Modelling uncertainty of the Rhenium-Osmium cosmic clock

Øyvind Brynhildsvoll Svendsen¹

Supervisor: Sijing Shen¹ Co-supervisor: Signe Riemer-Sørensen¹

¹Institute of Theoretical Astrophysics, University of Oslo

Friday 15th June 2018 Svein Rosselands hus 209 Intro

Theory (10 min)

- basics of nuclear physics and reactions
- ► neutron capture processes
- stellar evolution and galactic enrichment
- Omega
- Eris

Nuclear physics

atom + chart of nuclides shell-model reaction rates + β^- -decay neutron-capture reactions slow and rapid neutron capture climbing in the chart of nuclides Re-Os system + analytical model

Stellar environments

AGB + massive + SN2 SN1a + BNSM + BHNSM yield-tables

Galaxies

gravitational collapse of gas and dark matter star formation from GMC inflow from surrounding medium outflow from supernovae

```
Eris
SPH
properties
postprocessing
sfr + total mass + [O/H] + [Fe/H] + [Eu/H]
```

Omega

SFR + timestep -> stellar mass formed stellar mass formed -> stellar population stellar population + yield tables + delay-time -> isotopic yields recycled into ISM + remnant remnants -> secondary events What is a cosmic clock?

Why use ${}^{187}_{75}\text{Re-}{}^{187}_{76}\text{Os?}$

Halflife: TODO! Different sources: slow and rapid neutron capture process

nucleosynthesis

- Fusion of lighter elements (up to iron)
- Neutron capture processes

slow β^- -decays before succesive neutron capture rapid capture multiple neutrons before β^- -decay

TODO! insert tikz-figure from clayton

Analytical models of $^{187}_{75}$ Re- $^{187}_{76}$ Os cosmic clock

TODO! calculations and citations to appendix A

Observed isotope fraction from meteorites and solar atmosphere

TODO! calculatations and citations from appendix A

Chemical enrichment of galactic medium

TODO! insert tikz-figure of recycling

Explosive events

- Asymptotic giant branch stars (not really explosive)
- Core collapse supernovae
- ► Type 1a supernovae
- Neutron star mergers

Eris simulation

TODO! insert eris-image

- Smoothed particle hydrodynamics simulation [?]
- ► TODO! Add more simulation details? number of particles etc.
- Postprocessing to add rapid neutron capture elements from neutron star mergers [?]

Omega semianalytical model [!]

- ightharpoonup SFR + timestep ightarrow stellar mass formed
- ightharpoonup stellar mass formed ightharpoonup stellar population
- ▶ stellar population + yield tables + delay-time → isotopic yields recycled into ISM + remnant
- ightharpoonup remnants ightarrow secondary events

Modelling uncertainty of the Rhenium-Osmium cosmic clock

Methods

- Fitting Omega to data from Eris
- Manipulate yields in Omega
- ► Main experiments TODO! rewrite this
- Postprocessing

Fitting Omega to data from Eris

- ► TODO! rough model
- ► TODO! chi2-by-eye
- ► TODO! data available
- ► Steps

Direct Insertion

Mass

Stellar parameters

Neutron star mergers

Time steps

Final model

Manipulate yields in Omega

- Yields from arnould and other TODO!
- ► Fudge-factors TODO!
- ► Linear relationship

Table of observed abundances

isotope standard min max σ _{lower} σ _{upper} Re-187 0.0318 0.027 0.0359 -0.1509 0.1289 Re-185 0.0151 0.011 0.0176 -0.2715 0.1656 Os-188 0.0707 0.0633 0.0781 -0.1047 0.1047 Os-189 0.103 0.0961 0.109 -0.067 0.0583 Os-190 0.152 0.137 0.168 -0.0987 0.1053 Os-192 0.273 0.252 0.289 -0.0769 0.0586 Eu-151 0.0452 0.0267 0.0482 -0.4093 0.0664 Eu-153 0.0495 0.046 0.0526 -0.0707 0.0626						
Re-185 0.0151 0.011 0.0176 -0.2715 0.1656 Os-188 0.0707 0.0633 0.0781 -0.1047 0.1047 Os-189 0.103 0.0961 0.109 -0.067 0.0583 Os-190 0.152 0.137 0.168 -0.0987 0.1053 Os-192 0.273 0.252 0.289 -0.0769 0.0586 Eu-151 0.0452 0.0267 0.0482 -0.4093 0.0664	isotope	standard	min	max	σ_{lower}	σ_{upper}
Os-188 0.0707 0.0633 0.0781 -0.1047 0.1047 Os-189 0.103 0.0961 0.109 -0.067 0.0583 Os-190 0.152 0.137 0.168 -0.0987 0.1053 Os-192 0.273 0.252 0.289 -0.0769 0.0586 Eu-151 0.0452 0.0267 0.0482 -0.4093 0.0664	Re-187	0.0318	0.027	0.0359	-0.1509	0.1289
Os-189 0.103 0.0961 0.109 -0.067 0.0583 Os-190 0.152 0.137 0.168 -0.0987 0.1053 Os-192 0.273 0.252 0.289 -0.0769 0.0586 Eu-151 0.0452 0.0267 0.0482 -0.4093 0.0664	Re-185	0.0151	0.011	0.0176	-0.2715	0.1656
Os-190 0.152 0.137 0.168 -0.0987 0.1053 Os-192 0.273 0.252 0.289 -0.0769 0.0586 Eu-151 0.0452 0.0267 0.0482 -0.4093 0.0664	Os-188	0.0707	0.0633	0.0781	-0.1047	0.1047
Os-192 0.273 0.252 0.289 -0.0769 0.0586 Eu-151 0.0452 0.0267 0.0482 -0.4093 0.0664	Os-189	0.103	0.0961	0.109	-0.067	0.0583
Eu-151 0.0452 0.0267 0.0482 -0.4093 0.0664	Os-190	0.152	0.137	0.168	-0.0987	0.1053
	Os-192	0.273	0.252	0.289	-0.0769	0.0586
Eu-153 0.0495 0.046 0.0526 -0.0707 0.0626	Eu-151	0.0452	0.0267	0.0482	-0.4093	0.0664
	Eu-153	0.0495	0.046	0.0526	-0.0707	0.0626

