

Sistemas Operativos

Procesos e Hilos

Contenido

- Procesos
- Multitarea
- Formación de un proceso
- Estados de un proceso
- Información del proceso
- Señales
- Hilos o threads

- ¿Qué es un proceso?
 - ¿Qué relación tiene con programa?
 - ¿Qué relación tiene con fichero?

¿Un proceso es la unidad mínima de procesamiento?

- Proceso:
 - Programa en ejecución
 - Unidad de procesamiento gestionada por el SO
 - En realidad, la unidad mínima de procesamiento es el hilo (thread) → Un proceso puede constar de uno o varios hilos
- Información del proceso:
 - Imagen de memoria: core image
 - Estado del procesador: registros del modelo de programación
 - Bloque de control del proceso BCP

- Mira la carpeta /proc en gnu-linux
 - ¿Qué tiene?
 - ¿Qué significa?

■ ¿En Windows?

Curiosidades Linux: /proc

- Directorio /proc contiene un directorio por cada proceso en ejecución
- Permite consultar información sobre el proceso:
 - Línea de comando
 - Mapa de memoria
 - Tabla de páginas

— ...

Proceso vs. Ejecutable

- Si tenemos nuestro fichero binario ejecutable X, lo ejecutamos y sin esperar a que termine lo volvemos a ejecutar....
 - ¿Tendré uno o dos procesos?
 - Si tengo dos, ¿comparten todas las zonas de memoria?
 - Si uno abre un fichero, ¿el otro ya lo tiene abierto?

- ¿Cuántos procesos se lanzan al iniciar el sistema?
- ¿Por qué?
- ¿Quién los lanza? ¿Cómo?

Entender como el Sistema Operativo gestiona los procesos llevará a cualquier programador de aplicaciones o administrador de sistemas a encontrarse en un muy buen escenario para el desempeño de su actividad

Consulta procesos en ejecución

- ps
 - Permite ver la información de todos los procesos en ejecución
 - man ps para consultar las múltiples opciones
- top
 - Muestra los procesos en ejecución, refrescando la información periódicamente
 - Permite interaccionar con los procesos (enviar señales)

Contenido

- Procesos
- Multitarea
- Formación de un proceso
- Estados de un proceso
- Información del proceso
- Señales
- Hilos o threads

Multitarea

- ¿Qué es?
- Para qué sirve?

Ejecución en un sistema multitarea

Proceso nulo o idle

Ventajas de la multitarea

- Facilita la programación, dividiendo los programas en procesos (modularidad)
- Permite el servicio interactivo simultáneo de varios usuarios de forma eficiente
- Aprovecha los tiempos que los procesos pasan esperando a que se completen sus operaciones de E/S
- Aumenta el uso de la CPU

Limites de la multitarea

Contenido

- Procesos
- Multitarea
- Formación de un proceso
- Estados de un proceso
- Información del proceso
- Señales
- Hilos o threads

Procesos

- Creación de un proceso
 - Arranque del sistema
 - La ejecución, desde un proceso, de la llamada al sistema para crear un proceso
 - La petición de un usuario para crear un proceso
 - Doble click sobre un programa
 - El inicio de un trabajo por lotes
- Terminación de un proceso
 - Salida normal (voluntaria)
 - Salida por error (voluntaria)
 - Error fatal (involuntaria)
 - Eliminado por otro proceso (involuntaria)
- Estado de un proceso
 - En ejecución
 - Bloqueado
 - Listo

Procesos

- Como hemos visto, cuando se arranca el sistema operativo se crean varios procesos
 - Procesos en primer plano, interactúan con el usuario
 - Procesos en segundo plano, no están relacionados con usuarios específicos sino con una función específica, demonios (daemons)

¿Qué hace el demonio cron?

Jerarquía de procesos (UNIX)

Inicio

Proceso B

(Proceso E) (Proceso F)

Inicio

Editor

Proc. Inic.

