K-means clustering

Python Wrocław, 2022

Clustering

Centroid

K-means clustering

Algorithm 1 k-means algorithm

- 1: Specify the number k of clusters to assign.
- 2: Randomly initialize k centroids.
- 3: repeat
- 4: **expectation:** Assign each point to its closest centroid.
- 5: **maximization:** Compute the new centroid (mean) of each cluster.
- 6: **until** The centroid positions do not change.

K-means clustering

How good is clustering?

How to choose number of clusters

Elbow method

$$\mathsf{WCSS}(k) = \sum_{j=1}^k \sum_{\mathbf{x}_i \in \mathsf{cluster} \ j} \|\mathbf{x}_i - \bar{\mathbf{x}}_j\|^2,$$

where $\bar{\mathbf{x}}_j$ is the sample mean in cluster j

Elbow Method for selection of optimal "K" clusters

Elbow method – possible problems

Silhouette analysis for KMeans clustering on sample data with n_clusters = 2

Silhouette analysis for KMeans clustering on sample data with n_clusters = 5

Other methods...

Współczynnik Calińskiego-Harabasza

$$\frac{SS_B}{SS_w} \cdot \frac{N-k}{k-1}$$

K – liczba klastrów,

N – liczba obserwacji,

 SS_w – wariancja wewnątrz-klastrowa

SS_B – wariancja między-klastrowa

• Im wyższa wartość tym lepiej

K-means clustering - problems

Method name	Parameters	Scalability	Usecase	Geometry (metric used)
K-Means	number of clusters	Very large n_samples, medium n_clusters with MiniBatch code	General- purpose, even cluster size, flat geometry, not too many clusters	Distances between points
Affinity propagation	damping, sample preference	Not scalable with n_samples	Many clusters, uneven cluster size, non-flat geometry	Graph distance (e.g. nearest-neighbor graph)
Mean-shift	bandwidth	Not scalable with n_samples	Many clusters, uneven cluster size, non-flat geometry	Distances between points
Spectral clustering	number of clusters	Medium n_samples, small n_clusters	Few clusters, even cluster size, non- flat	Graph distance (e.g. nearest-neighbor graph)

Ward hierarchical clustering	number of clusters	Large n_samples and n_clusters	Many clusters, possibly connectivity constraints	Distances between points
Agglomerative clustering	number of clusters, linkage type, distance	Large n_samples and n_clusters	Many clusters, possibly connectivity constraints, non Euclidean distances	Any pairwise distance
DBSCAN	neighborhood size	Very large n_samples, medium n_clusters	Non-flat geometry, uneven cluster sizes	Distances between nearest points
Gaussian mixtures	many	Not scalable	Flat geometry, good for density estimation	Mahalanobis distances to centers
Birch	branching factor, threshold, optional global clusterer.	Large n_clusters and n_samples	Large dataset, outlier removal, data reduction.	Euclidean distance between points