

Automate asynchrone

Souvenons-nous que jusqu'à ce point nous avons évité **le mot vide** comme étiquette de transition.

Un automate fini dans lequel certaines flèches sont étiquetées par le mot vide (« ε transitions ») s'appelle automate asynchrone. L'ensemble des flèches vérifie donc $E \subset Q \times (A \cup \varepsilon) \times Q$.

Proposition: Pour tout automate asynchrone, il existe un automate fini ordinaire (c.à.d. sans ε-transitions) qui reconnaît le même langage.

Comme tout automate non déterministe est équivalent à un automate déterministe, il en suit que tout automate asynchrone est équivalent à un automate déterministe.

Il existe un algorithme de suppressions de ε -transitions.

Pour un automate asynchrone C = (Q, I, T, E) avec $E \subset Q \times (A \cup \varepsilon) \times Q$ nous allons construire un automate B = (Q, I, T, F) qui ne diffère de C que par l'ensemble de ses flèches (F) et ce, suivant une règle bien déterminée :

par définition on a $(p.a.q) \in F$ s'il existe un chemin

$$c: p_0 \xrightarrow{\mathcal{E}} p_1 \xrightarrow{\mathcal{E}} \dots \xrightarrow{\mathcal{E}} p_n \xrightarrow{\mathcal{E}} q_0 \xrightarrow{\mathcal{E}} q_1 \xrightarrow{\mathcal{E}} \dots \xrightarrow{\mathcal{E}} q_m$$
et $p_0 = p, q_m = q$

Le nombre de ε -transitions à droite ou à gauche de la transition $p_n \rightarrow q_0$ peut être nul (dans ce cas $p_n = p_0$ ou $q_0 = q_m$).

(Clarification : on identifie donc tout **chemin** de l'automate Ci n'impliquant qu'une seule transition étiquetée par un caractère autre que ε , à une transition de l'automate B marquée par ce caractère).

1

Ex. Prenons un automate asynchrone :

1a) Elimination des ε-transitions

	état	a	b
ES	0	2	3,5,7
S	1	2	3,7
	2	3,7	I
S	3		3,7
	4	-	5
	5		4,6,7
S S	6		5
S	7		

	état	a	b
ES	0	2	357
	2	37	
S	357		3467
S	37		37
S	3467	-	357

0ε1ε3ε7 signifie que		2a3 reste tel quel	3ε7 signifie que 3
0 est une sortie	est une sortie	2a3ε7 → 2a7	est une sortie
0ε1a2 → 0a2	1a2 reste tel quel		3b3 reste tel quel
0ε1ε3b3 → 0b3	1ε3b3 → 1b3		3b3ε7 → 3b7
0ε1ε3b3ε7 → 0b7	1ε3b3ε7 → 1b7		
0ε4b5 → 0b5			
4b5 reste tel quel	5b6 reste tel quel	6ε7 signifie que 6	7 : pas de transitions
	5b6ε4 → 5b4	est une sortie	
	5b6ε7 → 5b7	6ε4b5 → 6b5	

On obtient une TT: 1b) Déterminisation (sans compléter):

	état	a	b
ES	0'	2'	3'5'
	2'	3'	
S	3'5'		3'6'
S	3'		3'
S	3'6'		3'5'

2) Déterminisation en un seul pas :

seul pas : **ε-clôtures**: de 0: **0**1347

de 2 : 2

	état	a	b
ES	0	2	357
	2	37	1
S	357		3467
S	37		37
S	3467		357

de 3: **3**7 de 5: 5 de 6 : 4**6**7

Notons 0'=01347, 2'=2, 3'=37, 5'=5, 6'=467 (notation utile mais pas obligatoire).

Dans les termes de ces \(\epsilon\)-clôtures qui deviennent des états composés, nous pouvons déterminiser tout de suite :

Ce qui est exactement la même chose que la TT à droite

3

ce qui est le même automate que le résultat de compléter l'automate (A5) ! (en minimisant l'automate (A5), la seule chose qu'il reste à faire c'est de le compléter, autrement il est déjà minimal).

Exemple plus compliqué

L'exemple qu'on vient de considérer n'est pas assez général. Prenons un exemple plus complexe :

Déterminisons cet automate en considérant tous les états qu'on peut atteindre en lisant un caractère comme un état composé; l'état initial c'est l'état où on peut arriver en ne lisant que le mot vide, donc ici c'est l'état composé (1,6). En lisant a à partir de l'état 1, on arrive en 2, mais en lisant $a\varepsilon=a$, on arrive en 3, en lisant $a\varepsilon=a$, on arrive en 4 et en 6, donc on a l'état composé (2,3,4,6) etc.

etat	a	b
(1,6)	(2,3,4,6)	

(2,3,4,6) -- (3,4,5,6) (3,4,5,6)

Tous les états composés contenant l'état terminal 6 sont terminaux, donc ici tous les trois états sont terminaux.

(A5)

On obtient:

Il existent d'autres techniques équivalentes pour éliminer les & transitions 1.

¹ Par exemple : Patrice Séébold, Théorie des automates, Vuibert Informatique 1999, pp. 165-167.