

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ _	_ИНФОРМАТИКА, ИСКУССТВЕННЫЙ ИНТЕЛЛЕКТ И СИСТЕМЫ УПРАВЛ	ЕНИЯ
КАФЕДРА	СИСТЕМЫ ОБРАБОТКИ ИНФОРМАЦИИ И УПРАВЛЕНИЯ	

РАСЧЕТНО-ПОЯСНИТЕЛЬНАЯ ЗАПИСКА К НАУЧНО-ИССЛЕДОВАТЕЛЬСКОЙ РАБОТЕ

HA TEMY:

	1171 1 1271 5 .	
Предсказа	иние погодных пока	зателей
		_
·		
Студент <u>ИУ5-31М</u>		Р.С. Нищук
(Группа)	(Подпись, дата)	(И.О.Фамилия)
Руководитель		Ю.Е. Гапанюк
	(Подпись, дата)	(И.О.Фамилия)

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

(МГТУ им. Н.Э. Баумана)

		УТВЕРЖДАЮ		
	3a	ведую	щий кафедрой	й ИУ5
			1 1	(Индекс)
			<u>B</u>	.И. Терехов
				(И.О.Фамилия)
	<u> </u>	<u>04</u> _» _	<u>сентября</u>	2023 г
ЭАП				
3 А Д	АНИЕ			
на выполнение научно-	-исследовател	ІЬСК	ой работн	Ы
по темеПредсказание погодных показателе	ей			
Студент группы <u>ИУ5-31М</u>				
Нищук Роман Сергеевич	1			
	я, имя, отчество)			
Направления IIII (умабуют масцанаватам о	roa Hackeyiiookoa Hr	NOTION OF	TOTTO THOU TO	`
Направленность НИР (учебная, исследователься ИССЛЕДОВАТЕЛЬСКА	-	оизво,	цетвенная, др.)
Источник тематики (кафедра, предприятие, НИІ				
(T - A T, FAF				
График выполнения НИР: 25% к нед., 50	0% к нед., 75% г	К Е	иед., 100% к	нед.
Техническое задание _ Разработать систему, способную предсказывать погодные условия на				
Оформление научно-исследовательской рабоп	пы:			
Расчетно-пояснительная записка на <u>21</u> лис Перечень графического (иллюстративного) мате		каты,	слайды и т.п.)	
Дата выдачи задания « <u>04</u> » <u>сентября</u>	2023 г.			
Руководитель НИР			<u></u> Ю.Е. Га	панюк _
-	(Подпись, дат	ra) – –		Фамилия)
Студент			P.C. H	ищук

<u>Примечание</u>: Задание оформляется в двух экземплярах: один выдается студенту, второй хранится на кафедре.

(Подпись, дата)

(И.О.Фамилия)

Оглавление

1. Постановка задачи	4
2. Ход выполнения научно исследовательской работы	5
2.1. Выбор датасета	5
2.2. Разведочный анализ и предварительная обработка данных	6
2.3. Выбор метрик	13
2.4. Выбор моделей	14
2.5. Разделение выборки на обучающую и тестовую	14
2.6. Базовое решение (baseline)	14
2.7. Подбор гиперпараметра K с использованием GridSearchCV и кросс-валидации	16
2.8. Сравнение модели с произвольным и лучшим параметром К	17
3. Заключение	20
4. Список использованных источников	21

1. Постановка задачи

Задача состоит из следующих шагов:

- 1. Поиск и выбор набора данных для построения моделей машинного обучения. На основе выбранного набора данных студент должен построить модели машинного обучения для решения или задачи классификации, или задачи регрессии.
- 2. Провести анализ и очистку собранных данных, включая устранение пропущенных значений, обработку выбросов, преобразование форматов. Построение графиков, необходимых для понимания структуры данных.
- 3. Выбор признаков, подходящих для построения моделей. Кодирование категориальных признаков Масштабирование данных. Формирование вспомогательных признаков, улучшающих качество моделей.
- 4. Проведение корреляционного анализа данных. Формирование промежуточных выводов о возможности построения моделей машинного обучения. В зависимости от набора данных, порядок выполнения пунктов 2, 3, 4 может быть изменен.
- 5. Выбор метрик для последующей оценки качества моделей. Необходимо выбрать не менее двух метрик и обосновать выбор.
- 6. Выбор наиболее подходящих моделей для решения задачи классификации или регрессии. Необходимо использовать не менее трех моделей, хотя бы одна из которых должна быть ансамблевой.
- 7. Формирование обучающей и тестовой выборок на основе исходного набора данных.
- 8. Построение базового решения (baseline) для выбранных моделей без подбора гиперпараметров. Производится обучение моделей на основе обучающей выборки и оценка качества моделей на основе тестовой выборки.
- 9. Подбор гиперпараметров для выбранных моделей. Рекомендуется подбирать не более 1-2 гиперпараметров. Рекомендуется использовать методы кроссвалидации. В зависимости от используемой библиотеки

