Data Structures & Algorithms

Divide and Conquer

- Mergesort
- Maximum Sum Subarray
- Integer Multiplication
- Guess and Induction

Divide-and-Conquer

Divide-and-conquer.

- Break up problem into several parts.
- Solve each part recursively.
- Combine solutions to sub-problems into overall solution.

Most common usage.

- Break up problem of size n into two equal parts of size $\frac{1}{2}$ n.
- Solve two parts recursively.
- Combine two solutions into overall solution in linear time.

Consequence.

- Brute force: n².
- Divide-and-conquer: n log n.

Mergesort

Sorting

Sorting. Given n elements, rearrange in ascending order.

Applications.

- Sort a list of names.
- Organize an MP3 library.
- Find the median.
- Find the closest pair.
- Binary search in a database.
- Find duplicates in a mailing list.
- **.** . . .

Mergesort

Mergesort.

- Divide array into two halves.
- Recursively sort each half.
- Merge two halves to make sorted whole.

Merging

Merging. Combine two pre-sorted lists into a sorted whole. How to merge efficiently?

- Linear number of comparisons.
- Use temporary array.


```
MergeSort(A[1..n])
If n = 1 then return A
L = MergeSort(A[1..n/2])
R = MergeSort(A[n/2+1..n])
i=1, j=1
for k = 1 to n do
   if (i ≤ n/2 and j ≤ n/2) then
        if (L[i] ≤ R[j]) then B[k]=L[i], i=i+1
        else B[k]= R[j], j=j+1
   else if (i > n/2) then B[k]= R[j], j=j+1
   else B[k]=L[i], i=i+1
return B
```

A Useful Recurrence Relation

Def. T(n) = number of comparisons to mergesort an input of size n.

Mergesort recurrence.

$$T(n) \leq \begin{cases} 0 & \text{if } n = 1 \\ T(\lceil n/2 \rceil) + T(\lceil n/2 \rfloor) + n & \text{otherwise} \end{cases}$$
solve left half solve right half merging

Solution. $T(n) = O(n \log_2 n)$.

Proof by Recursion Tree

$$T(n) = \begin{cases} 0 & \text{if } n = 1\\ 2T(n/2) + n & \text{otherwise} \end{cases}$$
sorting both halves merging

Recursion Tree

$$T(n) = \begin{cases} 0 & \text{if } n = 1\\ \underbrace{aT(n/b)}_{\text{sub-problems}} + \underbrace{f(n)}_{\text{merging}} & \text{otherwise} \end{cases}$$

#leaves = nlogba

 $\sum a^k f(n / b^k)$

Master Theorem

$$T(n) = \begin{cases} 0 & \text{if } n = 1\\ \underbrace{aT(n/b)}_{\text{sub-problems}} + \underbrace{f(n)}_{\text{merging}} & \text{otherwise} \end{cases}$$

You can imagine above as a recursive function which calls itself: a times, each with an input of size n/b, and merge their outputs in f(n) time. Fighting between #leaves and f(n)

- If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \log n)$.
- If f(n) polynomially greater than $n^{\log_b a}$, then $T(n) = \Theta(f(n))$
- If $n^{\log_b a}$ polynomially greater than f(n), then $T(n) = \Theta(n^{\log_b a})$

g(n) is polynomially greater than h(n) iff g(n)/h(n)= $\Omega(n^x)$ for some x > 0

Note. The total input injecting to sub-problems is (a/b)n. Then if a/b is smaller, your running time is better.

