# Lectures 3-4: Gradient Descent Methods

#### **Optimization T2023**

Màster de Fonaments de Ciència de Dades



# $f(\mathbf{x}) \to min$ , $\mathbf{x} \in D \subseteq \mathbb{R}^n$ , $n \ge 1$ , f is smooth

Goal: Iteratively find a sequence  $x^{(1)}, x^{(2)}, ... \rightarrow x^*$ ,

where  $x^*$  is a solution of the optimization problem.

where  $\mathbf{x}^*$  is a solution of the optimization problem (local or global minimum), realizing the descent

$$f(\mathbf{x}^{(1)}) > f(\mathbf{x}^{(2)}) > \cdots$$

Recall that  $\nabla f(\mathbf{x}^*) = 0$ 

(for all or most\* of the iterates)

#### General descent method.

**given** a starting point  $\mathbf{x}^{(1)} \in D$  repeat

- 1. Determine descent direction  $p^{(k)}$  (often,  $||p^{(k)}|| = 1$ )
- 2. Determine step size/learning rate  $\alpha^{(k)}$
- 3. Update  $\mathbf{x}^{(k+1)} := \mathbf{x}^{(k)} + \alpha^{(k)} \mathbf{p}^{(k)}$

until stopping criterion is satisfied

**III. Descent direction?** 

II. Step size?

I. Stopping criterion?

#### **Digression: Why gradient?**

Recall that from the Taylor formula



#### Theorem:

Let  $f: D \subseteq \mathbb{R}^n \to \mathbb{R}$  be a differentiable function,  $a \in D$ ,  $d \in \mathbb{R}^n$  with ||d|| = 1. If  $\theta$  is the angle between d and  $\nabla f(a)$ . Then

$$\nabla_{\boldsymbol{d}} f(\boldsymbol{a}) = \boldsymbol{d}^T \cdot \nabla f(\boldsymbol{a}) = \|\nabla f(\boldsymbol{a})\| \cos \theta$$

In particular, the vector  $-\nabla f(a)$  gives the maximum descent direction of f at the point a.





## I. Stopping criteria/termination conditions

- Maximum iterations: repeat until  $k \le k_{max}$
- Absolute improvement: repeat until

$$f(\mathbf{x}^{(k)}) - f(\mathbf{x}^{(k+1)}) < \epsilon_a$$

Relative improvement: repeat until

$$f(\mathbf{x}^{(k)}) - f(\mathbf{x}^{(k+1)}) < \epsilon_r |f(\mathbf{x}^{(k)})|$$

Gradient magnitude: repeat until

$$\left\|\nabla f\left(\mathbf{x}^{(k+1)}\right)\right\| < \epsilon_g$$

- ✓ One or more termination conditions can be used
- ✓ If there are several local minima, one can add *random restart* with  $\mathbf{x}^{(1),new}$  sampled randomly from D

# II. Step size/learning rate

Suppose  $x = x^{(k)}$  and  $p = p^{(k)}$  is given. How to find  $\alpha = \alpha^{(k)}$ ?

### Methods:

- 1. Exact line search
- 2. Approximate line search
- 3. Trust region methods

## **Exact line search**

#### minimize<sub> $\alpha$ </sub> $f(\mathbf{x} + \alpha \mathbf{p})$

• This is univariant optimization problem for  $\phi(\alpha) := f(\mathbf{x} + \alpha \mathbf{p}) \rightarrow$ 

- $\rightarrow$  Find a **bracket** for the optimal solution  $\alpha^*$  ( $\alpha^*$  is characterized by  $\phi(\alpha^*) < \phi(\alpha)$  for all  $\alpha$  near  $\alpha^*$ )
- $\rightarrow$  Use univariant optimization methods to find an approximation of  $\alpha^*$  by successively shrinking the bracket. Methods include:

Only for unimodal functions!

- Dyadic/binary search
- Fibonacci search
- Quadratic fit search
- Shubert–Piyavskii method
- Bisection method

Definition: A bracket is an interval  $[\alpha', \alpha'']$  containing  $\alpha^*$ 



# Digression: some univalent optimization methods [KW, Ch.3]

- Dyadic/binary search: subdivide interval 'in half' at each step
- Fibonacci search: max reduction of interval size for given number of function evaluations
- Quadratic fit search
- Shubert-Piyavskii method : assuming  $\phi$  is Lipshitz, e.g.

$$|\phi(x) - \phi(y)| \le \ell \cdot |x - y|, \ \forall x, y \in [\alpha', \alpha'']$$

