SOLUTIONS TO PRACTICE PROBLEMS

1. det $(A - \lambda I) = \lambda^2 - 3\lambda + 2 = (\lambda - 2)(\lambda - 1)$. The eigenvalues are 2 and 1, and the corresponding eigenvectors are $\mathbf{v}_1 = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$ and $\mathbf{v}_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$. Next, form

$$P = \begin{bmatrix} 3 & 1 \\ 2 & 1 \end{bmatrix}, \qquad D = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}, \quad \text{and} \quad P^{-1} = \begin{bmatrix} 1 & -1 \\ -2 & 3 \end{bmatrix}$$

Since $A = PDP^{-1}$,

$$A^{8} = PD^{8}P^{-1} = \begin{bmatrix} 3 & 1 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 2^{8} & 0 \\ 0 & 1^{8} \end{bmatrix} \begin{bmatrix} 1 & -1 \\ -2 & 3 \end{bmatrix}$$
$$= \begin{bmatrix} 3 & 1 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 256 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ -2 & 3 \end{bmatrix}$$
$$= \begin{bmatrix} 766 & -765 \\ 510 & -509 \end{bmatrix}$$

2. Compute $A\mathbf{v}_1 = \begin{bmatrix} -3 & 12 \\ -2 & 7 \end{bmatrix} \begin{bmatrix} 3 \\ 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix} = 1 \cdot \mathbf{v}_1$, and

$$A\mathbf{v}_2 = \begin{bmatrix} -3 & 12 \\ -2 & 7 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 6 \\ 3 \end{bmatrix} = 3 \cdot \mathbf{v}_2$$

So, \mathbf{v}_1 and \mathbf{v}_2 are eigenvectors for the eigenvalues 1 and 3, respectively. Thus

$$A = PDP^{-1}$$
, where $P = \begin{bmatrix} 3 & 2 \\ 1 & 1 \end{bmatrix}$ and $D = \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix}$

3. Yes, A is diagonalizable. There is a basis $\{\mathbf{v}_1, \mathbf{v}_2\}$ for the eigenspace corresponding to $\lambda = 3$. In addition, there will be at least one eigenvector for $\lambda = 5$ and one for $\lambda = -2$. Call them \mathbf{v}_3 and \mathbf{v}_4 . Then $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4\}$ is linearly independent by Theorem 2 and Practice Problem 3 in Section 5.1. There can be no additional eigenvectors that are linearly independent from $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4$, because the vectors are all in \mathbb{R}^4 . Hence the eigenspaces for $\lambda = 5$ and $\lambda = -2$ are both one-dimensional. It follows that A is diagonalizable by Theorem 7(b).

Mastering: Eigenvalue and Eigenspace 5-14

5.4 EIGENVECTORS AND LINEAR TRANSFORMATIONS

The goal of this section is to understand the matrix factorization $A = PDP^{-1}$ as a statement about linear transformations. We shall see that the transformation $\mathbf{x} \mapsto A\mathbf{x}$ is essentially the same as the very simple mapping $\mathbf{u} \mapsto D\mathbf{u}$, when viewed from the proper perspective. A similar interpretation will apply to A and D even when D is not a diagonal matrix.

Recall from Section 1.9 that any linear transformation T from \mathbb{R}^n to \mathbb{R}^m can be implemented via left-multiplication by a matrix A, called the *standard matrix* of T. Now we need the same sort of representation for any linear transformation between two finite-dimensional vector spaces.

Let V be an n-dimensional vector space, let W be an m-dimensional vector space, and let T be any linear transformation from V to W. To associate a matrix with T, choose (ordered) bases \mathcal{B} and \mathcal{C} for V and W, respectively.

Given any \mathbf{x} in V, the coordinate vector $[\mathbf{x}]_{\mathcal{B}}$ is in \mathbb{R}^n and the coordinate vector of its image, $[T(\mathbf{x})]_{\mathcal{C}}$, is in \mathbb{R}^m , as shown in Fig. 1.

FIGURE 1 A linear transformation from V to W.

