## **GAC Example**

#### Consider the following CSP:

$$\begin{aligned} Dom[X] &= \{1,2,3,4\} \\ Dom[Z] &= \{1,2,3,4\} \\ C_1(X,Y,Z) : X &= Y + Z \\ C_2(X,W) : W &> X \\ C_3(X,Y,Z,W) : W &= X + Z + Y \end{aligned}$$

Enforce GAC on these constraints, and give the resultant GAC consistent variable domains.

GAC queue



$$CurDom[X] = \{1, 2, 3, 4\}$$
  
 $CurDom[Z] = \{1, 2, 3, 4\}$ 

$$C_1(X, Y, Z) : X = Y + Z$$
  
 $C_2(X, W) : W > X$   
 $C_3(X, Y, Z, W) : W = X + Z + Y$ 

Processing C<sub>3</sub>:

Yel-(Y=1, Z=1, W=3)  

$$X = 2 - (Y=1, Z=1, W=4)$$
  
 $X = 3 - (Y=1, Z=1, W=5)$   
 $X = 4 - No support$ 

$$CurDom[Y] = \{1, 2, 3, 4\}$$
  
 $CurDom[W] = \{1, 2, 3, 4, 5\}$ 



$$CurDom[X] = \{1, 2, 3\}$$

$$CurDom[Z] = \{1,2,3\}$$

$$C_1(X, Y, Z) : X = Y + Z$$
  
 $C_2(X, W) : W > X$   
 $C_3(X, Y, Z, W) : W = X + Z + Y$ 



### • Processing $C_2$ :

$$X = 1 - (W = 3)$$

$$X = 3 - (W = 4)$$

$$W=3$$
 - Same Support as  $X=1$   
 $W=4-1/1 X=3$   
 $W=5-(X=1)$ 

$$CurDom[X] = \{1,2,3\}$$
  $C_3$  and  $CurDom[Y] = \{1,2,3\}$   $CurDom[Z] = \{1,2,3\}$   $CurDom[W] = \{3,4,5\}$   $C_1(X,Y,Z): X = Y + Z$   $C_2(X,W): W > X$   $C_3(X,Y,Z,W): W = X + Z + Y$ 

Processing C<sub>1</sub>:

Processing 
$$C_1$$
:

 $X = 1 - No \text{ Support}$ 
 $X = 2 - (Y = 1, Z = 1)$ 
 $X = 3 - (Y = 1, Z = 2)$ 
 $X = 3 - (Y = 1, Z = 2)$ 
 $X = 3 - No \text{ Support}$ 

$$Z=1$$
 - Same support as  $X=2$   
 $Z=2$  -  $N$   $N$   $N$   $X=3$   
 $Z=3$  -  $N$  o Support

$$\begin{aligned} CurDom[X] &= \{2,3\} \\ CurDom[Z] &= \{1,2\} \end{aligned} \qquad \begin{aligned} CurDom[Y] &= \{1,2\} \\ CurDom[W] &= \{2,4,5\} \end{aligned}$$

$$C_1(X, Y, Z) : X = Y + Z$$
  
 $C_2(X, W) : W > X$   
 $C_3(X, Y, Z, W) : W = X + Z + Y$ 



• Processing  $C_3$ :

$$X=2-(Y=1,Z=1,W=4)$$
  
 $X=3-(Y=1,Z=1,W=5)$   
 $Y=1-Same$  Support as  $X=2$   
 $Y=2-(X=2,Z=1,W=5)$ 

$$Z=1$$
 - Same support as  $X=2$   
 $Z=2-(X=2, Y=1, W=5)$ 

$$CurDom[X] = \{2, 3\}$$
$$CurDom[Z] = \{1, 2\}$$

$$C_1(X, Y, Z) : X = Y + Z$$

$$C_2(X, W) : W > X$$

 $C_3(X, Y, Z, W) : W = X + Z + Y$ 

$$CurDom[Y] = \{1, 2\}$$
$$CurDom[W] = \{4, 5\}$$



### • Processing $C_2$ :

$$X = 3 - (W = 4)$$

$$CurDom[X] = \{2, 3\}$$
$$CurDom[Z] = \{1, 2\}$$

$$CurDom[Y] = \{1, 2\}$$
  
 $CurDom[W] = \{4, 5\}$ 

$$C_1(X, Y, Z) : X = Y + Z$$
  
 $C_2(X, W) : W > X$   
 $C_3(X, Y, Z, W) : W = X + Z + Y$ 

#### • Branch on X:

$$X = 2$$

GAC On 
$$C_1 \Rightarrow Dom[Y] = \{1\}$$
,  $Dom[Z] = \{1\}$   
GAC On  $C_2 \Rightarrow No$  changes  
GAC On  $C_3 \Rightarrow Dom[W] = \{4\} \Rightarrow must put C2 on queue CAC on  $C_2 \Rightarrow No$  changes.$ 

