有限元方法 II 上机报告 (二)

陈伟 1901110037

对于选择的基底不同, 二维的 de Rham complex 有

$$\mathbb{R} \longrightarrow C^{\infty}(\Omega) \stackrel{\text{grad}}{\longrightarrow} (C^{\infty}(\Omega))^2 \stackrel{\text{rot}}{\longrightarrow} C^{\infty}(\Omega) \longrightarrow 0$$

or

$$\mathbb{R} \longrightarrow C^{\infty}(\Omega) \xrightarrow{\operatorname{curl}} (C^{\infty}(\Omega))^2 \xrightarrow{\operatorname{div}} C^{\infty}(\Omega) \longrightarrow 0$$

其中

$$\operatorname{curl} v = \begin{pmatrix} \frac{\partial v}{\partial x_2} \\ -\frac{\partial v}{\partial x_1} \end{pmatrix} \quad \operatorname{rot} v = \frac{\partial v_2}{\partial x_1} - \frac{\partial v_1}{\partial x_2}$$

也即是 $\operatorname{rot} v = \operatorname{div} \left(v^{\perp} \right)$, and $(\operatorname{grad} v)^{\perp} = \operatorname{curl} v$.

Problem 1

问题描述

对给定的计算区域 $\Omega \subset \mathbb{R}^2$, 考虑向量 Laplace 方程

$$\operatorname{curl\ rot\ } \underline{u} - \operatorname{grad\ div} \underline{u} = \underline{f} \quad \text{ in } \Omega, \qquad (1)$$

与边界条件

$$\operatorname{div} \underline{\widetilde{u}} = 0, \quad \underline{\widetilde{u}} \times \underline{\widetilde{n}} = 0 \quad \text{ on } \partial\Omega. \tag{2}$$

或者

$$u \cdot n = 0$$
, rot $u = 0$ on $\partial \Omega$. (3)

其中 $u \times n = u_1 n_2 - u_2 n_1$.

混合形式

上述方程也即是

$$(d\delta + \delta d)\underline{u} = f, \qquad in \ \Omega$$

$$tr(\star \underline{u}) = tr(\star d\underline{u}) = 0, \quad on \ \partial\Omega$$

由 $< dw, \eta > = < w, \delta \eta > + < trw, tr(\star \eta) >_{\partial\Omega}$, 故令 $\sigma = \delta u \in H\Lambda^0$, 则有

$$<\sigma, \tau> = <\underline{u}, d\tau> - < tr\tau, tr(\star\underline{u})>_{\partial\Omega}$$

= $<\underline{u}, d\tau>, \quad \forall \tau \in H\Lambda^0$

对应的

$$\begin{split} <\underbrace{f}_{,}\underbrace{v}> &= <\sigma, \underbrace{v}> + <\delta d \underbrace{u}, \underbrace{v}> \\ \\ &= <\sigma, \underbrace{v}> + < d \underbrace{u}, d \underbrace{v}> - < tr(\underbrace{v}), tr(\star d \underbrace{u})> \\ \\ &= <\sigma, \underbrace{v}> + < d \underbrace{u}, d \underbrace{v}>, \quad \forall \underbrace{v} \in \mathfrak{H}^{1,\perp} \end{split}$$

故也即是

$$\begin{split} \langle \sigma, \tau \rangle &= \langle \mathrm{d} \tau, \underline{u} \rangle, \quad \tau \in H\Lambda^0(\Omega) \\ \langle \mathrm{d} \sigma, \underline{v} \rangle &+ \langle \mathrm{d} \underline{u}, \mathrm{d} \underline{v} \rangle = \langle \underline{f}, \underline{v} \rangle, \quad v \in \mathfrak{H}^{1, \perp} \\ \langle \underline{u}, \underline{q} \rangle &= 0, \quad \underline{q} \in \mathfrak{H}^1 \end{split}$$

特别当取 Ω 为 \mathbb{R}^2 上当单连通区域时, $\mathfrak{H}^1=0$,故 $\mathfrak{H}^{1,\perp}=H\Lambda^1$ 现取基底为 $(dx_2,-dx_1)$,对应的 de Rham complex 即是

$$\mathbb{R} \longrightarrow C^{\infty}(\Omega) \xrightarrow{\operatorname{curl}} (C^{\infty}(\Omega))^2 \xrightarrow{\operatorname{div}} C^{\infty}(\Omega) \longrightarrow 0$$

$$\mathbb{R} \longleftarrow C^{\infty}(\Omega) \stackrel{\mathrm{rot}}{\longleftarrow} (C^{\infty}(\Omega))^2 \stackrel{\mathrm{grad}}{\longleftarrow} C^{\infty}(\Omega) \longleftarrow 0$$

