Proposition 1. As $N \to \infty$ and $t \to \infty$, the ratio of \mathbf{X}_b to \mathbf{X}_i , $i \neq b$ in solutions to the system with positive coefficients, initial conditions $\mathbf{X} = \mathbf{0}$, and $B_i \neq B_i$ for all $i \neq j$

$$\frac{d\mathbf{X}_i}{dt} = (A_i + B_i \mathbf{X}_i) \left(N - \sum_{j=1}^J \mathbf{X}_j \right) - \frac{sd_i \mathbf{X}_i}{K + L_i \mathbf{X}_i}, i \in 1, 2, \dots, J$$
 (1)

approaches ∞ where \mathbf{X}_b is the component of \mathbf{X} with the largest value of B_i in (1).

Proof. We begin by noting that for solutions to (1) starting at $\mathbf{X} = \mathbf{0}$, $\mathbf{X}_i \geq 0$ for all i for all t. This is because when $\mathbf{X}_i = 0$, (1) becomes $\frac{d\mathbf{X}_i}{dt} = A_i$, which is positive. Additionally, we note that for solutions to (1) starting at $\mathbf{X} = \mathbf{0}$, $\sum_{j=1}^{J} \mathbf{X}_j < N$ for all t. This is because, when $\sum_{j=1}^{J} \mathbf{X}_j = N$, (1) becomes

$$\frac{d\mathbf{X}_i}{dt} = -\frac{sd_i\mathbf{X}_i}{K + L_i\mathbf{X}_i} \tag{2}$$

which is non-positive for all values of i because all coefficients are positive and $\mathbf{X}_i \geq 0$ by the earlier note. (2) is negative for at least one component of \mathbf{X} because the only way for it to be zero for all values of i is if $\mathbf{X} = \mathbf{0}$, which is impossible because we set $\sum_{j=1}^{J} \mathbf{X}_j = N$ and N > 0. Thus $\sum_{j=1}^{J} \mathbf{X}_j < N$ for all t.

Next, we see that (1) is asymptotically equivalent to

$$\frac{d\mathbf{X}_i}{dt} = (A_i + B_i \mathbf{X}_i) \left(N - \sum_{j=1}^J \mathbf{X}_j \right)$$
 (3)

as $N \to \infty$ with initial condition $\mathbf{X} = \mathbf{0}$ because

$$\lim_{N \to \infty} \frac{\left(A_i + B_i \mathbf{X}_i\right) \left(N - \sum_{j=1}^J \mathbf{X}_j\right) - \frac{s d_i \mathbf{X}_i}{K + L_i \mathbf{X}_i}}{\left(A_i + B_i \mathbf{X}_i\right) \left(N - \sum_{j=1}^J \mathbf{X}_j\right)} = \tag{4}$$

$$\lim_{N \to \infty} 1 - \frac{sd_i \mathbf{X}_i}{(K + L_i \mathbf{X}_i)(A_i + B_i \mathbf{X}_i)(N - \sum_{j=1}^J \mathbf{X}_j)} = 1$$
 (5)

and $\sum_{j=1}^{J} < N$ by the earlier note which implies that $N - \sum_{j=1}^{J} \mathbf{X}_{j} \neq 0$. Thus as $N \to \infty$, the solutions to (1) approach those of (3). Looking at (3), we see that the derivative of each component has the common factor $N - \sum_{j=1}^{J} \mathbf{X}_{j}$. Therefore, the solution curve to (3) starting at $\mathbf{X} = \mathbf{0}$ has the same shape as that of

$$\frac{d\mathbf{X}_i}{dt} = (A_i + B_i \mathbf{X}_i). \tag{6}$$

for $\sum_{j=1}^{J} \mathbf{X}_{j} < N$. Using separation by parts, the solution to (6) with initial condition $\mathbf{X} = \mathbf{0}$ is

$$\mathbf{X}_{i}(t) = \frac{A_{i}}{B_{i}} \left(e^{B_{i}t} - 1 \right) \tag{7}$$

Denote the component of $\mathbf{X}_i(t)$ with the largest value of B_i as component b. We next note that if $B_i > B_j$, the limit of the ratio between any two components $\mathbf{X}_i(t)$ and $\mathbf{X}_i(t)$ as $t \to \infty$ is

$$\lim_{t \to \infty} \frac{\frac{A_i}{B_i} \left(e^{B_i t} - 1 \right)}{\frac{A_j}{B_j} \left(e^{B_j t} - 1 \right)} = \infty \tag{8}$$

Therefore, the ratio between $\mathbf{X}_b(t)$ and any other component of $\mathbf{X}(t)$ must approach ∞ as $t \to \infty$. As $N \to \infty$, the time for which $\sum_{j=1}^{J} \mathbf{X}_j < N$ also approaches ∞ . As (3) and (6) have solutions which follow the same curve while $\sum_{j=1}^{J} \mathbf{X}_j < N$, this means that the same conclusion about ratios of components holds for solutions to (3) as $N \to \infty$ and $t \to \infty$.

Thus, as solutions with the initial condition $\mathbf{X} = \mathbf{0}$ to (1) approach those of (3) which in turn approach those of (6) as $N \to \infty$, the ratio of \mathbf{X}_b in solutions to (1) to any other component must approach ∞ as $N \to \infty$ and $t \to \infty$.

Corollary 1. There exist values of N for which the component \mathbf{X}_b , which is defined as in the above proof, of the solution to (1) with initial condition $\mathbf{X} = \mathbf{0}$ is larger than any other component as $t \to \infty$.

Proof. Assume for contradiction that there were no values of N for which the corollary held true. Then, there would not exist a value of N for which $\mathbf{X}_b > \mathbf{X}_i$ for $i \neq b$ as $t \to \infty$. Therefore, the ratio between \mathbf{X}_b and any other component could not approach ∞ as $N \to \infty$ and $t \to \infty$ because there would be no values of N for which \mathbf{X}_b were greater than any other component. This contradicts the above proof. Thus, the corollary holds true.