

Les Réseaux Bayésiens

Introduction Intuitive

(Jean-Baptiste.Denis@jouy.inra.fr)

PLAN

- (1) A partir d'exemples
 - botanique
 - médical
 - classique
- (2) Réseau Bayésien
- (3) Réseaux bayésiens et statistique bayésienne
- (4) Résaux bayésiens et apprentissage
- (5) Réseaux bayésiens et réseaux de Markov

Détermination d'espèces : l'anémone PARIS D'ELIBRAIRIE GÉNÉRALE DE L'ENSEI

Styles plumeux AP; fleurs violettes, velues, PL; 1-4 d.

Fleurs blanches ou roses

Styles non plumeux

Fleurs jaunes; feuilles de l'involucre à pétiole court; tiges à 1-2 fleurs par involucre; 1-3 d.

A. Pulsatille AC.
A. Pulsatilla L. **
prés découverts; av.-j.; v.

A. Sylvie TC. A. nemorosa L. bois; ms.-av.; v.
A. silvestre TR.

A. silvestris L. bois; m.-j.; v.

A. Fausse-Renoncule TR. A. ranunculoides L.

Unité MIA ouy-en-Josas

Cette simplification mathématique n'est pas raisonnable!

- Si la question est mal comprise
- Si l'observation est mal faite
- Si la flore de la Région Parisienne a évolué (ou que l'exemplaire n'en provienne pas)
- Si ce n'était pas une anémone

La redondance n'est pas toujours inutile!

• MAIS AUSSI, si les choses n'étaient pas si tranchées ?

Recensons l'information disponible

Nom	Fleurs velues	<u>Style</u>	<u>Couleur</u>	<u>Fréquence</u>
p	oui	plumeux	violette	assez commune
N	non	non plumeux	blanche/rose	très commune
S	oui	non plumeux	blanche/rose	très rare
R	?	non plumeux	jaune	très rare

Traduisons la en probabilités

Nom	Fleurs velues	<u>Style</u>
P	oui	plumeux
N	non	non plumeux
S	oui	non plumeux
R	?	non plumeux

ranuncoloïdes

Couleur

violette blanche/rose blanche/rose jaune

0.1 0.00 0.00

<u>Fréquence</u>

assez commune très commune très rare très rare

Probibilité de la couleur sachant le nom violette rose blanche jaune Pulsatilla 0.9 0.05 0.05 0.0 nemorosa 0.0 0.50 0.50 0.0 silvesris 0.0 0.60 0.40 0.0

Probabilité conditionnelle : p(c|n)

0.9

Couleur

Fleurs velues
oui
non
oui
?

Style plumeux non plumeux non plumeux non plumeux

	•
violette	assez commune
blanche/rose	très commune
blanche/rose	très rare
jaune	très rare

Fréquence

Probibilité d	du style sach	ant le nom
	S_plumeux S	_sans_plume
Pulsatilla	0.99	0.01
nemorosa	0.20	0.80
silvesris	0.10	0.90
ranuncoloïdes	0.05	0.95

Probabilité conditionnelle : p(s|n)

Nom	Fleurs velues	<u>Style</u>	<u>Couleur</u>	<u>Fréquence</u>
P	oui	plumeux	violette	assez commune
N	non	non plumeux	blanche/rose	très commune
S	oui	non plumeux	blanche/rose	très rare
R	?	non plumeux	jaune	très rare

Probibilité de la feuille sachant le nom F_poilues F_sans_poils
Pulsatilla 0.95 0.05
nemorosa 0.01 0.99
silvesris 0.80 0.20
ranuncoloïdes 0.40 0.60

Probabilité conditionnelle : p(f|n)

P oui N non S oui R ?	plumeux non plumeux non plumeux non plumeux	violette blanche/rose blanche/rose jaune

<u>Fréquence</u>

assez commune très commune très rare très rare

	freq
Pulsatilla	0.10
nemorosa	0.88
silvesris	0.01
ranuncoloïdes	0.01

Probabilité marginale : p(n)

Le Réseau Bayésien associé

Le Réseau Bayésien associé exhibe une probabilité conjointe

Le Réseau Bayésien peut servir à l'identification $p(n,f,s,c) \rightarrow p(n|c)$