令 $\sigma = du = rotu$, 故对于 (2) 形式的边界条件下的混合形式即为

$$\langle \sigma, \tau \rangle = \langle \text{curl}\tau, u \rangle, \quad \tau \in H(\text{curl})$$

$$\langle \mathrm{curl} \sigma, \underline{v} \rangle + \langle \mathrm{div} \underline{v}, \mathrm{div} \underline{v} \rangle = \langle \underline{f}, \underline{v} \rangle, \quad v \in H(\mathrm{div})$$

取基底为 (dx_1, dx_2) 时, 对应的 de Rham complex 即是

$$\mathbb{R} \longrightarrow C^{\infty}(\Omega) \stackrel{\text{grad}}{\longrightarrow} (C^{\infty}(\Omega))^2 \stackrel{\text{rot}}{\longrightarrow} C^{\infty}(\Omega) \longrightarrow 0$$

$$\mathbb{R} \longleftarrow C^{\infty}(\Omega) \stackrel{\text{-}\mathrm{div}}{\longleftarrow} (C^{\infty}(\Omega))^2 \stackrel{\mathrm{curl}}{\longleftarrow} C^{\infty}(\Omega) \longleftarrow 0$$

令 $\sigma = dy = -\text{div}y$, 故 (3) 形式边界条件下的混合形式即为

$$\begin{split} \langle \sigma, \tau \rangle &= \langle \mathrm{grad} \tau, \underline{u} \rangle, \quad \tau \in H(\mathrm{grad}) \\ \langle \mathrm{grad} \sigma, \underline{v} \rangle &+ \langle \mathrm{rot} \underline{u}, \mathrm{rot} \underline{v} \rangle &= \langle \underline{f}, \underline{v} \rangle, \quad v \in H(\mathrm{rot}) \end{split}$$

精确解 u

对于边界条件 (2), 考虑满足 $\operatorname{div}(u) = 0$, $\operatorname{in} \Omega, u \times n = 0$, on $\partial\Omega$ 取

$$u = \begin{pmatrix} -\cos 2\pi x \sin 2\pi y \\ \sin 2\pi x \cos 2\pi y \end{pmatrix}$$

其对应的 $f = 8\pi^2 u$ 与 $\sigma = 4\pi \cos 2\pi x \cos 2\pi y$. 对于边界条件 (3), 考虑取 $u = (\sin 2\pi x \cos 2\pi y, \cos 2\pi x \sin 2\pi y)^T$ 即可. 我们下面考虑边界条件 (2) 的情况. 此时大的双线性形为:

Find
$$(\underline{u}, \sigma) \in H(\text{div}) \times H(\text{curl}),$$

$$s.t : \forall (\underline{u}, \tau) \in H(\text{div}) \times H(\text{curl})$$

$$\langle \sigma, \tau \rangle - \langle \text{curl}\tau, \underline{u} \rangle + \langle \text{curl}\sigma, \underline{v} \rangle + \langle \text{div}\underline{u}, \text{div}\underline{v} \rangle = \langle \underline{f}, \underline{v} \rangle,$$

数值结果

设 V = H(div), Q = H(curl), 对应令 $Q_h = \mathcal{P}_r \Lambda^0, V_h = \mathcal{P}_r^- \Lambda^1$, 得到的结果如下

表 1: Lagrange - RT 元 (r=1) 误差表

ス i. Bushinge Tit /b (i-i) W注収												
h	$\ \underline{u} - \underline{u}_h\ _{L^2}$	rate	$\ \operatorname{div}(\underline{u}-\underline{u}_h)\ _{H^1}$	rate	$\ \sigma - \sigma_h\ _{L^2}$	rate	$\ \operatorname{curl}(\sigma - \sigma_h\ _{L^2})$	rate				
6.25e-02	5.64e-01		3.96e-01		2.10e+00		4.17e + 01					
3.12e-02	2.81e-01	1.01	8.68e-02	2.19	5.70e-01	1.88	2.16e+01	0.95				
1.56e-02	1.39e-01	1.01	2.07e-02	2.07	1.45e-01	1.97	1.09e+01	0.99				
7.81e-03	6.95e-02	1.00	5.11e-03	2.02	3.66e-02	1.99	5.48e + 00	1.00				
3.91e-03	3.47e-02	1.00	1.27e-03	2.00	9.15e-03	2.00	2.74e+00	1.00				

