Zaki Glenroy Lindo Assignment 3 - Fall 2017

Assignment 3: Due Monday September 25, 2017, no later than 8pm.

p.36-38 # 18, 28, 33, 35, 37 (You will be writing three proofs this time so start early and be careful!)

#18. Find the 10 elements of the group $\mathbb{Z}_5 \times \mathbb{Z}_2$ and write out the Cayley table. Recall that its operation uses $+_5$ in the first coordinate and $+_2$ in the second coordinate. Identify the inverse of each element.

$\mathbb{Z}_5 x \mathbb{Z}_2$	(0,0)	(0,1)	(1,0)	(1,1)	(2,0)	(2,1)	(3,0)	(3,1)	(4,0)	(4,1)
(0,0)	(0,0)	(0,1)	(1,0)	(1,1)	(2,0)	(2,1)	(3,0)	(3,1)	(4,0)	(4,1)
(0,1)	(0,1)	(0,0)	(1,1)	(1,0)	(2,1)	(2,0)	(3,1)	(3,0)	(4,1)	(4,0)
(1,0)	(1,0)	(1,1)	(2,0)	(2,1)	(3,0)	(3,1)	(4,0)	(4,1)	(0,0)	(0,1)
(1,1)	(1,1)	(1,0)	(2,1)	(2,0)	(3,1)	(3,0)	(4,1)	(4,0)	(0,1)	(0,0)
(2,0)	(2,0)	(2,1)	(3,0)	(3,1)	(4,0)	(4,1)	(0,0)	(0,1)	(1,0)	(1,1)
(2,1)	(2,1)	(2,0)	(3,1)	(3,0)	(4,1)	(4,0)	(0,1)	(0,0)	(1,1)	(1,0)
(3,0)	(3,0)	(3,1)	(4,0)	(4,1)	(0,0)	(0,1)	(1,0)	(1,1)	(2,0)	(2,1)
(3,1)	(3,1)	(3,0)	(4,1)	(4,0)	(0,1)	(0,0)	(1,1)	(1,0)	(2,1)	(2,0)
(4,0)	(4,0)	(4,1)	(0,0)	(0,1)	(1,0)	(1,1)	(2,0)	(2,1)	(3,0)	(3,1)
(4,1)	(4,1)	(4,0)	(0,1)	(0,0)	(1,1)	(1,0)	(2,1)	(2,0)	(3,1)	(3,0)

Inverses:

$$(0,0)^{-1} = (0,0)$$

$$(0,1)^{-1} = (0,1)$$

$$(1,0)^{-1} = (4,0)$$

$$(1,1)^{-1} = (4,1)$$

$$(2,0)^{-1} = (3,0)$$

 $(2,1)^{-1} = (3,1)$

$$(3,0)^{-1} = (2,0)$$

$$(3,1)^{-1} = (2,1)$$

$$(3, 1)^{-1} = (2, 1)$$

 $(4, 0)^{-1} = (1, 0)$

$$(4,1)^{-1} = (1,1)$$

Nicely done, but don't put the name of the group in the table where the notation for the operation goes. Just put * or leave it blank.

#28. Suppose G is a group and $a, b \in G$. Prove: If $a^3 = b$ then $b = aba^{-1}$.

Proof: Assume $a^3 = b$. Then we have aaa = b. Now, $aaaa^{-1} = ba^{-1}$. By definition of inverse, we have $aae_G = ba^{-1}$. By definition of identity, $aa = ba^{-1}$. We can now say that $aaa = aba^{-1}$. As aaa = b, we now have $b = aba^{-1}$. Therefore, if $a^3 = b$ then $b = aba^{-1}$.

Well done. Don't do too much at once, multiply on the left by a and on the right by a^{-1} in separate steps. Also don't skip mentioning where you used associativity, and instead of "definition of" each time be specific to this use such as saying $aa^{-1} = e_G$ or $aae_G = aa$. #33. Find the order of each element in the group $A = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \right\}$ under matrix multiplication. Show your work!

