МАТЕМАТИЧЕСКАЯ СТАТИСТИКА Лекция 8

Идея.

Проверить гипотезу Н означает ответить на вопрос, обладает ли неизвестное распределение некоторым свойством.

Главное при ответе на вопрос состоит в том, чтобы НАЙТИ РЕ-ШАЮЩУЮ СТАТИСТИКУ, которая отражала бы в концентрированном виде это свойство, и определить ее распределение, когда гипотеза верна.

Затем определить практически достоверный диапазон ее возможных значений; и если окажется, что наблюдаемое значение не попадает в этот диапазон, то отклонить гипотезу.

Дополнительно хотелось бы, чтобы, когда гипотеза неверна, распределение изменялось бы существенным образом так, чтобы вероятность отклонить H была бы как можно больше.

Критерий Пирсона-это общий метод получить решающую статистику и определить ее распределение.

§ 8. Критерий хи-квадрат Пирсона проверки гипотез 8.1. Простая гипотеза о вероятностях (повтор)

Пусть результатом одного наблюдения могут быть

 $A_1, A_2...A_m$ — m возможных исходов. Обозначим:

 $p_1, p_2...p_m$ — соответствующие истинные (неизвестные) вероятно-

сти,
$$\sum_{i=1}^{m} p_i = 1$$
,

n — число независимых наблюдений при повторении опыта,

 $v_1, v_2 \dots v_m$ — число появлений соответствующих исходов в n опытах,

$$\sum_{i=1}^{m} v_i = n;$$

 p_1^0 , $p_2^0...p_m^0$ — теоретические (гипотетические) значения вероятно-

стей,
$$p_i^0 > 0$$
, $\sum_{i=1}^m p_i^0 = 1$.

Требуется по наблюдениям $v_1, v_2 \dots v_m$ проверить гипотезу H о том, что истинные вероятности p_1, \dots, p_m имеют значения $p_1^0, p_2^0 \dots p_m^0$, т.е.

$$H: p_i = p_i^0$$
, $i=1, 2...m$.

Оценим по наблюдениям $v_1, v_2 \dots v_m$ вероятности $p_1, p_2 \dots p_m$. Пусть $\hat{p}_1 = v_1 / n \dots \hat{p}_m = v_m / n$ — оценки вероятностей. Мерой расхождения между теоретическими (гипотетическими) $p_1^0, p_2^0 \dots p_m^0$ и эмпирическими $\hat{p}_1, \hat{p}_2 \dots \hat{p}_m$ вероятностями принимается величина

$$X^{2} = n \sum_{i=1}^{m} p_{i}^{0} \left(\frac{\widehat{p}_{i} - p_{i}^{0}}{p_{i}^{0}} \right)^{2},$$

которая с точностью до множителя n есть усредненное (при истинности H) значение квадрата относительного отклонения оценок \widehat{p}_i от теоретических значений p_i^0 . Статистика $\mathbf{X^2}$ называется статистикой хи-квадрат Пирсона. Для ее вычисления используются две эквивалентные формулы:

$$X^{2} = \sum_{i=1}^{m} \frac{(v_{i} - np_{i}^{0})^{2}}{np_{i}^{0}} = \sum_{i=1}^{m} \frac{v_{i}^{2}}{np_{i}^{0}} - n$$
 (1)

Поскольку по закону больших чисел $\hat{p}_i \rightarrow p_i$ при $n \rightarrow \infty$, то

если верна
$$H\left(p_i = p_i^0\right)$$
, то $X^2 /_n = \sum_{i=1}^m p_i^0 \left(\frac{\widehat{p}_i - p_i^0}{p_i^0}\right)^2 \to 0$;

если же H неверна, то $X^2/n \to \varepsilon > 0$, и $X^2 = n\varepsilon \to \infty$ при увеличении n.

И потому процедура проверки гипотезы состоит в том, что если величина X^2 принимает «слишком большое, критическое)» значение *h*, т.е.

если
$$X^2 \ge h$$
, то гипотеза H отклоняется. (2)

Если это не так, будем говорить, что «наблюдения не противоречат гипотезе». «наблюдения не противоречат гипотезе»-это не значит, что гипотеза верна.