表 2: Lagrange - RT 元 (r=2) 误差表

h	$\ \underline{u}-\underline{u}_h\ _{L^2}$	rate	$\ \operatorname{div}(\underline{u}-\underline{u}_h)\ _{H^1}$	rate	$\ \sigma - \sigma_h\ _{L^2}$	rate	$\ \operatorname{curl}(\sigma - \sigma_h\ _{L^2})$	rate				
6.25 e-02	8.05e-02		8.56 e-02	_	1.07e-01		6.43e+00					
3.12e-02	2.11e-02	1.93	1.18e-02	2.86	1.37e-02	2.97	1.67e + 00	1.94				
1.56e-02	5.34e-03	1.98	1.52e-03	2.96	1.72e-03	2.99	4.22e-01	1.98				
7.81e-03	1.34e-03	1.99	1.91e-04	2.99	2.16e-04	3.00	1.06e-01	2.00				
3.91e-03	3.36e-04	2.00	2.40e-05	3.00	2.70e-05	3.00	2.65e-02	2.00				

表 3: Lagrange – RT 元 (r=3) 误差表

h	$\ \underline{u} - \underline{u}_h\ _{L^2}$	rate	$\ \operatorname{div}(\underline{u}-\underline{u}_h)\ _{H^1}$	rate	$\ \sigma - \sigma_h\ _{L^2}$	rate	$\ \operatorname{curl}(\sigma - \sigma_h\ _{L^2})$	rate
1.25e-01	6.17e-02		7.20e-02		1.33e-01		4.94e+00	
6.25 e-02	8.21e-03	2.91	4.99e-03	3.85	8.09e-03	4.04	6.51e-01	2.92
3.12e-02	1.04e-03	2.98	3.20e-04	3.96	4.87e-04	4.05	8.21e-02	2.99
1.56e-02	1.30e-04	3.00	2.02e-05	3.99	3.00e-05	4.02	1.03e-02	3.00
7.81e-03	1.63e-05	3.00	1.27e-06	4.00	1.87e-06	4.01	1.29e-03	3.00

再令 $Q_h = \mathcal{P}_r \Lambda^0, V_h = \mathcal{P}_r^- \Lambda^1$, 得到的结果如下

表 4: Lagrange – BDM 元 (r=2) 误差表

			* 0 0		() 000			
h	$\ \underline{u}-\underline{u}_h\ _{L^2}$	rate	$\ \operatorname{div}(\underline{u}-\underline{u}_h)\ _{H^1}$	rate	$\ \sigma-\sigma_h\ _{L^2}$	rate	$\ \operatorname{curl}(\sigma - \sigma_h\ _{L^2})$	rate
1.25e-01	2.87e-01		4.12e-01		8.26e-01		2.26e+01	
6.25 e-02	8.08e-02	1.83	7.37e-02	2.48	1.07e-01	2.94	6.43e+00	1.81
3.12e-02	2.11e-02	1.94	1.01e-02	2.87	1.37e-02	2.97	1.67e + 00	1.94
1.56e-02	5.34e-03	1.98	1.29e-03	2.96	1.72e-03	2.99	4.22e-01	1.98
7.81e-03	1.34e-03	1.99	1.63e-04	2.99	2.16e-04	3.00	1.06e-01	2.00

表 5: Lagrange – BDM 元 (r=3) 误差表

h	$\ \underline{u}-\underline{u}_h\ _{L^2}$	rate	$\ \operatorname{div}(\underline{u}-\underline{u}_h)\ _{H^1}$	rate	$\ \sigma-\sigma_h\ _{L^2}$	rate	$\ \operatorname{curl}(\sigma - \sigma_h\ _{L^2})$	rate
1.25e-01	6.19e-02		6.64e-02		1.33e-01		4.94e+00	
6.25 e-02	8.21e-03	2.91	4.62e-03	3.85	8.09e-03	4.04	6.51e-01	2.92
3.12e-02	1.04e-03	2.98	3.02e-04	3.94	4.87e-04	4.05	8.21e-02	2.99
1.56e-02	1.30e-04	3.00	1.91e-05	3.98	3.00e-05	4.02	1.03e-02	3.00
7.81e-03	1.63e-05	3.00	1.20e-06	3.99	1.87e-06	4.01	1.29e-03	3.00

