পদার্থবিজ্ঞানের প্রথম পাঠ

মুহম্মদ জাফর ইকবাল

পদার্থবিজ্ঞানের প্রথম পাঠ

মুহম্মদ জাফর ইকবাল

তাম্রলিপি

38/2 ka, Banglabazar, Dhaka -1100

উৎসৰ্গ

যারা ঠিক করেছে বড় হয়ে বিজ্ঞানী হবে

ভূমিকা

আমি বহুকাল থেকে পদার্থবিজ্ঞানের একটা পাঠ্যবই লিখতে চেয়েছিলাম, আজ আমার সেই স্বপ্ন পূরণ হয়েছে। বইটি লেখা শেষ হয়েছে– তবে এ ধরনের বই কখনো শেষ হয় না। প্রতি বছর বইয়ের পরিবর্তন হয়, নূতন বিষয় সংযোজন হয়, কাজেই এই বইটির বেলাতেও তাই হবে। প্রতিবছরই এর একটু পরিবর্তন হবে, একটু নূতন কিছু যোগ হবে।

এটি নবম-দশম শ্রেণীর ছেলেমেয়েদের জন্য লেখা। এই বয়সী ছেলেমেয়েদের পদার্থবিজ্ঞান শেখার জন্য কী কী পড়া উচিত সে বিষয়ে আমার নিজস্ব চিন্তাভাবনা আছে; কিন্তু বইটি লেখার সময় আমি আমার চিন্তাভাবনাকে বাক্সবন্দি করে তাদের যে পাঠ্য বইটি আছে সেই বইটির বিষয়গুলোর মাঝে সীমাবদ্ধ রেখেছি। সেই বইয়ে যা ছিল তার প্রায় সব কোনো না কোনোভাবে এই বইয়ে আছে, কিছু কিছু জায়গায় একটু বেশি আছে। পদার্থবিজ্ঞানের অনেক সহজ বিষয় নবম-দশম শ্রেণীর ছেলেমেয়েরা বুঝতে পারে না অজুহাতে তাদের কাছ থেকে আড়াল করে রাখা হয়। আমি আড়াল করে রাখিনি— উদারভাবে কিছু কিছু উদাহরণ হিসেবে ঢুকিয়ে দিয়েছি।

তবে কোনো ছেলেমেয়ে যেন ভূলেও মনে না করে যে এটি পড়ে তারা পরীক্ষায় ভালো নম্বর পাবে! এটি মোটেও পরীক্ষায় ভালো নম্বরের জন্য লেখা হয়নি— এটা লেখা হয়েছে পদার্থবিজ্ঞান শেখার জন্য। আমি আমার মতো করে বিষয়গুলো বোঝানোর চেষ্টা করেছি, নিজ হাতে প্রতিটি ছবি এঁকে অনেক উদাহরণ দিয়ে বিষয়গুলো সহজ করার চেষ্টা করেছি।

তবে আসল পাঠ্য বইয়ের সাথে এখানে একটা বড় পার্থক্য রয়েছে। ঠিক কী কারণ জানা নেই আমাদের পাঠ্য বইয়ে পদার্থবিজ্ঞানের রাশিগুলোকে বাংলায় অনুবাদ করে ফেলা হয়। ইলেকট্রনকে আমি ইলেকট্রন বলি কিন্তু চার্জকে কেন আধান বলি সেটি আমার কাছে একটা রহস্য। সবচেয়ে বড় কথা এখানে যে ছেলেমেয়েটি চার্জকে আধান বলতে শিখছে— দুই বছর পরেই সে যখন কোনো বিশ্ববিদ্যালয়ে পদার্থবিজ্ঞান শিখবে তখন কিন্তু তাকে সেটাকে চার্জই বলতে হবে— তাহলে কেন মাত্র কয়েক বছরের জন্য শুধু একটা বিচিত্র শব্দ শিখতে হবে?

কাজেই এই বইয়ে আমি পদার্থবিজ্ঞানের রাশিগুলোর যে নামে তাদের পরিচিত হওয়া উচিত সেই নামগুলো ব্যবহার করেছি। ব্রাকেটে মাঝে মাঝে বিচিত্র নামগুলো দিয়ে রেখেছি যেন ছেলেমেয়েরা জানে কোনটা কী! ইংরেজি চার্জকে বাংলা আধান লেখায় তবু জোর করে হয়তো একটা যুক্তি দাঁড় করানো যায় কিন্তু আয়নার মতো চমৎকার একটা বাংলা শব্দকে কেন দর্পণ বলতে হবে, সেটি আমার মাথায় কিছুতেই ঢুকেনি– কোনোদিন ঢুকবে না।

এখানে সবাইকে আরো একটা জিনিস মনে করিয়ে দিই। পদার্থবিজ্ঞান শেখা মানে নয় কিছু সংজ্ঞা মুখন্ত করা। পদার্থবিজ্ঞান শেখা মানে সমস্যার সমাধান করতে পারা। এই বইয়ে অনেকগুলো সমস্যা উদাহরণ হিসেবে দেয়া আছে তাই কারো যদি পদার্থবিজ্ঞান শেখার ইচ্ছে হয় তাদেরকে এই উদাহরণগুলো প্রথমে নিজে নিজে করার চেষ্টা করতে হবে। বইয়ের শেষে যে অনুশীলনী আছে সেগুলো সবাইকে করতে হবে। শুধু তাহলেই মনে করবে পুরো বইটা পড়া হয়েছে।

এই বইটা লেখার সময় আমি আমার নিজের লেখা থিওরী অব রিলেটিভিটি, কোয়ান্টাম মেকানিক্স, একটুখানি বিজ্ঞান এবং আরো একটুখানি বিজ্ঞান বইগুলো থেকে কিছু অংশ ব্যবহার করেছি। বইয়ের কিছু অনুশীলনী তৈরী করার জন্যে David Halliday এবং Robert Resnick এর লেখা আমার প্রিয় পদার্থবিজ্ঞানের বই Physics থেকে সাহায্য নিয়েছি।

এই বইটি একটা এক্সপেরিমেন্ট! যদি দেখা যায় এই এক্সপেরিমেন্ট ঠিক ঠিক কাজ করেছে তাহলে পরের এক্সপেরিমেন্টগুলো শুরু করে দেয়া হবে!

মুহম্মদ জাফর ইকবাল শাহজালাল বিজ্ঞান ও প্রযুক্তি বিশ্ববিদ্যালয়, সিলেট

সূচি

1. প্রথম অধ্যায়: ভৌত রাশি আর তার পরিমাপ	(interior	11
2. দ্বিতীয় অধ্যায়: গতি	***	23
3. তৃত্বীয় অধ্যায়: বল	•••	51
4. চতুর্থ অধ্যায়: কাজ, ক্ষমতা ও শক্তি	•••	79
5. পঞ্চম অধ্যায়: পদার্থের অবস্থা ও চাপ	•••	109
6. ষষ্ট অধ্যায়: বস্তুর উপর তাপের প্রভাব		131
7. সপ্তম অধ্যায়: তরঙ্গ ও শব্দ		151
8. অষ্ট্রম অধ্যায়: আলোর প্রতিফলন		167
9. নবম অধ্যায়: আলোর প্রতিসরণ	Selete	189
10. দশম অধ্যায়: স্থির বিদ্যুৎ	4.54	217
11. একাদশ অধ্যায়: চলবিদ্যুৎ	•••	239
12. দ্বাদশ অধ্যায়: বিদ্যুতের চৌম্বক ক্রিয়া	•••	263
13. ত্রয়োদশ অধ্যায়: আধুনিক পদার্থবিজ্ঞান ও ইলেক্ট্রনিক্স		277
14. চতুর্দশ অধ্যায়: মানুষের জন্যে পদার্থবিজ্ঞান		301
15. পরিশিষ্ট-1		309
16. পরিশিষ্ট-2		311
17. পরিশিষ্ট-3	• • •	313

প্রথম অধ্যায়

ভৌত রাশি আর তার পরিমাপ

(Physical Quantities and Measurement)

Archimedes (287 BC-212 BC)

আর্কিমিডিস

আকিমিডিস ছিলেন একজন খিক গণিতবিদ, পদার্থবিজ্ঞানী, ইঞ্জিনিয়ার, আবিন্ধারক এবং জ্যোতির্বিদ। তিনি একদিকে যেমন গোলকের আয়তন, পাইয়ের মান, অসীম সিরিজের যোগফল এ ধরনের গাণিতিক সমস্যার সমাধান করেছেন, ঠিক সে রকম অন্যদিকে পানি উপরে তোলার জন্য স্কু পাম্প, শত্রুব যুদ্ধ জাহাজ ধ্বংস করার জন্য বিচিত্র যন্ত্র কিবা দূর থেকে আগুন ধরিয়ে দেয়ার জন্য বিশেষ আয়না তৈরি করে দিয়েছিলেন। তাঁকে সর্বকালের সর্বশ্রেষ্ঠ একজন গণিতবিদ হিসেবে বিকেনা করা হলেও তাঁর ব্যক্তিগত জীবন সম্পর্কে খুব বেশি জানা যায় না। তাঁর শহর রোমান সৈন্যরা যখন দখল করে নেয় তখন তিনি একটা গাণিতিক সমস্যা নিয়ে ব্যস্ত ছিলেন। তাঁর কোনো ক্ষতি না করার নির্দেশ থাকার পরও একজন রোমান সৈন্য তাঁকে হত্যা করে ফেলেছিল।

1.1 বিজ্ঞান ও পদার্থবিজ্ঞান (Science and Physics)

বিজ্ঞান বলতেই হয়তো তোমাদের চোখে বিজ্ঞানের নানা যন্ত্রপাতি, আবিদ্ধার, গবেষণা, ল্যাবরেটরি এসবের দৃশ্য ফুটে উঠে কিন্তু বিজ্ঞানের আসল বিষয় কিন্তু যন্ত্রপাতি, গবেষণা বা ল্যাবরেটরি নয়, বিজ্ঞানের আসল বিষয় হচ্ছে তার দৃষ্টিভঙ্গী। এই সভ্যতার সবচেয়ে বড় অবদান রেখেছে বিজ্ঞান আর সেটি এসেছে পৃথিবীর মানুষের বৈজ্ঞানিক দৃষ্টিভঙ্গী থেকে।

আমাদের চারপাশে প্রকৃতির যে রহস্য রয়েছে বিজ্ঞান তার উত্তর খুঁজে বেড়াচছে— কারো কারো মনে হয়তো প্রশ্ন জাগতে পারে কেন এই অকারণ কৌত্হলং না জানলে কী হয়ং মানুষ যেদিন তার মন্তিক্ষে বৃদ্ধিমন্তা নিয়ে তার দুই পায়ে সোজা হয়ে দাঁড়িয়েছে সেই দিন থেকে তার কিন্তু আর পিছনে ফিরে যাবার উপায় নেই, বেঁচে থাকার জন্য তাকে জানতেই হবে। জানার এই আগ্রহ, এই তাড়না মানুষকে সৃষ্টি জগতের অন্য সব কিছু থেকে আলাদা করে রেখেছে।

নিজ্ঞানকৈ জানান তিনটি সুনির্নিষ্ট পথ নয়েছে প্রথমটি হচ্ছে যুক্তি তর্ক। একটা উদাহনাণ দেয়া যাক: একটা ভারী জিনিস আরেকটা হালকা জিনিস উপন থেকে ছেড়ে দিলে দুটো কি একসাথে পড়বে নাকি ভারীটা আগে পড়বেগ এই প্রশ্নের উত্তর খুঁজে বের করার জন্য কিন্তু কোনো বৈজ্ঞানিক সূত্রেরও প্রয়োজন নেই কোনো জটিল পরীক্ষা-নিরীক্ষারও দরকার নেই, আমরা পথুমাত্র যুক্তি দিয়ে এর উত্তরটা খুঁজে বের করে কেলতে পারন। ধরা যাক আমার কাছে একটা ভারী আন একটা হালকা জিনিস রয়েছে। এবারে প্রথমে ধরে নিই উপর থেকে ছেড়ে দিলে ভারী জিনিসটা হালকা জিনিস থেকে আগে নিচে এবে পড়ে। এখন ভারী জিনিসটার সাথে হালকা জিনিসটা বেধে দুটো একসাথে ছেড়ে দেয়া হলে, হালকা জিনিসটা যেহেতু পারে ধারে পড়বে দেবে না–কাজেই বেধে রাখা দুটো জিনিস একটা দেরি করে পড়বে। বিষয়টা আবার অন্যভাবে দেখতে পারি, ভারী জিনিসটার সাথে আরো একটা জিনিস বেক্টা কেয়েছে তাই সেটা নিগ্ডাই আরো ভারী হয়েছে–

কাজেই আরো ভারী হিসেবে আরো
তাড়াতাড়ি পড়বে। কাজেই দেখা যাছে আমরা একই সাথে আরো ধীরে কিংবা মারো তাড়াতাড়ি দুর্টো উত্তরই পেতে পারি– কিন্তু এক প্রশ্নের তো দ্বে উত্তর হওয়া সম্ভব না। এই জটিলতার সমাধান করা সম্ভব ওধু একটি উপারে– আমরা যদি ধরে নিই, ভারী হোক হালকা হোক সবকিছু একসাপে নিচে পড়ে। তার মানে ওধু মাত্র মুক্তি তর্ক দিয়ে আমরা বিজ্ঞানের একটা সমস্যার সমাধানটা পুঁজে প্রের পেলাম।

বিজ্ঞানকে জানার দ্বিতীয় উপায়টি হচ্ছে পর্যবৈক্ষণ। আমরা যদি আকাশের দিকে তাকাই আর আকাশের

দবি 1,1: প্রবক্তারাকে ঘিরে সব নক্ষত্রগুলো ঘুরতে থাকে

নক্ষত্রগুলাকে মনোযোগ দিয়ে পর্যবেক্ষণ করি তাহলে দেখন সব নক্ষত্র পুব আকাশে উঠে পশ্চিম আকাশে অন্ত বাছে। আমাদের ধারণা হতে পারে আসসেই বুঝি তাই ঘটছে, অর্থাৎ ছির একটা পৃথিবীর চারপাশে নক্ষত্রগুলো ঘুরছে। কিন্ত যদি আরো তালো করে নক্ষত্রগুলাকে পর্যবেক্ষণ করি তাহলে অনাক হয়ে দেখন উত্তর দিকে দিগত থেকে উপরে একটা নক্ষত্র (ধ্রুবতারা) কখনো ঘুরে না. সোন এক জায়গায় ছির হয়ে থাকে, আর অন্য সব নক্ষত্র আসলে এটাকে কেন্দ্র করে ঘুরে (ছবি 1.1)! আমরা তখন হঠাৎ করে ব্রুতে পারি যে আসলে পৃথিবীর অক্ষটা ঠিক এই প্রবতারা বরাবর এবং পৃথিবীনিই নিশ্বয়ই এই অক্ষে ঘুরছে তাই মনে হচেছ সব কিছু বৃথি ধ্রুবতারাকে কেন্দ্র করে ঘ্রছে। প্রশ্নাত্র পর্যবেক্ষণ করে আমরা বিজ্ঞানের একটা তথ্য বের করে ফেলতে পারি।

বিজ্ঞানকে জানার তৃতীয় পদ্ধতিটি হচ্ছে পরীক্ষা-নিরীক্ষা করা। নিউটন সবচেয়ে সুন্দর করে এটা করে দেখিয়ে বিজ্ঞান গবেষণার নৃতন একটা ধারা তৈরি করেছিলেন। সূর্যের কথিনি আলো জিজমের ভেতর দিয়ে পাঠিয়ে সেটাকে অনেকগুলো বংয়ে ভাগ করে দেখিয়েছিলেন যে কথিনি বং আসকে নানা রং দিয়ে তৈরি। তারপরও যদি সেটা নিয়ে কারো মনে সন্দেহ থাকে সেটা দূর করার জন্য তিনি সেই নানা রংয়ের আলোকে দ্বিতীয় একটা প্রিজমের ভেতর দিয়ে পাঠিয়ে আবার বর্ণহীন আলো তৈরি করে ফেলেছিলেন! (ছবি 1.2)

এই তিনটি পদ্ধতির ওপর ভিত্তি করে বিজ্ঞানটা খুব ধীরে ধীরে গড়ে উঠেছে। অসংখ্য গবেষক বিজ্ঞানী মিলে খুব ধীরে ধীরে বিজ্ঞানের বিশাল একটা সুরম্য অট্টালিকা গড়ে তুলেছেন। বিজ্ঞানের এই আবিন্ধারের ফলাফল নানা প্রযুক্তিতে ব্যবহার করে আমরা আমাদের জীবনকে সহজ করে তুলছি, অর্থপূর্ণ করে তুলছি। আবার কখনো কখনো ভয়ংকর কিছু প্রযুক্তি বের করে তথুমাত্র নিজেদের জীবন নয় পৃথিবীর

অন্তিত্বকেও বিপন্ন করে তুলছি! মনে রেখো প্রযুক্তির মাঝে ভালো প্রযুক্তি যেমন আছে, ঠিক সে রকম খারাপ প্রযুক্তিও আছে, বিজ্ঞানের বেলায় কিন্তু কেউ সেই কথা বলতে পারবে না– বিজ্ঞান হচ্ছে জ্ঞান, এর মাঝে কোনো খারাপ নেই এর মাঝে কোনো অগুত নেই!

1.1.1 পদার্থবিজ্ঞান (Physics)

আমরা এতক্ষন বিজ্ঞান নিয়ে কথা বলেছি এবং তোমরা সবাই জান বিজ্ঞানের অনেক শাখা রয়েছে। সতিয় কথা বলতে কী অনেক বিষয়–

ছবি 1.2: প্রিজমের ভেতর দিয়ে যাবার সময় আলোর নানা রংয়ে ভাগ হয়ে যাওয়ার নিউটনের নিজের হাতে আঁকা ছবি

যেণ্ডলোকে এতদিন বিজ্ঞানের বাইরে রেখে এসেছি সেণ্ডলোকেও আজকাল বৈজ্ঞানিক পদ্ধতিতে চর্চা করা হয় বলে আমরা তাদের বিজ্ঞান বলে ভাবতে শুরু করেছি। মনোবিজ্ঞান বা সমাজবিজ্ঞান তার উদাহরণ।

পদার্থবিজ্ঞান বিজ্ঞানের একটা শাখা এবং বলা যেতে পারে এটা হচ্ছে প্রাচীনতম শাখা, তার কারণ অন্য বিজ্ঞানগুলো দানা বাধার অনেক আগেই বিজ্ঞানীরা পদার্থবিজ্ঞানের গুরুত্বপূর্ণ একটা শাখা, জ্যোতির্বিদ্যা চর্চা করতে গুরু করেছিলেন। পদার্থবিজ্ঞান এটি একদিকে যেমন প্রাচীনতম শাখা ঠিক সেভাবে বলা যেতে পারে এটা সবচেয়ে মৌলিক (fundamental) শাখা। এর ওপর ভিত্তি করে রসায়ন দাঁড়িয়েছে, আবার রসায়নের ওপর ভিত্তি করে জীববিজ্ঞান দাঁড়িয়েছে– আবার জীববিজ্ঞানের ওপর ভিত্তি করে অন্য অনেক বিষয়ে দাঁড়িয়েছে।

সাধারণভাবে আমরা বলতে পারি বিজ্ঞানের যে শাখা পদার্থ আর শক্তি এবং এ দুইয়ের মাঝে যে সম্পর্ক (interation) তাকে বোঝার চেষ্টা করে সেটা হচ্ছে পদার্থবিজ্ঞান। তোমরা নিশ্চয়ই অনুমান করতে পেরেছ এখানে পদার্থ বলতে ওপু আমাদের চারপাশের দৃশ্যমান পদার্থ নয়, পদার্থের গঠন— অণু পরমাণু থেকে ওক করে ইলেকট্রন, প্রোটন, নিউট্রন বা কোয়ার্ক সিট্রং পর্যন্ত থারে। আবার শক্তি বলতে আমাদের পরিচিত মাধ্যাকর্ষণ বা বিদ্যুৎ চৌদ্দকীয় শক্তি ছাড়াও সবল কিংবা দুর্বল নিউক্লিয়ার শক্তিও হতে পারে!

পদার্থবিজ্ঞান একদিনে গড়ে ওঠেনি, শত শত বৎসরে গড়ে উঠেছে। পদার্থবিজ্ঞানীরা তাদের চারপাশের রহস্যময় জগৎকে দেখে প্রথমে কোনো একটা সূত্র দিয়ে সেটা ব্যাখ্যা করার চেষ্টা করেছেন। পরীক্ষা-নিরীক্ষা করে সেই স্ত্রকে কখনো গ্রহণ করা হয়েছে, কখনো পরিবর্তন করা হয়েছে আবার কখনো পরিত্যাগ করা হয়েছে। এভাবে আমরা পদার্থের ক্ষুদ্রতম কণা থেকে হুকু করে মহাবিশ্বের বৃহত্তম আকার পর্যন্ত ব্যাখ্যা করতে শিখেছি। এই শেখাটা হয়তো এখনো পূর্ণাক নয়- বিজ্ঞানীরা সেটাকে পূর্ণাক করার চেষ্টা করে যাচেছন, বেন কোনো একদিন অত্যন্ত অল্প কিছু সূত্র দিয়ে আপাতদৃষ্টিতে ভিন্ন ভিন্ন বিষয়ের সব কিছু ব্যাখ্যা করা সম্ভব হয়ে যারে।

2.1 ভৌত রাশি আর তার পরিমাপ (Physical Quantities and their Measurement)

পানি ঠা বিলে সেটা বরক হয়ে যায়, গরম করলে সেটা বাস্প হয়ে যায়— এটা আমরা সবাই জানি।
মানুষ অনেক প্রাচীন কাল থেকেই এটা দেখে আসছে। এই জানটুকু কিন্তু পুরোপুরি বিজ্ঞান হতে পারবে
না ষতক্ষণ পয়ত্ত না আমরা বলতে পারব কোন অবস্থায় ঠিক কত তাপমাত্রায় পানি জয়ে বরক হয় কিংবা
সেটা বাড়িয়ে কোন অবস্থায় কত তাপমাত্রায় নিয়ে গেলে সেটা কুটতে থাকে, বাস্পে পরিণত হতে জ্ঞা
করে। তার অর্থ প্রকৃত বিজ্ঞান করতে হলে সব কিছুর পরিমাপ করতে হয়। বিজ্ঞানের সবচেয়ে গুরুত্বপূর্ণ
বিষয় হচ্ছে এই পরিমাপ করে সব কিছুকে নিযুতভাবে বয়খায় করা।

টেবিল 1.1: SI ইউনিটে সাতটি ভিন্ন ভিন্ন ভৌত রাশি

দৈর্ঘ্য	meter	মিটার	m
ভর	kilogram	কিলোগান	kg
স্ময়	second	সেকেন্ড	5
বৈদ্যুতিক প্ৰবাহ	ampere	এম্পিয়ার	Α
<u>তাপমাত্রা</u>	kelvin	কেলভিন	K
পদার্থের পরিমাণ	mole	মোল	mol
দীপন তীব্ৰতা	candela	ক্যান্ডেলা	cd

এই জগতে যা কিছু আমরা পরিমাপ করতে পারি তাকে আমরা রাশি বলি। এই ভৌত জগতে অসংখ্য বিষয় রয়েছে, যা পরিমাপ করা সম্ভব। উদাহরণ দেয়ার জন্য বলা যেতে পারি কোনো কিছুর দৈর্ঘ্য, প্রস্থ, উচ্চতা, আয়তন, ওজন, তাপমাত্রা, রং, কাঠিনা, তার অবস্থান, বেগ, তার ভেতরকার উপাদান, বিদ্যুৎ পরিবাহিতা, অপরিবাহিতা, স্থিতিস্থাপকতা, তাপ পরিবাহিতা অপরিবাহিতা, ঘনতু, আপেক্ষিক তাপ, চাপ গলনাংক, ক্ষুটনাংক ইত্যাদি ইত্যাদি অর্থাৎ আমরা বলে শেষ করতে পারব না। এক কথায় ভৌত জগতে রাশিমালার কোনো শেষ নেই। তোমাদের তাই মনে হতে পারে এই অসংখ্য রাশিমালা পরিমাপ করার জন্য আমাদের বুঝি অসংখ্য রাশির সংজ্ঞা আর অসংখ্য একক তৈরি করে রাখতে হবে। আসলে সেটি সত্যি নয়— তোমরা তনে খুবই অবাক হবে (এবং নিশ্চয়ই খুণি হবে) যে মাত্র সাতিট রাশির সাতিট একক ঠিক করে নিলে সেই সাতিট একক ব্যবহার করে আমরা সব কিছু বের করে ফেলতে পারব। এই সাতিট রাশিকে বলে মৌলিক রাশি, যেগুলো হচ্ছে দৈর্ঘ্য, ভর, সময়, বৈদ্যুতিক

প্রবাহ, তাপমাত্রা, পদার্থের পরিমাণ এবং দীপন তীব্রতা। এই সাতটি মৌলিক রাশির আন্তর্জাতিক ভাবে স্বীকৃত সাতটি একককে বলে SI একক. (SI এসেছে ফ্রেম্ব ভাষার Le Systeme International d'Unites থেকে) এবং সেগুলো 5.1 টেবিলে দেখানো হয়েছে।

এই একক গুলোর পরিমাপ কত সেটি
সুনির্দিষ্টভাবে ঘোষণা করা আছে। যেমন শৃন্য
স্থানে এক সেকেন্ডের 299,792,458 ভাগের
এক ভাগ সময়ে আলো যে দূরত্ব অতিক্রম করে
সেটা হচ্ছে এক মিটার। এক কিলোগ্রামের
এককটি এখনো ধরা হয় ফ্রান্সের একটা নির্দিষ্ট

টেবিল 1.2: অনেক বড় থেকে অনেক ছোট দূরত্ব

দূরত্ব	m
নিকটতম গ্যালাক্সি	6×10^{19}
নিকটতম নক্ষত্ৰ	4×10^{15}
সৌর জগতের ব্যাসার্ধ	6×10^{12}
পৃথিনীর ব্যাসার্দ	6×10^{6}
এভারেস্টের উচ্চতা	9×10^{3}
ভাইরাসের দৈর্ঘ্য	1×10^{-8}
হাইড্রোজেন প্রমাণুর ব্যাসার্ধ	5×10^{-11}
প্রেটনের ব্যাসার্ধ	1×10^{-15}

ভবনে রাখা প্রাটিনিয়াম ইরিডিয়াম দিয়ে তৈরি 3.9 cm উচ্চতা আর ব্যাসের নির্দিষ্ট একটা ভর। (বিজ্ঞানীরা এই ভরটিকে কিছুদিনের মধ্যেই অন্যভাবে র্যাখ্যা করবেন যেন নির্দিষ্ট দেশে রাখা নির্দিষ্ট ভরের ওপর আর কারো নির্ভর করতে না হয়।) সিজিয়াম 133 (Cs¹³³) পরমাণুর 9,192,631,770 টি স্পন্দন সম্পন্ন করতে যে পরিমাণ সময় নেয় সেটা হচ্ছে এক সেকেন্ড। পানির ত্রৈধ বিন্দু বা ট্রিপল পয়েন্ট তাপমাত্রাকে 273.16 দিয়ে ভাগ দিলে যে তাপমাত্রা পাওয়া যায় সেটি হচ্ছে এক কেলভিন। আন্সিয়ারের এককটি মোটামুটি জটিল- পাশাপাশি দুটো তারের ভেতর দিয়ে বিদ্যুৎ প্রবাহ করলে তারা একে অনাকে আকর্ষণ করে। যে পরিমাণ বিদ্যুৎ প্রবাহ হলে 1m দ্রত্বে রাখা দুটি তার প্রতি মিটার দৈর্ঘ্যে

টেবিল 1.3: অনেক বড় থেকে অনেক ছোট ভর

ভর	kg
আমাদের গ্যালাক্সি	2×10^{41}
সূৰ্য	2×10^{30}
शृश्चिती	6×10^{24}
জাহাজ	7×10^{7}
হাতি	5×10^{3}
মানুষ	6×10^{1}
গুলিকণা	7×10^{-7}
ই লেকট্রন	9×10^{-31}

2 × 10⁻⁷ নিউটন বলে পরস্পরকে আকর্ষণ করে সেটা হচ্ছে 1 এস্পিয়ার। ধরে নেয়া হচ্ছে তারটির দৈর্ঘ্য অসীম, প্রস্থচ্ছেদ বৃত্তাকার এবং এত ছোট যে সেটা আমরা ধর্তব্যের মাঝে আনব না! (তোমরা গুনে খুশি হবে যে এই এককটাকেও আরো সহজভাবে ব্যাখ্যা করার পরিকল্পনা হচ্ছে।)

0.012 কিলোগ্রামে যে কয়টি কার্বন 12 পরমাণু থাকে সেই সংখ্যক মৌলিক কণা (অণু, পরমাণু বা আয়ন)— এর সমান পদার্থ হচ্ছে এক মোল। এক ক্যান্ডেলার এককটি সম্ভবত রোঝার জন্য সবচেয়ে জটিল: কোনো আলোর উৎস থেকে যদি এক স্টেরেডিয়ান (Steradian) ঘন কোণে এক ওয়াটের 633 ভাগের এক ভাগ বিকিরণ তীব্রতা পৌছায় তাহলে

সেই আলোর তীব্রতা হচ্ছে এক ক্যান্ডেলা। তবে যে কোনো আলোর উৎস ব্যবহার করা যাবে না– সেটি হতে হবে সেকেন্ডে 540×10^{12} বার কম্পনরত কোনো আলো। (যারা ঘনকোণ কী জানো না তারা। পরিশিষ্ট-1 দেখো)। দূরত্ব ভর বা সময়ের বেলায় সেগুলোর অনেক ছোট থেকে ভরু করে অনেক বড়

হতে পারে। তোমাদের একটা ধারণা দেয়ার জন্য অনেক বড় থেকে শুরু করে অনেক ছোট কিছু দূরত ভর এবং সময়ের কিছু উদাহরণ (টেবিল 1.2, 1.3 এবং 1.4) দেয়া হলো। তোমরা টেবিলগুলো দেখো-অনুভব করার চেষ্টা কর!

সাতটি একককে আনুষ্ঠানিকভাবে তোমাদের সাথে পরিচয় করিয়ে দেয়া হলো- কেউ আশা করে ना এটা তোমাদের মনে থাকরে। মনে রাখার প্রয়োজনও নেই যদি কখনো জানার প্রয়োজন হয় বই খুঁজে, ইন্টারনেট ঘেঁটে আবার তুমি এটা বের করে ফেলতে পারবে। তবে এক মিটার বলতে কতটুকু দূরত বোঝায় বা এক কেজি ভর কতটুকু, এক সেকেন্ড কত সময়, এক ডিগ্রি কেলভিন তাপমাত্রা কতটুকু উত্তপ্ত, এক অ্যাম্পিয়ার কারেন্ট কতখানি, এক মোল পদার্থ বলতে কী বোঝাই বা এক ক্যান্ডেলা কতখানি আলো সেটা সম্পর্কে তোমাদের একটা বাস্তব ধারণা থাকা উচিত! এই বেলা তোমাদের সেই বাস্তব ধারণাটা দেওয়ার চেষ্টা করে দেখা যাক। তোমাদের শুধু জানলে হবে না. খানিকটা কিন্তু অনুভবও করতে হবে। সাধারণভাবে বলা যায়:

- শাভাবিক উচ্চতার একজন মানুবের মাটি থেকে পেট পর্যন্ত দূরত্বটা মোটামুটি এক মিটার।
- এক লিটার পানির বোতলে কিংবা চার গ্লাসে যে ওজনের পানি থাকে তার ভর হচ্ছে এক কেজির কাছাকাছি।
- 'এক হাজার এক' বলতে যেটুকু সময় লাগে সেটা মোটামৃটি এক সেকেন্ড!
- বলা যেতে পারে তিনটা মোবাইল ফোন একসাথে চার্জ করা হলে এক এম্পিয়ার বিদ্যুৎ ব্যবহার করা হয়। (মোবাইল ফোন 5 ভোলেঁর কাছাকাছিতে ঢার্জ করা হয়। তাই এখানে খরচ হবে 5 ওয়াট। যদি বাসার লাইট, ফ্যান, ফ্রিজে 220 ভোল্টের কিছুতে এক এম্পিয়ার বিদ্যুৎ ব্যবহার হয় তখন কিন্তু খরচ হবে 220 ওয়াট!)
- হাত দিয়ে আমরা যদি কারো জ্বর অনুভব করতে পারি বলা যেতে পারে তার তাপমাত্র এক কেলভিন বেড়েছে।
- মোলটা অনুভব করা একটু কঠিন, বলা যেতে পারে একটা বড় চামচের এক চামচ পানিতে মোটামুটি এক মোল পানির অণু থাকে। এক কাপ পানিতে দশ মোল পানি থাকে।
- একটা মোমবাতির আলোকে ঘোটামুটি ভাবে এক ক্যান্ডেলা বলা যায়।

টেবিল 1.4: অনেক বড় থেকে অনেক ছোট সময়

সময়	5
বিগবাংরের সময়	4×10^{17}
ডাইনোসরের ধ্বংস	2×10^{14}
মানুষের জন্ম	8×10^{12}
এক দিন	9×10^{4}
মানুষের হৃদস্পদ্দন	100
মিউওনের আয়ু	2×10^{-6}
স্পন্দন কালঃ সবুজ আলো	2×10^{-15}
স্পদন কাল: এক MeV গামারে	4 × 10 ⁻²¹

দেখতেই পাছে এর কোনোটাই নিখুত পরিমাপ নয় কিন্তু অনুভব করার জন্য সহজ। যদি এই পরিমাপ নিয়ে অভ্যন্ত হয়ে যাও তাহলে ভবিষ্যতে যখন কোনো একটা হিসাব কররে, তখন সেটা নিয়ে তোমাদের একটা মাত্রাজ্ঞান থাকরে!

টেবিল 1.5: SI ইউনিটে ব্যবহৃত উপসৰ্গ

deca	da	10 ¹
hecto	h	10 ²
kilo	k	10 ³
mega	M	106
giga	G	109
tera	T	1012
peta	P∈	10 ¹⁵
exa	E	1018

deci	d	10-1
centi	С	10 ²
milli	m	10 ⁻³
micro	μ	10-6
nano	n	10-9
pico	p	10 12
femto	F	10-15
atto	а	10 18

বিজ্ঞান বা পদার্থবিজ্ঞান চর্চা করার জন্য আমাদের দানা কিছু পরিমাপ করতে হয়। কখনো আমাদের হয়তো গ্যালাক্সির দৈর্ঘ্য মাপতে হয় $(6 \times 10^{24} m)$ আবার কখনো একটা নিউক্লিয়াসের ব্যাসার্থ মাপতে হয় $(1 \times 10^{-15} m)$ দূরত্বের মাঝে এই বিশাল পার্থক্য মাপার জন্য সব সময়েই একই ধরনের সংখ্যা ব্যবহার করা বৃদ্ধিমানের কাজ নয় তাই আন্তর্জাতিকভাবে কিছু SI উপসর্গ

(prefix) তৈরি করে নেয়া হয়েছে। এই উপসর্গ থাকার কারণে একটা ছোট উপসর্গ লিখে অনেক বড় কিংবা অনেক ছোট সংখ্যা বোঝাতে পারব। উপসর্গগুলো টেবিল 1.5 এ দেখানো হয়েছে। আমরা দৈনন্দিন জীবনে কিন্তু এগুলো সব সময় ব্যবহার করি। দূরত্ব বোঝানোর জন্য এক হাজার মিটার না বলে এক কিলোমিটার বলি। ক্যামেরার ছবির সাইজ বোঝানোর জন্য দশ লক্ষ বাইট না বলে এক মেগাবাইট বলি!

1.2.1 মাতা (Dimensions)

আমরা জেনে গেছি যে আমাদের চারপাশে অসংখ্য রাশি থাকলেও মাত্র সাতটি একক দিয়ে এই রাশিগুলোকে পরিমাপ করা যায়। একটা রাশি কোন একক দিয়ে প্রকাশ করা যায় সেটি আমাদের জানতেই হয়, প্রায় সময়েই রাশিটি কোন কোন মৌলিক রাশি (দৈর্ঘ্য L, সময় T, ভর M ইত্যাদি) দিয়ে কিভাবে তৈরি হয়েছে সেটাও জানা থাকতে হয়। একটা রাশিতে বিভিন্ন মৌলিক রাশি কোন সূচকে বা কোন পাওয়ারে আছে সেটাকে তার মাত্রা বলে। যেমন আমরা পরে দেখব বল হচ্ছে ভর এবং তুরণের গুণফল। তুরণ আবার সময়ের লাপে বেগের পরিবর্তনের হার। বেগ আবার সময়ের লাপে অবস্থানের পরিবর্তনের হার।

ত্বপের মাত্রা:
$$\frac{r_{
m prop}}{(r_{
m ANJ})^2} = \frac{L}{r^2} = L T^{-2}$$
 ইত্যাদি

আমরা এই বইয়ে যখনই নূতন একটি রাশিমালার কথা বলব সাথে সাথেই তার মাত্রাটির কথা বলে দেওয়ার চেষ্টা করব। দেখবে সেটা সব সময়েই রাশিটিকে বুঝতে অন্যভাবে সাহায্য করবে।

1.3 পরিমাপের যন্ত্রপাতি

এক সময় পদার্থবিজ্ঞানের বিভিন্ন রাশিমালা সৃক্ষভাবে মাপা খুব কস্টসাধা ব্যাপার ছিল। আধুনিক ইলেকট্রনিক্স নির্ভর যন্ত্রপাতির কারণে এখন কাজটি খুব সোজা হয়ে গেছে। আমরা এই বইয়ে যে পরিমাণ পদার্থবিজ্ঞান শেখার

ছবি 1.3: মূল এবং নাড়ানো সম্ভব ভার্নিয়ার ক্ষেল

চেষ্টা করব তার জন্য দূরত্ব, শুর, সময়, তাপমাত্র, বিদ্যুৎপ্রবাহ এবং ভোন্টেজ মাপালেই মোটামুটি কাজ চালিয়ে নিতে পারব। এগুলো মাপার জন্য আমরা কোন ধরনের যন্ত্রপাতি ব্যবহার করি সেগুলো সংক্ষেপে আলোচনা করা যাক:

1.3.1 (零河

ছোটখাটো দৈর্ঘ্য মাপার জন্য মিটার কেল ব্যবহার করা হয় এবং তোমরা সবাই নিশ্চয়ই মিটার কেল দেখেছ। 100 cm (সেন্টিমিটার) বা 1 m লমা বলে এটাকে মিটার কেল বলে। যেহেতু এখনো অনেক জারগায় ইঞ্চি কুট প্রচলিত আছে (মার্কিন যুক্তরাষ্ট্র একটি উদাহরণ দেশ!) তাই মিটার কেলের অন্যপাশে প্রায় সব সময়ে ইঞ্চি দাগ কাটা থাকে। এক ইঞ্চি সমান 2.54 cm.

একটা ক্ষেলে সবচেয়ে যে সূক্ষ্ম দাগ থাকে আমরা সে পর্যন্ত মাপতে পারি। মিটার ক্ষেল সাধারণত মিলিমিটার পর্যন্ত ভাগ করা থাকে তাই মিটার ক্ষেল ব্যবহার করে আমরা কোনো কিছুর দৈর্ঘ্য

एवि 1.4: अक, मूटे अवश् छिन चत्र मत्त्र याखरा जानिसात रकन

মিলিমিটার পর্যন্ত মাপতে পারি। অর্থাৎ আমরা যদি বলি কোনো কিছুর দৈর্ঘা 0.364 m তার অর্থ দৈর্ঘাটি হচ্ছে 36 দেনিটিমিটার এবং 4 মিলিমিটার। একটা মিটার স্কেল ব্যবহার করে এর চাইতে সূক্ষ্ম তাবে দৈর্ঘা মাপা সম্ভব নয়- অর্থাৎ সাধারণ কেলে আমরা কখনোই বলতে পারব না একটা বন্তর দৈর্ঘা 0.3643 m কিন্তু মাঝে মাঝেই কোনো একটা অত্যন্ত সূক্ষ্ম কাজে আমাদের এ রকম সূক্ষ্ম ভাবে মাপা প্রয়োজন হয়, তখন ভার্নিয়ার (Vernier) কেল নামে একটা মজার কেল ব্যবহার করে সেটা করা যায়।

ধরা যাক কোনো বস্তুর দৈর্ঘ্য মিলিমিটারের 4 এবং 5 দুটি দাগের মাঝামাঝি কোধাও এসেছে অর্থাৎ বস্তুটির দৈর্ঘ্য 4 মিলিমিটার থেকে বেশি কিন্তু 5 মিলিমিটার থেকে কম। 4 মিলিমিটার থেকে কত ভগ্নাংশ বেশি সেটা বের করতে হলে ভার্নিয়ার স্কেল ব্যবহার করা যায়. এই স্কেলটা মূল স্কেলের পাশে লাগানো খাকে এবং সামনে পেছনে সরানো যায় (ছবি 1.3)। ছবির উদাহরণে দেখানো হয়েছে মূল স্কেলের 9 মিলিমিটার দৈর্ঘ্যকে ভার্নিয়ার কেলে দশ ভাগ করা হয়েছে। অর্থাৎ ভার্নিয়ার স্কেলের প্রত্যেকটা ভাগ হচেছ $\frac{9}{10}$ mm, আসল মিলিমিটার থেকে $\frac{1}{10}$ মিলিমিটার কম। যদি ভার্নিয়ার স্কেলের ওর্নটা

ছবি 1.5: হবিলে ভার্নিয়ার কেল যুক্ত স্তাইড ক্যালিপার্স এবং একটি ক্লুগজ দেখালো হল

কোনো একটা মিলিমিটার দাণের সাথে মিলিয়ে রাখা হয় তাহলে তার পরের দাগটি সত্যিকার মিলিমিটার থেকে $\frac{1}{10}$ মিলিমিটার সরে থাকবে, এর পরেরটি $\frac{2}{10}$ মিলিমিটার সরে থাকবে– পরেরটি $\frac{3}{10}$ মিলিমিটার সরে থাকবে– অর্থাৎ কোনোটাই মূল কেলের মিলিমিটার দাণের সাথে মিলবে না, একেবারে দশ নদর দাগটি আবার আসল মূল কেলের নয় নম্বর মিলিমিটার দাণের সাথে মিলবে।

ছবি 1.6: ভায়াল এবং ডিজিটাল রিডআউট লাগানো স্থাইড ক্যালিপার্স

বুনাতেই পারছ তার্নিয়ার কেলটা যদি আমরা এমনভাবে রাখি যে শুরুটা একটা মিলিমিটার দাগ থেকে শুরু না হয়ে একটু সরে (যেমন $\frac{3}{10}\,\mathrm{mm}$) শুরু হয়েছে (ছবি 1.4) তাহলে ঠিক যত সংখ্যক $\frac{1}{10}\,\mathrm{mm}$ সরে গুরু হয়েছে ভার্নিয়ার কেলের তত নদর দাগটি মূল স্কেলের মিলিমিটার দাদোর সাথে মিলে যাবে! কাজেই ভার্নিয়ার কেলে ব্যবহার করে দৈর্ঘ্য মাপা খুব সহজ, প্রথমে জেনে নিতে হয় ভার্নিয়ার স্কেলের একটি ভাগ এবং মূল স্কেলের একটি ভাগের মাবো পার্থকা কর্তটুকু— এটাকে বলে ভার্নিয়ার প্রবক (Vernier Constant সংক্ষেপে VC)। মূল স্কেলের সবচেয়ে ছেটিভাগের (1 mm) দূরত্বক ভার্নিয়ার স্কেলের ভাগের (10) সংখ্যা দিয়ে ভাগ দিলেই এটা বের হয়ে যাবে। আমরা যে উদাহরণ নিয়েছি সেখানে এটার মানঃ

$$VC = \frac{1}{10}$$
 mm = 0.0001 m

কোনো দৈখ্য মাপার সময় মিলিমিটারের সর্বশেষ দাঘ পর্যন্ত মেপে ভার্নিয়ার স্কেলের দিকে তাকাতে হয়

ছবি 1.7 ডিজিটাল ওজন মালার ঘ্রন্থ

তার কোন দাগটি মূল কেলের মিলিমিটার দাগের সাথে মিনে গেছে সেটি বের করে তাকে ভার্নিয়ার ফ্রবক গুণ দিতে হয়। মূল কেলে মাপা দৈর্ঘ্যের সাথে সেটি যোগ দিলেই আমরা প্রকৃত দৈর্ঘ্য পোয়ে যাব। ছবি 1.4 এর শেষ কেলে যে দৈর্ঘা দেখানো হয়েছে আমাদের এই নিয়মে সেটি হবে 1.03cm বা 0.0103m

ভার্নিয়ার স্কেলের পরিবর্তে একটা জ্রুকে ঘুরিয়ে (ছবি 1.5) কেলকে সামনে পিছনে নিয়েও স্কুগজ (screw gauge) নামে বিশেষ এক ধরনের কেলে দৈর্ঘ্য মাপা হয়। এখানে কুয়ের ঘাট (thread) অত্যন্ত সৃক্ষা রাখ্য হয় এবং প্রো একবার ঘোরানোর পর ক্ষেক লাগানো

জুটি হয়তো 1 mm অগ্রসর হয়। জুয়ের এই সরণকে জুয়ের পিচ (pitch) বলে। যে বৃদ্ধাকার অংশটি ঘুরিয়ে কেনটিকে সামনে পিছনে নেয়া হয় সেটিকে সমান 100 ভাগে ভাগ করা হলে প্রতি এক ঘর ঘুর্ণনের জন্য কেনটি পিচের $\frac{1}{100}$ ভাগের এক ভাগ অগ্রসর হয়। অর্থাৎ এই কেনে $\frac{1}{100}$ = 0.01mm পর্যন্ত মাপা সম্ভব হতে পারে।

আজকাল ভার্নিয়ার কেলের পরিবর্তে ভাষাল লাগানো কিংবা ভিজিটাল (ছবি 1.6) ত্রাইড ক্যালিপার্ম বের হয়েছে যেটা দিয়ে সরাসরি নিখুঁতভাবে দৈর্ঘ্য মাপা যায়।

1.3.2 ভর মাগার যন্ত্র

ভর সরাসরি মাপা যায় না তাই
সাধারণত ওজন মেপে সেখান
থেকে ভরটি বের করা হয়।
আমরা যখন বলি কোনো একটা
বস্তুর ওজন 1 gm বা 1 kg
তখন আসলে বোঝাই বস্তুটির
ভর 1 gm কিংবা 1 kg এক
সময় কন্তুর ভর মাপার জন্য নিভি
বাবহার করা হতো যেখানে
বানিখারার নির্দিষ্ট ভরের সাথে
বস্তুর ভরকে তুলনা করা হতো।
আজকাল ইলেকট্রনিক ব্যালেসের

ছবি 1.8: সাধারণ এবং ইলেক্সনিক খার্মোনিটার

(ছবি 1.7) ব্যবহার অনেক বেড়ে গ্রেছে। ব্যালোগের ওপর নির্দিষ্ট বস্তু রাখা হলেই ব্যালোগের সেখার সেখান থেকে নিখুঁতভাবে ওজনটি বের করে দিতে শারে।

1.3.3 পার্নোমিটার

তাপমাত্রা মাপার জন্য থার্মোমিটার ব্যবহার করা হয়। এলকোহল বা পারদের থার্মোমিটারের পাশাপাশি আজকাল ইলেকট্রনিক থার্মোমিটারেরও (ছবি 1.8) প্রচলন শুরু হয়েছে। জ্বর মাপার জন্য যে থার্মোমিটার ব্যবহার করা হয় তার ব্যক্তি খুব কম— কারণ মানুষের শরীরের তাপমাত্রা খুব বেশি বাড়ে না বা কয়ে না। কাজেই জ্বর মাপার থার্মোমিটার দিয়ে অসলে প্রকৃত তাপমাত্রা মাপা যায় না।

चित्र 1,9। व्हेच उद्याह

1.3.4 স্টল ওয়াচ

সময় মাপার জন্য স্টপ ওয়াচ ব্যবহার করা হয় (ছবি 1.9)। এক সময় নিখুঁত স্টপ ওয়াচ অনেক মূল্যবান সামগ্রী হলেও, ইকেট্রনিজের অগ্রণতির কারণে খুব অল্প দামের মোবাইল টেলিফোনেও আজকাল অনেক সূক্ষ স্টপ ওয়াচ পাওয়া যায়। স্টপ ওয়াচে যে কোনো একটি মুহুর্ত থেকে সময় মাপা শুরু করা হয় এবং নির্দিষ্ট সময় পার হওয়ার পর সময় মাপা বদ্ধ করে কতখানি সময় অতিক্রান্ত হয়েছে সেটি বের করে ফেলা যায়। মজার ব্যাপার হছেে স্টপ ওয়াচ যত নিখুঁত ভাবে সময় মাপতে পারে আমরা হাত দিয়ে কখনোই তত নিখুঁত ভাবে এটা ভরু করতে পারি না বা গামাতে পারি না।

1.3.5 ভোল্ট মিটার ও অ্যামিটার

বিদ্যুতের প্রবাহ মাপার জন্য জ্যামিটার এবং ভোক্টেজ মাপার জন্য ভোলী মিটার ব্যবহার করা হয়। এই দুটো পরিমাপ যন্ত্রই সাধারণত এক জায়গায় থাকে এবং দুটোকে মিলিয়ে অনেক সময় মালি মিটার (ছবি 1.10) বলা হয়। মালি মিটারে মাধারণত একটি ভায়াল থাকে এবং এই ভায়ালটি ঘ্রিয়ে বিভিন্ন মাত্রার ভোক্টেজ কিংবা বিদ্যুৎ প্রবাহ বা কারেট মাপা যায়। আমাদের গৃহস্থালি ভোক্টেজ এসি হওয়ার কারণে সব মান্টি মিটারেই এসি কিংবা ডিসি তোক্টেজ এবং কারেট মাপা যায়। (যারা এসি কিংবা ডিসি বলতে কী ব্রায় জানো না তারা পরিশিষ্ট-1 দেখো।) আজকালকার মান্টি মিটার ওধু ভোক্টেজ এবং কারেট নম আরো অনেক কিছু মাপতে পারে।

ছবি 1,10: মানির মিনির

অনুশীলনী

প্রশ্ন:

- মুক্তিতর্ক, পরীক্ষা-নিরীক্ষা এবং পর্যবেক্ষণ এই তিনটি পদ্ধতির কোনটিকে তুমি বিজ্ঞান গবেষণার জন্য সবচেয়ে গুরুত্বপূর্ণ মনে করং কেন?
- 2. তুমি কী যুক্তি-তর্ক দিয়ে দেখাতে পারবে প্রাইম সংখ্যা অসীম সংখ্যক?
- সাতটি SI এককের একটি অনাগুলো থেকে একটু অন্য রকম। কোনটি এবং কেন বলতে পারবেং
- মদি হঠাৎ করে তোমার এবং তোমার চারপাশের সব কিছুর সাইজ অর্থেক হয়ে য়ায় ভূমি কী বুবাতে পারবেয়
- তুমি কি পৃথিবীর ব্যাসার্ধ মাপতে পারবেং

গাণিতিক সমস্যা:

- 1. টেনিল 1.5 এর উপসর্গ ব্যবহার করে নিচের সংখ্যাওলো প্রকাশ কর: (a) $10^{14}Flops$ (b) $10^{9}bytes$ (c) $10^{-3}gm$ (d) $10^{-9}s$ (e) $10^{-18}m$
- এক বছরে কত দেকেত? (মজা করার জন্য π দিয়ে প্রকাশ কর)
- এक আলোকবর্ষে কত মিটার?
- একটি ভার্নিয়ার কেলে একটি
 দক্রে দৈখ্য মাপার সময় 1.11
 ছবির মতো দেখা গেছে। দলটির
 দৈখ্য কত?
- শক্তির মাত্রা ML²T⁻², SI ইউনিটে এর একক কত?

ছবি 1.11; ভানিয়ার সেনের রিডিং

ছিভীয় অধ্যায় **পতি** (Motion)

NIV olaus Conerninus (1475 1543)

নিকোলাস কোপানিকাস

2.1 অবস্থান (Position)

তোমবা যারা পর্যানাটে চলাবোরা করেছ হারা নিবনাই লক্ষ করেছ রাজার পানে মাইলপোনে সোনা নোরে নানা জায়গার দূরত লেখা থাকে। যদি কোথাও কোনো মাইলপোনেই লেখা থাকে "দাবন: 9 কিলোমটার ভার তথ্ হোই জায়গা থেকে দাবন শহরের দ্বেছে 9 কিলোমিটার। কিন্তু দাবন শহর তো বিশাল একটা শহর। কাজেই মাইলপোনেইর সেই জারহান থেকে দাবন শহরের কোন লাফাটি 9 কিলোমটার দ্বেঃ এক সাথে পুরো ধাহরের নান লাগো নিক্ষাই এ কিলোমিটার দ্বে হতে

ছট 2.1: সাইচ লোক কেলে নাডা নাচ গোলে ম iam, উচ্ছ গোলে 3 km

পারে না। কাজেই নোগা মাঞ্ছে দকা প্রারের কোনো একটি জানগাকে (আরও নাট্রজন্মে বলা উচিত।

কোনো একটা বিন্দকে) নিৰ্দিষ্ট করে দিতে হবে শেখান থেকে সব জায়গার নূরত্ব মাপা হবে। আমরা জানি ঢাকা শহরে মচিবালয় আর জিপিও এর মাঝামাঝি নূর হোমেন চতুরটি হচেছ মেই জায়গা সে জায়গাটিকে বলা হয় জিরো পয়েন্ট- বা শূন্য দূরতু।

এখন ধরা যাক কেউ একজন 9 km নূরের মাইলপোস্ট থেকে ঢাকা শহরের দিকে ইটিতে তরু করল, তাকে জিরো পয়েন্টে পৌছাতে হলে পুরো নয় কিলোমিটার ইটিতে হরে (ছবি 2.1)। ধরা যাক ঠিক সেই মাইলপোস্ট থেকে একটা কাক ঠিক করল সেও উড়ে উড়ে জিরো পয়েন্ট যাবে। রাস্তা যদি

ছবি 2.2: মূল বা প্রসাগ নিন্দু থেকে যে জোনো বিন্দুকে দুরাত / এবং নোগ _{প্র} দিয়ে প্রকাশ কর। থায়।

অকালাক। গোরালে-প্রাচালো হয় তাহলে কাকের তে।
আর রাস্তা ধরে ধরে গুরিয়ে প্রাচিয়ে উজার প্রয়োজন
নেই, সে সোজাস্তি উজে জিরো পরেন্ট প্রেছি যাবে।
কাজেই নেখা যাবে কাককে পরে। ও কিলোমিটার উজতে
হচ্চে না, অনেক কম দূরত, ধরা যাক মাত্র র
কিলোমিটার উজেই সে গভাবো পৌছে যাবে। তাহলে
প্রা হচ্চে মাইলপ্রোসেটর সেই অবস্থান থোকে জিরো
প্রেক্টের দূরতু কি আমরা ও কিলোমিটার ধরব নাকি ও
কিলোমিটার ধরব

বিষয়টিকে আমরা আরো একটু জটিল করে।
দিতে পারি! ধরা যাক সেই কাক জিরো পয়েনে পৌছে
অন্য একটি কাককে জানাল এই জিরো পয়েন্ট থেকে
ঠিক 3 কিলোমিটার দূরে একটা মাইলপোন্ট আছে।
কৌত্হলী সেই কাক 3 কিলোমিটার উড়ে গেলে কি সেই
মাইলপোন্টিটি পারেং তার উত্তর একই সাথে "হাঁ।"

আমরা দেখছি সমততে একটা অবস্থানকে একাৰ করার জন্য দরত আর কোণ এই দটে রাশির দরকার হয়। এই দুটো রাশি করিছে আর কোণ এই দটে রাশির দরকার হয়। এই দুটো রাশি দিয়েই যে অবস্থানকে নির্দিষ্ট করতে হবে এনন কোনো কথা নেই, আমরা ইয়েছ করলে জন্য দুটো রাশি দিয়েও অবস্থানকৈ নির্দিষ্ট করতে পারি। 2.3 ছবিতে আমরা দেখতে পাছি ৮ বিন্দৃতে অবস্থানটি আমরা ৫ এবং ৮ এই দুটো রাশিমালা দিয়ে প্রকাশ করতে পারি। যারা একট্রখানি জিকোনোমিতিও জানে তারাই বুঝতে পারবে যে আমলে এটা মোটেও নৃত্ন কিছু নয়— আমা দেখানো ৮ এবং ক আর 2.3 ভবিতে দেখানে এ আর ৮ আর ৮ আর একই ব্যাপার। তার কারণ এ আর ৮ হচে

$$\begin{aligned} x &= r \cos \varphi \\ y &= r \sin \varphi \end{aligned}$$

ছবি 2.3: ১, y আক কৰেছার করে মূল ব। প্রসংগ নিজু থোকে যে কেছনা বিন্দুকে দ ও প্রথম পরিবলে ১, ৬ y নিয়ে প্রকাশ কর। মায়।

অধ্যাহ । আর 🖟 জানলৈ আমরা সামে সাধে 🖟 এবং μ বের করে ক্ষেত্রত পারব। উল্টোটাও সাহ্য 🖟 এবং মু জানলে সাথে সাথে আমরা । আর 🖟 বের করে ফেলতে পারব।

$$r = \sqrt{x^2 + y^2}$$
$$q = \tan^{-1} \frac{y}{x}$$

তোমরা অবস্থানকে x, v দিয়ে প্রকাশ করতে লও নাক v p দিয়ে প্রকাশ করতে লও মেটা পুরোপার তোমার ইছে। অবশিয় তোমরা নিজেরাই দেখার কোনো কোনো নমন্যা নমাধান করার জন্য v: w ক্রেছার করা বৃদ্ধিমানের কাজ− আবার কোনো কোনো সমস্যা নমাধান করতে x v ব্যবহার করা বৃদ্ধিমানের কাজ।

উদাহরণ 2.1: একটা পাড়ি ভোমার ক্ল পেকে প্রদিকে 20 km গিয়েছে, কালগন আবার প্রদিকে 30 km কারপর দক্ষিণ দিকে 20 km পশ্চিম দিকে 10 km ভারপর আবার উত্তর দিকে 10 km গিয়েছে।

(a) গাড়িটি কম km দ্বাতু গতিক্রম করেছে:

উত্তর: এটা বের করা খুবর কোজা, সবগেলো সাতিক্রাক্ত সূত্রকু গোপ করলেই সেটা পেয়ে যাব।

कि 2.4: गिर्फात म नाम गिरमुक

 $20 \, km + 30 \, km + 30 \, km + 20 \, km + 10 \, km + 10 \, km = 120 \, km$

h। তোমার স্কুলর সাপেকে গাড়িটির সর্কমান অবস্থান কোথায়?

উদ্ভৱ: জোনার কুলের সাপেকে গাঁজিতে অবস্থান খের করার আগে আমরা একটা প্রাকে (ছবি 2,4)
গাঁজিটি কথন কোন দিকে গিয়েছে দেটা একে নিই কাশলে বিষয়টা বোঝা সকল ধরে। হরির উপদে
উদ্ভা দকিপ-পূর্ব এবং পদিম কোন নিকে দেখানো হয়েছে- আন আনকান নামর ইছে করে সামরা দিক
বোঝানোর জন্য দেও বসিরেছি। দেখাই নাচেন্ড উদ্ভা দিক হছে γ (নাজেই নাকণ দিক হবে – γ) পূর্ব
দিক হচেন্ত γ , কাজেই পশিস্য দিক হচেন্ত – γ)

ছবি 2.4 এব প্রাফ গোকে জামন। সরাসনি দেখতি এটার বছমান শ্বন্দ্রালে τ এর মান হচ্ছে 40~km এবং ν এবং মান হচেছে 20~km

পামরা প্রায়ে না একেও এটা বের করতে পারতাম। গাড়িটি যথন পুন কিংবা পাচিমে প্রেচ ওখন 🗴 এট মানের পাইলার্ডন হয়েছে কিন্তু y এর মানের কোনো পাইলার্ডন হয়নি। আনার পাড়িটি মখন উত্তর কিবো মাজিনে পিয়েছে কখন y এর মানের পাইলার্ডন হয়েছে কিন্তু X এর মানের কোনো পাইলার্ডন ময়নি। তাই আনহা লিখতে পারি:

 $x=20+39-19=40\,km$ (পূর্ব দিকে গোলে সমান্মক বা পজিনিক পশ্চিম দিকে পোলে সমান্মক বা পেটোটির ব্যৱহার করেছি ()

 $y=30-20+10=20\,km$ (উন্নে দিকে গেলে খনাত্মক বা গাজিটিভ দক্ষিণ নিকে গেলে খনাত্মক বা নেগেটিভ ধরে নিয়েছি।।

কাজেই তোমার কুলের সাম্পাকে গাড়ির নর্জমান অবস্থান (x, y) ফাছে (40km, 20km) কিবো প্র দিকে 40 ও উত্তর দিকে 20 km.

चैमाञ्जूष 2.2: इति 2.5 ज सम्भार्ता P जन जनकार । जनाः क्रमिता धकार्य कहा

উজ্ঞাঃ হাঁব 2.5 পোকে আনতা দেখতে পাছি P এব খনসান হছে (2, 2)। জামরা মন নিজু থেকে P পরত এজনী রেখা নিছে এই রেখানির সৈন্য হয়েছ μ এবং এই রেখানি x এর আপেকে যে কোপ করেছে তেনি প্রছেঞ্ছ π জহলে $x = \sqrt{x^2 + y^2} = \sqrt{2^2 + 2^2} = \sqrt{8}$

 $tan\phi = - = - = 1$

কাজেই *আ* = 49 -

এবারে আমরা একটা ছোট জটিনতা ট্রেরি করি। ধরা বাক P এর সবস্তান হলেছ (-2 -2) (ছার 2 ৪। এবারে ৮ এবং ib কম্ম হরে।

$$r = \sqrt{(-2)^2 + (-2)^2} = \sqrt{8} = 2.83$$

এক
$$h(t)(\phi) = \frac{y}{h} = \frac{-\frac{1}{2}}{-\frac{1}{2}} = 1$$

কাজেই $\phi = -45^{\circ}$

আমরা ছবছ একই উত্তর পাছি শদিও P এর অবস্থানীন দমপূর্ণ আন্য জারগায়। এখানে অরাক হওয়ার কিছু কেই কাবল অসল উত্তর w=225 কিছু সাহেছ $\tan 45^\circ=\tan 225^\circ=1$ কাছেই $\varphi=45^\circ$ বা 225° দেনি ব্রহে পার্রছলাম না। চোখে দেখলে আমরা নেন চন করে করে ফেলতে পারি এবং বলতে পারি $\varphi=45^\circ$ না. $\varphi=225^\circ$, এটা জেনে রাখা তালো এই জন্য অব্যের মতো কর্মুলা বনিয়ে ছিনার করতে হয় না মন সমরেই মাখার মাঝে আসল ছবিন রাখতে হয়।

য়বি 2.6: P এর অবস্থান যোগানে *পু*ংগল মান 225

টিক ভাবে কম্মাটি সমায়ান করলে এভাবে করতে হরে।

$$= r \cos \varphi$$
 কিংবা $-2 = 2.83 \cos \varphi$
 $\cos \varphi = \frac{-2}{2.83} = -0.707$

 $\psi=135^\circ$ বিধ্বন 225 ° কাজেই খ্যাসনা এখনো জানি না সঠিক উত্তর নামটা । আবার z=z $zm\varphi$ কিংনা -2=2.83 $r/m\psi$ $zm\varphi=\frac{-2}{2.83}=-0.707$

,,, = 1.35 কিংলা 315° এখন 'মামরা জানি কোনটা গঠিক উত্তর 'মামরা' মদি ..: = 215° চত্র মিই ভাজাসেই ২ এবং । দটোর জন্য সঠিক উত্তরপান।

ছবি 2.7: ম. y. অক্লে y. – x. – y এক: ম অক্লে ঞ্চএট মান

ৰাৱা ত্ৰিকোনোমতি করেছ ভাদেরকৈ আমরা মনে করিয়ে দিই ক্ল'আমরা এ অফ থেকে মাণচি এন। নেটা মৰ নময় ধৰা সুক্ত বা পজিটিভ (ছবি ২ ৭) বাবে নিছি y অকে এর মান 90° —), 'মকে 180° —। সাক্ষে 370° এবং পুরোটা মূত্র কথন সাধান । সক্ষে ফিরে স্নানে তথন এটা 360° এবং বেটাকে আরার সক্ষ পরে নিচিছ।

ঘবি 2.8: র ্ম শ্রেকে P ও Q বিশ্বর অন্যান দেও মূচ এর মান দিয়ে প্রকাশ কর। করেছে।

चिमाञ्चल 2.3; इन्दे 2.8 च (लक्षारता 🏿 प्रका (1 प्रकाणवद्यान रूप्यक) कृत

जिल्क में लेक करा है = 30°

TRUME:
$$\tau = 5 \, \text{cm} \, 30^\circ = 5 \times 0.866 = 4.3$$

 $v = 5 \, \text{sin} \, 30^\circ = 5 \times 0.5 = 2.5$

ু এর জনা ্ = ২ এর ে = 285

$$x = 3\cos 285^{\circ} = 3 \times 0.259 = 0.777$$

 $y = 3\sin 285^{\circ} = 3 \times (-0.966) = -2.898$

আনৱা যে বৰুম হেবহিলাম x পদিন্তি কিছু v এর মান কেটেনিছ।

কাজেই তোমনা ব্যতে পারছ একটি সমত্যে কোনো একটি অবস্থানকৈ নিৰ্দিষ্ট করতে আমাদেন দ্যানি দরকার। যদি সেটি এক সমত্যে না হয়; যেমন একটা গাছের জালে বসে থাকা একটা কাক, কিংবা আকাশে উভতে থাকা একটা প্লেন্স (ছবি 2.9)

বুঝতেই পারছ তখন দুটি রাশি দিয়ে আর সেটি প্রকাশ করা যাবে না উচ্চতাটাকে দেখানোর জন্য আমাদের আরো একটি রাশি দরকার। x, y এর রেলায় বিষয়টা পানিয় মতো সোজা, আমরা ত্রিমাত্রিক একটা স্থানাংক কাঠানো (coordinate system) তৈরি করে নেব, তথন x, y এর সাথে স্তীয় রাশি z এর যোগ হবে, 2,9 ছ্রিতে যেমন দেখানো হয়েছে। যাদি r p দিয়ে করতে চাইং গোটি সম্ব কিছু দেটা ক্রমন করে করা যায় তা তোমাদের ওপর ছেড়ে দেয়া হলো। (ব্যাতেই পারছ নূতন আরেকটা কোণ A যোগ করতে হবে- তিয়াত্রিক জগত তাই পুরে-ফিরে তিন্টি রাশিমালাই দরকার। তার বেশিও নয়, কমও নয়।)

चुनि 2.9: একটি খ্রানের স্বভার বোলাবের জন্য সংস্ ১, মু ৪ ৯ এই মান সক্রবার ইয়া।

2.2 স্থিতি ও গতি (Rest and Motion)

আমরা যেহেতু অবস্থানের বিষয়টা বুঝেছি এখন স্থির বা স্থিতি আর চলমান বা গতি বুঝতে কোনো সমস্যা হবার কথা নয়। সময়ের সাথে অবস্থানের কোনো পরিবর্তন না হলেই সেটা স্থির, আর যদি অবস্থানের পরিবর্তন হয় তাহলেই সেটা গতিশীল অর্থাৎ সেটার গতি আছে বুঝতে হবে।

এখানে অবশ্যি ছোট একটা জটিলতা আছে— অবস্থান প্রকাশ করতে হলে একটা মূল বিন্দু দরকার, আর সেই মূল বিন্দুটাই যদি স্থির না হয় তখন কী হবে? এখন যেটাকে আমরা স্থির ভাবছি সেটাই যদি গতিশীল হয়? সত্যিকারের স্থির মূল বিন্দু পাওয়া সোজা কথা না। পৃথিবীর পৃষ্ঠে একটা মূল বিন্দু ধরে নিলে কেউ আপত্তি করতেই পারে, পৃথিবীটা তো স্থির না সেটা তো নিজের অক্ষের ওপর ঘুরছে কাজেই পৃথিবীর পৃষ্ঠে সব কিছু ঘুরছে! আমরা বুদ্ধি করে তখন বলতে পারি পৃথিবীর কেন্দ্রবিন্দুটি হচ্ছে মূল বিন্দু কিন্তু তখন কেউ একজন আপত্তি করে বলতে পারে সেটিও তো স্থির নয়, সেটি সূর্যের চারিদিকে ঘুরছে। আমরা তখন আরো বুদ্ধিমানের মত বলতে পারি তাহলে সূর্যের কেন্দ্রবিন্দুটিই হোক আমাদের মূল বিন্দু কিন্তু তখন অন্য কেউ আপত্তি করে বলতেই পারে, সূর্যও তো স্থির নয়, সেটাও তো আমাদের গ্যালাক্সির (বাংলায় নামটি ছায়াপথ, ইংরেজিতে Milky Way) কেন্দ্রকে ঘিরে ঘুরছে। বুঝতেই পারছ এখন সাহস করে কেউ আর গ্যালাক্সির কেন্দ্রকে মূল বিন্দু ধরবে না— কারণ গ্যালাক্সি বিশ্বভ্রমান্টে স্থির কে বলেছে?

আসলে এত জটিলতার কোনো প্রয়োজনও নেই, আমাদের কাজ চালানোর জন্য আমাদের কাছে স্থির মনে হয় এ রকম যেকোনো বিন্দুকে মূল বিন্দু ধরে সব কাজ করে ফেলতে পারব, শুধু বলে দেব সেই মাপজোক কোন মূল বিন্দু এর সাপেক্ষে করা হয়েছে। বিজ্ঞানীরা পরমাণুর ভেতরে ইলেকট্রনের অবস্থান থেকে শুক্ত করে মহাকাশে পাঠানো উপগ্রহ পর্যন্ত সব কিছুর মাপজোক করে ফেলেছেন, কোনো সমস্যা হয়নি। সত্যি কথা বলতে কী যদি আমাদের মূল বিন্দুটি সমবেগে চলতে থাকে তাহলে আমরা কোনোদিন জোর করে বলতেও পারব না যে এটা সমবেগে চলছে, নাকী এটা আসলে স্থির এবং অন্য সব কিছু উল্টোদিকে সমবেগে চলছে! থেমে থাকা ট্রেনে বসে পাশের লাইনের চলন্ত ট্রেনকে দেখে কি আমাদের মনে হয় না যে ওটা ট্রেনটাই স্থির, আমরাই চলছি? কাজেই আমরা বলতে পারি একটা মূল বিন্দুর সাপেক্ষে যদি কোনো বস্তুর অবস্থান সময়ের সাথে সাথে পরিবর্তন হয় তাহলে সেই বস্তুটি গতিশীল। যেহেতু মূল বিন্দুটি আসলেই স্থির কিনা সেটি গুরুত্বপূর্ণ নয় কারণ আসলে সব গতিই আপেক্ষিক।

আমাদের চারপাশে আমরা অনেক ধরনের গতি দেখতে পাই, সবচেয়ে সোজাটি হচ্ছে সরল রেখার গতি। একটা মার্বেল গড়িয়ে দিলে সেটা সামনের দিকে যায়– গতিটা সরল রেখার মাঝে সীমাবদ্ধ থাকে কাজেই এটাকে রৈখিক গতি (linear motion) বলে। একটা বল উপর থেকে ছেড়ে দিলে সেটা সোজা নিচের দিকে পড়ে, সেটাও রৈখিক গতি।

কোনো কিছু যদি একটা বিন্দুকে ঘিরে ঘুরতে থাকে তাহলে সেটা হচ্ছে ঘূর্ণন গতি (Rotation)। বৈদ্যুতিক পাখা ঘড়ির কাটা এসবকে ঘূর্ণন গতির উদাহরণ হিসাবে বলা গেলেও এর মাঝে ঘূর্ণন গতির চমকপ্রদ বিষয়টা নেই, ঘূর্ণন গতির সুন্দর উদাহরন হচ্ছে চাঁদ। চাঁদকে কোনো কিছু দিয়ে পৃথিবীর সাথে বেঁধে রাখা নেই তবু এটা পৃথিবীকে ঘিরে ঘুরছে— শুধু তাই নয় এটা আকাশ থেকে টুপ করে পৃথিবীতে পড়েও যায় না!

যত রকম গতি আছে তার মাঝে সবচেয়ে চমকপ্রদ গতি হচ্ছে স্পন্দন গতি (Simple Harmonic Motion)। প্রকৃতিতে আমরা এই গতিটাই মনে হয় সবচেয়ে বেশি দেখতে পাই। যখন

একটা পেন্তুলামকে দুলিয়ে দেয়া হয় তখন আমরা এই গতি দেখতে পাই, যখন আমরা কথা বলি তখন বাতাসের অনু এই গতি দিয়ে শব্দকে এগিয়ে নিয়ে যায়, যখন গিটারের তারে আমরা ঠোকা দিই তখন গিটারের তারে এই স্পদ্দন গতি দেখা যায়।

রৈখিক, ঘূর্ণন আর স্পন্দন ছাড়াও গতির ধরন দেখে আমরা আরো নানাভাবে গতিকে বিভিন্ন নামে ডাকতে পারি– কিন্তু এই মুহূর্তে আমরা যা করতে চাইছি তার জন্য ঘুরে ফিরে এই তিনটি দিয়েই আসলে মোটামুটিভাবে প্রয়োজনীয় গতিগুলো ব্যাখ্যা কর সম্ভব।

2.3 ক্ষেলার ও ভেক্টর রাশি (Scalar and Vector)

আমাদের পরিচিত জগতে আমরা যা কিছু পরিমাপ করতে পারি সেটাই রাশি, আনন্দ কিংবা দুঃখ রাশি নয় কিন্তু তাপমাত্রা রাশি। তার কারণ আনন্দ কিংবা দুঃখকে মেপে একটা মান দেয়া যায় না কিন্তু তাপমাত্রা মেপে মান দেয়া সান্তব। তোমার শরীরের তাপমাত্রা 37° C কিংবা 98.4° F তাপমাত্রা বোঝানোর জন্য একটি সংখ্যা বললেই চলে কিন্তু অনেক রাশি আছে যেগুলোকে একটি সংখ্যা দিয়ে প্রকাশ করা যায় না, হয় তার মানের সাথে একটা দিক বলে দিতে হয়, কিংবা একাধিক মান বলে দিতে হয় যেন সেগুলো মিলিয়ে তার মান এবং দিক দুটোই নির্দিষ্ট করে দেয়া যায়। অবস্থান ছিল সে রকম একটি রাশি, সেটা বোঝানোর জন্য আমাদের শুধু দূরত্ব দিয়ে কাজ হয়নি, তার দিকটিও নির্দেশ করতে হয়েছিল! আমরা

দিকটি একটা কোণ দিয়ে প্রকাশ করে দেখিয়েছিলাম, ম এবং y দিকে দুটো অংশ দিয়েও দেখানো হয়েছিল। কাজেই যে রাশি ওপু একটি সংখ্যা দিয়ে প্রকাশ করা যায় সেটা হচ্ছে কেলার আর যেটা প্রকাশ করার জন্য একটা দিকও (ছবি 2.10) বলে দিতে হয় সেটা হচ্ছে ভেক্টর।

তাপমাত্রা ছাড়াও কেলারের উদাহরণ হচ্ছে
সময়, দৈর্ঘ্য কিংবা ভর। কারণ এগুলো শুধু একটা
সংখ্যা দিয়ে প্রকাশ করে ফেলা যায়। তোমরা
দেখবে অবস্থান ছাড়াও ভেক্টরের উদাহরণ হচ্ছে
বেগ কিংবা বল। কারণ এগুলো প্রকাশ করতে হলে
মানের সাথে সাথে দিকটাও বলে দিতে হয়।

ভেন্তর রাশিকে স্কেলার রাশি থেকে আলাদা করে লেখার জন্য সেটাকে মোটা (Bold) করে লেখা হয় (x, y কিংবা A, B)। বইয়ে কিংবা কম্পিউটারে প্রিন্ট করার সময় যে কোনো কিছু মোটা করে লেখা সহজ। কিন্তু যখন কেউ হাতে কাগজে লিখে তখন কোনো কিছুকে ভেন্তর বোঝানোর জন্য তার উপরে ছোট করে একটা তীর চিহ্ন দেয়া হয় (x, y কিংবা রু, B)।

ছবি 2.10; A ও B তেউর হ্বহ এক যদিও ভিন্ন অবস্থানে ব্যাহে, C ভেউর A ও B থেকে ভিন্ন কারণ মান সমান হলেও দিক ভিন্ন। D ভেউর C ভেউর থেকে ভিন্ন, কারণ দিক একই হলেও মান সমান নয়

দবি 2.11: A দ B দ্বটি ভেটন সূজ বিন্দু খেকে আৰু। কমেছে

তোমাদের আধানে যেটুকু পদার্থনিজ্ঞান শেখানো হবে সোধানে আসলে সভিজ্ঞান অর্থে ভেক্টরের ব্যবহারের প্রোজন হবে না, বড় জোর কোনটা ক্ষেলান কোনটা ভেক্টর মাঝে মাঝে সোন মনে করিয়ে দেয়া হবে।

উদাহরণ 2.4: ছবি 2.11 ,ত দেশালো A এব। H দুটি ভেটার। তাদের যোগফল কতঃ

উত্তর 45উন্পলোর মান এবা দিক সুটোট আছে। এটি যেতারে কেথানো আছে তাতে প্রত্যেকটা ভেইরকেই আমরা দুটো রাাশ দিয়েই প্রকাশ করতে পারি। ছবিতে দেখানো ভেইরের জনা , দ্বাং দুদিয়ে প্রকাশ করা সহজে।

A কেররের হু এবং y সংখ্যের মান স্থাতেকে ন প্রায়

 \mathbb{R} জ্ঞোরের χ শবং χ অংকের মান যথাক্রনে 1 এবং 3

A এবং B হোটা করতে হলে দুটো ভেরীবের এ নাংলা এবং ২ নাংশ নালাদাভাবে যোগ করতে হবে।

A+B=C হয়েন C, এর χ জালো হজের 4+2=6 এবং C এর χ জাগো হজের L+3=4

ছবি 2.12: A ও B ভেট্টৰ যোগ করে (; ।ভট্টৰ পাওয়া গেতে

কাজেই আমরা C ভেন্তর মাঁকতে পারি। তোমনা ইট্ছে করলেই দেখাতে পান মেখানে A ভেন্তর শেষ হয়েছে সেখান পেকে B ভেন্তরটি জন্ম তারকো A ভেন্তরের গোড়া থেকে B ভেন্তরের শেষ মাথা হবে C ভেন্তর। (ছবি 2.12)

এখানে একটা জিনিস লক্ষ করা, আমরা ভেউত লেখার জন্ম ঐ, টু, েঁ জাগান ∆, ৪, ৫ নিখেছি, এটাই প্রচলিত নিয়ম। খাতায় কলম দিয়ে য়েখেত্ ∆ এবং ∆ এব পার্থকন কোনালো সহজ নয় তাই হাত দিয়ে লেখার সময় তেউরকে ঐ, লিখালে বোঝানো সহজ হয়।

खेनाख्यभ 2.5: 2.13 इतिहरू एनशास्त्र। A - B समान तन्त्र १

উন্ধা: আগের বার A+B জংশাংলো যোগ করতে হয়েছিল, এরারে বিয়োগ বরতে হরে। A-B=D হলে C এন । বংশা 4-B=0 এন । বংশা 4-B=0

আজেই আমরা D জেন্তুর আঁকতে পারি: ছবি 2.13 আরার অফ কর A-B=D কে মেখা দ্বার A=D+B

কাজেই আগের বারের মতো আমরা বলতে পারি D ভেটর যেখানে শেষ হয়েছে সেখান থেকে B ভেটর ওক করলে আমরা Aভেটর পেয়ে থাব।

উদাহরণ 2.6: উত্তর, দক্ষিশ, পূর্ব এবং পশ্চিম দিকে লারটি সমমান ভেটরের যোগফল কড়ং

উত্তর: 2.14 ছবিতে চারটি ভেরর দেখালো হয়েছে। আমরা ইটেছ করলে তালের x অংশ থলো এবং y অংশওলো আলাদাভারে মোদ করে দুড়ান্ত ভেররটা বের করতে পারি। আমরা আরো লহজ উপায়ে অন্যভাবেও সেটা করতে পারি। ভেররের যোগ বের করার সময় আমরা দেখিয়োছ একটা ভেরর ঝেখানে শেষ হয়েছে রেখান থেকে আরেকটা ভেরর ওক করা হলে প্রথমটার ওক এবং কিতীয়টার শেষ হয়েছ যোগ করা ভেরর। কাজেই চারটা ভেরর একটার পর আরেকটা বসিয়ে য়েতে পারি। আমরা সেভাবে করে পেলে দেখব য়োগফল শুনাং।

ছবি 2.13: A থেকে B হেজন নিয়োগ করে Dতেজন পাওয়া গোছে, বার অর্থ A+D=B

ছবি 2.14: চার্নেটকে সমান মানের চারটি ভেজন যোগ করা হলে তার যোগকল হবে শুনা

2.4 কো, দ্রুতি ও সরণ (Velocity, Speed and Displacement)

को नलए की वांबाला इस आमरा गवाँ लोगे (मोंग्रेप) जानि, काला किছू के कुछ खे याख्य छात भित्रमाली इस्ट वर्ण। वर्ण इस्ट एडेंड जारे के कुछ बाद्य गास्त्र छुँ, लोगे नलला इस्त ना, लोगे कान मिस्क याख्य स्त्रों। दल मिस्क इस्त । लागे विद्याल वर्णां लागे आसा प्रकार सामि गाया करा हिस्स कि एक कि (Speed)। आमासि के सम्मिन जीवत कथा नलए भिसा को प्रवर करा प्रकार प्रकार प्रकार विद्याल पासि के प्रवास कि लागे विद्याल करा स्वास कि प्रवास के प्रवास के प्रवास के प्रवास के स्वास के स्वास के प्रवास के स्वास के स

বিজ্ঞান কিংবা পদার্থবিজ্ঞানে "গড়" একটা খুব ওরুত্বপূর্ণ ব্যাপার, নিখুঁতভাবে কিছু পরিমাপ করতে হলে অনেকবার একটা এক্সপেরিমেন্ট করতে হয় তারপর ফলাফলের গড় নিতে হয়। অনেক জায়গায় প্রকৃত মানটি জানা সম্ভব হয় না তখন গড় মান নিয়েই সম্ভষ্ট থাকতে হয়। তাই বোঝাই যাছে বেগের মতো শুরুত্বপূর্ণ একটা রাশিমালারও নিশ্চয়ই অসংখ্যবার গড় নিতে হতে পারে।

বেগ হচ্ছে অবস্থানের পরিবর্তনের হার অর্থাৎ একক সময়ে অবস্থানের কতটুকু পরিবর্তন হয়েছে তার মান। অবস্থানের পরিবর্তনের আরেকটা নাম আছে. সেটা হচ্ছে সরণ (Displacement), অবস্থান থেছেতু ভেক্টর তাই সরণও ভেক্টর। তাই যদি আমাদের বেগ বের করতে হয় তাহলে নির্দিষ্ট সময়ে যেটুকু সরণ হয়েছে সেটাকে অতিক্রান্ত সময় দিয়ে ভাগ দিতে হবে। ঐ সময়টুকুতে বেগ যে সব সময় সমান থাকবে তার কোনো গ্যারান্টি নেই, কখনো বেশি বা কম হতে পারে তাই আমরা যদি খানিকটা সময়ে যেটুকু সরণ হয়েছে সেটা থেকে বেগ বের করি তাহলে আসলে বের হবে সেই সময়ের গড় বেগ। এবারে আমরা প্রথম উদাহরণটাতে ফিরে যাই। একটা মাইলপোস্টে লেখা আছে ঢাকা শহরের দূরত ও কিলোমিটার এবং তুমি তিন ঘন্টায় হেঁটে ঢাকা শহরে পৌছ। তোমার বেগ কত?

হয়তো হাঁটতে হাঁটতে তুমি কখনো বিশ্রাম নিয়েছ, কখনো জোরে হেঁটেছ, কখন আন্তে হেঁটেছ তাই প্রতি মুহূর্তের বেগ আমরা জানি না। আমরা শুধুমাত্র এই তিন ঘণ্টায় তোমার গড় বেগ কতাটুকু সেটা বের করতে পারি। গড় বেগ বের করার জন্য প্রথমে দেখতে হবে কতটুকু সরণ হয়েছে। সেটা খুবই সোজা, কাকটা যে পথ দিয়ে উড়ে এসেছে সেটাই সরণ অর্থাৎ শেষে যে অবস্থানে পৌছেছ সেটা থেকে প্রথম অবস্থানের পার্থকটুকুই সরন। কাজেই আমরা বলতে পারি তোমার সরণ ও হচ্ছে উত্তর দিকে 3 km.

সরপের মাত্রা L

সময় লেগেছে 3 ঘণ্টা কাজেই গড় বেগ (উত্তর দিকে)

$$V = \frac{s}{t} = \frac{3}{3} = 1 \, km/hour$$

বেগের মাতা LT⁻¹

কাজেই তোমার গড় বেগের মান হচ্ছে $1 \, km/lour!$ তুমি নিশ্চয়ই এখন মাথা চুলকে ভাবছ আমি তিন ঘন্টায় 9 কিলোমিটার হেঁটেছি, একেবারে গ্যারান্টি দিয়ে বলা যায় প্রতি ঘন্টায় মোটামুটি $3 \, \mathrm{km}$ করে হেঁটেছি কিন্তু আমার বেগ মাত্র $1 \, km/lour$ কেমন করে হয়?

ব্যাপারটা আরো জটিল করে দিতে পারি! ধরা যাক তুমি গাড়ি করে স্কুল থেকে রওনা দিয়েছ। দ্রাইভার সারা শহর ঘুরে চার ঘণ্টা পরে স্কুলে কিরে এসেছে। গাড়ির মাইল মিটারে দেখা গেল এই চার ঘণ্টায় গাড়িটা 100 কিলোমিটার গিয়েছে। গাড়িটার গড় বেগ কত? বুবাতে পারছ প্রথমে চার ঘণ্টায় কতটুকু সরণ হয়েছে সেটা বের করতে হবে। যেখান থেকে রওনা দিয়েছ যেহেতু সেখানেই কিরে এসেছ তাই সরণ হছে শূন্য! কাজেই চার ঘণ্টার গড় বেগ হছে শূন্য! মনে রেখো গড় বেগ শূন্য, তার মানে এই না যে তাৎক্ষণিক বেগ শূন্য! গাড়িটা যখন যাছিলে তখন প্রতি মুহূর্তেই কিন্তু তার একটা বেগ ছিল যেটি মোটেও শূন্য নর— কিন্তু চার ঘণ্টা গড় করার পর সেটা শূন্য হয়েছে কারণ বেগ হছে ভেন্তর। ভেন্তরের দিক থাকে, কাজেই গাড়িটার বেগ কখনো ছিল উত্তর দিকে. ঠিক সে রকম কখনো ছিল দক্ষিণে, একটা আরেকটাকে কাটাকাটি করে দিয়েছে।

তোমাদের হতাশ হবার কোনো কারণ নেই, বেপের গড় নিয়ে জটিলতা দূর করার জন্য "দ্রুতি" রাশিটি তৈরি হয়েছে। দ্রুতি ভেক্টর নয়, তাই যখন গড় নেয়া হয় তখন এক অংশ অন্য অংশকে কাটাকাটি করতে পারে না! কাজেই তিন ঘণ্টায় 9 km হেঁটে তুমি যখন ঢাকা পৌছেছ তখন তোমার গড় দ্রুতি

$$V = \frac{d}{t} = \frac{9}{3} = 3 \text{ km/hour}$$

দ্রুতির মাত্রা LT^{−1}

ঠিক তুমি যে রকম ভেবেছিলে। স্কুলের গাড়ির বেলাতেও সেটা সত্যি, তার গড় দ্রুতি $V=rac{100}{4}=25~km/hour$

যেটা মোটেও শূন্য নয়। (নিশ্চয়ই এটাও লক্ষ করেছ দ্রুতির বেলায় কোনো দিকের কথা বলতে হল না!)

উদাহরণ 2.7: বেগ আর দ্রুতির মাঝে সম্পর্কটা আরো ভালো করে বোঝার জন্য আমরা আরেকটা উদাহরণ নেই। ধরা যাক একটা সুতা দিয়ে ছোট একটা পাথরকে বেঁধে তুমি সেটাকে মাথার উপরে ঘোরাছে। পাথরটা কি সমবেগে যাছে নাকি সমদ্রুতিতে যাছে? নাকি সমদ্রুতি এবং সমবেগে যাছে? (ছবি 2.15)

উত্তর: একটু চিন্তা করলেই তুমি বুঝতে পারবে যে পাথরটার দ্রুতির কোনো পরিবর্তন হচ্ছে না কিন্তু প্রতি মুহূর্তে বেগের পরিবর্তন হচ্ছে! কারণ প্রতি মুহূর্তে পাথরটার গতির দিক পার্টে

ছবি 2.15: সূতায় বেধে একটি পাথর ঘোরানো হলে দ্রুতি এক থাকলেও বেগের পরিবর্তন হয়।

যাচেছ। এটি যদি সোজা যেত তাহলে গতির দিকের পরিবর্তন হতো না কিন্তু যেহেতু ঘুরছে তাই দিকটা পাল্টে যাচ্ছে। কাজেই এটি হচ্ছে সমদ্রুতির উদাহরণ– সমবেগের নয়! সমবেগ হলে সমদ্রুতি হতেই হবে কিন্তু সমদ্রুতি হলেই যে সমবেগ হতে হবে তার কোনো গ্যারান্টি নেই।

উদাহরণ 2.8: পাথরটিকে হঠাৎ ছেড়ে দিলে তখন কি সেটা সমবেগ এবং সমদ্রুতিতে যাবে?

উত্তর: পাথরটি হঠাৎ ছেড়ে দিলে এটা সোজা সমবেগ এবং সমদ্রুতিতে ছুটে যাবে– বাতাসের ঘর্ষণ মাধ্যাকর্ষণ বল এসব যদি না থাকত তাহলে সমবেগ এবং সমদ্রুতিতে যেতেই থাকত!

উদাহরণ 2.9: ছবি 2.16 এর গ্রাফে কোনো একটা বস্তুর সময়ের সাথে অবস্থানের পরিবর্তনটুকু দেখানো হয়েছে। কোনটি সমবেগ এবং কোনটি সমবেগ নয় বল। গ্রাফে সময়ের সাথে বেগের মান দেখাও। উত্তর: 🖟 ক্ষেত্রে বস্তুটি স্থির, সময়ের সাথে অবস্থানের পরিবর্তন হচেছ না। তাই তার বেগ পূনা। ৪ ক্ষেত্রে বস্তুটি সমবেশে যাছে।

েকেত্রে নিশ্চরই বন্তুটির বেগ বেড়ে যাছে।

প্রথম প্রাফে সময়ের সাপে অবস্থানের পরিনর্ভানের জন্য যে বেগ হবে দিতীয় প্রাফে সেটি দেখানো হয়েছে। একটু খুঁটিয়ে দেখা

ছবি 2,16: কোনো একটি বস্তুর সময়ের সাথে অবস্থানের পরিবর্তন।

2.5 তুরণ (Acceleration)

বেগ দ্রুতির ব্যাপারটা আমরা অনেকটাই সাধারণ জ্ঞান দিয়ে বুঝাতে পারি। বাংলা দ্রুতি শব্দটি সেভাবে না হলেও ইংরেজি Speed শব্দটি দৈনন্দিন জীবনে আমরা অনেক ব্যবহারও করি। তুরণের বিষয়টা খানিকটা ভিন্ন; আমাদের দৈনন্দিন জীবনের অনেক জায়গাতেই সেটা আমরা দেখি, কিন্তু পরিষ্কার ভাবে এটা বুঝাতে পারি না। আমাদের দৈনন্দিন কথাবার্তার তুরণ শব্দটি ব্যবহার হয় না। তারচেয়ে বড় কথা পদার্থবিজ্ঞানের সবচেয়ে চমকপ্রদ যে বিষয়গুলো আছে তার মাঝে তুরণ একটি, কাজেই এটা আমাদের সবারই সতিকোর ভাবে অনুভব করা দরকার।

যখন কোনো কিছু সমবেগে যায় তার মাঝে কোনো ত্বরণ নেই। বেগের পরিবর্তন করতে হলে ত্বরণের প্রয়োজন। 2.16 ছবিতে ৫ এর ক্ষেত্রে বেগের পরিবর্তন হচেছ অর্থাৎ এখানে ত্বরণ রয়েছে। কাজেই ত্বরণ বলতে বোঝানো হয় বেগের পরিবর্তনের হার। বেগ যেহেতু ভেক্টর তার মান আর দিক দুটোই আছে কাজেই দিক ঠিক রেখে মান পরিবর্তন হলে যে রকম বুঝতে হবে ত্বরণ হচেছ ঠিক সে রকম বেগের মান অপরিবর্তিত থেকে দিকের পরিবর্তন হলেও বুঝতে হবে ত্বরণ হচেছ। গাড়ির গতি বেড়ে যাওয়ার অর্থ ত্বরণ হওয়া গাড়ি ঘুরে যাওয়া মানেও ত্বরণ হওয়া।

উদাহরণ 2.10: ছবি 2.17 এর এাফে কোনো একটা বছর সময়ের সাথে বেমের পরিবর্তন বেশানো হয়েছে। কোপায় তুরণ আছে কোপায় নেই বল।

উদ্ভবঃ A তে তুরণ আছে, B তে তুরণ নেই, C তে তুরণ আছে, D তে মন্দন বা নেগেটিভ তুরণ আছে।

প্রথমে দিক অপরিরর্তিত রেখে ওধু মানের পরিবর্তন নিয়ে আলোচনা করা যাক, অন্যভাবে বলা যেতে পারে রৈখিক গভিতে তুরণ বলতে কী বোঝাই সেটার আলোচনা।

ত্রণ হচ্ছে বেগের পরিবর্তনের হার, বদি সমত্রণ হয়, অর্থাৎ সময়ের সাথে সাথে তুরণের পরিবর্তন না হয় তাহলে আমরা লিখতে পারি

হবি 2.17; কোনো একটি বস্তুর সময়ের সাথে বেগের পরিবর্তন।

অর্থাৎ যদি প্রথমে কোনো কিছুর বেগ হয় u এবং t সময় পর তার বেগ হয় v তাহলে ত্বুরণ a হচ্ছে

$$a = \frac{v-u}{r}$$

ছবি 2.18: স্থির অবস্থায় ওক করে সমত্রানে পতিশীল বন্ধর বেগ বেড়ে যাওয়া

ত্বরণের মাত্রা LT⁻²

কাজেই যদি ত্রণ a জানা থাকে তাহলে কোনো বস্তুর আদি বেগ u হলে t সমর পর তার বেগ v বের করা খুব সোজা। (ছবি 2.18)

$$v = u + at$$

বস্তুটি যদি স্থির অবস্থা থেকে শুক্র করে তাহলে

$$v = av$$

আমরা ইতোমধ্যে বলেছি এখন পর্যন্ত বা বলা হয়েছে ভার সব কিছু সতিঃ সমত্বরণের জন্য। যদি

সমত্রণ না হয় তাহলে কিন্তু এত সহজে শুধুমাত্র আদিবেগ আর শেষ বেগ থেকে তুরণ বের করে কেলা যাবে না। উদাহরণ 2.11: একটা গাড়ির বেগ 1 মিনিটে স্থির অবস্থা থেকে বেড়ে 60 km/hour হয়েছে, গাড়িটির তুরণ কত?

উত্তরঃ আমরা সময়ের জন্য মিনিট বা ঘণ্টা ব্যবহার না করে এখন থেকে সেকেন্ড (s) এবং দূরত্বের জন্য মাইল বা km ব্যবহার না করে m ব্যবহার করব।

গাড়ির চুড়ান্ত বেগ

$$v = 60 \frac{km}{hour} = \frac{60 \times 1000 \, m}{60 \times 60 \, s} = 16.67 \, m/s$$

কাজেই সমস্যাটি হচ্ছে এ রকম $60~{\rm s}$ এ একটা গাড়ি স্থির অবস্থা থেকে শুরু করে $16.67~{\rm m/s}$ গতিতে পৌছে গেছে গাড়িটির তুরণ কত?

$$v = at$$

$$a = \frac{v}{t} = \frac{16.67 \, m/s}{60 \, s} = 0.278 \, m/s^2$$

উদাহরণ 2.12: একটা গাড়ি 60 mile/hour বেগে চলতে হঠাৎ তার ইঞ্জিন বন্ধ হয়ে যায়। গাড়িটি থামতে 5 minute সময় নেয়। গাড়িটির মন্দন কত?

উত্তরঃ তুরণ থাকলে বেগ বাড়তে থাকে, আর বেগ কমতে থাকার অর্থ ঋণাত্মক বা নেগেটিভ ত্বরণ বা মন্দন রয়েছে।

আবার আমরা সময়ের জন্য s এবং দূরত্বের জন্য m ব্যবহার করব।

1 mile = 1.6 km=1600 m

গাড়িটির আদি বেগ

$$u = 60 \frac{mile}{hour} = \frac{60 \times 1.6 \times 1000 \, m}{60 \times 60 \, s} = 26.8 \, m/s$$

গাড়িটির শেষ বেগ $v \,=\, 0$

ত্বরণ

$$a = \frac{v - u}{t} = \frac{0 - 26.8 \, m/s}{60 \, s} = -0.089 \, m/s^2$$

অর্থাৎ গাড়িটির তুরণ $-0.089\ m/s^2$ কিংবা মন্দন $0.089\ m/s^2$

আমাদের চারপাশে আমরা যা কিছু দেখি তার মাঝে সমত্বরণের একটা খুব চমকপ্রদ একটা উদাহরণ আছে— সেটি হচ্ছে মাধ্যাকর্ষণজনিত ত্বরণ যেটাকে লেখা হয় g দিয়ে। পৃথিবীর পৃষ্ঠের কাছাকাছি তার মান হচ্ছে $9.8~{
m m/s}^2$. আমরা যদি কিছু একটা স্থির অবস্থা থেকে ছেড়ে দিই তাহলে দেখতে পাই তার

পতিকের $\nu=g_I$ হিসাবে ক্রেড়ে যালো। পতি সম্পরে আমরা যা কিছু শিখক তার বেশির ভাগ আমরা এই তুরগটি ব্যবহার করে পরীক্ষা–নিরীক্ষা করে দেখতে পারি।

উদাহরণ 2.13: কুলা নিয়ে এক্সপেরিয়েন্ট বরাব জন্ম কোনো একটা বস্তুত ওপত নির্দিষ্ট সমগ্র Im/s⁻ তুরণ প্রয়োগ করতে চটি। ক্রিডাবে করব।

উত্তরং সামরা সখন কোনো কিছু ওপর থেকে ভিন্ন স্বৰুষে ছেড়ে দিই সেটা বেশ বেগে নিচে এক আঘাত করে। সার স্বর্থ ছেড়ে দেয়া বন্ধতি কুরু হয়। আমরা যদি এই কুরুইটা মাধি তাইকে দেখাতে শাব তার মান হচ্ছে 9,8m/s. এটাকে বলা হয় মাকাকর্মণজনিত তুরুই, এটাকে লেখা হয় হু দিয়ে। গোরের সামরা মাধ্যক্ষমণজনিত তুরুই কেনা হয় কীলাবে হয় সেটা নিয়ে আলোচনা করব, এখানে ধরে নিই এটা আছে, এর মান 9,8m/s এবং এটা খাড়া নিচের দিবেন।।

এই সাধ্যাকস্পজানিত তুবল ও বে ব্যবহাৰ কৰে আমরা যে কোনো মানের তুবল ছৈবি করছে পানি ।
আমরা সরাই দেখোঁছি কাত হয়ে থাকা একটা নমত্যের ওপর কিছ একটা রাখলে সেটা নিচে গড়িয়ে
পড়ে। যত রোশ কাত করে রাখা যায় জিনিনটা তত দ্রুত নিচে পড়ে। এটক জানকেই আমরা
আমানের সেট্র প্রয়োজন সেইট্র, তুবল তৈবি কবে ফেলতে পারব। আমরা দেখেছি যে কোনো
তেরীবকে আমতে একটিক তেওঁরের যোগফল হিসাবে লেখা যায় ওধু আমাদের লক্ষ নাগতে হয় যেন
একটি তেওঁর যোগদে থেষ হয় দেখান থেকে যেন অনা তেওঁরটা প্রক হয়। এই ছবিতেও প্র তেওঁরটাকে
আমরা দুটো তেওঁরের যোগফল হিনাবে লিখেছিন তথ্য এমন ভাবে দুটো তেরীর বেছে নিয়োহি যান

র্ছার 2.19: একটি বস্তুর উপর মাধ্যানকে জনিত ত্রগকে θ কোপের সমত্বের রাপে রমাজরাত g $\sin \theta$ এবং লব g $\cos \theta$ এই দুই বংগে ভাগ করা যাস

তাদের মাঝে ৩০' একটা त्काण शास्क (छवि 2.19) थंति बनाव काव्रल थंकते। अल्यान विश्य' MEDIES. পারছি জ্ঞিনিসটার ওপর আহতে "মুটি" তুরণ বাজ কর্ছে 464 ্রাস্থ্র সের g কন্যাটি সমতকের সামে গাড়াভাবে 🚜 – তোমরা বুনাতেই খারিছ _{A5} যেতেই 神顶 নম হামের নিট্রাল 14-17-17 ভাই জিনিস্টার গতিতে সেটার

প্রক্রেক ,কানে জুমকা কেট , লিনিকটা সমন্তলে একট্ পরন প্রশোগ করনে— তার বেশি কিছু না। কিছু g_1 ্যেতের সমতকার নাথে ক্যাপনাগ এবং জিনিকটা এদিকে যেতে পানে তাই g_1 কুনগটা গতিকো গাড়াতে শার্মান।

কাজেই সামরা সামানের সমানার সমাধান করে জেনোই। সমাজানির কোণ ও এমা ভাবে ঠিক করতে হবে যেন আছব। n_1 এর একটা নিশিষ্ট মান পাট। ভাবিতে দেখালে। জনমিতি প্রকে সামনা নলতে পারি:

$$\eta_1 = \eta \sin \theta$$

 $\eta_2 = \eta \cos \theta$

মামরা $(m/g^2$ তুরণ চাঠ অর্থাই $g_1 \equiv (m/g^2$

$$\sin \theta = \frac{\theta_2}{g} = \frac{1}{9.8} = 0.102$$

 $\theta = 5.86^{\circ}$

অধাৎি আমরা যদি এক টুকরা সমতল কাস 5.86° জিতি কোণে রাখি আহলে নেই কাকের ওপর যেটাই রাখব দেটার তুরগ হবে $1 \ m/s^2!$ এতাবে আমরা তে কোনো কিছুর ওপর () থেকে 9.8 m/s^2 পর্যন্ত যো কোনো তুরণ প্রয়োগ ক্রতে পারব।

পদু একটা লান্তব বিষয় মনে রাখতে হবে, একটা জিনিসের উপর আরেকটা জিনিস রাখা হনে দুটোর ভেতরে গুমুঁপের কারণে আমরা তুরণ প্রয়োগের ফলটা প্রোপ্রি বাও দেখতে পারি। এজন্য এক্সপেরিমেন্ট করার জন্য যা একটা কিছু না রেখে একটা মার্কেল কিংবা একটা খেলনা গাড়ি রাখতে পারি তাহতে ঘরণটা আর বড় সমস্যা হবে না।

উদাহর 2.14: একটা সমতল কাঠের টুক্রা 👫 কোণে রাখা হয়েছে। ওপর খেকে একটা মার্কল ডেড়ে নেয়া হয়েছে। দুই নেকেন্দ্র পর মার্কেলর গতিবেগ কত হবে?

উজা: 45° কোণে রাখা কাঠের ওপর ছুরণের মান হবে $a=g\sin 45^\circ=9.8\times 0.707=6.93\,m/s^2$ যেহেছু মার্বেলের আদিবেগ u=0, কাজেই 2s পর মার্বেলের পতিবেগ $v=u+at=0+6.93\times 2m/s=13.86\,m/s$

2.6 ঘূর্ণন গতি (Circular motion)

এতক্ষণ আমরা রৈখিক গতিতে তুরণ নিয়ে আলোচনা করেছি। আলোচনাটা সীমাবদ্ধ রেখেছি সমতুরপের মাঝে। এবারে আমরা দিক পরিবর্তনের জন্য যে তুরণ হয় সেটা নিয়েও একটু খানি আলোচনা করি। সবচয়ে সহজ উদাহরণ হচ্ছে বখন কোনো কিছু বৃভাকারে ঘুরে। সুর্যকে ঘিরে পৃথিবীর ঘূর্ণন বা তুমি যদি ছোট একটা পাথরকে সুতো দিয়ে বেধে ঘোরাও সেটা তার উদাহরণ হতে পারে। রৈখিক গতির বেলার ব্যাপারটা সহজ ছিল, পরিবর্তনটা ছিল গতিবেগ বেড়ে যাওরা বা কমে যাওরার মাঝে। ঘূর্ণনের যাঝে লে রকম কিছু নেই বেগের মান (বা দ্রুন্তি) অপরিবর্তিত, ওপু দিকটার পরিবর্তন হচ্ছে—

ছবি 2,20: কোনো বস্তর খুর্ণন গতি ব্যাসা করতে ওপু মান্ত ৮ এবং ৮ গুরোজন

এর মাঝে যে তুরণ হচ্ছে সেটাও সাধারণভাবে চট করে বোঝা বায় না। (ছবি 2.20)

চুলচেরা বিশ্লেষন করে ঘূর্ণনজনিত তুরণ বের করা যায় কিন্তু আমরা সেটা না করে একটা শর্টকাট পদ্ধতি কবহার করি। আমরা জানি তুরণের মাত্রা হচ্ছে $1.1^{1/2}$ কাজেই ঘূর্ণনের কেলায় যে তুরণিট হবে তারও মাত্রা হতে হবে $1.1^{1/2}$ ঘূর্ণনের সময় যা ঘটছে সেটি ব্যাখ্যা করার জন্য মাত্র দুটি রাশির প্রয়োজন সেগুলো হচ্ছে দ্রুতি v এবং কৃত্তাকার ঘূর্ণনের ব্যাসার্ধ r, এর বাইরে কিছু নেই। এখানে যেহেতু আর কিছুই নেই তাই বৃত্তাকার ঘূর্ণনের তুরণিট শুধুমাত্র v এবং r ব্যবহার করে তৈরি করতে হবে। এখন আমরা ইচ্ছে মতো v এবং r ব্যবহার করা শুক্ত করি যতক্ষণ পর্যন্ত তার মাত্রা $1.1^{1/2}$ না হচ্ছে। যেমন

 v/r
 হয়নি, কারণ মাত্রা: T⁻¹

 vr
 হয়নি, কারণ মাত্রা: L² T⁻¹

 r/v
 হয়নি, কারণ মাত্রা: T

 v²/r
 হয়েছে! মাত্রা: LT⁻² আমরা যেটা চেয়েছি!

কাজেই আমরা বলতে পারি সম্ভবত v^2/r হচ্ছে ঘূর্ণনজনিত ত্বরণ। আসলেই তাই– ঘূর্ণনজনিত ত্বরণ a হচ্ছে

$$a = v^2/r$$

ঘূর্ণনজনিত ত্বরণের মাত্রা LT⁻²

আমি জানি তোমাদের অনেকের জ্রু কুচকে উঠছে অনেকের চোখ বড়বড় হয়ে উঠেছে– কিন্তু এটা সত্যি! দেখবে আমরা এই ছোট নিরীহ সংজ্ঞাটি দিয়ে বিস্ময়কর সব কাল করে ফেলব!

উদাহরণ 2.15: চাঁদের তুরণ কত? (পৃথিবী থেকে চাঁদের দূরত্ব 384,400 km)

উত্তর: চাঁদ যেহেতেু পৃথিবীকে ঘিরে যুরছে তাই প্রতি মুহূর্তে এবং দিক পরিবর্তন হচ্ছে তাই এর নিশুরই একটা তুরণ রয়েছে। আমরা জানি মূর্ণনের জনা তুরণ হচ্ছে:

$$a = \frac{v^2}{r}$$

যেখানে v হচ্ছে বেগের তাৎক্ষণিক মান বা দ্রুতি এবং r হচ্ছে বৃদ্তাকার কক্ষপথের ব্যাসার্থ- বলে দেরা হয়েছে সেটা হচ্ছে $384,400\ km$. তুরণ বের করার জন্য প্রথমে v বের করতে হবে।

$$v = \frac{2\pi r}{T}$$

2 m হচ্ছে কফপখের গরিধি এবং T হচ্ছে এই পুরো পরিধিটি একবার যুরে আসার সময়। আমরা
ধারা আকাশের দিকে তাকিয়ে চাঁদ দেখি, পুর্নিমা অমাবশ্যা লব্ধ করি তারা জানি এক পুর্নিমা থেকে
অন্য পূর্ণিমা আসতে সময় নের 29.5 দিন। চাঁদ আসলে 27 দিনে গৃথিবীকে একবার যুরে আনে কিন্তু
শৃথিবী যেহেতু নিজে খেনে নেই− তাই পৃথিবী থেকে চাঁদকে ঠিক একই জারগায় একইভাবে দেশতে

একটু বেশি সময় (29.5 দিন) নেয়। কাজেই 29.5 দিন না ধরে সভ্যিকারের সময় 27 দিন ধরে নিলে:

$$u = \frac{2\pi \times 384,400 \times 1000}{27 \times 24 \times 60 \times 60} \ m/s = 1035 \ m/s$$

আনুযানিক 1km/s! কাজেই তুরণ :

$$a = \frac{(1035)^2}{384.400 \times 1000} = 2.78 \times 10^{-3} \, m/s^2$$

এই তুরণের মানটি আমরা পরে আরো একবার ব্যবহার করন

2.7 গতির সমীকরণ (Equation of Motions)

গতি সম্পর্কে আলোচনা করতে গিয়ে আমরা এখন পর্যন্ত যে যে রাশিগুলোর কথা বলেছি সেগুলো হচ্ছে :

u: আদি বেগ, সময়ের শুরুতে যে বেগ

वः वृत्रव

t: যে সময়টকু অতিক্রান্ত হয়েছে

υ: অতিক্রান্ত সময়ের পর বেগ

s: অতিক্রান্ত সময়ে যে দূরত্ব অতিক্রম করেছে।

এই রাশিগুলোর মাঝে যে সম্পর্ক রয়েছে তার প্রায় সবগুলো এর মাঝে আমরা বের করে ফেলেছি, শুধু একটি বাকি রয়ে গেছে সেটি হচ্ছে s বা অতিক্রান্ত দূরত্ব। যদি কোনো তুরণ না থাকে তাহলে বেগের পরিবর্তন হয় না তাই আদি বেগ আর শেষ বেগ সমান (v=u) আর অতিক্রান্ত দূরত্ব হচ্ছে

v = u + at

 यात অর্থ সময়ের সাথে সাথে বেশের পরিবর্তন হচছে।

 কাজেই অতিক্রান্ত দূরত্ব বের করতে হলে প্রতি
মুহুর্তের বেশের সাথে সেই মুহুর্তের সময় গুণ করে

 করে পুরো সময়ের জনা হিসাব করতে হবে। এই

 ধরনের হিসাব-নিকাশ করার জনা বিশেষ গণিত

 কোলকুলাস) জানতে হয় আমরা সেগুলো ছাড়াই

 কাজটা করে কেলব। সেটা সম্ভব হবে কারণ আমরা

 গ্রুমাত্র সমত্বরণ নিয়ে মাথা ঘামাছিছ।

 প্রতি মুহুর্তে বেগের পরিবর্তন হচেছ তাই আমরা

s = 12t লিখতে পারছি না কিন্তু আমরা যদি একটা

ছবি 2.21: সমত্রনের গতিতে গড় বেগ হচ্ছে আদি বেগ ও শেষ বেগের মাঝামারি বেগ

গড় বেগ V ধরে নিই তাহলে কিন্তু লিখতে পারি

$$s = V t$$

এখন শুধু আমাদের গড় বেগ ঠিক করে বের করে নিতে হবে। সমত্বরণের জন্য বিষয়টি সহজ। কোনো কিছু যদি সম হারে বাড়তে থাকে তাহলে তার গড় মান হচ্ছে ঠিক মাঝামাঝি সময়ের মান। অন্যভাবে বলা যায় যদি কোনো কিছু সম হারে বাড়তে থাকে তাহলে শুক্র এবং শেষ মানের গড় হচ্ছে গড় মান। অর্থাৎ

$$V = \frac{u+v}{2} = \frac{u+(u+at)}{2}$$
$$V = u + \frac{1}{2}at$$

কাজেই অতিক্রান্ত দূরত্ব

$$s = Vt$$
$$s = ut + \frac{1}{2}at^2$$

এটি মনে রাখা ভালো– অসংখ্যবার এটা ব্যবহার করা হবে! গতি-সংক্রান্ত সমীকরণ সবগুলোই বের হয়ে গেছে। এবারে ছোট একটু খানি এলজেবরা করে রাখি যেটা আপাততঃ হিসাব-নিকাশ করার কাজে লাগবে. পরে ভেতরকার মজার পদার্থবিজ্ঞান বের করে দেখানো যাবে।

$$v = (u + at)$$

$$v^{2} = u^{2} + 2uat + a^{2}t^{2} = u^{2} + 2a\left(ut + \frac{1}{2}at^{2}\right)$$

$$v^{2} = u^{2} + 2as$$

উদাহরণ 2.16: সমত্বরণে চলমান কোনো একটি বস্তুর বেগের মান প্রতি 2 সেকেন্ড পর পর মেপে নিচে টেবিলের মাঝে দেখানো হয়েছে। গড় বেগ কত?

সময় (s)	0	2	4	6	8
বেগ (m/s)	2	4	6	8	10

উত্তর: গড় নেয়া খুব সোজা, সবগুলো রাশি সব যোগ করে মোট সংখ্যা দিয়ে ভাগ দিতে হয়। এখানে পাঁচটি বেগ আছে কাজেই গড় বেগ:

$$V = \frac{2+4+6+8+10}{5} = 6 \, m/s$$

যদি আমাদের কাছে প্রতি সেকেন্ডে মাপা বেগ থাকত তাহলে গড় বেগ কত হবে?

সময় (s)	0	1	2	3	4	5	6	7	8
কো(m/s)	2	3	4	5	6	7	8	9	10

এখানে 9 টি ভিন্ন সময়ের কো দেয়া আছে; কাজেই গড কো V

$$V = \frac{2+3+4+5+6+7+8+9+10}{9} = 6 \, m/s$$

আমরা একই উত্তর পেয়েছি!

