Further Bonding

Solids and their physical properties

• Solid:

Solid is a state of matter in which the constituting particles are arranged very closely. The constituent particles can be atoms, molecules or ions.

- Properties of solids:
 - a) They have definite mass, volume and shape.
 - b) They are incompressible and rigid.
 - c) Intermolecular distances are short and hence the intermolecular forces are strong.
 - d) Their constituent particles have fixed positions and can only oscillate about their mean positions.
- Classification of on the basis of the arrangement of constituent particles:
 - a) Crystalline solids: The arrangement of constituent particles is a regular orderly arrangement. Example: iron, copper, diamond, graphite etc.
 - b) Amorphous solids: The arrangement of constituent particles is an irregular arrangement. Example: Glass, plastics, rubber etc.

- Properties of crystalline solids:
 - c) They have a definite characteristic geometrical shape.
 - d) They have a long range order.
 - e) They have a sharp melting point.
 - f) They are anisotropic in nature i.e. their physical properties show different values when measured along different directions in the same crystal.
 - g) They have a definite and characteristic heat of fusion.
 - h) They are called true solids.
 - i) When cut with a sharp edged tool, they split into two pieces and the newly generated surfaces are plain and smooth.

Anisotropic nature of crystalline solids

• Polymorphic forms or polymorphs:

The different crystalline forms of a substance are known as polymorphic forms or polymorphs. For example: graphite and diamond.

- Characteristics of amorphous solids:
 - a) They have an irregular shape.
 - b) They have a short range order.
 - c) They gradually soften over a range of temperature.
 - d) They are isotropic in nature i.e. their physical properties are the same in all directions.
 - e) When cut with a sharp edged tool, they cut into two pieces with irregular surfaces.
 - f) They do not have definite heat of fusion.
 - g) They are called pseudo solids or super cooled liquids. This is because they have a tendency to flow, though very slowly.

Types of crystalline solids:

A. Molecular Solids

Constituent Particles: Molecules

Type of	Constituent	Bonding/	Electrical	Physical	Melting	Examples
Solid	Particles	Attractive	conductivity	nature	point	
		Forces				
Non-polar	Molecules	Dispersion or	Insulator	Soft	Very	Ar, CCl4,
solids		London forces			low	H2, I2,
						CO ₂
Polar	Molecules	Dipole- dipole	Insulator	Soft	Low	HCl, solid
solids		interactions				solid NH3
Hydrogen	Molecules	Hydrogen	Insulator	Hard	Low	H20 (ice)
bonded		bonding				

B. Ionic Solids

Constituent Particles: Ions

Bonding/Attractive Forces: Coulombic or Electrostatic

Electrical Conductivity: Insulators in solid state but conducts in molten state and in

aqueous solutions

Physical Nature: Hard but brittle

Melting Point: High

Examples: CaF₂, ZnS, MgO, NaCl

C. Metallic Solids

D.

Constituent Particles: Positive ions in a sea of delocalised electrons

Bonding/Attractive Forces: Metallic bonding

Electrical Conductivity: Conductors in solid state as well as in molten state

Physical Nature: Hard but malleable and ductile

Melting Point: Fairly high Examples: Fe, Cu, Ag, Mg Covalent or Network Solids Constituent Particles: Atoms

Bonding/Attractive Forces: Covalent bonding

Electrical Conductivity: Conductors in solid state as well as in molten state

Physical Nature: Hard but malleable and ductile

Melting Point: Fairly high

Examples: SiO₂, (quartz), SiC, C (diamond), C(graphite)

• Crystal lattice:

A regular ordered arrangement of constituent particles in three dimensions is called crystal lattice.

Diagram showing a portion of 3Dcubic lattice and its unit cell

• Lattice points or lattice sites: