Cs559/659 Lecture 8: Classification Learning

Readings: Bishop: Chapter 4.1-2.

Binary classification

- **Two classes** $Y = \{0,1\}$
- Our goal is to learn to classify correctly two types of examples
 - Class 0 labeled as 0,
 - Class 1 labeled as 1
- We would like to learn $f: X \to \{0,1\}$
- Zero-one error (loss) function

Error₁(
$$\mathbf{x}_i, y_i$$
) =
$$\begin{cases} 1 & f(\mathbf{x}_i, \mathbf{w}) \neq y_i \\ 0 & f(\mathbf{x}_i, \mathbf{w}) = y_i \end{cases}$$

- Error we would like to minimize: $E_{(x,y)}(Error_1(\mathbf{x},y))$
- First step: we need to devise a model of the function

Evaluation

For any data set we use to test the classification model on we can build a **confusion matrix**:

- Counts of examples with:
- class label ω_j that are classified with a label α_i

target

$$\alpha = 1 \quad \omega = 0$$

$$\alpha = 1 \quad 140 \quad 17$$

$$\alpha = 0 \quad 20 \quad 54$$

Evaluation

For any data set we use to test the model we can build a **confusion matrix:**

target

Error: ?

Evaluation

For any data set we use to test the model we can build a confusion matrix:

target

$$\alpha = 1 \quad \omega = 0$$

$$\alpha = 1 \quad 140 \quad 17$$

$$\alpha = 0 \quad 20 \quad 54$$
agreement

Error: = 37/231

Accuracy = 1 - Error = 194/231

Evaluation for binary classification

Entries in the confusion matrix for binary classification have names:

target

$$\alpha = 1 \qquad \omega = 0$$

$$\alpha = 1 \qquad TP \qquad FP$$

$$\alpha = 0 \qquad FN \qquad TN$$

TP: True positive (hit)

FP: False positive (false alarm)

TN: True negative (correct rejection)

FN: False negative (a miss)

Additional statistics

• Sensitivity (recall) $SENS = \frac{TP}{TP + FN}$

• Specificity
$$SPEC = \frac{TN}{TN + FP}$$

Positive predictive value (precision)

$$PPT = \frac{TP}{TP + FP}$$

Negative predictive value

$$NPV = \frac{TN}{TN + FN}$$

Binary classification: additional statistics

Confusion matrix

target

		1	0	
predict	1	140	10	PPV=140/150
	0	20	180	NPV = 180/200
_		SENS=140/160	SPEC=180/190	

Row and column quantities:

- Sensitivity (SENS)
- Specificity (SPEC)
- Positive predictive value (PPV)
- Negative predictive value (NPV)

Binary decisions: Receiver Operating Curves

Probabilities:

$$p(x > x^* | \mathbf{x} \in \omega_2)$$

$$p(x < x^* \mid \mathbf{x} \in \omega_1)$$

Receiver Operating Characteristic (ROC)

ROC curve plots :

SN=
$$p(x > x^* | \mathbf{x} \in \omega_1)$$

1-SP= $p(x > x^* | \mathbf{x} \in \omega_2)$
for different \mathbf{x}^*

ROC curve

Receiver operating characteristic

• ROC

 shows the discriminability between the two classes under different decision biases

Decision bias

- can be changed using different loss function

Back to classification models

- One way to represent a classifier is by using
 - Discriminant functions
- Works for binary and multi-way classification

Idea:

- For every class i = 0, 1, ...k define a function $g_i(\mathbf{x})$ mapping $X \to \Re$
- When the decision on input \mathbf{x} should be made choose the class with the highest value of $g_i(\mathbf{x})$
- So what happens with the input space? Assume a binary case.