можно применять функцию GridSearchCV, использовать перебор параметров в цикле, или использовать другие методы.

- 10.Повторение пункта 8 для найденных оптимальных значений гиперпараметров. Сравнение качества полученных моделей с качеством baseline-моделей.
- 11. Формирование выводов о качестве построенных моделей на основе выбранных метрик.

2. Ход выполнения научно исследовательской работы

2.1. Выбор датасета

Исходными данными в домашнем задании является датасет погоды, который собирался в 2006-2017 годах.

Дата, получаемая каждый час:

- Время (time)
- Описание (summary)
- Вид осадков (precipType)
- Температура (temperature)
- Температура по ощущению (apparentTemperature)
- Влажность (humidity)
- Скорость ветра (windSpeed)
- Направление ветра (windBearing)
- Видимость (visibility)
- Давление (pressure)

[0]: import warnings

 $warnings. filter warnings (\hbox{\ensuremath{'ignore'}})$

[0]: from google.colab import drive, files

drive.mount('/content/drive')

[0]: from google.colab import files

import os

import numpy as np

import pandas as pd

```
import seaborn as sns
import matplotlib.pyplot as plt
% matplotlib inline
os.listdir()
data = pd.read_csv('drive/My Drive/Files/weatherHistory.csv', sep=",",
encoding="iso-8859-1", parse_dates=True)
```

2.2. Разведочный анализ и предварительная обработка данных

```
[4]: data.head()
[4]: Formatted Date ... Daily Summary
0 2006-04-01 00:00:00.000 +0200 ... Partly cloudy throughout the day.
1 2006-04-01 01:00:00.000 +0200 ... Partly cloudy throughout the day.
2 2006-04-01 02:00:00.000 +0200 ... Partly cloudy throughout the day.
3 2006-04-01 03:00:00.000 +0200 ... Partly cloudy throughout the day.
4 2006-04-01 04:00:00.000 +0200 ... Partly cloudy throughout the day.
```

Имеющаяся дата имеет не самый удобный способ представления, переведём в формат datetime. Заодно вытянем числовые данные времени для дальнейшего анализа.

```
[0]: data['date'] = pd.to_datetime(data['Formatted Date'], format='%Y-%m-%d %H:%M:%S', utc=True)
data['hour'] = data['date'].dt.hour
data['day'] = data['date'].dt.day
data['month'] = data['date'].dt.month
[6]: data['Loud Cover'].value_counts()
[6]: 0.0 96453
Name: Loud Cover, dtype: int64
```

[5 rows x 12 columns]

Теперь можем избавиться от предыдущего формата даты. Поле "Loud Cover" не несёт информации, поэтому его также удаляем.

```
[0]: data = data.drop(['Loud Cover', 'Formatted Date'], axis=1)
[8]: data.info()
```

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 96453 entries, 0 to 96452

Data columns (total 14 columns):

Summary 96453 non-null object

Precip Type 95936 non-null object

Temperature (C) 96453 non-null float64

Apparent Temperature (C) 96453 non-null float64

Humidity 96453 non-null float64

Wind Speed (km/h) 96453 non-null float64

Wind Bearing (degrees) 96453 non-null float64

Visibility (km) 96453 non-null float64

Pressure (millibars) 96453 non-null float64

Daily Summary 96453 non-null object

date 96453 non-null datetime64[ns, UTC]

hour 96453 non-null int64

day 96453 non-null int64

month 96453 non-null int64

dtypes: datetime64[ns, UTC](1), float64(7), int64(3), object(3)

memory usage: 10.3+ MB

Заметим, что у Precip Туре есть чуть больше одного значения. В остальном датасет не имеет пробелов, а значит заполнять пропущенные данные или удалять пустые записи не придётся.

