大数据计算及应用

Association Rules and Frequent Pattern Mining

Agenda

High dim. data

Locality sensitive hashing

Clustering

Dimensiona lity reduction

Graph data

PageRank, SimRank

Community Detection

Spam Detection

Infinite data

Filtering data streams

Web advertising

Queries on streams

Machine learning

SVM

Decision Trees

Perceptron, kNN

Apps

Recommen der systems

Association Rules

Duplicate document detection

Association Rule

Items frequently purchased together:

- ☐ Uses:
 - Placement
 - Advertising
 - Sales
 - Coupons
- Objective: increase sales and reduce costs

The Market-Basket Model

- A large set of items, e.g., things sold in a supermarket
- ☐ A large set of *baskets*, each of which is a small set of the items, e.g., the things one customer buys on one day

TID	Items
1	Beer, Diaper, Milk
2	Coke, Diaper, Eggs
3	Beer, Coke, Diaper, Eggs
4	Coke, Eggs

The Market-Basket Model

- A general many-many mapping (association) between two kinds of things
 - But we ask about connections among "items" not "baskets"
- ☐ The technology focuses on common events, not rare events ("long tail")

Applications -(1)

- ☐ Items = products; baskets = sets of products someone bought in one trip to the store
- ☐ Example application: given that many people buy beer and diapers together
 - Run a sale on diapers; raise price of beer
- Only useful if many buy diapers & beer

Applications -(2)

- ☐ Items = words; Baskets = Web pages;
- Unusual words appearing together in a large number of documents, e.g., "Brad" and "Angelina" may indicate an interesting relationship

Applications -(3)

- Items = sentences; baskets = documents containing those sentences
- Items that appear together too often could represent plagiarism

Association Rule Mining Applications

- Basket Data Analysis
- Genomic Data
- Telecommunication
- Credit Cards/ Banking Services
- Medical Treatments
- Web Personalization
- etc.

Scale of the Problem

- WalMart sells 100,000 items and can store billions of baskets
- The Web has billions of words and many billions of pages

Some Definition - Support

An itemset is supported by a basket (transaction) if it is included in the basket

Market-Basket transactions

TID	Items
1	Beer, Diaper, Milk
2	Coke, Diaper, Eggs
3	Beer, Coke, Diaper, Eggs
4	Coke, Eggs

<Beer, Diaper> is supported by basket 1, and 3, and its support is 2/4=50%.

Some Definition – Frequent Itemset

If the support of an itemset exceeds user specified *min_support* (threshold), this itemset is called a frequent itemset (pattern).

Market-Basket transactions

TID	Items
1	Beer, Diaper, Milk
2	Coke, Diaper, Eggs
3	Beer, Coke, Diaper, Eggs
4	Coke, Eggs

min_support=50%
<Beer, Diaper> is a frequent
itemset
<Beer, Milk> is not a frequent
itemset

Association Rules

- Association Rules:
 - If-then rules about the contents of baskets
- \Box $\{i_1, i_2,...,i_k\} \rightarrow j$ means: "if a basket contains all of $i_1,...,i_k$ then it is *likely* to contain j"
- □ In practice there are many rules, want to find significant/interesting ones!
- \square Confidence of this association rule is the probability of j given $I = \{i_1, ..., i_k\}$

$$conf(I \to j) = \frac{support(I \cup j)}{support(I)}$$

Example: Confidence

$$T_1 = \{m, c, b\}$$
 $T_2 = \{m, p, j\}$
 $T_3 = \{m, b\}$ $T_4 = \{c, j\}$
 $T_5 = \{m, p, b\}$ $T_6 = \{m, c, b, j\}$
 $T_7 = \{c, b, j\}$ $T_8 = \{b, c\}$

- \square Association rule: $\{m, b\} \rightarrow c$
 - Support(m,b)=4/8, Support(m,b,c)=2/8
 - Confidence = 2/4 = 0.5

Association Rules Mining

- ☐ Question: "find all association rules with support $\geq s$ and confidence $\geq c''$
- ☐ Hard part: finding the frequent itemsets

Computation Model

- Typically, data is kept in flat files rather than in a database system
 - Stored on disk
 - Stored basket-by-basket
 - Expand baskets into pairs, triples, etc. as you read baskets

File Organization

Example: items are positive integers, and boundaries between baskets are -1

Computation Model – (2)

- ☐ The true cost of mining disk-resident data is usually the number of disk I/O's
- □ In practice, association-rule algorithms read the data in passes — all baskets read in turn
- Thus, we measure the cost by the number of passes an algorithm takes

