linear

- we will want to represent the geometry of points in space
- we will often want to perform (rigid) transformations to these objects to position them
 - translate
 - rotate
- or move them in an animation
 - time varying tform
- position or move virtual camera
- we also may use non-rigid tforms to specify shape
 - scale an object
 - squash a sphere into an ellipsoid.

SO....

- so we must understand how to manipulate 3d coordinates and transforms
- we must pay attention to order of tforms
- we must pay attention to the role of the coordinate system w.r.t. which we perform a tform
- we will look at linear and affine transformations
- at end of the day, our code will have vertices with 3d coords and we will use 4 by 4 matrices to describe properly manipulate them
- but to figure out what to code, we need to first do some thinking/paper-pencil work.

Geometric data types

• we describe a point using a coordinate vector

$$\left[egin{array}{c} x \ y \ z \end{array}
ight]$$

- specifies position wrt an agreed upon coordinate system
 - three agreed directions
 - agreed origin
 - if we change agreed upon c.s., we must change the coordinate vector
- so a point is specified with a coordinate system and a coordinate vector

4 geometric data types

- ullet point: $ilde{p}$
 - represents place
- ullet vector: $ec{v}$
 - represents motion/offset between points
- coordinate vector: c
- ullet coordinate system $ec{\mathbf{s}}^t$
 - "basis" for vectors
 - "frame" is for points

vectors vs coordinate vectors

- a vector is a geometric entity (motion/offset between points) in a real or virtual 3D world
- a coordinate vector is a set of numbers used to specify a vector given an agreed coordinate system

vector space

- ullet a vector space V: some set of elements $ec{v}$
- needs an addition operation
- needs scalar multiplication
- some other rules
 - addition is associative and commutative
 - scalar mul must distribute across vector add

$$\alpha(\vec{v} + \vec{w}) = \alpha \vec{v} + \alpha \vec{w}$$

examples of vector spaces

- ullet the set V may be lots of different things
 - motion between points !!!!
 - polynomial expressions
 - farm animals
 - triplets of numbers

coordinate system: basis

- a basis is a (minimal) set of vectors that we can use to get to all of the vectors using our ops.
 - linearly independent
- dimension is number of basis elements needed
- for us it will be 3
- basis can be used to address all of the vectors uniquely
 - using coordinates

$$\vec{v} = \sum_{i} c_i \vec{b}_i$$

shorthand

• write this as

$$\vec{v} = \sum_{i} c_{i} \vec{b}_{i} = \begin{bmatrix} \vec{b}_{1} & \vec{b}_{2} & \vec{b}_{3} \end{bmatrix} \begin{bmatrix} c_{1} \\ c_{2} \\ c_{3} \end{bmatrix}$$

• even shorter

$$\vec{v} = \vec{\mathbf{b}}^t \mathbf{c}$$

linear transformation

- ullet a linear tform ${\mathcal L}$ maps from V to V
- satisfies 2 rules

$$\mathcal{L}(\vec{v} + \vec{u}) = \mathcal{L}(\vec{v}) + \mathcal{L}(\vec{u})$$

$$\mathcal{L}(\vec{\alpha v}) = \alpha \mathcal{L}(\vec{v})$$

ullet we will use the notation $ec{v} \Rightarrow \mathcal{L}(ec{v})$

linear tforms and matrices

- linear transformation can be exactly specified by telling us its effect on the basis vectors.
- linear transforms can be expressed with matrix multiplication
- Linearity implies

$$\vec{v} \Rightarrow \mathcal{L}(\vec{v}) = \mathcal{L}(\sum_{i} c_{i} \vec{b}_{i}) = \sum_{i} c_{i} \mathcal{L}(\vec{b}_{i})$$