যদি শুধু প্রথমে আর শেষে মাপা কো থাকত তাহলে গড় কো কত?

সময় (s)	0	8
বেগ (m/s)	2	10

তাহলে গড বেগ হতো:

$$V = \frac{2+10}{2} = 6 \, m/s$$

আবার একই উত্তর পেয়েছি। কাজেই দেখা যাচ্ছে যদি সমত্বরণ থাকে তাহলে গড় বেগ বের করা সোজা– শুধু প্রথম ও শেষ বেগ যোগ করে তার গড় নিলেই হয়। তোমরা একটু লক্ষ করলেই বুঝতে পারবে এই সমস্যাটাতে বেগটা ছিল এ রকম

$$v = 2 + 2t$$

 $v = 2, a = 2$

এবারে অন্য এক ধরনের বেগ দেখা যাক।

উদাহরণ 2.17: যদি সমত্বরণ না হয় তাহলে বেগের গড় নিলে কী হবে?

উত্তর : ধরা যাক a=2t অর্থাৎ সময়ের সাথে তুরণটির পরিবর্তন হচ্ছে। u=2 হলে $v=2+2t^2$

এবারে আগের মতো 2 s পর পর বেগ মাপা হোক হলে আমরা পাব:

সময় (s)	0	2	4	6	8
বেগ (m/s)	2	10	34	74	130

গড বের করার নিয়ম দিয়ে যদি গড বেগ বের করি তাহলে আমরা পাব:

$$V = \frac{2+10+34+74+130}{5} = \frac{250}{5} = 50 \text{ m/s}$$

এবারে একই চলমান বস্তুটির কো প্রতি সেকেন্ডে মাপা হলে আমরা পাব:

সময় (s)	0	1	2	3	4	5	6	7	8
বেগ (m/s)	2	4	10	20	34	52	74	100	130

এবারে যদি গড় নিই তাহলে গড় বেগ

$$V = \frac{2+4+10+20+34+52+74+100+130}{9} = \frac{426}{9} = 47.33 m/s$$

দেখাই যাচ্ছে এটা আগের থেকে ভিন্ন মান দিয়েছে!

যদি সমত্বরণের মতো প্রথম আর শেষ বেগ যোগ করে গড় নিতাম তাহলে কী হতো? আমরা পেতাম :

সময়(s)	0	8
কো (m/s)	2	130

$$V = \frac{2+130}{2} = 66 \, m/s$$

প্রত্যেকবার আমরা আলাদা উত্তর প্রয়েছি।

কোনটা সত্যি? উত্তর হচ্ছে কোনোটাই না! শুধু মাত্র বলতে পারি যত বেশি বার বেগ মেপে গড় করব উত্তরটা তত বেশি সঠিক উত্তরের কাছাকছি যাবে।

2 বার মেপে পেয়েছি : 66 m/s

5 বার মেপে পেয়েছি : 50~m/s

9 বার মেপে পেয়েছি: 47.33 m/s

যদি সঠিকভাবে গড় নিতাম (সেটি কীভাবে করতে হয় তোমরা জানতে পারবে যখন ক্যালকুলাস শিখবে তখন) তাহলে পেতাম: $44.667\ m/s$

কাজেই জেনে রাখো আমরা গতির যে সমীকরণগুলো বের করেছি সেগুলো শুধু সমত্বরণের জন্য সত্যি! এতে তোমাদের হতাশ হবার কোনো কারণ নেই– সমত্বরণ দিয়েই চমৎকার পদার্থবিজ্ঞান করা সম্ভব।

উদাহরণ 2.18: একটি বুলেট $1.5\ km/s$ বেগে ছুটে একটি দেওয়ালের মাঝে $10\ cm$ ঢুকতে পেরেছে। বুলেটের মন্দন কত?

উত্তর: এটা করার একমাত্র উপায় হচ্ছে $v^2=u^2-2as\,\,\,$ সূত্রটি ব্যবহার করা:

শেষ বেগ v = 0

$$0 = (1.5 \times 1000)^2 - 2a \left(\frac{10}{100}\right)$$

$$a = \frac{(1.5 \times 1000)^2}{0.2} = 1.69 m/s^2$$

মন্দন : $a = 1.69 \text{ m/s}^2$ (কিংবা তুরণ -1.69 m/s²)

উনাহ্রণ 2.19: একটা 2m লন্ধা সমতল কাঠের টুকরা দেয়ালের সাথে 30° কোণে হেলান দিয়ে রাখা আছে (ছবি 2.22)। কাঠের টুকরার ওপর থেকে একটা খেলনা গাড়ি ছেড়ে দিলে কত বেগে নিচে নেমে আসবে।

উন্তর: খেললা গাড়ির ত্বরণ $a=g\sin 30^\circ=9.8\times 0.5=4.9\ m/s^2$ আমরা জালি : $s=ut+\frac{1}{2}at^2$

এবালে
$$s = 2m, u = 0$$
 এবং $a = 4.9 \text{ m/s}^2$

$$s = \frac{1}{2}at^2$$

$$1^2 = \frac{2s}{a} = \frac{4m}{4.9 \ m/s^2}$$

$$t = \sqrt{\frac{4}{4.9}} = 0.904 \, s$$

ছবি 2.22: 30 ° কোণে রাখা একটা কাঠের টুকরো বেয়ে একটা খেলনা গাড়ী নেমে আসতে

কাজেই
$$v = u + at = 0 + 4.9 \times 0.904s = 4.43 \, m/s$$

আমরা অন্যভাবেও এটা করতে পারি। আমরা জানি

$$v^2 = u^2 + 2as = 0 + 2 \times 4.9 \times 2 = 19.6 \, m^2/s^2$$

 $v = 4.43 \, m/s$

আমরা একই উত্তর পেরেছি এবং খেলনা গাড়িটি কতক্ষণে নিচে নেমে এনেছে সেটা না জেনেই কো বের করে ফেলেছি।

খেলনা গাড়িটি কতকলে নিচে নিমে এনেতে সেটা ইচ্ছে করলে আমরা এখান থেকে অন্য ভাবেও বের করতে পারি।

অভিক্রান্ত দূরত্ব S= গড় বেগ imes লম্ম =Vt

গড় বেগ 1/ = (আদি বেগ+শেষ বেগ)/2

$$V = \frac{u+v}{2} = \frac{0+4.43}{2} = 2.215 m/s$$

ਯਮਗ
 $t = \frac{s}{V} = \frac{2}{2.215} = 0.903 s$

উদাহরণ 2,20; (ছবি 2,23) ছবিতে দেখানো দুটি সমতল কাঠের টুকরো 30° এবং 45° কোনে রাখা আছে। 30° কোণে রাখা কাঠের উপরে 1 ফুট উপতা থেকে একটি মার্বেল পড়িয়ে দেয়া হলো। ঠিক য়খন নিচে পৌঁছাবে তখন শতিবেগ কতঃ 45° কোণে রাখা কাঠের টুকরোতে সোঁটি কত উচ্চতায় প্রিছিবেঃ

উন্তর: রখন আমরা শক্তি, শক্তির নিতাতার সূত্রগুলো শিরব তখন এই সমস্যাটা ধুব সহজে কমাখান করা থাবে, আপাততে আমরা আমাদের শেখা তুরগ রেগ আদিবেগ, চ্ডাত রেগ অতিক্রাত দ্রাতু, অতিক্রান্ত সময় এসৰ ব্যবহার করে সমস্যাতি সমাধান করি।

সমস্যাটি এভাবে সমাধান করা হবে : মার্নেলটি স্থির অবস্থা থেকে ছাড়া হবে। 30° তে রাখা কাতের জিকরো বেয়ে নিচে নামার সময় তার কো। বাড়তে খাককে— কারণ এখানে একটা তুরণ নয়েছে।

ছবি 2,23: 30 °এব: 45 ৭৫ছ রাখা দূটো সমতল কাঠের টুকরোর একটা মার্বেল গড়িয়ে দেয়া হয়েছে।

একেবারে নিচে পৌছানোর পর
তার একটা বেস সৃষ্টি হবে সেই
বেগে মারেনটি 45° তে রাখা
কাঠের টকরো বেয়ে উপরে
উঠতে ডরু করনে। এখানেও
একটা তুরণ আছে কিন্ত এবারে
এটা থোহেতু পতির উল্টো নিকে
কাজ করছে তাই এটা পাতি
কমাতে থাকরে এবং মারেনের
গতি কমতে কমতে শেস পর্যন্ত
এক জারাপায় থেমে যারে

 30° কাঠের টুকরোর শেষ বেগ বের করার জন্য আমাদের অভিক্রান্ত দূরত্ব বের করতে হবে। 10 উদ্রুদ্ধ্য এবং 30° কোপ থেকে এটা বের করা হায়। দূরত্বটি ϵ , হবে ত্রিকোনোমিতি বা জ্যামিতি থেকে s(s)য় $30^\circ=1$ ft

$$\bar{s}_1 = \frac{1 ft}{\sin 30^{\circ}} = \frac{1 ft}{0.5} = 2 ft$$

কিন্তু আমরা (f দিয়ে সমস্যা সমাধান করতে দাই না - S) পদ্ধতি করবার করতে দাই,

$$2ft = 2 \times 12 \times 2.54 = 0.61m$$

30° সাঠের টুকরোর করণ হচ্ছে

$$a_1 = g \sin 30^\circ = 4.9 \, m/s^2$$

্মারেল যথন নিচে পৌছারে তথনকার গতিকো V_I হলে আমরা লিখানে পারি।

$$v_1^2 = u_1^2 + 2a_1s_1$$

আদি বেগ $u_1 = 0$, কাজেই

$$v_1 = \sqrt{2a_1s_1} = \sqrt{2 \times 4.9 \times 0.61} = 2.44 m/s$$

এবারে 45° তে রাখা কাঠের টুকরোর সমস্যাটি সমাধান করতে পারি। এটার জন্য মন্দন

$$a_2 = g \sin 45^\circ = 6.93 m/s^2$$

আমরা যেহেতু মন্দন বলেছি তাই নেগেটিভ চিহ্ন নেই। কাজেই এটার জন্য আদিবেগ u_2 , শেষ বেগ v_2 অতিক্রান্ত দূরত s_2 হলে

$$v_2^2 = u_2^2 - 2a_2s_2$$

যেহেতু মন্দনটি বেগের বিপরীত দিকে কাজ করছে তাই এবারে একটি নেগেটিভ চিহ্ন। আমরা জানি $v_2=0$ এবং $v_1=u_2$

$$s_2 = \frac{u_2^2}{2a_2} = 0.429m$$

আবার একটু খানি ত্রিকোনমিতি দিয়ে উচ্চতাটুকু বের করতে পারি :

$$h_2 = s_2 \sin 45^{\circ} = 0.303m$$

যদি এটাকে ft এ লিখি?

$$0.303m = \frac{0.303 \times 100}{2.54 \times 12} = 1ft$$

তোমরা কি অবাক হয়েছ যে এটা 45° কাঠের টুকরোতে ঠিক 1ft উপরেই উঠেছে?

অবাক হবার কিছু নেই- এটাই হওয়ার কথা! কাঠের টুকরোগুলি 30° কিংবা 45° না হয়ে যে কোনো কোণ হোক না কেন এবং যে কোনো উচ্চতা থেকেই তুমি মার্বেলটা ছাড় না কেন- এটা ঠিক সেই একই উচ্চতাতে উঠবে! বিশ্বাস না হলে অন্য কোনো কোণ এবং অন্য কোনো উচ্চতা দিয়ে হিসাবে করে দেখ। এর একটা কারণও আছে সেটাও তোমরা জানবে।

(এখানে একটা জিনিস বলে রাখি মার্বেলটা যখন 30° তে রাখা কাঠের টুকরো বেয়ে নেমে এসেছে তখন বেগের দিকটি যেদিকে ছিল, 45° তে রাখা কাঠের টুকরো বেয়ে ওঠার সময় দিকটি কিন্তু অন্য দিকে হয়েছে অর্থাৎ বেগের পরিবর্তন হয়েছে– সেই মুহূর্তটির জন্য ভিন্ন একটা ত্বরণ কাজ করছে, কাঠ দুটোর অবস্থান সেই তুরণটা তৈরি করে দিয়েছে– এই সমস্যার জন্য আমাদের সেটা নিয়ে মাখা না

ঘামালেও ক্ষতি নেই। মার্বেলটি যদি ঘুরতে ঘুরতে নিচে নেমে আসে তখন ঘোরার জন্যে সেটি একটু শক্তি নিয়ে নেয়। আমরা সেটাও বিবেচনা করছি না।)

2.8 পড়ন্ত বস্তুর সূত্র (Laws of Falling Bodies)

আমরা সমত্বরণের উদাহরণ হিসাবে g বা মাধ্যাকর্ষণজনিত ত্বরণের কথা বলেছিলাম। গতি সম্পর্কে আমরা যে সমীকরণগুলো বের করেছি সেগুলোকে খুব সহজেই আমরা পড়ন্ত বস্তুর গতি বের করার জন্য বের করতে পারি! অতিক্রান্ত দূরত্বের বেলায় s ব্যবহার করা হয়েছিল, এবারে উচ্চতা বোঝানোর জন্য h ব্যবহার করব ত্বরণের জন্য a না লিখে a লিখব— শুধুমাত্র এ দুটোই হবে পার্থক্য!

$$v = u + gt$$

$$h = ut + \frac{1}{2}gt^{2}$$

$$v^{2} = u^{2} + 2gh$$

গ্যালিলিওর পড়ন্ত বস্তুর যে তিনটি সূত্র আছে সেগুলো আসলে এই সূত্রগুলো ছাড়া আর কিছু নয়!

উদাহরণ 2.21: ক্রিকেটের একজন ভালো পেস বোলার ঘণ্টায় $150 \ km/hour$ বেগে বল ছুড়তে পারে। সে যদি খাড়া উপরের দিকে বলটা ছুড়ে বলটা কত উপরে উঠবে?

উত্তর:

$$150 \, km/hour = \frac{150 \times 1000 \, m}{60 \times 60 \, s} = 41.67 \, m/s$$

বল উপরে ছুড়লে মাধ্যাকর্ষণজনিত ত্বরণ এই বলটার ওপর মন্দন হিসাবে কাজ করবে। শেষ পর্যন্ত বলটি থেমে যাবে। সেই উচ্চতাটাকে h হিসাবে লিখলে

$$v^2 = u^2 - 2gh$$

 $v = 0$, $u = 41.67 m/s$, $g = 9.8m$

কাজেই

$$h = \frac{u^2}{2g} = \frac{(41.67)^2}{2 \times 9.8} m = 88.59m$$

(প্রায় 30 তলা দালানের ছাদ পর্যন্ত!)

উদাহরণ 2.22: পৃথিবীকে ঘিরে মহাকাশযান যখন ঘুরতে থাকে তাদের দ্রুতি অনেক বেশি, প্রায় $10\,$ km/s! এ রকম গতিতে যদি আকাশের দিকে একটা কামানের গোলা ছুড়ে দিই সেটা কত উপরে উঠবে?

উত্তর: ক্রিকেট বলের মতো বের করার চেষ্টা করি, শুধু আদিবেগ $41.67\ m/s$ এর বদলে হবে $10{,}000\ m/s$

কাজেই

$$h = \frac{(10,000)^2}{2 \times 9.8} m = 5,102,000 m = 5,102 km$$

যদিও দেখে মনে হচ্ছে কোথাও কোনো ভুল হয়নি কিন্তু আসলে উত্তরটা সঠিক নয়! তার কারণ হচ্ছে আমরা মাধ্যাকর্ষণজনিত ত্বরণের মান ধরেছি $9.8m/s^2$, পৃথিবীর কাছাকাছি দূরত্বের জন্য এটা সঠিক – কিন্তু যদি পৃথিবী থেকে অনেক উপরে উঠে যাওয়া যায় এর মান কমতে থাকবে! আমরা যখন

$$v^2 = u^2 - 2gh$$

সমীকরণটি বের করেছি সেখানে ধরে নিয়েছি g এর মানের পরিবর্তন হচ্ছে না। এই সমস্যার বেলায় সেটা সত্যি না। তাই আমরা এখন পর্যন্ত যেটুকু শিখেছি সেই বিদ্যে দিয়ে এটা সমাধান করতে পারব না! কাজেই আমরা চালাকি করে অন্যভাবে প্রশ্নের উত্তর দিই :

এত তীব্র গতিতে কোনো কিছু ছুড়ে দিলে বাতাসের সাথে ঘর্ষণে যে তাপ সৃষ্টি হবে সেই তাপে এটা জ্বলে পুড়ে শেষ হয়ে যাবে!

অনুশীলনী

প্রশ্ন:

- 1. গতি শুনা কিছ তুরণ শুনা নয় এটি কি সম্ভবং সম্ভব হলে দেখাও।
- 2, বেগের পরিবর্তন হচেছ কিন্তু দ্রুতির পরিবর্তন হচেছ না। এটা কি সম্ভবং সম্ভব হলে দেখাও।
- 3. চাঁদে যাখ্যাকর্ষণ জাঁনত তুরণ পৃথিবীর মাঝাকর্ষণজানিত তুরণ খেকে 6 গুণ কম। পৃথিবীতে একটা পাথর একটা উচ্চতা থেকে ছেড়ে দিলে এটি যে বেগে নিচে আঘাত করবে, চাঁদে একই উচ্চতা থেকে ছেড়ে দিলে কি ছয় গুণ কম বেগে আঘাত করবে? (ধরা যাক পৃথিবী কিংবা চাদ কোথাও রাতামের বাধা সমস্যা নয়।)
- 4. পৃথিবীতে কি এমন কোনো জায়গা আছে যেখানে থেকে তুমি দক্ষিণ দিকে $1\,km$ গিয়ে যদি পূর্ব দিকে $1\,km$ যাও এবং তখন উত্তর দিকে $1\,km$ গেলে আগের জায়াগায় পৌছে যাবেং
- 5. সমত্রদের বেলায় দিওণ সময়ে কি দিওণ দূরত অভিক্রম করিং

গাণিতিক সমস্যা:

- একটি গাড়ি তোমার স্কুল থেকে 40 km পূর্ব দিকে গিয়েছে, তারপর 40 km উত্তর দিকে গিয়েছে
 তারপর 30 km পশ্চিম দিকে গিয়েছে, তারপর 30 km দক্ষিণ দিকে গিয়েছে, তারপর 20 km
 পূর্ব দিকে গিয়েছে, তারপর 20 km উত্তর দিকে গিয়েছে, তারপর 10 km পশ্চিম দিকে গিয়েছে,
 তাপরপর 10 km দক্ষিণ দিকে গিয়েছে। গাড়িটি তোমার থেকে কোন দিকে কত দূরে ব্রাছেং
- হরি 2.24 এ OA, AB, BC এবং CD
 তে কখন বেগ এবং ত্বরণ পজিনিত
 নেথাটিত এবং শুনা সোটি দেখাও।
- হবি 2.24 এ y অক বাদি বেগ না হয়ে
 অবস্থান হতো আহলে বেগ এবং তরগের
 মান DA, AB, BC এবং CD তে কা
 হতো বল।
- একটি পাড়ির বেল 30 km/hour.
 1 minute পর গাড়িটির পতিকো সমতুরশে বেড়ে হলো 50 km/hour এই সময়ে গাড়িটি কত দুরত অতিক্রম করেছেং

ছবি 2.24: কো ও সময়ের লেশচিত্র

ভূমি 10m/s বেলে একটা বল আকাশের দিকে হুড়ে দিয়েছ। সৌটা কভকণে কত উচুকে উঠকেং

তৃতীয় অধ্যায়

বল

(Force)

Galileo Galilei (1564-1642)

প্যালিলিও প্যালিলি

গ্যালিলিও ছিলেন একজন ইতালিও পদার্থবিজ্ঞানী, গণিতবিদ, জ্যোতির্বিদ একং দার্শনিক। তাঁকে আধুনিক বিজ্ঞানের জনক বলা হয়। তিনি প্রথম টেলিজ্ঞোপ ব্যবহার করে ব্যবহারিক জ্যোতির্বিজ্ঞানের সূচনা করেছিলেন। কোপার্নিকাসের সূর্যকেন্দ্রিক সৌর জগতের ব্যাখ্যাটি তিনি প্রথম সতিকার অর্থে বৈজ্ঞানিক জগতে পরিচিত করেন। এ কারণে তিনি ক্যাথলিক চার্চের রোধানলে পড়েন, তাঁরা তাঁকে দোধী সাব্যস্ত করে এবং তাঁকে বাকি জীবন গৃহবন্দি হয়ে কটিতে হয়। তাঁর মৃত্যুর 366 বছর পর 2008 সালে রোমান ক্যাথলিক চার্চ নিজ্ঞানের দোধা শ্বীকার করে নিয়ে তাঁকে ক্ষমা করে!

3.1 জড়তা, বল ও ভর (Inertia, Force and Mass)

এর আগের অধ্যায়ে আমরা বেগ, দ্রুতি, তুরণ (এবং মন্দন), অতিক্রোন্ত দূরত্ব এবং তাদের ভেতরকার সম্পর্কগুলো শিখেছি, সমীকরণগুলো বের করেছি এবং ব্যবহার করেছি। এই অধ্যায়ে আমরা প্রথমবার সত্যিকারের কিছু পদার্থবিজ্ঞান শিখব। শুরু করা যাক নিউটনের প্রথম সূত্র দিয়ে:

নিউটনের থ্রেম সূত্র: বল থ্যোগ না করলে স্থির বস্তু স্থির থাকরে এবং সমবেগে চলতে থাকা বস্তু সমবেগে চলতে থাকবে। (বুঝতেই পারছ বেগ যেহেতু ভেক্টর ভাই সমবেগে চলতে হলে দিক পরিবর্তন করতে পারবে না− সোজা সরল রেখায় সমান দ্রুতিতে যেতে হবে।)

নিউটনের প্রথম সূত্রের প্রথম অংশ নিয়ে কারো সমস্যা হয় না কারণ আমরা সব সময়েই দেখি স্থির বস্তুকে ধারাধারি না করা পর্যন্ত সেটা নড়ে না স্থির প্রেকে যায়। দিতীয় অংশটা নিয়ে সমস্যা, কারণ আমরা কখনোই কোনো চলন্ত বস্তুকে অনন্তকাল চলতে দেখি না, ধারা দিয়ে কোনো বস্তুকে ছেড়ে দিলেও দেখা যায় কোনো বল প্রয়োগ না করলেও শেষ পর্যন্ত বস্তুটা থেমে যায়। আমাদের দৈনন্দিন জীবনের অভিজ্ঞতা থেকে মনে হয় যে কোনো কিছুকে সমবেগে চালিয়ে নিতে হলে ক্রমাগত বুঝি সেটাতে বল প্রয়োগ করে যেতে হয়। নিউটনের প্রথম সূত্র থেকে আমরা জানতে পেরেছি সেটা সত্যি নয়— সমবেগে চলতে থাকা কোনো বস্তু যদি থেমে যায় তাহলে বুঝতে হবে সেখানে কোনো না কোনোভাবে বল প্রয়োগ করা হয়েছে। ঘর্ষণ, বাতাসের বাধা এ রকম অনেক কিছু আসলে উল্টোদিক থেকে বল প্রয়োগ করে চলমান একটা বস্তুকে থামিয়ে দেয়— যদি সত্যি সত্যি সব বল বন্ধ করে দেয়া যেত তাহলে আমরা সত্যিই দেখতে পেতাম সমবেগে চলতে থাকা একটা বস্তু অনন্তকাল ধরে চলছে।

নিউটনের প্রথম সূত্রে প্রথমবার "বল" শব্দটা ব্যবহার করা হয়েছে কিন্তু মজার ব্যাপার হচ্ছে বল বলতে আমরা কী বোঝাই সেটা এখনো বলা হয়নি— এটা যদি পদার্থ বিজ্ঞানের বই না হয়ে অন্য কোনো বই হতো তাহলে "বল প্রয়োগ" -এর জায়গায় "শক্তি প্রয়োগ" কথাটা ব্যবহার করলেও বাক্যটায় অর্থের কোনো উনিশ-বিশ হতো না। কিন্তু যেহেতু এটা পদার্থবিজ্ঞানের বই তাই আমরা এখানে শক্তি কথাটা ব্যবহার করতে পারব না— পদার্থবিজ্ঞানের ভাষায় শক্তি সম্পূর্ণ ভিন্ন একটা রাশি! এখানে আমাদের বল কথাটাই ব্যবহার করতে হবে! কিন্তু বল মানে কী? আমরা তো এখন পর্যন্ত বলের কোনো সংজ্ঞা দিইনি!

আসলে নিউটনের প্রথম সূত্রটাই বলের সংজ্ঞা হতে পারে! যে কারণে স্থির বস্তু চলতে শুরু করে আর সমবেগে চলতে থাকা বস্তুর বেগের পরিবর্তন হয় সেটাই হচ্ছে বল। নিউটনের প্রথম সূত্র থেকে বলটা কী, সেটা বুঝতে পারি কিন্তু পরিমাপ করতে পারি না। দ্বিতীয় সূত্র থেকে আমরা বল পরিমাপ করা শিখব।

বল প্রয়োগ না করা পর্যন্ত স্থির বস্তু যে স্থির থাকতে চায় কিংবা গতিশীল বস্তু যে গতিশীল থাকতে চায় সেটাই হচ্ছে জড়তা। হঠাৎ গাড়ি চলতে শুরু করলে আমরা যেভাবে পেছনের দিকে একটা ঝাঁকুনি খাই সেটা হচ্ছে জড়তার উদাহরণ। শরীরের নিচের অংশ গাড়ির সাথে লেগে আছে— গাড়ির সাথে সাথে সেটা চলতে শুরু করেছে কিন্তু শরীরের উপরের অংশ এখনো স্থির এবং স্থির থাকতে চাইছে! তাই শরীরের উপরের অংশ পেছনের দিকে ঝাঁকুনি খাচেছ। যেহেতু এটা স্থির থাকায় জড়তা তাই এটাকে বলে স্থিতি জডতা।

গতি জড়তার কারণে আমরা মানুষজনকে চলন্ত বাস ট্রেন থেকে নামতে গিয়ে আছাড় খেতে দেখি। চলন্ত বাস ট্রেনের মানুষটির পুরো শরীরটাই গতিশীল, সে যখন মাটিতে পা দিয়েছে তখন নিচের অংশ থেমে গিয়েছে, উপরের অংশ গতি জড়তার কারণে তখনো ছুটছে– তাই সে হুমড়ি খেয়ে পড়ছে!

জড়তার বিষয়টি যদি শুধুমাত্র একটা সংজ্ঞা হতো তাহলে এটাকে এত গুরুত্ব দিয়ে শেখানো হতো না— আসলে এটা পদার্থবিজ্ঞানের দৃষ্টিকোণ থেকে খুব গুরুত্বপূর্ণ একটা বিষয়। আমরা এখন পর্যন্ত শুর নিয়ে একটি কথাও বলিনি কিন্তু কোনো কিছুর গতি সম্পর্কে জানতে চাইলে আমাদের সেটির ভর সম্পর্কে জানতে হয়। একই গতিতে ছুটে আসা একটা হালকা সাইকেল আর একটা ভারী ট্রাককে আমরা একদৃষ্টিতে দেখি না, তার কারণটা হচ্ছে ভরের পার্থক্য। কিন্তু ভরটা আসলে কী? আমরা অনেক সময়েই বলি ভর হচ্ছে কতটা বস্তু আছে তার একটা পরিমাপ! এর চাইতে অনেক বিজ্ঞানসম্মত উত্তর হচ্ছে ভর হচ্ছে জড়তার পরিমাপ। (তোমরা বিষয়টা ভালো করে লক্ষ করো— খুব গুরুত্বপূর্ণ একটা কথা বলা হয়েছে!) কোনো কিছুর জড়তা যদি বেশি হয় তাহলে বুঝতে হবে তার ভরও নিশ্চয়ই বেশি! জড়তা যদি কম হয় তাহলে ভরও কম। তোমরা নিশ্চয়ই এটা লক্ষ্য করেছ সমান পরিমাণ বল প্রয়োগ করা হলে যার ভর বেশি সেটাকে বেশি বিচ্যুত করা যায় না। কিন্তু যার ভর কম সেটাকে বেশি বিচ্যুৎ করা যায়। কিংবা অন্যভাবে বলা যায় ভর কম হলে জড়তার প্রভাবটা তুলনামূলকভাবে কম হয়।

ছবি 3.1 অবস্থান সময় ও বেগ সময়ের দুটি লেখচিত্র।

উদাহরণ 3.1: ছবি 3.1 এর প্রাঞ্চ দুর্নিতে সময়ের সাথে সরণ এবং বেছার মান দেখানো প্রয়েছে, কোখায় কতক্ষণ বল প্রয়োগ করা ইয়েছে র্যাখ্যা করো।

উত্তর: দুটি প্রাফুই দেখতে একই রবম কিন্তু এদের মাঝে সম্পূর্ণ ভিন্ন তথা রয়েছে।

 (i) এথম গ্রাফে () থেকে t, কিংবা t₂ থেকে শেষ পর্যন্ত সময় দুটিতে অবস্থানের পরিবর্তন হাছে না. যার অর্থ কোন বেগ নেই, কাজেই বেগের পরিবর্তনের প্রপ্নই আসে না যার অর্থ এ দুটো সময়ে নিচয়ই কোনো বল প্রয়োগ করা হচ্ছে না। t_1 থেকে t_2 সময়ে অবস্থানের পরিবর্তন হচ্ছে কিন্তু যেহেত্ সম হারে পরিবর্তন (রেখাটি যেহেতু সরল রেখা) হয়েছ তার অর্থ সমরেগা– অর্থাৎ বেগের কোনো পরিবর্তন নেই কাজেই t_1 থেকে t_2 সময়েও কোনো বল প্রয়োগ করা হচ্ছে না। ওগুমাত্র t_1 মুহূতে কোনোভারে বল প্রয়োগ করে স্থির বস্তুটিকে সমবেগে গতিশীল করা হয়েছে। আবার ঠিক L₂মৃত্যুত্ত বল প্রয়োগ করে গতিলীক বছটিকে থামিয়ে দেয়া হয়েছে, অনা কোথাও কোনো বল প্রয়োগ করা হয়নি।

অবাং $0 < t < t_1$, $t_1 < t < t_2$ এবং $t_2 < t$ তে কোনো বল নেই। ওবুমাই $t=t_1$ এবং $t=t_2$ ে মুহুরের জন্য বল প্রয়োগ করা হয়েছে।

(11) দ্বিতীয় আফে 0 থেকে t_1 এবং t_2 থেকে শেষ পর্যন্ত বস্তুটি সমবেগে যায়েছে, কাজেই কোনো বল প্রয়োগ করা হয়নি। t_1 থেকে t_2 সময়ে বেগাট সমহারে পরিবর্তিত হচ্চে কাজেই এখানে নিশ্চয়ই বল প্রায়াগ করা হচেছ।

লর্খান্ত $0 < t < t_1$ এক $t_2 < t$ কোনো বল নেই। $t_1 < t < t_2$ ে বল প্রয়োগ করা প্রয়েছে।

3.2 বলের প্রকার ভেদ (Different kinds of Forces)

পৃথিবীতে কত ধরনের বল আছে জিজ্ঞেস করা হলে তোমরা নিশ্চয়ই বলবে অনেক ধরনের! কোনো কিছুকে যদি ধাক্কা দিই সেটা একটা বল, ট্রাক যখন বোঝা টেনে নিয়ে যায় সেটা একটা বল, ঝড়ে যখন গাছ উপড়ে পড়ে সেটা একটা বল, চুম্বক যখন লোহাকে আকর্ষণ করে সেটা একটা বল, বোমা বিস্ফোরণে যখন ঘর বাড়ি উড়িয়ে দেয় সেটা একটা বল, ক্রেন যখন কোনো কিছুকে টেনে তুলে সেটা একটা বল– একটুখানি সময় দিলেই এ রকম নানা ধরনের বলের তোমরা একটা বিশাল তালিকা তৈরি করতে পারবে।

কিন্তু চমকপ্রদ ব্যাপারটি কী জান? প্রকৃতিতে মাত্র চার রকমের বল রয়েছে, উপরে যে তালিকা দেয়া হয়েছে সেগুলোকে বিশ্লেষণ করা হলে দেখা যাবে এগুলো ঘুরে-ফিরে এই চার রকমের বাইরে কোনোটা নয়! আসলে মৌলিক বল মাত্র চারটি! সেগুলো হচ্ছে:

3.2.1 মহাকর্ষ বল (Gravitation)

এই সৃষ্টিজগতের সকল বস্তু তাদের ভরের কারণে একে অপরকে যে বল দিয়ে আকর্ষণ করে সেটাই হচ্ছে মহাকর্ষ বল। এই মহাকর্ষ বলের কারণে গ্যালাক্সির ভেতরে নক্ষত্ররা ঘুরপাক খায় কিংবা সূর্যকে ঘিরে পৃথিবী ঘুরে, পৃথিবীকে ঘিরে চাঁদ ঘুরে! পৃথিবীর মহাকর্ষ বল যখন আমাদের ওপর কাজ করে আমরা সেটাকে বলি মাধ্যাকর্ষণ। এই মাধ্যাকর্ষণ বল আমাদেরকে নিচের দিকে টেনে রেখেছে এবং এর কারণেই আমরা নিজেদের ওজনের অনুভৃতি পাই।

3.2.2 তড়িৎ চৌম্বক বল বা বিদ্যুৎ চৌম্বকীয় বল (Electro Magnetic Force)

চিরুনি দিয়ে চুল আচড়ে সেটা দিয়ে কাগজের টুকরোকে আকর্ষণ করা বা চুম্বক দিয়ে অন্য চুম্বককে আকর্ষণ-বিকর্ষণ আমাদের অনেকেই কখনো না কখনো করেছি। যদিও তড়িৎ বা বিদ্যুৎ এবং চুম্বকের বলকে আলাদা ধরনের বল মনে হয় আসলে দুটি একই বল— শুধুমাত্র দুইভাবে দেখা যায়। শুধু মাত্র এই বলটা আকর্ষণ এবং বিকর্ষণ দুটোই করতে পারে অন্যগুলো শুধু আকর্ষণ করতে পারে বিকর্ষণ করতে পারে না। মাধ্যাকর্ষণ শক্তির তুলনায় এটা অনেক শক্তিশালী (10^{36} শুণ বা ট্রিলিওন ট্রিলিওন ট্রিলিওন শুণ শক্তিশালী!) কথাটা যে সত্যি সেটা নিশ্চয়ই তোমরা অনুমান করতে পারবে কারণ যখন একটা চিরুনি দিয়ে চুল আচড়ে একটা কাগজকে আকর্ষণ করে তুলে নাও তখন কিন্তু সেই কাগজটাকে পুরো পৃথিবী তার সমস্ত ভর দিয়ে তৈরি মাধ্যাকর্ষণ বল দিয়ে টেনে রাখার চেষ্টা করে তবুও তোমার চিরুনির অল্প একটু বিদ্যুৎ সেই বিশাল পৃথিবীর পুরো মাধ্যাকর্ষণকে হারিয়ে দেয়।

3.2.3 দুৰ্বল নিউক্লীয় বল (Weak Force)

এটাকে দুর্বল বলা হয় কারণ এটা তড়িৎ চৌম্বক বল থেকে দুর্বল (প্রায় ট্রিলিওন গুণ) কিন্তু মোটেও মহাকর্ষ বলের মতো এতো দুর্বল নয়। মহাকর্ষ এবং তড়িৎ চৌম্বক বল যে কোনো দূরত্ব থেকে কাজ করতে পারে কিন্তু এই বলটা খুবই অল্প দূরত্বে $(10^{-18}\ m)$ কাজ করে! তেজন্ধ্রিয় নিউক্লিয়াস থেকে যে বেটা (β) রিশ্মি বা ইলেকট্রন বের হয় সেটার কারণ এই দুর্বল নিউক্লীয় বল।

3.2.4 সবল নিউক্লীয় বল (Strong Nuclear Force)

এটি হচ্ছে সৃষ্টি জগতের সবচেয়ে শক্তিশালী বল, তড়িৎ চৌম্বক বল থেকেও একশগুণ বেশি শক্তিশালী কিন্তু এটাও খুবই অল্প দ্রত্বে $(10^{-15}\ m)$ কাজ করে। পরমাণুর কেন্দ্রে যে নিউক্লিয়াস রয়েছে তার ভেতরকার প্রোটন এবং নিউট্রনের নিজেদের মাঝে এই প্রচ[—] শক্তিশালী বল কাজ করে নিজেদের আটকে রাখে। প্রচ[—] বলে আটকে থাকার কারণে এর মাঝে অনেক শক্তি জমা থাকে তাই বড় নিউক্লিয়াসকে ভেঙ্গে কিংবা ছোট নিউক্লিয়াসকে জোড়া দিয়ে অনেক শক্তি তৈরি করা সম্ভব। নিউক্লিয়ার বোমা সে জন্য এত শক্তিশালী। সূর্য থেকে আলো তাপও এই বল থেকে তৈরি হয়।

বিজ্ঞানীরা ধারণা করেন এই চার ধরনের বলের মূল এক জায়গায় এবং তারা সবগুলোকে এক সূত্র দিয়ে ব্যাখ্যা করার চেষ্টা করছেন। তড়িৎ চৌম্বক (বিদ্যুৎ চৌম্বকীয়) এবং দুর্বল নিউক্লিয়ার বলকে এর মাঝে একই সূত্র দিয়ে ব্যাখ্যা করা সম্ভব হয়েছে এবং সেটি তাত্ত্বিক পদার্থবিজ্ঞানের একটি আকাশছোঁয়া সাফল্য! (কাজেই তুমি ইচ্ছে করলে বলতে পার বল তিন ধরনের: মহাকর্ষ, ইলেকট্রো উইক (Electroweak) এবং নিউক্লিয়ার কেউ এটাকে ভুল বলতে পারবে ন!) অন্যগুলোকেও এক সূত্রে গাঁথার জন্য বিজ্ঞানীরা কাজ করে যাচ্ছেন।

তোমরা যখন তোমাদের দৈনন্দিন জীবনে নানা কাজে বল ব্যবহার করো তখন তোমাদের মনে হতে পারে কোনো কোনো বল প্রয়োগ করতে হলে স্পর্শ করতে হয় (ক্রেন দিয়ে ভারী জিনিস তোলা, কোনো কিছুকে ধাক্কা দেওয়া, কিংবা চলতে চলতে ঘর্ষণের জন্য চলন্ত বস্তুর থেমে যাওয়া) আবার তোমরা লক্ষ করেছ কোনো কোনো বল প্রয়োগের জন্য স্পর্শ করতে হয় না কোনো কিছু ছেড়ে দিলে মাধ্যাকর্ষণ বলের জন্য নিচে পড়া, চুম্বকের আকর্ষণ!) কাজেই আমরা বলকে স্পর্শ এবং অস্পর্শ দুই ধরনের বলে ভাগ করতে পারি। কিন্তু তোমরা নিশ্চয়ই বুঝতে পারছ আমরা যেখানে স্পর্শ করছি বলে ধারণা করছি, সেখানে কিন্তু পরস্পরের অণু-পরমাণু, তাদের ঘিরে ঘূর্ণায়মান ইলেকট্রন সরাসরি স্পর্শ দিয়ে নয় তাদের তড়িৎ চৌম্বক বল দিয়ে একে অন্যের সাথে কাজ করছে! অন্য কথায় বলা যায় আমরা যদি পারমাণবিক পর্যায়ে চলে যাই তাহলে সব বলই অস্পর্শক! এক পরমাণু অন্য পরমাণুকে আকর্ষণ-বিকর্ষণ করে দূর থেকে, তাদেরকে আক্ষরিক অর্থে স্পর্শ করতে হয় না!

3.3 নিউটনের দ্বিতীয় সূত্র (Newton's Second Law)

আমাদের চারপাশে আমরা যা কিছু দেখি সেটি গ্রহ-নক্ষত্র হোক আর গাড়ি ট্রেন-বিমান হোক কিংবা ক্যারমের গুটি হোক তার সব কিছুই নিউটনের দ্বিতীয় সূত্র দিয়ে ব্যাখ্যা করা যায়। নিউটনের দ্বিতীয় সূত্র পদার্থবিজ্ঞানের জগতে যে অপূর্ব বিপ্লব সৃষ্টি করেছিল তার কোনো তুলনা নেই। আলোর বেগের কাছাকাছি যাওয়ার সময় কিংবা অণু-পরমাণুর ক্ষুদ্র জগতে যাওয়ার আগে পর্যন্ত নিউটনের দ্বিতীয় সূত্রের বাইরে কিছু প্রয়োজন হয় না। এই অসাধারণ সূত্রটি খুবই সহজ, এটা এ রকম:

নিউটনের দ্বিতীয় সূত্র: বস্তুর ভরবেগের পরিবর্তনের হার তার উপর প্রযুক্ত বলের সামানুপাতিক এবং যে দিকে বল প্রয়োগ করা হয় ভরবেগের পরিবর্তনটাও ঘটে সেদিকে।

সূত্রটাতে বেগের পরিবর্তনের হার না বলে ভরবেগের পরিবর্তনের হার কথাটা বলা হয়েছে। ভর বেগ সহজ ভাবে ভর এবং বেগের গুণফলকে বলা হয়। অর্থাৎ ভর যদি হয় $m_{,}$ বেগ যদি হয় v তাহলে ভরবেগ p হচ্ছে

$$p = mv$$

বোঝাই যাচ্ছে যেহেতু v হচ্ছে ভেক্টর তাই p ও একটি ভেক্টর। তোমরা ধারণা করতে পার যে সাধারণভাবে যখন কোনো কিছু গতিশীল হয় তখন তার ভরের কোনো পরিবর্তন হয় না, তাই ভরবেগের পরিবর্তনটুকু আসবে বেগের পরিবর্তন থেকে। খুবই বিশেষ কোনো ক্ষেত্রে হয়তো আমরা দেখব বেগের পরিবর্তন হয়নি কিন্তু ভরের পরিবর্তন হয়েছে বলে ভর বেগের পরিবর্তন হয়ে গেছে! ভরবেগ নামে একটা নৃতন রাশি আবিদ্ধার না করে ভর এবং বেগের গুণফল কথাটা বললে কী সমস্যা ছিল? বড় কোনো সমস্যা নেই কিন্তু তোমরা জেনে রাখো আলোকে যখন কণা হিসেবে দেখা হয় তখন তার কিন্তু ভর থাকে না কিন্তু ভরবেগ থাকে! কাজেই ভর এবং বেগের থেকে ভরবেগ বেশি মৌলিক একটি রাশি!

উদাহরণ 3.2: তুমি একটি টেনিস বল $10\ m/s$ বেগে একটা দেয়ালে ছুড়ে দেয়ার পর এটা একই দ্রুতিতে ঠিক তোমার দিকে ফিরে এসেছে। বলটার ভর 100gm হলে ভরবেগের পরিবর্তন কত?

উত্তর: বলটি ছুড়ে দেয়ার সময় ভরকো p=mv, দেয়ালে আঘাত করে ঠিক উল্টো দিকে ফিরে আসার সময় ভরকো হচ্ছে p'=-mv কাজেই ভরবেগের পরিবর্তন:

$$p - (p') = mv - (-mv) = 2mv$$

এই পরিবর্তনের জন্য টেনিস বলটার উপর দেয়ালটা খুব অল্প সময়ের জন্য বল প্রয়োগ করেছে। ক্রিকেট খেলার সময় ব্যাটসম্যানেরা এভাবে ব্যাট দিয়ে খুব অল্প সময়ের জন্য ক্রিকেট বলকে আঘাত করে সেটার ভরবেগের পরিবর্তন করে ফেলে। আমরা যেগুলোকে বাউন্ডারি কিংবা ছক্কা বলি!

এবারে আমরা নিউটনের দ্বিতীয় সূত্রে ফিরে যাই। ধরা যাক কোনো একটা বস্তুর আদিবেগ ছিল u এবং t সময় পর সেই বেগ পরিবর্তিত হয়ে (বেড়ে কিংবা কমে) হয়েছে $v_{\rm s}$ কাজেই ভর বেগের পরিবর্তন হচ্ছে :

$$mv - mu$$

কাজেই ভরবেগের পরিবর্তনের হার:

$$\frac{mv - mu}{t} = m\frac{(v - u)}{t} = ma$$

যেহেতু এখালে ধরে নিয়েছি ভরের কোনো পরিবর্তন হয়নি তাই এভাবে লিখতে পারি আর আমরা জানি তুরণ হচ্ছে

$$a = \frac{v - u}{t}$$

সুতরাং প্রয়োগ করা বল যদি F হয় তাহলে আমরা নিউটনের দ্বিতীয় সূত্রকে লিখতে পারি:

F oc ma

কিন্তু আমরা সূত্রটাকে সমানুপাতিকভাবে লিখতে চাই না. সমীকরণ হিসেবে লিখতে চাই!

তোমরা সবাই জান সমান এবং সমানুপাতিক কথা দুটির অর্থ কী। একটি রাশি যে হারে বাড়ে বা কমে অন্যটিও যদি সেই হারে বাড়ে বা কমে তাহলে আমরা বলি রাশি দুটি সমানুপাতিক। যে কোনো একটি রাশিকে সঠিক একটা সামানুপাতিক ধ্রুবক দিয়ে গুণ করে দুটি সমানুপাতিক রাশিকে সমান করে কেলা যায়।

অর্থাৎ যদি x,y এর সমানুপাতিক হয়, অর্থাৎ $x\propto y$ হয় তাহলে একটা সমানুপাতিক ধ্রুব k খুঁজে বের করা সম্ভব যখন আমরা লিখতে পারব

x = ky

নিউটনের দ্বিতীয় সূত্রটির বেলায় এবারে একটা চমকপ্রদ ব্যাপার ঘটানো সম্ভব। যেহেতু বল বিষয়টাই এর আগে কোথাও ব্যাখ্যা করা হয়নি, (নিউটনের প্রথম সূত্র দিয়ে শুধু সেটার একটা ধারণা দেওয়া হয়েছে) দ্বিতীয় সূত্র দিয়ে সেটাকে প্রথমবার পরিমাপ করা হবে তাই আমরা বলতে পারি নিউটনের দ্বিতীয় সূত্র প্রয়োগ করার সময় সমানুপাতিক প্রশ্বককে I ধরা হলে যেটা পাব সেটাই হচ্ছে বলের পরিমাপ! কী সহজে সমানুপাতিক সম্পর্ককে সমীকরণ বানিয়ে ফেলা যায়।

সূতরাং *আমরা নিউটনের* দ্বিতীয় সূত্রটাকে একটা সমীকরণ হিসেবে লিখতে পারি। বল যদি Γ হয় এবং সমানুপাতিক ধ্রুবককে যদি 1 ধরে নেই তা হলে

F = ma বলের মাত্রা: MLT^{-2}

এই ছোট এবং সহজ সমীকরণটি যে পদার্থবিজ্ঞানের জগতে কী বিপ্লব করে দিতে পারে সেটি বিশ্বাস করা কঠিন।

উদাহরণ 3.3: 3.2 ছবিতে দেখানো উপায়ে একটি m ভরের দুই পাশে দুটি কপিকল ব্যবহার করে $10\ kg$ এবং $5\ kg$ ভরের দুটি ওজন ঝুলিয়ে দেরা হয়েছে। m ভরটির উপর কত বল কাজ করছে?

ছবি 3.2: কাৰ্পিকল দিয়ে একটি ভক্তকে দুগাখ থেকে দুটি গুজনের মাধ্যমে নল প্রয়োগ করা হচেছ

चेंक्कः 10 kg अनः 5 kg च्छ कारता वन नडा. अष्टता च्या कारण्य, अष्टलारक प्रथम g मित्रः। ७० मिरः बरल प्रतिगठ करत निरुठ स्टबः।

$$10 \ ky \times 9.8m/s^2$$

= 98 N
 $5 \ ky \times 9.8m/s^2$
= 49 N

কাজেই ।।। ভারতির উপন বাস দিকে 98 N দিয়ে। এবং ডান দিকে 49 N দিয়ে দিনা হতত।

দুটো যোগ হয়ে বলা ঘায় ৰাম দিবো 49 W কাজ কৰছে।। mp ভৱানিৰ উপৰ আৱেকটি ৰল mg সোজা নোচৰ দিবো কাজ কৰছে, কিন্তু সোট টেবিলেই প্ৰতিক্ৰিয়া বল দিয়ে কাটাকটি হয়ে আছে।

উদাহরণ J.4: LRg ভরের একটা বস্তুকে হবি J.3 এ দেখানো উপায়ে ঝুলিয়ে রাখা হয়েছে। R_1 এবং R_2 বহের মান কভং

উত্তর: যেহেতু এখানে সর কিছু স্থির অবভায় আছে তাই কোঝা যাড়ে /) বিন্দতে মোট বলেব পরিমাণ শূন্য। 1kg ভরকে প্রথমে g দিয়ে প্রপ দিয়ে কলে পরিগত করে নিতে হবে।

$$1 kg \times 9.8 m/s^2 = 9.8 N$$

নিজের দিকের এই 9.8 N বলটে উপর দিকের দুটি বল দু এবং দু দিকের নামা অবস্থান রাখা করা আছে। অর্থাৎ, উপরে নিচে কোনো বল নেই, ভালে বামেও কোনো বল নেই। ভালে বামে বনের জনা নিখতে পারি।

স্থান র.র: জ্যান পজে। দিয়ে রো।লানো একটি ভব

$$F_1 \sin 45^\circ = F_2 \sin 45^\circ \pi \cos F_1 = F_2$$

উপরে নিমে বলের জন্য নিমতে পারি $9.8~N=F_1~\cos 45^\circ+F_2\cos 45^\circ$

প্রথম সমীবলগ গেলে
$$9.8~N=2F_1\cos 45^\circ=2F_1/\sqrt{2}$$

$$F_1=\frac{9.8}{\sqrt{2}}=6.93N$$

উদাহরণ 3.5; 5kg ভরের একটি ছির বন্ধর ওপর 100N বল 10s পর্যন্ত প্রয়োগ করা হলো।

(.c) কা প্রয়োগ করার কারণে ভূরণ কত? (b) 10s পরে কো কত? (c) 20s পরে কো কত? (d) 20s সময়ে কতটুকু দূরত্ব অতিক্রম করেছে? (e) কো এবং অতিক্রান্ত দূরত্ব গ্রাফ একৈ দেখাও।

উন্তর: (a) তুরণ

$$a = \frac{F}{m} = \frac{100 \text{ N}}{5 \text{ kg}} = 20 \text{ m/s}^2$$

(b) 10s পরে বেগ

$$u = u + at = 0 + 20 \times 10m/s = 200 m/s$$

ছবি 3.4: বেগ সময় এবং অবস্থান সময়ের দুটি গ্রাফ বা লেখচিত্র

- (c) 10s পর্যন্ত বল প্রয়োগ করা হয়েছে এরপর যেহেতু আর বল প্রয়োগ করা হয়নি কাজেই $200\,m/s$ কো পৌছানো পর বেগ অপরিবর্তিত থাকরে। অর্থাৎ 20s পরে কো $200\,m/s$
 - (d) 20s এ অতিক্রান্ত দূরত্ব দুইবারে বের করতে হবে। প্রথম 10s এ অতিক্রান্ত দূরত্ব;

$$s_1 = ut + \frac{1}{2}at^2 = \frac{1}{2} \times 20 \times 10^2 m = 1000 m$$

দিতীয় 10 ৪ এ অতিক্রান্ত দূবকু (ছবি 3.4)

$$s_2 = vt = 200 \times 10 m = 2000m$$

মোট অতিক্রান্ত দূরত $s=s_1+s_2=1000\,m+2000\,m=3000\,m$

(e) 3,4 ছবিতে দেখালো হয়েছে।

উদাহরণ 3.6: স্থির অবস্থা থেকে শুরু করে 10s একটা বস্তু 100m দূরত্ব অতিক্রম করাতে 20N বল দিতে হয়েছে। বস্তুটির শুর কত?

উত্তর:
$$s = ut + \frac{1}{2}at^2$$
 $u = 0$
 $a = \frac{2s}{t^2} = \frac{2 \times 100}{10^2} m/s^2 = 2m/s^2$
 $F = ma$
 $m = \frac{F}{a} = \frac{20}{2} kg = 10 kg$

উদাহরণ 3.7: তোমরা সবাই আইনস্টাইনের সেই বিখ্যাত সূত্রটির কথা জান $E=mc^2$ এখানে E হচ্ছে শক্তি (আমরা পরের অধ্যায়ে পড়ব) m হচ্ছে ভর এবং c হচ্ছে আলোর বেগ। আইনস্টাইনের আপেক্ষিক সূত্র থেকে আমরা জানি

$$m = \frac{m_0}{\sqrt{1 - \frac{v^2}{c^2}}}$$

যেখানে m হচ্ছে গতিশীল অবস্থার ভর আর m_0 হচ্ছে স্থির অবস্থার ভর, অর্থাৎ আইনস্টাইনের আপেক্ষিক তত্ত্ব অনুযায়ী স্থির অবস্থার ভর থেকে গতিশীল অবস্থার ভর বেশি! দেখাও যে আলোকে কণা হিসেবে বিবেচনা করলে এর ভর শূন্য হলেও এর ভর বেগ শূন্য নয়!

উত্তর: ভরবেগ হচ্ছে p=mv

$$p = \frac{m_0 v}{\sqrt{1 - \frac{v^2}{c^2}}}$$

দুই পাশেই বর্গ করি:

$$p^2 = \frac{m_0^2 v^2}{1 - \frac{v^2}{c^2}}$$

 c^2 দিয়ে গুণ করি:

$$p^2c^2 = \frac{m_0^2v^2c^2}{1 - \frac{v^2}{c^2}}$$

দুই পাশে $m_0^2c^4$ যোগ করি:

$$p^{2}c^{2} + m_{0}^{2}c^{4} = \frac{m_{0}^{2}v^{2}c^{2}}{1 - \frac{v^{2}}{c^{2}}} + m_{0}^{2}c^{4}$$

$$p^2c^2 + m_0^2c^4 = \frac{m_0^2v^2c^2 + m_0^2c^4 - m_0^2v^2c^2}{1 - \frac{v^2}{c^2}} = \frac{m_0^2c^4}{1 - \frac{v^2}{c^2}}$$

দুইপাশে কমূল নেই

$$\sqrt{p^2c^2 + m_0^2c^4} = \frac{m_0c^2}{\sqrt{1 - \frac{v^2}{c^2}}} = mc^2$$

আমরা জানি $E=mc^2$

কাজেই
$$\sqrt{p^2c^2+m_0^2c^4}=E$$

গদি $m_0=0$ হয় $pc=E$ কাজেই $p=E/c$

অর্থাৎ ভর শুনা হলেও ভরবেগ p শুনা নয়। কত সহজে কত বিচিত্র বিষয় দেখানো বায়।

3.4 মহাকর্ষ বল (Gravitational Force)

আমরা বল কী সেটা বলেছি (যেটা তুরণের জন্ম দেয়) সেটা কেমন করে পরিমাপ করতে হয় সেটাও বলেছি (ভর আর তুরণের গুণফল) কিন্তু এখনো তোমাদেরকে সত্যিকার কোনো বলের সাথে পরিচয় করিয়ে দিইনি। পদার্থবিজ্ঞানের একটি চমকপ্রদ বল হচ্ছে মহাকর্ষ বল, ভর আছে সে রকম যে কোনো বস্তু অন্য বস্তুকে মহাকর্ষ বল দিয়ে আকর্ষণ করে। ধরা যাক দুটি ভর m_1 এবং m_2 তাদের মাঝে দূরত্ব r তাহলে তাদের মাঝে যে বল সৃষ্টি হবে সেটাকে যদি আমরা F বলি তাহলে

$$F = G \frac{m_1 m_2}{r^2}$$

মাত্রা: MLT'-2

এখানে G হচ্ছে মহাকধীয় ধ্রুবক এবং তার মান হচ্ছে :

 $6.67 \times 10^{-11} \, Nm^2 kg^2$

এখানে মনে রাখ্যে ইনে m_1 'আদি m_2 নক নিজেন দিকে F নৰে আকৰণ কৰে আনাৰ m_2 'ভবটি m_1 নক নিজেন দিকে আঞ্চন- কনে।

चाँ पराने जराब क्षकाँ। वाप जामासम्ब नाशनी इस कार जामा आल पराव निर्दे जाव 'प्रव M क्षक नायिनीत किनात मा 'जराब 'प्राप क्षवाँ। क्षितिम नाशी इस जाइरल भागेनी मा कबरक जाव स्कट्खाव मिराव मि नामा ज्याकवंश कराब

चर्ते 🗓 🚉 🦷 कि करावर्थ एक वर्त आधानका वदा

$$F = G \frac{mM}{R^2}$$

এই কলাটিই আনকো বছাটির শুজন। মনে রাখতে হবে এখানে R প্রথিবীর কেন্দ্র থাকে m ভর্মট প্রথান দ্বতে। পৃথিবীপুল খোকে (এয়া 6000 km) কাজেই পৃথিবীর পূষ্টে ছোলগাটো উচ্চতাকে গর্তাকে মাথে আনার প্রয়োজন নেই। পৃথিবীর কেন্দ্র খোকে দ্বতে মাথে আনার প্রয়োজন নেই। পৃথিবীর কেন্দ্র খোকে দ্বতে মাথে আনার প্রয়োজন নেই। পৃথিবীর কেন্দ্র খোকে দ্বতে মাথা হয় লাবণ রাদ গোলালার কোনো লভ হয় তাহলে তার ব্যাস্ত তর কেন্দ্রালিকতে জনা করে আছে দিনে কিলে কোনো জন হয় বা। তান কালণ পৃথিবীর প্রতাবলী বিলুই m জনকে নিজে কিলে আকর্ষণ করে এক দ্বতারো আকর্ষণ একত্র করা জনে মনে হয় যোন পৃথিবীর সমস্ত জরাটুকুই কেন্দ্রাবান্তে জনা হয়ে আছে।।

निर्फोरना कियाँग नवा *औरक* प्राचना शानि

পুশিবীর সাধ্যাক্ষরণ বলের জন III জ্বাটি একটি সুরণ অন্তর করবে। নাশাক্ষরণের জন্য যে ক্রম স্থা সেটাকে a না লিমে g কোণা হয় বেটা আফল আমেট কলেছে। কাড়েছট

$$G\frac{mM}{R^2}=mg$$

পূমিনীর ভব $M=5.98 \times 10^{-4}$ মৃ μ , পূমিনীর ন্যাসার্গ $B=6.37 \times 10^{-10}$

$$g = \frac{6M}{R^2} = \frac{6.67 \times 10^{-11} \times 5.98 \times 10^{24}}{(6.37 \times 10^6)^2} m/\varsigma^2 = 9.8 m/\varsigma^2$$

জন্মনা এন জালেন জণ্যায়েই গতিৰ ন্মীক্ৰণে g এন এই মান নদেশৰ কলেন, ামন একানো কাননো গাবলৈ কোন g এব এই মান নানহাৰ কৰা ইয়েছিল। উদাহৰণ 3.8: স্পেন স্টেশনেৰ উচ্চতা পৃথিবীশৰ্চ প্ৰেকে আনুমানিক $100\, km$ যোগানে μ এবং মান কক্ষঃ

फेल्ड्यः इत्यम स्मिन्द्रा माधाक्यम्फनिक कृतप द्वा स्टल

$$g' = \frac{GM}{(R + r)^2}$$

াণানে R পৃথিবীট ব্যানার $6000\, km$ এক েশদ কেইশনের উচ্চতা $au=100\, km$

$$g' = \frac{GM}{(R + \tau)^2} = \frac{GM}{R^2(1 + \tau/R)^2} = \frac{g}{(1 + \tau/R)^2}$$

$$g' = \frac{g}{1.016^2} = 9.49 \, m/s^2$$

y धव भान स्थालके भूना नय छारल ानोहन महाकाशकानीया ग्रेडनस्ट्रीन (इवि ≟6) क्रमण

উদাক্তাণ 3.9: পৃথিবীন কেন্দ্র (থকে চালেব দ্বুজ 3.8 × 10⁵km. দিখেব একবার পৃথিবীকৈ প্রদক্ষিণ করতে কত সময় লাগারে:

হুবি রী.ভি স্কাল্পারামে রাজানে এটেট্রানটে।

केंद्रबः कीमाक पश्चिम मक्ताकर्या चाल दोमाइ । अदि हैं दल

$$= G \frac{mM}{\tau^2}$$

M পৃথিবীৰ ভূম

m होताह एक

🕇 शिदी (अरक होराच पूरवड़

भूतिवीत जात्त्वदेशन फता मेंट्रप्त कृता है दूज

$$a = \frac{\vartheta^2}{r}$$

वा भारत

$$v = \frac{2\gamma \pi}{T}$$

T পৃথিনীকে ওকৰাও যুৱে আসতে নিদের যে সময় লাগে

F = ma व्यवहार करत

$$G\frac{mM}{r^2} = m\frac{\left(\frac{2\pi r}{T}\right)^2}{r}$$

$$\frac{GM}{r} = \left(\frac{2\pi r}{T}\right)^2$$

$$T = \frac{2\pi r}{\sqrt{\frac{GM}{r}}} = 2\pi\sqrt{\frac{r^3}{GM}}$$

মান্ত্রন এখানে প্রতেকেটার নান বসিয়ে ছিলান কবতে পানি কিন্তু সেটা না করে এখানে $y=rac{\omega_0}{\omega_0^2}$ ব্যৱহার করে গেলি :

इवि 3.7। विविद्या विका क्रियान हो।

$$T = \frac{2\pi}{R} \sqrt{\frac{r^3}{g}}.$$

এখানে পৃথিকীর রাজনি $R=6.37 imes 10^6 \, m$ এবং $g=9.8 \, m/s^7$

$$T = \frac{2\pi \times (3.8 \times 10^6)^{\frac{3}{2}}}{6.37 \times 10^6 \times \sqrt{9.8}} s = \frac{2\pi \times (3.8 \times 10^5)^{\frac{3}{2}}}{6.37 \times 10^6 \times \sqrt{9.8} \times 60 \times 60 \times 24} aays.$$

T = 27 days

প্রিবী এনকে মনে জা নীদ বুনি 29.5 নিলে প্রিবীকে প্রদক্ষিণ করে (উলাছরণ 2.15) জানলে করবান 27 নিন ৷

তোমানা নিগতাই লক্ষ কৰেছ পৃথিবীকে খিৱে নিনের প্রদক্ষি। করতে কত সময় লাগে লেটা বের করতে আমানের কোণাও নিনের জর ব্যবহার করতে হয়নি। কাজেট

$$r = \frac{2\pi}{R} \sqrt{\frac{r^2}{\theta}}$$

ৰুত্ৰটা 'শামনা প্ৰথিবীলে নিছে বুৱনে সাকা যে কোনো নিপচাহন জনাও নামচার কনকে পারন

উদাহৰণ 3.10; সূৰ্য পোকে বিভিন্ন গ্ৰাহ্ম দূৰত্বতলো মতে প্ৰতিবান দৰতেৰ কুলনা।।

গ্ৰহ	বুধ	শুক্র	পৃথিবী	মঙ্গল	বৃহস্পতি	শনি	ইউরেনাস	নেপচুন
দূরত্ব	0.387	0.723	1	1.524	5.203	9.539	19.18	30.06

কোন গ্রহ কত সময়ে সূর্যকে একবার ঘুরে আসে?

উত্তর: m প্রহের ভর এবং M সূর্যের ভর হলে, একটি গ্রহকে সূর্য তার দিকে যে বলে টানছে:

$$F = G \frac{mM}{r^2}$$

এই বলে টানার কারণে সেই গ্রহের ত্বরণঃ

$$a = \frac{v^2}{r} = \frac{\left(\frac{2\pi r}{T}\right)^2}{r} = \frac{4\pi^2 r}{T^2}$$

এখানে T ২চ্ছে সূর্যকে একবার ঘুরে আসার সময়।

যেহেতু F = ma

$$G\frac{mM}{r^2} = m\frac{4\pi^2r}{T^2}$$

কাজেই যে কোনো গ্রহের জন্য সূর্যকে একবার ঘুরে আসতে যে সময় লাগে

$$T^2 = \frac{4\pi^2 r^3}{GM}$$

 $r=r_0$ সূর্য থেকে পৃথিবীর দূরত্ব হলে $T=T_0$ হবে সূর্যকে একবার ঘুরে আসতে পৃথিবীর যে সময় লাগে,

$$T_0^2 = \frac{4\pi^2 r_0^3}{GM}$$

কাজেই যে কোনো গ্রহের জন্য সূর্যকে একবার ঘুরে আসার সময়

$$T^{2} = \frac{4\pi^{2}r^{3}}{GM} = \frac{4\pi^{2}r_{0}^{3}}{GM} \left(\frac{r^{3}}{r_{0}^{3}}\right) = T_{0}^{2} \left(\frac{r^{3}}{r_{0}^{3}}\right)$$
$$T = T_{0} \sqrt{\left(\frac{r^{3}}{r_{0}^{3}}\right)}$$

এখন আমরা ভিন্ন গ্রহের জন্য r এর মান বসিয়ে সরাসরি পৃথিবীর তুলনায় অন্যান্য গ্রহের সূর্যকে ঘিরে আসতে কত সময় লাগবে বের করে ফেলতে পারি। যেহেতু পৃথিবীর সূযকে ঘিরে আসার সময়টাকে আমরা বংসর বলি কান্ডেই তালিকাটা বংসরে বের হবে।

যেমন বুধ গ্রহের জন্য

$$T = T_0 \sqrt{\left(\frac{0.387}{1}\right)^3} = 0.24$$

এভাবে অন্যগুলোও বের করতে পারি। উত্তর হবে:

গ্ৰহ	বুধ	শুক্র	পৃথিবী	মঞ্চল	বৃহস্পতি	শনি	ইউরেনাস	নেপচুন
বৎসর	0.24	0.614	1	1.881	11.86	29.46	84.00	164.81

তোমরা ইন্টারনেট বইপত্র ঘাঁটাঘাঁটি করে মিলিয়ে দেখ তোমার হিসাব কি সত্যি কি না! কত অল্প জেনে কোন গ্রহকে সূর্যকে ঘিরে আসতে বছর লাগবে বের করতে পারছ– ভেবে দেখেছ?

3.4.1 পৃথিবীর কেন্দ্রে g এর মান

আমরা দেখেছি পৃথিবীর পৃষ্ঠে g এর মান

$$g = \frac{GM}{R^2}$$

যদি পৃথিবীর কেন্দ্রের g এর মান বের করার জন্যে এই সমীকরণে R=0 বসিয়ে দিই তাহলে মোটেও সঠিক উত্তর পাব না, কাজেই ঠিক করে এটা বের করতে হবে।

ধরা যাক পৃথিবীর ব্যাসার্ধ R এবং আমরা পৃথিবীর পৃষ্ঠ থেকে গর্ত করে পৃথিবীর গভীরে ঢুকে গেছি এবং সেখানে পৃথিবীর কেন্দ্র থেকে দূরত্ব r। আমরা r কে ব্যসার্ধ ধরে আরেকটা গোলক কল্পনা করে নিই। এখন আমরা পৃথিবীটাকে দুই ভাগে ভাগ করে নিতে পারি, r ব্যাসার্ধের গোলক এবং তার বাইরের অংশটুকু। (ছবি 3.8)

পৃথিবীর গভীরে কেন্দ্র থেকে r দূরত্বে যদি কোনো ভর m থাকে তাহলে তার ওপর মাধ্যাকর্ষণ বলটিকে আমরা দুটি ভিন্ন বলের যোগফল হিসেবে বের করতে পারি। r ব্যাসার্ধের গোলকের কারণে মাধ্যাকর্ষণ বল এবং বাইরের অংশটুকুর কারণে মাধ্যাকর্ষণ বল। ছবি দেখেই তোমরা বুঝতে পারছ বাইরের অংশের কারণে যে মাধ্যাকর্ষণ বল তৈরি হয় সেটা যেমন নিচের দিকে আছে ঠিক সে রকম ওপরের দিকেও আছে। আমরা যদি ঠিক করে হিসেব করি তাহলে দেখব ব্যাসার্ধের পৃষ্ঠে যে কোনো বিন্দুতে নিচের পিছের দিকে যে মাধ্যাকর্ষণ বল টানছে সেটাকে কাটাকাটি করে ফেলছে উপর দিক থেকে টানা মাধ্যাকর্ষণ বল এবং সব মিলিয়ে এই মাধ্যাকর্ষণ বলের মান হচ্ছে শূন্য! কাজেই কেন্দ্র থেকে r দূরত্বে থাকা ভরের ওপর মাধ্যাকর্ষণ বল আসবে শুধুমাত্র r গোলকের ভেতরকার ভর্টুকুর জন্য বাইরে থেকে কিছু আসবে না।

ছবি 3,8: পৃথিবীর ভেতরে একটি গোলকের উপর এবং গোলকের বাইরের অংশে ভরের কারণে তৈরী হওয়া g

পৃথিবীর ভর M এবং আয়াতন $\left(rac{4\pi}{3}
ight)R^3$ ডাই তার ঘনতু ho

$$\rho = \frac{M}{\left(\frac{4\pi}{3}\right)R^3}$$

সূতরাং r ব্যাসার্ফের গোলকের ভর M'

$$M' = \left(\frac{4\pi}{3}\right)r^3\rho = \left(\frac{4\pi}{3}\right)r^3 \times \frac{M}{\left(\frac{4\pi}{3}\right)R^3} = \left(\frac{r}{R}\right)^3 M$$

সূতরাং পৃথিবীর ভেতরে কেন্দ্র থেকে r দূরত্বে রাখা m ভরের ওপর মাধ্যাকর্ষণ বল হচেছ

$$F = \frac{GmM'}{r^2} = \frac{Gm}{r^2} \left(\frac{r}{R}\right)^3 M = \frac{GmM}{R^2} \left(\frac{r}{R}\right) = mg\left(\frac{r}{R}\right)$$

g হচ্ছে পৃথিনীর পৃষ্ঠে মাধ্যাকর্ষণজনিত ত্বরণ। নুতরাং পৃথিনীর শ্রেতরে কেন্দ্র থেকে r দূরত্বে মাধ্যাকর্ষণজনিত ত্বরণ g' হলে মাধ্যাকর্ষণ বল F হবে mg', কাজেই

$$mg' = mg\left(\frac{r}{R}\right)$$

 $g' = g\left(\frac{r}{R}\right)$

কাজেই একেবারে কেন্দ্রে (r=0) g' এর মান পূন্য। স্বর্থাৎ পৃথিনীর কেন্দ্রে যে কোনো বস্তু ওজনহীন।

উদাহরণ 3.11: পৃথিবীর অভ্যন্তরে কেন্দ্র থেকে করে তরু পৃথিবী থেকে বাইরে g এর মান দ্রতের সাথে কিভাবে পরিবর্তিত হয় দেখাও।

উদ্ভব: পৃথিবীর অভ্যন্তরে কেন্দ্র থেকে ৷ দুরতে:

$$g_{in} = g\left(\frac{r}{R}\right)$$

পৃথিবীর বাইরে কেন্দ্র থেকে r
দরত্বে

ছবি 3.9: পৃথিনীর কেন্দ্র থেকে বাইরের দিকে g এর মান।

$$\begin{split} F &= mg_{out} = G\frac{mM}{r^2} = G\frac{mM}{R^2}\bigg(\frac{R^2}{r^2}\bigg) = mg\left(\frac{R^2}{r^2}\right) \\ g_{out} &= g\left(\frac{R^2}{r^2}\right) \end{split}$$

८ अत भाग 3.9 ছतिए एमधाना दसाए

3.5 স্প্রিংয়ের বল

ধরা যাক সাভাবিক অবস্থায় একটা স্প্রিংয়ের দৈর্ঘা L এই স্প্রিংটাকে টেবিলে স্ক্রেরে রাখা হয়েছে এবং ধরা যাক এই স্প্রিংয়ের এক মাথা একটি দেয়ালে লাগানো অন্য মাথায় একটা ভর m লাগানো আছে। সভাবিক অবস্থায় m ভরটির ওপর স্প্রিংয়ের কারণে কোনো বল নেই। স্প্রিংয়ের পুরো দৈর্ঘ্য জানার চেয়ে ভার সংকোচন কিংবা প্রসারণ জানতে আমরা বেশি আগ্রহী তাই স্প্রিংয়ের স্বাভাবিক দৈর্ঘ্য L বিন্দুটিকে χ অক্ষের কেন্দ্রবিন্দু হিসেবে কল্পনা করে নিয়েছি। (ছবি 3.10)

কাজেই যদি আমরা ভরটিকে আঙ্গুল দিয়ে স্প্রিংয়ের দিকে চেপে ধরি, অর্থাৎ F বল প্রয়োগ করি তাহলে স্প্রিংটা সংকুচিত হয়ে যাবে। আমরা যদি চাপ দিয়ে ধরে রাখি অর্থাৎ বল প্রয়োগ করি তাহলে নিউটনের দিতীয় সূত্র F=ma অনুযায়ী তুরণ হওয়ার কথা। কিন্তু যেহেতু ভরটি স্থির কোনো তুরণ হচ্ছে না তার মানে নিশ্চয়ই অন্য একটি বল বিপরীত দিক থেকে কাজ করছে এবং দুটি বলের বোগকল শূন্য হয়ে যাওয়ার কারণে বস্তুটির মোট বল শূন্য এবং বস্তুটির তুরণ নেই। তোমরা নিশ্চয়ই বুঝতে পারছ বিপরীত দিক থেকে বলটি আসছে স্প্রিং থেকে যার অর্থ স্প্রিং যদি সংকুচিত হয় তাহলে সেটি বল প্রয়োগ

করে। প্রত্যেকটা স্প্রিংরেরই একটা স্প্রিং ধ্রুবক থাকে এবং দেখা গেছে স্প্রিংকে তার সাচাবিক সমস্থা থেকে বিচ্যুত করা হলে সংকোচন অথবা প্রসারণ একটা বল প্রদান করে। বিচ্যুতির পরিমাণ 🔏 হলে

$$F = -kx$$

এবানে একটি নেগেটিভ চিহ্ন রয়েছে যার অর্থ বলের দিকটি বিচ্চাতির নিপরীত দিকে। অর্থাৎ স্প্রিং যদি সংকৃচিত হয় তাহলে χ এর মান নেগেটিভ এবং সে কারণে F পজিটিভ অর্থাৎ F এর দিক হচেছ χ অক্ষের পজিটিভ দিক ছবিতে যেমন দেখানা হয়েছে। আবার যদি ভরটিকে টেনে ধরা হয় তাহনে স্প্রিংটার বিচ্চাতি হবে পজিটিভ কাজেই F এর মান হবে নেগেটিভ অর্থাৎ বলটা হবে χ অক্ষের নিগেটিভ

ছবি 3.10: সাভাবিক অবস্থা, সংক্রামত এবং প্রমারিজ মন্ত্রীয়ে।

দিকে, ছবিতে যেমন দেখানো হয়েছে।

শ্বিংরের এই বলাট পদার্থবিজ্ঞানের খুব
ভব্দত্বপূর্ণ একটি বল। আমরা ভরটিকে ছেড়ে দিইনি,
তাই বলের লব্ধি শুন্য এবং ভরটিতে কোনো তুরণ
হয়নি। কিন্তু স্পিংটিকে সংকুচিত কিংবা প্রসারিত করে
আমরা ছেড়েও দিতে পারতাম তাহল স্পিং থেকে
প্ররোগ করা বলের কারণে ভরটার তুরন হতো, বেঘ
বড়তো এবং ভরটা নড়তে ভক্ত করত। এখানে বলটির
মান সব সময় সমান থাকবে না, x বেড়ে যাওয়া, কমে
যাওয়া, পজিটিভ কিংবা নেগেটিভ হওয়ার কারণে
বলটিও বাড়বে কমবে এমনকি দিকও পরিবর্তন করবে,
কাল্লেই তুরশটা হবে বৈচিত্রামের এবং ভরটির গতি
আরা বেশি বৈচিত্রমেয়।

শ্রিংরের কারণে ভরটির বেগ কেমন হর সেটি আমরা আমাদের অভিজ্ঞতা থেকে জানি, সেটি সামনে পিছনে করতে থাকবে এবং ঘর্ষণের কারণে এক সমর থেমে থানে। যদি ঘর্ষণ না থাকত ভরটি তাহলে অনন্তকাল সামনে পিছনে করতে থাকত।

উদাহের 3.12: 3.10 ছবিতে যে ভাবে দেখালো হয়েছে শেভাবে একটা (শর্মপরীন) টেরিলে একটা ভর রাখা আছে। কোনো কিছু করা না হলে শিপ্রগটার দৈর্ঘ্য এখন শিপ্রগটাকে যদি ৫ দূরত্ব টেনে নিয়ে ছেড়ে দিই তাহলে কী হবেং

উক্তরঃ শ্রিপ্রাটা জনটাকে F = -kx নলে টাননে অর্থাৎ বলটা জনটাকে বাম দিকে টাননে। এই বলের জন্য জরের জুরণ হবে এবং জুরণের জন্য বেগ বাড়তে তক করবে। রেগের কারণে জরটা বাম দিকে নিজুতে জক্ত করবে এবং x এর মান কমতে থাকবে— অর্থাৎ বলাটাও কমতে থাকবে নাজেই তুরণও

কমতে খাকৰে। এটা হচ্ছে সমত্রাগা না চলার একটা উদাহরখা। তুর্গ কমতে থাকালেও যোহত তুর্গ আছে তাই কো কিন্তু বাড়াতে থাকারে। যথম ভবজা স্প্রিংরের আমল দৈয়া L ও পৌছারে তথম x=0 জাজেই বল F=0 ওবং তুরগ =() অথাও বেগ আর বৃদ্ধি পারে না । জিন্তু বৃদ্ধি না পোলেও এর মারে। কিন্তু বেগ সর্বোচ্চ মানে বেড়ে গোছে কাজেই এটার থোমে যাবার কোনো স্যোগ নেই। এটা স্প্রিংনকে সংকুচিত করেই চলতে থাকারে। যখন স্প্রিংনকে সংকোচন করারে তখন স্প্রিটা উল্টোদিকে বল প্রায়োগ করে ভর্নটাকে থামানের কেন্টা করারে। অন্যভাবে বলা যায় এলারে উল্টোদিকে তুরগ (না মন্দন) হতে ওক্ত করারে এবং ভরটার গতি কমতে ভক্ত করারে। যখন আবার ও দূরত্বে স্প্রিটার সংকোচন করারে তখন বেগ কমতে কমতে শ্রম করেনে। যখন আবার ও দূরত্বে স্প্রিটার সংকোচন করারে তখন বেগ কমতে কমতে শ্রম স্থাবে।

শ্বিপ্রান যেত্তে সংক্রচিত হয়ে আছে দোন কিছ হরটাকে ভান দিকে বল প্রয়োগ করেই যাচেছ, কাজেই তরণ তৈরি হবে এবং আবার কো নাড়তে থাক্রবে, তবে এবারে উন্টো দিকে। এভাবে পুরো প্রক্রিয়াটা বারবার ঘটতেই থাকরে। ছবিতে যেরকম দেখানো হয়েছে

উদাহরণ 3,13: পথিবীর মানাখান দিয়ে গদি একটা ফুটো করে তুমি ঝাপ নাও (ছবি 3.12) হাহাছা কী হরে?

উশ্বর: ঠিক শিপুধ্যের মতো এখানেও একই ব্যাপার হরে, ওবলতে তোমার বেগ পূন্য - আছে আছে সেটা বাড়তে পাকরে কেন্দ্রে সবাচরে বেশি, তারগর নেটা কমতে থাকবে - অন্য পাশে পৌছাতে পৌছাতে কো পূন্য হয়ে যাবে। তারপর দিকের পরিবর্তন হবে, আবার একই ব্যাপার। তার মানে তুমি এক দিক থেকে অন্যদিকে যেতে আসতে থাকবে।

তোমরা দেশতেই পাছে স্প্রিংয়ের বেলায় বলটি ছিল F = -kx এখান F = -kr যেখানে k = g/R

ছবি 3.11: স্প্রীগ্রের গতি।

3.5 নিউটনের তৃতীয় সূত্র (Newton's Third Law)

কোনে বল প্রয়োগ না করলে কী হয় সেটি আমরা জানতে পেরেছি নিউটনের প্রথম সূত্র থেকে। বল প্রয়োগ করলে কী হয় সেটা আমরা জেনেছি নিউটনের দ্বিতীয় সূত্র থেকে। বখন একটি বন্ধ অনা বন্ধর প্রপর বল প্রয়োগ করে তথন বন্ধ দুটির মাঝে কী ধরনের প্রতিক্রিয়া হয়, সেটি আমরা জানতে পারব নিউটনের কৃতীয় সূত্র গেকে। সূত্রটি এরকম: নিউটনের তৃতীয় সূত্র: যখন একটি বস্তু অন্য একটি বস্তুর ওপর বল প্রয়োগ করে তখন সেই বস্তুটিও প্রথম বস্তুটির ওপর বিপরীত দিকে সমান বল প্রয়োগ করে।

পদার্থবিজ্ঞানের বইয়ে সাধারণত যেভাবে নিউটনের তৃতীয় সূত্র লেখা হয়, "প্রত্যেকটি ক্রিয়ার (action) একটা সমান এবং বিপরীত প্রতিক্রিয়া (reaction) থাকে", আমরা এখানে সেভাবে নিখিনি। আমাদের

এতক্ষণে বল সম্পর্কে খানিকটা ধারণা হয়েছে হঠাৎ करत वनरक "किसाँ" किश्वा প্রতিক্রিয়া বললে বিভ্রান্তি হতে পারে। তার চাইতে বড় কথা गারা নুতন পদার্থবিজ্ঞান শেখে তাদের প্রথম প্রশ্নই হয় যে यिन ज्ञान क्रियात (कारमा व्यक्ति नन) व्यक्ति বিপরীত প্রতিক্রিয়া (আরেকটি বল) থাকে তাহলে ক্রিয়া-প্রতিক্রিয়া একে অপরকে কাটাকাটি করে শুন্য হয়ে যায় না কেন! এজন্য তৃতীয় সূত্রটিতে খুব স্পষ্ট করে লিখে দেয়া দরকার যে তৃতীয় সূত্র বলছে যে যদি দুটি বস্তু A এবং B থাকে তাহলে A যখন Bবলের উপর বল প্রয়োগ করে তথন B বল প্রয়োগ করে A এর ওপর) নিপরীত দুটি বল ভিন্ন ভিন্ন বস্তুতে কাজ করে কখনোই এক বস্তুতে নয়। যদি একই বস্তুতে দুটি বল প্রয়োগ করা হতো ওপু তাহলেই একে অন্যকে কাটাকাটি করতে পারত। এখানে কাটাকাটির কোনো সুযোগ নেই।

স্থাবি 3.12; পৃথিবীর মাঝখান দিয়ে ছেড়ে দেয়া একজন মানুষ উপরে নিচে করতে থাকরে।

করেকটা উদাহরণ দিলে বিষয়টা পরিষ্কার হবে। ধরা যাক ওপর থেকে আমরা m ভরের একটা বস্ত ছেড়ে দিয়েছি (ছবি 3.13)। আমরা জানি পৃথিবীর মাধ্যাকর্ষণ বলের জন্য m ভর পৃথিবীর দিকে একটা বল F অনুভব করবেং

$$F = G \frac{mM}{R^2}$$

আমরা আসেই দেখেছি এই বলটাকে mg হিনেবে লেখা যায়।

নিউটনের তৃতীয় সূত্র শেখার পর আমরা জানি m ভরটিও বিশাল পুরো পৃথিবীটাকে নিজের দিকে আকর্ষণ করছে! সেই বলটিও F শুমাত্র বিপরীত দিকে! আমরা এই বলটিকে নিয়ে মাথা ঘামাইনা, তার কারণ এই বলটার কারণে পৃথিবীর কতটুকু তুরণ u হচ্ছে সেটা ইচ্ছে করলে বের করতে পারি:

$$F = Ma$$

এখানে M হচ্ছে পৃথিবীর ভর এবং a হচ্ছে পৃথিবীর ভূরণ কাজেই

$$a = \frac{F}{M} = \frac{mg}{M} = \left(\frac{m}{M}\right)g$$

যদি পৃথিবীর ভর $M=5.98 imes 10^{24}\ kg$ হয় তাহলে আমরা যদি $1\ kg$ ভরের একটা বন্ধর উপর থেকে ছেড়ে দিই তার জন্য পৃথিবীর তুরণ হবে

$$a = 1.6 \times 10^{-24} m/s^2$$

এটি এত কুদ্র যে কেউ এটা নিয়ে মাথা ঘামায় না!
তুমি যখন পরের বার কোনো জায়গায় লাফ দেবে
তখন মনে রেখো নিচে পড়ার সময় পুরো পৃথিবীটাকে
তুমি আকর্ষণ করে নিজের দিকে টেনে নিয়েছিলে!
(যত কমই হোক তুমি সারা পৃথিবীকে নিজের দিকে
টেনেছিলে, সেটা নিয়ে একটু গর্ব করতে পার।)

নিউটনের তৃতীয় সূত্র বোঝার সবচেয়ে সোজা উপায় হচ্ছে আমরা কীভাবে হাঁটি সেটা বোঝা। আমরা সবাই হাঁটতে পারি এর পেছনে কি পদার্থবিজ্ঞান আছে সেটা না জেনেই সবাই হাঁটে। কিন্তু ভোমরা বেহেতু পদার্থবিজ্ঞান শিখতে তরু করেছ তোমাদের খুব সহজ একটা প্রশ্ন করা যায়। তুমি বেহেতু ন্থির অবস্থা থেকে হাঁটতে পার কাজেই আসলে তোমার একটি ত্রণ হচ্ছে, যার অর্থ তোমার উপর বল প্রয়োগ করা হচ্ছে। কিন্তু আমরা সবাই জানি কেউ আমাদের উপর বল

ছবি 3.13: একটি ভরকে পৃথিবী যেমন আকর্ষণ করে। ভরটি পৃথিবীকেও সেভাবে আকর্ষণ করে।

প্রয়োগ করে না। আমরা নিজেরাই হাঁটি। কেমন করে সেটা সম্ভব? নিউটনের তৃতীয় সূত্র না জানা থাকলে আমরা কখনোই হাঁটার বিষয়টা কাখ্যা করতে পারতাম না। আমরা যখন হাঁটি তখন আমরা পা দিয়ে মাটিতে ধাক্কা দিই (অর্থৎ বল প্রয়োগ করি। তখন মাটিটা

না। আমরা যখন হাঁটি তখন আমরা পা দিয়ে মাটিতে ধাক্কা দিই (অর্থৎ বল প্রয়োগ করি) তখন মাটিটা নিউটনের তৃতীয় সূত্র অনুযায়ী আমাদের শরীরে সমান এবং বিপরীত বল প্রয়োগ কতে (ছবি 3.14)। এই সমান এবং বিপরীত বলটা দিয়েই আমাদের তুরণ হয়, আমরা হাঁটি!

স্থার 3.14: একজন মানুষ হাঁটার সময় পা দিয়ে বখন মাটিকে ধাক্স দেয় তখন মাটিও মানুষটিকে পান্টা ধাক্স দেয়।

विषयण माम्य व्याप्त धक्ये नमना राष्ट्र जाम्यत्क मान कविता म्या गांग, मान माणित होंगे माना किछ बृत्यूत्व वाण्य उपत होंगे माना काय वाण्य अपत वाण्य उपत होंगे माना जाय कावन वाण्य अपत वाण्य अपत हांगा कहा गांग ना, वाण्य मान वाण्य अपत वाण्य हांगा माना ना, वाण्य माना वाण्य हांगा माना वाण्य माना माना हांगा वाण्य करा गांगा वाण्य माना वाण्य करा माना वाण्य करा करा हांगा वाण्य वाण्य माना वाण्य करा माना वाण्य करा हांगा माना वाण्य वाण्य करा हांगा माना हांगा करा हांगा हांगा वाण्य वाण्य वाण्य करा हांगा हांगा करा हांगा हांगा करा अपत हांगा हांगा करा हांगा हांगा करा हांगा हांगा हांगा हांगा करा हांगा हांगा

নিউটনের তৃতীয় সূত্র বুঝতে পিয়ে অনেকেই প্রথম

প্রথম একটা ভূল করে। সেটা হচ্ছে আমরা যদি মাটিতে একটা পাথর রাখি তখন কী হয় সেটা সঠিকভাবে ব্যাখ্যা করতে পারে না, পাথরটি সেহেতু নড়ছে না কাজেই তার তুরণ নেই কাজেই এর উপরে নিশ্চয়ই কোনো বল কাজ করছে না অর্থাৎ মোট বলের পরিমাণ শূন্য কিংবা বলগুলো একটা আরেকটাকে কাটাকাটি করছে। বিষয়টা ব্যাখ্যা করতে গিয়ে আমরা প্রায়ই বলে ফেলি পাথরটা মাটিকে তার ওজনের

नमान वन श्राराण कराष्ट्र निष्ठेंद्रात्त कृष्टीय मृद्ध अनुवारी माष्टिंग ७ छात्र विभवीए भाषतंत्रात्त तमान ध्रवर विभवीं छ वस श्राराण कराष्ट्र ध्रवर ध्रवेट मूटी वस ध्रवती आदिकतिक कांजनाि करात क्रवाष्ट्र। किन्न एकामा निष्ठारी बुनाए भावष्ट्र धरी वाशािंग मिक ना- कांवर कृषीय मृद्ध वरण मिराए ध्रवति वन्न अनाित उभन्न वस श्राराण करात्व। कार्जिय कांजिनाि कराक श्रवा ध्रवत्व वन्न अभव मृष्टि वस श्राराण कराक श्रव- निष्ठेत्राच कृषीय मृद्ध (मेंजो निविक्ष करात्र मिराएष्ट्र)

এর সঠিক উত্তর বের করার জন্য আমরা প্রথমে পাথর এবং মাটির মাঝখানে একটা স্প্রিং কল্পনা করে নিই (ছবি 3.15)। পাথরের ওজনের জনা স্প্রংটা একটু সংকুচিত হয়ে পাথরটার ওপর বিপরীত দিকে বল প্রয়োগ

ছবি 3,15; মাটির গুপত নাগা পাথতকে একটা পিপ্রংয়ের প্রপর কয়েছে কল্পনা করা যায়।

করবে এবং পাথরটাতে দুটি সমান এবং বিপরীত বল একে অন্যকে কাটাকাটি করে লব্ধি শূন্য করে দেবে। ঠিক একইভাবে স্প্রিংটার অন্য অংশও মাটিকে বল প্রয়োগ করবে, মাটিও বিপরীত দিকে বল প্রয়োগ করবে! কাজেই প্রত্যেকটা বস্তুতেই দুটো বিপরীত বল একে অন্যকে কাটাকাটি করে স্থির অবস্থায় থাকবে।

স্বাভাবিক ভাবেই তোমরা প্রশ্ন করতে পার, আমরা যখন মাটিতে একটা পাথর রাখি কিংবা যখন একটা চেয়ারে বসি তখন তো আসলে মাঝখানে কোনো স্প্রিং থাকে না– তখন কী হয়? স্প্রিং না থাকলেও স্প্রিং যে দায়িতুটা পালন করে কঠিন বস্তু প্রয়োজনে একটু বিকৃত, বিচ্যুত, বাঁকা (deform) হয়ে সেই কাজটুকু করে ফেলে! কাজেই কঠিন বস্তু স্প্রিংয়ের মতোই পাল্টা একটা বল সরবরাহ করে।

উদাহরণ 3.14: (a) ধরা যাক তুমি সম্পূর্ণ ঘর্ষণহীন একটা নমতলে দীড়িয়ে আছে। তোমার ওজন 50kg এবং তোমার গামনে একটা 100kg ভরের পাথর। তুমি ঠিক করলে তুমি পাথরটাকে 50N বল দিয়ে ধাক্কা দিয়ে এক মাথা থেকে জন্য মাথার নিরে বাবে। 10s পরে পাথরটার কো কত হবেং (ছবি 3.16)

উত্তর: তুমি বর্ষন পাথরটাকে 50N वस দিয়ে ধারা দেবে পাথরটাও কিন্তু নিউটনের তুরীয় নূত্র অনুবারী তোমাকে 50N বল দিয়ে ধারা দেবে। পাথরটার তুরণ হবে ভান দিকে

$$a = \frac{F}{m} = \frac{50}{100} \ m/s^2$$
$$= 0.5 \ m$$
$$/s^2$$

ঠিক নে রকম তোমারও কুরণ হবে নাম দিকে

ছবি 3.16: একজন মানুষ যখন একটা পাখরকে ধারা দেরা তখন পাথরটিও মানুষটিকে পান্টা ধারা দেয়।

$$a = \frac{F}{m} = \frac{50}{50} \, m/s^2 = 1 \, m/s^2$$

কাজেই তুমি এবং পাথর দুটি দুদিকে সরে যাবে! পাথরটাকে ধান্ধা দিয়ে এক মাখা থেকে অন্য মাখান তুমি নিয়ে মেতে পারবে না! কারণ পাথর আর তোমার জেতর একটা দূরত্ব তৈরি হয়ে যাবে- কাজেই টানা 10s পাথরটাকে ধান্ধা দেয়া সম্ভব না!

(b) ধরা যাক তুমি 2s পাথরটাকে ধান্ধা দিতে পেরেছ তথন কী হনেr

উত্তর : 25 এ পাথরটার বেগ বেড়ে হলেঃ

V = 0 + m = 0 + 0.5 × 2 m/s = 1m/ \ এরখন প্রথম । n₁/s ম্মানের নেজে গাছ ক।

2s a दलमा लग एक

া । iii = U + 1 ≥ 2 m/s = 2m/s এর পর কুমি 2m/s সমস্ক্রেস পিছনে সারে নেতে পাজার।

3.6 नर्न का (Frictional Force)

कामना वात आह्म प्रदानम्य निष्या माधाकर्यम् नय वातः च्छिप्रसन् नय निर्देश प्रारमाज्या करत्तीष्, व्यवस्ति अस्पूर्ण जिल्ल व्यक्ती वन निर्देश प्रारमाज्या करत् स्थाने स्टब्स स्थान वन ।

বর। যাল একটা টেবিলে কোনো একটা কাঠের টিকরো রয়েছে এবং সেই কাঠের টকরোর উপর বল পরেল করে সেখানে তুরণ সৃষ্টি করতে চাজি। পরা যার 3.11 ছারতে যেভারে দেখানো হয়েছে সেভারে ভরটির উপন বাম থেকে ভানে F বল প্রয়োগ করছি, দেখা যাবে কাঠের টকরোয় টেবিলোর নাখে কাঠের টকরোয় বর্মণের

কালপে একনি দৰ্শন কল / কোনী হয়েছে এক সেটি ভাল খেকে কাম দিকে কাজ করে প্রয়োগ কর। কলচ্চিত্র কমিয়ে দিছে।

ছবি 3,18; মাজ গ্রন্থইলকে স্কান একছে। ক্রেছা প্রতেন জনক। ক্রেটা হয়।

ছবি 3.17: এগটি ভাষের উপর বল প্রভাগ করলে পর্নগের সনো বিশরীত দিকে একটি বল তৈরী হতে পারে।

এখন তুমি যদি মনে কর গমগের ফলে ভান পেকে বাম দিকে একটা সম্বল কল তেরি হয় কাজেই কনঠের টুকরের উপরেও যদি বাম দিকে বল প্রয়োগ করি ভারলে প্রয়োগ করা বল আর ঘর্ষণ বল একই দিকে হওয়ার কারণে বাড়তি একটো বল পেরে করে! কিন্তু দেখা যারে এবারেও ঠিক নিপরীত দিকে ঘর্ষণ বল মনজ করছে— ঘর্ষণ বল নব সম্বেই প্রয়োগ করা বল্পর বিপরীত দিকে কাজ করে। কাঠের দিকরোর উপরে গদি খানেকটো ওজন বলিয়ে দিই দেখা গরে বর্মণ কল আরো রেড়ে গেতে ফদিও ওজন এবং ঘ্রাণ

প্ৰশা কল কীজাৰে তৈৰি হয় সামোৱন। বুঝাছে প্ৰনালেই সামৰা দেখৰ এতে স্বাক ইবাৰ কিছু নেই। নামিও সাপাত দৃষ্টিতে কঠি, টোবলকে ।কিংৱা য দুটো তলদেশের মাঝে ঘর্ষণ হচ্ছে) অনেক মসৃণ মনে হয় কিন্তু অনুবীক্ষণ যন্ত্র দিয়ে দেখলে দেখা যাবে (ছবি 3.18) সব তলদেশেই এবড়োথেবড়ো এবং এই এবড়োথেবড়ো অংশগুলোর অংশগুলো এক অন্যকে স্পর্শ করে বা খাঁজগুলো একে অন্যের সাথে আটকে যায় সেটার কারণেই গতি বাধাপ্রাপ্ত হয় এবং আমরা বলি বিপরীত দিক থেকে ঘর্ষণ বলের জন্ম হয়েছে। যদি দুটো তলদেশকে আরো চাপ দেয়া হয় তাহলে এবড়োথেবড়ো অংশ আরো বেশি একে অন্যকে স্পর্শ করবে, একটির খাঁজ অন্যটির আরো গভীর খাঁজে ঢুকে যাবে এবং ঘর্ষণ বল আরো বেড়ে যাবে।

ঘর্ষণের জন্য তাপ সৃষ্টি হয়। সেটা অনেক সময়েই সমস্যা। যেমন গাড়ির সিলিন্ডারে পিস্টনকে ওঠানামা করার সময়ে সেখানে ঘর্ষণের জন্য তাপের সৃষ্টি হয় আর সেই তাপ নিয়ন্ত্রণ করার জন্য গাড়ির ইঞ্জিনকে শীতল রাখতে হয়। তাই সেখানে ঘর্ষণ কমানোর জন্য নানা ধরনের ব্যবস্থা নেয়া হয়।

কিন্তু তোমরা যেন মনে না করো আমরা সব সময়েই ঘর্ষণ বল কমাতে চাই। তোমরা নিশ্চয়ই কখনো না কখনো কাদার মাঝে কোনো গাড়ি বা ট্রাক আটকে যেতে দেখেছ। তখন গাড়ির চাকা ঘুরলেও ঘর্ষণ কম বলে কাদা থেকে গাড়ি বা ট্রাক উঠে আসতে পারে না, চাকা পিছলিয়ে যায়। ঘর্ষণ বাড়িয়ে অনেক কষ্ট করে গাড়ি বা ট্রাককে তুলে আনতে হয়। সে জন্য গাড়ির চাকার যেন রাস্তার সাথে ঘর্ষণ বল অনেক বেশি হয় তার জন্য অনেক চেষ্টা করা হয়, গাড়ির টায়ারে অনেক ধরনের খাঁজ কাটা হয়। যারা গাড়ি চালায় তারা সব সময় লক্ষ রাখে তাদের টায়ারের খাঁজ কমে মসৃণ হয়ে যাচ্ছে কি না কারণ তখন ব্রেক করার পরেও গাড়ি না থেমে পিছলে এগিয়ে যাবে! ঠিক একই কারণে আমাদের জুতোর তলায় অনেক ধরনের খাঁজ থাকে যেন পিছলে না যাই।

অনেক ধরনের ঘর্ষণ বল রয়েছে, পদার্থবিজ্ঞানে বস্তুর বেগ এবং গতিতে স্থিতি ঘর্ষণ এবং গতি ঘর্ষণ বড় ভূমিকা পালন করে। দুটো বস্তু একে অন্যের সাপেক্ষে স্থির থাকা অবস্থায় যে ঘর্ষণ বল থাকে সেটা হচ্ছে স্থিতি ঘর্ষণ (static friction)। দুটো বস্তু একে অন্যের সাপেক্ষে চলমান হলে সাধারণত ঘর্ষণ বল একটু কমে যায় এবং সেটাকে বলে গতি ঘর্ষণ (Dynamic Friction)

উদাহরণ 3.15: ঘর্ষণহীন একটি সমতলে যদি কোনো ভর m থাকে তাহলে তার ভর যতই হোক না কেন তার উপর F বল প্রয়োগ করা হলে তার a তুরণ হবে

$$a = \frac{F}{m}$$

m যদি বেশি হয় তাহলে ত্বরণ হবে কম, m যদি কম হয় ত্বরণ হবে বেশি। ভরটি যে সমতলে আছে সেখানে যদি ঘর্ষণ থাকে তাহলে দেখা যাবে বল প্রয়োগ করলেই ত্বরণ হচ্ছে না, একটা নির্দিষ্ট বল f প্রয়োগ করা হলে হঠাৎ করে ভরটি নড়তে শুরু করে। এই f হচ্ছে ঘর্ষণজনিত বল। কাজেই কোখাও যদি ঘর্ষণ থাকে তাহলে আমাদের লিখতে হবে

$$F - f = ma$$

ঘর্ষণজনিত বল f বস্তুর ওজনের ওপর নির্ভর করে। বস্তুর ওজন $w \ (= mg)$ যত বেশি হবে ঘর্ষণ জনিত বল f তত বেশি হবে।

অর্থাৎ $f=\mu w$ এখানে μ হচ্ছে ঘর্ষণ সহগ

যদি 10kg ভরের একটা বস্তুকে 5N বল প্রয়োগ না করা পর্যন্ত নড়ানো সম্ভব না হয় তাহলে μ কত?

উত্তর:

$$w = mg = 10 \times 9.8 N = 98N$$
$$\mu = \frac{f}{F} = \frac{5}{98} = 0.05$$

जन्नीवनी

প্রশ্ন :

- চলন্ত ট্রেন থেকে নামার চেষ্টা করলে তুমি কেন সামনের দিকে আছাড় খেয়ে পড়?
- ছবি 3.19 এ দেখানো সুতায় হাঁচকা টান দিলে A সুতাটি ছিড়বে ধীরে ধীরে টান দিলে B সুতাটি ছিড়বে। কেন?
- বেশি ভরের বস্তুর ওজন বেশি বা বল বেশি তাই উপর থেকে ছেড়ে দিলে
 ভার তুরণ বেশী হবে
 কথাটি কি সভিত্
- তুমি একটি লিফটের ভেতর ওজন মাপার যন্ত্রের ওপর দাঁড়িয়ে আছ।
 লিফটের ক্যাবল ছিড়ে গেল
 তোমার ওজন কত দেখাবে ?
- পুরোপুরি ঘর্ষণহীন একটা পৃষ্ঠে একটা পাথরকে দড়ি দিয়ে বেঁধে টেনে
 নিজের দিকে আনার চেষ্টা করলে কী হবে?

ছবি 3.19: দুটো সুতো দিয়ে ঝোলানো একটি ভর

গাণিতিক সমস্যা :

- 1. ছবি 3.20 এ দেখানো $1\ kg$ ভরের একটি বেগ-সময় লেখচিত্র বা গ্রাফ দেখানো হয়েছে। বল-সময় লেখচিত্রটি আঁক।
- 2. স্থির অবস্থায় থাকা 5 kg ভরের একটা বস্তুর ওপর 10N বল 2s কাজ করেছে তার 5s পরে 5s20N একটি বল 3s কাজ করেছে। বস্তুটি কতটুকু দুরতু অতিক্রম করেছে?
- 3. স্থির অবস্থায় থাকা 10 kg ভরের একটা বস্তুর ওপর 10N বল কাজ করেছে তার 10 s পরে 20N বল বিপরীত দিকে 5 s কাজ করেছে। বস্তুটি কতটুকু দুরত্ব অতিক্রম করেছে?
- 4. একটি নৌকা থেকে ভূমি 10m/s বেলে ভীরে লাফ দিয়েছ। ভোমার ভর 50kg, নৌকার ভর 100kg হলে নৌকাটি কোন দিকে কত বেলে যাবে?
- 5. মেঝেতে রাখা একটি কাঠের টুকরোর ঘর্ষণ সহগ μ এর মান 0.01, কাঠের ভর 10kg

ছবি 3.20: বেল ও সময়ের একটি লেখচিত্র

হলে সেটাকে নাড়াতে কত বল প্রয়োগ করতে হবে? কাঠের উপর 100kg ভরের একটি পাথর রাখা হলে কতো বল প্রয়োগ করে নাড়ানো সম্ভব? মেঝে ঘর্ষণ হীন হলে কী হতো?

চতুর্থ অধ্যায় **কাজ, ক্ষমতা ও শক্তি** (Work Power and Energy)

Issac Newton (1642-1727)

আইজাক নিউটন

আইজাক নিউটন ছিলেন একজন ব্রিটিশ পদার্থবিজ্ঞানী এবং গণিতবিদ এবং তাঁকে সর্বকালের সর্বশ্রেষ্ঠ একজন বিজ্ঞানী হিসেবে স্মরণ করা হয়। তিনি বলবিদ্যা এবং মহাকর্ষ সূত্র আবিদ্ধার করেন যেটি পরবতী তিনশত বংসর গতিবিদ্যার সকল সমস্যার ব্যাখ্যা দেয়। শব্দ আর আলোক তত্ত্বেও তাঁর দক্ষতা ছিল এবং জার্মান গণিতবিদ লিবনিজের পাশাপাশি তিনিও গণিতের অত্যন্ত প্রয়োজনীয় বিষয় ক্যালকুলাস উদ্ভাবন করেন। নিউটন ব্যবহারিক গবেষণাতেও পারদর্শী ছিলেন এবং প্রথম প্রতিফলন টেলিন্দোপ তৈরি করেছিলেন। তিনি একই সাধে একজন পার্লামেন্টের সদস্য ছিলেন।

4.1 কাজ (Work)

আমাদের দৈনন্দিন জীবনে কাজ শব্দটা অনেকভাবে ব্যবহার করি কিন্তু পদার্থবিজ্ঞানের ভাষায় কাজ কথাটার খুব সুনির্দিষ্ট একটা অর্থ আছে। কোনো বস্তুর ওপর যদি F বল প্রয়োগ করা হয় এবং বস্তুটি যদি F বলের দিকে S দূরত্ব অতিক্রম করে তাহলে ঐ বল দিয়ে করা কাজের পরিমাণ W

W = Fs

কাজের মাত্রা MI2T-2

কাজের কোনো দিক নেই এটা স্কেলার রাশি এবং এর একক হচ্ছে Joule সংক্ষেপে J অর্থাৎ 1N বল প্রয়োগ করে কোনো কিছুকে যদি বলের দিকে 1m দূরত্ব অতিক্রম করানো যায় তাহলে বলা হবে বলটি 1J কাজ করেছে।

তোমরা বিষয়টি হয়তো লক্ষ করেছ প্রত্যেকবার কাজ করার কথা বলার সময় আমরা বলছি "বল"টি কাজ করছে। আমাদের দৈনন্দিন জীবনে আমরা কাজ করি কিংবা একটা যন্ত্র কাজ করে। পদার্থবিজ্ঞানের ভাষায় কিন্তু সব সময় "বল" কাজ করে– সেই বলটি হয়তো আমরা প্রয়োগ করি কিংবা কোনো যন্ত্র প্রয়োগ করে।

এবার কাজের আরো কিছু উদাহরণ দেখা যাক। কোনো একজন একটি ভর m কে F বল দিয়ে G কোণে টেনে দিছে (ছবি G G)। যদি ভরটিকে G দূরত্ব টেনে নেয় কতটুকু কাজ করা হবে?

মানুষটি ভরটাকে F বল দিয়ে কোনাকুনি ভাবে টানছে, সমতলের সাথে θ কোণে, আমরা কাজের সংজ্ঞা সময় স্পষ্ট করে বলেছি বলের দিকে যেটুকু দূরত্ব অতিক্রম করেছে সেই দূরত্বটুকু ব্যবহার করতে হবে। s দূরত্ব F বলের দিকে নয়, বলা যেতে পারে s এর একটা অংশ F বলের দিকে। s যেহেতু একটা ভেট্টর আমরা তার F বলের দিকের অংশটুকু বের করতে পারি সেটা হচ্ছে s $\cos\theta$

ছবি 4.1: একজন মানুষ একটি ভর্কে টেনে নিচেছ

কাজেই $W = Fs \cos \theta$

কাজেই মানুষটি যে বল প্রয়োগ করেছে সেই বল $F_5\cos\theta$ পরিমাণ কাজ করেছে। এখানে আরেকটা বিষয় লক্ষ করতে হবে। ভরটির একটা ওজন আছে, সেটাও বল, তার পরিমাণ mgএবং সেই বলটি নিচের দিকে কাজ করছে। এই বলটি কতটুকু কাজ করছে?

mg বলটি এবং s দূরত্বটি পরস্পরের সাথে 90° কোণ করে আছে কাজেই s দূরত্বের কোনো অংশ mg এর দিকে নেই। $(\cos 90^{\circ}=0)$ কাজেই mg বল দিয়ে করা কাজের পরিমাণ শূন্য! এটা মনে রাখা ভালো, সব সময়েই এটা সত্যি, যেদিকে বল প্রয়োগ করা হয়েছে সরণ যদি তার সাথে লম্বভাবে অর্থাৎ 90° কোণ করে হয় তাহলে কাজের পরিমাণ শূন্য অর্থাৎ সেই বল কোনো কাজ করে না! মনে রেখ একটা বস্তুর ওপর একই সাথে বেশ কয়েকটা বল প্রয়োগ করা যেতে পারে এবং প্রত্যেকটা বলই আলাদা আলাদা ভাবে ভিন্ন কাজ করতে পারে।

উদাহরণ 4.1: একটা নির্দিষ্ট সময় পর্যন্ত একটা বস্তর ওপর F বল প্রয়োগ করার শয় সেটি A থেকে B তে গিয়েছে (ছবি 4.2)। কোপায় কাজ হয়েছে কোপায় হয়নি বল।

উন্তর: (a) তে কাজ হয়েছে কারণ F বলের দিকে সরণ হয়েছে। (b) তে বল এবং সরণ বিপরীতমুখী কাজেই নিগেটিভ কাজ হয়েছে অর্থাৎ প্রয়োগ করা বল কাজ করেনি, প্রয়োগ করা বলের ওপর কাজ হয়েছে (c) তে কোনো কাজ হয়নি কারণ বল আর সরণ পরস্পরের ওপর লম্ব (d) F বল কাজ করেছে কারণ সরণের দিকে এই বলের একটা অংশ রয়েছে।

ছবি 4.2: একটি ভর, তার উপর প্রযুক্ত নল F এবং সরণ d

উদাহরণ 4.2: পৃথিবীয় মাধ্যাকর্ষণ বলের জনা চাঁদ পৃথিবীকে ঘিরে ঘুরছে, কত কাজ হচ্ছে?

উন্তর: কোনো কাজই হচ্ছে না কারণ চাদের গতি মাধ্যাকর্ষণ বলের নাথে 90° কোণ করে থাকে।

উদাহরণ 4.3: ভার উত্তোলনকারী যখন একটি ভারী বারবেল উপরে তুলে ধরে রাখে (ছবি 4.3) তখন কোনো কাজ করা হচ্ছে না, তাহলে পরিশ্রম হয় কেন?

উন্তর: তার কারণ বারবেশটা একেবারে স্থির থাকে না. শরীরে, হাতে যত কমই হোক কম্পন হর, ভারী বারবেশ একটু নিচে নামে আবার উপরে তুলতে হয়- তাই প্রত্যেকবার সেই অম একট উপরে তুলতে গিরে কাজ করতে হয়।

উদাহরণ 4.4: তোমার ভর 50 kg তুমি 10 তালা বিভিংয়ের উপরে উঠেছ, তুমি কত কাজ করেছ? (প্রতি তালার উচ্চতা 3m)

উত্তর: তোমার ভর 50 kg হলে ওজন 50 \times 9.8 = 490 N এই ওজন একটা বল, সেটা নিচের দিকে কাজ করছে। তুমি যদি উপরে উঠতে চাও তাহলে তোমাকে এই বলের সমান একটা বল উপরের দিকে প্রয়োগ করে নিজেকে উপরে তুলতে হবে।

ছবি 4.3: ভার উজোলনকারী

কাজেই উপরের দিকে তোমার প্রয়োগ করা বল 490~N. উপরে দিকে অতিক্রান্ত দূরত্ব: $10~\times 3m=30m$ কাজেই সেই কাজের পরিমাণ $490N~\times 30m=14700J=14.7~kJ$

উদাহরণ 4.5: একজন একটা 10~kg তরকে সোজাসুজি উপরে তুলেছে অন্য একজন ভরটিকে $45^{\,o}$ কোণের একটা চালুতে রেখে টেনে 10~m উপরে তুলল (ছবি 4.4)। কে কতটুকু কাজ করেছে?

উত্তরঃ $10\ kg$ করের ওজন $F=mg=10\ kg\times 9.8m/s^2=980N$ (a) সাদি এটাকে $10\ m$ উচ্চত ত্নতে হয় তাহলে উপরের দিকে 980N বল প্রয়োগ করতে হবে। কাপি কলেন মাদানে একজন সেই 980N প্রয়োগ করে তর্নাকে উপরে তুলাছে।

বল এবং সর্ল একই দিকে কাজেই কাভ

ছবি 4.4; খাড়াভারে এবং 45 কোনে একটি ভরকে উপরে টোনে উপরে। ভালা হয়েছ 45 কোনো চালুতে রাখা আছে কাজেই এটাকে টোনে চুলুতে কম বল শুয়োগ করা সভব হাব ।

$$F = mg \sin 45^{\circ} = 980N \times \sin 45^{\circ}N$$

নদোর দিবো নবত হাতে

$$S = \frac{10}{\sin 45} m$$

কান্তেই কান্তের পরিমাণ

$$W = F \times s \times \sin 45^\circ = 980 N \times \frac{10}{\sin 45^\circ} \times \sin 45 9 = 9800 J$$

আগাৎ একট পরিমাণ কাজ করা হয়েছে।

েতামরা নিশ্মেই লক্ষ্য করছ চালুটা 45° না হায়ে অন্য যে কোনো কোণ হামেও একই উন্তর হাতো। অখাৎ কাজের পরিমাণ কোন গাম। উথারে তোলা হয়েছে সেটার ওখন ফিন্টর স্মরেনা, নিত্র করে কতানুকু উপরে তোলা হয়েছে তার ওশর। আমরা আগের অধ্যায়ে ঘর্ষণ বলের কথা পড়েছি। ঘর্ষণ বল কী পরিমাণ কাজ করে? ধরা যাক একটা বস্তুর ভর m এবং সেটার ওপর F বল প্রয়োগ করে d দূরত্ব নেয়া হলো, কাজেই F বল দ্বারা করা কাজ

$$W = Fd$$

কিন্তু এই সময়ে ঘর্ষণ বল f কাজ করছে উল্টো দিকে তাই সরণ বা অতিক্রান্ত দূরত্ব ঘটেছে ঘর্ষণ বল f এর বিপরীত দিকে। তাই ঘর্ষণ বল দিয়ে করা কাজ হচ্ছে

$$W = (-f)d = -fd$$

কাজ করার পরিমাণ নেগেটিভ। তাহলে আমরা দেখছি একটা বল ধনাত্মক বা পজিটিভ পরিমাণ কাজ করতে পারে, আবার ঋণাত্মক বা নিগেটিভ পরিমাণ কাজও করতে পারে? পজিটিভ এবং নিগেটিভ পরিমাণ কাজ করার অর্থ কী?

এই বিষয়টা বোঝার আগে আমাদের শক্তি সম্পর্কে পরিষ্কার একটা ধারণা থাকতে হবে।

4.2 শক্তি (Energy)

আমাদের দৈনন্দিন জীবনেও আমরা শক্তি শব্দটা অনেকভাবে ব্যবহার করি কিন্তু পদার্থবিজ্ঞানের ভাষাতে শক্তি শব্দটার একটা নির্দিষ্ট অর্থ আছে। সাধারণ মুখের ভাষায় বল প্রয়োগ করা আর শক্তি প্রয়োগ করার মাঝে কোনো পার্থক্য নেই, কিন্তু পদার্থবিজ্ঞানের ভাষায় এই দুটি বাক্যাংশ সম্পূর্ণ ভিন্ন বিষয় বোঝায়। বল বলতে কী বোঝায় সেটা আমরা আগের অধ্যায়ে পড়ে এসেছি, এই অধ্যায়ে শক্তি বলতে কী বোঝায় সেটা নিয়ে আলোচনা করা হবে।

শক্তি বলতে কী বোঝায় আমাদের সবার মাঝে তার একটা ভাসাভাসা ধারণা আছে, কারণ আমরা কথাবার্তায় বিদ্যুৎ শক্তি, তাপ শক্তির কথা বলে থাকি। মাঝে মাঝে আমরা রাসায়নিক শক্তি বা নিউক্লিয়ার শক্তির কথাও শুনে থাকি। আলোকে শক্তি হিসেবে সেভাবে বলা না হলেও আমরা অনুমান করতে পারি আলোও হচ্ছে এক ধরনের শক্তি। দৈনন্দিন কথাবার্তায় যে শক্তিটার কথা খুব বেশি বলা হয় না– কিন্তু পদার্থবিজ্ঞানে অসংখ্যবার যে শক্তির কথা বলা হবে সেটা হচ্ছে গতি শক্তি! কাজেই আমাদের ধারণা হতে পারে প্রকৃতিতে বুঝি অনেক ধরনের শক্তি আছে, কিন্তু মজার ব্যাপার হচ্ছে সব শক্তিই কিন্তু এক এবং আমরা শুধু এক ধরনের শক্তিকে অন্য ধরনের শক্তিতে রূপান্তর করি! তাহলে শক্তিটা কী?

শক্তি হচ্ছে কাজ করার ক্ষমতা! শুধু তাই না যখন কোনো বস্তুর ওপর কোনো বল প্রয়োগ করে ধনাতাক কাজ করা হয় তখন সেই বলটি আসলে বস্তুটির মাঝে একটা শক্তি সৃষ্টি করে। বস্তুটির মাঝে যেটুকু শক্তি সৃষ্টি হয় বল প্রয়োগ করার সময় যে বল প্রয়োগ করছে তাকে ঠিক ততটুকু শক্তি দিতে হয়! দরকার হলে তুমি এই বাক্যটা আরো কয়েকবার পড়– কারণ এটা পদার্থবিজ্ঞানের খুব গুরুত্বপূর্ণ একটা বিষয়!

খাভাবিকভাবেই প্রশ্ন উঠবে তাহলে নিগেটিভ কাজ নানে কাঁ? যখন কোনো বল কোনো কিছুর ওপর নিগেটিভ কাজ করে তখন বুঝতে হবে সেই বলটি বন্তুটির শক্তি সরিয়ে নিয়েছে! কিংবা যে বল প্রয়োগ করছে তার কোনো শক্তি দিতে হবে না উপ্টো সে খানিকটা শক্তি পেয়ে যাবে! ঘর্ষণের সময় ঘর্ষণ বল নিগেটিভ কাজ করার অর্থ এখন নিশ্চরই বুঝতে পারছ, ঘর্ষণ বল বন্তুটার খানিকটা শক্তি নিয়ে নিচেছ (যেটা হয়তো তাপ শক্তিতে রূপান্তর হছে)। ধরা যাক একটা গাড়ি তোনার দিকে আসছে, তুমি গাড়িটাকে থানানোর জন্য উন্টোদিকে F বল প্রয়োগ করছ কিন্তু তারপরও গাড়িটা তোনাকে d দূরতু ঠেলে নিয়ে গেল। কাজেই গাড়িটা ভোনার দেয়া F বলের উন্টোদিকে d দূরতু অতিক্রম করেছে। কাজের পরিমাণ d অর্থাৎ তুমি গাড়িটাকে শক্তি দাওনি, গাড়িটার শক্তি নিয়ে নিয়েছ। তুমি যদি বল প্রয়োগ না করতে তাহলে গতি শক্তি আরো বেশি হতো— তুমি শক্তিটা কমিয়ে দিয়েছে।

উ**দাহরণ 4.6:** একটা পাথরের ওপর 100N বল প্রয়োগ করে 10m নিয়ে গেছ ঘর্ষণ বল যদি বিপরীত নিকে 10N হয় তাহলে ভূমি কতটুকু কাজ করছঃ ঘর্ষণ বল কতটুকু কাজ করেছেঃ (ছবি 4.5)

উম্বন: ভূমি $W=F\times s=100N\times 10m=1000J=1kJ$ কাজ করেছ। ঘর্ষণ কল $W=f\times s=-10N\times 10m=-100J$ কাজ করেছে।

ছবি 4.5: একটি ভরের উপর বল প্রয়োগ করা হলে মর্ফাবল উল্টো দিকে কাজ করে।

তোমার কাজের কারমে পাধরটো শক্তি অর্জন করেছে। ঘর্ষণ রমের কারণে শক্তি ক্ষয় হয়েছে, হয়তো তাপ সৃষ্টি হয়েছে।

ছবি 4.6: কশিকলের দুই শাশে দুটি বস্তু ঝুলছে

উদাহরণ 4.7: একটি 10m উচু কপিকলের দুই পাশে 5m উচুতে 10kg ভরের দুটি বন্ধ ঝুলছে (ছবি 4.6)। একটি বন্ধ 5m নিচে মাটিতে নামার সময় অনটি 5m উপরে উঠে পেল। কোন ভারে কতাঁকি কাজ ফলোঃ (ধরে নাছ পরে। আশারটা ঘটেছে খুবই ধীরে ধীরে অর্থাছ কোনো বেগ সৃষ্টি না করে)

উন্তর: দুটি বস্তুর উপরেই ওজনের সমান বল উপরের দিকে প্রয়োগ করা হয়েছে।

গম দিকে ভরটি বলের দিকে উঠি গ্লেছে কাজেই কাজের পরিমাণ

 $W = F \times s = 10 \times 9.8N \times 5m = 490f$

লাজেই এই তরটির ওপর কাজ করা হয়েছে এবং তরটি পাঁজ অর্জন করেছে।।

ভান দিকের ভরটি নিচে, অর্থাৎ বলের বিপরীত দিকে নেমে গেছে

$$W = -F \times s = -10 \times 9.8N \times 5m = -490J$$

অর্থাৎ এই ভরটি থেকে 490J শক্তি নিয়ে নেয়া হচেছ। বুবাতেই পাছ ডান দিকের ভরটি থেকে 490J শক্তি নিয়ে বাম দিকের ভরটিতে দেয়া হয়েছে।

4.2.1: গতি শক্তি (Kinetic Energy)

শক্তির সবচেয়ে সহজ ইদাহরণ হচ্ছে গতি শক্তি। সাধারণভাবে বলা যায় গতির জন্য যে শক্তি সেটাই গতি শক্তি। পদার্থবিজ্ঞানের শ্রাষায় d ভরের একটি বস্তু যদি u গতিতে যায় তাহলে তার গতি শক্তি E

$$E = \frac{1}{2}mv^2$$

শক্তির মাত্রা ML^2T^{-2}

গতি শক্তির একক আর কাজের একক একই, অর্থাৎ জুল (J)

উদাহরণ 4.8:10kg ভরের একটা ছির বস্তুর ওপর 10s ব্যাপী 10N বল প্রয়োগ করা হয়েছে (a) বস্তুটির গতি শক্তি কত? (b) 20s পরে গতি শক্তি কত? (c) যদি পুরো 20s বল প্রয়োগ করা হয় তাহলে গতি শক্তি কত?

উত্তর: 10N বল প্রয়োগ করলে তুরণ :

$$a = \frac{F}{m} = \frac{10N}{10kg} = 1m/s^2$$

কাজেই 10s গরে বেগ

$$v = at = \frac{1m}{s^2} \times 10s = 10m/s$$

(৪) কাজেই গতি শক্তি

$$\frac{1}{2}mv^2 = \frac{1}{2} \times 10 \times 10^2 J = 500J$$

- (b) 10sপর্যন্ত ত্রণ হবে এর পরে ত্রণ মেই বলে বেগ অপরিবর্তিত কাজেই 20s পরে গতি শক্তি একই থাকবে।
- (c) পুরো 20s বন প্ররোগ করা হলে $v=at=1m/s^2\times 20s=20m/s$ ক্যাজেই গতি শক্তি

$$\frac{1}{2}mv^2 = \frac{1}{2} \times 10 \times 20^2 J = 2000 J$$

উদাহরণ 4.9: 10kg জরের একটি বস্তুকে বল প্রয়োগ করে গতিশীল করার তার গতি শক্তি হয়েছে 80/, বস্তুটির বেগ কত?

উত্তর: গতিশক্তি

$$v^{2} = \frac{\frac{1}{2}mv^{2} = 80J}{\frac{2 \times 80J}{v = 4m/s}} = \frac{160m^{2}}{10s^{2}}$$

আমরা আগে বলেছি কাজ করার ক্ষমতা হচ্ছে শক্তি। আমরা সবাই জানি কোনো বস্তু গতিশীল হলে সেটা অন্য বস্তুকে ধাক্কা দিয়ে সেটাকেও গতিশীল করে থানিকটা দূরত্ব ঠেলে নিয়ে যেতে পারে। অন্য বস্তুকে গতিশীল করে ফেলার অর্থ নিশ্চয়ই সেখানে বল প্রয়োগ হয়েছে এবং সেই বলের জন্য খানিকটা দূরত্ব যাওয়ার অর্থ নিশ্চয়ই সেখানে কাজ হয়েছে! কাজেই আমরা নিশ্চিতভাবে বলতে পারি গতির জন্য বস্তুর যে শক্তি হয় সেটা নিশ্চয়ই এক ধরনের শক্তি বা গতি শক্তি। আমরা রাস্তাঘাটে যে ভয়ংকর দুর্ঘটনা ঘটতে থাকি সেখানে যে ক্ষয়ক্ষতি হয় তার প্রধান কারণ এই গতি শক্তি। একটা বাস-ট্রাক বা গাড়ি যখন প্রচল্প বেগে ছুটতে থাকে তখন তার অনেক বড় গতি শক্তি থাকে। আকসিডেন্টের সময় এই পুরো শক্তিটা দিয়ে গাড়ি ভেঙেচুরে যায়, প্রচল্প ধাক্কায় মানুষ মারা যায়।

গতি শক্তিতে v এর বর্গ রয়েছে যার অর্থ যদি কোন গাড়ির বেগ দ্বিগুণ করে ফেলা হয় তাহলে শক্তির পরিমাণ কিন্তু দ্বিগুণ হয় না, চারগুণ হয়। এজন্য গাড়ির গতি বাড়ানো এত বিপজ্জনক– বিপদটি বর্গ হিসেবে বাড়ে।

এবারে আমরা দেখি কেন কোন বস্তুতে কাজ করা হলে সেখানে শক্তি সৃষ্টি হয়। ধরা যাক F বল m ভরের ওপর প্রয়োগ করে d দূরত্ব নিয়ে গেল। অর্থাৎ কাজের পরিমাণ :

$$W = Fd$$

এখানে $F = ma$
কাজেই $W = mad$

বল প্রয়োগ করার আসে যদি m ভরটি স্থির থাকে তাহলে অতিক্রান্ত দূরত্ব :

$$d = \frac{1}{2}\alpha t^2$$

কাজেই $W = \frac{1}{2}m\alpha^2 t^2$

কিন্তু আমরা জানি v=at

কাজেই
$$W = \frac{1}{2}mv^2$$

অর্থাৎ বলটি যে পরিমাণ কাজ করেছে বস্তুটির ঠিক সেই পরিমাণ গতি শক্তি হয়েছে!

উদাহরণ 4.10: এখানে আমরা ধরে নিয়েছি শুরুতে বস্তুটি স্থির ছিল। আমরা যদি ধরে নিই শুরুতে বস্তুটির আদিবেগ u তাহলে দেখাতে পারব F বল প্রয়োগ করে d দূরত্ব নিয়ে গেলে যেটুকু গতি শক্তি বেডে যাবে সেটা হচ্ছে

$$\Delta E = \frac{1}{2}mv^2 - \frac{1}{2}mu^2$$

এটা দেখাও।

উত্তর: গতি শক্তির সূত্রগুলো বের করার সময় আমরা দেখেছি

$$v^2 = u^2 + 2as$$

দুই পাশে $\frac{1}{2}m$ দিয়ে গুণ দাও

$$\frac{1}{2}mv^2 = \frac{1}{2}mu^2 + mas$$

এখানে ma = F লিখ

$$\frac{1}{2}mv^2 = \frac{1}{2}mu^2 + Fs$$

কিংবা

$$\frac{1}{2}mv^2 - \frac{1}{2}mu^2 = Fs$$

কিন্ত

$$\Delta E = \frac{1}{2}mv^2 - \frac{1}{2}mu^2$$

কাজেই $\Delta E = Fs$

আমরা দেখেছি বল প্রয়োগ করা হলে ভর বেগের পরিবর্তন হয়। যদি এক বা একাধিক বস্তু গতিশীল থাকে এবং বাইরে থেকে যদি তাদের ওপর কোনো বল প্রয়োগ করা না হয় তাহলে তাদের সম্মিলিত ভর বেগের কোনো পরিবর্তন হবে না। যদি নিজেদের মাঝে ধাক্কা ধাক্কি হয় তাহলে একটির ভরবেগ বেড়ে যেতে পারে অন্যটির কমে যেতে পারে কিন্তু সম্মিলিতভাবে তাদের ভরবেগের কোনো পরিবর্তন হবে না। এটার নাম ভরবেগের নিত্যতা (momentum conservation)।

ভরবেগের জন্য যেটা সত্যি গতিশক্তির জন্যও নেটা সত্যি। যদি কোখাও এক বা একাধিক কোনো বস্তু গতিশীল থাকে তাহলে তাদের একটা সম্মিলিত গতি শক্তি থাকবে। যদি বাইরে থেকে তাদের ওপর কোনো বল প্রয়োগ করা না হয় তাহলে তাদের এই সম্মিলিত গতিশক্তির কোনো পরিবর্তন হবে না। একটির সাথে অন্যটির বাক্কা ধাক্কি হয়ে নিজেদের কোনোটির গতি শক্তি বেড়ে যেতে পারে কোনোটির কমে যেতে পারে কিন্তু সম্মিলিত গতিশক্তি অপরিবর্তিত থাকবে। এটার নাম শক্তির নিত্যতা (energy conservation)

4.3 সংঘর্ষ (Collision)

আমরা বদি উপরের এই দুটো নিত্যতার কথা মনে রাখি তাহলে পদার্থবিজ্ঞানের "সংঘর্ষ" বলে অত্যন্ত চমকপ্রদ বিষয়টি বিশ্লেষণ করতে পারব।

মনে করি একটি সমতলে m_1 এবং m_2 তর u_1 এবং u_2 বেগে সরল রেখার যাচেছ। তাদের বেগের ভিন্নতার কারণে ধরা যাক তাদের মাঝে সংঘর্ষ হলো, এবং সে কারণে তাদের বেগ পাল্টে গেল, m_1 ভরটির বেগ এখন v_1 এবং m_2 ভরটির বেগ v_2 । আমরা সংঘর্ষর পর বেগ v_1 এবং v_2 কত সেটা বের করতে চাই।

একটুখানি এলজেবরা করলে আমরা খুব মজার কিছু ফলাফল পাব, চেষ্টা করে দেখা যাক।

ছবি 4.7: m1 এবং m2 পরস্পরকে আঘাত করার শর তাদের কো পরিবর্তিত হয়ে V1 এবং V7 হয়েছে।

সংঘর্ষের আগে ভর দুটির সম্মিলিত ভরবেগ $m_1u_1+m_2u_2$ সংঘর্ষের পর ভর দুটির সমিলিত ভরবেগ $m_1v_1+m_2v_2$ কাজেই ভরবেগের নিত্যতার কারনে $m_1u_1+m_2u_2=m_1v_1+m_2v_2$ (1)

আমরা সমীকরণ (1) কে একটু অনভোৱে লিখি:

$$m_1 u_1 - m_1 v_1 = m_2 v_2 - m_2 u_2 \dots$$
 (3)
किश्वा $m_1 (u_1 - v_1) = m_2 (u_2 - v_2) \dots$ (4)

একইভাবে সমীকরণ (2) কে অন্যভাবে লিখি:

$$\frac{1}{2}m_1u_1^2 - \frac{1}{2}m_1v_1^2 = m_2v_2^2 - \frac{1}{2}m_2u_2^2$$

কিংবা

$$\frac{1}{2}m_1(u_1^2 - v_1^2) = \frac{1}{2}m_2(v_2^2 - u_2^2) \quad \dots \tag{5}$$

অর্থাৎ

$$\frac{1}{2}m_1(u_1+v_1)(u_1-v_1)=\frac{1}{2}m_2(v_2+u_2)(v_2-u_2)\dots\dots(6)$$

এখন (6) কে (4) দিয়ে ভাগ দিই:

(7) কে m_2 দিয়ে গুণ করে সেখান থেকে (3) বিয়োগ করলে পাব

$$\frac{m_2u_1 + m_2v_1 = m_2v_2 + m_2u_2}{m_1u_1 - m_1v_1 = m_2v_2 - m_2u_2}$$
$$\frac{(m_2 - m_1)u_1 + (m_1 + m_2)v_1 = 2m_2u_2}{(m_2 - m_1)u_1 + (m_1 + m_2)v_1 = 2m_2u_2}$$

এখান থেকে v_1 বের করা যায়।

$$v_1 = \frac{2m_2u_2 + (m_1 - m_2)u_1}{m_1 + m_2}$$

একই ভাবে (7) কে m_1 দিয়ে গুণ দিয়ে (3) এর সাথে যোগ করি

$$\frac{m_1u_1 + m_1v_1 = m_1v_2 + m_1u_2}{m_1u_1 - m_1v_1 = m_2v_2 - m_2u_2}$$

$$2m_1u_1 = (m_1 + m_2)v_2 - (m_2 - m_1)u_2$$

কাজেই এখান থেকে আমরা v_2 বের করতে পারি

$$v_2 = \frac{2m_1u_1 + (m_2 - m_1)u_2}{m_1 + m_2}$$

যেহেতু সূত্রগুলো বের হয়ে গেছে এখন এখান থেকে অত্যন্ত মজার কিছু ফলাফল আমরা পেতে পারি।

সমান ভরের গতিশীল বস্তুর সাথে স্থির বস্তুর সংঘর্ষ:

 $m_1=m_2$ অর্থাৎ দুটির ভর সমান। m_1 স্থির (অর্থাৎ $u_1=0$) সংঘর্ষের আগে m_1 এর বেগ0 m_2 এর বেগ u_2

সংঘর্ষের পর m_1 এর বেগ বের করার জন্যে v_1 এ $m_2=m_1$ বসিয়ে:

$$v_1 = \frac{2m_1u_2 + (m_1 - m_1)u_1}{m_1 + m_1} = u_2$$

সংঘর্ষের পর m_2 এর বেগে $m_2=m_1$ এবং $u_1=0$ বসিয়ে:

$$v_2 = \frac{2m_1 \times 0 + (m_1 - m_1)u_2}{m_2 + m_2} = 0$$

অর্থাৎ যদি স্থির একটা মার্বেলকে দ্বিতীয় অন্য একটা (সমান ভরের) মার্বেল দিয়ে ঠোকা দেয়া হয় তাহলে দ্বিতীয় মার্বেলটা স্থির হয়ে যাবে, প্রথমটা সেই বেগ নিয়ে বের হয়ে যাবে। বিষয়টা সত্যি কি না তোমরা এখনই পরীক্ষা করে দেখতে পার।

গতিশীল হালকা বস্তুর সাথে স্থির ভারী বস্তুর সংঘর্ষ :

 $m_1\gg m_2$ অর্থাৎ m_1 এর ভর m_2 থেকে এত বেশি যে $rac{m_2}{m_1}$ কে শূন্য ধরা যেতে পারে। m_1 স্থির (অর্থাৎ $u_1=0$)

 v_1 এর সূত্রটির ডান পাশে উপরে ও নিচে m_1 , দিয়ে ভাগ দাও এবং তারপর $rac{m_2}{m_1}=0$ বসাও

$$v_1 = \frac{2\frac{m_2}{m_1}u_2 + \left(1 - \frac{m_2}{m_1}\right)u_1}{1 + \frac{m_2}{m_1}} = \frac{2 \times 0 \times u_2 + (1 - 0) \times 0}{1 + 0} = 0$$

অর্থাৎ ভারী বস্তুটি স্থির ছিল সেটা স্থিরই থাকবে।

এবারে v_2 এর সূত্রটির উপরে নিচে m_1 দিয়ে ভাগ দাও এবং $rac{m_2}{m_1}$ =0 বসাও

$$v_2 = \frac{2u_1 + \left(\frac{m_2}{m_1} - 1\right)u_2}{1 + \frac{m_2}{m_1}} = \frac{2 \times 0 + (0 - 1)u_2}{1 + 0} = -u_2$$

অর্থাৎ m_2 ভরটি যে বেগে m_1 এ আঘাত করেছে সেই বেগে উল্টো দিকে ফিরে আসবে। তুমি ছোট একটা টেনিস বল দাড়িয়ে থাকা বিশাল একটা ট্রাকের গায়ে ছুড়ে মারো, দেখবে টেনিস বলটা ধাক্কা খেয়ে ঠিক তোমার দিকে ফিরে আসবে।

গতিশীল ভারী বস্তুর সাথে হালকা স্থির বস্তুর সংঘর্ষ:

 $m_1\gg m_2$ অর্থাৎ m_1 এর ভর m_2 থেকে এত বেশি যে $\frac{m_2}{m_1}$ কে শূন্য ধরা যেতে পারে । m_2 স্থির (অর্থাৎ $u_2=0$)

আবার v_1 ও v_2 এর সূত্রগুলোর উপরে নিচে m_1 দিয়ে ভাগ দাও এবং $rac{m_2}{m_1}$ = 0 বসাও

$$v_{1} = \frac{2\frac{m_{2}}{m_{1}}u_{2} + \left(1 - \frac{m_{2}}{m_{1}}\right)u_{1}}{1 + \frac{m_{2}}{m_{1}}} = \frac{2 \times 0 \times 0 + (1 - 0) \times u_{1}}{1 + 0} = u_{1}$$

$$v_{2} = \frac{2u_{1} + \left(\frac{m_{2}}{m_{1}} - 1\right)u_{2}}{1 + \frac{m_{2}}{m_{1}}} = \frac{2u_{1} + (0 - 1) \times 0}{1 + 0} = 2u_{1}$$

অর্থাৎ বিশাল একটা ট্রাক (m_1) যদি দাঁড়িয়ে থাকা ছোট একটা সাইকেলকে (m_2) আঘাত করে তাহলে ট্রাকের গতির কোনো পরিবর্তন হবে না, কিন্তু সাইকেলটা ট্রাকের গতির দ্বিগুণ গতিতে ছিটকে যাবে!

আমরা মাত্র তিনটি উদাহরণ দিয়েছি– তোমরা এ রকম আরো নানা ধরনের উদাহরণ নিতে পারো, একটা ভারী এবং একটা হালকা গাড়ির মুখোমুখি সংঘর্ষ হলে কোনটার ভরবেগের কত পরিবর্তন হয় বের করতে পায়, সেখান থেকে কোনটার বেশি ক্ষতি হয় সেটাও তুমি অনুমান করতে পারবে। উদাহরণ 4.11:50,000kg ভরের একটা ট্রাক দাঁড়িয়ে আছে, তুমি এবং তোমার সাইকেলের ভর 50kg, তুমি 30km/hour বেগে ট্রাকটিকে আঘাত করেছ। আগাত দেয়ার পর কার বেগ কত হবে?

উত্তর: ট্রাকের ভর $m_2=50{,}000kg$ এবং সাইকেলের ভর $m_1=50kg$ হলে

$$\frac{m_2}{m_1} = \frac{50}{50,000} = 0.001$$

এটাকে শূন্য ধরে নেয়া যেতে পারে। কাজেই গতিশীল হালকা বস্তুর সাথে স্থির ভারী বস্তুর সংঘর্ষের উদাহরণ থেকে বলতে পারি ট্রাকের কেগ $v_1=0\,m/s$ এবং সাইকেলের কো $v_2=-30\,km/hour$

উদাহরণ 4.12: 60,000kg ভরের একটা ট্রাক 60km/hour বেগে যেতে যেতে 60kg ভরের একটা সাইকেলকে ধাক্কা দিল। সংঘর্ষের পর কার কো কত?

উত্তর: ধরা যাক ট্রাকের ভর m_1 এবং সাইকেলের ভর m_2 কাজেই

$$\frac{m_2}{m_1} = \frac{60}{60,000} = 0.001$$

এটাকে শূন্য ধরা যায়।

গতিশীল ভারী বস্তুর সাথে স্থির হালকা বস্তুর সংঘর্ষের উদাহরণ থেকে বলতে পারি সংঘর্ষের পর ট্রাকের গতিবেগ অপরিবর্তিত, 60km/hour, সাইকেলের বেগ

$$2u_1 = 2 \times 60 km/hour = 120 km/hour$$

উদাহরণ 4.13: 1000kg ভরের একটা গাড়ি এবং 50,000kg ভরের একটা ট্রাক 60km/hour বেগে পরস্পরকে মুখোমুখি ধাক্কা দিল। সংঘর্ষের পর কার গতিবেগ কত হবে?

উত্তর: ট্রাকের ভর $m_1=50{,}000kg$, বেগ

$$u_1 = \frac{60 \times 1000m}{60 \times 60 \, s} = 16.67 \, m/s$$

গাড়ির ভর $m_2=1000kg$, কো

 $u_2=-u_1=-16.67m/s$ যেহেতু বিপরীত দিক থেকে আসছে তাই নিগেটিভ ধরে নেয়া হল।

$$\frac{m_2}{m_1} = \frac{1000}{50,000} = 0.02$$

এটি খুব ছোট নয়। কাজেই এটাকে শূন্য না ধরতে পারব না।

$$\begin{split} v_1 = \frac{2m_2u_1 + (m_1 - m_2)u_1}{m_1 + m_2} \\ = \frac{2 \times 1000 \times (-16.67) + (50,000 - 1000) \times 16.67}{50,000 + 1000} m/s \\ v_1 = 15.35m/s \end{split}$$

সংস্থাই পর ট্রারেড গড়িরেগ খুন ত্রশি পার্বতিত *হা*রে না।

$$v_2 = \frac{2m_1u_1 + (m_2 - m_1)u_2}{m_1 + m_2}$$

$$= \frac{2 \times 50,000 \times 16.67 + (1000 - 50,000) \times (-16.67)}{50,000 + 1000} m/s$$

$$v_2 = 48.70 m/s$$

অপাৎ গাড়িটের বেগ -16.67m/s থেকে পরিবর্তিত হয়ে $48.70\ m/s$ হয়ে মারে। অপাৎ বাজা থেয়ে কিপরীত দিকে প্রকৃত বেগের প্রায় তিন গগ বেগে ছটে যাবে।

এই বিশাল শক্তি আসলে ছোট গাড়িটিকে প্রোপ্তি এবংস করে দেবে। অথাৎ ম্থোমান সংগর্মে সড় ট্রাকের কোনো কাত হয় না, ছোট গাড়ি প্রোপ্তি কংস হয়ে যায়।

4.4 বিভব শক্তি (Potential Energy)

কাজ সম্পর্কে বলতে দিয়ে আমর। বলেছিলাম যখন কোনো বল কোনো কিছুর ওপর পজিটিত কাজ করে তখন সেখানে শক্তির সৃষ্টি হয়। গতি শক্তি সম্পর্কে বলার সময় আমরা তার একটা উদাহরণও দিয়েছিলাম, দেখিয়েছিলাম একটা বস্তুর ওপর বল প্রয়োগ করে সেটাকে খানিকটা দূরত্ব নিয়ে গেলে গতি শক্তি $\frac{1}{2}mv^2$ বেড়ে যায়।

এনারে এফন একটা উদাহরণ দেয়া হবে, যেখানে বল প্রয়োগ করে থানিকটা দূরত্ব অতিক্রম করার পরও কোনো গতিশক্তি তৈরি হবে না। মনে কর টেবিলে একটা স্প্রিং 4.8 ছবিতে দেখানো উপায়ে রাখা আছে, তুমি স্প্রিংয়ের খোলা মাধায় আহল দিয়ে F বল প্রয়োগ করে স্প্রিংটাকে x দুরতে সংকৃচিত

ছবি 4.8: শিশুংয়ার স্থিরাবস্থা এবং বল শ্রয়োগ করে সংক্রাতে করা

করে দিয়েছ। এ রকম অবস্থায় তোমার হাত বা স্প্রিং কোনোটাই পতিশীল না তাই কোথাও কোনো পতি শক্তি নেইং যেহেতু যেদিকে F বল প্রয়োগ করা হয়েছে অতিক্রান্ত দূরত্বও x সেই দিকে তাই কাজটি শক্তিটিভ, আমাদের কাজের সংজ্ঞা অনুযায়ী এখানে শক্তি সৃষ্টি হওয়ার কথা— কিন্তু সেই শক্তিটি কোথাতং কোনো কিছু গতিশীল নয় তাই এখানে নিশ্তিত ভাবে কোনো গতিশক্তি নেই।

আমরা যারা স্প্রিং ব্যবহার করেছি তারা অনুমান করতে পারছি যে সংকুচিত স্প্রিংয়ের ভেতর নিশ্চয়ই শক্তিটুকু লুকিয়ে রয়েছে। কারণ আমরা জানি সংকুচিত স্প্রিংটার সামনে একটা m ভরের বস্তু রেখে স্প্রিংটা ছেড়ে দিলে স্প্রিংটা ভরটার ওপর বল প্রয়োগ করে একটা দূরত্ব অতিক্রম করাতে পারত যার অর্থ কাজ করাতে পারত। অর্থাৎ এটি একটি শক্তি, গতিশক্তি না হলেও এটি অন্য এক ধরনের শক্তি। এই ধরনের সঞ্চিত শক্তিকে বলে বিভব শক্তি (potential energy)।

আমরা ইচ্ছে করলে বিভব শক্তির পরিমাণটাও বের করতে পারব। বল এবং দূরত্বের গুণফল হচ্ছে কাজ, আঙ্গুল দিয়ে যেটুকু বল দেয়া হয়েছে সেটা যদি সব সময় সমান হতো তাহলে কাজটা সহজ হতো, কিন্তু আমরা জানি স্প্রিংয়ের বেলায় সেটা সত্যি না। স্প্রিং যে বল প্রয়োগ করে তার পরিমাণ হচ্ছে

$$F = -kx$$

অর্থাৎ x বেশি হলে F এর মান বেশি, x কম হলে F এর মান কম। (মাইনাস সাইন থাকার কারণে আমরা বুঝতে পারছি যেদিকে সংকুচিত করা হয় বলটা তার উল্টোদিকে কাজ করে।) যেহেতুে বলটা সব সময় সমান নয় তাই আমরা প্রথমে একটা গড় (average) বল F_{av} ধরে নিয়ে কাজের পরিমাণটা বের করতে পারি। যেহেতু যেদিকে F বল প্রয়োগ করা হয়েছে অতিক্রান্ত দূরত্ব x সেই দিকে তাই কাজ W পজিটিভ। যদি আমরা x_0 দূরত্ব পর্যন্ত সংকোচন করি তাহলে

$$F_{av}=rac{0-kx_0}{2}=-rac{1}{2}kx_0$$
সংকোচন $-x_0$ $W=F_{av}(-x_0)=\left(-rac{1}{2}kx_0
ight)(-x_0)$ $W=rac{1}{2}kx_0^2$

যদি স্প্রিংটাকে x_0 দূরত্ব সংকোচন না করে স্প্রিংটাকে x_0 দূরত্ব টেনে ধরতাম তাহলে বল এবং সরণ দুটিই দিক পরিবর্তন করত তাই গুণফল আবার পজিটিভ হতো অর্থাৎ একই উত্তর পেতাম অর্থাৎ একই মান পেতাম। এখানে উল্লেখ করা দরকার গড় বল বের করে আমরা সঠিক ফলাফল পাই কারণ F বলটি x এর সাথে সমহারে পরিবর্তিত হয় (Linear)। সমহারে ত্বরণের বেগের বেলাতেও আমরা আগে এই বিষয়টি একবার দেখেছিলাম (উদাহরণ 2.16)।

উদাহরণ 4.14: 10~kg ভরের একটা বস্তু 10~m/s বেগে একটা স্প্রিংয়ের ওপর পড়ল। স্প্রিং ধ্রুণবক $k=100{,}000 J/m^2$ সেটি কতটুকু সংকুচিত হবে?

উত্তর: বস্তুটির গতি শক্তি

$$rac{1}{2}mv^2=rac{1}{2} imes10 imes10^2/=500/$$
 এই শক্তিটুকু স্প্রিটোকে নংকুচিত করবে অর্থাৎ

$$\frac{1}{2}kx^2 = 500/$$
কাজেই
$$x^2 = \frac{2 \times 500}{100,000}m^2 = \frac{1}{100}m^2$$

x = 0.1m

আমরা যখন কোনো কিছকে উপরে তুলি তখনো সেটা বিভব শক্তি অর্জন করে। এক টুকরো পাথর ওপর থেকে ছেড়ে দিলে সেটা নিচে নামার সময় তার গতি বাড়তে থাকে তাই সেটার মাঝে গতি শক্তির জন্ম হয়। এটি সম্ভব হয় কারণ পাথরটা যখন উপরে ছিল তখন এই "উপরে" অবস্থানের জন্য তার মাঝে এক ধরনের বিভব শক্তি জমা হয়েছিল। একটা পাথরকে উপরে তোলা হলে তার ভেতরে কী পরিমাণ বিভব শক্তি জমা হয় এখন সেটাও আমরা বের করতে পারি। বুঝতেই পারছ একটা বস্তুকে উপরে তুলতে হলে যে পরিমাণ কাজ করতে হয় সেটাই বিভব শক্তি হিসেবে পাথরের মাঝে জমা হয়ে যাবে। কাজের পরিমাণ WEGT

W = Fh

এখানে F হচ্ছে প্রযুক্ত বল এবং \hbar হচ্ছে উচ্চতা। F বলটি আমাদের প্রয়োগ করতে হয় উপরের দিকে এবং অতিক্রান্ত দূরত্বও উপরের দিকে, কাজেই W পজিটিভ। উপরে তোলার জন্য যে বল প্রয়োগ করতে হয় তার মান স্প্রিংয়ের বলের মতো পরিবর্তন হয় না এবং এই বলটি পাথরটির ওজনের সমান। পাথরটির ওজন m.g হলে

F = mgW = mghএবং

মনে রাখতে হবে, পাথরটির ওজন একটি বল এবং সেটি নিচের দিকে কাজ করে। পাথরটাকে উপরে তুলতে হলে এই ওজনের সমান একটা বল আমাদের উপরের দিকে প্রয়োগ করতে হয়।

mভরের একটা পাথরকে h উচ্চতায় তুলে তার ভিতরে বিভব শক্তি সৃষ্টি করে যদি পাথরটাকে ছেড়ে দিই তাহলে সেটা যখন নিচের দিকে h দূরতু নেমে আসবে তখন তার ভেতরে কী পরিমাণ গতি শক্তি জন্ম নেবে?

শক্তি অবিনশ্বর, তাই তার বিভব শক্তির পুরোটুকুই গতি শক্তিতে পরিণত হবে। আমরা জানি গতি শক্তি হচ্ছে $rac{1}{2}mv^2$ তাই আমরা লিখতে পারি $_1$

$$\frac{1}{2}mv^2 = mgh$$
$$v^2 = 2gh$$

সত্যি কথা বলতে কী আমরা পড়ন্ত বস্তুর সমীকরণ বের করার সময় হুবহু এই সূত্রটি ইতোমধ্যে একবার বের করেছিলাম! শক্তির ধারণা দিয়ে দিয়ে সম্পূর্ণ অন্যভাবে আমরা আবার একই সূত্র বের করেছি!

উদাহরণ 4.15: 10kg ভরের একটা বস্তুকে 100m/s বেগে উপরের দিকে ছুড়ে দিলে এটা কত উপরে উঠবে?

উত্তর: এটি আগে গতি সূত্র দিয়ে করা হয়েছে। এখন শক্তির রূপান্তর দিয়ে করা যেতে পারে। গতিশক্তি :

$$\frac{1}{2}mv^2 = \frac{1}{2} \times 10 \times 100^2 = 50,000J$$

বস্তুটি যখন h উচ্চতায় পৌছাবে তখন যদি পুরো গতিশক্তিটি বিভব শক্তিতে রূপান্তরিত হয় তাহলে,

$$mgh = 50,000J$$

$$h = \frac{50,000J}{mg} = \frac{50,000}{10 \times 9.8} m = 510m$$

তোমাদের বোঝানোর জন্য এখানে 10kg ভর কথাটি বলা হয়েছে। এটা কিন্তু ভরের উপর নির্ভর করে না। যেকোন ভরকে 100m/s বেগে উপরে ছুড়ে দিলে আমরা এই উত্তর পাব।

উদাহরণ 4.16: 5kg ভরের একটা বস্তুকে 50m/s বেগে উপরের দিকে ছুড়ে দিলে কোন উচ্চতায় এর বিভব শক্তি এবং গতি শক্তি সমান হবে?

উত্তর: বস্তুটির প্রাথমিক গতি শক্তি

$$T_0 = \frac{1}{2}mv^2 = \frac{1}{2} \times 5 \times 50^2 J = 6,250 J$$

যখন গতি শক্তি বিভব শক্তির সমান হবে তখন সেই h উচ্চতায় আমরা বলতে পারি

গতি শক্তি = বিভব শক্তি

গতি শক্তি + বিভব শক্তি = প্রাথমিক গতি শক্তি

বিভব শক্তি = গতি শক্তি = প্রাথমিক গতি শক্তি/ 2

$$mgh = \frac{6250J}{2}$$

$$h = \frac{6250J}{2 \times mg} = \frac{6250}{2 \times 5 \times 9.8} m = 63.78m$$

তোমরা নিশ্চরই অনুমান করছ এই সমস্যাটিও আসলে ভরের মানের উপর নির্ভর করে না।

4.5 শক্তির রূপান্তর (Transformation of Energy)

শক্তি অবিনশ্বর এর কোনো ক্ষয় নেই, এটি শুধুমাত্র একটি রূপ থেকে অন্য রূপে পরিবর্তন হয়। একটা পাথর উপরে তুললে তার ভেতরে এক ধরনের বিভব শক্তির জন্ম হয়, পাথরটা ছেড়ে দিলে বিভব শক্তি

ছবি 4.9: একটি ভরসংযুক্ত স্প্রীং সংক্ষিত এবং প্রসায়িত হচ্ছে, গতি শক্তি এবং বিভব শক্তির মাঝে শক্তি বিনিময় হচ্ছে

কমতে থাকে এবং গতি শক্তি বাড়তে থাকে। মাটি স্পর্শ করার পূর্ব মুহূর্তে পুরো শক্তিটাই গতি শক্তিতে রূপান্তরিত হয়। কিন্তু মাটিকে স্পর্শ করার পর পাথরটি যখন থেমে যায় তখন তার ভেতরে বিভবশক্তিও থাকে না গতি শক্তিও থাকে না তাহলে শক্তিটুকু কোথায় যায়?

তোমরা নিশ্চয়ই লক্ষ করেছ পাথরটা যখন মেঝেতে আঘাত করে তখন সেটি শব্দ করে, যেখানে আঘাত করেছে সেখানে তাপের সৃষ্টি করে অর্থাৎ গতিশক্তিটুকু শব্দ শক্তি বা তাপ শক্তিতে রূপান্তরিত হয়ে যায়।

বিভব শক্তি এবং গতি শক্তির এক ধরনের শক্তি থেকে অন্য ধরনের শক্তিতে রূপান্তরের উদাহরণটি থুব চমকপ্রদ কারণ ঠিক ঠিকভাবে ব্যবস্থা করা হলে এটি একটি থেকে অন্যটিতে রূপান্তরিত হয়ে শেষ হয়ে যায় না। বিভব শক্তি থেকে গতি শক্তি আবার গতি শক্তি থেকে বিভব শক্তি এই রূপান্তর

ছবি 4.10: একটি পের্নাম দুলছে, মোট শক্তি- গতিশক্তি এবং বিতৰ শক্তির মাঝে স্থান বদল করছে। প্রক্রিয়া চলতেই থাকে। আমরা এর মাঝেই তার একটি উদাহরণ দেখেছি, স্প্রিংয়ের সাথে একটি ভরকে

জুড়ে দেয়া। ছবি 4.9 এ কীভাবে ভরের গতি শক্তি এবং স্প্রিংয়ের বিভব শক্তি একটি থেকে অন্যটিতে

রূপান্তরিত হতেই থাকে সেটি দেখানো হয়েছে। তোমরা ছবিটির (a) থেকে (h) পর্যন্ত প্রত্যেকটি ধাপ একটু খুঁটিয়ে দেখ।

আমরা যদি এক টুকরো পাথরকে সুতো বেঁধে ঝুলিয়ে রেখে দুলিয়ে দিই তাহলেও ঠিক একই ব্যাপার ঘটতে থাকে। এখানেও গতি শক্তি এবং বিভব শক্তির মাঝে রূপান্তর ঘটতে থাকে।

> উদাহরণ 4.17: স্প্রিং এবং ভরের মতো পেন্ডুলামের ভিন্ন ভিন্ন অবস্থান এঁকে কীভাবে বিভব শক্তি এবং গতি শক্তির ভেতরে রূপান্তর ঘটে সেটি দেখাও।

উত্তর: 4.10 ছবিতে দেখানো হয়েছে

একটি স্প্রিংয়ের সাথে লাগানো একটি ভরকে সংকুচিত করে ছেড়ে দিলে অনন্তকাল এটির সামনে পিছনে যাবার কথা, ঠিক সে রকম একটি পেন্ডুলাম দুলিয়ে ছেড়ে দিলেও সেটি অনন্তকাল দুলতে থাকার কথা। বাস্তবে সেটা কখনোই ঘটে না, আস্তে আস্তে সেটা থেমে যায়। তার কারণ সব সময়েই ঘর্ষণ বল থাকে এবং এই ঘর্ষণ বল আসলে শক্তিটুকু নিয়ে সেটাকে তাপ শক্তিতে রূপান্তরিত করে ধীরে ধীরে শক্তিটুকু খরচ করে ফেলে। ঘর্ষণে যে তাপ তৈরি হয় আমরা নিজেরা সেটা জানি, শীতের দিনে হাত ঘষে আমরা সবাই কখনো না কখনো হাতকে গরম করেছি।

কাজেই শক্তির রূপান্তর খুবই স্বাভাবিক একটা প্রক্রিয়া। আমরা বিভিন্ন ধরনের শক্তির রূপান্তরের আরো কয়েকটি উদাহরণ দিই:

(i) বিদ্যুৎ বা তড়িৎ শক্তি

শক্তির রূপান্তরের উদাহরণ দিতে হলে আমরা সবার আগে বিদ্যুৎ বা তড়িৎ শক্তির উদাহরণ দিই তার কারণ এই শক্তিকে সবচেয়ে সহজে অন্যান্য শক্তিতে রূপান্তর করা যায়। শুধু তাই নয় এক জায়গা থেকে অন্য জায়গায় বিদ্যুৎ শক্তি সরবরাহ করা সবচেয়ে সহজ। তাই আমাদের চারপাশে নানা ধরনের শক্তি থাকার পরও আমরা আমাদের বাসায় অন্য কোনো শক্তি সরবরাহ না করে সবার প্রথমে তড়িৎ শক্তি বা ইলেকট্রিসিটি সরবরাহ করে থাকি। আমরা আমাদের দৈনন্দিন জীবনে বৈদ্যুতিক পাখা বা অন্যান্য মোটরে তড়িৎ বা বৈদ্যুতিক শক্তিকে যান্ত্রিক শক্তিতে রূপান্তরিত হতে দেখি। (যদিও চৌম্বক শক্তি আসলে বিদ্যুৎ বা তড়িৎ শক্তি থেকে ভিন্ন কিছু নয় তারপরেও আমরা মোটর বা বৈদ্যুতিক পাখার ভেতরে বিদ্যুৎ শক্তিকে প্রথমে চৌম্বক শক্তিতে রূপান্তর করে সেখান থেকে যান্ত্রিক শক্তিতে রূপান্তর হতে দেখি।) বৈদ্যুতিক ইন্ত্রি বা হিটারে এটা তাপ শক্তিতে রূপান্তরিত হয়। লাইট বাল্ব, টিউবলাইট বা এল. ই. ডি. তে তড়িৎ শক্তি আলোতে রূপান্তরিত হয়। শব্দ শক্তি তৈরি করার জন্য সাধারণত কোনো কিছুকে কাঁপাতে হয়— সেটি এক ধরনের যান্ত্রিক শক্তি তারপরও আমরা বলতে পারি স্পিকারে বিদ্যুৎ শক্তি শব্দ শক্তি রূপান্তরিত হয়। আমরা সবাই আমাদের মোবাইলে টেলিফোনের ব্যাটারিকে বিদ্যুৎ দিয়ে চার্জ করি— যেখানে আসলে তড়িৎ শক্তি রাসায়নিক শক্তিতে রূপান্তরিত হয়।

(ii) রাসায়নিক শক্তি

শক্তি রূপান্তরের উদাহরণ হিসেবে গুরুত্বপূর্ণ শক্তি নিশ্চয়ই রাসায়নিক শক্তি। আমরা আমাদের বাসায় রান্না করার জন্য যে গ্যাস ব্যবহার করি সেটা রাসায়নিক শক্তির তাপ শক্তিতে রূপান্তরের উদাহরণ। সে কারণে আমাদের বাসায় বৈদ্যুতিক শক্তি সরবরাহ করার সাথে সাথে গ্যাসও সরবরাহ করা হয়। রাসায়নিক শক্তিকে তাপে রূপান্তর করার কারণে আমরা আলোও পেয়ে থাকি— মোমবাতির আলো তার একটা উদাহরণ। গ্যাস পেট্রল ডিজেল বা এ ধরনের জ্বালানি ব্যবহার করে আমরা নানারকম ইঞ্জিনে যান্ত্রিক শক্তিতে রূপান্তরিত হতে দেখি যদিও ভালো করে দেখলে আমরা দেখব রাসায়নিক শক্তি প্রথমে তাপ শক্তি এবং সেই তাপ শক্তি যান্ত্রিক শক্তিতে রূপান্তরিত হচ্ছে। তবে আধুনিক প্রযুক্তির যুগে রাসায়নিক শক্তির রূপান্তরের সবচেয়ে বড় উদাহরণটি হচ্ছে ব্যাটারি যেখানে এই শক্তি বৈদ্যুতিক শক্তিতে রূপান্তরিত হয়। মোবাইল টেলিফোন থেকে শুরু করে গাড়ি কিংবা ঘড়ি থেকে মহাকাশযান এমন কোনো জায়গা খুঁজে পাওয়া যাবে না যেখানে ব্যাটারি ব্যবহার করে রাসায়নিক শক্তিকে বিদ্যুৎ শক্তিতে রূপান্তরিত করা হয়নি। রাসায়নিক শক্তির সবচেয়ে চমকপ্রদ উদাহরণ অবশ্য আমাদের বা জীবন্ত প্রাণীর শরীর যেখানে খাদ্য থেকে রাসায়নিক শক্তি যান্ত্রিক কিংবা বিদ্যুৎ শক্তিতে রূপান্তরিত হয়।

(iii) তাপ শক্তি

পরিমাণের দিক থেকে বিবেচনা করলে নিঃসন্দেহে পৃথিবীতে সবচেয়ে বেশি শক্তির রূপান্তর হয় তাপ শক্তি থেকে। যাবতীয় যন্ত্রের যাবতীয় ইঞ্জিনে তাপ শক্তিকে যান্ত্রিক শক্তিতে রূপান্তর করা হয়। থার্মোকাপলে (Thermocouple) (দুটি ভিন্ন ধাতব পদার্থের সংযোগ স্থলে তাপ প্রদান করা) সরাসরি তাপ থেকে বিদ্যুৎ উৎপাদনের উদাহরণ থাকলেও প্রকৃত পক্ষে প্রায় সবক্ষেত্রেই তাপ শক্তি থেকে যান্ত্রিক শক্তি এবং যান্ত্রিক শক্তি দিয়ে বিদ্যুৎ শক্তি তৈরি করা হয়। (পরিবেশ রক্ষা করার জন্য আমরা আজকাল শক্তির অপচয় করতে চাই না। তাই তাপ দিয়ে আলো তৈরি হয় সে রকম লাইট বাল্ব ব্যবহার না করে আজকাল বেশি বিদ্যুৎসাশ্রয়ী বাল্ব ব্যবহার করা হয়।) আমরা মোমবাতি বা বাল্বের ফিলামেন্ট তাপকে আলোক শক্তিতে রূপান্তরিত হতে দেখি।

(iv) যান্ত্ৰিক শক্তি

জেনারেটরে যখন বিদ্যুৎ তৈরি হয় তখন আসলে যান্ত্রিক শক্তি ব্যবহার করে তারের কুন্ডুলীকে চৌদ্বক ক্ষেত্রে ঘুরিয়ে বিদ্যুৎ শক্তিতে রূপান্তর করা হয়। ঘর্ষণের কারণে সব সময়ই তাপ শক্তি তৈরি হচ্ছে, সেখানে আসলে যান্ত্রিক শক্তি তাপ শক্তিতে রূপান্তরিত হচ্ছে।

(v) আলোক শক্তি

আলো হচ্ছে বিদ্যুৎ চৌদ্ধকীয় তরঙ্গ এবং এই তরঙ্গের একটা নির্দিষ্ট মাত্রার তরঙ্গ দৈর্ঘ্য আমরা চোখে দেখতে পাই সেটাকে আমরা আলো বলি। এর চাইতে বেশি এবং কম তরঙ্গ দৈর্ঘ্যও প্রকৃতিতে রয়েছে এবং আমরা নানা ভাবে তৈরিও করছি। যেমন মাইক্রোওয়েভ ওভেনে আমরা এই বিদ্যুৎ চৌদ্ধকীয় তরঙ্গকে তাপ শক্তিতে রূপান্তর করি। আজকাল সোলার সেল ব্যবহার করে সরাসরি আলো থেকে বিদ্যুৎ তৈরি করা হয়। এখন যদিও ফটোগ্রাফিক কাগজ ধীরে ধীরে উঠে যাচ্ছে কিন্তু আমরা সবাই জানি আলোক সংবেদী ফটোগ্রাফির ফিল্মে আলোর উপস্থিতি রাসায়নিক শক্তির জন্ম দেয়।

(vi) ভর

তোমরা নিশ্চয়ই বিভিন্ন ধরনের শক্তির রূপান্তরের মাঝে হঠাৎ করে ভর শব্দটি দেখে চমকে উঠেছ। আমরা যখন শক্তিকে বোঝাই তখন কখনো সরাসরি ভরকে শক্তি হিসেবে কল্পনা করি না কিন্তু আইনস্টাইন তার আপেক্ষিক সূত্র দিয়ে দেখিয়েছেন $E=mc^2$ এবং এই সূত্রটি দিয়ে ভরকে শক্তিতে রূপান্তরের সম্ভাবনার কথা জানিয়েছেন। নিউক্লিয়ার বোমাতে ভর থেকে শক্তি রূপান্তর করা হয়েছিল, সেখানে প্রচ $^+$ তাপ আলো এবং শব্দ শক্তি হিরোশিমা ও নাগাসিকি শহর ধ্বংস করে দিয়েছিল! শক্তির রূপান্তরের এই পদ্ধতিটি শুধু বোমাতে নয় নিউক্লিয়ার বিদ্যুৎকেন্দ্রেও ব্যবহার করা হয়। সরাসরি তাপ শক্তি তৈরি হলেও সেই তাপকে ব্যবহার করে বাষ্প এবং বাষ্পকে ব্যবহার করে টারবাইন ঘুরিয়ে সেই টারবাইন দিয়ে জেনারেটরে বিদ্যুৎ তৈরি করা হয়।

শক্তির এই ধরনের রূপান্তর আমাদের চারপাশে ঘটতে থাকলেও আমাদের একটি খুব গুরুত্বপূর্ণ বিষয় জানা দরকার। শক্তি থাকলেই কিন্তু সব সময় সেই শক্তি ব্যবহার করা যায় না। পৃথিবীর সমুদ্রে বিশাল পরিমাণ তাপ শক্তি রয়েছে সেই শক্তি আমরা ব্যবহার করতে পারি না। (ঘূর্ণিঝড় মাঝে মাঝে সেই শক্তি নগর লোকালয় ধবংস করে দেয়!) আবার যখনই শক্তিকে একটি রূপ থেকে অন্য রূপে পরিবর্তন করা হয় তখন খানিকটা হলেও শক্তির অপচয় হয়। মূলত এই অপচয়টা হয় তাপ শক্তিতে এবং সেটা আমরা ব্যবহার করার জন্য ফিরে পাই না। শক্তির এই অপচয়টি আসলে প্রযুক্তির সীমাবদ্ধতা নয়— এটি পদার্থবিজ্ঞানের বেঁধে দেয়া নিয়ম!

বিজ্ঞান শেখার প্রথমিক পর্যায়ে অনেকেই এটা জানে না এবং তারা এক শক্তিকে অন্য শক্তিতে রূপান্তর করে অনন্তকাল চলার উপযোগী একটা মেশিন তৈরি করার চেষ্টা করে (একটি মোটর জেনারেটরকে ঘুরিয়ে বিদ্যুৎ তৈরী করছে সেই বিদ্যুৎ দিয়েই আবার মোটরটিকে ঘোরানো হচ্ছে– এটি অনন্তকাল চলার একটি মেশিনের উদাহরণ– যেটি কখনোই কাজ করবে না!)

4.6 ক্ষমতা (Power)

আমাদের দৈনন্দিন জীবনে ক্ষমতা শব্দটা অনেক ব্যবহার হয় এবং সব সময়েই যে শব্দটা ভালো কিছু বোঝানোর জন্য ব্যবহার হয় তা নয়! কিন্তু পদার্থবিজ্ঞানে ক্ষমতা শব্দটার সুনির্দিষ্ট অর্থ আছে, ক্ষমতা হচ্ছে কাজ করার হার। অর্থাৎ t সময়ে W কাজ করা হয়ে থাকলে ক্ষমতা P হচ্ছে:

$$P = \frac{W}{t}$$

আমরা আগেই দেখেছি কাজ করার অর্থ হচ্ছে শক্তির রূপান্তর। শক্তির যেহেতু ধবংস নেই তাই কাজ করার মাঝে দিয়ে শক্তির রূপান্তর করা হয় মাত্র তাই ইচ্ছে করলে আমরা বলতে পারি ক্ষমতা হচ্ছে শক্তির রূপান্তরের হার! কাজ বা শক্তি যেহেতু স্কেলার তাই ক্ষমতাও স্কেলার। পদার্থবিজ্ঞান শিখতে দিয়ে আমরা নানা ধরনের রাশি সম্পর্কে জেনেছি তাদের এককের নাম জেনেছি এবং চেষ্টা করেছি প্রায় প্রত্যেক ক্ষেত্রে সেই রাশিটির মাত্রা সম্পর্কে জানতে। ক্ষমতা রাশিটি আমরা প্রথম জানলেও এর এককটি আমাদের খুব পরিচিত। যদি প্রতি সেকেন্ডে 1 জুল কাজ করা হয় তাহলে আমরা বলি $1\,W$ (ওয়াট) কাজ করা হয়েছে বা শক্তির রূপান্তর হয়েছে। আমরা যদি 100 ওয়টের একটি বাতি জ্বালাই তার অর্থ এই বাতিতে প্রতি সেকেন্ডে $100\,W$ শক্তি ব্যয় হচ্ছে। যখন আমরা খবরের কাগজে পড়ি দেশে $1000\,$ মেগাওয়াটের নিউক্লিয়ার বিদ্যুৎকেন্দ্র তৈরি হচ্ছে তার অর্থ এখানে প্রতি সেকেন্ডে $1000\times 10^6\,$ বিদ্যুৎ শক্তি উৎপাদন করা হবে।

উদাহরণ 4.18: তোমার ভর 20~kg তোমার নাদুস নুদুস বন্ধুর ভর 30~kg. ধরা যাক তোমার স্কুলের সিঁড়ি দিয়ে 10~m উপরের ছাদে উঠতে তোমার সময় লেগেছে 50~s, তোমার বন্ধু তোমার থেকে 10~s পরে ছাদে উঠেছে। তুমি আগে উঠেছ সত্যি কিন্তু কার ক্ষমতা বেশি?

উত্তর: তোমার ভর 20~kg, কাজেই ওজন $~m_1g=20 imes 9.8~N=196~N$ তোমার বন্ধুর ভর ~30~kg কাজেই তার ওজন $~m_2g=30 imes 9.8~N=294~N$

তোমরা দুজনেই $10\ m$ উপরে উঠেছ। কাজেই

তোমার কাজের পরিমাণ $W_1=196 imes10~Nm=1960~J$ তোমার বন্ধুর কাজের পরিমাণ $W_2=294 imes10~Nm=2940~J$ তোমার ক্ষমতা

$$P_1 = \frac{W_1}{t_1} = \frac{1960 \, J}{50 \, s} = 39.2 \, W$$

তোমার বন্ধুর ক্ষমতা

$$P_2 = \frac{W_2}{t_2} = \frac{2940 \, J}{(50 + 10) \, s} = 49 \, W$$

কাজেই বন্ধুকে হারিয়ে দিয়েছ বলে তোমার আনন্দিত হবার কিছু নেই, তোমার বন্ধুর ক্ষমতা তোমার থেকে বেশি!

উদাহরণ 4.19: ক্ষমতা বলতে আমরা কী বোঝাই সেটা ভালো করে অনুভব করার জন্য আমরা একটা উদাহরণ নিই। ধরা যাক তুমি $1000~{
m kg}$ ভরের একটা বড় পাথরকে উপরে তোলার জন্য একটা ক্রেন ভাড়া করে এনেছ। এই ক্রেনটি যে কোনো বস্তুকে সেকেন্ডে 2m টেনে নিতে পারে। ধরা যাক ক্রেনটির ক্ষমতা 5~kW. তুমি কি পাথরটিকে উপরে তুলতে পারবে?

ছবি 4.11; একটি ক্রেন দিয়ে গড়াভাবে এবং () কোনে একটা বস্তবে উপরে ভোনার চেষ্টা করা হচ্ছে।

উত্তরঃ জমতা P=W/t

কিছ $W=F_S$ যেখানে F প্রয়োগ পরা বগ এবং ও অতিনোভ দূরত কাজেই

$$P = \frac{Fs}{t} = Fv$$

মেখানে ৮ তেননর টেলে নেয়ার রেখ,

এই ক্ষেত্রে $1000\ kg$ ভরের একটি বতকে $2\ m/s$ েবলে উপরে ভুগতে ক্ষ্মতার প্রয়োজন

$$P = 1000 \times 9.8 \times 2W = 1.96 \times 10^4 W$$

কিছ ক্রেনটির কম্মতা $5 \cdot 10^5 W$ যেটি প্রয়োজনীয় ক্ষমতা থেকে কম, কাজেই ক্রেনটি পাথরটিকে তুলতে পারবে না। কিন্তু সাথরটিকে যদি টি কোনের একটা চালু বেয়ে তোলা হয় আহলে প্রয়ুক্ত বল F' এর মান হবে :

$$F' = 1000 \times 9.8 \times sin \theta N$$

কাড়েই পরোজনীয় কমতা :

TOWN

$$P' = F'v = 1000 \times 9.8 \times 2 \times sin\theta \ W = 1.96 \times 10^{4} sin\theta \ W$$
$$P' = 5 \times 10^{3} W \quad T$$

$$5 \times 10^3 W = 1.96 \times 10^4 sin\theta W$$

$$\sin\theta = \frac{5 \times 10^3}{1.96 \times 10^4} = 0.255$$

$$\theta = 14.8^{\circ}$$

অর্থাৎ $\, heta=14.8^{\,
ho}\,$ কোণের একটা ঢালু বেয়ে পাথরটাকে একই ক্রেন দিয়ে টেনে তোলা সম্ভব।

4.7 কর্মদক্ষতা (Efficiency)

আমরা একটু আগে বলেছিলাম যে শক্তিকে তার একটি রূপ থেকে অন্য রূপে রূপান্তরিত করার বেলায় সব সময়েই খানিকটা শক্তির অপচয় হয়। কাজেই সব সময়েই আমরা যে পরিমাণ কাজ করতে চাই তার সমপরিমাণ শক্তি দিলে হয় না, একটু বেশি শক্তি দিতে হয়। আমরা আমাদের দৈনন্দিন জীবনে নানা ধরনের যন্ত্র ব্যবহার করি, নানা ধরনের ইঞ্জিন ব্যবহার করি তার সব সময়েই দেখা যায় সেগুলোতে ঘর্ষণ বা অন্যান্য কারণে শক্তির অপচয় হয়। সে জন্য প্রায় সময়েই একটি যন্ত্র বা ইঞ্জিন কতটুকু দক্ষতার সাথে শক্তি ব্যবহার করেছে আমাদেরকে তার পরিমাপ করতে হয়। সে জন্য আমরা কর্মদক্ষতা বলে একটি নৃতন রাশি ব্যবহার করে থাকি। কর্মদক্ষতাকে শতকরা হিসাবে এভাবে লেখা যায়:

কর্মদক্ষতা
$$= rac{$$
প্রদত্ত শক্তি - শক্তির অপচয় $}{$ প্রদত্ত শক্তি $} imes 100\%$

উদাহরণ 4.20: 1000W এর একটি মোটর ব্যবহার করে 15s এ একটি 10kg ভরের বস্তুকে 10m উপরে তোলা হলো শক্তির অপচয় কত? কর্মদক্ষতা কত?

উত্তর: কাজের পরিমাণ : 10 imes 9.8 imes 10J = 9,800J

প্রদত্ত শক্তি : $1000 \times 15 = 15,000 I$

শক্তির অপচয় : 15,000 J - 9,800 J = 5,200 J

কর্মদক্ষতা:

$$\frac{9,800J}{15,000J} \times 100\% = 65.3\%$$

তোমরা শুনে অবাক হবে একটা বিদ্যুৎকেন্দ্রে বিদ্যুৎ উৎপাদন করার সময় প্রতিটি ধাপেই শক্তির অপচয় হয় এবং সবগুলো অপচয় হিসেবে নেয়ার পর বিদ্যুৎকেন্দ্রের কর্মদক্ষতা 30% এ নেমে আসতে পারে!

উদাহরণ 4.21: প্রত্যেকটি ধাপে 10% অপচয় হলে চার ধাপে কত কর্মদক্ষতা?

উত্তর: (90%)⁴ = 65.6%

4.8 শক্তির বিভিন্ন উৎস (Sources of Energy)

পৃথিবীর সভ্যতার ইতিহাসকে সহজভাবে বলা যায় শক্তি ব্যবহারের ইতিহাস। মোটামুটিভাবে বলা যায় কোন দেশ কতটা উন্নত সেটা বোঝার একটা সহজ উপায় হচ্ছে মাথাপ্রতি তারা কতটুকু বিদ্যুৎ শক্তি ব্যবহার করে তার একটা হিসাব নেয়া। পৃথিবীর বিভিন্ন ধরনের শক্তির রূপ 4.12 ছবিতে দেখানো হয়েছে।

4.8.1 অনবায়নযোগ্য শক্তি (Non-Renewable Energy)

পৃথিবীর সভ্যতার ইতিহাসটা যেহেতু শক্তি ব্যবহারের ইতিহাস তাই আমরা দেখতে পাই সারা পৃথিবীতেই সব দেশ সব জাতির ভেতরেই শক্তির জন্যে এক ধরনের ক্ষুধা কাজ করছে। যে যেভাবে পারছে সেভাবে

শক্তির অনুসন্ধান করছে, শক্তিকে ব্যবহার করছে। এই মুহুর্তে পৃথিবীর শক্তির সবচেয়ে বড় উৎস হচ্ছে তেল, গ্যাস বা কয়লা। তেল গ্যাস বা কয়লা তিনটিই হচ্ছে ফসিল জ্বালানি, অর্থাৎ লক্ষ কোটি বছর আগে গাছপালা মাটির নিচে চাপা পড়ে দীর্ঘদিনের তাপ আর চাপে এই রূপ নিয়েছে। তেল, গ্যাস আর কয়লা তিনটিতেই কার্বনের পরিমাণ বেশি আর এগুলো পুড়িয়ে যখন তাপ শক্তি তৈরি হয় তথন কার্বন ডাই-অক্সাইড তৈরি হয় য়েটি পরিবেশের জন্য বিপজ্জনক। মাটির নিচ থেকে যে তেল তোলা হয় (crude oil) প্রাথমিক অবস্থায় সেগুলো

ছবি 4.12: শক্তির বিভিন্ন উৎস

অনেক ঘন থাকে, রিফাইনারিতে সেগুলো পরিশোধন করে পেট্রল, ডিজেল বা কেরোসিনে রূপান্তর করা হয় এবং সাথে সাথে আরো ব্যবহারযোগ্য পদার্থ বের হয়ে আসে। মাটির নিচ থেকে যে গ্যাস বের হয় সোটি মূলতঃ মিথেন (CH_a), এর সাথে জলীয় বাষ্প এবং অন্যান্য গ্যাস মেশানো থাকতে পারে এবং সেগুলো আলাদা করে নিতে হয়। আমাদের বাংলাদেশের গ্যাস তুলনামূলকভাবে অনেক পরিদ্ধার এবং সরাসরি ব্যবহার করার উপযোগী।

অনেক দেশ নিউক্লিয়ার শক্তিকে ব্যবহার করছে সেখানেও এক ধরনের জ্মালানির দরকার হয়, সেই জ্যালানি হচ্ছে ইউরেনিয়াম। তেল, গ্যাস, কয়লা বা ইউরেনিয়াম, এই শক্তিগুলোর মাঝে একটা মিল রয়েছে, এগুলো ব্যবহার করলে খরচ হয়ে যায়। মাটির নিচে কতটুকু তেল, গ্যাস, কয়লা আছে কিংবা পৃথিবীতে কী পরিমাণ ইউরেনিয়াম আছে মানুষ এর মাঝে সেটা অনুমান করে বের করে কেলেছে। দেখা গেছে পৃথিবীর মানুষ যে হারে শক্তি ব্যবহার করছে যদি সেই হারে শক্তি ব্যবহার করতে থাকে তাহলে পৃথিবীর শক্তির উৎস তেল, গ্যাস, কয়লা বা ইউরেনিয়াম দিয়ে টেনেটুনে বড় জোর দুইশত বৎসর চলবে। তারপর আমাদের পরিচিত উৎস যাবে ফুরিয়ে। তখন কী হবে পৃথিবীর মানুষ সেটা নিয়ে খুব বেশি

দুর্ভাবনায় নেই, তার কারণ মানুষ মোটামুটি নিশ্চিতভাবেই জানে বিজ্ঞান আর প্রযুক্তি ব্যবহার করে এর মাঝে অন্য কিছু বের করে ফেলা হবে - যেমন নিউক্লিয়ার ফিউসান, যেটা ব্যবহার করে সূর্য কিংবা নক্ষত্রেরা তাদের শক্তি তৈরি করে। ফিউসানের জন্য জ্বালানি আসে হাইড্রোজেনের একটা আইসোটপ থেকে, আর পানির প্রত্যেকটা অণুতে দুটো করে হাইড্রোজেন, কাজেই সেটা ফুরিয়ে যাবার কোনো আশদ্ধা নেই।

4.8.2 নবায়নযোগ্য শক্তি (Renewable Energy)

শুধু যে ভবিষ্যতে নৃতন ধরনের শক্তির ওপর মানুষ ভরসা করে আছে তা নয়, এই মুহূর্তেও তারা এমন শক্তির ওপর ভরসা করে আছে যেগুলো কখনো ফুরিয়ে যাবে না। সেই শক্তি আসে সূর্যের আলো থেকে, সমুদ্রের জোয়ার-ভাটা কিংবা ঢেউ থেকে, উন্মুক্ত প্রান্তরের বাতাস থেকে, পৃথিবীর গভীরের উত্তপ্ত ম্যাগমা থেকে কিংবা নদীর বহমান পানি থেকে। আমাদের বুঝতে কোনো অসুবিধা হয় না যে এই শক্তিগুলো বলতে গেলে অফুরন্ত। এগুলোকে বলা হয় নবায়নযোগ্য (Renewable Energy) শক্তি—অর্থাৎ যে শক্তিকে নবায়ন করা যায়, যে কারণে এটার ফুরিয়ে যাবার কোনো আশদ্ধা নেই।

এই মুহূর্তে পৃথিবীর সব মানুষ যে পরিমাণ শক্তি ব্যবহার করে তার পাঁচ ভাগের এক ভাগ হচ্ছে এই নবায়নযোগ্য শক্তি। যত দিন যাচ্ছে মানুষ ততই পরিবেশ সচেতন হচ্ছে তাই এ রকম শক্তির ব্যবহার আরো বেড়ে যাচ্ছে। বাতাস ব্যবহার করে যে শক্তি তৈরি করা হয় প্রতিবছর তার ব্যবহার বাড়ছে প্রায় তিরিশ শতাংশ, এই সংখ্যাটি কিন্তু কোনো ছোট সংখ্যা নয়।

পৃথিবীর পুরো শক্তির পাঁচ ভাগের এক ভাগ হচ্ছে নবায়নযোগ্য শক্তি। সেই এক ভাগের বেশির ভাগ হচ্ছে জলবিদ্যুৎ, নদীতে বাঁধ দিয়ে বিদ্যুৎ তৈরি করা। নদীর পানি যেহেতু ফুরিয়ে যায় না তাই এ রকম বিদ্যুৎকেন্দ্রের শক্তির উৎসও ফুরিয়ে যায় না এটা হচ্ছে প্রচলিত ধারণা। কিন্তু নদীতে বাঁধ দেয়া হলে পরিবেশের অনেক বড় ক্ষতি হয় সে কারণে পৃথিবীর মানুষ অনেক সতর্ক হয়ে গেছে। যাদের একটু দুরদৃষ্টি আছে তারা এ রকম জলবিদ্যুৎকেন্দ্র আর তৈরি করে না। জলবিদ্যুতের পর সবচেয়ে বড় নবায়নযোগ্য শক্তি আসে বায়োমাস (Biomass) থেকে, বায়োমাস বলতে বোঝানো হয় লাকড়ি, খড়কুটো এসবকে। পৃথিবীর একটা বড় অংশের মানুষের কাছে তেল, গ্যাস, বিদ্যুৎ নেই, তাদের দৈনন্দিন জীবন কাটে লাকড়ি, খড়কুটো জ্বালিয়ে। এই দরিদ্র মানুষগুলোর ব্যবহারী শক্তি পৃথিবীর পুরো শক্তির একটা বড় অংশ। যদিও শুকনো গাছ খড়কুটো পুড়িয়ে ফেললে সেটা শেষ হয়ে যায় তারপরও বায়োমাসকে নবায়নযোগ্য শক্তির উৎস বলার কারণ নূতন করে আবার গাছপালা জন্মানো যায়। তেল, গ্যাস বা কয়লার মতো পৃথিবী থেকে এটা চিরদিনের জন্য অদৃশ্য হয়ে যায় না।

নবায়নযোগ্য শক্তির এই দুটি রূপ, জলবিদ্যুৎ আর বায়োমাসের পর গুরুত্বপূর্ণ শক্তির উৎসগুলো হচ্ছে সৌরশক্তি, বায়ুশক্তি, বায়ো ফুয়েল আর জিওথার্মাল।

শুনে অনেকেই অবাক হয়ে যাবে, মাত্র এক বর্গকিলোমিটার এলাকায় সূর্য থেকে আলো তাপ হিসেবে প্রায় হাজার মেগাওয়াট শক্তি পাওয়া যায় যেটা একটা নিউক্লিয়ার শক্তি কেন্দ্রের কাছাকাছি। সূর্য থেকে আসা আলো আর তাপের একটা অংশ বায়ুম─লে শোষিত হয়ে যায়, রাতের বেলা সেটা থাকে না, মেঘ বৃষ্টির কারণে সেটা অনিয়ন্ত্রিত। তা ছাড়াও শক্তিটা আসে তাপ কিংবা আলো হিসেবে বিদ্যুতে রূপান্তর করার একটা ধাপ অতিক্রম করতে হয়− তারপরও বলা যায় এটা আমাদের খুব নির্ভরশীল একটা শক্তির উৎস। সূর্যের তাপকে ব্যবহার করে সেটা দিয়ে বিদ্যুৎ তৈরি করা যায়। তার চাইতে বেশি জনপ্রিয় পদ্ধতি হচ্ছে সেটাকে সরাসরি বিদ্যুতে রূপান্তর করা। আজকাল পৃথিবীর একটা পরিচিত দৃশ্য হচ্ছে সোলার প্যানেল, বাসার ছাদে লাগিয়ে মানুষ তার নিজের প্রয়োজনীয় বিদ্যুৎ নিজের বাসায় তৈরি করে নেয়। সৌরশক্তির পরই যেটি খুব দুত গুরুত্বপূর্ণ স্থান দখল করে ফেলছে সেটা হচ্ছে বায়ুশক্তি। আমাদের

দেশে আমরা এখনো বায়ু বিদ্যুতের বিশাল টারবাইন দেখে অভ্যস্ত নই কিন্তু ইউরোপের অনেক দেশেই সেটা খুব পরিচিত একটা দৃশ্য। যেখানে বায়ু বিদ্যুতের বিশাল টারবাইন বসানো হয় সেখান থেকে শুধু একটা খাম্বা উপরে উঠে যায়, তাই মোটেও জায়গা নষ্ট হয় না সে জন্য পরিবেশবাদীরা এটা খুব পছন্দ করেন একটা বায়ু টারবাইন থেকে কয়েক মেগাওয়াট পর্যন্ত বিদ্যুৎ পাওয়া সম্ভব! পৃথিবীর মানুষ বহুদিন

থেকে পান করার জন্য অ্যালকোহল তৈরি করে আসছে—সেটা এক ধরনের জ্বালানি। ভুট্টা, আখ এ ধরনের খাবার থেকে জ্বালানির জন্য অ্যালকোহল তৈরি করা মোটামুটি একটা গ্রহণযোগ্য পদ্ধতি। রান্না করার জন্য আমরা যে তেল ব্যবহার করি সেটা ডিজেলের পরিবর্তে ব্যবহার করা যায়। পৃথিবীতে অনেক ধরনের গাছপালা আছে যেখান থেকে সরাসরি জ্বালানি তেল পাওয়া যায়। পৃথিবীর অনেক দেশেই এটা নিয়ে গবেষণা হচ্ছে, অনেক দেশই (যেমন ব্রাজিল) এ ধরনের বায়োফুয়েল বেশ বড় আকারে ব্যবহার

করতে শুরু করেছে। নবায়নযোগ্য শক্তির গুরুত্বপূর্ণ আরেকটি হচ্ছে জিওথার্মাল (geothermal)। আমাদের পৃথিবীর ভেতরের অংশ উত্তপ্ত, অগ্নেয়গিরি দিয়ে যখন সেটা বের হয়ে আসে তখন আমরা সেটা টের পাই। তাই কেউ যদি কয়েক কিলোমিটার গর্ত করে যেতে পারে তাহলেই তাপশক্তির একটা বিশাল

উৎস পেয়ে যায়। প্রক্রিয়াটা এখনো সহজ নয় তাই ব্যাপকভাবে ব্যবহার শুরু হয়নি। কোনো কোনো জায়গায় তার ভূ-প্রকৃতির কারণে সেখানে এ ধরনের শক্তি সহজেই পাওয়া যায় সেখানে সেগুলো ব্যবহার শুরু হয়েছে। সারা পৃথিবীতেই এখন মানুষেরা পরিবেশ নিয়ে সচেতন হয়ে উঠছে। উন্নৃতির জন্য দরকার শক্তি,

কিন্তু শক্তির জন্য যদি পরিবেশকে ধবংস করে দেয়া হয় আধুনিক পৃথিবীর মানুষ কিন্তু সেটা মেনে নেয় না। পৃথিবীর মানুষ এখন যে কোনো শক্তি যে কোনোভাবে ব্যবহার করতে প্রস্তুত নয়। পৃথিবীর সর্বনাশ না করে, প্রকৃতির সাথে বিরোধ না করে তারা পৃথিবীর মাঝে লুকানো শক্তিটুকু ব্যবহার করতে চায়।

অনুশীলনী

역취 :

- ঘর্ষণজনিত বল দিয়ে করা কাজ সব সময়েই

 নিগেটিভ হয় কেন?
- একটা শ্রিংকে কেটে দুটুকরো করদে
 টুকরোভদার শ্রিং প্রুবক k কি নাড়বে না
 কমবে?
- পৃথিবী সচল রাখতে কি শক্তির প্রয়োজন লাকি ক্ষমতার প্রয়োজন?
- 4. जत्रक कि शिक्त दिरमत्व विरवहना कर्ता मात्र?
- বেগ 1 শতাংশ বাড়লে গতি শক্তি কত শতাংশ বাড়বে?

ছবি 4,13: বেগ এবং সময়ের লেখচিত্র।

গাণিতিক সমস্যা:

- 1. একটা বস্তুর ওপর বিভিন্ন সময় বিভিন্ন বল প্রয়োগ করার কারণে তার বেগের পরিবর্তন হয় এবং সেটি 4.13 ছবিতে দেখালো হয়েছে। OA, AB, BC এবং CD এর মধ্যে কখন পজিটিভ কাজ কখন বিগেটিভ কাজ বা কখন শূন্য কাজ করা হয়েছে?
- 2. 50kg ভরের একটি মেয়ে 10s এ সিঁড়ি বেয়ে 5m উপরে উঠেছে। সে কত্যুকু কাজ করেছে? তার কমতা কত?
- 5kg ভরের একটা ভি্র বস্তর ওপর 10s একটি বল প্রয়োগ করার পর তার গতি শক্তি হল 500f, কী পরিমাণ বল প্রয়োগ করা হয়েছিল?
- 4. একটি কপিকলের একপাশে 10kg এবং অনা পাশে 5kg ভরের দুটি বন্ধকে ঠিক 5m উপরে ছির অবস্থার ধরে রাখা হয়েছে। তুমি বন্ধ দুটিকে ছেড়ে দিলে, তখন 10kg ভরটি নিচের দিকে এবং 5kg ভরটি উপরের দিকে উঠতে শুরু করবে। যখন 10kg ভরটি 1m 1m নিচে এবং 5kg ভরটি 1m উপরে উঠেছে তখন ভর দুটির কো কত?
- 100m ওপর থেকে 5kg ভরের একটি বস্তু ছেড়ে দেয়া হয়েছে, কোন উচ্চতায় বস্তুটির গতি শক্তি তার বিভব শক্তির দিওণ হবে?

ছবি 4.14: দৃটি ভিন্ন তর কলিকন দিয়ে ঝোলানো।

পঞ্চম অধ্যায়

পদার্থের অবস্থা ও চাপ

(Pressure and States of Matter)

James Clerk Maxwell (1831-1879)

জেমস ক্লাৰ্ক ম্যাক্সওয়েল

জ্যেস ক্লার্ক ম্যাক্সওয়েল একজন স্কটিস পদার্থবিজ্ঞানী ছিলেন। তাঁর সবচেয়ে বড় অবদান হচ্ছে বিদ্যুৎ এবং চৌম্বক তত্ত্বের মতো আপাতদৃষ্টিতে ভিন্ন বিষয়কে এক সূত্রের আওতায় নিয়ে আসা এবং বিদ্যুৎ চৌম্বকীয় তরঙ্গ হিসেবে আলোকে ব্যাখ্যা করা। আপবিক গতি তত্ত্বেও তাঁর বড় অবদান আছে। তিনি সর্বপ্রথম রঙিন ফটো তোলার পদ্ধতি আবিদ্ধার করেছিলেন।

5.1 চাপ (Pressure)

আমরা আমাদের দৈনন্দিন কথাবার্তায় চাপ শব্দটো নানাভাবে ব্যবহার করলেও পদার্থবিজ্ঞানে চাপ শব্দটার একটা সুনির্দিষ্ট অর্থ রয়েছে। আমরা আগের অধ্যায়গুলোতে নানা সময় নানা ধরনের বল প্রয়োগ করার কথা বলেছি, তবে বলটি ঠিক কীভাবে প্রয়োগ করা হবে, সেটি বলা হয়নি। যেমন তুমি একটা পাথরকে এক হাতে ঠেলতে পার, দুই হাতে ঠেলতে পার কিংবা তোমার সারা শরীর দিয়ে ঠেলতে পার (ছবি 5.1)। প্রত্যেকবার তুমি সমান পরিমাণ বল প্রয়োগ করলেও চাপ কিন্তু হবে ভিন্ন। প্রথমক্ষেত্রে তুমি তোমার হাতের তালুর ক্ষেত্রফলের ভেতর দিয়ে বল প্রয়োগ করেছ, যদি তোমার প্রয়োগ করা বল হয় F এবং হাতের তালুর ক্ষেত্রফল হয় A তাহলে চাপ P হচেছ

$$P = \frac{F}{A}$$

চাপের মাতা $ML^{-1}T^{-2}$

কাজেই দ্বিতীয় ক্ষেত্রে দুই হাত ব্যবহার করায় বল প্রয়োগকারী ক্ষেত্রফল দ্বিগুণ বেড়ে যাবে বলে চাপ অর্ধেক হয়ে যাবে, তৃতীয় ক্ষেত্রে সারা শরীর ব্যবহার করে বল প্রয়োগ করায় বল প্রয়োগকারী ক্ষেত্রফল আরো বেড়ে যাবে তাই চাপ আরো কমে যাবে।

বল একটি ভেক্টর, তাই তোমাদের ধারণা হতে পারে চাপ P বুঝি ভেক্টর! কিন্তু মজার ব্যাপার হচ্ছে চাপ P কিন্তু একটা ক্ষেলার রাশি এবং আমরা যদি সঠিক ভাবে লিখতে চাই তাহলে এটি লেখা উচিত এভাবে

$$F = PA$$

অর্থাৎ ক্ষেত্রফলকেই ভেক্টর হিসেবে ধরা হয়! ভেক্টরের পরিমাণ আর দিক থাকতে হয়, ক্ষেত্রফলের পরিমাণ টুকু হচ্ছে ভেক্টরের পরিমাণ, ক্ষেত্রফলের উপর লম্ব হচ্ছে ভেক্টরের দিক!

চাপ ক্ষেলার হওয়ার কারণে এর কোনো দিক নেই। এটি খুবই প্রয়োজনীয়, কারণ চাপ ধারণাটি কঠিন পদার্থে থেকে অনেক বেশি প্রয়োজনীয় তরল কিংবা বায়বীয় পদার্থে। তরল বা বায়বীয় পদার্থে যখন চাপ প্রয়োগ করে তখন আসলে সেটি দিকের উপর নির্ভর করে না— এই বিষয়টি আমরা একটু পরেই দেখব।

উদাহরণ 5.1: ধরা যাক তোমার ভর 50~kg, তোমার শরীরের এক পাশের ক্ষেত্রফল $0.5~m^2$ এবং দুই পায়ের তলার ক্ষেত্রফল $0.03~m^2$ । তুমি চিত হয়ে শুয়ে থাকলে মেঝেতে কত চাপ প্রয়োগ করবে এবং দাঁড়িয়ে থাকলে মেঝেতে কত চাপ প্রয়োগ করবে?

ছবি 5.1: কতটুকু জায়গায় বল প্রয়োগ করা হচ্ছে তার উপরে চাপ নির্ভর করে।

উত্তর : ভর 50~kg কাজেই ওজন 50~ imes 9.8~N=490~Nযখন শুয়ে থাক তখন চাপ

$$P = \frac{490 N}{0.5 m^2} = 980 \frac{N}{m^2}$$

যখন দাঁড়িয়ে থাক তথন চাপ

$$P = \frac{490 \, N}{0.03 \, m^2} = 16.333 \, \frac{N}{m^2}$$

দেখতেই পাচ্ছ স্তয়ে পড়লে অনেক কম চাপ দেয়া হয়। এজন্য মানুষ যখন চোরাবালিতে পড়ে তখন নিজেকে বাঁচালোর জন্য সব সময় স্তয়ে পড়তে হয় যেন সে অনেক কম চাপ দেয় এবং চোরাবালিতে সহজে ডুবে না খায়।

চাপের এককের আরেকটি নাম প্রাক্ষেল (P)। $1\ N$ বল $1\ m^2$ ক্ষেত্রফলের উপর প্রয়োগ করলে $1\ P$ (প্যাক্ষেল) চাপ প্রয়োগ করা হয়।

5.2 খনতু (Density)

তরল এবং বায়বীয় পদার্থের চাপ বোঝার আগে আমাদের খনতু সম্পর্কে ধারণাটি অনেক স্পষ্ট থাকা দরকার। ঘনতু হচ্ছে একক আয়তনে ভরের পরিমাণ অর্থাৎ কোনো বস্তুর ভর যদি m এবং আয়তন V হয় তাহলে তার খনতু

$$\rho = \frac{m}{V}$$

টেবিল 5.1: বিভিন্ন পদার্থের ঘনত

পদার্থ	খনত (gm/cc)
বাতাস	0.00127
কৰ্ক	0.25
কঠি	0.4 - 0.5
মানব দেহ	0.995
পানি	1.00
কাচ	2.60
লোহা	7.80
পারদ	13.6
বোনা	19.30

টেবিল 5.1 এ তোমাদের পরিচিত কয়েকটি পদার্থের ঘনত দেয়া

হলো। এখানে একটা বিষয় মনে রাখা ভালো, তাপমাত্রা বাড়লে কিংবা কমালে পদার্থের আয়তন বাড়বে কিংবা কমতে পারে। যেহেতু ভরের কোনো পরিবর্তন হয় না তাই পদার্থের ঘনত্ব তাপমাত্রার সাথে পরিবর্তন হতে পারে। সেজন্য পদার্থের ঘনত্বের কথা বলতে হলে সাধারণত সেটি কোন তাপমাত্রায় মাপা হয়েছে সেটিও বলে দিতে হয়।

উদাহরণ 5.2: 1~kg পানিতে 0.25~kg লবণ গুলে নেরার পর তার আরভন হলো 1200~cc এই পানির যনত কত?

উপ্তর: 1cc হচ্ছে 1cm³ কাজেই

$$1\epsilon\epsilon = (10^{-2}m)^3 = 10^{-6}m^3$$

কাজেই লবন গোলা পানির ঘনত্ব

$$\rho = \frac{1 \, kg + 0.25 kg}{1200 \times 10^{-6} m^3} = 1.04 \, kg/m^3$$

উদাহরণ 5.3: জর্ডানের ডেড সী (Dead sea) এর ঘনত্ব 1.24kg/liter এই সমুদ্রের $1\,kg$ পানির আয়তন কত?

উত্তর: 1 litre হচ্ছে $1000\ cc$ বা $10^{-3}m^3$ কাজেই জর্ডানের ডেড সী এর পানির ঘনত

$$\rho = 1.24 \frac{kg}{liter} = \frac{1.24 \ kg}{10^{-3} m^3} = 1.24 \times 10^3 \ kg \ m^{-3}$$

কাজেই 1kg পানির আয়াতনঃ

$$V = \frac{m}{\rho} = \frac{1kg}{1.24 \times 10^3 \ kg \ m^{-3}} = 0.81 \times 10^{-3} \ m^3$$

কিংবা 0.81 liter

উদাহরণ 5.4: নিউক্লিয়াসের ঘনত কত? 1 চা চামুচ নিউক্লিয়াসের ভর কত?

উত্তর: নিউক্লিয়াস তৈরি হয় নিউট্রন আর প্রোটন দিয়ে। তাদের একটার ভর $1.67 \times 10^{-27} kg$, তাদের ব্যাসার্ধ আনুমানিক $1.25 \ fm = 1.25 \times 10^{-15} m$ কাজেই যদি নিউট্রন কিংবা প্রোটনের ঘনতু বের করতে পারলে সেটাকেই নিউক্লিয়াসের ঘনতু হিসেবে ধরতে পারি!

নিউক্লিয়াসের ঘনত্ব

$$\rho = \frac{m}{\frac{4\pi}{3}r^3} = \frac{1.67 \times 10^{-27} kg}{\frac{4\pi}{3} (1.25 \times 10^{-15} m)^3} = 0.204 \times 10^{18} \, kg/m^3$$

এই সংখ্যাটি যে কত বিশাল সেটা তোমাদের অণুমান করা দরকার! এক চা চামচে মোটামুটি 1cc জিনিস আটে, কাজেই এক চা-চামচ নিউক্লিয়াসের ভর:

$$m = 0.204 \times 10^{18} \, kg/m^3 \times 10^{-6} m^3 = 2 \times 10^{11} kg$$

এটা মোটামুটিভাবে পৃথিবীর সব মানুষের সম্মিলিত ভর!

আমার অন্যভাবেও এটা দেখতে পারি। একটা পরমাণুতে নিউক্লিয়াসে নিউটন-প্রোটন থাকে, বাইরে থাকে ইলেকট্রন। ইলেকট্রনের ভর নিউট্রন প্রোটনের ভর থেকে প্রায় 1800 গুণ কম, কাজেই যে কোনো জিনিষের তর্তা আসলে নিউক্রিয়াসের পত্র-ইলেকট্রনাপলোকে না ধরলে খব একটা ক্ষতিবৃদ্ধি হয় না। কিন্তু আমরা চারপাশে য়েদন দেখি তার আকার কিন্তু নিউক্রিয়াসের আফতন নম- তার আফতন এসেছে পর্মাণ্ডর আফতন থেকে। খুব ছোট একটা নিউক্রিয়াসকে মিরে তুলনামূলক কবে অনেক বড় একটা কক্ষপথে ইলেকট্রন স্ত্রতে থাকে। নিউক্রিয়াসের ব্যাসার্ধ থেকে পর্মাণ্ডর আফার্ট গ্রায় এন কক্ষ ওপ বড়

কাজেই যদি কোনোলারে ত্রপ দিয়ে তেমার পরীরের যে ক্যটি পরমাণ আছে সেপ্তলো ভেছে টোমার সমস্ত বিউক্তিয়াসপ্তলো একত করে ফেলা সায় তাহলে লোমার আয়ক্ষন কতট্টক হবে স্থানার করতে চাঞ্জঃ যেকেছ কথন কোমার দনত হবে নিউক্তিয়ালের দনত ভাই কোমার আয়ক্ষন করে।

$$V = \frac{m}{\rho} = \frac{40kg}{0.204 \times 10^{18} \, kg/m^3} = 2 \times 10^{-16} \, m^2$$

সাদি পারে নেই তোমাকে একটা ছোট গোলক টোরি করা হয়েছে তাচাল তোমার বাসাধ /: চার:

$$\frac{4\pi}{3}r^3 = 2 \times 10^{-10} m^2$$

 $r = 1.08 \times 10^{-7} mn$

प्रथाप राजामारक भागि इत्तर्थ राज्या आरत मा-माहेरक्कार,पारंभ राज्यरङ वरच।

5,3 বাডাসের চাপ (Air Pressure)

গাতাসের একটো চাপ আছে। আমরা এই চাপ আলালাভাবে অনুভব করে লা কারগ আমরদের শরীরের ভেতর থেকেও রাইরে একটি চাপ দেয়া হছেই তাই দুটো চাপ একটা আরেকটিকে কাটাকাটি করে দেয়। মহাকাশে বাভাস নেই ভাই বাভাসের চাপও নেই, ভাই সেখানে শরীরের ভেতরের চাপকে কাটাকাটি করার জন্য কিছু নেই এবং এ রক্তম পরিবেশে মহুর্তের মাঝে মানুষের শরীর তার ভেতরকার চাপে নিজোরিত হয়ে যেতে পারে। সে জন্য মহাকাশে মহাকাশচারীরা সন সময়েই চাপ নিরোধক স্পেস স্টে পরে থাকেন। পৃথিবী পৃষ্ঠে বাভাসের এই চাপ $10^5 N/m^2$ যার অর্থ ভূমি যাদ পৃথিবী পৃষ্ঠে বাভাসের যে ক্ষেটির আনিকটা জায়গ। করুনা করে নাও তাহলে ভার উপরে বাভাসের যে ক্ষেটির রয়েছে ভার ওজন $10^5 N$, এটা মোটামুনিভাবে একটা হাতির ওজন।

এখানে একটা বিষয় এখনই তোমানের খুব ভালো করে বুবাতে হবে, এটি সাজ্যা, ওজন হচেছ বল এবং এই কনটি নিচের দিকে কাজ

রাতাসের কর

ছবি 5.2: বাজারের লগানি আনে বাজানের হুটোল জ্লেন থেকে।

করে। বল হচ্চে ভেরুব তাই এর মান এবং দিক দুটোরই খ্যোজন আছে। চাপ ভেরুব নয় তাব কোনে।
দিক নেই ভাই যে কোনো জারখায় চারিদিকে সমান। রুমি যেখানে এখন দাড়িয়ে কিংবা বলে আছ তোমার ওপর বাজান যে চাপ প্রোগ করছে সেটা জোমার উপরে জানে বামে নামনে পিছনে বা নিচে চারিদিকেই সমান। বাজাস কিংবা তর্ল পদাপের জন্য এটা সব সময়েই মতি।

ছবি 5.3: (১) তে দেখানো কিউবাতি গ্ৰেছৰ থেকে সাংসকলে বাতাস সৰিছে বিলোগান গুলু উপর থেকে চাল দিলে। ভাজতে (b) ছবিব মত লোগন হয়ে যেতে। কিছু যেকেছু লবিনিক থেকে লগ আনে চাই /চ) ছবিব মত সংগ্রাচত হয়

পাতলা টিন বা আগুমিনিয়ামের তৈরি কোনো নিছিন্ত টিন বা কৌটা যদি কোনোভাবে বায়ুপুনা করা যায় ভাহতো নেটা দুমভেমুচড়ে যাবে, তার কারণ স্বাভাবিক আসদ্ধান বাইরের রাতানের চাপকে েকটিনে ভেডনের বাতানের পান্টা চাপ দিয়ে একটা সমতা বজায় রেখেছিল। ভেতরের বাতাস পান্প করে সারিয়ে সেবার পর ভেতরে বাইরের বাতাসের লাগ পতিহত করার মতে। কিছু সেই তাই বাইরের বাতাসের চাপ টিন বা কৌটাটাকে দুমড়েযুচড়ে দিবে (ছবি 5,3)। ছোমরা যে জিনিসটা লভ করবে সেটি হচ্ছে কৌটাটা তথ্য উপর দিক থেকে দুমড়ে মূচতে যাবে না– চারিদিক থেকে দুমড়েমূচড়ে যাবে। চাপ যদি তথ্ উপর থেকে আগত আহলে টেনটা ওবু উপর থেকে দুমড়ে মুচড়ে যেত+ চাপ যেহেতু চারাদিকেই সমান তাই টিনটা চার্নিদিক থেকেই আসছে এবং চার্নিদিক থেকে দুসত্যে সূচতে গাছেছ। পূথিবা প্রেষ্ঠ রাতাসের চাপটি আসছে এর উপরের ভদ্বটির ওজন থেকে। তাই আমরা যদি উপরে উঠি তাহলে আমাদের উপরের অন্তের উচ্চেতাটুকু কমে যাবে, ওজননিও কমে যাবে এবং সেজনা সেখানে বভোবের চাপত কমে যাবে। বিষয়টি পাতিৰ এবং 5.3 ছবিতে তোমাদেৱ দেখানো হয়েছে উচ্চতার নামে নাথে বাতাদের চাপ কেমান करत करम यात्र। एवं निषयंकी उजमारनत जानाना करते नक कनात कथा उनकि बराह्य लीक किरणामिकीत উচ্চতায় পৌছানোর পর বাতালের চাপ অর্থেক কমে পিয়েছে– নাধারণভাবে মনে হতে পারে তাইলে পরের পাচ কিলোমিটারে বার্কি অর্থেক করে। শেখারে বাতানের চাপ পুন্য হয়ে যাচেচ না কেন্সং এর একটা স্নিটিট সাবধ আছে। বাতাস বা গলসকো লাগ দিয়ে সংক্রতিত করা বাব তাই পৃথিবীয় প্রেট, বেগানে বাভামের চাপ সবচেয়ে বোণি সেখানে বাভাস সন্দেয়ে বোণি সংক্রাণত হয়ে আছে অর্থাৎ বাভানের ঘনত

সেখানে সবচেয়ে বেশি। আমরা যতই উপরে উঠতে থাকব বাতালের চাপ যে রকম কমতে থাকবে তার ঘনতৃও সে রকম কমতে থাকবে।

উচ্চতার সাথে সাথে রাতাসের ঘনতু কমে যাওয়ার অনেকগুলো বাস্তব দিক আছে। আকাশে যথন প্লেন উড়ে তখন রাতাসের ঘর্ষণ প্লেনের জন্য অনেক বড় সমস্যা। যত উপরে ওঠা যাবে বাতাসের

ঘণত তত কমে যাবে এবং ঘর্ষণও কমে
যাবে তাই সত্যি সত্যি বড় বড় যাত্রীবাহী
প্রেনগুলাে আকাশে অনেক ওপর দিয়ে
উড়ার চেষ্টা করে। সাধারণভাবে মনে হতে
পারে তাহলে প্রেনগুলাে আরাে উপর দিয়ে—
একেবারে মহাকাশ দিয়ে উড়ে যায় না
কেন, তাহলে তাে ঘর্ষণ আরাে কমে যাবে।
তার কারণ প্রেনকে ওড়ানাের জন্য তার
শক্তিশালী ইঞ্জিন দরকার আর সেই ইঞ্জিনে
জ্বালানি জ্বালানাের জন্য অক্সিজেন দরকার।

ছবি 5.4: উচ্চতার মাথে বাতানের চাপ কমে যায়

উপর যেখানে বাতাসের ঘনতু কম সেখানে অক্সিজেনও কম তাই বেশি উচ্চতায় অক্সিজেনের অভাব হয়ে যায় বলে প্লেনের ইঞ্জিন কাজ করবে না!

যারা পর্বতশৃদ্ধে ওঠে তাদের জন্যও সেই একই সমস্যা। যত উপরে উঠতে থাকে সেখানে বাতাসের চাপ কমে যাওয়ার সমস্যা থেকে অনেক বড় সমস্যা বাতাসের ঘনত্ব কমে যাওয়ার কারণে অক্সিজেনের পরিমাণ কমে যাওয়া। যারা পর্বতারোহণ করে সেজনা তাদের অত্যন্ত কম অক্সিজেনে ওধু বেচে থাকা নয় পর্বতারোহণের মতো অত্যন্ত কইসাধ্য কাজ করা শিখতে হয়, সেজনা তাদের শরীরকেও প্রস্তুত করতে হয়।

উদাহরণ 5.5: এভারেন্টের চূড়ায় (29,029 ft) বাতাদে কতটুকু অক্সিজেন আছে?

উব্য: 29,029 ft=8,848m

ছবির এফে থেকে দেখছি এই উচ্চতায় বাতদের চাপ পৃথিবী পৃষ্ঠে বাতাদের চাপের মাত্র 35% কাজেই যেখানে অক্সিজেনের পরিমাণও পৃথিবী পৃষ্ঠের অক্সিজেনের প্রায় 1/3 বা এক-তৃতীয়াংশ।

5.3.1 টরিসেলির পরীক্ষা

তোমরা নিশ্চরই স্ট্র দিয়ে কখনো না কখনো কোন্ড ড্রিংকস খেয়েছ। কখনো কি চিন্তা করেছ স্ট্রতে চুমুক দিলে কেন কোন্ড ড্রিংকস তোমার মুখে চলে আসে? আসলে ব্যাপারটি ঘটে বাতাসের চাপের জন্য। ব্যাপারটি বোঝা খুব সহজ হতো যদি তুমি কখনো 34 ফুট লঘা একটা স্ট্র দিয়ে কোন্ড ড্রিংকস খাওয়ার

টেম করতে। (ন্যাপারটি মোটেও বাস্তবসমত বয়- কিন্তু যুক্তির খাতিরে মেয়ে নাওং) ভাহসে ত্রমি আবিষ্কার করতে ড্রিংকটা 32 ফুট পর্যন্ত উঠে হঠাৎ করে থেমে প্রেছে- আর যতই চুযুক দেওয়ার চেউ। কর ড্রিংকটা উপরে উঠছে না। (আমরা বরে নিচ্ছি কোক্ত ড্রিংকের হানতু পানির ঘনত্বের কাছাকাছি।)

পারদ মুখে নেয়ার মতো তরল নয় কিন্তু যুক্তির থাতিরে কল্পনা করো তুমি মট্র দিয়ে পারদ চুমুক দিয়ে মুখে আনার চেষ্টা করছ – যদি স্ট্রটি 76~cm থেকে বেশি লগা হয় তাহলে তুমি আবিস্কার করবে পারদ ঠিক 76~cm উচ্চতায় এনে থেমে খেছে– তুমি যতই চুমুক লেওয়ার চেষ্টা কর পারদ আর উপর উঠিবে নাং পানির ঘনত থেকে পারদের ঘনত 13.6~৩৭ লেশি, তাই পানি যেটুকু উচ্চতায় উঠেছে পারদ উঠৈছে তার থেকে 13.6~৩৭ কম।

থমনিতে একটি মুট্র মুখে। নিমে কোল্ড ড্রিংকসের রোজনে গরে রাখলে কোল্ড ড্রিংকসান উপরে উঠাবে না— কারণ তোমার মুখের ভেতরে বাতাসের যে চাপ মুট্র ডুবিয়ে রাখা তরহোও সেই একই বাতাসের চাপ— দুটো চাপই সমান, কাজেই এর ভেতরে কোলো কামকর কল নেই। এখন যদি ভূমি চুমুক দাও— যার এপ তুমি মুখের ভেতরে পুনাতা তৈরি করার চেমা কর— তথন সেখানে বাতাসের চাপ কমে মায়। তথন তরলের উপরে বাতাসের চাপের জন্য উপরে উঠে।

পারদ ব্যবহার করে বাতাসের চাপের এই পরীকাটি বিজ্ঞানী টরিসেলি করেছিলেন 1643 সালে। তিনি অবশ্যি মুখ দিয়ে পারদকে একটি নল বেয়ে টেনে তোলার চেট্রা করেননি, তিন এক মুখ বন্ধ একটা নলের ভেতর পারদ ভরে, নলটি পারদ ভরা একটা পালে উল্টো করে রেখেছিলেন। পারদের উচ্চতা নামতে নামতে তিক 7.6 cm এসে থেমে গেল। তমি চুমুক দিয়ে খাবার সময় মুখের ভেতরে যে শুদতো তৈরি করার চেন্টা কর কাচের

ছবি 5.5: ঝাতালের দাপের কারণে পারন ঠিক 76 cm উক্তেখন ভিন্ন হয়ে নান।

নলের উপরে ঠিক সেই শূন্যতা তৈরি হয়ে গিয়েছিল। বাতাস পারদের উপরে চাল দিছে এবং গেই চাপ তর্বের সব জায়গায় সধ্যালিত হয়ে নলের নিচেও এনেছে। নলের উপরে কোনো ফুটো নেই তাই সেদিকে দিয়ে বাতাস চাপ দিতে পার্ছে না। কাজেই সম্ভা আনার জন্য নলের নিচে এক মাত্র চাপ হচ্ছে 76 cm জন্ত পারদের ওজনের জন্য তৈরি হওয়া দাপ।

বাতাসের চাপ মাপার যন্ত্রের নাম ব্যারোমিনির (ছবি 5,5) এবং টার্নোজির এই পদ্ধতি দিয়ে। তৈরি ব্যারোমিনিরে এখনো রাতাসের চাপ মাপা হয়। রাতামের চাপ বড়াল পারদের উচ্চতা 76 mm থেকে শেশি হয় চাপ কমলে উচ্চতা 76 mm থেকে কমে যায়।

5,3,2 বাতানের চাপ এবং আনহান্তরা

বাছালের চালের সামে কাবহাওবার ঝুর গানিই একটা সম্পর্ক কাছে। তোমরা নিশ্বই আবহাওবার ববরে অনেকবার সমৃদ্রে নিমুনাপ কৃছি হওয়ার কথা শুনেছ, যার অর্থ সেখানে বাছালের চাপ কমে প্রেছে। তুখন চাপ সমান করার জন্য আশোশোশের জান লেশ এলাকা থেকে বাছাস সেই নিমুনাশের দিকে আসাতে থাকে এবং মাঝে মাঝে একটা ঘূর্ণির সৃষ্টি হয়, নেই ঘূর্ণাটি বিশেষ অবস্থার ঘূর্ণাঝাড়ের সৃষ্টি করে। আসাদের দেশে ঘূর্ণিঝাড়ের স্থাবহাতার খনর ছোমেরা নিশ্বমাই

তোমরা যখন পরের অগারে কাপ এবং তাপমাত্রা সম্পর্কে পড়াবে তথন তোমরা জানতে পারবে যে কতালের তাপমাত্রা বেড়ে প্রালে সেটি প্রমারিক হয় বলে তার ঘনত কমে যার এবং চাপ কমে যার। বাতালের চাপ আরো কার্যকরভাবে কমে যদি তার মাথে জলীয় বাম্পের পরিমাণ বেড়ে যায়। জলীয় বাম্পের পরিমাণ বেড়ে যায়। জলীয় বাম্পের পানি যেখানে পানির অণ্তে একটি অদ্যিকেন এবং নটি হাইড্রাজেন থাকে এবং পানির অণ্ত একটি অদ্যিকেন এবং নটি হাইড্রাজেন থাকে এবং পানির অণ্র আণবিক তর হাছে (16+1+1=)18। বাতালের মূল উপাদান হাছে নাইট্রোজেন (পারমানবিক তর 14) দেনে পারমাণ দিয়ে তৈরি হয় তাই তাদের আনবিক তর (14+11=)28 এবং অর্য়িজেন (পারমাণবিক তর 16), এটিও দুটি

এন 5.6 হবতার উল্ভাৱ জন্যে নিহ্নর পুর্তে চাপ দুর্দি হয়।

পরমাণ দিয়ে তৈরি ভাই আগরিক তর (16 + 16 =) 32 যা পানির আগরিক তর থেকে অনুক্রি রেশি। তাই যথন গতানে জলীয় গাম্প থাকে তথন বেশি আনবিক তরের নাইট্রাজেন এবং আরিজেনের বদলে কম আনবিক তরের পানির এপ স্থান করে নেয় এবং বাতালের ঘনতু কমে যায়। বাতালের ঘনতু কম হলে রাজ্যালের চাপও কমে যায়। কাজেই ব্যারোমিটারে বজালের চাপও কমে যায়। কাজেই ব্যারোমিটারে বজালের চাপে দেখেই স্থানাম আবহাওয়া সম্পর্কে তবিষ্যাদাণী করা সম্ভব। কারোমিটারে উচ্চ চাপ দেখালে বোঝা যায় বাতান ওকনো এবং আবহাওয়া তালো। চাপ কমতে থাকলে বোঝা যায় জলীয় বাম্পের পরিমাণ বাড়ছে। চাপ বেশি কম দেখালে বুঝাতে হবে আশ্পাশের এলাকা থোকে বাতান ছুটে এলে বাড়-বুটি এক স্থাত যাছে।

5.4 তরলের ভেতর ঢাপ (Pressure in Liquid)

যারা পানিতে ঝাপাঝাপি করেছে তারা সবাই জানে পানির গভীরে গেলে এক ধরণের চাপ অণুভব করা যায় (যদিও বায়ুমাল আমাদের ওপর একটা চাপ দেয় কিন্তু আমরা সেটা অণুভব করি না— কারণ আমাদের ধরীরও সমান পরিমাণ চাপ দেয়। পানি কিংবা অন্য কোনো তরলের গভীরৈ গেলে ঠিক কতটুকু চাপ অনুভব করা যাবে সেটি ইতোমধ্যে তোমাদের বলা হয়েছে— তোমার উপরে তরলের যে বঙ্গুটুকু থাকবে তার ওজন থেকেই তোমার উপরের চাপ নির্ণয় করতে হবে। ধরা যাক তুমি তরলের h গভীরতায় চাপ নির্ণয় করতে চাইছ। দেখানে A ক্ষেত্রকলের একটি পৃষ্ঠ কল্পনা করে নাও (5.6 ছব)। তার উপরে তরলের যে বঙ্গুটুকু হবে সেখানকার তরলটুকুর ওজন A পৃষ্ঠে বল প্রয়োগ করবে।

A পৃষ্ঠের উপরের তরলটুকুর আয়তন Ah তরলের ঘনত্ব যদি $oldsymbol{arphi}$ হয় তাহলে এই তরলের ওজন বা বল

$$F = mg = (Ah\rho)g$$

কাজেই চাপ:

$$P = \frac{F}{A} = \frac{Ah\rho g}{A} = h\rho g$$

অর্থাৎ নির্দিষ্ট ঘনত্বের তরলে গভীরতার সাথে সাথে চাপ বাড়তে থাকে। পানির বেলায় আনুমানিক প্রতি দশ মিটার গভীরতায় বাতাসের চাপের সমপরিমাণ চাপ বেড়ে যায়।

ছবি 5.7! পানির গভীরতার সাথে সাথে পানির চাপ বেড়ে गার।

বাতাস বা গ্যাসকে যে রকম চাপ দিয়ে সংকুচিত করে তার ঘনত বড়িয়ে ফেলা যায় তরলের বেলায় কিন্তু সেটি সতিয় নয় (কঠিনের বেলায় তো নয়ই!) তরলকে চাপ দিয়ে সে রকম সংকুচিত করা যায় লা তাই তার ঘনত বাড়ানো কিংবা কমানো যায় লা। 5.7 ছবিতে সমুদ্রের তলদেশ থেকে সমুদ্রপৃষ্ঠে ওঠার সময় পানির চাপ কীভাবে কমতে থাকে সেটা দেখালো হয়েছে- য়েহেতু পানির ঘনত প্রায় সমান তাই চাপটা সমান য়ায়ে কমছে। সমুদ্রের তলদেশ থেকে উপরে উঠতে উঠতে সমুদ্রপৃষ্ঠে পৌছানোর পর সেটা শৃন্য হয়ে যাছেছ।

উদাহরণ 5.6 : তিমি মাছ সদুদ্রেপৃষ্ঠ থেকে 2,100m গভীরতায় যেতে পারে সেটি কত ভাপ সহ্য করতে পারে?

উক্তর: তিমি মাছ

$$P = \frac{2,100m}{10m/atm} = 210 \ atm$$

চাপ সহ্য করতে পারে।

5.4.1 আর্কিমিডিসের সূত্র

তোমরা সবাই আর্কিমিডিসের সূত্র এবং সেই সূত্রের পেছনের গল্পটি জান। সূত্রটি সহজ. কোনো বস্তু তরলে নিমজ্জিত করলে বস্তুটি যে পরিমাণ তরল অপসারণ করে সেইটুকু তরলের ওজনের সমান ওজন হারায়। আমরা এখন এই সূত্রটি বের করব।

পাশের ছবিতে দেখানো হয়েছে খানিকটা তরল পদার্থে একটা সিলিভার ডোবানো রয়েছে। (এটি সিলিভার না হয়ে অন্য বে কোনো আকৃতির বস্তু হতে পারত, আমরা হিসাবের সুবিধার জন্য সিলিভার নিয়েছি।) ধরা ঘাক সিলিভারের উচ্চতা । এবং উপরের ও নিচের প্রস্থাচ্ছেদের ক্ষেত্রফল A আমরা কল্পনা

ছবি 5.8: একটি বন্ধ যতটুকু তরল অপসারিত করে তার সমপ্রিমান ওজন হারার।

করে নিই সিলিন্ডারটি এমনভাবে তরলে ডুবিয়ে রাখা হয়েছে যেন তার উপরের পৃষ্ঠটির গভীরতা h_1 এবং নিচের পৃষ্ঠের গভীরতা h_2 .

আমরা অনেকবার তোমাদের বলেছি যে তরল (কিংবা বায়বীয়) পদার্থে চাপ কোনো নির্দিষ্ট দিকে কাজ করে না– এটি সব দিকে কাজ করে। কাজেই সিলিন্ডারের উপরের পৃষ্ঠে নিচের দিকে যে চাপ কাজ করে তার পরিমান

$$P_1 = h_1 \rho g$$

এবং নিচের পৃষ্ঠে উপরের দিকে যে চাপ কাজ করে তার পরিমাণ

$$P_2 = h_2 \rho g$$

কাজেই সিলিভারে উপর পূর্চে নিচের দিকে এবং নিচের পূর্চে উপরের দিকে প্রয়োগ করা বল যথাক্রমে :

$$F_1 = AP_1 = Ah_1\rho g$$

$$F_2 = AP_2 = Ah_2\rho g$$

পাশের পূঠের বল নিয়ে আমাদের মাথা ঘামাতে হবে না কারণ এক দিক থেকে যে বল অনুভব করে অন্যদিক থেকে ঠিক তার বিপরীত পরিমান বল অনুভব করে এবং একে অন্যকে কাটাকাটি করে দেয়। যেহেতু h_2 এর মান h_1 থেকে বেশি তাই দেখতে পাচ্ছি F_2 এর মান F_1 থেকে বেশি। কাজেই মোট বলটি হবে উপরের দিকে এবং তার পরিমাণ:

$$F = F_2 - F_1 = A(h_2 - h_1)\rho g$$

$$F = Ah\rho g$$

যেহেতু Ah হচ্ছে সিলিভারের আয়তন, μ তরলের ঘনত্ব এবং g মাধ্যাকর্ষণজনিত তুরণ কাজেই উপরের দিকে প্রয়োগ করা বলের পরিমাণ হচ্ছে সিলিভারের আয়তনের সমান তরলের ওজন– ঠিক যেটি আর্কিমিডিসের সূত্র নামে পরিচিত।

উদাহরণ 5.7 ; শানির নিচে শ্রতি 33 ft (10m) গভাঁরতায় 1 atm চাপ বেড়ে যায়। ডাইতাররা সর্বোচ্চ 1,000 /t (330m) গভাঁর পর্যন্ত গিয়েছেন, সেখানে তাঁদের কতটুকু চাপ সহ্য করতে হয়েছে?

