Handling Missing Data

The difference between data found in many tutorials and data in the real world is that real-world data is rarely clean and homogeneous.

In particular, many interesting datasets will have some amount of **data missing.**

To make matters even more complicated, different data sources may indicate **missing data in different ways.**

In this chapter, we will discuss some **general considerations** for missing data, look at **how Pandas chooses to represent it,** and explore some **built-in Pandas tools** for **handling missing data** in Python.

Here and throughout the book, missing data in general is refered to as **null**, **NaN**, or **NA** values.

Trade-offs in Missing Data Conventions

A number of approaches have been developed to track the presence of missing data in a table or DataFrame.

Generally, they revolve around one of **two strategies**:

using a **mask** that globally indicates missing values,

or choosing a **sentinel value** that indicates a missing entry.

In the **masking** approach,

- the mask might be an entirely separate Boolean array,
- or it might involve **appropriation of one bit** in the data representation to locally **indicate the null status of a value.**

In the **sentinel** approach,

- the sentinel value could be some **data-specific convention**, such as indicating a missing integer value with –9999
- or some rare bit pattern,
- or it could be a more global convention, such as indicating a missing floating-point value with NaN (Not a Number), a special value that is part of the IEEE floating-point specification.

Neither of these approaches is without trade-offs.

Use of a **separate mask array** requires allocation of an **additional Boolean array**, which adds **overhead** in both storage and computation.

A **sentinel** value **reduces the range** of valid values that can be represented,

and may require **extra** (**often nonoptimized**) **logic in CPU and GPU arithmetic,** because common special values like NaN are not available for all data types.

As in most cases where **no universally optimal choice** exists, **different languages** and systems use **different conventions.**

For example, the **R** language uses reserved bit patterns within each data type as sentinel values indicating missing data,

while the **SciDB** system uses an extra byte attached to every cell to indicate an NA state.

Missing Data in Pandas

The way in which **Pandas** handles missing values is constrained by its **reliance on the NumPy package**,

which does **not have a built-in notion of NA** values for **non-floating-point data types.**

Perhaps Pandas **could have followed R's lead** in specifying bit patterns for each individual data type to indicate nullness,

but this approach turns out to be rather unwieldy.

While R has just 4 main data types, NumPy supports far more than this: bold text

for example, while **R** has a single integer type, NumPy supports **14 basic integer types** once you account for available bit widths, signedness, and endianness of the encoding.

Reserving a specific bit pattern in all available NumPy types would lead to an unwieldy amount of overhead in special-casing various operations for various types,

likely even requiring a new fork of the NumPy package.

Further, **for the smaller data types** (such as 8-bit integers), sacrificing a bit to use as a **mask** would significantly **reduce the range of values it can represent.**

Because of these constraints and trade-offs, Pandas has two "modes" of storing and manipulating null values:

The default mode is to use a sentinel-based missing data scheme, with sentinel values NaN or None depending on the type of the data.

Alternatively, you can opt in to using the **nullable data types** (dtypes) Pandas provides (discussed later in this chapter),

which **results in the creation an accompanying mask array** to track missing entries.

These **missing entries** are then **presented** to the user as the special **pd.NA** value.

In either case, the data operations and manipulations provided by the Pandas API will handle and propagate those missing entries in a predictable manner.

But to develop some intuition into **why these choices** are made, let's dive quickly into the **trade-offs inherent in None**, **NaN**, and **NA**.

As usual, we'll start by importing NumPy and Pandas:

```
In [1]: import numpy as np
import pandas as pd
```

None as a Sentinel Value

For some data types, Pandas uses None as a sentinel value.

None is a Python object, which means that any array containing None must have `dtype=object`— that is, it must be a sequence of Python objects.

For example, observe what happens if you pass None to a NumPy array:

```
In [2]: vals1 = np.array([1, None, 2, 3])
vals1
```

```
Out[2]: array([1, None, 2, 3], dtype=object)
```

This dtype=object means that the **best common type**representation NumPy could infer for the contents of the array is
that they are **Python objects.**

The **downside of using** None in this way is that operations on the data will be done at the Python level, with **much more** overhead than the typically **fast operations seen for arrays with native types:**

92.3 ms \pm 20.1 ms per loop (mean \pm std. dev. of 7 runs, 10 lo ops each)

