AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1	 (Currently Amended) A system for regulating communications 			
2	between a plurality of transmitters and a receiver, comprising:			
3	a plurality of cells, wherein each cell controls communications from a			
4	transmitter in the plurality of transmitters to the receiver;			
5	wherein the plurality of cells are arranged in a token ring that regulates			
6	communications from the plurality of transmitters to the receiver;			
7	wherein the presence of a token within a token ring cell indicates that the			
8	corresponding transmitter may communicate with the receiver; and			
9	wherein each cell is configured to receive a request signal from a			
10	corresponding transmitter, and in response to the request signal, is configured to			
11	issue an acknowledgement signal to the corresponding transmitter which allows			
12	the corresponding transmitter to begin transmitting if the cell has the token;			
13	andtoken;			
14	a flow control mechanism in each cell that receives a flow-control signal			
15	from the receiver, wherein the receiver asserts the flow-control signal when the			
16	receiver is ready to receive communications, and wherein the flow control			
17	mechanism comprises logic for generating the acknowledgement signal by			
18	logically combining a previous acknowledge signal from the cell and an			
19	neknowledgement signal from a neighboring cell-with the flow-control signal; and			
20	circuitry in the transmitters to handle erroneous short pulses in a			
21	corresponding acknowledgement signal, wherein the short pulses occur as a result			

22	of the flow-control signal from the receiver being deasserted after the			
23	acknowledgement signal is asserted.			
1	(Original) The system of claim 1, further comprising:			
2	a plurality of receivers; and			
3	a plurality of token rings, wherein each token ring passes a corresponding			
4	token among token ring cells that control communications from the plurality of			
5	transmitters to a receiver corresponding to the token ring.			
1	3. (Previously presented) The system of claim 2, wherein the plurality			
2	of cells are arranged in a grid wherein a row corresponds to a transmitter and a			
3	column corresponds to a receiver.			
1	4. (Original) The system of claim 1, wherein the communications can			
2	include one of:			
3	an electrical signal;			
4	a mechanical signal; and			
5	an optical signal.			
1	5. (Cancelled)			
1	(Previously presented) The system of claim 1, wherein each			
2	transmitter further comprises a reset mechanism that is configured to release the			
3	clearance to communicate with the receiver by resetting the request signal.			

comprises an acknowledgement mechanism configured to confirm the release of

(Original) The system of claim 6, wherein the system further

the clearance by resetting the acknowledgement signal.

7.

1 2

1	8.	(Original) The system of claim 1, further comprising an			
2	initialization mechanism configured to initialize the single token in the token ring.				
1	9.	(Original) The system of claim 1, wherein the system operates			
2	asynchronously.				
1	10.	(Cancelled)			
1	11.	(Currently Amended) A method for regulating communications			
2	between a plurality of transmitters and a receiver, comprising:				
3	receiving a request signal from a transmitter at a cell in a plurality of cells				
4	requesting to communicate with the receiver;				
5	wherein the plurality of cells are arranged in a token ring that regulates				
6	communications from the plurality of transmitters to the receiver; and receiver;				
7	in response to the request signal, issuing an acknowledgement signal to the				
8	transmitter which allows the transmitter to begin transmitting if the presence of a				
9	token is detected within the cell, wherein the acknowledgement signal is not				
10	issued unless the receiver has asserted an enabling signal to the cell that indicates				
11	that the receive	ver is ready to receive data and a flow-control signal has been			
12	asserted by th	ne receiver, wherein the acknowledgement signal is generated by			
13	logically combining a previous acknowledge signal generated from the cell and an				
14	acknowledgement signal from a neighboring cell with the flow-control				
15	signalreceiver, and				
16	in the transmitter, handling erroneous short pulses in a corresponding				
17	acknowledgement signal, wherein the short pulses occur as a result of the flow-				
18	control signal from the receiver being deasserted after the acknowledgement				

signal is asserted.

- 1 12. (Original) The method of claim 11, wherein the plurality of cells
 2 include a plurality of token rings, wherein each token ring passes a corresponding
 3 token among token ring cells that control communications from the plurality of
- 4 transmitters to a receiver corresponding to the token ring.
- 1 13. (Original) The method of claim 11, wherein a plurality of cells that
 2 regulate communications between the transmitters and receivers are arranged in a
 3 grid wherein a row corresponds to a transmitter and a column corresponds to a
 4 receiver.
- 1 14. (Original) The method of claim 11, wherein the communications
 2 can include one of:
 3 an electrical signal;
 4 a mechanical signal; and
- 1 15. (Original) The method of claim 11, further comprising revoking 2 the permission for the transmitter to communicate with the receiver when the 3 transmitter resets the request signal.
- 1 16. (Original) The method of claim 15, further comprising resetting the acknowledgement signal to confirm the revocation of the permission for the transmitter to communicate with the receiver.
- 1 17. (Original) The method of claim 11, further comprising initializing the token in the token ring.

an optical signal.

1	18.	(Original) The method of claim 11, wherein the system operates			
2	asynchronously.				
1	19.	(Cancelled)			
1	20.	(Currently Amended) A multi-processor system, comprising:			
2	a plurality of processors;				
3	a plurality of transmitters associated with the processors;				
4	a plurality of receivers associated with the plurality of processors;				
5	a plurality of cells, wherein each cell controls communications from a				
6	transmitter in the plurality of transmitters to a receiver;				
7	wherein the plurality of cells are arranged in a token ring that regulates				
8	communications from the plurality of transmitters to a receiver;				
9	wherein the presence of a token within a token ring cell indicates that the				
10	corresponding transmitter may communicate with the receiver; and				
11	wherein each cell is configured to receive a request signal from a				
12	corresponding transmitter, and in response to the request signal, is configured to				
13	issue an acknowledgement signal to the corresponding transmitter which allows				
14	the corresponding transmitter to begin transmitting if the cell has the token;				
15	andtoken;				
16	a flov	v control mechanism in each cell that receives a flow-control signal			
17	from the rece	river, wherein the receiver asserts the flow-control signal when the			
18	receiver is re	ady to receive communications, and wherein the flow control			
19	mechanism comprises logic for generating the acknowledgement signal by				
20	logically combining a previous acknowledge signal from the cell कर्त क				
21	acknowledge	ment signal from a neighboring cell with the flow-control signal; and			
22	circuitry in the transmitters to handle erroneous short pulses in a				
23	correspondin	g acknowledgement signal, wherein the short pulses occur as a result			

- 24 of the flow-control signal from the receiver being deasserted after the
- 25 acknowledgement signal is asserted.
- 1 21. (Canceled)