P1 de Álgebra Linear I – 2003.2

Data: 15 de setembro de 2003.

Gabarito Prova Modelo

1) Decida se cada afirmação a seguir é verdadeira ou falsa e marque **com caneta** sua resposta no quadro abaixo. **Atenção:** responda **todos** os itens, use "N= não sei" caso você não saiba a resposta. Cada resposta certa vale 0.3, cada resposta errada vale -0.1, cada resposta \mathbf{N} vale 0. Respostas confusas e ou rasuradas valerão -0.1.

Itens	V	\mathbf{F}	N
1.a		X	
1.b	X		
1.c	X		
1.d	X		
1.e		X	
1.f		X	
1.g	X		
1.h		X	
1.i		X	
1.j	X		

1.a) Considere vetores u e w de \mathbb{R}^3 . Como $u \times u = \overline{0}$, então se verifica

$$u \times (u \times w) = (u \times u) \times w = \overline{0}.$$

Resposta: Falso. É suficiente considerar os vetores $u = \mathbf{i} = (1,0,0)$ e

 $w = \mathbf{j} = (0, 1, 0)$. Temos $u \times w = \mathbf{k} = (0, 0, 1)$. Portanto,

$$(1,0,0) \times ((1,0,0) \times (0,1,0)) = (1,0,0) \times (0,0,1) = (0,-1,0) = -\mathbf{j}.$$

Por outro lado, sempre, $u \times u = \overline{0}$, logo a segunda igualdade sempre é nula.

1.b) Sejam u, w, h e ℓ quatro vetores coplanares de \mathbb{R}^3 . Então se verifica

$$(u \times w) \times (\ell \times h) = \overline{0}.$$

Resposta: Verdadeiro.

Seja n o vetor normal do plano π paralelo aos vetores considerados. Veja que $u \times w = \lambda n$ e $\ell \times h = \sigma n$ para certos números λ e σ (pois estes produtos vetorias são ortogonais ao plano π). Portanto,

$$(u \times w) \times (\ell \times h) = (\lambda n) \times (\sigma n) = (\lambda \sigma)(n \times n) = \overline{0}.$$

1.c) Sejam u e w vetores de \mathbb{R}^3 de mesmo módulo. Então

$$(u+w)\cdot (u-w)=0.$$

Resposta: Verdadeiro. Veja que

$$(u+w) \cdot (u-w) = u \cdot u - u \cdot w + w \cdot u - w \cdot w = (u \cdot u) - (w \cdot w) = |u|^2 - |w|^2 = 0.$$

1.d) A área do triângulo de vértices A = (1, 2, 1), B = (0, 1, 1) e C = (1, 1, 1) é 1/2.

Resposta: Verdadeiro. A área pedida é a metade da área do paralelogramo de lados $\overline{AB} = (1, 1, 0)$ e $\overline{AC} = (0, 1, 0)$. Este paralelogramo tem área

$$\frac{|(1,1,0)\times(0,1,0)|}{2}\frac{|(0,1,0)|}{2} = \frac{1}{2}.$$

1.e) Considere vetores u, w e ℓ não nulos de \mathbb{R}^2 . Sejam $P_{\ell}(u)$ e $P_{\ell}(w)$ as projeções ortogonais de u e w (respetivamente) no vetor ℓ . Suponha que

$$P_{\ell}(u) = P_{\ell}(w).$$

Então u=w.

Resposta: Falso. Considere um vetor n não nulo ortogonal a ℓ e os vetores $u = \ell + n$ e $v = n + 2\ell$. Os vetores são diferentes e se verifica que $P_{\ell}(u) = P_{\ell}(w)$. Provemos esta afirmação, para simplificar suporemos que ℓ é unitário, então

$$P_{\ell}(u) = (u \cdot \ell)\ell = ((\ell + n) \cdot \ell)\ell = (\ell \cdot \ell + \ell \cdot n)\ell = \ell.$$

Analogamente, $P_{\ell}(w) = \ell$.

1.f) Considere a reta r_1 paralela ao vetor u contendo o ponto P. Considere a reta r_2 paralela ao vetor w contendo o ponto Q. Suponha que o produto misto

$$\overline{PQ} \cdot (u \times w) = 0.$$

Então as retas se interceptam.

