Ramadan Gannud Assignment-5

Problem 1 [5 pts] – to be answered by everyone

You will continue the prediction, confidence interval and prediction interval for the **banking** dataset that was analyzed in Assignment 4. Since you would have altered the dataset to exclude outliers/influential points and/or multicollinearity, use the dataset and the code that was used to generate your final model. Note: Make sure you rerun the whole banking code from assignment 4, before you do this last part.

a) Use the fitted regression model from Assignment 4 to predict the average bank balance for a specific zip code area where there is a plan to open a new branch. Census data in that area show the following values: median age is 34 years, median education is 13 years, median income is \$89,000, median home value is \$160,000, median wealth is 140,000. Using SAS, compute the predicted average bank balance, 95% confidence interval and prediction interval for your estimate. Make sure to use SAS coding to determine the values. Include all relevant outputs. Discuss your findings.

			Output	Statisti	CS			
Obs	Dependent Variable	Predicted Value	Std Error Mean Predict	r n		95% CL	Residual	
1		28930	497.3768	27942	29918	25721	32139	
2	38517	40407	411.7951	39589	41225	37246	43567	-1890
3	40618	40078	343.6694	39396	40761	36950	43207	539.6379
4	35206	34267	242.6509	33785	34749	31176	37358	938.9733

The predicted average bank balance is **\$28930** with 95% C.I equal to (\$27942, \$29918) and P.I (\$25721, \$32139).

b) Copy and paste your FULL SAS code into the word document along with your answers.

```
*compute predictions;
data pred;
input balance age education homeVal wealth;
datalines;
. 34 13 160000 140000
;

*join datasets;
data predict;
set pred Bankingfull_new1;
run;

proc print;
run;

proc reg;
model balance= age education homeVal wealth/p clm cli;
run;
```

PROBLEM 2 [20 pts] - to be answered by everyone

This problem asks you to build a model for the college dataset (college.csv) that contains the following variables:

School School name

Private public/private indicator. YES if university is private, NO if university is public.

Accept.pct percentage of applicants accepted

Elite 10 Elite schools with majority of students from the top 10% of their high school class

(0- Not Elite, 1-Elite)

F.Undergrad number of full-time undergraduate students
P.Undergrad number of part-time undergraduate students

Outstate Out-of-state tuition
Room.Board room and board costs
Books estimated book costs

Personal Estimated personal spending
PhD Percent of faculty with PhD

Terminal Faculty with terminal degrees (terminal degree is a university degree that is either

highest on the academic track or highest on the professional track in a given field

of study)

S.F.Ratio Student/faculty ratio

perc.alumni Percent of alumni who donate

Expend Instructional expenditure per student

Grad.Rate Graduation rate in 4 years

Apply regression analysis techniques to analyze the relationship among the observed variables and build a model to predict Graduation Rates (Grad.Rate).

Note: Before you start, open the college.csv file, and examine the data.

Answer the following questions.

a) Analyze the distribution of Grad.Rate and discuss if the distribution is symmetric, or if you need to apply any transformation (This is the data exploration stage, therefore use the appropriate statics to explore your data).

Moments									
N	777	Sum Weights	777						
Mean	65.4633205	Sum Observations	50865						
Std Deviation	17.1777099	Variance	295.073717						
Skewness	-0.1137773	Kurtosis	-0.2052265						
Uncorrected SS	3558769	Corrected SS	228977.205						
Coeff Variation	26.2402056	Std Error Mean	0.61624691						

Quantiles (Definition 5)				
Level	Quantile			
100% Max	118			
99%	100			
95%	95			
90%	89			
75% Q3	78			
50% Median	65			
25% Q1	53			
10%	44			
5%	37			
1%	22			
0% Min	10			

Extreme Observations									
Low	est	Highest							
Value	Obs	Value	Obs						
10	586	100	378						
15	385	100	512						
15	5	100	523						
18	67	100	669						
21	395	118	96						

The distribution is symmetric since the Median is almost equal to the Mean. Also, the histogram gives us a symmetric shape with normal distribution. The skewness is -0.11 which is very small and makes it a normal distribution.

b) Create scatterplots for Grad.Rate vs each of the independent variables. What conclusions can you draw about the relationships between Grad.Rate and the independent variables? (No need to include the scatterplots in your submission).

Since the Private variable has qualitative values, we should define a dummy variable.

numprivate = 1 if Private = YES
numprivate = 0 if Private = NO

	Z1 numprivate
YES	1
NO	0

In numprivate and Elite10 variables, the dots are scattered around 0 and 1 because they are dummy variables. Thus, they won't show any linear relationship with Grad_Rate. There is no significant correlation between Grade_Rate and any of the independent variable in the dataset. All independent X-variables show no signification linear association between them and the Grade_Rate variable. Furthermore, Outstate shows a very small positive linear relationship with a correlation value of 0.57.

c) Build boxplots to evaluate if graduation rates vary by university type (private vs public) and by status (elite vs not elite). Include the boxplots and discuss your findings. (See SAS Procedures section on D2L if you need the code to generate a boxplot).

According to the boxplots below, the graduation rates vary by university type and the university status (Elite or not). The mean and the median of graduation rates in private schools are higher than they are in public schools. The range of graduation rates is bigger in private schools.

Furthermore, the mean and the median of graduation rates in elite schools is higher than they are in not elite ones. The difference is obvious although the range is smaller in elite schools.

According to the second graph, 75% of the records of graduation rates in elite schools are bigger than 75% of the records of graduation rates in not elite ones.

d) Fit a full model (with all independent variables) to predict Grad.Rate. Discuss the parameter estimates, significance, goodness-of-fit and AdjR2 values. Include the relevant output.

Using the absolute value of standardized estimate to determine the predictors with significant effect on graduation rates. The strongest predictor is Outstate since the standardized estimate is the highest 0.289. When performing t-test on individual parameters, books, Terminal, S_F_Ratio have p-values that are higher than 0.05 which make them insignificant X-variables. The other variables' p-values are less than 0.05 which make them significant X-variables.

The coefficient value of the parameter of X measures the predicted change in Y for any unit increase in X while the other independent variables stay constant. For example, if school changed from public to private, graduation rate will increase by 4.62%. Also, if acceptance percentage increases by 1%, graduation rate increases by 18.1%.

Adj-R² 0.4346 does not show a good and a higher Adj-R² will give a better model.

		А	nal	ysis of	Var	iance			
Source	DF	100	Sum of Squares		Mean Square		F Value	Pr > F <.0001	
Model			01851	7275.08261		43.61	43.61		
Error			127126		166.83208				
Correc	ted Total	776	228977						
	Root MSE Dependent Mean Coeff Var			12.91		635 R-Squa		0.4448	3
				65.46	332 Adj R-		q	0.4346	
				19.73	067				

Parameter Estimates										
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t	Standardized Estimate				
Intercept	1	51.39777	6.12404	8.39	<.0001	0				
numprivate	1	4.61959	1.72185	2.68	0.0075	0.11986				
Accept_pct	1	-18.10932	3.84314	-4.71	<.0001	-0.15508				
Elite10	1	4.01748	2.00326	2.01	0.0453	0.07033				
F_Undergrad	1	0.00068095	0.00014285	4.77	<.0001	0.19228				
P_Undergrad	1	-0.00196	0.00039043	-5.01	<.0001	-0.17333				
Outstate	1	0.00123	0.00022863	5.40	<.0001	0.28918				
Room_Board	1	0.00167	0.00059443	2.80	0.0052	0.10644				
Books	1	-0.00252	0.00297	-0.85	0.3951	-0.02426				
Personal	1	-0.00172	0.00077810	-2.21	0.0275	-0.06772				
PhD	1	0.13064	0.05621	2.32	0.0204	0.12418				
Terminal	1	-0.07284	0.06257	-1.16	0.2447	-0.06243				
S_F_Ratio	1	0.00100	0.16188	0.01	0.9951	0.00023113				
perc_alumni	1	0.30920	0.04839	6.39	<.0001	0.22306				
Expend	1	-0.00043651	0.00015180	-2.88	0.0041	-0.13269				

Fitted Regression line Expression:

Private = 1 when school is private, Private = 0 when school is public

e) Does multi-collinearity seem to be a problem here? What is your evidence? Compute and analyze the VIF statistics. Include the relevant output and discuss your answer.

Diagnosing Multicollinearity:

1. Scatterplot matrix and Pearson correlation matrix for each pair of x variables:
There is a collinearity problem between PhD and Terminal because the correlation value between them is 0.85. There is small collinearity between Expand and Outstate with correlation value of

- 0.67. Also, there is small collinearity between Outstate and Room_board because the correlation value between them is 0.65.
- Compute Variance Inflation Factor (VIF):
 All VIF are less than 10. The highest ones are Terminal, Outstate, and PhD.
 These VIFs suggest no collinearity.
- Compute Tolerance value (TOL):
 All TOLs are bigger than 0.1. The smallest ones are Terminal, Outstate, and PhD.
 These TOLs suggest no collinearity.

