

✓ 28. On sait que pour un miroir l'angle d'incidence d'un rayon lumineux est égal à l'angle de réflexion. Si une source lumineuse est placée au foyer d'un miroir elliptique, les rayons réfléchis se dirigent :

1. vers le deuxième foyer

www.ecoles-rdc.net

2. vers le centre

3. parallèlement au grand axe

4. dans une direction dépendant du rayon incident

5. vers le sommet le plus éloigné de la courbe

(B.-79)

✓ 29. Soit $y^2 = 2px$; $p \in \mathbb{R}_+$, l'équation d'une parabole. Le point $(2; 3)$ est situé à l'intérieur de la courbe si et seulement si :

1. $p = 9/4$ 2. $p < 9/4$ 3. $p \geq 2/3$ 4. $p > 0$ 5. $p > 9/4$ (B.-79)

30. En axes cartésiens rectangulaires, la droite $x + y - 1 = 0$ est normale à la parabole $y^2 = 2px$ si et seulement si $p =$

1. 1 2. $1/3$ 3. 2 4. $2/3$ 5. 0 (M.-80)

31. Soit une parabole de foyer F et de directrice d. Par un point P quelconque de d, on trace les tangentes PM et PM' à la parabole, M et M' étant les points de contact. On trace aussi MQ, Q appartenant à (d). La propriété fausse est :

1. $\overline{PM} = \overline{PM'}$

2. $\overline{QMP} = \overline{PMF}$

3. $PF \perp MM'$

4. $F \in MM'$

5. $\overline{QM} = \overline{MF}$

32. Dans l'ellipse d'équation $x^2/4 + y^2 = 1$, on inscrit un carré dont les côtés sont parallèles aux axes. La surface du carré vaut :

1. $16/5$ 2. $4/5$ 3. π 4. 2π 5. 8 (M.-80)

33. La droite $x + y + 1 = 0$ est tangent à la parabole d'équation $y^2 = 2px$ si et seulement si $p =$

1. 0 2. -2 3. 2 4. $-2/3$ 5. $2/3$

(M.-80)

34. Les points à l'infini sur l'hyperbole $x^2 - y^2 - 1 = 0$ ont pour coordonnées :

1. $(\pm 1; 1)$

3. $(1; \pm 1; 0)$

5. $(\pm i; 1; 0)$

2. $(1; 1; +\infty)$

4. $(\pm 1; 0; 1)$

(M.-80)