Aman Kulla
RA1911003010640
Autificial Intelligence Lab
Lob-2

Aim: Developing Agent programs four Real Warld Rocoblems -Travelling Golesman Problem (TSP)

Problem Foormulation

For a given complete graph with n vertices and weight function defined on the edges, the objective is to constructs a tour i.e., a circuit that passes through each vertex only one of Maximum total weight.

initial State: -

Anal State:-

Problem Solving.

we start at vortex! and find the win. cost path with 1 wo starting point, i as ending point and all vertices appearing exactly once.

For path 1-32, the minimum cost would be through direct path

It tries for various other permutations as well and 1-2-4-3-1 permutation works perfect as it provides minimum cost.

ARTIFICIAL INTELLIGENCE

LAB 2

Travelling Salesman Problem

Aman Kalla

RA1911003010640

Algorithm:-
Step 1: Consider city 1 as the starting and ending point.
Step 2: Generate all (n-1)! Permutations of cities.
Step 3: Calculate cost of every permutation and keep track of minimum cost
permutation.
Step 4: Return the permutation with minimum cost.
Code:-
from sys import maxsize
from itertools import permutations
V = 4
def travellingSalesmanProblem(graph, s):
vertex = []
for i in range(V):
if i != s:
vertex.append(i)

```
min_path = maxsize
  next_permutation=permutations(vertex)
  for i in next_permutation:
    current_pathweight = 0
    k = s
    for j in i:
      current_pathweight += graph[k][j]
      k = j
    current_pathweight += graph[k][s]
    min_path = min(min_path, current_pathweight)
  return min_path
if __name__ == "__main__":
  graph = [[0, 10, 15, 20], [10, 0, 35, 25],
      [15, 35, 0, 30], [20, 25, 30, 0]]
  s = 0
  print(travellingSalesmanProblem(graph, s))
```

Output:-

Result:-

Hence, the implementation of Travelling Salesman Problem is done successfully.