

Inter**Lab**

FCC Measurement/Technical Report on

RFID module Model: MIRARE TGS READER

FCC ID:ZQWGIT000001

Report Reference: MDE_TGYM_1101_FCCa

Test Laboratory:

Borsigstr. 11 Germany 7Layers AG 40880 Ratingen

Note:

The following test results relate only to the devices specified in this document. This report shall not be reproduced in parts without the written approval of the test laboratory.

7 layers AG Borsigstrasse 11 40880 Ratingen, Germany Phone: +49 (0) 2102 749 0 Fax: +49 (0) 2102 749 350 www.7Layers.com Aufsichtsratsvorsitzender • Chairman of the Supervisory Board: Ralf Mertens Vorstand • Board: Dr. H.-J. Meckelburg

Registergericht • registered in: Düsseldorf, HRB 44096 USt-IdNr • VAT No.: DE 203159652 TAX No. 147/5869/0385

Table of Contents

0	Sun	nmary	3
	0.1 0.2	Technical Report Summary Measurement Summary	3 4
1	Adn	ninistrative Data	5
	1.1 1.2 1.3 1.4	Testing Laboratory Project Data Applicant Data Manufacturer Data	5 5 5 5
2	Tes	t object Data	6
	2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8	General EUT Description EUT Main components Ancillary Equipment Auxiliary Equipment EUT Setups Operating Modes Special software used for testing Product labelling	6 7 7 8 8 8
3	Tes	t Results	9
	3.1 3.2 3.3 3.4	Spurious radiated emissions Occupied bandwidth Spectrum mask Frequency tolerance	9 13 14 15
4	Tes	t Equipment	17
5	Pho	to Report	25
6	Set	up Drawings	25
7	FCC	and IC Correlation of measurement requirements	26
8	Ann	ex measurement plots	27
	8.1 8.2	Occupied bandwidth Spectrum mask	27 29

0 Summary

0.1 Technical Report Summary

Type of Authorization

Certification for an intentional radiator operating at 13.56 MHz

Applicable FCC Rules

Prepared in accordance with the requirements of FCC Rules and Regulations as listed in 47 CFR Ch.1 Parts 2 (10-1-11 Edition) and 15 (10-1-11 Edition). The following subparts are applicable to the results in this test report.

Part 2, Subpart J - Equipment Authorization Procedures, Certification

Part 15, Subpart C – Intentional Radiators

§ 15.207 Conducted limits

§ 15.209 Radiated emission limits; general requirements

§ 15.215 Additional provisions to the general radiated emission limitations

§ 15.225 Operation within the band 13.110-14.010 MHz

Summary Test Results:

The EUT complied with all performed tests as listed in chapter 0.2 Measurement Summary.

0.2 Measurement Summary

FCC Part 15, Subpart C § 15.207 Conducted Emissions AC Power line The measurement was performed according to ANSI C63.4 2009 **OP-Mode** Setup **Final Result** op-mode 1 Setup_01 AC port (power line) N/A FCC Part 15, Subpart C §15.209 Radiated Emissions 2009 The measurement was performed according to ANSI C63.4 Final Result OP-Mode Port Setup Setup_01 passed op-mode 1 Enclosure FCC Part 15, Subpart C § 15.215 Occupied Bandwidth The measurement was performed according to FCC § 2.1049 10-1-11 Edition Final Result OP-Mode Setup Port op-mode 1 Setup_02 Enclosure passed FCC Part 15, Subpart C § 15.225 Spectrum Mask 2009 The measurement was performed according to ANSI C63.4 **Port** Final Result OP-Mode Setup Setup 01 Enclosure passed op-mode 1 FCC Part 15, Subpart C § 15.225 Frequency Tolerance The measurement was performed according to FCC § 2.1055 10-1-11 Edition Final Result OP-Mode Setup Port

N/A not applicable (the EUT is powered by DC)

Setup_01

Responsible for Accreditation Scope

op-mode 2

Responsible for Test Report:

Enclosure

7 layers AG, Borsigstr. 11 40880 Ratingen, Germany Phone +49 (0)2102 749 0

passed

1 Administrative Data

1.1 Testing Laboratory

Company Name:	7Layers AG
Address	Borsigstr. 11 40880 Ratingen Germany
This facility has been fully described in a under the registration number 96716.	report submitted to the FCC and accepted
The test facility is also accredited by the Laboratory accreditation no.:	following accreditation organisation: DAkkS D-PL-12140-01-01
Responsible for Accreditation Scope:	DiplIng. Bernhard Retka DiplIng. Robert Machulec DiplIng. Andreas Petz
Report Template Version:	2012-03-14
1.2 Project Data	
Responsible for testing and report:	DiplIng. Marco Kullik
Date of Test(s): Date of Report:	2012-06-06 to 2012-07-26 2013-02-19
1.3 Applicant Data	
Company Name:	TECHNOGYM SPA
Address:	Via G. Perticari, 20 Gambettola (FC) Italy
Contact Person:	Mr. Pietro Lotti
1.4 Manufacturer Data Company Name: Address:	please see applicant data
Contact Person:	
Contact i ci son.	

