

THÈSE DE DOCTORAT SORBONNE UNIVERSITÉ

École doctorale nž564 : Physique en Île-de-France

réalisée au Laboratoire Jean Perrin

par Hugo Trentesaux

Microscope à nappe laser deux photons rotatif pour l'étude de l'intégration multisensorielle chez la larve de poisson zèbre

soutenue le 25 janvier 2021

devant le **Jury** composé de

$\mathbf{M}^{\mathbf{me}}$	Nathalie Westbrook	Rapporteure
$\mathbf{M}^{\mathbf{me}}$	Cathie Ventalon	Rapporteure
$\mathbf{M}^{\mathbf{me}}$	Laure Rondi-Reig	Examinatrice
$\mathbf{M}^{\mathbf{me}}$	Marie Breau	Marraine
M.	Christoph Schmidt-Hieber	Tuteur
M.	Volker Bormuth	Directeur de thèse
M.	Georges Debrégeas	Directeur de thèse

Table des matières

Ι	Intr	roduction			
	I.1	Introduction générale			
	I.2	Intégration multisensorielle			
		I.2.1	Définition	3	
		I.2.2	Exemples et illusions	3	
			a) Orientation verticale	3	
			b) Reconnaissance du langage	4	
			c) Détection d'une source sonore	4	
			d) Illusion proprioceptive	4	
		I.2.3	Mécanismes et échelles	4	
			a) À l'échelle du cerveau	5	
			b) À l'échelle du neurone unique	5	
			c) Intégration inconsciente ou interaction	6	
		I.2.4	Système vestibulaire chez la larve de poisson zèbre	6	
			a) Limites des études actuelles	6	
			b) Larve de poisson zèbre comme animal modèle	7	
			c) Système vestibulaire comme modèle sensoriel	7	
I.3	Imagerie fonctionnelle				
		I.3.1	Imagerie fonctionnelle calcique	8	
			a) Architecture et fonctionnement du neurone	8	
			b) Le calcium dans le neurone	9	
			c) GCaMP, rapporteur calcique	9	
		I.3.2	Microscopie à fluorescence et feuille de lumière	10	
			a) Principe de la microscopie	10	
			b) Fluorescence	11	
			c) Sectionnement optique	11	
			d) Microscopie confocale	12	

			e)	Microscopie deux photons
			f)	Microscopie à feuille de lumière
	I.4	Intégra	ation mul	ltisensorielle
		I.4.1	Boucle s	sensorimotrice
			a)	Imagerie en nage libre
			b)	Réalité virtuelle
		I.4.2	Modèle	visuo-vestibulaire
			a)	Système visuel
			b)	Système vestibulaire
			c)	Intégration visuo-vestibulaire
	I.5	Object	tifs de la	thèse
II	Con	_	ostural ei	
	II.1	Descri	ption de	la boucle sensorimotrice
		II.1.1		
		II.1.2		2
	II.2		ementale du contrôle postural	
		II.2.1		me expérimentale
			a)	Stimulation vestibulaire
			b)	Imagerie et analyse
			c)	Stimulation visuelle
			d)	Insertion de la larve
		II.2.2		les et résultats
			a)	Test par l'OMR
			b)	Rétroaction vestibulaire
			c)	Protocole multimodal
			d)	Interprétation
		II.2.3	Ouvertu	re
II	I Ima	gerie so	ous stim.	vestibulaire 3
	III.1	.1 Microscope rotatif		
		III.1.1	Descript	tion du montage
			a)	Unité d'illumination
			b)	Unité de détection
			c)	Stabilité mécanique
		III 1 9	Nappe 1	aser par halavage

TABLE DES	MATIÈRES

		a)	Ouverture numérique optimale	41
		b)	Balayage horizontal et vertical	42
III.2	2 Analys	se des dor	nnées	43
	III.2.1	Logiciels	existants	44
		a)	Fiji	44
		b)	Suite2P	44
		c)	CaImAn	44
	III.2.2	Solution	utilisée pour l'analyse de nos données	44
		a)	Étapes principales de l'analyse de données	45
		b)	Améliorations pratiques et techniques	49
		c)	Pistes d'améliorations	50
III.3	Stimul	ation en	roulis	51
	III.3.1	Observa	tions attendues	52
	III.3.2	Résultat	s	53
		a)	Carte de réponse	53
		b)	Déphasage de GCaMP6s	53
		c)	Discussion	55
III.4	stimul Stimul	ation en	angage	56
	III.4.1	Descript	ion du montage	57
	III.4.2	Carte de	e réponse comparée	57
	III.4.3	Conclusi	on	60
IV Mic	roscope	deux ph	otons rotatif	61
			ons	62
		_		62
		-	ration spatiale	62
			$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	63
IV.2			principe et état de l'art	64
			onde	64
			tique monomode à saut d'indice	65
			âme vide	66
		a)	Guide d'onde métallique ou diélectrique	66
		b)	Fibres à cristaux photoniques	66
		c)	Fibres à courbure négative	67
	IV.2.4	,	on des fibres en microscopie embarquée	67
		a)	Imagerie sur rongeur à tête fixée	68
		/	\sim	

iii

A	1.2 Langage de pro	ogrammation adapté
A	1.1 Simulation de	l'effet de lentille thermique
A C	Outils informatique	es e
V C	Conclusion	
	b)	Conclusion
	a)	Résultats
	· ·	raison de l'imagerie 1P/2P
	c)	Enregistrements en plusieurs étapes
	b)	
	a)	Phototoxicité
		tés supplémentaires rencontrées
Γ		photons
	b)	Solutions
	a)	Temps caractéristique
	IV.4.2 Effet dy	ynamique
	b)	Simulation numérique
	a)	Cas d'une cellule fine
	IV.4.1 Effet st	atique
Γ	V.4 Effet de lentille	e thermique
	d)	Test en conditions réelles
	c)	Polarisation
	b)	Gain de courbure
	a)	Dispersion et pré-compensation
	,	tés
	c)	Injection combinée 2P + 1P
	b)	Injection 2P
	a)	Principe
	_	on d'un laser dans une fibre
1		raison de fibres
T	e) V 3 Caractárication	n et utilisation de fibres à âme vide
	d)	Lentilles à gradient d'indice
	c)	Déportation de l'illumination et de la détection
	b)	Déportation de l'illumination

TABLE	DES N	MATIÈRES	V
	A.2.1	Memory mapping	3
		a) Matlab	ĉ
		b) Python	7
		c) Julia	3
	A.2.2	Function broadcasting	9
		a) Matlab	9
		b) Python)
		c) Julia	1
A.3	Atlas i	interactifs	2
	A.3.1	ZBrainAtlas	2
	A.3.2	MapZebrain	2
	A.3.3	FishExplorer	3
	A.3.4	LJPzebrain	3

105

107

B Détail de calcul

Bibliographie

Chapitre I

Introduction

I.1 Introduction générale

De nombreux animaux sont capables de se repérer et de se déplacer dans leur environnement, une fonction complexe qui nécessite de traiter des entrées sensorielles multiples et de produire une réponse motrice adaptée. Le système nerveux, constitué d'un réseau de neurones capables de guider l'information depuis les organes sensoriels vers le cerveau, et depuis le cerveau vers les organes moteurs, répond bien à ce problème. Ce traitement centralisé de l'information permet d'atteindre un grand niveau de complexité. On compte par exemple dans le cerveau humain plusieurs dizaines de milliards de neurones.

On dispose aujourd'hui d'outils pour appréhender cette complexité, comme l'imagerie par résonance magnétique fonctionnelle (IRMf), qui mesure un rapporteur de l'oxygénation du sang, et donc de l'activité locale des tissus cérébraux. Cette technique est cependant limitée à une résolution spatiale de l'ordre du millimètre cube, soit une centaine de milliers de neurones et à une résolution temporelle de l'ordre du Hertz [1]. À l'opposé, les techniques d'électrophysiologie comme le patch-clamp permettent d'enregistrer l'activité électrique du neurone unique avec une résolution temporelle de l'ordre de la milliseconde. Les techniques d'électrophysiologie sont invasives et limitées à une centaine de neurones simultanément [2].

Ces techniques ont permis beaucoup de découvertes sur le fonctionnement global et local du cerveau, mais peinent à décrire des phénomènes qui concernent l'échelle intermédiaire : un faible nombre de neurones répartis sur l'entièreté du cerveau. C'est précisément à cette échelle que se situe l'intégration multisensorielle, c'est-à-dire la manière dont le cerveau combine l'information liée à plusieurs modalités sensorielles pour produire une représentation cohérente et une réponse motrice unique [3]. Ce phénomène fait appel à la fois aux noyaux sensoriels, à des circuits intégrateurs et aux neurones moteurs, autrement dit une petite centaine de neurones répartis sur le cerveau entier. Pour répondre à ces questions, il a fallu appliquer une nouvelle technique d'imagerie à un nouvel animal modèle.

La larve de poisson zèbre, déjà largement utilisée en biologie du développement, s'est trouvée bien adaptée à ces questions. Six jours après fertilisation de luf, elle possède déjà un système sensoriel fonctionnel (systèmes visuel, vestibulaire, tactile, auditif...) et un répertoire de comportements riche et complexe (nage, chasse, fuite...). Son cerveau est encore de petite taille (cent mille neurones), mais comporte quasiment toutes les régions anatomiques d'un cerveau de vertébré adulte. On dispose d'une grande variété de lignées, notamment des mutants dépigmentés transparents et des lignées transgéniques incluant un rapporteur calcique. Ces lignées permettent une imagerie fonctionnelle par fluorescence pour suivre l'activité des neurones.

La technique d'imagerie la plus utilisée en biologie est certainement la microscopie confocale à fluorescence. Il s'agit d'illuminer point par point l'échantillon avec un faisceau laser et de ne collecter que la fluorescence émise par ce point. Cela permet d'atteindre une très bonne résolution spatiale au prix d'une résolution temporelle limitée. Pour l'imagerie fonctionnelle neuronale du cerveau entier, la microscopie par feuille de lumière est plus adaptée car elle utilise une illumination plan par plan de l'échantillon par une nappe laser. La résolution temporelle est donc largement augmentée tout en conservant une résolution spatiale suffisante, inférieure à la taille d'un neurone.

Pour étudier le fonctionnement du cerveau, on immobilise donc la larve de poisson zèbre transgénique sous un microscope à feuille de lumière. Il est possible d'étudier l'activité spontanée des neurones, mais pour explorer la réponse du cerveau à une stimulation sensorielle, il faut créer ces stimuli. La manière la plus aboutie de recréer cette stimulation sensorielle est la réalité virtuelle, c'est-à-dire un environnement sensoriel adapté en temps réel en fonction des actions motrices comme si le sujet n'était pas fixé.

FIGURE I.1 – Kathryn Hunter, dans la pièce de théâtre *The Valley of Astonishment*, mise en scène par Peter Brook. Le personnage est synesthète, et associe dans sa mémoire plusieurs modalités sensorielles. (photo de Pascal Victor, ArtComArt)

I.2 Intégration multisensorielle

I.2.1 Définition

L'intégration multisensorielle est le processus par lequel le cerveau combine les informations perçues pour produire une représentation interne de l'environnement extérieur. La prise d'information peut passer par plusieurs modalités sensorielles comme les systèmes visuel, vestibulaire, tactile, auditif, olfactif, proprioceptif, ou encore somesthésique. Ces différentes modalités peuvent donner des informations cohérentes qui se complètent pour améliorer la perception mais également des informations contradictoires qui peuvent entraîner des illusions sensorielles.

I.2.2 Exemples et illusions

a) Orientation verticale

Prenons par exemple la perception de l'orientation haut-bas. Le système vestibulaire détecte l'accélération gravitationnelle, ce qui nous permet de déterminer la direction de l'axe vertical et son orientation (la gravité pointe vers le bas). Le système visuel détecte les lignes verticales dans notre champ de vision (arbres, arêtes des murs) et distingue le ciel lumineux du sol plus sombre. Ces deux modalités sont en général cohérentes, mais on peut concevoir une salle dans lesquelles toutes les lignes sont penchées, ce qui peut perturber nos sens au point de nous faire perdre l'équilibre.

b) Reconnaissance du langage

Autre exemple avec la reconnaissance du langage : on comprend mieux une personne quand on la voit parler. L'information auditive du son de la voix est combinée à l'information visuelle des mouvements des lèvres et autres expressions faciales, ce qui améliore la compréhension. Mais on peut tromper le cerveau en faisant écouter un son qui ne correspond pas au mouvement des lèvres, ce qui est alors interprété comme un autre son (effet connu sous le nom McGurk).

c) Détection d'une source sonore

Le système auditif permet de déterminer approximativement la direction de la source d'un son grâce à l'espacement entre les deux oreilles, information qui peut être confirmée lorsque le système visuel identifie la source. Mais lorsque l'on voit un objet bouger au rythme d'un son provenant d'ailleurs, on peut lui attribuer la source du son et ignorer l'information auditive, c'est l'illusion qu'utilisent les ventriloques pour faire parler leur marionnette [4].

d) Illusion proprioceptive

Un exemple encore plus marquant est l'illusion proprioceptive que l'on peut déclencher avec un casque de réalité virtuelle. Dans une situation normale, le sens du toucher est combiné à l'information visuelle pour déterminer la nature des objets que l'on touche. Mais si l'on présente une main factice en image à un sujet, il peut avoir l'illusion que cette main est la sienne au point de ressentir un objet qui touche la fausse main.

I.2.3 Mécanismes et échelles

Ces multiples exemples montrent l'omniprésence de l'intégration multisensorielle dans les phénomènes perceptifs mais n'en indiquent pas les mécanismes neuronaux.

Ces derniers sont complexes, avec une origine à la fois à l'échelle du neurone unique et dans l'organisation du cerveau.

a) À l'échelle du cerveau

Une étude en IRMf chez l'humain s'est intéressée à la structure des zones multisensorielles dans le cerveau [5]. Le sujet était exposé à différents stimuli visuels (des visages) et auditifs (des voix) séparément ou combinés. Alors que les zones unisensorielles sont bien délimitées, les zones multisensorielles se sont révélées très imbriquées. À l'échelle du cerveau en imagerie fonctionnelle par résonance magnétique, il est difficile de définir un critère sur la nature multisensorielle ou non d'une région. Un critère souvent retenu est la superadditivité, c'est-à-dire le fait que la réponse à une combinaison de stimuli soit supérieure à la somme des réponses à chacun des stimulus présentés séparément. Mais une étude comparant plusieurs critères statistiques montre que la superadditivité n'est pas toujours un critère pertinent dans l'étude de l'intégration multisensorielle à cette échelle [6]. Alors que l'idée de cortexes sensoriels bien cloisonés était largement admise, une étude sur des macaques a montré que des liaisons pouvaient exister entre les différentes aires sensorielles primaires [7]. Une autre étude sur la gerbille a montré que le cortex auditif primaire recevait des entrées directes des cortex somatosensoriel, visuel et multisensoriel, ainsi que des structures visuelles et multisensorielles du thalamus et du tronc cérébral [8]. Les connexions entre les différentes régions du cerveau sont donc à la base de son fonctionnement multisensoriel. Les différentes aires sensorielles au début considérées comme unimodales se sont révélées multimodales. Les études à cette échelle tendent en effet à montrer que les différentes modalités sensorielles sont fortement liées dès un stade précoce du traitement de l'information [3].

b) À l'échelle du neurone unique

Les études à l'échelle du cerveau déconstruisent l'idée de grandes régions unisensorielles mais n'excluent pas une ségrégation des différentes modalités sensorielles à l'échelle du neurone. C'est pourquoi des études ont été menées à cette échelle plus locale. L'une d'elles a révélé des connexions directes entre des neurones visuel et auditif [9] par électrophysiologie sur des furets. Dans une autre, publiée en 2007 [10], les auteurs ont enregistré dans le cerveau de chats par électrophysiologie l'activité de milliers de neurones du sillon temporal supérieur en réponse à des stimuli visuels et auditifs combinés. Certains neurones ne répondaient qu'à un seul

stimulus (neurone unimodal) alors que d'autres affichaient une réponse dans les deux cas (neurone bimodal). De plus, l'étude montre qu'une proportion importante de neurones ne répondent qu'en présence des deux stimuli simultanés. Ces neurones ne seraient simplement pas détectés dans des expériences ne mettant en jeu qu'une seule des modalités sensorielles. À l'échelle du neurone unique, l'intégration multisensorielle se manifeste par des phénomènes tels que la super-additivité ou la sous-additivité. Certains neurones ont une réponse bien plus forte en présence de plusieurs stimuli simultanés que lorsque ceux-ci sont présentés séparément. L'amplitude de ce phénomène est d'autant plus grande que les stimuli présentent une corrélation spatiale et temporelle [3].

c) Intégration inconsciente ou interaction

Dans une revue de 2008 [11], les auteurs présentent le système vestibulaire comme particulièrement adapté à l'exploration de l'intégration multisensorielle. L'intégration multimodale a lieu très tôt dans les réseaux vestibulaires et il n'y a pas de sensation consciente du signal capté par les organes mais bien une sensation unifiée qui en résulte. À l'opposé, certains phénomènes d'intégration peuvent avoir lieu de manière consciente, certains auteurs parlent alors d'"interaction multisensorielle" pour distinguer la manière dont plusieurs sensations interagissent entre elles d'une sensation unique résultant de l'intégration [12].

I.2.4 Système vestibulaire chez la larve de poisson zèbre

a) Limites des études actuelles

Comme nous l'avons vu, le phénomène d'interaction multisensorielle fait intervenir des neurones en petit nombre répartis dans des régions différentes du cerveau. Les études actuelles ont mis en évidence des phénomènes locaux spécifiques à certains neurones et des coactivations de régions globales à différents endroits du cerveau mais ne permettent pas d'obtenir les deux informations en même temps. Ces éléments montrent que l'étude de l'intégration multisensorielle doit nécessairement passer par l'analyse des réseaux entiers à l'échelle du neurone unique. Les études en IRM ne permettent pas de capturer les phénomènes à l'échelle du neurone unique et les études d'électrophysiologie ne permettent pas de capturer les phénomènes de réseau à l'échelle du cerveau entier. C'est pourquoi un nouveau modèle qui permette de combiner l'échelle du neurone unique et l'échelle du cerveau entier est nécessaire.

b) Larve de poisson zèbre comme animal modèle

Enregistrer l'activité des milliards de neurones qui composent un cerveau de mammifère étant hors de portée des techniques actuelles, il a fallu se tourner vers un modèle plus petit. La larve de poisson zèbre, par la taille réduite de son cerveau et sa quasi-transparence, s'est trouvée plus adaptée à ce genre d'études. Elle était déjà utilisée en biologie du développement, mais c'est l'application de techniques optiques d'imagerie fonctionnelle qui a permis son succès dans le domaine des neuronsciences fonctionnelles [13][14][15]. Ces techniques ont permis l'étude de phénomènes concernant un petit nombre de neurones répartis à travers tout le cerveau. Le poisson zèbre appartient à la famille des vertébrés avec qui il partage une organisation cérébrale très conservée et dispose d'un catalogue de comportements assez riche. De nombreuses études concernant ses différentes modalités sensorielles et comportements ainsi que leurs bases neuronales ont été publiées dans les dernières années [16][17][18][19].

c) Système vestibulaire comme modèle sensoriel

Le système vestibulaire joue un rôle important dans la survie du poisson zèbre : son absence est non viable [20]. Cette modalité sensorielle est constamment liée à des sorties motrices pour la stabilisation du regard ou le contrôle postural. Comme mentionné en c), le modèle vestibulaire se prête bien à l'étude de l'intégration multisensorielle, c'est donc le système que nous avons choisi d'étudier.

I.3 Imagerie fonctionnelle par microscopie à feuille de lumière

Comme nous l'avons vu, les techniques d'acquisition de l'activité neuronale comme l'électrophysiologie et l'imagerie par résonance magnétique ne sont pas adaptées pour réaliser l'imagerie du cerveau entier à l'échelle du neurone unique. Il est donc nécessaire d'utiliser une technique d'acquisition non invasive capable de telles performances. Travailler sur un animal transparent comme la larve de poisson zèbre facilite l'acquisition utilisant la lumière visible, c'est-à-dire l'imagerie optique. Celleci est très développée en biologie et peut assurer à la fois une bonne résolution et un champ large. Cependant, plusieurs innovations importantes à la fois en optique, en ingénierie moléculaire et en génétique ont dû être combinées pour arriver à un

FIGURE I.2 – Schéma d'un neurone accompagné de cellules gliales. Astrocytes (en vert), oligodendrocytes (en bleu). Le neurone dispose d'un long prolongement appelé axone qui le connecte à d'autres neurones via des boutons synaptiques.

tel résultat. Nous l'introduisons ici.

I.3.1 Imagerie fonctionnelle calcique

a) Architecture et fonctionnement du neurone

Le neurone est une cellule caractérisée par son prolongement axonal capable de transmettre un influx nerveux. Il est toujours accompagné par des cellules gliales comme les astrocytes ou les oligodendrocytes qui assurent en grande partie les fonctions métaboliques. Le neurone est aujourd'hui considéré comme le principal responsable des processus cognitifs bien que de nombreuses recherches montrent l'importance des cellules gliales dans des phénomènes tels que l'intégration du signal calcique et l'établissement de connexions synaptiques [21] [22].

Le neurone est doté d'une longue projection nommée axone, qui lui permet de se connecter et transmettre un signal à d'autres neurones éloignés de lui. Comme la plupart des cellules, des protéines transmembranaires lui permettent d'atteindre une différence de potentiel avec l'extérieur de -70 mV au repos et comme d'autres cellules dites excitables, cela lui permet de transmettre un signal électrique par ouverture et fermeture de canaux ioniques.

FIGURE I.3 – Des protéines transmembranaires permettent à la cellule de se polariser et de se dépolariser. Les pompes ioniques consomment de l'énergie sous forme d'ATP pour forcer le passage d'ions. Des transporteurs ioniques actifs (symport, antiport) et passifs (uniport) permettent un transport dirigé d'ions. Des canaux sélectifs et non sélectifs permettent un transport rapide.

b) Le calcium dans le neurone

Le neurone est équipé de pompes et canaux ioniques sur sa membrane qui lui permettent de se polariser en faisant varier la concentration d'ions intracellulaires par rapport au milieu extracellulaire. Ce potentiel électrochimique transmembranaire varie brusquement lors d'événements de dépolarisation qui permettent la propagation d'un message le long des projections axonales vers d'autres neurones. Lors de ces événements, des flux d'ions traversent la paroi cellulaire, ce qui modifie largement leur concentration intracellulaire. Par exemple, l'ion calcium (Ca^{2+}) passe d'une concentration de 0.1 ţmol/L à 10 ţmol/L soit un facteur 100 [23], la concentration extracellulaire étant de 1 mmol/L, soit cent fois plus. La durée des potentiels d'actions est de l'ordre de la milliseconde, et la concentration de calcium évolue sur des échelles de temps similaires, de l'ordre de la dizaine de millisecondes.

c) GCaMP, rapporteur calcique

Du fait de ses grandes variations de concentration, l'ion calcium est un bon indicateur des potentiels d'actions et donc de l'activité neuronale. C'est la raison pour laquelle des rapporteurs calciques ont été développés. Parmi eux, le rapporteur encodé génétiquement GCaMP résulte de l'assemblage entre la calmodulin (calcium modulated protein), une protéine qui se lie au calcium, ce qui change sa confor-

FIGURE I.4 – Structure tridimensionnelle de l'indicateur calcique GCaMP composée de trois ensembles protéiques.

mation, et d'une protéine fluorescente verte (GFP, Green Fluorescent Protein). Le résultat est une protéine qui devient fluorescente en présence d'ion calcium, avec une dynamique de l'ordre du dixième de seconde. Le code génétique de cette protéine peut être inséré dans une région d'intérêt du génome, pour être exprimée dans des populations ciblées de neurones.

Ainsi, l'organisme génétiquement modifié est équipé d'une molécule présente dans les neurones dont la fluorescence varie en fonction de l'activité du neurone. Cela permet de réaliser l'imagerie fonctionnelle, c'est-à-dire l'imagerie des cellules lors de leur fonctionnement, par l'observation des modifications de leur métabolisme aux échelles de temps courtes.

I.3.2 Microscopie à fluorescence et feuille de lumière

a) Principe de la microscopie

Le principe général d'un microscope optique est d'éclairer un échantillon et d'observer la lumière qui entre dans le système de détection. Sur un échantillon mince (<100ţm), on peut faire de la microscopie en transmission ou en réflexion, mais pour un échantillon biologique épais (>1mm), le phénomène de diffusion rend ces techniques inutilisables. Lorsque le volume imagé est prédéfini, par exemple en imagerie médicale, il faut se contenter de la lumière ré-émise spontanément par les tissus (par auto-fluorescence) et élaborer des techniques sophistiquées pour repousser les

FIGURE I.5 – Illustration du phénomène de fluorescence. À gauche, le point de vue quantique avec les niveaux d'énergie interne, à droite, les spectres dabsorption et d'émission qui en résultent.

limites de la diffusion. Au contraire, lorsque l'on contrôle le volume à imager, il est possible de le modifier à l'avance pour le préparer à l'imagerie. Par exemple, on peut y placer des marqueurs ciblant un sous-ensemble spécifique du tissu biologique et émettant à une longueur d'onde donnée (marquage fluorescent).

b) Fluorescence

La fluorescence est un phénomène dabsorption-réémission de lumière par une molécule. Dans le cas de GFP (ainsi que GCaMP), la protéine absorbe les longueurs d'onde dans le bleu et émet dans le vert. Il est ainsi possible de stimuler la fluorescence en utilisant un laser à 488 nm (en imagerie un photon) et de collecter la lumière ré-émise.