Рассмотрим графики температуры.

[9]: data.set_index('date')['Temperature (C)'].plot(figsize=(15, 5))

[9]: <matplotlib.axes._subplots.AxesSubplot at 0x7fbecdf01d68>

На графике температуры видны изменения каждый сезон. Рассмотрим подробнее один из «витков» температуры (возьмём последние 150 дней).

[10]: data.set_index('date')['Temperature (C)'].tail(150*24).plot(figsize=(15, _,→5))

[10]: <matplotlib.axes._subplots.AxesSubplot at 0x7fbecd9ff0f0>

Видно, что замерения иногда происходили неравномерно.

Посмотрим также гистограммы для Precip Type и Summary.

[11]: data['Precip Type'].value_counts().plot(kind='bar')

[11]: <matplotlib.axes._subplots.AxesSubplot at 0x7fbecb1044e0>

[12]: data['Summary'].value_counts().plot(kind='bar')

[12]: <matplotlib.axes._subplots.AxesSubplot at 0x7fbecb0f2b70>

[13]: print("Количество уникальных значений у Summary: {}" .format(data['Summary'].value_counts().count()))

Количество уникальных значений у Summary: 27

Summary подойдёт для того, чтобы искать дополнительные зависимости, так как имеет достаточное число классов. Precip Туре же не настолько будет информативным.

Посмотрим на значение давления

```
[71]: data.set_index('date')['Pressure (millibars)'].head(2000).
,→plot(figsize=(15, 5))
```

[71]: <matplotlib.axes._subplots.AxesSubplot at 0x7fbec38b34a8>

Заметим, что пробелы в середине графика сильно мешают масштабированию данных, поэтому для начала заменим все пустые значения средним

```
[15]: from sklearn.preprocessing import minmax_scale
mean_pressure = data['Pressure (millibars)'].mean()
data.loc[data['Pressure (millibars)'] < 100, 'Pressure (millibars)'] = __,
→mean_pressure
data['Pressure'] = minmax_scale(data['Pressure (millibars)'],
feature_range=(0, 1), axis=0)
data = data.drop(['Pressure (millibars)'], axis=1)
data.set_index('date')['Pressure'].head(2000).plot(figsize=(15, 5))
[15]: <matplotlib.axes._subplots.AxesSubplot at 0x7fbec9cdd208>
```


Проверим остальные параметры

[16]: data.set_index('date')['Visibility (km)'].head(200).plot(figsize=(15, 5))

[16]: <matplotlib.axes._subplots.AxesSubplot at 0x7fbec9c832e8>

[17]: data['Visibility'] = minmax_scale(data['Visibility (km)'],

feature_range=(0, 1), axis=0)

data = data.drop(['Visibility (km)'], axis=1)

data.set_index('date')['Visibility'].head(200).plot(figsize=(15, 5))

[17]: <matplotlib.axes._subplots.AxesSubplot at 0x7fbec9bb0828>

[18]: data.set_index('date')['Wind Speed (km/h)'].head(1000).plot(figsize=(15,

__,→5))

[18]: <matplotlib.axes._subplots.AxesSubplot at 0x7fbecb0272e8>

[19]: data['Wind_Speed'] = minmax_scale(data['Wind Speed (km/h)'],

feature_range=(0, 1), axis=0)

data = data.drop(['Wind Speed (km/h)'], axis=1)

data.set_index('date')['Wind_Speed'].head(1000).plot(figsize=(15, 5))
[19]: <matplotlib.axes._subplots.AxesSubplot at 0x7fbec9b07c88>

Найдём корреляцию между всеми признаками

[20]: sns.heatmap(data.corr(method='pearson'), annot=True, fmt='.2f')

[20]: <matplotlib.axes._subplots.AxesSubplot at 0x7fbec9b94ba8>

Заметим следующее: - Угол и скорость ветра слабо коррелирует с остальными показателями, от него необходимо избавиться; - Температура и относительная температура сильно коррелируют, так что избавляемся от относительной температуры; - Номер дня также плохо коррелирует, её тоже отбрасываем.

[0]: data = data.drop(['Apparent Temperature (C)', 'Wind Bearing (degrees)', 'Wind_Speed', 'day', 'date'], axis=1)

[22]: sns.heatmap(data.corr(method='pearson'), annot=True, fmt='.2f')

[22]: <matplotlib.axes._subplots.AxesSubplot at 0x7fbec86c6438>

Будем обучать выявление температуры погоды по описанию погоды, влажности, давлению и видимости, а также час дня и месяц, когда было сделано измерение.

Для использования описания погоды используем one-hot encoder (через get_dummies).

```
[0]: summary_ohe = pd.get_dummies(data['Summary'], prefix='summary', drop_first=True)
data = pd.concat([data, summary_ohe],axis=1)
data = data.drop(['Summary', 'Daily Summary', 'Precip Type'], axis=1)
```

2.3. Выбор метрик

Для оценки качества моделей будем использовать следующие метрики: - Средняя абсолютная ошибка - по ней легко судить о средней оценке ошибки; - Медиана абсолютной ошибки - другая средняя оценка ошибки, для дополнительной оценки средней абсолютной; - Объяснимая вариация - вариация изучаемого признака, зависящая от значений признака, положенного в основу.

```
[0]: from sklearn.metrics import explained_variance_score, \
mean_absolute_error, median_absolute_error
```

2.4. Выбор моделей

В качестве простой модели используем линейную модель стохастического градиентного спуска, у которого будем менять функцию потерь (loss) и скорость обучения (learningrate)

[0]: from sklearn.linear_model import SGDRegressor

В качестве более сложной модели используем дерево решений, у которого изначально поставим maxdepth=3.

[0]: from sklearn.tree import DecisionTreeRegressor

Из ансамблевых моделей воспользуемся случайным лесом с исходными nestimators = 10 и maxdepth = 3.

[0]: from sklearn.ensemble import RandomForestRegressor

2.5. Разделение выборки на обучающую и тестовую

```
[0]: from sklearn.model_selection import train_test_split temperature = data['Temperature (C)'] input_data = data.drop(['Temperature (C)'], axis=1) data_X_train, data_X_test, data_y_train, data_y_test = train_test_split(input_data, temperature, test_size=0.2, random_state=1)
```

2.6. Базовое решение (baseline)

Для начала предварительно подготовим класс Regressor, который будет собирать необходимые параметры для обучения:

```
[0]: template_header = "Модель {}"
template = "Значение по метрике {}: {:.2f}"
[0]: class Regressor():
def __init__(self, method, metrics, x_train, y_train, x_test, y_test):
self._method = method
self.x_train = x_train
self.y_train = y_train
self.x_test = x_test
self.y_test = y_test
self._metrics = metrics
```

```
self.target_1 = []
       def training(self):
       self._method.fit(self.x_train, self.y_train)
       self.target_1 = self._method.predict(self.x_test)
       def result(self):
       print(template_header.format(self._method))
       for metric in self._metrics:
       print(template.format(metric.__name___,
       metric(self.y_test, self.target_1)))
       [0]: choosed metrics = [explained variance score,
       mean_absolute_error,
       median_absolute_error]
       choosed_models = [SGDRegressor(),
       DecisionTreeRegressor(max_depth=3),
       RandomForestRegressor(n estimators=10, max depth=3)]
       Обучим выбранные модели и проверим выбранными метриками.
       [62]: for model in choosed_models:
       regressor = Regressor(model, choosed_metrics, data_X_train,
       data_y_train, data_X_test, data_y_test)
       regressor.training()
       regressor.result()
       Модель SGDRegressor(alpha=0.0001, average=False, early_stopping=False,
epsilon=0.1,
       eta0=0.01, fit_intercept=True, 11_ratio=0.15,
       learning rate='invscaling', loss='squared loss', max iter=None,
       n_iter=None, n_iter_no_change=5, penalty='12', power_t=0.25,
       random_state=None, shuffle=True, tol=None, validation_fraction=0.1,
       verbose=0, warm_start=False)
       Значение по метрике explained variance score: 0.55
       Значение по метрике mean_absolute_error: 5.50
```

```
Значение по метрике median_absolute_error: 4.95
       Модель DecisionTreeRegressor(criterion='mse', max_depth=3, __
       ,→max_features=None,
       max_leaf_nodes=None, min_impurity_decrease=0.0,
       min impurity split=None, min samples leaf=1,
       min_samples_split=2, min_weight_fraction_leaf=0.0,
       presort=False, random_state=None, splitter='best')
       Значение по метрике explained_variance_score: 0.71
       Значение по метрике mean_absolute_error: 4.14
       Значение по метрике median_absolute_error: 3.49
                    RandomForestRegressor(bootstrap=True,
                                                                 criterion='mse',
       Модель
max_depth=3,
       max_features='auto', max_leaf_nodes=None,
       min_impurity_decrease=0.0, min_impurity_split=None,
       min_samples_leaf=1, min_samples_split=2,
       min_weight_fraction_leaf=0.0, n_estimators=10, n_jobs=None,
       oob_score=False, random_state=None, verbose=0, warm_start=False)
       Значение по метрике explained_variance_score: 0.72
       Значение по метрике mean_absolute_error: 4.04
       Значение по метрике median_absolute_error: 3.41
```

2.7. Подбор гиперпараметра К с использованием GridSearchCV и кросс-валидации

```
[0]: from sklearn.model_selection import ShuffleSplit choosed_cv = ShuffleSplit(n_splits=5, test_size=0.25) tuned_parameters_1 = [{'loss': ['squared_loss', 'huber', _, , →'epsilon_insensitive', 'squared_epsilon_insensitive'], 'learning_rate':['constant', 'optimal', _, , →'invscaling']}] n_range = np.array(range(2,11,1)) tuned_parameters_2 = [{'max_depth': n_range}]
```

```
n_range2 = np.array(range(5, 45, 5))
       tuned parameters 3 = [\{ \text{'n estimators': n range2, 'max depth': n range} \}]
       [53]: from sklearn.model_selection import GridSearchCV
       rg\_sgd\_gs = GridSearchCV(SGDRegressor(), tuned\_parameters\_1,
       cv=choosed_cv, scoring='explained_variance')
       rg_sgd_gs.fit(data_X_train, data_y_train)
       rg_sgd_gs.best_params_
       [53]: {'learning_rate': 'invscaling', 'loss': 'squared_loss'}
       [54]:
                  rg_dtr_gs
                                         GridSearchCV(DecisionTreeRegressor(),
tuned parameters 2,
       cv=choosed_cv, scoring='explained_variance')
       rg_dtr_gs.fit(data_X_train, data_y_train)
       rg_dtr_gs.best_params_
       [54]: {'max_depth': 10}
                                        GridSearchCV(RandomForestRegressor(),
       [55]:
                 rg rfr gs
                             =
tuned_parameters_3,
       cv=choosed_cv, scoring='explained_variance')
       rg_rfr_gs.fit(data_X_train, data_y_train)
       rg_rfr_gs.best_params_
       [55]: {'max_depth': 10, 'n_estimators': 35}
       2.8. Сравнение модели с произвольным и лучшим параметром К
       Обучим модели на исходных гиперпараметрах и оптимизированных
гиперпараметрах.
       [0]: choosed_and_optimized_models = [SGDRegressor(),
       SGDRegressor(learning_rate='invscaling', loss='squared_loss'),
       DecisionTreeRegressor(max_depth=3),
       DecisionTreeRegressor(max_depth=10),
       RandomForestRegressor(n_estimators=10, max_depth=3),
       RandomForestRegressor(n_estimators=35, max_depth=10)]
       [67]: for model in choosed and optimized models:
```

```
regressor = Regressor(model, choosed_metrics, data_X_train,
       data_y_train, data_X_test, data_y_test)
       regressor.training()
       regressor.result()
       print('-'*50)
       Модель SGDRegressor(alpha=0.0001, average=False, early_stopping=False,
epsilon=0.1,
       eta0=0.01, fit_intercept=True, 11_ratio=0.15,
       learning_rate='invscaling', loss='squared_loss', max_iter=None,
       n iter=None, n iter no change=5, penalty='12', power t=0.25,
       random_state=None, shuffle=True, tol=None, validation_fraction=0.1,
       verbose=0, warm_start=False)
       Значение по метрике explained_variance_score: 0.55
       Значение по метрике mean_absolute_error: 5.35
       Значение по метрике median_absolute_error: 4.79
       Модель SGDRegressor(alpha=0.0001, average=False, early_stopping=False,
epsilon=0.1,
       eta0=0.01, fit_intercept=True, 11_ratio=0.15,
       learning rate='invscaling', loss='squared loss', max iter=None,
       n_iter=None, n_iter_no_change=5, penalty='12', power_t=0.25,
       random_state=None, shuffle=True, tol=None, validation_fraction=0.1,
       verbose=0, warm_start=False)
       Значение по метрике explained_variance_score: 0.55
       Значение по метрике mean_absolute_error: 5.45
       Значение по метрике median_absolute_error: 4.91
       Модель DecisionTreeRegressor(criterion='mse', max_depth=3, __
       ,→max_features=None,
       max_leaf_nodes=None, min_impurity_decrease=0.0,
```

```
min_impurity_split=None, min_samples_leaf=1,
       min samples split=2, min weight fraction leaf=0.0,
       presort=False, random_state=None, splitter='best')
       Значение по метрике explained_variance_score: 0.71
       Значение по метрике mean_absolute_error: 4.14
       Значение по метрике median_absolute_error: 3.49
       Модель DecisionTreeRegressor(criterion='mse', max_depth=10, __
       ,→max_features=None,
       max_leaf_nodes=None, min_impurity_decrease=0.0,
       min_impurity_split=None, min_samples_leaf=1,
       min_samples_split=2, min_weight_fraction_leaf=0.0,
       presort=False, random_state=None, splitter='best')
       Значение по метрике explained_variance_score: 0.86
       Значение по метрике mean_absolute_error: 2.80
       Значение по метрике median_absolute_error: 2.32
                RandomForestRegressor(bootstrap=True,
                                                                 criterion='mse',
       Модель
max_depth=3,
       max_features='auto', max_leaf_nodes=None,
       min_impurity_decrease=0.0, min_impurity_split=None,
       min_samples_leaf=1, min_samples_split=2,
       min weight fraction leaf=0.0, n estimators=10, n jobs=None,
       oob_score=False, random_state=None, verbose=0, warm_start=False)
       Значение по метрике explained_variance_score: 0.73
       Значение по метрике mean_absolute_error: 4.03
       Значение по метрике median_absolute_error: 3.38
                    RandomForestRegressor(bootstrap=True,
       Модель
                                                                 criterion='mse',
max_depth=10,
```

