Fundamental Algorithms - Spring 2018 Homework 3

Daniel Rivera Ruiz

Department of Computer Science New York University drr342@nyu.edu

1.
$$2n^4 - 11n + 98 = \Theta(n^4)$$

$$6n + 43n\lg(n) = \Theta(n\lg(n))$$

$$3 + \frac{5}{n} = \Theta(1)$$

2. The following table shows the steps of RADIX-SORT:

Step 0	Step 1	Step 2	Step 3
COW	SEA	TAB	BAR
DOG	TEA	BAR	BIG
SEA	MOB	EAR	BOX
RUG	TAB	TAR	COW
ROW	DOG	SEA	DIG
MOB	RUG	TEA	DOG
BOX	DIG	D I G	E AR
TAB	BIG	BIG	FOX
BAR	BAR	MOB	MOB
EAR	EAR	$D\mathbf{O}G$	NOW
TAR	TAR	COW	ROW
DIG	COW	ROW	RUG
BIG	ROW	NOW	SEA
TEA	NOW	BOX	TAB
NOW	BOX	FOX	TAR
FOX	FOX	RUG	TEA

3. The following table shows the steps of BUCKET-SORT:

Array A	Array B (linked lists)	Array B (sorted lists)	Sorted array
1: 0.79	0: ∅	Ø	0.13
2: 0.13	$1: 0.13 \rightarrow 0.16 \rightarrow \emptyset$	$0.13 \rightarrow 0.16 \rightarrow \emptyset$	0.16
3: 0.16	$2: 0.20 \rightarrow \emptyset$	$0.20 o \emptyset$	0.20
4: 0.64	$3: 0.39 \rightarrow \emptyset$	$0.39 o \emptyset$	0.39
5: 0.39	$4: 0.43 \rightarrow \emptyset$	$0.43 o \emptyset$	0.43
6: 0.20	$5: 0.53 \rightarrow \emptyset$	$0.53 o \emptyset$	0.53
7: 0.89	6: $0.64 \rightarrow \emptyset$	$0.64 o \emptyset$	0.64
8: 0.53	7: $0.79 \rightarrow 0.71 \rightarrow \emptyset$	$0.71 ightarrow 0.79 ightarrow \emptyset$	0.71
9: 0.71	$8: 0.89 \rightarrow \emptyset$	$0.89 o \emptyset$	0.79
10: 0.43	9: ∅	Ø	0.89

4. (a) COUNTING-SORT takes time $O(\max(N, K))$, where N is the length of the array, and K is the maximum value an element A[I] can take. Therefore:

$$T(n) = O(\max(N, K))$$

$$T(n) = O(\max(N, N^N))$$

$$T(n) = O(N^N)$$

(b) RADIX-SORT takes time $O(D\max(N,K))$, where N is the length of the array, and K^D is the maximum value an element A[I] can take. Therefore:

$$T(n) = O(D\max(N, K))$$

$$T(n) = O(N\max(N, N))$$

$$T(n) = O(N^2)$$

(c) Finally, using RADIX-SORT with a different base:

$$T(n) = O(D\max(N, K))$$

$$T(n) = O(\sqrt{N}\max(N, N^{\sqrt{N}}))$$

$$T(n) = O(N^{\sqrt{N} + 0.5})$$

- 5. The numbers in the sequence seem to coincide with the stops of the C, E, F, M trains, excepting for 13, which should actually be 14th St. Under this assumption, the next number should be 59 for the C/E lines, 57 for the F, or 53 for the M.
- 6. (a) There are two nested for loops, each running from 1 to N. Since there is only one operation to be performed (i.e. x++), each inner loop will take time O(N), and there are N such loops:

$$T(N) = O(N) \cdot N$$
$$T(N) = O(N^2)$$

(b) There is only one operation inside the while loop, which duplicates the index I each time. At the K^{th} iteration, we will have $I=2^K$, and therefore the algorithm will run as long as $2^K < N \to K < \lg(N)$:

$$T(N) = O(\lg N)$$

(c) The inner while loop will run as long as $J^2 < I$ and the value of J will be increased by one inside of it. Under these conditions, let's use the following table to explore the number of times the inner loop will be executed as I grows:

