Algebraické štruktúry I

- algebraické štruktúry
- •grupa
- základné vlastnosti grupy
- morfizmy
- Boolova algebra

Binárne operácie

Teória algebraických štruktúr študuje všeobecné vlastnosti systémov, ktoré obsahujú množinu (alebo množiny) elementov, nad ktorým je obvykle definovaná binárna operácia (alebo operácie).

Definícia. *Binárna operácia* na množine *X* je predpis (funkcia)

$$f: X \times X \to X$$

ktorá dvom elementom $x, y \in X$ jednoznačne priradí element

$$z = x * y = f(x, y) \in X$$

$$\forall x \forall y \exists ! z (z = x * y = f(x, y))$$

Definícia. Usporiadaná dvojica (X,*) obsahujúca množinu X a binárnu operáciu * nad touto množinou sa nazýva *algebraická štruktúra*.

Príklady

- (1) Algebraická štruktúra (\mathbb{Z} ,+) obsahuje množina celých čísel \mathbb{Z} a binárnu operáciu súčet nad touto množinou. Podobným spôsobom môžeme definovať ďalšie dve algebraické štruktúry (\mathbb{Z} ,-) a (\mathbb{Z} ,×), ktoré sú založené na binárnych operáciách rozdiel resp. súčin.
- (2) Nech $X = \mathcal{P}(A)$ je potenčná množina pre množinu A. Operácia zjednotenia a prieniku priradí dvom podmnožinám z A nejakú podmnožinu z A

$$\cup : \mathcal{P}(A) \times \mathcal{P}(A) \to \mathcal{P}(A)$$

$$\cap : \mathcal{P}(A) \times \mathcal{P}(A) \to \mathcal{P}(A)$$

Potom existujú dve jednoduché algebraické štruktúry (X, \cup) a (X, \cap) .

Multiplikačná tabuľka

Binárna operácia '* môže byť špecifikovaná pomocou multiplikačnej tabuľky (ktorá sa v anglosaskej literatúre nazýva Caleyho tabuľka). Napríklad pre $X = \{a,b,c,d\}$ táto tabuľka má tvar

*	a	b	С	d
a	a d c d	b	\mathcal{C}	d
b	d	\mathcal{C}	a	b
\mathcal{C}	\mathcal{C}	b	a	a
d	d	b	С	а

Definícia.

(1) Binárna operácia * sa nazýva *asociatívna* na množine X vtedy a len vtedy, ak pre každé $x, y, z \in X$

$$(x * y) * z = x * (y * z)$$

(2) Binárna operácia * sa nazýva *komutatívna* na množine X vtedy a len vtedy, ak pre každé $x, y \in X$

$$x * y = y * x$$

(3) Element $e \in X$ sa nazýva *jednotkový* vzhľadom k binárnej operácii * na množine X vtedy a len vtedy, ak pre každé $x \in X$

$$x * e = e * x = x$$

(4) Element $y \in X$ sa nazýva *inverzný* vzhľadom k elementu $x \in X$ a k binárnej operácii * na množine X vtedy a len vtedy, ak

$$y * x = x * y = e$$

Inverzný element y často značíme symbolom x^{-1} , aby sme zdôraznili je vzťah k elementu x.

Príklady

(1) Pre algebraickú štruktúru (\mathbb{Z} ,+) jednotkový element je nula, pre každé celé číslo $x \in \mathbb{Z}$ platí podmienka

$$0 + x = x + 0 = x$$

Pre dané celé číslo $x \in \mathbb{Z}$ existuje inverzný element $(-x) \in \mathbb{Z}$, ktorý spĺňa podmienku

$$(-x) + x = x + (-x) = 0$$

(2) Pre algebraickú štruktúru (\mathbb{Z} ,×) jednotkový element je číslo jedna, pre každé celé číslo $x \in \mathbb{Z}$ platí

$$x \times 1 = 1 \times x = x$$

Môžeme si položiť otázku, či každý element $x \in \mathbb{Z}$ má inverzný element? Napríklad, položme x = 5, potom inverzný element y vzhľadom k tomuto prvku je taký, čo vyhovuje podmienke

$$5 \times y = y \times 5 = 1$$

Táto podmienka nemá riešenie v množine celých čísel,

 $\neg\exists (y \in \mathbb{Z})(5 \times y = y \times 5 = 1)$. Preto, v rámci algebraického systému (\mathbb{Z} ,×) nemá zmysel hovoriť o inverznom elemente vzhľadom k binárnej operácii 'súčin'.

(3) Študujme algebraickú štruktúru $(\mathcal{P}(A), \cap, \cup)$, definovaný pre potenčnú množinu s dvoma binárnymi operáciami 'prienik' a 'zjednotenie'. Jednotkový a inverzný element pre tento algebraický systém musíme zaviesť separátne pre operáciu zjednotenia resp. prieniku. Každá z týchto operácií má svoj jednotkový element, pre každé $x \in \mathcal{P}(A)$

$$x \cap A = A \cap x = x$$
$$x \cup \emptyset = \emptyset \cup x = x$$

To znamená, že pre binárnu operáciu prieniku (zjednotenia) ako jednotkový element je množina A (prázdna množina \varnothing). Komplement $\overline{x} = A - x \in \mathcal{P}(A)$ nie je inverzný element vzhľadom k podmnožine $x \in \mathcal{P}(A)$

$$x \cup \overline{x} = \overline{x} \cup x = A$$
$$x \cap \overline{x} = \overline{x} \cap x = \emptyset$$

pretože na pravých stranách nemáme jednotkové elementy pre dané binárne operácie.

Veta. Nech * je binárna operácia na množine X. Ak existuje jednotkový element x*e=e*x=x, pre každé $x \in X$, potom tento jednotkový element existuje jednoznačne.

