Signals and Systems (Sem. I / 2014-2015)

Tutorial Solutions

Solutions for Chapter 1

Answer to P 1.1:

Key: $c = x + jy = \rho e^{j\theta}$ with

$$\rho = \sqrt{x^2 + y^2}, \quad tan\theta = \frac{y}{x};$$
$$x = \rho \cos\theta, \quad y = \rho \sin\theta$$

- θ is not unique as $e^{j\theta} = e^{j(\theta + 2\pi m)}$ for any integer m. Usually, $|\theta| \leq \pi$ is assumed.
- $-5 = 5e^{j\pm\pi} \implies \theta = \pm\pi, \ 5 = 5e^{j0} \implies \theta = 0; \text{ Also,}$ $1 + j = \sqrt{2}e^{j\pi/4}, \ 1 j = \sqrt{2}e^{-j\pi/4}$ $1 + j = -(1 j) = e^{j\pi}\sqrt{2}e^{-j\pi/4} = 1 + j = \sqrt{2}e^{j3\pi/4}$

Answer to P 1.2: Keep the definitions in mind!

Energy

Power:

$$E_x(T) \stackrel{\triangle}{=} \int_{-T}^{T} |x(t)|^2 dt \implies E_x = \lim_{T \to +\infty} E_x(T); \quad P_x = \lim_{T \to +\infty} \frac{E_x(T)}{2T}$$

$$E_x[N] \stackrel{\triangle}{=} \sum_{N \to +\infty}^{N} |x[n]|^2 \implies E_x = \lim_{N \to +\infty} E_x[N]; \quad P_x = \lim_{N \to +\infty} \frac{E_x[N]}{2N + 1}$$

• (a) For $x_1(t) = e^{-2t}$, one has

$$E_{x_1}(T) \stackrel{\triangle}{=} \int_{-T}^{T} |x_1(t)|^2 dt = \int_{0}^{T} e^{-4t} dt = \frac{1}{-4} e^{-4t} \Big|_{0}^{T} = \frac{1}{4} [1 - e^{-4T}]$$

So, $E_x = \lim_{T \to +\infty} = 1/4$, and hence it is an energy signal. Clearly, $P_x = 0$.

For $x_2[n] = (0.75e^{j\theta})^{|n|}$, one has

$$E_{x_2}[N] \stackrel{\triangle}{=} \sum_{n=-N}^{N} |x_2[n]|^2 = \sum_{n=-N}^{N} |(0.75e^{j\theta})^{|n|}|^2 = \sum_{n=-N}^{N} 0.75^{2|n|}$$

$$= \sum_{n=-N}^{-1} 0.75^{-2n} + \sum_{n=0}^{N} 0.75^{2n} = \sum_{m=0}^{N} 0.75^{2m} - 1 + \sum_{n=0}^{N} 0.75^{2n}$$

$$= 2 \times \frac{1 - 0.75^{2(N+1)}}{1 - 0.75^2} - 1$$

So, $E_x = \lim_{N \to +\infty} = \frac{2}{1 - 0.75^2} - 1 = \frac{25}{7}$ - an energy signal. Clearly, $P_x = 0$.

• (b) Let $x(t) = x(t + T_0)$, $\forall t$, then with $T = MT_0$

$$E_x(T) \stackrel{\triangle}{=} \int_{-T}^{T} |x_1(t)|^2 dt = \int_{-MT_0}^{-(M-1)T_0} |x(t)|^2 dt + \cdots$$
$$+ \int_{-T_0}^{0} |x(t)|^2 dt + \int_{0}^{T_0} |x(t)|^2 dt + \cdots + \int_{(M-1)T_0}^{MT_0} |x(t)|^2 dt$$

It follows from $x(t) = x(t + kT_0)$ and then $\int_{(k-1)T_0}^{kT_0} |x(t)|^2 dt = \int_0^{T_0} |x(t)|^2 dt$

that $E_x = \lim_{T \to +\infty} E_x(T) = \lim_{M \to +\infty} 2M \int_0^{T_0} |x(t)|^2 dt \to +\infty$, and $P_x = \lim_{T \to +\infty} \frac{E_x(T)}{2T} = \lim_{M \to +\infty} \frac{2M \int_0^{T_0} |x(t)|^2 dt}{2MT_0} = \frac{1}{T_0} \int_0^{T_0} |x(t)|^2 dt$ - a power signal.

• (c) Let $E_x = \int_{-\infty}^{+\infty} |x(t)|^2 dt$. Now, with $y(t) = x(\kappa t)$

$$E_y = \int_{-\infty}^{+\infty} |y(t)|^2 dt = \int_{-\infty}^{+\infty} |x(\kappa t)|^2 dt$$

Define $\tau = \kappa t$, then $dt = \kappa^{-1} d\tau$ and then

$$E_y = \kappa^{-1} \int_{-\infty}^{+\infty} |x(\tau)|^2 d\tau = \kappa^{-1} E_x$$

As required, $E_y = 1$. This means

$$\kappa = E_x$$

 End

Answer to P 1.3: As given, the system I/O is $y[n] = nx[n] + \alpha$.

• Linearity

Let
$$x_k[n] \rightarrow y_k[n] = nx_k[n] + \alpha$$
, $k = 1, 2$. Clearly, $x[n] = \beta_1 x_1[n] + \beta_2 x_2[n] \rightarrow y[n] = nx[n] + \alpha$, i.e., $y[n] = n\{\beta_1 x_1[n] + \beta_2 x_2[n]\} + \alpha$. So,
$$y[n] = \beta_1 \{nx_1[n] + \alpha\} + \beta_2 \{nx_2[n] + \alpha\} + \alpha[1 - (\beta_1 + \beta_2)]$$
$$= \beta_1 y_1[n] + \beta_2 y_2[n] + \alpha + \alpha[1 - (\beta_1 + \beta_2)]$$

Generally, $y[n] \neq \beta_1 y_1[n] + \beta_2 y_2[n]$ as β_1, β_2 are all arbitrary. So, the system is NOT linear unless $\alpha = 0$.

• Time-invariance

Let $x[n] \to y[n] = nx[n] + \alpha$. So, $\hat{x}[n] = x[n - n_0] \to \hat{y}[n] = n\hat{x}[n] + \alpha = nx[n - n_0] + \alpha$ for any n_0 given. Knowing $y[n - n_0] = (n - n_0)x[n - n_0] + \alpha$, we realize that $\hat{y}[n] \neq y[n - n_0]$, which implies that the system is NOT

time-invariant.

• Causality

Clearly, the system IS causal as $y[n_0]$ has nothing to do with x[n] for $n > n_0$, where n_0 is any given integer.

• Stability

Let x[n] = 1, which is bounded. Note $|y[n]| = |x[n] + \alpha| \ge |n| - |\alpha|$ can be bigger than any given number. This means that y[n] is unbounded and hence the system is UNSTABLE.

Answer to P 1.4: Given that $x[n] = cos(\omega_0 n)$, if it is periodic, there should exists N such that

$$x[n] = x[n+N], \ \forall \ n \Leftrightarrow \cos(\omega_0 n) = \cos(\omega_0 n + \omega_0 N), \ \forall \ n$$

which implies that there should exist some integer K such that

$$\omega_0 N = 2\pi K \quad \Rightarrow \quad N = \frac{2\pi}{\omega_0} K$$

Keeping that N is integer in mind, the above is impossible for the case when $\frac{\pi}{\omega_0}$ is NOT rational!

Examples: 1) $\omega_0 = 0.3\pi \quad \Rightarrow \quad \frac{\pi}{\omega_0} = 10/3 \quad \Rightarrow \quad N = 20K/3$. So, K = 3, 6, ..., 3k, ... and hence the signal is periodic; 2) when $\omega_0 = 0.3$, there exists no integer K and hence no N, meaning the signal is NOT periodic.

Answer to P 1.5 and Answer tp P 1.8: To be given on the class on board.

Answer to P 1.6:

- (a) Let $y_1(t) \stackrel{\triangle}{=} x(4-t/2)$. With x(t) given, one notes $y_1(t) = x(-\frac{1}{2}(t-8))$. Let $\tilde{y}_1(t) = x(-\frac{1}{2}t)$, then $y_1(t) = \tilde{y}_1(t-8)$. Therefore, $\tilde{y}_1(t)$ is obtained by applying a time reversal to x(t) then followed by a time scaling of 1/2. Time-shifting $\tilde{y}_1(t)$ by 8 yields $y_1(t)$.
- $y_2(t) = [x(t) + x(-t)]u(t)$ to be sketch on board.
- Noting

$$y_3(t) = x(t)[\delta(t+3/2) - \delta(t-3/2)]$$
$$= x(-3/2)\delta(t+3/2) - x(3/2)\delta(t-3/2)$$

one has $y_2(t) = -0.5\delta(t + 3/2) - 0.5\delta(t - 3/2)$.

Sketch it on board.

Answer to P 1.7:

• Let $y_1[n] \stackrel{\triangle}{=} x[3n+1]$. Observing x[n], one can see $y_1[n] = 0$ for those integer valued n: $3n+1 < -4 \Leftrightarrow n < -1$ and $3n+1 > 3 \Leftrightarrow n \ge 1$ So, there are two points: n = -1, 0, for which $y_1[n]$ may not be zero. Knowing $y_1[-1] = x[-2] = 1/2, y_1[0] = x[1] = 1$, we then have $y_1[n] = 1/2\delta[n+1] + \delta[n]$

• Let $y_2[n] \stackrel{\triangle}{=} x[n]u[3-n]$. Denote w[n] = u[1-n] = u[-(n-1)], obtained by time reversal on u[n], then time-shifting by 1.

 $y_2[n]$ is the signal obtained by the product of x[n] and w[n] point by point.

$$y_2[n] = -\delta[n+4] - 0.5\delta[n+3] + 0.5\delta[n+2] + \delta[n+1] + \delta[n] + \delta[n-1]$$

Answer to P 1.10:

Noting $w_{\tau}(t)$ is an even function, i.e., $w_{\tau}(t) = w_{\tau}(-t)$, one has $w_{\tau}(\alpha t) = w_{\tau}(|\alpha|t)$.

Sketching $w_{\tau}(|\alpha|t)$, one realizes $w_{\tau}(|\alpha|t) = w_{\tau/|\alpha|}(t)$.

According to the definition,

$$\delta(\alpha t) = \lim_{\tau \to 0} \frac{w_{\tau}(\alpha t)}{\tau} = \lim_{\tau \to 0} \frac{w_{\tau/|\alpha|}(t)}{\tau} = \lim_{\tau \to 0} |\alpha|^{-1} \frac{w_{\tau/|\alpha|}(t)}{\tau/|\alpha|}$$

that is

$$\delta(\alpha t) = |\alpha|^{-1} \lim_{\tilde{\tau} \to 0} \frac{w_{\tilde{\tau}}(t)}{\tilde{\tau}} = |\alpha|^{-1} \delta(t)$$

Answer to P 1.12:

Key: To memorize and understand the definitions.

- Memoryless: y(t) (y[n]) depends only on x(t) (x[n]) for all t (n).
- Time-invariant: Let $x(t) \to y(t)$. Compute the output $\tilde{y}(t)$ when the input is $\tilde{x}(t) = x(t t_0)$. Calculate $y(t t_0)$ and check if $\tilde{y}(t)$ is equal to $y(t t_0)$.
- Linear: Let $x_k \to y_k$, k = 1, 2. Compute the output y when the input is $x = \alpha_1 x_1 + \alpha_2 x_2$. Check if y is equal to $\alpha_1 y_1 + \alpha_2 y_2$.
- Causal: Check if $y[n_0]$ depends ONLY on the values of x[n] for $n \leq n_0$ for all n_0 and x[n]. If yes, it is causal.
- Stable: For any $|x| < M_x$, check if y is bounded.

See Problem 1.3.

Examples

• $x(t) \rightarrow y_1(t) = x(t-2) + x(2-t)$.

It is easy to see that it is NOT memoryless, Non-causal, stable, and linear, but is it TI?

