REDES NEURAIS ARTIFICIAIS APRENDIZADO PROFUNDO (2)

PROFA. ROSELI AP. FRANCELIN ROMERO

SCC – ICMC - USP

REDES NEURAIS ARTIFICIAIS

- PERCEPTRONS
- 1970 2000 IA ←→ SISTEMAS ESPECIALISTAS
- 1970 2010 DESENVOLVIMENTO DA TEORIA DE APRENDIZADO DE MÁQUINA
- ➤ McClelland & PDP Group (1986) ALGORITMO BACK-PROPAGATION
- Fukushima's Neocognitron (1989)
- ➤ LeCun's LeNet (1998) "nova primavera" surgiu

INÍCIO

NEW NAVY DEVICE LEARNS BY DOING

Psychologist Shows Embryol of Computer Designed to Read and Grow Wiser

WASHINGTON, July 7 (UPI)

The Navy revealed the embryo of an electronic computer today that it expects will be able to walk, talk, see, write, reproduce itself and be conscious of its existence.

The embryo—the Weather Bureau's \$2,000,000 "704" computer—learned to differentiate between right and left after fifty attempts in the Navy's demonstration for newsmen.

The service said it would use this principle to build the first of its Perceptron thinking machines that will be able to read and write. It is expected to be finished in about a year at a cost of \$100,000.

Dr. Frank Rosenblatt, designer of the Perceptron, conducted the demonstration. He said the machine would be the ings, Perceptron will make mistakes at first, but will grow wiser as it gains experience, he said.

Dr. Rosenblatt, a research psychologist at the Cornell Aeronautical Laboratory, Buffalo, said Perceptrons might be fired to the planets as mechanical space explorers.

Without Human Controls

The Navy said the perceptron would be the first non-living mechanism "capable of receiving, recognizing and identifying its surroundings without any human training or control."

The "brain" is designed to remember images and information it has perceived itself. Ordinary computers remember only what is fed into them on punch cards or magnetic tape.

Later Perceptrons will be able to recognize people and call out their names and instantly translate speech in one language to speech or writing in another language, it was predicted.

Mr. Rosenblatt said in principle it would be possible to build brains that could reproduce themselves on an assembly

BACK-PROPAGATION (1986) REDES MULTI-CAMADAS (MLP)

© Roseli Romero

NEOCOGNITRON (FUKUSHIMA – 1989)

LENET – LeCun (1998)

CONTROL 10 OUTPUT

Modelo de um neurônio simples

FUNÇÕES DE ATIVAÇÃO

O que é Aprendizado?

"Aprendizado é um processo pelo qual os parâmetros livres de uma rede neural são adaptados através de um processo contínuo de estímulos pelo ambiente no qual a rede está incorporada".

W e B = ?

Aprendizado em RNA

Durante o processo de aprendizado:

- 1- A rede neural é estimulada por um ambiente.
- 2 A rede muda com o resultado deste estímulo
- 3 A rede responde de um novo modo ao ambiente, em função das mudanças que ocorreram na sua estrutura interna.

Modelo de Rede Neural com Multiplas Camadas - MLP

II - Algoritmo BackPropagation

OBJETIVO

• Encontrar um conjunto de pesos {W_J},{B_J}, para

MINIMIZAR $\sum_{i} (y_i - Out(\underline{x}_i))^2$

pelo método do "gradiente descendente".

OBS: Convergência para um MINIMO global não é garantida.

Na prática: não é problema!!!

