Національний технічний університет України «Київський політехнічний інститут» Факультет інформатики і обчислювальної техніки Кафедра обчислювальної техніки

Лабораторна робота №2 З алгоритмів та методів обчислень Варіант 24

Виконав: Студент групи IO-32 Попенко Р. Л. Перевірив: Порєв В. М.

1. Тема завдання:

Відповідно до варіанту написати програму для машини Тьюринга, наприклад Algo2000.exe, або створеної самостійно моделі машини Тьюринга, яка здатна виконувати операції, що необхідні для виконання завдання.

2. Завдання:

24. Виконати операцію кон'юнкції (AND) двох двійкових чисел: Z= (X v Y)

															1	
															1	
															1	

Два числа мають однакову кількість розрядів.

Два числа записуються як (Х & Y)=.

Каретка знаходиться перед Х

3. Таблиця станів і переходів:

A\Q	Q0	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10	Q11
1	_ → Q1	_ → Q2	1 → Q ₂	0 → Q ₂	& → Q5	1 → Q5	1 ← Q ₆	_ → Q8	1 → Q8	0 → Q8	& → Q ₁₁	1 → Q ₁₁
0	_ → Q7	_ → Q3	1 → Q3	0 → Q3	& → Q ₁₁	0 → Q5	0 4 Q6	_ → Q9	1 → Q9	0 → Q9	& → Q ₁₁	0 → Q ₁₁
8.	_ → Q ₀	_ → Q4	1 → Q4	0 → Q ₄			& ← Q ₆	_ → Q ₁₀	1 → Q ₁₀	0 → Q ₁₀		
=	_ 🖨 Q o					= → Q5	= ← Q ₆					= → Q ₁₁
Пробел	_ → Q ₀					1 ← Q ₆	_ ← Q ₀					0 ← Q ₆

4. Результати:

Програма рахує кон'юнкцію двох чисел будь-якої кількості розрядів, але однакової кількості.

Каретка повинна знаходитися у положенні перед числом Х

Перевірка роботи машини Тьюринга:

Відповідь

5. Аналіз результатів:

Запрограмована мною машина Тьюринга правильно виконує операцію кон'юнкції двох будь-якої кількості двійкових чисел Z= (X v Y). Спочатку зрівнює старші розряди чисел, потім видаляючи їх, робить зсув. Після цього записує результат після дорівнює. Кінцевим результатом побітової кон'юнкції є число Z, без збереження вхідних даних.