

FCC TEST REPORT

Product Name: Feature Phone

Trade Mark: BLU

Model No.: A100

Report Number: 180927007RFC-1

Test Standards: FCC 47 CFR Part 15 Subpart C

FCC ID: YHLBLUA100

Test Result: PASS

Date of Issue: October 16, 2018

Prepared for:

BLU Products, Inc. 10814 NW 33rd St # 100 Doral, FL 33172

Prepared by:

Shenzhen UnionTrust Quality and Technology Co., Ltd. 16/F, Block A, Building 6, Baoneng Science and Technology Park, Qingxiang Road No.1, Longhua New District, Shenzhen, China

> TEL: +86-755-2823 0888 FAX: +86-755-2823 0886

Tested by:

Henry Lu

Project Engineer

Approved by:

Billy Li Technical Director Reviewed by:

Kevin Liang Assistant Manager

Date:

October 16, 2018

Version

Version No.	Date	Description
V1.0	October 16, 2018	Original

CONTENTS

1. G	GENERAL INFORMATION	4
1 1 1 1 1 1 1 1	I.1 CLIENT INFORMATION I.2 EUT INFORMATION 1.2.1 GENERAL DESCRIPTION OF EUT 1.2.2 DESCRIPTION OF ACCESSORIES I.3 PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD I.4 OTHER INFORMATION. I.5 DESCRIPTION OF SUPPORT UNITS I.6 TEST LOCATION. I.7 TEST FACILITY I.8 DEVIATION FROM STANDARDS. I.9 ABNORMALITIES FROM STANDARD CONDITIONS. I.10 OTHER INFORMATION REQUESTED BY THE CUSTOMER.	455666
3. E	TEST SUMMARYEQUIPMENT LIST	9
4 4 4 4	4.1.1 NORMAL OR EXTREME TEST CONDITIONS 4.2 TEST CHANNELS 4.3 EUT TEST STATUS 4.4 PRE-SCAN 4.5 TEST SETUP 4.5.1 FOR RADIATED EMISSIONS TEST SETUP 4.5.2 FOR CONDUCTED EMISSIONS TEST SETUP 4.5.3 FOR CONDUCTED RF TEST SETUP 4.5.4 SYSTEM TEST CONFIGURATION 4.7 DUTY CYCLE	101011121314
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	RADIO TECHNICAL REQUIREMENTS SPECIFICATION 5.1 REFERENCE DOCUMENTS FOR TESTING 5.2 ANTENNA REQUIREMENT 5.3 CONDUCTED PEAK OUTPUT POWER 5.4 20 DB BANDWIDTH 5.5 CARRIER FREQUENCIES SEPARATION 5.6 NUMBER OF HOPPING CHANNEL 5.7 DWELL TIME 5.8 CONDUCTED OUT OF BAND EMISSION 5.9 RADIATED SPURIOUS EMISSIONS 5.10 BAND EDGE MEASUREMENTS (RADIATED)	16 17 20 23 25 29 33 38 42
APPE APPE	ENDIX 1 PHOTOS OF TEST SETUPENDIX 2 PHOTOS OF EUT CONSTRUCTIONAL DETAILS	48 48

Page 4 of 48 Report No.: 180927007RFC-1

1. GENERAL INFORMATION

1.1 CLIENT INFORMATION

Applicant:	BLU Products, Inc.
Address of Applicant:	10814 NW 33rd St # 100 Doral, FL 33172
Manufacturer:	BLU Products, Inc.
Address of Manufacturer:	10814 NW 33rd St # 100 Doral, FL 33172

1.2 EUT INFORMATION

1.2.1 General Description of EUT

2.1 General Description of Eo1				
Product Name:	Feature Phone			
Model No.:	A100	A100		
Add. Model No.:	N/A			
Trade Mark:	BLU			
DUT Stage:	Identical Prototype			
EUT Supports Function:	GSM Bands: GSM850/1900			
EOT Supports Function.	2.4 GHz ISM Band: Bluetooth V2.1+EDR			
IMEI Code:	869748022389849, 869748022389856			
Sample Received Date:	September 27, 2018			
Sample Tested Date:	September 27, 2018 to October 8, 2018			

