

# ТЕСТЕР ШЛЕЙФОВ МАТРИЦ



# РУКОВОДСТВО ПОЛЬЗОВАТЕЛЯ

Октябрь 2022



# Содержание

| 1 | Опи | ісание                                            | 3  |
|---|-----|---------------------------------------------------|----|
|   | 1.1 | Разъемы                                           | 4  |
| 2 | Пит | ание                                              | 5  |
|   | 2.1 | Батарея                                           | 5  |
|   | 2.2 | Включение                                         | 5  |
| 3 | Пор | ядок работы                                       | 6  |
|   | 3.1 | Тестирование шлейфа на наличие обрывов            | 6  |
|   | 3.2 | Тестирование шлейфа на наличие коротких замыкании | 6  |
|   | 3.3 | Примеры индикации для исправного шлейфа eDP       | 7  |
|   | 3.4 | Примеры индикации для исправного шлейфа LVDS      | 8  |
| 4 | Реж | имы работы                                        | 9  |
|   | 4.1 | eDP: Режим переменного сигнала                    | 9  |
|   | 4.2 | LVDS: Режим постоянного сигнала                   | 9  |
|   | 4.3 | SHORT: Режим поиска короткого замыкания           | 9  |
| 5 | Спр | авочная информация                                | 10 |
|   | 5.1 | Яркость и равномерность свечения индикаторов      | 10 |
|   | 5.2 | Контрольные точки                                 | 10 |
|   | 5.3 | Нестандартные шлейфы                              | 10 |
|   | 5.4 | Описание линий eDP                                | 11 |
|   | 5.5 | Описание линий LVDS                               | 12 |
|   | 5.6 | Поддержка                                         | 13 |



### 1 Описание

Тестер предназначен для проверки целостности шлейфов LVDS и eDP, используемых в ноутбуках. Поддерживаются только шлейфы стандартной распиновки.

Прибор позволяет определить поврежденные проводники путём механического воздействия на шлейф. Также тестер позволяет определить наличие коротких замыканий в шлейфе.

Для диагностики, тестер подключается к шлейфу вместо матрицы. Диагностика обрывов производится с подключением к материнской плате ноутбука. Проверка на наличие коротких замыканий выполняется без подключения к МП.

### При использовании тестера, материнская плата должна быть отключена от источника питания и батареи!





### 1.1 Разъемы

На тестере предусмотрено 6 посадочных мест для разъемов разных типов шлейфов. Из них предустановлено 3 разъема, под актуальные на данный момент матрицы:

- 1. eDP 40 pin, шаг 0,5 мм применяется как правило для 4х канальных матриц разрешения 4К.
- 2. eDP 30 pin, шаг 0,5 мм разъем для матриц eDP с 1 или 2 каналами, HD и FullHD.
- 3. LVDS 40 pin шаг 0,5 мм разъем для матриц LVDS с 1 или 2 каналами, HD и FullHD. Данный тип разъема имел широкое распространение на ноутбуках выпускавшихся примерно до 2014 года.

### <u>Разъемы eDP 40 pin и LVDS 40 pin механически идентичны, однако несовместимы.</u>

Также, предусмотрены места под распайку дополнительных разъемов. При необходимости разъемы можно снять с поврежденных матриц и установить на тестер самостоятельно.

- 4. eDP 40 pin шаг 0,4 мм разъем аналогичен eDP 40 pin шаг 0,5 мм, но с меньшим расстоянием между выводами. Применяется в некоторых новых ноутбуках, в дальнейшем ожидается более широкое распространение матриц данного типа.
- 5. eDP 30 pin шаг 0,4 мм разъем аналогичен eDP 30 pin шаг 0,5 мм, но с меньшим расстоянием между выводами. Применяется в некоторых новых ноутбуках, в дальнейшем ожидается более широкое распространение матриц данного типа.
- 6. LVDS 30 pin шаг 1,0 мм устаревший разъем, применялся на матрицах с ламповой подсветкой. Расположен с обратной стороны платы. Не распаивается в связи с тем, что снят с производства.



### 2 Питание

### 2.1 Батарея

Перед использованием, необходимо установить батарею. Подойдет любой литий-ионный аккумулятор. Площадки под пайку находятся на обратной стороне печатной платы. Рекомендуемая емкость 100-1000 мАч. Зарядный ток по умолчанию составляет 100 мА. Может быть увеличен до 500 мА путем замены резистора R5.

| R5  | Ток заряда (мА) |
|-----|-----------------|
| 20K | 50              |
| 10K | 100             |
| 5K  | 200             |
| 4K  | 250             |
| 3K  | 300             |
| 2K  | 400             |
| 1K6 | 500             |

### 2.2 Включение

Для управления питанием тестера предусмотрен 3-позиционный переключатель. В автоматическом режиме тестер включается, когда шлейф подключен к любому из разъемов. Для включения тестера используется одна из стандартных линий GND.