Define decision boundary

Quadratic decision boundary

Logistic regression model

- Defines a linear decision boundary
- Discriminant functions:

$$g_1(\mathbf{x}) = g(\mathbf{w}^T \mathbf{x})$$
 $g_0(\mathbf{x}) = 1 - g(\mathbf{w}^T \mathbf{x})$

• where $g(z) = 1/(1 + e^{-z})$ - is a logistic function

$$f(\mathbf{x}, \mathbf{w}) = g_1(\mathbf{w}^T \mathbf{x}) = g(\mathbf{w}^T \mathbf{x})$$

Logistic function

$$g(z) = \frac{1}{(1 + e^{-z})}$$

- Is also referred to as a sigmoid function
- Replaces the threshold function with smooth switching
- takes a real number and outputs the number in the interval [0,1]

Logistic regression model

Discriminant functions:

$$g_1(\mathbf{x}) = g(\mathbf{w}^T \mathbf{x})$$
 $g_0(\mathbf{x}) = 1 - g(\mathbf{w}^T \mathbf{x})$

- Values of discriminant functions vary in [0,1]
 - Probabilistic interpretation

$$f(\mathbf{x}, \mathbf{w}) = p(y = 1 | \mathbf{w}, \mathbf{x}) = g_1(\mathbf{x}) = g(\mathbf{w}^T \mathbf{x})$$

Logistic regression model. Decision boundary

· LR defines a linear decision boundary

Example: 2 classes (blue and red points)

Generative approach to classification

Idea:

- 1. Represent and learn the distribution $p(\mathbf{x}, y)$
- 2. Use it to define probabilistic discriminant functions

E.g.
$$g_o(\mathbf{x}) = p(y = 0 | \mathbf{x})$$
 $g_1(\mathbf{x}) = p(y = 1 | \mathbf{x})$

 ν

 \mathbf{X}

Typical model
$$p(\mathbf{x}, y) = p(\mathbf{x} \mid y) p(y)$$

• $p(\mathbf{x} \mid y) =$ Class-conditional distributions (densities) binary classification: two class-conditional distributions $p(\mathbf{x} \mid y = 0)$ $p(\mathbf{x} \mid y = 1)$

• p(y) =Priors on classes - probability of class y binary classification: Bernoulli distribution

$$p(y = 0) + p(y = 1) = 1$$

Quadratic discriminant analysis (QDA)

Model:

- Class-conditional distributions
 - multivariate normal distributions

$$\mathbf{x} \sim N(\boldsymbol{\mu}_0, \boldsymbol{\Sigma}_0)$$
 for $y = 0$
 $\mathbf{x} \sim N(\boldsymbol{\mu}_1, \boldsymbol{\Sigma}_1)$ for $y = 1$

Multivariate normal $\mathbf{x} \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$

$$p(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{d/2} |\boldsymbol{\Sigma}|^{1/2}} \exp \left[-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}) \right]$$

- Priors on classes (class 0,1) $y \sim Bernoulli$
 - Bernoulli distribution

$$p(y,\theta) = \theta^{y} (1-\theta)^{1-y}$$
 $y \in \{0,1\}$

QDA

2 Gaussian class-conditional densities

QDA: Quadratic decision boundary

Linear discriminant analysis (LDA)

• When covariances are the same

$$\mathbf{x} \sim N(\boldsymbol{\mu}_0, \boldsymbol{\Sigma}), y = 0$$

 $\mathbf{x} \sim N(\boldsymbol{\mu}_1, \boldsymbol{\Sigma}), y = 1$

LDA: Linear decision boundary

LDA: linear decision boundary

Logistic regression vs LDA

- Two models with linear decision boundaries:
 - Logistic regression
 - Generative model with 2 Gaussians with the same covariance matrices

$$x \sim N(\mu_0, \Sigma)$$
 for $y = 0$
 $x \sim N(\mu_1, \Sigma)$ for $y = 1$

- Two models are related !!!
 - When we have 2 Gaussians with the same covariance matrix the probability of y given x has the form of a logistic regression model !!!

$$p(y = 1 \mid \mathbf{x}, \boldsymbol{\mu}_0, \boldsymbol{\mu}_1, \boldsymbol{\Sigma}) = g(\mathbf{w}^T \mathbf{x})$$

When is the logistic regression model correct?

