

Donner la forme algébrique des nombres complexes suivants :

- 1. a = i (2 5i)
- **2.** b = 3((1+2i) (4+i))
- 3. $c = 2i^2 + i + 2(1 2i)$
- **4.** $d = i^3 1$

Donner la forme algébrique des nombres complexes z_1, z_2, z_3 et z_4 définis dans la console python par les commandes suivantes :

- Pour z_1 :
 - 1 z1=complex(2,3)
- Pour z_2 :
 - 1 z2=complex(5,7)
- Pour z_3 :
 - 1 z3=z1+z2
- Pour z_4 :
 - 1 z4=z1*z2

Donner la forme algébrique des nombres complexes suivants puis vérifier les résultats à la calculatrice :

- 1. a = 3 (2 + 3i)(4 + i)
- **2.** b = (2 + i)(3 5i)(1 + 2i)
- **3.** $c = \left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)^2$
- **4.** $d = (5 i)^3$

On considère deux nombres complexes $z=a+\mathrm{i} b$ et $z'=a'+\mathrm{i} b'$.

- 1. Démontrer que $\text{Re}(z \times z') = aa' bb'$.
- **2.** Préciser $\text{Im}(z \times z')$.

On considère la suite (u_n) à valeurs complexes définies par : $u_0 = 1$ et $u_{n+1} = (1+\mathrm{i})u_n$ pour tout entier naturel n.

- 1. Calculer les trois premiers termes de cette suite.
- **2.** À quel type de suite correspond-elle?
- **3.** Donner son écriture explicite, c'est-à-dire son expression en fonction de n.
- **4.** Calculer u_8 .

Pour tout nombre complexe z = x + iy, on donne :

$$P(z) = z^2 - i.$$

- 1. Exprimer la partie réelle de P(z) en fonction de x et y.
- 2. Faire de même pour la partie imaginaire.
- 3. En déduire la forme algébrique de $P\left(\frac{\sqrt{2}}{2} i\frac{\sqrt{2}}{2}\right)$.

Simplifier la somme $i^{2018} + i^{2019} + i^{2020} + i^{2021}$.

Écrire le conjugué de chacun des complexes suivants :

- 1. 3 + 7i
- **2.** 5-2i
- 3. 2i (4 + 5i)
- 4. (3+4i)(1-7i)

Écrire le conjugué de chacun des nombres suivants :

- 1. $\frac{1}{3i}$
- 2. $\frac{2-4i}{3+2i}$
- 3. $(4+5i)^2$
- 4. $\frac{(3-4i)(4+i)}{2+3i}$

Écrire le conjugué de \overline{z} le conjugué des nombres complexes suivants :

- 1. $z^2 iz + 3i 4$
- **2.** 3i + (2 + i)z
- 3. $\frac{3z+i}{z-i}$

On considère un polynôme P(z) de degré 2 à coefficients réels

Montrer que si z_0 est une racine de P alors $\overline{z_0}$ l'est aussi.

Donner la forme algébrique des nombres complexes suivants puis vérifier les résultats à la calculatrice :

- 1. $a = \frac{4+i}{2+i}$
- **2.** $b = \frac{1}{2 i}$
- **3.** $c = \frac{2i}{i \sqrt{2}}$
- **4.** $d = \frac{i}{3 i\sqrt{3}}$

Résoudre dans \mathbb{C} les équations suivantes :

- 1. 7z 1 = 7i
- **2.** 5z + 5 = 2z + 3 + 2i
- 3. $(4+z)(5+2z) = 4i + 2z^2$

Résoudre dans \mathbb{C} les équations suivantes :

- 1. iz 1 = 7i + z
- **2.** 4iz + 2i = 1 z + i **3.** $\frac{z}{i+1} + 3 = \frac{z}{i-1} 3$

Résoudre dans \mathbb{C} les équations suivantes :

- 1. $z + 3 + i = 2\overline{z} + 7 + 3i$
- **2.** $2z 4 = 5i + 4\overline{z}$
- 3. $z\overline{z} = z + 2$
- 4. $\overline{z} 1 = z\overline{z} i$

Résoudre dans \mathbb{C} l'équation $z^2 - 2\overline{z} = -1$.

