UPLB Eliens - Pegaraw Notebook

Contents

1	Data	Structures 1										
_	1.1	Disjoint Set Union										
	1.2	Minimum Queue										
	1.3	Range Add Point Query										
	1.4	Range Add Range Query										
	1.5	Segment Tree										
	1.6	Segment Tree 2d										
	1.7											
	1.7	Sparse Table										
	1.6	Sparse Table 2d										
2	Dynamic Programming 3											
	2.1	Divide And Conquer										
	2.2	Edit Distance										
	2.3	Knapsack										
	2.4	Knuth Optimization										
	2.5	Longest Common Subsequence										
	2.6	Longest Increasing Subsequence										
	2.7	Subset Sum										
	2	1										
3	Geon	netry 4										
	3.1	Basic Geometry										
	3.2	Circle Line Intersection										
	3.3	Convex Hull										
	3.4	Line Intersection										
	3.5	Line Sweep										
	3.6	Nearest Points										
4	_	h Theory 6										
	4.1	Articulation Point 6										
	4.2	Bellman Ford										
	4.3	Bridge										
	4.4	Centroid Decomposition 6										
	4.5	Dijkstra 6										
	4.6	Dinics										
	4.7	Edmonds Karp										
	4.8	Fast Second Mst										
	4.9	Find Cycle										
	4.10	Floyd Warshall										
	4.11	Ford Fulkerson										
	4.12	Hierholzer										
	4.13	Hungarian										
	4.14	Is Bipartite										
	4.15	Is Cyclic										
	4.16	Kahn										
	4.17	Kosaraju										
	4.18	Kruskals										
	4.19	Kruskal Mst										
	4.20	Kuhn										
	4.21	Lowest Common Ancestor										
	4.22	Maximum Bipartite Matching										
	4.23	Min Cost Flow										
	4.24	Prim										
	4.25	Topological Sort										
	4.26	Zero One Bfs										
5	Math											
	5.1	Chinese Remainder Theorem										
	5.2	Extended Euclidean										
	5.3	Factorial Modulo										
	5.4	Fast Fourier Transform										
	5.5	Fibonacci										
	5.6	Find All Solutions										

```
5.9
 Miscellaneous
 7 Strings
7.1
 Finding Repetitions . . . . . . . . . . . . . . .
 Group Identical Substrings . . . . . . . . . . . .
 1 Data Structures
```

1.1 Disjoint Set Union

```
struct DSU {
  vector<int> parent, size;
  DSU(int n) {
    parent.resize(n);
    size.resize(n);
    for (int i = 0; i < n; i++) make_set(i);</pre>
  void make set(int v) {
    parent[v] = v;
    size[v] = 1;
  bool is_same(int a, int b) { return find_set(a)
       == find_set(b); }
  int find_set(int v) { return v == parent[v] ? v :
        parent[v] = find_set(parent[v]); }
  void union_sets(int a, int b) {
   a = find_set(a);
   b = find_set(b);
    if (a != b) {
      if (size[a] < size[b]) swap(a, b);</pre>
      parent[b] = a;
      size[a] += size[b];
```

1.2 Minimum Queue

```
1 11 get_minimum(stack<pair<11, 11>> &s1, stack<pair<</pre>
        11, 11>> &s2) {
     if (s1.empty() || s2.empty()) {
       return s1.empty() ? s2.top().second : s1.top().
            second;
       return min(s1.top().second, s2.top().second);
```

```
12
       void add element(ll new element, stack<pair<ll, ll</pre>
12
            >> &s1) {
13
          11 minimum = s1.empty() ? new_element : min(
              new_element, s1.top().second);
          s1.push({new_element, minimum});
       11 remove_element(stack<pair<11, 11>> &s1, stack
            pair<11, 11>> &s2) {
          if (s2.empty()) {
           while (!sl.empty()) {
             11 element = s1.top().first;
14
              11 minimum = s2.empty() ? element : min(
                  element, s2.top().second);
              s2.push({element, minimum});
14
14
          11 removed_element = s2.top().first;
15
          s2.pop();
15
          return removed_element;
15
15
```

1.3 Range Add Point Query

```
template<typename T, typename InType = T>
    class SegTreeNode {
    public:
      const T IDN = 0, DEF = 0;
      int i, j;
      T val;
      SeqTreeNode<T, InType>* lc, * rc;
      SegTreeNode(int i, int j) : i(i), j(j) {
        if (j - i == 1) {
          lc = rc = nullptr;
          val = DEF;
          return;
        int k = (i + j) / 2;
        lc = new SegTreeNode<T, InType>(i, k);
        rc = new SegTreeNode<T, InType>(k, j);
      SegTreeNode(const vector<InType>& a, int i, int j
          ) : i(i), j(j) {
        if (j - i == 1) {
          lc = rc = nullptr;
          val = (T) a[i];
          return;
        int k = (i + j) / 2;
        lc = new SegTreeNode<T, InType>(a, i, k);
        rc = new SegTreeNode<T, InType>(a, k, j);
        val = 0;
      void range_add(int 1, int r, T x) {
        if (r <= i || j <= 1) return;</pre>
        if (1 <= i && j <= r) {</pre>
          val += x;
          return;
        lc->range_add(l, r, x);
        rc->range_add(1, r, x);
38
39
      T point_query(int k) {
40
        if (k < i || j <= k) return IDN;</pre>
        if (j - i == 1) return val;
```

```
42
         return val + lc->point_query(k) + rc->
             point query(k);
43
44 };
45 template<typename T, typename InType = T>
46 class SegTree {
    public:
47
48
      SegTreeNode<T, InType> root;
49
      SegTree(int n) : root(0, n) {}
      SegTree(const vector<InType>& a) : root(a, 0, a.
           size()) {}
51
      void range_add(int 1, int r, T x) { root.
           range_add(1, r, x); }
52
      T point_query(int k) { return root.point_query(k)
53 };
```

1.4 Range Add Range Query

```
template<typename T, typename InType = T>
    class SegTreeNode {
    public:
      const T IDN = 0, DEF = 0;
      int i, j;
      T val, to_add = 0;
      SegTreeNode<T, InType>* lc, * rc;
      SegTreeNode(int i, int j) : i(i), j(j) {
        if (j - i == 1) {
10
         lc = rc = nullptr;
11
          val = DEF;
          return:
13
        int k = (i + j) / 2;
        lc = new SegTreeNode<T, InType>(i, k);
16
         rc = new SegTreeNode<T, InType>(k, j);
17
        val = operation(lc->val, rc->val);
18
19
      SegTreeNode(const vector<InType>& a, int i, int j
           ) : i(i), j(j) {
        if (j - i == 1) {
21
          lc = rc = nullptr;
          val = (T) a[i];
23
          return;
24
25
        int k = (i + j) / 2;
        lc = new SegTreeNode<T, InType>(a, i, k);
27
         rc = new SegTreeNode<T, InType>(a, k, j);
28
        val = operation(lc->val, rc->val);
29
      void propagate() {
31
32
        if (to_add == 0) return;
        val += to_add;
        if (j - i > 1) {
          lc->to_add += to_add;
          rc->to_add += to_add;
36
37
        to\_add = 0;
38
39
      void range_add(int 1, int r, T delta) {
40
        propagate();
41
        if (r <= i || j <= 1) return;</pre>
42
        if (1 <= i && j <= r) {
43
          to_add += delta;
44
          propagate();
45
        } else {
46
          lc->range_add(l, r, delta);
          rc->range_add(l, r, delta);
```

```
val = operation(lc->val, rc->val);
49
50
      T range_query(int 1, int r) {
        propagate();
53
        if (1 <= i && j <= r) return val;</pre>
        if (j <= 1 || r <= i) return IDN;</pre>
        return operation(lc->range_query(l, r), rc->
             range_query(1, r));
      T operation(T x, T y) {}
58
    template<typename T, typename InType = T>
    class SegTree {
    public:
62
      SegTreeNode<T, InType> root;
63
      SegTree(int n) : root(0, n) {}
64
      SegTree(const vector<InType>& a) : root(a, 0, a.
           size()) {}
      void range add(int 1, int r, T delta) { root.
           range_add(1, r, delta); }
      T range_query(int 1, int r) { return root.
           range_query(1, r); }
67 };
```

1.5 Segment Tree

```
template<typename T, typename InType = T>
    class SegTreeNode {
    public:
      const T IDN = 0, DEF = 0;
      int i, j;
      T val;
      SegTreeNode<T, InType>* lc, * rc;
      SegTreeNode(int i, int j) : i(i), j(j) {
        if (j - i == 1) {
          lc = rc = nullptr;
          val = DEF;
          return;
        int k = (i + j) / 2;
        lc = new SegTreeNode<T, InType>(i, k);
        rc = new SegTreeNode<T, InType>(k, j);
        val = op(lc->val, rc->val);
18
19
      SegTreeNode(const vector<InType>& a, int i, int j
          ) : i(i), j(j) {
        if (j - i == 1) {
          lc = rc = nullptr;
          val = (T) a[i];
          return;
        int k = (i + j) / 2;
        lc = new SegTreeNode<T, InType>(a, i, k);
        rc = new SegTreeNode<T, InType>(a, k, j);
28
        val = op(lc->val, rc->val);
29
      void set(int k, T x) {
        if (k < i | | j <= k) return;</pre>
        if (j - i == 1) {
33
          val = x;
          return;
36
        lc->set(k, x);
37
        rc->set(k, x);
        val = op(lc->val, rc->val);
```

```
T range_query(int 1, int r) {
        if (1 <= i && j <= r) return val;</pre>
        if (j <= 1 || r <= i) return IDN;</pre>
43
        return op(lc->range_query(l, r), rc->
             range_query(1, r));
4.5
      T \circ p(T \times, T y) \{ \}
46 ):
    template<typename T, typename InType = T>
   class SegTree {
49
    public:
50
      SegTreeNode<T, InType> root;
      SegTree(int n) : root(0, n) {}
52
      SegTree(const vector<InType>& a) : root(a, 0, a.
           size()) {}
      void set(int k, T x) { root.set(k, x); }
      T range_query(int 1, int r) { return root.
           range_query(1, r); }
```

1.6 Segment Tree 2d

```
template<typename T, typename InType = T>
    class SegTree2dNode {
    public:
      int i, j, tree_size;
      SegTree<T, InType>* seg_tree;
      SegTree2dNode<T, InType>* lc, * rc;
      SeqTree2dNode() {}
      SegTree2dNode(const vector<vector<InType>>& a,
          int i, int j) : i(i), j(j) {
        tree_size = a[0].size();
        if (j - i == 1) {
          lc = rc = nullptr;
          seg_tree = new SegTree<T, InType>(a[i]);
          return;
        int k = (i + j) / 2;
        lc = new SegTree2dNode<T, InType>(a, i, k);
        rc = new SegTree2dNode<T, InType>(a, k, j);
18
        seg_tree = new SegTree<T, InType>(vector<T>(
             tree size));
19
        operation_2d(lc->seq_tree, rc->seq_tree);
      ~SeqTree2dNode() {
22
        delete lc:
23
        delete rc;
24
25
      void set_2d(int kx, int ky, T x) {
        if (kx < i | | j <= kx) return;</pre>
        if (j - i == 1) {
          seq_tree->set(ky, x);
          return;
        1c->set_2d(kx, ky, x);
        rc->set_2d(kx, ky, x);
        operation_2d(lc->seg_tree, rc->seg_tree);
34
      T range_query_2d(int lx, int rx, int ly, int ry)
        if (lx <= i && j <= rx) return seg_tree->
             range_query(ly, ry);
        if (j <= lx || rx <= i) return -INF;</pre>
38
        return max(lc->range_query_2d(lx, rx, ly, ry),
             rc->range_query_2d(lx, rx, ly, ry));
39
```

```
40
      void operation_2d(SegTree<T, InType>* x, SegTree<</pre>
           T, InType>* v) {
41
         for (int k = 0; k < tree_size; k++) {</pre>
42
           seg_tree->set(k, max(x->range_query(k, k + 1)
                , y->range_query(k, k + 1)));
43
44
45 };
46 template<typename T, typename InType = T>
47 class SegTree2d {
49
      SegTree2dNode<T, InType> root;
      SegTree2d() {}
51
      SegTree2d(const vector<vector<InType>>& mat) :
           root(mat, 0, mat.size()) {}
      void set_2d(int kx, int ky, T x) { root.set_2d(kx
           , ky, x); }
53
      T range_query_2d(int lx, int rx, int ly, int ry)
           { return root.range_query_2d(lx, rx, ly, ry)
54 };
```