The connection between $[\mathbf{x}]_{\mathcal{B}}$ and $[T(\mathbf{x})]_{\mathcal{C}}$ is easy to find. Let $\{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ be the basis \mathcal{B} for V. If $\mathbf{x} = r_1\mathbf{b}_1 + \dots + r_n\mathbf{b}_n$, then

$$[\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} r_1 \\ \vdots \\ r_n \end{bmatrix}$$

and

$$T(\mathbf{x}) = T(r_1\mathbf{b}_1 + \dots + r_n\mathbf{b}_n) = r_1T(\mathbf{b}_1) + \dots + r_nT(\mathbf{b}_n)$$
(1)

because T is linear. Now, since the coordinate mapping from W to \mathbb{R}^m is linear (Theorem 8 in Section 4.4), equation (1) leads to

$$[T(\mathbf{x})]_{\mathcal{C}} = r_1[T(\mathbf{b}_1)]_{\mathcal{C}} + \dots + r_n[T(\mathbf{b}_n)]_{\mathcal{C}}$$
(2)

Since C-coordinate vectors are in \mathbb{R}^m , the vector equation (2) can be written as a matrix equation, namely,

$$[T(\mathbf{x})]_{\mathcal{C}} = M[\mathbf{x}]_{\mathcal{B}} \tag{3}$$

where

$$M = [[T(\mathbf{b}_1)]_{\mathcal{C}} \quad [T(\mathbf{b}_2)]_{\mathcal{C}} \quad \cdots \quad [T(\mathbf{b}_n)]_{\mathcal{C}}]$$
(4)

The matrix M is a matrix representation of T, called the **matrix for T relative to the bases** \mathcal{B} and \mathcal{C} . See Fig. 2.

Equation (3) says that, so far as coordinate vectors are concerned, the action of T on \mathbf{x} may be viewed as left-multiplication by M.

EXAMPLE 1 Suppose $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2\}$ is a basis for V and $\mathcal{C} = \{\mathbf{c}_1, \mathbf{c}_2, \mathbf{c}_3\}$ is a basis for W. Let $T: V \to W$ be a linear transformation with the property that

$$T(\mathbf{b}_1) = 3\mathbf{c}_1 - 2\mathbf{c}_2 + 5\mathbf{c}_3$$
 and $T(\mathbf{b}_2) = 4\mathbf{c}_1 + 7\mathbf{c}_2 - \mathbf{c}_3$

Find the matrix M for T relative to \mathcal{B} and \mathcal{C} .

FIGURE 2

SOLUTION The C-coordinate vectors of the *images* of \mathbf{b}_1 and \mathbf{b}_2 are

$$[T(\mathbf{b}_1)]_{\mathcal{C}} = \begin{bmatrix} 3 \\ -2 \\ 5 \end{bmatrix} \text{ and } [T(\mathbf{b}_2)]_{\mathcal{C}} = \begin{bmatrix} 4 \\ 7 \\ -1 \end{bmatrix}$$

$$M = \begin{bmatrix} 3 & 4 \\ -2 & 7 \\ 5 & -1 \end{bmatrix}$$

Hence

If \mathcal{B} and \mathcal{C} are bases for the same space V and if T is the identity transformation $T(\mathbf{x}) = \mathbf{x}$ for \mathbf{x} in V, then matrix M in (4) is just a change-of-coordinates matrix (see Section 4.7).

Linear Transformations from V into V

In the common case where W is the same as V and the basis C is the same as B, the matrix M in (4) is called the **matrix for T relative to \mathcal{B}**, or simply the \mathcal{B} -matrix for T, and is denoted by [T] $_{\mathcal{B}}$. See Fig. 3. The \mathcal{B} -matrix for $T:V\to V$ satisfies

$$[T(\mathbf{x})]_{\mathcal{B}} = [T]_{\mathcal{B}}[\mathbf{x}]_{\mathcal{B}}, \quad \text{for all } \mathbf{x} \text{ in } V$$
 (5)

FIGURE 3

EXAMPLE 2 The mapping $T: \mathbb{P}_2 \to \mathbb{P}_2$ defined by

$$T(a_0 + a_1t + a_2t^2) = a_1 + 2a_2t$$

is a linear transformation. (Calculus students will recognize T as the differentiation operator.)

- a. Find the \mathcal{B} -matrix for T, when \mathcal{B} is the basis $\{1, t, t^2\}$.
- b. Verify that $[T(\mathbf{p})]_{\mathcal{B}} = [T]_{\mathcal{B}}[\mathbf{p}]_{\mathcal{B}}$ for each \mathbf{p} in \mathbb{P}_2 .

