Recherche Opérationnelle 1A Programmation Linéaire Théorie des Jeux

Zoltán Szigeti

Ensimag, G-SCOP

Théorie des Jeux

Introduction

- La Théorie des Jeux permet de traiter certaines situations de conflits
 - militaires ou
 - économiques.
- On suppose que les gains ou les pertes de chaque joueur dépendent
 - de ses propres initiatives et
 - 2 de celles de son adversaire.
- On ne considère que les jeux à somme nulle.
- On verra le théorème min-max de von Neumann,
 - on montre qu'il est une conséquence du théorème fort de la dualité,
 - à cette époque la programmation linéaire n'existait pas !
- "Il est rationnel que la pensée humaine soit irrationnelle" László Mérő.
- Livre de László Mérő: Les Aléas de la raison, de la théorie des jeux à la psychologie.

Énoncé

Xavier et Yann décident de jouer au jeu suivant : ils indiquent simultanément à l'aide des doigts d'une main un nombre.

- Si les deux nombres sont tous les deux pairs ou impairs, Xavier donne 6€ à Yann.
- Si le nombre choisi par Xavier est pair et celui de Yann impair, ce dernier donne 9€ à Xavier.
- ⑤ Enfin si le nombre de Xavier est impair et celui de Yann pair, ce dernier donne 4€ à Xavier.

		\mathbf{Y} ann	
		pair	impair
X avier	pair	-6	+9
	impair	+4	-6

Remarque

Pas de point d'équilibre :

- en répétant le jeu, on ne ferait pas toujours la même chose,
- sinon, l'autre joueur changerait éventuellement sa stratégie et gagnerait tout le temps.
- On verra en TD comment jouer optimalement ce jeu.

		\mathbf{Y} ann	
		pair	impair
X avier	pair	-6	+9
	impair	+4	-6

Énoncé

Solution

- On peut remarquer qu'on peut éliminer certaines stratégies :
 - Y n'utilisera jamais sa stratégie 2, car 1 est meilleure pour lui.
 - X n'utilisera jamais sa stratégie 3, car 2 est meilleure pour lui.
 - Y n'utilisera jamais sa stratégie 3, car 1 est meilleure pour lui.
 - X n'utilisera jamais sa stratégie 1, car 2 est meilleure pour lui.
- Point d'équilibre : X doit choisir stratégie 2 et Y stratégie 1.
- En répétant le jeu, on obtiendra chaque fois le même résultat. Si un des deux change sa stratégie il risque de gagner moins qu'avant.

Jeu à somme nulle

Définition

Jeu à somme nulle :

- Deux joueurs X et Y s'affrontent (ils jouent un nombre fini de fois),
 - X a m stratégies (pures),
 - Y a n stratégies (pures).
- 2 Le jeu est déterminé par la matrice des gains $A = (a_{ij})$ (connue par les deux joueurs) où
 - a_{ij} est la valeur ce que le joueur Y donne au joueur X si
 - X joue sa stratégie i et
 - Y joue sa stratégie j.

		Y	
	-10	20	10
X	10	10	20
	0	0	-10

Jeux avec point d'équilibre

Définition

Jeu parfait : un jeu avec point d'équilibre.

Il faut choisir les stratégies pour que

1
$$X$$
 maximise le gain "assuré" : $\max_i \min_j(a_{ij}), X$

② Y minimise la perte "possible" : $\min_j \max_i(a_{ij})$.

	Y	
-10	20	10
10	10	20
Λ	n	10

Remarque

- **1** Y aussi maximise le gain "assuré" : $\max_i \min_j (a'_{ij}) = \max_i \min_j (-a_{ji}) = -\min_j \max_i (a_{ij})!$
- Dans l'Exemple 1 il n'y avait pas de point d'équilibre.
- Oans l'Exemple 2 on a trouvé le point d'équilibre par l'élimination.
- Dans l'Exemple 3 (transparent suivant) :
 - l'élimination ne marche pas,
 - et quand même il existe un point d'équilibre.

Énoncé

Considérons maintenant le jeu suivant:

Remarque

- **1** X maximise le gain "assuré" : $\max_i \min_j(a_{ij})$,
- ② Y minimise la perte "possible" : $\min_j \max_i(a_{ij})$.

Point d'équilibre : 3 pour X et 2 pour Y.

Point d'équilibre

Remarque

 $\max_i \min_i a_{ij} \leq \min_i \max_i a_{ij}$.

(Le plus grand parmi les nains est plus petit que le plus petit parmi les géants.)

