

Escola de Artes, Ciências e Humanidades

Segunda Prova de Matrizes, Vetores e Geometria Analítica Sistemas de Informaçãoⁱ

Todas as questões devem ser devidamente justificadas

ome: Turma:	_•
Questão (2,0 pontos). Considere a transformação linear $F: \mathbb{R}^4 \mapsto \mathbb{R}^3$ definida por: $F(x,y,z,w) = (x-y,x-y+z-w,y-z)$.	
a) (0,5 pontos). Determine a matriz $[F]$ que represente esta transformação linear or relação à base canônica de \mathbb{R}^4 .	om
b) (1,5 pontos). Encontre uma base para o núcleo e para a imagem de F.	
Questão (2,0 pontos). Seja $A = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}.$	
a) Encontre o polinômio característico de <i>A</i> , bem como os seus autovalores.	
b) Verifique que A é ortogonalmente diagonalizável, e determine uma matriz P ortogonal e uma matriz D diagonal tal que $A = PDP^{t}$.	
Questão (1,0 pontos). Encontre uma base ortonormal para o conjunto solução de: $x-y-2z+w=0$.	

i Boa sorte!