Amendments to the Claims:

The following listing of claims will replace all prior versions, and listings, of claims in the application:

1. (Currently Amended) A method for spinning a multifilament thread from a
thermoplastic material, the method comprising: comprising
extruding a melted thermoplastic material through a spinneret having a plurality of
spinneret holes to form a filament bundle comprised of a plurality of filaments,
winding the filaments as thread after solidifying,
and cooling the filament bundle beneath the spinneret, the cooling being conducted in
two steps,
wherein a first step of the cooling is conducted in a first cooling zone and a
second step of the cooling is conducted in a second cooling zone that is beneath the first
cooling zone,
wherein in the first cooling zone, the gaseous cooling medium is blown from
a blowing device and the a gaseous cooling medium flow is directed in such a way that it
flows through the filament bundle transversely by sucking the gaseous cooling medium with a
suction device after the gaseous cooling medium flows through the filament bundle, at least a
portion of the filament bundle in the first cooling zone being disposed between the blowing
device and the suction device, and
wherein the gaseous cooling medium blown from the blowing device leaves
the filament bundle substantially completely on a side opposite an inflow side within the first
cooling zone, and
wherein in the second cooling zone, which is beneath the first cooling zone,
the filament bundle is cooled further through self-suction of the a gaseous cooling medium
surrounding the filament bundle.

- 2. (Canceled)
- 3. (Currently Amended) Method-The method according to Claim 1, wherein the a flow speed of the gaseous cooling medium in the first cooling zone is between 0.1 and 1 m/s.
- 4. (Currently Amended) Method The method according to Claim 1, wherein the first cooling zone has a length between 0.2 and 1.2 m.
- 5. (Currently Amended) Method-The method according to Claim 1, wherein in the second cooling zone, the filaments are led between perforated materials in such a way that the gaseous cooling medium can reach the filaments from two sides during the self-suction.
- 6. (Currently Amended) Method-The method according to Claim 1, wherein in the second cooling zone, the filament bundle is led through a perforated tube.
- 7. (Currently Amended) Method-The method according to Claim 1, wherein the filaments are drawn after cooling and before being wound up.
- 8. (Currently Amended) Method-The method according to Claim 1, wherein the winding is performed at speeds of at least 2000 m/min.
- 9. (Currently Amended) Method-The method according to Claim 1, wherein the gaseous cooling medium is air or an inert gas.
- 10. (Currently Amended) Method The method according to Claim 1, wherein the thermoplastic material is polyester, polyamide, polyolefin or mixtures of these polymers.
- 11. (Currently Amended) <u>Method The method according to Claim 1</u>, wherein the thermoplastic material consists essentially of polyethylene terephthalate.
- 12. (Withdrawn-Currently Amended) Filament yarns made by a process-the method according to Claim 1.

- 13. (Withdrawn) Polyester filament yarns having a breaking tenacity T in mN/tex and an elongation at rupture E in %, wherein the product of the breaking tenacity T and the cube root of the elongation at rupture E, T*E^{1/3}, is at least 1600 mN %^{1/3}/tex.
- 14. (Withdrawn-Currently Amended) The polyester Polyester filament yarns according to Claim 13, wherein the sum of an elongation in % after application of a specific load (EAST elongation at specific tension) of 410 mN/tex and a hot-air shrinkage (HAS) at 180°C in % (EAST + HAS) is less than 11%.
- 15. (Withdrawn-Currently Amended) A cordCord comprising polyester filament yarns according to Claim 13, the cord having a retention capacity Rt in % after dipping, wherein a quality factor Q_f , which is the product of $T*E^{1/3}$ of the polyester filament yarns and Rt of the cord, is greater than 1350 mN $\%^{1/3}$ /tex.
- 16. (Currently Amended) <u>The method Method</u> according to claim 5, wherein the perforated materials comprise perforated panels.
- 17. (Withdrawn-Currently Amended) The filament Filament yarns according to claim 12, wherein the filament yarns are polyester filament yarns.
- 18. (Withdrawn-Currently Amended) The polyester Polyester filament yarns according to claim 14, wherein the sum of EAST + HAS is less than 10.5%.