

Cadence Virtuoso LAB (3) Report

By: Magdy Ahmed Abbas Abdelhamid

Analog IC Design

4

Contents: -

• Part 1: Sizing Chart

✓ Specifications Achievement: (10 Points)

- o P1: V*& Intrinsic Gain Definitions Real and Square law MOSFET.
- o P2: Specs Declaration (L, V*, Current and Supply Voltage).
- \circ P3: The Last variable in the design is to calculate W = 10 μ m.
- P4: Sweeping V_{GS} and set $V_{DS} = \frac{V_{DD}}{2}$
- o P5: $V^* = \frac{2I_D}{g_m} \& V_{ov} = V_{GS} V_{TH}$ on Calculator.
- P6: Plot V* and Vov Overlaid Vs VGS.
- o P7: On the V^* & V_{ov} Chart Locate V_Q^* Find V_{ov_Q} and V_{GS_Q} .
- \circ P8: Plot I_D , g_m , and g_{ds} Vs V_{GS} Find I_{D_X} , g_{m_X} & g_{ds_X} @ V_{GS_Q} .
- o P9: Cross Multiplication Technique to get the required value of W.
- P10: Get the required value of g_{mQ} & g_{dsQ}.

• Part 2: Cascode Amplifier For Gain

✓ Op Analysis (10 Questions)

- \circ Q1: Create a new cell and schematic $I_B = 20$ μA, L = 0.5 μm, $C_L = 1$ pF, $W_{part 1}$.
- Q2: Choose V_B @ $V_{DS} \approx V^* + 100 \text{ mV}$.
- o Q3: feedback loop and resistors with different resistances DC/AC.
- o Q4: Simulate the DC OP point of CS and cascode amplifiers.
- o Q5: Check that all transistors operate in saturation.
- \circ Q6: Do all transistors have the same V_{th} ? Why?
- Q7: What is the relation ($\langle \langle , \langle , =, \rangle, \rangle \rangle$) between g_m and g_{ds} ?
- Q8: What is the relation (\ll , <, =, >, \gg) between g_m and g_{mb} ?
- Q9: What is the relation ($\langle \langle , \langle , =, \rangle, \rangle \rangle$) between c_{gs} and c_{gd} ?
- o Q10: What is the relation ($\langle \langle , \langle , =, \rangle, \rangle \rangle$) between c_{sb} and c_{db} ?

✓ AC Analysis (6 Questions)

- o Q1: Create a new simulation configuration.
- o Q2: Use calculator to create parameters (DC gain, BW, GBW, UGF).
- o Q3: Report the Bode plot (magnitude) of CS and cascode.
- o Q4: hand analysis to calculate (DC gain, BW, GBW, UGF).
- o Q5: Report a table comparing the (DC gain, BW, GBW, UGF).
- o Q6: Comment on the results.

CASCODE AMPLIFIER

SIZING CHART

P1: Intrinsic Gain of a MOSFET.

→ Square Law.

$$|\mathbf{A_{v_o}}| \approx \mathbf{g_m} \mathbf{r_o} = \frac{2\mathbf{I_D}}{\mathbf{V_{ov}}} \times \frac{\mathbf{V_A}}{\mathbf{I_D}} = \frac{2\mathbf{V_A}}{\mathbf{V_{ov}}} \rightarrow \mathbf{We} \ \mathbf{used} \ \mathbf{g_m} = \frac{2\mathbf{I_D}}{\mathbf{V_{ov}}}, \mathbf{V_{ov}} = \frac{2\mathbf{I_D}}{\mathbf{g_m}}$$

$$V^* = V_{ov}$$

 \rightarrow For Real MOSFET.

$$V_{ov} \neq \frac{2I_D}{g_m} \rightarrow Define~V^* = \frac{2I_D}{g_m} \Leftrightarrow g_m = \frac{2I_D}{V^*} \text{ , } \left|A_{v_o}\right| \approx \frac{2V_A}{V^*}$$

P2: Specs (Specifications)

We want to design CS and cascode amplifiers with the parameters below.

Parameters	0. 18 μm CMOS
L	0. 5 μm
\mathbf{V}^*	160 mV
Supply (V _{DD})	1.8 V
Current Consumption (ID)	15 μΑ.

P3:

The remaining variable in the design is to calculate W.

Since the square-law is not accurate, we cannot use it to determine the sizing. Instead, we will use a sizing chart generated from simulation.

