(12)特許協力条約に基づいて公開された国際出願

(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2004年9月30日(30.09.2004)

PCT

(10) 国際公開番号

(51) 国際特許分類7:

WO 2004/084540 A1

÷

H04N 1/41, 1/40, 1/46

(21) 国際出願番号:

PCT/JP2004/003603

(22) 国際出願日:

2004年3月17日(17.03.2004)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ:

特願2003-076071 2003年3月19日(19.03.2003)

(71) 出願人(米国を除く全ての指定国について): セイコー エプソン株式会社 (SEIKO EPSON CORPORATION) [JP/JP]; 〒1630811 東京都新宿区西新宿二丁目4番 1号 Tokyo (JP).

(72) 発明者; および

(75) 発明者/出願人(米国についてのみ): 角谷 繁明(KAKU-TANI, Toshiaki) [JP/JP]; 〒3928502 長野県諏訪市大和 三丁自3番5号セイコーエプソン株式会社内 Nagano (JP).

(74) 代理人: 特許業務法人 明成国際特許事務所 (TOKKYO GYOMUHOJIN MEISEI INTERNA-TIONAL PATENT FIRM); 〒4600003 愛知県名古屋 市中区錦二丁目18番19号三井住友銀行名古屋 ビル 7 階 Aichi (JP).

(81) 指定国(表示のない限り、全ての種類の国内保護が 可能): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT,

[続葉有]

(54) Title: IMAGE PROCESSING DEVICE AND IMAGE PROCESSING METHOD FOR PERFORMING CONVERSION OF **COLOR IMAGE DATA**

(54) 発明の名称: カラー画像データの変換を行なう画像処理装置、および画像処理方法

- A .IMAGE DATA
- COLOR CONVERSION/COMPRESSION MODULE
- ..EDGE DETECTION MODULE
- D...MEMORY
- E...HALFTONE MODULE
- F...PRINT DATA

(57) Abstract: It is possible to rapidly convert color image data into data expressed by presence/absence of dot formation. A plurality of adjacent pixels are united into a first type of block and judgment of dot formation presence/absence is performed by applying the error spread method in block basis. The image data after color conversion used for such a judgment is compressed according to the presence/absence of the edge in the block and temporarily stored in a memory. The image data is read out from the memory when required and presence/absence of dot formation is judged. Thus, it is possible to rapidly perform judgment of dot formation presence/absence performed on block basis while preventing complication of the judgment. Moreover, since the image data is compressed according to the presence/absence of the edge, it is possible to rapidly read/write from/to the memory and rapidly perform decompression. For this, color image data can be subjected to color conversion and rapidly converted into data expressed by presence/absence of dot formation without complicating the process content.

(57) 要約: 本発明は、カラー画像データをドット形成有無により 表現されたデータに迅速に変換することを目的とする。隣接す る複数の画素を第1種のブロックとしてまとめ、誤差拡散法を 適用して行うドット形成有無の判断を、ブロック単位で行う。 かかる判断に用いられる色変換後の画像データは、ブロック内 でのエッジの有無に応じて圧縮された状態で一旦メモリに記憶 しておき、必要に応じてメモリから読み出しながらドット形成 の有無を判断する。こうすれば、ブロック単位で行うドット形 成有無の判断が複雑化することを避けつつ、迅速に判断するこ とができる。また、画像データはエッジの有無に応じて圧縮さ れているので、メモリに対して迅速に読み書きし、更に迅速に 解凍することができる。このため、カラー画像データを色変換 して、ドットの形成有無により表現されたデータに変換する処 理を、処理内容を複雑化させることなく、迅速に行うことが可 能となる。

LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) 指定国 (表示のない限り、全ての種類の広域保護が可能): ARIPO (BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC,

NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:

一 国際調査報告書

2文字コード及び他の略語については、定期発行される 各PCTガゼットの巻頭に掲載されている「コードと略語 のガイダンスノート」を参照。

明細書

カラー画像データの変換を行なう画像処理装置、および画像処理方法

技術分野

5 この発明は、カラー画像データを変換する技術に関し、詳しくは、第1の表色 系による画像データを第2の表色系の画像データに色変換した後、該色変換後の データを、ドット形成の有無による表現形式の画像データに変換する技術に関す る。

10 背景技術

インクジェットプリンタなど、印刷媒体上にドットを形成して画像を印刷する 印刷装置は、コンピュータやデジタルカメラなどの画像機器の出力装置として広 く使用されている。また近年では、液晶や有機 L E Dなどの画面上に輝点を形成 して画像を表示する様々な出力装置も使用され始めており、今後は、広く使用されるようになるものと考えられる。

コンピュータやデジタルカメラ上の画像を、これら出力装置を用いて表示するためには、画像データに、色変換処理およびハーフトーン処理と呼ばれる画像処理を施しておく必要がある。これは、画像データを作成する側(コンピュータな ど)と画像データに基づいて画像を表示する側(印刷装置など)とで、カラー画像データの表現方法が以下のように異なっているためである。

先ず、コンピュータなどの画像処理を行なう装置と印刷装置などの画像出力を 行なう装置とでは、色相を表現するための方式が異なっている。すなわち、コン 25 ピュータなどでは、R (赤色)、G (緑色)、B (青色)を発色する素子を組み 合わせて色相を表現するのに対して、印刷装置ではC(シアン色)、M(マゼンタ色)、Y(イエロ色)のインク、即ち他の色の光を吸収するインクの組み合せを用いて色相を表現する。このように、RGB各色を用いた色相の表現形式はRGB表色系と呼ばれることがある。これに対して、CMYの各色を基本として用いた色相の表現形式はCMY表色系と呼ばれることがある。また、液晶や有機LEDなど、コンピュータなどと同じくRGB表色系を採用している場合でも詳しく見れば、ほとんどの場合は、RGB各色の色目が微妙に異なっている。従って、同じRGB表色系を採用している場合でも、色目の違いを補正するために、カラー画像データの変換が必要となる。このように、コンピュータやデジタルカメラなどのカラー画像を正しい色相で表現するためには、コンピュータなどの画像処理装置側で採用されている表色系により表現されたカラー画像データを、印刷装置などの側で採用されている表色系によるカラー画像データに変換する必要がある。色変換処理とは、こうした変換を行う処理である。

また、コンピュータなどの画像処理装置と印刷装置などの出力装置とでは、階調の表現方法も異なっている。すなわち、コンピュータなどでは、画像の最小単位である画素が、それ単独で多階調を表現可能であり、例えば1バイトの画像データであれば、個々の画素が単独で256階調を表現することが可能である。これに対して、印刷装置や画像表示装置では、基本的には、ドットまたは輝点を形成するか否かの2つの状態しか取り得ず、従って、ドットや輝点の形成密度を変えることによって擬似的に階調を表現する方法が主に用いられる。このことから、画素毎に多階調を表現可能な画像データ(階調画像データ)を、擬似的に階調を表現した画像データ(擬似階調画像データ)に変換する処理が必要となる。ハーフトーン処理とは、こうした変換を行う処理である。

20

15

ハーフトーン処理の手法には種々の手法が提案されているが、代表的なものに、 誤差拡散法と呼ばれる手法がある。誤差拡散法は、着目画素にドットを形成した こと、あるいはドットを形成しなかったことによって生じる階調表現の誤差を、 着目画素周辺の未判断画素に拡散して記憶しておき、未判断画素についてのドッ ト形成有無を判断するにあたっては、周辺画素から拡散されてきた誤差を解消す るように、ドットの形成有無を判断する手法である。誤差拡散法では、このよう に周辺画素で発生した階調表現の誤差を解消しながらハーフトーン処理を行うた めに、変換により発生する誤差を抑制して画像データを精度良く変換することが 可能である。もっとも、誤差拡散法では、誤差を周辺の画素に拡散するたびに、 メモリに対する読み出しおよび書き込みが発生するため、誤差拡散処理に時間が かかり、従って、画像の表示に時間がかかってしまう傾向がある。

15 :

20

発明の開示

この発明は、従来技術における上述の課題を解決するためになされたものであり、画像処理を複雑化させることなく、処理時間を短縮する技術を提供すること を目的とする。

上述の課題の少なくとも一部を解決するため、本発明の第1の画像処理装置は、 次の構成を採用した。すなわち、

一つの表色系により表現されたカラー画像データを、他の表色系を構成する各5 色についてのドットの形成有無によって表現された画像データに変換する画像処理装置であって、

第1の表色系により表現されたカラー画像データを、該第1の表色系とは異なる第2の表色系によるカラー画像データに色変換する色変換手段と、

互いに隣接する画素を所定の複数個ずつ第1種のブロックとしてまとめて、該 10 第1種のブロック内でのエッジの有無を検出するエッジ検出手段と、

前記第1種のブロックに含まれる各画素についての前記色変換後のカラー画像 データを、該ブロック内にエッジが存在しない場合には圧縮した状態でメモリに 記憶する圧縮データ記憶手段と、

前記圧縮された状態で記憶されたカラー画像データを前記メモリから読み出し 15 て解凍した後、互いに隣接する画素を所定の複数個ずつ第2種のブロックとして まとめる圧縮データ解凍手段と、

前記第2種のブロックとしてまとめられたカラー画像データに基づいて、該プロックに含まれる各画素についてのドットの形成有無を、前記第2の表色系の各色毎に該ブロック単位で判断するドット形成有無判断手段と

20 を備えることを要旨とする。

また、上記の画像処理装置に対応する本発明の第1の画像処理方法は、

一つの表色系により表現されたカラー画像データを、他の表色系を構成する各 色についてのドットの形成有無によって表現された画像データに変換する画像処 25 理方法であって、 第1の表色系により表現されたカラー画像データを、該第1の表色系とは異な る第2の表色系によるカラー画像データに色変換する工程と、

互いに隣接する画素を所定の複数個ずつ第1種のプロックとしてまとめて、該 第1種のブロック内でのエッジの有無を検出する工程と、

前記第1種のブロックに含まれる各画素についての前記色変換後のカラー画像 データを、該ブロック内にエッジが存在しない場合には圧縮した状態でメモリに 記憶する工程と、

前記圧縮された状態で記憶されたカラー画像データを前記メモリから読み出し て解凍した後、互いに隣接する画素を所定の複数個ずつ第2種のプロックとして 10 まとめる工程と、

前記第2種のブロックとしてまとめられたカラー画像データに基づいて、該ブ ロックに含まれる各画素についてのドットの形成有無を、前記第2の表色系の各 色毎に該ブロック単位で判断する工程と

を備えることを要旨とする。

15

20

かかる第1の画像処理装置および第1の画像処理方法においては、ドット形成 有無の判断を、ブロック単位で行うことにより迅速に行うことができる。ドット 形成有無を判断するための手法としては、誤差拡散法やディザ法などの周知の方 法を適用することができる。こうしたドット形成の有無を判断するために用いら れる色変換後の画像データは、圧縮された状態で一旦メモリに記憶されており、 必要に応じてメモリから読み出しながらドット形成の有無が判断される。このた め、ドット形成有無の判断をブロック単位で行うにも関わらず、処理が複雑化す ることがない。また、互いに隣接する画素を所定の複数個ずつ、第1種のプロッ クとしてまとめ、該ブロック内でのエッジの有無を検出した後、エッジの有無に 25 応じて画像データを圧縮しているので、画像データの圧縮および解凍を迅速に行 うことができる。このように、上記の画像処理装置および画像処理方法によれば、 カラー画像データを色変換して、ドットの形成有無により表現されたデータに変 換する処理を、処理の複雑化を伴うことなく、迅速に行うことが可能となる。

5 こうした第1の画像処理装置および画像処理方法においては、前記第2種のブロックを構成する各画素についてドット形成有無を判断するに際して、次のようにして判断しても良い。該第2種のブロックを構成する複数の画素の中で、第1種のブロックにエッジが含まれないとして圧縮されていた画素については、これら画素のカラー画像データを均一のデータとして扱って、ドット形成の有無を判断することとしても良い。ここで、均一な画像データとしては、これら複数の画素の中の1の画素についてのデータを用いても良いし、あるいはブロック内のデータの平均値を用いても良い。

第2種のブロックを構成する画素の中、元々、エッジのないブロックに含まれているとして圧縮されていた画素については、画像データは近い値を取るものと考えられる。一方、ドット形成の有無を判断する際に、複数の画素の画像データを均一なデータとして扱うことができれば、ドット形成の有無を判断する処理の迅速化を図ることとが可能である。従って、エッジが検出されないものとして圧縮されていた画素については、これら画素のデータを均一なデータとして扱うことで、画質に悪影響を与えることなく処理を迅速化することが可能となるので好適である。

また、画像処理装置および画像処理方法においては、前記第1種のブロックに 含まれる各画素について、色変換後のカラー画像データに基づいてエッジの有無 25 を検出し、該ブロック内でのエッジの有無に応じて、色変換後のカラー画像デー

夕を圧縮して前記メモリに記憶することとしても良い。

メモリに記憶されるカラー画像データは色変換後の画像データであるから、こうして色変換後の画像データに基づいてエッジを検出し、画像データを圧縮して やれば、第2の表色系を構成する各色毎に確実にエッジを検出して圧縮すること が可能となるので好ましい。

