
MAP Decoding with Parallelized Sliding Window Processing

U.S. Patent Application of:

Alan Gatherer,
Tod D. Wolf,

Inventor
Inventor

Texas Instruments Incorporated,

Assignee

Attorney's Docket No. TI-30024

MAP Decoding with Parallelized Sliding Window Processing

Background and Summary of the Invention

The present application relates to wireless communication, and more particularly to turbo decoding and the like.

Background: Error Correction

Coded digital communication systems use error control codes to improve data reliability at a given signal-to-noise ratio (SNR). For example, an extremely simple form (used in data storage applications) is to generate and transmit a parity bit with every eight bits of data; by checking parity on each block of nine bits, single-bit errors can be detected. (By adding three error-correction bits to each block, single-bit errors can be detected and corrected.) In general, error control coding includes a large variety of techniques for generating extra bits to accompany a data stream, allowing errors in the data stream to be detected and possibly corrected.

Background: Trellis Coding

One of the important techniques for error control is trellis coding. In this class of techniques some constraints are imposed on the sequence of symbols, so that certain symbols cannot be directly followed by others. The constraints are often defined by a geometrical pattern (or "trellis") of allowed and disallowed transitions. The

existence of constraints on the sequence of symbols provides some structure to the data sequence: by analyzing whether the constraints have been violated, multiple errors can be corrected. This is a very powerful class of coding techniques; the constraint geometry can be higher dimensional, or algebraic formulations can be used to express the constraints, and many variations can be used.

Background: Turbo Coding

The encoder side of a turbo coding architecture typically uses two encoders, one operating on the raw data stream and one on a shuffled copy of the base data stream, to generate two parity bits for each bit of the raw data stream. The encoder output thus contains three times as many bits as the incoming data stream. This "parallel concatenated encoder" (or "PCE") configuration is described in detail below.

The most surprising part of turbo coding was its decoding architecture. The decoder side invokes a process which (if the channel were noiseless) would merely reverse the transformation performed on the encoder side, to reproduce the original data. However, the decoder side is configured to operate on soft estimates of the information bits and refines the estimates through an iterative reestimation process. The decoder does not have to reach a decision on its first pass, but is generally allowed to iteratively improve the estimates of the information bits until convergence is achieved.

Background: MAP Decoders

MAP decoding is a computationally intensive technique, which has turned out to be very important for turbo decoding and for trellis-coded modulation. "MAP" stands for "maximum a posteriori": a MAP decoder outputs the most likely estimate for each symbol in view of earlier AND LATER received symbols. This is particularly important where trellis coding is used, since the estimate for each symbol is related to the estimates for following symbols.

By contrast, a maximum-likelihood ("ML") decoder tries to compute the transmitted sequence for which the actually received sequence was most likely. These verbal statements may sound similar, but the difference between MAP and ML decoding is very significant. ML decoding is computationally simpler, but in many applications MAP decoding is required.

MAP decoding normally combines forward- and back-propagated estimates: a sequence of received symbols is stored, and then processed in one direction (e.g. forward in time) to produce a sequence of forward transition probabilities, and then processed in the opposite direction (backward in time) to produce a sequence of backward transition probabilities. The net estimate for each symbol is generated by combining the forward and backward transition probabilities with the data for the signal actually received. (Further details of this procedure can be found in OPTIMAL DECODING OF LINEAR CODES FOR MINIMIZING SYMBOL ERROR RATE, Bahl, Cocke, Jelinek, and Raviv, *IEEE Transactions on Information Theory*, 1974, which is

hereby incorporated by reference.)

The combination of forward and backward computation requires a substantial amount of memory. Since the blocks in advanced cellular communications can be large (e.g. 5120 symbols), the memory required to store a value for each possible transition for each symbol in a block is large. To reduce the memory requirements during decoding, each block of data may be divided into many smaller blocks (e.g. 40 blocks of 128 symbols) for MAP decoding.

The trellis encoding is done on a complete block of data, so that starting and ending states are known for the complete block. However, the starting and ending states are not known for the intermediate blocks.

This presents a problem for accurate process of these smaller blocks, but it has been found that simply iterating the forward estimation process for a few symbols before the start of each block will ensure that processing of the first symbol in the block starts from a good set of initial values.

MAP Decoding with Pipelined Windowed Processing

The present application discloses a technique for sub-block processing, in a MAP decoding, which uses pipelining. Processing of alphas is begun, in parallel with processing of betas. Preferably each stage of processing is further internally parallelized; but the pipelining of forward-propagated processing with back-propagated processing provides an additional degree of net improvement in throughput.