Predpokladajme, že existujú dva jednotkové elementy $e_1, e_2 \in X$, potom súčasne platí

$$e_1 * e_2 = e_2 * e_1 = e_1$$

$$e_2 * e_1 = e_1 * e_2 = e_2,$$

preto musí platiť $e_1 = e_2$

Veta. Nech * je binárna operácia na množine X, ktorá má jednotkový element $e \in X$. Ak pre každý element $x \in X$ existuje inverzný element, $x * x^{-1} = x^{-1} * x = e$, potom tento inverzný element existuje jednoznačne.

Predpokladajme, že x má dva inverzné elementy u a v

$$x * u = u * x = e$$
$$x * v = v * x = e$$

Potom

$$u = u * e = u * (x * v) = (u * x) * v = e * v = v$$

Poznamenajme, že dôkaz jednoznačnosti inverzného elementu kľúčovú úlohu hrala podmienka asociatívnosti súčinu *, ak tento súčin nie je asociatívny, potom nevieme zabezpečiť túto jednoznačnosť inverzného elementu.

Príklad

Budeme študovať binárnu operáciu * nad množinou $X = \{a,b,c,d\}$, ktorá je určená multiplikatívnou tabuľkou

Takto definovaná binárna operácia nie je asociatívna.

$$b*(c*d) = b*d = a$$
$$(b*c)*d = a*d = d$$

to znamená, že pre tento konkrétny výber troch elementov z množiny X sme dokázali

$$b*(c*d) \neq (b*c)*d$$

t. j. binárna operácia nie je asociatívna.

Pologrupy, monoidy a grupy

Budeme študovať jednoduché algebraické štruktúry (G,*), kde G je množina a * je binárna operácia nad touto množinou. Jedna z najjednoduchších takýchto algebraických štruktúr je pologrupa.

Definícia. Nech G je neprázdna množina a * je binárna operácia nad touto množinou. Algebraická štruktúra (G,*)sa nazýva **pologrupa** vtedy a len vtedy, ak binárna operácia * je asociatívna

$$(\forall x, y, z \in G)((x * y) * z = x * (y * z))$$

Ak binárna operácia * je aj komutatívna, potom algebraická štruktúra sa nazýva *komutatívna pologrupa* (alebo *Abelova pologrupa*).

Príklady

- (1) Algebraické štruktúry (N,+), (N,\times) sú komutatívne pologrupy. Binárne operácie súčtu a súčinu nad množnou celých čísel N sú asociatívne a komutatívne. Tieto dve algebraické štruktúry môžeme zovšeobecniť na množinu \mathbb{R} reálnych čísiel, potom štruktúry $(\mathbb{R},+)$, (\mathbb{R},\times) sú taktiež komutatívne pologrupy.
- (2) Nech $A = \{a,b,c,...\}$ je konečná množina symbolov našej abecedy. Reťazce dĺžky n obsahujúce znaky tejto množiny tvoria n-násobný karteziánsky produkt A^n . Množina $A^* = \{\epsilon\} \cup A_1 \cup A_2 \cup ...$, získame množinu, ktorá obsahuje všetky možné reťazce nad A, včítane prázdneho reťazca ϵ . Binárna operácia "spojenia" (konkatenácie) dvoch reťazcov $\alpha,\beta \in A^*$ vytvorí nový reťazec $\gamma = (\alpha + \beta) \in A^*$. Táto binárna operácia je asociatívna a nekomutatívna. Algebraická štruktúra $(A^*,+)$ je nekomutatívna pologrupa.

(3) Pre množinu $A = \{a,b,c\}$ definujme binárnu operáciu pomocou multiplikačnej tabuľky

Táto multiplikačná tabuľka je symetrická, z čoho plynie skutočnosť, že binárna operácia je komutatívna. Dôkaz asociatívnosti binárnej operácie je netriviálna záležitosť, pre všetky možné usporiadané trojice s opakovaním musíme dokázať, že platí zákon asociatívnosti

$$\forall (x, y, z \in A)(x*(y*z) = (x*y)*z)$$

Dá sa ukázať, že operácia * je asociatívna. Potom, algebraická štruktúra (A,*) je komutatívna pologrupa.

Definícia. Pologrupa (A,*) sa nazýva **monoid** vtedy a len vtedy, ak má jednotkový element.

Príklady

- (1) Algebraická štruktúra (N_+, \times) , kde množina N_+ obsahuje kladné celé čísla je monoid, existuje jednotkový prvok '1', ktorý zachováva súčin x*1=1*x=x. Podobná algebraická štruktúra $(N_+, +)$, ktorá je pologrupou, nie je monoid, pre operáciu súčet neexistuje v rámci množiny N_+ jednotkový prvok '0' (pretože $0 \notin N_+$), ktorý zachováva súčet x+0=0+x=x.
- (2) Nech $(A^*,+)$ je nekomutatívna pologrupa reťazcov nad abecedou A, pričom táto množina obsahuje aj prázdny znak ϵ . Táto algebraická štruktúra má jednotkový element ϵ , ktorý je neutrálny vzhľadom k binárnej operácii spojenia reťazcov

$$\forall (x \in A^*)(\varepsilon + x = x + \varepsilon = x)$$

Algebraická štruktúra $(A^*,+)$ je monoid.

(4) Nech (X, \cup) a (X, \cap) , kde $X = \mathcal{P}(A)$, sú algebraické štruktúry. Obe tieto štruktúry sú pologrupy, pretože množinové operácie zjednotenia a prieniku sú asociatívne. Tieto štruktúry tvoria monoidy, pretože prvá (druhá) štruktúra má jednotkový element prázdnu množinu \varnothing (množinu A)

$$\forall (X \in \mathcal{P}(A))(\varnothing \cup X = X \cup \varnothing = X)$$

$$\forall (X \in \mathcal{P}(A))(A \cap X = X \cap A = X)$$

Mnohé algebraické štruktúry, ktoré sú monoidy, majú ešte dodatočnú vlastnosť, ku každému prvku z množiny existuje inverzný element. Potom takýto monoid sa nazýva grupa. Algebraické štruktúry tohto typu našli široké uplatnenie nielen v mnohých oblastiach matematiky a informatiky, ale aj vo fyzike, chémii a pod.

