PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:

H04J

(11) International Publication Number:

WO 98/29975

A2 |

(43) International Publication Date:

9 July 1998 (09.07.98)

(21) International Application Number:

PCT/US98/00507

(22) International Filing Date:

2 January 1998 (02.01.98)

(30) Priority Data:

08/778,897

3 January 1997 (03.01.97)

US

(71) Applicant: CELLPORT LABS, INC. [US/US]; 885 Arapahoe Avenue, Boulder, CO 80302 (US).

(72) Inventors: SPAUR, Charles, W.; 3153 Noble Court, Boulder, CO 80301 (US). KENNEDY, Patrick, J.; 4382 Apple Way, Boulder, CO 80301 (US). BRAITBERG, Michael, F.; 440 Broken Fence Road, Boulder, CO 80302 (US). KLINGENSTEIN, Kenneth, J.; 8454 Boulder Hills Drive, Longmont, CO 80503 (US).

(74) Agents: ZINGER, David, F. et al.; Sheridan Ross P.C., Suite 3500, 1700 Lincoln Street, Denver, CO 80203-4501 (US). (81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

Without international search report and to be republished upon receipt of that report.

(54) Title: COMMUNICATIONS CHANNEL SELECTION

(57) Abstract

A communications system is provided for sending and receiving information relative to a mobile unit in which a number of network channels are available through which the information can be transferred. The system includes a link selector for selecting an acceptable network channel using application requirements for the particular channel, together with channel operating parameter values. When such a channel does not become available, the link selector is also involved with recovery procedures. These network channel operating parameters include bandwidth, information transfer costs and information transfer packet loss, latency and jitter. Weighting vectors are also utilized with such channel operating parameters in determining suitability values associated with the available network channels. The link selector communicates with a link scheduler that has responsability for determining when information should be transferred including when there should be a change in the timing of the information transfer. The link selector also receives data from a controller/monitor that obtains such dynamic data associated with selected network channel operation in connection with determining whether a switch should be made from the currently selected network channel to different network channel.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	Prance	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of Americ
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon	•	Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	u	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

WO 98/29975 PCT/US98/00507

COMMUNICATIONS CHANNEL SELECTION

FIELD OF THE INVENTION

The present invention relates to communicating information including data over one or more selected network channels, particularly where such a communication involves a mobile unit.

BACKGROUND OF THE INVENTION

A number of communication networks are currently utilized in transmitting information including voice and data. Different network channels include CDPD (cellular digital packet data), satellite, SMR (specialized mobile radio), FM-subcarrier, DAB (digital audio broadcast), infrared and two-way messaging. The network channel that is accessed for information transfer depends on its availability in the geographic region of interest.

quality-diverse these numerous and However. use in different communication links available for geographic regions engender a new set of problems that must be faced. Chief among these relates to the reliability of be utilized the link or links that might particularly predetermined communications application, where the information transfer involves a mobile unit, whose position changes during the transfer. communication systems that typify the prior art in which the reliability or stability of a communication link is virtually taken for granted, the present invention involves network channels that, depending on the conditions, can experience inconsistencies or discontinuities during the particular information transfer.

In connection with addressing these reliability issues, the inventors of the present invention have identified additional parameters as being germane to the process for selecting among different network channels for the transfer of information. These parameters include the bandwidth of the available channel and parameters related to the quality and/or quantity of the information or data being transferred, such as packet loss, packet latency and

5

10

15

20

25

30

10

15

20

25

30

35

packet jitter. Bandwidth refers to the information transfer capacity of the channel and is definable in terms of a transfer rate, such as bits/second. Packet loss relates to the number of packets that are lost as a function of the number of packets that are received. Packet latency refers to the typical or average onedirection or end-to-end packet transfer time. jitter refers to the variation in inter-packet receive Important additional factors or parameters to be taken into account as part of the network channel selection process relate to the cost of transfer including factors such as the network channel cost per packet and any channel setup cost. In view of these many parameters that can be considered when a channel is selected, the selection process for obtaining a desired or optimum network channel can be a complicated task.

The channel selection process is made more complicated and difficult when the transmitter and/or receiver of the transferred information is part of a mobile unit. a case, because of the movement of the mobile unit, such as a vehicle, a presently accessed network channel may no longer be available for use because of the new geographic position of the mobile unit. That is, the presently utilized network channel may not be available in the new location of the mobile unit. The network channel selection process is rendered even more complicated when, due to the different geographic position of the mobile unit, previously unavailable channel is now available to the mobile unit. This previously unavailable channel may be more desirable for the information transfer that is currently under way.

SUMMARY OF THE INVENTION

In accordance with the present invention, a system is provided for selecting a network channel from among a number of available and acceptable channels. In addition to an initial selection of a network channel when the

10

15

20

25

30

35

information transfer is started, the system is able to dynamically adapt to situations where the currently used network channel becomes unavailable or inappropriate and the transfer of information has not yet been completed. Relatedly, the system is able to switch network channels within the course of a particular information transfer or session when it is determined that a more advantageous channel is now available.

The system includes a number of communication units or devices for preparing the information, (e.g., data, a computer program or other software module) for transmission using the selected channel. Such preparation includes making the information compatible with the network that is to carry the information. The compatibility involves establishing the proper network protocol and appending the correct address associated with the network channel over which the information is to be transmitted.

The system further includes a network channel or link selector for automatically and dynamically selecting an appropriate network channel for transmission of information. The link selector communicates with at least one of the communication devices. The link selector conveys the identity of the selected network channel to this communication device so that it can prepare the correct network address that is to receive the information.

With respect to the channel selection process, the obtains information transfer-related selector requirements for a particular application that is to be performed, e.g., involving the transfer of data. The application performance may involve one or more different uses of the application. These applications requirements are stored in an application requirements database. application requirements typically include parameters such as bandwidth, destination of information to be transferred, economic factors including cost of transfer and parameters related to the quality of the packet transfer including packet loss, packet latency and packet jitter.

application requirements may also include a security level The application requirements also include a requirement. "weighting vector" for each of the application parameters. The value of the weighting vector might change between or among uses of the particular application. The weighting vector acts as an indicator of the weight to be applied to the particular application parameter, in comparison with the weight that is to be given to the other application By way of example, a cost requirement may be given ten times the weight of a bandwidth requirement thereby indicating that, for this particular application, the cost of transmission is to be given significantly greater weight in deciding which network channel is to be selected than is the bandwidth parameter.

