

Gero Flucke Control and Analysis Software group

Satellite Workshop on Data Analysis and Karabo January 23rd, 2018

Afternoon Session: Karabo and Data Analysis at XFEL

Outline

- Karabo Framework Overview
- Graphical User Interface
- Data Acquisition and Scanning

Introduction

- Karabo is custom made European XFEL's
 - Control System: controls a wide-range of light source instruments
 - Data acquisition system: GB/s scientific data collection
 - Data processing framework: Native support of distributed process chaining using pipelines.
- Under active development
- Drives European XFEL commissioning and, since September 2017, user experiments

Unified approach required for:

Instrument Control

Data Acquisition (DAQ)

Data Management (DM)

Scientific Computing (SC)

Accelerator Undulator Beam Transport

Control

Tight integration of applications

monitor variables & DAQ trigger alarms data readout online processing quality monitoring

allow some control & show hardware status

Control drive hardware and

complex experiments

show online data whilst running

DM

(vetoing)

storage of experiment & control data data access, authentication authorization etc.

setup computation & show scientific results

SC

processing pipelines distributed and GPU computing specific algorithms (e.g. reconstruction)

Karabo: Device Based Communication via a Message Broker

Individual Karabo Devices

Equipment control,e.g. motors, valves,...

Detectors like

cameras,

big 2D detectors

Data storage

System services

Online/offline data analysis, e.g. calibration

Four Application Programming Interfaces

...and whom they address:

- Macros: instrument scientists, possibly later users
- Middlelayer:
 Control experts with feedback from instruments,
 maybe instrument scientists
- Hardware interface:
 Control experts with hardware knowledge

Graphical User Interface: Integrated cockpit

Unified tool:

- For experts:
 - Full system view.
 - Detailed access to configurations.
 - Integrated command line.
- For everybody:
 - Customizable "scenes" (no coding required).
 - Rich set of widgets.
 - Coherent handling, e.g. limits of settings.
 - Visualisation of
 - ► error state,
 - properties in alarm condition.
 - . . .

Graphical User Interface

Navigation panel:

- Complete Karabo system topology
- Searchable
- Colour coded device state indicator

Graphical User Interface

Configuration panel

- Online and offline device configuration
- Send commands to devices

Graphical User Interface

Project panel

- Project data:
 - device configurations,
 - \blacksquare scenes (\rightarrow) ,
 - macros.
- Projects stored in central data base.

Graphical User Interface

Panels for

- Message logging
- Alarm handling
- Integrated command line

Graphical User Interface

Scenes

- Easily editable
 - using drag and drop
- Rich widget set
 - various image views,
 - trend lines,
 - commands,
 - device states,
 - standardized icons,
 - (some details in backup)
- Can un-dock from main window (as all panels)

Introducing Karabo

Scene Example

Beamline Control: SASE1

Scene Example

Diagnostic: XGM monitoring

Introducing Karabo

Scene Example

Detector control: LPD Tile Control

European XFEL: Photons come in trains with short pulses

On average: up to 27 kHz of pulses

Karabo Data Acquisition (DAQ) Integration

- Support for different types of data sources:
 - Big 2D detectors as LPD, AGIPD (XFEL train data format)
 - → big & fast data
 - 2D or pulse resolved data: e.g. cameras, digitizers (Karabo pipeline)
 - → fast and/or medium sized data
 - Control data with train resolution: e.g. sensors, motors (Karabo)
 - → slow data
- Data acquisition organised via several Karabo devices
- Data stored in HDF5 files
 - available after run has finished,
 - Karabo and data access tools provide data of all pulses of a train in one go.
- Provide data stream for online display and online analysis,
 - e.g. feeds calibration of big 2D detectors,
 - can be replicated offline to tune online tools.

Scan Tool

- DAQ-integrated step scans:
 - one scan one DAQ run.
- GUI and (spec like) command line.
- Configure devices:
 - abstract motor(s): steps to take,
 - passive and active ("triggers") data sources.
- Scan types
 - absolute 1-4 motors: ascan, a2scan,...
 - relative 1-4 motors: dscan, d2scan,...
 - 2D grid absolute and relative: mesh, dmesh
- Plotting being extended to non-scalar data

Karabo: Supervisory Control and Data Acquisition (SCADA) at work!

- Running several thousand Karabo devices at European XFEL
 - Instruments, beam lines, ...
- Data acquisition successfully stored "big data" in first user experiments:
 - FXE instrument: 57 TB
 - SPB instrument: 389 TB
- Pipeline processing:
 - LPD gain characterization "routinely" processes 3.5TB of data automatically within two days.

Summary

- Karabo, an integrated framework for
 - Instrument Control
 - Data Acquisition
 - Data Management
 - Scientific Computing
- Broker based communication
- Workflow support through data pipelines, e.g. for online monitoring
- Four APIs (C++, Python) for extensions
- GUI easily customizable via scenes
- Experiment automation using macros and scan tools
- [1] B. Heisen et al: "Karabo: An integrated software framework combining control, data management, and scientific computing tasks," in14th ICALEPCS2013. San Francisco, CA, 2013.

Dr. Gero Flucke

23

Alarms

- Reports any trespassing of property-specific thresholds
- Can be investigated from the GUI and acknowledged as soon as the alarm condition has passed

Scene Example

Experiment Control: FXE's Beam Imaging Unit

Introduction to Value Displays

- Karabo comes with a set of standard visualization options for:
 - ► Scalars
 - ▶ Vectors
 - ► Images
 - ► Image stacks
- For scalars: value field, expression evaluation, trendline, sparklines, x-y plots, bit fields, checkboxes
- For vectors: value fields, x-y plots, categorial plot
- For images: scientific, webcam, minimal, stacked

Dr. Gero Flucke

Introduction to Value Displays - Scalars

Introduction to Value Displays - Vectors

Introduction to Value Displays - Images

