ARAMA (SEARCHING)

ARAMA (SEARCHING)

- Günümüzde birçok arama algoritması geliştirilmiştir.
- Arama işlemlerinin etkin bir şekilde yapmak için Sembol tablosundan yararlanılmaktadır.
- Sembol tablosu terimi, bilgiyi (bir değer) kaydedip bir anahtar kullanarak tekrar arama işlemi yapmak için kullanılan soyut bir mekanizmadır.
- Uygulamaya göre anahtar ve değerin doğası değişmektedir.

SEMBOL TABLOSU

□Sembol tablolarının en önemli amacı **bir değer** ve **anahtarı birbirine** bağlamaktır.

□Tabloya yerleştirilmiş olan anahtar- değer çiftleri arasında sonra arama yapmak için istemci anahtar değer çiftlerini tabloya girebilir.

Tipik sembol tablosu uygulamaları

uygulama	arama sebebi	anahtar	değer
sözlük	anlamı bulmak	kelime	anlamı
kitap indeksi	ilgili sayfaları bulmak	terim	sayfa numarası listesi
dosya paylaşımı	indirmek için şarkı bulmak	şarkının ismi	bilgisayar ID'si
hesap yönetimi	etkileşimleri işlemek	hesap numarası	işlem detayı
web araması	ilgili web sayfasını bulmak	anahtar kelime	sayfa isimleri listesi
derleyici	tip ve değeri bulmak	değişken adı	tip ve değeri

SEMBOL TABLOSU

❖Çok fazla sayıda anahtara ve **büyük miktarda** veriye sahip olabiliriz.

Dolayısıyla etkin bir sembol tablosu oluşturmak zordur.

- Sembol tabloların etkin bir şekilde gerçekleştirilmesi için 3 temel klasik veri yapısı aşağıda verilmiştir.
- 1. Hash (Kıyım, çırpı, karım) tabloları
- 2. İkili arama ağaçları
- 3. Kırmızı siyah ağaçlar

Hash (Kıyım, Karım, Çırpı) Tablosu

- Kıyım (hash) tablosu, sözlük uygulamaları için etkili bir veri yapısıdır.
- Kıyım tablosunda bir **elemanı aramak**, <u>bir bağlı liste içinde eleman aramak kadar uzun sürse</u> de (pratikte en kötü ihtimalle) **O**(n) **zamanda**, <u>çırpılama çok iyi işlemektedir.</u>
- ☐ Mantıklı varsayımlar üzerinde, kıyım tablosunda **ortalama bir eleman arama süresi O(1)'dir.**

Hash (Kıyım, Karım, Çırpı) Tablosu

Sembol tablosu *S* 'nin içinde *n kayıt* var:

Veri yapısı *S* nasıl organize edilmelidir?

- Doğrudan adresleme, anahtar evreni mantıklı derecede küçük olduğunda iyi çalışan basit bir yöntemdir.
- Dolayısıyla bir uygulama her bir elemanın *m'nin çok* büyük olmadığı farz edilir
- □ U = {0,1, m 1} evreninden çekilen bir anahtara sahip olduğu dinamik bir kümeye ihtiyaç duysun.

Fikir: Anahtarların $U \subseteq \{0, 1, ..., m-1\}$ setinden seçildiğini ve birbirlerinden farklı olduklarını varsayın. T[0 ... m-1] dizilimini oluşturun:

$$T[k] = \begin{cases} x & \text{e \ e \ ger } x \in K \text{ ve } key[x] = k \text{ ise,} \\ 0 & \text{d \ i \ ger durum larda.} \end{cases}$$

Burada işlemler $\Theta(1)$ zamanı alır.

Şekil 1. Doğrudan-adres tablosu *T*, ile nasıl dinamik bir küme uygulandığını gösterir. Elemanların işaretçilerini içeren tablodaki pozisyonlarını belirler. Gölgelendirilmiş diğer pozisyonlar boştur.

