Other Models of Computation

Models of computation:

- Turing Machines
- Recursive Functions
- ·Post Systems
- Rewriting Systems

2

Church's Thesis:

All models of computation are equivalent

Turing's Thesis:

A computation is mechanical if and only if it can be performed by a Turing Machine

Church's and Turing's Thesis are similar:

Church-Turing Thesis

4

Recursive Functions

An example function:

Domain
$$f(n) = n^2 + 1$$

$$f(3) = 10$$
Range
$$10$$

We need a way to define functions

We need a set of basic functions

Basic Primitive Recursive Functions

Zero function: z(x) = 0

Successor function: s(x) = x + 1

Projection functions: $p_1(x_1, x_2) = x_1$

 $p_2(x_1, x_2) = x_2$

Building complicated functions:

Composition: $f(x, y) = h(g_1(x, y), g_2(x, y))$

Primitive Recursion:

$$f(x,0) = g_1(x)$$

$$f(x, y+1) = h(g_2(x, y), f(x, y))$$

.

Any function built from the basic primitive recursive functions is called:

Primitive Recursive Function

A Primitive Recursive Function: add(x, y)

$$add(x,0) = x$$
 (projection)

$$add(x, y+1) = s(add(x, y))$$

(successor function)

10

$$add(3,2) = s(add(3,1))$$

= $s(s(add(3,0)))$
= $s(s(3))$
= $s(4)$
= $s(4)$

Another Primitive Recursive Function:

$$mult(x,0) = 0$$

$$mult(x, y+1) = add(x, mult(x, y))$$

Theorem:

The set of primitive recursive functions is countable

Proof:

Each primitive recursive function can be encoded as a string

Enumerate all strings in proper order

Check if a string is a function

13

Theorem

there is a function that is not primitive recursive

Proof:

Enumerate the primitive recursive functions

$$f_1, f_2, f_3, \dots$$

14

Define function $g(i) = f_i(i) + 1$

g differs from every f_i

g is not primitive recursive

END OF PROOF

A specific function that is <u>not</u> Primitive Recursive:

Ackermann's function:

$$A(0, y) = y + 1$$

$$A(x,0) = A(x-1,1)$$

$$A(x, y+1) = A(x-1, A(x, y))$$

Grows very fast,

faster than any primitive recursive function

 μ -Recursive Functions

 $\mu y(g(x, y)) = \text{smallest } y \text{ such that } g(x, y) = 0$

Accerman's function is a μ -Recursive Function

Post Systems

- · Have Axioms
- Have Productions

Very similar with unrestricted grammars

Example: Unary Addition

Axiom: 1+1=11

Productions:

$$V_1 + V_2 = V_3 \rightarrow V_1 + V_2 = V_3 1$$

 $V_1 + V_2 = V_3 \rightarrow V_1 + V_2 = V_3 1$

20

A production:

$$V_1 + V_2 = V_3 \rightarrow V_1 + V_2 = V_3$$

 $1 + 1 = 11 \Rightarrow 11 + 1 = 111 \Rightarrow 11 + 11 = 1111$
 $V_1 + V_2 = V_3 \rightarrow V_1 + V_2 = V_3$

Post systems are good for proving mathematical statements from a set of Axioms

22

Theorem:

A language is recursively enumerable if and only if a Post system generates it

Rewriting Systems

They convert one string to another

- · Matrix Grammars
- Markov Algorithms
- · Lindenmayer-Systems

Very similar to unrestricted grammars

Matrix Grammars

Example: $P_1: S \rightarrow S_1S_2$

 $P_2: S_1 \rightarrow aS_1, S_2 \rightarrow bS_2c$

 $P_3: S_1 \to \lambda, S_2 \to \lambda$

Derivation:

 $S \Rightarrow S_1S_2 \Rightarrow aS_1bS_2c \Rightarrow aaS_1bbS_2cc \Rightarrow aabbcc$

A set of productions is applied simultaneously

25

 $P_1: S \rightarrow S_1S_2$

 $P_2: S_1 \rightarrow aS_1, S_2 \rightarrow bS_2c$

 $P_3: S_1 \to \lambda, S_2 \to \lambda$

$$L = \{a^n b^n c^n : n \ge 0\}$$

Theorem:

A language is recursively enumerable

if and only if

a Matrix grammar generates it

Markov Algorithms

Grammars that produce λ

Example: $ab \rightarrow S$

 $aSb \rightarrow S$

 $S \rightarrow .\lambda$

Derivation:

 $aaabbb \Rightarrow aaSbb \Rightarrow aSb \Rightarrow S \Rightarrow \lambda$

 $ab \rightarrow S$

 $aSb \rightarrow S$

 $S \rightarrow .\lambda$

 $L = \{a^n b^n : n \ge 0\}$

28

In general: $L = \{w: w \Rightarrow \lambda\}$

Theorem:

A language is recursively enumerable if and only if

it and only it

a Markov algorithm generates it

Lindenmayer-Systems

They are parallel rewriting systems

Example: $a \rightarrow aa$

Derivation: $a \Rightarrow aa \Rightarrow aaaa \Rightarrow aaaaaaaa$

 $L = \{a^{2^n} : n \ge 0\}$

Lindenmayer-Systems are not general As recursively enumerable languages

Extended Lindenmayer-Systems: $(x, a, y) \rightarrow u$

context

Theorem:

A language is recursively enumerable if and only if an

Extended Lindenmayer-System generates it

Computational Complexity

Time Complexity: The number of steps

during a computation

Space Complexity: Space used

during a computation

Time Complexity

·We use a multitape Turing machine

·We count the number of steps until a string is accepted

•We use the O(k) notation

Example: $L = \{a^n b^n : n \ge 0\}$

Algorithm to accept a string w:

·Use a two-tape Turing machine

 \cdot Copy the a on the second tape

•Compare the a and b

 $L = \{a^n b^n : n \ge 0\}$

Time needed:

O(|w|) \cdot Copy the a on the second tape

•Compare the a and bO(|w|)

> Total time: O(|w|)

$$L = \{a^n b^n : n \ge 0\}$$

For string of length n

time needed for acceptance: O(n)

Language class: DTIME(n)

 $\begin{array}{c|c}
DTIME(n) \\
L_1 & L_2 & L_3
\end{array}$

A Deterministic Turing Machine accepts each string of length $\,n\,$ in time $\,O(n)\,$

38

DTIME(n) $\{a^nb^n: n \ge 0\}$ $\{ww\}$

In a similar way we define the class

DTIME(T(n))

for any time function: T(n)

Examples: $DTIME(n^2), DTIME(n^3),...$

40

Example: The membership problem for context free languages

 $L = \{w : w \text{ is generated by grammar } G\}$

 $L \in DTIME(n^3)$ (CYK - algorithm)

Polynomial time

Theorem: $DTIME(n^{k+1}) \subset DTIME(n^k)$

 $DTIME(n^k)$

 $DTIME(n^{k+1})$

Polynomial time algorithms: $DTIME(n^k)$

Represent tractable algorithms: For small $\,k\,$ we can compute the result fast

The class P

 $P = \bigcup DTIME(n^k)$ for all k

- ·Polynomial time
- ·All tractable problems

44

Exponential time algorithms: $DTIME(2^n)$

Represent intractable algorithms:

Some problem instances

may take centuries to solve

46

Example: the Traveling Salesperson Problem

5
4
2
6
8
10

Question: what is the shortest route that

connects all cities?

Question: what is the shortest route that connects all cities?

A solution: search exhuastively all hamiltonian paths

L = {shortest hamiltonian paths}

 $L \in DTIME(n!) \approx DTIME(2^n)$

Exponential time

Intractable problem

Example: The Satisfiability Problem

Boolean expressions in Conjunctive Normal Form:

$$t_1 \wedge t_2 \wedge t_3 \wedge \cdots \wedge t_k$$

$$t_i = x_1 \lor \overline{x}_2 \lor x_3 \lor \cdots \lor \overline{x}_p$$
Variables

Question: is expression satisfiable?

50

Example: $(\bar{x}_1 \lor x_2) \land (x_1 \lor x_3)$

Satisfiable: $x_1 = 0, x_2 = 1, x_3 = 1$

 $(\bar{x}_1 \lor x_2) \land (x_1 \lor x_3) = 1$

Example: $(x_1 \lor x_2) \land \overline{x}_1 \land \overline{x}_2$

Not satisfiable

52

 $L = \{w : \text{expression } w \text{ is satisfiable}\}$

For n variables: $L \in DTIME(2^n)$

exponential

Algorithm:

search exhaustively all the possible binary values of the variables

Non-Determinism

Language class: NTIME(n)

 $\begin{array}{ccc}
NTIME(n) \\
L_1 & L_2 & L_3
\end{array}$

A Non-Deterministic Turing Machine accepts each string of length $\,n\,$

in time O(n)

Example: $L = \{ww\}$

Non-Deterministic Algorithm to accept a string ww:

- ·Use a two-tape Turing machine
- •Guess the middle of the string and copy w on the second tape
- •Compare the two tapes

 $L = \{ww\}$

Time needed:

- ·Use a two-tape Turing machine
- •Guess the middle of the string O(|w|) and copy w on the second tape
- •Compare the two tapes O(|w|)

Total time: O(|w|)

NTIME(n)

 $L = \{ww\}$

In a similar way we define the class

NTIME(T(n))

for any time function: T(n)

Examples: $NTIME(n^2), NTIME(n^3),...$

58

Non-Deterministic Polynomial time algorithms:

 $L \in NTIME(n^k)$

The class NP

 $P = \bigcup NTIME(n^k)$ for all k

Non-Deterministic Polynomial time

Example: The satisfiability problem

 $L = \{w : expression \ w \text{ is satisfiable}\}\$

Non-Deterministic algorithm:

·Guess an assignment of the variables

·Check if this is a satisfying assignment

61

 $L = \{w : expression \ w \text{ is satisfiable}\}\$

Time for n variables:

•Guess an assignment of the variables O(n)

•Check if this is a satisfying assignment O(n)

Total time: O(n)

62

 $L = \{w : expression \ w \text{ is satisfiable}\}\$

 $L \in NP$

The satisfiability problem is an NP- Problem

6

Observation:

 $P \subseteq NP$

Deterministic Polynomial

Non-Deterministic Polynomial

64

Open Problem: P = NP?

WE DO NOT KNOW THE ANSWER

Open Problem: P = NP?

Example: Does the Satisfiability problem have a polynomial time

deterministic algorithm?

WE DO NOT KNOW THE ANSWER

NP-Completeness

A problem is NP-complete if:

·It is in NP

•Every NP problem is reduced to it (in polynomial time)

67

Observation:

If we can solve any NP-complete problem in Deterministic Polynomial Time (P time) then we know:

$$P = NP$$

68

Observation:

If we prove that we cannot solve an NP-complete problem in Deterministic Polynomial Time (P time) then we know:

 $P \neq NP$

09

Cook's Theorem:

The satisfiability problem is NP-complete

Proof:

Convert a Non-Deterministic Turing Machine to a Boolean expression in conjunctive normal form

70

Other NP-Complete Problems:

- ·The Traveling Salesperson Problem
- ·Vertex cover
- ·Hamiltonian Path

All the above are reduced to the satisfiability problem

71

Observations:

It is unlikely that NP-complete problems are in P

The NP-complete problems have exponential time algorithms

Approximations of these problems are in P