

FORMULARIO DI FISICA

Sommario

GRANDEZZE E MISURA	2
VETTORI E FORZE	3
CINEMATICA	4
DINAMICA	5
FLUIDI	6
TERMOLOGIA E TERMODINAMICA	7
ELETTPONA A GNIETISMO	Q

GRANDEZZE E MISURA

		GRANI	DEZZE E MIS	SURA				
	-	Nome	Simbolo	2000	1oltiplica			
		giga	G	1000000				
		mega 	Μ	9 80 80 00 00 00 00	$000 = 10^6$			
		kilo	k	2002	$000 = 10^3$			
		etto deca	h da		$100 = 10^2$ $10 = 10^1$			
	-							
PREFISSI	8	deci	d	-	$\frac{1}{10} = 10^{-1}$			
	ý.	centi	c	10	$\frac{1}{00} = 10^{-2}$			
	3	milli	m	1	$\frac{100}{100} = 10^{-3}$			
		micro	μ	1 000 00	$\frac{10^{-6}}{10^{-6}}$			
		nano	n	1 000 000 0	$\frac{10^{-9}}{10^{-9}}$			
	Nome		Simbolo		Valore in m³			
UNITA' DI	decimetro cu	ıbo (litro)	dm³ (L)		$\frac{1}{1000} = 10^{-3}$			
VOLUME	centimetro c	ubo (millilitro)	cm³ (mL)	10	$\frac{1}{000000} = 10^{-6}$			
CALCOLO DEI VOLUMI	$V = L_1 \cdot L_2 \cdot L_3$							
VOLOIVII	$V = \pi r^2 h$ $V = \frac{1}{3} \pi r^2 h$ $V = \frac{4}{3} \pi r^3$							
DENSITA' E PESO SPECIFICO	$d = \frac{m}{V} \qquad p_S = \frac{p}{V} = \frac{mg}{V} = dg$							
	GRANDEZZA	SI (MKS)		CGS	PRATICO			
	LUNGHEZZA	METRO (m		ENTIMETRO (cm)	METRO (m)			
	AREA	$m^2 = 10^4 \text{ cm}$		cm ² = 10 ⁻⁴ m ²	m ²			
	VOLUME	m ³ = 10 ⁶ c		cm ³ = 10 ⁻⁶ m ³	m³			
TABELLA	MASSA	KILOGRAMMO		GRAMMO (g)	KILOGRAMMO (kg = kgp·s²/9,8 m)			
UNITA' DI MISURA	TEMPO	SECONDO	(e)	SECONDO (s)	SECONDO (s)			
	FORZA	NEWTON (N = kg·m/s 1 N = 10 ⁵ d	l s²) (DINE dine = g:cm/s ²) 1 dine = 10 ⁻⁵ N	KILOGRAMMO PESO (kgp)			
	DENSITA'	$kg/m^3 = 10^3 g$	/cm ³ g/	cm ³ = 10 ⁻³ kg/m ³	kg/m³			
	PESO SPECIFICO	N/m ³ = 10 ⁻¹ din		ne/cm³ = 10 N/m³	kgp/m³ = 9,8 N/m³			

VETTORI E FORZE

Prodotto scalare- vettore	\vec{s} $-\vec{s}$ $2\vec{s}$ $-3\vec{s}$					
Somma di vettori	Parallelogramma $\vec{a} + \vec{b}$ $\vec{a} + \vec{b}$ Punta-coda					
Differenza di vettori	PUNTA-PUNTA \vec{a} \vec{a} \vec{b} \vec{a} \vec{b}					
Prodotto scalare	$\vec{a} \cdot \vec{b} = ab \cos \alpha$					
Prodotto vettoriale	$ \vec{a} \times \vec{b} = ab \operatorname{sen} \alpha$					
Forza peso	$ \vec{p} = m\vec{g} _{g = 9.8 \frac{m}{s^2}}$					
Forze d'attrito	$F_a = k \cdot N$ $F_a = k \cdot \frac{N}{r}$ $F_a = k \cdot \frac{N}{r}$ Volvente $F_a = -k \cdot \vec{v}$ Se vè grande: $F_a = -k \cdot \vec{v}$ $F_a = -k \cdot \vec{v}$ Viscoso $F_a = -k \cdot \vec{v}$					
Forza elastica	Legge di Hooke $\vec{F_e} = -k\vec{s}$					