The master theorem

Special case: $f(n) = O(n^d)$

$$T(n) = a \cdot T\left(\frac{n}{b}\right) + O(n^d)$$

$$T(n) = \begin{cases} O(n^d \log(n)) & \text{if } \log_b a = d \\ O(n^d) & \text{if } \log_b a < d \\ O(n^{\log_b(a)}) & \text{if } \log_b a > d \end{cases}$$

$$T(n) = a \cdot T\left(\frac{n}{b}\right) + O(n^d).$$

$$T(n) = \begin{cases} O(n^d \log(n)) & \text{if } \log_b a = d \\ O(n^d) & \text{if } \log_b a < d \\ O(n^{\log_b(a)}) & \text{if } \log_b a > d \end{cases}$$

•
$$T(n) = 4 T(n/2) + O(n)$$

-
$$T(n) = O(n^2)$$

$$a = 4$$

 $b = 2$ $\log_b a > d$
 $d = 1$

•
$$T(n) = 3 T(n/2) + O(n)$$

- T(n) = O(
$$n^{\log_2(3)} \approx n^{1.6}$$
)

•
$$T(n) = 2T(n/2) + O(n)$$

$$T(n) = O(n\log(n))$$

$$a = 2$$

 $b = 2$
 $d = 1$ $\log_b a = d$

•
$$T(n) = T(n/2) + O(n)$$

$$T(n) = O(n)$$

Mergesort

What happen if we divide the array into more subproblems?.

- We have to find the minimum among a numbers in the merging step.
- So,

$$T(n)=aT(n/a)+an$$

It is easy to see T(n) is minimum when a=2

Maximum Sum Subarray

Maximum Sum Subarray

Problem: Given a one dimensional array A[1..n] of numbers. Find a contiguous subarray with largest sum within A.

Assume an empty subarray has sum 0.

Example:

Algorithm (brute-force)

Observation: Let S[i] = A[1] + ... + A[i]. We have A[i] + ... + A[j] = S[j] - S[i-1]

```
Pre-Processing
S[0] = 0
for i = 1 to n do
    S[i] = S[i-1]+A[i]
```

Running time of pre-processing: T(n) = O(n)

```
sol = 0
for i = 1 to n do
    for j = i to n do
        if S[j]-S[i-1] > sol then
            sol = S[j]-S[i-1]
return sol
```

Running time: $T(n) = O(n^2)$

Algorithm (divide and conquer)

The general strategy: Divide into 2 equal-size subarrays

Case 1: optimal solution is in one subarray

Case 2: optimal solution crosses the splitting line

4	-7	12	5	-2	3	-5	1	5	-8	2	5	

```
MCS(A[1..n])
if n = 1 then return max(0, a[1])
sol = max(MCS(A[1...n/2]), MCS(A[n/2+1...n])
Lsol = 0
for i = n/2 downto 1 do
    if S[n/2]-S[i-1] > Lsol then
        Lsol = S[n/2]-S[i-1]
Rsol = 0
for i = n/2+1 to n do
    if S[i]-S[n/2-1] > Rsol then
        Rsol = S[i]-S[n/2-1]
return max(sol, Lsol+Rsol)
```

Running time:
$$T(n) = 2T\left(\frac{n}{2}\right) + O(n) \rightarrow T(n) = O(n \log n)$$

Integer Multiplication

Integer Addition

Addition. Given two *n*-bit integers a and b, compute a+b. Grade-school. $\Theta(n)$ bit operations.

1	1	1	1	1	1	0	1	
	1	1	0	1	0	1	0	1
+	0	1	1	1	1	1	0	1

Remark. Grade-school addition algorithm is optimal.

Integer Multiplication

Multiplication. Given two *n*-bit integers a and b, compute $a \times b$. Grade-school. $\Theta(n^2)$ bit operations.

```
1 1 0 1 0 1 0 1
                1 1 0 1 0 1 0 1
             0 0 0 0 0 0 0 0
           1 1 0 1 0 1 0 1 0
         1 1 0 1 0 1 0 1 0
       1 1 0 1 0 1 0 1 0
     1 1 0 1 0 1 0 1 0
   1 1 0 1 0 1 0 1 0
  0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 0 0 0 0 0 0 0 1
```

