Représentation des connaissances et raisonnement

Logique des prédicats

Elise Bonzon elise.bonzon@u-paris.fr

LIPADE - Université Paris Cité http://helios.mi.parisdescartes.fr/~bonzon/

Logique des prédicats

- 1. Pourquoi la logique des prédicats?
- 2. Syntaxe et sémantique de la logique du premier ordre
- 3. Utiliser la logique du premier ordre
- 4. Réduction de l'inférence du premier ordre à l'inférence propositionnelle
- 5. Unification
- 6. Skolemisation
- 7. Schémas de raisonnement en logique des prédicats
- 8. Conclusion

Pourquoi la logique des

prédicats?

 La logique propositionnelle est déclarative : connaissances et inférences sont séparées, les inférences sont indépendantes du domaine

- La logique propositionnelle est déclarative : connaissances et inférences sont séparées, les inférences sont indépendantes du domaine
- La logique propositionnelle permet de prendre en compte des informations partielles avec la disjonction et la négation

- La logique propositionnelle est déclarative : connaissances et inférences sont séparées, les inférences sont indépendantes du domaine
- La logique propositionnelle permet de prendre en compte des informations partielles avec la disjonction et la négation
- La logique propositionnelle est compositionnelle :
 - La signification de $a \wedge b$ provient de la signification de a et de b

- La logique propositionnelle est déclarative : connaissances et inférences sont séparées, les inférences sont indépendantes du domaine
- La logique propositionnelle permet de prendre en compte des informations partielles avec la disjonction et la négation
- La logique propositionnelle est compositionnelle :
 - La signification de $a \wedge b$ provient de la signification de a et de b
- La signification en logique propositionnelle ne dépend pas du contexte
 - Contrairement au langage naturel

Limites de la ogique propositionnelle

- Mais la logique propositionnelle a un pouvoir expressif très limité
 - Contrairement au langage naturel
 - On ne peut pas par exemple dire "tous les hommes sont mortels", à moins de créer un énoncé pour chaque humain.

Limites de la ogique propositionnelle

- Mais la logique propositionnelle a un pouvoir expressif très limité
 - Contrairement au langage naturel
 - On ne peut pas par exemple dire "tous les hommes sont mortels", à moins de créer un énoncé pour chaque humain.
- Impossible de tirer partie des notions de similitudes entre propositions
 - · Pierre et Julien sont des hommes

Limites de la ogique propositionnelle

- Mais la logique propositionnelle a un pouvoir expressif très limité
 - Contrairement au langage naturel
 - On ne peut pas par exemple dire "tous les hommes sont mortels", à moins de créer un énoncé pour chaque humain.
- Impossible de tirer partie des notions de similitudes entre propositions
 - · Pierre et Julien sont des hommes
- Il n'est pas possible d'exprimer des relations entre symboles

Logique du premier ordre

- Logique propositionnelle : le monde contient des faits
- Logique des prédicats : défini à partir d'un domaine → les objets sur lesquels on raisonne
 - Termes : représentent les éléments du domaine
 - Relations ou prédicats : entre les éléments du domaine
 - Formules : décrivent les interactions entre les relations

Logique du premier ordre

- Logique propositionnelle : le monde contient des faits
- Logique des prédicats : défini à partir d'un domaine → les objets sur lesquels on raisonne
 - Termes : représentent les éléments du domaine
 - Relations ou prédicats : entre les éléments du domaine
 - Formules : décrivent les interactions entre les relations

Par exemple:

- Domaine = les membres d'une famille
- Terme : Charly, pere(x) (désigne un élément du domaine)
- Relation : frere(Charly, Julie), vrai si Charly est le frère de Julie
- Formule: ∀x∃y frere(x, y) signifie "tout individu a un frère"

Syntaxe et sémantique de la logique du premier ordre

Un alphabet ${\mathcal A}$ d'un langage ${\mathcal L}$ de la logique des prédicats consiste des données suivantes :

- Les connecteurs logiques : \neg , \land , \lor , \Rightarrow , \Leftrightarrow
- Deux constantes logiques : ⊤ et ⊥
- Les parenthèses : (et)
- Deux quantificateurs : universel ∀, et existentiel ∃
- Un ensemble V de variables : x, y, a, b, ...
- ullet Un ensemble ${\mathcal F}$ de symboles de fonction :
 - d'arité 0 : constantes (Paul, Pierre, 2, ...)
 - d'arité > 0 : fonctions (racinecarre, pere, ...)
- Un ensemble \mathcal{R} de symboles de prédicats (frere, >, avant, ...)
 - Prédicat particulier : égalité =

Fonction vs Prédicat

- Une fonction retourne un élément du domaine, tandis qu'un prédicat est vrai ou faux
- Par exemple :
 - Fonction : pere(Philippe) = Jean
 - ullet Prédicat : est_pere(Philippe, Jean) o Vrai ou Faux
- **Attention** : les noms importent peu. C'est la définition qui est importante.

Signature d'un langage

La signature d'un langage $\mathcal L$ est $\langle \mathcal F, \mathcal R \rangle.$

Signature d'un langage

La signature d'un langage \mathcal{L} est $\langle \mathcal{F}, \mathcal{R} \rangle$.

• La signature peut varier d'un langage à l'autre

Signature d'un langage

La signature d'un langage \mathcal{L} est $\langle \mathcal{F}, \mathcal{R} \rangle$.

- La signature peut varier d'un langage à l'autre
- Langage de l'arithmétique :
 - $\mathcal{F} = \{0/0, \, \sec(1, \, -/1, +/2, -/2, \times/2, \div/2)\}$
 - $\mathcal{R} = \{ = /2 \}$

Signature d'un langage

La signature d'un langage \mathcal{L} est $\langle \mathcal{F}, \mathcal{R} \rangle$.

- La signature peut varier d'un langage à l'autre
- Langage de l'arithmétique :
 - $\mathcal{F} = \{0/0, \, \text{succ}/1, \, -/1, +/2, -/2, \times/2, \div/2\}$
 - $\mathcal{R} = \{ = /2 \}$
- Langage de la généalogie :
 - $\mathcal{F} = \{ \text{pere/1, mere/1, Andre/0, Beatrice/0, Charles/0, Elodie/0} \}$
 - $\mathcal{R} = \{\text{homme/1, femme/1, parent/2}\}$

Enoncés atomiques

- Terme : variables et éléments de \mathcal{F} (constantes et fonctions)
 - C'est un élément du domaine
 - Exemple: x, Jean, pere(Richard), racinecarre(y)
 - Un terme est clos s'il ne contient pas de variable
 - Par exemple, mere (Jean) est clos
- Enoncé atomique : élément de \mathcal{R} (prédicat), \top et \bot
 - Retourne une valeur Vrai ou Faux
 - Exemple: frere(Richard, Jean); epoux(pere(Richard), mere(Jean))

Formules

Les formules sont construites à partir des énoncés atomiques, des connecteurs et des quantificateurs

Formules

Soit \mathcal{L} un langage, dont la signature est $\langle \mathcal{F}, \mathcal{R} \rangle$.