II - Algoritmo Back-Propagation

$$\Delta w_{jk} = -\eta \delta_j^{p} out_k^{p}$$

• Se o neurônio está na camada de saída

$$\delta_{pj} = (y_j^p - out_j^p) f'(net_j^p) \qquad net_j^p = \sum_k w_{jk} out_k^p$$

• Se o neurônio está na camada oculta

$$\delta_{pi} = f'(net_i^p) \sum_k \delta_k^p w_{ki}$$

Fase 1: Feed-Forward Fluxo de Dados

Fase 1: Feed-Forward Fluxo de Dados

Fase 1: Feed-Forward Fluxo de Dados

Fase 2: Feed-Backward Fluxo de Erros Atualização dos pesos da camada de saída

Fase 2: Feed-Backward Fluxo de Erros
Cálculo do erro da 2º camada escondida

Fase 2: Feed-Backward Fluxo de Erros
Atualização dos pesos da 2º camada escondida

© Roseli Romero

Fase 2: Feed-Backward Fluxo de Erros

Cálculo do erro da 1º camada escondida.

© Roseli Romero

Fase 2: Feed-Backward Fluxo de Erros
Atualização dos pesos da 1º camada escondida

MLP podem ser usadas:

- CLASSIFICAÇÃO
- REGRESSÃO

FUNÇÃO SOFTMAX

Permite mais do que 2 classes de saída Padroniza vetor de saída de forma a somar 1 Interpretação: valores são probabilidades Saída: distr. de prob. das classes

© Roseli Romero

Questões importantes sobre MLP

- Valores de entrada (atributos) são considerados independentes
- 2. Não são aproveitadas relações locais entre os dados

Questões importantes sobre MLP

3. Número de parâmetros crescente impacta restrições de memória e processamento

=> Exemplo: entrada imagem de 28 x 28 = 784 pixels

Uma camada com 100 neurônios tem...

78400 + 100 = 78500 parâmetros a serem aprendidos e mantidos na memória durante o treinamento

MLP e RECONHECIMENTO

QUESTÕES DE IMPLEMENTAÇÃO DO MODELO MLP

IMPLEMENTAÇÃO DO MODELO MLP

IMPLEMENTAÇÃO DO MODELO MLP LEARNING RATE – PARÂMETRO DE APRENDIZADO

$$\Delta w_{jk} = -\eta \delta_j^{p} out_k^{p}$$

 η - parâmetro de aprendizado $0 < \eta < 1$

IMPLEMENTAÇÃO DO MODELO MLP TERMO MOMENTUM

$$\Delta w_{ji}(n) = \eta \delta_j(n) y_i(n) + \alpha \Delta w_{ji}(n-1)$$

 α - parâmetro de aprendizado $0 < \alpha < 1$

IMPLEMENTAÇÃO DO MODELO MLP

LOTE – SUBCONJUNTO A SER TREINADO

ÉPOCAS (early stopping) – TREINAMENTO COMPLETO DO CONJUNTO DE DADOS

FUNÇÃO ERRO – MSE

FUNÇÃO DE ATIVAÇÃO - SIGMOID OU RELU

OTIMIZADOR - SGD

APRENDIZADO PROFUNDO x MLP

• EXEMPLO: 10 classes e bach size 32 e 784 características (pixels) por imagem

MNIST

TREINAMENTO: 50.000

TESTE: 10.000

BATCH = 32

```
\begin{bmatrix} x_{0,0} & x_{0,1} & x_{0,2} & \dots & x_{0,783} \\ x_{1,0} & x_{0,1} & x_{1,2} & \dots & x_{0,783} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ x_{31,0} & x_{31,1} & x_{31,2} & \dots & x_{31,783} \end{bmatrix} \begin{bmatrix} w_{0,0} & w_{0,1} & \dots & w_{0,9} \\ w_{1,0} & w_{1,1} & \dots & w_{1,9} \\ w_{2,0} & w_{2,1} & \dots & w_{2,9} \\ \vdots & \vdots & \ddots & \vdots \\ w_{783,0} & w_{783,1} & \dots & w_{783,9} \end{bmatrix} + \begin{bmatrix} b_0 & b_1 & b_2 & \dots & b_9 \end{bmatrix}
```

$$Y = softmax(X \cdot W + b)$$

$$Y = \begin{bmatrix} y_{0,0} & y_{0,1} & y_{0,2} & \dots & y_{0,9} \\ y_{1,0} & y_{1,1} & y_{1,2} & \dots & y_{1,9} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ y_{31,0} & y_{31,1} & y_{31,2} & \dots & y_{31,9} \end{bmatrix}$$