$$CurDom[X] = \{2, 3\}$$
  
 $CurDom[Z] = \{1, 2\}$ 

$$CurDom[Y] = \{1, 2\}$$
  
 $CurDom[W] = \{4, 5\}$ 

$$C_1(X, Y, Z) : X = Y + Z$$
  
 $C_2(X, W) : W > X$   
 $C_3(X, Y, Z, W) : W = X + Z + Y$ 

C2 4 4 4

• Branch on X:

$$X = 3$$

GAC On 
$$C_1 \Rightarrow No$$
 changes

GAC ON  $C_2 \Rightarrow N$ 

GAC ON  $C_3 \Rightarrow Dom[Y] = \{1\}$ 
 $C_1$  on queue

 $C_1$  on queue

 $C_1 = \{1\}$ 
 $C_2 = \{1\}$ 
 $C_3 = \{1\}$ 
 $C_4 = \{1\}$ 
 $C_5 = \{1\}$ 
 $C$ 

GAC on C1 => Dom[Y]= } ] Dwo!

Note: No Solution for X=3, but GAC enforce didn't prime it.

## **GAC Example**

C1(V1,V2,V3)

| V1 | V2 | V3 |
|----|----|----|
| Α  | В  | С  |
| В  | Α  | С  |
| Α  | Α  | В  |

C2(V1,V3,V4,V5)

| V1 | V3 | V4 | V5 |
|----|----|----|----|
| Α  | Α  | Α  | Α  |
| Α  | В  | С  | В  |
| В  | С  | В  | В  |
| С  | Α  | В  | С  |
| С  | В  | Α  | В  |

| V2 | V3 | V5 |
|----|----|----|
| Α  | Α  | Α  |
| Α  | В  | С  |
| В  | С  | В  |
| С  | Α  | В  |
| С  | В  | Α  |

$$CurDom[V_1] = CurDom[V_2] = \dots = CurDom[V_5] = \{A, B, C\}$$



C1(V1,V2,V3)

| V1 | V2 | V3 |
|----|----|----|
| Α  | В  | С  |
| В  | Α  | С  |
| Α  | Α  | В  |

C2(V1, V3, V4, V5)

| V1 | V3 | V4 | V5 |
|----|----|----|----|
| A  | A  | A  | A  |
| Α  | В  | С  | В  |
| В  | С  | В  | В  |
| c  | A  | В  | c  |
| e- | В  | A  | В  |

| V2           | V3 | V5              |
|--------------|----|-----------------|
| A            | A  | <del>-</del> A- |
| Α            | В  | С               |
| В            | С  | В               |
| <del>e</del> | A  | B-              |
| С            | В  | Α               |

$$CurDom[V_1] = \{A, B, \emptyset\}$$
  $CurDom[V_2] = \{A, B, \emptyset\}$ 

$$CurDom[V_1] = \{A, B, \emptyset\}$$
  $CurDom[V_2] = \{A, B, \emptyset\}$   
 $CurDom[V_3] = \{A, B, C\}$   $CurDom[V_4] = \{A, B, C\}$ 

$$CurDom[V_5] = \{A, B, C\}$$

$$V_2 = C - N N$$

$$V_3 = A - N N$$

| C1 | (V1 | ,V2, | (V3) |  |
|----|-----|------|------|--|
|    |     |      |      |  |

| V1 | V2 | V3 |
|----|----|----|
| Α  | В  | С  |
| В  | Α  | С  |
| Α  | Α  | В  |

| C2(\ | <b>/1,</b> \ | /3,V | 4,\ | (5) |
|------|--------------|------|-----|-----|
|------|--------------|------|-----|-----|

