Spatial Linear Filtering

- Correlation, as introduced, is a form of spatial linear filtering
- An image of size MxN is filtered with a filter mask of size mxn

$$g(x, y) = \sum_{s=-at=-b}^{a} \sum_{t=-b}^{b} w(s, t) f(x+s, y+t)$$

- w is the kernel filter (e.g. 3x3 box matrix)
- Assume odd matrix size, and 0,0 is the centre
- Therefore the above expression loops over the filter

Image Credit: All images (unless otherwise noted) in these 2 lectures are by Jason Xie (Swansea)

Spatial Linear Filtering

$$g(x, y) = \sum_{s=-at=-b}^{a} \sum_{t=-b}^{b} w(s, t) f(x+s, y+t)$$

to describe the equation: e.g. in pseudo code

```
for (s=-a; s<=a; s++) {
    for (t=-b; t<=b; t++) {
        sum=sum+w[s][t]*f[x+s][y+t];
    }
}</pre>
```

 where w is a 2D filter array, and f is a 2D image (does not take into account colour)

Edge Detection

- What are edges?
- Usually a perceivable change in intensity
- e.g. see the abrupt change on the left (graphed bottom left)
- Compared to the change on the right (graphed bottom right)
- Can we create edge detectors?
- Edges can be spotted where the "rate of change" of intensity is high.
- Recall "rate of change" is the derivative of a function

- In the previous images, the vertical dotted line is the perceived edge
- This is difficult to compute on the edge profile
- Its where the rate of change of intensity is highest
- We can see this in the 1st derivative where the function has a maximum value
- This is harder to spot for smoother edges
- The maximum of a function can be found where its derivative equals zero
- Therefore see the 2nd derivative, where the edge is obvious as the function crosses from +ve to -ve

- Edges can be detected by considering the first derivative (2nd column of graphs)
- Notation, given a function f its derivative is denoted f'
- Defining, using limits, $f'(x) = \lim_{h \to 0} \frac{f(x+h) f(x)}{h}$
- that is, as h tends toward zero (limit definition), the right hand side defines the derivative.

- The derivative can be approximated by evaluating the function with a small h
- But, if h does not tend to zero, the derivative will have some error (that is why its approximating)
- One discrete approximation is central differences:

$$f'(x) \approx f(x + \frac{1}{2}h) - f(x - \frac{1}{2}h)$$

• where h is small

$$f'(x) \approx f(x + \frac{1}{2}h) - f(x - \frac{1}{2}h)$$

- If we make h twice the distance between pixels
- The above equation simple states that the derivative of the image gradient at a pixel, is the next (right) pixel's value minus the previous (left) pixel's value
- The Prewitt operator takes this idea and creates a correlation filter which calculates the discrete derivative

Edge Detection: Finite Differences

Prewitt operator

$$M_{x} = \begin{bmatrix} 1 & 0 & -1 \\ 1 & 0 & -1 \\ 1 & 0 & -1 \end{bmatrix} \qquad M_{y} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ -1 & -1 & -1 \end{bmatrix}$$

- This is sensitive to noise, so it was combined with a Gaussian smoothing filter to give the:
- Sobel operator

$$M_{x} = \begin{bmatrix} 1 & 0 & -1 \\ 2 & 0 & -2 \\ 1 & 0 & -1 \end{bmatrix} \qquad M_{y} = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix}$$

Edge Detection: Finite Differences

- The Sobel operator uses the first filter to give image lx, and the second to give ly
- Then the magnitude of the gradient is calculated along with its direction, thus:

magnitude =
$$\sqrt{{I_x}^2 + {I_y}^2}$$
 gradient direction = $\arctan\left(\frac{I_y}{I_x}\right)$
• think of any operation on image Ix as applying the

- think of any operation on image Ix as applying the operation to every pixel in Ix
- e.g. the magnitude of pixel (i,j) is

$$magnitude(i, j) = \sqrt{I_x(i, j)^2 + I_y(i, j)^2}$$

Edge Detection: Sobel

Edge Detection: Sobel – Gradient and Magnitude

- Each arrow direction is gradient direction, and the length is the magnitude
- Note how the unvarying regions have small arrows, and the edges have long arrows pointing across the edge

Edge Detection: Sobel Gradient Normal and Magnitude

- Each arrow direction is at right angles to the gradient direction, and the length is the magnitude
- Note how the unvarying regions have small arrows, and the edges now have long arrows pointing in the direction of the edge

Sobel: Finding edges

- Taking the previous information
- If the gradient is greater than some value, map the angle onto a grey value (e.g. 0 deg (up)=white, 180 deg (down)=black

Sobel: Finding edges

- Or, high magnitude=black, low=white (left image), then all pixel values above a certain magnitude are set to black (thresholding – right image)
- Note, not all edges are present poor connectivity

2nd order operator

- Sobel was the first derivative of a Gaussian (blur)
- The 2nd derivative can be used, and we then look for any pixel that
 is above zero that has a neighbour below zero this is the crossing,
 and therefore the edge
- The following 5x5 (high pass) filter can be used

$$\begin{bmatrix} 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 2 & 1 & 0 \\ 1 & 2 & -16 & 2 & 1 \\ 0 & 1 & 2 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{bmatrix}$$

 This is the 2nd derivative of the Gaussian and when plotted looks like:

2nd order operator

- Edges are found by looking for zero crossings pixels above zero next to pixels below zero
- It produces good connectivity at low processing cost

Finding edges using zero crossing is more accurate than the 1st order operators

It is sensitive to noise (i.e. produces more edges than needed if the image contains noise – see next lecture on noise)

Summary

- Linear spatial filtering described (equation)
- Edges as high changes of intensity
- Rate of change of intensity (1st derivative) edge spotted as maximum
- 2nd derivative shows edge at zero crossings
- Use correlation (Prewitt / Sobel) to find 1st derivative
- Use correlation (2nd order operator) to find 2nd derivative (then look for zero crossings)

Template Matching

- Detection and recognition by matching patterns
- Simple example
 - Filtering based upon correlation of template with image
 - Brightest spot indicates best match

• But what if its rotated? Different font, size,?

Template Matching

Do we use templates for all possible differences?

Scale changes

Transformations

Noise

Computer Vision

- This introduces the topic of computer vision
- Real world problems are hard
- Identifying objects/people in images and video is a big research problem