2 Test object Data

2.1 General EUT Description

Equipment under Test RFID transceiver

Type Designation: MIFARE TGS KEY READER

Kind of Device: RFID transceiver operating at 13.56 MHz

(optional)

Voltage Type: DC

Voltage level: 12 V /

General product description:

The MIFARE TGS KEY READER is a 13.56 MHz contactless smartcard reader and encoder for PC for reading RFID tags.

Specific product description for the EUT:

The EUT is a module, which can be built-in to TECHNOGYM equipment to enable the use of RFID tags.

The EUT provides the following ports:

Ports

Power and control connector Enclosure

The main components of the EUT are listed and described in Chapter 2.2.

2.2 EUT Main components

Type, S/N, Short Descriptions etc. used in this Test Report

Short Description	Equipment under Test	Type Designation	Serial No.	HW Status	SW Status	Date of Receipt
EUT A (Code: VJ010A01)	Technogym RFID reader	MIFARE TGS KEY READER	001	0WQ00340	1.29.00	2011-10-02

NOTE: The short description is used to simplify the identification of the EUT in this test report.

2.3 Ancillary Equipment

For the purposes of this test report, ancillary equipment is defined as equipment which is used in conjunction with the EUT to provide operational and control features to the EUT. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Ancillary Equipment can influence the test results.

Short Equipme		Type	Serial No.	HW Status	SW Status	FCC ID
Description	under Test	Designation				
_	_	_	_	_	_	_

2.4 Auxiliary Equipment

For the purposes of this test report, auxiliary equipment is defined as equipment which is used temporarily to enable operational and control features especially used for the tests of the EUT which is not used during normal operation or equipment that is used during the tests in combination with the EUT but is not subject of this test report. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Auxiliary Equipment can influence the test results.

Short Description	Equipment under Test	Type Designation	Serial no.	HW Status	SW Status	FCC ID
AUX 1	AC/DC	Mean Well	-	-		_
	supply	GS18A12				
AUX 2	Serial Cable	RS232 Serial	-	-	-	
		cable				

2.5 EUT Setups

This chapter describes the combination of EUTs and equipment used for testing. The rationale for selecting the EUTs, ancillary and auxiliary equipment and interconnecting cables, is to test a representative configuration meeting the requirements of the referenced standards.

Setup No.	Combination of EUTs	Description
Setup_01	EUT A + AUX 1 + AUX 2	setup for EUT active TRX

2.6 Operating Modes

This chapter describes the operating modes of the EUTs used for testing.

Op. Mode	Description of Operating Modes	Remarks
op-mode 1	CW carrier signal	EUT is transmitting a periodic CW signal and RX
		is continuously active.

2.7 Special software used for testing

Device uses a special "test mode" state in the firmware activated via RS232.

2.8 Product labelling

2.8.1 FCC ID label

2.8.2 Location of the label on the EUT

Please refer to the documentation of the applicant.

3 Test Results

3.1 Spurious radiated emissions

Standard FCC Part 15, 10-1-11 Edition Subpart C

The test was performed according to: ANSI C63.4-2009

3.1.1 Test Description

The test set-up was made in accordance to the general provisions of ANSI C63.4–2009 in a typical installation configuration. The Equipment Under Test (EUT) was set up on a non-conductive table $1.0 \times 2.0 \text{ m}^2$ in the semi-anechoic chamber. The influence of the EUT support table that is used between 30-1000 MHz was evaluated.

The measurement procedure is implemented into the EMI test software ES-K1 from R&S. Exploratory tests are performed at 3 orthogonal axes to determine the worst-case orientation of a body-worn or handheld EUT. The final test on all kind of EUTs is performed at 2 axes.

1. Measurement up to 30 MHz

The Loop antenna HFH2-Z2 is used.

Step 1: pre measurement

- Anechoic chamber
- Antenna distance: 10 m
- Detector: Peak-Maxhold
- Frequency range: 0.009 0.15 and 0.15 30 MHz
- Frequency steps: 0.1 kHz and 5 kHzIF-Bandwidth: 0.2 kHz and 10 kHz
- Measuring time / Frequency step: 100 ms

Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

Step 2: final measurement

For the relevant emissions determined in step 1, an additional measurement with the following settings will be performed. Intention of this step is to find the maximum emission level.

- Open area test side
- Antenna distance: according to the Standard
- Detector: Quasi-Peak
- Frequency range: 0.009 30 MHz
- Frequency steps: measurement at frequencies detected in step 1
- IF-Bandwidth: 200 Hz 10 kHz
- Measuring time / Frequency step: 100 ms

2. Measurement above 30 MHz and up to 1 GHz

Step 1: Preliminary scan

Preliminary test to identify the highest amplitudes relative to the limit.

Settings for step 1:
- Antenna distance: 3 m
- Detector: Peak-Maxhold

- Frequency range: 30 - 1000 MHz

Frequency steps: 60 kHzIF-Bandwidth: 120 kHz

Measuring time / Frequency step: 100 µs
Turntable angle range: -180° to 180°

- Turntable step size: 90°

Height variation range: 1 – 3 m
Height variation step size: 2 m
Polarisation: Horizontal + Vertical

Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

Step 2: second measurement

For the relevant emissions determined in step 1, an additional measurement with the following settings will be performed. Intention of this step is, to find out the approximate turntable angle and antenna height for each frequency.