Advantages of the disclosed methods and structures, in various

embodiments, can include one or more of the following:

- Faster processing;
- less memory;
- more iterations possible in a turbo decoder.

Brief Description of the Drawings

The disclosed inventions will be described with reference to the accompanying drawings, which show important sample embodiments of the invention and which are incorporated in the specification hereof by reference, wherein:

Figure 1 shows a block diagram of a turbo decoder.

Figure 2 shows a block diagram of a MAP decoder that uses parallel sliding window processing.

Figure 3 shows a block diagram of the beta generation block within the MAP decoder.

Figure 4 shows a block diagram of the alpha generation block within the MAP decoder.

Figure 5 shows a block diagram of the extrinsic generation block within the MAP decoder.

Figure 6 is a timing chart of the pipelining within the beta block.

Figure 7 shows the timing offset between generation of alpha and beta sliding window blocks.

Figure 8 shows the correspondence between the alpha and beta sliding window blocks, with prologs.

Figure 9 shows an example of the order in which beta and alpha bits are processed.

Detailed Description of the Preferred Embodiments

The numerous innovative teachings of the present application will be described with particular reference to the presently preferred embodiment. However, it should be understood that this class of embodiments provides only a few examples of the many advantageous uses of the innovative teachings herein. In general, statements made in the specification of the present application do not necessarily delimit any of the various claimed inventions. Moreover, some statements may apply to some inventive features but not to others.

50
49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24

Concurrent operation of system hardware allows simultaneous processing of more than one basic operation. Concurrent processing is often implemented with two well known techniques: parallelism and pipelining.

Parallelism includes replicating a hardware structure in a system. Performance is improved by having multiple structures execute simultaneously on different parts of a problem to be solved.

Pipelining splits the function to be performed into smaller pieces and allocates separate hardware to each piece. More information on parallelism and pipelining can be found in the "The Architecture of Pipelined Computers," by Kogge, which is hereby incorporated by reference.

Figure 1 shows a block diagram of a turbo decoder. Two main blocks, the turbo controller **102** and the MAP decoder **104**, are shown.

The turbo controller 102 stores the data streams (X, the systematic data 106; P, the parity data 108; and A, the A PRIORI data 110) that serve as input for the MAP decoder 104 and controls the order in which the data is input in the MAP decoder 104. The diagram shows the three data streams being input twice each in the MAP decoder 104. Two separate sets of input data are required because the alpha and beta generation blocks require the data inputs in reverse order. The extrinsic output of the MAP decoder 104 is returned to the controller 102 for another decoding iteration.

Figure 2 shows a block diagram of a MAP decoder 104 that uses parallel sliding window processing. A MAP decoder 104 receives the scaled systematic data signal 106, the scaled parity data signal 108, and the A PRIORI signal 110 as its input. There are N number of X signals 106, where N is the size of the interleaver. N X signals 106 are applied for each beta 208 and alpha 210 state vector, which are the respective outputs of the beta 202 and alpha 206 blocks. During beta generation, X 106 is applied in reverse order, and during alpha generation, X 106 is applied in forward order. There are also N number of P signals 108. N P signals 108 are applied for each alpha 210 and beta 208 vector. During beta generation, P 108 is applied in reverse order, and during alpha generation it is applied in forward order. The A PRIORI 110 is either the interleaved or deinterleaved extrinsic data from the previous MAP decoder operation. There are N A PRIORI signals 110, and one A PRIORI 110 is applied for each beta 208 and alpha 210 vector. A PRIORI 110 is applied the same directions as X 106 and P 108 for beta

and alpha generation.

The beta generation section 202, shown in more detail in **Figure 3**, receives inputs X 106, P 108, and A 110. It generates the beta state vector 208, which is stored in beta RAM 204. The alpha generation section 206 receives inputs X 106, P 108, and A 110 (but in reverse order relative to the beta input). The alpha generation block 206, shown in greater detail in **Figure 4**, generates the alpha state vector 210. The outputs 208, 210 of the alpha and beta generation sections serve as inputs for the extrinsic generation section 212, shown in **Figure 5**. These data streams must be properly sequenced with the parity stream P 108 before being input to the extrinsic section 212.

Figure 3 shows the beta generation stages. First, during the MAP reset state, the registers are set to their initial conditions for the beta state vector 208. The beta signal 208, X 106, P 108, and A 110 are summed together by the adder tree 302 according to the trellis used to encode the data. (In the preferred embodiment, an 8 state trellis is used). The results are stored in registers 310. In the second stage, the results of the adder 302 are applied to the 8 MAX* blocks 304, and are then stored in the MAX* registers 312. Next, the unnormalized outputs advance to two separate normalization stages 306, 308, each of which has a register 314, 316 to store its results. Thus the total process has 4 stages within the feedback loop of the beta generation block 202, which require 4 clock cycles to complete. This latency (the 4 clock cycles) determines the level of pipelining available.