Definícia. Monoid (G,*)sa nazýva *grupa* vtedy a len vtedy, ak ku každému elementu $x \in G$ existuje inverzný element $x^{-1} \in G$. Platí teda, že algebraická štruktúra (G,*) je *grupa* vtedy a len vtedy, ak sú splnené tieto tri podmienky:

- (1) binárna operácia * je asociatívna,
- (2) existuje jednotkový element $e \in G$,
- (3) pre každé $x \in G$ existuje inverzný element $x^{-1} \in G$.

Mohutnosť množiny G sa nazýva rád grupy (G,*), označuje sa |G|.

Príklady

- (1) Algebraická štruktúra (\mathbb{Z} ,+), kde \mathbb{Z} je množina celých čísel, je komutatívna grupa. Binárna operácia súčet '+' je asociatívna a komutatívna, číslo $0 \in \mathbb{Z}$ má charakter neutrálneho prvku vzhľadom k operácii '+', 0+x=x+0=x, pre každé číslo x; podobne, pre každé číslo $x \in \mathbb{Z}$ existuje 'inverzné' číslo $(-x) \in \mathbb{Z}$ také, že (-x)+x=x+(-x)=0.
- (2) Algebraická štruktúra (\mathbb{R}_+,\times) , kde $\mathbb{R}_+ = (0,\infty)$ a použitá binárna operácie je štandardný súčin, je komutatívna grupa. Binárna operácia je asociatívna a komutatívna, existuje neutrálny prvok $1 \in \mathbb{R}_+$, $1 \times x = x \times 1 = x$, pre každý prvok x, a taktiež ku každému x existuje inverzný prvok $x^{-1} = 1/x$, pre ktorý platí $x \times (1/x) = (1/x) \times x = 1$.

Veta. Ak algebraická štruktúra (G,*) je grupa, potom existuje "krátenie" zľava a zprava, pre každé $a,x,y\in G$ platí

(a) krátenie zľava

$$a * x = a * y \Rightarrow x = y$$

(b) krátenie sprava

$$x * a = y * a \Rightarrow x = y$$
.

Veta. Ak algebraická štruktúra (G,*) je grupa, potom pre ľubovolné $a,b \in G$ platí

- (a) rovnica a * x = b má jednoznačné riešenie $x = a^{-1} * b$,
- (b) rovnica x * a = b má jednoznačné riešenie $x = b * a^{-1}$.

Veta. Ak algebraická štruktúra (G,*) je grupa, potom v multiplikačnej tabuľke binárnej operácie * sa v každom riadku alebo stĺpci vyskytuje každý element z G práve len raz.

Predpokladajme, že a*x = a*y, potom x = y, čo je však v spore, že stĺpce sú rôzne. Dôkaz pre stĺpce je podobný.

Definícia. Hovoríme, že algebraická štruktúra (H,*) je **podgrupa** grupy (G,*) vtedy a len vtedy, ak $H \subseteq G$ a (H,*) je grupa, čo budeme zapisovať $(H,*) \subseteq (G,*)$.

- Ak $(H,*)\subseteq (G,*)$, potom obe štruktúry sú grupy a obe binárne operácie sú rovnaké.
- Každá grupa má aspoň dve triviálne podgrupy. Prvá je s množinou $H = \{e\}$ a druhá s množinou H = G, všetky ostatné podgrupy (ak existujú) nazývame netriviálne.

Veta (Lagrangeova). Nech $(H,*)\subseteq (G,*)$, potom rád množiny |G| je deliteľný rádom podmnožiny |H|, alebo existuje také kladné celé číslo k, že |G|=k|H| $((H,*)\subseteq (G,*))\Rightarrow \exists k(|G|=k|H|)$

Grupa permutácií

Nech S_n je množina tvorená všetkými permutáciami n objektov. Permutácie sú špecifikované ako 1-1-značné zobrazenie $P:A\to A$, ktoré každému objektu $i\in A$ priradí objekt $p_i\in A$, pričom z podmienky 1-1-značnosti vyplýva podmienka $\forall (i,j\in A) (i\neq j\Rightarrow p_i\neq p_j)$, permutáciu P vyjadríme formulou

$$P = \begin{pmatrix} 1 & 2 & \dots & n \\ p_1 & p_2 & \dots & p_n \end{pmatrix} \Leftrightarrow P = \begin{pmatrix} p_1 & p_2 & \dots & p_n \end{pmatrix}$$

$$|S_n| = n!$$

Binárna operácia * zobrazuje z dvoch permutácií novú permutácie $*: S_n \times S_n \to S_n$

$$P'' = P * P' = \begin{pmatrix} 1 & 2 & \dots & n \\ p_1 & p_2 & \dots & p_n \end{pmatrix} * \begin{pmatrix} 1 & 2 & \dots & n \\ p'_1 & p'_2 & \dots & p'_n \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 2 & \dots & n \\ p_1 & p_2 & \dots & p_n \end{pmatrix} * \begin{pmatrix} p_1 & p_2 & \dots & p_n \\ p''_1 & p''_2 & \dots & p''_n \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 2 & \dots & n \\ p''_1 & p''_2 & \dots & p''_n \end{pmatrix}$$

Súčin dvoch permutácií môžeme interpretovať ako kompozíciu dvoch zobrazení *P* a *P*′.