The link selector also accesses a communications link database that stores network channel parameters. channel parameters essentially characterize or define the capabilities of the channel. The channel parameters, for each network channel to be analyzed, are checked or analyzed in the context of the particular application requirements, to determine which of the channels are This analysis is typically available for possible use. conducted using dynamically changing channel parameters, as From the available channels well as static parameters. that are found to be acceptable, one or more of them is selected for the particular application. In determining network channels that are deemed acceptable for the current transmission, each of the channel parameters is compared with its corresponding application requirement. If the satisfy its particular channel parameter cannot corresponding application requirement, the network channel under analysis is found to be unacceptable. acceptability analysis is conducted for each of the available network channels. For each of such channels where one or more particular channel parameters was not able to meet or satisfy the corresponding application requirement, a determination is made that such a channel is

5

10

15

20

25

30

10

15

20

25

30

35

not acceptable for the current information transfer. the other hand, for each network channel that did satisfy all of the application requirements, they have met this stage of evaluation in connection with determining the selected channel. If it occurs that no acceptable channel is available, particularly where there is a time constraint within which the information transfer is expected to take place, recovery procedures are implemented including the involved with the particular the user ability of alter application application to dynamically the requirements in order that a channel can be selected that meets the user's altered application requirements.

For each of these acceptable network channels, the next stage of analysis is conducted. In particular, a suitability value is found using each weighting vector and value associated channel parameter that corresponding application requirement for the current the application. For example, information transfer particular application has a bandwidth requirement. The channel parameter value bandwidth for a for The weighting acceptable network channel is obtained. vector for bandwidth is also obtained. The weighting vector is mathematically combined or otherwise utilized with the channel parameter value to calculate a suitability sub-value for the bandwidth parameter. These steps are followed for each of the application requirements in connection with the first acceptable network channel. suitability sub-values obtained are combined or added to obtain a suitability value for this first acceptable network channel. A suitability value is determined for each of the other acceptable network channels that were Each of these found to meet the application requirements. determined suitability values is then compared with each other to select the network channel having the highest or desired suitability value.

In conjunction with the selection of the desired network channel, a key factor relates to the timing of the

б

information transfer and when one or more channels are available for transmission. This factor is especially important in embodiments in which the source of transmission or the receiver of the transmission is a mobile unit. In order to take into account the timing factor, the system further includes a link scheduler that operatively communicates with the link selector. scheduler is involved with a number of functions or operations related to when the particular transfer is to be When the particular information transfer is not to be conducted immediately or can be delayed, the link scheduler is useful in determining the identity or identities of network channels that will be available later That is, due to the delay in transfer, the link scheduler is able to determine that one or more network channels will become available during one or more relevant time periods. This time-related information can be used in channel selecting a desired network for subsequent transmission of such delayed information. In that regard, link scheduler works with the link selector by informing the link selector of the subsequent availability of such network channels. The link selector is then able to determine whether or not such a channel is acceptable and to determine its suitability value in order to compare it with other acceptable network channels. With regard to the determination made by the link scheduler as to the future availability of one or more available network channels, the link scheduler relies on the current geographic position of the transmitter or receiver of the information, whichever or both is applicable. scheduler also relies on future geographic position information, which can be found by the link scheduler using movement related data, such as the velocity of the mobile unit that includes the transmitter or receiver. scheduler is also responsible for changes in priority of information transmission. When there is a change in the application related to when it is to be sent, the link

5

10

15

20

25

30

10

15

20

25

30

35

scheduler receives this update or priority change and notifies the link selector that, for this particular application, it is desired that this information transfer occur now. The link selector can then perform its functions in selecting a network channel for this transfer. Conversely, the link scheduler assists in deleting a scheduled transfer that the user or system decides should not be made. The link scheduler is also involved with When it receives such a condition alarm conditions. related to what information or data should be transmitted immediately, it advises the link selector so that it can regulate the sending of information associated with the alarm condition including the possibility of interrupting the transmitting or receiving associated with a current The link scheduler is also involved with checking as to whether or not a currently used network channel will go off-line or not be available to complete a particular transmission. If the link scheduler makes the determination that the currently used network channel will not be available for the complete transmission, it notifies the link selector so that it can prepare for switching to another network channel including one or more network channels that the link scheduler has indicated to the link selector will be available at the appropriate time.

In addition to the link scheduler, the link selector also receives information from a controller/monitor that receives data related to how well the information is being transferred at any instance in time, such as measured signal strength, measured packet loss, measured packet latency, and measured packet jitter. Using this data from the controller/monitor, the link selector might decide that a different network channel should be selected. In addition to data obtained by monitoring, dynamic costrelated data can also be obtained by requesting such information from network channel or carrier providers. These carrier providers can supply cost estimates based on

10

15

20

25

30

35

factors such as the extent or volume of the information transfer.

Based on the foregoing summary, a number of salient features of the present invention are readily discerned. svstem is disclosed for providing communication capabilities using a number of different available network The system is able to select an acceptable channels. network channel from a number of acceptable channels. selection process uses previously identified and stored application requirements, weighting vectors and network channel parameters. One or more of these acceptable channels might include the capability of making more bandwidth available for the particular transfer thereby providing a further factor for consideration in deciding which of the acceptable channels should be selected. timing of the transfer can be controlled to take advantage of a better network channel for transmission. The system allows for dynamic change of the network channel being utilized. A currently used network channel can be switched another network channel because, for example, different application with higher priority requires a different network channel. Relatedly, current operation of the selected network channel is monitored. Data from this monitoring is useful in deciding whether characteristics of the current channel have so changed to warrant the selection of another network channel.

Additional advantages of the present invention will become readily apparent from the following discussion, particularly when taken together with the accompanying.

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 is a block diagram of the present invention illustrating the relationship among the major sub-systems;

Figs. 2A-2B together illustrate a flow diagram of major operational steps of the present invention involving the channel selection process;

Fig. 3 is a chart of representative channel parameter values based on a number of network channels; and

Fig. 4 is a chart of channel application requirements and weighting vectors for a representative application.