- Si P/n ∈ R est un prédicat d'arité n, et si t₁, t₂, ... t_n sont des termes sur F, alors P(t₁, t₂, ... t_n) est une formule de L, dite formule atomique (ou atome) de L.
- Si E_1 et E_2 sont des formules, alors $(\neg E)$, $(E_1 \wedge E_2)$, $(E_1 \vee E_2)$, $(E_1 \Rightarrow E_2)$, $(E_1 \Leftrightarrow E_2)$ sont aussi des formules de \mathcal{L}
- Si E est une formule et $x \in \mathcal{V}$ une variable, alors $(\forall x \ E)$ et $(\exists x \ E)$ sont aussi des formules de \mathcal{L}
- ullet Les symboles op et ot sont aussi des formules atomiques

Variables libres et liées

- Une occurence d'une variable est dite liée quand elle est dans le champ d'un quantificateur, autrement elle est libre
- Une variable libre a au moins une occurrence libre dans une formule
- Exemple :
 - $\exists x (p(x,y)) \land \forall z (q(z,x))$
 - Première occurrence de x liée, seconde occurrence libre, y libre, z liée
- Une formule close est une formule sans variable libre

Modèles de la logique du 1er ordre

- La vérité d'une formule est déterminée par un modèle et une interprétation des symboles de la formule
- Un modèle contient des objets (appelés éléments du domaine (ou de l'univers)) qui sont liés entre eux par des relations
- Une interprétation spécifie à quoi réfèrent les symboles de l'énoncé :
 - Symboles de constantes → objets
 - Symboles de prédicats → relations
 - Symboles de fonctions → fonctions
- Un énoncé atomique est vrai dans un modèle donné, compte tenu d'une interprétation donnée, si la relation à laquelle renvoit le symbole du prédicat s'applique aux objets en arguments.

Sémantique de la logique du 2er ordre : Interprétation

Interprétation

Une interprétation $\mathcal I$ d'un langage $\mathcal L$, dont la signature est $\langle \mathcal F, \mathcal R \rangle$, est constitué par :

- Un ensemble (fini ou infini, mais non vide) D, appelé domaine ou univers de $\mathcal I$
- Une application, qui associe à chaque symbole de $\langle \mathcal{F}, \mathcal{R} \rangle$ une valeur :
 - une constante $c/0 \in \mathcal{F}$: $c_{\mathcal{I}}$ est un élément de D $(c \in D)$
 - une fonction $f/n \in \mathcal{F} : f_{\mathcal{I}}$ est une fonction de $D^n \longrightarrow D$
 - un symbole propositionnel $p/0 \in \mathcal{R}: p_{\mathcal{I}} = \top$ est vrai, ou $p_{\mathcal{I}} = \bot$ est faux
 - une relation $p/n \in \mathcal{R}$: $p_{\mathcal{I}}$ est un sous-ensemble de D^n (les n-uplets qui vérifient cette relation)

Interprétation : Exemple

Soit le langage \mathcal{L} , dont la signature $\langle \mathcal{F}, \mathcal{R} \rangle$ est la suivante :

- $\mathcal{F} = \{ \text{pere/1, mere/1, A/0, B/0, C/0, E/0} \}$
- $\mathcal{R} = \{ parent/2 \}$

Une interprétation possible sur le domaine $D=\{\mathtt{A}\,,\,\,\mathtt{B}\,,\,\,\mathtt{C}\,,\,\,\mathtt{E}\}$ est :

- pere(C) = A, pere(E) = A, mere(C) = B, mere(E) = B,
- parent = $\{(A,E), (A,C), (B,C), (B,E)\}$

Quantification universelle

- ∀⟨variables⟩⟨enonce⟩
- Tous les étudiants sont intelligents :

```
\forall x \ etudiant(x) \Rightarrow \ intelligent(x)
```

- \(\forall x P \) est vrai dans un modèle si et seulement si \(P \) est vrai pour tous les objets \(x \)
- \(\forall x \) P est équivalent à la conjonction de toutes les instanciations de P :

```
(etudiant(Paul) \Rightarrow intelligent(Paul))
\land (etudiant(Chafia) \Rightarrow intelligent(Chafia))
\land (etudiant(Sophie) \Rightarrow intelligent(Sophie))
\land (etudiant(Abdel) \Rightarrow intelligent(Abdel))
\land \vdots
```

Quantification universelle : erreur fréquente à éviter

- ullet Le connecteur principal à utiliser avec \forall est l'implication \Rightarrow
- Erreur fréquente : utiliser la conjonction ∧ comme connecteur principal avec ∀
- ∀x etudiant(x) ∧ intelligent(x) signifie "tout le monde est étudiant et tout le monde est intelligent"

Quantification existentielle

- ∃⟨variables⟩⟨enonce⟩
- Un étudiant est intelligent :

```
\exists x \ etudiant(x) \land \ intelligent(x)
```

- ∃x P est vrai dans un modèle si et seulement si P est vrai pour au moins un objet x
- ∃x P est équivalent à la disjonction de toutes les instanciations de P :

```
(etudiant(Paul) \land intelligent(Paul))
\lor (etudiant(Chafia) \land intelligent(Chafia))
\lor (etudiant(Sophie) \land intelligent(Sophie))
\lor (etudiant(Abdel) \land intelligent(Abdel))
\lor \vdots
```

Quantification existentielle : erreur fréquente à éviter

- \bullet Le connecteur principal à utiliser avec \exists est la conjonction \land
- Erreur fréquente : utiliser l'implication ⇒ comme connecteur principal avec ∃
- ∃x etudiant(x) ⇒ intelligent(x) est vrai s'il existe quelqu'un qui n'est pas étudiant!

Propriétés des quantificateurs

- $\forall x \forall y$ est équivalent à $\forall y \forall x$
- $\exists x \exists y$ est équivalent à $\exists y \exists x$
- $\exists x \forall y$ n'est pas équivalent à $\forall y \exists x$
 - ∃y∀x aime(x, y) "Il existe une personne qui est aimé par tout le monde"
 - ∀x∃y aime(x, y) "Tout le monde aime quelqu'un" (pour toute personne, il existe quelqu'un qu'il aime)
- Liens entre ∀ et ∃ : Les deux quantifieurs sont liés par le biais de la négation :
 - $\forall x \ aime(x, Glace)$ est équivalent à $\neg \exists x \neg aime(x, Glace)$
 - $\exists x \ aime(x, Brocoli)$ est équivalent à $\neg \forall x \neg aime(x, Brocoli)$

Egalité

- terme₁ = terme₂ est vrai sous une certaine interprétation si et seulement si terme₁ et terme₂ renvoient au même objet
 - Richard a deux frères :
 ∃x, y frere(x, Richard) ∧ frere(y, Richard) ∧ ¬(x = y)
 - Le grand-père paternel de quelqu'un est le père de son père
 \(\forall \) gppaternel(x) = pere(pere(x))

Egalité

- $terme_1 = terme_2$ est vrai sous une certaine interprétation si et seulement si $terme_1$ et $terme_2$ renvoient au même objet
 - Richard a deux frères :
 ∃x, y frere(x, Richard) ∧ frere(y, Richard) ∧ ¬(x = y)
 - Le grand-père paternel de quelqu'un est le père de son père
 ∀x gppaternel(x) = pere(pere(x))
- Mais pour prendre en compte cette égalité, on doit ajouter une nouvelle règle d'inférence : la démodulation, qui permet de remplacer un terme par un autre en cas d'égalité.
 - A partir de la BC composée des énoncés suivants :
 - 1. $\forall x \ gppaternel(x) = pere(pere(x))$
 - annee_naissance(pere(pere(Lea)))
 - on peut déduire annee_naissance(gppaternel(Lea)) grâce à la démodulation

Utiliser la logique du premier

ordre

Domaine des liens de parenté

• La mère d'une personne est un parent féminin :

Domaine des liens de parenté

• La mère d'une personne est un parent féminin :

$$\forall \textit{m}, \textit{c} \; \textit{mere}(\textit{c}) = \textit{m} \Leftrightarrow \textit{feminin}(\textit{m}) \land \textit{parent}(\textit{m}, \textit{c})$$

Domaine des liens de parenté

• La mère d'une personne est un parent féminin :

$$\forall m, c \; mere(c) = m \Leftrightarrow feminin(m) \land parent(m, c)$$

• Parents et enfants sont des relations inverses :

Domaine des liens de parenté

• La mère d'une personne est un parent féminin :

$$\forall m, c \; mere(c) = m \Leftrightarrow feminin(m) \land parent(m, c)$$

• Parents et enfants sont des relations inverses :

$$\forall p, c \ parent(p, c) \Leftrightarrow enfant(c, p)$$

Domaine des liens de parenté

• La mère d'une personne est un parent féminin :

$$\forall m, c \; mere(c) = m \Leftrightarrow feminin(m) \land parent(m, c)$$

• Parents et enfants sont des relations inverses :

$$\forall p, c \ parent(p, c) \Leftrightarrow enfant(c, p)$$

• Un grand-parent est le parent d'un des parents :

Domaine des liens de parenté

• La mère d'une personne est un parent féminin :

$$\forall m, c \; mere(c) = m \Leftrightarrow feminin(m) \land parent(m, c)$$

• Parents et enfants sont des relations inverses :

$$\forall p, c \ parent(p, c) \Leftrightarrow enfant(c, p)$$

• Un grand-parent est le parent d'un des parents :

$$\forall g, c \ grandparent(g, c) \Leftrightarrow \exists p \ parent(g, p) \land parent(p, c)$$

• Tous les chemins mènent à Rome

• Tous les chemins mènent à Rome

$$\forall x \ (chemin(x) \Rightarrow mene(x, Rome))$$

• Tous les chemins mènent à Rome

$$\forall x \ (chemin(x) \Rightarrow mene(x, Rome))$$

• Une porte est ouverte ou fermée

• Tous les chemins mènent à Rome

$$\forall x \ (chemin(x) \Rightarrow mene(x, Rome))$$

• Une porte est ouverte ou fermée

$$\forall x \ (porte(x) \Rightarrow (ouvert(x) \lor ferme(x))$$

• Tous les chemins mènent à Rome

$$\forall x \ (chemin(x) \Rightarrow mene(x, Rome))$$

• Une porte est ouverte ou fermée

$$\forall x \ (porte(x) \Rightarrow (ouvert(x) \lor ferme(x))$$

• Une porte est ou bien ouverte ou bien fermée

• Tous les chemins mènent à Rome

$$\forall x \ (chemin(x) \Rightarrow mene(x, Rome))$$

• Une porte est ouverte ou fermée

$$\forall x \ (porte(x) \Rightarrow (ouvert(x) \lor ferme(x))$$

• Une porte est ou bien ouverte ou bien fermée

$$\forall x \ (porte(x) \Rightarrow ((ouvert(x) \lor ferme(x)) \land \neg(ouvert(x) \land ferme(x)))$$

Tous les chemins mènent à Rome

$$\forall x \ (chemin(x) \Rightarrow mene(x, Rome))$$

• Une porte est ouverte ou fermée

$$\forall x \ (porte(x) \Rightarrow (ouvert(x) \lor ferme(x))$$

- Une porte est ou bien ouverte ou bien fermée
 ∀x (porte(x) ⇒ ((ouvert(x) ∨ ferme(x)) ∧ ¬(ouvert(x) ∧ ferme(x)))
- Tout ce qui brille n'est pas or

Tous les chemins mènent à Rome

$$\forall x \ (chemin(x) \Rightarrow mene(x, Rome))$$

• Une porte est ouverte ou fermée

$$\forall x \ (porte(x) \Rightarrow (ouvert(x) \lor ferme(x))$$

Une porte est ou bien ouverte ou bien fermée
 ∀x (porte(x) ⇒ ((ouvert(x) ∨ ferme(x)) ∧ ¬(ouvert(x) ∧ ferme(x)))

Tout ce qui brille n'est pas or

$$\neg \forall x \ (brille(x) \Rightarrow or(x)) \equiv \exists x \ brille(x) \land \neg or(x)$$

• Tous les chemins mènent à Rome

$$\forall x \ (chemin(x) \Rightarrow mene(x, Rome))$$

• Une porte est ouverte ou fermée

$$\forall x \ (porte(x) \Rightarrow (ouvert(x) \lor ferme(x))$$

- Une porte est ou bien ouverte ou bien fermée
 ∀x (porte(x) ⇒ ((ouvert(x) ∨ ferme(x)) ∧ ¬(ouvert(x) ∧ ferme(x)))
- Tout ce qui brille n'est pas or

$$\neg \forall x \ (brille(x) \Rightarrow or(x)) \equiv \exists x \ brille(x) \land \neg or(x)$$