Let
$$\tilde{x}(t) = x(t - t_0)$$
, then $\tilde{y}(t) = \tilde{x}(t - 2) + \tilde{x}(2 - t)$. Noting that

$$\tilde{x}(t) = x(t - t_0) \implies \tilde{x}(t - 2) = x((t - 2) - t_0), \quad \tilde{x}(2 - t) = x((2 - t) - t_0)$$

we have

$$\tilde{y}(t) = x((t-2) - t_0) + x((2-t) - t_0) = x((t-t_0) - 2) + x(2 - (t+t_0))$$

Since $y_1(t) = x(t-2) + x(2-t)$,

$$y_1(t - t_0) = x((t - t_0) - 2) + x(2 - (t - t_0))$$

Clearly, $\tilde{y}_1(t) \neq y_1(t-t_0)$. Therefore, it is NOT time-invariant!

 $\bullet x(t) \rightarrow y_3(t) = \frac{dx(t)}{dt}.$

It is easy to see that it is time-invariant, unstable $(u(t) \rightarrow \delta(t))$ and linear, but is it causal and memoryless?

$$y_3(t) = \lim_{\Delta t \to 0} \frac{x(t + \Delta t) - x(t)}{\Delta t}$$

So, it is Not memoryless because it depends on $x(t + \Delta t)$ when $|\Delta t| \neq 0$ very small, and it is NOT causal since it depends on $x(t + \Delta t)$, where Δt can be positive.

Both cases are *Marginal!*

Answer to P 1.13: As seen, $y_1(t)$ is the output of the LTI system excited by $x_1(t) = u(t) - u(t-2)$:

$$x_1(t) \rightarrow y_1(t)$$

• Note that $x_2(t)$ can be expressed in terms of $x_1(t)$:

$$x_2(t) = x_1(t) - x_1(t-2) \rightarrow y_2(t) = ??$$

If $q(t) \stackrel{\triangle}{=} x_1(t-2) \rightarrow p(t)$, linearity implies

$$y_2(t) = y_1(t) - p(t)$$

 $y_1(t)$ has been given, what about p(t)?

Time invariance suggests $p(t) = y_1(t-2)$ and consequently,

$$y_2(t) = y_1(t) - y_1(t-2)$$

• Observing carefully, one can see that

$$x_3(t) = x_1(t+1) + x_1(t)$$

and immediately

$$y_3(t) = y_1(t+1) + y_1(t)$$

With $y_1(t)$ given, one can sketch $y_2(t)$ and $y_3(t)$ obtained above with little difficulty.

Answer to P 1.14:

• For the system: $x(t) \rightarrow y(t) = x(\alpha t)$, we have

$$\tilde{x}(t) \stackrel{\triangle}{=} x(t - t_0) \rightarrow \tilde{y}(t) = \tilde{x}(\alpha t)$$

On the one hand, $\tilde{x}(t) \stackrel{\triangle}{=} x(t-t_0) \Rightarrow \tilde{x}(\alpha t) = x(\alpha t - t_0), \ \tilde{y}(t) = x(\alpha t - t_0).$ On the other hand, $y(t-t_0) = x(\alpha t - \alpha t_0)$. Clearly, $\tilde{y}(t) \neq y(t-t_0)$, which implies that the system is NOT time-invariant, unless $\alpha = 1$.

Let $x_k(t) \rightarrow y_k(t) = x_k(\alpha t), k = 1, 2$. Noting that

$$x(t) = \beta_1 x_1(t) + \beta_2 x_2(t) \rightarrow y(t) = x(\alpha t) = \beta_1 x_1(\alpha t) + \beta_2 x_2(\alpha t)$$

= $\beta_1 y_1(t) + \beta_2 y_2(t)$

we conclude that the system is LINEAR.

• As given, the system $x(t) \rightarrow y(t)$ is TI, that is $x(t+t_0) \rightarrow y(t+t_0)$ for ANY t_0 .

Particularly, for the period T_0 we have

$$x(t+T_0) \rightarrow y(t+T_0)$$

Knowing $x(t) = x(t + T_0) \rightarrow y(t)$, one concludes

$$y(t) = y(t + T_0) \Rightarrow y(t) \text{ is periodic}$$

and the period, denoted as \tilde{T}_0 , according to definition, should not be larger than T_0 .

Answer to P 1.16: Given that

$$x_p(t) = \sum_{k=-\infty}^{+\infty} x_0(t - kT_p), \quad T_p > 0$$

Since

$$x_p(t+T_p) = \sum_{k=-\infty}^{+\infty} x_0((t+T_p) - kT_p) = \sum_{k=-\infty}^{+\infty} x_0(t-(k-1)T_p)$$

With m = k - 1, one has

$$x_p(t+T_p) = \sum_{m=-\infty}^{+\infty} x_0(t-mT_p) = x_p(t), \quad \forall \quad t$$

This tells us that $x_p(t)$ is periodic and the period is not bigger than T_p . With $x_0(t)$ given, sketch $x_p(t)$ on board for different T_p . **Answer to P 1.17**: Based on the diagram given, e[n] = x[n] - y[n].

As y[n] = 0.75e[n-1], one finally has

$$y[n] = 0.75x[n-1] - 0.75y[n-1], \quad y[n] = 0, \quad \forall n < 0$$

• When $x[n] = \delta[n]$, $y[0] = 0.75\delta[-1] - 0.75y[-1] = 0$, $y[1] = 0.75\delta[0] - 0.75y[0] = 0.75$, and y[n] = -0.75y[n-1], $\forall n \ge 2$. Clearly,

$$y[n] = 0.75(-0.75)^{n-1}u[n-1]$$

• When x[n] = u[n], y[0] = 0.75u[-1] - 0.75y[-1] = 0, and

$$y[n] = 0.75 - 0.75y[n-1], \quad \forall \ n \ge 1$$

Clearly, y[1] = 0.75, $y[2] = 0.75 - 0.75^2$, ..., A closed-form expression

$$y[n] = \frac{0.75}{1.75} [0.75(-0.75)^{n-1} + 1]u[n-1]$$

can be obtained easily using the technique in Chapter 2.

Solutions for Chapter 2

Answer to P 2.1: By a graphical approach, one can see that

$$\begin{cases} 0, & n < 0 \\ n+1, & 0 \ge n, n-N \ge 0 \implies 0 \le n \le N \\ N+1, & n-N > 0, n \le 9 \implies N < n \le 9 \\ 9-(n-N)+1, & 9 < n, n-N \le 9 \implies 9 < n \le 9+N \\ 0, & n-N > 9 \implies n > 9+N \end{cases}$$

Now,

$$y[4] = 5 \implies n = 4 \text{ belongs to } 0 \le n \le N \implies 4 \le N$$

 $y[14] = 0 \implies n = 14 \text{ belongs to } n > 9 + N \implies 14 > 9 + N$

Therefore,

$$N=4$$

Answer to P 2.2: Given

$$x(t) = (t+1)w_1(t-1/2) + (2-t)w_1(t-3/2), \quad h(t) = \delta(t+2) + 2\delta(t+1)$$

Consider x(t) as the unit impulse response of an LTI system: $\delta(t) \to x(t)$ and h(t) is the input. So, one has

$$y(t) = x(t) * h(t) = h(t) * x(t) = x(t+2) + 2x(t+1)$$

Sketch x(t), then 2x(t+1), x(t+2). y(t) can be obtained by adding the two one-by-point.

\mathbf{End}

Answer to P 2.3: Given x(t) = u(t-3) - u(t-5) and $h(t) = e^{-3t}u(t)$.

• Direct approach

$$y(t) = \int_{-\infty}^{+\infty} x(\tau)h(t-\tau)d\tau = \int_{3}^{5} 1 e^{-3(t-\tau)}u(t-\tau)d\tau$$

$$= \begin{cases} 0, & t < 3\\ \int_{3}^{t} 1 e^{-3(t-\tau)}d\tau, & 3 < t < 5\\ \int_{3}^{5} 1 e^{-3(t-\tau)}d\tau, & 5 < t \end{cases}$$

Therefore,

$$y(t) = \frac{1}{3} [1 - e^{-3(t-3)}] u(t-3) - \frac{1}{3} [1 - e^{-3(t-5)}] u(t-5)$$

• As
$$\frac{dx(t)}{dt} = \delta(t-3) - \delta(t-5),$$

$$g(t) \stackrel{\triangle}{=} (\frac{dx(t)}{dt}) * h(t) = h(t-3) - h(t-5)$$

$$= e^{-3(t-3)}u(t-3) - e^{-3(t-5)}u(t-5)$$

• Clearly, $\frac{dy(t)}{dt} = g(t)$. So,

$$y(t) = \int_{-\infty}^{t} g(\tau)d\tau + y(-\infty)$$

$$= \int_{-\infty}^{t} e^{-3(\tau - 3)}u(\tau - 3)d\tau - \int_{-\infty}^{t} e^{-3(\tau - 5)}u(\tau - 5)d\tau$$

$$= \int_{3}^{t} e^{-3(\tau - 3)}d\tau u(t - 3) - \int_{5}^{t} e^{-3(\tau - 5)}d\tau u(t - 5) = \dots$$

Answer to P 2.6 Given three sub LTI systems with UIRs

$$h_1(t) = tu(t), \quad h_2(t) = \delta(t-1), \quad h_3(t) = -\delta(t)$$

• How to design a system with the three s.t the system has an UIR below?

$$h(t) = -(t-1)u(t-1)$$

By observation, $h(t) = -h_1(t-1) = h_1(t) * h_2(t) * h_3(t)$, which is a cascade of the three sub-systems.

• How to design a system with the three s.t the system has an UIR below?

$$h(t) = tu(t) - \delta(t-1) - (t-1)u(t-1)$$

By observation, $h(t) = h_1(t) - h_2(t) + h_1(t) * h_2(t) * h_3(t)$.

Draw the block-diagrams on board.

Answer to P 2.7: Note

$$x(t) = u(t-1) - u(t-2), \quad y(t) = (t-2)[u(t-2) - u(t-3)] + u(t-3)$$

and hence

$$\frac{dx(t)}{dt} = \delta(t-1) - \delta(t-2), \quad \frac{dy(t)}{dt} = u(t-2) - u(t-3)$$

Since

$$y(t) = x(t) * h(t) \implies \frac{dy(t)}{dt} = (\frac{dx(t)}{dt}) * h(t)$$

one has

$$u(t-2) - u(t-3) = h(t-1) - h(t-2)$$

By observation,

$$h(t) = u(t-1)$$

Answer to P 2.10: Given that $y[n] = \sum_{k=-\infty}^{n} x[k]$,

• Obviously,

$$y[n] - y[n-1] = \sum_{k=-\infty}^{n} x[k] - \sum_{k=-\infty}^{n-1} x[k] = x[n]$$

• Note

$$y[n] = \sum_{k=-\infty}^{n} x[k] = \sum_{k=-\infty}^{+\infty} x[k]u[n-k] = x[n] * u[n]$$

According to the theorem, the system is LTI with h[n] = u[n].

Answer to P 2.11: Recall the relationship between causality and stability of an LTI system with its unit impulse response h.

For the LTI with $h[n] = 5^n u[3 - n]$, it is

- not causal because of $h[-3] = 5^{-3} \neq 0$ against the condition of initial rest;
- stable because of $\sum_{n=-\infty}^{+\infty} |h[n]| = \sum_{n=-\infty}^{+\infty} 5^n u[3-n]$, equal to

$$\sum_{n=-\infty}^{3} 5^{(n-3)} 5^3 = 5^3 \sum_{k=0}^{+\infty} 5^{-k} = \frac{5^3}{1 - 1/5} < +\infty$$

For the LTI with $h(t) = e^{-6|t|}$, it is

- not causal because of $h(t) \neq 0$ for all t < 0.
- stable because of $\int_{-\infty}^{+\infty} |h(t)| dt = 2 \int_{0}^{+\infty} e^{-6t} dt = 1/3 < +\infty$.

Answer to P 2.12: Consider the signal $x[n] = \alpha^n u[n]$.

• Clearly, one has

$$g[n] \stackrel{\triangle}{=} x[n] - \alpha x[n-1] = \alpha^n \ u[n] - \alpha \alpha^{(n-1)} \ u[n-1]$$
$$= \alpha^n \ u[n] - \alpha^n \ u[n-1] = \alpha^n \{u[n] - u[n-1]\} = \delta[n]$$

• As given, $x[n] * h[n] = (\frac{1}{2})^n \{u[n+2] - u[n-2]\} \stackrel{\triangle}{=} p[n]$. On the one hand,

$$g[n] * h[n] = (x[n] - \alpha x[n-1]) * h[n]$$

$$= x[n] * h[n] - \alpha x[n-1] * h[n] = p[n] - \alpha p[n-1]$$

On the other hand, the fact that $g[n] = \delta[n]$ implies g[n] * h[n] = h[n]. So,

$$h[n] = p[n] - \alpha p[n-1]$$

Note: The solution depends on the value of α .

