0.1 H26 数学選択

 $egin{aligned} egin{aligned} e$

 $table \mathbb{C}[x,y]/(xy-1) \cong \mathbb{C}[z,\frac{1}{z}]$ $table \mathbb{C}[x,y]$

 $\mathbb{C}[z,\frac{1}{z}]$ の商体は $\mathbb{C}(z)$ であるから $\mathbb{C}[x,y]/(xy-1)$ の商体は $\mathbb{C}(z)$ と同型である.

 $(2)\mathbb{C}[z]^{\times} = \mathbb{C}^{\times} \text{ σ 5.}$

 $\sharp \mathcal{L} \mathbb{C}[z, \frac{1}{z}]^{\times} = \{cz^k \mid c \in \mathbb{C}^{\times}, k \in \mathbb{Z}\} \cong \mathbb{C}^{\times} \times \mathbb{Z} \text{ } \tilde{c} \text{ } \tilde{b} \text{ } \tilde{b}.$

すなわち乗法群が異なるから $\mathbb{C}[x,y]/(xy-1)$, $\mathbb{C}[z]$ は同型でない.

 $(3)\varphi\colon \mathbb{C}[x,y] \to \mathbb{C}; \varphi(x) = a, \varphi(y) = b$ とする. φ は全射準同型である. $\ker \varphi \supset ((x-a),(y-b))$ は明らか. $f(x,y) \in \ker \varphi$ とする. $f(x,y) = (x-a)g_1(x,y) + (y-b)g_2(y) + r \quad (g_1,g_2 \in \mathbb{C}[x,y],r \in \mathbb{C})$ とできる. $\varphi(f(x,y)) = r = 0$ である. よって $f(x,y) \in ((x-a),(y-b))$ である. したがって $\ker \varphi = ((x-a),(y-b))$ である.

すなわち $\mathbb{C}[x,y]/((x-a),(y-b))\cong\mathbb{C}$ であるから ((x-a),(y-b)) は極大イデアルである.

 $(4)xy - 1 \in ((x - a), (y - b))$ なら $xy - 1 = (x - a)g_1(x, y) + (y - b)g_2(x, y)$ とできる. x = a, y = b として ab = 1 である.

逆に ab = 1 なら xy - ab = (x - a)y + (y - b)a とできるから $xy - 1 \in ((x - a), (y - b))$ である.すなわち ab = 1 が必要十分条件.

- $oxed{B}(1)\mathbb{Z}$ は UFD でありその商体は \mathbb{Q} であるから $\mathbb{Z}[x]$ 上既約な多項式は $\mathbb{Q}[x]$ 上既約である. x^4-2 はアイゼンシュタインの既約判定法から $\mathbb{Z}[x]$ 上既約である. よって $\mathbb{Q}[x]$ 上既約である.
- $(2)x^4 2$ が $\sqrt[4]{2}$ の最小多項式であるから $[L:\mathbb{Q}] = 4$ である.
- $(3)x^4-2=0$ をといて $x=\sqrt[4]{2},i\sqrt[4]{2},-\sqrt[4]{2},-i\sqrt[4]{2}$ が $\sqrt[4]{2}$ の Q 上の共役である.
- $(4)L \subset \mathbb{R}$ より $i \notin L$ であるから L/\mathbb{Q} は正規拡大でない. よって Galois 拡大でない.
- (5)L の $\mathbb Q$ 上自己同型 σ は $\sqrt[4]{2}$ をその共役に移す. よって $\sigma(\sqrt[4]{2}) = -\sqrt[4]{2}$ または id の何れかである. すなわち $G \cong \mathbb Z/2\mathbb Z$ である.
 - $(6)i\sqrt[4]{2}/\sqrt[4]{2}=i$ であるから $i\in F$ である. よって $F=\mathbb{Q}(\sqrt[4]{2},i)$ である.
 - $\mathbb{Q}(i, \sqrt[4]{2})/\mathbb{Q}(\sqrt[4]{2})$ は二次拡大であるから $[F:\mathbb{Q}] = 8$ である.