Weekly Homework 22

Math Gecs

June 30, 2024

Exercise 1

Determine the remainder obtained when the expression

 $2004^{2003^{2002^{2001}}}$

is divided by 1000.

Source: Mock AIME 2 Pre 2005 Problems/Problem 8

Solution. We note that $2004^{2003^{2002^{2001}}} \equiv 4^{2003^{2002^{2001}}} \pmod{1000}$. The remainder of the RHS modulo 8 is trivially zero, but the remainder of the RHS modulo 125 depends on the remainder of the exponent modulo $\phi(125) = 50$, so we defer the calculation until later.

We compute $2003^{2002^{2001}}$ modulo 50; again noting that this is equivalent to $3^{2002^{2001}}$ modulo 50. The remainder is trivially one modulo two, but the remainder modulo 25 depends on the remainder of the second exponent modulo $\phi(25) = 20$.

Now we start to unroll the recursion: We have $2002^{2001} \equiv 2^{2001} \pmod{20}$. Modulo four, the remainder is trivially zero; modulo five, the remainder is $2^{2001 \pmod{5}} \equiv 2^1 \equiv 2 \pmod{5}$, so we have $2002^{2001} \equiv 12 \pmod{20}$.

Then $2003^{2002^{2001}} \equiv 3^{12} \equiv 16 \pmod{25}$, so that $2003^{2002^{2001}} \equiv 41 \pmod{50}$ by CRT.

Then $2004^{2003^{2002^{2001}}} \equiv 4^{41} \equiv 78 \pmod{125}$, so that $2004^{2003^{2002^{2001}}} \equiv 704 \pmod{1000}$ by CRT, and we are done.