На вопрос, что означает «слишком большое» значение, отвечает теорема Пирсона.

Теорема К. Пирсона. Если гипотеза H верна и $0 < p_i^0 < 1$, i = 1, 2...m, то при $n \to \infty$ распределение статистики χ^2 асимптотически подчиняется распределению хи-квадрат с (m-1) степенями свободы, т.е.

$$P\{X^2 < x/H\} \rightarrow F_{m-1}(x) \equiv P\{\chi^2_{m-1} < x\}.$$

 $P\{X^2 < x/H\} \to F_{m-1}(x) \equiv P\{\chi^2_{m-1} < x\}.$ Покажем, как возникает распределение хи-квадрат. Рассмотрим частный случай m=2. Действительно, так как $v_2=n-v_1,\ p_2^0=1-p_1^0$ имеем

$$\frac{(v_2 - np_2^0)^2}{np_2^0} = \frac{(v_1 - np_1^0)^2}{n(1 - p_1^0)},$$

и статистика X^2 принимает вид

$$X^{2} = \frac{(v_{1} - np_{1}^{0})^{2}}{np_{1}^{0}} + \frac{(v_{2} - np_{2}^{0})^{2}}{np_{2}^{0}} = \frac{(v_{1} - np_{1}^{0})^{2}}{n} \left(\frac{1}{p_{1}^{0}} + \frac{1}{1 - p_{1}^{0}}\right) = \frac{(v_{1} - np_{1}^{0})^{2}}{np_{1}^{0}(1 - p_{1}^{0})}.$$
 (3)

Если H верна, то v_1 подчиняется биномиальному распределению Bi(n,

$$p_1^0$$
) с параметрами n и p_1^0 , а отношение $\dfrac{v_1-np_1^0}{\sqrt{np_1^0(1-p_1^0)}}$, в силу теоремы

Муавра-Лапласа, асимптотически нормально N(0,1). В правой части (3) имеем квадрат этого отношения, что означает сходимость соответствующего распределения к распределению хи-квадрат с одной степенью свободы.

Для произвольного т теорема доказывается методом полной математической индукции.

Теорема означает, что если гипотеза Н верна, то при достаточно большом n можно считать, что распределение статистики χ^2 подчиняется хи-квадрат распределению.

Порог (критическое значение) h в (2) выберем из условия, что вероятность ошибки первого рода, т.е<mark>. вероятность отклонения</mark> гипотезы, когда она верна, должна быть достаточно малой,

т.е. равной выбираемому значению α — уровню значимости (рис.10):

$$P$$
{отклонить $H|H$ верна}= P { $X^2 ≥ h|H$ } $\cong P$ { $X^2 ≥ h|H$ } $\cong P$ { $X^2 ≥ h$ } = x ,

откуда $h = Q(1 - \alpha, m - 1)$

- квантиль уровня (1 - α) распределения хи-квадрат с (m-1) степенями свободы.

Рис. 10. Выбор критического значения

Не обязательно определять квантиль h по α . Можно немного проще.

Процедуры (2) и (3a) проверки H может быть записана иначе в эквивалентном виде: гипотеза Н отклоняется, если мала вероятность

$$P\{\chi^2_{m-1} \ge X^2\} \le \alpha,\tag{4}$$

 $P\{\chi^2_{m-1} \ge X^2\} \le \alpha$, т.е. вероятность получить значение статистики не меньшее, чем в опыте χ^2 , мала, меньше или равна α . Вероятность слева называется минимальным уровнем значимости, потому что при любом значении α , большем $P\{\chi^2_{m-1} \geq X^2\}$, гипотеза будет отклоняться. Пояснение к (4):

$$X^2 \ge h$$
 \iff $\int_{X^2}^{\infty} p(x)dx \le \alpha = \int_{h}^{\infty} p(x)dx$

Правее h находится вероятность α . Если наблюдаемое значение χ^2 правее h, $X^2 \ge h$, то правее X^2 находится вероятность меньше α (см. рис)

Замечание. Теорему Пирсона можно применять, если n > 50, все наблюдаемые частоты

$$v_i \ge 5, \quad i=1, 2 \dots m$$
 (5a)

и теоретические частоты

$$np_i^0 \ge 10, \quad i=1, 2 \dots m.$$
 (56)

Если (5) не выполняется, необходимо объединять некоторые исходы из множества A_1 , A_2 ... A_m .