Create a testbench for NMOS transistor as shown below (we will use NMOS only in this lab). Use $W=10~\mu m$ (we will understand why shortly) and $L=0.5~\mu m$ (the same L selected before).

Schematic

Sweep V_{GS} from 0 to $\approx V_{TH} + 0.4V = 0.8$ with 10 mV step. Set $V_{DS} = \frac{V_{DD}}{2}$.

 $V_{DC} = \frac{V_{DD}}{2} = V_{CM_O} = V_{DS}$

P4

DC Analysis

Save DC Operating Point

We want to compare $V^* = \frac{2I_D}{g_m}$ and $V_{ov} = V_{GS} - V_{TH}$ by plotting them overlaid. Use the calculator to create expressions for V^* and Vov.

$$V_{ov} = V_{GS} - V_{th}$$
 $V^* = \frac{2I_D}{g_m}$
 $V^* = \frac{2I_D}{g_m}$
 $V^* = \frac{2I_D}{g_m}$
 $V^* = \frac{2I_D}{g_m}$

P5

Output Setup

Plot V* and V_{ov} Overlaid vs V_{GS} Y-axis of Both Curves Has Same Range

P6

We will notice that at the beginning of the strong inversion region, V^* and V_{ov} are relatively close to each other (i.e., square law is relatively valid). For deep strong inversion (large V_{ov} : velocity saturation and mobility degradation) or weak inversion (near-threshold and subthreshold operation) the behavior is quite far from the square law.

Plot g_{ds} vs V_{GS} . Find its Values at V_{GS_0}

P8

$$@V_{GS_Q} = 601.209 \; mV \rightarrow g_{ds_X} = 7.3196 \; \mu S \rightarrow r_o = \frac{1}{g_{ds_X}} = 136.62 \; k\Omega$$

Now back to the assumption that we made that $W=10\mu m$. This is not the actual value that we will use for our design. But the good news is that I_D is always proportional to W irrespective of the operating region and the model of the MOSFET (regardless square – law is valid or not). Thus, we can use ratio and proportion (cross-multiplication) to determine the correct width at which the current will be $I_{D_Q}=15~\mu A$ as given in the specs.

Calculate W as shown below.

P9

W	I _D	
$W_{assumed} = 10 \mu m$	I _{Dx} @ V _Q * (From The Chart)	
$W_{required} = ?$	$I_{D_Q} = 15 \mu A \text{ (From The Specs)}$	

W	$I_{\mathbf{D}}$		
$W_{assumed} = 10 \mu m$	$I_{D_X} @ V_Q^* ext{ (From The Chart)} = 59.5201 \mu\text{A}$		
$W_{required} = ?$ $I_{D_Q} = 15 \mu A (From The Specs)$			
$W_{required} = 2.52 \mu m$.			

Now we are almost done with the design of the amplifier. Note that g_m is also proportional to W as long as V_{ov} is constant. On the other hand, $r_o = \frac{1}{g_{ds}}$ is inversely proportional to W (I_D) as long as L is constant. Before leaving this part, calculate g_{m_Q} and g_{ds_Q}

using ratio and proportion (cross-multiplication).

P10

$\mathbf{g}_{\mathbf{m}}$	W	
$g_{m_X} = 743.7 \mu S$	$W_{assumed} = 10 \mu m$	
$\mathbf{g_{m_{required}}} = ?$	$W_{required} = 2.52 \mu m$	

$$g_{m_{required}} = 187.412 \mu S.$$

g _{ds}	W	
$g_{ds_X} = 7.3196 \mu\text{S}$	$W_{assumed} = 10 \mu m$	
$g_{ds_{required}} = ?$	$W_{required} = 2.52 \mu m$	

$$g_{ds_{required}} = 1.845 \ \mu S \rightarrow r_o = 542.141 \ k\Omega.$$

CASCODE FOR GAIN

Circuit

Schematic

OP Analysis

Create a new cell and schematic. Construct the circuit shown below. Use $I_B=15~\mu A, L=0.5~\mu m$, W as selected in Part 1, and $C_L=1~pF$.

Choose V_B (the cascode device bias voltage) such that M_2 has $V_{DS} \approx V^* + 100$ mV (you may sweep V_B and plot V_{DS} vs V_B to help you choose a good value for V_B). $\rightarrow V_B = 934.25$ mV. @ $V_{DS} = 260$ mV.

