Group 'A'

Attempt all questions.

11×1=11

If ${}^{n}C_{18} = {}^{n}C_{12}$, then ${}^{32}C_{n} = ?$

a) 248 b) 496 c) 992

d) none of these

The number of terms in the expansion of $(2x + 3y)^{17}$ is: b) 17

c) 18

If z is any non zero complex number, then arg (z) + arg (z) is equal of:

a) $\sqrt{0}$ b) $\frac{\pi}{2}$ c) π^2 d) $\frac{3\pi}{2}$

In \triangle ABC, a = 5, b = 7 and $\sin A = \frac{3}{4}$, how many such triangles are

possible?

600

c) 2 d) infinitely many

If the line 1x + my + n = 0 is a normal to the circle $x^2 + y^2 + 2gx + 2fy + c = 0$, then

a) $n + \lg + mf = 0$ by $n = \lg + mf$ c) $n - \lg + mf = 0$ d) $n + \lg - mf = 0$

6/ If $\begin{vmatrix} \overrightarrow{a} + \overrightarrow{b} \end{vmatrix} = \begin{vmatrix} \overrightarrow{a} - \overrightarrow{b} \end{vmatrix}$, then

a) $\begin{vmatrix} \overrightarrow{a} \end{vmatrix} = \begin{vmatrix} \overrightarrow{b} \end{vmatrix}$ b) $\overrightarrow{a} \parallel \overrightarrow{b}$

SY alb

d) none of these

 $\int \sqrt{1 + \sin x} \, dx = ?$

a) $-\sqrt{2}\sin\left(\frac{\pi}{4} - \frac{x}{2}\right) + c$ b) $\sqrt{2}\sin\left(\frac{\pi}{4} - \frac{x}{2}\right) + c$

 $-2\sqrt{2}\sin\left(\frac{\pi}{4}-\frac{x}{2}\right)+c$ d) none of these

The solution of $\frac{dy}{dx} = e^{x+y}$ is

a) $e^{x} + e^{y} = c$ b) $e^{x} - e^{-y} = c$

 $e^x + e^{-y} = c$ d) none of these

Let P(n) be the statement 'n(n+1) is divisible by 2'. Then,

P(1) is true but P(2) is false

P(2) is true but P(1) is false

Both P(1) & P(2) are true

Both P(1) & P(2) are false

The system x-y = 1 and x-y = 5 has

one solution a)

b) infinitely many solution

no solution S

d) non of the above

In simplex method, the feasible basic solution must satisfy the non-negativity constraints

b) negative constraint

c) basic constraint common constraint

Group 'B'

8×5= 40

12. a) Define factorial.

[1]

b) Find the number of ways in which 5 courses out of 8 can be selected when [2] 3 courses are compulsory.

c) A kabaddi coach has 14 players ready to play. How many different team of 7 players could the coach put on the court. [2]

- on the line x-2y=3.
 - b) Find the condition for the circle $x^2+y^2=a^2$ and $(x-c)^2+y^2=b^2$ to touch internally. [1]
 - c) Find the focus and directrix of the parabola $x^2 = 12y$. [2]
- 16. a) Find the projection of \overrightarrow{a} on \overrightarrow{b} , if $\overrightarrow{a} = (3, 1, 2)$ and $\overrightarrow{b} = (2, -2, 4)$. [2]

b)/Prove that
$$\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{b} \times \overrightarrow{c} = \overrightarrow{c} \times \overrightarrow{a}$$
 if $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = 0$. [2]

17. a) Evaluate:
$$\int_{\mathbf{x}(\mathbf{x}^n-1)}^{1} d\mathbf{x}$$
. [3]

b) Evaluate:
$$\int \frac{1}{\sqrt{a^2 - x^2}} dx$$
. [2]

18. a) Define order and degree of differential equation with suitable example. [2]

b) Solve the differential equation:

$$\frac{dy}{dx} + \frac{1 + \cos 2y}{1 - \cos 2y} = 0. ag{3}$$

Using the simplex method, maximize subjected to: P = 15x + 10y, subjected to: $2x + y \le 10$ and $x + 3y \le 10$, $x, y \ge 0$. [5]

Group 'C'

20. a) Write the general term of the binomial expansion of
$$(x + a)^n$$
 & $(a-x)^n$.

8×3=V5

Find the middle term in the expansion of $\left(x + \frac{1}{x}\right)^{18}$. 121

21. a) For the given series n+2(n-1)+3(n-2)+... Find,

Determine consistency and independence of the system of linear equation. 121 3x - 2y = 3, -4y + 6x = 9

$$3x - 2y = 3$$
, $-4y + 6x - 9$
c) Solve the equations $x = 2y$ and $3x + 2y = 8$ by using Cramer's rule. [2]

Solve the equations
$$x = 2y$$
 and $3x + 2y = 0$ of using $x = 2y = 0$. Evaluate: $\sqrt{x^2 - a^2} dx$

Evaluate:
$$\sqrt{x^2 - a^2} dx$$
 [4]
b) Does $x \frac{dy}{dx} = \sqrt{x^2 + y^2} + y$ represent a homogenous differential equation?

'Good Luck'

= 10587) 4C/