			Parameter E	stimates			
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t	Tolerance	Variance Inflation
Intercept	1	51.39777	6.12404	8.39	<.0001		0
numprivate	1	4.61959	1.72185	2.68	0.0075	0.36503	2.73952
Accept_pct	1	-18.10932	3.84314	-4.71	<.0001	0.67266	1.48663
Elite10	1	4.01748	2.00326	2.01	0.0453	0.59245	1.68790
F_Undergrad	1	0.00068095	0.00014285	4.77	<.0001	0.44780	2.23312
P_Undergrad	1	-0.00196	0.00039043	-5.01	<.0001	0.60850	1.64339
Outstate	1	0.00123	0.00022863	5.40	<.0001	0.25413	3.93506
Room_Board	1	0.00167	0.00059443	2.80	0.0052	0.50588	1.97676
Books	1	-0.00252	0.00297	-0.85	0.3951	0.89620	1.11582
Personal	1	-0.00172	0.00077810	-2.21	0.0275	0.77460	1.29098
PhD	1	0.13064	0.05621	2.32	0.0204	0.25525	3.91772
Terminal	1	-0.07284	0.06257	-1.16	0.2447	0.25338	3.94658
S_F_Ratio	1	0.00100	0.16188	0.01	0.9951	0.52364	1.90972
perc_alumni	1	0.30920	0.04839	6.39	<.0001	0.59796	1.67237
Expend	1	-0.00043651	0.00015180	-2.88	0.0041	0.34216	2.92264

f) Apply TWO variable selection procedures to find an optimal subset of independent variables to predict Grad.Rate. You can choose any two procedures among the ones we learned in class: backward selection, forward selection, adj-R², Cp, stepwise. Make sure to include the o/p of the 2 selection methods. No need to discuss the models, include the outputs.

The first selection is the adj-R² method:

Number in Model	Adjusted R-Square	R- Square	Variables in Model
12	0.4356	0.4443	numprivate Accept_pct Elite10 F_Undergrad P_Undergrad Outstate Room_Board Personal PhD Terminal perc_alumni Expend
13	0.4353	0.4448	numprivate Accept_pct Elite10 F_Undergrad P_Undergrad Outstate Room_Board Books Personal PhD Terminal perc_alumni Expend
12	0.4351	0.4438	numprivate Accept_pct Elite10 F_Undergrad P_Undergrad Outstate Room_Board Books Personal PhD perc_alumni Expend
11	0.4351	0.4431	numprivate Accept_pct Elite10 F_Undergrad P_Undergrad Outstate Room_Board Personal PhD perc_alumni Expend
13	0.4348	0.4443	numprivate Accept_pct Elite10 F_Undergrad P_Undergrad Outstate Room_Board Personal PhD Terminal S_F_Ratio perc_alumn Expend
14	0.4346	0.4448	numprivate Accept_pct Elite10 F_Undergrad P_Undergrad Outstate Room_Board Books Personal PhD Terminal S_F_Ratio perc_alumni Expend
13	0.4343	0.4438	numprivate Accept_pct Elite10 F_Undergrad P_Undergrad Outstate Room_Board Books Personal PhD S_F_Ratio perc_alumni Expend
12	0.4343	0.4431	numprivate Accept pct Elite10 F Undergrad P Undergrad Outstate Room Board Personal PhD S F Ratio perc alumni Expend

The best model has the highest Adj R2 = 0.4356 and the number of variables in the model is 12.

The second selection is cp:

Number in Model	C(p)	R- Square	Variables in Model
11	11.3674	0.4431	numprivate Accept_pct Elite10 F_Undergrad P_Undergrad Outstate Room_Board Personal PhD perc_alumni Expend
12	11.7240	0.4443	numprivate Accept_pct Elite10 F_Undergrad P_Undergrad Outstate Room_Board Personal PhD Terminal perc_alumni Expend
12	12.3565	0.4438	numprivate Accept_pct Elite10 F_Undergrad P_Undergrad Outstate Room_Board Books Personal PhD perc_alumni Expend
13	13.0000	0.4448	numprivate Accept_pct Elite10 F_Undergrad P_Undergrad Outstate Room_Board Books Personal PhD Terminal perc_alumni Expend
12	13.3667	0.4431	numprivate Accept_pct Elite10 F_Undergrad P_Undergrad Outstate Room_Board Personal PhD S_F_Ratio perc_alumni Expend
10	13.3988	0.4401	numprivate Accept_pct F_Undergrad P_Undergrad Outstate Room_Board Personal PhD perc_alumni Expend
11	13.7091	0.4414	numprivate Accept_pct F_Undergrad P_Undergrad Outstate Room_Board Personal PhD Terminal perc_alumni Expend

