MB590-012 Microbiome Analysis Core Microbiomes

Dr. Christine Hawkes

NC STATE UNIVERSITY

Final project - SRA data

- Rachel has posted two GitHub issues with helpful info on
 - Converting .sra -> .fastq
 - Transferring sra files that downloaded in individual folders
- Upcoming deadlines
 - Optional: can use your project data in class on 3/9 for exploratory analysis practicum
 - Presentations 4/20
 - Final Rmd and knitted file 4/27

Best practices for learning R

- Look at the usage and arguments for R functions
 - https://www.rdocumentation.org/
 - https://rdrr.io/
 - Package CRAN manuals, vignettes, Github pages

- Example: vegan::envfit
 - https://www.rdocumentation.org/packages/vegan/versions/2
 .4-2/topics/envfit
 - https://cran.r-project.org/web/packages/vegan/vegan.pdf

- Example: microbiome package
 - https://rdrr.io/github/microbiome/microbiome/man/

What is a core microbiome?

 Simplest definition: taxa (OTUs/ASVs) that are shared by two or more samples in the same host, site, ecosystem, or treatment (or other group)

- Identification of core members
 - Occupancy
 - Abundance
 - Both occupancy and abundance -
 - Stability over time → Temporal core
 - Network structure → Ecological core
 - Function → Functional core
 - Adaptation→ Host-adapted core

Common core

What is a core microbiome?

Term	Definition	Criteria
Common core	The component of the microbiome that is found across a considerable proportion of hosts within a defined host population or species	 High prevalence/occupancy frequency across host population/species Can be identified using occupancy-abundance curves (Optional) Common in host species of interest but not in other closely related species Rare (non-prevalent) taxa cannot be core
Temporal core	A temporally stable or predictable component of the microbiota	 Taxa that demonstrate stable or predictable dynamics over time, either within a single host or across host population/species Within individuals, rare (non-prevalent) taxa can be core
Ecological core	The component of the microbiome that is disproportionally important for shaping the organisation and diversity of the ecological community	 Removal or introduction results in large cascading effects on ecological structure and diversity May form interaction hubs in ecological networks May increase community stability Rare (non-prevalent) taxa can be core (e.g. predators or ecosystem engineers)
Functional core Metabolite synthesis	The component of the microbiome that performs essential biological functions to the host, usually in respect to their biochemical, physiological or ecological services to the host	 A set of genes or taxa that are linked to a measureable facet of host function Natural variation in host function does not affect host fitness OR Natural variation in function does affect host fitness but phylogenetically distinct taxa can perform function Likely to represent facultative symbionts Can be horizontally or vertically acquired Rare (non-prevalent) taxa can be core
Host-adapted core Vertical transmission	A set of microbes that has co-evolved with the host species or sub-population and whose presence increases host fitness in at least some ecological contexts	 Taxa that are linked to a measureable facet of host function Natural variation in host function affects host fitness in at least some ecological contexts Are not functionally redundant (other taxa cannot perform same function) Are expected to be vertically transmitted Likely to represent obligate or near-obligate symbionts Very rare (non-prevalent) taxa unlikely to be core, but host-adapted cores be restricted to certain populations or ecological conditions

Common core microbiome

Occupancy ("Prevalence")

shared OTU occurences across communities 1 = present, 0 = below detection

OTUS		Occurences in community A	Occurences in community B	Shared occurences A & B
List of observed OTUs	OTU 1 OTU 2 OTU 3 OTU 4 OTU 5	1 0 1 1	0 1 1 1	×××××××××××××××××××××××××××××××××××××××

Relative Abundance ("Detection")

similar OTU abundances across communities

Note: Rel abund used as a threshold

OTUs	Abundances community A	Abundances community B	Similar abundances A & B
OTU 1 OTU 2 OTU 3 OTU 4 OTU 5	0.4 0 0.1 0.2 0.3	0 0.1 0.1 0.5 0.3	× • × •

Common core microbiome

Common core microbiome: abundance-occupancy

Common core microbiome: abundance-occupancy

Cumulative method: keep adding taxa until increase in BC similarity explained is <2% Elbow method: find breakpoint in graph that maximizes slope differences in each curve

Common core microbiome: neutral models and abundance-occupancy

- Fit neutral model to abundance-occupancy distribution
- Allows for identification of core members that are
 - consistent with neutral model = stochastic assembly
 - outside neutral model = deterministic assembly

Common core: abundance & occupancy

	Pros	Cons
Occurrence only	computationally simplecommonly usedincludes rare taxa	arbitrary cutoffsaffected by seq depthno abundance info
Abundance only	 computationally simple abundance may better reflect function 	 arbitrary cutoffs affected by seq depth affected by low sample nums affected by standardization/ rarefaction
Occupancy- abundance curves	 based on macroecological theory potentially differentiates between deterministic and stochastic core members 	 arbitrary cutoffs assumes microbial interactions and functions are similar to animals/plants

Ecological core microbiome: network connectivity

Network Connectivity

OTUs co-varying within a community and shared across communities

Ecological core microbiome: network hubs as candidate core members

Hub taxa: defined from network topology as either (1) nodes with higher than average connectivity (= high coexistence with other taxa) or (2) nodes that bridge between modules; often considered "keystone" taxa

Module: section of network with high density of connections and sparse connections to other such groups

Toju et al. 2018 Nature Plants doi: 10.1038/s41477-018-0139-4

Ecological core microbiome: assume connections=interactions

Ecological core microbiome: further work to confirm interactions and functions

Problems with core microbiome

- Taxa found in all conditions may be generalists and/or good dispersers
- High abundance/prevalence does not necessarily equate with function
- Focus on shared taxa in specific hosts or habitats ignores broader microbial distributions/ecology

Today's practical coding

- Download wk8_MicAnal_coremic.html
- Selection of core taxa via occupancy/prevalence and abundance/detection using microbiome::core
- Example of how to build an abundance-occupancy curve
- Data from Oono et al. 2017 on leaf fungi
- Exercises: split and transform data, compare various settings for core definitions, identify core for soilrep data