DIRECT-ADDRESS-SEARCH (T, k)

1 return T[k]

DIRECT-ADDRESS-INSERT (T, x)

1 T[x, key] = x

DIRECT-ADDRESS-DELETE (T, x)

1 T[x, key] = NIL

Her bir işlem O(1) zaman alır.

Problem: Anahtarların değer kümesi büyük olabilir:

- 64-bit sayılar (18,446,744,073,709,551,616 farklı anahtarları temsil eder),
- (daha da fazla) karakter dizgisini içerebilir.

Problem: Bir başka problemde saklanan anahtar kümesi K, U'ya göre oldukça küçük olabilir.

- □ Bu durumda doğrudan adresleme ile T, için ayrılan yerin çoğu boşa harcanmış olabilir.
- □ Bu olumsuz durumu ortadan kaldırmak için kıyım(çırpı) tablosu kullanılır.
- ☐ Kıyım tablosu daha az yere ihtiyaç duyar.

Doğrudan adresleme ile *k* pozisyonunda *k* anahtarlı bir eleman saklanır.

Kıyımlama ile bu eleman h(k) pozisyonunda saklanır.

Yani, <u>k anahtarından pozisyon hesaplamak</u> için <u>h</u> <u>kıyım fonksiyonunu</u> kullanılır.

Burada *h,* kıyım *tablosu* T[0 .. m - 1] pozisyonlarının içindeki anahtarlar evreni U'ya <u>eşleme yapar.</u>

- O Özet olarak kıyımlama (hashing), elimizdeki veriyi kullanarak o veriden elden geldiği kadar benzersiz bir tamsayı elde etme işlemidir.
- OBu elde edilen tamsayı, dizi şeklinde tutulan verilerin indisi gibi kullanılarak verilere tek seferde erişmemizi sağlar.

Özellikle, kıyım tablosunun, bir eleman aramak için O(1) zaman kullanır.

Kıyım tablosunun **yer kaplama ihtiyacını** $\Theta(k)$ olarak düşünülebilir.

Bu sınır, ortalama-durum zamanı için geçerlidir.

Doğrudan adreslemede bu durum en kötü-durum zamanı için geçerlidir.

Çözüm: Kıyım fonksiyonu h ile U evrenindeki tüm anahtarları eşlemleyin.

Araya yerleştirilecek kayıt T' deki dolu bir yuvaya eşlemlendiğinde, bir carpışma oluşur.

Zincirleme ile çarpışma çözümü

- Her bir kıyım tablosu, pozisyonu T[j], kıyım değeri j olan tüm anahtarların bağlı listesini içerir.
- \Leftrightarrow Örneğin, $h(k_1)$) = $h(k_4)$)
- ve $h(k_5) = h(k_7) = h(k_2)$
- Bağlı liste tekli veya çiftli olabilir.
- Yandaki şekilde çiftli liste olarak gösterilmiştir.
- Çünkü silme işlemi daha hızlıdır .

Zincirleme ile kıyımlama analizi

- Özellikle verilen anahtarlı bir elemanı aramak ne kadar sürer?
 - *>n* tane eleman saklayan *m* tane pozisyonlu olarak verilen bir kıyım tablosu:

T için *n/m* olarak bir **yükleme faktörü α** tanımlanır.

Yani zincirde saklanan ortalama eleman sayısı

α 1'den küçük veya büyük ya da 1'e eşit olabilir.

Zincirleme ile kıyımlamanın en kötü durum davranışı

- ➢n boyutlu bir liste yaratılarak tüm n anahtarları aynı pozisyona/yuvaya kıyımlar.
- Dolayısıyla en kötü durum zamanı @(n) olur.
- ➤Tüm elemanları saklamak için bağlı liste oluşturmaktan <u>daha iyi değildir.</u>

Zincirleme ile kıyımlamanın ortalama durum davranışı

- Herhangi bir elemanın **m** pozisyondan birine eşit şekilde <u>kıyımlandığını varsayalım</u>.
- Bu varsayım basit düzgün kıyımlama olarak adlandırılır.

