

Avaliação de Modelos / Amostragem de Dados

Huei Diana Lee

Inteligência Artificial CECE/UNIOESTE-FOZ

Estimativa de performance

Avaliação de Sistemas de Aprendizado

Teórica – a priori

Analisar algoritmos matematicamente:

- Complexidade computacional
- Habilidade de se adaptar aos dados de treinamento
- Número de exemplos de treinamento necessários para se aprender uma função correta

Experimental – a posteriori

- Conduzir experimentos
- Coletar dados sobre o seu desempenho, por exemplo, acurácia, tempo de treinamento, tempo de teste
- Analisar a significância estatística

Avaliação Experimental de Hipóteses

Classificador:

- Por si só não fornece uma boa estimativa de sua capacidade de previsão
- Possui boa capacidade de descrever os dados, não de predizer

Conjunto de dados:

- Treinamento
- Validação
- Teste

Avaliação Experimental de Hipóteses

- Classe Majoritária (CM):
 - Classe de maior ocorrência
- Erro da Classe Majoritária (ECM):
 - Erro cometido ao se atribuir um novo exemplo a ser classificado à CM
- Erro Aparente (EA):
 - Erro cometido ao se testar o classificador usando o conjunto de treinamento
- Erro Verdadeiro (EV):
 - Estimativa do desempenho futuro do classificador induzido utilizando o conjunto de treinamento com amostra aleatória, isto é, os exemplos não devem ser préselecionados

Árvore de Decisão

Árvore de Decisão (H1)

...Outra Possível H2

...Outra Possível H3

...Outra Possível H4

H4...

Avaliação em um conjunto de teste

Erro de H4

Conjunto de Teste

Erro de H1

Conjunto de Teste

Métodos de Amostragem

Métodos de Amostragem (Resubstituição)

Métodos de Amostragem (Exceto Resubstituição)

Holdout

- Exemplos são divididos em uma porcentagem fixa de exemplos p para treinamento e (1-p) para teste, considerando normalmente p > 1/2
- Valores típicos são p = 2/3 e (1-p) = 1/3, embora não existam fundamentos teóricos sobre estes valores
- n é o número total de exemplos

Holdout

- Este método tem a tendência de super estimar o erro verdadeiro
- Para pequenos conjuntos, nem sempre é possível separar uma parte dos exemplos

Método Repeated Holdout

- Estimativa do Holdout pode ser tornada mais confiável repetindo o processo com diferentes subamostras
 - A cada iteração, uma certa porção é randomicamente selecionada para treinamento (possivelmente com estratificação)
 - O erro é a média dos erros nas diferentes iterações

Leave-one-out

- Computacionalmente dispendioso e frequentemente é usado em amostras pequenas
- Para uma amostra de tamanho n:
 - uma hipótese é induzida utilizando (n-1) exemplos
 - a hipótese é então testada no único exemplo remanescente
- Processo é repetido n vezes, cada vez induzindo uma hipótese deixando de considerar um único exemplo
- O erro é a soma dos erros em cada teste dividido por n

Leave-one-out

- Meio termo entre os estimadores Holdout e Leave-one-out
- r-fold cross-validation (CV):
 - exemplos são aleatoriamente divididos em r partições mutuamente exclusivas (folds) de tamanho aproximadamente igual a n/r exemplos
 - exemplos nos (r-1) folds são usados para treinamento
 e a hipótese induzida é testada no fold remanescente
- Processo é repetido r vezes, cada vez considerando um fold diferente para teste

- Erro no cross-validation é a média dos erros calculados em cada um dos r folds
- Procedimento de rotação reduz tanto o bias inerente ao método de Holdout quanto o custo computacional do método Leave-oneout

Validação cruzada com 3 folds

Stratified Cross-Validation

- Similar ao *cross-validation*, mas ao gerar os *folds* mutuamente exclusivos, a distribuição de classe é considerada durante a amostragem
- Por exemplo:
 - conjunto original de exemplos possui duas classes com distribuição de 20% e 80%
 - cada fold também terá esta proporção de classes

- Número usual de folds: 10
- Porque 10?
 - Experimentos extensivos mostraram que, em geral, essa é uma boa escolha
- Estratificação reduz a variância na estimativa
- Melhor ainda: repetir stratified crossvalidation

10-fold cross-validation repetido 10 vezes e calculada a média

29

Matriz de Confusão para um conjunto de dados com 2 classes e com n exemplos:

