

The Transformer Model

Beatriz Lourenço

Universidade de Lisboa, Instituto Superior Técnico

beatriz.p.lourenco@tecnico.ulisboa.pt

Lecture Plan

- Introduction to the problem
- From recurrence (RNN) to attention-based NLP models
- Introducing the Transformer model
- Great results with Transformers
- Drawbacks of the Transformers

References

- John Hewitt's lecture on self-attention and transformers
- Stanford Seminar: Introduction to Transformers
- LSTM is dead. Long Live Transformers!
- <u>Illustrated Transformer</u>
- The annotated Transformer
- The original Transformer paper
- BLEU (BiLingual Evaluation Understudy)
- IEEE blog

Lecture Plan

- Introduction to the problem
- From recurrence (RNN) to attention-based NLP models
- Introducing the Transformer model
- Great results with Transformers
- Drawbacks of the Transformers

What are Transformers?

C-Tran model. Image: paper

■ New chat +

GPT-3.5 G

ChatGPT

Create a personal webpage for me after asking me three questions

Explain why popcorn pops to a kid who loves watching it in the micr...

Chat, tell me the most common applications of transformers!

GPT-3 model

ext Prompt a store front that has the word 'openai' written on it....

Al Generated images

Edit prompt or view more images ↓

DALL-E model. Image: OpenAl website

Other Applications

- Natural Language Processing
 - 1. Machine Translation
 - 2. Language Generation
 - 3. Sentiment Analysis
- Speech Recognition
- Computer Vision
- Reinforcement Learning
- Etc.

Original Problem: Machine Translation

Goal: Translate a source sentence x into a target sentence y in another language

Example (Portuguese to English):

x: "De grão em grão a galinha enche o papo"

y: "Grain by grain the chicken fills her belly"

Neural Machine Translation: the first big success story of NLP Deep Learning

From Statistical Machine Translation (SMT) to Neural Machine Translation (NMT)

- 2014: First seq2seq paper published
- 2016: Google Translate switches from SMT to NMT (and by 2018 everyone has)
- SMT systems, built by hundreds of engineers over many years, outperformed by
- NMT systems trained by small groups of engineers in a few months

Lecture Plan

- Introduction to the problem
- From recurrence (RNN) to attention-based NLP models
- Introducing the Transformer model
- Great results with Transformers
- Drawbacks and variants of Transformers
- Other Applications

Timeline

Timeline

Gated Units: LSTMs and GRUs

Sequence-to-Sequence Architecture

Sequence-to-Sequence with Attention

Transformer Model

Recurrent Neural Networks

Main problem of the approach?

Vanishing/Exploding Gradient Problem

$$w_{i+1} = w_i + \eta \frac{\partial E}{\partial w}$$

$$\text{Insignificant weight update}$$

$$\text{High } \frac{\partial E}{\partial w} \text{ and } \eta \implies \text{Can cause bad updates}$$

LSTM and GRU unit

Long Short-Term Memory

Gated Recurrent Unit

- $egin{array}{ll} o_t^{(l)} & ext{Output gate} \ i_t^{(l)} & ext{Input gate} \ f_t^{(l)} & ext{Forget gate} \ c_t^{(l)} & ext{Update cell} \end{array}$

 $r_t^{(l)}$ Reset gate $u_t^{(l)}$ Update gate

LSTM and GRU unit

Sequence-to-Sequence

Generates the target sequence conditioned on vector state

Encodes source sequence generating a vector state

Sequence-to-Sequence: the Botteneck Problem

Needs to capture all information about the source sentence! the chicken fills belly <END> Grain grain her Decoder Encoder **RNN** RNN De grão grão galinha enche papo the chicken fills belly em <START> Grain by grain her

Solution: Attention

 Core idea: Enables the decoder to focus on different parts of the input data with varying importance

1. Computing the attention scores, $e \in \mathbb{R}^N$. (You can use the <u>basic dot-product</u> attention)

1. Computing the attention scores, $s \in \mathbb{R}^L$. (You can use the <u>basic dot-product</u> attention)

- 1. Computing the attention scores, $s \in \mathbb{R}^L$. (You can use the <u>basic dot-product</u> attention)
- 2. Apply the <u>softmax</u> to get attention distribution, $\alpha \in \mathbb{R}^L$

- 1. Computing the attention scores, $s \in \mathbb{R}^L$. (You can use the <u>basic dot-product</u> attention)
- 2. Apply the <u>softmax</u> to get attention distribution, $\alpha \in \mathbb{R}^L$
- 3. Use the attention distribution to calculate the weighted sum of the values and get the attention output, $a \in \mathbb{R}^d$

- 1. Computing the attention scores, $e \in \mathbb{R}^N$. (You can use the <u>basic dot-product</u> attention)
- 2. Apply the <u>softmax</u> to get attention distribution, $\alpha \in \mathbb{R}^N$
- 3. Use the attention distribution to calculate the weighted sum of the values and get the attention output, $a \in \mathbb{R}^d$

Attention: in Equations

Query vector: $q \in \mathbb{R}^d$ (decoder state)

Input vectors: $\mathbf{H} = [h_1, \cdots, h_L]^T \in \mathbb{R}^{L \times d}$ (en

(encoder states e.g. one state per source word)

1. Computing the **afinity scores**, $s \in \mathbb{R}^L$, by *comparing q* and H.

There are multiple ways to do this!