Inicio

Shell

Proceso A

(Proceso D)

Inicio

(Proceso C

- Familia de procesos
 - Proceso hijo
 - Proceso padre
 - Proceso hermano
 - Proceso abuelo
- Vida de un proceso Shell
 - Crea
 - Ejecuta
 - Muere o termina
- Ejecución del proceso
 - Batch
 - Interactivo

Dem. Com

Dem. Impr.

Contenido

- Procesos
- Multitarea
- Formación de un proceso
- Estados de un proceso
- Información del proceso
- Señales
- Hilos o threads

Estados básicos de un proceso

- Planificador: Componente del SO que decide qué proceso se ejecuta en cada procesador y en qué instante
- Proceso nulo o idle (uno por cada procesador)

Estados del proceso

Estados del proceso

Para implementar el modelo de procesos, el sistema operativo mantiene una tabla de procesos, con sólo una entrada por cada proceso

Estados del proceso

- Qué pasa si un proceso pasa de en Ejecución a Bloqueado
- Cómo somos capaces de volver al punto exacto dónde estaba ese proceso

Contenido

- Procesos
- Multitarea
- Formación de un proceso
- Estados de un proceso
- Información del proceso
- Señales
- Hilos o threads

Procesos

- ¿Cómo se puede pasar de un proceso a otro?
- ¿Cómo no perder información?

Cambio de contexto

- El cambio de contexto es el conjunto de acciones que realiza el SO para cambiar el proceso que está actualmente en ejecución en una CPU
- Acciones (simplificación):
 - 1. Salvar el contexto del proceso saliente (registros del modelo de programación) en su BCP
 - 2. Cambiar el estado del proceso saliente (En ejecución -> Otro Estado)
 - 3. Intercambio de los espacios de direcciones
 - Segmentos o regiones de memoria que puede usar un proceso
 - En x86. GDT (Global descriptor Table)
 - En algunas arquitecturas → Invalidación de entradas de la TLB
 - 4. Cambiar el estado del proceso entrante, (Listo -> En ejecución) Restaurar su contexto (BCP -> registros) y volver a modo usuario
- Puede llegar a ser una operación bastante costosa
- El cambio de modo de ejecución del procesador no siempre desencadena un cambio de contexto

Información de un proceso (I)

- Estado del procesador: contenido de los registros del modelo de programación
- Imagen de memoria: contenido de los segmentos de memoria en los que reside el código y los datos del proceso
- Bloque de control del proceso (BCP) o Descriptor de proceso
 - Estado actual del proceso
 - Estado del procesador
 - Actualizado cuando proceso no se está ejecutando en la CPU
 - Identificadores pid, uid, etc.
 - Prioridad
 - Segmentos de memoria (espacio de direcciones)
 - Ficheros abiertos
 - Temporizadores
 - Señales
 - Semáforos
 - Puertos

Información de un proceso (II)

Registros -especiales -

Mapa de memoria del Proceso A

Mapa de memoria del Proceso B

Registros generales

Mapa de memoria del Proceso C

PC

Tablas SO

SP

Estado

Mapa de Memoria

	Tablas del sistema operativo			
	Tabla de procesos			
l	BCP Proceso A	BCP Proceso B	BCP Proceso C	
l		- Estado (registros)		
ı	- Identificación	- Identificación	- Identificación	
l	- Control	- Control	- Control	
	- Tabla de memoria - Tabla de E/S - Tabla de ficheros			
I				

Estado del procesador

- Registros generales
- Contador de programa
- Puntero de pila
- Registro de estado
- Registros especiales
- Cuando un proceso está ejecutando su estado reside en los registros del computador.
- Cuando un proceso no ejecuta su estado reside en el BCP.