表 6: Lagrange – BDM 元 (r=4) 误差表

					, , , , , , ,			
h	$\ \underline{u} - \underline{u}_h\ _{L^2}$	rate	$\ \operatorname{div}(\underline{u}-\underline{u}_h)\ _{H^1}$	rate	$\ \sigma - \sigma_h\ _{L^2}$	rate	$\ \operatorname{curl}(\sigma - \sigma_h\ _{L^2})$	rate
2.50e-01	6.65e-02		1.83e-01		1.91e-01		5.42e+00	
1.25 e-01	1.04e-02	2.68	8.43e-03	4.44	1.73e-02	3.46	8.27e-01	2.71
6.25 e-02	7.04e-04	3.88	2.72e-04	4.95	5.96e-04	4.86	5.57e-02	3.89
3.12e-02	4.51e-05	3.96	8.60e-06	4.99	1.93e-05	4.95	3.56e-03	3.97
1.56e-02	2.84e-06	3.99	2.70e-07	5.00	6.11e-07	4.98	2.24e-04	3.99

Problem2

对 (1) 考虑 Dirichlet 边界条件 u = 0, 即

$$\underbrace{u} \cdot \underbrace{n} = 0, \quad \underbrace{u} \times \underbrace{n} = 0 \quad \text{ on } \partial\Omega$$

混合形式

上述方程也即是

$$(d\delta + \delta d)\underline{u} = \underline{f}, \qquad in \ \Omega$$

$$tr(\star u) = tr(u) = 0,$$
 on $\partial \Omega$

也即是有

$$\begin{split} <\sigma,\tau> = < \underbrace{u}, d\tau> - < tr\tau, tr(\star \underbrace{u})>_{\partial\Omega} \\ = < \underbrace{u}, d\tau>, \quad \forall \tau \in H\Lambda^0 \end{split}$$

对应的

$$\begin{split} < & \underbrace{f}, \underbrace{v} > = < \sigma, \underbrace{v} > + < \delta d \underbrace{u}, \underbrace{v} > \\ \\ = < \sigma, \underbrace{v} > + < d \underbrace{u}, d \underbrace{v} > - < tr(\underbrace{v}), tr(\star d \underbrace{u}) > \\ \\ = < \sigma, \underbrace{v} > + < d \underbrace{u}, d \underbrace{v} > , \quad \forall v \in \mathring{H} \Lambda^1 \end{split}$$

取基底为 $(dx_1, dx_2), \sigma = -\text{div}\underline{u}$, 即对应第一种 de Rham complex, 对应的混合形式为:

$$\begin{split} \langle \sigma, \tau \rangle &= \langle \mathrm{grad} \tau, \underline{u} \rangle, \quad \tau \in H(\mathrm{grad}) \\ \langle \mathrm{grad} \sigma, \underline{v} \rangle &+ \langle \mathrm{rot} \underline{u}, \mathrm{rot} \underline{v} \rangle &= \langle \underline{f}, \underline{v} \rangle, \quad \underline{v} \in \mathring{H}(\mathrm{rot}) \end{split}$$

对应的大双线性形式为:

$$\begin{split} \operatorname{Find}\ (\underline{\boldsymbol{v}},\sigma) &\in \mathring{H}(\operatorname{rot}) \times H(\operatorname{grad}), \\ s.t: \forall (\underline{\boldsymbol{v}},\tau) &\in \mathring{H}(\operatorname{rot}) \times H(\operatorname{grad}) \\ \langle \sigma,\tau \rangle - \langle \operatorname{grad}\tau,\underline{\boldsymbol{v}} \rangle + \langle \operatorname{grad}\sigma,\underline{\boldsymbol{v}} \rangle + \langle \operatorname{rot}\underline{\boldsymbol{v}},\operatorname{rot}\underline{\boldsymbol{v}} \rangle = \langle \underline{\boldsymbol{f}},\underline{\boldsymbol{v}} \rangle, \end{split}$$