Figs. 5A-5B together illustrate a flow diagram setting out operational steps involving the link scheduler and its cooperation with the link selector;

DETAILED DESCRIPTION

With reference to Fig. 1, a communications system 10 is disclosed for transmitting information including data The system 10 includes a number of from/to a mobile unit. major units or components. In one embodiment, the system 10 is defined as a combination of a terminal stack 12 and a network channel selection apparatus 14. Together the terminal stack 12 and the network channel apparatus 14 comprise all of these components. Each of the terminal stack 12 and the network selection apparatus 14 is providable with the mobile unit. The terminal stack 12 is in preparing the information for transfer alternatively, for handling information that is being The terminal stack 12 includes a number units or received. An applications module 18 includes user sub-systems. programs that have communication requirements relative to a site different from the mobile unit. For example, a mobile unit or vehicle may be involved with shipping of goods and needs to report to a base station concerning status of its shipment, such as present location, condition of the goods, vehicle condition, estimated time of arrival and so forth. In such a case, the applications module 18 obtains the appropriate data and executes the program for providing such information. The applications module 18 is able to either dynamically, as the application executes, or statically , at the time of application installation, to transmit certain application requirements to the network application 14. The channel selection apparatus requirements relate to how or the manner by which

5

10

15

20

25

30

information is to be transferred for the particular application. As will be noted in greater detail, such application requirements include economic factors and transfer rate parameters, as well as user inputs that can be dynamically generated during use of a particular application and which can affect channel selection.

The applications module 18 communicates its output to a transport layer 22 of the terminal stack 12. The transport layer 22 regulates the transfer of the information over the network channel that is selected using the network channel selection apparatus 14. Transport layer 22 typically utilizes available protocols, such as the transmission control protocol(TCP) and the user datagram protocol(UDP).

A protocol stack or unit 26 isolates the upper units of the terminal stack 12 from the network channels that carry the transmitted information. The protocol stack 26 is responsible for addressing and delivery of data packets through the selected one or ones of network channels. protocol stack 26 is able to simultaneously utilize a number of network channels and, correspondingly, a number of "network addresses" that relate to the chosen network(s) over which the present information is to be transferred. The protocol stack 26 also communicates with the network channel selection apparatus 14, which directs or controls the identity of the network channel(s) that is (are) to be utilized in connection with the current transfer. In a preferred embodiment, the protocol stack 26 utilizes the Internet protocol.

Information packets transferred relative to the protocol stack 26 are sent and received through network interfaces 30, which interconnect the protocol stack 26 with a selected network channel. The network interfaces 30 enable each network channel in communication therewith to be independently addressed. Each packet of information including data that is output from the protocol stack 26 includes a header with the network address, which is used

5

10

15

20

25

30

10

15

20

25

30

35.

by the network interfaces 30 to properly direct the particular packet to the designated destination address. Relatedly, information packets are received by the network interfaces 30 from the particular selected channel that is transmitting information to the communications system 10 having this network interfaces 30.

The network interfaces 30 communicate with a number of different network channels or links 34a-34n through which information is transferred relative to the terminal stack These network channels 34a-34n are characterized by different operating parameter values that relate to the transfer of information. By way of example, these network channels 34a-34n include a plurality of the following wireless channels: cellular digital packet data (CDPD) over which digital data is able to be sent; specialized mobile radio (SMR) such as utilized by law enforcement, shipping or medical personnel; spread spectrum featured channels; FM-subcarrier such as using particular FM frequency bands that are available to a vehicle radio; digital audio broadcast(DAB) that provides a greater number of radio channels that can be adequately heard by a listener in a vehicle, such as by using a satellite link to the vehicle radio; infrared; two-way messaging including paging transmissions; fiber, twisted pair and an industrial medical scientific(IMS) band that transmits certain kinds of information.

In addition to the feature of communicating with channels or links of such different networks, the terminal stack 12, including the network interfaces 30, enables the receive communications to transmit and system 10 information, during one particular bi-directional communications operation, using two different networks and therefore two different network channels or links 34a-34n. For example, it may be desirable for cost reasons to send data from the communications system 10 over a spread spectrum link to a remote station at relatively low cost since the transfer time is essentially not important;

10

15

20

25

30

35

however, during this same bi-directional operation, it may be worthwhile to send information from this same remote station to the communications system 10 using a relatively higher cost network channel, such as a CDPD channel because the transfer time is important.

With respect to this multiple channel transfer for the same bi-directional communication, two ways of implementation are described. In one embodiment, communications system 10 prepares outbound packets as if it is routing from the desired inbound packet interface to the selected outbound packet interface. By way of example, the communications system 10 has network interfaces L1 and L2 of the network interfaces 30. To communicate with a remote station, the communications system 10 has determined that the L1 network interface is a better choice for outgoing packets and the network interface L2 is the better choice for incoming packets. The protocol stack 26 constructs the outgoing packets with the L2 network interface associated address as the source and the network interface L1 has a node that is accessed or used in route to the ultimate destination. The packet is then sent through the L1 network interface. When responding, the remote station routes packets to the communications system 10 along the it determines optimal to reach the L2 interface of the communications system 10. Accordingly, in the return path, the network interface L1 is not utilized.

In another embodiment for implementing this feature, the communications system 10 works with a proxy server. The proxy server determines what communication paths and interfaces should be utilized in communicating with the communications system 10. By way of example, communications system 10 has network interfaces L1 and L2 of network interfaces 30. Assume that the communications system 10 has determined that the network interface L1 is a better choice for outgoing packets, and the network interface L2 is a better choice for incoming The communications system 10 informs the proxy

10

15

20

25

30

35

server of these link selections and then proceeds to route information via the proxy server through the network interface L1 for forwarding on to the destination station. The destination station responds to the proxy server, which then forwards any response to the communications system 10 the network interface L2 as instructed. implementation requires the execution of software using the server that is capable of understanding processing the requests of the communications system 10. The proxy server will run an application that modifies each packet that is forwarded to or from the communications system 10.

