Natural Textures

grass

What/where are the textures? How to describe the textures?

Some Simple Statistical Texture Measures

1. Edge Density and Direction

- Use an edge detector as the first step in texture analysis.
- The number of edge pixels in a fixed-size region tells us how busy that region is.
- The directions of the edges also help characterize the texture

Two Edge-based Texture Measures

1. edgeness per unit area

$$F_{edgeness} = |\{ p \mid gradient_magnitude(p) \ge threshold\}| / N$$

where N is the size of the unit area

2. edge magnitude and direction histograms

```
Fmagdir = ( Hmagnitude, Hdirection )
```

where these are the normalized histograms of gradient magnitudes and gradient directions, respectively.

Local Binary Pattern Measure

- For each pixel p, create an 8-bit number b₁ b₂ b₃ b₄ b₅ b₆ b₇ b₈, where b_i = 0 if neighbor i has value less than or equal to p's value and 1 otherwise.
- Represent the texture in the image (or a region) by the histogram of these numbers.

Local Binary Pattern (LBP)

$$LBP_{p,r}(N_c) = \sum_{p=0}^{P-1} g(N_p - N_c)2^p$$

 N_c : center pixel

 N_p : neighbor pixel

r: radius (for 3x3 cell, it is 1).

binary threshold function g(x) is,

$$g(x) = \begin{cases} 0, & x < 0 \\ 1, & x \ge 0 \end{cases}$$

Co-occurrence Matrix Features

A co-occurrence matrix is a 2D array C in which

- Both the rows and columns represent a set of possible image values.
- $C_d(i,j)$ indicates how many times value i co-occurs with value j in a particular spatial relationship d.
- The spatial relationship is specified by a vector $\mathbf{d} = (\mathbf{dr}, \mathbf{dc})$.

Co-occurrence Example

$$d = (3,1)$$

co-occurrence matrix

gray-tone image

From C_d we can compute N_d , the normalized co-occurrence matrix, where each value is divided by the sum of all the values.

But how do you choose d?

- This is actually a critical question with **all** the statistical texture methods.
- Are the "texels" tiny, medium, large, all three ...?
- Not really a solved problem.