ELETTRONICA DIGITALE

Corso di Laurea in Ingegneria Informatica

Prova scritta del 01 febbraio 2017

Esercizio A

$R_1 = 100 \ \Omega$ $R_2 = 30 \ k\Omega$ $R_3 = 30 \ k\Omega$ $R_5 = 400 \ \Omega$ $R_6 = 5 \ k\Omega$ $R_7 = 1 \ k\Omega$ $R_8 = 22 \ k\Omega$ $R_9 = 7 \ k\Omega$	$R_{10} = 2 \text{ k}\Omega$ $R_{11} = 3 \text{ k}\Omega$ $R_{12} = 1 \text{ k}\Omega$ $R_{13} = 25 \text{ k}\Omega$ $C_1 = 1 \text{ nF}$ $C_2 = 220 \text{ nF}$ $C_3 = 470 \text{ nF}$ $V_{CC} = 18 \text{ V}$	V_{cc} V_{cc} R_4 C_2 C_2 C_3 C_4 C_4 C_5 C_4 C_5 C_5 C_6 C_7 C_7 C_7 C_8 C_9	* V _u
--	---	---	------------------

 Q_1 è un transistore MOS a canale p resistivo con V_{T1} = -1 V; Q_2 è un transistore MOS a canale n resistivo con V_{T2} = 1 V; per entrambi la corrente di drain in saturazione è data da I_D = $k(V_{GS}$ - $V_T)^2$ con k = 0.5 mA/V². Con riferimento al circuito in figura:

- 1) Calcolare il valore della resistenza R_4 in modo che, in condizioni di riposo, la tensione sul drain di Q_2 sia 12 V. Determinare, inoltre, il punto di riposo dei due transistori e verificarne la saturazione. (R: R_4 = 2600 Ω)
- 2) Determinare l'espressione e il valore di V_U/V_i alle frequenze per le quali C_1 , C_2 , e C_3 possono essere considerati dei corto circuiti. (R: $V_U/V_i = 2.68$)
- 3) (<u>Solo per 12 CFU</u>) Determinare la funzione di trasferimento V_U/V_i e tracciarne il diagramma di Bode quotato asintotico del modulo. (R: f_{z1} =0 Hz; f_{p1} =10540 Hz; f_{z2} =278 Hz; f_{p2} =1082 Hz; f_{z3} =0 Hz; f_{p3} =11.7 Hz;)

Esercizio B

Progettare una porta logica in tecnologia CMOS, utilizzando la tecnica della pull-up network e della pull-down network, che implementi la funzione logica:

$$Y = \overline{\overline{B}E} \left(\overline{A}C + \overline{D} \right) + \overline{A} \left(CE + \overline{B} \right) + \overline{D} \overline{C}$$

Determinare il numero dei transistori necessari e disegnarne lo schema completo. Dimensionare inoltre il rapporto (W/L) di tutti i transistori, assumendo, per l'inverter di base, W/L pari a 2 per il MOS a canale n e pari a 5 per quello a canale p. Si specifichino i dettagli della procedura di dimensionamento dei transistori.

Esercizio C

$R_1 = 2 k\Omega$	$R_5 = 2 \text{ k}\Omega$
$R_2 = 150 \Omega$	$R_6=3~k\Omega$
$R_3 = 200 \Omega$	C = 330 nF
$R_4 = 250 \ \Omega$	$V_{CC} = 6 \text{ V}$

Il circuito IC_1 è un NE555 alimentato a $V_{CC} = 6$ V; Q_1 ha una $R_{on} = 0$ e $V_T = -1$ V; Q_2 ha una $R_{on} = 0$ e $V_T = 1$ V; gli inverter sono ideali. Determinare la frequenza del segnale di uscita del multivibratore in figura. (R: f = 13741 Hz)

$$\begin{array}{c|c}
R_1 & C_1 \\
\hline
R_2 & R_3 \\
\hline
R_3 & R_4
\end{array}$$

$$\begin{array}{c|c}
R_1 & C_1 \\
\hline
R_2 & R_3 \\
\hline
R_3 & R_4
\end{array}$$

$$\begin{array}{c|c}
R_1 & C_1 \\
\hline
R_2 & R_3 \\
\hline
R_3 & R_4
\end{array}$$

$$\begin{array}{c|c}
R_1 & R_1 & C_3 \\
\hline
R_1 & R_2 & C_3 \\
\hline
R_2 & R_3 & R_4
\end{array}$$

$$I_{11} = I_{b2} = I_{51} = I_{10}$$

$$\left(V_{052} - V_{72}\right) = + \sqrt{\frac{I_0}{\kappa}} = 2V$$

$$V_{GS2} = 2 + V_{T2} = 3V$$

$$V_{62} = V_{652} + V_{52} = 3 + 4 = 7V$$

$$I_{g} = \frac{V_{o2}}{R_{g}} = I_{mA}$$

$$I_7 = I_9 - I_8 = 0.5 \text{ m/s}$$

$$\frac{T_6}{R_6} = \frac{V_{D1}}{R_6} = 1.5 \text{ mA}$$

$$T_{01} = T_6 + T_7 = 2mA$$

$$R_{1} = 100 \, \text{L}$$
 $R_{2} = 30 \, \text{K} \, \text{R}$
 $R_{3} = 30 \, \text{K} \, \text{R}$
 $R_{3} = 30 \, \text{K} \, \text{R}$
 $R_{5} = 400 \, \text{R}$
 $R_{6} = 5 \, \text{K} \, \text{R}$
 $R_{6} = 5 \, \text{K} \, \text{R}$
 $R_{8} = 22 \, \text{K} \, \text{R}$
 $R_{9} = 7 \, \text{K} \, \text{R}$
 $R_{10} = 2 \, \text{K} \, \text{R}$
 $R_{11} = 3 \, \text{K} \, \text{R}$
 $R_{12} = 3 \, \text{K} \, \text{R}$
 $R_{13} = 25 \, \text{K} \, \text{R}$
 $C_{1} = 1 \, \text{K} \, \text{R}$
 $C_{1} = 220 \, \text{M}$
 $C_{2} = 220 \, \text{M}$
 $C_{3} = 420 \, \text{M}$