- Detector: Peak - Maxhold

- Measured frequencies: in step 1 determined frequencies

- IF - Bandwidth: 120 kHz - Measuring time: 100 ms

- Turntable angle range: -180° to 180°

- Turntable step size: 45°

Height variation range: 1 – 4 m
Height variation step size: 0.5 m
Polarisation: horizontal + vertical

After this step the EMI test system has determined the following values for each frequency (of step 1):

- Frequency

- Azimuth value (of turntable)

- Antenna height

The last two values have now the following accuracy:

- Azimuth value (of turntable): 45°

- Antenna height: 0.5 m **Step 3:** final measurement

In this step the accuracy of the turntable azimuth and antenna height will be improved. This is necessary to find out the maximum value of every frequency.

For each frequency, which was determined the turntable azimuth and antenna height will be adjusted. The turntable azimuth will be slowly varied by +/- 22.5° around this value. During this action the value of emission is continuously measured. The turntable azimuth at the highest emission will be recorded and adjusted. In this position the antenna height is also slowly varied by +/- 25 cm around the antenna height determined. During this action the value of emission is also continuously measured. The antenna height of the highest emission will also be recorded and adjusted.

- Detector: Peak - Maxhold

- Measured frequencies: in step 1 determined frequencies

IF – Bandwidth: 120 kHzMeasuring time: 100 ms

- Turntable angle range: -22.5° to +22.5° around the determined value - Height variation range: -0.25 m to +0.25 m around the determined value

Step 4: final measurement with QP detector

With the settings determined in step 3, the final measurement will be performed: EMI receiver settings for step 4:

- Detector: Quasi-Peak(< 1 GHz)

- Measured frequencies: in step 1 determined frequencies

IF – Bandwidth: 120 kHzMeasuring time: 1 s

After the measurement a plot will be generated which contains a diagram with the results of the preliminary scan and a chart with the frequencies and values of the results of the final measurement.

3. Measurement above 1 GHz

The following modifications apply to the measurement procedure for the frequency range above 1 GHz:

The Equipment Under Test (EUT) was set up on a non-conductive support at 1.4 m height in the fully-anechoic chamber. The measurement distance was reduced to 1 m. The results were extrapolated by the extrapolation factor of 20 dB/decade (inverse linear distance for field strength measurements, inverse linear-distance squared for the power reference level measurements). Due to the fact that in this frequency range a double ridged wave guided horn antenna (up to 18 GHz) and a horn antenna (18-25 GHz) are used, the steps 2-4 are omitted. Step 1 was performed with one height of the receiving antenna only.

EMI receiver settings:

Detector: Peak, AverageIF Bandwidth = 1 MHz

3.1.2 Test Requirements / Limits

FCC Part 15, Subpart C, §15.247 (d)

... In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

FCC Part 15, Subpart C, §15.209, Radiated Emission Limits

Frequency in MHz	Limit (μV/m)	Measurement distance (m)	Limit(dBµV/m @10m)
0.009 - 0.49	2400/F(kHz)	300	Limit (dBµV/m)+30dB
0.49 - 1.705	24000/F(kHz)	30	Limit (dBµV/m)+10dB
1.705 – 30	30	30	Limit (dBµV/m)+10dB

Frequency in MHz	Limit (µV/m)	Measurement distance (m)	Limit (dBµV/m)
30 – 88	100	3	40.0
88 – 216	150	3	43.5
216 – 960	200	3	46.0
above 960	500	3	54.0

§15.35(b)

..., there is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit....

Used conversion factor: Limit $(dB\mu V/m) = 20 \log (Limit (\mu V/m)/1\mu V/m)$

3.1.3 Test Protocol

Temperature: 23 - 27 °C

Air Pressure: 1000 – 1006 hPa

Humidity: 40 – 41 %

3.1.3.1 Measurement up to 30 MHz

Op. Mode	Setup	Port
op-mode 1	Setup_01	Enclosure

Polari-	Frequency	Corrected value		Limit	Limit	Limit	Delta to	Delta to	
sation	MHz	dBµV/m		dBμV/	dBμV/	dBµV∕	limit	limit	
		-		m	m	m	dB	dB	
		QP	Peak	AV	QP	Peak	AV	QP/Peak	AV
0°	_	_	_	_	_	_	_	_	_
90°	_	-	_	_	-	_	_	_	=

Remark: No (further) spurious emissions in the range 20 dB below the limit found therefore step 2 was not performed. Please refer to the plot in the annex.

The found peak at 99.5 kHz is an emission from loop antenna power supply, and the peak found at 13.56 MHz is the wanted signal of the EUT.

3.1.3.2 Measurement above 30 MHz

Op. Mode	Setup	Port
op-mode 1	Setup_01	Enclosure

Polari- sation	Frequency MHz	Corrected value dBµV/m		Limit dBµV/ m	Limit dBµV/ m	Limit dBµV/ m	Delta to limit dB	Delta to limit dB	
		QP	Peak	AV	QP	Peak	AV	QP/Peak	AV
=	-	_	_	_	_	-	-	=	-

Remark: No (further) spurious emissions in the range 20 dB below the limit found.

