Introduction to Moths II

$$F(1) = H$$

, $F(2) = 5$
, $F(3) = H$

* of is function in Y if each element in & has one and only one image in Y.

$$F(n) = an = \frac{1}{n}$$

$$F(1) = a_1 = 1$$

$$F(2) = a_2 = \frac{1}{2}$$

$$F(3) = a_3 = \frac{1}{3}$$

* Value of y depends on value of x

Sequence is a set of terms have special pattern.

Ex: {
$$an = \frac{1}{n}$$
, $n \in \mathbb{N}$ }

N -> Set of natural numbers.

domain of Sequence -> N unatural numbers " domain of Functions -> R u real numbers "
ypes of Sequences: _ Convergent Sequence
Ex: Seq. = $\{an: an = (-1)^n, n \in \mathbb{N}\}$ Divergent
* Chapter 2: "Differential Equation"
Differential Equation: Equation that Contains differentiation. (14") Ex: y'+52-2=0
- order of the equation: Number of j' in the equation, degree of the equation: Greatest power in the equation.
y"+y=0
$ \begin{array}{cccc} & & & & & & & & & & & & & & & & & & &$
$y' = \cos x$
$y'' = -\sin 2$ $y'' = -\sin 2 + \sin 2 + 5 = 5 + 0$ $y'' = -\sin 2 + 5 \text{ is not ex Solution.}$
* emponential function.

Chapter 3: "Linear Agebra"

Vectors are ordered pairs.

* Sum of 2 vectors is a vector.

* Sum of ordered pairs is an ordered pair.

Ex: (1,2) + (3,5) = (4,7)

* (-1,-2) is the additive inverse of (1,2)

* (0,0) is the additive identity.

* Scalar x vector - vector. Ex: 5 x (1,2) = (5,10)