Un des avantages de la microscopie à fluorescence est qu'avec un jeu de filtres adapté, on peut obtenir un excellent rapport signal à bruit. Ainsi, en plaçant sur la ligne de détection un filtre coupe-bande à la longueur d'onde du laser, on peut couper toute lumière venant de celui-ci. En ajoutant un filtre passe-bande vert, seule la lumière liée à la fluorescence est détectée.

c) Sectionnement optique

Si l'on éclaire l'ensemble d'un échantillon fluorescent et que l'on tente de l'imager avec un objectif de microscope, le rapport signal à bruit est catastrophique. En effet, pour collecter le maximum de lumière, il faut une grande ouverture numérique et donc une faible profondeur de champ. Un objet lumineux hors du plan focal apparaît donc totalement flou, ce qui constitue une lumière parasite qui couvre celle émise

FIGURE I.6 – Sectionnement optique par différentes techniques

- a. Microscopie confocale, un sténopé est placé de manière à bloquer la lumière provenant des points hors focus.
- b. Microscopie deux photons, l'effet deux photons permet d'exciter uniquement la fluorescence dans le point de focalisation du laser.
- c. Feuille de lumière, une nappe produite avec une lentille cylindrique éclaire une couche de l'échantillon.
- d. Balayage laser, une nappe produite par balayage laser éclaire une couche de l'échantillon.

par les objets dans le plan focal. Il faut donc d'une manière ou d'une autre éliminer la lumière provenant d'en dehors du plan focal.

d) Microscopie confocale

Il existe pour cela plusieurs techniques dites de "sectionnement optique". La plus connue, la microscopie confocale, utilise une illumination focalisée en un seul point. L'objet en ce point est donc fortement éclairé, et le reste beaucoup moins. De plus, un sténopé conjugué à ce point ne laisse passer que la lumière qui en est issue. L'imagerie d'un plan est ensuite obtenue en scannant ce point dans le plan focal, et l'imagerie d'un volume en répétant l'opération pour plusieurs couches. Cette technique est largement répandue et déclinée, et a l'avantage d'être souple et d'atteindre des résolutions submicrométriques. Cependant, à cause du balayage point par point, elle ne peut pas combiner un nombre élevé de voxels ($\sim 10^8$ voxels)

à une fréquence élevée ($\sim 1~{\rm Hz}$) et doit sacrifier l'un pour l'autre. Elle est donc réservée soit à l'observation détaillée d'échantillons statiques, soit à l'observation peu détaillée d'échantillons dynamiques. Cette lenteur est liée au fait de scanner un seul point sur une surface, mais on peut gagner en vitesse au détriment du rapport signal à bruit en éclairant plusieurs points conjugués à plusieurs sténopé en même temps. C'est le principe du microscope confocal à disque rotatif (spinning disk).

e) Microscopie deux photons

La microscopie deux photons utilise une propriété non linéaire de la lumière pour exciter la fluorescence uniquement en un point. De manière analogue à la microscopie confocale, un faisceau est concentré en un point de l'échantillon, mais l'utilisation d'un laser pulsé dans l'infrarouge permet d'atteindre des niveaux de puissance instantanée bien plus élevés tout en pénétrant mieux les tissus biologiques. De plus, l'utilisation d'un sténopé n'est pas nécessaire car l'effet deux photons est proportionnel au carré de l'intensité lumineuse, et seul le point de focalisation est donc excité. Comme la microscopie confocale, il s'agit alors de scanner un point à travers tout l'échantillon, ce qui est trop lent pour l'imagerie de grands volumes.

f) Microscopie à feuille de lumière

En microscopie confocale ou deux photons, l'illumination passe par le même objectif que la détection. Mais pour certains échantillons, l'éclairage peut également être fait par le côté. Une feuille de lumière coïncidant avec le plan focal de l'objectif peut être produite à l'aide d'une lentille cylindrique, ou bien par balayage d'un faisceau laser. C'est ce qu'on appelle la microscopie à feuille de lumière, microscopie à nappe laser, ou encore SPIM pour Single Plane Imaging Microscopy. Cette technique, en dépit d'un rapport signal à bruit et d'une résolution inférieurs à la microscopie confocale, suffit pour réaliser l'imagerie à la résolution cellulaire. De plus, elle permet d'imager un plan entier d'un seul coup, ce qui est bien plus rapide. En scannant l'objectif et la feuille de lumière, on peut ainsi produire une imagerie volumique à fréquence bien plus élevée qu'en microscopie confocale. Par exemple, avec trente couches espacées de dix microns (taille moyenne d'un neurone), on peut acquérir l'ensemble du cerveau d'une larve de poisson zèbre à environ 2Hz.

Si la microscopie par fluorescence à feuille de lumière est une technique particulièrement adaptée à la bio-imagerie fonctionnelle, son utilisation reste toutefois relativement limitée. En 2011, un article de revue pointait le manque de système commercial en microscopie à feuille de lumière [24]. En 2017, un autre déplorait le faible niveau de propagation de cette technique au regard de ses performances [25]. La technique reste donc cantonnée à des laboratoires capables de développer leur propre microscope, en dépit du succès qu'elle rencontre dans ses applications.

I.4 Intégration multisensorielle chez la larve de poisson zèbre

La microscopie à feuille de lumière permet d'enregistrer le cerveau entier d'une larve de poisson zèbre à la résolution du neurone et avec une fréquence de quelques Hertz. Plusieurs études ont appliqué cette technique pour comprendre différents aspects du fonctionnement du cerveau. Je m'intéresse ici aux stratégies mises en uvre pour étudier l'intégration multisensorielle, la boucle sensorimotrice, et plus particulièrement le modèle visuo-vestibulaire.

I.4.1 Boucle sensorimotrice

Une capacité intéressante du cerveau est le fonctionnement en boucle fermée. En effet, à la manière d'un système d'asservissement, il est capable de mesurer un paramètre extérieur, le comparer à une valeur de commande et agir pour le contrôler. Par exemple, lorsqu'un poisson est emporté par le courant d'une rivière, il détecte un flux optique sous lui et déclenche la nage. Le flux optique résultant est alors la somme de la vitesse du poisson par rapport au fluide et de la vitesse du fluide par rapport au sol. Ce flux optique mesuré permet au poisson d'évaluer si sa nage est efficace pour compenser le courant, s'il doit nager plus vite ou moins vite. Beaucoup des réflexes sont en fait des boucles sensorimotrices dans lesquelles les entrées sensorielles servent en permanence à évaluer la sortie motrice. Deux options se présentent pour étudier ces boucles sensorimotrices. L'une est l'étude en nage libre, l'autre est l'étude en environnement virtuel avec rétroaction.

a) Imagerie en nage libre

Une option pour étudier le poisson dans son environnement naturel est de construire un microscope motorisé capable de suivre les mouvements du poisson lors de la nage de manière à toujours pouvoir imager le cerveau. C'est l'approche adoptée par le laboratoire RoLi [26] qui peut ainsi observer certains comportements

difficiles à reproduire avec un poisson immobilisé. L'illumination par le côté étant impossible dans ce cas, une technique de microscopie structurée inventée par Jérôme Mertz [27] a été utilisée.

b) Réalité virtuelle

Une autre option pour étudier la boucle sensorimotrice est de la reproduire en environnement virtuel pour simuler la boucle de rétroaction sensorimotrice. Un stimulus sensoriel est soumis au poisson qui réagit en fonction. Sa réponse est mesurée et répercutée sur l'environnement virtuel d'une manière fidèle à la réalité ou volontairement biaisée.

- b).1 Adaptation motrice fictive Ahrens et al ont étudié la boucle sensorimotrice dans le cas de l'OMR [13]. Ils ont pour cela créé un environnement fictif dans lequel une larve paralysée est placée au-dessus d'un écran. Des bandes mobiles sont présentées au poisson, ce qui déclenche le réflexe optomoteur. L'activité des neurones moteurs de la queue est enregistrée à l'aide d'électrodes (les muscles sont inactifs, car le poisson est paralysé), et ce signal est utilisé pour simuler un déplacement par un mouvement des bandes en sens opposé. Dans cet environnement virtuel, ils ont pu tester des mécanismes comme l'adaptation de gain tout en enregistrant l'activité des neurones. Cela a permis d'identifier les neurones responsables de l'augmentation et de la diminution du gain, qui sont essentiels pour le fonctionnement de la boucle de rétroaction.
- b).2 Sans rétroaction, comportement d'abandon Dans le même article [13], les auteurs ont testé le comportement du poisson dans un système en boucle ouverte, c'est-à-dire sans rétroaction. Les bandes mobiles sont présentées au poisson à vitesse constante sans prendre en compte l'activité des neurones moteurs. Dans cette situation, le comportement de nage est inhibé malgré la présence de stimulus. Cette inhibition due à l'absence de rétroaction peut durer une dizaine de secondes, même après la remise en marche de la rétroaction. Cela montre l'importance du rétrocontrôle dans le fonctionnement de la boucle sensorimotrice et la nécessité d'un système en boucle fermée pour son étude.

I.4.2 Modèle visuo-vestibulaire

Un terrain idéal pour étudier l'intégration multisensorielle est le modèle visuovestibulaire. Ces deux modalités sensorielles sollicitées de concert lors de la nage pour la stabilisation de la posture et de la vision sont pratiquement développées chez la larve de six jours. En effet, le système visuel est fonctionnel dès 4 jours [17], et le système vestibulaire dès 5 jours (seulement l'utricule) [28]. Mais avant de décrire les réflexes qui mettent en jeu ces deux modalités sensorielles simultanément, intéressons-nous séparément à l'appareil visuel et à l'appareil vestibulaire.

a) Système visuel

- a).1 Organisation La partie neuronale du système visuel commence par la rétine, un organe disposant de cellules qui détectent la lumière. La répartition des capteurs en fonction de leur couleur correspond aux teintes rencontrées dans l'habitat naturel du poisson. Des circuits neuronaux dans la rétine réalisent un pré-traitement qui, bien qu'en pleine évolution chez une larve de six jours, lui permet déjà de réaliser des opérations complexes. Par exemple, certaines cellules ganglionnaires rétiniennes sont sensibles à l'orientation de motif ou à la direction de mouvement d'un objet, d'autres à la taille d'un objet ou à son évolution [17]. L'étude de l'arborescence de ces ganglions révèle plusieurs zones spécifiques à certains stimuli, comme des variations globales de luminance, le mouvement de petits objets, des déplacements sur tout le champ de vision... La plupart de ces ganglions projettent vers le tectum optique (équivalent du colliculus supérieur chez les mammifères) où la suite du traitement est effectuée à travers sa structure laminaire [29]. Cette région est particulièrement présente dans les phénomènes multisensoriels.
- a).2 OMR, réponse optomotrice Certains comportements comme l'OMR (optomotor response, réponse optomotrice) et l'OKR (optokinetic response, réponse optocinétique) sont purement liés au système visuel. L'OMR est un comportement qui survient de manière très reproductible lors d'un mouvement de translation global dans l'ensemble du champ de vision. La larve se met à nager dans la direction opposée au flux optique. Dans la nature, ce comportement permet de compenser le courant d'une rivière pour rester au même niveau en se servant de l'environnement visuel comme référence. En laboratoire, on peut facilement reproduire ce comportement en projetant un motif en translation sous la larve, ce qui provoque des mouvements de queue.

a).3 OKR, réponse optocinétique L'OKR est un mécanisme de stabilisation de la vision dans lequel lil compense les mouvements globaux de l'environnement pour en conserver une vision nette. Cette réponse peut également être étudiée facilement en laboratoire en présentant un motif mobile sur un écran face à une larve. Ces deux comportements sont importants dans l'étude des réponses aux stimulations vestibulaires en présence d'un environnement lumineux. En effet, une accélération ou une rotation de la larve entraîne mécaniquement un mouvement global de l'environnement visuel de celle-ci.

b) Système vestibulaire

b).1 Organisation L'organe vestibulaire, quant à lui, est situé dans l'oreille interne. Grâce à des cellules ciliées sensibles à leur propre déflexion, il peut mesurer les accélérations inertielle et gravitationnelle auxquelles sont soumises les otolithes (petites pierres osseuses) et les accélérations angulaires du liquide présent dans les canaux semi-circulaires. Bien que quasiment matures chez la larve dès cinq jours, la taille des canaux semi-circulaires les rend inefficaces. Seuls les otolithes sont fonctionnels et seul l'utricule (un des otolithes) sert à la détection vestibulaire. Cela est cependant suffisant (et nécessaire [20]) pour que la larve puisse nager tout en conservant son équilibre.

Les neurones répondant aux stimulations vestibulaires sont présents à de nombreux endroits du cerveau, à la fois dans le prosencéphale (télencéphale, habenulae, thalamus, prétectum), dans le mésencéphale (tectum, nMLF, tegentum), et dans le rombencéphale (cervelet, MON, rhombomère 5-7) [30]. Chacune de ces régions est impliquée différemment dans les réflexes vestibulaires comme le réflexe vestibulo-oculaire (vestibulo-ocular reflex, VOR) et le contrôle postural ou réflexe vestibulo-spinal (vestibulo-spinal reflex, VSR).

b).2 VOR, réflexe vestibulo-oculaire Le VOR, largement répandu chez les vertébrés, est également observé chez le poisson-zèbre [31]. C'est un mouvement réflexe des yeux qui compense les mouvements de la tête pour stabiliser la vision. Bianco et al l'ont mis en évidence chez la larve de poisson zèbre de plus de 4 jours en la soumettant à une rotation selon l'axe de tangage, ce qui génère une rotation des yeux opposée, avec un angle limité par le maximum physiologique. Le circuit neuronal associé est constitué d'un neurone afférent primaire, un neurone vestibulaire de second ordre, et un motoneurone oculaire qui guide la rotation de lil. Ce cir-

FIGURE I.7 – Schéma adapté de G. Migault

A. Larve de poisson zèbre de 6 jours vue de dessus (haut) et de côté (bas). On distingue les yeux (Y), l'oreille interne avec ses otolithes (O) et la vessie natatoire (VNat).

- B. Agrandissement de l'oreille interne vue de côté (B1) avec le schéma correspondant (B2). On souligne en pointillé les canaux semi-circulaires, en gris les deux otolithes, et en couleur les neuro-épithéliums.
- C. Otolithe en fonctionnement. Lorsqu'il est à l'horizontale (C1), les cils sont au repos, lorsqu'il est incliné (C2), les cils sont défléchis car l'accélération gravitation-nelle change de direction, lorsqu'il est en mouvement accéléré vers la gauche (C3), l'accélération inertielle (a) s'ajoute à l'accélération gravitationnelle (g) et donne la résultante (r). On voit que l'utricule ne permet pas de différencier l'accélération gravitationnelle de l'accélération inertielle.

cuit est présent en deux exemplaires avec une symétrie bilatérale, un pour chaque utricule (gauche et droit). Il a également été montré que les neurones du noyau tangentiel ont des projections dans les motoneurones oculaires contra-latéraux, et que ces neurones sont essentiels au fonctionnement du réflexe.

b).3 VSR, réflexe vestibulo-spinal Le VSR est un réflexe de contrôle de posture qui utilise également l'information vestibulaire. Chez le poisson zèbre adulte, la vessie natatoire est un organe important qui permet de contrôler la flottaison, mais chez la larve, elle n'est pas encore fonctionnelle. Les effecteurs du contrôle postural sont donc surtout la queue et les nageoires. Ehrlich et al ont étudié le déséquilibre naturel de la larve en tangage et ont montré que les événements de nage sont à la base du développement de l'équilibre [32]. Favre-Bulle et al ont étudié le contrôle de l'équilibre dans l'axe de roulis en stimulant directement les utricules dans l'oreille interne et ont constaté une déflexion proportionnelle de la queue [30].

c) Intégration visuo-vestibulaire

Les quatre réflexes cités précédemment peuvent être isolés en laboratoire, en contrôlant séparément la stimulation visuelle et la stimulation vestibulaire, mais en réalité, ces réflexes sont très intriqués. En effet, l'OKR et le VOR contrôlent tous les deux le mouvement des yeux alors que l'OMR et le VSR contrôlent tous les deux le mouvement de la queue et des nageoires. Dans certains cas, ils peuvent jouer dans le même sens (stimulations cohérentes) alors que dans d'autres ils peuvent entrer en conflit (stimulations incohérentes). C'est précisément cette interaction entre les deux modalités sensorielles qui nous intéresse, et c'est également la raison pour laquelle le système vestibulo-oculaire se prête particulièrement bien à l'étude des stimulations multimodales. Une première étude montre comment dans certains cas, l'information visuelle peut moduler les rotations de l'il induites par l'utricule [31].

1.5 Objectifs de la thèse

Les objectifs de ma thèse ont été d'une part de reproduire la boucle sensorimotrice du contrôle postural dans un environnement virtuel, et d'autre part de réaliser un montage capable d'acquérir l'activité neuronale lors de stimulations visuelle et vestibulaire simultanées.

Chapitre II

Contrôle postural dans un environnement virtuel

La larve de poisson zèbre est intrinsèquement déséquilibrée. Son centre de gravité est décalé vers l'avant par rapport à son centre de flottaison, ce qui la fait piquer du nez dans l'axe de tangage. Une larve paralysée se retrouve sur le flanc dans l'axe de roulis. C'est donc par un contrôle permanent qu'elle se maintient à l'horizontale. Pour cela, elle utilise à la fois les informations visuelle et vestibulaire pour déclencher des mouvements de queue et de nageoires qui la stabilisent. Ces comportements complexes ont été étudiés en nage libre par David Ehrlich et David Schoppik [32][33][18], mais pour comprendre les mécanismes neuronaux à l'uvre, il est nécessaire de fixer le poisson sous un objectif de microscope. J'ai donc cherché à reproduire ces comportements dans un environnement virtuel en vue d'une étude sous microscope.

II.1 Description de la boucle sensorimotrice

La larve de poisson zèbre évolue dans un environnement en trois dimensions. Elle peut se déplacer suivant les trois degrés de liberté en translation et s'orienter suivant les trois degrés de liberté en rotation. Certains comportements comme la thigmotaxie (affection pour les bords) sont liés à sa position dans son environnement, mais dans le cadre du contrôle postural, on s'intéresse surtout à deux degrés de rotation que sont le roulis et le tangage.

FIGURE II.1 – Larve de poisson zèbre dans sa position naturelle. Cette position est hors équilibre, un poisson inactif tourne sur l'axe de roulis et de tangage.

II.1.1 Roulis

Dans l'axe de roulis, la larve contrôle son équilibre par des déflexions latérales de la queue. Si elle penche trop à gauche, elle bascule sa queue vers la droite, un peu comme un humain utiliserait ses bras pour s'équilibrer. Le contrôle postural en roulis se fait donc par une boucle de rétroaction sensorimotrice continue. L'angle de référence est de 0ř, l'organe vestibulaire mesure l'écart à cet angle, et la queue le compense par une déflexion opposée. Ce comportement a été observé par Favre-Bulle et al en simulant une rotation via une manipulation de l'utricule dans l'oreille interne par des pinces optiques. Cette étude a été réalisée en boucle ouverte, c'est-à-dire sans rétroaction, ce qui fait que la larve ne pouvait pas constater les effets de son mouvement. Une expérience de réalité virtuelle en rétroaction pourrait simuler un déséquilibre proportionnel à l'angle de la queue, ce qui permettrait à la larve d'en corriger l'angle en temps réel.

II.1.2 Tangage

Dans l'axe de tangage, la situation est plus compliquée. L'angle que fait la larve avec l'horizontale dépend de sa direction de déplacement. Par exemple, une larve se place à un angle positif lorsqu'elle nage vers le haut pour remonter à la surface et un angle négatif quand elle nage vers le bas [18]. Cet angle constitue une référence autour de laquelle la larve cherche à se stabiliser. Ehrlich et Schoppik ont

montré que le contrôle de l'angle se faisait pendant les mouvements de nage [32]. La larve de poisson zèbre nage de manière discrète via des mouvements réguliers à une fréquence d'environ un par seconde en nage libre. Entre deux mouvements, elle est soumise à son déséquilibre et bascule vers l'avant à une vitesse angulaire déterminée par sa morphologie. Lors d'un mouvement, en fonction de la force et la position des nageoires, l'angle augmente d'un coup. De plus, les auteurs suggèrent que l'initiation du mouvement est induite par l'angle ressenti. Ils ont augmenté artificiellement le déséquilibre de la larve, conduisant à une chute plus rapide. Ils ont constaté que la larve compensait ce déséquilibre supplémentaire par une augmentation de la fréquence des mouvements de nage. Le contrôle postural en tangage est donc le résultat d'une boucle de rétroaction sensorimotrice discrète. L'angle cible varie entre -15ř et +20ř environ et dépend de la direction souhaitée par le poisson et d'un certain angle d'attaque [18]. L'action de contrôle de l'angle implique à la fois la queue et les nageoires et se fait au moment des événements de nage, dont la fréquence peut être ajustée en fonction du déséquilibre.

On voit ici deux boucles sensorimotrices différentes impliquée dans le contrôle postural. Ces boucles de rétroaction ont des caractéristiques différentes en termes de valeur cible et de mécanisme de contrôle. Je décris par la suite une plateforme expérimentale que j'ai mise au point afin d'étudier le contrôle postural en réalité virtuelle.

II.2 Étude comportementale du contrôle postural

II.2.1 Plateforme expérimentale

Pour reproduire la boucle de rétroaction du contrôle postural, il faut soumettre le poisson à une stimulation vestibulaire, détecter ses mouvements de queue et rétroagir sur son orientation. J'ai développé une plateforme expérimentale pour répondre à cette problématique. Elle est constituée d'une cuve où l'on place la larve, d'un système d'imagerie pour suivre les mouvements de queue, d'un projecteur pour projeter un environnement visuel sur les parois de la cuve, d'un moteur pour entraîner la plateforme sur laquelle repose le tout, et d'un ordinateur pour réaliser la boucle de rétroaction. Je décris ci-dessous les différents éléments.

FIGURE II.2 – Boucle de rétroaction sensorimetrice et initiation du mouvement. Adapté de Ehrlich et al [32]

- a. Le centre de gravité et de flottaison de la larve sont décalés, ce qui cause un déséquilibre dans l'axe de tangage.
- b. La larve nage de manière discrète (non continue), à une fréquence de ~ 1 Hz. Entre deux événements, la larve inactive est entraînée par son déséquilibre, nez vers le bas à une vitesse de ~ 6 ř/sec. Lors des événements de nage (pic de vitesse), l'angle est corrigé de ~ 6 ř.
- c. En remplaçant l'eau de la vessie natatoire par de l'huile, ce qui augmente le déséquilibre, les auteurs ont constaté une augmentation de la fréquence (diminution de l'IEI, intervalle inter-événement), ce qu'ils attribuent au contrôle de la posture via l'information vestibulaire.
- d. La boucle sensorimotrice discrète responsable du contrôle postural est capable d'une adaptation en fréquence suite à une perturbation de l'équilibre du poisson.

a) Stimulation vestibulaire

Le but de la cuve rotative est de soumettre le poisson à un stimulus vestibulaire contrôlé, et de pouvoir agir rapidement sur la commande (position angulaire, vitesse angulaire). Le moteur que j'ai utilisé pour entraîner la plateforme est le modèle DMAC17 de l'entreprise midi-ingéniérie. Le modèle était assez ancien et ne disposait que d'une interface rudimentaire, j'ai donc dû réimplémenter une commande série pour communiquer avec le microcontrôleur de la commande moteur. Finalement, la communication introduit une latence de quelques dizaines de millisecondes et impose un délai entre deux instructions. Cela semble cependant suffisant pour garantir une bonne impression de réalité virtuelle, puisque chez l'humain, les effets

FIGURE II.3 – Plateforme expérimentale permettant d'étudier le contrôle postural d'une larve de poisson zèbre pendant une boucle de rétroaction.

liés à la latence commencent à se faire sentir à partir de 75 ms [34]. Un problème que j'ai rencontré au début était les mouvements de l'eau dans la cuve. Le poisson y est très sensible via sa ligne latérale postérieure, ce qui faussait les expériences. En modifiant légèrement la cuve, j'ai pu maintenir l'eau de la cuve pratiquement immobile.

b) Imagerie et analyse

Pour détecter de manière fiable les mouvements de queue du poisson, j'ai mis au point un système d'imagerie adapté. Le système doit être léger et compact, afin de limiter le couple lors de la rotation de la plateforme et être insensible aux vibrations. Le poisson est éclairé par une lampe infrarouge à travers un diffuseur et une fenêtre située en haut de la cuve. En bas de la cuve, une autre fenêtre étanche laisse passer la lumière vers un miroir sur lequel pointe une caméra équipée d'un objectif grossissant et d'un filtre infrarouge. L'utilisation de la lumière infrarouge, invisible pour le poisson, permet de conserver la même qualité d'image quel que soit l'environnement visible pour le poisson. Les fenêtres sont les plus petites possible et situées dans l'extrémité du champ de vision du poisson afin de contrôler au mieux son environnement visuel. Le miroir permet de conserver la caméra et l'objectif proche de l'axe de rotation de la plateforme, pour limiter le bras de levier. L'objectif du système d'imagerie est choisi pour que le poisson soit imagé sur un nombre

FIGURE II.4 – Traitement d'image en cinq étapes pour obtenir l'angle du poisson. a) image originale sous éclairage infrarouge b) filtre de Sobel c) dilatation morphologique d) remplissage des contours e) ouverture morphologique f) ellipse équivalente via les moments d'ordre deux de l'image

réduit de pixels de la caméra. Ainsi, le transfert de donnée depuis la caméra vers l'ordinateur et le traitement de l'image sont rapides, ce qui permet de ne pas ralentir la rétroaction. Le traitement de l'image est simple mais fonctionnel. Il consiste à appliquer les fonctions suivantes :

- 1. filtre de Sobel (fonction edge de Matlab, option sobel)
- 2. dilatation (fonction imdilate)
- 3. remplissage (fonction imfill)
- 4. ouverture (fonction bwareaopen)
- 5. ellipse équivalente (fonction regionprops, option Orientation)

Ce qui permet de trouver l'angle du poisson de manière reproductible d'une image sur l'autre, afin de détecter les mouvements de queue.

c) Stimulation visuelle

Pour avoir un contrôle très souple sur l'environnement visuel du poisson du point de vue des couleurs, de la luminosité, et des formes, la solution idéale est un projecteur. Afin d'obtenir un bon contraste, les parois de la cuve sont coniques et blanches, réalisées dans un cylindre de PVC. Un cache évite d'éclairer directement le poisson pour ne pas perturber son environnement visuel. Les motifs sont réalisés à l'aide de psychtoolbox, une bibliothèque conçue pour l'affichage de stimulations visuelles.

FIGURE II.5 – À l'aide d'un scalpel, un boudin d'agar est retiré de la queue d'une larve pour lui permettre de bouger. La larve est retenue par la tête et le corps, l'autre partie du boudin étant tenue par le capillaire en verre.

Pour conserver une fréquence d'affichage indépendant de la boucle de rétroaction et ainsi garantir un taux constant d'images par seconde d'expérience en expérience, j'ai séparé le processus de la boucle principale, avec laquelle il communique par le protocole TCP/IP.

d) Insertion de la larve

Pour immobiliser la larve de poisson zèbre, il est fréquent de la piéger dans un gel d'agarose à basse température de fusion concentré à 2% aspiré par un capillaire en verre de diamètre intérieur 0.8 mm. Le capillaire est inséré dans un trou de 1.4 mm (son diamètre extérieur), ce qui le maintient fermement. La larve peut ainsi être placée dans l'une des deux positions suivantes. L'une, sur l'axe de rotation, permet d'étudier la réponse comportementale à une stimulation en roulis, l'autre, perpendiculaire, permet d'étudier la réponse à une stimulation en tangage. Afin d'observer les mouvements de la queue, je la libère en retirant la partie du boudin d'agarose qui l'entoure.

FIGURE II.6 – Expérience d'OMR en boucle ouverte. On voit que le poisson nage systématiquement en présence de stimulation visuelle (440 événements sur 150 secondes) et qu'il nage très rarement en absence de stimulation visuelle (22 événements sur 150 secondes).

II.2.2 Protocoles et résultats

a) Test par l'OMR

Après avoir inséré un poisson dans la cuve, je le laisse reposer une à deux minutes pour lui permettre de s'adapter à son nouvel environnement. Je teste ensuite son réflexe optomoteur (OMR). Si le poisson ne réagit pas à cette stimulation visuelle, il est possible que sa vision ou sa motricité ne fonctionne pas, ou que son cerveau ne soit pas dans un état propice à l'étude de son système sensori-moteur. Pour tester l'OMR, je présente une alternance de bandes noires et blanches d'une taille apparente de trente degrés défilant à une vitesse apparente de vingt degrés par seconde, uniquement sur la partie basse de l'environnement visuel. Ce protocole est inspiré par celui présenté par Kris Severi [35]. J'ai réalisé ce test en boucle ouverte, c'est-à-dire sans rétroaction. Dans ce régime, le poisson présente un phénomène d'habituation si la stimulation dure trop longtemps, j'ai donc alterné des périodes de dix secondes de bandes fixes et dix secondes de bandes mobiles.

