

 ρ varia de 0 a cos ϕ , enquanto $\phi e \theta$ são constantes.

 ϕ varia de 0 a $\pi/4$, enquanto θ é constante.

 θ varia de 0 a 2π .

FIGURA 11

15.9

Exercícios

1-2 Marque o ponto cujas coordenadas esféricas são dadas. A seguir, encontre as coordenadas retangulares do ponto.

- (a) $(6, \pi/3, \pi/6)$
- (b) $(3, \pi/2, 3\pi/4)$
- **2.** (a) $(2, \pi/2, \pi/2)$
- (b) $(4, -\pi/4, \pi/3)$

3-4 Mude de coordenadas retangulares para esféricas.

- 3. (a) (0, -2, 0)
- (b) $(-1, 1, -\sqrt{2})$
- **4.** (a) $(1, 0, \sqrt{3})$
- (b) $(\sqrt{3}, -1, 2\sqrt{3})$

5-6 Descreva com palavras a superfície cuja equação é dada.

- $\phi = \pi/3$
- **6.** $\rho = 3$

7-8 Identifique a superfície cuja equação é dada.

- 7. $\rho = \operatorname{sen} \theta \operatorname{sen} \phi$
- **8.** $\rho^2 (\sin^2 \phi \ \sin^2 \theta + \cos^2 \phi) = 9$

9-10 Escreva a equação em coordenadas esféricas.

- 9. (a) $z^2 = x^2 + y^2$
- (b) $x^2 + z^2 = 9$
- **10.** (a) $x^2 2x + y^2 + z^2 = 0$ (b) x + 2y + 3z = 1

11–14 Esboce o sólido descrito pelas desigualdades dadas.

- **11.** $2 \le \rho \le 4$, $0 \le \phi \le \pi/3$, $0 \le \theta \le \pi$
- **12.** $1 \le \rho \le 2$, $0 \le \phi \le \pi/2$, $\pi/2 \le \theta \le 3\pi/2$
- **13.** $\rho \le 1$, $3\pi/4 \le \phi \le \pi$
- **14.** $\rho \le 2$, $\rho \le \operatorname{cossec} \phi$

15. Um sólido está cima do cone $z = \sqrt{x^2 + y^2}$ e abaixo da esfera $x^2 + y^2 + z^2 = z$. Escreva uma descrição do sólido em termos de desigualdades envolvendo coordenadas esféricas.

16. (a) Determine desigualdades que descrevem uma bola oca com diâmetro de 30 cm e espessura de 0,5 cm. Explique como você posicionou o sistema de coordenadas.

(b) Suponha que a bola seja cortada pela metade. Escreva desigualdades que descrevam uma das metades.

17-18 Esboce o sólido cujo volume é dado pela integral e calcule-a.

- 17. $\int_0^{\pi/6} \int_0^{\pi/2} \int_0^3 \rho^2 \sin \phi \ d\rho \ d\theta \ d\phi$
- **18.** $\int_0^{2\pi} \int_{-\sqrt{2}}^{\pi} \int_1^2 \rho^2 \sin \phi \ d\rho \ d\phi \ d\theta$

19–20 Escreva a integral tripla de uma função contínua arbitrária f(x)y, z) em coordenadas cilíndricas ou esféricas sobre o sólido mostrado.

21–34 Utilize coordenadas esféricas.

21. Calcule $\iiint_B (x^2 + y^2 + z^2)^2 dV$, onde B é a bola com centro na origem e raio 5.

22. Calcule $\iiint_H (9 - x^2 - y^2) dV$, onde H é o hemisfério sólido $x^2 + y^2 + z^2 \le 9, z \ge 0.$

23. Calcule $\iiint_E (x^2 + y^2) dV$, onde E está entre as esferas $x^2 + y^2 + z^2 = 4 e x^2 + y^2 + z^2 = 9.$

24. Calcule $\iiint_E y^2 dV$, onde E é o hemisfério sólido $x^2 + y^2 + z^2 \le 9, z \ge 0.$

25. Calcule $\iiint_E xe^{x^2+y^2+z^2} dV$, onde E é a porção da bola unitária $x^2 + y^2 + z^2 \le 1$ que fica no primeiro octante.

26. Calcule $\iiint_E xyz \, dV$, onde E fica entre as esferas $\rho = 2$ e $\rho = 4$ e acima do cone $\phi = \pi/3$.

27. Encontre o volume da parte da bola $\rho \le a$ a que está entre os cones $\phi = \pi/6$ e $\phi = \pi/3$.

28. Encontre a distância média de um ponto em uma bola de raio *a* a seu centro.

- **29.** (a) Determine o volume do sólido que está acima do cone $\phi = \pi/3$ e abaixo da esfera $\rho = 4\cos\phi$.
 - (b) Encontre o centroide do sólido na parte (a).
- **30.** Determine o volume do sólido que está dentro da esfera $x^2 + y^2 + z^2 = 4$, acima do plano xy e abaixo do cone $z = \sqrt{x^2 + y^2}$.
- **31.** (a) Encontre o centroide do sólido no Exemplo 4.
 - (b) Encontre o momento de inércia em torno do eixo *z* para este sólido
- **32.** Seja *H* um hemisfério sólido de raio *a* cuja densidade em qualquer ponto é proporcional à distância ao centro da base.
 - (a) Determine a massa de H.
 - (b) Determine o centro de massa de H.
 - (c) Determine o momento de inércia de *H* em relação a seu eixo.
- **33.** (a) Determine o centroide do hemisfério sólido homogêneo de raio *a*.
 - (b) Determine o momento de inércia do sólido da parte (a) em relação a um diâmetro de sua base.
- **34.** Determine a massa e o centro de massa do hemisfério sólido de raio *a* se a densidade em qualquer ponto for proporcional à sua distância da base.
- **35–38** Dentre as coordenadas cilíndricas ou esféricas, utilize a que lhe parecer mais apropriada.
- **35.** Determine o volume e o centroide do sólido *E* que está acima do cone $z = \sqrt{x^2 + y^2}$ e abaixo da esfera $x^2 + y^2 + z^2 = 1$.
- **36.** Determine o volume da menor cunha esférica cortada de uma esfera de raio a por dois planos que se interceptam ao longo de um diâmetro com um ângulo de $\pi/6$.
- **37.** Calcule $\iiint_E z \, dV$, onde E está acima do paraboloide $z = x^2 + y^2$ e abaixo do plano z = 2y. Utilize a Tabela de Integrais (veja as Páginas de Referência 6–11) ou um sistema de computação algébrica para calcular a integral.
- **38.** (a) Determine o volume limitado pelo toro $\rho = \sec \phi$. (b) Utilize um computador para desenhar o toro.
 - 39-41 Calcule a integral, transformando para coordenadas esféricas.

39.
$$\int_0^1 \int_0^{\sqrt{1-x^2}} \int_{\sqrt{x^2+y^2}}^{\sqrt{2-x^2-y^2}} xy \, dz \, dy \, dx$$

40.
$$\int_{-a}^{a} \int_{-\sqrt{a^2-y^2}}^{\sqrt{a^2-y^2}} \int_{-\sqrt{a^2-x^2-y^2}}^{\sqrt{a^2-x^2-y^2}} (x^2z + y^2z + z^3) dz dx dy dx$$

41.
$$\int_{-2}^{2} \int_{-\sqrt{4^2 - x^2}}^{\sqrt{4^2 - x^2}} \int_{-\sqrt{4^2 - x^2 - y^2}}^{\sqrt{4^2 - x^2 - y^2}} (x^2 + y^2 + z^2)^{3/2} dz dx dy$$

42. Um modelo para a densidade δ da atmosfera terrestre próxima à superfície é

$$\delta = 619,09 - 0,000097\rho$$

onde ρ (a distância do centro da Terra) é medido em metros e δ é medido em quilogramas por metro cúbico. Se tomarmos a superfície da Terra como uma esfera com raio de 6 370 km, então, este modelo é razoável para 6 370 \times 10⁶ $\leq \rho \leq$ 6 375 \times 10⁶. Use este modelo para estimar a massa da atmosfera entre o solo e uma altitude de 5 km.

- 43. Use uma ferramenta gráfica para desenhar um silo que consista em um cilindro de raio 3 e altura 10 com um hemisfério no topo.
 - **44.** A latitude e a longitude de um ponto P no hemisfério norte estão relacionadas com as coordenadas esféricas ρ , θ , ϕ como a seguir. Tomamos a origem como o centro da Terra e o eixo z passando pelo polo norte. O eixo x positivo passa pelo ponto onde o meridiano principal (o meridiano por Greenwich, na Inglaterra) intercepta o equador. Então a latitude de P é $\alpha = 90^{\circ} \phi^{\circ}$ e a longitude é $\beta = 360^{\circ} \theta^{\circ}$. Encontre a distância sobre um círculo máximo de Los Angeles (lat. 34,06° N, long. 118,25° W) a Montreal (lat. 45,50° N, long. 73,60° W). Tome o raio da Terra como 6 370 km. (Um *círculo máximo* é o círculo de intersecção de uma esfera com um plano que passe pelo centro da esfera.)
- **45.** As superfícies $\rho = 1 + \frac{1}{5}$ sen $m\theta$ sen $n\phi$ têm sido usadas para modelar tumores. A "esfera rugosa" com m = 6 e n = 5 está mostrada. Utilize um sistema de computação algébrica para determinar seu volume.