取基底为 $(dx_2, -dx_1), \sigma = \text{rot} \underline{u}$, 即对应第二种 de Rham complex, 对应的混合形式为:

$$\begin{split} \langle \sigma, \tau \rangle &= \langle \text{curl} \tau, \underline{u} \rangle, \quad \tau \in H(\text{curl}) \\ \langle \text{curl} \sigma, \underline{v} \rangle &+ \langle \text{div} \underline{u}, \text{div} \underline{v} \rangle &= \langle \underline{f}, \underline{v} \rangle, \quad \underline{v} \in \mathring{H}(\text{div}) \end{split}$$

对应的大双线性形式为:

$$\begin{split} \operatorname{Find}\ (\underline{u}, \sigma) &\in \mathring{H}(\operatorname{div}) \times H(\operatorname{curl}), \\ s.t &: \forall (\underline{u}, \tau) \in \mathring{H}(\operatorname{div}) \times H(\operatorname{curl}) \\ \langle \sigma, \tau \rangle - \langle \operatorname{curl} \tau, \underline{u} \rangle + \langle \operatorname{curl} \sigma, \underline{v} \rangle + \langle \operatorname{div} \underline{u}, \operatorname{div} \underline{v} \rangle &= \langle \underline{f}, \underline{v} \rangle, \end{split}$$

精确解 u

对于边界条件 (4), 可以得处 $\underline{u} \cdot \underline{n} = \underline{u} \cdot \underline{n}^{\perp} = 0$ on $\partial \Omega$, 故有 $\underline{u} = 0$ on $\partial \Omega$, 直接取 \underline{u} 如下

$$u = \begin{pmatrix} (\cos 2\pi x - 1)(\cos 2\pi y - 1) \\ \sin 2\pi x \sin 2\pi y \end{pmatrix}$$

进而得到对应的

$$f = 4\pi^2 \begin{pmatrix} 2\cos 2\pi x \cos 2\pi y - \cos 2\pi x - \cos 2\pi y \\ 2\sin 2\pi x \sin 2\pi y \end{pmatrix}$$

与

$$\sigma = 2\pi \left[\cos 2\pi x \sin 2\pi y + \sin 2\pi y (\cos 2\pi x - 1)\right]$$

数值结果

现取基底 $(dx_2, -dx_1)$, 并设 $V = \mathring{H}(\text{div}), Q = H(\text{curl})$, 对应令 $Q_h = \mathcal{P}_r \Lambda^0, V_h = \mathring{\mathcal{P}}_r^- \Lambda^1$, 得到的结果如下

表 7: Lagrange - RT 元 (r=1) 误差表

			, ,	- / 🔾 (/ 500			
h	$\ \underline{u}-\underline{u}_h\ _{L^2}$	rate	$\ \operatorname{div}(\underline{u}-\underline{u}_h)\ _{H^1}$	rate	$\ \sigma - \sigma_h\ _{L^2}$	rate	$\ \operatorname{curl}(\sigma - \sigma_h\ _{L^2})$	rate
5.00e-01	3.18e+00		1.22e+01	_	1.74e + 01	_	1.59e + 02	
2.50e-01	2.60e+00	0.29	7.37e + 00	0.72	1.44e + 01	0.27	1.25e+02	0.35
1.25 e-01	1.38e+00	0.92	4.07e+00	0.86	6.20e+00	1.22	7.74e + 01	0.69
6.25 e-02	7.29e-01	0.92	1.78e + 00	1.20	2.05e+00	1.59	4.40e+01	0.82
3.12e-02	3.61e-01	1.01	8.40e-01	1.08	5.54e-01	1.89	2.27e+01	0.95
1.56e-02	1.80e-01	1.01	4.13e-01	1.02	1.41e-01	1.97	1.14e+01	0.99
7.81e-03	8.97e-02	1.00	2.06e-01	1.01	3.55e-02	1.99	5.73e + 00	1.00