Q. Is grade-school multiplication algorithm optimal?

Divide-and-Conquer Multiplication: Warmup

To multiply two n-bit integers a and b:

- Multiply four $\frac{1}{2}n$ -bit integers, recursively.
- Add and shift to obtain result.

$$a = 2^{n/2} \cdot a_1 + a_0$$

$$b = 2^{n/2} \cdot b_1 + b_0$$

$$ab = \left(2^{n/2} \cdot a_1 + a_0\right) \left(2^{n/2} \cdot b_1 + b_0\right) = 2^n \cdot a_1 b_1 + 2^{n/2} \cdot \left(a_1 b_0 + a_0 b_1\right) + a_0 b_0$$

Ex.
$$a = 10001101$$
 $b = 11100001$ $a_1 \quad a_0 \quad b_1 \quad b_0$

$$T(n) = \underbrace{4T(n/2)}_{\text{recursive calls}} + \underbrace{\Theta(n)}_{\text{add, shift}} \Rightarrow T(n) = \Theta(n^2)$$

Karatsuba Multiplication

To multiply two n-bit integers a and b:

- Add two $\frac{1}{2}n$ bit integers.
- Multiply three $\frac{1}{2}n$ -bit integers, recursively.
- Add, subtract, and shift to obtain result.

$$a = 2^{n/2} \cdot a_1 + a_0$$

$$b = 2^{n/2} \cdot b_1 + b_0$$

$$ab = 2^n \cdot a_1 b_1 + 2^{n/2} \cdot (a_1 b_0 + a_0 b_1) + a_0 b_0$$

$$= 2^n \cdot a_1 b_1 + 2^{n/2} \cdot ((a_1 + a_0)(b_1 + b_0) - a_1 b_1 - a_0 b_0) + a_0 b_0$$
1
2
1
3
3

Karatsuba Multiplication

To multiply two n-bit integers a and b:

- Add two $\frac{1}{2}n$ bit integers.
- Multiply three $\frac{1}{2}n$ -bit integers, recursively.
- Add, subtract, and shift to obtain result.

$$a = 2^{n/2} \cdot a_1 + a_0$$

$$b = 2^{n/2} \cdot b_1 + b_0$$

$$ab = 2^n \cdot a_1 b_1 + 2^{n/2} \cdot (a_1 b_0 + a_0 b_1) + a_0 b_0$$

$$= 2^n \cdot a_1 b_1 + 2^{n/2} \cdot ((a_1 + a_0)(b_1 + b_0) - a_1 b_1 - a_0 b_0) + a_0 b_0$$

$$1 \qquad 2 \qquad 1 \qquad 3 \qquad 3$$

$$T(n) \leq \underbrace{T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + T(1 + \lceil n/2 \rceil)}_{\text{recursive calls}} + \underbrace{\Theta(n)}_{\text{add, subtract, shift}} \Rightarrow T(n) = O(n^{\lg 3}) = O(n^{1.585})$$

Guess and Induction

Guess and Induction

Step 1: Generate a guess at the correct answer.

Step 2: Try to prove that your guess is correct.

(Step 3: Cleanup)

First Example

$$T(n) = 2 \cdot T\left(\frac{n}{2}\right) + n$$
, with $T(0) = 0$, $T(1) = 1$.

The Master Method says $T(n) = O(n \log(n))$.

We will prove this via Guess and Induction.

Step 1: Guess the answer

$$T(n) = 2 \cdot T\left(\frac{n}{2}\right) + n$$

$$T(n) = 2 \cdot \left(2 \cdot T\left(\frac{n}{4}\right) + \frac{n}{2}\right) + n$$

$$T(n) = 4 \cdot T\left(\frac{n}{4}\right) + 2n$$

$$T(n) = 4 \cdot \left(2 \cdot T\left(\frac{n}{8}\right) + \frac{n}{4}\right) + 2n$$

$$T(n) = 8 \cdot T\left(\frac{n}{8}\right) + 3n$$
Simplify
$$T(n) = 8 \cdot T\left(\frac{n}{8}\right) + 3n$$

•••

Guessing the pattern:
$$T(n) = 2^t \cdot T\left(\frac{n}{2^t}\right) + t \cdot n$$

Plug in $t = \log(n)$, and get $T(n) = n \cdot T(1) + \log(n) \cdot n = n(\log(n) + 1)$

Step 2: Prove the guess is correct.