Main-Memory Bottleneck

- For many frequent-itemset algorithms, main memory is the critical resource
 - As we read baskets, we need to count something, e.g., occurrences of pairs
 - The number of different things we can count is limited by main memory
 - Swapping counts in/out is a disaster

Finding Frequent Pairs

- □ The hardest problem often turns out to be finding the frequent pairs
 - Why? Often frequent pairs are common, frequent triples are rare
 - ☐ Why? Probability of being frequent drops exponentially with size; number of sets grows more slowly with size
- We'll concentrate on pairs, then extend to larger sets

Naïve Algorithm

- Read file once, counting in main memory the occurrences of each pair
 - From each basket of n items, generate its n(n-1)/2 pairs by two nested loops
- ☐ Fails if (#items)² exceeds main memory
 - Remember: #items can be 100K (Wal-Mart) or 10B (Web pages)

Example: Counting Pairs

- ☐ Suppose 10⁵ items
- □ Suppose counts are 4-byte integers
- □ Number of pairs of items: $10^5(10^5-1)/2 = 5*10^9$ (approximately)
- ☐ Therefore, 2*10¹⁰ (20 gigabytes) of main memory needed

Details of Main-Memory Counting

- □ Two approaches:
 - (1) Count all pairs, using a triangular matrix
 - requires only 4 bytes/pair always assume integers are 4 bytes
 - (2) Keep a table of triples [i, j, c] = "the count of the pair of items $\{i, j\}$ is c''
 - requires 12 bytesbut only for those pairs with count > 0

Details of Main-Memory Counting

Comparing the Two Approaches

- □ Approach 1: Triangular Matrix
 - n = total number of items
 - Count pair of items {i, j} only if i<j</p>
 - Keep pair counts in lexicographic order:
 - \square {1,2}, {1,3},..., {1,*n*}, {2,3}, {2,4},...,{2,*n*}, {3,4},...{n-1,*n*}
 - Pair $\{i, j\}$ is at position (i-1)(n-i/2) + j-i
 - Total number of pairs n(n-1)/2; total bytes= $2n^2$
 - Triangular Matrix requires 4 bytes per pair
- Approach 2 uses 12 bytes per occurring pair (but only for pairs with count > 0)
 - Beats Approach 1 if less than 1/3 of possible pairs actually occur

Comparing the Two Approaches

Approach 1: Triangular Matrix **n** = total number items Count pair of items {i, j} only if i<j Problem is if we have too many items so the pairs $s = 2n^2$ do not fit into memory. pair Can we do better? possible pairs actually occur

Outline

- Association Rules
- ☐ Frequent Itemset Mining Algorithms
 - Apriori
 - FP-growth
- Sequential Pattern Mining Algorithms

- Proposed by Rakesh Agrawal [VLDB'94]
- ☐ Key idea:
 - Candidate generation-and-test
 - Anti-monotone property

http://www.vldb.org > conf PDF

Fast Algorithms for Mining Association Rules - VLDB ...

by R Agrawal · Cited by 28692 — We consider the problem of discovering association rules between items in a large database of sales transactions. We present two new algorithms for... 13 pages

Apriori Algorithm – (1)

- A two-pass approach called Apriori limits the need for main memory
- ☐ *Monotonicity*: if a set of items appears at least *s* times, so does every subset
 - Contrapositive for pairs: if item i does not appear in s baskets, then no pair including i can appear in s baskets

Apriori Algorithm – (2)

- Pass 1: Read baskets and count in main memory the occurrences of each item
 - Requires only memory proportional to #items
- Items that appear at least s times are the frequent items

Apriori Algorithm – (3)

- Pass 2: Read baskets again and count in main memory only those pairs both of which were found in Pass 1 to be frequent
 - Requires memory proportional to square of frequent items only (for counts), plus a list of the frequent items (so you know what must be counted)

Market-Basket transactions

TID	Items
1	Beer, Diaper, Milk
2	Coke, Diaper, Eggs
3	Beer, Coke, Diaper, Eggs
4	Coke, Eggs

Naive Algorithm

☐ Anti-monotone property: If an itemset is not frequent, then any of its superset is not frequent

TID	Items
1	Beer, Diaper, Milk
2	Coke, Diaper, Eggs
3	Beer, Coke, Diaper, Eggs
4	Coke, Eggs

