Homologia persistente, machine learning e o estudo de proteínas

Carlos Ronchi

25 de outubro de 2018

Como podemos usar o computador para prever situações?

REGRESSÃO LINEAR

○●000

EXEMPLO

Seja θ um vetor que representa os valores W_1, b_1, W_2, b_2 .

$$h(\theta; x) = g_2(W_2 * g_1(W_1 * x + b_1) + b_2),$$

onde g_1, g_2 podem ser funções identidade, sigmoidal e arctan.

$$\min_{\theta} \frac{1}{2n} \sum_{i=1}^{n} \|h(\theta; x_j) - y_j\|^2$$

TEOREMA

00000

Seja g(.) uma função não constante, limitada, monotonicamente crescente e contínua. Seja $U \in \mathbb{R}^m$ um conjunto compacto qualquer. O espaço das funções contínuas em V é denotado por C(V). Então, dada qualquer função em $f \in C(V)$ e $\epsilon > 0$, existe um inteiro N, constantes reais $v_i, b_i \in \mathbb{R}$ e vetores reais $w_i \in \mathbb{R}^m$, com i = 1, ..., Ntais que podemos definir

$$F(x) = \sum_{i=1}^{N} v_i g(w_i^T x + b_i)$$

como uma aproximação da função f, onde f é independente de g, ou seja,

$$|F(x) - f(x)| < \epsilon,$$

para todo $x \in V$. Em outras palavras, funções da forma F(x) são densas em C(V).

0000

Convolutional Neural Networks

TOPOLOGYNET

RESEARCH ARTICLE

TopologyNet: Topology based deep convolutional and multi-task neural networks for biomolecular property predictions

Zixuan Canq¹. Guo-Wei Wei^{1,2,3}*

1 Department of Mathematics, Michigan State University, East Lansing, MI 48824, USA, 2 Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA, 3 Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA

Protein-ligand binding affinity

Mede a força ou a tendência da ligação. Quanto maior o valor, maior a força da ligação.

Exemplo de proteína e seu ligante

Figura: Mioglobina (em azul) com seu ligante heme (em laranja)· Baseado em PDB:1MBO

Como prever a afinidade?

ESCOLHA DE PROTEÍNAS

Proteínas: C,N,O,S;

Ligantes: C,N,O,S,P,F,Cl, Br e I.

VETORES PARA O ALGORITMO

Seja [0, L] o intervalo de filtração e $n \in \mathbb{N}$.

$$V_i^b = \|\{(b_j, d_j) \in \mathbb{B}(\alpha, C, D) | (i-1)\frac{L}{n} \le b_j \le i\frac{L}{n}\} \|, 1 \le i < n \quad (1)$$

$$V_i^d = \|\{(b_j, d_j) \in \mathbb{B}(\alpha, C, D) | (i-1)\frac{L}{n} \le d_j \le i\frac{L}{n}\}\|, 1 \le i < n \quad (2)$$

$$V_i^p = \|\{(b_j, d_j) \in \mathbb{B} (\alpha, C, D) | (i-1) \frac{L}{n} \ge b_j, i \frac{L}{n} \le d_j\} \|, 1 \le i \le n$$
 (3)

- α: seleção dos átomos
- *C*: tipo do complexo simplicial
- *D*: indica a dimensão do diagrama de persistência

$$d^{op}(a_i,a_j) = \begin{cases} d(a_i,a_j) &, A(a_i) \neq A(a_j) \\ \\ \infty &, A(a_i) = A(a_j) \end{cases}$$

Figura: Distância de oposição entre dois átomos

Set	Atoms used	Distance	Complex	Dimension
1	$\{a \in \mathbb{P} T(a) = e_p\} \cup \{a \in \mathbb{L} T(a) = e_L\}, e_p \in \mathbb{P}^e, e_L \in \mathbb{L}^e$	d ^{op}	-	0
2	$\{a \in \mathbb{P} T(a) \in \mathbb{P}^e\}$	Euclidean	Alpha	1,2
3	$\{a \in \mathbb{P} T(a) \in \mathbb{P}^e\} \cup \{a \in \mathbb{L} T(a) \in \mathbb{L}^e\}$	Euclidean	Alpha	1,2
4	${a \in \mathbb{P} T(a) = C}$	Euclidean	Alpha	1,2
5	$\{a \in \mathbb{P} T(a) = C\} \cup \{a \in \mathbb{F} T(a) = C\}$	Fuclidean	Alnha	12

Referências

RESULTADOS

Table 1. Performance comparisons of TNet-BP and other methods.

Method	R_P	RMSE
TNet-BP	0.826 ^a	1.37
RF::VinaElem	0.803	1.42
RF:Vina	0.739	1.61
Cyscore	0.660	1.79
X-Score::HMScore	0.644	1.83
MLR::Vina	0.622	1.87
HYDE2.0::HbondsHydrophobic	0.620	1.89
DrugScore	0.569	1.96
SYBYL::ChemScore	0.555	1.98
AutoDock Vina	0.554	1.99
DS::PLP1	0.545	2.00
GOLD::ASP	0.534	2.02
SYBYL::G-Score	0.492	2.08
DS::LUDI3	0.487	2.09
DS:LigScore2	0.464	2.12
GlideScore-XP	0.457	2.14
DS::PMF	0.445	2.14
GOLD::ChemScore	0.441	2.15
PHOENIX	0.616	2.16
SYBYL::D-Score	0.392	2.19
DS::Jain	0.316	2.24
IMP::RankScore	0.322	2.25

Zixuan Cang e Guo-Wei Wei. "TopologyNet: Topology based deep convolutional and multi-task neural networks for biomolecular property predictions". Em: *PLOS Computational Biology* 13.7 (jul. de 2017). Ed. por Roland L. Dunbrack, e1005690. DOI: 10.1371/journal.pcbi.1005690. URL: https://doi.org/10.1371/journal.pcbi.1005690.

Cybenko G. "Approximation by superpositions of a sigmoidal function". Em: *Math. Control Signal Systems* (1989).

LINKS

Redes Neurais Convolucionais TCC (Machine learning)