Project 5: Predicting Movie Box Office Gross

Ayato Hisanaga Geethu Devarajan Ivy Chen Madhusmita Oke Shan Ming Gao Vera Hu

O1 Topic Introduction

Overview

- Project Goal: Use ML to predict the box office revenue of movies set to premiere in the final week of the quarter in the United States, specifically between March 4th and 10th.
- Potential Business Audience: Key decision-makers in the entertainment industry, such as movie studios, distributors, and cinema chains.
- Practical Explanation and Value:
 - Assist stakeholders in making informed decisions
 - The ability to accurately predict box office grosses can significantly impact business outcomes. It can guide decisions on advertising budgets, release strategies, and production investments, leading to increased revenue and profitability
- Potential Additional Learnings from the Analysis: Uncover trends in movie performance, audience preferences, and the impact of various features on box office revenue. These insights could inform long-term business strategies and improve decision-making processes.

02 Methodology

Data Sources & Collection

Time range: 2010-2024 Region: USA

- IMDB: IMDb provides a Python package **Cinemagoer** for retrieving the data of the IMDb movie data about movies, people and companies.
- TMDB: TMDB provides an API on data from TMDB database, including IMDb ID that allows us to join data from different sources.
- Web Scraping: Web Scraping of Wikipedia pages was done to collect data about awards won and nominations.
- 4 RottenTomatoes & Metacritic: Used for critic review information collection

Features Collected

Number of features: 13 Number of rows: 1418

Feature	Description	Data Type
imdb_id	IMDb movie ID	int
original_title	Original title of the movie	string
release_date	Release date of the movie	datetime
budget	Movie budget in USD	float
runtime	Runtime of the movie in minutes	int
popularity	TMDB metric for lifetime user engagement	float
vote_average	TMDB movie rating	float
vote_count	# of user votes received by a movie on TMDB	int

Features Collected

Number of features: 13 Number of rows: 1418

Feature	Description	Data Type
ratings	IMDb movie rating	float
genre_list	A list of genres the movie belongs to	string
oscar_winner	Binary values, 1 meaning the movie won at least one oscar	int
oscar_noms	Binary values, 1 meaning the movie got nominated for oscar	int
box_office	Global movie box office in USD	float
earn_class	Based on Return on Investment (%) (loser, earner, super-earner). Super_earner at 90th percentile.	string

Data Cleaning

- **"box_office"**: Stripped "\$" in the original data and transformed it into numeric values
- "budget": Filled 180 null values with median value per genre
- "genre_list": Transformed "genre_list" into binary values, with each genre as a single column
- "release_date": Broke down "release_date" into year, month and day of week.
- Post-release data in test set: 'popularity', 'vote_average', 'vote_count' and 'ratings'
 will be available after release, so we estimated these values from genre medians
 and means.

Oscar Winning Movies

Oscar Nominated Movies

Data Exploration - Basic Distribution

Data Exploration - Correlation Matrix

Features mostly related to box office: budget, vote_count

Features least related to box office: vote_average, ratings

Distribution of Genres

Average Box Office by Genre

Annual Revenue by Genre

Data Exploration - Baseline Model

Simple Linear Regression model with "budget" as predictor variable

• **R Square:** 0.577

03 Compare Models

Techniques and Models

Continuous: it's our main problem

- Linear Regression
- kNN
- XGBoost Regressor

Categorical

Decision Tree and Random Forest

Linear Regression model

Movie	Predicted	Gross	Revenue
Love Lies Bleeding		\$534,	591,335
Kung Fu Panda 4		\$369,	112,691
Imaginary		\$91,	714,640
Cabrini		\$100,	119,156
Accidental Texan		\$21,	756,308
The 3_2 Pulldown		\$70,	817,789
American Dreamer		\$66,	927,417
Night Shift		\$80,	041,821
51bs of Pressure		\$107,	867,255
The Ballad of Davy Crockett		\$235,	208,981
Space: The Longest Goodbye		\$3,	654,450
The Piper		\$86,	765,660
Glitter & Doom		\$65,	733,534