Ces expériences sur le réflexe optomoteur montrent que le stimulus visuel projeté est suffisant pour étudier les réponses de la larve à son environnement visuel (Fig. II.6).

b) Rétroaction vestibulaire

Pour mettre en place la boucle de rétroaction vestibulaire, je me suis inspiré de l'étude en nage libre de Ehrlich et~al~[32]. J'ai choisi une vitesse de chute de -6 \check{r} /s et une correction angulaire rapide de +10 \check{r} lors d'un mouvement (en 100 ms environ). Ainsi, le poisson peut se maintenir à un angle fixe avec un mouvement toutes les

FIGURE II.7 – Zoom sur un exemple de contrôle de posture dans une boucle de rétroaction virtuelle. Le poisson est soumis à un stimulus vestibulaire constant (pente constante) en l'absence de comportement. Lors d'un mouvement de nage, une rétroaction sur l'angle de la plateforme simule une correction d'angle du poisson.

1.6 secondes. Si le poisson est immobile, son angle diminue jusqu'à l'angle limite que j'ai fixé à -60ř. Ces expériences ont été réalisées dans le noir ou en éclairage uniforme, pour étudier la perception vestibulaire indépendamment de la perception visuelle.

Les paramètres de la boucle sont la vitesse de chute et l'angle de correction lors du mouvement. Pour répondre à une modification de ces paramètres, le poisson doit adapter la fréquence de ses mouvements, car l'amplitude n'est pas prise en compte. Ainsi, à correction angulaire fixe, si la vitesse de chute augmente, comme dans l'expérience de la vessie natatoire remplie d'huile, le poisson doit augmenter la fréquence de ses mouvements. Au contraire, à vitesse de chute fixe, si la correction angulaire augmente, le poisson doit baisser la fréquence de ses mouvements. C'est effectivement ce que l'on constate dans les expériences, où une vitesse de chute de -2ř/s, -4ř/s et -6ř/s avec une correction angulaire de 10ř entraînent respectivement chez la larve une fréquence de mouvement de 0.2 Hz, 0.4 Hz, et 0.6 Hz en moyenne (figure II.8).

La principale difficulté de ces expériences est le fait que le poisson peut devenir inactif et stationner à l'angle minimal autorisé par le système (-60ř). C'est pour cette raison que la durée choisie pour les cycles est relativement courte (60 secondes). À la fin d'un cycle, le poisson est ramené à l'angle de référence (0ř). Cela évite que le poisson reste trop longtemps inactif, état dans lequel il est impossible d'étudier le contrôle postural. Pour obtenir des fréquences représentatives, il faut donc les calculer uniquement sur les périodes d'activité.

On observe ce même comportement sur des larves dans une boîte de pétri : de

FIGURE II.8 — Réponse d'une larve à une variation de la vitesse de chute. Trois cycles de une minute de stimulation vestibulaire sont séparés de pause de dix secondes. Le poisson se maintient autour d'un angle de -20[°] quelle que soit la vitesse de chute imposée, en adaptant la fréquence de ses mouvements.

La fréquence moyenne du deuxième cycle est légèrement inférieure à sa valeur attendue (0.35 Hz au lieu de 0.4 Hz). Cela est du au fait que, suite à un mouvement d'échappement, le poisson est totalement inactif à la fin du cycle et stationne à -60ř. Si l'on calcule la fréquence en ignorant les dix dernières secondes, la fréquence moyenne est bien de 0.4 Hz.

temps en temps elles cessent toute activité et reposent sur le fond de la boîte. La boucle de rétroaction du contrôle postural est alors en pause. Dans le cas d'une larve prisonnière d'un boudin d'agarose, les périodes d'inactivité font souvent suite à un mouvement d'échappement (struggle), pendant lequel la larve tente de s'échapper en déclenchant des mouvements de très grande amplitude.

c) Protocole multimodal

L'intérêt de l'environnement virtuel est qu'il est possible de contrôler à la fois la stimulation vestibulaire et la stimulation visuelle. Après avoir étudié le contrôle postural dans le noir, j'y ai ajouté une composante visuelle. L'objectif est de comparer la réponse en cas de stimulation multimodale par rapport aux réponses en présence des deux stimuli séparément.

Le protocole commence par un cycle d'OMR qui permet d'évaluer le niveau d'activité du poisson. S'il ne répond pas à cette stimulation, l'expérience est interrompue pour passer au poisson suivant, ce qui évite d'observer pendant un quart d'heure une larve immobile. Ensuite vient une phase de stimulation purement visuelle avec rotation de l'ensemble de l'environnement, tout autour du poisson. Pendant cette phase, l'information visuelle indique au poisson qu'il tourne, ce qui est en conflit avec l'information vestibulaire. La partie inférieure du champ visuel est similaire à une stimulation d'OMR, mais la partie supérieure diffère. Ensuite, en conservant le motif de la phase visuelle en position fixe dans le référentiel du laboratoire, la cuve tourne avec le poisson pour stimuler le système vestibulaire, utile au contrôle postural. Pendant cette phase, les deux modalités sensorielles sont cohérentes. Elles indiquent toutes les deux au poisson qu'il est en train de tourner. Ensuite, le motif est remplacé par un éclairage uniforme d'intensité moyenne identique. Cela permet de conserver une luminosité ambiante dans la cuve identique au cycle précédent. Cette phase est celle exposée précédemment, dans la partie sur la rétroaction vestibulaire. Chaque phase est séparée en trois sous-phases, avec trois vitesses de stimulus différentes (2, 4, et 6 degrés par seconde), pour étudier l'adaptation aux conditions virtuelles.

La réponse des larves à ce protocole est très variable. De nombreuses données sont inutilisables à cause d'une larve immobile après un mouvement d'échappement (20 larves), mais dans les données restantes (10 larves), certains poissons montrent une bonne réponse principalement au stimulus vestibulaire seul, d'autres au stimulus visuel seul, alors que la plupart répondent bien pendant le cycle multimodal. Il semble donc qu'en fonction des poissons l'importance relative des différentes modalités sensorielles dans le contrôle postural soit variable. Pour certains poissons, cependant, la présence simultanée des deux modalités sensorielles semble nécessaire au contrôle postural. Cela peut être interprété de la manière suivante.

Pendant les phases unimodales visuelles, les sensations visuelle et vestibulaire sont en conflit, ce qui peut réduire et même supprimer la réponse motrice, la force de cet effet variant d'un poisson à l'autre. Dans les phases unimodales vestibulaires, le poisson ne reçoit aucune information visuelle sur sa position et la réponse comportementale peut être affaiblie par un manque de fiabilité de l'information vestibulaire. Au contraire, pendant les phases de stimulus multimodal cohérent, on remarque une réponse comportementale forte, augmentée par l'intégration multisensorielle.

FIGURE II.9 — Protocole multimodal faisant intervenir à la fois une stimulation vestibulaire et une stimulation visuelle. Des cycles d'une minute sont séparés par des pauses de vingt secondes. Le protocole appliqué sur trois poissons différents (a, b, c.) pour lesquels on présente la réponse sous la même forme qu'en II.8 : en haut la vitesse de la queue au cours du temps et en bas l'angle de la plateforme. Dans tous les cas, la réponse optomotrice fonctionne, mais on voit des différences au niveau des autres stimuli. Le poisson (a.) répond bien à la stimulation visuelle, mais quasiment pas à la stimulation vestibulaire, le poisson (b.), au contraire, ne répond pas à la stimulation visuelle (bien qu'il réponde à l'OMR), mais répond à la stimulation vestibulaire pure. Le poisson (c.) ne répond ni à la stimulation visuelle pure, ni à la stimulation visuelle pure, mais répond comme les deux autres pendant le cycle multimodal.

Ces comportements semblent spécifiques à un poisson. Par exemple, le protocole a été répété cinq fois sur le poisson (c.) avec chaque fois une réponse similaire : réponse à l'OMR, et réponse multisensorielle, mais peu de réponse pour un stimulus seul.

d) Interprétation

Malgré ces comportements individuels variables, on peut analyser globalement la réponse des larves. La métrique utilisée est la fréquence moyenne des mouvements, calculée comme le rapport entre la quantité de mouvements de nage et la durée du cycle. Cette métrique inclut les périodes d'inactivité qui suivent un mouvement d'échappement, ce qui fausse légèrement la valeur, comme montré dans l'exemple de rétroaction vestibulaire. On observe néanmoins deux phénomènes :

- 1. une larve est capable de moduler son activité en fonction de la force du stimulus
- 2. une larve a une réponse accrue en présence de deux stimuli cohérents

Ces résultats montrent qu'un réflexe *a priori* vestibulaire comme le contrôle postural est en réalité largement altéré par d'autres modalités sensorielles comme le système visuel. On peut supposer que la sensation tactile, qui permet au poisson de sentir les écoulements de fluide, joue également un rôle (non testé).

II.2.3 Ouverture

Comme montré, ce système permet de reproduire la boucle de rétroaction sensorimotrice du contrôle postural dans un environnement virtuel. Cependant, une limitation importante réside dans les longues périodes d'inactivité qui suivent souvent les mouvements d'échappement de la larve. Ces périodes réduisent considérablement la quantité de données exploitables. Le poisson est en effet quasiment inactif dans environ neuf expériences sur dix, ce qui explique mon échantillon statistique faible. Ces comportements d'abandon pourraient être expliqués par un article de Mu et al [36]. Celui-ci décrit comment, suite à une action infructueuse de la larve, des cellules gliales accumulent l'information jusqu'à inhiber le comportement perçu comme inutile. Dans le cas d'une larve immobilisée dans un gel d'agarose, si les mouvements de queue de grande amplitude qui caractérisent l'échappement se soldent par une réussite, la larve s'échappe dans le réservoir, mettant fin à l'expérience, et si, au contraire, ils se soldent par un échec, la larve finit par abandonner toute réponse comportementale, réduisant à zéro le nombre d'événements à analyser.

Une piste d'évolution importante serait donc de limiter ces comportements d'échappement. Cela permettrait de réaliser des expériences plus longues et plus complexes afin de mettre à l'épreuve ces observations préliminaires et d'observer d'autres phénomènes. Dans les comportements observés, il semblerait que certains

FIGURE II.10 — Fréquence moyenne des mouvements de queue de dix poissons différents parmi trente soumis au protocole présenté en figure II.9. Les valeurs à zéro (poisson entièrement inactif) sont retirées, et il reste donc environ quatre points par moyenne. Chaque point représente un poisson, la barre représente la valeur moyenne. Les valeurs "cible" précisées dans le protocole (0.2 Hz, 0.4 Hz, 0.6 Hz) ne sont pas atteintes en raison des périodes d'inactivité, mais la tendance est respectée. a. Pour chaque cycle, on observe une adaptation du poisson à la force du stimulus. Le poisson est capable d'adapter sa fréquence de nage pour se stabiliser par rapport à une information visuelle ou vestibulaire.

b. Pour chaque vitesse de stimulus, on observe une réponse moyenne différente en fonction du type de stimulus. Alors que le stimulus vestibulaire et visuel pur sont d'efficacité comparable, la présence simultanée des deux modalités sensorielles entraı̂ne globalement une meilleure réponse chez les larves. poissons répondent mieux à la stimulation visuelle et d'autres mieux à la stimulation vestibulaire. Des expériences plus longues avec plus de cycles permettraient de mettre en évidence ces spécificités individuelles des larves. Par exemple, en figure II.9, l'expérience a été reproduite cinq fois d'affilé sur le poisson (c.) : malgré une réponse systématique à l'OMR, le poisson montre peu de réponse pour un stimulus visuel seul, il répond fortement en présence d'un stimulus vestibulaire accompagné d'un stimulus visuel, mais pas en présence d'un stimulus vestibulaire seul. Ce poisson semble présenter un renforcement multisensoriel robuste.

Des expériences plus longues permettraient aussi de s'intéresser à la question de l'angle cible. Dans la stabilisation en roulis, l'angle cible est fixé à 0ř, mais dans la stabilisation en tangage, il peut varier entre des valeurs comprises entre -15ř et +20ř. Ces valeurs observées en nage libre par Ehrlich et Schoppik [18] sont associées à des trajectoires allant de -40ř à +80ř avec une relation affine liée à l'utilisation des nageoires pectorales. La reconstruction de trajectoires virtuelles paraît hors de portée, mais l'on pourrait observer l'évolution de l'angle cible. Reproduit sous microscope, ce comportement permettrait d'identifier les circuits responsables du choix de cet angle, peut être sous forme de copie efférente.

Si l'immobilisation de la larve est responsable de ces comportements d'échappement, on pourrait modifier la manière dont la larve est immobilisée par exemple en changeant la méthode de préparation du gel d'agarose. Les paramètres de rétroaction pourraient également être en cause, et leur ajustement pourrait augmenter l'immersion de la larve dans son environnement virtuel. Sans de telles améliorations, l'expérience serait difficile à reproduire sous microscope, car l'imagerie vient avec un nouveau lot de contraintes, comme nous allons le voir dans les parties suivantes.

Chapitre III

Imagerie fonctionnelle sous stimulation vestibulaire

III.1 Microscope rotatif

Dans le chapitre précédent, j'ai montré comment tester le comportement d'intégration visuo-vestibulaire dans un environnement en réalité virtuelle. L'objectif est d'observer l'activité du cerveau lors d'un tel comportement. Pour cela, il faut un système capable de réaliser l'enregistrement neuronal en même temps que la stimulation des systèmes vestibulaire et visuel. Cet objectif présente plusieurs difficultés : exciter le système vestibulaire tout en gardant le poisson fixe par rapport à l'objectif de microscope et contrôler son environnement visuel en dépit du laser d'excitation de fluorescence. Dans ce chapitre, je m'intéresse à la partie vestibulaire.

Pour stimuler le système vestibulaire tout en gardant le poisson fixe par rapport à l'objectif, une option est d'agir directement sur l'organe vestibulaire sans bouger la larve. C'est la solution adoptée par Favre Bulle et al dans un article publié en 2017 [37]. Les auteurs ont utilisé des pinces optiques pour stimuler directement les otolithes. Cette solution est limitée, car il n'est pas possible de calibrer la force appliquée, la concentration du laser produit un échauffement qui limite la durée maximale de la stimulation, et la gamme de force applicable est restreinte.

Au Laboratoire Jean Perrin, Geoffrey Migault et Volker Bormuth se sont tourné vers une autre option : tourner réellement le poisson pour que la gravité agisse directement sur ses otolithes. Cette deuxième solution est plus performante, car elle reproduit réellement la stimulation vestibulaire sans les limitations dues aux pinces optiques, mais elle nécessite des développements techniques avancés pour être

FIGURE III.1 – Schéma extrait de l'article [38]. Le module miniature peut être monté sur un microscope rotatif. Le poisson est positionné dans l'axe de rotation, et tourné en roulis. L'illumination vient par le côté.

appliquée sous microscope. En effet, pour conserver le microscope fixe par rapport à un poisson mobile, il faut construire un microscope rotatif, tout en gardant les conditions de stabilité nécessaires à l'imagerie. Un microscope à feuille de lumière rotatif capable de mesurer l'activité du cerveau pendant une stimulation vestibulaire réelle a donc été développé [38].

III.1.1 Description du montage

a) Unité d'illumination

Un microscope à feuille de lumière par balayage est généralement constitué de deux bras optiques formant un télescope de manière à placer le miroir rotatif galvanométrique de balayage dans le plan congugué de l'échantillon. Ainsi, son mouvement de rotation est transformé en une pure translation du faisceau au niveau de l'échantillon. Ce montage est volumineux et inadapté à un microscope rotatif. Il a donc fallu le miniaturiser et garantir sa stabilité. Les télescopes ont été remplacés par des objectifs de microscope. Le plan de Fourier n'étant pas accessible à cause de la distance frontale arrière, le miroir galvanométrique est légèrement hors du plan conjugué, ce qui introduit une rotation du faisceau dans l'échantillon en plus de la translation. Cette rotation reste cependant faible (<0.4ř), et compatible avec une feuille de lumière par balayage. L'unité d'illumination est composée d'un connecteur de fibre monté sur un positionneur piézoélectrique et de deux objectifs en montage confocal de part et d'autre d'un miroir galvanométrique.

FIGURE III.2 – Schéma du filtrage spectral dans le bras de détection. Le filtre notch (encoche) est très étroit et rejette la longueur d'onde du laser (488 nm). Le filtre GFP et plus large et transmet seulement une bande autour de la fréquence de la GFP (525 nm).

b) Unité de détection

L'enjeu pour une unité de détection rapide est de permettre l'enregistrement avec une durée d'exposition la plus courte possible tout en maintenant un rapport signal à bruit suffisant. Pour collecter beaucoup de lumière, il faut une grande ouverture numérique, et donc une distance de travail faible. Cependant, pour une imagerie à champ large, il faut un grandissement faible. La solution retenue est un objectif Olympus d'ouverture numérique 1 et de grandissement x20. Le grandissement est donné pour une lentille de tube de 180 mm, mais une lentille de tube de 150 mm a été utilisée, ce qui donne donc un grandissement de x16.667. Un pixel de la caméra mesure 6.5 ţm, ce qui donne un pixel objet de 0.39 ţm. Le capteur CMOS est un carré de 2048 pixels de côté, ce qui donne un champ objet de 0.8 mm. Le champ objet correspond à la longueur du cerveau, mais le pixel objet est très petit par rapport à un neurone. Pour limiter la quantité de données à enregistrer et augmenter le rapport signal à bruit, on peut combiner par les pixels de la caméra, opération appellée binning. Cela donne un pixel objet de 0.78 ţm.

Pour obtenir un bon rapport signal à bruit, il faut réduire la lumière parasite. Une source puissante est le laser d'illumination, elle peut être bloquée spécifiquement avec un filtre coup bande très étroit à sa longueur d'onde. Un filtre GFP (passe-bande à la longueur d'onde de la GFP) permet de filtrer davantage l'auto-fluorescence des tissus. Après ce filtrage, les bruits restants sont le bruit de photon et le bruit numérique. Le bruit numérique pourrait être réduit avec un système de refroidissement prévu sur la caméra, mais celui-ci est trop encombrant pour le microscope rotatif, et a donc été retiré. Le bruit de photon ne peut être réduit qu'avec

FIGURE III.3 – Schéma des étapes pour estimer avec précision la position d'une bille fluorescente.

- a. Image d'une bille dans le plan focal de l'objectif (a1)
- b. Image d'une bille hors du plan focal de l'objectif (a2)
- c. Etablissement du profil radial par moyennage autour du centre de gravité de l'image
- d. Profil cylindrique de la figure de diffraction constitué du profil radial pour plusieurs positions de l'objectif espacées de 20 nm. Les traits pointillés correspondent aux plans (a) et (b). La corrélation verticale du profil cylindrique pour plusieurs positions du microscope donne avec précision le déplacement de la bille.

des meilleures sondes calciques ou en exposant plus longtemps, mais il est négligeable devant le bruit numérique d'une caméra non refroidie. Le bruit numérique présente une structure liée à la constitution interne du capteur et qui fait apparaître des raies de pixel et la ligne médiale de l'obturateur déroulant.

c) Stabilité mécanique

Les deux unités (illumination et détection) d'un poids total inférieur à 2 kg tiennent sur une plaque de 50 cm de côté fixée à un moteur à grand couple et grande précision. Le moteur dispose d'un grand rotor permettant une large zone de fixation qui minimise les déformations mécaniques de la plaque qui soutient le microscope. Nous avons caractérisé précisément l'instabilité liée à la rotation du microscope à l'aide de billes micrométriques fluorescentes.

Une bille fluorescente de 1 ţm est éclairée transversalement par le laser d'excitation, qui coïncide avec le plan focal de l'objectif de détection. Elle est imagée pour plusieurs positions hors focus de l'objectif, ce qui fait apparaître des franges d'interférence. Un profil cylindrique de ces franges est réalisé pour plusieurs positions du microscope et à plusieurs intervalles de temps ce qui permet de mettre en évidence le déplacement latéral et vertical de la bille au cours du temps et en fonction de la position du microscope. Cette technique a l'avantage d'être précise (de l'ordre de 100 nm) et robuste aux variations liées au photoblanchiment. Elle a permis de montrer que lors de la rotation du microscope, le déplacement reste inférieur à 500 nm dans la direction verticale et 2 ţm dans la direction latérale (cette dernière peut être corrigée lors de l'analyse comme on le verra plus tard).

III.1.2 Nappe laser par balayage

a) Ouverture numérique optimale

Le volume d'un cerveau de larve de poisson zèbre mesure 400 ţm de largeur Œ 800 ţm de longueur Œ 300 ţm de hauteur et est situé dans la partie dorsale du corps de la larve. Afin de minimiser l'épaisseur de tissus traversée, on place donc l'objectif de détection sur la partie supérieure. Le laser peut donc être placé sur le côté. Les yeux sont très pigmentés et opaques à la lumière, ce qui crée une zone d'ombre entre les yeux. Certains laboratoires qui sont intéressés par ces régions appartenant au télencéphale et au diencéphale peuvent donc ajouter un deuxième laser à l'avant pour éclairer cette région.

Pour produire un faisceau laser le plus fin possible sur une longueur de 400 tm, il faut minimiser la largeur après 200 tm de propagation avec comme variable le waist w_0 placé au milieu de l'échantillon :

$$w(z) = w_0 \sqrt{1 + \left(\frac{z}{z_R}\right)^2}$$
 $z_R = \frac{n\pi w_0^2}{\lambda}$

Un waist trop petit est trop divergeant, et donc trop large sur les bords, mais un waist trop large limite la résolution. Il faut donc trouver un optimum. La taille d'un neurone étant de 8 ţm environ, des valeurs inférieures sont souhaitables.

Une valeur de waist possible pour un échantillon de 400 \sharp m est de 3 \sharp m à 488 nm et de 5 \sharp m à 915 nm. Pour ces valeurs, la largeur du faisceau à 488 nm vaut 3 \sharp m au centre et 10 \sharp m sur les bords du cerveau. À 915 nm c'est 5 \sharp m au centre et 14 \sharp m sur les bords, mais il faut aussi prendre en compte l'effet deux photons. En pratique, la plupart des neurones sont situés entre -150 \sharp m et +150 \sharp m, la largeur du faisceau aux extrémités n'est donc pas critique.

FIGURE III.4 – On voit ici la demie largeur du profil gaussien à 488 nm dans l'eau pour différentes valeurs du waist. Le trait en pointillé montre le rayon d'un neurone. On cherche à minimiser l'épaisseur du faisceau entre -100 tm à 100 tm. Le trait épais marque la position optimale pour ce critère (les autres profils sont tous plus larges à 100 tm du centre). L'ouverture numérique associée vaut $NA = n \sin(\lambda/\pi nw_0)$.

b) Balayage horizontal et vertical

Pour effectuer le balayage, on déplace le faisceau horizontalement. Pour que l'intensité soit homogène sur une image, il faut adopter une vitesse de déplacement constante. Il est alors possible de faire un aller simple ou des allers-retours en nombre entier pendant le temps d'exposition. Pour obtenir une image volumétrique, il suffit de répéter l'opération pour plusieurs couches, en changeant le plan focal de l'objectif de détection et la position vertical de la nappe. Procéder de cette manière couche après couche force à attendre entre deux couches pour laisser le temps aux éléments mécaniques de se positionner, ce qui prend un temps (environ 10 ms) non négligeable pour des durées d'exposition courtes. Il est également possible de bouger les éléments mécaniques de manière continue en balayant en aller simple. Les couches sont donc légèrement obliques, mais on gagne considérablement en fréquence d'acquisition. Cela est possible grâce au mode synchronous readout de la caméra qui permet de lire les valeurs d'une ligne de pixels tout en exposant une autre.

Pour un temps d'exposition par couche de 10 ms en mode d'acquisition continu,

FIGURE III.5 – Différents modes de balayage et de lecture du capteur CMOS. Les couches z successives sont représentées à gauche, le capteur (dans le plan xy) est représenté à droite.

- a. Balayage par allers-retours lors de l'exposition de tous les pixels, puis lecture de tous les pixels et déplacement à la couche suivante. Le déplacement étant lent, une pause est nécessaire. Pas d'exposition pendant la pause
- b. Balayage par aller simple lors de l'exposition, lecture successives des rangées de pixels et ré-exposition immédiate. Le déplacement vertical est continu à vitesse constante, les couches en z sont légèrement obliques. Le cycle exposition-lecture est décalé dans le temps pour chaque rangée de pixels.

on peut par exemple réaliser un scan du cerveau à 2,5 Hz en 30 couches espacées de 8ţm. Cela permet d'imager la majeure partie du cerveau du poisson. Les couches les plus profondes sont moins nettes, car le signal traverse plus de tissus avant d'atteindre l'objectif, et la zone située entre les yeux reste dans l'ombre si on n'utilise qu'un laser. Mais chaque neurone visible est imagé à une fréquence de 2.5 Hz.

III.2 Analyse des données

L'analyse des données produites par le microscope est en enjeu en lui-même. En effet, avec des images de 1024×600 pixels, 20 couches et 25 minutes d'enregistrement à 2 volumes par seconde (3000 pas de temps), on obtient 60000 images. Pour des pixels stockés sur 16 bits, cela donne près de 60 Go de données brutes. Dans ce chapitre, je m'intéresse aux stratégies pour traiter ces données. Les chiffres donnés ci-dessus sont ceux utilisés pour les calculs en ordre de grandeur par la suite.

III.2.1 Logiciels existants

a) Fiji

De nombreux laboratoires de biologie réalisent leur analyse d'image avec Fiji (une distribution du logiciel ImageJ). Cet outil générique offre en effet une bonne interface pour visualiser les données tout en y appliquant des transformations élémentaires, mais montre rapidement ses limites en termes de vitesse, d'automatisation, et de robustesse. Les différents laboratoires travaillant en imagerie neuronale se sont donc tournés vers des logiciels spécialisés.

b) Suite2P

Les laboratoires réalisant de l'imagerie deux photons sur le cerveau de rongeur ont des données de petit volume, mais nécessitant des algorithmes sophistiqués avant d'être exploitables. Le logiciel suite2p [39], doté d'une interface graphique intuitive expose une routine puissante pour la correction de mouvement et la détection de cellules par leur activité. Quelques essais sur nos jeux de données ont montré que le logiciel était fonctionnel mais excessivement lent, ce qui rend l'analyse systématique impossible.

c) CaImAn

Plusieurs laboratoires travaillant en microscopie à feuille de lumière analysent leurs données à l'aide de CaImAn (pour Calcium Image Analysis) [40]. Ce programme est décliné en deux versions, la version online pour l'analyse de données en temps réel sur une expérience en cours, et la version batch pour l'analyse de données a posteriori. La première nécessite des machines très puissantes pour atteindre le taux d'images par secondes requis alors que la seconde peut être exécutée sur des machines modestes. Le logiciel a été publié en 2019, je l'ai essayé sur nos jeux de données avec des résultats satisfaisants en termes de qualité, quoiqu'un peu lents.

