Sprawozdanie 1

Katarzyna Botulińska

2024-10-20

Wielowymiarowy rozkład normalny i rozkład Cholskiego

Spis treści

W	ielowymiarowy rozkład normalny i rozkład Cholskiego	1
	zad 1	2
	zad 2	3
	zad 3	5
	zad 4	6

zad 1

Na wykresie przedstawionych jest 1000 wektorów losowych z rozkładu dwuwymiarowego normalnego $N(0,I_{2\times 2}).$

Wykres wektorów losowych z rozkladu dwuwymiarowego normalnego

Wnioski: Wektory losowe w rozkładzie dwuwymiarowym normalnym układają się w kształt elipsy lub okręgu. Zależy to od tego, czy zmienne są skorelowane. Jeśli zmienne są nieskorelowane macierz kowariancji Σ jest diagonalna, czyli chmura punktów ułada się w kształt okręgu, tak jak na wykresie powyżej. Oznacza to, że mając informacje o jednej zmiennej nie możmey przewidzieć zachowania drugiej.

zad 2

Poniżej wyznaczono przekształcenia liniowe chmury punktów uzyskanej w zadaniu 1. W chmurę punktów z rozkładu $N(\mu, \Sigma)$, gdzie $\mu = \begin{pmatrix} 4 \\ 2 \end{pmatrix}$, $\Sigma = \begin{pmatrix} 1 & p \\ p & 1 \end{pmatrix}$, $p \in \{0.5, -0.5, 0.9, -0.9\}$.

Wnioski: Zmienne są skorelowane $(p \neq 0)$, czyli chmura punktów ułada się w kształt elipsy. W zależności od wartości tej korelacji, czyli wielkości zmiennej p elipsa przyjmuje nieco inny kształt.

Im p jest bliższe 0 (zmienne są mniej skorelowane) tym elipsa bardziej przypomina okrąg. Natomiast gdy p jest bliższe ± 1 tym bardziej chmura układa się w rozciągniętą elipsę.

Dodatkowo jeśli p < 0 - kowariancja jest ujemna, czyli wraz ze wzrostem jednej zmiennej, druga zmienna maleje (punkty skupiają sie wokół przekątnej malejącej). Natomiast gdy p > 0 - kowariancja jesst dodatnia, to znaczy, że gdy jedna zmienna rośnie to druga także (punkty skupiają się wokół prostej rosnącej).

Aby jeszcze lepiej zobrazować te zależności, dodatkowo wykonałam też wykresy dla $p \in \{0.01, -0.01, 0.99, -0.99\}$.

zad 3

Poniżej wyznaczono przekształcenia liniowe chmury punktów uzyskanej w zadaniu 1. W chmurę punktów z rozkładu $N(\mu, \Sigma)$, gdzie $\mu = \begin{pmatrix} 4 \\ 2 \end{pmatrix}$, $\Sigma = \begin{pmatrix} \sigma^2 & 0 \\ 0 & 1 \end{pmatrix}$, $\sigma \in \{3, 4\}$.

Wykres sigma = 3

Wykres sigma = 4

Wnioski: Wariancja σ^2 mówi nam o tym jak bardzo dane są rozproszone względem średniej. Zauważyć można, że im większa σ^2 , która odpowiada za wariancję pierwszego wymiaru, tym dane są bardziej rozrzucone wzdłuż osi OX. W związku z tym wraz ze wzrostem parametru kształt chmury coraz bardziej rozciąga się na boki.

zad 4

Wnioski: Rysując histogram średnich i wariancji współrzędnych oraz kowarancji między różnymi współrzędnymi, można zauważyć, że wyniki są poprawne tzn. histogram średnich, rzeczywiście skupia się blisko 0, histogram wariancji znajduje się wokół 1, a kowariancji koncentruje się na 0.9. Z tego wynika, że przekształcenie zostało poprawnie zaimplementowane.