3.1.4 Test result: Spurious radiated emissions

FCC Part 15, Subpart C	Op. Mode	Result	
	op-mode 1	passed	

Page 12 of 29

3.2 Occupied bandwidth

Standard FCC Part 15, 10-1-11 Edition Subpart C

The test was performed according to: FCC §15.31

3.2.1 Test Description

The Equipment Under Test (EUT) was setup in a shielded room to perform the occupied bandwidth measurements.

The reference level is the level of the highest amplitude signal observed from the transmitter at either the fundamental frequency or first-order modulation products in all typical modes of operation, including the unmodulated carrier, even if atypical. The results recorded were measured with the modulation which produces the worst-case

3.2.2 Test Requirements / Limits

(widest) occupied bandwidth.

FCC Part 15, Subpart C, §15.215 (c)

Intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§ 15.217 through 15.257 and in Subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated. ...

3.2.3 Test Protocol

Temperature: 23 °C
Air Pressure: 1000 hPa
Humidity: 40 %

Op. Mode	Setup	Port
op-mode 1	Setup_02	Enclosure

20 dB bandwidth kHz	99% bandwidth kHz	Remarks
83.66	396.79	The 20 dB bandwidth from 13.3185 MHz to 13.7153 MHz is contained within the designated frequency band 13.110 MHz to
		14.010 MHz.

Remark: Please see annex for the measurement plot.

3.2.4 Test result: Occupied bandwidth

FCC Part 15, Subpart C	Op. Mode	Result
	op-mode 1	passed

Test report Reference: MDE_TGYM_1101_FCCa Page 13 of 29

3.3 Spectrum mask

Standard FCC Part 15, 10-1-11 Edition Subpart C

The test was performed according to: FCC §15.225

3.3.1 Test Description

The test set-up was made in accordance to the general provisions of ANSI C 63.4–2009. The Equipment Under Test (EUT) was set up on a non-conductive table in the anechoic chamber.

The radiated emissions measurements were made in a typical installation configuration. The measurement procedure is implemented into the EMI test software ES-K1 from R&S. The Loop antenna HFH2-Z2 is used.

Anechoic chamberAntenna distance: 10 m

- Detector: Peak-Maxhold

- Frequency range 13.06 – 14.06 MHz

- Frequency steps: 5 kHz- IF-Bandwidth: 10 kHz

- Measuring time / Frequency step: 100 ms

3.3.2 Test Limits

FCC Part 15, Subpart C, §15.225 (a-d), and §15.209, corrected by the means of the extrapolation of §15.31 due to the reduced measuring distance from 30m to 10m

3.3.3 Test Protocol

Temperature: 27 °C Air Pressure: 1006 hPa Humidity: 40 %

Op. Mode Setup		Port	
on-mode 1	Setup 01	Enclosure	

Maximum value dBµV/m	Limit dBµV/m	Remarks
42.04	93.5	measuring distance 10 m

Remark: Please see annex for the measurement plot.

3.3.4 Test result: Spectrum mask

FCC Part 15, Subpart C	Op. Mode	Result
	op-mode 1	passed

Test report Reference: MDE_TGYM_1101_FCCa Page 14 of 29

3.4 Frequency tolerance

Standard FCC Part 15, 10-1-11 Edition Subpart C

The test was performed according to: FCC §15.225

3.4.1 Test Description

The Equipment Under Test (EUT) is placed in a climatic temperature chamber.

The frequency drift during temperature and voltage variation is measured by the means of a spectrum analyzer with frequency counter function.

The temperature was varied from -20 °C to +50 °C. At +20 °C the extreme power supply voltages of 85% and 115% are applied. After reaching each target temperature and waiting sufficient time allowing the temperature to stabilize, one measurement is performed immediately after powering on the EUT, and two further measurements are performed after 5 and 10 minutes continuous operation of EUT.

3.4.2 Test Limits

FCC Part 15, Subpart C, §15.225 (e): The frequency tolerance of the carrier signal shall be maintained within $\pm 0.01\%$ of the operating frequency over a temperature variation of -20 degrees to +50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C.

3.4.3 Test Protocol

Temperature: 26 °C Air Pressure: 1010 hPa Humidity: 40 %

Op. ModeSetupPortop-mode 1Setup_01Enclosure

Temperature	Voltage	Time	Frequency	Delta	Verdict
/ °C	/ V	/ min.	/ MHz	/ Hz	
50	12	0	13.560211	211	Passed
50	12	5	13.560209	209	Passed
50	12	10	13.560214	214	Passed
40	12	0	13.560300	300	Passed
40	12	5	13.560240	240	Passed
40	12	10	13.560239	239	Passed
30	12	0	13.560360	360	Passed
30	12	5	13.560263	263	Passed
30	12	10	13.560254	254	Passed
20	11	0	13.560414	414	Passed
20	11	5	13.560302	302	Passed
20	11	10	13.560289	289	Passed
20	12	0	13.560418	418	Passed
20	12	5	13.560302	302	Passed
20	12	10	13.560291	291	Passed
20	13	0	13.560421	421	Passed
20	13	5	13.560294	294	Passed
20	13	10	13.560285	285	Passed
10	12	0	13.560464	464	Passed
10	12	5	13.560349	349	Passed
10	12	10	13.560333	333	Passed
0	12	0	13.560492	492	Passed
0	12	5	13.560399	399	Passed
0	12	10	13.560381	381	Passed
-10	12	0	13.560493	493	Passed
-10	12	5	13.560446	446	Passed
-10	12	10	13.560434	434	Passed
-20	12	0	13.560462	462	Passed
-20	12	5	13.560485	485	Passed
-20	12	10	13.560478	478	Passed

Remark: The limit is a delta of max. ± 1356 Hz (0.01 %).

3.4.4 Test result: Frequency tolerance

FCC Part 15, Subpart C	Op. Mode	Result
	op-mode 1	passed

4 Test Equipment

The calibration, hardware and software states are shown for the testing period.

Test Equipment Anechoic Chamber

Lab ID:Lab 3Manufacturer:Frankonia

Description: Anechoic Chamber for radiated testing

Type: 10.58x6.38x6.00 m³

Single Devices for Anechoic Chamber

Single Device Name	Туре	Serial Number	Manufacturer
Air compressor	none	-	Atlas Copco
Anechoic Chamber	10.58 x 6.38 x 6.00 m ³ FCC listing 96716 3m Part15/18 IC listing 3699A-1 3m	none	Frankonia 2011/01/11 2014/01/10 2011/02/07 2014/02/06
Controller Innco 2000	CO 2000	CO2000/328/1247 406/L	O Innco innovative constructions GmbH
Controller Maturo	MCU	961208	Maturo GmbH
EMC camera	CE-CAM/1	-	CE-SYS
EMC camera Nr.2	CCD-400E	0005033	Mitsubishi
Filter ISDN	B84312-C110-E1		Siemens&Matsushita
Filter Universal 1A	BB4312-C30-H3	-	Siemens&Matsushita

Test Equipment Auxiliary Equipment for Conducted emissions

Lab ID: Lab 1

Manufacturer: Rohde & Schwarz GmbH & Co.KG
Description: EMI Conducted Auxiliary Equipment

Single Devices for Auxiliary Equipment for Conducted emissions

Single Device Name	Type	Serial Number	Manufacturer
AC Power Source	Chroma 6404	64040001304	Chroma ATE INC.
Cable "LISN to ESI"	RG214 Path Calibration	W18.03+W48.03	Huber&Suhner 2011/11/11 2012/11/10
Coupling-Decoupling- Network	CDN ENY41	100002	Rohde & Schwarz GmbH & Co. KG
	Standard calibration		2011/01/20 2013/01/19
One-Line V-Network	ESH 3-Z6	100489	Rohde & Schwarz GmbH & Co. KG
	Standard calibration		2011/02/08 2014/02/07
Two-Line V-Network	ESH 3-Z5	828304/029	Rohde & Schwarz GmbH & Co. KG
Two-Line V-Network	ESH 3-Z5	829996/002	Rohde & Schwarz GmbH & Co. KG
	DKD calibration		2011/01/20 2013/01/19

Test report Reference: MDE_TGYM_1101_FCCa Page 17 of 29

Test Equipment Auxiliary Equipment for Radiated emissions

Lab ID: Lab 3

Description: Equipment for emission measurements

Serial Number: see single devices

Single Devices for Auxiliary Equipment for Radiated emissions

Single Device Name	Туре	Serial Number	Manufacturer	
Antenna mast	AS 620 P	620/37	HD GmbH	
Biconical dipole	VUBA 9117 Standard Calibration Standard Calibration	9117-108	Schwarzbeck 2008/10/27 2013/10/26 2012/01/18 2015/01/17	
Broadband Amplifier 18MHz-26GHz	JS4-18002600-32-5P	849785	Miteq	
Broadband Amplifier 1GHz-4GHz	AFS4-01000400-1Q-10P-4	-	Miteq	
Broadband Amplifier 30MHz-18GHz	JS4-00101800-35-5P	896037	Miteq	
Cable "ESI to EMI Antenna"	EcoFlex10	W18.01-2+W38.01- 2	3.01- Kabel Kusch	
Cable "ESI to Horn Antenna"	UFB311A+UFB293C	W18.02-2+W38.02- 2	88.02- Rosenberger Micro-Coax	
Double-ridged horn	HF 906	357357/001	Rohde & Schwarz GmbH & Co.	
	Standard Calibration		KG 2012/05/18 2015/05/17	
Double-ridged horn	HF 906	357357/002	Rohde & Schwarz GmbH & Co. KG	
Dreheinheit	DE 325		HD GmbH	
High Pass Filter	4HC1600/12750-1.5-KK	9942011	Trilithic	
High Pass Filter	5HC2700/12750-1.5-KK	9942012	Trilithic	
High Pass Filter	5HC3500/12750-1.2-KK	200035008	Trilithic	
High Pass Filter	WHKX 7.0/18G-8SS	09	Wainwright	
Logper. Antenna	HL 562 Ultralog	830547/003	Rohde & Schwarz GmbH & Co. KG	
Loop Antenna	HFH2-Z2	829324/006	Rohde & Schwarz GmbH & Co. KG	
	Standard calibration		2011/10/27 2014/10/26	
Pyramidal Horn Antenna 26,5 GHz	3160-09	00083069	EMCO Elektronik GmbH	
Pyramidal Horn Antenna 40 GHz	3160-10	00086675	EMCO Elektronik GmbH	
Tilt device Maturo (Rohacell)	Antrieb TD1.5-10kg	TD1.5- 10kg/024/3790709	Maturo GmbH	

