Homework: heirs and definable types

Introduction to Model Theory

Due March 3, 2022

Please justify your answers.

- 1. Consider the structure $(\mathbb{Z}, +, \cdot, <)$. Show that there is a complete type $p \in S_1(\mathbb{Z})$ containing the formula n < x for each $n \in \mathbb{Z}$. *Hint:* this only uses things from introductory model theory.
- 2. Let $p \in S_1(\mathbb{Z})$ be as in the previous problem, meaning that the formula n < x is in p(x) for all $n \in \mathbb{Z}$. Suppose $M \succeq \mathbb{Z}$ and $q \in S_1(M)$ is an heir of p. Show that q(x) contains the formula n < x for each $n \in M$.
- 3. The structure $(\mathbb{C}, +, \cdot)$ is strongly minimal, so it should eliminate \exists^{∞} . Find a first-order formula $\varphi(x, y, z)$ equivalent to $\exists^{\infty} w \ (xw^2 + yw + z = 0)$ in the structure \mathbb{C} .
- 4. Let $M = \mathbb{R} \setminus [0, 2]$ and $N = \mathbb{R} \setminus [0, 1)$, where

$$[0,2] = \{x \in \mathbb{R} : 0 \le x \le 2\}$$
$$[0,1) = \{x \in \mathbb{R} : 0 \le x < 1\}.$$

From quantifier elimination in DLO, one can show that $(M, \leq) \leq (N, \leq) \leq (\mathbb{R}, \leq)$. It turns out that $\operatorname{tp}(0/N)$ is an heir of $\operatorname{tp}(0/M)$. Show that $\operatorname{tp}(0/N)$ is not a strong heir of $\operatorname{tp}(0/M)$. Hint: you will only need $d\varphi(y)$ for $\varphi(x,y) \equiv (x>y)$.