3 ЦИКЛІЧНИЙ ОБЧИСЛЮВАЛЬНИЙ ПРОЦЕС

Мета: навчитись використовувати циклічну обчислювальну структуру для розв'язку прикладних задач.

3.1 Короткі теоретичні відомості

Циклічна структура використовується для позначення багаторазово повторюємої дії — циклу. Зазвичай розрізняють три типу циклу: *цикл з модифікацією* (або з параметром), *цикл з передумовою* та *цикл з постумовою*.

Цикл з параметром — використовується у випадку заздалегідь відомої кількості повторень. При чому у деяких мовах програмування крок ітерації у циклу може дорівнювати лише одиниці або мінус одиниці.

Цикл з передумовою складається з умови входження до циклу й тіла циклу. Цикл буде повторюватись до тих пір, поки умова циклу задовільняється. *Цикл з постумовою* відрізняється тим, що умова перебування у циклі ставиться після проходження тіла циклу.

3.2 Завдання

Дослідити функцію (3.1) на відрізку $x \in [x_n, x_k]$ використовуючи цикл з передумовою (Завдання № 3.1). Для побудови графіку використати n=11 точок. Завдання вибирати згідно свого варіанту.

$$\chi = \lg^{3} \left[\ln \left(e^{-\sqrt{x-1}} + a \right) - \left(\sin \left(x + a \right) + e^{x+a} \right) \right]; \tag{3.1}$$

3.3 Хід роботи

3.3.1 Постановка задачі

 \mathcal{A} ано: x_n , x_k , $a \in \mathbb{R}$, $n \in \mathbb{N}$;

Додаткові дані: A , B , Δx , $x \in \mathbb{R}$, $i \in \mathbb{N}$

Визначити: χ ∈ \mathbb{R} .

3.3.2 Математична модель інформаційного процесу

$$\chi = \text{tg}^{3} \Big[\ln \Big(e^{-\sqrt{x-1}} + a \Big) - \Big(\sin (x+a) + e^{x+a} \Big) \Big];$$

Скоригована математична модель:

$$\Delta x = \frac{x_k - x_n}{n - 1} \tag{3.2}$$

$$x = x_n, ..., x_i = x_{i-1} + \Delta x, x_k; i = 1, ...$$
 (3.3)

$$\sqrt{x-1}$$
, $x \ge 1$ (3.4)

$$A = e^{-\sqrt{x-1}} + a, A > 0 \tag{3.5}$$

$$B = \ln(A) - \left(\sin(x+a) + e^{x+a}\right), \cos(B) \neq 0$$
(3.6)

$$\chi = \operatorname{tg}^{3}[B] \tag{3.7}$$

3.3.3 Метод реалізації інформаційного процесу

Безпосередні обчислення.

3.3.4 Алгоритм реалізації інформаційного процесу

Рисунок 3.1 — Алгоритм обчислення функції *х*

3.3.5 Програмування

Побудова таблиці ідентифікаторів.

Таблиця 3.1 — Таблиця ідентифікаторів

№ 3/П	Змінна або константа	Ідентифікатор	№ 3/П	Змінна або константа	Ідентифікатор
1	\mathcal{X}_{n}	x_n	7	n	n
2	$x_{_k}$	x_k	8	A	A
3	Δx	dx	9	В	В
4	x	X	10	χ	chi
5	i	i			
6	a	a			

Введення тексту програми:

```
#include <cstdlib>
#include <iostream>
#include <iomanip>
#include <math.h>
using namespace std;
int main()
{
    double x_n, x_k, dx, x, a, A, B, chi;
    int i, n;
    cout << "Input x_n=";</pre>
    cin >> x n;
    cout << "Input x k=";</pre>
    cin >> x k;
    cout << "Input a=";</pre>
    cin >> a;
    cout << "Input n=";</pre>
    cin >> n;
    x = x n; i = 1;
    dx = (x k - x n) / (n - 1);
    while (x \le x_k) {
         if (x >= 1) {
             A = \exp(-1 * \operatorname{sqrt}(x-1)) + a;
             if (A > 0) {
                 B = \log(A) - (\sin(x+a) + \exp(x+a));
                 if (cos(B) != 0) {
                      chi = pow(tan(B), 3);
                      cout << i << ". x=" << x << " chi= " << chi << endl;
                  }
```

3.3.6 Тестування та виявлення помилок

Для виявлення алгоритмічних помилок та вирішення проблеми достовірності отриманих результатів можна виконати обчислення у електронній таблиці і порвняти отримані розв'язки.