We need to bias transistors in saturation; however, the output node is a high impedance node; thus, it is difficult to control its DC voltage. As a workaround in simulation, we use a feedback loop and resistors with different resistances in DC/AC to change the circuit connections in DC/AC simulations (use the AC property in ideal resistor). The input transistor is diode connected for DC simulation. (Always in saturation), while in AC simulation the feedback is disconnected, and the AC input source is connected. Set the feedback resistance 1 m Ω DC and 1 T Ω AC and set the source resistance oppositely.

Q3

Simulate the DC OP point of the above CS and cascode amplifiers. Report a snapshot showing the following parameters for M_1 , M_2 and M_3 in addition to DC node voltages clearly annotated.

$$@V_B = 934.25 \text{ mV}.$$

Q5	 ♣ Check that all transistors operate in saturation. ○ As we see in Q4 the Ballons annotate that region = 2 in all transistors (M₁, M₂, M₃) that represents all transistors operate in Saturation.
Q6	♣ Do all transistors have the same V _{TH} ? Why? ○ $V_{th_1} \approx V_{th_2}$ as $V_{SB} = 0$ as V_{th} depend on V_{SB} and not equal V_{th_3} due to the body effect of $M_3 \rightarrow V_{SB} \neq 0$. So, $V_{th_1} \approx V_{th_2} \neq V_{th_3}$
Q7	↓ What is the relation ($\langle \langle , \langle , =, \rangle, \rangle \rangle$) between g_m and g_{ds} ? ○ $g_m \gg g_{ds}$ for all transistors (M_1 , M_2 , M_3).
Q8	♣ What is the relation ($\langle \langle , \langle , =, \rangle, \rangle \rangle$) between g_m and g_{mb} ? ○ $g_m > g_{mb}$ for all transistors (M_1 , M_2 , M_3).
Q9	 ♣ What is the relation (≪, <, =, >, ≫) between C_{GS} and C_{GD}? ○ C_{GS} < C_{GD} (-ve Sign) or C_{GS} > C_{GD} (Magnitude Value) for all transistors (M₁, M₂, M₃).
Q10	 ♣ What is the relation («, <, =, >, ») between C_{SB} and C_{DB}? ○ C_{SB} < C_{DB} (-ve Sign) or C_{SB} > C_{DB} (Magnitude Value) for all transistors (M₁, M₂, M₃).

AC Analysis

Create a new simulation configuration. Perform AC analysis. (1Hz: 10GHz, logarithmic, 10 points / decade) to simulate gain and bandwidth.

Q1

Use calculator to create expressions for circuit parameters (DC gain, BW, GBW, and UGF) and export them to adexl.

Outputs Satura Pur Provious Results Diagnostics

Q2

Outputs Setup Run Preview Results Diagnostics				
Detail				
Test	Output	Nominal	Spec	
IEEE_Workshop:LAB_3_PART_2:1	Gain1 dB	<u>L</u>		
IEEE_Workshop:LAB_3_PART_2:1	DC Gain dB1	39.29		
IEEE_Workshop:LAB_3_PART_2:1	DC Gain Mag.1	92.13		
IEEE_Workshop:LAB_3_PART_2:1	BW1	322k		
IEEE_Workshop:LAB_3_PART_2:1	GBW1	29.74M		
IEEE_Workshop:LAB_3_PART_2:1	UGF1	30M		
IEEE_Workshop:LAB_3_PART_2:1	Gain2 dB	<u>~</u>		
IEEE_Workshop:LAB_3_PART_2:1	DC Gain2 dB2	72.03		
IEEE_Workshop:LAB_3_PART_2:1	DC Gain Mag.2	3.993k		
IEEE_Workshop:LAB_3_PART_2:1	BW2	7.211k		
IEEE_Workshop:LAB_3_PART_2:1	GBW2	28.86M		
IEEE_Workshop:LAB_3_PART_2:1	UGF2	29.13M		
1				

Report the Bode plot (magnitude) of CS and cascode appended on the same plot.

RED Curve = V_{out_1} (CS), Yellow Curve = V_{out_2} (Cascode)

Q3

Bode plot (dB) of CS and cascode appended on the plot.

Using small signal parameters from OP simulation, perform hand analysis to calculate DC gain, BW, and GBW of both circuits.

