Paralelní sčítání Extending window method Konvergence Výsledky

# Konstrukce algoritmů pro paralelní sčítání

Jan Legerský

TIGR jan.legersky@gmail.com

Obhajoba výzkumného úkolu

10. září 2015

Paralelní sčítání Extending window method Konvergence Výsledky

- Paralelní sčítání
- 2 Extending window method

Fáze 1 – množina váhových koeficientů

Fáze 2 - váhová funkce

3 Konvergence

Abeceda

Fáze 1

Fáze 2

4 Výsledky

### Poziční soustava

Algebraické celé číslo  $\omega$  stupně d.

$$\mathbb{Z}[\omega] = \left\{ \sum_{j=0}^{d-1} \mathsf{a}_j \omega^j \, : \, \mathsf{a}_j \in \mathbb{Z} 
ight\}$$

### Poziční soustava

Algebraické celé číslo  $\omega$  stupně d.

$$\mathbb{Z}[\omega] = \left\{ \sum_{j=0}^{d-1} \mathsf{a}_j \omega^j \, : \, \mathsf{a}_j \in \mathbb{Z} 
ight\}$$

Poziční soustava je dána

- bází  $eta \in \mathbb{Z}[\omega]$ , |eta| > 1 a
- abecedou  $\mathcal{A} \subset \mathbb{Z}[\omega], 0 \in \mathcal{A}$ .

### Poziční soustava

Algebraické celé číslo  $\omega$  stupně d.

$$\mathbb{Z}[\omega] = \left\{ \sum_{j=0}^{d-1} a_j \omega^j : a_j \in \mathbb{Z} \right\}$$

Poziční soustava je dána

- bází  $\beta \in \mathbb{Z}[\omega]$ ,  $|\beta| > 1$  a
- abecedou  $\mathcal{A} \subset \mathbb{Z}[\omega], 0 \in \mathcal{A}$ .

Komplexní číslo x má konečnou  $(\beta, \mathcal{A})$ -reprezentaci, pokud  $x = \sum_{j=-m}^{n} x_j \beta^j$  s koeficienty  $x_j \in \mathcal{A}$ .

$$(x)_{\beta,\mathcal{A}} = x_n x_{n-1} \cdots x_1 x_0 \bullet x_{-1} x_{-2} \cdots x_{-m}$$

## Sčítání

kde

$$w_j = x_j + y_j \in \mathcal{A} + \mathcal{A}$$
.

### Sčítání

$$(x)_{\beta,\mathcal{A}} = x_{n'} x_{n'-1} \cdots x_1 x_0 \bullet x_{-1} x_{-2} \cdots x_{-m'} (y)_{\beta,\mathcal{A}} = y_{n'} y_{n'-1} \cdots y_1 y_0 \bullet y_{-1} y_{-2} \cdots y_{-m'} (w)_{\beta,\mathcal{A}+\mathcal{A}} = w_{n'} w_{n'-1} \cdots w_1 w_0 \bullet w_{-1} w_{-2} \cdots w_{-m'},$$

kde

$$w_i = x_i + y_i \in \mathcal{A} + \mathcal{A}$$
.

Chceme najít  $(\beta, \mathcal{A})$ -reprezentaci součtu

$$z_n z_{n-1} \cdots z_1 z_0 \bullet z_{-1} z_{-2} \cdots z_{-m} = (w)_{\beta, \mathcal{A}}.$$

$$R(x) = x - \beta \implies 0 = R(\beta) = \beta - \beta$$

$$\implies 0 = q_j \beta^j \cdot R(\beta) = q_j \cdot \beta^{j+1} - \beta q_j \cdot \beta^j$$

$$R(x) = x - \beta \implies 0 = R(\beta) = \beta - \beta$$

$$\implies 0 = q_j \beta^j \cdot R(\beta) = q_j \cdot \beta^{j+1} - \beta q_j \cdot \beta^j$$

$$w_{n'} w_{n'-1} \cdots w_{j+1} w_j w_{j-1} \cdots w_1 w_0 \bullet$$

$$q_{j-2} \cdots$$

$$q_{j-1} - \beta q_{j-1}$$

$$q_j - \beta q_j$$

$$\vdots - \beta q_{j+1}$$

$$z_n \cdots z_{n'} z_{n-1} \cdots z_{j+1} z_j z_{j-1} \cdots z_1 z_0 \bullet$$

$$R(x) = x - \beta \implies 0 = R(\beta) = \beta - \beta$$
  
 $\implies 0 = q_j \beta^j \cdot R(\beta) = q_j \cdot \beta^{j+1} - \beta q_j \cdot \beta^j$ 

$$w_{n'}w_{n'-1}$$
  $\cdots$   $w_{j+1}$   $w_{j}$   $w_{j-1}$   $\cdots$   $w_{1}w_{0}$ 

$$q_{j-2}$$
  $\vdots$ 

$$q_{j-1}$$
  $-\beta q_{j-1}$ 

$$q_{j}$$
  $-\beta q_{j+1}$ 

$$z_{n}\cdots z_{n'}z_{n-1}$$
  $\cdots$   $z_{j+1}$   $z_{j}$   $z_{j-1}$   $\cdots$   $z_{1}$   $z_{0}$ 

Jak volit váhový koeficient  $q_j$  tak, aby

$$z_i = w_i + q_{i-1} - q_i \beta \in \mathcal{A}$$
?

$$z_i = w_i + q_{i-1} - q_i \beta$$

Standardní sčítání:

$$w_n w_{n-1} \cdots w_{j+1} w_j w_{j-1} \cdots w_1 w_0 \bullet \qquad , w_i \in \mathcal{A} + \mathcal{A} ,$$

$$\longrightarrow z_{n+1} z_n z_{n-1} \cdots z_{j+1} z_j z_{j-1} \cdots z_1 z_0 \bullet \qquad , z_i \in \mathcal{A} .$$

$$z_j = w_j + q_{j-1} - q_j \beta$$

Standardní sčítání:

$$w_n w_{n-1} \cdots w_{j+1} w_j w_{j-1} \cdots w_1 w_0 \bullet , w_i \in \mathcal{A} + \mathcal{A},$$

$$\longrightarrow z_{n+1} z_n z_{n-1} \cdots z_{j+1} z_j z_{j-1} \cdots z_1 z_0 \bullet , z_i \in \mathcal{A}.$$

Paralelní sčítání (Avizienis, 1961):

$$\cdots w_{j+t+1}w_{j+t}\cdots w_{j+1}w_{j}w_{j-1}\cdots w_{j-r}w_{j-r-1}\cdots , w_i \in \mathcal{A} + \mathcal{A},$$

$$\longrightarrow \cdots z_{j+t+1} z_{j+t} \cdots z_{j+1}z_{j} z_{j-1} \cdots z_{j-r} z_{j-r-1} \cdots , z_i \in \mathcal{A}.$$

$$z_j = w_j + q_{j-1} - q_j \beta$$

Standardní sčítání:

$$w_n w_{n-1} \cdots w_{j+1} w_j w_{j-1} \cdots w_1 w_0 \bullet , w_i \in \mathcal{A} + \mathcal{A},$$

$$\longrightarrow z_{n+1} z_n z_{n-1} \cdots z_{j+1} z_j z_{j-1} \cdots z_1 z_0 \bullet , z_i \in \mathcal{A}.$$

Paralelní sčítání (Avizienis, 1961):

$$\cdots w_{j+t+1}w_{j+t}\cdots w_{j+1}w_{j}w_{j-1}\cdots w_{j-r}w_{j-r-1}\cdots , w_{i} \in \mathcal{A} + \mathcal{A},$$

$$\longrightarrow \cdots z_{j+t+1}z_{j+t}\cdots z_{j+1}z_{j}z_{j-1}\cdots z_{j-r}z_{j-r-1}\cdots , z_{i} \in \mathcal{A}.$$

