# МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

### ОТЧЕТ

по лабораторной работе №2
по дисциплине «Понижение размерности пространства признаков»
Тема: Машинное обучение

| Студент гр. 6304 | Виноградов К.А |
|------------------|----------------|
| Преподаватель    | Жангиров Т.Р.  |

Санкт-Петербург 2020

## Загрузка данных.

Загрузим данные из csv таблицы, произведем их нормировку к интервалу [0, 1] и построим диаграммы рассеяния для пар соседних признаков по нормированным данным, также добавим легенду для определения типа признака по цвету элемента на диаграмме. Результат представлен на рис.1.



Рисунок 1 – Диаграммы рассеяния исходных данных

### Метод главных компонент.

Используя метод главных компонент, произведем понижение размерности пространства признаков до 2. Выведем также информацию о сохраненной дисперсии множества и сингулярные числа, соответствующие оставшимся компонентам. Информация представлена на рис. 2 и 3.



Рисунок 2 — Диаграммы рассеяния данных после понижения размерности пространства

```
Суммарная дисперсия 63.41966621042779 %
Дисперсия соответствующего признака [0.45429569 0.17990097]
Сингулярные числа соответствующего признака [5.1049308 3.21245688]
```

Рисунок 3 – Данные после алгоритма РСА

Исходя из полученных данных можно сделать вывод, что два признака суммарно содержат более 63% информации всего набора, причем больший из них содержит примерно 45% информации, что наглядно представлено на диаграмме – измерения в большей степени распределены по оси абсцисс чем по оси ординат.

Было установлено что для сохранения более 85% информации достаточно оставить 4 измерения. Результат на рис. 4.

```
Суммарная дисперсия 85.8669730510272 %
Дисперсия соответствующего признака [0.45429569 0.17990097 0.12649459 0.09797847]
Сингулярные числа соответствующего признака [5.1049308 3.21245688 2.69374532 2.3707507 ]
```

Рисунок 4 – Признаки 4-мерного пространства

После восстановления данных с помощью inverse\_transform() можно заметить что восстановленные данные не идентичны изначальным. Это происходит из-за потери информации при сокращении размерности. Результаты представлены на рис. 5 и 6.

|    | 0       | 1_      | 2       | 3       |
|----|---------|---------|---------|---------|
|    | 0.43284 | 0.43759 | 1.00000 | 0.25234 |
|    | 0.28358 | 0.47519 | 0.80178 | 0.33333 |
|    | 0.22081 | 0.42105 | 0.79065 | 0.38941 |
|    | 0.28578 | 0.37293 | 0.82183 | 0.31153 |
|    | 0.27524 | 0.38195 | 0.80624 | 0.29595 |
|    | 0.21115 | 0.30977 | 0.80401 | 0.41433 |
|    | 0.27568 | 0.38647 | 0.80178 | 0.26480 |
|    | 0.28139 | 0.36391 | 0.80401 | 0.23676 |
|    | 0.35250 | 0.49774 | 0.79733 | 0.33645 |
|    | 0.28095 | 0.34135 | 0.80178 | 0.33333 |
|    | 0.20018 | 0.29925 | 0.77060 | 0.39564 |
| 11 | 0.28446 | 0.31128 | 0.81514 | 0.30530 |
| 12 | 0.20808 | 0.32331 | 0.76392 | 0.34579 |
| 13 | 0.27788 | 0.32030 | 0.79287 | 0.30530 |
| 14 | 0.28446 | 0.28271 | 0.79955 | 0.31776 |
| 15 | 0.28358 | 0.31278 | 0.78842 | 0.29283 |
|    | 0.29368 | 0.29323 | 0.81737 | 0.27103 |
| 17 | 0.47454 | 0.54586 | 0.85746 | 0.18692 |

Рисунок 5 — Восстановленные данные после уменьшения размерности до 4 (оригинал слева, восстановленные справа)

|    | 0.43284 | 0.43759 | 1.00000 | 0.25234 |
|----|---------|---------|---------|---------|
|    | 0.28358 | 0.47519 | 0.80178 | 0.33333 |
|    | 0.22081 | 0.42105 | 0.79065 | 0.38941 |
|    | 0.28578 | 0.37293 | 0.82183 | 0.31153 |
|    | 0.27524 | 0.38195 | 0.80624 | 0.29595 |
|    | 0.21115 | 0.30977 | 0.80401 | 0.41433 |
|    | 0.27568 | 0.38647 | 0.80178 | 0.26480 |
|    | 0.28139 | 0.36391 | 0.80401 | 0.23676 |
|    | 0.35250 | 0.49774 | 0.79733 | 0.33645 |
|    | 0.28095 | 0.34135 | 0.80178 | 0.33333 |
| 10 | 0.20018 | 0.29925 | 0.77060 | 0.39564 |
| 11 | 0.28446 | 0.31128 | 0.81514 | 0.30530 |
| 12 | 0.20808 | 0.32331 | 0.76392 | 0.34579 |
| 13 | 0.27788 | 0.32030 | 0.79287 | 0.30530 |
| 14 | 0.28446 | 0.28271 | 0.79955 | 0.31776 |
| 15 | 0.28358 | 0.31278 | 0.78842 | 0.29283 |
| 16 | 0.29368 | 0.29323 | 0.81737 | 0.27103 |
| 17 | 0.47454 | 0.54586 | 0.85746 | 0.18692 |