• Il y a des peines, il y a des plaisirs, mais aucune peine n'est un plaisir

Tous les chemins mènent à Rome

$$\forall x \ (chemin(x) \Rightarrow mene(x, Rome))$$

• Une porte est ouverte ou fermée

$$\forall x \ (porte(x) \Rightarrow (ouvert(x) \lor ferme(x))$$

- Une porte est ou bien ouverte ou bien fermée
 ∀x (porte(x) ⇒ ((ouvert(x) ∨ ferme(x)) ∧ ¬(ouvert(x) ∧ ferme(x)))
- Tout ce qui brille n'est pas or

$$\neg \forall x \ (brille(x) \Rightarrow or(x)) \equiv \exists x \ brille(x) \land \neg or(x)$$

• If y a despeines, if y a desplaisirs, mais aucune peine n'est un plaisir $(\exists x \; peine(x)) \land (\exists x \; plaisir(x)) \land \forall x \; (peine(x) \Rightarrow \neg plaisir(x))$

• Tous les chemins mènent à Rome

$$\forall x \ (chemin(x) \Rightarrow mene(x, Rome))$$

• Une porte est ouverte ou fermée

$$\forall x \ (porte(x) \Rightarrow (ouvert(x) \lor ferme(x))$$

- Une porte est ou bien ouverte ou bien fermée
 ∀x (porte(x) ⇒ ((ouvert(x) ∨ ferme(x)) ∧ ¬(ouvert(x) ∧ ferme(x)))
- Tout ce qui brille n'est pas or

$$\neg \forall x \ (brille(x) \Rightarrow or(x)) \equiv \exists x \ brille(x) \land \neg or(x)$$

- If y a despeines, if y a desplaisirs, mais aucune peine n'est un plaisir $(\exists x \; peine(x)) \land (\exists x \; plaisir(x)) \land \forall x \; (peine(x) \Rightarrow \neg plaisir(x))$
- Pour tout entier il existe un entier plus grand

• Tous les chemins mènent à Rome

$$\forall x \ (chemin(x) \Rightarrow mene(x, Rome))$$

• Une porte est ouverte ou fermée

$$\forall x \ (porte(x) \Rightarrow (ouvert(x) \lor ferme(x))$$

- Une porte est ou bien ouverte ou bien fermée
 ∀x (porte(x) ⇒ ((ouvert(x) ∨ ferme(x)) ∧ ¬(ouvert(x) ∧ ferme(x)))
- Tout ce qui brille n'est pas or

$$\neg \forall x \ (brille(x) \Rightarrow or(x)) \equiv \exists x \ brille(x) \land \neg or(x)$$

- If y a despeines, if y a desplaisirs, mais aucune peine n'est un plaisir $(\exists x \; peine(x)) \land (\exists x \; plaisir(x)) \land \forall x \; (peine(x) \Rightarrow \neg plaisir(x))$
- Pour tout entier il existe un entier plus grand

$$\forall x \ (entier(x) \Rightarrow \exists y \ (entier(y) \land plusgrand(y, x)))$$

• Tous les chemins mènent à Rome

$$\forall x \ (chemin(x) \Rightarrow mene(x, Rome))$$

• Une porte est ouverte ou fermée

$$\forall x \ (porte(x) \Rightarrow (ouvert(x) \lor ferme(x))$$

- Une porte est ou bien ouverte ou bien fermée
 ∀x (porte(x) ⇒ ((ouvert(x) ∨ ferme(x)) ∧ ¬(ouvert(x) ∧ ferme(x)))
- Tout ce qui brille n'est pas or

$$\neg \forall x \ (brille(x) \Rightarrow or(x)) \equiv \exists x \ brille(x) \land \neg or(x)$$

- If y a despeines, if y a desplaisirs, mais aucune peine n'est un plaisir $(\exists x \; peine(x)) \land (\exists x \; plaisir(x)) \land \forall x \; (peine(x) \Rightarrow \neg plaisir(x))$
- Pour tout entier il existe un entier plus grand

$$\forall x \ (entier(x) \Rightarrow \exists y \ (entier(y) \land plusgrand(y,x)))$$

Il existe un plus grand entier

Tous les chemins mènent à Rome

$$\forall x \ (chemin(x) \Rightarrow mene(x, Rome))$$

• Une porte est ouverte ou fermée

$$\forall x \ (porte(x) \Rightarrow (ouvert(x) \lor ferme(x))$$

- Une porte est ou bien ouverte ou bien fermée
 ∀x (porte(x) ⇒ ((ouvert(x) ∨ ferme(x)) ∧ ¬(ouvert(x) ∧ ferme(x)))
- Tout ce qui brille n'est pas or

$$\neg \forall x \ (brille(x) \Rightarrow or(x)) \equiv \exists x \ brille(x) \land \neg or(x)$$

- If y a despeines, if y a desplaisirs, mais aucune peine n'est un plaisir $(\exists x \; peine(x)) \land (\exists x \; plaisir(x)) \land \forall x \; (peine(x) \Rightarrow \neg plaisir(x))$
- Pour tout entier il existe un entier plus grand

$$\forall x \ (entier(x) \Rightarrow \exists y \ (entier(y) \land plusgrand(y, x)))$$

• Il existe un plus grand entier

$$\exists x \ (entier(x) \land \forall y (entier(y) \Rightarrow plusgrand(x, y)))$$

propositionnelle _____

Réduction de l'inférence du

premier ordre à l'inférence

Terme fermé; Substitution

- Terme fermé : Terme qui ne contient pas de variable
- Substitution :
 - Paire Variable/Terme
 - Soit E un énoncé, σ un énoncé. Eσ (ou Subst(E, σ)) représente le résultat de la substitution σ dans E
 - Exemple :
 - E = femme(x, y)
 - $\sigma = \{x/Hilary, y/Bill\}$
 - $E\sigma = femme(Hilary, Bill)$

Instanciation universelle

 Instanciation universelle (UI) : Chaque instanciation d'un énoncé universellement quantifié peut être inféré :

$$\frac{\forall v, \ \alpha}{Subst(\{v/g\}, \alpha)}$$

pour toute variable v et pour tout terme fermé g

- Exemple
 - $\forall x \ roi(x) \land cupide(x) \Rightarrow mechant(x)$
 - roi(Jean) ∧ cupide(Jean) ⇒ mechant(Jean)
 - roi(Richard) ∧ cupide(Richard) ⇒ mechant(Richard)
 - $roi(pere(Jean)) \land cupide(pere(Jean)) \Rightarrow mechant(pere(Jean))$