Test Equipment Auxiliary Test Equipment

Lab 1D: Lab 3, Lab 4

Manufacturer: see single devices

Description: Single Devices for various Test Equipment

Type: various Serial Number: none

Single Devices for Auxiliary Test Equipment

Single Device Name	Туре	Serial Number	Manufacturer	
AC Power Source	Chroma 6404	64040001304	Chroma ATE INC.	
Broadband Power Divide N (Aux)	Broadband Power Divider1506A / 93459 N (Aux)		Weinschel Associates	
Broadband Power Divide SMA	wer DividerWA1515 A855 Weinschel Associate		Weinschel Associates	
Broadband Power Divide SMA (Aux)	er1515 / 93459	LN673	Weinschel Associates	
Digital Multimeter 01 (Multimeter)	Voltcraft M-3860M	IJ096055	Conrad Electronics	
Digital Multimeter 03 (Multimeter)	Fluke 177	86670383	Fluke Europe B.V.	
(Multimeter)	Customized calibration		2011/10/19 2013/10/18	
Digital Oscilloscope [SA2] (Aux)	TDS 784C	B021311	Tektronix GmbH	
Fibre optic link Satellite (Aux)	FO RS232 Link	181-018	Pontis	
Fibre optic link Transceiver (Aux)	FO RS232 Link	182-018	Pontis	
Isolating Transformer	LTS 604	1888	Thalheimer Transformatorenwerke GmbH	
Notch Filter Ultra Stable (Aux)	WRCA800/960-6EEK	24	Wainwright	
Spectrum Analyser	FSP3	836722/011	Rohde & Schwarz GmbH & Co. KG	
ThermoHygro_01 (Aux)	430202	none	Fischer Feingerätebau K. Fischer GmbH	
Vector Signal Generator	SMIQ 03B	832492/061	Rohde & Schwarz GmbH & Co.KG	

Test Equipment Digital Signalling Devices

Lab 1D: Lab 1, Lab 3, Lab 4

Description: Signalling equipment for various wireless technologies.

Single Devices for Digital Signalling Devices

Single Device Name	Туре	Serial Number	Manufacturer	
Bluetooth Signalling Unit CBT	СВТ	100589	Rohde & Schwai	rz GmbH & Co.
	Standard calibration		2011/11/24	2014/11/23
CMW500	CMW500	107500	Rohde & Schwar Co.KG	rz GmbH &
	Calibration Details		Last Execution	Next Exec.
	Initial factory calibration Firmware: V.2.01.25 3G: KC42x 11.48.02 LTE: KC501 1.6.5 up to 1.9.8 KC503 1.6.5 up to 1.9.8 KC506 1.9.8 KC507 1.7.0 KC508 1.8.5 up to 1.9.8 KC551 1.4.1 up to 1.9.8			2014/01/25 2012/07/03
	KC553 1.5.5 up to 1.9.8 KC571 1.8.5 up to 1.9.8 KC572 1.8.5 up to 1.9.8			
Digital Radio Communication Tester	CMD 55	831050/020	Rohde & Schwar	
	Standard calibration		2011/11/28	2014/11/27
Digital Radio Test Set	6103E	2359	Racal Instruments, Ltd.	
Universal Radio Communication Tester	CMU 200	102366	Rohde & Schwai KG	
	Standard calibration HW/SW Status		2011/05/26 Date of Start	2013/05/25 <i>Date of End</i>
	Hardware: B11, B21V14, B21-2, B41, B52V14, B52 B53-2, B56V14, B68 3v04, PCMCIA, U6 Software: K21 4v21, K22 4v21, K23 4v21, K24 4v K43 4v21, K53 4v21, K56 4v22, K57 4v K59 4v22, K61 4v22, K62 4v22, K63 4v K65 4v22, K66 4v22, K66 4v22, K68 4v Firmware: μP1 8v50 02.05.06	5V04 21, K42 4v21, 22, K58 4v22, 22, K64 4v22,	2007/07/16	
Universal Radio Communication Tester	CMU 200	837983/052	Rohde & Schwar	rz GmbH & Co.
Communication rester	Standard calibration HW/SW Status			2014/12/06 <i>Date of End</i>
	HW options: B11, B21V14, B21-2, B41, B52V14, B52 B54V14, B56V14, B68 3v04, B95, PCMC SW options: K21 4v11, K22 4v11, K23 4v11, K24 4v K28 4v10, K42 4v11, K43 4v11, K53 4v K66 4v10, K68 4v10, Firmware: μP1 8v40 01.12.05	CIA, U65V02 11, K27 4v10,	2007/01/02	
	SW: K62, K69		2008/11/03	
Vector Signal Generator	SMU200A	100912	Rohde & Schwa	rz GmbH & Co.