46. Mostre que

$$\int_{-\pi}^{\infty} \int_{-\pi}^{\infty} \int_{-\pi}^{\infty} \sqrt{x^2 + y^2 + z^2} e^{-(x^2 + y^2 + z^2)} dx dy dz = 2\pi$$

(A integral imprópria tripla é definida como o limite da integral tripla sobre uma esfera sólida quando o raio da esfera aumenta indefinidamente.)

47. (a) Utilize coordenadas cilíndricas para mostrar que o volume do sólido limitado por cima pela esfera $r^2 + z^2 = a^2$ e por baixo pelo cone $z = r \cot \phi_0$ (ou $\phi = \phi_0$), onde $0 < \phi_0 < \pi/2$, é

$$V = \frac{2\pi a^3}{3} \left(1 - \cos\phi_0\right)$$

(b) Deduza que o volume da cunha esférica dada por $\rho_1 \le \rho \le \rho_2, \ \theta_1 \le \theta \le \theta_2, \ \phi_1 \le \phi \le \phi_2$ é

$$\Delta V = \frac{\rho_2^3 - \rho_1^3}{3} (\cos \phi_1 - \cos \phi_2)(\theta_2 - \theta_1)$$

(c) Utilize o Teorema do Valor Médio para mostrar que o volume da parte (b) pode ser escrito como

$$\Delta V = \tilde{\rho}^2 \operatorname{sen} \tilde{\phi} \Delta \rho \Delta \theta \Delta \phi$$

onde $\tilde{\rho}$ está entre ρ_1 e ρ_2 , $\tilde{\phi}$ está entre ϕ_1 e ϕ_2 , $\Delta \rho = \rho_2 - \rho_1$, $\Delta \theta = \theta_2 - \theta_1$ e $\Delta \phi = \phi_2 - \phi_1$.

- **33.** $\int_0^1 \int_{\sqrt{x}}^1 \int_0^{1-y} f(x, y, z) dz dy dx$ $= \int_0^1 \int_0^{y^2} \int_0^{1-y} f(x, y, z) dz dx dy$ $=\int_{0}^{1}\int_{0}^{1-z}\int_{0}^{y^{2}}f(x, y, z) dx dy dz$ $= \int_0^1 \int_0^{1-y} \int_0^{y^2} f(x, y, z) \, dx \, dz \, dy$ $= \int_0^1 \int_0^{1-\sqrt{x}} \int_{\sqrt{x}}^{1-z} f(x, y, z) \, dy \, dz \, dx$ $= \int_0^1 \int_0^{(1-z)^2} \int_{\sqrt{x}}^{1-z} f(x, y, z) \, dy \, dx \, dz$
- **35.** $\int_0^1 \int_y^1 \int_0^y f(x, y, z) dz dx dy = \int_0^1 \int_0^x \int_0^y f(x, y, z) dz dy dx$ $= \int_0^1 \int_z^1 \int_y^1 f(x, y, z) \, dx \, dy \, dz = \int_0^1 \int_y^y \int_y^1 f(x, y, z) \, dx \, dz \, dy$ $= \int_0^1 \int_0^x \int_z^x f(x, y, z) \, dy \, dz \, dx = \int_0^1 \int_z^1 \int_z^x f(x, y, z) \, dy \, dx \, dz$
- **39.** $\frac{79}{30}$, $\left(\frac{358}{553}, \frac{33}{79}, \frac{571}{553}\right)$ **37.** 64π
- **41**. *a*⁵, (7*a*/12, 7*a*/12, 7*a*/12)
- **43.** $I_x = I_y = I_z = \frac{2}{3} kL^5$ **45.** $\frac{1}{2} \pi kha^4$
- **47.** (a) $m = \int_{-1}^{1} \int_{x^2}^{1} \int_{0}^{1-y} \sqrt{x^2 + y^2} \, dz \, dy \, dx$ (b) $(\overline{x}, \overline{y}, \overline{z})$, onde $\overline{x} = (1/m) \int_{-1}^{1} \int_{x^2}^{1} \int_{0}^{1-y} x \, \sqrt{x^2 + y^2} \, dz \, dy \, dx$ $\overline{y} = (1/m) \int_{-1}^{1} \int_{x^2}^{1} \int_{0}^{1-y} y \sqrt{x^2 + y^2} dz dy dx$ $\overline{z} = (1/m) \int_{-1}^{1} \int_{x^2}^{1} \int_{0}^{1-y} z \sqrt{x^2 + y^2} \, dz \, dy \, dx$
- (c) $\int_{-1}^{1} \int_{x^2}^{1} \int_{0}^{1-y} (x^2 + y^2)^{3/2} dz dy dx$
- **49.** (a) $\frac{3}{32} \pi + \frac{11}{24}$ (b) $\left(\frac{28}{9\pi + 44}, \frac{30\pi + 128}{45\pi + 220}, \frac{45\pi + 208}{135\pi + 660}\right)$
- (c) $\frac{1}{240}$ (68 + 15 π)
- **51.** (a) $\frac{1}{8}$ (b) $\frac{1}{64}$ (c) $\frac{1}{5760}$ **53.** $L^3/8$
- **55.** (a) A região ligada pelo elipsoide $x^2 + 2y^2 + 3z^2 = 1$
- (b) $4\sqrt{6}\pi/45$