উত্তর: প্রতি 10m এ 1 atm বা 1 bar চাপ বেছে গেলে 330m গাভীরতার

$$\frac{330m}{10m/atm} = 33atm$$

33 atm চাপ সহ্য করতে হবে।

উদাহরণ 5.8: কেরোসিন (সনত্ব $800kg\ m^{-3}$) পানি (সনত্ব $1000kg\ m^{-3}$) এবং পরদ (সনত্ব $13,600kg\ m^{-3}$) এই তিনটি তরলের জন্য $50\ {
m cm}$ নিচে চাপ বের কর ।

উত্তর: চাপ $P = h \rho g$ কেরোসিনের জন্য

 $P = 0.50m \times 800 kg \; m^{-3} \times 9.8 \; Nkg^{-1} = 3,920 \; Nm^{-2}$ পানির জন্য

 $P=0.50m \times 1000 kg~m^{-3} \times 9.8~Nkg^{-1}=4,900~Nm^{-2}$ পারদের জন্য

 $P = 0.50m \times 13,600kg \; m^{-3} \times 9.8 \; Nkg^{-1} = 666,400 \; Nm^{-2}$

উদাহরণ 5.9: কেরোসিন পানি এবং গারদ এই তিনটি তরলের কতো গভীরতায় 1 atm এর সমান চাপ হবে?

উত্তর: আমরা জানি পারদের জন্য 76~cm গভীরতায় 1~atm চাপ হয়। পানির ঘনত্ব পারদ থেকে 13.6 গুণ কম কাজেই পানির গভীরতা 13.6 গুণ বেশি হবে। অর্থাৎ পানির গভীরতা :

$$76 \ cm \times 13.6 = 1034 \ cm = 10.34 \ m$$

কেরোসিনের ঘনত্ব পানির ঘনত্ব থেকে $0.8\,$ গুণ কম কাজেই কেরোসিনের জন্য গভীরতা পানির গভীরতা থেকে $1/0.8=1.25\,$ গুণ বেশি হবে

$$10.34m \times 1.25 = 12.92m$$

5.4.2 বস্তুর ভেসে থাকা বা ডুবে যাওয়া

এখন তোমরা নিশ্চয়ই বুঝতে পেরেছ কেন একটা বস্তু ভেসে থাকে আবার অন্য একটা বস্তু ডুবে যায়। পানিতে ডোবানো হলে সেটা যতটুকু পানি সরিয়েছে উপরের দিকে সেই পানির ওজনের সমান সমপরিমান বল অনুভব করে। সেই বলটি বস্তুটার ওজনের বেশি হলে বস্তুটা ভেসে থাকবে। ঠিক যে পরিমাণ ডুবে থাকলে বস্তুর সমান ওজনের পানি অপসারণ করবে– ততটুকুই ডুববে বাকি অংশটুকু পানিতে ডুবে যাবে না।

যদি বস্তুটার ওজন অপসারিত পানির ওজন থেকে বেশি হয় তাহলে সেটি পানিতে ডুবে যাবে। তবে পানিতে ডুবে থাকা অবস্থায় তার ওজন কিন্তু সত্যিকার ওজন থেকে কম মনে হবে।

যদি কোনোভাবে বস্তুটার ওজন অপসারিত পানির ওজনের ঠিক সমান করে ফেলা যায় তাহলে বস্তুটাকে পানির ভেতরে যেখানেই রাখা হবে সেটা সেখানেই থাকবে, উপরেও ভেসে উঠবে না, নিচেও ছুবে যাবে না। দৈনন্দিন জীবনে সে রকম কিছু চোখে না পড়লেও সাবমেরিনে এটি করা হয় পানির নিচে দিয়ে চলাচল করার জন্য।

উদাহরণ 5.10: এক টুকরো কাঠ পানিতে ভাসিয়ে দিলে তার কত শতাংশ ডুবে থাকবে?

উত্তর : কাঠের ঘনত্ব $ho=0.5 imes 10^3 kg/m^3$ পানির ঘনত্ব $ho_W=10^3 kg/m^3$ কাঠকে ভেসে থাকতে হলে তার ডুবন্ত অংশের সমপরিমাণ পানির ভর কাঠের ভরের সমান হতে হবে। অর্থাৎ যদি কাঠের আয়তন V হয় এবং V_1 অংশ পানিতে ডুবে থাকে তাহলে,

$$V\rho = V_1 \rho_{W}$$

$$\frac{V_1}{V} = \frac{\rho}{\rho_W} = \frac{0.5 \times 10^3 kg/m^3}{10^3 kg/m^3} = 50\%$$

উদাহরণ 5.11: 10kg ভরের একটা কাঠ নদীর পানিতে ভেসে ভেসে সমুদ্রে গেল। নদীর পানিতে সেটি অর্ধেক ডুবেছিল, সমুদ্রে কতটুকু ডুববে? (সমুদ্রের পানির ঘনত্ব $ho_{S}=1.03 imes10^{3}kg/m^{3})$

উত্তর : নদীর পানির ঘনত্ব $ho_W=10^3 kg/m^3,$ কাঠের আয়তন V ঘনত্ব ho হলে কাঠের ওজন V
ho নদীর পানিতে অর্ধেক ডুবে থাকে কাজেই

$$V\rho = \frac{1}{2}V\rho_W$$

কাঠের ঘনত্ব

$$\rho = \frac{1}{2}\rho_W = 0.5\times 10^3 kg/m^3$$

সমুদ্রের পানিতে V_1 পরিমাণ ডুবে থাকলে

$$V\rho = V_1 \rho_S$$

$$\frac{V_1}{V} = \frac{\rho}{\rho_S} = \frac{0.5 \times 10^3 kg/m^3}{1.03 \times 10^3 kg/m^3} = 48.5\%$$

উদাহরণ 5.12: ধরা যাক আর্কিমিডিসের সোনার মুকুটের ওজন বাতাসে $10\ kg$ এবং পানিতে ছুবিয়ে ওজন করলে $9.4\ kg$ হয়েছে। মুকুটের ঘনত্ব কত?

উত্তর: মুকুটের আয়তন V ঘনত্ব ho হলে

এবং
$$V \rho = 10 \ kg$$

$$V \rho = 10 \ kg$$

$$V \rho_W = V \rho - 9.4 kg = 10 kg - 9.4 kg = 0.6 kg$$

$$V = \frac{0.6 kg}{\rho_W} = \frac{0.6 kg}{10^3 kg/m^3} = 0.6 \times 10^{-3} m^3$$

$$\rho = \frac{10 kg}{V} = \frac{10 kg}{0.6 \times 10^{-3} m^3} = 16,666 \ kg/m^3$$

সোনার আসল ঘনত্ব $19{,}300~kg/m^3$ কাজেই বোঝাই যাচ্ছে এই মুকুটে খাদ মেশানো আছে!!

5.4.3 প্যাক্ষেলের সূত্র

এই অধ্যায়ে আমরা অনেকবার দেখিয়েছি যে তরল পদার্থের চাপ প্রয়োগ করলে সেটা চারিদিকে সঞ্চালিত হয়। তোমরা একটু চিন্তা করলেই বুঝতে পারবে এটাই স্বভাবিক। তার কারণ এই চাপটুকু যদি পুরো তরল পদার্থে সম্বালিত না হয় আহলে তরলের এক অংশে চাপ বেশি এবং অনা অংশে চাপ কম থাকরে,

কাজেই সেখানে একটা প্রস্থান্ত্রদ কল্পনা করে নিলে এক দিক থেকে আরোখিত বল অন্যদিক থেকে আরোখিত বল থেকে বেশি হবে এবং এই বলের কারণে তরলটি প্রবাহিত হবে যতক্ষণ পর্যন্ত না চাপ সমান হয়ে সায়। প্যাক্ষেল এই বিষয়টি একটা স্ত্র হিসাবে দিয়েতিলোন, সেটি এ রক্ষ

ন্যাকেলের নৃত্রঃ একটা আনদ্ধ পাত্রে তরল বা বায়নীয় পদার্থে বাইরে থেকে চাপ লেয়া হলে সেই চাপ সমানভাবে সম্বালিত হয়ে পাত্রের সংলগ্ন গায়ে সম্ব ভাবে কাজ করবে।

প্যাক্ষেণের এই স্বাটি বাবহার করে অভ্যন্ত মেকগুল কিছু যন্ত্র তোর করা যায়। 5.9

র্থার 5.9: দ্বি কল প্রয়োগ করলে প্রস্তুক্তেদের উপর মিউর করে আনা দিকে দ্বি বাল পাডরা যায়।

ছবিতে সে রক্ম একটা যন্ত নেখালো হয়েছে, এখানে পাশাপাশি দুটি সিলিজার একটা দল দিয়ে সংযুক্ত। ধরা যাক একটি সিলিজারের প্রয়োজন A_1 অন্যতির A_2 এবং ভূমি A_1 প্রয়ুক্তেনের সিলিজারে P_1 বল প্রয়োগ করেছ তাহানে /ভোমার প্রয়োগ করা চাপ

$$\mu = \frac{F_k}{A_k}$$

এখন এই চাপ এই জনসের সাধ্যমে চারিদিকে সংগ্রাহীত হবে এবং দ্বিতীয় সিসিজারের প্রস্তুচ্ছেদেও প্রয়োগ বলুবে।

কাজেই দ্বিতায় সিনিভারে প্রয়োগ করা বলের পরিমাণ হবে

$$F_2 = PA_2 = F_1\left(\frac{A_2}{A_1}\right)$$

কাজেই জুমি নমংকৃত হয়ে দেখতে পাছে যদি ($\frac{A_2}{A_1}$) এর মান 100 হয় তাহকে জুমি প্রথম সিলিভারে যে। পরিমাণ কম প্রয়োগ করছ ডিতীয় সিলিভারে তার থেকে 100 গুণ বেশি কল পেয়ে যাছে।

এই পদ্ধতিটি খুব কার্যকর, বড় বড় কলকারখানা কিংবা বিমানের নিয়ন্তা এই পদ্ধতি ব্যবহার করা হয়। তবে তোমরা একটা জিনিষ জেনে বাখে। এটা বলবৃদ্ধিকরণ নীতি— এই পদ্ধতিতে শক্তি কিন্তু মোটেও বাড়ানো যায় না— তুমি পাখম সিনিভারে যে পরিমাণ শক্তি প্রয়োগ করবে দ্বিতাঁয় সিলিভারে ঠিক সেই পরিমাণ শক্তি ফিরে পানে। উদাহৰণ 5.13 । দেখা গ্ৰা কৰি কৰা বৃদ্ধে য়ে প্ৰবিষ্ণাণ শক্তি হায়োম কৰা হছে হিক 📑

উল্লা প্ৰয়া শক্ত কেনি শিক্টনে Γ_1 কৰা থামোণ কৰা হমেকে এক পিন্টনটি Γ_1 দক্ত শান্তিকৰ কালক। কালেন্ট জন্মকৰ পৰিমান

गङ चिन्हेंदन गुड़बर्ग गतियाप

$$m_{\ell} = \kappa_{\ell} r_{\ell}$$

$$\hat{F}_{2} = P_{1}\left(\frac{A_{7}}{A_{1}}\right)$$

্যকের ছোট প্রস্কান অপ্রদানিক ভরন্তিক নত নৈ উন্তিল্পে I , চরত ঠেলে নিয়ে যায়, কাজেই $I_{I}A_{I}=I_{I}A_{I}$

নড় নিষ্টানে অভিভান্ত দ

$$l_2 \equiv l_1 \left(\frac{A_1}{A_1} \right)$$

কাজেই কাজের পরিমাণ

$$W_2 = F_1 I_1 = F_1 \left(\frac{A_2}{A_1} \right) I_1 \left(\frac{A_1}{A_2} \right) = F_1 I_1$$

वर्षाः (इमि निर्मातक कामि)

5.5 থিভিত্তপুৰুতা (Elasticity)

(जगरा मनाई कथे का ता कथा ता प्रणानी प्रिकृतिक क धार्को त्रवात नाम्ड (मेट्स समा क्षत बाचात इंद्रफ मिटाइ। (जामता मिटाई सम्म करताइ प्रिक्ष करता त्रवात बराह्यक जेट्स (क्ष्यू क्रिता इंट्रस अमेरे बाचात बाह्यत केर्न्सि मिटा धारमाइ । केंट्स धार्यक भागानिक्वांत्मक छोगाइ जला इस का छुद्राप्त करा जात क्षिम अतिनर्जन इंद्रसाटक त्रमा इस किङ्कि मोन। क्रिसिन कीर्न्सिन विकृष्टि समारि शुन्दे (मिटानाक्रम) किन्नु धार्यान धार्मिक क्रिक्श समारिक क्षित्रक माति।

কাজেই ্তামর। বুঝতে প্রিছ গর্মন কোনে। নম্মূন্য বন প্রদান করা হয় তথ্য তার ভিতরে একটা বিকৃতি ঘটে (এল এই বিকৃতির জন্ম একটা পান্টা রণের ফারি হয়) কথাটি গারীয়ে নিশে বিকৃতির

र्ছाद 5,10¢ वर्षे धरमा। धरमाव करत वीष्टम तो। कराट तर्ह्य किक्कि देश।

অবসান ঘটে আর বস্তুটি আবার তার আগের অবস্থায় ফিরে যায়। পদার্থের এই ধর্মের নাম স্থিতিস্থাপকতা। তবে মনে রাখতে হবে কতটুকু বল প্রয়োগ করা যাবে তার একটা সীমা আছে- এই সীমা অতিক্রম করে কেললে পদার্থ তার আগের অবস্থায় ফিরে আসতে পারবে না- তার মাঝে একটা স্থায়ী বিকৃতি ঘটে যেতে পারে। এই সীমাকে স্থিতিস্থাপক সীমা বলে। একটা রডকে অল্প একটু বাঁকা করে ছেড়ে দিলে সেটা সোজা হয়ে যায়- বেশি বাঁকা করলে বাঁকা হয়েই থাকে আর সোজা হয় না। কাজেই আমরা বিষয়টা এভাবে বলতে পারি:

বিকৃতি: বাইরে থেকে বল প্রয়োগ করলে পদার্থের আকার বা দৈর্ঘেরে যে আপেক্ষিক পরিবর্তন হয় সেটা হচ্ছে বিকৃতি। অর্থাৎ L_0 দৈর্ঘেরে একটি বস্তুর ওপর বল প্রয়োগ করা হলে তার দৈর্ঘ্য যদি L হয় তাহলে বিকৃতি হচেছ

$$\frac{L-L_0}{L_0}$$

দেখাই যাচেছ বিকৃতির কোনো একক নেই, এটি একটি সংখ্যা মাত্র

পীড়ন: একক ক্ষেত্রফলে বিকৃতির কারণে পদার্থের ভেতর যে বল তৈরি হয় সেটাই হচ্ছে পীড়ন। অর্থাৎ বা প্রস্থাছেদের একটা বস্তুতে বল প্রয়োগ করা হলে যদি তার বিকৃতি ঘটে সেই বিকৃতি যদি F প্রতিরোধ বল তৈরি কররে তাহলে পীড়ন হচ্ছে

 $\frac{F}{A}$

দেখতেই পাচছ এটা চাপের মতো এবং এর একক P বা প্যাক্ষেল। আমরা যদি পীড়ন এবং বিকৃতি বুঝে থাকি তাহলে হুকের সূত্রটি বোঝা খুব সহজঃ পীড়ন এবং বিকৃতি সমানুপাতিক

পীড়ন 🗴 বিকৃতি

কাজেই পীড়ন = ধ্রুবক 🔀 বিকৃতি অর্থাৎ প্রত্যেক পদার্মের পীড়ন এবং বিকৃতির সাথে সম্পর্ক যুক্ত একটা ধ্রুবক থাকে সেই ধ্রুবকটার নাম স্থিতিস্থাপক গুণাঙ্ক।

দুটি উদাহরণ দিলে বিষয়টা বোঝা আরো সহজ হবে:

(i) ধরা যাক A প্রস্থাছেদের একটা তারের দৈর্ঘ্য L_0 , এর সাথে W ওজনের একটা ভর ঝুলিয়ে দেয়া হলো এই বলটি ঝোলানের কারণে L_0 দৈর্ঘ্যটি বেড়ে হলো L (ছবি 5.10) এই বর্ষিত দৈর্ঘ্য তারটির ভেতরে একটা পাল্টা বল তৈরি করেছ T

টেবিল 5.2: বিভিন্ন পদার্ম্বের ইয়াংস মডলাস

or wit	~ ~
পদার্থ	G-Pa
রবার	0.01-0.1
হাড়	9
কাঠ	10
কাচ	50 - 90
व्यान्मिनियाम	69
তামা	117
লোহা	200
হীরা	1220

(এখানে T অক্নাটি ব্যবহার করা হয়ে টেনশন Tention শব্দটির জন্য। সাধারণত যখন কোনো তারকে টানা হয় তখন তার ভেতরে যে বল কাজ করে তার নাম টেনশন।) কাজেই পীড়ন হচ্ছে $\frac{v}{d}$ এবং বিকৃতি হচ্ছে

$$\frac{L-L_0}{L_0}$$

$$\frac{T}{A} \propto \frac{L-L_0}{L_0}$$

কাজেই

কিহবা

$$\frac{T}{A} = Y\left(\frac{L - L_0}{L_0}\right)$$

এখানে Y হচ্ছে একটা ধ্রুবক এই ধ্রুবকের নাম ইয়াংস মড়ুলাস (Young's Modulus)। যেহেতু বিকৃতির কোনো একক নেই তাই Y এর একক হচেছে Nm^{-2} . টেবিল 5.2 এ কয়েকটি পদার্থের ইয়াংস মড়ুলাস দেয়া হলো।

উদাহরণ 5.13: ইয়াংল মডুলালের মান বেশি হলে পদার্থ কীভাবে দৈর্ঘ্য পরিবর্তন করে।

क्रिक्ट रेमर्स्मात गतिगर्डरगत रात

$$\frac{L - L_0}{L_0} = \frac{1}{Y} \left(\frac{T}{A} \right)$$

কাজেই T/A যদি সমান হয় Y যত বেশি হবে দৈর্ঘ্যের পরিবর্তন তত কম হবে।

 (ii) ধরা যাক একটি সিলিভারে সাধারণ অবস্থায় V₀ আয়তনের গ্যাস আছে। এই গ্যানে P চাপ দেয়ার কারণে সিলিভারের আয়তন কমে হয়ে গেল
 Y. এখালে পাঁড়ন হচ্ছে P এবং বিকৃতি

হাছে:

$$\frac{V-V_0}{V_0}$$

কাজেই আমরা লিখতে পারি

$$P \propto \left(\frac{V-V_0}{V_0}\right)$$

ছবি 5.11: আৰদ্ধ ৰাজ্যনে চাপ প্ৰয়োগ কৰলে ৰাজ্যন সংকৃচিত

$$P = B \left(\frac{V - V_0}{V_0} \right)$$

এখানে B হচ্ছে ধ্রুবক এবং এই ধ্রুবকের নাম বান্ধ মতুলান (Bulk Modulus) । B এর একক হচ্ছে Nm^{-2} কিংবা প্যান্ধেল।

5.6 পদার্থের আণবিক গতিতত্ত্ব (Kinetic Theory of Molecule)

তোমরা নিশ্চরই জান বিশ্বের সবকিছু তৈরি হয়েছে অণু দিয়ে! (অবশিং অণু মৌলিক কণা নয়, অণু তৈরি হরেছে পরমাণু দিয়ে; পরমাণু তৈরি হয়েছে ইলেকট্রন এবং নিউক্লিয়াল দিয়ে নিউক্লিয়াল তৈরি হয়েছে প্রেটিন এবং নিউট্রন দিয়ে, প্রোটন এবং নিউট্রন তৈরি হয়েছে কোরার্ক দিয়ে এবং বিজ্ঞানীরা ধারণা

ছবি 5.12: (a) কঠিল, (b) তরল এবং (c) গ্যাস।

করছেন ইলেকট্রন কিংবা কোরার্ক তৈরি হরেছে নিট্রং দিয়ে।) যেহেতু একটা পদার্থের ধর্ম তার অণুতে বজার থাকে তাই আমরা অণুকেই পদার্থের নবচেরে ছোট একক হিসেবে ধরে নেই। যেমন থানির অণুতে পানির সব

ধর্ম আছে কিন্তু পানিকে তার প্রমাণুতে ভেঙ্গে নিলে সেটি আর পানি থাকে না— সেটা হয়ে যানে একটা অক্সিজেন আর দুইটা হাইড্রোজেনের প্রমাণুতে, দুটোই গ্যাস।

একটা পদার্থে তার অণুগুলো কীডাবে আছে তার ওপর নির্ভর করে নেটি কি কঠিন তরল নাকি গানান। এর সবচেয়ে পরিচিত উদাহরল হচ্ছে পানি, এটি কঠিন তরল কিংবা গানাল তিন রূপেই থাকতে পারে— তার অণুগুলো কীডাবে আছে তার উপর নির্ভর করছে এটি কি বরফ, পানি নাকি জলীয় বাস্প। যখন কোনো পদার্থ গানা অবস্থায় থাকে তখন তার অণুগুলো থাকে মুক্ত অবস্থায় একটি থেকে অন্যাটির মাঝে দূরত্ব অনেক বেশি। যখন তরল অবস্থায় থাকে তখন অণুগুলো তুলনামূলক ভাবে কাছে হলেও একটার নাপেক্ষে অন্যাটি নাড়তে পারে। কঠিন অবস্থায় অণুগুলো কাছাকাছি থাকে কিন্তু একটি অণু অন্যা অণুর সাপেক্ষে নড়তে পারে লা।

একটা গ্যানের অণুগুলোর মাঝে দূরতু অনেক বেশি লেগুলোর কোনো নিয়মিত আরতন বা আকার নেই। তরল পদার্থের গ্যাসগুলো কাছাকাছি, তাদের নির্দিষ্ট আয়তন থাকলেও কোনো নিয়মিত আকার নেই। কঠিন পদার্থের অণুগুলো প্রায় গায়ে গায়ে গেগে থাকে তাই তাদের নির্দিষ্ট আয়তন এবং নিয়মিত আকার আছে।

গ্যাসে অণুগুলো মুজজাবে ছোটাছুটি করতে পারে, তরলে অণুগুলো কাঁপে এবং একটার পাশ দিয়ে অন্যটি চলে যেতে পারে, কঠিন পদার্থে অণুগুলো নিজ অবস্থানে থেকে কাঁপলেও স্থান পরিবর্তন করতে পারে না।

এমনিতে আমরা কঠিন তরল বা গ্যাস কোনোটিরই অণুকে দেখতে পাই না, এটাকে কঠিন তরল বা গ্যাস হিসেবে দেখি। উপরে অণুগুলোর যে বৈশিষ্ট্যের কথা বলা হয়েছে, তাদের কঠিন তরল বা গ্যাসীয় অবস্থাতেও সেটা প্রকাশ পায়। যেমন:

গ্যাস:

আনবিক ধর্ম

গ্যাসে তার প্রতিফলন

অনুগুলো একটা আরেকটার পাশে ছুটতে পারে	যে পাত্রে রাখা হয় তার পুরো আরাতনে ছড়িয়ে পড়ে।
অনুগুলোর মাঝে দূরত্ব বেশি ফাঁকা জায়গা রয়েছে	গ্যাসকে চাপ দিয়ে সংকুচিত করা যায়।
একটু অণু অন্য অণুর সাপেক্ষে ছুটতে পারে	গ্যাস মহজে প্রবাহিত হয়।

ভরুল:

আনবিক ধর্ম

তরল পদার্ম্বে তার প্রতিফলন

অণুগুলো একটা আরেকটার পাশে দিয়ে যেতে পারে	সহজে প্রাহিত হয়, যে পাত্রে রাধা হয় তার আকার ধারণ করে।
অণুগুলো কাছাকাছি বলে ফাঁকা জারগা নেই	তরলকে চাপ দিয়ে সংকুচিত করা বার না।

কঠিন:

আনবিক ধর্ম

কঠিন পদার্মে তার প্রতিফলন

অণুগুলো নিজ অবস্থানে দৃঢ়	নিৰ্দিষ্ট আকার থাকে	
অণুগুলোর মাঝে দূরত্ব নেই	চাপ দিয়ে সংকুচিত করা যার না।	
অণুগুলো নিজ অবস্থানে আটকা পড়ে থাকে	ঢেলে প্রবাহিত করা যার না।	

5.6.1 পদার্থের চতুর্থ অবস্থা

কঠিন তরল এবং গ্যাস এই তিনটি ভিন্ন অবস্থার বাইরেও পদার্থের চতুর্থ আরেকটি অবস্থা হতে পারে— এর নাম প্রাজমা। আমরা জানি অণু কিংবা পরমাণুর নিউক্লিয়াসে যে কয়টি পজিটিভ চার্জের প্রোটন থাকে তার বাইরে ঠিক সেই কয়টি নেগেটিভ চার্জের ইলেকট্রন থাকে। সে কারণে একটা অণু কিংবা পরমাণুর সন্দিলিত চার্জ শূন্য। বিশেষ অবস্থায় অণু কিংবা পরমাণুকে আয়নিত করে ফেলা যায় কিছু পরমাণুর এক বা একাধিক ইলেকট্রনকে মুক্ত করে ফেলা যায় তখন আলাদা আলাদাভাবে পরমাণুগুলো আর চার্জ নিরপেক্ষ থাকে না— ইলেকট্রন এবং আয়নের এক ধরনের মিশ্রনে তৈরি হয়। এটি যদিও গ্যাসের মতো থাকে কিন্তু গ্যাসের সব ধর্ম এর জন্য সতিয় নয়। যেমন আমরা জানি গ্যাসের কোনো নির্দিষ্ট আকার নেই কিন্তু চৌম্বক ক্ষেত্র দিয়ে প্লাজমার নির্দিষ্ট আকার তৈরি করে ফেলা যায়।

গ্রহ[®] সাস দিয়ে গ্রাসকে প্রাজ্যা করা যায়, শৃতিপালী নোন্তেটক কেন্দ্র প্রলোগ করেও গ্রাজনা। ক্যা যায়। আমাদের ধরে টিউবলাইটের ভেতর প্রাঞ্জনা তৈনি হয়, নিওন পাইটেন যে উল্ফল বিজ্ঞাপন দেখা যায় সেওলোৰ ভেতৰেও প্ৰাজনা থাকে। বজপত হলে যে বিজলীর সালো দেখা যায় সেটিও প্ৰাজমা আলার দর নক্ষরের মায়ে।ও যে পদার্থ গৈটিও প্রান্ধনা সবস্থায় আছে। সামরা বর্তমানে কিউপান গন্ধতিতে थावी निष्डोक्केशामात्क (श्राम निष्डोक्केश्वाव भीकि नावकाव कवि । शामका निष्डोक्केशामात्क जावचा करून विष्डेमान পদালিতে পজি তৈনি কৰাৰ জন্য প্ৰাজমা ব্যবহাৰ কৰাৰ নেতা কৰা হয় এবং এটি এখন পদাৰ্থবিজ্ঞানেৰ াবেমগার একটি মকতপর্গ কোন।

211

- L. এর খ্রাস সানিতে এক চুকরো বরণ ভাগতে বরসাদ भएन यात्रात अब भीएन भागित फेल्ट्या कि स्वरूप गाएन गांकि समाग शाकरता
- 2. धक्कि चाछ विश्राम জाश्राक्षत्क माळ कराक वाकि भावित गास्त्र क्रांनित्व दाथा महत् । क्रींकास्त्र⁴
- একটা সুইনংপুলে একটা ভোট নৌকাৰ নাঝে তুনি একটা বড় পাথর নিয়ে বলে আছে। পাথবটা নৌকান ক্রেডৰ থোকে নিয়ে সুইমিংগুলের পানিতে জ্বনে লিলে। কুইমিপ্রেল পানির উচ্চতা কি রেছে যাবে, भवात शाकरत ताकि करम शास्त्र
- া, সাধুৰা প্ৰেরজনে বিদ্যানায় করে থাকে। রাইছে ক্রিও असिट्य । (क्रम)

इथि 5.13: अक्रजन मत्त्रे प्रशासको विद्यातमा गटन पाएं।

5. वैदिरम्बिक गावरम्य रेजीव नारतामिमेरात्वव काराना मधीए गति स्मान्ता मा शरहा आकाराका ह्या व्याश्राम की কাজ করারা

গাণিতিক সমস্যা:

- 1. বাতাসের ঘনত্ব $0.0012gm/cm^3$, সোনার ঘনত্ব $19.30gm/cm^3$, একটা নিজ্ঞিতে 1~kg সোনা মাপা হলে তার প্রকৃত ভর কত?
- 2. পারদের পরিবর্তে কেরোসিন দিয়ে ব্যারোমিটার তৈরি করলে তার উচ্চতা কত হবে? কেরোসিনের ঘনত্ব $0.8gm/cm^3$)
- 3. সোনার মুকুট এবং তার ওজনের সমান খাটি সোনা একটি দেলের দুই পাশে ঝুলিয়ে সেটা পানিতে ডোবানো হলে (ছবি 5.14) যদি দেখা যায় পানির নিচে সোনার মুকুটের ওজন কম তাহলে তুমি মুকুটটি সম্পর্কে কী বলবে? খাঁটি না খাদ মেশানো? কেন?
- 4. পানিভর্তি দুটি সিলিন্ডার একটি নল দিয়ে লাগানো। সিলিন্ডার দুটির প্রস্থচ্ছেদ $1cm^2$ এবং $1m^2$ এবং নিচ্ছিদ্রভাবে দুটি

ছবি 5.14: সোনার মুকুট ও খাঁটি সোনা পানিতে ডুবানো হচ্ছে।

ছবি 5.15: হাইড্রোলিক প্রেসে চাপ দিয়ে একটি মানুষকে উপরে তোলা।

আছে। বড় পিস্টনের উপর 70kg ওজনের একজন মানুষ বসে আছে, তাকে ওপরে তুলতে ছোট পিস্টনে তোমাকে কত বল প্রয়োগ করতে হবে?

পিস্টন লাগানের

5. উপর থেকে ঝোলানো 0.5m লম্বা এবং $0.01m^2$ প্রস্থচ্ছেদের একটা ধাতব দোর নিচে একটি 10kg ভর ঝোলানোর পর তার দৈর্ঘ্য হয়েছে 0.501m. এই ধাতব দleqটির ইয়াংস মডুলাস কত?

ষষ্ঠ অধ্যায়

বস্তুর উপর তাপের প্রভাব

(Effect of Heat on Matter)

Ludwig Boltzman(1844-1906)

লুডউইগ বোম্টজম্যান

লুডটেইগ বোল্টজম্যান ছিলেন একজন অস্ট্রিয়ান পদার্থবিজ্ঞানী এবং দার্শনিক। তাঁকে স্ট্যাটিস্টিক্যাল মেকানিক্সের জনক বলা যায় যেখানে অপু-পরমাণুর গতিবিধি থেকে পদার্থবিজ্ঞানের সূত্র বের করে নিয়ে আসা যায়। তিনি একই সাথে বড় দার্শনিক ছিলেন এবং তাঁর বিশ্ববিদ্যালয়ে অত্যন্ত জনপ্রিয় একজন বক্তা ছিলেন। তাঁর এক ধরনের মানসিক সমস্যা ছিল এবং তাঁর কারণেই আত্যহত্যা করে মৃত্যুবরণ করেন।

6.1 তাপ ও তাপমাত্রা (Heat and Temperature)

তাপ এক ধরনের শক্তি। আমরা দেখেছি শক্তি কাজ করতে পারে অর্থাৎ বল প্রোগ করে বস্তুকে বলের দিকে সরাতে পারে, যেমন ট্রেন বা গাড়িতে আসলে জ্বালানি তেল জ্বালিয়ে তাপ তৈরি করা হয় যেটা ট্রেন গাড়িকে ছুটিয়ে নিয়ে যায়। সেজন্য আলো, বিদ্যুৎ বা গতিশক্তির মতো আমরা নৃতন ধরনের এই শক্তির নাম দিয়েছি তাপ শক্তি।

মজার ব্যাপার হচ্ছে, আমরা যদি আণবিক পর্যায়ে দেখতে পেতাম অর্থাৎ যে কোনো পদার্থের দিকে তাকালেই তার অণুগুলোকে দেখতে পেতাম তাহলে সম্ভবত তাপ শক্তি নামে একটা নূতন নাম না দিয়ে এটাকে "গতি শক্তি" নামেই রেখে দিতাম। তার কারণ তাপ শক্তি বলতে আমরা যেটা বোঝাই সেটা আসলে পদার্থের অণুগুলোর সম্মিলিত গতিশক্তি ছাড়া কিছু নয়। একটা কঠিন পদার্থে অণুগুলো যখন উত্তপ্ত হয় তখন অণুগুলো নিজের নির্দিষ্ট অবস্থানে থেকে কাঁপতে থাকে। যতবেশি উত্তপ্ত হবে অণুগুলোর কাঁপুনী তত বেড়ে যাবে। যদি অনেক বেশি উত্তপ্ত হয় তাহলে অণুগুলোর নিজেদের ভেতরে যে

আন্তঃআণবিক বল রয়েছে অণুগুলো সেই বলকে ছাড়িয়ে মুক্ত হয়ে য়াবে। তখন আমরা সেটাকে বলি তরল। তখন অণুগুলো এলোমেলোভাবে একে অন্যের ভেতর দিয়ে ছোটাছুটি করতে থাকে— তাদের একটা গতি থাকে, কাজেই গতি শক্তি পাকে। যত উত্তপ্ত করা হয় অণুগুলো তত জােরে ছোটাছুটি করে। যদি আরাে উত্তপ্ত করা হয় তখন অণুগুলো আণবিক বন্ধন থেকে পুরোপুরি মুক্ত হয়ে য়েতে পারে— আমরা তখন সেটাকে বলি গাাস। একটা গাাসকে যত উত্তপ্ত করা হবে অণুগুলা তত জােরে ছোটাছুটি করবে। গতি যত বেশি হবে গতি শক্তি তত বেশি হবে।

যেহেতু খালি চোখে আমরা অণুগুলোকে দেখি না তাদের ছোটাছুটি দেখি না তাই আমরা পরোক্ষভাবে পুরো জিনিসটা বোঝার চেষ্টা করি, আমরা সেটাকে তাপ শক্তি নাম দিই এবং তাপমাত্রা বলে পদার্থের অবস্থা ব্যাখ্যা করার চেষ্টা করি। কাজেই আমরা বলতে পারি পদার্থের অণুগুলোর কম্পন বা গতির কারণে যে শক্তি পাওয়া যায় সেটা হচ্ছে তাপ। যেহেতু এটা শক্তি তাই স্বাভাবিকভাবে অন্য শক্তির মতোই তার একক হচ্ছে জুল (I). তাপের আরো একটি একক আছে, তার নাম ক্যালোরি (cal) 1 gm পানির তাপমাত্রা 1 9C বাড়তে হলে যে পরিমাণ তাপের দরকার সেটা হচ্ছে 1 ক্যালোরি। 1 ক্যালোরি হচ্ছে 4.2I এর সমান।

তোমরা হয়তো খাবারের জন্য ক্যালোরি শব্দটি ব্যবহার করতে শুনেছ –ফুড ক্যালোরি বলতে আসলে বোঝানো হয় মানুষ নির্দিষ্ট খাবার থেকে কী পরিমাণ শক্তি পায় এবং এটার জন্য একক আসলে $k\ cal$ বা 1000 ক্যালোরি। তবে সেটা নিয়ে আমরা মাথা ঘামাব না – এখানে আমরা খাবার থেকে পাওয়া শক্তি নয় তাপ শক্তি নিয়েই আলোচনা করব।

6.2 আভ্যন্তরীণ শক্তি (Internal Energy)

আমরা যদি তাপকে একটা শক্তি হিসেবে মেনে নিই, তাহলে সাথে সাথে এর পরের যে বিষয়টা আমাদের জানতে হবে সেটা হচ্ছে কীজাবে তাপ শক্তি এক জায়গা খেকে অন্য জায়গায় স্থানান্তরিত হয়। সাধারণ ভাবে আমাদের ধারণা সব সময়েই শক্তির প্রবাহ হয় বুঝি বেশি শক্তি থেকে কম শক্তিতে। ছোট একটা গরম আলপিনে যে পরিমাণ তাপ শক্তি রয়েছে তার থেকে অনেক বেশি তাপ শক্তি রয়েছে এক গ্রাস পানিতে। কিন্তু গরম আলপিনটা আমরা যদি পানিতে ভুবিয়ে দেই তাহলে কিন্তু আলপিনের অল্প তাপ শক্তি থেকেই খানিকটা চলে যাবে গ্লাসের পানিতে। তার কারণ তাপ শক্তির প্রবাহটা তাপের পরিমাণের ওপর নির্ভর করে না, এটা নির্ভর করে তাপমাত্রার উপরে। দুটো ভিন্ন তাপমাত্রার জিনিস যদি একে অন্যের সংস্পর্শে আসে তাহলে সব সময়ই বেশি তাপমাত্রা থেকে তাপ কম তাপমাত্রার জিনিসে যেতে থাকবে যতক্ষণ না দুটোর তাপমাত্রা সমান হচ্ছে।

আমরা এখনো কিন্তু "তাপমাত্রা" নামের রাশিটি
সংজ্ঞায়িত করিনি- কিন্তু দৈনন্দিন জীবনে এটি এত ব্যবহার
হয় যে বিষয়টি কী বুঝতে কারোই সমস্যা হয় না।
পদার্থবিজ্ঞানের 'ভাষায় বলতে পারি এটা হছে পদার্থের
তেতরকার অণুগুলোর গড় গতিশক্তির একটা পরিমাপ।
আমাদের অভিজ্ঞতা পেকে আমরা বলতে পারি, তাপমাত্রা
হছে সেই তাপীয় অবস্থা যেটি ঠিক করে একটা বন্তু জন্য
বন্তর সংস্পর্শে এলে সেটি কি ভাপ দেবে নাকি তাপ নেবে।
বিষয়টা বোঝানের জন্য আমরা পানির পৃষ্ঠদেশের উচ্চতার
সাথে তুলনা করতে পারি (ছবি 6.1)। যদি পানির দুটি পাত্রে
পানির পৃষ্ঠ দেশের উচ্চতা ভিন্ন হন্ত- তাহলে পাত্র দুটিকে
একটি নল দিয়ে একত্র করার পর কোন পাত্রে পানি বেশি
কোন পাত্রে পানি কম সেটি পানির প্রবাহ ঠিক কররে না।

ছবি 6.1: অপমালা তরতের উচ্চতার মৃত্র তাপ তরতের আয়ুত্তের মৃত

কোন পাত্র থেকে কোন পাত্রে পানি যাবে সেটা নির্জর করবে- কোন পাত্রের পানির পৃষ্ঠ দেশের উচ্চতা কত তার ওপর। সব সময়েই বেশি উচ্চতা থেকে পানি কম উচ্চতায় প্রবাহিত হবে যতক্ষণ পর্যন্ত না দুটি

ছবি 6.2: সুলাসগ্রাস কেলভিন এবং ফারেনহাইট ভাপমাত্রার (সল।

উচ্চতা সমান হয়ে যাচেছে। এখানে পানির পরিমাণটাকে
তাপ শক্তির সাথে তুলনা করতে পারি, পানির পৃষ্ঠ
দেশের উচ্চতাকে তুলনা করতে পারি তাপমাত্রার
সাথে। তাপমাত্রার বেলাতেও এটা সত্যি যে যতক্ষণ
পর্যন্ত না দুটি বক্তর তাপমাত্রা সমান না হচ্ছে ততক্ষণ
তাপ প্রবাহিত হতে থাকরে।

আমরা বাদি তাপমাত্রার ধরাণাটুকু ঠিক করে প্রের বাই তাহলে এর পরেই আমাদের জানতে হবে এর একক কী কিংবা তার পেকেও ওরুতুপূর্ণ প্রশ্ন, আমরা কেমন করে তাপমাত্রা মাপব। তাপমাত্রার প্রচলিত একক হচ্ছে সেলসিয়াস (নি) সাধারণজাবে বলা যার এই ক্ষেলে এক এটমকিয়ার বাতাসের চাপের যে তাপমাত্রার বরুক গলে পানিতে পরিপত হয় সেটাকে () নি এবং যে তাপমাত্রার গানি ফুটতে থাকে সেটাকে 1()() নি ধরা হয়েছে। তবে মজার ব্যাপার হল বিজ্ঞানী

সেলসিয়াস যখন তাপমাত্রার ক্ষেল তৈরি করেছিলেন তখন শূন্য ডিগ্রি ধরেছিলেন ফুটন্ত পানির তাপমাত্র, 100 ডিগ্রি ধরেছিলেন বরফ গলনের তাপমাত্রা– বর্তমান ক্ষেলের ঠিক উল্টো!

আমাদের দৈনন্দিন জীবনে আমরা সাধারণত সেলসিয়াস স্কেল ব্যবহার করলেও আন্তর্জাতিক এককটির নাম হচ্ছে কেলভিন (K)। সেলসিয়াস স্কেলের সাথে $273.15\,^\circ\!\!C$ যোগ করলেই কেলভিন ক্ষেল পাওযা যায়। যদি শুধুমাত্র তাপমাত্রার পার্থক্য নিয়ে মাথা ঘামাই তাহলে সেলসিয়াস ক্ষেল আর কেলভিন ক্ষেলে কোনো পার্থক্য নেই – অর্থাৎ তাপমাত্রা $10\,^\circ\!\!C$ বেড়েছে বলা যে কথা তাপমাত্রা $10\,^\circ\!\!K$ বেড়েছে বলা সেই একই কথা। কিন্তু যদি জিজ্ঞেস করা হয় এই ঘরের তাপমাত্রা কত, তাহলে যদি সেটা হয় $30\,^\circ\!\!C$ তাহলে কেলভিন ক্ষেলে সেটা হবে $(30+273.5=)\,303.15\,^\ast\!\!K$ তোমাদের মনে হতে পারে দুটো ক্ষেল হবহু একই রকম শুধুমাত্র $273.15\,^\circ\!\!$ পার্থক্য এর পিছনে কারণটি কী?

এটি করার পিছনের কারণটি খুবই চমকপ্রদ। সাধারণভাবে আমাদের মনে হতে পারে আমরা বুঝি যত বেশি বা যত কম তাপমাত্রা কল্পনা করতে পারব, কিন্তু আসলে সেটি সত্যি নয়। তাপমাত্র যত ইচ্ছে বেশি কল্পনা করতে সমস্যা নেই কিন্তু যত ইচ্ছে কম কল্পনা করা সন্তব নয়, সবচেয়ে কম একটা তাপমাত্রা আছে এবং তাপমাত্রা এর থেকে কম হওয়া যায় না। শুধু তাই নয় আমরা এই তাপমাত্রার কাছাকাছি যেতে পারি কিন্তু কখনোই এই তাপমাত্রায় পৌছাতে পারব না। এই তাপমাত্রাকে পরম শূন্য বা absolute zero বলা হয়। সেলসিয়াস ক্ষেলে এই তাপমাত্রার মান $-273.15\,^\circ\!\!C$ কাজেই কেলভিন ক্ষেলে এর মান হচ্ছে শূন্য ডিগ্রি। অন্যভাবে বলা যায় কেলভিন ক্ষেলটি তৈরি হয়েছে চরম শূন্য তাপমাত্রাকে শূন্য ডিগ্রি ধরে।

তাপমাত্রার যে কোনো কেল তৈরি করতে হলে দুটো নির্দিষ্ট তাপমাত্রা (বা স্থিরান্ধ) দরকার। কেলভিন কেলে একটি হচ্ছে চরম শূন্য– যেটাকে শূন্য ডিগ্রি ধরা হয়েছে। অন্যটি হচ্ছে পানির ত্রৈধ বিন্দু বা triple point. এই তাপমাত্রায় একটা নির্দিষ্ট চাপে $(0.0060373\ atm)$ বরফ পানি এবং জলীয় বাষ্প এক সাথে থাকতে পারে বলে তাপমাত্রাকে অনেক বেশি সূক্ষভাবে নির্দিষ্ট করা যায়। $^{\circ}$ সেলসিয়াস কেলে এর মান $0.01\ ^{\circ}$, এবং এই ক্ষেলের সাথে মিল রাখার জন্য কেলভিন ক্ষেলে এর মান $273.16\ ^{\circ}$.

কেলভিন এবং সেলসিয়াস কেলের পাশাপাশি ফারেনহাইট কেল বলেও একটা কেল আছে যেখানে বরফ গলন এবং পানির বাল্পীভবনের তাপমাত্রা যথাক্রমে $32\,T$ এবং $212\,T$, 6.2 ছবিতে তিনটি কেলকে তুলনা করার জন্য দেখানো হলো, কেলভিন কেলে $0\,T$ তাপমাত্রা $273.15\,K$ হলেও আমরা আমাদের দৈনন্দিন জীবনে অনেক সময়েই এটাকে $273\,K$ ধরে নিই– দৈনন্দিন হিসেবে সেটা কোনো গুরুত্র সমস্যা করে না ।

6.2.1 ভিন্ন ক্ষেলের মাঝে সম্পর্ক

যদি একটি নিদিষ্ট তাপমাত্রা সেলসিয়াস, কেলভিন এবং ফারেনহাইট ক্ষেলে যথাক্রমে $T_C,\,T_K$ আর T_F দেখায় তাহলে আমরা লিখতে পারি :

$$\frac{T_C - 0}{100 - 0} = \frac{T_K - 273.15}{373.15 - 273.15} = \frac{T_F - 32}{212 - 32}$$

কিংবা

$$\frac{T_C}{100} = \frac{T_K - 273.15}{100} = \frac{T_F - 32}{180}$$

 T_C এর সাপেক্ষে কেলভিন স্কেল এবং ফারেনহাইট স্কেল যথাক্রমে :

$$T_C = T_K - 273.15 \,\%$$
 $T_C = \frac{5}{9} (T_F - 32)$

উদাহরণ 6.1: কোন তাপমাত্রায় সেলসিয়াস এবং ফারেনহাইট স্কেল সমান?

উত্তরঃ সেলসিয়াস এবং ফারেনহাইট তাপমাত্রার সম্পর্কটি এ রকমঃ

$$T_C = \frac{5}{9}(T_F - 32^\circ)$$

 $9T_C = 5T_F - 5 \times 32^\circ$

 T_C এবং T_f সমান হলে:

$$4T_C = -5 \times 32^\circ = -160^\circ$$

 $T_C = -40^\circ$

অর্থাৎ যে তাপমাত্রা $-40\,^{\circ}C$ দেখায় সেই একই তাপমাত্রা $-40\,^{\circ}F$ দেখায়।

উদাহরণ 6.2: কোন তাপমাত্রায় কেলভিন এবং ফারেনহাইট ক্ষেল সমান।

উত্তর: কেলভিন এবং ফারেনহাইট তাপমাত্রার সম্পর্কটি এ রকম:

$$T_K - 273.15^{\circ} = \frac{5}{9} (T_F - 32^{\circ})$$

 $9T_K - 9 \times 273.15^{\circ} = 5T_F - 5 \times 32^{\circ}$

যদি T_K এবং T_F সমান হয়:

$$4T_K = 9 \times 273.15^{\circ} - 5 \times 32^{\circ}$$

 $T_K = 574.59^{\circ}$

উদাহরণ 6.3: সুস্থ দেহের তাপমাত্রা $98.4\,^\circ\!F$, সেলসিয়াসে সেটা কত?

উত্তরঃ সেলসিয়াস এবং ফারেনহাইট তাপমাত্রার সম্পর্কটি এ রকম:

$$T_C = \frac{5}{9} (T_F - 32)$$

কাজেই $T_{\scriptscriptstyle F}=98.4\,^{\circ}$ হলে

$$T_C = \frac{5}{9}(98.4 \,^{\circ} - 32 \,^{\circ}) = 36.89 \,^{\circ}$$

(অর্থাৎ 37 ℃ এর কাছাকাছি)

উদাহরণ 6.4: কোন তাপমাত্রায় সেলসিয়াস এবং কেলভিন ক্ষেল সমান?

উত্তর: কখনোই না!

6.3 পদার্শের তাপীয় প্রসারণ (Thermal Expansion of Matter)

তাপ দিলে প্রায় সব পদার্থের আয়তনই একটু বেড়ে যায়।
তাপ তাপমাত্রা এই বিষয়গুলো যদি আমরা আমাদের
আণবিক মডেল দিয়ে ব্যাখ্যা করি তাহলে এর কারণটা
বোঝা কঠিন নয়। একটা কঠিন পদার্থকে আমরা
অনেকগুলো অণু হিসেবে কল্পনা করতে পারি তাদের ভেতর
যে আণবিক বল সেটাকে আমরা স্প্রিংয়ের সাথে তুলনা
করতে পারি। কঠিন পদার্থে অণুগুলো কীভাবে থাকে সেটা

ছবি 6.3: কঠিন পদার্থের অণুগুলোকে স্প্রীংয়ের সাহায্যে একটি অন্যটির সঙ্গে সংযুক্ত কল্পনা করা যায়!

দেখানোর জন্য আমরা অণুগুলোর মাঝে একটা স্প্রিং কল্পনা করেছি এবং 6.3 ছবিতে সেটা দেখানো হয়েছে। কঠিন পদার্থটিকে উত্তপ্ত করলে অণুগুলো কাঁপতে থাকবে তাপমাত্রা যত বেশি হবে অণুগুলো তত বেশি কাঁপবে। সত্যিকারের কঠিন পদার্থের প্রকৃতি ব্যাখ্যা করতে হলে আমাদের এই স্প্রিং মডেলটাকে একটুখানি উন্নত করতে হবে। স্প্রিংয়ের বেলায় আমরা দেখেছি একটা স্প্রিংকে কোনো নির্দিষ্ট দূরত্বে প্রসারিত করলে সেটি যে পরিমাণ বলে টানতে থাকে সেই একই দূরত্বে সংকুচিত করলে এটি ঠিক একই বলে ঠেলতে থাকে। কঠিন পদার্থের অণুগুলোর জন্য এটি পুরোটুরি সত্যি নয় তণুগুলোকে একটি বেশি দূরত্বে সরিয়ে নিলে এটা যে পরিমাণ বলে টানতে থাকে সেই একই দূরত্বে কাছাকাছি আনলে

অনেক বেশি বলে ঠেলতে থাকে। অর্থাৎ স্প্রিংটি যেন একটি বিশেষ ধরনের স্প্রিং এটা প্রসারিত করতে কম বল প্রয়োগ করতে হয় কিন্তু সংকুচিত করতে বেশি বল প্রয়োগ করতে হয়।

এখন তুমি কল্পনা করে নাও একটি নির্দিষ্ট তাপমাত্রায় থাকার কারণে অণুগুলো কাঁপছে। বিশেষ ধরণের স্প্রিং হওয়ার কারনে কাঁপার সময় অণুগুলো কাছাকাছি যায় কম কিন্তু দূরে সরে যায় বেশি। এবারে কঠিন পদার্থটিকে আরো উত্তপ্ত করা হল, অণুগুলো আরো বেশি কাঁপতে থাকবে এবং তোমরা বুঝতেই পারছ অণুগুলো এই বিশেষ ধরনের স্প্রিংয়ের জন্য যেহেতু বেশি কাছে যেতে পারে না কিন্তু সহজেই বেশি দূরে যেতে পারে তাই সব অণুগুলোই একে অন্যের থেকে একটু দূরে সরে নৃতন একটা সাম্য অবস্থা তৈরি করবে। সব অণু যখন একে অন্য থেকে দূরে সরে যাবে তখন আমাদের কাছে পুরো কঠিন বস্তুটাই একটু প্রসারিত হয়ে গেছে বলে মনে হবে।

ছবি 6.4: তাপ প্রয়োগ করলে কঠিন পদার্থের দৈর্ঘ, প্রস্থচ্ছেদ এবং আয়তন বেড়ে যায়।

তাপ প্রয়োগ করলে কঠিন বস্তুর দৈর্ঘ্য প্রস্থ ও উচ্চতা তিন দিকেই সমানভাবে প্রসারিত হয়। পদার্থের এই প্রসারণকে বিশ্লেষণ করার জন্য দৈর্ঘ্য, ক্ষেত্রফল আর আয়তন প্রসারণ সহগ নামে তিনটি রাশি তৈরি করা হয়েছে।

 T_1 তাপমাত্রায় কোনো বস্তুর দৈর্ঘ্য যদি L_1 হয় এবং তাপমাত্রা বৃদ্ধি করে সেটি T_2 করার পর যদি দৈর্ঘ্য বৃদ্ধি পেয়ে সেটি L_2 হয় তাহলে দৈর্ঘ্য প্রসারণ সহগ lpha হচ্ছে:

$$\alpha = \frac{(L_2 - L_1)/L_1}{T_2 - T_1}$$

কাজেই

$$L_2 = L_1 + \alpha L_1 (T_2 - T_1)$$

একইভাবে T_1 তাপমাত্রায় কোনো বস্তুর ক্ষেত্রফল যদি A_1 হয় এবং তাপমাত্রা বৃদ্ধি করে T_2 করার পর ক্ষেত্রফলও যদি বেড়ে A_1 হয় তাহলে ক্ষেত্রফল প্রসারণ সহগ eta হচেছ:

$$\beta = \frac{(A_2 - A_1)/A_1}{T_2 - T_1}$$

কাজেই

$$A_2 = A_1 + \beta A_1 (T_2 - T_1)$$

ঠিক একইভাবে T_1 তাপমাত্রায় যদি আয়তন V_1 হয় এবং তাপমাত্রা বৃদ্ধি করে T_2 করার পর যদি আয়তন বেড়ে V_2 হয় তাহলে আয়তন প্রসারণ সহগ γ হচ্ছে:

$$\gamma = \frac{(V_2 - V_1)/V_1}{T_2 - T_1}$$

কাজেই

$$V_2 = V_1 + \gamma V_1 (T_2 - T_1)$$

তোমরা দেখতেই পাচছ lpha,eta এবং γ তিনটি রশির এককই হচ্ছে T^{-1}

উদাহরণ 6.4: $20^{\circ}C$ তাপমাত্রায় তামার দCর দৈর্ঘ্য $10m,\,120^{\circ}C$ তাপমাত্রায় দ $^{\sim}$ টির দৈর্ঘ্য 10.0167m এর দৈর্ঘ্য প্রমারণ সহগ কত?

উত্তর: দৈর্ঘ্য প্রসারণ সহগ

$$\alpha = \frac{L_2 - L_1}{L_1(T_2 - T_1)}$$

बंशाल $L_1 = 10m$

$$L_2 = 10.0167m$$

 $T_2 = 120 \, \text{C}$
 $T_1 = 20 \, \text{C}$

$$\alpha = \frac{10.0167m - 10m}{10m(120\,\% - 100\,\%)} = 16.7 \times 10^{-6}\,\%^{-1}$$

তোমরা উপরের উদাহরণ গুলো থেকে দেখেছ কঠিন পদার্থের প্রসারণ সহপের মান আসলে খুবই কম। সে কারনে α, β এবং γ এই তিনটি ভিন্ন ভিন্ন সহগের কিন্তু প্রয়োজন ছিল না আমরা কাজ চালানোর জন্য গুণু দৈর্ঘ্য সহগটি ব্যাখ্যা করে নিলেই পারতাম। যেমন ধরা যাক ক্ষেত্রফল প্রসারণের ব্যাপারটি। আমরা দেখেছি:

$$A_2 = A_1 + \beta A_1 (T_2 - T_1)$$

কিন্তু ক্ষেত্রফল A_1 আসলে দৈর্ঘ্য এবং প্রস্তের গুণফল যদি এবং আমরা বর্গাকৃতির ক্ষেত্রফল ধরে নিই যার বাহুর দৈর্ঘ্য L_1 তাহলে

$$A_2 = L_2^2 = [L_1 + \alpha L_1 (T_2 - T_1)]^2$$

কিংবা

$$A_2 = L_1^2 + 2\alpha L_1^2 (T_2 - T_1) + \alpha^2 L_1^2 (T_2 - T_1)^2$$

কিন্ত

$$A_1 = L_1^2$$

কাজেই

$$A_2 = A_1 + 2\alpha A_1 (T_2 - T_1) + \alpha^2 A_1 (T_2 - T_1)^2$$

আমরা দেখেছি α এর মান খুবই ছোট, কাজেই α^2 এর মান আরও ছোট, সত্যি কথা বলতে কী এটি এত ছোট যে উপরের সমীকরণে α^2 সহ পুরো অংশটুকু আমরা যদি পুরোপুরি বাদ দিই আমাদের বিশ্লেষণ বা হিসাবে এমন কিছু ক্ষতি বৃদ্ধি হবে না। তাই আমরা লিখতে পারি:

$$A_2 = A_1 + 2\alpha A_1 (T_2 - T_1)$$

কিন্তু আমরা জানি

$$A_2 = A_1 + \beta A_1 (T_2 - T_1)$$

কাজেই নিশ্চয়ই:

$$\beta = 2\alpha$$

ঠিক একইভাবে আমরা L_1 দৈর্ঘ্য, প্রস্থ, উচ্চতা নিয়ে একটা কিউব কল্পনা করতে পারি T_1 তাপমাত্রায় যার আয়তন V_1 এবং তাপ মাত্রা বাড়িয়ে T_2 করার পর যার আয়তন হয়েছে V_2 , কাজেই

$$V_2 = [L_1 + \alpha L_1 (T_2 - T_1)]^3$$

একই যুক্তিতে এখানেও যদি α^2 এবং α^3 সহ অংশগুলোকে বাদ দিই আমাদের বিশ্লেষণ বা হিসাবের এমন কোনো ক্ষতিবৃদ্ধি হবে না। কাজেই শুধু প্রথম দুটি অংশ থাকবে অর্থাৎ

$$V_2 = L_1^3 + 3\alpha L_1^3 (T_2 - T_1) \dots$$

কিন্তু আমরা জানি

$$V_1 = L_1^3$$

অর্থাৎ

$$V_2 = V_1 + 3\alpha V_1 (T_2 - T_1)$$

কাজেই

$$V_2 = V_1 + \gamma V_1 (T_2 - T_1)$$

কাজেই নিশ্চয়ই:

$$\gamma = 3\alpha$$

বাস্তব জীবনে আমাদের কঠিন পদার্থের প্রসারণের বিষয়টা সব সময়েই মনে রাখতে হয়। তোমরা নিশ্চয়ই রেললাইনের মাঝে ফাঁকাটি দেখেছ— তাপমাত্রার প্রসারণকে মনে রেখে এটা করা হয়েছে প্রসারণের এই সুযোগটি না দিলে উত্তপ্ত দিনে রেললাইন আঁকা বাঁকা হয়ে যেতে পারত! বেশি মিষ্টি খেয়ে এবং নিয়মিত দাঁত ব্রাশ না করে তোমাদের যাদের দাঁতে কেভিটি হয়েছে তারা যখন ডেন্টিস্টের কাছে গিয়েছ তারা হয়তো লক্ষ করেছ একটা বিশেষ পদার্থ দিয়ে দাঁতের গর্তিটি বুঁজে দেয়া হয়েছে। এই পদার্থটির প্রসারণ সহগ অনেক যত্ন করে দাঁতের প্রসারণ সহগের সমান করা হয়েছে। যদি প্রসারণ সহগ দাঁত থেকে কম হতো তাহলে গরম কিছু খাওয়ার সময় এটা দাঁতের সমান প্রসারিত না হয়ে খুলে আসত। আবার প্রসারণ সহগ বেশি হলে ঠা—া কিছু খাওয়ার সময় বেশি ছোট হয়ে দাঁত থেকে খুলে আসত! পদার্থবিজ্ঞান না পড়েও অনেক সাধারণ মানুষও তাপমাত্রায় প্রসারণের বিষয়টা জানে। তোমরা লক্ষ করে দেখবে কোনো কৌটার মুখ আটকে গেলে সেটাতে গরম পানি ঢালা হয়— যেন এটা প্রসারিত হয়ে সহজে খুলে আসে।

উদাহরণ 6.5: কাচের গ্লাসে গরম পানি ঢাললে গ্লাস ফেটে যায় কেন?

উত্তরঃ কোনো কোনো অংশে হঠাৎ করে তাপমাত্রা বেড়ে যাওয়ায় কোথাও প্রসারণ বেশি হয়, সে কারণে গ্লাস ফেটে যায়।

উদাহরণ 6.6: সোনার ঘনত্ব 19.30~gm/cc , এর দৈর্ঘ্য প্রসারণ সহগ $14\times 10^{-6}~C^{-1}$ এর তাপমাত্রা 100~C বাড়ালে ঘনত্ব কত হবে?

উত্তর: ঘনত্ব

$$\rho = \frac{m}{V}$$

যেখানে V হচ্ছে আয়তন এবং m হচ্ছে ভর তাপমাত্র বাড়ালে ভর এক থাকলেও আয়তন বেড়ে যায়। কাজেই $100\,\%$ তাপমাত্রা বাড়ালে তার আয়তন V' হবে:

$$V' = V + \gamma V (T_2 - T_1) = V (1 + 3\alpha \times 100)$$

$$\alpha = 14 \times 10^{-6} \, \mathcal{C}^{-1}$$

$$V' = V (1 + 4.2 \times 10^{-3})$$

$$\rho' = \frac{m}{V'} = \frac{m}{V(1 + 4.2 \times 10^{-3})} = \frac{m}{V} \times 0.9958 = 0.9958\rho$$

$\rho' = 0.9958 \times 19.30 \ ym/cc = 19.22 \ ym/cc$

উদাৰবৰ্ণ 6.7: তাপমাত্ৰা যদি আরো 1000 ℃ বাজুনো হয় তাৰলৈ ঘনত কত হবে?

উপ্তর- সোনার প্রসাহক 1064 C কাহেট এই ভাপমাত্রার সোনা গলে যাত্রে।

6.3.2 তরল পদার্শের প্রসারণ

তরল পদার্থের দৈর্ঘ্য বা ফেত্রয়ল বলে কছু দেই— তরল পদার্থের শুবু আয়তন আছে। কাজেই তরল পদার্থের প্রসারণ বলতে তার আয়তন প্রসারণকেই বোবায়। তরল পদার্থের প্রসারণ মাপার সময় একটু সতর্ক থাকতে হয় কারণ তরল পদার্থকে সব সময়েই কোনো পাত্রে রাখতে হয় কাজেই প্রসারণ সহণ মাপতে চাইলে যখন তরলটিকে উত্তর্ভ করার চেপ্তা করা হয় তখন সাভাবিক তাবে পাত্রটিও উত্তর্ভ হয়ে ওঠে একং পাত্রটিরও একটি প্রসারণ হয়। কাজেই পাত্র তরল যে প্রসারণ দেখা যায় সেটা সত্যিকারের প্রসারণ না, সেটা হচেছ আপাত প্রসারণ। কাজেই প্রকৃত প্রসারণ বের করতে হলে পাত্রের প্রসারণের ব্যাপারটা সব সময়েই মনে রাখতে হবে। সাধারণত তরলের প্রসারণ কঠিন পদার্থের প্রসারণ থেকে বেশি হয় যদি তা না হতো তাহলে আমরা এপাত প্রসারণ ফেত্রতা দেখতেই প্রভাম না— মনে হতো আপাত সংকোচন।

তরল পদার্থের প্রসারণের সবচেয়ে সহজ উদাহরণ হচেছ থার্মোমিটার! নানা রকম থার্মোমিটার রয়েছে তাবে জুর মাপার থার্মোমিটার (ছবি 6.5) সম্ভবত তোফাদের কাছে সবচেয়ে পরিচিত। থার্মোমিটারের গোড়ায়ে একটা কাচের টিউবে পারদ থাকে। তাপ দেয়া হলে পারদের আয়তন বেড়ে যায় এবং একটা খুর সরু নল বেয়ে উঠতে থাকে, কতদুর উঠেছে সৌটা

ছবি 6.5: ক্লু গাপার থামোমিটারে পারদ যেন নেমে যেতে না পারে সেজেনে টিউরে সুদ্ধ রক্তেতা তৈরী করা হয়।

হাছে তাপমাত্রার পরিমাপ। জুর মাপার সময় যেহেতু থামোমিটারকে কলে থেকে কিংবা মুখ খেকে বেব করে তাপমাত্রা দেখতে হয় তখন যেন পারদের কলামট্রিক কমে না যায় সেজন্য সরু নলটির গোড়ায় নলটিকে একটা খুব সরু বক্ততা রাখা হয়- এ কারনে একবার প্রসারিত হয়ে উপরে উঠে গেলে তাপমাত্রা কমে মাবার পরও নেমে আসতে পারে না। বাঁকিয়ে নামাতে হয়!

6.3.3 গ্যাসের খুসারল

কঠিন পদার্মের আকার আর আয়তন দুটিই আহে ভাই ভার প্রসারণ ব্রুতে কোনো সমস্য। হয়নি। ভরপের নির্দিষ্ট আকার না থাকলেও ভার আয়তন আছে ভাই ভার প্রসারণও আমরা রগখ্যা করতে পারি কিংকা মাপতে পারি। গাদসের বেলায় বিষয়টো বেশ মজার- ভার কারণ ভার নির্দিষ্ট আকার ভো নেইই-ভাব নির্দিষ্ট আয়তনও নেই, গ্যাসকে যে পাত্রে চোকানো হবে গ্যাসটি সাথে সাথে সেই পাত্রের আয়তন নিয়ে নেবে! একই পরিমাণ গ্যাস ভিন্ন ভিন্ন আয়াতনের পাত্রে ঢোকানো হলে তার চাপ হয় ভিন্ন— কাজেই আমরা ঠিক করে নিতে পারি আমরা যদি গ্যাসের আয়তন বৃদ্ধি মাপতে চাই তাহলে লক্ষ রাখতে হবে তার চাপের যেন পরিবর্তন না হয়— 6.6 ছবিতে যে রকম দেখানো হয়েছে। একটা সিলিভারের পিস্টনের ওপর নির্দিষ্ট ওজনের কিছু একটা রাখা হয়েছে যেন এটা সব সময়েই সিলিভারের আবদ্ধ গ্যাসকে সমান চাপ দেয়।

তরল কিংবা কঠিন পদার্থকে চাপ দিয়ে খুব বেশি সংকুচিত করা যায় না– কিন্তু গ্যাসকে খুব

ছবি 6.6: তাপ প্রয়োগ করলে বাতাসের আয়তন বেড়ে যায়।

সহজে সংকুচিত করা যায় তাই প্রথমেই আমাদের গ্যাসের চাপ আর আয়াতনের মাঝে সম্পর্কটা জানা দরকার– এটাকে বলে আদর্শ গ্যাসের সূত্র এবং এটা হচ্ছে

$$PV = nRT$$

এখানে P হচ্ছে চাপ, V হচ্ছে আয়তন, n হচ্ছে গ্যাসের পরিমাণ (মোলে মাপা) R একটি ধ্রুবক $(8.314\,J\,K^{-1}mol)$ এবং T হচ্ছে কেলভিন ক্ষেলে তাপমাত্রা।

এখন আমরা গ্যামের জন্য প্রসারণ সহগ বের করতে

পারি। একটা নির্দিষ্ট চাপে যদি T_1 তাপমাত্রায় গ্যাসের আয়তন হয় V_1 এবং T_2 তাপমাত্রায় গ্যাসের আয়তন হয় V_2 তাহলে গ্যাসের আয়তন প্রসারণ সহগ eta_p হচ্ছে:

$$\beta_P = \frac{(V_2 - V_1)/V_1}{T_2 - T_1}$$

আমরা জানি

$$PV_1 = nRT_1$$
$$PV_2 = nRT_2$$

কাজেই

$$P(V_2 - V_1) = nR(T_2 - T_1)$$

বাম পাশে PV_1 এবং ডান পাশে nRT_1 দিয়ে ভাগ দিয়ে:

$$\frac{V_2 - V_1}{V_1} = \frac{T_2 - T_1}{T_1}$$

কাজেই

$$\frac{(V_2 - V_1)/V_1}{T_2 - T_1} = \frac{1}{T_1}$$

অর্থাৎ

$$\beta_P = \frac{1}{T_1}$$

কাজেই দেখতেই পাচ্ছ গ্যাসের প্রসারণের সহগ মোটেই কোনো ধ্রুব সংখ্যা নয়– এটা তাপমাত্রার বিপরীত অর্থাৎ তাপমাত্রা যত কম হবে গ্যাসের প্রসারণ হবে তত বেশি! অন্যভাবে বলা যায় তাপমাত্রা যত কম হবে গ্যাসকে তত বেশি সংকুচিত করা যাবে।

তোমরা যারা গাড়ির ড্রাইভারদের সি.এন.জি. স্টেশন থেকে সিন্ডািরে গ্যাস ভরতে দেখেছ তারা হয়তো জেনে থাকবে শীতকালে তাপমাত্রা কম বলে গ্যাসের প্রসারণ এবং সংকোচন বেশি তাই তখন তারা একই চাপে গ্যাস নিয়েও বেশি গ্যাস ভরতে পারে।

6.4 পদার্থের অবস্থার পরিবর্তনে তাপের প্রভাব (Effect of Temperature on Change of State)

তোমরা ইতোমধ্যে জেনে গেছ সব পদার্থ অণু দিয়ে তৈরি এবং কঠিন পদার্থে অণুগুলো নির্দিষ্ট অবস্থানে থেকে একে অন্যকে আটকে রাখে। তাপ দেয়া হলে এগুলোর কম্পন বেড়ে যায় এবং আণবিক বন্ধন শিথিল হয়ে একে অন্যের ওপর গড়াগড়ি খেয়ে নড়তে শুরু করে এবং এটাকে আমরা বলি তরল। তাপমাত্রা যদি আরো বেড়ে যায় তখন অণুগুলো মুক্ত হয়ে ছোটাছুটি শুরু করে তাকে আমরা বলি গ্যাস। এই ব্যাপারটি আমরা এখন আরেকটু গভীর ভাবে দেখব এবং পদার্থের অবস্থার পরিবর্তনের সাথে সম্পর্ক আছে এ রকম বিভিন্ন রাশির সাথে পরিচিত হব।

একটা কঠিন পদার্থকে যখন তাপ দেয়া হয় তখন তার তাপমাত্রা বাড়তে থাকে। (কী হারে তাপমাত্রা বাড়বে এবং সেটা কিসের ওপর নির্ভর করে সেটা আমরা একটু পড়েই জেনে যাব।) তাপমাত্রা (একটা নির্দিষ্ট চাপে) একটা নির্দিষ্ট মানে পৌছালে কঠিন পদার্থটি গলতে শুরু করে— এই প্রক্রিয়াটার নাম গলন এবং যে তাপমাত্রায় গলন শুরু হয় সেটাকে বলে গলনান্ধ। আমরা যদি কঠিন পদার্থের তাপমাত্রা মাপতে থাকি তাহলে একটু অবাক হয়ে লক্ষ করব যখন গলন শুরু হয়েছে তখন তাপ দেয়া সত্ত্বেও খানিকটা কঠিন খানিকটা তরলের এই মিশ্রণের তাপমাত্রা আর বাড়ছে না, (6.7 ছবিতে যে রকম

দেখানো হয়েছে) এই সময়টিতে তাপ কঠিন পদার্থের অণুগুলার ভেতরকার আন্তঃআণবিক বন্ধনকে শিথিল করতে ব্যয় হয় তাই অণুগুলোকে আরো গতিশীল করতে পারে না বলে তাপমাত্রা বাড়তে পারে না। গলন চলাকালীন সময়ে নির্দিষ্ট গলনাংকে যে পরিমাণ তাপ দিয়ে পুরো কঠিন পদার্থকে তরলে রূপান্তর করতে হয় সেই তাপকে বলা হয় গলনের সুপ্ততাপ।

একবার পুরো কঠিন পদার্থটি তরলে রূপান্তরিত হওয়ার পর তাপমাত্রা আবার বাড়তে শুরু করে (6.৪ ছবিতে যে রকম দেখানো হয়েছে) তাপমাত্রা বাড়তে বাড়তে এক সময় তরল পদার্থটি গ্যাসে পরিবর্তন হতে শুরু করে এই প্রক্রিয়াটির নাম বাষ্পীভবন এবং যে তাপমাত্রায় বাষ্পীভবন ঘটে সেটাকে বলে স্ফুটানান্ধ। আবার সবাইকে মনে করিয়ে দেয়া হচ্ছে এই স্ফুটনান্ধ চাপের ওপর নির্ভর করে।

যখন বাষ্পীভবন প্রক্রিয়া শুরু হয় তখন তরলের অণুগুলো তাপ শক্তি নিয়ে পরস্পরের সাথে যে আণবিক বন্ধন আছে সেটা থেকে মুক্ত হতে শুরু করে। গলনের মতো এখানেও যদিও তাপ দেয়া হচ্ছে কিন্তু তরলের তাপমাত্রা কিন্তু বাড়ে না। তরলকে বাষ্পীভূত করার সময় যে পরিমাণ তাপ দিয়ে পুরো তরল পদার্থকে গ্যাসে পরিণত করা হয় সেই তাপকে বলা হয় বাষ্পীভবনের সুপ্ততাপ। পুরো তরলটা গ্যাসে রূপান্তর করার পর তাপ দিতে থাকলে গ্যাসের তাপমাত্রা আবার বাড়তে থাকে। তাপমাত্রা মোটামুটি অচিন্ত্যনীয় প্যায়ে নিতে পারলে অণুগুলো আয়নিত হতে শুরু করবে এবাং প্লাজমা নামে পদার্থের চতুর্থ অবস্থা শুরু হবে– কিন্তু সেটি অন্য ব্যাপার!

তাপ দিয়ে কঠিন থেকে তরল এবং তরল থেকে গ্যাসে রূপান্তরের এই প্রক্রিয়া অন্তত একটি উদাহরণটি আমরা সবাই দেখেছি সেটি হচ্ছে বরফ পানি এবং বাষ্প। আমরা যদিও সরাসরি গলনের সুপ্ততাপ কিংবা বাষ্পীভবনের সুপ্ততাপ দেখি না – কিন্তু তার একটা প্রভাব অনেক সময় অনুভব করেছি। অনেক ভিড়ে কিংবা আবদ্ধ জায়গায় গরমে ছটফট করে আমরা যদি হঠাৎ খোলা জায়গায় কিংবা বাতাসে আসি তখন শরীর শীতল হয়ে জুড়িয়ে যায়। তার কারণ খোলা জায়গায় আসার পর শরীর থেকে ঘাম বাষ্পীভূত হওয়ার সময় বাষ্পীভবনের সুপ্ততাপটুকু শরীর থেকে নিয়ে নেয় – এবং শরীরটাকে শীতল করে দেয়।

তাপ দিয়ে কঠিন থেকে তরল, তরল থেকে গ্যাসে যে রকম রূপান্তর করা হয় তার উল্টো প্রক্রিয়াটিও কিন্তু ঘটে। তাপ সরিয়ে নিলে একটা গ্যাস প্রথমে তরল, তারপর কঠিন হতে পারে।

আমরা পদার্থের অবস্থানের পরিবর্তনের সময় বলেছি কঠিন থেকে তরল কিংবা তরল থেকে গ্যাসে রূপান্তরের জন্য একটি নির্দিষ্ট তাপমাত্রায় পৌঁছাতে হয়। কিন্তু সেই তাপমাত্রায় না পৌঁছেও কিন্তু কঠিন থেকে তরল, তরল থেকে গ্যাস কিংবা সরাসরি কঠিন থেকে গ্যাসে রূপান্তর হতে পারে। আমরা যদি পদার্থের আণবিক মডেলে ফিরে যাই তাহলে বিষয়টা বোঝা মোটেও কঠিন নয়। একটা অণু যদি কোনোভাবে যথেষ্ট শক্তি পেয়ে যায় এবং তার কারণে যদি তার গতিশক্তি যথেষ্ট বেড়ে যায় যে সেটি কঠিন পদার্থ কিংবা তরল পদার্থের পৃষ্ঠদেশে থেকে বের হয়ে আসতে পারে। কঠিন কিংবা তরলের পৃষ্ঠদেশে যেহেতু বাইরের বাতাস থেকে অসংখ্য অণু ক্রমাগত আঘাত করছে তাই তাদের আঘাতে কখনো কখনো কঠিন কিংবা তরলের কোনো কোনো অণুমুক্ত হয়ে যাবার মতো শক্তি পেয়ে যেতে পারে। তাই

পৃষ্ঠদেশ যত বিস্তৃত হবে এই প্রক্রিয়াটি তত বেশি কাজ করবে। আমরা সবাই এই প্রক্রিয়াটি দেখেছি— একটা ভিজে জিনিস এমনিতেই শুকিয়ে যায়— এর জন্য এটাকে স্কুটনাংকের তাপমাত্রায় নিতে হয় না। শুকিয়ে যাওয়া মানেই তরল পদার্থের অণুর বাষ্পায়িত হয়ে যাওয়া— যে কোনো তাপমাত্রায় এই প্রক্রিয়া ঘটতে পারে এবং এই প্রক্রিয়াটার নাম বাষ্পায়ন (evaporation)।

একটা তরলের পৃষ্ঠদেশ বিস্তৃত হওয়া ছাড়াও, তাপমাত্রা কম স্কুটনাংক, বাতাসের প্রবাহ, বাতাসে জলীয় বাম্পের পরিমাণ বাতাসের চাপ, এই বিষয়গুলোর ওপর বাম্পায়ন নির্ভর করে।

পানির বাষ্পায়নের সময় পানি যে রকম তার বাষ্পীভবনের সুপ্ততাপটুকু নিয়ে নেয়— এর উল্টোটাও সতিয়। যদি কোনো প্রক্রিয়ায় বাষ্প পানিতে রূপান্তরিত হয় তখন সেটি তাপ সরবরাহ করে। ঘূর্ণিঝড়ের সময় সমুদ্রের জলীয় বাষ্পে ভরা বাতাস উপরে উঠে যখন জলকণায় রূপান্তরিত হয় তখন বাষ্পীভবনের সুপ্ততাপটা শক্তি হিসেবে বের হয়ে আসে— এই শক্তিটা ঘূর্ণিঝড়ের প্রচ[—] শক্তি হিসেবে কাজ করে।

6.5 আপেক্ষিক তাপ (Specific Heat)

তাপ তাপমাত্রা এবং এর সাথে সম্পর্ক রয়েছে এ রকম অনেকগুলো বিষয় নিয়ে আলোচনা করা হলেও, একটা বস্তুর তাপমাত্রা কতটুকু বাড়তে হলে সেখানে কতটুকু তাপ দিতে হবে সেটি এখানো আলোচনা করা হয়নি। তোমরা হয়তো লক্ষ করে থাকবে খানিকটা পানিকে উত্তপ্ত করতে বেশ অনেক্ষণ চুলার ওপর রেখে সেটাতে তাপ দিতে হয়। প্রায় সম পরিমাণ ধাতব কোনো বস্তুকে সেই একই তাপমাত্রায় উত্তপ্ত করতে কিন্তু মোটেও বেশি সময় উত্তপ্ত করতে হয় না। এর কারণ পানির আপেক্ষিক তাপ বেশি সেই তুলনায় ধাতব পদার্থের আপেক্ষিক তাপ অনেক কম। $1\ kg$ পদার্থের তাপমাত্রা $1\ o$ বাড়াতে যে পরিমাণ তাপের প্রয়োজন সেটি হচ্ছে ঐ পদার্থের আপেক্ষিক তাপ। অর্থাৎ যদি m ভরের কোনো পদার্থকে T_1 থেকে T_2 তাপমাত্রায় নিতে Q তাপের প্রয়োজন হয় তাহলে আপেক্ষিক তাপ s হচ্ছে:

$$s = \frac{Q}{m(T_2 - T_1)}$$

আপেক্ষিক তাপের একক $Jkg^{-1}K^{-1}$

তাপ ধারণ ক্ষমতা C বলতে বোঝানো হয় একটা বস্তুর তাপমাত্রা $1^{\,o}$ বাড়াতে কত তাপের প্রয়োজন। আপেক্ষিক তাপ হচ্ছে $1\,kg$ ভরের $1^{\,o}$ বাড়াতে কত তাপের প্রয়োজন তাই বস্তুর আপেক্ষিক তাপ

জেনে নিলে আমরা খুব সহজেই যে কোনো বস্তুর তাপ ধারণক্ষমতা C বের করতে পারব। কারণ বস্তুর ভর যদি m হয়, আপেক্ষিক তাপ s হয় তাহলে

$$C = ms$$

10 kg সোনার তাপ ধারণক্ষমতা হচ্ছে

$$C = 10 \times 230 \, JK^{-1} = 2300 \, JK^{-1}$$

সে তুলনায় পানির তাপ ধারণক্ষমতা

$$C=10 imes 4200\,JK^{-1}=42,\!000\,JK^{-1}$$
 প্রায় 20 গুণ বেশি।

তার অর্থ সোনা কিংবা অন্য কোনো ধাতুকে চট করে উত্তন্ত করা যায় কিন্তু পানিকে এত সহজে উত্তপ্ত করা যায় না।

6.6 ক্যালোরিমিতির মূলনীতি (Fundaamental principle of Calorimetry)

শীতকালে গোসল করার সময়
অনেক সময়েই আমরা বালতির
ঠালা পানিতে খানিকটা প্রায়
ফুটন্ত গরম পানি ঢেলে দিই।
ফুটন্ত গরম পানি বালতির শীতল
পানিকে তাপ দিতে দিতে ঠালা
হতে থাকে। বালতির শীতল
পানিও গরম ফুটন্ত পানি থেকে
তাপ নিতে নিতে উত্তপ্ত হতে
থাকে। কিছুক্ষণের মাঝে দেখা
যায় উত্তপ্ত পানির তাপমাত্রা
এবং শীতল পানির তাপমাত্রা

ছবি 6.7: তাপ প্রয়োগ করার সময় গলদাংক এবং ক্ষুটনাংকের তাপমাত্রার পরিবর্তন হয় না।

বেড়ে পুরো পানিটুকুই একটা আরামদায়ক উষ্ণতায় চলে এসেছে।

আমরা ইচ্ছে করলেই কোন পদার্থের কোন তাপমাত্রার বস্তুর সাথে অন্য কোন তাপমাত্রার কোন বস্তু মেশালে কে কতটুকু তাপ দেবে বা নেবে এবং শেষ পর্যন্ত কত তাপমাত্রায় পৌছাবে এই বিষয়গুলো বের করে ফেলতে পারব। তা করতে হলে আমাদের ওধু কয়েকটা নিয়ম মনে রাখতে হবে: (i) বেশি তাপমাত্রার বস্তু কম তাপমাত্রার বস্তুর কাছে তাপ দিতে থাকবে যতক্ষন পর্যন্ত না দুটো তাপমাত্রাই সমান হয়। (ii) উত্তপ্ত বস্তু যতটুকু তাপ পরিত্যাগ করবে, শীতল বস্তু ঠিক ততটুকু তাপ গ্রহণ করবে। (আমরা ধরে নিয়েছি এই প্রক্রিয়াতে অন্য কোনোভাবে কোনো তাপ নষ্ট হচ্ছে না।)

উদাহরণ 6.8: $30\,\mathrm{C}$ তাপমাত্রায় $1\,liter$ পানিতে 100gm ওজনের এক টুকরো বরফ ছেড়ে দেয়া হল। পুরো বরফটি গলে যাবার পর মোট পানির তাপমাত্রা কত হবে? (বরফের সুপ্ত তাপ $L=334\,kI/kg$)

উত্তর : বরফের তাপমাত্রা $0~\mathcal{C}$ ধরে নিই। বরফের ভর $m_1=100gm=0.1kg$ 1~liter পানির ভর $m_2=1kg$ পানির আপেক্ষিক তাপ $s=4.2\times 10^3~l/\mathcal{C}$

বরফটুকু গলতে যে এবং বরফ গলা পানির চূড়ান্ত তাপমাত্রায় পৌঁছাতে যে তাপের প্রয়োজন হবে সেই তাপটুকু 1kg পানিকে সরবরাহ করতে হবে। ধরা যাক পানির চূড়ান্ত তাপমাত্রা T, তাহলে বরফ যে পরিমাণ তাপ গ্রহণ করবে সেগুলো হলো :

গলার জন্য প্রয়োজনীয় তাপ: $m_1 L$ গলার পর 0~C~ থেকে T~ পর্যন্ত তাপমাত্রা বাড়ার জন্য তাপ: $m_1 s(T-0)$

এই তাপগুলো সরবরাহ করবে বাকি m_2 পানি, কাজেই তার তাপমাত্রা কমে যাবে। অর্থাৎ:

তাপ সরবরাহ করা হবে: $m_2 S(30~\%-T)$

দুটো তাপ সমান হতে হবে। কাজেই:

$$m_1L + m_1sT = m_2s(30\,\mathcal{C} - T)$$

$$T = \frac{30 \, \text{°C} \times m_2 s - m_1 L}{(m_1 + m_2)s}$$

$$T = \frac{30 \times 1 \times 4.2 \times 10^3 - 0.1 \times 334 \times 10^3}{(1 + 0.1)4.2 \times 10^3} = 20 \, \text{C}$$

উত্তর : ধরা যাক চূড়ান্ত তাপমাত্রা T তাহলে 2 liter পানির তাপমাত্রা $75\,^{\circ}\!\!C$ থেকে কমে সেটি T তে পৌছাবে । এই তাপটুকু গ্রহণ করে 2 liter পানির তাপমাত্রা $20\,^{\circ}\!\!C$ থেকে বেড়ে T তে পৌছাবে । কাজেই

 $1\ liter$ পানির ভর $m_1=1kg$

 $2\ liter$ পানির ভর $m_2=2kg$ পানির আপেক্ষিক তাপ $s=4.2 imes 10^3\ J/\ {
m C}$

$$m_1 s(75 \,^{\circ}C - T) = m_2 s(T - 20 \,^{\circ}C)$$

$$T = \frac{(75m_1 + 20m_2)s}{(m_1 + m_2)s} \mathcal{C} = \frac{75 \times 2 + 20}{2 + 1} \mathcal{C} = 56.6 \mathcal{C}$$

উদাহরণ 6.10: $120\,^\circ$ ে তাপমাত্রায় উত্তপ্ত 10gm ওজনের এক টুকরো লোহা একটা পাত্রেরাখা $30\,^\circ$ ে তাপমাত্রার 1kg পানিতে ছেড়ে দেয়া হলো। পানির তাপমাত্রা কত হবে?

উন্তর: লোহার ভর $m_1=0.01kg$ পানির ভর $m_2=1kg$ লোহার আপেক্ষিক তাপ $s_1=0.45\, imes 10^3 J/\,\mathcal{C}$ পানির আপেক্ষিক তাপ $s_2=4.2 imes 10^3\,J/\,\mathcal{C}$

লোহার টুকরো যতটুকু তাপ হারাবে পানি ঠিক ততটুকু তাপ গ্রহণ করবে। কাজেই লোহার চূড়ান্ত তাপমাত্রা T হলো

$$m_1s_1(120\,\mathcal{C}-T)=m_2s_2(T-30\,\mathcal{C})$$

$$T = \frac{120m_1s_1 + 30m_2s_2}{m_1s_1 + m_2s_2}$$

$$= \frac{120 \times 0.01 \times 0.45 \times 10^3 + 30 \times 1 \times 4.2 \times 10^3}{0.01 \times 0.45 \times 10^3 + 1 \times 4.2 \times 10^3} \Upsilon$$

$$T=30.1\,\mathcal{C}$$

6.7 গলনাংক এবং স্ফুটনাংকের ওপর চাপের প্রভাব (Effect of Pressure on Melting Point and Boiling Point)

চাপ দেয়া হলে পদার্থের গলনাংক কমে যায়, তাই দুই টুকরা বরফকে চাপ দিয়ে এক টুকরো বরফে পরিণত করে ফেলা যায়। বরফের যেখানে চাপ পড়েছে সেখানে

ছবি 6.8: একটি বরফ খ৺কে সৃক্ষ্ণ তারের চাপ দিয়ে কাটা সম্ভব।

আগের মান ফিরে পায় তখন গলে যাওয়া পানি আবার বরফে পাল্টে গিয়ে একটা বরফ খ ইয়ে যায়। একটা বরফের ওপর একটা তার এবং তারের দুই পাশে দুটি ওজন ঝুলিয়ে দিলে মনে হবে তারটি বরফকে কেটে দুই টুকরো করে ফেলেছে, কিন্তু বরফটি পরীক্ষা করলে দেখা যাবে সেটি অখ এক টুকরো বরফই আছে (ছবি 6.8:)।

গলনাংক কমে যায় বলে বরফের তাপমাত্রাতেই সেখানকার বরফ গলে যায়, চাপ সরিয়ে নিলে গলনাংক

চাপের কারণে স্ফুটানাংকের পরিবর্তন হয়। চাপ কম হলে স্ফুটানাংক কমে যায়, চাপ বেশি হলে স্ফুটানাংক বেড়ে যায়। এজন্য যারা পর্বতারোহন করে অনেক উচ্চতায় যায় তাদের কিছু রান্না করতে সময় বেশি নেয়— বাতাসের চাপ কম বলে সেখানে পানি তুলনামূলকভাবে কম তাপমাত্রায় ফুটতে থাকে তাই তাপমাত্রা বাড়ানো যায় না সেজন্য রান্না করতে সময় বেশি লাগে। একই কারণে প্রেশার কুকার তৈরি হয়েছে, এটি আসলে একটি নিচ্ছিদ্র পাত্র, তাই রান্না করার সময় বাষ্প আবদ্ধ হয়ে চাপ বাড়িয়ে দেয় এবং সে কারনে পানির স্ফুটানাংক বেড়ে যায় বলে বেশি তাপমাত্রায় পানি ফুটতে থাকে। তাপমাত্রা বেশি বলে রান্নাও করা যায় তাড়াতাড়ি।

গ্যাসকে চাপ দিলে তার গলনাংক বেড়ে যায়– তাই খুব বেশি শীতল না করেই চাপ বাড়িয়ে গ্যাসকে তরল করা যায়। তখন অবশ্যি অনেক তাপের সৃষ্টি হয়– সেই তাপকে সরিয়ে নেয়ার ব্যবস্থা করতে হয়।

जनुशीलनी

প্রশ :

- 1. একটি কাচের পাত্রে পারদ রেখে উত্তপ্ত করা হলে প্রথমে পারদের উচ্চতা কমে তারপর বাড়তে থাকবে। কেন?
- 2. মহাশূন্য যেখানে কোনো অণু-পরমাণু নেই সেখানে কি তাপমাত্রার অস্তিত্ত আছে?
- 3. অনেক ভিড়ের ভেতরে ভ্যাপসা গরম থেকে খোলা জায়গায় এলে শীতল অনুভব করি কেন?
- 4. কাচের গ্লাসে পানিতে বরফ দিলে গ্লাসের গায়ে বিন্দু বিন্দু পানি জমে কেন?
- 5. প্রেশার কুকারে তাড়াতাড়ি রান্না করা যায় কেন?

গাণিতিক প্রশ্ন :

- 1. বিজ্ঞানী সেলসিয়াস যে থার্মোমিটার প্রবর্তন করেছিলেন সেই থার্মোমিটারে বরফের গলনাংক ছিল $100\,\%$, পানির বাষ্পীভবন ছিল $0\,\%$! সেই থার্মোমিটারের কোন তাপমাত্রায় সেলসিয়াস এবং ফারেনহাইট তাপমাত্রার সমান?
- 2. কোন তাপমাত্রায় সোনার ঘনত্ব 0.001% কমে যাবে?
- 3. একটা উত্তপ্ত 1gm ওজনের লোহার টুকরা $30\,{
 m C}$ তাপমাত্রায় $1\ liter$ পানিতে ছেড়ে দেয়ার পর পানির তাপমাত্রা $15\,{
 m C}$ বেড়ে গেল। লোহার টুকরোটির তাপমাত্রা কত ছিল?
- 4. $0~{\cal C}$ তাপমাত্রার 1gm বরফে প্রতি সেকেন্ড 10J করে তাপ প্রদান করা হলে কতক্ষণ পর পুরোটি বাম্পীভূত হবে?
- 5. একটি নিচ্ছিদ্র সিলিন্ডারে আবদ্ধ গ্যাসের তাপমাত্রা $30\,\%$ থেকে বাড়িয়ে $100\,\%$ করা হলে গ্যাসের চাপ কত শতাংশ বেড়ে যাবে?

সপ্তম অধ্যায় **তরঙ্গ ও শব্দ** (Waves and Sound)

মেরী কুরি

মেরী কুরি একজন পোলিশ পদার্থবিজ্ঞানী এবং রসায়নবিদ ছিলেন। তাঁর খুব শখ নিজ দেশে কাজ করবেন কিন্তু মহিলা বলে নিজ দেশে কোনো কাজ খুঁজে পাননি তাই ফ্রান্সে তার স্বামী পিয়ারে কুরির সাথে কর্মজীবন কাটিয়ে দিয়েছেন। তেজস্কৃয়তার ওপর তাঁর কাজ তাঁকে পদার্থবিজ্ঞান এবং রসায়নে দুটি নোবেল পুরস্কার এনে দেয়। তিনি একই সাথে ছিলেন প্রথম মহিলা নোবেল পুরস্কার বিজয়ী। তার জীবন ছিল ঘটনাবহুল এবং ধর্মান্ধ মানুষেরা তাকে নাস্তিক বলেও নানা ভাবে যন্ত্রণা দিয়েছিল। তেজস্কৃয়তা নিয়ে কাজ করার কারণে তিনি রোগাক্রান্ত হয়ে মৃত্যুবরণ করেন।

Marie Curie (1867-1934)

7.1 সরল স্পন্দন গতি (Simple Harmonic Motion)

একটা স্প্রিংয়ের নিচে একটা ভর লাগিয়ে সেটা টেনে ছেড়ে দিলে এটা উপরে নিচে করতে থাকে। (তৃতীয় এবং চতুর্থ অধ্যায়ে আমরা এই গতিটি ব্যাখ্যা করেছি।) আমরা দেখেছি ঘর্ষদের জন্য বা অন্যান্যভাবে শক্তিক্ষয় হয়ে বলে এটা একসময় থেমে যায়— তা না হলে এটা অনন্ডকাল ওপর নিচ করতে থাকত। আমরা এটাও দেখেছি সরল স্পন্দন গতিতে স্প্রিংয়ের সাথে লাগানো ভরটির শক্তি গতিশক্তি এবং বিভব শক্তির মাঝে বিনিময় করে এবং এ সবগুলো ঘটে কারণ স্প্রিংয়ের বলটি হুক এর সূত্র মেনে চলে। হুকের সূত্রটি আবার মনে করিয়ে দেয়া যায়, স্প্রিংয়ের ধ্রুব যদি হয় k, ভর যদি হয় m এবং অবস্থান যদি হয় x তাহলে তার ওপর আরোপিত বল F হচেছ

ছকের সূত্রের কারণে যে ছন্দিত বা স্পন্দন গতি হয় সেটাকে বলে সবল স্পন্দন গতি। পদার্থবিজ্ঞানের সবচেয়ে গুরুত্বপূর্ণ গতিগুলোর একটি হচ্ছে এই গতি।

তোমাদের এই বইয়ে এটা বের করে দেখানোর সুযোগ নেই কিন্তু জানিয়ে রাখতে ক্ষতি কী? যদি একটা স্প্রিংয়ের ধ্রুব হয় k এবং ভর হয় m তাহলে ভরটির দোলনকাল হবে

$$T = 2\pi \sqrt{\frac{k}{m}}$$

যদি এটা স্প্রিং না হয়ে একটা সুতোয় ঝুলানো পেন্ডুলাম হতো এবং সুতোর দৈর্ঘ্য হতে l আর মাধ্যাকর্ষণজনিত তুরণ হতো g তাহলে দোলন কাল হতো :

$$T = 2\pi \sqrt{\frac{l}{g}}$$

(না কোনো ভুল হয়নি তুমি একটা হালকা ভরই ঝোলাও আর ভারী ভরই ঝোলাও দোলন কাল একই থাকবে এটা ভরের ওপর নির্ভর করে না।) তার চেয়ে বড় কথা একটা সুতায় একটা ভর ঝুলিয়ে দুলিয়ে দিয়েছি তার দোলন কালে অন্য সব কিছু আসতে পারে কিন্তু π কোথা থেকে চলে এল? কেন এল?

উদাহরণ 5.1: $1\ m$ লম্বা একটা সুতা দিয়ে 10gm ভরের একটা পাথর ঝুলিয়ে দাও। তার দোলন কাল কত?

উত্তর:

$$T = 2\pi \sqrt{\frac{l}{g}} = 2\pi \sqrt{\frac{1}{9.8}} s = 2.0s$$

পার্থরটার ওজন 10gm না হয়ে অন্য কিছু হলেও দোলনকাল একই থাকত। ইচ্ছে করলে তুমি এখনই দোলন কাল মেপে তুমি সেখান থেকে g এর মান বের করতে পারবে— চেষ্টা করে দেখো!

একটা স্প্রিংয়ের নিচে একটা ভর লাগিয়ে রেখে দিলে ভরটা স্প্রিংটাকে টেনে একটু লম্বা করে সেই অবস্থানে স্থির হয়ে থাকে। স্প্রিংয়ের এই দৈর্ঘ্যটাকে বলা যায় সাম্য অবস্থা (ছবি 7.1-0)।

এখন যদি ভরটাকে টেনে একটু নিচে a দূরত্ব নামিয়ে এনে ছেড়ে দিই (ছবি 7.1-1) তাহলে ভরটা উপরের দিকে উঠতে থাকবে, সাম্য অবস্থা পার হয়ে এটা উপরে a দূরত্ব উঠে যাবে তারপর আবার নিচে নামতে থাকবে সাম্য অবস্থা পার হয়ে নিচে নেমে যাবে এবং এটা চলতেই থাকবে।

ভরটা যখন 2-3-4-1 অবস্থান শেষ করে যে অবস্থান শুরু করেছিল ঠিক একই অবস্থানে (2) একইভাবে (উপরের দিকে v বেগে গতিশীল) ফিরে আসে তখন আমরা বলি একটা পূর্ণ

াশনা হরেছে। মণে বাগতে হবে 2-3-4 হলেও কিয়া যে অগন্তান খেতে তলা করেছে সেই অসন্তানে কিরে আসনে কিয়া এটা পূর্ণ স্পাদন নয় কারাপ প্রথম 2 টিতে উপরের দিকে যায়েছ এটা পূর্ণ স্থানন নয় কারাপ প্রথম 2 টিতে উপরের দিকে যায়েছ এটা পূর্ণ স্থানন নয় কারাপ প্রথম 2 টিতে উপরের দিকে যায়েছ এটা পূর্ণ স্থানন নয় কারাপ প্রথম স্থান আমা হলো না।

সরল স্পন্দিত গতি বিশ্রেষণ করতে হলে আমাদের করেকটা রাশি ব্যাখ্যা করে নেয়া ভালো। প্রথমটি হতে পারে পর্যায় কলে বা দোলন কাল T। একটা পূর্ণ স্পন্দন হতে যে সময় নেয় সোটা হল্লে পর্যায়কাল বা লোলন আন T। কল্পান্ধ f হচেছে প্রতি মেকেও পূর্ণ স্পন্দনের সংখ্যা রাধাহ $f=\frac{1}{T}$

বাৰ্নি 7.1: (0) মাজে সামা জনজা। টোনে (1) অৰক্ষানে নিতে কেন্দ্ৰে নেবাৰ পৰ্য শিক্ষানি নাম শ্ৰামিক সেখে কুমাছে। প্ৰয়িবিদ্যালয় T যদি নোকেন্দ্ৰ প্ৰকাশ কবি ভাষকো f ধার ধাকক ইয়েছে হাউল (Hz)

সরত স্পালিত গতিতে নিভাব হচ্ছে সাম্যাবস্থা গেকে স্বচেয়ে বেশি উপরো আঁা (কিংনা নিচা নামা) নৃতত । 7.1 ছবিতে যেজাবে দেখানো হয়েছে সেখানে নিভার হজে α .

এর পরের রাশিটি হচ্ছে দশা (Phase), শ্পিতে লগানো করটি যখন ওঠানামা করছে, তখন কোনো এক মুহর্তে যদি ভরটির দিকে তাকাই ভাছলে আমরা দেশব সেটি সামাবিত্বা থেকে কোনো একটি দূরতে থাকবে সেই অবস্থানটি হচ্ছে তার দশা। সরল স্পাদন গতিতে তর এবং স্প্রিংয়ের এই নির্দিষ্ট অরস্থাটি হবছ একইভাবে ফিরে আমবে আরার ঠিক একপর্যার কাল পরে। পদার্থবিজ্ঞানের ভাষার বঁলা যায় সরল স্পন্দিত গতিতে কোনো এক মুদূর্তে যে দশা হয় এক দোলন কাল পর আরার সেই দশা ফিরো আমে

7.2 তরঙ্গ (Wave)

আমরা সবাই তরঙ্গ দেখেছি, একটা পানিতে ঢিল ছুড়ে দিলে সেই বিন্দু থেকে পানির তরঙ্গ চারিদিকে ছড়িয়ে পড়ে। ঘরে বাতি জ্বালালে যে আলো ঘরে ছড়িয়ে পড়ে সেটাও তরঙ্গ। আমরা যখন কথা বলি আর শব্দটা যখন এক জায়গা থেকে অন্য জায়গায় পৌছে যায় সেটাও তরঙ্গ। একটা স্প্রিংকে সংকুচিত করে ছেড়ে দিলে তার ভেতর দিয়ে যে বিচ্যুতিটি ছুটে যায় সেটাও তরঙ্গ, একটা টান করে রাখা দড়ির মাঝে ঝাঁকুনি দিলে যে বিচ্যুতিটি দড়ি দিয়ে ছুটে যায় সেটাও তরঙ্গ। এক কথায় বলা যায় তরঙ্গটি কী আমরা সেটা অনুভব করতে পারি, কিন্তু যদি তার জন্য পদার্থবিজ্ঞানের ভাষায় একটা সুন্দর সংজ্ঞা দিতে চাই তাহলে কী বলবং

সহজ ভাষায় বলা যায় তরঙ্গ হচ্ছে, একটা মাধ্যমের ভেতর দিয়ে এক জায়গা থেকে অন্য জায়গায় শক্তি পাঠানোর একটা প্রক্রিয়া, যেখানে মাধ্যমের কণাগুলো তার নিজের অবস্থানে স্পব্দিত হতে পারে– কিন্তু সেখান থেকে সরে যাবে না।

আমরা এবারে যাচাই করে দেখতে পারি আমাদের এই সংজ্ঞাটি আমাদের অভিজ্ঞতার সাথে মেলে কি না। নদীর মাঝখান দিয়ে একটা লঞ্চ যাবার সময় যে ঢেউ তৈরি করে সেই ঢেউ নদীর কূলে এসে আঘাত করে, কাজেই নিশ্চিতভাবে বলা যায় এক জায়গা থেকে অন্য জায়গায় শক্তি পাঠানো হয়েছে। সেই সময়ে নদীর পানিতে ভাসমান কোনো কচুরি পানার দিকে তাকালে আমরা দেখব যখন ঢেউটি যাচ্ছে সেই মুহূর্তে কচুরি পানাটি উপরে উঠেছে এবং নিচে নেমেছে এবং ঢেউ চলে যাবার পর আবার আগের মতো স্থির হয়ে গেছে এবং মোটেও ঢেউয়ের সাথে সাথে তীরে এসে আছড়ে পড়েনি।

সরল স্পন্দন গতির সাথে তরঙ্গের সম্পর্কটা এখন নিশ্চয়ই তোমরা বুঝতে পারছ। একটা মাধ্যমের কোনো একটা নির্দিষ্ট বিন্দুর দিকে যদি আমরা তাকিয়ে থাকি তাহলে যখন তার ভেতর দিয়ে একটা তরঙ্গ যেতে থাকে তখন সেই বিন্দুটির সরল স্পন্দন গতি হয়। কচুরি পানার বেলায় যেটা ঘটেছিল, যতক্ষণ তার ভেতর দিয়ে পানির তরঙ্গটা গিয়েছে ততক্ষণ সেখানে সরল স্পন্দন গতি হয়েছে। সরল স্পন্দন গতির মাঝে তরঙ্গ নেই. কিন্তু তরঙ্গের প্রত্যেকটা বিন্দু একটা একটা সরল স্পন্দন গতি।

কাজেই তরঙ্গের জন্য আমাদের দেয়া সংজ্ঞাটি সঠিক। তবে মনে রাখতে হবে আরো অনেক ধরনের তরঙ্গ আছে যার জন্য এই সংজ্ঞাটি পুরোপুরি সঠিক নাও হতে পারে। আমরা তরঙ্গে যাবার জন্য একটা মাধ্যমের কথা বলেছি কিন্তু সূর্য থেকে আলো যখন পৃথিবীতে পৌঁছায় তখন তার জন্য কোনো মাধ্যমের প্রয়োজন হয় না। আলো হচ্ছে বিদ্যুৎ চৌদ্বকীয় তরঙ্গ— সেটা নিয়ে নবম অধ্যায়ে আমরা আলোচনা করব। গ্র্যাভিটি ওয়েভ নামে এক ধরনের তরঙ্গের কথা বিজ্ঞানীরা বলছেন, সেটি এখনো দেখা সম্ভব হয়নি কিন্তু তার জন্যও কোনো মাধ্যমের প্রয়োজন নেই। পদার্থবিজ্ঞানের চমকপ্রদ শাখা কোয়ান্টাম মেকানিক্সে ওয়েভ ফাংশন বলে অন্য এক ধরনের তরঙ্গের কথা বলা হয় সেটি আরো বিচিত্র, সেখানে সরাসরি তরঙ্গটি দেখা যায় না শুধু তার প্রতিক্রিয়া অনুভব করা যায়।

কাজেনি আমরা আপাতত আনাদের আলোচনা সীমানছ রাল্য কার্য সব তর্মের মাঝে গার জন্ম কঠিন তরল বা গানেবে মনেচা মাধামের জরকার হয়। এই ধরনেচ করকের নাম যামিক করজ।

7.2.1 তরকের বৈশিল

তাক নিয়ে আলোচনা করার সময় ভার কয়েক ধরনের বৈশিষ্টোর কথা উঠে এসেছে, এখানে আনরা করালো, নিশেষ করে যান্তিক তরন্তর সন বৈশিষ্ট্য নিয়ে আলোচনা করব।

- (i) নাছিক তরজের জনা মানামের দরকার হয়। পানিতে তেওঁ হয়; একটা পিপ্রয়ে তরঙ্গ পাঠানো য়য় একটা দাঁছতে তরঙ্গ সৃদি করা বায়। আমরা য়ে শাদ তনি সোটাত একটা তরজ এবং তার মাধ্যম হয়ে।
 বাতান।
- (ii) একটা মাধ্যমের ভেতর নিয়ে গখন তরঙ্গ বেতে পারে তথন কথাতলো নিজ অবস্থানে থেকে স্পন্তিক কয় (কাঁপে কিংবা ৩পর-নীয়ে য়য়) কিছ কপাঞ্চলা নিজে তর্মের সাথে সাথে যারে সায় য়।
- (iii) করমের ডেজর দিয়ে শক্তি একজ্বন প্রেকে অন্য জ্বানে যেতে পারে। শক্তি যত বেশি হয় তর্গের বিদ্ধার তত্ত বেশি হয়। শক্তি তর্মের নিদ্ধারের বর্গের সমাকুশাতিক- অবাধ বিজ্ঞার রদি হিচুপ হয় শক্তি হয় চার জন।

ছবি 7.2; তিয়া প্রক্রান্তদের তারের ভেতব একটি করম প্রতিক্রিয়া এবং প্রতিব্যবিত হয়েছ। সাল করা থেকে মোটা করে গেলে এক গর্মনের প্রতিদ্বান হয় (a) আরার মোটা কার প্রেকে সার্ক কর্মর গেলে জনা গরনের প্রতিক্রাল হয় (b)

- (IV) সৰা ভৱাজেই একটা বেগা থাকে সেই বেগা ভাৱ মালামের প্রকৃতির ওপার নিউর করে। বাভাসে শব্দের বেগা 330 m/s পানিতে এই বেগা 1430 m/s। ডিলে একটা দড়িকে একটা ভবাষের মত বেগা হবে টান টান করে রাখা দড়িতে হবে ভার পেকে বেলি।
- (v) তরজের প্রতিফলন কিংবা প্রতিসরণ হয়, পরের অধ্যায়ে আলোর জন্য এটি জনেক বঢ় করে আলোরনা করা হয়েছে- আপাতত জেনে রাখ এক মাধ্যম থেকে জন্য মাধ্যমে ধারার সময় তবলের খানিকটা ধনি প্রথম মাধ্যমে ফিলে আসে সেটা হয়েছ প্রতিফলন। (ছবি 7,2) তবল কর প্রথম মাধ্যম থেকে ছিতীয় মাধ্যমে মান্ন সেটা হছে প্রতিসরণ। আমরা যথম শঞ্জের প্রতিসরণ কনি সেটা হছে প্রতিসরণ। প্রাক্তিয়ন লানিতে ভুবে গাকা অবস্থায় যদি বাইরের শক্ত কনি সেটা হছে প্রতিসরণ।

(vi) তরঙ্গের যতগুলো বৈশিষ্ট্য আছে, তার মাঝে সবচেয়ে গুরুত্বপূর্ণ বৈশিষ্ট্য হচ্ছে উপরিপাতন, যদিও আমাদের দৈনন্দিন জীবনে সেটা আমাদের খুব বেশি চোখে পড়েনা। গুরা যাক দুটি ভিন্ন ভিন্ন জায়গা

ছবি 7.3: দুটি তর্গ যোগ হয়ে আরো বড় তর্গ হতে পারে, আবার একটি অন্টেট্রে নিপ্রশেষও করে দিতে পারে।

থেকে এক জায়গার দুটি তরঙ্গ এসে হাজির হয়েছে— একটি তরঙ্গ বখন মাধ্যমটিকে উপরে তুলতে চেষ্টা করছে অনাটি তখন তাকে নামানোর চেষ্টা করছে, তখন কী হবেং এই গুলো হছে উপরিপাতনের বিষয়, যখন তরঙ্গের আরো গভীরে যাবে তখন বিষয়গুলো আরো ভালোভাবে জেনে যাবে, আপাতত শুধুমাত্র সহজ দুটি বিষয় ছবি 7.3 এ দেখানো হয়েছে। দুটো তরঙ্গ একটি আরেকটিকে ধ্বংসও করে দিতে পারে আরার একটি আরেকটিকে আরো বড়ও করে দিতে পারে।

7.2.2 তরক্ষের প্রকার ডেদ

একটা স্প্রিংরের ভেতর দিয়ে একটা
তরঙ্গ বাবার সময় তরঙ্গটি স্প্রিংকে
সংকুচিত এবং প্রসারিত করে এগিয়ে
বায়। আবার একটা দড়ির এক প্রান্তে
একটা বাঁকুনি দিয়ে একটা তরঙ্গ তৈরি
করে দড়ির মাঝে দিয়ে পাঠানো বায়।
দুটি তরঙ্গের মাঝে কিন্তু একটা
মৌলিক পার্থক্য আছে। স্প্রিংরে
তরঙ্গটি ছিল সংকোচন এবং

ছবি 7.4: শব্দ হচেছ বাতামের চাপের কারতে সংকোচন এবং প্রসার্গের। একটি অনুদৈর্ঘ্য তরঙ্গ। এখানে ১. হচেছ তরঙ্গ দৈর্ঘ্য।

প্রসারণের, স্প্রিংটির সংকোচন এবং প্রসারণের দিক এবং তরঙ্গের বেগ একই দিকে- এই ধরনের তরঙ্গের নাম অনুদৈর্ঘ্য তরঙ্গ। শব্দ হচ্ছে এ রকম অনুদৈর্ঘ্য তরঙ্গ (longitudinal wave)। (ছবি 7.4)

দড়িব বেলায় আমরা যখন দড়িটিতে ঝাঁকুনি দিয়ে তরঙ্গ তৈরি করেছি সেখানে দড়ির কম্পনটি কিন্তু তরঙ্গের বেগের দিকে ঘটে না। কম্পনের দিক অর্থাৎ দড়ির ওঠা এবং নামা তরঙ্গের বেগের সাথে কর। এবকম তরামের নাম মনুমাই তরগ (transverse wave)। শানির চাউ হছে এর এক। উনাহরণ।

7.2.3 তর্গ সংশ্লিট রাশি

মাবল স্পালিত গতিতে আমরা যে সকল রাশির কথা কলেছি তার সনগুলোই আগানে তরজের বেলাছ। বারহার করতে পারব। একটা তরজেরও পূর্ব স্পালন হয়, তার পর্যায়কাল আছে, কম্পান্ধ আছে এবং বিশ্বার আছে। আমরা পেশেছি কোনো একটা তরজ বাবার সময় আমরা বিদি মাধামের কোনো একটা কথার দিকে তার্কিয়ে পার্কি তাহকে দেখব সেই কথাটির সরল স্পানিত কম্পন হছেছ। তরজের বেলায় আমরা নূতন দৃটি রাশির কথা বলতে পারি যার একটা হছে তরজ দৈখাঁ। তরজের যে কোনো একটি দশা থাকে তার শববর্তী একই দশাঃ মাঝে দ্বাতু হছেছ তরজ দৈখাঁ। (ছবি 7.4) আগাৎ একপর্যায় আনে একটা তবল মেনুক দ্বাতু অতিক্রম করে সেটাই হছে তরজ দৈখাঁ।

তরাপের সাথে ছিতীয় আরো একটি রাশি রয়েছে যেটা সরল স্পান্ত কল্পনে নেই, লোট হয়েছ তরলের বেগ। প্রতি সেবেহত একটা তরল মৌনুকু দ্বাতু অতিক্রম নারে সেটাট হয়েছ তরলের বেগ। প্রতি নোকেন্তে নো কর্মটি শর্মীয় কাল পাকে মেটি হয়েছ ক্র্মণাংক, ক্র্মণান্ত মনি / গতং ভ্রম্ন দৈর্ঘী যদি এ হয়। ভাহলে বেগ। য

u = fZ

থাকটা তরজ ধরণ একটা হাগাম থেকে জন্য মাগামে
যায় ভগন তার ধ্রেগের শরিবতুন হয় থেহেতু কদপাদ্ধ
কর সময় সমাদ ধাকে তাই তরত কাম এক মাধ্যম
থেকে জন্য মাগামে যায় তগন ভার তরজ নৈর্ঘার
পরিবর্তন হয়। অর্থাৎ তরজ বিভিন্ন মাগ্যমের ভেতর
দিয়ে যাবার সময় তার তরজ দৈর্ঘার কিবো বেশের
পরিবর্তন হয় নিন্তু কদপাদ্ধের বা পর্যায়কালের কথনো
পরিবর্তন হয় নিন্তু কদপাদ্ধের বা পর্যায়কালের কথনো

श्चीन 7.5: नवश्चाठात गाइश्राच्य ध्वादि करण

উলাহবৰ 7,2; তাৰ 7,5 ও এখানি কমন নেৰালো হয়েছে এব বিষয়ে, কৰণ দৈয়া নোলো কাল কম্পনা এবা কে' কেব কৰে। ।

উত্তর: ব্যক্তালৈ নিজান () 1m প্রবণ করন দৈয়া 2m এই ছবিতে যে বলা দেয়া আছে নেয়া। গেছে প্রবাস্থ কাল, কল্পান না দেয়া কের করা দছন নয়। উল্লেখ্য করলা অনুনাট একটা ব্যক্তিন নালোহ নিজেই মহো াপান গেছে জার জন্য দিয়া কেন করা মহল নয়-এটি একটি নিজি সমতে ব্যক্তি অবস্থা। সময়ের গালে প্রস্থানের কিজানে প্রিক্তিন নিজেক মরেতে প্রথমেন কে নাগানের কেলে কাল কেন

উদাহরণ 7.3: ছান্তে জন্য একটি তরঙ্গ দেখানো হায়েছে এল বিভার তরঙ্গ দৈর্ঘা পর্যায় কাল কম্পন এবং বেগ বের করে।।

ছবি 7.6: সময়ের সাপেকে একটি তরদ

উক্তর: এই তরঙ্গের বিষয়ের 0.1702 পর্যায় কাল 25, এই ছবি থেকে জনা কোনো তথ্য বের করা শস্তব না। এই ছবিটিতে একটা নিনিই হালে সময়ের দাখে লাখে তরঙ্গাটি কীতাবে পরিবর্তিত হাছে গোটি সেখানো হয়েছে কাজেই এখন থেকে ত্রঙ্গ দৈশা কত বলা সমর না।।

উদাহরণ 7.4: 7.7 ছবিতে একটি নিদিউ সময়ে বিভিন্ন অবস্থানে এবং একটি নিদিউ

অবস্থানে বিভিন্ন সময়ে একটি ভরঙ্গের বিভিন্ন অবস্থা (দেখালো হয়েছে। এর বিজ্ঞান ভয়ক বৈশ্য, দোলমকাল কম্পন এবং বেগ বের করে।

উন্তর: প্রথম ছবি থেকে আমরা দেখতে পাছি তরঙ্গটির বিভার a=1m তরঙ্গ দৈর্ঘ্য $\lambda=1m$

দিতীয় ছবি থেকে আমন। দেখতে গাচিত তরগটিত

নিজন ho=1m্রনালন কাল T=0.2s্রনালন কালে থেকে কম্পন f সের করতে পারি

ছবি 7.7: প্রবস্থান এব: সময়ের সাপেক্ষে একটি তরম

$$f = \frac{1}{T} = 5x^{-1} = 5Hz$$

কাজেই দুটি ছবিন তথা বাবহার করে আমরা বলতে পানি তবজানি বেশ দ

$v = \lambda f = 1m \times 5m/s^{-1}$

উদাহরণ 7.5: ছবি 7,8 এ একটি তরদের বিভিন্ন অবস্থা দেখানো হয়েছে, কোন কোন অবস্থানে দশা একং

উত্তর: A এবং C তে দশা এক

A এবং B তে তরঙ্গের মান সমান
হলেও দশা নিপরীত

D এবং E তে মান সমান হলেও দশা
এক নম।

ছবি 7.8: ভিন্ন ভিন্ন অবস্থানে একটি তরকের দশা

7.3 শব্দ তরন্ধ (Sound Wave)

শব্দ তরঙ্গ তৈরি করতে তার একটা উৎসের দরকার, সেটাকে পাঠানোর জন্য একটা মাধ্যমের দরকার এবং সেই শব্দ গ্রহণ করার জন্য কোনো এক ধরনের রিসিভার দরকার। আমাদের চারপাশে অসংখ্য শব্দের উৎস রয়েছে। অবশ্যই সবচেয়ে পরিচিত উৎস আমাদের কণ্ঠ, সেখানে যে ভোকাল কর্ড আছে আমরা তার ভেতর দিয়ে বাতাস বের করার সময় সেখানে যে কম্পন হয় সেটা দিয়ে শব্দ তৈরি হয়। কথা বলার সময় আমরা যদি গলায় স্পর্শ করি তাহলে আমরা সেই কম্পনটা অনুভব করতে পারব। আমাদের কণ্ঠ ছাড়াও স্পিকার শব্দের উৎস হিসেবে কাজ করে, সেখানে যে পাতলা ডারাফ্রাম রয়েছে সেটিকে সুনির্দিষ্টভাবে কাঁপিয়ে শব্দ তৈরি করা হয়। স্কুলের ঘন্টার মাঝে আঘাত করলে সেটি কাঁপতে ওব্দ করে শব্দ তৈরি করে এবং তখন হাত দিয়ে সেটাকে চেপে ধরে কম্পন বন্ধ করে ফেলা যায় সাথে সাথে শব্দও বন্ধ হয়ে যাবে। গিটারের তারে ঠোকা দিলে সেটি কাঁপতে থাকে এবং শব্দ তৈরি করে। ল্যাবরেটরিতে সূর শলাকা দিয়ে নির্দিষ্ট কম্পনে শব্দ তৈরি করা যায়।

কম্পন দিয়ে শব্দ তৈরি করার পর সেটিকে এক জায়গায় পেকে অন্য জায়গায় পাঠানোর জন্য একটা মাধ্যমের দরকার হয়। শব্দ তরল কিংবা কঠিন পদার্থের ভেতর দিয়েও পাঠানো য়ায় কিন্তু আমরা বাতাসকে মাধ্যম হিসেবে ব্যবহার করেই শব্দ শুনে অভ্যন্ত। মাধ্যম ছাড়া যে শব্দ যেতে পারে না সেটি দেখানোর জন্য ল্যাবরেটরিতে 7.9 ছবিতে দেখানো উপায়ে একটা কলিং বেল রেখে সেটাকে বাইরে থেকে বিদ্যুৎ সরবরাহ করে বাজানো যেতে পারে। তারপর একটা পাম্প দিয়ে ধীরে ধীরে বায়ুশূনা করা তরশ্দ করলে কলিং বেলের শব্দ মৃদু হতে ভরগ্ করেবে। বেলজারটি পুরোপুরি বায়ুশূনা করা হলে ভেতরে কলিং বেলটি বাজতে থাকলেও বাইরে থেকে মান হবে সেটি কোনো শব্দ তৈরি করছে না।

আমরা আমাদের কান দিয়ে শব্দ শুনতে পাই। শব্দের কম্পন যদি $20~H_Z$ থেকে $20,000~H_Z$ এর মাঝখানে থাকে তাহলে সেই শব্দ শোনা যায়। (তবে কানে হেডকোন লাগিয়ে অবিরত গান শুনে কিংবা প্রচ²² শব্দ দূয়ণে থাকলে অনেক সময় শোনার ক্ষমতা কমে যায়।) শব্দের কম্পন $20~H_Z$ থেকে কম হলে সেটাকে ইনফ্রা সাউন্ড এবং $20~H_Z$ থেকে কম হলে সেটাকে ইনফ্রা সাউন্ড এবং $20~H_Z$ থেকে বেশি হলে আলট্রা সাউন্ড বলে। $20~H_Z$ থেকে কম কিংবা $20,000~H_Z$ থেকে বেশি কম্পন তৈরি করা হলে সেটি বাতাসে যে আলোড়ন সৃষ্টি করবে আমরা সেটি শুনতে পারব না। তবে এ ধরনের শব্দের অন্তিত্ব বুঝতে হলে আমরা বিশেষ ধরনের মাইক্রোফোন বা রিসিভার ব্যবহার করতে পারি। অনেক পশুপাধি কম কম্পান্ধের শব্দ শুনতে পায়। ভূমিকম্পের আগে আগে এ ধরনের কম কম্পান্ধের শব্দ তৈরি হয় এবং অনেক সময় পশুপাধি সেই শব্দ শুনে আতংকে ছোটাছটি করেছে সে ধরনের ঘটনা ঘটেছে বলে জানা গেছে।

ছবি 7.9: বেলজার থেকে বাতাস পাম্প করে সরিয়ে নিলে কলিং বেলে শব্দটি আর শোনা যাবে না

উদাহরণ 7.6: 1kHZ কম্পনের একটি সুর শলাকা বা টিউনিং ফর্ক দিয়ে শব্দ তৈরি করে সেটি বাতাসে পানিতে এবং লোহার ভেতর দিয়ে প্রাহিত হতে দিয়ে তার বেগ নির্ণয় করে দেখা গেছে শব্দের বেগ বাতাসে 334m/s, পানিতে 1493m/s এবং লোহার ভেতরে 5130m/s কোন মাধ্যমে তরঙ্গ দৈর্ঘ্য কত?