- Standardize features to ensure consistency between training and prediction
- Training model: R-squared of 0.747
- Predicted gross revenue for 13
 upcoming movies, with estimates ranging from \$3M to \$534M
- Emphasizes the importance of financial and social metrics in driving box office success

kNN Regressor

- Effectively group movies that share similar characteristics and performance trends
- Capture complex, non-linear relationships between features and the target variable (box office)
- Performed feature scaling to prevent features with larger magnitudes from dominating the distance calculations
- Chosen value of k = 5, Average R-squared = 0.5758

```
k=1, R2: 0.2868545970598171
k=3, R2: 0.5239415174160968
k=5, R2: 0.5701285685449033
k=7, R2: 0.5619884016971377
k=9, R2: 0.5359938525752554
k=11, R2: 0.5073837436348648
k=13, R2: 0.47563854839042996
k=15, R2: 0.46323213319148737
k=17, R2: 0.4633540784463628
k=19, R2: 0.4636887071541944
k=21, R2: 0.47033048382539455
k=23, R2: 0.4681098695188427
k=25, R2: 0.47587621012965586
k=27, R2: 0.4713002592952441
k=29, R2: 0.4675601991013547
```

XGBoost Regressor

- XGBoost (Extreme Gradient Boosting) Regressor works well with non-linear relationships within data
- Gradient Boosted Decision Tree Model
- Underlying technique boosting to minimize residual errors at each step
- Regularization Parameters gamma (penalize further partitions of tree node), lambda (penalize attaching higher weights to features), alpha (penalize non-zero coefficients)
- Features used : movie genres, time specific & budget
- R-squared: 0.7712260451971712

Categorical: Return on Investment (ROI)

ROI = (Gross-budget)/(budget)

mean = 123.75 median = 1.44 (typical ROI is 144% of budget)

Highly skewed!

Luckily, Decision Tree and Random Forest more robustly tackle skews and outliers.

Decision Tree and Random Forest

Recall

3-classes of ROI: losers, earners, super-earners (90th percentile)

Decision Tree

DT accuracy ~ 0.75 (max_depth 3) Important features = vote_count, ratings, popularity, budget

Random Forest

RF accuracy ~ 0.75 (10,000 trees)

movie	earn_class
Love Lies Bleeding	earner
Kung Fu Panda 4	earner
Imaginary	earner
Cabrini	earner
Accidental Texan	earner
The 3_2 Pulldown	earner
American Dreamer	earner
Night Shift	earner
5lbs of Pressure	earner
The Ballad of Davy Crockett	earner
Space: The Longest Goodbye	loser
The Piper	earner
Glitter & Doom	loser

RF Prediction:

2 losers 0 super-earners

04 Takeaway

Engagement and \$\$\$ matter! Here's what to expect.

Eg. Vote_count, budget, popularity, runtime, and vote average

Impactful Features

Model of Choice:

XGBoost Regressor

Why this model's predictive value?

- R-squared
- Mean-squared-error
- Data over time

Surprisingly, similar performance in linear regression.

Predictions for New Movies

Movie	Gross_Predicted_Revenue
Love Lies Bleeding	\$105,777,760
Kung Fu Panda 4	\$250,660,060
Imaginary	\$100,146,830
Cabrini	\$26,659,300
Accidental Texan	\$42,818,496
The 3_2 Pulldown	\$72,286,784
American Dreamer	\$79,604,320
Night Shift	\$62,907,676
5lbs of Pressure	\$51,473,488
The Ballad of Davy Crockett	\$194,965,580
Space: The Longest Goodbye	\$16,639,981
The Piper	\$95,083,088
Glitter & Doom	\$36,235,776

Limitations/Future Directions

- Data Accuracy and Completeness
- Genre dependent characterization for Nulls
- Time Series Analysis

Thanks!

Time to see how they fare in theaters!