Categorical and Continuous Variables

Continuous

Can take an infinite set of values (height, weight, income...)

Categorical

Can take a finite set of values (Male/ Female, Day of week...)

Categorical variables that can take just two values are called binary variables

Working Smart with Logistic Regression

Hitting Deadlines

Probability of hitting deadline p(y)

Deadline: Hit or miss?

y = 1 or O

Time of starting work

X

Probability of surviving shipwreck

p(y)

Survive or die? y = 1 or 0 Gender, age, class of ticket X1, X2, X3

Predicting Stock Markets

Probability of market rising tomorrow

p(y)

Up or down? y = 1 or 0 Economic growth, oil prices, interest rates...

X₁, X₂, X₃...

Applications of Logistic Regression

Common Applications of Logistic Regression

Common Applications of Logistic Regression

Analysing Consequences

Past events
Observed causes

Actual outcomes
Probabilities

Past events

- Sinking of the Titanic
- 2008-09 subprime mortgage crisis
- Software supplier's history of meeting deadlines

Actual outcomes

- 1,514 deaths, 710 survivors on the Titanic
- Several banks, hedge funds collapsed
- Billions of dollars of cost overruns

Observed causes

- Sex, age, passenger class
- Interest rates, economic growth, oil prices
- Budget, leadership, technical know-how

Probabilities

- Survived or perished?
- Made or lost money?
- Ship or slip?

Who Would Survive the Titanic Shipwreck

Only 3% of women with first class tickets perished

92% of men with second class tickets perished

Common Applications of Logistic Regression

Allocating Resources

Economic opportunities

Catastrophic losses

Resources to avoid losses

Probabilities

The Goldilocks Solution

Work fast

Start very late and hope for the best

Work smart

Start as late as possible to be sure to make it

Work hard

Start very early and do little else

As usual, the middle path is best

Go Big or Go Home

Resourcing

Inadequate resource allocation

Nothing Ventured, Nothing Gained

Resourcing

Excessive resource allocation

Common Applications of Logistic Regression

Working Smart

Probability of meeting the deadline

95%

Probability of getting other important work done

95%

Working Hard, Fast, Smart

Time to deadline

Working Hard, Fast, Smart

Time to deadline

Working Hard, Fast, Smart

Time to deadline

Predicting Future Events

Future events Possible outcomes

Likely causes Probabilities

Future events

- Investing savings in stocks
- Applying for a job at Google

Possible outcomes

- Make or lose money?
- Hired or not?

Likely causes

- interest rates, global growth, politics
- interview preparedness, quality of resume, hiring environment

Probabilities

- portfolio up or down?
- job application hired or not?

Common Applications of Logistic Regression

Whales: Fish or Mammals

Mammal

Member of the infraorder *Cetacea*

Fish

Looks like a fish, swims like a fish, moves like a fish

Rule-based Binary Classifier

Corpus

Classification Algorithm

ML-based Classifier

Applying Logistic Regression

If probability < 50%, it's a mammal

Applying Logistic Regression

If probability > 50%, it's a fish

Logistic Regression and Linear Regression

X Causes Y

Cause Independent variable

EffectDependent variable

X Causes Y

Cause

Explanatory variable

Effect

Dependent variable

Linear Regression

Effect variable (y) must be continuous

y •

Logistic Regression

Effect variable (y) must be categorical

Linear Regression

Cause variables (x) can be continuous or categorical

Logistic Regression

Cause variables (x) can be continuous or categorical

Linear Regression

Connect the dots with a straight line

Logistic Regression

Connect the dots with an S-curve

Linear Regression

$$y_i = A + Bx_i$$

Logistic Regression

$$p(y_i) = \frac{1}{1 + e^{-(A+Bx_i)}}$$

Linear Regression

$$y_i = A + Bx_i$$

Objective of regression is to find A, B that "best fit" the data

Logistic Regression

$$p(y_i) = \frac{1}{1 + e^{-(A+Bx_i)}}$$

Objective of regression is to find A, B that "best fit" the data

Linear Regression

$$y_i = A + Bx_i$$

Relationship is already linear (by assumption)

Logistic Regression

$$ln(\frac{p(y_i)}{1-p(y_i)}) = A + Bx_i$$

Relationship can be made linear (by log transformation)

