EEC 130A: Homework 3

Due: 3:30 pm, Jan. 29, 2013

1. (4 points) (FAE P2.20) A 300- Ω lossless air transmission line is connected to a complex load composed of a resistor in series with an inductor, as shown in Fig. 1. At 5 MHz, determine: (a) Γ , (b) S, (c) location of voltage maximum nearest to the load, and (d) location of current maximum nearest to the load.

Figure 1: Circuit for Problem 1.

- 2. (4 points) (FAE P2.30) Show that at the position where the magnitude of the voltage on the line is a maximum, the input impedance is purely real.
- 3. (4 points) (FAE P2.33) Two half-wave dipole antennas, each with an impedance of 75 Ω , are connected in parallel through a pair of transmission lines, and the combination is connected to a feed transmission line, as shown in Fig. 2. All lines are 50 Ω and lossless.
- (a) Calculate Z_{in1} , the input impedance of the antenna-terminated line, at the parallel juncture.
- (b) Combine Z_{in1} and Z_{in2} in parallel to obtain Z'_L , the effective load impedance of the feedline.
- (c) Calculate Z_{in} of the feedline.
- 4. (4 points) (FAE P2.50) Use the Smith chart to determine the input impedance Z_{in} of the two-line configuration shown in Fig. 3.
- 5. (4 points) (FAE P2.53) A lossless 50- Ω transmission line is terminated in a load with $Z_L = (50 + j25) \Omega$. Use the Smith chart to find the following:

Figure 2: Circuit for Problem 3.

Figure 3: Circuit for Problem 4.

- (a) The reflection coefficient Γ .
- (b) The standing-wave ratio.
- (c) The input impedance at 0.35λ from the load.
- (d) The input admittance at 0.35λ from the load.
- (e) The shortest line length for which the input impedance is purely resistive.
- (f) The position of the first voltage maximum from the load.