1 Collection of Equations

Let G = (V, E) be a graph on n := |V| nodes. Denote its complement by G^c (i.e. G^c has the same nodes as G and two nodes are adjacent in G^c if and only if they are not adjacent in G). Recall that

$$r_{uv}^G(x) := \chi_G(x) \cdot x^{-1} \cdot H_{uv}(x),$$

where $H_{uv}(x)$ is the generating function of the sequence of walks from node $u \in V$ to node $v \in V$ (actually, the map $\sigma(x) \mapsto \chi_G(x) \cdot x^{-1} \cdot \sigma(x)$ defines an isomorphism from the set of linear recurrence sequences having characteristic polynomial $\chi_G(x)$ into the quotient ring $\mathbb{Z}[x]/\chi_{G(x)}$). If the graph in question is unambiguous, we will suppress it in the notation of $r_{uv}^G(x)$ and simply write $r_{uv}(x)$ instead.

Here is a collection of facts/equations that arise in this context. Proofs can be provided if necessary.

- 1. The degree of the polynomial $r_{uv}(x)$ is given by $\deg(r_{uv}) = n 1 \operatorname{dist}(u, v)$.
- 2. This definition extends by linearity to the more general setting of walks from a subset $S \subseteq V$ to a subset $T \subseteq V$ (in particular, it holds that $r_{S,T}(x) = \sum_{u \in S} \sum_{v \in T} r_{uv}(x)$). Furthermore, define $r_G(x) := \sum_{(u,v) \in V^2} r_{uv}(x)$.
- 3. The recurrence polynomial (i.e. least characteristic polynomial) of the sequence of walks from S to T equals

$$\varrho_{S,T}(x) = \frac{\chi_G(x)}{\gcd(\chi_G(x), r_{S,T}(x))}.$$

- 4. The leading coefficient of $r_{uv}(x)$ equals the number of shortest paths from u to v (unfortunately this does not generalize to the lower coefficients).
- 5. Let P_{uv} denote the number of paths from u to v (i.e. walks visiting each node only once). Then it holds that

$$r_{uv}(x) = \sum_{p \in P_{uv}} \chi_{G \setminus p}(x)$$

for all $u, v \in V$.

6. In particular, this implies

$$r_{vv}(x) = \chi_{G \setminus \{v\}}(x)$$

for all $v \in V$.

7. The global polynomial $r_G(x)$ can be computed as

$$r_G(x) = -\chi_G(x) + (-1)^n \chi_{G^c}(-1 - x).$$

Therefore, it furthermore holds that

$$r_G(x) = (-1)^{n-1} r_{G^c}(-1-x).$$

8. Consequently, we can compute the derivatives of $\chi_G(x)$ and $r_G(x)$ as follows:

$$\chi'_G(x) = \sum_{v \in V} r_{vv}(x) = \sum_{v \in V} \chi_{G \setminus \{v\}}(x),$$
$$r'_G(x) = \sum_{v \in V} r_{G \setminus \{v\}}(x).$$

9. For a subset $S \subseteq V$, let G_S be the graph consisting of G with an additional node connected to exactly all nodes in S. Then it holds that

$$\chi_{G_S}(x) = x \cdot \chi_G(x) - r_{SS}(x),$$

$$r_{G_S}(x) = (x+1) \cdot r_G(x) + \chi_G(x) + r_{SS}(x) + (-1)^n r_{SS}^{G^c}(-1-x).$$

If S = N(v) for some node $v \in V$, this simplifies to the equations

$$x^{2} \cdot \chi_{G\setminus\{v\}}(x) - 2x \cdot \chi_{G}(x) + \chi_{G_{S}}(x) = 0,$$

$$x^{2} \cdot r_{G\setminus\{v\}}(x) - 2x \cdot r_{G}(x) + r_{G_{S}}(x) = 0.$$

If $S = \{v\}$ is a single node, then we can rewrite this as

$$\chi_{G_v}(x) = x \cdot \chi_G(x) - \chi_{G \setminus \{v\}}(x),$$

$$r_{G_u}(x) = x \cdot r_G(x) + \chi_G(x) - r_{G \setminus \{v\}}(x) + 2r_{v,G}(x).$$