Linear Regression

$$y_i = A + Bx_i$$

Logistic Regression

$$logit(p) = A + Bx_i$$

$$logit(p) = ln(\frac{p}{1-p})$$

Solve regression problem using cookiecutter solvers Solve regression problem using cookiecutter solvers

Linear Regression

Easily extended to multiple dimensions

X₂

Logistic Regression

Easily extended to multiple dimensions

Linear Regression

Easily extended to multiple dimensions

X₂

Logistic Regression

Easily extended to multiple dimensions

Connecting the Dots with Regression

Linear Regression Equation:

$$y = A + Bx$$

$$y_1 = A + Bx_1$$
 $y_2 = A + Bx_2$
 $y_3 = A + Bx_3$
...
 $y_n = A + Bx_n$

Connecting the Dots with Regression

Linear Regression Equation:

$$y = A + Bx$$

$$y_1 = A + Bx_1 + e_1$$

 $y_2 = A + Bx_2 + e_2$
 $y_3 = A + Bx_3 + e_3$
...
 $y_n = A + Bx_n + e_n$

Residuals of Linear Regression

Residuals of a regression are the difference between actual and fitted values of the dependent variable

Logistic Regression

Logistic Regression Equation:

$$p(y) = \frac{1}{1 + e^{-(A+Bx)}}$$

$$p(y_1) = \frac{1}{1 + e^{-(A+Bx_1)}}$$

$$p(y_2) = \frac{1}{1 + e^{-(A+Bx_2)}}$$

$$p(y_n) = \frac{1}{1 + e^{-(A + Bx_n)}}$$

Residuals of Linear Regression

Residuals of Linear Regression

Linear Regression

Residuals assumed to be normally distributed

Logistic Regression

Residuals cannot be normally distributed

Logistic Regression and Machine Learning

Whales: Fish or Mammals

Mammal

Member of the infraorder *Cetacea*

Fish

Looks like a fish, swims like a fish, moves like a fish

Rule-based Binary Classifier

Corpus

Classification Algorithm

ML-based Classifier

Rule-based or ML-based?

ML-based

Rule-based

Dynamic

Static

Experts optional

Experts required

Corpus required

Corpus optional

Training step

No training step

ML-based Predictor

Corpus

Logistic Regression

ML-based Predictor $p(y_i) = \frac{1}{1 + e^{-(A+Bx_i)}}$

ML-based Predictor

Whales: Fish or Mammals?

If probability < 50%, it's a mammal

If probability > 50%, it's a fish

Probability of whales being Fish < 50%

Probability of whales being Fish > 50%

$$p(y_i) = \frac{1}{1 + e^{-(A+Bx_i)}}$$

Logistic regression involves finding the "best fit" such curve

- A is the intercept
- B is the regression coefficient

(e is the constant 2.71828)

The Intuition Behind Logistic Regression

Tipping Point

A point in time when a group—or a large number of group members—rapidly and dramatically changes its behavior by widely adopting a previously rare practice

S-curves are widely studied, well understood

$$y = \frac{1}{1 + e^{-(A+Bx)}}$$

Logistic regression uses S-curve to estimate probabilities

$$p(y) = \frac{1}{1 + e^{-(A+Bx)}}$$

Represent all n points as (x_i,y_i) , where i = 1 to n

Logistic Regression

Regression Equation:

$$p(y_i) = \frac{1}{1 + e^{-(A+Bx_i)}}$$

Given a set of points where x "predicts" probability of success in y, use logistic regression

Represent all n points as (x_i,y_i) , where i = 1 to n

Two Approaches to Deadlines

Start 5 minutes before deadline
Good luck with that

Start 1 year before deadline

Maybe overkill

Neither approach is optimal

Time to deadline

Time to deadline

Start too late, and you'll definitely miss

Time to deadline

Start too early, and you'll definitely make it

Time to deadline

Working smart is knowing when to start

Y-axis: probability of meeting deadline

X-axis: time to deadline

Meeting or missing deadline is binary

Probability curve flattens at ends

- floor of O
- ceiling of 1

Logistic Regression helps estimate how probabilities of categorical variables are influenced by causes

Hitting Deadlines

Probability of hitting deadline p(y)

Deadline: Hit or miss?

