การพยากรณ์ (Forecasting)

การพยากรณ์ (Forecasting) คือการใช้ข้อมูลของสิ่งที่สนใจที่เกิดขึ้นในอดีตเพื่อสร้างแบบจำลองคณิตศาสตร์ที่ใช้ในการ คำนวณสิ่งที่สนใจนั้นในอนาคต และในบางตำราจะยังรวมถึงการใช้สภาวะการณ์ที่สำรวจได้ในปัจจุบันรวมไปถึงในอดีตเพื่อ ทำนาย (Prediction) ค่าที่สนใจ ตัวอย่างเช่น

- ฝ่ายขายใช้ยอดขายย้อนหลัง 12 เดือนเพื่อทำนายยอดขายในเดือนถัดไป
- ทีมการตลาดต้องการทำนายความต้องการซื้อสินค้าบางอย่างของลูกค้าโดยอาศัยคุณลักษณะต่าง ๆ เช่นเพศ อายุ ฐานเงินเดือน สินค้าที่ซื้อในเดือนที่แล้ว เป็นต้น

ในรายวิชานี้ เราจะศึกษา 2 รูปแบบการทำนายหลัก ๆ ดังนี้

Figure 5.1. ความ แตก ต่าง ระหว่าง ตัว แบบ อนุกรม เวลา และ ตัว แบบ ถดถอย

1. **ตัวแบบอนุกรมเวลา** (time series forecasting): เป็นตัวแบบที่อยู่บนสมมติฐานว่าตัวแปรที่เราสนใจมีค่าขึ้นอยู่กับ ตัวแปรเดียวกันที่เกิดขึ้นในอดีต

$$\hat{y}_t \sim y_{t-1}, y_{t-2}, \dots, y_{t-k}$$

2. **ตัวแบบการถอดถอย** (regression model): เป็นตัวแบบที่อยู่บนสมมติฐานว่าตัวแปรที่เราสนใจมีค่าขึ้นอยู่กับ ตัวแปรอื่น ๆ ที่เกิดขึ้นพร้อมกัน (หรือเป็นอยู่)

$$\hat{y}_t \sim x_{1,t}, x_{2,t}, \dots, x_{n,t}$$

ทั้งนี้ เราไม่สามารถบอกได้ว่าวิธีการใดเป็นวิธีการที่ดีที่สุด เพราะแต่ละวิธีการ (ที่กำลังจะกล่าวในหัวข้อถัดไป) มี สมมติฐานตั้งต้นที่แตกต่างกัน ขึ้นอยู่กับลักษณะของข้อมูลว่าจะเหมาะสมกับตัวแบบไหน แต่ในทางปฏิบัติ ถ้าไม่มีได้ติดขัด เรื่องปัญหาด้านทรัพยากรในการทำการคำนวณ เรามักจะลองทุกวิธีการและวัดผลเพื่อตรวจสอบเปรียบเทียบความสามารถ ของแต่ละตัวแบบ (เรียนในหัวข้อสุดท้าย)

5.1 ตัวแบบอนุกรมเวลา

5.1.1 วิธีการค่าเฉลี่ยรวม

- เหมาะกับข้อมูลที่มีลักษณะที่ค่อนข้างคงที่ในภาพรวม (ไม่ได้มีแนวโน้มที่เปลี่ยนแปลงไปเช่นตลาดโตขึ้นเรื่อย ๆ)
- วิธีการคำนวณ:

$$\hat{y}_{t+1} = \frac{\sum_{i=1}^{t} y_i}{t} = \frac{y_1 + y_2 + \dots + y_t}{t}$$

ตัวอย่าง 5.1.1: วิธีการค่าเฉลี่ยรวม

บริษัทหนึ่งมีความต้องการทำนายยอดขายในเดือนที่ 7 โดยที่มียอดขาย 6 เดือนที่ผ่านมาตามตารางด้านล่างนี้ ทั้งนี้ ลองหาค่าทำนายของแต่ละเดือนก่อนหน้าด้วย

เดือน	ยอดขาย	
1	800	
2	900	
3	800	
4	1000	
5	1000	
6	1300	

5.1.2 วิธีค่าเฉลี่ยเคลื่อนที่ (Moving Average)

- ถ้าข้อมูลระยะยาวไม่คงที่ วิธีการหาค่าเฉลี่ยทั้งหมดอาจจะเอาผลที่ไกลเกินไปมารวม
- แต่ถ้าพบว่ามีความคงที่ในระยะสั้น ๆ เช่น ในช่วง 6 เดือนไม่ได้มีการเปลี่ยนแปลงมากนัก เราก็ควรนำแค่ 6 เดือน
 ย้อนหลังมาคิด ซึ่งจะเรียกว่าการหาค่าเฉลี่ยเคลื่อนที่ย้อนหลัง 6 เดือน
- วิธีการคำนวณ:

$$\hat{y}_{t+1} = \frac{\sum_{i=t-n+1}^{t} y_i}{n} = \frac{y_{t-n+1} + y_{t-n+2} + \dots + y_t}{n}$$

ตัวอย่าง 5.1.2: วิธีการค่าเฉลี่ยเคลื่อนที่

จากตารางเดิม จงหาค่าเฉลี่ยเคลื่อนที่ 3 เดือน และค่าเฉลี่นเคลื่อนที่ 4 เดือนของเดือนทั้งหมดที่เป็นไปได้จนถึง เดือนที่ 7

เดือน	ยอดขาย	
1	800	
2	900	
3	800	
4	1000	
5	1000	
6	1300	

เดือน	ยอดขาย	
1	800	
2	900	
3	800	
4	1000	
5	1000	
6	1300	

5.1.3 วิธีค่าเฉลี่ยเคลื่อนที่ถ่วงน้ำหนัก (Weighted Moving Average)

- เป็นวิธีการที่ต่อยอดมาจากการทำค่าเฉลี่ยนเคลื่อนที่ แต่มีแนวคิดว่าผลกระทบที่ยิ่งห่างออกไปยิ่งควรมีความสำคัญ
 น้อยลง แต่ในขณะที่เหตุการณ์ล่าสุดควรมีผลกระทบมากที่สุด
- 💠 วิธีการถ่วงน้ำหนักที่ง่ายที่สุดคือไล่ 1, 2, 3, ... จากอดีตสุดมาปัจจุบันสุด
- ๙ เรียกอีกชื่อว่า วิธีปรับเรียบแบบเชิงเส้น
- วิธีการคำนวณ:

$$\hat{y}_{t+1} = \frac{\sum_{i=t-n+1}^{t} (i-t+n) y_i}{\sum_{i=1}^{n} i} = \frac{1 \cdot y_{t-n+1} + 2 \cdot y_{t-n+2} + \dots + n \cdot y_t}{1 + 2 + \dots + n}$$

ตัวอย่าง 5.1.3: วิธีการค่าเฉลี่ยเคลื่อนที่ถ่วงน้ำหนัก

จากตารางเดิม จงหาค่าเฉลี่ยเคลื่อนที่ถ่วงน้ำหนัก 3 เดือน และค่าเฉลี่นเคลื่อนที่ถ่วงน้ำหนัก 4 เดือนของเดือน ทั้งหมดที่เป็นไปได้จนถึงเดือนที่ 7

เดือน	ยอดขาย
1	800
2	900
3	800
4	1000
5	1000
6	1300

เดือน	ยอดขาย	
1	800	
2	900	
3	800	
4	1000	
5	1000	
6	1300	

5.1.4 วิธีปรับเรียบแบบเอกซ์โพเนเชียล (exponential smoothing)

- ♦ เป็นอีกวิธีในการถ่วงน้ำหนัก โดยให้ความสำคัญของค่าล่าสุดเริ่มที่ 1 และลดค่าความสำคัญลงไปแบบ exponential โดยที่ยังมีการนำค่าตั้งแต่จุดเริ่มต้นมาพิจารณา
- แต่สูตรการคำนวณถูกจัดให้อยู่ในรูปที่คำนวณได้ง่าย (แค่ต้องคำนวณไต่ลำดับขึ้นมาเรื่อย ๆ) รูปแบบ exponential
 จึงไม่เห็นอยู่ในสูตร
- วิธีการคำนวณ:

$$\hat{y}_{t+1} = \hat{y}_t + \alpha \left(y_t - \hat{y}_t \right)$$

หรือ

$$\hat{y}_{t+1} = \alpha y_t + (1 - \alpha) \, \hat{y}_t$$

โดยที่ $0 < \alpha < 1$

 \diamond ค่า α เป็นค่าที่ต้องกำหนดขึ้นมาตั้งแต่เริ่มตัดสินใจ (เหมือนกับที่เราต้องเลือกว่าจะ moving average หรือ weighted moving average ของกี่เดือน)

ตัวอย่าง 5.1.4: วิธีปรับเรียบแบบเอกซ์โพเนนเชียล

จากตารางเดิม จงหาค่าทำนายจากวิธีการปรับเรียบแบบเอกซ์โพเนนเชียล โดยใช้ lpha=0.3 และ lpha=0.8

เดือน	ยอดขาย
1	800
2	900
3	800
4	1000
5	1000
6	1300

เดือน	ยอดขาย	
1	800	
2	900	
3	800	
4	1000	
5	1000	
6	1300	

หมายเหตุ 5: สาเหตุที่เรียกว่าการปรับเรียบแบบเอกซ์โพเนนเชียล

รูปแบบสมการที่นิยามมาในด้านบนเรียกว่าการนิยามแบบเวียนเกิด คือการจะหาพจน์ที่ใด ๆ ได้ จะต้องคำนวณ ให้ทราบค่าพจน์ก่อนหน้าก่อน ดังนั้นจึงจำเป็นต้องคำนวณไล่จากขั้นที่ 1 ขึ้นมาจนถึงขั้นที่ต้องการ แต่ทั้งนี้ เรายัง สามารถจัดรูปให้อยู่ในรูปที่ไม่ขึ้นกับพจน์ก่อนหน้าได้ดังนี้

$$\hat{y}_{t+1} = \alpha y_t + (1 - \alpha) \, \hat{y}_t$$

$$= \alpha y_t + (1 - \alpha) \, (\alpha y_{t-1} + (1 - \alpha) \, \hat{y}_{t-1})$$

$$= \alpha y_t + \alpha \, (1 - \alpha) \, y_{t-1} + (1 - \alpha)^2 \, \hat{y}_{t-1}$$

$$= \alpha y_t + \alpha \, (1 - \alpha) \, y_{t-1} + \alpha \, (1 - \alpha)^2 \, y_{t-2} + (1 - \alpha)^3 \, \hat{y}_{t-3}$$

$$= \alpha y_t + \alpha \, (1 - \alpha) \, y_{t-1} + \alpha \, (1 - \alpha)^2 \, y_{t-2} + \alpha \, (1 - \alpha)^3 \, y_{t-3} + (1 - \alpha)^4 \, \hat{y}_{t-4}$$

$$\vdots$$

$$= \alpha y_t + \alpha \, (1 - \alpha) \, y_{t-1} + \alpha \, (1 - \alpha)^2 \, y_{t-2} + \dots + \alpha \, (1 - \alpha)^{t-2} \, y_2 + (1 - \alpha)^{t-1} \, y_1$$

หรือถ้าเขียนเป็นตัวอย่างแบบตัวเลขชัดเจน จะมีดังนี้

$$\hat{y}_1 = y_1$$

$$\hat{y}_2 = (1 - \alpha)^0 y_1 = y_1$$

$$\hat{y}_3 = \alpha y_2 + (1 - \alpha) y_1$$

$$\hat{y}_4 = \alpha y_3 + \alpha (1 - \alpha) y_2 + (1 - \alpha)^2 y_1$$

$$\hat{y}_5 = \alpha y_4 + \alpha (1 - \alpha) y_3 + \alpha (1 - \alpha)^2 y_2 + (1 - \alpha)^3 y_1$$

์ ซึ่งจะเห็บว่า

- 1. จำนวนพจน์ของค่าจริงที่มาใช้คำนวณจะไม่ถูกกำหนดตายตัวเหมือนวิธีค่าเฉลี่ยเคลื่อนที่แบบอื่นๆ
- 2. แต่ความสำคัญก็จะถูกลดทอนลงเรื่อย ๆ จนเข้าใกล้ 0 ตัวอย่างกราฟค่าความสำคัญเมื่อใช้ lpha=0.3,0.5,0.95,1 แสดงการลดแบบ exponential

5.2 ตัวแบบการถดถอยเชิงเส้น

- \diamond ตัวแบบการถดถอย (regression) เป็นการสร้างตัวแบบการทำนายโดยอยู่บนสมมติฐานว่าตัวแปรต้นตัวหนึ่ง (x) มี ความสัมพันธ์เชิงฟังก์ชันกับค่าตัวแปรที่เราสนใจ (y)
- \diamond ในวิชานี้เราสนใจแค่การถดถอยเชิงเส้นตัวแปรเดียว กล่าวคือ มีชุดข้อมูล $(x_1,y_1)\,,(x_2,y_2)\,,\dots,(x_n,y_n)$ ที่ มีความสัมพันธ์

$$Y = a_0 + a_1 X + \epsilon$$

โดย a_0,a_1 เป็นค่าคงที่ และ ϵ คือพจน์ค่าคาดเคลื่อน

 \diamond เป้าหมายคือเราต้องการประมาณค่า $a_0=lpha_0, a_1=lpha_1$ ที่

$$Y \approx \hat{Y} = \alpha_0 + \alpha_1 X$$

ขั้นตอน 5.1

ค่า a_0,a_1 ของ ตัว แบบ การ ถดถอย เชิง เส้น $Y=a_0+a_1X+\epsilon$ ของ ชุด ข้อมูล $(x_1,y_1),(x_2,y_2),\dots,(x_n,y_n)$ สามารถ ประมาณ ค่า ได้ ด้วย α_0,α_1 (ด้วย วิธี การ ทาง คณิตศาสตร์ ที่เรียกว่าวิธีกำลังสองต่ำสุด (Least Squared Error)) ตามสูตร

$$\alpha_1 = \frac{\sum_{i=1}^{n} (x_i - \bar{x}) (y_i - \bar{y})}{\sum_{i=1}^{n} (x_i - \bar{x})^2}, \qquad \alpha_0 = \bar{y} - \alpha_1 \bar{x}$$

และจะได้ว่า $\hat{Y}=\alpha_0+\alpha_1 X$ เป็นตัวแบบการถดถอยเชิงเส้นของ $Y=a_0+a_1 X+\epsilon$ โดยขั้นตอนการคำนวณตามสูตรดังกล่าวคือ

- 1. คำนวณหาค่าเฉลี่ย $ar{x} = \sum_{i=1}^n x/n$ และค่าเฉลี่ย $ar{y} = \sum_{i=1}^n y/n$
- 2. $(x_i \bar{x})$: คำนวณหาผลต่างระหว่างค่า x และค่าเฉลี่ย \bar{x} ของทุกข้อมูล
- 3. $(y_i ar{y})$: คำนวณหาผลต่างระหว่างค่า y และค่าเฉลี่ย $ar{y}$ ของทุกข้อมูล
- 4. $(x_i \bar{x}) \, (y_i \bar{y})$: นำค่าผลต่างจาก 2 ข้อก่อนหน้ามาคูณกัน

5. $\sum_{i=1}^{n} (x_i - \bar{x}) \, (y_i - \bar{y})$: นำค่าผลคูณของทุกข้อมูลจากขั้นที่ผ่านมามาบวกกัน

6. $(x_i - \bar{x})^2$: นำค่าผลต่างที่คำนวณไว้ในขั้นที่ 2 มายกกำลังสอง

7. $\sum_{i=1}^{n} (x_i - \bar{x})^2$: นำค่ากำลังสองของผลต่างในขั้นตอนที่ผ่านมามาบวกกัน

8. $lpha_1=$ ค่าผลบวกจากขั้นตอนที่ 5 หารด้วยค่าผลบวกจากขั้นตอนที่ 7

9. $\alpha_0 = \bar{y} - \alpha_1 \bar{x}$

นักศึกษาสามารถสร้างตารางการคำนวณตามตัวอย่างด้านล่างเพื่อใช้ประกอบการคำนวณได้

x_i	y_i	$x_i - \bar{x}$	$y_i - \bar{y}$	$(x_i - \bar{x})(y_i - \bar{y})$	$(x_i - \bar{x})^2$
x_1	y_1				
x_2	y_2				
x_n	y_n				
$\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n}$	$\bar{y} = \frac{\sum_{i=1}^{n} y_i}{n}$			$\sum_{i=1}^{n} (x_i - \bar{x}) (y_i - \bar{y})$	$\sum_{i=1}^{n} (x_i - \bar{x})^2$

ตัวอย่าง 5.2.1: การถดถอยเชิงเส้น 1 ตัวแปร

จงประมาณตัวแบบการถดถอยเชิงเส้นของชุดข้อมูลดังตารางด้านล่าง (ข้อมูลเดียวกับรูปตัวอย่าง)

x	y
1	9
2	7
3	16
4	14
5	15
6	20
7	23
8	28
9	22
10	24

5.3 การประเมิณผลความแม่นยำในการทำนาย

อย่างที่ได้กล่าวไปก่อนหน้านี้ว่าเราไม่สามารถระบุได้ว่าตัวแบบใดเป็นตัวแบบที่ดีที่สุด เพราะตัวแบบในการทำนายที่ดีขึ้นอยู่ กับข้อมูลที่มีว่ามีลักษณะข้อมูลเป็นอย่างไร ตัวแบบเดียวกันอาจจะทำงานได้ดีในชุดข้อมูลหนึ่ง แต่อาจจะทำได้ไม่ดีในอีกชุด ข้อมูลหนึ่ง เพราะฉะนั้น ในกระบวนการทำงานจริง จึงต้องมีการวัดผลเพื่อประเมิณความแม่นยำของตัวแบบเพื่อที่จะเปรียบ เทียบความสามารถในการทำนายของแต่ละตัวแบบได้ ซึ่งแนวคิดหลักของการวัดผลคือการใช้ค่าความคลาดเคลื่อน (error) เพื่อเป็นตัวบอกว่าสิ่งที่ตัวแบบทำนายออกมาได้คลาดเคลื่อนออกไปจากค่าจริงเท่าใด

ค่าความคลาดเคลื่อนดิบ = |ค่าที่ตัวแบบทำนายได้ — ค่าจริงจากชุดข้อมูล|

ในหนังสือเล่มนี้ จะแบ่งการวัดผลออกเป็น 2 รูปแบบหลักได้แก่

- 1. **การวัดผลด้วยมาตรวัดของข้อมูล**: เป็นการวัดผลที่มีหน่วยออกมาเป็นหน่วยเดียวกันกับข้อมูลที่เราต้องการจะ ทำนาย โดยต้องการวัดระยะห่าง มีข้อดีในแง่การแสกงค่าคาดเคลื่อนจริง ๆ เช่นทำนายคลาดเคลื่อนไปกี่บาท มักถูก ใช้ในการเปรียบเทียบระหว่างตัวแบบต่าง ๆ บนข้อมูลชุดเดียวกัน โดยจะกล่าวถึง
 - ค่าเฉลี่ยของความผิดพลาดสัมบูรณ์ (mean absolute error: MAE)
 - ค่ารากที่สองของค่าเฉลี่ยของความผิดพลาดกำลังสอง (root mean squared error: RMSE)
- 2. การวัดผลเชิงสัมพัทธ์: เป็นการวัดผลในเชิงการหาร้อยละเทียบเคียงกับค่าจริงว่าคลาดเคลื่อนไปกี่เปอร์เซนต์ ซึ่งวิธี การนี้มักใช้กับชุดข้อมูลที่ความรุนแรงของการคลาดเคลื่อนขึ้นอยู่กับขนาดของค่าจริง กล่าวคือการคาดเคลื่อนด้วย ปริมาณหนึ่งตอนที่ค่าจริงมีค่าน้อย ๆ จะรุนแรงกว่าการคาดเคลื่อนขนาดเดียวกันเมื่อค่าจริงมีค่ามาก ๆ (ตัวอย่าง เช่น เงินหาย 9 บาทจาก 10 บาท กับเงินหายไป 9 บาทจาก 1 ล้านบาท) อีกทั้งยังเป็นค่าความคลาดเคลื่อนที่ใช้เพื่อ การเปรียบเที่ยบการทำงานของตัวแบบในต่างชุดข้อมูลที่อาจจะมีค่าที่ต้องการทำนายอยู่ในคนละมาตรวัดกัน โดย จะกล่าวถึง
 - ค่าเฉลี่ยของความผิดพลาดสัมพัทธ์ (mean absolute percentage error: MAPE)
 - ค่าเฉลี่ยของความผิดพลาดสัมบูรณ์ที่ปรับมาตราส่วน (mean absolute scaled error: MASE)

นิยาม 5.3.1: mean absolute error

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |\hat{y}_i - y_i|$$

นิยาม 5.3.2: root mean squared error

$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (\hat{y}_i - y_i)^2}$$

และในบางครั้ง อาจมีการใช้ MSE ซึ่งคือ

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (\hat{y}_i - y_i)^2$$

แต่สิ่งที่ต้องระวังตอนอ่านค่าคือค่าที่ได้จะอยู่ในหน่วยกำลังสองของหน่วยเดิม (เช่นหน่วย บาท²) ซึ่งไม่ได้มีความ หมายในโลกจริง

นิยาม 5.3.3: mean absolute percentage error

$$MAPE = \frac{1}{n} \sum_{i=1}^{n} \left| \frac{\hat{y}_i - y_i}{y_i} \right| \times 100\%$$

นิยาม 5.3.4: mean absolute scaled error

สำหรับการทำการถดถอยเชิงเส้นเมื่อเทียบกับการทำนายด้วยการหยิบแต่ค่าเฉลี่ยมาเป็นค่าทำนาย

$$MASE = \frac{\sum_{i=1}^{n} |\hat{y}_i - y_i|}{\sum_{i=1}^{n} |\bar{y} - y_i|}$$

สำหรับอนุกรมเวลาเมื่อเทียบกับการทำนายด้วยการหยิบค่าของครั้งก่อนหน้ามาเป็นค่าทำนายของครั้งปัจจุบัน

$$MASE = \frac{\frac{1}{n} \sum_{i=1}^{n} |\hat{y}_i - y_i|}{\frac{1}{T-1} \sum_{t=2}^{T} |y_t - y_{t-1}|}$$

สำหรับการวัดผลด้วย MASE นั้น เราสามารถปรับเปลี่ยนวิธีการประมาณค่าตัวเทียบ (ตัวส่วน) เป็นตัวแบบแบบอื่น ได้เช่นกัน เพียงแต่ 2 สูตรด้านบนเป็นการเทียบจากตัวแบบที่ง่ายที่สุดที่มักจะนึกถึงกันเป็นอันดับแรกตอนทำนาย

ตัวอย่าง 5.3.1: การวัดผลอนุกรมเวลา

จากตารางการทำตัวแบบอนุกรมเวลาแบบต่าง ๆ ที่ทำมาในตัวอย่างที่ผ่าน ๆ มา จงวัดผลค่าความคลาดเคลื่อน MAE, RMSE, MAPE, MASE ของแต่ละตัวแบบ โดยสมมติเพิ่มว่าค่าจริงของเดือนที่ 7 มีค่าเท่ากับ 1200 (และเพื่อ ความสะดวกในการคำนวณ จึงขอปัดค่าทำนายให้เป็นจำนวนเต็ม)

วิธีค่าเฉลี่ย

	161610	
เดือน	ยอดขายจริง	ค่าทำนาย
1	800	
2	900	800
3	800	850
4	1000	833
5	1000	875
6	1300	900
7	1200	967

วิธีเฉลี่ยเคลื่อนที่ 3 เดือน

เดือน	ยอดขายจริง	ค่าทำนาย
1	800	
2	900	
3	800	
4	1000	833
5	1000	900
6	1300	933
7	1200	1100

วิธีเภลี่ยเคลื่องที่ 4 เดืองเ

เดือน	คลอนท 4 เดอน ยอดขายจริง	ค่าทำนาย
1	800	
2	900	
3	800	
4	1000	
5	1000	875
6	1300	925
7	1200	1025

วิธีค่าเฉลี่ยถ่วงน้ำหนัก 3 เดือน

AUTI IPARIORI AND INIDITI DI PRIOR		
เดือน	ยอดขายจริง	ค่าทำนาย
1	800	
2	900	
3	800	
4	1000	833
5	1000	917
6	1300	967
7	1200	1150

วิธีค่าเฉลี่ยถ่วงน้ำหนัก 4 เดือน

AUTI INVIOLISME INICIT A PAIGR		
เดือน	ยอดขายจริง	ค่าทำนาย
1	800	
2	900	
3	800	
4	1000	
5	1000	900
6	1300	950
7	1200	1100

วิธีปรับเรียบแบบเอ็กโพเนนเชียล โดย lpha=0.3

เดือน	ยอดขายจริง	ค่าทำนาย
1	800	800
2	900	800
3	800	830
4	1000	821
5	1000	875
6	1300	912
7	1200	1029

phaphonteey@sau.ac.th 93

วิธีปรับเรียบแบบเอ็กโพเนนเชียล โดย lpha=0.8

เดือน	ยอดขายจริง	ค่าทำนาย
1	800	800
2	900	800
3	800	880
4	1000	806
5	1000	964
6	1300	975
7	1200	1222

ตัวอย่าง 5.3.2: การวัดผลการถดถอยเชิงเส้น

จากตัวอย่างการหาตัวแบบการถดถอยเชิงเส้นในตัวอย่าง 5.2.1 จงวัดผลความคลาดเคลื่อน MAE, RMSE, MAPE, MASE (ในทำนองเดียวกัน ถ้าเป็นการคำนวณมือให้ปัดเป็นจำนวนเต็มเพื่อคิดเลขได้ จะได้คำนวณได้สะดวก)

x	y	\hat{y}
1	9	
2	7	
3	16	
4	14	
5	15	
6	20	
7	23	
8	28	
9	22	
10	24	

phaphonteey@sau.ac.th 95

5.4 การใช้ Excel เพื่อช่วยคำนวณหาตัวแบบต่าง ๆ