CALIBRATION FUNDAMENTALS FOR ACOMPETITIVE ADVANTAGE

Agenda

1. Presentation

- 2. Test Equipment
- 3. Basic Calibration Development Procedure
- 4. Fuel Calibration
- 5. Fuel System Components
- 6. Conclusion

Presentation Étienne St-Laurent

- ► ETS Formula SAE 2009-2015
 - ► Engine Calibration
 - ▶ Systems Engineering: Intake, Exhaust, Fuel, Muffler, Cam, Cooling, Transmission
 - ► Engine Block Design
- ► Bosch Motorsport MSD1/NA 2016 Present
 - ► Engine Control Software and Application
 - Cadillac ATS-V.R GT3
 - Camaro ZL1 GT4
 - ► IMSA Scrutinnering Data Acquisition
 - ► Various Customers Engine Calibration Support
 - Porsche 928 twin turbo
 - Cadillac 2001 LMP1
 - McLaren Engineering
 - Lamborghini

Agenda

- 1. Presentation
- 2. Test Equipment
- 3. Basic Calibration Development Procedure
- 4. Fuel Calibration
- 5. Fuel System Components
- 6. Conclusion

Test Equipment Test Cell

- **▶** Dynamometer:
 - ► Control engine speed
 - Steady, hold speed
 - Sweep
 - ► Measure Torque
 - ▶ Dynamic test capacity... Doesn't need to be fancy
- ► Ventilation:
 - ► Keep you and the engine alive!

Test Equipment

Your car! (and a data acquisition system)

- ► DAQ system:
 - ► Logging of essential channels
 - Lambda
 - Engine speed
 - Load (manifold pressure, throttle position or air mass flow)
 - Temperatures: coolant, oil, air
 - ▶ Data Analysis
 - Making sense of some of the squiggly lines

Agenda

- 1. Presentation
- 2. Test Equipment
- 3. Calibration Development Procedure
- 4. Fuel Calibration
- 5. Fuel System Components
- 6. Conclusion

Calibration Development Procedure Strategy

- ► Alpha-N
 - Naturally aspirated engines
 - ► Big Plenum
 - Single and twin cylinder
 - ► Better transient response
 - ► Load calculated based on throttle position

Hardware dependency:

- Engine
- Intake Manifold
- Controller

- ► P-N, Speed density
 - ▶ Turbo engines
 - ► 3-4 + Cylinder engines
 - ▶ More precise steady state load calculation
 - ► Usually preferred over Alpha-N,
 - ► Load calculated based on plenum pressure (post throttle)

Try them both! See what happens, document it!

Calibration Development Procedure Sensors/Actuators

Sensor selection criteria:

- Pressure range
- Temperature range
- Environment
- Signal Output
 - What input is available on your engine controller?
- Input voltage
- Response, for example:
 - Lambda sensor
 - Thermocouples
- Repeatability

Actuation selection criteria:

- Flow
- Power
- Size
- Input Voltage
- Price
- Availability

Calibration Development Procedure

Defining Performance Targets

Measurable engine performance target:

- Power/Torque
- Break specific fuel consumption
- Weight
- Response: Driver input -> Torque output
 - Time
 - Repeatability

Measurable vehicle performance target:

- Acceleration
- Lap time specific fuel consumption
- Weight
- Drivability (not really measurable...)

Calibration Development Procedure Stage 1

► Do not skip steps!

 Conservative Ignition Timing, Sim Based Base Fuel Map, Start Fueling

Offline Calibration

Starts

- Crank Fueling and Spark
- Post Fueling
- Idle Transition

Calibration Development Procedure

Starts

▶ 3 parts of start

- ► Start
- Post start
- Warm up

Calibration Development Procedure Stage 2

- Lambda (λ) sensor as feedback
- Match target λ
- λ control +/-2%

Base Fueling

Base Ignition

- MBT Sweeps with dyno torque meter or cylinder pressure feedback
- Observe knock limit

Calibration Development Procedure Stage 3

 End of Injection, dyno torque/cylinder pressure and fuel consumption measurement

> Injection Phasing

Cylinder Trims

- Fueling individual λ sensor / cylinder
- Ignition dyno torque or cylinder pressure

Agenda

- 1. Presentation
- 2. Test Equipment
- 3. Basic Calibration Development Procedure
- 4. Fuel Calibration
- 5. Fuel System Components
- 6. Conclusion

Fuel Calibration

Fuel Calibration The most important tool!

