

厦门大学《线性代数》课程期中试题·答案

考试日期: 2014&15.11 信息学院自律督导部整理

一、单项选择题(每小题2分,共20分)

1.	对于n阶可	T逆矩阵 A,	В,	则下列等式中(В) 不成立.
	7.4 4 1/4 1/1 1	1 ~ / / - -	_,	73 1 73 73 74 1 1		/ / // /

(A)
$$|(AB)^{-1}| = |A^{-1}| \cdot |B^{-1}|$$

(B)
$$|(AB)^{-1}| = (1/|A^{-1}|) \cdot (1/|B^{-1}|)$$

(C)
$$|(AB)^{-1}| = |A|^{-1} \cdot |B|^{-1}$$

(D)
$$|(\mathbf{AB})^{-1}| = 1/|\mathbf{AB}|$$

A. |A+B|=|A|+|B|

B. AB=BA

C. $(AB)^T = A^TB^T$

D. |AB|=|BA|

3. 设 A 、 B 均为 n 阶矩阵, 满足 AB = O, 则必有 (D)

$$A \cdot |A| + |B| = 0$$

$$B \cdot r(A) = r(B) = 0$$

$$C. A = O \otimes B = O$$

$$D \cdot |A| = 0 \vec{x} |B| = 0$$

4. 设
$$A = (a_{ij})_{3\times3}$$
, $B = \begin{pmatrix} a_{21} & a_{22} & a_{23} \\ a_{11} & a_{12} & a_{13} \\ a_{31} + a_{11} & a_{32} + a_{12} & a_{33} + a_{13} \end{pmatrix}$, $P_1 = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$, $P_2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$, 那么

(C).

$$(A) AP_1P_2 = B$$

$$(B) AP_2P_1 = B$$

(C)
$$P_1P_2A = B$$

(A)
$$AP_1P_2 = B$$
 (B) $AP_2P_1 = B$ (C) $P_1P_2A = B$ (D) $P_2P_1A = B$

5. 设
$$\alpha_1, \alpha_2, \alpha_3, \beta_1, \beta_2$$
是四维列向量,且 $|\alpha_1, \alpha_2, \alpha_3, \beta_1| = m$, $|\alpha_1, \alpha_2, \beta_2, \alpha_3| = n$,则

 $|\alpha_3,\alpha_2,\alpha_1,\beta_1+\beta_2|=$ (C).

(A)
$$m+n$$

(A)
$$m+n$$
 (B) $-(m+n)$ **(C)** $n-m$ **(D)** $m-n$

(C)
$$n-m$$

(D)
$$m-n$$

6. 下列矩阵是行最简形矩阵的是(B).

$$\mathbf{(A)} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 0 & 1 & 2 & 3 & 4 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 3 & 4 & 0 \\
0 & 1 & 2 & 3 & 0 \\
0 & 0 & 0 & 0 & 1
\end{pmatrix}$$

(C)
$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 0 & 1 & 2 & 3 & 4 \\ 0 & 0 & 1 & 2 & 1 \end{pmatrix}$$

$$\mathbf{(D)} \quad \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 \end{pmatrix}$$

A. ACB=E

B. CBA=E

C. BCA=E

D. BAC=E

- 若同阶方阵 A 与 B 等价,则必有(^C)。
- A. |A|=|B|

B. A 可逆 B 不可逆

C. R(A)=R(B)

- D. $|A| = 0, |B| \neq 0$
- 设A为n阶可逆矩阵,则下面结论错误的是(B)。
- A. $|A| \neq 0$

B. $|A^*| = |A|^{n+1}$

C. A 与 E 行等价

- D. r(A) = n
- 10、设A为 $m \times n$ 矩阵,若A的秩为R(A) = r,则下面结论正确的是(C)。
- A. A的r阶子式都不为零。
- B. A的r-1阶子式都不为零。
- C. A的所有r+1阶以上子式都为零。 D. A的r-1阶以下子式都不为零。
- 二、填空题 (每空格 4 分, 共 20 分)

- 3. 设分块矩阵 $A = \begin{pmatrix} 0 & -E_{n-1} \\ -1 & 0^T \end{pmatrix}$,则 $\det A = \begin{pmatrix} & \mathbf{B} & \end{pmatrix}$.
 - (A) 1
- (B) -1 (C) $(-1)^{n-1}$ (D) $(-1)^n$
- **4.** 设 $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 2 & 2 \\ 0 & 1 & 3 \end{pmatrix}$, $C = AB^{-1}$, 则矩阵 C^{-1} 中,第 3 行第 2 列的元素是(B)。
 - A. $\frac{1}{2}$

- 5. 设四阶方阵 $\mathbf{A} = \begin{pmatrix} 5 & 2 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 0 & 0 & 1 & -2 \\ 0 & 0 & 1 & -3 \end{pmatrix}$, 则 $\mathbf{A}^{-1} = \underline{\qquad} \begin{pmatrix} 1 & -2 & 0 & 0 \\ -2 & 5 & 0 & 0 \\ 0 & 0 & 3 & -2 \\ 0 & 0 & 1 & -1 \end{pmatrix}$

