Fonctions.

<u>l</u> Généralités.

Définition: Une fonction est un moyen d'associer à un réel x un **unique** réel y.

Il y a deux méthodes classiques pour définir une fonction:

1°) Par une formule:

Exemple1: $f(x) = x^2 - x - 2$

On a f(0) =

f(1) =

f(2) =

Exemple 2: $g(x)=x-2\sqrt{x}$ pour $x \ge 0$.

On a g(0)=

g(1) =

g(2) =

Conséquence: On peut placer des points sur un graphique pour obtenir les courbes des fonctions.

Exercice: $f(x) = \frac{4}{x^2 + 1}$. Compléter le tableau de valeurs de f puis tracer C_f .

х	-5	-3	-2	-1	-0,5	0	0,5	1	2	3	5
f(x)											

2°) Par une courbe.

Exercice 1: On donne la courbe d'une courbe de fonction f:

Compléter les propositions:

$$f(-4) =$$

$$f(-3) =$$

f(0)=

f(4) =

$$f(x)=3 \Leftrightarrow$$

$$f(x)=1 \Leftrightarrow$$

$$f(x) \ge 3.5c$$

Exercice 2: On donne des courbes de deux fonctions f et g . Compléter:

$$f(x)=g(x) \Leftrightarrow$$

$$f(x) \geqslant g(x) \Leftrightarrow$$

$$f(x) \leq g(x) \Leftrightarrow$$

$$g(x) \leq 0 \Leftrightarrow$$

Exercice 3:Tracer les courbes des fonctions $f(x)=x^2$ et g(x)=2-x puis résoudre $x^2 \ge 2-x$

x	-3	-2	-1	-0,5	0	0,5	1	2	3
f(x)									
g(x)									

II Limites d'une fonction.

On s'intéresse à l'étude d'une fonction où elle n'est pas définie.

1°) Exemple.

$$f(x) = \frac{1}{x} + 1$$
 pour $x > 0$.

Question: que se passe-t-il si x se rapproche de 0 ou de $+\infty$?

x	1	0,5	0,2	0,1	0,00001	$x \approx 0$
f(x)						

x	10	100	1000	1000000	$x \approx +\infty$
f(x)					

Conséquence graphique :

2°) Formules à connaître

On donne les courbes de fonctions de référence; déterminer les limites de ces fonctions en $+\infty$.

3°) Opérations sur les limites.

Exemple: Déterminer
$$\lim_{x \to +\infty} \left(3x^2 + 4 + \frac{1}{x} \right)$$
 et $\lim_{x \to +\infty} \left(\frac{3}{-6x + 2} \right)$

Propriété:

On peut faire des sommes et produits sur les limites (ex: $+\infty+\infty=$ $3\times(+\infty)=$ $+\infty\times(-\infty)=$) à quatre exceptions près. On ne peut pas deviner a priori le résultat de :

On note ces opérations FI (comme Formes Indéterminées).

A retenir

Cas des polynômes :

Exemples: $\lim_{x\to +\infty} (3 x^2 - 4 x + 7) =$

$$\lim_{x \to +\infty} \left(-9x^3 + 2x^2 - 7x + 1 \right) =$$

Exercices : Déterminer les limites en $+\infty$ des fonctions suivantes :

$$f(x)=x^2-x$$

$$g(x) = -3x^4 - 25x^3 + 1$$

$$h(x) = 2x^3 + x - 45$$

$$k(x) = \frac{3}{7x^2 - 5}$$

$$p(x) = \frac{-2x}{4x^2 + 7}$$

$$q(x) = \frac{x^2 + 3}{4 - 5x}$$

$$q(x) = \frac{x^2 + 3}{4 - 5x}$$

$$r(x) = \frac{6x^2 - 2x}{3x^2 + 2x + 5}$$

4°) Asymptotes.

Asymptote horizontale:

On reprend $r(x) = \frac{6x^2 - 2x}{3x^2 + 2x + 5}$. On a vulque $\lim_{x \to +\infty} (r(x)) = 2$ ce qui veut dire qu'en $+\infty$ la courbe va se stabiliser autour de la valeur 2.

Graphiquement \mathcal{C}_f va être très proche de y=2. On dit que y=2 est asymptote à la courbe de f en + ∞ .

Exercice:

1. On donne des fonctions, déterminer leurs limites en $+\infty$, dire si les courbes admettent des asymptotes horizontales.

$$f(x) = \frac{2 - x}{x + 6}$$

$$g(x)=x-\frac{2}{\sqrt{x}}$$

$$h(x) = 1 - 2\sqrt{x}$$

$$k(x) = \frac{x^5 + x^4 + 5x^2}{x^6 + 1}$$

$$l(x) = \frac{5x^2 - 1}{x^2 + 3}$$

$$p(x) = \frac{1}{x+1} + \frac{\sqrt{x}}{5}$$

2. On donne les courbes les courbes des fonctions qui précèdent. Associer les courbes et les fonctions.

Asymptote verticale:

Reprenons $f(x) = \frac{1}{x} + 1$ pour x > 0 (cf page2). f n'est pas définie en x = 0 et $\lim_{x \to 0} (f(x)) = +\infty$.

On dit que x=0 est asymptote verticale à \mathcal{C}_{f} .

Exercice: Soit f définie pour $x \ge 0$ et $x \ne 2$ par $f(x) = \frac{3x-1}{x-2}$

Déterminer les limites de f en $+\infty$ et en x=2 . En déduire les asymptotes de f .

III Variations.

1°) Tableau de variations.

f est une fonction **décroissante** sur

puis croissante sur

 $g\ \ {\rm est}\ {\rm une}\ {\rm fonction}\ {\rm croissante}\ {\rm sur}$

et

, et décroissante sur

Les variations d'une fonction sont souvent regroupées dans un tableau, appelé tableau de variations.

Exercice 1: On donne des courbes de fonctions. Dresser leur tableaux de variations.

Exercice 2:

On donne des tableaux de variations; tracer des courbes qui peuvent convenir.

2°) Rappels sur les dérivées.

Dérivées des fonctions de référence					
f(x) = constante	f'(x)=0				
f(x)=x	f'(x)=1				
$f(x)=x^2$	f'(x)=2x				
$f(x) = x^3$	$f'(x) = 3x^2$				
$f(x) = x^4$	$f'(x)=4x^3$				
$f(x) = \sqrt{x}$	$f'(x) = \frac{1}{2\sqrt{x}}$				

Opérations sur les dérivées
$(k\times u)'=k\times u'$, k étant une constante
(u+v)'=u'+v'
$(u\times v)'=u'\times v+u\times v'$
$\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$

Exemples: Dériver les fonctions suivantes:

$$f_1(x) = 8x - 3$$

$$f_2(x) = 3x^2 - 12x + 9$$

$$f_3(x) = 6x^5 - 0.2x^4 - 30x$$

$$f_4(x) = \frac{1}{x}$$

$$f_5(x) = \frac{1}{x^2 + 1}$$

$$f_6(x) = \frac{2x+1}{x+8}$$

3°) Lien entre dérivée et variations.

Théorème : f est croissante sur l'intervalle I ssi f $'(x) \ge 0$ sur I .

f est décroissante sur l'intervalle I ssi f $'(x) \le 0$ sur I .

Exercice 1: Déterminer les variations de f_1 , f_2 , f_4 , f_6 .

Exercice 2: $f(x)=x^2+x+1$. Etudier les variations de f puis montrer que f est une fonction qui reste toujours positive.