With regard to the operating parameters of these different network channels 34a-34n, they include the following:

bandwidth - refers to a magnitude of data or other information that can be sent over a channel during a certain period of time, such as bits/second;

packet loss - relates to the number of packets that are anticipated to be lost, or are actually lost, in relation to the number of packets that are successfully transferred;

packet latency - relates to the average or typical
two-way packet travel time;

packet jitter - relates to the anticipated variation
in inter-packet receive times;

coverage map - refers to the geographic regions where a network channel is able to transfer information;

security - refers to a level, degree or classification related to the capability of a network channel to prevent unwanted access to it or to avoid jeopardizing the integrity of the information sent over the particular channel;

channel setup cost - refers to the cost of establishing access to a desired channel for a new "session" where a session ends when the communications link between

10

15

20

25

30

35

such channel and the destination address for that channel is terminated; and

channel cost per packet - refers to the typical or average cost of transferring a byte of information over the particular network channel and is a function of a number of factors including the elapsed time for sending the packet and the destination of the packet.

In view of such numerous parameters associated with each network channel, an analysis thereof is conducted in determining the identity of the network channel 34a-34n that is desirable or optimum for the particular transfer. The network channel selection apparatus 14 is invoked to perform this analysis. In that regard, the user or controller of the information to be transferred must supply the channel selection apparatus 14 with requirements or constraints that must be met by the network channel 34a-34n that is selected. The description of the requirements correspond or relate to previously defined network channel operating parameters including: bandwidth, security, packet loss, packet jitter, packet latency, costs and destination. Included with application requirements provided by the user for the particular application are quantitative thresholds or limits correlated with the application requirements. quantitative values are based on the following considerations:

bandwidth - a profile where information transfer performance degrades as bandwidth decreases, with there typically being a bandwidth threshold which the transfer operation should not go below, but if that occurs the transfer operation should be altered and guidelines can be provided for reserving communication bandwidth as part of that possible alteration of the operation;

packet loss - a magnitude related to tolerable packet
retransmit requests;

packet latency - a profile of values related to tolerable round trip packet time;

10

15

20

25

30

35

packet jitter - a profile of values related to variations in inter-packet receive times that can be tolerated;

security requirement - the security level, if any, that should be satisfied for the particular transfer;

costs - one or more values related to costs in connection with accomplishing the particular information transfer:

destination - one or more remote locations that are to receive the information and which are useful in reaching a decision on desired or optimum routing;

quality of service - refers to desired or necessary characteristics or functions sought by a particular information transfer, such as a reasonably certain bandwidth and transfer priority (i.e., the particular information transfer will occur within a predetermined time window and/or before a predetermined time or event), for example, in order to properly transfer video information within a desired time, a threshold bandwidth or transfer rate might have to be satisfied; and

channel stability - refers to differences or variance in certain dynamic parameters during channel operation that can be measured, e.g., anticipated transfer error rates and/or signal strengths may vary from the anticipated magnitude for a particular channel and this variance may occur for a number of reasons, such as due to environmental conditions that the mobile unit is currently experiencing and, if this measured delta (Δ) for the channel being used exceeds a threshold, a decision may be made to switch to a different network channel.

Each application requirement, for each particular information transfer, also includes an associated "weighting vector". The weighting vector is mathematically applied to a channel parameter to which it is correlated in conjunction with the network channel selection process, as will be discussed in greater detail later herein. The weighting vector constitutes the "weight" or degree of value

10

15

20

25

30

35

or influence that is to be given to that particular application requirement. For example, depending upon the objectives sought to be achieved, greater or lesser weight may be given to transfer costs than that which is given to the bandwidth of the network channel.

The application requirements including quantitativebased magnitudes or values are stored in an application requirements database 38 that is part of an applications requirement controller 42 of the network channel selection The applications requirement controller 42 apparatus 14. provides an interface for managing the database 38 contents and maintaining access control. In that regard, applications requirements controller 42 communicates with applications module 18 able to receive and is application requirements that are downloaded to the stack terminal 12 from a remote control site. The application requirements for a particular application can change from one use of the application to another use thereof, which can also be defined as a change in the application itself. By way of example, an application might be a computer program that is executed on a regular or irregular basis to arrive at data that is to be transferred. The application requirements for this particular application relate to how to send data obtained as a result of the execution of this computer program to another site or station. Such application requirements might change so that, obtaining data from a first execution of the computer program and sending the data by one channel, for the second execution of the computer program, the data is to be sent by another network channel. Significantly, this change in application requirements that affects the transfer of data obtained from the same computer program can be initiated or caused by human intervention or user interactivity that can be received at any time.

The network channel selection apparatus 14 also includes a link controller/monitor 50 that is operatively connected to the network interfaces 30 for receiving

10

15

20

25

30

35

information therefrom and making requests thereto. In link controller/monitor 50 takes particular, the responsibility for the control and status of the network channels 34a-34n. It maintains a status watch of each such channel by means of its communication with the network The monitoring process is network channel interfaces 30. For example, one network channel might have separate or discrete control paths or lines, while another and control paths might have data network channel Another embodiment might have interleaved. inherent property so that the link monitoring as an controller/monitor 50 is able to directly obtain or read the desired status. In a further alternative or variation, the link controller/monitor 50 will be involved in the use of a test packet for checking the status of the particular network channel.

The link controller/monitor 50 has access to communication link database 54 through a communication In arriving at the type of channel controller 58. monitoring that is required, the link controller/monitor 50 obtains the necessary information from the communication Based on such information, the link link database 54. controller/monitor 50 is able to perform the monitoring or invoke an appropriate monitoring subroutine. The results in such monitoring process stored are communication link database 54. This database 54 also contains information or data related to the operating parameters of the network channels 34a-34n. These include, for example, coverage maps, pricing schedules that may be location and time dependent, schedules of availability of network channels, estimated transfer error rates and the type of channel monitoring to be conducted. The network channels 34a-34n also have dynamic characteristics or That is, during use or properties associated therewith. network channel, particular operation of a parameters can be checked to determine whether or not each is meeting its expected operating function.

10

15

20

25

30

retransmit requests per packet (packet loss), round trip packet travel time(packet latency), variation in interpacket travel time(packet jitter) and signal strength are measured. The results of such measurements are maintained in the communication link database 54 using the link controller/monitor 50 that obtains such measured information from the protocol stack 26.

The network channel selection apparatus 14 further includes a link selector 64 that functions as the main controller of the system and includes one or processing units in connection with the analyzing process for selection of one or more network channels through which information is to be transferred for the application. With regard to conducting the analysis, the link selector 64 utilizes the application requirements for the particular application, together with the operating parameters for the network channels 34a-34n. After the analysis is completed, the link selector 64 communicates with the protocol stack 26 in order to modify configuration so that the protocol stack 26 generates the correct network address or addresses for the selected network channel(s).

