(19) 日本国特許庁(JP)

(12) 公 開 特 許 公 報(A)

(11)特許出願公開番号

特**期2006-22244** (P2006-22244A)

(43) 公開日 平成18年1月26日 (2006.1.26)

(51) Int.Cl. COSL 9/00 COSF 4/70 COSF 136/06 COSK 3/04 COSL 21/00	FI (2006.01) CO8L (2006.01) CO8F (2006.01) CO8K (2006.01) CO8L 審査請求 5	4/70 4 J O 3 8 136/06 4 J 1 O O 3/04 4 J 1 2 8	
(21) 出願番号 (22) 出願日	特願2004-202751 (P2004-202751) 平成16年7月9日 (2004.7.9)	産株式会社千葉石油化学工場内 (72)発明者 岡本 尚美 千葉県市原市五井南海岸8番の1 宇産株式会社千葉石油化学工場内 Fターム(参考) 4J002 AC01X AC03W AC03X AC06X AC08X AC09X BB15X BB18X DB1236 DJ006 FD016 GH00 GH	部興 部興 CO7X A036 NO1
		最終頁に続	<

(54) 【発明の名称】 タイヤコードコーティング用ゴム組成物

(57) 【要約】

【課題】 ダイスウェルが小さく、またグリーンストレングスが大きく成形加工性に優れ、且つ加硫物の弾性率が大きい、カーカス、ベルト、ビード等のタイヤコードコーティング用ゴム組成物を得ることを目的とする

【解決手段】 1, 2 -ポリブタジエン結晶繊維とゴム分とからなるビニル・シスポリブタジエンゴム組成物(a) $10 \sim 60$ 重量%と、

(a) 以外のジエン系ゴム(b) $90\sim40$ 重量%とからなるゴム成分(a) + (b) 100 重量部とゴム補強剤(c) $30\sim80$ 重量部とからなるゴム組成物であって、

該ビニル・シスポリブタジエンゴム (a) に含有される1,2-ポリブタジエン結晶繊維の平均の単分散繊維結晶の短軸長が0.2μm以下、アスペクト比が10以下であり、且つ平均の単分散繊維結晶数が10以上の短繊維状であり、かつ融点が170℃以上であることを特徴とするタイヤコードコーティング用ゴム組成物。

【選択図】 なし

【特許請求の範囲】

【請求項1】

- 1,2-ポリブタジエン結晶繊維とゴム分とからなるビニル・シスポリブタジエンゴム (a) 10~60重量%と、
- (a) 以外のジエン系ゴム(b) 90~40重量%とからなるゴム成分(a) + (b) 100重量部と

ゴム補強剤(c) 30~80重量部とからなるゴム組成物であって、

該ビニル・シスポリブタジエンゴム(a)に含有される1,2-ポリブタジエン結晶繊維の平均の単分散繊維結晶の 短軸長が0.2μm以下であり、アスペクト比が10以下であり、平均の単分散繊維結晶数が10以上の短繊維状であり、か つ融点が170℃以上であること

を特徴とするタイヤコードコーティング用ゴム組成物。

【請求項2】

該ビニル・シスポリブタジエンゴム (a) が

- (1) 1, 3 ブタジエンと溶解度パラメーターが8.5以下である炭化水素系有機溶剤を主成分としてなる混合物の水分の濃度を調節し、
- (2) 次いで、シスー1, 4重合の触媒として、一般式AIRn X3- π (但し、Rは炭素数1~6のアルキル基、フェニル基又はシクロアルキル基であり、Xはハロゲン元素であり、 π は1.5~2である。)で表されるハロゲン含有有機アルミニウム化合物と可溶性コバルト化合物とを前記混合物に添加して1,3-ブタジエンをシス-1,4 重合し、
- (3) 次いで、得られた重合反応混合物中に可溶性コバルト化合物と一般式 $A \perp R3$ (但し、R は炭素数 $1 \sim 6$ のアルキル基、フェニル基又はシクロアルキル基である) で表される有機アルミニウム化合物と二硫化炭素とから得られる触媒を存在させて、 1 、 3 7 - 7 -

製造されていることを特徴とする請求項1に記載のタイヤコードコーティング用ゴム組成物ゴム組成物。

【請求項3】

該ビニル・シスポリブタジエンゴム(a)が下記の特性を有することを特徴とする請求項1~2に記載のタイヤコードコーティング用ゴム組成物。

- (1) 該ビニル・シスーポリブタジエンゴムの沸騰 $n-\alpha$ + サン不溶分の分子量指標 η s p / c が 0 . $5\sim 4$ の範囲にあること。
- (2) 該ビニル・シスーポリブタジエンゴムの沸騰 n-ヘキサン可溶分のポリスチレン換算重量平均分子量が 3 0 万~ 8 0 万の範囲にあること。
- (3) 該ビニル・シスーポリブタジエンゴムの沸騰 n-ヘキサン可溶分のミクロ構造中のシス構造含有量が 9 0 %以上であること。
- (4) 該ビニル・シスーポリブタジエンゴムの沸騰 n ーヘキサン可溶分のトルエン溶液粘度とムーニー粘度の関係がT c p / $ML \ge 1$ であること。
- (5) 該ビニル・シスーポリブタジエンゴムの沸騰 n-ヘキサン可溶分の [n] の値が1.0~5.0の範囲にあること。

