Please submit your solutions to the following problems on Gradescope by **6pm** on the due date. Collaboration is encouraged, however, you must write up your solutions individually.

1) Orthogonal Projection Again. Let $E : \mathbb{R}^N \to \mathcal{H}$ be a quasimatrix, whose linearly independent columns are elements of a Hilbert space \mathcal{H} with inner product $\langle \cdot, \cdot \rangle$, i.e.,

$$E = \begin{bmatrix} | & & | \\ e_1 & \cdots & e_N \\ | & & | \end{bmatrix}.$$

(a) Given $f \in \mathcal{H}$, show that $\mathbf{c} \in \mathbb{R}^N$ minimizes $||E\mathbf{c} - f||$ if and only if $E^T E \mathbf{c} = E^T f$, where $E^T E$ and $E^T f$ are the matrix and vector, respectively, whose components are

$$(E^T E)_{ij} = \langle e_j, e_i \rangle, \quad \text{and} \quad (E^T f)_j = \langle f, e_j \rangle.$$

- (b) Is the Gram matrix, $E^T E$, from part (a) invertible? Explain your reasoning.
- (c) Verify that $E(E^TE)^{-1}E^Tf$ is the orthogonal projection of f onto $\operatorname{span}(e_1,\ldots,e_N)$.
- 2) Best Dictionary Approximation. Use the Chebfun system in MATLAB to compare the numerical accuracy of two formulas for best approximation of a function $f: [-1, 1] \to \mathbb{R}$:

$$\mathbf{c}_1 = (E_N^T E_N)^{-1} E_N^T f, \quad \text{and} \quad \mathbf{c}_2 = R_N^{-1} Q_N^T f.$$

Here, $E_N = \begin{bmatrix} 1 & x & \cdots & x^N \end{bmatrix}$ is the quasimatrix of monomials up to degree N and $E_N = Q_N R_N$ is the QR decomposition of E_N with respect to the $L^2([-1,1])$ inner product.

Note: You may find the MATLAB code demo01.m on the course repository useful.

- (a) Given $f(x) = 1/(1+20x^2)$, plot the relative error $||E_N \mathbf{c}_1 f||/||f||$ for dictionary sizes $N = 10, 20, 30, \ldots, 800$. Use a base-10 logarithmic scale for the relative error axis.
- (b) Repeat the experiment in part (a) for $||E_N\mathbf{c}_2 f||$ and compare the error curves.
- (c) Plot the condition numbers of the matrices R_N and $E_N^T E_N$ for dictionary sizes $N = 10, 20, 30, \ldots, 800$. Use a base-10 logarithmic scale for the condition number axis.
- (d) Interpret the error curves in parts (a) and (b) in light of your experiments in part (c).
- 3) Interpolation. Use the Chebfun system in MATLAB to compare the approximation accuracy of polynomial interpolants in (i) equally spaced points and (ii) Legendre points:

$$xi = linspace(-1,1,N).$$
; and $xii = legpts(N)$;

Use a Legendre basis to form the generalized Vandermonde matrices for interpolation.

- (a) Given $f(x) = 1/(1+20x^2)$, plot the relative error $||f p_N||/||f||$ in both interpolants for $N = 10, 20, 30, \ldots, 500$. Use a base-10 logarithmic scale for the relative error axis.
- (b) Plot the condition number of the generalized Vandermonde matrices for both interpolants for $N=10,20,30,\ldots,500$. Use a base-10 logarithmic scale for the condition number axis.
- (c) Interpret the error curves in part (a) in light of your experiments in part (b).