POIN 模拟赛

题目名称	bracket	perm	book	MST
目录	bracket	perm	book	mst
输入文件名	bracket.in	perm.in	book.in	mst.in
输出文件名	bracket.out	perm.out	book.out	mst.out
时间限制	1.0秒	2.0秒	3.0秒	5.0 秒
空间限制	512 MiB	512 MiB	512 MiB	512 MiB

编译选项: -02 -std=c++14 -static。

bracket

题意简述

给一个合法括号串S, 递归地定义合法括号串:

- ()是合法括号串。
- 若 A 是合法括号串,那么(A)是合法括号串。
- 若 A, B 均是合法括号串, 那么 AB 是合法括号串。

求出 S 的所有**非空合法括号子串**数量。

输入格式

本题有多组测试数据。

第一行输入两个整数 sid, T,表示测试点编号和数据组数。样例中 sid = 0。

对于每组测试数据:输入一行字符串S。

输出格式

对于每组测试数据,输出一个整数,表示S的合法括号子串数量

样例输入1

```
0 3
(()())
((())())
()()(()())
```

样例输出1

```
4
5
9
```

对于第一组测试数据,合法括号子串有: S[2,3], S[4,5], S[2,5], S[1,6]。

样例输出/输出2

见选手目录下的 ex_bracket2.in/ex_bracket2.ans。

该样例满足测试点 $1\sim 2$ 的限制。

样例输出/输出3

见选手目录下的 ex_bracket3.in/ex_bracket3.ans。

该样例满足测试点 $3\sim 5$ 的限制。

样例输出/输出4

见选手目录下的 ex_bracket4.in/ex_bracket4.ans。

该样例满足测试点 $6\sim10$ 的限制。

数据范围与约定

测试点编号	$ S \leq$
$1\sim 2$	400
$3\sim 5$	5000
$6\sim 10$	$5 imes10^5$

对于所有数据,保证 $1 \leq |S| \leq 5 \times 10^5$ 。保证 S 是合法括号串。

perm

题意简述

给定长度为 2^n 的排列,下标和数值从 0 开始,你可以进行两种操作:

- 对于 $i \in [0, 2^{n-1} 1]$, 执行 $\sup(p_i, p_{i+2^{n-1}})$ 。
- 建立排列 q,使得对于 $i\in [0,2^{n-1}-1]$, $q_i=p_{2i},q_{i+2^{n-1}}=p_{2i+1}$ 。随后,令 $p\leftarrow q$ 。

举例来说,对于排列 $\{0,1,2,3,4,5,6,7\}$,若执行第一种操作,排列变为 $\{4,5,6,7,0,1,2,3\}$;若执行第二种操作,排列变为 $\{0,2,4,6,1,3,5,7\}$ 。

你可以任意执行操作一和操作二,执行完操作之后,你需要**最小化**排列的**逆序对**数。

输入格式

本题有多组测试数据。

第一行输入两个整数 sid, T,表示测试点编号和数据组数。样例中 sid = 0。

对于每组测试数据:

第一行输入一个整数 n, 表示排列的长度为 2^n 。

第二行输入 2^n 个整数, 第 i 个整数为 p_{i-1} 。

输出格式

对于每组测试数据,输出一个整数,表示操作之后的最小逆序对数。

样例输入1

```
0 2
2
0 3 1 2
3
2 3 7 6 1 4 5 0
```

样例输出 1

```
1
8
```

对于第一组数据,最优的方案为执行一次操作二,此时排列变为 $\{0,1,3,2\}$,逆序对数为1。 对于第二组数据,最优的方案为执行一次操作一,此时排列变为 $\{1,4,5,0,2,3,7,6\}$,逆序对数为8。

样例输入/输出2

见选手目录下的 ex_perm2.in / ex_perm2.ans。

该样例满足测试点1的限制。

样例输入/输出3

见选手目录下的 ex_perm3.in / ex_perm3.ans。 该样例满足测试点 $2\sim 3$ 的限制。

样例输入/输出4

见选手目录下的 ex_perm4.in / ex_perm4.ans。 该样例满足测试点 $4\sim 6$ 的限制。

样例输入/输出5

见选手目录下的 ex_perm5.in / ex_perm5.ans。 该样例满足测试点 $7\sim 10$ 的限制。

数据范围与约定

测试点编号	n =
1	3
$2\sim 3$	7
$4\sim 6$	11
$7\sim 10$	17

对于所有数据,保证 $1 \le n \le 17, 1 \le T \le 5$,p 为 $0 \sim 2^n - 1$ 的排列。

book

题意简述

给出一个长度为 n 的序列 a_1, a_2, \ldots, a_n , 和一个长度为 $\left|\frac{n}{2}\right|$ 的序列 $w_1, w_2, \ldots, w_{\left|\frac{n}{2}\right|}$ 。

测试的方式如下: 一个一个在书架上任意层放上铁球。如果第i层书架上的铁球数量x超过了该层书架的负载上限,那么第i层书架就会被破坏。有 $\left\lfloor \frac{x}{2} \right\rfloor$ 个铁球会掉到第j层书架上,满足j是j>i日第j层书架还**未被破坏**的最小的j;剩下的所有球会掉在地上。如果第j层书架此时超过了负荷,那么它也会**立即**被破坏。

现在已知第i 层书架的负载上限为 a_i ,即当 $x \ge a_i$ 时它会被立即破坏。你希望尽快下班,所以你想求出对于 $k=1\sim n$,破坏前k 层书架**最少**需要放置多少个铁球。