Inductive Hypothesis: $T(n) = n(\log(n) + 1)$. Base Case (n=1): $T(1) = 1 = 1 \cdot (\log(1) + 1)$ Inductive Step:

- Assume Inductive Hyp. for $1 \le n < k$:
 - Suppose that $T(n) = n(\log(n) + 1)$ for all $1 \le n < k$.
- Prove Inductive Hyp. for n=k:

 - $-T(k) = 2 \cdot T\left(\frac{k}{2}\right) + k \text{ by definition}$ $T(k) = 2 \cdot \left(\frac{k}{2}\left(\log\left(\frac{k}{2}\right) + 1\right)\right) + k \text{ by induction.}$
 - $T(k) = k(\log(k) + 1)$ by simplifying.
 - So Inductive Hyp. holds for n=k.

Conclusion: For all $n \ge 1$, $T(n) = n(\log(n) + 1)$

Step 3: Cleanup

Pretend like you never did Step 1, and just write down:

Theorem: $T(n) = O(n \log(n))$

Proof: [Whatever you wrote in Step 2]

Second Example

$$T(n) = 2 \cdot T\left(\frac{n}{2}\right) + 32 \cdot n$$
$$T(2) = 2$$

Step 1: Guess: $O(n \log(n))$

But I don't have such a precise guess about the form for the $O(n\log(n))$...

That is, what's the leading constant?

Can I still do Step 2?

What's wrong with this?

Inductive Hypothesis: $T(n) = O(n \log(n))$

Base case: $T(2) = 2 = O(1) = O(2 \log(2))$

Inductive Step:

- Suppose that $T(n) = O(n \log(n))$ for n < k.
- Then $T(k) = 2 \cdot T\left(\frac{k}{2}\right) + 32 \cdot k$ by definition
- So $T(k) = 2 \cdot O\left(\frac{k}{2}\log\left(\frac{k}{2}\right)\right) + 32 \cdot k$ by induction
- But that's $T(k) = O(k \log(k))$, so the I.H. holds for n=k.

Conclusion:

• By induction, $T(n) = O(n \log(n))$ for all n.

What's wrong with this?

We can use the same reasoning to prove that T(n) = O(n), which is not true!

Inductive Hypothesis: T(n) = O(n)

Base case: T(2) = 2 = O(1) = O(2)

Inductive Step:

- Suppose that T(n) = O(n) for n < k.
- Then $T(k) = 2 \cdot T\left(\frac{k}{2}\right) + 32 \cdot k$ by definition
- So $T(k) = 2 \cdot O\left(\frac{k}{2}\right)^{2} + 32 \cdot k$ by induction
- But that's T(k) = O(k), so the I.H. holds for n=k.

Conclusion:

• By induction, T(n) = O(n) for all n.

The problem is that this doesn't make any sense. We can't have "T(n) = O(n) for n < k," since the def. of big-Oh needs to hold for all n.

Second example

$$T(n) = 2 \cdot T\left(\frac{n}{2}\right) + 32 \cdot n$$
$$T(2) = 2$$

Step 1: Guess: $O(n \log(n))$

But I don't have such a precise guess about the form for the $O(n \log(n))$...

That is, what's the leading constant?

Can I still do Step 2?

Step 2: Prove it, working backwards to figure out the constant

Guess: $T(n) \leq C \cdot n \log(n)$ for some constant C.