Lambda measurement

Sensor accuracy

Measurement delay

• Per cylinder / bank / engine

Fuel Calibration Considerations

TECALC 9.11.0, Injection Time Calculation Function Structure

- Injector Characterization
- Engine load
- Temperatures

Fuel Calibration

Injector Characterization

- Datasheets or measurement
 - Flow rate
 - Dead time
- Translation to ECU parameters

Fuel Calibration

Engine Load

• Steady state or dynamic

Dynamometer

On track

Fuel Calibration Steady State - Dyno

- Systematic calibration of every load site and engine speed site
- Feedback are lambda and torque
- ► The scaling of the axis is important:
 - Most controllers interpolate linearly between the values
 - ▶ Be careful!!!!

Fuel Calibration

Steady State – On track

- ► Making sense of the squiggly lines...
- ► Feedback is lambda
- ► At this point you know what your target lambda is.

Fuel Calibration Steady State – On track

- ► No more squiggly lines!
- ▶ Direct answer

Fuel Calibration Transients

- ► Goal
 - ► Minimize deviation between target and actual lambda under dynamic engine operating conditions
- ► Target Results
 - ► Improved driveability/torque delivery
 - Improved dynamic engine response
 - ► Reduced fuel consumption

Fuel Calibration

Transients

- ► Calibration process
 - ► Prerequisites
 - Injector Base Data
 - Disable Closed Loop Control for Lambda
 - Disable Decel Fuel Cut-Off
 - Definition of engine speed test matrix
 - Ex. 2000 7000 rpm, 500 rpm increments
 - Definition of load step-change points
 - Ex. Throttle Position based
 - 0-20-0, 0-40-0, 0-60-0, 0-80-0, 0-100-0
 - 20-60-20, 20-80-20, 20-100-20, 40-80-40, 60-100-60
 - Evaluation of positive and negative load step for each test point
 - ► Population of calibration gains/factors

Fuel Calibration

Transients

Fuel Calibration Transients

► Example – improper gains

Fuel Calibration Transients

► Example – improper timing/decay

Agenda

- 1. Presentation
- 2. Test Equipment
- 3. Basic Calibration Development Procedure
- 4. Fuel Calibration
- 5. Fuel System Components
- 6. Conclusion

Overview - Fuel Return, Mechanical Regulator

Overview - Returnless, Mechanical Regulator

FUEL SUPPLY INJECTORS INJECTORS TANK PRESSURE REGULATOR REFERENCED TO AMBIENT PRESSURE **FUEL** FILTER **FUEL PUMP** FUEL PUMP ASSEMBLY

RETURNLESS FUEL RAIL

Overview - Returnless, Regulated Pump Speed

Fuel System Components Pump

Considerations

- Flow capacity
- Fuel type
- Efficiency
- Control type
- Size / weight / package

Pump

As pressure increases flow decreases

Pump

Control opportunities with brushless DC

Fuel System Components Pressure Regulator

Considerations

- Reflow
- Fuel type
- Manifold reference

Application	
Pressure range	5 bar
Reflow quantity	15 to 220 l/h
Reference pressure connector	Diam. 5 mm, tube connector
Fuel compatibility	Gasoline, E85, M15
Operating temperature	-40 to 120°C
Storage temperature	-40 to 100°C
Max. vibration	<600 m/s² at 5 to 250 Hz

Injector

Considerations

- Flow
- Pressure rating
- Manifold location
- Spray pattern
- Fuel type
- Impedance

70% mass of single spray inside β

Angle between connection and spray level (δ = delta): (only 2-spray preparation)

 δ = 0°- 360° possible

Injector

Flow, Pressure and Time

- Dead time
- Min injection time
- Duty cycle

Fuel System Components Injector

Injector Placement

- Spray pattern
- Upper and lower injectors?

Fuel System Components Lambda Sensor

Considerations

- Location
- Heat
- Pressure

Fig. 5: Lambda Sensor Installation Diagram, Part 1

Agenda

- 1. Presentation
- 2. Test Equipment
- 3. Basic Calibration Development Procedure
- 4. Fuel Calibration
- 5. Fuel System Components
- 6. Conclusion