Instanciation existentielle

 Instanciation existentielle (EI): Pour tout énoncé α, pour toute variable v et pour tout symbole de constante k qui n'apparait pas dans la base de connaissances, on a :

$$\frac{\exists v, \ \alpha}{Subst(\{v/k\}, \alpha)}$$

- Exemple
 - $\exists x \ couronne(x) \land surTete(x, Jean)$
 - $couronne(C_1) \wedge surTete(C_1, Jean)$
 - C₁ est un nouveau symbole de constante, appelé constante de Skolem
- Cas particulier de la skolémisation

- Base de connaissances :
 - $\forall x \ roi(x) \land cupide(x) \Rightarrow mechant(x)$
 - roi(Jean)
 - cupide(Jean)
 - frere(Richard, Jean)
- Instanciation universelle : toutes les substitutions possibles :
 - roi(Jean) ∧ cupide(Jean) ⇒ mechant(Jean)
 - roi(Richard) ∧ cupide(Richard) ⇒ mechant(Richard)
 - roi(Jean)
 - cupide(Jean)
 - frere(Richard, Jean)
- La nouvelle BC est propositionnalisée

- Toute base de connaissances en logique du 1er ordre peut être propositionnalisée de manière à préserver la relation de conséquence
 - → un énoncé est déduit de la nouvelle base de connaissances ssi il peut être déduit de la base de connaissances originale
- Idée : propositionnaliser la BC et la requête, appliquer la résolution, retourner un résultat
- Problème : Avec les symboles de fonction, l'ensemble des substitutions possibles des termes fermé est infini
 - pere(pere(pere(Jean)))

Théorème de Herbrandt (1930)

Si un énoncé est conséquence de la BC de premier ordre d'origine, alors il existe une preuve qui ne fait appel qu'à un sous ensemble **fini** de la BC propositionnalisée.

Théorème de Herbrandt (1930)

Si un énoncé est conséquence de la BC de premier ordre d'origine, alors il existe une preuve qui ne fait appel qu'à un sous ensemble **fini** de la BC propositionnalisée.

- Idée :
 - instancier d'abord avec toutes les constantes (Richard, Jean);
 - puis les termes de profondeur 1 (pere(Richard), pere(Jean))
 - puis les termes de profondeur 2, ...
 - ightarrow obtenir l'énoncé conséquence

Théorème de Herbrandt (1930)

Si un énoncé est conséquence de la BC de premier ordre d'origine, alors il existe une preuve qui ne fait appel qu'à un sous ensemble **fini** de la BC propositionnalisée.

- Idée :
 - instancier d'abord avec toutes les constantes (Richard, Jean);
 - puis les termes de profondeur 1 (pere(Richard), pere(Jean))
 - puis les termes de profondeur 2, ...
 - → obtenir l'énoncé conséquence
- Problème : fonctionne si l'énoncé est conséquence, mais boucle si l'énoncé n'est pas conséquence

Théorème de Turing et Church (1936)

En logique du premier ordre, la question de la conséquence logique est semi-décidable

Théorème de Turing et Church (1936)

En logique du premier ordre, la question de la conséquence logique est semi-décidable

⇒ Il existe des algorithmes qui disent "oui" à tout énoncé conséquence, mais il n'en existe pas qui disent "non" à tout énoncé non-conséquence.

Problèmes de la propositionnalisation

- La propositionnalisation semble générer beaucoup d'énoncés inutiles
- Exemple :
 - $\forall x \ roi(x) \land cupide(x) \Rightarrow mechant(x)$
 - roi(Jean)
 - $\forall y$, cupide(y)
 - frere(Richard, Jean)
 - → On déduit mechant(Jean), mais également beaucoup d'énoncés comme cupide(Richard) qui sont non pertinents
- Avec p prédicats k-aires et n constantes, il y a $p.n^k$ instanciations

• On pourrait obtenir l'inférence immédiatement si l'on pouvait trouver une substitution θ telle que roi(x) et cupide(y) correspondent à roi(Jean) et cupide(Jean)

$$\rightarrow \theta = \{x/Jean, y/Jean\}$$

р	q	θ
connait(Jean, x)	connait(Jean, Jeanne)	
connait(Jean, x)	connait(y, Bill)	
connait(Jean, x)	connait(y, mere(y))	
connait(Jean, x)	connait(x, Bill)	

 On pourrait obtenir l'inférence immédiatement si l'on pouvait trouver une substitution θ telle que roi(x) et cupide(x) correspondent à roi(Jean) et cupide(y)

$$\rightarrow \theta = \{x/Jean, y/Jean\}$$

р	q	θ
connait(Jean, x)	connait(Jean, Jeanne)	$\{x/Jeanne\}$
connait(Jean, x)	connait(y, Bill)	
connait(Jean, x)	connait(y, mere(y))	
connait(Jean, x)	connait(x, Bill)	

• On pourrait obtenir l'inférence immédiatement si l'on pouvait trouver une substitution θ telle que roi(x) et cupide(x) correspondent à roi(Jean) et cupide(y)

$$\rightarrow \theta = \{x/Jean, y/Jean\}$$

р	q	θ
connait(Jean, x)	connait(Jean, Jeanne)	$\{x/Jeanne\}$
connait(Jean, x)	connait(y, Bill)	$\{x/Bill, y/Jean\}$
connait(Jean, x)	connait(y, mere(y))	
connait(Jean, x)	connait(x, Bill)	

• On pourrait obtenir l'inférence immédiatement si l'on pouvait trouver une substitution θ telle que roi(x) et cupide(x) correspondent à roi(Jean) et cupide(y)

$$\rightarrow \theta = \{x/Jean, y/Jean\}$$

р	q	θ
connait(Jean, x)	connait(Jean, Jeanne)	$\{x/Jeanne\}$
connait(Jean, x)	connait(y, Bill)	$\{x/Bill, y/Jean\}$
connait(Jean, x)	connait(y, mere(y))	$\{y/Jean, x/mere(Jean)\}$
connait(Jean, x)	connait(x, Bill)	

• On pourrait obtenir l'inférence immédiatement si l'on pouvait trouver une substitution θ telle que roi(x) et cupide(x) correspondent à roi(Jean) et cupide(y)

$$\rightarrow \theta = \{x/Jean, y/Jean\}$$

р	q	θ
connait(Jean, x)	connait(Jean, Jeanne)	$\{x/Jeanne\}$
connait(Jean, x)	connait(y, Bill)	$\{x/Bill, y/Jean\}$
connait(Jean, x)	connait(y, mere(y))	$\{y/Jean, x/mere(Jean)\}$
connait(Jean, x)	connait(x, Bill)	échec

