

2017 Machine Learning with R

Multiple Linear Regression

강필성 고려대학교 산업경영공학부 pilsung kang@korea.ac.kr

목차

회귀분석

❖ 도요타 코롤라 자동차의 중고차 가격 예측

종속 변수 (target)

설명 변수 (attributes, features)

Variable	Description	
Price	Offer Price in EUROs	
Age_08_04	Age in months as in August 2004	
KM	Accumulated Kilometers on odometer	
Fuel_Type	Fuel Type (Petrol, Diesel, CNG)	
HP	Horse Power	
Met_Color	Metallic Color? (Yes=1, No=0)	
Automatic	Automatic ((Yes=1, No=0)	
CC	Cylinder Volume in cubic centimeters	
Doors	Number of doors	
Quarterly_Tax	Quarterly road tax in EUROs	
Weight	Weight in Kilograms	

다중회귀분석: 목적

❖ 목적

■ 종속변수 Y와 설명변수 집합 $X_1, X_2, ..., X_p$ 사이의 관계를 선형으로 가정하고 이를 가장 잘 설명할 수 있는 회귀 계수(regression coefficients)를 추정

$$Y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p + \varepsilon$$
coefficients unexplained

다중회귀분석: 탐색적 vs. 예측적

❖ 탐색적(Explanatory) 회귀분석 vs. 예측적(Predictive) 회귀분석

Explanatory Regression

- Explain relationship between predictors (explanatory variables) and target.
- Familiar use of regression in data analysis.
- Model Goal: Fit the data well and understand the contribution of explanatory variables to the model.
- "goodness-of-fit": R², residual analysis, p-values.

$$Y = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p + \varepsilon$$

Predictive Regression

- Predict target values in other data where we have predictor values, but not target values.
- Classic data mining context
- Model Goal: Optimize predictive accuracy
- Train model on training data
- Assess performance on validation (hold-out) data
- Explaining role of predictors is not primary purpose (but useful)

$$Y = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p + \varepsilon$$

회귀분석의 형태

❖ 변수의 수와 추정되는 함수의 형태에 따라 아래와 같이 구분 가능

선형 회귀분석

- ❖ 선형 회귀 분석: Linear Regression
 - 반응변수와 설명변수 사이의 관계를 선형으로 표현

$$Y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + ... + \beta_p x_p + \varepsilon$$

선형 회귀분석

❖ 어떤 직선이 설명변수와 종속변수를 가장 잘 표현하는가?

- ❖ 회귀 계수의 추정
 - 최소자승법: Ordinary least square (OLS)
 - \checkmark Actual target: $Y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + ... + \beta_p x_p + \varepsilon$
 - \checkmark Predicted target: $\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + ... + \hat{\beta}_p x_p$
 - ✓ 목적: 실제 종속변수 값과 예측된 종속변수 값 사이의 오차 제곱항을 최소화

min
$$\frac{1}{2} \sum_{i=1}^{N} \varepsilon_{i}^{2} = \frac{1}{2} (Y_{i} - \hat{Y}_{i})^{2}$$
$$= \frac{1}{2} (Y - \hat{\beta}_{0} - \hat{\beta}_{1} x_{1} - \hat{\beta}_{2} x_{2} - \dots - \hat{\beta}_{p} x_{p})^{2}$$

- ❖ 회귀 계수의 추정
 - 최소자승법: Ordinary least square (OLS)

- ❖ 최소 자승법: 행렬을 이용한 해 구하기
 - X: n by p matrix, y: n by I vector, β: p by I vector.

min
$$E(\mathbf{X}) = \frac{1}{2} (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})^{\mathrm{T}} (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})$$

 $\Rightarrow \frac{\partial E(\mathbf{X})}{\partial \boldsymbol{\beta}} = -\mathbf{X}^{\mathrm{T}} (\mathbf{y} - \mathbf{X}\boldsymbol{\beta}) = 0$
 $\Rightarrow -\mathbf{X}^{\mathrm{T}} \mathbf{y} + \mathbf{X}^{\mathrm{T}} \mathbf{X} \boldsymbol{\beta} = 0$
 $\Rightarrow \boldsymbol{\beta} = (\mathbf{X}^{\mathrm{T}} \mathbf{X})^{-1} \mathbf{X}^{\mathrm{T}} \mathbf{y}$

❖ 최소자승법

- 아래 조건을 만족할 경우 최소자승법으로 구한 회귀계수 β는 최적해임
 - 오차항 ε 이 정규분포를 따름
 - 설명변수와 종속변수 사이에 선형관계가 성립함
 - 각 관측치들은 서로 독립
 - 종속변수 Y에 대한 오차항(residual)은 설명변수 값의 범위에 관계없이 일정함(homoskedasticity).

❖ 회귀모형의 적합도

■ 결정계수(R²):

$$SST = \sum_{i=1}^{n} (Y_i - \overline{Y})^2 \quad SSR = \sum_{i=1}^{n} (\hat{Y}_i - \overline{Y})^2 \quad SSE = \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$$

$$SST = SSR + SSE$$

$$R^2 = \frac{SSR}{SST} = 1 - \frac{SSE}{SST}$$

- ✓ 반응변수 (Y)의 전체 변동 중 예측변수(X)가 차지하는 변동의 비율
- ✔ R²는 0과 1사이에 존재
- ✓ R²=I: 회귀직선으로 Y의 총변동이 완전히 설명됨 (모든 측정값들이 회귀직선 위에 있는 경우)
- ✓ R²=0: 추정된 회귀직선은 X와 Y의 관계를 전혀 설명하지 못함

- ❖ 회귀모형의 적합도
 - 결정계수(R²):

❖ 회귀모형의 적합도

■ 수정 결정계수(Adjusted R²):

$$R_{adj}^{2} = 1 - \left\lceil \frac{n-1}{n-(p+1)} \right\rceil \frac{SSE}{SST} \le 1 - \frac{SSE}{SST} = R^{2}$$

- ✓ R²는 유의하지 않은 변수가 추가되어도 항상 증가
- ✓ 수정 R²는 이러한 단점을 앞에 계수를 곱해줌으로써 보정
- ✓ 유의하지 않은 변수가 추가될 경우 수정 결정계수는 증가하지 않음

❖ 모형의 검토

- 추정된 모형이 다음 가정을 만족하는지 확인
 - ✓ 예측변수와 반응변수 간 관계가 선형
 - ✓ 오차항들이 서로 독립
 - ✓ 오차항은 평균이 0이며 분산이 일정한 정규분포를 따름

❖ 예시: 도요타 코롤라 중고차 가격 예측

Price	Age_08_04	KM	Fuel_Type	HP	Met_Color	Automatic	СС	Doors	Quarterly_Tax	Weight
13500	23	46986	Diesel	90	1	0	2000	3	210	1165
13750	23	72937	Diesel	90	1	0	2000	3	210	1165
13950	24	41711	Diesel	90	1	0	2000	3	210	1165
14950	26	48000	Diesel	90	0	0	2000	3	210	1165
13750	30	38500	Diesel	90	0	0	2000	3	210	1170
12950	32	61000	Diesel	90	0	0	2000	3	210	1170
16900	27	94612	Diesel	90	1	0	2000	3	210	1245
18600	30	75889	Diesel	90	1	0	2000	3	210	1245
21500	27	19700	Petrol	192	0	0	1800	3	100	1185
12950	23	71138	Diesel	69	0	0	1900	3	185	1105
20950	25	31461	Petrol	192	0	0	1800	3	100	1185
19950	22	43610	Petrol	192	0	0	1800	3	100	1185
19600	25	32189	Petrol	192	0	0	1800	3	100	1185
21500	31	23000	Petrol	192	1	0	1800	3	100	1185
22500	32	34131	Petrol	192	1	0	1800	3	100	1185
22000	28	18739	Petrol	192	0	0	1800	3	100	1185
22750	30	34000	Petrol	192	1	0	1800	3	100	1185
17950	24	21716	Petrol	110	1	0	1600	3	85	1105
16750	24	25563	Petrol	110	0	0	1600	3	19	1065