The link selector 64 also controls a number of link operation modes, such as low power standby mode when the system is not currently being used to transfer information or not being used to analyze what channel should be selected for a particular transfer. When appropriate or necessary, the link selector 64 can also be used to obtain additional bandwidth from a number of network channels in order to provide more bandwidth for a given application. The link selector 64 is further available for dynamically changing the current network channel being utilized for a transfer to a different network channel, based on changing communication and economic conditions.

With reference to Figs. 2-4, additional details of the analysis involving the channel selection process will next be described. Figs. 2A-2B illustrate a flow diagram of

10

15

20

25

30

35

major steps taken in selecting a network channel. description of this flow diagram will be made in the context of a particular application (defined as application A) that has certain application requirements, as set out in chart of Fig. 3. In particular, application A requirements include a number of factors with accompanying quantitative values. These factors are bandwidth. security, packet loss, packet latency, packet jitter and The link selector 64 obtains this information from the application requirements database 38 through the application requirements controller 42. For each network channel 34a-34n that is connected or connectable to the network interfaces 30, the link selector 64 obtains operating parameters that correspond to or correlate with the application requirements. Such operating parameters are accessible from the communication link database 54 through the communication link controller 58.

As indicated in Fig. 2A, the application requirements for application A are obtained in accordance with step 100 and the corresponding operating parameters for each network channel 34a-34n are obtained at step 104. The link selector 64 checks or compares each application requirement with the corresponding parameter, for each such network channel, at step 108. A determination is made at step 112 as to whether or not the currently compared application requirement is satisfied by the corresponding parameter for the current network channel under analysis. satisfied, the decision is made, at step 116, that this channel is not available for selection. If the application satisfied, and all other application requirement is requirements are met for this particular channel under analysis, then the determination is made that this channel is available for possible selection at step 120. After all network channels 34a-34n have been analyzed in accordance with steps 100-120, all channels that have met application requirements are deemed to be network channels available for selection.

WO 98/29975 PCT/US98/00507

20

With reference to Fig. 4 as well, the description will continue regarding the operation of the link selector 64. In furtherance of the example of Fig. 3, and based on the results of conducting steps 100-120, a determination is made that only channels 34a, 34b are available for selection since these are the only two network channels that were found to meet all application requirements for application A. Regarding Fig. 2B, for each network channel that has been determined to be available for selection, each parameter value or magnitude is obtained that has a corresponding application requirement. For example, one of application requirements application is for bandwidth. The value for the bandwidth parameter obtained for network channel 34a which, in this example, is In accordance with step 124, the foregoing is accomplished for all such parameter values. At step 128, the associated weighting vector for each such requirement for application A is obtained. For example, the associated weighting vector for the bandwidth application requirement Each such weighting vector for application A requirements is obtained from the application requirements database 38. At step 132, each such weighting vector is combined with its associated parameter value using a suitability function. The associated parameter value can be a recently measured value for a dynamically changing parameter, such as packet loss, latency and/or jitter. suitability function defines the relationship among the parameters for a particular channel and their associated weighting vector. In accordance with the example set out in the chart of Fig. 4, the suitability function S can be defined as follows:

S(channel(n)) = weighting vector(bandwidth) x
bandwidth value + weighting vector(packet jitter)
x 1/packet jitter value + weighting vector(packet
latency) x 1/packet latency value + weighting
vector(cost) x 1/cost value.

5

10

15

20

25

30

10

15

20

25

30

35

With respect to the two network channels 34a, 34b that were found to be acceptable for selection and based on the representative example of Figs. 3 and 4, the suitability values for each of these two channels can be determined as follows:

S(channel 34a) = 0.25x28.8+0+0+50x1/10= 12.2

S(channel 34b) = 0.25x14.4+0+0+50x1/5=13.6 where, in this example, the packet jitter and packet latency, as well as the security parameters for channels 34a, 34b meet the minimum or threshold requirements set by application A. Consequently, they are not considered in the suitability function calculations, i.e., the weightings for these parameters are considered to = 0.

Returning to the flow diagram of Fig. 2B, foregoing calculations using the suitability function are accomplished using step 136. After step 136, step 140 is performed by which each of the suitability values that was determined is compared to each other. In the present example, the suitability values of 12.2 and 13.6 are compared with each other. After step 140, the selection of a network channel for information transfer is made based on this comparison in step 144. Since the suitability value of 13.6 is greater than the suitability value of 12.2, network channel 34b is selected as the desirable or optimum channel for this transfer, in light of the application A requirements and the parameter values for this channel. this example, the slower channel 34b is less expensive on a per kilobyte basis but still meets the threshold bandwidth requirement. In view of the given weightings, the slower, less expensive channel 34b is deemed to be more suitable for conducting the information transfer associated with application A.

Applications other than the foregoing example may evaluate the application requirements for each channel parameter and then distinguish among the channels available for selection on a cost basis only. In such a case, the only non-zero weighting vector in the suitability function

relates to cost. On the other hand, for interactive applications, packet latency and bandwidth will probably be weighted relatively higher in comparison with cost. For simple telemetry applications where data need not be received immediately, cost will probably have a relatively high weighting, similar to the foregoing example involving application A requirements.

As seen in Fig. 1, the network channel selection apparatus 14 further includes a link scheduler 70 for performing a number of functions related to the selection of a desired network channel, particularly relating to transfer time or when the information transfer should be The link scheduler 70 provides the capability of made. combining current system 10 location, as part of the mobile unit, with geographic coverage maps. That is, the link scheduler 70 is useful in identifying network channels that may become available later due to movement of the mobile unit. This functional capability can also be coupled with information transfer priority, with the link scheduler 70 contributing to the determination as to whether the information should be buffered or transmitted immediately.