• On pourrait obtenir l'inférence immédiatement si l'on pouvait trouver une substitution θ telle que roi(x) et cupide(x) correspondent à roi(Jean) et cupide(y)

$$\rightarrow \theta = \{x/Jean, y/Jean\}$$

• Unify(α, β) = θ si $\alpha\theta = \beta\theta$

р	q	θ
connait(Jean, x)	connait(Jean, Jeanne)	{x/Jeanne}
connait(Jean, x)	connait(y, Bill)	$\{x/Bill, y/Jean\}$
connait(Jean, x)	connait(y, mere(y))	$\{y/Jean, x/mere(Jean)\}$
connait(Jean, x)	connait(x, Bill)	échec

• Normalisation séparée : renommer les variables de façon à empêcher toute interférence de nom

$$\rightarrow$$
 connait(z_{12} , Bill)

Unification

- Il peut y avoir plusieurs unificateurs :
 - connait(Jean, x) et connait(y, z) $\rightarrow \theta = \{y/Jean, x/z\}$ $\rightarrow \theta = \{y/Jean, x/Jean, z/Jean\}$
- Le premier unificateur est plus général que le second
- Il existe un seul unificateur plus général (MGU, Most General Unifier) qui est unique, au renommage des variables près

$$\rightarrow$$
 MGU = $\theta = \{y/Jean, x/z\}$

• Skolémisation : Suppression des quantifieurs d'une formule, afin d'appliquer une procédure d'inférence

- Skolémisation : Suppression des quantifieurs d'une formule, afin d'appliquer une procédure d'inférence
- Quantifieurs existentiels : 2 cas
 - Variables qui ne dépendent pas d'une variable universellement quantifiée : constante de Skolem, qui n'appartient pas déjà à la base de connaissances
 - Variables qui dépendent de variable(s) universellement quantifiée : fonction de Skolem dont les arguments sont les variables universelles dans la portée du quantifieur universel

- Skolémisation : Suppression des quantifieurs d'une formule, afin d'appliquer une procédure d'inférence
- Quantifieurs existentiels : 2 cas
 - Variables qui ne dépendent pas d'une variable universellement quantifiée : constante de Skolem, qui n'appartient pas déjà à la base de connaissances
 - Variables qui dépendent de variable(s) universellement quantifiée : fonction de Skolem dont les arguments sont les variables universelles dans la portée du quantifieur universel
 - Exemple :

$$\exists x \forall y, z \exists t, p(x) \land (q(y, z) \Rightarrow r(x, t))$$

On obtient:

$$\forall y, z, p(A) \land (q(y, z) \Rightarrow r(A, f(y, z)))$$

- Skolémisation : Suppression des quantifieurs d'une formule, afin d'appliquer une procédure d'inférence
- Quantifieurs existentiels : 2 cas
 - Variables qui ne dépendent pas d'une variable universellement quantifiée : constante de Skolem, qui n'appartient pas déjà à la base de connaissances
 - Variables qui dépendent de variable(s) universellement quantifiée : fonction de Skolem dont les arguments sont les variables universelles dans la portée du quantifieur universel
 - Exemple :

$$\exists x \forall y, z \exists t, p(x) \land (q(y, z) \Rightarrow r(x, t))$$

On obtient:

$$\forall y, z, p(A) \land (q(y, z) \Rightarrow r(A, f(y, z)))$$

- Skolémisation : Suppression des quantifieurs d'une formule, afin d'appliquer une procédure d'inférence
- Quantifieurs existentiels : 2 cas
 - Variables qui ne dépendent pas d'une variable universellement quantifiée : constante de Skolem, qui n'appartient pas déjà à la base de connaissances
 - Variables qui dépendent de variable(s) universellement quantifiée : fonction de Skolem dont les arguments sont les variables universelles dans la portée du quantifieur universel
 - Exemple :

$$\exists x \forall y, z \exists t, p(x) \land (q(y, z) \Rightarrow r(x, t))$$

On obtient:

$$\forall y, z, p(A) \land (q(y, z) \Rightarrow r(A, f(y, z)))$$

- Skolémisation : Suppression des quantifieurs d'une formule, afin d'appliquer une procédure d'inférence
- Quantifieurs existentiels : 2 cas
 - Variables qui ne dépendent pas d'une variable universellement quantifiée : constante de Skolem, qui n'appartient pas déjà à la base de connaissances
 - Variables qui dépendent de variable(s) universellement quantifiée : fonction de Skolem dont les arguments sont les variables universelles dans la portée du quantifieur universel
 - Exemple :

$$\exists x \forall y, z \exists t, p(x) \land (q(y, z) \Rightarrow r(x, t))$$

On obtient:

$$\forall y, z, p(A) \land (q(y, z) \Rightarrow r(A, f(y, z)))$$

Quantifieurs universels : simplement supprimés

$$p(A) \wedge (q(y,z) \Rightarrow r(A,f(y,z)))$$

Schémas de raisonnement en

logique des prédicats

Schémas de raisonnement en

Modus Ponens généralisé

logique des prédicats

Modus Ponens généralisé

$$\frac{p'_1, p'_2, \ldots, p'_n, (p_1 \wedge p_2 \wedge \ldots \wedge p_n \Rightarrow q)}{q\theta}$$

• Par exemple :

```
p_1' est roi(Jean) p_1 est roi(x)

p_2' est cupide(y) p_2 est cupide(x)

\theta est \{x/Jean, \ y/Jean\} q est mechant(x)

q\theta est mechant(Jean)
```

- Le Modus Ponens généralisé est utilisé sur des bases de connaissances composées de clauses définies (exactement un litéral positif)
- Toutes les variables sont supposées universellement quantifiées

Schémas de raisonnement en

logique des prédicats

Résolution

$$\frac{l_1 \vee \ldots \vee l_k, \ m_1 \vee \ldots \vee m_n}{(l_1 \vee \ldots \vee l_{i-1} \vee l_{i+1} \vee \ldots l_k \vee m_1 \vee \ldots \vee m_{j-1} \vee m_{j+1} \vee \ldots m_n)\theta}$$

avec Unify $(I_i, \neg m_j) = \theta$

- Les deux clauses sont supposées être normalisées séparément
 → ne partagent aucune variable
- Exemple :

$$\frac{(\mathit{animal}(x) \lor \mathit{aimer}(g(x), x)), \ (\neg \mathit{aimer}(u, v) \lor \neg \mathit{tuer}(u, v))}{\mathit{animal}(x) \lor \neg \mathit{tuer}(g(x), x)}$$

avec
$$\theta = \{u/g(x), v/x\}$$

• Résolution appliquée sur $\mathsf{CNF}(BC \land \neg \alpha)$: complète pour la logique du 1er ordre