❖ 데이터 전처리

■ Fuel type 변수에 대한 I-of-C coding 변환

	Fuel_type = Disel	Fuel_type = Petrol	Fuel_type = CNG
Diesel	I	0	0
Petrol	0	I	0
CNG	0	0	1

❖ 데이터 구분

학습용 데이터 60%, 검증용 데이터 40%

ld	Model	Price	Age_08_04	Mfg_Month	Mfg_Year	KM	Fuel_Type_Di esel	Fuel_Type_Pe trol
1	RRA 2/3-Doors	13500	23	10	2002	46986	1	0
4	RRA 2/3-Doors	14950	26	7	2002	48000	1	0
5	SOL 2/3-Doors	13750	30	3	2002	38500	1	0
6	SOL 2/3-Doors	12950	32	1	2002	61000	1	0
9	/VT I 2/3-Doors	21500	27	6	2002	19700	0	1
10	RRA 2/3-Doors	12950	23	10	2002	71138	1	0
12	BNS 2/3-Doors	19950	22	11	2002	43610	0	1
17	ORT 2/3-Doors	22750	30	3	2002	34000	0	1

❖ 추정된 회귀계수의 의미 및 유의성 분석

Input variables	Coefficient	Std. Error	p-value	SS
Constant term	-3608.418457	1458.62072 <mark>8</mark>	0.0137	97276410000
Age_08_04	-123.8319168	3.367589	0	8033339000
KM	-0.017482	0.00175105	0	251574500
Fuel_Type_Diesel	210.9862518	474.997833 <mark>3</mark>	0.6571036	6212673
Fuel_Type_Petrol	2522.066895	463.659423 <mark>8</mark>	0.00000008	4594.9375
HP	20.71352959	4.67398977	0.00001152	330138600
Met_Color	-50.48505402	97.85591125	0.60614568	596053.75
Automatic	178.1519013	212.052856	0.40124047	19223190
СС	0.01385481	0.09319961	0.88188446	1272449
Doors	20.02487946	51.089908 <mark>6</mark>	0.69526076	39265060
Quarterly_Tax	16.7742424	2.09381151	0	160667200
Weight	15.41666317	1.4044657 <mark>9</mark>	0	214696000

β

유의확률

❖ 실제 종속변수 값과 예측된 종속변수 값의 차이(잔차) 분석

Predicted Value	Actual Value	Residual
15863.86944	13750	-2113.869439
16285.93045	13950	-2335.930454
16222.95248	16900	677.047525
16178.77221	18600	2421.227789
19276.03039	20950	1673.969611
19263.30349	19600	336.6965066
18630.46904	21500	2869.530964
18312.04498	22500	4187.955022
19126.94064	22000	2873.059357
16808.77828	16950	141.2217206
15885.80362	16950	1064.196384
15873.97887	16250	376.0211263
15601.22471	15750	148.7752903
15476.63164	15950	473.3683568
15544.83584	14950	-594.835836
15562.25552	14750	-812.2555172
15222.12869	16750	1527.871313
17782.33234	19000	1217.667664

목차

회귀분석 성능평가

예시

■ 나이에 따른 아기의 몸무게 예측

Age	Actual Weight(y)	Predicted Weight(y')
I	5.6	6.0
2	6.9	6.4
3	10.4	10.9
4	13.7	12.4
5	17.4	15.6
6	20.7	21.5
7	23.5	23.0

성능지표 I:평균오차

- 실제 값에 비해 과대/과소 추정 여부를 판단
- 부호로 인해 잘못된 결론을 내릴 위험이 있음

Average error =
$$\frac{1}{n} \sum_{i=1}^{n} (y - y')$$
$$= 0.342$$

Age	Actual Weight(y)	Predicted Weight(y')
I	5.6	6.0
2	6.9	6.4
3	10.4	10.9
4	13.7	12.4
5	17.4	15.6
6	20.7	21.5
7	23.5	23.0

3

성능지표 2: 평균 절대 오차(Mean absolute error; MAE)

실제 값과 예측 값 사이의 절대적 인 오차의 평균을 이용

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |y - y'|$$

= 0.829

Age	Actual Weight(y)	Predicted Weight(y')
1	5.6	6.0
2	6.9	6.4
3	10.4	10.9
4	13.7	12.4
5	17.4	15.6
6	20.7	21.5
7	23.5	23.0

성능지표 3: Mean absolute percentage error (MAPE)

- 실제값 대비 얼마나 예측 값이 차 이가 있는지를 %로 표현
- 상대적인 오차를 추정하는데 주 로 사용

$$MAPE = 100\% \times \frac{1}{n} \sum_{i=1}^{n} \frac{|y - y'|}{|y|}$$

= 6.43%

Age	Actual Weight(y)	Predicted Weight(y')
ı	5.6	6.0
2	6.9	6.4
3	10.4	10.9
4	13.7	12.4
5	17.4	15.6
6	20.7	21.5
7	23.5	23.0

4

성능지표 4 & 5: (Root) Mean squared error ((R)MSE)

■ 부호의 영향을 제거하기 위해 절 대값이 아닌 제곱을 취한 지표

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y - y')^{2}$$
$$= 0.926$$

$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y - y')^{2}}$$
$$= 0.962$$

Age	Actual Weight(y)	Predicted Weight(y')
I	5.6	6.0
2	6.9	6.4
3	10.4	10.9
4	13.7	12.4
5	17.4	15.6
6	20.7	21.5
7	23.5	23.0

5

회귀분석 성능평가

❖ 학습 및 검증 데이터에 대한 성능 평가

Training Data scoring - Summary Report

Total sum of squared errors	RMS Error	Average Error
1514553377	1325.527246	-0.000426154

Validation Data scoring - Summary Report

Total sum of squared errors	RMS Error	Average Error
1021587500	1334.079894	116.3728779

목차

 다중선형회귀분석

 회귀분석 성능 평가

 변수 선택

 다중선형회귀분석 예시

 사

R 실습

- ❖ 차원의 저주 (Curse of Dimensionality)
 - 동등한 설명력을 갖기 위해서는 변수가 증가할 때 필요한 개체의 수는

"If there are various logical ways to explain a certain phenomenon, the simplest is the best" - Occam's Razor

- ❖ 차원축소: 배경
 - 이론적으로는 변수의 수가 증가할수록 모델의 성능이 향상됨 (변수간 독립성 만족시)
 - 실제 상황에서는 변수간 독립성 가정 위배, 노이즈 존재 등으로 인해 변수의
 수가 일정 수준 이상 증가하면 모델의 성능이 저하되는 경행이 있음
- ❖ 차원축소: 목적
 - 향후 분석 과정에서 성능을 저하시키지 않는 최소한의 변수 집합 판별
- ❖ 차원축소: 효과
 - 변수간 상관성을 제거하여 결과의 통계적 유의성 제고
 - 사후 처리(post-processing)의 단순화
 - 주요 정보를 보존한 상태에서 중복되거나 불필요한 정보만 제거
 - 고차원의 정보를 저차원으로 축소하여 시각화(visualization) 가능

❖ 차원축소 방식

- 교사적 차원축소 (Supervised dimensionality reduction)
 - ✓ 축소된 차원의 적합성을 검증하는데 있어 데이터마이닝 모델을 적용
 - ✓ 동일한 데이터라도 적용되는 데이터마이닝 모델에 따라 축소된 차원의 결과가 달라질수 있음
- 비교사적 차원축소 (Unsupervised dimensionality reduction)
 - ✓ 축소된 차원의 적합성을 검증하는데 있어 데이터마이닝 모델을 적용하지 않음
 - ✓ 특정 기법에 따른 차원축소 결과는 동일함