The best model is the first one with cp = 11.367 and $11 \times variables$. Cp is approximately equal to k+1.

g) Fit a final regression model M1 for Grad.Rate based on the results in f) – i.e. optimal model. Explain your choice. Write down the expression of the estimated model M1.

Root	Root MSE				R-Squar	е	0.4431		
Dep	endent	Mean	65.46332 Adj R-		Adj R-S	q 0.435		ı	
Coe	ff Var		19.722	251					
		Para	meter l	Esti	mates				
Variable [Parameter Estimate		Standard Error		t Value		Pr > t	
Intercept	1	48.40380			4.62103		10.47	<.0001	
numprivate	1	4.	77018	1.68907			2.82	0.0049	
Accept_pct	1	-17	78222		3.79718		-4.68	<.0001	
Elite10	1	4	.02179		2.00221		2.01	0.0449	
F_Undergra	ad 1	0.000	66311	0.00014112			4.70	<.0001	
P_Undergra	ad 1	-0.0019		0.00039013			-5.03	<.0001	
Outstate	1	0	.00121	0.0	00022699		5.35	<.0001	
Room_Boa	rd 1	0	.00153	0.00058784			2.61	0.0092	
Personal	1	-0	00182	0.0	0.00076376		-2.38	0.0174	
PhD	1	0.08424		0.03706			2.27	0.0233	
perc_alum	ni 1	0	30598		0.04806		6.37	<.0001	
Expend	1	-0.000	44650	0.0	0013904		-3.21	0.0014	

Difference = 0.4443 - 0.4351 = 0.0092 = 0.92%

I would choose the first selection with 12 X-variables because Terminal adds 0.92% to the Adj R2.

Parameter Estimates										
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t					
Intercept	1	50.15666	4.81689	10.41	<.0001					
numprivate	1	4.53671	1.69814	2.67	0.0077					
Accept_pct	1	-17.71061	3.79599	-4.67	<.0001					
Elite10	1	3.99877	2.00145	2.00	0.0461					
F_Undergrad	1	0.00067321	0.00014128	4.77	<.0001					
P_Undergrad	1	-0.00195	0.00039005	-5.00	<.0001					
Outstate	1	0.00124	0.00022775	5.44	<.0001					
Room_Board	1	0.00162	0.00059173	2.74	0.0062					
Personal	1	-0.00183	0.00076352	-2.40	0.0166					
PhD	1	0.13733	0.05554	2.47	0.0136					
Terminal	1	-0.07955	0.06200	-1.28	0.1999					
perc_alumni	1	0.31078	0.04818	6.45	<.0001					
Expend	1	-0.00044063	0.00013906	-3.17	0.0016					

		A	nal	ysis of	Var	iance			
Source		DF	DF Square				F Value		Pr > F
Model		12	1	01730	8477.53112			50.90	<.0001
Error		764	1	27247	166.55344				
Corrected Total		776		228977					
	Root MSE		12.90	556	R-Square		0.4443		
	Dependent Mean			65.46332		Adj R-Sq		0.4356	
	Coeff Var			19.71	418				

Final Regression Model M1:

 $\label{eq:Graduation Rate = 50.156 + 4.5367*Private - 17.71*Accept_pct + 3.998*Elite + 0.00067*F_Undergrad - 0.00195*P_Undergrad + 0.00124*Outstate + 0.00162*Room_Board - 0.00183*Personal + 0.137*PhD - 0.07955*Terminal + 0.31*perc_alumni - 0.00044*Expend$

Elite = 1 for Elite schools, Elite = 0 for not Elite schools

Private = 1 when school is private, Private = 0 when school is public

h) Draw a plot of the studentized residuals against the predicted values. Does the plot show any striking pattern indicating problems in the regression analysis? Include the outputs and explain.