1.7 Sparse Table

```
11 log2 floor(11 i) {
       return i ? __builtin_clzll(1) - __builtin_clzll(i
           ): -1;
 3
 4 vector<vector<ll>> build_sum(ll N, ll K, vector<ll>>
          &array) {
      vector<vector<ll>> st(K + 1, vector<ll>(N + 1));
      for (ll i = 0; i < N; i++) st[0][i] = array[i];</pre>
      for (ll i = 1; i <= K; i++)</pre>
        for (11 j = 0; j + (1 << i) <= N; <math>j++)
           st[i][j] = st[i - 1][j] + st[i - 1][j + (1 <<
                 (i - 1))];
10
11
    11 sum_query(11 L, 11 R, 11 K, vector<vector<11>>> &
         st) {
      11 \text{ sum} = 0;
      for (11 i = K; i >= 0; i--) {
15
        if ((1 << i) <= R - L + 1) {
          sum += st[i][L];
17
           L += 1 << i;
18
19
20
      return sum;
21 }
    vector<vector<ll>> build_min(ll N, ll K, vector<ll>
23
      vector<vector<ll>> st(K + 1, vector<ll>(N + 1));
24
      for (ll i = 0; i < N; i++) st[0][i] = array[i];</pre>
25
      for (ll i = 1; i <= K; i++)</pre>
        for (11 j = 0; j + (1 << i) <= N; <math>j++)
           st[i][j] = min(st[i-1][j], st[i-1][j+(1
                << (i - 1));
28
      return st;
29
30 ll min_query(ll L, ll R, vector<vector<ll>> &st) {
      11 i = log2\_floor(R - L + 1);
32
      return min(st[i][L], st[i][R - (1 << i) + 1]);</pre>
33 }
```

```
1.8 Sparse Table 2d
```

```
const int N = 100;
    int matrix[N][N];
    int table[N][N][(int)(log2(N) + 1)][(int)(log2(N) +
    void build_sparse_table(int n, int m) {
      for (int i = 0; i < n; i++)</pre>
        for (int j = 0; j < m; j++)
          table[i][j][0][0] = matrix[i][j];
      for (int k = 1; k <= (int) (log2(n)); k++)</pre>
        for (int i = 0; i + (1 << k) - 1 < n; i++)
          for (int j = 0; j + (1 << k) - 1 < m; <math>j++)
             table[i][j][k][0] = min(table[i][j][k -
                 1][0], table[i + (1 << (k - 1))][j][k
                 - 11[0]);
      for (int k = 1; k <= (int)(log2(m)); k++)</pre>
        for (int i = 0; i < n; i++)
          for (int j = 0; j + (1 << k) - 1 < m; <math>j++)
15
            table[i][j][0][k] = min(table[i][j][0][k -
                 1], table[i][j + (1 << (k - 1))][0][k
                 - 11):
      for (int k = 1; k \le (int)(log2(n)); k++)
        for (int 1 = 1; 1 <= (int) (log2(m)); 1++)</pre>
          for (int i = 0; i + (1 << k) - 1 < n; i++)
            for (int j = 0; j + (1 << 1) - 1 < m; <math>j++)
              table[i][j][k][l] = min(
                 min(table[i][j][k-1][l-1], table[i]
                     + (1 << (k - 1))][j][k - 1][1 -
                      1]),
                 min(table[i][j + (1 << (1 - 1))][k -
                      1] [1 - 1], table [i + (1 << (k - 1))
                      ) | [ i + (1 << (1 - 1)) | [k - 1] [1 -
    int rmq(int x1, int y1, int x2, int y2) {
      int k = log2(x2 - x1 + 1), l = log2(y2 - y1 + 1);
      return max (
        \max(table[x1][y1][k][1], table[x2 - (1 << k) +
             1][y1][k][l]),
        \max(table[x1][y2 - (1 << 1) + 1][k][1], table[
             x2 - (1 << k) + 1][y2 - (1 << 1) + 1][k][1
             ])
      );
31 }
```

2 Dynamic Programming

2.1 Divide And Conquer

```
1 11 m, n;
   vector<11> dp_before(n), dp_cur(n);
    11 C(11 i, 11 j);
    void compute(ll 1, ll r, ll optl, ll optr) {
      if (1 > r) return;
      11 \text{ mid} = (1 + r) >> 1;
      pair<11, 11> best = {LLONG_MAX, -1};
      for (ll k = optl; k <= min(mid, optr); k++)</pre>
        best = min(best, \{(k ? dp\_before[k - 1] : 0) +
             C(k, mid), k});
      dp_cur[mid] = best.first;
      11 opt = best.second;
      compute(1, mid - 1, opt1, opt);
      compute(mid + 1, r, opt, optr);
14
   ll solve() {
```

```
for (11 i = 0; i < n; i++) dp_before[i] = C(0, i)
;
for (11 i = 1; i < m; i++) {
    compute(0, n - 1, 0, n - 1);
    dp_before = dp_cur;
}
return dp_before[n - 1];
}</pre>
```

2.2 Edit Distance

2.3 Knapsack

2.4 Knuth Optimization

```
for (11 i = N - 2; i >= 0; i--) {
13
         for (11 \ j = i + 1; \ j < N; \ j++) 
14
          11 \text{ mn} = 11\_MAX, cost = C(i, j);
15
           for (ll k = opt[i][j - 1]; k <= min(j - 1,</pre>
               opt[i + 1][j]); k++) {
             if (mn \ge dp[i][k] + dp[k + 1][j] + cost) {
17
               opt[i][j] = k;
               mn = dp[i][k] + dp[k + 1][j] + cost;
19
20
           dp[i][j] = mn;
23
24
       cout << dp[0][N - 1] << '\n';
25 }
```

2.5 Longest Common Subsequence

```
1 11 LCS(string x, string y, 11 n, 11 m) {
      vector < vector < 11 >> dp(n + 1, vector < 11 > (m + 1));
      for (11 i = 0; i <= n; i++) {</pre>
         for (11 j = 0; j \le m; j++) {
          if (i == 0 || j == 0) {
             dp[i][j] = 0;
          } else if (x[i - 1] == y[j - 1]) {
             dp[i][j] = dp[i - 1][j - 1] + 1;
             dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);
11
12
13
14
      11 \text{ index} = dp[n][m];
15
      vector<char> lcs(index + 1);
      lcs[index] = ' \setminus 0';
17
      11 i = n, j = m;
18
      while (i > 0 \&\& j > 0) {
19
        if (x[i-1] == y[j-1]) {
20
          lcs[index - 1] = x[i - 1];
21
          i--;
          <del>j</del>--;
23
          index--;
        } else if (dp[i - 1][j] > dp[i][j - 1]) {
25
         i--;
26
        } else {
           j--;
28
29
      return dp[n][m];
31 }
```

2.6 Longest Increasing Subsequence

```
11 len = 1;
      vector<11> T(n, 0), R(n, -1);
      T[0] = 0;
      for (ll i = 1; i < n; i++) {
       if (a[i] < a[T[0]]) {</pre>
         T[0] = i;
        } else if (a[i] > a[T[len - 1]]) {
          R[i] = T[len - 1];
          T[len++] = i;
        } else {
          ll pos = get_ceil_idx(a, T, -1, len - 1, a[i
              ]);
          R[i] = T[pos - 1];
25
          T[pos] = i;
26
      }
28
      return len;
29 }
```

2.7 Subset Sum

3 Geometry

3.1 Basic Geometry

```
struct point2d {
      ftype x, y;
      point2d() {}
      point2d(ftype x, ftype y): x(x), y(y) {}
      point2d& operator+=(const point2d &t) {
       x += t.x;
       y += t.y;
 8
       return *this;
 9
      point2d& operator-=(const point2d &t) {
       x -= t.x;
        y -= t.y;
        return *this;
      point2d& operator*=(ftype t) {
       x *= t;
       y *= t;
18
       return *this;
19
      point2d& operator/=(ftype t) {
       x /= t;
        v /= t;
        return *this;
```

```
point2d operator+(const point2d &t) const {
           return point2d(*this) += t; }
      point2d operator-(const point2d &t) const {
           return point2d(*this) -= t; }
      point2d operator*(ftype t) const { return point2d
           (*this) *= t; }
      point2d operator/(ftype t) const { return point2d
           (*this) /= t; }
30 point2d operator*(ftype a, point2d b) { return b *
31 ftype dot(point2d a, point2d b) { return a.x * b.x
         + a.y * b.y; }
32 ftype dot(point3d a, point3d b) { return a.x * b.x
         + a.y * b.y + a.z * b.z; }
33 ftype norm(point2d a) { return dot(a, a); }
34 double abs(point2d a) { return sqrt(norm(a)); }
35 double proj(point2d a, point2d b) { return dot(a, b
        ) / abs(b); }
36 double angle(point2d a, point2d b) { return acos(
        dot(a, b) / abs(a) / abs(b)); }
   point3d cross(point3d a, point3d b) { return
         point3d(a.y \star b.z - a.z \star b.y, a.z \star b.x - a.x
          * b.z, a.x * b.y - a.y * b.x); }
    ftype triple(point3d a, point3d b, point3d c) {
         return dot(a, cross(b, c)); }
    ftype cross(point2d a, point2d b) { return a.x * b.
         y - a.y * b.x; }
   point2d intersect(point2d a1, point2d d1, point2d
         a2, point2d d2) { return a1 + cross(a2 - a1,
         d2) / cross(d1, d2) * d1; }
   point3d intersect(point3d al, point3d nl, point3d
         a2, point3d n2, point3d a3, point3d n3) {
      point3d x(n1.x, n2.x, n3.x);
     point3d y(n1.y, n2.y, n3.y);
44
     point3d z(n1.z, n2.z, n3.z);
45
      point3d d(dot(a1, n1), dot(a2, n2), dot(a3, n3));
      return point3d(triple(d, y, z), triple(x, d, z),
          triple(x, y, d)) / triple(n1, n2, n3);
```

3.2 Circle Line Intersection

```
1 double r, a, b, c; // given as input
   double x0 = -a * c / (a * a + b * b);
    double v0 = -b * c / (a * a + b * b);
   if (c * c > r * r * (a * a + b * b) + EPS) {
     puts ("no points");
   } else if (abs (c *c - r * r * (a * a + b * b)) <</pre>
        EPS) (
      puts ("1 point");
      cout << x0 << ' ' << y0 << '\n';
      double d = r * r - c * c / (a * a + b * b);
      double mult = sqrt (d / (a * a + b * b));
      double ax, ay, bx, by;
     ax = x0 + b * mult;
     bx = x0 - b * mult;
     av = v0 - a * mult;
     by = y0 + a * mult;
      puts ("2 points");
      cout << ax << ' ' << ay << '\n' << bx << ' ' <<
18
           by << '\n';
19 }
```

```
struct pt {
      double x, y;
 3 };
    11 orientation(pt a, pt b, pt c) {
      double v = a.x * (b.y - c.y) + b.x * (c.y - a.y)
           + c.x * (a.y - b.y);
       if (v < 0) {
        return -1;
      \} else if (\mathbf{v} > 0) {
        return +1;
11
      return 0:
12
13 bool cw(pt a, pt b, pt c, bool include_collinear) {
14
      11 o = orientation(a, b, c);
15
      return o < 0 || (include_collinear && o == 0);</pre>
16
    bool collinear(pt a, pt b, pt c) {
18
      return orientation(a, b, c) == 0;
19
20 void convex_hull(vector<pt>& a, bool
         include collinear = false) {
      pt p0 = *min_element(a.begin(), a.end(), [](pt a,
         return make_pair(a.y, a.x) < make_pair(b.y, b.x</pre>
             );
      sort(a.begin(), a.end(), [&p0](const pt& a, const
            pt& b) {
25
        11 \circ = orientation(p0, a, b);
26
         if (o == 0) {
          return (p0.x - a.x) * (p0.x - a.x) + (p0.y - a.x)
               a.y) * (p0.y - a.y)
                < (p0.x - b.x) * (p0.x - b.x) + (p0.y -
                    b.y) * (p0.y - b.y);
29
        return o < 0;
       if (include collinear) {
        11 i = (11) a.size()-1;
34
         while (i \ge 0 \&\& collinear(p0, a[i], a.back()))
              i--;
        reverse(a.begin()+i+1, a.end());
36
      vector<pt> st;
38
      for (ll i = 0; i < (ll) a.size(); i++) {</pre>
39
        while (st.size() > 1 && !cw(st[st.size() - 2],
             st.back(), a[i], include_collinear)) {
40
           st.pop_back();
41
42
        st.push back(a[i]);
43
44
45 }
```