❖ 차원축소 기법

- 변수 선택(variable/feature selection)
 - ✓ 원래의 변수 집단으로부터 유용할 것으로 판단되는 소수의 변수들을 선택
 - ✓ Filter 변수 선택 과정과 모델 구축 과정이 독립적
 - ✔ Wrapper 변수 선택 과정이 데이터마이닝 모델의 결과를 최적화 하는 방향으로 이루어짐
- 변수 추출(variable/feature extraction)
 - ✓ 원래의 변수 집단을 보다 효율적인 적은 수의 새로운 변수 집단으로 변환
 - ✔데이터마이닝 모델에 독립적인 성능 지표가 추출된 변수의 효과를 측정하는 데 사용됨

- ❖ 차원 감소 기법 (cont')
 - 변수 선택과 변수 추출 비교

X ₁	X ₂	X ₃	•••	X _n
	•••			
•••	•••			•••
	•••			

변수 선택

X ₁	X ₅	X ₈
	•••	

변수 추출

Z ₁	Z ₂	Z_3
		•••
		•••
		•••
		•••

$$Z_1 = X_1 + 0.2*X_2$$

$$Z_2 = X_3 - 2*X_5$$

$$Z_3 = X_4 + X_6 - X_9$$

교사적 차원축소 기법

- ❖ 교사적 차원축소 기법 (Supervised feature selection)
 - d-차원의 데이터에 대하여 사용하는 모델의 성능이 최대가 되도록 하는 d'차원(d'
 << d)의 변수를 선택

- 변수 선택을 하기 전, 모델 구축에 사용할 알고리즘을 먼저 선택
- 동일한 데이터라도 모델 구축에 사용되는 알고리즘에 따라 다양한 선택 결과가 나타날 수 있음

Forward/Backward/Stepwise Selection

- ❖ 전역 탐색 (Exhaustive search)
 - 가능한 모든 경우의 조합에 대해 모델을 구축한 뒤 최적의 변수 조합을 찾는 방식
 - ✓ 예: 3개의 변수가 존재하는 경우
 X₁
 X₂
 X₃
 - ✓ 총 여섯 가지의 가능한 변수 조합 존재

- 변수 선택을 위한 모델 평가 기준
 - ✓ Akaike Information Criteria (AIC), Bayesian Information Criteria (BIC), 수정 R-제곱합, Mallow's C_D 등

Forward/Backward/Stepwise Selection

- ❖ 전역 탐색 (Exhaustive search)
 - |초에 |0,000개의 모델을 평가할 수 있는 컴퓨터를 활용할 경우 변수 선택에 소요되는 시간

전진 선택법 (Forward Selection)

❖ 전진 선택법

- 설명변수가 하나도 없는 모델에서부터 시작하여 가장 유의미한 변수를 하나씩
 추가해 나가는 방법 (회귀분석 모델의 F-통계량 사용)
- 한번 선택된 변수는 제거되지 않음 (변수의 숫자는 단조 증가)
- 전진 선택법 예시

전진 선택법 (Forward Selection)

❖ 전진 선택법

■ 선형회귀분석에서의 전진선택법

```
Step 5 Var CHEST Entered R-sq=0.5379 C(p)=4.195
               Sum Sq Mean Sq F Prob>F
           DF
Regression 5 108.3272 21.6654 24.91 0.0001
Error
          107 93.0527 0.86965099
     112 201.37982301
Total
         Par Std Type II
Variable Est Error Sum Sq F Prob>F
INTERCEP -0.7680 0.6102 1.3776 1.58 0.2109
CULTURE 0.0432 0.0098 16.7198 19.23 0.0001
STAY 0.2339 0.0574 14.4381 16.60 0.0001
NRATIO 0.6724 0.2993 4.3888 5.05 0.0267
CHEST 0.0092 0.0054 2.5062 2.88 0.0925
FACIL 0.0184 0.0063 7.4571 8.57 0.0042
```

후진 소거법 (Backward Elimination)

❖ 후진 소거법

- 모든 변수를 사용하여 구축한 모델에서 유의미하지 않은 변수를 하나씩 제거해 나가는 방법
- 한번 제거된 변수는 다시 선택될 가능성이 없음 (변수의 숫자는 단조 증가)
- 후진 소거법 예시

단계적 선택법 (Stepwise Selection)

❖ 단계적 선택법

- 설명변수가 하나도 없는 모델에서부터 시작하여 전진선택법과 후진소거법을 번갈아가며 수행
- 전진선택법 및 후진소거법에 비해 시간을 오래 걸리나 보다 우수한 예측 성능을 나타내는 변수 집합을 찾아낼 가능성이 높음
- 한번 선택되거나 제거된 변수라도 다시 선택/제거될 가능성이 있음
- 변수의 수는 초기에는 일반적으로 증가하나 중반 이후에는 증가와 감소를 반복

단계적 선택법 (Stepwise Selection)

❖ 단계적 선택법 예시

변수선택 평가지표

- ❖ 변수선택 평가지표 I & 2
 - Akaike Information Criteria (AIC)
 - ✓ 잔차제곱합에 변수의 수를 penalty term으로 추가

$$AIC = n \cdot \ln \left(\frac{SSE}{n} \right) + 2k$$

- Bayesian Information Criteria (BIC)
 - ✓ 잔차제곱합, 사용 변수의 수, 모든변수를 사용한 모델에서 추정된 잔차의 표준편차를

$$BIC = n \cdot \ln\left(\frac{SSE}{n}\right) + \frac{2(k+2)n\sigma^2}{SSE} - \frac{2n^2\sigma^4}{SSE^2}$$

변수선택 평가지표

- ❖ 변수선택 평가지표 3
 - 수정 R-제곱합 (Adjusted R²)
 - ✓ 단순 R-제곱합은 변수가 많아질수록 증가하므로 변수선택에 사용하기 좋은 평가지표가 아님

Model 1:
$$y = \beta_0 + \beta_1 x_1 + \ldots + \beta_k x_k + \epsilon$$

Model 2: $y = \beta_0 + \beta_1 x_1 + \ldots + \beta_k x_k + \ldots + \beta_{k+m} x_{k+m} \epsilon$ $R^2(M2) \ge R^2(M1)$

✓ 변수의 수(k)를 고려한 수정 R-제곱합을 사용

$$\bar{R}^2 = 1 - \left(\frac{n-1}{n-k-1}\right)(1-R^2) = 1 - \left(\frac{n-1}{n-k-1}\right)\frac{SSE}{SSTot}$$

변수선택 평가지표

- ❖ 변수선택 평가지표 4
 - Mallow's C_D
 - ✓ 모델에 의해 설명되지 못하는 오차는 편기(Bias)와 분산(Variance)로 분해할 수 있음

$$\hat{y}_i - \mu_i = (E[\hat{y}_i] - \mu_i) + (\hat{y}_i - E[\hat{y}_i])$$
 $E[(\hat{y}_i - \mu_i)^2] = (E[\hat{y}_i] - \mu_i)^2 + Var(\hat{y}_i)$
= Bias + Random error = Bias² + Variance