Points are randomly scattered, and residual analysis show no concern for the model fit.

i) Analyze normal probability plot of residuals. Is there any evidence that the assumption of normality is not satisfied? Include the outputs and explain.

Plot the normal probability plot of the residuals. It's almost straight which means it's normal.

j) Are there any outliers or Influential Points? Compute appropriate statistics. Include the outputs. Take any action you think is necessary and explain why/why not you took these actions?

Yes, there are multiple outliers and influential points as they are shown in the figures below. I would exclude all the outliers and influential points and rerun the model again. Outliers are the observation numbers (63, 119, 256, 274, 287, 437, 492) Influential points are the observation numbers (29, 63, 119, 140, 256, 238, 274, 277, 287, 437, 439, 492, 559, 568, 738, 743, 771)

After removing all these 17 observations and rerun the model, there will be no significant outliers in the new dataset.

k) Analyze the AdjR² value for the final model and discuss how well the model explains the variation in graduation rates among the universities.

		Parameter	Estimates		
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t
Intercept	1	50.11302	4.55976	10.99	<.0001
numprivate	1	4.92773	1.61092	3.06	0.0023
Accept_pct	1	-18.35460	3.53220	-5.20	<.0001
Elite10	1	2.91244	1.85202	1.57	0.1162
F_Undergrad	1	0.00091273	0.00013843	6.59	<.0001
P_Undergrad	1	-0.00269	0.00045261	-5.95	<.0001
Outstate	1	0.00128	0.00021934	5.84	<.0001
Room_Board	1	0.00170	0.00054863	3.09	0.0021
Personal	1	-0.00215	0.00075699	-2.83	0.0047
PhD	1	0.14337	0.05253	2.73	0.0065
Terminal	1	-0.08179	0.05917	-1.38	0.1673
perc_alumni	1	0.35439	0.04505	7.87	<.0001
Expend	1	-0.00061098	0.00014575	-4.19	<.0001

The Adj R2 = 0.4981 which is the highest so far. This model has p-value < .0001 that is almost 0.

Draw conclusions on graduation rates based on your regression analysis. What are the most important predictors in your model? Does your model show a significant difference in graduation rates between private and public universities? Do "elite" universities have higher graduation rates? Explain.

Parameter Estimates								
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t	Standardized Estimate		
Intercept	1	50.11302	4.55976	10.99	<.0001	0		
numprivate	1	4.92773	1.61092	3.06	0.0023	0.13238		
Accept_pct	1	-18.35460	3.53220	-5.20	<.0001	-0.16223		
Elite10	1	2.91244	1.85202	1.57	0.1162	0.05234		
F_Undergrad	1	0.00091273	0.00013843	6.59	<.0001	0.26324		
P_Undergrad	1	-0.00269	0.00045261	-5.95	<.0001	-0.21004		
Outstate	1	0.00128	0.00021934	5.84	<.0001	0.30726		
Room_Board	1	0.00170	0.00054863	3.09	0.0021	0.11179		
Personal	1	-0.00215	0.00075699	-2.83	0.0047	-0.08224		
PhD	1	0.14337	0.05253	2.73	0.0065	0.13914		
Terminal	1	-0.08179	0.05917	-1.38	0.1673	-0.07134		
perc_alumni	1	0.35439	0.04505	7.87	<.0001	0.26506		
Expend	1	-0.00061098	0.00014575	-4.19	<.0001	-0.17596		

The most important predictors are the one with the highest absolute value of standardized estimate which are Outstate, then (pwec_alumni, F_Undergrad, P_Undergrad) respectively. They also have the smallest p-values which are almost zero. They have a significant effect on graduation rates.

My model shows a significant difference between private and public schools. If a school changes from public to private, the graduation rates according to my model will increase by 4.927%.

Elite universities show 2.91% higher graduation rates than not elite universities.