উত্তরঃ তরঙ্গের বেগ $v=\lambda f$ যেখানে λ তরঙ্গের দৈর্ঘ্য এবং f কম্পন। এখানে কম্পন 1kHz বা 1000~Hz, কাজেই

নতালে
$$\lambda=rac{v}{f}$$
 বাতালে $\lambda=rac{334ms^{-1}}{10^3s^{-1}}=0.3m$ পানিতে $\lambda=rac{1493ms^{-1}}{10^3s^{-1}}=1.49m$ লোহায় $\lambda=rac{5130ms^{-1}}{10^3s^{-1}}=5.13m$

7.3.1 প্রতিধানি

শন্দ মেহেছ এক শানের তরস তাই করা প্রতিকলণ হতে লানে। সাধারণত বড় জীবন নাগানের তেতন কর্মা নমনে এক বরনের গমগম আওয়াজ হয় সেটি প্রতিকগন ছাড়া আর কিছু নয়। দাগানের ভেতর দূরত বেশি নয় বলে শন্দী আলাদাজারে কনতে পাই না। আমরা মধন কিছু ক্রি তার অনুস্কৃতিটা $0.1 \, s$ পর্যন্ত গোলে রায় তাই বৃথি শল আলাদাজারে জনতে হলে ঘুটি শলের মাঝে অমপানে $0.1 \, s$ এর একটা ক্যাদাল থাকা দরকার। শন্দের বেগ $330 \, m/s$ কাজে $0.1 \, s$ এর ব্যৱধান তৈরি করতে শন্দকে কমপ্রকে $33 \, m$ সুরক্ত অতিক্রেন ক্রান্তে ইন । একটি বড় দেয়াল, নালান কিবল পাড়া পাহাড়ের সামনে কমপ্রকে এই দ্রত্বের অর্থক দ্বত্বে $(16.5 \, m)$ দায়ালে শন্দান গিয়ে প্রতিক্রিত হয়ে ফিরে আলতে $0.1 \, s$ নময় লাগ্যে কর্ম্ব প্রাম্ব প্রতিক্রিত হয়ে ফিরে আলতে $0.1 \, s$ নময় লাগ্যে কর্ম্ব প্রাম্ব প্রতিক্রিত হয়ে ফিরে আলতে $0.1 \, s$ নময় লাগ্যে কর্ম্ব প্রাম্বা শন্দের প্রতিক্রিক ভন্তে পাব।

বাদুরের চোপ আছে এবং সেই চোপে নেশ ভালো দেখতে পান তারপরও তারা ওজার সময়।
শব্দের প্রতিধবনি ব্যবহার করে। বাদুর ওজার সময় তার কর্ত থেকে শব্দ তৈরি করে, সামনে কোনো কিছু
আকলে শব্দি সেবানে প্রতিফলিত হয়ে ফিরে আসে, কতকপ পর শব্দি কিরে এসছে সেখান প্রতে বাদুর
দরত্তী অনুমান নাতে পারে। এ জন্ম অন্ধন্ধকিও বাদুর কোপাও দাভা না কোনে উড়ে থেকে পারে।
বাদুরের তৈরি নাই শব্দ আমন্ত কাতে পাই না কারণ শব্দি আনটো-লাউড অর্থাৎ আমাদের শোনান।
বাইতের কম্পাত্রের শব্দ।

7.3.2 শলের বেলের পার্থকা :

রাজানে শব্দের বেগ কাগ্যানের রস্মুদের বাত আনুসাতিক সংগ্রহ

 $n \propto \sqrt{T}$

এবানে তাগমাতা কিন্তু সেগসিয়াস তাপমাতা নয়-কেণ্ডিন শেলে তাপমাতা।

শব্দের বেগ বাতাসের চাপের ওপর নির্ভব করে না করে বাতাসের দনতের বর্গমূলের ওপর বাজানুশাতিক ভাবে নির্ভর করে। তাই বাতাশে কণীয় বাপ্প পাকলে বাতাসের দনত করে বার সে জন্ম শব্দের রেগ রেজে নাম।

টোবিল 7.1 বিভিন্ন মাধ্যমে শব্দের বেগ

মাধাম	m/s
রাত্যস	330
হাইড্রোজেন	1,284
পরিদ	1,450
পানি	1,493
লোহা	5,130
होता	12,000

শ্বৰ একটি যাত্ৰিক অৱস্ক। এটি মাধ্যমের স্থিতিস্থাসকলার ওপর নিতর করে। অরণ এবং ক্রিণ পদার্শের প্রকৃতি বাডাল গেকে জিল্ল এবং সাজাবিক কারণেই শব্দের রেগ সেলানে জিল্ল। জন্মগে শব্দের রেগ। বাতাস থেকে বেশি এবং কঠিন পদার্থে শব্দের কো তরল থেকেও বেশি। টেনিল 5.1 এ বিভিন্ন মাধ্যমে শব্দের কো দেখালো হয়েছে।

ভিদাহরণ 7.7: কোনো জায়গায় শীতকালে ভাগমাত্রা 10° ে এক শব্দের কেল $332^{\circ}m/\wp$: গ্রীমকালে তাপমাত্রা বেড়ে 30° C হলে শব্দের কেল কত?

উভর: ৮ 🗴 √T

$$\frac{v_1}{v_2} = \sqrt{\frac{T_1}{T_2}}$$

$$v_1 = v_2 \sqrt{\frac{T_1}{T_2}} = 332 \sqrt{\frac{273 + 30}{273 + 10}} m/s = 343.5 m/s$$

7.3.3 শব্দের ব্যবহার

আলট্রাসনোহাফি: শব্দের প্রচলিত ব্যবহারের কথা নিশ্যরই আর কাউকে আলাদা করে রলতে হবে না, আমরা কথা বলি, গান শ্বনি, ডাজারেরা হৃদস্পদন শোনেন, ইঞ্জিনিয়াররা যন্ত্রপাতির শব্দ শোনেন ইত্যাদি ইত্যাদি। শব্দের আরো কিছু ব্যবহার আছে, যার কথা তোমরা হয়তো শোনোনি। সন্তানসম্ভবা মায়ের গর্জে যে নবজাতকটি বড় হয় বাইরে থেকে তাকে দেখার কোনো উপায় ছিল না, এখন আলট্রা সনোহাফি নামে একটি প্রক্রিয়ায় মায়ের গর্জে আলট্রাসাউন্ড পাঠানো হয়, শিশুর শরীর থেকে প্রতিফলিত হয়ে যেটুকু ফিরে আসে সেটাকে ব্যবহার করে শিশুর শরীরের একটা রূপ বের করে আনা হয়। শুধু সন্তানসম্ভবা মায়েদের জন্য নয় শরীরের ভেতরের অঙ্গপ্রত্যঙ্গও এটি ব্যবহার করে দেখা সম্ভব হচ্ছে। আধুনিক আলট্রাসনোহাফির অনেক

ছবি 7.10: মায়ের গড়ের্ড নিখৃত আলট্রালাউড ত্রিমাত্রিক ছবি

উন্নতি হয়েছে এবং একই সাখে ভিন্ন ভিন্ন দিক থেকে আলট্রাসাউন্ত পাঠিয়ে সেটাকে ধারণ (Detect) করে একটা নির্যুত ত্রিমাত্রিক ছবি পাওয়া সম্ভব হচ্ছে(ছবি 7.10)।

ব্রিমাত্রিক সিসমিক সার্ভে: মাটিব নিচে গ্যাস বা তেল আছে কি না দেখার জন্য সিসমিক সার্ভে করা হয়। এটি করার জন্য মাটির খানিকটা নিচে ছোট বিক্ষোরণ করা হয়, বিক্ষোরণের শব্দ মাটির নিচের বিভিন্ন

ale 7.11: গণ কর্ম প্রতিফলন গোকে জ্পুতের ভিন্ন ভিন্ন কে সম্পদ্ধ তথা জালা বাব ।

নানা আখাত করে প্রতিক্ষিত হয়ে উলতে দিরে
আগে। তিওফোল (Geophone) নানে বিশেষ
এর ধরনের রিসিভারে সেই প্রতিক্ষণিত তরপ্রকে
দারাদ (Detect) করা হয়। সমত তথ্য-বিশ্লেষণ
করে মাটির নিচের নিযুত বিমারিক ছবি বের করে
কোপানা পালে বা কোপায় তেল আছে বের করে
নানা হন। শক্ষে উৎসটি কোপান আছে এবং
নিরা হন। শক্ষের উৎসটি কোপান করার কারণে
উৎস থেকে ভিওফোনে শক্ষ আলতে কতটুকু সমন
লোগেছে স্থানতত পার্গেই বিভিন্ন স্থবের দূরত্ব
নির্গুতভারে বের করা নানা।

আগট্রাসাইত কিনাব: গ্যাবরেটারতে কথন ছোটখাটো সম্প্রাতি নির্যুত্তারে পরিক্রম করতে হয় তলন আগট্রাসাউত ক্লিনার ব্যবহার করা হয়। এখানে ক্যোনো একটি তরলে ছোটখাটো সন্ত্রণাতি তুনিয়ে যেনে তার তেতর আর্ট্রাসাউত পাঠানো হয়, তার হস্পানে যন্ত্রপাতির সব ময়লা বের হয়ে আলে।

7.3.4 সুরযুদ্ধ শব্দ

आयारमत गोपार्थ गांमा धतरम्य शंक तरार्थ योग योग विष्कु विष्कु शंक उत्तर आयारमण योगा गांरा। आयार विष्कु विष्कु अगर्य आयारमत विश्वकि रहा। एग मक्त रूक उत्तर आयारमत खाडा। गार्श ठांत भारत मनदाराः अगारमत खाडा। गार्श ठांत भारत मनदाराः अगार रहे विस्ति गामगार्ख्य भक्त। 7.12 इतिए दम्भ अग्राक्ति वामगार्ख्य भारत्य ठार्थ दम्भाग इरस्ट्राह्म। दम्भाग सम्बद्ध शाह्म दम्ब मनदानाई भर्मवृत्य कस्थाग। मृद्यमानाका ना विविन्तियन्तं शह्म निर्मूण द्यविष्ठि

प्रवि 7,12: रिजा विकास समित नाम कराण ।

ের একটি ত্যক্ত যাকে দা এবদ্ধিত ত্রজ গ্রহণারের প্রগর উপস্থাপদ করে শ্রদটাকে সুরেজা ঘরে ভ্যোতা। সুরেজা শতকে ব্যাস্থ্যা করার জনা প্রকেজ্যতো বৈশিল্প সংজ্ঞায়িত করা হয়েছে। সেগ্রতো হয়েছে টোন (Tone): আলাদাভাবে শোনা সম্ভব সে রকম সুরেলা শব্দ (সা রে গা মা পা ধা নি সা)

পিচ (Pitch): কম্পাদ্ধ

রিদম (Rhythm): তাল

টেম্পো (Tempo): কত দ্রুত

কনটুর (Contour): সুরের তারতমা

টিমার (Timbre): ভিন্ন ভিন্ন বাদাযন্ত্রের থেকে আসা শব্দের মাঝে পার্থক্য যে বৈশিষ্ট্য দিয়ে বোঝা যায় সেটি হচ্ছে সুরের গুণ বা জাত

প্রাবল্য (Loudness): সুরেলা শব্দের প্রাবল্য কত জোরে শোনা যাছে

অবস্থান (Spatial location), সুরেলা শব্দ কোথা থেকে আসে তার অবস্থান

রিভারবেরাশেন (Reverberation); প্রতিধ্বানর পরিমাপ

সুরেলা শব্দ তৈরি করার জন্য নানা ধরনের বাদ্যযন্ত্রের ব্যবহার করা হয়, সেগুলোকে মোটামুটি তিন ভাগে ভাগ করা যায় :

তার দিয়ে তৈরি বাদ্যযন্ত্র: একতারা, বেহালা, সেতার বাতাসের প্রবাহ দিয়ে তৈরি বাদ্যযন্ত্র: বাঁশি, হারমোনিয়ামক আঘাত (Percussion) দিয়ে শব্দ তৈরি করার বাদ্যযন্ত্র: ঢোল, তবলা

আজকাল ইলেক্সনিক্স ব্যবহার করে সম্পূর্ণ ভিন্ন উপায়ে সুরেলা শব্দ তৈরি করা হয়।

7.3.5 শব্দের দূরণ

শব্দ আমাদের জীবনের খুব প্রয়োজনীয় একটি বিষয়, কিন্তু এর বাড়াবাড়ি আমাদের জীবনকে অসহনীয় করে তুলতে পারে। আমরা যারা শহরে থাকি, বিশেষ করে যারা বড় একটি রাস্তার পাশে থাকি তারা নিশ্চয়ই লক্ষ করেছি রাস্তায় বাস, গাড়ি ট্রাকের ইঞ্জিনের শব্দ এবং অনবরত হর্নের শব্দ প্রায়

টেবিল 7.2: বিভিন্ন ধরনের শব্দের পরিমান

জেট ইঞ্জিন	$110 - 140 dB \\ 80 - 90 dB$	
ট্রাফিক		
গাড়ী	60 - 80 dB	
টেলিভিশন	50 - 60 dB	
কথাবাৰ্তা	40 - 60 dB	
নিম্বাস	10 dB	
মশার পাখার শব্দ	0 dB	

সময়েই সহনশীল সহ্য সীমার বাইরে চলে যায়। দীর্ঘদিন এই শব্দ দৃষণে থাকতে থাকতে আমরা অনেক সময় তাতে অভ্যন্ত হয়ে যাই তথন যদি শব্দ দৃষণ নেই সে রকম কোনো নিরিবিলি জায়গায় যাওয়ার সৌভাগ্য হয় তখন হঠাৎ করে শব্দ দূষণ ছাড়া জীবনের অনেকটুকুর গুরুত্বটুকু ধরতে পারি। বিভিন্ন ধরনের শব্দের পরিমাণ 7.2 টেবিলে দেখানো হয়েছে।

এটি বলার অপেক্ষা রাখে না শব্দ দূষণের কারণে আমাদের শোনার ক্ষমতার অনেক ক্ষতি হয়। সমস্যাটিকে বাড়িয়ে তোলার জন্য আমাদের অনেকে অপ্রয়োজনেও কানে হেডফোন লাগিয়ে গান শোনে।

শব্দ দূষণ কমানোর জন্য প্রথম প্রয়োজন দেশে এর বিরুদ্ধে আইন তৈরি করা যেন কেউ শব্দ দূষণ করতে না পারে এবং করা হলে তার বিরুদ্ধে আইনি ব্যবস্থা নেয়া যায়। এর পর প্রয়োজন জনসচেতনা। সবাইকে বিষয়টি বোঝাতে হবে, যথাসম্ভব কম হর্ন ব্যবহার করে চলাচল, কলকারখানায় শব্দ শোষণের যন্ত্র চালু, মাইকের ব্যবহার কমিয়ে কংবা বন্ধ করে দেয়া, কম শব্দের যানবাহন ব্যবহার ইত্যাদি। একই সাথে শহরের ফাঁকা জায়গায় প্রচুর গাছ লাগিয়ে শব্দকে শোষণ করার মতো ব্যবস্থাও নেয়া উচিত।

जनुशी ननी

216

- 1. দেখাও যে একটি তরঙ্গ শক্তিকে এক জায়গা থেকে অন্য জায়গায় নিতে পারে।
- 2. শীষ দিলে শব্দ হয় কেন?
- "তরঙ্গ প্রবাহিত হওয়ার সময় মাধাম প্রবাহিত হয় না, নিজ অবস্থানে তার সরল ছন্তিত স্পন্তন হয়"
 সত্য না মিখ্যা?
- 4. বজ্ৰপাত হলে শব্দ হয় কেন?
- ওড়ার সময় আলট্রা-সাউভ শব্দ তৈরি না করে ইনক্রা-সাউভ শব্দ তৈরি করলে বাদুড়ের কী সমস্যা
 হতো?

গাণিতিক সমস্যা:

1. 7.13 ছবিতে অবস্থান এবং সময়ের সাপেকে একটি তরঙ্গ দেখানা হয়েছে। তরঙ্গটির বেগ কত?

ছবি 7.13; অবস্থান এবং সময়ের সাপেকে একটি তরঙ্গ।

- 2 বেগ এবং শব্দের বেগ-এর অনুপাতকে MACH বলে। MACH 9 যুদ্ধবিমানের গতিবেগ কত?
- 3, কোনো একটি শহরে গ্রীষ্মকালে শব্দের বেগ 0.05% বেড়ে গেছে। শীতকালে তাপমাত্রা 10% হলে গ্রীষ্মকালে তাপমাত্রা কত?
- আমরা 20Hz থেকে 20 kHz পর্যন্ত শব্দ গুনতে পারি। 20Hz এবং 20kHz শব্দের তরক দৈর্ঘ্য কত?
- 5. $dB=10\log\left(\frac{P_2}{P_1}\right)$ P_2 জেট ইঞ্জিনের শব্দ এবং P_1 মশার পাখার শব্দ হলে, জেট ইঞ্জিনের শব্দ মশার পাখার শব্দ থেকে কতো গুণ বেশি?

অষ্টম অধ্যায় **আলোর প্রতিফলন** (Reflection of Light)

Ernest Rutherford (1871-1937)

আরনেস্ট রাদারফোর্ড

আরনেস্ট রাদারফোর্ডের জন্ম নিউজিকল্যান্ডে এবং কর্মজীবনের একটা বড় অংশ কাটিয়েছেন ইংল্যান্ডে। তেজন্ধিয়তা নিয়ে কাজ করার জন্য তাঁকে রসায়নে নাবেল পুরস্কার দেয়া হয়। তিনি তার বড় কাজগুলো করেছিলেন নাবেল পুরস্কার পাওয়ার পর। পদার্থবিজ্ঞানে তাঁর সবচেয়ে বড় অবদান পরমাণুর কেন্দ্রে অত্যন্ত ক্ষুদ্র নিউক্লিয়াসের ব্যাখ্যা দেয়া। তিনি যে শুধু নিজে অত্যন্ত বড় একজন ব্যবহারী পদার্থবিজ্ঞানী ছিলেন তা নয়, তিনি তাঁর সহকমী এবং ছাত্রদের দিয়েও অনেক বড় গবেষণা করিয়েছেন। তিনি তাঁর হার্নিয়াকে অবহেলা করে যথাযথ চিকিৎসা না করায় এক ধরনের জটিলতায় মারা যান।

8.1 আলোর প্রকৃতি (Nature of Light)

আমরা চোখে যেটা দেখতে পাই সেটা হচ্ছে আলো। আমরা চোখে গাছপালা দেখি, আকাশ দেখি, চেয়ার-টেবিল মানুষ দেখি তার মানে এই নয় যে গাছপালা আকাশ চেয়ার-টেবিল কিংবা মানুষ হচ্ছে আলো! এগুলো থেকে আলো প্রতিফলিত হয়ে সেই আলোটা আমাদের চোখে পড়ে, চোখের রেটিনা থেকে সেই আলো দিয়ে তৈরি সংকেত আমাদের মস্তিঙ্কে পৌছায় আর আমাদের মস্তিঙ্ক বুঝতে পারে কোনটা গাছপালা কিংবা কোনটা মানুষ। পুরো ব্যাপারটা শুরু হয় চোখের মাঝে আলো ঢোকা থেকে।

আলো হচ্ছে বিদ্যুৎ চৌম্কীয় তরঙ্গ। তরঙ্গ হলেই তার একটা তরঙ্গ দৈর্ঘ্য থাকে তার মানে আলোরও নিশ্চয়ই তরঙ্গ দৈর্ঘ্য আছে। আমরা যারা পুকুরে ঢিল ছুড়ে কিংবা একটা দড়িতে ঝাঁকুনি দিয়ে তরঙ্গ তৈরি করেছি তারা জানি যে ইচ্ছে করলেই ছোট বড় তরঙ্গ দৈর্ঘ্যের তরঙ্গ তৈরি করা যায়, তাই আলোরও নিশ্চয়ই নানা দৈর্ঘ্যের তরঙ্গ দৈর্ঘ্য থাকতে পারে। কথাটা সঠিক, বিদ্যুৎ চৌম্কীয় তরঙ্গের দৈর্ঘ্য যা কিছু হতে পারে। সেটা কয়েক কিলোমিটার থেকেও বেশি হতে পারে আবার এক মিটারের ট্রিলিওন ট্রিলিওন ভাগের এক ভাগও হতে পারে। যে বিষয়টো আমানের ভালো করে জানা দরকার সেটি হচ্ছে এই

সম্ভাব্য বিশাল তরঙ্গ দৈর্ঘ্যের ছোট একটা অংশ আমরা দেখতে পাই, তরঙ্গ দৈর্ঘ্য এর থেকে বেশি হলেও আমরা দেখতে পাই না আবার এর থেকে ছোট হলেও আমরা দেখতে পাইনা। তরঙ্গ দৈর্ঘ্য 400 nm থেকে 700 nm এর ভিতরে হলে আমরা বিদ্যুৎ চৌদকীয় তরঙ্গ দেখতে পাই এবং সেটাকে আমরা বলি আলো। আমরা যে চোখে নানা রং দেখতে পাই সেগুলোও আমলে বিভিন্ন তরঙ্গ দৈর্ঘ্যের আলো। তরঙ্গ

ছবি ৪.1: আলোর স্পেকটোম এবং ভিন্ন বিংনে চোখে সংবেদনশীলতা

দৈর্ঘ্য ধখন ছোট হয় সেটা হয় বেগুনী। যখন তরক্ষ দৈর্ঘ্য বাড়তে থাকে তখন সেটা নীল সবুজ হলুদ কমলা লাল হয়ে চোখের কাছে অদৃশ্য হয়ে যায়! মানুষের চোখ এই ব্যাপ্তির এর বাইরে তরঙ্গ দৈর্ঘ্য দেখতে পায় না- কিন্তু পোকা মাকড় বা অন্যান্য অনেক প্রাণী এর বাইরেও দেখতে পায়! বিভিন্ন আলোতে মানুষের চোখের সংবেদনশীলতা 8.1 ছবিতে দেখানো হয়েছে।

8.1 ছবিতে আলোর বিভিন্ন তরঙ্গ দৈর্ঘেরে নামগুলো দেখানো হয়েছে। তরঙ্গ দৈর্ঘ্য রাদি দুশ্যমান আলোর সবচেয়ে ছোট তরঙ্গ দৈর্ঘ্য থেকেও ছোট হয় সেটাকে আমরা বলি আলট্রা ভায়োলেট আলো, আরো ছোট হলে এক্স রে আরো ছোট হলে গামা রে- যেটা তেজকৃয় নিউক্লিয়াস থেকে বের হয়। আবার তরঙ্গ দৈর্ঘ্য যদি দুশ্যমান আলোর সবচেয়ে বড় তরঙ্গ দৈর্ঘ্য থেকেও বড় হয় সেটাকে আমরা বলি

ইনফ্রারেড আরো বড় হলে মাইক্রোওয়েভ আরো বড় হলে রেডিও ওয়েভ! পদার্থ বিজ্ঞান শিখতে হলে যে বিষয়গুলো জানতে হয়, বিদ্যুৎ চৌম্বকীয় তরঙ্গের এই বিভাজনটি হচ্ছে তার সবচেয়ে গুরুত্বপূর্ণ একটা বিষয়।

তোমরা দেখতেই পাচছ আমরা আমাদের চোখে যে আলো দেখতে পাই তার তরঙ্গ দৈর্ঘ্য খুবই ছোট কিন্তু পদার্থবিজ্ঞানের অনেক চমকপ্রদ পরীক্ষা আছে যেগুলো দিয়ে আমরা এই তরঙ্গের নানা চমকপ্রদ এক্সপেরিমেন্ট করতে পারি।

আলো সম্পর্কে আমরা যদি জানতে চাই তাহলে শুরু করতে পারি প্রতিফলন দিয়ে।

8.2 প্রতিফলন (Reflection)

প্রতিফলন কথাটা বলতেই আমাদের প্রায় সবার চোখেই আয়নার সামনে দাঁড়িয়ে থাকার ছবিটা ভেসে ওঠে কিন্তু মনে রাখতে হবে প্রতিফলন বিষয়টা আরো অনেক ব্যাপক। যখনই এক মাধ্যম থেকে অন্য মাধ্যমে আলোকে পাঠানো হয় তখনই আসলে তিনটি ভিন্ন ভিন্ন ঘটনা ঘটে, তার একটি হচ্ছে প্রতিফলন। অন্য দুটি হচ্ছে প্রতিসরণ আর প্রতিশোষণ। (ছবি 8.2)

প্রথম মাধ্যম থেকে দ্বিতীয় মাধ্যমে যাবার সময়

ছবি 8.2: এক মাধ্যম থেকে অন্য মাধ্যমে আলোর প্রতিফলন, প্রতিসরণ ও প্রতিশোষণ।

খানিকটা আলো আবার প্রথম মাধ্যমেই ফিরে আসে সেটার নাম হচ্ছে প্রতিফলন। খানিকটা আলো দ্বিতীয় মাধ্যমে ঢুকে যেতে পারে সেটা হচ্ছে প্রতিসরণ। আবার খানিকটা আলো শোষিত হয়ে যায় সেটার নাম হচ্ছে প্রতিশোষণ। এই অধ্যায়ে আমরা প্রতিফলন এবং পরের অধ্যায়ে প্রতিসরণ নিয়ে আলোচনা করব।

আলো এক ধরনের তরঙ্গ, সাধারণভাবে তরঙ্গের যাওয়ার জন্য মাধ্যমের প্রয়োজন হয়, (পানি না থাকলে পানির ঢেউটা হবে কোথায়?) কিন্তু আলোর বিষয়টা সম্পূর্ণ ভিয়্ন, এটা যেহেতু বিদ্যুৎ এবং চৌম্বক ক্ষেত্রের তরঙ্গ তাই এটার জন্য কোনো মাধ্যমের দরকার নেই, আলো তার বিদ্যুৎ আর চৌম্বক ক্ষেত্র দুটির তরঙ্গ তৈরি করে নিজেরাই চলে যেতে পারে। কাজেই প্রতিফলন বা প্রতিসরণ ব্যাখ্যা করার জন্য যখন প্রথম এবং দ্বিতীয় মাধ্যমের কথা বলা হয়েছে তখন একটি মাধ্যম আসলে শূন্য মাধ্যমও হতে পারত। সত্যি কথা বলতে কী আমাদের দৈনন্দিন জীবনে আমরা কাচ বা পানিতে আলোর প্রতিফলন এবং প্রতিসরণের যে উদাহরণগুলো দেখি স্বানে একটা মাধ্যম বাতাস অন্যটি কাচ (কিংবা পানি)। বাতাস এত হালকা মাধ্যম যে সেটাকে শূন্য মাধ্যম ধরে নিলে এমন কিছু বড় ভুল হয় না।

8.2.1 थि छिक्नात्मत मुज

প্রতিফলনের সূত্র বোঝার আমো আমাদের কয়েকটা বিষয়কৈ সংজ্ঞায়িত করে নেয়া দরকার। যখন এক মাধ্যম থেকে অনা মাধ্যমে আলো এসে পড়ে আমরা আপাতত ধরে নিই সেটি হচ্ছে একটা সমতল। বিষয়টি বোঝার জন্য আমরা গরে নিই যে আলোটা প্রতিফালিত হবে সেটা একটা আলোক রেখা বা আলোক রিশা এক মাধ্যম থেকে অন্য মাধ্যমের ওপর একটা বিন্দৃতে এসে পড়ে প্রথমেই সেই বিন্দু থেকে একটা লম্ম করনা করে নিতে হবে। যে আলোক রিশাটি এসে সেই বিন্দুটিতে পড়েছে এবং যে লখটি

ভবি 8.3: প্রথম মাধ্যম খোকে দ্বিতীয় নাগাকে আলোদ। প্রক্রিফলন ।

কল্পনা করেছ সেই দুটি রেখাকে নিয়ে একটি সমতল কল্পনা করে নাও। (হার 8.3)

যে রশিটি প্রথম মাধ্যম থেকে দিতীয় মাধ্যমে দোকার জন্য একটা বিন্দতে আপতিত হয়েছে আমরা সেটাকে বলৰ আপাতন রশি (XO)। যে রশিটি প্রতিফলিত হয়েছে (OX') সেটা হচ্ছে প্রতিফলিত রশি (বোঝাই যাচেছ যেটা দিতীয় মাধ্যমে চকে যাবে সেটা প্রতিসরিত রশি এই অধ্যায়ে যেটা নিয়ে আমরা আলোচনা করব না।) আপতিত রশি লগের মাথে যে কোণ করবে যেটাকে বলব আপাতন কোণ θ_i , প্রতিফলিত রশি লগের সাথে যে কোণ (θ_i) করবে সেটাকে বলব প্রতিফলিত কোন। এখন আমরা প্রতিফলিতে সূত্র দুটি কলতে পারি:

প্রথম সূত্র: আপাতন রশি। এবং লগ দিয়ে শ্রামরা যে সমতলটি করনা করে নিয়েছিলায় প্রতিফলিত রশিয়াটি সেই সমতালেই থাকরে।

দিতীয় সূত্র: প্রতিফলন কোণটি হরে রাপাতন কোয়ের সমান।

উদাহরণ ৪.1। ৪.4 ছবিতে দেখানো অবহায় দৃটি আঘনা নাখা আছে। মানাখালে ২ নিন্দতে একটি মোমবাতি রাখা ছয়েছে। মোমবাতির ঐতিবিদ নোখার হবে?

উত্তর: আয়ানায় প্রতিবিদ্দ দেখা যাবে। সেই প্রতিবিদের প্রতিবিদাণিও সায়না দ্যানতে দেখা যাবে এতানো চলতেই থাকাৰে। কাজেই ভবিতে যেতাবে দেখালো হয়েছে কেতাবে অসংখ্যা প্রতিবিদ্দ দেখা যাবে। প্রতিফলনের দুটি দূত্র বল। ক্রেই প্রতিফলন নিয়ে সর কিছু বল। হয়নি, সভিচ কথা বলতে কী প্রতিফলনের

ছবি 8.4; দুটি সমান্তরাল আয়নার মাণাখানে প্রাটি য়োমবাতি । রাখা ফলে তার হাতিকিল ম'গরং প্রতিবিদ্যার প্রতিবিদ্যা তৈরী ফাতে থাকে।

সবচেয়ে গুরুত্পূর্ণ বিষয়টাই বলা হয়নি, কতাকু প্রতিফলন হবেং প্রতিফলনের জন্য যদি আয়না বনহার করা হয় তাহলে প্রায় প্রোটাই প্রতিফলিত হয়, কিন্তু প্রতিফলন কথাটি তে প্র আয়নার জন্য তৈরি করা হয়নি- এটা তো যে কোনে। দুটো যাধ্যমের যাঝে হতে শারে। কতাকু প্রতিফলন হবে সেটার জন্য সূত্রটির নাম ফ্রেনেলের (Freenel) সূত্র। সূত্রটা তোমরা আরেকট বড় হয়ে শিখবে, এখন এটার মূল বিষয়টা জেনে পর্ব রাখ- আপাতন কোণ যত বেশি হবে প্রতিফলনেও করে তত বেশি। তোমরা দেখেছ সাগারণ এক টুকরো কাচে প্রতিফলন হর কম মাত্র 4% থেকে 5%, বাকাটা ছেতরে দিয়ে প্রতিমারিত হয়ে যায়। কিন্তু প্রতিফলন কোণ যদি বেশি হয় ৪০ কংবা 90 এর কাছাকাছি, তাহলে প্রতিফলিত আলো অনৈক লেশি বড়ে যায়। জানালার কাচের পাশে দাভিয়ে তোমরা এখনই সেটা পরীক্ষা করে দেখতে পার।

8.2.2 প্রতিশোক

আমাদের চারপাশের জগতের সৌন্দর্যের বড় একটা অংশ আরে বিভিন্ন রং থেকে। কিন্তু রংটি আসে কেমন করেং আমরা ধর্মন সবুজ পাতার মাঝে একটা লাল গোলাপ হুল দেখি, সেটি কেন লাল কিংবা তার পাতাটি কেন সবুজং বিষয়টা আরো বিভায়কর মনে কতে পারে

জুৰি 8.5: আগাতন কোন বেলি হলে হতিফলন অমেক বেলি হয়

যখন হোমৰ। দেখৰে সৰুজ আলোতে নাম ফুলটাকেই দেখাৰে কৃচকুচে কালো কিংবা নাম আলোতে। সৰুজ পাতাকে দেখাৰে কৃচকুচে কালো! বিষনটা আনলে নহজ- নাধারণ আলোতে (অনেক নমন বলে নাদা আলো), আনথে ননজলো তরঙ্গ দৈর্দাই থাকে, রং থেহেতু তরঙ্গ দৈর্দাের ওপর নির্তর করে তাই বলা যেতে পারে সেখানে নব রংরের আলো রয়েছে। যখন সবগুলো রং থাকে তখন সেখানে আলাদাজাবে কোন রং দেখা যায় না— তখন আলোটাকে আমরা বলি কর্ষিন কিংবা নাদা আলো। এই আলোটা যখন একটা লাল গোলাপ ফুলে পড়ে তখন গোলাপ ফুলটা লাল রং ছাড়া অন্য সবগুলো রং শোষণ করে নেয়— তাই যে আলোটা প্রতিক্লিত হরে আমাদের চোখে পড়ে সেখানে লাল ছাড়া আর কোনো রং থাকে না এবং গোলাপ ফুলটাকে মনে হয়

লাল। ঠিক সে রকম সবুজ পাতাটাতে সব রং এসে পড়ে এবং পাতাটা সবুজ ছাড়া অন্য সব রং শোষণ করে নেয় তখন যে রংটা প্রতিকলিত হন সেটাতে সবুজ ছাড়া অন্য কোনো রংরের আলো খাকে না বলে পাতাটাকে দেখায় সবুজ। (ছবি 8.6)

বদি সম্পূর্ণ লাল আলোতে এই গোলাপ ফুল এবং পাতাটাকে দেখা হতো তাহলে ফুলটাকে ঠিকই লাল দেখা যেত কারণ এটা লাল রং শোষণ করে না কিন্তু পাতাটাকে তার সঠিক রংয়ে না দেখিয়ে দেখারে কালো। কারন পাতাটা লাল রংকে শোষণ করে ফেলবে এবং কোনো রং

ছবি 8.6: একটা কল্প দৰ লং শোষণ করে যেন। প্রতিফলিক করে নেটাকেই তার লং বলে সনে হয়

প্রতিফলিত করবে না। ঠিক একই কারনে সবুজ আলোতে পাতাটা সবুজ দেখালেও সেই রংটা গোলাপ কুল পুরোপুরি শোষণ করে নেবে বলে গোলাপ কুল থেকে প্রতিফলিত হবার মতো কোনো রং থাকবে না বলে সেটাকে দেখাবে কালো।

8.2.3 মসৃণ এবং অমসৃণ পৃষ্ঠে প্রতিফলন
আয়না কিংবা আয়নার মতো মনৃণ পৃষ্ঠে
আলোর সমান্তরাল রাশা গুলো প্রতিফলনের
পরেও সমান্তরাল থাকে— কারণ প্রতেকটা
রশাই প্রতিফলনের সূত্র মেনে আপাতন
কোণের সমান প্রতিফলন কোণে প্রতিফলিত
হয়। কিন্তু পৃষ্ঠিটি যদি মনৃণ না হয় তাহলে

ছবি ৪.7: মস্ণ পৃষ্ঠে আলো প্ৰতিফলিত হয় কিন্তু অমসৃণ পৃষ্ঠে আলো বিচ্ছেরিত হয়

প্রতিফলনের পর আলোক রশ্যিগুলো আর সমান্তরাল না থেকে চারিদিকে ছড়িবে পড়ে। (ছবি ৪.7)

8.3 আয়না (Mirror)

আমরা সবাই আয়না (দর্পণ) দেখেছি। আয়নায় নিয়মিত প্রতিফলনের কারণে স্পষ্ট প্রতিবিন্দের তৈরি হয়। আয়না তৈরি করার জন্য কাচের পিছনে প্রতিফলনের উপযোগী রুপার প্রনেপ দেয়া হয়। কাচের সামনের

পৃষ্ঠ থেকে 4% আলো প্রতিফলিত হলেও পিছনের পৃষ্ঠ থেকে পুরো আলো প্রতিফলিত হয় বলে সেটি মূল প্রতিবিদ্ধটি তৈরি করে। টেলিন্দোপ বা অন্য অপটিক্যাল (optical) বন্ধে যখন মূল প্রতিবিদ্ধটি খুন ওরুত্বপূর্ণ হয় তখন কাচের উপরেই রুপা বা অ্যালুমিনিয়ামের প্রলেপ দেয়া হয় যেন একটি 4% হালকা আরেকটি 96% স্পাই, এ রকমা দুটি প্রতিবিদ্ধ তৈরি না হয়ে একটা 100% স্পাই প্রতিবিদ্ধ তৈরি হয়।

8.3.1 প্রতিবিদঃ

কুমি বখন আয়নার নামনে দাঁড়োও তখন তুমি নিজের প্রতিবিদ্ধ দেখতে পাও- তুমি আয়নার য়তটুকু সামনে

ছবি ৪.৪: 🏋 বঞ্জানির প্রতিনিক 🏋 অবস্থানে দেখা বাবে

আছ, তোমার মনে হবে প্রতিবিশ্বটি বৃঝি ঠিক ততটুকু পিছনে আছে। 8.8 ছবিতে দেখানো হয়েছে X হছে একটি রম্ভ্র সেখান থেকে তিনটি রশ্মি AB আয়নায় প্রতিফলিত হয়েছে (অর্থাৎ আপাতন কোণ = প্রতিফলিত কোণ)। প্রতিফলিত রশ্মিগুলোকে আমরা নদি আরমার পিছনে বাড়িয়ে দিই তাহলে মনে হবে সবগুলো X' এক বিন্দৃতে কেন্দ্রীভূত হয়েছে। এই বিন্দৃটিই হছেে X বস্তুটির প্রতিবিশ্ব। সত্যিকার বস্তুতে একটা বিন্দু না থেকে অনেকগুলো বিন্দু থাকে এবং প্রত্যিকটা বিন্দুর একটা করে প্রতিবিশ্ব হয়ে পুরো বস্তুটির প্রতিবিশ্ব তৈরি হয়।

আমরা যদি জ্যামিতি ব্যবহার করে প্রতিবিশ্বটির অবস্থান দেখাতে চাই তাহলে কমপক্ষে দুটি রশ্যি গাঁকতে হবে। ছবিটা আঁকা অনেক সহজ হর নদি আমরা একটি রশ্যি হিসেবে নিই সোজা লক্ষ্যবে যাওয়া রশ্যি XP এবং তার সাথে অন্য যে কোনো একটা রশ্যি XO ছবিতে যেভাবে দেখানো হয়েছে। OPX এবং OPX' ত্রিভুজ দুটি সর্বসম। অর্থাৎ XP=X'P তার মানে X বিন্দুর প্রতিবিশ্বটি X' আয়না থেকে বস্তুটির সমান দূরত্বে তৈরি হয়েছে।

উন্ধর: এখানে $\angle XPO = \angle X'PO$ কার্ণ ন্টিই এক সমকোণ যেহেতু XP হাছে আয়নার পর্চে আন্দান সাম কর্ম আন্দান প্রতিক্তানের নিয়ম অনুযায়ী আপাতন যোগ প্রতিক্তান কোনের সমান কাজেই $\angle XOP = \angle ROA$ আনার $\angle ROA = \angle X'OP$ কাজেই আিছ্ছা OPX এবং OPX' এর মানে। OP কাজারণ বাছ এবং এই বাছর দুই দিকের কোণ দুটি সমান। OPX এবং OPX' আিছ্ছা দুটি সকমা, তাই XP = X'P

ছবি 8.9: X অবস্থানের বস্কটির প্রতিবিদ্ধ দেশদা জন্য XP আগং XO এই দুটি আলোক রশ্যি কাবহার করাই মথেই

কোনো আয়নায় আমরা যদি একটি বছর প্রতিবিদ্ধ দেখি তাহলে আমালের মনে হয় প্রতিবিদ্ধ থেকে বানা আলোক রাণা আমছে— আসলে কিন্তু মোটেও সেই বিন্দু পেকে আলো আসছে না। আমরা পরে দেখব অনেক সময় কিন্তু সতির সতির এমনতাবে একটা প্রতিবিদ্ধ তৈরি হয় যেখানে সতির সতির আলো কেন্দ্রীভূত হয় এবং সেখান থেকে আলোক রাণা বের হয়ে আমে। এ রক্ম প্রতিবিদ্ধকে বলে বান্তব প্রতিবিদ্ধ এবং এই বর্নের প্রতিবিদ্ধ কৈরে অনেক কাজ করা সমব। আয়নায় থে প্রতিবিদ্ধ তৈরি হয় সেখানে সতিরকারের আলো কেন্দ্রীভূত হয় না তাই এর নাম অবান্তব প্রতিবিদ্ধ।

8.10 ছবিতে একটি মাত্র বিন্দু না হয়ে একটা

বিভূত বস্তুর প্রতিবিদ্ধ কীভাবে তেরি হয় কথানো হয়েছে। X এবং Y বিদ্দ থেকে আলো আয়নায়

প্রতিক্ষলিত হয়ে ঘথাক্রমে X' এবং Y' এ অবাস্তব প্রতিবিদ্ধ তৈরী করেছে অর্থাৎ মনে ক্ষেত্র চোথে আলোক রশ্যি আসছে X' এবং Y' থেকে। দেখাই যাচেছ XY এর যে দৈয়া X'Y' এর সেই একই দৈয়া। XY তে তীরের মাথানি যদি উপরের দিকে হয় তাহলে X'Y' তেও তীরের মাথানি উপরের দিকে হয় তাহলে হবে। অর্থাৎ সাাধারণ আয়নায় প্রতিবিদ:

- (a) আয়না থেকে সমদ্রত্বে
- (b) ভাৰান্তৰ
- (c) গোজা এবং
- (d) সমান দৈখেঁরে

চনি ৪.10: XY বস্তুটির প্রতিবিদ X'Y'

ছবি 8.11: কুননৈৰ্য প্ৰতিক্ৰৰ কোনাৰ ফলেং পূৰ্বনৈৰ্য আহনান প্ৰয়োজন হয় না

আমরা আলাদা আলাদাভাবে এই বিষয়গুলো মনে
করিয়ে দিছি কারণ একটু শরেই দেখব সাধারণ
আয়নার বদলে অন্য ধরনের আয়না ব্যবহার
করলে প্রতিবিদ ভিন্ন দূরত্বে হতে পারে, বামণ
হতে পারে, উন্টো হতে পারে এমনকি ছোট
কিবো বছও হতে পারে।

উদাহরণ 8.3: পূর্ণ দৈর্ঘা প্রচিবিদ দেখার জনো আরনা করে। বস্তু হতে হয় ৫

উন্তর 8.11 কবির জ্যামিতি থেকে কলা যান 0.ন মিটান। মজার কাপান হচ্ছে তুমি আহলা থেকে 1 মিটান দ্রেই গাকো কিবো 10 মিটান দুইে গাকো তোমার

আমানার দৈর্ঘ্য কিছে স্বৰ্গমায়েই হবে ভোমার দৈর্ঘের আর্থের। ভোমার মা বারা কিংবা জন্য কেউ যদি বালাগোল করার পর ভাদের তেমন দেখাতে দেবার জন্য ফুল লোপ মিরর কিনতে বার ভাদেরকৈ বামাণ- অর্থিক গোখে কিনলেই কাজ চালে যাবে।

উদাদরণ 8.4: পুটি আমন্য পরস্ক্রের নাগে 60° ব্যোগে রাগা আছে। প্রথম আমনাম 60° তে আম্যো ফেলা হলে আমন্যক রাশ্য কোন দিলে যাবেহ

উমার প্রামিতি খেতে করা যায় র্যান্টি B বিন্তুতে আপতিত হলে অসং ত্রিক নিপ্রতি দিকে প্রতিকালিত হলে।

उनायतम् ४.५:

व्यक्तवात च्य

বোডের নাবো সুব ছোট

একটা

अवाधी

ছবি 8.12: 6()" জেলে দাবা পুটি আরনার একটিতে △ বিন্দুভে 6()" কোপে আলো আলকিত হতে

ছবি 8.13: পৃষ্ণ ধুটো দিতে কোণ কন্তর থতিবিম কৈরি করা সম্ভব

একটা ফুটো করে একটা কুমান মোমবাতির সামলে রাস। এনিতে নেখালো উপারে বোডটার অন্যপাশে একটা নাদা কাগজ রাস। সাধা কাগজে মদি অন্য কোথা থেকে আলো পড়তে না দাও তাহনে নেখানে রোমনাতির শিখার এনটা প্রতিনিদ্দ দেখনে। পিছনের সাধা কাগজি সামলে পিছনে সারিয়ে প্রতিবিধার্ট ছোট বঙ্ করতে পারের। প্রতিবিধার্ট কি নামন মাকি অন্যাদনঃ বোজা না উল্টো – সমদ্বাহে না কিন্ন প্রাহেণ্ড বড় না ঘোটিং উদ্ভবঃ বাস্তব, উন্টো, সকল দূরতে স্পষ্ট, যত দূরে তত বড়। এই পদ্ধতিতে পিন হোল কামেরা তৈরী হয়।

উদাহরণ 8.6: 8.14 ছবিতে বেজবে লেখানে। হয়েছে সেভাবে দুটি আমনা AO এবং BO লমভাবে রাখা আছে। তার সামনে একটি বস্তু রাখা হলো। বস্তুটির প্রতিবিদ্ধ আরু।

উজর: AO এবং BO আমনাতে দুটি প্রতিবিদ্ধ দেখা যাবে। A'OR' ফেরে প্রতিবিদের প্রতিবিদ্ধ দেখা যাবে।

ছবি 8,14: সমকোনে রাখা দুটি আয়নার আলো" শদ্দির ভিন্ন ভিন্ন প্রতিফলন

8.4 গোলীয় আয়না (Spherical Mirror)

নাধারণ সমতল আরনা আমরা স্বাই দেখেছি কিন্তু সতিকোরের গোলীর আরনা আমরা স্বাই নাও দেখতে পারি— তবে গোলীর আরনার মূল বিষয়টি কিন্তু চকচকে নূতন চামচে অনেকটা দেখা বার! গোলীর আরনা দূই রকনের হরে থাকে অবতল এবং উত্তল। একটা ফাপা গোলকের খানিকটা কেটে তার পৃষ্ঠে রূপা বা আলুমিনিরামের প্রলেপ লাগিয়ে অবতল কিংবা উত্তল গোলীর আরনা তৈরি করা বার। কোন পৃষ্ঠে রূপা বা আলুমিনিরামের প্রলেপ দেরা হবে তার ওপর নির্ভর কর্মের এই গোলীর আরনাটি অবতল না উত্তল গোলীর আরনা হবে।

8.5 উক্তা আয়না (Convex Mirror)

তোমরা যদি কখনো একটা চকচকে চামুচের দিচের বা পিছনের অংশে নিজের চেহারা দেখার চেষ্টা করে থাক (ছবি 8.15) তাহলে নিশ্বর কলা করেছ যে সেখানে তুমি তোমার চেহারাটা সোজা দেখালেও নেটি হবে তুলনামূলকভাবে ছোট। চামচের এই অংশটা উত্তল আরনার মতো কাজ করে। সত্যিকারের উত্তল আরনার মতো কাজ করে। ধরা যাক গোলকটির ব্যাসার্থ r (ছবি 8.16) এবং তার একটা অংশ কেটে তার উত্তল অংশটির দিকে থেকে আলোর প্রতিকলনের ব্যবস্থা করা হয়েছে। এই আয়নায় একটা

ছবি ৪.15: একটি চামচের উল্টো প্রা উত্তৰ পোলক আয়নার মতো।

সমান্তরাল আলো ফেলা হলে আলোটি চারিদিকে ছড়িয়ে যাবে, ছড়িয়ে যাওয়া আলোক রশিগুলো যদি আয়নার কেন্দ্রের দিকে বর্ধিত করি তাহলে মনে হবে সেটা বুঝি একটা কিন্দু থেকে ছড়িয়ে গেছে। ঐ বিন্দুটিকে বলে ফোকাস বিন্দু। উত্তল আয়নার যে পৃষ্ঠ থেকে প্রতিফলন হয় তার কেন্দ্র বিন্দুটিকে বলে

মের কিন্দু এবং এই কিন্দু থেকে কোকাল কিন্দুর দূরভূটিকে বলে ফোকাস দূরভূ (f)।

> উদাহরণ 8.7: সমতল মায়লাকে যদি আমরা গোলীয় উত্তল আয়না হিসেবে কপ্পনা করি ভাহলে ভার ফোকাস দর্ভ কতঃ

ছবি ৪.16: উত্তল আয়দান ফোকাস নুরত্ব গোলকের ব্যাসাধের অধেক

উত্তর: অসীম।

একটা গোলীয় আয়নাকে আমরা সব সময়েই একটা গোলকের অংশ হিসেবে কল্পনা করতে পারি। ঐ গোলকটির বাসার্থ যদি। হয় তাহলে ফোকাস দূরত্ব হবে 🐈

উ**দাহরণ 8.8:** প্রমাণ কর $f' = \frac{r}{2}$

উত্তর: মজার ব্যাপার হচ্ছে তুমি কিন্তু এনি পুরোপুরি প্রমান ব্যরতে পারবে না– এর কাছাকাছি প্রমাণ করতে পারবে। ধরা যাক লোলীয় আয়নার মূল অক্ষের সাথে সমান্তরাল দুনি রাশ্য A এবং B থেকে।

N A

ছবি ৪,17: একটা গোলীয় উত্তল আয়না আসলে একটা গোলকের সংশ

মোর বিন্দু X এবং করা একটি বিন্দু Y এসোছে (ছবি 8.17)। যে রশিটি X বিন্দুতে এসোছে সেটি প্রতিফলিত হয়ে যেদিকে এসোছে ঠিক সৌদিকেই ফিরে যাবে। ক্ষামরা এই রেখাটিকে গোলকের কেন্দ্র O বিন্দু পর্যন্ত করি, দেখাই যাজে OX = r (গোলকের রাসার্থ) যে রশিটি Y বিন্দৃতে এসোছে সৌটি সেই বিন্দৃতে লম্ন ON এর সাথে O আপাতন কোণ করেছে। প্রতিফলন কোণ O, O এবং সেটি O দিকে যাবে। আমারা O কে বর্ষিত করকে সেটি O রেখাকে O বিন্দৃতে ছেল করেছে।

FO = FY কারণ OFY আছিলের $\angle FOY = \angle OYF$ মেহেছে $\angle FOY = \partial_t$ এবং $\angle FYO = \partial_t$.

 $FY\cong PX$ রখন XP বালেদে v্থাকৈ অনেক কৌ আ তথ্য এটি সত্য ্ৰেটার ভাগ উত্তল আয়নাম দেটা সতিয়

नामध्य
$$FO = FY = FX = \frac{T}{2}$$

8.5.1 গোলীয় উত্তল আয়নায় প্রতিবিদ

আমরা আগেই বলেছি চামছের বাইরের অংশটা গোলীয় উত্তল আয়নার মতো কাজ করে একং সেখানে তুমি নিজেকে দেখতে চাইলে হোট এবং সোজা একটা প্রতিরিদ্ধ দেখতে পাও। যার অর্থ আমরা গোলীয় উত্তল আয়নার প্রান্তির ছোট দেখার কথা। ছবিতে একটা উত্তল আয়নার সামনে XY একটি বস্তু রাখা আছে Y বিদ্ধু থেকে আলো R বিদ্ধৃতে এলে সোটি সমভাবে প্রতিফলিত হয়ে আবার Y বিদ্ধৃত দিকেই কিরে যায় যার অর্থ XY বস্তুর Y বিদ্ধৃর প্রতিবিদ্ধাট এই UY রেখার কোথাও হবে। সোটি

ঠিক কোথায় জানতে হলে X বিন্দু থেকে

অন্য দিকে আরোকটি রশ্মি আকতে হবে—
আমাদের মেটি করার প্রয়োজন নেই—
কারণ X বিন্দুটির প্রতিবিদ্ধটি বের করে
সেখান থেকে আমরা এটি জেনে নের।

সিন্দুর প্রতিবিদ বের করার জন্য দুটি রশ্যি আকতে হবে, একটি আমের মতো সরাসরি O বিন্দুর সাথে যুক্ত করি। YR রশ্যিটি যে রক্তম সম্প্রতাবে প্রতিফলিত হয়ে Y এর দিকে ফিরে সিয়েছিল এই রশ্যিটিও ঠিক একইভাবে N বিন্দুতে প্রতিফলিত হয়ে X এর দিকে

র্থব ৪.18: উক্তল আমনাম একটি কর XY ফোকাস দুরত্বের তেন্তরে রাখা হলে প্রতিবিধটি X'V'বড় দেখার।

ফিরে যাবে। দ্বিতীয় রশিটি YR এর সাথে সমান্তরালভাবে আঁকা যেতে পারে সেটা উত্তল আয়নার Pবিন্দুতে স্পর্শ করলে মনে হবে যেন F বিন্দু থেকে ছড়িয়ে গায়েছ কাজেই আমরা FP কে গুভ করে Qএর দিকে বাড়িয়ে দিতে পারি।

FP রেখানি OX রেখাকে X' বিন্দৃতে ছেদ করেছে যার অর্থ X বিন্দৃর প্রতিবিদটি হবে X' বিন্দৃতে। যেহেতৃ আমাদের মনে হবে X বিন্দৃর প্রতিফলনটি আসছে X' বিন্দৃ থেকে। X' থেকে OY রেখার ওপর সদ টানলে সেটা Y' বিন্দৃতে ছেদ করেছে কাজেই X'Y' হবে XY এর প্রতিবিদ। দেখাই যাছেছে X'Y' সর সময় XY থেকে ছোট এবং XY উত্তল আয়ানা থেকে যত নূরে থাকরে X'Y' হবে

তত ছোট! প্রতিফলনের নিয়ম ব্যবহার করে উত্তল কিংবা অবতল আয়নায় প্রতিবিদ্ধ আঁকার এই পদ্ধতিটি ভালো করে জেনে রাখা দরকার, এটি পদার্থবিজ্ঞানের খুব প্রয়োজনীয় একটা পদ্ধতি।

বোঝাই যাচেছ X'Y' থেকে আসলে সত্যিকারের আলো বিচ্ছুরিত হচেছ না, আমাদের মনে হচেছ বুঝি প্রতিবিম্বটি এখানে আছে! কাজেই এটা অবান্তব প্রতিবিম্ব। সাধারণ আয়নার প্রতিবিম্বের সাথে তুলনা করে আমরা বলতে পারি

- (a) এই প্রতিবিশ্বটির অবস্থান হবে ফোকাস বিন্দু এবং মেরু বিন্দুর মাঝখানে। বস্তুটি যত দূরে থাকবে প্রতিবিশ্বটি ফোকাস বিন্দুর তত কাছে তৈরি হবে।
- (b) এই প্রতিবিম্বটি অবাস্তব
- (c) এটি সোজা
- (d) এটা ছোট, বস্তুটি আয়না থেকে যত দূরে যাবে প্রতিবিদ্বটি তত ছোট হতে থাকবে।

8.6 অবতল গোলীয় আয়না (Concave Mirror)

একটা চকচকে চামচের ভেতরের অংশটা অবতল গোলীয় আয়নার উদাহরণ হতে পারে। তোমরা যারা চামুচের ভেতরের দিকে তাকিয়েছ তারা নিশ্চয়ই লক্ষ (ছবি 8.19) করেছ সেখানে তোমার প্রতিবিদ্বটি ছোট এবং সবচেয়ে চমকপ্রদ হচ্ছে প্রতিবিদ্বটি উল্টো! তোমরা চাইলে তোমার আঙুল চামচটার খুব কাছে ধরে দেখতে পার, দেখবে আঙুলটা সোজাই দেখাচেছ। এবারে আন্তে আন্তে দ্বে সরাতে থাক, দেখবে

তোমার আঙুলটা বড় দেখাতে শুরু করেছে (আমরা সমতল আয়না কিংবা উত্তল আয়নায় এর আগে প্রতিবিদ্ধ তৈরি করতে পেরেছি কিন্তু কখনোই বস্তুর প্রকৃত আকার থেকে বড় প্রতিবিদ্ধ তৈরি করতে পারিনি— এই প্রথম বড় প্রতিবিদ্ধ দেখতে পাচ্ছি।) আঙুলটা যদি আন্তে আন্তে সরাতে থাক এক সময় অবাক হয়ে দেখবে আঙুলের প্রতিবিদ্ধটা উল্টো হয়ে গেছে! এটাকে এখন যতই সরিয়ে নাও, এটা সব সময় উল্টোই থেকে যাবে। (সমতল আয়না কিংবা উত্তল আয়না দিয়ে আমরা এর আগে কখনোই উল্টো প্রতিবিদ্ধ তৈরি করতে পারিনি— এই প্রথম আমরা উল্টো প্রতিবিদ্ধ দেখছি!)

কাজেই দেখতে পাচছ চামচের বাইরের অংশটা উত্তল আয়নার মতো এবং ভেতরের অংশটা অবতল আয়নার মতো কাজ করে! সত্যিকারের অবতল আয়না আসলে একটা

ছবি 8.19: একটি চামচ অবতল আয়নার মত কাজ করে

গোলকের অংশ। উত্তল আয়নার বেলায় বাইরের উত্তল অংশ থেকে আলো প্রতিফালত হতো, অবতল আয়নার বেলায় আলোকে ভেতরের অবতল অংশ থেকে প্রতিফালিত করা হবে।

একটি অবতল আয়নায় সমান্তরাল আলো ফেলা হলে আলোর রশিগুলো প্রতিফলনের পর এক বিন্দতে মিলিত হবে (ছবি ৪.20)। ববাতেই পারছ এই বিন্দুটি অবতল আয়নার ফোকাস বিন্দু এবং মেজ বিন্দু থেকে এই বিন্দু পর্যন্ত দূরভূটী হচেহ ফোকাস দূরত। আলোর রশির তো আর থেমে থাকার উপায় নেই এবং এক বিন্দুতে মিলিত হবাব পরও সেটা সোজা সামনের দিকে এগোতে থাকবে এবং দেখা যাবে সেই বিন্দু শ্বেকে আলোভলো ভড়িয়ে

वि 8.20: जनारक जोस्पान (स्थव्याया मृहारू (शीनकात) नासार्यन जारकि

পড়ুছে। অর্থাৎ ফ্রোকাস বিন্দুতে পৌছানোর আনে আলো একত্র হতে গাকে (অস্তিসারী) ফোকাস বিন্দুহে পৌছানোর পর আলো ছড়িয়ে যেতে থাকে (অপসারী।)

> উদাহরণ ৪,9: সমতল আধনাকে আমনা এদি গোলীয়ে অরতল আমনা ভিসেবে করবা করি সহলে তর ফোকাস দূরত করে?

উত্তর: অসীমা

উত্তল আয়নার বেলাতেও আমরা একই উত্তর পেয়েছিলাম– যার অর্থ ফোকাস দূরত্ব বাড়তে বাড়তে অসীম হয়ে গোলে উত্তল এবং অবতত আয়না দুটিই সমতল আয়ন হয়ে যায়।

উত্তৰ আয়নার মতো অবতৰ আয়নাতেও ফোকাস দূরত্ব হাছে ব্যাসাধের অধেক। এটি ছবহু প্রমাণ করা যায় না, কাছাকাছি প্রমাণটি এবারে আমরা তোমাদের হাতে ছেড়ে দিলাম।

উদাহরণ 8.10: আমরা অবতল আর্না পড়ার সমর ধরে নিরেছিলাম সমান্তরাল আলোক রশি। কেন্দ্রের কাছাকাছি আপতির হয় কারণ যদি তা না হয় তাছলে মেটি দুঁ বিন্দুতে কেন্দ্রীভূত হবে না। য়দি আমরা নিশিকে হতে চাই য়ে সমান্তরাল আপতিকে রশি। সব সমারেই এক বিন্দুতে কেন্দ্রীভূত সুবে তাহাল আমনানির আকার কেমন বতে জবন

জার 8,21: প্রজিজানিত আলো একটি ফোকান নিদ্দতে আপাতিত করার জনা বক্র আদানার সঠিত আকৃতি

উদ্ভব: জ্যামিতি থেকে আমরা দেখাতে পারি অবতল আয়নাটি গোলক না হরে ছবিতে দেখানো আকৃতির হলে আলোক রশ্মি এক বিন্দুতে কেন্দ্রীভূত হবে। একটা গ্রাফ পেপারে সমান্তরাল রশ্মি একৈ সেটাকে এক বিন্দুতে মিলিত করানোর জন্য সেই বিন্দু থেকে রশ্মি একৈ তোমরা উন্টোভাবে অগ্রসর হয় এই বিশেষ বক্ত আয়নাটি আঁকতে পারবে। চেষ্টা করে দেখ।

8.6.1 অবতল আয়নায় প্রতিবিদ

এবারে এসেছি আমরা সবচেয়ে মজার অংশটুকুতে! সমতল আয়না এবং উত্তল আয়নায় ওধু এক ধরনের প্রতিবিদ্দ তৈরি হতো। অবতল আয়নায় দুই ধরনের প্রতিবিদ্দ হতে পারে। একটা বস্তু ফোকাস দূরত্ব থেকে কম দূরত্বে রাখলে এক ধরনের প্রতিবিদ্দ তৈরি হয়, ফোকাস দূরত্ব থেকে বেশি দূরত্বে রাখলে অন্য রকম প্রতিবিদ্দ তৈরি হয়।

ফোকাস দূরত্ব থেকে কম দূরত্বে:

8.22 ছবিতে একটা অবতল আয়না দেখানের হয়েছে, অবতল আয়নাটি বে গোলকের অংশ সেই গোলকের কেন্দ্র হচ্ছে O_- অবতল আয়নার ফোকাস বিন্দু F' এবং ধরা যাক XY বস্তুটির প্রতিবিন্দটি

আমরা বের করতে চাই। Y বিন্দুটি থেকে আলো অবতল আয়নার P বিন্দুতে প্রতিফলিত হয়ে আবার Y হয়ে O বিন্দুর দিকে ফিরে যাবে। কাজেই বোঝা যাছে এটি OP রেখায় কিংবা তার বর্ধিত অংশের কোনো একটা বিন্দুতে থাকবে, ঠিক কোখায় সেই বিন্দুটি হবে সেটি বের করতে হলে Y বিন্দু থেকে অনাদিকে আরো একটি রশ্মিকে অবতল আয়নার দিকে আঁকতে হবে— আমরা আর সেটি করছি না, আগের মতো X বিন্দুটির প্রতিবিদ্ধ বের করতে পারলেই

ছবি 8.22: অনতল আরনার একটি বস্তু ফোকাস দ্রত্বের ভেতরে রাখা হলে প্রতিবিশ্বটি নড় দেখার।

সেখান থেকে Y বিন্দুটির প্রতিবিদের সঠিক জায়গাটি বের করা যাবে। X বিন্দুর প্রতিবিদ্ধ বের করতে হলে এই বিন্দু থেকে দুটি রেখা আঁকতে হবে, বোঝাই যাচ্ছে প্রথম রেখাটি হবে OX রেখার বর্ধিত অংশ, এটো অবতল আয়নাকে লমভাবে স্পর্শ করে ঠিক সেই পথেই প্রতিফলিত হয়ে ফিরে যাবে। ছবিতে যেভাবে দেখানো হয়েছে X বিন্দু থেকে আরেকটা রশ্মি হতে পারে অন্দের সাথে সমান্তরাল একটা রশ্মি—

কারণ আমরা এর মাঝে জেনে গেছি সমান্তরাল রশ্মি প্রতিফলনের পর ফোকাল বিন্দু দিয়ে যায়। কাজেই এটা Q বিন্দুতে আপতিও হরে প্রতিফলিত হরে F বিন্দু দিয়ে চলে যাবে।

X বিন্দু থেকে বের হওরা দুটি রশ্যি প্রভিফলনের পর NO এবং QF দিকে যাবে এবং দেখাই বাছে এই রশ্যি দুটো মিলিত হবার কোনো সুযোগ নেই! কাজেই ডান পাশে কোনো প্রতিবিদ্ধ তৈরি হতে পারবে না। কিন্তু যদি ডান পাশ থেকে বাম পাশে তাকানো যার তাহলে মানে হবে ON রেখা এবং FQ রেখা দুটি বুঝি X' বিন্দুতে মিলিত হয়েছে— কাজেই X' হবে X' এর প্রতিবিদ্ধ। এই বিন্দু থেকে OP অকের ওপর একটি লন আকলেই আমরা XY এর পুরো প্রতিবিদ্ধ X'Y' পেরে যান। X'Y' থেকে স্তিত্যকার ভাবে কোনো আলো যাছে না, ৬ধু আমাদের মনে হছে এখানে বুঝি প্রতিবিদ্ধটি তৈরি হরেছে। কাজেই এই প্রতিবিদ্ধটি অবান্তব প্রতিবিদ্ধ। ছবি থেকে দেখা যাছে প্রতিবিদ্ধটি মূল বক্ত থেকে বড়। ৬ধু তা-ই নম আমরা রক্তাটিকে যতই ফোকান বিন্দুর কাছে আনর প্রতিবিদ্ধটি ততই বড় হবে। (বিদি এটাকে ঠিক কোনাস বিন্দুরে করারে জন্য আলোক রশ্যি আর মিলিত হতে পারবে না।) অবতল আরনার কোনাস দ্যুত্বের ছেত্রের কোনো কিছু রাখা হলে তার প্রতিবিদ্ধটি কেমন হবে সেটি দেখে দেয়া যাক।

- (a) প্রতিবিশ্বটির অবস্থান কোথায় হবে লেটি নির্ভর করবে আসল বস্তুটির অবস্থানের ওপর। রম্ভটি বতই কোন্সালের কাছে রাখা হবে প্রতিনিমের অবস্থানটি হবে তত দরে।
- (b) এটি অবান্তর
- (c) গোজা
- (d) প্রতিবিশটির দৈর্ঘ্যও নির্ভর করবে তার অবস্থাশের ওপর, যত যোকাল বিন্দুর কাছে মাবে তার দৈর্ঘাও তত বেডে বাবে।

ফোকাস দূরত্ব ধেকে বেশি দূরত্বে:
আমরা এখন পর্যন্ত যত প্রতিনিদ্ধ দেখেছি
তার মাঝে এই প্রতিবিদ্ধটি সবচেরে
চনকপ্রদ কারণ এই প্রখনবার আমরা
একটি বান্তব প্রতিবিদ্ধ দেখন— অর্থাৎ,
যেখানে প্রতিবিদ্ধটি তৈরি হবে নেখানে
স্থিতা স্থিতা আলো কেন্দ্রীয়ত হবে।

ছবি ৪.23: অবতল আয়াশায় একটি শদ্ধ ফোকাস দ্রজের শাইরে রাখনো এতিবিদ্যটি হয় উক্টো

সত্যিকারের বস্তুটি হচ্ছে XY এবং Y বিন্দুর প্রতিবিন্ধটি অন্যবারের মতো নিশ্চাই YP রেখার উপরে থাকবে। X বিন্দুটির প্রতিবিন্ধ বের করার জন্য আমাদের দুটি রিশা আঁকতে হবে একটি হবে অক্ষের যাথে সমান্তরাল XQ এবং প্রতিকলিত হয়ে এটি নিশ্চাই কোকাস বিন্দু P এর ভিতর দিয়ে QF হিসেবে যাবে। দিউায় রিশ্যিটি আমরা F বিন্দুর ভিতর দিয়ে আঁকতে পারি এটি অবতল আয়নায় প্রতিফলিত হয়ে RS হিসেবে সমান্তরাল হয়ে যাবে, কারণ সমান্তরাল রেখার আলো অবতল আয়নাতে প্রতিফলিত হয়ে যে বকম ফোকাস বিন্দুর ভিতর দিয়ে যায় ঠিক সে রকম তার উল্টোটাও সত্যি, আলো সব

ছবি 8.24: অবতল আমনাম একটি বস্তু ফোকাল দূরত্বের দিখন দূরত্বেও বাইরে রাখলে প্রতিবিষটি উর্ন্টো এবং ছোট হয়।

সময়েই তার গতিপথ উল্টো পথে পুরোপুরি অনুসরণ করে। QF এবং RS রেখা দুটি X' বিন্দুতে ছেদ করেছে এবং X' বিন্দুটি হচ্ছে X বিন্দুর প্রতিবিদ্ধ। কাজেই X' বিন্দু থেকে PO রেখার ওপর লম্বটি Y' বিন্দুতে ছেদ করেছে এবং X'Y' হচ্ছে XY এর প্রতিবিদ্ধ। দেখতেই পাচছ এই প্রতিবিদ্ধটি এখন পর্যন্ত দেখা অন্যান্য প্রতিবিদ্ধ থেকে ভিন্ন।

- 8.24 ছবিতে হ্বহু একই বিষয় দেখানো হয়েছে গুধুমাত্র XV বদ্ধটি ফোকাল দূরত্বের দিগুণ থেকে বেশী দূরত্বে রাখা হয়েছে। এবারে বস্তুটির প্রতিবিদ্ধটি হয়েছে ছোট। বস্তুটি যদি ঠিক ফোকাল দূরত্বের দিগুণ দূরত্বে রাখা হতো তাহলে তার প্রতিবিদ্ধটিও হতো এই একই বিন্দুতে, 8.25 ছবিতে যেমন দেখানো হয়েছে। গুধু তাই নয় প্রতিবিদ্ধটির আকার হতো ঠিক বস্তুটির সমান। ফোকাল দূরত্বের বাইরে রাখা এই তিনটি ভিন্ন ভিন্ন ব্যাপার এবারে গুছিরে লেখা যেতে পারে। ফোকাল দূরত্বের বাইরে কোনো বস্তুকে রাখা হলে তার প্রতিবিদ্ধ হবে এ রকম:
 - (a) প্রতিবিদ্দের অবস্থানটা নির্ভর করবে বস্তুটি কোথায় আছে তার ওপর। যতক্ষণ পর্যন্ত বস্তুটি ফোকাস বিন্দু এবং অবতল আয়নার কেন্দ্রের মাঝখানে আছে প্রতিবিদ্দের অবস্থানটা হবে কেন্দ্রের বইরে। বস্তুটি যদি অবতল আয়নার বক্রতার কেন্দ্র থেকে বাইরে থাকে তাহলে তার প্রতিবিদ্দ হবে কেন্দ্রের ভিতরে। যদি বস্তুটি ঠিক কেন্দ্রের ওপর থাকে তাহলে প্রতিবিদ্দের অবস্থানটাও হবে কেন্দ্রে।
 - (b) প্রতিবিন্ধটি বান্তব। তাই বস্তুটাকে দিয়ে তার প্রতিবিদ্ধ যে রকম বের করতে পারি ঠিক সে রকম প্রতিবিন্ধটাকে বস্তু ধরা হলে বস্তুটাই হবে তার প্রতিবিদ্ধ।

- (c) প্রতিবিদটি উল্টো!
- (d) প্রতিবিদ্ধটির দৈর্ঘা নির্ভর করতে এটি কোথায় আছে তার ওপর। যদি এটা ফোকাস বিন্দু এবং বক্রতার কেন্দ্রের মাঝখানে থাকে তাহলে প্রতিবিদ্ধটির প্রতিবিদ্ধ হবে বস্তুটি থেকে বড়। যত ফোকাস বিন্দুর কাছাকাছি তত বড়। যদি বস্তুটি বক্রতার কেন্দ্র থেকে বাইরে হয় তাহলে এর আকার হবে আসল বস্তুটি থেকে ছোট। যদি এটা ঠিক বক্রতার কেন্দ্রে থাকে তাহলে প্রতিবিদ্ধের আকার হবে ঠিক বস্তুটির আকারের সমান!

বান্তব প্রতিবিদ্ধ খুবই গুরুত্বপূর্ণ একটি ধারণা আমরা পরের অধায়ে দেখব কেমন করে শেস দিয়েও এ রকম বান্তব প্রতিবিদ্ধ তৈরি করা যায়। তোমরা দেখতেই পেয়েছ বান্তব প্রতিবিদ্ধ সত্যিকারের আলোক রশ্মি থাকে তাই এটাকে যদি কোনো পর্দায় ফেলা যায় সেখানে প্রতিবিদ্ধটি দেখাও সম্ভব হয়। সাধারণ আয়নায় তুমি তোমার চেহারা দেখতে পারবে কিন্তু শুধু সাধারণ আয়না দিয়ে কখনো তোমার চেহারা কোনো পর্দায় ফেলতে পারবে না।

> উদাহরণ **8.11**: 8.24 ছবিতে দেখালো হরেছে XY বন্ধটির প্রতিবিন্দ তৈরি হরেছে X'Y' এ। যদি X'Y' টি বন্ধটি হতে তাহলে তার প্রতিবিদ্দ কোপায় হতো?

> উত্তর: এটি বাস্তব প্রতিবিদ। কাজেই X'Y'যদি প্রকৃত বম্ভ হর তাহলে তার প্রতিবিদ হবে XY'

আমরা এতকণ গোলীয় অবতল আয়নার ভেতরকার বিজ্ঞানটুকু শিখেছি এবারে দেখা যাক কীভাবে সেটা আমরা ব্যবহার করি।

ছবি 8.25: অবতল আরনার কোঞ্চাল দ্রত্নের দিওন দ্রত্বে একটি বস্তু রাখলে প্রতিবিদটি ঠিক একই জারগার উন্টো অবস্থার দেখা যার।

8.7 বিবর্ধন (Magnification)

আমরা যেহেতু দেখতে পেয়েছি যে একটা প্রতিবিদ্ধ কখনো প্রকৃত বস্তু থেকে ছোট হয় কখনো বড় হয় তাই বিবর্ধন বলে একটা শব্দ বাবহার করা যেতে পারে। প্রতিবিদ্ধটি মূল বস্তু থেকে কত বড় সেটাকে বিবর্ধন m বলা হয়। যদি একটা বস্তুর আকার হয় l এবং তার প্রতিবিদ্ধের আকার হয় l' তাহলে বিবর্ধন হচেছ:

$$m=\frac{l'}{l}$$

আমরা যখন টেলিস্কোপে কোনো বসতুকে দেখি খালি চোখে দেখলে সেটাকে যত বড় দেখানোর কথা— টেলিস্কোপে দেখলে সেটাকে সে তুলনায় যত বড় দেখাবে সেটাই হচ্ছে টেলিস্কোপের বিবর্ধন।

8.8 আয়নার ব্যবহার (Use of Mirror)

8.8.1 সাধারণ আয়না

দৈনন্দিন জীবনে সাধারণ আয়নার ব্যবহার সবচেয়ে বেশি। যখনই একদিকে পাঠানো আলোকে অন্য দিকে নিতে হয় তখন আমরা সাধারণ আয়না ব্যবহার করি। তোমরা নিশ্চয়ই লক্ষ করেছ সাধারণ আয়নায় ডান এবং বাম দিক বদলে যায় তাই যদি আমাদের ডান-বাম অবিকৃত রাখতে হয় তাহলে একটি আয়নার প্রতিবিদ্ধ অন্য একটি আয়নার দ্বিতীয়বার প্রতিফলিত করে আবার ঠিক করে নিতে হয়।

সাধারণ আয়নার প্রতিবিদ্ধ ডান এবং বামের পরিবর্তন হয়। দুটি আয়না 90° তে রেখে সেটাকে আয়না হিসেবে ব্যবহার করলে ডান বামের পরিবর্তন হয় না। দুটি আয়না দিয়ে বিষয়টা পরীক্ষা করে দেখো। (ছবি 8.26) এখানে একটা খুব গুরুত্বপূর্ণ বিষয় জেনে রাখা ভালো– যখন খুব ভালো

প্রতিফলনের প্রয়োজন হয় তখন কিন্তু সাধারণ আয়না ব্যবহার না করে সম্পূর্ণ ভিন্ন এক ধরনের প্রতিফলন করা হয়। আমরা পরের অধ্যায়ে দেখব পুরোপুরি স্বচ্ছ মাধ্যম দিয়ে কীভাবে আলোকে প্রতিফলিত করা যায়!

8.8.2 উত্তল আয়না

উত্তল আয়নায় যেহেতু সোজা এবং ছোট প্রতিবিদ্ধ তৈরি করা যায় তাই

ছবি 8.26: সাধারণ আয়নায় প্রতিবিদ্ধ ডান এবং বাম পাল্টে যায়, প্রতিবিদ্ধে বাম ডান অবিকৃত রাখতে হলে দুটি আয়নাকে সমকোনে রাখতে হবে

বড় কোনো দৃশ্যকে ছোট জায়গায় দেখতে হলে উত্তল আয়না ব্যবহার করা হয়। গাড়ির দক্ষ ড্রাইভারেরা গাড়ি চালানোর সময় সব সময়ে পিছনে কী হচ্ছে দেখার চেষ্টা করেন— সে জন্য গাড়ীর ড্রাইভারের সামনে রিয়ার ভিউ মিরর থাকে— এই মিররগুলোতে উত্তল আয়না ব্যবহার করা হয় যেন ছোট একটা আয়না দিয়েই গাড়ির ড্রাইভারেরা পিছনের বড় একটা জায়গা দেখতে পান।

8.8.3 অবতল আয়না

অবতল আয়নার সবচেয়ে বড় ব্যবহার হচ্ছে টেলিকোপে। পৃথিবীর সবচেয়ে বড় এবং সবচেয়ে সৃদ্ধা টেলিকোপে অবতল আয়না ব্যবহার করা হয়। অনেকে সাধারণভাবে মনে করে দূরের কোনো ছোট জিনিসকে অনেক বড় করে দেখানোই বুঝি ভালো টেলিকোপের দায়িত্ব। আসলে সেটি সত্যি নয়– ভালো টেলিকোপের দায়িত্ব অনেক কম আলোতেও স্পষ্ট প্রতিবিদ্ধ তৈরি করা। সেজন্য অবতল আয়নার আকার

যত বড় হবে সেটি তত বেশি আলো সংগ্রহ করে তত স্পষ্ট প্রতিবিদ্ধ তৈরি করতে পারবে। পৃথিবীর সব বড় বড় টেলিস্কোপে অবতল আয়না ব্যবহার করা হয়।

অবতল আয়নার আরেকটি ব্যবহার হচ্ছে আলোকে সমান্তরাল বীম তৈরি করা। জাহাজ লঞ্চের সার্চলাইটে অবতল আয়না ব্যবহার করা হয়। আলোর উৎসটুকু থাকে ফোকাস বিন্দুতে তাই সেটি অবতল আয়নায় প্রতিফলিত হয়ে সমান্তরাল বীম হিসেবে বের হয়ে যায়। তোমরা দৈনন্দিন জীবনে যে টর্চলাইট ব্যবহার কর সেখানেও বাল্লটি রাখা হয় একটি অবতল আয়নার ফোকাস বিন্দুতে!

অবতল আয়নায় ফোকাস দূরত্বের ভেতরে কিছু থাকলে যেহেতু সোজা এবং বড় প্রতিবিদ্ধ তৈরি হয় তাই কোনো কিছু বড় করে দেখতে হলেও অবতল আয়না ব্যবহার করা হয়। ডাক্তার কিংবা ডেন্টিস্টরা তাই অনেক সময়েই কিছু দেখার জন্য অবতল আয়না ব্যবহার করেন।

ছবি 8.27: কোকাস দূরত্বে তীব্র আলো তৈরী করলে সেটি অবতল আয়নায় প্রতিফলিত হয়ে সমান্তরাল আলো হিসেবে বের হয়ে আসবে।

अनु शैननी

প্র:

- নোখের সংবেদনশালতার পরিমাপটি কেমন করে
 নির্ণয় করা হতে পারে
- মানুমের চোখ সবচেয়ে বেশি দেখতে পায় হল্দাত

 সবুজ রং তাহলে বিপদসংক্তে সব সময় লাল দিয়ে

 কেন করা হয়?
- আয়নাতে জান বাম উল্টে যায়, ওপর নিচ ওল্টায় না
 কেনঃ
- জোহনার আলোতে রং দেখা যায় না কেন্দ্র
- জ্যোতির্বিদদের বড় টেলিকোপে সব সময় অবতল আয়না ব্যবহার করা হয় কেন।

ছবি 8.28: ভিন্ন ভিন্ন কোণে রাখ্য আরনার একটিতে আলো অপতিত হচেও।

গাণিতিক সমস্যা:

- 8.28 ছবির মতো করে আয়না রাখা আছে। ছবিতে দেখানো আলোক রশ্রিটি কোন দিকে যাবে দেখাও।
- উত্তল আয়নায় XY বছটির জন্য (ছবি ৪.29 a) আলোক রশিশুলো একে প্রতিবিদ্যটি কোপায় হবে
 ক্রেনাত

ছবি 8.29: (a) উত্তল আয়নায় জোকাল দুরত্বের ভেতরে রাখা একটি বস্ত। (b) ক্রবতল আয়নায় ফোকাল দুরত্বের ভেতরে রাখা একটি বস্ত।

 অবতল আঘনায় XY বস্কটিব জনা (ভবি 8,29 b) আলোক বশিশুলো একে প্রতিবিন্দটি কোথায় ছবে দেখাও অবতল আয়নায় XY বস্তুটির জল্য (ছবি 8.30 a) আলোক রশািগুলো এঁকে প্রতিবিদ্বটি কোথায় হবে দেখাও।

ছবি 8.30: (a) অবতল আয়নায় ফোকাল দ্রত্বের বাইরে রাখা একটি বস্ত । (b) অবতল আয়নায় দ্বিওণ ফোকাল দ্রত্বের বাইরে রাখা একটি বস্ত ।

 অবতল আয়নায় XY রঞ্জটির জন্য (ছবি 8.30 b) আলোক রশািণ্ডলো একে প্রতিবিদ্ধটি কোথায় হবে দেখাও।

নবম অধ্যায়

আলোর প্রতিসরণ

(Refraction of light)

Albert Einstein (1879-1955)

আলবার্ট আইনস্টাইন

আইনস্টাইনের জন্ম জার্মানিতে। জীবনের গুরুতে তিনি একটি পেটেন্ট অফিসের কেরানি হিসেবে কাজ গুরু করলেও শেষ বয়সে পৃথিবীর প্রেষ্ঠ বিজ্ঞানী হিসেবে পরিচিত হন। তাঁর সবচেয়ে বড় অবদান জেনারেল থিওরি অফ রিলেটিভিটি এবং তাঁর $E=mc^2$ সমীকরণটি পৃথিবীর সবচেয়ে চমকপ্রদ সমীকরণ হিসেবে বিবেচনা করা হয়। দিতীয় মহাযুদ্ধের আগে জার্মানিতে থাকা তাঁর জন্য কঠিন হয়ে পড়লে তিনি আমেরিকাতে চলে আসেন এবং বাকি জীবন সেখানে কাটিয়ে দেন। মৃত্যুর পর তাঁর পরিবারকে না জানিয়ে একজন চিকিৎসক তাঁর মন্তিষ্কটি কেটে সরিয়ে ফেলে এবং পরবর্তীতে সেটি অনেক কৌত্রলের জন্ম দেয়!

9.1 আলোর প্রতিসরণ (Refraction of Light)

ইতোমধ্যে তোমরা জেনে গেছে যে আলো যখন একটি মাধ্যম থেকে অন্য মাধ্যমে প্রেশ করতে চায় তখন তিনটি তিনু তিনু ব্যাপার ঘটে। একটি হচেছ প্রতিফলন, যখন প্রথম মাধ্যম থেকে দ্বিতীয় মাধ্যমে যাবার সময় খানিকটা আলো আবার প্রথম মাধ্যমেই ফিরে আসে এবং সে বিষয়টি আমরা আগের অধ্যায়ে আলোচনা করেছি। একটি হচ্ছে প্রতিসরণ যখন প্রথম মাধ্যম থেকে দ্বিতীয় মাধ্যমে আলো প্রবেশ করে। যে বিষয়টি আমরা এই অধ্যায়ে আলোচনা করব। শেষটি হচ্ছে প্রতিশোষণ যখন খানিকটা আলো শোষিত হয়, আমরা এই প্রতিশোষণের ব্যাপারটি আপাতত আর আলোচনা করব না।

যদি শোষণের ব্যাপারটা আমরা ধর্তব্যের মাঝেই না আনি তাহলে এক মাধ্যম কিংবা অন্য মাধ্যমে আলোর প্রবাহের মূল বিষয়টা হতে পারে আলোর বেগ। সোজা কথায় বলতে পারি প্রত্যেকটা মাধ্যমেই আলোর বেগ ভিন্ন এবং কোন মাধ্যমে আলোর কো কত সেটি নিদিট্ট করে দিলেই আমরা প্রতিসরশের সব কিছু বের করে ফেলতে পারব।

প্রত্যেকটি মাধ্যমকেই আসলে তার ভেতরে আলোর বেগ প্রকৃত আলোর বেগ থেকে কত্পুপ কম সেটা দিয়ে নির্দিষ্ট করে দেয়া হয় এবং তাকে বলা হয় সেই মাধ্যমের প্রতিসারাংক n । শুন্য মাধ্যমে আলোর বেগ c, এবং তাই কোনো মাধ্যমে আলোর বেগ v হলে মাধ্যমিটির প্রতিসারাংক হচ্ছে:

$$n = \frac{c}{r}$$

n धकाँ मध्यम याज धनः धन कारमा धकक लाहे

এবং যেহেতু আলোর সর্বোচ্চ বেগ হচ্ছে c. কাজেই n এর মান সব সময়েই 1 পেকে বেশি। কাজেই

ছবি 9,1; কাচের প্রতিসরাংক তরঙ্গ দৈখের উপর নিত্র করে।

টেবিল 9.1: ভিন্ন ভিন্ন মাধ্যমে আলোন প্ৰভিমানাংক

भूगा याशाम	1,00
রাতাস	1,00029
পানি	1,33
নাধারণ কাচ	1.52
হীরা	2,42

যখন আমরা বলি পানির প্রতিযারাংক 1.33, তখন আমরা আমরা বোঝাই পানিতে আলোর বেগ:

$$v = 3 \times 10^8 ms^{-1}/1.33 = 2.26 \times 10^8 ms^{-1}$$

ফাইবার অপটিক ক্যাবলের কাচের তম্ভর প্রতিসারাংক 1.5 কাজেই ফাইবারের ভেতর দিয়ে আলো $2\times 10^6 m/s$ বেগে যায়। 9.1 টেবিলে কিছু পদার্থের প্রতিসারাংক দেয়া হয়েছে। শূন্য মাধ্যমে

স্বাভাবিক ভাবেই n এর মান হবে 1, বাভাবে এটি 1 এর এত কাছাকাছি যে সামরা এটাকে 1 বরেই সামাদের হিসাব করব।

উদাহরণ 9.1: 9.1 ঐবিলে দেখালো মাধ্যেওলোতে আলোর বেগ কত বের কর ।

উত্তর: কোন মাধ্যমে আলোর রেগ

$$v = \frac{c}{n}$$

শ্ব মাজনে $v=3\times 10^8 ms^{-1}/1.00=3\times 10^8 ms^{-1}$ বাজনে $v=3\times 10^8 ms^{-1}/1.00029=3\times 10^8 ms^{-1}$

পানিকে $v=3\times 10^8 ms^{-1}/1.33=2.26\times 10^9 ms^{-1}$ সাধারণ কালে $v=3\times 10^8 ms^{-1}/1.52=2\times 10^8 ms^{-1}$ হারতে $v=3\times 10^8 ms^{-1}/2.42=1.24\times 10^8 ms^{-1}$

এখানে উল্লেখ্য যে কোনো মাধ্যমের প্রতিসারাংক বলতে হলে নেটি কোন তরঙ্গ দৈর্ঘ্যের আলোতে মাপা হয়েছে নেটি বলে দিতে হয়। কারণ আলোর প্রতিসারাংক আলোর তরঙ্গ দৈর্ঘ্যের ওপর নির্ভর করে। কোয়ার্টজ কাচের প্রতিসারাংক তরঙ্গ দৈর্ঘ্যের নাথে নাথে কীভাবে কমে যাচেছ নেটি 9.1 ছবিতে দেখানো হয়েছে।

9.1.1 প্রতিসরণের সূত্র

প্রতিসরশের দূত্র বোঝার জন্য যে বিষয়গুলো জানা প্রয়োজন ছিল সেগুলে জানা হয়েছে। প্রতিফলনের বেগার আমরা আলোক রাশা যে বিন্দুতে পড়েছে

ছবি 9.2; প্রথম মাধ্যম থেকে দ্বিতীয় মাধ্যমে আলোন প্রতিমরণ।

সেই বিন্দু থেকে একটি লব্দ কল্পনা করে নিয়েছিলাম, এখানেও সেই একই বিষয়টি করতে হবে। 9.2 ছবিতে লব্দের সাথে আপতিত রশ্মিটির কোণকে বলব আপাতন কোণ, দ্বিতীয় মাধ্যমে লব্দের সাথে প্রতিসারিত রশ্মির কোণকে বলব প্রতিসরণ কোণ।

প্রতিসরণের প্রথম সূত্র : আপাতন রশ্যি এবং গম দিয়ে আমরা যে নমতগটি কল্পনা করে নিয়েছি প্রতিসরিত রশ্যি সেই একই সমতগে থাকবে।

প্রতিসরশের দিতীয় সূত্র : প্রথম সাধ্যমের প্রতিনারাংক n_1 , দিতীয় মাধ্যমের প্রতিনারাংক n_2 , আপাতন কোদ \mathcal{G}_1 , এবং প্রতিনারিত কোদ \mathcal{G}_2 হলে

 $n_1 \sin \theta_1 = n_2 \sin \theta_2$

ছবি 9.3; হালকা মাধ্যমে থেকে গন মাধ্যমে যাবার সময় আলো লন্ধের দিকে বেকে যায়। গন মাধ্যম থেকে গালকা মাধ্যমে যাবার সময় আলো লন্ধ থেকে দূরে সরে যায়।

এই অতি সহজ সূত্রটি মনে রাখলে তুমি প্রতিসরণ-সংক্রান্ত সব সমস্যার সমাধান করে ফেলতে পারবে। যদি প্রথম মাধ্যমটি রাতাস হয় তাহলে $n_1=1$ ধরে লিখতে পারি (ছবি 9.3)

$$n_2 = \frac{\sin \theta_1}{\sin \theta_2}$$

ছবি 9.4: আগতন কোন বেশি হলে আলো বেশি প্রতিফলিত হয়।

বেহেতু n_2 এর মান 1 থেকে বেশি তাই $\theta_2 < \theta_1$ অর্থাৎ প্রতিসরণের পর আলোক রশ্মিটি লন্দের দিকে বেঁকে বাবে। n বেশি হলে আমরা অনেক সময় তাকে ঘন মাধ্যম বর্লি— মনে রাখতে হবে এখানে মাধ্যমের ভরের কারণে ঘন বলছি না। এটাকে ঘন বলতে বোঝানো হচ্ছে এর n বেশি। কাজেই প্রতিসরণের দ্বিতীয় সূত্র থেকে আমরা বলতে পারি আলো হালকা মাধ্যম থেকে ঘন মাধ্যমে বাবার সময় প্রতিসারিত রশ্মি লন্দের দিকে বেঁকে বাবে। আবার ঘন মাধ্যম থেকে

হালকা মাধ্যমে বাবার সময় সেটি লম্ব থেকে দূরে সরে যাবে। (ছবি 9.3)

প্রতিসরণ নিয়ে আলোচনা করা হচ্ছে বলে এখানে স্বধু মাত্র আপাতন রশ্যি এবং প্রতিসারিত রশ্যি আঁকা হয়েছে কিন্তু সবাইকে মনে রাখতে হবে যখনই একটি আলোক রশ্যি এক মাধ্যম থেকে অন্য মাধ্যমে প্রবেশ করে তখন সব সময়েই খানিকটা আলো প্রতিকলিত হয়। দুটো মাধ্যমের মাঝে কতখানি প্রতিকলিত হবে এবং কতখানি প্রতিসারিত হবে সেটা নির্ভর করে আপাতন কোণের ওপর। আপাতন কোণ বাড়তে থাকলে সব সময়েই প্রতিকলন বাড়তে থাকে। কাজেই উপরের দুটো ছবি ঠিক করে আঁকতে হলে 9.4 ছবির মতো করে আঁকতে হবে।

উদাহরণ 9,2: একটি কাপের মাঝে একটা মুদ্রা রেখে সেটাকে সামনে এমনভাবে রাখো যেন সেটি দেখা না বার। মুদ্রাটি কীভাবে দেখা সম্ভবং

উত্তর: কাপে পানি ঢাললেই মুদ্রাটি দৃশ্যমান হরে বাবে। (ছবি 9.5)

ছবি 9.5: পানি ও কাচের ভেতর আলো প্রতিসরণ।

উদাহরণ 9.3: 9.6 ছবিতে দেখানো পাশাপাশি রাখা করেকটি ভিন্ন মাধ্যমের বাইরের প্রেষ্ঠ আলো θ_1 কোনে আপতিত হরেছে। θ_2 এর মান কত?

উख्तः

$$n_1 \sin \theta_1 = n_2 \sin \theta_2$$

$$n_2 \sin \theta_2 = n_3 \sin \theta_3$$

$$n_3 \sin \theta_3 = n_4 \sin \theta_4$$

$$n_4 \sin \theta_4 = n_5 \sin \theta_5$$

কাডেই

$$n_1\sin\theta_1=n_5\sin\theta_5$$

যেহেত

$$n_1 = n_5$$
$$\theta_1 = \theta_5$$

ছবি 9.6: ডিল্ল ডিল্ল মাধ্যমের ডেতর দিরে আলোর প্রতিসরণ।

অর্থাৎ যে কোণে আলো চুকনে ঠিক সেই কোণে আলোটা বের হরে!

ছবি ${f 9.7}$: ${f (a)}$ আলো ${f 45}^\circ$ কোণে আপতিত হচ্ছে ${f (b)}$ আলো ${f 60}^\circ$ কোণে প্রতিসরিত হচ্ছে।

উদাহরণ 9.4: বাতাগ থেকে আলোক রশ্মি n=1.6 মাদমে 45° তে আপতিত
হরেছে। (ছবি 9.7 a) এটি কত ডিগ্রি কোণে
দিতীর মাধ্যে প্রবেশ করবেং

উত্তর: আমরা জানি $n_1 \sin heta_1 = n_2 \sin heta_2$

কাজেই

$$\sin \theta_2 = \frac{n_1}{n_2} \sin \theta_1 = \frac{1}{1.6} \times \frac{1}{\sqrt{2}} = 0.44$$

$$\theta_2 = 26^{+}$$

উদাহরণ 9.5; 9.7 b ছবিতে একটি রশ্মি 60° তে রাতাস থেকে একটি মাধ্যমে প্রবেশ করে 45° কোণে দ্বিতীয় মাধ্যমে প্রতিসরিত হচ্ছে। দ্বিতীয় মাধ্যমটির প্রতিসারাংক কত?

উত্তর: আমারা জানি

$$n_1 \sin \theta_1 = n_2 \sin \theta_2$$

$$1 \otimes \sin 60^\circ = n_2 \sin 45^\circ$$

$$n_2 = \frac{\sin 60^\circ}{\sin 45^\circ} = 1.22$$

9.1.2 প্রিক্তম

কোনো স্বচ্ছ মাধ্যমের দুই পৃষ্ঠ সমান্তরাল না হলে তাকে প্রিজম বলে। স্বচ্ছ সমান্তরাল মাধ্যমে যে দিকে আলো প্রবেশ করে সেই দিকের সাথে সমান্তরাল হয়ে আলোক রশ্মি বের হয়ে যায়। দিক অপরিবর্তিত

খাকদেও আলোর রশ্মি মূল রশ্মি থেকে খালিকটা সরে যায়। প্রিজমের বেলার আলোক রশ্মির দিক পান্টে যায়। (ছবি 9.8) প্রথম পৃষ্ঠ দিয়ে আলোক রশিটি প্রবেশ করার সময় লবের দিকে বেঁকে যায়- থেহেতু দ্বিতীয় পৃষ্ঠটি সমান্তরাল নয় তাই সেই পৃষ্ঠ দিয়ে আলো বের হবার সময় লদ থেকে সরে গেলেও সেটি আর মূল দিকে যুরে যেতে পারে না।

প্রিজনে আলোর দিক পাল্টে যাবার ঘটনা ঘটলেও সেটি অন্য একটি কারণে আরো বেশি গুরুত্বপূর্ণ। প্রিজনে একটি আলোক রশ্মি প্রবেশ করার

ছবি 9.8: পিজমের আলোক রশ্যি দিক প্রিজমের ভূমির দিকে বেকে যায়।

পর সেটি মূল দিক থেকে কতটুকু বেঁকে যাবে সেটি প্রিজমের প্রতিসারাংকের ওপর নির্ভর করে। আমরা আগেই বলেছি প্রতিসারাংক আসলে আলোর তরঙ্গ দৈর্দ্য বা রংরের ওপর নির্ভর করে। তাই তিন্ন ভিন্ন রংরের জন্য প্রতিসারাংক ভিন্ন, কাজেই একই আলোক রশ্যিতে ভিন্ন ভিন্ন রং থাকলে প্রিজমের ভেতর দিয়ে যাবার সমর সেই রংয়ের আলোগুলো ভিন্ন ভিন্ন কোণে দিক পরিবর্তন করবে— কাজেই আমরা দেখব প্রিজম থেকে আলো বের হবার সময় তার রংগুলো আলাদা হয়ে গেছে নিউটন যেটি প্রথম দেখিয়েছিলেন (ছবি 1.2)!

9.1.3 আপেক্ষিক প্রতিসারাংক

আমরা বলেছি কোনো মাধ্যমের প্রতিসারাংক স্বসময় 1
থেকে বেশি হয়। কারণ প্রতিসারাংক থেহেতু শূলা মাধ্যমে
সাথে সেই মাধ্যমে আলোর বেগের তুলনা এটা 1 থেকে বেশি
হবে। মাথে মাথে এক মাধ্যমের প্রতিসারাংকের তুলনার অন্য
মাধ্যমের প্রতিসারাংক প্রকাশ করা হয় তথন কোনটির সাথে

ছবি 9.9: পানি ৪ কাচের ভেতর আলে। প্রতিসরণ

কোনটির তুলনা করা হয়েছে তার ওপর নির্ভর করে সেটা 1 থেকে কম হতে পারে।

যেমন পানিকে প্রথম মাধ্যম এবং কাঁচকে দ্বিতীয় মাধ্যম ধরলে (ছবি 9.9)

$$n_1 \sin \theta_1 = n_2 \sin \theta_2$$
$$n_1 = 1.33$$
$$n_2 = 1.52$$

পানির তুলনায় কাচের প্রতিসারাংক

$$\frac{n_2}{n_1} = \frac{\sin \theta_1}{\sin \theta_2} = 1.14$$

যেটি 1 থেকে বেশি।

আবার কাচের তুলনায় পানির প্রতিসারাংক

$$\frac{n_1}{n_2} = \frac{\sin \theta_2}{\sin \theta_1} = 0.88$$

যেটি 1 থেকে কম।

অর্থাৎ যে মাধ্যমের প্রতিসারাংক বের করতে চাইছ সেটিকে যার তুলনায় বের করতে চাইছ সেই সংখ্যা দিয়ে ভাগ দিতে হবে।

পানির তুলনায় হীরা: 1.82 হীরার তুলনায় পানি: 0.55 কাচের তুলনায় হীরা: 1.59

হীরার তুলনায় কাচ: 0.63

(তবে পদার্থবিজ্ঞানে সাধারণত দুটির তুলনা হিসেবে প্রতিসারাংক ব্যবহার না করে নির্দিষ্ট বস্তুর প্রতিসারাংক হিসেবেই ব্যবহার করা হয়।)

9.2 পূর্ণ আভ্যন্তরীন প্রতিফলন (Total Internal Reflection)

প্রতিফলন সম্পর্কে আলোচনা করার সময় বলা হয়েছিল যখন অত্যন্ত নিখুঁত এবং পূর্ণাঙ্গ প্রতিফলন প্রয়োজন হয় তখন আয়না ব্যবহার না করে পুরোপরি স্বচ্ছ মাধ্যম ব্যবহার করে এক ধরনের প্রতিফলন করানো হয় – এই প্রতিফলনের নাম পূর্ণ আভ্যন্তরীন প্রতিফলন। এটি অত্যন্ত সহজ এবং চমকপ্রদ একটি

প্রক্রিয়া, এখানে প্রতিসরগের নিয়ম ব্যবহার করে আলোক রশ্যিটি ঘন মাধ্যম খেকে হালকা মাধ্যমে পাঠাতে হয় মাত্র।

আমরা এর মাঝে জেনে গেছি (এবং অনেকবার ব্যবহার করেছি), প্রতিসরদার সূত্র হচ্ছে

$$n_1 \sin \theta_1 = n_2 \sin \theta_2$$

অর্থাৎ যদি n_1 থেকে n_2 বড় হয় ভাহলে $m{e}_2$ থেকে $m{ heta}_1$ বড় হবে। ধরা যাক তুমি একটি ঘন মাধ্যম (n_2) থেকে একটি আলোক রশ্মি হালকা মধ্যমের (n_1) দিকে পাঠাছে (ছবি 9.10), প্রতিসরণ এবং

স্থাবি 9.10: গল মাধাম খোকে বালকা মাধামে বাবার সমাত আলোর পূর্ণ আভাজনীগ প্রতিফলন হতে পারে।

প্রতিফলনের নিয়ম অনুযায়ী খানিকটা আলো প্রতিফলিত হবে এবং খানিকটা প্রতিযারিত হবে। যেহেতু H_2 থেকে H_1 বড় হবে কাজেই $H_2 < 90$ খাকতেই $\theta_1 = 90$ হয়ে যারে এবং এর পর খেকে আলোর প্রতিয়ারিত হবার আর কোনো সুয়োগ খাকরে না! অর্থাৎ যখন $\theta_1 = 90$ হবে তখন থেকে পুরো আলোকেই প্রতিফলিত হতে হবে। θ_2 এর যে মানের জন্য $H_1 = 90$ হয় সেই কোণকৈ ক্রাভি কোণ θ_1 বলে।

ভাগাৎ

$$n_1 \sin 90^{\circ} = n_2 \sin \theta_c$$

$$\sin \theta_c = \frac{n_1}{n_2}$$

$$\theta_c = \sin^{-1} \left(\frac{n_1}{n_2}\right)$$

কাচের $n_3=1.52$ এবং বাতাসের $n_1=1.00$ যাবে জ্যান্তি কোগ:

$$\theta_v = \sin^{-1}\left(\frac{1.00}{1.52}\right) = \sin^{-1}(0.66) = 41.8^{\circ}$$

অর্থাৎ ব্রদি স্বচত কাচ থেকে বাতাদের মাবে। বালো পাঠানের সময় আলোক রশি। 41.8° থেকে বেশি আশাতন কোপ করে তাহলে আলোক রশি।টি প্রচত্ত কাচ থেকে বের না হয়ে পুরোপুরি প্রতিফলিত হয়ে বায়। তোমরা যদি একটি প্রিজম সংগ্রহ করতে পার তাহলে খুব সহজেই পুল আতন্তেরীল প্রতিফলন ব্যাপারটি নিজের চোখে দেখতে পারে। 9.11 ছবিতে কাচ-বাতাস বিশ্রেদ তলে আলোর আপাতন কোপ 45° খাঁটি কাচ-বাতাসের ত্রান্তি কোণ 41.8° থেকে বেশি। কাজেই এখানে পুল আভ্যন্তবীল প্রতিফলন হরে।

ক্ৰি 9,11: সনচেয়ে পৰিপূৰ্ণ প্ৰতিক্ষন হয় এই আন্তাৰনীয় প্ৰতিক্ষানে।

জনাহরণ 9.6: পানিছে ডুবে বদি এই পরাক্ষাটা করতে চাও তাহলে বাঁ হবেং

উন্ধন: পালিতে কানের জ্ঞান্তি কোপ হবে: $heta_c = \sin^{-1}\left(\frac{1.33}{1.52}\right) = \sin^{-1}(0.88) = 61.6$ ্ত লাগতেন কোণ থেছেড় 45 , ক্রান্তিকোপ থেকে কম তাই পূর্ণ জ্ঞান্তানুৱীগ প্রতিফলন হবে না ।

উদাহরণ 9.7: 1.45 প্রতিসারাংকের একটি মাধ্যমের ভেতর পেকে আলো 75 °তে আপতিত হয়েছে। (ছবি 9,12) মাধ্যমটির জন্য পাশে বাতান ধারনো আলোটি কড ডিটি কোণে কেং হয়ে। জাসবে।

উন্তর: আমারা ভালি

 $n_1 \sin \theta_1 = n_2 \sin \theta_2$

 $1.45 \times \sin 75^\circ = 1 \times \sin \theta_2$

 $\sin \theta_2 = 1.40$

কিছু আহলা লানি Sin (ঠু এর নাম কথনো 1 থেকে বেশি হতে পারতে না। এখানে এ লাপারটি গটেছে কারণ আলো

ছবি 9.12: আলো 75 'কোনে আপত্তিত হতে।

প্রতিসারিত না হয়ে পূর্ণ আভ্যন্তরীণ প্রতিফলিত হয়েছে কাজেই যখনই ঘন মাধ্যম খেকে হালক। মাণ্যমে আলোর প্রতিসরণ দেখতে হয় তখন প্রথমে ক্রান্তি কোগটি বের করে নেয়া তালো, এই ক্রান্ত কোণ খেকে কম কোনে আলো আপতিত হলে ওপুমাত্র প্রতিসরণ হওয়া সন্তব।

এই ক্ষেত্রে ক্রেডি ক্রেড
$$heta_c$$
 হলে
$$\sin\theta_c=\frac{1}{1.45}=0.69$$
 $heta_c=43.6^\circ$

কাজেই 75 ''তে আলো আপতিত হলে সেটি প্রতিসরিত না হয়ে পূর্ণ আভ্যন্তরীণ প্রতিফলন হবে।

ছবি 9.13: সূর্যের আলো পানির কনার চেতরে পূর্ণ আভন্তরীপ প্রতিফালত হয়ে ডিয় ডিয় রংয়ে জগ হয়ে যায় বলে আমরা রংধন দেখতে পাই।

9.2.1 রংধনু

তোমরা যারা ভাবছ যে তোমরা সত্যি সত্যি কখনো পূর্ণ আভ্যন্তরীণ প্রতিফলন দেখনি— তাদেরকে মনে করিয়ে দেয়া যার যে যারা রংধনু দেখেছে তারাই পূর্ণ আভ্যন্তরীণ প্রতিফলন দেখেছে। রংধনু তৈরি হয় পানির পূর্ণ

আড়ান্তরীণ প্রতিফলন দিয়ে। শুধু তাই নয়, যায়া প্রিজমের অভাবে সাদা আলোকে তার রংগুলোতে তাগ করে দেখতে পারনি তারাও এই ব্যাপারটি রংধনুতে ঘটতে দেখেছ।

আমাদের সরার কাছে প্রিক্তম না পাকলেও সাদা আলোর রংগুলো আলাদা হওরার ঘটনা আমরা

ছবি 9.14: আধুনিক পেরিফোপে আয়নার পরিবর্তে প্রিজম ন্যবহার হয়।

সবাই দেখেছি। বৃদ্ধি হবার পরণর যদি রোদ উঠে তাহলে আমরা রংধনু দেখি। তার কারণ তখন বাতাসে পানির কণা থাকে এবং পানির কণায় সেই আলো পূর্ণ আজ্যন্তরীদ প্রতিফলিত হবার সময় ভিন্ন ভিন্ন রংয়ের আলো ভিন্ন ভিন্ন পরিমাণে বেঁকে যায়। (ছবি 9.13) এই আলোর রশিক্ষেলা দিয়ে রংধনুর বিভিন্ন ভিন্ন রংয়ের ব্যান্ড (band) তৈরি হয়।

তোমরা যারা রংধনু দেখেছ তারা নিক্রই আবিক্রার করেছ এটি সব সময়েই সূর্যের বিপরীত আকাশে দেখা যার এবং কারণটি নিক্রই বুবতে গারছ।

9.2.2 পেরিকোপ

আমত্রা যবাই জানি মাবমেরিনে পেরিক্ষোপ থাকে এবং মেই পেরিক্ষোপ দিয়ে পানির নিচে থেকে পানির উপরের দৃশ্য দেখা সম্ভব। সাধারণ আয়না দিয়ে যে ধরনের পেরিক্ষোপ তৈরি করা যায় তার থেকে অনেক বেশি কার্যকর পেরিক্ষোপ তৈরি করা হয় প্রিজম এবং তার পূর্ণ আভ্যন্তরীণ প্রতিফলন দিয়ে। (ছবি 9.14)

9.2.3 মরিচীকা

আমরা সবাই মরীচিকা শব্দটির সাথে পরিচিত, কোনো কিছু পাওয়ার আশা করে শেষ পর্যন্ত না পেলে সেটাকে মরীচিকা বলা হয়। মূল শব্দটি এসেছে মরুভূমিতে উত্তাপের কারণে বতাসের ঘনত্বের পরিবর্তনথেকে। যদিও আমরা জানি উত্তপ্ত বাতাস হালকা বলে উপরে চলে যায় কিন্তু মরুভূমির উত্তপ্ত বালুর কারণে তার কাছাকাছি বাতাস উপরের বাতাস থেকে উত্তপ্ত থাকতে পারে। কাজেই মরুভূমির বাতাসকে নিচের 9.15 ছবির মতো করে কল্পনা করে নিতে পারি।

সহজভাবে বোঝানোর জন্য এখানে মাত্র কয়েকটি স্তরে দেখানো হয়েছে। উপরের স্তরে বাতাসের ঘনতু বেশি তাই প্রতিসারাংক বেশি। নিচের স্তরে বাতাস উত্তপ্ত তাই ঘনতু কম এবং প্রতিসারাংকও কম।

ছবি 9.15: মরুভুমিতে বাতাসের ঘনত্বের পার্থক্যের কারণে মরীচিকা দেখা যায়।

গাছ থেকে আলো প্রতিটি ন্তরে প্রতিসারিত হবার সময় প্রতিসরণ কোণ বেডে যাবে এবং একেবারে নিচের স্তরে আভ্যন্তরীণ બર્લ প্রতিফলন হয়ে যেতে পারে। বেশি প্রতিসারাংক থেকে কম প্রতিসারাংকের মাধ্যমে যাবার সময় দূর থেকে দেখা হলে আপাতন কোণের মান বেশি ক্ৰান্তি হওয়ার কারণে অতিক্রম করার কোণকে সম্ভাবনা বেশি থাকে- তাই

মরীচিকাকে দূর থেকে দেখা যায় কাছে এলে দেখা যায় না। যেহেতু কোনো মানুষ দূরের একটি গাছের দিকে তাকালে সরাসরি গাছটি দেখতে পাবে এবং পূর্ণ আভ্যন্তরীণ প্রতিফলনের কারণে গাছের একটি প্রতিবিম্ব গাছের নিচেও দেখতে পাবে– মনে হবে নিচে পানি থাকার কারণে সেখানে গাছের প্রতিবিম্ব দেখা যাছে। কাছে গেলে দেখা যাবে কোনো পানি নেই!