✔ 다음과 같은 유도 과정을 통해 Mallow's Cp를 최소화하는 변수 집합이 모델의 예측 성능을 최대화하는 것을 알 수 있음

$$\Gamma_{p} = \frac{1}{\sigma^{2}} \left\{ \sum_{i=1}^{n} (E[\hat{y}_{i}] - \mu_{i})^{2} + \sum_{i=1}^{n} Var(\hat{y}_{i}) \right\} \quad \Gamma_{p} = \frac{1}{\sigma^{2}} \left\{ E[SSE(p)] - (n-p)\sigma^{2} + p\sigma^{2} \right\}$$

$$= \frac{SSB(p)}{\sigma^{2}} + \frac{1}{\sigma^{2}} \sum_{i=1}^{n} Var(\hat{y}_{i})$$

$$= \frac{E[SSE(p)]}{\sigma^{2}} - n + 2p$$

p개의 선택된 변수를 이용한 모델의 SSE

$$C_p = \frac{SSE(p)}{MSE(K+1)} - n + 2p$$

모든 변수를 이용한 모델의 MSE

선형 회귀분석에서의 변수선택

❖ 전역 탐색 결과

#Coeffs	RSS	Ср	R ²	Adj. R ²	Prob	Model (Constant present in all models)											
#COEIIS	K33	Ср	K	Auj. K	PIOD	1	2	3	4	5	6	7	8	9	10	11	12
2	1,996,467,712	477.712	0.747	0.746	0.000	Constant	Age	*	*	*	*	*	*	*	*	*	*
3	1,672,546,432	305.506	0.788	0.787	0.000	Constant	Age	HP	*	*	*	*	*	*	*	*	*
4	1,438,242,432	181.495	0.818	0.817	0.000	Constant	Age	HP	Weight	*	*	*	*	*	*	*	*
5	1,258,062,976	86.594	0.840	0.839	0.000	Constant	Age	Mileage	НР	Weight	*	*	*	*	*	*	*
6	1,181,816,320	47.588	0.850	0.849	0.000	Constant	Age	Mileage	Petrol	Quarterly_Tax	Weight	*	*	*	*	*	*
7	1,095,153,024	2.980	0.861	0.860	0.962	Constant	Age	Mileage	Petrol	HP	Quarterly_Tax	Weight	*	*	*	*	*
8	1,093,753,344	4.227	0.861	0.860	0.994	Constant	Age	Mileage	Petrol	HP	Automatic	Quarterly_Tax	Weight	*	*	*	*
9	1,093,557,120	6.122	0.861	0.859	0.989	Constant	Age	Mileage	Petrol	HP	Metalic_Color	Automatic	Quarterly_Tax	Weight	*	*	*
10	1,093,422,592	8.049	0.861	0.859	0.976	Constant	Age	Mileage	Diesel	Petrol	HP	Metalic_Color	Automatic	Quarterly_Tax	Weight	*	*
11	1,093,335,424	10.002	0.861	0.859	0.961	Constant	Age	Mileage	Diesel	Petrol	HP	Metalic_Color	Automatic	CC	Quarterly_Tax	Weight	*
12	1,093,331,072	12.000	0.861	0.859	1.000	Constant	Age	Mileage	Diesel	Petrol	HP	Metalic_Color	Automatic	CC	Doors	Quarterly_Tax	Weight

선형 회귀분석에서의 변수선택

❖ 후진소거법 결과

#Coeffs	RSS	Ср	R ²	A 4: D2	Prob	Model (Constant present in all models)											
#COEIIS	K33	Ср	K	Adj. R ²	PIOD	1	2	3	4	5	6	7	8	9	10	11	12
2	1,996,467,712	477.712	0.747	0.746	0.000	Constant	Age	*	*	*	*	*	*	*	*	*	*
3	1,780,184,064	363.394	0.774	0.773	0.000	Constant	Age	Weight	*	*	*	*	*	*	*	*	*
4	1,482,806,272	205.462	0.812	0.811	0.000	Constant	Age	Petrol	Weight	*	*	*	*	*	*	*	*
5	1,310,214,400	114.641	0.834	0.833	0.000	Constant	Age	Petrol	terly_Tax	Weight	*	*	*	*	*	*	*
6	1,181,816,320	47.588	0.850	0.849	0.000	Constant	Age	Mileage	Petrol	Quarterly_Tax	Weight	*	*	*	*	*	*
7	1,095,153,024	2.980	0.861	0.860	0.962	Constant	Age	Mileage	Petrol	HP	Quarterly_Tax	Weight	*	*	*	*	*
8	1,093,753,344	4.227	0.861	0.860	0.994	Constant	Age	Mileage	Petrol	HP	Automatic	Quarterly_Tax	Weight	*	*	*	*
9	1,093,557,120	6.122	0.861	0.859	0.989	Constant	Age	Mileage	Petrol	HP	Metalic_Color	Automatic	Quarterly_Tax	Weight	*	*	*
10	1,093,422,592	8.049	0.861	0.859	0.976	Constant	Age	Mileage	Diesel	Petrol	HP	Metalic_Color	Automatic	Quarterly_Tax	Weight	*	*
11	1,093,335,424	10.002	0.861	0.859	0.961	Constant	Age	Mileage	Diesel	Petrol	HP	Metalic_Color	Automatic	CC	Quarterly_Tax	Weight	*
12	1,093,331,072	12.000	0.861	0.859	1.000	Constant	Age	Mileage	Diesel	Petrol	HP	Metalic_Color	Automatic	CC	Doors	Quarterly_Tax	Weight

선형 회귀분석에서의 변수선택

❖ 선택된 변수를 이용한 회귀분석 모델

The Regression Model

Input variables	Coefficient	Std. Error	p-value	SS
Constant term	-3874.492188	1415.003052	0.00640071	97276411904
Age_08_04	-123.4366303	3.33806777	0	8033339392
KM	-0.01749926	0.00173714	0	251574528
Fuel_Type_Petrol	2409.154297	319.5795288	0	5049567
HP	19.70204735	4.22180223	0.00000394	291336576
Quarterly_Tax	16.88731384	2.08484554	0	192390864
Weight	15.91809368	1.26474357	0	281026176

Training Data scoring - Summary Report

Training Data scoring - Summary Report

Model Fit

Total sum of squared errors	RMS Frror	Average Error
1516825972	1326.521353	-0.000143957

Total sum of squared errors	RMS Error	Average Error
1514553377	1325.527246	-0.000426154

Validation Data scoring - Summary Report

Validation Data scoring - Summary Report

Predictive performance

(compare to 12-predictor model!)

)	Total sum of squared errors	RIVIS ETTOT	Average Error
	1021510219	1334.029433	118.4483556

Total sum of squared errors	RMS Error	Average Error
1021587500	1334.079894	116.3728779

목차

 다중선형회귀분석

 회귀분석 성능 평가

 변수 선택

 T다중선형회귀분석 예시

 R 실습

❖ SNS 검색어를 활용한 영화 총수입 예측

❖ SNS 검색어를 활용한 영화 총수입 예측

가정:

개봉 전과 개봉 초기에 SNS에 올려진 mention들은 영화의 기초정보(상영 스크린 수, 전주 box office 수입 등)와 결합하여 영화의 총 수입을 일정 수준 이상으로 정확하게 예측할 수 있을 것이다!

❖ SNS 검색어를 활용한 영화 총수입 예측

Model Configuration & Variable Definition

Model configuration · Three forecasting models at different forecasting time and data collection periods

Input Data Collection Period for Model W

Input Data Collection Period for Model R

Target for Model W₁

Target for Model W₂

Variable definition

- Model R: 25 variables (1 screening, 24 SNS)
- Model W₁: 32 variables (4 screening, 28 SNS)
- Model W₂: 38 variables (6 screening, 32 SNS)

Input Data Collection period for Model W

Combining Forecasts & Evaluation

3 Variable Selection

Variable selection

- · Perform stepwise selection for forecasting models with screening data only
- · Perform genetic algorithm for forecasting models with screening & SNS data

		W/O 2N2	WITH 2N2					
		Baseline	MLR	SVR	GPR	k-NN		
Model R	Screening	1	1	1	1	1		
Wiodel K	SNS		7	7	3	5		
Model W ₁	Screening	2	2	2	4	2		
wiodei w ₁	SNS		2	6	0	8		
Model W ₂	Screening	4	3	6	5	6		
Woder W2	SNS		7	6	10	9		

❖ SNS 검색어를 활용한 영화 총수입 예측

Figure 2: The timing of forecasting and data collection period of each forecasting model.

