POINTS

Title

10

PROBLEM

Using the Manhattan norm, which point is the nearest neighbor of (1,1)?

() `(3.5, 3)`
(X) `(4.5, 1)`
() `(4.25, 2)`
() `(2.75, 3.75)`

→ Add Question 4.3

+ Add Question 5

Save

Q1 Math Fun Time

20 Points

What is the maximum number of points that can be stored in a 3-dimensional **point** quadtree of height h? Express your answer as an exact (not asymptotic) function of h. (Hint: It may be useful to recall the formula for any c>1, $\sum_{i=0}^m c^i=\frac{c^{m+1}-1}{c-1}$.)

No files uploaded

Q2 Spatial Splitting

15 Points

A PR-QuadTree black node with b=1 contains the point (-0.76,-0.74). If its nearest neighbor is (-0.74,-0.74), what is k for this node?

-2

Q3 Point-Region QuadTree

45 Points

Insert the following points into a PR-QuadTree with bucket parameter b=2:

- (-33, 40)
- (5, 20)
- (-40, 16)
- (-38, -10)
- (8, -8)
- (-38, -28)
- (48, -48)
- (10, 28)
- (8, -2)
- (26, -2)
- (8, -12)
- (-16, -48)
- (10, -20)
- (11, -20)
- (11, 30)

Q3.1 How large is the region of the tree?

10 Points

Given all of the points, the smallest possible side length is

128

(Note: The answer should be power of 2 since it's a square. Answer in terms of the length, $not \, k$.)

Q3.2

20 Points

Give the final PR-QuadTree. Use empty nodes for white nodes, nodes with points for black nodes and shaded nodes for grey nodes.

No files uploaded

Q3.3 Spatial decomposition

5 Points

A				
		D		
В		Ε	F	
		G		
	С			

Which points are in the ${\bf region}~{\bf B}?$

	(-33, 40)
	(5, 20)
	(-40, 16)
•	(-38, -10)
	(8, -8)
•	(-38, -28)
	(48, -48)
	(10, 28)
	(8, -2)
	(26, -2)
	(8, -12)
	(-16, -48)
	(10, -20)
	(11, -20)
	(11, 30)

Q3.4 Spatial decomposition

5 Points

Which region does the point (8, -8) fall onto?

- O A
- **O** B
- **O** C
- O D
- **O** E
- OF
- **O** G

Q3.5 Spatial decomposition

5 Points

Which region does the point (26, -2) fall onto?

- O A
- **O** B
- **O** C
- O D
- O E
- **⊙** F
- **O** G

Q4 Distance Metrics

20 Points

The Euclidean norm is:

$$d=\sqrt{\left(x_1-x_2
ight)^2+\left(y_1-y_2
ight)^2}$$

The Manhattan distance is:

$$d = |x_1 - x_2| + |y_1 - y_2|$$

Consider a PR-QuadTree that stores points:

- (3.5, 3)
- (4.5, 1)
- (4.25, 2)
- (2.75, 3.75)

Q4.1

10 Points

Using the Euclidean norm, which point is the nearest neighbor of (1,1)?

- **(**3.5, 3)
- O (4.5, 1)
- O (4.25, 2)
- O (2.75, 3.75)

Q4.2

10 Points

Using the Manhattan norm, which point is the nearest neighbor of (1,1)?

- O (3.5, 3)
- **(**4.5, 1)
- O (4.25, 2)
- O (2.75, 3.75)