(Notice how I created the matrices in TeX to help you, feel free to copy and paste code as needed!)

$$\operatorname{ord}(\left[\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right]):$$

$$\left[\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right] X \left[\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right] = \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right]$$

Thus,
$$\operatorname{ord}\left(\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}\right) = 2.$$

$$\operatorname{ord}(\left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right]) = 1 \text{ as } \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right] \text{ is the identity matrix.}$$

$$\operatorname{ord}\left(\left[\begin{array}{cc} -1 & 0 \\ 0 & 1 \end{array}\right]\right)$$
:

$$\left[\begin{array}{cc} -1 & 0 \\ 0 & 1 \end{array}\right] X \left[\begin{array}{cc} -1 & 0 \\ 0 & 1 \end{array}\right] = \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right]$$

Thus,
$$\operatorname{ord}(\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}) = 2.$$

$$\operatorname{ord}\left(\left[\begin{array}{cc} -1 & 0 \\ 0 & -1 \end{array}\right]\right):$$

$$\left[\begin{array}{cc} -1 & 0 \\ 0 & -1 \end{array}\right] X \left[\begin{array}{cc} -1 & 0 \\ 0 & -1 \end{array}\right] = \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right]$$

Thus,
$$\operatorname{ord}(\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}) = 2.$$

Nice Job. To put parentheses around the matrix that are also large such as $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, use the code $\left\{ \right\}$ around the code for the matrix instead of just (). Also do not use the letter X for multiplication, use the code $\left\{ \right\}$

#35. Complete the Proof of Theorem 1.26 (p. 28 of the text).

Suppose G is a group and $a \in G$ with ord(a) = n. **Proof**: (\leftarrow) Assume n evenly divides t. That is, t = nq for some integer q. We want to show that for any integer t(1), $a^t = e_G$. As ord(a) = n, $a^n = e_G$. Now, $(a^n)^q = a^{nq}$. As $a^n = e_G$, $a^{nq} = (e_G)^q$. Now, by definition of identity and our power

rules(2), $(e_G)^q = e_G$. Thus, $a^{nq} = e_G$. As t = nq, $a^{nq} = a^t$. Therefore, $a^t = e_G$. Thus, for any integer t, if n evenly divides t, $a^t = e_G$.

With this, we can now conclude that for any integer t, $a^t = e_G$ if and only if n evenly divides t.

Well done, but you need to be careful in a couple of spots. (1) You have already assumed specific information about t so you no longer want to prove anything "for all t". But you should have said "Let $t \in \mathbb{Z}$ " at the beginning of your proof. (2) You don't need the definition of identity and power rules here, we have repeatedly said $e_G^q = e_G$.

#37. Suppose G is a group and $a \in G$. Assume $a^{50} = e_G$ but $a^{75} \neq e_G$ and $a^{10} \neq e_G$. Find the order of a and prove that your answer is correct.

$$ord(a) = 50$$

Proof: Assume $a^{50} = e_G$ but $a^{75} \neq e_G$ and $a^{10} \neq e_G$. We want to show that ord(a) = 50. As we have already assumed that $a^{50} = e_G$, we only need to show that 50 is the least positive integer n such that $a^n = e_G$. By Theorem 1.26, we have to show that for each factor of 50, k, $a^k \neq e_G$.

The factors of 50 are: 1, 2, 5, 10, and 25.

Case 1: k = 1.

If $a^1 = e_G$, then $aaaaaaaaaa = a^{10} = e_G$. As $a^{10} \neq e_G$, $a^1 \neq e_G$.

Case 2: k = 2.

If $a^2 = e_G$, then $a^2 a^2 a^2 a^2 a^2 = a^{10} = e_G$. As $a^{10} \neq e_G$, $a^2 \neq e_G$.

Case 3: k = 5.

If $a^5 = e_G$, then $a^5 a^5 = a^{10} = e_G$. As $a^{10} \neq e_G$, $a^5 \neq e_G$.

Case 4: k = 10.

As $a^{10} \neq e_G$, $a^{10} \neq e_G$.

Case 5: k = 25.

If $a^2 5 = e_G$, then $a^2 5 a^2 5 a^2 5 = a^{75} = e_G$. As $a^{75} \neq e_G$, $a^2 5 \neq e_G$.

Thus, as we have showed that for each factor of 50, k, $a^k \neq e_G$, we know that 50 is the least positive integer n such that $a^n = e_G$. Thus, ord(a) = 50.

Nice Job.

Total Score: 34.5 out of 35