Here we try to improve the r2 value for different types of kernel by passing hyper tuning parameter and then to find the best model out of it.

1. MULTIPLE LINEAR REGRESSION

R2 - 0.93

2. SUPPORT VECTOR MACHINE

S.NO	HYPERTUNING PARAMETER			KERNEL TYPE			
	С	Max_iter	EPSILON	LINEAR	RBF	POLY	SIGMOID
				(r score)	(r score)	(r score)	(r score)
1	1.0	-1.0	0.1	<mark>0.8950</mark>	-0.0574	-0.0571	-0.0572
2	10	-1.0	0.5	-2.4371	-0.0568	-0.0536	-0.0547
3	100	-1.0	1.0	-357.07	-0.0507	-0.0198	-0.0304
4	500	1000	0.1	0.6158	-0.0243	0.1146	0.0705
5	1000	2000	0.5	-7.3638	0.0067	0.2661	0.1850
6	2000	4000	1.0	0.6176	0.0675	0.4810	0.3970
7	3000	6000	0.1	0.5113	0.1232	0.6370	0.5913
8	4000	8000	0.5	-7.5174	0.1723	0.7326	0.6282
9	6000	12000	1.0	0.5000	0.2452	0.8226	0.7972
10	10000	20000	0.1	-7.8333	0.3718	0.8129	0.8535

Support Vector machine with linear kernel type and hyper parameter (C=1.0, max_iter=-1.0, Epsilon=0.1) has R²value as 0.8950

C-Regularization Parameter:

The strength of the regularization is inversely proportional to C, It must be strictly positive.

High C value → Overfitting

Low C value → reduce overfitting and Training accuracy

Max_iter-

Hard limit on iterations within solver, or -1 for no limit. This value prevent the algorithm from running indefinitely, especially in cases where convergence is difficult to achieve

High max_iter value → Better accuracy Low max_iter value → Less accurate

Epsilon

Epsilon specifies a margin around the true target values within which predictions are considered acceptable. If the predicted value lies within this margin, no penalty is assigned during trainin, Must be non-negative

High epsilon value → better handle unseen data but could reduce precision Low epsilon value → Improve accuracy but may lead to overfitting

3. DECISION TREE:

S.No	CRITERION	MAX FEATURES	SPLITTER	R SCORE
1	Squared_error	None	Best	0.9042
2	Squared_error	None	random	0.2729
3	Squared_error	Sqrt	Best	0.8134
4	Squared_error	Sqrt	random	0.5575
5	Squared_error	log2	Best	0.5837
6	Squared_error	log2	random	0.3710
7	friedman_mse	None	Best	0.9114
8	friedman_mse	None	random	0.8972
9	friedman_mse	Sqrt	Best	0.8178
10	friedman_mse	Sqrt	random	0.3956
11	friedman_mse	log2	Best	0.4322
12	friedman_mse	log2	random	0.5461
13	absolute_error	None	Best	<mark>0.9486</mark>
14	absolute_error	None	random	0.9129
15	absolute_error	Sqrt	Best	0.5174
16	absolute_error	Sqrt	random	0.2755
17	absolute_error	log2	Best	0.5986
18	absolute_error	log2	random	0.3732
19	Poisson	None	Best	0.9161
20	Poisson	None	random	0.9100
21	Poisson	Sqrt	Best	0.7009
22	Poisson	Sqrt	random	0.8058
23	Poisson	log2	Best	0.6698
24	Poisson	log2	random	0.5628

Decision Tree with (Criterion='absolute_error', splitter='best',max_features=None) have R^2 value as 0.9486

Criterion:

The function is to measure the quality of a split.

Squared Error:

- It ensures that the tree prioritizes split that create groups with closer predicted values to the actual values
- It minimizes the L2 loss using the mean of each terminal node

Absolute Error:

• It minimizes the L1 loss using the median of each terminal node

Friedman_mse:

• It is based on Friedman's improvement score, which evaluates potential splits by considering both the reduction in mean squared error and the weighted difference between the means of the left and right regions after the split

Poisson:

- The poisson criterion in decision trees is used for regression tasks, particularly when the target variable represents count data
- It evaluates the quality of a split by reducing the Poisson deviance, which is a measure of how well the model predicts the count data.

Max_Features: It determines the maximum number of features to consider when looking for the best split at each node.

- If set to an integer, it specifies the exact number of features to consider.
- If set to a float, it represents a fraction of the total number of features (e.g., 0.5 means 50% of the features).
- If set to "auto" or "sqrt", it uses the square root of the total number of features (common for classification tasks).
- If set to "log2", it uses the base-2 logarithm of the total number of features.
- If set to None, all features are considered.

Splitter: The strategy used to select the feature and threshold for splitting each node.

• Supported strategies are "best" to choose the best split and "random" to choose the best random split.