• in our shorthand this is

$$\begin{bmatrix} \vec{b}_1 & \vec{b}_2 & \vec{b}_3 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix} \Rightarrow \begin{bmatrix} \mathcal{L}(\vec{b}_1) & \mathcal{L}(\vec{b}_2) & \mathcal{L}(\vec{b}_3) \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix}$$

ullet each $\mathcal{L}(\vec{b}_i)$ can ultimately be written as some linear combination of the original basis vectors using numbers $M_{i,j}$

$$\begin{bmatrix} \mathcal{L}(\vec{b}_{1}) & \mathcal{L}(\vec{b}_{2}) & \mathcal{L}(\vec{b}_{3}) \end{bmatrix} = \begin{bmatrix} \vec{b}_{1} & \vec{b}_{2} & \vec{b}_{3} \end{bmatrix} \begin{bmatrix} M_{1,1} & M_{1,2} & M_{1,3} \\ M_{2,1} & M_{2,2} & M_{2,3} \\ M_{3,1} & M_{3,2} & M_{3,3} \end{bmatrix}$$

SO

 a linear mapping operating on a vector can be expressed as

$$\left[\begin{array}{ccc} \vec{b}_1 & \vec{b}_2 & \vec{b}_3 \end{array}\right] \left[\begin{array}{c} c_1 \\ c_2 \\ c_3 \end{array}\right]$$

$$\Rightarrow \begin{bmatrix} \vec{b}_1 & \vec{b}_2 & \vec{b}_3 \end{bmatrix} \begin{bmatrix} M_{1,1} & M_{1,2} & M_{1,3} \\ M_{2,1} & M_{2,2} & M_{2,3} \\ M_{3,1} & M_{3,2} & M_{3,3} \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix}$$

well defined ops

vector to vector

$$\vec{\mathbf{b}}^t \mathbf{c} \Rightarrow \vec{\mathbf{b}}^t M \mathbf{c}$$

- see fig
- basis to basis

$$\vec{\mathbf{b}}^t \Rightarrow \vec{\mathbf{b}}^t M$$

- see fig
- coordinate vector to coordinate vector (this is the one we will see in code, but not until then).

$$\mathbf{c} \Rightarrow M\mathbf{c}$$

identity and inverse

- ullet the identity matrix I implements to "do nothing" transform
- \bullet an inverse matrix has the property $MM^{-1}=M^{-1}M=I$
- not every matrix has an inverse, but nice ones do, and all of our matrices are nice.

matrices for change of basis

 we just saw as an intermediate result an expression of the form

$$\begin{bmatrix} \vec{a}_1 & \vec{a}_2 & \vec{a}_3 \end{bmatrix} = \begin{bmatrix} \vec{b}_1 & \vec{b}_2 & \vec{b}_3 \end{bmatrix} \begin{bmatrix} M_{1,1} & M_{1,2} & M_{1,3} \\ M_{2,1} & M_{2,2} & M_{2,3} \\ M_{3,1} & M_{3,2} & M_{3,3} \end{bmatrix}$$

or in shorthand

$$\vec{\mathbf{a}}^t = \vec{\mathbf{b}}^t M$$
$$\vec{\mathbf{a}}^t M^{-1} = \vec{\mathbf{b}}^t$$

- this is not a transformation.
- we have used a matrix to express one named basis with respect to another.
- this will be useful too.
- we can also use this to have different expressions for the same vector

$$\vec{v} = \vec{\mathbf{b}}^t \mathbf{c} = \vec{\mathbf{a}}^t M^{-1} \mathbf{c}$$

• ex 2.1 and 2.2

dot

our vectors come equipped with a dot product operation

$$\vec{v} \cdot \vec{w}$$

 allows us to define the squared length (also called squared norm)

$$\parallel \vec{v} \parallel^2 := \vec{v} \cdot \vec{v}$$

ullet The dot product is related to the angle $\theta \in [0..\pi]$ between two vectors

$$\cos(\theta) = \frac{\vec{v} \cdot \vec{w}}{\parallel \vec{v} \parallel \parallel \vec{w} \parallel}$$

ortho

- 2 vectors are *orthogonal* if $\vec{v} \cdot \vec{w} = 0$.
- orthonormal basis
- right handed basis
- dot product in orthonormal basis