Znázornenie súčinu dvoch permutácií (3 2 1)*(2 1 3).

$$\begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} * \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$$
$$\begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} * \begin{pmatrix} 3 & 2 & 1 \\ 3 & 1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$$

Súčin dvoch permutácií musí byť asociatívnou operáciou, pre súčin ľubovolných troch permutácií P_1, P_2, P_3 platí

$$P_1 * (P_2 * P_3) = (P_1 * P_2) * P_3$$

Inverzná permutácia je zostrojená jednoduchou inverziou tabuľlky špecifikujúcej permutáciu

$$P = \begin{pmatrix} 1 & 2 & \dots & n \\ p_1 & p_2 & \dots & p_n \end{pmatrix} \Rightarrow P^{-1} = \begin{pmatrix} p_1 & p_2 & \dots & p_n \\ 1 & 2 & \dots & n \end{pmatrix}$$

Príklad

Zostrojte multiplikačnú tabuľku permutácií troch objektov. Jednotlivé permutácie označíme takto

$$P_1 = (123), P_2 = (231), P_3 = (312),$$

 $P_4 = (132), P_5 = (321), P_6 = (213)$

Potom multiplikačná tabuľka pre tieto permutácie má tvar

*	P_1	P_2	P_3	P_4	P_5	P_6
				P_4		
				P_5		
P_3	P_3	P_1	P_2	P_6	P_4	P_5
P_4	P_4	P_6	P_5	P_1	P_3	P_2
				P_2		
				P_3		

Morfizmy

Definícia. Hovoríme, že medzi grupami (G,*) a (G',\circ) existuje *izomorfimus* (alebo, že grupy sú *izomorfné*), čo značíme $(G,*)\cong (G',\circ)$, vtedy a len vtedy, ak existuje 1-1-značné zobrazenie $f:G\to G'$, ktoré $\forall (x,y\in G)(f(x*y)=f(x)\circ f(y))$

Príklad

Uvažujme dve grupy $(\mathbb{R},+)$ a grupu (\mathbb{R}_+,\times) , kde $\mathbb{R}_+ = (0,\infty)$. Dokážte, že funkcia $f(x) = 2^x$ definuje izomorfizmus medzi týmito dvoma grupami, $(\mathbb{R},+) \cong (\mathbb{R}_+,\times)$. Funkcia $f(x) = 2^x$ je monotónne rastúca, čiže je aj 1-1-značná. Funkcia má zaujímavú vlastnosť, $(\forall x,y \in \mathbb{R}) f(x+y) = f(x) \cdot f(y)$, pomocou ktorej sa jednoducho zostrojí izomorfizmus medzi grupami, $f: \mathbb{R} \to \mathbb{R}_+$.

Veta. Ak $f: G \to G'$ je izomorfizmus medzi grupami (G, *) a (G', \circ) , potom

- (1) Ak e je jednotkový element v grupe (G,*), potom f(e) je jednotkový element v grupe (G',\circ) .
- (2) Grupa (G,*) je komutatívna vtedy a len vtedy, ak (G',\circ) je komutatívna grupa.
- (3) Ak x^{-1} je inverzný element vzhľadom k elementu x v grupe (G,*), potom $f(x^{-1})$ je inverzný element vzhľadom k elementu f(x) v grupe (G',\circ) .
- (4) Inverzné zobrazenie $f^{-1}: G' \to G$ definuje izomorfizmus z grupy (G', \circ) do grupy (G, *).
- (5) Ak (H,*) je podgrupa grupy (G,*), potom (H',\circ) , kde $H' = \{f(x); x \in H\}$, je podgrupa grupy (G',\circ) a $(H,*) \cong (H',\circ)$.

Príklad

Dokážte, že ak $A = \{a,b\}$, potom monoidy $(\mathcal{P}(A), \cup)$ a $(\mathcal{P}(A), \cap)$ sú izomorfné. Multiplikatívne tabuľky pre tieto monoidy sú

\cup	Ø	<i>{a}</i>	$\{b\}$	$\{a,b\}$	•	\cap	Ø	<i>{a}</i>	$\{b\}$	$\{a,b\}$
-		<i>{a}</i>				Ø	\varnothing	Ø	Ø	Ø
		$\{a\}$				$\{a\}$				
$\{b\}$	$\{b\}$	$\{a,b\}$	$\{b\}$	$\{a,b\}$		$\{b\}$	Ø	Ø	$\{b\}$	$\{b\}$
$\{a,b\}$	$\{a,b\}$	$\{a,b\}$	$\{a,b\}$	$\{a,b\}$		$\{a,b\}$	\varnothing	<i>{a}</i>	$\{b\}$	$\{a,b\}$

1-1-značná funkcia $f: \mathcal{P}(A) \to \mathcal{P}(A)$, ktorá zobrazuje prvú tabuľku na druhú má tvar

$$f(\varnothing) = \{a,b\}$$
, $f(\{a\}) = \{a\}$, $f(\{b\}) = \{b\}$, $f(\{a,b\}) = \varnothing$

Potom medzi monoidami $(\mathcal{P}(A), \cup)$ a $(\mathcal{P}(A), \cap)$ existuje izomorfizmus.

Definícia. Hovoríme, že medzi grupami (G,*) a (G',\circ) existuje *morfizmus* vtedy a len vtedy, ak existuje zobrazenie $f: G \to G'$, ktoré $\forall (x,y \in G) (f(x*y) = f(x) \circ f(y))$

Ak medzi dvoma algebraickými štruktúrami existuje izomorfizmus, potom tieto štruktúry sú "skoro totožné". Ak odstránime podmienku 1-1-značnosti funkcie $f: G \to G'$, potom táto "skoro totožnosť" sa stráca, druhá algebraická štruktúra (G', \circ) stráca niektoré detaily prvej štruktúry.