Zincirleme ile kıyımlamanın ortalama durum davranışı

Basit tekbiçimli kıyımlama için şu varsayımı yaparız:

• Her anahtar $k \in S$, T tablosunun her yuvasına diğer anahtarların nereye kıyımlandığından bağımsız olarak kıyımlanır.

n bu tablodaki anahtarların sayısı ve*m* de yuvaların sayısı olsun.

T 'nin *yük oranını* tanımlarken;

```
\alpha = n/m
```

= yuva başına ortalama anahtar sayısıdır.

* Bir başka ifadeyle herhangi bir elemanın m pozisyondan birine eşit şekilde kıyımlanması olarak kabul edilmesi

Arama maliyeti

Belirli bir anahtar kaydı için *başarısız* bir aramadaki beklenen süre

$$=\Theta(1+\alpha)$$
. listeyi arama

kıyım fonksiyonu uygulama ve yuvaya erişim

- □ Bir başka ifadeyle tabloda önceden kayıtlı olmayan herhangi bir k anahtarı, m pozisyondan herhangi birine kıyımlama eğiliminde olur.
- ☐ Beklenen süre T[h(k)], listesinin sonunu aramak için beklenen süredir.
- \square Beklenen boyut $\mathsf{E}[n_{h(k)}] = \alpha$ dır.

Toplam gereken zaman $\Theta(1 + \alpha)$ dır.

Arama maliyeti

- Başarılı bir arama durumu biraz farklıdır.
- Çünkü her liste aramak için eşit benzerlikte değildir.
- □ Bunun yerine, *bir listenin aranma olasılığı*, <u>onun içerdiği</u> eleman sayısıyla doğru orantılıdır.
- \square Yine de, beklenen arama zamanı ortalama $\underline{\Theta}(1 + \alpha)$ civarındadır.

Bir kıyım fonksiyonu seçmek

*Basit tek biçimli kıyımlamanın varsayımını garanti etmek zordur.

Ama eksikliklerinden kaçınılabildiği sürece **pratikte iyi** çalışan bazı ortak teknikler vardır.

İstenilenler:

- •İyi bir kıyım fonksiyonu, anahtarları tablonun yuvalarına tek biçimli dağıtabilmelidir.
- •Anahtar dağılımındaki düzenlilik bu tek biçimliliği etkilememelidir.

Bir kıyım fonksiyonu seçmek

- ❖İyi bir kıyımlama fonksiyonu tasarlamak için aşağıdaki üç temel yaklaşımlar kullanılır.
- 1. Bölme
- 2. Çarpma
- 3. Evrensel kıyımlama

- ☐ Tüm anahtarların tamsayı olduğu kabul edilir. Kıyım fonksiyonu:
- $h(k)=k \mod m$

Örneğin *kıyım tablosu:* m=12 boyutundaysa; anahtar k=100 ise h(k)=4 olur.

Sakınca: *m*' yi küçük bir *d* böleni olacak şekilde seçmeyin. Anahtarlardan çoğu ölçke (modulo) *d* ile çakışırsa, bu durum tekbiçimliliği olumsuz etkiler.

Uç sakınca: Eğer $m = 2^r$ ise, kıyım fonksiyonu k' nın bütün bitlerine bağımlı bile olmaz:

- Eğer $k = 1011000111011010_2$ ver = 6 ise, $h(k) = 011010_2$ dır. h(k)
- k nın karakterlerinin sırasını değiştirmek onun kıyım değerini değiştirmez.
- m'nin 2'nin tam kuvvetlerine yakın olmayan bir <u>asal</u> <u>sayı</u> m için iyi bir seçim olabilir.

- * m çift ve değerlerde çift sayı ise anahtarların hepsi aynı yuvayı işaret eder.
- ❖ Tek sayılı yuvalara hiçbir zaman kıyım olmaz.
- Yuvaların yarısı boş olur.
- m yi asal seçmek daha uygundur.
- Ama her zaman değil!
- Asal sayı, 2 ve 10'nun kuvvetlerine yakın olmazsa iyidir.

