УЧЕБНО-ИССЛЕДОВАТЕЛЬСКАЯ РАБОТА

ИСПОЛЬЗОВАНИЕ НЕЙРОСЕТЕЙ В ОБЕСПЕЧЕНИИ БЕЗОПАСНОСТИ НА ПРОИЗВОДСТВЕ

работу выполнила ученица 202 класса Лицея № 1 Лобастова Марина научный руководитель Герасимов Роман Михайлович

ЧЕЛОВЕК ЕЖЕДНЕВНО УМИРАЮТ НА РАБОЧЕМ МЕСТЕ

ДОХОДОВ ТЕРЯЮТ КОМПАНИИ, НЕ ЗАИНТЕРЕСОВАННЫЕ В ОХРАНЕ ЗДОРОВЬЯ СОТРУДНИКОВ

как сделать производство менее опасным?

КОМПЬЮТЕРНОЕ ЗРЕНИЕ & МАШИННОЕ ОБУЧЕНИЕ

"безопасность – это процесс, а не результат"

создание программы для контроля безопасности на производстве

1. принцип работы

бинарный классификатор на основе нейросети

2. входные данные

фото и видео материалы

3. выходные данные

класс изображения (наличие / отсутствие заданного объекта)

ФУНКЦИЯ АКТИВАЦИИ НЕЙРОНА

N – ЧИСЛО ВХОДОВ НЕЙРОНА X– ЗНАЧЕНИЕ І-ГО ВХОДА НЕЙРОНА W – ВЕС І-ГО СИНАПСА

ПРИНЦИП ОБУЧЕНИЯ НЕЙРОСЕТИ

данные на входе сети обработка данных сетью

анализ полученных данных проверка правильности анализа

ОПЕРАЦИИ АНАЛИЗА ИЗОБРАЖЕНИЯ НЕЙРОСЕТЬЮ

ЦВЕТОВОЙ АНАЛИЗ

ОБНАРУЖЕНИЕ ГРАНЕЙ ОБЪЕКТА

123 ПОДСЧЕТ ПИКСЕЛЕЙ

ИЗМЕРЕНИЕ РАЗМЕРОВ

РАЗВЛЕЧЕНИЯ

ДИЗАЙН И ГРАФИКА

БИЗНЕС АНАЛИТИКА

МЕДИЦИНА

АВТОНОМНЫЙ ТРАНСПОРТ

ПЕРЕВОД

ПРИМЕНЕНИЕ НЕИРОСЕТЕЙ

ЭКОНОМИКА

ВОЕННОЕ ДЕЛО

ПРОМЫШЛЕННОСТЬ

ПОИСК ПРОПАВШИХ

ОХРАНА И ВИДЕОНАБЛЮДЕНИЕ

РЕАЛИЗАЦИЯ АЛГОРИТМА

PYTHON

- простой синтаксис
- множество инструментов для реализации алгоритмов компьютерного зрения

TENSORFLOW

- уникальный инструмент визуализации TensorBoard
- фреймворк TensorFlow Serving

1. СОЗДАНА СВЕРТОЧНАЯ НЕЙРОСЕТЬ

2. СОЗДАН СОБСТВЕННЫЙ НАБОР ИЗОБРАЖНЕНЙЙ ДЛЯ ОБУЧЕНИЯ НЕЙРОСЕТИ

helmet no helmet

3. НЕЙРОСЕТЬ ОБУЧЕНА НА ПОДГОТОВЛЕННОМ НАБОРЕ ИЗОБРАЖЕНИЙ

Эпоха	Аккуратность	Эпоха	Аккуратность	Эпоха	Аккуратность
1	0.6297	11	0.9288	21	0.9597
2	0.7389	12	0.9332	22	0.9639
3	0.7813	13	0.9427	23	0.9659
4	0.8129	14	0.9467	24	0.9660
5	0.8336	15	0.9479	25	0.9655
6	0.8555	16	0.9524	26	0.9664
7	0.8745	17	0.9560	27	0.9679
8	0.8933	18	0.9563	28	0.9677
9	0.9058	19	0.9570	29	0.9682
10	0.9192	20	0.9586	30	0.9705

4.ПРОВЕДЕН АНАЛИЗ ЭФФЕКТИВНОСТИ НЕЙРОСЕТИ

АРХИТЕКТУРА 1

APXИTEКТУРА 2

APXUTEKTYPA 3

ПЕРСПЕКТИВЫ

СОВЕРШЕНСТВОВАНИЕ

повышение аккуратности программы

РАЗВИТИЕ

расширение диапазона входных данных

ПРИМЕНЕНИЕ

разработка прикладного ПО для применения программы на практике