Veta 2.10. Ak $f: G \to G'$ je *morfizmus* medzi grupami (G, *) a (G', \circ) , potom

- (1) Ak e je jednotkový element v grupe (G,*), potom f(e) je jednotkový element v grupe (G',\circ) .
- (2) Grupa (G,*) je komutatívna vtedy a len vtedy, ak (G',\circ) je komutatívna grupa.
- (3) Ak x^{-1} je inverzný element vzhľadom k elementu x v grupe (G,*), potom $f(x^{-1})$ je inverzný element vzhľadom k elementu f(x) v grupe (G',\circ) .

Príklad

Uvažujme množinu $A = \{a,b,c\}$, množina A^* obsahuje všetky možné reťazce (včítane prázdneho reťazca ε). Algebraická štruktúra $(A^*,*)$, kde binárna operácia * reprezentuje spájanie reťazcov, je monoid (existuje jednotkový element reprezentovaný prázdnym reťazcom ε). Nech existuje funkcia $f:A^* \to \mathbb{N}$, kde \mathbb{N} je množina nezáporných celých čísel, táto funkcia je definovaná takto f(x) = dľžka reťazca x

Ukážte, že toto zobrazenie f je morfizmus z $(A^*,*)$ na (N,+).

Z definície funkcie f vyplýva, že platí

$$f(x * y) = f(x) + f(y)$$

t. j. dĺžka spojeného reťazca x * y sa rovná súčtu dĺžok je zložiek x a y. Táto funkcia evidentne nie je 1-1-značná.

Boolova algebra

Elektronické obvody v počítačoch a v podobných zariadeniach sú charakterizované binárnymi vstupmi a výstupmi (rovnajúcimi sa 0 alebo 1), transformácia vstupu na výstupu sa uskutočňuje prostredníctvom elektronického obvodu, ktorý tvorí jadro tohto "transformačného" zariadenia.

Všeobecná definícia Boolovej funkcie je

$$f: \{0,1\}^m \to \{0,1\}^n$$

Môžeme si položiť otázku, ako realizovať túto Boolovu funkciu, aby mala vopred špecifikované vlastnosti? Tento problém je realizovaný pomocou Boolovej algebry, ktorá pomocou premenných s 0-1 ohodnotením (t. j. binárnych) premenných a pomocou dvoch elementárnych algebraických operácií a jednej unárnej algebraickej operácie je schopná dostatočne všeobecne modelovať Boolove funkcie s vopred špecifikovanými vlastnosťami.

Boolova algebra má dva známe modely, prvým je výroková logika a druhým algebra teórie množín. Medzi zákonmi výrokovej logiky a formulami teórie množín existuje "dualizmus"

$$\neg (p \land q) \equiv (\neg p \lor \neg q) \Leftrightarrow \overline{A \cap B} = \overline{A} \cup \overline{B}$$
$$\neg (p \lor q) \equiv (\neg p \land \neg q) \Leftrightarrow \overline{A \cup B} = \overline{A} \cap \overline{B}$$

Vo všeobecnosti, dualizmus medzi výrokovou logikou a algebrou teórie množín môžeme zosumarizovať takto

výrokové premenné $p,q,r,...\Leftrightarrow$ množiny A,B,C,... spojka negácie $\neg\Leftrightarrow$ operácia doplnku spojka konjunkcie $\land\Leftrightarrow$ operácia prieniku \cap spojka disjunkcie $\lor\Leftrightarrow$ operácia zjednotenia \cup spojka ekvivalentnosti $\equiv\Leftrightarrow$ relácia rovnosti \equiv

Definícia. *Boolova algebra* je algebraická štruktúra špecifikovaná usporiadanou 6-ticou $(B,+,\cdot,\bar{},0,1)$, kde $B = \{a,b,...,x,y,...\}$ je neprázdna množina prvkov (premenných Boolovej algebry), ktorá obsahuje dva špeciálne odlíšené prvky - konštanty $0,1 \in B$ a nad ktorou sú definované binárne operácie súčinu a súčtu $: B \times B \to B$ a $+: B \times B \to B$

a unárna operácia komplementu

$$: B \to B$$

ktoré vyhovujú týmto podmienkam

(1) komutatívnosť:

$$x \cdot y = y \cdot x$$
 a $x + y = y + x$

(2) asociatívnosť:

$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$
 a $(x + y) + z = x + (y + z)$

(3) distributívnosť:

$$x \cdot (y+z) = (x \cdot y) + (x \cdot z)$$
 a $x + (y \cdot z) = (x+y) \cdot (x+z)$

(4) vlastnosť konštanty 0:

$$x = x + \mathbf{0}$$
 a $x \cdot \overline{x} = \mathbf{0}$

(5) vlastnosť konštanty $\mathbf{1}: x = x \cdot \mathbf{1}$ a $x + \overline{x} = \mathbf{1}$

Najjednoduchšia Boolova algebra (s veľkým významom v informatike a v logike) je založená na dvojprvkovej množine $B = \{0,1\}$. Binárne operácie súčinu, súčtu a unárna operácia komplementu sú pomocou multiplikačných tabuliek definované takto

+	0	1	•	L	0	1	b	\overline{b}
0	0	1		0	0	0	0	1
1	1	1		1	0	1	1	0

Jednoducho sa môžeme presvedčiť, že algebraická štruktúra $(B,+,\cdot,\bar{},0,1)$ je Boolova algebra.

Nech $B = \mathcal{P}(A)$, kde $A = \{a,b,c,...\}$ je neprázdna množina. Operácie · a + sú realizované pomocou množinových operácií \cap resp. \cup , operácia komplementu je realizovaná ako množinový komplement vzhľadom k množine A, $\overline{x} = A - x$:

- (a) binárne operácie sú asociatívne, komutatívne,
- (b) medzi binárnymi operáciami platia distributívne zákony,
- (c) prázdna množina \varnothing má vlastnosti neutrálneho prvku pre operáciu $(\forall X \in B)(X \cup \varnothing = \varnothing \cup X = X)$
- (d) množina A má vlastnosti neutrálneho prvku pre operáciu \cap $(\forall X \in B)(X \cap A = A \cap X = X)$
- (e) pre každé $X \in B$ existuje komplement $\overline{X} \in B$ taký, že $(\forall X \in B) (X \cap \overline{X} = \emptyset)$ $(\forall X \in B) (X \cup \overline{X} = A)$

To znamená, algebraická štruktúra $(\mathcal{P}(A), \cup, \cap, \neg, \emptyset, A)$ je Boolova algebra.

