

Stephen Cho, Minjee Kim

Introduction

- Objective: analyzing taxi demand and taxi traffic flow in New York City
- Dataset: Yellow taxi trip record data of Aug 2024 (provided by the NYC TLC)
- Data published on the TLC website, separated by year, month and vehicle type

Vehicle Types

- "Traditional" taxi (respond to street hails)
- More reliable data collection system (collected by TLC-authorized technology providers)
- Vehicles do not respond to street hails
- Data collected & provided by third-party corporations

Target narrowed down to Yellow and Green Taxi trip records

Vehicle Types (continued)

- Green taxi has very small trip counts (2% of total taxi trips)
- Mainly covers outer boroughs (cannot pick up new passengers in "yellow zone")
- Green Taxi trip record data does not fit our purpose, and is neglectable in size

Yellow Taxi Trip Data

ata Dictionary – Yellow Taxi T		Page 1 of 2				
is data dictionary describes yellow taxi trip data. For a dictionary describing green taxi data, or a map the TLC Taxi Zones, please visit http://www.nyc.gov/html/tic/html/about/trip record data.shtml.						
Field Name Description						
VendorID	A code indicating the TPEP provio	ler that provided the record.				
	1= Creative Mobile Technologies	, LLC; 2= VeriFone Inc.				
tpep_pickup_datetime	The date and time when the met	er was engaged.				
tpep_dropoff_datetime	The date and time when the met	er was disengaged.				
Passenger_count	The number of passengers in the	The number of passengers in the vehicle.				
	This is a driver-entered value.					
Trip_distance	The elapsed trip distance in miles	The elapsed trip distance in miles reported by the taximeter.				
PULocationID	TLC Taxi Zone in which the taxime	TLC Taxi Zone in which the taximeter was engaged				
DOLocationID	TLC Taxi Zone in which the taxime	TLC Taxi Zone in which the taximeter was disengaged				
RateCodeID	The final rate code in effect at the	e end of the trip.				
	1= Standard rate					
	2=JFK					
	3=Newark					
	4=Nassau or Westchester					
	5=Negotiated fare					
	6=Group ride					
Store_and_fwd_flag	This flag indicates whether the tr	ip record was held in vehicle				
	memory before sending to the ve	endor, aka "store and forward,"				
	because the vehicle did not have	because the vehicle did not have a connection to the server.				
	Y= store and forward trip					
	N= not a store and forward trip					

- Raw dataset (old version; left) consists of 18 columns, including key variables representing temporal (Pickup/Dropoff Date & Time) and spatial (Pickup/Dropoff coordinates) information.
- Each row is a yellow taxi trip record
- The TLC has replaced pickup/dropoff location details with "taxi zone" ID information for records since 2011
- Our goal is to analyze recent taxi demand patterns; need to work with the new format by generating (approximate) coordinates to perform spatial analysis

Yellow Taxi Data (continued)

-	OBJECTID [©]	Shape_Leng ⁰	Shape_Area	zone	LocationID	‡	borough ⁰	geometry
1	1	0.11635745	7.823068e-04	Newark Airport		1	EWR	list(list(c/933100.91835271, 933091.011480056, 933 [] 🔍
2	2	0.43346967	4.866340e-03	Jamaica Bay	- 2	2	Queens	list(list(c(1033269.24359129, 1033439.64263915, 10 [] 🔍
3	3	0.08434111	3.144142e-04	Allerton/Pelham Gardens		3	Bronx	list(list(c(1026308.76950666, 1026495.5934945, 102 [] 🔍
4	4	0.04356653	1.118719e-04	Alphabet City	4	4	Manhattan	list(list(c/992073.46679686, 992068.666992202, 992 [] $^{\square_i}$
5	5	0.09214649	4.979575e-04	Arden Heights		5	Staten Island	list(list(c/935843.310493261, 936046.564807966, 93 [] $^{\square_i}$
6	6	0.15049054	6.064610e-04	Arrochar/Fort Wadsworth		6	Staten Island	list(list(c)966568.746665761, 966615.255504474, 96 [] $^{\square_i}$
Show	Showing 1 to 6 of 263 entries, 7 total columns							

PULocationID <int></int>	DOLocationID <int></int>	PU_Longitude <dbl></dbl>	PU_Latitude <dbl></dbl>	DO_Longitude <dbl></dbl>	DO_Latitude <dbl></dbl>
237	161	-73.96563	40.76862	-73.97770	40.75803
100	186	-73.98879	40.75351	-73.99244	40.74850
161	114	-73.97770	40.75803	-73.99738	40.72834
100	13	-73.98879	40.75351	-74.01608	40.71204
75	75	-73.94575	40.79001	-73.94575	40.79001
163	162	-73.97757	40.76442	-73.97236	40.75669

