

Graf Berarah dan Tak Berarah

- Graf Berarah (directed graph atau digraph) G terdiri atas himpunan:
- <u>titik-titik (vertices)</u> V_G dan
- garis-garis (edges) E_G
 - yang masing-masing garis $e \in E_G$ terhubung dengan suatu pasangan titik **terurut**

Graf Berarah dan Tak Berarah

- **Graf Tak Berarah** (*undirected graph*) *G* terdiri atas himpunan:
- titik-titik (vertices) V_G dan
- garis-garis (edges) E_G
 - yang masing-masing garis $e \in E_G$ terhubung dengan suatu pasangan titik **tak terurut** yang disebut <u>titik</u> <u>ujung (endpoints)</u>

Misal:
$$V_G = \{1, 2, 3\}$$

 $E_G = \{(1, 2), (1, 3)\}$

- Graf dinotasikan dengan $G = (V_G, E_G)$. Dua titik dikatakan **berhubungan** (adjacent)
 - jika ada garis (edge) yang menghubungkan kedua titik tersebut.
- Dua garis dikatakan garis paralel (parallel)
 - jika dua garis berbeda tersebut menghubungkan titik yang sama
- Suatu garis dikatakan loop
 - jika garis tersebut hanya berhubungan dengan satu titik ujung
- Beberapa titik disebut titik terasing (isolated) vertex)
 - jika titik-titik tersebut tidak memiliki berhubungan dengannya

- 1. Tulislah himpunan *E(G)* dan *V(G)*
- 2. Carilah titik terasing
- 3. Carilah loop
- 4. Carilah garis paralel
- 5. Carilah titik-titik yang berhubungan dengan v_3
- 6. Carilah semua garis yang berhubungan dengan v_4

Graf Sederhana dan Lengkap

- Graf sederhana (simple graph)
 - Graf yang tidak memiliki *loop* maupun garis paralel
- Graf lengkap (complete graph) dengan n titik
 - Dinotasikan dengan K_n
 - Graf sederhana dengan n titik, yang setiap pasangan titik berbeda dihubungkan dengan suatu garis

Graf Bipartite dan Bipartite Lengkap

- Suatu graf G disebut Graf Bipartite, apabila:
 - V(G) merupakan gabungan dari himpunan tak kosong V_1 dan V_2
 - Setiap garis dalam G menghubungkan suatu titik dalam V_1 dengan titik dalam V_2
- Selain kedua syarat di atas, graf G disebut Graf Bipartite Lengkap apabila:
 - Setiap titik dalam V_1 berhubungan dengan setiap titik dalam V_2
 - Kemudian, graf ini dinotasikan dengan $K_{m,n}$
 - V_1 terdiri dari m titik dan V_2 terdiri dari n titik

Tentukan apakah graf di bawah ini merupakan graf bipartite atau bukan. Anda dapat mengecek apakah terdapat suatu himpunan V_1 dan V_2 di dalam V(G) yang memenuhi syarat graf bipartite.

Derajat (*Degree*)

- Derajat (degree) dari titik v pada graf tak berarah
 - dinotasikan dengan deg(v)
 - yakni merupakan <u>banyaknya garis</u> yang terhubung pada titik tersebut
 - Garis berupa <u>loop</u> pada suatu titik memiliki derajat 2

Derajat total (total degree) dari G adalah jumlah derajat semua titik dalam G

Tentukan derajat masing-masing titik dalam graf berikut kemudian tentukan derajat totalnya.

Path dan Circuit

- Dalam graf tak berarah G, runtutuan P dalam bentuk $v_0e_1v_1e_2 \dots v_{n-1}e_nv_n$ disebut **path** dengan panjang *n*
 - Disebut path yang menghubungkan v_0 ke v_n
- Jika P adalah path yang memenuhi $v_0 = v_n$, maka disebut dengan **sirkuit** (**circuit** atau **cycle**)
- Sebuah path atau sirkuit dikatakan sederhana apabila semua titik (vertex)-nya berbeda
- Suatu graf yang tidak memiliki sirkuit disebut asiklis (acyclic)

Tentukan apakah runtunan berikut adalah path, path sederhana, sirkuit,

atau sirkuit sederhana?

- 1) $V_0e_1V_1e_{10}V_5e_9V_2e_2V_1$
- 2) *V*₃*e*₅*V*₄*e*₈*V*₅*e*₁₀*V*₁*e*₃*V*₂
- 3) $V_1 e_2 V_2 e_3 V_1$
- *4*) *V*₅*e*₉*V*₂*e*₄*V*₃*e*₅*V*₄*e*₆*V*₄*e*₈*V*₅

Path dan Circuit Euler

- Suatu <u>path</u> sederhana yang terdiri dari <u>semua</u> garis pada graf G disebut path Euler
 - Dengan kata lain: semua garis telah dilewati
- Jika path tersebut juga merupakan sirkuit, maka disebut sirkuit Euler
 - Jika semua titik pada graf memiliki derajat genap, maka graf tersebut adalah sirkuit Euler

Apakah graf di samping merupakan sirkuit Euler? Mengapa?

Path dan Circuit Hamilton

- Suatu path disebut path Hamilton jika
 - Setiap titik dalam graf dikunjungi tepat satu kali
- Suatu sirkuit disebut sirkuit Hamilton jika
 - Setiap titik dikunjungi tepat satu kali kecuali titik awal dan titik akhir yang sama
 - Titik tersebut dikunjungi tepat dua kali, yakni sebagai titik awal dan titik akhir

Pohon (*Tree*)

- Suatu graf tak berarah disebut pohon (tree) jika dan hanya jika
 - Graf G tidak memuat sirkuit yang terhubung
 - Sehingga tidak memiliki garis paralel dan loop
- Graf G disebut hutan (forest) jika dan hanya G tidak memuat sirkuit

Teorema:

Suatu pohon dengan n titik memiliki tepat n-1 garis

Graf manakah yang disebut pohon?

KUIS

- 1. Tanpa menggambar graf-nya, tentukan apakah graf yang memiliki matriks hubung berikut ini merupakan graf yang:
 - terhubung?
 - · memiliki loop?
 - memiliki titik terasing?

Tentukan juga derajat tiap titiknya.

a)
$$\begin{bmatrix} 1 & 0 & 1 & 2 \\ 0 & 0 & 1 & 0 \\ 0 & 2 & 1 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}$$
 b)
$$\begin{bmatrix} 0 & 1 & 0 & 0 \\ 2 & 0 & 1 & 0 \\ 1 & 2 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$
 c)
$$\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 2 \\ 1 & 2 & 0 \end{bmatrix}$$
 d)
$$\begin{bmatrix} 0 & 2 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

2. Gambarkan graf yang memiliki matriks hubung dalam soal nomor 1.