SOLUTION

a. Compute the images of the basis vectors:

$$T(1) = 0$$
 The zero polynomial
 $T(t) = 1$ The polynomial whose value is always 1
 $T(t^2) = 2t$

Then write the \mathcal{B} -coordinate vectors of T(1), T(t), and $T(t^2)$ (which are found by inspection in this example) and place them together as the \mathcal{B} -matrix for T:

$$\begin{bmatrix} T(1) \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \quad \begin{bmatrix} T(t) \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \quad \begin{bmatrix} T(t^2) \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} 0 \\ 2 \\ 0 \end{bmatrix}$$
$$\begin{bmatrix} T \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$

(6)

b. For a general $\mathbf{p}(t) = a_0 + a_1 t + a_2 t^2$,

$$[T(\mathbf{p})]_{\mathcal{B}} = [a_1 + 2a_2t]_{\mathcal{B}} = \begin{bmatrix} a_1 \\ 2a_2 \\ 0 \end{bmatrix}$$
$$= \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix} = [T]_{\mathcal{B}} [\mathbf{p}]_{\mathcal{B}}$$

See Fig. 4.

FIGURE 4 Matrix representation of a linear transformation.

WEB

Linear Transformations on \mathbb{R}^n

In an applied problem involving \mathbb{R}^n , a linear transformation T usually appears first as a matrix transformation, $\mathbf{x} \mapsto A\mathbf{x}$. If A is diagonalizable, then there is a basis \mathcal{B} for \mathbb{R}^n consisting of eigenvectors of A. Theorem 8 below shows that, in this case, the \mathcal{B} -matrix for T is diagonal. Diagonalizing A amounts to finding a diagonal matrix representation of $\mathbf{x} \mapsto A\mathbf{x}$.

THEOREM 8

Diagonal Matrix Representation

Suppose $A = PDP^{-1}$, where D is a diagonal $n \times n$ matrix. If B is the basis for \mathbb{R}^n formed from the columns of P, then D is the \mathcal{B} -matrix for the transformation $\mathbf{x} \mapsto A\mathbf{x}$.

PROOF Denote the columns of P by $\mathbf{b}_1, \dots, \mathbf{b}_n$, so that $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ and $P = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ $[\mathbf{b}_1 \cdots \mathbf{b}_n]$. In this case, P is the change-of-coordinates matrix $P_{\mathcal{B}}$ discussed in Section 4.4, where

$$P[\mathbf{x}]_{\mathcal{B}} = \mathbf{x}$$
 and $[\mathbf{x}]_{\mathcal{B}} = P^{-1}\mathbf{x}$

If $T(\mathbf{x}) = A\mathbf{x}$ for \mathbf{x} in \mathbb{R}^n , then

$$[T]_{\mathcal{B}} = [[T(\mathbf{b}_1)]_{\mathcal{B}} \cdots [T(\mathbf{b}_n)]_{\mathcal{B}}] \quad \text{Definition of } [T]_{\mathcal{B}}$$

$$= [[A\mathbf{b}_1]_{\mathcal{B}} \cdots [A\mathbf{b}_n]_{\mathcal{B}}] \quad \text{Since } T(\mathbf{x}) = A\mathbf{x}$$

$$= [P^{-1}A\mathbf{b}_1 \cdots P^{-1}A\mathbf{b}_n] \quad \text{Change of coordinates}$$

$$= P^{-1}A[\mathbf{b}_1 \cdots \mathbf{b}_n] \quad \text{Matrix multiplication}$$

$$= P^{-1}AP$$

Since
$$A = PDP^{-1}$$
, we have $[T]_{\mathcal{B}} = P^{-1}AP = D$.

EXAMPLE 3 Define $T: \mathbb{R}^2 \to \mathbb{R}^2$ by $T(\mathbf{x}) = A\mathbf{x}$, where $A = \begin{bmatrix} 7 & 2 \\ -4 & 1 \end{bmatrix}$. Find a basis \mathcal{B} for \mathbb{R}^2 with the property that the \mathcal{B} -matrix for T is a diagonal matrix.

SOLUTION From Example 2 in Section 5.3, we know that $A = PDP^{-1}$, where

$$P = \begin{bmatrix} 1 & 1 \\ -1 & -2 \end{bmatrix} \quad \text{and} \quad D = \begin{bmatrix} 5 & 0 \\ 0 & 3 \end{bmatrix}$$

The columns of P, call them \mathbf{b}_1 and \mathbf{b}_2 , are eigenvectors of A. By Theorem 8, D is the \mathcal{B} -matrix for T when $\mathcal{B} = \{\mathbf{b_1}, \mathbf{b_2}\}$. The mappings $\mathbf{x} \mapsto A\mathbf{x}$ and $\mathbf{u} \mapsto D\mathbf{u}$ describe the same linear transformation, relative to different bases.

Similarity of Matrix Representations

The proof of Theorem 8 did not use the information that D was diagonal. Hence, if A is similar to a matrix C, with $A = PCP^{-1}$, then C is the B-matrix for the transformation $\mathbf{x} \mapsto A\mathbf{x}$ when the basis \mathcal{B} is formed from the columns of P. The factorization $A = PCP^{-1}$ is shown in Fig. 5.