- Örneğin karakterin 8 bit olduğu kabaca n=2000 karakter katarını tutmak için çarpışmaların zincirleme ile çözüldüğü bir kıyım tablosu oluşturmak istiyoruz.
- ❖ Başarısız bir aramada <u>3 elemanın ortalamasını incelemeyi</u> önemsiyoruz.
- ❖ Bu yüzden **m=701** boyutunda bir çırpı tablosu oluştururuz.
- ❖ Çünkü m'nin 2000/3 e yakın bir asal sayı ve 2'nin kuvvetine yakın değil.
- Her bir k anahtarına tam sayı gibi davranarak kıyım fonksiyonu
- ❖ h(k)=k mod 701

2. Çarpma Metodu

Şekil 2. Kıyımlamanın çarpma yöntemi.

- □ k anahtarının w-bit temsili, w-bit, s = (A 2^w) değeriyle çarpılır.
- Sonucun düşük w-bitinin bit yarısının p en yüksek-sıra bitleri, istenilen h(k) değerini oluşturur.

Çarpma metodu

Modüler tekerlek

Eğer A, örneğin tek sayı ise ve ikinin kuvvetlerinden birine çok yakın değilse, atamayı başka bir yerdeki farklı yuvaya yapar. Böylece etrafta dolaşırken k çok büyük bir değerse, k çarpı A çevrede k kere döner.

Çarpma metodu

$$h_A(k) = \lfloor size * (k*A \mod 1) \rfloor$$
 where $0 \le A \le 1$

• Example: size = 10, A = 0.485 $h_A(50) = \lfloor 10 * (50*0.485 \mod 1) \rfloor$ $= \lfloor 10 * (24.25 \mod 1) \rfloor = \lfloor 10 * 0.25 \rfloor = 2$

Açık adresleme ile çarpışmaları çözmek

Kıyım tablosunun dışında depo alanı kullanılmaz.

- Araya yerleştirme boş bir yuva bulunana kadar tabloyu sistematik biçimde sondalar.
- Kıyım fonksiyonu hem anahtara hem de sonda sayısına bağımlıdır:

```
h: U \times \{0, 1, ..., m-1\} \rightarrow \{0, 1, ..., m-1\}.
```

- Sonda dizisi $\langle h(k,0), h(k,1), ..., h(k,m-1) \rangle$ {0, 1, ..., m-1}' in bir permütasyonu olmalıdır.
- Tablo dolabilir ve silme işlemi zordur, (ama imkansız değildir).

Başka bir ifadeyle doluysa tekrar kıyımlama yapar boş bir yer arar.

Açık adresleme ile çarpışmaları çözmek

Anahtarı k = 496 araya yerleştirin: 0. Sonda h(496,0)586 133 204 çarpışma 481 m-1

Açık adresleme ile çarpışmaları çözmek

Anahtarı k = 496 araya yerleştirin: 0 **0**. Sonda h(496,0)586 çarpışma 1. Sonda h(496,1)133 204 481 m-1

Açık adresleme ile çarpışmaları çözmek

Anahtarı k = 496 araya yerleştirin: 0 **0**. Sonda h(496,0)586 1. Sonda h(496,1)133 2. Sonda h(496,2)204 araya giriş 496 481

m-1

Açık adresleme ile çarpışmaları çözmek

Sonda stratejileri

- Doğrusal Sondalama (Linear Probing)
 - \circ h(k,i) = (h'(k) + i) mod m \rightarrow h(k,0)

- İkinci Dereceden Sondalama(Quadratic probing)
 - $o h(k,i) = (h'(k) + c_1i + c_2i^2) \mod m$

- Çift Kıyım (Double hashing)
 - \circ h(k,i) = (h1(k) + i*h2(k)) mod m

Çakışmanın giderilmesi Doğrusal Sondalama (Linear Probing)

- Aynı pozisyona gelen ikinci kayıt ilgili pozisyondan sonraki ilk boş pozisyona yerleştirilir.
- Ekleme: Boş bir alan bulunarak yapılır.
- Silme/Erişim: İlk boş alan bulunana kadar devam edebilir.