Conversion en CNF

"Toute personne qui aime tous les animaux est aimée par quelqu'un"

$$\forall x \ (\forall y \ animal(y) \Rightarrow aimer(x,y)) \Rightarrow (\exists y \ aimer(y,x))$$

1. Elimination des implications :

$$\forall x \ \neg(\forall y \ \neg animal(y) \lor aimer(x,y)) \lor (\exists y \ aimer(y,x))$$

- 2. Déplacement des ¬ vers l'intérieur :
 - $\neg \forall x \ p \equiv \exists x \neg p$
 - $\neg \exists x \ p \equiv \forall x \neg p$

$$\forall x \ (\exists y \neg (\neg animal(y) \lor aimer(x,y))) \lor (\exists y \ aimer(y,x))$$

$$\forall x \ (\exists y \ animal(y) \land \neg aimer(x,y)) \lor (\exists y \ aimer(y,x))$$

Conversion en CNF

3. Normalisation des variables : chaque quantifieur doit utiliser une variable différente

$$\forall x \ (\exists y \ animal(y) \land \neg aimer(x,y)) \lor (\exists z \ aimer(z,x))$$

4. Skolémisation:

$$(animal(f(x)) \land \neg aimer(x, f(x))) \lor aimer(g(x), x)$$

5. Distribution de \vee sur \wedge

$$(animal(f(x)) \lor aimer(g(x), x)) \land (\neg aimer(x, f(x)) \lor aimer(g(x), x))$$

Base de connaissance

La loi stipule que c'est un crime pour un américain de vendre des armes à des nations hostiles. Le pays Nono, un ennemi de l'Amérique, a des missiles, et tous ses missiles lui ont été vendus par le colonel West, qui est américain.

 \Rightarrow Prouvons que West est un criminel

•	"	c'est	un	crime	pour	un	américain	de	vendre	des	armes	à	des	nations	hostiles"	' :
---	---	-------	----	-------	------	----	-----------	----	--------	-----	-------	---	-----	---------	-----------	-----

```
• "Nono ...a des missiles" :
```

• "tous ses missiles lui ont été vendus par le colonel West" :

Les missiles sont des armes :

• Un ennemi de l'Amérique est considéré comme hostile :

• "West, qui est américain" :

• "Le pays Nono, un ennemi de l'Amérique" :

• "... c'est un crime pour un américain de vendre des armes à des nations hostiles" :

$$\forall x \forall y \forall z \ americain(x) \land arme(y) \land vend(x, y, z) \land hostile(z) \Rightarrow criminel(x)$$

• "Nono ...a des missiles" :

- · Les missiles sont des armes :
- Un ennemi de l'Amérique est considéré comme hostile :

- "West, qui est américain" :
- "Le pays Nono, un ennemi de l'Amérique" :

• "... c'est un crime pour un américain de vendre des armes à des nations hostiles" :

```
\forall x \forall y \forall z \ americain(x) \land arme(y) \land vend(x, y, z) \land hostile(z) \Rightarrow criminel(x)
```

• "Nono ...a des missiles" :

$$\exists x \; missile(x) \land possede(Nono, x)$$

- · Les missiles sont des armes :
- Un ennemi de l'Amérique est considéré comme hostile :

- "West, qui est américain" :
- "Le pays Nono, un ennemi de l'Amérique" :

• "... c'est un crime pour un américain de vendre des armes à des nations hostiles" :

```
\forall x \forall y \forall z \ americain(x) \land arme(y) \land vend(x, y, z) \land hostile(z) \Rightarrow criminel(x)
```

• "Nono ...a des missiles" :

$$\exists x \; missile(x) \land possede(Nono, x)$$

$$\forall x \; missile(x) \land possede(Nono, x) \Rightarrow vend(West, x, Nono)$$

- Les missiles sont des armes :
- Un ennemi de l'Amérique est considéré comme hostile :

- "West, qui est américain" :
- "Le pays Nono, un ennemi de l'Amérique" :

• "... c'est un crime pour un américain de vendre des armes à des nations hostiles" :

```
\forall x \forall y \forall z \ americain(x) \land arme(y) \land vend(x, y, z) \land hostile(z) \Rightarrow criminel(x)
```

"Nono ...a des missiles" :

$$\exists x \; missile(x) \land possede(Nono, x)$$

$$\forall x \; \textit{missile}(x) \land \textit{possede}(\textit{Nono}, x) \Rightarrow \textit{vend}(\textit{West}, x, \textit{Nono})$$

- Les missiles sont des armes : $\forall x \; missile(x) \Rightarrow arme(x)$
- Un ennemi de l'Amérique est considéré comme hostile :

- "West, qui est américain" :
- "Le pays Nono, un ennemi de l'Amérique" :

• "... c'est un crime pour un américain de vendre des armes à des nations hostiles" :

```
\forall x \forall y \forall z \ americain(x) \land arme(y) \land vend(x, y, z) \land hostile(z) \Rightarrow criminel(x)
```

• "Nono ...a des missiles" :

$$\exists x \; missile(x) \land possede(Nono, x)$$

$$\forall x \; missile(x) \land possede(Nono, x) \Rightarrow vend(West, x, Nono)$$

- Les missiles sont des armes : $\forall x \; missile(x) \Rightarrow arme(x)$
- Un ennemi de l'Amérique est considéré comme hostile :

$$\forall x \ ennemi(x, Amerique) \Rightarrow hostile(x)$$

- "West, qui est américain" :
- "Le pays Nono, un ennemi de l'Amérique" :

• "... c'est un crime pour un américain de vendre des armes à des nations hostiles" :

```
\forall x \forall y \forall z \ americain(x) \land arme(y) \land vend(x, y, z) \land hostile(z) \Rightarrow criminel(x)
```

"Nono ...a des missiles" :

$$\exists x \; missile(x) \land possede(Nono, x)$$

$$\forall x \; missile(x) \land possede(Nono, x) \Rightarrow vend(West, x, Nono)$$

- Les missiles sont des armes : $\forall x \; missile(x) \Rightarrow arme(x)$
- Un ennemi de l'Amérique est considéré comme hostile :

$$\forall x \ ennemi(x, Amerique) \Rightarrow hostile(x)$$

- "West, qui est américain": americain(West)
- "Le pays Nono, un ennemi de l'Amérique" :