• Bisection method: solve  $\phi'(\alpha) = 0$  instead













### **Dyadic/binary and Fibonacci search**



#### **Assumption** ★:

 $\phi$  is unimodal, that is,  $\phi$  has a unique minimum on  $(\alpha', \alpha'')$ 

 $\phi$  is decreasing on  $[\alpha', \alpha^*]$  and  $\phi$  is increasing on  $[\alpha^*, \alpha'']$ 

 $\phi$  is convex on  $[\alpha', \alpha'']$ ( $\Leftrightarrow \phi'' > 0$ )

# **Basic Splitting Step:** for a pair $x_1 < x_2$ of points in the starting bracket



**Exercise:** Check that, under Assumption  $\star$ , for all  $x_1 < x_2$  after the Basic Splitting Step the new interval contains  $\alpha^*$  (hence, is a bracket).

#### **Basic Splitting Step in "almost" two parts:**

do the basic splitting step for  $x_1$  and  $x_1$  +  $\epsilon$ , where  $\epsilon > 0$  is small



- Each Basic Splitting Step requires 2 evaluations of the function at  $x_1$  and  $x_2$ .
- In general, i.e., if Assumption ★ is violated, the Basic Splitting Step doesn't work!

**Exercise:** Give an example

# Dyadic/binary search: under Assumption ★

given the desired size  $\epsilon>0$  of the bracket choose  $\delta<\epsilon$  (usually much smaller) repeat

- 1. Pick the midpoint  $x_1 = \frac{\alpha' + \alpha''}{2}$
- 2. Do the Basic Splitting Step in 'almost' two parts using  $x_1$  and  $x_1 + \delta$
- 3. Update  $[\alpha', \alpha'']$  with the new bracket from step 2 above until  $|\alpha'' \alpha'| < \epsilon$

**Exercise:** How many evaluations of the function  $\phi$  is required in the dyadic search in order to shrink the bracket by a factor of 100?

#### Fibonacci search (under Assumption ★)

- Fibonacci numbers are given by the recursive relation  $F_{n+2} = F_{n+1} + F_n$ , with starting condition  $F_1 = F_2 = 1$ .
- This generates the sequence 1, 1, 2, 3, 5, 8, 11, ...
- This sequence grows as  $F_n \sim \frac{1}{\sqrt{5}} \varphi^n$ , for n large, where  $\varphi = \frac{1+\sqrt{5}}{2} \approx 1.6$  is the Golden ratio.

#### given the number of steps N

$$\label{eq:continuous_section} \begin{aligned} \text{for } i = N, N-1, \dots, 1 \ \ \text{do} \\ \text{if } i \neq 1, \end{aligned}$$

1. Compute  $x_1, x_2 \in [\alpha', \alpha'']$  such that

$$\frac{\alpha'' - x_1}{\alpha'' - \alpha'} = \frac{F_i}{F_{i+1}} \text{ and } \frac{x_2 - \alpha'}{\alpha'' - \alpha'} = \frac{F_i}{F_{i+1}}$$

- 2. Do the **Basic Splitting Step** using  $x_1$  and  $x_2$
- 3. Update  $[\alpha', \alpha'']$  with the new bracket from step 2 above

Observe that after this step, the length of the new bracket is proportional to the length of the previous bracket as  $F_i$  to  $F_{i+1}$ 

#### otherwise

Do the Basic Splitting Step in 'almost' two parts using  $\frac{\alpha' + \alpha''}{2}$  and  $\frac{\alpha' + \alpha''}{2} + \epsilon$ 

**Key Advantage:** Fibonacci search uses significantly smaller evaluations of the function than the dyadic search because it re-uses some evaluation points! (see example on the next slide)

**Exercise:** How many evaluations of the function  $\phi$  is required in the Fibonacci search in order to shrink the bracket by a factor of 100? Compare it to the corresponding result of the dyadic search.

# Fibonacci search (under Assumption ★): an example



Consider using Fibonacci search with five function evaluations to minimize  $f(x) = \exp(x-2) - x$  over the interval [a,b] = [-2,6]. The first two function evaluations are made at  $\frac{F_5}{F_6}$  and  $1 - \frac{F_5}{F_6}$ , along the length of the initial bracketing interval:

$$f(x^{(1)}) = f\left(a + (b - a)\left(1 - \frac{F_5}{F_6}\right)\right) = f(1) = -0.632$$
  
$$f(x^{(2)}) = f\left(a + (b - a)\frac{F_5}{F_6}\right) = f(3) = -0.282$$

The evaluation at  $x^{(1)}$  is lower, yielding the new interval [a, b] = [-2, 3]. Two evaluations are needed for the next interval split:

