4211 Homework 5

Matthew DeSantis

2023-03-09

1

(a)

```
x = c(19,15,76,23,24,66,27,12,25,7,6,16,51,26,39)
hist(x)
abline(v = 50, col = 'red')
```

Histogram of x

(b)

```
teststat = (2/50)*sum(x)
qchisq(0.95, df = 30) #upper
```

[1] 43.77297

```
qchisq(0.05, df = 30) #lower
```

[1] 18.49266

At the 0.10 level of confidence, there is sufficient evidence to reject the claim that theta = 50.

```
power2 = function(theta1){
    a = 0.05
    n = 10
    theta0 = 1
    thing = theta0/theta1
    upper = thing*qchisq(1-a/2, df = 2*n)
    lower = thing*qchisq(a/2, df = 2*n)

    power = 1 - (pchisq(upper, df = 20)-pchisq(lower, df = 20))

    return(power)
}

xp = seq(from = 0, to = 5, by = 0.05)
plot(xp, power2(xp))
```



```
3
```

(a)

 $(\operatorname{sqrt}(n/\operatorname{xbar})^*(\operatorname{xbar-theta0}))^2$

(b)

```
poiswald = function(x, theta0){
  n = length(x)
  u = mean(x)
  return((sqrt(n/u)*(u-theta0))^2)
}
```

(c)

```
x = c(27,13,21,24,22,14,17,26,14,22,21,24,19,25,15,25,23,16,20,19)
(stat = poiswald(x, 23))
## [1] 6.90172
(1 - pchisq(stat, df = 1))*2
```

[1] 0.01722257

```
salmon <- read.csv("C:/Users/Hyrul/Desktop/School/6 Semester/Stats for DS 2/Homework/HW5/salmon.dat", s</pre>
salmon$R = 1/salmon$recruits
salmon$S = 1/salmon$spawners
lm4 = lm(R~S, data = salmon)
summary(lm4)
##
## Call:
## lm(formula = R ~ S, data = salmon)
##
## Residuals:
##
          Min
                      1Q
                             Median
                                            3Q
                                                      Max
## -5.776e-04 -2.403e-04 -1.903e-05 1.755e-04 7.166e-04
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.013e-03 8.216e-05
                                      24.50
                                              <2e-16 ***
## S
               6.978e-01 1.149e-02
                                      60.72
                                              <2e-16 ***
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Residual standard error: 0.0003362 on 38 degrees of freedom
## Multiple R-squared: 0.9898, Adjusted R-squared: 0.9895
## F-statistic: 3687 on 1 and 38 DF, p-value: < 2.2e-16
```

At the 5% confidence level (but also practically any confidence level, since the pvalues are so small), both beta 1 and beta 0 are positive.

5

(a)

```
data(sat, package="faraway")
afit = lm(total~ratio+salary+expend, data = sat)
summary(afit)
##
## lm(formula = total ~ ratio + salary + expend, data = sat)
## Residuals:
       Min
                 10
                    Median
                                   30
                                           Max
## -140.911 -46.740 -7.535
                              47.966 123.329
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1069.234
                          110.925
                                   9.639 1.29e-12 ***
## ratio
                 6.330
                            6.542
                                    0.968
                                            0.3383
## salary
                -8.823
                            4.697 -1.878
                                            0.0667 .
                16.469
                           22.050
                                   0.747
                                            0.4589
## expend
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
## Residual standard error: 68.65 on 46 degrees of freedom
## Multiple R-squared: 0.2096, Adjusted R-squared: 0.1581
## F-statistic: 4.066 on 3 and 46 DF, p-value: 0.01209
```

From the table, only the intercept is a significant term. Ratio has a positive correlation, salary has a negative, and expend has a positive, though none are significant.

(b)

```
sat$catratio=(cut(sat$ratio,breaks=c(13,16,18,25)))
bfit = lm(total~catratio+salary+expend, data = sat)
summary(bfit)
##
## Call:
## lm(formula = total ~ catratio + salary + expend, data = sat)
##
## Residuals:
##
       Min
                  1Q
                       Median
                                    ЗQ
                                             Max
## -137.103 -47.497
                        6.392
                                46.365 136.296
##
## Coefficients:
##
                   Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                   1167.083
                               61.417 19.003
                                                 <2e-16 ***
```

```
## catratio(16,18] -24.838
                              25.101 -0.990
                                                0.328
## catratio(18,25] -16.068
                              34.295 -0.469
                                                0.642
## salary
                    -4.163
                               4.216 -0.988
                                                0.329
## expend
                    -7.314
                              19.594 -0.373
                                                0.711
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Residual standard error: 69.35 on 45 degrees of freedom
## Multiple R-squared: 0.211, Adjusted R-squared: 0.1409
## F-statistic: 3.008 on 4 and 45 DF, p-value: 0.02779
```

Here, we treat small ratios (13-16) as the base group. Performing the regression, none of the predictors have significant pvalues, and they are all negative.

(c)

It changes slightly, in that expend is now negative rather than positive, but it doesn't matter much in practice since they are both insignificant models.