Najít algoritmus pro paralelní sčítání = určit váhové koeficienty  $q_j$  závislé na pevném počtu vstupních cifer takové, že

$$z_j = \underbrace{w_j}_{\in \mathcal{A} + \mathcal{A}} + q_{j-1} - q_j \beta \in \mathcal{A}$$

pro všechny vstupy  $(w)_{\beta,\mathcal{A}+\mathcal{A}}$  a každou pozici j.

https://cloud.sagemath.com/projects

## Extending window method

Hledáme šířku okna  $M \in \mathbb{N}$  a váhovou funkci  $q: (\mathcal{A} + \mathcal{A})^M \to \mathcal{Q} \subset \mathbb{Z}[\omega]$  takovou, že  $q_j = q(w_j, \dots, w_{j-M+1})$ .

## Extending window method

Hledáme šířku okna  $M \in \mathbb{N}$  a váhovou funkci  $q: (\mathcal{A} + \mathcal{A})^M \to \mathcal{Q} \subset \mathbb{Z}[\omega]$  takovou, že  $q_j = q(w_j, \dots, w_{j-M+1})$ .

#### Metoda:

- **1** Najdeme množinu váhových koeficientů  $\mathcal{Q} \subset \mathbb{Z}[\omega]$ .
- **2** Zvětšujeme šířku okna M a pro všechny  $(w_j, w_{j-1}, \ldots, w_{j-M+1}) \in (\mathcal{A} + \mathcal{A})^M$  zkoušíme najít váhový koeficient z množiny  $\mathcal{Q}$  pro definování váhové funkce q.

# Fáze 1 – hledání množiny váhových koeficientů

Hledáme množinu váhových koeficientů  $\mathcal{Q} \subset \mathbb{Z}[\omega]$  takovou, že

$$\underbrace{(\mathcal{A} + \mathcal{A})}_{} + \underbrace{\mathcal{Q}}_{} \subset \underbrace{\mathcal{A}}_{} + \underbrace{\beta\mathcal{Q}}_{}$$

# Fáze 1 – hledání množiny váhových koeficientů

Hledáme množinu váhových koeficientů  $\mathcal{Q} \subset \mathbb{Z}[\omega]$  takovou, že

$$\underbrace{\left(\mathcal{A}+\mathcal{A}\right)}_{w_{j}\in}+\underbrace{\mathcal{Q}}_{q_{j-1}\in}\subset\underbrace{\mathcal{A}}_{z_{j}\in}+\underbrace{\beta\mathcal{Q}}_{\beta q_{j}\in}$$

Odtud, pro všechny  $q_{j-1}\in\mathcal{Q}$  a  $w_j\in\mathcal{A}+\mathcal{A}$  existuje  $q_j\in\mathcal{Q}$  takové, že

$$z_j=w_j+q_{j-1}-q_j\beta\in\mathcal{A}.$$

## Příklad – fáze 1

#### Eisensteinova báze

- Báze  $\beta = \omega 1$ , kde  $\omega = \exp(\frac{2\pi i}{3}), \omega^2 + \omega + 1 = 0$ .
- Minimální polynom báze je  $\beta^2 + 3\beta + 3$ .
- Abeceda  $\mathcal{A} = \{0, 1, -1, \omega, -\omega, -\omega 1, \omega + 1\} \subset \mathbb{Z}[\omega].$
- Označme  $\mathcal{B} = \mathcal{A} + \mathcal{A}$ .















$$\frac{\mathcal{Q}_1}{\mathcal{B} + \mathcal{Q}_1}$$

$$\begin{array}{l} \mathcal{A} + \beta \cdot (-\omega - 2) \\ \mathcal{Q}_2 \backslash \mathcal{Q}_1 \end{array}$$





$$egin{array}{c} \mathcal{Q}_2 \ \mathcal{B} + \mathcal{Q}_2 \ \overset{?}{\overset{\sim}{\mathcal{A}} + \beta \cdot \mathcal{Q}_2} \end{array}$$