Çakışmanın giderilmesi Doğrusal Sondalama (Linear Probing)

0	
1	
2	
3	3
4	13
5	5
6	6
7	23
8	15
9	

```
h(k,i) = (h'(k) + i) \mod m
Ex: m = 10
    Input = <5, 3, 6, 13, 23, 15>
h(3,0) = (h'(3) + 0) \mod 10 = 3
h(13,0) = (h'(13) + 0) \mod 10 = 3?
h(13,1) = (h'(13) + 1) \mod 10 = 4
h(5,0) = (h'(5) + 0) \mod 10 = 5
h(6,0) = (h'(6) + 0) \mod 10 = 6
h(23,0) = (h'(23) + 0) \mod 10 = 3?
h(23,1) = (h'(23) + 1) \mod 10 = 4?
h(23,4) = (h'(23) + 4) \mod 10 = 7
```

Doğrusal Sondalamanın avantajları / dezavantajları

Bağlı listeler gibi ayrı bir veri yapısına ihtiyaç duyulmaz.

Kayıtların yığın şeklinde toplanmasına sebep olur.

 Silme ve arama işlemleri için gereken zaman aynı hash değeri sayısı arttıkça artar.

Çakışmanın giderilmesi İkinci Dereceden Sondalama (Quadratic Probing)

- Aynı pozisyona gelen ikinci kayıt Quadratic Fonksiyonla yerleştirilir.
- En çok kullanılan hash fonksiyonu
- Burada h', yardımcı hash fonksiyonu, c_1 ve $c_2 \neq 0$
- ve i = 0, 1,..., M-1.
- Sondalamanın başlangıç posizyonu: t = [h'(k)]

Örnek - İkinci Dereceden Sondalama (Quadratic Probing)

0	12
1	
2	2
3	3
4	
5	22
6	
7	
8	18
9	

$$h(k,i) = (h'(k) + c_1i + c_2i^2) \mod M$$

$$Ex: M = 10, c_1 = 2, c_2 = 1$$

$$Input = \langle 2, 3, 22, 12, 18 \rangle$$

$$h(2,0) = (h'(2) + 2*0+1*0) \mod 10 = 2$$

$$h(3,0) = (h'(3) + 2*0+1*0) \mod 10 = 3$$

$$h(22,0) = (h'(22)+2*0+1*0) \mod 10 = 2$$
?
$$h(22,1) = (h'(22)+2*1+1*1) \mod 10 = 5$$

$$h(12,0) = (h'(12)+2*0+1*0) \mod 10 = 2$$
?
$$h(12,1) = (h'(12)+2*1+1*1) \mod 10 = 5$$
?
$$h(12,2) = (h'(12)+2*1+1*1) \mod 10 = 5$$
?
$$h(12,2) = (h'(12)+2*2+1*4) \mod 10 = 0$$

$$h(18,0) = (h'(18) + 2*0+1*0) \mod 10 = 8$$

İkinci Dereceden Sondalama avantajları / dezavantajları

 Anahtar değerlerini linear probing metoduna göre daha düzgün dağıtır.

 Yeni eleman eklemede tablo boyutuna dikkat edilmezse sonsuza kadar çalışma riski vardır.

Çifte (Double) Kıyımlama

 $h_1(k)$ ve $h_2(k)$, gibi iki basit kıyım fonksiyonu varsa, çifte kıyımlama şu kıyım fonksiyonunu kullanır:

$$h(k,i) = (h_1(k) + i \cdot h_2(k)) \mod m$$
.

Bu metot genelde mükemmel sonuçlar verir, ama $h_2(k)$, m 'e göre asal olmalıdır. Bunun bir yolu m 'yi, 2 'nin bir kuvveti yapmak ve $h_2(k)$ 'yı sadece tek sayılar üretecek şekilde tasarlamaktır.

