ELE-plan for i dag:

Differentiel måling/transmission - alternativ? **Fysisk udlægning** af elektriske kredsløb **Eksempel** hvor differentiel måling er krævet **Balanceret** transmission **CMRR**

Pause?

CMRR's betydning for de to grundkoblinger med Op Amp **Subtraktor** (simpel differensforstærker) baseret på Op Amp

Pause?

Instrumenteringsforstærker:

- Princip
- Et nærmere kig på AD620

F1

CMRR forhold for ikke-ideel subtraktor?

- Modstandstolerance + Op Amp CMRR
- Samlet resultat

ELE-plan for i dag:

Differentiel måling/transmission - alternativ? **Fysisk udlægning** af elektriske kredsløb **Eksempel** hvor differentiel måling er krævet **Balanceret** transmission **CMRR**

Pause?

CMRR's betydning for de to grundkoblinger med Op Amp **Subtraktor** (simpel differensforstærker) baseret på Op Amp

Differensforstærker

Pause?

Instrumenteringsforstærker?

- Princip
- Et nærmere kig på AD620

F1

CMRR forhold for ikke-ideel subtraktor?

- Modstandstolerance + Op Amp CMRR
- Samlet resultat

Hvad er **fordelen** ved at måle **differentielt**?

Hvad er **fordelen** ved at måle **differentielt**?

Undertrykke støj - hvis man kan!

Nogen gange er man tvunget til det!

Hvad er **alternativet** til differentiel måling?

Hvad er alternativet til differentiel måling?

Måling i forhold til **stel:**

Måling i forhold til **stel**...

Differentiel måling (måske balanceret?)

Differensforstærker

Differensforstærker

Kun **differenssignalet** v_d forstærkes...

Hvor kan differentiel måling være et **krav**?

Eks. når en spænding ikke måles i forhold til stel

Denne spænding V_2 er ikke refereret til stel

Wheatstone Bridge (eksempel)

Krav?

Differensforstærker

Kun **differenssignalet** v_d forstærkes...

Balanceret måling/transmission

Parasitiske impedanser

Parasitiske impedanser kan være vanskelige at kontrollere:

- Ohmsk modstand i ledninger og printbaner

- Sprednings-kapaciteter

- Sprednings-induktanser

Begrebet "paracióishe impedanser R; L; C
Enhver leder udgør en ohnsk modstand (tille) Rleder
To ledere over for himanden/en leder over et chassis udgos en (uditzigset)
Rapacitet. Pladekondensator Elektrisk CRARASITISK
Plade konden sator
Leder set from ender or CPARASITIST $C = E \cdot \frac{A}{d}$ TITITITIE TITITITIE TO CPARASITIST ONE TO THE PROPERTY OF THE PRO
C=E. A 7/1/1/11
Strøm gumen leder = Magnedisk flux Ø:
Strøm gumen leder = Magnedish flux Ø: Sammen hængen er givet ved Ø=L·i = L= 1 i
Dette betyder, at en ledning i praksis også indeholder en selv- PARASITISK induktion L.

6

Begrobel "parasidishe" impedanser R; L; C Enhver leder udgør en ohmsk modstand (lille) Rleder To ledere over for himanden/en leder over et chassis udgos en (udilsigset) = CPARASMISK Kapacitet. Plade konden sator \$ d Leder set fra enden over metal plan PARASITISH $C = \varepsilon \cdot \frac{A}{d}$ 7111111111 (Spole) Strøm gennem leder = Magnedish flux Ø: Sammenhangen er givet ved Ø=L·i \ \frac{1}{i} Dette betyder, at en ledning i praksis også indeholder en selv-PARASITISK induktion L.

Eks. på spredningskapacitet

En printbane løber parallelt over et metalchassis i en længde på 5 cm.

Bredden af printbanen er 2 mm. Printet er af epoxy typen. $(\epsilon_r = 3,6)$

Afstand mellem printbane og metalchassis er 2 mm.

Situationen kan modelmæssigt betragtes som en pladekondensator.

Beregn spredningskapaciteten.

Balanceret måling/transmission

Krav: $Z_{g1}//Z_{b1} = Z_{g2}//Z_{b2}$

Rotel RB-991 top view

Symmetrisk layout

CMRR

Common Mode Rejection Ratio

Fortæller noget om hvor god en forstærker er til at undertrykke fælles signaler

CMRR

Common Mode Rejection Ratio

Fortæller noget om hvor god en forstærker er til at undertrykke fælles signaler

$$CMRR = 20log \frac{|A_d|}{|A_{cm}|}$$

(1.25) på side 50

Ex. μΑ741

Ex. AD620

Op Amp – i sig selv en differensforstærker – anvendes med modkobling.