### Fáze 2 – hledání váhové funkce

Hledáme šířku okna M a váhovou funkci  $q:(\mathcal{A}+\mathcal{A})^M\to\mathcal{Q}.$ 

## Fáze 2 – hledání váhové funkce

Hledáme šířku okna M a váhovou funkci  $q:(\mathcal{A}+\mathcal{A})^M \to \mathcal{Q}.$  Předpokládejme, že šířka okna je m.

Zkontrolujeme všechny přenosy zprava  $q_{j-1}$  a určíme  $q_j \in \mathcal{Q}$  takové, že

$$z_j = w_j + q_{j-1} - q_j \beta \in \mathcal{A}.$$

Množinu všech možných hodnot  $q_j$  označíme  $\mathcal{Q}_{[w_j,...,w_{j-m+1}]} \subset \mathcal{Q}.$ 

## Fáze 2 – hledání váhové funkce

Hledáme šířku okna M a váhovou funkci  $q:(\mathcal{A}+\mathcal{A})^M \to \mathcal{Q}.$  Předpokládejme, že šířka okna je m.

Zkontrolujeme všechny přenosy zprava  $q_{j-1}$  a určíme  $q_j \in \mathcal{Q}$  takové, že

$$z_j = w_j + q_{j-1} - q_j \beta \in \mathcal{A}.$$

Množinu všech možných hodnot  $q_j$  označíme  $\mathcal{Q}_{[w_j,\dots,w_{j-m+1}]}\subset\mathcal{Q}.$  Šířka okna M a váhová funkce q je nalezena když

$$\#Q_{[w_j,...,w_{j-M+1}]} = 1$$

pro všechny  $w_j, \ldots, w_{j-M+1} \in (\mathcal{A} + \mathcal{A})^M$ .





## Vstup: $(\omega 12)$











# Nutná podmínka na abecedu

Pro existenci algoritmu pro paralelní sčítání je nezbytné, aby abeceda  ${\cal A}$  obsahovala:

- všechny reprezentanty modulo  $\beta$ ,
- všechny reprezentanty modulo  $\beta 1$ .

# Fáze 1 – postačující podmínka konvergence

Pokud je algebraické celé číslo  $\omega$  stupně 1 nebo je komplexní stupně 2, fáze 1 konverguje.

# Fáze 2 – nutná podmínka konvergence

Pokud algoritmus pro paralelní sčítání existuje, fáze 2 konverguje pro vstupy  $(b, \ldots, b)$  pro všechny  $b \in \mathcal{A} + \mathcal{A}$ .

Máme algoritmus, který určí, jestli je fáze 2 konečná pro vstupy tohoto tvaru.