- The TLC also provides taxi zone details; great asset for calculating centroid coordinates and visualization
- NYC is divided into <u>263 taxi zones</u>; centroid coordinates are acceptable alternative for exact coordinates
- Columns have shape & geometric information, zone name, location ID, borough name
- PU_Longitude/Latitude, DO_Longitude/Latitude columns, each working as a pair, are mutated and merged
 to the Yellow Taxi Trip Dataset with PULocationID/DOLocationID used as reference

All rows now have coordinates of pickup/dropoff locations

Data Cleaning

```
> summary(ogdata$Duration)
                            Mean 3rd Ou.
                                             Max.
                                    20.68 5743.92
                           17.24
> summary(ogdata$trip_distance)
                                             3rd Qu.
                        Median
     Min.
            1st Ou.
                                     Mean
                                                          Max.
     0.00
                1.03
                          1.80
                                     4.28
                                                3.55 103297.24
```

- Original dataset has 3 million rows; used 1 million randomly extracted samples for efficiency
- Most variables often have missing/unusual values; only considered spatial & temporal variables for cleaning
- Spatial variables (PULocationID, DOLocationID) are intact for all rows; temporal variables more vulnerable
- "<u>Duration</u>": Gap between pickup and dropoff time (new variable); negative or extreme values removed
- "trip_distance": Extreme values removed (by IQR method)
- 859762 rows remain after data cleaning

Pickup Counts by Taxi Zone

- Pickups are heavily focused in Manhattan borough, especially midtown Manhattan area
- 'Midtown Center' has the most pickups of 44892
- LaGuardia Airport and JFK Airport are the only two non-Manhattan area with significant volume of pickups
- Taxi zones in gray have no pickup recorded
- "Governor's Island/Ellis Island/Liberty Island" always have zero pickup counts since these areas can only be accessed by ferry boats

Dropoff Counts by Taxi Zone

- Dropoffs are also heavily focused in midtown Manhattan area, although slightly more spread out to other zones
- 'Midtown Center' also has the most dropoffs of 35758
- Outside Manhattan, dropoffs are less concentrated in LaGuardia Airport and JFK Airport
- Gray zones exist for dropoff counts as well

Pickup Counts by Hour

- 12 1PM has most pickup counts
- Pickup counts decline rapidly from 5 PM

Pickup Counts by Weekday

- Thursday has the most pickup counts
- Significantly less pickups on Mondays

Objective

- To understand the general traffic flow based on demands
- To capture the traffic flow from outer areas into the city during commuting hours and movements into the bar area during night times

Work Flow

Pick-Up Demand Clustering

Drop-Off Demand Clustering

Match Clusters

- Pickup Location
- Pickup Time

PULocationID	Pick Up Cluster
1	1
3	2
4	3
6	1
7	2
8	2

- Drop off Location
- Drop off Time

DOLocationID	Drop Off Cluster
1	1
3	2
4	3
6	1
7	2
8	2

Pick Up Cluster	Drop Off Cluster	Demand
4	3	199527
3	3	146144
3	5	142982
4	5	88819
3	4	75719
5	3	66672

Preparing the Data

DOLocationID *	0_Sun	1_Sun ÷	2_Sun ÷	3_Sun ÷	4_Sun =	5_Sun ÷	6_Sun ÷	7_Sun ÷	8_Sun =
1	1	2	1	0	0	2	1	0	2
3	0	0	0	0	0	0	0	0	0
4	6	1	3	5	10	12	14	14	13
6	1	1	0	0	0	0	0	0	0
7	13	5	2	6	9	9	6	4	5
8	0	0	0	0	0	1	0	0	0
9	0	0	0	0	0	0	0	0	0
10	2	6	5	1	4	4	6	3	3
11	0	0	0	0	0	0	0	0	0
12	0	0	0	12	24	9	15	19	6
13	2	4	3	16	21	34	29	41	51
14	0	0	0	1	1	0	0	0	1
15	1	1	0	0	n	n	n	0	n

Cyclic Time Behavior

Zone 88 in Manhattan

Cyclic Time Behavior

Zone 33 in Brooklyn

Fourier Transform on Time Series

(Lecture 7 – SpaceTime-Discrete)

A multi-resolution wavelet decomposition of a function $f_s(t)$ is an expression of the following form:

$$f_s(t) pprox eta_{s,00} \phi_{00}(t) + \sum_{j=-\infty}^{J} \sum_{k=0}^{2^{j-1}} eta_{s,j,k} \psi_{j,k}(t)$$

 $\beta_{s,00}$ is the scaling coefficient. The wavelets $\psi_{j,k}(t)$ are generated from a single wavelet $\psi(t)$, the so-called mother wavelet, by scaling and translation. The form of basis functions are known.