3.4 Line Intersection

3.3 Convex Hull

```
double zn = det(m.a, m.b, n.a, n.b);
      if (abs(zn) < EPS) return false;</pre>
      res.x = -det(m.c, m.b, n.c, n.b) / zn;
      res.y = -det(m.a, m.c, n.a, n.c) / zn;
      return true;
11 }
12 bool parallel(line m, line n) { return abs(det(m.a,
          m.b, n.a, n.b)) < EPS; }
13
    bool equivalent(line m, line n) {
      return abs(det(m.a, m.b, n.a, n.b)) < EPS</pre>
          && abs(det(m.a, m.c, n.a, n.c)) < EPS
          && abs(det(m.b, m.c, n.b, n.c)) < EPS;
17 }
 3.5 Line Sweep
    const double EPS = 1E-9;
    struct pt { double x, y; };
    struct seq {
      pt p, q;
      11 id:
      double get_y(double x) const {
        if (abs(p.x - q.x) < EPS) return p.y;</pre>
         return p.y + (q.y - p.y) * (x - p.x) / (q.x - p
             .x):
10 };
    bool intersect1d(double 11, double r1, double 12,
         double r2) {
      if (11 > r1) swap(11, r1);
      if (12 > r2) swap(12, r2);
      return max(11, 12) <= min(r1, r2) + EPS;</pre>
    11 vec (const pt& a, const pt& b, const pt& c) {
      double s = (b.x - a.x) * (c.y - a.y) - (b.y - a.y)
          ) * (c.x - a.x);
      return abs(s) < EPS ? 0 : s > 0 ? +1 : -1;
18
19
    bool intersect(const seg& a, const seg& b) {
      return intersect1d(a.p.x, a.q.x, b.p.x, b.q.x) &&
             intersect1d(a.p.y, a.q.y, b.p.y, b.q.y) &&
             vec(a.p, a.q, b.p) * vec(a.p, a.q, b.q) <=</pre>
                   3.3 0
              vec(b.p, b.q, a.p) * vec(b.p, b.q, a.q) <=
                   0;
    bool operator<(const seg& a, const seg& b) {
      double x = max(min(a.p.x, a.q.x), min(b.p.x, b.q.
28
      return a.get_y(x) < b.get_y(x) - EPS;</pre>
2.9
    struct event {
      double x:
      11 tp, id;
      event() {}
      event (double x, 11 tp, 11 id) : x(x), tp(tp), id(
      bool operator<(const event& e) const {</pre>
        if (abs(x - e.x) > EPS) return x < e.x;
        return tp > e.tp;
38
39 };
40 set<seg> s;
41 vector<set<seg>::iterator> where;
42 set<seg>::iterator prev(set<seg>::iterator it) {
      return it == s.begin() ? s.end() : --it;
44 }
```

```
set<seg>::iterator next(set<seg>::iterator it) {
      return ++it;
48
   pair<11, 11> solve(const vector<seg>& a) {
     11 n = (11) a.size();
50
      vector<event> e;
      for (11 i = 0; i < n; ++i) {
        e.push_back(event(min(a[i].p.x, a[i].q.x), +1,
        e.push_back(event(max(a[i].p.x, a[i].q.x), -1,
             i));
      sort(e.begin(), e.end());
56
      s.clear();
      where.resize(a.size());
      for (size_t i = 0; i < e.size(); ++i) {</pre>
       11 id = e[i].id;
        if (e[i].tp == +1) {
          set<seg>::iterator nxt = s.lower_bound(a[id])
               , prv = prev(nxt);
          if (nxt != s.end() && intersect(*nxt, a[id]))
               return make_pair(nxt->id, id);
          if (prv != s.end() && intersect(*prv, a[id]))
               return make_pair(prv->id, id);
          where[id] = s.insert(nxt, a[id]);
        } else {
          set<seg>::iterator nxt = next(where[id]), prv
               = prev(where[id]);
          if (nxt != s.end() && prv != s.end() &&
               intersect(*nxt, *prv)) return make_pair(
               prv->id, nxt->id);
          s.erase(where[id]);
69
      return make_pair(-1, -1);
```

3.6 Nearest Points

if (r - 1 <= 3) {

```
1 struct pt {
     11 x, y, id;
   };
    struct cmp x {
      bool operator()(const pt & a, const pt & b) const
        return a.x < b.x || (a.x == b.x && a.y < b.y);
8 };
    struct cmp_y {
      bool operator()(const pt & a, const pt & b) const
            { return a.y < b.y; }
11
    };
    11 n:
    vector<pt> a;
    double mindist:
    pair<11, 11> best_pair;
    void upd_ans(const pt & a, const pt & b) {
      double dist = sqrt((a.x - b.x) * (a.x - b.x) + (a.x - b.x)
           .y - b.y) * (a.y - b.y));
      if (dist < mindist) {</pre>
19
        mindist = dist:
        best_pair = {a.id, b.id};
21
22
    vector<pt> t;
    void rec(ll l, ll r) {
```

```
child]) continue;
                   if (subtree_size[child] * 2 >
                        tree_size) return get_centroid
                        (child, tree_size, node);
           return node;
   void build_centroid_decomp(int node = 0) {
           int centroid = get_centroid(node,
                get_subtree_size(node));
           // do something
           is_removed[centroid] = true;
           for (int child : adj[centroid]) {
                   if (is_removed[child]) continue;
                   build_centroid_decomp(child);
4.5 Dijkstra
   const int INF = 1000000000;
   vector<vector<pair<int, int>>> adj;
   void dijkstra(int s, vector<int> & d, vector<int> &
     int n = adj.size();
     d.assign(n, INF);
    p.assign(n, -1);
     d[s] = 0;
     using pii = pair<int, int>;
     priority_queue<pii, vector<pii>, greater<pii>> q;
     q.push({0, s});
     while (!q.emptv()) {
       int v = q.top().second, d_v = q.top().first;
       q.pop();
```

```
for (11 i = 1; i < r; ++i)
          for (11 j = i + 1; j < r; ++j)
            upd_ans(a[i], a[j]);
        sort(a.begin() + 1, a.begin() + r, cmp_y());
        return:
31
      11 m = (1 + r) >> 1, midx = a[m].x;
      rec(1, m);
      rec(m, r);
      merge(a.begin() + 1, a.begin() + m, a.begin() + m
           , a.begin() + r, t.begin(), cmp_y());
      copy(t.begin(), t.begin() + r - l, a.begin() + l)
37
      11 \text{ tsz} = 0;
38
      for (11 i = 1; i < r; ++i) {
39
       if (abs(a[i].x - midx) < mindist) {</pre>
        for (11 j = tsz - 1; j >= 0 && a[i].y - t[j].
             y < mindist; --j)
            upd_ans(a[i], t[j]);
          t[tsz++] = a[i];
43
44
     }
45 }
46 t.resize(n);
47 sort(a.begin(), a.end(), cmp_x());
48 mindist = 1E20;
49 rec(0, n);
```

4 Graph Theory

4.1 Articulation Point

```
void APUtil(vector<vector<ll>> &adj, ll u, vector
         bool> &visited,
    vector<ll> &disc, vector<ll> &low, 11 &time, 11
         parent, vector<bool> &isAP) {
      11 children = 0;
      visited[u] = true;
      disc[u] = low[u] = ++time;
      for (auto v : adj[u]) {
        if (!visited[v]) {
          children++;
          APUtil(adj, v, visited, disc, low, time, u,
          low[u] = min(low[u], low[v]);
          if (parent != -1 && low[v] >= disc[u]) {
12
            isAP[u] = true;
        } else if (v != parent) {
15
          low[u] = min(low[u], disc[v]);
16
17
      if (parent == -1 && children > 1) {
19
        isAP[u] = true;
20
21
    void AP(vector<vector<11>>> &adj, 11 n) {
23
      vector<ll> disc(n), low(n);
24
      vector<bool> visited(n), isAP(n);
25
      11 time = 0, par = -1;
26
      for (ll u = 0; u < n; u++) {
        if (!visited[u]) {
          APUtil(adj, u, visited, disc, low, time, par,
                isAP);
29
```

```
for (11 u = 0; u < n; u++) {
       if (isAP[u]) {
         cout << u << " ";
34
35
36 }
```

19

28 }

18

20 **void** find_bridges() {

tin.assign(n, -1);low.assign(n, -1);

4.4 Centroid Decomposition

1 vector<vector<int>> adj;

2 vector<bool> is_removed;

3 vector<int> subtree_size;

parent = -1) {

visited.assign(n, false);

for (int i = 0; i < n; ++i) {

int get_subtree_size(int node, int parent = -1) {

if (child == parent || is_removed[

if (child == parent || is_removed[

get_subtree_size(child, node);

child]) continue;

subtree size[node] +=

for (int child : adj[node]) {

return subtree size[node];

int get_centroid(int node, int tree_size, int

for (int child : adj[node]) {

subtree_size[node] = 1;

if (!visited[i]) dfs(i);

timer = 0;

4.2 Bellman Ford

```
struct Edge (
      int a, b, cost;
 3
    };
    int n, m, v;
    vector<Edge> edges;
    const int INF = 1000000000;
    void solve() {
     vector<int> d(n, INF);
     d[v] = 0;
10 vector<int> p(n, -1);
      int x;
      for (int i = 0; i < n; ++i) {
      \mathbf{x} = -1;
       for (Edge e : edges)
         if (d[e.a] < INF)
            if (d[e.b] > d[e.a] + e.cost) {
              d[e.b] = max(-INF, d[e.a] + e.cost);
              p[e.b] = e.a;
              x = e.b;
      if (x == -1) cout << "No negative cycle from " <<
      else {
        int y = x;
        for (int i = 0; i < n; ++i) y = p[y];
        vector<int> path;
        for (int cur = y;; cur = p[cur]) {
          path.push_back(cur);
29
          if (cur == y && path.size() > 1) break;
30
        reverse(path.begin(), path.end());
32
        cout << "Negative cycle: ";</pre>
33
        for (int u : path) cout << u << ' ';</pre>
34
```

4.3 Bridge

```
int n:
vector<vector<int>> adi;
vector<bool> visited:
vector<int> tin, low;
int timer;
void dfs (int v, int p = -1) {
  visited[v] = true;
 tin[v] = low[v] = timer++;
  for (int to : adj[v]) {
  if (to == p) continue;
   if (visited[to]) {
     low[v] = min(low[v], tin[to]);
    } else {
      dfs(to, v);
      low[v] = min(low[v], low[to]);
      if (low[to] > tin[v]) IS_BRIDGE(v, to);
```

```
4.6 Dinics
    struct FlowEdge {
      int v, u;
      11 \text{ cap, flow} = 0;
      FlowEdge(int v, int u, ll cap) : v(v), u(u), cap(
           cap) {}
    struct Dinic {
      const 11 flow inf = 1e18;
      vector<FlowEdge> edges;
      vector<vector<int>> adj;
      int n, m = 0, s, t;
11
      vector<int> level, ptr;
      queue<int> q;
13
      Dinic(int n, int s, int t) : n(n), s(s), t(t) {
14
       adj.resize(n);
15
        level.resize(n);
16
        ptr.resize(n);
17
18
      void add_edge(int v, int u, ll cap) {
19
        edges.emplace_back(v, u, cap);
20
        edges.emplace_back(u, v, 0);
21
        adj[v].push_back(m);
22
        adj[u].push_back(m + 1);
23
        m += 2;
24
25
      bool bfs() {
26
        while (!q.empty()) {
27
          int v = q.front();
28
          q.pop();
29
          for (int id : adj[v]) {
             if (edges[id].cap - edges[id].flow < 1)</pre>
             if (level[edges[id].u] != -1) continue;
             level[edges[id].u] = level[v] + 1;
33
             q.push(edges[id].u);
34
35
36
        return level[t] != -1;
38
      11 dfs(int v, 11 pushed) {
39
         if (pushed == 0) return 0;
40
         if (v == t) return pushed;
41
         for (int& cid = ptr[v]; cid < (int)adj[v].size</pre>
              (); cid++)
42
          int id = adj[v][cid], u = edges[id].u;
43
          if (level[v] + 1 != level[u] || edges[id].cap
                - edges[id].flow < 1) continue;</pre>
          11 tr = dfs(u, min(pushed, edges[id].cap -
44
               edges[id].flow));
4.5
          if (tr == 0) continue;
46
          edges[id].flow += tr;
47
           edges[id ^ 1].flow -= tr;
48
           return tr;
```

```
return 0;
      11 flow() {
        11 f = 0;
        while (true) {
          fill(level.begin(), level.end(), -1);
          level[s] = 0;
          q.push(s);
58
          if (!bfs()) break;
59
          fill(ptr.begin(), ptr.end(), 0);
60
          while (ll pushed = dfs(s, flow_inf)) f +=
               pushed;
62
        return f;
64 };
```

4.7 Edmonds Karp

```
int n;
   vector<vector<int>> capacity;
   vector<vector<int>> adj;
 4 int bfs(int s, int t, vector<int>& parent) {
     fill(parent.begin(), parent.end(), -1);
      parent[s] = -2;
      queue<pair<int, int>> q;
      q.push({s, INF});
      while (!q.empty()) {
10
        int cur = q.front().first, flow = q.front().
            second;
        q.pop();
        for (int next : adj[cur]) {
13
          if (parent[next] == -1 && capacity[cur][next
               1) {
            parent[next] = cur;
            int new_flow = min(flow, capacity[cur][next
            if (next == t) return new_flow;
            q.push({next, new_flow});
18
19
        }
2.0
      return 0;
22
    int maxflow(int s, int t) {
      int flow = 0;
      vector<int> parent(n);
      int new_flow;
      while (new_flow = bfs(s, t, parent)) {
        flow += new_flow;
        int cur = t;
        while (cur != s) {
          int prev = parent[cur];
          capacity[prev][cur] -= new_flow;
          capacity[cur][prev] += new_flow;
          cur = prev;
      return flow;
```

