

A Müntz-Szasz Theorem for \$C(\overline{D})\$

Author(s): Tavan T. Trent

Source: Proceedings of the American Mathematical Society , Oct., 1981, Vol. 83, No. 2 (Oct., 1981), pp. 296-298

Published by: American Mathematical Society

Stable URL: https://www.jstor.org/stable/2043514

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at https://about.jstor.org/terms

American Mathematical Society is collaborating with JSTOR to digitize, preserve and extend access to Proceedings of the American Mathematical Society

A MÜNTZ-SZASZ THEOREM FOR $C(\overline{D})$

TAVAN T. TRENT¹

ABSTRACT. A Müntz-Szasz theorem is proved for the continuous functions on the closed unit disc \overline{D} . As a corollary it is shown that if gcd(n, m) = 1, the uniformly closed algebra generated by 1, z^n , \overline{z}^m is $C(\overline{D})$ (Minsker).

The purpose of this paper is to derive a Müntz-Szasz type theorem for continuous functions on the closed unit disc, \overline{D} , in the complex plane. As an application we derive a theorem of Minsker [2]. (Also see [1].)

Let M be a subset of \mathbb{N}^* , the nonnegative integers. Recall that the Müntz-Szasz theorem for [0, 1] says that C[0, 1] is the (uniformly) closed span of $\{1, t^m: m \in M\}$ if and only if $\sum_{m \in M'} 1/m$ diverges [3], where M' denotes the nonzero m's in M. If $M' = \emptyset$, then we assume that the sum converges.

By the Stone-Weierstrass theorem (for the complex plane) the closed span of $\{z^n \overline{z}^m : n, m \in \mathbb{N}^*\}$ is $C(\overline{D})$. Let M be a subset of $\mathbb{N}^* \times \mathbb{N}^*$. Denote by \mathfrak{M} the set $\{1, z^n \overline{z}^m : (n, m) \in M\}$. For any integer k, M_k will represent the set $\{m : (m, m + k) \in M\}$. We wish to characterize those subsets, M, of $\mathbb{N}^* \times \mathbb{N}^*$ so that the closed span of \mathfrak{M} is $C(\overline{D})$.

THEOREM. The closed span of \mathfrak{M} is $C(\overline{D})$ if and only if

(1) for every integer
$$j$$
, $\sum_{m \in M'_i} \frac{1}{m}$ diverges.

PROOF. Assume that (1) holds. If $\mu \in C(\overline{D})^*$ and $\mu \perp \mathfrak{M}$, we show that μ is the zero measure. For each fixed $j \in \mathbb{N}^*$

$$\int_{\overline{D}} |z|^{2m\overline{z}^j} d\mu = 0$$

for all $m \in M_j$. Using (1) and the Müntz-Szasz theorem we may approximate t^{2n} uniformly on [0, 1] by linear combinations of t^{2m} with $m \in M_j$ (since t^{2n} vanishes at 0). Thus $|z|^{2n}$ can be uniformly approximated on \overline{D} by linear combinations of $|z|^{2m}$ so

$$\int_{\overline{D}} |z|^{2n}\overline{z}^j d\mu = 0, \qquad n = 1, 2, \dots.$$

© 1981 American Mathematical Society 0002-9939/81/0000-0465/\$01.75

Received by the editors August 26, 1980 and, in revised form, December 5, 1980.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 30E10, 30E05.

Key words and phrases. Müntz-Szasz theorem, Stone-Weierstrass theorem, uniform approximation in the plane.

¹The author was partially supported by a grant from the Research Grants Committee of the University of Alabama.

Similarly, if $-i \in \mathbb{N}$

$$\int_{\overline{D}} |z|^{2n} z^j d\mu = 0, \qquad n = 1, 2, \ldots$$

By the Stone-Weierstrass theorem $|z|^2 d\mu$ is the zero measure and since μ annihilates 1, μ is the zero measure.