The alpha generation section 206 is shown in **Figure 4**. First, the

registers are set to their initial conditions. Then the data inputs are summed together by the adder 402, and the results are stored in registers 412. These are then input to the MAX* blocks 406 and stored in MAX* registers 414. The alpha generation section 206 also has two normalization stages 408, 410, each with their own registers 416, 418. The latency of the alpha generation stage 206 is thus 4, allowing 4 levels of pipelining to be implemented.

Operating in parallel with the alpha generation section is the extrinsic generation section 212, shown in **Figure 5**. Alpha 210, beta 208, and P 108 are summed together by the adders 502 according to the trellis used, and the results are stored in registers 510. In the second stage, these results are applied to the MAX* blocks 504, and then stored in the MAX* registers 512. These results are again applied to MAX* blocks 504 and then stored in registers 508. The result is summed and stored in another register 514, and the output is the extrinsic signal 214.

Parallelism with Sliding Windows

A sliding window approach basically consists of dividing the N sized block of incoming data into several smaller blocks. Each of these smaller blocks is called a sliding window block. These sliding window blocks are MAP decoded each independently, with a prolog for both the alpha and beta vectors. The decoding for the individual alpha and beta sliding window blocks is done in parallel. Since the initial conditions are not known for the individual sliding window blocks, the

prologs are used to reach a good set of initial values.

By starting the update of the alpha at a point sufficiently inside the previous block and starting the update of the beta at a point sufficiently inside the next block, the decoder can "forget" the initial conditions and converge before it begins operating on the actual data. the prolog section size used is generally 3 or 4 times the number of states in the trellis. The first alpha and last beta sliding block will originate from a known state, and the size of their respective prolog sections will be 3 for an 8 state trellis (for example).

The innovative alpha prolog allows parallel processing of both the alpha and beta sliding window blocks of data. Depending on the specific implementation used, each update of alpha or beta takes a few clock cycles to run (4 clock cycles in the above embodiment). This latency determines the degree of pipelining possible in the system. In the preferred embodiment, there are four levels of pipelining within each alpha and beta block (meaning the data within each of the alpha and beta generation stages is pipelined, or broken into separate sets of data and independently operated on by successive stages within the beta generation section). There is also a degree of parallelism between the alpha and beta blocks themselves, meaning these two sections operate simultaneously to produce extrinsic input.

The alpha and beta vector generation processes are divided into multiple stages, as shown above. These stages are within the iteration loops of the alpha and beta vector generation, shown in **Figures 3** and **4**. The number of stages would be equal to the latency for a particular

architecture. In the preferred embodiment, these stages are the Adder, the MAX*, and two Normalization stages. The latency of these stages dictates the degree of parallel processing possible. For example, in the preferred embodiment this latency is 4, meaning 4 sliding-window blocks can be processed in parallel. Thus, 4 sliding-window blocks make up one sub-block.

The pipelining of the sliding blocks is shown in **Figure 6**. During the first clock cycle, beta0 (the first sliding block) enters the adder stage. In the second clock cycle, beta0 enters the MAX* stage, and beta1 enters the adder stage. In the third clock cycle, beta0 enters the first normalization stage (the third stage of beta generation), beta1 enters the MAX* stage, and beta2 enters the adder stage. Next, beta0 enters the second normalization stage, beta1 enters the first normalization stage, beta2 enters the MAX* stage, and beta3 enters the adder stage. The intermediate values for each stage are stored in registers, as shown above.

Either the beta or alpha stages are stored in memory so that the data input to the extrinsic section can be synchronized. In the preferred embodiment, beta processing begins one sub-block before alpha processing (Note that this staggering could be eliminated by adding another RAM block to store the alpha outputs.) This staggering is shown in **Figure 7**. The first sub-block (which is a number of sliding blocks equal to the latency of the architecture--4 in the preferred embodiment) of the beta section can be processed while the alpha section is idle. Next, the second set of sliding blocks of the beta section

(i.e., the second sub-block) is processed while the first set of sliding blocks of the alpha section are processed. The extrinsic sections are processed in parallel with the alpha section. This reduces the memory requirement for storing both the alpha and beta state vectors because the alpha outputs can be directly applied to the extrinsic as they are generated. Since the extrinsic generates output (and requires input) one sub-block at a time, the beta RAM only needs to store one sub-block of data at a time. (Note that the alpha and beta processing could be reversed. This would require the alpha outputs to be stored in memory, and beta and the extrinsic blocks would run in parallel.)