| V1 | V3 | V4 | V5 |
|----|----|----|----|
| Α  | Α  | А  | А  |
| Α  | В  | С  | В  |
| В  | С  | В  | В  |
| С  | Α  | В  | С  |
| С  | В  | А  | В  |



$$CurDom[V_1] = \{A, B\}$$
  $CurDom[V_2] = \{A, B\}$ 

$$CurDom[V_2] = \{A, B\}$$

$$CurDom[V_3] = \{B, C\}$$

$$urDom[V_4] = \{A, B, C\}$$

# Plocessing Cz:

$$CurDom[V_3] = \{B, C\}$$
  $CurDom[V_4] = \{A, B, C\}$   $CurDom[V_5] = \{A, B, C\}$ 

C1(V1, V2, V3)

| V1 | V2 | V3 |
|----|----|----|
| Α  | В  | С  |
| B  | A~ | -  |
| A  | A  | В  |

C2(V1,V3,V4,V5)

| V1 | V3 | V4 | V5 |
|----|----|----|----|
| Α  | А  | Α  | Α  |
| Α  | В  | С  | В  |
| В  | С  | В  | В  |
| С  | Α  | В  | С  |
| С  | В  | Α  | В  |
|    |    |    |    |

C3(V2,V3,V5)

| V2 | V3 | V5 |
|----|----|----|
| Α  | А  | А  |
| Α  | В  | С  |
| В  | С  | В  |
| С  | А  | В  |
| С  | В  | Α  |

$$CurDom[V_1] = \{A, B\}$$
  
 $CurDom[V_3] = \{F, C\}$ 

$$CurDom[V_1] = \{A, B\}$$
  $CurDom[V_2] = \{A, B\}$   
 $CurDom[V_3] = \{B, C\}$   $CurDom[V_4] = \{B, C\}$ 

$$CurDom[V_5] = \{B\}$$

# Processing C3:

$$V_2 = A - No$$
 Support  $V_3 = B - "$ "



| C1/ | \/1 | 1/2   | ,V3)    |
|-----|-----|-------|---------|
| CTI | V T | , v Z | , v ၁ j |

| V1 | V2 | V3 |
|----|----|----|
| Α  | В  | С  |
| В  | А  | С  |
| А  | А  | В  |

| C2(V1,V3,V4,V | 5 |
|---------------|---|
|---------------|---|

| V1 | V3       | V4 | V5 |
|----|----------|----|----|
| Α  | Α        | Α  | Α  |
| Α  | В        | С  | В  |
| В  | <u>~</u> | B  | В  |
| С  | Α        | В  | С  |
| С  | В        | Α  | В  |

| V2 | V3 | V5 |
|----|----|----|
| Α  | Α  | Α  |
| Α  | В  | С  |
| В  | С  | В  |
| С  | Α  | В  |
| С  | В  | Α  |

$$CurDom[V_1] = \{A, B\}$$
  
 $CurDom[V_3] = \{C\}$ 

$$CurDom[V_2] = \{B\}$$
$$CurDom[V_4] = \{B, C\}$$

$$CurDom[V_5] = \{B\}$$



| <b>■</b> C1(V1,V2,V3) |    |    |  |
|-----------------------|----|----|--|
| V1                    | V2 | V3 |  |
| Α                     | В  | С  |  |
| В                     | А  | С  |  |
|                       |    |    |  |

| <b>■</b> C2(V1,V3,V4,V5) |    |    |    |
|--------------------------|----|----|----|
| V1                       | V3 | V4 | V5 |
| Α                        | А  | А  | Α  |
| Α                        | В  | С  | В  |
| В                        | С  | В  | В  |
| _                        | Λ  | R  | c  |

| •C2(V2,V3,V5) |    |    |  |
|---------------|----|----|--|
| V2            | V3 | V5 |  |
| Α             | А  | А  |  |
| Α             | В  | С  |  |
| В             | С  | В  |  |
| С             | А  | В  |  |
| С             | В  | Α  |  |

$$CurDom[V_1] = \{A\}$$

$$CurDom[V_3] = \{ \emptyset \}$$

$$CurDom[V_2] = \{B\}$$
  
 $CurDom[V_4] = \{B, C\}$ 

$$CurDom[V_5] = \{B\}$$

Processing Cz:



