CEG3155: DGD 2

Questions

Question 1

Explain the difference in the output of these two pieces of code. Assume that a, b, c and y are signals. Temp is a signal in the code on the left and it is a variable in the code on the right.

```
process(a, b, c, temp)
begin
   temp <= '0';
   temp <= temp or a;
   temp <= temp or b;
   y <= temp;
end process;</pre>
process(a, b, c)
   variable temp: std_logic;
begin
   temp := '0';
   temp := temp or a;
   temp := temp or b;
   y <= temp;
end process;</pre>
```

Solution

Question 2

Consider a 2-by-2 switch. It has two input ports, x0 and x1, and a 2-bit control signal, ctrl. The input ports are routed to output ports y0 and y1 according to the ctrl signal. The function table is specified below.

- a) Draw the conceptual diagram.
- b) Use concurrent signal assignment statements to derive the circuit.

Input	Output	Function
ctrl	y1 y0	
00	x1 x0	Pass
01	x1 x1	Broadcast x1
10	x0 x0	Broadcast x0
11	x0 x1	Cross

Solution

```
a)
                                                ctrl
                                                  2
                                          2
                                                4-to-1
                                   x1x0_
                                                Mux
b)
                               library ieee;
                               use ieee.std_logic_1164.all;
                             ⊟entity Q1 is
                          5
                                   port(
                                       x: in std_logic_vector(1 downto 0);
                                        ctrl: in std logic vector(1 downto 0);
                                       y: out std_logic_vector(1 downto 0);
                              end Q1;
                               architecture Q1_str of Q1 is
                         13
                             ⊟begin
                                   y \le x when (y = "00") else
                         14
                                         (x(1) & x(1)) when (y = "01") else (x(0) & x(0)) when (y = "10") else
                         16
                         17
                                         (x(0) & x(1));
                             end Q1_str;
```

Question 3 (Problem 2.7)

The VHDL structural description of a circuit is shown below. Derive the block diagram according to the code.

```
library ieee;
     use ieee.std_logic_1164.all;
    pentity hundred_counter is
 5
         port(
             clk, reset: in std_logic;
 6
 7
             en: in std_logic;
 8
             q ten, q one: out std logic vector(3 downto 0);
 9
             ploo: out std_logic;
    end hundred_counter;
    parchitecture str_arch of hundred_counter is
13
14
         component dec_counter
15
16
             clk, reset: in std logic;
17
             en: in std_logic;
18
             q: out std_logic_vector(3 downto 0);
19
             pulse: out std logic;
20
21
         signal p_one, p_ten: std_logic;
23
     begin
         one_digit: dec_counter port map(clk=>clk, reset=>reset, en=>en, pulse=>p_one, q=>q_one);
24
         ten_digit: dec_counter port map(clk=>clk, reset=>reset, en=>p_one, pulse=>p_ten, q=>q_ten);
26
27
         p100 <= p_one and p_ten;
28
29
     end str_arch;
```

Solution

Question 4 (Problem 3.7)

Assume that a and y are 8-bit signals with the std_logic_vector (7 downto 0) data type. We want to perform (a mod 8) and assign the result to y. Write a signal assignment statement using only the & operator.

Solution

```
y \le "00000" \& a(2 \ downto \ 0);
```

Ouestion 5 (Problem 3.11)

Determine whether the following signal assignment is syntactically correct. If not, use the proper conversion function and type casting to correct the problem.

```
signal s1, s2, s3, s4, s5, s6, s7: std_logic_vector(3 downto 0);
signal u1, u2, u3, u4, u5, u6, u7: unsigned(3 downto 0);

u1 <= 2 # 00001 #;
u2 <= u3 and u4;
u5 <= s1 + 1;
u6 <= u3 + u4 + 3;
u7 <= (others=>'1');

s2 <= s3 + s4 - 1;
s5 <= (others=>'1');
s6 <= u3 and u4;
sg <= u3 - 1;
s7 <= not sg;</pre>
```

Solution

```
use ieee.numeric_std.all;

Wrong: u1 <= 2#0001#;
u1 <= "0001";

Wrong: u2 <= u3 and u4;
u2 <= unsigned(std_logic_vector(u3) and std_logic_vector(u4));</pre>
```

```
Wrong: u5 <= s1 + 1;
u5 <= unsigned(s1) + 1;
Wrong: s2 <= s3 + s4 - 1;
s2 <= std\_logic\_vector((unsigned(s3) + unsigned(s4) - 1));
Wrong: s6 <= u3 \text{ and } u4;
s6 <= std\_logic\_vector(u3) \text{ and } std\_logic\_vector(u4);
Wrong: sg <= u3 - 1;
sg <= signed(u3) - 1;
Wrong: s7 <= not sg;
s7 <= not std\_logic\_vector(sg);
```

Question 6 (Problem 5.1)

Consider a circuit described by the following code segment:

```
process(a)
begin
   q <= d;
end process;</pre>
```

- a) Describe the operation of this circuit.
- b) Does this circuit resemble any real physical component?

Solution

- a) When 'a' changes, 'q' takes the value of 'd', and keeps the value otherwise.
- b) The circuit functions like the D-FF. However, it changes with both edges of 'a', while the D-FF changes with either rising or falling edge of the clock.

Question 7 (Problem 5.2)

Consider the following code segment:

- a) Describe the operation of this circuit.
- b) Draw the conceptual diagram of this circuit.

Solution

a) When a is '1', q takes the value of b. If a is '0', q keeps its previous value.

