MATRICES USING PYTHON

V.GOKULKUMAR

velicharlagokulkumar@gmail.com
IITH Future Wireless Communication (FWC)

September

Contents

FWC22034

1 Problem

2 Construction

3 Solution

1 Problem

Let A be the centre of the circle $x^2+y^2-2x-4y-20=0$. Suppose the tangents at the points B(1,7) and D(4.-2) on the circle meet at the point C. Find the area of the quadrilateral ABCD.

2 Construction

Figure of construction

3 Solution

The input parameters for this construction are

Symbol	Value	Description
r	5	Radius
А	$\begin{pmatrix} 1 \\ 2 \end{pmatrix}$	Centre
В	$\begin{pmatrix} 1 \\ 7 \end{pmatrix}$	Point B
D	$\begin{pmatrix} 4 \\ -2 \end{pmatrix}$	Point D

Circle equation : $x^2 + y^2 - 2x - 4y - 20 = 0$ Equations of tangents at \mathbf{B}, \mathbf{D} are given by

1
$$x + 7y - (x + 1) - 2(y + 7) - 20 = 0$$
 (1)

$$4x - 2y - (x+4) - 2(y-2) - 20 = 0$$
 (2)

The above equations result in the system $\mathbf{1}$

$$y = 7 \tag{3}$$

$$3x - 4y = 20$$
 (4)

From (3),(4) let

$$\mathbf{Z} = \begin{pmatrix} 0 & 1\\ 3 & -4 \end{pmatrix} \tag{5}$$

$$\mathbf{X} = \begin{pmatrix} 7\\20 \end{pmatrix} \tag{6}$$

Solve (5) and (6)

$$\therefore$$
 Coordinates of C is $\mathbf{C} = \begin{pmatrix} 16 \\ 7 \end{pmatrix}$

Length of BC is

$$\mathbf{B} - \mathbf{C} = \begin{pmatrix} -15\\0 \end{pmatrix} \tag{7}$$

$$\|\mathbf{B} - \mathbf{C}\| = \left\| \begin{pmatrix} -15\\0 \end{pmatrix} \right\| \tag{8}$$

$$=\sqrt{\begin{pmatrix} -15 & 0 \end{pmatrix} \begin{pmatrix} -15 \\ 0 \end{pmatrix}} \tag{9}$$

$$=15 \tag{10}$$

Letting,

$$v1 = A - B \tag{11}$$

$$\mathbf{v2} = \mathbf{A} - \mathbf{C} \tag{12}$$

Area of the $\Delta {\rm ABC}$ is given by

$$=\frac{1}{2}\|\mathbf{v1}\times\mathbf{v2}\|\tag{13}$$

Area of the of quadrilateral ABCD is given by

$$=2\times\frac{1}{2}\|\mathbf{v1}\times\mathbf{v2}\|\tag{14}$$

...The area of quadrilateral ABCD=75 sq.units termux commands :

bash sh2.sh.....using shell command

Below python code realizes the above construction:

 $https://github.com/velicharlagokulkumar/FWC_module1/\\blob/main/matrices/circle/codes/matrix.py$