# Testované příklady

| Jméno                                                     | Abec. | Post. p. | Fáze 1 | Nut. p.  | Fáze 2 |
|-----------------------------------------------------------|-------|----------|--------|----------|--------|
| Eisenstein_1-block_complex                                | ano   | ano      | ✓      | <b>√</b> | ✓      |
| Eisenstein_1-block_integer                                | ano   | ano      | ✓      | Х        | _      |
| Eisenstein_1-block_small_complex                          | ne    | _        | -      | -        | _      |
| Eisenstein_2-block                                        | ne    | _        | _      | -        | -      |
| Eisenstein_2-block_4elements                              | ano   | ano      | ✓      | X        | _      |
| Penney_1-block_complex                                    | ano   | ano      | ✓      | ✓        | ✓      |
| Penney_1-block_small_complex                              | ne    | -        | _      | -        | _      |
| Penney_1-block_integer                                    | ano   | ano      | ✓      | Х        | _      |
| Penney_2-block_integer                                    | ano   | ano      | ✓      | ✓        | ✓      |
| Quadratic+1-2+2_1-block_complex                           | ano   | ano      | ✓      | <b>√</b> | ✓      |
| Quadratic+1-2+2_1-block_integer                           | ano   | ano      | ✓      | X        | _      |
| ${\sf Quadratic}{+}1{+}4{+}5{\_}1{-}{\sf block\_complex}$ | ano   | ano      | ✓      | <b>√</b> | ✓      |
| ${\sf Quadratic}{+}1{+}3{+}5{\_}1{-}{\sf block\_complex}$ | ano   | ano      | ✓      | <b>√</b> | Х      |
| Quadratic+1-5+3_1-block_integer                           | ano   | ne       | Х      | _        | _      |
| Quadratic+1-5+5_1-block_real                              | ano   | ne       | ✓      | Х        | _      |
| base_2                                                    | ano   | ano      | ✓      | <b>√</b> | ✓      |
| base_4                                                    | ano   | ano      | ✓      | ✓        | ✓      |
| Cubic+1+1-1+1_complex                                     | ano   | ne       | Х      | -        | -      |
| $Cubic+1+1-5+5$ _complex                                  | ano   | ne       | ✓      | X        | -      |
|                                                           |       |          |        |          |        |

# Výsledky

- Implementace v SageMath: https://cloud.sagemath.com/projects
- Vstupní kontrola abecedy.
- Algoritmus pro kontrolu nutné podmínky konvergence fáze 2.
- Zkoušení různých modifikací výběru prvků ve fázi 2.
- Testování příkladů.

Paralelní sčítání Extending window method Konvergence **Výsledky** 

Děkuji

### Fáze 1

$$k := 0$$

$$\mathcal{Q}_0:=\{0\}$$

#### Fáze 1

k := 0

$$\mathcal{Q}_0:=\{0\}$$

## Repeat:

• rozšiř  $Q_k$  na  $Q_{k+1}$  tak, že

$$(\mathcal{A} + \mathcal{A}) + \mathcal{Q}_k \subset \mathcal{A} + \beta \mathcal{Q}_{k+1},$$

• k := k + 1

#### Fáze 1

$$k := 0$$

$$\mathcal{Q}_0:=\{0\}$$

## Repeat:

• rozšiř  $Q_k$  na  $Q_{k+1}$  tak, že

$$(A + A) + Q_k \subset A + \beta Q_{k+1}$$
,

• 
$$k := k + 1$$

until 
$$Q_k = Q_{k+1}$$
.

#### Fáze 1

$$k := 0$$

$$\mathcal{Q}_0:=\{0\}$$

## Repeat:

• rozšiř  $Q_k$  na  $Q_{k+1}$  tak, že

$$(A + A) + Q_k \subset A + \beta Q_{k+1}$$
,

• 
$$k := k + 1$$

until 
$$Q_k = Q_{k+1}$$
.

$$Q := Q_k$$

20

m := 1

Pro každé  $w_j \in \mathcal{A} + \mathcal{A}$  najdi množinu  $\mathcal{Q}_{[w_j]} \subset \mathcal{Q}$  takovou, že

$$w_j + \mathcal{Q} \subset \mathcal{A} + \beta \mathcal{Q}_{[w_j]}$$

m := 1

Pro každé  $w_j \in \mathcal{A} + \mathcal{A}$  najdi množinu  $\mathcal{Q}_{[w_i]} \subset \mathcal{Q}$  takovou, že

$$w_j + \mathcal{Q} \subset \mathcal{A} + \beta \mathcal{Q}_{[w_j]}$$

While  $(\max\{\#Q_{[w_j,...,w_{j-m+1}]}:(w_j,...,w_{j-m+1})\in(\mathcal{A}+\mathcal{A})^m\}>1)$  do:

m := 1

Pro každé  $w_j \in \mathcal{A} + \mathcal{A}$  najdi množinu  $\mathcal{Q}_{[w_j]} \subset \mathcal{Q}$  takovou, že

$$w_j + \mathcal{Q} \subset \mathcal{A} + \beta \mathcal{Q}_{[w_j]}$$

While  $(\max\{\#Q_{[w_j,...,w_{j-m+1}]}:(w_j,...,w_{j-m+1})\in(\mathcal{A}+\mathcal{A})^m\}>1)$  do:

