1 周波数応答演習問題 (第6章5,6,7,11) 解答と解説

1.1 基礎理論

周波数応答解析では、複素変数 s を $j\omega$ に置換することで、伝達関数 G(s) を周波数伝達関数 $G(j\omega)$ として表現する。ボード線図では、ゲイン($|G(j\omega)|$)と位相($\angle G(j\omega)$)を対数周波数に対してプロットし、システムの特性を視覚的に解析する。

要素	伝達関数 $G(s)$	ゲイン線図の傾き	位相特性
比例	K	0 dB/dec	0°
積分	1/ <i>s</i>	-20 dB/dec	-90°
微分	S	+20 dB/dec	+90°
1次遅れ	$\frac{1}{1+Ts}$	$\omega < 1/T$: 0, $\omega > 1/T$: -20	0° から -90°
1次進み	1+Ts	$\omega < 1/T$: 0, $\omega > 1/T$: +20	0° から +90°

表 1 基本伝達要素の漸近ボード線図特性

2 問題5の解答

図 6-16 に示されるゲイン線図の解析を行う.

2.1 ステップ 1: ボード線図の観察

• 低周波域:ゲインが一定値(23 dB)

• 高周波域: -20 dB/dec の傾きで減少

• 折点角周波数: $\omega_c=20~{
m rad/s}$

この特徴から、1 次遅れ系 $G(s) = \frac{K}{1+Ts}$ と判断される.

2.2 ステップ **2**: DC ゲイン (K) の決定

低周波域の漸近線の値から:

$$20\log_{10}(K) = 23 \text{ dB} \tag{1}$$

$$K = 10^{23/20} = 10^{1.15} \approx 14.1 \tag{2}$$

2.3 ステップ3:時定数(T)の決定

1次遅れ要素の折点角周波数と時定数の関係:

$$\omega_c = \frac{1}{T} = 20 \text{ rad/s} \tag{3}$$

$$T = \frac{1}{20} = 0.05 \text{ s} \tag{4}$$

2.4 ステップ 4: 伝達関数の確定

$$G(s) = \frac{14.1}{1 + 0.05s} \tag{5}$$

3 問題6の解答

図 6-17 に示されるゲイン線図の解析を行う.

- ステップ 1:ボード線図の観察 3 1
 - 初期傾き: -20 dB/dec
 - 第 1 折点: $\omega_{c1}=0.1~{
 m rad/s}$ で傾きが $-20
 ightarrow -40~{
 m dB/dec}$
 - 第 2 折点: ω_{c2} = 2 rad/s で傾きが $-40 \rightarrow -60$ dB/dec

3.2 ステップ **2**:システム構造の特定

初期傾きから積分要素 $\frac{1}{s}$ の存在を確認:

- 基本構造: $G(s) = \frac{K}{s \cdot (\mu \circ y = \bar{x})}$ 第 1 折点 → 極: $T_1 = \frac{1}{\omega_{c1}} = \frac{1}{0.1} = 10 \text{ s}$ 第 2 折点 → 極: $T_2 = \frac{1}{\omega_{c2}} = \frac{1}{2} = 0.5 \text{ s}$

仮定される伝達関数: $G(s) = \frac{K}{s(1+10s)(1+0.5s)}$

ステップ3:ゲイン定数(K)の決定

低周波域 $(\omega < 0.1 \text{ rad/s})$ では、 $(1+10s) \approx 1$ 、 $(1+0.5s) \approx 1$ より:

$$G(j\omega) \approx \frac{K}{j\omega}$$
 (6)

ゲイン線図上の点 ($\omega = 0.1 \text{ rad/s}$, ゲイン = 4 dB) を使用:

$$20\log_{10}\left|\frac{K}{j\cdot 0.1}\right| = 4\tag{7}$$

$$20\log_{10}(K) - 20\log_{10}(0.1) = 4 \tag{8}$$

$$20\log_{10}(K) - 20(-1) = 4\tag{9}$$

$$20\log_{10}(K) + 20 = 4\tag{10}$$

$$20\log_{10}(K) = -16\tag{11}$$

$$K = 10^{-16/20} = 10^{-0.8} \approx 0.158 \tag{12}$$

3.4 ステップ 4: 伝達関数の確定

$$G(s) = \frac{0.158}{s(1+10s)(1+0.5s)} \tag{13}$$

4 問題7の解答

図 6-18 に示されるゲイン線図の解析を行う.

4.1 ステップ 1: ボード線図の観察

• 低周波域:ゲインが一定値 (-10 dB)

• 中周波域: +20 dB/dec の傾きで増加

• 高周波域:再び一定値(0 dBの傾き)

• 第 1 折点: $\omega_z = 0.2 \text{ rad/s}$ (傾き: $0 \rightarrow +20 \text{ dB/dec}$)

・ 第 2 折点: $\omega_p=1.0~{\rm rad/s}~($ 傾き:+20 $\rightarrow 0~{\rm dB/dec})$

4.2 ステップ **2**:システム構造の特定

傾きの変化から零点と極の存在を確認:

• 第 1 折点(傾き増加) → 零点: $T_z = \frac{1}{\omega_z} = \frac{1}{0.2} = 5$ s

• 第 2 折点(傾き減少) → 極: $T_p = \frac{1}{\omega_p} = \frac{1}{1.0} = 1 \text{ s}$

仮定される伝達関数: $G(s) = K \cdot \frac{1+T_z s}{1+T_p s} = K \cdot \frac{1+5s}{1+s}$

4.3 ステップ **3:DC** ゲイン (*K*) の決定

低周波域 $(\omega \to 0)$ では、 $(1+5s) \to 1$ 、 $(1+s) \to 1$ より:

$$G(0) = K \tag{14}$$

低周波域のゲインが -10 dB より:

$$20\log_{10}(K) = -10\tag{15}$$

$$K = 10^{-10/20} = 10^{-0.5} = \frac{1}{\sqrt{10}}$$
 (16)

5 問題 11 の解答

むだ時間要素 $G(s) = e^{-5s}$ のボード線図を描く.

5.1 ボード線図

制御系設計において、むだ時間は避けられない要素 (例:通信遅延、計算時間)であり、その影響 を適切に考慮する必要がある。