$$x_{\text{left}} = a + (b - a) \left( 1 - \frac{F_4}{F_5} \right) = 0$$
  
 $x_{\text{right}} = a + (b - a) \frac{F_4}{F_5} = 1$ 

A third function evaluation is thus made at  $x_{\text{left}}$ , as  $x_{\text{right}}$  has already been evaluated:

$$f(x^{(3)}) = f(0) = 0.135$$

The evaluation at  $x^{(1)}$  is lower, yielding the new interval [a, b] = [0, 3]. Two evaluations are needed for the next interval split:

$$x_{\text{left}} = a + (b - a) \left( 1 - \frac{F_3}{F_4} \right) = 1$$
 $x_{\text{right}} = a + (b - a) \frac{F_3}{F_4} = 2$ 

A fourth functional evaluation is thus made at  $x_{\text{right}}$ , as  $x_{\text{left}}$  has already been evaluated:

$$f(x^{(4)}) = f(2) = -1$$

The new interval is [a, b] = [1, 3]. A final evaluation is made just next to the center of the interval at  $2 + \epsilon$ , and it is found to have a slightly higher value than f(2). The final interval is  $[1, 2 + \epsilon]$ .

#### **Quadratic fit search**

The method is based on the following observations:

- 'close' to the minima functions look like quadratic functions
- we can explicitly find minima of quadratic functions:

#### Lemma:

There exists a unique parabola that passes through any triple of distinct points  $(a, y_a)$ ,  $(b, y_b)$ ,  $(c, y_c)$ . This parabola has its extremum at

$$x^* = \frac{1}{2} \frac{y_a(b^2 - c^2) + y_b(c^2 - a^2) + y_c(a^2 - b^2)}{y_a(b - c) + y_b(c - a) + y_c(a - b)}$$



 $(a, y_a)$ 









Exercise\*: Show that the algorithm described on the next slide converges to a local minimum (assuming the function is smooth)

### **Quadratic fit search**

#

**given** a triple a < b < c where [a,c] is a bracket of  $\phi$  and  $\phi(b) < \phi(a)$ ,  $\phi(b) < \phi(c)$  repeat



- 2. If  $x^* \in [b, c]$ , then
  - Check which value is larger,  $\phi(x^*)$  or  $\phi(b)$ :
    - i. If  $\phi(b) > \phi(x^*)$ , update the triple (a, b, c) with  $(b, x^*, c)$
    - ii. If  $\phi(b) < \phi(x^*)$ , update the triple (a, b, c) with  $(a, b, x^*)$

#### 3. Otherwise

- Again, check which value is larger,  $\phi(x^*)$  or  $\phi(b)$ :
  - i. If  $\phi(b) > \phi(x^*)$ , update the triple (a, b, c) with  $(a, x^*, b)$
  - ii. If  $\phi(b) < \phi(x^*)$ , update the triple (a, b, c) with  $(x^*, b, c)$

**until** the  $|a-c| < \epsilon$ 



In these examples, parabola at the current step is in orange; parabola at the next step is in blue



That is, when  $x^* \in [a, b)$  because of condition #

Or any other stopping criterion based on variation of the function





#### **Bisection method**

The method is based on the following observations:

- Instead of looking for a local minimum of  $\phi$ , we can look for a solution of  $\phi'=0$
- We assume that  $[\alpha', \alpha'']$  is a bracket for  $\phi$ , and hence there exists a solution of  $\phi'=0$  on this interval

**given** an interval [a,b] such that  $\phi'(a)\cdot\phi'(b)<0$  repeat



- 2. If  $\phi'(a) \cdot \phi'(c) < 0$ , update interval [a, b] with [a, c]
- 3. If  $\phi'(b) \cdot \phi'(c) < 0$ , update interval [a, b] with [c, b]

until 
$$|a - b| < \epsilon$$

• If  $[\alpha', \alpha'']$  doesn't satisfy the condition  $\phi'(\alpha') \cdot \phi'(\alpha'') < 0$ , then one can try iteratively shrink this interval by a constant factor (say 2), until the condition is fulfilled. However, it might not always work (see an example of the function on the left where the bisection method can fail; this is the situation of a local minimum in a 'deep valley'). More sophisticated methods should be used instead.



Exercise: Let  $\phi(x) = \frac{x^2}{2} - x$ . Apply the bisection method to find an interval containing the minimizer of  $\phi$  starting with the interval [0,1000]. Execute 3 steps of the algorithm.

#### minimize<sub> $\alpha$ </sub> $f(\mathbf{x} + \alpha \mathbf{p})$

Consider conducting a line search on  $f(x_1, x_2, x_3) = \sin(x_1x_2) + \exp(x_2 + x_3) - x_3$  from x = [1, 2, 3] in the direction d = [0, -1, -1]. The corresponding optimization problem is:

$$\underset{\alpha}{\text{minimize}} \sin((1+0\alpha)(2-\alpha)) + \exp((2-\alpha) + (3-\alpha)) - (3-\alpha)$$

which simplifies to:

$$\min_{\alpha} \operatorname{sin}(2-\alpha) + \exp(5-2\alpha) + \alpha - 3$$

The minimum is at  $\alpha \approx 3.127$  with  $x \approx [1, -1.126, -0.126]$ .



Find  $\alpha^{(k)}$  so that the value  $f(\mathbf{x}_k + \alpha^{(k)} \boldsymbol{p}^{(k)})$  decreases (not necessarily best possible) and move on with the descent method

For simplicity, 
$$x_k = \mathbf{x}^{(k)}$$
,  $p_k = \boldsymbol{p}^{(k)}$ ,  $\alpha_k = \alpha^{(k)}$ 

We impose the following condition for  $\alpha_k$ 

$$\phi(\alpha_k) := f(x_k + \alpha_k p_k) < f(x_k) + c_1 \alpha_k (\nabla f(x_k))^T p_k, c_1 \in (0, 1).$$

The condition is called (sufficient decrease condition).

#### Remarks.

- $\ell(\alpha_k) := f(x_k) + c_1 \alpha_k \nabla f^T(x_k) p_k$  is a linear function.
- For small values of  $\alpha_k > 0$  we have  $\phi(\alpha_k) < \ell(\alpha_k)$ . This is so because  $c_1 \in (0,1)$  and then

$$\phi'(0) = (\nabla f(x_k))^T p_k < c_1 (\nabla f(x_k))^T p_k = \ell'(0) < 0.$$

Recall: since  $p_k$  is a descent direction, we have  $(\nabla f(\mathbf{x}_k))^T p_k < 0$ 

Sufficient decrease. We ask for a decrease proportional to  $\alpha$  and  $\phi'(0) = (\nabla f(x_k))^T p_k$ . Usually  $c_1 \approx 0.1$ .



Curvature condition. Since the previous condition is always satisfied for small values of  $\alpha_k$  we need to add further conditions for termination. We use the so called curvature condition

$$(\nabla f(x_k + \alpha_k p_k))^T p_k \ge c_2 (\nabla f(x_k))^T p_k, c_2 \in (c_1, 1)$$

In other words if  $\phi'(\alpha_k)$  is not negative enough we terminate the k-step.



### **Wolfe conditions**

Definition. The conditions (together) to terminate the k-step given by

$$f(x_k + \alpha_k p_k) < f(x_k) + c_1 \alpha_k (\nabla f(x_k))^T p_k,$$
  
$$(\nabla f(x_k + \alpha_k p_k))^T p_k \ge c_2 (\nabla f(x_k))^T p_k,$$

with  $0 < c_1 < c_2 < 1$  are usually called Wolfe conditions.

Definition. The conditions (together) to terminate the k-step given by (we do not allow  $\phi'(\alpha_k)$  to be too positive).

$$f(x_k + \alpha_k p_k) < f(x_k) + c_1 \alpha_k (\nabla f(x_k))^T p_k,$$
  
$$|(\nabla f(x_k + \alpha_k p_k))^T p_k| \le |c_2 (\nabla f(x_k))^T p_k|,$$

with  $0 < c_1 < c_2 < 1$  are usually called strong Wolfe conditions.

# **Wolfe conditions**



#### **Wolfe conditions: existence**

Lemma. Suppose  $f: D \subset \mathbb{R}^n \to \mathbb{R}$  be a  $\mathcal{C}^1$  function. Let  $p_k$  a descent direction at the point  $x_k \in D$  and assume  $f|L_{p_k}$  is bounded below where  $L_{p_k} = \{x \in \mathbb{R}^n \mid x = x_k + \alpha p_k, \ \alpha > 0\}$ . Then if  $0 < c_1 < c_2 < 1$  there exist intervals of step lengths satisfying the (strong) Wolfe conditions

Proof. Since  $\ell'(\alpha_k) < 0$  (and constant) there exists a first intersection,  $\hat{\alpha}_k > 0$ , between  $\ell(\alpha_k)$  and  $\phi(\alpha_k)$ :

$$f(x_k + \hat{\alpha}_k p_k) = f(x_k) + c_1 \hat{\alpha}_k (\nabla f(x_k))^T p_k.$$
 (1)

The sufficient decrease condition it is satisfied for all  $\alpha_k \in [0, \hat{\alpha}_k]$ . By the Mean Value Theorem we have that there exists  $\tilde{\alpha}_k \in [0, \hat{\alpha}_k]$  such that

$$f(x_k + \hat{\alpha}_k p_k) - f(x_k) = \hat{\alpha}_k (\nabla f(x_k + \tilde{\alpha}_k p_k))^T p_k$$

All together imply

$$\left(\nabla f\left(x_{k}+\tilde{\alpha}_{k}p_{k}\right)\right)^{T}p_{k}=c_{1}\hat{\alpha}_{k}\left(\nabla f\left(x_{k}\right)\right)^{T}p_{k}>c_{2}\hat{\alpha}_{k}\left(\nabla f\left(x_{k}\right)\right)^{T}p_{k}.$$

Therefore  $\tilde{\alpha}_k$  satisfies the Wolfe conditions and smoothness gives the desired interval.

#### Convergence

Remark. Until this moment we just consider the definition of the process, that is the election of  $p_k$  and  $\alpha_k$ . But we need to study if the process converge to somewhere.

Let  $p_k$  be a descent direction, and let  $\theta_k$  the angle of  $p_k$  and  $-\nabla f(x^*)$ 

$$\cos(\theta_k) = -\frac{1}{||\nabla f(x_k)|| \ ||p_k||} (\nabla f(x_k))^T p_k$$

Theorem. Assume notation above with  $p_k$  a descent direction and  $\alpha_k$  satisfying Wolfe's conditions. Suppose f is  $C^2$  and bounded below in  $\mathbb{R}^n$ . Then

$$\sum_{k=0}^{\infty} \cos^2(\theta_k) ||\nabla f(x_k)|| < \infty.$$
 (2)

#### Convergence

Corollary. Under the above notation and assumptions we have

$$\cos^2(\theta_k)||\nabla f(x_k)|| \to 0$$

Moreover if there exists  $\delta > 0$  such that  $\cos(\theta) > \delta$  then

 $\lim_{k\to\infty} ||\nabla f(x_k)|| = 0 \quad \text{(globally convergent algorithms)}$ 

Remark. The final  $\delta$ -condition basically means that  $p_k$  do not get arbitrarily orthogonal to the gradient vector. This is, for instance, the case of the steepest descent method.

#### Convergence

**Exercise:** Consider the function  $f(x) = x^2$  on [-2,2]. Consider the one-dimensional gradient descent method starting at  $\mathbf{x}_0 = 2$  in the direction

$$p_k = -sign(\mathbf{x}_k)$$

with step

$$\alpha_k = 2 + 3(2^{-k-1}).$$

- 1) Verify that  $p_k$  is indeed a descent direction, that is,  $f(\mathbf{x}_{k+1}) < f(\mathbf{x}_k)$ .
- 2) Perform 5 steps of the descent algorithm.
- 3) Does this descent converge? (*Hint: see picture on the right.*) Justify your argument. What Wolfe conditions are violated?



#### Idea

- Line search methods: find a descent direction → find the next point in this direction
- Trust region methods: find a region 'of possible good steps' → find a point in this region

Usually, we approximate the objective function f with a simpler objective  $\tilde{f}$ .



Potential problem: It might be that the solution  $\tilde{x}^*$  of min  $\tilde{f}(x)$  lies in the region where  $\tilde{f}$  badly approximate f

A solution: restrict the optimization of  $\tilde{f}$  to the region where we **trust** that  $\tilde{f}$  is a good approximation of f

## Idea (cont.)

Typically, near a point a we do the quadratic approximation

$$f(\mathbf{x}) \approx \tilde{f}(\mathbf{x}) = f(\mathbf{a}) + \nabla f(\mathbf{a})^T \cdot (\mathbf{x} - \mathbf{a}) + \frac{1}{2} (\mathbf{x} - \mathbf{a})^T \cdot \nabla^2 f(\mathbf{a}) \cdot (\mathbf{x} - \mathbf{a})$$

At a, f and  $\tilde{f}$  match:  $f(a) = \tilde{f}(a)$ The further we go from a, the worse is the approximation

A trust region might be a ball of radius  $\delta > 0$  centered at  $\boldsymbol{a}$ :

$$\{\mathbf{x} \in \mathbb{R}^n \mid ||\mathbf{x} - \boldsymbol{a}|| \le \delta\}$$



## **Generic algorithm**



given  $\delta$ ,  $\mathbf{x}_1$  and k=0 repeat

- 1.  $k \leftarrow k + 1$
- 2. Find a solution  $\mathbf{x}_k^*$  of the minimization problem  $\tilde{f} \to min$  subject to  $\|\mathbf{x} \mathbf{x}_{k-1}^*\| \le \delta$
- 3. If  $\tilde{f}(\mathbf{x}_k^*) \approx f(\mathbf{x}_k^*)$ , then increase  $\delta$  else descrease  $\delta$

until the required precision is reached

### Trust region subproblem

For example, for 
$$\begin{split} \tilde{f}(\mathbf{x}) &= f(\mathbf{x}_{k-1}^*) + \nabla f(\mathbf{x}_{k-1}^*)^T \cdot (\mathbf{x} - \mathbf{x}_{k-1}^*) + \\ &\frac{1}{2} (\mathbf{x} - \mathbf{x}_{k-1}^*)^T \cdot \nabla^2 f(\mathbf{x}_{k-1}^*) \cdot (\mathbf{x} - \mathbf{x}_{k-1}^*) \end{split}$$

For example: compute the *predictive performance* 

$$\eta = \frac{\text{actual improvement}}{\text{predicted improvment}} = \frac{f(x_{k-1}^*) - f(x_k^*)}{f(x_{k-1}^*) - \tilde{f}(x_k^*)} \in (0,1]$$

- If  $\eta < \eta_1$ , then  $\delta \leftarrow \delta/\gamma_1$ , for  $\gamma_1 > 1$
- If  $\eta > \eta_2$ , then  $\delta \leftarrow \delta \cdot \gamma_2$ , for  $\gamma_2 > 1$

 $\bullet = \tilde{f}(x_{k-1}^*)$ 

# **Example**

The Rosenbrock function  $f(x) = (a - x_1)^2 + b(x_2 - x_1^2)^2$ Global minimum at  $\mathbf{x}^* = (a, a^2)$ 





a = 1, b = 5

## Trust region subproblem

## How to solve?

Fix k and assume  $\mathbf{x}_{k-1}^*$  is given. Let us re-write

$$\tilde{f}(\mathbf{x}) = f(\mathbf{x}_{k-1}^*) + \nabla f(\mathbf{x}_{k-1}^*)^T \cdot (\mathbf{x} - \mathbf{x}_{k-1}^*) + \frac{1}{2} (\mathbf{x} - \mathbf{x}_{k-1}^*)^T \cdot \nabla^2 f(\mathbf{x}_{k-1}^*) \cdot (\mathbf{x} - \mathbf{x}_{k-1}^*)$$

using

$$G_k := \nabla f(\mathbf{x}_{k-1}^*)^T$$
 (gradient),  
 $B_k := \nabla^2 f(\mathbf{x}_{k-1}^*)$  (Hessian),  
 $p_k = \mathbf{x} - \mathbf{x}_{k-1}^*$  (step),  
 $f_k = f(\mathbf{x}_{k-1}^*)$ 

as

$$\mathbf{m}_{k}(p_{k}) = \tilde{\mathbf{f}}(p_{k} + \mathbf{x}_{n-1}^{*}) = f_{k} + G_{k} \cdot p_{k} + \frac{1}{2}p_{k}^{T} \cdot B_{k} \cdot p_{k}.$$

We need to solve

 $m_k(p_k) \to min$ , subject to  $||p_k|| < \delta$ 

## **Trust region subproblem**

# How to solve? (cont.) **Cauchy point**

 $m_k(p_k) \to min$ , subject to  $||p_k|| < \delta$ 

 $m_k(p_k) = f_k + G_k \cdot p_k + \frac{1}{2} p_k^T \cdot B_k \cdot p_k$ 

Define a Cauchy point  $p_k^C$  via the following steps:

1. Find the point  $p_k^{\ell}$  that minimizes the linear part of  $m_k$ :

$$p_k^{\ell} = \arg\min_{p \in \mathbb{R}^n} (f_k + G_k \cdot p), \qquad ||p|| < \delta$$

**Exercise:** Show that 
$$p_k^\ell = -rac{\delta}{\|G_k\|}G_k$$
 .

The point  $p_k^{\ell}$  is a 'poor' approximation, so:

2. Compute the scalar  $\tau_k > 0$  that minimizes  $m_k (\tau_k p_k^\ell)$  subject to the trust region bound:

$$\tau_k = \arg\min_{\tau \in \mathbb{R}} m_k (\tau \, p_k^{\ell}), \qquad \|\tau \, p_k^{\ell}\| < \delta$$

Exercise\*: Show that 
$$\tau_k = \begin{cases} 1, & \text{if } G_k \cdot B_k \cdot G_k^T \leq 0 \\ \min\{1, \hat{\tau}_k\}, & \text{otherwise'} \end{cases}$$

3. Set 
$$p_k^{\mathcal{C}} = \tau_k \; p_k^{\ell}$$

where 
$$\hat{ au}_k = rac{\|G_k\|^3}{\delta \|G_k \cdot B_k \cdot G_k^T}$$
 .





**Exerciese:** Implement 2 steps of Cauchy point search for the Rosenbrock function  $f(x_1, x_2) = (1 - x_1)^2 + 5(x_2 - x_1^2)^2$  starting at (-2, -2) and with the trust regions being balls of radius 0.5 for both steps.

# How to solve? Cauchy point (cont.)

#### **Summary**:

- The Cauchy point is quick to calculate
- It can be shown that the trust region method is globally convergent if its steps  $p_n = \mathbf{x}_n^* \mathbf{x}_{n-1}^*$  attain sufficient reduction in the quadratic approximation
- → The Cauchy point algorithm provides a benchmark against which other methods can be evaluated (such as dog leg method, etc.).

#### **III. Descent direction?**

Definition. We say that  $p_k$  is a descent direction if  $p_k^T \nabla f(\mathbf{x}_k) < 0$ . More generically (in line search methods) we consider

$$p_k = -B_k^{-1} \nabla f(\mathbf{x}_k)$$
 with  $B_k$  positive definite.

Observe that if  $B_k$  is positive definite, so is  $B_k^{-1}$ . Therefore, if  $p_k = -B_k^{-1} \cdot \nabla f(\mathbf{x}_k)$ , then

$$p_k^T \cdot \nabla f(\mathbf{x}_k) = -\left(B_k^{-1} \cdot \nabla f(\mathbf{x}_k)\right)^T \cdot \nabla f(\mathbf{x}_k)$$
$$= -\nabla f(\mathbf{x}_k)^T \cdot \left(B_k^{-1}\right)^T \cdot \nabla f(\mathbf{x}_k) < 0$$

Because  $(B_k^{-1})^T$  is positive definite.



Notation:  $H = \nabla^2 f$ 

- $B_k = Id$  (descent method)
- $B_k = Hf(\mathbf{x}_k)$  (Newton method)
- $B_k \approx Hf(\mathbf{x}_k)$  (quasi Newton method)

(Rate of) Convergence?

## Steepest descent method = descent along inverse gradient

The ideal case. Assume

$$f(x) = \frac{1}{2}x^T Qx - b^T x$$

where Q is symmetric and positive definite. The gradient is given by  $\nabla f(x) = Qx - b$  and so the minimizer  $x^*$  is the (unique) solution of Qx = b. Algorithmically,

$$\min_{\alpha \in \mathbb{R}^+} f\left(x - \alpha_k \nabla f\left(x_k\right)\right) \quad \to \quad \hat{\alpha}_k = \frac{\left(\nabla f\left(x_k\right)\right)^T \nabla f\left(x_k\right)}{\left(\nabla f\left(x_k\right)\right)^T Q \nabla f\left(x_k\right)}$$

where notice that  $\nabla f(x_k) = Qx_k - b$ .

## Steepest descent method

Definition. Accordingly we have that the steepest decent method with exact line searches writes as

$$x_{k+1} = x_k - \hat{\alpha}_k \ \nabla f(x_k)$$

To study the rate of convergence we introduce a weighted norm of a vector  $x \in \mathbb{R}^n$  as follows

$$||x||_Q^2 = x^T Q x$$

Exercise. If 
$$x^T = (x_1, x_2)$$
 and  $Q = (a_{ij})$  with  $i, j = 1, 2$  (symmetric) compute  $||x||_Q^2$ .

## Steepest descent method

Lemma. Assume above notation. We have

$$\frac{1}{2}||x-x^{\star}||_{Q}^{2}=f(x)-f(x^{\star}).$$

Proof. The minimizer  $x^*$  satisfies  $Qx^* = b$ . Then

$$f(x^*) = \frac{1}{2} \left( (x^*)^T Q x^* - 2b^T x^* \right) = \frac{1}{2} \left( (x^*)^T b - 2b^T x^* \right) =$$
$$= -\frac{1}{2} b^T x^* = -\frac{1}{2} (x^*)^T Q x^*.$$

where the last equality uses that  $Q^T = Q$ . Then

$$f(x) - f(x^*) = \frac{1}{2} \left( x^T Q x - 2b^T x + (x^*)^T Q x^* \right) = \frac{1}{2} ||x - x^*||_Q^2$$

since  $b^T x = x^* Q x$ .