EXEMPLO 1

MLP USO DO KERAS

REDES NEURAIS PROFUNDAS

- IMAGENET aproximadamente 1,4 milhões de imagens (2009)
- 1000 classes no total categorizar essas imagens

• CPU X

- GPU Alta densidade de processamento
 - controle simples
 - cache pequeno
 - alta tolerância a latência

Não-linearidade: Funções de Ativação

© Roseli Romero

• REVISITAÇÃO DO MODELO LE CUN

PRINCIPAIS MODELOS DE REDES **PROFUNDAS**

ALEX NET (9) INCEPTION (22) VGGNET (16/19) RESNET (34-1000)

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

REDES NEURAIS CONVOLUCIONAIS

ALEX NET (2012)

9 CAM.

INCEPTION / GOOGLENET (2014)

22 CAM.

VGGNET (2014)

16 CAM.

© Roseli Romero

RESNET (2015)

34 A 1000 CAM.

DEEP LEARNING

Feature Learning

Novo Pipeline para Tratamento de Imagens

NOVA TERMINOLOGIA

- CAMADA CONVOLUCIONAL
- MAPAS DE ATIVAÇÃO (ACTIVATION TEXTURE MAPS)
- CAMADA DENSA (DENSE OR FULLY CONNECTED)
- SUBAMOSTRAGEM (POOLING)

CONVOLUÇÃO

- OPERADOR QUE VISA REALIZAR UMA COMBINAÇÃO LINEAR DE VALORES LOCAIS DA ENTRADA
- CENTRADO EM UMA POSIÇÃO, isto é, (x,y), gera como saída um único valor de saída
- CONVOLUÇÃO 1D

APRENDIZADO PROFUNDO

3	0	1	2	7	4
1	5	8	9	3	1
2	7	2	5	1	3
0	1	3	1	7	8
4	2	1	6	2	8
2	4	5	2	3	9

 1
 0
 -1

 1
 0
 -1

 1
 0
 -1

-5 -4 0 8

APRENDIZADO PROFUNDO

Convolução 3D

© Roseli Romero

APRENDIZADO PROFUNDO

TAMANHO DOS FEATURES MAPS

STRIDE → PASSO

PROFUNDIDADE DOS FEATURES MAPS

(5-2)/1+1=4

Stride 2: $(5-2)/2 + 1 \Rightarrow$ Mapa resultante: 2x2

NÚMERO DE PARÂMETROS

 $[(K \times K \times P) + 1] \times D$

```
Entrada: 32 x 32 x 3 e 3 Feature Maps
```

PADDING

Zero-padding: para compensar a impossibilidade de computar todos os valores

Amplia-se a entrada de forma que o volume de saída seja igual ao da entrada

Source: indoml.com

© Roseli Romero

Source: indoml.com

4

5

5

Filter

<u>Parameters:</u>

Size:
$$f = 3$$

Stride: $s = 2$

Padding:
$$p = 0$$

https://indoml.com

Source: indoml.com

© Roseli Romero

• ENTRADA (mxnxp) (32 x 32 x 3)

FILTRO (kxkxp) (5x5x3)

- Cada neurônio realiza a convolução da entrada e gera um volume (matriz/tensor) de saída → w x + b
- 2. Mapas de Ativação: são obtidos após a convolução e função de ativação (RELU)

• Feature Maps: Empilhados formam um tensor que será a entrada da próxima camada.