Answer to P 2.13: Given an LTI system: $x(t) \rightarrow y(t)$ and

$$e(t) = e^{\alpha t}u(t) \rightarrow r(t), \quad \frac{de(t)}{dt} \rightarrow \beta r(t) + e^{-2t}u(t)$$

It follow from $\frac{de(t)}{dt} = \alpha e^{\alpha t} u(t) + e^{\alpha t} \delta(t) = \alpha e^{\alpha t} u(t) + \delta(t)$ that the output in response of such an input should be

$$\alpha r(t) + h(t)$$

and as given,

$$\alpha r(t) + h(t) = \beta r(t) + e^{-2t}u(t) \implies h(t) = (\beta - \alpha)r(t) + e^{-2t}u(t)$$

Answer to P 2.15: This exercise is used to strengthen your understanding of the concepts.

• If h(t) is the impulse response of of an LTI system and h(t) is periodic and nonzero, the system is unstable - **true**!

Justification: As the sufficient and necessary condition for LTI systems to be stable if

$$\int_{-\infty}^{+\infty} |h(t)| dt < +\infty$$

If h(t+T) = h(t) with T the period, then

$$\int_{-\infty}^{+\infty} |h(t)| dt = \lim_{N \to +\infty} \sum_{k=-N}^{N} \int_{(k-\frac{1}{2})T}^{(k+\frac{1}{2})T} |h(t)| dt = +\infty$$

because of

$$\int_{(k-\frac{1}{2})T}^{(k+\frac{1}{2})T} |h(t)|dt = \int_{-\frac{T}{2}}^{\frac{T}{2}} |h(t)|dt \neq 0$$

• The inverse of a causal LTI system is always causal - false!

Inverse: If $x(t) \to y(t) \to x(t)$, then the system: $y(t) \to x(t)$ is said the inverse of the system: $x(t) \to y(t)$.

Justification: As $y(t) = x(t - t_0)$ with $t_0 > 0$ is causal and LTI, and $w(t) = y(t + t_0)$ is LTI, the second system is the inverse of the first one (because of w(t) = x(t)) but it is non-causal.

• If $|h[n]| \leq K$ for each n, where K is a given number, then the LTI system with h[n] as unit impulse response is stable - false!

Justification:

$$|u[n]| \le 1 \implies \sum_{n} |h[n]| = +\infty$$

which implies that the system is unstable.

• If an LTI system has an impulse response h[n] of finite duration, the system is stable - **true** - as long as $|h[n]| < +\infty!$

Justification: Such a h[n] is of form

$$h[n] = \sum_{k=N_1}^{N_2} h[k]\delta[n-k]$$

where both N_1, N_2 are finite with $N_2 \ge N_1$. Clearly, $\sum_n |h[n]| < +\infty$ is always met.

- If an LTI system is causal, then it is stable false!

 Justification: $\sum_{n} |h[n]| < +\infty$ may not be met. Say the causal system $h[n] = 2^{n}u[n]$, which is unstable.
- The cascade of a non-causal LTI system with a causal one is necessarily non-causal false!

Justification: Assume $h_1[n] = \delta[n-3]$ - causal and $h_2[n] = u[n+1]$ - non-causal. Clearly, the cascade of the two has a unit impulse response $h[n] = h_1[n] * h_2[n] = u[n-2]$ - causal.

- An LTI system with $u(t) \to s(t) unit$ step response stable if and only if $\int_{-\infty}^{+\infty} |s(t)| dt < +\infty$ false!
 - Justification: The system $h(t) = e^{-t}u(t)$ is stable but $s(t) = h(t) * u(t) = [1 e^{-t}]u(t)$ is not absolutely integrable.
- An LTI system with $u[n] \rightarrow s[n]$ is causal if and only if $s[n] = 0, \forall n < 0$ true!

Justification: Sufficient condition: Assume s[n] = 0, $\forall n < 0$. As [n] is the output of the system when the input is u[n] and h[n] is the output when the input is $\delta[n] = u[n] - u[n-1]$, the system being LTI means

$$h[n] = s[n] - s[n-1]$$
. Clearly,

$$h[n] = 0, \ \forall \ n < 0 \ \Leftrightarrow \ system \ causal$$

Necessary condition: Assume the system is causal, then h[n] = 0, $\forall n < 0$, that is $h[n] = h_0[n] \ u[n]$. Note

$$s[n] = h[n] * u[n] = \sum_{k=-\infty}^{+\infty} h_0[k]u[k]u[n-k] = \sum_{k=0}^{n} h_0[k] u[n]$$

Therefore,

$$s[n] = 0, \ \forall \ n < 0$$

Answer to P 2.16:

With the information given, one has

$$y[n]/y[n-1] = 1/2 \implies y[n]-1/2 \ y[n-1] = 0, \ y[0] = h \implies y[n] = (1/2)^n \ h$$

With h = 3, y[n] < 0.1 implies

$$(1/2)^n \ 3 < 0.1 \quad \Rightarrow \quad 30 \ge 2^n \quad \Rightarrow \quad n \ge 5$$

Answer to P 2.17: By analysis,

$$y[n] = x[n] + (1+r)y[n-1]$$

with y[0] = 100, r = 0.25%, x[n] = 1000 + 100n.

Solutions for Chapter 3

Answer to P 3.1: Basically, all the problems can be solved with

$$\frac{d(te^{\alpha t})}{dt} = e^{\alpha t} + \alpha t e^{\alpha t} \implies \int te^{\alpha t} dt = \frac{1}{\alpha} [te^{\alpha t} - \frac{1}{\alpha} e^{\alpha t}]$$

(a): The period is $T_0 = 2$ and $\omega_0 = 2\pi/T_0 = \pi$. The FS coefficients are

$$c[k] = \frac{1}{2} \int_{-1}^{1} x(t)e^{-jk\omega_0 t} dt = \frac{1}{2} \int_{-1}^{1} te^{-jk\omega_0 t} dt$$
$$= \dots = \begin{cases} 0 & , k = 0\\ \frac{j}{k\omega_0} [\cos(k\omega_0) - \frac{\sin(k\omega_0)}{k\omega_0}], k \neq 0 \end{cases}$$

Observations: 1) x(t) is odd and $c[k] = j\beta[k]$, $\forall k$. 2) This problem can also be solved using $c[k] = G(jk\omega_0)/T_0$, where $G(j\omega) = j\frac{d}{d\omega}(\frac{\sin\omega}{\omega})$ is the FT of $g(t) = tw_2(t)$.

(b): Note that x(t) has a fundamental period $T_0 = 2$. We then have

$$c[k] = \frac{1}{2} \int_{-0.5}^{1.5} x(t)e^{-jk\omega_0 t} dt = \frac{1}{2} - e^{-jk\omega_0}$$

(c): The period is $T_0 = 3$ and $\omega_0 = 2\pi/T_0 = 2\pi/3$. The FS coefficients are

$$c[k] = \frac{1}{3} \int_0^3 x(t)e^{-jk\omega_0 t}dt = \frac{1}{3} \int_0^1 2e^{-jk\omega_0 t}dt + \frac{1}{3} \int_1^2 e^{-jk\omega_0 t}dt$$
$$= \begin{cases} 1 & , k = 0\\ \frac{2-e^{-j\omega_0 k} - e^{-j2\omega_0 k}}{j3\omega_0 k}, k \neq 0 \end{cases}$$

Remark: x(t) is neither even nor odd, so $c[k] = \alpha[k] + j\beta[k]$, $\forall k$.

Answer to P 3.3:

(a) For $x_1[n]$, the period is $N_0 = 7$ and $\Omega_0 = 2\pi/N_0 = 2\pi/7$. The DTFS coefficients $X_1[k]$, $k = 0, \dots, 6$ are

$$X_1[k] = \frac{1}{7} \sum_{0}^{6} x_1[n] e^{-jk\Omega_0 n} = \frac{1}{7} \sum_{0}^{4} 1 e^{-jk\Omega_0 n}$$

$$= \frac{1}{7} \times \begin{cases} 5, & k = 0 \\ \frac{1 - e^{-j5k\Omega_0}}{1 - e^{-jk\Omega_0}}, & k \neq 0 \end{cases} = \frac{1}{7} \times \begin{cases} 5, & k = 0 \\ \frac{\sin(5\Omega_0 k/2)}{\sin(\Omega_0 k/2)} e^{-j2k\Omega_0}, & k \neq 0 \end{cases}$$

(b) For $x_2[n]$, the period is $N_0 = 6$ and $\Omega_0 = 2\pi/N_0 = \pi/3$. The FS coef.s are

$$X_{2}[k] = \frac{1}{6} \sum_{0}^{5} x_{2}[n]e^{-jk\Omega_{0}n} = \frac{1}{6} \sum_{0}^{3} 1 e^{-jk\Omega_{0}n}$$

$$= \frac{1}{6} \times \begin{cases} 4 & , k = 0 \\ \frac{\sin(2\Omega_{0}k)}{\sin(\Omega_{0}k/2)} e^{-j3k\Omega_{0}/2}, k = 1, 2, 3, 4, 5 \end{cases}$$

¹Note: $1 - e^{j\theta} = e^{j\theta/2}(e^{-j\theta/2} - e^{j\theta/2}) = -j\sin(\theta/2)e^{j\theta/2}$.

(c) For $x_3[n]$, the period is $N_0 = 6$ and $\Omega_0 = 2\pi/N_0 = \pi/3$. The FS coeffi.s are

$$X_3[k] = \frac{1}{6} \sum_{0}^{5} x_3[n] e^{-jk\Omega_0 n} = \frac{1}{6} [e^{-jk\Omega_0 0} + 2 e^{-jk\Omega_0 1} - e^{-jk\Omega_0 2} + 0 e^{-jk\Omega_0 3} - e^{-jk\Omega_0 4} + 2 e^{-jk\Omega_0 5}]$$
$$= \frac{1}{6} [1 + 4\cos(\Omega_0 k) - 2\cos(2\Omega_0 k)]$$

(d): As given, $N_0 = 4 \implies \Omega_0 = \frac{\pi}{2}$. Note $x_4[n] = 1 - \frac{1}{j2} [e^{j\frac{\pi}{4}n} - e^{-j\frac{\pi}{4}n}], n =$

0, 1, 2, 3. The DTFS coefficients are given by

$$X_4[k] = \frac{1}{4} \sum_{n=0}^{3} x[n] e^{-jk\Omega_0 n}$$

$$= \frac{1}{4} \left\{ \frac{1 - e^{-jk\Omega_0 4}}{1 - e^{-jk\Omega_0}} - \frac{1}{j2} \left[\frac{1 - e^{-j(k\Omega_0 - \frac{\pi}{4})4}}{1 - e^{-j(k\Omega_0 - \frac{\pi}{4})}} - \frac{1 - e^{-j(k\Omega_0 + \frac{\pi}{4})4}}{1 - e^{-j(k\Omega_0 + \frac{\pi}{4})}} \right] \right\}$$
(Hint: $\sum_{n=0}^{N-1} r^n = \frac{1-r^N}{1-r}$ if $r \neq 1$.)

End

41

Answer to P 3.6: As given, x[n] is periodic with $N_0 = 8$ and its FS coefficients X[k] satisfy X[k] = -X[k-4], that is

$$X[0] = -X[-4] = -X[4], \ X[1] = -X[-3] = -X[5]$$

$$X[2] = -X[-2] = -X[6], \ X[3] = -X[-1] = -X[7]$$

Then

$$x[n] = \sum_{k=0}^{7} X[k]e^{jk\Omega_0 n} = X[0][1 - e^{j4\Omega_0 n}] + X[1][e^{j\Omega_0 n} - e^{j5\Omega_0 n}] + X[2][e^{j2\Omega_0 n} - e^{j6\Omega_0 n}] + X[3][e^{j3\Omega_0 n} - e^{j7\Omega_0 n}]$$

and hence

$$x[2n] = X[0][1 - e^{j8\Omega_0 n}] + X[1][e^{j2\Omega_0 n} - e^{j10\Omega_0 n}]$$
$$+X[2][e^{j4\Omega_0 n} - e^{j12\Omega_0 n}] + X[3][e^{j6\Omega_0 n} - e^{j14\Omega_0 n}]$$

Note $e^{j(m+8p)\Omega_0 n} = e^{jm\Omega_0 n}$ for any integers p, m, then x[2n] = 0.