1.2.2 Description of Accessories

Adapter				
Trade Mark:	BLU			
Model No.:	US-NB-0550			
Input:	100-240 V~50/60 Hz 0.15 A			
Output:	5.0 V == 550 mA			
AC Cable:	N/A			
DC Cable:	1 Meter, Unshielded without ferrite			

Battery				
Trade Mark:	BLU			
Model No.:	N5C600T			
Battery Type:	Lithium-ion Rechargeable Battery			
Rated Voltage:	3.7 Vdc			
Rated Capacity:	600 mAh			

Page 5 of 48 Report No.: 180927007RFC-1

1.3 PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD

Frequency Band:	2400 MHz to 2483.5 MHz	
Frequency Range:	2402 MHz to 2480 MHz	
Bluetooth Version:	Bluetooth BR+EDR	
Modulation Technique:	Frequency Hopping Spread Spectrum(FHSS)	
Type of Modulation:	GFSK, π/4DQPSK, 8DPSK	
Number of Channels:	79	
Channel Separation:	1 MHz	
Hopping Channel Type:	Adaptive Frequency Hopping Systems	
Antenna Type:	Integral Antenna	
Antenna Gain:	-0.8 dBi	
Maximum Peak Power:	10.98 dBm	
Normal Test Voltage:	3.7 Vdc	

1.4 OTHER INFORMATION

Operation Frequency Each of Channel

f = 2402 + k MHz, k = 0,...,78

Note:

f is the operating frequency (MHz);

k is the operating channel.

Modulation Configure				
Modulation	Packet	Packet Type	Packet Size	
	1-DH1	4	27	
GFSK	1-DH3	11	183	
	1-DH5	15	339	
	2-DH1	20	54	
π/4 DQPSK	2-DH3	26	367	
	2-DH5	30	679	
	3-DH1	24	83	
8DPSK	3-DH3	27	552	
	3-DH5	31	1021	

1.5 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested with associated equipment below.

1) Support Equipment

Description	Manufacturer	Model No.	Serial Number	Supplied by
N/A	N/A	N/A	N/A	N/A

2) Support Cable

Cable No.	Description	Connector	Length	Supplied by
1	Antenna Cable	SMA	0.30 Meter	UnionTrust

Page 6 of 48 Report No.: 180927007RFC-1

1.6 TEST LOCATION

Shenzhen UnionTrust Quality and Technology Co., Ltd.

Address: 16/F, Block A, Building 6, Baoneng Science and Technology Park, Qingxiang Road No.1, Longhua

New District, Shenzhen, China 518109 Telephone: +86 (0) 755 2823 0888 Fax: +86 (0) 755 2823 0886

1.7 TEST FACILITY

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L9069

The measuring equipment utilized to perform the tests documented in this report has been calibrated once a year or in accordance with the manufacturer's recommendations, and is traceable under the ISO/IEC/EN 17025 to international or national standards. Equipment has been calibrated by accredited calibration laboratories.

IC-Registration No.: 21600-1

The 3m Semi-anechoic chamber of Shenzhen UnionTrust Quality and Technology Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 21600-1.

A2LA-Lab Certificate No.: 4312.01

Shenzhen UnionTrust Quality and Technology Co., Ltd. has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC Accredited Lab.

Designation Number: CN1194

Test Firm Registration Number: 259480

1.8 DEVIATION FROM STANDARDS

None.

1.9 ABNORMALITIES FROM STANDARD CONDITIONS

None.

1.10OTHER INFORMATION REQUESTED BY THE CUSTOMER

None.

Page 7 of 48 Report No.: 180927007RFC-1

1.11 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the Product as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

No.	Item	Measurement Uncertainty
1	Conducted emission 9KHz-150KHz	±3.8 dB
2	Conducted emission 150KHz-30MHz	±3.4 dB
3	Radiated emission 9KHz-30MHz	±4.9 dB
4	Radiated emission 30MHz-1GHz	±4.7 dB
5	Radiated emission 1GHz-18GHz	±5.1 dB
6	Radiated emission 18GHz-26GHz	±5.2 dB
7	Radiated emission 26GHz-40GHz	±5.2 dB