y = 1 or O

Time of starting work

X

Logistic Regression helps estimate how probabilities of categorical variables are influenced by causes

$$p(y_i) = \frac{1}{1 + e^{-(A+Bx_i)}}$$

 $y_i = 1$ or 0 (hit or miss) $x_i =$ time spent working on deadline $p(y_i) =$ probability that $y_i = 1$ $1 - p(y_i) =$ probability that $y_i = 0$

$$p(y_i) = \frac{1}{1 + e^{-(A+Bx_i)}}$$

Logistic regression involves finding the "best fit" such curve

- A is the intercept
- B is the regression coefficient

(e is the constant 2.71828)

Represent all n points as (x_i,y_i) , where i = 1 to n

Similar, yet Different

Linear Regression

$$y_i = A + Bx_i$$

Objective of regression is to find A, B that "best fit" the data

Logistic Regression

$$p(y_i) = \frac{1}{1 + e^{-(A+Bx_i)}}$$

Objective of regression is to find A, B that "best fit" the data

Similar, yet Different

Linear Regression

$$y_i = A + Bx_i$$

Relationship is already linear (by assumption)

Logistic Regression

$$ln(\frac{p(y_i)}{1-p(y_i)}) = A + Bx_i$$

Relationship can be made linear (by log transformation)

Similar, yet Different

Linear Regression

$$y_i = A + Bx_i$$

Logistic Regression

$$logit(p) = A + Bx_i$$

$$logit(p) = ln(\frac{p}{1-p})$$

Solve regression problem using cookiecutter solvers Solve regression problem using cookiecutter solvers

Represent all n points as (x_i,y_i) , where i = 1 to n

Represent all n points as (x_i,y_i) , where i = 1 to n

Linear Regression

$$y = A + Bx$$

$$y_1 = A + Bx_1$$
 $y_2 = A + Bx_2$
 $y_3 = A + Bx_3$
...
 $y_n = A + Bx_n$

Logistic Regression

$$p(y) = \frac{1}{1 + e^{-(A+Bx)}}$$

$$p(y_i) = \frac{1}{1 + e^{-(A+Bx_i)}}$$

$$p(y_1) = \frac{1}{1 + e^{-(A+Bx_1)}}$$

$$p(y_n) = \frac{1}{1 + e^{-(A+Bx_n)}}$$

$$p(y_i) = \frac{1}{1 + e^{-(A+Bx_i)}}$$

If A and B are positive

$$p(y_i) = \frac{1}{1 + e^{-(A+Bx_i)}}$$

If A and B are negative

Time to deadline

Minimum value of p(y_i)

Maximum value of p(y_i)

Between maximum and minimum values of p(yi)

Logistic Regression

Logistic Regression fits an **S-curve** to estimate how probabilities of categorical variables are influenced by causes

Solving the Logistic Regression Problem via Maximum Likelihood Estimation (MLE)

Represent all n points as (x_i,y_i) , where i = 1 to n

Represent all n points as (x_i,y_i) , where i = 1 to n

Logistic Regression

Regression Equation:

$$p(y_i) = \frac{1}{1 + e^{-(A+Bx_i)}}$$

Solve for A and B that "best fit" the data

Toss n coins

Head: $y_i = 1$

Tail: $y_i = 0$

Probability of Head = p_i

Probability of Tail = $1-p_i$

Coin i	Result	y i	Probability
1	Heads	1	p ₁
2	Tails	0	1-p ₂
3	Heads	1	p ₃
4	Heads	1	p ₄
5	Tails	0	1-p ₅
6	Tails	0	1-p ₆
7	Heads	1	p ₇
8	Heads	1	p ₈
9	Heads	1	p 9
•••		•••	
n	Tails	0	1-p _n

Probability of independent events = product of individual probabilities

Overall likelihood of getting these results

$$L = (p_1)*(1-p_2)*(p_3)*(p_4)*(1-p_5)...*(1-p_n)$$

Conveniently combine probabilities of head or tail into one expression

Outcome of coin $i = p_i^{y_i}(1-p_i)^{1-y_i}$

If outcome = Head

$$y_i = 1$$

$$p_i^{y_i}(1-p_i)^{1-y_i} = p_i^{1}(1-p_i)^{0}$$

= p_i

If outcome = Tail

$$y_i = 0$$

$$p_i^{y_i}(1-p_i)^{1-y_i} = p_i^0(1-p_i)^1$$

= 1 - p_i

Tossing n Coins

$$L = (p_1)*(1-p_2)*(p_3)*(p_4)*(1-p_5)...*(1-p_n)$$

$$p_i^{y_i}(1-p_i)^{1-y_i}$$

$$L = \prod_{i=1}^{n} p_i^{y_i}(1-p_i)^{1-y_i}$$

T denotes product of multiple terms

Tossing n Coins

$$L = \prod_{i=1}^{n} p_i y_i (1-p_i)^{1-y_i}$$
Transform equation by taking natural log (ln)
$$LL = \ln L = \sum_{i=1}^{n} [y_i \ln(p_i) + (1-y_i) \ln(1-p_i)]$$

