TSI1 – Physique-chimie

TD4 : Circuits électrique dans l'ARQS

TD4: Circuits électrique dans l'ARQS

Exercice 1: L'AROS

Une carte mère d'ordinateur moderne mesure une vingtaine de centimètres et fonctionne à des fréquences de l'ordre de $f \simeq 3$ GHz.

- 1. Rappelez les conditions d'application de l'ARQS.
- 2. Peut-on appliquer l'ARQS aux signaux électriques qui circulent dans les pistes d'une carte mère d'ordinateur ?
- 3. La figure ci-contre représente l'allure des pistes conductrices (traces noires) qui transportent les signaux électriques dans la carte mère. Comment expliquer le tracé apparemment étrange de ces pistes ?

Exercice 2 : Vitesse des électrons

Une intensité de 1 A circule dans un fil en cuivre de section 1 mm² dans lequel la densité d'électrons libre est $n \simeq 10^{29}$ m⁻³. Calculer la vitesse moyenne des électrons. (Charge d'un électron : -1.6×10^{-19} C)

Exercice 3: Loi des noeuds

Déterminer la valeur de i_4 dans tous les cas ci-dessous.

Exercice 4 : Loi des mailles

Calculer la valeur de U_4 dans tous les cas suivants

Exercice 5 : ÉTUDE DE QUELQUES CIRCUITS

Circuit 1 : Exprimer i en fonction de E, R₁ et R₂.
 Circuit 2 : Exprimer i et U en fonction de E et des R_k.

3. Circuit 3 : Exprimer U, i, i₁ et i₂ en fonction de E et R.

Exercice 6: Pont de Wheatstone

Le circuit ci-contre est un pont de Wheatstone, on l'utilise pour mesurer très précisément une résistance.

Exprimer U en fonction de E, et des résistances R_k . En déduire la condition pour que le pont soit équilibré, c'est à dire U = 0 V.

Exercice 7 : Résistances équivalentes

Trouver les résistances équivalentes aux dipôles suivants :

Exercice 8 : BILAN DE PUISSANCE

Le circuit ci-dessous représente un générateur réel de f.e.m. E et de résistance interne r dans un modèle linéaire qui alimente un dipôle qui se comporte comme une résistance R.

- 1. Exprimer l'intensité i en fonction de E, r et R.
- 2. Quelle est la puissance électrique consommée par le dipôle R?
- 3. Quelle est la puissance électrique fournie par le générateur ?
- 4. En déduire le rendement du circuit en fonction de r.
- 5. Exprimer la tension U aux bornes du dipôle R.
- 6. Quels sont les avantages d'un générateur à faible résistance interne?

Exercice 9: Transport d'électricité

On modélise une centrale électrique par un générateur de tension idéal E, les câbles sont modélisés par une résistance r parcourue par un courant i. L'utilisateur final est modélisé par un dipôle électrique qui reçoit une puissance P à une tension U

- 1. Faire un schéma représentant l'ensemble des éléments du transport de l'électricité.
- 2. Exprimer la tension E fournie par le générateur en fonction de U, r et i.
- 3. Exprimer la puissance électrique dissipée dans les câbles électriques. Comment d'appelle le phénomène responsable de cette dissipation ? Sous quelle forme cette énergie est-elle transformée ?
- 4. Exprimer la puissance totale fournie par le générateur.
- 5. Écrire le rendement γ du système en fonction de U, r et P.
- 6. Expliquer pour quoi on utilise des lignes haute tension de $400\,\mathrm{kV}$ pour transporter le courant électrique alors que la majorité des appareils électriques fontionnent à $230\,\mathrm{V}$.
- 7. Quels sont les facteurs qui limitent la tension maximale utilisable pour transporter l'électricité?

Exercice 10 : CARACTÉRISTIQUES D'UNE DIODE

Une diode est une jonction de deux semi-conducteurs dopés n et p. L'intensité du courant i qui la traverse et la tension U_D à ses bornes sont représentés sur la figure ci-contre.

- Si $U_D < V_s$ i = 0 (La diode est bloquante)
- Si $U_D > V_s$ $i = (U_D V_s)/\gamma$ (La diode est passante)

Avec $V_s=0.6$ V. Le domaine d'utilisation normale de la diode est $U_D>U_{\min}=-3$ V et $i< i_{\max}=10$ mA.

- 1. Montrer que selon les valeurs de la tension U_D , la diode est équivalente à un interrupteur ouvert, ou à un résistor en série avec un générateur idéal de tension. Quelle est l'unité de γ ?
- 2. Tracer la caractéristique i = f(u) de la diode.
- 3. Dans le circuit ci-contre exprimer i, U_D et U_G en fonction de E, r, R γ et V_s lorsque la diode est passante.
- 4. Calculer la valeur minimale E_{\min} en deça de laquelle la diode est bloquante. Exprimer alors la relation entre U_D et U_G .