4.8 Fast Second Mst

```
1 struct edge {
```

```
int s, e, w, id;
        bool operator<(const struct edge& other) {</pre>
             return w < other.w; }</pre>
    typedef struct edge Edge;
    const int N = 2e5 + 5;
    long long res = 0, ans = 1e18;
   int n, m, a, b, w, id, 1 = 21;
   vector<Edge> edges;
10 vector<int> h(N, 0), parent(N, -1), size(N, 0),
         present (N, 0);
    vector<vector<pair<int, int>>> adj(N), dp(N, vector
         <pair<int, int>>(1));
    vector<vector<int>> up(N, vector<int>(1, -1));
    pair<int, int> combine(pair<int, int> a, pair<int,</pre>
         int> b) {
      vector<int> v = {a.first, a.second, b.first, b.
          second);
      int topTwo = -3, topOne = -2;
      for (int c : v) {
        if (c > topOne) {
          topTwo = topOne;
          topOne = c;
        } else if (c > topTwo && c < topOne) topTwo = c
      return {topOne, topTwo};
2.3
24
    void dfs(int u, int par, int d) {
      h[u] = 1 + h[par];
      up[u][0] = par;
      dp[u][0] = \{d, -1\};
28
      for (auto v : adj[u]) {
29
        if (v.first != par) dfs(v.first, u, v.second);
    pair<int, int> lca(int u, int v) {
      pair<int, int> ans = \{-2, -3\};
      if (h[u] < h[v]) swap(u, v);
      for (int i = 1 - 1; i >= 0; i--) {
        if (h[u] - h[v] >= (1 << i)) {
          ans = combine(ans, dp[u][i]);
38
          u = up[u][i];
39
      if (u == v) return ans;
      for (int i = 1 - 1; i >= 0; i--) {
        if (up[u][i] != -1 && up[v][i] != -1 && up[u][i
             ] != up[v][i]) {
          ans = combine(ans, combine(dp[u][i], dp[v][i
          u = up[u][i];
          v = up[v][i];
      ans = combine(ans, combine(dp[u][0], dp[v][0]));
50
51
53 int main(void) {
      cin >> n >> m;
      for (int i = 1; i <= n; i++) {</pre>
        parent[i] = i;
        size[i] = 1;
      for (int i = 1; i <= m; i++) {</pre>
60
        cin >> a >> b >> w; // 1-indexed
61
        edges.push_back(\{a, b, w, i - 1\});
62
```

```
sort(edges.begin(), edges.end());
 64
       for (int i = 0; i \le m - 1; i++) {
 65
         a = edges[i].s;
 66
         b = edges[i].e;
 67
         w = edges[i].w;
 68
         id = edges[i].id;
 69
         if (unite_set(a, b)) {
           adj[a].emplace_back(b, w);
 71
           adj[b].emplace_back(a, w);
 72
           present[id] = 1;
           res += w;
 74
 75
 76
       dfs(1, 0, 0);
 77
       for (int i = 1; i \le 1 - 1; i++) {
 78
         for (int j = 1; j <= n; ++j) {
79
          if (up[j][i - 1] != -1) {
 80
             int v = up[j][i - 1];
 81
             up[j][i] = up[v][i - 1];
             dp[j][i] = combine(dp[j][i-1], dp[v][i-
 84
 85
 86
       for (int i = 0; i <= m - 1; i++) {
 87
         id = edges[i].id;
 88
         w = edges[i].w;
 89
         if (!present[id]) {
 90
           auto rem = lca(edges[i].s, edges[i].e);
           if (rem.first != w) {
 91
 92
             if (ans > res + w - rem.first) ans = res +
                  w - rem.first;
 93
           } else if (rem.second != -1) {
             if (ans > res + w - rem.second) ans = res +
                   w - rem.second;
 95
 96
         }
 97
 98
       cout << ans << "\n";
 99
       return 0;
100 }
```

4.9 Find Cycle

```
bool dfs(ll v) {
      color[v] = 1;
      for (ll u : adj[v]) {
        if (color[u] == 0) {
          parent[u] = v;
          if (dfs(u)) {
            return true;
        } else if (color[u] == 1) {
          cycle_end = v;
          cycle_start = u;
          return true;
14
15
      color[v] = 2;
16
      return false:
17 }
18 void find_cycle() {
19
      color.assign(n, 0);
20
      parent.assign(n, -1);
21
      cycle_start = -1;
      for (11 v = 0; v < n; v++) {
       if (color[v] == 0 && dfs(v)) {
```

```
break;
      if (cycle_start == -1) {
        cout << "Acyclic" << endl;</pre>
      } else {
30
        vector<ll> cycle;
        cycle.push_back(cycle_start);
        for (11 v = cycle_end; v != cycle_start; v =
             parent[v]) {
          cycle.push_back(v);
34
        cycle.push_back(cycle_start);
        reverse(cycle.begin(), cycle.end());
        cout << "Cycle found: ";</pre>
        for (ll v : cycle) {
         cout << v << ' ';
        cout << '\n';
```

4.10 Floyd Warshall

4.11 Ford Fulkerson

return false;

```
bool bfs(ll n, vector<vector<ll>> &r_graph, ll s,
         11 t, vector<11> &parent) {
      vector<bool> visited(n, false);
      queue<11> q;
      q.push(s);
      visited[s] = true;
 6
      parent[s] = -1;
      while (!q.empty()) {
       11 u = q.front();
        q.pop();
        for (11 v = 0; v < n; v++) {
          if (!visited[v] && r_graph[u][v] > 0) {
            if (v == t) {
              parent[v] = u;
              return true;
            q.push(v);
            parent[v] = u;
            visited[v] = true;
19
```

```
11 ford fulkerson(ll n, vector<vector<ll>>> graph,
         11 s, 11 t) {
      11 u, v;
      vector<vector<ll>> r_graph;
      for (u = 0; u < n; u++)
2.8
        for (v = 0; v < n; v++)
          r_graph[u][v] = graph[u][v];
      vector<11> parent;
      11 \text{ max flow} = 0;
      while (bfs(n, r_graph, s, t, parent)) {
        11 path_flow = INF;
34
        for (v = t; v != s; v = parent[v]) {
         u = parent[v];
          path_flow = min(path_flow, r_graph[u][v]);
        for (v = t; v != s; v = parent[v]) {
          u = parent[v];
          r_graph[u][v] -= path_flow;
          r_graph[v][u] += path_flow;
        max_flow += path_flow;
      return max_flow;
46
```

4.12 Hierholzer

```
void print_circuit (vector<vector<ll>>> &adj) {
      map<11, 11> edge_count;
      for (ll i = 0; i < adj.size(); i++) {</pre>
        edge_count[i] = adj[i].size();
      if (!adj.size()) {
        return:
      stack<ll> curr_path;
      vector<11> circuit;
      curr_path.push(0);
      11 \text{ curr_v} = 0;
      while (!curr_path.empty()) {
        if (edge_count[curr_v]) {
          curr_path.push(curr_v);
          11 next_v = adj[curr_v].back();
          edge_count[curr_v]--;
          adj[curr_v].pop_back();
          curr_v = next_v;
        } else {
          circuit.push_back(curr_v);
          curr_v = curr_path.top();
          curr_path.pop();
2.4
      for (ll i = circuit.size() - 1; i >= 0; i--) {
        cout << circuit[i] << ' ';
28
29
```

4.13 Hungarian

```
1  vector<int> u (n+1), v (m+1), p (m+1), way (m+1);
2  for (int i=1; i<=n; ++i) {
3   p[0] = i;
4   int j0 = 0;
5  vector<int> minv (m+1, INF);
```

```
Pegaraw
```

```
vector<bool> used (m+1, false);
         used[j0] = true;
         int i0 = p[j0], delta = INF, j1;
         for (int j=1; j<=m; ++j)</pre>
10
11
           if (!used[j]) {
             int cur = A[i0][j]-u[i0]-v[j];
             if (cur < minv[j]) minv[j] = cur, way[j] =</pre>
             if (minv[j] < delta) delta = minv[j], j1 =</pre>
                   j;
15
16
         for (int j=0; j<=m; ++j)</pre>
17
           if (used[j]) u[p[j]] += delta, v[j] -= delta
18
           else minv[j] -= delta;
19
         j0 = j1;
20
       } while (p[j0] != 0);
21
22
23
        int j1 = way[j0];
        p[j0] = p[j1];
24
         j0 = j1;
25
      } while (†0);
26
27
    vector<int> ans (n+1);
    for (int j=1; j<=m; ++j)</pre>
      ans[p[j]] = j;
30 int cost = -v[0];
```

4.14 Is Bipartite

```
bool is_bipartite(vector<ll> &col, vector<vector<ll</pre>
         >> &adj, ll n) {
      queue<pair<11, 11>> q;
      for (11 i = 0; i < n; i++) {
        if (col[i] == -1) {
          g.push({i, 0});
          col[i] = 0;
          while (!q.empty()) {
            pair<11, 11> p = q.front();
            q.pop();
            11 v = p.first, c = p.second;
11
            for (ll j : adj[v]) {
12
              if (col[j] == c) {
13
                return false;
14
15
              if (col[j] == -1) {
16
                col[j] = (c ? 0 : 1);
17
                q.push({j, col[j]});
18
19
20
21
22
23
      return true;
```

4.15 Is Cyclic

4.16 Kahn

```
void kahn(vector<vector<ll>> &adj) {
     ll n = adj.size();
      vector<ll> in_degree(n, 0);
      for (11 u = 0; u < n; u++)
      for (ll v: adj[u]) in_degree[v]++;
      queue<11> q;
      for (11 i = 0; i < n; i++)
       if (in_degree[i] == 0)
         q.push(i);
      11 cnt = 0;
      vector<ll> top_order;
      while (!q.empty()) {
       11 u = q.front();
        q.pop();
        top_order.push_back(u);
        for (ll v : adj[u])
         if (--in_degree[v] == 0) q.push(v);
18
       cnt++;
19
      if (cnt != n) {
       cout << -1 << '\n';
        return;
      // print top_order
```

4.17 Kosaraju

return adj_t;

```
void topo_sort(int u, vector<vector<int>>& adj,
        vector<bool>& vis, stack<int>& stk) {
     vis[u] = true;
     for (int v : adj[u]) {
       if (!vis[v]) {
         topo_sort(v, adj, vis, stk);
6
7
8
     stk.push(u);
9
   vector<vector<int>>> transpose(int n, vector<vector<</pre>
        int>>& adj) {
     vector<vector<int>> adj_t(n);
     for (int u = 0; u < n; u++) {
       for (int v : adj[u]) {
         adj_t[v].push_back(u);
```

```
void get_scc(int u, vector<vector<int>>& adj_t,
         vector<bool>& vis, vector<int>& scc) {
      vis[u] = true;
23
      scc.push_back(u);
      for (int v : adj_t[u]) {
       if (!vis[v]) {
          get_scc(v, adj_t, vis, scc);
31
    void kosaraju(int n, vector<vector<int>>& adj,
         vector<vector<int>>& sccs) {
      vector<bool> vis(n, false);
      stack<int> stk;
      for (int u = 0; u < n; u++) {
       if (!vis[u]) {
          topo_sort(u, adj, vis, stk);
38
      vector<vector<int>> adj t = transpose(n, adj);
      for (int u = 0; u < n; u++) {
       vis[u] = false;
      while (!stk.empty()) {
       int u = stk.top();
        stk.pop();
       if (!vis[u]) {
          vector<int> scc;
          get_scc(u, adj_t, vis, scc);
49
          sccs.push_back(scc);
50
52
```

4.18 Kruskals

```
1 struct Edge {
      int u, v, weight;
      bool operator<(Edge const& other) {</pre>
        return weight < other.weight;</pre>
6
    };
    int n;
    vector<Edge> edges;
    int cost = 0;
    vector<Edge> result;
    DSU dsu = DSU(n);
    sort(edges.begin(), edges.end());
    for (Edge e : edges) {
     if (dsu.find_set(e.u) != dsu.find_set(e.v)) {
15
        cost += e.weight;
        result.push_back(e);
        dsu.union_sets(e.u, e.v);
19 }
```

4.19 Kruskal Mst

```
1 struct Edge {
2    11 u, v, weight;
3    bool operator<(Edge const& other) {
4    return weight < other.weight;</pre>
```

```
};
    11 n;
    vector<Edge> edges;
   11 \cos t = 0;
10 vector<11> tree_id(n);
11 vector<Edge> result;
    for (11 i = 0; i < n; i++) {
13
      tree_id[i] = i;
14 }
15 sort(edges.begin(), edges.end());
16 for (Edge e : edges) {
17
      if (tree_id[e.u] != tree_id[e.v]) {
18
        cost += e.weight;
19
        result.push back(e);
        11 old_id = tree_id[e.u], new_id = tree_id[e.v
        for (ll i = 0; i < n; i++) {</pre>
         if (tree_id[i] == old_id) {
            tree_id[i] = new_id;
23
```

