

$$\frac{1}{\vec{r}_{1} = (\vec{r} \cdot \vec{\nabla}) \vec{\nabla} / v^{2}}$$

$$\vec{r}_{2} = \vec{r} - \vec{r}_{1}$$

· Janucur mour. not top hopenyer es

KKKK

- Onp. nouomeunc Ocen (x',y') b mes.k I duneus += 0
 - no rpe 20 poisoboune u00 pg u40 T onual boetra

hak :

$$E \stackrel{?}{=} p^{2} c^{2} + w^{2} c^{3}$$

$$X \stackrel{?}{=} p^{2} X^{2} = 1$$

$$X \stackrel{?}{=} \frac{1}{1-13^{2}}$$
(2)

 $\hat{r} - \frac{\langle v \rangle}{v^2} \hat{v} = \hat{r}' - \gamma \left(\frac{\langle v \rangle}{v^2} \hat{v} - v + \right) \quad (4)$

UTO 20: bapamaem vz (4) nopenienn næ och u rody 4 mem:

$$\begin{cases} r = r + (k-1) \frac{(r\bar{v})}{r^{2}} = -x\bar{v} + \\ x = x + (k-1) \frac{r^{2}\bar{v}}{r^{2}} = -x\bar{v} + r_{v}v_{v} \\ v = x + (k-1) \frac{r^{2}\bar{v}}{r^{2}} = v_{x} - x\bar{v} + r_{v}v_{v} \end{cases}$$

Nocae upe 80 pa 30 bennn noug noun aprod pass benne en mony:

$$\begin{pmatrix} x' \\ Y' \\ t \end{pmatrix} = \begin{pmatrix} 1 + (\delta - 1) \left(\frac{\mathcal{V}_{x}}{\mathcal{T}}\right)^{2} & (\delta - 1) \frac{\mathcal{V}_{x}\mathcal{V}_{y}}{\mathcal{V}} - \mathcal{E}\mathcal{V}_{x}/c \end{pmatrix} \begin{pmatrix} x \\ (x - 1) \frac{\mathcal{V}_{x}\mathcal{V}_{y}}{\mathcal{V}^{2}} & 1 + (\delta - 1) \left(\frac{\mathcal{V}_{y}}{\mathcal{V}}\right)^{2} - \mathcal{E}\mathcal{V}_{x}/c \end{pmatrix} \begin{pmatrix} x \\ + \end{pmatrix}$$

a)
$$\delta_{L}^{\beta}\delta_{\beta}^{\beta}\delta_{\lambda}^{\lambda} = \delta_{mat}^{\beta}\delta_{me}^{\beta} = \delta_{mat}^{\beta}\delta_{me}^{\beta} = \delta_{mat}^{\beta}\delta_{me}^{\beta} = \delta_{mat}^{\beta}\delta_{me}^{\delta$$

•
$$\epsilon^{ijk}$$
 $\epsilon_{jk} e = \delta^{i}_{k} \delta^{j}_{j} - \delta^{i}_{j} \delta^{j}_{m} = 2\delta^{i}_{k}$

•
$$\mathcal{E}_{ijk} \, \mathcal{E}^{ijk} = \lambda \cdot \delta_i = 6$$

B)
$$\mathcal{E}_{\mu\nu}g\sigma\mathcal{E}^{\mu\nu}k\lambda$$

$$= \begin{bmatrix} e^{iklm}e_{prst} = \\ & \int_{0}^{i} \int_{0}^{i}$$

• Npobephu:
$$\bar{c} = [\bar{a}, \bar{b}] \iff c_i = \epsilon_{ijk} a^{j} b^{k}$$

N3 coothoneuna (1) marare norguera bapamenne qua noopyuram bentopnoro nponzbe gonas:

$$C = [\bar{\alpha} \times \bar{\beta}] = \int de + G [\bar{\beta} \times \bar{\alpha}] \delta^{j} \bar{e}^{k} = \ell_{ijk} \alpha^{i} \delta^{j} \bar{e}^{k}$$

$$m = \alpha ye : C_{ijk} \alpha^{j} \delta^{k}$$

- o Baucetru, uto 5 p n éijn nu baparoumun oque no npeodo. zowenn noorge omno enmertuo zowenn noopgunet, i.e. oque en more no npeodo. zowenn noopgunet, i.e. oque en more no npeodo. Zowenn noopgunet, i.e. oque en more no
- · d'x=cd+dxdyd2 mbapuanten upa nebonomar, upedoj.

dopenyn n noud - gogenste.