2. Apply the softmax to get **attention distribution**, $\alpha \in \mathbb{R}^L$

$$\alpha = softmax(s)$$

3. Calculate the weighted sum of H with α as weights to get the **attention output**, $a \in \mathbb{R}^d$

$$a = H^T \alpha = \sum_{i=1}^N \alpha_i h_i$$

Affinity Scores

There are **several ways** of computing the scores, s, with h_1, \cdots, h_L and q

- "Basic" dot-product attention: $s_i = q^T h_i$
- Bilinear attention: $s_i = q^T U h_i$
 - *U* is a weight matrix
- Additive attention: $s_i = u^T \tanh(Ah_i + Bq)$
 - ullet A and B are weight matrices and u is a weight vector

Keys and Values

The input matrix $\mathbf{H} = [h_1, \dots, h_L]^T \in \mathbb{R}^{L \times d}$ appears in two places:

- 1. Used as keys to "compare" them with the query vector q to obtain the affinity scores
- 2. Used as values in the weighted sum to get the attention output

However, they don't have to be the same - we can have:

- 1. A key matrix $\mathbf{K} = [k_1, \cdots, k_L]^T \in \mathbb{R}^{L \times d_k}$
- 2. A value matrix $V = [v_1, \dots, v_L]^T \in \mathbb{R}^{L \times d_v}$

Attention: More General Version

Query vector: $q \in \mathbb{R}^d$

Key vectors: $\mathbf{K} = [k_1, \cdots, k_L]^T \in \mathbb{R}^{L \times d_k}$ **Value** vectors: $\mathbf{V} = [v_1, \cdots, v_L]^T \in \mathbb{R}^{L \times d_v}$

- 1. Computing the **afinity scores**, $s \in \mathbb{R}^L$, by *comparing q* and K.
- 2. Apply the softmax to get **attention distribution**, $\alpha \in \mathbb{R}^L$

$$\alpha = softmax(s)$$

3. Calculate the weighted sum of V with α as weights to get the **attention output**, $a \in \mathbb{R}^d$

$$a = V^T \alpha = \sum_{i=1}^N \alpha_i h_i$$

Attention: More General Version

Consider a sequence of length L

Query vector: $\mathbf{Q} = [q_1, \cdots, q_L]^T \in \mathbb{R}^{L \times d_q}$ Key vectors: $\mathbf{K} = [k_1, \cdots, k_L]^T \in \mathbb{R}^{L \times d_k}$ Value vectors: $\mathbf{V} = [v_1, \cdots, v_L]^T \in \mathbb{R}^{L \times d_v}$

1. Computing the query-key **afinity scores**, $S \in \mathbb{R}^{L \times L}$

$$S = QK^T \in \mathbb{R}^{L \times L}$$
 (dot-product affinity)

2. Convert these scores to **probabilities** (row-wise), $P \in \mathbb{R}^{L \times L}$

$$P = softmax(s) \in \mathbb{R}^{L \times L}$$

3. Calculate the weighted average to get the **attention output**, $\mathbf{A} \in \mathbb{R}^{L \times d_{v}}$

$$A = PV = softmax(QK^T)V$$

Attention: a lookup table?

In a **lookup table**, the **query** matches a **key** and returns its **value**

In **attention**, the **query** matches all **keys** softly with a weight between 0 and 1 and returns the weighted sum of its **values**

Attention: Intuition

 Attention is a way to obtain a representation of an arbitrary set of representations (the values), dependent on some other representation (the query).

Fun Fact! There is a relation between the concept of **self-attention** and **convolutional layers** (paper)

Attention is great!

- Attention significantly improves model performance!
- It's very useful to allow decoder to focus on certain parts of the source
- Attention solves the bottleneck problem (by allowing the decoder to look directly at source)
- Attention helps with vanishing gradient problem (provides shortcut to faraway states)
- Attention provides some interpretability (by inspecting the attention distribution, we can see what the decoder was focusing on)

Issues with recurrent models

Lack of parallelization

- Forward and backward passes have
 O(sequence length) unparallelizable operations
- Inhibits training on very large datasets!

