Varianta 86

Subiectul I.

- **a)** $A, C \in (d)$, iar $B \notin (d)$.
- **b**) $S_{ABC} = 1$.
- c) Perimetrul triunghiului *ABC* este $P = 1 + 2\sqrt{2} + \sqrt{13}$.
- **d**) $\frac{2\sqrt{13}}{13}$
- e) $\overrightarrow{AB} \cdot \overrightarrow{AC} = 10$.
- **f**) $m = \frac{2}{3}$ și $n = \frac{5}{3}$.

Subjectul II.

- 1
- a) Probabilitatea căutată este $p = \frac{1}{5}$.
- **b)** Soluțiile din \mathbf{Z}_4 ale ecuției sunt $\hat{2}$ și $\hat{3}$.
- c) $\det(A) = -1$.
- **d**) $\log_2 3 = \frac{\ln 3}{\ln 2} = \frac{a}{b}$.
- e) Calcul direct.
- 2
- a) $f'(x) = 2x 2^{-x} \ln 2$, $\forall x \in \mathbf{R}$.
- **b)** $\int_{0}^{1} f(x) dx = \frac{1}{3} + \frac{1}{2 \ln 2}$.
- c) f''(x) > 0, $\forall x \in \mathbf{R}$, deci f este convexă pe \mathbf{R} .
- **d**) $\lim_{x \to 1} \frac{f(x) f(1)}{x 1} = 2 \frac{\ln 2}{2}$.
- e) $\int_{0}^{1} \frac{x^{2}}{x^{3} + 13} dx = \frac{1}{3} \cdot \ln \frac{14}{13}.$

Subjectul III.

- $\mathbf{a}) \quad A^2 = \begin{pmatrix} 0 & 0 & 3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$
- b) Calcul direct.

- c) Deoarece $A^3 = O_3$ și matricele A și I_3 comută, avem : $I_3 = I_2 + A^3 = (I_3 + A)(I_3 A + A^2)$.
- **d**) Din punctul **c**) obținem că $(I_3 + A)^{-1} = I_3 A + A^2$.
- e) Pentru $B = A^2 \neq O_3$, avem că $A \cdot B = O_3$.
- f) Pentru orice $z \in \mathbb{C}$ și $n \in \mathbb{N}^*$, avem $\det(X) = 1$, deci matricea X e inversabilă.
- g) Din ipoteză, pentru orice $z \in \mathbb{C}$ avem $\det(I_3 + zB) = 1$.

Pentru
$$z \in \mathbb{C}^*$$
, $1 = \frac{1}{z^3} \cdot \det(z \cdot I_3 + B)$.

Aşadar, pentru orice
$$\forall z \in \mathbf{C}^*$$
, $\det(z \cdot I_3 + B) = z^3$. Cum $-z \in \mathbf{C}^*$, obţinem $\forall z \in \mathbf{C}^*$, $f(z) = \det(B - z \cdot I_3) = -z^3$ şi apoi $\forall z \in \mathbf{C}$, $f(z) = \det(B - z \cdot I_3) = -z^3$. Obţinem că $f(B) = -B^3$ şi apoi $B^3 = O_3$.

Subjectul IV.

a)
$$f'(x) = \frac{1}{x^2 + 1}$$
, $\forall x \in \mathbf{R}$.

- b) Calcul direct.
- c) Deoarece g'(x)=0, $\forall x \in \mathbf{R}$, rezultă că există $k \in \mathbf{R}$ astfel încât g(x)=k, $\forall x \in \mathbf{R}$. Obținem k=g(0)=0, deci g(x)=0, $\forall x \in \mathbf{R}$.
- d) Calcul direct.

e)
$$\lim_{x \to \infty} \left(\operatorname{arctg} (x+1) - \operatorname{arctg} x \right) \stackrel{e)}{=} \lim_{x \to \infty} \left(\operatorname{arctg} \frac{1}{1+x+x^2} \right) = \operatorname{arctg} 0 = 0.$$

f)
$$a_n = \sum_{k=1}^n \arctan \frac{1}{1+k+k^2} = \sum_{k=1}^n (\arctan (k+1) - \arctan k) = \arctan (n+1) - \arctan 1$$
,

deci
$$a_n = \operatorname{arctg}(n+1) - \frac{\pi}{4}, \ \forall n \in \mathbb{N}^*.$$

g)
$$\lim_{n \to \infty} \left(\arctan \frac{1}{1+1+1^2} + \arctan \frac{1}{1+2+2^2} + \dots + \arctan \frac{1}{1+n+n^2} \right) = \lim_{n \to \infty} a_n \stackrel{\text{f}}{=}$$

$$= \lim_{n \to \infty} \left(\arctan\left(n+1\right) - \frac{\pi}{4} \right) = \frac{\pi}{4}.$$