

# Lecture 11 – Mathematical morphology I

Prof. João Fernando Mari

<u>joaofmari.github.io</u>

joaof.mari@ufv.br

# Agenda



- Mathematical morphology
- Basic operations with sets
- Erosion
- Dilation
- Duality
- Gray level mathematical morphology



# **MATHEMATICAL MORPHOLOGY**

# Mathematical morphology



- The language of mathematical morphology is set theory
  - Objects in an image are represented as sets
  - The set of all white (or black, depending on convention) pixels in a binary image is a complete representation of the image
- In binary images these sets are in Z<sup>2</sup>
  - Each element of the set is a two-dimensional vector
  - Each dimension corresponds to the coordinates (x, y) of a white pixel in the image
- Gray level images can be represented as sets in Z<sup>3</sup>
  - Two components of each element refer to the pixel coordinates
  - The third corresponds to its discrete intensity value

### Representation of binary images as sets





$$C_0 = \{ (1, 1), (1, 2), (1, 3), (2, 2), (2, 3) \}$$
  
 $C_1 = \{ (1, 5), (1, 6), (1, 7), (2, 7), (3, 6), (3, 7) \}$   
 $C_2 = \{ (5, 5) \}$   
 $C_3 = \{ (5, 1), (5, 2), (6, 1), (6, 2) \}$ 

$$C_I = \bigcup_{i=0}^{N-1} C_i$$
, for N objects

### Intensity images as sets





$$C_0 = \{ (1, 1, 1), (1, 2, 2), (1, 3, 1), (2, 2, 2), (2, 3, 3) \}$$

$$C_1 = \{ (1, 5, 5), (1, 6, 7), (1, 7, 5), (2, 7, 6), (3, 6, 4), (3, 7, 7) \}$$

$$C_2 = \{ (5, 5, 3) \}$$

$$C_3 = \{ (5, 1, 1), (5, 2, 2), (6, 1, 1), (6, 2, 3) \}$$

$$C_I = \bigcup_{i=0}^{N-1} C_i$$
, for N objects



# **BASIC OPERATIONS WITH SETS**

### Basic operations with sets



- Let A be a set of ordered pairs of real numbers
  - If  $a=(a_1, a_2)$  is an element of A, we have:
    - $a \in A$  (a is an element of A)
  - If a is not an element of A:
    - $a \notin A$  (a is not an element of A)
  - If a set contains no elements:
    - Empty set − Ø
- A set is defined by the contents of two keys
  - Ex.:  $C = \{w | w = -d, d \in D\}$
  - C is the set of elements, w, such that w is formed by multiplying each of the elements of the set D by -1
- One way to use sets in image processing is:
  - Consider the elements of the set as the coordinates of the pixels (ordered pairs of integers)
  - Each set represents regions (objects) in the image

### Basic operations with sets



- If each element of set A is also an element of set B, then...
  - A is a subset of B
  - $-A\subseteq B$



- The union of sets A and B is:
  - The set of elements that belong to either set A, or B, or both
  - $-C = A \cup B$





- The intersection of two sets A and B is:
  - The set of elements that belong to both sets
  - $-D = A \cap B$





# Basic operations with sets



- The reflection of a set B,  $\hat{B}$ , is:
  - $\hat{B} = \{w | w = -b, for \ b \in B\}$
  - If B is the set of pixels that represent an object,
    - $\hat{B}$  is a set of pixels in B whose coordinates (x, y) were replaced by (-x, -y).
- The translation of a set B at point (z<sub>1</sub>, z<sub>2</sub>), (B)<sub>z</sub>, is:
  - $(B)_z = \{c | c = b + z, for b \in B\}$
  - If B is the set of pixels that represent an object,
    - $(B)_z$  is the set of pixels in B whose coordinates (x, y) have been replaced by  $(x+z_1, y+z_2)$

































































### Structuring elements



- Structuring elements (SE)
  - Small sets or sub-images used to examine an image for properties of interest.

| 0 | 1 | 0 |
|---|---|---|
| 1 | 1 | 1 |
| 0 | 1 | 0 |

|   |   |   | 1 |
|---|---|---|---|
| 1 | 1 |   | 1 |
| 1 | 1 |   | 1 |
| 1 | 1 |   | 1 |
|   |   | • | 1 |

| 1 |  |
|---|--|
| 1 |  |
| 1 |  |
| 1 |  |
| 1 |  |
|   |  |

|   |   |   | 1 |   |   |   |
|---|---|---|---|---|---|---|
|   |   | 1 | 1 | 1 |   |   |
|   | 1 | 1 | 1 | 1 | 1 |   |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 |
|   | 1 | 1 | 1 | 1 | 1 |   |
|   |   | 1 | 1 | 1 |   |   |
|   |   |   | 1 |   |   |   |

| 1 | 1 | 1 |
|---|---|---|
| 0 | 0 | 1 |
| 0 | 1 | 0 |

| 0 | 1 | 0  |
|---|---|----|
| 1 | 1 | 1  |
| 0 | 1 | 0* |

- The \* indicates the center of the structuring element.
- When omitted, the center of the SE corresponds to the center of the array.



