Что есть у процессора

- Процессор работает с 8-битными данными
- У процессора 14-битная адресная шина большое адресное пространство
- 48 инструкций: арифметика, работа с памятью, логика и прочее

Регистровый файл и ALU

- 6 регистров с данными
- Аккумуляторный регистр
- 4 флага условий
- ALU способное на сложение, вычитание и логические операции
- Регистры данный H и L используются для обращения к памяти в соответствующих инструкциях

Адресный стек, РС и кодирование инструкций

- Адресный стек (memory stack) в i8008 это 8 14-битный регистров. Один из них это
 РС, другие семь нужны для сохранения адресов возврата при вызове функций глубина рекурсии максимум 7
- Инструкции занимают 1, 2 или 3 байта
- Инструкции, работающие с константами, занимают 2 байта. А вот јитр -инструкции занимают по три байта
- Для перемещения по стеку используется 3-битный указатель

Структура команды

- Однобайтовая инструкция: [opcode]
- Двухбайтовая инструкция: [opcode] [operand]
- Трёхбайтовая инструкция: [opcode] [low address] [high address] два байта требуются как раз-таки для 14-битной адресации

ISA с кодами

MOV R_d , R_s	1	11 DDD SSS ₂	$R_d = R_s$
MOV R _d , M	1	11 DDD 111 ₂	R _d = Mem
MOV M, R _s	1	11 111 SSS ₂	Mem = R _s
MVI R _d , Imm	2	00 DDD 110 ₂	R _d = Immed Value
MVI M, Imm	2	00 111 1102	Mem = Immed Value
INR R _d	1	00 DDD 000 ₂	$R_d = R_d + 1 (R_d \neq A)$
DCR R _d	1	00 DDD 001 ₂	$R_d = R_d - 1 (R_d \neq A)$