4.20 Kuhn

```
1 int n, k;
    vector<vector<int>> q;
    vector<int> mt;
    vector<bool> used;
 5 bool try_kuhn(int v) {
      if (used[v]) return false;
      used[v] = true;
      for (int to : g[v]) {
        if (mt[to] == -1 || try_kuhn(mt[to])) {
10
          mt[to] = v;
11
          return true;
12
13
14
      return false;
15 }
16 int main() {
17
      mt.assign(k, -1);
18
        vector<bool> used1(n, false);
19
        for (int v = 0; v < n; ++v) {
20
         for (int to : q[v]) {
21
           if (mt[to] == -1) {
              mt[to] = v;
23
              used1[v] = true;
24
              break;
25
26
27
28
         }
        for (int v = 0; v < n; ++v) {
29
          if (used1[v]) continue;
          used.assign(n, false);
31
          try_kuhn(v);
        for (int i = 0; i < k; ++i)
34
          if (mt[i] != -1)
35
            printf("%d %d\n", mt[i] + 1, i + 1);
36 }
```

```
4.21 Lowest Common Ancestor
```

```
vector<ll> height, euler, first, segtree;
      vector<bool> visited;
      LCA(vector<vector<ll>> &adj, ll root = 0) {
        n = adj.size();
        height.resize(n);
        first.resize(n);
        euler.reserve(n * 2);
        visited.assign(n, false);
        dfs(adj, root);
         11 m = euler.size();
         segtree.resize(m * 4);
        build(1, 0, m - 1);
      void dfs(vector<vector<ll>>> &adj, ll node, ll h =
         visited[node] = true;
         height[node] = h;
         first[node] = euler.size();
         euler.push_back(node);
         for (auto to : adj[node]) {
           if (!visited[to]) {
             dfs(adj, to, h + 1);
             euler.push_back(node);
      void build(ll node, ll b, ll e) {
        if (b == e) segtree[node] = euler[b];
         else {
           11 \text{ mid} = (b + e) / 2;
           build(node << 1, b, mid);</pre>
           build(node << 1 | 1, mid + 1, e);</pre>
           11 1 = segtree[node << 1], r = segtree[node</pre>
                << 1 | 1];
           segtree[node] = (height[1] < height[r]) ? 1 :</pre>
36
38
      11 query(11 node, 11 b, 11 e, 11 L, 11 R) {
        if (b > R | | e < L) return -1;</pre>
         if (b >= L && e <= R) return segtree[node];</pre>
        11 \text{ mid} = (b + e) >> 1;
         11 left = query(node << 1, b, mid, L, R);</pre>
         11 right = query(node << 1 | 1, mid + 1, e, L,</pre>
        if (left == -1) return right;
45
         if (right == -1) return left;
         return height[left] < height[right] ? left :</pre>
             right;
48
      11 lca(11 u, 11 v) {
49
        11 left = first[u], right = first[v];
50
         if (left > right) swap(left, right);
         return query(1, 0, euler.size() - 1, left,
53 };
```

4.22 Maximum Bipartite Matching

```
bool bpm(ll n, ll m, vector<vector<bool>> &bpGraph,
         11 u, vector<bool> &seen, vector<11> &matchR)
     for (11 \ v = 0; \ v < m; \ v++) {
       if (bpGraph[u][v] && !seen[v]) {
```

```
seen[v] = true;
          if (matchR[v] < 0 || bpm(n, m, bpGraph,</pre>
               matchR[v], seen, matchR)) {
            matchR[v] = u;
            return true;
11
      return false;
12
    11 maxBPM(11 n, 11 m, vector<vector<bool>> &bpGraph
      vector<ll> matchR(m, -1);
      11 \text{ result} = 0;
      for (11 u = 0; u < n; u++) {
        vector<bool> seen(m, false);
        if (bpm(n, m, bpGraph, u, seen, matchR)) {
          result++;
      return result;
```

4.23 Min Cost Flow

```
1 struct Edge {
     int from, to, capacity, cost;
 4 vector<vector<int>> adj, cost, capacity;
    const int INF = 1e9;
    void shortest_paths(int n, int v0, vector<int>& d,
         vector<int>& p) {
      d.assign(n, INF);
      d[v0] = 0;
      vector<bool> inq(n, false);
      queue<int> q;
      q.push(v0);
      p.assign(n, -1);
      while (!q.empty()) {
        int u = q.front();
        q.pop();
        inq[u] = false;
        for (int v : adj[u]) {
          if (capacity[u][v] > 0 && d[v] > d[u] + cost[
               u][v]) {
            d[v] = d[u] + cost[u][v];
            p[v] = u;
            if (!inq[v]) {
             inq[v] = true;
              q.push(v);
28
    int min_cost_flow(int N, vector<Edge> edges, int K,
          int s, int t) {
      adj.assign(N, vector<int>());
      cost.assign(N, vector<int>(N, 0));
      capacity.assign(N, vector<int>(N, 0));
      for (Edge e : edges) {
        adj[e.from].push_back(e.to);
        adj[e.to].push_back(e.from);
        cost[e.from][e.to] = e.cost;
        cost[e.to][e.from] = -e.cost;
38
        capacity[e.from][e.to] = e.capacity;
39
```

```
Pegaraw
```

```
int flow = 0;
41
      int cost = 0;
      vector<int> d, p;
43
      while (flow < K) {</pre>
44
       shortest_paths(N, s, d, p);
45
        if (d[t] == INF) break;
46
        int f = K - flow, cur = t;
47
        while (cur != s) {
48
         f = min(f, capacity[p[cur]][cur]);
49
          cur = p[cur];
51
        flow += f;
52
        cost += f * d[t];
        cur = t;
54
        while (cur != s) {
         capacity[p[cur]][cur] -= f;
56
          capacity[cur][p[cur]] += f;
57
          cur = p[cur];
58
59
60
      if (flow < K) return -1;</pre>
      else return cost;
62 }
```

4.24 Prim

```
1 const int INF = 1000000000;
    struct Edge {
      int w = INF, to = -1;
      bool operator<(Edge const& other) const {</pre>
         return make_pair(w, to) < make_pair(other.w,</pre>
             other.to);
 7
    };
    int n;
    vector<vector<Edge>> adj;
10 void prim() {
11
     int total_weight = 0;
     vector<Edge> min_e(n);
13
     \min e[0].w = 0;
     set < Edge > q;
      q.insert({0, 0});
      vector<bool> selected(n, false);
17
      for (int i = 0; i < n; ++i) {</pre>
18
       if (q.empty()) {
19
         cout << "No MST!" << endl;
20
          exit(0);
21
        int v = q.begin()->to;
23
         selected[v] = true;
24
         total weight += g.begin()->w;
25
         q.erase(q.begin());
26
         if (min_e[v].to != -1) cout << v << " " <<</pre>
             min e[v].to << endl;
         for (Edge e : adj[v]) {
28
          if (!selected[e.to] && e.w < min_e[e.to].w) {</pre>
29
             q.erase({min_e[e.to].w, e.to});
             min_e[e.to] = \{e.w, v\};
31
             q.insert({e.w, e.to});
32
      cout << total_weight << endl;</pre>
```

4.25 Topological Sort

```
1 void dfs(ll v) {
     visited[v] = true;
      for (ll u : adj[v]) {
       if (!visited[u]) {
          dfs(u);
 6
 8
     ans.push_back(v);
9 }
10 void topological_sort() {
   visited.assign(n, false);
     ans.clear();
     for (11 i = 0; i < n; ++i) {
      if (!visited[i]) {
         dfs(i);
16
     reverse(ans.begin(), ans.end());
```

4.26 Zero One Bfs

```
1 vector<int> d(n, INF);
 2 	 d[s] = 0;
3 deque<int> q;
   q.push_front(s);
    while (!q.empty()) {
     int v = q.front();
      q.pop_front();
      for (auto edge : adj[v]) {
       int u = edge.first, w = edge.second;
       if (d[v] + w < d[u]) {
        d[u] = d[v] + w;
          if (w == 1) q.push_back(u);
13
          else q.push_front(u);
14
16 }
```

5 Math

5.1 Chinese Remainder Theorem

```
15 return solution;
16 }
```

5.2 Extended Euclidean

5.3 Factorial Modulo

5.4 Fast Fourier Transform

```
1 using cd = complex<double>;
2 const double PI = acos(-1);
   void fft(vector<cd>& a, bool invert) {
     int n = a.size();
     if (n == 1) return;
     vector<cd> a0(n / 2), a1(n / 2);
      for (int i = 0; 2 * i < n; i++) {
      a0[i] = a[2 * i];
       a1[i] = a[2 * i + 1];
      fft(a0, invert);
      fft(a1, invert);
      double ang = 2 * PI / n * (invert ? -1 : 1);
      cd w(1), wn(cos(ang), sin(ang));
      for (int i = 0; 2 * i < n; i++) {
       a[i] = a0[i] + w * a1[i];
       a[i + n / 2] = a0[i] - w * a1[i];
        if (invert) {
        a[i] /= 2;
          a[i + n / 2] /= 2;
22
        w \star = wn;
2.3
24
   vector<int> multiply(vector<int> const& a, vector<</pre>
         int> const& b) {
        vector<cd> fa(a.begin(), a.end()), fb(b.begin()
             , b.end());
```

```
int n = 1;
28
         while (n < a.size() + b.size()) n <<= 1;</pre>
         fa.resize(n);
         fb.resize(n);
         fft(fa, false);
         fft(fb, false);
33
         for (int i = 0; i < n; i++) fa[i] *= fb[i];</pre>
         fft(fa, true);
35
         vector<int> result(n);
         for (int i = 0; i < n; i++) result[i] = round(</pre>
              fa[i].real());
         return result;
38 }
```

5.5 Fibonacci

```
struct matrix {
      11 mat[2][2];
      matrix friend operator *(const matrix &a, const
          matrix &b) {
        matrix c:
        for (int i = 0; i < 2; i++) {</pre>
        for (int j = 0; j < 2; j++) {
           c.mat[i][j] = 0;
            for (int k = 0; k < 2; k++) c.mat[i][j] +=</pre>
                a.mat[i][k] * b.mat[k][j];
11
        return c;
12
13 };
14 matrix matpow(matrix base, 11 n) {
15
    matrix ans{ {
16
       {1, 0},
17
        {0, 1}
18
     } };
      while (n) {
      if (n & 1) ans = ans * base;
21
       base = base * base;
       n >>= 1;
23
24
     return ans;
25 }
26 ll fib(int n) {
      matrix base{ {
       {1, 1},
       {1, 0}
      } };
      return matpow(base, n).mat[0][1];
32 }
```

5.6 Find All Solutions

```
1 bool find_any_solution(11 a, 11 b, 11 c, 11 &x0, 11
          &v0, 11 &q) {
      g = gcd_{extended(abs(a), abs(b), x0, y0)};
      if (c % g) return false;
      x0 \star = c / q;
      y0 \star = c / q;
      if (a < 0) x0 = -x0;
      if (b < 0) y0 = -y0;
      return true;
9 }
10 void shift_solution(ll & x, ll & y, ll a, ll b, ll
         cnt) {
```

```
x += cnt * b;
      v -= cnt * a;
14
   11 find_all_solutions(ll a, ll b, ll c, ll minx, ll
          maxx, 11 miny, 11 maxy) {
      11 x, y, g;
      if (!find_any_solution(a, b, c, x, y, g)) return
           0;
      a /= g;
      b /= g;
      11 \text{ sign}_a = a > 0 ? +1 : -1;
      11 \text{ sign\_b} = b > 0 ? +1 : -1;
      shift_solution(x, y, a, b, (minx - x) / b);
      if (x < minx) shift_solution(x, y, a, b, sign_b);</pre>
      if (x > maxx) return 0;
24
      11 1x1 = x:
25
      shift_solution(x, y, a, b, (maxx - x) / b);
      if (x > maxx) shift_solution(x, y, a, b, -sign_b)
          ;
      11 \text{ rx1} = x;
      shift_solution(x, y, a, b, -(miny - y) / a);
      if (y < miny) shift_solution(x, y, a, b, -sign_a)</pre>
      if (y > maxy) return 0;
      11 \ 1x2 = x;
      shift_solution(x, y, a, b, -(maxy - y) / a);
      if (y > maxy) shift_solution(x, y, a, b, sign_a);
      11 \text{ rx2} = x;
      if (1x2 > rx2) swap(1x2, rx2);
      11 1x = max(1x1, 1x2), rx = min(rx1, rx2);
      if (lx > rx) return 0;
      return (rx - lx) / abs(b) + 1;
39 }
5.7 Linear Sieve
```

```
void linear_sieve(ll N, vector<ll> &lowest_prime,
        vector<11> &prime) {
      for (11 i = 2; i <= N; i++) {
       if (lowest_prime[i] == 0) {
4
          lowest_prime[i] = i;
5
          prime.push_back(i);
6
7
        for (11 j = 0; i * prime[j] <= N; j++) {</pre>
8
         lowest_prime[i * prime[j]] = prime[j];
9
          if (prime[j] == lowest_prime[i]) break;
12
```