あるいは、前記第1種のブロックに含まれる各画素について、色変換前のカラー画像データに基づいてエッジの有無を検出し、エッジの検出されなかったブロックについては、色変換前の画像データを圧縮することとしても良い。こうして、圧縮後のカラー画像データを色変換し、得られた画像データを前記メモリに記憶する。

こうすれば、エッジの検出されなかったブロックについては、該ブロックに含まれる画素をまとめて色変換することができるので、それだけ迅速に色変換を行うことができ、延いては画像処理を迅速に行うことが可能となる。

更に、色変換前のカラー画像データに基づいてエッジの存在が検出された前記第1種のプロックについては、色変換後のカラー画像データに基づいて再びエッジの有無を各色毎に検出することとしても良い。そして、該エッジの検出結果に応じて、色変換後のカラー画像データを圧縮した後、該圧縮した画像データを前記メモリに記憶する。

こうすれば、色変換前に圧縮されなかったカラー画像データについても、色変 25 換後の画像データに基づいて圧縮することができるので、画像データの圧縮率を

向上させることができる。その結果、色変換後のカラー画像データを、前記メモ リに対して迅速に読み書きすることが可能となり、延いては画像処理を高速化す ることができるので好ましい。

上述した第1の画像処理装置および画像処理方法においては、前記第1種のブロック内でエッジが検出されなかった場合は、該ブロック内に含まれる複数画素の画像データを、1画素分の画像データに圧縮して記憶することとしても良い。また、かかる圧縮に際しては、複数画素の中から1の画素を選択して、選択した画素の画像データに圧縮しても良いし、あるいは、複数画素についての画像データの平均値を算出して、複数画素分の画像データを得られた平均値に圧縮することとしても良い。

こうした方法によれば、複数画素の画像データを迅速に且つ効率よく圧縮する ことが可能であり、また、圧縮された画像データを迅速に解凍することが可能と 15 なるので好適である。

あるいは、上述した第1の画像処理装置および画像処理方法においては、前記第1種のブロック内にエッジの存在が検出された場合には、該ブロックをエッジを含まないサブブロックに分割し、該サブブロックに含まれる画素について前記色変換後の画像データを圧縮した後、該圧縮された画像データを前記メモリに記憶することとしても良い。

こうして前記第1種のブロック内にエッジが検出された場合には、サブブロック単位でカラー画像データを圧縮してやれば、画像データの圧縮率を更に向上さ せることが可能となり、延いては、画像処理を高速化することが可能となるので

好ましい。

更に、こうした各種の画像処理装置および画像処理方法においては、色変換後のカラー画像データを圧縮された状態で前記メモリに記憶するとともに、該画像 データが圧縮されている状態を表す圧縮情報も、該メモリに記憶することとしても良い。

こうして圧縮された画像データとともに、圧縮情報を記憶しておけば、画像デ ータを簡便に解凍することが可能となるので好ましい。

10

また、上述した第1の画像処理装置および画像処理方法においては、画像データを圧縮する際に用いられる前記第1種のプロックと、ドット形成有無を判断する際に用いられる前記第2種のブロックとを、同一のブロックとしても良い。

- 15 前記第1種のブロックと前記第2種のブロックとを同一のブロックとしておけば、圧縮されたカラー画像データを前記メモリから読み出して解凍する処理を簡素なものとすることができる。このため、画像処理を迅速に行うことが可能となるので好適である。
- 20 特に、前記第 1 種のブロックおよび前記第 2 種のブロックを、いずれも 2 行 2 列に配列された 4 つの画素から構成することとしても良い。

これらブロックに含まれる画素があまりに多くなると、エッジが含まれる確率 が高くなったり、画像処理が複雑となる。かといって、ブロックに含まれる画素 25 があまりに少ないのでは、ブロック内のカラー画像データを圧縮しても、データ 量がそれほど小さくならず、また、ドット形成有無の判断をブロック単位で行うことによるメリットも小さいので、画像処理を十分に迅速化することが困難となる。こうした観点から、2行2列に配列された4つの画素を第1種のブロックおよび第2種のブロックとしてまとめてやれば、画像処理を複雑化させることなく、
5 処理速度を効果的に向上させることができる。

また、上述した課題の少なくとも一部を解決するために、本発明の第2の画像 処理装置は、次の構成を採用した。すなわち、一つの表色系により表現されたカ ラー画像データを、他の表色系を構成する各色についてのドットの形成有無によ 10 って表現された画像データに変換する画像処理装置であって、

第1の表色系により表現されたカラー画像データを、該第1の表色系は異なる 第2の表色系によるカラー画像データに色変換する色変換手段と、

互いに隣接する画素を所定の複数個ずつ第1種のブロックとしてまとめて、該 第1種のブロック内でのエッジの有無を検出するエッジ検出手段と、

15 前記第1種のブロックに含まれる各画素についての前記色変換後のカラー画像 データを、該ブロック内にエッジが存在しない場合には圧縮した状態で記憶する 圧縮データ記憶手段と、 前記圧縮された状態で記憶されたカラー画像データを 前記メモリから読み出して解凍する圧縮画像データ解凍手段と、

前記解凍されたカラー画像データに基づいて、前記第2の表色系の各色毎にド 20 ットの形成有無を判断するドット形成有無判断手段と

を備えることを要旨とする。

また、上記の画像処理装置に対応する本発明の第2の画像処理方法は、一つの表色系により表現されたカラー画像データを、他の表色系を構成する各色につい てのドットの形成有無によって表現された画像データに変換する画像処理方法で

あって、

第1の表色系により表現されたカラー画像データを、該第1の表色系とは異なる第2の表色系によるカラー画像データに色変換する工程と、

互いに隣接する画素を所定の複数個ずつ第1種のブロックとしてまとめて、該 5 第1種のブロック内でのエッジの有無を検出する工程と、

前記第1種のブロックに含まれる各画素についての前記色変換後のカラー画像 データを、該ブロック内にエッジが存在しない場合には圧縮した状態でメモリに 記憶する工程と、 前記圧縮された状態で記憶されたカラー画像データを前記メ モリから読み出して解凍する工程と、

10 前記解凍されたカラー画像データに基づいて、前記第2の表色系の各色毎にドットの形成有無を判断する工程と

を備えることを要旨とする。

こうした第2の画像処理装置および画像処理方法においても、色変換後の画像 データを圧縮された状態で一旦メモリに記憶しておく。そして、ドット形成の有無を判断する際には、必要に応じてメモリから読み出したデータを解凍しながら判断する。こうすれば、カラー画像データを色変換して、ドットの形成有無により表現されたデータに変換する処理を、処理の複雑化を伴うことなく、迅速に行うことが可能となる。

20

更に本発明は、上述した画像処理を実現するためのプログラムをコンピュータに読み込ませることにより、コンピュータを用いて実現することも可能である。 従って、本発明は、上述した第1,第2の画像処理方法に対応するプログラムや 記録媒体としても把握することができる。 こうしたプログラム、あるいは記録媒体に記憶されているプログラムをコンピュータに読み込ませ、該コンピュータを用いて上述の各種機能を実現すれば、画像処理を複雑化することなく、迅速にカラー画像データを変換することが可能となる。

5 図面の簡単な説明

図1は、本発明の概要を例示した印刷システムの概略構成図である。

図2は、本実施例の画像処理装置としてのコンピュータの構成を示す説明図である。

図3は、本実施例の画像表示装置としてのプリンタの概略構成図である。

10 図4は、本実施例の画像処理装置で行われる画像処理の流れを示すフローチャートである。

図 5 は、第 1 実施例の色変換・圧縮処理の流れを示すフローチャートである。 図 6 A および図 6 B は、複数個の画素をまとめて第 1 のブロックを設定して

いる様子を示す説明図である。

15 図 7 は、色変換のために参照される色変換テーブルを概念的に示した説明図である。

図8Aおよび図8Bは、ブロック内で所定画素間の階調差を算出することによりエッジの有無を検出する様子を概念的に示した説明図である。

図9Aおよび図9Bは、エッジの有無に応じてブロック内の画像データを圧 20 縮し、メモリに記憶する様子を概念的に示した説明図である。

図10は、ブロック単位で行うハーフトーン処理の流れを示すフローチャートである。

図11Aないし図11Eは、ブロック単位で行うハーフトーン処理において 設定される第2のブロックを例示した説明図である。

25 図12は、ハーフトーン処理において処理したブロックで発生した誤差を周

辺の画素に拡散する様子を概念的に示した説明図である。

図13Aおよび図13Bは、プロック全体で生じた階調誤差を周辺の画素に拡散する際の拡散比率を例示した説明図である。

図14は、ブロック単位で行うハーフトーン処理中でブロック内の各画素に 5 ついて2値化を行う処理の流れを示したフローチャートである。

図15Aないし図15Dは、ブロック単位で行うハーフトーン処理中でブロック内の各画素について2値化を行う様子を概念的に示した説明図である。

図16は、第2実施例の色変換・圧縮処理の流れを示すフローチャートである。

10 図17は、第3実施例の色変換・圧縮処理の流れを示すフローチャートである。

図18Aおよび図18Bは、ブロック内でエッジを検出しながら圧縮を行う 変形例を概念的に示した説明図である。

図19Aないし図19Dは、エッジの状態に応じてブロックをサブブロック 15 に分割しながら画像データを圧縮する変形例について示した説明図である。

発明を実施する最良の形態

本発明の作用・効果をより明確に説明するために、本発明の実施の形態を、次のような順序に従って以下に説明する。

- 20 A. 実施の態様:
 - B. 第1実施例:
 - B-1. 装置構成:
 - B-2. 画像処理の概要:
 - B-3. 第1実施例の色変換・圧縮処理:
- 25 B-4. ハーフトーン処理の概要:

- C. 第2 実施例:
- D. 第3 実施例:
- E. 変形例:

5 A. 実施の態様:

10

15

実施例の詳細な説明を開始する前に、理解の便宜から、発明の実施の態様について簡単に説明しておく。図1は、印刷システムを例にとって、本発明の実施の態様の概略構成を例示した説明図である。本印刷システムは、画像処理装置10と、カラープリンタ20等から構成されている。画像処理装置10は、予め用意された画像処理用のソフトウェアが実行されるコンピュータであり、デジタルカメラやカラースキャナなどの画像機器からRGBカラー画像の階調画像データを受け取ると、該カラー画像データに所定の画像処理を施すことにより、カラープリンタ20で印刷可能な各色ドットの形成有無により表現された印刷データに変換する。かかる画像処理は、プリンタドライバ12と呼ばれる専用のプログラムを用いて一つで開いて画像処理装置10自体で作成することもできる。

図1に例示のプリンタドライバ12は、色変換・圧縮モジュール、エッジ検出モジュール、ハーフトーンモジュールなどの複数のモジュールから構成されている。色変換・圧縮モジュールは、解像度が変換されたRGB画像データを受け取り、これをカラープリンタ20が形成可能なドットの色、すなわちシアン(C)色、マゼンタ(M)色、イエロ(Y)色の各色、あるいはこれに黒(K)色を加えた各色により表現されたCMY画像データに色変換する。色変換に先立って、画像データの解像度をカラープリンタ20が印刷するための解像度に変換しておくなど、必要に応じて前処理を施しておくこととしても良い。色変換後の画像デ

15

ータは、隣接する画素を所定の複数個ずつブロックとしてまとめて圧縮した後、このデータをメモリに記憶する。あるいは、後述するように色変換前に圧縮しておき、圧縮した状態で色変換することとしてもよい。画像データの圧縮に際しては、ブロック内にエッジが存在するか否かを検出し、この検出結果に応じて圧縮する。エッジの検出は、エッジ検出モジュールによって行われる。エッジの検出結果に応じた圧縮の詳細については、後述の各実施例において説明する。

ハーフトーンモジュールは、圧縮して記憶されている画像データをメモリから 読み出して、隣接する画素を複数個ずつブロックとしてまとめた後、ブロック内 に含まれる各画素についてドットの形成有無をブロック単位で行う。ここで、ハ ーフトーンモジュールが生成するブロックは、色変換・圧縮モジュールが生成す るブロックと同一である必要はなく、例えば、ハーフトーンモジュールが生成す るブロックと色変換・圧縮モジュールが生成するブロックとで、画素数を異なら せることも可能である。また、ドットの形成有無をブロック単位で行う方法につ いても、後述する方法を初めとして種々の方法を適用することができる。こうし て、色変換によって生成した各色の画像データにハーフトーン処理を加えた後、 得られたデータを印刷データとしてカラープリンタ20に出カする。カラープリ ンタ20への出力に先立って、プリンタがドットを形成する順番を考慮してデータの順番を並べ替えるなど、必要に応じて後処理を施すこととしてもよい。カラープリンタ20は、こうして得られた印刷データに基づいて、印刷媒体上に各色 インクドットを形成することによってカラー画像を印刷する。

以上に説明した画像処理装置は、色変換後の画像データを圧縮してメモリに一旦記憶しておき、画像データを必要に応じてメモリから読み出して解凍してから ハーフトーン処理を行う。ハーフトーン処理は複数画素ずつブロック単位で行っ