Further, because Python does not support arithmetic operations with None, aggregations like sum or min will generally lead to an error:

```
In [6]: vals1
Out[6]: array([1, None, 2, 3], dtype=object)
In [ ]: vals1.sum()
```

```
Traceback (most rec
TypeError
ent call last)
/var/folders/xc/sptt9bk14s34rgxt7453p03r0000gp/T/ipykernel_91
333/1181914653.py in <module>
----> 1 vals1.sum()
~/.local/share/virtualenvs/python-data-science-handbook-2e-u
kwqDTB/lib/python3.9/site-packages/numpy/core/ methods.py in
_sum(a, axis, dtype, out, keepdims, initial, where)
    46 def _sum(a, axis=None, dtype=None, out=None, keepdims
=False,
                 initial=_NoValue, where=True):
---> 48 return umr sum(a, axis, dtype, out, keepdims, ini
tial, where)
    49
     50 def prod(a, axis=None, dtype=None, out=None, keepdim
s=False,
TypeError: unsupported operand type(s) for +: 'int' and 'None
Type'
```

For this reason, **Pandas does not use** None as a sentinel in its numerical arrays.

NaN: Missing Numerical Data

The other missing data sentinel, NaN is different;

it is a **special floating-point value** recognized by all systems that use the standard IEEE floating-point representation:

```
In [9]: vals1
Out[9]: array([1, None, 2, 3], dtype=object)
In [8]: vals2 = np.array([1, np.nan, 3, 4])
vals2
Out[8]: array([ 1., nan, 3., 4.])
In [11]: vals2.dtype
```

```
Out[11]: dtype('float64')
```

Notice that **NumPy chose a native floating-point type** for this array:

this means that **unlike the object array** from before, this array **supports fast operations** pushed into compiled code.

Keep in mind that **NaN** is a bit like a data virus — it infects any other object it touches.

Regardless of the operation, the result of arithmetic with NaN will be another NaN:

```
In [ ]: 1 + np.nan
Out[ ]: nan
In [ ]: 0 * np.nan
```

```
Out[]: nan
```

This means that **aggregates over the values are well defined** (i.e., they don't result in an error) but **not always useful:**

```
In [ ]: vals2.sum(), vals2.min(), vals2.max()
Out[ ]: (nan, nan, nan)
```

That said, NumPy does provide "NaN"-aware versions of aggregations that will ignore these missing values:

```
In [12]: vals2
Out[12]: array([ 1., nan, 3., 4.])
In [ ]: np.nansum(vals2), np.nanmin(vals2), np.nanmax(vals2)
Out[ ]: (8.0, 1.0, 4.0)
```

The **main downside of NaN** is that

it is **specifically a floating-point value**;

there is **no equivalent NaN value for integers, strings, or other types.**

NaN and None in Pandas

NaN and None both have their place, and Pandas is built to handle the two of them nearly interchangeably, converting between them where appropriate:

```
In [ ]: pd.Series([1, np.nan, 2, None])
Out[ ]: 0    1.0
    1    NaN
    2    2.0
    3    NaN
    dtype: float64
```

For types that don't have an available sentinel value, Pandas automatically typecasts when NA values are present.

For example, if we set a value in an integer array to np.nan, it will automatically be upcast to a floating-point type to accommodate the NA:

```
In [ ]: x = pd.Series(range(2), dtype=int)
x

Out[ ]: 0     0
     1     1
     dtype: int64

In [ ]: x[0] = None
x

Out[ ]: 0     NaN
     1     1.0
     dtype: float64
```

Notice that in addition to casting the integer array to floating point, Pandas automatically converts the None to a NaN value.

While this **type of magic may feel a bit hackish** compared to the more unified approach to NA values in **domain-specific languages like R,**

the **Pandas sentinel/casting approach works quite well** in practice.

The following table lists the upcasting conventions in Pandas when NA values are introduced:

Typeclass	Conversion when storing NAs	NA sentinel value
floating	No change	np.nan
object	No change	None or np.nan
integer	Cast to float64	np.nan

Typeclass Conversion when storing NAs NA sentinel value boolean Cast to object None or np.nan

Keep in mind that in Pandas, string data is always stored with an object dtype.

Pandas Nullable Dtypes

In early versions of Pandas, NaN and None as sentinel values were the only missing data representations available.

The **primary difficulty** this introduced was with regard to the **implicit type casting:**

for example, there was no way to represent a true integer array with missing data.