Théorème

 $\max_i \min_j a_{ij} = \min_j \max_i a_{ij} \iff \exists i^*, j^* : \min_j a_{i^*j} = a_{i^*j^*} = \max_i a_{ij^*}.$

Définition

- que l'on appelle un point d'équilibre;
- a_{i*i*} est la valeur du jeu.

Remarque

S'il existe un point d'équilibre et on répète le jeu, alors les adversaires vont jouer toujours de la même façon.

Point d'équilibre

Démonstration de la nécessité

max; min; a;;

d'où égalité partout et $\min_j a_{i*j} = a_{i*j*} = \max_i a_{ij*}$.

Point d'équilibre

Démonstration de la suffisance min_i max_i a_{ii} min; ai*j maxi mini aii max; a;i* d'où égalité partout et $\max_i \min_i a_{ij} = \min_j \max_i a_{ij}$.

Jeux de ruse

- On répète le jeu plusieurs fois.
- On essaye
 - 1 de deviner l'intention de l'autre et
 - **2** de dissimuler sa propre intention.

Exemple

- ① Supposons qu'on a joué le jeu N=12 fois,
 - 1 X a joué sa *i*-ième stratégie s_i fois : $s_1 = 3$, $s_2 = 9$.
 - 2 Y a joué sa j-ième stratégie r_i fois, $r_1 = 4$, $r_2 = 8$.
- 2 La fréquence d'application des stratégies est :
 - **1** pour X, $x_i = \frac{s_i}{N}$: $x_1 = \frac{3}{12} = \frac{1}{4}$, $x_2 = \frac{9}{12} = \frac{3}{4}$,
 - **2** pour Y, $y_i = \frac{r_i}{N}$: $y_1 = \frac{4}{12} = \frac{1}{3}$, $y_2 = \frac{8}{12} = \frac{2}{3}$.

fréquence d'appli.

$$y_1 = \frac{1}{3}$$
 $y_2 = \frac{2}{3}$

nombre d'appli. $r_1 = 4$ $r_2 = 8$

$$x_1 = \frac{1}{4}$$
$$x_2 = \frac{3}{4}$$

$$s_1 = 3$$

 $s_2 = 9$

$$r_2 = \frac{3}{4}$$

$$s_2 = 9$$

Remarque

Le vecteur x(y) est la stratégie mixte du joueur X(Y).

Définition

- stratégie mixte du joueur X: un vecteur $x = (x_1, x_2, \dots, x_m)$ tel que
 - $x_1 + x_2 + \cdots + x_m = 1$ et
 - $2 x_1 \geq 0, x_2 \geq 0, \ldots, x_m \geq 0.$
- 2 stratégie mixte du joueur Y: un vecteur $y = (y_1, y_2, \dots, y_n)$ tel que
 - $y_1 + y_2 + \cdots + y_n = 1$ et
 - $y_1 \ge 0, y_2 \ge 0, \dots, y_n \ge 0.$
- Oce sont les distributions de probabilité avec lesquelles les joueurs jouent leurs stratégies.

fréquence d'appli.
$$y_1 = \frac{1}{3}$$
 $y_2 = \frac{2}{3}$ nombre d'appli. $r_1 = 4$ $r_2 = 8$ $x_1 = \frac{1}{4}$ $s_1 = 3$ a_{11} a_{12} a_{22} a_{21} a_{22}

Lemme

- 1 Le gain moyen par jeu qui résulte de l'application
 - d'une stratégie mixte ▼ par le joueur X et
 - d'une stratégie mixte \overline{y} par le joueur Y peut être exprimé par : $\overline{x}^T \cdot A \cdot \overline{y}$.
- ② En adoptant une stratégie mixte \overline{x} le joueur X se garantit au moins le gain : $\min_y (\overline{x}^T \cdot A) \cdot y$, où le minimum est pris sur tous les $y \ge 0$ vérifiant $y_1 + y_2 + \cdots + y_n = 1$.
- **3** Ce minimum est atteint pour une stratégie pure du joueur Y, $y^* = (0, \dots, 1, \dots, 0)$, c'est-à-dire :

$$\min_{y} (\overline{x}^T \cdot A) \cdot y = \min_{j} {\{\overline{x}^T \cdot a^j\}}.$$

Solution

- **1** Le gain moyen est $\sum_{i,j} \overline{x}_i \overline{y}_j a_{ij}$:
 - La case ij se joue avec probabilité $\overline{x}_i \overline{y}_i$ et
 - ② la valeur de cette case est a_{ij} , qui est $\overline{x}^T \cdot A \cdot \overline{y}$.
- C'est évident.