Tid	Items
10	A, C, D
20	В, С, Е
30	A, B, C, E
40	B, E

 C_1 1st scan

Itemset	sup
{A}	2
{B}	3
{C}	3
{D}	1
{E}	3

_	Itemset	sup
L_1	{A}	2
	{B}	3
	{C}	3
	{E}	3

_		
L_2	Itemset	sup
	{A, C}	2
	{B, C}	2
	{B, E}	3
	{C, E}	2

3rd scan ↓ L₃

{A, B}

{A, C}

{B, E}

{C, E}

Itemset	sup
{B, C, E}	2

- 1. C_1 = Itemsets of size one in I;
- 2. Determine all large itemsets of size 1, L_{1} ;
- 3. i = 1;
- 4. Repeat
- 5. i = i + 1;
- 6. $C_i = Apriori-Gen(L_{i-1});$
- 7. Count C_i to determine L_i ;
- 8. until no more large itemsets found;

Frequent Itemset Property

Drawbacks of Apriori

- Multiple scans of transaction database
 - Multiple database scans are costly
- ☐ Huge number of candidates
 - To find frequent itemset $i_1i_2...i_{100}$
 - # of scans: 100
 - \square # of Candidates: $2^{100}-1 = 1.27*10^{30}$

Improving Apriori: General Ideas

- Reduce passes of transaction database scans
- Shrink number of candidates
- Facilitate support counting of candidates

Improving Apriori's Efficiency

- ☐ Hash-based itemset counting: A k-itemset whose corresponding hashing bucket count is below the threshold cannot be frequent
- ☐ Transaction reduction: A transaction that does not contain any frequent k-itemset is useless in subsequent scans
- Partitioning: Any itemset that is potentially frequent in DB must be frequent in at least one of the partitions of DB
- ☐ Sampling: mining on a subset of given data, need a lower support threshold + a method to determine the completeness
- Dynamic itemset counting: add new candidate itemsets immediately (unlike Apriori) when all of their subsets are estimated to be frequent

DIC: Reduce Number of Scans

and implication rules for market

basket data. In SIGMOD'97

41

休息10分钟

FP-growth Algorithm

- Proposed by Jiawei Han [SIGMOD'00]
- Uses the Apriori pruning principle
- Scan DB only twice
 - Once to find frequent 1-itemset (single item pattern)
 - Once to construct FP-tree (prefix tree, Trie), the data structure of FP-growth

Mining Frequent Patterns without Candidate Generation

- Compress a large database into a compact, <u>Frequent-Pattern tree</u> (<u>FP-tree</u>) structure
 - highly condensed, but complete for frequent pattern mining
 - avoid costly database scans
- Develop an efficient, FP-tree-based frequent pattern mining method
 - A divide-and-conquer methodology: decompose mining tasks into smaller ones
 - Avoid candidate generation: sub-database test only!

<u>TID</u>	Items bought
10	{f, a, c, d, g, i, m, p}
20	{a, b, c, f, l, m, o}
30	{b, f, h, j, o, w}
40	{b, c, k, s, p}
50	{a, f, c, e, l, p, m, n}

Sup _{min} =	= 2
----------------------	-----

10 {f, c 20 {a,	ns bough , c, d, g, i b, c, f, l, n f, h, j, o, v	, m, p} n, o}		Su	p _{min} =	= 2
40 {b,	c, k, s, p}					
50 { <i>a</i> , }	f, c, e, l, p	, m, n}			{}	
Header Table		<i>TID</i> 10	(ordered) frequent items {f, c, a, m, p}	J	F:4	c:1
Item frequenc	Y .	20	{f, c, a, b, m}	c:3	b:1	b:1
f 4		30	{f, b}			
с 4		40	{c, b, p}	a:3		p:1
a 3		50	{f, c, a, m, p}	<u>u.5</u>		P.T
b 3				2	1	
m 3				m:2	b:1	

 $Sup_{min} = 2$

```
      TID
      (ordered) frequent items

      10
      {f, c, a, m, p}

      20
      {f, c, a, b, m}

      30
      {f, b}

      40
      {c, b, p}

      50
      {f, c, a, m, p}
```


$$Sup_{min} = 2$$

Conditional pattern bases

<u>Item cond. pattern base freq. itemset</u>

p	fcam:2, cb:1	fp, cp, ap, mp, fcp, fap, fmp, cap, cmp, amp, camp, facp,
		fcmp, famp, fcamp
m	fca:2, fcab:1	fm, cm, am, fcm, fam, cam, fcam
b	fca:1, f:1, c:1	•••
а	fc:3	•••
С	f:3	

Why Is Frequent Pattern Growth Fast?

