What is claimed is:

1. A compound of the formula I

wherein

 R_1 and R_2 are each independently of the other a fluorine containing group, R_3 and R_4 are each independently of the other hydrogen, a fluorine containing group, C_1 - C_{12} alkyl, phenyl or

 R_4 , together with the carbon atom to which they are bonded, form a C_5 - C_8 -cycloalkylidene ring that is unsubstituted or substituted by from 1 to 3 C_1 - C_4 alkyl groups;

 R_{5} , R_{6} , R_{7} and R_{8} are each independently of the other hydrogen, C_{1} - C_{12} alkyl or C_{3} - C_{12} alkenyl, X_{1} and X_{2} are each independently of the other a direct bond or C_{1} - C_{12} alkylene, m is 1 to 10'000, and n is 0 to 10'000.

2. A compound according to claim 1, wherein

$$R_0$$
 is $-C - R_4$

R₁ and R₂ are each independently of the other a fluorine containing group,

· · ·

R₃ and R₄ are each independently of the other hydrogen, CF₃, C₁-C₁₂alkyl, phenyl or

R4, together with the carbon atom to which they are bonded, form a C5-C8-cycloalkylidene ring that is unsubstituted or substituted by from 1 to 3 C₁-C₄alkyl groups;

R₅, R₆, R₇ and R₈ are hydrogen,

X₁ and X₂ are each independently of the other C₁-C₁₂alkylene,

m is 1 to 10'000, and

n is 0 to 10'000.

- 3. A compound according to claim 1, wherein R₁ and R₂ are each independently of the other -(CF_2)_pF, wherein p is 1 to 50.
- 4. A compound according to claim 3, wherein p is 4 to 15.
- 5. A compound according to claim 1, wherein

$$R_0$$
 is $-\stackrel{R_3}{\overset{1}{\overset{1}{\text{c}}}}$,

R₃ is hydrogen, CF₃, C₁-C₁₂alkyl, phenyl or

$$- \left(\begin{array}{c} O \\ C \\ C \end{array} \right) - O \left(\begin{array}{c} R_5 \\ R_0 \end{array} \right) - O \left(\begin{array}{c} R_7 \\ C \\ R_0 \end{array} \right) - O \left(\begin{array}{c} O \\ C \\ R_0 \end{array} \right) - O \left(\begin{array}{c} C \\ C \\ C \\ R_0 \end{array} \right) - O \left(\begin{array}{c} C \\ C \\ C \\ C \end{array} \right) - O \left(\begin{array}{c} C \\ C \\ C \\ C \end{array} \right) - O \left(\begin{array}{c$$

R₄ is hydrogen, CF₃, C₁-C₁₂alkyl or phenyl; or R₃ and R₄, together with the carbon atom to which they are bonded, form a C5-C8-cycloalkylidene ring that is unsubstituted or substituted by from 1 to 3 C₁-C₄alkyl groups;

R₅, R₆, R₇ and R₈ are hydrogen,

X₁ and X₂ are each independently of the other C₁-C₁₂alkylene,

m is 1 to 10'000, and

n is 0 to 10'000.

- 6. A compound according to claim 1, wherein R_3 and R_4 are each independently of the other hydrogen or C_1 - C_4 alkyl; or R_3 and R_4 , together with the carbon atom to which they are bonded, form a cyclohexylidene ring.
- 7. A compound according to claim 1, wherein X_1 and X_2 are each independently of the other C_2 - C_8 alkylene.
- 8. A compound according to claim 1, wherein m is 1 to 50, and n is 0 to 50.
- 9. A compound according to claim 1, wherein

$$R_0$$
 is $-\frac{R_3}{C}$,

R₁ and R₂ are each independently of the other -(CF₂)_pF,

R₃ and R₄ are each independently of the other C₁-C₄alkyl; or R₃ and R₄, together with the carbon atom to which they are bonded, form a cyclohexylidene ring;

R₅, R₆, R₇ and R₈ are hydrogen,

X₁ and X₂ are ethylene,

m is 2 to 50,

n is 0 to 50, and

p is 4 to 15.

- 10. A composition comprising
 - a) an organic material which is susceptible to oxidative, thermal or light-induced degradation, and
 - b) at least one compound of the formula I according to claim 1.
- 11. A composition according to claim 10 wherein component (a) is a synthetic polymer.
- 12. A composition according to claim 10 wherein component (a) is a polycarbonate, polyester, polyacrylate or polymethacrylate or their mixtures, blends or alloys.
- 13. A composition according to claim 10 wherein component (b) is present in an amount of from 0.1 to 20 %, based on the weight of component (a).

WO 2005/059006 PCT/EP2004/053331

- 53 -

- 14. A composition according to claim 10, comprising in addition, besides components (a) and (b), further additives.
- 15. A composition according to claim 14, comprising as further additives phenolic antioxidants, light-stabilizers and/or processing stabilizers.
- **16.** A process for reducing the surface energy of organic materials which comprises incorporating therein or applying thereto a compound of the formula I according to claim 1.
- 17. Use of a compound of the formula I according to claim 1 as reducer of surface energy for organic materials.

:٠