\(\) denotes sum of multiple terms

Logistic Regression

$$p(y_i) = \frac{1}{1 + e^{-(A+Bx_i)}}$$

Solve for A and B that "best fit" the data

Tossing n Coins

LL=
$$\ln L = \sum_{i=1}^{n} [y_i \ln(p_i) + (1-y_i) \ln(1-p_i)]$$

The "best fit" values of A and B are those that maximise this likelihood

Maximum Likelihood Estimation (MLE)

Solving the Logistic Regression Problem via Linear Regression

Toss n coins

Head: $y_i = 1$

Tail: $y_i = 0$

Probability of Head = p_i

Probability of Tail = $1-p_i$

Coin i	Result	y i	Probability
1	Heads	1	p ₁
2	Tails	0	1-p ₂
3	Heads	1	p ₃
4	Heads	1	p ₄
5	Tails	0	1-p ₅
6	Tails	0	1-p ₆
7	Heads	1	p ₇
8	Heads	1	p ₈
9	Heads	1	p 9
•••		•••	
n	Tails	0	1-p _n

Coin i	Result	y i	Xi	Probability
1	Heads	1	X 1	p ₁
2	Tails	0	X ₂	1-p ₂
3	Heads	1	X 3	p ₃
4	Heads	1	X 4	p ₄
5	Tails	0	X 5	1-p ₅
6	Tails	0		1-p ₆
7	Heads	1	•••	p ₇
8	Heads	1	•••	p ₈
9	Heads	1	•••	p ₉
n	Tails	0	Xn	1-p _n

Coin i	Result	y i	Xi	Probability
1	Heads	1	X 1	p ₁
2	Tails	0	X ₂	1-p ₂
3	Heads	1	X 3	p ₃
4	Heads	1	X 4	p ₄
5	Tails	0	X 5	1-p ₅
6	Tails	0		1-p ₆
7	Heads	1		p ₇
8	Heads	1		p ₈
9	Heads	1	•••	p ₉
n	Tails	0	Xn	1-p _n

Coin i	Result	Уi	Xi	Probability
1	Heads	1	X 1	P ₁
2	Tails	0	X ₂	1-p ₂
3	Heads	1	X 3	p ₃
4	Heads	1	X 4	p 4
5	Tails	0	X 5	1-p ₅

Coin i	Result	Уi	Xi	Probability
1	Heads	1	X 1	P ₁
2	Tails	0	X 1	1-p ₁
3	Heads	1	X 1	p ₁
4	Heads	1	X 1	p ₁
5	Tails	O	X 1	1-p ₁

Unique x _i	Frequency(y = 1)	Frequency(y = 0)	p(y _i)	1 - p(y _i)
X 1	3	2	$p_1 = 3/(3+2) = 3/5$	2/5

Collapse these 5 rows into a single row, where the probabilities "fit" the data

If x is continuous, we will need to create ranges of x-values

Frequency Table

Unique x _i	Frequency(y = 1)	Frequency(y = 0)	p(y _i)	1 - p(y _i)
X 1	3	2	$p_1 = 3/(3+2) = 3/5$	2/5
X ₂	8	12	$p_2 = 8/(8+12) = 2/5$	3/5
•••	•••	•••	•••	•••

Create a frequency table with 1 row for each unique value of x

Frequency Table

Unique x _i	Frequency(y = 1)	Frequency(y = 0)	p(y _i)	1 - p(y _i)
X 1	3	2	$p_1 = 3/(3+2) = 3/5$	2/5
X ₂	8	12	$p_2 = 8/(8+12) = 2/5$	3/5
•••	•••	•••	•••	•••