Nech $B = \{p,q,r,...\}$ je množina výrokových formúl, ktorá je uzavretá vzhľadom k binárnym operáciám konjunkcie (\land), disjunkcie (\lor) a k unárnej operácii negácie (\neg). Pre túto množinu je definovaná aj relácia ekvivalentnosti ' \equiv ', dve formuly sú ekvivalentné vtedy a len vtedy, ak majú rovnakú pravdivostnú interpretáciu (logicky ekvivalentné). Z množiny B vyberieme formulu kontradikciu (napr. $p \land \neg p$) a označíme ju symbolom 0; podobne formula tautológia (napr. $p \lor \neg p$) je označená symbolom 1. To znamená, že symboly $\mathbf{0}$ a $\mathbf{1}$ patria do množiny B. Pre každú formulu p platia tieto vzťahy

$$p \lor 0 = 0 \lor p = p$$
 a $p \land 1 = 1 \land p = p$

Pretože logické spojky konjunkcie a disjunkcie sú komutatívne a asociatívne, pre tieto operácie platia taktiež distributívne zákony, algebraická štruktúra $(B, \vee, \wedge, \neg, 0, 1)$ tvorí Boolovu algebru.

Vlastnosti Boolovej algebry

Ukážeme, že tento princíp duality je aplikovateľný aj pre Boolove algebry.

Postulujme nejakú formulu Boolovej algebry, duálnu formu dostaneme tak, že urobíme zámenu symbolov

$$\cdot \rightarrow +, + \rightarrow \cdot, 0 \rightarrow 1 \text{ a } 1 \rightarrow 0$$

Uvažujme formulu Boolovej algebry, $(x + y) \cdot x \cdot \overline{y} = \mathbf{0}$, duálny tvar tejto formuly je $(x \cdot y) + x + \overline{y} = \mathbf{1}$.

Axiómy Boolovej algebry sú uvedené po dvojiciach duálnych formúl. To znamená, že ak v rámci Boolovej algebry odvodíme nejakú formulu, tak potom aj jej duálna forma je odvoditeľná pomocou postupu, ktorý je "duálny" k postupu prvej formuly.

Veta (princíp duality). Každá veta Boolovej algebry je taktiež vetou aj v duálnej forme.

V Boolovej algebre neutrálne prvky 1 a 0 existujú jednoznačne, podobne, komplementárny prvok existuje jednoznačne.

Veta. Neutrálne prvky 1 a 0 existujú jednoznačne.

Veta. Pre každý prvok $x \in B$ existuje jednoznačne prvok $\overline{x} \in B$ taký, že $x \cdot \overline{x} = \mathbf{0}$ a $x + \overline{x} = \mathbf{1}$.

Veta. Nech $(B, +, \cdot, -, \mathbf{0}, \mathbf{1})$ je Boolova algebra, potom platia tieto formule:

(1) Involutívnosť komplementu

$$(\forall x \in B)(\overline{\overline{x}} = x)$$

(2) Idempotentnost'

$$(\forall x \in B)(x \cdot x = x)$$
 a $(\forall x \in B)(x + x = x)$

(3) De Morganove zákony

$$(\forall x, y \in B)(\overline{x+y} = \overline{x} \cdot \overline{y})$$
 a $(\forall x, y \in B)(\overline{x \cdot y} = \overline{x} + \overline{y})$

(4) Nulitnost'

$$(\forall x \in B)(x+1=1)$$
 a $(\forall x \in B)(x\cdot 0=0)$

(5) Absorpcia

$$(\forall x, y \in B)(x + (x \cdot y) = x)$$
 a $(\forall x \in B)(x \cdot (x + y) = x)$

(6) Komplementy konštánt

$$\overline{0} = 1$$
 a $\overline{1} = 0$

(7) Vlastnosti konštánt vzhľadom k binárnym operáciám

$$0+0=0, 0+1=1, 1+0=1, 1+1=1$$
 a $0\cdot 0=0, 0\cdot 1=0, 1\cdot 0=0, 1\cdot 1=1$

Boolove funkcie

V úvode k tejto kapitole bola Boolova funkcia definovaná ako funkcia nad binárnymi premennými {0,1}. Tento pomerne zjednodušený pohľad na Boolovu funkciu bude teraz rozšírený tak, aby koncepcia Boolovej funkcie bola časťou Boolovej algebry.

Definícia. Nech $(B,+,\cdot,-,0,1)$ je Boolova algebra. Potom,

- (1) **Boolova premenná** je taká premenná, ktorá nadobúda hodnoty z množiny *B*,
- (2) *komplement premennej* x, označený \overline{x} , je taká premenná, ktorej hodnota sa rovná komplementu hodnoty premennej x (t. j. ak $x = b \in B$, potom $\overline{x} = \overline{b} \in B$,
- (3) *literál* je Boolova premenná x alebo jej komplement \overline{x}

$$x^{e} = \begin{cases} x & (pre \ e = 1) \\ \overline{x} & (pre \ e = 0) \end{cases}.$$

Definícia. Nech $(B,+,\cdot,^-,0,1)$ je Boolova algebra. Potom *Boolova formula*, obsahujúca Boolove premenné $x_1,x_2,...,x_n$, je definovaná takto:

- (1) konštanty **0** a **1** sú Boolove formuly,
- (2) Boolove premenné $x_1, x_2, ..., x_n$ sú Boolove formuly,
- (3) ak X a Y sú Boolove formuly, potom aj výrazy $(X \cdot Y)$, (X + Y), \overline{X} a \overline{Y} sú Boolove formuly.