10. Define the matrix $R_G(x)$ to be the collection of all polynomials $r_{uv}(x)$, i.e.

$$(R_G(x))_{u,v} := r_{uv}(x).$$

11. For an arbitrary polynomial $p(x) = \sum_{i=0}^{d} p_i x^i \in \mathbb{Z}[x]$, define its truncation to the j-th level as

$$\operatorname{tr}_{j} p(x) = \sum_{i=0}^{d-1-j} p_{i+j+1} x^{i}.$$

In particular, $\operatorname{tr}_{-1}p(x)=p(x)$ and $\operatorname{tr}_{d-1}p(x)=1$. Then it holds that

$$R_G(x) = \sum_{i=0}^{n-1} \operatorname{tr}_i \chi_G(x) A^i = \sum_{i=0}^{n-1} \operatorname{tr}_i \chi_G(A) x^i.$$

12. Let $\lambda_1, \ldots, \lambda_n$ be the eigenvalues of G, then the characteristic polynomial $\chi_{R_G(x)}(y) \in \mathbb{Z}[x,y]$ can be computed as

$$\chi_{R_G(x)}(y) = \prod_{i=1}^n \left(y - \frac{\chi_G(x)}{x - \lambda_i} \right) = \frac{y^n \chi_G\left(x - \frac{\chi_G(x)}{y} \right)}{\chi_G(x)}.$$

In particular, this shows that the eigenvalues of $R_G(x)$ are exactly the polynomials $\frac{\chi_G(x)}{x-\lambda}$ for the eigenvalues λ of G. Furthermore, it holds that $\det(R_G(x)) = \chi_G(x)^{n-1}$, $\operatorname{Tr}(R_G(x)) = \chi_G'(x)$ and $\operatorname{Tr}(R_G(x)^2) = \chi_G'(x)^2 - \chi_G''(x)\chi_G(x)$ (local version of the last equation: $\sum_{(u,v)\in V^2} r_{uv}(x)^2 = \chi_G'(x)^2 - \chi_G''(x)\chi_G(x)$).

One can even show that the eigenvectors of G with respect to the eigenvalue λ coincide with the eigenvectors of $R_G(x)$ with respect to the eigenvalue $\frac{\chi_G(x)}{x-\lambda}$.

13. The matrix $R_G(x)$ admits some kind of linearity: For an arbitrary polynomial $p(x) \in \mathbb{Z}[x]$, it holds that

$$p(A) \cdot R_G(x) = R_G(x) \cdot p(A) = p(x)R_G(x) - \chi_G(x) \sum_{i=0}^{\deg(p)-1} \operatorname{tr}_i p(x)A^i.$$

Note that this implies linearity over the quotient ring $\mathbb{Z}[x]/\chi_{G(x)}$. In particular, one consequence of this is an easier local version. For $u, v \in V$ arbitrary, we have the following equality:

$$r_{N(u),v}(x) = \begin{cases} x \cdot r_{uu}(x) - \chi_G(x), & u = v \\ x \cdot r_{uv}(x), & u \neq v \end{cases}.$$

14. There exists a direct way to compute $r_{uv}(x)$ for particular $u \neq v \in V$. In fact, it holds that

$$r_{uv}(x)^2 = \chi_{G\setminus u}(x) \cdot \chi_{G\setminus \{v\}}(x) - \chi_{G\setminus \{u,v\}}(x) \cdot \chi_G(x).$$

15. This can be carried out to the polynomial $r_G(x)$ instead of $\chi_G(x)$, i.e. we define a matrix $M_G(x) \in \mathbb{Z}[x]^{n \times n}$ by

$$(M_G(x))_{u,v} := \begin{cases} -r_{G\setminus\{u\}}(x), & u = v\\ \sqrt{r_{G\setminus\{u\}}(x) \cdot r_{G\setminus\{v\}}(x) - r_{G\setminus\{u,v\}}(x) \cdot r_{G}(x)}, & u \neq v \end{cases}.$$

Then we can write $M_G(x)$ as

$$M_G(x) = R_G(x) + (-1)^n \cdot R_{G^c}(-1 - x).$$

Note, that apart from the sign change on the main diagonal, the matrix $M_G(x)$ is obtained from $r_G(x)$ in the same way as $R_G(x)$ from $\chi_G(x)$ (maybe this generalizes to some kind of morphisms $\mathcal{G} \to \mathbb{Z}[x]$, where \mathcal{G} denotes the set of all undirected graphs).

References

[1] Y. Teranishi. Main eigenvalues of a graph. *Linear and Multilinear Algebra*, 49(4):289–303, 2001.