Long-range dependencies are tricky! (even with LSTMS)

- RNNs are unrolled "left-to-right"
- Hard to learn long-distance dependencies (because of gradient problems!)

If not recurrence then what?

What about **attention**?

Lecture Plan

- Introduction to the problem
- From recurrence (RNN) to attention-based NLP models
- Introducing the Transformer model
- Great results with Transformers
- Drawbacks of the Transformers

Transformer

- Encoder-Decoder architecture (similarly to before)
- Released in 2017
- Key Idea: Attention is all you need!

Attention Is All You Need

Ashish Vaswani* Google Brain avaswani@google.com

Noam Shazeer* Google Brain noam@google.com nikip@google.com

Niki Parmar* Google Research

Jakob Uszkoreit* Google Research usz@google.com

Llion Jones* Google Research llion@google.com

Aidan N. Gomez* † University of Toronto aidan@cs.toronto.edu

Łukasz Kaiser* Google Brain lukaszkaiser@google.com

Illia Polosukhin* ‡ illia.polosukhin@gmail.com

Abstract

Self-Attention: Intuition

Fun Fact! There is a relation between the concept of self-attention and convolutional layers (paper)

Image by: <u>The original Transformer paper</u>

Transformer: Self-Attention

The original transformer model does this in a particular way:

Query vector: $Q = XW^Q$

Key vectors: $K = XW^k$

Value vectors : $V = XW^v$

The matrices W^Q , W^k , W^v correspond to

model parameters

Let's build a transformer!

Self-Attention as a Building Block

- In the diagram at the right, we have **stacked self- attention blocks**, like we might stack LSTM layers.
- Can self-attention be a drop-in replacement for recurrence? No. It has a few issues, which we'll go through.

Barriers and solutions for Self-Attention as a building block

Barrier Solution

Doesn't have an inherent notion of order!

7

Solution: Positional Encoder

- Since self-attention doesn't build in order information, we need to **encode the order of the sentence**.
- Consider representing each sequence index as a vector

$$p_i \in \mathbb{R}^d, i \in \{1, 2, ..., T\}$$

- How to define $p_i \in \mathbb{R}^d$?
 - 1. Use a **sinusoidal positional encoder** (strategy used by the original Transformer paper)
 - 2. Learn one embedding for each position

Sinusoidal Positional Encoder

$$PE_{(pos,2i+1)} = cos\left(\frac{pos}{1000^{2i/d_{model}}}\right) \qquad PE_{(pos,2i)} = sin\left(\frac{pos}{1000^{2i/d_{model}}}\right)$$

Adding Positional Encoder

Barriers and solutions for Self-Attention as a building block

Barrier Solution

Doesn't have an inherent notion of order!

No nonlinearities for learning expression! (It's ? all just weighted averages)

Solution: Adding nonlinearities

- Note that there are no elementwise
 nonlinearities in self-attention: stacking more
 self-attention layers just re-averages value
 vectors
- Solution: add a feed-forward network to postprocess each output vector

Barriers and solutions for Self-Attention as a building block

Barrier Solution

Doesn't have an inherent notion of order!

No nonlinearities for learning expression! It's all just weighted averages

Apply **feedforward network** to each selfattention output.

Need to ensure we **don't "look at the future"** when predicting a sequence

.

Solution: Masking

- To use self-attention in **decoders**, we need to ensure **we can't peek at the future**.
- At every timestep, we could change the set of keys and queries to include only past words. (Inefficient!)
- To enable parallelization, we mask out attention to future words by setting attention scores to -inf.

$$s_{ij} = \begin{cases} q_i^T k_j, & i \le j \\ -\infty, & i > j \end{cases}$$

[START]		Grain	by	Grain
[START]		-inf	-inf	-inf
Grain			-inf	-inf
by				-inf
Grain				

Barriers and solutions for Self-Attention as a building block

Barrier Solution

Doesn't have an inherent notion of order!

No nonlinearities for learning expression! It's all just weighted averages

Need to ensure we **don't "look at the future"** when predicting a sequence

Putting the blocks together...

Transformer: Encoder-Decoder

Transformer: Basics

Transformer: Encoder-Decoder

Transformer: Basics I am a student **ENCODER DECODER** DECODER **ENCODER DECODER ENCODER** DECODER **ENCODER DECODER ENCODER ENCODER DECODER** suis étudiant INPUT

What's left in a Transformer that we haven't covered?

What's left in a Transformer that we haven't covered?

Multi-head Attention

Tricks to help with Training!