EXERCÍCIOS 15.8

- $(2, 2\sqrt{3}, -2)$
- (0, -2, 1)
- 3. (a) $(\sqrt{2}, 3\pi/4, 1)$
- (b) $(4, 2\pi/3, 3)$
- **5.** Meio-plano vertical pelo eixo z
- 7. Paraboloide circular
- **9.** (a) $z^2 = 1 + r \cos \theta r^2$
- (b) $z = r^2 \cos 2\theta$

11.

13. Coordenadas cilíndricas: $6 \le r \le 7$, $0 \le \theta \le 2\pi$, $0 \le z \le 20$

15.

- 17 384π
- **19.** $\frac{8}{3}\pi + \frac{128}{15}$
- **21.** $2\pi/5$
- **23.** $\frac{4}{3}\pi(\sqrt{2}-1)$

- **25.** (a) 162π
- (b) (0, 0, 15)
- **27.** $\pi Ka^2/8$, (0, 0, 2*a*/3)
- **31.** (a) $\iiint_C h(P)g(P) dV$, onde $C \notin O$ cone
- (b) $\approx 4.4 \times 10^{18} \, \text{J}$

EXERCÍCIOS 15.9

- 3. (a) $(2, 3\pi/2, \pi/2)$
- **5.** Meio-cone
- (b) $(2, 3\pi/4, 3\pi/4)$ 7. Esfera, raio $\frac{1}{2}$, centro $(0, \frac{1}{2}, 0)$
- **9.** (a) $\cos^2 \phi = \sin^2 \phi$
- (b) $\rho^2(\sin^2\phi\cos^2\theta + \cos^2\phi) = 9$

13.

- **15.** $0 \le \phi \le \pi/4, 0 \le \rho \le \cos \phi$
- 17.

 $(9\pi/4)(2-\sqrt{3})$

19. $\int_0^{\pi/2} \int_0^3 \int_0^2 f(r\cos\theta, r\sin\theta, z) \, r \, dz \, dr \, d\theta$

21. $312.500\pi/7$

23. $1.688\pi/15$ **25.** $\pi/8$

27. $(\sqrt{3}-1)\pi a^3/3$

29. (a) 10π

- (b) (0, 0, 2, 1)
- **31.** (a) $(0, 0, \frac{7}{12})$
- (b) $11K\pi/960$
- **33.** (a) $(0, 0, \frac{3}{8}a)$
- (b) $4K\pi a^5/15$
- **35.** $\frac{1}{3}\pi (2 \sqrt{2}), (0, 0, 3/[8(2 \sqrt{2})])$
- **37**. $5\pi/6$
- **39.** $(4\sqrt{2}-5)/15$

- **41.** $4096\pi/21$ **45.** $136\pi/99$

43.