(3 = 420 nF Vcc= 18V

$$Q_{1}: \begin{cases} T_{01} = 2mA \\ V_{DS1} = -4.5V \\ V_{GSI} = -3V \\ 9m_{1} = 2\times(0^{-3} \frac{A}{V}) \end{cases}$$

 $Q_{2}:\begin{cases} T_{02} = 2mA \\ V_{052} = 8V \\ V_{652} = 3V \\ g_{m_{2}} = 2\times10^{-3}A \\ V \end{cases}$

$$651 - V_{71} = -\sqrt{\frac{DD1}{K}} = -2V$$

$$V_{GS1} = -2 + V_{T1} = -3V$$

$$R_4 = \frac{V_{CC} - V_{R4}}{I_{D1}} = \frac{18 - 12.8}{2 \times 10^{-3}} = \frac{2600 \text{ J2}}{I_{D1}}$$

·) ACB

$$J_{g32} = J_{g2} - g_{n} J_{g5} R_{10} = \frac{J_{g2}}{I + g_{m} R_{10}}$$

$$g_2 = (-g_m J_{g51}) \frac{R_6}{R_6 + R_7 + R_8 II R_9} \cdot (R_8 II R_9)$$

$$\int_{S1} = \left(9 \, \text{m} \, \text{U}_{951} \right) \, R_5$$

$$A_{CB} = \frac{V_{U}}{V_{i}} = \left(-g_{m}\right) \frac{R_{11} \cdot R_{13}}{R_{11} + R_{12} + R_{13}} \frac{1}{1 + g_{m}R_{10}} \left(-g_{m}\right) \frac{R_{6}}{R_{6} + R_{7} + R_{8} ||R_{9}|} \frac{1}{1 + g_{m}R_{5}}$$

$$\frac{R_{2}llR_{3}}{R_{1}+R_{2}llR_{3}}=+2.68 \qquad A_{CB}=8.56 dB$$

$$\begin{cases} 1 : & f_{21} = \phi \neq \\ f_{P1} = \frac{1}{2\pi \xi_1 R_{11}} = \frac{20540.06 \text{ A}}{2} \end{cases}$$

$$\frac{f_{93}}{f_{93}} = \frac{6 \text{ Ht}}{2\pi c_3 R_{v_3}} = \frac{11.672 \text{ Hz}}{28 \text{ K} R_{v_3}} = \frac{11.672 \text{ Hz}}{R_{v_3}} = \frac{11.672 \text{ Hz}}{R_{v_3}}$$

$$= (B + \overline{E})(\overline{A}C + \overline{D}) + \overline{A}CE + \overline{A}\overline{B} + \overline{D}\overline{C} =$$

$$= \overline{ABC} + B\overline{D} + \overline{AC} + \overline{BE} + \overline{AB} + \overline{BC} =$$

$$\frac{1}{2}\left(\frac{10}{L}\right)_{1,3} = \rho = 5$$

$$\left(\frac{W}{L}\right)_{2/4} = n = 2$$

SERIE DI 2005
$$\frac{1}{x} + \frac{1}{x} = \frac{1}{p} = X = 2p = 10 = (\frac{w}{L}) 5,6,7,8,9,10,11$$

) PDW

SERIE DI 4005
$$\Rightarrow$$
 $\left(\frac{w}{L}\right)_{u, 6, 14, 8} = 4n = 8$ $\left(\frac{w}{L}\right)_{13, 14, 15} = 3n = 6$

$$\left(\frac{\omega}{L}\right)_{13,14,15} = 3n = 6$$

ERCIZIO C

$$R_1 = 2K2$$

$$R_2 = 150R$$

$$R_3 = 2\infty R$$

$$R_4 = 250R$$

$$R_5 = 2KR$$

$$R_6 = 3KR$$

$$C = 330nF$$

Vcc = 6V

$$R_{1}$$

$$R_{2}$$

$$R_{1}$$

$$V_{12} = \frac{1}{3}V_{CC} = \frac{2V}{2V}$$

$$V_{11} = V_{CC} \frac{R_1}{R_1 + R_2 + R_4} = 5V$$

Versederler en VIH= 3Va= 4V

$$\overline{L}_{2} = \frac{V_{cc} - \overline{V_{TH}}}{R_{th}} = \frac{2}{250} = 8 \text{ mA} \implies V_{corr1} = V_{TH} - R_{2}\overline{L}_{2} = 2.8 \text{ V}$$

Vit < VCORI < Vf1 => CORRUTA

 $R_{V1} = R_{1} II (R_{2} + R_{4}) = 333.3 \mathcal{R}$

TI = RUL C = 120 MS

TI = T1 ln (Viz-VII) = 34. 117 ms

$$R_{V2} = R_{\perp} \prod_{k=1}^{\infty} \left[R_{2} + R_{3} \prod_{k=1}^{\infty} \left(R_{4} + R_{5} \right) \right] = 285.96 \text{ }\Omega$$