2. TEST SUMMARY

LOT OCIVINANT					
FCC 47 CFR Part 15 Subpart C Test Cases					
Test Item	Test Requirement	Test Method	Result		
Antenna Requirement	FCC 47 CFR Part 15 Subpart C Section 15.203/15.247 (c)	N/A	PASS		
AC Power Line Conducted Emission	FCC 47 CFR Part 15 Subpart C Section 15.207	ANSI C63.10-2013 Section 6.2	PASS		
Conducted Peak Output Power	FCC 47 CFR Part 15 Subpart C Section 15.247 (b)(1)	ANSI C63.10-2013 Section 7.8.5	PASS		
20 dB Bandwidth	FCC 47 CFR Part 15 Subpart C Section		PASS		
Carrier Frequencies Separation	FCC 47 CFR Part 15 Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013 Section 7.8.2	PASS		
Number of Hopping Channel	FCC 47 CFR Part 15 Subpart C Section 15.247 (b)(1)	ANSI C63.10-2013 Section 7.8.3	PASS		
Dwell Time	FCC 47 CFR Part 15 Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013 Section 7.8.4	PASS		
Conducted Out of Band Emission	FCC 47 CFR Part 15 Subpart C Section 15.247(d)	ANSI C63.10-2013 Section 6.10.4 & Section 7.8.8	PASS		
Radiated Emissions	FCC 47 CFR Part 15 Subpart C Section 15.205/15.209	ANSI C63.10-2013 Section 6.3 & 6.5 & 6.6	PASS		
Band Edge Measurement	FCC 47 CFR Part 15 Subpart C Section 15.205/15.209	ANSI C63.10-2013 Section 6.10.5	PASS		

3. EQUIPMENT LIST

		" Radiated	Emission Tes	st Equipment List		
Used	Equipment	Manufacturer Model No.		Serial Number	Cal. date (mm dd, yyyy)	Cal. Due date (mm dd, yyyy)
>	3M Chamber & Accessory Equipment	ETS-LINDGREN	3M	N/A	Dec. 20, 2015	Dec. 19, 2018
>	Receiver	R&S	ESIB26	100114	Dec. 10, 2017	Dec. 10, 2018
>	Loop Antenna	ETS-LINDGREN	6502	00202525	Dec. 22, 2017	Dec. 22, 2018
>	Broadband Antenna	ETS-LINDGREN	3142E	00201566	Dec. 17, 2017	Dec. 17, 2018
>	Preamplifier	HP	8447F	2805A02960	Dec. 10, 2017	Dec. 10, 2018
•	Horn Antenna (Pre-amplifier)	ETS-LINDGREN	3117-PA	00201874	May 22, 2018	May 22, 2019
>	Horn Antenna (Pre-amplifier)	ETS-LINDGREN	3116C-PA	00202652	Dec. 17, 2017	Dec. 17, 2018
•	Multi device Controller	ETS-LINDGREN	7006-001	00160105	N/A	N/A
>	Band Rejection Filter (2400MHz~2500MHz)	Micro-Tronics	BRM50702	G248	June 06, 2018	June 06, 2019
>	Wideband Radio Communication Tester	R&S	CMW500	1201.002k50- 104945-zQ	Mar. 05, 2018	Mar. 04, 2019
Test Software Audix e3 Software Version: 9.160323				0323		

	Conducted Emission Test Equipment List											
Used	Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm dd, yyyy)	Cal. Due date (mm dd, yyyy)						
~	Receiver	R&S	ESR7	1316.3003K07 -101181-K3	Dec. 10, 2017	Dec. 10, 2018						
>	Pulse Limiter	R&S	ESH3-Z2	0357.8810.54	Dec. 10, 2017	Dec. 10, 2018						
>	LISN	R&S ESH:		860014/024	Dec. 10, 2017	Dec. 10, 2018						
>	Test Software	Audix	e3	Sof	ftware Version: 9.160323							

	Conducted RF test Equipment List									
Used	Equipment Manufacturer		Model No.	Serial Number	Cal. date (mm dd, yyyy)	Cal. Due date (mm dd, yyyy)				
>	EXA Spectrum Analyzer	KEYSIGHT	N9010A	MY51440197	Dec.10, 2017	Dec. 10, 2018				
V	Wideband Radio Communication Tester	R&S	CMW500	1201.002k50- 104945-zQ	Mar. 05, 2018	Mar. 04, 2019				