Now, unlike with the MLE approach, each p_i is a continuous variable

Odds from Probabilities

$$Odds(p) = \frac{p}{1-p}$$

Odds of an Event

$$p = \frac{1}{1 + e^{-(A+Bx)}}$$

$$p = \frac{e^{A + Bx}}{1 + e^{A + Bx}}$$

$$1 - p = 1 - \frac{e^{A + Bx}}{1 + e^{A + Bx}}$$

Odds of an Event

$$1 - p = 1 - \frac{e^{A + Bx}}{1 + e^{A + Bx}}$$

$$1 - p = \frac{1 + e^{A + Bx}}{1 + e^{A + Bx}}$$

$$1 + e^{A + Bx}$$

$$1 + e^{A + Bx}$$

$$1 - p = \frac{1}{1 + e^{A + Bx}}$$

Odds of an Event

$$p = \frac{e^{A + Bx}}{1 + e^{A + Bx}}$$

$$1 - p = \frac{1}{1 + e^{A + Bx}}$$

Odds(p) =
$$\frac{p}{1-p}$$
 = $e^{A + Bx}$

Logit Is Linear

Odds(p) =
$$\frac{p}{1-p}$$
 = $e^{A + Bx}$

$$logit(p) = A + Bx$$

In(Odds(p)) is called the logit function

Logit Is Linear

$$ln Odds(p) = ln(p) - ln(1-p)$$

$$p = \frac{1}{1 + e^{-(A+Bx)}}$$

$$logit(p) = ln Odds(p) = A + Bx$$

This is a linear function!

Logit Is Linear

logit(p) =
$$A + Bx$$

logit(p₁) = $A + Bx_1$
logit(p₂) = $A + Bx_2$
logit(p₃) = $A + Bx_3$
... A + Bx_3
logit(p_n) = $A + Bx_n$

Tossing n Coins - Linear

Logistic Regression

Represent all n points as (x_i,y_i) , where i = 1 to n

Logistic Regression

Represent all n points as (x_i,y_i) , where i = 1 to n

Linear Regression

Linear Regression

Represent all n points as (x_i,y_i) , where i = 1 to n

Logistic Regression can be solved via **linear** regression on the logit function (log of the odds function)

Linear Regression Estimation Methods

Method of moments

Method of least squares

Maximum likelihood estimation

Cookie cutter techniques to determine the values of A and B (regression coefficients)

Binomial and Multinomial Logistic Regression

Binomial and Multinomial

Binomial

Two categorical outcomes

(Head/Tail; True/False)

Multinomial

>Two categorical outcomes

(Days in a week; Months in a year)

Whales: Mammals or Fish?

Mammals

Fish

Result	Mammals	Fish
Label (y _i)	0	1
Probability $(p(y_i))$	p	1-p

Whales: Mammals or Fish?

Rule of 50%

If probability < 50%, it's a mammal

If probability > 50%, it's a fish

Probability of whales being Fish < 50%

Probability of whales being Fish > 50%

Binomial and Multinomial

Binomial

Two categorical outcomes

(Head/Tail; True/False)

Multinomial

>Two categorical outcomes

(Days in a week; Months in a year)

Whales: Mammals or Fish or Reptiles?

Mammals

Fish

Reptiles

Result	Mammals	Fish	Reptiles
Label (y _i)	0	1	2
Probability $(p(y_i))$	p ₀	p_1	p ₂
Probability (p(y _i '))	1-p ₀	1-p ₁	1-p ₂

Whales: Mammals or Fish or Reptiles?

Run three logistic regressions

Mammals or Not?

Fish or Not?

Whales: Mammals or Fish or Reptiles?

Choose the highest probability

Mammals or Not?

Fish or Not?

Reptiles or Not?

Mammals

 $p_{mammal} = 0.55$

Fish

 $p_{fish} = 0.4$

Reptiles

$$p_{reptile} = 0.05$$

Pmammal > Pfish > Preptile

Pmammal < Pfish > Preptile

Multinomial Is Non-binary **Mammals** Fish **Reptiles**

Pmammal < Pfish < Preptile

Binomial and Multinomial

Binomial

Two categorical outcomes

One logistic regression

Multinomial

N categorical outcomes

N logistic regressions

Regression: Excel, R or Python

Excel

Create a regression slide for an important presentation

R

Create a regression case study for a seminar

Python

Build trading model that scrapes websites, combines sentiment analysis and regression

A simple multinomial logistic regression technique uses N logistic models for N categories