Instrumenteringsforstærker – dette ER en differensforstærker

23

Ideelt forstærkes kun v_{id}

Ideelt forstærkes kun v_{id}

I **praksis** forstærkes også v_{icm}

I **praksis** forstærkes også v_{icm}

Dual fejl

I **praksis** forstærkes også v_{icm}

CMRR ideelt?

$$CMRR = 20log \frac{|A_d|}{|A_{cm}|}$$

CMRR ideelt

$$CMRR = 20log \frac{|A_d|}{|A_{cm}|}$$

$$CMRR_{IDEEL} \longrightarrow \infty$$

CMRR for µA741C

DC ELECTRICAL CHARACTERISTICS

 T_A = 25°C, V_S = ±15V, unless otherwise specified.

SYMBOL	PARAMETER	TEST CONDITIONS	μ Α/41			μ Α741C			UNIT
			Min	Тур	Max	Min	Тур	Max	UNIT
Voc	Offset voltage	R _s =10kO		1.0	5.0		20	6.0	mV
		rs≥ıoktz, over temp.		ΙU	150				μν/ν
						70	90		dB
CMRR	Common-mode rejection ratio								
	·	Over temp.	70	90					dB
				1 /	20		1 /	၁ ၀	mΛ

CMRR for µA741C

DC ELECTRICAL CHARACTERISTICS $T_A = 25^{\circ}C, V_S = \pm 15V, \text{ unless otherwise specified.}$									
SYMBOL	PARAMETER	TEST CONDITIONS	μ Α/741			μ Α741C			LINUT
			Min	Тур	Max	Min	Тур	Max	UNIT
Voc	Offset voltage	Re=10kO		1.0	5.0		20	6.0	mV
	I	rs≥ iokzz, over temp.	I	ΙU	150	I	I	I I	μv/v
						70	90		dB
CMRR	Common-mode rejection ratio								
	,	Over temp.	70	90					dB
				4.4			4.4		

Afhænger CMRR af **iøjenfaldende og måske logiske** parametre for μΑ741C?

CMRR for µA741C

DC ELECTRICAL CHARACTERISTICS $T_A = 25^{\circ}C, V_S = \pm 15V, \text{ unless otherwise specified.}$									
SYMBOL	PARAMETER	TEST CONDITIONS	μ Α/741			μ Α741C			LINUT
			Min	Тур	Max	Min	Тур	Max	UNIT
Voc	Offset voltage	R _c =10kΩ		1.0	5.0		20	6.0	m\/
	I	rs≥τυκ22, over terπp.	I	Iυ	150	I	I	I 1	μ ν/ν
						70	90		dB
CMRR	Common-mode rejection ratio								
	,	Over temp.	70	90					dB
				1.1	20		1.1	၁၀	mΛ

Afhænger CMRR af **iøjenfaldende og måske logiske** parametre for μΑ741C?

Sp. 6 fra forberedelsen:

Den inverterende kobling har en fordel mht. fejl grundet ikke ideelle CMRR forhold. Hvilken?

Figur 2.4

Sp. 7 fra forberedelsen:

Hvordan kan fejl grundet CMRR ækvivaleres som en ekstern generator for den ikke inverterende kobling?

Figur 2.11

36

En simpel differensforstærker baseret på en enkelt Op Amp er vist på figur 2.53 på side 111. Hvilken **forudsætning** skal være opfyldt for en høj CMRR for denne kobling – også selv om Op Amp'en regnes for ideel?

En simpel differensforstærker baseret på en enkelt Op Amp er vist på figur 2.53 på side 111. Hvilken **forudsætning** skal være opfyldt for en høj CMRR for denne kobling – også selv om Op

$$V_{0} = \frac{R_{4}}{R_{3}+R_{4}} \cdot \frac{R_{1}+R_{2}}{R_{1}} \cdot V_{CM} - \frac{R_{2}}{R_{1}} \cdot V_{CM} = \left(\frac{R_{1}+R_{2}}{R_{3}+R_{4}} \cdot \frac{R_{4}}{R_{1}} - \frac{R_{2}}{R_{1}}\right) \cdot V_{CM}$$