A camada convolucional tem que levar em conta:

- o tamanho da entrada (largura, altura, profundidade)
- o tamanho do filtro
 - a profundidade deve ser igual à da entrada
 - a altura e largura afetam o campo receptivo local
- stride (passo)
 - = 1 : todos os pixels são filtrados pelo neurônio
 - > 1 : salta um número de pixels em determinada direção, a cada convolução.
 - volume de saída tem tamanho reduzido

SUBAMOSTRAGEM: POOLING LAYER

1- Operação MAX pooling 2x2

7 3 5 2 8 7 1 6 4 9 3 9 0 8 4 5

Reduzir o tamanho da entrada permite que o filtro opere em regiões maiores da imagem

SUBAMOSTRAGEM: POOLING LAYER

2 - Operação AVERAGE pooling 2x2

CAMPO RECEPTIVO

• EMPILHAMENTO DE CAMADAS CONVOLUCIONAIS AUMENTA O CAMPO RECEPTIVO LOCAL NÃO NECESSITANDO MANTER A RESOLUÇÃO DA ENTRADA

- filtro de mesmo tamanho
- imagens progressivamente menores

GLOBAL POOLING

- Obtém um valor por canal, como se o tamanho de pool fosse igual às dimensões laterais
- Ex. numa entrada com 40 x 40 x 100, a saída será 100 dimensões.

FUNÇÃO BINARY CROSS ENTROPY

OUTRA FUNÇÃO DE CUSTO

- Usando probabilidade condicional:
 - $\begin{array}{l} h(x) = P(y=1\;,\,x) \\ 1 h(x) = P(y=0\;,\,x) \; (\mbox{pela regra de probabilidade} \\ \mbox{complementar}) \end{array}$
- Combinando as 2 equações, obtemos: $P(y,x) = (h(x)^y) * ((1 - h(x))^{(1-y)})$

$$log(P(y/x)) = \sum (y(i)log(h(x)) + (1 - y(i))log((1 - h(x))))$$

ARQUITETURAS TÍPICAS DE CNN

AlexNet (Krizhevsky, 2012)

- entrada 224 × 224
- ightharpoonup conv1: K = 96 filters with $11 \times 11 \times 3$, stride 4,
- ightharpoonup conv2: K=256 filters with $5\times5\times96$,
- ightharpoonup conv3: K = 384 filters with $3 \times 3 \times 256$,
- ightharpoonup conv4: K = 384 filters with $3 \times 3 \times 384$,
- ightharpoonup conv5: K = 256 filters with $3 \times 3 \times 384$,
- ▶ densas1, 2: K = 4096.

VGGNet (Simonyan, 2014)

- entrada 224 × 224,
- ▶ filtros: todos 3×3 ,
- ► conv 1-2: K = 64 + maxpool
- ightharpoonup conv 3-4: K = 128 + maxpool
- ightharpoonup conv 5-6-7-8: K = 256 + maxpool
- ightharpoonup conv 9-10-11-12: K = 512 + maxpool
- ightharpoonup conv 13-14-15-16: K = 512 + maxpool
- ▶ densas1, 2: K = 4096

GoogLeNet / Inception (Szegedy, 2014)

- ➤ 22 layers (v1)
- ► Inception layer (banco de filtros):
 - ▶ filtros 1×1 , 3×3 , $5 \times 5 + \max$ pooling 3×3 ;
 - ightharpoonup controla dimensionalidade usando filtros 1×1 .
 - 3 classificadores (não sequenciais)
- Azul = conv.; Vermelho = pool.; Amarelo = densa+softmax;
 Verde = concatenação.

GoogLeNet: módulo inception v1

- ▶ filtro 1 × 1 reduz profundidade da entrada
- concatena ativação de 3 filtros + maxpooling

Módulos inception (V2 and V3)

Residual Network (He et al, 2015)

O gradiente não se comporta igual em todas as camadas

Gradiente medido em cada camada

Agradecimentos a Harini suresh (http://harinisuresh.com) pelos gráficos

Residual Network — ResNet (He et al, 2015)

Pular camadas (skip layers) permite: - empilhar mais camadas (de 34 a \sim 1000).

Residual: adiciona resultado anterior preservando gradiente.

IMPLEMENTAÇÃO DA CNN

EXEMPLO 2

CNN USO DO KERAS

EXEMPLO 3

FUNÇÃO CROSS-ENTROPY