Page 10 of 48 Report No.: 180927007RFC-1

4. TEST CONFIGURATION

4.1 ENVIRONMENTAL CONDITIONS FOR TESTING

4.1.1 Normal or Extreme Test Conditions

Environment Parameter	Selected Values During Tests Ambient						
Test Condition							
rest Condition	Temperature (°C)	Voltage (V)	Relative Humidity (%)				
NT/NV	+15 to +35	3.7 Battery	20 to 75				
Remark: 1) NV: Normal Voltage; N7	: Normal Temperature						

4.2 TEST CHANNELS

Mode	Tx/Rx Frequency	To	est RF Channel Lis	ts
Wiode	1x/Kx Frequency	Lowest(L)	Middle(M)	Highest(H)
GFSK	2402 MHz to 2480 MHz	Channel 0	Channel 39	Channel 78
(DH1, DH3, DH5)	2402 IVITIZ 10 2400 IVITIZ	2402 MHz	2441 MHz	2480 MHz
π/4DQPSK	2402 MHz to 2480 MHz	Channel 0	Channel 39	Channel 78
(DH1, DH3, DH5)	2402 WITZ 10 2460 WITZ	2402 MHz	2441 MHz	2480 MHz
8DPSK	2402 MHz to 2480 MHz	Channel 0	Channel 39	Channel 78
(DH1, DH3, DH5)	2402 IVITIZ (0 2460 IVITIZ	2402 MHz	2441 MHz	2480 MHz

4.3 EUT TEST STATUS

Type of Modulation	Tx Function	Description					
GFSK/π/4DQPSK/ 8DPSK	1Tx	 Keep the EUT in continuously transmitting with Modulation test single Keep the EUT in continuously transmitting with Modulation test Hopping Frequency. 					

Power Sett	ing			
Power Setting: not applicable, test used software default p	ower lev	/el.		

	Test Software		
Signaling Mode			

Page 11 of 48

4.4 PRE-SCAN

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data packets and antenna ports (if EUT with antenna diversity architecture). Following channel(s) was (were) selected for the final test as listed below.

Report No.: 180927007RFC-1

Type of Modulation		GFSK			r/4DQPS	K		8DPSK		
•	1-	1-	1-	2-	2-	2-	3-	3-	3-	
Data Packets	DH1	DH3	DH5	DH1	DH3	DH5	DH1	DH3	DH5	
Available Channel					0 to 78					
Test Item			Test cha	nnel and	d choose	of data	packets			
AC Power Line Conducted			Freq	uency Ho	opping Cl	nannel 0	to 78			
Emission					Link					
Conducted Peak Output				Chanr	nel 0 & 39	9 & 78				
Power			>			>			>	
20 dB Bandwidth				Chanr	nel 0 & 39	9 & 78				
20 dB Bandwidth			<			<			<	
Carrier Frequencies	Frequency Hopping Channel 0 to 78									
Separation			~			~			<	
Number of Henning Channel			Freq	uency Ho	opping Cl	ng Channel 0 to 78				
Number of Hopping Channel			<			<			<	
Dwell Time				C	hannel 3	9				
Dweii Time	>	V	~	~	V	~	~	<	<	
Conducted Out of Band				Chanr	nel 0 & 39	9 & 78				
Emission			~			V			<	
Dadioted Emissions				Chanr	nel 0 & 39	9 & 78				
Radiated Emissions									<	
Band Edge Measurements				Cha	annel 0 &	. 78				
(Radiated)									<	
Remark:										
1. The mark " means is chosen		•								
2. The mark " means is not	chosen f	or testing].							

4.5 TEST SETUP

4.5.1 For Radiated Emissions test setup

4.5.2 For Conducted Emissions test setup

4.5.3 For Conducted RF test setup

4.6 SYSTEM TEST CONFIGURATION

For emissions testing, the equipment under test (EUT) setup to transmit continuously to simplify the measurement methodology. Care was taken to ensure proper power supply voltages during testing. During testing, radiated emission were performed with the EUT set to transmit at the channel with highest output power as worst-case scenario. It was powered by a 3.7Vdc rechargeable Li-on battery. Only the worst case data were recorded in this test report.