ているので、迅速な処理が可能である。また、ハーフトーン処理では、必要に応 じて画像データをメモリから読み出して処理しているので、ブロック単位で処理 を行うにも関わらず、ハーフトーン処理を大幅に簡素化することができる。もち ろん、画像データを圧縮したり解凍する処理や、画像データをメモリに対して読 5 み書きする処理が新たに発生するが、後述するように、ブロック内でのエッジの 有無に応じて圧縮することとすれば、極めて迅速に画像データを圧縮および解凍 することが可能である。また、こうして圧縮された画像データを扱うことにより、 メモリへの読み書きも極めて迅速に行うことができる。このため、本発明の画像 処理によれば、処理内容を簡素化しつつ、画像処理全体としての処理速度を向上 させることが可能となるのである。以下では、こうした画像処理の詳細について、 実施例に基づき説明する。

B. 第1 実施例:

10

B-1. 装置構成:

図2は、本実施例の画像処理装置としてのコンピュータ100の構成を示す説 15 明図である。コンピュータ100は、CPU102を中心に、ROM104や、 上述のメモリとして使用されるRAM106などを、バス116で互いに接続し て構成された周知のコンピュータである。CPU102には、演算器やレジスタ、 キャッシュなどが搭載されている。レジスタやキャッシュは、データを記憶する 点ではRAM106と同じメモリの一種であるが、RAM106に比べてデータ 20 を遙かに高速に読み書きすることができる。

コンピュータ100には、フレキシブルディスク124やコンパクトディスク 126のデータを読み込むためのディスクコントローラDDC109や、周辺機 25 器とデータの授受を行うための周辺機器インターフェース(以下、PIFという)

108、CRT114を駆動するためのビデオインターフェース(以下、VIFという)112等が接続されている。PIF108には、後述するカラープリンタ200や、ハードディスク118等が接続されている。また、デジタルカメラ120やカラースキャナ122等をPIF108に接続すれば、デジタルカメラ120やカラースキャナ122で取り込んだ画像を印刷することも可能である。また、ネットワークインターフェースカードNIC110を装着すれば、コンピュータ100を通信回線300に接続して、通信回線に接続された記憶装置310に記憶されているデータを取得することもできる。

図3は、第1実施例のカラープリンタ200の概略構成を示す説明図である。カラープリンタ200はシアン、マゼンタ、イエロ、ブラックの4色インクのドットを形成可能なインクジェットプリンタである。もちろん、これら4色のインクに加えて、染料濃度がシアンインクに対して約1/4程度と低いシアン(淡シアン)インクと、同様に染料濃度の低いマゼンタ(淡マゼンタ)インクとを含めた合計6色のインクドットを形成可能なインクジェットプリンタを用いることもできる。

カラープリンタ200は、図示するように、キャリッジ240に搭載された印字へッド241を駆動してインクの吐出およびドットの形成を行う機構と、このキャリッジ240をキャリッジモータ230によってプラテン236の軸方向(以下、主走査方向という)に往復動させる機構と、紙送りモータ235によって印刷用紙Pを主走査方向とは直交する方向(以下、副走査方向という)に搬送する機構と、ドットの形成やキャリッジ240の移動および印刷用紙の搬送を制御する制御回路260とから構成されている。

20

キャリッジ240には、ブラックインクを収納するインクカートリッジ242と、シアンインク、マゼンタインク、イエロタインクの各種インクを収納するインクカートリッジ243とが装着されている。キャリッジ240にインクカートリッジ242、243を装着すると、カートリッジ内の各インクは図示しない導
5 入管を通じて、印字ヘッド241の下面に設けられた各色毎のインク吐出用ヘッド244ないし247に供給される。各色毎のインク吐出用ヘッド244ないし247には、48個のノズルNzが副走査方向に一定のノズルピッチkで配列されたノズル列が1組ずつ設けられている。

10 制御回路260は、CPU261と、ROM262、RAM263等から構成されている。制御回路260は、キャリッジモータ230と紙送りモータ235とを適切に駆動する。これにより、キャリッジ240の主走査と副走査とが制御される。また、制御回路260は、コンピュータ100から供給される印刷データに基づいて、各ノズルから適切なタイミングでインク滴を吐出する制御も司っている。こうして、制御回路260の制御の下、印刷媒体上の適切な位置に各色のインクドットを形成することによって、カラープリンタ200はカラー画像を印刷することができる。

尚、各色のインク吐出ヘッドからインク滴を吐出する方法には、種々の方法を 20 適用することができる。すなわち、ピエゾ素子を用いてインクを吐出する方式や、 インク通路に配置したヒータでインク通路内に泡(バブル)を発生させてインク 滴を吐出する方法などを用いることができる。また、インクを吐出する代わりに、 熱転写などの現象を利用して印刷用紙上にインクドットを形成する方式や、静電 気を利用して各色のトナー粉を印刷媒体上に付着させる方式のプリンタを使用す 25 ることも可能である。 更には、吐出するインク滴の大きさを制御したり、あるいは一度に複数のインク滴を吐出して、吐出するインク滴の数を制御することにより、印刷用紙上に形成されるインクドットの大きさを制御可能な、いわゆるバリアブルドットプリン タを使用することもできる。

以上のようなハードウェア構成を有するカラープリンタ200は、キャリッジ モータ230を駆動することによって、各色のインク吐出用ヘッド244ないし 247を印刷用紙Pに対して主走査方向に移動させ、また紙送りモータ235を 駆動することによって、印刷用紙Pを副走査方向に移動させる。制御回路260 は、印刷データに従って、キャリッジ240の主走査および副走査を繰り返しな がら、適切なタイミングでノズルを駆動してインク滴を吐出することによって、 カラープリンタ200は印刷用紙上にカラー画像を印刷している。

15 B-2. 画像処理の概要:

10

20

図4は、本実施例の画像処理装置としてのコンピュータ100が、受け取った画像データに所定の画像処理を加えることによって、画像データを印刷データに変換する処理の流れを示すフローチャートである。かかる画像処理は、コンピュータ100のオペレーティングシステムがプリンタドライバ12を起動することによって開始される。以下、図4に従って、本実施例の画像処理について簡単に説明する。

プリンタドライバ12は、画像処理を開始すると、先ず初めに、変換すべきRGBカラー画像データの読み込みを開始する(ステップS100)。次いで、取25 り込んだ画像データの解像度を、カラープリンタ200が印刷するための解像度

に変換する (ステップS 1 0 2)。カラー画像データの解像度が印刷解像度より も低い場合は、線形補間を行うことで隣接する画像データ間に新たなデータを生 成し、逆に印刷解像度よりも高い場合は一定の割合でデータを間引くことによっ て、画像データの解像度を印刷解像度に変換する。

5

10

15

20

こうして解像度を変換すると、カラー画像データの色変換および圧縮を行って、 圧縮後の画像データをメモリすなわちRAM106に書き込む処理を行う(ステップS104)。色変換においては、R,G,Bの階調値の組み合わせによって 表現されているカラー画像データを、C,M,Y,Kなどのカラープリンタ20 0で使用する各色の階調値の組み合わせによって表現された画像データに変換す る処理を行う。色変換・圧縮処理の詳細については後述する。

プリンタドライバ12は、色変換・圧縮処理に続いてハーフトーン処理を開始する(ステップS106)。ハーフトーン処理とは次のような処理である。RG B画像データは、色変換を施されることによって、C, M, Y, K各色の階調データに変換される。これら各色の階調データは、階調値0から255の256階調を有するデータである。これに対し、本実施例のカラープリンタ200は、「ドットを形成する」、「ドットを形成しない」のいずれかの状態しか採り得ない。そこで、256階調を有する各色の階調データを、カラープリンタ200が表現可能な2階調で表現された画像データに変換する必要がある。このような階調数の変換を行う処理がハーフトーン処理である。後述するように、本実施例のプリンタドライバ12は、圧縮された色変換済みの画像データをメモリすなわちRA M106から読み出して、隣接する画素を所定の複数個ずつブロックにまとめた後、ブロック単位でハーフトーン処理を行う。こうしてブロック単位で処理することで、ハーフトーン処理を迅速に行うことが可能である。プロック単位で行う

20

ハーフトーン処理の詳細については後述する。

こうしてハーフトーン処理を終了したら、プリンタドライバはインターレース 処理を開始する (ステップS108)。インターレース処理とは、ドットの形成 有無を表す形式に変換された画像データを、ドットの形成順序を考慮しながらカラープリンタ200に転送すべき順序に並べ替える処理である。プリンタドライバ12は、インターレース処理を行って最終的に得られた画像データを、印刷データとしてカラープリンタ200に出力する (ステップS110)。カラープリンタ200は、印刷データに従って、各色のインクドットを印刷媒体上に形成する。その結果、画像データに対応したカラー画像が印刷媒体上に印刷される。

以上に説明した画像処理では、色変換済みの画像データをメモリに一旦記憶しておき、ハーフトーン処理に際しては、必要な画像データをメモリから読み出して処理している。このため、迅速化のためにブロック単位で処理を行っているにもかかわらず、ハーフトーン処理が複雑化することがない。画像データは圧縮された状態でメモリに読み書きされるので、色変換済みの画像データを書き込む動作も、ハーフトーン処理のためにメモリから読み出す動作も、迅速に実行することができる。もっとも、こうして画像データを圧縮した状態で読み書きする場合、データの圧縮および解凍する処理が必要となるが、以下に説明するように、隣接する画素を所定の複数個ずつブロックにまとめて、ブロック内でのエッジの有無に応じて画像データを圧縮しているので、画像データの圧縮も解凍も極めて迅速に行うことが可能である。このため、本実施例の画像処理では、処理内容を複雑化させることなく、迅速な処理が可能となっている。

25 B-3. 第1実施例の色変換・圧縮処理:

図5は、第1実施例の色変換・圧縮処理の流れを示すフローチャートである。 かかる処理は、コンピュータ100が内蔵したCPU102の機能を用いて実行 する処理である。以下、フローチャートに従って説明する。

5 第1実施例の色変換・圧縮処理を開始すると、先ず初めに、隣接する画素を所定の複数個ずつまとめて、第1のブロックを生成する(ステップ S 2 0 0)。図 6 A および図 6 B は、複数の画素をまとめて第1のブロックを形成している様子を概念的に例示した説明図である。図 6 A は、縦横 2 列ずつの 4 つの画素 P a 、 P b 、 P c 、 P d をまとめることにより、第1のブロックを生成している様子を示している。また図 6 B は、横に並んだ 2 つの画素 P a および画素 P b を、第1のブロックとしてまとめている様子を示している。もちろん、第1のブロックを生成する方法は、こうした例示に限られるものではなく、互いに所定の位置関係にある複数の画素をまとめて第1のブロックとすることができる。尚、説明の便宜から、以下では、第1のブロックは、図 6 A に示すように 4 つの画素で構成されている場合について説明する。

第1のプロックを生成したら、該ブロック内の各画素について、画像データを色変換する処理を行う(ステップS202)。今、第1のプロックは図6Aに示すように4つの画素で構成されているから、これら4つの画素のRGB画像データのそれぞれを、C, M, Y, K各色の階調データに変換するのである。こうした変換は、色変換テーブル(Look-Up-Table、以下、LUTという)と呼ばれる3次元の数表を参照することによって迅速に行うことができる。

図7は、LUTを概念的に示した説明図である。画像データが1バイトデータ であるとすると、RGB各色の階調値は0から255の値を取りうるので、RG

20

25

B画像データは、図7に示すように、直交3軸をそれぞれR軸、G軸、B軸とする一辺の長さ255の立方体の内部の座標として表すことができる。このような立方体を色立体と呼ぶ。LUTは色立体を格子状に細分し、各格子点にCMYKの各色の階調値を記憶した数表である。図5のステップS202においては、このようなLUTを参照することにより、第1のブロックを構成する各画素のRGB画像データを、迅速にCMYKのデータに色変換する。

次いで、色変換することによって発生したC, M, Y, K各色の中から、圧縮しようとする色を1つ選択する(ステップS204)。ついで、選択した色の階調値について、第1のブロック内の所定画素間での階調差を算出する処理を行う(ステップS206)。こうして階調差を求めておけば、ブロック内でのエッジの有無を容易に判断することができる。これについて、図8Aおよび図8Bを参照しながら説明する。

図8Aは、プロック内の所定画素間の階調差を算出する様子を概念的に示した説明図である。例えば、図5のステップS204において、圧縮しようとする色としてC色を選択したものとすると、図8Aに示すように、ブロック内の左上の画素Paと右上の画素Pbとの間で、C色についての階調差を算出する。同様に、左上の画素Paと左下の画素Pcとの間の階調差、および画素Paと右下の画素Pdとの間でのC色についての階調差を、それぞれ算出する。画素Paと画素Pbとの階調差は主走査方向(図8A上では左右方向)への階調値の変化量を示している。同様に、画素Paと画素Pcとの間の階調差は副走査方向(図8A上では上下方向)への階調値の変化量を示し、画素Paと画素Pdとの間の階調差は斜め方向への変化量を示している。エッジの部分では階調差が大きくなっていると考えることができるから、こうして求めた階調差が、縦横斜め

のいずれの方向についても所定の閾値以下であれば、C色についてはブロック内にエッジが存在しないと判断することができる。これに対して、いずれか一つの方向でも、階調差が所定の閾値より大きい場合は、C色についてはブロック内にエッジが存在していると判断することができる。