Rótulo do	Predito	Predito
exemplo	como +	como -
+	5 (<i>TP</i>)	1 (<i>FN</i>)
-	2 (<i>FP</i>)	4 (<i>TN</i>)

$$n = TP + FP + TN + FN$$

Erro do modelo:

$$Erro = \frac{FP + FN}{n}$$

Erro na classe:

$$Erro(+) = \frac{FN}{TP + FN}$$
 $Erro(-) = \frac{FP}{TN + FP}$

OBS: Bases com mais de duas classes

Rótulo do exemplo	Predito como C_1	Predito como C ₂	Predito como C ₃
C_1	5	0	1
C_2	0	4	0
<i>C</i> ₃	1	1	4

OBS: Bases com mais de duas classes

Rótulo do exemplo	Predito como <i>C</i> ₁	Predito como C ₂	Predito como <i>C</i> ₃
C_1	5	0	1
C_2	0	4	0
como calcular o rro do modelo?	1	1	4

OBS: Bases com mais de duas classes

Rótulo do exemplo	Predito como C_1	Predito como C ₂	Predito como C
C_1	5	0	1 1
C_2	0	4	0
<i>C</i> ₃	1	1	4

Ou seja, FN+FP = soma do número de exemplos classificados erroneamente!

OBS: Bases com mais de duas classes

	Rótulo do exemplo	Predito como <i>C</i> ₁	Predito como C ₂	Predito como <i>C</i> ₃
	C_1	5	0	1
	C_2	0	4	0
e	Somo calcular or rro nas classes C_1 , por	1	1	4
	xemplo)?			

C₁: Classe +

Rótulo do exemplo	Predito como C_1	Predito como C ₂	Predito como C ₃
C_1	5 TP	0	1
C_2	0	4	0
<i>C</i> ₃	1	1	4

C₁: Classe +

Rótulo do exemplo	Predito como C_1	Predito como C ₂	Predito como C ₃
C_1	5	0	1
C ₂	0	4	0 <i>TN</i>
<i>C</i> ₃	1	1	4

C₁: Classe +

Rótulo do exemplo	Predito como C_1	Predito como C ₂	Predito como C ₃
C_1	5	0	1 FN
C_2	0	4	0
<i>C</i> ₃	1	1	4

C₁: Classe +

Rótulo do exemplo	Predito como C_1	Predito como C ₂	Predito como C ₃
C_1	5	0	1
C_2	0 <i>FP</i>	4	0
<i>C</i> ₃	1	1	4

$$n = TP + FP + TN + FN$$

Erro do modelo:

$$Erro = \frac{FP + FN}{n}$$

Erro na classe:

$$Erro(+) = \frac{FN}{TP + FN}$$
 $Erro(-) = \frac{FP}{TN + FP}$

• Acurácia:

$$Acc = \frac{TP + TN}{n}$$

• Precisão:

$$Prec = \frac{TP}{TP + FP}$$

Avaliação de Modelos (Precisão)

Rótulo do	Predito	Predito
exemplo	como +	como -
+	5 (<i>TP</i>)	1 (<i>FN</i>)
-	2 (<i>FP</i>)	4 (<i>TN</i>)

Sensibilidade (Recall):

$$Sen = \frac{TP}{TP + FN}$$

• Especificidade:

$$Esp = \frac{TN}{TN + FP}$$

Avaliação de Modelos (Sensibilidade)

Rótulo do	Predito	Predito
exemplo	como +	como -
+	5 (<i>TP</i>)	1 (<i>FN</i>)
-	2 (<i>FP</i>)	4 (<i>TN</i>)

• Escore F1:

$$F1 = \frac{Prec * Recall}{Prec + Recall}$$

- Equilíbrio entre Precisão e Recall
- Especialmente interessante quando há um desbalanço entre classes

Medidas de Qualidade de Regras

Tabela de Contingência:

usada para registrar observações independentes de duas ou mais variáveis aleatórias, normalmente qualitativas

	Fumante	Não fumante	Total
Desenvolveu	43	9	52
Não desenvolveu	44	4	48
Total	87	13	100

Avaliação de Regras

- Classificadores Simbólicos podem ser avaliados como:
 - Caixa-preta;
 - Regras individuais:

Medidas de Qualidade de Regras

Tabela de Contingência:

	classe H	classe não H	
R cobre	b h	b ~h	b
R não cobre	~b h	~b ~h	~b
	h	~h	n

- Cobertura
 - Cov(R) = b/n
- Precisão
 - Prec(R) = bh/b
- Sensibilidade (ou Recall)
 - Sens(R) = bh/h
- Especificidade
 - $Esp(R) = ^b ^h/^h$
- Novidade
 - Nov(R) = 1/n (bh bh/n)

