Water World

Adrien Chabert

200'000 km³ of fresh water

Research of Literature

Collect Data

Integration of Machine Learning Algorithm

Test our result

Create a watering program

Basilic, onion, spinach

What I did with my data

Reading data in dataframe

Add information on my dataframe

Eliminate NaN value

Implement some different strategy

Analyse result

	date	mean_moisture- percent	mean_temperature	moistureAdd	temperatureAdd	Arrosage	TAfterArrosage	ArrosageHist	index
150	3/10/2019 10:30:00.000000000 AM	31.476667	24.918333	5.533333	0.161667	10	0	10	4
151	3/10/2019 11:00:00.000000000 AM	37.010000	25.080000	-1.550000	0.186667	0	30	10	4
152	3/10/2019 11:30:00.000000000 AM	35.460000	25.266667	-0.663333	0.968333	0	60	10	4
153	3/10/2019 12:00:00.000000000 PM	34.796667	26.235000	-0.223333	-0.628333	0	90	10	4
154	3/10/2019 12:30:00.000000000 PM	34.573333	25.606667	-0.250000	-0.285000	0	120	10	4
155	3/10/2019 1:00:00.000000000 PM	34.323333	25.321667	-0.440000	0.306667	0	150	10	4
156	3/10/2019 1:30:00.0000000000 PM	33.883333	25.628333	-0.423333	1.411667	0	180	10	4

Erreur suivant les paramètres utilisés

Sans le temps : -0.72907607234

Sans le temps absolue : 1.72805282656

Avec le temps : -0.237446447338

Avec le temps absolu : 1.61026013894 Avec Temps Séparé : -0.0575398672782 Avec Temps Séparé absolu : 0.690294389607


```
limite = 270
dfArrosage = df.loc[df['TAfterArrosage'] == 0]
tmp = df.loc[df['TAfterArrosage'] > 0]
dfStabilisation = df.loc[df['TAfterArrosage'] > limite].copy()
dfEvaporation = tmp.loc[df['TAfterArrosage'] <= limite].copy()</pre>
regLinearAro = linear model.LinearRegression()
regLinearAro.fit(dfArrosage[['mean moisture-percent','Arrosage','index']],dfArrosage.moistureAdd)
regLinearAro.intercept
regLinearAro.coef
array([ 0.00441217, 0.14478363, -0.09671637])
# Pour faire le régression linear sur le moment d'arrosage
regLinearEva = linear model.LinearRegression()
regLinearEva.fit(dfEvaporation[['mean moisture-percent', 'mean temperature', 'TAfterArrosage', 'ArrosageHist', 'index']],
regLinearEva.intercept
regLinearEva.coef
array([-0.0138635 , -0.03098848, 0.00688307, -0.0071598 , 0.00657351])
# Pour faire le régression linear sur le moment d'arrosage
regLinearSta = linear model.LinearRegression()
regLinearSta.fit(dfStabilisation[['mean moisture-percent', 'mean temperature', 'TAfterArrosage', 'ArrosageHist', 'index']
regLinearSta.intercept
regLinearSta.coef
array([ -3.82657552e-03,
                           1.28949302e-02, 7.92834630e-07,
        -1.47368500e-03,
                           1.23629427e-031)
```

Watering Plan

Date	Demeter	Ceres
6-Mar	10 s/j	10 s/j
13-Mar	10 s/j	10 s/j
20-Mar	10 s/j	10 s/j
27-Mar	20 s/j	15 s/j
3-Apr	20 s/j	15 s/j
10-Apr	20 s/j	15 s/j
17-Apr	40 s/j	30 s/j
24-Apr	40 s/j	30 s/j
1-May	40 s/j	30 s/j
3-May	35s/j	20 s/j
9-May	35s/j	20 s/j
16-May	35s/j	20s/j
23-May	45s/j	10s/j
30-May		

Planning for the next 3 weeks

To move on with my final written report

To find a solution for temperature and high moisture

To create a watering programme

- Have a better presentation
- Be more flexible

Project Planning