三、计算题(共45分)

1. 计算行列式

$$\begin{vmatrix} a+b & b & b & b \\ -b & a-b & -b & -b \\ b & b & a+b & b \\ -b & -b & -b & a-b \end{vmatrix}$$

$$\begin{vmatrix} a+b & b & b & b \\ -b & a-b & -b & -b \\ b & b & a+b & b \\ -b & -b & -b & a-b \end{vmatrix} = \begin{vmatrix} a+b & b & b & b \\ a & a & 0 & 0 \\ -a & 0 & a & 0 \\ a & 0 & 0 & a \end{vmatrix} = \begin{vmatrix} a & b & b & b \\ 0 & a & 0 & 0 \\ 0 & 0 & a & 0 \\ 0 & 0 & 0 & a \end{vmatrix} = a^4$$

$$\begin{vmatrix} a+b & b & b & b \\ -b & a-b & -b & -b \\ b & b & a+b & b \\ -b & -b & -b & a-b \end{vmatrix} = \begin{vmatrix} a & a & a & a \\ -b & a-b & -b & -b \\ b & b & a+b & b \\ -b & -b & -b & a-b \end{vmatrix}$$

$$= \begin{vmatrix} a & a & a & a \\ 0 & a & 0 & 0 \\ 0 & 0 & a & 0 \\ -b & -b & -b & a-b \end{vmatrix}$$

$$= a \begin{vmatrix} 1 & 1 & 1 & 1 \\ 0 & a & 0 & 0 \\ 0 & 0 & a & 0 \\ -b & -b & -b & a-b \end{vmatrix} = a \begin{vmatrix} 1 & 1 & 1 & 1 \\ 0 & a & 0 & 0 \\ 0 & 0 & a & 0 \\ 0 & 0 & 0 & a \end{vmatrix} = a^{4}$$

2. 计算行列式

$$\begin{vmatrix} x & -1 & 0 & 0 \\ 0 & x & -1 & 0 \\ 0 & 0 & x & -1 \\ a_0 & a_1 & a_2 & a_3 + x \end{vmatrix}$$

$$\begin{vmatrix} x & -1 & 0 & 0 \\ 0 & x & -1 & 0 \\ 0 & 0 & x & -1 \\ a_0 & a_1 & a_2 & a_3 + x \end{vmatrix} = \begin{vmatrix} x & -1 & 0 & 0 \\ 0 & x & -1 & 0 \\ 0 & 0 & 0 & -1 \\ a_0 & a_1 & a_2 + a_3x + x^2 & a_3 + x \end{vmatrix}$$

解: 课本题变形
$$\begin{vmatrix} x & -1 & 0 & 0 \\ 0 & x & -1 & 0 \\ 0 & 0 & x & -1 \\ a_0 & a_1 & a_2 & a_3 + x \end{vmatrix} = \begin{vmatrix} x & -1 & 0 & 0 \\ 0 & x & -1 & 0 \\ 0 & 0 & 0 & -1 \\ a_0 & a_1 & a_2 + a_3x + x^2 & a_3 + x \end{vmatrix}$$

$$= \begin{vmatrix} x & -1 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & -1 \\ a_0 & a_1 + a_2x + a_3x^2 + x^3 & a_2 + a_3x + x^2 & a_3 + x \end{vmatrix}$$

$$= \begin{vmatrix} \frac{1}{x} & -1 & 0 & 0 \\ 0 & \frac{1}{x} & -1 & 0 \\ 0 & 0 & 0 & -1 \\ a_0 + a_1 x + a_2 x^2 + a_3 x^3 + x^4 & a_1 + a_2 x + a_3 x^2 + x^3 & a_2 + a_3 x + x^2 & a_3 + x \end{vmatrix}$$

3. 解矩阵方程
$$X = AX + B$$
, 其中 $A = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 1 & 1 \\ -1 & 0 & -1 \end{pmatrix}$, $B = \begin{pmatrix} 1 & -1 \\ 2 & 0 \\ 5 & -3 \end{pmatrix}$.

解: 由X = AX + B, 得(E - A)X = B

$$X = (E - A)^{-1}B,$$

为此对矩阵(E-A,B)施行初等行变换化为行最简形矩阵,

$$(\boldsymbol{E} - \boldsymbol{A}, \boldsymbol{B}) = \begin{pmatrix} 1 & -1 & 0 & 1 & -1 \\ 1 & 0 & -1 & 2 & 0 \\ 1 & 0 & 2 & 5 & -3 \end{pmatrix} \xrightarrow{r} \begin{pmatrix} 1 & 0 & -1 & 2 & 0 \\ 0 & -1 & 1 & -1 & -1 \\ 0 & 0 & 1 & 1 & -1 \end{pmatrix}$$

$$\xrightarrow{r} \begin{pmatrix} 1 & 0 & 0 & 3 & -1 \\ 0 & 1 & 0 & 2 & 0 \\ 0 & 0 & 1 & 1 & -1 \end{pmatrix}$$

所以
$$X = (E - A)^{-1}B = \begin{pmatrix} 3 & -1 \\ 2 & 0 \\ 1 & -1 \end{pmatrix}$$
.