As given $x[2m+1] = (-1)^m$ for $m = \cdots, -2, -1, 0, 1, 2, \cdots$, one finally has $x[n] = \begin{cases} 0 &, n = 2m \\ (-1)^m, n = 2m + 1 \end{cases}$

x[n] can then be sketched easily.

Note: As observed, the fundamental period of x[n] is 4. Also, since X[k] is the coefficients of the FS expanded with $N_0 = 8$, it satisfies X[k] = X[k-8] but not necessarily X[k] = X[k-4] even x[n] is of a fundamental period 4.

Let x[n] have a fundamental period of N_0 . Denote $\Omega_0 \stackrel{\triangle}{=} 2\pi/N_0$ and $\tilde{\Omega}_0 \stackrel{\triangle}{=} 2\pi/(2N_0) = \Omega_0/2$. Let

$$x[n] = \sum_{k=0}^{N_0 - 1} X[k]e^{j\Omega_0 kn} = \sum_{m=0}^{2N_0 - 1} \tilde{X}[m]e^{j\tilde{\Omega}_0 mn}$$

Find the expression of $\tilde{X}[k]$ in terms of X[k].

Answer to P 3.8:

This exercise is intended to help students get familiar with the properties of FTs. Given that $x(t) \leftrightarrow X(j\omega)$.

• As given, $x_1(t) = x(1-t) + x(-1-t)$. Noting

$$g(t) \stackrel{\triangle}{=} x(-t) \quad \leftrightarrow \quad G(j\omega) = \frac{1}{|-1|}X(\frac{j\omega}{-1})$$

and

$$g(t-\tau) \leftrightarrow G(j\omega)e^{-j\omega\tau}$$

we then have $x_1(t) = g(t-1) + g(t+1)$ and hence

$$X_1(j\omega) = G(j\omega)e^{-j\omega 1} + G(j\omega)e^{-j\omega(-1)}$$
$$= G(j\omega) 2\cos\omega = 2\cos\omega X(-j\omega)$$

• Note $x_2(t) = x(3t - 6)$. It follows from

$$g(t) \stackrel{\triangle}{=} x(3t) \leftrightarrow \frac{1}{3}X(\frac{j\omega}{3}), \quad g(t-\tau) \leftrightarrow G(j\omega)e^{-j\omega\tau}$$

that

$$x_2(t) = g(t-2) \leftrightarrow X_2(j\omega) = \frac{1}{3}X(\frac{j\omega}{3})e^{-j2\omega}$$

• Given that $x_3(t) = \frac{d^2x(t-1)}{dt^2}$. Denote $g(t) \stackrel{\triangle}{=} x(t-1)$, then $G(j\omega) = X(j\omega)e^{-j\omega}$. It follows from $\frac{d^mg(t)}{dt^m} \leftrightarrow (j\omega)^mG(j\omega)$ that

$$x_3(t) = \frac{d^2g(t)}{dt^2} \leftrightarrow X_3(j\omega) = (j\omega)^2G(j\omega) = -\omega^2X(j\omega)e^{-j\omega}$$

Answer to P 3.9:

Given $x(t) = e^{-|t|} \leftrightarrow X(j\omega) = \frac{2}{1+\omega^2}$, then

(a): $x_1(t) = t \ x(t) \leftrightarrow X_1(j\omega) = ?$. Noting $-jt \ x(t) \leftrightarrow \frac{dX(j\omega)}{d\omega}$, one has

$$x_1(t) \leftrightarrow X_1(j\omega) = j\frac{dX(j\omega)}{d\omega} = \frac{-j4\omega}{(1+\omega^2)^2}$$

(b): The duality suggests that based on the above,

$$X_1(jt) = \frac{-j4t}{(1+t^2)^2} \leftrightarrow 2\pi x_1(-\omega)$$

So,

$$\frac{4t}{(1+t^2)^2} \leftrightarrow j2\pi \ x_1(-\omega) = -j2\pi\omega e^{-|\omega|}$$

Answer to P 3.10: By definition, one can show that

$$y(t) = x(t)e^{-\alpha t} \leftrightarrow Y(j\omega) = X(\alpha + j\omega)$$

where α is any complex number such that $Y(j\omega)$ exists.

- Note that $x_1(t) = e^{-\alpha t} cos(\omega_0 t) u(t) \stackrel{\triangle}{=} \frac{1}{2} [e^{j\omega_0 t} + e^{-j\omega_0 t}] x(t)$, where $x(t) = e^{-\alpha t} u(t) \iff X(j\omega) = \frac{1}{j\omega + \alpha} \implies X_1(j\omega) = \frac{1}{2} [X(j(\omega \omega_0)) + X(j(\omega + \omega_0))]$
- The FT of $x_2(t) = e^{-3|t|} \sin 2t$ can be obtained using the same approach.
- Note that $x_3(t) = \sum_{n=-\infty}^{+\infty} g(t-2n)$ is periodic with a period of 2, where $g(t) = e^{-|t|}$. By FS, we have

$$x_3(t) = \sum_{k=-\infty}^{+\infty} c[k]e^{jk\omega_0 t}, \ \omega_0 = 2\pi/2 = \pi \ \leftrightarrow \ X_3(j\omega) = \sum_{k=-\infty}^{+\infty} c[k]2\pi\delta(\omega - k\omega_0)$$

where $c[k] = G(jk\omega_0)/2$ with $G(j\omega) = 1/(1 + \omega^2)$.

•
$$x_4(t) = \sum_{k=0}^{+\infty} \alpha^k \delta(t - kT)$$
, $|\alpha| < 1$ yields

$$X_4(j\omega) = \sum_{k=0}^{+\infty} \alpha^k e^{-j\omega kT} = \sum_{k=0}^{+\infty} (\alpha \ e^{-j\omega T})^k = \frac{1}{1 - \alpha e^{-j\omega T}}$$

• $x_5(t) = te^{-2t}sin(4t)$ $u(t) \stackrel{\triangle}{=} t$ $g_1(t)$, where $g_1(t) = e^{-2t}sin(4t)$ $u(t) \stackrel{\triangle}{=} g_2(t)sin(4t)$. Clearly,

$$G_2(j\omega) = \frac{1}{2+j\omega}, \quad G_1(j\omega) = \frac{1}{j2}[G_2(j(\omega-4)) - G_2(j(\omega+4))]$$

and

$$x_5(t) = t \ g_1(t) \leftrightarrow X_5(j\omega) = j\frac{dG_1(j\omega)}{d\omega} = \dots$$

• $x_6(t) = \frac{\sin(\pi t)}{\pi t} \frac{\sin[2\pi(t-1)]}{\pi(t-1)} \stackrel{\triangle}{=} sinc(t) \ 2sinc[2(t-1)]$. As known,

$$w_{\tau}(t) \leftrightarrow W_{\tau}(j\omega) = \tau \frac{\sin(\omega\tau/2)}{\omega\tau/2}$$

and hence $w_{2\pi}(t) \leftrightarrow W_{2\pi}(j\omega) = 2\pi \frac{\sin(\omega\pi)}{\omega\pi} = 2\pi sinc(\omega)$.

The duality implies

$$sinc(t) \leftrightarrow w_{2\pi}(\omega) \Rightarrow sinc(2t) \leftrightarrow \frac{1}{2}w_{2\pi}(\omega/2) = \frac{1}{2}w_{4\pi}(\omega)$$

Note that

$$x_6(t) = sinc(t)sinc(t-1) \leftrightarrow X_6(j\omega) = \frac{1}{2\pi} 2 w_{2\pi}(\omega) * [\frac{1}{2}w_{4\pi}(\omega)e^{-j\omega}]$$

we have by taking advantages of the convolution property

$$X_6(j\omega) = \frac{1}{2\pi} \frac{dw_{2\pi}(\omega)}{d\omega} * \int_{-\infty}^{\omega} [w_{4\pi}(\xi)e^{-j\xi}]d\xi$$

It follows from

$$G(j\omega) \stackrel{\triangle}{=} \int_{-\infty}^{\omega} [w_{4\pi}(\xi)e^{-j\xi}]d\xi = \int_{-2\pi}^{\omega} e^{-j\xi}d\xi \ w_{4\pi}(\omega) + \int_{-2\pi}^{2\pi} e^{-j\xi}d\xi \ u(\omega - 2\pi) = ?$$

one has

$$X_6(j\omega) = \frac{1}{2\pi} [G(j(\omega + \pi)) - G(j(\omega - \pi))]$$

• As to $x_7(t) = u(t + \pi) - u(t - \pi)$, noting $u(t) \leftrightarrow U(j\omega) = \frac{1}{j\omega} + \pi\delta(\omega)$ one has

$$X_7(j\omega) = U(j\omega)[e^{j\pi\omega} - e^{-j\pi\omega}] = \cdots$$

• Noting $x_8(t) = (1+sint)w_{2\pi}(t) = [1+\frac{1}{j2}(e^{jt}-e^{-jt})]w_{2\pi}(t)$ and $w_{\tau}(t) \leftrightarrow \tau \frac{sin(\omega\tau/2)}{\omega\tau/2} \stackrel{\triangle}{=} \tau s_{\tau}(\omega)$, one realizes that

$$X_8(j\omega) = 2\pi [s_{2\pi}(\omega) + \frac{1}{j2}(s_{2\pi}(\omega+1) - s_{2\pi}(\omega-1))]$$

Answer to P 3.11:

(a): As $w_{\tau}(t) \leftrightarrow W_{\tau}(j\omega) = \tau s_{\tau}(\omega)$, it follows from $z(t)e^{j\omega_0 t} \leftrightarrow Z(j(\omega-\omega_0))$ that

$$X(j\omega) = 2 \frac{\sin(3(\omega - 2\pi))}{\omega - 2\pi} = 6s_6(\omega - 2\pi) \quad \leftrightarrow \quad x(t) = w_6(t)e^{j2\pi t}$$

(b): As
$$\delta(t - t_0) \leftrightarrow e^{-j\omega t_0}$$
 and $X(j\omega) = \cos(4\omega + \pi/3) = \frac{e^{j(4\omega + \pi/3)} + e^{-j(4\omega + \pi/3)}}{2}$,
$$x(t) = \frac{e^{j\pi/3}}{2}\delta(t+4) + \frac{e^{-j\pi/3}}{2}\delta(t-4)$$

(c): Direct approach: This is essential as well as important!

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} |X(j\omega)| e^{j\phi_x(\omega)} e^{j\omega t} d\omega$$
$$= \frac{1}{2\pi} \left[\int_{-1}^{0} -\omega e^{-j3\omega} e^{j\omega t} d\omega + \int_{0}^{1} \omega e^{-j3\omega} e^{j\omega t} d\omega \right] = \cdots = ?$$

Indirect approach: As given $X(j\omega) = X_0(j\omega)e^{-j3\omega}$, where $X_0(j\omega) \stackrel{\triangle}{=} -\omega w_1(\omega + 1/2) + \omega w_1(\omega - 1/2)$. As $w_1(t) \leftrightarrow s_1(\omega) = \frac{\sin(\omega/2)}{\omega/2}$, the duality means $z(t) \stackrel{\triangle}{=} \frac{1}{2\pi} s_1(\omega) \leftrightarrow w_1(\omega) \Rightarrow z(t)e^{j\omega_0 t} \leftrightarrow w_1(\omega - \omega_0)$

It follows from $-j\frac{dv(t)}{dt} \leftrightarrow \omega V(j\omega)$ that

$$-j\frac{d}{dt}[z(t)e^{-jt/2}] \leftrightarrow \omega w_1(\omega + 1/2), \quad -j\frac{d}{dt}[z(t)e^{jt/2}] \leftrightarrow \omega w_1(\omega - 1/2)$$

Therefore, $x_0(t) = j\{\frac{d}{dt}[z(t)e^{-jt/2}] - \frac{d}{dt}[z(t)e^{jt/2}]\} = 2\frac{d}{dt}[z(t)sin(t/2)] = \cdots$ and hence

$$x(t) = x_0(t-3)$$

(d): Using the direct approach to IFT

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j\omega) e^{j\omega t} d\omega$$
$$= \frac{1}{2\pi} \int_{-\omega_c}^{\omega_c} c e^{-t_0 \omega} e^{j\omega t} d\omega = \frac{1}{2\pi} \int_{-\omega_c}^{\omega_c} c e^{j\omega(t-t_0)} d\omega = \cdots$$

(e): Easy as $e^{j\omega_0 t} \leftrightarrow \delta(\omega - \omega_0)$

.