Test Equipment Emission measurement devices

Lab 1D: Lab 1, Lab 3

Description: Equipment for emission measurements

Serial Number: see single devices

Single Devices for Emission measurement devices

Single Device Name	Туре	Serial Number	Manufacturer	
Personal Computer	Dell	30304832059	Dell	
Power Meter	NRVD	828110/016	Rohde & Schwarz GmbH & Co.KG	
	Standard calibration		2012/05/22 2013/05/21	
Power Sensor	NRV-Z1	836219/005	Rohde & Schwarz GmbH & Co. KG	
Powermeter	NRVS	836333/064	Rohde & Schwarz GmbH & Co. KG	
Sensor Head A	NRV-Z1	827753/005	Rohde & Schwarz GmbH & Co.KG	
	Standard calibration		2012/05/21 2013/05/20	
Signal Generator	SMR 20	846834/008	Rohde & Schwarz GmbH & Co. KG	
	standard calibration		2011/05/12 2014/05/11	
Spectrum Analyzer	ESIB 26	830482/004	Rohde & Schwarz GmbH & Co. KG	
	Standard Calibration		2011/12/05 2013/12/04	
	HW/SW Status		Date of Start Date of End	
	Firmware-Update 4.34.4 from 3.45 during calibration		2009/12/03	

Test Equipment Multimeter 12

Lab ID:Lab 5, Lab 6Description:Ex-Tech 520Serial Number:05157876

Single Devices for Multimeter 12

Single Device Name	Туре	Serial Number	Manufacturer
Digital Multimeter 12 (Multimeter)	EX520	05157876	Extech Instruments Corp.
(Martimeter)	Customized calibration		2011/10/18 2013/10/17

Test Equipment Radio Lab Test Equipment

Lab ID: Lab 4

Description: Radio Lab Test Equipment

Single Devices for Radio Lab Test Equipment

Single Device Name	Туре	Serial Number	Manufacturer	
Broadband Power Divider SMA	rWA1515	A856	Weinschel Associates	
Coax Attenuator 10dB SMA 2W	4T-10	F9401	Weinschel Associates	
Coax Attenuator 10dB SMA 2W	56-10	W3702	Weinschel Associates	
Coax Attenuator 10dB SMA 2W	56-10	W3711	Weinschel Associates	
Coax Cable Huber&Suhner	Sucotest 2,0m		Rosenberger Micro-Coax	
Coax Cable Rosenberger Micro Coax FA210A0010003030 SMA/SMA 1,0m	FA210A0010003030	54491-2	Rosenberger Micro-Coax	
Power Meter	NRVD Standard calibration	828110/016	Rohde & Schwarz GmbH & Co.KG 2012/05/22 2013/05/21	
Power Sensor	NRV-Z1	836219/005	Rohde & Schwarz GmbH & Co. KG	
Powermeter	NRVS	836333/064	Rohde & Schwarz GmbH & Co. KG	
RF Step Attenuator RSP	RSP	833695/001	Rohde & Schwarz GmbH & Co.KG	
Rubidium Frequency Standard	Datum, Model: MFL	2689/001	Datum-Beverly	
	Standard calibration		2011/06/17 2012/06/16	
Sensor Head A	NRV-Z1	827753/005	Rohde & Schwarz GmbH & Co.KG	
	Standard calibration		2012/05/21 2013/05/20	
Signal Generator	SMY02	829309/018	Rohde & Schwarz GmbH & Co. KG	
	Standard calibration		2011/11/04 2014/11/03	
Signal Generator SME	SME03 Standard calibration	827460/016	Rohde & Schwarz GmbH & Co.KG 2011/11/25 2014/11/24	
Signal Generator SMP	SMP02	836402/008	Rohde & Schwarz GmbH & Co. KG	
Spectrum Analyser	FSIQ26	840061/005	Rohde & Schwarz GmbH & Co. KG	
	Standard calibration		2011/02/10 2013/02/09	
Temperature Chamber Vötsch 03	VT 4002	58566002150010	Vötsch	
	Customized calibration		2012/03/12 2014/03/11	
Vector Signal Generator	SMIQ 03B	837747/020	Rohde & Schwarz GmbH & Co. KG	

Test Equipment Regulatory Bluetooth RF Test Solution

Lab ID: Lab 5

Description: Regulatory Bluetooth RF Tests

Type: Bluetooth RF

Serial Number: 001

Single Devices for Regulatory Bluetooth RF Test Solution

Single Device Name	Type	Serial Number	Manufacturer	
ADU 200 Relay Box 7	Relay Box	A04380	Ontrak Control Systems Inc.	
Bluetooth Signalling Uni CBT	t CBT	100302	Rohde & Schwarz GmbH & Co.KG	
	Standard Calibration		2011/08/17 2012/08/16	
Power Meter NRVD	NRVD Standard Calibration	832025/059	2011/06/14 2012/06/13	
Power Sensor NRV Z1 A	PROBE	832279/013		
	Standard Calibration		2011/06/14 2012/06/13	
Power Supply	NGSM 32/10 Standard Calibration	2725	2011/06/15 2013/06/14	
Rubidium Frequency Normal MFS	Datum MFS	002	Datum GmbH	
Normal Wil S	Standard Calibration		2011/08/17 2012/08/16	
Signal Analyser FSIQ26	1119.6001.26	832695/007	Rohde & Schwarz GmbH & Co.KG	
Signal Generator	SMP03	833680/003	Rohde & Schwarz GmbH & Co.KG	
	Standard Calibration		2009/06/23 2012/06/22	
Vector Signal Generator SMIO03B	SMIQ03B	832870/017		
	Standard Calibration		2010/06/23 2013/06/20	