III.2.2 Solution utilisée pour l'analyse de nos données

Aucun logiciel adapté à nos données n'étant disponible à l'époque, nous avons développé nos propres méthodes adaptées à l'imagerie sur plateforme rotative. Les spécifications étant très mouvantes, nous avons adopté une structure modulaire dans laquelle une collection de fonctions peuvent être appliquées optionnellement

FIGURE III.6 – Illustration de la convention d'orientation RAS (a.) et comparaison avec les systèmes de coordonnées naturels de ImageJ (b. coordonnées des pixels d'un écran) et Matlab (c. coordonnées des éléments d'une matrice).

dans un ordre adapté à chaque jeu de données. Je décris ici les étapes principales de l'analyse, les enjeux techniques, et les pistes d'amélioration.

a) Étapes principales de l'analyse de données

- a).1 Espace de référence Dans la suite de cette section, j'appellerai de manière équivalente (x,y,z,t) les coordonnées d'un point et les axes dans le repère du poisson. Ces coordonnées sont données dans l'espace de référence RAST (Right Anterior Superior Time), c'est-à-dire que l'axe x est orienté vers la droite de la larve, l'axe y vers l'avant, l'axe z vers le haut, et le temps dans le sens naturel.
- a).2 Alignement temporel Pour des données à quatre dimensions (x,y,z,t), il est impératif qu'un pixel (x,y,z) représente toujours le même espace objet dans le cerveau. Une première étape consiste donc à aligner toutes les images entre elles. Dans un cas totalement général, le tissu imagé peut connaître des déformations au cours de l'expérience, et il faut estimer et appliquer la transformation inverse. Suite2P et CaImAn fournissent tous les deux des algorithmes de déformation non rigide, mais ces algorithmes sont couteux en temps et il est difficile d'estimer numériquement leur performance. De plus, sur des expériences de vingt minutes, les déformations sont généralement trop faibles pour que cette étape soit réellement nécessaire, nous

avons donc opté pour une transformation rigide. Cette transformation rigide peut avoir plusieurs degrés de liberté en translation et rotation. Comme précisé dans la partie sur la conception de la plateforme rotative, nous avons obtenu une excellente stabilité en z, les translations restantes sont donc uniquement selon (x,y), et les rotations sont également négligeables.

Une difficulté pour trouver cette translation est que l'image peut évoluer le long de l'enregistrement. En effet, en fonction de l'activité des différentes régions, l'image peut se transformer entre le début et la fin de l'expérience à un point suffisant pour empêcher tout algorithme naïf de fonctionner. Dans le cas de l'imagerie monophotonique, le signal de fond est suffisant pour qu'une simple autocorrélation sur l'ensemble de l'image permette de trouver le déplacement. Dans le cas de l'imagerie deux photons, ce signal étant bien plus faible, l'autocorrélation sur l'ensemble de l'image est dominée par les changements de fluorescence liée à l'activité de neurones. La solution retenue a donc été de réaliser l'autocorrélation sur une zone de l'image stable pendant toute la durée de l'expérience facilement identifiable à l'il. C'est par exemple le cas pour un neurone mort qui reste toujours dépolarisé (on en trouve toujours quelques-uns par volume).

Cette étape nécessite donc une supervision rapide à l'il humain mais fonctionne en général du premier coup et est extrêmement rapide par rapport à tout autre algorithme utilisant l'image entière. De plus, il suffit de réaliser l'opération pour une seule couche et d'extrapoler à tout le volume. Cette étape permet de corriger les déplacements latéraux rapides (x, y) liés directement à la rotation de la plateforme ainsi que la dérive lente en y liée à la contraction du boudin d'agar tenant le poisson.

a).3 Alignement sur un cerveau de référence Après avoir obtenu une matrice 4D alignée temporellement, il est trivial de réaliser une moyenne temporelle qui permet d'obtenir une image avec un bon rapport signal à bruit et moins dépendante de l'activité des neurones. Le volume moyenné suivant le temps peut être aligné sur un volume de référence. Des logiciels comme CMTK (Computational Morphometry Toolkit) ou ANTs (Advanced Normalization Tools) permettent de réaliser cet alignement automatiquement. Quand le volume diffère trop du volume de référence pour un alignement automatique, le logiciel 3DSlicer permet de réaliser l'opération à la main en placant des points de repère. Aligner le volume sur un cerveau de référence permet d'une part de comparer plusieurs analyses entre elles dans un espace commun et d'autre part d'obtenir un contour du cerveau définissant la région d'intérêt. La région d'intérêt peut alternativement être précisée manuellement en

traçant le contour de la zone d'intérêt pour chaque couche.

- a).4 Analyse de Fourier par pixel Il est intéressant de réaliser certaines analyses directement sur les pixels de l'image. Cela permet d'obtenir des figures avec une bonne résolution et contourne le problème de la segmentation des neurones tout en profitant au mieux de l'échantillonnage permis par la caméra. Cependant, cette approche est coûteuse en calcul, car elle opère sur un grand nombre d'éléments. Nous l'avons principalement réservée à l'analyse de Fourier pour une stimulation périodique. Pour chaque pixel dans la région d'intérêt, on applique la transformée de Fourier discrète sur son profil temporel (cf Fig. III.7 c.). Cela donne un pic en amplitude à la fréquence de stimulation et du bruit en dehors (cf Fig. III.7 d.). On calcule un rapport signal à bruit comme le rapport de l'amplitude du signal sur l'amplitude du bruit moyennée sur une fenêtre autour du pic de largeur arbitraire. On considère également la phase du pic, qui représente le déphasage du signal de fluorescence avec le stimulus. Ces valeurs pour chaque pixel sont ensuite utilisées pour représenter une couleur dans l'espace HSV (Hue, Saturation, Value soit Teinte, Saturation, Valeur). La teinte représente le déphasage, la saturation est fixée à 1, et la valeur représente le rapport signal à bruit.
- a).5 Segmentation et analyse par neurone L'analyse par pixel est pertinente pour des études préliminaires simples, car elle est gourmande en calcul, chaque section de neurone (environ 6 ţm de diamètre) étant imagée sur environ 30 pixels (pixel objet de 0.8 ţm de côté) (cf histogramme Fig. III.7 b.). En regroupant les pixels appartenant au même neurone, on peut réduire le volume de données à traiter tout en conservant leur qualité (cf Fig. III.7 b.). Il existe de nombreux algorithmes de segmentation, certains faisant appel aux données temporelles pour tirer profit de l'activité des neurones, d'autre opérant sur l'image moyenne. Nous avons pour l'instant uniquement utilisé l'algorithme de ligne de partage des eaux (watershed) combiné à une égalisation locale de contraste. Cela donne des résultats satisfaisants comme on le voit en figure III.7 (a.).

Après segmentation, on définit la valeur d'un neurone comme la moyenne des valeurs des pixels qui le constituent. Chaque segment peut représenter une partie d'un neurone, plusieurs neurones, ou même une zone de l'image sans neurones, mais beaucoup de segments représentent un neurone. Pour environ 80 000 segments, cela réduit l'échantillon à 500 Mo, ce qui permet d'appliquer des algorithmes plus gourmands en ressources en un temps raisonnable.

FIGURE III.7 – Illustration de différentes étapes de l'analyse.

- a. Segmentation par l'algorithme watershed affichée par-dessus une image moyenne.
- b. Détail de la segmentation. Un extrait du signal du neurone en vert est affiché dessous. Chaque trait léger correspond à un pixel du neurone, le trait épais correspond à la moyenne de tous les pixels pour ce neurone. L'histogramme montre la répartition des tailles des régions pour cette couche. La plupart des segments contiennent entre 20 et 50 pixels.
- c. Valeur de signal pour un pixel (le pixel en magenta sur le neurone vert) tout au long de l'enregistrement (le niveau de bruit de la caméra est à 400). Un détail sur la partie encadrée met en évidence son activité périodique.
- d. Détail de l'amplitude de la transformée de Fourier discrète du signal précédent. On voit un large pic à la fréquence de stimulation, largement au-dessus du bruit évalué sur une fenêtre avoisinante.

b) Améliorations pratiques et techniques

- b).1 Versionnage du code Le code utilisé pour l'analyse étant volumineux, sa gestion "génétique" (duplication et mutation) posait problème. J'ai donc mis en place un gestionnaire de version qui a permis d'unir les efforts de développement et de faciliter les mises à jour (correction de bugs, nouvelles fonctionnalités). Son utilisation a eu un effet positif sur la qualité du code, sa réutilisabilité, et sa prise en main.
- b).2 Support matériel Lors de l'acquisition, HCImage le logiciel édité par Hamamatsu pour l'utilisation de la caméra propose deux options. L'une consiste à enregistrer en mémoire vive les images au cours de l'enregistrement et à les exporter sur le disque à la fin, l'autre consiste à enregistrer un fichier de cache au format propriétaire de dime directement sur le disque. Dans le premier cas, la vitesse d'enregistrement ne pose pas problème, mais la taille de la mémoire vive est limitée, ce qui ne convient pas pour de longues expériences. Dans le deuxième cas, la vitesse d'enregistrement est limitante pour des images volumineuses avec une fréquence élevée, un disque dur rotatif ne convient pas et nous avons donc utilisé un disque SSD.
- b).3 Fichier de cache Initialement, ce fichier de cache était converti en une collection d'images au format tiff via HCImage, qui étaient ensuite transférées sur le réseau interne depuis l'ordinateur d'acquisition vers l'ordinateur d'analyse pour enfin être traitées. Les programmes et systèmes de fichiers n'étant pas adaptés à la gestion de si nombreux fichiers, cela occasionnait un surcoût sur le temps de transfert et le temps de copie. Pour résoudre ce problème, nous sommes passés à l'utilisation directe du format deimg. Après plusieurs tentatives infructueuses d'obtenir de la documentation auprès de l'entreprise Hamamatsu, nous avons opté pour une approche par rétroingénierie (d'autres implémentations plus complètes ont été développées par la suite comme ce module deimg pour python).
- b).4 Memory mapping Il n'est pas envisageable de charger un jeu de données de plus de 60 Go en mémoire vive, il faut donc ouvrir les données au moment de leur utilisation. Pour obtenir une tranche d'un pixel selon (t) sur des images individuelles, il est nécessaire d'ouvrir chacune des images. Le grand nombre d'opérations de fichiers requis peut être réduit en groupant plusieurs pixels, mais au prix d'une

perte de simplicité qui rend le code difficile à gérer. La solution retenue est le memory mapping, qui permet de manipuler un fichier sur le disque comme un fichier en mémoire vive, entrainant un gain de simplicité et de performance. De plus, le memory mapping permet de travailler directement sur le fichier de cache, ce qui évite des copies supplémentaires couteuses en espace et en temps.

Le memory mapping peut être combiné à l'allocation de mémoire disque pour être utilisé au moment de l'écriture. Cela facilite la manipulation des données par rapport à une écriture séquentielle dans un fichier binaire, et permet la modification d'une partie du fichier et la parallélisation de l'écriture. Pour cela, j'ai utilisé la fonction système fallocate qui alloue de l'espace sur un disque formaté en ext4.

b).5 Calcul du quantile glissant Une définition courante de la valeur de référence d'un signal calcique repose sur le calcul d'un quantile glissant (le huitième centile [41]). L'algorithme naïf qui consiste à calculer le quantile sur chaque fenêtre est inefficace $(\mathcal{O}(n^2))$, j'ai donc cherché une implémentation astucieuse et ai trouvé la fonction runquantile de la bibliothèque caTools, qui a apporté un gain en vitesse par rapport à l'implémentation précédente. Cette implémentation repose sur le tri par insertion mais retient le tri effectué sur la fenêtre précédente, ce qui lui permet d'atteindre une complexité en $\mathcal{O}(n \times k)$, où n est le nombre de valeurs et k la taille de la fenêtre.

c) Pistes d'améliorations

c).1 Ordre des dimensions L'ordre naturel des dimensions en mémoire est l'ordre obtenu lors de l'écriture ((x,y),z,t). Cet ordre permet de lire et écrire rapidement une image, mais n'est pas adapté à une tranche selon t. En effet les valeurs à deux instant successifs pour un même pixel (x,y,z) sont séparées en mémoire de 12 288 000 valeurs. Lire une tranche temporelle est extrêmement long sur un disque dur rotatif et reste limitant sur un SSD. Un gain de vitesse pour des tranches temporelles peut être obtenu en permutant l'ordre des dimensions en mémoire, au prix d'une perte pour la lecture d'images (tranche (x,y)). Pour un ordre (t,x,y,z), la vitesse de lecture des images reste suffisamment rapide pour un affichage à fréquence vidéo tout en accélérant immensément la lecture de tranches temporelles, bien plus sollicitée lors de l'analyse. Réaliser ce changement nécessite une grande part de ré-écriture du code actuel et bénéficierait d'un langage plus adapté.

- c).2 Réduction des données La taille des données brutes pourrait être largement réduite, ce qui accélérerait les copies et libérerait de l'espace disque. D'une part la dynamique des images n'exploite pas les 16 bits sur lesquels elles sont enregistrées, 12 bit suffiraient, ce qui entrainerait un gain immédiat de 25% sur la taille des fichiers. D'autre part, la région d'intérêt ne recouvre qu'une faible part du volume enregistré, opérer sur cette région seule entrainerait un gain de 50% environ.
- c).3 Langage adapté Jusque-là, une grande partie des données ont été analysées en langage Matlab. Ce langage n'est pas très adapté à la gestion de données de ce type et souffre de plusieurs lacunes. Matlab est généralement lent, ce qui est handicapant. Matlab n'accepte de données que sur 8, 16, 32, ou 64 bits, ce qui interdit l'amélioration consistant à encoder les données sur 12 bits. Matlab est mauvais pour réaliser un système modulaire, ce qui augmente dramatiquement les efforts pour maintenir un programme. Matlab est fermé, opaque, et sous licence propriétaire, ce qui diminue les possibilités d'utilisation du code. J'ai réalisé un prototype rapide détaillé en annexe pour évaluer l'intérêt de traiter des données en langage Julia. Le principe d'interface, et spécifiquement des AbstractArray (doc) est particulièrement adapté à la manipulation de données matricielles en memory mapping, bien plus que le memmapfile de Matlab (doc) car il permet un traitement plus bas niveau tout en fournissant des abstractions plus haut niveau. Ces considérations m'ont conduit à penser que pour produire et maintenir une base de code saine et efficace pour l'analyse, il était indispensable de s'éloigner du langage Matlab, que le langage Python était une alternative possible, mais que le langage Julia était préférable. Ceci aussi bien pour une évolution à court, moyen et long terme.

III.3 Stimulation en roulis

Dans le papier Migault et~al~[38] nous présentons des cartes de réponse pour une stimulation vestibulaire en roulis. Une larve paralysée à l'aide de α -bungarotoxine est placée dans le microscope, le moteur est actionné en oscillations sinusoïdales d'une amplitude de 10ř à une fréquence de 0.2 Hz. Le cerveau était imagé en 20 couches à une fréquence totale de 2.5 Hz pendant 20 minutes.

III.3.1 Observations attendues

D'un point de vue comportemental, une larve exposée à une stimulation en roulis adopte un mouvement compensatoire des yeux et de la queue. Le mouvement des yeux [VOR, cf ğb).2] permet de compenser les mouvements de l'environnement visuel pour conserver une vision nette. Le mouvement de la queue [VSR, cf ğb).3] permet de corriger l'équilibre du poisson. Ces mouvements nécessitent une action musculaire pilotée par le cerveau. On pourrait donc attendre une activité dans les neurones moteurs et dans les neurones proprioceptifs. Pour distinguer l'effet de la stimulation de celui de la réponse optomotrice, on peut donc paralyser les poissons pour éliminer l'essentiel de cette activité. Avec des yeux immobiles, la seule entrée visuelle restante est le mouvement de la nappe laser, à une fréquence bien plus élevée que la stimulation vestibulaire (2.5 Hz contre 0.2 Hz). Étant donné que c'est la fréquence d'acquisition, il est difficile d'estimer la réponse à ce stimulus.

Du point de vue du système vestibulaire, une stimulation en roulis est antisymétrique. En effet, quand la larve penche à gauche, l'utricule gauche est entraîné vers l'extérieur alors que l'utricule droit est entraîné vers l'intérieur et *vice versa*. On s'attend donc à voir une activation en opposition de phase des neurones gauche et droit.

Haddon et Lewis [28] ont identifié les neurones du circuit vestibulaire : les neurones afférents primaires qui relaient le signal des cellules ciliées de l'utricule jusqu'au neuropile octavo-latéral dans le cervelet, les neurones tangentiels qui poursuivent jusqu'au noyau oculomoteur contralatéral et les neurones oculomoteurs euxmêmes. Bianco et al [31] ont ensuite montré l'importance pour le VOR d'une certaine classe de neurones situés dans le noyau tangentiel vestibulaire dont certains projettent dans le noyau du faisceau longitudinal médial. Enfin, Schoppik et al ont trouvé des neurones vestibulaires dans les rhombomères 5 à 7 [42].

Les expériences de Favre-Bulle et al ont permis de confirmer la présence d'activité dans les neurones cités plus haut en réponse à l'activation directe des utricules. Elles ont mis en évidence une tendance à l'excitation contralatérale et à l'inhibition ipsilatérale. En stimulant séparément l'un ou l'autre utricule, puis les deux ensemble, elles ont permis d'identifier un phénomène de superadditivité principalement localisé dans le télencéphale.

III.3.2 Résultats

a) Carte de réponse

On voit sur la figure III.8 les cartes de réponse fonctionnelle du cerveau de larve pour une stimulation vestibulaire en roulis. La carte présente bien une antisymétrie bilatérale : les neurones de l'hémisphère gauche sont actifs en opposition de phase par rapport à ceux de l'hémisphère droit. Les neurones coactifs temporellement semblent être organisés en groupes colocalisés spatialement, ce qui dégage plusieurs groupes fonctionnels également symétriques. Ces groupes sont situés dans le tegmentum, le nMLF, le noyau oculomoteur (dans le mésencéphale (nIII) et dans le rhombencéphale (nIV)), le noyau octavolatéral, le noyau vestibulaire tangantiel, le noyau vestibulo-spinal, le rhombomère 7, et l'olive inférieure. Dans d'autres régions l'activité est plus éparse : le torus longitudinalis, l'habenula, le tectum optique, le cerebellum.

b) Déphasage de GCaMP6s

On trouve des neurones à toutes les valeurs de déphasage possible, mais la plupart se situent à des valeurs de $-\pi/8$ et son symétrique, $7\pi/8$. Cette valeur représente le décalage entre le stimulus sinusoïdal et la fluorescence mesurée. Par exemple, un déphasage de zéro correspond à un signal maximum lorsque la valeur de l'angle est maximale, c'est-à-dire une larve inclinée de 10[°] vers la droite. Toutefois, cela ne représente pas directement l'activité du neurone. En effet, il faut prendre en compte le décalage dû à la constante de temps du rapporteur calcique. En figure III.9, on montre la réponse d'un rapporteur calcique dans un neurone en fonction du nombre de potentiels d'action. On remarque que le modèle en déclin exponentiel résume bien la réponse dans la plupart des cas, on peut donc ignorer le temps de montée. Cependant, le temps de relaxation caractéristique évolue significativement entre un seul potentiel d'action et cent potentiels d'action sans montrer de phénomène de pallier. Pour estimer le déphasage lié à la réponse du rapporteur calcique, nous avons enregistré l'activité spontanée des neurones pour plusieurs poissons et appliqué l'algorithme de déconvolution aveugle développé par Tubiana et al [44] qui a estimé un temps de relaxation de $\tau_{\text{H2B-GCaMP6s-Nuclear}} = 3.5 \pm 0.7s$. Avec cette valeur de τ on approche le noyau du rapporteur calcique par :

$$K(t) = \frac{1}{\tau} \exp\left(-\frac{t}{\tau}\right) H(t)$$

FIGURE III.8 -

FIGURE III.8 – Figure extraite du papier de Migault *et al* [38]. Cartes de la réponse fonctionnelle à une stimulation vestibulaire en roulis. Poisson paralysé exprimant le rapporteur GCaMP6s dans le noyau des neurones (elavl3:H2B-GCaMP6s).

A. Haut : réponse par neurone en coordonnées polaires. Quatre zones sont identifiées en niveau de gris (i, ii, iii, iv). La couleur indique le déphasage avec le stimulus. La ligne en pointillé indique la position attendue d'un signal à déphasage nul après correction du délai dû à un rapporteur GCaMP6s. Bas : schéma d'un cycle de stimulus, les flèches montrent le pic d'activité des neurones dont la réponse est la plus forte (en tenant en compte le délai du rapporteur calcique).

- **B**. Haut : dix couches de la carte pour une réponse typique après alignement sur le cerveau de référence Z-Brain. Bas : agrandissement des zones encadrées par les rectangles.
- C. Fraction des neurones répondant parmi les treize zones sélectionnées colorés selon leur phase.
- **D**. Projection maximale horizontale (moitié gauche seulement) et verticale (cerveau entier) de la carte montrée en B. pour les quatre intervalles de phase identifiés en A.
- E. Comme C. mais en moyenne sur huit poissons.
- **F**. Projection maximale horizontale et verticale de la carte moyennée pour huit poissons (gauche) et neuf poissons énucléés (droite).

Abbréviations : $Orientation \ \mathbf{Ro} \ rostral, \ \mathbf{C} \ caudal, \ \mathbf{D} \ dorsal, \ \mathbf{V} \ ventral, \ \mathbf{L} \ left, \ \mathbf{R} \ right,$

Régions Hab habenula, IO inferior olive, TL torus longitudinalis, Teg tegmentum, nMLF nuclear medial fasciculus, nIII oculomotor nucleus, nIV trochlear nucleus, Cer cerebellum, Rh rhombomere

Le signal de fluorescence F(t) est obtenu comme le produit de convolution entre la concentration de calcium intracellulaire et le noyau de convolution. Comme détaillé en annexe B, on trouve un décalage entre l'activité du neurone et le signal de fluorescence $\varphi_{\text{GCaMP}} = \arctan(-\omega\tau)$. Pour retrouver l'activité des neurones à partir du signal de fluorescence, on doit donc appliquer un déphasage de $-\varphi_{\text{GCaMP}} = -\arctan(-2\pi 0.2\text{Hz} \times 3.5\text{s}) = +1.35 \text{ rad sur le résultat de la phasemap.}$

c) Discussion

Des expériences de stimulation vestibulaire sinusoïdale en roulis permettent de cartographier l'activité du cerveau en réponse à ce stimulus. Les cartes présentent une antisymétrie bilatérale et des groupes de neurones ayant une réponse temporelle et un emplacement proche. On retrouve notamment les neurones des circuits vestibulaires connus liés à la stimulation des utricules et aux réflexes liés. Cette

FIGURE III.9 – Graphiques extraits de Chen et al [43] montrant la réponse à un train de potentiels d'action pour le rapporteur calcique GCaMP6 exprimé dans le cytoplasme pour ses trois versions (slow (s), medium (m), fast (f)). Le modèle en montée instantanée et en déclin exponentiel est ajouté sur (a.) ($\tau = 0.27, 0.73, 1.0$) et sur (b.) ($\tau = 0.4, 1.16, 1.81$). Les valeurs correspondent à une lecture graphique de (d.).

analyse constitue un échantillon de la réponse fréquentielle à une fréquence déterminée (0.2 Hz), elle pourrait être poursuivie pour d'autres fréquences. Une autre piste est d'explorer la réponse impulsionelle avec une stimulation en escalier. Cette stimulation est également présentée dans le papier, accompagnée d'une analyse par régression, mais je ne la détaille pas ici. Je m'intéresserai plutôt à reproduire une carte similaire, mais adressée à la réponse en tangage.

III.4 Stimulation en tangage

Nous avons vu dans la section précédente la réponse à une stimulation en roulis pour ce premier microscope. Afin de comprendre les mécanismes neuronaux responsables du contrôle postural en tangage, et en prévision de l'étude en deux photons, une deuxième version a été développée, c'est celle sur laquelle j'ai travaillé. Je pré-

sente dans cette section les cartes de réponse pour une stimulation sinusoïdale en tangage et les compare avec les cartes précédentes obtenues en roulis, mais avant ça, le montage qui les a permises.

III.4.1 Description du montage

Pour une stimulation en tangage, le poisson doit être placé perpendiculairement à l'axe de rotation, avec les deux oreilles internes sur l'axe. Le laser devant arriver par le côté, le module de balayage a été adapté avec un miroir fixe pour que la direction d'entrée et de sortie soient parallèles. Ainsi, la fibre peut être placée le long de l'axe de rotation, ce qui minimise ses déformations.

Pour tourner la plateforme, un moteur pas à pas actionne à travers un réducteur un système bielle manivelle fixé à la plaque optique sur laquelle sont fixés les différents éléments du microscope (cf Fig. III.10). La stabilité du système a été caractérisée par la méthode détaillée en figure III.3 et présente les mêmes caractéristiques (excellente stabilité en z, stabilité horizontale raisonnable pouvant être facilement corrigée a posteriori).

L'entrée de fibre se fait au moyen d'un connecteur FC/PC (Fiber Connector with Physical Contact) qui permet de changer facilement de fibre tout en conservant l'alignement. Pour les fibres ayant une ouverture numérique faible, une lentille placée en sortie de fibre permet d'adapter l'ouverture numérique du faisceau et ainsi de couvrir l'ensemble de la pupille d'entrée de l'objectif d'entrée du module de balayage. Les premières acquisitions un photon ont été réalisées à l'aide d'une fibre monomode identique à celle du microscope précédent.

III.4.2 Carte de réponse comparée

En figure III.11, je montre côte à côte une des cartes de réponse en roulis présentées dans la section précédente et une carte en tangage obtenue sur ce second microscope (en acquisition un photon). L'observation la plus évidente est que la carte en tangage présente une symétrie bilatérale. En effet, les deux utricules sont activés exactement en même temps avec la même amplitude par la rotation de la larve. Les phases les plus représentées (rouge et cyan) sont les mêmes que pour la carte en roulis, ce qui confirme que les neurones sont excités par le même type de stimulation (mélange de vitesse et de position). La zone qui présente le plus d'activité est également le noyau oculomoteur nIII et nIV. On distingue cependant une

FIGURE III.10 – Microscope rotatif conçu pour la stimulation en tangage.

- a. Module de balayage adapté avec un miroir fixe. La fibre arrive dans la même direction que l'axe de rotation.
- b. Schéma du montage. L'unité d'illumination est fixée sur une plaque optique qu'elle traverse. La fibre arrive par derrière la nappe laser ressort par devant, du côté de l'échantillon. Le module de détection est fixé par-dessus l'échantillon.
- c. Un système bielle-manivelle entraîne la plaque optique fixée à un roulement annulaire. La position de l'axe moteur (O) est réglable et permet une oscillation sinusoïdale (au niveau de B, la longueur OA permet de régler l'amplitude) ou un mouvement circulaire (au niveau de C, avec une manivelle de longueur BC). La stabilité du système en fonction de l'angle est indiquée en encart.

FIGURE III.11 – Cartes de réponses obtenues pour une stimulation de rotation sinusoïdale selon l'axe de roulis (a, premier microscope) et de tangage (b, second microscope). On remarque que la carte est antisymétrique dans le cas du roulis et symétrique dans le cas du tangage. Pour le roulis, la vue de côté est réalisée sur la moitié gauche du volume seulement.

différence avec la carte en roulis : alors que tous les neurones situés du même côté du tegmentum sont en phase dans la stimulation en roulis, on remarque deux zones en opposition de phase dans la simulation en tangage. Ces deux zones peuvent être séparées en deux par un plan horizontal. La zone dorsale recouvre à la fois le nMLF, et le noyau oculomoteur nIII et nIV. La zone ventrale recouvre surtout le nMLF et nIII. Des zones plus rostrales semblent aussi actives comme un cluster de neurones glutamatergiques du mésencéphale (région 111 de l'atlas zbrain) et une bande d'oligodendrocytes du diencéphale (région 043 de l'atlas zbrain). Cela est cohérent avec les connaissances actuelles sur les neurones oculomoteurs [42] et l'activation des muscles oculaires pendant le VOR.