FIGURE 5 Similarity of two matrix representations: $A = PCP^{-1}$.

Conversely, if $T: \mathbb{R}^n \to \mathbb{R}^n$ is defined by $T(\mathbf{x}) = A\mathbf{x}$, and if \mathcal{B} is any basis for \mathbb{R}^n , then the \mathcal{B} -matrix for T is similar to A. In fact, the calculations in the proof of Theorem 8 show that if P is the matrix whose columns come from the vectors in \mathcal{B} , then $[T]_{\mathcal{B}} = P^{-1}AP$. Thus, the set of all matrices similar to a matrix A coincides with the set of all matrix representations of the transformation $\mathbf{x} \mapsto A\mathbf{x}$.

EXAMPLE 4 Let
$$A = \begin{bmatrix} 4 & -9 \\ 4 & -8 \end{bmatrix}$$
, $\mathbf{b}_1 = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$, and $\mathbf{b}_2 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$. The characteristic

polynomial of A is $(\lambda + 2)^2$, but the eigenspace for the eigenvalue -2 is only onedimensional; so A is not diagonalizable. However, the basis $\mathcal{B} = \{\mathbf{b_1}, \mathbf{b_2}\}\$ has the property that the \mathcal{B} -matrix for the transformation $\mathbf{x} \mapsto A\mathbf{x}$ is a triangular matrix called the *Jordan form* of A.¹ Find this \mathcal{B} -matrix.

SOLUTION If $P = [\mathbf{b}_1 \ \mathbf{b}_2]$, then the \mathcal{B} -matrix is $P^{-1}AP$. Compute

$$AP = \begin{bmatrix} 4 & -9 \\ 4 & -8 \end{bmatrix} \begin{bmatrix} 3 & 2 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} -6 & -1 \\ -4 & 0 \end{bmatrix}$$
$$P^{-1}AP = \begin{bmatrix} -1 & 2 \\ 2 & -3 \end{bmatrix} \begin{bmatrix} -6 & -1 \\ -4 & 0 \end{bmatrix} = \begin{bmatrix} -2 & 1 \\ 0 & -2 \end{bmatrix}$$

Notice that the eigenvalue of A is on the diagonal.

 $^{^{1}}$ Every square matrix A is similar to a matrix in Jordan form. The basis used to produce a Jordan form consists of eigenvectors and so-called "generalized eigenvectors" of A. See Chapter 9 of Applied Linear Algebra, 3rd ed. (Englewood Cliffs, NJ: Prentice-Hall, 1988), by B. Noble and J. W. Daniel.

NUMERICAL NOTE -

An efficient way to compute a \mathcal{B} -matrix $P^{-1}AP$ is to compute AP and then to row reduce the augmented matrix $[P \ AP]$ to $[I \ P^{-1}AP]$. A separate computation of P^{-1} is unnecessary. See Exercise 15 in Section 2.2.

PRACTICE PROBLEMS

1. Find $T(a_0 + a_1t + a_2t^2)$, if T is the linear transformation from \mathbb{P}_2 to \mathbb{P}_2 whose matrix relative to $\mathcal{B} = \{1, t, t^2\}$ is

$$[T]_{\mathcal{B}} = \begin{bmatrix} 3 & 4 & 0 \\ 0 & 5 & -1 \\ 1 & -2 & 7 \end{bmatrix}$$

- **2.** Let A, B, and C be $n \times n$ matrices. The text has shown that if A is similar to B, then B is similar to A. This property, together with the statements below, shows that "similar to" is an *equivalence relation*. (Row equivalence is another example of an equivalence relation.) Verify parts (a) and (b).
 - a. A is similar to A.
 - b. If A is similar to B and B is similar to C, then A is similar to C.

5.4 EXERCISES

1. Let $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3\}$ and $\mathcal{D} = \{\mathbf{d}_1, \mathbf{d}_2\}$ be bases for vector spaces V and W, respectively. Let $T: V \to W$ be a linear transformation with the property that

$$T(\mathbf{b}_1) = 3\mathbf{d}_1 - 5\mathbf{d}_2, \quad T(\mathbf{b}_2) = -\mathbf{d}_1 + 6\mathbf{d}_2, \quad T(\mathbf{b}_3) = 4\mathbf{d}_2$$

Find the matrix for T relative to \mathcal{B} and \mathcal{D} .