Test Equipment Shielded Room 02

Lab ID:Lab 1Manufacturer:Frankonia

Description: Shielded Room for conducted testing

Type: 12 qm Serial Number: none

Test Equipment Shielded Room 07

Lab ID: Lab 5, Lab 6

Description: Shielded Room 4m x 6m

Test Equipment T/H Logger 04

Lab ID:Lab 5, Lab 6Description:Lufft Opus10Serial Number:7481

Single Devices for T/H Logger 04

Single Device Name	Туре	Serial Number	Manufacturer
ThermoHygro Datalogger 04 (Environ)	Opus10 THI (8152.00)	7481	Lufft Mess- und Regeltechnik GmbH

Test report Reference: MDE_TGYM_1101_FCCa Page 23 of 29

Test Equipment Temperature Chamber 01

Lab 1D: Lab 5, Lab 6
Manufacturer: see single devices

Description: Temperature Chamber KWP 120/70

Type: Weiss

Serial Number: see single devices

Single Devices for Temperature Chamber 01

Single Device Name	Type	Serial Number	Manufacturer
Temperature Chamber Weiss 01	KWP 120/70	59226012190010	Weiss Umwelttechnik GmbH
Weiss OT	Customized calibration		2012/03/12 2014/03/11

Test Equipment WLAN RF Test Solution

Lab ID: Lab 6

Manufacturer: 7 layers AG

Description: Regulatory WLAN RF Tests

Type: WLAN RF Serial Number: 001

Single Devices for WLAN RF Test Solution

Single Device Name	Туре	Serial Number	Manufacturer	
Arbitrary Waveform Generator	TGA12101	284482		
Power Meter NRVD	NRVD Standard Calibration	832025/059	2011/06/14	2012/06/13
Power Sensor NRV Z1 A	PROBE	832279/013		
	Standard Calibration		2011/06/14	2012/06/13
Power Supply	NGSM 32/10 Standard Calibration	2725	2011/06/15	2013/06/14
Rubidium Frequency Normal MFS	Datum MFS	002	Datum GmbH	
Normal Wil 3	Standard Calibration		2011/08/17	2012/08/16
Signal Analyser FSIQ26	1119.6001.26	832695/007	Rohde & Schwa Co.KG	rz GmbH &
Signal Generator	SMP03	833680/003	Rohde & Schwarz GmbH & Co.KG	
	Standard Calibration		2009/06/23	2012/06/22
Spectrum Analyser	FSU26	100136	Rohde & Schwa Co.KG	rz GmbH &
	FSU FW Update to v4.61 SP3, K5 v4.60	and K73 v4.61	2011/12/05	
Spectrum Analyser	FSU3	200046	Rohde & Schwa Co.KG	rz GmbH &
	Standard calibration Firmware Version 4.51 SP1 Option FS-K72 4.50 SP1 Option FS-K73 4.50 SP1		2012/05/15 2011/12/07	2013/05/14
TOCT Switching Unit	Switching Unit	030106	7 layers, Inc.	
TOCT Switching Unit (loan unit)	Switching Unit	030101	7 layers, Inc.	
Vector Signal Generator SMIQ03B	SMIQ03B	832870/017		
Sivil 200D	Standard Calibration		2010/06/23	2013/06/20

5 Photo Report

Photos are included in an external report.

6 Setup Drawings

Remark: Depending on the frequency range suitable antenna types, attenuators or preamplifiers are used.

Drawing 1: Setup in the Anechoic chamber:

Measurements below 1 GHz: Semi-anechoic, conducting ground plane.

7 FCC and IC Correlation of measurement requirements

The following tables show the correlation of measurement requirements for RFID equipment and Digital Apparatus from FCC and IC standards.

RFID equipment

Measurement	FCC reference	IC reference
Conducted emissions on AC mains	§ 15.207	RSS-Gen: 7.2.4
Spurious radiated emissions	§ 15.209	RSS-Gen: 6; RSS-210: A2.6
Occupied bandwidth	§ 15.215	RSS-Gen: 4.6
Spectrum Mask	§ 15.225	RSS-210: A2.6
Frequency Tolerance	§ 15.225	RSS-210: A2.6

Digital Apparatus

Measurement	FCC reference	IC reference
Conducted Emissions (AC Power Line)	§ 15.107	ICES-003
Spurious Radiated Emissions	§ 15.109	ICES-003

8 Annex measurement plots

8.1 Occupied bandwidth

Date: 5.OCT.2011 15:26:48

Date: 5.OCT.2011 15:27:44

8.2 Spectrum mask