The link scheduler 70 also communicates with a global positioning system (GPS) 74 of the selection apparatus 14. The GPS 74 is used to provide the location of the mobile unit having the communications system 10 and the direction of travel thereof. A highly accurate time measurement is also derived. With this GPS-derived location and velocity information, the link scheduler 70 can determine which network channels will be going off-line and schedule a channel switch before loss of communication occurs. network channel to be switched to is controlled by the applications requirements stored in the application requirements database 38. Such analysis capability enables the link scheduler 70 to be involved in determining whether it is advisable for the information to be transferred immediately or buffered for some time period in order to wait for a more acceptable network channel. The link

5

10

15

20

25

30

10

15

20

25

30

35

scheduler 70 also communicates directly with applications module 18 and thereby provides an interface for the applications module 18 to send signals that raise the priority that is to be given to a particular information transfer. This function is advantageous in situations in which low priority data is being collected and buffered for a period of time and then an alarm condition occurs requiring that the information in the buffer be immediately sent. The applications module 18 may have multiple transfers of differing priorities. priorities can be changed dynamically by the applications module 18 as a function of which particular application has higher priority relative to other active applications. Preferably, the link scheduler 70 responds to the request for a priority change by sending an acknowledge to the applications module 18 that it has received this request and that the request is being handled, such as fulfilling or presently denying the request.

With reference to the flow diagram of Figs. 5A-5B, a further description of the functions of the link scheduler 70 is provided in a step or operational format. 170, a decision is made as to whether or not the particular information transfer is to be started immediately. If this decision is in the affirmative, the link selector 64 takes control to initiate the transfer using one or more selected network channels 34a-34n at step 174. If the decision is in the negative, the information to be transferred is buffered and the link scheduler 70 obtains the current location of the mobile unit having the communications system 10 at step 178. The link scheduler 70 then determines the identity of other network channels that are becoming available for selection, based on current location of the mobile unit and the anticipated change in location The anticipated channels of the mobile unit at step 182. that are becoming available and their availability time is then provided, at step 186, to the link selector 64 for determining each of their suitability values. Each such

10

15

20

25

30

35

suitability value is determined for such network channels at step 190 and these values are useful in determining when buffered information should be transferred.

In accordance with step 194, the link scheduler 70 also checks whether or not the priority of a particular information transfer has changed from waiting or delaying to the requirement that such transfer be made immediately. If this inquiry is answered in the affirmative, the link selector 64 is notified or requested that it provide a selected channel using suitability values from application requirements and channel operating parameters at step 198. If, on the other hand, this inquiry is answered in the negative, a check continues to be made regarding whether an information transfer is to be made at step 202 of Fig. 5B.

A further related function involving the link scheduler 70 is noted at step 206 in which a check is made as to whether an emergency or alarm condition is present. When the answer to this inquiry is yes at step 210, the link selector 64 takes control to select a network channel that has an optimum, or at least faster than the current network channel being utilized, information transfer rate. At step 214, when this inquiry is negative, a check continues to be made for any such emergency or alarm condition.

As part of the operational steps involving the link scheduler 70, a determination is made as to whether or not a currently utilized network channel might be unavailable or go off line before completion of the particular information transfer. In accordance with this function, at step 218, the current location of the mobile unit having the communications system 10 is obtained. At step 222, a determination is made as to when the currently utilized network channel will go off line. This determination uses the current location of the mobile unit and the anticipated change in position of the mobile unit using velocity information and/or route or schedule information that the mobile unit follows. With respect to route information,

10

15

20

25

30

35

when a mobile unit or vehicle travels a regularly scheduled route, information can be provided related to the current position of the mobile unit based on knowing that it is currently located at a certain station or stop (location This information can be combined with locationrelated information regarding the next location node and the estimated time to travel to it. From this data, the link scheduler 70 can be used in determining that a particular channel will go off line, as well as network channels that will become available. determination is made, the link scheduler 70, at step 226, informs the link selector 64 of the date and time when the currently utilized network channel will go off line. link selector 64 is able to use this information in controlling the switching from the currently used network channel to a new or different selected channel.

The network channel selection apparatus 14 is also configured to handle situations where no acceptable network channel is available and the application requirements for the particular application necessitate that the transfer be made within a certain period of time. In such a case, the information or data has been buffered for transfer under particular application requirements that are to satisfied within a defined time condition. The link scheduler 70 continues to supply appropriate information, such as a channel becoming available in the future, to the link selector 64 in connection with the determination by the link selector 64 as to whether an acceptable network channel is available. However, when it is determined that the time condition will not be met for the current set of application requirements, the link scheduler 70 informs the link selector 64 of this event and initiates the execution of operational steps termed "error recovery procedures", in In particular, the accordance with step 230 of Fig. 5B. link selector 64 is informed and, depending on previous input provided as part of the application requirements, it takes one or more predetermined steps as part of the error

10

15

20

25

recovery procedure. Such steps include selecting a network channel that previously did not satisfy the application requirements (e.g., cost of transfer too high, bandwidth insufficient or cost is acceptable but reliability of the channel is questionable), compressing information to be transferred in order to meet certain application requirements such as bandwidth and/or not sending at least some of the information that was to be transferred. Relatedly, such provided input can originate dynamically or interactively from the user as the time window decreases or lessens for sending such information.

The foregoing discussion of the invention has been presented for purposes of illustration and description. Further, the description is not to limit the invention to the form disclosed herein. Consequently, variations and modifications commensurate with the above teachings, within the skill and knowledge of the relevant art, are within the scope of the present invention. The embodiments discussed hereinabove are further intended to explain the best mode known of the invention and to enable others skilled in the art to utilize the invention in such, or in other, embodiments and with the various modifications required by their application or uses of the invention. It is intended appended claims be construed alternative embodiments to the extent permitted by the prior art.

15

20

25

30

What is claimed is:

1. A method for transferring information when a number of different network channels are available over which the information can be transferred, comprising:

providing information for transfer relative to a mobile unit;

selecting a first network channel from a plurality of different network channels over which said information is to be transferred relative to said mobile unit, wherein each of said network channels has different values of operating parameters; and

deciding whether a second network channel different from said first network channel is to be used to transfer said information, said deciding step taking into account a position of said mobile unit.

- 2. A method, as claimed in Claim 1, wherein: said providing step includes preparing said information for transfer using a first predetermined network protocol.
- 3. A method, as claimed in Claim 1, wherein: said information includes sets of information and said providing step includes buffering each of said sets of information so that each of said sets is transferred at different times.
- 4. A method, as claimed in Claim 1, wherein: said providing step includes sending information to network interfaces that communicate with all of said network channels.
- 5. A method, as claimed in Claim 1, wherein:
 said providing step includes associating an address
 with said information based on said selecting step, said
 address depending upon said selected first network channel.
- 6. A method, as claimed in Claim 1, wherein:
 said selecting step includes determining that said
 first network channel is selected for transfer using said
 different channel operating parameter values including
 cost-related and transfer rate related values.