Для цього у електронній книзі "Обчислення функцій" *ЛистЗ* перейменовуємо на ЛР7 та виконуємо обчислення за формою:

	Побудова графіку функції								
а	x_n	x_k	n	Δ					
6.5	0.9	2.7	11	=(C4-B4)/(D4-1)					
i	X	Α	В	chi					
1	=\$B\$4+(A7-1)*\$E\$4	=EXP(-1*SQRT(B7-1))+\$A\$4	=LN(C7)-(SIN(B7+\$A\$4)+EXP(B7+\$A\$4))	=TAN(D7)^3					
2	=\$B\$4+(A8-1)*\$E\$4	=EXP(-1*SQRT(B8-1))+\$A\$4	=LN(C8)-(SIN(B8+\$A\$4)+EXP(B8+\$A\$4))	=TAN(D8)^3					
3	=\$B\$4+(A9-1)*\$E\$4	=EXP(-1*SQRT(B9-1))+\$A\$4	=LN(C9)-(SIN(B9+\$A\$4)+EXP(B9+\$A\$4))	=TAN(D9)^3					
4	=\$B\$4+(A10-1)*\$E\$4	=EXP(-1*SQRT(B10-1))+\$A\$4	=LN(C10)-(SIN(B10+\$A\$4)+EXP(B10+\$A\$4))	=TAN(D10)^3					
5	=\$B\$4+(A11-1)*\$E\$4	=EXP(-1*SQRT(B11-1))+\$A\$4	=LN(C11)-(SIN(B11+\$A\$4)+EXP(B11+\$A\$4))	=TAN(D11)^3					
6	=\$B\$4+(A12-1)*\$E\$4	=EXP(-1*SQRT(B12-1))+\$A\$4	=LN(C12)-(SIN(B12+\$A\$4)+EXP(B12+\$A\$4))	=TAN(D12)^3					
7	=\$B\$4+(A13-1)*\$E\$4	=EXP(-1*SQRT(B13-1))+\$A\$4	=LN(C13)-(SIN(B13+\$A\$4)+EXP(B13+\$A\$4))	=TAN(D13)^3					
8	=\$B\$4+(A14-1)*\$E\$4	=EXP(-1*SQRT(B14-1))+\$A\$4	=LN(C14)-(SIN(B14+\$A\$4)+EXP(B14+\$A\$4))	=TAN(D14)^3					
9	=\$B\$4+(A15-1)*\$E\$4	=EXP(-1*SQRT(B15-1))+\$A\$4	=LN(C15)-(SIN(B15+\$A\$4)+EXP(B15+\$A\$4))	=TAN(D15)^3					
10	=\$B\$4+(A16-1)*\$E\$4	=EXP(-1*SQRT(B16-1))+\$A\$4	=LN(C16)-(SIN(B16+\$A\$4)+EXP(B16+\$A\$4))	=TAN(D16)^3					
11	=\$B\$4+(A17-1)*\$E\$4	=EXP(-1*SQRT(B17-1))+\$A\$4	=LN(C17)-(SIN(B17+\$A\$4)+EXP(B17+\$A\$4))	=TAN(D17)^3					

Рисунок 3.2 — Обчислення функцій (7.2) — (7.7) у ET

3.3.7 Обчислення, обробка і аналіз результатів

У ході виконання даної роботи отримано наступні результати:

```
Input x_n = 0.9
Input x_k = 2.7
Input a = 6.5
Input n = 11
1. x=0.9 beta not exist (x<1)
2. x=1.08 chi= -0.0742826
3. x=1.26 chi= -0.0335182
4. x=1.44 chi= -3.03797
5. x=1.62 chi= 688.595
6. x=1.8 chi= 29450.1
7. x=1.98 chi= -0.021529
8. x=2.16 chi= -1400.04
9. x=2.34 chi= -70370.6
10. x=2.52 chi= 0.0224716
11. x=2.7 chi= 0.276897
sh: PAUSE: command not found
Program ended with exit code: 0
```

Рисунок 3.3 — Результат обчислень

Побудова графіку функції						
а	x_n	x_k	n	Δ		
6.5	0.9	2.7	11	0.18		
i	X	Α	В	chi		
1	0.9	Ошибка:502	Ошибка:502	Ошибка:502		
2	1.08	7.25364	-1957.61016	-0.07428		
3	1.26	7.10055	-2343.94002	-0.03352		
4	1.44	7.01514	-2806.40874	-3.03797		
5	1.62	6.95503	-3360.04611	688.59506		
6	1.8	6.90884	-4022.84176	29450.12556		
7	1.98	6.87160	-4816.33287	-0.02153		
8	2.16	6.84060	-5766.30416	-1400.04342		
9	2.34	6.81424	-6903.62564	-70370.61352		
10	2.52	6.79145	-8265.25523	0.02247		
11	2.7	6.77149	-9895.43923	0.27690		

Рисунок 3.4 — Результат обчислень у електронній таблиці

Рисунок 3.5 — Графік функції (7.1) на проміжку $x \in [0.9; 2.7]$

Порівнюючи результати, отримані трьома різними способами з високою вірогідністю можна стверджувати, що обчислення виконано правильно, так як отримані значення співпали.

3.4 Програми та обладнання.

OpenOfficeCalc, Xcode, Acrobat DC

3.5 Висновки.

При обробці даної лабораторної роботи було вивчене використання циклічної обчислювальної структури для вирішення прикладних завдань.