$$\frac{\mathcal{R}_1 + \mathcal{R}_2}{\mathcal{R}_3 + \mathcal{R}_4} \cdot \frac{\mathcal{R}_4}{\mathcal{R}_1} = \frac{\mathcal{R}_2}{\mathcal{R}_1} \Rightarrow \frac{\mathcal{R}_4 + \mathcal{R}_2}{\mathcal{R}_3 + \mathcal{R}_4} \cdot \frac{\mathcal{R}_4}{\mathcal{R}_1} \cdot \frac{\mathcal{R}_4}{\mathcal{R}_2} = 1 \Rightarrow$$

$$R = R = R$$

$$\frac{7}{R_3 + R_3}$$

$$\frac{R_4}{R_1} \cdot \frac{R_1}{R_2} = 1 =$$

$$\frac{R_1}{R_2} = \frac{R_3}{R_4} \longrightarrow P$$

$$R_1 = R_3$$

En simpel differensforstærker baseret på en enkelt Op Amp er vist på figur 2.53 på side 111. Hvilken **forudsætning** skal være opfyldt for en høj CMRR for denne kobling – også selv om Op Amp'en regnes for ideel?

En simpel differensforstærker baseret på en enkelt Op Amp er vist på figur 2.53 på side 111. Hvilken **forudsætning** skal være opfyldt for en høj CMRR for denne kobling – også selv om Op Amp'en regnes for ideel?

Er indgangene på denne forstærker **balancerede**?

Figur 2.54

Figur 2.54

"1 k Ω Source Imbalance" - en kommentar ved CMRR for AD620

Overst side 4 i datablack for AD620 ved opgivelse of CMRR MOVNES der

"1 Ks Source Imbalance"

Samlet kopacilet på de to indgange.

Andag blot at disse evens:

Folles (Common) Høggenerator op Ail 120Hz

Hvi's Rs2 = Rs, a der intet groblem, Hvis Rs, # Rs2 wil der Være forshellig

fase doegning til de to indgange:

-- og denne forøkel (differens)-forstærkes med G (%)

En differensforstærker skal bygges op omkring instrumenteringsforstærkeren AD620A.

Den er forsynet med en dual forsyningsspænding på ±15 V. Tolerancen på denne forsyning er 5%.

- *Sp.* 1 Bestem R_G så forstærkningen bliver 100.
- *Sp. 2* Et differentielt indgangssignal på v_d = 0,14 V skal forstærkes. Hvad er den maksimalt tilladelige Common Mode spænding, som kan tillades på indgangen, såfremt fejlen hidrørende CMRR ikke må overstige 100 ppm?
- *Sp. 3* Hvad bliver den maksimale fejl ("Worst Case") på udgangen hidrørende fra variationer på forsyningsspændingen?

Link til datablad over AD620

Tirsdag den 7. maj

Sidste FF lektion!

Undervisning slut ca. 10.00 — FF slutevaluering Eksamens info/spørgsmål

Følgende to sider skal opfattes helt frivillige at studere. De er blot en uddybning af en "Full Bridge" – en Wheatstone brokobling med strain gauges, som kræver differentiel måling af signalet.

Så læs videre hvis I har lyst 😊

Wheatstone Bridge (eksempel) Benyttes ofte til interface for resistive folere/ transducere, dus. Inor En modstand afhænger af en given fysish storrelse (semperatur, deformation, etc.). Her har man saledes: $R = R_0 + \Delta R = R_0 (1 + \frac{\Delta R}{R_0}) = R_0 (1 + X)$ relative modstands- $R = R_0 + \Delta R = R_0 (1 + \frac{\Delta R}{R_0}) = R_0 (1 + X)$ and any $R = R_0 + \Delta R = R_0 (1 + \frac{\Delta R}{R_0}) = R_0 (1 + X)$ I Kender måshe bil Strain-ganges, som benystes til måling af relativ deformation. Lad os lave et eksempel med en vippe i en svønmulial (rindsponds byelke) Vi limer to strain-ganges på overside og to på underside og kobler dem Som Vist herander of i en Wheatstone Bro: Som Vist herander of i en Wheatstorne und Wheatstorne und Wheatstorne und Wheatstorne und R3=R0(1-X)

Uhulastet vippe Gauge 1+2 (R1+R2)

Gauge 3+4 (R3+R4)

DC

R3=R0(1-X)

R1=R0(1+X) Vippe Riog R2 forages
Read Py forminds has J Beregeing...

= $V_{DC}\left(\frac{1+x}{2} - \frac{1-x}{2}\right) = V_{DC}\frac{1+x-1+x}{2} = V_{DC} \times Propostionalitet$

- Men som sagt blat en applikation, hvor det er knovet/modvendig at male differentials.

mellem "x" og redgerngsspændingen.