I	$\max(J)$ such that $J^2 < I$	Iterations in while
1	0	0
4	1	$1 \cdot (4-1)$
9	2	$1 \cdot (4-1) \\ 2 \cdot (9-4)$
16	3	$3 \cdot (16 - 9)$
	•••	•••

Looking at the table, it is clear that the total amount of operations will be the sum of all the iterations such that $I \leq N \to J^2 < N \to J < \sqrt{N}$:

$$1 \cdot (2^2 - 1^2) + 2 \cdot (3^2 - 2^2) + 3 \cdot (4^2 - 3^2) + \ldots = \sum_{J=1}^{\sqrt{N}} ((J - 1)(J^2 - (J - 1)^2))$$

Simplifying the summation we get $\sum_{J=1}^{\sqrt{N}} \left(2J^2-3J+1\right)$. Since we will be using O notation, the only term that we care about is the quadratic one. Considering that $\sum_{i=1}^n (i^2) = O(n^3)$,

we can finally conclude:

$$T(N) = O\left(\sum_{J=1}^{\sqrt{N}} J^2\right)$$
$$T(N) = O\left(N^{\frac{3}{2}}\right)$$

(d) At the K^{th} iteration of the inner while loop, the condition $J=2^KI < N$ must be met. Therefore, for each value of $I=1\dots N$ there will be $K=\lg\left(\frac{N}{I}\right)$ iterations. With this, we can calculate the total running time of the algorithm as follows:

$$\begin{split} T(N) &= O\left(\sum_{I=1}^{N} \lg\left(\frac{N}{I}\right) = \sum_{I=1}^{N} \left(\lg N - \lg I\right) = \sum_{I=1}^{N} \lg N - \sum_{I=1}^{N} \lg I\right) \\ T(N) &= O\left(N \lg N - \lg\left(\prod_{I=1}^{N} I\right)\right) \\ T(N) &= O\left(N \lg N - \lg(N!)\right) \end{split}$$

From Stirling's formula we know that $\lg(N!) \sim N \lg N$, and therefore $T(N) = O(N \lg N)$.

- 7. (a) Professor Squander's selection for the number of buckets is not ideal. With n^2 buckets, the last step of BUCKET-SORT where all the linked lists are concatenated will take $O(n^2)$ time, since all the lists must be visited once.
 - (b) In the case of Ima, the concatenation step will actually be quite fast since there are only \sqrt{n} buckets, but the problem will arise when sorting the elements in each one of the buckets. Considering that there are n elements to sort in total, the expected value for the number of elements in each bucket will be $E=\sqrt{n}$, and we can use a Poisson distribution with $\lambda=\sqrt{n}$ to estimate the running time of the sorting process for all the buckets. The expected number of buckets N with m elements in them is given by the following equation:

$$N = \sqrt{n} \cdot \frac{(\sqrt{n})^m e^{-\sqrt{n}}}{m!} = \frac{(\sqrt{n})^{m+1} e^{-\sqrt{n}}}{m!}$$

According to the problem definition, each one of these buckets will take $O(m^2)$ time to be sorted. To calculate the overall time of the algorithm, we add an m^2 factor to the previous equation and sum over all values of m^1 :

$$T(n) = O\left(\sum_{m=0}^{\infty} \frac{(\sqrt{n})^{m+1} e^{-\sqrt{n}} m^2}{m!}\right)$$
$$T(n) = O\left(n^{\frac{3}{2}} + n\right)$$
$$T(n) = O\left(n^{\frac{3}{2}}\right)$$

Ima's selection of the number of buckets yields better results than that of the professor $(O(n^{\frac{3}{2}}) \text{ vs. } O(n^2))$, but still it is worse than the optimal value of O(n) achieved when the number of buckets equals the number of elements to be sorted.

(c) The amount of space S used by the algorithm is given by multiplying the number of buckets N by the expected number of elements in each bucket E. For the case with n buckets we have:

$$S = n \cdot 1 = n$$

And for the case with \sqrt{n} buckets:

$$S = \sqrt{n} \cdot \sqrt{n} = n$$

Therefore, the amount of space used by both algorithms will be roughly the same.

¹Wolfram Mathematica was used to reduce the resulting summation.