EXERCÍCIOS 15.10

1. 16 **3.**
$$\sin^2\theta - \cos^2\theta$$
 5. 0

7. O paralelogramo com vértices
$$(0, 0)$$
, $(6, 3)$, $(12, 1)$, $(6, -2)$

9. A região ligada pela reta
$$y = 1$$
, o eixo y e por $y = \sqrt{x}$

11.
$$x = \frac{1}{3}(v - u), y = \frac{1}{3}(u + 2v)$$
 é uma transformação possível, onde $S = \{(u, v) \mid -1 \le u \le 1, 1 \le v \le 3\}$

13.
$$x = u \cos v$$
, $y = u \sin v$ é uma transformação possível, onde $S = \{(u, v) \mid 1 \le u \le \sqrt{2}, 0 \le v \le \pi/2\}$

15.
$$-3$$
 17. 6π **19.** $2 \ln 3$

21. (a)
$$\frac{4}{3}\pi abc$$
 (b) $1.083 \times 10^{12} \text{ km}^3$ (c) $\frac{4}{15}\pi (a^2 + b^2)abck$

23.
$$\frac{8}{5} \ln 8$$
 25. $\frac{3}{2} \operatorname{sen} 1$ **27.** $e - e^{-1}$

CAPÍTULO 15 REVISÃO

Teste Verdadeiro-Falso

1. Verdadeiro 3. Verdadeiro 5. Verdadeiro 7. Verdadeiro 9. Falso

Exercícios

1.
$$\approx 64.0$$

3.
$$4e^2 - 4e + 3$$
 5. $\frac{1}{2}$ sen 1

9.
$$\int_0^{\pi} \int_2^4 f(r\cos\theta, r\sin\theta) \, r \, dr \, d\theta$$

11. A região dentro do circuito da rosa de quatro folhas $r = \sin 2\theta$ no primeiro quadrante

13.
$$\frac{1}{2}$$
 sen 1

15.
$$\frac{1}{2}e^6$$
 –

17.
$$\frac{1}{4}$$
 l:

13.
$$\frac{1}{2}$$
 sen 1 **15.** $\frac{1}{2}$ $e^6 - \frac{7}{2}$ **17.** $\frac{1}{4}$ ln 2 **21.** $81\pi/5$ **23.** $\frac{81}{2}$ **25.** $\pi/96$ **27.** $\frac{64}{15}$

29. 176 **31.**
$$\frac{2}{3}$$
 33. $2ma^3/9$

35. (a)
$$\frac{1}{4}$$
 (b) $\left(\frac{1}{3}, \frac{8}{15}\right)$

(c)
$$I_x = \frac{1}{12}$$
, $I_y = \frac{1}{24}$; $\overline{y} = 1/\sqrt{3}$, $\overline{x} = 1/\sqrt{6}$

(b)
$$\pi a^{-}h/10$$

37. (a)
$$(0, 0, h/4)$$
 (b) $\pi a^4 h/10$
39. $\ln(\sqrt{2} + \sqrt{3}) + \sqrt{2}/3$ **41.** $\frac{486}{5}$
45. (a) $\frac{1}{15}$ (b) $\frac{1}{3}$ (c) $\frac{1}{45}$

39. In(
$$\sqrt{2} + \sqrt{3}$$
) + $\sqrt{2}/3$

47
$$\int_{-1}^{1} \int_{-1}^{1-z} \int_{-1}^{\sqrt{y}} f(x, y, z) dx dy dz$$

47.
$$\int_0^1 \int_0^{1-z} \int_{-\sqrt{y}}^{\sqrt{y}} f(x, y, z) dx dy dz$$

43. 0,0512

PROBLEMAS QUENTES

1. 30 **3.**
$$\frac{1}{2}$$
 sen 1

1. 30 **3.**
$$\frac{1}{2}$$
 sen 1 **7.** (b) 0,90

13.
$$abc\pi \left(\frac{2}{3} - \frac{8}{9\sqrt{3}} \right)$$

CAPÍTULO 16

EXERCÍCIOS 16.1

3.

5.

7.

11. IV

13. I

15. IV 17. III

19. A reta y = 2x

21. $\nabla f(x, y) = (xy + 1) e^{xy} \mathbf{i} + x^2 e^{xy} \mathbf{j}$

23.
$$\nabla f(x, y, z) = \frac{x}{\sqrt{x^2 + y^2 + z^2}} \mathbf{i} + \frac{y}{\sqrt{x^2 + y^2 + z^2}} \mathbf{j} + \frac{z}{\sqrt{x^2 + y^2 + z^2}} \mathbf{k}$$

25. $\nabla f(x, y) = 2x \mathbf{i} - \mathbf{j}$

27.

29. III

31. II

33. (2,04, 1,03)