Домашние задание №4 Григорьев Дмитрий БПМИ-163

Задание 1.

Решение:

• Пусть $x \in X$, тогда орбита x $Gx = \{g \cdot x | g \in G\}$ – это элементы, которые мы можем получить действием G на x.

Пусть
$$g = \begin{pmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{pmatrix}$$
, а $x = \begin{pmatrix} q \\ w \\ e \end{pmatrix}$, где $a, b, c \in \mathbb{R} \setminus \{0\}$ $q, w, e \in \mathbb{R}$ Тогда $g \cdot x = \begin{pmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{pmatrix} \cdot \begin{pmatrix} q \\ w \\ e \end{pmatrix} = \begin{pmatrix} a \cdot q \\ b \cdot w \\ c \cdot e \end{pmatrix}$.

Но q, w или e могут равняться нулю. Тогда все орбиты для действия G на множестве X будут иметь вид:

$$\left\{\begin{pmatrix} a \cdot q \\ b \cdot w \\ c \cdot e \end{pmatrix}\right\}, \left\{\begin{pmatrix} 0 \\ b \cdot w \\ c \cdot e \end{pmatrix}\right\}, \left\{\begin{pmatrix} a \cdot q \\ 0 \\ c \cdot e \end{pmatrix}\right\}, \left\{\begin{pmatrix} a \cdot q \\ b \cdot w \\ 0 \end{pmatrix}\right\}, \left\{\begin{pmatrix} a \cdot q \\ 0 \\ 0 \end{pmatrix}\right\}, \left\{\begin{pmatrix} 0 \\ b \cdot w \\ 0 \end{pmatrix}\right\}, \left\{\begin{pmatrix} 0 \\ 0 \\ c \cdot e \end{pmatrix}\right\}, \left\{\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}\right\}$$

• Пусть $x \in X$, стабилизатор x $St(x) := \{g \in G | g \cdot x = g\}$ – это элементы G, которые не изменяют x при действии.

не изменяют
$$x$$
 при действий. Пусть $g = \begin{pmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{pmatrix}$ — стабилизатор x , а $x = \begin{pmatrix} q \\ w \\ e \end{pmatrix}$, где $a, b, c \in \mathbb{R} \setminus \{0\}$ $q, w, e \in \mathbb{R}$ Тогда $g \cdot x = \begin{pmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{pmatrix} \cdot \begin{pmatrix} q \\ w \\ e \end{pmatrix} = \begin{pmatrix} a \cdot q \\ b \cdot w \\ c \cdot e \end{pmatrix} = \begin{pmatrix} q \\ w \\ e \end{pmatrix}$
$$\begin{cases} aq = q \\ bw = w \\ ce = e \end{cases} \Rightarrow \begin{cases} a = \begin{cases} 1, q \neq 0 \\ a \in \mathbb{R} \setminus \{0\}, q = 0 \\ b \in \mathbb{R} \setminus \{0\}, w = 0 \\ c \in \mathbb{R} \setminus \{0\}, e = 0 \end{cases}$$

Тогда все стабилизаторы для действия G на множестве X будут иметь вид:

$$\left\{ \begin{pmatrix} x & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & z \end{pmatrix} \right\}, \left\{ \begin{pmatrix} 1 & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & z \end{pmatrix} \right\}, \left\{ \begin{pmatrix} x & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & z \end{pmatrix} \right\}, \left\{ \begin{pmatrix} x & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & 1 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} x & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} x & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} x & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} x & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} x & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} x & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} x & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} x & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} x & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} x & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} x & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} x & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} x & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} x & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} x & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} x & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} x & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} x & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} x & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} x & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} x & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} x & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} x & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} x & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} x & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} x & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} x & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} x & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} x & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} x & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} x & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} x & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} x & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} x & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \right\}$$

Задание 2.

Решение:

Пусть
$$x = \begin{pmatrix} a & b \\ 0 & \frac{1}{a} \end{pmatrix}, g = \begin{pmatrix} q & w \\ 0 & \frac{1}{a} \end{pmatrix} \quad x, g \in G$$

$$xgx^{-1} = \begin{pmatrix} a & b \\ 0 & \frac{1}{a} \end{pmatrix} \begin{pmatrix} q & w \\ 0 & \frac{1}{q} \end{pmatrix} \begin{pmatrix} \frac{1}{a} & -b \\ 0 & a \end{pmatrix} = \begin{pmatrix} q & \frac{ab-abq^2+a^2qw}{q} \\ 0 & q \end{pmatrix}$$

- Теперь рассмотрим $\frac{ab-abq^2+a^2qw}{q}=a^2w+ab(\frac{1-q^2}{q})$: $1)w\neq 0, \frac{1-q^2}{1}\neq 0,$ тогда $a^2w+ab(\frac{1-q^2}{q})\in\mathbb{R},$ и мы можем получить любое значение
- $a^{2}w=0, \frac{1-q^{2}}{q}\neq 0$, тогда $a^{2}w+ab(\frac{1-q^{2}}{q})\in\mathbb{R}$, и мы можем получить любое значение
- $(3)w \neq 0, \frac{1-q^2}{q} = 0,$ тогда

если w<0, то $a^2w+ab(\frac{1-q^2}{q})\in\mathbb{R}_-$, и мы можем получить любое значение из \mathbb{R}_- если w>0, то $a^2w+ab(\frac{1-q^2}{q})\in\mathbb{R}_+$, и мы можем получить любое значение из \mathbb{R}_+ $4)w=0, \frac{1-q^2}{q}=0,$ тогда $a^2w+ab(\frac{1-q^2}{q})=0$ Получается, что классы сопряжености будут иметь вид:

$$\begin{cases}
\begin{pmatrix} x & y \\ 0 & \frac{1}{x} \end{pmatrix} \middle| y \in \mathbb{R} \\
\begin{cases} \begin{pmatrix} x & y \\ 0 & \frac{1}{x} \end{pmatrix} \middle| y \in \mathbb{R}_{-} \\
\end{cases} x \in \mathbb{R} \setminus \{-1, 0, 1\},$$

$$\begin{cases} \begin{pmatrix} x & y \\ 0 & \frac{1}{x} \end{pmatrix} \middle| y \in \mathbb{R}_{-} \\
\end{cases} x \in \{-1, 1\},$$

$$\begin{cases} \begin{pmatrix} x & y \\ 0 & \frac{1}{x} \end{pmatrix} \middle| y \in \mathbb{R}_{+} \\
\end{cases} x \in \{-1, 1\},$$

$$\begin{cases} \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \\
\end{cases}, \begin{cases} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \\
\end{cases}$$

Задание 3.

Решение:

$$\sigma = (1, 2, 3, 4) = \begin{pmatrix} 1, 2, 3, 4 \\ 2, 3, 4, 1 \end{pmatrix}$$

Стабилизатор $St(\sigma) = \{s \in S_4 | s \cdot \sigma \cdot s^{-1} = \sigma\}$ – это элементы S_4 , которые не изменяют σ при действиями сопряжениями.

Теперь рассмотрим $s \in St(\sigma)$. Посмотрим как действует сопряжением s: так как $s \cdot \sigma \cdot s^{-1} = \sigma \Rightarrow s \cdot \sigma = \sigma \cdot s$

$$s(\sigma(1)) = \sigma(s(1))$$

$$s(\sigma(2)) = \sigma(s(2))$$

$$s(\sigma(3)) = \sigma(s(3))$$

$$s(\sigma(4)) = \sigma(s(4))$$

$$s(2) = \sigma(s(1))$$

$$s(3) = \sigma(s(2))$$

$$s(4) = \sigma(s(3))$$

$$s(1) = \sigma(s(4))$$

Видно, что s зависит от какого то одного элемента, т.е. зная один элемент s можно получить все остальные элементы. Поэтому можно перебрать какой-либо элемент s. Переберем s(4):

1)
$$s(4) = 1 \Rightarrow s(1) = \sigma(s(4)) = 2 \Rightarrow s(2) = \sigma(s(1)) = 3 \Rightarrow s(3) = \sigma(s(2)) = 4$$

2)
$$s(4) = 2 \Rightarrow s(1) = \sigma(s(4)) = 3 \Rightarrow s(2) = \sigma(s(1)) = 4 \Rightarrow s(3) = \sigma(s(2)) = 1$$

3)
$$s(4) = 3 \Rightarrow s(1) = \sigma(s(4)) = 4 \Rightarrow s(2) = \sigma(s(1)) = 1 \Rightarrow s(3) = \sigma(s(2)) = 2$$

4)
$$s(4) = 4 \Rightarrow s(1) = \sigma(s(4)) = 1 \Rightarrow s(2) = \sigma(s(1)) = 2 \Rightarrow s(3) = \sigma(s(2)) = 3$$

4)
$$s(4) = 4 \Rightarrow s(1) = \sigma(s(4)) = 1 \Rightarrow s(2) = \sigma(s(1)) = 2 \Rightarrow s(3) = \sigma(s(2)) = 3$$
 Получается, что $St(\sigma) = \{ \begin{pmatrix} 1, 2, 3, 4 \\ 2, 3, 4, 1 \end{pmatrix}, \begin{pmatrix} 1, 2, 3, 4 \\ 3, 4, 1, 2 \end{pmatrix}, \begin{pmatrix} 1, 2, 3, 4 \\ 4, 1, 2, 3 \end{pmatrix}, id \}$

Задание 4.

Решение:

Пусть $a \in \mathbb{Z}_k \times \mathbb{Z}_l$, тогда рассмотрим действие a на элемент g = (q, w).

Если a = (0, 1), тогда при действии a на q w меняется по циклу длины l а q не меняется. Тогда четность такой перестановки равна $(-1)^{k(l-1)}$ (так как k циклов длинны l)

Если же a=(1,0), тогда при действии a на q q меняется по циклу длины k а wне меняется. Тогда четность такой перестановки равна $(-1)^{l(k-1)}$ (так как l циклов длинны k)

Если же a = (x, y) тогда этому элементу соответствует перестановка, которая выражается через (1,0) в степени x и через (0,1) в степени y.

Поэтому чтобы перестановка была четной должно выполнятся:

$$\begin{cases} k(l-1) \mod 2 = 0\\ l(k-1) \mod 2 = 0 \end{cases}$$

 $\overrightarrow{\Gamma}$ огда получается, что k и l должны быть одинаковой четности.