Inductive Hypothesis (for $n \ge 2$): $T(n) \le C \cdot n \log(n)$

Base case: $T(2) = 2 \le C \cdot 2 \log(2)$ as long as $C \ge 1$

Inductive Step:

Inductive step

Inductive Hypothesis: $T(n) \leq C \cdot n \log(n)$

Assume that the inductive hypothesis holds for n<k.

$$T(k) = 2T\left(\frac{k}{2}\right) + 32k$$

$$\leq 2C\frac{k}{2}\log\left(\frac{k}{2}\right) + 32k$$

$$= k(C \cdot \log(k) + 32 - C)$$

$$\leq k(C \cdot \log(k)) \text{ as long as } C \geq 32.$$

Then the inductive hypothesis holds for n=k.

$$T(n) = 2 \cdot T\left(\frac{n}{2}\right) + 32 \cdot n$$
$$T(2) = 2$$

Step 3: Cleanup

Theorem: $T(n) = O(n \log(n))$ Proof:

- Inductive Hypothesis: $T(n) \le 32 \cdot n \log(n)$
- Base case: $T(2) = 2 \le 32 \cdot 2 \log(2)$ is true.
- Inductive step:
 - Assume Inductive Hyp. for n<k.

$$-T(k) = 2T\left(\frac{k}{2}\right) + 32k$$

$$- \leq 2 \cdot 32 \cdot \frac{k}{2}\log\left(\frac{k}{2}\right) + 32k$$
By the def. of T(k)
$$- k(32 \cdot \log(k) + 32 - 32)$$

$$- \leq 32 \cdot k \log(k)$$
By induction

- This establishes inductive hyp. for n=k.
- Conclusion: $T(n) \leq 32 \cdot n \log(n)$ for all $n \geq 2$.
 - By the definition of big-Oh, with $n_0=2$ and c=32, this implies that $T(n)=O(n\log(n))$

Third Example

$$T(n) \le T\left(\frac{n}{5}\right) + T\left(\frac{7n}{10}\right) + n \text{ for } n > 10.$$
 Base case: $T(n) = 1 \text{ when } 1 \le n \le 10$

Step 1: Let's guess O(n) and try to prove it.

Step 2: prove our guess is right

$$T(n) \le T\left(\frac{n}{5}\right) + T\left(\frac{7n}{10}\right) + n \text{ for } n > 10.$$

Base case: T(n) = 1 when $1 \le n \le 10$

Inductive Hypothesis: $T(n) \leq Cn$

Base case: $1 = T(n) \le Cn$ for all $1 \le n \le 10$

Inductive step:

• Let k > 10. Assume that the IH holds for all n > 10 so that $1 \le n < k$.

$$T(k) \le k + T\left(\frac{k}{5}\right) + T\left(\frac{7k}{10}\right)$$

$$\leq k + C \cdot \left(\frac{k}{5}\right) + C \cdot \left(\frac{7k}{10}\right)$$

$$= k + \frac{c}{5}k + \frac{7c}{10}k$$

< ck ??

Whatever we choose C to be, it should have C≥1

Let's solve for C and make this true!

C = 10 works.

(write out)

(want to show that IH holds for n=k).

Conclusion:

- There is some C so that for all $n \ge 1$, $T(n) \le Cn$
- By the definition of big-Oh, T(n) = O(n).

We don't know what C should be yet! Let's go through the proof leaving it as "C" and then figure out what works...

$$T(n) \le n + T\left(\frac{n}{5}\right) + T\left(\frac{7n}{10}\right)$$
 for $n > 10$.
Base case: $T(n) = 1$ when $1 \le n \le 10$

(pretend we knew this all along).

Theorem: T(n) = O(n)Proof:

Inductive Hypothesis: $T(n) \leq 10n$.

