Finite temperature and δ -regime in the Schwinger model

Ivan Hip^a, Jaime Fabián Nieto Castellanos^b, Wolfgang Bietenholz^b

> ^aUniversity of Zagreb, Croatia ^bUNAM, Mexico

> > July 29, 2021

Schwinger model

- two-dimensional quantum electrodynamics fermions coupled to Abelian gauge field U(1)
- introduced by Schwinger in 1961
- the simplest example of chiral anomaly, one of the simplest models which illustrates confinement
- often used as a testbed for conceptual and numerical approaches in lattice field theory
- nevertheless, some of the rich physical properties of the model in anisotropic volumes have not yet been tested
 - **finite temperature Schwinger model**: Hosotani solution has not been compared with the lattice simulation results
 - \bullet δ -regime: Hasenfratz and Niedermayer predictions for residual pion mass have not been investigated in the Schwinger model

Finite temperature - Hosotani solution

Pion mass - Hosotani vs. lattice simulation

Pion mass - Hosotani vs. lattice simulation

δ -regime

Hasenfratz/Niedermayer prediction

Residual pion mass plateau

Residual pion mass plateau

β	$ extstyle \mathcal{F}_{\pi}$
2.0	0.6683(50)
3.0	0.6681(25)
4.0	0.6700(22)

$$F_{\pi} = 0.6688(5)$$

Witten-Veneziano formula

• in the chiral *N*-flavor Schwinger model the Witten- Veneziano formula is simplified to [Seiler and Stamatescu, 1987]

$$m_{\eta}^2 = \frac{2N}{F_{\eta}^2} \chi_T^{que}$$

• mass of the η particle is known analytically [Belvedere et al. 1979]

$$m_{\eta}^2 = \frac{N}{\pi \beta}$$

• there is also continuum prediction for χ_T^{que} [Seiler and Stamatescu, 1987]

$$\beta \chi_T^{que} = rac{1}{4\pi^2}$$

Quenched topological susceptibility

• [Bardeen et al., 1998] were able to analytically compute χ_T^{que} on the lattice

$$\beta \chi_T^{que} = \frac{I_1(\beta)}{4\pi^2 I_0(\beta)}$$

by using an alternative definition of topological charge

$$Q_S = \frac{1}{2\pi} \sum_{P} \sin(\theta_P)$$

for the usual definition of topological charge

$$Q_T = \frac{1}{2\pi} \sum_P \theta_P$$

it is not possible to find analytic solution, but using the same line of reasoning it is possible to numerically compute χ_T^{que} to arbitrary precision

Quenched topological susceptibility

F_{η} versus F_{π}

• in large N_c QCD, to the order $1/N_c$

$$F_{\eta'} = F_{\pi}$$

- in the Schwinger model nothing assures that this relation holds
- ullet inserting the confirmed values for m_η^2 and χ_T^{que}

$$F_{\eta}^2 = rac{2N}{m_{\eta}^2} \chi_T^{que} = 2N \left(rac{\pi eta}{N}
ight) \left(rac{1}{4\pi^2 eta}
ight) = rac{1}{2\pi}$$

 our results suggest that in the Schwinger model these two decay constants differ significantly

$$F_{\eta} = 0.3989$$
 $F_{\pi} = 0.6688(5)$