4. 设矩阵
$$A = \begin{pmatrix} 0 & 1 & 7 & 8 \\ 1 & 3 & 3 & 8 \\ -2 & -5 & 1 & -8 \end{pmatrix}$$
,试用初等行变换将行阶梯型 F,并求 P_1 、 P_2 、…、

 P_l , 使 $A=P_lP_2\cdots P_l$ F, 其中 P_1 、 P_2 、…、 P_l 为初等矩阵, l 初等变换次数。

解:
$$A \rightarrow E(1,2)$$
 $A = \begin{pmatrix} 1 & 3 & 3 & 8 \\ 0 & 1 & 7 & 8 \\ -2 & -5 & 1 & -8 \end{pmatrix}$ 课本题多加了一个要求。

$$\rightarrow E(3+1(2)) \quad (E(1,2) \ A) = \begin{pmatrix} 1 & 3 & 3 & 8 \\ 0 & 1 & 7 & 8 \\ 0 & 1 & 7 & 8 \end{pmatrix}$$

$$\rightarrow E(3+2(-1)) \quad (E(3+1(2)) \quad (E(1,2) \land A)) = \begin{pmatrix} 1 & 3 & 3 & 8 \\ 0 & 1 & 7 & 8 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

所以E(3+2(-1))E(3+1(2))E(1,2)A=F

 $\mathbb{E}[A] = E^{-1}(1,2) E^{-1}(3+1(2)) E^{-1}(3+2(-1)) F = P_1 P_2 P_3 F$

$$\text{FT LL } P_1 = E^{-1}(1,2) = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad P_2 = E^{-1}(3+1(2)) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -2 & 0 & 1 \end{pmatrix},$$

$$P_3 = E^{-1}(3+2(-1)) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix},$$

5. (6分)设
$$D = \begin{vmatrix} 3 & 1 & -1 & 2 \\ -5 & 1 & 3 & -4 \\ 2 & 0 & 1 & -1 \\ 1 & -5 & 3 & -3 \end{vmatrix}$$
, D 的 (i, j) 元 的 代 数 余 子 式 记 作 A_{ij} , 求

 $A_{31} + 3A_{32} - 2A_{33} + 2A_{34}$.

解: $A_{31} + 3A_{32} - 2A_{33} + 2A_{34}$ 等于用 1, 3, -2, 2 替换 D 的第 3 行对应元素所得行列式, 即

$$A_{31} + 3A_{32} - 2A_{33} + 2A_{34} = \begin{vmatrix} 3 & 1 & -1 & 2 \\ -5 & 1 & 3 & -4 \\ 1 & 3 & -2 & 2 \\ 1 & -5 & 3 & -3 \end{vmatrix}$$

$$\frac{c_4 + c_3}{\begin{vmatrix} 1 & 3 & 1 & -1 & 1 \\ -5 & 1 & 3 & -1 \\ 1 & 3 & -2 & 0 \\ 1 & -5 & 3 & 0 \end{vmatrix}} \begin{vmatrix} 3 & 1 & -1 & 1 \\ -2 & 2 & 2 & 0 \\ 1 & 3 & -2 & 0 \\ 1 & 3 & -2 & 0 \\ 1 & -5 & 3 & 0 \end{vmatrix} = 2 \begin{vmatrix} 1 & -1 & -1 \\ 1 & 3 & -2 \\ 1 & -5 & 3 \end{vmatrix}$$

$$= 2 \begin{vmatrix} 1 & -1 & -1 \\ 0 & 4 & -1 \\ 0 & 0 & 3 \end{vmatrix} = 24$$

四、证明题(每小题 5 分, 共 15 分)

证: 假设A可逆,即 A^{-1} 存在,以 A^{-1} 左乘AB=0的两边得B=0,这与B是n阶非零矩阵矛盾;类似的,若B可逆,即 B^{-1} 存在,以 B^{-1} 右乘AB=0的两边得A=0,这与A是n阶非零矩阵矛盾,因此,A和B都是不可逆的.

2、设方阵 $_A$ 满足 $_A^2 - A - 2E = 0$,证明 $_A$ 和 $_A + 2E$ 都可逆,并求 $_A^{-1}$ 和 $_A + 2E)^{-1}$ 。课本题。

3、设n阶方阵A可逆,证明 $(A^*)^*=$ 并求 A^{-1} 和 $(A+2E)^{-1}$ 。

证明: 因为A可逆,所以A*可逆。 $(A*)^{-1} = \frac{1}{|A*|}(A*)*$ 得

$$(A^*)^* = |A^*| (A^*)^{-1}$$
,同理 $A^* = |A| A^{-1}$,所以 $(A^*)^{-1} = \frac{1}{|A|} A$ 。 又 $|A^*| = |A|^{n-1}$

故
$$(A^*)^* = |A^*| (A^*)^{-1} = |A|^{n-1} \frac{1}{|A|} A = |A|^{n-2} A$$
。 证毕