XZ is separated:

Some background on scheme morphisms:

Def: Let $f: X \to Y$ be a continuous map and F a sheaf on X. Then the direct image sheaf f_*F on Y is defined by setting $f_*F(U) = F(f^{-1}(U))$ for any open subset $U \subset Y$.

Def: Let R and S be local rings. (Recall that this means each has a unique maximal ideal.) A ring honomorphism $P: R \to S$ is a local homomorphism if $Q^{-1}(m_S) = m_R$.

Def: Let (X, ∂_X) and (Y, ∂_Y) be schemes. Then a morphism $(f, f^*): (X, \partial_X) \longrightarrow (Y, \partial_Y)$

is continuous map $f: X \to Y$ together with $f^{\#}: \mathcal{O}_Y \to f_{\#}\mathcal{O}_X$ a map of sheaves on Y such that for each $p \in X$, the induced map of local rings $f^{\#}: \mathcal{O}_{Y}, f_{\varphi} \to \mathcal{O}_{X,p}$ is a local homomorphism. \leftarrow This essentially says that if local function g vanishes at f(p), then $f^{\#}g$ vanishes at p.

Def: A morphism of schemes $(i, i^{\#}): (Z, \partial_{Z}) \rightarrow (X, \partial_{X})$ is a closed immersion if i induces a homeomorphism of Z with its image (as topological spaces) and $i^{\#}: \partial_{X} \rightarrow i_{\#}\partial_{Z}$ is a surjection. \vdash This essentially says local functions on Z^{-} something in $i_{\#}\partial_{Z}$, p here - extend to local functions on X - something in ∂_{X} , i(p).

Gluing is always the source of non-separatedness - affine schenes are necessarilly separated. (See Hartshorne Prop II. 4.1, or Shafarevich Prop 5.3) Moreover:

An Algebraic Geometry Lemma:

Lemma: Let X be a scheme over C with $\{U_{\alpha}:=\operatorname{Spec}(R_{\alpha})\}$ an affine open cover such that $U_{\alpha\beta}:=U_{\alpha}\cap U_{\beta}$ is also affine, say $U_{\alpha\beta}=\operatorname{Spec}(R_{\alpha\beta})$ $R_{\alpha\beta}\otimes_{C}R_{\beta}\longrightarrow R_{\alpha\beta}$ is surjective.

Then X is separated.

Proof: (See Shafarevich Prop 5.4)

Some convex polyhedral geometry lemmas:

Observation: Faces & of o have the form ~= onut for some u & o' AM.

Lemma: If $z = \sigma_0 u^2$ for some $u \in \sigma^{\vee}$, then $z^{\vee} = \sigma^{\vee} + R_{\geq 0}(-u)$.

Prof: (5'+R20(-u))

Suppose net. Then $\langle n, m \rangle \ge 0$ for all me σ^{\vee} and $\langle n, u \rangle = 0$. So $\langle n, m + \alpha u \rangle \ge 0$ for all $m + \alpha u \in \sigma^{\vee} + R \cdot u = \sigma^{\vee} + R_{20} \cdot (-u)$, and $n \in (\sigma^{\vee} + R_{20} \cdot (-u))^{\vee}$.

(5"+R20(-4))"CT

Suppose $n \in (\sigma'+R_{zo}(-u))'$. Then $(n, m-\alpha u) \geq 0$ for all $m \in \sigma'$, $\alpha \in R_{zo}$. With $\alpha = 0$, this implies $(n, m) \geq 0$ for all $m \in \sigma'$, so $n \in (\sigma')^{\vee} = \sigma$. If we fix $m \in \sigma'$ and take α arbitrarilly large, we see that $(n, -u) \geq 0$, so $n \in (-u)^{\vee}$. Then $n \in \sigma' \cap (-u)^{\vee} = \sigma' \cap u^{\perp}$ since uses, so $\sigma' \subset u^{\vee}$. $n \in \mathcal{T}$.

Lemma: If T=5 nut for some uf So, then Sz = So + Zzo: (-4).

Prof: First, $S_{\mathcal{T}} = \mathcal{T}' \cap M = (\mathcal{T}' + R_{zo}(-u)) \cap M$.

Clearly, $S_{\sigma} + \mathcal{Z}_{zo} \cdot (-u) = (\mathcal{T}' \cap M) + \mathcal{Z}_{zo} \cdot (-u) = (\mathcal{T}' + R_{zo}(-u)) \cap M = S_{\mathcal{T}}$.

Next, take $v \in S_{\mathcal{T}}$. Then $v = m - \alpha n$ for some $m \in \mathcal{T}'$, $\alpha \in R_{zo}$.

Then $v + \beta u \in \mathcal{T}'$ whenever $\beta \geq \alpha$. If furtherwore $\beta \in \mathcal{T}$, then $v + \beta u =: m' \in S_{\sigma}$.

So $v = m' - \beta u$ is in $S_{\sigma} + \mathcal{Z}_{zo} \cdot (-u)$.

Lomma: Let $Y = \sigma_1 \cap \sigma_2$. If u is in the nebtive interior of $(\sigma_1 - \sigma_2)^V$, then $z = \sigma_1 \cap u^{\perp} = \sigma_2 \cap u^{\perp}$.

Minkowski sum of σ_1 and $-\sigma_2$.

Proof: Note that for a convex cone $C \subset M_R$, the relative inherior of C is characterized by $RelInt(C) = \{m \in C : \langle n, m \rangle > 0 \text{ for all } n \in C^{\vee} \setminus C^{\perp} \}$.

So, $m \in RelInt(C)$ implies $C^{\vee} \cap m^{\perp} = C^{\perp} = C^{\vee} \cap (-C)^{\vee}$ Taking $C = (\sigma_1 - \sigma_2)^{\vee}$ and m = u, we have $(\sigma_1 - \sigma_2) \cap u^{\perp} = (\sigma_1 - \sigma_2) \cap (\sigma_2 - \sigma_1)$.

Claim: $(\sigma_1 - \sigma_2) \cap (\sigma_2 - \sigma_1) = \gamma - \gamma$.

•If $n, n' \in \mathcal{C} = G_1 \cap G_2$, then $n-n' \in (\sigma_1 - \sigma_2) \cap (G_2 - G_1)$.

•If $n_1 - n_2 = n'_2 - n'_1 \in (\overline{s_1 - s_2}) \cap (\overline{s_2 - s_4})$, then $n_1 + n'_1 = n_2 + n'_2 \in \overline{s_1 \cap s_2} = z$. But $n_i, n'_i \in \overline{s_i}$ and $n_i + n'_i \in T$ implies $n_i, n'_i \in T$ (since T is a face of $\overline{s_i}$).

So nonzer-r.

We have that (o, -oz) nut = 2 - 2. Next,

 $\sigma_{1} \cap u^{\perp} = \sigma_{1} \cap (\sigma_{1} - \sigma_{2}) \cap u^{\perp} = \sigma_{1} \cap (\Upsilon - \Upsilon) = \Upsilon$ and

 $-\sigma_{z} \cap u^{\perp} = -\sigma_{z} \cap (\sigma_{1} - \sigma_{z}) \cap u^{\perp} = -\sigma_{z} \cap (\tau - \tau) = -\tau, \quad \text{so} \quad \sigma_{z} \cap u^{\perp} = \tau.$