Table 4: The	candidate input	variables for each	forecasting model

Category	ry Attribute Model R		$\mathbf{Model} \ \mathbf{W}_1$	$\mathbf{Model} \; \mathbf{W}_2$	
Tar	get	$Log_{10}(Box_office^1)$	$Log_{10}(\sum_{i=1}^{2} Box_office^{i})$	$Log_{10}(\sum_{i=1}^{3} Box_office^{i})$	
		N_seat_1	Box_office ¹	$Box_office^1 + Box_office^2$	
	Original		N_seat_2	$N_{L}seat_3$	
Screening			N_seat ¹	N_seat ²	
screening			Weekly_seat_increase	N_seat ¹ +N_seat ²	
	Derived			Weekly_seat_increase	
				Weekly_cumulative_seat_increase	
		$N_{-}mention^p$	$N_{-}mention^p$	$N_{-}mention^{p}$	
	Original	$N_{-emotional^p}$	$N_{-emotional^p}$	$N_{e}motional^p$	
	Original	N _positive p	$N_{-}positive^p$	$N_{-}positive^p$	
		N_{-} negative p	$N_{-}negative^p$	$N_{-}negative^p$	
		$p \in \{-3, -2, -1\}$	$p \in \{-3, -2, -1, 1\}$	$p \in \{-3, -2, -1, 1, 2\}$	
		Cumulative_mention	Cumulative_mention	Cumulative_mention	
		Cumulative_emotional	Cumulative_emotional	Cumulative_emotional	
SNS		Cumulative_positive	Cumulative_positive	Cumulative_positive	
GNIG		Cumulative_negative	Cumulative_negative	Cumulative_negative	
		Avg_mention_increase	Avg_mention_increase	Avg_mention_increase	
	Derived	Weekly_mention_increase	Weekly_mention_increase	Weekly_mention_increase	
	Derived	Avg_emotional_increase	Avg_emotional_increase	Avg_emotional_increase	
		Weekly_emotional_increase	Weekly_emotional_increase	Weekly_emotional_increase	
		Avg_positive_increase	Avg_positive_increase	Avg_positive_increase	
		Weekly_positive_increase	Weekly_positive_increase	Weekly_positive_increase	
		Avg_negative_increase	Avg_negative_increase	Avg_negative_increase	
		Weekly_negative_increase	Weekly_negative_increase	Weekly_negative_increase	

❖ SNS 검색어를 활용한 영화 총수입 예측

	Linear A	lgorithm		Machine Le	arning			
Model	Baseline	MLR	SVR	GPR	k-NN	Average	Combination	
	0.6219	0.4366	0.4015	0.4093	0.3984	0.4031	0.3933	
		(29.80%)	(35.45%)**	(34.19%)***	(35.93%)*	(35.19%)	(36.76%)***	
Model R			(8.05%)+	(6.25%)++	$(8.74\%)^{+}$	(7.68%)	$(9.92\%)^{++}$	
						, ,	(2.42%)	
	0.1541	0.1160	0.1084	0.1087	0.1154	0.1108	0.1058	
M1-1 337		(24.74%)	(29.65%)*	(29.46%)*	(25.16%)	(28.09%)	(31.36%)**	
Model W_1			(6.53%)	(6.27%)	(0.56%)	(4.45%)	(8.79%)	
							(4.54%)	
	0.0722	0.0533	0.0425	0.0440	0.0496	0.0453	0.0419	
Model W		(26.14%)	(41.16%)	(39.07%)***	(31.26%)	(37.16%)	(41.94%)***	
Model W_2			(20.33%)	$(17.50\%)^{+++}$	(6.93%)	(14.92%)	$(21.39\%)^{+++}$	
							(7.60%)	

→ MAPE를 성능평가지표로 사용했을 때,선형회귀분석(MLR)은 개봉 시점에서 총수입을 43% 오차이내로 예측할 수 있으며,개봉 2주 후에는 그 오차가 5% 내외로 감소함

다중선형회귀분석

❖ 요약

- 다중선형회귀분석은 탐색적 목적 뿐만 아니라 예측적 목적 측면에서도 매우 유용하게
 사용되는 방법론임
- 예측 모델은 학습 데이터를 이용하여 회귀계수를 추정하고 이를 학습에 사용하지 않은
 검증 데이터에 적용하여 그 성능을 평가함
- 불필요하거나 중복된 설명변수를 적절히 제거하는 것이 우수한 예측 정확도와 회귀
 모델의 강건성(robustness)을 확보하는데 매우 중요함
- 변수선택 기법을 통해 모델의 예측 성능을 저하시키지 않는 효율적이면서 적은 수의 설명변수들의 집합을 찾아낼 수 있음

목차

 다중선형회귀분석

 회귀분석 성능 평가

 변수 선택

 다중선형회귀분석 예시

 V

R 실습

❖ 선형회귀분석 데이터: Toyota Corolla 중고차가격 예측

Variable	Description	Variable	Description
		Guarantee_Period	Guarantee period in months
		ABS	Anti-Lock Brake System (Yes=1, No=0)
Price	Offer Price in EUROs	Airbag_1	Driver_Airbag (Yes=1, No=0)
Age_08_04	Age in months as in August 2004	Airbag_2	Passenger Airbag (Yes=1, No=0)
Mfg_Month	Manufacturing month (1-12)	Airco	Airconditioning (Yes=1, No=0)
Mfg_Year	Manufacturing Year	Automatic_airco	Automatic Airconditioning (Yes=1, No=0)
KM	Accumulated Kilometers on odometer	Boardcomputer	Boardcomputer (Yes=1, No=0)
Fuel_Type	Fuel Type (Petrol, Diesel, CNG)	CD_Player	CD Player (Yes=1, No=0)
HP	Horse Power	Central_Lock	Central Lock (Yes=1, No=0)
Met_Color	Metallic Color? (Yes=1, No=0)	Powered_Windows	Powered Windows (Yes=1, No=0)
Automatic	Automatic ((Yes=1, No=0)	Power_Steering	Power Steering (Yes=1, No=0)
CC	Cylinder Volume in cubic centimeters	Radio	Radio (Yes=1, No=0)
Doors	Number of doors	Mistlamps	Mistlamps (Yes=1, No=0)
Cylinders	Number of cylinders	Sport_Model	Sport Model (Yes=1, No=0)
Gears	Number of gear positions	Backseat_Divider	Backseat Divider (Yes=1, No=0)
Quarterly_Tax	Quarterly road tax in EUROs	Metallic_Rim	Metallic Rim (Yes=1, No=0)
Weight	Weight in Kilograms	Radio_cassette	Radio Cassette (Yes=1, No=0)
Mfr_Guarantee	Within Manufacturer's Guarantee period (Yes=1, No=0)	Parking_Assistant	Parking assistance system (Yes=1, No=0)
BOVAG_Guarantee	BOVAG (Dutch dealer network) Guarantee (Yes=1, No=0)	Tow_Bar	Tow Bar (Yes=1, No=0)