10

15

20

7. A method, as claimed in Claim 6, wherein: said determining step includes relying on a number of

application requirements associated with said information to be transferred, said application requirements including a plurality of the following: bandwidth, weighting vector, destination, packet loss, packet jitter, packet latency and packet cost.

8. A method, as claimed in Claim 7, wherein:

said determining step includes checking whether a first value associated with at least a first of said channel operating parameters is satisfied including one of:

(a) said first value being greater than a threshold magnitude and (b) said first value being less than said threshold magnitude and which said threshold magnitude is related to one of said application requirements.

9. A method, as claimed in Claim 6, wherein:

said determining step includes obtaining a first suitability value related to said first network channel using at least one of said channel operating parameters, said obtaining step including applying a weighting vector to said one channel operating parameter value.

- 10. A method, as claimed in Claim 1, wherein: said selecting step includes storing a number of said channel operating parameter values.
- 11. A method, as claimed in Claim 10, wherein:
 said selecting step includes storing a number of
 application requirements for said information to be
 transferred, with said application requirements being
 related to said channel operating parameters.
- 12. A method, as claimed in Claim 9, wherein:
 said obtaining step includes comparing said first
 suitability value with a second suitability value related
 to another network channel.
- 13. A method, as claimed in Claim 1, wherein:

 said selecting step includes selecting another network channel in addition to said first network channel to transfer said information based on bandwidth requirements.

15

20

30

35

- 14. A method, as claimed in Claim 1, wherein: said deciding step includes altering priority of said information to be transferred.
- 15. A method, as claimed in Claim 1, wherein:
 said deciding step includes checking whether
 application requirements have changed related to transfer
 of said information, said application requirements
 including cost-related and transfer rate related values.
- 16. A method, as claimed in Claim 1, wherein:

 10 said deciding step includes ascertaining whether said position of said mobile unit has changed sufficiently to discontinue use of said first network channel.
 - 17. A method, as claimed in Claim 16, wherein: said ascertaining step includes using velocity related information associated with said mobile unit.
 - 18. A method, as claimed in Claim 1, wherein: said deciding step includes monitoring dynamic related channel operating parameters associated with at least one of said first and second network channels including transfer rates.
 - 19. A method, as claimed in Claim 1, wherein: said deciding step includes utilizing a time related value in order to determine one of said plurality of network channels for selection.
- 20. An apparatus for transferring information when a number of different network channels are available over which the information can be transferred, comprising:

a plurality of different network channels including at least a first network channel and a second network channel, wherein each of said first and second network channels has different values of operating parameters;

first means for communicating with said plurality of network channels; and

second means for determining that said first network channel is to be used for transferring the information, said second means using geographic position information in determining that said first network channel is to be used.

10

15

20

25

- 21. An apparatus, as claimed in Claim 20, wherein: said first means includes transport means for preparing said information to be compatible with said first network channel.
- 22. An apparatus, as claimed in Claim 20, wherein: said first means includes addressing means for associating an address with said information to be transferred using said first network channel.
- 23. An apparatus, as claimed in Claim 20, wherein: said first means includes interface means that communicates with each of said network channels and receives said information with at least one address related to said first network channel.
- 24. An apparatus, as claimed in Claim 20, wherein: said first means includes an applications requirements database for storing cost-related and transfer rate related values associated with at least a first predetermined application.
- 25. An apparatus, as claimed in Claim 20, wherein: said second means includes selector means for determining that said first network channel is to be utilized in transferring said information, said selector means using said channel operating parameter values of said first network channel together with a number of application requirement values in selecting said first network channel over which said information is to be transferred.
 - 26. An apparatus, as claimed in Claim 25, wherein: said channel operating parameter values include values obtained from a group that includes: packet latency, packet jitter, packet loss, bandwidth, network channel coverage, network channel setup cost, network channel cost per packet, and network security.
- 27. An apparatus, as claimed in Claim 25, wherein: said selector means includes means for applying a weighting vector to each of said first network channel operating parameter values.

10

15

20

25

30

35

28. An apparatus, as claimed in Claim 20, wherein: said second means includes network channel data storage means for storing values related to transfer rate related dynamic data of at least one of said network channels.

29. An apparatus, as claimed in Claim 20, wherein: said second means includes monitor means for monitoring dynamic data during transfer of said information over said first network channel.

30. An apparatus, as claimed in Claim 20, wherein: said second means includes scheduler means for regulating when said information is to be transferred.

31. An apparatus, as claimed in Claim 30, wherein: said scheduler means utilizes position information and velocity information in determining when said information is to be transferred.

32. An apparatus, as claimed in Claim 30, wherein: said scheduler means receives priority related information from said first means in connection with determining when said information is to be transferred.

33. An apparatus, as claimed in Claim 20, wherein: said plurality of network channels includes at least some of the following: CDPD, satellite, SMR, FM-subcarrier, DAB, infrared and two-way messaging.

34. An apparatus, as claimed in Claim 20, wherein: said first network channel fails to meet predetermined application requirements for sending the information and said second means invokes an error recovery routine in determining that the information is to be transferred using said first network channel.

35. A method for transferring information when a number of different network channels are available over which the information can be transferred, comprising:

providing information for transfer relative to a mobile unit in which the information is to be transferred according to predetermined application requirements and within a predetermined time;

20

storing the information;

checking whether any one of a plurality of different network channels over which the information can be transferred is acceptable for such a transfer;

delaying transfer of the information when no acceptable network channel is available;

determining that no acceptable network channel is available for sending the information within said predetermined time; and

invoking a recovery routine for taking predetermined steps after said determining step has determined that no acceptable network channel is available within said predetermined time.

36. A method, as claimed in Claim 35, wherein said invoking step includes one of the following:

sending the information by one network channel that failed to meet said predetermined application requirements, relying on user interactivity in changing said predetermined application requirements, compressing the information and ascertaining that at least some of the information is not to be transferred.