My Last Model:

```
Graduation Rate = 50.113 + 4.9277*Private - 18.354*Accept_pct + 2.912*Elite + 0.000912*F_Undergrad - 0.00269*P_Undergrad + 0.00128*Outstate + 0.0017*Room_Board - 0.00215*Personal + 0.1433*PhD - 0.08179*Terminal + 0.35439*perc_alumni - 0.00061*Expend Elite = 1 for Elite schools, Elite = 0 for not Elite schools

Private = 1 when school is private, Private = 0 when school is public
```

m) Copy and paste your FULL SAS code into the word document along with your answers.

```
*a:
*import data from file;
proc import datafile="S:\HW5\College.csv" out=myd replace;
delimiter=',';
getnames=yes;
run;
*Create dummy variable for Private;
data college;
set myd;
numprivate = 1;
if Private = 'No' then numprivate = 0;
Proc print data = college (obs= 20);
title "HISTOGRAM of Grad Rate";
proc univariate normal;
var Grad Rate;
histogram / normal (mu = est sigma = est);
run;
*b;
proc sgscatter;
matrix Grad Rate numprivate Accept pct Elite10 F Undergrad P Undergrad
Outstate Room Board Books Personal PhD Terminal S F Ratio perc alumni
Expend;
run;
proc gplot;
plot Grad Rate* (numprivate Accept pct Elite10 F Undergrad P Undergrad
Outstate Room Board Books Personal PhD Terminal S F Ratio perc alumni
Expend);
run:
proc corr;
var Grad Rate numprivate Accept pct Elite10 F Undergrad P Undergrad Outstate
Room Board Books Personal PhD Terminal S F Ratio perc alumni Expend;
run;
*c;
*Boxplot - by Private;
proc sort;
```

```
by Private;
RUN:
PROC BOXPLOT;
PLOT Grad Rate*Private;
RUN;
proc sort;
by Elite10;
RUN;
*Boxplot - by Elite;
PROC BOXPLOT;
PLOT Grad Rate*Elite10;
RUN;
*d;
*Model 1- full model with all predictors;
proc reg;
model Grad Rate=numprivate Accept pct Elite10 F Undergrad P Undergrad
Outstate Room Board Books Personal PhD Terminal S F Ratio perc alumni Expend
/stb;
run;
*e;
proc reg;
model Grad Rate=numprivate Accept pct Elite10 F Undergrad P Undergrad
Outstate Room Board Books Personal PhD Terminal S F Ratio perc alumni Expend
/vif tol;
run;
*f;
PROC REG data=college ;
*Backward selection method;
MODEL Grad Rate=numprivate Accept pct Elite10 F Undergrad P Undergrad
Outstate Room Board Books Personal PhD Terminal S F Ratio perc alumni
Expend/SELECTION = adjrsq;
run;
PROC REG data=college ;
*CP selection method;
MODEL Grad Rate=numprivate Accept pct Elite10 F Undergrad P Undergrad
Outstate Room Board Books Personal PhD Terminal S F Ratio perc alumni
Expend/SELECTION = cp;
run;
*q;
PROC REG data=college ;
MODEL Grad Rate=numprivate Accept pct Elite10 F Undergrad P Undergrad
Outstate Room Board Personal PhD perc alumni Expend;
run;
*First Model;
PROC REG data=college ;
MODEL Grad Rate=numprivate Accept pct Elite10 F Undergrad P Undergrad
Outstate Room Board Personal PhD Terminal perc alumni Expend;
run;
```

```
*h;
plot student.*(numprivate Accept pct Elite10 F Undergrad P Undergrad
Outstate Room Board Personal PhD Terminal perc alumni Expend);
* Residual plot: residuals vs pred. values;
plot student.*predicted.;
* Normal probability plot or QQ plot;
plot npp.*student.;
run;
*i;
proc reg data = college;
model Grad Rate=numprivate Accept pct Elite10 F Undergrad P Undergrad
Outstate Room Board Personal PhD Terminal perc alumni Expend/influence r;
plot student.*(numprivate Accept pct Elite10 F Undergrad P Undergrad
Outstate Room Board Personal PhD Terminal perc alumni Expend predicted.);
plot npp.*student.;
run;
*j;
*deleting Multiple observations;
data college new;
set college;
if n in (29 63 119 140 256 238 274 277 287 437 439 492 559 568 738 743
771) then delete;
run;
*rerunning the model without outlier using the new dataset;
proc reg data = college new;
model Grad Rate=numprivate Accept pct Elite10 F Undergrad P Undergrad
Outstate Room Board Personal PhD Terminal perc alumni Expend/influence r;
plot student.*(numprivate Accept_pct Elite10 F_Undergrad P Undergrad
Outstate Room_Board Personal PhD Terminal perc alumni Expend predicted.);
plot npp.*student.;
run;
*k;
proc reg data = college new;
model Grad Rate=numprivate Accept pct Elite10 F Undergrad P Undergrad
Outstate Room Board Personal PhD Terminal perc alumni Expend/stb;
run;
```