Problem

E = "Ignore the input.

- **1.** Repeat the following for $i = 1, 2, 3, \ldots$
- 2. RunM on s_i.
- 3. If it accepts, print out si."

THEOREM 3.21

A language is Turing-recognizable if and only if some enumerator enumerates it.

Step-by-step solution

Step 1 of 1

Theorem: - A language is Turing – recognizable if and only if some enumerator enumerates it.

The given simpler algorithm for the forward direction of the proof of this theorem is

Say that S_1, S_2 is a list of all strings in Σ^*

If Turing Machine M recognizes a language L, then we can construct following enumerator E for L.

The Enumerator E works as follows:

E = "Ignore the input

- 1. Repeat the following for i=1,2,3,...
- 2. Run M on S_i;
- 3. If it accepts, print out S_{i} "

Defects in this proof:

In stage 2 of this algorithm (Run M on S_i)

If M loops on a certain input S_i runs forever, E could not check any input after S_i .

If it occurs, then E might fail to enumerate its language L as required.

Thus this procedure does not give the effect of running M in parallel on all possible input strings.

So, this proof is not suited for forward direction of above theorem.

Comment