Probibilité du nom sachant la couleur

	violette	rose	blanche	jaune
Pulsatilla	0.989	0.011	0.011	0
nemorosa	0.000	0.976	0.980	0
silvesris	0.000	0.013	0.009	0
ranuncoloïdes	0.011	0.000	0.000	<u>1</u>

Le Réseau Bayésien peut servir à l'identification $p(n,f,s,c) \rightarrow p(n|s)$

Probibilité du nom sachant le style

	S_plumeux	S_sans_	_plume
Pulsatilla	<u>0.820</u>		0.006
nemorosa	0.076		<u>0.985</u>
silvesris	0.069		0.002
ranuncoloïdes	0.035		0.007

Le Réseau Bayésien peut servir à l'identification $p(n,f,s,c) \rightarrow p(n|f,s)$

Probibilité du nom sachant la feuille et le style

```
, , S plumeux
              F poilues F sans poils
                  <u>0.918</u>
                                0.272
Pulsatilla
                               0.499
                   0.001
nemorosa
silvesris
                  0.065
                               0.092
                  0.016
                                0.137
ranuncoloïdes
, , S sans plume
              F poilues F sans poils
                   0.272
                                0.000
Pulsatilla
                   0.499
                                0.995
nemorosa
                  0.092
silvesris
                                0.000
                  0.137
                                0.004
ranuncoloïdes
```


Le Réseau Bayésien peut servir à l'identification p(n,f,s,c) -> p(n|f,s,c)

, , F_poilues, S plumeux

```
violette rose blanche jaune
                <u>0.998</u> <u>0.537</u>   0.634
Pulsatilla
                0.000 0.005 0.006
nemorosa
                0.000 <u>0.457</u> 0.360
silvesris
ranuncoloïdes 0.002 0.000 0.000
              , , F sans poils, S plumeux
             violette rose blanche jaune
                <u>0.947</u> 0.043 0.045
Pulsatilla
                0.000 \ 0.784 \ 0.832
nemorosa
                0.000 0.173 0.122
silvesris
ranuncoloïdes
             0.053 0.000 0.000
              , , F poilues, S sans plume
             violette rose blanche jaune
                <u>0.947</u> 0.043 0.045
Pulsatilla
                0.000 \ 0.784 \ 0.832
nemorosa
             0.000 0.173 0.122
silvesris
ranuncoloïdes 0.053 0.000 0.000
```


Diagnostic Médical: infection à virus

On définit deux variables aléatoires :

- V : l'individu considéré est infecté à valeurs dans {0,1}
- T : le résultat d'un test de détection à valeurs dans {-,+}

Des études précédentes ont permis de préciser la sensibilité et la spécificité de la détection :

•
$$P(T=+ | V=1) = 0.98$$

(= spécificité)

•
$$P(T=+ | V=0) = 0.01$$

(= 1 - sensibilité)

Question pratique : le résultat du test est positif, quelle est la probabilité que l'individu considéré soit infecté ?

Réponse : on ne peut pas répondre ! En effet

Si je dis «Dans une classe la moitié des garçons portent lunettes mais seulement le tiers des filles», on ne peut rien inférer sur le sexe d'un porteur de lunettes pris au hasard dans la classe!

CLASSE 1	avec	sans	TOTAUX
Filles	4	8	12
Garçons	4	4	8
TOTAUX	8	12	20

CLASSE 2	avec	sans	TOTAUX
Filles	1	2	3
Garçons	9	9	18
TOTAUX	10	11	21

Classe 1 : 8 garçons et 12 filles => 0.5 que ce soit une fille

Classe 2 : 18 garçons et 3 filles => 0.1 que ce soit une fille

Pour répondre : il faut savoir aussi que P(V=1) = 0.002 alors :

$$P(V=1 \mid T=+) = [P(T=+ \mid V=1) * P(V=1)] / P(T=+)$$

or
$$P(T=+)$$
 = $[P(T=+ | V=1) * P(V=1)] + [P(T=+ | V=0) * P(V=0)]$
= $(0.98 * 0.002) + (0.01 * 0.998) = 0.01194$

et
$$P(V=1 \mid T=+) = (0.98 * 0.002) / 0.01194 = 0.164$$

(théorème de Bayes)

Diagnostic Médical: infection à virus

Sous forme de réseau bayésien :

Et la réponse est donnée par P(V|T)

The Asian network (Lauritzen et al., 1988)

Variables binaires (simplification non obligée)

Définir les lois : (ancêtres : marginales)

(autres : conditionnelles)

Le résultat est la loi conjointe qui donne rôle équivalent à chacune des 7 variables.