Rastúca priorita operácií: (1) súčet, (2) súčin a (3) komplement. Napríklad, formulu $(x \cdot y) + z$ môžeme pomocou tejto konvencie vyjadriť v zjednodušenom tvare bez zátvoriek $x \cdot y + z$. Konečne, podobne ako v štandardnej algebre, budeme vynechávať znak súčinu, napríklad predchádzajúci ilustračný príklad má tvar xy + z.

Zjednodušte formulu $((x+y)\cdot(\overline{x}+\overline{y}))$. Použitím distributívneho zákona a zákona nulitnosti

$$((x+y)\cdot(\overline{x}+\overline{y}))=(x\cdot\overline{x})+(x\cdot\overline{y})+(y\cdot\overline{x})+(y\cdot\overline{y})=\underbrace{x}_{0}\overline{x}+x\overline{y}+y\overline{x}+\underbrace{y}_{0}\overline{y}=x\overline{y}+\overline{x}y$$

Definícia. Dve Boolove formule sú *ekvivalentné* (alebo *rovné*) vtedy a len vtedy, ak jedna formula je pomocou konečného počtu aplikácií axióm Boolovej algebry pretransformovaná na druhú formulu.

Podľa predošlého príkladu $\varphi_1 = (x + y) \cdot (\overline{x} + \overline{y})$ a $\varphi_2 = x\overline{y} + \overline{x}y$ sú ekvivalentné, pretože druhú formulu získame z prvej použitím konečného počtu aplikácií axióm Boolovej algebry, potom $\varphi_1 = \varphi_2$.

Definícia. Nech $(B,+,\cdot,-,0,1)$ je Boolova algebra.

- (1) **Boolova funkcia** premenných $x_1, x_2, ..., x_n$, pre danú, je funkcia $f: B^n \to B$, pričom $f(x_1, x_2, ..., x_n)$ je Boolova formula.
- (2) Všetky Boolove formule, ktoré sú navzájom ekvivalentné, definujú rovnakú funkciu.

Z tejto definície vyplýva, že ekvivalentné Boolove formuly špecifikujú rovnakú Boolovu formulu. Napríklad, máme dve funkcie

$$f: B^2 \to B \qquad f(x_1, x_2) = x_1(\overline{x}_1 + x_2)$$

$$g: B^2 \to B \qquad g(x_1, x_2) = x_1x_2$$

Použitím distribučného zákona ľahko dokážeme, že formuly sú ekvivalentné, $x_1(\overline{x_1} + x_2) = x_1x_2$, potom funkcie f a g sú rovnaké.

Definícia. *Súčinová klauzula* premenných $x_1, x_2, ..., x_n$ je Boolova formula, ktorá obsahuje súčin n literálov (t. j. premennú alebo jej komplement) pre každú premennú.

Ako príklad súčinovej klauzuly premenných x_1, x_2, x_3 sú tieto formuly: $x_1x_2x_3$, $x_1x_2\overline{x}_3$, $x_1\overline{x}_2x_3$, $\overline{x}_1x_2x_3$, ..., $\overline{x}_1\overline{x}_2\overline{x}_3$.

Ak použijeme formalizmus x^e , potom súčinovú klauzulu premenných $x_1, x_2, ..., x_n$, ktorá je špecifikovaná binárnym vektorom $\mathbf{e} = (e_1, e_2, ..., e_n)$, má tvar

$$l_e = x_1^{e_1} x_2^{e_2} ... x_n^{e_n}$$

Napríklad, pre e = (11011) súčinová klauzula má tvar

$$l_{(11011)} = x_1^1 x_2^1 x_3^0 x_4^1 x_5^1 = x_1 x_2 \overline{x}_3 x_4 x_5$$

Definícia. *Súčtová klauzula* premenných $x_1, x_2, ..., x_n$ je Boolova formula, ktorá obsahuje súčet n literálov (t. j. premennú alebo jej komplement) pre každú premennú.

Podobne ako pre súčinovú klauzulu, môžeme aj súčtovú klauzulu pre premenné $x_1, x_2, ..., x_n$ špecifikovať binárnym vektorom $x_1, x_2, ..., x_n$

$$L_e = x_1^{1-e_1} + x_2^{1-e_2} + \dots + x_n^{1-e_n}$$

Pre e = (10100) súčtová klauzula má tvar

$$L_e = x_1^0 + x_2^1 + x_3^0 + x_4^1 + x_5^1 = \overline{x}_1 + x_2 + \overline{x}_3 + x_4 + x_5$$

Veta. Každá Boolova funkcia $f(x_1, x_2, ..., x_n)$, ktorá sa identicky nerovná nule, môže byť špecifikovaná ako suma súčinových klauzúl

$$f(x_{1}, x_{2},...,x_{n}) = \sum_{e} f(e_{1}, e_{2},...,e_{n}) x_{1}^{e_{1}} x_{2}^{e_{2}}...x_{n}^{e_{n}}$$

$$= \sum_{e} f(e_{1}, e_{2},...,e_{n}) l_{(e_{1}, e_{2},...,e_{n})}$$

$$= \sum_{e} f(e) l_{e}$$

Naznačíme jednoduchý konštruktívny dôkaz. Boolova funkcia $f(x_1, x_2, ..., x_n)$ je vlastne špecifikovaná jej funkčnými hodnotami $f(e_1, e_2, ..., e_n)$ pre všetky hodnoty binárneho vektora $\mathbf{e} = (e_1, e_2, ..., e_n)$. Hovoríme, že funkcia f je špecifikovaná tabuľkou funkčných hodnôt, ktorá obsahuje 2^n riadkov

