Füredi Theorem (2015)

Any n-vertex K_{k+1} tree graph G with $e(T_k(n))-t$ edges contains a k-partite subgraph G with $e(G) \ge e(G)-t$.

Proof: We form portition by taking vertex with highest degree, putting its non-neighbours to one component and iterating on its neighbours. Then by double counting edges we obtain desired bound.

Endos - Simonorito Stalility Theorem (1966)

For any E>0 and graph F s.t. X(F)=k+1 there exists S>0 s.t. any large enough F-tree graph with at least $\frac{n^2}{2}(1-\frac{1}{k})-Sn^2$ edges can be transformed into $T_k(n)$ by adding or deleting at most $E n^2$ edges.

Proof: Szeméredi.

Asymptotic structure theorem

If G is extremal n-vertex graph for F with X(F) = k+1, then $S(G) = (1-\frac{1}{k})n+o(n)$

Proof: From Evolos-Simonovits stability theorem we can transform $T_k(n)$ to 6 by Hipping $c(n^2)$ edges.

We conthour many neighbors of on TxIn) component were removed and obtain desired bound.

Andrástai-Endős-Sos (1974)

Every n-vertex K_{k+1} -tree graph with $S(G) > (1 - \frac{3}{3k-1})n$ is k-positive.

Proof: discharging + , symetrication.