On cherche une solution optimale du PL
$$y \geq 0$$

$$(\overline{x}^T \cdot A) \cdot y = w(\min)$$

- Il existe un sommet du polyèdre qui donne l'optimum,
- es sommets de ce polyèdre sont les vecteurs unitaires.

Théorème min-max de **von Neumann** (version 1)

Pour toute matrice A de taille $m \times n$,

$$\max_{x} \min_{y} (x^{T} \cdot A) \cdot y = \min_{y} \max_{x} x^{T} \cdot (A \cdot y) \qquad \text{qui est la valeur du jeu}$$

où le maximum est pris sur toutes les stratégies mixtes x et le minimum sur toutes les stratégies mixtes y.

Théorème min-max de von Neumann (version 2)

Pour toute matrice A de taille $m \times n$, il existe des stratégies mixtes x^*, y^* :

$$\min_{y}((x^*)^T \cdot A) \cdot y = \max_{x} x^T \cdot (A \cdot y^*)$$

où le minimum est pris sur tous les $y \ge 0$ vérifiant $y_1 + y_2 + \cdots + y_n = 1$, et le maximum sur tous les x > 0 vérifiant $x_1 + x_2 + \cdots + x_m = 1$.

Théorème min-max de von Neumann

Démonstration

- Par le lemme, pour une stratégie mixte \overline{x} fixée pour X, $\min_{V} \{ (\overline{x}^T \cdot A) \cdot y \} = \min_{i} \{ \overline{x}^T \cdot a^i \}.$

$$\begin{aligned} \max_{x} \{ \min_{y} \{ (x^{T} \cdot A) \cdot y \} \} &= \max_{x} \{ \min_{j} \{ x^{T} \cdot a^{j} \} \} \\ &= \max_{x} \{ z : z \leq x^{T} a^{j} \ \forall j, \mathbf{1}^{T} x = 1, x \geq 0 \} \\ &= \min_{y} \{ w : w \geq a_{i} y \ \forall i, \mathbf{1}^{T} y = 1, y \geq 0 \} \\ &= \min_{y} \{ \max_{x} \{ a_{i} \cdot y \} \} \\ &= \min_{y} \{ \max_{x} \{ x^{T} \cdot (A \cdot y) \} \}, \end{aligned}$$

3 il existe x^* et y^* tels que $z(\max) = w(\min)$.

Théorème min-max de von Neumann

$$(P) \max\{z : z \leq \mathbf{x}^T \cdot \mathbf{a^j} \ \forall j, \mathbf{1}^T \cdot \mathbf{x} = 1, \mathbf{x} \geq \mathbf{0}\} \iff \\ z - \mathbf{A}^T \cdot \mathbf{x} \leq \mathbf{0} \qquad \begin{pmatrix} 0 & \mathbf{1}^T \\ \mathbf{1} & -\mathbf{A}^T \end{pmatrix} \cdot \begin{pmatrix} z \\ \mathbf{x} \end{pmatrix} \leq \begin{pmatrix} 1 \\ \mathbf{0} \end{pmatrix} \\ z = z \pmod{2} \qquad (P) \qquad \mathbf{x} \geq \mathbf{0} \\ z = z \pmod{2} \qquad (1, \mathbf{0}^T) \cdot \begin{pmatrix} z \\ \mathbf{x} \end{pmatrix} = z \pmod{2} \\ (D) \qquad \mathbf{1}^T \cdot \mathbf{y} = 1 \\ \mathbf{y} \geq \mathbf{0} \qquad (w, \mathbf{y}^T) \cdot \begin{pmatrix} 0 & \mathbf{1}^T \\ \mathbf{1} & -\mathbf{A}^T \end{pmatrix} \geq \begin{pmatrix} 1 \\ \mathbf{0} \end{pmatrix}^T \\ w = w \pmod{2} \qquad (w, \mathbf{y}^T) \cdot \begin{pmatrix} 1 \\ \mathbf{0} \end{pmatrix} = w \pmod{2} \\ w = w \pmod{2} \qquad (w, \mathbf{y}^T) \cdot \begin{pmatrix} 1 \\ \mathbf{0} \end{pmatrix} = w \pmod{2} \\ (D) \qquad \min\{w : w \geq \mathbf{a_i} \cdot \mathbf{y} \ \forall i, \mathbf{1}^T \cdot \mathbf{y} = 1, \mathbf{y} \geq \mathbf{0}\}$$