5

20

25

エッジを検出する様子を、図8Bに示した具体例を用いて説明する。図8B中で、2行4列に並んで示された8つの小さな矩形ppは、それぞれが画素を示しており、矩形ppの中に表示された数値は、圧縮しようとして選択した色(ここではC色)についての各画素の階調値を示している。先ず、図8BのブロックAに着目すると、主走査方向および副走査方向の階調差はいずれも階調値「1」であり、斜め方向への階調差は「0」である。いずれの方向についても階調差は小さく、従ってこの様な場合は、ブロックAにはエッジが含まれていないと判断することができる。次にブロックBに着目すると、主走査方向の階調差は階調値「2」であるが、副走査方向の階調差は階調値「1 8」、斜め方向の階調差は階調値「2 0」と比較的大きな値となる。従って、閾値の値を例えば階調値「1 5」程度に設定しておけば、プロックB内のエッジを検出することができる。このように、ブロック内の所定画素間の階調差を検出することで、エッジの有無を容易に検出することができる。そこで、図5のステップS204においては、図8Aに示すように、ブロック内の縦横斜め方向へのそれぞれの階調差を算出するのである。

こうして算出した階調差に基づいて、ブロック内でのエッジの有無を判断する (ステップS208)。すなわち、算出しておいた階調差と所定の閾値とを比較 して、一つでも閾値より大きな階調差があれば該ブロック内にエッジが存在する と判断する (ステップS208:yes)。逆に、いずれの階調差も閾値より小

さい場合は、そのブロック内にはエッジは存在しないと判断する(ステップS208:no)。

次いで、エッジの有無に応じてブロック内の画像データを圧縮し(ステップS 2 1 0)、得られた画像データをメモリに書き込む処理を行う(ステップS 2 1 2)。図9は、この様子を概念的に示す説明図である。図9 A はブロック内のエッジが存在していない場合の処理を示し、図9 B はブロック内にエッジが存在している場合の処理を示している。図中で、縦横2列に並んだ4つの小さな矩形のそれぞれは、ブロックに含まれている画素を示している。また、各矩形の中に表示された D ata_a、D ata_b、D ata_c、D ata_d は、圧縮しようとする色(ここではC色)についての各画素の階調値を表している。

ブロック内にエッジが存在しない場合は、各画素間の階調差が小さく、従って C色については、いずれの画素の階調値もほぼ同じような値となっている。そこで、このような場合は、ブロック内での階調値の平均値 D ata_cm を算出して、 4つの画素の階調値 D ata_a、D ata_b、D ata_c、D ata_d を、階調値 D ata_cm に圧縮する。そして、メモリには、階調値 Data_cm と、階調値 Data_cm が 4 画素分の階調値を圧縮したことを表す値「1」とを書き込んでやる。このように、メモリに記憶された階調値が、何画素分の階調値に相当するかを表している値を、 本明細書では圧縮情報と呼ぶ。図 9 A は、ブロック内に含まれる 4 つの階調値を、1 つの階調値 Data_cm に圧縮して、圧縮情報「1」とともにメモリに書き込んでいる様子を概念的に表している。

これに対して、ブロック内にエッジが存在する場合は、各画素の階調値 D 25 ata_a 、D ata b 、D ata_c 、D ata d を圧縮することなく、圧縮情報「0」とと

20

もにそのまま順番にメモリに書き込んでやる。圧縮情報「0」は、ブロック内の 階調値が圧縮されておらず、従って、4つの階調値 Data_a、Data_b、Data_c、 Data_dが、ブロック内の4つの画素 Pa、Pb、Pc、Pdの階調値に対応す ることを示している。図9 Bは、ブロック内に含まれる4つの階調値を、圧縮情 を記ともにそのままメモリに書き込んでいる様子を概念的に表している。

図5に示したステップS212では、ブロック内に含まれる各画素の階調値を、エッジの有無に応じて圧縮した後、圧縮情報とともにメモリに書き込む処理を行う。こうすれば、エッジを含むブロックについては圧縮情報を付加する分だけデータ量が増加してしまうが、エッジを含まないブロックについては、4画素分の階調値を1つの階調値で表現することができるので、全体として画像データを圧縮することができる。また、圧縮情報を記憶するために要する記憶容量は、各画素の階調値に比べれば僅かなものである。例えば、図9A,図9Bに示した例では、圧縮情報は「0」または「1」のいずれかの値しか採らず、従って1ブロックあたり1bitの記憶容量で足りる。このように圧縮情報を付加することによるデータ量の増加はわずかなものに過ぎず、全体としては画像データを大きく圧縮することが可能である。

- 尚、圧縮情報と階調値とをメモリに書き込むにあたっては、本実施例では、メ
 20 モリ上に圧縮情報を記憶するための領域と階調値を記憶するための領域とを確保
 しておき、それぞれの領域に圧縮情報および階調値を書き込んでいる。もちろん、
 このような方式に限られるものではなく、例えば、圧縮情報の後に続けて階調値
 を書き込むなどして、メモリ上の同じ領域に書き込むこととしても良い。
- 25 以上のようにして、圧縮しようと選択した色(ここではC色)についての各画

素の階調値と階調値とをメモリに書き込んだら、未選択の色が残っているか否かを判断する(ステップS214)。ここでは、まだC色についてしか選択していないので、ステップS214でyesと判断する。そして、ステップS204に戻って新たな色を選択し、上述した一連の処理を行う。以上のような処理を繰り返し、すべての色を選択し終わったら(ステップS214:no)、1つのプロックについて色変換・圧縮処理を行ったことになる。

こうして1つのブロックについての処理が終わったら、未処理の画素が残っているか否かを判断する(ステップS216)。そして、未処理の画素が残っていれば(ステップS216:no)、ステップS200に戻って新たなブロックを生成し、このブロック内の各画素について、続く一連の処理を行う。こうしてすべての画素についての処理を終了したら(ステップS216:yes)、図5に示す色変換。圧縮処理を終了して、図4の画像処理に復帰する。画像処理では、色変換・圧縮処理(図4のステップS104)に続いて、ハーフトーン処理(図4のステップS106)を行う。本実施例のハーフトーン処理では、圧縮された画像データをメモリから読み出した後、ブロック単位でハーフトーン処理を行うことで、迅速な処理が可能となっている。以下、本実施例のハーフトーン処理について説明する。

20 B-4. ハーフトーン処理の概要:

15

図10は、本実施例の画像処理において、ブロック単位で行うハーフトーン処理の流れを示すフローチャートである。かかる処理も、コンピュータ100に内蔵されたCPU102の機能を用いて実行される。尚、ハーフトーン処理は、色変換によって得られたC, M, Y, Kの各色ごとに行われるが、説明が煩雑となることを避けるために、以下では、色を特定せずに説明することで、各色につい

て同様の処理を行っていることを表すものとする。

処理を開始すると、まず初めに、ハーフトーン処理を行うブロックを設定する(ステップS300)。このブロックは、所定の位置関係で互いに隣接した複数の画素から構成されている。尚、図5を用いて前述したように、本実施例の画像処理では、色変換・圧縮処理においてもブロック単位で処理を行っている。この色変換・圧縮処理で処理するブロックと、以下に説明するハーフトーン処理で処理するブロックとは、必ずしも一致している必要はない。そこで、本明細書では、色変換・圧縮処理において設定するブロックを第1のブロックと呼び、ハーフトーン処理において設定するブロックを第2のブロックと呼んで区別することにすることがあるものとする。

ハーフトーン処理においても、第2のブロックは種々の形態を取ることができる。図11Aないし図11Eは、第2のブロックが取り得る種々の形態を例示した説明図である。図中に示した小さな矩形pbは、それぞれが画素を表しており、斜線が付された複数の画素が、第2のブロックbbとしてまとめられた画素である。図中では、第2のブロックを破線で囲って表している。説明の便宜から、以下では、図11Aに示すように、縦横2列ずつの4つの画素を第2のブロックとして設定するものとして説明する。

20

25

15

こうして、ハーフトーン処理しようとする第2のブロックを設定したら、前述した色変換・圧縮処理において記憶しておいた圧縮情報と画像データとをメモリから読み出して、第2のブロックとして解凍する処理を行う(ステップS302)。例えば、圧縮情報の値が「1」である場合は、色変換後の画像データが圧縮されてメモリに記憶されていることを示している(図9Aを参照のこと)。そこで、

図11Aに示した第2のブロック内の4つの画素 Pa、画素 Pb、画素 Pc、画素 Pdに、メモリから読み出した階調値 Data_cmを設定してやる。こうすれば、圧縮して記憶された画像データから、第2のブロックの画像データを速やかに解凍することができる。圧縮されて記憶されているブロックは、もともと画素間の階調差が小さいブロックであるから、こうしてすべての画素に同一の階調値 Data cmを設定しても、画質が大きく悪化することはない。

逆に、メモリから読み出した圧縮情報の値が「0」である場合は、画像データは圧縮されることなく、そのままメモリに記憶されていることを示している(図9 Bを参照のこと)。そこで、メモリから4画素分の画像データを読み出して、これら画像データを、第2のブロック内の4つの画素Pa、画素Pb、画素Pc、画素Pdの階調値として、それぞれ設定してやる。

以上に説明したように、ステップS302では、圧縮情報を用いることにより きわめて簡単な方法で画像データを解凍することができる。このため、メモリか ら圧縮された画像データを読み出して、第2のブロックの画像データを迅速に解 凍することが可能である。

尚、ここでは、第1のプロックと第2のプロックとが一致しているものとして いるが、前述したように、これらプロックは一致している必要はない。一致して いない場合は、第2のプロックに含まれるすべての画素について画像データを設 定し終わるまで、メモリに記憶された圧縮情報と画像データとを読み出してやれ ばよい。従って、第2のプロック中の一部の画素は圧縮された状態でメモリに記憶されており、他の画素は圧縮されずに記憶されているといった場合も起こり得 る。

ついで、こうして解凍した第2のブロック内の各画素について、ブロック単位でドット形成の有無を判断する処理を行う(ステップS304)。この処理の詳細については、別図を用いて後述する。

5

20

第2のブロック内の各画素について、ドット形成の有無を判断したら、該判断 によってブロック内で生じた階調表現の誤差を、周辺の画素に拡散する処理を行 う (ステップS306)。ブロック内で生じた階調表現の誤差を求める方法につ いては後述する。図12は、プロック内で生じた誤差を周辺の画素に拡散してい る様子を概念的に示す説明図である。図中に示した小さな矩形は画素を表してお り、破線で示した大きな矩形は第2のブロックを表している。斜線が付されたブ ロックが、ドット形成の有無が判断されたブロックである。図10のステップS 308では、このブロック全体で発生した階調表現の誤差を、周辺の画素に向か って所定の比率で分配する処理を行う。一例として、ブロック内で生じた誤差を 周辺の各画素に分配する比率を、図13に例示した。図13Aは、判断を行った ブロックに隣接している6つの画素に分配する場合を示し、図13Bは、判断を 行ったブロックに隣接するブロック内の各画素に分配する場合を示している。図 12に示した黒い矢印は、図13Aに例示された比率に従って、ブロックで生じ た誤差を周辺の画素に拡散している様子を概念的に表している。こうして拡散さ れた誤差は各画素毎に蓄積され、各画素に対応付けられた状態でコンピュータ1 00のRAM106に記憶される。

以上のようにして、ブロック内で生じた誤差を拡散したら、全画素についての 処理を終了したか否かを判断する(ステップS308)。そして、未処理の画素 25 が残っていれば(ステップS308:no)、ステップS300に戻ってブロッ クの位置を移動させ、設定した第2のプロックについて、上述した一連の処理を 行う。こうして全ての画素についての処理を終了したら(ステップS308:y es)、図10に示したハーフトーン処理を終了して図4の画像処理に復帰する。

5 以下では、プロック単位で各画素についてのドット形成の有無を判断する処理 (プロック単位2値化処理)について説明する。図14は、本実施例のハーフト ーン処理中で、プロック単位でドット形成の有無を判断する処理の流れを示した フローチャートである。

図14に示すブロック単位2値化処理を開始すると、先ず初めに、処理しようとするブロックの中から、ドット形成の有無を判断する画素(着目画素)を1つ設定する(ステップS400)。つまり、前述したように、複数の画素をまとめて第2のブロックとしているから、これらの画素を所定の順序で1画素ずつドット形成の有無を判断することとして、着目画素を1つ選択するのである。図11Aに示したように、第2のブロックbpは隣接する4つの画素から構成されているとしている。ここでは、これら4つの画素を、ブロック内の左上にある画素から右下の画素に向かって画素Pa、画素Pb、画素Pc、画素Pdの順番にドット形成有無を判断することとする。そこで、先ず初めに、ステップS400では、左上隅にある画素Paを着目画素として設定する。

20

15

10

次いで、設定した着目画素(ここでは、画素 P a)についての補正データ C x を算出する(ステップ S 3 0 2)。補正データ C x は、着目画素の画像データと着目画素に拡散されて記憶されている誤差(拡散誤差)とを加算することによって求めることができる。処理している第 2 のブロックの各画素についての画像データは、図 1 0 に示したハーフトーン処理中のステップ S 3 0 2 において、圧縮

