Fermi and gravitational waves

What can be done with 0, 1, 10, 100 joint GW-Fermi detections?

- 1. open questions
- 2. progenitors
- 3. progenitor $\leftarrow \rightarrow$ outflow
- 4. multimessenger prospects

Imre Bartos Columbia University

OPEN QUESTIONS

OPEN QUESTIONS

Progenitors of short GRBs (

Jet beaming angle (structure) $\leftarrow \rightarrow$ population

NS nuclear equation of state (mass + radius) $\Delta R \sim 1 \text{km at } 100 \text{ Mpc}$ (Read et al. 2009)

Alternative cosmological distance ladder (Schutz 1986)

PROGENITORS: GWS FROM STELLAR CORE COLLAPSE

GWs from rapidly rotating cores?

Relevant distance scale:

```
Low-luminosity GRB / CCSN with jets: 10<sup>2</sup>-10<sup>3</sup> Gpc<sup>-3</sup> yr<sup>-1</sup>
(Guetta & della Valle 2006; Soderberg+ Nature 2010)
(Beaming factor ~ 10)
```

→ 50-100 Mpc!

PROGENITORS: GWS FROM STELLAR CORE COLLAPSE

Differential rotation (e.g. Corvino et al. 2010)

- Dynamical instabilities (shorter time scale)
- Secular instabilities (longer time scale)
- Magnetic distortion

Fallback accretion? (Piro and Thrane, 2012)

Accretion from binary companion

$$E_{\rm GW} \approx 10^{-2} M_{\odot} c^2 \left(\frac{\epsilon}{0.2}\right)^2 \left(\frac{f}{2\,\mathrm{kHz}}\right)^6 \left(\frac{M}{1.4\,M_{\odot}}\right) \left(\frac{R}{12\,\mathrm{km}}\right)^2 \left(\frac{\tau}{0.1\,\mathrm{s}}\right)$$

PROGENITORS: GWS FROM STELLAR CORE COLLAPSE

- Magnetically arrested disk
- Disk fragmentation (Nakamura & Fukugita 1989)
 Observed in simulations (Duez et al. 2004,
 Giacomazzo et al. 2011)
- Papaloizou-Pringle instability
 Simulations of initially axisymmetric disks
 (Kiuchi et al. 2011)

nonaxisymmetric instabilities / fragmentation

(Bonnell and Pringle, 1995)
Observed in simulations (Zink et al. 2006)
Not clear with current stellar models

GRB EMISSION EPISODES (PRECURSORS)

GRB EMISSION EPISODES (PRECURSORS)

Automated survey of BATSE, Fermi and Swift GRBs (2710)
Conclusion --- precursors likely from same central engine activity

Charisi, Marka, Bartos MNRAS 2014

ELECTROMAGNETIC COUNTERPARTS / FOLLOW-UP

KILONOVAE

- ✓ Kilonova found coincident with GRB 130603B (Tanvir et al Nature 2013)
- ✓ Estimates on ejected mass/velicty from compact binary merger
- ✓ Consistent with expected emission properties

SENSITIVITY TIMELINE

Aasi et al. 2013

	Estimated	$E_{\rm GW} = 10^{-2} M_{\odot} c^2$				Number	% BNS Localized	
	Run	Burst Range (Mpc)		BNS Range (Mpc)		of BNS	within	
Epoch	Duration	LIGO	Virgo	LIGO	Virgo	Detections	$5 \rm deg^2$	$20 \mathrm{deg^2}$
2015	3 months	40 - 60	_	40 - 80	_	0.0004 - 3	_	_
2016-17	6 months	60 - 75	20 - 40	80 - 120	20 - 60	0.006 - 20	2	5 - 12
2017-18	9 months	75 - 90	40 - 50	120 - 170	60 - 85	0.04 - 100	1 - 2	10 - 12
2019+	(per year)	105	40 - 80	200	65 - 130	0.2 - 200	3 - 8	8 - 28
2022+ (India)	(per year)	105	80	200	130	0.4 - 400	17	48

Catalog on the fly

- Can we make a catalog in the right time frame, distance range and sky area?
 - ✓ 1 week
 - ✓ 200-500 Mpc
 - √ 100 deg²
- Extended H-alpha survey (R-band comparison)
 - We only want to find galaxies within horizon distance
 - We don't necessarily need more info than this as long as catalog is complete
- Meter class telescopes work.
- Don't need very high completeness (Hanna et al 2014)

JWST IN DETECTING KILONOVAE

Main limitations:

- small FOV
- slow slewing

- Galaxy catalog --- scan 10 deg² in < 3 h
- Other messengers (e.g. γ) can significantly reduce this time.

Summary

Fermi+GW detections:

- 0 a. unexpected progenitor
 - b. unexpected beaming angle
- 1 a. specify progenitor
 - b. relative timing
 - c. we may already know quite a bit from GW / kilonova / etc.
 - d. 1st non-binary merger protoneutron star / other instabilities
- 10+ a. progenitor-accretion-outflow properties
 - b. beaming
 - c. population
 - d. nuclear EOS
 - e. cosmology

