A Binary Tree Representation of Prefix-free Coles:

Kraft's Inequality:

- -> Let The height of KM prefix-free codeword be denoted as MK.
- -> Let number of leaf nodes that are precluded from consider

ation as colehords be denoted as Ax.

$$\rightarrow Now \left\{ \sum_{k} A_{k} \leq 2^{N} \right\} \Rightarrow \left\{ \sum_{k} 2^{N-N_{k}} \leq 2^{N} \right\}$$

Kraft's Inequality : An Interpretation:

Let us consider a case when inequality is replaced by equal $\frac{1}{2}$ $\frac{1}$

One can interpret The quantity 2^{-N_K} as P_K , The probability of occurrence of K^{Th} symbol $\Rightarrow \sum_{K} 2^{-N_K} = 1$.

Now, given that $2^{-N_K} = P_K$ This is as expected.

⇒ N_K = - loj₂ P_K

Probabilities should sum to 1!

However -log_Pk is The self-information, of kth symbol.

Thus, The length of the colewood should equals its self-information

ENTROPY & Asymptotic Equiportition Property or PEP

- → consider a sequence of length N emitted by a binary iid ergodic source, with "O" probability of p and "1" probability of (1-p).
- TF N is sufficiently large, This sequence should have approximately NP "o's and Nx (1-P) "1"s.
- Since The source is iid, probability of occurrence of each such string is $P^{NP} \times (1-P)^{N(1-P)} = P_{TYP}$

AEP on ? Entropy:

How many such strings are There?

- Max # of strings: 2 N

-> Actual # of strings M < 2 N if P + 1/2.

-> With N sufficiently large, it is almost guaranteel That all strings will have

NP zeros and N(1-P) ones. -> Prob. of each such string is PTYP.

→ M × P_{TYP} ≈ 1 $\Rightarrow M = \frac{1}{P_{TYP}} = P^{-NP} \times (1-P)$

⇒ log₂m = N(-ploj₂p-(1-p)lg₂(1-p)) N x H(x)

$$1 \ 0 \ 0 \ 0 \ 0$$
 $2 \ 0 \ 0 \ 0$
 $m = 5$
 $2 \ = 16$
 $3 \ 0 \ 0 \ 0$
 $5 \ 0 \ 0$
 $6 \ 0 \ 0$
 $6 \ 0 \ 0$
 $6 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0 \ 0$
 $7 \ 0$

16 1 1 1 1

If one takes length N binary strings,

one is likely to see ONLY those strings

for which # of zeros is Nxp and

of ones is Nx(I-P), where P is

prob. of zero.

All These strings can be Thought of as

belonging to The "Typical Set", and

They all occur with equal prob. given

as | Nxp | (I-P) | Mull M

[PTYP = P . (I-P) | N(I-P) = I | Mull M

The trivial services

log m = - log PTYP = N H(x) $= 2^{N + (x)}$ i.e., Instead of 2 strings, We are going to get 2 N×H(x) Strings. 1.e., Instead of N bits, we need NXH(X) bits to represent The outcome of The source. Therefore, average rate R of The is H(x) bits. It connot

become smaller.