Conversely, suppose that (1) fails for some fixed j which we assume is nonnegative. If $M'_j = \emptyset$, take γ_0 to be any nonzero measure on [0, 1] with $\gamma_0 \perp 1$. Else $\sum_{n \in M'_j} 1/n < \infty$. Thus using the Müntz-Szasz theorem and duality there is a measure γ_0 carried by [0, 1] (which is not identically zero), with $\gamma_0 \perp 1$ and

$$\int_0^1 t^{2m+j} d\gamma_0 = 0 \quad \text{for } m \in M_j.$$

Define the product measure $d\gamma = d\gamma_0 \times e^{ij\theta}d\theta$, where $d\theta$ denotes Lebesgue measure on $[0, 2\pi]$. Computing with $k \ge 0$ in (2) and with $k \ge 1$ in (3):

(2)
$$\int_{\overline{D}} z^{n\overline{z}^{n+k}} d\gamma = \left(\int_{0}^{1} t^{2n+k} d\gamma_{0} \right) \left(\int_{0}^{2\pi} e^{i(j-k)\theta} d\theta \right),$$

(3)
$$\int_{\overline{D}} z^{n+k} \overline{z}^n d\gamma = \left(\int_0^1 t^{2n+k} d\gamma_0 \right) \left(\int_0^{2\pi} e^{i(j+k)\theta} d\theta \right).$$

Thus (3) vanishes for all k and (2) vanishes if $j \neq k$. When j = k then by the choice of γ_0 , (2) again vanishes for $n \in M_i$. Thus $\gamma \perp \mathfrak{N}$ and γ is not trivial.

COROLLARY (MINSKER [2]). If n, m are positive integers with gcd(n, m) = 1, then the algebra generated by $\{1, z^n, \overline{z}^m\}$ is $C(\overline{D})$.

PROOF. Since gcd(n, m) = 1, there exist positive integers k, l with kn - lm = -1. So for any positive integers j and t,

$$j(k+tm)n - j(l+tn)m = -j.$$

Thus $(z^n)^{j(k+tm)}(\bar{z}^m)^{j(l+tn)}$ is in the algebra generated by $\{1, z^n, \bar{z}^m\}$, and with our previous notation, $j(k+tm)n \in M_j$. Similar arguments hold for j nonpositive. Since $\sum_{i=1}^{\infty} (j(k+tm)n)^{-1}$ diverges, the theorem applies.

REMARKS. (a) This extension of the Müntz-Szasz theorem was based on a reduction to the one-dimensional case. We note that the version of the Stone-Weierstrass theorem which we have used (the closed span of $\{z^n\bar{z}^m: n, m \in \mathbb{N}^*\}$ on \overline{D} is $C(\overline{D})$), reduces to the one-dimensional Weierstrass theorem on [0, 1] as follows:

Let $\mu \in C(\overline{D})^*$ and $\mu \perp z^{j}\overline{z}^k$, $j=0,1,\ldots,k=0,1,\ldots$. Then $\mu \perp |z|^{2n}$, $n=0,1,\ldots$, so μ annihilates continuous radially symmetric functions, using the one-dimensional version. By dominated convergence μ kills all $|\mu|$ -integrable radially symmetric functions. Similarly for $a \in \mathbb{C}$, μ annihilates all $|\mu|$ -integrable functions radially symmetric about a. Thus the logarithmic potential $\tilde{\mu}(a) = -\int \log|z-a| \ d\mu(z)$ vanishes almost everywhere with respect to area measure in \mathbb{C} . Hence μ is the zero measure [4, p. 205].

(b) If K is any compact subset of \mathbb{C} , then the theorem gives sufficient (but not in general necessary) conditions that the closed span of \mathfrak{N} is C(K).

298 T. T. TRENT

The author wishes to thank the reviewer for several helpful suggestions.

REFERENCES

- 1. P. J. DePaepe, Some applications of the Stone-Weierstrass theorem, Proc. Amer. Math. Soc. 70 (1978), 63-66.
- 2. S. Minsker, Some applications of the Stone-Weierstrass theorem to planar rational approximation, Proc. Amer. Math. Soc. 58 (1976), 94-96.
 - 3. W. Rudin, Real and complex analysis, McGraw-Hill, New York, 1966.
 - 4. Functional analysis, McGraw-Hill, New York, 1973.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ALABAMA, UNIVERSITY, ALABAMA 35486