В случае нестандартного или поврежденного шлейфа автоматическое включение может не сработать. В этом случае возможно принудительное включение тестера с помощью переключателя.

Также, в некоторых случаях может оказаться полезным принудительно выключить тестер. Например, для проверки линий вручную мультиметром используя тестовые площадки на тестере. В этом случае используйте положение OFF.



### 3 Порядок работы

### 3.1 ТЕСТИРОВАНИЕ ШЛЕЙФА НА НАЛИЧИЕ ОБРЫВОВ

- 1. Полностью обесточьте плату ноутбука: отключите адаптер питания и батарею.
- 2. Отключите шлейф от матрицы.
- 3. Подключите шлейф к соответствующему разъему тестера.
- 4. Тестер включится автоматически, либо можно включить его принудительно с помощью переключателя. По умолчанию включится режим eDP. (подходит для тестирования как eDP, так и LVDS шлейфов)
- 5. По свечению светодиодов определите состояние шлейфа. Примеры индикации для исправных шлейфов приведены ниже.
- 6. При необходимости переключитесь в режим LVDS

### 3.2 Тестирование шлейфа на наличие коротких замыкании

- 1. Отключите шлейф от материнской платы ноутбука
- 2. Отключите шлейф от матрицы.
- 3. Подключите шлейф к соответствующему разъему тестера.
- 4. Тестер включится автоматически, либо можно включить его принудительно с помощью переключателя.
- 5. Двумя нажатиями на кнопку, переключите тестер в режим SHORT.
- 6. По свечению светодиодов определите наличие К3, одновременно можно шевелить шлейф. При наличии коротких замыканий, светодиоды соответствующих линий будут включены. Индикация К3 отключается с задержкой, что позволяет обнаружить кратковременное К3.



### 3.3 ПРИМЕРЫ ИНДИКАЦИИ ДЛЯ ИСПРАВНОГО ШЛЕЙФА ЕДР



### 3.4 ПРИМЕРЫ ИНДИКАЦИИ ДЛЯ ИСПРАВНОГО ШЛЕЙФА LVDS



### 4 Режимы работы

Тестер имеет 3 режима работы:

- 1. eDP: Режим переменного сигнала (работает по умолчанию сразу после включения).
- 2. LVDS: Режим постоянного сигнала.
- 3. SHORT: Режим поиска короткого замыкания.

### 4.1 EDP: РЕЖИМ ПЕРЕМЕННОГО СИГНАЛА

В этом режиме тестер выдает переменный сигнал на все тестовые линии через светодиоды и токоограничивающие резисторы. Переменный сигнал необходим для диагностики линий eDP, т.к. сигнал для eDP матриц поступает через конденсаторы, которые постоянный ток не пропускают.

### 4.2 LVDS: Режим постоянного сигнала

В этом режиме на тестовые линии подается постоянное питание. Режим может быть полезен, например в случаях, если в режиме eDP возникает нежелательное свечение светодиодов, вызванное паразитной емкостью линий.

### 4.3 SHORT: Режим поиска короткого замыкания.

В режиме SHORT, тестер включает индикаторы линий, на которых обнаружено короткое замыкание. Тестирование необходимо производить на шлейфе, отключенном от материнской платы. При исчезновении КЗ, индикация выключается с задержкой, что позволяет обнаружить кратковременное КЗ. В этом режиме, на исправном шлейфе, на индикаторах будет виден эффект «бегущий огонь».



### 5 Справочная информация

### 5.1 ЯРКОСТЬ И РАВНОМЕРНОСТЬ СВЕЧЕНИЯ ИНДИКАТОРОВ

Яркость светодиодов сигнальных линий (дифференциальных пар) eDP или LVDS может отличаться на разных МП. При исправном шлейфе и МП яркость как правило одинаковая на всех линиях. Разница в яркости говорит о дефектах шлейфа или МП. В этом случае имеет смысл произвести измерения на контрольных точках для дальнейшего анализа и диагностики.

Яркость светодиодов управляющих линий зависит от того, как они реализованы в МП – с помощью МК, видеочипа, буферными / логическими элементами и т.д. В некоторых случаях, например, если сигнал на МП включается полевым транзистором, свечение может быть очень слабым, даже если шлейф в порядке.