表 8: Lagrange - RT 元 (r=2) 误差表

h	$\ \underline{u} - \underline{u}_h\ _{L^2}$	rate	$\ \operatorname{div}(\underline{u}-\underline{u}_h)\ _{H^1}$	rate	$\ \sigma-\sigma_h\ _{L^2}$	rate	$\ \operatorname{curl}(\sigma - \sigma_h\ _{L^2})$	rate				
2.50e-01	1.03e+00	_	3.58e + 00	_	6.34e + 00	_	7.11e+01					
1.25 e-01	3.29e-01	1.64	1.03e+00	1.79	1.12e+00	2.50	3.07e + 01	1.21				
6.25 e-02	9.02e-02	1.87	3.45e-01	1.58	3.60e-01	1.64	2.19e+01	0.49				
3.12e-02	2.34e-02	1.95	1.19e-01	1.54	1.31e-01	1.46	1.67e + 01	0.39				
1.56e-02	5.91e-03	1.98	4.14e-02	1.52	4.69e-02	1.48	1.21e+01	0.47				
7.81e-03	1.48e-03	2.00	1.45e-02	1.51	1.66e-02	1.50	8.59e + 00	0.49				
3.91e-03	3.71e-04	2.00	5.09e-03	1.51	5.87e-03	1.50	6.08e + 00	0.50				

表 9: Lagrange – RT 元 (r=3) 误差表

	次 0. 20g1011g6 101 /1 (1 0) 6/21X										
h	$\ \underline{u}-\underline{u}_h\ _{L^2}$	rate	$\ \operatorname{div}(\underline{u}-\underline{u}_h)\ _{H^1}$	rate	$\ \sigma-\sigma_h\ _{L^2}$	rate	$\ \operatorname{curl}(\sigma - \sigma_h\ _{L^2})$	rate			
5.00e-01	1.33e+00		6.02e+00	_	9.39e+00	_	1.10e+02				
2.50e-01	3.38e-01	1.98	9.07e-01	2.73	1.50e+00	2.65	3.43e + 01	1.68			
1.25 e-01	6.54e-02	2.37	2.29e-01	1.98	3.24e-01	2.21	1.29e + 01	1.42			
6.25 e-02	8.62e-03	2.93	4.00e-02	2.52	5.03e-02	2.68	3.65e + 00	1.82			
3.12e-02	1.09e-03	2.99	6.99e-03	2.52	8.64e-03	2.54	1.19e+00	1.61			
1.56e-02	1.36e-04	3.00	1.23e-03	2.51	1.52e-03	2.51	4.13e-01	1.53			
7.81e-03	1.70e-05	3.00	2.16e-04	2.51	2.68e-04	2.50	1.45 e - 01	1.51			

再令 $Q_h = \mathcal{P}_r \Lambda^0, V_h = \mathring{\mathcal{P}}_r^- \Lambda^1$, 得到的结果如下

表 10: Lagrange – BDM 元 (r=2) 误差表

					()	-		
h	$\ \underline{u}-\underline{u}_h\ _{L^2}$	rate	$\ \operatorname{div}(\underline{u}-\underline{u}_h)\ _{H^1}$	rate	$\ \sigma-\sigma_h\ _{L^2}$	rate	$\ \operatorname{curl}(\sigma - \sigma_h\ _{L^2})$	rate
5.00e-01	3.19e+00		1.22e+01		1.57e + 01		1.41e+02	
2.50e-01	1.09e+00	1.54	4.40e+00	1.47	6.65e + 00	1.24	7.48e + 01	0.91
1.25 e-01	3.89e-01	1.49	3.32e+00	0.41	1.96e+00	1.76	5.05e + 01	0.57
6.25 e-02	1.03e-01	1.91	1.66e+00	1.00	7.68e-01	1.35	4.58e + 01	0.14
3.12e-02	2.64e-02	1.97	8.28e-01	1.01	2.87e-01	1.42	3.62e + 01	0.34
1.56e-02	6.63e-03	1.99	4.13e-01	1.00	1.03e-01	1.48	2.65e + 01	0.45
7.81e-03	1.66e-03	2.00	2.06e-01	1.00	3.66e-02	1.49	1.89e + 01	0.49