❖ 데이터 불러오기 & 전처리

■ 범주형 변수(선형회귀분석 사용 불가능)를 이진형 변수로 변환

```
1 # Working directory 지정
 2 setwd("C:\\RStudy")
4 ▼ # 실습 1: 전진선택/후진소거/단계적선택 ------
 5 # 분석에 필요한 패키지 설치 및 불러오기
 6 # Multivariate linear regression
 7 corolla <- read.csv("ToyotaCorolla.csv")</p>
   # Indices for the activated input variables
10 nCar <- dim(corolla)[1]
11 nvar <- dim(corolla)[2]
12
13 id_idx <- c(1,2)
14 category_idx <- 8</pre>
15
16 # 범주형 변수를 이진형 변수로 변환
17 dummy_p <- rep(0,nCar)
18 dummy_d <- rep(0,nCar)
19 dummy_c <- rep(0,nCar)</pre>
20
21 p_idx <- which(corolla$Fuel_Type == "Petrol")</pre>
22 d_idx <- which(corolla$Fuel_Type == "Diesel")</pre>
23 c_idx <- which(corolla$Fuel_Type == "CNG")</pre>
24
25 dummy_p[p_idx] <- 1
26 dummy_d[d_idx] <- 1
27 dummy_c[c_idx] <- 1
28
29 Fuel <- data.frame(dummy_p, dummy_d, dummy_c)</pre>
30 names(Fuel) <- c("Petrol", "Diesel", "CNG")</pre>
31
32 # Prepare the data for MLR
33 mlr_data <- cbind(corolla[,-c(id_idx, category_idx)], Fuel)</pre>
```

Price	Age_08_04	Mfg_Month	Mfg_Year	KM	Fuel_Type	HP	Met_Color	Automatic	cc
13500	23	10	2002	46986	Diesel	90	1	0	2000
13750	23	10	2002	72937	Diesel	90	1	0	2000
13950	24	9	2002	41711	Diesel	90	1	0	2000
14950	26	7	2002	48000	Diesel	90	0	0	2000
13750	30	3	2002	38500	Diesel	90	0	0	2000
12950	32	1	2002	61000	Diesel	90	0	0	2000
16900	27	6	2002	94612	Diesel	90	1	0	2000
18600	30	3	2002	75889	Diesel	90	1	0	2000
21500	27	6	2002	19700	Petrol	192	0	0	1800
12950	23	10	2002	71138	Diesel	69	0	0	1900
20950	25	8	2002	31461	Petrol	192	0	0	1800
19950	22	11	2002	43610	Petrol	192	0	0	1800
19600	25	8	2002	32189	Petrol	192	0	0	1800
21500	31	2	2002	23000	Petrol	192	1	0	1800
22500	32	1	2002	34131	Petrol	192	1	0	1800

KM	HP	Met_Color
46986	90	1
72937	90	1
41711	90	1
48000	90	0
38500	90	0
61000	90	0
94612	90	1
75889	90	1
19700	192	0
71138	69	0
31461	192	0
43610	192	0
32189	192	0
23000	192	1

Petrol	Diesel	CNG
0	1	0
0	1	0
0	1	0
0	1	0
0	1	0
0	1	0
0	1	0
0	1	0
1	0	0
0	1	0
1	0	0
1	0	0
1	0	0
1	0	0
	5	6/66

❖ 데이터를 학습용/검증용으로 분할

❖ 모든 변수를 사용한 선형회귀분석 모델 구축

```
# Train the MLR
full_model <- lm(Price ~ ., data = trn_data)
full_model
summary(full_model)
plot(full_model)

# Plot the result
plot(trn_data$Price, fitted(full_model), xlim = c(4000,35000), ylim = c(4000,35000))
abline(0,1,lty=3)
anova(full_model)
plot(fitted(full_model), resid(full_model), xlab="Fitted values", ylab="Residuals")</pre>
```

❖ 모든 데이터를 이용한 선형회귀분석 결과

```
> summary(full_model)
lm(formula = Price ~ ., data = trn_data)
Residuals:
   Min
            10 Median
-6571.9 -640.9
                 -49.0
                         624.2 5972.3
Coefficients: (3 not defined because of singularities)
                  Estimate Std. Error t value Pr(>|t|)
(Intercept)
                 3.540e+03 1.724e+03 2.054 0.040257
Age_08_04
                 -1.178e+02 3.914e+00 -30.104 < 2e-16 ***
                 -1.059e+02 1.034e+01 -10.244 < 2e-16 ***
Mfg_Month
Mfg_Year
                 -1.710e-02
                           1.338e-03 -12.777
                 1.911e+01 3.601e+00
                                       5.305 1.39e-07 ***
Met_Color
                 -4.358e+01 7.632e+01
                                       -0.571 0.568134
Automatic
                 3.746e+02 1.458e+02
                                        2.568 0.010368
                 -5.613e-02
                           7.515e-02
                                       -0.747 0.455279
Doors
                 7.198e+01
                            4.111e+01
                                        1.751 0.080257 .
Cylinders
                 1.959e+02
                                        0.915 0.360617
Gears
                            2.142e+02
                 1.159e+01
                            2.128e+00
Quarterly_Tax
                                        5.446 6.52e-08 ***
Weight
                 8.879e+00 1.227e+00
                                        7.233 9.54e-13 ***
Mfr_Guarantee
                 2.360e+02 7.381e+01
                                        3.198 0.001430 **
BOVAG_Guarantee
                 3.989e+02 1.316e+02
                                        3.033 0.002490 **
                                        4.938 9.27e-07 ***
Guarantee_Period 7.207e+01 1.459e+01
AB5
                 -4.715e+01 1.300e+02
                                       -0.363 0.716844
Airbag_1
                 4.498e+02 2.570e+02
                                        1.750 0.080375
Airbag_2
                 -2.007e+02
                            1.314e+02
                                       -1.527 0.127121
                 2.245e+02
                            8.919e+01
                                        2.517 0.012008
                 2.435e+03
                            1.889e+02
                                      12.890 < 2e-16 ***
Automatic airco
Boardcomputer
                -2.099e+02 1.194e+02
                                      -1.758 0.078992 .
CD_Player
                 8.442e+01 1.010e+02
                                        0.836 0.403239
Central_Lock
                 -7.471e+01 1.419e+02
                                      -0.526 0.598678
Powered_Windows
                5.112e+02 1.424e+02
                                        3.589 0.000349 ***
Power_Steering
                -5.689e+02 2.842e+02 -2.002 0.045581 *
Radio
                 5.575e+02 6.295e+02
                                        0.886 0.376037
Mistlamps
                 1.869e+01 1.102e+02
                                        0.170 0.865286
Sport_Model
                 2.790e+02 8.906e+01
                                       3.132 0.001787
Backseat_Divider -6.961e+01 1.327e+02 -0.525 0.599953
Metallic_Rim
                 5.536e+01 9.675e+01
                                       0.572 0.567342
Radio_cassette
                -5.593e+02 6.299e+02
                                      -0.888 0.374863
Tow_Bar
                 -1.990e+02 8.018e+01
                                      -2.482 0.013216
Petrol
                 1.096e+03 4.339e+02
                                        2.527 0.011663 *
Diesel
                 5.269e+02 4.128e+02
                                        1,276 0,202180
CNG
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 1060 on 971 degrees of freedom
Multiple R-squared: 0.9127, Adjusted R-squared: 0.9098
F-statistic: 307.7 on 33 and 971 DF, p-value: < 2.2e-16
```


- ❖ 변수선택 I: 전진선택법
 - 상수항만 존재하는 모델에서 중요한 변수를 하나씩 추가

```
53 # 변수선택 1: 전진선택법
54 # Upperbound formula 만들기
55 tmp_x <- paste(colnames(trn_data)[-1], collapse=" + ")</pre>
56 tmp_xy <- paste("Price ~ ", tmp_x, collapse = "")
57 tmp_xy
58 as.formula(tmp_xy)
59
   forward_model <- step(lm(Price ~ 1, data = trn_data),
61
                        scope = list(upper = as.formula(tmp_xy), lower = Price ~ 1), direction="forward", trace=1)
62
   summary(forward_model)
   anova(forward_model)
63
64
65 # 각 단계에서 선택된 변수 표시
66 forward_model$anova$Step
67
   forward_model$anova$AIC
68
69 # 선택된 변수에 따른 AIC 감소분 표시
70 plot(forward_modelsanovasAIC, pch = 17, cex=2, main = "AIC Decrease (Forward Selection)", xlab = "Number of Steps", ylab = "AIC")
71 text(forward_model\anova\arc_model\anova\step, cex=1, pos=3, col="blue")
```