Пример. Имеется механизм, который предназначен генерировать случайную величину, принимающую с равными вероятностями p=0,1 значения 0, 1...9. В табл. 3 приведены количества цифр, появившихся в результате n=200 независимых наблюдений.

Табл. 3. Результаты наблюдений

									2	
цифры	0	1	2	3	4	5	6	7	8	9
\boldsymbol{v}_{i}	<mark>35</mark>	16	15	17	17	19	<mark>11</mark>	16	<mark>30</mark>	24
v_i - np_i^0	- 15	- 4	- 5	- 3	- 3	- 1	- 9	- 4	10	4

Каждое значение должно быть в окрестности 20. Есть выделенные наибольшие отклонения: 15 , -9, 10. Не слишком ли они велики для Н? Необходимо проверить гипотезу о том, что каждая цифра появляется с равной вероятностью p=0,1. В этом примере $np_i^0=20$, значение $X^2=[\left(-15\right)^2+(-4)^2+...+(4)^2]/20=\frac{24,9}{24,9}$. Для уровня значимости $\alpha=0,05$ порог n=16,9, т.е.ь n=16,9, т.е.ь n=16,9 весьма моловероятно. Поскольку n=16,9 гипотезу о равных вероятностях следует отклонить. Судя по табличным данным вероятности цифр 0 и 8 превосходят 1/10, а вероятность цифры 6 меньше n=1/10.

Свойство состоятельности критерия. Решающее правило, описанное формулами (2) и (3а), обладает важным свойством состоятельности: если гипотеза Н неверна, то с ростом числа наблюдений оно отклоняет гипотезу с вероятностью, стремящейся к 1. Это свойство выражается следующим соотношением для мощности W(p) критерия (p - истинные вероятности):

$$W(p) \equiv P\{\text{отклонить } H | \overline{H} : p, p \neq p^0\} \xrightarrow[n \to \infty]{} 1.$$

Важную характеристику, мощность W(p), можно определить приближенно, опираясь на следующую теорему.

Теорема (б.д.). Если гипотеза неверна, то при $n \to \infty$ распределение статистики X^2 сходится к распределению $\chi^2_{m-1}(a)$ — нецентраль-

ному хи-квадрат с числом степеней свободы (m-1) и параметром нецентральности a, причем

$$a = n \sum_{i=1}^{m} \frac{(p_i - p_i^0)^2}{p_i^0}.$$

$$X^{2} = \sum_{i=1}^{m} \frac{(v_{i} - np_{i}^{0})^{2}}{np_{i}^{0}}$$

(б/д).

Для запоминания: эта формула получается изосновной (1) заменой наблюдаемых частот v_i на истинные $np_i = Mv_i$.

И потому

$$W(p) = P\{X^2 \ge h | \overline{H} : p, p \ne p^0\} \approx P\{\chi_{m-1}^2(a) \ge h\}$$

Справка о нецентральном распределении хи-квадрат $\chi^2_k(a)$.

Пусть α_1 , $\alpha_2...\alpha_k$ — k штук независимых и нормально распределеных по N(0,1). Составим случайную величину

$$(\alpha_1 + a_1)^2 + (\alpha_2 + a_2)^2 + \dots + (\alpha_k + a_k)^2$$
,

где a_1 , $a_2...a_k$ — произвольные константы. Нетрудно увидеть, что распределение этой случайной величины зависит не от k параметров a_1 , $a_2...a_k$, а только от одного - суммы их квадратов:

$$a = \sum_{i=1}^{k} a_i^2$$

Это означает, что составленную случайную величину можно представить в виде:

$$\chi_k^2(a) = (\alpha_1 + \sqrt{a})^2 + \alpha_2^2 + ... + \alpha_k^2$$
.

Первые два момента получим, вычислив М.О. и дисперсию:

$$M\chi_k^2(a) = k + a$$
, $D\chi_k^2(a) = 2k + 4a$.

При увеличении k, согласно центральной предельной теореме, распределение асимптотически нормально N(k+a, 2k+4a). Если воспользоваться этим приближением, то

для функции мощности приближенно будем иметь

$$W(p) = P\{X^2 \ge h | \overline{H} : p, p \ne p^0\} \approx P\{\chi_{m-1}^2(a) \ge h\} \approx 1 - \Phi\left(\frac{h - (m-1+a)}{\sqrt{2(m-1)+4a}}\right).$$

Т.е. мы можем посчитать, с какой вероятностью процедура отклоняет H, если истинные вероятности равны $p \neq p^0$.

Существует более точное приближение для нецентрального $\chi_k^2(a)$ — **приближение Патнайка**. Оно основано на приближении

$$\chi_k^2(a)$$
 величиной $c\chi_m^2$,

где *с* и *m* подбираются из условий равенства первых двух моментов:

$$k+a=cm$$
, $2k+4a=c^22m$;

результат решения уравнений:

$$c = (k+2a)/(k+a), m = (k+a)^2/(k+2a).$$

Тогда функция распределения приближенно:

$$P\{\chi_k^2(a) < x\} \approx P\{c\chi_m^2 < x\} = P\{\chi_m^2 < x/c\}.$$

8.2. Сложная гипотеза о вероятностях.

Пусть A_1 , $A_2...A_m$ — m исходов некоторого опыта, n — число независимых повторений опыта, v_1 , $v_2...v_m$ — числа появлений исходов. Проверяемая гипотеза H предполагает, что вероятности исходов $P(A_i)$ являются известными функциями $p_i^0(a)$ параметра a (произвольной размерности k: $a = (a_1, a_2...a_k)$), т.е.

H:
$$P(A_i) = p_i^0(a)$$
, $i = 1, 2 ... m$,

но значение а неизвестно.

Пусть \hat{a} — оценка для a, минимизирующая значение статистики X^2 . Определим статистику

$$\tilde{X}^{2} = \min_{a} \sum_{i=1}^{m} \frac{(v_{i} - np_{i}^{0}(a))^{2}}{np_{i}^{0}(a)} = \sum_{i=1}^{m} \frac{(v_{i} - np_{i}^{0}(\widehat{a}))^{2}}{np_{i}^{0}(\widehat{a})}.$$
 (6)

Оказывается справедливой теорема Фишера.

Теорема Фишера. Если H верна, то при $n \to \infty$ распределение статистики \tilde{X}^2 асимптотически подчиняется распределению хиквадрат с числом степеней свободы f=m-1-k, и потому **отклоняем** H, если

$$\tilde{X}^2 \geq h, \tag{7}$$

где $h = Q((1-\alpha), f)$ — квантиль уровня $(1-\alpha)$ распределения хиквадрат с числом степеней свободы f. Такой порог обеспечивает выбранный уровень α вероятности P (отклонить H / H) ошибки первого рода. Если (7) не выполняется, делаем вывод, что **наблюдения не противоречат гипотезе**.

Важное замечание. Распределению хи-квадрат с f = m - 1 - k степенями свободы асимптотически подчиняется также статистика (6), если вместо оценок \hat{a} по минимуму \hat{X}^2 используется a^* — оценка максимального правдоподобия для a.

Процедура (7) может быть записана иначе. Определяем по таблицам $P\{\chi_f^2 \geq \widetilde{X}^2\}$, и если

$$P\{\chi_f^2 \geq \widetilde{X}^2\} \leq \alpha ,$$
 (8)

то гипотеза *H* отклоняется. Иначе «не отклоняется»

8.3. Критерий хи-квадрат при полностью определенном гипотетическом распределении.