【請求項4】

(a)以外のジエン系ゴム(b)が、天然ゴム及び/又はポリイソプレンであることを特徴とする請求項1~3に記載のタイヤコードコーティング用ゴム組成物。

【請求項5】

ゴム補強剤(c)がカーボンブラックであることを特徴とする請求項1~4に記載のタイヤコードコーティング用ゴム組成物。

【発明の詳細な説明】

【技術分野】

[0001]

本発明は、ダイ・スウェルが小さくて押出加工性に優れ、且つ金属との接着性の良好なカーカス、ベルト等のタイヤコーティングゴムといったタイヤの内部材用ゴム組成物に関するものである。また、本発明のタイヤに使用されるゴム組成物は、更にタイヤにおける

キャップトレッド、サイドウォール、チェーファー、ベーストレッド、ビード等のタイヤ部材や、ホース、ベルト、ゴムロール、ゴムクーラー、靴底ゴムなどの工業製品にも用いる事ができる。

【背景技術】

[0002]

ポリブタジエンは、いわゆるミクロ構造として、1, 4 - 位での重合で生成した結合部分(1, 4 - 構造)と1, 2 - 位での重合で生成した結合部分(1, 2 - 構造)とが分子鎖中に共存する。1, 4 - 構造は、更にシス構造とトランス構造の二種に分けられる。- 方、1, 2 - 構造は、ビニル基を側鎖とする構造をとる。

[0003]

従来、ビニル・シスポリブタジエンゴム組成物の製造方法は、ベンゼン、トルエン、キシレンなどの芳香族炭化水素系溶媒で行われてきた。これらの溶媒を用いると重合溶液の粘度が高く撹拌、伝熱、移送などに問題があり、溶媒の回収には過大なエネルギーが必要であった。又、前記溶媒は毒性の為、発癌作用の為に環境にとって非常に危険性のあるものであった。

[0004]

上記の製造方法としては、前記の不活性有機溶媒中で水,可溶性コバルト化合物と一般式 $A1R_nX_{3-n}$ (但しRは 炭素数 $1\sim 6$ のアルキル基,フェニル基又はシクロアルキル基であり,Xはハロゲン元素であり,nは $1.5\sim 2$ の数字)で表せる有機アルミニウムクロライドから得られた触媒を用いて 1,3 ーブタジエンをシス 1,4 重合して 1,3 を製造して,次いでこの重合系に 1,3 ーブタジエン及び/または前記溶媒を添加するか或いは添加しないで可溶性コバルト化合物と一般式 $A1R_3$ (但しRは炭素数 $1\sim 6$ のアルキル基,フェニル基又はシクロアルキル基である)で表せる有機アルミニウム化合物と二硫化炭素とから得られる触媒を存在させて 1,3 ーブタジエンをシンジオタクチック 1,2 重合(以下,1,2 重合と略す)する方法(例えば、特公昭 49-17666 6 号公報(特許文献 1),特公昭 49-1766 7 号公報(特許文献 1)。参照)は公知である。

[0005]

また、例えば、特公昭62-171号公報(特許文献3),特公昭63-36324号公報(特許文献4),特公平2-37927号公報(特許文献5),特公平2-38081号公報(特許文献6),特公平3-63566号公報(特許文献7)には、二硫化炭素の存在下又は不在下に1,3-ブタジエンをシス1,4重合して製造したり,製造した後に1,3-ブタジエンと二硫化炭素を分離・回収して二硫化炭素を実質的に含有しない1,3-ブタジエンや前記の不活性有機溶媒を循環させる方法などが記載されている。更に特公平4-48815号公報(特許文献8)には配合物のダイスウェル比が小さく、その加硫物がタイヤのサイドウォールとして好適な引張応力と耐屈曲亀裂成長性に優れたゴム組成物が記載されている。

[0006]

また、特開 2000-44633 号公報(特許文献 9)には、n-ブタン,シス $2-\overline{J}$ テン,トランス $-2-\overline{J}$ テン,及びブテン -1 などの C4 留分を主成分とする不活性有機溶媒中で製造する方法が記載されている。この方法でのゴム組成物が含有する 1 , 2-ポリブタジエンは短繊維結晶であり、短繊維結晶の長軸長さの分布が繊維長さの 98%以上が 0.6μ m未満であり, 70%以上が 0.2μ m未満であることが記載され、得られたゴム組成物はシス 1 , 4 ポリブタジエンゴム(以下,BRと略す)の成形性や引張応力,引張強さ,耐屈曲亀裂成長性などを改良されることが記載されている。

[0007]

一般にラジアルタイヤでは、高速耐久性や高速操縦性の点からスチールコードも使用されている。スチールコードを使用する場合、タイヤ走行時にスチールコード近傍のゴムに非常に大きな歪み集中が生じやすい。従って、スチールコード用ゴムとしては高弾性率で金属との接着性に優れることが必要とされる。有機繊維コードを用いるラジアルタイヤ、バイアスタイヤにおいても耐久性の観点からコード用ゴムとしては高弾性率のものが好ま

しい。

[0008]