La causalité est perdue! En modélisation probabiliste (en sciences?), seule l'interprétation permet d'affirmer que V1 influence V2 et pas l'inverse.

[A,B,C,D,E,F,G] = [A][B][C|A][D|B][E|B][F|C,D][G|C,D,E]

- On dispose d'une loi de probabilité d'un ensemble de variables. Les 7 variables de notre réseau.
- Si on s'intéresse à une variable particulière (cible), on va calculer sa loi marginale (on intègre sur tous les cas possibles des autres). On veut déterminer si le patient présente un cancer du poumon.
- Mais si certaines des autres sont connues, alors on va conditionner pour celles-là (ce n'est pas la peine de prendre en compte des cas qui ne sont pas possibles)
- Si certaines autres sont accessibles (moyennant un certain coût), on va s'interroger sur l'intérêt de les obtenir.

Le réseau est recalculé en fonction des informations nouvelles : les probabilités du diagnostic sont affinées.

Un réseau bayésien définit la loi conjointe d'un ensemble de variables aléatoires. En général, la loi conjointe est restreinte dans une structure d'indépendance conditionnelle particulière qui est décrite par un graphe acyclique orienté construit à l'aide de distributions locales.

Aux noeuds ancêtres, on doit fournir la loi marginale ; aux autres noeuds on doit fournir la loi conditionnelle à leurs parents directs. La loi conjointe est le simple produit des lois associées à chaque noeud (théorème de Bayes).

Les variables aléatoires associées aux noeuds peuvent être de tout type, en particulier discrètes ou continues.

Il peut y avoir différentes manières de représenter une même loi conjointe par un réseau bayésien.

В

Que des ancêtres : indépendance

[A,B,C] = [A].[B].[C]

Toutes les flèches:

$$[A,B,C] = [A].[B|A].[C|A,B]$$

= $[B].[A|B].[C|A,B]$

Toutes conjointe peut se décomposer ainsi.

(B,C) « corrélés » ou mieux (B|C) dépend de C

mais

((B,C) | A) indépendants!

(C|A) dépend de A

mais

(C | (A,B)) ne dépend pas de A!

(A|B) et (C|B) sont indépendants!

Causalité

Il est commode d'associer les flèches à des relations de causalité mais... (pour moi) c'est une décision subjective.

La meilleure preuve c'est qu'on peut parfois inverser des flèches en gardant la même probabilité conjointe.

idem que l'interprétation d'une corrélation statistique.

est équivalent à

RESEAUX BAYESIENS

La plupart des exemples concernent des variables discrètes mais les variables peuvent aussi être continues!

 $A|(B,C) \sim N(B,C)$

 $B \sim N(100,10)$

 $C_{-}^2 \sim s^2 Khi^2(5)$

RESEAUX BAYESIENS

Ou discrètes et continues...

 $A|(B,C) \sim Bin(N_{\bullet},B)$

 $B \sim B\hat{e}ta(1,10)$

 $C \sim Poisson(10)$

- Le réseau bayésien définit un modèle probabiliste. Les observations ne sont pas forcément utiles.
- La statistique bayésienne permet l'estimation, l'inférence sur des modèles probabilistes à partir d'observations.
- Les deux reposent sur le théorème de Bayes.
- On peut faire de la statistique bayésienne sur un réseau bayésien, c'est ce que fait l'excellent logiciel **WinBUGS** ou son ersatz **Jags**.

MODELE sur les paramètres auquel on raccroche les données (Y)

le modèle sans les données correspond à la priore ; le modèle conditionné par les données fournit la postériore

WinBUGS

BUGS = Bayesian inference Using Gibbs Sampling: :+)

Win for *ms*Win*dows*: :+(

Langage de description de modèle similaire de R

Interface graphique de construction de modèle

possibilité de lancer des scripts

Les modèles sont en fait des réseaux bayésiens et bâtis tels quels !

WinBUGS

Learning Bayesian Networks with Mixed Variables

Apprentissage de Réseaux Bayésiens à partir de Données pour des variables discrètes et/ou continues

A partir d'un tableau de données : trouver le réseau!