Cobertura

$$- Cov(R) = b/n$$

Precisão

$$- Prec(R) = bh/b$$

• Sensibilidade (ou Recall)

$$- Sens(R) = bh/h$$

Especificidade

$$- Esp(R) = ^b ^h/^h$$

Novidade

$$- Nov(R) = 1/n (bh - bh/n)$$

Número de exemplos cobertos pela regra

Medidas d

Quanto uma regra é específica para o problema (dos exemplos cobertos pela regra, quantos são

cobertos corretamente)

- Cobertura
 - Cov(R) = b/r
- Precisão

$$- Prec(R) = bh/b$$

• Sensibilidade (ou Recall)

$$- Sens(R) = bh/h$$

Especificidade

$$- Esp(R) = ^b ^h/^h$$

Novidade

$$- Nov(R) = 1/n (bh - bh/n)$$

- Cobertura
 - Cov(R) = b/n
- Precisão
 - Prec(R) = bh/b
- Sensibilidade (ou Recall)
 - Sens(R) = bh/h
- Especificidade
 - $Esp(R) = ^b ^h/^h$
- Novidade
 - Nov(R) = 1/n (bh bh/n)

Número de exemplos da classe h que são cobertos por *R*

(mede a fração de Verdadeiros Positivos que são corretamente classificados)

- Cobertura
 - Cov(R) = b/n
- Precisão
 - Prec(R) = bh/b
- Sensibilidade (ou Recall)
 - Sens(R) = bh/h
- Especificidade
 - $Esp(R) = ^b ^h/^h$
- Novidade
 - Nov(R) = 1/n (bh bh/n)

Equivalente
ao Recall, mas para
exemplos
que NÃO são cobertos
pela regra

- Cobertura
 - Cov(R) = b/n
- Precisão
 - Prec(R) = bh/b
- Sensibilidade (ou Responsable)
 - Sens(R) = bh/h
- Especificidade
 - $Esp(R) = ^b ^h/$
- Novidade
 - Nov(R) = 1/n (bh bh/n)

Mede a probabilidade de b e h ocorrerem juntos dado que b e h não são estatisticamente independentes

Aproveitando ao Máximo os Dados

 Uma vez que a avaliação esteja completa, todos os dados podem ser utilizados para construir o classificador final

• Em geral:

- Quanto maior o conjunto de dados, melhor o classificador
- Quanto maior o conjunto de teste, mas acurada a estimativa do erro

55

Comparando Diversos Modelos

- Questão frequente: Qual modelo possui melhor desempenho?
 - É dependente de domínio
 - Caminho óbvio: usar estimativas 10-fold CV
 - Problema: variância na estimativa
 - Variância pode ser reduzida com CV repetidos
- Porém, ainda não sabemos se os resultados são confiáveis

56

Testes de Significância (TS)

- Nos dizem quão confiantes podemos ser de que realmente há uma diferença entre os modelos
 - Null hypothesis: não há "real" diferença
 - Alternative hypothesis: há uma diferença
- TS medem quanto de evidência há a favor da rejeição da hipótese nula
- Exemplo:
 - 03-fold CV repetidos 02 vezes
 - Queremos saber se as duas médias são significativamente diferentes
 - Neste caso podemos usar:
 - Teste pareado t-student, se dados forem paramétricos e pareados
 - Teste Mann-Whitney, se dados forem não paramétricos e não pareados
 - Teste Willcoxson, se dados forem não paramétricos e pareados

57

Custos Diferentes

- Na prática, verdadeiros postivos (TP) e falso negativos (FN) em geral representam custos diferentes
- Exemplos:
 - Testes de diagnóstico médico: o paciente possui leucemia?
 - Decisão de empréstimos: deve-se aprovar o empréstimo para o cliente?
 - Mineração na Web: o usuário irá clicar neste link?
 - Propaganda direcionada: o cliente irá comprar esse produto?

— ...

Critério para Seleção de Modelos

- Encontrar boa proporção entre:
 - Complexidade do modelo
 - Acurácia
- Raciocínio: um bom modelo é um modelo simples que permite alto desempenho
- Occam's Razor :

a melhor teoria é a "menor" que descreve todos os fatos

William of Ockham, born in the village of Ockham in Surrey (England) about 1285, was the most influential philosopher of the 14th century and a controversial theologian.

slides baseados em apresentações de:

- Profa. Maria Carolina Monard
- Prof. José Augusto Baranauskas
- Profa. Huei Diana Lee
- Prof. Ronaldo Cristiano Prati.
- Prof. Gustavo E.A.P.A. Batista
- Profa. Bianca Zadrozny
- Prof. G. Piatetsky-Shapiro