输入格式

本题有多组测试数据。

第一行输入两个整数 sid, T,表示测试点编号和数据组数。样例中 sid = 0。

对于每组测试数据:

第一行输入一个整数 n,表示序列的长度。

第二行输入 n 个整数, 第 i 个整数表示 a_i 。

输出格式

对于每组测试数据,输出一行 n 个整数,第 k 个整数表示破坏前 k 层最少需要放置的铁球数量。

样例输入1

```
0 2
3
8 1 2
5
10 3 3 8 4
```

样例输出1

```
8 8 8
10 10 11 17 17
```

对于第一组数据,破坏前 3 层的最优方案为在第一层放置 8 个铁球,第一层会被立即破坏,且 4 个铁球落在第二层,第二层随即被破坏, 并有 2 个铁球落在第 3 层,第 3 层同样被破坏。

对于第二组数据,破坏前 5 层的最优方案为在第三层放置 3 个铁球,然后在第二层放置 2 个铁球,接着在第 1 层放置 10 个铁球,最后在第 4 层放置 2 个铁球,所以一共需要放置 3+2+10+2=17 个铁球,通过简单模拟可以发现这种放置方法满足条件。

样例输入/输出2

见选手目录下的 ex_book2.in / ex_book2.ans。

该样例满足测试点1的限制。

样例输入/输出3

见选手目录下的 $ex_book3.in / ex_book3.ans$ 。 该样例满足测试点 1 的限制。

样例输入/输出4

见选手目录下的 $ex_book4.in / ex_book4.ans$ 。 该样例满足测试点 1 的限制。

样例输入/输出5

见选手目录下的 $ex_{book5.in}$ / $ex_{book5.ans}$ 。 该样例满足测试点 1 的限制。

样例输入/输出6

见选手目录下的 $ex_{book6.in} / ex_{book6.ans}$ 。 该样例满足测试点 1 的限制。

数据范围与约定

数据范围与约定

测试点编号	$n \le$	$a_i \leq$
1	3	5
$2\sim 3$	10	150
4	70	2
$5\sim7$	30	30
$8\sim 10$	70	150

对于所有数据,保证 $1 \le n \le 70, 1 \le a_i \le 150, 1 \le T \le 5$ 。

MST

题意简述

给出一个长度为 n 的序列 a_1,a_2,\ldots,a_n ,和一个长度为 $\left|\frac{n}{2}\right|$ 的序列 $w_1,w_2,\ldots,w_{\lfloor\frac{n}{2}\rfloor}$ 。

定义 $a[L \dots R]$ 表示序列 $a[L]a[L+1] \dots a[R]$, 即 a 的子串 [L,R]。

按照如下规则建一张无向图 G: 如果存在一对整数 (l,k) 满足 $l+2k-1\leq n, a[l\dots l+k-1]=a[l+k\dots l+2k-1]$,那么对于 $\forall i\in [0,k)$,在点 l+i 和 l+k+i 之间连一条权值为 w_k 的边。

请求出图 G 的最小生成森林的权值和。

输入格式

本题有多组测试数据。

第一行输入两个整数 sid, T,表示测试点编号和数据组数。样例中 sid=0。

对于每组测试数据:

第一行输入一个整数 n。

第二行输入 n 个整数,表示 a_1, a_2, \ldots, a_n 。

第三行輸入 $\left|\frac{n}{2}\right|$ 个整数,表示 $w_1, w_2, \ldots, w_{\lfloor \frac{n}{2} \rfloor}$ 。

输出格式

对于每组测试数据,输出一个整数,表示最小生成森林的权值和。

样例输入0

```
0 1
8
2 2 5 6 2 5 6 2
5 1 4 4
```

样例输出 0

21

样例解释 0

当 l=1,k=1 时, $a[1\dots 1]=a[2\dots 2]$,所以在 (1,2) 之间连权值为 $w_1=5$ 的边。 当 l=2,k=3 时, $a[2\dots 4]=a[5\dots 7]$,所以在 (2,5),(3,6),(4,7) 之间连权值为 $w_3=4$ 的边。 当 l=3,k=3 时, $a[3\dots 5]=a[6\dots 8]$,所以在 (3,6),(4,7),(5,8) 之间连权值为 $w_3=4$ 的边。 最小生成森林中包括边 (1,2),(2,5),(3,6),(4,7),(5,8),故权值和为 21。

样例输入/输出1

见选手目录下 $mst/mst_sample1.in$ 和 $mst/mst_sample1.out$ 该样例满足测试点 1 的限制。

样例输入/输出 2

见选手目录下 mst/mst_sample2.in 和 mst/mst_sample2.out 该样例满足测试点 $2\sim 3$ 的限制。

样例输入/输出3

见选手目录下 mst/mst_sample3.in 和 mst/mst_sample3.out 该样例满足测试点 4 的限制。

样例输入/输出 4

见选手目录下 mst/mst_sample4.in 和 mst/mst_sample4.out 该样例满足测试点 $5\sim7$ 的限制。

样例输入/输出5

见选手目录下 mst/mst_sample5.in 和 mst/mst_sample5.out 该样例满足测试点 8 \sim 10 的限制。

数据范围与约定

测试点编号	$n \le$	特殊性质
1	500	否
$2\sim 3$	4000	否
4	$3 imes 10^5$	是
$5\sim7$	10^5	否
$8\sim 10$	$3 imes10^5$	否

特殊性质: a_i 在 [1,2] 中独立等概率随机选取。

对于所有数据,保证 $1 \le n \le 3 \times 10^5, 1 \le T \le 5, 1 \le a_i \le n, 1 \le w_i \le 10^9$ 。