Key points: How to express a given x(t) (or $X(j\omega)$) in terms of some spacial functions and then use the FT properties - it is not easy but you have plenty of time to learn!

Answer to P 3.12:

(a): Clearly,

$$x_1(t) = w_2(t) \implies X_1(j\omega) = 2s_2(\omega); \ X_2(j\omega) = \frac{1}{2\pi} 2\pi s_{2\pi}(\omega) \implies x_2(t) = \frac{1}{2\pi} w_{2\pi}(t)$$

(b): The convolution property simply tells that

$$X_3(j\omega) \stackrel{\triangle}{=} X_1(j\omega)X_2(j\omega) \implies x_3(t) = x_1(t) * x_2(t) = \cdots$$

(c): By observation, we have

$$\int_{-\infty}^{+\infty} \pi X_1(j\omega) X_2(j\omega) e^{-j\omega} d\omega = \pi^2 \frac{1}{2\pi} \int_{-\infty}^{+\infty} X_3(j\omega) e^{j\omega(-1)} d\omega = \pi^2 x_3(-1)$$

Answer to P 3.14: Given $x[n] = \alpha^{|n-1|}$, $\alpha = 1/2$, we then have

$$X(e^{j\Omega}) = \sum_{n} x[n]e^{-j\Omega n} = \sum_{n} \alpha^{|n-1|}e^{-j\Omega n} = \sum_{n=-\infty}^{0} \alpha^{-(n-1)}e^{-j\Omega n} + \sum_{n=1}^{+\infty} \alpha^{n-1}e^{-j\Omega n}$$

$$= \alpha \sum_{n=0}^{+\infty} (\alpha e^{j\Omega})^n + e^{-j\Omega} \sum_{n=0}^{+\infty} (\alpha e^{-j\Omega})^n = \frac{\alpha}{1 - \alpha e^{j\Omega}} + \frac{e^{-j\Omega}}{1 - \alpha e^{-j\Omega}}$$

$$= \frac{(1 - \alpha^2)e^{-j\Omega}}{(1 - \alpha e^{j\Omega})(1 - \alpha e^{-j\Omega})}$$

Clearly,

$$|X(e^{j\Omega})| = \frac{1 - \alpha^2}{1 - 2\alpha\cos\Omega + \alpha^2}$$

With $\alpha = 1/2$, one can sketch it.

Answer to P 3.16: (a): By definition,

$$X(e^{j\Omega}) = \sum_{-\infty}^{+\infty} x[n]e^{-jn\Omega} \implies X(1) = \sum_{-\infty}^{+\infty} x[n]$$

(b): How to compute $A = \sum_{n=2}^{+\infty} n0.5^n$?

$$\sum_{n=2}^{+\infty} n0.5^n = \sum_{n=-\infty}^{+\infty} n0.5^n u[n-2] = X(1)$$

Denote $g[n] \stackrel{\triangle}{=} 0.5^n u[n]$ and then $G(e^{j\Omega}) = \frac{1}{1 - 0.5e^{-j\Omega}}$. Clearly,

$$x[n] = n0.5^{n}u[n-2] = 0.5^{2}nw[n], \quad w[n] = g[n-2] \quad \leftrightarrow \quad X(e^{j\Omega}) = 0.5^{2}j\frac{dW(e^{j\Omega})}{d\Omega}$$

where

$$W(e^{j\Omega}) = G(e^{j\Omega})e^{-j2\Omega} \implies X(e^{j\Omega}) = \cdots$$

Answer to P 3.22: By definition,

$$x_p(t) = \sum_{k=-\infty}^{+\infty} g(t - kT_0), \quad g(t) \stackrel{\triangle}{=} x_0(t) + x_1(-t)$$

Clearly,

$$g(t) \leftrightarrow G(j\omega) = X_0(j\omega) + X_0(-j\omega)$$

and hence

$$x_p(t) = \sum_{m=-\infty}^{\infty} c[m] = e^{jm\omega_0 t}, \quad \omega_0 = 2\pi/T_0$$

with

$$c[m] = \frac{G(jm\omega_0)}{T_0} = \frac{X_0(jm\omega_0) + X_0(-jm\omega_0)}{T_0}$$

Solutions for Chapter 4

The objective is to enhance the understanding the concept:

$$y(t) = h(t) * x(t) \implies Y(j\omega) = H(j\omega)X(j\omega) \implies y(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} Y(j\omega)e^{j\omega t}d\omega$$

and how to use it for studying LTI systems.

Answer to P 4.1: Important FT pairs:

$$e^{-\alpha t}u(t) \rightarrow \frac{1}{j\omega + \alpha}, \ \mathcal{R}e(\alpha) > 0, \quad -e^{-\beta t}u(-t) \rightarrow \frac{1}{j\omega + \beta}, \ \mathcal{R}e(\beta) < 0$$

and hence with $tx(t) \leftrightarrow j\frac{dX(j\omega)}{d\omega}$

$$te^{-\alpha t}u(t) \rightarrow \frac{1}{(j\omega + \alpha)^2}, \, \mathcal{R}e(\alpha) > 0, \, -te^{-\beta t}u(-t) \rightarrow \frac{1}{(j\omega + \beta)^2}, \, \mathcal{R}e(\beta) < 0$$

Just take (a) as example. $x(t) = te^{-2t}u(t) \leftrightarrow X(j\omega) = \frac{1}{(j\omega+2)^2}$ and $h(t) = e^{-4t}u(t) \leftrightarrow H(j\omega) = \frac{1}{j\omega+4}$

Note $Y(j\omega) = X(j\omega)H(j\omega)$, that is

$$Y(j\omega) = \frac{1}{(j\omega + 2)^2} \frac{1}{j\omega + 4} = \frac{A}{j\omega + 2} + \frac{B}{(j\omega + 2)^2} + \frac{C}{j\omega + 4}$$

then

$$y(t) = Ae^{-2t}u(t) + Bte^{-2t}u(t) + Ce^{-4t}u(t)$$

where (with $\rho = j\omega$)

$$B = [Y(\rho)(\rho+2)^2]_{\rho=-2} = \frac{1}{-2+4} = \frac{1}{2}, \quad C = [Y(\rho)(\rho+4)]_{\rho=-4} = \frac{1}{(-4+2)^2} = \frac{1}{4}$$

and

$$A = \frac{d[Y(\rho)(\rho+2)^2]}{d\rho}|_{\rho=-2} = -\frac{1}{(\rho+4)^2}|_{\rho=-2} = -\frac{1}{4}$$

Answer to P 4.2: As known, $w_{\tau}(t) \leftrightarrow \tau \frac{\sin(\omega \tau/2)}{\omega \tau/2} \stackrel{\triangle}{=} \tau s_{\tau}(\omega)$. So, the duality suggests

$$\tau s_{\tau}(-t) = s_{\tau}(t) \leftrightarrow 2\pi w_{\tau}(\omega) \Leftrightarrow \frac{\tau}{2\pi} s_{\tau}(t) \leftrightarrow w_{\tau}(\omega)$$

Now, given that $h(t) = \frac{\sin(4(t-1))}{\pi(t-1)}$, i.e., $h(t) = \frac{4}{\pi} s_8(t-1)$

$$h(t) \leftrightarrow H(j\omega) = w_8(\omega)e^{-j\omega}$$

Clearly, $|H(j\omega)| = w_8(\omega), \quad \phi(\omega) = -\omega.$

Sketch the frequency response on the board.

Now, let us consider each sub-question one by one.

First of all, note that if we input

$$x(t) = \cos(\omega_c t + \phi) = \frac{e^{j\phi}}{2} e^{j\omega_c t} + \frac{e^{-j\phi}}{2} e^{-j\omega_c t} \iff X(j\omega) = \frac{e^{j\phi}}{2} \delta(\omega - \omega_c) + \frac{e^{-j\phi}}{2} \delta(\omega + \omega_c)$$

the corresponding output y(t) has an FT

$$Y(j\omega) = H(j\omega)X_1(j\omega) = \frac{e^{j\phi}}{2}H(j\omega_c)\delta(\omega - \omega_c) + \frac{e^{-j\phi}}{2}H(-j\omega_c)\delta(\omega + \omega_c)$$

and hence by IFT

$$y(t) = \frac{e^{j\phi}}{2}H(j\omega_c)e^{j\omega_c t} + \frac{e^{-j\phi}}{2}H(-j\omega_c)e^{-j\omega_c t}$$
$$= w_8(\omega_c)\cos(\omega_c t + \phi - \omega_c)$$

- For $x_1(t) = cos(6t + \pi/2)$, $\omega_c = 6$. As $w_8(\omega_c) = w_8(6) = 0$, $y_1(t) = 0$.
- $x_2(t) = \sum_{k=0}^{\infty} (1/2)^k \sin(3kt) = \sum_{k=0}^{\infty} (1/2)^k \cos(3kt \pi/2)$ a linear combination of $\{\cos(3kt \pi/2)\}$.

Note that $cos(3kt - \pi/2) \rightarrow w_8(3k)cos(3kt - \pi/2 - 3k)$, then

$$y_2(t) = \sum_{k=0}^{\infty} (1/2)^k w_8(3k) \cos(3kt - \pi/2 - 3k)$$

It follows from $w_8(3k) = 1$, k = -1, 0, 1 and $w_8(3k) = 0$, $\forall |k| \ge 2$ that

$$y_2(t) = cos(-\pi/2) + 1/2cos(3t - \pi/2 - 3) = 1/2sin(3t - 3)$$

• As to $x_3(t) = \frac{\sin(4(t+1))}{\pi(t+1)} = \frac{4}{\pi} s_8(t+1)$, we have $X_3(j\omega) = w_8(\omega)e^{j\omega}$. So,

$$Y_3(j\omega) = H(j\omega)X_3(j\omega) = w_8(\omega) \quad \leftrightarrow \quad y_3(t) = \frac{4}{\pi} s_8(t) = \frac{4}{\pi} \frac{\sin(4t)}{4t}$$

• Knowing that $x_4(t) = (\frac{\sin(2t)}{\pi t})^2 = (\frac{2}{\pi} s_4(t))^2$ and $\frac{2}{\pi} s_4(t) \leftrightarrow w_4(\omega)$

we have

$$X_4(j\omega) = \frac{1}{2\pi}w_4(\omega) * w_4(\omega)$$

As $w_4(\omega) = 0$, $\forall |\omega| > 2$, we have $X_4(j\omega) = 0$, $\forall |\omega| > 4$ and therefore,

$$Y_4(j\omega) = H(j\omega)X_4(j\omega) = e^{-j\omega}X_4(j\omega) \iff y_4(t) = x_4(t-1)$$

Answer to P 4.3 Knowing that causal and stable LTI system

$$H(j\omega) = \frac{4 + j\omega}{6 - \omega^2 + j5\omega}$$

• Determine the corresponding differential equation:

Since
$$H(j\omega) = \frac{Y(j\omega)}{X(j\omega)} = \frac{4+j\omega}{6-\omega^2+j5\omega}$$
, we have

$$(6 - \omega^2 + j5\omega)Y(j\omega) = (4 + j\omega)X(j\omega)$$

that is

$$[6 + (j\omega)^2 + j5\omega]Y(j\omega) = (4 + j\omega)X(j\omega)$$

It follows from

$$\frac{d^k s(t)}{dt^k} \quad \leftrightarrow \quad (j\omega)^k S(j\omega)$$

that the IFT of the above is

$$6y(t) + \frac{d^2y(t)}{dt^2} + 5\frac{dy(t)}{dt} = 4x(t) + \frac{dx(t)}{dt}$$

- By partial fraction, $H(j\omega) = \frac{4+j\omega}{6-\omega^2+j5\omega} = \frac{A}{2+j\omega} + \frac{B}{3+j\omega}$, where by comparing the numerators, A = 2, B = -1. Therefore, $h(t) = [Ae^{-\alpha_1 t} + Be^{-\alpha_2 t}]u(t)$.
- It follows from $x(t) = e^{-4t}u(t) te^{-4t}u(t)$ that

$$X(j\omega) = \frac{1}{j\omega + 4} - j\frac{d(j\omega + 4)^{-1}}{d\omega} = \frac{j\omega + 3}{(j\omega + 4)^2}$$

and similarly by partial fraction,

$$Y(j\omega) = H(j\omega)X(j\omega) = \frac{4+j\omega}{6-\omega^2+j5\omega}\frac{j\omega+3}{(j\omega+4)^2} = \frac{C_1}{2+j\omega} + \frac{C_2}{4+j\omega}$$

Once again, comparing the numerators lead to we can specify the four constants (please do it yourself) and hence

$$y(t) = [c_1 e^{-2t} + C_2 e^{-4t}]u(t)$$

Answer to P 4.5 As given, the frequency response of an ideal BPF is

$$H(j\omega) = w_{2\omega_c}(\omega + 2\omega_c) + w_{2\omega_c}(\omega - 2\omega_c)$$

• Denote $h_0(t) \leftrightarrow H_0(j\omega) = w_{2\omega_c}(\omega)$. Clearly,

$$h(t) = h_0(t)e^{-j2\omega_c} + h_0(t)e^{j2\omega_c} = 2h_0(t)\cos(2\omega_c t)$$

As known before that the IFT of $H_0(j\omega) = w_{2\omega_c}(\omega)$ is

$$h_0(t) = \frac{1}{2\pi} 2\omega_c \frac{\sin(t2\omega_c/2)}{t2\omega_c/2} \Rightarrow h(t) = \frac{\sin(\omega_c t)}{\pi t} 2\cos(2\omega_c t) \Rightarrow g(t) = 2\cos(2\omega_c t)$$

g(t) is usually referred to as carrier, where $\frac{\sin(\omega_c t)}{\pi t}$ is the envelope of h(t).