高弾性率のゴムを得る方法としては従来から種々の方法が試みられている。カーボンブラックを多量配合する方法は、加工工程でのゴムのまとまりが悪いこと、混練や押出時に電力負荷が増大すること、配合物MLが大きくなるので押出成形時に困難が伴うため好ましくない。硫黄を多量配合する方法は、硫黄がブルームすること、架橋密度の増大によって亀裂成長が速くなる等の欠点を有する。熱硬化性樹脂の添加は、熱硬化性樹脂がコードコーティングゴムとして一般的に用いられる天然ゴムやジエン系ゴムとの相溶性が低いので分散不良になりやすく耐クラック性に劣る。また、従来公知のタイヤコードコーティングゴム組成物はグリーンストレングスが小さく、成形加工性の点からさらにグリーンストレングスの大きいものが要求されている。

[0009]

【参考特許文献】特公昭49-17666号公報

【参考特許文献】特公昭49-17667号公報

【参考特許文献】特公昭62-171号公報

【参考特許文献】特公昭63-36324号公報

【参考特許文献】特公平2-37927号公報

【参考特許文献】特公平2-38081号公報

【参考特許文献】特公平3-63566号公報

【参考特許文献】特公平4-48815号公報

【参考特許文献】特開2000-44633号公報

【発明の開示】

【発明が解決しようとする課題】

[0010]

本発明は、ダイスウェルが小さく、またグリーンストレングスが大きく成形加工性に優れ、且つ加硫物の弾性率が大きい、カーカス、ベルト、ビード等のタイヤコードコーティング用ゴム組成物を得ることを目的とする。

【課題を解決するための手段】

[0011]

本発明は、1, 2 -ポリブタジエン結晶繊維とゴム分とからなるビニル・シスポリブタジエンゴム組成物 (a) 1 $0 \sim 6.0 重量%$ $2 \sim 6.0 重量%$

(a) 以外のジエン系ゴム(b) $90\sim40$ 重量%とからなるゴム成分(a) + (b) 100 重量部とゴム補強剤(c) $30\sim80$ 重量部とからなるゴム組成物であって、

該ビニル・シスポリブタジエンゴム(a)に含有される1,2-ポリブタジエン結晶繊維の平均の単分散繊維結晶の短軸長が0.2μm以下、アスペクト比が10以下であり、且つ平均の単分散繊維結晶数が10以上の短繊維状であり、かつ融点が170℃以上であること

を特徴とするタイヤコードコーティング用ゴム組成物に関する。

[0012]

また、本発明は、該ビニル・シスポリブタジエンゴム(a)が

- (1) 1, 3-ブタジエンと溶解度パラメーターが 8. 5以下である炭化水素系有機溶剤を主成分としてなる混合物の水分の濃度を調節し、
- (2) 次いで、シスー1, 4重合の触媒として、一般式AlRnX3-n(但し、Rは炭素数1~6のアルキル基、フェニル基又はシクロアルキル基であり、Xはハロゲン元素であり、nは1.5~2である。)で表されるハロゲン含有有機アルミニウム化合物と可溶性コバルト化合物とを前記混合物に添加して1,3-ブタジエンをシスー1,4重合し、
- (3) 次いで、得られた重合反応混合物中に可溶性コバルト化合物と一般式A1R3(但し、Rは炭素数 $1\sim6$ のアルキル基、フェニル基又はシクロアルキル基である)で表される有機アルミニウム化合物と二硫化炭素とから得られる触媒を存在させて、1, 3 ブタジエンを1, 2 重合させて

製造されていることを特徴とするタイヤコードコーティング用ゴム組成物に関する。

[0013]

また、本発明は、該ビニル・シスポリブタジエンゴム (a) が

- (1) 該ビニル・シスーポリブタジエンゴムの沸騰n-ヘキサン不溶分の分子量指標 η s p/c が 0 . $5\sim 4$ の範囲にあること。
- (2) 該ビニル・シスーポリプタジエンゴムの沸騰 n- ヘキサン可溶分のポリスチレン換算重量平均分子量が 30万~80 万の範囲にあること。
- (3) 該ビニル・シスーポリブタジエンゴムの沸騰 n ーヘキサン可溶分のミクロ構造中のシス構造含有量が90%以上であること。
- (4) 該ビニル・シスーポリブタジエンゴムの沸騰 n −ヘキサン可溶分のトルエン溶液粘度とムーニー粘度の関係がT−cp/ML≥1であること。
- (5) 該ビニル・シスーポリブタジエンゴムの沸騰 $n-\alpha$ キサン可溶分の[n]の値が $1.0\sim5.0$ の範囲にあること。の特性を有することを特徴とする大型車両タイヤ用ゴム組成物に関する。

[0014]

また、本発明は、(a)以外のジエン系ゴム(b)が、天然ゴム及び/又はポリイソプレンであることを特徴とするタイヤコードコーティング用ゴム組成物に関する。

[0015]

また、本発明は、ゴム補強剤(c)がカーボンブラックであることを特徴とするタイヤコードコーティング用ゴム組成物に関する。

【発明の効果】

[0016]