Une autre observation un peu moins évidente est la répartition des phases. En roulis, elle est parfaitement symétrique, car une inclinaison à gauche est équivalente à une inclinaison à droite. En tangage, par contre, une inclinaison négative (tête vers le bas) semble générer plus d'activité qu'une inclinaison positive (tête vers le haut). Cela se traduit par un excès de cyan/vert sur la carte de phase par rapport au rouge/magenta. On peut rapprocher cette observation de l'instabilité naturelle de la larve : alors qu'elle est en équilibre instable gauche/droite, elle est en déséquilibre en tangage. Ehrlich et Schoppik ont même suggéré que ce déséquilibre était à l'origine de l'initiation du mouvement [32].

III.4.3 Conclusion

Ce nouveau microscope a permis de réaliser la cartographie du cerveau en réponse à une stimulation vestibulaire en tangage en répondant aux exigences de stabilité. Toutefois, avant de s'en servir pour réaliser un environnement de réalité virtuelle capable de reproduire les expériences présentées en partie II, il faut gagner le contrôle sur l'environnement visuel et passer d'une excitation un photon à une excitation deux photons. C'est l'objectif du chapitre suivant, dans lequel je présente les enjeux d'une feuille de lumière deux photons rotative et les solutions techniques mises en uvre pour la réaliser.

Chapitre IV

Microscope à feuille de lumière deux photons rotatif

Pour réaliser l'imagerie du cerveau lors du contrôle postural tel que présenté au chapitre II, il faut contrôler à la fois l'environnement visuel et l'environnement vestibulaire. Dans le chapitre III, je présente un microscope rotatif capable d'imager le fonctionnement du cerveau lors d'une stimulation vestibulaire réelle, ce qui répond en partie au problème. Dans ce chapitre, je m'intéresse à l'autre partie : comment réaliser l'imagerie tout en contrôlant l'environnement visuel, et cela en même temps qu'une stimulation vestibulaire.

Un microscope à feuille de lumière classique utilise un laser bleu pour stimuler la fluorescence, et cette longueur d'onde réside dans le domaine visible de la larve de poisson zèbre, ce qui peut l'éblouir et perturber son système visuel. Pour cette raison, Ahrens et al, pour l'étude de l'OMR, ont utilisé un microscope à deux photons classique [13]. Cela permet d'illuminer dans l'infrarouge, une longueur d'onde invisible pour le poisson. Cependant ils ne bénéficiaient pas des avantages d'un microscope à feuille de lumière et étaient contraints par le balayage point par point à réaliser l'acquisition du cerveau une région après l'autre afin de reconstruire a prosteriori l'image du cerveau entier. À peu près en même temps, Truong et al publiaient un microscope à feuille de lumière deux photons permettant d'allier les avantages de la microscopie deux photons et de la microscopie à feuille de lumière [45].

Plus tard, Vladimirov et al [46] ont montré que l'étude de l'OMR était également possible en microscopie à feuille de lumière un photon, à condition de ne pas éclairer directement l'il du poisson. Ils ont utilisé deux feuilles de lumière, l'une éclairant le

cerveau par le côté et l'autre par l'avant, entre les deux yeux. Cependant, l'OMR est un réflexe robuste qui ne recourt pas aux fonctions avancées de la vision, et la perturbation due à l'illumination des autres processus visuels n'est pas contrôlée. C'est pourquoi Wolf et al ont appliqué la technique mise au point par Truong à l'étude du système visuel de la larve de poisson zèbre [47]. Ils ont construit un microscope à feuille de lumière deux photons et réalisé l'acquisition du cerveau entier lors de stimulations visuelles.

Pour étudier le cerveau lors du contrôle postural, il est donc nécessaire de réaliser un microscope rotatif deux photons, ce qui soulève plusieurs enjeux techniques. D'une part, pour guider le laser deux photons vers une plateforme mobile, il faut disposer d'une fibre adaptée (transmission de grandes puissances, faible dispersion, maintient de la polarisation, faible gain de courbure), d'autre part il faut minimiser les effets dus à la propagation d'un faisceau intense dans un fluide mobile. Ce chapitre débute sur les fibres optiques adaptées à la transmission d'un laser deux photons et leur utilisation en microscopie embarquée, et poursuit sur la construction d'un microscope deux photons rotatif fibré.

IV.1 Effet deux photons

IV.1.1 Principe

L'absorption deux photons est un phénomène non linéaire d'absorption simultanée de deux photons par une molécule ou un atome. Cet effet est proportionnel au carré de l'intensité lumineuse incidente et est lié au caractère anharmonique du dipôle oscillant. Pour cette raison, il est négligeable aux petites énergies mais devient important pour une intensité lumineuse élevée. On peut l'observer en concentrant fortement un faisceau puissant. La concentration peut être à la fois spatiale par focalisation et temporelle par impulsion temporelle.

IV.1.2 Concentration spatiale

Un système optique peut concentrer la lumière localement, ce qui produit un point de plus grande intensité, le point focal. Comme l'effet deux photons est proportionnel au carré de l'intensité, la zone concernée est d'autant plus restreinte. Cette propriété est utilisée en microscopie multiphoton pour produire une illumination ponctuelle qui permet le sectionnement optique dans la direction de propagation.

FIGURE IV.1 – Effet deux-photons en microscopie à feuille de lumière. Comparaison du profil d'intensité (haut) et de son carré (bas). On voit que la zone concernée par l'effet deux photons et restreinte. (paramètres : indice optique 1.33, longueur d'onde 915 nm, waist 6.5 ţm)

En microscopie à feuille de lumière, au contraire, une illumination linéaire est recherchée. La focalisation est donc bien moindre et l'effet deux photons contribue à affiner la zone d'excitation, la fluorescence n'étant excitée qu'au centre du faisceau (cf Fig. IV.1).

IV.1.3 Concentration temporelle

Une autre manière de concentrer la lumière est la concentration temporelle. Dans le cas d'un laser continu, la puissance est répartie sur toute la longueur de propagation du faisceau. En utilisant un laser pulsé, la puissance est concentrée en paquets beaucoup plus courts (cf Fig. IV.2). Par exemple, pour des impulsions de 100 fs, malgré la vitesse élevée de la lumière, la longueur de ces paquets est de 30 mm. Si de plus le taux de répétition du laser est de 80 MHz, la puissance d'une impulsion est 125 fois plus élevée qu'un laser continu de même puissance moyenne (1/(100fs x 80MHz)). L'effet deux photons étant proportionnel au carré de la puissance instantanée, on a intérêt à choisir les impulsions les plus courtes possibles (petit τ) et le taux de répétition le plus faible possible (grand T) pour un laser de puissance moyenne fixée [48]. Cette tendance est limitée par les photoperturbations induites, qui deviennent importantes au-delà d'une centaine de nanojoules par

FIGURE IV.2 – Profil temporel de puissance d'un laser pulsé. Chaque impulsion a une durée τ , elles sont espacées d'une durée T=1/f. À puissance moyenne constante, plus τ est petit, et plus T est grand, plus $P_{\rm max}$ est grand. L'effet deux photons est proportionnel au carré de $P_{\rm max}$.

impulsion. Les conditions optimales en microscopie par fluorescence à nappe laser deux photons sont donc autour de f = 1 MHz, τ = 100 fs, P = 100 mW, ce que confirme Gasparoli *et al* [49].

IV.2 Fibre optique, principe et état de l'art

IV.2.1 Guide d'onde

Dans un cadre général, un guide d'onde est un objet qui contraint la propagation d'une onde par ses propriétés physiques. Dans le domaine des ondes électromagnétiques aux fréquences radio, par exemple, un tuyau en métal permet de confiner l'onde et de contraindre une propagation unidimensionnelle sur de longues distances [55], mais également un milieu diélectrique [56]. On peut lire une revue sur l'histoire de ces découvertes [57]. Dans le domaine des fréquences optiques, les guides d'ondes à saut d'indice sont une famille dans laquelle on trouve un grand nombre des fibres optiques utilisée en télécommunications [58]. Ces fibres sont constituées d'un cur de verre entouré d'une gaine d'indice optique plus petit. Dans le cadre de l'optique géométrique, on décrit le guidage par le phénomène de réflexion totale sur le dioptre pour une réfraction en dessous de l'angle limite. Dans le cadre de l'optique ondulatoire, on peut définir les modes propres de la cavité optique. Une fibre est dite monomode si seul le mode fondamental peut s'y propager.

FIGURE IV.3 – Illustration de différents types de fibres évoquées.

- a1. Fibre Kagomé (image extraite de Wang 2011 [50]), schéma du motif en a2.
- b1. Fibre à réseaux de tube (image extraite de Cregan 1999 [51]), schéma du réseau tubulaire comme dans Vincetti 2010 [52] en b2.
- c1. Fibre à courbure négative (image extraite de Yu 2016 [53]), schéma en c2. Voir également Pryamikov et al [54]

IV.2.2 Fibre optique monomode à saut d'indice

Une fibre optique monomode avec un mode propre quasiment gaussien est adaptée à la transmission d'un faisceau gaussien [59]. C'est le genre de fibre que l'on utilise pour guider le laser d'excitation dans le modèle un photon du microscope à feuille de lumière [38]. Si l'on tente de transmettre un faisceau pulsé dans ces fibres, on se heurte au phénomène de dispersion [60] [61]. La largeur spectrale d'un laser pulsé est d'autant plus grande que l'impulsion est courte et la durée de l'impulsion réside dans la synchronicité des différentes fréquences. Dans un milieu dispersif, les différentes longueurs d'onde se propagent à une vitesse différente, ce qui désynchronise les oscillations et élargit le pic. L'effet deux photons étant proportionnel au carré de la puissance instantanée, il est fortement dégradé par l'élargissement du pic.

Une solution consiste à précompenser cette dispersion via des éléments optiques comme une suite de prismes ou de réseaux de diffraction positionnés en amont de l'injection [62]. Cette solution permet de réduire la largeur temporelle du pic en sortie de fibre, et donc de conserver l'effet deux photons. On rencontre un autre obstacle pour des impulsions de haute énergie. C'est l'automodulation de phase par

effet Kerr [63]. Cet effet est lié aux propriétés non linéaires du milieu traversé, qui change d'indice en fonction de l'intensité lumineuse qui le parcourt. Il en résulte également un élargissement de l'impulsion. Cet effet apparaît pour des puissances moyennes relativement faibles (10 mw [64]), ce qui empêche d'utiliser des impulsions optimalement courtes (<1 ps [64]) avec de telles fibres. Des techniques existent pour précompenser cette distorsion [65] [66], mais elles sont peu répandues car difficiles à mettre en place [64]. De plus, ces problèmes peuvent être contournés par les fibres à âme vide.

IV.2.3 Fibre à âme vide

Les phénomènes de dispersion et de non-linéarité sont dus à l'interaction avec la matière. Pour les contourner, il faut donc que les impulsions à haute énergie se propagent dans le vide. L'effet de réflexion totale sur le dioptre cur/enveloppe ne peut plus être utilisé, car il faudrait un milieu d'indice plus petit que 1, cest-à-dire dans lequel la lumière se propage plus vite que dans le vide, ce qui n'est pas possible. Intéressons-nous au guide d'ondes creux.

a) Guide d'onde métallique ou diélectrique

Une idée pour confiner la lumière dans un guide unidimensionnel est d'utiliser le phénomène de réflexion métallique, comme sur un miroir. En 1964, un article s'intéresse aux guides d'ondes dans le contexte des télécommunications optiques à longue distance [67]. Les solutions qui semblaient les plus prometteuses à l'époque consistaient soit en une séquence de lentilles et de miroirs, soit en un tuyau métallique ou diélectrique. Le guide d'onde creux circulaire suscite un intérêt pour sa simplicité et sa bonne transmission sur de très longues distances, mais l'article montre que les pertes augmentent très rapidement avec la courbure de la trajectoire.

b) Fibres à cristaux photoniques

Une autre idée consiste à utiliser un phénomène de réflexion par interférences comme le miroir de Bragg. Un tel miroir est constitué d'une succession périodique de couches d'indice différents et permet d'obtenir une réflexion quasi totale à la longueur d'onde du motif.

- b).1 Fibres à réseaux de tubes On trouve ce genre de réseau pour la première fois en 1999 sous forme de fibre à cristaux photoniques [51] ou plus tard sous la forme de fibre microstructurées [68]. En 2010, Vincetti et al montrent par analyse numérique que seule la première couche de tubes joue un rôle important dans les propriétés de ces fibres [52]. Ce qui donne des fibres constituées d'un seul réseau de tube.
- b).2 Fibres à motif Kagomé L'idée du réseau de diffraction a également donné lieu aux fibres à réseau trihexagonal, ou "Kagomé". De telles fibres ont été construites pour la première fois en 2002 sous le nom de fibre à cristaux photoniques. Le gain était alors de l'ordre de 2 dB/m [69]. En 2011, un gain de 180 dB/km a été obtenu avec de telles fibres [50]. Cependant, en 2010, Février et al montrent par analyse numérique que les propriétés de ces fibres ne reposent pas tant sur le motif périodique que sur la forme du cur [70], ce qui ouvre la voie aux fibres à cur hypocycloide.

c) Fibres à courbure négative

Les idées de fibre à réseau de tubes unique et de fibres à cur hypocycloide se rejoignent dans un même concept : les fibres à courbures négatives. En 2016, Yu et Knight publient une revue sur l'histoire de ces fibres et leurs mécanismes [53]. Ils commentent entre autres l'atténuation, les bandes de transmission et le gain de courbure. Ces critères rendent cette famille de fibres particulièrement adaptée à notre application. En effet, les larges bandes de transmission permettent de guider plusieurs longueurs d'onde, aussi bien pour l'imagerie un photon que deux photons, la faible atténuation permet de conserver la puissance du laser nécessaire à l'effet deux photons, et le faible gain de courbure permet de conserver une illumination stable pendant la rotation du microscope.

IV.2.4 Utilisation des fibres en microscopie embarquée

Les propriétés de guidage de la lumière d'une fibre optique lui permettent d'alléger considérablement ou de déporter certaines parties des microscopes pour les rendre compatibles avec l'imagerie embarquée. Un microscope est en effet composé d'un axe d'illumination, d'un échantillon, et d'un axe de détection. Les axes peuvent être séparés dans différents bras ou réunis sur une portion du montage optique et sont généralement composés d'éléments optiques rigides passifs tels que des objectifs, miroirs, filtres... Ces différentes parties parfois très volumineuses peuvent être remplacées ou déportées à l'aide de fibres optique. Nous allons voir par la suite plusieurs types de microscopes embarqués utilisant une fibre optique.

a) Imagerie sur rongeur à tête fixée

Une méthode répandue en imagerie cérébrale sur rongeur est de fixer un animal sous un microscope classique immobile. Le cerveau est rendu accessible par une opération chirurgicale pendant laquelle la boîte cranienne est retirée localement et remplacée par une vitre. Le fait d'immobiliser la tête pendant l'imagerie peut limiter le répertoire comportemental et constituer une gêne pour l'animal. Une solution est un système où le rat se positionne volontairement sous le microscope [76], une autre est le système en réalité virtuelle. Dans cette deuxième solution, le rongeur marche sur une boule en polystyrène sur coussins d'air alors qu'un environnement visuel est projeté sur un écran autour de lui [71]. Le microscope est ici entièrement statique et rigide. La réalité virtuelle a également été utilisée avec des enregistrements en électrophysiologie [77][78].

b) Déportation de l'illumination

Une pièce particulièrement volumineuse dans les microscopes multiphotons utilisée pour l'imagerie neuronale est le laser pulsé. En effet, ces systèmes dépendent de beaucoup d'éléments optiques et d'une stabilité thermique et mécanique poussée. Pour construire des microscopes embarqués, il est donc nécessaire de guider le laser depuis la source jusqu'à l'échantillon, ce qui est réalisé à l'aide de fibre optique. Il est possible d'utiliser une fibre optique monomode à cur de verre [72] [73] [79] à condition de précompenser la dispersion pour conserver une impulsion suffisamment courte pour produire l'effet non linéaire recherché, ce qui est réalisé avec une paire de réseaux de diffraction. Une alternative est d'utiliser une fibre à cur creux [80] [81] [82] [83]. La partie de détection est quant à elle également embarquée. On peut avoir un simple photomultiplicateur/photodiode pour l'imagerie par balayage [72] ou un capteur CMOS pour une imagerie en champ plein [84].

c) Déportation de l'illumination et de la détection

Dans les exemples précédents, le laser est amené par une fibre, mais le capteur est sur place, le signal repartant sous forme de signal électrique. Il est également possible de déporter le système de détection en collectant la lumière par fibre optique. Certains utilisent pour cela une fibre multimode [82] [73], d'autres une "fibre

FIGURE IV.4 – Différentes techniques de microscopie en imagerie neuronale fonctionnelle chez le rongeur.

- a. Un microscope deux photons statique réalise l'imagerie du cerveau d'une souris lors d'une expérience en réalité virtuelle [71].
- b. Un microscope deux photons est fixé sur la boite cranienne d'un rat. Le laser est guidé à travers une fibre à cur de verre dont la dispersion est précompensée. L'unité de détection est intégrée au microscope [72].
- c. Un microscope deux photon est fixé sur le crane d'un rat, mais l'unité de détection est externe, la lumière étant collectée par une fibre [73].
- d. Un fibroscope deux photons utilise des fibres à gradient d'indice comme lentilles pour réduire l'encombrement. Le laser est guidé au moyen d'une fibre à cristaux photoniques et la lumière est collectée par une fibre à large cur [74].
- e. Un endoscope sans optique permet de réduire considérablement l'encombrement et d'atteindre des régions plus profondes du cerveau, mais nécessite une calibration préalable [75].

plastique" [83], d'autres encore un faisceau de fibres [79]. Dans ce cas, la lumière collectée est mesurée en sortie de fibre à l'aide d'un système optique adapté sans limite d'encombrement. On peut ainsi utiliser des sytèmes régulés en température ou munis d'une électronique complexe.

d) Lentilles à gradient d'indice

Malgré la déportation de l'illumination et de la détection, les systèmes optiques restent encore assez volumineux du fait des composants utilisés et des éléments mécanique nécessaires. Une possibilité pour pousser la miniaturisation encore plus loin est d'utiliser des fibres à gradient d'indice (*GRIN lens, GRadient INdex lens*). Ces fibres sont constituées d'un milieu à gradient d'indice qui leur donne des propriétés similaires à des lentilles mais sont plus fines et ne nécessitent pas d'éléments mécaniques. Cela permet d'obtenir des microscopes ultra-compacts portables et de poids très réduit [85][74].

e) Microendoscopes

D'autres techniques d'imagerie neuronale se passent même d'optique et sont uniquement constitués d'une fibre insérée dans l'échantillon. On parle alors plutôt de microendoscope. L'idée générale est d'utiliser la même fibre pour éclairer l'échantillon et collecter la lumière. Des éléments actifs peuvent être utilisés pour moduler le front d'onde, et plusieurs techniques reposent sur une phase de calibration préalable [86][87][75]. Ces techniques utilisent des fibres optiques multimodes classiques. L'avantage de l'endoscopie est que les tissus sont traversés par la fibre, et pas directement par la lumière, ce qui contourne le phénomène de dispersion. Il existe également des systèmes plus sophistiqués qui combinent plusieurs fibres en une seule de manière à profiter de propriétés différentes pour l'émission et collection de lumière [88][89][90].

IV.3 Caractérisation et utilisation de fibres à âme vide

Nous avons vu dans la partie précédente qu'une fibre optique permet de guider la lumière, que ce soit pour éclairer l'échantillon ou collecter le signal. Les fibres de verre conviennent bien aux applications classiques, mais posent des problèmes d'interaction lumière-matière lors de la transmission d'impulsions à haute énergie pour la microscopie multiphoton et nécessitent une précompensation de la dispersion. Les fibres à âme vide permettent de contourner ces problèmes et ont déjà été largement utilisées dans des microscopes embarqués sur rongeur [80] [85] [74] [82] [81] [83]. C'est donc vers celles-ci que nous nous sommes tournés. Nous avons testé plusieurs modèles fournis par l'entreprise Glophotonics.

IV.3.1 Comparaison de fibres

Au début, nous avons utilisé des fibres ayant une bande de transmission uniquement dans l'infrarouge. Ces fibres ont permis de réaliser les premiers enregistrements deux photons de l'activité neuronale mais sont sensibles aux déformations, ce qui empêche l'enregistrement lors de la rotation du microscope. Ensuite, nous avons cherché à permettre à la fois la transmission d'un laser 1P et 2P, d'où l'utilisation de fibres avec plusieurs bandes de transmission. Parmi ces fibres, nous avons retenu le modèle PMC-C-9005 B2 qui permet une bonne transmission (97% à 930 nm sur 1,5 m de fibre contre 70% pour PMC-C-1C-R&D2). J'utilise ce modèle comme référence par la suite.

IV.3.2 Injection d'un laser dans une fibre

Une fibre capable de guider à la fois un laser 1P et un laser 2P permettrait de réaliser l'acquisition du cerveau en changeant facilement la longueur d'onde d'excitation. Cela permettrait de mettre en évidence les différences dans l'activité neuronale causées par l'environnement visuel. Je décris ici le processus d'injection dans une fibre et le montage que j'ai mis en place pour passer du laser 1P au laser 2P à l'aide d'un miroir amovible.

a) Principe

Pour injecter le laser dans la fibre, il faut aligner tous les éléments dans l'axe optique et régler finement les degrés de liberté en translation et en rotation. De plus, comme on souhaite un couplage monomode, il faut faire coincider le mode laser d'entrée de fibre avec le mode propre de la fibre. Le laser ayant une largeur initiale de D, il faut le ramener à une largeur de fibre w (23 m 1 m d'après la documentation). Pour cela, il faut utiliser une lentille de focale f et satisfaire l'équation suivante :

FIGURE IV.5 – Comparaison de plusieurs fibres fournies par Glophotonics. Les schémas représentent la largeur du cur (en noir) et la largeur du mode propre (en rouge). Dans le spectre de transmission, on s'intéresse à la valeur à 930 nm et à 488 nm si possible. La valeur de la dispersion est toujours la même, environ à 1 ps/nm.km. Les trois premières fibres ont un motif de Kagomé, alors que la dernière n'est composée que d'une couche de capillaires. Seule la troisième fibre a un cur hexagonal, les autres ont un cur hypocycloïde. La valeur du paramètre de courbure est notée b, comme défini dans Debord et al [91].

FIGURE IV.6 – schéma de l'injection à deux lasers dans la fibre. Le miroir M2 est amovible et permet de basculer entre l'injection 1P et 2P. (BEX = $Beam\ Expander$, IL = $Injection\ Lens$, NCF = $Negative\ Curvature\ Fiber$)

Pour la première étape, on injecte un laser visible par l'autre extrémité de la fibre et l'on joue sur les miroirs M1 et M2 pour pointer vers la sortie du laser 2P.

$$f = D \frac{\pi w}{4\lambda}$$

b) Injection 2P

Le laser "Mai-Tai" que j'ai utilisé délivre un faisceau quasiment gaussien (Mš<1.1) et son waist (w_0) est large d'environ 1 mm. Ces valeurs sont données par la documentation pour une utilisation à 800 nm, mais elles peuvent évoluer légèrement en accordant la longueur d'onde de fonctionnement. La largeur d'un faisceau gaussien au long de sa propagation (z) est définie par :

$$w(z) = w_0 \sqrt{1 + \left(\frac{z}{z_R}\right)^2}$$
 avec $z_R = \frac{\pi w_0^2}{\lambda}$

Le diamètre du laser est donc d'environ 2 mm après un mètre de propagation. En prenant D = 2 mm, ω = 23 ţm, et à λ = 915 nm, on trouve donc f = 40 mm, c'est pourquoi j'ai utilisé une lentille de focale 40 mm (référence Thorlabs AC254-040-B-ML). Cette lentille dispose également d'un traitement de surface pour optimiser la transmission dans l'infrarouge.

J'ai fixé une extrémité de la fibre sur une platine de translation xyz à 40 mm de la lentille (Fig. IV.6). Pour faciliter l'alignement, j'ai tout d'abord injecté un

laser visible grâce à un connecteur fibre à fibre dans l'autre extrémité. Cela m'a permis de pré-aligner deux miroirs sur support rotatifs en visant l'orifice du laser parallèlement à l'axe optique. En allumant le laser à faible puissance pour ne pas endommager la fibre, on obtient alors facilement une transmission suffisante pour pouvoir mesurer la puissance en sortie de fibre. À partir de cette étape, il suffit d'optimiser la puissance transmise en jouant sur les réglages. Dans un premier temps, les deux degrés de rotations de chacun des deux miroirs, et dans un deuxième temps, les deux degrés de rotation du second miroir et les trois degrés de translation de la platine. Cette technique permet d'obtenir en un temps raisonnable (\sim 1h) une transmission optimale (\sim 96%).

c) Injection combinée 2P + 1P

Pour injecter un deuxième laser, il faut à nouveau faire coïncider le mode de la fibre avec celui du laser, mais en conservant la même lentille d'injection et sans utiliser la platine de translation. Il faut donc adapter la largeur du faisceau à l'aide d'un télescope ou beam expander (BEX). En remplaçant 915 nm par 488 nm, on obtient D = 1 mm. La lentille étant optimisée pour l'infrarouge, sa transmission dans le bleu n'est que de 50%, mais la puissance du laser bleu est suffisante pour compenser cette perte. Par contre, la fibre n'est pas tout à fait monomode à cette longueur d'onde, et l'on distingue clairement en sortie le mode TEM11 ou les modes TEM10 / TEM01 en fonction de la position de la fibre. La meilleure transmission obtenue est de l'ordre de 50%, mais cela est suffisant pour l'imagerie statique (fibre immobile).

IV.3.3 Propriétés

a) Dispersion et pré-compensation

Un paramètre important pour la transmission d'un laser pulsé est la dispersion. C'est celui qui nous force à utiliser des fibres à cur creux et qui permet de conserver une impulsion aussi courte que possible. Mais la dispersion d'une fibre à cur creux n'est pas nulle, elle est de l'ordre de 1 ps/nm/km (élargissement temporel / largeur spectrale / distance parcourue) comme on peut le voir sur la courbe. La largeur spectrale d'une impulsion est donnée par

$$\Delta \lambda_t = \frac{\lambda^2}{c\Delta t}$$

et vaut donc 28 nm. Pour une impulsion de 100 fs à 915 nm, cela donne un élargissement de l'ordre de 28 fs au bout d'un mètre de propagation dans la fibre, soit une perte de concentration de 30% et donc une perte d'effet deux photons de 50%. Heureusement, il est possible de pré-compenser cette dispersion à l'aide d'un système optique placé en amont de la fibre. Le laser "Mai-Tai" est justement accompagné d'un élément "Deepsee" qui permet une telle précompensation réglable de -8 900 à -24 500 fsš d'après la documentation.