• The first zero of the envelope is found from: $\omega_c t_0 = \pi \implies t_0 = \frac{\pi}{\omega_c}$. When ω_c gets bigger, t_0 becomes smaller, close to the origin t = 0, and hence h(t) is more concentrated about t = 0.

Answer to P 4.6 First of all, we note that $H_1(j\omega)$ has the following critical frequencies:

$$\omega_1 = 1, \omega_2 = 8, \omega_3 = 40$$

which implies that

$$H_1(j\omega) = \kappa_1(1+j\frac{\omega}{\omega_1})\frac{1}{1+j\frac{\omega}{\omega_2}}\frac{1}{1+j\frac{\omega}{\omega_3}} = \kappa_1\frac{1+j\frac{\omega}{\omega_1}}{(1+j\frac{\omega}{\omega_2})(1+j\frac{\omega}{\omega_3})}$$

where $20log_{10}|\kappa_1| = 6$ dB, i.e., $\kappa_1 = \pm 10^{0.3}$.

Similarly, the fact that $H(j\omega)$ has only one critical frequency at $\omega_p = 8$ suggests that $H(j\omega) = \frac{\kappa}{(1+j\frac{\omega}{\omega_p})^2}$, where $20log_{10}|\kappa| = -20$ dB, i.e., $\kappa = \pm 10^{-1}$.

Since $H(j\omega) = H_1(j\omega)H_2(j\omega)$, we finally have

$$H_2(j\omega) = H(j\omega)/H_1(j\omega) = \frac{\kappa/\kappa_1(1+j\frac{\omega}{\omega_2})(1+j\frac{\omega}{\omega_3})}{(1+j\frac{\omega}{\omega_1})(1+j\frac{\omega}{\omega_p})^2}$$

Answer to P 4.8 Note the following holds for any LTI systems

$$y = x * h \leftrightarrow Y = XH \Rightarrow H = \frac{Y}{X}$$

• For the 1st LIT, as given

$$x[n] = (1/2)^n u[n] + 2^n u[-n-1] \rightarrow y[n] = x[n] * h_1[n] = 6(1/2)^n u[n] - 6(3/4)^n u[n]$$

we have

$$X(e^{j\Omega}) = \frac{1}{1 - (1/2)e^{-j\Omega}} - \frac{1}{1 - 2e^{-j\Omega}}, \ Y(e^{j\Omega}) = \frac{6}{1 - (1/2)e^{-j\Omega}} - \frac{6}{1 - (3/4)e^{-j\Omega}}$$

and hence

$$H_1(e^{j\Omega}) = \frac{\frac{6}{1 - (1/2)e^{-j\Omega}} - \frac{6}{1 - (3/4)e^{-j\Omega}}}{\frac{1}{1 - (1/2)e^{-j\Omega}} - \frac{1}{1 - 2e^{-j\Omega}}} = \frac{6(1/2 - 3/4)}{1/2 - 2} \frac{1 - 2e^{-j\Omega}}{1 - (3/4)e^{-j\Omega}}$$

Therefore,

$$H_1(e^{j\Omega}) = \frac{1 - 2e^{-j\Omega}}{1 - (3/4)e^{-j\Omega}} \leftrightarrow h_1[n] = (3/4)^n u[n] - 2(3/4)^{(n-1)} u[n-1]$$

• For the 2nd LTI, it follows from y[n] = 0.9y[n-1] + x[n] + 0.9x[n-1] that

$$Y(e^{j\Omega}) = 0.9Y(e^{j\Omega})e^{-j\Omega} + X(e^{j\Omega}) + 0.9X(e^{j\Omega})e^{-j\Omega}$$

and hence

$$H_2(e^{j\Omega}) = Y(e^{j\Omega})/X(e^{j\Omega}) = \frac{1 + 0.9e^{-j\Omega}}{1 - 0.9e^{-j\Omega}} \leftrightarrow h_2[n] = 0.9^n u[n] + 0.9^n u[n-1]$$

• When the two LTI are cascaded, the overall system has its impulse response $h[n] = h_1[n] * h_2[n]$, therefore,

$$H(e^{j\Omega}) = H_1(e^{j\Omega})H_2(e^{j\Omega}) = \frac{1 - 2e^{-j\Omega}}{1 - (3/4)e^{-j\Omega}} \frac{1 + 0.9e^{-j\Omega}}{1 - 0.9e^{-j\Omega}}$$

When the input is $x[n] = e^{j\Omega_0 n}$, the output of the overall system $H(e^{j\omega})$ is

$$y[n] = H(e^{j\Omega_0})e^{j\Omega_0 n}$$

Answer to P 4.10 It follows from

$$H(e^{j\Omega}) = b_0 + b_1 e^{-j\Omega} + b_1 e^{-j2\Omega} + b_0 e^{-j3\Omega}$$

$$= b_0 [1 + e^{-j3\Omega}] + b_1 [e^{-j\Omega} + e^{-j2\Omega}]$$

$$= b_0 e^{-j3\Omega/2} [e^{j3\Omega/2} + e^{-j3\Omega/2}] + b_1 e^{-j3\Omega/2} [e^{j\Omega/2} + e^{-j\Omega/2}]$$

$$= 2[b_0 cos(3\Omega/2) + b_1 cos(\Omega/2)] e^{-j3\Omega/2} \stackrel{\triangle}{=} H_r(\Omega) e^{-j3\Omega/2}$$

where $H_r(\Omega)$ is real and hence $H_r(\Omega) = |H_r(\Omega)|e^{j\theta}$ with $\theta = 0$ if $H_l(\Omega) \ge 0$, and $\theta = \pi$ if $H_l(\Omega) < 0$. Therefore,

$$H(e^{j\Omega}) = |H_r(\Omega)|e^{-j(3\Omega/2-\theta)}$$

which implies that $H(e^{j\Omega})$ is of (piece-wise) linear phase response.

Solutions for Chapter 5

Recall: Let $x(t) \leftrightarrow X_a(j\omega)$. Then $x[n] = x(nT_s) \leftrightarrow X(e^{j\Omega}) = \sum_n x[n]e^{j\Omega n}$ satisfies

$$X(e^{jT_s\omega}) = (1/T_s) \sum_{k=-\infty}^{+\infty} X_a(j(\omega - k\omega_s)), \quad \omega_s \stackrel{\triangle}{=} \frac{2\pi}{T_s}$$

Sampling Theorem: For a signa x(t) of frequency limited to ω_M , it can be recovered from $x[n] = x(nT_s)$ if

$$\omega_s \stackrel{\triangle}{=} \frac{2\pi}{T_s} \ge 2\omega_M \stackrel{\triangle}{=} \omega_N \quad \Leftrightarrow \quad T_s \le \frac{\pi}{\omega_M}$$

where ω_s is called **sampling frequency**; ω_N , the **Nyquist rate** of the signal x(t), determined uniquely by the CT signal x(t).

- Speech: $\omega_M = 2\pi \times 4 \times 10^3 \implies \omega_s = 2\pi \times 8 \times 10^3$, or even higher.
- Music: $\omega_M = 2\pi \times 20 \times 10^3 \implies \omega_s = 2\pi \times 44 \times 10^3$, or even higher.

Answer to P 5.1 Do it on board!

$$X(e^{jT_s\omega}) = (1/T_s) \sum_{k=-\infty}^{+\infty} X_a(j(\omega - k\omega_s))$$

Answer to P 5.2 As x(t) is the output of the ideal low-pass filter of cutoff frequency $\omega_c = 1,000 \ \pi$, its spectrum must be limited to $\omega_M = \omega_c$. Therefore, the Nyquiste frequency is $\omega_N = 2\omega_M = 2,000\pi \implies T_s \leq \frac{\pi}{\omega_M} = 10^{-3} \ (sec.s)$.

- $\bullet T = 0.5 \times 10^{-3} \Rightarrow OK$
- $\bullet T = 2 \times 10^{-3} \Rightarrow KO$
- $\bullet T = 1 \times 10^{-4} \Rightarrow OK$

Answer to P 5.3: In what follows, denote $\omega_N^{y_k}$ as the Nyquist rate of signal $y_k(t)$ that is band limited to ω_{y_k} . Clearly,

$$\omega_N^{y_k} = 2\omega_{y_k}$$

For x(t), we have $\omega_N^x = \omega_0$ given. So, $\omega_x = \omega_0/2$.

Now, let us determine the Nyquist rate for each of the following signals generated based on x(t).

The key: to find the freq. to which the signal is band limited.

• Note $y_1(t) = x(t) + x(t-1)$ has a spectrum (i.e., FT)

$$Y_1(j\omega) = X(j\omega) + X(j\omega)e^{-j\omega} = X(j\omega)(1 + e^{-j\omega})$$

As x(t) is band limited to ω_x , the above means that

$$\omega_{y_1} = \omega_x = \omega_0/2 \implies \omega_N^{y_1} = 2\omega_{y_1} = \omega_0$$

• As to the 2nd signal, we have

$$y_2(t) = \frac{dx(t)}{dt} \leftrightarrow Y_2(j\omega) = j\omega X(j\omega)$$

With the same argument used for $y_1(t)$, we can see

$$\omega_{y_2} = \omega_x \implies \omega_N^{y_2} = \omega_x = \omega_0$$

• For the 3rd signal, since

$$y_3(t) = x^2(t) \leftrightarrow Y_3(j\omega) = \frac{1}{2\pi}X(j\omega) * X(j\omega)$$

As $Y_3(j\omega)$ is band limited to $2\omega_x$ (it can be shown graphically), the Nyquist rate of this signal is $\omega_N^{y_3} = 2 \times 2\omega_x = 2\omega_0$.

• What about $y_4(t) = x(t)cos(\omega_0 t)$?

Answer to P 5.6: Given $x(t) \leftrightarrow X_a(j\omega)$ and $p(t) = \sum_{k=-\infty}^{\infty} (-1)^k \delta(t-kT)$.