本発明におけるタイヤコードコーティング用ゴム組成物は、平均の単分散繊維結晶の短軸長が0.2μm以下、アスペクト比が10以下であり、且つ平均の単分散繊維結晶数が10以上の短繊維状であり、かつ融点が170℃以上である1,2ーポリブタジエン結晶繊維を含有しているビニル・シスポリブタジエンゴムを含んでいるので、高弾性率でありながらダイ・スウェルが小さく、グリーンストレングスが大きくて押出成形加工性及び成形性に優れ、タイヤ製造の作業性を向上せしめ、且つ金属との接着性にも優れる。

【発明を実施するための最良の形態】

[0017]

本発明の(a)特定の1,2ーポリブタジエン結晶繊維とゴム分とからなるビニル・シスポリブタジエンゴムは、(1)1,2ーポリブタジエン結晶繊維の平均の単分散繊維結晶の短軸長が 0.2μ m以下、アスペクト比が10以下であり、且つ平均の単分散繊維結晶数が10以上の短繊維状であり、かつ融点が170で以上である1,2ーポリブタジエン結晶繊維 $1^{-5}0$ 重量部、および(2)ゴム分100重量部からなる。

[0018]

上記の(I) 成分の1, 2-ポリブタジエン結晶繊維は、平均の単分散繊維結晶の短軸長が0. 2μ m以下、好ましくは、0. 1μ m以下であり、また、アスペクト比が10以下、好ましくは、8以下であり、且つ平均の単分散繊維結晶数が10以上、好ましくは、15以上の短繊維状であり、かつ、融点が170℃以上、好ましくは、190~220℃である。

[0019]

(2) ゴム分としては、下記の特性を有するシス1,4-ポリブタジエンが好ましい。

[0020]

シス1, 4 - 構造含有率が一般に90%以上、特に95%以上で、ムーニー粘度 $10\sim130$ 、好ましくは $15\sim80$ であり、トルエン溶液粘度は $30\sim200$ 、好ましくは $30\sim100$ であり、実質的にゲル分を含有しない。【0021】

(1) 成分の1,2ーポリブタジエン結晶繊維と(2) ゴム分の割合は、(2) ゴム分100重量部に対して(1) 成分の1,2ーポリブタジエン結晶繊維が $1\sim50$ 重量部、

好ましくは、 $1 \sim 30$ 重量部である。上記範囲外であると、BR中の1, 2 -ポリブタジエン結晶繊維の短繊維結晶が大きくなり、特長となる高弾性率等が発現し難く、また加工性の悪化などの問題がある。

[0022]

また、本発明のビニル・シスーポリブタジエンゴム(a)は、下記の特性を有する。

(1) 該ビニル・シスーポリブタジエンゴム(a)の沸騰n-ヘキサン不溶分の分子量指標 (η s p/c)が 0. $5\sim4$ 、好ましくは、 0. $5\sim3$ の範囲にあること。

[0023]

上記範囲外であると、特長となる高弾性率や優れた加工性等の諸物性バランスが崩れる場合があり好ましくない。

(2) 該ビニル・シスーポリブタジエンゴム (a) の沸騰 $n-\Lambda$ + サン可溶分のポリスチレン換算重量平均分子量が30万~80万好ましくは、30万~60万の範囲にあること。

[0024]

上記範囲外であると、単分散繊維結晶化が困難の場合があり好ましくない。

(3) 該ビニル・シスーポリブタジエンゴム(a)の沸騰n-ヘキサン可溶分のミクロ構造中のシス構造含有量が9.0%以上、好ましくは、9.5%以上であること。

[0025]

上記範囲外であると、 単分散繊維結晶化が困難の場合があり好ましくない。

- (4) 該ビニル・シスーポリブタジエンゴム(a)の沸騰n-ヘキサン可溶分のトルエン溶液粘度(T-cp)とムーニー粘度(ML)の関係が $T-cp/ML \ge 1$ 、好ましくは、 $1\sim 4$ の範囲であること。
- (5) 該ビニル・シスーポリブタジエンゴム (a) の沸騰n-ヘキサン可溶分の $[\eta]$ の値が1.0~5.0、好ましくは、1.0~4.0の範囲にあること。

[0026]

上記範囲外であると、特長となる高弾性率や優れた加工性等の諸物性バランスが崩れる場合があり好ましくない。

[0027]

また、上記のゴム組成物は、例えば以下の製造方法で好適に得られる。

[0028]

溶解度パラメーター(以下、SP値と略)が8.5以下である炭化水素系溶媒を用いた重合により製造される。溶解度パラメーターが8.5以下である炭化水素系溶媒としては、

[0029]

例えば、脂肪族炭化水素、脂環族炭化水素であるn-ヘキサン(SP値: 7.2)、n-ペンタン(SP値: 7.0)、n-オクタン(SP値: 7.5)、シクロヘキサン(SP値: 8.1)、n-ブタン(SP6: 6.6)等が挙げられる。中でも、シクロヘキサンなどが好ましい。

[0030]

これらの溶媒のSP値は、ゴム工業便覧(第四版、社団法人:日本ゴム協会、平成6年1月20日発行;page721)などの文献で公知である。

[0031]

SP値が8.5よりも大きい溶媒を使用すると、BR中へのSPBの短繊維結晶の分散状態が本発明の如く形成され難いので(ないので)、優れたダイスウェル特性や高弾性率を発現しないので好ましくない。

[0032]

次に1, 3-ブタジエンと前記溶媒とを混合して得られた混合媒体中の水分の濃度を調節する。水分は前記媒体中の有機アルミニウムクロライド1モル当たり、好ましくは $0.1\sim1.0$ モル、特に好ましくは $0.2\sim1.0$ モルの範囲である。この範囲以外では触媒活性が低下したり、シス1、4構造含有率が低下したり、分子量が異常に低下又は高くなったり、重合時のゲルの発生を抑制することができず、このため重合槽などへのゲルの付着が起り、更に連続重合時間を延ばすことができないので好ましくない。水分の濃度を

調節する方法は公知の方法が適用できる。多孔質濾過材を通して添加・分散させる方法(特開平4-85304号公報)も有効である。

[0033]

水分の濃度を調節して得られた溶液には有機アルミニウムクロライドを添加する。一般式A 1 R_n X_{3-n} で表される 有機アルミニウムクロライドの具体例としては,ジエチルアルミニウムモノクロライド,ジエチルアルミニウムモノ ブロマイド,ジイソブチルアルミニウムモノクロライド,ジシクロヘキシルアルミニウムモノクロライド,ジフェニルアルミニウムモノクロライド,ジエチルアルミニウムセスキクロライドなどを好適に挙げることができる。有機アルミニウムクロライドの使用量の具体例としては,1,3 - ブタジエンの全量1モル当たり0.1ミリモル以上,特に0.5~50ミリモルが好ましい。

[0034]

次いで、有機アルミニウムクロライドを添加した混合媒体に可溶性コバルト化合物を添加してシス1、4重合する。可溶性コバルト化合物としては、SP値が8.5以下である炭化水素系溶媒を主成分とする不活性媒体又は液体1、3ーブタジエンに可溶なものであるか又は、均一に分散できる、例えばコバルト (II) アセチルアセトナート、コバルト (III) アセチルアセトナートなどコバルトの β ージケトン錯体、コバルトアセト酢酸エチルエステル錯体のようなコバルトの β ーケト酸エステル錯体、コバルトオクトエート、コバルトナフテネート、コバルトベンゾエートなどの炭素数 6以上の有機カルボン酸のコバルト塩、塩化コバルトピリジン錯体、塩化コバルトエチルアルコール錯体などのハロゲン化コバルト錯体などを挙げることができる。可溶性コバルト化合物の使用量は1、3ーブタジエンの1モル当たり0. 001ミリモル以上、特に0. 005ミリモル以上であることが好ましい。また可溶性コバルト化合物に対する有機アルミニウムクロライドのモル比(A1/C0)は10以上であり、特に10以上であることが好ましい。また、可溶性コバルト化合物以外にもニッケルの有機カルボン酸塩、ニッケルの有機錯塩、有機リチウム化合物、ネオジウムの有機カルボン酸塩、ネオジウムの有機錯塩を使用することも可能である。

[0035]

シス1,4重合する温度は0℃を超える温度~100℃,好ましくは10~100℃、更に好ましくは20~1000℃までの温度範囲で1,3 — ブタジエンをシス1,4重合する。重合時間(平均滞留時間)は10分~2 時間の範囲が好ましい。シス1,4重合後のポリマー濃度は5~26 重量%となるようにシス1,4重合を行うことが好ましい。重合槽は1 槽,又は2 槽以上の槽を連結して行われる。重合は重合槽(重合器)内にて溶液を攪拌混合して行う。重合に用いる重合槽としては高粘度液攪拌装置付きの重合槽,例えば特公昭40 — 2645 号に記載された装置を用いることができる。

[0036]

本発明のシス1,4重合時に公知の分子量調節剤,例えばシクロオクタジエン,アレン,メチルアレン(1,2-ブタジエン)などの非共役ジエン類,又はエチレン,プロピレン,ブテン-1などの α -オレフィン類を使用することができる。又重合時のゲルの生成を更に抑制するために公知のゲル化防止剤を使用することができる。シス1,4-構造含有率が一般に90%以上,特に95%以上で,ムーニー粘度(ML_{1+4} ,100℃,以下,MLと略す)10~130,好ましくは15~80であり,実質的にゲル分を含有しない。

[0037]

とができる。有機アルミニウム化合物は1, 3 – ブタジエン1 モル当たり0. 1 ミリモル以上,特に0. 5 ~ 5 0 ミリモル以上である。二硫化炭素は特に限定されないが水分を含まないものであることが好ましい。二硫化炭素の濃度は2 0 ミリモル/L以下,特に好ましくは0. 0 1 ~ 1 0 ミリモル/Lである。二硫化炭素の代替として公知のイソチオシアン酸フェニルやキサントゲン酸化合物を使用してもよい。

[0038]

1, 2重合する温度は100℃以下,好ましくは $-50\sim80$ ℃,更に好ましくは $-20\sim70$ ℃までの温度範囲で1, 3 — ブタジエンを1, 2重合する。1, 2重合する際の重合系には前記のシス重合液100重量部当たり1~50 重量部,好ましくは1~20重量部の1, 3 — ブタジエンを添加することで1, 2重合時の1, 2 — ポリブタジエンの収量を増大させることができる。重合時間(平均滞留時間)は10分~2時間の範囲が好ましい。1, 2重合後のポリマー濃度は $9\sim29$ 重量%となるように1, 2重合を行うことが好ましい。重合槽は1 槽、又は2槽以上の槽を連結して行われる。重合は重合槽(重合器)内にて重合溶液を攪拌混合して行う。1, 2重合に用いる重合槽としては1, 2重合中に更に高粘度となり,ポリマーが付着しやすいので高粘度液攪拌装置付きの重合槽,例えば特公昭 40-2645 号公報に記載された装置を用いることができる。

[0039]

重合反応が所定の重合率に達した後、常法に従って公知の老化防止剤を添加することができる。老化防止剤の代表としてはフェノール系の 2 、6 ージー t ーブチルー p ークレゾール(B H T)、リン系のトリノニルフェニルフォスファイト(T N P)、硫黄系の 4 、6 ービス (オクチルチオメチル) ー 0 ークレゾール、ジラウリルー 3 、3

ーチオジプロピオネート(TPL)などが挙げられる。単独でも2種以上組み合わせて用いてもよく、老化防止剤の添加はビニル・シスポリブタジエンゴム100重量部に対して0.001~5重量部である。次に重合停止剤を重合系に加えて停止する。例えば重合反応終了後、重合停止槽に供給し、この重合溶液にメタノール、エタノールなどのアルコール、水などの極性溶媒を大量に投入する方法、塩酸、硫酸などの無機酸、酢酸、安息香酸などの有機酸、塩化水素ガスを重合溶液に導入する方法などの、それ自体公知の方法である。次いで通常の方法に従い生成したビニル・シスポリブタジエンゴム組成物を分離、洗浄、乾燥する。

[0040]

このようにして得られたビニル・シスポリブタジエンはムーニー粘度が $20 \sim 150$ 、好ましくは $25 \sim 100$ であり、(1)1,2ポリブタジエンが $1 \sim 50$ 重量部、融点が $170 \sim 220$ であり、(2)ゴム分が100重量部でそのミクロ構造がシス90%以上のシス1, 4 ーポリブタジエンである。

[0041]

ビニル・シスポリブタジエン中に分散した 1, 2 - ポリブタジエン結晶繊維はビニル・シスポリブタジエンのマトリックスゴム中に微細な結晶として単分散化した形態で部分的に分散し、凝集構造を有する大きな繊維結晶と共存している。そして、この単分散化した微細な繊維結晶はマトリックスゴム成分との界面親和性を向上させる。この単分散繊維結晶の平均短軸長は0. 2μm以下、アスペクト比は10以下であり、且つ平均の単分散繊維結晶数が10以上の短繊維状である。一方、従来のビニル・シスポリブタジエンは大きな凝集構造を有する繊維結晶が殆どで、単分散繊維結晶数は5以下であった。

[0042]

このようにして得られたビニル・シスポリブタジエンを分離取得した残部の未反応の1,3-ブタジエン,不活性 媒体及び二硫化炭素を含有する混合物から蒸留により1,3-ブタジエン,不活性媒体として分離して,一方,二硫 化炭素を吸着分離処理,あるいは二硫化炭素付加物の分離処理によって二硫化炭素を分離除去し,二硫化炭素を実質 的に含有しない1,3-ブタジエンと不活性媒体とを回収する。また,前記の混合物から蒸留によって3成分を回収 して,この蒸留から前記の吸着分離あるいは二硫化炭素付着物分離処理によって二硫化炭素を分離除去することによっても,二硫化炭素を実質的に含有しない1,3-ブタジエンと不活性媒体とを回収することもできる。前記のよう にして回収された 二硫化炭素と不活性媒体とは新たに補充した1,3-ブタジエンを混合して使用される。

[0043]

本発明による方法で連続運転すると、触媒成分の操作性に優れ、高い触媒効率で工業的に有利にビニル・シスポリプタジエンを連続的に長時間製造することができる。特に、重合槽内の内壁や攪拌翼、その他攪拌が緩慢な部分に付着することもなく、高い転化率で工業的に有利に連続製造できる。

[0044]

但し、重合方法は特に制限はなく、連続重合、または回分重合でも製造できる。

[0045]

次に、本発明に使用されるタイヤコードコーティング用ゴム組成物は、前記のビニル・シスポリブタジエン(a)、(a)以外のジエン系ゴム(b)、ゴム補強剤(c)を配合してなる。

[0046]

前記のジエン系ゴム(b)としては、ハイシスポリブタジエンゴム、ローシスポリブタジエンゴム(BR)、天然ゴム、ポリイソプレンゴム、乳化重合若しくは溶液重合スチレンブタジエンゴム(SBR)、エチレンプロピレンジエンゴム(EPDM)、ニトリルゴム(NBR)、ブチルゴム(IIR)、クロロプレンゴム(CR)などが挙げられる。

[0047]

また、これらゴムの誘導体、例えば錫化合物で変性されたポリブタジエンゴムやエポキシ変性、シラン変性、マレイン酸変性された上記ゴムなども用いることができ、これらのゴムは単独でも、二種以上組み合わせて用いても良い

[0048]

本発明の(c)成分のゴム補強剤としては、各種のカーボンブラック以外に、ホワイトカーボン、活性化炭酸カルシウム、超微粒子珪酸マグネシウム等の無機補強剤やシンジオタクチック1,2ポリブタジエン樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ハイスチレン樹脂、フェノール樹脂、リグニン、変性メラミン樹脂、クマロンインデン樹脂及び石油樹脂等の有機補強剤があり、特に好ましくは、粒子径が90nm以下、ジブチルフタレート(DBP)吸油量が70m1/100g以上のカーボンブラックで、例えば、FEF、FF、GPF、SAF、ISAF、SRF、HAF等が挙げられる。

