Artificial Intelligence (AI) is the broad field focused on creating systems that can perform tasks typically requiring human intelligence - like reasoning, perception, or decision-making.

Machine Learning (ML) is a subset of AI where systems learn patterns from data rather than being explicitly programmed. Instead of writing specific rules, we feed algorithms data and let them discover patterns automatically.

Types of Machine Learning

Supervised Learning

The algorithm learns from labeled training data - you provide both inputs and the correct outputs.

Classification: Predicting categories (spam vs. not spam emails, cancer vs. benign tissue) **Regression**: Predicting continuous values (protein concentration, gene expression levels)

Unsupervised Learning

The algorithm finds hidden patterns in data without labeled examples.

Clustering: Grouping similar data points (identifying cell types from gene expression profiles) **Dimensionality Reduction**: Simplifying data while preserving important information (visualizing high-dimensional genomic data)

Reinforcement Learning

The algorithm learns through trial and error, receiving rewards or penalties for actions. Think of it like training a system to optimize experimental conditions by testing different parameters and learning from results.

Semi-supervised Learning

Combines small amounts of labeled data with lots of unlabeled data - useful when labeling is expensive or time-consuming.

The Machine Learning Pipeline

1. Problem Definition

- What question are you trying to answer?
- Is this a classification, regression, or clustering problem?
- What would success look like?

2. Data Collection & Preparation

- Gathering relevant datasets
- Clean the data (handle missing values, remove outliers)
- Feature engineering (creating meaningful variables from raw data)

3. Exploratory Data Analysis

- Visualize data distributions
- Look for correlations and patterns
- Understand data quality and potential biases

4. Model Selection & Training

- Choose appropriate algorithms based on your problem type
- Split data into training, validation, and test sets
- Train multiple models and compare performance

5. Model Evaluation

- Use metrics appropriate to your problem (accuracy, precision, recall for classification; R² for regression)
- Cross-validation to ensure the model generalizes well
- Test on completely unseen data

6. Model Deployment & Monitoring

- Implement the model in your workflow
- Monitor performance over time
- Retrain as needed with new data

Key Concepts

Overfitting: When a model memorizes training data but fails on new data.

Bias-Variance Tradeoff: Balancing model complexity. Too simple (high bias) misses important patterns; too complex (high variance) doesn't generalize well.

Feature Selection: Choosing which variables to include. This means selecting which attributes are most informative for your analysis.

Types of Classifiers

Linear Classifiers

Logistic Regression Uses a linear decision boundary to separate classes. Despite the name, it's used for classification. Simple, interpretable, and works well when classes are roughly linearly separable.

Support Vector Machines (SVM) Finds the optimal boundary (hyperplane) that maximally separates classes. Can handle non-linear data using kernel tricks. Effective in high-dimensional spaces.

Naive Bayes Based on Bayes' theorem, assumes features are independent. Fast and works well with small datasets.

Tree-Based Classifiers

Decision Trees Creates a flowchart-like structure of if-then rules. Highly interpretable but prone to overfitting. Easy to understand and explain to others.

Random Forest Combines many decision trees and averages their predictions. Reduces overfitting while maintaining good performance. Handles missing values well.

Gradient Boosting (XGBoost, LightGBM) Builds models sequentially, each correcting errors from previous ones. Often achieves excellent performance in competitions but can be complex to tune.

Instance-Based Classifiers

k-Nearest Neighbors (k-NN) Classifies based on the majority class of k nearest neighbors. Simple concept but can be computationally expensive. No explicit training phase - "lazy learning."

Neural Network Classifiers

Multi-Layer Perceptron (MLP) Basic neural network with hidden layers. Can learn complex non-linear patterns but requires more data and tuning than simpler methods.

Deep Neural Networks Multiple hidden layers that can learn hierarchical features. Excellent for complex data like images, text, or audio but requires substantial computational resources.

Probabilistic Classifiers

Gaussian Mixture Models Assumes data comes from a mixture of Gaussian distributions. Provides probability estimates for class membership.

Choosing the Right Classifier

Linear methods work well when you have many features relative to samples, or when classes are linearly separable.

Tree-based methods excel with mixed data types, non-linear relationships, and when interpretability matters.

Neural networks shine with large datasets and complex patterns, especially in images, text, or sequential data.

k-NN works well when local patterns matter and you have sufficient data density.

The best approach often involves trying multiple classifiers and using cross-validation to compare their performance on your specific dataset and problem.