Resposta: Falsa. A afirmação somente é verdadeira quando as retas não são paralelas. Por exemplo, considere as retas (t,0,0), $t \in \mathbb{R}$, e (s,1,0), $s \in \mathbb{R}$, a distância entre as retas é um e, como seus vetores diretores são paralelos, o produto misto anterior é nulo.

1.g) Considere os vetores

$$u = (111, 222, 333)$$
 e $w = (5467 + 111t, 9156789 + 222t, 1543 + 333t)$.

O produto vetorial $u \times w$ é independente de t.

Resposta: Verdadeiro. Considere o vetor $\ell = (5467, 9156789, 1543)$ e observe que $w = \ell + t u$. Portanto

$$u \times w = u \times (\ell + t u) = u \times \ell + t(u \times u) = u \times \ell,$$

que é independente de t.

1.h) Considere os planos de equação cartesianas

$$\pi$$
: $x - y - z = 4$ e ρ : $x - y - z = 1$.

A distância entre π e ρ é 4-1=3.

Resposta: Falso. A distância pedida é obtida considerando um ponto qualquer P de π , por exemplo P = (4,0,0), e um ponto qualquer Q de ρ , por exemplo Q = (1,0,0), e a distância é o módulo do vetor

$$\frac{\overline{QP} \cdot (1, -1, -1)}{(1, -1, -1) \cdot (1, -1, -1)} (1, -1, -1) = \frac{(3, 0, 0) \cdot (1, -1, -1)}{(1, -1, -1) \cdot (1, -1, -1)} (1, -1, -1).$$

O módulo do vetor resultante (1, -1, -1) é $\sqrt{3} \neq 3$.

1.i) Considere os pontos P = (a, b, c) e (-P) = (-a, -b, -c) e o plano π : ax + by + cz = d. Se as distâncias de P e (-P) a π são iguais então o plano π contem a origem.

Resposta: Falso. Considere os pontos (1,0,0) e (-1,0,0) e o plano z=1. As distâncias dos pontos ao plano são iguais (no caso 1) e o plano não contem a origem.

1.j) Considere um ponto $P = (p_1, p_2, p_3)$ e o plano π . Sejam R um ponto de π e n o vetor normal de π . Seja $w = (w_1, w_2, w_3)$ o vetor projeção ortogonal de \overline{PR} em n. O ponto T = P + w,

$$T = (p_1 + w_1, p_2 + w_2, p_3 + w_3),$$

é o ponto de π mais próximo de P.

Resposta: Verdadeiro. Por construção o ponto T pertence a π e os pontos P,T e R formam um triângulo retângulo. Logo \overline{PT} é ortogonal a π e T é o ponto de interseção da reta perpendicular a π contendo P.

2) Considere o plano de equação cartesiana

$$\pi: x - y - z = 1$$

e os pontos A=(2,1,0) e B=(1,0,0) do plano π .

- a) Determine o vetor \overline{AB} .
- b) Determine um vetor w paralelo ao plano π e ortogonal ao vetor \overline{AB} .
- c) Determine um vetor u paralelo a w e de mesmo módulo que o vetor \overline{AB} .
- d) Determine as coordenadas de pontos C e D tais que A, B, C, e D são os vértices de um quadrado contido no plano π .

Respostas:

a) As coordenadas do vetor \overline{AB} são B-A, ou seja

$$\overline{AB} = (1,0,0) - (2,1,0) = (-1,-1,0).$$

b) Como o vetor w é paralelo ao plano π , então o vetor w é ortogonal ao vetor n normal do plano, $\underline{n}=(1,-1,1)$. Como também é ortogonal a \overline{AB} , temos que w é paralelo a $\overline{AB} \times n = (-1,-1,0) \times (1,-1,1)$. Portanto

$$\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -1 & -1 & 0 \\ 1 & -1 & -1 \end{vmatrix} = (1, -1, 2).$$

c) O módulo do vetor $w \in \sqrt{6}$. O módulo do vetor $\overline{AB} \in \sqrt{2}$. Para obter o vetor u é suficiente considerar um vetor unitário paralelo a w, no caso