FIG. 1

FIG. 2A

FIG. 2B

WO 98/29975 PCT/US98/00507

4/6

	CHANNEL 1 CHANNEL 2			
BANDWIDTH	28.8 Kbps	14.4 Kbps		
JITTER	+/- 100 ms	+/- 300 ms		
LATENCY	125 ms	400 ms		
COST	10 cents/Kbyte	5 cents/Kbyte		
SECURITY	Level 2	Level 2		

FIG. 3

SUITABILITY REQUIREMENT WEIGHTING					
BANDWIDTH	>= 14.4 Kbps	0.25			
JITTER	< 500 ms	0			
LATENCY	< 450 ms	0			
COST	< 15 cents/Kbyte	50			
SECURITY	>= Level 1	0			

FIG. 4

FIG. 5A

FIG. 5B

FIG. 1

FIG. 2A

FIG. 2B

4/6

	CHANNEL 1	GHANNEL 2
BANDWETH	28.8 Kbps	14.4 Kbps
	+/- 100 ms	+/- 300 ms
LATENCY!	125 ms	400 ms
COST ::::::	10 cents/Kbyte	5 cents/Kbyte
SECURITY	Level 2	Level 2

FIG. 3

	REQUIREMENT	SUITABILITY " WEIGHTING
BANDWIDT	>= 14.4 Kbps	0.25
JITTER	< 500 ms	0
LATENCY	< 450 ms	0
COST	< 15 cents/Kbyte	50
SECURITY	>= Level 1	0

FIG. 4

FIG. 5A

FIG. 5B

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: H04B 1/00

A3

(11) International Publication Number:

WO 98/29975

(43) International Publication Date:

9 July 1998 (09.07.98)

(21) International Application Number:

PCT/US98/00507

(22) International Filing Date:

2 January 1998 (02.01.98)

(30) Priority Data:

08/778,897

3 January 1997 (03.01.97)

US

(71) Applicant: CELLPORT LABS, INC. [US/US]; 885 Arapahoe Avenue, Boulder, CO 80302 (US).

(72) Inventors: SPAUR, Charles, W.; 3153 Noble Court, Boulder, CO 80301 (US). KENNEDY, Patrick, J.; 4382 Apple Way, Boulder, CO 80301 (US). BRAITBERG, Michael, F.; 440 Broken Fence Road, Boulder, CO 80302 (US). KLINGENSTEIN, Kenneth, J.; 8454 Boulder Hills Drive, Longmont, CO 80503 (US).

(74) Agents: ZINGER, David, F. et al.; Sheridan Ross P.C., Suite 3500, 1700 Lincoln Street, Denver, CO 80203-4501 (US).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TT, UA, UG, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report.

(88) Date of publication of the international search report:
11 September 1998 (11.09.98)

(54) Title: COMMUNICATIONS CHANNEL SELECTION

(57) Abstract

A communications system (10) is provided for sending and receiving information relative to a mobile unit in which a number of network channels are available through which the information can be transferred. The system includes a link selector (64) for selecting an acceptable network channel using application requirements for the particular channel, together with channel operating parameter values. When such a channel does not become available, the link selector (64) is also involved with recovery procedures. These network channel operating parameters include bandwidth, information transfer costs and information transfer packet loss, latency and jitter. Weighting vectors are also utilized with such channel operating parameters in determining suitability values associated with the available network channels. The link selector (64) communicates with a link scheduler (70) that has responsability for determining when information should be transferred including when there should be a change in the timing of the information transfer.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Pinland	LT	Lithuania	SK	Slovakia
ΑT	Austria	FR	Prance	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	ТJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	•	Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy ·	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland	•	
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

				·
	ASSIFICATION OF SUBJECT MATTER			
IPC(6)	:HO4B 1/00 - 455/450	-		
US CL According	: 455/450 to International Patent Classification (IPC) or to both	national classification	and IPC	
	LDS SEARCHED			
Minimum d	documentation searched (classification system follower	ed by classification sym	ibols)	
U.S. :	455/450, 452, 455, 509			
Documenta	ation searched other than minimum documentation to the	e extent that such docum	nents are included	in the fields searched
Electronic o	data base consulted during the international search (na	ame of data base and, v	where practicable	, search terms used)
C. DOC	CUMENTS CONSIDERED TO BE RELEVANT			
Category*	Citation of document, with indication, where ap	propriate, of the relevan	nt passages	Relevant to claim No
A,P	US 5,594,943 A (BALACHANDRAN ABSTRACT	N) 14 JANUARY	1997, SEE	1-36
A	US 5,513,379 A (BENVENISTE ET ABSTRACT	AL.) 30 APRIL	1996, SEE	1-36
A	US 5,274,837 A (CHILDRESS ET A SEE ABSTRACT	IBER 1993,	1-36	
A	US 5,519,884 A (DUQUE-ANTON E ABSTRACT	1996, SEE	1-36	
Furth	her documents are listed in the continuation of Box C	See patent	family annex.	
	ocial categories of cited documenta:	°T° later document p		ornational filing date or priority
A do	ocument defining the general state of the art which is not considered be of particular relevance		conflict with the appli theory underlying the	lication but cited to understand
	be of particular relevance rlier document published on or after the international filing date			e claimed invention cannot be red to involve an inventive step
L do	ocument which may throw doubts on priority claim(s) or which is ted to establish the publication date of another citation or other	when the docum	nent is taken alone	•
spe	ecial reason (as specified)	- considered to i	involve an inventive	step when the document is
me	ecument referring to an oral disclosure, use, exhibition or other eans		one or more other such o a person skilled in t	h documents, such combination he art
	ocument published prior to the international filing date but later than e priority date claimed	*A* document memb	ber of the same patent	family
Date of the	actual completion of the international search	Date of mailing of the	international sea	irch report
II APRIL	. 1998		L 4	טעעד אעל
Commission Box PCT	mailing address of the ISA/US mer of Patents and Trademarks	Authorized officer MARSHA D. BAT	NKS-HAROLD	7. 4.11
Washington Facsimile N	n, D.C. 20231 lo. (703) 305-3230	111	3) 305-4700	John John
	0. (105,505 5250	Maishinans	•, • • • • • • • • • • • • • • • • • •	•

THIS PAGE BLANK (USPTO)

RECORDS

SEP 4 2001