• "... c'est un crime pour un américain de vendre des armes à des nations hostiles" :

```
\forall x \forall y \forall z \ americain(x) \land arme(y) \land vend(x, y, z) \land hostile(z) \Rightarrow criminel(x)
```

"Nono ...a des missiles" :

$$\exists x \; missile(x) \land possede(Nono, x)$$

$$\forall x \; missile(x) \land possede(Nono, x) \Rightarrow vend(West, x, Nono)$$

- Les missiles sont des armes : $\forall x \; missile(x) \Rightarrow arme(x)$
- Un ennemi de l'Amérique est considéré comme hostile :

$$\forall x \ ennemi(x, Amerique) \Rightarrow hostile(x)$$

- "West, qui est américain" : americain(West)
- "Le pays Nono, un ennemi de l'Amérique" : ennemi(Nono, Amerique)

- 1. $\forall x \forall y \forall z \ americain(x) \land arme(y) \land vend(x, y, z) \land hostile(z) \Rightarrow criminel(x)$
- 2. $\exists x \; missile(x) \land possede(Nono, x)$
- 3. $\forall x \; missile(x) \land possede(Nono, x) \Rightarrow vend(West, x, Nono)$
- 4. $\forall x \; missile(x) \Rightarrow arme(x)$
- 5. $\forall x \ ennemi(x, Amerique) \Rightarrow hostile(x)$
- 6. americain(West)
- 7. ennemi(Nono, Amerique)

- 1. $\forall x \forall y \forall z \ americain(x) \land arme(y) \land vend(x, y, z) \land hostile(z) \Rightarrow criminel(x)$
- 2. $\exists x \; missile(x) \land possede(Nono, x)$
- 3. $\forall x \; missile(x) \land possede(Nono, x) \Rightarrow vend(West, x, Nono)$
- 4. $\forall x \; missile(x) \Rightarrow arme(x)$
- 5. $\forall x \ ennemi(x, Amerique) \Rightarrow hostile(x)$
- 6. americain(West)
- 7. ennemi(Nono, Amerique)

Suppression des implications

- 1. $\forall x \forall y \forall z \neg americain(x) \lor \neg arme(y) \lor \neg vend(x, y, z) \lor \neg hostile(z) \lor criminel(x)$
- 2. $\exists x \; missile(x) \land possede(Nono, x)$
- 3. $\forall x \neg missile(x) \lor \neg possede(Nono, x) \lor vend(West, x, Nono)$
- 4. $\forall x \neg missile(x) \lor arme(x)$
- 5. $\forall x \neg ennemi(x, Amerique) \lor hostile(x)$
- 6. americain(West)
- 7. ennemi(Nono, Amerique)

- 1. $\forall x \forall y \forall z \ \neg americain(x) \lor \neg arme(y) \lor \neg vend(x, y, z) \lor \neg hostile(z) \lor criminel(x)$
- 2. $\exists x \; missile(x) \land possede(Nono, x)$
- 3. $\forall x \neg missile(x) \lor \neg possede(Nono, x) \lor vend(West, x, Nono)$
- 4. $\forall x \neg missile(x) \lor arme(x)$
- 5. $\forall x \neg ennemi(x, Amerique) \lor hostile(x)$
- 6. americain(West)
- 7. ennemi(Nono, Amerique)

Skolémisation

- 1. $\neg americain(x) \lor \neg arme(y) \lor \neg vend(x, y, z) \lor \neg hostile(z) \lor criminel(x)$
- 2. $missile(A) \land possede(Nono, A)$
- 3. $\neg missile(x) \lor \neg possede(Nono, x) \lor vend(West, x, Nono)$
- 4. $\neg missile(x) \lor arme(x)$
- 5. $\neg ennemi(x, Amerique) \lor hostile(x)$
- 6. americain(West)
- 7. ennemi(Nono, Amerique)

- 1. $\neg americain(x) \lor \neg arme(y) \lor \neg vend(x, y, z) \lor \neg hostile(z) \lor criminel(x)$
- 2. $missile(A) \land possede(Nono, A)$
- 3. $\neg missile(x) \lor \neg possede(Nono, x) \lor vend(West, x, Nono)$
- 4. $\neg missile(x) \lor arme(x)$
- 5. $\neg ennemi(x, Amerique) \lor hostile(x)$
- 6. americain(West)
- 7. ennemi(Nono, Amerique)

Mise sous forme de clause

- 1. $\neg americain(x) \lor \neg arme(y) \lor \neg vend(x, y, z) \lor \neg hostile(z) \lor criminel(x)$
- 2. missile(A)
- 3. possede(Nono, A)
- 4. $\neg missile(x) \lor \neg possede(Nono, x) \lor vend(West, x, Nono)$
- 5. $\neg missile(x) \lor arme(x)$
- 6. $\neg ennemi(x, Amerique) \lor hostile(x)$
- 7. americain(West)
- 8. ennemi(Nono, Amerique)

- 1. $\neg americain(x) \lor \neg arme(y) \lor \neg vend(x, y, z) \lor \neg hostile(z) \lor criminel(x)$
- 2. missile(A)
- 3. possede(Nono, A)
- 4. $\neg missile(x) \lor \neg possede(Nono, x) \lor vend(West, x, Nono)$
- 5. $\neg missile(x) \lor arme(x)$
- 6. $\neg ennemi(x, Amerique) \lor hostile(x)$
- 7. americain(West)
- 8. ennemi(Nono, Amerique)

Résolution

Conclusion

Pour conclure

- Un langage de représentation est défini par sa syntaxe et sa sémantique
- Une **procédure d'inférence** permet de calculer de nouvelles expressions à partir d'expressions existantes
- Elle est correcte si elle permet de dériver des expressions vraies à partir de prémisses vraies
- Elle est **complète** si elle permet de dériver toutes les expressions vraies découlant d'un ensemble de prémisses
- La logique des propositions décrit des faits simples sur le monde
- La logique des prédicats permet d'exprimer des relations et de raisonner à leur propos

D'autres logiques?

- La température du réacteur est élevée
 - ⇒ Logique floue
- Les blondes ont souvent les yeux bleus
 - ⇒ Raisonnement incertain (e.g. Raisonnement bayésien)
- En l'absence de raison de croire le contraire, on peut supposer que chaque adulte que l'on rencontre sait lire
 - ⇒ Logique des défauts
- Il est mieux d'avoir plus de pièces que l'adversaire aux échecs
 - ⇒ Connaissances heuristiques