15

20

されてメモリに記憶されているデータを読み出して既に解凍され、CPU102 に内蔵されたレジスタあるいはキャッシュに記憶されている。また、着目画素に ついての拡散誤差は、図10のステップS306中で、画素毎に蓄積されて記憶 されている。図14に示したステップS402においては、着目画素についての 5 画像データと拡散誤差とを加算することによって、補正データCx を算出する 処理を行う。

着目画素 Pa の補正データ Cx を算出したら、得られた補正データ Cx と所定の閾値 t h との大小関係を判断する(ステップ S 4 0 4)。そして、補正データ Cx の方が大きければ着目画素(ここでは画素 Pa)にドットを形成すると判断し(ステップ S 4 0 6)、そうでなければ、着目画素にはドットを形成しないと判断する(ステップ S 4 0 8)。判断の結果は、各画素についての判断結果を示す変数として R A M 1 0 6 に蓄えられる。

こうして着目画素についてのドット形成有無を判断したら、判断に伴って着目画素に生じた階調誤差を算出する(ステップS410)。階調誤差は、ドットを形成したこと、あるいはドットを形成しなかったことによって着目画素に表現される階調値(以下では、この階調値を結果値と呼ぶ)を、着目画素の補正データ C x から減算することによって算出することができる。インクの濃さが一種類であれば、ドットを形成した場合は通常はマイナスの誤差が、ドットを形成しなかった場合は通常はプラスの階調誤差が、算出される。

着目画素で生じた階調誤差を算出したら、処理中のブロック内の全画素の処理 を終了したか否かを判断する(ステップS412)。そして、未処理の画素が残 25 っている場合は(ステップS412:no)、これら未処理の画素中で着目画素 周辺にある画素に誤差を拡散させる処理を行う(ステップS414)。この処理 について、図15を参照しながら説明する。

図15Aない図15Dは、処理中の第2のブロック内の画素から着目画素を10ずつ選択してドット形成の有無を判断することにより、ドット形成の有無をブロック単位で判断している様子を模式的に示した説明図である。図中の4つの正方形は、処理中の第2のブロックを構成する画素 Pa、画素 Pb、画素 Pc、画素 Pdをそれぞれ示している。また、画素 Paを示す正方形の中に示した DTaは、メモリから読み出されて解凍された画像データを示しており、また、10 画素 Pa中に示した EDaは、画素 Paに拡散された蓄積されている拡散誤差を示している。同様に、画素 Pb中に示した DTbおよび EDbはそれぞれ画素 Pbの画像データおよび拡散誤差を示し、画素 Pc中の DTcおよび EDcはそれぞれ画素 Pcの画像データおよび拡散誤差 EDcを、画素 Pd中の DTdおよび EDdは画素 Pdの画像データおよび拡散誤差を示している。前述したように、これら各画素の画像データは、RAM106から読み出されて解凍された後、CPU102に内蔵されたレジスタあるいはキャッシュに記憶されている。また、そのブロックについての処理を開始した直後では、各画素の拡散誤差は、RAM106に記憶されている。

20 前述したように、ブロック単位2値化処理を開始すると、先ず初めにブロック内で左上の画素 Pa が着目画素として設定される(図14のステップS400参照)。そして、画素 Paについての補正データ Cx を算出し、閾値thと比較することによってドット形成の有無を判断する(図14のステップS402, S404参照)。画素 Pa についてドット形成の有無を判断した時点では、図15 Aに示すように、同じブロック内には画素 Pb と画素 Pc と画素 Pd の3つの

画素が未判断画素として残っている。そこで、画素 P a で生じた階調誤差を、 これら3つの画素に1/3ずつ均等に分配して、これら誤差を、各画素毎に記憶 されている拡散誤差に加算する処理を行う。例えば図15Aに示すように、画素 Pb に既に記憶されている拡散誤差をEDb とすると、画素 Pa で生じた階調 5 誤差は、その1/3の階調値が画素Pb に分配されて、拡散誤差EDb に加算 される。その結果、画素 P b に記憶されていた拡散誤差 E D b は、画素 P a か らの誤差が加算された新たな拡散誤差ED b に更新される。更新された拡散誤 差は、CPU102のレジスタあるいはキャッシュに記憶される。

他の画素 P c および画素 P d についても同様な処理を行う。簡単に説明する と、画素 P a からの誤差が画素 P c に拡散されると、画素 P c に記憶されてい た拡散誤差EDc と画素Pa からの誤差とが加算され、新たな拡散誤差EDc として画素Pc に記憶される。また、画素Pd についても同様に、画素Pd に 記憶されていた拡散誤差EDd と画素Pa からの誤差とが加算され、新たな拡 15 散誤差EDdとして画素Pdに記憶される。図15A中で画素Paから他の3 つ画素に向かって表示されている白抜きの矢印は、画素 P a で生じた誤差がこ れら3つの画素に拡散されることを模式的に示したものである。こうして画素 P a で生じた階調誤差が拡散されて更新された各画素の拡散誤差は、CPU102 のレジスタあるいはキャッシュに記憶される。尚、階調誤差は、必ずしも周辺の 20 未判断画素に均等に分配する必要はなく、各画素に所定の割合で分配することも 可能である。

以上のようにして画素 P a で生じた階調誤差をブロック内の周辺画素に拡散 したら、図14のステップS414の処理を終了してステップS400に戻り、 新たな着目画素を設定する処理を行う。画素 P a については既にドット形成の 有無を判断したから、ステップS400では、今度は画素 Paの右隣の画素 Pb を着目画素として設定する。こうして設定した新たな着目画素について、上述し た処理とほぼ同様の処理を行う。以下、画素 P a における処理との相違点を中 心に簡単に説明する。

5

10

20

画素 P b についての処理を行う場合にも画素 P a における場合と同様に、先 ず初めに、補正データCx を算出する (ステップS402)。ここで、画素Pb に記憶されている拡散誤差EDb には、先に画素Pa で生じた階調誤差が拡散 されて、新たな拡散誤差EDb として更新されている。そこで、画素Pb につ いての画像データDTb と、画素Pa からの階調誤差が拡散された新たな拡散 誤差EDb とを加算することにより、画素Pb についての補正データCx を算 出する。ここで、画像データDTb および拡散誤差EDb は、いずれもCPU 102内のレジスタあるいはキャッシュに記憶されているので、極めて高速に読 み出して補正データ Cx を算出することができる。こうして算出した補正デー 15 夕 C x と所定の閾値 t h との大小関係を判断し(ステップ S 4 0 4)、補正デー 夕Cx の方が大きければ画素Pb にはドットを形成すると判断し(ステップS 406)、そうでなければ画素 Pb にはドットを形成しないと判断する (ステッ プS408)。次いで、画素Pb について発生した階調誤差を算出する(ステッ プS410)。階調誤差は、画素Paの場合と同様に、画素Pbの補正データCx から結果値を減算することによって算出することができる。

着目画素 P b で生じた階調誤差を算出したら、処理中の第2のブロック内の すべての画素について処理を終了したか否かを判断し(ステップS412)、未 処理の画素が残っていれば、算出しておいた階調誤差を、これら未処理の画素に 拡散させる処理を行う(ステップS414)。前述したように、ブロック内の画 素 P a については既に判断を終了しているから、未判断画素として残っているのは画素 P c および画素 P d の 2 つの画素である。そこで、画素 P b で生じた階調誤差はこれら 2 つの画素に拡散させることになる。図 1 5 B を参照しながら、画素 P b からの誤差を拡散させる処理について説明する。

5

図15Bは、画素 P b で生じた階調誤差を拡散している様子を概念的に示した説明図である。図中で、画素 P a に斜線が施されているのは、画素 P a については既にドット形成の有無を判断済みであることを模式的に示したものである。画素 P b についてドット形成の有無を判断した時点では、処理ブロック内には未判断画素として画素 P c 、画素 P d の 2 つの画素が残っている。そこで、画素 P b で生じた階調誤差は、図15Bに示したように、これらの画素 P c および画素 P d にそれぞれ、1/2ずつ拡散させる。図中で、画素 P b から画素 P c および画素 P d に向かって伸びる白抜きの矢印は、画素 P b で生じた階調誤差がこれら画素に拡散されていることを模式的に示している。こうして誤差が拡散される結果、各画素の拡散誤差は、拡散されてきた誤差が加算された新たな拡散誤差に更新されて、C P U 102のレジスタあるいはキャッシュに記憶される。尚、ここでも、階調誤差は処理ブロック内の未判断画素に均等に拡散されるものとしているが、もちろん、均等に拡散させるのではなく、所定の割合で誤差を拡散させることとしても構わない。

20

 10

15

20

を算出する。ここで、画素 P c についてのドット形成有無を開始した時点では、 画素Pcの拡散誤差EDcは、元々記憶されていた拡散誤差に加えて、画素Pa からの誤差と画素 Pb からの誤差とが加算され、新たな拡散誤差 EDc として 更新されてCPU102のレジスタあるいはキャッシュに記憶されている。この 5 ことから、画素 P c の補正データ C x の算出に際しては、画素 P c の画像デー タDT c に、新たな拡散誤差 ED c が算出されることになる。こうして得られ た補正データCx と、所定の閾値thとを比較することによって、画素Pc に ついてのドット形成有無を判断する。こうして画素 P c についてのドット形成 有無を判断した時点では、処理中のブロック内に残る未判断画素は、図15Cに 示すように画素 P d のみである。そこで、画素 P c で生じた階調誤差は全て画 素Pd に拡散され、画素Pd に元々記憶されていた拡散誤差に加算されて、新 たな拡散誤差EDdとして更新される。

着目画素 P c で生じた階調誤差を拡散したら、図14のステップS400に 戻って着目画素を画素Pd に移動した後、画素Pd についてのドット形成有無 の判断を開始する。すなわち、画素Pd に記憶されている拡散誤差EDd と画 素 P d の画像データ D T d とを加算して補正データ C x を算出する(ステップ S402)。次いで、補正データCxと閾値thとを比較し(ステップS404)、 補正データCx の方が大きい場合は画素Pd にはドットを形成する(ステップ S406)と判断し、そうでない場合は画素Pd にはドットを形成しないと判 断する (ステップS408)。

こうして画素Pd についてのドット形成の有無を判断したら、画素Pd で生 じた階調誤差を算出した後(ステップS410)、処理中のブロック内の全画素 の処理を終了したか否かを判断する(ステップS412)。図15Dに示したよ

20

25

うに、画素 P d について処理を開始した時点で、もはや処理中のブロック内には未判断の画素は残っておらず、画素 P d についての判断が終了した後のステップ S 4 1 2 においては、ブロック内の全画素についての処理が終了したと判断される。そこで、図 1 4 に示したブロック単位 2 値化処理を終了して、図 1 0 を用いて前述したブロック単位で行うハーフトーン処理に復帰する。前述したように、図 1 0 に示したハーフトーン処理では、ブロック単位 2 値化処理から復帰すると、処理した第 2 のブロックで生じた階調誤差を周辺のブロックに拡散する処理を行う(図 1 0 のステップ S 3 0 6)。

10 ここで、処理した第2のブロックで生じた階調表現の誤差としては、ブロック単位2値化処理のステップS410において画素Pdについて求めた階調誤差の値を用いることができる。これは、着目画素で生じた階調誤差をブロック内の未判断画素に拡散しながらドット形成有無の判断を行っているために、ブロック内で生じた階調誤差が、最後に判断する画素Pdに拡散誤差EDdとして蓄積されることによる。以下、図15Aないし図15Dを参照して詳しく説明する。

画素 Pa で生じた階調誤差は、処理中のブロック内の画素 Pb 、画素 Pc 、画素 Pd の3つの画素に拡散される。画素 Pb のドット形成有無の判断に際しては、画素 Pa からの誤差を考慮して、画素 Pb に拡散されている誤差ができるだけ解消されるようにドット形成の有無が判断される。仮に、画素 Pb についてドット形成有無を判断することにより、画素 Pb に拡散されている誤差を解消することができたものとする。この場合は、画素 Pb では新たな階調誤差は発生せず、また、画素 Pb から画素 Pc 、画素 Pd に拡散される誤差も生じない。他の 2つの画素 Pc 、画素 Pd についても同様に、ドット形成の有無を判断したことで、それぞれの画素に拡散されている誤差を解消することができた

ものとすると、これらの画素では階調誤差は生じない。結局、この場合は、画素 P a で生じた階調誤差を、周辺の未判断画素 P b 、画素 P c 、画素 P d で解消したこととなって、処理ブロック全体としては階調誤差の発生を避けることができる。

5

10

15

ここでは、画素 P b のドット形成有無の判断によって、画素 P b での誤差を解消するものとしたが、画素 P b で新たな階調誤差が発生した場合には、この誤差は周辺の未判断画素 P c および画素 P d に拡散されて、その結果、これらの画素には、画素 P a で生じた階調誤差と画素 P b で生じた階調誤差とが拡散されることになる。しかし、これら画素 P c 、画素 P d についてドット形成の有無を判断することで、それぞれの画素に拡散された誤差を解消することができれば、依然としてブロック全体としてみれば階調誤差は生じない。

