CMPE 125 Lab 3 Assignments

Dr. Donald Hung Computer Engineering Department, San Jose State University

Combinational Building Blocks

Purpose:

- (1) To be familiar with the basic combinational building blocks
- (2) To be familiar with the design/verification/validation flow and the EDA tools

Preparation:

- 1) Study the lecture slides
- 2) Study the relevant part of the *Verilog Coding Examples* posted on class Canvas (*CMPE125 Lecture Materials Section 3 Basic Building Blocks and Verilog Fundamentals*).

Tasks:

- 1. The **priority encoder** (refer to *Verilog Coding Examples* on class Canvas):
 - a) Follow the Verilog 2001 standard discussed in class, rewrite Verilog design code for the 8-3 priority encoder using *if*, *casez* statements and *for* loop, respectively (3 versions).
 - b) Write a **self-testing testbench** for the 8-3 priority encoder and use it to verify all three versions of your design. Use waveform viewer to confirm the correctness of your testbench report.
 - c) Validate the 8-3 priority encoder (choose one version of your design) using the Nexys4 DDR FPGA board. Use the individual on-board LEDs to display outputs.

2. The **4-bit right shifter/rotator** with the functional table shown below:

Ctrl [2:0]	Operation	Input	Output
000	Pass	a b c d	a b c d
001	Shift right 1 bit	a b c d	0 a b c
010	Shift right 2 bits	a b c d	0 0 a b
011	Shift right 3 bits	a b c d	0 0 0 a
100	Shift right 4 bits	a b c d	0 0 0 0
101	Rotate right 1 bit	a b c d	d a b c
110	Rotate right 2 bits	a b c d	c d a b
111	Rotate right 3 bits	a b c d	b c d a

Do the following:

- a) Follow the Verilog 2001 standard discussed in class, write Verilog design code for the *right shifter/rotator* specified above.
- b) Write a **self-testing Verilog testbench** and functionally verify the *right shifter/rotator* designed. Use waveform viewer to confirm the correctness of your testbench report.

- c) Validate the designed *right shifter/rotator* using the Nexys4 DDR FPGA board. Use the individual on-board LEDs to display outputs.
- 3. The **4-bit ALU** (refer to the *Verilog Coding Examples* on class Canvas):
 - a) Follow the Verilog 2001 standard discussed in class, rewrite Verilog design code to enhance the 4-bit ALU by adding two output signals, one as the "zero" flag, the other as the "overflow" flag.
 - b) Write a **self-testing Verilog testbench** and functionally verify the enhanced ALU. Use waveform viewer to confirm the correctness of your testbench report.
 - c) Validate the enhanced 4-bit ALU using the Nexys4 DDR FPGA board. Use the individual onboard LEDs to display outputs.

Contents of Report: (see checklist at end of document for more details)

- 1) Cover page (use the provided template).
- 2) A list of successfully accomplished tasks. For each task you should include the following:
 - a) A test plan (i.e., how to verify the design)
 - b) Commented source code (for both design and verification)
 - c) Captured verification results (waveforms and simulation reports)
 - d) A diagram that shows the validation (hardware prototyping) environment setup
 - e) Descriptions and analysis on your observations, problems encountered, lessons learned, etc.
- 3) Detailed descriptions of the task(s) that you were not able to accomplish, including reason(s) and/or your analysis.

Report checklist

Follow the "CMPE 125 Lab Report Guidelines" document on Canvas.

Your report should include these sections:

- Cover page (with name, SID, and the Lab Record filled out with your name, TA's name, and lab demo score)
- Introduction (1 paragraph)
- Design methodology (1 paragraph for <u>each</u> module: priority encoder, shifter/rotator, ALU)
 - o Block diagrams:
 - Priority encoder (FOR version)
 - Priority encoder (IF version)
 - Priority encoder (CASE version)
 - Shifter/rotator
 - ALU
- Test plan for simulation (1 paragraph for <u>each</u> module: priority encoder, shifter/rotator, ALU)
 - o **No waveforms** as we are using self-checking test benches.
 - o Console output from simulator (as a picture), one for each module.
- Test plan for FPGA board (1 paragraph for <u>each</u> module: priority encoder, shifter/rotator, ALU)
 - o Include photograph of FPGA board showing results with a caption that clearly labels the state of the switches and LEDs, one for each module.
- Conclusion (1 paragraph)
 - o In addition if you could not complete any part of the lab explain clearly what went wrong and how you could have remedied the problem.
- Appendix
 - o Any tables or other diagrams go here that don't fit in the other sections.
- Source code
 - Use a fixed-width font such as Courier New for the source code.
 - o Clearly label the file name of each source file you include.
 - o Include all source code you used in the project, including constraints.