Eric numbers

whitejeric

August 2019

1 Eric numbers

1.1 Basics:

One day on the bus I started thinking about integers of the form $(xy)_{10}$ st. $xy = x(y) + y^2$. ie) $45 = 4(5) + 5^2$ and decided to formulate a method for finding them.

Known relatives: Kaprekar ($45^2 = 2025$, 45 = 20 + 25), Hashand (4 + 5 = 9, 9|45) and Triangular (0, 1, 3, 6, 10, 15...) numbers. Products of two squares ($45 = 6^2 + 3^2$).

1.2 Findings so far:

Defined and found $f((xi)_{10}) := f(x,i) = xi + i^2 = (x+1)i + 2a_i$ where a_i denotes the i^{th} triangular number. ie. $f(4,5) = 5(5) + 2a_5 = 30 + 2(10)$

Notes on a_i :

$$a_0 = 0$$

$$a_i = a_{i-1} + (i-1)$$

Quick proof by induction:

let $f(x,y) = x(y) + y^2 = (x+1)y + 2a_y$ for $y \le i$.

then:

$$\begin{split} x(i+1) + (i+1)^2 &= xi + x + i^2 + 2i + 1 \\ &= (xi + i^2) + x + 2i + 1 \\ &= ((x+1)i + 2a_i) + x + 2i + 1 \text{ (by hyp.)} \\ &= (x+1)i + 2(a_i+i) + x + 1 \\ &= (x+1)(i+1) + 2(a_i+i) \end{split}$$

Follows that Eric numbers of two digits are roots of the function F(x,i) = f(x,i) - 10x - i and generalized to $F(x,i) = f_s(x,i) - 10^s x - i$ for numbers with greater than 2 digits where s denotes the split point from the right ie. $f_2((1025)_10) = f(10,25)$, $f_1((1025)_10) = f(102,5)$.

Rearranging the original formula to solve for x however we find a very simple function for finding all possible Eric numbers:

$$x = -\frac{i^2 - i}{i - 10^{(\lfloor log(i) \rfloor + 1)}}$$

Iterating over i yields the first 5 Eric numbers: