Devoir maison n°4: Méthode de Newton

Jules Charlier, Thomas Diot, Pierre Gallois, Jim Garnier TE1

Partie A - Description de la méthode de Newton

1) D'une part on sait que la fonction f est dérivable donc continue sur [a,b] et qu'elle y est strictement monotone car f' strictement négative. D'autre part, on dispose de f(a) > 0 et de f(b) < 0.

Ainsi, d'après le corollaire du Théorème des Valeurs Intermédiaires, il existe un unique $\alpha \in [a,b]$ tel que $f(\alpha)=0$.

2) a) Soit $u \in [a,b]$. On note τ_u la tangente à la courbe représentative de f au point d'abscisse u.

Ainsi, l'équation de τ_u est donnée par : y = f'(u)(x-u) + f(u)

Or
$$y = 0 \Leftrightarrow x = u - \frac{f(u)}{f'(u)}$$
.

Par conséquent, τ_u coupe donc l'axe des abscisses au point d'abscisse $u-\frac{f(u)}{f'(u)}$.

b) Considérons maintenant la fonction g définie sur [a,b] par $g:x\longmapsto x-\frac{f(x)}{f'(x)}$ et la suite $(x_n)_{n\in\mathbb{N}}$ par $x_0=a$ et $x_{n+1}=g(x_n)$.

Cette suite se construit donc de la manière suivante : on part du point d'abscisse x_n sur la courbe représentative de f, on trace la tangente à cette courbe en ce point, puis on reporte l'intersection de cette tangente avec l'axe des abscisses pour obtenir le point d'abscisse x_{n+1} .

¹Schémas générés automatiquement pour n'importe quelle fonction. (programme dans le code source du DM, cf Github).

3)

a) La fonction g est dérivable sur [a,b] par composition de fonctions dérivables, dont f' qui ne s'y annule pas, et pour tout $x \in [a,b]$, on a : $g'(x) = \frac{f(x)f''(x)}{(f'(x))^2}$

Ainsi, g' de même signe que f sur [a,b] et donc g est strictement croissante sur $[a,\alpha]$ et strictement décroissante sur $[\alpha,b]$.

- **b)** Montrons que pour tout $n \in \mathbb{N}$, $a \leqslant x_n \leqslant b$ en procédant par récurrence :
- Initialisation : $x_0 = a \text{ donc } a \leqslant x_0 \leqslant b$.
- Hérédité : Soit $n \in \mathbb{N}$, supposons que $a \leqslant x_n \leqslant b$.
 - Si $x_n=\alpha$, alors $x_{n+1}=g(x_n)=g(\alpha)=\alpha$ donc $a\leqslant x_{n+1}\leqslant b.$
 - Si $x_n < \alpha$, alors par croissance de g sur $[a,\alpha]$, on a $g(a) \leqslant g(x_n) \leqslant g(\alpha) = \alpha$. Or $a \leqslant g(a) \leqslant \alpha$ par l'hypothèse de récurrence, donc $a \leqslant x_{n+1} \leqslant b$.
 - Si $x_n > \alpha$, alors par décroissance de g sur $[\alpha, b]$, on a $g(b) \geqslant g(x_n) \geqslant g(\alpha) = \alpha$. Or $b \geqslant g(b) \geqslant \alpha$ par l'hypothèse de récurrence, donc $a \leqslant x_{n+1} \leqslant b$.

Par conséquent, on en déduit que pour tout $n \in \mathbb{N}, a \leqslant x_n \leqslant b$.

4)

a)

b)

Partie B - Vitesse de convergeance

Partie C - Algorithmes

1)

2)

3)

Tentons maintenant de simplifier et d'optimiser ce code :

```
f = lambda x: x**3 - 2

def newton(f, x, h=le-4, epsilon=le-6):
    while abs(y := f(x)) > epsilon:
        derivee = (f(x + h) - f(x - h)) / (2 * h)
        x -= (y / derivee)
    return x
```

Pour aller encore plus loin dans la simplification, changeons de language pour Haskell :

```
f :: (Num r) => r -> r
f x = x^3 - 2
derivee f x h = (f (x + h) - f (x - h)) / (2*h)
newton f h e x =
    if (abs.f) x > e
    then newton f h e (x - (f(x) / (derivee f x h)))
    else x
main :: IO ()
main = do
    let initialGuess = 1.0 -- Initial guess for the root
        h = 1e-4
                           -- Small step for derivative approximation
                            -- Tolerance level for convergence
        e = 1e-6
        root = newton f h e initialGuess
    putStrLn $ "Root found: " ++ show root
```