### **COMP 431**

# **Internet Services & Protocols**

# The Transport Layer

Multiplexing, Error Detection, & UDP

Jasleen Kaur

February 18, 2020











# **Multiplexing/Demultiplexing**

#### **Multiplexing**

- Gathering data from multiple application processes, enveloping data with header (later used for demultiplexing)
- ◆ Based on IP addresses and sender and receiver port numbers
  - » Source and destination port numbers carried in each segment
  - » (Recall: well-known port numbers for specific applications)



TCP/UDP segment format

# Multiplexing/Demultiplexing

#### **Demultiplexing**



- Demultiplexing is the process of delivering received segments to the correct application-layer process
  - » IP address (in network-layer datagram header) identifies the receiving machine
  - » Port number (in transport-layer segment header) identifies the receiving process

3

### **Multiplexing/Demultiplexing**

### Transport protocol specific demultiplexing

- ◆ Demultiplexing actions depend on whether the transport layer is connectionless (UDP) or connection-oriented (TCP)
- UDP demultiplexes segments to the *socket* 
  - » UDP uses 2-tuple <destination IP addr, destination port nbr>
    - destination IP addr, destination port nbrz to identify the socket
  - » Socket is "owned" by some process (allocated by OS).
- ◆ TCP demultiplexes segments to the *connection* 
  - » TCP uses 4-tuple <source IP addr, source port nbr, destination IP addr, destination port nbr> to the identify connection
  - » Connection (and its socket) is owned by some process







### **User Datagram Protocol (UDP)**

#### Is unreliable, unordered communications useful?

- ◆ Who uses UDP?
  - » Often used for streaming multimedia applications
  - » Loss tolerant
  - » Rate sensitive
- Other UDP uses (why?):
  - » DNS
  - » SNMP
  - » Routing protocols

- Why use UDP?
- No connection establishment (which can add delay)
- Simple: no connection state at sender, receiver
- Small segment header
- No congestion control: UDP can blast away as fast as desired
- Reliable transfer over UDP still possible
  - » Reliability can always be added at the application layer
  - » (Application-specific error recovery)

### **User Datagram Protocol (UDP)**

#### **Checksum computation**

- The UDP checksum allows the receiver to detect errors in transmitted segment
  - » Errors are "flipped" bits
- Sender computation:
  - » Treat segment contents as a sequence of 16-bit integers
  - » Sum the segment's contents, place the 1's complement of the sum into the checksum field
- Example:
  - » Sum of segment = 1010101110011011
  - » Checksum = 010 101 000 1100 100

source port # | dest. port # | length | checksum

application data (message payload)

**UDP** segment format

"Theorem:" segment sum + checksum = 11111111111111111

14