গরমের দিনে উত্তপ্ত রাস্তায় গাড়ি চালিয়ে যাবার সময় একই কারণে দূরে কালচে ভেজা রাস্তা দেখা যায়– সেখানে পৌছানোর পর দেখা যায় রাস্তাটি খটখটে শুকনো– এটাও এক ধরনের মরীচিকা।

9.2.4 অপটিক্যাল ফাইবার

নূতন পৃথিবীর যোগাযোগের মাধ্যমে বৈদ্যুতিক তারকে অত্যন্ত সরু কাচের তন্তু দিয়ে পাল্টে দেয়া হয়েছে। আগে যেখানে বৈদ্যুতিক সিগন্যাল দিয়ে তথ্য পাঠানো হতো এখন সেখানে আলোর সিগন্যাল

দিয়ে তথ্য পাঠানো হয়। মুক্ত অবস্থায় আলো সরল রেখায় যায় কিন্তু ফাইবারে আলো আটকা পড়ে যায় বলে সেটাকে ঘুরিয়ে পেঁচিয়ে যে কোনো দিকে নেয়া সম্ভব।

অপটিক্যাল ফাইবার অত্যন্ত সরু কাচের তন্তু এর ভেতরের অংশকে বলে কোর (core) বাইরের অংশকে বলে ক্ল্যাড (clad) দুইটিই একই কাচ দিয়ে তৈরি হলেও ভেতরের অংশের (কোর) প্রতিসারাংক

ছবি 9.16: অপটিক্যাল ফাইবারে পূর্ণ আভ্যন্তরীন প্রতিফলনের মাধ্যমে আলো যেতে পারে।

বাইরের অংশ থেকে বেশি। এ কারণে আলোকে পূর্ণ আভ্যন্তরীণ প্রতিফলনের মাধ্যমে কোরের মাঝে আটকে রেখে অনেক দূরে নিয়ে যাওয়া যায়। (ছবি 9.16) অপটিক্যাল ফাইবার দিয়ে আলো শত শত কিলোমিটার নিয়ে যাওযা যায় কারণ এই কাচের তন্তুকে আলোর শোষণ হয় খুবই কম। দৃশ্যমান আলো হলে শোষণ বেশি হতো বলে ফাইবারে লমা তরঙ্গ দৈর্ঘ্যের অবলাল রশ্যি ব্যবহার করা হয়।

উদাহরণ 9.8: পৃথিবীর এক পৃষ্ঠে থেকে অন্য পৃষ্ঠে সিগন্যাল অপটিক্যাল ফাইবার দিয়ে পাঠানো যায় আবার জিও স্টেশনারি স্যাটেলাইটের মাধ্যমেও পাঠানো যায়। কোন পদ্ধতিতে পাঠালে তথ্য তাড়াতাড়ি পাঠানো সম্ভব?

উত্তর: স্যাটেলাইটে যে সিগান্যাল পাঠানো হয় সেটি বিদ্যুৎ চৌম্বকীয় তরঙ্গ তার বেগ $3 \times 10^8 m/s$ জিও স্টেশনারি স্যাটেলাইট পৃথিবী কেন্দ্র থেকে $35,786\,km$ উপরে থাকে সেখানে সিগন্যাল পাঠাতে এবং ফিরিয়ে আনতে সময় লাগবে

$$t = 2 \times \frac{35,786 \times 10^3}{3 \times 10^8} \ s = 0.238 \ s$$

ফাইবারে করে যে সিগন্যাল পাঠানো হয় সেটি অবলাল আলো সেটিও বিদ্যুৎ চৌম্বকীয় তরঙ্গ তার গতিবেগও $3 \times 10^8 m/s$, কিন্তু যখন ফাইবারের ভেতর দিয়ে যায় তখন তার গতিবেগ

$$v = \frac{3 \times 10^8 m/s}{1.5} = 2 \times 10^8 m/s$$

পৃথিবীর অন্য পৃষ্ঠের দূরত্ব πR , $(R=6.371 imes 10^3 {
m km})$ ফাইবারে করে পাঠাতে সময় লাগবে

$$\bar{\tau} = \frac{\pi \times 6.371 \times 10^3}{2 \times 10^9} s = 0.1 \text{ s}$$

কাজেই ফাইবারে দ্রুত খাঠানো সম্ভব।

উদাহরণ প.9: অপটিকাল ফাইবারের কোরের প্রতিমারাংক [.5() এবং ক্র্যান্ডের প্রতিমারাংক [.45 হলে, (ছবি 9.17) আলোকে পূর্ণ আভান্ডরীদ প্রতিফলন হল্যান জনা কড ভিন্নিতে আপতিত হড়ে হবেং

ছবি 9.17: অপটিকাল ফাইবারের কোর খেকে ক্লাডে আলোর পূর্ণ আভন্তরীন এতিজ্ঞান হয

$$\theta_c = \sin^{-1}\left(\frac{n_1}{n_2}\right)$$

ाशाउ।

$$n_1 = 1.50$$
 $n_2 = 1.45$

$$\theta_{c} = \sin^{-1}\left(\frac{1.45}{1.50}\right) = \sin^{-1}(0.97) = 75\%$$

কাজেই কাজেই আলোক রশিক্ষে 75 থকিংবা তার চেয়ে বেশি কোণে রাপতিত হতে হবে।

9.3 লেপ ও তার প্রকারভেদ (Types of Lenses)

আমরা উত্তল এবং অবতল আয়না পড়ার সময় দেখেছি এই আয়নাগুলোর ভেতর দিয়ে আলো থাবার সময় কখনো একবিন্দুতে কেন্দ্রীভূত (অভিসারী রশ্মি) হয় আবার কখনো ছড়িয়ে পড়ে (অপসারী রশ্মি) এবং সে কারণে প্রতিবিদ্ধের তৈরি হয়। সেই প্রতিবিদ্ধ কখনো স্থিতিকারের প্রতিবিদ্ধ হয় কখনো অবান্তর হয়— কখনো ছোট হয় কখনো রড় হয়। আলো এই প্রতিবিদ্ধ দিয়ে নানা ধরনের অপটিকাল যন্ত্রপাতি তৈরি করা সম্ভব।

হবি 9.18: একটি উদ্ভগ ও একটি অবতল সেপোর শস্তুত্বদ

(তার কারণ চর্ণমার কাচগুলো আসলে এক ধরনের (লঙ্গা)। তোষাদের মাঝে যারা চর্ণমা ব্যবহার করে। বিশ্বা যারা অন্যদের চর্ণমা ব্যবহার করতে দেখেছ তারা নিশ্চিতভারেই লক্ষ করেছ যে চর্ণমার বেলকে

ছবি 9.19; উত্তল এবং অবছল ছেলকে দুটি গোলকের অংশ হিমেনে কল্পনা করা যায়।

বুইভাসা ভাগ করা যায়— এক ধরনের লে**ল** দিয়ে ছোট জিনিসকে বড় দেখা যায় (সাধারনত বয়কসক

চশমার নেল এ রকম হয়।) আবার অন্য ধরনের লেল দিয়ে রড় জিনিসকে ছোট দেখা মায়— (সাধারণত কম বয়সীদের চশমার লেল এ রকম হয়)। যে লেল দিয়ে ছোট জিনিসকে বড় দেখা যায় সেগুলোকে উত্তল (convex) কিংবা (কলচিং) অভিসারী লেল বলে। যে লেল দিয়ে বড় জিনিসকে ছোট দেখা যায় সেই লেলগুলোকে অবতল লেল (Concave) কিংবা (কদাচিং) অপসারী লেল বলে। যে লেল দিয়ে ছোট জিনিসকে বড় দেখা যায় অথাং উত্তল লেলগুলোর মাঝখাদের অংশ প্রান্ত পেকে প্রক হয়। আর অবতল লেলগুলোর মাঝখাদের অংশ প্রান্ত থেকে সক্র হয়। আর অবতল লেলগুলোর মাঝখাদের অংশ প্রান্ত থেকে সক্র হয়। আর অবতল লেলগুলোর মাঝখাদের অংশ প্রান্ত থেকে সক্র হয়। আর অবতল লেলগুলোর মাঝখাদের অংশ প্রান্ত থেকে সক্র হয়। আর অবতল লেলগুলোর মাঝখাদের অংশ

ছবি 9.20: পুরু কাচের ভেতর দিয়ে নানার সময় শ্রতিসর্বাের কারপে মূল রাশ্ব থেকে আলোক রাশ্বি নিচাত হয়।

ছবি 9.21: প্রু লেসে কেন্দ্র দিয়ে যাওয়া আলোক রশ্যি সমাজরাল ভাবে বের হলেও একটু সরে মায়, পাতলা লেসে কেন্দ্র দিয়ে যাওয়া আলোক রশ্যি তার দিক পরিবর্তন না করে মোলাস্ডি বের হয়ে যায়

কিংবা অবতল লেন্সের দুটিই দুটি গোলীয় বুক্ত দিয়ে সীমাবদ্ধ। এই দুটি গোলীয় বুক্তের বামার্থ সমানও হতে পারে ভিন্নও হতে পারে। এই বুক্তলোর কেন্দ্রক বক্ততার কৈন্দ্র বলে। 9.19 ছবিতে C_1 এব C_2 বক্ততার কেন্দ্র।

দৈনন্দিন জীবনে বা বিজ্ঞানের নানা বিষয়ে নানা ধরনের লেন্স ব্যবহার করা হয়- তবে আমরা আমাদের এই বইরে আমাদের মালোচনা পাতলা লেপের মাঝে সীমারদ্ধ রাখব। পাতলা লেপ এবং পুরু লেপের পার্থকা নামকরণ থেকেই বোঝা থেলেও আমরা পার্থকাটুকু আরেকটু পরিন্ধার করে নিই। লেপের প্রস্তুচ্ছেদের দিকে তাকালে আমরা দেখতে পাই বদিও লেপের পৃষ্ঠদেশের এক ধরনের বক্ততা আছে কিন্তু ঠিক মাঝামাঝি জারগার দুটি বুঠ প্রায় সমান্তরাল। আমরা জানি সমান্তরাল পৃষ্ঠ দিরে আপো বাবার সমর প্রতিসরশের কারণে আলোক রশািটি মূল দিক থেকে খানিকটা বিচ্নাৎ হরে বার (ছবি 9.20)। সমান্তরাল

পৃষ্ঠ দ্বাট যত পুরু হবে আলোক নশ্বিটি মূল রাশ্বির দিক থেকে তত বেশি সরে যাবে। যদি সমান্তরাল পৃষ্ঠ দুটি খুব কাছাকাছি হর তাহলে আমরা ধরে নিতে পারি মূল আলোক রশ্বি যে দিক দিয়ে এসেছে মোটাম্টি সেদিক দিয়েই বের হরেছে তার কোন বিচ্চুতি হর্নন। যেসব লেপের বেলার তার কেন্দ্র দিয়ে আলোক রশ্বি যাবার সমর ধরে নেরা যার যে রশ্বিটির দিক অপরিবর্তিত আছে সেই সব লেপকে পাতলা লেস বলে (ছবি 9.21)।

্মাকাস নুরত্

ছবি 9.22: অৰ্ডল লেপের জেতর দিয়ে থাবার সময় সমাত্রাল রশ্যি ছড়িয়ে পড়ে।

9.3.1 অবতল লেখ (concave lens)

উদ্ভল এবং অবতল আয়না আলোচনা করার সময় আমরা প্রথমে উত্তল আয়না নিয়ে আলো

সময় আমরা প্রথমে উত্তন আয়না নিয়ে আলোচনা করেছিলাম– লেন্সের বেলায় আমরা প্রথমে অনতন লেস নিয়ে আলোচনা করি– কারণ উত্তন আরমায় যে ধরনের প্রতিবিদ্ধ তৈরি হর অনতল লেন্সে সেই

ছবি 9,23: অবতল লেমের শুতর দিয়ে ঝাবার সময় অভিনারী রশি। সমান্তরাল হয়ে যাবে।

একই ধরনের প্রতিবিদ্ধ তৈরি হয়।

উত্তপ আরনার বেলার আমরা দেখেছিলাম সেখানে সমান্তরাল আলো পড়লে সেটি প্রতিফলিত হবার সময় চারিদিকে ছড়িরে পড়ে। অবতল লেগের বেলাতেও ঠিক এই ধরনের ব্যাপার ঘটে এই লেগে সমান্তরাল আলো পড়লে প্রতিসারিত হবার সমর সেটি ছড়িরে পড়ে।

প্রতিসরিত আলোগুলো যদি আমরা পিছনের দিকে বাড়িয়ে নিই তাহলে মনে হবে সেগুলো বুঝি একটি বিন্দু থেকে সোজা ছড়িয়ে পড়ছে। সেই বিন্দুটিকে বলে ফোকাল বিন্দু এবং লেসের কেন্দ্র থেকে এই ফোকাল পয়েন্টের দূরত্বটিকে বলে ফোকাম দূরত বা ফোকাল গ্রত । (ছবি 9.22)

উত্তল আয়নার বেলায় আমর সদ্ এক নিক থেকে আয়নার ওপর আলো কেলতে পারতাম— লেখের নেলায় দুই দিক থেকেই আলো ফেলা যায়। প্রত্যেকটা লেখের একটা ফোকাল দূরতু থাকে— আলো যেদিক দিয়েই ফেলা হোক তার ফোকাল দূরতু সমাল থাকে। সমান্তরাল আলো ফেলা হলে সেটি ছাঙ্য়ে পড়ে এবং মনে হয় সেটি বৃথি ফোকাল বিন্দু থেকে বিচ্ছুরিত হয়ে ছাঙ্য়ে পড়েছে। আলো য়েহেতু সব সময় নিজের গতিপথের বিপরীতে যায় ভাই অবতল লেখের ছড়ানো আলোর গতিপথ কোনোভাবে উর্লেট করে দিতে পারতে সোট সমান্তরাল হয়ে উল্লেট দিকে বের হয়ে যাবে (তবি 9.23)

আমরা এখন ইচ্ছে করলে অবতল লেন্সে একটা বস্তর প্রতিবিদ ক্রমণ হবে নোটা বের করতে

পারি। গরা যাক একটা বস্তু XY একটা অবতল লেগের কাছে রাখা হয়েছে। ছবি 9.24) বিশ্বেষণটি সহজ করার জনা ধরে নিয়েছি বস্তুটির Y বিন্দুটি লেসের মূল অফ YR এর উপরে। বস্তুটির কোনা বিন্দুর প্রতিবিস্কৃতি কোনায় হবে সেটি বের করার জন্য সেই বিন্দু থেকে অন্তত দ্টি বিশা আকা দরকার। তবে Y বিন্দু থেকে দুটি রশা আকা দরকার। তবে Y বিন্দু থেকে দুটি রশা আকা দরকার। বিন্দু থেকে দুটি রশা আকা একেও আমরা প্রতিবিদ্যাট বের করতে গারব। Y বিন্দু থেকে YR অফ বরাবর একটি রশা আকা সম্ভব, তই আম্বা জানি Y বিন্দুটের প্রতিবিদ্য এই অফের ওগরে

ছবি 9.24) নবতন লেগে একটি বস্তুকে গ্রেট বেখা।।

তৈরে হবে। 🗴 বিন্দুটির প্রতিবিদ্ধ থেকে অফের ওপর লমটি একে নিলেই আমরা 🎷 বিন্দুর প্রতিবিদ্ধ থেরে। যাবে।

সিন্ধু থেকে দুটি রশ্মি কল্পনা লাই, একটি অফের সাথে সমান্তরাল XPসেটি লেল থেকে বের

 প্রথার সময় হাউ্য়ে যাবে এবং যেহেতু মনে হবে ফোকাস থেকে বিছ্লেরত হচ্ছে তাই ফোকাস F থেকে

 পর্যাত একটি রেখা টেনে বর্ধিত করলেই সেই রশ্মিটি পেয়ে যাল। দিতীয় রশ্মিটি X বিন্দু থোক লেনের

 কেন্দ্রের দিকে একে নিই। পাতলা লেনের নিয়ম অনুযায়ী এটি সরাসাই XT দিকে বের হয়ে যাবে। XT

 এবং FS রেখা দুটি যে বিন্দৃতে ছেদ করবে সেটিই হচ্ছে X এর প্রতিবিদ্ধ X X থেকে অন্দের নপর

 বদ আকলে আম্বরা XY এর প্রতিবিদ্ধ X Y' প্রের যাব।

 বিন্দৃতে আম্বরা XY এর প্রতিবিদ্ধ X Y' প্রের যাব।

 বিন্দৃতে আম্বরা XY এর প্রতিবিদ্ধ X Y' গ্রের যাব।

 বিন্দৃতে আম্বরা স্থিতি বিদ্ধিত বিদ্

উরল আয়নার বেলায় আমরা যা দেখেছিলাম অবতল লেসের প্রতিবিদ্ধের বেলাতেও মোটি লতিং

- (a) এটার অবস্থান হরে লেম্বের কেন্দ্র এবং ফোকাস বিন্দুর নারাখানে
- (b) এটা অকান্তব
- (c) এটা সোজা এবং এটা
- (d) হোটা

9.3.2 উত্তপ লেগ (convex lens)

উত্তল লেন্সের প্রতিবিদগুলো অনেক চমকপ্রদ। অবতন আয়ুনায় আমরা যে ধরনের প্রতিবিদ প্রয়েছিলাম উত্তল লেন্সে ঠিক সেই একই ধরনের প্রতিবিদ্ধ পাওয়া যায়

অবতল আয়নায় আমরা দেখেছিলাম তার ওপর সমান্তরাল রশ্মি ফেলা হলে সোটি ফোকাস বিন্দতে এমে কেন্দ্রীভূত হয় । উত্তল লোকও ঠিক একই বাপার ঘটে, সমান্তরাল রশ্মি ফেলা হলে সেগুলো এই লোকের ফোকাল বিন্দুতে কেন্দ্রীভূত হয় (ছবি 9.25) এবং তারপর আবার ছাড়িয়ে যায়।

য়বি 9,25: উরল লেলের ভেতর দিয়ে থাবার সমা। সমান্তরাল রশ্যি ফোরুল রিন্তে ক্রেনিভ্ড হয়।

কান্তেই আগের যুক্তি ব্যবহার করে বলা যায় যদি কোনো বিন্দু থেকে আলো বিচ্ছুরিত হয় এবং একটা উত্তন লেম্বের ফোঝাল বিন্দতে সেই বিচ্ছুরিত আলো উৎসটিকে (ছবি 9.26) রাখা যায় তাহলে

ছবি 9.26: ফোকাল দুরাত্বে আলোক নিন্দু রাখ। হালে উত্তল লেন্স সোটিকে সমান্তরাল রশিতে পরিগত করে।

আনোটা লেশের তেতর দিয়ে যাবার সময় সমান্তরাল রাশ্মি হয়ে যাবে। (আলোর বেলয় এটি সব সময় সতি। এটি সদি A থেকে B তে যায় তাহালে রাশ্মির দিক হারিবর্তন করে দিলে এটি সব সময় H থেকে A তে গাবে।) এখন আমরা ভিন্ন ভিন্ন অবস্থানে একটা বস্তু গাকলে তার প্রতিবিদ কোখায় হবে সেটি বের করে কেলি।

ফোঝাস দূরত পেকে কম দূরত

প্রথমে ধরা যাক একটি বন্ধ XY কে লেখা এবং তার ফোকাল বিন্দুর F মাঝখানে রাখা হলো। (ছবি 9.27) আনে যে তারে নাখনা করা হারেছে ঠিক সেই একই যাজিতে বলতে পারি Y বিন্দুর প্রতিম্বিটি YOF আদ রেখার প্রলর হবে। 🔏 বিন্দুটির প্রতিবিদ 🔏 থেকে এই অফের ওপর পদ আঁলা হঙ্গেই আমরা 🎖 এর

एवि 9.27: रक्षांकाम मुंबद्धत ट्रकारत वस ताथा करन के का रूपाल क्यु शकिरिय (परा) गारा ।

প্রতিবিশের এবজান পেরে যাব।

এবারে X বিন্দু থেকে ৰুটি বৰি<u>।</u> জীকি, অকের সামে সমান্তরাল XC রোগাটি কোকাণ বিন্দু দি এর ভিতর দিয়ো T' এর দিকে যাবে। X কিন্দু থেকে রাশ্রা লেপের কেন্দ্র বিন্দু দিয়ে খাকা হলে সেটি সোজা সরল রোখায় XO হয়ে S এর দিকে তাবে। দেখতেই পাছে CFT এক YOS রেখা দুটি সামনে খিরো মিলিত

হতে পারবে না। যার অর্থ ধান্তব প্রতিবিশ্ব তৈরি হবার কোনো সুগোগ নেই। রেখা দুটো পিছন দিকে বাজিয়ে দিলে যে X বিন্দুতে মিলিত হবে সেটাই X বিন্দুর প্রতিবিধ। এই বিন্দু থোকে YF রেখান উপন লথ আকা হলে Y" বিন্দুতে স্পর্শ করে সেটা Y বিন্দুর প্রতিবিধ।

দেখাই যাচে XY বন্ধটি মতই গোলের কাছাকাছি আনা হবে প্রতিবিন্ধটি ততই ছোট হতে থাকাবে। সম্রটি যাতই ফ্রোকাল ফিলু F এর কাছানাছি আনা হতে প্রতিবিশটি ততই বড় হতে থাকাবে। বস্তুটি কান ঠিক ফোকাল বিন্দু I^* এর ওপর হবে তথান প্রতিবিদ্ধতির আকার হবে অসীম। সামরা এখন

বলতে পারি যদি একটা উত্তপ গোণের কেন্দ্রবিন্দ্র এরং ফোরণণ বিন্দুর মারাগানে একটি বস্তু রাখা ধ্যা তাখ্যুল বস্তুটির প্রতিবিদ্ধ

- (a) যে দিকে বস্তুটি রয়েছে সেই দিকেই তৈরি হবে
- (b) প্রতিবিদ্বাটি হরে ক্রোন্তর
- (c) সোজা একং
- (d) ছোট।

কোকাস দূরতের বাইরে

এবারে আমরা দেখি বস্তুটি ফোকাম দুরত থেকে यदित राष्ट्रण की दश् । अवछन आग्रमार अर्थ

থবি 9.28: কোনাল দ্যুত্রের বাটরে কিম বিভগ মোকাল দ্রান্তের চেতরে বন্ধ রাখা হলে তার বাত্তব টাস্টা বড় প্রতিবিদ देखाँच क्या ।

এখানেও তিনটি ভিন্ন ভিন্ন বিষয় হতে পারে। (i) বস্তুটি ফোকাস দূরত্বের বাইরে কিন্তু দ্বিংগ ফোকাল দূরত্বের ভিতরে (ii) বস্তুটি দ্বিংগ ফোকাল দূরত্বের বাইরে এবং (iii) বস্তুটি ঠিক দ্বিংগ ফোকাল দূরত্বে। একটি একটি করে দেখা যাক।

প্রথমে আমরা বস্তুটিকে ফোকাস দ্রত্বের নাইরে কিছু ফোকাস দ্রত্বের বিশ্বণ দৈর্ঘ্যের তেতরে রাখা হবে। 9.28 ছবিতে XY বস্তুটির Y বিন্দুর প্রতিবিন্ধটি YOB রেখার উপরে হবে তাই আগের মতো আমরা শুর্নু X বিন্দুটির প্রতিবিদ্ধ বের করি। X বিন্দু থেকে অক্ষের নাথে সমান্তরাল রাশাটি ফোকাল বিন্দু F এর ভেতর দিয়ে যাবে। লোকের কেন্দ্রবিন্দু দিয়ে জন্য একটি রাশা XO সরল রেখায় যাবে— দুটি রেখা যেখানে ছেন করবে সেই X বিন্দুটি হচেছ X এর প্রতিবিদ্ধ। X থেকে জক্ষ YO রেখার ওপর লদ্ধ আঁকা হলে Y' বিন্দুটি হবে Y এর প্রতিবিদ্ধের জনস্থান। কাজেই X'Y' হচেছ XY' এর প্রতিবিদ্ধ। অর্থাৎ এই প্রতিবিদ্ধের জন্যে আমরা বলতে পারিঃ

- (a) প্রতিবিশটির অবস্থান হবে ফোকাল দূরত্বের দ্বিওণ দূরত্বের বাইরে
- (b) নান্তব
- (c) উল্টো
- (d) এবং বস্তুর আকার থেকে বড়

আমরা দেখতেই পাছিছ XY বস্তুটি যদি ঠিক ফোকাস দূরত্বের হিগুণ দূরত্বে (ছবি 9.29) রাখা

ছবি 9.29: ঠিক ফোকাল দূরত্বের বিগ্রন দূরত্বে কোনো বস্তু রাখা হল। ভার প্রতিবিদ্ধতি হবে বস্তুতির সমান।

হয় তাহলে প্রতিবিশ্বটির আকার হবে

XY বস্তুটির নমান এবং প্রতিবিশ্বটির

অবস্থান হবে লেখের কেন্দ্র থেকে

ঠিক সমান দূরত্বে। বস্তুটি যতই

ফোকাল বিন্দুর কাছাকাছি আনা হতে

থাকরে প্রতিবিশ্বটি ততই দূরে তৈরি

হবে এবং তার আকার বড় হতে

থাকরে। যেহেতু এই প্রতিবিশ্বের

ভেতর দিয়ে সতিবিদার আলোক রশি

যায় তাই এটি বাত্তব প্রতিবিশ্ব এবং

ছবিটিতে স্পান্ত দেখা যাছে

প্রতিবিশ্বটি উল্টো অথাৎ:

- (a) প্রতিবিদটির অবস্থান হবে ফোকাল দূরতের নিধন দরতে
- (b) বাস্তব
- (c) উন্দেট
- (১) এবং বস্তর সমান

আমরা (I) ফোকাস দ্রত্বের বাইরে কিন্তু দ্বিগুণ ফোকান দ্রত্বের ভিতরে এবং (II) ঠিক ফোকাস দ্রত্বের দ্বিগুণ দ্রত্বে কোনো বন্ধ রাখনে তার কী ধরনের প্রতিবিদ কোথায় তৈরি হয় সোঁটা বলোছ। এখন বাকি আছে বন্ধটি যদি ফোকাল দ্রত্বের দ্বিগুণ দ্রত্বের বাইরে থাকে তাহলে তার কী ধরনের প্রতিবিদ কোগায় তৈরি হয় সোঁটি বের করা।

এই প্রাতবিদ্যান আকার পদ্ধাত ঠিক আগেরটির মতে। ওপ্প (ছার 9.30) নাত্র বস্তুটিকে বসাতে হবে ফোকাল দূরত্বের হিছণ দূরত্বের বাইরে। আমরা আগেই বলেছি বস্তুটি যদি ফোকাল দূরত্বের হিছণ দূরত্বে রাখা হয় তাহলে তার সম দূরতে সমান আকারের একটা প্রতিবিদ্য তোর হয়। যতই বস্তুটা দূরে মরিয়ে দেয়া হতে থাকে প্রতিবিদ্যটি ততই ছোট হতে থাকে এবং ফোকাল বিন্দুর নিকে এগিয়ে আসতে পাকে। বস্তুটি যদি অসীয় দূরতে সারিয়ে লেয়া হয় তাহলে তার

ছবি 9,30: দিছেন ক্ষেকাল দুরতের বাইরে বড় রাখা হলে তার ছোন উল্টো বাজন পজিবিদ কৈরী হয়।

প্রতিবিদ্ধটি তৈরি হবে ঠিক ফোকাস বিন্দৃতে। কাজেই ফোকাল দূরতের দ্বিংগ দূরতের বাইরে কোনো বস্তু। রাখ্য হলে বস্তুটির

- (a) প্রতিবিশের অবস্থান হয় ফোকাল দূরত এবং ফোকাল দূরতের দিওণ দূরতের সাঝখানে।
- (b) বাস্তব
- (c) উটেট
 - (d) (eff |

উদাহরণ 9.10. উত্তল কোলের কোলার ব্যৱহার কাইরে কোনো বত রাক হলে বার বারণ জাতিরিছ। ০০টি হয়। প্রতিবিদ্যালয় জায়াণায় বজুটি রাখা হলে তার প্রতিবিদ কোণায় হরে?

9.3.3 লেন্সের রং নির্ডর ফোকাল দৈর্ঘ্য

আমরা জানি প্রতিসারাংক আলোর তরক দৈর্ঘ্যের ওপর নির্ভর করে, কাজেই এটা খুবই স্বাভাবিক একটা লেম্বের ফোকাল দৈর্ঘ্য ভিন্ন তরঙ্গ দৈর্ঘ্যের জন্য ভিন্ন হবে। লাল আলোর তরঙ্গ দৈর্ঘ্য বেশি এবং তার ফোকাল দৈর্ঘ্য রেশি, আবার নীল রংয়ের আলোর তরঙ্গ দৈর্ঘ্য কম এবং তার ফোকাল দৈর্ঘ্যও হবে কম। 9.31 ছবিতে একটা লেম্বের ভিন্ন ভিন্ন রংয়ের আলো যে ভিন্ন ভিন্ন ফোকাল বিন্দুতে মিলিত হয় সেটা দেখানো হল।

এই কারণে সাধারণ লেন্স দিয়ে সূক্ষ প্রতিবিদ্ধ তৈরি করা যায় না– কারণ একেকটি রং একক জায়গায় প্রতিবিদ্ধ তৈরি করে। সূক্ষ

ছবি 9.31: কবঁহীন সাদা আলোর ভিন্ন ভিন্ন বং ভিন্ন ভিন্ন ফোকাল দূরত্বে কেন্দ্রীভূত হয়।

অপটিক্যাল যন্ত্র পাতিতে উত্তল ও অবতল লেন্স মিলিয়ে বিশেষ প্রক্রিয়ায় এই সমস্যার সমাধান করা হয়।

ছবি 9,32: যে লেসের ফোকাল দূরত্ব বতো কম সেই লেসে জিনিষটিকে তত বড় দেখায় ।

9.3.4 লেলের ক্ষমতা

লেপের সবচেয়ে প্রচলিত ব্যবহার আমরা দেখি চশমার মাঝে। তোমরা যদি বিভিন্ন মানুষের চশমার লেপ পরীকা করে দেখ তাহলে দেখনে কারো কারো চশমার লেপ তৈরি হয় উত্তল লেপ দিয়ে কারো কারো চশমার লেপ তৈরি হয় অবতল লেপ দিয়ে। আমরা লেপগুলোকে প্রায় সময়ই পাওয়ার দিয়ে বয়খয় করি- তোমরা নিশ্চয়ই বলেছ কিংবা বলতে শুনেছ, অমুকের চশমার পাওয়ার অনেক বেশি। পাওয়ার কথাটি দিয়ে আমরা কী বোঝানোর চেষ্টা করি?

পাওয়ারের ধারণাটি এসেছে লেন্স দিয়ে বড় এবং ছোট দেখার ব্যাপারটি থেকে। দুটি উত্তল লেন্সের পিছনে জিনিসটি কাছাকাছি একই দুরত্বে যদি কোনো কিছু রাখি এবং একটি লেপ অন্যতি থেকে বড় দেখায় তাহলে যে লেপটিতে বড় দেখায় আমরা বলি সেই লেপের পাওয়ার বেশি। তোমরা একট চিন্তা করলেই দেখনে আসলে যে লেপের ফোকাল দূরত্ব যত কম সেই বেসে জিনিসটিকে তত বড় দেখাৰে। (ছবি 9.32)

কাজেই এতে অবাক হবার কিছু নেই লেনের পাওয়ার P হচ্ছে ফোকাল দূরত্বের ব্যস্তানুপাতিক। যদি ফোকাল দূরত্ব f মিটারে দেয়া হয় তাহলে শাওয়ার P এর একক ডায়াপটার। অর্থাৎ তোমার পরিচিত কারো চশমার পাওয়ার যদি হয় 2.5 (সাগারণ কথাবার্তায় ডায়াপটার শক্ষা কেউ বাবহার করে না!) তাহলে তার চশমার লেনের ফোকাল দূরত্ব হবে

$$f = \frac{1}{P} = \frac{1}{2.5}m = 0.4m$$

পাওয়ারের ধারণাটি তথ্ উত্তল লেমের বড় দেখানোর জন্য নয়— অবতল লেমে ছোট দেখানোর সময়াও একই পাওয়ার শব্দটি ব্যবহার করা হয়। যে অবতল লেমে বস্তুকে (সমান নূরতে) যত ছোট দেখা যাবে বুঝাতে হবে তার পাওয়ার তত বেশি বা কোকাল দূরত তত ছোট। উত্তল লেমের বেলায় পাওয়ার ধনাত্রক বা পজিটিভ, অবতল লেসের বেলায় পাওয়ার ঝণাত্রক বা নেমেটিভ এটাই হচ্ছে পাথকা।

9.4 লেকের ব্যবহার (Uses of Lens)

লেপের ব্যবহারের কোনো শেষ নেই। যেখানেই আলোকে কোনো না কোনোভাবে ব্যবহার করা হয় সেখানেই লেপের প্রয়োজন হয়। এখানে আমাদের খুর পরিচিত করোকটি ব্যবহারের কথা বলা যাক। সেগুলো হচ্ছে চশমা, মাইক্রোক্রোপ এবং টেলিক্ষোপ।

9.4.1 চশমা

লেন্দের সবচেয়ে প্রচলিত ব্যবহার হচেছ নশমা। আমাদের চোখে একটি উত্তল লেন্দ রয়েছে এবং এই উত্তল লেন্দের কারণে চোখের অন্ধি গোলকের পিছনে দূরের কোনো রম্ভর একটি প্রতিবিদ তৈরি হয়। আদ্ধি গোলকের পিছনে

ছবি 9.33: লোখের বিভিন্ন ঞ্জংশ

থাকে রেটিনা সেখানে আলোকসংরেদা কোষ থাকে। (ছবি 9,33) এই কোষগুলো থেকে যে সিগনাল তৈরি হয় সেই নিগনাল অপটিকাল নাভে করে মন্তিকে পাঠানো হয় এবং মন্তিক সেই নিগনাল থেকে আমাদের দেখার অনুভূতি দেয়। চোখের ভেতরে আলোর পরিমাণ বাড়ানো কিংবা কমানোর জনা রয়েছে আইরিশ। তোমরা খারা আগো কখনো লক্ষ করনি তার। চোখের ওপন টেলাইটো আলো ফেলে দেখতে পারো আইরিশটো কী চমৎকারতাবে সংকৃতিত হয়ে শিউপিশটোকে ছোট করে কেলে।

তোমরা নিশ্চয়ই বুঝাতে পারছ কোনো কিছুকে স্পষ্ট করে দেখতে হলে চোখের রেটিানায় স্পাই একনৈ প্রতিবিদ্ধ তৈরি হ'বয়া দরকার। তোমরা গেল সম্পর্কে যেটুক্ জেনেছ সেখান থেকে ধারণা করতে পার যেহেত্ একনৈ লেখের ফোকাল দূরত্ব নির্দিষ্ট করা থাকে তাই সম্ভবত একনৈ নির্দিষ্ট দূরতের বছই চোখে স্পাই দেখা যাবে। রম্ভটি যদি একটু দূরে হয় কিংবা কাছে হয় তাহলে প্রতিবিদ্ধটি রেটিনার উপরে না হয়ে আরো সামনে কিংবা আরো পিছনে তৈরি হবে।

ছবি 9.34ং (লাগের (লাস এটিনার সঠিক জারণায় প্তিরিক তৈরি করছে না শার্মণে (গাল ক্রছাত করে সেই স্নাচন এটাসনা সদ্ধ

াধানণ লেনের বেলায় এটি সতিং কিন্তু মানুষের চোথের জেল অনেক চমকপ্রদ, এর সাথে মাংশপেশী লাগানো থাকে এবং এই মাংশপেশী লেনটাকে টেনে কিংবা ঠেলে পুরু কিংবা নরু করে মোণকাশ দৈর্ঘ্য বাড়াতে কিংবা কমাতে পারে। কাজেই রেটিনার ওপর স্পত্ন প্রতিবিদ তৈরি কবার জন্য গোলটি সব সময়ই তার কোকাল দৈর্ঘ্য বাড়িয়ে কিংবা কমিয়ে যাছে। তোমরা নিজেরা থব সহজে এটা পরীভা করতে পার, টোথের সামনে একটি আস্ব্য রেখে একই সাথে এই আস্কাটি এবং দূরের কিছ

দেখার চেষ্টা কর। দেখবে যখন আঙ্গুলটি স্পষ্ট করে দেখবে তখন দূরের জিনিসটি ঝাপসা দেখাবে আবার দূরের জিনিসটি যখন স্পষ্ট দেখাবে তখন আঙ্গুলটি ঝাঁপসা দেখাবে।

কোনো মানুষ যখন তার চোখ দিয়ে বেশিরভাগ সময় কাছের জিনিস দেখে তখন তার মন্তিষ্ঠ কাজটি সহজ করার জন্য চোখের লেপকে স্থায়ীভাবে মোটা করে তার ফোকাল দূরত্ব কমিয়ে ফেলতে পারে। তখন কাছের জিনিস দেখতে সমস্যা না হলেও দূরের জিনিস দেখতে সমস্যা হয়ে যায়। চোখের এই ফেটির নাম মায়োপিয়া (myopia) এ রকম সমস্যা হলে চোখের লেপের ফোকাল দূরত্ব বাড়ানোর জন্য তার সামনে আরেকটি অবতল লেপ রাখতে হয়। (ছবি 9.34 a) অর্ধাৎ তার নেগেটিভ পাওয়ারের চশমা পড়তে হয়।

মায়োপিয়ার বিপরীত চোখের রুপটির নাম হাইপারমেট্রোপিয়া (hypermetropia) তখন ঠিক উন্টো ব্যাপারটি ঘটে। চোখের পেকের ফোকাল দূরত্ব বেড়ে যায়, তখন পাকাপাকিভাবে শুরু দূরের জিনিস স্পষ্ট দেখতে পারে কারণ রেটিনার ওপর লেকটি শুরু দূরের জিনিসের প্রতিবিদ্ধ সঠিকভাবে তৈরি করতে পারে। তখন কাছের জিনিসের প্রতিবিদ্ধ তৈরি হয় আরো দূরে। এ রক্ষম অবস্থায় চোখের সামনে একটি উক্তম লেক রেখে সম্মিলিত ফোকাল দূরত্ব কমিয়ে সঠিকভাবে রেটিনাতে স্পষ্ট প্রতিবিদ্ধ তৈরি করতে হয়। (ছবি 9.34 b)

চোখ অত্যন্ত চমকথ্দে বিষয়, এটি নিয়ে আমরা অনেককিছু শিখতে পারি। আপাতত দৃষ্টি নিয়ে আরো সহজ কয়েকটা বিষয় জেনে নিই।

- (a) চোখের রেটিনাতে আলোকসংবেদী রড এবং কোপ এই দুই ধরনের কোষ রয়েছে। রড কম আলোতে এবং কোপ বেশি আলোতে কাজ করে। কোপ কোষ রং সংবেদী তাই শুধু বেশি আলোতে আমরা রং দেখতে পাই। অন্থ আলোতে রড কাজ করে এবং সেখানে রংয়ের অনুভূতি হয় না। সেজন্য জোছনায় সব কিছুকে কোমল দেখায়– কিন্তু জোছনার আলোতে আমরা রং দেখতে পাই না।
- (b) আমাদের দুটি চোখ সামনে
 (পাখিদের মতো দুই পাশে নয়— তবে
 পাঁটার কথা আলাদা, পাঁটার চোখ মানুষের
 মতো সামনে) তাই আমরা একই সাথে দুই
 চোখে দুটি প্রতিবিদ্ধ দেখি। আমাদের
 মন্তিদ্ধ এই দুটি প্রতিবিদ্ধকে উপন্থাপন করে
 আমাদেরকে দ্রত্বের অনুভূতি দেয়।
 সেজন্য দুই চোখ খোলা রেখে সুইয়ের

ছবি 9.35: (চাপের ব্লাই^{ক্রা} স্পটের সন্তিত্ন এই ছবিটি দিয়ে(বর করা যায়।

পিছনে সূতা ঢোকানো খুব সহজ কিন্তু এক চোখ বন্ধ রেখে এই কাজটি করা খব কঠিন!

(c) আমাদের রেটিনাতে একটা বন্তর উন্টো প্রতিবিদ্ধ পড়লেও আমরা বন্তটিকে সোজা দেখার অনুভূতি পাই কারণ দেখার অনুভূতিটি কিন্তু চোখ থেকে আসে না, সেটি আসে মন্তিদ্ধ থেকে। চোখের

রেটিনাতে যে প্রতিবিদ্ধ পড়ে সেটি থেকে আলোর সংকেত অপটিক নার্ভে করে মন্তিক্ধে যায় , মন্তিক্ধ সেটাকে বিশ্লেষণ করে আমাদেরকৈ দেখার অনুভূতি দেয়।

উদাহরণ 9.11: রেটিনার দে অংশে অপটিক নার্ভ সংযুক্ত হয়েছে সেই অংশটি দেখার অনুভৃতি তৈরি করে না, তাই এটাকে বলে ম্রাইড স্পট । তুমি কি দোটা পরীকা করতে চাও?

উত্তর: বাম চোখ বন্ধ করে ডান চোখ দিয়ে 9.35 ছবিতে বাম দিকের ক্রুল চিহ্নটির দিকে তাকিয়ে মাগাটা ছবিটির দিকে নামিয়ে আনো, যখন ডান দিকের কালো বৃত্তটির প্রতিবিদ্ধ টিক অপটিক নার্ডের সংযোগ স্থল ব্লাইড স্পটে পড়বে তখন হঠাৎ করে নেটি অদুশা হয়ে যাবে।

ছবি 9.36: দুটি উত্তল লেখা ব্যবহার করে তৈরি একটি টেলিক্যোপে উন্টো প্রতিবিদ্ধ দেখা যায়। টেলিকোপটির দৈর্ঘা হয় দুটি লেখের ফোকাল দুরত্বের সমান।

9.4.2 লেগ ব্যবহার করে তৈরি করা যন্ত্র:

টেলিকোপ: 9.36 ছবিতে দুটি উত্তল লেন্স দিয়ে তৈরি একটি টেলিকোপ দেখালো হলো। টেলিকোপে অনেক দূরের কোনো বস্তু দেখা হয়, সেখান থেকে অত্যন্ত অল্প আলো পৌছাতে পারে বলে চেন্টা করা হয় একটি বড় উত্তল অবজেন্ডিত লেন্স ব্যবহার করে যতটুকু সম্ভব বেশি আলো সংগ্রহ করা যায়। সংগৃহিত আলো কেন্দ্রীভূত হয়ে যে বাস্তব প্রতিবিদ্ধ তৈরি করে দিতীয় একটি উত্তল লেন্স দিয়ে সেটাকে চোখে দেখার ব্যবস্থা করে দেয়া হয়। কাজেই টেলিকোপের দৈর্ঘ্য হয় অবজেন্তিত এবং আই পিস এই দুটির ফোকাস দৈর্ঘেরি দূরতের যোগফলের সমান। এই ধরণের টেলিকোপে প্রতিবিদ্ধটি দেখা যায় উল্টো। আই পিসে উত্তল লেন্স ব্যবহার না করে অবতল লেন্স ব্যবহার করেও টেলিকোপে তৈরি করা যায়া। এই ধরণের

টেলিস্কোপে প্রতিবিদ্বটি দেখা যায় সোজা এবং টেলিস্কোপের দৈর্ঘ্য হয় অবজেন্টিভ এবং আইপিসের ফোকাস দৈর্ঘ্যের বিয়োগ ফলের সমান। (ছবি 9.37)

ছবি 9. 37: একটি উত্তল এবং একটি অবতল লেন্স ব্যৱহার করে তৈরী একটি টেলিকোপে সোজা প্রতিবিদ্ধ দেখা যায়। টেলিকোপটির দৈর্ঘ হয় দুটি লেন্সের ফোকাল দূরত্তের পার্থক্যের সমান।

মাইক্রোস্কোপ: মাইক্রোস্কোপের কার্য পদ্ধতি দুটি উত্তল লেস দিয়ে তৈরি টেলিস্কোপের মতো, তবে

যেহেতু এখানে অনেক দূর
থেকে সংগ্রহ করা খুব অল্প
আলোর প্রতিবিদ্দ তৈরি করা
হয় না, বরং খুব কাছের ক্ষুদ্র
একটা বস্তুর ভেতর দিয়ে
অনেক তীব্র আলো পাঠানো
হয় তাই খুব ছোট এবং অল্প
ফোকাল দৈর্ঘ্যের অবজেন্থিত
লেন্স ব্যবহার করা হয়।
9.38 ছবিতে একটা
মাইক্রোক্ষোপ কেমন করে
কাজ করে সেটা দেখানো
হয়েছে।

ছবি 9,38: দুটি উত্তল লেপ ব্যবহার করে ছোট বস্ত্রকে বড় করে দেখার জন্যে মাইজেন্টোপ তৈরী করা হয়।

অনুশীলনী

প্রশ্র:

- কোগের লেক রেটিনাতে উল্টো প্রতিবিদ তৈরি করে, তাহলে আমরা সদ কিছু উল্টো দেখি না কেন্দ্র
- চোখের সাথে কামেরার একটা গুরুত্বপূর্ণ পার্থকের কথা বল ।
- ঘন মাধামে আলোর বেগ কম, এ রকম অবস্থায় কোনো কিছু কী আলো খেকে দ্রুত যেতে শারবে!
- 4 ভর দুপুরে রংখন দেখা যায় না কেনঃ
- 5. পানিব ফেঁটা লেন্সের মতো কাজ কবতে পাবে এই লেন্সের ফোকাল দূরত হত হতে পারেং

গাণিতিক সমস্যা:

ছবি 9,39: আপাতিত বিন্দুকে তিনগুতিস্বাহকের এক খ্যেটা তর্জ রাখা ক্লে শ্রু আভাজ্জীন কোন পরিবতিত হয়ে মাবে।

- 9.39 ছবিতে দেখালো আকারের একটা কাচের মাধ্যমে আলোক রশি। প্রবেশ করিয়ে পূর্ণ আভ্যন্তরীণ প্রতিফলনের ক্রান্তি কোণ পাওয়া গেছে 65 । ঠিক মে বিন্দুতে আলোক রশিটি আপতিত হয়েছে সেখানে এক রিন্দু তরল রাখার কারণে পূর্ণ আভ্যন্তরীণ প্রতিফলন হয়েছে 75 । তে। তরলের প্রতিসারাংক কতং
- কাচের তৈরি একটি উভল লেপের ফোকাল দৈর্ঘা

 10cm ঠিক একই আকৃতির একটি লেশ হারা

 দিয়ে তৈরি করলে তার ফোকাল দৈর্ঘ্য কত হবে?
- XY বস্তুটির জন্য তার রশিপ্তলো মত্টুকু সভব সঠিকভাবে এঁকে প্রতিবিদটি কোপায় হবে দেখাও। (র্ছার 9.40)

ছবি 9.40: প্রবতন লেসের ফোকান দ্রাত্রর বাইকে রাখ্য প্রকাদিবস্ত ।

- XY বস্তুটির জন্য তার রশািগুলো যতটুকু সম্ভব সঠিকভাবে এঁকে প্রতিবিশ্বটি কোথায় হবে দেখাও। (ছবি 9.41 a)
- XY বস্তুটির জন্য তার রশিগুলো য়তটুকু সম্ভব সঠিকভাবে এঁকে প্রতিবিদটি কোথায় হবে দেখাও। (ছবি 9.41 b)

ছবি 9.41: (a) উক্তন লেসের কোকাল দ্রত্বের ভেতরে রাখা একটি বস্তু (b) উক্তন লেসের কোকাল দ্রত্বের বাইরে । রাখা একটি বস্তু

দশম অধ্যায়

স্থির বিদ্যুৎ

(Static Electricity)

Edwin Hubble (1889-1953)

এডউইন হাবল

এডউইন হাবল একজন মার্কিন জ্যোতির্বিদ। তিনি প্রথম দেখিয়েছিলেন যে বিশ্বল্লাণ্ড ক্রমাণত প্রসারিত হচ্ছে এবং এটি বিশ্বল্লাণ্ড সৃষ্টির বিগ ব্যাং থিওরির সপক্ষে একটি বড় আবিন্ধার হিসেবে বিবেচনা করা হয়। পর্যবেক্ষণ করে সৌর জগৎ কিংবা ছায়াপথের বাইরে মহাজাগতিক জ্যোতির্বিদ্যায় তাঁর অবদানকে যুগান্তকারী বলে ধারণা করা হয়। তাঁর বাবা তাঁকে একজন আইনবিদ তৈরি করতে চেয়েছিলেন এবং তিনি সেতাবে আইন নিয়ে পড়াশোনাও করেছিলেন কিন্তু শেষে জ্যোতির্বিদ হিসেবেই নিজেকে গড়ে তোলেন। তাঁর মৃত্যুর পর কোনো অন্ত্যেষ্টিক্রিয়া হয়নি এবং কোথায় তাঁকে কবর দেযা হয়েছে সেটা কেউ জানে না!

10.1 চার্জ (Charge)

শীতকালে শুকনো চুল চিরুনি দিয়ে আচড়িয়ে তোমাদের প্রায় সবাই নিশ্চয়ই কখনো না কখনো ছোট ছোট কাগজের টুকরাকে সেই চিরুনি দিয়ে আকর্ষণ করেছ। শীতপ্রধান দেশে শীতকালে বাতাস খুব শুকনো থাকে, তখন ছোট শিশু যখন কার্পেটে হামাগুড়ি দেয় তখন তাদের চুল খাড়া হয়ে যায়, দেখে মনে হয় একটি চুল বুঝি অন্য চুলকে ঠেলে খাড়া করিয়ে দিয়েছে। তোমরা সবাই নিশ্চয়ই ঝড়ের রাতে আকাশ চিড়ে বিদ্যুতের ঝলককে নিচে নেমে আসতে দেখেছ।

কাগজের আকর্ষণ, চুলের বিকর্ষণ কিংবা বজ্ঞপাত— এই তিনটি ব্যাপারের মূলেই কিন্তু একই বিষয় কাজ করেছে সেটি হচ্ছে চার্জ বা আধান। চার্জ (বা আধান) কী, কেন সেটা কখনো আকর্ষণ করে কখনো বিকর্ষণ করে আবার কখনো বিদ্যুৎ ঝলক তৈরি করে বোঝার জন্য আমাদের একেবারে গোড়ায় যেতে হবে, অণু-পরমাণু কেমন করে তৈরি হয় সেটা জানতে হবে।

আনরা স্বাই জানি স্নকিছু অণু-পর্মাণু দিয়ে তৈরি। পৃথিবীতে 109 টি প্রমান্ আছে এর মাঝে মাত্র 83 টি টেকসই, মাত্র এই কয়টি প্রমাণু দিয়ে সক্ষ সক্ষ ভিন্ন অণু তৈরি হয়েছে। একটা অক্সিজেন প্রমাণুর সাথে দুটো হাইড্রোজেন প্রমাণু দিয়ে পানি, একটা সোভিয়াম প্রমাণুর সাথে একটা কোরিন প্রমাণু দিয়ে লবণ একটা কার্বন প্রমাণুর সাথে চারটা ছাইড্রোজেন প্রমাণু দিয়ে রান্না করার প্রাম ইত্যাদি ইত্যাদি। (অবাক হবার কিছু নেই বাংলায় মাত্র চলিশটা ক্মালা নেই ক্ষোলা দিয়ে হাজার হাজার শব্দ তৈরি হয়েছে!)

পরমাণ্ হছে সব কিছুর বিভি: ব্লক (Building Block) এই পরমাণ্র কেন্দ্রে থাকে ছোট একটা নিউক্রিয়াস, তাকে যিরে যুরতে থাকে ইলেকট্রন। নিউক্রিয়াস তৈরি হয় প্রোটন আর নিউট্রন দিয়ে। এর তেতরে প্রোটনের চার্জ ইছে বনাত্মক বা পজিন্ডি (নিউট্রনের কোনো চার্জ নেই) আর ইলেকট্রনের চার্জ পণাত্মক বা নেগোটিত। প্রোটন আর ইলেকট্রনের চার্জ সমান কিছু বিপরীত অথাৎ তার মান $(1.6\times 10^{-19}\ cmll)$ কিছু একটা পজিটিভ অনাটা নেগোটিত। একটা পরমাণুর নিউক্রিয়াসে থে কয়টা পোটন থাকে তার বাইরে ঠিক সেই কয়টা ইলেকট্রন ঘ্রতে থাকে তাই পরমাণুর সম্মিলিত চার্জ

শূন্য, অথাত পরমাণ্ হচ্ছে বিদ্যুৎ নিনাপেক্ষ বা নিউড়িৎ বা নিউট্রাল। সবচেয়ে সহজ পরমাণ্ হচ্ছে হাইড্রোজেন, তার নিউক্লিয়াসটা হচ্চে ওপু একটা প্রোটন তাকে যিরে ব্রুছে একটা ইলেকট্রন। এর পরের পরমাণু হচ্ছে হিলিয়াম, নিউক্লিয়াসে দুইটা প্রোটন (এবং চার্জবিহীন দুইটা নিউট্রন) আর বাইরে দুইটা ইলেকট্রন। এভাবে আন্তে আতে আরো বড় বড় পরমাণ্ তৈরি হয়েছে, পরিশিষ্ট-2 এ সেওলো একটার পর আরেকটা দেখানো হয়েছে। হাইড্রোজেনকে শদি বাদ দিই তাহলে কলা যায় নিউক্লিয়াসে ফতগুলো প্রোটন থাকে কমপক্ষে তত্ত্বলা এবং সাধারণত আরো বেশি নিউটন থাকে।

নিউক্লিয়াসের বাইরে ইনেরট্রনগুলে। সব একই রুক্লপথে থাকে লা, 10,1 জ্বিতে যেতাবে

ছবি 10,1: একটি গোহার পর্যান্। এক কক্ষপথ পূর্ণ করে ইনেজন পরের কক্ষপথে যায়।

দেখানো হয়েছে সভাবে একটা কলপথ পূর্ণ করে পরের কলপথে যেতে থাকে। ভেতরের কলপথের ইলেকটুনগুলো অনুনক শক্তভাবে আটকে খাকে, তবে বছরের কলপথের ইলেকটুনগুলোকে একটু চুই। কর্তে সালাদা করা যায়। ইলেকটুন আলাদা করার একটা উপায় হড়েছে ঘর্ষণ।

এমানতে প্রমাণুখলো চার্জ নিরপেক্ষ— অর্থাৎ প্রত্যেক প্রমাণুতে সমান সংখ্যক প্রোটন তার ইলেকট্রন কিন্তু কোনো কারণে যদি বাইরের কক্ষপথের একটা ইলেকট্রন সরিয়ে নেয়া হয় তাহনে ইলেকট্রনের তুলনায় প্রোটনের সংখ্যা বেড়ে যায় অর্থাৎ পরমাণুটা আর বিদ্যুৎ নিরপেক্ষ বা নিউট্রাল থাকে না, তার ভেতরে পজিটিভ চার্জের পরিমাণ বেড়ে যায়। একটা ইলেকট্রন সরিয়ে নিলে পরমাণুটা একটি পজিটিভ চার্জ হয়, দুটি সরিয়ে নিলে দুটি পজিটিভ চার্জ হয়। আমরা তথন বলি পরমাণুটি আয়োনিত বা

ছবি 10.2; কাচকে সিন্ধ দিয়ে এবং প্রাস্টিককে ফ্রানেল দিয়ে ঘমে পজিটিভ ও নেপেটিভ চার্জ গঠন করা মান।

আহিত হয়েছে। একটা পরমাণু যে রকম পজিটিভভাবে আয়োনিত হতে পারে ঠিক সে রকম নেগেটিভ ভাবেও আয়োনিত হতে পারে– অর্থাৎ তখন বিচ্ছিন্ন একটি বা দুটি ইলেকট্রন পরমাণুর সাথে যুক্ত হয়ে যায় তখন পরমাণুর মোট চার্জ হয় নেগেটিভ।

পরমাণুগুলোর ইলেকট্রনগুলো তার কক্ষপথে ঘুরতে থাকে, এগুলো কীভাবে সাজানো হবে তার সুনির্দিষ্ট নিয়ম আছে। এখন তার গভীরে আমরা যাব না— গুধু বলে রাখি কখনো কখনো শেষ কক্ষপথে একটি দুটি ইলেকট্রন প্রায় মুক্ত অবস্থায় থাকে, এ রকম পদার্থে ইলেকট্রনগুলো খুব সহজে পুরো পদার্থের মাঝে ছোটাছুটি করতে পারে। এ রকম পদার্থকে আমরা বলি বিদ্যুৎ পরিবাহী। আবার কিছু কিছু পদার্থে ছোটাছুটি করার মতো ইলেকট্রন নেই, যে কয়টি আছে খুব শক্তভাবে আবদ্ধ সেগুলো হচ্ছে বিদ্যুৎ অপরিবাহী। বাতব পদার্থ— যেমন সোনা, রূপা, তামা হচ্ছে বিদ্যুৎ সুপরিবাহী। কাঠ, প্লাস্টিক, কাচ, রবার এসব হচ্ছে বিদ্যুৎ অপরিবাহী।

প্রমাণুর গঠন সম্পকে এখন পর্যন্ত যা যা বলা হয়েছে আমরা যদি সেগুলো বুঝে থাকি তাহলে স্থির বিদ্যুতের পরের বিষয়গুলো মনে হবে খুবই সহজ।

10.2 ঘর্ষণে স্থির বিদ্যুৎ তৈরি (Static Electricity by Friction)

এক টুকরো কাচকে যদি এক টুকরো সিল্ক দিয়ে ঘয়া হয় (10.2 ছবি) তাহলে কাচ থেকে ইলেকট্রনগুলো সিল্কে আসতে শুরু করবে অর্থাৎ কাচটি হবে পজিটিভ বা ধনাত্মক চার্জ যুক্ত আর সিল্কটি হবে নেগেটিভ চার্জ যুক্ত। ব্যাপারটি ঘটে কারণ ইলেকট্রনের জন্য কাচের যত আসক্তি সিল্কের আসক্তি তার থেকে বেশি। আবার যদি এক টুকরো প্লাস্টিককে ফ্লানেল (বা পশমি কাপড়) দিয়ে ঘষা হয় তাহলে ফ্লানেল থেকে ইলেকট্রন চলে আসবে প্লাস্টিকের টুকরোতে তার কারণ ইলেকট্রনের জন্য প্লাস্টিকের আকর্ষণ ফ্লানেল থেকে বেশি।

এবারে আমরা একটা এক্সপেরিমেন্ট করতে পারি। ধরা যাক কাচ এবং সিল্ক ব্যববহার করে আমরা দুই টুকরো কাচকে পজিটিভ চার্জ দিয়ে আহিত করেছি। এখন একটাকে যদি সাবধানে একটা

ছবি 10.3: এক চার্জ বিকর্ষণ করে এবং বিপরীত চার্জ আকর্ষণ করে।

বিদ্যুৎ অপরিবাহি
সিন্ধের সুতো দিয়ে
বুদিয়ে দিয়ে তার
কাছে অন্যটা নিয়ে
আসি তাহলে
দেখবে ঝুলন্ত
কাচের টুকরোটি
বিকর্ষিত হয়ে সরে
যাচ্ছে। (ছবি
10.3)

আমরা যদি একইভাবে দুই টুকরো প্লাস্টিককে নেগেটিভ চার্জ দিয়ে আহিত করে একটাকে সিন্ধের সুতো দিয়ে বেঁধে ঝুলিয়ে দিই এবং অন্যটা তার কাছে নিয়ে আসি তাহলে আমরা একই ব্যাপার দেখব, একটা আরেকটাকে বিকর্ষণ করছে। এবারে যদি প্লাস্টিকের দণ্ডটা যখন ঝুলে আছে তখন তার কাছে পজিটিভ চার্জে আহিত কাচের দণ্ডটা নিয়ে আসি তখন দেখব একটা আরেকটাকে আকর্ষণ করছে।

আমরা যখন মহাকর্ষ বল পড়েছি তখন দেখেছি সেখানে শুধু এক রকম ভর তাই মাত্র এক রকম বল– সেটি হচ্ছে আকর্ষণ। এখন আমরা দেখছি এখানে দুই রকম চার্জ এবং বলটিও দুই রকম, কখনো আকর্ষণ, কখনো বিকর্ষণ। এক্সপেরিমেন্টটা যদি ঠিকভাবে করে থাকি তাহলে দেখতে পাব একই ধরনের চার্জ একে অন্যকে বিকর্ষণ করে এবং ভিন্ন ভিন্ন চার্জ একে অন্যকে আকর্ষণ করে।

10.3 বৈদ্যুতিক আবেশ (Electric Induction)

এই অধ্যায়ের শুরুতে বলা হয়েছে চিরুনি দিয়ে চুল আচড়ানোর পর সেই চিরুনিটি যখন ছোট ছোট কাগজের কাছে আনা হয় তখন কাগজগুলো লাফিয়ে চিরুনির কাছে চলে আসে– বোঝা যায় চিরুনিটা কাগজের টুকরোগুলোকে আকর্ষণ করছে। আমরা এখন জানি চিরুনিটাতে নেগেটিভ চার্জ জমা হয়েছে এবং সে কারণেই চিরুনিটা কাগজের টুকরোগুলোকে আকর্ষণ করছে– কিন্তু এখানে একটা ছোট জটিলতা আছে। আমরা দেখেছি বিপরীত চার্জ আকর্ষণ করে, তাই কগজগুলোকে আকর্ষণ করতে হলে সেগুলোকে অবশ্যই চিক্লনির বিপরীরত চার্জ হতে হবে- কিন্তু আমরা জানি কাগজের টুকরোগুলোতে কোনো চার্জই নেই তাহলে চির্লনি কেন এগুলোকে আকর্ষণ করছে?

ব্যাপারটা ঘটে বৈদ্যুতিক আরেশ
নামের একটা প্রক্রিয়ার জন্য। কাচ কিংবা
প্রাফ্রিকে চার্জ জমা করে সেটাকে যদি
চার্জহীন কোনো কিছুর কাছে আনা হয়
তাহলে সেই চার্জহীন বস্তুটার মাঝে এক
ধরনের চার্জ জন্য নেয়। বিষয়টা
বোঝানোর জন্য 10.4 ছবিতে একটা
ধাতব গোলক দেখানো হয়েছে, এটাকে
রাখা হয়েছে বিদ্যুৎ অপরিবাহী স্ট্যান্ডের
ওপর। এখন একটা কাচকে সিল্ক দিয়ে
খুব ভালো করে ঘষে তার মাঝে চার্জ

ছবি 10.4; চার্জনিহীন বস্তুও কাছে চার্জ সহ বস্তু আনা হলে বিপরীত চার্জ আরেশিত হয়।

জমা করে নিয়ে সেটা ধাতব গোলকের কাছে নিয়ে এলে ধাতব গোলকের নেগেটিভ চার্জগুলো আকর্ষিত হয়ে কাছে চলে আসবে এবং গোলকের পিছন দিকে পজিটিভ চার্জগুলো সরে যাবে। এখন কাচ দণ্ড পজিটিভ চার্জযুক্ত, কাচ দন্তের কাছাকাছি গোলকের অংশটুকু নেগেটিভ চার্জযুক্ত কাজেই এরা পরস্পারকে আকর্ষণ করবে!

ছবি 10.5: শীতকালে চিক্ননি দিয়ে চুল আচড়ে ছোট কাগজের কাছে ধরলে সেগুলো আকর্ষণ অনুভব করে।

এবারে আমরা চিরুনি দিয়ে কাগজের টুকরোকে আকর্ষণ করার ব্যাপারটা বুঝতে পারব। যখন কাগজের টুকরোর কাছাকছি নেগেটিভ চার্জযুক্ত চিরুনিটা আনা হয় তখন কাগজের টুকরোর যে অংশ কাছাকাছি সেখানে পজিটিভ চার্জ আবেশিত হয় আর সাথে সাথে যে অংশ দূরে সেখানে নেগেটিভ চার্জ জমা হয়। কাগজের টুকরোর পজিটিভ চার্জের অংশটুকু চিরুনির আকর্ষণ অনুভব করে আর কাগজের টুকরোর নেগেটিভ অংশটুকু চিরুনির বিকর্ষণ অনুভব করে। কিন্তু যেহেতু পজিটিভ চার্জের অংশটুকু চিরুনির কাছে তাই আকর্ষণটুকু বিকর্ষণ থেকে বেশি সেজন্য কাগজের টুকরো আকর্ষিত হয়ে লাফিয়ে চিরুনির কাছে চলে যায়। (ছবি 10.5)

এর পর আরো একটা ব্যাপার ঘটে তোমরা হয়তো নিজেরাই সেটা লক্ষ করেছ। কাগজের যে টুকরোগুলো লাফিয়ে চিরুনির গায়ে লেগে যায় সেগুলো আবার প্রায় সাথেই চিরুনি থেকে ছিটকে নিচে চলে আসে!

এর কারণটাও নিশ্চয়ই তোমরা বুঝতে পারছ, কাগজের টুকরোটা যদি আকর্ষিত হয়ে চিরুনির গায়ে লেগে যায় তাহলে সেটার আর আবেশিত থাকতে হয় না। চিরুনি থেকে নেগেটিভ চার্জ দিয়ে এটা নিজেই নেগেটিভ চার্জে ভরে যায়। তখন সেগুলো চিরুনি থেকে বিকর্ষিত হয়ে ছিটকে নিচে নেমে আসে। যারা বিশ্বাস করো না তারা বিষয়টা একবার পরীক্ষা করে দেখতে পার।

বাতাসে জলীয়বাষ্প থাকলে জমা হওয়া চার্জ দ্রুত হারিয়ে যায়− তাই স্থির বিদ্যুতের এই এক্সপেরিমেন্টগুলো শীতকালে অনেক বেশি ভালো কাজ করে।

উদাহরণ 10.1: দুটি ধাতব গোলক রয়েছে একটি পজিটিভ চার্জ যুক্ত কাচের দণ্ড দিয়ে দুটি গোলকে কি দুই রকমের চার্জ তৈরি করতে পারবে?

ছবি 10.6: দুটি ধাতব গোলককে একসাথে রেখে তাদের ভেতওে ভিন্ন চার্জ আবেশিত করা সম্ভব।

উত্তর: হাঁ 10.6 ছবিতে যেভাবে দেখানো হয়েছে সেভাবে দুটো গোলকে ভিন্ন চার্জ আবেশিত করে আলাদা করা সম্ভব।

এই অধ্যায়ের শুরুতে আমরা তিনটি ভিন্ন ভিন্ন ঘটনার কথা বলেছিলাম— এতক্ষণে সেগুলো কেন ঘটেছে তোমরা নিশ্চয়ই সেটা বুঝে গেছ! চিরুনির বিষয়টা ব্যাখ্যা করা হয়েছে। ছোট শিশুর হামাগুড়ি দেয়ার বিষয়টাও বোঝা কঠিন নয়— কার্পেটে ঘষে ঘষে যাবার জন্য তার শরীরে চার্জের জমা হয়, সারা শরীরের সাথে সাথে চুলেও সেই চার্জ ছড়িয়ে পড়ে। সব চুলে একই চার্জ— আমরা জানি এক ধরনের চার্জ বিকর্ষণ করে তাই একটা চুল অন্য চুলকে বিকর্ষণ করে খাড়া হয়ে ছড়িয়ে পড়ে! এখন আমরা বজ্রপাতের বিষয়টাও ব্যাখ্যা করতে পারব। মেঘের সাথে মেঘের ঘর্ষণে সেখানে চার্জ আলাদা হয়ে যায়। আকাশের মেঘে যখন বিপুল পরিমাণ চার্জ জমা হয় তখন সেটা নিচে বিপরীত চার্জের আবেশ তৈরি করে এবং মাঝে

মাঝে সেটা এত বেশি হয় যে বাতাস ভেদ করে সেটা মেঘের সাথে যুক্ত হয়ে যায়- যেটাকে আমরা বজ্রপাত বলি। (ছবি 10.7)

10.3.1 ইলেকট্রোক্ষোপ:

ইলেকট্রোস্কোপ স্থির বিদ্যুৎ পরীক্ষার জন্য খুব চমৎকার একটা যন্ত্র। যন্ত্রটা খুবই সহজ, এখানে চার্জের অস্তিত্ব বোঝার জন্য রয়েছে খুবই হালকা সোনা, অ্যালুমিনিয়াম বা অন্য কোনো ধাতুর দুটি পাত। এই পাত দুটো একটা সুপরিবাহী দণ্ড দিয়ে একটা ধাতব চাকতির সাথে লাগানো থাকে পুরোটা একটা অপরিবাহী ছিপি দিয়ে কাচের বোতলের ভেতর রাখা হয় যেন বাইরে থেকে

ছবি 10.7: মেঘ থেকে বিপুল পরিমান চার্জ যখন মাটিতে নেমে আসে তাকে আমরা বজ্রপাত বলি।

দেখা যায় কিন্তু বাতাস বা অন্য কিছু যেন পাতলা ধাতব পাত দুটোকে নাড়া চাড়া করতে না পারে।

চার্জ আহিতকরণ

একটা কাচের টুকরোকে সিল্ক দিয়ে ঘষা হলে কাচ দণ্ডটাতে পজিটিভ চার্জ জমা হবে। এখন কাচ দণ্ডটা

ছবি 10.8: ইলেন্ট্রন্কোপে চার্জের উপস্থিতির কারণে সৃক্ষা ধাতব পাত পরস্পর থেকে সরে যায়

যদি ইলেকট্রোস্কোপের ধাতব চাকতিতে ছোয়ানো যায় তাহলে সাথে সাথে খানিকটা চার্জ চাকতিতে চলে যাবে। চাকতি যেহেতু ধাতব দণ্ড আর সোনার পাতের সাথে লাগানো আছে তাই চার্জটুকু সব জায়গায় ছড়িয়ে পড়বে। সোনার পাতে যখন একই পজিটিভ চার্জ এসে হাজির হবে আর তখন দেখা যাবে পাত দুটো বিকর্ষণ করে তাদের মাঝে একটা ফাঁক তৈরি হয়েছে।

ঠিক একইভাবে একটা চিরুনিকে যদি ফ্লানেল দিয়ে ঘষা হয় তাহলে চিরুনিটাতে নেগেটিভ চার্জ জমা হবে, এখন সেটা যদি চাকতিতে স্পর্শ করা হয় তাহলে নেগেটিভ চার্জ সোনার পাত পর্যন্ত ছড়িয়ে পড়বে এবং দুটো পাত একটা আরেকটাকে বিকর্ষণ করে ফাঁক হয়ে যাবে।

চার্জের প্রকৃতি বের করা

কোনো একটা বস্তুতে যদি চার্জ জমা হয় তাহলে সেটা কি পজিটিভ নাকি নেগেটিভ চার্জ সেটা ইলেকট্রোস্কোপ দিয়ে বের করা যায়। প্রথমে ইংলকট্রোক্ষাপের চাকতিতে পরিচিত কোনো চার্জ দিতে হবে। ধরা যাক কাচকে সিস্ক দিয়ে ধরে শজিনিত চাজ শেরি করে আমরা সেটাকে চাকতিতে পাশ করতে যাদ সোনার পাত দুছির ফার্ক কমে যায় তাহতে বুঝতে হবে এর মানো নেটোটিত চাজ। যাদ ফার্কটি আরো কেন্ডে মান তাহতে বুঝতে হবে চাজটি নিশ্বাই পজিটিত।

চার্জের আবেশ

কোনো একটা বন্ধতে চাজ আছে কি না সেটা চাকতিকে স্পর্য বা করেই বোনা পদ্ধন। ধরা যাক পজিটিছ চার্কে আছে এ ।কম একটা দওকে চাকতির কাছে আনো হয়েছে তামলে চাকতির মাণে। নেয়েটিভ চার্কের আনেশ হবে। ছাল 10,8। এই কেলেটিভ চার্কের আবেশে করার জন্য ইলেকট্রোকোপের অন্যান্য অংশ থেকে নেয়েটিভ চার্কেরে চাকতির এবে। চাল আনতে মুরে, সে কার্যে সোনার পাত ব্রিতেও পজিটিভ চার্ক তেরি হবে- নেই পাজটিভ চার্ক নোনার পাত বুনিতেও পজিটিভ

যদি পজিটিভ রাজ দেয়া কোনো কিছু না এলে নেগেটিভ রাজ দেয়া কিছু বালি কাহলেও আমন। দেখন নোনার পাত দুটো ফাঁক হয়ে মাজে তবে এবারে নেটি হবে নেগানে কেগেটিভ রাজ জমা হওয়ার কারণে।

10.4 বৈদ্যুতিক বল (Electric Force)

আমরা একট্র আগেই দেখেছি বিপরীত লার্জ একে অনাকে আমর্কাশ করে কিন্তু এক ধরনের চার্জ একে জনাকে বিকর্মণ করে। তবে আমরা এখনো জ্যাল না ঠিক কতথানি আকর্মণ কিংবা বিকর্মণ করে। নেটা বুঝাতে হলে আমানের কুলমের ছবি 10.5, বুটি জাই বু, এক বু, এব ক্ষেত্র বল F, সাক্ষাণ এবং নিবলা। বুইই ইন্ড গারে

স্ত্রটি একটখানি দেখাকে হরে। বিজ্ঞানী ক্লম দুটি লাজেন মাঝে কতঞ্চান বল কাজ করে বেটা বর করেছিলেন। এ কেন একটা বালের ব্রু আনরা এর মাঝে একটা দেখে ফেলেছি বাটা হতেই নিউটকের মাধ্যকেষণ বলের সত্র। বাটি ছিল ও রকমঃ

$$F = G \frac{m_1 m_2}{r^2}$$

মজাৰ ব্যাপাৰ হলে, তব m_1 আৰু m_2 কে লাজ q_1 আৰু q_2 জিয়ে শৰিবতৰ কৰে লিজেই আমৰ। কলম্পের সূত্র পোয়ে আৰু । মাধ্যাৰসাৰ ৰংগৰ জন্ম প্রবাট ছিল G এবোৱে প্রশাসিক জন্য আমৰ। R ব্যবহার করব এইট্রুই পার্থকা । অর্থাৎ যদি q_1 আৰু q_2 জুটি চার্ছ ।" জুনতে পারে ভাহতে ভারতে তেওবে বল F এন পারিমাণ (ছবি 10,9):

$$F = k \frac{q_1 q_2}{r^2}$$

এখানে q_1 আন q_2 এর একক হচছে কৃষ্ণ C এবং p বা দূর্বের একক হছে p_1 কাজেই k এর একক আমর। বলতে গারি Nm^2/C^2 যেন F এর একক হয় N k এর মানং

$$k = 9 \times 10^9 \, Nm^2/C^2$$

কুলম হচ্ছে চাজের একক, আমরা পরের অব্যায়েই দেখন চাজের ধনাহ হচ্ছে বৈদ্যুতিক ধনাহ বা কারেন্ট এবং কারেন্টের একক হচ্ছে এম্পিয়ার। এক সেকেন্ড ব্যাপি এক এম্পিয়ার কারেন্ট ধনাহ করা হলে যে পরিমাণ চার্জ প্রবাহিত হয় সেটা হচ্ছে এক কুলম (С)।

তবে কুল্ম বোঝার স্বচেয়ে খাঁটি পদ্ধতি হল্ছে ইলেকট্রন বা প্রোটনের চার্জের পরিমাপটি বোঝা। তার পরিমাণ

ইংগেনট্রনের চার্জ: $-1.6 imes 10^{-19} \, C$ থোটনের চার্জ: $1.6 imes 10^{-19} \, C$

তোমনা দেখতেই পাছে q_1 এবং q_2 দুটিই গদি পজিটিত বা নোগেটিত হয় তাহলে F এর সান হবে পজিটিত এবং তথন একটি অন্টেকে বিকর্ষণ করে। যদি একটা পজিটিত আর অন্টেচ নোগেটিত হয় তাহলে F এর মান হবে নোগেটিত, যার অর্থ বালের দিক পরিবর্তন হলো অর্থাৎ চার্জ দুটি একটা আরেকটিকে আর্ক্ষণ করেন। আমরা আর্গেই সেটা দেখেছিলাম, মূত্র থেকেও সেটা আমতে।

ছবি 10.10:(a) 10 cm নূৱে অবস্থিত +1€ এবং -1€ নাৰ্জ (b) ! মিটাৰ দূৱে অবস্থিত +5€ এবং +3€ নাৰ্জ

উদাহরণ 10.1: ানটে ± 1 স্কান চাই এবং একটি ± 1 কুমার চাই $10~\mu m$ দুয়ো নাখা ফ্রানা । দুটো টাইজেন ভেছন কম কম্মানুম

উত্তর: দুটো বিপরীত চার্জ একে অন্যকে আকর্ষণ করবে। তাদের ভেতরকার বল: (ছবি 10.10a)

$$F = k \frac{q_1 q_2}{r^2}$$

এখানে

$$q_1 = 1C$$

 $q_2 = -1C$
 $r = 10cm = 0.10m$
 $k = 9 \times 10^9 Nm^2/C^2$

$$F = \frac{9 \times 10^9 \times 1 \times (-1)}{(0.10)^2} N = 9 \times 10^{11} N$$

উদাহরণ 10.2: একটি +5C এবং +3C চার্জ 1m দূরে রাখা হয়েছে। এখন তৃতীয় একটি চার্জ +q এমনভাবে দুটি চার্জের মাঝখানে রাখ যেন সেটি কোনো বল অনুভব না করে। (ছবি 10.10 b)

উত্তর: +q চার্জটি +5C ডান দিকে ঠেলে দেবে এবং +3C বাম দিকে ঠেলে দেবে। দুটি চার্জ যখন একই বলে ঠেলবে তখন +q চার্জটি কোনো বল অনুভব করবে না।

কাজেই

$$k\frac{(+5)q}{x^2} = k\frac{(+3)q}{(1-x)^2}$$

$$5(1-x)^2 = 3x^2$$

$$2x^2 - 10x + 5 = 0$$

$$x = \frac{10 \pm \sqrt{100 - 40}}{4}$$

$$x = 4.435$$
 কিংবা 0.565

x এর মান 0 থেকে 1 এর ভেতরে হবে কাজেই এটি নিশ্চয়ই 0.565

(x) যদি 4.435 হয় তাহলে কী হবে নিজেরা চিন্তা করে বের কর!)

উদাহরণ 10.3: হাইদ্রোজেন এটমের কেন্দ্রে একটা প্রোটন এবং বাইরে একটা ইলেকট্রন। প্রোটনের চার্জ $+1.6\times 10^{-19}C$ এবং ইলেকট্রনের চার্জ $-1.6\times 10^{-19}C$. যদি নিউক্লিয়াস থেকে ইলেকট্রনের কক্ষপথের দূরত্ব $0.5\times 10^{-8}m$ হয় তাহলে তাদের ভেতরে আকর্ষণ কতটুকু?

উত্তর:

$$F = k \frac{q_1 q_2}{r^2}$$

এখানে

$$q_1 = +1.6 \times 10^{-19} C$$

 $q_2 = -1.6 \times 10^{-19} C$

 $r = 0.5 \times 10^{-8} m$

$$k = 9 \times 10^9 Nm^2/C^2$$

কাজেই

$$F = \frac{9 \times 10^9 \times 1.6 \times 10^{-19} \times (-1.6 \times 10^{-19})}{(0.5 \times 10^{-8})^2} N = 9.22 \times 10^{-12} N$$

উদাহরণ 10.4: পৃথিবীতে এবং চাঁদে কী পরিমাণ চার্জ জমা রাখলে মহাকর্ষ বল শূন্য হয়ে চাঁদ কক্ষপথ থেকে ছুটে বের হয়ে যাবে?

উত্তর: পৃথিবী এবং চাঁদের মাঝে মাধ্যাকর্ষণ বল:

$$F_G = G \frac{mM}{r^2}$$

এখানে

$$G = 6.67 \times 10^{-11} Nkg^{-2}m^{2}$$

$$m = 7.35 \times 10^{22} kg$$

$$M = 5.97 \times 10^{24} kg$$

$$r = 3.84 \times 10^{6} km$$

কাজেই

$$F_G = \frac{6.67 \times 10^{-11} \times 7.35 \times 10^{22} \times 5.97 \times 10^{24}}{(3.84 \times 10^8)^2} N = 1.98 \times 10^{20} N$$

পৃথিবী এবং চাঁদে সমান পরিমাণ চার্জ রাখা হলে বিকর্ষণ বলঃ

$$F_E = k \frac{q^2}{r^2} = \frac{9 \times 10^9 \times q^2}{(3.84 \times 10^8)^2} NC^{-2}$$

মাধ্যাকর্ষণকে কুলম্ব বল দিয়ে কমিয়ে দিতে হলে দুটো বল সমান হতে হবে

অর্থাৎ $F_G = F_E$

$$1.98 \times 10^{20} N = \frac{9 \times 10^9 \times q^2}{(3.84 \times 10^8)^2} NC^{-2}$$

$$q^2 = 3.24 \times 10^{27} C^2$$
$$q = 5.69 \times 10^{13} C$$

সুতরাং ইলেকট্রনের সংখ্যা

$$n = \frac{q}{e} = \frac{5.69 \times 10^{13} C}{1.6 \times 10^{-19} C} = 3.56 \times 10^{32}$$

একটা ইলেকট্রনের ভর $9.11 imes 10^{-31} \ kg$, কাজেই সবগুলো ইলেকট্রনের ভর:

$$(3.56 \times 10^{32}) \times (9.11 \times 10^{-31}) kg = 324 kg!$$

অর্থ্যাৎ পৃথিবী পৃষ্ঠে এবং চাঁদে মাত্র 324 kg ইলেকট্রন রেখে দিতে পারলে চাঁদ কক্ষপথ থেকে ছুটে বের হয়ে যাবে। (একটা মাঝারি গরুর ভরের সমান!)

10.5 তড়িৎ ক্ষেত্র (Electric Field)

দুটি চার্জের ভেতরকার বল আমরা কুলম্বের সূত্র দিয়ে বের করতে পারি। তোমাদের নিশ্চয়ই মনে আছে মাধ্যাকর্ষণ বলের জন্য প্রত্যেকবারই আলাদা করে মহাকর্ষণ বল থেকে শুরু না করে আমরা মাধ্যাকর্ষণজনিত তুরণ বের করে নিয়েছিলাম। সেটার সঙ্গে ভর শুণ দিলেই বল বের হয়ে যেত।

তড়িৎ বলের বেলাতেও আমরা সেটা করতে পারি আমরা তড়িৎ ক্ষেত্র বলে একটা নৃতন রাশি সংজ্ঞায়িত করতে পারি, তার সাথে চার্জ q গুণ করলেই আমরা সেই চার্জের ওপর আরোপিত বল F পেয়ে যাব। অর্থাৎ যে কোনো চার্জ Q তার চাপাশে একটা তড়িৎ ক্ষেত্র তৈরি করে, সেই তড়িৎ ক্ষেত্র E হচ্ছে

$$E = k \frac{Q}{r^2}$$

এই তড়িৎ ক্ষেত্রে যদি কোনো চার্জ q আনা হয় তাহলে চার্জটি F বল অনুভব করবে, আর F বলের পরিমাণ হবে:

$$F = Eq$$

বল F যেহেতু ভেক্টর, q যেহেতু ক্ষেলার তাই E হচ্ছে ভেক্টর এবং তার একক হচ্ছে Nm^2/C তোমরা দেখবে তড়িৎ ক্ষেত্র দিয়ে ব্যাখ্যা করা হলে পুরো বিষয়টি বিশ্লেষণ করা অনেক সহজ হয়।

তড়িং ক্ষেত্র দেখা সায় না কিছু কাউকে বোঝানের জন্য আনেক সময় তড়িং বল রেখা নালে প্রোপ্তি কায়নিক এক 'ব্রনের রেখা একে দেখানো হয় (মাইকেল আরাডে প্রথম সেটা করেছিলেন।

ছবি 10.11: পজিটিভ দেজ থেকে কাবেশা চালিদিকে ছাপ্তাে পাণ্ ।।বং নিশেটিক লক্ষেৰ দিকে বলকেখা কেন্দ্ৰীভূত হয়।

মামাদের পরিচিত জ্লাহ বিমান্তিক কাজের বদ নোখাগুলো নারিনেকেই ছড়িয়ে গভূবে তোমাদের নেখানোর রনা মেগুলো একটা সমতলে একে দেখানো লয়েছে। (ছবি 10.11)

বল এরখা আকার সময় কিছ নিয়ম মেনে চল। হয়। মেমন

- (a) পজিটিত চাজের বেলায় বল রেখা চার্জ থেকে বের স্থাবে নেগেটিত চার্জের বেলায় বল রেখা চারে একে কেন্দ্রীভূত হবে। একটা নিদিয় বিন্দরে বল রেখার দিক হলেছ তিত্বি কারের দিক।
- (U) চাজের গরিমাণ থত বেশি হবে বল রেখার সংখ্যা তত বেশি হবে।
- (১) বল রেখাণ্ডলে। যত ক্লাছাকাছি খাকরে তড়িৎ ক্ষেত্র তত বেশি হবে।
- (U) একটি ঢার্জের বল রেখা কখনো তানা চার্জের বল রেখার শুগর দিয়ে যাবে না।

10.12 a इन्ति तृति निक्की क हार्राक्ष अस नम त्या प्रभावा इरहर्ष अन्य क्षामता प्रभाव भावा अक हार्राक्ष यम त्या अस्य हार्राक्ष भित्रा ममाध इत्याह त्याथाता हार्ड्य क्षामाध द्वाभ अभाव कम त्याक्ष मन्याध त्याभ अभू हार्डे स्य इनिह क्षामाध त्याभ अभ्याध आद्याध स्याध विक्रित हार्ड प्रभावा

দ্বি 10.12:(a) শিপ্রীত এল (b) সমান্তের জনো তৈলি রল লেখা

হয়েছে এবং ছবি দেখেই দুটো চার্জ একটি আরেকটিকে ঠেলে দিচ্ছে এ রকম অনুভূতি হচ্ছে। শুধু তাই নয় দুটো চার্জের মাঝামাঝি অংশে একটি চার্জের তড়িৎ ক্ষেত্র অন্য চার্জের তড়িৎ ক্ষেত্রকে কাটাকাটি করে ফেলে চলে সেখানে বল রেখা কম এবং এর মাঝখানে একটি বিন্দু রয়েছে যেখানে তড়িৎ ক্ষেত্রের মান শূন্য। যদি দুটোই নেগেটিভ চার্জ হতো তাহলে শুধু মাত্র বল রেখার দিক পরিবর্তন হতো তাহাড়া অন্য সবকিছু আগের মতোই হতো।

উদাহরণ 10.5: 5C চার্জের জন্য 10m দূরে ইলেকট্রিক ফিল্ড কত?

উত্তর:

$$E = k \frac{q}{r^2}$$

এখানে

$$q = 5C$$

 $q_2 = -1.6 \times 10^{-19}C$
 $r = 10m$
 $k = 9 \times 10^9 Nm^2/C^2$

কাজেই

$$E = \frac{9 \times 10^9 \times 5}{10^2} N/C = 4.5 \times 10^8 N/C$$

উদাহরণ 10.6: $3\mathrm{C}$ চার্জের একটি বস্তু 10N বল অনুভব করছে, ঐ জায়গায় ইলেকট্রিক ফিল্ড কত?

উত্তর: $m{F} = qm{E}$ কাজেই

 $E = \frac{F}{q}$

এখানে

F = 10Nq = 3C

কাজেই

$$E = \frac{F}{g} = \frac{10N}{3C} = 3.33N/C$$

উদাহরণ 10.7: চার্জ এবং তার দ্বিগুণ পরিমাণ বিপরীত চার্জ থাকলে তার বল রেখা কেমন হয়।

উত্তর: 10.13 ছবিতে দেখানো হয়েছে।

10.6 ইলেকট্রিক পটেনশিয়াল (Electric Potential)

তোমাদের নিশ্চয়ই মনে আছে দুটি পাত্রে যদি পানি থাকে এবং একটি নল দিয়ে যদি পানির পাত্র দুটোকে জুড়ে দেয়া যায় তাহলে যে পাত্রি পানির পৃষ্ঠতল উঁচুতে থাকবে সেখান থেকে অন্য পাত্রে পানি চলে আসবে। কোন পাত্র থেকে কোন পাত্রে পানি আসবে সেটা পানির পরিমাণের ওপর নির্ভর করে না সেটা নির্ভর করে পানির পৃষ্ঠতলের উচ্চতার উপরে।

ঠিক সে রকমভাবে আমরা দেখেছিলাম ভিন্ন তাপমাত্রায় দুটো পদার্থকে যদি একটার সাথে আরেকটাকে স্পর্শ করানো যায় তাহলে তাপ কোন পদার্থ থেকে কোথায় যাবে সেটা সেই পদার্থের তাপের পরিমাণের

ছবি 10.13: চার্জ এবং দ্বিগুণ পরিমাণ বিপরীত চার্জের জনে। বলরেখা।

ওপর নির্ভর করে না, সেটা নির্ভর করে তাপমাত্রার ওপর। তাপমাত্রা যার বেশি সেখান থেকে তাপ প্রবাহিত হয় তাপমাত্র যার কম সেখানে। তাপমাত্রা বেশি হলেও অনেক কম তাপ রয়েছে সেরকম বস্তু থেকেও তাপ অনেক বেশি তাপ যেখানে আছে সেখানে প্রবাহিত হতে পারে।

আমরা স্থির বিদ্যুৎ আলোচনা করার সময় বেশ কয়েকবার বলেছি কোনো একটা বস্তুতে চার্জ জমা করে সেটা যদি অন্য কোনো বস্তুতে স্পর্শ করা হয় তাহলে সেখানে চার্জ প্রবাহিত হয়। এখানেও কি পানির পরিমাণ আর পৃষ্ঠদেশের উচ্চতা কিংবা তাপ এবং তাপমাত্রার মতো চার্জ এবং চার্জ মাত্রা বলে কিছু আছে? যেটা ঠিক করবে চার্জ কোন বস্তু থেকে কোন বস্তুতে যাবে? সেটি আসলেই আছে এবং সেটাকে

 $\Rightarrow \begin{array}{c|c} 2R_1 & \leftarrow \Rightarrow 2R_2 & \leftarrow \\ Q & \begin{array}{c|c} & \leftarrow & Q \\ \hline & & & \\ R_1 > R_2 \\ \hline & & & \\ V_1 < V_2 \end{array}$

ছবি 10.14: বেশী পটেনশিয়াল থেকে কম পটেনশিয়ালে চার্জ প্রবাহিত হয়।

বলা হয় পটেনশিয়াল বা বিভব। যদি দুটো বস্তুর ভেতরে ভিন্ন ভিন্ন চার্জ থাকে এবং দুটোকে স্পর্শ করানো হয় তাহলে যে বস্তুটিতে পটেনশিয়াল বেশি সেখান থেকে কম পটেনশিয়ালে চার্জ প্রবাহিত হবে!

একটা ধাতব গোলকের ব্যাসার্থ যদি r হয় এবং তার ওপর যদি Q চার্জ দেয়া হয় তাহলে তার পটেনশিয়াল হবে V

$$V = \frac{Q}{C}$$

এখানে C হচ্ছে গোলকের ধারকত্ত্ব বা Capacitance। গোলাকার ধাতব গোলকের জন্য C এর মান

$$C = \frac{r}{k}$$

যেখানে $k = 9 \times 10^9 \ Nm^2/C^2$

কাজেই যদি r_1 এবং r_2 ব্যাসার্ধের দুটো ধাতব গোলক থাকে এবং দুটো গোলকেই সমান পরিমাণ চার্জ Q দেয়া হয় তাহলে যে গোলকের ব্যাসার্ধ কম হবে সেখানে পটেনশিয়াল বা বিভব বেশি হবে। যদি একটা তার দিয়ে দুটো গোলককে জুড়ে দেয়া হয় তাহলে ছোট গোলক থেকে বড় গোলকে চার্জ যেতে থাকবে যতক্ষন পর্যন্ত না দুটো গোলকের পটেনশিয়াল সমান হয়। (ছবি 10.14)

পটেনশিয়ালের এককটি সম্পর্কে আমরা সবাই পরিচিত এটা হচ্ছে ভোল্ট। এবারে আমরা জানার চেষ্টা করি পটেনশিয়াল বলতে আমরা আসলে কী বোঝাই?

আমরা বিভব বা পটেনশিয়ালকে পানির পৃষ্ঠের উচ্চতা কিংবা তাপমাত্রার সাথে তুলনা করেছি, চার্জের প্রবাহ কোন দিকে হবে সেটা বোঝার জন্য এই তুলনাটি ঠিক আছে কিন্তু আমরা যদি আক্ষরিক ভাবে সেটা বিশ্বাস করে নিই তাহলে কিন্তু হবে না, তার কারণ পটেনশিয়াল বা বিভব কিন্তু আরো অনেক গুরুত্বপূর্ণ একটা রাশি।

যেমন ধরা যাক যদি কোনো একটা ধাতব গোলকে পজিটিভ Q চার্জ দেয়া হয়েছে তাহলে তার পৃষ্ঠদেশের বিভব বা পটেনশিয়াল হচ্ছে

$$V = k \frac{Q}{r}$$

পৃষ্ঠ দেশের বাইরে তার পটেনশিয়াল কত? এটি কিন্তু মোটেও শূন্য নয় গোলকের চারপাশে কোথায় কত বিভব সেটাও বের করা সম্ভব।

তোমরা জান একটা গোলকে চার্জ থাকার কারণে তার চারপাশে ইলেকট্রিক ফিল্ড E আছে, কাজেই সেখানে যদি একটা চার্জ q আনা হয় সেই চার্জটি একটা বল F অনুভব করবে যেখানে

$$F = Eq$$

যেহেতু গোলকে চার্জ Q পজিটিভ এবং গোলকের বাইরে রাখা q চার্জটাও পজিটিভ কাজেই সেটা বিকর্ষণ অনুভব করবে এবং আমরা যদি q চার্জটাকে যদি ছেড়ে দিই তাহলে সেই বলের জন্য তার ত্বরণ হবে, গতি বাড়বে ইত্যাদি ইত্যাদি! আবার q চার্জটাকে যদি আমরা গোলকের কাছে আনার চেষ্টা করে (কল্পনা করে নাও ধাতব গোলকটা শক্ত করে কোথাও লাগানো q চার্জ সেটাকে ঠেলে সরাতে পারবে না) তাহলে বলের বিরুদ্ধে কাজ করতে হবে কাজেই যতই আমরা গোলকের কাছে আনব ততই তার ভেতরে স্থিতি শক্তি হতে থাকবে!

বিশুব হচ্ছে একক চার্জকে (অর্থাং q এর মান 1) কোনো একটা জায়গায় হাজির করতে (ধরে নাও গুরু কছে অনেক দূর থেকে যেখানে ইলেকট্রিক কিন্তু খুব কম, কাজেই বল বলতে গেলে নেই) যেটুকু কাজ করতে হয় তার পরিমাণ! আশপাশে যদি কোনো চার্জ না থাকে, তাহলে কোনো ইলেকট্রিক ফিল্ড ও থাকবে না, চার্জটা কোনো বলও অনুভব করবে না তাই একক চার্জটাকে আনতে কেনো কাজও করতে হবে না, তাই আমরা বলব কোনো বিভব নেই।

কিন্তু যদি চার্জ থাকে তাহলে একক চার্জটাকে আনতে কাজ করতে হবে, এবং ঠিক যেটুকু কাজ করতে হয়েছে তার পরিমাণটা হচ্ছে বিভব। অর্থাৎ q চার্জকে আনতে যদি W কাজ হয় তাহলে বিভব V হচ্ছে

$$V = \frac{W}{q}$$

গোলকের চাজটা যদি নেগেটিভ হয় তাহলে উন্টো ব্যাপার ঘটবে, চাজটাকে ছেড়ে দিলে সেটা গোলকের চার্জের সাকর্ষণে তার দিকে ছুটে যেতে চাইবে। তাই অনেক দ্র থেকে এই চার্জিটাকে যদি কোনো রকম তুরণ তৈরি না করে কোনো বাড়তি গতিশক্তি না দিয়ে ধীরে ধীরে আনতে যাই তাহলে সারাক্ষণই চার্জিটার আকর্ষণ বলটাকে সামলানোর মতো একটা বল দিয়ে কাছে আনতে হবে অর্থাৎ আমরা মেদিকে বল দিছে তার বিপরীত দিকে চার্জিটা যাছে কাজেই আমাদের দেয়া বল নেগেটিভ কাজ করছে অর্থাৎ আমরা এই চার্জের খানিকটা শক্তি সরিয়ে নিছিং!

তবে এবারেও বিভব হচ্ছে

$$V = \frac{W}{a}$$

শুধু মনে রাখতে হবে W বা কাজ যেহেতু নেগেটিভ তাই V এর মান নেগেটিভ।

আমরা এতক্ষণ পর্যন্ত যা যা শিখেছি সেগুলো একবার ঝালাই করে নিই:

চার্জ থাকলেই তার আশপাশে ষেমন ইলেকট্রিক ফিল্ড থাকে ঠিক সে রকম পটেনশিয়ালও থাকে। সত্যি কথা বলতে কী আমরা যদি পটেনশিয়ালটা কেমন ভাবে আছে সেটা জানি তাহলে ইলেকট্রিক ফিল্ডটা বের করে ফেলতে পারব। এই বইটা বেছেতু তোমাদের পদার্থবিজ্ঞানের প্রথম পাঠ তাই কেমন করে কোথাও পটেনশিয়াল বের করতে হয়, কেমন করে সেখান থেকে ইলেকট্রিক ফিল্ড বা তড়িৎ ক্রেত্র বের করতে হয় সেগুলো আলোচনা করা হয়নি। তবে সাধারণ ভাবে একটা বিষয় জেনে রাখতে পার পটেলিয়ালের পরিবর্তন যত বেশি হয় ইকেট্রিক ফিল্ডও তত বেশি হয়!

উদাহরণ 10.8: একটি পজিটিভ এবং একটা নেগেটিভ চার্জের পাশে পটেনশিয়াল কেমন হবে?

উত্তর: বিপরীত সমান চার্জের জন্য সম পটেনশিয়াল রেখাগুলো 10.15 ছবিতে দেখানো হয়েছে। বাম পাশে পটেনশিয়াল পজিটিভ সম পরিমানে কমে কমে ডান পাশে নেগেটিভ হয়েছে। ঠিক মাঝখানে পটেনশিয়াল শূণ্য।

10.6.1 বিভব পার্থক্য

তোমরা সবাই ইলেকট্রিক লাইনের গায়ে নানারকম সতর্ক বাণী দেখেছ, যেমন, "বিপজ্জনক দশ হাজার ভোল্ট!" তোমরা সবাই জান ইলেকট্রিক শক বলে একটা বিষয় আছে, এটি খুব বিপজ্জনক অসতর্ক মানুষ ইলেকট্রিক শক খেয়ে মারা গেছে সে রকম উদাহরণও আছে। তোমরা যদি বিভব বিষয়টা বুঝে থাক তাহলে নিশ্চয়ই এখন অনুমান করতে পারছ আসলে কী ঘটে। কোথাও যদি বিভব বা পটেনশিয়াল বেশি থাকে এবং তুমি যদি সেটা স্পর্শ কর, তোমার শরীরের পটেনশিয়াল যেহেতু কম সেজন্য বেশি বিভবের

ছবি 10.15: বিপরীত চার্জের জন্যে সম পটেনশিয়াল রেখা।

জায়াগা থেকে চার্জ তোমার শরীরে চলে আসরবে চার্জের সেই প্রবাহ কতটুকু তার ওপর নির্ভর করে তোমার ভেতরে অনেক কিছু হতে পারে!

তুমি যেটা স্পর্শ করছ তার পটেনশিয়াল পজিটিভ বা নেগেটিভ দুটোই হতে পারে এক জায়গায় তোমার শরীর থেকে চার্জ (ইলেকট্রন) যাবে অন্য ক্ষেত্রে তোমার শরীরে চার্জ আসবে, দুটোই বিদ্যুৎ প্রবাহ শুধু দিকটা ভিন্ন।

তুমি নিশ্চয়ই বুঝতে পারছ চার্জ প্রবাহিত হয় বিভব পার্থক্যের জন্য– বিভবের মানের জন্য নয়। সে কারণে একটা কাক যখন হাইভোল্টেজ ইলেকট্রি তারের ওপর বসে সে ইলেকট্রিক শক খায় না কারণ তারের বিভব এবং তার নিজের বিভব সমান– কোনো পার্থক্য নেই! শুধু তাই নয় দশ হাজার কিংবা বিশ হাজার ভোল্টের প্রচন্ড উচ্চ ভোল্টেজে কর্মীরা হেলিকন্টার দিয়ে খালি হাতে কাজ করে– তারা কোনো ইলেকট্রিক শক খায় না– কারণ শূন্যে থাকার কারণে তারা যখন হাইভোল্টেজ তার স্পর্শ করে তানের শরীরের ভোল্টেজ তারের সমান হয়ে যায়– কোনো পার্থক্য নেই তাই কোনো চার্জ প্রবাহিত হয় না– তারা ইলেকট্রিক শক খায় না! তার মানে হচ্ছে ভোল্টেজের পার্থক্যটা গুরুত্বপূর্ণ– ভোল্টেজের মান নয় এটা সবার জানা দরকার।

তারপরও যখন ভোল্টেজের মান মাপতে হয় তখন তার জন্য একটা নির্দিষ্ট ভোল্টেজ থাকলে ভালো। তাপমাত্রার বেলায় একটা চরম শূন্য তাপমাত্রা ছিল, অনেকটা সে রকম। আমাদের জীবনে আমরা পৃথিবীকে শূন্য বিভব ধরে নিই। পৃথিবীটা এত বিশাল যে এর মাঝে খানিকটা চার্জ দিলেও সেটা গ্রহণ করতে পারে তার জন্য তার বিভব বেড়ে যায় না আবার খানিকটা চার্জ নিয়ে গেলেও তার বিভব বেড়ে যায় না! তাই সেটাকে শূন্য বিভব ধরে সব কিছু তার সাপেক্ষে মাপা হয়। তোমরা নিশ্চয়ই লক্ষ্য করে থাকবে ভারী বৈদ্যুতিক যন্ত্রপাতি সব সময় খুব ভালো করে ভূমির সাথে লাগানো (Earthing) হয়— যার অর্থ কোনো দূর্ঘটনায় হঠাৎ করে কোনো কারণে যদি প্রচুর চার্জ চলে আসে তাহলে সেটা যেন দ্রুত এবং নিরাপদে পৃথিবীর মাটিতে চলে যেতে পারে— যারা আশপাশে আছে তাদের যেন কোনো ক্ষতি না হয়।

10.6.2 বজ্র নিরোধক

বজ্র পাতের সময় মেঘ থেকে বিশাল পরিমাণ চার্জ পৃথিবীতে নেমে আসে— বাতাসের ভেতর দিয়ে যাবার সময় সেটা বাতাসকে আয়োনিত করে ফেলে তখন সেখানে প্রচণ্ড তাপ আর আলো তৈরি হয় শব্দ তৈরি হয়, এই বিশাল পরিমাণ চার্জ যেখানে হাজির হয় সেখানে ভয়ংকর ক্ষতি হতে পারে। বজ্রপাতের ক্ষতি থেকে রক্ষা পাবার জন্য বজ্র নিরোধক দণ্ড লাগানো হয়। বজ্র নিরোধক দণ্ড হচ্ছে একটা ধাতব দণ্ড যেটার নিচের প্রান্ত মাটির গভীরে চলে গেছে, উপরের অংশটুকু একটা বিভিংয়ের মত উপরে সম্ভব হলে খোলা আকাশের দিকে তাক করে রাখা হয় চেষ্টা করা হয় সেখানে এক বা একাধিক সূচালো শলাকা থাকে। সাধারণত জলীয়বাম্প উপরে ওঠার সময় ঘর্ষণে ইলেকট্রনগুলো আলাদা হয়ে নিচে থেকে যায় এবং উপরে পজিটিভ আয়নগুলো থাকে। মেঘের নিচের ইলেকট্রনগুলো যখন হঠাৎ করে বাতাস ভেদ করে মাঠিতে নেমে আসে আমরা সেটাকে তখন বজ্রপাত বলি। আমরা আগেই দেখেছি চার্জ যুক্ত কোনো কিছু চার্জহীন কোনো কিছুর কাছে আনলে সেখানে বিপরীত চার্জ আবেশিত হয়। তাই বজ্রপাত হবার উপক্রম হলে বজ্র শলাকাতে পজিটিভ চার্জ জমা হয় এবং সূচালো শলাকা থাকার কারণে সেখানে তীব্র ইলেকট্রিক কিন্ড তৈরি করে। সেই ইলেকট্রিক কিন্ডের কারণে আশপাশে থাকা বাতাস, জলীয় বাম্প আয়োনিত হয়ে যায় এবং আকাশের দিকে উঠে মেঘের নেগেটিভ চার্জকে চার্জহীন করে বজ্রপাতের আশংকাকে কমিয়ে দেয়। অনেক উঁচু বিল্ডিংয়ে যখন বজ্র শলাকা রাখা হয় সেটি প্রায় সময়েই সত্যিকার বজ্রপাত গ্রহণ করে আর বিশাল পরিমাণ চার্জকে সেই দণ্ড নিরাপদে মাটির ভেতরে নিয়ে যায়।

যখন বজ্রপাত হয় তখন এত বিশাল পরিমাণ চার্জ প্রবাহিত হয় যে বাতাসের তাপমাত্রা 20 থেকে 30 হাজার ডিগ্রি সেলসিয়াস পর্যন্ত হতে পারে যেটা সূর্য প্রষ্ঠের তাপমাত্রা থেকে বেশি! সেখানে তখন একটা নীলাভ সাদা আলোর ঝলকানি দেখি প্রচণ্ড তাপে বাতাস যখন ছিটকে সরে যায় তখন গগনবিদারী একটা শব্দ হয়। আলোর ঝলকানী এবং শব্দ একই সাথে তৈরি হলেও আমরা আলোটিকে প্রথম দেখি— আলোর গতিবেগ এত বেশি যে সেটা প্রায় সাথে সাথে পৌছে যায়। শব্দের গতি $330\ m/s$ এ মতো অর্থাৎ এক কিলোমিটার যেতে প্রায় 3s সময় নেয়। কাজেই আলোর কত সেকেন্ড পর শব্দটা শোনা গেছে সেখান থেকে আমরা বজ্রপাতটা কত দূরে হয়েছে সেটা অনুমান করতে পারি। আনুমানিক ভাবে প্রতি তিন সেকেন্ডের জন্য এক কিলোমিটার।

10.7 ধারক (Capacitor)

কোনো পদার্থে তাপ দেয়া হলে তার তাপমাত্রা কত বাড়বে সেটা সেই পদার্থের তাপ ধারণের ক্ষমতার ওপর নির্ভর করে। তাপ ধারণক্ষমতা বেশি হলে অনেক তাপ দেয়া হলেও তাপমাত্রা অল্প একটু বাড়ে, কম হলে অল্প তাপ দেয়া হলেই অনেকখানি তাপমাত্র বেড়ে যায়। ঠিক সে রকম কোনো পদার্থে চার্জ দেয়া হলে তার বিভব কতটুকু বাড়বে সেটা তার ধারকত্বের ওপর নির্ভর

ছবি 10.16: সমান্তরাল ধাতব প্লেট দিয়ে তৈরি ক্যাপাসিটর।

করে। কোনো বস্তুর ধারকত্ব বেশি হলে অনেক চার্জ দেয়া হলেও তার বিভব বাড়বে অল্প একটু আবার ধারকত্ব কম হলে অল্প চার্জ দিলেই বিভব অনেক বেড়ে যায়। আমরা আগেই বলেছি কোনো কিছুর ধারকত্ব C হলে সেখানে যদি Q চার্জ দেয়া হয় তাহলে বিভব V হবে

$$V = \frac{Q}{C}$$

আমরা ইতোমধ্যে দেখেছি r ব্যাসার্ধের ধাতব গোলকের জন্য $\mathcal C$ হচেছ

$$C = \frac{r}{k}$$

তবে সবচেয়ে পরিচিত সহজ এবং কার্যকর ধারক তৈরি করা হয় দুটো ধাতব পাত পাশাপাশি রেখে। গাতব পাতের একটিকে যদি পজিটিভ অন্যটিতে নেগেটিভ চার্জ রাখা হয় তাহলে দুটি পাতের মাঝখানে ইলেকট্রিক ফিল্ড তৈরি হয় এবং সেই ইলেকট্রিক ফিল্ডে শক্তি সঞ্চিত থাকে। একটা ক্যাপাসিটরের ধারকত্ব যদি C এবং ভোল্টেজ V হয় তাহলে তার ভেতরে যে শক্তি (Energy) জমা থাকে সেটি হচ্ছে

Energy =
$$\frac{1}{2}CV^2$$

উদাহরণ 9.9: একটা $20\mu V$ ক্যাপাসিটরে 10V বৈদ্যুতিক পটেনশিয়াল দেয় হয় তাহলে সেখানে কি পরিমাণ শক্তি সঞ্চিত থাকবে?

উত্তর: শক্তি :
$$\frac{1}{2}CV^2=\frac{1}{2}\times 20\times 10^{-6}\times 10^2 J=10^{-3}J=1mJ$$

10.8 স্থির বিদ্যুতের ব্যবহার (Use of Static Electricity)

আমাদের দৈনদিন জাবনে, রুলকারখানা ল্যাবরেটার, শিক্ষাপ্রতিষ্ঠান হাসপাতাল সব জায়গায় বিদ্যুৎ ব্যবহার করি, তবে প্রায় সব জায়গাতেই সোটা হয় চল বিদ্যুৎ (পরের অধ্যায়ে আমরা সোটা দেখব) তবে বিশেষ বিশেষ জায়গাতে এখনো স্থির বিদ্যুৎ ব্যবহার করা হয়:

(a) ফটোকপি

আমরা সবাই কখনো না কখনো কাগজের কোনো লেখার কপি তৈরি করার জন্য ফটোকপি মেশিন ব্যবহার করেছি। এখানে কাগজের লেখার ওপর আনো ফেলে তার একটি প্রতিচ্ছার একটি বিশেষ বরনের রোলারে ফেলা হয় এবং সেই রোলারে কাগজের লেখাটির মতো করে স্থির চার্জ তৈরি করা হয়। তারপর এই রোলারটিকে পাউডারের মতো সুক্ষ কালির সংস্পাদে আনা হাল যেখানে থেখানে চার্জ জমা হয়েছে সেখানে কালো কালি লেগে যায়। তারপর নৃতন একটা সাদা কাগজের ওপর ছাপ দিয়ে এই কালিটি বিসিয়ে দেয়া হয়। কালিটি যেন লেপেই না যায় সেজন্য তাপ দিয়ে কালিটিকে আরো তালো করে কাগজে যুক্ত করে প্রক্রিয়াটি পেম করা হয়।

ছবি 10.17: জান জি গ্রাফ মেশিন

(b) জ্যান ডি প্রাফ মেশিন

অতাত উচ্চ বিভব দিয়ে লানা ধরনের কাজ করা হয়। জান ছি আফ মেশিনে সেটি করা সম্ভব হয় স্থির বিদাৎ বাবহার করে। একটি ঘুরত বিদাৎ অপরিবাহা বেল্টে ত্রির বিদাৎ শেপ করা হয়, বেল্টিট ঘুরিয়ে একটি বাতব গোলকের ভেতর নেয় হয়। বেল্টের ওপর খেকে একটা স্পর্শক এই চার্জটা গ্রহণ করে বাতব গোলকের কাছে পৌছে দেয়। আমরা জানি চার্জ সব সময়ই বেশি গেকে কম বিভবে প্রবাহিত হয়। জান ছি গ্রাফ জেনারটিরে এটি সব সময় ঘটে গাকে কারণ পাতব গোলকের ভেতরে সব সময়েই গোলকের সমান বিভব গাকে। বেল্টের উপরের বাড়িত চার্জটুকুর জন্য যে বাড়িত ভোল্টেজ তৈরি হয় সেটি ভাই সব সময়েই পোলকের ভোল্টেজ থেকে (বেশি। সে কারণে গোলকের ভেতরে চার্জ থাকালেই সেটা গোলক পুর্চে চাল যয়। এভাবে বিশাল পরিমাণ চার্জ জ্বমা করিয়ে অনেক উচ্চ পটেনশিয়াল তৈরি করা সম্ভব।

(c) জ্বালানি ট্রাক

পেট্রোল বা অন্য জ্বালানির ট্রাক যখন তাদের জ্বালানি সরবরাহ করে তখন তাদের খুব সতর্ক থাকতে হয় যেন হঠাৎ করে কোনো বিদ্যুৎ স্কুলিঙ্গ তৈরি হয়ে বড় কোনো বিস্ফোরণের জন্ম না দেয়। জ্বালানি ট্রাকের চাকার সাথে রাস্তার ঘর্ষণে স্থির বিদ্যুৎ তৈরি হলে এটা ঘটতে পারে, সেজন্য এই ধরনের ট্রাকের পিছনে ট্যাংক থেকে একটা শেকল ঝুলিয়ে দেয়া হয়– সেটা রাস্তার সাথে ঘষা খেতে থাকে যেন কোনো স্থির বিদ্যুৎ তৈরি হলে সেটা যেন সাথে সাথে মাটিতে চলে যেতে পারে।

जनुगी ननी

প্রশ

- 1. চার্জের ক্ষুদ্রতম একটি মান আছে, সেটি হচ্ছে $1.6 \times 10^{-19} C$ এ রকম কি ভরের একটি ক্ষুদ্রতম মান আছে?
- 2. বর্ষাকালে স্থির বিদ্যুতের পরীক্ষাগুলো ঠিক করে কাজ করে না কেন?
- 3. দুটো এক আকারের ধাতব গোলককে স্পর্শ না করে তাদের মাঝে সমান এবং বিপরীত চার্জ দিতে পারবে?
- 4. ধারকত্ব বা capacitance কে যদি একটা পাত্রের সাথে তুলনা করা হয় তাহলে পটেনশিয়ালটি কিসের সাথে তুলনা করব?
- 5. কোনো বিন্দুতে পটেনশিয়াল শূন্য কিন্তু ইলেকট্রিক ফিল্ড শূন্য নয়, এটি কি সম্ভব?

গাণিতিক সমস্যা

- $1.\ 4C$ এবং -1C চার্জ 1m দূরে রাখা আছে। চার্জ দুটির সংযুক্ত রেখার কোথায় ইলেকট্রিক ফিল্ড শূন্য?
- 2. হাইড্রোজেন পরমাণুতে একটি ইলেকট্রন কুলম্ব বলের কারণে একটি প্রোটনকে ঘিরে ঘুরতে থাকে। ইলেকট্রনের ভর $9.11\times 10^{-31}kg$ এবং প্রোটনের ভর $1.67\times 10^{-27}kg$ এই ভরের কারণে তাদের ভেতরে নিশ্চয়ই একটি মাধ্যাকর্ষণ বলও আছে। দুটি বলের ভেতর কোনটি বড় এবং কত বড়?
- 1 নম্বর প্রশ্নের চার্জ দুটির জন্য ইলেকট্রিক ফিল্ডের বল রেখা গুলি এঁকে দেখাও।
- 4. 10.15 ছবিতে চার্জের জন্য সম পটেনশিয়াল রেখা দেখানো হয়েছে, সেখান থেকে তুমি ইলেকট্রিক ফিল্ড দেখাও।
- 5. 10.13 ছবি দুটি চার্জের জন্য ইলেকট্রিক ফিল্ড দেখানো আছে, পটেনশিয়াল এঁকে দেখাও।

একাদশ অধ্যায়

চল বিদ্যুৎ

(Electricity)

.Satyendra Nath Bose (1894-1974)

সতেনে বোস

সত্যেন্দ্র নাথ বোসের জন্য কলকাতায়, তিনি একজন বাঙালি পদার্থবিজ্ঞানী। ঢাকা বিশ্ববিদ্যালয়ের একজন শিক্ষক থাকা অবস্থায় তিনি বোস আইনস্টাইন স্ট্যাটিস্টিক্স উদ্ভাবন করেন। তাঁর এই জগদ্বিখ্যাত পেপারটি জানাল ছাপাতে অস্বীকার করায় তিনি সেটি আইনস্টাইনের কাছে পাঠান এবং জার্মান ভাষায় অনুবাদ করে জার্নালে ছাপানোর অনুরোধ করেন। তরুপা এই বিজ্ঞানীর অনুরোধ রক্ষা করে আইনস্টাইন সেটি ছাপানোর ব্যবস্থা করেছিলেন। এই অবিষ্ণারের কারণে বিশ্বজ্ঞানির দুই ধরনের কণার একটিকে বোজন নামে অভিহিত করা হয়। পদার্থবিজ্ঞান ছাড়াও তাঁর গণিত, রসায়ন, জীববিজ্ঞান, দর্শন এমনকি সাহিত্যেও আহ্বহ ছিল। বাংলা ভাষায় বিজ্ঞানচর্চার জন্য তিনি অনেক কাজ করেছিলেন।

11.1 বিদ্যুৎ প্রবাহ (Electric Current)

আমরা আগের অধ্যায়ে দেখেছি যে যদি দুটো ভিন্ন বস্তুর বিভবের মাঝে পার্থক্য থাকে তাহলে যেটার বেশি বিভব সেখান থেকে যেটার বিভব কম সেখানে চার্জ প্রবাহিত হয়। যতক্ষণ পর্যন্ত বিভব দুটো সমান না হচ্ছে চার্জের প্রবাহ হতেই থাকে। চার্জের এই প্রবাহ হচ্ছে বিদ্যুতের প্রবাহ আমরা যেটাকে সাধারণভাবে "ইলেকট্রিসিটি" বলি, যেটা দিয়ে লাইট জ্বলে, ফ্যান ঘুরে, মোবাইল টেলিফোন চার্জ দেয়া হয়!

একটা বিষয় নিশ্চয়ই বুঝতে পারছ, বিভব পার্থক্য থাকলেই শুধু মাত্র বিদ্যুৎ প্রবাহ হয়, তাই আমরা যদি বিদ্যুৎ প্রবাহ অবিচ্ছিন্ন রাখতে চাই তাহলে বিভব পার্থক্যটাও বজায় রাখতে হবে, সেটাকে কমে সমান হয়ে যেতে দেয়া যাবে না। দুটো গোলকের মাঝে ভিন্ন চার্জ দিয়ে ভিন্ন বিভব তৈরি করে গোলক দুটোকে যদি একটা তার দিয়ে জুড়ে দিই তাহলে বিদ্যুতের প্রবাহ শুক্ত হবার সাথে সাথে বিভবের

পার্থক্য কমতে থাকবে এবং মুহূর্তের মাঝে দুটি বিভব সমান হয়ে যাবে! দুটো সমান্তরাল ধাতব পাতের মাজে চার্জ জমা করে যদি বিভবের পার্থক্য তৈরি করা হয়, তাহলে সেই দুটো একটা তার দিয়ে জুড়ে দিলেও মুহূর্তের মাঝে পুরো চার্জ প্রবাহিত হয়ে তাদের বিভব সমান হয়ে যাবে। কাজেই বুঝতেই পারছ আমরা যদি ব্যবহার করার মতো সার্বক্ষণিক বিদ্যুৎ চাই তাহলে অন্য কোনো পদ্ধতি দরকার যেটা এমন একটা বিভব পার্থক্য তৈরি করে দেবে যেন চার্জ প্রবাহিত হলেও তার পার্থক্য কমে না যায়।

তোমরা সবাই সে রকম পদ্ধতি দেখেছ, এগুলো হচ্ছে ব্যাটারি এবং জেনারেটর। ব্যাটারির ভেতর রাসায়নিক বিক্রিয়া করে বিভব পার্থক্য তৈরি করা হয়, সেখান থেকে চার্জ প্রবাহ করা হলে রাসায়নিক দুর্বগুলো খরচ হতে থাকে, যখন রাসায়নিক দুর্বগুলো শেষ হয়ে যায় তখন ব্যাটারি আর বিদ্যুৎ প্রবাহ করতে পারে না। আমরা সাধারণ যে ব্যাটারি দেখি সেগুলোর বিভব পার্থক্য হচ্ছে 1.5 ভোল্ট।

তোমাদের স্কুলে কিংবা বাসায় যে ইলেকট্রিসিটি আছে সেখানে তোমরা সবাই দেখেছ বিদ্যুৎকে ব্যবহার করার জন্য দুটো পয়েন্ট থাকে, তার একটাতে থাকে কম বিভব অন্যটাতে বেশি বিভব, এই পার্থক্যটা বজায় রাখে জেনারেটর, যেটি ক্রমাগত বিভব পার্থক্য তৈরি করতে থাকে! একটা ব্যাটারি বা একটা জেনারেটরে ক্রমাগত বিদ্যুৎ প্রবাহের জন্য ক্রমাগত চার্জকে কম বিভব থেকে বেশি বিভবে হাজির করে রাখতে হয় এবং এর জন্য শক্তির প্রয়োজন হয়। যদি কোনো ব্যাটারিতে Q চার্জকে কম বিভব থেকে বেশি বিভবে আনতে W পরিমাণ কাজ করতে হয়তাহলে এই ব্যাটারির তড়িৎ চালক শক্তি বা ই.এম.এফ

$$EMF = \frac{W}{Q}$$

ব্যাটারি বা জেনারেটর, যেগুলো বিদ্যুৎ শক্তি সরবরাহ করে তার তড়িৎ চালক শক্তি বা ই.এম.এফ থাকে। যখন কোনো ব্যাটারি বা জেনারেটরকে কোনো সার্কিটে লাগানো হয় তখন এই তড়িৎ চালক শক্তিই চার্জকে পুরো সার্কিটের ভেতর দিয়ে ঘুরিয়ে আনে। একটা ব্যাটারি যে পরিমাণ পটেনশিয়াল তৈরি করে সেটাই হচ্ছে তার তড়িৎ চালক শক্তি বা ই.এম.এফ— ইংরেজিতে এটাকে বলা হচ্ছে ফোর্স বা "বল" বংলায় বলছি "শক্তি"— কিন্তু প্রকৃত পক্ষে ই. এম. এফ. বা তড়িৎ চালক শক্তি বলও নয় শক্তিও নয়। তোমাদের বলা হয়েছে পদার্থবিজ্ঞানে "বল" "শক্তি" এই বিষয়গুলো খুবই সুনির্দিষ্ট, ইচ্ছে মতন একটার জায়গায় অন্যটা ব্যবহার করা যাবে না— কিন্তু দুর্ভাগ্যক্রমে এখানে করা হয়ে গেছে! তোমাদের বিদ্রান্ত হওয়ার কোনো কারণ নেই কারণ যেহেতু একটা ব্যাটারি বা জেনারেটর যে পরিমাণ পটেনশিয়াল তৈরি করে সেটাই হচ্ছে তার ই.এম.এফ. তাই আমরা সেখান থেকেই শুরু করব, পটেনশিয়াল কথাটি দিয়েই সব কাজ করে ফেলব দেখবে কোনো সমস্যা হবে না।

আমরা আগেই বলেছি পটেশিয়ালের মানটি গুরুত্বপূর্ণ নয়, তার পার্থক্যটুকু গুরুত্বপূর্ণ। তাই দেখবে অনেক সময় একটা ব্যাটারির এক মাথার পটেনশিয়াল ভিন্ন করে ফেলা সম্ভব, কিন্তু পার্থক্যটা সব সময়েই সমান থাকবে।

উদাহরণ 11.1: একটা ব্যাটারির বিতব পার্থর্ক 1.5 V কিন্তু আসলে তাদের বিতব কত? নেগেটিডটা এন্য এবং পজিটিভটা 1.5 V নাকি নেগেটিভটা —1.5 V এবং পজিটিভটা শূন্য?

উত্তর: দুটোই সত্য হতে পারে। যদি 11.1 (a) ছবির মত হয় তাহলে নেগেটিডটা শূন্য এবং পজিটিডটা 1.5V, যদি 11.1 (b) ছবির মত হয় তাহলে গজিটিডটা শূন্য এবং নেগেটিডটা —1.5V.

ছবি 11.2: দুটি কাটারি দিয়ে বিভিন্ন পজেটিভ বা নেগেটিভ ভোল্টেজ তৈরি করা

ছবি 11.1: একটি ব্যাটারি দিয়ে প্রজেটিভ বা নেলোটিভ ভোন্টেজ দুটোই তৈরি করা সম্ভব।

উ**দাহরণ 11.2**: দুটি 1.5V ভোল্টের ব্যাটারি দিয়ে 1.5V, 3.0V, ±1.5V, —1.5V, —3.0V তৈরি কর।

উত্তর: 11.4 ছবিতে করে দেখানো হয়েছে।

চার্জের প্রবাহ হচ্ছে বিদ্যুৎ প্রবাহ বা তড়িৎ প্রবাহ। আমরা এতক্ষণ সাধারণভাবে এটা বোঝার চেষ্টা করেছি এখন এটাকে আরো একটু নির্দিষ্ট করা

যাক। বিদ্যুৎ বা তড়িৎ প্রবাহ বলতে আমরা সময়ের সাথে চার্জ প্রবাহের হারকে বোঝাই অর্থাৎ t সময়ে যদি Q চাজ প্রবাহিত হয় তাহলে বিদ্যুৎ বা তড়িৎ প্রবাহ হচ্ছে ;

$$I = \frac{Q}{t}$$

এবং চার্জের একক যদি কুলম C এবং সময়ের একক সেকেন্ড s হলে বিদ্যুৎ প্রবাহের একক হচ্ছে আচ্পিয়ার A। মজার ব্যাপার হচ্ছে, আমরা কিন্তু চার্জের একক বের করার জন্য বলেছিলাম এক সেকেন্ডে এক আচ্পিয়ার বিদ্যুৎ প্রবাহ করতে যে পরিমাণ চার্জ প্রবাহিত হয় সেটাই হচ্ছে কুলম্ব!

11.1.1 বিদ্যুৎ প্রবাহের দিক

আমরা যদি পদার্থের গঠনটা ভালো করে বুঝে থাকি তাহলে একটা বিষয় খুব ভালো করে জেনেছি। কঠিন পদার্থে তার অণু-পরমাণু শক্ত করে নিজের জায়গায় বসে থাকে তাপমাত্রা বাড়লে তারা নিজের জায়াগায় কাঁপাকাঁপি করতে পারে কিন্তু সেখান থেকে সরে অন্য জায়গায় চলে যায় না। কোনো কোনো পদার্থের পরমাণুর কিছু ইলেকট্রন প্রায় যুক্ত অবস্থায় থাকে সেগুলো এক জায়গা থেকে অন্য জায়গায় যেতে পারে এবং আমরা সেগুলোকে বলি পরিবাহী পদাধ। পরিবাহী পদাধ দিয়ে চার্জকে স্থানান্তর করা হয় তবে সব সময় মনে বাখাতে হবে এই স্থানান্তর হয় ইলেকট্রন দিয়ে, বিদ্যাতের প্রবাহ হয় ইলেকট্রন দিয়ে, নেগেটিভ চার্জের ইলেকট্রন।

তোমাদের কেউ কেউ নিশ্চয়ই এখন একটু ভাবনার মাঝে পড়েছ, কারণ আমরা যখন চার্জের প্রবাহ দিয়ে দুটি ভিন্ন বিভরের মাঝে সমতা আনার ক্লা বলেছি তখন কিন্তু একবারও বলিনি এটা ভধুমাত্র নেগেটিভ চার্জের জন্য সত্যি, কারণ ভগু নেগেটিভ চার্জের ইলেকট্রনই এক জায়ণা থেকে অন্য জায়গায়

যেতে পারে। পজিটিভ
চার্জের বেলায় তাহলে
কা হয়ং পজিটিভ আয়ন
তো খুবই পজভাবে
নিজের জায়গায় আটকে
থাকে, তাহলে কেমন
করে পাজিটিভ চার্জ এক
জায়গা থেকে অন্য
জায়গায় যায়ং

ছবি 11.3: লার্জ সংযুক্ত গোলক থেকে চাজহীন গোলকে বিদ্যুক প্রবাহ।

তোমরা নিশ্চয়ই কী ঘটে সেটা অনুমান করে ফেলেছ ইলেকট্রনের অভাব হচ্ছে পজিটিভ চার্জ। তাই ইলেকট্রনকে মরিয়ে অভাব আরো বাড়িয়ে দেয়ার অর্থ হচ্ছে পজিটিভ চার্জ সরবরাহ করা। কাজেই মদি বলা হয় A থেকে B তে পজিটিভ চার্জ গিয়েছে (ছবি 11.3) তার প্রকৃত অর্থ হচ্ছে B থেকে A তে ইলেকট্রন গিয়েছে।

কারেন্ট বা বিদ্যুৎ প্রবাহ হাছে চার্জ্র প্রবাহের হার, কোনো কিছু নোগেটিত হবে সোঁচ আলাদা করে বলে দিতে হয়, আমরা যেহেতু আলাদা করে বলে দিই দি তাই ধরে নিতেই ধরে A থেকে B তে যদি 1 আদিসয়ার কারেন্ট প্রবাহিত হয় তার অর্থ 1 কুলদ পজিটিত চার্জ্র A থেকে Bতে গিয়েছে। মার প্রকৃত অর্থ 1 কুলদ চার্জের সম পরিমাণ ইলেকট্রন B থেকে A তে গিয়েছে। যার অর্থ বিদ্যুৎ প্রবাহের দিক হাছে ইলেকট্রন প্রবাহের দিকের উল্লেট্। (ইলেকট্রনের চার্জ্রাক পজিটিত ধার দিলেই সব সমস্যা মিটি যেতো কিছু সোঁচার জন্য এখন দেবি হায়ে গেছে।)

11.2 ও'মের সূত্র (Ohm's Law)

এবারে আমরা সাত্রকারের সার্কিটে সাত্রকারের বিদ্যুৎ প্রবাহ নিয়ে আসোচনা করব

আমরা অনেকবার বলেছি যে দৃটি জায়গায় যদি বিভব পার্থক্য থাকে এবং আমরা খদি একটি পরিবাহী তার দিয়ে সেই দৃটি জায়গা জুড়ে দেই তাহলে বিদ্যুৎ প্রবাহ হয়– কিন্তু কতট্টকু বিদ্যুৎ প্রবাহ হতে েশটি নিয়ে কিছু বলা হয়নি। ৩५ তাই নয় একটা সোনাত পরিবাহী তার দিয়ে জুড়ে দিলে যেটুকু বিদ্যুৎ এবাহিত হবে একটা লোক্য তার জুড়ে দিলেও কী নমান পরিমাণ বিদ্যুৎ প্রবাহিত হবে?

নিয়েটা নেখার জনা সামরা একটা এরাপেরিনেট করাতে পারি। বিজন মানার জনা যা মার্লিটি করেইর করা হবা তার নাম জেনট মিটার, বিজ্ঞ প্রনাই বা কারেই মাখার জনা গে এক বাবহার করা হবা নেটার নাম এমিটার। গোনলে একই সভের সইন পরিয়ে এটাকে কমনো জোনট মিটার না কথনো এমিটার হিলেবে ব্যবহার করা যায়। সামরা করেকটা নাটারি নিতে পারি, একটা নাটারির জন্ম 1.5V জলে দুটি বাটারির জন্ম $2\times1.5=3V$ তিনটির জনা $3\times1.5=1.5V$ এজানে জিন্ন হিন্দু বিতৰ বাপকা প্রয়োগ করতে পারে। জন্ম হাই বা আনরা নাটারি জনা $3\times1.5=1.5V$ এজানে জিন্দু হাই বা আনরা নাটারি জনা উল্লেটিয় বিতৰ বাপকে প্রয়োগ করতে পারে। জন্ম তাই বা আনরা নাটারি জনা উল্লেটিয় বিতৰ বাপকি করে করে বিতৰ বার্টিয় বিজ্ঞান প্রয়োগ করে করে। খানি বিজ্ঞান প্রবাহিত সামের বাবের বাবের করি তাইকে সেটার বিজ্ঞান করি তাইকে সেটার বিজ্ঞান করি তাইকে সেটার বিজ্ঞান করি তাইকে সেটার বাহকে সেটার বাহকি সামর বাহকে সেটার বাহকে সেটার বাহকে সেটার বাহকে সেটার বাহকে সেটার বাহকে সামর বাহকে সামর বাহকে সেটার বাহকে সামর বাহকের সামর বাহকের সামর বাহকে সামর বাহক

- (a) মতে বৃশি বিভৱ নাগক্ষ জন বেশি নিয়াও বুশাহ
- (b) বিজন পার্থকো নেগেটিত কলে নিল্লাৎ প্রনাঞ্জন দিল পরিকর্তন করছে

র্জন 11.4: (রজিনীয়াল এর কারণে নিদ্যুত চনাত্রে নালেছে বিভব পার্থকা।

ारक अकरभोतरमस्ति कलावल नगरमा ग्राह्म नेमि 114 (a) इतिह भरान प्राचीरम

1998人文化

আমন। গাল সন্য কোনে। উপাদানের দেবার্ব একটা তার লিয়ে একই পরীপন্টি করি আহানে একই বর্তনের কলাফল পার তারে বরল রেখার গালটা হয়তো আন্য রক্ষম হবে । ছবি 11,4 b)। এখন এই দুটি পরীক্ষার কলাফল গানি নিয়েখন কবি আহলে ক্ষাতে শারন প্রথমে একটা নিটিউ বিজন স্থান্তিয় প্রত্তিক বিদাহ প্রবাহিত হয়েতে দিনীয় বস্তুর জনা সেই একই

বিভাব পাথাকৈ বিদ্যাৎ এবাহ হলে কম। প্রথামটিতে মেন বিদ্যাৎ প্রবাহ তুলনাম্লকভাবে গহজ, নিতীয়টিতে যেন বিদ্যাৎ প্রাক্তে বাদা একট বেশি। নিবয়টো বাদান কলান জনা বিদ্যাৎ প্রাক্তে বাধা (Resistance) বা সত্যি সত্যি রোধ নামের একটা রাশি তৈরি করা হয়েছে। আমরা দেখতে পারি বিভব পার্থকা এবং বিদ্যুৎ প্রবাহের সম্পর্কটি একটা সূত্র হিসেবে লেখা যায়

$$I = \frac{V}{R}$$

অর্থাৎ রোধ বেশি হলে বিদ্যুৎ প্রবাহ হবে কম। রোধ কম হলে বিদ্যুৎ প্রবাহ হবে বেশি।

এই রোধ বা Resistance এর একক হচ্ছে ohm এটাকে ছিক অক্ষর Ω (সিগমা) দিয়ে প্রকাশ করা হয়। কোনো বৈদ্যুতিক সার্কিটে $1 \, V$ বিভব পার্থকা দেয়ার পর যদি দেখা যায় $1 \, A$ বিদ্যুৎ প্রবাহিত হচ্ছে তাহলে বুঝাতে হবে সেই সার্কিটের রোধ Ω

উদাহরণ 11.1: মজা করার জন্য ও'মের সূত্রটিকে অন্যভাবেও লিখতে পার-

$$\frac{V}{I \times R}$$

একটু বড় করে লিখে আঙুল দি V , I কিংবা R এর যে কোনো একটি ঢেকে দাও যেটি ঢেকে দিয়েছ তার মানটি যেটুকু ঢাকা পড়েনি সেখানে পেয়ে যাবে।

ছবি 11.5: এমনের সূত্র এই ছবিটি দিয়ে ব্যবহার করা সম্ভব। আঙ্গুল দিয়ে ঢাকা রাশিটির মান বাকী দুটি রাশি দিয়ে প্রকাশ করা সম্ভব।

উদ্ভব: 11.5 চনিতে বিষয়টি করে দেখালো হয়েছে।

রোধ হচ্ছে বিদ্যুৎ প্রবাহের বাধা, তাই কোনো পদার্থের দৈর্ঘ্য (L) যত বেশি হবে তার বাধা তত বেশি হবে অর্থাৎ রোধও বেশি হবে।

$R \propto L$

আবার সরু একটা পথ দিয়ে যত সহজে বিদ্যুৎ প্রবাহিত হতে পারবে, চওড়া একটা পথ দিয়ে তার থেকে অনেক সহজে বিদ্যুৎ প্রবাহিত হতে পারবে অর্থাৎ প্রস্তুচ্ছেদ (A) যত বেশি হবে রোধ তত কম হবে।

$$R \propto \frac{1}{A}$$

এই দুটি বিষয়কে আমরা যদি একসাথে আনুপাতিক না লিখে সমীকরণ হিসেবে লিখতে চাই তাহলে একটা ধ্রুবক ho ব্যবহার করতে হবে। অর্থাৎ রোধ R হচ্ছে

$$R = \rho \frac{L}{A}$$

য়েখানে ধ্রবক ρ হচ্ছে

$$\rho = R \frac{A}{L}$$

একটা নির্দিষ্ট পদার্থের জন্যে ho হচ্ছে আপেক্ষিক রোধ এবং তাই এর একক হচ্ছে Ωm . তোমাদের মনে হতে পারে এককটি বুঝি ঠিক হলো না— এটি হওয়া উচিত ছিল Ωm^{-3} যেন, একক আয়তনে রোধ জানা হলে পুরো আয়াতন দিয়ে গুণ করে পুরো রোধ পেয়ে যাব। দেখতেই পাচছ ব্যাপারটি সে রকম না।

কোনো পদার্থ কতটুকু বিদ্যুৎ পরিবাহী সেটা বোঝানোর জন্য পরিবাহকত্ব বলে একটা রাশি ত তৈরি করা হয়েছে, যে পদার্থ যত বেশি বিদ্যুৎ পরিবাহী তার পরিবাহকত্ব তত বেশি যেটা আপেক্ষিক রোধ ρ (টেবিল 11.1) এর ঠিক বিপরীত।

$$\sigma = \frac{1}{\rho}$$

Sec	4 5 2	100		Car 1
राज्ञ दिन	11013	পদায়ের	ভাপেকিক	ৰোধ

পদার্থ	আপেক্ষিক রোধ (Ωm)	
क्रभा	1.59×10^{-8}	
তামা	1.68×10^{-8}	
সোনা	2.44×10^{-8}	
গ্রাফাইট	2.50×10^{-6}	
হীরা	1.00×10^{12}	
বাতাস	1.30×10^{16}	

এর একক হচ্ছে $(\Omega m)^{-1}$

এখানে একটা বিষয় মনে রাখতে হবে কোনো পদার্থের রোধ হচ্ছে ইলেকট্রন প্রবাহের বাধা, অপু-পরমাণুগুলো যত বেশি কাঁপাকাঁপি করে একটা ইলেকট্রন তাদের ভেতর দিয়ে যেতে তত বেশি বাধাগ্রস্থ হয়, কিংবা তার রোধ তত বেশি। তাপমাত্রা বাড়িয়ে দিলে যেহেতু অপু-পরমাণুগুলো বেশি কাঁপাকাঁপি করে তাই সব সময়েই তাপমাত্রা বাড়ালে পদার্থের আপেক্রিক রোধ বেড়ে যায়। সেজনা যখন

কোনো পদার্থের রোধ বা আপেক্ষিক রোধ প্রকাশ করতে হয় তখন তার জন্য তাপমাত্রাটা নির্দিষ্ট করে বলে দিতে হয়।

উদাহরণ 11.4: রুপা, তামা, টাংস্টেন ও নাইক্রোম তারের রোধকত্ব ρ যথাক্রমে 1.6×10^{-8} , 1.7×10^{-8} , 5.5×10^{-8} , 100×10^{-8} Ωm এইগুলো ব্যবহার করে 1Ω রোধ তৈরি কর।

উত্তর: আমরা জানি রোধ

$$R = \frac{\rho l}{A}$$

যেখানে l দৈর্ঘ্য এবং A প্রস্থচ্ছেদ।

কাজেই $A=1m^2$ ধরে নিলে

$$l = \frac{RA}{\rho} = \frac{1 \times 1}{\rho}$$

রুপার জন্য:

$$l = \frac{1}{1.6 \times 10^{-8}} = 6.25 \times 10^7 m$$

তামার জন্য:

$$l = \frac{1}{1.7 \times 10^{-8}} = 5.9 \times 10^7 m$$

টাংস্টেনর জন্য:

$$l = \frac{1}{5.5 \times 10^{-8}} = 1.8 \times 10^7 m$$

নাইক্রোমর জন্য:

$$l = \frac{1}{100 \times 10^{-8}} = 10^6 m$$

দেখতেই পাচ্ছ মাত্র 1Ω রোধ তৈরি করার জন্য অনেক দীর্ঘ (প্রায় লক্ষ কিলোমিটার) পদার্থ নিতে হয়। বাস্তবে $A=1m^2$ কখনোই হয় না। অনেক সরু তার ব্যবহার করা হয়। যদি 0.1mm প্রস্থাচ্ছেদ নির্দিষ্ট করে দিই তাহলে 1Ω রোধ তৈরি করতে কতো দীর্ঘ তারের প্রয়োজন?

আমরা জানি

$$l = \frac{RA}{\rho}$$

$$A = \pi r^2 = \pi (10^{-4})^2 m^2 = 3.14 \times 10^{-8} m^2$$

রুপার জন্য:

$$l = \frac{3.14 \times 10^{-8}}{1.6 \times 10^{-8}} = 1.96m$$

তামার জন্য:

$$I = \frac{3.14 \times 10^{-8}}{1.7 \times 10^{-8}} = 1.84 m$$

টা হেন্টদার জেলা।

$$I = \frac{3.14 \times 10^{-8}}{5.5 \times 10^{-8}} = 0.57m$$

নাইবেলনার জনা।

$$\bar{t} = \frac{3.14 \times 10^{-8}}{100 \times 10^{-8}} = 0.03m$$

পরিবাহীতে তাপমাত্রা লাড়ালে রোধ বেড়ে যায় কিন্তু সৌমকভাইরের বেলায় কিন্তু ঠিক তার উট্টো ব্যাপারটা ঘটে! সেমিকভাইরে তাপমাত্রা বাড়ালে রোধ কমে যায়। তার কারণ কভাইরে যেমন রিদুধে প্রবাহের জন্য মুক্ত ইলেকট্রন রয়েছে সৌমিকভাইরে তা নেই- রেখানে তাপমাত্রা বাড়ালেই ভগুমাত্র কিন্তু ইলেকট্রন বিদ্যাৎ প্রবাহের জন্য পাওয়া যায় তাই সেখানে তাপমাত্রা বাড়ালে রোধ কমে যায়।

📭 11.6. সাজিট কাধানত হয় এ বৰুমা কিছু পাতীক

11.2.1 मार्कि

আমরা গদি ও'মের গুত্ত বুরো থাকি তাহলে আমরা এখন সাকিট বিশ্লেষণ করতে পারি। সেটা করার আগে সাকিটে ব্যবহার করা হয় এ রকম কমেকটি প্রতীকের সাথে আগে পরিচিত হয়ে নিই: (ছবি 11.6)

নর পদার্থেরিই কিছ না কিছু রোধ আছে কিছু আমাদের দৈর্যদিন জীবনে সার্কিটে ব্যবহারের সময় বৈদ্যুতিক তারের রোপকে আমরা বর্তব্যের মাঝে নিই লা। যখন রোধ প্রয়োজন হয় তখন আমরা বিশেষভাবে তৈরি বিভিন্ন মানের রোধ ব্যবহার করি। কখনো কখনো বিশেষ প্রয়োজনে এমন রোধ ব্যবহার করা হয়ে যেখানে তার মান্টি পরিবর্তন্ত করা যায়, এগুলোকে পরিবর্তনশীল রোধ বলে। কোনো সার্কিট বিশ্রেমণ করতে হলে নিচের করেকটা সোজা বিষয় মনে রাখাই যথেষ্ট:

- (a) বিদ্যুতের উৎসের (ব্যাটারি জেনারেটর যাই হোক) উঁচু পটেনশিয়াল থেকে যে পরিমাণ বিদ্যুৎ বের হয় পুরো সার্কিটের শেতর দিয়ে প্রবাহিত হয়ে ঠিক সেই পরিমাণ বিদ্যুৎ কম পটেনশিয়ালে ফিরে আসে।
- (b) সার্কিটের যে কোনো জায়গায় য়ে কোনো বিন্দৃতে য়ে পরিমাণ বিদ্যুৎ ঢাকে ঠিক সেই পরিমাণ বিদ্যুৎ বের হয়ে বায়, সার্কিটের ভেতরে বিদ্যুতের কোনো ধ্বংস নেই।
- (c) শার্কিটের ভেতরে যে কোনো অংশের দুই বিন্দুতে ও'মের সূত্র সব সময় সতিঃ হবে, অর্থাৎ সেই দুই অংশের যে পরিমাণ নিতন পার্থকঃ রয়েছে তাকে সেই অংশের রোধ দিয়ে তাগ দিলেই তার তেতর দিয়ে প্রবাহিত বিদ্যুৎ নের হয়ে যাবে!

আমরা এখন যে কোনো সাকিট বিশ্লেষণ করতে প্রস্তুত। একটা সার্কিটের যে কোনো অংশ দিয়ে কতটুকু বিদ্যুৎ প্রবাহিত হচ্ছে এবং যে কোনো অংশের বিতর কত সেটা জানলেই আমরা ধরে নেয

ভবি 11.7: একটি ব্যাটারী ও রেজিস্ট্রান্স সংযুক্ত দুটি সার্কিট।

সাকিটটা আমরা পুরোপুরি বুঝে গেছি। धक्छा नार्किक्क वाणिति. ক্যাপাসিটর. রোধ. ট্রানজিস্ট্র ভারোড_ আনেক ब्रको থাকতে পারে-আমরা আপাতত শুধু ব্যাটারি আর রোধ দিয়ে তৈরি मार्किंग विद्धासम कदाव। সার্কিটে বিভিন্ন

তামার তার দিয়ে সংযুক্ত করা হয়— যদিও আমরা দেখেছি তামারও একটি আপেক্ষিক রোধ আছে— কিন্তু ৰান্তৰ জীবনের সার্কিটে যে রোধ ব্যবহার করা হয় তাদের তুলনায় এটি এত কম যে আমরা এটাকে ধর্তব্যের মাঝেই আনব না– ধরে নেব তারের রোধ নেই– কাজেই একটা তারের সব জায়গায় বিভব সমান!

এবারে 11.7 (a) ছবি দেখানো একটা সার্কিট বিশ্রেষণ করা যাক, এখানে একটা রোধকে দুটো তার দিয়ে একটা ব্যাটারির দুই মাখার লাগানো হয়েছে। যেহেতু CD অংশটুকু ভূমিসংলগ্ন করা হয়েছে তাই

আমরা বলতে পারব ব্যাটারির নিচ প্রান্তটির বিভব হচ্ছে শূন্য। তাই ব্যাটারির উপরের প্রান্তের বিভব V এবং BC অংশে একটা রোধ, রোধের দুই পাশে বিভব পার্থক্য

$$V - 0 = V$$

কাজেই রোধ যদি R হয় তাহলে এর ভেতর দিয়ে যে I বিদ্যুৎ প্রবাহিত হচ্ছে তার মান

$$I = \frac{V}{R}$$

কাজেই ব্যাটারির A থেকে I বিদ্যুৎ বের হয়ে B বিন্দুতে ঢুকে যাচ্ছে। আমরা এই সার্কিটের প্রত্যেকটা বিন্দুতে বিভব আর বিদ্যুৎ বের করে ফেলেছি।

ধরা যাক হুবহু একই সার্কিটে আমরা যদি DC অংশ ভূমি সংলগ্ন না করে AB অংশ ভূমিসংলগ্ন করি তাহলে কী হবে? ব্যাটিরীটা যেহেতু V ভোল্টের তাই A এবং D এর পার্থক্য V থাকতেই হবে, যেহেতু A এর বিভব শূন্য তাই D এর বিভব নিশ্চয়ই -V. কাজেই B এবং C এর বিভব পার্থক্য

$$0 - (-V) = V$$

ভেতরকার রোধ R,কাজেই বিদ্যুৎ প্রবাহ:

$$I = \frac{V}{R}$$

অর্থাৎ ঠিক আগের মান, যেটাই হওয়ার কথা। লক্ষ কর পটেনশিয়ালের মান পরিবর্তন হয়েছে পার্থক্য পরিবর্তন হয়নি।

উদাহরণ 11.5: 11.8(a) সার্কিটে A, B, C ও D বিন্দুতে ভোল্টেজ কত?

উত্তরঃ C ও D বিন্দুতে ভোল্টেজ 0, A বিন্দুতে ভোল্টেজ 3V B বিন্দুতে ভোল্টেজ বের করার জন্য সার্কিটের কারেন্ট I বের করতে হবে।

$$I = \frac{V}{R} = \frac{3}{1+2}A = 1.0 A$$

কাজেই A থেকে B বিন্দুতে যে টুকু ভোল্টেজ কম তার পরিমাণ

$$V = RI = 1\Omega \times 1A = 1V$$

কাজেই H বিন্দুর ভোল্টেন্ড 3V-1V=2V

ষেহেতু প্রত্যেকটা বিন্দুর ভোণ্টেজ (পটেনশিয়াল) বের হরে গেছে, বাচাই করে দেখো লব ক্ষেত্রে ও'মের সূত্র কাজ করছে কি না।

উদাহরণ 11.6: 11.8 (b) ছবির নার্কিটে A, B, C, D এবং E বিন্দুতে ভোন্টেজ কত?

ছবি 11.8: নাটারি ও রেজিস্টর বা নোধ দিনে তৈরি দুটি নার্কিট।

উত্তর: D বিন্দুতে তেন্টেজ () A বিন্দুতে ভোন্টেজ 6V

E বিন্দুতে ভোনৌজ কত হতে পারে সেটা কেমন করে বের করা যেতে পারে সেটা নিমে অনেকেই নানা রকম দুশ্চিন্তা করতে দেখা যায়—আসলে ব্যাপারটা খুবই সহজ! রেজিস্টরের বা রোধের ভেতর দিয়ে কারেট প্রবাহিত হলেই জোন্টেজের পরিবর্তন হয়। সার্কিটের এই অংশে কোনো কারেট প্রবাহের সুযোগ নেই—B দিয়ে রওনা দিয়ে E বিন্দুতে গৌছে অন্য কোপোও বেতে পারবে না। কাজেই B এবং E (কিংবা এর ভেতরে যে কোনো বিন্দুতে) ভোন্টেজের কোনো পরিবর্তন নেই, B বিন্দুতে যে ভোন্টেজ E বিন্দুতে একই ভোন্টেজ। B এবং C বিন্দুর ভোন্টেজ বের করার জন্য কারেট বের করতে হবে। কারেট I হলে

$$I = \frac{V}{R} = \frac{6V}{5\Omega + 10\Omega + 15\Omega} = \frac{1}{5}A$$

কাজেই A থেকে B তে ভোন্টেজের গার্থকা ।

$$V_1 = R_1 I = 502 \times \frac{1}{5} A = 1V$$

কাজেই A বিন্দুতে ভোন্টেন্ন 6V হলে B বিন্দুতে ভোন্টেন্ন 1V কম অৰ্থাৎ

$$6V - V_1 = 6V - 1V = 5V$$

B বিন্দুতে যেহেতু ভোনৌন্ধ 5V, E বিন্দুতেও ভোনৌন্ধ V_1 , ঠিক একইভাবে

$$V_2 = R_2 I = 10\Omega \times \frac{1}{5} A = 2V$$

কাজেই C বিন্দুর ভোন্টেজ B বিন্দুর ভোনেটজ থেকে 2V কম । অর্থাৎ C বিন্দুর ভোন্টেজ 5V-2V=3V

D বিন্দুর জোল্টেজ () সেটা আমরা প্রথমেই বলে দিয়েছি. আসলেই সেটা সত্যি কি না পরীকা করে দেখতে পারি। D বিন্দুর তোল্টেজ C বিন্দুর তোল্টেজ থেকে V_3 কম।

V3 2000

$$V_3 = R_3 I = 15 \Omega \times \frac{1}{5} \Lambda$$
$$= 3V$$

ছবি 11.9: সমান্তরাল ভাবে রাখা দুটি বেলিস্টরের একটি সার্কিট। কাজেই D বিন্দুর তোক্টেজ 3V-3V=0, ঠিক যে ব্যক্তম ভেবেছিলাম।

উদাহরণ 11.7: 11.9 ছবিতে দেখানো সার্কিটে I_1 এবং I_2 এর মান কতং

উত্তর: $A,\,B$ এবং C বিন্দুতে ভোনৌজ 2V

D, E এবং F বিন্দৃতে ভোন্টেজ () ভোন্ট । কাজেই BE রেজিস্টারের ভেতর দিয়ে কারেন্ট

$$I_1 = \frac{V}{R_1} = \frac{2}{3}A$$

CF রেজিস্টারে শুতর দিয়ে কারেন্ট

$$I_2 = \frac{V}{R_2} = \frac{2}{6}A = \frac{1}{3}A$$

মোট কারেন্ট

$$I = I_1 + I_2 = \frac{2}{3}A + \frac{1}{3}A = 1A$$

11.2.2 তুলা ব্লোষ: শ্রেণি বর্তনী

এবারে একটি রোধ যুক্ত না করে সার্কিটে দুটো রোধ লাগানো যাক, যেহেতু C ভূমিস্পায় তাই তার বিত্র শূলা এবং A এর বিতর V, আময়া B এয় বিতর কত জানি না, কিন্তু এটুকু জানি যে R_1 এবং R_2 দুটোর তেত্র দিয়েই সমান পরিমাণ বিদ্যুং I এবাহিত হচ্ছে। আমরা আমাদের কমন সেল ব্যবহার করে বালে দিতে পারি দুটো রোধের যোগফলটি হবে মোট রোধ R এবং বিদ্যুং প্রবাহ হবে I = V/R কিন্তু সেতাকে না লিখে আমরা বরং এটা প্রমাণ করে যোলি।

যদি ধরে নিই Bএর বিভন V_H তাহলে প্রথম রোধ R_1 এব জন্ম নিখতে পারি :

ध्वि 11.10: अभाषि लाकिहें। मृष्टि (ताथ अन्न अरा रामाहनाः

$$I = \frac{V - V_B}{R_1}$$

আবার দিতীয় রোধ R_2 এর জন্য দিখতে পারি

$$I = \frac{V_B - 0}{R_2} = \frac{V_B}{R_2}$$

$$I = \frac{V - V_B}{R_1} = \frac{V_B}{R_2}$$

$$(V - V_B)R_2 = V_BR_1$$

$$V_B(R_1 + R_2) = VR_2$$

$$V_B = \frac{R_2}{R_1 + R_2} V$$

कारकरे

कार्याच्य

$$l = \frac{V_H}{R_2} = \frac{V}{R_1 + R_2}$$

আমরা R_1 এবং R_2 এই দুটি রোধকে একটি রোধ $R=R_1+R_2$ হিসেবে কল্পনা করতে পারি:

$$I = \frac{V}{R}$$

যদি এখানে দুটি না হয়ে তিন-চারটি বা আরো বেশি রোধ থাকত (ছবি 11.11) তাহলেও আমরা দেখাতে পারতাম যে সেগুলোকে সমিলিতভাবে একটি রোধ R কল্পনা করতে পারি যেটি সরগুলো রোগের

ছবি 11.11; অনেকগুলি পর্যায়ক্রম বেজিস্ট্রাস্থাকে একটি তুলা ব্লেজিস্ট্রাস হিসেবে কল্পনা করা বায়।

যোগ ফলের সমান। এটাকে তুলারোধ বলে। অর্থাৎ যখন কোনো সার্কিটে R_1 . R_2 , R_3 ...এ রক্ষ অনেকগুলো রোধ পর পর থাকে (শ্রেপি বর্তনী) তখন তাদের তুল্য রোধ

$$R = R_1 + R_2 + R_3 \dots R_n$$

11.2.3 তুল্য রোধঃ সমান্তরাল বর্তনী এবারে আমরা রোধগুলো পরপর না রেখে সমান্তরাল ভাবে রাখব (ছবি 11.12)।

ছবি 11.12: একটি আকিটে দুটি রোগ নামভরালভাবে রাখা

এই সার্কিটে আমরা বিভিন্ন বিন্দুকে A, B, C, D, E এবং F নাম দিয়েছি। ছবিটি দেখেই বোঝা যাছে D, E এবং F বিন্দু ভূমিসংলগ্ন হওয়ায় এই বিন্দুগুলোর বিশুব শূনা। কাজেই A, B এবং C বিন্দুভে বিভব V.

ব্যাটারি থেকে I কারেন্ট বের হয়েছে এই বিদ্যুৎ B বিন্দুতে দুই ভাগে ভাগ হয়ে R_1 এবং R_2 রোধের ভিতর দিয়ে যথাক্রমে I_1 এবং I_2 হিসেবে প্রবাহিত হয়ে E বিন্দুতে একত্রিত হয়ে I হিসেবে ব্যাটারিতে দিয়ে যাছে। আমরা আগেই বলেছি সার্কিটে ব্যাটারি থেকে বিদ্যুৎ বের হয় সার্কিটে ঘুরে আবার ব্যাটারিতে ফিরে যায়— পুরো সার্কিটে এর বাইরে কোনো বিদ্যুতের জন্ম হতে পারে না আবার কয় হতে পারে না। তাই

$$I = I_1 + I_2$$

ছবি 11,13: অনেকগুলি সমান্তরাল রেজিন্ট্যালকে একটি তুল্য রেজিন্ট্যাল হিসেবে কল্পনা করা যায়।

এবারে আমরা I1 এবং I2 কত হবে বের করতে পারি

$$I_1 = \frac{V_B - V_E}{R_1} = \frac{V - 0}{R_1} = \frac{V}{R_1}$$

$$I_2 = \frac{V_C - V_D}{R_2} = \frac{V - 0}{R_2} = \frac{V}{R_2}$$

কাজেই

$$I = I_1 + I_2 = \frac{V}{R_1} + \frac{V}{R_2} = V\left(\frac{1}{R_1} + \frac{1}{R_2}\right)$$

অর্থাৎ এবারেও আমরা একটা তুল্য রোধ R সংজ্ঞায়িত করতে পারি যেখানে

$$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}$$

$$I = \frac{V}{R}$$

এখানে যদি দুটো না হয়ে আরো বেশি রোধ থাকে (ছবি 11.13) তাহলেও আমরা দেখতে পারি: তূল্য রোধ R হচ্ছে

$$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} \dots \frac{1}{R_n}$$

11.3 তড়িৎ ক্ষমতা (Power)

আমরা যখন বিভব বা পটেনশিয়াল আলোচনা করছিলাম তখন দেখেছি পটেনশিয়াল প্রয়োগ করে চার্জকে সরানো হলে কাজ করা হয় বা শক্তি ক্ষয় হয়। তাই যদি একটা সার্কিটে V বিভব প্রয়োগ করে Q চার্জকে সরানো হয় তাহলে কাজের পরিমাণ বা শক্তি প্রয়োগের পরিমাণ

$$W = VQ Joule$$

ক্ষমতা P হচ্ছে প্রতি সেকেন্ডে কাজ করার ক্ষমতা কাজেই, যদি t সময়ে Q চার্জ সরানো হয়ে থাকে তাহলে

$$P = \frac{W}{t} = \frac{VQ}{t} = VI Watt$$

যদি একটা রোধ P এর ওপর এটা ব্যবহার করি তাহলে ও'মের সূত্র ব্যবহার করে লিখতে পারি যেহেতু

$$V = RI$$

$$P = I^2 R$$

কিংবা

$$I = \frac{V}{R}$$

কাজেই

$$P = \left(\frac{V}{R}\right)^2 R = \frac{V^2}{R}$$

একটি রোধের ভেতর যদি t সময় বিদ্যুৎ প্রবাহিত করা হয় তাহলে তার ভেতর Pt শক্তি দেয়া হয়– এই শক্তিটি কোথায় যায়? তোমরা যখন সার্কিটে একটি রোধ ব্যবহার করবে তখন দেখবে তার ভেতর দিয়ে যথেষ্ট বিদ্যুৎ প্রবাহ করলে সব সময়েই সেটা উত্তপ্ত হয়ে ওঠে অর্থাৎ শক্তিটুকু তাপ শক্তি হিসেবে বের হয়ে আসে।

ফিলামেন্ট দেয়া বাল্বগুলোর প্রচলন ধীরে ধীরে কমে আসছে কারণ এটা দিয়ে আলো তৈরি করার জন্য ফিলামেন্টকে উত্তপ্ত করতে হয়, বিদ্যুৎ শক্তির বড় অংশ তাপ হিসেবে খরচ হয়ে যায় বলে এখানে শক্তির অপচয় হয়। এই ধরনের বাল্বগুলো হাত দিয়ে স্পর্শ করলেই দেখা যায় এখানে কী পরিমাণ তাপ শক্তি তৈরি হয় এবং এই তাপ শক্তি তৈরি হয় L^2R কিংবা *** হিসেবে।

উদাহরণ 11.8: 100 W একটা বাল্মে ফিলামেন্টের রোধ কত?

উত্তর: 220V এর বালে 100W লেখা কাজেই

$$P = \frac{V^2}{R}$$

অর্থাৎ

$$R = \frac{V^2}{P} = \frac{(220)^2}{100} \Omega = 484\Omega$$

এখানে কী পরিমাণ কারেন্ট প্রবাহিত হচ্ছে?

$$I = \frac{V}{R} = \frac{220}{484} = 0.45A$$

অন্যভাবেও বের করা সম্ভব: P = VI

$$I = \frac{P}{V} = \frac{100}{220} = 0.45A$$

11.4 এসি ডিসি (AC and DC)

আমাদের ঘর-বাড়িতে যে বিদ্যুৎ ব্যবহার করা হয় দাবি করা হয় তার ভোল্টেজ 220 ভোল্ট। বাসার বিদ্যুৎ বর্ণনা করতে হলে 220 ভোল্ট বলেই কিন্তু থেমে যাওয়া হয় না, তার সাথে সব সময়েই যোগ করা হয় $50 \, Hz$, এর অর্থ কী?

বিদ্যুতের বেলায় AC এবং DC এই দুটি শব্দাংশ ব্যবহার করা হয় যেখানে

ছবি 11.14: 220 ভোল্ট এসি বিদ্যুতের তরঙ্গ

AC হচ্ছে Alternating Current এর সংক্ষিপ্ত রূপ ঠিক সে রকম DC হচ্ছে Direct Current এর সংক্ষিপ্ত রূপ। DC এর সবচেয়ে ভালো উদাহরণ হচ্ছে ব্যাটারি যেখানে বিভব একটা নির্দিষ্ট মানে থাকে। $6V\ DC$ অর্থ এর বিভব $6\ V$ এবং সেটার কোনো পরিবর্তন হয় না।

AC এর বেলায় ভোল্টেজের মান কিন্তু অপরিবর্তনীয় নয়, AC 50~Hz অর্থ এর কম্পন 50~Hz, প্রতি সেকেন্ডে 50~ বার এই ভোল্টেজ পজিটিভ থেকে নেগেটিভ হচ্ছে। যখন বলা হয় 220~V~AC তার প্রকৃত অর্থ ভোল্টেজের সর্বোচ্চ মান $\sqrt{2}\times220~V$ এবং সর্বনিম্ন মান $-\sqrt{2}\times220~V$ যদিও এটি প্রায় $\left(\sqrt{2}\times220~V~\right)310V$ পজিটিভ থেকে নেগেটিভ 310V ভোল্ট পর্যন্ত যায়। তারপরও এটাকে 220~V~AC বলা হয় কারণ কোনো রোধে 220~V~DC লাগানো হলে যে পরিমাণ তাপশক্তি তৈরি করত পরিবর্তনশীল 310Vথেকে -310V পর্যন্ত ভোল্টেজ সেই একই তাপ তৈরি করে।

তোমাদের মনে হতে পারে DC প্রক্রিয়াটি এত সহজ হওয়া সত্ত্বেও কেন AC এর মতো এত জটিল বিদ্যুৎ তৈরি করা হয়েছে? তোমরা দেখবে এর নির্দিষ্ট কিছু সুবিধা রয়েছে যার জন্য পৃথিবীর সব জায়গাতেই বিদ্যুৎ সরবরাহ করার সময় AC হিসেবে সরবরাহ করা হয়।

11.5 বিদ্যুৎ পরিবহন (Electric Supply)

যখন দেশের এক জায়গা থেকে অন্য জায়গায় বিদ্যুৎ পরিবহন করতে হয় তখন সেটি অনেক উচ্চ ভোল্টেজে নিয়ে যাওয়া হয়। বৈদ্যুতিক তারে বিদ্যুতের অপচয় কমানোর জন্য এটি করা হয়। তোমরা জানো তাপ হিসেবে যে প্রতি সেকেন্ডে যে পরিমাণ শক্তি ক্ষয় হয় সেটি হচ্ছে I^2R কাজেই যদি বৈদ্যুতিক তারে কোনো রোধ না থাকত তাহলে কোনো তাপ হিসেবে শক্তির অপচয় হতো না। প্রতি সেকেন্ডে

বৈদ্যুতিক শক্তি যেহেতু VI হিসেবে যায় তাই যদি পটেনশিয়াল দশগুণ বাড়িয়ে দেয়া হয় তাহলে দশগুণ কম কারেন্টে সমান শক্তি প্রেরণ করা সম্ভব। কিন্তু প্রতি সেকেন্ডে তাপ শক্তি যেহেতু I^2R হিসেবে অপচয় হয় তাই দশগুণ কম কারেন্ট প্রবাহিত হলে 100 গুণ কম তাপ শক্তির অপচয় হবে– কারণ তারের রোধ R এর মান দুইবার্রই সমান।

এখানে তোমাদের মনে হতে পারে তাপ শক্তির অপচয় $\frac{V^2}{R}$ হিসেবেও শেখা যায় তাই দশগুণ বেশি ভোল্টেজ নেয়া হলে 100 গুণ বেশি তাপ শক্তির অপচয় কেন হবে নাং মনে রাখতে হবে আমরা যখন প্রতি সেকেন্ডে তাপ শক্তির অপচয় হিসেবে $\frac{V^2}{R}$ বের করেছিলাম তখন V ছিল রোধের দুই পাশের বিভব পার্থক্য। এখানে আমরা যখন V বলছি সেটি বৈদ্যুতিক তারের দুই পাশের বিভব পার্থক্য নয়– এটি বৈদ্যুতিক তারের বিভবের মানং বৈদ্যুতিক তারের দুই পাশে বিভব প্রায় একই সমান– সেই পার্থক্য ধর্তব্যের মাঝে নয়।

11.6 বিদ্যুতের নিরাপদ ব্যবহার (Safe Use of Electricity)

বিদ্যুৎ ছাড়া আমরা এখন এক মুহূর্তও চিন্তা করতে পারি না। আমাদের ঘরে এটি আলো সরবরাহ করে. গরমের সময় ক্যান চালিয়ে এটা আমাদের শীতল রাখে। এটা দিয়ে আমরা টেলিভিশন চালাই, কম্পিউটার চালাই। খাবার সংরক্ষণ করার জন্য এটা দিয়ে ফ্রিজ চালানো হয়— কাপড় ইন্ত্রি করার জন্য এটি ব্যবহার করা হয়। আমাদের মোবাইলের ব্যাটারি শেষ হয়ে গেলে আমরা এই বিদ্যুৎ দিয়ে ব্যাটারি চার্জ করি। বিলাসী মানুষ বিদ্যুৎ দিয়ে বাসায় এসি ব্যবহার করে, কাপড় ধোয়ার জন্য ওয়াশিং মেশিন ব্যবহার করে, ইলেকট্রিক হিটার দিয়ে রান্না করে। মাইক্রোওয়েভ ওভেনে খাবার গরম করে।

বাসার বাইরে স্কুলে কলেজ বিশ্ববিদ্যালয়, খেতে খামার কারখানা, হাসপাতাল এসবের কথা বিবেচনা করলে আমরা বিদ্যুতের ব্যবহারের কথা বলে শেষ করতে পারব না। আমাদের দেশে সাধারণত বিদ্যুৎ 220 V AC হিসেবে সরবরাহ করা হয়, এই বিদ্যুৎ- এর পরিমাণ মানুষকে ইলেকট্রিক শক দিতে পারে এমনকি সেই শকে মৃত্যু পর্যন্ত ঘটতে পারে তাই সকল বৈদ্যুতিক যন্ত্রপাতি এমনভাবে তৈরি করা হয় যেন ভূলেও কখনো কেউ সরাসরি এর সংস্পর্শে চলে না আসে।

সরাসরি হৃৎপিন্ডের ভেতর দিয়ে বিদ্যুৎ চলে গেলে মাত্র $10\ mA$ বিদ্যুতেই মানুষকে মেরে ফেলতে পারে। ব্যবহার করার জন্য আমরা যে বিদ্যুৎ ব্যবহার করি সেটি AC এবং AC বিদ্যুৎ DC বিদ্যুৎ থেকে প্রায় 5 গুণ বেশি ক্ষতিকর। গুকনো অবস্থায় মানুষের চামড়ার রোধ প্রায় $100,000\ \Omega$ থেকে $500,000\ \Omega$ হলেও ভেজা অবস্থায় সেটি হাজার গুণ কমে আলে। কাজেই ও'মের সূত্র ব্যবহার করে আমরা দেখাতে পারি আমাদের দেশের 220V শরীরের ভেতর দিয়ে মানুষকে মেরে ফেলার মতো

বিদ্যুৎ প্রবাহ করতে পারে। যখন কেউ ভেজা মাটিতে ভেজা পা নিয়ে দাঁড়ানো অবস্থায় বিদ্যুৎস্পৃষ্ট হয় সেটি হয় সবচেয়ে বিপজ্জনক।

যখন কেউ হঠাৎ করে বিদ্যুৎস্পৃষ্ট হয় তখন শরীরের ভেতর দিয়ে বিদ্যুৎ প্রবাহের কারণে হাত পা নাড়াতে পারে না, তাই বিপজ্জনক পরিস্থিতি থেকে নিজেকে সরিয়ে আনার কথা বুঝতে পারণেও সেখান থেকে সরে আসতে পারে না।

আমরা যে বিদ্যুৎ ব্যবহার করি সেটি যথেষ্ট বিপজ্জনক হতে পারে কিন্তু সাধারণ সতর্কতা কবজায় রাখলেই নিরাপদে বিদ্যুৎ ব্যবহার করা যায়— এবং সারা পৃথিবীতে কোটি কোটি মানুষ প্রতি মুহূর্তে নিরাপদে বিদ্যুৎ ব্যবহার করছে। বিদ্যুতের নিরাপদ ব্যবহার করার জন্য নিচের কয়েকটা বিষয় জানা থাকা প্রয়োজন:

(a) বিদ্যুৎ অপরিবহক আন্তরণ

বিদ্যুতের খোলা তার বিপজ্জনক তাই সবসময়েই সেটা প্লাস্টিক বা অন্য কোনো ধরনের বিদ্যুৎ অপরিবাহী একটা আন্তরণ দিয়ে ঢাকা থাকে। যদি কোনো কারণে শর্ট সার্কিট হয় অর্থাৎ সরাসরি কোনো রোধ ছাড়াই পজিটিভ এবং নেগেটিভ স্পর্শ করে ফেলে তখন ও'মের সূত্র অনুযায়ী অনেক বেশি বিদ্যুৎ প্রবাহ হয়, তার গরম হয়ে যায়, প্লাস্টিক পুড়ে গিয়ে আগুন পর্যন্ত ধরে যায়। তাই সব সময়েই সতর্ক থাকতে হয় যেন বৈদ্যুতিক তারের ওপর অপরিবাহী আন্তর্রুণটা অবিকৃত এবং অক্ষত থাকে।

(b) ভালো সংযোগ

যখন কোনো বৈদ্যুতিক যন্ত্রপাতি ব্যবহার করার সময় অনেক বিদ্যুৎ ব্যবহার হয় তখন বৈদ্যুতিক সংযোগ গুলো খুব ভালো হতে হয়। বৈদ্যুতিক সংযোগ ভালো না হলে সেখানে বাড়তি রোধ তৈরি হয় এবং I^2R হিসেবে সেটা উত্তপ্ত হয়ে যেতে পারে, উত্তপ্ত হয়ে অপরিবাহী আন্তরণ পুড়ে যেতে পারে, বৈদ্যুতিক সংযোগ ক্ষতিগ্রন্ত হতে পারে।

(c) আর্দ্রতা

পানি বিদ্যুৎ পরিবাহী, কাজেই কোনো বৈদ্যুতিক সার্কিটে পানি ঢুকে গেলে সেখানে শর্ট সার্কিট হয়ে বিপজ্জনক অবস্থা হতে পারে। হেয়ার ড্রায়ার বা ইন্ত্রির মতো জিনিস পানির কাছাকাছি ব্যবহার করা খুব বিপজ্জনক, হঠাৎ করে পানিতে পড়ে গেলে এবং সেই পানি কেউ স্পর্শ করলে বৈদ্যুতিক শক খেয়ে অনেক বড় বিপদ হতে পারে।

(d) সার্কিট ব্রেকার এবং ফিউজ

বিদ্যুতের বড় বড় দুর্ঘটনা হয় যখন হঠাৎ করে কোনো একটা ক্রটির কারণে অনেক বেশি বিদ্যুৎ প্রবাহিত হয়। হঠাৎ করে বিপজ্জনক বিদ্যুৎ প্রবাহ বন্ধ করার জন্য সার্কিট ব্রেকার কিংবা ফিউজ ব্যবহার করা হয়। সার্কিট ব্রেকার এমনভাবে তৈরি করা হয় যে এর ভেতর থেকে নিরাপদ সীমার বেশি বিদ্যুৎ প্রবাহিত হলেই সার্কিট ব্রেক (বিচ্ছিন্ন) করে দেয়। ফিউজ সে তুলনায় খুবই সরল একটা পদ্ধতি, একটি যন্ত্রে যে বিদ্যুৎ প্রবাহিত হয় সেটি যন্ত্রে ঢোকানোর আগে সরু একটা তারের ভেতর দিয়ে নেয়া হয়। যদি কোনো কারণে বেশি বিদ্যুৎ যাওয়ার চেষ্টা করে ফিউজের সরু তার সেই (রোধ বেশি, কাজেই I^2R বেশি অর্থাৎ তাপ বেশি) বিদ্যুতের কারণে উত্তপ্ত হয়ে পুড়ে বিদ্যুৎ সরবরাহ বন্ধ করে ফেলে।

(e) সঠিক সংযোগ

বিদ্যুৎ সরবরাহে সব সময়েই দুটি তার থাকে একটিতে উচ্চ বিভব (জীবন্ত বা Live) অন্যটি ভোল্টেজহীন নিরপেক্ষ (Neutral)। একটা যন্ত্র যখন ব্যবহার করা হয় তখন Live তার থেকে বিদ্যুৎকে যন্ত্রের ভেতর দিয়ে ঘুরিয়ে নিরপেক্ষ তার দিয়ে তার উৎসে ফিরিয়ে নেয়া হয়। ভোল্টেজহীন নিরপেক্ষ তারটি নিরাপদ কিন্তু উচ্চ বিভবের তারটিকে সতর্কভাবে ব্যবহার করতে হয়। কোনো যন্ত্রপাতিতে যখন একটা সুইচ দিয়ে বিদ্যুতের সংযোগ দেয়া হয় তখন সুইচটি উচ্চ ভোল্টেজের তার কিংবা নিরপেক্ষ তার দুটিতেই দেয়া যায়। বুদ্ধিমানের কাজ হয় যাখন সুইচটি লাগানো হয় উচ্চ ভোল্টেজের তারের সাথে তাহলে শুধুমাত্র যখন যন্ত্রিটি চাল করা হয় তখনই উচ্চ ভোল্টেজ যন্ত্রের ভেতর প্রবেশ করে। যখন যন্ত্রটি বন্ধ থাকে তখন যন্ত্রের ভেতর কোথাও উচ্চ ভোল্টেজ থাকে না!

(f) গ্রাউভ

তোমরা যদি তোমাদের বাসায় স্কুলে কিংবা অন্য কোথাও বিদ্যুতের সংযোগ লক্ষ করে থাক তাহলে দেখবে সব সময় অন্তত দুটি সংযোগ থাকে একটি উচ্চ ভোল্টেজ অন্যটি নিউট্রাল। কিন্তু সেই বিদ্যুতের সাথে যদি মূল্যবান কোনো যন্ত্র যুক্ত করা হয় (যেমন কম্পিউটার, ফ্রিজ) তাহলে দেখবে সেখানে উচ্চ বিভব আর নিউট্রাল ছাড়াও তৃতীয় একটা সংযোগ থাকে, যেটি হয়ে ভূমি সংযোগ বা ground. সাধারণত এটা যন্ত্রপাতির ঢাকনা বা কাঠামোতে লাগানো থাকে। যদি কোনো দুর্ঘটনায় যন্ত্রপাতিটি বিদ্যুতায়িত হয়ে যায় তাহলে ঢাকনা বা কাঠামোটি থেকে ভূমিতে সরাসরি বিদ্যুৎ প্রবাহ হয়ে যায়–বিদ্যুতের এই প্রবাহের কারণে সাধারণত ফিউজ পুড়ে যন্ত্রটি বিপদমুক্ত হয়ে যায়। কাজেই কেউ যদি ভূলে যন্ত্রটি স্পর্শ করে তার ইলেকট্রিক শক খাওয়ার আশংকা থাকে না।

অনুশীলনী

थ्यः

- ক্যাপাসিটরকে কি ব্যাটারি হিসেবে ব্যবহার করা

 নাভব?
- ফিলামেন্ট যুক্ত লাইটি বাবের ফিলামেন্ট ও'মের সূত্র মানছে জি না পরীক্ষা করা কঠিন কেনঃ
- বিদ্যুৎ প্রবাহ হয়েছ ইলেকট্রন প্রবাহ, যখন বিদ্যুৎ
 প্রবাহ হয় তখন ইলেকট্রনগুলোর গতি কিছ
 তুলনামূলকভাবে কম গাকে। কিছ বিদ্যুৎ
 মহতের মাঝে প্রবাহিত হয় কীভাবে?
- সমান বিভর পার্থকো বেশি রোধ বেশি তাপ তৈরি করে লাকি কম রোধ বেশি তাপ তৈরি করে?

হার্ক 11.15: 1 হিটার এবং 1// বে: মি. বর্গের দুটি বর্গাকৃতির দুটি রেভিস্টত্ত

 বৈদ্যুতিক তারে কাক বা পাখিকে মারা থেতে দেখা যায় না− কিছ বড় বাদুড় প্রায়ই মারা মায়− কারণ কীয়

গাণিতিক সমস্যা:

- 1, মুগাঁম সংখ্যক 1Ω রেজিস্টারের সবঙালা ব্যবহার করে 2Ω রেজিস্টার তৈরি করে।
- 2. তোমার বন্ধু 1mm পুরু নাইক্রোমের পাত দিয়ে $1m \times 1m$ বর্গের (ছবি 11.15) একটি রেজিস্টর তৈরি করেছে। তুমি $1cm \times 1cm$ বর্গের একটি রেজিস্টর তৈরি করেছে। তোমার রেজিস্টরের মাদ কত্য

ছবি 🌃 .16: ব্যাটারী ও রেজিনটার সংস্কৃত দুটি মারিটে।

- 3. 11.16 (a) ছবিতে দেখানো সার্কিটে যদি D বিন্দুকে ভূমিসংলগ্ন করা হয় তাহলে $A, B, C ext{ } ext{$\odot$} D$ বিন্দুতে ভোল্টেজ কত? I এর মান কত?
- 4. 11.16 (a) ছবিতে দেখানো সার্কিটে D বিন্দুকে ভূমিসংলগ্ন না করে যদি C বিন্দুকে ভূমিসংলগ্ন করা হয় তাহলে ভোল্টেজ কত? I এর মান কত?
- 5. 11.16 (b) ছবিতে দেখানো সার্কিটে D বিন্দুকে ভূমিসংলগ্ন করা হলে সার্কিটে $A,\,B,\,C$ ও D বিন্দুতে ভোল্টেজ কত?

ষাদশ অধ্যায় বিদ্যুতের চৌম্বক ক্রিয়া (Magnetic Effects of Current)

Enrico Fermi (1901-1954)

এনরিকো ফারমি

এনরিকো ফারমি একজন ইতালিয়ান পদার্থবিজ্ঞানী। তিনি পৃথিবীর প্রথম নিউক্লিয়ার রি-অ্যান্টর শিকাগো-পাইল 1 তৈরি করেছিলেন। তাঁর কোয়ান্টাম থিওরি, নিউক্লিয়ার এবং পার্টিকেল থিওরিতে অনেক বড় অবদান রয়েছে। তিনি মার 37 বছর বয়সে পদার্থবিজ্ঞানে নােবেল পুরক্ষার পেয়েছিলেন। দিতীয় মহাযুদ্ধের সময় জার্মানির আহাাসনের বিরুদ্ধে প্রস্তুত থাকার জন্য আমেরিকাতে যে নিউক্লিয়ার বােমা তৈরি করা হয় তিনি সেখান অনেক বড় ভূমিকা রেখেছিলেন। তবে তাঁর নামটি বােজনের পাশাপাশি বিশ্বদ্রশাণ্ডের অন্য কগা ফারমিওনের মাঝে বেঁচে থাকরে।

12.1 চুম্বক (Magnet)

তোমরা সরাই নিশ্চয়ই চুন্দক দেখেছ, একটা চুন্দক লোহা জাতীয় পদার্থের কাছে আনলে সেটা লোহাকে আকর্ষণ করে। চুন্দক এবং লোহার মাঝখানে কিছু নেই কিন্তু একটা অদৃশ্য শক্তি সেটাকে টেনে আনছে সেটি প্রথমবার দেখার পর সবারই এক ধরনের বিশ্ময় হয়। যারা দুটি চুন্দক হাতে নিয়ে নাড়াচাড়া করার সুযোগ পেয়েছ তারা নিশ্চয়ই লক্ষ করেছ (ছবি 12.1) যে চুন্দকের দুটি মেরু এবং মেরু দুটি এক ধরনের হয়ে পাকে তাহলে সেটা বিকর্ষণ করে আর মেরু দুটি যদি ভিন্ন ধরনের হয় তাহলে আকর্ষণ করে। চুন্দকের মেরু দুটিকে উত্তর আর দক্ষিণ মেরু নাম দেয়া হয়েছে কারণ দেখা গেছে একটা চুন্দককে ঝুলিয়ে দিলে সেটা উত্তর-দক্ষিণ বরাবর পাকে, যে অংশটুকু উত্তর দিকে পাকে সেটার নাম উত্তর মেরু— যেটা

ছবি 12.1: চুদকের বিপরীত মেরুতে আকর্ষণ ও সমমেরুতে বিকর্ষণ হয়।

দক্ষিণ দিক বরাবর থাকে
সেটা দক্ষিণ মেরু। এটা
ঘটে তার কারণ পৃথিবীর
একটা চৌম্বক ক্ষেত্র
রয়েছে, কোনো চুম্বক
বরাবর চুম্বকটা নিজেকে
সাজিয়ে নেয়।

দুটো চুম্বক কেমন করে একে অন্যক্র আকর্ষণ করে আমরা

সেগুণো নিয়ে আলোচনা করতেই পারি কিন্তু সবার আগে জানা দরকার চুদ্বকের যে বল সেটা আসে কোথা থেকে?

12.2 বিদ্যুতের চৌমক ক্রিয়া (Magnetic Effect of Current)

যারা সাধারণভাবে চুদ্দক হাতে নিয়ে নাড়াচাড়া করেছে তার নিশ্চয়ই কল্পনাও করতে পারবে না যে এটি বিদ্যুৎ থেকে আলাদা কিছু নয় এবং বিদ্যুতের প্রবাহ দিয়ে চুদ্দক তৈরি করা যায়। একটা চার্জ থাকলে তার

ছবি 12.2: নিদৃৎে প্রবাহকে ঘিরে কম্পাসের দিক।

পাশে যেমন তড়িৎ ক্ষেত্র থাকে ঠিক সে রকম একটা তারের ভেতর দিয়ে বিদ্যুৎ প্রবাহিত হলে সেই তারের চার পাশে চৌমক ক্ষেত্র তৈরি হয়। ধরা যাক তুমি একটা কার্ডনোর্ডের মাঝখান দিয়ে একটা ভার চুকিয়েছ এবং কার্ডের ওপর অনেকগুলো ছোট ছোট কম্পাস রেখেছ (ছবি 12.2)। কম্পাসগুলো অবশাই

উত্তর দক্ষিণ বরাবর থাকবে ঠিক যে রকম থাকার কথা। এখন যদি এই তারের ভেতর দিয়ে বিদ্যুৎ কোনোভাবে প্রবাহিত করতে পার (মোটামুটি শক্তিশালী) তাহলে তুমি অবাক হয়ে দেখবে হঠাৎ করে সবগুলো একটা আরেকটার পেছনে সারিবদ্ধভাবে নিজেদের সাজিয়ে নেবে- তোমার স্পষ্ট অনুভূতি হবে যে এই বিদ্যুৎ থিরে প্রবাহের জন্য তারকে একটা বৃত্তাকার চৌদ্দক ক্ষেত্র তৈরি হয়েছে।

তুমি যদি বিদ্যুৎ প্রবাহ
বন্ধ করে দাও তাহলে আবার
সবগুলো ছোট ছোট কম্পাস
উত্তর-দক্ষিণ বরাবর হয়ে যাবে।
এবারে তুমি যদি বিদ্যুৎ প্রবাহের
দিক পাল্টে দাও তাহলে দেখবে

ছবি 12.3: বিদ্যুত প্রবাহকে ঘিরে তৈরী চুমক ক্ষেত্র। চুম্বক ক্ষেত্রের শুরু কিংবা শেষ নেই (উপরের ছবি)। বৈদ্যুতিক ক্ষেত্রে শুরু কিংবা শেষ থাকে (নিচের ছবি)।

আবার কম্পাসগুলো নিজেদের সাজিয়ে নেবে কিন্তু এবারে বৃত্তটায় কম্পাসের দিকটা হবে উল্টো দিকে! তার কারণ বিদ্যুৎ প্রবাহ সব সময় তাকে ঘিরে একটা চৌম্বক ক্ষেত্র তৈরী করে।

একটা তারের ভেতর দিয়ে বিদ্যুৎ প্রবাহিত হলে তার জন্য তৈরি হওয়া চৌদক রেখাগুলোর দিক কোন দিকে হবে সেটা ডান হাতের নিয়ম দিয়ে বের করা যায়। বুড়ো আঙুলটা যদি বিদ্যুৎ প্রবাহের দিক দেখায় তাহলে হাতের অন্য আঙুলগুলো চৌদক ক্ষেত্রের দিকটি নির্দেশ করে।

বুঝতেই পারছ চার্জ রাখা হলে আমরা যে রকম তার জন্য তড়িৎ রেখা কল্পনা করে নিয়েছিলাম, বিদ্যুৎ প্রবাহ হলে সেটা বোঝানোর জন্য চৌন্ধক রেখা কল্পনা করে নেয়া যায়। তোমাদের আবার মনে করিয়ে দেয়ার জন্য ছবিতে পজিটিভ চার্জ, নিগেটিভ চার্জ, নিচ থেকে উপরে বিদ্যুৎ প্রবাহ এবং এপর থেকে নিচে বিদুৎ প্রবাহের জন্য যে তড়িৎ রেখা এবং চৌন্ধক রেখা হতে পারে সেটা এঁকে দেখানো হলো। (ছবিতে 12.3) চৌন্ধক রেখার সাথে তুলনা করার জন্যে পজিটিভ এবং নিগেটিভ চার্জের তড়িৎ রেখা দেখানো হলো।

ছবি 12.4: বিদ্যুত প্রবাহী ভারকে দিরে টৌম্বক ক্ষেত্র।

তোমরা যদি তড়িৎ রেখা এবং চৌদক রেখাগুলো তুলনা কর তাহলে একটা চমকপ্রদ বিষয় আবিদ্ধার করবে। তড়িৎ রেখার গুরু আছে (পজিটিভ) কিংবা শেষ (নিগেটিভ) আছে। পজিটিভ চার্জ হলে সেখান থেকে তড়িৎ রেখা গুরু—হয় এবং নিগেটিভ চার্জ থাকলে সেখানে তড়িৎ রেখা শেষ হয়। কিন্তু চৌদক রেখার কোনো গুরু কিংবা শেষ নেই। চৌদক রেখা সব সময়ে পূর্ণাক। এটি পদার্থবিজ্ঞানের খুব গুরুত্বপূর্ণ একটি বিষয়।

উদাহরণ 12.1: 12.4 ছবিতে দেখানো উপায়ে বিদ্যুৎ বইয়ের ভেতর থেকে উপরের দিকে যাচ্ছে, চৌম্বক ক্ষেত্র কোনটি সঠিক?

উত্তর: বাম দিকেরটি সঠিক।

12.2.1 কয়েল

একটা তার যদি সোজা থাকে এবং তার ভেতর দিয়ে বিদ্যুৎ প্রবাহ হলে চৌদক রেখা কেমন হয় সেটা 12.3 ছবিতে দেখানো হয়েছিল। যদি তারটা সোজা না হয়ে বুরাকার হয় তাহলে চৌদক রেখা কেমন হবে? 12.5 ছবিতে সেটা দেখানো হয়েছে। বুঝতেই পারছ বিদ্যুৎ প্রবাহ যত বেশি হবে

ছবি 12.6: লুপের ভেতর বিদ্যুৎ প্রবাহ করলে ডান হাতের নিয়ম ব্যবহার করে চৌমক ক্ষেত্র বের করা যায়।

চৌদক ক্ষেত্রটি তত শক্তিশালী হবে। একটা তারের ভেতর দিয়ে

ছবি 12.5: লুপের ভেতর দিয়ে বিদ্যুৎ প্রবাহের কারণে তৈরি চৌদক ক্ষেত্র।

কতখানি বিদ্যুৎ প্রবাহিত করা যায় তার একটা সীমা আছে, তারটা I^2R হিসেবে গরম হয়ে যায়— তাছাড়াও সবচেয়ে বেশি কতোখানি বিদ্যুৎ প্রবাহ দেয়া সম্ভব সেটা বিদ্যুতের উৎসের ওপর নির্ভর করে। তাই যদি শক্তিশালী চৌম্বক ক্ষেত্র তৈরি করতে হয় তাহলে একটা মাত্র বৃত্তাকার লুপ- এর ওপর নির্ভর না করে অপরিবাহী আন্তরণ দিয়ে ঢাকা তার দিয়ে অনেকবার প্যাঁচিয়ে একটা কবুলী বা কয়েল তৈরি করা হয়। সেই কুবুলী দিয়ে শক্তিশালী চৌম্বক ক্ষেত্র তৈরি করা যায়। কয়েলের প্রত্যেকটা লুপই তার ভেতর দিয়ে প্রবাহিত বিদ্যুতের জন্য চৌম্বক ক্ষেত্র তৈরি করবে, তাই সম্মিলিত চৌম্বক ক্ষেত্র হবে অনেক গুণ বেশি।

বুজানার তারের ভেতর দিয়ে বিদ্যুৎ
প্রবাহিত হলে তার চৌদক ক্ষেত্র কোন দিকে
হবে নেটাও ডান হাতের নিয়ম দিয়ে বের করা
বায়। বুড়ো আঙ্গাটি হবে চৌদক ক্ষেত্রের দিক
বদি অন্য অধ্যক্তনো বিদ্যুৎ প্রবাহের দিক
দেখায়। একটা তারের কুডুলা আনলে দ
দিকটা হবে এই চুদকের উত্তর সেক।

একটা ভারের ভোতর দিয়ে নিদ্যুৎ
প্রনাহিত হলে ভার জন্য তৈরি হওয়া চৌদক
কেপাঞ্জাব দিক কোন দিকে হতে নেটা ভান
থাতের নিরম দিয়ে বের করা বার। বুড়ো
আঞ্জাটা বদি বিদ্যুৎ প্রবাহের দিক দেখায়
ভাহদে থাতের অন্য আঞ্জাগুলো চৌদক ক্ষেত্রের
দিকটি নির্দেশ করে।

ছবি L2.7: বিদ্যুত খ্বাহের কারণে এলোমেলোভাবে খাকা ছোট ছোট চুক্তগুলি মারিবদ্ধ হয়ে শক্তিশালী চৌদক ক্ষেত্র। তৈরী করে।

12.2.2 তড়িৎ চুম্বক

ওধু মাত্র বিদ্যুৎ ব্যবহার করে যে চৌন্দক ক্ষেত্র হৈরি করা দার তার থেকে অনেক বেশি শক্তিশালী চৌন্দক ক্ষেত্র তৈরি করা সন্তব যদি এই কুশোর ভেতর এক টুকরো দোহা চুকিরে দেয়া যায়। দোহা, কোনান্ট আর নিকেশ এই তিনটি ধাতুর বিশেষ চৌন্দকীয় ধর্ম আছে। এ প্রগোকে এলোমেলোভাবে থাকা অসংখা ছোট ছোট চুদ্দক হিনেৰে কয়নো করা যায়। যেহেতু সবগুলো ছোট ছোট চুদ্দক এলোমেলোভাবে আছে

ছবি 12.8: স্পিকারে তড়িং চন্দ্রক ব্যবহার করা হয়।

তাই পুরো শোহার টুকরোটা কোনো চুমক হিলেবে কাজ করে না।

কিছ যখন এটাকে একটা করেল বা সলিনরেছের মাঝে ঢোকানো হয় এবং সেই সলিনরেছে বিদ্যুৎ প্রবাহিত করা হয় তখন সেটা সে চৌমক ক্ষেত্র তৈরি করে সেটা লোহার টুকরার ছোঁট ছোঁট চুম্বকগুলোকে সারিবদ্ধ করে কেলে তাই বিদ্যুৎ প্রবাহের জন্য তৈরি চৌমক ক্ষেত্রের নাথে সাথে লোহার নিজস্ব চৌমক ক্ষেত্র একত্র হয়ে অনেক স্কিশালী একটা চৌমক ক্ষেত্র তৈরি হয়ে বায় ছেবি 12.7)। মজার ব্যাপার হচ্ছে রিদ্যুৎ প্ররাহ বন্ধ করার বাথে সাথে পোহার টুকরোর ভেতরকার সারিবদ্ধ ছোট ছোট চুন্দকতলো লব আবার এলোমেগো হতে বাকে এবং পুরো টোনক ক্ষেত্র অদৃধ্য হতে যাবে।

এভাবে তৈরি করা চুদ্দককে বলা হয় তড়িং চুদ্দক। তড়িং চুদ্দকের ব্যবহারের কোনো শেষ নেই। স্পিকারে বা এয়ারকোনে যে শদ শোনা যায় সেখানে

ছবি 12.10: টোন্দক ক্ষেত্রে ইলেকট্রন এবং পজিট্রনের গতির চিহ্ন। ইলেকট্রন এবং পজিট্রন তাদের তিরু চার্জের জন্য যাবার সময় দুটি ভিন্ন দিকে বল অনুস্তব করে। তাই ইলেকট্রনের নিপ্লেটিস্ত চার্জ নোটি এক দিকে বল অনুস্তব করে, পজিট্রনের পজিটিস্ত চার্জ তাই সেটি অন্য দিকে বল অনুস্তব করে।

ছবি 12,9; চুম্বক ক্ষেত্রে চার্জ ধাবমান হলে একটি বল অনুভব করে। বলের দিক ভান ক্সাতের নিয়ম দিয়ে বের করা সম্ভব।

তড়িং চুন্দন ব্যবহার করা হয়। (ছবি 12.8)
এখানে শব্দের কম্পন এবং তীব্রতার নমান বিদ্যুৎ
প্রবাহ পাঠানো হয় সেই বিদ্যুৎ একটা তড়িং
চুন্ধকের টৌন্ধকত্ব শব্দের কম্পন বা তীব্রতার
উপযোগী করে তৈরি করে সেটা একটা
ভারাফ্রামকে কাঁপায় এবং সেই ভারাফ্রাম সঠিক
শন্দ তৈরি করে।

12.3 তড়িং চৌপকীয় বল

আমরা জানি তড়িৎ ক্ষেত্রে একটা চার্জ রাখা হলে
সেটা একটা বল অনুভব করে এবং আমরা
সেটাকে কুলম বল বলে থাকি। আমরা কলেছি
টৌম্বক ক্ষেত্রে আরেকটা চুম্বক রাখলে সেটি
আকর্ষণ এবং বিকর্ষণ বল অনুভব করে। এখন
প্রশ্ন হছে টৌম্বক ক্ষেত্রে একটা চার্জ রাখা হলে
সেটি কি কোনো বল অনুভব করে?

এর উত্তরটি খুবই বিশ্যবানর— চার্ন্সটি যদি স্থির থাকে তাহলে কোনো বল অনুভব করে না কিন্ত চার্ন্সটি যদি চলমান হয় অর্থাৎ চার্ন্সের যদি বেশ থাকে তাহলে একটা বল অনুভব করে। এই বলটি টৌসক ক্ষেত্রের দিকেও না, বেশের দিকেও নয় - এই বলটি চৌদক ক্ষেত্র এবং বেগ দটোর সাথেই লঙ্ভাবে কাজ করে। কী বিচিত্রং

সদি বেগ এবং চৌদক ক্ষেত্র একে অপরের ওপর লম্ব হয় তাহলে এই বনের পরিমাণ $\mu \nu B$ যেখানে μ হচ্ছে চার্জ, ν হচ্ছে বেগ এবং μ হচ্ছে চৌদক ক্ষেত্রের তীব্রতা। 12.9 ছবিতে দেখানো ভান হাতের নিয়ম ব্যবহার করে সেই রলটিরর দিক বের করতে পারবে।

তীব্র চৌদ্দক ক্ষেত্রে ইলেকট্রন এবং পজিট্রন যাবার সময় ভিন্ন দিকে বল অনুভব করে, কারন ইলেক্ট্রনের চার্জ নিগোটিভ কিছু তার প্রতি পদার্থ পজিট্রনের চার্জ পজিটিভ তাই ইলেকট্রন যে দিকে বেঁকে যাচেছে পজিট্রন বৈঁকে যায় তার উল্টো দিকে। (ছবি 12.10)

ছবি 12,11; (টামক ক্ষোত্র নিলুগে খ্রনাহের কায়ন্ত। অনুভূত বল

উপাহরণ 12.2: একটি তার দেশক ক্ষেত্রে গ্রেপে তার তেতর দিয়ে বিদাৎ প্রবাহ করলে সোঁট কোন দিকে বল অনুভব করাবে?

উদ্রন: আমরা ভান হাতের নিয়ম (ছবি ১২.১১) থেকে জানি হাতের চার আঙ্গুলের দিকটি যদি চার্জের বেখা, আঙ্গাওলো ৭০ তে ভাঁজ করে আনার পর দিক মদি মেনিদক ক্ষেত্রের দিক হয় তেহকে বুড়ো আঙ্গাটি তব দেখাবে।

ছবিতে / এর দিকে চার্জ প্রবাহিত হচ্ছে ক্সাজেই সেটি ।
এর দিক, চৌমক ক্ষেত্র // থোকে 5 এর দিকে কাজেই
ভাব হাতের নিয়ম দিয়ে বলতে পারি বলটি উপরের দিকে।

12.3.1 তড়িং প্রবাহী তারের ওপর চুম্বকের প্রভাব

আমরা জানি একটা চুম্বক অন্য চুম্বকের সম মেরুতে বিকর্ষণ এবং বিপরীত মেরুকে আকর্ষণ করে। আবার একটা তারের ভেতর দিয়ে বিদ্যুৎ প্রবাহিত হলে সেটি তাকে যিরে একটি চৌদক ক্ষেত্র তৈরি করে। কাজেই একটা চৌম্বক ক্ষেত্রে যদি একটা তার রাখা হয় এবং সেই তারের ভেতর দিয়ে বিদ্যুৎ

ছবি 12.12: দৌষক ক্ষেত্রে বিদ্যুৎ প্রবাহী তার রাখা হলে সোটি একটি বল অনুভব করে।

প্রবাহিত করা হয় তাহলো তারটি টোনক কেন্দ্র তৈরী করার কারণে একটি কন সনুভব করে। 12.12 ছবিতে একটা দ্বনকের উত্তর মেরু খেকে দবিল মেরুতে যাওয়া চৌনক রখা এবং তার মারো একটা তারকে দেখানো হয়েছে, তারটি কাণজের ভেতর খেকে উপরের দিকে বের হয়ে এনেছে। তারের ভেতর দিয়ে নিচ খেকে উপরে বিদুধে প্রবাহ হলে এটি তাকে ঘিরে ব্যাকার টোমক কেন্দ্র তৈরি করবে এবং উপর মেরু থেকে দক্ষিণ যাওয়া চৌনক ক্ষেত্রের সাথে যুক্ত হয়ে চৌনক রেখাকে প্রবিনাস করবে। তারের নিচে বেশী সংখ্যক চৌনক রেখা এবং উপরে কম সংখ্যক চৌনক রেখার তৈরি হবেন যেটি তার্নিক উপরের দিকে ঠেলে দিবে।

যদি তারটিতে বিদুধে প্রবাহের দিক পরিবর্তন করা হয় তাহলে তারকে যিরে বৃত্তাকার চৌদ্দক ক্ষেত্রের দিক পার্লেট বাবে এবং তথন তারের উপর চৌদক রোধার বাবত বেড়ে য়াবে যেটি তারটিকে নিচের দিকে ঠোলে নিবে।

ছবি 12.13: বৈদ্যাতিক মোটিৰ একটি ভড়িং চুক্তের চুড়ুওর দিয়ে এম্লভারে বিদ্যুৎ প্রবাহ করালো হয় যেল স্ব স্ময়েই এটা গুরুতে থাকে

12.3.2 फिनि मान्त्रि

একটি তারের ভেতর দিয়ে খন নেশি বিদ্যুৎ প্রবাহিত করা যায় না তাই চৌদক ক্ষেত্রে তার ওপর শক্তিশালী বল প্রয়োগ করা যায়না। কিছু যদি অনেকগুলো পাক দিয়ে একটা ভারের কুলী তৈরি করা যায় এবং তার ভেতরে একটা লোহার টুকরো বা আর্মেচার রাখা হয় তাহলে তারের ভেতর হালকা বিদ্যুৎ প্রবাহিত করা হলেই শক্তিশালী চৌদক খেত্র তৈরি করা যায়। এই কয়েলকে আমরা একটা দি চুম্বক হিসেবে কয়েনা বালের মনোমার্থি হরে এবং স কার্মেপ সেটির কোন দিকে গতি হরে মেটা কিল্লেখণ করেতে পারি। 12.13 ছবিতে এ রকম একটা কয়েল চৌদক জেনে কয়েল চৌদক জেনে করেতে পারি। 12.13 ছবিতে এ রকম একটা কয়েল চৌদক জেনে কেনেদিকে বল অনুভব করেবে দেখানো হয়েছে। কয়েলানিকে যদি তার কেন্দ্র বরাবর একটা

শ্বি 12.14: একটি বৈদ্যুতিক মোটর

অক্ষে ঘুরতে দেয়া হয় তাহলে এটি পরের ছবির মতো অবস্থানে যাবার চেষ্টা করবে।

যদি কোনো বিশেষ অবস্থা তৈরি করে পরের অবস্থানে যাবার সাথে সাথে কয়েলের বিদ্যুৎ প্রবাহের দিক পরিবর্তন করে দেয়া যায় তাহলে সেখানে পৌছানোর সাথে সাথে কয়েল দিয়ে তৈরি দ²² চুম্বকটির উত্তর মেরু দক্ষিণ মেরুতে আর দক্ষিণ মেরু উত্তর মেরুতে পাল্টে যাবে তাই আবার সেটি সরে যাবার চেষ্টা করবে অর্থাৎ এটি একটি ঘূর্ণন বল অনুভব করবে! এটি চেষ্টা করবে পরের স্থায়ী অবস্থানে পৌছাতে কিন্তু সেখানে পৌছানোর সাথে সাথে এটার বিদ্যুতের দিক পরিবর্তন করে দিলে এটি সেখানে থেমে যাবে না— আবার ঘুরতে শুরু করবে। তাই যখনই এটা একটা স্থায়ী অবস্থানে পৌছাবে তখনই যদি এটাতে এমনভাবে বিদ্যুৎ প্রবাহ করানো হয় যে এটি একটি ঘূর্ণন বল অনুভব করে তাহলে এটি ঘুরতেই থাকবে।

বিদ্যুতের দিক পরিবর্তন করার জন্য খানিকটা যান্ত্রিক কৌশল ব্যবহার করতে হয়, মূল কয়েল যে অক্ষে ঘুরতে থাকে সেই ঘূর্ণায়মান অক্ষটির দুই পাশে কয়েলের দুটি তার এমনভাবে বসানো হয় যেন সেটি মূল বিদ্যুৎ প্রবাহের টার্মিনালকে স্পর্শ করে থাকে— সেটা যখনই স্পর্শ করে তখনই এমনভাবে বিদ্যুৎ প্রবাহিত করবে যেন সব সময়েই সেটি কয়েলটিকে সরিয়ে দেওয়ার চেষ্টা করে।

তোমাদেরকে বোঝানোর জন্য (ছবি 12.14) এটাকে সহজভাবে দেখানো হয়েছে। সত্যিকার মোটরে আর্মেচারকে ঘিরে বেশ অনেকগুলো কয়েল থাকতে পারে এবং প্রত্যেকটা কয়েল তারা নিজের মতো করে কমিউটার থেকে বিদ্যুৎ প্রবাহ পায় এবং আর্মেচারটি ঘুরতে থাকে।

12.3.3 এসি মোটর

ডিসি মোটরে আর্মেচার এবং কয়েলের ঘূর্ণনের জন্য প্রতি ঘূর্ণনেই বিদ্যুতের সংযোগ কেটে নৃতন করে দিতে হয় যেন বিদ্যুৎ প্রবাহের দিক পরিবর্তন হয়। এসি মোটরে সেটা প্রয়োজন হয় না তার কারণ তোমরা জান। এসি ইলেকট্রিক সাপ্লাইয়ে সেকেন্ডে পঞ্চাশবার বিভব দিক পরিবর্তন করে। তাই আর্মেচারটি নিজে নিজেই তার চুম্বকের দিক পরিবর্তন করে ! ঘূর্ণনিটি এমনভাবে সাজানো হয় যেন যখনই চুম্বকের দিক পরিবর্তন হয় তখন যেন সেটি এমন একটি চৌম্বক ক্ষেত্রে থাকে যেখানে চৌম্বক ক্ষেত্রটি আর্মেচারকে সরিয়ে দিয়ে ঘুরানোর চেষ্টা করবে।

12.4 তড়িৎ চৌম্বক আবেশ (Electromagnetic Induction)

আমরা আমাদের চারপাশে অসংখ্য যন্ত্রপাতিকে ঘুরতে দেখি তাই আমাদের মনে হতে পারে এটাই বুঝি চুম্বক এবং চৌম্বক ক্ষেত্রের সবচেয়ে বড় অবদান! আসলে চুম্বকের এবং চৌম্বক ক্ষেত্রের সবচেয়ে বড় অবদান কিন্তু তার তড়িৎ আবেশ– অর্থাৎ চৌম্বক ক্ষেত্র দিয়ে বিদ্যুৎ তৈরি করা। বিজ্ঞানী ওয়েরস্টেড প্রথমে দেখিয়েছিলেন কোনো একটা পরিবাহী তারের লুপের ভেতর যদি চৌম্বক ক্ষেত্রের পরিবর্তন করা

হয় তাহলে সেই লুপের ভেতর তড়িকালক
শক্তি (EMF) তৈরি হয় যেটা সেই লুপের
ভেতর দিয়ে বিদ্যুৎ প্রবাহিত করতে পারে।
এই বিষয়টি কাবহার করে বিদ্যুৎ জেলারেটর
তার করা হয়েছে খেখনে পরিবাহী তারের
ভেতর দিয়ে চৌদক ক্ষেত্রের পরিবার্তন করে
বিদ্যুৎ ভিরি হয়।

একটা কায়েলের দুই মাখা যদি একটা এমিটারে লাগালো হয় এল, যদি সেই কায়েলের ভেতর একটা ন² চদক ঢোকানো হয় (ছবি 12.15) তাহলে আমরা ঠিক ঢোকালোর সময় এমিটারে এক খলক বিদ্যুৎ প্রবাহ দেখতে পাব। আমরা যখন চদকটা টেনে বের করে আনব তখন আবার আমরা

কবি 12.15: বালনায়েছে চুমক প্রবেশ করানোর সময় বিদ্যুত। প্রবাহ কেয়া যায়।

এমিটারে এক ঝলক বিদ্যুৎ প্রবাহ দেখন– তবে এবারে উল্টো দিকে। আমর। যদি চুদকের মেরু পরিবতন করি তাহলে এমিটারেও বিদ্যুতের দিক পরিবতন দেখতে পাব !

এই পরীক্ষাটি করার সময় আমরা কয়েলের শ্রেভর চৌদক ক্ষেত্র পরিবর্তন করার জন্য একটা চ্পককে কয়েলের ভেতর নিয়েছি এবং বের করে এনেছি। আমরা জন্য কোনোভাবে চৌদক ক্ষেত্র পরিবর্তন করতে পারভান ভাহতেও আমরা একই বিষয় দেখতে পেতাম। কয়েলের ভেতর টোদক ক্ষেত্র পরিবর্তন করার আরেকটা উপায় হচ্ছে এর কাছে চদকের বদকে দিত্রীয় একটা কয়েল নিয়ে আসা এবং সেই কয়েলে বিদ্যুৎ প্রবাহিত করিয়ে সোখানে টোদক ক্ষেত্র তৈরি করা। যদি দিত্রীয় কয়েলটিতে নৌদক ক্ষেত্র তিরি করার জন্য একটা ব্যাটালিকে একটো সুইচ দিয়ে সংযোগ দেয়া হয় ভাহতে সুইচটি অন করে দিত্রীয় কয়েলে টোদক ক্ষেত্র তৈরি করা যারে আবার সুইচটি অফ করে চৌদক ক্ষেত্র অদৃশ্য করে দেয়া যারে। প্রথম কয়েলটির কাছে দিত্রীয় কয়েলটি রেখে যদি সেটিতে চৌদক ক্ষেত্র একবার তৈরে করা হয় এবং আরেকবার নিঃশেষ করা হয় ভাহতে প্রথম কয়েকের ভেতর টোদক ক্ষেত্রের পরিবর্তন হবে এবং আমরা এমমিটারে সেজন্য বিদ্যুৎ প্রবাহ কেখন। সুইচ অন করে যখন বিদ্যুৎ প্রবাহ তৈরি করা হয়ে তম্বন এমমিটারের একদিকে ভার কাটাটি নড়ে বিদ্যুৎ প্রবাহ দেখারে - সুইচটি অফ করার সময় আবার কাটাটি অন্য দিকে নড়ে বিপরীত দিকে বিদ্যুৎ প্রবাহ দেখারে।

এখানে যে বিষয়াটি মনে রাখতে হবে সেটি হচ্চে যখন টোদক ক্ষেত্র পরিবর্তন হয় ওগুমাত্র তখন বিদ্যুৎ প্রবাহ হয়। একটা কয়েগের মাঝখানে প্রচ[®] শক্তিশালী একটা চুম্বক রেখে দিলে কিন্তু কয়েগে দিয়ে কোনো বিদ্যুৎ প্রবাহিত হবে না। গুধুমাত্র যখন চুদ্বকটি নাজিয়ে চৌম্বক ক্ষেত্র পরিবর্তন করা হবে তখন বিদ্যুৎ প্রবাহিত হবে।

12,4,1 कानाखरित

যোগের কীতাবে কাজ করে সোটা বাধন আমরা বোঝার চেন্তা করাহলাম তথন দেখেছি কোনো একটা টোদক কোনোর মাঝে একটা করেলে বিদ্যুৎ প্রবাহ করানো হয় যে কারণে সোটা ঘুরে। এবারে বাগোরটা একটু অন্যন্তাবে চিন্তা করা যাক, মেটিরের করেলে যদি আমরা ব্যাদারির সংযোগ না দিয়ে বেখানে একটা এমিটার লাদিয়ে করেলটা ঘোরাই অগলে কী হবে হ

অবশাই তথা কয়েলের মাঝে নিটাৰক ক্লেন্তের পরিবর্তন হবে কাজেই বুলুলীর ভেতর দিয়ে বিদ্যুৎ প্রবাহ হবে। মর্থাৎ বিদ্যুৎ প্রবাহ করিয়ে যে মোটারের করেলকে আমরা ঘারিয়েছি, সেই করেলটিকে গোরালে ঠিক তার উল্টো ব্যাপারটা ঘটে— বিদ্যুৎ তৈরি হয়। এক্সাবেই জেনারেটর তৈরি হয়। অর্থাৎ জিষি মোটারের আর্টোলরকে গোরালে নেটা কিনি বিদ্যুৎ প্রবাহ দেয়, এসি মোটারকে গোরালে ঠিক লেজাংহ এসি বিদ্যুৎ প্রবাহ দেয়

12.4.2 जिल्लामनीय

টোনক কেরের পরিবর্তন হলে বিদ্যুৎ তৈরি হয়- এটি ব্যবহার করে ট্রাপফর্মার তৈরি করা হয়। ট্রাপফর্মার কীভাবে কাজ করে বোঝার জন্য 12.16 ছবিতে একটা আয়তাকার লোহার মজ্জা বা কোর দেখানো হয়েছে। এই কোরের দুই পাশে পরিবাহী তার পালানো হয়েছে- অবশ্যই এই পরিবাহী তারের ওপর মপরিবাহী আন্তর্ম রায়ছে যেন এট ধাতর কোনো কিছুকে প্রশ্ন কর্মেও "পার্ট সার্কিট" না হয়। ছবিতে দেখানো হয়েছে কোরের বাম পাশে একটা এবি ভোন্টেজের উৎস লাগানো হয়েছে। তারটি যোহেত্ব লোহার কোরকে জিলা লাগানা হয়েছে। তারটি যোহেত্ব লোহার কোরকে জিলা লাগানো হয়েছে আই যখন বিদ্যুৎ প্রাহিত হরে তখন লোহার ভেতরে টেল্রিকত্ব তৈরি হবে এবং মেই টেলিক বল রেখা আয়তাকার লোহার ভেতর দিয়ে যাবে।

আমরা থেতে এসি ভোনে জের উৎস
সাণিরাছি তাই সোহার কোরে টৌছকত রাড়বে
কাবে এবং দিক পরিবর্তন করবে, অর্থাৎ
ক্রমা ত টৌছক কোরের পরিবর্তন হবে।
লোহার কোরের অন্য পাশেও তার পরাচারো
মাছে (অবশাই অপরিবাহী আবর্তা চাকা)
সেই করোলের মাঝে লোহার কোরের ভেতর
দিয়ে টৌছক কেরাটির ক্রমাগত পরিবর্তন হতে
থাকবে এবং এই পরিবর্তন ভান পাশের করেলে
একটা তড়িচালক শক্তি বা EMF তেরি
কর্বেল একটা ভোলা মিটারে আমরা সেটা

র্জন 12,16; ট্রালকর্মারের প্রাইমার। করেজে এতি পটেনশিয়াল প্রদাস করা হলে কেকেন্সারী কয়েলে সেটি পটেনশিয়াল কৈনী সহয়।

ইচ্ছে করলে দেখতেও পারব। এই পদ্ধতিতে সরাসরি বৈদ্যুতিক সংযোগ ছাড়াই একটি কয়েল থেকে অন্য কয়েলে বিদ্যুৎ পাঠানোর প্রক্রিয়াকে বলে ট্রান্সফর্মার।

এই ট্রাপফর্মার দিয়ে আমরা অত্যন্ত চমকপ্রদ কিছু বিষয় করতে পারি। দুই পাশে কয়েলের প্যাঁচ সংখ্যা যদি সমান হয় তাহলে বাম দিকে আমরা যে এসি ভোল্টেজ প্রয়োগ করব ডান দিকে ঠিক সেই এসি ভোল্টেজ ফেরত পাব। ডানদিকে প্যাঁচের সংখ্যা যদি দশ গুণ বেশি হয় তাহলে ভোল্টেজ দশ গুণ বেশি হবে। প্যাঁচের সংখ্যা যদি দশগুণ কম হয় তাহলে ভোল্টেজ দশগুণ কম হবে। বাম দিকের কয়েল যেখানে এসি ভোল্টেজ প্রয়োগ করা হয় তার নাম প্রাইমারি কয়েল এবং ডান দিকে যেখান থেকে ভোল্টেজ ফেরত নেয়া হয় তার নাম সেকেভারি কয়েল।

তোমরা হয়তো মনে করতে পার যদি সত্যি এটা ঘটানো সম্ভব হয় তাহলে আমরা প্রাইমারিতে অল্প সংখ্যক প্যাঁচ দিয়ে হালকা ভোল্টেজ প্রয়োগ করে, সেকেন্ডারি কয়েলে অনেক বেশি প্যাঁচ দিয়ে বিশাল একটা ভোল্টেজ বের করে অফুরন্ত বৈদ্যুতিক শক্তির ব্যবস্থা করে ফেলি না কেন? এখানে একটি বিষয় মনে রাখতে হবে প্রতি সেকেন্ডে কতটুকু বৈদ্যুতিক শক্তি প্রয়োগ করা হচ্ছে সেটা পরিমাপ করা হয় VI দিয়ে, একটা ট্রাঙ্গফর্মারে প্রাইমারিতে যে পরিমাণ VI প্রয়োগ করা হয় সেকেন্ডারি কয়েল থেকে ঠিক সেই পরিমাণ VI কেরৎ পাওয়া যায়। কাজেই সেকেন্ডারিতে যদি ভোল্টেজ দশগুণ বাড়িয়ে নেয়া যায় তাহলে সেখানে বিদ্যুৎ I দশগুণ কমে যাবে।

তোমাদেরকে বুঝানোর জন্য আয়তাকার একটি কোর দেখানো হয়েছে। সত্যিকারের ট্রাপফর্মার একটু অন্যভাবে তৈরি হয়, সেখানে প্রাইমারির উপরেই সেকেন্ডারি কয়েল পঁ্যাচানো হয় এবং কোরটাও একটু অন্য রকম হয়।

প্রাইমারি কয়েলে পঁয়াচ সংখ্যা যদি n_P এবং সেকেন্ডারি কয়েলের পঁয়াচ সংখ্যা n_S হয় তাহলে প্রাইমারি কয়েলে যদি এসি V_P ভোল্টেজ প্রয়োগ করা হয় তাহলে সেকেন্ডারি কয়েলে যে এসি ভোল্টেজ V_S পাওয়া যাবে তার পরিমাণ হবে

$$V_S = \left(\frac{n_S}{n_P}\right) V_P$$

প্রাইমারি কয়েলে যদি I_P বিদ্যুৎ প্রবাহিত হয় তাহলে সেকেন্ডারি কয়েলে বিদ্যুৎ প্রবাহ I_S হবে

$$I_S = \left(\frac{V_P}{V_S}\right)I_P = \left(\frac{n_P}{n_S}\right)I_P$$

উদাহরণ 12.3: একটি ট্রাঙ্গফর্মারের প্রাইমারি করেলের প্রাঁচ সংখ্যা 100, সেকেন্ডারি করেলের প্রাঁচ সংখ্যা 1000, প্রাইমারি করেলে দিরে $10V\ DC$ দেয়া হল। সেকেন্ডারি করেলে ভোন্টেজ কত?

উত্তর: শূন্য! ট্রাসফর্মার ডিলি ভোল্টেজে কাজ করে না।

উদাহরণ 12.4: একটি ট্রালফর্মারের প্রাইমারি কয়েলের পাঁচি সংখ্যা 100, সেকেন্ডারি কয়েলের পাঁচি সংখ্যা 1000, প্রাইমারি কয়েলে দিয়ে 10V AC দেয়া হল। সেকেন্ডারি কয়েলে ভোল্টেজ কত?

উত্তর:

$$V_S = \left(\frac{n_S}{n_P}\right) V_P = \left(\frac{1000}{100}\right) \times 12V = 120V \ AC$$

উদাহরণ 12.5: উপরেব ট্রান্সমিটারে প্রাইনারি কয়েল দিয়ে 1.4 বিদ্যুৎ প্রবাহিত হলে সেকেন্ডারি কয়েলে সর্বোচ্চ কত কারেন্ট প্রবাহিত হতে পারবে?