- ☐ The performance study shows
 - FP-growth is faster than Apriori (in most cases), and is also faster than tree-projection (an order of magnitude on some datasets)
- Reasoning
 - No candidate generation (claimed by the authors)
 - Use compact data structure
 - Eliminate repeated database scan
 - Basic operation is counting and FP-tree building

Extension of Association Rule Mining

- Association rule mining has been extensively studied in the data mining community.
- There are many efficient algorithms and model variations.
- Other related work includes
 - Multi-level or generalized rule mining
 - Sequential pattern mining
 - Constrained rule mining
 - Incremental rule mining
 - Maximal and closed frequent itemset mining
 - Numeric association rule mining
 - Rule interestingness and visualization
 - Parallel algorithms
 - **.**..

Extension of Association Rule Mining

- Association rule mining has been extensively studied in the data mining community.
- There are many efficient algorithms and model variations.
- Other related work includes
 - Multi-level or generalized rule mining
 - Sequential pattern mining
 - Constrained rule mining
 - Incremental rule mining
 - Maximal and closed frequent itemset mining
 - Numeric association rule mining
 - Rule interestingness and visualization
 - Parallel algorithms
 - **...**

Applications

Examples of Sequence Data

Sequence Database	Sequence	Element (Transaction)	Event (Item)
Customer	Purchase history of a given customer	A set of items bought by a customer at time t	Books, diary products, CDs, etc
Web Data	Browsing activity of a particular Web visitor	A collection of files viewed by a Web visitor after a single mouse click	Home page, index page, contact info, etc
Event data	History of events generated by a given sensor	Events triggered by a sensor at time t	Types of alarms generated by sensors
Genome sequences	DNA sequence of a particular species	An element of the DNA sequence	Bases A,T,G,C

Formal Definition of a Sequence

☐A sequence is an ordered list of elements (transactions)

$$S = < e_1 e_2 e_3 ... >$$

Each element contains a collection of items

$$e_i = \{i_1, i_2, ..., i_k\}$$

- Each element is attributed to a specific time
- □A k-sequence is a sequence that contains k items

Formal Definition of a Subsequence

A sequence $<a_1 a_2 \dots a_n>$ is contained in another sequence $<b_1 b_2 \dots b_m>$ ($m \ge n$) if there exist integers $i_1 < i_2 < \dots < i_n$ such that $a_1 \subseteq b_{i1}$, $a_2 \subseteq b_{i1}$, ..., $a_n \subseteq b_{in}$

Data sequence	Subsequence	Contain?
< {2,4} {3,5,6} {8} >	< {2} {3,5} >	Yes
< {1,2} {3,4} >	< {1} {2} >	No
< {2,4} {2,4} {2,5} >	< {2} {4} >	Yes

- The support of a subsequence w is defined as the fraction of data sequences that contain w
- A sequential pattern is a frequent subsequence (i.e., a subsequence whose support is ≥ minsup)

Sequential Pattern Mining: Definition

- ☐ Given:
 - a database of sequences
 - a user-specified minimum support threshold, minsup
- ☐ Task:
 - Find all subsequences with support ≥ minsup

Sequential Pattern Mining: Challenge

How many k-subsequences can be extracted from a given n-sequence?

Outline

- Association Rules
- Frequent Itemset Mining Algorithms
- Sequential Pattern Mining Algorithms
 - GSP
 - SPADE
 - SPAM

GSP (Generalized Sequential Pattern Mining)

- Proposed by Srikant and Agrawal [EDBT'96]
- Uses the Apriori pruning principle

Finding Length-1 Sequential Patterns

- ☐ Initial candidates:
 - <a>, , <c>, <d>, <e>, <f>, <g>, <h>
- Scan database once, count support for candidates

$$min_sup = 2$$

Seq. ID	Sequence		
10	<(bd)cb(ac)>		
20	<(bf)(ce)b(fg)>		
30	<(ah)(bf)abf>		
40	<(be)(ce)d>		
50	<a(bd)bcb(ade)></a(bd)bcb(ade)>		

Cand	Sup
<a>	3
	5
<c></c>	4
<d></d>	3
<e></e>	3
<f></f>	2
≥g≥	1
≥h≥	1

Generating Length-2 Candidates

51 length-2 Candidates

	<a>		<c></c>	<d>></d>	<e></e>	<f></f>
<a>>		<(ab)>	<(ac)>	<(ad)>	<(ae)>	<(af)>
			<(bc)>	<(bd)>	<(be)>	<(bf)>
<c></c>				<(cd)>	<(ce)>	<(cf)>
<d></d>					<(de)>	<(df)>
<e></e>						<(ef)>
<f></f>		·				

