1

Assignment 1

Prabhath Chellingi - CS20BTECH11038

Download all python codes from

https://github.com/PRABHATH-cs20-11038/ Assignment_1/tree/main/Assignment_1/Codes

and latex-tikz codes from

1 Problem

(Prob 3.6) Find the probability distribution of

- (i) number of heads in two tosses of a coin.
- (ii) number of tails in the simultaneous tosses of three coins.
- (iii) number of heads in four tosses of a coin.

2 Solution

Let $X_i \in \{0, 1\}$ represent the i^{Th} coin where 1 denotes the coin giving outcome as head. Then, X_i has a Bernoulli distribution with parameter

$$p = \frac{1}{2} \tag{2.0.1}$$

Let

$$X = \sum_{i=1}^{n} X_i \tag{2.0.2}$$

where n is the total number of coins tossed. Then X has a Binomial Distribution. Then for

$$\Pr(X_i = n) \stackrel{Z}{\rightleftharpoons} \Pr(X_i = z) \tag{2.0.3}$$

yielding

$$\Pr(X_i = z) = 1 - p + pz^{-1}$$
 (2.0.4)

with using the fact that X_i are i.i.d.,

$$\Pr(X = z) = (1 - p + pz^{-1})^{n}$$

$$= \sum_{k=0}^{n} {^{n}C_{k}p^{k}(1-p)^{n-k}z^{-k}}$$
(2.0.5)

$$\Pr(X = k) = \begin{cases} {}^{n}C_{k}p^{k}(1-p)^{n-k} & 0 \le k \le n \\ 0 & \text{otherwise} \end{cases}$$
(2.0.6)

TABLE 0 Table

Case	n (no. of coins)	k (no. of required outcomes)	0	1	2	3	4
(i)	2	Pr(X = k) (heads)	1/2	1/4	1/2	0	0
(ii)	3	Pr(X = k) (tails)	1/8	3/8	3/8	1/8	0
(iii)	4	Pr(X = k) (heads)	1/16	1/4	3/8	1/4	1/16

(i) Here we are seeing outcome of two tosses of a coin. We can say it as simultaneous tossing two coins. So, we get,

$$n = 2$$
 (2.0.7)

This is the **special case** with equation (2.0.6) with n = 2.

Now we obtain probability distribution of number of heads of two coins from (2.0.6),

Fig. i. Plot of probability distribution of two tossed coins

$$\Pr(X = k) = \begin{cases} {}^{2}C_{k} \left(\frac{1}{2}\right)^{2} & \text{if } 0 \le k \le 2\\ 0 & \text{otherwise} \end{cases}$$
(2.0.8)

(ii) This is the **special case** with equation (2.0.6) with n = 3 and complement of X_i .

For n coins if we want k tails then remaining should be heads,

Probability of getting k tails

$$= \Pr(X = n - k) \tag{2.0.9}$$

and there will be a small change in binomial distribution (2.0.6) and we get binomial distribution for tails as.

$$\Pr(X = n - k) = \begin{cases} {}^{n}C_{k}(p)^{k}(1 - p)^{n - k} & 0 \le k \le n \\ 0 & \text{otherwise} \end{cases}$$
(2.0.10)

$$\Pr(X = k) = \begin{cases} {}^{n}C_{k}(p)^{n-k}(1-p)^{k} & 0 \le k \le n \\ 0 & \text{otherwise} \end{cases}$$
(2.0.11)

Here we are seeing outcome of simultaneous tosses of three coin. So, we get,

$$n = 3$$
 (2.0.12)

Now we obtain probability distribution of number of tails of three coins from (2.0.11),

$$\Pr(X = k) = \begin{cases} {}^{3}C_{k} \left(\frac{1}{2}\right)^{3} & \text{if } 0 \le k \le 3\\ 0 & \text{otherwise} \end{cases}$$
(2.0.13)

Fig. ii. Plot of probability distribution of no of tails with three tossed coins

(iii) Here we are seeing outcome of four tosses of a coin. We can say it as simultaneous tossing four coins. So, we get,

$$n = 4$$
 (2.0.14)

This is the **special case** with equation (2.0.6) with n = 4.

Now we obtain probability distribution of number of heads of two coins from (2.0.6),

$$\Pr(X = k) = \begin{cases} {}^{4}C_{k} \left(\frac{1}{2}\right)^{4} & \text{if } 0 \le k \le 4\\ 0 & \text{otherwise} \end{cases}$$
(2.0.15)

Probability distribution of number of heads with two tosses of a coin

Fig. iii. Plot of probability distribution of four tossed coins