উত্তর:

$$I_S = \left(\frac{V_P}{V_S}\right) I_P = \left(\frac{12}{120}\right) \times 1A = 0.1 A$$

অনুশীলনী

প্রশ্ন:

- তোমার ঘরের এক মাথা থেকে অন্য মাথায় ইলেকট্রনের বীম পাঠাতে গিয়ে যদি দেখ সেটা উপরে উঠে যাচেছ তাহলে তুমি কী ব্যাখ্যা দেবে?
- বৈদ্যুতিক চুম্বক বানানোর সময় এক টুকরো লোহার ওপর বিদ্যুৎ অপরিবাহী আবরণে ঢাকা তার পাঁচানো হকয়। মোটা তার দিয়ে একটি পাঁচ দেয়া ভালো নাকি সক তার দিয়ে অনেকগুলো পাঁচ দেয়া ভালো! কেন!
- দুটো লোহার দ[—]
 – এর মাঝে একটি চুম্বক অন্যটি নয়, না
 ঝুলিয়ে বা অন্য কোনো য়য় ব্যবহার না করে কোনটা
 চম্বক আর কোনটা সাধারণ লোহা বের করতে পারবে?
- পৃথিবী একটা বিশাল চুম্বক, উত্তর মেরু সেই চুম্বকের উত্তর মেরু নাকি দক্ষিণ মেরু?
- 5. চুম্বককে নাড়িয়ে বিদ্যুৎ তৈরি করা হয়- সব সময়েই এটি পরিবর্তনকে বাধা দিতে চায়-এটা মনে রেখে ছবির চুম্বকটি উপরের দিকে নিলে লুপে কোন দিকে বিদ্যুৎ প্রবাহিত হবে বল।

ছবি 12.17: একটি লুপের ভেতর একটি চুমকের অবস্থানের পরিবর্তন।

গাণিতিক সমস্যা:

- অপারবাহী আনরণে ঢাকা একটি তার দিয়ে 10 পদকের একটি কয়েল তৈরি করে তার ভেতর দিয়ে /
 শরিমাণ বিদ্যুৎ প্রবাহ করার কারণে B টেছিক ক্ষেত্র তৈরি হয়েছে। পদকের নংখ্যা 100 করা হলে
 ভিন্তিক ক্ষেত্র কত হবে?
- উপরের ক্ষেত্রে পঁরাচ সংখ্যা আর 50 বৃদ্ধি করতে গিয়ে ছুফে উল্টো দিকে 50 পরাচ দেয়ার কারণে
 টৌশক ক্ষেত্র কত হবে?
- একটি শতিশীল ইলেবট্রন টোসক জের টিয়ে যাবার কারণে F নল (erB) সবুতর করেছে।
 ইলেকট্রনের গতিশতি দিওণ করে দেয়া হলে বলের পরিমাণ কত হবে।

चनि 12.18: निमाण भानाकी जातरक गिरङ क्ष्मिक (क्रवा)

- 4. 12.18 ছবিটি দেখে বল কোন তারের তেতন দিয়ে কোন দিকে বিদ্যুৎ প্রবাহিত হছে?
- 5. একটি ট্রাসফর্মারের প্রাইমারি কয়েলে পঁয়ান সংখ্যা 100, এখানে 15V AC দিয়ে সেকেজারি কয়েলে। 105V AC পাওয়া পেছে সেকেজারি কয়েলে পঁয়ান সংখ্যা করে।

ত্রয়োদশ অধ্যায় **আধুনিক পদার্থবিজ্ঞান ও ইলেকট্রনিক্স** (Modern Physics and Electronics)

Werner Heisenberg (1901-1976)

ওয়ার্নার হাইজেনবার্গ

গুয়ানার হাইজেনবার্গ একজন জার্মান তাত্ত্বিক পদার্থবিজ্ঞানী।
পদার্থবিজ্ঞানের অন্যতম গুরুত্বপূর্ণ শাখা কোয়ান্টাম মেকানিব্রের একজন
জনক এবং এজন্য তাঁকে নোবেল পুরন্ধার দেয়া হয়। কোয়ান্টাম
মেকানিব্রে যে রহস্যময় অনিচয়তার সূত্রটি রয়েছে সেটি হাইজেনবার্সের
দেয়া। তবে দ্বিতীয় মহাযুদ্ধের সময় নার্থসি জার্মানিতে তাঁর ভূমিকার জন্য
তাঁকে অনেক সমালোচনার মুখোমুখি হতে হয়।

13.1 কোয়ান্টাম মেকানিক্স (Quantum Mechanics)

আমরা সবাই জানি আলো হচ্ছে তরঙ্গ; একটা তরঙ্গের তরঙ্গ দৈর্ঘ্য কত, কম্পন কত আমরা তার সব কিছু আলোচনা করেছি। অথচ বিশ্ময়ের ব্যাপার হচ্ছে, কিছু কিছু জায়গায় দেখা গেছে আলো যেন তরঙ্গ নয়— আলো হচ্ছে কশা এবং একটা কশা যে রকম ব্যবহার করে আলো ঠিক সে রকম ব্যবহার করছে! এ রকম একটা উদাহরণ হচ্ছে ফটো ইলেকট্রিক এফেট্ট যেখানে আলোর কণা একটা ধাতব পদার্থকে আঘাত করে সেখান থেকে ইলেকট্রনকে মুক্ত করে দেয়। বিশ্ময়কর এই ব্যাপারটা ব্যাখ্যা করার জন্য আইনস্টাইনকে নােবেল পুরস্কার দেয়া হয়েছিল।

আবার আমরা সবাই জানি ইলেকট্রন হচ্ছে কশা; এর ভর আছে, এটা ছোটাছুটি ঠোকাঠুকি করতে পারে। মজার ব্যাপার হচ্ছে বিজ্ঞানীরা এক সময়ে সবিস্ময়ে আবিদ্ধার করলেন হঠাৎ হঠাৎ ইলেকট্রন এমন ব্যবহার করে যেন এটি কণা নয় যেন এটি তরঙ্গ! এটা এমনই নিশ্চিতভাবে তরঙ্গের মতো ব্যবহার করে যে ইলেকট্রন দিয়ে রীতিমতো মাইক্রোস্কোপ তৈরি করে ফেলা যায়। এখন প্রশ্ন হচ্ছে ভাহলে আলো কি তরঙ্গ নাকি কণা? আবার একই সাথে ইলেকট্রনের জন্যও একই প্রশ্ন করতে পারি। ইলেকট্রন কি কণা নাকি তরঙ্গ? তোমরা উত্তরটা শুনলে হকচকিয়ে যাবে ভার কারণ উত্তর হচ্ছে: দুটোই। অর্থাৎ আলো একই সাথে তরঙ্গ এবং কণা এবং ইলেকট্রনও একই সাথে কণা এবং তরঙ্গ। তোমরা হয়তো ভাবছ এটি কেমন করে সম্ভব- কিন্তু জেনে রাখো সভিটেই এটা সম্ভব।

ওধু যে ইলেকট্রনকে তরজ হিসেবে দেখা যায় তা নয়- বিজ্ঞানী ডি ব্রগলি প্রথমে বলেছিলেন যে যেকোন পদার্থ বা কণার সাথে একটা তরঙ্গ থাকে, শুধু তাই নয় সেই তরঙ্গের তরঙ্গ দৈর্ঘ্য কত হবে সেটাও তিনি বলে দিয়েছিলেন। কোনো কণার তরৱেগ যদি p হয় তাহলে তার তরঙ্গ দৈর্ঘা λ , হবে

$$\lambda = \frac{h}{p}$$

মেখানে p হচ্ছে ভরবেগ এবং h হচ্ছে প্লাংকের ধ্রুবক যার মান হচ্ছে

$$h = 6.634 \times 10^{-34} \, Js$$

তোমার হুর যদি 50~kg হয় আর ভূমি যদি 2~m/s নেগে দৌড়াও তাহলে তোমার হুরবেগ হবে

$$p = 50 \times 2 \ kg \ m/s = 100 kg \ m/s$$

কাজেই তোমার তরঞ্চ দৈর্ঘা

$$\lambda = \frac{6.634 \times 10^{-34}}{100} m = 6.634 \times 10^{-36} m$$

এটি এত ছোট যে এটা দেখার কোনোই বান্তব সম্ভাবনা নেই— কিন্তু তুমি যদি ইলেকট্রন-প্রোটনের মতো ছোট কণা দিয়ে বিবেচনা করো তাহলে কিন্তু এর তরঙ্গ দৈর্ঘ্য কিংবা তরঙ্গের মতো ব্যবহার এমন কিছু বিচিত্র ব্যাপার নয়।

খুব সংগত কারণেই প্রশ্ন করা যায় যে, সত্যিই সর কণার যদি একটা ভরঙ্গ থাকে ভাহলে

ছবি 13.1: একটি ছোট এবং একটি বিভূত তর্প।

সেটি কীসের তরত্ব? আবার হকচকিয়ে যাবার জন্য প্রস্তুত হও, এই তরঙ্গটি হচ্ছে সম্ভাবনার তরত্ব। একটি বস্তু বা কণাকে কোথায় পাওয়া যাবে সেই সম্ভাবনা। 13.1 ছবিতে আমরা কোনো একটা কণার সাথে থাকা তরঙ্গের ছবি আঁকার চেষ্টা করেছি: প্রথম এবং দ্বিতীয় ছবির মাঝে পার্থকটো খুব স্পষ্ট– আমি যদি তোমাকে জিজ্ঞেস করি কোন তরঙ্গে কণাটির অবস্থান সুনির্দিষ্ট করে বলা সহজ? অবশ্যই তুমি বলবে প্রথম কণাটিতে কারণ এখানে তরঙ্গটি ছোট একটা জায়গায় কাজেই কণাটি নিশ্চয়ই সেখানে আছে।

এবারে আমি যদি জিজ্ঞেস করি কোন তরঙ্গটিতে কণাটির ভরবেগ নির্দিষ্ট করে বলা যাবে? আমরা একটু আগে দেখেছি ডি ব্রগলীর সূত্র অনুযায়ী ভরবেগ p হচ্ছে

$$p = \frac{h}{\lambda}$$

কাজেই তরঙ্গ দৈর্ঘ্য λ যত নিশ্চিতভাবে মাপতে পারব ভরবেগও তত নিশ্চিতভাবে বলতে পারব। এবারে তরঙ্গ দুটির দিকে তাকাও− তুমি নিশ্চয়ই বলবে যে দ্বিতীয় তরঙ্গে আমি বেশি ভালো করে তরঙ্গ দৈর্ঘ্য বের করতে পারব। প্রথমটিতে পুরো একটা তরঙ্গ দৈর্ঘ্যই নেই− কেমন করে তার তরঙ্গ দৈর্ঘ্য অনুমান করব ? দ্বিতীয়টিতে তরঙ্গটা অনেক বিস্তৃত সেখানে অনেকগুলো তরঙ্গ দৈর্ঘ্য থেকে নিখুঁতভাবে তরঙ্গ দৈর্ঘ্য বের করা সম্ভব।

তাহলে ব্যাপারটা কী দাঁড়াল? যদি সব কণার সাথেই একটা তরঙ্গ থাকে তাহলে বলা যায় অবস্থানটা ভালো করে জানলে ভরবেগ অনিশ্চিত হয়ে যায় আবার ভরবেগ ভালো করে জানলে অবস্থানটা অনিশ্চিত হয়ে যায়। এটা হচ্ছে হাইজেনবার্গের জগদ্বিখ্যাত অনিশ্চয়তার সূত্র। এটাকে এভাবে লেখা হয়

$$\Delta x \Delta p \ge \frac{\hbar}{2}$$
$$\hbar = h/2\pi$$

যেখানে Δx হচ্ছে অবস্থানের অনিশ্চয়তা (Δx কম হওয়া মানে অবস্থানে অনিশ্চয়তা কম, অর্থাৎ অবস্থানটা ভালো করে জানি), Δp হচ্ছে ভরবেগের অনিশ্চয়তা (Δp বেশি হওয়া মানে অনিশ্চয়তা বেশি অর্থাৎ ভরবেগ কত জানি না)। কেউ যেনো মনে না করে এটা বিজ্ঞানীদের অক্ষমতা— একসময় যখন বিজ্ঞান আরো বিকশিত হবে, আমাদের কাছে যখন আরো ভালো যন্ত্রপাতি থাকবে তখন আমরা বুঝি নিখুঁতভাবে একই সাথে অবস্থান আর ভরবেগ মেপে ফেলব। জেনে রাখ এটা কখনোই হবে না!

বিজ্ঞানে এই অনিশ্চয়তা সূত্রের একটা সুদূরপ্রসারী প্রভাব আছে, বড় হয়ে তোমরা যারা পদার্থবিজ্ঞান নিয়ে লেখাপড়া করবে তারা দেখবে এই অনিশ্চয়তার সূত্র থেকে ইলেকট্রন-প্রোটন, অনু-পরমাণুর মতো ক্ষুদ্র কণাদের বিচিত্র একটা জগৎ তৈরি হয়– যেটাকে বলা হয় কোয়ান্টাম মেকানিক্স!

উদাহরণ 13.1: ইলেকট্রন কেন নিউক্লিয়াসের ভেতর পড়ে যায় না?

উত্তর: অনিশ্চয়তার সূত্রের জন্য!

13.2 থিওরি অফ রিলেটিভিটি (Theory of Relativity)

আইনস্টাইনের স্পেশাল খিওরি অফ রিলেটিভিটি গড়ে উঠেছে দুটি সূত্র দিয়েঃ সূত্র দুটি এ রকম :

- (i) পদার্থবিজ্ঞান সব জারগার এক
- (ii) আলোর গতিবেগ সব জারগার এক

আমরা জানি, তোমরা যারা এই সূত্র দুটি পড়ছ তারা এক ধরনের বিস্ময় নিয়ে ভাবছ এটি আবার কী রকম সূত্র হলো १ কিজ্ঞান তো সব জারাগাতেই এক হতে হবে— আলোর কোও ভিন্ন হবে কেন? ব্যাপারটি তাহলে আরেকট্র ভালো করে দেখা বাক।

ধরা যাক তুমি স্টেশনে দাঁড়িরে আছ এবং তোমার বন্ধু ট্রেনে বলে আছে যার গতিবেদ v, তোমার বন্ধুর কাছে দুটি আরদা একটি লিচে আরেকটি II উচ্চতার; আলো নিচের আরনা থেকে উপরে এবং উপরের আরনা থেকে নিচে প্রতিকলিত হচ্ছে। (ছবি 13.2) এটাই তার ঘড়ি, আলো নিচ থেকে উপরে (কিংবা উপর থেকে নিচে) বেতে t_0 নমরে ঘড়ির একটি ক্রিক হয়, অর্থাৎ

ছবি 13.2: (a) ছিন্ন এক: (b) ধাবমান আয়নায় প্রতিফলিত আলোক রশ্যি।

$$t_0 = H/c$$

বেখানে ৫ হচ্ছে আলোর বেগ।

তুমিও ঠিক করলে তুমি নেটশনে দাঁড়িয়ে চলন্ত ট্রেনের ভেতরে তাকিয়ে ক্লিকগুলো মাপবে। ট্রেনিট যেহেতু v বেগে যাছে তাই তুমি অবশ্যই দেখবে "তোমার" ঘড়ির প্রথম ক্লিকটি যখন ঘটেছে সেই t সময়ে উপরের আরনটি vt দূরতে সরে গেছে এবং দ্বিতীয় ক্লিকের সময় আরো vt দূরতে সরে গেছে। কাজেই তোমার কাছে মনে হবে ঘড়ির ক্লিক হওয়ার সময় আলো যে দূরত্ব অতিক্রম করেছে পিথাগোরাসের নুত্রান্যায়ী সেটা হচ্ছেঃ

$$\sqrt{H^2 + v^2 t^2}$$

আইনস্টাইন বলেছেন সৰ জারগার আলোর বেগ েসমান, তাই তোমার ছড়ির এক ক্লিকের সমরকে যদি L বলি তাহলে

$$t = \frac{\sqrt{H^2 + v^2 t^2}}{c}$$

$$t^2 = \frac{H^2}{c^2} + \frac{v^2}{c^2}t^2$$

কিন্তু আমরা জানি t_0 , তোমার বন্ধুর ঘড়ির ক্লিক

$$t_0 = \frac{H}{c}$$

কাজেই

$$t^2 = t_0^2 + \frac{v^2}{c^2}t^2$$

$$t^{2} \left(1 - \frac{v^{2}}{c^{2}} \right) = t_{0}^{2}$$
$$t^{2} = \frac{t_{0}^{2}}{\left(1 - \frac{v^{2}}{c^{2}} \right)}$$

অর্থাৎ

$$t = \frac{t_0}{\sqrt{1 - \frac{v^2}{c^2}}}$$

এই নিরীহ সমীকরণটি পৃথিবীর সবচেয়ে রহস্যময় সমীকরণের একটি এবং এটি আমাদের পরিচিত জগৎটি পুরো পুরি ওলট-পালট করে দিয়েছে। আবার মনে করিয়ে দিই, t হচ্ছে তোমার ঘড়ির সময় আর t_0 হচ্ছে তোমার বন্ধুর ঘড়ির সময়। তুমি স্থির দাড়িয়ে আছ এবং তোমার বন্ধু v বেগে যাচ্ছে, এটুকুই পার্থক্য। v এর মান কম হলে t এবং t_0 এর মাঝে কোনো পার্থক্য নেই কিন্তু যদি আলোর বেগের কাছাকাছি হয় তাহলে কিন্তু সম্পূর্ণ অন্য ব্যপার। যেমন যদি v=0.99c হয় তাহলে

$$t = \frac{t_0}{\sqrt{1 - (0.99)^2}} = \frac{t_0}{\sqrt{0.0199}} = 7t_0$$

যার অর্থ তোমার বন্ধু যদি ট্রেনে দশ বৎসর কাটায় ($t_0=10$ বৎসর) তাহলে তার বয়স বাড়বে দশ বৎসর কিন্তু তোমার বয়স বাড়বে 70 বছর! পনেরো বছরে রওনা দিয়ে সে পঁচিশ বছরের যুবক হিসেবে ফিরে এসে দেখবে তুমি পনের বছরে শুরু করে এর মাঝে 85 বছরের থুরথুরে বুড়ো হয়ে গেছ!

উদাহরণ 13.1: তোমার তুলনায় তোমার বন্ধু v বেগে যাচ্ছে কিন্তু তোমার বন্ধুর তুলনায় তুমিও তো v বেগে যাচছ। তাহলে উল্টোটা কেন সত্যি হয় না? দশ বৎসর কাটিয়ে দিয়ে তুমি কেন আবিষ্কার কর না যে তোমার বন্ধুর বয়স সত্তুর বছর বেড়ে গেছে?

উত্তর: থিওরি অফ রিলেটিভিটির এটা একটা অত্যন্ত মজার প্রশ্ন। কার বয়স বেড়েছে দেখার জন্য তোমার এবং তোমার বন্ধুর মাঝে একজনকে থামতে হবে এবং গতি পরিবর্তন করে ফিরে আসতে হবে। যে থামবে এবং গতি পরিবর্তন করবে তার সময় অতিক্রান্ত হবে কম। এটা খুব সহজেই প্রমাণ করা যায়– এখানে আর করে দেখানো হলো না।

সময়ের প্রসারণের এই বিখ্যাত সমীকরণটি শুধুমাত্র একটা মজার সূত্র হতে পারত কিন্তু এটা মোটেও সেটা হয়ে থাকেনি। আমরা আমাদের জীবনে এর অসংখ্য উদাহরণ দেখেছি এবং আমরা জানি এটা সত্যি। বায়ুমলনের উপরে কসমিক রে এর আঘাতে মিউওন নামে এক ধরনের কণার জন্ম হয় যেটার আয়ু মাত্র দুই মাইক্রো সেকেন্ড। এত কম সময়ে এটা কোনোদিন বায়ুমলনের উপর থেকে পৃথিবীর পৃষ্ঠে পৌছতে পারবে না, এটি যদি প্রায় আলোর বেগে ছুটে আসে তারপরও পৃথিবীতে পৌছাতে এর কমপক্ষে তিনশো মাইক্রোসেকেন্ড সময় লাগার কথা। কিন্তু আমরা নিয়মিতভাবে পৃথিবী পৃষ্ঠে মিউওনকে দেখি তার কারণ মিউওন কিন্তু তার নিজের হিসেবে দুই মাইক্রোসেকেন্ড পরেই শেষ হয়ে যাচেছ, কিন্তু তার গতিবেগ যেহেতু আলোর বেগের কাছাকাছি তাই আমাদের কাছে মনে হচ্ছে এটা পৃথিবীপৃষ্ঠে চলে আসার জন্য প্রয়োজনীয় সময় টিকে আছে!

মিউওনের পৃথিবীপৃষ্ঠে চলে আসার ব্যাপারটি অন্যভাবেও ব্যাখ্যা করা যাবে, তোমরা ইচ্ছে করলেই দেখতে পারবে চলন্ত বস্তুর জন্য যে রকম সময়ের প্রসারণ হয় ঠিক সে রকম দৈর্ঘ্যের সংকোচন হয় এবং সেটা আমরা এভাবে লিখতে পারি:

$$L = L_0 \sqrt{1 - \frac{v^2}{c^2}}$$

এখানে আমাদের সাপেক্ষে স্থির কোনো কিছুর দৈর্ঘ্য L_0 হলে আমাদের সাপেক্ষে v বেগে গতিশীল তার দূরত্ব হবে L যেটি L_0 থেকে কম।

কাজেই মিউত্তন যখন প্রচ² বেগে পৃথিবীর দিকে ছুটে আসছিল তার মনে হচ্ছিল সে বুঝি স্থির বরং পৃথিবীটাই প্রচ² বেগে তার দিকে ছুটে আসছে। কাজেই বায়ুম²ল থেকে পৃথিবী পর্যন্ত পুরো দূরত্বটাই সংকুচিত হয়ে ছোট একটুখানি হয়ে গেছে। তাই মিউত্তন মাত্র দুই সেকেন্ড বেঁচে থেকেই এই ছোট দূরত্বটা অতিক্রম করে কেলেছে!

সময়ের প্রসারণ এবং দৈর্ঘ্যের সংকোচনের মতোই চমকপ্রদ আরেকটি সূত্র হচ্ছে বস্তুর ভর নিয়ে। স্থির অবস্থায় কোনো বস্তুর ভর যদি m_0 হয় তাহলে সেটা যদি v বেগে যেতে থাকে তাহলে তার ভর m হবে :

$$m = \frac{m_0}{\sqrt{1 - \frac{v^2}{c^2}}}$$

একটা প্লেন যদি 1000~km/s বেগে উড়ে যায় তার ভর বাড়ে মাত্র $2\times 10^{-10}\%$ যেটা ধর্তব্যের মাঝেই না। কিন্তু কোনো কিছু যদি 0.99c বেগে ছুটে যায় তাহলে তার ভর বেড়ে যাবে 7 গুণ। যদি বেগ আরো বেডে 0.999999c যার তাহলে ভর বেড়ে হয়ে যাবে 700 গুণ!

ভরের এই চমৎকার সূত্রটা ব্যবহার করে খুব সহজেই আমরা সর্বকালের সর্বশ্রেষ্ঠ সূত্র বের করে ফেলতে পারি। সেটা হচ্ছে

$$E = mc^2$$

যার অর্থ পদার্থের ভর আসলে শক্তি। যদি কেউ ভরকে শক্তিতে রূপান্তর করতে পারে তাহলে একটুখানি ভর থেকে অচিন্ত্যনীয় পরিমাণ শক্তি তৈরি করতে পারে। নিউক্লিয়ার শক্তি কেন্দ্রে ঠিক এই ব্যাপারটাই করা হয়, ভরকে শক্তিতে রূপান্তর করা হয়। আমাদের সূর্যের ভেতরেও এই পদ্ধতিতে শক্তি তৈরি হয় তাই হঠাৎ করে সব জ্বালানী ফুরিয়ে সূর্যের নিভে যাবার কোনো আশংকা নেই। মানবজাতির অনেক বড় দুর্ভাগ্য নিউক্লিয়ার বোমাতেও ঠিক এভাবে ভরকে শক্তিতে রূপান্তরিত করে অবিশ্বাস্য ধ্বংসলীলা চালানো হয়!

13.3 নিউক্লিয়ার পদার্থবিজ্ঞান (Nuclear Physics)

আমরা সবাই জানি পরমাণুর কেন্দ্রে থাকে নিউক্লিয়াস এবং নিউক্লিয়াসকে ঘিরে ইলেকট্রন ঘুরতে থাকে। সবচেয়ে ছোট পরমাণু হচ্ছে হাইড্রোজেন, তার কেন্দ্রে থাকে একটা মাত্র প্রোটন এবং তাকে ঘিরে ঘুরে মাত্র একটা ইলেকট্রন। প্রোটনের ভর ইলেকট্রন থেকে প্রায় 1800 গুণ বেশি, তাই একটা পরমাণুর ভর আসলে মূলত তার নিউক্লিয়াসের ভর। আমরা এর মাঝে অনেকবার দেখেছি প্রোটনের চার্জ পজিটিভ এবং ইলেকট্রনের চার্জ নেগেটিভ। তাই নেগেটিভ চার্জের ইলেকট্রন প্রোটনের পজিটিভ চার্জের কুলম্ব বলের আকর্ষণে তাকে ঘিরে ঘুরতে থাকে।

হাইদ্রেজেনের পরের পরমাণু হচ্ছে হিলিয়াম। হিলিয়ামের নিউক্লিয়াসে দুটি প্রোটন এবং তাকে ঘিরে ঘুরছে দুটি ইলেকট্রন। নিউক্লিয়াসের আয়াতন খুবই ছোট $10^{-15}m$ এর কাছাকাছি এত কাছাকাছি দুটো প্রোটন রাখা হলে তাদের প্রবল কুলম্ব বিকর্ষণে তারা ছিটকে যাবে এবং সেটা যেন না ঘটে সেজন্য হিলিয়ামের নিউক্লিয়াসে দুটো প্রোটনের পাশাপাশি দুটো চার্জহীন নিউট্রনও থাকে। এভাবে তৈরি হিলিয়ামের নিউক্লিয়াস খুব শক্ত এবং স্থিতিশীল নিউক্লিয়াস।

হিলিয়ামের পর লিথিয়াম,তারপর বেরিয়াম এভাবে একটার পর একটা পরমাণুর কথা বলতে পারি, যেখানে নিউক্লিয়াসে একটা একটা করে প্রোটনের সংখ্যা বেড়েছে এবং বাইরে একটার পর একটা ইলেকট্রনও বেড়েছে। (পরিশিষ্ট 2)

নিউক্লিয়াসকে স্থিতিশীল রাখার জন্য তার ভেতরে যখনই একটা প্রোটন বেড়েছে তখনই তার ভেতরে বাড়তি নিউট্রনকে জায়গা করে দিতে হয়েছে। অনেক নিউক্লিয়াস আছে যাদের প্রোটনের সংখ্যা সমান কিন্তু নিউট্রনের সংখ্যা ভিন্ন। তাদেরকে বলে আইসোটোপ। যেমন হাইড্রোজেনের মতো সহজ পরমাণুরও তিনটি আইসোটোপ রয়েছে: হাইড্রোজেন, ডিউটেরিয়াম এবং ট্রিটিয়াম। হাইড্রোজেনে শুধু একটি প্রোটন, ডিউটেরিয়ামে একটা প্রোটন একটা নিউট্রন এবং ট্রিটিয়ামে একটা প্রোটন এবং দুইটা নিউট্রন। হাইড্রোজেনের তিনটা আইসোটোপের আলাদা আলাদা নাম দেয় আছে, সাধারণত অন্য পরমাণুর বেলায় সেটা সত্যি নয়। আইসোটোপগুলোকে তাদের নিউট্রন সংখ্যা দিয়ে আলাদা করা হয়ে। যেমন ধরা যাক কার্বনের কথা, এর আইসোটোপের সংখ্যা তিন, সেগুলো হচ্ছে:

 C_{12} : নিউক্লিয়াসে 6 টা প্রোটন 6 টা নিউট্রন C_{13} : নিউক্লিয়াসে 6 টা প্রোটন 7 টা নিউট্রন C_{14} : নিউক্লিয়াসে 6 টা প্রোটন 8 টা নিউট্রন

 C_{12} এ 12 সংখ্যাটি হচ্ছে নিউক্লিওন সংখ্যা বা সম্মিলিত নিউট্রন এবং প্রোটনের সংখ্যা। সে রকম C_{13} ও C_{14} এ 13 ও 14 হচ্ছে নিউক্লিওন সংখ্যা।

 C_{12} , C_{13} ও C_{14} এর মাঝে C_{14} নিউক্লিয়াসটি তেজব্রুিয় বা অস্থিতিশীল অর্থাৎ C_{14} অনন্তকাল C_{14} হিসেবে থাকতে পারে না এটা অন্য কোনো নিউক্লিয়াসে পরিবর্তিত হয়ে যায়। এই পরিবর্তনের জন্য নিউক্লিয়াসের ভেতর থেকে কোনো একটা কণা বের হয়ে আসে। যেটা বের হয়ে আসে আমরা সেটাকে বলি তেজব্রুিয় রশ্মি।

তেজন্রিয়তার যে মূল তিনটি প্রক্রিয়া আছে সেগুলো হচ্ছে আলাফা, বিটা এবং গামা রিশ্ম। প্রথম যখন তেজন্ত্রিয় নিউক্লিয়াস থেকে এগুলো বের হয়ে এসেছিল তখন সঠিকভাবে তার পরিচয় জানা ছিল না বলে এ রকম নাম দেয়া হয়েছিল এখন আমরা পরিষ্কার ভাবে এর পরিচয় জানি কিন্তু নামগুলো এখনো রয়ে গেছে।

13.3.1 আলফা কণা

আলফা কণা আসলে হিলিয়াম নিউক্লিয়াস! আমরা জানি হিলিয়াম নিউক্লিয়াসে থাকে দুটি প্রোটন আর দুটো নিউট্রন। কাজেই কোনো নিউক্লিয়াস থেকে যদি একটা আলফা কণা বের হয়ে আসে তাহলে সেই পরমাণুর পারমাণবিক সংখ্যা কমবে দুই ঘর, নিউক্লিওন সংখ্যা কমবে চার ঘর। একটা নিউক্লিয়াসের ভেতর থেকে যখন একটা আলফা কণা বের হয়ে আসে তখন তার যথেষ্ট শক্তি থাকে এবং সেটা বাতাসকে তীব্র ভাবে আয়োনিত করতে পারে। অর্থাৎ এটা যখন বাতাসের ভেতর দিয়ে যায় তখন বাতাসের অণু-পরমাণুর সাথে যে সংঘর্ষ হয় সেই সংঘর্ষে সেগুলোকে আয়োনিত করতে পারে। আলফা কণার গতিপথ হয় সরল রেখার মতো– সোজাসুজি এগিয়ে যায়।

তবে আলফা কণা যেহেতু হিলিয়ামের নিউক্লিয়াস তাই এটা পদার্থের ভেতর দিয়ে বেশিদূর যেতে পারে না— এটাকে থামিয়ে দেয়া সহজ। (একটা কাগজ বা অ্যালুমিনিয়াম ফয়েল দিয়েই আলফা কণাকে থামিয়ে দেয়া যায়।) কোথাও আঘাত করলে ভেঙ্গে অনেক ক্ষতি করলেও আলফা কণা বেশি দূর যাবার আগেই থেমে যায়।

আলফা কণা যাবার সময় অনেক ইলেকট্রন এবং আয়ন তৈরি করে, সেগুলো নানাভাবে Detect করা যায়। বর্তমানে ইলেকট্রনিক্সের অনেক উন্নতি হওয়ায় এই ধরনের আলফা কণার উপস্থিতি বের করা আরো সহজ হয়ে গেছে।

13.3.2 বিটা কণা

বিটা কণা আসলে ইলেকট্রন! তোমরা অবাক হয়ে ভাবতে পার নিউক্লিয়াসের ভেতর থাকে শুধু নিউট্রন আর প্রোটন সেখান থেকে ইলেকট্রন কেমন করে বের হয়? নিউক্লিয়াসের যে নিউট্রন রয়েছে সেখান থেকে ইলেকট্রনটা বের হয়ে, চার্জকে ঠিক রাখার জন্য নিউট্রনটা তখন প্রোটনে পাল্টে যায়।

$$n \rightarrow p + e + \overline{\nu_e}$$

উপরের সমীকরণে নিউট্রনকে প্রোটন এবং ইলেকট্রনে পাল্টে যাবার সাথে সাথে আরো একটি কণা $\overline{\nu_e}$ লেখা হয়েছে, সেটি কী? এটি হচ্ছে নিউট্রিনো নামের একটি কণার প্রতি পদার্থ এন্টি নিউট্রিনো! রহস্যময় এই কণা নিয়ে গবেষণার কোনো শেষ নেই তোমরা যখন পদার্থবিজ্ঞান নিয়ে আরো লেখাপড়া করবে তখন নিউট্রিনোর সাথে আরো ভালোভাবে পরিচিত হবে। বিটা কণা বের হবার পর নিউটিক্লয়াসের নিউক্লিওন সংখ্যা সমান থাকে কিন্তু পারমাণবিক সংখ্যা বেড়ে যায়।

নিউক্লিয়াস থেকে যখন আলফা কণা বের হয় তখন সে প্রতিবারই একটা নির্দিষ্ট শক্তি নিয়ে বের হয়। বিটা কণা বের হবার সময় তার শক্তিটা এন্টি নিউট্রিনোর সাথে ভাগাভাগি করে নেয় (প্রোটন যেহেতু নিউক্লিয়াসের ভেতরেই থাকে তাকে শক্তি দিতে হয় না) তাই বিটা কণার শক্তি নির্দিষ্ট থাকে না (এন্টি নিউট্রিনো কতোটুকু শক্তি নেবে তার ওপর নির্ভর করে বিটা কণার শক্তি বেশি কিংবা কম হতে পারে।)

বিটা কণা যেহেতু ইলেক্ট্রন তাই এটা পদার্থের ভেতর দিয়ে যাবার সময় ঘর্ষণের কারণে পদার্থকে আয়োনিত করতে পারে। বিটা কণা কোনো কিছুর অনেক ভেতরে ঢুকে যেতে পারে। আলফা কণা যে রকম সোজাসুজি এগিয়ে গিয়ে এক সময় থেমে যায় বিটা কণা (অর্থাৎ ইলেকট্রন) সে রকম নয়, বিভিন্ন অনু পরমাণুতে ঠোকা খেয়ে এর গতিপথ আঁকাবাঁকা হয়ে যায়।

মজার ব্যাপার হচ্ছে, নিউক্লিয়াস থেকে শুধু যে ইলেকট্রন বের হতে পারে তা নয়, সেখান থেকে ইলেকট্রনের প্রতিপদার্থ পজিট্রনও বের হতে পারে। আমরা সেটাকেও বিটা বিকিরণ বলি। পজিট্রনের চার্জ পজিটিভ কাজেই সেটা তৈরি হয় প্রোটন থেকে:

$$p \rightarrow n + e^+ + \nu_e$$

এখানেও তোমরা রহস্যময় নিউট্রিনোকে দেখতে পাচ্ছ! কোনো নিউক্লিয়াস থেকে পজিট্রন বের হলে সেই নিউক্লিয়াসের নিউক্লিওন সংখ্যা সমান থাকলেও পারমানবিক সংখ্যা এক কমে যায়। পজিট্রন যেহেতু ইলেকট্রনের প্রতি পদার্থ তাই এটা চারপাশের কোনো একটা ইলেকট্রনের সংস্পর্শে আসা মাত্র শক্তিতে রূপান্তরিত হয়ে অদৃশ্য হয়ে যায়।

তোমরা নিশ্চয়ই অবাক হয়ে ভাবছ, প্রতিবার যখন বিটা বিকীরণ হয় তখন নিউট্রিনো কিংবা এণ্টি নিউট্রিনো বের হয়, তাহলে শুধু আলফা বেটা গামা রশ্মির কথা বলছি কেন? নিউট্রিনো রশ্মির কথা কেন বলি না? তার কারণ নিউট্রিনোর চার্জ নেই, ভর বলতে গেলে নেই এবং পদার্থের সাথে এটি এত কম বিক্রিয়া করে যে আমরা সেটা দেখতে পাই না। তোমরা শুনলে অবাক হয়ে যাবে যে এর বিক্রিয়া এত কম যে কয়েক আলোক বর্ষ দীর্ঘ শীসার পাত দিয়েও একটা নিউট্রিনোকে থামানো যায় না! সেজন্যে সবকিছু থেকে নিউট্রিনো বা এন্টিনিউট্রিনো বের হলেও তেজক্রিয় রশ্মি হিসেবে এটাকে বিবেচনা করতে হয় না।

13.3.3 গামা রশ্মি

গামা রশ্মি আসলে বিদ্যুৎ চৌম্বকীয় তরঙ্গ। তোমরা জান এর ভর বা চার্জ নেই। তাই যখন একটা নিউক্লিয়াস থেকে গামা রশ্মি বের হয় নিউক্লিয়াসটার কোনো পরিবর্তন হয় না। সাধারণত যখন কোনো নিউক্লিয়াস থেকে আলিফা বা বিটা কণা বের হয় তখন নিউক্লিয়াসটা "উত্তেজিত" অবস্থায় থাকে তখন বাড়তি শক্তি গামা রশ্মি হিসেবে বের করে দিয়ে এটি "নিরুত্তেজ" হয়।

গামা রশ্মির যেহেতু চার্জ নেই তাই সেটা অণু-পরমাণুকে সরাসরি আয়োনিত করতে পারে না— তাই পদার্থের অনেক ভেতরে ঢুকতে পারে— গামা রশ্মি সরাসরি আয়োনিত করতে না পারলেও এটি অন্য কোনোভাবে কোনো পরমাণু থেকে ইলেকট্রন মুক্ত করে তার শক্তি ক্ষয় করে— সেই ইলেকট্রন তখন বিটা কণার মতো অণু-পরমাণুকে আয়োনিত করে।

তেজন্ধ্রিয় রশ্মি দেখা কিংবা তার পরীক্ষা করার জন্য আসলে চমকপ্রদ যন্ত্রপাতি তৈরি হয়েছে। পৃথিবীর বড় বড় এক্সপেরিমেন্টে সেই যন্ত্রপাতি ব্যবহার করে পদার্থবিজ্ঞানের নৃতন নৃতন জগৎ উন্মোচিত করা হচ্ছে।

13.3.4 অর্ধায়

অণু-পরমাণুর ব্যবহার বোঝার জন্য কোয়ান্টাম মেকানিক্স ব্যবহার করতে হয় এবং কোয়ান্টাম মেকানিক্স থেকে আমরা জানি এই কণাগুলোর ব্যবহার কখনোই সুনির্দিষ্টভাবে বলা সম্ভব নয়, আমরা শুধুমাত্র কিছু একটা ঘটার সম্ভাবনাটুকু বলতে পারি। তেজস্ক্রিয়তার বেলাতেও এটি সত্যি, যতি কোনো একটি নিউক্লিয়াস তেজস্ক্রিয় হয় তাহলে আমরা জানি তার ভেতর থেকে আলফা বিটা বা গামা বের হয়ে আসবে কিন্তু ঠিক কোন মুহূর্তে সেগুলো বের হবে সেটা কেউ বলতে পারে না! তেজস্ক্রিয়তার পরিমাপ করার জন্য আমরা তেজস্ক্রিয় নিউক্লিয়াসের অর্ধায়ূ বলে একটা কথা ব্যবহার করি। যদি অনেকগুলো নিউক্লিয়াস থাকে যে সময়ে তার অর্ধেক নিউক্লিয়াস থেকে তেজস্ক্রিয় কণা বের হয় সেটি হচ্ছে সেই নিউক্লিয়াসের অর্ধায়ূ। যে সমস্ত নিউক্লিয়াস স্থিতিশীল তাদের অর্ধায়ূ অসীম, কারণ সেগুলো থেকে কখনোই তেজস্ক্রিয় কণা বের হবে না। আমরা C_{14} এর কথা বলেছিলাম, তার অর্ধাক্ নিউক্লিয়াস থেকে তেজস্ক্রিয় কণা বের করবে।

যে নিউক্লিয়াসের অর্ধায়ূ যত কম সেই নিউক্লিয়াস তত দ্রুত তেজব্রুিয় কণা বের করে দিয়ে তার তেজব্রুিয় ক্ষমতা হারাবে। এখানে একটা বিষয় তোমাদের মনে রাখতে হবে, তেজব্রুিয়তার কারণে পরিবর্তনটা হয় নিউক্লিয়াসে। যখন নিউক্লিয়াসটি পরিবর্তিত হয় তখন তার বাইরের ইলেকট্রনগুলোর সংখ্যাও পরিবর্তন হয়। বাইরের ইলেকট্রনের সংখ্যার উপর পরমাণুর বৈশিষ্ট্য নির্ভর করে— তাই তেজব্রিয়তার কারণে একটি পরমাণু শেষ পর্যন্ত অন্য পরমাণুতে পরিবর্তিত হয়— কিন্তু সেটি হয় পরোক্ষ ভাবে। নিউক্লিয়ার শক্তির তুলনায় পরমাণুর ইলেকট্রনের শক্তি খুবই কম। কাজেই পরমাণুর জন্য কাছাকাছি কোথা থেকে একটি ইলেকট্রন পাওয়া কিংবা কাছাকাছি একটা ইলেকট্রন ছেড়ে দেয়া খুব সহজ কাজ— সেটি কখনোই কোনো জটিল ব্যাপার নয়।

তেজন্ধ্রিয়তার নানা ধরনের ব্যবহার আছে। খুব কম তেজন্ধ্রিয়তার দ্রব্য শরীরের ভেতর ঢুকিয়ে বাইরের থেকে তার গতিবিধি দেখে শরীরের অনেক তথ্য জানা যায়। সাধারণত সে রকম তেজন্ধ্রিয় হয় খুব কম অর্ধায়্– হয়তো কয়েক মিনিট– কাজেই ঘণ্টা খানেকের মাঝে ঐ পদার্থের সব তেজন্ধ্রিয়তা শেষ হয়ে যায়।

তেজন্ধ্রিয়তার আরেকটা গুরুত্বপূর্ণ ব্যবহার হচ্ছে প্রাচীন জীবাশ্মের বয়স নির্ণয় করাতে। আমাদের শরীরে প্রচুর কার্বন রয়েছে এবং তার ভেতরে নির্দিষ্ট পরিমাণ C_{14} আছে। যখন প্রাণী মারা যায় তখন তার শরীরের নৃতন করে C_{14} ঢুকতে পারে না। আগে যতটুকু ছিল সেটা তখন অর্ধায়ূর কারনে কমতে থাকে। কাজেই কতটুকু C_{14} থাকা স্বাভাবিক এবং কতটুকু কমে গেছে সেটা থেকে সেই প্রাণী কতো প্রাচীন তা নিখুঁতভাবে বের করা যায়।

তেজস্ক্রিয় কণা শরীরের কোষের ক্ষতি করতে পারে সে জন্য নানা ধরনের সতর্কতা অবলম্বন করা হয়, আবার শরীরের ক্ষতিকর কোষ ধ্বংস করার জন্য এই তেজস্ক্রিয়তা ব্যবহার করা যায়। সে কারণে ক্যান্সার চিকিৎসায় ক্যান্সার কোষ ধ্বংস করার জন্য তেজস্ক্রিয় কণা ব্যবহার করা হয়।

উদাহরণ 13.3: এক kg ভরের একটি তেজন্ধ্রিয় মৌলের অর্ধায় 100 বছর। দুইশ বছর পর তার ভর কত হবে?

উত্তরঃ তেজক্রিয়তার কারণে সরাসরি ভরের পরিবর্তন হয়না। তেজক্রিয় মৌলটির তিন চতুর্থাংশ নিউক্রিয়াস তেজক্রিয় কণা বের করবে মাত্র!

13.3.5 তেজ্ঞস্কিয়তা থেকে সতর্কতা

আমাদের দৈনন্দিন জীবনে আমরা খুব বেশি তেজব্রুিয়তার মুখোমুখি হই না কিন্তু পৃথিবীর নূতন প্রযুক্তির কারণে এখন অনেকেই তেজব্রুিয়তার মুখোমুখি হতে শুরু করেছে। নিউক্লিয়ার শক্তি কেন্দ্রে নিউক্লিয়ার বিক্রিয়া করানো হয় সেখানে ভয়ংকর রকম তেজব্রুিয়তা তৈরি হয়, এবং অনেক গুলোর অর্ধায়্ অনেক বেশি এবং লক্ষ বছর পর্যন্ত সেগুলো তেজব্রুিয় থাকে। নিউক্লিয়ার শক্তি কেন্দ্রের দুর্ঘটনায় বাইরে তেজব্রুিয় পদার্থ ছড়িয়ে পড়ার উদাহরণও আছে। নিউক্লিয়ার শক্তি দিয়ে চালানো জাহাজ সাবমেরিন দুর্ঘটনাতেও অনেক মানুষ তেজব্রুিয়তার মুখোমুখি হয়েছে। সবচেয়ে ভয়ংকর ব্যাপার ঘটেছিল যখন হিরোশিমা এবং নাগাসাকিতে নিউক্লিয়ার বোমা ফেলা হয়েছিল তখন অসংখ্য মানুষ তেজব্রুিয়তার মুখোমুখি হয়েছিল। কাজেই তেজব্রুিয়তা নিয়ে নানা ধরনের গবেষণা শুরু হয়েছে এবং নিরাপদ তেজব্রুিয়তার মাত্রা ইত্যাদি তৈরি করা শুরু হয়েছে। সাধারণ মানুষকে সতর্ক করানো শুরু হয়েছে।

13.4 পার্টির্কেল ফিজিক্স (Particle Physics)

এই বিশ্ববাদানের যত কণা আছে তাদের সবগুলোকে দুই ভাগে ভাগ করা যার। এক ভাগের নাম ফারমিওন (Fermion) বিজ্ঞানী এনরিকো ফার্মির নাম অনুসারে। অন্য ভাগের নাম বোজন (Boson), আমাদের সত্যেন বোসের নাম অনুসারে। কেউ যদি একটু চিন্তা করে দেখে সে নিশ্চরই হতবুদ্ধি হয়ে যাবে যে, বিশ্ববাদানের সকল কণার অর্থেকের নামকরণ করা হয়েছে ঢাকা বিশ্ববিদ্যালয়ের পদার্থবিজ্ঞান বিভাগের একজন বাঙালি অধ্যাপকের নামে।

পুরো বিশ্ববদা[—] যেসব কণা দিয়ে তৈরি হয়েছে তার শুেতরে যেগুলো কারমিওন সেগুলোকে বলা হয় বস্তুকণা। যেগুলো বোজন সেগুলো এই বস্তুকণার ভেতরে বল বা শক্তির আদান প্রদান করে। কারমিওন নামের বস্তুকণাকে আবার দুই ভাগে ভাগ করা যায়। এক ভাগের নাম কোরার্ক অন্য ভাগের নাম লেপটন। কাজেই আমরা লিখতে পারি :

টোবিল 13.1: ফার্মিওন

,	61330	13.2. 1090
কোনাক	u	আপ কোয়ার্ক
কোয়াক	d	ডাউন কোয়ার্ক
লেপটন	е	ইলেকট্রন
	V_{θ}	टेलक्ष्रुन निष्कृतिना

নিউট্রন এবং প্রোটন তৈরি হয় আপ ও ডাউন কোয়ার্ক দিয়ে (উদাহরণ 13.4)। এটা নোটেও অত্যুক্তি নয় যে, আমাদের পরিচিত দৃশ্যমান জগতের পুরোটাই তৈরি হয়েছে u,d এবং e (আপ কোয়ার্ক, ডাউন কোয়ার্ক এবং ইলেকট্রন) এই তিনটি মাজ কণা দিয়ে। v_e (ইলেকট্রন নিউট্রিনো) এর অন্তিত্ব রয়েছে তবে আগেই বলা হয়েছে সেটি সাধারণ মানুষের চোগ্নে দৃশ্যমান নয় কিন্তু পুরোপুরি সঠিকভাবে বলার জন্য আমাদের এটাকেও গ্রহণ করতে হবে। এটা মোটামুটিভাবে একটা অবিশ্বাস্য ব্যাপার যে, পরিচিত পুরো বিশ্ববালা u,d,e এবং v_e এই চারটি কণা দিয়েই ব্যাখ্যা করা সন্তব।

তবে শুধু যে এই চারটি কণা রয়েছে তা নয়, এর সাথে সাথে এই কণাগুলোর প্রতি পদার্থও রয়েছে। কাজেই আমাদের তালিকাটি পূর্ণাঙ্গ করতে হলে ফার্মিণ্ডনের এই পরিবারে তাদের প্রতি পদার্থগুলোও যোগ করতে হবে। কাজেই তালিকাটি হবে এ রকম:

টেবিল 13.2: ফার্মিওন ও প্রতি পদার্থ

	পদার্থ	প্রতি পদার্থ
কোয়াক	u	\bar{u}
CALISTA.	d	$ ilde{d}$
লেপট্রন	e	ē
6-(116-)	l'e	V _e

উপরের কণাগুলো হচ্ছে বস্তুকণা, এদের ভেতর বল বা শক্তির বিনিময় করার জন্য আমাদেও অন্য কিছু কণার দরকার এবং এই কণাগুলোর নাম হচ্ছে বোজন। এই কণাগুলো হচ্ছে:

টেবিল 13.3: বোজন

ফোটন	γ	কোয়ার্ক ও ইলেকট্রনের ভেতর শক্তি বিনিময়	
জি নট ডাবলিউ প্রাস/ডাবলিউ মাইনাস	Z^0 W_+	সকল ফার্মিওনের ভেতর শক্তি বিনিময়	
धुत्यान	g	গুধূ কোয়ার্কের ভেতর শক্তি বিনিময়	

সংগত কারণেই মনে হতে পারে এই বোজন কণার প্রতি পদার্থগুলো আমাদের তালিকায় নেওয়া দরকার। কিন্তু মজার ব্যাপার হচ্ছে বস্তুকণার ভেতরে বল বা শক্তি আদান-প্রদানকারী এই বোজন কণাগুলো নিজেরাই নিজেদের প্রতি পদার্থ। এখানে আমরা আমাদের পরিচিত কোটন বা আলোর কণাকে নিশ্চয়ই দেখছি, অন্যগুলোর অন্তিত্ব খুব ভালোভাবেই আছে কিন্তু খাঁটি পদার্থবিজ্ঞানী ছাড়া অন্যরা হয়তো তাদের খবর রাখে না।

কাজেই একজন মোটামুটি এই ভেবে আনন্দ পেতে পারত বে, মাত্র চারটি কার্মিওন এবং পাঁচটি বোজন দিয়েই এই মহাবিশ্বের সকল পদার্পের গঠন ব্যাখ্যা করা সম্ভব, কিন্তু আসলে ব্যাপারটি শেষ পর্যন্ত এত সহজ থাকেনি। দেখা গেল কার্মিওনের যে পরিবারটির কথা বলা হয়েছে সেটা যথেষ্ট নয়। ঠিক এ রকম আরও দুটো পরিবার দরকার। u,d,e,v_e এর পরিবারটিকে প্রথম প্রজন্ম বলে আমরা হবহু এ রকম আরও দুটি প্রজন্ম প্রস্তুত করতে পারি। সেওলো হচ্ছে: c,s,μ,v_μ এবং t,b,τ,v_e

টেবিল 13.4: षिछीय्र श्रक्षना

Calana	С	চার্ম
কোয়াক	S	স্টেভ
	μ	মিউওন
লেপটন	0.5	মিউওন নিউট্রিনো

টেবিল 13.5: তৃতীয় প্রজন্ম

কোয়াক	t	টপ
কোয়াক -	b	বট্ন
corole-r	Ť	টাও
লেপটন -	14	টাও নিউট্রিনো

আমরা যদি প্রতি পদার্থগুলো আলাদাভাবে না লিখি তাহলে ছোট একটা ছকেই বিশ্বব্দ্রাভির সকল মৌলকণা লিখতে পারি। কী চমৎকার। সেটা হবে এ রকম:

राउदिका	10 E.	বিশ্বশারের	अकल	ांबिकको
COLOR	13.5	ISTERNIC S	aldrel	(भाषा कना

	ফার্মিওন				
	প্রথম প্রজন্ম	দ্বিতীয় প্রজন্ম	তৃতীয় প্রজন্ম	বোজন	
Control of	u	C	t	y	
কোয়াক d	d	S	b	Z^0	H
লেপটন <u>e</u> V _e	e	μ	τ	W_{\pm}	
	Ve	ν_{μ}	1't	g	

এই সকল ব্যবহার করে পদার্থবিজ্ঞানের যে মডেল দিয়ে প্রকৃতিকে ব্যাখ্যা করা হয় নেটাকে বলা হয় স্ট্যান্ডার্ড মডেল। যে কণাগুলো দেখানো হয়েছে তাদের ভর নির্বারণ করার জন্য হিগস বোজন (Higgs Boson) নামে আরো একটি বোজনের H অন্তিত্ব অনুমান করা হয়েছিল।

2013 সালে শেষ পর্যন্ত বিজ্ঞানীরা এর অন্তিত্ব সম্পর্কে নিশ্চিত হয়েছিলেন— এটি ছিল তাত্ত্বিক পদার্থবিজ্ঞানের একটা অনেক বড় বিজয়। কোনো একটি বিচিত্র কারণে হিগস বোজনকে ঈশ্বর কণা বলা হয়!

উদাহরণ 13.4: u কোয়ার্কের চার্জ $\frac{2}{3}e$ এবং d কোয়ার্কের চার্জ $-\frac{1}{3}e$. নিউট্রন এবং প্রোটন uও d কোয়ার্ক দিয়ে কীজাবে তৈরি হয়?

উडद्रः निर्देष्ट्रनः udd মোট চার্জ गुना ह्यांनेन : uud মোট চার্জ Le

উদাহরণ 13.5: কোয়াকেঁর ঢার্জ যদি $\frac{1}{3}e$ হতে পারে তাহলে 1e কেন সবচেরে ছোট ঢার্জ? $\frac{1}{3}e$ কেন নর?

উত্তর: কারণ কোয়ার্ককে কখনো আলাদাভাবে দেখা যায় না।

13.5 ইলেকট্রনিক্স (Electronics)

তোমরা সবাই ইলেকট্রিসিটি এবং ইলেকট্রনিক্স দুটি শব্দই ওনেছ, তাদের অর্থও ভিন্ন। যদিও দুটোর মাঝে অনেক কিছুতে মিল আছে কিন্তু এই দুটো শব্দ মোটামুটিভাবে দুটো ভিন্ন বিষয় বোঝায়। আমরা যখন ইলেকট্রিসিটি কথাটি বলি তখন বৈদ্যুতিক শক্তির ব্যবহার করা নিয়ে মাখা ঘামাই। বিদ্যুৎ প্রবাহ, সার্কিট, রেজিস্টর, পাওয়ার এ সবের মাঝে আলোচনাটা সীমাবদ্ধ থাকে। যখন ইলেকট্রনিক্স বলি তখন হঠাৎ করে

তার মাঝে নানা ধরনের তথ্যের আদান-প্রদান এবং সংরক্ষণের বিষয়টা চলে আসে। 11 এবং 12 অধ্যায়ে ইলেকট্রিসিটির সাথে সম্পর্ক আছে এ রকম বিষয়গুলো নিয়ে খানিকটা আলোচনা হয়েছে, এখানে তোমাদের জন্য ইলেকট্রনিক্সের সূচনাটা করে দেয়া হচেছ।

আমরা যখন হেডফোন বা স্পিকারে গান গুনি তখন সেই হেড ফোন বা স্পিকারে গানের সুরেলা শব্দ তৈরি করার জন্য শব্দের কম্পন এবং তীব্রতার সাথে মিল রেখে বিদ্যুৎ

ছবি 13.3: আনালগ এবং ডিজিটাল সিগন্যাল।

প্রবাহ করা হয়। আমরা যদি সেই বিদ্যুৎ প্রবাহ (বা বিদ্যুৎ প্রবাহ তৈরি করার জন্য প্রয়োগ করা ভোল্টেজ) দেখি তাহলে 13.3 (a) ছবিতে দেখানো এক ধরনের সিগন্যাল দেখব। সময়ের সময়ের সাথে সাথে সিগন্যালের তীব্রতা বাড়ছে বা কমছে। সেই সিগন্যাল তীব্রতার যে কোনো মান নিতে পারে (অবশ্যই একটা সীমার ভেতর) এবং আমরা এই ধরনের বলি অ্যানালগ সিগন্যাল।

ধরা যাক আমরা হেড ফোন বা স্পিকারে যে গানটি গুনছি সেটা এসেছে কম্পিউটার থেকে এবং কম্পিউটারের কাছে সেই গানটি এসেছে ইন্টারনেট থেকে। ইন্টারনেট থেকে যে তার দিয়ে সিগন্যালটি কম্পিউটারে এসেছে সেই তারটির সিগন্যালকে যদি আমরা দেখার চেষ্টা করি তাহলে সেটা দেখাবে 13.3 (b) ছবির মতো! এখানে অ্যানালগ সিগন্যালের মতো কারেন্ট (বা ভোল্টেজ) তীব্রতার যে কোনো মান নিতে পারে না, এটি গুধুমাত্র দুটি মান নিতে পারে, হয় কম (অনেক সময় শূন্য) কিংবা বেশি

ছবি 13.4: (फिलिस्मिल এবং বাইনারি সংখ্যা।

(ইলেকট্রনিক্সের ভার্সানের ওপর নির্ভর করে 3V, 5V বা অন্য কিছু) হতে পারে। এ রকম সিগন্যালকে আমরা বলি ডিজিটাল সিগন্যাল। অ্যানালগ সিগন্যাল থেকে তবু অনুমান করা যায় আসল সিগন্যালটি কেমন ছিল, শব্দের তীব্রতা কোথায় বেশি কোথায় কম, কম্পন কোথায় বেশি কোথায় কম কিন্তু ডিজিটাল সিগন্যাল দেখে কিছু বোঝার উপায় নেই। কিন্তু যেহেতু আমরা জানি এটা নিশ্চিত ভাবেই আমাদের গান উনিয়েছে কাজেই গানের তথ্যটা এর মাঝেই নিশ্চরই লুকিয়ে আছে।

অ্যানালগ সিগন্যালের তথ্য কেমন করে ডিজিটাল সিগনালে পাঠানো হয় সেটা অনুমান করা খুব কঠিন কিছু নয়। প্রথমে অ্যানালগ সিগন্যালকে ছোট ছোট সময়ের টুকরোয় এ ভাগ করে নিতে হয়, প্রত্যেকটা টুকরোয় অ্যানালগ সিগন্যালের মানটা কত বের করতে হয়, তারপর সেই মানটুকু সংখ্যায় প্রকাশ করে সংখ্যাটা পাঠাতে হয়। সংখ্যার জন্য ডিজিট শব্দটা ব্যবহার করা হয় বলে ডিজিটাল শব্দটা এসেছে। আমরা দশমিক সংখ্যা দেখে অভ্যস্ত যেখানে সংখ্যা পাঠানোর জন্য 0,1,2,3,4,5,6,7,8,9 এই দশ্টা চিহ্ন দরকার। সংখ্যাকে দশ্ভিত্তিক হতে হবে কে বলেছে? ধোল ভিত্তিক সংখ্যা Hexadecimal অহরহ ব্যবহার করা হয়— যেখানে ধোলটা চিহ্ন দরকার: (0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F) আবার আট ভিত্তিক সংখ্যাও আছে যেখানে দরকার আটটা Symbol (0,1,2,3,4,5,6,7)। মজার কথা হচ্ছে আমরা ইচ্ছে

ছবি 13.5: একটি কণ্ঠসরকে নেউওয়ার্কেও মাধ্যমে অন্য কোথাও প্রেরণ করা।

করলে দুই ভিত্তিক সংখ্যাও তৈরি করতে পারি যেখানে দরকার মাত্র দুটি চিহ্ন 🛈 এবং 1. এটাকে বলে বাইনারি সংখ্যা। তোমরা য়খন দশমিক সংখ্যা শিখেছ সেখানে তোমরা ডান দিক থেকে প্রথম সংখ্যাটি একক (অর্থাৎ মান $10^0 = 1$). হচ্ছে দ্বিতীয়টি দশক (অর্থাৎ মান $10^{1} = 10$). ততীয়টি । অর্থাৎ শতক মান $10^2 = 100$ ইত্যাদি ইত্যাদি। ঠিক একই ভাবে রাইনারি সংখ্যায় ডান দিক

থেকে প্রথমটির মান হচ্ছে $2^0=1$, দ্বিতীয়টির মান হচ্ছে $2^1=2$, তৃতীয়টির মান হচ্ছে $2^2=4$ ইত্যাদি। 13.4 ছবিতে একই সংখ্যা দশমিকে এবং বাইনারিতে প্রকাশ করে দেখানো হয়েছে।

যেহেতু যে কোনো সংখ্যাকে আমরা বাইনারি সংখ্যায় প্রকাশ করতে পারি তাই অ্যানালগ সিগন্যালের মানটা বাইনারি সংখ্যায় প্রকাশ করে নিলেই এটাকে ইলেকট্রনিক্স সিগন্যাল হিসেবে এক জায়গা থেকে অন্য জায়গায় পাঠানো যায়। যখন সিগন্যালটার মান বেশি হবে সেটা বুঝাবে 1. যখন মানটা কম হবে সেটা বুঝাবে শূন্য! পাঠানোর সময় আরো কিছু নিয়মকানুন দেয়া হয় যেন সিগন্যালটা নিয়ে কেউ গোলমাল পাকিয়ে না ফেলে, কোখায় শুক্ত কোখায় শেষ বোঝা যায়।

আমাদের জীবনে আমরা যখন কিছু একটা বাবহার করি সেটা প্রায় সময়েই হয় অ্যানালগ, সেটাকে ডিজিটালে পরিবর্তন করে পাঠানো হয়, প্রক্রিয়া করা হয়। পৌছানোর পর সেটাকে আবার আ্যানালগে পরিবর্তন করে ব্যবহার করা হয়। আনালগ সিগন্যালকে ডিজিটালে পরিবর্তন করার জন্য কিংবা ডিজিটাল সিগন্যালকে অ্যানালগে পরিবর্তন করার জন্য বিশেষ ধরনের আই সি (Integrated Circuit) ব্যবহার করা হয় তাদেরকে Analog to Digitla Converter (সংক্ষেপে ADC) বা

Digital to Analog Converter (সংক্ষেপে DAC) বলা হয়। 13.5 ছবিতে কিভাবে এক জনের কাছ থেকে আরেক জনের কাছে কোনো একটা সিগন্যাল পাঠানো হয় সেটা দেখানো হলো।

উদাহরণ 13.6: 1 থেকে 32 পর্যন্ত ডেসিমেল সংখ্যায় বাইনারি সংখ্যাং প্রকাশ করে দেখাও।

উত্তর: 1, 10, 11, 100, 101, 110, 111, 1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111, 10000, 10001, 10010, 10011, 10100, 10101, 10110, 11010, 11000, 11001, 11010, 11011, 11100, 11101, 11110, 11111, 100000

তোমরা বুঝতেই পারছ অ্যানালগ সিগন্যালকে ডিজিটাল সিগন্যালে রূপান্তর করার সময় আমরা সেটা অনেকভাবে করতে পারি, সময়ের Slot কত্টুকু হবে এবং সর্বোচ্চ মান কতো ধরে নেব তার উপর নির্ভর করে ডিজিটাল ডাটার পরিমাণ। অত্যন্ত সূক্ষ্মভাবে করার প্রয়োজন হলে তার পরিমাণ অনেক বেশি হয়ে যেতে পারে। তার জন্য ডিজিটাল ইলেকট্রনিক্স জটিল হতে পারে এমন কি সময় সাপেক্ষও হতে পারে। কিন্তু তারপরও আধুনিক জ্ঞাৎ খুব দ্রুত সবকিছুকে ডিজিটাল সিগন্যাল হিসেবে পরিবর্তন করে সেটাকে প্রক্রিয়া করার দিকে এগিয়ে যাচেছ। ডিজিটাল সিগন্যালকে শুরু 0 এবং 1 হিসেবে প্রেরণ করতে হয় বলে এর মাঝে অনাকাক্ষিত গোলমাল কম এবং অনেক সময়েই অ্যানালগ অংশটুকু চোখের আড়ালে রেখে সব কিছুই সরাসরি আমাদের কাছে ডিজিটাল হিসেবে চলে আসছে।

13.5.1 সেমিকভাক্টর

আধুনিক জগৎ এবং আধুনিক সভ্যতা পুরোটাই ইলেকট্রনিক্সের উপরে গড়ে উঠেছে এবং এই ইলেকট্রনিক্সের জন্য আমরা যদি কোনো এক ধরনের পদার্থের প্রতি কৃতজ্ঞতা প্রকাশ করতে চাই তাহলে সেই পদার্থটি হবে সেমিকভান্টর। আমরা এর আগেও পরিবাহী এবং অপরিবাহী এবং অর্ধ-পরিবাহী বা সেমিকভান্টরের নামটি উচ্চারণ করেছি এখন ব্যাপারটার একটুখানি গভীরে যেতে পারি।

13.6 ছবিতে সেমিকন্ডাক্টরের অনেকগুলো পরমাণুকে পাশাপাশি দেখানো

ছবি 13.6: সিলিকন ক্রিস্টাল। ডান দিকে সিলিকন ক্রিস্টালের ত্রিমাত্রিক রূপ।

হয়েছে। পরমাণর গঠনের কারণে তাদের শেষ কক্ষ পথে যদি আটটি ইলেকট্রন থাকে তাহলে সেটি কোন এক অর্থে পরিপূর্ণ হয় এবং অনেক স্থিতিশীল হয়। পরমাণুগুলো সবসময়েই চেষ্টা করে তাদের শেষ কক্ষপথে আটটি ইলেকট্রন রাখতে। সিলিকন হচ্ছে সবচেয়ে বেশি ব্যবহৃত সেমিকভাক্টর তার শেষ কক্ষপথে ইলেকট্রনের সংখ্যা চার, কিন্তু যখন আমরা সিলিকন ক্রিস্টালের দিকে তাকাই তখন অবাক হয়ে আবিষ্কার করি প্রত্যেকটি পরমাণুই ভাবছে তার শেষ কক্ষপথে আটটা ইলেকট্রন! এটা ঘটেছে কারণ প্রত্যেকটা পরমাণুই চারদিকে ভিন্ন চারটা পরমাণুর সাথে যুক্ত এবং সবাই নিজের ইলেকট্রনগুলো পাশের

পরমাণুর সাথে ভাগাভাগি করে ব্যবহার করছে। (আমরা ছবিটা একেছি এক সমতলে, সত্যিকার সিলিকন পরমাণুগুলো ত্রিমাত্রিক, ছবিতে যে রকম দেখানো হয়েছে কিন্তু প্রত্যেকটা পরমাণুই আসলে অন্য চারটি পরমাণুকে স্পর্শ করে থাকে।)

পরমাণুকে স্পান্ধ করে থাকে।)

এমনিতে সেমিকভান্টরে ইলেকট্রনগুলো পরমাণুর সাথে আটকে থাকে, তাপমাত্রা বাড়ালে হয়তো
একটা দুটো ইলেকট্রন মুক্ত হতে পারে। পরিবাহকে মুক্ত ইলেকট্রন থাকে তাই তখন সেমিকভান্টরটা
খানিকটা পরিবাহকের মতো কাজ করতে পারে। পদার্থবিজ্ঞানের দৃষ্টিভঙ্গিতে এটা চমৎকার একটা
ব্যাপার, কিন্তু ব্যবহারের জন্য এটা ততটা উপযোগী না। এটাকে সত্যিকার অর্থে ব্যবহার করার জন্য
খুবই মজার একটা কাজ করা হয়। সিলিকন ক্রিস্টালের সাথে এমন একটা পরমাণু (যেমন কসফরাস)
মিনিয়ে দেয়া হয় যার শেষ কক্ষপথে পাঁচটি ইলেকট্রন। তখন আমরা হঠাৎ করেই আবিক্ষার করি যেহেতু
প্রত্যেকটা পরমাণু অন্য পরমাণুর সাথে নিজের ইলেকট্রন ভাগাভাগি করে একটা শৃঙ্খলার মাঝে আছে
এবং ফসফরাসের এই পঞ্চম ইলেকট্রনটি বাড়তি (প্রায় অবিকৃত) একটা ইলেকট্রন— কোনো পরমাণুরই
তার প্রয়োজন নেই তাই সে সব পরমাণুর মাঝেই প্রায় মুক্তভাবে ঘুরোঘুরি করতে পারে! এটাকে
কসফরাসের পরমাণুর মাঝে থাকতে হবে এমন কোনো কথা নেই— কসফরাসকে পজিটিভ আয়ন বানিয়ে
এই ইলেকট্রনটি মুক্ত ইলেকট্রনের মতো ব্যবহার করে। বলা যেতে পারে ফসফরাস মেশানো এ রকম
সেমিকভান্টর অনেটাই পরিবাহী, কারণ চার্জ পরিবহনের জন্য মুক্ত এখানে কিছু ইলেকট্রন থাকে।
ফসফরাসের মতো পঞ্চম ইলেকট্রনসহ পরমাণুর যোগ করে সেমিকভান্টরকে মোটামুটি পরিবাহক তৈরি
করে ফেলা এই সেমিকভান্টরকে বলে ম ধরনের সেমিকভান্টর।

এবারে তোমরা আরো চমকপ্রদ একটা বিষয় শোনার জন্য প্রস্তুত হও। শেষ কক্ষপথে বাড়তি পঞ্চম ইলেকট্রন এমন পরমাণু না দিয়ে যদি আমরা উল্টো কাজটি করি, শেষ কক্ষপথে একটি কম অর্থাৎ তিনটি ইলেকট্রন (বোরন) দেয়া কিছু পরমাণু মিশিয়ে দেয়া হয় তাহলে কী হবে? অবশ্যই বোঝা যাচ্ছে বোরনের পরমাণুর কক্ষপথে একটা জায়গায় ইলেকট্রনের জন্য একটা ফাঁকা জায়গা থাকবে এবং পরমাণুটি সেই ফাঁকা জায়গাটা পাশের একটা ইলেকট্রন এনে ভরাট করে ফেলতে পারে– তখন পাশের পরমাণুতে একটা ফাঁকা জায়গা হয়ে যাবে, সেই ফাঁকা জায়গাটি আবার তার পাশের পরমাণুর একটা ইলেকট্রন এসে ভরাট করে ফেলতে পারে– তখন সেখানে একটা ফাঁকা জায়গা হবে। অন্যভাবে বলা যায় আমাদের কাছে মনে হবে একটা ইলেকট্রনের অভাবযুক্ত একটা ফাঁকা জায়গা বুঝি পরমাণু থেকে পরমাণুতে ঘুরে বেড়াচ্ছে! মনে হতে পারে এটা বুঝি আসলে এক ধরনের কণা এবং তার চার্জ বুঝি পজিটিভ! এটাকে বলা হয় হোল (Hole)। অর্থাৎ আমরা বলতেই পারি বোরন পরমাণুকে নেগেটিভ আয়ন হিসেবে রেখে তার হোলটি সিলিকন ক্রিস্টালের ভেতর ঘুরে বেড়াতে পারে। অর্থাৎ এই সেমিকভান্টরটি প্রায় পরিবাহক হিসেবে কাজ করে এবং তার ভেতর দিয়ে বিদ্যুৎ পরিবহন করে পজিটিব চার্জযুক্ত হোল! তিনটি ইলেকট্রন মিশিয়ে একটা সেমিকভান্টরকে যখন পরিবাহক করে ফেলা হয় তখন তাকে বলে প্য ধরনের সেমিকভান্টর।

এমনিতে আশাদাভাবে n ধরনের এবং p ধরনের সেমিকজাউরের তেমন বাবহার ছিল না কিছ যখন n এবং p ধরনের সেমিকজাউর একটার সাথে আরেকটা মুক্ত করা হলো তখন বিজ্ঞান এবং প্রমুক্তির জগতের সবচেয়ে বড় বিপ্লবের সূচনা হয়েছিল।

13.7 ছবিতে দেখালো হয়েছে একটা n ধরনের নেমিকজাইর p ধরনের সেমিকজাইরের নাখে যুক্ত করে তার নাথে একটা নাটোরি এননভাবে যুক্ত করা হয়েছে কেন কাটোরির ধজিটিভ অংশটি যুক্ত হয়েছে p এর নাথে এবং নেগেটিভ অংশটি যুক্ত হয়েছে p এর নাথে। আমরা জেনেছি n ধরনের

ছবি 13.7; n এবং p যুক্ত করে তৈরি করা জায়োজ। স্যাটারির এক সংযোগে কোনো নিদাৎ প্রবাহ হয় না, অন্য সংযোগে বিদ্যুৎ প্রবাহ হয়।

লোকভাষ্টরে বিদ্যুৎ পরিবহনের জন্য ইলেবট্রন থাকে, কাজেই খুব ফ্রন্ড এই ইলেবট্রনগুলো বাটারির পজিটিভ প্রান্ত নিজের কাছে টেনে নিবে কাজেই n টাইশ সেমিবভার্টরে বিদ্যুৎ প্রবাহের জন্য কোনো ইলেবট্রন থাকবে না— এটা হয়ে যাবে বিদ্যুৎ আপরিবাহী। ঠিক একইভাবে বাটারির নেপেটিভ প্রান্ত থাকে থেকে ইলেবট্রন হাজির হবে p টাইপ সেমিবভার্টরে এবং সবগুলো হোল একটা একটা ইলেবট্রন নিয়ে ভরাট হয়ে যাবে কাজেই খুব ফ্রন্ড দেখা যাবে বিদ্যুৎ প্রবাহ করার জন্য একটিও হোলও অবশিষ্ট নেই, অর্থাৎ এই p সেমিবভার্টরটিও বিদ্যুৎ অপরিবাহী হয়ে যাবে। কাজেই বাটারির সাথে এই np সেমিবভার্টরটি যুক্ত বর্বা হলে, এর ভিতর নিয়ে কোনো বিদ্যুৎই গরিবাহিত হবে না।

এবারে বদি np সেমিকভাইরটিতে ব্যাটারীর উন্টো সংযোগ দেয়া হয় তাহলে কী হনেং অর্থাঙ্গ বাটারির পজিটিভ অংশ লাগালো হল p ধরনের সেমিকভাইরে এবং নেগেটিভ প্রান্ধ লাগালো হল n ধরনের সেমিকভাইরে। এবারে ব্যাটারির নেগেটিভ প্রান্ধ পেকে ইলেকট্রন চুকে বাবে n টাইপ সেমিকভাইর এবং ইলেকট্রনভানাকে np জাংশনের দিকে ঠেলে দেবে। ঠিক তেমনিভাবে p টাইপ সেমিকভাইর থেকে ইলেবট্রন টেনে নিয়ে নৃতন হোল তৈরি করতে থাকরে ব্যাটারির পজিটিভ প্রান্থ এবং নেই হোলগুলো ছুটে যাবে pn জাংশনের দিকে। সেখানে ইলেট্রনগুলো হোলকে ভরাট করতে থাকরে— ব্যাপারটা চলতেই পাকরে এবং কেউ বদি ব্যাটারির চারগুলোর দিকে তাকার তাহলে লেখনে ব্যাটারির নিগেটিভ প্রান্থ থেকে ইলেকট্রন বাছে n এর দিকে এবং p থেকে ইলেকট্রন বের হয়ে ফিরে আনছে বাটারির পজিটিভ প্রান্থ। সেটা চলতেই থাকরে— এবং আমরা দেখব এই জাংশনের ভেতর দিয়ে

চমৎকার ভাবে বিদ্যুৎ প্রবাহ হচ্ছে। n এবং p ধরণের সেমিকডাক্টর তৈরি এই জাংশনকে বলে ডায়োড। ডায়োড এমন একটি ইলেট্রনিক্স ডিভাইস যেখানে ব্যাটারির এক ধরণের সংযোগে বিদ্যুৎ প্রবাহ হয় উল্টো সংযোগে হয় না।

ডায়োডের ব্যবহারের কোনো শেষ নেই, সাধারণ ডায়োড তো আছেই সত্যি বলতে কী তোমরা সব সময় যে লাল নীল সবুজ হলুদ ছোট ছোট আলোঙলো দেখো সেঙলো সব LED বা Light

Emitting Diode ভারোডের
আরো একটা মজার ব্যবহার হচ্ছে
AC সিগনাল DC তৈরি করা।
১৩.৮ ছবিতে দেখানো উপায়ে
আমরা যদি ভারোভের ভেতর AC
ভোল্টেজ দিই অন্য পাশে
নেগেটিভ অংশটুকু কেটে গুধু
পজিটিভ অংশটুকু বের হয়ে
আসবে।

ছবি 13.8; ডায়োড ব্যবহার করে এসি সিগন্যালের নেগেটিভ অংশ অপসারণ করে ফেলা যার।

13.5.2 ট্রানজিস্টর

যারা বিজ্ঞানের ইতিহাস জ্ঞানে তাদেরকে যদি জ্ঞিজেস করা হয় প্রযুক্তির সবচেয়ে বড় আবিদ্ধার কী. সম্ভবত তারা ট্রানজিস্টরের কথা বলবে। ট্রানজিস্টর p এবং n ধরনের সেমিকভান্টর দিয়ে তৈরি এক

ধরনের ডিভাইস, যেটা তার ভেতর দিয়ে বিদ্যুতের প্রবাহ নিয়ন্ত্রণ করতে পারে। npn এবং pnp দুই ধরনের ট্রানজিস্টর আছে। ছবিতে তোমাদের npn ধরনের ট্রানজিস্টর দেখানো হয়েছে। এটাকে অনেকটা পানির ট্যাপের সাথে তুলনা করা যায়, পানির ট্যাপ খুললে পানির প্রবাহ গুরু হয় আবার ট্যাপটি বন্ধ করলে পানির প্রবাহ বন্ধ হয়ে যায়। npn ট্রানজিস্টরের যে দিক দিয়ে কারেন্ট ঢুকে তার নাম কালেন্টর এবং যেদিক দিয়ে কারেন্ট বের হয় তার নাম

ছবি 13.9: একটি npn ট্রানজিস্টরের গঠন, প্রতীক এরং নিদ্যুৎ প্রবাহ

এমিটার। মাঝখানে রয়েছে বেস, এই ব্যাসটি ট্যাপের মতো− এই বেসে অল্প একটু কারেন্ট দিলেই যেন ট্যাপটি খুলে যায় অর্থাৎ কারেন্টের প্রবাহ হতে থাকে। আবার এই অল্প কারেন্ট বন্ধ করে দিলেই বিদ্যুতের প্রবাহ বন্ধ হয়ে যায়।

এই ট্রানজিস্টর দিয়ে অসংখ্য ইলেকট্রনিক্স যন্ত্রপাতি তৈরি করা হয়। ছোট সিগন্যালকে বড় করার জন্য ট্রানজিস্টর ব্যবহার করা হয় যেটাকে আমরা বলি এমপ্লিকারার। নানা ধরনের সিগন্যালকে প্রক্রিয়া করার জন্যও ট্রানজিস্টর ব্যবহার করা হয়।

ট্রানজিস্টর রেজিস্টর, ক্যাপাসিটর, ডায়োড ইত্যাদি ব্যবহার করে অনেক প্রয়োজনীয় সার্কিট তৈরি করা হয়। ধীরে ধীরে প্রযুক্তির উন্নতি হতে থাকে এবং এই ধরনের নানা কিছু ব্যবহার করে তৈরি করা আন্ত একটি সার্কিট ছোট একটা জায়গার মাঝে ঢুকিয়ে দেয়া শুরু হলো এবং তার নাম দেয়া হলো ইন্টিগ্রেটেড সার্কিট। একটা ইন্টিগ্রেটেড সার্কিট হয়তো একটা নখের সমান তার ভেতরে প্রথমে হাজার হাজার ট্রানজিস্টর দিয়ে তৈরি সার্কিট ঢুকানো শুরু হয় এবং দেখতে দেখতে একটা আইসির ভেতর বিলিওন ট্রানজিস্টর পর্যন্ত বসানো সম্ভব হয়ে উঠতে থাকে! একটি ছোট চিপের ভিতর বিলিওন ট্রানজিস্টর ঢোকানোর এই প্রক্রিয়াকে বলা হয় VLSI বা Very Large Scale Integration. এই প্রক্রিয়াটি এখনো থেমে নেই এবং চিপের ভিতর আরো ট্রানজিস্টর ঢুকিয়ে আরো জটিল সার্কিট তৈরি করার প্রক্রিয়া এখনো চলছে।

একটি ছোট চিপের ভিতর বিলিওন ট্রানজিস্টর ঢ়ুকিয়ে অত্যন্ত জটিল সার্কিট তৈরি করার কারণে আমরা কম্পিউটার, ল্যাপটপ, ক্যালকুলেটর, চমকপ্রদ মোবাইল টেলিফোন ইত্যাদি অসংখ্য নৃতন নৃতন ইলেকট্রনিক্স যন্ত্রপাতি ব্যবহার করতে পারছি। এক সময় ইলেকট্রনিক্সের যে কাজটি করতে কয়েকটি ঘর কিংবা একটা আস্ত বিল্ডিংয়ের প্রয়োজন হতো এখন সেটা একটা ছোট চিপের ভেতর ঢুকিয়ে দেয়া সম্ভব হচ্ছে এবং সেগুলো দিয়ে তৈরি নানা ধরনের যন্ত্র আমরা এখন প্রেটে নিয়ে ঘুরে বেডাতে পারি!

13.5.3 এফ পি জি এ (FPGA, Fied Progammable Gate Array)

ইলেকট্রনিক্সের জগতের সর্বশেষ সংযোজন হচ্ছে এক পি জি আই। এক সময় একটা আই সি'র লক্ষ-কোটি ট্রানজিস্টর দিয়ে তৈরি সার্কিট একটা বিশেষ কাজ করার জন্য ব্যবহৃত হতো। এখন সম্পূর্ণ নৃতন ধরনের আই সি তৈরি হয়েছে যেখানে লক্ষ-কোটি ছোট ছোট সার্কিট (বা গেট) সাজানো থাকে কিন্তু তাদের ভেতরে কোনো কানেকশন দেয়া থাকে না। যে এটা ব্যবহার করতে চায় সে এই আই সি টিকে প্রোগ্রাম করে ভেতরের কানেকশন দিয়ে সেটাকে যে রকম ইচ্ছে সে রকম একটা সার্কিটে তৈরি করে নেয়। শুধু তাই নয় যদি এই সার্কিটটা পছন্দ না হয় তাহলে সেটা পরিবর্তন করে নৃতন একটা সার্কিট পাল্টে দিতে পারে। সেটা যেখানে ইচ্ছে সেখানেই করা যায় বলে নাম দেয়া হয়েছে কিন্তু প্রোগ্রামেবল বা কর্মক্ষেত্রে প্রোগ্রাম করার উপযোগী। গেট এরে (Gate Array) কথাটি এসেছে অসংখ্য সাজিয়ে থাকা গেট এর কারণে। নিঃসন্দেহে বলা যায় যতই সময় যেতে থাকবে ইলেকট্রনিক্সের জগতে এই এক পি জি এ ততই গুরুত্বপূর্ণ ভূমিকা রাখতে শুরুক করবে। একটি সময় ছিল যখন পুরনো সার্কিট দিয়ে তৈরি একটা যন্ত্র ব্যবহারের অনুপযোগী হয়ে সেটা কেলে দিয়ে সেখানে নৃতন একটি সার্কিট বসাতে হতো। এখন কিছুই করতে হয় না— শুধুমাত্র এক পি জি এ চিপের ভেতর পুরাতন সার্কিটের প্রোগ্রামটা সরিয়ে নৃতন সার্কিটের প্রোগ্রামটি চালাতে হয়। এক সময় প্রোগ্রামিং এবং ইলেকট্রনিক্স সম্পূর্ণ ভিন্ন দুটি বিষয় ছিল কিন্তু এখন দুটির মাঝে একটা সম্পূর্ণ নৃতন ধরনের সমন্বয় ঘটেছে।

13.5.4 কম্পিউটার

তোমরা সবাই কম্পিউটার ব্যবহার করেছ। যারা একটু ইতস্তত করছ তাদেরকে বলা যেতে পারে কম্পিউটার বলতেই যাদের চোখের সামনে একটা মনিটর একটা সিপিইউ বা কি-বোর্ড কিংবা ল্যাপটপের ছবি ভেসে ওঠে– শুধু সেগুলোই কম্পিউটার নয়। আমরা যে মোবাইল টেলিফোন ব্যবহার করি তার মাঝেও ছোট ছোট এবং পূর্ণাঙ্গ কম্পিউটার রয়েছে।

আধুনিক রুগতে কম্পিউটারের গুরুত্বটি বিশাল তার কারন এটি অন্য দশটি বঞ্জের মতো নয়। অন্য যে কোনো যন্ত্র বা টুল (tool) নর সময়েই একটা নির্দিষ্ট কাজ করতে পারে। একটা ক্লু দ্রাইভার

দিয়ে বাশি বাজানো সম্ভব নয় আনার বাশি দিয়ে জ্রু খোলা যায় না। কিছু কম্পিউটার এমন একটা যত্ত্ব.

যেটা দিয়ে সম্ভাব্য সকল কাজ করা নায় এবং কী কী করা বাবে তার সীমারেখা মাত্র একটি এবং সেটি হচ্ছে মানুহের সুজনশীলতা! একজন মানুষ যত সুজনশীল সে কম্পিউটারের তত বেশি ব্যবহার বের করতে পারবে! তাই কম্পিউটার দিয়ে আমরা যে রকম হিনাব (Compute) করতে পারি ঠিক সে রকম গান খনতে পারি, ছবি আঁকতে পারি, তথা আদান-প্রদান করতে পারি, যক্তপাতি নিয়ন্ত্রণ করতে পারিল এমনকী বারা ঘাঙ অপরাধী তারা এটা ব্যবহার করে মানুষকে প্রতারণা পর্যন্ত করে কেলে!

কম্পিউটারের গঠন: বারা কম্পিউটারের ভেতর উর্কি দিয়েছ, নিঃসন্দেহে তাদের মনে হতে পারে এটি খুবই জটিল একটি যন্ত্র কিছু তোমরা জেনে খুশি হবে এর কাজ করার মূল বিষয়টি খুবই নহজ।

ছবি 13,10: একটা কম্পিউটারের ব্লক ভারাখাম।

একটা কম্পিউটারের মূল অংশ দুটি— একটি হচ্ছে মাইকোপ্রনেলর অনটি হচ্ছে মেমোরি। ছবি 13.10) মেমোরির ভেতর নানা ধরনের নির্দেশ বা ইনমৌকশন জমা করা থাকে, নেওলো কিছু ডিজিটাল নিগনাল ছাড়া আর কিছুই নয়। মেমোরি পেকে এই ইনমৌকশনগুলো মাইকোপ্রসেবর পাঠানো হয়, মাইকোপ্রসেবর কোন ইনমৌকশনের জন্য কী করতে হবে সেটি জানে এবং তার জন্য বরাদকৃত কাজটি শেষ করে এবং কথন প্রয়োজন হয় তথন কলাকলটি আবার মেমোরিতে জমা করে দেয়। এভাবে মেমোরিতে রাখা সবগুলো ইনমৌকশন শেষ করা হলে আমরা বলে থাকি এটা তার প্রোদ্রাম পুরোটা শেষ করেছে। কম্পিউটারের তথা সংরক্ষণ করার জন্য হয় মেমোরির ওপর নির্ভর করা হয় না, পাকাপাকিভাবে নেখানে তথা রাখার ব্যবহা করা হয়— সেটাকে আমরা হার্ড দ্রাইভ বলে থাকি।

কম্পিউটারে একটা প্রোপ্তান চালাতে হলে তার বাথে বাইরে থেকে সোগাযোগ করতে হয়। যে সব বন্ধপাতি (কিবোর্ড কিংবা মাউন) দিয়ে কম্পিউটারের সাথে যোগাযোগ করা হয় তাদেরকে বলা হয় ইনপ্ট ডিভাইন। কম্পিউটার আবার তার তথা ব্যবহারকারীর কাছে দিতে পারে, যেদন বন্ধপাতি দিয়ে কম্পিউটার বাইরের জগতের সাথে যোগাযোগ করে (মনিটর, প্রিটার) তাকে বলা হয় আউটপ্ট ডিভাইন।

তবে আজকাণ কম্পিউটারের সাথে যোগাযোগের সবচেয়ে সহজ পদ্ধতি হয়েছ নেটওয়ার্নিং! প্রত্যেকটা কম্পিউটারেই নেটওয়ার্ক ইন্টারকেস কার্ড (NIC) থাকে যেটি দিয়ে সেটি একটি নেটওয়ার্কের সাথে যুক্ত থাকে এবং কম্পিউটার সেটি দিয়ে তথা গ্রন্থে করে আবার তথাকে প্রেরণ করে।

13.5.5 নেটগুৱার্ক ও ইন্টারনেট

একটা প্রতিষ্ঠানের কম্পিউটারগুলোকে সাধারণত একটা লৌওয়ার্ক দিয়ে পরস্পরের সাথে যুক্ত করে দেয়া হয় যেন একটা কম্পিউটার অন্য একটা কম্পিউটারের সাথে যোগাযোগ করতে পারে আবার প্রয়োজন হলে একটা কম্পিউটার অন্য কম্পিউটারের Resource ব্যবহার করতে পারে। এই ধরনের নেটগুরার্ক্কে LAN (Local Area Network) বলা করে গাকে। আজকাল LAN তৈরি করার জন্য

একটা সৃইচের সাথে
অনেকগুলো কম্পিউটার যুভ
করে সুইচগুলোকে পরস্পরের
সাথে যুভ করে দিতে হয়। যখন
একটা কম্পিউটারকে অনা
কম্পিউটারের যোগাযোগ করতে
হয় সোটি যদি তার নিজের
সুইচের সাথে যুভ কম্পিউটারের
মাঝে পেরে যায় তাহলে তার
সাথে সরাসরি যোগাযোগ করে।
সোধান না পেলে অনা সুইচে
গৌজ করতে থাকে।

একটি প্রতিষ্ঠানের একটি LAN কে অনা একটি

ছবি 13.11: নেটওয়াকের সক্ষে যুক্ত একাদিক I.A.W.

প্রতিষ্ঠানের অন্য একটি LAN এর সাথে যুক্ত করার জন্য রাউটার (Router) ব্যবহার করা হয়। (ছার 13.11) বিভিন্ন নেটিওয়ার্ক (Network)- এর নিজেদের মাঝে Inter Connection করে Networking কে Internet বলা হয়। বলা যেতে পারে সারা পৃথিবীর সকল কম্পিউটারই এখন ইন্টারনেটের মাধ্যমে একে অন্যের সাথে যুক্ত আছে।

ইন্টারনেটের ব্যবহার পৃথিবীর তথা আদান-প্রদানের জগতে একটি খুব বড় মৌলিক পরিবর্তন এনেছে, এর স্তিকোরের প্রভাব কাঁ হবে, সোটি দেখার জন্য স্বাই সাগ্রহে অপেন্দা করে আছে।

जनुशीलनी

প্রশ:

- 1. ħ এর মান খুব কম বলে আমাদের দৈনন্দিন জীবনে অনিশ্চয়তার সূত্র কোনো প্রভাব ফেলে না। যদি ħ এর অনেক বড় হতো আমাদের দৈনন্দিন জীবনে কী সমস্যা হতো?
- 2. ভর থেকে যদি শক্তি তৈরি করা যায়, তাহলে কি শক্তি থেকে ভর তৈরি করা সম্ভব হবে?
- 3. নিউট্রন যদি বিটা কণা বের করে প্রোটনে পরিবর্তিত হতে পারে তাহলে নিউক্লিয়াসের ভেতর সব নিউট্রন ধীরে ধীরে প্রোটনে পরিবর্তিত হয়ে যায় না কেন?
- 4. আমাদের পরিচিত জগৎটুকু শুধু মাত্র তিনটি ফার্মিওন কণা দিয়েই ব্যাখ্যা করা সম্ভব। সেই তিনটি ফার্মিওন কী কী?
- 5. তাপমাত্রা বাড়ালে রেজিস্টরের রোধ বেড়ে যায় কিন্তু সেমিকন্ডাক্টরে কমে কেন?

গাণিতিক সমস্যা:

- 1. একটি ইলেকট্রন $10^6 {
 m m/s}$ বেগে যাচ্ছে তার ডি ব্রগলি তরঙ্গ দৈর্ঘ্য কত? একটি প্রোটন একই বেগে গেলে তার তরঙ্গ দৈর্ঘ্য কত? (সবুজ আলোর তরঙ্গ দৈর্ঘ্য $5 imes 10^6 {
 m m/s}$)
- 2. একটা ইলেকট্রনকে একটা প্রোটনের সমান ভর পেতে হলে তাকে কতো বেগে যেতে হবে?
- 3. 1kg ভরকে শক্তিতে রূপান্তরিত করা হলে সেটি কী পরিমাণ শক্তি দেবে?
- 4. একটি জীবাশাতে যে পরিমাণ C_{14} থাকার কথা তার থেকে 16 গুণ কম আছে। জীবাশাটি কত পুরাতন?
- 317 সংখ্যাটিকে বাইনারি, অক্টাল এবং হেক্সা-ডেসিমেলে প্রকাশ করো।

চর্তুদশ অধ্যায় মানুষের জনা পদার্থবিজ্ঞান (Physics for Humanity)

রিচার্ড কৃষ্টিনয়ানে

वित्ताण आनित्तमत्त्व ध्वत्यक्षत आद्मिविकान अष्टिक शताथित्वाची कायांनाम विद्वाराद्वी जिनातित्व ध्वतातित्व क्षता क्षेत्रक उनाहिक उनाहिक एकाने (स्वा वर्ष) वर्षेत्रक उनाहिक जिनादिक ध्वता वर्षेत्रक उनाहिक जिनादिक ध्वता वर्षेत्रक ध्वता वर्षेत्रक ध्वता वर्षेत्रक ध्वता अधिक प्रतिक प्रतिक प्रतिक ध्वता अधिक प्रतिक प्रतिक ध्वता अधिक प्रतिक प्रतिक प्रतिक वर्षेत्रक प्रतिक प

Richard Feynman(1918-1988)

অজানাকে জানাই জন্য মানুষের একটা জীক্ত আকাক্ষা থাকে এনং মে জন্য বিজ্ঞানী গবেষকরা বিজ্ঞানের নানা রহন্য উন্মোচন করে সাটেছন। পদাশবিদ্যানের অসপশা চমকপ্রদ আবিদ্যার আমাদেরকৈ হতবাক করে দেন কিছু মজার ব্যাপার হচ্ছে, একই সাথে এই চ্যাকপ্রদ আবিদ্যারওলোকে ব্যবহার করে মানুষের জীবনকে আরো নহজ, অসলময় এবং অসপন করা লঙ্কর হয়েছে। জীবনের নানা ক্ষেত্রে রবহার করা নিজানের এ রক্য চমংকার করেকটা আবিদ্যারের রগা। এখানে বলা হলো:

14.1 পিণ্ডরি অঞ্চ রিগেটিভিটি (Theory of Relativity)

্তামরা জান কিজানী আইনটোইনের খিপ্রার অফ রিলোটিভিটি বংলছে বস্তুর ভব আর শভিছ একই ব্যাপার, এক ভব m। কে মদি শভিতে কাপানে করা যায় তাহলে সেই পতি F এক এব পরিমাণ হছে $E=mc^2$, যোগানে c হলে আলোর বেয়। আলোর বেয়। c ২০০ c ২০০ নিশান সেটাকৈ বর্গ

করা হলে আরো বিশাল হয়ে যায়, যার ার্থ অন্ধ একট্ ভরকে শতিত্ত জ্পান্তর করতে পারলে আমরা বিশাল শতি পেয়ে যাব, নিউক্লিয়ার শতিকেন্দ্রে ঠিক এই ব্যাপারটিই করা হয়।

নিউক্লিয়ার শক্তিকেন্দ্রে যেসর জালানি কবহার করা হয় তার একটি হচ্ছে ইউরেনিয়াম 235 এখানে 92 টি প্রোটন এবং 143 টি নিউট্রন রয়েছে। প্রকৃতিতে এর পরিমাণ থব কম, মাত্র 0.7%, এর অধার, 703,800,000 (704 মিলিয়ন) বংসর। এই ইউরেনিয়াম 235 নিউক্লিয়াম খব সহজেই আরেকটা নিউট্রনকে গ্রহণ করতে পারে (যদি সে নিউট্রনের গতি কম হয়) তখন ইউরেনিয়াম 235 প্রোপ্রি অস্থিতিশীল হয়ে যায় এটা তখন Kr^{92} এবং Ba^{144} এই দুটো হোট নিউক্লিয়াসে ভাগ হয়ে যায় তার সাথে সাথে আরো তিনটা নিউট্রন বের হয়ে আরে (হবি 14,1) যেটা নিচের সমীকরণে দেখানো হয়েছে। কেই যদি সমীকরণের বাম পাশে যা আছে তার ভর বের করে এবং সেটাকে ডান পাশে যা আছে তার ভরের সাথে তুলনা করে তাহলে দেখবে ডান পাশে ভর কম, যেটুক্ তর কম সেট্রে আসরে $E=mc^2$ এর শক্তি হিসেবে রের হয়ে এসেছে।

$$^{1}_{0}n + ^{235}_{92}U \rightarrow ^{92}_{36}Kr + ^{141}_{56}Ba + 3^{1}_{0}n$$

এই বিক্রিয়ার যে তিনটি নিউট্টন বের হয়ে এসেছে তারা আসলে প্রচ^{্ন} গতিতে বের হয়ে আসে তাই পুর সহজে অন্য ইউরেনিয়াম (U^{TC}) সেগুলো হরে রাখ্যত পারে না। কোনোভাবে যদি এগুলোর গতি শতি

ছবি 14.1: U - নিউন্নিয়াল তেঙ্গে শক্তি হালকা নিউন্নিয়ান, নিউটন এবং শক্তিন উৎপাদন।

কমানো যায় ভাহলে মেগুলো অনা ইউরেনিয়াম (U⁶⁸) নিউক্লিয়ানে আটকা পড়ে সেটাকেও ভেঙ্গে দিয়ে আরো কিছু শক্তি এবং আরো তিনটি নতন নিউট্টন বের করবে! সেই নিউট্রনগুলো অবার নিউক্লিয়াসকে ভেঙ্গে দেবে-এবং এই স্পত্তই থাকুবে. 19-প্রতিয়াকে (52) আগকশন ।

এই পদ্ধতিতে প্র্যাশ তাম

শক্তি বের হয়ে আন্সে, সেই তাপশক্তি ব্যবহার করে পানিকে বাদ্পীভূত করে সেই বাদ্প দিয়ে টারবাইন ঘরিয়ে জেনারেটর থেকে বিদাৎ তৈরি করা হয় এবং এ রকম বিদ্যুৎকেন্দ্রকৈ আমরা বলি নিউক্লিয়ার বিদ্যুৎকেন্দ্র এরকম একটা বিদ্যুৎকেন্দ্র খব সহজেই হাজার মেগাওয়াট বিদ্যুৎ পাওয়া সম্ভব। তবে এই নিউক্লিয়ার বিক্রিয়ার পর যে বর্জা পদার্থ তৈরি হয় সেগুলো ভয়ংকর রকম তেজজিয়, তাই সেগুলো প্রক্রিয়া করার সময় অনেক রকম সাবধানতা নিতে হয়। নিউক্লিয়ার বিক্রিয়ার পর যে বাড়াতি নিউন্টিন বের হয় কোনোভাবে সেগুলোকে অন্য কোথাও শোষণ করিয়ে নিতে পার্লেই নিউক্লিয়ার বিক্রিয়া বন্ধ হয়ে যায়। নিউক্লিনকে শোষণ করার জন্য বিশেষ ধরনের রঙ নিউক্লিয়ার রি আর্ট্রের থাকে যেগুলোকে বলে কর্ট্রোলা রঙ।

14.2 লেজার (Laser)

একটা শ্রমণ্ডর মারো শক্তি দেয়া হলে সেটি উচ্চতর শক্তিতে চলে যেতে পারে। তোমরা মদি কোয়ান্ডাই মোনানিক্স নাবহার করে পরমানুর সম্ভাব্য কী কী শক্তি থাককে পারে বের করে। তাহলে দেখনে এই শক্তিওলার তার একেবারেই সুনিনিট্ট ছবিতে একটা পরমানুর দুটি শক্তি তার স্ববচেয়ে কম শক্তির তার এবং তার উপরের স্তরটি দেখালো হয়েছে। এখন যদি এই পরমানুর কাছে এই দুটো শক্তিপ্তরের পার্থক্যের ঠিক সমান শক্তি আছে এ বক্ষা একটি আলোর কণা শঠিলো হয় এইকে পরমানুটি দেই আলোর কণাটিকে গ্রহণ করে নিচের শক্তিত্বর গেকে উপরের শক্তিত্বরে চলে যাবে। এই প্রক্রিয়াটির নাম শোষণ (absorption)। (চলি 14.2)

কোনো একটা প্রক্রিয়ার শর্মন একটি পরমানু উচ্চতর কোনো শক্তিস্তরে পৌছে শাল্ল মেটি কিছু সেখানে বেশী সময় পাকতে পারে না– কোনো এক সময় সেটি শক্তির নিচের স্তরে নেমে আমে এবং

শি 14.2: এ। প্রাত । (II) নিচ্ছেল (৫) সিন্দ্রনাটক নিচ্ছেল

ষেটুকু শক্তি কমে আনে
ঠিক দেই পরিমাণ
শক্তির একটি আলোক
কথা বের হয়ে আমে।
কোরান্টাম মেকানিছ
এই প্রক্রিয়াটি ব্যাখা।
করে মোটামোটি একটা
আদ্যাক্ত করতে
প্রক্রেণ্ড ঠিক কেন

সময় আলোক কথাটি বের হতে আসরে সেটি সম্পর্কে কোনো তথ্য দিতে পারে না। এখাৎ আমরা স্থানি পরমাণুটি নিচের স্তরে চলে একে একটি আলোক কথা বের করে দেবে কিন্তু কথন সেটি ঘটবে আমরা মেটি স্থানি না। এই প্রক্রিয়াকে বলা হয় বিজ্ঞাব (emission)।

এগন বজনা করে নাও যে এনটি গরমাণু উপরের শক্তি স্তরে আছে— কনি স্থান যে এটা নিচের তারে নেনে এনে একটি আলোর কথা বের করে দেবে, কিন্তু কেউ মানে না সেটি ঠিক কথন ঘটবে। কিন্তু কুমি যদি ঠিক একই শক্তির একটি আলোক কথা সেই শরমাণুর কাছে পাঠাও তাহলে একট অতাবদীয় ন্যাপার ঘটে। এই আলোক কথাটি তখন প্রমাণুকে বাধা করবে ঠিক সেই মুহূতে আলোক কথাটি ত্যাগ করতে ! অর্থাৎ কুমি একটি আলোক কথা পাঠাবে এবং দুটি আলোক কথা ফেরত পাবে। এই গরনের আলোর বিচ্ছুরণকে বলে স্টিমুলেটেড এমিশন (stimulated emission)। এই স্টিমুলেটেভ এমিশনই হচ্ছে লেন্সার তৈরির বহসা।

লেজার তৈরি করতে হলে কোনো একটা শদ্ধতিতে পরমাণুগুলোকে উচ্চ শক্তিন্তরে নিয়ে যেতে হয়। যে পদ্ধতিতে পরমাণুগুলো উচ্চ শক্তি ন্তরে নেয়া হয় সেটাকে বলে পাশিপং। পাশিপং করে পরমাণুগুলোকে উচ্চ শক্তি তার নেয়ার পর সেখানে সেগুলো নিচের শক্তিন্তরে এসে আলোক কণা বের করে দেয়ার জন্য অপেক্ষা করতে পাকে। তবল যদি একটি আলোক কণা হাজির হয় সেটি একটি পরমাণু পোকে আরেকটি আলোক কণা বের করে আনে। সেই দুটি আলোকে কণা তথন অন্য দুটি পরমাণু থেকে আরো দুটি আলোক কণ। বিচ্ছুরিত করে। এই চারটি তখন অন্য চারটি থেকে বিচ্ছুরিত করে এবং মুহূর্ত সবস্থলো থেকে আলো বিচ্ছুরিত হয়ে তীব্র শক্তিশালী আলোক রশ্মির জন্ম দেয়। আমরা সেই আলোকে বলি LASER যেটি আসলে Light Emission by Stimulated Emission or Radiation

কথাটির প্রত্যেকটি শব্দের প্রথম অক্ষর।

সব পর্মাণুতেই শক্তি প্রয়োগ করে উচ্চ শক্তিব্যর নের যায়, কিন্তু আসলে যে কোনো পর্মাণ দিয়ে লেজার তৈরি করা যায় না— পর্মাণুর শক্তির স্তর্গুলোর অনা বৈশিষ্ট্যও থাকতে হয়। কাজেই সঠিক শক্তি স্তর পাশ্পিং সহজ পদ্ধতি ইত্যাদি অনেকগুলো প্রয়োজনীয় বিষয় থাকলেই সেটাকে লেজার বানানো যায়। 14.3 ছবিতে একটা আরগন আয়ন লেজারের ছবি দেখানো হয়েছে।

ছবি 14.3: একটি আর্থন আয়ন লেজার

14.3 প্রেন (Plane)

তোমরা সবাই আকাশে প্লেনকে উদ্ভে যেতে দেখেছ এবং এটা নিশ্চয়ই তোমাদের মনে প্রশ্নের জন্ম দিয়েছে যে কেমন করে এত বড় এবং ভারী একটা প্লেন আকাশে উছে যেতে পারে এবং উড়তে উড়তে কেন এটা নিচে পড়ে যায় না! এর উত্তরটাও আসলে পদার্থবিজ্ঞানের একটা সূত্রের মাঝে লুকিয়ে আছে! সূত্রেটিকে বলা হয় বার্লুলির সূত্র ৷ কোখাও যদি বাতাসের প্রবাহ হয় তাহলে সেই প্রবাহটিকে বিরেচনায় রেখে শক্তির নিতাতার সূত্রটিকে এভাবে লেখা যায়: যদি বাতাসের চাপ হয় P, ঘনতু ρ বেগ v এবং উচ্চতা h হয়, তাহলে

$$P + \frac{1}{2}\rho v^2 + \rho g h$$

এর মান অপরিবর্তিত থাকে।

আমরা এই সূত্রটি কবহার করে দেখাতে পারি কেন প্লেন আকানে উঠতে পারে। খালি চোখে পাখার প্রস্তুচেহনের কোনো বৈশিষ্ট্য নেই মনে হলেও আসলে কিন্তু এর সুনির্দিষ্ট বৈশিষ্ট্য রয়েছে: এর নিচের অংশ সোজা কিন্তু উপরের অংশ বাঁকা। 14.4 ছবিতে যে রকম দেখানো হয়েছে সেভাবে পাখার নিচের ওক থেকে শেষ পর্যন্ত দূরত্ব কম, কিন্তু পাখার উপর ওক

ছবি 14.4: মানের পাখ। মিরে বহুমান বাতাদের জর।

তুলনামূলকভাবে বেশি।

একটা প্লেন যখন সামনের দিকে এগিয়ে যায় তখন পাখার উপর এবং নিচ দিয়ে বাতাসে বয়ে যায়। আমরা ব্যাপারটিকে সহজভাবে বোঝার জন্য কল্পনা করে নিই যে পাখাটি স্থির বরং বাতাসের স্তরটি প্লেনের গতিতে পাখার নিচ এবং উপর দিয়ে অতিক্রম করছে।

ধরা যাক পাখার নিচ দিয়ে যে বাতাস অতিক্রম করছে তার বেগ v_1 , তাহলে পাখার উপর দিয়ে যে বাতাস অতিক্রম করছে তার গতিবেগ যদি v_2 হয় তাহলে v_2 নিশ্চয়ই v_1 থেকে বেশি হবে। কারণ পাখার উপরের অংশের দূরত্ব নিচের অংশ থেকে বেশি এবং একই সময়ে সেই বেশি দূরত্ব অতিক্রম করতে হলে তার বেগ v_2 বেশি হতেই হবে। এখন পাখার নিচের অংশে বাতাসের চাপ P_1 এবং উপরের অংশের চাপ যদি P_2 হয় তাহলে আমরা লিখতে পারি :

$$P_1 + \frac{1}{2}\rho v_1^2 + \rho g h_1 = P_2 + \frac{1}{2}\rho v_2^2 + \rho g h_2$$

চাপকে ক্ষেত্রফল দিয়ে গুণ করলে বল পাওয়া যায়। পাখার উপরে এবং নিচে উচ্চতা সমান ধরে নিলে $h_1=h_2$

$$P_1 = \frac{1}{2}\rho(v_2^2 - v_1^2) + P_2$$

অর্থাৎ P_1 এর চাপ P_2 থেকে $rac{1}{2}
ho(v_2^2-v_1^2)$ বেশি।

যেহেতু নিচে চাপ বেশি তাই সেটা বিমানের পুরো পাখার উপর বাড়তি বল প্রয়োগ করবে। এই বলটি যখন বিমানের ওজন থেকে বেশি হয়ে যায় তখন বিমানটি আকাশে উড়ে যেতে পারে।

তোমরা খুব সহজে এই পরীক্ষাটি করে দেখতে পার। 14.5 ছবিতে দেখানো উপায়ে একটা কাগজের উপর ফুঁ দাও, তোমার মনে হতে পারে ফুঁ- এর কারণে কাগজটা নিচে নেমে যাবে, কিন্তু দেখবে আসলে কাগজটা উপরে উঠে আসবে ঠিক বার্নুলির সূত্র যেভাবে দাবি করেছে!

14.4 প্রতিপদার্থ (Anti Particle)

ছবি 14.5: কাগজে ফুঁ দিলে সেটি উপরে উঠে যায়।

পদার্থ বিজ্ঞানের সবচে চমকপ্রদ একটি বিষয় হচ্ছে প্রতিপদার্থ। প্রত্যেকটি পদার্থেরই একটি প্রতি পদার্থ থাকে এবং যদি পদার্থ এবং প্রতিপদার্থ একে অন্যের সংস্পর্শে আসে তাহলে তারা একে অপরকে অদৃশ্য করে শক্তিতে রূপান্তরিত হয়ে যায়। অনেকের ধারণা হতে পারে এটি বুঝি পদার্থবিজ্ঞানের একটি তাত্ত্রিক বিষয় এবং বাস্তবে তার কোনো অন্তিত্ব নেই; কিন্তু সেটি সতি নয়, এর শুধু যে অন্তিত্ব আছে তা নয় পদার্থ এবং প্রতিপদার্থের শক্তিতে রূপান্তরিত হওয়াকে ব্যবহার করে Position Emission Tomography নামে শরীরের শুতরে ত্রিমাত্রিক ছবি তোলার একটি বিস্ফাকর যন্ত্র পর্যন্ত তৈরি হয়েছে। (ছবি 14.6)

কারো শরীরের ভেতরে ছবি তোলার আগে সেই মানুষটির শরীরে পজিট্রেন নির্গত করে এ রকম একটি তেজব্রিয় আইসোটোপ মেশানো গ্লুকোজ ঢুকিয়ে দেয়া হয়। শরীরের যে কোষ যত বেশি সক্রিয় সেই কোষ তত বেশি গ্লুকোজ ব্যবহার করে এবং সেখানে এই তেজব্রিয়

ছবি 14.6: পজ্জিন এমিশান উমোগ্রাকি (Position Emission Tomography) নামে শরীরের ভেতরে ত্রিমাত্রিক ছবি ভোলার একটি বিস্ময়কর যন্ত্র

আইসোটোপটি জমা হয়। এই আইসোটোপ থেকে পজিট্রন নামে ইলেকট্রনের প্রতিপদার্থটি বের হয় এবং প্রায় সাথে সাথে কাছাকাছি কোনো ইলেকট্রনের সংস্পর্শে এস শক্তিতে রূপান্তরিত হয় এবং শক্তি হিসেবে দুটো গামা রশ্মি ত্যাগ করে

$$e + e^+ \rightarrow 2\gamma$$

PET নামে শরীরের ভেতরকার সক্রিয় অংশের ছবি তোলার এই যন্ত্রটি এই দুটি গামা রশ্মিকে detect করে এবং নিখুঁত হিসাব করে গামা রশ্মি দুটি ঠিক কোথা বের হয়ে এসেছে সেটি বের করে ফেলে। সেই তথ্যগুলো দিয়ে কোথায় কোথায় শরীরের কোষ বেশি সক্রিয় সেটি বের করা হয়।

Position Emission Tomography ব্যবহার করে মন্তিক্ষের ভেতরে কোন অংশ বেশি সক্রিয় সেটিও বের করা যায়। একজন মানুষ যখন ভিন্ন ভিন্ন বিষয় নিয়ে চিন্তা করে তখন কোন বিষয় নিয়ে চিন্তা করার সময় মন্তিক্ষের কোন অংশ সক্রিয় হয়ে উঠে সেখান থেকে মন্তিক্ষের কার্যকলাপের একটি নূতন দিগন্ত বের হয়ে আসতে শুক্ল করেছে।

এটি হয়তো খুব বেশি দেরি নেই যখন একজন মানুষের মন্তিকের সক্রিয়তা দেখেই আমরা সেই মানুষের মনের কথা বলে দিতে পারব।

মানুষের কল্যাণের জন্য পদার্থবিজ্ঞান ব্যবহার করে আরো কী কী আবিদ্ধার করা হয়েছে তার তালিকা কখনো শেষ হবার নয়। এই বইয়ে এই চারটি মাত্র উদাহরণ দেয়া হল তোমরা নিশ্চয়ই এ রকম আরো অসংখ্য উদাহরণ খুঁজে বের করতে পারবে!

পরিশিষ্ট - 1

A1:1 বন কোপ

আমারা জ্যামিতি পঞ্জার নামায় যে ক্রাণ আফি, সেটা নার নামায় একটা নামতালে আকা হয়। নাই কোগগুলি দ্বিমানিক। কিছু নিমানিক কোণও হতে পারে। ছবি A.L. নাই কোগটিকে রলে মন কোণ তার পরিমাণ

$$\Omega = \frac{1}{2}$$

্লেখানে এ হলে একটা ক্ষেত্রকর এক ন ইয়াছ আপতিক কোল থেকে সেই ক্ষেত্রকরের দলত। কোমহা জান কাত্রকে একটা বিস্তুতে স্কৃতি কোল ৫৮, বন কোমের বেলার একটা বিস্তুত স্বচ্চেরা বিভারের । — Steredion.

त्वि A1.11 रग उसा

A1.2 এসি ডিসি

এনি (AC) বলতে রোঝানো হয় Alternating Current অর্থাৎ যে বিদ্যুৎ প্রবাহ নিয়ানতভাবে পালেটিত থেকে নেগোটিতে পার্বতন হয়। তিনি (DC) হয়েত Direct Current অ্থাৎ যার পরিবতন হয়। না। নন্যা অ্থাতে নেটি আরো বিত্তাসনে কর্ণনা করা আনে।

পরিশিষ্ট - 2

পরমানুর তালিকা (List of Elements)

(এখন কৰাম পারমাননিক লংকা), ফিতীয় কলান প্রমানুর নাম, তৃতীয় কলান প্রমানুর এতীক। তেন্দ্রজন মৌগভলি তারকা দিয়ে দেখানো হয়েছে।)

1	Hydrogen	- H
2	Helium	He
3	Lithiam	U
4.	Beryllium	Be
5	Baron	В
6	Carbon	C
7	witrogen	N
8	Oxygen	O
9	Fluorine	E
10	Neon	Ne
11	Sodium	Na
12	Magnesium	Mg
13	Aluminum	Al
14	Silicon	5i
15	Phosphorus	P
16	Sulfur	5
17	Chlorine	CI
18	Argon	Ar
19	Potassium	K
20	Calcium	Ca
21	Scandium	Sc
22	Titanium	Tj
23	Vanadium	V
24	Chromium	Çr
25	Manganese	Mn
26	fron	Fe
27	Cotralt	Co
28	Nicke)	Mi

19	Саррет	Cu
30	Zinc	Zn
31	Gallium	Ga
32	Germanium	Ge
33	Arsenic	As
34	Selenium	Se
35	Bromine	Br
36	Krypton	Kr
37	Rubidium	Rb
38	Strontium	Sn
39	Yttrium	Y
40.	Zirconium	Zr
41	Niabium	Nb
42	Molybdenum	Mo
43	Technetium*	To
44	Ruthenium	Ru
45	Rhodium	Rh
46	Palladium	Pd
47	Silver	Ag
48	Cadmium	Cd
49	Indium	In
50	Tin	Sn
51	Antimony	Sb
52	Tellurium	Te
53	lodine	1
54	Xenon	Хe
55	Cesium	Cs
56	Barium	Ba

57	57 Lanthanum	
58	Cerium	Ce
59	Praseodymium	Pr
60	Neodymlum	Net
61	Promethium*	Pm
62	Samarium	Sm
63	Europium	Eu
54	Gadolinium	Gd
65	Terbium	Tb
56	Dysprosium	Dy
67	Holmium	На
68	Erbium	Er
69	Thulium	Tm
70	Ytterblum	Vb
71	Lutetium	Lu
72	Hafnium	Hf
73	Tantalum	Ta
74	Tungsten	W
75	Rhenium	Re
76	Osmium	Os.
77	lridlum	16
78	Platinum	Pt
79	Gold	Ац
80	Mercury	Hg
81	Thallium	T)
82	Lead	Pb
83	Bismuth	Bi

Polonium*	Po
Astatine*	At
Radon ^e	Rn
Francium*	Fr
Radium*	Ra
Actinium*	Ac
Thorium*	Th
Protactinium*	Pa
Uranium*	u
Neptunium*	Np
Flutonium*	Pu
Americium*	Am
Curium*	Cm
Berkelium*	Bk
Californium*	Cf
Einsteinium*	Es
Fermium*	Fm
Mendelevium*	Md
Nobelium*	No
Lawrenclum*	Lr
Rutherfordlum*	Rf
Dubnium*	ĎЬ
Seaborgium*	Sg
Bohrium*	Bh
Hassium*	Hs
109 Meitnerium*	
	Astatine* Radon* Francium* Radium* Actinium* Thorium* Protactinium* Uranium* Neptunium* Plutonium* Curium* Berkelium* Californium* Fermium* Fermium* Mendelevium* Nobelium* Lawrencium* Rutherfordium* Dubnium* Berkelium* Hassium*

পরিশিষ্ট - 3

মৌলিক ধ্ৰুব সমূহ (Fundamental Constants)

নাম	প্রতীক	भाग
আলোর বেগ	c	$2.9979258 \times 10^8 m/s$
প্রাধ্যকর ধ্রুনক	h	$6.62660755 \times 10^{-34} Js$
নহাকৰীয় খ্ৰুপ্ৰক	G	$6.67259 \times 10^{-11} m^3/kg s^2$
বেশ্চিজন্মান ধ্রুবক	k	$1.380658 \times 10^{-23} //K$
গ্যাস ধ্রুবক	R	8.3144621 j/mol K
আড়েগাড়োর সংখ্যা	NA	$6.0221 \times 10^{28} / mol$
ইলেট্রনের তার্ন	ę.	$1.6021733 \times 10^{-9} C$
কুলন্মের ধ্রুনক	K	$8.987552 \times 10^{5} N m^{2}/C$
ইলেউনের ভর	· m,	$9.1093897 \times 10^{-31} kg$
যোটনের ভর	107,	$1.6726231 \times 10^{-27} kg$
নিত্তীবুলের জ্ব	M _P	$1.6749286 \times 10^{-27} kg$
বাছাগের কাশ	atm	10132.5 Pa