画素 P c についてドット形成有無を判断することで、画素 P c に拡散されている拡散誤差を解消することができない場合も、全く同様にして、画素 P d で誤差を解消することができれば、ブロック全体としては階調誤差が生じることはない。換言すれば、画素 P d で解消しきれずに残った誤差が、ブロック全体で生じた階調誤差となる。このように、着目画素で生じた階調誤差をブロック内の未判断画素に拡散しながらドット形成有無を判断していくと、各画素で解消しきれずに残った階調誤差が後続する画素に集約されていくので、ブロック内で最後に判断する画素 P d で生じた階調誤差を、処理中のブロック全体で生じた階調誤差として用いることができるのである。

尚、以上の説明では、処理中のブロック内で最後にドット形成有無を判断する 25 画素 P d で生じた階調誤差の値を、ブロック全体で生じた階調誤差として用い るものとしたが、もちろん、ブロックを構成する各画素毎に階調誤差を算出し、 これら階調誤差の総和をブロック全体としての階調誤差としても構わない。

また、図15Aないし図15Dに示した例では、第2のブロックを構成する各画素のドット形成有無を判断するに際しては、画素 Pa、画素 Pb、画素 Pc、画素 Pd の順番で判断を行ったが、必ずしもこの順番で判断する必要はなく、例えば、画素 Pa、画素 Pc、画素 Pb、画素 Pdの順番でドット形成有無を判断しても構わない。第2のブロック内で着目画素を設定する順番は、良好な画質が得られる順番を選択しておくことができる。

10

15

以上に説明したように本実施例の画像処理では、色変換後の画像データに基づいて、第2のブロック内にエッジが存在するか否かを検出する。そして、エッジの有無によって画像データを圧縮し、圧縮後の画像データを一旦メモリに記憶する。続くハーフトーン処理では、メモリから必要な画像データを読み出して、ブロック単位でハーフトーン処理を行う。ハーフトーン処理をブロック単位で行えば、ブロック内の各画素については、誤差を拡散する処理あるいは補正データCxを算出してドット形成の有無を判断する処理を迅速に行うことができるので、ハーフトーン処理を高速化することができる。

20 また、ハーフトーン処理をブロック単位で行った場合、処理が複雑化し易いが、本実施例では、メモリに画像データを圧縮して記憶しておき、必要に応じて読み出してハーフトーン処理を行っている。このように必要なデータを読み出しながらハーフトーン処理を行えば、処理が複雑化することを効果的に回避することができる。

加えて、ハーフトーン処理を行う画像データ(色変換後の画像データ)は圧縮されているので、メモリに書き込む動作もメモリから読み出す動作も極めて迅速に行うことができる。更に本実施例の画像処理では、ブロック内でのエッジの有無に応じて画像データを圧縮しているので、画像データの圧縮および解凍も極めて迅速に且つ効率良く行うことができる。すなわち、ブロック内でエッジが検出されなかった場合は、ブロック内の各画素の階調値を平均階調値によって代表させることによって画像データを圧縮し、解凍に際しては各画素に平均階調値を設定する。また、ブロック内にエッジが検出された場合は画像データの圧縮は行わない。このようにエッジが検出された場合は圧縮を行わないとしても、画像データ全体としては、実用上十分な圧縮率を確保することができる。これは、ブロックを極端に大きなものに設定しない限り、エッジが検出されるブロックはさほど多くはないことと、エッジが検出されなかったブロックについての圧縮率が高いことによる。こうしてエッジに有無に応じて圧縮および解凍しているために、圧縮も解凍も極めて迅速に行うことができる。

15

10

5

以上に説明したように、本実施例の画像処理によれば、処理を複雑化させることなく、画像処理全体としての処理速度を向上させることが可能となる。

C. 第2実施例:

20 上述した第1実施例では、エッジの検出は色変換後の画像データに基づいて行った。しかし、色変換前の画像データに基づいてエッジを検出することで、エッジを検出する処理をより簡素なものとすることもできる。以下では、こうした第2実施例について説明する。

25 図16は、第2実施例の色変換・圧縮処理の流れを示すフローチャートである。

以下ではフローチャートを参照しながら、第1実施例との相違点を中心に説明する。

第2実施例においても、色変換・圧縮処理を開始すると、先ず初めに、隣接する画素を所定の複数個ずつまとめて、第1のブロックを生成する(ステップS500)。ここでは、前述した第1実施例と同様に、第1のブロックは、図6Aに示すように、縦横2個ずつに並んだ4つの画素で構成されているものとして説明する。

10 第1のブロックを生成したら、該ブロック内の所定画素間で、各画素について RGB画像データの階調差を算出する処理を行う (ステップS502)。すなわ ち図8Aに示したように、画素 Pa と画素 Pb との間、画素 Pa と画素 Pc との間、画素 Pa と画素 Pd との間のそれぞれについて、RGB各色毎に階調差を 算出するのである。前述した第1実施例の色変換・圧縮処理では、このように、 RGB画像データを色変換して得られた C, M, Y, Kの各色についての階調差を 算出したが、第2実施例では、色変換前のRGB各色について階調差を算出する点が大きく異なっている。

こうして算出した階調差に基づいて、ブロック内でのエッジの有無を判断する 20 処理を行う (ステップS504)。ステップS502において所定画素間で算出 したRGB各色の階調差の中で、所定の閾値より大きなものが 1 つでも含まれて いれば、そのブロックにはエッジが含まれていると判断する。逆に、いずれの階 調差も閾値より小さい場合には、そのブロックにはエッジは含まれていないと判 断する。

15

そして、エッジが含まれていない場合は(ステップS504:no)、ブロック内のRGB画像データを圧縮し(ステップS506)、圧縮したRGB画像データをCMYK各色による画像データに色変換する(ステップS508)。RGB画像データの圧縮は、第1のブロックに含まれる各画素についての画像データの平均値を、各色毎に算出することによって行う。例えば、ブロック内の各画素 Pa、Pb、Pc、PdのR画像データの階調値が、それぞれRa、Rb、Rc、Rdとすると、R画像データは、階調値Raveに圧縮される。ここで、

R ave = (R a + R b + R c + R d) / 4

である。G画像データ、B画像データについても同様に、ブロック内の各画素 Pa、
10 Pb、Pc、PdのG画像データの階調値をGa、Gb、Gc、Gdとして、
B画像データの階調値をBa、Bb、Bc、Bdとすると、G画像データは、
階調値 Gave に圧縮され、B画像データは、階調値 Bave に圧縮される。ここで、
Gave および Bave は、それぞれ

G ave = (G a + G b + G c + G d) / 4 B ave = (B a + B b + B c + B d) / 4として求められる。

続くステップS508では、こうして圧縮されたRGB画像データ(R ave , G ave , B ave)について、図7に示したLUTを参照しながら色変換する。第 2 2 実施例では、第1のブロック内にエッジが存在しない場合には、こうしてRGB画像データを圧縮した後に色変換しているので、画素毎に色変換を行う必要が無く、迅速に色変換することができる。また、エッジが存在しないブロックでは、画素間でのRGB画像データがほぼ同じ階調値となっているから、各画素についてのRGB画像データを色変換して得られたCMYK各色の階調値も、ほぼ同じ 階調値になると考えられる。従って、こうしたブロックについては、圧縮したR

GB画像データを色変換することとしても、ほとんど画質が悪化することはない。

一方、ステップS504においてブロック内にエッジが存在すると判断された場合は(ステップS504:yes)、該ブロックに含まれる各画素毎に、RG B画像データをCMYK画像データに色変換する(ステップS510)。

尚、以上の説明では、プロック内の所定画素間での全ての階調差を各色毎に一旦算出し(ステップS502)、その後ステップS504において、算出した階調差と閾値を比較してエッジの有無を検出するものとして説明した。しかし、これは、理解の便宜を考慮して説明の簡素化を図ったためであり、必ずしもブロック内の全ての階調差を算出する必要はない。すなわち、所定の閾値を超える階調差が1つでも見出されたら、他の階調差については算出することなく、そのプロックにはエッジ存在すると判断して、ステップS510の処理を行うこととしても良い。

15

以上のようにして、圧縮したRGB画像データあるいは圧縮していないRGB画像データの色変換を終了したら、得られたCMYK各色の画像データを、圧縮情報とともにメモリすなわちRAM106に記憶する(ステップS512)。圧縮情報は、第1のブロックにエッジが存在していない場合(圧縮したRGB画像プータを色変換した場合)には、画像データが圧縮されていることを表す値「1」を記憶する。逆に、第1のブロックにエッジが存在する場合は、画像データが圧縮されていないことを表す値「0」を、圧縮情報として記憶する。

尚、前述した第 1 実施例では、C, M, Y, K各色毎にエッジの検出および画
25 像データの圧縮を行っているので、同一ブロック内でも、色によって圧縮状態が

異なっている場合が起こり得る。このため圧縮情報は、ブロック毎に、そして各 色毎に設定して記憶されている。これに対して第2実施例では、エッジの検出と 上縮とをブロック単位で行っているので、同一ブロックで有れば、圧縮状態はC MYK各色いずれも同じとなっている。従って、ブロック毎に1つずつ圧縮情報 5 を設定して記憶することも可能である。

こうして1つのブロックについての処理が終わったら、未処理の画素が残って いるか否かを判断する(ステップS514)。そして、未処理の画素が残ってい れば(ステップS514:no)、ステップS500に戻って新たなブロックを - 生成し、このブロック内の各画素について、続く一連の処理を行う。こうしてす べての画素についての処理を終了したら(ステップS514: yes)、図16 に示す第2実施例の色変換・圧縮処理を終了して、図4の画像処理に復帰する。

こうした第2実施例の色変換・圧縮処理においては、エッジの存在しないブロ ックについては、1回だけ色変換すればよい。従って、プロック内の全画素につ いて色変換する第1実施例の色変換。圧縮処理よりも、処理の高速化を図ること ができる。また、エッジの検出に際しても、RGB各色についての階調差を算出 して、閾値より大きな階調差が1つでも見出されたら、残りの階調差は算出する ことなく、次の処理を開始することができる。この点においても、第2実施例の 20 色変換・圧縮処理は、第1実施例の色変換・圧縮処理よりも処理の高速化を図る ことが可能である。

D. 第3実施例:

15

WO 2004/084540

上述した第2実施例の色変換・圧縮処理では、ブロック内の画素間でRGB各 25 色についての階調差がいずれも小さい場合にのみ、画像データを圧縮する。こう

15

することにより、第1実施例に対して画像処理をより迅速化することが可能であるが、その一方で、画像データ全体としてみたときの圧縮率が小さくなる傾向がある。圧縮率があまりに小さくなってしまっては、画像データをメモリすなわちRAM106に対して読み書きするために時間がかかり、却って処理速度が低下するおそれが生じる。こうした可能性を回避するためには、色変換の前後で画像データを圧縮することが効果的である。以下では、こうした第3実施例の色変換・圧縮処理について説明する。

図17は、第3実施例の色変換・圧縮処理の流れを示すフローチャートである。 10 以下ではフローチャートを参照しながら、第1実施例および第2実施例との相違 点を中心に説明する。

第3実施例においても、色変換・圧縮処理を開始すると、先ず初めに、隣接する画素を所定の複数個ずつまとめて、第1のブロックを生成する(ステップS600)。ここでも前述した各種実施例と同様に、第1のブロックは、図6Aに示すように、縦横2個ずつに並んだ4つの画素で構成されているものとして説明する。

第1のブロックを生成したら、該ブロック内の所定画素間で、各画素について のRGB画像データの階調差を算出して (ステップS602)、エッジを検出する処理を行う (ステップS604)。かかる処理は、第2実施例におけるステップS502およびS504と同様である。以下、概要のみ説明すると、先ず、ブロック内の所定画素間について、RGB各色毎に階調差を算出し、所定の閾値と比較する。そして、閾値より大きな階調差が見出されたら、そのブロックについ てはエッジを含んでいると判断する。逆に、全ての階調差が閾値より小さいこと

5

10

15

20

が確認されたブロックについては、エッジを含んでいないと判断する。

プロック内にエッジが存在していないと判断された場合は(ステップS604:no)、前述した第2実施例と同様に、ブロック内のRGB画像データを圧縮し(ステップS606)、圧縮したRGB画像データの色変換を行う(ステップS608)。

一方、ブロック内にエッジが存在していると判断された場合は(ステップS6 04:yes)、各画素のRGB画像データをC, M, Y, K各色の画像データ に色変換する(ステップS610)。次いで、第1実施例の色変換・圧縮処理と 同様に、ブロック内の所定画素間での階調差を各色毎に算出(ステップS612)、 ブロック内でのエッジの有無を各色毎に判断する(ステップS614)。すなわ ち、所定画素間での階調差がいずれも、所定の閾値より小さければ、その色につ いてはブロック内にエッジが存在しないと判断する。逆に、閾値より大きな階調 差が存在する場合には、その色についてはプロック内にエッジが含まれていると 判断する。

こうしてブロックについてのエッジの有無を検出した結果、エッジが含まれていないと判断された色については(ステップS614:no)、ブロック内の画像データを圧縮する処理を行う(ステップS616)。画像データの圧縮は、前述した第1実施例と同様に、圧縮しようとしている色について、ブロック内の各画素の平均階調値を算出し、各画素の階調値を平均階調値で代表させることによって行う。一方、ブロック内にエッジが含まれていると判断された色については、ブロック内の画像データを圧縮する処理はスキップする。