CINEMATICA

DINAMICA

FLUIDI

	LOIDI					
Densità Peso Specifico Pressione	$d = \frac{m}{V} p_s = \frac{p}{V} = \frac{mg}{V} = dg m = dV \\ p = dgV \vec{F} P = \frac{F}{S}$					
Principio di Pascal e torchio idraulico	$\frac{F_A}{S_A} = \frac{F_B}{S_B}$					
Legge di Stevino (generalizzata)	P = dgh $S = gdh$ $S =$					
Principio di Archimede Galleggiamen to	$S_A = d_{liquido}gV_{immerso}$ $\frac{V_i}{V} = \frac{d_{corpo}}{d_{liquido}}$					
Peso apparente	in aria in acqua $p_{apparente} = p - s_A \qquad = (d_{corpo} - d_{acqua})gV$					
	SI (MKS) CGS PRATICO					
Unità di	Pascal (Pa) Baria (Ba) kgp / m^2 [= $N/m^2 = kg/(m \cdot s^2)$] [= $N/m^2 = kg/(m \cdot s^2]$					
misura della Pressione e	1 torr = pressione di1 mm di Hg					
conversioni	1 bar = 10 ⁵ Pa = 1 MBa					
	$1 \text{ Pa} = 10^{-5} \text{ bar} = 10 \text{ Ba} = 0.99 \cdot 10^{-5} \text{ atm} = 9.8 \text{ kg}_p/\text{m}^2$ $1 \text{ Ba} = 10^{-1} \text{ Pa} = 10^{-6} \text{ bar}$					
Portata ed equazione di continuità (Fluidi in moto)	$Po = \frac{\Delta V}{t} = S \cdot v \left[\frac{m^3}{s}\right]$ $Po_1 = Po_2 \rightarrow S_1 V_1 = S_2 V_2$					
Teorema di Bernoulli	Punto 2 Punto 1 Pu					

TERMOLOGIA E TERMODINAMICA

ELETTROMAGNETISMO

ELETTROMAGNETISMO						
FORZE GRAVITAZIONALE ED ELETTRICA	Gravitazionale $ \begin{array}{cccc} & r & \\ & \overline{F}_g & \overline{F}_{g \text{ m}_2} \end{array} F_g = $	$G\frac{m_1m_2}{r^2} \xrightarrow{\text{Elettros}}_{q_1}$	etatica $F_e = K \frac{q_1 q_2}{r^2}$			
CAMPI GRAVITAZIONA LE ED ELETTRICO	$ \underbrace{\vec{H}} \mathbf{P} H = \frac{F_g}{m} = 0 $	$G\frac{M}{r^2}$ Q P	$E = \frac{F_e}{q} = K \frac{Q}{r^2} = \frac{1}{4\pi\varepsilon} \frac{Q}{r^2}$			
ENERGIA POTENZIALE /	L _{AB}	$U_{AB} = U_A - U_B$ $V(P) = V_A = V_A + V_B$	q			
POTENZIALE	$A \longrightarrow U_A$	$V_P - K {r_P}$	r $ev - e \cdot v$			
CONDENSATORI	$C = \frac{Q}{\Delta V} = \delta$	$\varepsilon \frac{A}{d} \frac{1}{C_{TOT}} = \frac{1}{C_1} + \frac{1}{C_2} + .$	$C_{tot} = C_1 + C_2 + \dots$			
CORRENTE ELETTRICA / LEGGI DI OHM RESISTENZA	$i = \frac{\Delta q}{\Delta t}$ $\frac{\Delta V}{i} = R$	$R = \rho \frac{l}{A}$ $\rho = \rho_0 (1 + \alpha t) R_{tot} = R_1 + R_2$	$-R_{2} + \dots \frac{1}{R_{tot}} = \frac{1}{R_{1}} + \frac{1}{R_{2}} + \dots$			
ENERGIA ELETTRICA	energia cinetica	aumenta la temperatura	$= i \cdot \Delta V = i^2 R = \frac{\left(\Delta V\right)^2}{R}$			
MAGNETISMO	$F = \frac{\mu_0}{2\pi} i$	$\frac{i_1i_2}{d}l$ B	$=rac{\mu_0 i}{2\pi R}$ $\vec{F}=q \vec{v}\wedge \vec{B}$ $\vec{F}=i \vec{L}\wedge \vec{B}$			
FLUSSO / INDUZIONE ELETTROMAGNETICA	$\Phi = \vec{B} \cdot \vec{A} =$	$BA\cos\theta$	$fem = -\frac{\Delta\Phi}{\Delta t}$			
	GRANDEZZA	SI (MKS)	CGS			
	INTENSITA' DI CORRENTE	AMPERE (A)	statC /s			
UNITA' DI MISURA	CARICA ELETTRICA	COULOMB(C) = V-s	statC o Franklin = 3,3356 ·10 ⁻¹⁰ C			
	CAMPO GRAVITAZIONALE	m/s²	cm/s²			
	CAMPO ELETTRICO	N/C	dyne/statC			
	POTENZIALE ELETTRICO	VOLT(V) = J/C	statV ~ 300 V			
	CAPACITA' ELETTRICA	FARAD(F) = C/V				
	RESISTENZA ELETTRICA	$OHM(\Omega) = V/A$				
	RESISTIVITA' ELETTRICA	Ω <u>·m</u>				
	CAMPO MAGNETICO	TESLA (T) = $N/(A \cdot m)$	GAUSS(G) = 10 ⁻⁴ T			
i						

FLUSSO MAGNETICO

WEBER (Wb) = T·m²

MAXWELL (M) = G·cm²