Base case: $1 = T(n) \le 10n$ for all $1 \le n \le 10$

Inductive step:

- Let k > 10. Assume that the IH holds for all n so that $1 \le n < k$.
- $T(k) \le k + T\left(\frac{k}{5}\right) + T\left(\frac{7k}{10}\right)$

$$\leq k + \mathbf{10} \cdot \left(\frac{k}{5}\right) + \mathbf{10} \cdot \left(\frac{7k}{10}\right)$$
$$= k + 2k + 7k = \mathbf{10}k$$

■ Thus, IH holds for n=k.

Conclusion:

- For all $n \ge 1$, $T(n) \le 10n$
- Then, T(n) = O(n), using the definition of big-Oh with $n_0 = 1$, c = 10.

Incorrect Guess

$$T(n) \le T\left(\frac{n}{3}\right) + T\left(\frac{2n}{3}\right) + n \text{ for } n > 3.$$

Base case: $T(n) = 1 \text{ when } 1 \le n \le 3$

Step 1: Let's guess O(n) and try to prove it.

Step 2: Try to prove the guess

Inductive Hypothesis: $T(n) \leq Cn$

Base case: $1 = T(n) \le Cn$ for all $1 \le n \le 3$

Inductive step:

• Let k > 10. Assume that the IH holds for all n so that $1 \le n < k$.

T(k)
$$\leq k + T\left(\frac{k}{3}\right) + T\left(\frac{2k}{3}\right)$$

Whatever we choose C to be, it should have $C \geq 1$

$$= k + \frac{C}{3}k + \frac{2C}{3}k$$

$$\leq Ck ??$$
No C exists to make this true!

Conclusion:

- Our guess can not be proved by the above induction proof
- Either our guess is incorrect or we have to change our proof

Theorem

$$T(n) \le T(an) + T(bn) + O(n)$$

$$T(n) = \begin{cases} O(n) & \text{if } a+b < 1\\ O(n\log n) & \text{if } a+b = 1 \end{cases}$$

Prove by Induction

Last Example

$$T(n) \le 2T\left(\frac{n}{2}\right) + 1 \text{ for } n > 2,$$

Base case: $T(1) = 1$

Inductive Hypothesis: $T(n) \leq Cn$

Base case: $1 = T(1) \le C(1)$ (C must be at least 1)

Inductive step:

- Let k > 1. Assume that the IH holds for all n so that $1 \le n < k$.
- $T(k) \le 2T(\frac{k}{2}) + 1 \le 2C \cdot (\frac{k}{2}) + 1 \le Ck + 1 \le Ck$?

No C exists to make this true!

Conclusion:

- Our guess can not be proved by the above induction proof
- Either our guess is incorrect or we have to change our proof

Last Example

$$T(n) \le 2T\left(\frac{n}{2}\right) + 1 \text{ for } n > 2,$$

Base case: $T(1) = 1$

Inductive Hypothesis: $T(n) \leq Cn + B$

Base case: $1 = T(1) \le C(1) + B$

Inductive step:

• Let k > 1. Assume that the IH holds for all n so that $1 \le n < k$.

$$T(k) \le 2T\left(\frac{k}{2}\right) + 1 \le 2\left(\mathbf{C} \cdot \left(\frac{k}{2}\right)\right) + \mathbf{B} + 1 \le \mathbf{C}\mathbf{k} + 2\mathbf{B} + 1 \le \mathbf{C}\mathbf{k} + \mathbf{B}$$
?

$$B \leq -1$$

The new guess

$$T(n) \le 2n - 1$$

Note: You canot prove $T(n) \le 2n$ *by induction but you can prove* $T(n) \le 2n - 1!!!$

References

References

- Sections 5.1, 5.2, 5.4, and 5.5 of the text book "algorithm design" by Jon Kleinberg and Eva Tardos
- Section 4.1 of the text book "introduction to algorithms" by CLRS,
 3rd edition.
- The <u>original slides</u> were prepared by Kevin Wayne. The slides are distributed by <u>Pearson Addison-Wesley</u>.