❖ 변수선택 I: 전진선택법

> summary(forward_model)

변수선택 결과 (최초 36개 변수 → 20개 변수 선택)

```
call:
lm(formula = Price ~ Mfg_Year + Automatic_airco + Weight + KM +
    Powered_Windows + HP + Quarterly_Tax + Guarantee_Period +
    BOVAG_Guarantee + Petrol + Mfr_Guarantee + Sport_Model +
    Airco + Tow_Bar + Airbag_2 + Automatic + Boardcomputer +
   Power_Steering + Airbag_1 + Doors, data = trn_data)
Residuals:
   Min
            10 Median
                            3Q
-6747.2 -653.8
                         640.8
                                5908.7
                 -53.8
Coefficients:
                  Estimate Std. Error t value Pr(>|t|)
(Intercept)
                 -2.807e+06 8.542e+04 -32.857 < 2e-16
                 1.402e+03 4.286e+01 32.718 < 2e-16 ***
Mfg_Year
Automatic_airco
                 2.451e+03
                           1.746e+02
                                      14.037
                                              < 2e-16 ***
                 9.233e+00 1.166e+00
Weight
                                       7.918 6.50e-15
                 -1.734e-02 1.309e-03 -13.252 < 2e-16
Powered_Windows
                 4.650e+02
                           8.300e+01
                                        5.602 2.74e-08 ***
                 1.819e+01 3.235e+00
                                        5.625 2.42e-08
Quarterly_Tax
                 1.146e+01 2.013e+00
                                        5.694 1.63e-08
                 7.624e+01 1.377e+01
                                        5.535 3.98e-08 ***
Guarantee_Period
BOVAG_Guarantee
                 4.078e+02 1.268e+02
                                        3.216 0.001342 **
Petrol
                 6.593e+02 2.956e+02
                                        2.231 0.025933
Mfr_Guarantee
                 2.263e+02 7.214e+01
                                        3.137 0.001757 **
                                        3.417 0.000659 ***
Sport_Model
                 2.811e+02 8.226e+01
                 2.430e+02 8.500e+01
Airco
                                       2.859 0.004334 **
Tow_Bar
                 -2.203e+02 7.742e+01
                                       -2.846 0.004523
                -2.167e+02 9.707e+01
Airbag_2
                                       -2.232 0.025847
                 3.395e+02 1.428e+02
Automatic
                                       2.378 0.017586
                 -1.929e+02 1.126e+02
                                      -1.713 0.087054
Boardcomputer
                -6.486e+02 2.715e+02
                                       -2.389 0.017075
Power_Steering
Airbag_1
                 4.773e+02 2.521e+02
                                        1.893 0.058598 .
                 5.867e+01 3.958e+01
                                        1.482 0.138578
Doors
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1056 on 984 degrees of freedom
Multiple R-squared: 0.9121, Adjusted R-squared: 0.9103
F-statistic: 510.6 on 20 and 984 DF, p-value: < 2.2e-16
```


❖ 변수선택 2: 후진소거법

■ 모든 변수를 사용한 모델에서 중요하지 않은 변수를 하나씩 제거

```
73 # 변수선택 2: 후진소거법
74 backward_model <- step(full_model, scope = list(upper = as.formula(tmp_xy), lower = Price ~ 1), direction="backward", trace=1)
75 summary(backward_model)
76 anova(backward model)
77
78 # 각 단계에서 제거된 변수 표시
79 backward_model$anova$Step
80
81 # 제거된 변수에 따른 AIC 감소분 표시
82 plot(backward_model$anova$AIC, pch = 15, cex=2, main = "AIC Decrease (Backward Selection)", xlab = "Number of Steps", ylab = "AIC")
83 text(backward_model$anova$AIC, backward_model$anova$Step, cex=1, pos=3, col="red")
> backward_model$anova$Step
                              "- CNG" "- Cylinders" "- Mfg_Year" "- Mistlamps"
"- Backseat_Divider" "- Central_Lock" "- Met_Color" "- Metallic_R:
 [6] "- ABS"
                                                                                                     "- Metallic_Rim"
                                                   "- Radio"
                                                                               "- Radio_cassette"
                              "- CD_Plaver"
                                                                                                       "- Gears"
[11] "- cc"
[16] "- Diesel"
```

❖ 변수선택 2: 후진소거법

변수선택 결과 (최초 36개 변수 → 21개 변수 선택 (15개 변수 제거))

```
> summary(backward_model)
call:
lm(formula = Price ~ Age_08_04 + Mfg_Month + KM + HP + Automatic +
   Doors + Quarterly_Tax + Weight + Mfr_Guarantee + BOVAG_Guarantee +
   Guarantee_Period + Airbag_1 + Airbag_2 + Airco + Automatic_airco +
   Boardcomputer + Powered_Windows + Power_Steering + Sport_Model +
   Tow_Bar + Petrol, data = trn_data)
Residuals:
   Min
            10 Median
                             3Q
                                   Max
-6744.2 -643.7
                 -43.5
                         630.5
                               5924.2
Coefficients:
                  Estimate Std. Error t value Pr(>|t|)
                 4.528e+03 1.309e+03
                                       3.460 0.000563 ***
(Intercept)
                 -1.176e+02 3.644e+00 -32.281 < 2e-16 ***
Age_08_04
Mfq_Month
                 -1.067e+02 1.021e+01 -10.456 < 2e-16
                 -1.711e-02 1.327e-03 -12.898 < 2e-16 ***
KM
HP
                 1.809e+01 3.236e+00
                                        5.590 2.95e-08 ***
Automatic
                 3.373e+02 1.428e+02
                                        2.363 0.018341 *
                 5.612e+01 3.965e+01
                                        1.415 0.157290
Doors
                 1.156e+01 2.015e+00
Quarterly_Tax
                                        5.738 1.27e-08 ***
Weight
                 9.259e+00 1.166e+00
                                        7.938 5.57e-15 ***
                                        3.117 0.001879 **
Mfr_Guarantee
                 2.249e+02 7.215e+01
BOVAG_Guarantee 4.138e+02 1.269e+02
                                        3.260 0.001150 **
Guarantee_Period 7.511e+01 1.381e+01
                                        5.437 6.82e-08 ***
Airbag_1
                 4.597e+02 2.526e+02
                                       1.820 0.069067 .
Airbag_2
                 -2.272e+02 9.758e+01 -2.329 0.020071
                                       2.791 0.005351 **
Airco
                 2.377e+02 8.514e+01
Automatic_airco 2.455e+03 1.746e+02 14.060 < 2e-16 ***
Boardcomputer
                 -2.056e+02 1.133e+02
                                      -1.816 0.069700
Powered_Windows
                4.620e+02
                           8.304e+01
                                        5.563 3.41e-08 ***
                -6.192e+02 2.729e+02
                                      -2.269 0.023479 *
Power_Steering
Sport_Model
                 2.717e+02 8.273e+01
                                        3.284 0.001059 **
Tow_Bar
                 -2.156e+02 7.754e+01 -2.780 0.005531 **
Petrol
                 7.055e+02 2.988e+02
                                        2.361 0.018404 *
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 1056 on 983 degrees of freedom
Multiple R-squared: 0.9122, Adjusted R-squared: 0.9103
F-statistic: 486.4 on 21 and 983 DF, p-value: < 2.2e-16
```