Fourier transform is a special case when $\psi(t)=e^{-2i\pi t}$

The temporal demand fs(t) can be represented by Fourier coefficients:

$$f_s(t) = eta_{s,0} + \sum_{k=1}^K eta_{s,k} \cos(2\pi k t) + \sum_{k=1}^K \gamma_{s,k} \sin(2\pi k t),$$

Our Model

$$Y(s,t)pprox f_s(t)+w_s+\epsilon(s,t)$$

Y(s,t): Observed demand (pickup counts) at location s and time t.

 $f_s(t)$: Temporal demand pattern at location s, capturing the temporal variability such as daily or weekly cycles.

 w_s : Spatial constraint, representing the inherent spatial connectivity.

 $\epsilon(s,t)$: Error term capturing random noise or unmodeled variability.

$$f_s(t) = eta_{s,0} + \sum_{k=1}^K eta_{s,k} \cos(2\pi k t) + \sum_{k=1}^K \gamma_{s,k} \sin(2\pi k t),$$

(Lecture 7 – SpaceTime-Discrete)

$$Y(s, t) = M(s, t)'\beta + w(s, t) + \epsilon(s, t)$$

for $s \in D$ and $t \in [0, T]$.

M(s, t) are local space-time covariate vectors

 $oldsymbol{eta}$ is an associated coefficient vector

w(s, t): spatial temporal random effect.

 ϵ 's are pure error terms.

Use temporal basis $f_1(t), \dots, f_m(t)$: $w(s, t) = \sum_{i=1}^m f_i(t) \psi_i(s)$ we need to estimate spatially varying basis coefficients $\psi_i(s)$ (spatial functional data analysis)

Methodology (Chavent, 2017)

Aggregation measure based on the combined dissimilarity of two points i and j:

$$\delta_{\alpha}(\{i\},\{j\}) = (1-\alpha) \frac{w_i w_j}{w_i + w_j} d_{0,ij}^2 + \alpha \frac{w_i w_j}{w_i + w_j} d_{1,ij}^2.$$

In matrix form:

$$\Delta_{\alpha} = (1 - \alpha)\Delta_0 + \alpha\Delta_1.$$

- **D0:** captures how different two locations are based on their feature patterns
- D1: captures how geographically unconnected two locations are based on spatial adjacency
- When alpha = 0, the feature coefficients are clustered without any spatial smoothing

Squared dissimilarity based on features based on spatial relationship

Standard Ward's Method:
$$I(\mathcal{C}_k) = \sum_{i \in \mathcal{C}_k} \sum_{j \in \mathcal{C}_k} \frac{w_i w_j}{2\mu_k} d_{ij}^2$$

$$I_{\alpha}(\mathcal{C}_k^{\alpha}) = (1 - \alpha) \sum_{i \in \mathcal{C}_k^{\alpha}} \sum_{j \in \mathcal{C}_k^{\alpha}} \frac{w_i w_j}{2\mu_k^{\alpha}} d_{0,ij}^2 + \alpha \sum_{i \in \mathcal{C}_k^{\alpha}} \sum_{j \in \mathcal{C}_k^{\alpha}} \frac{w_i w_j}{2\mu_k^{\alpha}} d_{1,ij}^2,$$

Methodology (Chavent, 2017)

Model Component	ClustGeo Component	Description
$f_s(t)$: Temporal demand patterns	Feature-based dissimilarity D_0	Temporal patterns (Fourier coefficients) are used to compute D_0 , capturing pairwise dissimilarities in temporal behavior across locations.
w_s : Spatial effect	Spatial dissimilarity D_1	Spatial relationships (from adjacency or proximity) are encoded in D_1 , penalizing clusters that split geographically connected locations.
$\epsilon(s,t)$: Random noise	Not explicitly modeled	ClustGeo assumes that noise is minor compared to the signal in ${\cal D}_0$ and ${\cal D}_1$.
Combined effects	Combined dissimilarity Δ_{lpha}	$\Delta_lpha=(1-lpha)D_0+lpha D_1$ balances temporal and spatial effects in the clustering process.

Using ClustGeo in R

Hierarchical clustering with soft contiguity constraint.

The function hclustgeo implements a Ward-like hierarchical clustering algorithm with soft contiguity constraint. The main arguments of the function are:

- a matrix DØ with the dissimilarities in the "feature space" (here socio-economic variables for instance).
- o a matrix D1 with the dissimilarities in the "constraint" space (here a matrix of geographical dissimilarities).
- a mixing parameter alpha between 0 an 1. The mixing parameter sets the importance of the constraint in the clustering procedure.
- a scaling parameter Scale with a logical value. If TRUE the dissimilarity matrices D0 and D1 are scaled between 0 and 1 (that is divided by their maximum value).