En mesurant la durée de l'impulsion en sortie de fibre à l'aide d'un autocorrélateur, on confirme que la précompensation permet de retrouver une impulsion de 100 fs dans l'échantillon.

b) Gain de courbure

Les propriétés de transmission de la fibre peuvent varier avec la courbure de celleci. La transmission est généralement optimale pour une fibre droite et se détériore suivant le rayon de courbure avec des pertes mesurées en dB. Une fibre PCNC-FC-K13-001 que je ne présente pas ici donnait des variations de transmission de l'ordre de 20% pour un rayon de courbure de 5 cm. Lors d'une expérience, la rotation du microscope engendre des déformations de la fibre, et donc des variations de transmission. L'éclairage incident se retrouve corrélé à la stimulation, ce qui crée un signal parasite. Un signal parasite supérieur à 1% détériore trop le rapport signal à bruit et empêche l'analyse des données. On cherche donc à caractériser les pertes de transmission liées à la courbure. Pour cela, il suffit de placer un puissance-mètre en sortie de fibre et de faire varier la courbure.

Des modèles numériques [92] [53] [93] suggèrent que le gain évolue de manière inversement proportionelle au carré du rayon de courbure. Cette relation est également observée sur notre fibre. Les pertes par mètre de fibre courbée restent cependant petites même pour un rayon assez court. Elles valent $0.1 \text{ dB } (\sim 2\%)$ pour un rayon de courbure de 7 cm.

En conditions réelles, on peut s'arranger pour limiter la courbure et répartir les déformations sur l'ensemble de la fibre. Par exemple, la fibre peut être placée le long d'une tige de rigidité plus élevée. Lors du déplacement d'une extrémité, une portion droite de 1 m de fibre se trouve courbée avec un rayon de 20 cm, ce qui donne des pertes de 0.01 dB, soit 0.2%.

FIGURE IV.7 – Propriétés de la fibre lors d'une courbure.

- a. schéma du setup de catactérisation
- b. gain en fonction de la courbure
- c. ellipticité en fonction de la courbure (quasi circulaire)
- d. angle de polarisation en fonction de la courbure (quasi linéaire)
- e. profil d'intensité en sortie de fibre pour différentes courbures (non affecté).

c) Polarisation

On voit dans la section précédente que la courbure a un effet sur la transmission négligeable dans le contexte de l'imagerie. Cependant, un autre aspect peut influencer la quantité de lumière détectée : la polarisation. La sensibilité à la polarisation dépend de la configuration d'éclairage (parallèle ou orthogonale), du type d'absorption (un ou deux photons), et du comportement de la fibre en réponse à une courbure.

- Direction d'illumination Un fluorophore peut être modélisé par un dipôle électrostatique. La fluorescence consiste en l'absorption d'un photon incident et la ré-émission d'un photon de fluorescence selon les lois du rayonnement dipolaire électrique. Ce phénomène est anisotrope, il dépend de l'angle entre le vecteur de polarisation et le moment dipolaire. Quand l'axe d'excitation est parallèle à l'axe d'observation (par exemple en microscopie confocale ou deux photons classique), le plan de polarisation est orthogonal aux deux, un photon absorbé est donc réémis dans la même direction quelle que soit la polarisation (cf Fig IV.8 a.). Au contraire, quand l'axe d'excitation est orthogonal à l'axe d'observation (par exemple en microscopie à feuille de lumière), l'angle de polarisation influe sur la direction d'émission (cf Fig IV.8 b.). Pour une polarisation linéaire orthogonale à l'axe d'observation $(\alpha=0)$, on se retrouve dans un cas similaire au précédent, mais pour une polarisation linéaire qui contient l'axe d'observation ($\alpha = 90\check{r}$), on obtient une diminution du signal de fluorescence dans l'axe d'observation. On confirme ceci à l'aide d'une lame $\lambda/2$. En tournant une polarisation linéaire et en observant la fluorescence du cerveau, on passe d'une intensité détectée maximale (100%) à une intensité minimale (50%) [94].
- c).2 Absorption deux photons En excitation deux photons, l'état de polarisation influe sur l'efficacité d'absorption. Un faisceau polarisé linéairement a un taux d'absorption deux photons plus élevé qu'un faisceau polarisé circulairement. Cependant, un faisceau polarisé circulairement conduit à une excitation plus homogène du fluorophore [94]. Le résultat est qu'une polarisation circulaire conduit à un signal détecté deux fois plus faible qu'une polarisation linéaire optimale, et de l'ordre d'une polarisation linéaire à 90ř. Idéalement, la polarisation en sortie de fibre doit donc rester linéaire et horizontale quelle que soit sa déformation. J'ai donc cherché à caractériser les modifications de polarisation induites par une déformation de la

FIGURE IV.8 – Comparaison d'un microscope classique et d'un microscope à feuille de lumière du point de vue de la polarisation.

- a. Dans un microscope classique, la direction d'émission et de détection sont parallèles, et la polarisation est dans le plan orthogonal. La lumière détectée ne dépend donc pas de la direction de polarisation.
- b. Dans un microscope à feuille de lumière, la direction d'émission est dans le plan orthogonal à la détection. La direction de polarisation fait alors un angle α avec la direction de détection. Pour $\alpha=90$ ř, la lumière détectée est maximale, mais pour $\alpha=0$ ř, elle est minimale.

fibre.

- c).3 Caractérisation des effets sur la polarisation Une déformation de la fibre peut entrainer deux modifications sur la polarisation : une rotation et un changement d'ellipticité. Pour les mesurer, j'ai placé un cube polariseur en sortie de fibre équipé d'un puissance-mètre sur chaque bras. Pour chaque position de la fibre, j'ai tourné le cube de manière à minimiser la puissance mesurée sur un bras (et donc maximiser la puissance sur l'autre bras). Cela permet de déduire l'orientation de la polarisation (angle du cube) et son ellipticité (valeur du grand axe et petit axe). L'ellipticité (θ) est définie par $\tan(\theta) = \frac{b}{a}$ où (a) est le grand axe et (b) le petit axe de l'ellipse. J'ai positionné la fibre en forme de U et ai réalisé des mesures pour des diamètres allant de 5 cm à 40 cm (cf Fig. IV.7).
- c).4 Rotation de la polarisation J'ai montré que la polarisation tournait significativement en fonction de la courbure de la fibre. Par exemple, entre un rayon de courbure de 15 cm et 25 cm, une polarisation linéaire peut tourner de 10ř (varia-

tion du signal de $\sim 5\%$). Ces valeurs de courbure sont celles qu'on peut attendre dans de bonnes conditions expérimentales, c'est pourquoi j'ai cherché à obtenir une polarisation invariante par rotation, c'est-à-dire une polarisation circulaire.

c).5 Changement d'ellipticité En polarisation circulaire ($\theta = 45$ ř), la rotation n'est plus un problème, mais la fibre peut toujours transformer la polarisation circulaire en une polarisation elliptique, qui perd sa symétrie et devient donc sensible à la rotation. J'ai caractérisé la variation d'ellipticité dans le cas d'une polarisation circulaire. Les plus grandes variations d'ellipticité enregistrées sont de l'ordre de 5ř. Pour vérifier comment ces différents éléments entrent en jeu, j'ai réalisé des tests en conditions réelles.

d) Test en conditions réelles

Pour tester les variations d'intensité dues aux déformations de la fibre en conditions réelles, j'ai monté un cube polariseur et un puissance-mètre à la place de l'échantillon et ai soumis l'ensemble à des stimulations périodiques guidées par un moteur (cf Fig. IV.9).

Finalement, tous les effets liés à la position de la fibre engendrent des variations de l'intensité détectée inférieures à 1.2% dans les conditions des expériences. Les effets parasites sont donc connus et mineurs, ce qui est à prendre en compte lors de l'analyse des données.

IV.4 Effet de lentille thermique

On a vu que la fibre avait de bonnes propriétés en conditions réelles, pourtant en essayant d'imager un poisson en deux photons tout en bougeant le microscope, on observe des fluctuations d'intensité de grande amplitude (Fig. IV.10). En regardant attentivement à l'il, on s'aperçoit que ces fluctuations sont liées à un déplacement de la zone la plus lumineuse le long de la direction de propagation du faisceau qui rend toute exploitation des données impossible. Cette observation a pu être expliquée par l'effet de lentille thermique (thermal lens effect) modulé par un déplacement des masses d'eau de températures différentes.

Lorsqu'un faisceau traverse un milieu absorbant, ce milieu chauffe sur la trajectoire du faisceau, ce qui change son indice optique. Le gradient d'indice ainsi formé dévie les rayons, formant une lentille à gradient d'indice (GRIN lens). Pour l'eau,

FIGURE IV.9 – Test de la fibre en conditions expérimentales. La variation de l'intensité détectée est une combinaison des pertes de courbure, du changement d'ellipticité et de la rotation de la polarisation.

- a. Montage expérimental pour test en conditions réelles. Un puissance-mètre peut être installé en position P1 (intensité seulement) ou P2 (intensité après cube séparateur de polarisation).
- b. Réponse à une stimulation sinusoïdale périodique de 10r. On constate que les variations de puissance ne dépassent pas 0.6% et que ces variations combinées aux changements de la polarisation (ellipticité et rotation) n'excèdent pas 1.2%.
- c. Réponse à une stimulation périodique en marches de 20r. Les variations combinées n'excèdent pas 1.2%. On remarque que l'intensité maximale est atteinte pour un angle du moteur de 0r, soit la position de repos de la fibre.

FIGURE IV.10 – Images extraites d'un film montrant les changements d'intensité liés à l'effet thermique. On y voit la distribution d'intensité lumineuse se déplacer de gauche à droite (direction de propagation du faisceau) au rythme des mouvements du moteur. La plateforme est tournée suivant un mouvement sinusoïdal d'amplitude 10° à 0.08 Hz (en rouge). Le rectangle indique une zone dont le signal calcique est moyenné pour chaque pas de temps (100 ms d'exposition) et affiché en bleu. Les variations, de l'ordre de 20%, ne sont pas dues à l'activité des neurones, mais à un changement d'illumination.

à 915 nm, le changement d'indice est de l'ordre de -10^{-4} par degré. La température étant plus élevée au centre du faisceau, l'indice optique est plus faible, et donc la lentille équivalente est divergente. Cet effet peut être utile, par exemple pour mesurer le coefficient d'absorption d'un liquide [95], mais il a deux conséquences gênantes dans mon cas. D'une part un effet statique lié à la perte de focalisation du faisceau altère l'effet deux-photons, d'autre part un effet dynamique lié à la réponse du système à une perturbation de la température d'équilibre dévie le faisceau lors des mouvements du microscope.

IV.4.1 Effet statique

Le phénomène de lentille thermique a été décrit théoriquement en 1965 par Gordon et al [96] et en 1974 par Whinnery et al [95] pour une fine cellule de liquide et dans le cadre de l'approximation parabolique (partie a)). En 1982, Sheldon et al [97] étend cette description hors de l'approximation parabolique pour prendre en compte les aberrations induites. Dans notre cas, il ne s'agit pas d'une cellule fine, car le laser traverse plusieurs centimètres d'eau avant d'atteindre l'échantillon, créant un gradient d'indice sur sa trajectoire. Je me suis donc inspiré du livre Gradient-Index Optics [98], dans lequel les auteurs s'intéressent à la propagation d'un faisceau dans un milieu à gradient d'indice : (équation 1.63 du livre)

Fig. 4. Sketch for obtaining lens focal length.

FIGURE IV.11 – Lentille équivalente pour une cellule de largeur l d'indice parabolique dans laquelle un rayon lumineux se propage en arc de cercle. Extrait de Gordon $et\ al\ [96]$.

$$n(r,z) = n_0(z) \left(1 \pm \frac{g^2(z)}{2} r^2 \right)$$

Dans le cas d'un signe négatif (lentille convergente), les calculs sont largement détaillés et aboutissent à une solution oscillante. Malheureusement le cas d'un signe positif (lentille divergente) n'est pas exploré. Pour obtenir un résultat en ordre de grandeur, nous avons donc opté pour une approche discrète numérique en appliquant à chaque tranche de liquide d'épaisseur l les résultats obtenus pour une cellule fine (partie b)). Cette approximation ignore la diffusion thermique le long de l'axe et considère l'absorption négligeable.

a) Cas d'une cellule fine

Dans cette partie, j'explique le résultat des papiers de Gordon et Whinnery que j'utilise par la suite dans la simulation numérique. Il s'agit de calculer la focale d'une cellule fine d'épaisseur l traversée par un faisceau gaussien. Le différentiel de température par rapport à l'équilibre $\Delta T(r,t)$ est décrit par l'équation de diffusion (c capacité thermique, ρ masse volumique, k diffusivité thermique):

$$c\rho \frac{\partial}{\partial t} [\Delta T(r,t)] = \dot{q}(r) + k\nabla^2 [\Delta T(r,t)]$$

Le terme source de l'équation lié à l'absorption du faisceau de puissance P par le milieu de coefficient d'absorption α vaut :

$$\dot{q}(r) = \frac{\alpha P}{\pi w_z^2} \exp\left(\frac{-2r^2}{w_z^2}\right)$$

Ce qui donne une solution de la forme :

$$\Delta T(r,t) = \frac{\alpha P}{4\pi k} \int_0^t \left(\frac{1}{1 + 2t'/t_c}\right) \exp\left(\frac{-2r^2/w_z^2}{1 + 2t'/t_c}\right) dt' \quad \text{où} \quad t_c = \frac{w_z^2}{4k}$$

Dans notre cas, on se contentera de l'approximation au premier ordre de cette solution :

$$\Delta T(r,t) \simeq \frac{\alpha P}{4\pi k} \left[\ln\left(1 + \frac{2t}{t_c}\right) - \frac{2(r^2/w_z^2)}{1 + t_c/2t} \right]$$

Le premier terme est indépendant de r et correspond au réchauffement progressif global de la tranche de liquide. De plus, il est de plus en plus lent à mesure que l'on s'éloigne du waist et se retrouve dominé par les conditions aux limites et par la diffusion le long de l'axe ici non exprimées. On peut donc l'ignorer [96] pour simplifier le calcul sans altérer le résultat. On a donc :

$$\Delta T(r,t) = \Delta T_{\infty} \frac{1}{1 + t_c/2t}$$
 où $\Delta T_{\infty} = \Delta T(r,t_{\infty}) = -\frac{\alpha P}{2\pi k} \frac{r^2}{w_z^2}$

Si l'on suppose constant le coefficient de variation de l'indice optique (dn/dT), on a donc un profil d'indice quadratique en r:

$$n(r,z) = n_0 + \frac{\mathrm{d}n}{\mathrm{d}T}\Delta T = n_0 \left(1 + \delta_t (r/w_z)^2\right) \quad \text{où} \quad \delta_t = -\frac{\mathrm{d}n}{\mathrm{d}T} \frac{\alpha P}{2\pi k n_0} \frac{2}{1 + t_c/2t}$$

Pour un profil d'indice quadratique tel que celui-ci et dans l'approximation des lentilles minces, on peut définir la distance focale équivalente (cf Fig. IV.11) :

$$f' = -\frac{w_z^2}{2ln_0\delta_t}$$

Cela permet d'établir la valeur de la focale F au cours du temps :

$$f'(t) = f'_{\infty} \left(1 + \frac{t_c}{2t} \right)$$
 où $f'_{\infty} = \frac{\pi k w_z^2}{\alpha P l(\mathrm{d}n/\mathrm{d}T)}$

On a donc une valeur de la focale f' d'une tranche de liquide d'épaisseur l. Dans un premier temps, intéressons-nous au régime stationnaire à t_{∞} .

b) Simulation numérique

Pour décrire la propagation du faisceau à travers un milieu épais, on le divise en éléments fins. On part du principe que le faisceau reste gaussien tout au long du parcours, il peut donc être entièrement décrit pour chaque z par la position et la largeur de son waist. Pour chaque tranche de liquide d'épaisseur l, on applique l'effet de la lentille équivalente dont la focale est définie suivant la partie précédente pour trouver le déplacement du waist et son élargissement. La figure IV.12 montre le résultat de cette simulation comparé à une mesure expérimentale. Le code de la simulation est présenté en annexe Λ .1.

Lorsqu'on augmente la puissance laser, la largeur du waist augmente, ce qui étale l'intensité lumineuse sur une plus grande surface. Au dessus d'une puissance limite, l'effet résultant est une diminution de l'intensité maximale, et donc de l'effet deux photons. Cette puissance limite est d'environ 0.4 W dans notre cas (valeur expérimentale confirmée par simulation). Un waist plus large signifie également un faisceau moins divergent, la zone d'excitation est donc plus allongée dans le sens de propagation.

Chaque tranche de liquide d'épaisseur l apporte une contribution différente au décalage du point focal. La contribution relative de chaque lentille élémentaire dépend de deux phénomènes ayant un effet opposé l'un de l'autre. Plus l'on s'approche du waist, plus le gradient de température est fort, et plus la lentille est divergente, ce qui augmente la contribution au décalage. Au contraire, plus on s'approche du waist (au sens de Rayleigh), moins le faisceau est convergeant, ce qui diminue la contribution au décalage. Finalement, la contribution au niveau du waist est légèrement plus élevée qu'en dehors (IV.12 d.).

Pour les gammes de puissance présentées ici, l'élargissement du faisceau est petit, mais pour des puissances plus élevées, cela va jusqu'à diminuer l'intensité maximale (cf A.1).

FIGURE IV.12 – Effet de lentille thermique. La propagation dans l'eau d'un faisceau intense induit un gradient de température et donc un gradient d'indice qui dévie les rayons et décale le waist.

- a. Feuille de lumière imagée dans la fluorescéine pour plusieurs puissances laser différentes. La position mesurée du maximum d'intensité est marquée par un trait pointillé.
- b. Simulation numérique pour les mêmes puissances. La demi largeur du faisceau est calculée pour chaque pas de propagation. La largeur minimale du faisceau selon la simulation est marquée par un point. On remarque par ailleurs que cette largeur minimale augmente avec la puissance.
- c. Comparaison des valeurs expérimentales montrées précédemment avec une simulation numérique réalisée pour des puissances comprises entre 0.2 et 0.38 W.
- d. Contribution de chaque tranche de liquide d'épaisseur $10~\rm tm$ au décalage du waist pour un faisceau de $0.2~\rm W.$

IV.4.2 Effet dynamique

a) Temps caractéristique

L'effet de lentille thermique a une composante dynamique liée au temps d'établissement de l'équilibre de température. Cet effet a un temps caractéristique $t_c = \frac{w_z^2}{4D}$ qui dépend uniquement de la largeur du faisceau (on considère constante $k = 1.43 \times 10^{-7} m^2/s$ la diffusivité thermique de l'eau). Au début de la propagation dans la cuve, le faisceau est large (1 mm), ce qui donne un temps caractéristique de l'ordre de plusieurs secondes. Près du waist, au contraire, ce temps est très court, de l'ordre de la microseconde. Il faut donc réaliser une simulation pour estimer la dynamique du système complet. En pratique, on constate un temps d'établissement de l'ordre de la seconde.

b) Solutions

Lorsque l'eau bouge dans la cuve, l'équilibre thermique est rompu et il faut attendre quelque temps caractéristiques avant de retrouver l'équilibre. Pendant ce temps, le waist du laser se déplace et change l'illumination de l'échantillon. C'est le phénomène dont les effets ont empêché les premières acquisitions. Une première solution consiste à moins chauffer le milieu pour minimiser l'effet de lentille thermique. Pour cela, j'ai mis en place un obturateur piloté pour éteindre le laser en dehors des périodes d'acquisition. En illuminant pendant 10 ms d'exposition et en coupant pendant 90 ms de pause, on diminue ainsi par dix la puissance moyenne, et donc l'échauffement. Cela impose une contrainte forte sur la fréquence d'acquisition, mais m'a permis de réaliser des enregistrements. Une deuxième solution est de concevoir une cuve dans laquelle l'épaisseur d'eau traversée est plus fine, ce qui diminue l'effet de lentille thermique. Je n'ai pas testé cette solution. Une troisième solution est de changer le taux de répétition du laser, comme indiqué en partie IV.1.3. Cette solution nécessite un autre laser, je ne l'ai pas explorée.

IV.5 Feuille de lumière deux photons lors d'une stimulation en tangage

En section III.4, je présente un microscope adapté à une stimulation vestibulaire en tangage. Avec la fibre présentée précédemment, j'ai pu utiliser ce montage pour une imagerie deux photons. Je présente ici les résultats.

IV.5.1 Difficultés supplémentaires rencontrées

Outre les défis techniques cités précédemment concernant la fibre optique et l'effet thermique, les acquisitions deux photons ont révélé certaines difficultés supplémentaires avant de reproduire les résultats obtenus en un photon.

a) Phototoxicité

- a).1 Photoblanchiment et saturation du rapporteur calcique Je n'ai observé aucune limite liée au photoblanchiment du rapporteur calcique ni à la saturation. Ces phénomènes apparaissent en un photon quand l'intensité absorbée par le fluorophore dépasse un certain seuil. Ce seuil n'a pas été atteint dans mon expérience.
- Eviter les yeux Quand la feuille de lumière un photon éclaire le poisson par le côté, elle illumine à la fois des zones transparentes comme le cerveau et des zones opaques comme les yeux ou les pigments. Outre le fait qu'elle constitue une source de lumière forte (1-10 mW) et mouvante éclairant directement l'il gauche de la larve, et qu'une zone d'ombre soit générée entre les yeux, cela n'empêche pas le déroulement de l'expérience. Il en va autrement avec un laser pulsé qui met en jeu des puissances movennes élevées (100-1000 mW) pour atteindre l'intensité instantanée nécessaire à l'effet deux photons. À ces niveaux de puissance, la moindre absorption génère un échauffement intense qui détruit instantanément les tissus biologiques. C'est notamment le cas des yeux qui carbonisent immédiatement si le laser les touche. De même, si une zone présente un niveau d'absorption légèrement plus élevé, elle accumule de la chaleur jusqu'à générer un phénomène de cavitation. Une bulle de gaz se forme alors et grossit en déformant tous les tissus alentour. Si l'on augmente l'énergie crête de l'impulsion en diminuant la fréquence de répétition, on voit ce phénomène apparaître de plus en plus souvent, suggérant qu'à puissance moyenne constante, le degré de phototoxicité augmente avec l'énergie portée par une impulsion. Pour réaliser des enregistrements du volume entier, il a donc fallu procéder en plusieurs étapes : d'abord la partie supérieure entière, puis la partie inférieure en excluant les yeux.

b) Rapport signal à bruit

Le niveau de signal obtenu dans les enregistrements deux-photons est bien plus faible que dans les enregistrements un-photon. Avec les paramètres finaux (exposition, binning, puissance laser, lignées transgéniques...) la valeur d'un pixel de caméra correspondant à un neurone est de l'ordre de 2000 en un-photon et 800 en deux-photons, pour un nivau de bruit de 400 (le niveau de bruit pour un pixel est de 100, soit 400 après binning par 4 pixels). Un pixel correspondant à l'autofluorescence des tissus est autour de 600 en un-photon et tombe sous le niveau de bruit en deux-photons. Un rapport signal à bruit si faible pose plusieurs problèmes.

- b).1 Alignement sur le cerveau de référence Un cerveau imagé en deux photons apparaît assez différent d'un cerveau en un photon. J'ai donc réalisé un cerveau de référence en deux photons dans l'espace de référence du laboratoire. Malgré cela, pour un rapport signal à bruit trop faible, l'alignement automatique sur le cerveau de référence est impossible. J'ai donc dû faire la plupart des alignements à la main en utilisant le logiciel 3DSlicer.
- b).2 Moyennage des cartes de phase Pour réaliser une carte de phase moyenne, on moyenne séparément la partie réelle et la partie imaginaire du nombre imaginaire obtenu au pic de la transformée de Fourier. Cependant, pour un niveau de signal faible, le rapport signal à bruit peut largement varier d'une expérience à l'autre. On doit donc appliquer une égalisation de contraste dépendant du module du nombre complexe.

c) Enregistrements en plusieurs étapes

Comme on l'a vu en partie b), la solution adoptée en attente de mieux est de faire des pauses entre deux expositions pour diminuer l'intensité moyenne absorbée. Cela contraint la fréquence d'acquisition des images. Pour conserver une fréquence de 2.5 Hz pour chaque couche, j'ai donc dû réduire le nombre de couches à 4. Chaque volume est donc enregistré non pas en une fois mais en plusieurs. Si à un moment le laser touche un il, le poisson est détruit et les enregistrements ultérieurs sont compromis. J'ai donc finalement réalisé assez peu d'acquisitions valides.

FIGURE IV.13 – Comparaison entre l'acquisition un photon (1P) et deux photons (2P) en imagerie statique et dynamique.

- a. Carte de réponse pour une stimulation en tangage imagée en 1P déjà montrée en figure III.11.
- b, c. Cartes de réponse pour une stimulation en tangage imagée en 2P. En (b.) seule la partie supérieure du cerveau est imagée, en (c.), seule la partie inférieure est imagée.
- d. Comparaison entre un volume imagé en 2P et en 1P. Le volume deux photons est imagé en deux parties pour éviter d'illuminer les yeux (on voit nettement l'ombre de l'il sur la coupe sagittale en un photon). Le pas est de 1 ţm par couche.

IV.5.2 Comparaison de l'imagerie 1P/2P

a) Résultats

Sur la figure IV.13 (d.), je compare la qualité d'imagerie sur le même poisson en utilisant le laser un photon ou deux photons. On voit que le volume deux photons est imagé en deux parties de manière à ne pas illuminer les yeux. Sur la coupe transversale, on voit que la partie gauche (côté par lequel arrive le faisceau) est plus lumineuse que la partie droite. L'autofluorescence des tissus ressort plus clairement en 2P.

En bas de la figure IV.13, je montre des cartes de phase obtenues en un photon et en deux photons. En (b.), l'enregistrement a été réalisé en quatre étapes de quatre couches, mais pendant la dernière étape, l'il du poisson a été touché par le laser, ce qui a rendu les données inexploitables. Seules les trois premières étapes apparaissent donc, et les régions profondes comme les noyaux oculomoteurs ne sont pas visibles. En (c.), le laser était plus loin des yeux, ce qui a permis d'enregistrer également les couches profondes sans les endommager. Les noyaux nIII et nIV sont cependant légèrement tronqués. Les réponses obtenues sont globalement très semblables en 1P et 2P.

b) Conclusion

Malgré les difficultés techniques rencontrées, j'ai pu réaliser un microscope rotatif capable de réaliser l'acquisition deux photons de l'activité du cerveau de la larve pendant une stimulation en tangage. Quelques améliorations sont à apporter pour augmenter la fréquence d'acquisition et empêcher le laser d'atteindre l'il. Cela ouvre cependant la voix à des expériences sur l'intégration visuo-vestibulaire lors du contrôle postural à roulis.

Chapitre V

Conclusion

Le cerveau a pendant longtemps été étudié par sa composition statique au niveau anatomique d'une part et cellulaire d'autre part. L'étude de son fonctionnement dynamique a été réalisée à ces deux échelles à l'aide des techniques IRM et électrophysiologie. Les nouvelles techniques d'imagerie appliquées au cerveau larves de poisson zèbre génétiquement modifiées permettent d'explorer une échelle intermédiaire nouvelle : le cerveau entier à la résolution du neurone. Cette échelle se prête particulièrement à l'étude de phénomènes impliquant un petit nombre de neurones distants les uns des autres. C'est notamment le cas de l'intégration multisensorielle.