Figure 8 shows the correspondence between alpha and beta sliding-window blocks. The entire data block consists of N symbols plus a number of tail bits. This block is broken into sub-blocks, which are further divided into sliding-window blocks. One sliding-window block is processed per clock cycle. Each sliding-window block includes a prolog. The beta prologs consist of several symbols to the right of the sliding window. The alpha prolog consists of the several bits to the left of the sliding window. This is shown by the overlap between successive sliding blocks in the figure. Each beta sliding window is processed in reverse relative to the alpha sliding blocks.

Figure 9 shows an example of the order in which beta and alpha bits are processed. This example assumes a sliding window size of 100, a prolog length of 24, and 4 sliding windows per sub-block. The sliding block beta0 begins at the start of the prolog at bit 123. Next, the prolog ends at bit 100. The reliability data begins at bit 99, and ends at bit

zero. The alpha sliding blocks are similarly divided. (Note the first two entries for alpha do not exist, because there is no prolog for the beginning of the block since the start and end points are known.)

The extrinsic cannot be processed in parallel with both the alpha and beta generation processes, because the extrinsic input data, which requires data from alpha, beta, and the parity data, must be input in a certain order. The following shows the indexing of the extrinsic input. E0 (corresponding to alpha0 and beta0) goes from bit 0 to 99. E1 goes from 100 to 199, and so on, given a sliding window size of 100. The input required by this example would be as follows. In the first clock cycle, the soft estimate data relating to bit 0 from alpha, beta, and P are input to the extrinsic. In the second clock cycle, data associated with bit 100 from the three inputs is required. In the third clock cycle, the data associated with bit 200 is required. In the fourth clock cycle, the data associated with bit 300 is required. In the fifth clock cycle, the input reverts back to the data associated with bit 1 (the first clock cycle input shifted one bit). In the next cycle, the bit 101 data, and so on. Thus the betas must be stored in RAM after they are generated, because they are generated in a different order than the alpha bits and parity bits, and are not required at generation as are the alpha bits and parity bits. When the corresponding alphas and betas have been generated, the extrinsic may be calculated.

Definitions:

Following are short definitions of the usual meanings of some of

the technical terms which are used in the present application. (However, those of ordinary skill will recognize whether the context requires a different meaning.) Additional definitions can be found in the standard technical dictionaries and journals.

MAX*: MAX* is a maximum finding approximation for the natural log function, given by the following equation:

$$\ln[e^A + e^B] \approx \text{MAX}^* = \text{MAX}(A + B) + f(|A - B|)$$

where $f(A-B)$ is a correction term. A lookup table is usually used for this value, which makes the above expression an approximation. If the expression

$$\ln[1 + e^{-|A-B|}]$$

is used instead of a lookup table, then the MAX* definition becomes an exact equality, not an approximation.

MAP decoder: Maximum A-Posteriori. MAP decoders use a detection criterion that leads to the selection of x that maximizes the probability $p(x|r)$ of a symbol x given the received information r .

Extrinsic: Outputs of decoders that estimate the value of a decoded bit.

Extrinsics are usually soft estimates.

Modifications and Variations

As will be recognized by those skilled in the art, the innovative concepts described in the present application can be modified and varied over a tremendous range of applications, and accordingly the scope of patented subject matter is not limited by any of the specific exemplary teachings given, but is only defined by the issued claims.

