Q.21 The 2's complement representation of $(-539)_{10}$ in hexadecimal is

(A) ABE

(B) DBC

(C) DE5

(D) 9E7

Q.22 Let $A = 1111 \ 1010$ and $B = 0000 \ 1010$ be two 8 -bit 2's complement numbers. Their product in 2's complement is

(B) 1001 1100

(C) 1010 0101

(D) 1101 0101

$$f_{1}(w,x,y,z) = \Sigma 8,9,10$$

$$f_{2}(w,x,y,z) = \Sigma 7,8,12,13,14,15$$

$$f(w,x,y,z) = \Sigma 8,9$$

The function f_3 is

- (A) $\Sigma 9,10$

- (C) $\Sigma 1, 8, 9$
- (D) $\Sigma 8, 10, 15$
- Which of the following sets of component (s) is/are sufficient to implement any arbitrary Boolean Q.46 [GATE: 1999] function?
 - (A) XOR gates, NOT gates
 - (B) 2 to 1 multiplexors
 - (C) AND gates, XOR gates $\rightarrow AB+C \Rightarrow CO \rightarrow AMD$ (D) Three input of AB+C $\rightarrow CO \rightarrow AMD$
 - (D) Three input gates that output (A.B) + C for the inputs A, B and C
- Transform the following logic circuit (without expressing its switching function) into an equivalent logic 0.47 [GATE: 2002] circuit that employs only 6 NAND gates each with 2- inputs.

Consider the following logic circuit whose inputs are function f_1 , f_2 , f_3 and output is f_2 .

[GATE: 2002]

$$f_{1}(x,y,z) = \begin{cases} f_{1}(x,y,z) & f_{2}(x,y,z) \\ f_{2}(x,y,z) & f_{3}(x,y,z) \\ f_{3}(x,y,z) & f_{4}(x,y,z) \end{cases}$$

Given that

$$f_1(x, y, z) = \Sigma(0, 1, 3, 5)$$

$$f_2(x, y, z) = \Sigma(6, 7)$$
 and

$$f(x, y, z) = \Sigma(1, 4, 5), f_3$$
 is

- $(A) \Sigma (1, 4, 5)$
- (B) Σ (6, 7)
- (C) Σ (0, 1, 3, 5)
- (D) None of the above
- Q.49 Let f(A,B) = A' + B Simplified expression for function f(f(x+y,y),z) is
 - (A) (x' + z)
- (B) xyz
- (C) xy' + z
- (D) None of the above

[GATE: 2002]

$$f_1 = \Sigma(0, 2, 5, 8, 14), f_2 = \Sigma(2, 3, 6, 8, 14, 15), f_3 = \Sigma(2, 7, 11, 14)$$

For the following circuit with one AND gate and one XOR gate, the output function f can be expressed [GATE: 2019]

(C) $\Sigma(2,14)$

- (B) $\Sigma(2,7,8,11,14)$
- (D) $\Sigma(0,2,3,5,6,7,8,11,14,15)$
- **Q.65** Consider the Boolean function z(a,b,c).

[GATE: 2020]

Which one of the following minterm lists represents the circuit given above?

(A)
$$z = \sum (0,1,3,7)$$

(C)
$$z = \sum (2,4,5,6,7)$$

(B)
$$z = \sum (1,4,5,6,7)$$

(D) $z = \sum (2,3,5)$

(D)
$$z = \sum (2,3,5)$$

Chapter - 3: K-Maps

The function represented by the Karnaugh map given below is Q.66

[GATE: 1998]

A	00	01	10	11	-
0	1)	0	0	1	1
1	1	0	0	1	

- (A) A.B
- (B) AB + BC + CA
- $(C) B \oplus C$
- (D) A.BC
- Which of the following functions implements the Karnaugh map shown below? 0.67

[GATE: 1999]

CD	00	01	11	10		
00	0	0	1	0		
01	X=0	X=0	1	X-	9	, c
11	0	1	1	0		
10	0	1	1	0		7
		((D)	To		
			L	TD	(C+	A)

- (A) $\overline{AB} + CD$
- (C) $AD + \overline{AB}$

(D) $(C+D)(\overline{C}+D)(A+B)$

Given the following Karnaugh map, which one of the following represents the minimal Sum – Of-Products of the map? [GATE: 2001]

yz, wx	00	01	11	10
00	0	x	0	X
01	(X	1	x	D
11	0	X	1	0
10	0	1	x	0

(A)' xy + y'z(C) w'x + y'z + xy (B) wx'y' + xy + xz

(D) xz + y

Q.69 Minimum SOP for f(w, x, y, z) shown in Karnaugh – map below is

[GATE: 2002]

[GATE: 2005]

yz wx	00	01	11	10
00	0	1	1	0
01	X	0	0	1
11	X	0	0	1
10	0	1	1	X
		1	(0)	7 7

(A) xz+y'z

 $(B) \times Z' + Z \times$

(C) x'y+zx'

(D) None

Q.70 The switching expression corresponding to $f(A, B, C, D) = \Sigma(1, 4, 5, 9, 11, 12)$ is:

(C) $ACD^1 + A^1BC^1 + AC^1D^1$

(B) $\overrightarrow{ABC}^1 + ACD + B^1C^1D$

(D) $A^{I}BD + ACD^{I} + BCD^{I}$