Fall 2023

Assignment 4: Non-linear optimization

Assigned: October 19; Due: November 01.

Convergence rate of gradient descent [40 pts]

Consider an M-smooth function $f: \mathbb{R}^n \to \mathbb{R}$. We consider the following optimization problem:

$$\min_{\boldsymbol{x} \in \mathbb{R}^n} \quad f(\boldsymbol{x})$$

We apply the gradient descent method with constant step size $\alpha \leq 1/M$.

(a) Show that the following inequality holds for each iteration k:

$$\|\nabla f(x^k)\|^2 \le \frac{2}{\alpha} (f(x^k) - f(x^{k+1}))$$

(b) Show that the following inequality holds for each iteration k:

$$\min_{\ell=0,\cdots,k-1} \|\nabla f(\boldsymbol{x}^{\ell})\| \leq \sqrt{\frac{2}{\alpha k} (f(\boldsymbol{x}^0) - z^*)}$$

(c) Bound the number of iterations required to reach a solution \overline{x} such that $\|\nabla f(\overline{x})\| \leq \varepsilon$. Comment on the rate of convergence, compared to the results seen in class.

Newton's method [20 pts]

Define the following cubic functions

$$f(x) = x^3 - 12x^2 + 10x + 3$$
$$g(x) = x^3 + 2x$$

- a. Implement Newton's method to minimize f. Using a starting point of 10, plot the solution over 30 iterations. Repeat with a starting point of 2.5. Comment briefly on the performance of the algorithm.
- b. Implement Newton's method to minimize g. Using a starting point of 5, plot the solution over 30 iterations. Comment briefly on the performance of the algorithm.

Gradient descent vs. stochastic gradient descent [40 pts]

You have access to two datasets, each with n = 1,200 observations. Each dataset comprises two covariates stored in $1,200\times2$ matrices \boldsymbol{X}^A and \boldsymbol{X}^B , and $1,200\times1$ label vectors \boldsymbol{y}^A and \boldsymbol{y}^B . The goal is to build a *single* linear regression model for both datasets, with the following loss function:

$$\min_{\beta_1,\beta_2} \quad \frac{1}{2n} \sum_{i=1}^n \min \left\{ \left(y_i^A - \beta_1 X_{i1}^A - \beta_2 X_{i2}^A \right)^2, \left(y_i^B - \beta_1 X_{i1}^B - \beta_2 X_{i2}^B \right)^2 \right\}$$

You have access to the following data files:

- dataA.csv: A matrix of size $1,200\times3$ that stores the first covariate X_{11}^A,\cdots,X_{n1}^A (first column), the second covariate X_{12}^A,\cdots,X_{n2}^A (second column), and the label y_1^A,\cdots,y_n^A (third column). dataB.csv: A matrix of size $1,200\times3$ that stores the first covariate X_{11}^B,\cdots,X_{n1}^B (first column), the second covariate X_{12}^B,\cdots,X_{n2}^B (second column), and the label y_1^B,\cdots,y_n^B (third column).

We will implement gradient descent and stochastic gradient descent for this problem. Throughout, use a starting point of $\beta^0 = (45, -15)$, 200 iterations, and a constant learning rate.

- a. Provide a contour plot of the loss function, for $\beta_1 \in [-25, 75]$ and $\beta_2 \in [-40, 40]$. What is the shape of the function? What are the implications for unconstrained optimization algorithms?
- b. Implement the gradient descent method with a learning rate of 0.01. Add the algorithm's trajectory on the contour plot from Question a. Repeat with a learning rate of 0.1, and provide a new trajectory plot. Comment briefly on the performance of the algorithm.
- c. Implement the stochastic gradient descent method with a learning rate of 0.01. Run the algorithm three times, with three random seeds. Report a contour plot of the cost function showing the three trajectories of your algorithm. Comment briefly.