0
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
259
260
261
262
263
264
265
266
267
268
269
269
270
271
272
273
274
275
276
277
278
279
279
280
281
282
283
284
285
286
287
288
289
289
290
291
292
293
294
295
296
297
298
299
299
300
301
302
303
304
305
306
307
308
309
309
310
311
312
313
314
315
316
317
318
319
319
320
321
322
323
324
325
326
327
328
329
329
330
331
332
333
334
335
336
337
338
339
339
340
341
342
343
344
345
346
347
348
349
349
350
351
352
353
354
355
356
357
358
359
359
360
361
362
363
364
365
366
367
368
369
369
370
371
372
373
374
375
376
377
378
379
379
380
381
382
383
384
385
386
387
388
389
389
390
391
392
393
394
395
396
397
398
399
399
400
401
402
403
404
405
406
407
408
409
409
410
411
412
413
414
415
416
417
418
419
419
420
421
422
423
424
425
426
427
428
429
429
430
431
432
433
434
435
436
437
438
439
439
440
441
442
443
444
445
446
447
448
449
449
450
451
452
453
454
455
456
457
458
459
459
460
461
462
463
464
465
466
467
468
469
469
470
471
472
473
474
475
476
477
478
479
479
480
481
482
483
484
485
486
487
488
489
489
490
491
492
493
494
495
496
497
498
499
499
500
501
502
503
504
505
506
507
508
509
509
510
511
512
513
514
515
516
517
518
519
519
520
521
522
523
524
525
526
527
528
529
529
530
531
532
533
534
535
536
537
538
539
539
540
541
542
543
544
545
546
547
548
549
549
550
551
552
553
554
555
556
557
558
559
559
560
561
562
563
564
565
566
567
568
569
569
570
571
572
573
574
575
576
577
578
579
579
580
581
582
583
584
585
586
587
588
589
589
590
591
592
593
594
595
596
597
598
598
599
599
600
601
602
603
604
605
606
607
608
609
609
610
611
612
613
614
615
616
617
618
619
619
620
621
622
623
624
625
626
627
628
629
629
630
631
632
633
634
635
636
637
638
639
639
640
641
642
643
644
645
646
647
648
649
649
650
651
652
653
654
655
656
657
658
659
659
660
661
662
663
664
665
666
667
668
669
669
670
671
672
673
674
675
676
677
678
679
679
680
681
682
683
684
685
686
687
688
689
689
690
691
692
693
694
695
696
697
697
698
699
699
700
701
702
703
704
705
706
707
708
709
709
710
711
712
713
714
715
716
717
718
719
719
720
721
722
723
724
725
726
727
728
729
729
730
731
732
733
734
735
736
737
738
739
739
740
741
742
743
744
745
746
747
748
749
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
797
798
799
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
897
898
899
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
988
989
989
990
991
992
993
994
995
995
996
997
997
998
999
999
1000
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1088
1089
1089
1090
1091
1092
1093
1094
1095
1095
1096
1097
1097
1098
1099
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1188
1189
1189
1190
1191
1192
1193
1194
1195
1195
1196
1197
1197
1198
1199
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1288
1289
1289
1290
1291
1292
1293
1294
1295
1295
1296
1297
1297
1298
1299
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1388
1389
1389
1390
1391
1392
1393
1394
1395
1395
1396
1397
1397
1398
1399
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1488
1489
1489
1490
1491
1492
1493
1494
1495
1495
1496
1497
1497
1498
1499
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1588
1589
1589
1590
1591
1592
1593
1594
1595
1595
1596
1597
1597
1598
1599
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1688
1689
1689
1690
1691
1692
1693
1694
1695
1695
1696
1697
1697
1698
1699
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1788
1789
1789
1790
1791
1792
1793
1794
1795
1795
1796
1797
1797
1798
1799
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1888
1889
1889
1890
1891
1

of other variables. The disclosed innovations are intended to cover all such variations in implementation.

The disclosed innovations of the present application are applicable to any MAP architecture. For instance, any implementation of the disclosed inventive concepts in turbo decoders which use MAP decoders is within the contemplation of the invention. Any MAP operations, e.g., MAP equalization, are within the contemplation of the present application. MAP equalization is the process of describing the channel function as the data input to the channel constrained on a trellis to produce the observed output. The input to the channel can then be estimated in a maximum a priori sense by applying a MAP decode to the trellis diagram and the observed channel output. This is useful if (a) soft output is required from the equalizer, (b) a more accurate estimate of the input to the channel is required than can be got using a linear filter or equalizer, or (c) an iterative joint decode of the channel and the applied FEC is required. In general, MAP finds use in any situation where the data observed is known to have been generated by input to a linear trellis.

Likewise, MAP architectures with software, as well as hardware, implementations is within the contemplation of the invention. In today's DSPs very high processing rates are achieved by using deep pipelining of the data path. This means the DSP cannot be efficiently used in a feedback process such as beta and alpha updates. Using the present invention allows several blocks to be simultaneously processed by the DSP in a pipelined fashion, which considerably

speeds up the operation in a deeply pipelined DSP architecture.

Further background material on the state of the art in MAP decoders and coding can be found in TURBO CODING, by Heegard and Wicker; TRELLIS CODING, by Schlegel; ERROR CONTROL SYSTEMS, by Wicker, and AN INTUITIVE JUSTIFICATION AND A SIMPLIFIED IMPLEMENTATION OF THE MAP DECODER FOR CONVOLUTIONAL CODES, Andrew Viterbi, IEEE Journal on Selected Areas of Communications, Vol. 16, No. 2, February 1998, all of which are hereby incorporated by reference.

TOP SECRET//COMINT