Parmi les modèles d'intégration multisensorielle figure l'intégration visuo-vestibulaire lors du contrôle postural. J'ai dans un premier temps reproduit cette boucle sensorimotrice dans un environnement de réalité virtuelle où la stimulation vestibulaire et l'environnement visuel sont en rétroaction sur les mouvements du poisson. Mes résultats suggèrent que la présence simultanée des deux modalités sensorielles améliore la qualité du contrôle postural par rapport à la présence d'une modalité seule.

Pour reproduire ces observations sous le microscope afin d'en comprendre les mécanismes neuronaux, plusieurs développements techniques étaient nécessaires. Il fallait d'une part construire un microscope à feuille de lumière capable d'enregistrer l'activité du cerveau lors d'une stimulation vestibulaire et d'autre part gagner le contrôle sur l'environnement visuel. Le premier point a été résolu par Geoffrey Migault avec un microscope à feuille de lumière rotatif permettant l'acquisition du cerveau lors d'une stimulation vestibulaire. Le second point a été résolu par Sébastien Wolf avec un microscope à feuille de lumière deux photons permettant l'acquisition du cerveau sans gêne pour le système visuel.

Combiner ces deux innovations a révélé plusieurs défis techniques : acheminer un laser deux photons dans une expérience en mouvement, maintenir une transmission et une polarisation suffisamment stable pour l'imagerie, s'affranchir des limites imposées par l'effet de lentille thermique dans un fluide en mouvement. Ces difficultés m'ont mené à m'intéresser à certains points que j'aborde dans ce manuscrit commes les propriétés de transmission des fibres optiques à cur creux, aux conditions optimales d'impulsion pour un laser deux photons, à la théorie des lentilles thermiques.

J'ai finalement obtenu un microscope permettant de réaliser l'acquisition un ou deux photons de l'activité neuronale pendant une stimulation vestibulaire en tangage et présente des cartes de réponse à une stimulation sinusoïdale. Ces cartes peuvent être comparées aux cartes équivalentes pour une stimulation en roulis et révèlent les mêmes zones d'activité, mais avec une temporalité différente. Les cartes en un ou deux photons ne présentent pas de différences notables.

Ce microscope ouvre la voix vers l'étude de l'intégration viso-vestibulaire lors du contrôle postural en tangage. Pour ce faire, il reste à adapter le système pour contrôler l'environnement virtuel et mettre en place la rétroaction permettant de reproduire les expériences de contrôle postural.

Annexe A

Outils informatiques

A.1 Simulation de l'effet de lentille thermique

Le code de cette simulation numérique est publié à l'adresse : https://github.com/Hugo-Trentesaux/these. J'en décris ici le fonctionnement général.

Le fichier gaussianbeam.jl contient les fonctions relatives à la propagation d'un faisceau gaussien. Le fichier grinlens.jl contient le modèle proprement dit, il définit deux structures (Parameters et Observables) et une fonction (propagate). La structure Parameters contient les paramètres de la simulation, la structure Observables contient une trace des différentes variables observables tout au long de la simulation. La fonction propagate applique la formule des lentilles gaussiennes en itérant sur les lentilles fines successives. Des portions de code sont masquées et remplacées par [...] pour plus de lisibilité.

```
# input beam parameters
   z0
           # initial position of the waist without lens effect (m)
            # initial waist of the beam (m)
   # iteration parameters
           # width of the liquid slices (m)
           # position along the tank to compute on (m)
end
# [...] default parameters
# observables
mutable struct Observables
   focal::Vector # focal length of liquid slice lens (m)
   shift::Vector # focal shift generated by liquid slice lens (m)
   magnif::Vector # magnification for liquid slice lens
                   # position of the waist after liquid slice lens (m)
   pos::Vector
   waist::Vector # size of the waist after liquid slice lens (m)
   wonlens:: Vector # beam width on the lens (m)
   dist::Vector # distance from lens to object waist (m)
   minwidth
                  # minimal width of the beam (m)
                  # first position of minimal width (m)
   minwidthpos
end
# simulate a gaussian beam propagation in water
function propagate(n,,focale,z0,w0,l,steps)
   # observables
   o = Observables(length(steps))
                                    # initialize observables
   # loop for each element lens
   for (i,z) in enumerate(steps)
       # compute lens effect
       sa = z0 - z
                                           # algebric distance lens-object
       w0a = w0
                                           # waist before lens
       zra = rayleigh_length(n, w0a, )
                                          # Rayleigh length before lens
       wa = gaussian_width(n, sa, w0a, ) # beam width at lens position
                                           # thermally induced focal length
       fprime = focale(1, wa)
```

```
sb = sprime(sa, fprime, zra)
                                            # algebric distance lens-image
       mag = magnification(sa, fprime, zra) # magnification
                                            # waist after lens
       w0b = w0a * mag
        # update beam properties
       z0 = z + sb
                                            # update z0 with new beam position
       w0 = w0b
                                            # update w0 with new beam waist
       # [...] update observables
   end
    (o.minwidth, pos) = findmin(o.wonlens) # get minimal width and its position
   o.minwidthpos = steps[pos]
                                          # convert it to meter
   return o
end
# [...]
```

Ensuite, il suffit de définir des paramètres déclarant les valeurs différentes de celles par défaut, d'appeler la fonction propagate, et d'afficher les observables dans une figure. Le fichier grinlensplots_these.jl contient le code ayant servi à générer les figures de ce manuscrit concernant la simulation. Voici en exemple une figure bonus :

```
pows = 0:0.01:1  # power range for waist magnification
# vector of parameters for these values of power
P = map(p -> Parameters(P=p, l=1e-6, w0=4e-6, n=1.33), pows)
0 = propagate.(P) # apply propagation on each parameter

minwidth = map(o->o.minwidth, 0).*1e3 # select minwidth observable
plot(pows, pows./minwidth.^2, lw=3, size=(600,400), legend=false,
    gridlinewidth=3, thickness_scaling=1.5) # plot it
xlabel!("puissance laser (W)")
ylabel!("intensité maximale (W/mmš)")
savefig("grinlensplots_these_maxpower.png")
```


FIGURE A.1 – Intensité maximale du faisceau en fonction de la puissance laser. Dans un premier temps, augmenter la puissance laser augmente la puissance maximale, mais dans un deuxième temps, la puissance maximale diminue à cause de l'élargissement du faisceau.

A.2 Langage de programmation adapté

A.2.1 Memory mapping

Du fait du volume des données traitées, notre processus d'analyse repose largement sur le memory mapping comme solution de gestion des données brutes. Cela permet de traiter une portion de mémoire disque comme une portion de mémoire vive et ainsi de n'appliquer les opérations de chargement de données en mémoire vive qu'au moment de leur utilisation et de ne pas écrire systématiquement les opérations de lecture et d'écriture. Je compare ici les interfaces fournies dans les langages de programmation Matlab, Python, et Julia ainsi que la manière dont elles peuvent être étendues par des classes ou structures.

a) Matlab

La langage Matlab fournit la fonction memmapfile (doc) qui permet de cartographier une zone mémoire contenant des données de type int8, int16, int32, int64, uint8, uint16, uint32, uint64, single, ou double. J'ai implémenté plusieurs surcouches de la classe Matlab memmapfile qui permettent de gérer l'accès à des données stockées sous différents formats comme le dcimg, d'autres orientations que celle par défaut, et en utilisant l'indexation linéaire suivant (xy) en une seule ligne. Ces classes ont facilité l'écriture de code pour la manipulation des données brutes et aux différentes étapes de traitement, ainsi que des interfaces graphiques rudimentaires utilisées pour les visualiser mais ne permettent pas de profiter des optimisations de Matlab sur la vectorisation du calcul. De plus, une gestion manuelle de la mémoire et des abstractions sur les tableaux de données manquent au langage pour que ces classes soit facilement réutilisables, ce qui conduit à de la duplication de code. Ci-dessous on peut voir la structure adoptée pour ces classes, qui surchargent les méthodes intégrées au langage subsref et subsasgn.

```
classdef Mmap < handle</pre>
% the class Mmap is used to load a mmap of a binary file
% and redefine layers index when called as subscript
% subscript can be 4D or 3D
% [...] properties, contructor, and other methods definition
function out = subsref(self, S)
    switch S(1).type
        case '()'
            new_S = self.subStruct(S);
            % [...] subscript manipulation
            out = subsref(self.mmap.Data.bit, new_S);
            % [...] returned data manipulation
            end
        case '.'
            out = builtin('subsref', self, S);
        otherwise
            error('subsref other than () or . not implemented')
    end
end
end
```

b) Python

Le langage Python offre également une classe mmap (doc) ainsi que sa bibliothèque Numpy avec la classe memmap (doc). Une option order permet de préciser l'ordre des données en mémoire, et donc d'adapter simplement la manière dont les

données sont stockées à la manière donc elles seront utilisées. CaImAn implémente également une surcouche fine sur cette classe pour gérer ses conventions d'organisation de fichiers, où de nombreuses informations sont contenues dans le nom de fichier. J'en montre ci-dessous un extrait.

```
def load_memmap(filename: str, mode: str = 'r') ->
   Tuple[Any, Tuple, int]:
   # [...]
   Yr = np.memmap(
      file_to_load,
      mode=mode,
      shape=prepare_shape((d1 * d2 * d3, T)),
      dtype=np.float32,
      order=order
      )
   if d3 == 1:
      return (Yr, (d1, d2), T)
   else:
      return (Yr, (d1, d2, d3), T)
```

c) Julia

Le langage Julia intègre un module dédié au memory mapping (doc) qui permet d'accéder aux données par un objet qui se comporte de manière identique à un tableau Julia. Via le concept d'interfaces (doc), en particulier l'interface de tableau, il est facile d'écrire une surcouche immédiatement compatible avec n'importe quelle fonction prenant en argument un tableau Julia. Cela est très différent de Matlab où il faut écrire des fonctions spécifiques et légèrement différent de Python où l'écriture de classes intermédiaires génère un surcoût important par rapport à Numpy. Je montre ici un exemple de surcouche mince sur la structure Julia mmap. Il est extrêmement facile de surcharger une telle classe Julia pour l'adapter à des usages différents sans avoir à en modifier le comportement. Par exemple, il suffit d'une dizaine de lignes pour rendre une telle structure compatible avec les données stockées sous le format de CaImAn tout en conservant la compatibilité avec d'autres formats, et pour un coût nul à l'exécution.

```
using Mmap
# ===== structure definition ======
```

```
struct Stack{T,N} <: AbstractArray{T,N}</pre>
    file::String
                        # path plus filename of raw raster file
    dims::NTuple{N,Int} # N integers correspondig to dimension sizes
    space::String
                        # e.g. RAST
    m::Array{T,N}
                        # memory mapped array
    # core constructor
    Stack(file::String, T::DataType, dims::NTuple, space::String) =
      new{T,length(dims)}(file, dims, space,
        Mmap.mmap(open(file), Array{T, length(dims)}, dims))
end
# [...] more methods like constructor overload
# ===== interface implementation =====
# following functions allows to access Stack like an Array
Base.size(S::Stack) = S.dims
# linear indexing
Base.getindex(S::Stack, i::Int) = S.m[i]
# cartesian indexing
Base.getindex(S::Stack{T,N}, I::Vararg{Int, N}) where \{T,N\} = S.m[I...]
```

A.2.2 Function broadcasting

Les langages destinés à traiter des données matricielles peuvent exposer certaines fonctionnalités qui réduisent considérablement le nombre de lignes à écrire. Cependant, toutes ne sont pas égales.

a) Matlab

Si la plupart des fonctions Matlab acceptent des matrices en entrée, cela ne s'applique pas aux matrices stockées par memory mapping. De plus, adapter une fonction scalaire en fonction matricielle peut nécessiter une ré-écriture et aboutir à des erreurs difficiles à identifier.

```
% define a scalar function
f = @(x) x^2 + 1;
% call it on a scalar (should not call it on a matrix)
f(2) % returns 5
% define an equivalent matrix function using dot operator
```

```
F = 0(X) X.^2 + 1;
% call it on a matrix
A = [123;267];
F(A) % returns [2 5 10; 5 37 50]
% write A to a binary file and use memmapfile to map it
fid = fopen("A.raw", "w"); write(fid, A, "double"); fclose(fid);
m = memmapfile("A.raw", "Format", {"double", [2 3], "bit"});
% can not apply F on it, forced to load data then apply it
F(m) % ERROR Operator '.^' is not supported for operands of type 'memmapfile'.
% must load entirely the matrix which defeats the point of memory mapping
A = m.Data.bit; % copies all values in memory
F(A) % returns the good result
% an other function example not designed for matrix usage
substract_mean_add_first = @(X) X - mean(X) + X(1);
% if we want to transform each row with the "substract_mean_add_first" function
% without rewriting it or changing it, we have to iterate manually
% (here it is not optimal since Matlab has "column-major layout by default")
for i = 1:size(A,1)
    A(i,:) = substract_mean_add_first(A(i,:));
% A = [0 1 2; -1 3 4]
```

b) Python

En Python, Numpy pratique le broadcasting sur les opérateurs élémentaires. Une fonction utilisant ces opérateurs élémentaires peut donc être appliquée sur un array Numpy. Cela fonctionne également sur une matrice en memory mapping.

```
import numpy

# define function

f = lambda x: x**2 +1

f(2) # f can be called on a scalar

A = numpy.array([[1,2,3],[2,6,7]])

f(A) # f can be called on a numpy array

# create memory map
```

```
m = numpy.memmap("A.raw", dtype='float64', mode='w+', shape=(2,3), order='F')
m[:] = A[:] # fills it with values of A
               # flush to write to disk
m.flush()
f(m) # f can be called on memory map, it returns:
# array([[ 2., 5., 10.],
         [17., 26., 50.]])
# example of function applying onto vector
substract_mean_add_first = lambda X: X - numpy.mean(X) + X[0]
# a version of this function that performs in-place modification
def substract_mean_add_first_modif(vector):
        vector[:] = substract_mean_add_first(vector)
        vector.flush() # only for memory mapping
# we can iterate automatically on m to transform its rows
# (order was set to 'F' = row major, which is optimal in this case)
map(substract_mean_add_first_modif, m)
# now m equals :
# memmap([[ 0., 1., 2.],
        [-1., 3., 4.]])
```

c) Julia

En Julia, le broadcasting peut être réalisé sur n'importe quelle fonction ou opérateur en utilisant l'opérateur dot. Ainsi, on peut écrire une fonction acceptant une matrice entière en utilisant les opérateurs élément par élément, mais on peut aussi écrire une fonction n'acceptant qu'un scalaire et l'appliquer sur une matrice en utilisant l'opérateur dot. C'est une fonctionnalité clé du langage et les performances dépassent systématiquement les autres langages (benchmarks).

```
using Mmap # for memory mapping
using Statistics # for mean

# define function that can only be called on a scalar
f(x::Number) = x^2 + 1
f(2) # f can be called on a scalar
A = [1 2 3; 2 6 7]
f.(A) # f can be called on each element of A thanks to dot broadcasting
# alternatively, we can define a vector matrix version of the function
F(X::Matrix) = X.^2 .+ 1 # it uses the dot operators internally
```

```
# create memory mapped file for A
file = open("A.raw", "w+")
m = Mmap.mmap(file, Matrix{Float64}, (2,3)
m[:] = A[:]
f.(m) # f can be broadcasted to m as well
# other function example
substract_mean_add_first(v::AbstractVector) = v .- mean(v) .+ v[1]
# in-place version of this function (julia convention is to end with '!')
function substract_mean_add_first!(v::AbstractVector)
        v[:] = substract_mean_add_first(v)
end
# iterate on each row
map(substract mean add first!, eachrow(m))
# now m equals
# 2E3 Array{Float64,2}:
  0.0 1.0 2.0
# -1.0 3.0 4.0
```

A.3 Atlas interactifs

Plusieurs outils ont été développés pour explorer le cerveau de poisson zèbre directement dans le navigateur. Je décris rapidement les principaux et en introduis un nouveau que j'ai réalisé pour répondre à certains besoins.

A.3.1 ZBrainAtlas

Le Z Brain Atlas permet de visualiser dans un même espace de référence les tranches horizontales de cerveaux marqués avec des anticorps différents et de superposer les contours de régions anatomiques. Cela permet de parcourir rapidement les différents types de neurones présents dans une certaine zone.

A.3.2 MapZebrain

Le Max Planck Zebrafish Brain Atlas propose trois outils très riches en fonctionnalités pour explorer le cerveau à travers une vue tridimensionnelle. Cette vue

FIGURE A.2 – Annotated screenshot showing all the features of the LJP zebrain viewer.

peut être en 3D réelle avec perspective avec un angle de vue réglable, en tranche suivant trois plans (sagittal, frontal, transverse), ou en projection isométrique autour de l'axe rostro-caudal. L'un permet de visualiser les régions anatomiques du cerveau sélectionnées dans une arborescence, ce qui permet de se représenter leur structure tridimensionnelle et leur positions relatives. Un autre permet de sélectionner la structure tridimensionnelle de neurones uniques filtrés suivant la position du soma, les régions traversées, ou leur position terminale. Un troisième permet de superposer dans plusieurs canaux de couleur les images matricielles correspondant à des cerveaux marqués pour différents cibles.

A.3.3 FishExplorer

Le Fish Explorer tente de présenter les mêmes données à travers une autre interface. Il n'apporte rien de nouveau pour l'instant.

A.3.4 LJPzebrain

Les outils évoqués ci-dessus permettent d'explorer une grande variété de données mises en commun mais sont assez complexes et nécessitent une bonne connaissance préalable de l'anatomie du cerveau. Ils sont difficiles à prendre en main et ne permettent pas de travailler avec des données locales. J'ai donc conçu un prototype à ambition pédagogique destiné aux débutants en imagerie de cerveau de larve de poisson zèbre ou pour dégrossir rapidement des données locales.

Le LJP zebrain permet de charger une liste d'images locales correspondant au cerveau transformé dans l'espace de référence ZBrain et d'explorer les régions par un simple survol de souris. Cela facilite notamment l'exploration des cartes de phase.

Annexe B

Détail de calcul

Détail du calcul pour le déphasage d'un sinus après convolution par une exponentielle décroissante. L'idée consiste à effectuer deux fois une intégration par partie.

(intégration par partie)
$$\int_a^b uv' = \left[uv\right]_a^b - \int_a^b u'v$$

$$A(t) = \sin(\omega t)$$

$$K(t) = \frac{1}{\tau} \exp\left(-\frac{t}{\tau}\right) H(t)$$

$$F(t) = (A \circledast K)(t)$$

$$F(t) = \int_{-\infty}^{\infty} \sin(\omega(t - t')) \frac{1}{\tau} \exp\left(-\frac{t'}{\tau}\right) H(t') dt'$$

$$F(t) = \int_{0}^{\infty} \frac{\sin\left(\omega(t - t')\right)}{u} \frac{1}{\tau} \exp\left(-\frac{t'}{\tau}\right) dt'$$

$$F(t) = \left[\sin(\omega(t - t'))\left(-\exp\left(-\frac{t'}{\tau}\right)\right)\right]_{0}^{\infty} - \int_{0}^{\infty} -\omega\cos\left(\omega(t - t')\right)\underbrace{\left(-\exp\left(-\frac{t'}{\tau}\right)\right)}_{v'} dt' \quad (B.1)$$

$$F(t) = \sin(\omega t) - \left(\left[\omega \cos(\omega (t - t')) \left(-\tau \exp\left(-\frac{t'}{\tau} \right) \right) \right]_{0}^{\infty} - \int_{0}^{\infty} \omega^{2} \sin(\omega (t - t')) \left(-\tau \exp\left(-\frac{t'}{\tau} \right) \right) dt' \right)$$
(B.2)
$$F(t) = \sin(\omega t) - \omega \tau \cos(\omega t) - \omega^{2} \tau^{2} \int_{0}^{\infty} \sin(\omega (t - t')) \frac{1}{\tau} \exp\left(-\frac{t'}{\tau} \right) dt'$$

Donc

$$(1 + \omega^2 \tau^2) \int_0^\infty \sin(\omega(t - t')) \frac{1}{\tau} \exp\left(-\frac{t'}{\tau}\right) dt' = \sin(\omega t) - \omega \tau \cos(\omega t)$$

Soit

$$F(t) = \frac{\sin(\omega t)}{1 + \omega^2 \tau^2} - \frac{\omega \tau \cos(\omega t)}{1 + \omega^2 \tau^2}$$
(sinus d'une somme)
$$\sin(a+b) = \sin a \cos b + \cos a \sin b$$

$$\sin(\omega t + \varphi) = \sin(\omega t) \underbrace{\frac{1}{1 + \omega^2 \tau^2}}_{\cos \varphi} + \cos(\omega t) \underbrace{\frac{-\omega \tau}{1 + \omega^2 \tau^2}}_{\sin \varphi}$$

$$\tan \varphi = \frac{\sin \varphi}{\cos \varphi} = -\omega \tau$$

$$\varphi = \arctan(-\omega \tau)$$

$$F(t) = \sin(\omega t + \varphi)$$

Donc la convolution d'un sinus de pulsation ω par un noyau en exponentielle décroissante de temps caractéristique τ résulte en un déphasage négatif (retard temporel) de $\varphi = \operatorname{atan}(-\omega\tau)$.

Bibliographie

- [1] J. GOENSE, Y. BOHRAUS & N. K. LOGOTHETIS; «fMRI at High Spatial Resolution: Implications for BOLD-Models»; 10. ISSN 1662-5188. https://www.frontiersin.org/articles/10.3389/fncom.2016.00066/full; publisher: Frontiers. 1
- [2] L. BERDONDINI, K. IMFELD, A. MACCIONE, M. TEDESCO, S. NEU-KOM, M. KOUDELKA-HEP & S. MARTINOIA; «Active pixel sensor array for high spatio-temporal resolution electrophysiological recordings from single cell to large scale neuronal networks»; 9, p. 2644–2651. ISSN 1473-0189. https://pubs.rsc.org/en/content/articlelanding/2009/1c/b907394a; publisher: The Royal Society of Chemistry. 1
- [3] B. E. STEIN & T. R. STANFORD; «Multisensory integration: current issues from the perspective of the single neuron»; 9, p. 255–266. ISSN 1471-003X, 1471-0048. http://www.nature.com/articles/nrn2331. 2, 5, 6
- [4] B. BONATH, T. NOESSELT, A. MARTINEZ, J. MISHRA, K. SCHWIECKER, H.-J. HEINZE & S. A. HILLYARD; «Neural Basis of the Ventriloquist Illusion»; 17, p. 1697-1703. ISSN 0960-9822. http://www.sciencedirect.com/science/ article/pii/S0960982207019069. 4
- [5] M. S. BEAUCHAMP, B. D. ARGALL, J. BODURKA, J. H. DUYN & A. MAR-TIN; «Unraveling multisensory integration: patchy organization within human STS multisensory cortex»; 7, p. 1190-1192. ISSN 1546-1726. https://www.nature.com/articles/nn1333; number: 11 Publisher: Nature Publishing Group. 5
- [6] M. S. BEAUCHAMP; «Statistical Criteria in fMRI Studies of Multisensory Integration»; **3**, p. 93–113. ISSN 1539-2791. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2843559/. 5
- [7] M. Brosch, E. Selezneva & H. Scheich; "Nonauditory Events of a Behavioral Procedure Activate Auditory Cortex of Highly Trained Monkeys";

25, p. 6797-6806. ISSN 0270-6474, 1529-2401. https://www.jneurosci.org/content/25/29/6797; publisher: Society for Neuroscience Section: Behavioral/Systems/Cognitive. 5

- [8] E. Budinger, P. Heil, A. Hess & H. Scheich; «Multisensory processing via early cortical stages: Connections of the primary auditory cortical field with other sensory systems»; 143, p. 1065–1083. ISSN 0306-4522. http://www.sciencedirect.com/science/article/pii/S0306452206011158.
- [9] J. K. BIZLEY, F. R. NODAL, V. M. BAJO, I. NELKEN & A. J. KING; «Physiological and Anatomical Evidence for Multisensory Interactions in Auditory Cortex»; 17, p. 2172–2189. ISSN 1047-3211. https://academic.oup.com/cercor/article/17/9/2172/273122; publisher: Oxford Academic. 5
- [10] B. L. Allman & M. A. Meredith; «Multisensory Processing in Unimodal Neurons: Cross-Modal Subthreshold Auditory Effects in Cat Extrastriate Visual Cortex»; 98, p. 545–549. ISSN 0022-3077. https://journals.physiology.org/doi/full/10.1152/jn.00173.2007; publisher: American Physiological Society. 5
- [11] D. E. ANGELAKI & K. E. CULLEN; «Vestibular System: The Many Facets of a Multimodal Sense»; 31, p. 125–150. ISSN 0147-006X, 1545-4126. http://www. annualreviews.org/doi/10.1146/annurev.neuro.31.060407.125555.
- [12] J. DRIVER & T. NOESSELT; «Multisensory Interplay Reveals Crossmodal Influences on Sensory-Specific Brain Regions, Neural Responses, and Judgments»; 57, p. 11–23. ISSN 0896-6273. https://www.cell.com/neuron/ abstract/S0896-6273(07)01019-7; publisher: Elsevier. 6
- [13] M. B. Ahrens, J. M. Li, M. B. Orger, D. N. Robson, A. F. Schier, F. Engert & R. Portugues; «Brain-wide neuronal dynamics during motor adaptation in zebrafish»; . ISSN 0028-0836, 1476-4687. http://www.nature.com/doifinder/10.1038/nature11057. 7, 15, 61
- [14] T. PANIER, S. A. ROMANO, R. OLIVE, T. PIETRI, G. SUMBRE, R. CANDELIER & G. DEBRÉGEAS; «Fast functional imaging of multiple brain regions in intact zebrafish larvae using Selective Plane Illumination Microscopy»;
 7. ISSN 1662-5110. http://journal.frontiersin.org/article/10.3389/fncir.2013.00065/abstract.
- [15] M. B. Ahrens, M. B. Orger, D. N. Robson, J. M. Li & P. J. Keller; «Whole-brain functional imaging at cellular resolution using light-sheet microscopy»; 10, p. 413–420. ISSN 1548-7105.