以上のようにして、ブロック内でのエッジの有無を検出し、エッジの有無に応じて画像データを圧縮する処理を行ったら、これら画像データを圧縮情報とともにメモリすなわちRAM106に書き込む処理を行う(ステップS618)。圧縮情報は、画像データを圧縮している色については「1」を、圧縮していない色 については「0」を書き込んでやる。

こうして1つのプロックについての処理が終わったら、未処理の画素が残っているか否かを判断する(ステップS620)。そして、未処理の画素が残っていれば(ステップS620:no)、ステップS600に戻って新たなブロックを生成し、このブロック内の各画素について、続く一連の処理を行う。こうしてすべての画素についての処理を終了したら(ステップS620:yes)、図17に示す第3実施例の色変換・圧縮処理を終了して、図4の画像処理に復帰する。

以上に説明した第3実施例の色変換・圧縮処理においては、色変換前の画像デ - 夕に基づいてエッジの有無を検出し、エッジを含まないブロックについては、 RGB画像データを圧縮した後に色変換する。こうして、圧縮後に色変換すれば、 色変換を1度に行うことができるので、迅速に色変換・圧縮処理を行うことがで きる。

- 20 また、エッジの検出されたブロックについては、各画素毎に色変換した後、各色毎にエッジの有無を検出する。そして、エッジの検出されなかった色については画像データの圧縮を行う。こうすれば、色変換後の画像データについて各色毎にエッジの有無を検出して圧縮しなければならないのは、色変換前にエッジが検出されたブロックだけでよいので、色変換・圧縮処理を迅速に行うことができる。
- 25 加えて、これらブロックについては各色毎にエッジの有無を検出して圧縮してい

WO 2004/084540 PCT/JP2004/003603

49

るので、第1実施例と同様に、十分な圧縮率を確保することが可能となる。

E. 変形例:

以下では、上述した各種実施例の変形例について簡単に説明する。

5

10

(1) 第1の変形例:

上述した各種実施例では、ブロック内でのエッジの有無を検出するために、図8に示した所定画素間での階調差を算出するものとした。もっとも、エッジを検出するために算出する階調差は、図8に示した所定画素間の階調差に限定されるものではない。例えば、図18Aに示すように、画素Paと画素Pdとの階調差および画素Pbと画素Pcとの階調差を算出することとしても良い。こうすれば、例えば図18Bに示すように、幅が1画素の細いエッジがブロック内を斜めに横切っていない限り、2つの階調差を算出するだけでブロック内のエッジを正しく検出することができる。

15

20

(2) 第2の変形例:

上述した各種実施例では、ブロック内の画像データを圧縮する場合、先ず、該ブロック内の各画素の平均階調値を算出して、各画素の階調値を平均階調値に圧縮するものとして説明した。しかし、簡便には、平均階調値の代わりに、ブロック内の1つの画素の階調値に圧縮することとしても良い。再び、図18Aを用いて説明すると、ブロック内でエッジが検出されなかった場合は、図中で斜線を付した画素 Paの階調値で、ブロック内の他の画素の階調値を代表させても良い。エッジの存在しないブロックについては、各画素の階調値はほぼ近い値を取るから、平均階調値を1つの画素の階調値で代用することも可能である。階調値を平均階調値の代わりに用いる画素は、ブロック内の所定位置の画素とすることもで

きるし、任意の画素を選択することとしても良い。

(3) 第3の変形例:

上述した各種実施例においては、ブロック内にエッジが含まれているか否かだけを判断して、エッジが含まれていなければ画像データを圧縮し、エッジが含まれていれば圧縮しないものとして説明した。すなわち、画像データの圧縮状態は、圧縮されているか圧縮されていないかの、いずれかの状態しか取らないものとして説明した。しかし、エッジの有無だけでなく、エッジの方向も判断して、それに応じて圧縮状態を切り換えることとしても良い。

10

15

図19Aないし図19Dは、エッジの方向によって種々の圧縮状態を切り換えている様子を例示した説明図である。図19Aは、ブロック内にエッジが含まれていない場合を示している。この場合は、上述した各種実施例と同様に、各画素の画像データを1つの階調値に圧縮してやる。また、前述した各種実施例では、圧縮状態は2つの状態しか取り得なかったので、圧縮情報は1bitのデータで足りたが、図19Aないし図19Dに例示した場合は4つの圧縮状態を取り得るので、圧縮情報は2bitのデータとなる。そこで、エッジが含まれていないブ

20 また、縦方向に並んだ2つの画素間の階調差、すなわち、画素 P a と画素 P c との間の階調差、および画素 P b と画素 P d との間の階調差はいずれも小さいが、横方向あるいは斜め方向の画素間の階調差は必ずしも小さくない場合は、ブロック内をエッジが縦方向に走っているものと考えられる。そこで、この様な場合は、図19Bに示したように、1つのブロックを2つのサブブロックに分けて 25 考えて、サブブロック毎に画像データを圧縮してやる。また、このときの圧縮情

ロックについては、圧縮情報として値「11」を記憶してやる。

報として「10」を記憶してやる。

更に、横に並んだ2つの画素間での階調差は小さいが、縦方向あるは斜め方向の画素間では必ずしも階調差が小さくはない場合は、エッジがブロック内を横方向に走っていると考えられる。そこで、この様な場合は、1つのブロックを、図19Cに示すような2つのサブブロックに分割して、サブブロックごとに画像データを圧縮してやる。このときは、圧縮情報として「01」を記憶する。

そして、いずれの場合に該当しない場合は、図19Dに示すように、画像デー
10 夕を圧縮することなく、そのままメモリに記憶してやる。また、このときの圧縮
情報は、画像データが圧縮されていないことを示す「00」を記憶する。

この様に、ブロック内でのエッジの有無だけでなく、エッジが走っている方向 も検出し、これに応じて画像データを圧縮してやれば、画像データの圧縮率を更 に向上させることができる。また、このような圧縮を行った場合でも、上述した 各種実施例と同様に、画像データの圧縮および解凍する処理を迅速に行うことが できる。このため、色変換後の画像データをメモリに対して読み書きする動作が 更に高速化され、画像処理全体として、より迅速な処理を行うことが可能となる。

20 (4) 第4の変形例:

15

25

図14および図15を用いて説明したハーフトーン処理では、ブロックを構成する各画素がどのような階調値を取る場合であっても、処理内容は全く同じものとして説明した。しかし、ブロック内でも、エッジを含まないとして圧縮されていた画素間では近似した階調値を取るものと考えられる。特に、図9に示したように、エッジを含まないブロックについては複数の画素の階調値を単一の階調値

に圧縮する場合、解凍された各画素の階調値は同じ値となる。このように、エッジを含まないとして圧縮されていた画素については、近似した(あるいは同一の)階調値を有するものと考えられるので、これを利用して、処理の高速化を図ることも可能である。

5

10

例えば、ディザ法を用いたハーフトーン処理においてディザマトリックスを画像データの階調値に応じて使い分けたり、あるいは誤差拡散法で用いられる閾値を画像データの階調値に応じて変更する場合がある。また、誤差拡散法では、画像データの階調値に応じて誤差拡散マトリックスを切り換える処理を行う場合もある。複数の画素については、階調値が近似あるいは同一であることが分かっていれば、マトリックスや閾値を変更する処理を簡素なものとすることが可能となる。

以上、各種の実施例について説明してきたが、本発明は上記すべての実施例に 限られるものではなく、その要旨を逸脱しない範囲において種々の態様で実施することができる。例えば、上述した機能を実現するソフトウェアプログラム(アプリケーションプログラム)を、通信回線を介してコンピュータシステムのメインメモリまたは外部記憶装置に供給し実行するものであってもよい。もちろん、CD-ROMやフレキシブルディスクに記憶されたソフトウェアプログラムを読 み込んで実行するものであっても構わない。

また、上述した各種実施例では、ハーフトーン処理を含む画像データ変換処理 はコンピュータ内で実行されるものとして説明したが、画像データ変換処理の一 部あるいは全部をプリンタ側、あるいは専用の画像処理装置を用いて実行するも 25 のであっても構わない。

産業上の利用可能性

本発明は、画像表示装置は、印刷媒体上にインクドットを形成して画像を印刷する印刷装置に限定されるものではなく、例えば、液晶表示画面上で輝点を適切な密度で分散させることにより、階調が連続的に変化する画像を表現する液晶表示装置としても利用することができる。また、プリンタそれ自体として利用するばかりでなく、ファクシミリ装置やスキャナプリンタの複合機、コピー機などにおいても利用可能である。

請求の範囲

一つの表色系により表現されたカラー画像データを、他の表色系を構成する各色についてのドットの形成有無によって表現された画像データに変換す
 る画像処理装置であって、

第1の表色系により表現されたカラー画像データを、該第1の表色系とは異なる第2の表色系によるカラー画像データに色変換する色変換手段と、

互いに隣接する画素を所定の複数個ずつ第1種のブロックとしてまとめて、該 第1種のブロック内でのエッジの有無を検出するエッジ検出手段と、

10 前記第1種のブロックに含まれる各画素についての前記色変換後のカラー画像 データを、該ブロック内にエッジが存在しない場合には圧縮した状態でメモリに 記憶する圧縮データ記憶手段と、

前記圧縮された状態で記憶されたカラー画像データを前記メモリから読み出して解凍した後、互いに隣接する画素を所定の複数個ずつ第2種のブロックとして まとめる圧縮データ解凍手段と、

前記第2種のブロックとしてまとめられたカラー画像データに基づいて、該ブロックに含まれる各画素についてのドットの形成有無を、前記第2の表色系の各色毎に該ブロック単位で判断するドット形成有無判断手段と

を備える画像処理装置。

20

2. 請求項1記載の画像処理装置であって、

前記ドット形成有無判断手段は、前記第2種のブロックを構成する複数の画素の中で、エッジが検出されることなく圧縮されていた複数の画素については、該画素のカラー画像データを均一な画像データとして扱って、前記ドットの形成有25 無を判断する手段である画像処理装置。

10

3. 請求項1記載の画像処理装置であって、

前記エッジ検出手段は、前記第1種のブロック内でのエッジの検出を、該ブロック内の各画素についての前記色変換後のカラー画像データに基づいて行う手段 であり、

前記圧縮データ記憶手段は、前記色変換後のカラー画像データを、前記第1種のブロック内でのエッジの有無に応じて圧縮した後、圧縮されたデータを前記メモリに記憶する手段である画像処理装置。

4. 請求項1記載の画像処理装置であって、

前記エッジ検出手段は、前記第1種のブロック内でのエッジの検出を、該プロック内の各画素についての前記色変換前のカラー画像データに基づいて行う手段であり、

前記圧縮データ記憶手段は、前記エッジの検出されなかった前記第1種のブロックについて、前記色変換前のカラー画像データを圧縮した後、該圧縮したカラー画像データを前記第2の表色系のカラー画像データに色変換して前記メモリに記憶する手段である画像処理装置。

- 5. 請求項4記載の画像処理装置であって、
- 20 前記エッジ検出手段は、前記色変換前のカラー画像データに基づいてエッジが 検出された前記第1種のブロックについては、前記色変換後のカラー画像データ に基づいて再びエッジの検出を行う手段であり、

前記圧縮データ記憶手段は、前記色変換後のカラー画像データに基づいて再び エッジの有無を検出した前記第1種のブロックについては、該エッジの検出結果 25 に応じて該色変換後のカラー画像データを圧縮した後、前記メモリに記憶する手 段である画像処理装置。

- 6. 請求項1ないし請求項5のいずれかに記載の画像処理装置であって、前記圧縮データ記憶手段は、エッジを含まない前記第1種のプロックについて は、該プロックに含まれる複数個分の画素の画像データを1画素分の画像データ に圧縮して記憶する手段である画像処理装置。
 - 7. 請求項6記載の画像処理装置であって、

前記圧縮データ記憶手段は、エッジを含まない前記第1種のブロックについて 10 は、該ブロックに含まれる複数個分の画素の画像データを、該画像データの平均 値に圧縮して記憶する手段である画像処理装置。

8. 請求項6記載の画像処理装置であって、

前記圧縮データ記憶手段は、エッジを含まない前記第1種のブロックについて 5 は、該ブロックに含まれる複数個分の画素の画像データを、該ブロック内から選 択された1の画素の画像データに圧縮して記憶する手段である画像処理装置。

- 9. 請求項1ないし請求項5のいずれかに記載の画像処理装置であって、前記圧縮データ記憶手段は、前記第1種のブロック内にエッジが検出された場 合には、該ブロックをエッジを含まないサブブロックに分割し、該サブブロックに含まれる画素について前記色変換後の画像データを圧縮した後、前記メモリに記憶する手段である画像処理装置。
- 10. 請求項1ないし請求項5のいずれかに記載の画像処理装置であって、 25 前記圧縮データ記憶手段は、前記エッジの有無に応じて圧縮された色変換後の

カラー画像データとともに、該カラー画像データが圧縮されている状態を表す圧縮情報を前記メモリに記憶する手段である画像処理装置。

- 11. 請求項1ないし請求項5のいずれかに記載の画像処理装置であって、 が記圧縮データ解凍手段は、前記第2種のブロックとして、前記第1種のブロックと同一のブロックにまとめる手段である画像処理装置。
 - 12. 請求項11記載の画像処理装置であって、

