First Isomorphism Theorem

1. First Isomorphism Theorem First Isomorphism Theorem

Example: Special Linear Group Finitely generated abelian groups

First Isomorphism Theorem

There are naturally many homomorphisms of the form $\bar{\varphi}:G\to G/\ker\bar{\varphi}$, and the bar typically denotes such homomorphisms.

A more general observation can be made, namely, that the image of any homomorphism is itself a quotient group – by the kernel!

Theorem 1 (First Isomorphism Theorem)

Suppose $\varphi: G \to H$ is a group homomorphism. Then

$$\varphi(G) = \operatorname{image} \varphi \cong G / \ker \varphi.$$

Proof.

To simplify notation, put $K=\ker\varphi$ and use multiplicative notation to denote group operations. We shall exhibit an isomorphism; define

$$\psi: \mathsf{G}/\mathsf{K} o \varphi(\mathsf{G}) \ \mathsf{g}\mathsf{K} \mapsto \varphi(\mathsf{g}).$$

Verifying ψ is an isomorphism is routine:

• Claim. ψ is well-defined.

Proof: To show ψ is a function, we must make sure image $\psi \subset \varphi(G)$ – apparent in the definition of ψ – and that no element in G/K is mapped to two different elements in $\varphi(G)$.

Suppose gK = hK. By Proposition $\ref{eq:suppose}$, there exists $k \in K$ such that g = hk. By definition of the kernel, $k \in K = \ker \varphi$ implies $\varphi(k) = 1_H$, the identity element in H. Then, since by hypothesis, φ is a homomorphism,

$$\psi(gK) = \varphi(g) = \varphi(hk) = \varphi(h)\varphi(k) = \varphi(h) \cdot 1_H = \varphi(h) = \psi(hK),$$
 as required.

• Claim. ψ is a homomorphism.

Proof: Choose gK, $hK \in G/K$. Then

$$\psi((gK)(hK)) = \psi((gh)K) = \varphi(gh)$$
$$= \varphi(g)\varphi(h) = \psi(gK)\psi(hK),$$

as required.

• Claim. ψ is one-to-one.

Proof: Suppose $\psi(gK) = \psi(hK)$. Then $\varphi(g) = \varphi(h)$. Multiply by $\varphi(h)^{-1}$:

$$\varphi(g)\varphi(h)^{-1} = \varphi(h)\varphi(h)^{-1} = 1_{H}$$

$$\implies \varphi(g)\varphi(h)^{-1} = \varphi(gh^{-1}) = 1_{H}$$

$$\implies gh^{-1} \in \ker \varphi = K.$$

Multiply by *h*:

$$g=gh^{-1}h\in Kh=hK,$$

and so by Proposition ??, gK = hK.

• Claim. ψ is onto.

Proof: Suppose $h \in \varphi(G)$. By definition of $\varphi(G)$, $h = \varphi(g)$ for some $g \in G$. Then $h = \varphi(g) = \psi(gK)$.

This completes the proof of Theorem 1.

Example: Special Linear Group

Example 1

Recall part (??) of Example ??, the group homomorphism

$$\delta: \mathsf{GL}(2,\mathbb{R}) \to \mathbb{R}^{\times}$$

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \mapsto \mathsf{ad} - \mathsf{bc}.$$

Question

What is ker δ in Example 1?

The kernel in Example 1 is called the **special linear group** and is denoted $SL(2,\mathbb{R})$. It is the set of all 2×2 matrices with real entries, whose determinant is 1.

Exercise 1

Prove δ in Example 1 is surjective.

It follows, from the First Isomorphism Theorem, that $\text{GL}(2,\mathbb{R})/\operatorname{SL}(2,\mathbb{R})\cong\mathbb{R}^{\times}.$

Question

What are the cosets of $SL(2,\mathbb{R})$ in $GL(2,\mathbb{R})$?

Finitely generated abelian groups

The following exercises motivate Theorem 2.

Exercise 2 (cf. Problem 74)

Use the First Isomorphism Theorem to prove $\mathbb{Z}/n\mathbb{Z} \cong \mathbb{Z}_n$.

Let us define a "basis" for the *n*-tuples in \mathbb{Z}^n . For each $i=1,\ldots,n$, let

$$\mathbf{e}_i := (e_{i1}, e_{i2}, \dots, e_{in}), \text{ where } e_{ij} = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}.$$

We can think of each \mathbf{e}_i is a "component-wise identity" of \mathbb{Z}^n .

Exercise 3 (cf. Problem 75)

Let m, n denote non-zero integers. Use the First Isomorphism Theorem to show

$$\mathbb{Z}^2/\langle m\mathbf{e}_1, n\mathbf{e}_2 \rangle \cong \mathbb{Z}_m \times \mathbb{Z}_n.$$

Question

How does Exercise 3 compare to Example ??? What about Proposition ???

Theorem 2 is the generalization:

Theorem 2

Let
$$H=\langle m_1\mathbf{e}_1,\ldots,m_n\mathbf{e}_n
angle < \mathbb{Z}^n$$
. Then
$$\mathbb{Z}^n/H\cong \mathbb{Z}_{m_1}\times\cdots\times \mathbb{Z}_{m_n}.$$

Proposition 1

Every finitely generated abelian group is a quotient group of \mathbb{Z}^m , for some $m \in \mathbb{N}$.

Proof.

Suppose G is an abelian group with generators g_1, \ldots, g_m . Then every element in G is of the form $g_1^{a_1} \cdots g_m^{a_m}$ for integers a_1, \ldots, a_m . Define a map

$$\phi: \mathbb{Z}^m o G$$
 $\mathbf{a}:=(a_1,\ldots,a_m)\mapsto g_1^{a_1}\cdots g_m^{a_m}.$

If ϕ is surjective then we may apply the First Isomorphism Theorem to conclude

$$\mathbb{Z}^m / \ker (\phi) \cong \phi(\mathbb{Z}^m) = G,$$

completing the proof.

First we show ϕ is a group homomorphism. Suppose $\mathbf{a}, \mathbf{b} \in \mathbb{Z}^m$.

$$\phi(\mathbf{a} + \mathbf{b}) = \phi((a_1 + b_1, \dots, a_m + b_m))
= g_1^{a_1 + b_1} \cdots g_n^{a_m + b_m}
= (g_1^{a_1} g_1^{b_1}) \cdots (g_m^{a_m} g_m^{b_m})
= (g_1^{a_1} \cdots g_m^{a_m}) (g_1^{b_1} \cdots g_m^{b_m})
= \phi((a_1, \dots, a_m)) \phi(b_1, \dots, b_m)).$$

Now we show ϕ is surjective. Take $g \in G$, which again, can be written $g = g_1^{a_1} \cdots g_m^{a_m}$ for some $a_1, \ldots, a_m \in \mathbb{Z}$. By definition, $\phi: (a_1, \ldots, a_m) \mapsto g$. So ϕ is surjective.

The Fundamental Theorem of Finitely Generated Abelian Groups, which we state in Section ??, actually gives the precise structure of the quotient groups in Proposition 1.