- ❖ 변수선택 3: 단계적 선택법
 - 상수항만 존재하는 모델에서 다음 절차를 번갈아가며 수행
 - ✓ 중요한 변수를 하나씩 추가
 - ✓ 중요하지 않은 변수를 하나씩 제거

```
# 변수선택 3: 단계적 선택법
   stepwise_model <- step(lm(Price ~ 1, data = trn_data),
                          scope = list(upper = as.formula(tmp_xy), lower = Price ~ 1), direction="both", trace=1)
  summary(stepwise_model)
   anova(stepwise_model)
  ■# 각 단계에서 선택/제거된 변수 표시
92 stepwise_model$anova$Step
93 stepwise_model$anova$AIC
  # 제거/선택된 변수에 따른 AIC 감소분 표시
96 plot(stepwise_model anova AIC, pch = 19, cex=2, main = "AIC Decrease (Stepwise Selection)", xlab = "Number of Steps", ylab = "AIC")
97 text(stepwise_model$anova$AIC, stepwise_model$anova$Step, cex=1, pos=3, col="black")
> stepwise_model$anova$Step
 [1]
                          '+ Mfa_Year"
                                             "+ Automatic_airco" "+ Weight"
                                                                                                          "+ Powered_Windows"
 [7] "+ HP"
                         "+ Quarterly_Tax"
                                             "+ Guarantee Period" "+ BOVAG Guarantee" "+ Petrol"
                                                                                                         "+ Mfr_Guarantee"
[13] "+ Sport_Model"
                         "+ Airco"
                                             "+ Tow_Bar"
                                                                 "+ Airbag 2"
                                                                                     "+ Automatic"
                                                                                                          "+ Boardcomputer"
[19] "+ Power_Steering" "+ Airbag_1"
                                             "+ Doors"
```

❖ 변수선택 3: 단계적 선택법

■ 변수선택 결과

```
> summary(stepwise_model)
call:
lm(formula = Price ~ Mfg_Year + Automatic_airco + Weight + KM +
   Powered_Windows + HP + Quarterly_Tax + Guarantee_Period +
   BOVAG_Guarantee + Petrol + Mfr_Guarantee + Sport_Model +
   Airco + Tow_Bar + Airbag_2 + Automatic + Boardcomputer +
   Power_Steering + Airbag_1 + Doors, data = trn_data)
Residuals:
   Min
            1Q Median
                            3Q
                                   Max
-6747.2 -653.8
                -53.8
                         640.8
                               5908.7
Coefficients:
                  Estimate Std. Error t value Pr(>|t|)
(Intercept)
                -2.807e+06 8.542e+04 -32.857 < 2e-16 ***
Mfa Year
                 1.402e+03 4.286e+01 32.718 < 2e-16 ***
Automatic airco 2.451e+03 1.746e+02 14.037 < 2e-16 ***
                 9.233e+00 1.166e+00
                                      7.918 6.50e-15
Weight
                -1.734e-02 1.309e-03 -13.252 < 2e-16 ***
                                       5.602 2.74e-08 ***
Powered_Windows
                4.650e+02 8.300e+01
                 1.819e+01 3.235e+00
                                       5.625 2.42e-08 ***
                 1.146e+01 2.013e+00
                                      5.694 1.63e-08 ***
Quarterly_Tax
Guarantee Period 7.624e+01 1.377e+01
                                       5.535 3.98e-08 ***
BOVAG Guarantee 4.078e+02 1.268e+02
                                      3.216 0.001342 **
                 6.593e+02 2.956e+02 2.231 0.025933
Petrol
Mfr Guarantee
                 2.263e+02 7.214e+01 3.137 0.001757 **
Sport_Model
                 2.811e+02 8.226e+01
                                      3.417 0.000659 ***
Airco
                 2.430e+02 8.500e+01
                                      2.859 0.004334
                -2.203e+02 7.742e+01 -2.846 0.004523
Tow Bar
                -2.167e+02 9.707e+01 -2.232 0.025847
Airbag_2
Automatic
                3.395e+02 1.428e+02
                                      2.378 0.017586 *
Boardcomputer
                -1.929e+02 1.126e+02 -1.713 0.087054 .
                -6.486e+02 2.715e+02 -2.389 0.017075
Power_Steering
                 4.773e+02 2.521e+02
                                       1.893 0.058598 .
Airbag_1
                                      1.482 0.138578
Doors
                 5.867e+01 3.958e+01
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1056 on 984 degrees of freedom
Multiple R-squared: 0.9121, Adjusted R-squared: 0.9103
```

F-statistic: 510.6 on 20 and 984 DF, p-value: < 2.2e-16

- ❖ 각 변수선택 기법의 예측 정확도 비교 (검증 데이터 사용)
 - MSE, RMSE, MAE, MAPE 네 가지 측면에서 비교

```
99 # 검증 데이터에 대한 각 변수선택 결과의 예측 정확도 비교
100 full_haty <- predict(full_model, newdata = val_data)</pre>
101 forward_haty <- predict(forward_model, newdata = val_data)
102 backward_haty <- predict(backward_model, newdata = val_data)</pre>
103 stepwise_haty <- predict(stepwise_model, newdata = val_data)</pre>
104
105 # 회귀분석 예측성능 평가지표
                                                                 > perf_mat
106 # 1: Mean squared error (MSE)
                                                                                 A11
                                                                                                        Backward
                                                                                           Forward
                                                                                                                       Stepwise (
107 perf mat <- matrix(0.4.6)</pre>
                                                                 MSE 1.577365e+06 1.634343e+06 1.623485e+06 1.634343e+06
108 perf_mat[1,1] <- mean((val_data$Price-full_haty)^2)
                                                                 RMSE 1.255932e+03 1.278414e+03 1.274160e+03 1.278414e+03
109 perf_mat[1,2] <- mean((val_data$Price-forward_haty)^2)
                                                                 MAE 9.121387e+02 9.242534e+02 9.211011e+02 9.242534e+02
110 perf_mat[1,3] <- mean((val_data$Price-backward_haty)^2)</pre>
                                                                 MAPE 9.428209e+00 9.538071e+00 9.497384e+00 9.538071e+00
111 perf_mat[1,4] <- mean((val_data$Price-stepwise_haty)^2)</pre>
112
113 # 2: Root mean squared error (RMSE)
114 perf_mat[2,1] <- sqrt(mean((val_data$Price-full_haty)^2))</pre>
115 perf_mat[2,2] <- sqrt(mean((val_data$Price-forward_haty)^2))</pre>
116 perf_mat[2,3] <- sqrt(mean((val_data$Price-backward_haty)^2))</pre>
117 perf_mat[2,4] <- sqrt(mean((val_data$Price-stepwise_haty)^2))</pre>
118
119 # 3: Mean absolute error (MAE)
120 perf_mat[3,1] <- mean(abs(val_data$Price-full_haty))
121 perf_mat[3,2] <- mean(abs(val_data$Price-forward_haty))
122 perf_mat[3,3] <- mean(abs(val_data$Price-backward_haty))
123 perf_mat[3,4] <- mean(abs(val_data$Price-stepwise_haty))
124
125 # 4: Mean absolute percentage error (MAPE)
126 perf_mat[4,1] <- mean(abs((val_data$Price-full_haty)/val_data$Price))*100
127 perf_mat[4,2] <- mean(abs((val_data$Price-forward_haty)/val_data$Price))*100
     perf_mat[4,3] <- mean(abs((val_data$Price-backward_haty)/val_data$Price))*100</pre>
129 perf_mat[4,4] <- mean(abs((val_data$Price-stepwise_haty)/val_data$Price))*100
130
131 # 변수선택 기법 결과 비교
132 rownames(perf_mat) <- c("MSE", "RMSE", "MAE", "MAPE")
133 colnames(perf_mat) <- c("All", "Forward", "Backward", "Stepwise", "GA_default", "GA_yourown")
134 perf_mat
```