前記エッジ検出手段および前記圧縮データ解凍手段は、2行2列に配列された 10 4つの画素を、それぞれ前記第1種のブロックおよび前記第2種のブロックとし てまとめる手段である画像処理装置。

13. 一つの表色系により表現されたカラー画像データを、他の表色系を 構成する各色についてのドットの形成有無によって表現された画像データに変換 15 する画像処理装置であって、

第1の表色系により表現されたカラー画像データを、該第1の表色系は異なる 第2の表色系によるカラー画像データに色変換する色変換手段と、

互いに隣接する画素を所定の複数個ずつ第1種のブロックとしてまとめて、該 第1種のブロック内でのエッジの有無を検出するエッジ検出手段と、

20 前記第1種のプロックに含まれる各画素についての前記色変換後のカラー画像 データを、該ブロック内にエッジが存在しない場合には圧縮した状態で記憶する 圧縮データ記憶手段と、

前記圧縮された状態で記憶されたカラー画像データを前記メモリから読み出して解凍する圧縮画像データ解凍手段と、

25 前記解凍されたカラー画像データに基づいて、前記第2の表色系の各色毎にド

ットの形成有無を判断するドット形成有無判断手段と を備える画像処理装置。

14. 一つの表色系により表現されたカラー画像データを、他の表色系を構成する各色についてのドットの形成有無によって表現された画像データに変換する画像処理方法であって、

第1の表色系により表現されたカラー画像データを、該第1の表色系とは異なる第2の表色系によるカラー画像データに色変換する工程と、

互いに隣接する画素を所定の複数個ずつ第1種のブロックとしてまとめて、該
10 第1種のブロック内でのエッジの有無を検出する工程と、

前記第1種のブロックに含まれる各画素についての前記色変換後のカラー画像 データを、該プロック内にエッジが存在しない場合には圧縮した状態でメモリに 記憶する工程と、

前記圧縮された状態で記憶されたカラー画像データを前記メモリから読み出し 15 て解凍した後、互いに隣接する画素を所定の複数個ずつ第2種のブロックとして まとめる工程と、

前記第2種のブロックとしてまとめられたカラー画像データに基づいて、該プロックに含まれる各画素についてのドットの形成有無を、前記第2の表色系の各色毎に該ブロック単位で判断する工程と

20 を備える画像処理方法。

- 15. 一つの表色系により表現されたカラー画像データを、他の表色系を構成する各色についてのドットの形成有無によって表現された画像データに変換する画像処理方法であって、
- 25 第1の表色系により表現されたカラー画像データを、該第1の表色系とは異な

る第2の表色系によるカラー画像データに色変換する工程と、

互いに隣接する画素を所定の複数個ずつ第1種のブロックとしてまとめて、該 第1種のブロック内でのエッジの有無を検出する工程と、

前記第1種のブロックに含まれる各画素についての前記色変換後のカラー画像 5 データを、該ブロック内にエッジが存在しない場合には圧縮した状態でメモリに 記憶する工程と、

前記圧縮された状態で記憶されたカラー画像データを前記メモリから読み出して解凍する工程と、

前記解凍されたカラー画像データに基づいて、前記第2の表色系の各色毎にド 10 ットの形成有無を判断する工程と

を備える画像処理方法。

16. 一つの表色系により表現されたカラー画像データを、他の表色系を構成する各色についてのドットの形成有無によって表現された画像データに変換 15 する方法を、コンピュータを用いて実現するためのプログラムであって、

第1の表色系により表現されたカラー画像データを、該第1の表色系とは異なる第2の表色系によるカラー画像データに色変換する機能と、

互いに隣接する画素を所定の複数個ずつ第1種のブロックとしてまとめて、該 第1種のブロック内でのエッジの有無を検出する機能と、

20 前記第1種のブロックに含まれる各画素についての前記色変換後のカラー画像 データを、該ブロック内でのエッジの有無に応じて圧縮された状態でメモリに記 憶する機能と、

前記圧縮された状態で記憶されたカラー画像データを前記メモリから読み出して解凍した後、互いに隣接する画素を所定の複数個ずつ第2種のブロックとして 25 まとめる機能と、

前記第2種のブロックとしてまとめられたカラー画像データに基づいて、該ブロックに含まれる各画素についてのドットの形成有無を、前記第2の表色系の各色毎に該ブロック単位で判断する機能と

を実現するプログラム。

5

17. 一つの表色系により表現されたカラー画像データを、他の表色系を 構成する各色についてのドットの形成有無によって表現された画像データに変換 する方法を、コンピュータを用いて実現するためのプログラムであって、

第1の表色系により表現されたカラー画像データを、該第1の表色系とは異な
10 る第2の表色系によるカラー画像データに色変換する機能と、

互いに隣接する画素を所定の複数個ずつ第1種のブロックとしてまとめて、該 第1種のブロック内でのエッジの有無を検出する機能と、

前記第1種のプロックに含まれる各画素についての前記色変換後のカラー画像 データを、該ブロック内にエッジが存在しない場合には圧縮した状態でメモリに 記憶する機能と、

前記圧縮された状態で記憶されたカラー画像データを前記メモリから読み出して解凍する機能と、

前記解凍されたカラー画像データに基づいて、前記第2の表色系の各色毎にドットの形成有無を判断する機能と

20 を実現するプログラム。

1/19

図 1

2/19

図 2

WO 2004/084540 PCT/JP2004/003603

3/19

図 3

4/19

図 4

図 5

WO 2004/084540 PCT/JP2004/003603

6/19

図 6A

図 6B

7/19

図 7

8/19

図 8B

9/19

図 9A

図 9B

10/19

図 10

11/19

図 11A

Pc Pa Pb Pb	
	p

図 11B

図 11C

1C	図 11D

図 11E

WO 2004/084540

12/19

図 12

13/19

図 13A

			1/8	
			1/8	
1/4	1/8	1/8	1/4	

図 13B

				1/16	1/16
				1/16	1/16
1/16	1/16	1/16	1/16	1/16	1/16
1/16	1/16	1/16	1/16	1/16	1/16

14/19

図 14

15/19

図 15A

図 15B

図 15C

Pd

Pc

図 15D

Pd

16/19

図 16

WO 2004/084540 PCT/JP2004/003603

17/19

図 17

WO 2004/084540 PCT/JP2004/003603

18/19

図 18A

図 18B

3	26
25	3

19/19

図 19A

図 19B

圧縮情報:10

図 19C

図 19D

圧縮情報:01

圧縮情報:00

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP2004/003603

A. CLASSIFICATION OF SUBJECT MATTER Int.Cl ⁷ H04N1/41, 1/40, 1/46			
According to International Patent Classification (IPC) or to both national classification and IPC			
B. FIELDS SEARCHED			
Minimum documentation searched (classification system followed by classification system) Int.Cl ⁷ H04N1/41, 1/40, 1/46	assification symbols)		
TUE.CT HOANT/41, 1/40, 1/40			
[] ·		·	
Documentation searched other than minimum documentation to the exte	ent that such documents are included in the	fields searched	
	tsuyo Shinan Toroku Koho oroku Jitsuyo Shinan Koho	1996-2004 1994-2004	
Electronic data base consulted during the international search (name of			
Therefore and once counting daine at mornanous season (limite or		•	
C. DOCUMENTS CONSIDERED TO BE RELEVANT			
Category* Citation of document, with indication, where ap	·	Relevant to claim No.	
Y JP 8-307691 A (Minolta Co., 22 November, 1996 (22.11.96)		1-4,6-8, 10-17	
Claim 1			
& US 5838455 A & US	6047087 A		
Y JP 6-121175 A (Fuji Xerox Co	o., Ltd.),	1-3,6-8,	
28 April, 1994 (28.04.94), Claim 1		10-17	
& US 5524067 A			
y JP 6-125464 A (Canon Inc.),		, 4	
06 May, 1994 (06.05.94),		·	
Fig. 1 (Family: none)			
,,			
Further documents are listed in the continuation of Box C.	See patent family annex.		
Special categories of cited documents:	"T" later document published after the int	emational filing date or priority	
"A" document defining the general state of the art which is not considered to be of particular relevance	date and not in conflict with the applic the principle or theory underlying the i	invention	
"E" earlier application or patent but published on or after the international filing date	"X" document of particular relevance; the considered novel or cannot be consi	dered to involve an inventive	
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other	step when the document is taken alone "Y" document of particular relevance; the		
special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means	considered to involve an inventive combined with one or more other such	step when the document is documents, such combination	
"P" document published prior to the international filing date but later than the priority date claimed	being obvious to a person skilled in the "&" document member of the same patent		
Date of the actual completion of the international search 19 April, 2004 (19.04.04)	Date of mailing of the international sea 11 May, 2004 (11.0)	rch report 5.04)	
Name and mailing address of the ISA/	Authorized officer		
Japanese Patent Office		•	
Facsimile No. Form PCT/ISA/210 (second sheet) (January 2004)	Telephone No.	<u> </u>	

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP2004/003603

C (Continuation)). DOCUMENTS CONSIDERED TO BE RELEVANT	
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Υ .	JP 3-53767 A (Toppan Printing Co., Ltd.), 07 March, 1991 (07.03.91), Page 4, lower right column, line 12 to page 8, upper right column, line 3 (Family: none)	4
A .	JP 5-324815 A (Ricoh Co., Ltd.), 10 December, 1993 (10.12.93), Full text (Family: none)	1-17
A	JP 2001-298622 A (Ricoh Co., Ltd.), 26 October, 2001 (26.10.01), Par. Nos. [0008] to [0010] (Family: none)	2
А	JP 2002-64713 A (I and F Kabushiki Kaisha), 28 February, 2002 (28.02.02), Full text (Family: none)	9
P,A	JP 2003-87570 A (Ricoh Co., Ltd.), 20 March, 2003 (20.03.03), Full text (Family: none)	9
P,A	JP 2003-162382 A (Ricoh Co., Ltd.), 06 June, 2003 (06.06.03), Full text (Family: none)	1-3
·		
		·

	属する分野の分類(国際特許分類(IPC)) 1/41, I/40, 1/46		
調査を行ったよ	テった分野	·	
日本国実用新 日本国公開実 日本国実用新	トの資料で調査を行った分野に含まれるもの 案公報 1922-1996年 用新案公報 1971-2004年 案登録公報 1996-2004年 用新案公報 1994-2004年		
国際調査で使	用した電子データベース(データベースの名称、	調査に使用した用語)	
	ると認められる文献		90340) 40
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連すると	さは、その関連する箇所の表示	関連する 請求の範囲の番号
Y	JP 8-307691 A (ミノルタ株式会社) & US 5838455 A & US 6047087 A		1-4, 6-8, 10-1 7
Y	JP 6-121175 A (富士ゼロックス株式 & US 5524067 A	会社)1994.04.28,請求項1	1-3, 6-8, 10-1 7
Y	JP 6-125464 A (キヤノン株式会社) (ファミリーなし)	1994. 05. 06, 図1	4
	 きにも文献が列挙されている。	□ パテントファミリーに関する別	紙を参照。
* 引用文献のカテゴリー 「A」特に関連のある文献ではなく、一般的技術水準を示すもの 「E」国際出願日前の出願または特許であるが、国際出願日以後に公表された文献であって、出願と矛盾するものではなく、発明の原理又は理能の選挙に公表されたもの 「L」優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する方式であって、当該文献と他の15文献(理由を付す) 「O」口頭による開示、使用、展示等に言及する文献「P」国際出願日前で、かつ優先権の主張の基礎となる出願「をはないと考えられるもの「をはないと考えられるもの「をはないと考えられるもの」「をは関連のある文献であって、当該文献と他の15年の文献との、当業者にとって自明である組合せによって進歩性がないと考えられるもの「をはないと考えられるもの」「をは、これに対しては、これに対しない、これに対しない、これに対しないでは、これには、これに対しないには、これに対しない、これに対しないは、これに対しないが、これに対しないは、これに対しな			
国際調査を完了した日 19.04.2004 国際調査報告の発送日 11.5.2004			
国際調査機関の名称及びあて先 日本国特許庁 (ISA/JP) 選辺 努 郵便番号100-8915 東京都千代田区霞が関三丁目4番3号 特許庁審査官(権限のある職員) 渡辺 努			

C (続き).	関連すると認められる文献	
引用文献の		関連する 請求の範囲の番号
<u>カテゴリー*</u> Y	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示 JP 3-53767 A (凸版印刷株式会社) 1991.03.07,第4頁右下欄第12行 -第8頁右上欄第3行 (ファミリーなし)	4
A	JP 5-324815 A (株式会社リコー) 1993.12.10,全文 (ファミリーなし)	1-17
A	JP 2001-298622 A (株式会社リコー) 2001.10.26,段落[0008]-[001 0] (ファミリーなし)	2
A	JP 2002-64713 A (アイ・アンド・エフ株式会社) 2002.02.28,全文(ファミリーなし)	9
PA	JP 2003-87570 A (株式会社リコー) 2003.03.20,全文 (ファミリーなし)	9
PA	JP 2003-162382 A (株式会社リコー) 2003.06.06,全文 (ファミリーなし)	1-3
	•	·
	·	