$$\vec{\mathbf{b}}^{t}\mathbf{c} \cdot \vec{\mathbf{b}}^{t}\mathbf{d} = \left(\sum_{i} c_{i} \vec{b}_{i}\right) \cdot \left(\sum_{j} d_{j} \vec{b}_{j}\right)$$

$$= \sum_{i} \sum_{j} c_{i} d_{j} (\vec{b}_{i} \cdot \vec{b}_{j})$$

$$= \sum_{i} c_{i} d_{i}$$

cross

• the output is the vector

$$\vec{v} \times \vec{w} := \parallel v \parallel \parallel w \parallel \sin(\theta) \vec{n}$$

 \bullet in a r.h. o.n. basis, the coordinates of $(\vec{\bf b}^t{\bf c})\times(\vec{\bf b}^t{\bf d})$ are

$$\begin{bmatrix}
c_2d_3 - c_3d_2 \\
c_3d_1 - c_1d_3 \\
c_1d_2 - c_2d_1
\end{bmatrix}$$

rotations

- preserves dot product between vector pairs
- preserves right handedness between ordered vector triples
- so maps r.h.o.n. basis to another
- in 3d, every rotation fixes an axis, and rotates some angles r.h. about that axis.

comments

- rotations about different axes do not commute
- composition of two rots about two axes is a rotation about some third axis.

2D rotations

ullet rotate by heta degrees counter clockwise about the origin

$$\begin{bmatrix} \vec{b}_1 & \vec{b}_2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} \vec{b}_1 & \vec{b}_2 \end{bmatrix} \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

and we can rotate the basis as

$$\begin{bmatrix} \vec{b}_1 & \vec{b}_2 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} \vec{b}_1 & \vec{b}_2 \end{bmatrix} \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

3d rotations

ullet rotate a point by heta degrees around the z axis of the basis

$$\begin{bmatrix} \vec{b}_1 & \vec{b}_2 & \vec{b}_3 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} \vec{b}_1 & \vec{b}_2 & \vec{b}_3 \end{bmatrix} \begin{bmatrix} c & -s & 0 \\ s & c & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

- where $c \equiv cos\theta$, and $s \equiv sin\theta$.
- fixes points on z axis
- ullet for points in z=k plane, it is like a 2D rotation
- basis is important (z direction)

more 3d rotations

 \bullet around x axis

$$\begin{bmatrix} \vec{b}_1 & \vec{b}_2 & \vec{b}_3 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} \vec{b}_1 & \vec{b}_2 & \vec{b}_3 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & c & -s \\ 0 & s & c \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

forward rotation around the y axis

$$\left[\begin{array}{ccc}c&0&s\\0&1&0\\-s&0&c\end{array}\right]$$

arbitrary rotation

- can get any rotation by applying one x,y,z
- can get any rotation by applying one x,y,x
 - called Euler angles
 - visualize with set of gimbals
- ullet one can specify rotation with unit vector axis $[k_x,k_y,k_z]$ and eta using matrix

$$\begin{bmatrix} k_x^2v + c & k_xk_yv - k_zs & k_xk_zv + k_ys \\ k_yk_xv + k_zs & k_y^2v + c & k_yk_zv - k_xs \\ k_zk_xv - k_ys & k_zk_yv + k_xs & k_z^2v + c \end{bmatrix}$$

• where $v \equiv 1 - c$

other linear transforms

• uniform scales (common)

$$\left[\begin{array}{cccc}
a & 0 & 0 \\
0 & a & 0 \\
0 & 0 & a
\end{array}\right]$$

non-uniform scales (used for modeling)

$$\left[egin{array}{cccc} a_x & \mathsf{0} & \mathsf{0} \ \mathsf{0} & a_y & \mathsf{0} \ \mathsf{0} & \mathsf{0} & a_z \end{array}
ight]$$

• shears (rare)

$$\left[\begin{array}{ccc} 1 & b & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right]$$

• ex 2.3, 2.4