5.8 Matrix

```
struct Matrix { int mat[MAX_N][MAX_N]; };
    Matrix matrix_mul(Matrix a, Matrix b) {
      Matrix ans; int i, j, k;
      for (i = 0; i < MAX_N; i++)</pre>
      for (j = 0; j < MAX_N; j++)</pre>
      for (ans.mat[i][j] = k = 0; k < MAX_N; k++)</pre>
       ans.mat[i][j] += a.mat[i][k] * b.mat[k][j];
8
      return ans;
9
10 Matrix matrix_pow(Matrix base, int p) {
      Matrix ans; int i, j;
      for (i = 0; i < MAX_N; i++)</pre>
        for (j = 0; j < MAX_N; j++)</pre>
```

```
ans.mat[i][j] = (i == j);
      while (p) {
       if (p & 1) ans = matrix_mul(ans, base);
       base = matrix_mul(base, base);
        p >>= 1;
18
19
      return ans;
21 }
```

5.9 Miller Rabin

```
1 using u64 = uint64 t;
   using u128 = uint128 t;
   u64 binpower(u64 base, u64 e, u64 mod) {
     u64 \text{ result} = 1;
      base %= mod;
      while (e) {
      if (e & 1) result = (u128) result * base % mod;
       base = (u128) base * base % mod;
9
       e >>= 1;
     return result:
12
    bool check_composite(u64 n, u64 a, u64 d, l1 s) {
      u64 x = binpower(a, d, n);
      if (x == 1 \mid | x == n - 1) return false;
      for (11 r = 1; r < s; r++) {
       x = (u128) x * x % n;
18
       if (x == n - 1) return false;
19
     return true:
2.1
22
   bool miller rabin(u64 n) {
    if (n < 2) return false;</pre>
24
    11 r = 0;
25
     u64 d = n - 1;
      while ((d & 1) == 0) {
       d >>= 1;
28
       r++;
29
      for (11 a : {2, 3, 5, 7, 11, 13, 17, 19, 23, 29,
         31, 37}) {
        if (n == a) return true;
32
       if (check_composite(n, a, d, r)) return false;
      return true;
```

5.10 Modulo Inverse

```
11 mod inv(11 a, 11 m) {
  if (m == 1) return 0;
  11 \text{ m0} = \text{m}, \text{ x} = 1, \text{ y} = 0;
   while (a > 1) {
    11 q = a / m, t = m;
     m = a % m;
     a = t;
     t = y;
     y = x - q * y;
     x = t;
   if (x < 0) x += m0;
   return x;
```

5.11 Pollard Rho Brent

```
1 11 mult(11 a, 11 b, 11 mod) {
      return (__int128_t) a * b % mod;
 3
 4 11 f(11 x, 11 c, 11 mod) {
      return (mult(x, x, mod) + c) % mod;
 6
    11 pollard_rho_brent(11 n, 11 x0 = 2, 11 c = 1) {
      11 \times = x0, g = 1, q = 1, xs, y, m = 128, 1 = 1;
      while (g == 1) {
        v = x;
11
         for (11 i = 1; i < 1; i++) x = f(x, c, n);
12
13
         while (k < 1 \&\& g == 1) {
          xs = x;
15
          for (ll i = 0; i < m && i < l - k; i++) {
16
           x = f(x, c, n);
17
             q = mult(q, abs(y - x), n);
18
19
          g = \underline{gcd}(q, n);
20
21
22
23
          k += m;
        1 *= 2;
24 25
      if (g == n) {
26
         xs = f(xs, c, n);
27
          g = \underline{gcd}(abs(xs - y), n);
2.8
        } while (g == 1);
29
      return q;
31 }
```

5.12 Range Sieve

```
1 vector<bool> range_sieve(ll l, ll r) {
      11 n = sqrt(r);
      vector<bool> is_prime(n + 1, true);
      vector<11> prime;
      is_prime[0] = is_prime[1] = false;
      prime.push_back(2);
      for (ll i = 4; i <= n; i += 2) is_prime[i] =</pre>
           false;
      for (11 i = 3; i <= n; i += 2) {
        if (is_prime[i]) {
10
          prime.push_back(i);
11
          for (ll j = i * i; j <= n; j += i) is prime[j</pre>
               ] = false;
13
14
      vector<bool> result(r - 1 + 1, true);
1.5
      for (ll i : prime)
       for (11 j = max(i * i, (1 + i - 1) / i * i); j
             <= r; j += i)
          result[j - 1] = false;
      if (1 == 1) result[0] = false;
19
      return result;
20 }
```

5.13 Segmented Sieve

```
vector<ll> segmented_sieve(ll n) {
      const 11 S = 10000;
      11 nsgrt = sgrt(n);
      vector<char> is_prime(nsqrt + 1, true);
      vector<ll> prime;
      is_prime[0] = is_prime[1] = false;
      prime.push_back(2);
      for (11 i = 4; i <= nsgrt; i += 2) {
        is_prime[i] = false;
      for (11 i = 3; i <= nsqrt; i += 2) {</pre>
        if (is_prime[i]) {
          prime.push_back(i);
          for (11 j = i * i; j <= nsqrt; j += i) {</pre>
            is prime[j] = false;
        }
18
      vector<11> result;
      vector<char> block(S);
      for (11 k = 0; k * S \le n; k++) {
        fill(block.begin(), block.end(), true);
        for (ll p : prime) {
          for (11 j = max((k * S + p - 1) / p, p) * p -
               k \star S; j < S; j += p) {
            block[i] = false;
26
        if (k == 0) {
          block[0] = block[1] = false;
30
        for (ll i = 0; i < S && k * S + i <= n; i++) {
          if (block[i]) {
33
            result.push back(k * S + i);
34
35
        }
      return result;
```

5.14 Sum Of Divisors

```
11 total = 1;
     for (int i = 2; (11)i * i <= num; i++) {</pre>
      if (num % i == 0) {
        int e = 0;
         do {
          e++;
           num /= i;
         } while (num % i == 0);
         11 \text{ sum} = 0, \text{ pow} = 1;
         do {
         sum += pow;
           pow *= i;
         } while (e-- > 0);
         total *= sum;
16
     if (num > 1) total *= (1 + num);
     return total;
```

5.15 Tonelli Shanks

```
11 legendre(ll a, ll p) {
      return bin pow mod(a, (p-1) / 2, p);
    11 tonelli_shanks(ll n, ll p) {
      if (legendre(n, p) == p - 1) {
        return -1:
     if (p % 4 == 3) {
        return bin_pow_mod(n, (p + 1) / 4, p);
      11 \ Q = p - 1, \ S = 0;
      while (Q \% 2 == 0) {
       Q /= 2;
        S++;
      11 z = 2;
      for (; z < p; z++) {</pre>
       if (legendre(z, p) == p - 1) {
          break:
      11 M = S, c = bin_pow_mod(z, Q, p), t =
          bin pow mod(n, 0, p), R = bin pow <math>mod(n, 0)
          + 1) / 2, p);
      while (t % p != 1) {
        if (t % p == 0) {
          return 0;
        11 i = 1, t2 = t * t % p;
        for (; i < M; i++) {</pre>
          if (t2 % p == 1) {
            break;
          t2 = t2 * t2 % p;
34
        11 b = bin_pow_mod(c, bin_pow_mod(2, M - i - 1,
              p), p);
        M = i;
        c = b * b % p;
       t = t * c % p;
38
        R = R * b % p;
39
      return R;
41
```

6 Miscellaneous

6.1 Gauss

```
1  const double EPS = 1e-9;
2  const 11 INF = 2;
3  11 gauss(vector <vector <double>> a, vector <double>> &ans) {
4   11 n = (11) a.size(), m = (11) a[0].size() - 1;
5   vector<11> where (m, -1);
6   for (11 col = 0, row = 0; col < m && row < n; ++ col) {
7   11 sel = row;
8   for (11 i = row; i < n; ++i) {
9    if (abs(a[i][col]) > abs(a[sel][col])) {
10        sel = i;
11    }
12   }
13   if (abs (a[sel][col]) < EPS) {
14   continue;</pre>
```

```
Pegaraw
```

```
for (ll i = col; i <= m; ++i) {</pre>
17
          swap(a[sel][i], a[row][i]);
18
19
         where[col] = row;
20
         for (11 i = 0; i < n; ++i) {
21
          if (i != row) {
22
23
24
             double c = a[i][col] / a[row][col];
             for (11 j = col; j \le m; ++j) {
               a[i][j] = a[row][j] * c;
25
26
27
28
         ++row;
29
30
31
      ans.assign(m, 0);
      for (11 i = 0; i < m; ++i) {
        if (where[i] != -1) {
33
          ans[i] = a[where[i]][m] / a[where[i]][i];
34
35
36
      for (11 i = 0; i < n; ++i) {
37
         double sum = 0;
38
         for (11 j = 0; j < m; ++j) {
39
          sum += ans[j] * a[i][j];
40
41
         if (abs (sum - a[i][m]) > EPS) {
42
          return 0:
43
44
45
      for (11 i = 0; i < m; ++i) {
        if (where[i] == -1) {
47
           return INF;
48
49
      return 1;
51 }
```

6.2 Ternary Search

7 Strings

7.1 Count Unique Substrings

```
int count_unique_substrings(string const& s) {
  int n = s.size();
  const int p = 31;
  const int m = 1e9 + 9;
  vector<long long> p_pow(n);
```

```
p_pow[0] = 1;
      for (int i = 1; i < n; i++) p_pow[i] = (p_pow[i -</pre>
            1] * p) % m;
      vector<long long> h(n + 1, 0);
      for (int i = 0; i < n; i++) h[i+1] = (h[i] + (s)
           [i] - 'a' + 1) * p_pow[i]) % m;
      int cnt = 0;
      for (int 1 = 1; 1 <= n; 1++) {
        unordered_set<long long> hs;
        for (int i = 0; i \le n - 1; i++) {
          long long cur_h = (h[i + 1] + m - h[i]) % m;
          cur_h = (cur_h * p_pow[n - i - 1]) % m;
          hs.insert(cur_h);
18
        cnt += hs.size();
19
      return cnt;
```

7.2 Finding Repetitions

```
vector<int> z_function(string const& s) {
      int n = s.size();
      vector<int> z(n);
      for (int i = 1, l = 0, r = 0; i < n; i++) {
        if (i \le r) z[i] = min(r - i + 1, z[i - 1]);
        while (i + z[i] < n \&\& s[z[i]] == s[i + z[i]])
            z[i]++;
        if (i + z[i] - 1 > r) {
         1 = i;
          r = i + z[i] - 1;
      return z;
    int get_z(vector<int> const& z, int i) {
      if (0 <= i && i < (int) z.size()) return z[i];</pre>
      else return 0;
18
    vector<pair<int, int>> repetitions;
    void convert_to_repetitions(int shift, bool left,
         int cntr, int 1, int k1, int k2) {
      for (int 11 = \max(1, 1 - k2); 11 \le \min(1, k1);
           11++) {
        if (left && l1 == 1) break;
        int 12 = 1 - 11;
        int pos = shift + (left ? cntr - 11 : cntr - 1
             -11+1);
24
        repetitions.emplace_back(pos, pos + 2 * 1 - 1);
25
26
    void find_repetitions(string s, int shift = 0) {
      int n = s.size();
      if (n == 1) return;
      int nu = n / 2;
      int nv = n - nu;
      string u = s.substr(0, nu);
      string v = s.substr(nu);
      string ru(u.rbegin(), u.rend());
      string rv(v.rbegin(), v.rend());
      find_repetitions(u, shift);
      find_repetitions(v, shift + nu);
      vector<int> z1 = z_function(ru);
      vector<int> z2 = z_function(v + '#' + u);
      vector<int> z3 = z function(ru + '#' + rv);
      vector<int> z4 = z_function(v);
      for (int cntr = 0; cntr < n; cntr++) {</pre>
```

```
int 1, k1, k2;

if (cntr < nu) {
    1 = nu - cntr;
    k1 = get_z(z1, nu - cntr);
    k2 = get_z(z2, nv + 1 + cntr);

} else {
    1 = cntr - nu + 1;
    k1 = get_z(z3, nu + 1 + nv - 1 - (cntr - nu))

    k2 = get_z(z4, (cntr - nu) + 1);

}

if (k1 + k2 >= 1) convert_to_repetitions(shift, cntr < nu, cntr, 1, k1, k2);

}
</pre>
```

7.3 Group Identical Substrings

7.4 Hashing

7.5 Knuth Morris Pratt

```
1  vector<ll> prefix_function(string s) {
2    ll n = (ll) s.length();
3    vector<ll> pi(n);
4    for (ll i = 1; i < n; i++) {
5        ll j = pi[i - 1];
6        while (j > 0 && s[i] != s[j]) j = pi[j - 1];
7        if (s[i] == s[j]) j++;
8        pi[i] = j;
9        }
10        return pi;
11    }
12    // count occurences
13    vector<int> ans(n + 1);
```

```
14    for (int i = 0; i < n; i++)
15         ans[pi[i]]++;
16    for (int i = n-1; i > 0; i--)
17         ans[pi[i-1]] += ans[i];
18    for (int i = 0; i <= n; i++)
19         ans[i]++;</pre>
```