To address this difficulty, **Pandas later added nullable dtypes**, which are **distinguished from regular dtypes by capitalization** of their names (e.g., pd.Int32 versus np.int32).

For backward compatibility, these nullable dtypes are only used if specifically requested.

For example, here is a Series of integers with missing data, created from a list **containing all three available markers of missing data:**

Operating on Null Values

As we have seen, Pandas treats None, NaN, and NA as essentially interchangeable for indicating missing or null values.

To facilitate this convention, Pandas provides several **methods for detecting, removing, and replacing null values** in Pandas data structures.

They are:

- **isnull**: Generates a Boolean mask indicating missing values
- notnull: Opposite of isnull
- dropna: Returns a filtered version of the data
- **fillna**: Returns a copy of the data with missing values filled or imputed

We will **conclude this chapter** with a **brief exploration and demonstration of these routines**.

Detecting Null Values

Pandas data structures have **two useful methods for detecting null data: isnull and notnull**.

Either one will **return a Boolean mask** over the data.

For example:

```
Out[14]: 0 False
1 True
2 False
3 True
dtype: bool
```

As mentioned in **Data Indexing and Selection**, Boolean **masks** can be used directly as a Series or DataFrame index:

Dropping Null Values

In addition to these masking methods, there are the **convenience**methods dropna (which removes NA values) and fillna

(which fills in NA values).

For a **Series**, the **result is straightforward:**

Consider the following DataFrame:

```
In []: data.dropna()
Out[]: 0     1
     2     hello
     dtype: object

For a DataFrame , there are more options.
```

```
      Out[17]:
      0
      1
      2

      0
      1.0
      NaN
      2

      1
      2.0
      3.0
      5

      2
      NaN
      4.0
      6
```

We cannot drop single values from a DataFrame; we can only drop entire rows or columns.

Depending on the application, you might want **one or the other,** so **dropna includes a number of options** for a DataFrame .

By default, dropna will **drop all rows** in which **any** null value is present:

Alternatively,

you can **drop NA values along a different axis.** Using **axis=1**or **axis='columns'** drops all columns containing a null value:

```
In [ ]: df.dropna(axis='columns')
```

- Out[]: 2
 - 0 2
 - **1** 5
 - **2** 6

But this drops some good data as well;

you might rather be interested in **dropping rows or columns** with **all** NA values, or **a majority** of NA values.

This can be specified through the **how** or **thresh parameters,** which allow fine **control** of the number of nulls to allow **through.**

The default is how='any', such that any row or column containing a null value will be dropped.

You can also specify **how='all'**, which will only **drop** rows/columns that contain all null values:

Out[]: 0 1 2

0 1.0 NaN 2

1 2.0 3.0 5

2 NaN 4.0 6

For finer-grained control, the **thresh** parameter lets you specify a minimum number of non-null values for the row/column to be kept:

1 2.0 3.0 5 NaN

Here, the **first and last rows have been dropped** because they each **contain only two non-null values.**

Filling Null Values

Sometimes **rather than dropping** NA values, you'd like to **replace them with a valid value.**

This value might be a single number like zero, or it might be some sort of imputation or interpolation from the good values.

You could do this in-place using the isnull method as a mask,

but because it is such a common operation Pandas provides the fillna method, which returns a copy of the array with the null values replaced.

Consider the following Series:

We can **fill NA** entries with a single value, such as **zero**:

```
In [21]: data.fillna(0)
```

```
Out[21]: a 1
b 0
c 2
d 0
e 3
dtype: Int32
```

We can specify a **forward fill** to **propagate the previous value forward:**

Or we can specify a **backward fill** to propagate the **next values backward:**

```
In [ ]: # back fill
         data.fillna(method='bfill')
Out[ ]: a
              3
         dtype: Int32
         In the case of a DataFrame, the options are similar,
         but we can also specify an axis along which the fills should
         take place:
```

```
Out[ ]:
      0 1 2
           1.0
              NaN
                   2 NaN
                3.0 5 NaN
           2.0
          NaN
                4.0 6 NaN
In [ ]: df.fillna(method='ffill', axis=1)
Out[]:
            0 1
                   2
                       3
           1.0 1.0 2.0 2.0
       0
           2.0 3.0 5.0 5.0
         NaN 4.0 6.0 6.0
```

Notice that **if a previous value is not available** during a **forward fill**, the **NA value remains**.