1º Trabalho (1/2)

- 1) Gere 10^7 amostras das seguintes variáveis aleatórias:
 - a. Distribuição Uniforme entre $-\sqrt{3}$ até $\sqrt{3}$;
 - b. Distribuição Gaussiana com $\mu=0$ e $\sigma^2=1$;
 - c. Distribuição Rayleigh com $b = \sqrt{\frac{2}{4-\pi}}$;
 - d. Soma de duas variáveis aleatórias com distribuição Gaussianas com ($\mu_1=0$ e $\sigma_1^2=1$) e ($\mu_2=2$ e $\sigma_2^2=5$).
 - e. Soma de uma variável aleatória com distribuição Gaussianas com $\mu=0$ e $\sigma^2=1$ e outra com distribuição Uniforme entre -2 e 5.

A partir destas amostras, realize as seguintes tarefas:

- calcule a média e variância de cada variável aleatória;
- obtenha graficamente as estimativas das funçções densidade de probabilidade
 [probability density function (PDF)] distribuição cumulativa [cumulative distribution function (CDF)] para (a)-(e).
- mostrar graficamente PDF e a CDF teórica para cada um dos cinco itens.
- 2) Gere uma sequência aleatória, $\{x[n]\}$, de símbolos 2-PAM constituída por 10^7 amostras aleatórias iguais a +A ou -A tal que $P(S_i=+A)=P(S_i=-A)=0$,5, em que S_i é a i-ésima amostra da sequência. Além disso, gere uma sequência aleatória, $\{v[n]\}$, constituída por 10^7 amostras de uma variável aleatória com distribuição Gaussiana com $\mu=0$ e variância σ^2 . Considerando que y[n]=x[n]+v[n], mostre graficamente as pdf de $\{x[n]\}$, $\{v[n]\}$ e $\{y[n]\}$ quando:
 - a. $A/\sigma = 1$;
 - b. $A/\sigma = 1/2$;
 - c. $A/\sigma = 1/8$;
 - d. $A/\sigma = 1/32$.
- Para as letras (a)-(d), calcule a probabilidade de erro.