1 Aufgabe

Gesucht ist die Formel für eine Bewegung

$$f(x) = Ox + t$$

die die nicht auf einer Gerade liegenden Punkte $a, b, c \in \mathbb{R}^3$ in die Punkte $a', b', c' \in \mathbb{R}^3$ überführt, wobei die Abstände der Punkte a, b, c identisch mit den Abständen der Punkte a', b', c' sein sollen.

1.1 Freiheitsgradbilanz

Die Freiheitsgradbilanz zeigt, dass eine solche Bewegung eindeutig festgelegt ist: $3 \cdot 3 - 3$ Freiheitsgrade (nach Berücksichtigung der Constraints).

3+3 freie Parameter in der Funktion f (orthogonale Matrix ist durch drei Eulerwinkel festgelegt, die Translation durch die drei Koordinaten).

1.2 Benennung der System

Wir bezeichnen die Variablen im abgebildeten System wie die Variablen des Ausgangssystem ergänzt um einen Strich. Es gilt also

$$x' = f(x) \tag{1}$$

Zu beachten ist, dass wir zwischen Ortskoordinaten, die sich nach 1 transformieren, und Richtungsvektoren, die sich nach

$$v' = Ov$$

transformieren unterscheiden müssen.

Dabei sind Richtungskoordinaten immer Differenzen zweier Ortskoordinaten (oder Summen davon, da Vektorraum) und Ortskoordinaten können durch Addition eines Richtungsvektors in eine neue Ortskoordinate überführt werden.

Beispiel: Seien x, y Ortskoordinaten und

$$u = x - y$$

ein Richtungsvektor. Dann gilt

$$u' = x' - y' = f(x) - f(y) = (Ox + t) - (Oy + t)$$

= $Ox - Oy = O(x - y) = Ou$

und

$$y = x + u$$

 $y' = x' + u' = f(x) + Ou = Ox + t + Ou = O(x + u) + t$
 $= f(y)$