 Members of the exponential family can be often more naturally described as

$$f(\mathbf{x} \mid \mathbf{\theta}, \mathbf{\phi}) = h(x, \mathbf{\phi}) \exp \left\{ \frac{\mathbf{\theta}^T \mathbf{x} - A(\mathbf{\theta})}{a(\mathbf{\phi})} \right\}$$

- θ A location parameter ϕ A scale parameter
- Claim: A logistic regression is a correct model when class conditional densities are from the same distribution in the exponential family and have the same scale factor φ
- Very powerful result !!!!
 - We can represent posteriors of many distributions with the same small network

Linear units

The same

Linear regression

Gradient update:

$$\mathbf{w} \leftarrow \mathbf{w} + \alpha \sum_{i=1}^{n} (y_i - f(\mathbf{x}_i)) \mathbf{x}_i$$

Online: $\mathbf{w} \leftarrow \mathbf{w} + \alpha (y - f(\mathbf{x}))\mathbf{x}$

Logistic regression

$$f(\mathbf{x}) = p(y = 1 | \mathbf{x}, \mathbf{w}) = g(\mathbf{w}^T \mathbf{x})$$

Gradient update:

$$\mathbf{w} \leftarrow \mathbf{w} + \alpha \sum_{i=1}^{n} (y_i - f(\mathbf{x}_i)) \mathbf{x}_i$$

Online:
$$\mathbf{w} \leftarrow \mathbf{w} + \alpha (y - f(\mathbf{x}))\mathbf{x}$$

Gradient-based learning

- The same simple gradient update rule derived for both the linear and logistic regression models
- Where the magic comes from?
- Under the log-likelihood measure the function models and the models for the output selection fit together:
 - Linear model + Gaussian noise

$$y = \mathbf{w}^T \mathbf{x} + \varepsilon$$
$$\varepsilon \sim N(0, \sigma^2)$$

Logistic + Bernoulli

$$y \sim \text{Bern}(\theta)$$

$$\theta = p(y = 1 \mid \mathbf{x}) = g(\mathbf{w}^T \mathbf{x})$$

Generalized linear models (GLIM)

Assumptions:

- The conditional mean (expectation) is: $\mu = f(\mathbf{w}^T \mathbf{x})$
 - f(.) is a response (or a link) function
- Output y is characterized by an exponential family distribution with mean $\mu = f(\mathbf{w}^T \mathbf{x})$

Examples:

- Linear model + Gaussian noise

$$y = \mathbf{w}^T \mathbf{x} + \varepsilon \quad \varepsilon \sim N(0, \sigma^2)$$
$$y \sim N(\mathbf{w}^T \mathbf{x}, \sigma^2)$$

Logistic + Bernoulli

$$y \sim \text{Bern}(\theta) \sim \text{Bern}(\mathbf{g}(\mathbf{w}^{T}\mathbf{x}))$$
$$\theta = g(\mathbf{w}^{T}\mathbf{x}) = \frac{1}{1 + e^{-\mathbf{w}^{T}\mathbf{x}}}$$

Generalized linear models (GLMs)

- A canonical response functions f(.):
 - encoded in the distribution

$$p(\mathbf{x} \mid \boldsymbol{\theta}, \boldsymbol{\varphi}) = h(x, \boldsymbol{\varphi}) \exp \left\{ \frac{\boldsymbol{\theta}^T \mathbf{x} - A(\boldsymbol{\theta})}{a(\boldsymbol{\varphi})} \right\}$$

- Leads to a simple gradient form
- Example: Bernoulli distribution

$$p(x \mid \mu) = \mu^{x} (1 - \mu)^{1 - x} = \exp\left\{\log\left(\frac{\mu}{1 - \mu}\right)x + \log(1 - \mu)\right\}$$

$$\theta = \log\left(\frac{\mu}{1 - \mu}\right) \qquad \mu = \frac{1}{1 + e^{-\theta}}$$

- Logistic function matches the Bernoulli

Non-linear extension of logistic regression

- use feature (basis) functions to model nonlinearities
 - the same trick as used for the linear regression

Linear regression

Linear regression
$$f(\mathbf{x}) = w_0 + \sum_{j=1}^{m} w_j \phi_j(\mathbf{x})$$
Logistic regression
$$f(\mathbf{x}) = g(w_0 + \sum_{j=1}^{m} w_j \phi_j(\mathbf{x}))$$

$$f(\mathbf{x}) = g(w_0 + \sum_{j=1}^m w_j \phi_j(\mathbf{x}))$$

 $\phi_i(\mathbf{x})$ - an arbitrary function of \mathbf{x}