[0049]

前記各成分を、ビニル・シスポリブタジエン(a) $10\sim60$ 重量%と、(a) 以外のジエン系ゴム(b) $90\sim40$ 重量%とからなるゴム成分(a) + (b) 100重量部と、ゴム補強剤(c) $30\sim80$ 重量部の条件を満足すべく配合する。

[0050]

前記ビニル・シスポリブタジエンの量が前記下限より少ないと、加硫物の弾性率が大きい組成物が得られず、ビニル・シスポリブタジエンの量が前記上限より多いと、組成物のムーニー粘度が大きくなりすぎて成形性が悪くなる。前記ゴム補強剤の量が前記下限より少ないと加硫物の弾性率が低下し、逆に前記上限より多いとムーニー粘度が大きくなりすぎてタイヤ成形性が悪化する傾向にある。また、ゴムの割合が前記範囲外であると加硫物の弾性率などが低下したり、金属との接着性が低下したりする。

[0051]

本発明のタイヤコードコーティング用ゴム組成物は、前記各成分を通常行われているバンバリー、オープンロール、ニーダー、二軸混練り機などを用いて混練りすることで得られる。 混練温度は、当該ビニル・シスポリブタジエンに含有される1, 2ポリブタジエン結晶繊維の融点より低い必要がある。この1, 2ポリブタジエン結晶繊維の融点より高い温度で混練すると、ビニル・シスポリブタジエン中の微細な短繊維が溶けて球状の粒子等に変形してしまうから好ましくない。

[0052]

本発明のゴム組成物には、必要に応じて、加硫剤、加硫助剤、老化防止剤、充填剤、プロセスオイル、亜鉛華、ステアリン酸など、通常ゴム業界で用いられる配合剤を混練して

もよい。

[0053]

加硫剤としては、公知の加硫剤、例えば硫黄、有機過酸化物、樹脂加硫剤、酸化マグネシウムなどの金属酸化物などが用いられる。

[0054]

加硫助剤としては、公知の加硫助剤、例えばアルデヒド類、アンモニア類、アミン類、グアニジン類、チオウレア類、チアゾール類、チウラム類、ジチオカーバメイト類、キサンテート類などが用いられる。

[0055]

老化防止剤としては、アミン・ケトン系、イミダゾール系、アミン系、フェノール系、硫黄系及び燐系などが挙げられる。

[0056]

充填剤としては、炭酸カルシウム、塩基性炭酸マグネシウム、クレー、リサージュ、珪藻土等の無機充填剤、再生ゴム、粉末ゴム等の有機充填剤が挙げられる。

[0057]

プロセスオイルは、アロマティック系、ナフテン系、パラフィン系のいずれを用いてもよい。

[0058]

特に、この発明のゴム組成物にはゴム100重量部に対して $0.1\sim10$ 重量部の有機酸コバルトを配合するのが好ましい。

[0059]

本発明のタイヤコードコーティング用ゴム組成物は、他のタイヤ部材(キャップトレッド、ベーストレッド、サイドウォール、カーカス、ベルト、ビード等)と組み合わせて、それ自体公知の方法によって製造することができる。

[0060]

以下、実施例及び比較例を示して、本発明について具体的に説明する。実施例及び比較例において、ビニル・シスポリブタジエンの素ゴムの物性、及び得られたタイヤコードコーティング用ゴム組成物の配合物の物性と加硫物の物性は以下のようにして測定した。 (1) 1, 2ポリブタジエン結晶繊維含有量;2gのビニル・シスポリブタジエンゴムを200mlのn-ヘキサンにて4時間ソックスレー抽出器によって沸騰抽出した抽出残部を重量部で示した。

<u>(2)1、2ポリブタジエン結晶繊維の融点</u>;沸騰n-ヘキサン抽出残部を示差走査熱量計(DSC)による吸熱曲線のピーク温度により決定した。<u>(3)nsp/C</u>;1、2ポリブタジエン結晶繊維の分子量の目安として、オルトジクロルベンゼン溶液から135℃で還元粘度を測定した。<u>(4)結晶繊維形態</u>;ビニル・シスポリブタジエンゴムを一塩化硫黄と二硫化炭素で加硫し、加硫物を超薄切片で切り出して四塩化オスミウム蒸気でビニル・シスポリブタジエンゴムのゴム分の二重結合を染色して、透過型電子顕微鏡で観察して求めた。<u>(5)ビニル・シスポリブタジエンゴム中のゴム分のミクロ構造</u>;赤外吸収スペクトル分析によって行った。シス740cm⁻¹、トランス967cm

<u>(10) ダイ・スウェル</u>;加工性測定装置(モンサント社、MPT)を用いて配合物の押出加工性の目安として100℃、100sec-1のせん断速度で押出時の配合物の径とダイオリフィス径(但し、L/D=1.5mm/1.5mm)の比を測定して求めた。<u>(11) グリーンモジュラス;</u>未加硫ゴムを3号ダンベルに打ち抜いて試験片とし、室温、200mm/minの引張速度で測定した。<u>(12)引張弾性率</u>;JIS K6301に従い、引張弾性率 M300を測定した。<u>(13)金属との接着強さ;ASTM D222</u>9に準じて測定した。