表 11: Lagrange – BDM 元 (r=3) 误差表

h	$\ \underline{u} - \underline{u}_h\ _{L^2}$	rate	$\ \operatorname{div}(\underline{u}-\underline{u}_h)\ _{H^1}$	rate	$\ \sigma - \sigma_h\ _{L^2}$	rate	$\ \operatorname{curl}(\sigma - \sigma_h\ _{L^2})$	rate
5.00e-01	1.61e+00		1.02e+01		9.80e+00		1.12e+02	
2.50e-01	4.08e-01	1.98	3.19e+00	1.68	2.38e+00	2.04	5.24e+01	1.09
1.25e-01	6.90e-02	2.56	6.43e-01	2.31	4.99e-01	2.25	1.98e + 01	1.40
6.25 e-02	8.99e-03	2.94	1.61e-01	2.00	8.67e-02	2.52	6.18e+00	1.68
3.12e-02	1.13e-03	2.99	4.00e-02	2.01	1.53e-02	2.51	2.07e+00	1.58
1.56e-02	1.41e-04	3.00	9.94e-03	2.01	2.70e-03	2.50	7.19e-01	1.52
7.81e-03	1.77e-05	3.00	2.48e-03	2.00	4.77e-04	2.50	2.53e-01	1.51

表 12: Lagrange – BDM 元 (r=4) 误差表

h	$\ \underline{u}-\underline{u}_h\ _{L^2}$	rate	$\ \operatorname{div}(\underline{u}-\underline{u}_h)\ _{H^1}$	rate	$\ \sigma-\sigma_h\ _{L^2}$	rate	$\ \operatorname{curl}(\sigma - \sigma_h\ _{L^2})$	rate
5.00e-01	1.25e+00		5.82e + 00		7.65e + 00		8.83e + 01	
2.50e-01	1.75e-01	2.84	4.92e-01	3.57	1.10e+00	2.80	2.69e + 01	1.71
1.25 e-01	1.09e-02	4.01	8.83e-02	2.48	9.21e-02	3.58	5.19e+00	2.37
6.25 e-02	7.29e-04	3.90	1.07e-02	3.04	8.84e-03	3.38	1.07e + 00	2.27
3.12e-02	4.65e-05	3.97	1.31e-03	3.03	7.99e-04	3.47	1.99e-01	2.43
1.56e-02	2.92e-06	3.99	1.62e-04	3.02	7.09e-05	3.49	3.56e-02	2.48

结果分析

可以看出对于 Problem 1 中关于各项的误差收敛阶数分别为

$$||u - u_h|| = O(h^r), \quad ||\operatorname{div}(u - u_h)|| = O(h^{r+1}), \quad ||\sigma - \sigma_h|| = O(h^{r+1}), \quad ||\operatorname{grad}(\sigma - \sigma_h)|| = O(h^r)$$

在 Probelm 2 中, 对于 r > 1 关于各项的误差收敛阶数分别为

$$\|u - u_h\| = O\left(h^r\right), \quad \|\operatorname{div}\left(u - u_h\right)\| = O\left(h^{r-1}\right), \quad \|\sigma - \sigma_h\| = O\left(h^{r-0.5}\right), \quad \|\operatorname{grad}\left(\sigma - \sigma_h\right)\| = O\left(h^{r-1.5}\right)$$

由[2], 由误差分析得到的误差收敛阶为

$$||u - u_h|| = O(h^r), \quad ||\operatorname{div}(u - u_h)|| = O(h^r), \quad ||\sigma - \sigma_h|| = O(h^{r+1}), \quad ||\operatorname{grad}(\sigma - \sigma_h)|| = O(h^r)$$

这样对于 Problem 1 中关于 u 的能量误差出现超收敛现象可能与选取的 u 是 div – free 有关的. 现 取 $u = (\cos \pi x \sin \pi y, 2 \sin \pi x \cos \pi y)^T$, 取 RT 元, 得到的结果如下:

表 13: Lagrange - RT 元 (r=2) 误差表

h	$\ \underline{u} - \underline{u}_h\ _{L^2}$	rate	$\ \operatorname{div}(\underline{u}-\underline{u}_h)\ _{H^1}$	rate	$\ \sigma - \sigma_h\ _{L^2}$	rate	$\ \operatorname{curl}(\sigma - \sigma_h\ _{L^2})$	rate
1.25e-01	6.70e-02	_	3.68e-01		2.66e-02	_	7.98e-01	
6.25 e-02	1.71e-02	1.97	9.34e-02	1.98	3.40e-03	2.97	2.08e-01	1.94
3.12e-02	4.29 e-03	1.99	2.34e-02	1.99	4.30e-04	2.99	5.27e-02	1.98
1.56e-02	1.08e-03	2.00	5.86e-03	2.00	5.39e-05	2.99	1.32e-02	1.99
7.81e-03	2.69e-04	2.00	1.47e-03	2.00	6.75e-06	3.00	3.31e-03	2.00

