Introduction to R Workshop

Session 3 Sean Nguyen

Session 3: Goals

Learn factors and levels

ggplot2

Saving plots

R markdown

Data Analysis in the

Tidyverse

Import

Tidy

Wrangle

Visualize

Stats

broom

Communicate

Data Analysis in the Tidyverse

Visualize Stats Communicate Wrangle Tidy Import tidyr readr dplyr rmarkdown ggplot2 broom ggplot() geom_line() knitr geom_bar() Rmd Markdown geom_point() geom_boxplot()

factor: categorical variable

Formula: data\$column <- as.factor(data\$column)

data\$month <- as.factor(data\$month)

factor: categorical variable

Formula for multiple multiple columns:

multiple mutate_at(vars(columnA:columnD), as.factor)

mutate_at(vars(month:group), as.factor)

month (chr)	day (chr)	group (chr)
January	Mon	A
February	Mon	A
March	Tues	В

month (fctr)	day (fctr)	group (fctr)
January	Mon	A
February	Mon	A
March	Tues	В

numeric: numeric variable

Integers - (~2 billion)

Double - (~1.79e308)

1.15, 4.40, 3.80

Formula: data\$column <- as.numeric(data\$column)

Column (chr)		Column (dbl)
3.124		3.124
5.934		5.934
5.600		5.600

character: strings of text

"MSU R Workshop"

Formula: data\$column <- as.character(data\$column)

Name (fctr)		Name (chr)
Debbie		Debbie
Dylan		Dylan
Sarah		Sarah

logical: True/False variable

Formula: data\$column <- as.logical(data\$column)

data\$question <- as.logical(data\$question)

data types in R:

Factors - categorical variable Monday, Tuesday, Wednesday

Numeric - numbers

Integers (~2 billion)

Double (~1.79e308)

1.15, 4.40, 3.80

Character - strings of characters

"Michigan State University R Workshop"

Logical - TRUE/FALSE

ggplot2 - considerations

tidy data - variables in columns, observations in rows

factors - categorical variables

integers/numeric - number variables

levels - order of categorical variables

levels - the order of categorial variables

```
Formula: data$column <- factor(data$column, levels = c("order", "that","you", "want"))
```

'April', 'February', 'January', 'March' January', 'February', 'March', 'April'

ggplot2 - powerful plotting library

General Formula: $ggplot(aes(x = __, y = __)) +$


```
geom_point()
geom_line()
geom_boxplot()
geom_violin()
```

geom_col()/geom_bar(stat = "identity")

Grammar of Graphics

- Layered
- Iterative
- Customizable

```
# A tibble: 1,704 x 6
      country continent year lifeExp
       <fctr>
                 <fctr> <int> <dbl>
                                                  <dbl>
  Afghanistan
                   Asia 1952 28.801 8425333
                                               779.4453
  Afghanistan
                              30.332 9240934
                                               820.8530
                   Asia 1962 31.997 10267083
  Afghanistan
                                              853.1007
                              34.020 11537966
  Afghanistan
                                              836.1971
  Afghanistan
                        1972 36.088 13079460
                                              739.9811
```



```
80-

60-

(A) - (A
```


data %>%
 ggplot(aes(x = gdpPercap, y = lifeExp))+
 geom_point()

```
data %>%
  ggplot(aes(x = gdpPercap, y = lifeExp))+
  geom_point()+
  scale_x_log10()
```

```
data %>%
  ggplot(aes(x = gdpPercap, y = lifeExp, size = pop))+
  geom_point()+
  scale_x_log10()
```

Demos

ggplot2 - tweaking your plot


```
reorder - ggplot(aes (x = reorder( ____, ordered_variable), y = ____)
```

COlOr - + scale_fill_brewer(palette= "YIOrRd")

legends - remove legend + guides(color = FALSE)/guides(fill = FALSE)

annotations - + annotate("text",x= 2, y=2, label = "your text")

Try to plot:

Life expectancy of Asian countries in 1992

Life expectancy of of Africa and Europe in 2007

GDP of Americas and Europe in 2002

BONUS:

Determine the GDP of each continent in 2007

Additional Resources

R Graphics Cookbook

O'REILLY'

R for Data Science

R markdown: reproducible documents

Analyze.
Share.
Reproduce.