max_features='auto', max_leaf_nodes=None,
min_impurity_decrease=0.0, min_impurity_split=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_estimators=35, n_jobs=None,
oob_score=False, random_state=None, verbose=0, warm_start=False)
Значение по метрике explained_variance_score: 0.88
Значение по метрике mean_absolute_error: 2.69
Значение по метрике median_absolute_error: 2.26

3. Заключение

По полученным моделям и значениям можно сделать следующие выводы:

- Регрессор градиентного спуска имел наилучшую конфигурацию при стандартных настройках;
- Регрессор показал себя хуже всего в обучении (что неудивительно, так как нету уверенности, что признаки можно линейно связать);
- Для DecisionTreeRegressor и RandomForestRegressor критично задавать оптимальные гиперпараметры, это улучшает точность на порядок;
- Наилучшим образом себя показала модель на RandomForestRegressor благодаря ансамблевому методу. Она объясняет 88% всей вариации признака температуры, что является хорошим показателем.

4. Список использованных источников

- 1. Weather Dataset: https://www.kaggle.com/datasets/muthuj7/weather-dataset
- 2. Model evaluation: quantifying the quality of predictions: https://scikitlearn.org/stable/modules/model_evaluation.html
- 3. Model selection: choosing estimators and their parameters: https://scikitlearn.org/stable/tutorial/statistical_inference/model_selection.html
- 4. SGDRegressor: https://scikit-learn.org/stable/modules/generated/ sklearn.linear_model.SGDRegressor
- 5. DecisionTreeRegressor: https://scikit-learn.org/stable/modules/generated/ sklearn.tree.DecisionTreeRegressor.
- 6. RandomForestRegressor: https://scikit-learn.org/stable/modules/ generated/sklearn.ensemble.