• m := m + 1

m := 1

Pro každé  $w_j \in \mathcal{A} + \mathcal{A}$  najdi množinu  $\mathcal{Q}_{[w_i]} \subset \mathcal{Q}$  takovou, že

$$w_j + \mathcal{Q} \subset \mathcal{A} + \beta \mathcal{Q}_{[w_j]}$$

While  $(\max\{\#Q_{[w_j,...,w_{j-m+1}]}:(w_j,...,w_{j-m+1})\in(\mathcal{A}+\mathcal{A})^m\}>1)$  do:

- m := m + 1
- Pro všechny  $(w_j,\ldots,w_{j-m+1})\in (\mathcal{A}+\mathcal{A})^m$  najdi množinu  $\mathcal{Q}_{[w_j,\ldots,w_{j-m+1}]}\subset \mathcal{Q}_{[w_j,\ldots,w_{j-m+2}]}$  takovou, že

$$w_j + \mathcal{Q}_{[w_{j-1},\ldots,w_{j-m+1}]} \subset \mathcal{A} + \beta \mathcal{Q}_{[w_j,\ldots,w_{j-m+1}]},$$

m := 1

Pro každé  $w_j \in \mathcal{A} + \mathcal{A}$  najdi množinu  $\mathcal{Q}_{[w_j]} \subset \mathcal{Q}$  takovou, že

$$w_j + \mathcal{Q} \subset \mathcal{A} + \beta \mathcal{Q}_{[w_j]}$$

While  $(\max\{\#Q_{[w_j,...,w_{j-m+1}]}:(w_j,...,w_{j-m+1})\in(\mathcal{A}+\mathcal{A})^m\}>1)$  do:

- m := m + 1
- Pro všechny  $(w_j,\ldots,w_{j-m+1})\in (\mathcal{A}+\mathcal{A})^m$  najdi množinu  $\mathcal{Q}_{[w_j,\ldots,w_{j-m+1}]}\subset \mathcal{Q}_{[w_j,\ldots,w_{j-m+2}]}$  takovou, že

$$w_j + \mathcal{Q}_{[w_{j-1},\dots,w_{j-m+1}]} \subset \mathcal{A} + \beta \mathcal{Q}_{[w_j,\dots,w_{j-m+1}]},$$

M := m

m := 1

Pro každé  $w_j \in \mathcal{A} + \mathcal{A}$  najdi množinu  $\mathcal{Q}_{[w_j]} \subset \mathcal{Q}$  takovou, že

$$w_j + \mathcal{Q} \subset \mathcal{A} + \beta \mathcal{Q}_{[w_j]}$$

While  $(\max\{\#Q_{[w_j,...,w_{j-m+1}]}:(w_j,...,w_{j-m+1})\in(\mathcal{A}+\mathcal{A})^m\}>1)$  do:

- m := m + 1
- Pro všechny  $(w_j,\ldots,w_{j-m+1})\in (\mathcal{A}+\mathcal{A})^m$  najdi množinu  $\mathcal{Q}_{[w_j,\ldots,w_{j-m+1}]}\subset \mathcal{Q}_{[w_j,\ldots,w_{j-m+2}]}$  takovou, že

$$w_j + \mathcal{Q}_{[w_{j-1},\ldots,w_{j-m+1}]} \subset \mathcal{A} + \beta \mathcal{Q}_{[w_j,\ldots,w_{j-m+1}]},$$

M:=m  $q(w_j,\ldots,w_{j-M+1}):=$  jediný prvek  $\mathcal{Q}_{[w_j,\ldots,w_{j-M+1}]}$