Without Apriori property, 8*8+8*7/2=92 candidates

Apriori prunes 44.57%

candidates

GSP Mining Process

min_sup =2

_	
Seq. ID	Sequence
10	<(bd)cb(ac)>
20	<(bf)(ce)b(fg)>
30	<(ah)(bf)abf>
40	<(be)(ce)d>
50	<a(bd)bcb(ade)></a(bd)bcb(ade)>

GSP Algorithm

- □ Take sequences in form of <x> as length-1 candidates
- Scan database once, find F₁, the set of length-1 sequential patterns
- \square Let k=1; while F_k is not empty do
 - Form C_{k+1} , the set of length-(k+1) candidates from F_k ;
 - If C_{k+1} is not empty, scan database once, find F_{k+1} , the set of length-(k+1) sequential patterns
 - Let k=k+1;

GSP Algorithm

- Benefits from the Apriori pruning
 - Reduces search space
- Bottlenecks
 - Scans the database multiple times
 - Generates a huge set of candidate sequences

SPADE Algorithm

SPADE Algorithm

- Proposed by Zaki et al. [MLJ'01]
- Candidate generation-and-test
- Vertical ID-list data representation based on Lattice-theory
- Counting support through temporal joins
- □ Reduced I/O costs (three DB scans)

SPADE Algorithm

ID	Data Sequence		
1	<pre><a (="")="" a="" a)="" b="" c="" d=""></pre>		
2	<b(cd)ac(bd)></b(cd)ac(bd)>		
3	<d(bc)(ac)(cd)></d(bc)(ac)(cd)>		

ID-List DB

- 7	a /	/k		(2	(d
SID	Pos	SID	Pos	SID	Pos	SID	Pos
1	1/	1	3	1	2	1	4
1	5	1	5	1	3	1	7
1 '	6	2	1	1	5	2	2
2	3	2	5	2	2	2	5
3	3	3	2	2	4	3	1
				3	2	3	4
				3	3		
_				3	4	_	

Temporal Joins

{a}		
SID	Pos	
1	1	
1	5)
\neq	_6/	
2	3	
3	3	

	{b}	
	SID	Pos
	1	3
	1_	5
	2	1
1	2	5
	3	2

{a,	, b}
SID	Pos
1	3
1	5
2	5

Supp{ab}=2

{b, a}	
SID	Pos
1	5
1	6
3	3

Supp{ba}=2

{(ab)}	
SID	Pos
1	5

Supp{(ab)}=1

SPAM Algorithm

SPAM Algorithm

- Proposed by Ayres et al. [KDD'02]
- Key idea based on SPADE
- Using bitmap data representation
- Faster than SPADE yet space consuming

SPAM Algorithm

	ID	Data S	Sequence		
	10	<0,0(ΦO)	(ab) (a (b) (a) (c)	>	
	20	/////////////////////////) a c (b d) >		
	30	// < d/b g/)	(ac)(cd)>		
				_	
SID EID	{a}	{b}	{c}	{d}	I
10 1 10 2 10 3 10 4 10 5 10 6 10 7 20 1 20 2 20 3 20 4 20 5		0 0 1 0 1 0 0 0	0 1 1 0 1 0 0 0 1 0	0 0 0 1 0 0 1 0 1	
30 1 30 2 30 3 30 4	0 0 1 0	0 1 0 0	0 1 1	1 0 0 1	

SPAM Temporal Joins

Sequence extended step:

min_support=2

Problem of SPAM

Bitmap representation is space consuming i.e., data is commonly very sparse

Acknowledgement

- ☐ Slides are adapted from:
 - Prof. Jeffrey D. Ullman
 - Dr. Jure Leskovec
 - Dr. Wujun Li

Quiz

TID	Items
10	{a, d, e}
20	{a, b, c, e}
30	{a, b, d, e}
40	{a, c, d, e}
50	{b, c, e}
60	{b, d, e}
70	{c, d}
80	{a, b, c}
90	{a, d, e}
100	{a, b, e}

Confidence($\{bd\} \rightarrow \{e\}$) = ? Confidence($\{e\} \rightarrow \{bd\}$) = ?

答案请发送到邮箱: bigdatacomputing@163.com

截至时间: 今天(2022年2月25日) 晚上24点

需要注明: (1)姓名; (2)学号;(3)专业