4 CS Amplifier.

$$\circ \ r_o = \frac{1}{g_{ds}} = \frac{1}{2.033 \, \mu} = \ 491.9 \ k\Omega$$

$$\circ \ A_o = g_{m_1} r_o = 187.3 \ \mu \times 491.9 \ k = 92.13 = 39.3 \ dB$$

$$0 BW = \frac{1}{2\pi \times r_0 \times \left(C_L + C_{DB} + C_{GD}\left(1 + \frac{1}{A_0}\right)\right)} = 322.5 \text{ kHZ}$$

 \circ GBW = $A_o \times BW = 29.71 MHZ$

$$\begin{array}{l} \circ \ A_o = g_{m_2} \big(r_{o_3} \big(1 + g_{m_3} r_{o_2} \big) + r_{o_2} \big) \text{ , } r_{o_3} = \frac{1}{g_{ds_3}} \text{ , } \ r_{o_2} = \frac{1}{g_{ds_2}} \\ A_o = 184.4 \ \mu \ \Big(\frac{1}{2.797 \mu} \times \Big(1 + 188.3 \mu \times \frac{1}{3.926 \mu} \Big) + \frac{1}{3.926 \mu} \Big) \end{array}$$

$$A_0 = 3.275 k = 70.3 dB$$

$$\circ \ r_{out} = \left(r_{o_3} \big(1 + g_{m_3} r_{o_2} \big) + r_{o_2} \right) = 17.76 \ \text{M}\Omega$$

$$\bigcirc \quad BW = \frac{1}{2\pi \times r_{out} \times \left(C_L + C_{DB_3} + C_{GD_3}\left(1 + \frac{1}{A_o}\right)\right)} = 8.932 \ kHZ$$

 $\circ \ GBW = A_o \times BW = 29.25 \ MHZ$

Report a table comparing the DC gain, BW, UGF, and GBW of both circuits from simulation and hand analysis.

()	5	,

Analysis	Hand Analysis Results		Simulation Results	
Metrics	CS Amplifier	Cascode Amplifier	CS Amplifier	Cascode Amplifier
A _o	92.13	3.275 k	92.13	3.993 k
BW	322.5 k	8.932 k	322 k	7. 211 k
GBW ≈ UGF	29.71 M	29. 25 M	29.74 M	28.86 M

4 Comment on the results.

- ➤ As we see in Q5 Hand Analysis Results are not accurate enough Due to Miller's effects Approximations.
- \triangleright (GBW_{CS} = UGF_{CS}) \approx (GBW_{Cascode} = UGF_{Cascode})
- \gt BW_{CS} \gt BW_{Cascode}
- $> A_{o_{Cascode}} > A_{o_{CS}}$
- ➤ Cascode for Gain: BW is Limited By output Pole as when R_D Increased R_{SIG} Decreased.
- ➤ Gain is Increased in Cascode But BW is Decreased (Limited) Because in Cascode:

 $A_v \approx g_{m_2} r_{o_2} g_{m_3} r_{o_3} \rightarrow g_{m_3} r_{o_3} \rightarrow \text{(Increased)}$

 $\omega_{p_{out}} = \frac{\omega_{p_{CS}}}{g_{m_3}r_{o_3}}$ (Decreased) \rightarrow BW \rightarrow (Decreased)

■ LAB_3_PART_2 × dadexl ×					
Outputs Setup Run Preview Results Diagnostics					
Detail					
Test Output Nominal Spec					
IEEE_Workshop:LAB_3_PART_2:1	Gain1 dB	<u>~</u>			
IEEE_Workshop:LAB_3_PART_2:1	DC Gain dB1	39.29			
IEEE_Workshop:LAB_3_PART_2:1	DC Gain Mag.1	92.13			
IEEE_Workshop:LAB_3_PART_2:1	BW1	322k			
IEEE_Workshop:LAB_3_PART_2:1	GBW1	29.74M			
IEEE_Workshop:LAB_3_PART_2:1	UGF1	30M			
IEEE_Workshop:LAB_3_PART_2:1	Gain2 dB	<u>~</u>			
IEEE_Workshop:LAB_3_PART_2:1	DC Gain2 dB2	72.03			
IEEE_Workshop:LAB_3_PART_2:1	DC Gain Mag.2	3.993k			
IEEE_Workshop:LAB_3_PART_2:1	BW2	7.211k			
IEEE_Workshop:LAB_3_PART_2:1	GBW2	28.86M			
IEEE_Workshop:LAB_3_PART_2:1	UGF2	29.13M			

Q6