- graphe
- proba

Il suffit de définir les variables et leur type = colonnes du tab. de données

c.nc

Formidable Ambition!

	c.0	c.1	c.2	c.3	c.4	c.5
d.0	1	1	3	25	5.43e+02	2.92e+04
d.1	1	2	12	200	8.68e+03	9.36e+05
d.2	3	12	144	4800	4.17e+05	8.99e+07
d.3	25	200	4800	320000	5.56e+07	2.39e+10
d.4	543	8688	417024	55603200	1.93e+10	1.66e+13
d.5	29281	936992	89951232	23986995200	1.66e+13	2.87e+16

nombre de réseaux en fonction du nombre de variables

même si bien restreinte.

- Les variables continues sont multinormales
- Les variables discrètes sont multinomiales
- Les parentés sont limitées à (d -> d), (c->c) et (d->c).
- Si (**d->c**), alors <u>espérances</u> et <u>variances</u> dépendent des combinaison de toutes les **d**!

Pour choisir un « meilleur » réseau bayésien, il faut définir un critère !

Le critère retenu est basé sur une approche de statistique bayésienne qui nécessite :

- la définition de priores sur les paramètres du modèle (arcs, probas déduites des arcs),
- des données pour calculer les postériores

$$p(D,d) = p(d|D).p(D)$$

où D est le réseau bayésien qui est donc probabilisé (par une priore) et d les données dont on a déjà expliqué le modèle.

Comme il y a beaucoup de calculs de postériores à mener, on prend des priores conjuguées des modélisations retenues (Dirichlet et Normal/Gamma inverse).

Utilisation d'un algorithme heuristique (amélioration de proche en proche) parmi l'ensemble des possibles :

- Ajoût de la relation qui maximise le score,
- Retrait de la relation qui maximise le score,
- Inversion d'une relation qui maximise le score,
- Perturbation par une action similaire effectuée au hasard.

Deux bons points :

- Possibilité de choisir son point de départ,
- Possibilité d'interdire des relations (qu'on sait impossible)

Par contre:

• Il ne semble pas possible d'imposer un certain nombre de relations!

Réseaux de Markov souvent assimilés aux modèles graphique

La densité conjointe s'écrit comme le produit de fonctions des « cliques » maximales :

[A,B,C,D] = f(A,B,C).g(C,D)

On retrouve que pas de liaison équivaut à l'indépendance...

[A,B,C] = f(A).g(B).h(C)

La D-séparabilité (?) est plus facile à vérifier que dans le cas des réseaux bayésiens.

{A} et {B} sont indépendants conditionnellement à {C}

Pas d'interprétation locale similaire : plus difficile à comprendre et à construire...

Certains réseaux sont équivalents

Des réseaux de Markov n'ont pas leur équivalent en réseau bayésien dans le sens où les propriétés d'indépendance conditionnelle dont ils jouissent ne peuvent pas être exprimées par un réseau de Markov sur les mêmes variables.

Mais des réseaux bayésiens n'ont pas leur équivalent en réseau de Markov dans le sens où les propriétés d'indépendance conditionnelle dont ils jouissent ne peuvent pas être exprimées par un réseau de Markov sur les mêmes variables.

Pour Conclure

Les réseaux bayésiens représentent un outil fort puissant :

- Pour réfléchir à un niveau intuitif
- Pour échanger avec des non spécialistes de la formalisation (raisonner efficacement dans l'incertain)
- Pour construire une modélisation complexe

Mais ils sont insuffisants (merci Judith) car limités à la structure, il faut leur ajouter les densités :

- Pour obtenir certaines simplifications
- Pour mettre en évidence certaines difficultés
- Pour aller jusqu'au bout

Pour Conclure

Ch. M. Bishop (2006) Pattern Recognition and Machine Learning, /chapter 8/, Springer

J.-M. Marin & F. Rossi (avril 2004) Découvrez les réseaux bayésiens, Linux Magazine, 60, 56-65.

http://asi.insa-rouen.fr/~pleray/bibPL.html

Merci de votre attention!

Le Théorème de Bayes

$$P(A|B) = \frac{P(A,B)}{P(B)}$$

• La proportion de filles parmi les enfants à lunettes est égale au nombre de filles à lunettes divisé par le nombre d'enfants à lunettes.

Sans lunettes

Avec lunettes

garçons

$$P(A|B)\cdot P(B)=P(A,B)=P(B|A)\cdot P(A)$$

