2

CLAIMS

What is claimed is:

1	1. A spin valve (SV) sensor comprising:
2	a pinned layer having a pinned layer magnetization;
3	a free layer disposed adjacent the pinned layer, the free layer having a free
4	layer magnetization perpendicular to the pinned layer magnetization in the absence
5	of an external field;
6	a spacer layer disposed between the free layer and the pinned layer;
7	a pinning layer disposed adjacent the pinned layer for fixing the pinned layer
8	magnetization;
9	an underlayer disposed adjacent the pinning layer, the underlayer comprising
10	NiFeX; and
11	an upper layer disposed adjacent the underlayer and the pinning layer, the
12	upper layer comprising a material selected from the group consisting of NiFe and
13	CoFe for increasing a GMR ratio associated with the SV sensor.
1	2. The spin valve sensor as recited in claim 2, wherein the upper layer has a

- 1 3. The spin valve sensor as recited in claim 5, wherein the upper layer has a
- 2 thickness of no more than 20 A.

thickness of at least 4 A.

1 4. The spin valve sensor as recited in claim 1, wherein the upper layer is doped.

- 1 5. The spin valve sensor as recited in claim 1, wherein the underlayer comprises
- NiFeCr.
- 1 6. The spin valve sensor as recited in claim 1, wherein the SV sensor is a
- 2 component of a disk drive system.
- 7. The spin valve sensor as recited in claim 1, wherein the underlayer includes
- 2 40 +/- 5 Atomic % Cr.
- 1 8. The spin valve sensor as recited in claim 1, wherein the pinned layer
- 2 comprises a Ru layer.
- 1 9. The spin valve sensor as recited in claim 8, wherein the pinned layer further
- 2 comprises a first CoFe layer disposed adjacent a first side of the Ru layer and
- a second CoFe layer disposed adjacent a second side of the Ru layer.
- 1 10. The spin valve sensor as recited in claim 1, wherein the free layer comprises
- a NiFe layer.
- 1 11. The spin valve sensor as recited in claim 10, wherein the free layer further
- 2 comprises a CoFe layer disposed adjacent the NiFe layer.

- 1 12. A method of fabricating a spin valve (SV) sensor comprising:
- depositing an underlayer comprising NiFeX;
- depositing an upper layer adjacent the underlayer, the upper layer comprising
- 4 a material selected from the group consisting of NiFe and CoFe for increasing a
- 5 GMR ratio associated with the SV sensor;
- 6 depositing a pinning layer adjacent the upper layer;
- depositing a pinned layer adjacent the pinning layer, the pinned layer having
- 8 a pinned layer magnetization;
- 9 depositing a spacer layer adjacent the pinned layer; and
- depositing a free layer adjacent the pinned layer, the free layer having a free
- layer magnetization perpendicular to the pinned layer magnetization in the absence
- 12 of an external field.
- 1 13. The method as recited in claim 12, wherein the upper layer has a thickness of
- 2 at least 4 A.
- 1 14. The method as recited in claim 13, wherein the upper layer has a thickness of
- 2 no more than 20 A.
- 1 15. The method as recited in claim 12, wherein the upper layer is doped.
- 1 16. The method as recited in claim 12, wherein the underlayer includes NiFeCr.

1	17. A spin valve (SV) sensor comprising:
2	a pinned layer having a pinned layer magnetization;
3	a free layer disposed adjacent the pinned layer, the free layer having a free
4	layer magnetization perpendicular to the pinned layer magnetization in the absence
5	of an external field;
6	a spacer layer disposed between the free layer and the pinned layer;
7	a pinning layer disposed adjacent the pinned layer for fixing the pinned layer
8	magnetization, the pinning layer comprising PtMn;
9	an underlayer disposed adjacent the pinning layer, the underlayer comprising
10	NiFeCr; and
11	an upper layer disposed adjacent the underlayer and the pinning layer, the
12	upper layer comprising CoFe for increasing a GMR ratio associated with the SV
13	sensor.
1	18. A spin valve (SV) sensor comprising:
2	a pinned layer having a pinned layer magnetization;
3	a free layer disposed adjacent the pinned layer, the free layer having a free
4	layer magnetization perpendicular to the pinned layer magnetization in the absence
5	of an external field;
6	a spacer layer disposed between the free layer and the pinned layer;
7	a pinning layer disposed adjacent the pinned layer for fixing the pinned layer

magnetization, the pinning layer comprising PtMn;

13

1

9	an underlayer disposed adjacent the pinning layer, the underlayer comprising
10	NiFeCr; and
11	an upper layer disposed adjacent the underlayer and the pinning layer, the
12	upper layer comprising NiFe for increasing a GMR ratio associated with the SV
13	sensor.
1	19. A spin valve (SV) sensor comprising:
2	a pinned layer having a pinned layer magnetization;
3	a free layer disposed adjacent the pinned layer, the free layer having a free
4	layer magnetization perpendicular to the pinned layer magnetization in the absence
5	of an external field;
6	a pinning layer disposed adjacent the pinned layer for fixing the pinned layer
7	magnetization;
8	an underlayer disposed adjacent the pinning layer, the underlayer comprising
9	NiFeCr; and
10	an upper layer disposed adjacent the underlayer and the pinning layer, the
11	upper layer comprising a material selected from the group consisting of NiFe and
12	CoFe for increasing a GMR ratio associated with the SV sensor;

wherein the upper layer has a thickness between 4 A and 20A.

20. A spin valve (SV) sensor comprising:

2	a pinned layer having a pinned layer magnetization, the pinned layer
3	comprising a Ru layer with a first CoFe layer disposed adjacent a first side of the Ru
4	layer and a second CoFe layer disposed adjacent a second side of the Ru layer;
5	a free layer disposed adjacent the pinned layer, the free layer having a free
6	layer magnetization perpendicular to the pinned layer magnetization in the absence
7	of an external field, the free layer comprising a NiFe layer with a third CoFe layer
8	disposed adjacent thereto;
9	a spacer layer disposed between the free layer and the pinned layer;
10	a pinning layer disposed adjacent the pinned layer for fixing the pinned layer
11	magnetization, the pinning layer comprising PtMn;
12	an underlayer disposed adjacent the pinning layer, the underlayer comprising
13	NiFeCr; and
14	an upper layer disposed adjacent the underlayer and the pinning layer, the
15	upper layer comprising a material selected from the group consisting of NiFe and
16	CoFe for increasing a GMR ratio associated with the SV sensor.
1	21. A disk drive system, comprising:
2	a magnetic recording disk;
3	a spin valve (SV) sensor including:
4	a pinned layer having a pinned layer magnetization;
5	a free layer disposed adjacent the pinned layer, the free layer having a
6	free layer magnetization perpendicular to the pinned layer magnetization in
7	the absence of an external field,

8	a spacer layer disposed between the free layer and the pinned layer,
9	a pinning layer disposed adjacent the pinned layer for fixing the
10	pinned layer magnetization,
11	an underlayer disposed adjacent the pinning layer, the underlayer
12	comprising NiFeX, and
13	an upper layer disposed adjacent the underlayer and the pinning layer,
14	the upper layer comprising a material selected from the group consisting of
15	NiFe and CoFe for increasing a GMR ratio associated with the SV sensor;
16	an actuator for moving the SV sensor across the magnetic recording disk so
17	the SV sensor may access different regions of magnetically recorded data on the
18	magnetic recording disk; and
19	a controller electrically coupled to the SV sensor for detecting changes in
20	resistance of the SV sensor.