Çifte (Double) Kıyımlama

0	
1	79
2	
3	
4	
5	98
6	
7	
8	
9	14
10	
11	
12	

$$h(k,i) = (h_1(k) + i*h_2(k)) \mod M$$

Ya da

- M=2^d ve h₂ çift sayı üretecek şekilde tasarlanabilir
- M asaldır ve h₂, M 'den daha küçük pozitif tam sayı üretecek şekilde tasarlanır.

Ex: M = 13, $M' = 11 \leftarrow M'$ should be slightly less than M

→
$$h_1(k) = k \mod M$$
, $h_2(k) = 1 + (k \mod M')$.

Input =
$$<98, 79, 14>$$

$$h_1(98) = 98 \mod 13 = 5$$

$$h_1(79) = 79 \mod 13 = 1$$

$$h_1(14) = 14 \mod 13 = 1$$

$$h_2(14) = 1 + 14 \mod 11 = 4$$

$$h(14, 1) = (h_1(14) + i * h_2(14)) \mod 13 = 1 + 1 * 4 = 5$$

$$h(14, 2) = (1 + 2*4) \mod 13 = 9$$

Çifte Kıyımlama Teoremin kanıtlanması

- En az bir sondalama mutlaka gereklidir.
- *n/m* olasılığıyla, ilk sonda dolu bir yuvaya gider ve ikinci sondalama gerekli olur.
- (*n*–1)/(*m*–1) olasılığıyla, ikinci sonda dolu bir yuvaya gider ve üçüncü sondalama gerekli olur.
- (*n*–2)/(*m*–2) olasılığıyla, üçüncü sonda da dolu bir yuvaya gider, v.b.

Gözlemle:
$$\frac{n-i}{m-i} < \frac{n}{m} = \alpha$$
; $i = 1, 2, ..., n$ için...

Çifte Kıyımlama Teoremin kanıtlanması

Bu nedenle, beklenen sonda sayısı:

$$1 + \frac{n}{m} \left(1 + \frac{n-1}{m-1} \left(1 + \frac{n-2}{m-2} \left(\cdots \left(1 + \frac{1}{m-n+1} \right) \cdots \right) \right) \right)$$

$$\leq 1 + \alpha (1 + \alpha (1 + \alpha (\cdots (1 + \alpha) \cdots)))$$

$$\leq 1 + \alpha + \alpha^2 + \alpha^3 + \cdots$$

Geometrik Seriler:
$$\sum_{i=0}^N A^i = \frac{A^{N+1}-1}{A-1} \qquad \text{A > 1}$$

$$\sum_{i=0}^N A^i = \frac{1-A^{N+1}}{1-A} = \Theta(1)$$

$$= \sum_{i=0}^{\infty} \alpha^{i}$$

$$= \frac{1}{1 - \alpha} \cdot \square$$

Başlangıçta 1 sondalama olacaktır. n/m çarpışma olacaktır. 2.sondada çarpışma olasılığı (n-1)/(m-1) olacaktır. Böyle devam eder....

Teoremin açılımları

- Eğer α bir sabitse, açık adresli bir kıyım tablosuna erişim sabit zaman alır.
- Eğer tablo yarı doluysa, beklenen sonda sayısı 1/(1-0.5) = 2' dir.
- Eğer tablo % 90 doluysa, beklenen sonda sayısı 1/(1-0.9) = 10' dur.

Kaynakça

Algoritmalar: Prof. Dr. Vasif NABİYEV, Seçkin Yayıncılık

Algoritmalara Giriş: Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford Stein, Palme YAYINCILIK

Algoritmalar: Robert Sedgewick, Kevin Wayne, Nobel Akademik Yayıncılık

M.Ali Akcayol, Gazi Üniversitesi, Algoritma Analizi Ders Notları

Doç. Dr. Erkan TANYILDIZI, Fırat Üniversitesi, Algoritma Analizi Ders Notları

http://www.bilgisayarkavramlari.com