Longest common subsequence

- Time complexity?
- There are $n \times m$ possible inputs
- \bullet Each input is processed in $O(1)\mbox{, assuming recursive calls are }O(1)$
- Total time complexity is $O(n \times m)$

Coin Game

- Two players play a game with a double ended queue of coins with different values.
- Take turns picking a coin from either end.
- Want to maximize total value at the end.

Coin Game

- Two players play a game with a double ended queue of coins with different values.
- Take turns picking a coin from either end.
- Want to maximize total value at the end.
- Formulation: dp(i, j, p), solution is dp(0, n 1, 1).
- Base case when i > j: dp(i, j, p) = 0
- Recursive step:

$$dp(i,j,p) = \max(p \cdot A_i + dp(i+1,j,1-p), p \cdot A_j + dp(i,j-1,1-p))$$

- ullet We have a narrow art gallery, N rows long and 2 columns wide.
- Each cell has an exhibition of some value.
- ullet Must close exactly K exhibitions, still allowing people to pass through
- Goal is to maximize total value of open exhibitions
- What is our state?
- What information do we need to know our options?

- What is our state?
- What information do we need to know our options?

- What is our state?
- What information do we need to know our options?
- Which row we are in

- What is our state?
- What information do we need to know our options?
- Which row we are in
- How many we need to close

- What is our state?
- What information do we need to know our options?
- Which row we are in
- How many we need to close
- What decision we made last time

- dp(i, k, c), where i is remaining rows, k is remaining to close and c is our last choice
- $\bullet \ c=0$ means close neither, c=1 means close left, c=2 means close right

- dp(i, k, c), where i is remaining rows, k is remaining to close and c is our last choice
- $\bullet \ c=0$ means close neither, c=1 means close left, c=2 means close right
- dp(0,0,c) = 0
- $dp(0, k, c) = -\infty$ where $k \neq 0$

- dp(i, k, c), where i is remaining rows, k is remaining to close and c is our last choice
- c=0 means close neither, c=1 means close left, c=2 means close right
- dp(0,0,c) = 0
- $\bullet \ \operatorname{dp}(0,k,c) = -\infty \text{ where } k \neq 0$
- dp(i, k, c) = $\max \left\{ \begin{array}{l} A[i-1][0] + A[i-1][1] + dp(i-1, k, 0) \\ A[i-1][1] + dp(i-1, k-1, 1) & \text{if } c \neq 2 \\ A[i-1][0] + dp(i-1, k-1, 2) & \text{if } c \neq 1 \end{array} \right\}.$

Top-down vs. bottom-up

- What we have been doing so far is usually called top-down dynamic programming
- That is, you start with the main problem (the top) and split it into smaller problems recursively (down)
- In some cases it can be better to do things bottom-up, which is pretty much just the reverse order
- Consider for example the fibonacci numbers. Then we'd start at the base cases and count up

Top-down vs. bottom-up

- Bottom-up is trickier to write, generally speaking. Top-down handles dependencies for us.
- Then why would we use bottom-up?
- Iteration is faster than recursion, so bottom-up is usually better performance
- Exception: Sparse DP computations.
- Sometimes there are optimizations which are easier to apply in bottom-up (later)