Soit a et b deux réels non nuls en même temps. Démontrer que $Z = \frac{a + ib}{a - ib} + \frac{a - ib}{a + ib}$ est réel.

On considère le nombre complexe z = a + 2i avec $a \in \mathbb{R}$. Déterminer a pour que z^2 soit imaginaire pur.

Soit z un nombre complexe non nul.

- 1. Écrire le conjugué des nombres suivants en fonction de z et \overline{z} :
 - **a.** $Z_1 = z + \overline{z}$
 - **b.** $Z_2 = z^2 + \overline{z}^2$

 - c. $Z_3 = \frac{z \overline{z}}{z + \overline{z}}$ d. $Z_4 = \frac{z^2 \overline{z}^2}{z\overline{z} + 3}$
- 2. Déterminer si chacun des nombres précédents est un nombre réel, un nombre imaginaire pur ou ni l'un ni l'autre.

Soit $Z = \frac{z+i}{z-i}$ pour tout $z \neq i$.

- 1. Exprimer \overline{Z} en fonction de \overline{z} .
- 2. En déduire tous les nombres complexes z tels que Zsoit réel.

Soit k un nombre réel et on pose :

$$z = k^2 + 2k - 1 - (k^2 - k - 2)i.$$

1. Déterminer la ou les valeur(s) du réel k pour que zsoit un nombre réel.

- 2. Déterminer la ou les valeur(s) du réel k pour que zsoit un nombre imaginaire pur.
- 3. Existe-t-il une valeur ou plusieurs valeurs du réel k pour que z soit nul?

À l'aide du binôme de Newton et du triangle de Pascal, donner la forme algébrique des nombres suivants :

- 1. $(1+i)^3$
- 2. $(1+2i)^4$
- 3. $(2-i)^4$

- 1. Dans la formule du binôme de Newton avec $(x+y)^{10}$ trouve-t-on un terme en x^2y^6 ? Si oui, préciser son
- **2.** Même question avec x^3y^7 .

On considère la fonction Python suivante :

```
def developpe(a,b):
3
           L=[1,4,6,4,1]
4
            for k in range(5):
5
                    S=S+L[k]*a**(4-k)*b**k
           return(S)
```

- 1. a. Que représente les termes de la liste L?
 - **b.** Déterminer l'expression de S en fonction de a et
 - **c.** Quelle valeur renvoie la fonction pour a = 1 et
- 2. Louise a testé la fonction et a obtenu le résultat suivant:

Quelle égalité mathématique peut-elle en déduire?

- **1.** Développer $(1+z)^n$ pour tout $(z; n) \in \mathbb{C} \times \mathbb{N}^*$.
- **2.** En remplaçant z successivement par 1, -1, i, -i, évaluer les quantités suivantes :

a.
$$S_1 = 1 + \binom{n}{1} + \binom{n}{2} + \binom{n}{3} + \binom{n}{4} + \cdots$$

b.
$$S_2 = 1 - \binom{n}{1} + \binom{n}{2} - \binom{n}{3} + \binom{n}{4} - \cdots$$

c.
$$S_3 = 1 - \binom{n}{2} + \binom{n}{4} - \binom{n}{6} + \cdots$$

d.
$$S_4 = \binom{n}{1} - \binom{n}{3} + \binom{n}{5} - \cdots$$

- 1. Écrire une formule inspirée par le binôme de Newton pour $(a-b)^n$ en remarquant que a-b=a+(-b).
- **2.** En déduire que $\sum_{k=0}^{k=n} (-1)^k \binom{n}{k} = 0.$
- 3. Quel est le coefficient du terme en a^3b^7 dans le développement de $(a-b)^{10}$?