FA17 10-701 Homework 2 Recitation 1

Logan Brooks Matthew Oresky Guoquan (GQ) Zhao

Q1: perceptrons: why $y \in \{-1, +1\}$ instead of $y \in \{0, 1\}$?

Q1: perceptrons: why $y \in \{-1, +1\}$ instead of $y \in \{0, 1\}$?

▶ Convenience: so $\hat{y} = \text{sign}(\mathbf{w}^T \mathbf{x})$.

Q1: perceptrons: why $y \in \{-1, +1\}$ instead of $y \in \{0, 1\}$?

► Convenience: so $\hat{y} = \text{sign}(\mathbf{w}^T \mathbf{x})$.

Q2: what does $\mathbf{w}^T \mathbf{x} = 0$ mean?

Q1: perceptrons: why $y \in \{-1, +1\}$ instead of $y \in \{0, 1\}$?

► Convenience: so $\hat{y} = \text{sign}(\mathbf{w}^T \mathbf{x})$.

Q2: what does $\mathbf{w}^T \mathbf{x} = 0$ mean?

x is on the decision boundary.

Q3: what "should" we do if $\mathbf{w}^T \mathbf{x} = 0$?

- Q1: perceptrons: why $y \in \{-1, +1\}$ instead of $y \in \{0, 1\}$?
 - ▶ Convenience: so $\hat{y} = \text{sign}(\mathbf{w}^T \mathbf{x})$.
- Q2: what does $\mathbf{w}^T \mathbf{x} = \mathbf{0}$ mean?
 - x is on the decision boundary.
- Q3: what "should" we do if $\mathbf{w}^T \mathbf{x} = 0$?
 - ▶ Training: update w for both y = -1 and y = +1
 - $\hat{y} = 0 \text{ is one way }$

- Q1: perceptrons: why $y \in \{-1, +1\}$ instead of $y \in \{0, 1\}$?
 - ▶ Convenience: so $\hat{y} = \text{sign}(\mathbf{w}^T \mathbf{x})$.
- Q2: what does $\mathbf{w}^T \mathbf{x} = \mathbf{0}$ mean?
 - x is on the decision boundary.
- Q3: what "should" we do if $\mathbf{w}^T \mathbf{x} = 0$?
 - ▶ Training: update w for both y = -1 and y = +1
 - $\hat{y} = 0$ is one way
 - ► Application: make a valid prediction
 - arbitrarily assign $\hat{y} = -1$ or $\hat{y} = +1$

- Q1: perceptrons: why $y \in \{-1, +1\}$ instead of $y \in \{0, 1\}$?
 - ▶ Convenience: so $\hat{y} = \text{sign}(\mathbf{w}^T \mathbf{x})$.
- Q2: what does $\mathbf{w}^T \mathbf{x} = \mathbf{0}$ mean?
 - x is on the decision boundary.
- Q3: what "should" we do if $\mathbf{w}^T \mathbf{x} = 0$?
 - ▶ Training: update w for both y = -1 and y = +1
 - $\hat{y} = 0$ is one way
 - ► Application: make a valid prediction
 - arbitrarily assign $\hat{y} = -1$ or $\hat{y} = +1$

Perceptron Update Rule

A simple learning algorithm - PLA

The perceptron implements

$$h(\mathbf{x}) = \operatorname{sign}(\mathbf{w}^{\scriptscriptstyle\mathsf{T}}\mathbf{x})$$

Given the training set:

$$(\mathbf{x}_1,y_1),(\mathbf{x}_2,y_2),\cdots,(\mathbf{x}_N,y_N)$$

pick a misclassified point:

$$sign(\mathbf{w}^{\mathsf{T}}\mathbf{x}_n) \neq y_n$$

and update the weight vector:

$$\mathbf{w} \leftarrow \mathbf{w} + y_n \mathbf{x}_n$$

Creator: Yaser Abu-Mostafa - LFD Lecture 1

12/19

- ► Does the algorithm terminate?
- ► Is ŵ guaranteed unique?
- Describe the outputted decision boundary.

- ► Does the algorithm terminate?
 - ► Yes.
- ► Is ŵ guaranteed unique?
- Describe the outputted decision boundary.

- ▶ Does the algorithm terminate?
 - ► Yes.
- ► Is ŵ guaranteed unique?
 - ► No.
- Describe the outputted decision boundary.

- ▶ Does the algorithm terminate?
 - Yes.
- ► Is ŵ guaranteed unique?
 - No.
- Describe the outputted decision boundary.
 - ► Linear separator (separating hyperplane) for the two classes in the training data

- ▶ Does the algorithm terminate?
- ► Is ŵ guaranteed unique?
- Describe the outputted decision boundary.

- Does the algorithm terminate?
 - ► No.
- ► Is ŵ guaranteed unique?
- ▶ Describe the outputted decision boundary.

- ▶ Does the algorithm terminate?
 - ► No.
- ► Is ŵ guaranteed unique?
 - ► N/A
- Describe the outputted decision boundary.
 - ► N/A

- ▶ Does the algorithm terminate?
- ► Is ŵ guaranteed unique?
- ▶ Describe the outputted regression function.

- ▶ Does the algorithm terminate?
 - ► Yes.
- ► Is ŵ guaranteed unique?
- ▶ Describe the outputted regression function.

- ▶ Does the algorithm terminate?
 - Yes.
- ► Is ŵ guaranteed unique?
 - ► No.
- ▶ Describe the outputted regression function.

- ▶ Does the algorithm terminate?
 - Yes.
- ► Is ŵ guaranteed unique?
 - ► No.
- ▶ Describe the outputted regression function.
 - ▶ Looks close to a perceptron.
 - ▶ Training $y_i = 1 \implies \hat{y}_i$ extremely close to 1
 - ▶ Training $y_i = 0 \implies \hat{y}_i$ extremely close to 0

- ▶ Does the algorithm terminate?
- ► Is ŵ guaranteed unique?
- Describe the outputted regression function.

- ▶ Does the algorithm terminate?
 - ► Yes.
- ► Is ŵ guaranteed unique?
- Describe the outputted regression function.

- ▶ Does the algorithm terminate?
 - ► Yes.
- ► Is ŵ guaranteed unique?
 - ► No.
- Describe the outputted regression function.

- ▶ Does the algorithm terminate?
 - Yes.
- ► Is ŵ guaranteed unique?
 - ► No.
- Describe the outputted regression function.
 - ▶ It depends. Output \hat{y}_i 's potentially far from 0 and 1.

Setup:

- ▶ Someone gives us a $\hat{\mathbf{w}}$ for a linear model.
- ► Let trueError = $\mathbb{E}[(y \mathbf{w}^T \mathbf{x})^2]$ for a new (\mathbf{x}, y) .
- ightharpoonup Estimate trueError with mean squared error testError $_m$ on m i.i.d. test points

m	$\mathbb{E}[testError_m]$	$Bias_m$	Var_m
tiny			
large			
$\text{limit as } m \to \infty$			

Setup:

- ▶ Someone gives us a $\hat{\mathbf{w}}$ for a linear model.
- ► Let trueError = $\mathbb{E}[(y \mathbf{w}^T \mathbf{x})^2]$ for a new (\mathbf{x}, y) .
- ightharpoonup Estimate trueError with mean squared error testError $_m$ on m i.i.d. test points

m	$\mathbb{E}[testError_m]$	$Bias_m$	Var_m
tiny	= trueError		
large	= trueError		
	= trueError		

Setup:

- ▶ Someone gives us a $\hat{\mathbf{w}}$ for a linear model.
- ► Let trueError = $\mathbb{E}[(y \mathbf{w}^T \mathbf{x})^2]$ for a new (\mathbf{x}, y) .
- ightharpoonup Estimate trueError with mean squared error testError $_m$ on m i.i.d. test points

m	$\mathbb{E}[testError_m]$	$Bias_m$	Var_m
tiny	= trueError	=0	
large	= trueError	=0	
	= trueError	=0	

Setup:

- ▶ Someone gives us a $\hat{\mathbf{w}}$ for a linear model.
- ► Let trueError = $\mathbb{E}[(y \mathbf{w}^T \mathbf{x})^2]$ for a new (\mathbf{x}, y) .
- ightharpoonup Estimate trueError with mean squared error testError $_m$ on m i.i.d. test points

m	$\mathbb{E}[testError_m]$	$Bias_m$	Var_m
tiny	= trueError	=0	$\gg 0$
large	= trueError	=0	> 0
limit as $m \to \infty$	= trueError	=0	=0

Let $\hat{\mathbf{w}} = (\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{y}$. Let trueError denote its expected squared test error.

	, , , , , ,	, ,
n	$\frac{1}{n} \ \mathbf{y} - \mathbf{X}\mathbf{\hat{w}}\ _2^2$	trueError
< p		
= p		
> p		
limit as $n \to \infty$		

Let $\hat{\mathbf{w}} = (\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{y}$. Let trueError denote its expected squared test error.

(, .,	/ · / · ·)	, , ,
n	$\frac{1}{n} \ \mathbf{y} - \mathbf{X}\mathbf{\hat{w}}\ _2^2$	trueError
< p	ERR	ERR
= p		
> p		
limit as $n \to \infty$		

Let $\hat{\mathbf{w}} = (\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{y}$. Let trueError denote its expected squared test error.

(/ /	/ / · / · · · j	, ,
n	$\frac{1}{n} \ \mathbf{y} - \mathbf{X}\mathbf{\hat{w}}\ _2^2$	trueError
< p	ERR	ERR
= p	=0	$\gg 0$
> p		
limit as $n \to \infty$		

Let $\hat{\mathbf{w}} = (\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{y}$. Let trueError denote its expected squared test error.

	/ / · / · · · · · · · · · · · · · · · ·	, , , , , , , , , , , , , , , , , , , ,
\overline{n}	$\frac{1}{n} \ \mathbf{y} - \mathbf{X}\mathbf{\hat{w}}\ _2^2$	trueError
< p	ERR	ERR
= p	=0	$\gg 0$
> p	> 0	> 0
$-\text{limit as } n \to \infty$		

Let $\hat{\mathbf{w}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$. Let trueError denote its expected squared test error.

	, , , , , , , , , , , , , , , , , , , ,	
\overline{n}	$\frac{1}{n} \ \mathbf{y} - \mathbf{X}\hat{\mathbf{w}}\ _2^2$	trueError
< p	ERR	ERR
= p	=0	$\gg 0$
> p	> 0	> 0
limit as $n \to \infty$	> 0	> 0