The function <code>choicealpha</code> implements a procedure to help the user in the choice of a suitable value of the mixing parameter <code>alpha</code>.

Both hclustgeo and choicealpha can be combined to find a partition of the n=303 French municipalities including geographical contiguity constraint. The two steps of the procedure are:

- 1. Find partition in K clusters of the 303 municipalities using the dissimilarity matrix D0. The clusters of this partition are homogeneous on the socio-economic variables and no contiguity constraint is used.
- 2. Choose a mixing parameter alpha in order to increases the geographical cohesion of the clusters (using the dissimilarity matrix D1) without deteriorating too much the homogeneity on the socio-economic variables.

ClustGeo in R

D0 "feature": time coefficients

D1 "constraint": geographical

dissimilarities

Using ClustGeo:

- 1. Compute the Features
- 2. Compute the Spatial Constraints
- 3. Pick alpha
- 4. Cluster using hgeoclust()

https://cran.r-project.org/web/packages/ClustGeo/vignettes/intro_ClustGeo.html

Fourier Transform on Time Series

- Beneficial for capturing cyclical behaviors
- Steps
 - 1. Prepare the data
 - 2. Center the demand (helps the analysis focus on the deviation from the baseline)
 - 3. Use fft() in R to decompose the time series
 - 4. Extract the first four of real and imaginary components

Calculate the pairwise distance between the rows of scaled temporal data (used dist() function)

Spatial Constraint

The spatial connectivity w_s is derived from k-nearest neighbor graph to define spatial connectivity.

$$w_{ij} = \begin{cases} 1 & \text{if locations } s_i \text{ and } s_j \text{ are spatially connected,} \\ 0 & \text{otherwise.} \end{cases}$$

Calculate the spatial dissimilarity matrix as.dist(1-adj_matrix)

Picking the best alpha

• Q0: Temporal homogeneity

• Q1: Spatial contiguity

Pick up Demand

Drop off Demand

Pick up Demand by Clusters

Taxi Pickup Analysis: Time Effect

Sun Mon Tue Wed Thu

Day of the week

Fri

20000

Drop off Demand by Clusters

Taxi Dropoff Analysis: Time Effect

Overall Traffic Flow: Matched Clusters

Traffic Flow: Into Manhattan

To analyze the traffic flow into Manhattan, we gathered the trips from <u>clusters 1, 2</u> (pick up) to <u>clusters 3,4,5</u> (drop off)

Traffic Flow: Into Manhattan

Traffic Flow: Out of Manhattan

To analyze the traffic flow out of Manhattan, we gathered the trips from <u>clusters 3,4,5</u> (pick up) to <u>clusters 1,2</u> (drop off)

Traffic Flow: Out of Manhattan

Traffic Flow: within Manhattan

For the traffic flow within Manhattan, we gathered the trips from (pick up) and to (drop off) <u>clusters 3,4,5</u>

Traffic Flow: within Manhattan

Traffic Flow Analysis

Pickup - Dropoff	Avg (SD) Trip Distance (miles)	Avg (SD) Passenger Count	Avg (SD) Fare Amount (\$)	Avg (SD) Duration (mins)	Total Trips
into city	4.47 (0.18)	1.32 (0.07)	26.62 (1.81)	21.09 (1.43)	5755
out of city	3.57 (1.83)	1.44 (0.51)	33.91 (14.74)	22.54 (2.17)	21625
Within city	2.16 (0.72)	1.36 (0.06)	14.41 (2.8)	13.17 (2.62)	801588

References

- New York City Taxi & Limousine Commission. (2024). *Yellow taxi trip data: August 2024*. Retrieved from https://www.nyc.gov/assets/tlc
- Strang, G. (2018). Fourier Transform. Massachusetts Institute of Technology. Retrieved November 19, 2024, from https://math.mit.edu/~gs/cse/websections/cse41.pdf
- Chavent, M., Kuentz-Simonet, V., Labenne, A., & Saracco, J. (2017). ClustGeo: An R package for hierarchical clustering with spatial constraints. *arXiv*. https://doi.org/10.48550/arXiv.1707.03897
- Chavent, M., Kuentz-Simonet, V., Labenne, A., & Saracco, J. (2021). Introduction to ClustGeo. The Comprehensive R Archive Network. Retrieved from https://cran.r-project.org/web/packages/ClustGeo/vignettes/intro_ClustGeo.html