7.6 Longest Common Prefix

```
1 vector<int> lcp construction(string const& s,
         vector<int> const& p) {
      int n = s.size();
      vector<int> rank(n, 0);
      for (int i = 0; i < n; i++) rank[p[i]] = i;</pre>
      int k = 0;
      vector<int> lcp(n-1, 0);
      for (int i = 0; i < n; i++) {
        if (rank[i] == n - 1) {
          k = 0:
          continue;
11
12
        int j = p[rank[i] + 1];
13
        while (i + k < n \&\& j + k < n \&\& s[i + k] == s[
             j + k]) k++;
        lcp[rank[i]] = k;
15
        if (k) k--;
16
17
      return lcp;
18
```

7.7 Manacher

```
1 vector<int> manacher_odd(string s) {
      int n = s.size();
      s = "$" + s + "^";
      vector<int> p(n + 2);
      int 1 = 1, r = 1;
      for(int i = 1; i <= n; i++) {</pre>
        p[i] = max(0, min(r - i, p[l + (r - i)]));
        while(s[i - p[i]] == s[i + p[i]]) p[i]++;
        if(i + p[i] > r) 1 = i - p[i], r = i + p[i];
11
      return vector<int>(begin(p) + 1, end(p) - 1);
12 }
13 vector<int> manacher(string s) {
      string t;
14
1.5
      for(auto c: s) t += string("#") + c;
      auto res = manacher odd(t + "#");
      return vector<int>(begin(res) + 1, end(res) - 1);
17
18 }
```

7.8 Rabin Karp

```
vector<11> rabin_karp(string const& s, string const
      const 11 p = 31, m = 1e9 + 9;
      11 S = s.size(), T = t.size();
      vector<ll> p_pow(max(S, T));
 5
      p_pow[0] = 1;
      for (ll i = 1; i < (ll) p_pow.size(); i++) p_pow[</pre>
           i] = (p_pow[i-1] * p) % m;
      vector<11> h(T + 1, 0);
      for (ll i = 0; i < T; i++) h[i + 1] = (h[i] + (t[
           i] - 'a' + 1) * p_pow[i]) % m;
 9
      for (11 i = 0; i < S; i++) h_s = (h_s + (s[i] - ')
           a' + 1) * p_pow[i]) % m;
      vector<11> occurences;
12
      for (11 i = 0; i + S - 1 < T; i++) {
        11 \text{ cur}_h = (h[i + S] + m - h[i]) % m;
14
        if (cur_h == h_s * p_pow[i] % m) occurences.
             push back(i);
16
      return occurences:
```

7.9 Suffix Array

```
vector<int> sort_cyclic_shifts(string const& s) {
      int n = s.size();
      const int alphabet = 256;
      vector<int> p(n), c(n), cnt(max(alphabet, n), 0);
      for (int i = 0; i < n; i++) cnt[s[i]]++;</pre>
      for (int i = 1; i < alphabet; i++) cnt[i] += cnt[</pre>
           i - 1];
      for (int i = 0; i < n; i++) p[--cnt[s[i]]] = i;</pre>
 8
      c[p[0]] = 0;
      int classes = 1;
      for (int i = 1; i < n; i++) {</pre>
        if (s[p[i]] != s[p[i-1]]) classes++;
        c[p[i]] = classes - 1;
      vector<int> pn(n), cn(n);
      for (int h = 0; (1 << h) < n; ++h) {</pre>
        for (int i = 0; i < n; i++) {</pre>
          pn[i] = p[i] - (1 << h);
18
           if (pn[i] < 0)
             pn[i] += n;
         fill(cnt.begin(), cnt.begin() + classes, 0);
         for (int i = 0; i < n; i++) cnt[c[pn[i]]]++;</pre>
```

```
for (int i = 1; i < classes; i++) cnt[i] += cnt</pre>
             [i - 1]:
        for (int i = n-1; i >= 0; i--) p[--cnt[c[pn[i
             ]]]] = pn[i];
        cn[p[0]] = 0;
        classes = 1;
        for (int i = 1; i < n; i++) {
          pair<int, int> cur = {c[p[i]], c[(p[i] + (1
28
               << h)) % n]};
          pair<int, int> prev = {c[p[i-1]], c[(p[i-1] +
                (1 << h)) % n]};
          if (cur != prev) ++classes;
          cn[p[i]] = classes - 1;
        c.swap(cn);
      return p;
    vector<int> build_suff_arr(string s) {
      vector<int> sorted_shifts = sort_cyclic_shifts(s)
      sorted shifts.erase(sorted shifts.begin());
      return sorted_shifts;
42
43
    // compare two substrings
    int compare(int i, int j, int 1, int k) {
      pair<int, int> a = {c[k][i], c[k][(i + 1 - (1 <<</pre>
           k)) % n]};
      pair<int, int> b = {c[k][j], c[k][(j + 1 - (1 <<
          k)) % n]};
      return a == b ? 0 : a < b ? -1 : 1;
```

7.10 Z Function

```
1  vector<int> z_function(string s) {
2    int n = s.size();
3    vector<int> z(n);
4    for (int i = 1, l = 0, r = 0; i < n; i++) {
5        if (i < r) z[i] = min(r - i, z[i - 1]);
6        while (i + z[i] < n && s[z[i]] == s[i + z[i]])
            z[i]++;
7        if (i + z[i] > r) {
8             1 = i;
9             r = i + z[i];
10        }
11    }
12    return z;
13 }
```

Pegaraw

_		
f(n) = O(g(n))	iff \exists positive c, n_0 such that $0 \le f(n) \le cg(n) \ \forall n \ge n_0$.	$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}, \sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}, \sum_{i=1}^{n} i^3 = \frac{n^2(n+1)^2}{4}.$
$f(n) = \Omega(g(n))$	iff \exists positive c, n_0 such that $f(n) \ge cg(n) \ge 0 \ \forall n \ge n_0$.	$ \begin{array}{ccc} i=1 & & i=1 \\ In general: & & & \\ n & & & & \\ & & & & \\ & & & & \\ & & & &$
$f(n) = \Theta(g(n))$	iff $f(n) = O(g(n))$ and $f(n) = \Omega(g(n))$.	$\sum_{i=1}^{n} i^{m} = \frac{1}{m+1} \left[(n+1)^{m+1} - 1 - \sum_{i=1}^{n} \left((i+1)^{m+1} - i^{m+1} - (m+1)i^{m} \right) \right]$
f(n) = o(g(n))	iff $\lim_{n\to\infty} f(n)/g(n) = 0$.	$\sum_{i=1}^{n-1} i^m = \frac{1}{m+1} \sum_{k=0}^m \binom{m+1}{k} B_k n^{m+1-k}.$
$\lim_{n \to \infty} a_n = a$	iff $\forall \epsilon > 0$, $\exists n_0$ such that $ a_n - a < \epsilon$, $\forall n \ge n_0$.	Geometric series:
$\sup S$	least $b \in \mathbb{R}$ such that $b \geq s$, $\forall s \in S$.	$\sum_{i=0}^{n} c^{i} = \frac{c^{n+1} - 1}{c - 1}, c \neq 1, \sum_{i=0}^{\infty} c^{i} = \frac{1}{1 - c}, \sum_{i=1}^{\infty} c^{i} = \frac{c}{1 - c}, c < 1,$
$\inf S$	greatest $b \in \mathbb{R}$ such that $b \le s$, $\forall s \in S$.	$\sum_{i=0}^{n} ic^{i} = \frac{nc^{n+2} - (n+1)c^{n+1} + c}{(c-1)^{2}}, c \neq 1, \sum_{i=0}^{\infty} ic^{i} = \frac{c}{(1-c)^{2}}, c < 1.$
$ \liminf_{n \to \infty} a_n $	$\lim_{n \to \infty} \inf \{ a_i \mid i \ge n, i \in \mathbb{N} \}.$	Harmonic series: $n 1 \sum_{n=1}^{n} 1 \sum_{n=1}^{n} n(n+1) n(n-1)$
$\limsup_{n \to \infty} a_n$	$\lim_{n \to \infty} \sup \{ a_i \mid i \ge n, i \in \mathbb{N} \}.$	$H_n = \sum_{i=1}^n \frac{1}{i}, \qquad \sum_{i=1}^n iH_i = \frac{n(n+1)}{2}H_n - \frac{n(n-1)}{4}.$
$\binom{n}{k}$	Combinations: Size k subsets of a size n set.	$\sum_{i=1}^{n} H_i = (n+1)H_n - n, \sum_{i=1}^{n} {i \choose m} H_i = {n+1 \choose m+1} \left(H_{n+1} - \frac{1}{m+1} \right).$
$\begin{bmatrix} n \\ k \end{bmatrix}$	Stirling numbers (1st kind): Arrangements of an n element set into k cycles.	$1. \binom{n}{k} = \frac{n!}{(n-k)!k!}, \qquad 2. \sum_{k=0}^{n} \binom{n}{k} = 2^n, \qquad 3. \binom{n}{k} = \binom{n}{n-k},$
$\left\{ egin{array}{c} n \\ k \end{array} \right\}$	Stirling numbers (2nd kind): Partitions of an n element set into k non-empty sets.	$4. \binom{n}{k} = \frac{n}{k} \binom{n-1}{k-1}, \qquad \qquad 5. \binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}, \\ 6. \binom{n}{m} \binom{m}{k} = \binom{n}{k} \binom{n-k}{m-k}, \qquad \qquad 7. \sum_{k=0}^{n} \binom{r+k}{k} = \binom{r+n+1}{n},$
$\left\langle {n\atop k}\right\rangle$	1st order Eulerian numbers: Permutations $\pi_1\pi_2\pi_n$ on $\{1,2,,n\}$ with k ascents.	8. $\sum_{k=0}^{n} {k \choose m} = {n+1 \choose m+1},$ 9. $\sum_{k=0}^{n} {r \choose k} {s \choose n-k} = {r+s \choose n},$
$\left\langle\!\left\langle {n\atop k}\right\rangle\!\right\rangle$	2nd order Eulerian numbers.	10. $\binom{n}{k} = (-1)^k \binom{k-n-1}{k},$ 11. $\binom{n}{1} = \binom{n}{n} = 1,$
C_n	Catalan Numbers: Binary trees with $n+1$ vertices.	12. $\binom{n}{2} = 2^{n-1} - 1,$ 13. $\binom{n}{k} = k \binom{n-1}{k} + \binom{n-1}{k-1},$
		$16. \begin{bmatrix} n \\ n \end{bmatrix} = 1, \qquad \qquad 17. \begin{bmatrix} n \\ k \end{bmatrix} \ge \begin{Bmatrix} n \\ k \end{Bmatrix},$
		$\begin{bmatrix} n \\ -1 \end{bmatrix} = \begin{bmatrix} n \\ n-1 \end{bmatrix} = \binom{n}{2}, 20. \sum_{k=0}^{n} \begin{bmatrix} n \\ k \end{bmatrix} = n!, 21. \ C_n = \frac{1}{n+1} \binom{2n}{n},$
$22. \left\langle {n \atop 0} \right\rangle = \left\langle {n \atop n-1} \right\rangle$	$\begin{pmatrix} n \\ -1 \end{pmatrix} = 1,$ 23. $\begin{pmatrix} n \\ k \end{pmatrix} = \langle n \rangle$	$\binom{n}{n-1-k}$, 24. $\binom{n}{k} = (k+1)\binom{n-1}{k} + (n-k)\binom{n-1}{k-1}$,
$25. \left\langle {0 \atop k} \right\rangle = \left\{ {1 \atop 0} \right\}$	if $k = 0$, otherwise 26. $\left\langle \frac{1}{2} \right\rangle$	
28. $x^n = \sum_{k=0}^{n} \binom{n}{k}$	$\left. \left\langle \left(\begin{array}{c} n \\ n \end{array} \right), \qquad $ 29. $\left\langle \begin{array}{c} n \\ m \end{array} \right\rangle = \sum_{k=1}^{n} \left\langle \left(\begin{array}{c} n \\ n \end{array} \right) \right\rangle$	$\sum_{k=0}^{n} {n+1 \choose k} (m+1-k)^n (-1)^k, 30. m! {n \choose m} = \sum_{k=0}^{n} {n \choose k} {n \choose n-m},$
$31. \left\langle {n \atop m} \right\rangle = \sum_{k=0}^{n} \cdot$	${n \choose k} {n-k \choose m} (-1)^{n-k-m} k!,$	32. $\left\langle {n \atop 0} \right\rangle = 1,$ 33. $\left\langle {n \atop n} \right\rangle = 0$ for $n \neq 0,$
$34. \left\langle \!\! \left\langle \!\! \begin{array}{c} n \\ k \end{array} \!\! \right\rangle = (k + 1)^n $	$+1$ $\left\langle \left\langle \left$	
$36. \left\{ \begin{array}{c} x \\ x-n \end{array} \right\} = \left\{ \begin{array}{c} x \\ x \end{array} \right\}$	$\sum_{k=0}^{n} \left\langle \!\! \left\langle n \right\rangle \!\! \right\rangle \left(\!\! \left(x + n - 1 - k \right) \!\! \right), $	37. ${n+1 \choose m+1} = \sum_{k} {n \choose k} {k \choose m} = \sum_{k=0}^{n} {k \choose m} (m+1)^{n-k},$

17 Pegaraw

The Chinese remainder theorem: There exists a number C such that:

 $C \equiv r_1 \mod m_1$

: : :

 $C \equiv r_n \bmod m_n$

if m_i and m_j are relatively prime for $i \neq j$. Euler's function: $\phi(x)$ is the number of positive integers less than x relatively prime to x. If $\prod_{i=1}^{n} p_i^{e_i}$ is the prime factorization of x then

$$\phi(x) = \prod_{i=1}^{n} p_i^{e_i - 1} (p_i - 1).$$

Euler's theorem: If a and b are relatively prime then

$$1 \equiv a^{\phi(b)} \bmod b$$
.