表 14: Lagrange - RT 元 (r=3) 误差表

				-	,			
h	$\ \underline{u} - \underline{u}_h\ _{L^2}$	rate	$\ \operatorname{div}(\underline{u}-\underline{u}_h)\ _{H^1}$	rate	$\ \sigma-\sigma_h\ _{L^2}$	rate	$\ \operatorname{curl}(\sigma - \sigma_h\ _{L^2})$	rate
1.25e-01	6.22e-03		4.08e-02		2.02e-03		8.10e-02	
6.25 e-02	7.83e-04	2.99	5.18e-03	2.98	1.22e-04	4.05	1.02e-02	2.98
3.12e-02	9.80e-05	3.00	6.50e-04	2.99	7.51e-06	4.02	1.28e-03	3.00
1.56e-02	1.23e-05	3.00	8.13e-05	3.00	4.67e-07	4.01	1.61e-04	3.00
7.81e-03	1.53e-06	3.00	1.02e-05	3.00	2.92e-08	4.00	2.01e-05	3.00

至于为什么 div - free 时会出现超收敛, 不是很清楚.

关于 Problem 2 中的数值结果出现掉阶的情况,由 [2],这与使用标准混合有限元与该 *Hilbert* 空间的复杂结构有很强的联系,而在这种联系下具有 Dirichlet 边界条件的向量 Laplace 方程中是不存在的,即这种方法不适用于这个问题(没太懂),但由该结果缺失导致的该方法有次优性. 在取 V_h 空间时,由 $u \cdot n = u \times n = 0$,故 u = 0 on $\partial \Omega$,即 V_h 取的是边界为 0 的向量值函数空间. 但其实边界条件只有 $u \cdot n$ on $\partial \Omega = 0$,而 $u \times n = 0$ 是自然边界条件,故相对而言测试函数空间 V_h 选小了,进而对 σ_h 的约束变少,故出现掉阶.

由 [2] 中 Theorem3.1., 对于 Dirichlet 边界条件以及 $0 < l \le r$ 有:

$$\|\boldsymbol{u} - \boldsymbol{u}_h\| \le Ch^l \|\boldsymbol{u}\|_l$$

$$\|\operatorname{div}(\boldsymbol{u} - \boldsymbol{u}_h)\| + \|\boldsymbol{\sigma} - \boldsymbol{\sigma}_h\| + h \|\operatorname{curl}(\boldsymbol{\sigma} - \boldsymbol{\sigma}_h)\| \le Ch^{l-1/2} \left(|\ln h\|\boldsymbol{u}\|_{W_{\infty}^l} + \|\boldsymbol{u}\|_{l+1/2}\right)$$

If r = 1, the estimates are:

$$\|\boldsymbol{u} - \boldsymbol{u}_h\| \le Ch |\ln h|^2 \left(|\ln h| \|\boldsymbol{u}\|_{W_{\infty}^1} + \|\boldsymbol{u}\|_2 \right)$$

$$\|\operatorname{div} (\boldsymbol{u} - \boldsymbol{u}_h)\| + \|\sigma - \sigma_h\| + h \|\operatorname{curl} (\sigma - \sigma_h)\| \le Ch^{1/2} \left(|\ln h| \|\boldsymbol{u}\|_{W_{\infty}^1} + h^{1/2} \|\boldsymbol{u}\|_2 \right)$$

通过该定理可以看出,没有相匹配的空间结构的时候,其收敛率会降低.

2 代码说明

文件中的 main-1.py,main-2.py 分别对应 Problem1 中的两个元.main-3.py,main-4.py 分别对应 Problem2 中的两个元. 均用 Python 语法编写, 在 fenics 环境下直接运行即可.

参考文献

- [1] Douglas N. Arnold Richard S. Falk and Ragnar Winther. FINITE ELEMENT EXTERIOR CALCULUS, HOMOLOGICAL TECHNIQUES, AND APPLICATIONS. IMA Preprint Series 2094, February 2006.
- [2] DOUGLAS N. ARNOLD, RICHARD S. FALK, AND JAY GOPALAKRISHNAN. MIXED FINITE ELEMENT APPROXIMATION OF THE VECTOR LAPLACIAN WITH DIRICHLET BOUNDARY CONDITIONS.