#### 5.2 Контрольные точки

На тестере предусмотрены контрольные точки для щупа осциллографа или мультиметра. Они подключаются непосредственно к выводам разъемов. Это позволяет анализировать сигнал и таким образом диагностировать не только шлейф, но и МП. Также с помощью контрольных точек можно прозвонить линии вручную, предварительно выключив тестер принудительно (переключатель в положение OFF). Также это может быть полезно для определения распиновки разъема МП при отсутствии схемы.



### 5.3 Нестандартные шлейфы

В некоторых случаях в шлейфе могут быть нестандартные сигналы. Учитывайте это при работе.

Например, на платформе MB\_Petra\_UMA используется сигнал EDP#\_LVDS\_R. Он подключен к GND внутри шлейфа. Без этого сигнала изображение отсутствует, несмотря на то что все стандартные сигналы могу быть в норме.

Также тестер не проверяет наличие и качество GND. Проверить можно самостоятельно мультиметром или дублированием.



### 5.4 Описание линий в DP

Для работы интерфейса eDP используется до 5 дифференциальных пар (10 проводов) и 5 управляющий сигналов. Итого до 15 линии.

Из них, всегда присутствуют следующие 9 линий:

- 1. Питание матрицы V LCD, +3B
- 2. Сигнал HPD: Hot Plug Detect.
- 3. Линия Р сигнальной пары L1
- 4. Линия N сигнальной пары L1
- 5. Линия Р сигнальной пары AUX
- 6. Линия N сигнальной пары AUX
- 7. BL PWN сигнал ШИМ управления яркостью подсветки.
- 8. BL EN сигнал разрешение работы подсветки.
- 9. V LED питание подсветки, обычно от 7,4 до 19 В.

Для матриц с более высоким разрешением (Full HD) добавляется второй канал:

- 10. Линия Р сигнальной пары L2.
- 11. Линия Р сигнальной пары L2.



- 12. Линия Р сигнальной пары L3.
- 13. Линия N сигнальной пары L3.
- 14. Линия Р сигнальной пары L4.
- 15. Линия N сигнальной пары L4.





#### 5.5 Описание линий LVDS

Для работы интерфейса LVDS используется до 8 дифференциальных пар (16 проводов) и 7 управляющий сигналов. Итого до 23 линии.

Из них, всегда присутствуют следующие 12 линий, актуально для устаревших матриц с ламповой подсветкой, подключаемых к разъему 30 pin с шагом контактов 1 мм:

- 1. Питание матрицы V LCD, +3B
- 2. Питание VDDC для чтения прошивки EDID, +3B
- 3. Сигнал EDID CLK
- 4. Сигнал EDID DATA
- 5. Линия Р сигнальной пары ОС (RXC+, синхронизация)
- 6. Линия N сигнальной пары ОС (RXC-, синхронизация)
- 7. Линия Р сигнальной пары ОО (RXO+, красный)
- 8. Линия N сигнальной пары ОО (RXO-, красный)
- 9. Линия Р сигнальной пары О1 (RX1+, зеленый)
- 10. Линия N сигнальной пары O1 (RX1-, зеленый)
- 11. Линия Р сигнальной пары О2 (RX2+, синий)
- 12. Линия N сигнальной пары O2 (RX2-, синий)



- 13. Линия Р сигнальной пары ЕС (RXC+, синхронизация)
- 14. Линия N сигнальной пары EC (RXC-, синхронизация)
- 15. Линия Р сигнальной пары EO (RXO+, красный)
- 16. Линия N сигнальной пары EO (RXO-, красный)
- 17. Линия Р сигнальной пары E1 (RX1+, зеленый)
- 18. Линия N сигнальной пары E1 (RX1-, зеленый)
- 19. Линия Р сигнальной пары E2 (RX2+, синий)
- 20. Линия N сигнальной пары E2 (RX2-, синий)





Для более современных матриц с светодиодной подсветкой подключаемых к 40 контактному разъему с шагом выводов 0,5 мм добавляются сигналы управления подсветкой и питание подсветки, в остальном сигналы аналогичны матрицам с ламповой подсветкой.

- 21. BL PWN сигнал ШИМ управления яркостью подсветки.
- 22. BL EN сигнал разрешение работы подсветки.
- 23. V LED питание подсветки, обычно от 7,4 до 19 В.

### 5.6 Поддержка

По любым вопросам обращайтесь по адресу: mailto:20kohm@gmail.com