【実施例】

[0061]

(ビニル・シスポリブタジエンサンプル1の製造)

窒素ガスで置換した内容30Lの攪拌機付ステンレス製反応槽中に、脱水シクロヘキサン18kgに1.3-ブタジエン1.6kgを溶解した溶液を入れ、コバルトオクトエート4mmol、ジエチルアルミニウムクロライド84mmol及び1.5-シクロオクタジエン70mmolを混入、25℃で30分間攪拌し、シス重合を行った。シス重合後、直ちに重合液にトリエチルアルミニウム90mmol及び二硫化炭素50mmolを加え、25℃で60分間攪拌し、1,2重合を行った。重合終了後、重合生成液を4,6-ビス(オクチルチオメチル)-0-クレゾール1重量%を含むメタノール18Lに加えて、ゴム状重合体を析出沈殿させ、このゴム状重合体を分離し、メタノールで洗浄した後、常温で真空乾燥した。この様にして得られたビニル・シスポリブタジエンゴムの収率は82%であった。

(ビニル・シスポリブタジエンサンプル2の製造)

重合溶媒を脱水ベンゼンを用いること以外はサンプル1の製造方法と同様にしてビニル・シスポリブタジエンを得た。この様にして得られたビニル・シスポリブタジエンゴムの収率は80%であった。

前記サンプル1とサンプル2の物性を表1に示した。

[0062]

【表1】

サンプル名			サンプル 1	サンプル 2
重合溶媒の種類			シクロヘキサン	ベンゼン
溶媒のSP値			8. 1	9. 1
ビニル・シスボリブタジン 中のゴム分の特性				
	ムーニー粘度		33	←
	[η]		1.4	1.4
:	重量平均分子量 (Mw)×10 ⁴		42	42
i I	トルエン溶液粘度 (cp)		59	←
	シクロ構造	Cis	98. 2	←
	(%)	Trans	0.9	←
		Vinyl	0. 9	←
1, 2ポリブタジエン	繊維結晶の融点(℃) η sp/c 単分散繊維結晶数 (短軸長0.2μ以下の数 400μ²当り 単分散繊維結晶の アスペ・ケト比		202	←
結晶繊維の特性			1.5	←
			>100	3
			7	15
1,2ポリブタジエン結晶繊維 の重量部数			13.6	←
備考			単分散繊維 結晶数多い	単分散繊維 結晶数少い

[0063]

(実施例1~3) (比較例1~2)

[0064]

実施例の組成物は、高弾性率でありながらダイ・スウェルが小さく、グリーンモジュラスが大きく改善しており、 且つ金属との接着性にも優れている。一方、比較例の組成物においては、本発明の特性を満たさないビニル・シスポリブタジエンや市販の高シスポリブタジエンを使用しているため、所望の特性を得ることができていない。 【0065】

【表2】

配合表	105 H-7014	155 H= /51A	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 	11. ±+/5/4	11. ++/5/3
			実施例3	比較例1	比較例2
ピニル・シスポリプ・タシ゛エン 種類	サンプル1	サンフ°ル1	サンプル1	-	サンプル2
量(部数)	35	20	35	-	35
NR(注1)	65	80	65	65	65
BR(注2)		-	_	35	-
カーホ`ンフ`ラック N330	60	60	50	60	60
酸化亜鉛	7	7	7	7	7
ステアリン酸	2	2	2	2	2
ステアリン酸コハ・ルト	3	3	3	3	3
老化防止剤(注3)	2	2	2	2	2
加硫促進剤(注4)	0.8	0.8	0.8	0.8	0.8
硫黄	1.5	1.5	1.5	1.5	1.5
配合物物性					
<u>ダイ・スウェル</u> (指数)	73	82	81	100	95
100%ク゚リーンモジュラス (指数)	133	121	110	100	106
加硫物物性					
300%引張彈性率 (指数)	171	148	126	100	128
引張強度 (指数)	160	140	122	100	135
金属との接着強さ(指数)	106	104	103	100	95

- (注1) NR; RSS#1
- (注2) BR; ポリブタジエン (UBEPOL-BR150、宇部興産 (株) 製)
- (注3) 老化防止剤; アンテージAS (アミンとケトンの反応物)
- (注4)加硫促進剤; ノクセラーCZ(N-シクロヘキシル-2-ベンゾチアゾールスルフェンアミド

フロントページの続き

(51) Int. Cl.

FΙ

テーマコード (参考)

C 0 9 D 107/00 C 0 9 D 109/00

Fターム(参考) 4J038 CA011 CA021 CA022 CA041 CA071 HA026 HA04 HA266 HA446 JC16

KA03 KA08 KA19 NA11 NA12 PC07

4J100 AS02P CA01 CA16 DA01 DA09 FA08 FA19 FA27 FA30 FA34

JA01 JA29

4J128 AA01 AC47 BA01B BB01B BC15B BC16B BC19B CA48C EA02 EB13

EC01 ED06 ED08 EF02 FA02 GA01 GA04 GA11 GA12