Пусть по выборке ξ_1 , $\xi_2...\xi_n$ требуется проверить гипотезу H о том, что функция распределения случайной величины ξ равна F(x). Разобьем диапазон значений случайной величины ξ на m промежутков E_1 , $E_2...E_m$ без общих точек (рис. 11). Такое разбиение осуществляется числами b_1 , $b_2...$ b_{m-1} . При этом правый конец каждого промежутка исключается из соответствующего промежутка, а левый — включается. Обозначим через A_i событие «попадание наблюдения в E_i »:

$$A_i = \{\xi \in E_i\}, i = 1, 2...m.$$

Обозначим через $p_i^0 = P\{A_i\} = P\{\xi \in E_i\}, i = 1, 2...m$. Эти вероятности мы

можем определить, т.к. F(x) известна. Пусть v_i — число элементов выборки, попавших в E_i . Если верна H, то $P\{A_i\} = p_i^0$ - гипотетические вер-ти

Рис. 11. Разбиение множества значений

СВ

Таким образом, требуется проверить гипотезу о вероятностях p_1^0 , p_2^0 ... p_m^0 по наблюдениям v_1 , v_2 ... v_m . Задача сведена к задаче раздела 8.1.

Как выбрать разбиение на промеюутки, их количество и конкретные точки?

Обычно промежутки выбирают так, чтобы вероятности были одинаковы и равны

$$\rho_i^0 = 1/m$$

причем, чтобы

$$np_i^0 = n \ / \ m \ge 10$$
 , то есть $m \le n/10$,

однако, слишком малые значения m нежелательны, так как статистика не будет реагировать на изменение распределения внутри интервала. При равных вероятностях $p_i^0 = 1/m$ точки b_1 , b_2 ... b_{m-1} деления, есть квантили

$$b_i = Q(i/m)$$
 уровня i/m , $i = 1, 2...m$

8.4. Гипотеза о типе распределения

Пусть требуется проверить гипотезу о том, что выборка ξ_1 , $\xi_2...\xi_n$ извлечена из совокупности, распределенной по некоторому закону, известному с точностью до параметров $a=(a_1,a_2...a_k)$, значения которых неизвестны, с функцией распределения F(x;a) (например, требуется проверить гипотезу о нормальности или о пуассоновости).

Разобьем, аналогично разделу 8.3, диапазон значений с.в. ξ на m промежутков E_1 , $E_2...E_m$ без общих точек. Определяем вероятности попадания наблюдения в E_i :

$$P\{\xi \in E_i\} = P\{A_i\} = \rho_i^0(a), i = 1, 2...m.$$

они являются вполне конкретными функциями параметров, и возникает сложная гипотеза о вероятностях (см. раздел 8.2).

Итак, наши действия таковы:

- 1. Получим значение оценки a^* методом максимального правдоподобия (или по минимуму X^2).
- 2. Разобьем весь диапазон наблюдений на *т* интервалов.
- 3. Определяем вероятности $p_i^0(a^*)$ или $p_i^0(\hat{a})$ попадания в *i*-й интервал.
- 4. Определяем значения v_i (число наблюдений в i-м интервале).
- 5. Вычисляем \tilde{X}^2 по (6) и принимаем решение по (7).

8.5. Проверка независимости бинарных признаков (таблица 2×2)

Пусть имеется n объектов, выбранных случайно из большой совокупности. Каждый объект характеризуется двумя признаками, которые могут или присутствовать, или отсутствовать в каждом из объектов. Возникает вопрос, имеется ли связь между этими признаками. Например, влияет ли форма собственности на рентабельность производства (A— частная собственность, A— общественная собственность, B — рентабельно, B — нерентабельно), влияет ли курение на легочные заболевания и т.д.?

Проверяется гипотеза H о независимости признаков A и B. Если обозначить $p_{\rm A}={\rm P}\{{\rm A}\}\,,\;\;p_{\rm B}={\rm P}\{{\rm B}\}\,,\;$ то гипотеза о независимости сводится к следующему: $H: \qquad {\rm P}\{{\rm AB}\}=p_{\rm A}p_{\rm B}\,, \eqno(9)$

т. е. вероятность встретить сочетание признаков A и B равна произведению вероятностей встретить A и встретить B. В результате анализа на присутствие признаков могут появиться события

$$AB$$
, $A\overline{B}$, $\overline{A}B$, $\overline{A}\overline{B}$.

Пусть эти комбинации появились соответственно:

$$v_1$$
, v_2 , v_3 , v_4

число раз.

Гипотеза о независимости *A* и *B* сводится к гипотезе о том, что вероятности этих событий

$$p_1^0 = {\color{red}p_A p_B}, \quad p_2^0 = {\color{red}p_A (1 - p_B)}, \quad p_3^0 = {\color{red}(1 - p_A) p_B}, \quad p_4^0 = {\color{red}(1 - p_A) (1 - p_B)}$$
 соответственно. Вероятности ${\color{red}p_A}$ и ${\color{red}p_B}$ — два неизвестных параметра.

Образуем случайную величину X^2 , зависящую от неизвестных параметров:

$$X^{2}(v_{1}, v_{2}, v_{3}, v_{4}, p_{A}, p_{B}) = \sum_{i=1}^{4} \frac{(v_{i} - np_{i}^{0}(p_{A}, p_{B}))^{2}}{np_{i}^{0}(p_{A}, p_{B})}$$

Решив задачу на минимум X^2 по $p_{\scriptscriptstyle A}$ и $p_{\scriptscriptstyle B}$, найдем оценки, которые получатся такими, как мы ожидаем:

$$\hat{p}_A = \frac{v_1 + v_2}{n}, \ \hat{p}_B = \frac{v_1 + v_3}{n}$$

$$|\tilde{X}^2 = X^2(v_1, v_2, v_3, v_4, \hat{p}_A, \hat{p}_B)|$$

Подставив $\hat{p}_{_A}$ и $\hat{p}_{_B}$ в X^2 получим: $\tilde{X}^2 = X^2(\mathbf{v}_{_1},\mathbf{v}_{_2},\mathbf{v}_{_3},\mathbf{v}_{_4},\hat{p}_{_A},\hat{p}_{_B}).$ При истинности H статистика \tilde{X}^2 асимптотически распределена по $\chi^2_{4-2-1} = \chi^2_1$ — хи-квадрат с одной (4-1-2=1) степенью свободы . Пусть задано α . Из условия $\alpha = P\{\tilde{X}^2 > h\} \approx P\{\chi^2 > h\}$ находим порог h. Итак, если $\tilde{X}^2 \ge h$, то гипотезу H отклоняем.

Приведем окончательные рабочие формулы. Для этого представим данные в следующей таблице 2×2:

		A	\overline{A}	
	В	ν_{11}	v_{12}	$v_{1\bullet} = v_{11} + v_{12}$
Ī	B	ν_{21}	ν_{22}	$v_{2\bullet} = v_{21} + v_{22}$
		$v_{\bullet 1} = v_{11} + v_{21}$	$\mathbf{v}_{\bullet 2} = \mathbf{v}_{12} + \mathbf{v}_{22}$	n

Если провести необходимые выкладки, получим следующую формулу:

$$\tilde{X}^{2} \equiv n \frac{\left(v_{11} v_{22} - v_{12} v_{21}\right)^{2}}{v_{.1} v_{.2} v_{..} v_{2.}},$$
(10)

где в круглых скобках в числителе стоит квадрат определителя матрицы, а в знаменателе — произведение частных сумм (точка в обозначениях — суммирование по соответствующему индексу).

Пример. Медики испытывали очередную противогриппозную сыворотку на некоторой группе из 25 человек, 5 из которых не приняли сыворотку, 20 приняли. Из 5 человек, не принявших сыворотку, заболели 4, т.е. почти все, из 20 принявших заболели только 6 человек (это реальные данные по одному из магазинов в Москве, из публикации 60-х годов). Медики сделали вывод о том, что получили подтверждение действенности сыворотки. Однако, проверим

гипотезу **Н о бесполезности сыворотки, т.е. о независи**мости признаков Б (заболеваемость) и С (принятие сы-<mark>воротки</mark>).

Исходные данные записаны в таблице.

	6	$\overline{\mathbf{b}}$	Σ
C	6	14	20
C	4	1	5
Σ	10	15	25

Примечание [МА1]: Поправить в скобках v_1 , v_2 , v_3 , v_4

Вычисляем значение статистики по формуле (10):

$$\tilde{X}^2 = 25 \frac{(6 \cdot 1 - 14 \cdot 4)^2}{20 \cdot 5 \cdot 10 \cdot 15} = \frac{50^2}{600} = 4 \frac{1}{6}$$
.

Много это или мало?

Какую вероятность α ошибки мы можем допустить, если:

$$\alpha = P\{\text{откл. } H \mid H \text{ верна}\} = \frac{P\{\text{сыв. хор.} \mid \text{сыв. бесполезна }\}?}{P\{\text{сыв. хор.} \mid \text{сыв. бесполезна }\}?}$$

Если такая ошибка произойдёт, то сотни тысяч людей останутся без медицинской помощи. В этой медицинской ситуации, связанной со здоровьем тысяч людей, значение $\alpha = 0,05$ слишком велико. Возможно, подходит $\alpha = 0,003$. Соответствующий порог $h = Q((1 - \alpha), 1) = Q(0,97, 1) = 3^2 = 9$, и мы имеем $\tilde{X}^2 < h$, так что приходится сделать вывод, что

наблюдения не противоречат гипотезе о бесполезности сыворотки.

8.6. Обобщение. Проверка гипотезы о независимости признаков (таблица сопряженности признаков)

Предположим, имеется большая совокупность объектов, каждый из которых обладает двумя признаками A и B. Признак A имеет m уровней: A_1 , A_2 ... A_m , а признак B — k уровней: B_1 , B_2 ... B_k . Пусть уровень A_i встречается с вероятностью $P(A_i)$, а уровень B_j — с вероятностью $P(B_i)$. Независимость признаков A и B означает, что

$$P(A_i B_i) = P(A_i) \cdot P(B_i), i = 1, 2...m, j = 1, 2...k,$$

т.е. вероятность встретить комбинацию A_iB_j равна произведению вероятностей. Пусть признаки определены на n объектах, случайно извлеченных из совокупности; v_{ij} — число объектов, имеющих комбина-

цию
$$A_i B_j$$
, $\sum_{i=1}^m \sum_{j=1}^k v_{ij} = n$.

По совокупности наблюдений $\{v_{ij}\}$ (таблица $m \times k$) требуется проверить гипотезу H о независимости признаков A и B. Задача сводится к случаю с неизвестными параметрами, которыми являются вероятности

$$P(A_i), i = 1, 2...m$$
 и $P(B_j), j = 1, 2...k$

всего (m-1) + (k-1). Оценки этих вероятностей

$$\widehat{P}(A_i) = \frac{1}{n} \sum_{i=1}^k v_{ij} \equiv \frac{v_{i\bullet}}{n}, \qquad \widehat{P}(B_j) = \frac{1}{n} \sum_{i=1}^m v_{ij} \equiv \frac{v_{\bullet j}}{n}$$

(точка в обозначениях — суммирование по соответствующему индексу) и статистика (8) принимает вид:

$$\tilde{X}^{2} = \sum_{i=1}^{m} \sum_{j=1}^{k} \frac{v_{ij}^{2}}{n \hat{P}(A_{i}) \hat{P}(B_{j})} - n = n \left(\sum_{i=1}^{m} \sum_{j=1}^{k} \frac{v_{ij}^{2}}{v_{i,} v_{,j}} - 1 \right).$$
(11)

Если гипотеза H верна, то по теореме Фишера статистика \widetilde{X}^2 асимптотически распределена по закону хи-квадрат с числом степеней свободы

$$f = mk - 1 - (m - 1) - (k - 1) = (m - 1)(k - 1),$$

и потому, если

$$P\{\chi_f^2 \ge \tilde{X}^2\} \le \alpha,\tag{12}$$

то гипотезу о независимости признаков следует отклонить.

Ясно, что по (11), (12) можно проверять независимость двух случайных величин, разбив диапазоны их значений на *m* и *k* частей.