[16] S. WOLF, A. M. DUBREUIL, T. BERTONI, U. L. BÖHM, V. BORMUTH, R. CANDELIER, S. KARPENKO, D. G. C. HILDEBRAND, I. H. BIANCO, R. MONASSON & G. DEBRÉGEAS; «Sensorimotor computation underlying phototaxis in zebrafish»; 8, p. 651. ISSN 2041-1723. https://www.nature.com/articles/s41467-017-00310-3; number: 1 Publisher: Nature Publishing Group. 7

- [17] J. H. BOLLMANN; «The Zebrafish Visual System: From Circuits to Behavior»;
 5, p. 269–293. ISSN 2374-4642, 2374-4650. https://www.annualreviews.org/doi/10.1146/annurev-vision-091718-014723.
 7, 16
- [18] D. E. EHRLICH & D. SCHOPPIK; «A primal role for the vestibular sense in the development of coordinated locomotion»; 8, p. e45839. ISSN 2050-084X. https://doi.org/10.7554/eLife.45839; publisher: eLife Sciences Publications, Ltd. 7, 21, 22, 23, 35
- [19] S. KARPENKO, S. WOLF, J. LAFAYE, G. LE GOC, T. PANIER, V. BORMUTH, R. CANDELIER & G. DEBRÉGEAS; «From behavior to circuit modeling of light-seeking navigation in zebrafish larvae»; 9, p. e52882. ISSN 2050-084X. https://doi.org/10.7554/eLife.52882; publisher: eLife Sciences Publications, Ltd. 7
- [20] B. B. RILEY & S. J. MOORMAN; «Development of utricular otoliths, but not saccular otoliths, is necessary for vestibular function and survival in zebrafish»; 43, p. 329–337. ISSN 1097-4695. https://onlinelibrary.wiley.com/doi/abs/10.1002/1097-4695% 2820000615%2943%3A4%3C329%3A%3AAID-NEU2%3E3.0.C0%3B2-H. 7, 17
- [21] A. VERKHRATSKY & H. KETTENMANN; «Calcium signalling in glial cells»; 19, p. 346-352. ISSN 0166-2236. http://www.sciencedirect.com/science/article/pii/0166223696100485. 8
- [22] F. W. Pfrieger & B. A. Barres; «Synaptic Efficacy Enhanced by Glial Cells in Vitro»; 277, p. 1684–1687. ISSN 0036-8075, 1095-9203. https://science.sciencemag.org/content/277/5332/1684.1; publisher: American Association for the Advancement of Science Section: Report. 8
- [23] C. GRIENBERGER & A. KONNERTH; «Imaging Calcium in Neurons»; 73, p. 862-885. ISSN 0896-6273. https://www.cell.com/neuron/abstract/ S0896-6273(12)00172-9; publisher: Elsevier. 9
- [24] P. A. SANTI; «Light Sheet Fluorescence Microscopy: A Review»; https://journals.sagepub.com/doi/10.1369/0022155410394857; publisher: SAGE PublicationsSage CA: Los Angeles, CA. 14

[25] R. M. POWER & J. HUISKEN; «A guide to light-sheet fluorescence microscopy for multiscale imaging»; 14, p. 360–373. ISSN 1548-7091, 1548-7105. http://www.nature.com/articles/nmeth.4224. 14

- [26] D. H. Kim, J. Kim, J. C. Marques, A. Grama, D. G. C. Hildebrand, W. Gu, J. M. Li & D. N. Robson; «Pan-neuronal calcium imaging with cellular resolution in freely swimming zebrafish»; 14, p. 1107–1114. ISSN 1548-7091, 1548-7105. http://www.nature.com/articles/nmeth.4429. 14
- [27] J. MERTZ; «Optical sectioning microscopy with planar or structured illumination»; 8, p. 811–819. ISSN 1548-7105. https://www.nature.com/articles/nmeth.1709; number: 10 Publisher: Nature Publishing Group. 15
- [28] C. HADDON & J. LEWIS; «Early ear development in the embryo of the Zebrafish, Danio rerio»; **365**, p. 113-128. ISSN 1096-9861. https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291096-9861% 2819960129%29365%3A1%3C113%3A%3AAID-CNE9%3E3.0.C0%3B2-6. 16, 52
- [29] R. PORTUGUES & F. ENGERT; «The neural basis of visual behaviors in the larval zebrafish»; 19, p. 644–647. ISSN 0959-4388. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4524571/. 16
- [30] I. A. FAVRE-BULLE, G. VANWALLEGHEM, M. A. TAYLOR, H. RUBINSZTEIN-DUNLOP & E. K. SCOTT; «Cellular-Resolution Imaging of Vestibular Processing across the Larval Zebrafish Brain»; 28, p. 3711–3722.e3. ISSN 09609822. https://linkinghub.elsevier.com/retrieve/pii/S0960982218312855. 17, 19
- [31] I. H. BIANCO, L.-H. MA, D. SCHOPPIK, D. N. ROBSON, M. B. ORGER, J. C. BECK, J. M. LI, A. F. SCHIER, F. ENGERT & R. BAKER; «The Tangential Nucleus Controls a Gravito-inertial Vestibulo-ocular Reflex»; 22, p. 1285–1295. ISSN 0960-9822. https://www.cell.com/current-biology/abstract/S0960-9822(12)00579-9; publisher: Elsevier. 17, 19, 52
- [32] D. E. EHRLICH & D. SCHOPPIK; «Control of Movement Initiation Underlies the Development of Balance»; 27, p. 334-344. ISSN 09609822. http://linkinghub.elsevier.com/retrieve/pii/S096098221631449X. 19, 21, 23, 24, 28, 60
- [33] D. E. EHRLICH & D. SCHOPPIK; «Balance Sense: Response Motifs that Pervade the Brain»; . 21
- [34] T. Waltemate, I. Senna, F. Hülsmann, M. Rohde, S. Kopp, M. Ernst & M. Botsch; "The impact of latency on perceptual judgments and motor

performance in closed-loop interaction in virtual reality»; dans «Proceedings of the 22nd ACM Conference on Virtual Reality Software and Technology», VRST '16; p. 27–35 (Association for Computing Machinery); ISBN 978-1-4503-4491-3. https://doi.org/10.1145/2993369.2993381. 25

- [35] K. SEVERI, R. PORTUGUES, J. MARQUES, D. OMALLEY, M. ORGER & F. ENGERT; «Neural Control and Modulation of Swimming Speed in the Larval Zebrafish»; 83, p. 692–707. ISSN 0896-6273. http://www.sciencedirect.com/science/article/pii/S0896627314005789. 28
- [36] Y. Mu, D. V. Bennett, M. Rubinov, S. Narayan, C.-T. Yang, M. Tanimoto, B. D. Mensh, L. L. Looger & M. B. Ahrens; «Glia Accumulate Evidence that Actions Are Futile and Suppress Unsuccessful Behavior»; 178, p. 27–43.e19. ISSN 0092-8674. http://www.sciencedirect.com/science/article/pii/S009286741930621X. 33
- [37] I. A. FAVRE-BULLE, A. B. STILGOE, H. RUBINSZTEIN-DUNLOP & E. K. SCOTT; «Optical trapping of otoliths drives vestibular behaviours in larval zebrafish»; 8, p. 630. ISSN 2041-1723. http://www.nature.com/articles/s41467-017-00713-2. 37
- [38] G. MIGAULT, T. L. v. d. PLAS, H. TRENTESAUX, T. PANIER, R. CANDELIER, R. PROVILLE, B. ENGLITZ, G. DEBRÉGEAS & V. BORMUTH; «Whole-Brain Calcium Imaging during Physiological Vestibular Stimulation in Larval Zebrafish»; . 38, 51, 55, 65
- [39] M. PACHITARIU, C. STRINGER, S. SCHRÖDER, M. DIPOPPA, L. F. ROSSI, M. CARANDINI & K. D. HARRIS; «Suite2p: beyond 10,000 neurons with standard two-photon microscopy»; p. 061507. https://www.biorxiv.org/content/10.1101/061507v1; publisher: Cold Spring Harbor Laboratory Section: New Results. 44
- [40] A. GIOVANNUCCI, J. FRIEDRICH, P. GUNN, J. KALFON, B. L. BROWN, S. A. KOAY, J. TAXIDIS, F. NAJAFI, J. L. GAUTHIER, P. ZHOU, B. S. KHAKH, D. W. TANK, D. B. CHKLOVSKII & E. A. PNEVMATIKAKIS; «CaImAn an open source tool for scalable calcium imaging data analysis»; 8, p. e38173. ISSN 2050-084X. https://doi.org/10.7554/eLife.38173; publisher: eLife Sciences Publications, Ltd. 44
- [41] D. A. DOMBECK, A. N. KHABBAZ, F. COLLMAN, T. L. ADELMAN & D. W. TANK; «Imaging Large-Scale Neural Activity with Cellular Resolu-

tion in Awake, Mobile Mice»; **56**, p. 43-57. ISSN 0896-6273. http://www.sciencedirect.com/science/article/pii/S0896627307006149. 50

- [42] D. SCHOPPIK, I. H. BIANCO, D. A. PROBER, A. D. DOUGLASS, D. N. ROBSON, J. M. LI, J. S. GREENWOOD, E. SOUCY, F. ENGERT & A. F. SCHIER; «Gaze-Stabilizing Central Vestibular Neurons Project Asymmetrically to Extraocular Motoneuron Pools»; 37, p. 11353–11365. ISSN 0270-6474, 1529-2401. http://www.jneurosci.org/lookup/doi/10.1523/JNEUROSCI.1711-17.2017. 52, 60
- [43] T.-W. CHEN, T. J. WARDILL, Y. SUN, S. R. PULVER, S. L. RENNINGER, A. BAOHAN, E. R. SCHREITER, R. A. KERR, M. B. ORGER, V. JAYARAMAN, L. L. LOOGER, K. SVOBODA & D. S. KIM; «Ultrasensitive fluorescent proteins for imaging neuronal activity»; 499, p. 295–300. ISSN 0028-0836, 1476-4687. http://www.nature.com/articles/nature12354. 56
- [44] J. Tubiana, S. Wolf & G. Debregeas; «Blind sparse deconvolution for inferring spike trains from fluorescence recordings»; http://biorxiv.org/ lookup/doi/10.1101/156364. 53
- [45] T. V. Truong, W. Supatto, D. S. Koos, J. M. Choi & S. E. Fraser; «Deep and fast live imaging with two-photon scanned light-sheet microscopy»; 8, p. 757–760. ISSN 1548-7105. https://www.nature.com/articles/nmeth.1652; number: 9 Publisher: Nature Publishing Group. 61
- [46] N. VLADIMIROV, Y. MU, T. KAWASHIMA, D. V. BENNETT, C.-T. YANG, L. L. LOOGER, P. J. KELLER, J. FREEMAN & M. B. AHRENS; «Light-sheet functional imaging in fictively behaving zebrafish»; 11, p. 883–884. ISSN 1548-7091, 1548-7105. http://www.nature.com/articles/nmeth.3040. 61
- [47] S. WOLF, W. SUPATTO, G. DEBRÉGEAS, P. MAHOU, S. G. KRUGLIK, J.-M. SINTES, E. BEAUREPAIRE & R. CANDELIER; «Whole-brain functional imaging with two-photon light-sheet microscopy»; 12, p. 379–380. ISSN 1548-7105. https://www.nature.com/articles/nmeth.3371; number: 5 Publisher: Nature Publishing Group. 62
- [48] V. MAIOLI, A. BONIFACE, P. MAHOU, J. F. ORTAS, L. ABDELA-DIM, E. BEAUREPAIRE & W. SUPATTO; «Fast in vivo multiphoton light-sheet microscopy with optimal pulse frequency»; 11, p. 6012-6026. ISSN 2156-7085. https://www.osapublishing.org/boe/abstract.cfm? uri=boe-11-10-6012; publisher: Optical Society of America. 63

[49] F. M. GASPAROLI, A. ESCOBET-MONTALBÁN, J. EARLY, G. D. BRUCE, K. DHOLAKIA & K. DHOLAKIA; «Is laser repetition rate important for twophoton light sheet microscopy?»; 3, p. 2935–2942. ISSN 2578-7519. https: //www.osapublishing.org/osac/abstract.cfm?uri=osac-3-10-2935; publisher: Optical Society of America. 64

- [50] Y. Y. WANG, N. V. WHEELER, F. COUNY, P. J. ROBERTS & F. BENABID; «Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber»; **36**, p. 669. ISSN 0146-9592, 1539-4794. https://www.osapublishing.org/abstract.cfm?URI=ol-36-5-669. 65, 67
- [51] R. F. CREGAN, B. J. MANGAN, J. C. KNIGHT, T. A. BIRKS, P. S. J. RUSSELL, P. J. ROBERTS & D. C. ALLAN; «Single-Mode Photonic Band Gap Guidance of Light in Air»; 285, p. 1537–1539. ISSN 0036-8075, 1095-9203. https://science.sciencemag.org/content/285/5433/1537; publisher: American Association for the Advancement of Science Section: Report. 65, 67
- [52] L. VINCETTI & V. SETTI; «Waveguiding mechanism in tube lattice fibers»; 18, p. 23133-23146. ISSN 1094-4087. https://www.osapublishing.org/oe/abstract.cfm?uri=oe-18-22-23133; publisher: Optical Society of America. 65, 67
- [53] F. Yu & J. C. Knight; «Negative Curvature Hollow-Core Optical Fiber»;
 22, p. 146-155. ISSN 1077-260X, 1558-4542. https://ieeexplore.ieee.org/document/7225120/. 65, 67, 75
- [54] A. D. PRYAMIKOV, A. S. BIRIUKOV, A. F. KOSOLAPOV, V. G. PLOTNICHENKO, S. L. SEMJONOV & E. M. DIANOV; «Demonstration of a waveguide regime for a silica hollow core microstructured optical fiber with a negative curvature of the core boundary in the spectral region > 3.5 um»; 19, p. 1441–1448. ISSN 1094-4087. https://www.osapublishing.org/oe/abstract.cfm?uri=oe-19-2-1441; publisher: Optical Society of America. 65
- [55] S. MILLER & A. BECK; «Low-Loss Waveguide Transmission»; 41, p. 348–358. ISSN 0096-8390. http://ieeexplore.ieee.org/document/4051317/. 64
- [56] H. G. UNGER; «Circular Electric Wave Transmission in a Dielectric-Coated Waveguide»; **36**, p. 1253–1278. ISSN 00058580. https://ieeexplore.ieee.org/document/6768999. 64

[57] K. S. PACKARD; "The Origin of Waveguides: A Case of Multiple Rediscovery"; 32, p. 961–969. ISSN 1557-9670; conference Name: IEEE Transactions on Microwave Theory and Techniques. 64

- [58] R. D. Maurer; «Glass fibers for optical communications»; **61**, p. 452–462. ISSN 1558-2256; conference Name: Proceedings of the IEEE. 64
- [59] A. Ankiewicz & G. Peng; «Generalized Gaussian approximation for single-mode fibers»; 10, p. 22–27. ISSN 1558-2213; conference Name: Journal of Lightwave Technology. 65
- [60] D. GLOGE; «Dispersion in Weakly Guiding Fibers»; 10, p. 2442-2445.
 ISSN 2155-3165. https://www.osapublishing.org/ao/abstract.cfm?uri=ao-10-11-2442; publisher: Optical Society of America. 65
- [61] K. JÜRGENSEN; «Gaussian pulse transmission through monomode fibers, accounting for source linewidth»; 17, p. 2412–2415. ISSN 2155-3165. https://www.osapublishing.org/ao/abstract.cfm?uri=ao-17-15-2412; publisher: Optical Society of America. 65
- [62] R. L. FORK, O. E. MARTINEZ & J. P. GORDON; «Negative dispersion using pairs of prisms»; 9, p. 150–152. ISSN 1539-4794. https://www.osapublishing.org/ol/abstract.cfm?uri=ol-9-5-150; publisher: Optical Society of America. 65
- [63] G. P. AGRAWAL; «Nonlinear Fiber Optics»; dans P. L. CHRISTIANSEN, M. P. SØRENSEN & A. C. SCOTT (rédacteurs), «Nonlinear Science at the Dawn of the 21st Century», Lecture Notes in Physics; p. 195–211 (Springer); ISBN 978-3-540-46629-1. 66
- [64] F. HELMCHEN, W. DENK & J. N. D. KERR; «Miniaturization of Two-Photon Microscopy for Imaging in Freely Moving Animals»; 2013, p. pdb.top078 147. ISSN 1940-3402, 1559-6095. http://cshprotocols.cshlp.org/content/ 2013/10/pdb.top078147; publisher: Cold Spring Harbor Laboratory Press. 66
- [65] S. W. CLARK, F. O. ILDAY & F. W. WISE; «Fiber delivery of femtosecond pulses from a Ti:sapphire laser»; **26**, p. 1320–1322. ISSN 1539-4794. https://www.osapublishing.org/ol/abstract.cfm?uri=ol-26-17-1320; publisher: Optical Society of America. 66
- [66] C. Lefort, M. Kalashyan, G. Ducourthial, T. Mansuryan, R. P. Oconnor & F. Louradour; «Sub-30-fs pulse compression and pulse shaping at the output of a 2-m-long optical fiber in the near-infrared range»;

- 31, p. 2317-2324. ISSN 1520-8540. https://www.osapublishing.org/josab/abstract.cfm?uri=josab-31-10-2317; publisher: Optical Society of America. 66
- [67] E. A. J. MARCATILI & R. A. SCHMELTZER; «Hollow metallic and dielectric waveguides for long distance optical transmission and lasers»; **43**, p. 1783–1809. ISSN 0005-8580; conference Name: The Bell System Technical Journal. 66
- [68] A. ARGYROS, M. A. VAN EIJKELENBORG, M. C. LARGE & I. M. BAS-SETT; «Hollow-core microstructured polymer optical fiber»; 31, p. 172. ISSN 0146-9592, 1539-4794. https://www.osapublishing.org/abstract. cfm?URI=ol-31-2-172. 67
- [69] F. Benabid; «Stimulated Raman Scattering in Hydrogen-Filled Hollow-Core Photonic Crystal Fiber»; 298, p. 399-402. ISSN 00368075, 10959203. https://www.sciencemag.org/lookup/doi/10.1126/science.1076408. 67
- [70] S. FÉVRIER, B. BEAUDOU & P. VIALE; «Understanding origin of loss in large pitch hollow-core photonic crystal fibers and their design simplification»; 18, p. 5142-5150. ISSN 1094-4087. https://www.osapublishing.org/oe/abstract.cfm?uri=oe-18-5-5142; publisher: Optical Society of America. 67
- [71] D. A. DOMBECK, C. D. HARVEY, L. TIAN, L. L. LOOGER & D. W. TANK; «Functional imaging of hippocampal place cells at cellular resolution during virtual navigation»; 13, p. 1433-1440. ISSN 1097-6256. https://www.ncbi. nlm.nih.gov/pmc/articles/PMC2967725/. 68, 69
- [72] F. Helmchen, M. S. Fee, D. W. Tank & W. Denk; «A Miniature Head-Mounted Two-Photon Microscope: High-Resolution Brain Imaging in Freely Moving Animals»; **31**, p. 903–912. ISSN 0896-6273. http://www.sciencedirect.com/science/article/pii/S0896627301004214. 68, 69
- [73] J. SAWINSKI, D. J. WALLACE, D. S. GREENBERG, S. GROSSMANN, W. DENK & J. N. D. KERR; «Visually evoked activity in cortical cells imaged in freely moving animals»; 106, p. 19557–19562. ISSN 0027-8424. https://www.ncbi. nlm.nih.gov/pmc/articles/PMC2773198/. 68, 69
- [74] C. J. ENGELBRECHT, R. S. JOHNSTON, E. J. SEIBEL & F. HELMCHEN; «Ultracompact fiber-optic two-photon microscope for functional fluorescence imaging in vivo»; 16, p. 5556–5564. ISSN 1094-4087. https://www.osapublishing.org/oe/abstract.cfm?uri=oe-16-8-5556; publisher: Optical Society of America. 69, 70, 71

[75] S. TURTAEV, I. T. LEITE, T. ALTWEGG-BOUSSAC, J. M. P. PAKAN, N. L. ROCHEFORT & T. IMÁR; «High-fidelity multimode fibre-based endoscopy for deep brain in vivo imaging»; 7, p. 92. ISSN 2047-7538. http://www.nature.com/articles/s41377-018-0094-x. 69, 70

- [76] B. SCOTT, C. BRODY & D. TANK; «Cellular Resolution Functional Imaging in Behaving Rats Using Voluntary Head Restraint»; 80, p. 371–384. ISSN 0896-6273. http://www.sciencedirect.com/science/article/pii/S0896627313007125. 68
- [77] D. ARONOV & D. TANK; «Engagement of Neural Circuits Underlying 2D Spatial Navigation in a Rodent Virtual Reality System»; 84, p. 442-456. ISSN 0896-6273. http://www.sciencedirect.com/science/article/pii/S0896627314007430. 68
- [78] J. R. WHITLOCK; «Navigating actions through the rodent parietal cortex»; 8. ISSN 1662-5161. https://www.frontiersin.org/articles/10.3389/fnhum.2014.00293/full; publisher: Frontiers. 68
- [79] W. ZONG, R. WU, M. LI, Y. HU, Y. LI, J. LI, H. RONG, H. WU, Y. XU, Y. LU, H. JIA, M. FAN, Z. ZHOU, Y. ZHANG, A. WANG, L. CHEN & H. CHENG; «Fast high-resolution miniature two-photon microscopy for brain imaging in freely behaving mice»; 14, p. 713–719. ISSN 1548-7105. https://www.nature.com/articles/nmeth.4305; number: 7 Publisher: Nature Publishing Group. 68, 70
- [80] S.-P. TAI, M.-C. CHAN, T.-H. TSAI, S.-H. GUOL, L.-J. CHEN & C.-K. SUN; «Two-photon fluorescence microscope with a hollow-core photonic crystal fiber»; 12, p. 6122-6128. ISSN 1094-4087. https://www.osapublishing.org/ oe/abstract.cfm?uri=oe-12-25-6122; publisher: Optical Society of America. 68, 71
- [81] H. Choi & P. T. C. So; «Improving femtosecond laser pulse delivery through a hollow core photonic crystal fiber for temporally focused two-photon endomicroscopy»; 4, p. 6626. ISSN 2045-2322. https://www.nature.com/articles/srep06626; number: 1 Publisher: Nature Publishing Group. 68, 71
- [82] W. PIYAWATTANAMETHA, E. D. COCKER, L. D. BURNS, R. P. J. BARRETTO, J. C. JUNG, H. RA, O. SOLGAARD & M. J. SCHNITZER; «In vivo brain imaging using a portable 2.9 g two-photon microscope based on a microelectromechanical systems scanning mirror»; 34, p. 2309–2311ISSN 0146-9592. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2826365/. 68, 71

[83] A. KLIOUTCHNIKOV, D. J. WALLACE, M. H. FROSZ, R. ZELTNER, J. SAWINSKI, V. PAWLAK, K.-M. VOIT, P. S. J. RUSSELL & J. N. D. KERR; "Three-photon head-mounted microscope for imaging deep cortical layers in freely moving rats"; 17, p. 509–513. ISSN 1548-7105. https://www.nature.com/articles/s41592-020-0817-9; number: 5 Publisher: Nature Publishing Group. 68, 70, 71

- [84] B. B. SCOTT, S. Y. THIBERGE, C. GUO, D. G. R. TERVO, C. D. BRODY, A. Y. KARPOVA & D. W. TANK; «Imaging Cortical Dynamics in GCaMP Transgenic Rats with a Head-Mounted Widefield Macroscope»; 100, p. 1045-1058.e5. ISSN 0896-6273. http://www.sciencedirect.com/science/article/pii/S0896627318308523. 68
- [85] B. A. Flusberg, J. C. Jung, E. D. Cocker, E. P. Anderson & M. J. Schnitzer; «In vivo brain imaging using a portable 3.9 g two-photon fluorescence microendoscope»; **30**, p. 2272–2274. ISSN 1539-4794. https://www.osapublishing.org/ol/abstract.cfm?uri=ol-30-17-2272; publisher: Optical Society of America. 70, 71
- [86] I. N. PAPADOPOULOS, S. FARAHI, C. MOSER & D. PSALTIS; «High-resolution, lensless endoscope based on digital scanning through a multimode optical fiber»; 4, p. 260–270. ISSN 2156-7085. https://www.osapublishing.org/boe/abstract.cfm?uri=boe-4-2-260; publisher: Optical Society of America. 70
- [87] S. Ohayon, A. Caravaca-Aguirre, R. Piestun & J. J. DiCarlo; «Minimally invasive multimode optical fiber microendoscope for deep brain fluorescence imaging»; 9, p. 1492–1509. ISSN 2156-7085. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5905901/. 70
- [88] E. R. Andresen, G. Bouwmans, S. Monneret & H. Rigneault; «Two-photon lensless endoscope»; **21**, p. 20713-20721. ISSN 1094-4087. https://www.osapublishing.org/oe/abstract.cfm?uri=oe-21-18-20713; publisher: Optical Society of America. 70
- [89] A. Kudlinski, A. Cassez, O. Vanvincq, D. Septier, A. Pastre, R. Habert, K. Baudelle, M. Douay, V. Mytskaniuk, V. Tsvirkun, H. Rigneault & G. Bouwmans; «Double clad tubular anti-resonant hollow core fiber for nonlinear microendoscopy»; 28, p. 15062. ISSN 1094-4087. https://www.osapublishing.org/abstract.cfm?URI=oe-28-10-15062. 70
- [90] A. Lombardini, V. Mytskaniuk, S. Sivankutty, E. R. Andresen, X. Chen, J. Wenger, M. Fabert, N. Joly, F. Louradour, A. Kudlinski

& H. RIGNEAULT; «High-resolution multimodal flexible coherent Raman endoscope»; 7, p. 10. ISSN 2047-7538. https://www.nature.com/articles/s41377-018-0003-3; number: 1 Publisher: Nature Publishing Group. 70

- [91] B. Debord, M. Alharbi, T. Bradley, C. Fourcade-Dutin, Y. Y. Wang, L. Vincetti, F. Gérôme & F. Benabid; «Hypocycloid-shaped hollow-core photonic crystal fiber Part I: Arc curvature effect on confinement loss»; 21, p. 28597–28608. ISSN 1094-4087. https://www.osapublishing.org/oe/ abstract.cfm?uri=oe-21-23-28597; publisher: Optical Society of America. 72
- [92] V. SETTI, L. VINCETTI & A. ARGYROS; «Flexible tube lattice fibers for terahertz applications»; 21, p. 3388-3399. ISSN 1094-4087. https://www. osapublishing.org/oe/abstract.cfm?uri=oe-21-3-3388; publisher: Optical Society of America. 75
- [93] M. H. FROSZ, P. ROTH, M. C. GÜNENDI & P. S. J. RUSSELL; «Analytical formulation for the bend loss in single-ring hollow-core photonic crystal fibers»; 5, p. 88–91. ISSN 2327-9125. https://www.osapublishing.org/prj/abstract.cfm?uri=prj-5-2-88; publisher: Optical Society of America. 75
- [94] G. DE VITO, P. RICCI, L. TURRINI, V. GAVRYUSEV, C. MÜLLENBROICH, N. TISO, F. VANZI, L. SILVESTRI & F. S. PAVONE; «Effects of excitation light polarization on fluorescence emission in two-photon light-sheet microscopy»; 11, p. 4651. ISSN 2156-7085, 2156-7085. https://www.osapublishing.org/ abstract.cfm?URI=boe-11-8-4651. 77
- [95] J. R. WHINNERY; «Laser measurement of optical absorption in liquids»; 7, p. 225–231. ISSN 0001-4842, 1520-4898. https://pubs.acs.org/doi/abs/10. 1021/ar50079a003. 81
- [96] J. P. GORDON, R. C. C. LEITE, R. S. MOORE, S. P. S. PORTO & J. R. WHIN-NERY; «LongTransient Effects in Lasers with Inserted Liquid Samples»; 36, p. 3-8. ISSN 0021-8979, 1089-7550. http://aip.scitation.org/doi/10.1063/ 1.1713919. 81, 82, 83
- [97] S. J. SHELDON, L. V. KNIGHT & J. M. THORNE; «Laser-induced thermal lens effect: a new theoretical model»; **21**, p. 1663. ISSN 0003-6935, 1539-4522. https://www.osapublishing.org/abstract.cfm?URI=ao-21-9-1663. 81
- [98] C. GOMEZ-REINO, M. V. PEREZ & C. BAO; Gradient-Index Optics (Springer Berlin Heidelberg); ISBN 978-3-642-07568-1 978-3-662-04741-5. http://link. springer.com/10.1007/978-3-662-04741-5. 81