Fermat's theorem:

$$1 \equiv a^{p-1} \bmod p.$$

The Euclidean algorithm: if a > b are integers then

$$gcd(a, b) = gcd(a \mod b, b).$$

If $\prod_{i=1}^{n} p_i^{e_i}$ is the prime factorization of x

$$S(x) = \sum_{d|x} d = \prod_{i=1}^{n} \frac{p_i^{e_i+1} - 1}{p_i - 1}.$$

Perfect Numbers: x is an even perfect number iff $x = 2^{n-1}(2^n - 1)$ and $2^n - 1$ is prime. Wilson's theorem: n is a prime iff

$$(n-1)! \equiv -1 \bmod n.$$

$$\mu(i) = \begin{cases} (n-1)! = -1 \bmod n. \\ \text{M\"obius inversion:} \\ \mu(i) = \begin{cases} 1 & \text{if } i = 1. \\ 0 & \text{if } i \text{ is not square-free.} \\ (-1)^r & \text{if } i \text{ is the product of} \\ r & \text{distinct primes.} \end{cases}$$
 If

 If

$$G(a) = \sum_{d|a} F(d),$$

$$F(a) = \sum_{d|a} \mu(d) G\left(\frac{a}{d}\right).$$

Prime numbers:

$$p_n = n \ln n + n \ln \ln n - n + n \frac{\ln \ln n}{\ln n}$$

$$+O\left(\frac{n}{\ln n}\right),$$

$$\pi(n) = \frac{n}{\ln n} + \frac{n}{(\ln n)^2} + \frac{2!n}{(\ln n)^3} + O\left(\frac{n}{(\ln n)^4}\right).$$

-	0				
				ns	

Loop An edge connecting a vertex to itself. Directed Each edge has a direction.

SimpleGraph with no loops or

multi-edges.

WalkA sequence $v_0e_1v_1\ldots e_\ell v_\ell$. TrailA walk with distinct edges. Pathtrail with distinct

vertices.

ConnectedA graph where there exists a path between any two

vertices.

ComponentΑ maximal connected subgraph.

TreeA connected acyclic graph. Free tree A tree with no root. DAGDirected acyclic graph. EulerianGraph with a trail visiting each edge exactly once.

Hamiltonian Graph with a cycle visiting each vertex exactly once.

CutA set of edges whose removal increases the number of components.

Cut-setA minimal cut. Cut edge A size 1 cut.

k-Connected A graph connected with the removal of any k-1vertices.

k-Tough $\forall S \subseteq V, S \neq \emptyset$ we have $k \cdot c(G - S) \le |S|$.

A graph where all vertices k-Regular have degree k.

k-Factor Α k-regular spanning subgraph.

Matching A set of edges, no two of which are adjacent.

CliqueA set of vertices, all of which are adjacent.

Ind. set A set of vertices, none of which are adjacent.

Vertex cover A set of vertices which cover all edges.

Planar graph A graph which can be embeded in the plane.

Plane graph An embedding of a planar

$$\sum_{v \in V} \deg(v) = 2m.$$

If G is planar then n - m + f = 2, so

$$f \le 2n - 4, \quad m \le 3n - 6.$$

Any planar graph has a vertex with degree ≤ 5 .

Notation:

E(G)Edge set Vertex set V(G)

c(G)Number of components

G[S]Induced subgraph deg(v)Degree of v

Maximum degree $\Delta(G)$

 $\delta(G)$ Minimum degree $\chi(G)$ Chromatic number Edge chromatic number

 $\chi_E(G)$ G^c Complement graph K_n Complete graph

 K_{n_1,n_2} Complete bipartite graph

Ramsev number

Geometry

Projective coordinates: (x, y, z), not all x, y and z zero.

$$(x, y, z) = (cx, cy, cz) \quad \forall c \neq 0.$$

Cartesian Projective (x, y)(x, y, 1)y = mx + b(m, -1, b)

x = c(1,0,-c)Distance formula, L_p and L_{∞}

$$\sqrt{(x_1 - x_0)^2 + (y_1 - y_0)^2},$$
$$[|x_1 - x_0|^p + |y_1 - y_0|^p]^{1/p},$$

$$\lim_{n \to \infty} \left[|x_1 - x_0|^p + |y_1 - y_0|^p \right]^{1/p}.$$

Area of triangle $(x_0, y_0), (x_1, y_1)$ and (x_2, y_2) :

$$\frac{1}{2} \operatorname{abs} \begin{vmatrix} x_1 - x_0 & y_1 - y_0 \\ x_2 - x_0 & y_2 - y_0 \end{vmatrix}.$$

Angle formed by three points:

Line through two points (x_0, y_0) and (x_1, y_1) :

$$\begin{vmatrix} x & y & 1 \\ x_0 & y_0 & 1 \\ x_1 & y_1 & 1 \end{vmatrix} = 0.$$

Area of circle, volume of sphere:

$$A=\pi r^2, \qquad V=\tfrac{4}{3}\pi r^3.$$

If I have seen farther than others, it is because I have stood on the shoulders of giants.

- Issac Newton

18 Pegaraw

Taylor's series:

$$f(x) = f(a) + (x - a)f'(a) + \frac{(x - a)^2}{2}f''(a) + \dots = \sum_{i=0}^{\infty} \frac{(x - a)^i}{i!}f^{(i)}(a).$$

Expansions:

Expansions:
$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + x^4 + \cdots = \sum_{i=0}^{\infty} x^i,$$

$$\frac{1}{1-cx} = 1 + x + x^2 + x^3 + x^4 + \cdots = \sum_{i=0}^{\infty} c^i x^i,$$

$$\frac{1}{1-cx} = 1 + cx + c^2 x^2 + c^3 x^3 + \cdots = \sum_{i=0}^{\infty} c^i x^i,$$

$$\frac{1}{1-x^n} = 1 + x^n + x^{2n} + x^{3n} + \cdots = \sum_{i=0}^{\infty} x^{ni},$$

$$\frac{x}{(1-x)^2} = x + 2x^2 + 3x^3 + 4x^4 + \cdots = \sum_{i=0}^{\infty} i^n x^i,$$

$$x^k \frac{dx^n}{dx^n} \left(\frac{1}{1-x}\right) = x + 2^n x^2 + 3^n x^3 + 4^n x^4 + \cdots = \sum_{i=0}^{\infty} i^n x^i,$$

$$e^x = 1 + x + \frac{1}{2}x^2 + \frac{1}{6}x^3 + \cdots = \sum_{i=0}^{\infty} (-1)^{i+1} \frac{x^i}{i},$$

$$\ln(1+x) = x - \frac{1}{2}x^2 + \frac{1}{3}x^3 - \frac{1}{4}x^4 - \cdots = \sum_{i=0}^{\infty} (-1)^{i+1} \frac{x^i}{i},$$

$$\sin x = x - \frac{1}{3}x^3 + \frac{1}{13}x^5 - \frac{1}{71}x^7 + \cdots = \sum_{i=0}^{\infty} (-1)^i \frac{x^{2i+1}}{(2i+1)!},$$

$$\cos x = 1 - \frac{1}{2}x^2 + \frac{1}{4}x^4 - \frac{1}{6!}x^6 + \cdots = \sum_{i=0}^{\infty} (-1)^i \frac{x^{2i+1}}{(2i+1)!},$$

$$\tan^{-1} x = x - \frac{1}{3}x^3 + \frac{1}{5}x^5 - \frac{1}{7}x^7 + \cdots = \sum_{i=0}^{\infty} (-1)^i \frac{x^{2i+1}}{(2i+1)!},$$

$$(1+x)^n = 1 + nx + \frac{n(n-1)}{2}x^2 + \cdots = \sum_{i=0}^{\infty} (-1)^i \frac{x^{2i+1}}{(2i+1)!},$$

$$\frac{1}{(1-x)^{n+1}} = 1 + (n+1)x + \binom{n+2}{2}x^2 + \cdots = \sum_{i=0}^{\infty} \binom{i}{i}x^i,$$

$$\frac{x}{e^x - 1} = 1 - \frac{1}{2}x + \frac{1}{12}x^2 - \frac{1}{720}x^4 + \cdots = \sum_{i=0}^{\infty} \binom{i+n}{i}x^i,$$

$$\frac{1}{\sqrt{1-4x}} = 1 + x + 2x^2 + 5x^3 + \cdots = \sum_{i=0}^{\infty} \frac{1}{i+1} \binom{2i}{i}x^i,$$

$$\frac{1}{\sqrt{1-4x}} = 1 + x + 2x^2 + 6x^3 + \cdots = \sum_{i=0}^{\infty} \frac{1}{i+1} \binom{2i}{i}x^i,$$

$$\frac{1}{\sqrt{1-4x}} = 1 + (2+n)x + \binom{4+n}{2}x^2 + \cdots = \sum_{i=0}^{\infty} \frac{1}{i+1} \binom{2i}{i}x^i,$$

$$\frac{1}{1-x} \ln \frac{1}{1-x} = x + \frac{3}{2}x^2 + \frac{1}{16}x^3 + \frac{25}{12}x^4 + \cdots = \sum_{i=0}^{\infty} \frac{1}{i+1} \binom{2i}{i}x^i,$$

$$\frac{1}{1-x} \ln \frac{1}{1-x} = x + \frac{3}{2}x^2 + \frac{1}{16}x^3 + \frac{25}{12}x^4 + \cdots = \sum_{i=0}^{\infty} \frac{1}{i+1} \binom{2i}{i}x^i,$$

$$\frac{1}{1-x} \ln \frac{1}{1-x} = x + \frac{3}{2}x^2 + \frac{1}{16}x^3 + \frac{25}{12}x^4 + \cdots = \sum_{i=0}^{\infty} \frac{1}{i},$$

$$\frac{x}{1-x} = x^2 + x^2 + 2x^3 + 3x^4 + \cdots = \sum_{i=0}^{\infty} F_{i}x^i.$$

$$\frac{x}{1-x} = x^2 + x^2 + 2x^3 + 3x^4 + \cdots = \sum_{i=0}^{\infty} F_{i}x^i.$$

Ordinary power series:

$$A(x) = \sum_{i=0}^{\infty} a_i x^i.$$

Exponential power series:

$$A(x) = \sum_{i=0}^{\infty} a_i \frac{x^i}{i!}.$$

Dirichlet power series:

$$A(x) = \sum_{i=1}^{\infty} \frac{a_i}{i^x}.$$

Binomial theorem

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k.$$

$$x^{n} - y^{n} = (x - y) \sum_{k=0}^{n-1} x^{n-1-k} y^{k}.$$

For ordinary power se

$$\alpha A(x) + \beta B(x) = \sum_{i=0}^{\infty} (\alpha a_i + \beta b_i) x^i,$$

$$x^k A(x) = \sum_{i=k}^{\infty} a_{i-k} x^i,$$

$$\frac{A(x) - \sum_{i=0}^{k-1} a_i x^i}{x^k} = \sum_{i=0}^{\infty} a_{i+k} x^i,$$

$$A(cx) = \sum_{i=0}^{\infty} c^i a_i x^i,$$

$$A'(x) = \sum_{i=0}^{\infty} (i+1)a_{i+1}x^{i},$$

$$xA'(x) = \sum_{i=1}^{\infty} ia_i x^i,$$

$$\int A(x) dx = \sum_{i=1}^{\infty} \frac{a_{i-1}}{i} x^{i},$$

$$\frac{A(x) + A(-x)}{2} = \sum_{i=0}^{\infty} a_{2i} x^{2i},$$

$$\frac{A(x) - A(-x)}{2} = \sum_{i=0}^{\infty} a_{2i+1} x^{2i+1}.$$

Summation: If $b_i = \sum_{i=0}^i a_i$ then

$$B(x) = \frac{1}{1-x}A(x).$$

Convolution:

$$A(x)B(x) = \sum_{i=0}^{\infty} \left(\sum_{j=0}^{i} a_j b_{i-j}\right) x^i.$$

God made the natural numbers; all the rest is the work of man. Leopold Kronecker