Рисунок 6 — Восстановленные данные без изменения размерности (оригинал слева, восстановленные справа)

Алгоритм PCA, реализованный в библиотеке sklearn использует SVD разложение как способ нахождения собственных векторов и собственных чисел через сингулярные вектора и сингулярные числа, при этом доступно 3 вида алгоритмов:

- Full SVD вычисляет разложение  $U\Sigma V^T$  размерности  $m\times n$  для исходной матрицы размерности  $m\times n$
- Truncated SVD вычисляет разложение U размерности  $m \times k \Sigma$  размерности  $k \times k V^T$  размерности  $k \times n$  для исходной матрицы размерности  $m \times n$
- Randomized SVD сводится к разложению SVD для приближения  $A \approx QQ^TA = Q(S\Sigma V^T) = U\Sigma V^T$  где Q ортонормированная матрица для случая QR-разложения матрицы  $A\Omega$  где  $\Omega$  Гауссова случайная матрица

Обычно применяется вариант Full SVD, однако Truncated SVD может дать прирост производительности в случае когда m < n или m > n для матрицы размерности  $m \times n$ . Randomized SVD же дает хороший прирост производительности при большом объеме матрицы, однако результаты могут незначительно отличаться от расчета с помощью Full SVD или Truncated SVD, так как SVD разложение рассчитывается для приближения оригинальной матрицы. Результаты для случайной матрицы размерности  $1000 \times 500$  на рис. 7 и 8.

```
Время работы Full SVD: 2.116121292114258 Размерность матрицы: (1000, 500)
Время работы Truncated SVD: 0.9380536079406738 Размерность матрицы: (1000, 500)
Время работы Randomized SVD: 0.36602067947387695 Размерность матрицы: (1000, 500)
```

Рисунок 7 – Сравнение времени работы алгоритмов

|    | 0        | 1        | 2        |
|----|----------|----------|----------|
| 0  | 15.56795 | 15.56795 | 15.55617 |
| 1  | 15.36075 | 15.36075 | 15.35146 |
| 2  | 15.25724 | 15.25724 | 15.23452 |
| 3  | 15.13950 | 15.13950 | 15.11428 |
| 4  | 15.08571 | 15.08571 | 15.07135 |
| 5  | 15.01668 | 15.01668 | 14.99816 |
| 6  | 14.96319 | 14.96319 | 14.94304 |
| 7  | 14.88722 | 14.88722 | 14.86440 |
| 8  | 14.87003 | 14.87003 | 14.85311 |
| 9  | 14.81132 | 14.81132 | 14.78484 |
| 10 | 14.79048 | 14.79048 | 14.76900 |
| 11 | 14.68313 | 14.68313 | 14.65557 |
| 12 | 14.65720 | 14.65720 | 14.62852 |
| 13 | 14.59976 | 14.59976 | 14.55576 |
| 14 | 14.49965 | 14.49965 | 14.46337 |
| 15 | 14.48952 | 14.48952 | 14.44107 |
| 16 | 14.47138 | 14.47138 | 14.42746 |
| 17 | 14.44039 | 14.44039 | 14.40194 |

Рисунок 8 – Сингулярные числа, столбцы слева направо – Full SVD, Truncated SVD, Randomized SVD

### Kernel PCA.

Kernel PCA – модификация метода PCA при которой к изначальному пространству признаков применяется ядерная функция, отображающая набор признаков в другое пространство (обычно большей размерности), в котором можно избежать потери определенной части информации при сокращении размерности пространства признаков.

Для расчета ядерной матрицы доступны следующие подходы:

- линейный
- RBF
- полиномиальный
- сигмоидальный
- косинусовый

Произведем для каждого из методов тестирование влияния характеристик функции ядра на итоговый результат, в частности на концентрацию информации в собственных числах. Проиллюстрируем это с

помощью графика кумулятивной функции зависимости количества информации от количества собственных чисел.

При использовании линейного метода Kernel PCA идентичен обычному PCA так как отображение происходит в то же самое пространство. Результаты представлены на рис. 9.