• Note that p(t) is periodic with a period of 2T, then $p(t) = \sum_{m=-\infty}^{+\infty} c[m]e^{jm\omega_0 t}$ where $c[m] = \frac{1}{2T}[1 + (-1)e^{-jm\pi}], \ \omega_0 = \frac{2\pi}{2T} = \pi/T$. Therefore,

$$y(t) = x(t)p(t) \iff Y(j\omega) = \sum_{m=-\infty}^{\infty} c[m]X_a(j(\omega - m\omega_0))$$

• Similarly, $q[n] \stackrel{\triangle}{=} \sum_{k=-\infty}^{+\infty} (-1)^k \delta[n-k]$ is periodic with a period of 2. Thus, $q[n] = \sum_{m=0}^{2-1} d[m] e^{jm\pi n} = e^{jn\pi}$ as $d[m] = \frac{1}{2}[1 + (-1)e^{-j\omega m}]$.

$$w[n] = x[n]q[n] \leftrightarrow W(e^{j\Omega}) = X(e^{j(\Omega-\pi)})$$

Since for x[n] = x(nT), one has

$$X(e^{j\omega T}) = T^{-1} \sum_{k=-\infty}^{+\infty} X_a(j(\omega - k\omega_s))$$

So,

$$W(e^{j\omega T}) = X(e^{j(T\omega - \pi)}) = X(e^{jT(\omega - \pi/T)}), \quad \pi/T = \omega_s/2$$

that is

$$W(e^{j\omega T}) = T^{-1} \sum_{k=-\infty}^{+\infty} X_a(j(\omega - (k+1/2)\omega_s))$$

Clearly, if $\omega_s > 2\omega_M$, there is no spectral overlapping and hence it is possible to recover x(t) from w[n].

Answer to P 5.7:

• Define $y(t) \stackrel{\triangle}{=} \frac{1}{T_s} \int_{t-T_s}^t x(\tau) d\tau$, then it can be seen that $y(t) = x(t) * \{\frac{1}{T_s}[u(t) - u(t-T_s)]\} \stackrel{\triangle}{=} x(t) * h(t)$, that is

$$h(t) = \frac{1}{T_s} [u(t) - u(t - T_s)] \quad \leftrightarrow \quad H(j\omega) = ??$$

• Since $\tilde{x}[n] = y(nT_s)$, one should have

$$\tilde{X}(e^{jT_s\omega}) = (1/T_s) \sum_{k=-\infty}^{+\infty} Y(j(\omega - k\omega_s)), \quad Y(j\omega) = H(j\omega)X(j\omega)$$

• Let w[n] be the output of $Q(e^{j\Omega})$ to be designed, then $W(e^{j\Omega}) = Q(e^{j\Omega})\tilde{X}(e^{j\Omega})$ and hence $\tilde{W}(e^{jT_s\omega}) = (1/T_s)\sum_{k=-\infty}^{+\infty} Q(e^{jT_s\omega})Y(j(\omega-k\omega_s))$. So, w[n] = x[n] when $Q(e^{j\Omega})$ is chosen such that

$$Q(e^{jT_s\omega})H(j\omega)X(j\omega) = X(j\omega) \Rightarrow Q(e^{jT_s\omega}) = H^{-1}(j\omega), \ |\omega| \le \omega_s/2$$

Solutions for Chapter 6

Answer to P 6.2: Remember the following important pairs

$$e^{\gamma t}u(t) \quad \leftrightarrow \quad \frac{1}{s-\gamma}, \quad \mathcal{R}_e(\gamma) < \mathcal{R}_e(s)$$
 $e^{\gamma t}u(-t) \quad \leftrightarrow \quad -\frac{1}{s-\gamma}, \quad \mathcal{R}_e(s) < \mathcal{R}_e(\gamma)$

It follows from

$$x(t) \Leftrightarrow X(s) = \frac{1}{s+5} + \frac{1}{s+\beta}$$

with an ROC_x containing

$$\{-5 < \mathcal{R}_e(s)\} \bigcap \{\mathcal{R}_e(\beta) < \mathcal{R}_e(s)\} = \{\max\{\mathcal{R}_e(\beta), -5\} < \mathcal{R}_e(s)\}$$

As given, $ROC_x = \{-3 < \mathcal{R}_e(s)\}$. Therefore, there should be $\mathcal{R}_e(\beta) = -3$ and no constraint on $I_m(\beta)$.

Answer to P 6.3: Given that $X(s) = \frac{2(s+2)}{s^2+7s+12}$, then

$$X(s) = \frac{2(s+2)}{(s+3)(s+4)} = \frac{A}{s+3} + \frac{B}{s+4}$$

where $A = \lim_{s \to -3} (s+3)X(s) = -2$, $B = \lim_{s \to -4} (s+4)X(s) = 4$.

Zeros:
$$2(s+2) = 0 \implies Z_1 = -2$$
 and $Z_2 = \infty$

Poles:
$$s^2 + 7s + 12 = 0 \implies P_1 = -4, P_2 = -3.$$

• Right-sided: $ROC_x \supseteq \{\sigma_r < \mathcal{R}e(s) < +\infty\}$

$$\sigma_r = -3 \implies x(t) = [Ae^{-4t} + Be^{-3t}]u(t)$$

• Left-sided: $ROC_x \supseteq \{-\infty < \mathcal{R}e(s) < \sigma_l\}$

$$\sigma_l = -4 \implies x(t) = -[Ae^{-4t} + Be^{-3t}]u(-t)$$

• Two-sided: $ROC_x \supseteq \{\sigma_r < \mathcal{R}e(s) < \sigma_l\}$

$$\sigma_r = -4, \ \sigma_l = -3 \ \Rightarrow \ x(t) = Ae^{-4t}u(t) - Be^{-3t}u(-t)$$
 End

Answer to P 6.4: Try to learn how to derive LT properties based on the definitions

$$X(s) = \int x(t)e^{-st}dt, \quad x(t) = \frac{1}{j2\pi} \int X(s)e^{st}ds$$

• $x_1(t) = t \frac{d}{dt} \{e^{-t}u(t)\} \stackrel{\triangle}{=} t \ y_1(t)$. Note

$$y_2(t) = e^{-t}u(t) \iff Y_2(s) = \frac{1}{s+1}, \ y_1(t) = \frac{dy_2}{dt} \iff Y_1(s) = sY_2(s)$$

then $x_1(t) = t \ y_1(t) \leftrightarrow X_1(s) = -\frac{dY_1(s)}{ds}$ can be obtained easily.

• Note $x_4(t) = \int_0^t e^{-2\xi} \cos(3\xi) d\xi = [e^{-2t} \cos(3t) u(t)] * u(t) \stackrel{\triangle}{=} y_1(t) * u(t).$

Then $X_4(t) = Y_1(s)\frac{1}{s}$, where $y_1(t) = e^{-2t}cos(3t)u(t)$, i.e.,

$$y_1(t) = \frac{e^{-2t}}{2} [e^{j3t} + e^{-j3t}] u(t) \stackrel{\triangle}{=} \frac{1}{2} [e^{-(2-j3)t} + e^{-(2+j3)t}] u(t)$$

which yields

$$Y_1(s) = \frac{1}{s + (2 - i3)} + \frac{1}{s + (2 + i3)}$$
 End

Answer to P 6.5:

- Since $x(\alpha t) \leftrightarrow \frac{1}{|\alpha|}X(s/\alpha), X_1(s) = \frac{1/4}{1/4}X(\frac{s}{1/4}) \leftrightarrow x_1(t) = \frac{1}{4}x(t/4).$
- As $\frac{dx}{dt}$ \leftrightarrow sX(s), one has $(s^2 + 2s + 1)X(s)$ \leftrightarrow $x_2(t) = \frac{d^2x}{dt^2} + 2\frac{dx}{dt} + x(t)$.
- Noting $e^{-\alpha t}x(t) \leftrightarrow X(s+\alpha)$, one has $X_3(s) = X(s+2) \leftrightarrow x_3(t) = e^{-2t}x(t)$.
- Since $u(t) \leftrightarrow s^{-1}$, $s^{-2} \leftrightarrow y_1(t) = u(t) * u(t) = \delta(t) * \int_{-\infty}^{t} u(\tau) d\tau = t u(t)$, we have

$$X_4(s) = s^{-2}X(s) \leftrightarrow x_4(t) = y_1(t) * x(t)$$

• Let $Y_1(s) = e^{-3s}X(s)$, then $y_1(t) = x(t-3)$. Then

$$X_5(s) = \frac{dY_1(s)}{ds} \quad \leftrightarrow \quad x_5(t) = -ty_1(t) = -tx(t-3)$$

Answer to P 6.8: Remember the following important pairs

$$x_{1}[n] = \alpha^{n}u[n] \quad \leftrightarrow \quad X_{1}(z) = \frac{1}{1 - \alpha z^{-1}}, \quad |\alpha z^{-1}| < 1 \iff |\alpha| < |z|$$

$$x_{2}[n] = -\beta^{n}u[-n-1] \quad \leftrightarrow \quad X_{2}(z) = \frac{1}{1 - \beta z^{-1}}, \quad |\beta z^{-1}| > 1 \iff |z| < |\beta|$$
For $x[n] = (1/2)^{n}u[n] + \beta^{n}u[-n] \stackrel{\triangle}{=}$, we have
$$x_{1}[n] = (1/2)^{n}u[n] \quad \leftrightarrow \quad X_{1}(z) = \frac{1}{1 - 1/2} \frac{1}{z^{-1}}, \quad ROC_{x_{1}} = \{z : 1/2 < |z|\}$$
and denoting $\tilde{x}_{2}[n] = -\beta^{n}u[-n-1]$, then $\tilde{X}_{2} = \frac{1}{1 - 2} \frac{1}{z^{-1}}, \quad |\alpha z^{-1}| > 1 \iff |z| < 1$

and denoting $\tilde{x}_2[n] = -\beta^n u[-n-1]$, then $\tilde{X}_2 = \frac{1}{1-\beta z^{-1}}$, $|\alpha z^{-1}| > 1 \iff |z| < |\alpha|$ and hence

$$x_2[n] = \beta^n u[-n] = -\beta^{-1} \tilde{x}_2[n-1] \quad \leftrightarrow \quad X_2(z) = -\beta^{-1} \tilde{X}_2(z) z^{-1}$$
 with $ROC_{x_2} \supseteq \{|z| < |\beta|\} \cap \{|z| \neq 0\} = \{0 < |z| < |\beta|\}$. So, $X(z) = X_1(z) + X_2(z)$ has a non-empty ROC if and only if $|\beta| > 1/2$.

Answer to P 6.9: Given that

$$X(z) = \frac{2 - 1.5z^{-1}}{(1 - 2z^{-1})(1 + 0.5z^{-1})} = \frac{z(2z - 1.5)}{(z - 2)(z + 0.5)} = \frac{A}{1 - 2z^{-1}} + \frac{B}{1 + 0.5z^{-1}}$$
 where $A = ??$ and $B = ??$

- Poles: $X(z_p) = \infty \Rightarrow z_p = 0.5, -2$ and Zeros: $X(z_q) = 0 \Rightarrow z_q = 0.75, z = 0.$
- right-sided: $\rho_r < |z| \implies \rho_r = \max\{|z_p|\} = 2$ and hence $x[n] = [A2^n + B(-0.5)^n]u[n]$
- left-sided: $|z| < \rho_l \implies \rho_l = \min\{|z_p| = 0.5\} = \text{and hence}$ $x[n] = -[A2^n + (-0.5)^n]u[-n-1]$
- two-sided: $\rho_r < |z| < \rho_l \implies \rho_r = 0.5, \rho_l = 2$ and hence $x[n] = -A2^n u[-n-1] + +B(-0.5)^n u[n]$ End

Answer to P 6.10: Key: to use the properties of z-transform.

- $\bullet \ x_1[n] = w[n] * v[n] \ \leftrightarrow \ X_1(z) = W(z)V(z)$
- $x_2[n] = n\tilde{x}[n] \leftrightarrow X_2(z) = -z\frac{d\tilde{X}(z)}{dz}$
- Note $X_3(z) = \sum \frac{x[n]}{n+1} z^{-n} \iff \tilde{X}_3(z) \stackrel{\triangle}{=} z^{-1} X_3(z) = \sum \frac{x[n]}{n+1} z^{-(n+1)}$. Since $x_3[n]$ is causal, $X_3(z)|_{z=\infty} = x_3[0]$ and $X_3(z)|_{z=\infty} = 0$. Note $\frac{d\tilde{X}_3(z)}{dz} = \sum x[n](-z^{-2})z^{-n} = z^{-2}X(z)$, then with $X(z) = \frac{1}{1-\alpha z^{-1}}$ one has

$$\tilde{X}_3(z) = \int_{+\infty}^z \xi^{-2} X(\xi) d\xi = \int_{+\infty}^z \xi^{-2} (1 - \alpha \xi^{-1}) d\xi \implies X_3(z) = z \tilde{X}_3(z)$$

- $x_4[n] = (n-1)^2 u[n-1] \stackrel{\triangle}{=} w[n-1]$ with $w[n] = n^2 u[n] \stackrel{\triangle}{=} nv[n]$, where v[n] = nu[n]. So, ...
- $x_5[n] = \sum_{m=0}^{n} (-1)^m u[n] = \frac{1}{2}[(-1)^n + 1]u[n] \quad X_5(z) = \dots$

Answer to P 6.12:

• As given, x[n] being causal implies x[n] = 0, $\forall n < 0$ and hence

$$X(z) = x[0] + x[1]z^{-1} + \dots + x[k]z^{-k} + \dots$$

If
$$X(z) = \frac{z(z-3/2)}{(z-1/3)(z-1/2)}$$
, $x[0] = X(\infty) = 1$ and $x[1] = \lim_{z \to \infty} [X(z) - 1]z$.