Table: Values and uncertainties of r-process nuclei near $^{187}_{75}$ Re from [1]. The relative uncertainty, σ -values, are calculated on the assumption that min/max are the one-sigma standard deviations in either direction.

Chemical evolution of ¹⁸⁷₇₅Re

Statistical deviation of $^{187}_{75}\mathrm{Re}$

$\sigma_{\it init}$	$\sigma_{ISM}(z=0)$	$\Sigma \sigma_{ISM}$	$\sigma_{\dot{m}}(z=0)$	$\Sigma \sigma_{\dot{m}}$
-0.302	-0.301887	-0.301887	-0.301887	-0.301887
0.128	0.128931	0.128931	0.128931	0.128931
0.257	0.257862	0.257862	0.257862	0.257862
0	0	0	0	0
-0.151	-0.150943	-0.150943	-0.150943	-0.150943

Main experiments TODO! rewrite this

- Draw random "fudge-factor" from gaussian distribution
- ▶ 1500 individual calculations
- Yields
- Yields+IMFslope
- Yields+IMFslope+NSM

Postprocessing

$$\beta^-$$
-decay

- $ightharpoonup \Delta \mathrm{Re} = -\lambda_{\mathrm{Re}} \mathrm{Re} \Delta t$
- $ightharpoonup \Delta Os = \lambda_{Re} Re \Delta t$

Removing negative negative yields

$$\hat{Y} \leq 0
ightarrow ext{consider}$$
 calculation

Results

- ▶ ¹⁸⁷₇₅Re in interstellar gas
- ▶ ¹⁸⁷₇₆Os in interstellar gas
- $ightharpoonup f_{187} = rac{^{187}{76} Os}{^{187}_{75} Re}$
- Rate of neutron star mergers
- Yields
- Yields+IMFslope
- Yields+IMFslope+NSM

Yields without postprocessing

Yields with postprocessing

Comparing models

Model	$^{187}_{76}\mathrm{Os}_c/~^{187}_{75}\mathrm{Re}$	$\lambda_{\scriptscriptstyle Re}$	λ_{rncp}
Clayton	$\frac{\Lambda - \lambda}{\lambda} e^{\lambda t} \frac{1 - e^{-\Lambda t}}{1 - e^{-(\Lambda - \lambda)t}} - 1$	$\lambda = \frac{\ln 2}{\tau_{Re}}$	Λ
Clayton Sudden synthesis	$e^{\lambda t} - 1$	$\tau_{\rm Re} = 47 \pm 10 Gyr$	$\Lambda \to \infty$
Clayton Uniform synthesis	$\frac{\lambda t}{1 - e^{-\lambda t}} - 1$		$\Lambda \to 0$
Luck	$\frac{\lambda_{Re}/\beta(1-e^{-\beta t})-(1-e^{-\lambda_{Re}t})}{e^{-\beta t}-e^{-\lambda_{Re}t}}$	$\lambda_{\text{Re}} = \begin{array}{c} 1.62 \pm 0.08 \\ \times 10^{-11} yr^{-1} \end{array}$	β
Luck Sudden synthesis			$\beta=10^{-6}yr^{-1}$
Luck Steady state			$\beta = 10^{-12} yr^{-1}$
Shizuma	$\frac{(1-e^{-\lambda_{\beta}^{\text{eff}}t})-(1-e^{-\lambda t})\lambda_{\beta}^{\text{eff}}/\lambda}{e^{-\lambda_{\beta}^{\text{eff}}t}-e^{-\lambda t}}$	$\lambda_{\beta}^{\rm eff} = \tfrac{1.2 \ln 2}{\tau_{Re}} = 2.00 \times 10^{-11} [yr^{-1}]$	$\lambda \in [0,2]Gyr^{-1}$
SciPy curvefit to Fiducial Omega-model-data	"	$\begin{array}{c} 1.33 \times 10^{-11} \\ \pm 2.767 \times 10^{-14} \end{array} [yr^{-1}]$	$5.42 \times 10^{-10} \\ \pm 5.79 \times 10^{-12} [yr^{-1}]$

Comparing models

Comparing models

Uncertainties of Yields+IMFslope

Uncertainties of Yields+IMFslope

TODO! insert plot of rates here

Uncertianties of Yields+IMFslope+NSM

Uncertianties of Yields+IMFslope+NSM

Conclusions/summary

- Yields
- Yields+IMFslope
- Yields+IMFslope+NSM

- Uncertainties with and without β^- -decay
- Uncertainties of models and observations
- Additional uncertainties from the slope of the *Initial Mass Function*
- Additional uncertainties from Neutron Star Mergers

References L

🐚 [Arnould et al. (2007)] Arnould, M. and Goriely, S. and Takahashi, K.

The r-process of stellar nucleosynthesis: Astrophysics and nuclear physics achievements and mysteries Phys.Rep. TODO! add shen15 TODO! add cote16a

TODO! add guedes11 TODO! add clayton