#	$\boldsymbol{e} = (e_1, e_2, \dots, e_n)$	$l_{(e_1,e_2,\ldots,e_n)}$
1	(0000)	0
2	(0001)	1
	•••••	•••••
i	$(e_1^{(i)}, e_2^{(i)}, \dots, e_n^{(i)})$	1/0
••••	•••••	•••••
2^n	(1111)	0

Súčinová klauzula $l_{(e_1,e_2,...,e_n)}(x_1,x_2,...,x_n) = x_1^{e_1}x_2^{e_2}...x_n^{e_n}$ má zaujímavú vlastnosť, jej funkčná hodnota sa rovná **1** len pre $(x_1,x_2,...,x_n) = (\boldsymbol{e}_1,\boldsymbol{e}_2,...,\boldsymbol{e}_n)$, kde $\boldsymbol{e}_i \in \{\boldsymbol{0},\boldsymbol{1}\}$, pre všetky iné prípady funkčná hodnota je **0**

$$l_{(e_1,e_2,...,e_n)}(x_1,x_2,...,x_n) = \begin{cases} \mathbf{1} & (pre(x_1,x_2,...,x_n) = (e_1,e_2,...,e_n)) \\ \mathbf{0} & (pre(x_1,x_2,...,x_n) \neq (e_1,e_2,...,e_n)) \end{cases}$$

To znamená, že pre Boolovu funkciu sú dôležité len funkčné hodnoty 1, funkčné hodnoty 0 nie sú podstatné pre náš konštruktívny dôkaz. Zostrojíme Boolovu formulu ako sumáciu týchto klauzúl (t. j. v DNF tvare)

$$F(x_1, x_2, ..., x_n) = \sum_{e} f(e_1, e_2, ..., e_n) l_{(e_1, e_2, ..., e_n)}$$

Boolove funkcie $f(x_1, x_2, ..., x_n)$ a $F(x_1, x_2, ..., x_n)$ sú ekvivalentné, t. j. majú rovnaké funkčné hodnoty pre rôzne hodnoty argumentov.

Zostrojte Boolovu funkciu $f(x_1, x_2) = x_1 + x_2$ v tvare DNF. Podľa dokázanej vety tvar tejto funkcie je

$$f(x_1, x_2) = f(\mathbf{0}, \mathbf{0}) \overline{x}_1 \overline{x}_2 + f(\mathbf{0}, \mathbf{1}) \overline{x}_1 x_2 + f(\mathbf{1}, \mathbf{0}) x_1 \overline{x}_2 + f(\mathbf{1}, \mathbf{1}) x_1 x_2$$

kde jednotlivé funkčné hodnoty sú uvedené v tabuľke

#	e_1	e_2	$f(e_1,e_2)$
1	0	0	0
2	0	1	1
3	1	0	1
4	1	1	1

Potom funkcia f má ekvivalentný DNF tvar

$$F(x_1, x_2) = \mathbf{0}\overline{x_1}\overline{x_2} + \mathbf{1}\overline{x_1}x_2 + \mathbf{1}x_1\overline{x_2} + \mathbf{1}x_1x_2 = \overline{x_1}x_2 + x_1\overline{x_2} + x_1x_2$$

Veta. Každá Boolova funkcia $f(x_1, x_2, ..., x_n)$, ktorá sa identicky nerovná jednotke, môže byť špecifikovaná ako súčin sumačných klauzúl

$$f(x_{1},x_{2},...,x_{n}) = \prod_{e} (f(e_{1},e_{2},...,e_{n}) + x_{1}^{e_{1}} + x_{2}^{e_{2}} + ... + x_{n}^{e_{n}})$$

$$= \prod_{e} (f(e_{1},e_{2},...,e_{n}) + L_{(1-e_{1},1-e_{2},...,1-e_{n})})$$

$$= \prod_{e} (f(e) + L_{\overline{e}})$$

Táto veta reprezentuje hlavný duálny výsledok tejto kapitoly, že každá Boolova funkcia môže byť jednoznačne vyjadrená ako súčin súčtových klauzúl (tento tvar sa nazýva vo výrokovej logike *konjunktívna normálna forma*, skratka KNF).

Vyjadrite $f(x_1, x_2) = x_1(x_1 + x_2)$ v KNF tvare. Tabuľku funkčných hodnôt tejto Boolovej funkcie má tvar

#	e_1	e_2	$e_1 + e_2$	$e_1(e_1+e_2)$
1	0	0	0	0
2	0	1	1	0
3	1	0	1	1
4	1	1	1	1

Použitím vety zostrojíme Boolovu funkciu, ktorá je ekvivalentná funkcii $f(x_1,x_2) = x_1(x_1 + x_2)$

$$f\left(x_{1}, x_{2}\right) = \left(\begin{array}{c} \\ \\ \end{array}\right) \left(\begin{array}{c} \\ \end{array}\right)$$

$$= \underbrace{\left(\underbrace{f\left(\mathbf{0},\mathbf{0}\right)}_{\mathbf{0}} + x_{1} + x_{2}\right) \cdot \left(\underbrace{f\left(\mathbf{0},\mathbf{1}\right)}_{\mathbf{0}} + x_{1} + \overline{x}_{2}\right) \cdot \left(\underbrace{f\left(\mathbf{1},\mathbf{0}\right)}_{\mathbf{1}} + \overline{x}_{1} + x_{2}\right) \cdot \left(\underbrace{f\left(\mathbf{1},\mathbf{1}\right)}_{\mathbf{1}} + \overline{x}_{1} + \overline{x}_{2}\right)}_{\mathbf{1}}$$

$$= (x_1 + x_2) \cdot (x_1 + \overline{x}_2)$$

"Nobody on the Internet knows I am a dog." "Ninguém na Internet sabe que eu sou um cão."

Histogram výsledkov 1. písomky