## Steepest descent method

Theorem. When the steepest decent method with exact line searches  $(\hat{\alpha}_k)$  is applied to the strongly convex quadratic function above then

$$||x_{k+1} - x^*||_Q^2 \le \left[\frac{\lambda^n - \lambda_1}{\lambda_n + \lambda_1}\right]^2 ||x_k - x^*||_Q^2$$

where  $0 < \lambda_1 \leq \cdots \lambda_n$  are the eigenvalues of Q.

Remark. The convergence of the steepest decent method under the best conditions, is linear.

Definition. Let f twice differentiable. The Newton's method is the line search method defined by

$$p_k = -\left(Hf\left(x_k\right)\right)^{-1} \nabla f\left(x_k\right).$$

Remark. Since  $(Hf(x_k))^{-1}$  might not always be positive definite then Newton's method does not always define a descent method. However near the solutions (minimizers) the convergence is quadratic.

Theorem. Assume f is regular (class  $C^3$  is enough) in a neighbourhood of a solution  $x^*$  (minimum of f) where the sufficient optimality conditions hold.

$$x_{k+1} = x_k + p_k$$

where  $p_k$  is the Newton direction expressed above. Then

- (a)  $x_k \to x^*$ , if  $x_0$  is close enough to  $x^*$ .
- (b) The rate of convergence of  $\{x_k\}_{k\geq 0}$  is quadratic.
- (c)  $||\nabla f(x_k)|| \to 0$  quadratically.

Consider the iteration

Proof: Observe that  $\nabla f(x^*) = 0$  (optimality condition). So,

$$x_{k} + p_{k} - x^{*} = x_{k} - x^{*} - (Hf(x_{k}))^{-1} \nabla f(x_{k}) =$$

$$= (Hf(x_{k}))^{-1} [Hf(x_{k})(x_{k} - x^{*}) - \nabla f(x_{k}) + \nabla f(x^{*})]$$

Observe also that

$$\nabla f(x^{*}) - \nabla f(x_{k}) = \int_{0}^{1} \frac{d}{dt} \nabla f(x_{k} - t(x_{k} - x^{*})) dt =$$

$$= \int_{0}^{1} Hf(x_{k} - t(x_{k} - x^{*})) (x_{k} - x^{*}) dt$$

All together implies (L is the Lipschitz constant for Hf(x))

$$||Hf(x_k)(x_k - x^*) - (\nabla f(x_k) - \nabla f(x^*))|| \le$$

$$\le \int_0^1 ||Hf(x_k) - Hf(x_k - t(x_k - x^*))|| ||x_k - x^*|| dt \le$$

$$\le ||x_k - x^*||^2 \int_0^1 Lt dt = \frac{1}{2}L||x_k - x^*||^2$$

## Proof (cont.): We go back to

$$||x_k + p_k - x^*|| = ||(Hf(x_k))^{-1}|| ||[Hf(x_k)(x_k - x^*) - \nabla f(x_k) + \nabla f(x^*)]||.$$

We bounded red. Using the regularity of f and th fact that  $Hf(x^*)$  is non singular we have

$$||(Hf(x_k))^{-1}|| \le 2 ||(Hf(x^*))^{-1}|| \text{ if } ||x_k - x^*|| < r$$

for some r > 0. Finally

$$||x_{k+1} - x^*|| = ||x_k + p_k - x^*|| = L||(Hf(x_k))^{-1}||||x_k - x^*||^2 \le \hat{L}||x_k - x^*||^2.$$

Choosing  $x_0$  such that  $||x_0 - x^*|| < r$  we can use the inequality inductively to prove (a) and (b). Statement (c) can be proved using similar arguments.

## Rate of convergence: general result

Theorem. Suppose f is regular (class  $C^2$  is enough) Consider the iteration  $x_{k+1} = x_k + \alpha_k p_k$ , where  $p_k$  is a descent direction and  $\alpha_k$  satisfying the Wolfe conditions with  $c_1 \leq 1$ . Assume that the sequence  $\{x_k\}_{k\geq 0}$  converges to a point  $x^*$  such that  $\nabla f(x^*) = 0$ ,  $Hf(x^*)$  is positive definite, and

$$\lim_{k\to\infty}\frac{\left|\left|\nabla f\left(x^{\star}\right)+Hf\left(x^{\star}\right)\left(p_{k}\right)\right|\right|}{\left|\left|p_{k}\right|\right|}=0.$$

Then, the step length  $\alpha_k = 1$  is admissible for k large enough and the convergence is linear.