• Denote $y[n] \stackrel{\triangle}{=} x[n] - x[n-1]$. Then $Y(z) = (1-z^{-1})X(z)$ and hence

$$(1-z^{-1})X(z) = \sum_{n=0}^{+\infty} y[n]z^{-n} = \dots + y[-1]z + y[0] + y[1]z^{-1} + \dots + y[n]z^{-n} + \dots$$

$$= \dots + (x[-1] - x[-2])z + (x[0] - x[-1])y[0] + (x[1] - x[0])z^{-1} + \dots$$

$$+(x[n] - x[n-1])z^{-n} + \dots$$

Clearly, with $x[-\infty] = 0$

$$\lim_{z \to 1} (1 - z^{-1})X(z) = x[-\infty] + \dots + (x[0] - x[-1])y[0] + (x[1] - x[0])$$

$$+ \dots + (x[n] - x[n-1]) + \dots = x[+\infty]$$
 End

Answer to P 6.16: Note

$$\frac{d^2y}{dt^2} + \frac{dy}{dt} + 5y(t) = \frac{d^2x}{dt^2} - 2\frac{dx}{dt} + x(t) \implies H(s) = \frac{s^2 - 2s + 1}{s^2 + s + 5}$$

• Find the poles and zeros:

$$s^{2} + s + 5 = 0 \implies poles : p_{1,2} = \frac{-1 \pm \sqrt{1 - 4 \times 5}}{2} = -0.5 \pm j\sqrt{19}$$

 $s^{2} - 2s + 1 = 0 \implies zeros : q_{1} = q_{2} = 1$

If G(s) is the inverse, then H(s)G(s) = 1, that is

$$G(s) = \frac{1}{H(s)} = \frac{s^2 + s + 5}{s^2 - 2s + 1}$$

which has two poles at s = 1. If it is causal, $ROC_g = \{s : 1 < \mathcal{R}e(s)\}$ does not contain $s = j\omega$ and hence it is unstable. Therefore, the system has NO stable and causal inverss (system).

• Nothing needs to be done as such an inverse does not exist.

Answer to P 6.17: Note

$$y = h * x \Leftrightarrow Y = HX \Rightarrow H = \frac{Y}{X}, ROC_y \supseteq ROC_h \cap ROC_x$$

• $x[n] = \delta[n] + \frac{1}{4}\delta[n-1] \leftrightarrow X(z) = 1 + \frac{1}{4}z^{-1}, ROC_x = \{z : z \neq 0\} \text{ and } z \neq 0$

$$y[n] = \delta[n] - \frac{3}{4}\delta[n-1] \leftrightarrow Y(z) = 1 - \frac{3}{4}z^{-1}, ROC_y = \{z : z \neq 0\}. So,$$

$$H(z) = \frac{1 - \frac{3}{4}z^{-1}}{1 + \frac{1}{4}z^{-1}} = D + \frac{A}{1 + \frac{1}{4}z^{-1}}$$

with two possible ROC_h , yielding

$$h_c[n] = D\delta[n] + A(\frac{1}{4})^n u[n], \quad h_a[n] = D\delta[n] - A(\frac{1}{4})^n u[-n-1]$$

• For the 2nd situation, do it yourself using the same approach.

When $x[n] = \alpha^n u[-n] = \delta[n] + \alpha^n u[-n-1]$, $X(z) = 1 + \frac{1}{1-\alpha z^{-1}}$, $|z| < |\alpha|$.

• If $|\alpha| < 1/4$, ROC_{h_c} and $|z| < |\alpha|$ have no intersection. So, the only possible output is

$$Y(z) = H(z)X(z), |z| < |\alpha|, y[n] = x[n] + [A(1/4)^n + B\alpha^n]u[-n-1]$$

• If $|\alpha| > 1/4$, both ROC_{h_c} and ROC_a have a non-empty intersection with $|z| < |\alpha|$ and hence there are two possible outputs:

$$y_1[n] = h_c[n] * x[n], y_2[n] = h_a[n] * x[n]$$

Please find them using transfer-domain approach as in the first part.

Answer to P 6.20: The rational H(z) has a general form

$$H(z) = \kappa \frac{(z - z_1) \cdots (z - z_M)}{(z - p_1) \cdots (z - p_N)}$$

- As the inverse system is G(z) = 1/H(z), Conditions (iii) and (iv) suggest M = 1, N = 2, that is $H(z) = \kappa \frac{z-z_1}{(z+j/2)(z-p_2)}$.
- Condition (ii) implies $p_2 = p_1^* = j/2$, leading to

$$H(z) = \kappa \frac{z^{-1}(1 - z_1 z^{-1})}{(1 + j/2z^{-1})(1 - j/2z^{-1})} = \kappa \frac{z^{-1}(1 - z_1 z^{-1})}{1 + 1/4 z^{-2}}$$

• Condition (v) tells:

$$\sum_{n=0}^{+\infty} h[n]2^{-n} = H(2) = 0 \iff z_1 = 2 \implies H(z) = \kappa \frac{z^{-1}(1 - 2z^{-1})}{1 + 1/4 z^{-2}}$$

and h[1] = 1 means $\tilde{H}(z) = z(H(z) - h[0])$ satisfies $\tilde{H}(\infty) = 1$. Since

²There is a typo in the question: replace h[0] = 0 with h[1] = 1.

 $h[0] = H(\infty) = 0$, we have $\kappa = 1$ and finally

$$H(z) = \frac{z^{-1}(1 - 2z^{-1})}{1 + 1/4 z^{-2}}, \quad 1/2 < |z|$$

- As the system is causal and has its (finite) poles all are inside |z| = 1, it is stable.
- The inverse system is G(z) = 1/H(z), i.e.,

$$G(z) = \frac{z^2 + 1/4}{z(z-2)} = D + \frac{B}{z} + \frac{A}{z-2} \quad \leftrightarrow \quad g[n] = D\delta[n] + B\delta[n-1] + A\tilde{g}[n]$$

where $\tilde{g}[n] \leftrightarrow \tilde{G}(z) = \frac{1}{z-2}$. Clearly, there are two possible $\tilde{g}[n]$:

$$\tilde{g}_1[n] = 2^{n-1}u[n-1], \quad \tilde{g}_2[n] = -2^{n-1}u[-n]$$

As seen, no matter $g[n] = D\delta[n] + B\delta[n-1] + A\tilde{g}_1[n]$ or $g[n] = D\delta[n] + B\delta[n-1] + A\tilde{g}_2[n]$, the system is non-causal, while the system is stable for $g[n] = D\delta[n] + B\delta[n-1] + A\tilde{g}_2[n]$. **End**

Answer to P 6.22: Given that

$$\frac{d^3y(t)}{dt^3} + 6\frac{d^2y(t)}{dt^2} + 11\frac{dy(t)}{dt} + 6y(t) = x(t)$$

and $x(t) = e^{-4t}u(t)$ with $y(0_-) = 1$, $\frac{dy(t)}{dt}|_{t=0_-} = -1$, $\frac{d^2y(t)}{dt^2}|_{t=0_-} = 1$, the output for $t \ge 0_-$ is $y(t) = y_{zs}(t) + y_{zi}(t)$, where

• Zero-state response $y_{zs}(t)$ can be obtained using (bilateral) LT: Applying LT both sides gives

$$Y_{zs}(s) = \frac{1}{s^3 + 6s^2 + 11s + 6} X(s) \stackrel{\triangle}{=} H(s) \frac{1}{s+4}$$

with $ROC_x = \{s: -4 < Re(s)\}$ and

$$H(s) = \frac{1}{(s+1)(s^2+5s+6)} = \frac{1}{(s+1)(s+2)(s+3)}$$

with $ROC_h = \{s: -1 < Re(s)\}$ since the system is causal.

As $ROC_{y_{zs}} \supseteq ROC_x \cap ROC_h = \{s : -1 < Re(s)\}.$

$$Y_{zs}(s) = H(s)X(s) = \frac{A}{s+1} + \frac{B}{s+2} + \frac{C}{s+3} + \frac{D}{s+4}$$

and therefore, the zero-state response is

$$y_{zs}(t) = [Ae^{-t} + Be^{-2t} + Ce^{-3t} + De^{-4t}]u(t)$$

As to the constants A, B, C, D, you should have no problem to find them, my dear friends!

• Zeros-input response $y_{zi}(t)$ can be obtained using unilateral LT: With $\alpha = y(0_{-}) = 1$, $\beta = \frac{dy(t)}{dt}|_{t=0_{-}} = -1$, $\gamma = \frac{d^{2}y(t)}{dt^{2}}|_{t=0_{-}} = 1$, the zero-input response is the solution of the following

$$\frac{d^3y_{zi}(t)}{dt^3} + 6\frac{d^2y_{zi}(t)}{dt^2} + 11\frac{dy_{zi}(t)}{dt} + 6y_{zi}(t) = 0$$

which can be solved using the unilateral LT:

$$s[s[sY_{zi}(s) - \alpha)] - \beta]] - \gamma + 6[s[sY_{zi}(s) - \alpha] - \beta] + 11[sY_{zi}(s) - \alpha] + 6Y_{zi}(s) = 0$$

Equivalently,

$$Y_{zi}(s) = \frac{as^2 + bs + c}{s^3 + 6s^2 + 11s + 6} = \frac{d_1}{s+1} + \frac{d_2}{s+2} + \frac{d_3}{s+3}$$

Please find a, b, c and hence d_1, d_2, d_3 yourself.

The zeros-input response $y_{zi}(t)$, which is a right-sided signal, is then

$$y_{zi}(t) = [d_1e^{-t} + d_2e^{-2t} + d_3e^{-3t}]u(t)$$

• The total output y(t) is then given by

$$y(t) = y_{zi}(t) + y_{zs}(t) = [(A+d_1)e^{-t} + (B+d_2)e^{-2t} + (C+d_3)e^{-3t} + De^{-4t}]u(t)$$

Answer to P 6.23: Given that

$$y[n-1] + 2y[n] = x[n]$$

• Zeros-input response $y_{zi}[n]$ with y[-1] = 2:

With $\alpha = y[-1] = 2$, the zero-input response is the solution of the following

$$y_{zi}[n-1] + 2y_{zi}[n] = 0$$

which can be solved using the unilateral ZT:

$$z^{-1}Y_{zi}(z) + \alpha + 2Y_{zi}(z) = 0$$

Equivalently,

$$Y_{zi}(z) = \frac{\alpha}{z^{-1} + 2} = \frac{1}{1 + 1/2z^{-1}} \rightarrow y_{zi}[n] = (-1/2)^n u[n]$$

• Zero-state response $y_{zs}[n]$ can be obtained using (bilateral) ZT: Applying LT both sides gives

$$z^{-1}Y_{zs}(z) + 2Y_{zs}(z) = X(z) \Rightarrow H(z) \frac{1/2}{1 + (1/2)z^{-1}}$$
with $ROC_h = \{z : 1/2 < |z|\}$ (why?) and for $x[n] = (1/4)^n u[n]$,
$$X(z) = \frac{1}{1 - (1/4)z^{-1}}, \quad ROC_x = \{z : 1/4 < |z|\}$$

As $ROC_{y_{zs}} \supseteq ROC_x \cap ROC_h = \{z : 1/2 < |z|\}.$

$$Y_{zs}(z) = H(z)X(z) = \frac{A}{1 + 1/2z^{-1}} + \frac{B}{1 - 1/4z^{-1}}$$

and therefore, the zero-state response is

$$y_{zs}[n] = [A(-1/2)^n + B(1/4)^n]u[n]$$

• The total output y[n] is then given by

$$y[n] = y_{zi}[n] + y_{zs}[n]$$

Solutions for Chapter 7

To be given.