# **EROSION**



- Erosion and dilation are fundamental operations of mathematical morphology.
  - Most morphological algorithms are derived from these two operations.
- The erosion of a set A by an SE B is:
  - $A \ominus B = \{z | (B)_z \subseteq A\}$
  - The erosion of A by B is the set of all z so that B translated by z is contained in A.
- An alternative definition for the same case:
  - An alternative definition for the same case:
  - Saying that B is contained in A is equivalent to saying that B has no elements in common with the background.
  - $-A \ominus B = \{z | (B)_z \cap A^c = \emptyset\}$





| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|---|---|---|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 |
| 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 |
| 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 |
| 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 |
| 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 |
| 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |







| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|---|---|---|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 |
| 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 |
| 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 |
| 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |







| 0 | 0 | 0 |   |   |   | 0 |   | 0 |   |
|---|---|---|---|---|---|---|---|---|---|
|   | U |   | 0 | 0 | 0 | U | 0 | U | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 |
| 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 |
| 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 |
| 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |







| _ |   | _ | _ | _ | _ |   | _ |
|---|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 |
| 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 |
| 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 |
| 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 |
| 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 |
| 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |















| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|---|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 |
| 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |





# **DILATION**

#### Dilation



The dilation of a set A by an SE B is:

$$- A \oplus B = \{z | (\hat{B})_z \cap A \neq \emptyset\}$$

- Firstly, B is reflected around its origin.
  - The dilation of A by B is the set of all displacements z, such that  $\widehat{B}$  (reflection of B) and A overlap in at least one element.
- An alternative definition for the same case:

$$- A \oplus B = \{z | [(\hat{B})_z \cap A] \subseteq A\}$$





| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|---|---|---|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 |
| 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 |
| 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 |
| 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |





•  $A \oplus B = \{z | (\hat{B})_z \cap A \neq \emptyset\}$ 



|   |   |   | O |
|---|---|---|---|
| 1 | 1 | 1 | 0 |
| 1 | 1 | 1 | 0 |
| 1 | 1 | 1 | 0 |
| 1 | 1 | 1 | 0 |
|   |   |   | 0 |
|   |   |   | O |
|   |   |   |   |

В

| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|---|---|---|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 |
| 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 |
| 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 |
| 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 |
| 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 |
| 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |







| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|---|---|---|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 |
| 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 |
| 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 |
| 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 |
| 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 |
| 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |







| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|---|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 |
| 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 |
| 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 |
| 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |







| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|---|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 |
| 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 |
| 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 |
| 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 |
| 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 |
| 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 |
| 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 |
| 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |





|   | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |   |   |  |  |   | _ |
|---|---|---|---|---|---|---|---|---|---|---|--|--|---|---|
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |   | 7 |  |  | 1 |   |
| 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |   |   |  |  | 1 | 1 |
| 2 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | ı |   |  |  | 1 |   |
| 3 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | ĺ |   |  |  | 1 |   |
| 4 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 |   |   |  |  | 1 | 1 |
| 5 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 |   |   |  |  |   | - |
| 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |   |   |  |  | 1 |   |
| 7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ı |   |  |  |   | _ |
| \ |   |   |   | 1 | 4 |   |   |   | _ |   |  |  | В |   |

| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|---|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 |
| 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 |
| 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 |
| 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 |
| 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 |
| 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 |
| 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 |
| 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |





# **DUALITY**

# Duality



- Dilation and erosion are dual operations:
  - $(A \ominus B) = A^c \oplus \hat{B}$
  - $(A \oplus B) = A^c \ominus \widehat{B}$
  - The **erosion** of A by B is the complement of the dilation of Ac by  $\hat{B}$
  - The **dilation** of A by B is the complement of the erosion of Ac by  $\hat{B}$
  - When the SE is symmetrical, dilation can be obtained through erosion of the image background.
    - As well as, obtaining erosion through dilation of the image background



### **GRAY LEVEL MATHEMATICAL MORPHOLOGY**

## Gray level mathematical morphology



- Mathematical morphology in gray levels using thresholding decomposition:
  - 1. Decompose the intensity image f(x, y) by thresholding into all possible gray levels.
    - Each thresholding will generate a binary image
  - 2. Apply the morphological operation on each binary image
  - 3. Reconstruct the output image g(x, y) by "stacking" the processed binary images.

# Gray level mathematical morphology





## Bibliography



- GONZALEZ, R.C.; WOODS, R.E. **Digital Image Processing**. 3rd ed. Pearson, 2007.
- MARQUES FILHO, O.; VIEIRA NETO, H. Processamento digital de imagens. Brasport, 1999.
  - (in Brazilian Portuguese)
  - Available on the author's website (for personal use only)
  - http://dainf.ct.utfpr.edu.br/~hvieir/pub.html
- J. E. R. Queiroz, H. M. Gomes. Introdução ao Processamento Digital de Imagens. RITA. v. 13, 2006.
  - (in Brazilian Portuguese)
  - http://www.dsc.ufcg.edu.br/~hmg/disciplinas/graduacao/vc-2016.2/Rita-Tutorial-PDI.pdf

# Bibliography



- Aldo von Wangenheim. Morfologia Matemática
  - http://www.inf.ufsc.br/~visao/morfologia.pdf
- James Facon. A Morfologia Matemática e suas Aplicações em Processamento de Imagens.
   Minicurso WVC 2011
  - http://www.ppgia.pucpr.br/~facon/Books/2011WVCMinicurso2Morfo.pdf



```
@misc{mari_im_proc_2023,
    author = {João Fernando Mari},
    title = {Mathematical morfology I},
    year = {2023},
    publisher = {GitHub},
    journal = {Introduction to digital image processing - UFV},
    howpublished = {\url{https://github.com/joaofmari/SIN392_Introduction-to-digital-image-processing_2023}}
```

### THE END