Рисунок 9 – Кумулятивная функция линейного метода

При использовании метода RBF можно корректировать параметр  $\gamma$ . Результаты кумулятивной функции с различными параметрами  $\gamma$  представлены на рис. 10.



Рисунок 10 – Кумулятивная функция RBF метода при изменении γ

Можно отметить, что при увеличении параметра  $\gamma$  в отрицательную сторону больший вес приобретает первое собственное число, а при увеличении параметра  $\gamma$  в положительную сторону распределение весов между собственными числами выравнивается.

Полиномиальный метод Kernel PCA регулируется сразу тремя параметрами: степенью, свободным членом и также параметром γ. Результаты тестирования метода для различных значений параметров представлены на рис. 11, 12 и 13.



Рисунок 11 — Кумулятивная функция полиномиального метода при изменении  $\gamma$ 

В случае полиномиального метода можно отметить, что при приближении параметра  $\gamma$  к нулю с положительной стороны вес первых собственных чисел увеличивается. При использовании отрицательных значений параметра линейную зависимость выявить не удалось.



Рисунок 12 – Кумулятивная функция полиномиального метода при изменении степени

Изменение степени в большую сторону более равномерно распределяет веса между собственными числами.



Рисунок 13 – Кумулятивная функция полиномиального метода при изменении свободного члена

Изменение значения свободного члена практически не изменяют результат за исключением принятия его равным 0 — в данном случае веса собственных чисел ощутимо выравниваются.

У сигмоидального метода можно изменять два параметра – параметр γ и свободный член. Тестирование метода с различными значениями параметров представлено на рис. 14 и 15.



Рисунок 14 — Кумулятивная функция сигмоидального метода при изменении параметра γ

Чем ближе параметр к при увеличении значения параметра в положительную сторону вес первого собственного числа увеличивается. При увеличении в отрицательную сторону сначала веса стремятся к равномерному распределению, а затем после определенного значения вес первого параметра также начинает увеличиваться. Также метод не справляется с расчетом при слишком больших по модулю значениях параметра.



Рисунок 15 — Кумулятивная функция сигмоидального метода при изменении свободного члена

Свободный член слабо влияет на результат, однако более близкие результаты немного добавляют вес первым собственным числам. Метод также не справляется с расчетом при больших по модулю значениях параметра.

У косинусного метода нет изменяемых параметров. Результат применения метода показан на рис. 16.



Рисунок 16 – Кумулятивная функция косинусного метода

Сравнение методов показано на рис. 17.



Рисунок 17 – Сравнение методов

На данном наборе данных результат применения методов со стандартными параметрами отличается слабо.

# **Sparce PCA.**

Sparce PCA – модификация метода PCA которая рассчитывает наиболее разреженную матрицу компонент для сохранения согласованности и более удобной интерпретации результатов. Результат уменьшения размерности с помощью этого метода представлен на рис. 18.



Рисунок 18 — Сокращение размерностей пространства до 2 с помощью Sparce PCA

С помощью параметра  $\alpha$  можно менять разреженность компонент. Результаты тестирования зависимости от параметра  $\alpha$  представлены на рис. 19.



Рисунок 19 – Процент ненулевых элементов матрицы компонент

Можно отметить, что при значении параметра  $\alpha \leq 0$  разреживание не производится и Sparce PCA аналогичен обычному PCA.

# Factor analysis.

Факторный анализ — процесс выявления взаимосвязей между переменными и поиска скрытых зависимостей. В процессе проведения факторного анализа можно объединять сильно коррелирующие признаки, а следовательно, и сокращать размерность пространства признаков. Результат применения факторного анализа представлен на рис. 20.



Рисунок 20 – Уменьшение пространства признаков с помощью факторного анализа

Можно отметить, что при значении параметра  $\alpha \leq 0$  разреживание не производится и Sparce PCA аналогичен обычному PCA.

Отличия РСА от факторного анализа:

- факторный анализ направлен на поиск скрытых взаимосвязей и зависимостей (признаков), в то время как PCA на поиск линейных комбинаций
- факторный анализ является статистическим и аналитическим методом который в большинстве случаем можно интерпретировать в то время как РСА является математическим инструментом и часто результат его применения интерпретировать невозможно
- факторный анализ рассматривает ковариацию признаков а РСА работает с их дисперсией
- преобразования РСА приводят к нахождению ортогональных компонент, преобразования при факторном анализе это не гарантируют

# Выводы

В ходе выполнения данной лабораторной работы были изучены метод РСА и его модификации, в частности Kernel PCA и Sparce PCA. Была проделана работа по изучению влияния параметрических переменных на результат вышеназванных алгоритмов.

Было проведено сравнение метода РСА с подходом факторного анализа и выделены схожести и различия этих методов.