The signal is maximized through rotation and placement in the three orthogonal axes. The antenna height and polarization are varied during the search for maximum signal level. The antenna height is varied from 1 to 4 meters. Radiated emissions are taken at three meters unless the signal level is too low for measurement at that distance. If necessary, a pre-amplifier is used and/or the test is conducted at a closer distance. Therefore, all final radiated testing was performed with the EUT in orientation.

All readings are extrapolated back to the equivalent three meter reading using inverse scaling with distance. Analyzer resolution is 100 kHz or greater for frequencies below 1000 MHz. The resolution is 1 MHz or greater for frequencies above 1000 MHz. The spurious emissions more than 20 dB below the permissible value are not reported.

Radiated emission measurement were performed from the lowest radio frequency signal generated in the device which is greater than 9 kHz to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.

Page 15 of 48 Report No.: 180927007RFC-1

4.7 DUTY CYCLE

Test Procedure: ANSI C63.10-2013 Clause 11.6.

Test Results

Type of Modulation	Packets	On Time (msec)	Period (msec)	Duty Cycle (linear)	Duty Cycle (%)	Duty Cycle Factor (dB)	1/ T Minimum VBW (kHz)	Average Factor (dB)
GFSK	1DH5	2.89	3.74	0.77	77.33	1.12	0.35	-2.23

Remark:

- 1) Duty cycle= On Time/ Period;
- 2) Duty Cycle factor = 10 * log(1/ Duty cycle);
- 3) Average factor = 20 log₁₀ Duty Cycle.

The test plot as follows

Page 16 of 48 Report No.: 180927007RFC-1

5. RADIO TECHNICAL REQUIREMENTS SPECIFICATION 5.1 REFERENCE DOCUMENTS FOR TESTING

No.	Identity	Document Title						
1	FCC 47 CFR Part 2	Frequency allocations and radio treaty matters; general rules and regulations						
2	FCC 47 CFR Part 15	Radio Frequency Devices						
3	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices						

5.2 ANTENNA REQUIREMENT

Standard Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

Antenna in the interior of the equipment and no consideration of replacement. The gain of the antenna is -0.8 dBi.

Page 17 of 48 Report No.: 180927007RFC-1

5.3 CONDUCTED PEAK OUTPUT POWER

Test Requirement: FCC 47 CFR Part 15 Subpart C Section15.247 (b)(1)

Test Method: ANSI C63.10-2013 Section 7.8.5

Limit: For frequency hopping systems operating in the 2400-2483.5 MHz band employing at

least 75 non-overlapping hopping channels, and all frequency hopping systems in the

5725-5850 MHz band: 1 watt.

Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems

operate with an output power no greater than 125 mW.

Test Procedure: Remove the antenna from the EUT and then connect a low loss RF cable from the

antenna port to the spectrum analyzer.

a) Use the following spectrum analyzer settings:

1) Span: Approximately 5 x 20 dB bandwidth, centered on a hopping channel.

2) RBW > 20 dB bandwidth of the emission being measured.

3) VBW ≥ RBW.

4) Sweep: Auto.

5) Detector function: Peak.

6) Trace: Max hold.

b) Allow trace to stabilize.

c) Use the marker-to-peak function to set the marker to the peak of the emission.

 The indicated level is the peak output power, after any corrections for external attenuators and cables.

e) A plot of the test results and setup description shall be included in the test report.

Test Setup: Refer to section 4.5.3 for details. **Instruments Used:** Refer to section 3 for details

Test Results: Pass

	Type of	of Peak Output Power (dBm)			Peak Output Power (mW)			
	Modulation	Channel 0	Channel 39	Channel 78	Channel 0	Channel 39	Channel 78	
	GFSK	S 9.31 8.33		9.54	8.53	6.81	9.00	
\	π/4 DQPSK 10.73 9.72 8DPSK 10.60 9.92		10.48	11.84	9.37	11.17		
			10.98	11.49	9.81	12.54		

Note: The antenna gain of -0.8 dBi less than 6dBi maximum permission antenna gain value based on 1 watt peak output power limit.

The test plot as follows:

Page 20 of 48 Report No.: 180927007RFC-1

5.420 DB BANDWIDTH

Test Requirement: FCC 47 CFR Part 15 Subpart C Section 15.247 (a)(1)

Test Method: ANSI C63.10-2013 Section 6.9.2 **Limit:** None; for reporting purposes only.