Multi-head Attention

- Idea: What if we want to **look in multiple places** in the sentence at once?
- Define **h** attention heads and apply attention to each of them:

$$Multihead(X) = Concat(A_1, ..., A_h)W^o$$
,

where
$$A_i = Attention(XW_i^Q, XW_i^K, XW_i^V)$$

Image by: The original Transformer paper

Multi-head Attention

1) This is our input sentence*

2) We embed each word*

3) Split into 8 heads. We multiply X or R with weight matrices 4) Calculate attention using the resulting Q/K/V matrices

5) Concatenate the resulting $\mathbb Z$ matrices, then multiply with weight matrix $\mathbb W^0$ to produce the output of the layer

Thinking Machines

* In all encoders other than #0, we don't need embedding. We start directly with the output of the encoder right below this one

Tricks to help with training!

Residual Connections

 Residual connections are thought to make the loss landscape considerably smoother (thus easier training!)

Layer Normalization

 Idea: cut down on uninformative variation in hidden vector values by normalizing to unit mean and standard deviation within each layer.

Scaled Dot-Product Attention

Residual Connections & Layer Normalization

Residual Connections & Layer Normalization

Residual Connections & Layer Normalization

Machines

Thinking

Congrats you build a Transformer!

Output

Implementation in Keras

```
vocab size = 20000
sequence length = 600
embed dim = 256
num heads = 2
dense dim = 32
inputs = keras.Input(shape=(None,), dtype="int64")
x = PositionalEmbedding(sequence length, vocab size, embed dim)(inputs)
x = TransformerEncoder(embed dim, dense dim, num heads)(x)
x = layers.GlobalMaxPoolinglD()(x)
x = layers.Dropout(0.5)(x)
outputs = layers.Dense(1, activation="sigmoid")(x)
model = keras.Model(inputs, outputs)
model.compile(optimizer="rmsprop",
              loss="binary crossentropy",
              metrics=["accuracy"])
model.summary()
```

Check the implementation on the course page!

Lecture Plan

- Introduction to the problem
- From recurrence (RNN) to attention-based NLP models
- Introducing the Transformer model
- Great results with Transformers
- Drawbacks of the Transformers

Great Results with the Transformers

Table 2: The Transformer achieves better BLEU scores than previous state-of-the-art models on the English-to-German and English-to-French newstest2014 tests at a fraction of the training cost.

Results from the original transformer paper

Model	BLEU		Training Cost (FLOPs)	
Model	EN-DE	EN-FR	EN-DE	EN-FR
ByteNet [18]	23.75			
Deep-Att + PosUnk [39]		39.2		$1.0 \cdot 10^{20}$
GNMT + RL [38]	24.6	39.92	$2.3\cdot 10^{19}$	$1.4 \cdot 10^{20}$
ConvS2S [9]	25.16	40.46	$9.6 \cdot 10^{18}$	$1.5 \cdot 10^{20}$
MoE [32]	26.03	40.56	$2.0\cdot10^{19}$	$1.2\cdot 10^{20}$
Deep-Att + PosUnk Ensemble [39]		40.4		$8.0 \cdot 10^{20}$
GNMT + RL Ensemble [38]	26.30	41.16	$1.8\cdot 10^{20}$	$1.1 \cdot 10^{21}$
ConvS2S Ensemble [9]	26.36	41.29	$7.7\cdot 10^{19}$	$1.2\cdot 10^{21}$
Transformer (base model)	27.3	38.1	$\underline{3.3\cdot 10^{18}}$	
Transformer (big)	28.4	41.8	$2.3 \cdot 10^{19}$	

Note: <u>BLEU (BiLingual Evaluation Understudy)</u> is a metric for evaluating machine-translated text. The score measures the similarity of the machine-translated text to a set of high-quality reference translations

GPT S

(Decoder-only)

sat

[START] The cat

BERT Google (Encoder-only)

[*] [*] sat [*] the [*]

[START] The cat [MASK] on [MASK] mat

T5 Google

(Encoder-Decoder)

[*] [*] sat on [*] [*]

[START] The cat [X] the mat

Great Results with the Transformers

Language Model Sizes Over Time

GPT-4 (march 2023) has **1.7 Trillion parameters !!!**

(logarithmic scale)

Source: **IEEE** blog

Lecture Plan

- Introduction to the problem
- From recurrence (RNN) to attention-based NLP models
- Introducing the Transformer model
- Great results with Transformers
- Drawbacks of the Transformers

What would we like to fix about the Transformer?

Quadratic compute in self-attention

- Computing all pairs of interactions means that the computation grows quadratically with the sequence length!
- (For recurrent models, it only grew linearly)

Position representations

• Are **simple absolute indices** the best we can do to represent position?

Great videos to watch!

- Stanford Seminar: Introduction to Transformers
- LSTM is dead. Long Live Transformers!
- A brief history of the Transformer architecture in NLP
- Positional embeddings in transformers EXPLAINED | Demystifying positional encodings
- Transformer models and BERT model: Overview