Imagen de memoria

- La imagen de memoria está formada por el conjunto de regiones de memoria que un proceso está autorizado a utilizar
- Si un proceso genera una dirección que esta fuera del espacio de direcciones el HW genera una excepción que el SO captura
- La imagen de memoria, dependiendo del computador, puede estar referida a memoria virtual o memoria física

Información del BCP

- Información de identificación:
 - PID del proceso, PID del padre (PPID)
 - ID de usuario y grupo reales (uid/gid reales)
 - ID de usuario y grupo efectivos (uid/gid efectivos)
- Estado del procesador
- Información de control del proceso:
 - Información de planificación y estado
 - Descripción de los segmentos de memoria del proceso
 - Recursos asignados (ficheros abiertos, ...)
 - Recursos de comunicación entre procesos
 - Punteros para estructurar los procesos en listas o colas

Información del BCP II

- Información fuera del BCP
 - Conveniente por implementación (la consideramos del BCP)
 - Para compartirla
- La tabla de páginas se pone fuera
 - Describe la imagen de memoria del proceso
 - Tamaño variable
 - El BCP contiene el puntero a la tabla de páginas
 - La compartición de memoria requiere que sea externa al BCP
- Punteros de posición de los ficheros
 - Si se añaden a la tabla de ficheros abiertos (en el BCP) no se pueden compartir
 - Si se asocian al nodo-i se comparte siempre
 - Se ponen en una estructura común a los procesos y se asigna uno nuevo en cada servicio OPEN

Tablas del sistema operativo

- Tabla de procesos (tabla de BCP)
- Tabla de memoria: información sobre el uso de la memoria.
- **Tabla de E/S**: guarda información asociada a los periféricos y a las operaciones de E/S
- Tablas de fichero: información sobre los ficheros abiertos.

Contenido

- Procesos
- Multitarea
- Formación y estados de un proceso
- Información del proceso
- Señales
- Hilos o threads

Señales

- Las señales son interrupciones al proceso
- Envío o generación:
 - Proceso → Proceso (con mismo uid) con kill
 - $-SO \rightarrow Proceso$

Señales II

- Hay muchos tipos de señales, según su origen
 - SIGILL instrucción ilegal
 - SIGALRM vence el temporizador
 - SIGKILL mata al proceso
- El SO las transmite al proceso
 - El proceso debe estar preparado para recibirla
 - Especificando un *manejador* de señal con *sigaction*
 - Enmascarando la señal con *sigprogmask*
 - Si no está preparado → acción por defecto
 - El proceso, en general, muere
 - Hay algunas señales que se ignoran o tienen otro efecto
- El servicio pause para el proceso hasta que recibe una señal

Contenido

- Procesos
- Multitarea
- Información del proceso
- Formación y estados de un proceso
- Señales
- Hilos o threads

Preguntas Hilos

- ¿Un proceso es la unidad mínima ejecutable?
- Por qué no?

Qué es un hilo

Hilos o threads

Por Hilo

- Contador de programa, Registros
- Pila
- Estado (ejecutando, listo o bloqueado)
- Bloque de control de thread

Por proceso

- Espacio de direcciones de memoria
- Variables globales
- Ficheros abiertos
- Procesos hijos
- Temporizadores
- Señales y semáforos

Mono-hilo vs Multi-hilo

Paralelización utilizando hilos

Estados de un hilo

Ventajas threads vs. procesos

- Tiempo de procesador para operaciones relacionadas con creación, destrucción, planificación y sicronización:
 - 10 hils vs 100 proceso.
- El cambio de contexto entre hilos (de kernel) de un mismo proceso es menos costoso → No es necesario cambiar el espacio de direcciones "activo" de usuario
- Permiten compartir memoria entre ellos de forma fácil y eficiente
 - ¡¡Todos tienen el mismo espacio de direcciones!!

Diseño con hilos

- Permite separación de tareas
- Paralelismo
 - Aumenta la velocidad de ejecución del trabajo
- Programación concurrente (memoria compartida)
 - Variables o estructuras de datos compartidas
 - Funciones reentrantes
 - Imaginar otra llamada al mismo código
 - Mecanismos de sincronización entre hilos (mutex, semáforos,...)
 - Variables globales
 - Simplicidad vs exclusión en el acceso

Alternativas al diseño multihilo

- Proceso con un solo hilo
 - No hay paralelismo
 - Llamadas al sistema bloqueantes
 - Paralelismo gestionado por el programador
 - Llamadas al sistema no bloqueantes
- Múltiples procesos convencionales cooperando
 - Permite paralelismo
 - No comparten variables
 - Mayor sobrecarga de ejecución