Test Procedure: Remove the antenna from the EUT and then connect a low loss RF cable from the

antenna port to the spectrum analyzer.

Use the following spectrum analyzer settings:

a) Span = approximately 2 to 5 times the OBW, centered on a hopping channel.

- b) RBW = 1% to 5% of the OBW.
- c) VBW ≥ 3 x RBW
- d) Sweep = auto;
- e) Detector function = peak
- f) Trace = max hold
- g) All the trace to stabilize, use the marker-to-peak function to set the marker to the peak of the emission, use the marker-delta function to measure and record the 20dB down bandwidth of the emission.

Note: The cable loss and attenuator loss were offset into measure device as an

amplitude offset.

Test Setup: Refer to section 4.5.3 for details. **Instruments Used:** Refer to section 3 for details

Test Results: Pass

	Type of	20 dB Bandwidth (MHz)			99% Bandwidth (MHz)		
	Modulation	Channel 0	Channel 39	Channel 78	Channel 0	Channel 39	Channel 78
	GFSK	0.9636	0.9640	0.9647	0.8955	0.8958	0.8955
	π/4 DQPSK	1.3200	1.3180	1.3180	1.1868	1.1866	1.1869
	8DPSK	1.3110	1.3110	1.3120	1.1981	1.1991	1.2012

The test plot as follows:

Page 23 of 48 Report No.: 180927007RFC-1

5.5 CARRIER FREQUENCIES SEPARATION

Test Requirement: FCC 47 CFR Part 15 Subpart C Section 15.247 (a)(1)

Test Method: ANSI C63.10-2013 Section 7.8.2

Limit: Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping

channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB

bandwidth of the hopping channel, whichever is greater.

Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems

operate with an output power no greater than 125 mW.

Test Procedure: Remove the antenna from the EUT and then connect a low loss RF cable from the

antenna port to the spectrum analyzer.

Use the following spectrum analyzer settings:

a) Span: Wide enough to capture the peaks of two adjacent channels.

- b) RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel.
- c) Video (or average) bandwidth (VBW) ≥ RBW.
- d) Sweep: Auto.
- e) Detector function: Peak.
- f) Trace: Max hold.
- g) Allow the trace to stabilize.
- h) Use the marker-delta function to determine the separation between the peaks of the adjacent channels.

Note: The cable loss and attenuator loss were offset into measure device as an

amplitude offset.

Test Setup: Refer to section 4.5.3 for details. **Instruments Used:** Refer to section 3 for details

Test Results: Pass

Type of Modulation	Adjacent Channel Separation (MHz)	Minimum Limit (MHz)				
Type of Modulation	Channel 39	Channel 39				
GFSK	1.000	0.642				
π/4 DQPSK	1.000	0.879				
8DPSK	1.000	0.874				
Note: The minimum limit is two-third 20 dB bandwidth.						

The test plot as follows:

Page 25 of 48 Report No.: 180927007RFC-1

5.6 NUMBER OF HOPPING CHANNEL

Test Requirement: FCC 47 CFR Part 15 Subpart C Section 15.247(b)(1)

Test Method: ANSI C63.10-2013 Section 7.8.3

Limit: Frequency hopping systems in the 2400 – 2483.5 MHz band shall use at least 15 non-

overlapping channels.

Test Procedure: Remove the antenna from the EUT and then connect a low loss RF cable from the

antenna port to the spectrum analyzer.

Use the following spectrum analyzer settings:

a) Span: The frequency band of operation. Depending on the number of channels the device supports, it may be necessary to divide the frequency range of operation across multiple spans, to allow the individual channels to be clearly seen.

b) RBW < 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller.

c) VBW ≥ RBW.

d) Sweep: Auto.

e) Detector function: Peak.

f) Trace: Max hold.

g) Allow the trace to stabilize.

Note: The cable loss and attenuator loss were offset into measure device as an

amplitude offset.

Test Setup: Refer to section 4.5.3 for details. **Instruments Used:** Refer to section 3 for details

Test Results: Pass

Type of Modulation	Number of Hopping Channel		
GFSK	79		
π/4 DQPSK	79		
8DPSK	79		