Table 1. Estimates of sAUC with convergence rate when c11 = c22 $_{\rm Scenario~1-4}$

Yi

2021-04-01

Print table

```
s.rdt <- "scenario/18rows/set-0.5b-all.RData"
dt <- "res/DT-pkg-0.5b-all/"</pre>
```

Table 1: Estimates of SAUC when $c_1^2=c_2^2$

		$S_P = 25$		$S_P = 50$		$S_P = 200$	
	$SAUC_0$	Median [Q1, Q3]	CR	Median [Q1, Q3]	CR	Median [Q1, Q3]	CR
Proposed $(\tilde{c}_1^2, \tilde{c}_2^2)$	0.620	0.641 [0.494, 0.732]	99.4	0.613 [0.504, 0.696]	99.7	0.617 [0.567, 0.662]	99.1
Proposed $(c_1^2 = c_2^2)$		0.637 [0.488, 0.731]	99.6	0.615 [0.510, 0.696]	99.8	0.622 [0.575, 0.665]	99.7
$Reitsma_O$		0.697 [0.611, 0.760]	100.0	0.692 [0.636, 0.739]	100.0	0.693 [0.667, 0.716]	100.0
$Reitsma_{P}$		$0.630 \ [0.537, \ 0.701]$	100.0	$0.622 \ [0.563, \ 0.674]$	100.0	$0.620 \ [0.591, \ 0.646]$	100.0
Proposed $(\tilde{c}_1^2, \tilde{c}_2^2)$	0.702	0.712 [0.622, 0.768]	99.8	0.708 [0.648, 0.752]	99.5	$0.705 \ [0.679, \ 0.725]$	99.3
Proposed $(c_1^2 = c_2^2)$		0.713 [0.623, 0.768]	99.6	0.711 [0.653, 0.752]	99.6	0.704 [0.681, 0.724]	99.5
$Reitsma_O$		0.741 [0.686, 0.782]	100.0	0.741 [0.704, 0.772]	99.9	0.739 [0.723, 0.754]	100.0
$Reitsma_{P}$		0.708 [0.651, 0.751]	100.0	$0.703 \ [0.668, \ 0.735]$	100.0	0.703 [0.687, 0.719]	100.0
Proposed $(\tilde{c}_1^2, \tilde{c}_2^2)$	0.564	0.579 [0.479, 0.661]	99.6	$0.562 \ [0.483, \ 0.632]$	99.7	$0.573 \ [0.523, \ 0.615]$	99.7
Proposed $(c_1^2 = c_2^2)$		0.577 [0.489, 0.661]	99.8	0.572 [0.508, 0.637]	100.0	0.572 [0.531, 0.611]	99.7
$Reitsma_O$		0.676 [0.608, 0.728]	100.0	0.673 [0.630, 0.708]	100.0	0.673 [0.651, 0.695]	100.0
$Reitsma_{P}$		0.567 [0.513, 0.611]	100.0	$0.564 \ [0.529, \ 0.597]$	100.0	$0.563 \ [0.547, \ 0.582]$	100.0
Proposed $(\tilde{c}_1^2, \tilde{c}_2^2)$	0.620	$0.630 \ [0.543, \ 0.694]$	99.8	$0.618 \ [0.552, \ 0.672]$	100.0	0.617 [0.583, 0.650]	99.7
Proposed $(c_1^2 = c_2^2)$		0.628 [0.554, 0.695]	99.8	0.624 [0.567, 0.675]	99.8	$0.623 \ [0.595, \ 0.650]$	99.7
$Reitsma_O$		0.699 [0.647, 0.744]	99.9	0.696 [0.662, 0.727]	100.0	0.695 [0.681, 0.711]	100.0
$Reitsma_{P}$		$0.620 \ [0.579, \ 0.657]$	100.0	0.619 [0.589, 0.646]	100.0	0.618 [0.605, 0.632]	99.9

Note:

Here, $SAUC_0$ is true SAUC; Proposed $(tildec_1^2, tildec_2^2)$ is the proposed model estimating $(c_1^2, c_2^2)^T$; Proposed $(tildec_1^2, tildec_2^2)$ is the proposed model specified $c_1^2 = c_2^2 = 0.5$; Reitsma_O is Reitsma model based on the observed studies; and Reitsma_P is Reitsma model based on the population studies.