Project Steps

- Data Preparation:
 - Variable Encoding on Train/Validation/Test sets (See slide 2 for example)
 - Feature "State" -> OneHotEncoding
- Feature Selection
 - Run exhaustive search for feature selection using Logistic Regression model
 - Check for multicollinearity using VIF method
- Modeling (LR)
 - Run Logistic Regression on selected features
 - Check for fairness and do debiasing if needed
 - Report weights and confusion matrix
- Modeling (RF)
 - Run Random Forest on the selected features
 - · Check for fairness and do debiasing if needed
 - Report feature importance and confusion matrix
 - (If time permits) Run RF on all features, and find overlapping features with LR model
- Model Selection
 - Choose between RF and LR based on Accuracy/Fairness trade-off
- Investigate "bank_xyz" treatment
 - Answer the related question accordingly.
- Describe the rejection scenario
 - We use contrastive explanation for that.
- (If Time Permits) create a simple API for reporting the credit
- · Writing Report and creating slides

 All predictors' values should be encoded into numbers 1,2,3,4 and
 This can be done via percentiles.

Dataset 1

- If any predictors have NaN values, number "0" should be assigned.
- Variable "ind_acc_XYZ" should be remained untouched (0,1).
- Variable "States" should be one hot encoded.
- Variable "Income" should be encoded within corresponding State.

Dataset 2

P1	P2	Р3	Ind_acc_XYZ	isAZ	isNC	:	Default_ind
1	2	3	0	0	1		1
2	4	2	1	0	0		0
5	1	1	0	1	0		0

P1	P2	Р3	Ind_acc_XYZ	isAZ	isNC	 Num_Defaulted	Num_Acc
1	2	3	0	0	1	38	90
2	4	2	1	0	0	 58	120
5	1	1	0	1	0	90	200

Project Steps

- Data Preparation: (Kusha or Nikhil)
 - Variable Encoding on Train/Validation/Test sets (See slide 2 for example)
 - Feature "State" -> OneHotEncoding
- Feature Selection (Mohammad)
 - · Run exhaustive search for feature selection using Logistic Regression model
 - · Check for multicollinearity using VIF method
- Modeling (LR) (Mohammad)
 - Run Logistic Regression on selected features
 - Check for fairness and do debiasing if needed
 - Report weights and confusion matrix
- Modeling (RF) (Mohammad)
 - Run Random Forest on the selected features
 - Check for fairness and do debiasing if needed
 - Report feature importance and confusion matrix
 - (If time permits) Run RF on all features, and find overlapping features with LR model (Kusha or Nikhil)
- Model Selection (Mohammad)
 - · Choose between RF and LR based on Accuracy/Fairness trade-off
- Investigate "bank_xyz" treatment (Mohammad)
 - Answer the related question accordingly. (Kusha or Nikhil with the help of Mohammad)
 - Aggregation bias Control for other variables
- Describe the rejection scenario (Mohammad)
 - We use contrastive explanation for that.
- (If Time Permits) create a simple API for reporting the credit (Kusha or Nikhil)
- Writing Report and creating slides (Mohammad, Kusha and Nikhil)

Variables Encoding (Complete List)

5 Bins	5 Bins with missing (Bin 0)	Untouched Vars	One Hot Encoding
tot_credit_debt	rep_income (binnig per States)	Default_ind	States
avg_card_debt	uti_card_50plus_pct	ind_acc_XYZ	
credit_age		auto_open_ 36_month_num	
credit_good_age		card_open_36_month_num	
card_age		mortgages_past_due_6_months_num	
uti_max_credit_line		non_mtg_acc_past_due_6_months_num	
credit_past_due_amount		non_mtg_acc_past_due_12_months_num	
inq_12_month_num			
card_inq_24_month_num			
uti_card			
uti_50plus_pct			

Machine Learning (Kusha & Nikhil) All steps are run on the original sets (no percentile)

- Random Forest Modeling Steps :
 - Impute missing values by Median (rep_income and "uti_card_50plus_pct")
 - Add "isNa_income" and "isNa_uti" features to all 3 sets.
 - Add "isOld" feature to all 3 sets based on the median of "Credit_age" (Med = 297)
 - Balance the training data by Defaulted account (i.e. "Default_ind = 1"), and leave the validation and test sets untouched.
 - Run a Random Forest:
 - Train on the balanced training set, tune the parameters on the validation set and test it on the test set. (Classification Metrics)
 - Save the trained model.
 - Generate Feature Importance + Number of Splits Per Feature + Partial Dependence Plot
 - Clean Code.

Logistic Rule Regression and ... (Mohammad)

- Run LRR:
 - Report plots and weights for all features
 - Report Classification Metrics
- Compare RF and LRR for biasing against young people
 - Control for "isOld" feature.
 - Debiasing both RF and LRR
 - Report plots + Fairness Metrics Numbers + Comparison Tables
 - Select the Winner model
- Answer the XYZ Bank:
 - Use chi square test for independence test
 - Test for aggregation bias if exists (all combination)
- Rejection Scenario:
 - Choose a Bad applicant and build Lime on it
 - Use Contrastive Method for suggestions.