1) retret $\bar{A} = \left[\nabla \times \left[\nabla \times a\right]\right] = \bar{\nabla} \cdot (\nabla \cdot a) - \bar{a} (\bar{\nabla} \cdot \bar{\nabla}) = \underline{qraddiv} \bar{a} - \Delta \bar{a}$ 2) $\underline{rot} [\bar{a}, \bar{b}] = \bar{a} \underline{tiv} \bar{b} - \bar{b} \underline{tiv} \bar{a} - (\bar{a} \cdot \bar{\nabla}) \bar{b} + \underline{b} \cdot \bar{\nabla}) \bar{a}$

3) rot (f. A) = grad. (iv fA- \ fA= grad. (v. |f. A)) - [.f.]. A-f\A=

= [gradf xA]+ SrotA

4) Au Ano gaaro

 $\operatorname{div}(f\bar{A}) = (\operatorname{grad} f \cdot \bar{A}) + f \operatorname{div} \bar{A}$

5) div $[\overline{a},\overline{b}] = [nogern bnaeu (2)] = \overline{b} rota - \overline{a} \cdot rot \overline{b}$

6) grad (ā. b) = [ā r rot b] + [b r rot ā] + rā. \(\overline{\beta} \) \(\overline{\beta} + \overline{\beta} + \overline{\beta} \) \(\overline{\beta} + \overline{\beta} + \overline{\beta} \) \(\overline{\beta} + \overline{\beta} \) \(\overline{\beta} + \overline{\beta} + \overline{\beta} + \overline{\beta} + \

Borneduto:

a) rot
$$(\overline{k}e^{i\overline{k}\overline{r}})=$$
rot $(\overline{k}-e^{i\overline{k}mr_n})^{mn}=$

$$F=k:\overline{e}^i$$

$$F=r_s\overline{e}^i$$

$$= \left[n^{mn} \overline{e}_m \partial_n \left(e^{ik\overline{r}} \right) \times \overline{K} \right] + e^{ik\overline{r}} not k =$$

$$= \left[n^{mn} \overline{e}_m \partial_n \left(e^{ik\overline{r}} \right) \times \overline{K} \right] + e^{ik\overline{r}} not k =$$

$$= \left[n^{mn} \overline{e}_m \partial_n \left(e^{ik\overline{r}} \right) \times \overline{K} \right] + e^{ik\overline{r}} not k =$$

$$= \left[n^{mn} \overline{e}_m \partial_n \left(e^{ik\overline{r}} \right) \times \overline{K} \right] + e^{ik\overline{r}} not k =$$

$$= \left[n^{mn} \overline{e}_m \partial_n \left(e^{ik\overline{r}} \right) \times \overline{K} \right] + e^{ik\overline{r}} not k =$$

H= nmnēn deikpreērēe)
A= nmnēn deikpreērēe)

> XK = nmnēn den den den

Nogemabraa (*) b(2)

muyuaem exbet grad (k.r) = grad (k.r; ēiēi) = k. Sii den ēx

$$\mathcal{F}) \text{ grad } \dot{r} = \left[\varphi = \dot{r}\right] = \eta^{mn} \bar{e}_{n} \partial_{n} \varphi = \eta^{mn} \bar{e}_{n} \partial_{n} \left(\dot{r}\right) = \bar{r} \cdot \hat{g}_{r}(\dot{r})$$