Kirill Grinko

Personal

Hard skills C++, Algorithms & data structures, Concurrency, C, Assembly x86-64, Python, LaTeX, Git, CMake, Gitlab CI/CD, GoogleTest, Bash, Docker, Qt, SFML.

Soft skills Hard-working, Quick-learning, Organised, Outgoing and collaborative.

Languages English (B2), Chinese (A1), Russian (native speaker).

Hobbies Calisthenics, skiing, cycling, piano.

Projects

Spring 2025 Concurrency course homework, Used tools: C++

Implemented various synchronization primitives using atomic operations only. Built a thread pool and stackful coroutines. Combined them to create fibers (user-space cooperative threads) and implemented synchronization primitives for them. Developed functional combinators for working with futures (representing values computed by asynchronous operations). Implemented a lock-free data structures (atomic shared_ptr, stack, queue) using the hazard pointers scheme. Upcoming: work-stealing thread pool, channels for fibers, laziness optimization for futures.

Fall 2024 - C++ course homework, Github page (clickable), Used tools: C++

Spring 2025 Implemented template allocator-aware data structures (unordered_map, list, smart pointers, strategy-based array, matrix), type-erased configuration system with vtable, compile-time 8-puzzle solver, JSON converter, geometry primitives, big_integer.

Fall 2024 **Graphing Calculator**, *Github page (clickable)*, Used tools: C++, SFML, CMake A graphing calculator and plotter application.

Fall 2024 – Algorithms and data structures course homework, *Github page* (*clickable*), Spring 2025 – Used tools: C. J.

Spring 2025 Used tools: C++

Implemented solutions to competitive programming problems covering fundamental algorithms and data structures, dynamic programming techniques, graph algorithms, algorithms on strings, and number theory algorithms.

Spring 2024 **Box with molecules**, *Github page (clickable)*, Used tools: C++, Qt, CMake A simulation of an ideal gas in an enclosed space, including a small research component to test the validity of the Maxwell distribution.

Fall 2023 – Physics Laboratory Works, *Github page (clickable)*, Used tools: LaTeX, Python Spring 2024 A collection of completed laboratory works in physics, including theoretical calculations, experimental data analysis, and visualizations using Python.

Fall 2023 MBTI test, Github page (clickable), Used tools: Python, Qt, SQL A program for taking the Myers–Briggs Type Indicator (MBTI) personality test.

Fall 2023 **Text editor**, *Github page (clickable)*, Used tools: Python A simple text editor designed for use in an internet browser.

Education

2023 – present Moscow Institute of Physics and Technology, finished 4th semester bachelor, Overall GPA 4.70/5, Programming courses GPA 4.81/5
Phystech School of applied Mathematics and Informatics.

2019 – 2023 Moscow State School 57, 8-11 grade, GPA 5/5 Focus on physics and math. Graduated with federal and Moscow gold medals.

Achievements

- 2022 2023 All-Russian Olympiad for schoolchildren in physics (Final stage participant, top 80 in country); Phystech (MIPT) Olympiad in physics (Gold); Rosatom Olympiad in physics (Silver); Moscow Olympiad for schoolchildren in physics (Silver).
- 2021 2022 Rosatom Olympiad in physics and maths (Gold, Silver); All-Russian Olympiad for schoolchildren in physics (Regional stage prize winner); Phystech (MIPT) Olympiad in physics and maths (Silver, Silver).
- 2020 2021 All-Russian Olympiad for schoolchildren in physics (Regional stage prize winner); Moscow Olympiad for schoolchildren in physics (Silver).
- 2019 2020 International Experimental Physics Olympiad (Bronze); Moscow Olympiad for schoolchildren in physics (Silver).

Extracurricular activities

2019 – 2023 Olympiad Physics Classes

Theoretical and experimental training for All-Russian Olympiad for schoolchildren in physics, organized by the Moscow City Department of Education.

2020 - 2022 Yandex Lyceum

Python programming classes for high school students. More info (clickable).

2021 QuSoft Quantum Quest

An online course on quantum computing for high school students, developed by Michael Walter and Māris Ozols. More info (clickable).

Courses taken

MIPT Analytical Geometry; Introduction to Mathematical Analysis; General Physics: Mechanics; Algebra of Logic, Combinatorics, Graph Theory; Python Practicum; Linear Algebra; Multivariate Analysis, Integrals, and Sequences; General Physics: Thermodynamics and Molecular Physics; General Physics: Laboratory Practicum 1 – 2; Fundamentals of Higher Algebra and Coding Theory; Programming Technologies; Multiple Integrals and Field Theory; Fundamentals of Theory of Measure and Probability; Computer Architecture and Operating Systems; Harmonic Analysis; Probability Theory; Computing Architecture and Assembly Languages; Concurrency; Discrete Structures 1 – 2; Differential Equations 1 – 2; Algorithms and Data Structures 1 – 3; Programming in C++ 1 – 2.