Programmation 1

TD n°12

8 décembre 2020

1 Real PCF⁻

We give below the denotational and operational semantics for Real PCF⁻. The types are as follows:

$$\sigma, \tau, \dots :=$$
unit $\mid \Gamma \mid$ $\mid \sigma \rightarrow \tau \mid$

 $\mathbb{S} = \{\bot, \top\}$ with $\bot < \top$. $\mathcal{I} = [0, 1]$ with the usual order.

 $\llbracket * \rrbracket \rho = \top,$

$$\llbracket \mathtt{unit} \rrbracket = \mathbb{S} \qquad \llbracket \mathtt{I} \rrbracket = \mathcal{I} \qquad \llbracket \sigma \to \tau \rrbracket = [\llbracket \sigma \rrbracket \to \llbracket \tau \rrbracket].$$

where $V \in X \mapsto f(V)$ denotes the function which to all V in X associates f(V), and where:

$$add_0(a) = a/2$$
 $add_1(a) = (a+1)/2$ $rem_0(a) = \min(2a, 1)$ $rem_1(a) = \max(2a - 1, 0)$

Contexts (type constraints omitted):

```
egin{aligned} \mathcal{C} &::= \_ & | \, \mathcal{C} v \ | \, 	ext{t} 1_0 \mathcal{C} \ | \, 	ext{t} 1_0 \mathcal{C} \ | \, 	ext{t} 1_1 \mathcal{C} \ | \, \mathcal{C} > 1/2 \ | \, \mathcal{C} > 0 \ | \, 	ext{pif} \, \, \mathcal{C} \, \, 	ext{then} \, \, v \, \, 	ext{else} \, \, w \ | \, 	ext{pif} \, \, u \, \, 	ext{then} \, \, \mathcal{C} \, \, \, 	ext{else} \, \, w \ | \, 	ext{pif} \, \, u \, \, 	ext{then} \, \, v \, \, \, \, 	ext{else} \, \, \mathcal{C} \end{aligned}
```

Operational semantics. We only apply a rule under a context \mathcal{C} of the above form, i.e., $u \to v$ if and only if $u = \mathcal{C}[\ell]$ and $v = \mathcal{C}[r]$, where \mathcal{C} is a context (the types being respected), and $\ell \to r$ is one of the rules below.

$$(\text{fn }x_{\sigma}.u)v \rightarrow u[x_{\sigma}:=v]$$

$$\text{letrec }x_{\sigma}=u \text{ in }v \rightarrow v[x_{\sigma}:=\text{letrec }x_{\sigma}=u \text{ in }v]$$

$$t1_{a}(a.u) \rightarrow u \qquad (a \in \{0,1\})$$

$$t1_{0}(1.u) \rightarrow \dot{1}$$

$$t1_{1}(0.u) \rightarrow \dot{0}$$

$$(1.u) > 1/2 \rightarrow u > 0$$

$$(1.u) > 0 \rightarrow *$$

$$(0.u) > 0 \rightarrow u > 0$$

$$\text{pif } * \text{ then } v \text{ else } w \rightarrow v$$

$$\text{pif } u \text{ then } v \text{ else } * \rightarrow v \qquad (\alpha)$$

$$\text{pif } u \text{ then } 0.v \text{ else } 1.w \rightarrow 0.v$$

$$\text{pif } u \text{ then } a.v \text{ else } a.w \rightarrow a.(\text{pif } u \text{ then } v \text{ else } w)$$

$$(a \in \{0,1\})$$

Exercise 1:

Recall that for all $u:\tau, \llbracket u \rrbracket$ is a well-defined function, Scott-continuous from $Env \stackrel{\text{def}}{=} \prod_{x \neq \text{variable}} \llbracket \sigma \rrbracket$ to $\llbracket \tau \rrbracket$.

- 1. Show that the construction u>0 of Real PCF⁻ is redundant. Explicitly propose a definition of an expression Real PCF⁻ **nonzero**, of type $I \to unit$, which does not use the expression of the form u>0, and whose semantics $[nonzero]\rho$ is the function to which 0 associates \bot and to all $a \in \mathcal{I}$ non-zero associates \top . Prove this assertion.
- 2. Show that the rule tagged with (α) of the operational semantics is correct, in the sense that $[\![pif\ u\ then\ v\ else\ *]\!]\rho = [\![v]\!]\rho$ for all $\rho \in Env$.
- 3. We consider a Real PCF⁻ program of the form letrec $x_{\sigma} = u$ in v, of type unit . Show that if [letrec $x_{\sigma} = u$ in] $\rho \neq \bot$, then there is an integer $n \in \mathbb{N}$ such that

[letrec
$$x_{\sigma} = u$$
 in $\rho = g(f^n(\perp)),$

where we use the abbreviations $g(V) = \llbracket v \rrbracket (\rho[x_{\sigma} \mapsto V])$ and $f(V) = \llbracket u \rrbracket (\rho[x_{\sigma} \mapsto V])$. (The \bot in argument of f^n is that of $\llbracket \sigma \rrbracket$.) This expresses that a recursive definition (of x_{σ}) used in a terminating computation (v) of type unit will be "expanded" only n times.

- 4. Why does the argument from the previous question not work if letrec $x_{\sigma} = u$ in v is of type I?
- 5. Recall that $\dot{0} \stackrel{\text{def}}{=}$ letrec $x_{\text{I}} = 0.x_{\text{I}}$ in x_{I} . Show that there does not exist a derivation in the operational semantics for

$${\tt t1}_0({\tt pif}~\dot{0}>1/2~{\tt then}~1.\dot{0}~{\tt else}~0.1.1.\dot{0})>1/2\to^**.$$

We can set $Z \stackrel{\text{def}}{=}$ letrec $x_{\text{I}} = 0.x_{\text{I}}$ in $0.x_{\text{I}}$.

- 6. What can we conclude for the adequacy of the type unit? Justify.
- 7. Any suggestions to complete the operational semantics?

Exercise 2:

We now assume that a same Real PCF⁻ variable is always labeled with the same type: if we see x_{σ} and x_{τ} , then $\sigma = \tau$. This amounts to saying that the name x of the variables is sufficient to distinguish them.

We consider the Real PCF⁻⁻ language, which is just Real PCF⁻ but without any type index. For example, fn x.u and letrec x = u in v are the expressions Real PCF⁻⁻ corresponding to fn $x_{\sigma}.u$ and letrec $x_{\sigma} = u$ in v, respectively.

Formally, let E denote the type erasure function, defined by $E(\text{letrec } x_{\sigma} = u \text{ in } v) \stackrel{\text{def}}{=} \text{letrec } x = E(u) \text{ in } E(v), E(\text{fn } x_{\sigma}.u) \stackrel{\text{def}}{=} \text{fn } x.E(u), \text{ etc.}$

We will say that a Real PCF⁻⁻ expression u is typable, of type τ , if and only if there exists a Real PCF⁻ expression u', of type τ , such that E(u) = u.

- 1. Are all Real PCF $^{--}$ expressions typable? Justify.
- 2. Is the type of a Real PCF⁻⁻ typable expression unique? Justify.