Definition

EXAMPLE 9.1

Let $Y_1, Y_2, ..., Y_n$ denote a random sample from the uniform distribution on the interval $(0, \theta)$. Two unbiased estimators for θ are $\hat{\theta}_1 = 2\overline{Y}$ and $\hat{\theta}_2 = \left(\frac{n+1}{n}\right)Y_{(n)}$, where $Y_{(n)} = \max(Y_1, Y_2, ..., Y_n)$. Find the efficiency of $\hat{\theta}_1$ relative to $\hat{\theta}_2$.

Definition

SOLUTION 9.1

Each Y_i has a uniform distribution on the interval $(0,\theta)$. Thus, $\mu = E(Y_i) = \theta/2$ and $\sigma^2 = V(Y_i) = \theta^2/12$. Therefore, $E(\hat{\theta}_1) = E(2\bar{Y}) = 2(\mu) = 2\left(\frac{\theta}{2}\right) = \theta$ (unbiased), $V(\hat{\theta}_1) = V(2\bar{Y}) = 4V(\bar{Y}) = 4\left[\frac{V(Y_i)}{n}\right] = \left(\frac{4}{n}\right)\left(\frac{\theta^2}{12}\right) = \frac{\theta^2}{3n}$.

To find the mean and variance of $\hat{\theta}_2$, recall (see Exercise 6.74) that the density function of $Y_{(n)}$ is given by

$$g_{(n)}(y) = n[F_Y(y)]^{n-1} f_Y(y) = \begin{cases} n\left(\frac{y}{\theta}\right)^{n-1} \left(\frac{1}{\theta}\right), 0 \le y \le \theta, \\ 0, & elsewhere \end{cases}$$

Thus, $E(Y_{(n)}) = \frac{n}{\theta^n} \int_0^\theta y^n \, dy = \frac{n}{n+1} \theta \rightarrow E\{\left[\frac{n+1}{n}\right] Y_{(n)}\} = \theta$; that is, $\hat{\theta}_2$ is an unbiased estimator for θ .

Because $E(Y_{(n)}^2) = \frac{n}{\theta^n} \int_0^\theta y^{n+1} dy = (\frac{n}{n+2}) \theta^2$, we obtain

$$V(Y_{(n)}) = E(Y_{(n)}^{2}) - \left[E(Y_{(n)})\right]^{2} = \left[\frac{n}{n+2} - \left(\frac{n}{n+1}\right)^{2}\right]\theta^{2}$$

$$V(\hat{\theta}_{2}) = V\left[\left(\frac{n+1}{n}\right)Y_{(n)}\right] = \left(\frac{n+1}{n}\right)^{2}V(Y_{(n)}) = \left[\frac{(n+1)^{2}}{n(n+2)} - 1\right]\theta^{2} = \frac{\theta^{2}}{n(n+2)}.$$

Therefore, eff $(\widehat{\theta}_1, \widehat{\theta}_2) = V(\widehat{\theta}_2)/V(\widehat{\theta}_1) = \frac{\theta^2/n(n+2)}{\theta^2/3n} = \frac{3}{n+2}$.

This efficiency is less than 1 if n > 1.

That is, if n > 1, $\hat{\theta}_2$ has a smaller variance than $\hat{\theta}_1$, and therefore $\hat{\theta}_2$ is generally preferable to $\hat{\theta}_1$ as an estimator of θ .

Overview

EXAMPLE 9.3

Suppose that $Y_1, Y_2, ..., Y_n$ represent a random sample such that $E(Y_i) = \mu$, $E(Y_i^2) = \mu'_2$ and $E(Y_i^4) = \mu'_4$ are all finite. Show that

$$S_n^2 = \frac{1}{(n-1)} \sum_{i=1}^n (Y_i - \overline{Y}_n)^2$$

is a consistent estimator of $\sigma^2 = V(Y_i)$.

(*Note:* We use subscript n on both S^2 and Y to explicitly convey their dependence on the value of the sample size n.)

Overview

SOLUTION 9.3

$$S_n^2 = \frac{1}{(n-1)} \sum_{i=1}^n (Y_i - \overline{Y}_n)^2 = \frac{1}{(n-1)} \left(\sum_{i=1}^n Y_i^2 - n \overline{Y}_n^2 \right) = \frac{n}{(n-1)} \left(\frac{1}{n} \sum_{i=1}^n Y_i^2 - \overline{Y}_n^2 \right)$$

- By the law of large numbers, $\frac{1}{n}\sum_{i=1}^{n}Y_{i}^{2}$ converges in probability to μ_{2}' .
- Also, \overline{Y}_n converges in probability to μ . Because
 - $\checkmark \bar{Y}_n$ is an unbiased estimator
 - $\checkmark \lim_{n\to\infty} V(\bar{Y}_n) = \lim_{n\to\infty} \sigma^2/n = 0.$
- Because the function $g(x) = x^2$ is continuous for all finite values of x, \overline{Y}_n^2 converges in probability to μ^2 .
- Then, $\frac{1}{n}\sum_{i=1}^{n}Y_{i}^{2}-\bar{Y}_{n}^{2}$ converges in probability to $\mu_{2}'-\mu^{2}=\sigma^{2}$.
- $\gt S_n^2$, the sample variance, is a consistent estimator for σ^2 , the population variance.

Example

EXAMPLE 9.4

Suppose that $Y_1, Y_2, ..., Y_n$ is a random sample of size n from a distribution with $E(Y_i) = \mu$ and $V(Y_i) = \sigma^2$. Define S_n^2 as $S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (Y_i - \overline{Y}_n)^2$.

Show that the distribution function of $\sqrt{n} \left(\frac{\bar{Y}_n - \mu}{S_n} \right)$ converges to a standard normal distribution function.

Overview

SOLUTION 9.4

In Example 9.3, we showed that S_n^2 converges in probability to σ^2 . Notice that $g(x) = \sqrt{x/c}$ is a continuous function of x if both x and c are positive. Hence, it follows from Theorem 9.2(d) that $S_n/\sigma = \sqrt{S_n^2/\sigma^2}$ converges in probability to 1.

We also know from the central limit theorem (Theorem 7.4) that the distribution function of $U_n = \sqrt{n} \left(\frac{\bar{Y}_n - \mu}{\sigma} \right)$ converges to a standard normal distribution function. Therefore,

Theorem 9.3 implies that the distribution function of $\sqrt{n} \left(\frac{Y_n - \mu}{\sigma} \right) / \frac{S_n}{\sigma} = \sqrt{n} \left(\frac{Y_n - \mu}{S_n} \right)$ converges to a standard normal distribution function.