$$\frac{w}{\sqrt{6}} = (1/\sqrt{6}, -1/\sqrt{6}, 2/\sqrt{6})$$

e multiplica-lo pelo módulo $\sqrt{2}$ de \overline{AB} . Obtemos o vetor

$$u = \frac{\sqrt{2}w}{\sqrt{6}} = (\sqrt{2}/\sqrt{6}, -\sqrt{2}/\sqrt{6}, 2\sqrt{2}/\sqrt{6}) = (1/\sqrt{3}, -1/\sqrt{3}, 2/\sqrt{3}).$$

d) Observe que, como u é paralelo a π e os pontos A e B pertencem ao plano π , os pontos C = A + u e D = B + u pertencem a π . Também temos que, por construção, $\overline{AC} = \overline{BD} = u$ é ortogonal a \overline{AB} . Logo estes pontos determinam um retângulo. Como $\overline{AC} = u$ e u e \overline{AB} têm o mesmo módulo, que é igual a $\sqrt{2}$, assim o retângulo é um quadrado. Portanto

$$C = (2 + 1/\sqrt{3}, 1 - 1/\sqrt{3}, 2/\sqrt{3}), \qquad D = (1 + 1/\sqrt{3}, -1/\sqrt{3}, 2/\sqrt{3}).$$

3) Considere a reta r_1 de equações paramétricas

$$r_1: (t+1, 3t, t-2) \quad t \in \mathbb{R}$$

e a reta r_2 de equações cartesianas

$$x-z=1, \quad x+2y-3z=3.$$

- a) Escreva a reta r_1 como interseção de dois planos π e ρ (escritos em equações cartesianas) tais que π seja paralelo ao eixo \mathbb{X} e ρ seja paralelo ao eixo \mathbb{Z} .
- b) Determine uma equação paramétrica da reta r_2 .
- c) Determine a posição relativa das retas r_1 e r_2 (reversas, paralelas ou se interceptam).
- d) Calcule a distância d entre as retas r_1 e r_2 .

Respostas:

a) Observe que dois vetores parelalos ao plano π são o vetor (1,0,0) (o vetor diretor do eixo \mathbb{X}) e o vetor (1,3,1) (o vetor diretor da reta). Portanto, o vetor normal do plano π é paralelo a

$$(1,3,1) \times (1,0,0) \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 3 & 1 \\ 1 & 0 & 0 \end{vmatrix} = (0,1,-3).$$

Portanto, o plano π é da forma,

$$y - 3z = d,$$

onde d é determinado pela condição, $(1,0,-2) \in \pi$, ou seja, 3(-2) = 6 = d. Logo π : -y + 3z = -6.

Analogamente, dois vetores parelalos ao plano ρ são o vetor (0,0,1) (o vetor diretor do eixo \mathbb{Z}) e o vetor (1,3,1) (o vetor diretor da reta). Portanto, o vetor normal do plano π é paralelo a

$$(1,3,1) \times (0,0,1) \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 3 & 1 \\ 0 & 0 & 1 \end{vmatrix} = (3,-1,0).$$

Portanto, o plano ρ é da forma,

$$3x - y = d$$

onde d é determinado pela condição, $(1,0,-2) \in \pi$, ou seja, 3=d. Logo $\rho: 3x-y=3$.

b) Uma possibilidade é resolver o sistema de equações: escolhemos z como parámetro e temos x=1+z=1+t. Substituindo na segunda equação:

$$y = (3+3z-x)/2 = (3+3t-t-1)/2 = t+1.$$

Logo,

$$r_2: (1+t, 1+t, t), t \in \mathbb{R}.$$

Outra possibilidade é determinar o vetor diretor da reta, obtido como o produto vetorial dos vetores normais dos planos dados, $(1,0,-1) \times (1,2,-3) = (2,2,2)$, ou seja podemos escolher (1,1,1). Agora é suficiente escolher um ponto que pertença aos dois planos, por exemplo x=0, z=-1 e y=0, obtendo

$$r_2: (t, t, -1 + t), t \in \mathbb{R}.$$

c) e d) Como os vetores diretores das retas não são paralelos, as retas ou são reversas ou se interceptam.

Para resolver este item podemos ou calcular a distância ou ver se as retas se interceptam. Vejamos primeiro o último método: devemos ver se o sistema

$$1+s=1+t$$
, $3t=1+s$, $t-2=s$,

tem solução. Da primeira equação t=s e da última 2=0!. Logo o sistema não tem solução e as retas são reversas.

Outro método consiste em calcular a distância d entre as retas:

$$d = \frac{|\overline{PQ} \cdot (1,3,1) \times (1,1,1)|}{|(1,3,1) \times (1,1,1)|},$$

onde P é um ponto de r_1 (por exemplo, P = (1, 0, -2)) e Q é um ponto de r_2 (por exemplo, Q = (1, 1, 0)), logo $\overline{PQ} = (0, 1, 2)$. Temos

$$(1,3,1) \times (1,1,1) = (2,0,-2),$$

e
$$(0,1,2)\cdot(2,0,-2) = -4$$
. Logo $d = 4/\sqrt{8} = \sqrt{2}$.

Logo as retas são reversas e a distância é $\sqrt{2}$.

Outro método para resolver o problema é procurar pontos

$$A = (1+s, 3s, s-2) \in r_1$$
 e $B = (1+t, 1+t, t) \in r_2$

tais que o módulo do vetor \overline{AB} seja a distância entre as duas retas. Este vetor,

$$\overline{AB} = (t - s, 1 + t - 3s, t - s + 2)$$

deve ser ortogonal a r_1 e r_2 , ou seja

$$(t-s, 1+t-3s, t-s+2) \cdot (1,3,1) = 0, \quad 5t-3s = -5,$$

 $(t-s, 1+t-3s, t-s+2) \cdot (1,1,1) = 0, \quad 3t-5s = -3.$

A única solução do sistema é s=0 e t=-1. Obtemos os pontos A=(1,0,-2) e B=(0,0,1), logo $\overline{AB}=(-1,0,1)$. O módulo deste vetor é $\sqrt{2}$.

- 4) Considere os pontos A = (1, 1, 1) e B = (2, 0, 1).
- a) Determine uma equação paramétrica da reta r determinada pelos pontos $A \in B$.
- b) Determine o ponto médio M do segmento AB.
- c) Determine a equação cartesiana do plano π cujos pontos são todos equidistantes de A e B.
- d) Considere o ponto C=(19,21,17). Determine explicitamente um ponto D a distância 17 de C.
- e) Considere o plano ρ : x-y+z=0. Determine a equação cartesiana de um plano τ a distância 5 de ρ .

Respostas:

a) O vetor diretor de r é o vetor $\overline{AB} = (1, -1, 0)$. Como um ponto da reta é A = (1, 1, 1), temos

$$r\colon (1+t,1-t,1),\quad t\in\mathbb{R}.$$

- **b)** O ponto médio M tem coordenadas (A + B)/2. Ou de outra forma $M = A + \overline{AB}/2$. Obtemos: M = (3/2, 1/2, 1).
- c) O plano π deve ser normal ao vetor $\overline{AB}=(1,-1,0)$. Logo é da forma x-y=d. Como M pertence a π temos

$$\pi$$
: $x - y = 1$.

- **d)** Os seis pontos mais simples são D = (36, 21, 17), D = (2, 21, 17), D = (19, 4, 17), D = (19, 38, 17), D = (19, 21, 0) e D = (19, 21, 34).
- e) O plano ρ deve ser paralelo ρ : x-y+z=0. Logo é da forma

$$\tau$$
: $x - y + z = d$.

Para determinar d vemos que a distância d entre τ e π é o módulo do vetor

$$v = \frac{\overline{PQ} \cdot (1, -1, 1)}{(1, -1, 1) \cdot (1, -1, 1)} (1, -1, 1) = \text{Proj}_{n=(1, -1, 1)} \overline{PQ},$$

onde P é um ponto de π (a origem, por exemplo), Q é um ponto de τ (o ponto (d,0,0)), n é o vetor normal ao plano e $\operatorname{Proj}_{n=(1,-1,1)}\overline{PQ}$ é a projeção ortogonal no vetor n, Temos $\overline{PQ}=(d,0,0)$ e

$$v = \frac{d}{3}(1, -1, 1).$$

O módulo do vetor é $d/\sqrt{3}$. Como queremos que a distância seja 5, temos

$$\frac{d}{\sqrt{3}} = \pm 5.$$

Portanto, τ : $x - y + z = \pm 5\sqrt{3}$.