2. Let $\mathcal{D} = \{\mathbf{d}_1, \mathbf{d}_2\}$ and $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2\}$ be bases for vector spaces V and W, respectively. Let $T: V \to W$ be a linear transformation with the property that

$$T(\mathbf{d}_1) = 3\mathbf{b}_1 - 3\mathbf{b}_2, \quad T(\mathbf{d}_2) = -2\mathbf{b}_1 + 5\mathbf{b}_2$$

Find the matrix for T relative to \mathcal{D} and \mathcal{B} .

3. Let $\mathcal{E} = \{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ be the standard basis for \mathbb{R}^3 , let $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3\}$ be a basis for a vector space V, and let $T: \mathbb{R}^3 \to V$ be a linear transformation with the property that

$$T(x_1, x_2, x_3) = (2x_3 - x_2)\mathbf{b}_1 - (2x_2)\mathbf{b}_2 + (x_1 + 3x_3)\mathbf{b}_3$$

- a. Compute $T(\mathbf{e}_1)$, $T(\mathbf{e}_2)$, and $T(\mathbf{e}_3)$.
- b. Compute $[T(\mathbf{e}_1)]_{\mathcal{B}}$, $[T(\mathbf{e}_2)]_{\mathcal{B}}$, and $[T(\mathbf{e}_3)]_{\mathcal{B}}$.
- c. Find the matrix for T relative to \mathcal{E} and \mathcal{B} .
- **4.** Let $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3\}$ be a basis for a vector space V and let $T: V \to \mathbb{R}^2$ be a linear transformation with the property that

$$T(x_1\mathbf{b}_1 + x_2\mathbf{b}_2 + x_3\mathbf{b}_3) = \begin{bmatrix} 2x_1 - 3x_2 + x_3 \\ -2x_1 + 5x_3 \end{bmatrix}$$

Find the matrix for T relative to \mathcal{B} and the standard basis for \mathbb{R}^2 .

- **5.** Let $T: \mathbb{P}_2 \to \mathbb{P}_3$ be the transformation that maps a polynomial $\mathbf{p}(t)$ into the polynomial $(t + 3)\mathbf{p}(t)$.
 - a. Find the image of $\mathbf{p}(t) = 3 2t + t^2$.
 - b. Show that T is a linear transformation.
 - c. Find the matrix for T relative to the bases $\{1, t, t^2\}$ and $\{1, t, t^2, t^3\}.$
- **6.** Let $T: \mathbb{P}_2 \to \mathbb{P}_4$ be the transformation that maps a polynomial $\mathbf{p}(t)$ into the polynomial $\mathbf{p}(t) + 2t^2\mathbf{p}(t)$.
 - a. Find the image of $\mathbf{p}(t) = 3 2t + t^2$.
 - b. Show that T is a linear transformation.
 - c. Find the matrix for T relative to the bases $\{1, t, t^2\}$ and $\{1, t, t^2, t^3, t^4\}.$
- **7.** Assume the mapping $T: \mathbb{P}_2 \to \mathbb{P}_2$ defined by

$$T(a_0 + a_1t + a_2t^2) = 3a_0 + (5a_0 - 2a_1)t + (4a_1 + a_2)t^2$$

is linear. Find the matrix representation of T relative to the basis $\mathcal{B} = \{1, t, t^2\}.$

8. Let $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3\}$ be a basis for a vector space V. Find $T(4\mathbf{b}_1 - 3\mathbf{b}_2)$ when T is a linear transformation from V to V whose matrix relative to \mathcal{B} is

$$[T]_{\mathcal{B}} = \begin{bmatrix} 0 & 0 & 1 \\ 2 & 1 & -2 \\ 1 & 3 & 1 \end{bmatrix}$$

- 9. Define $T: \mathbb{P}_2 \to \mathbb{R}^3$ by $T(\mathbf{p}) = \begin{bmatrix} \mathbf{p}(-1) \\ \mathbf{p}(0) \\ \mathbf{p}(1) \end{bmatrix}$.
 - a. Find the image under T of $\mathbf{p}(t) = 5 + 3t$.
 - b. Show that T is a linear transformation.
 - Find the matrix for T relative to the basis $\{1, t, t^2\}$ for \mathbb{P}_2 and the standard basis for \mathbb{R}^3 .
- **10.** Define $T : \mathbb{P}_3 \to \mathbb{R}^4$ by $T(\mathbf{p}) = \begin{bmatrix} \mathbf{p}(-2) \\ \mathbf{p}(3) \\ \mathbf{p}(1) \\ \mathbf{p}(0) \end{bmatrix}$.
 - a. Show that T is a linear transformation.
 - b. Find the matrix for T relative to the basis $\{1, t, t^2, t^3\}$ for \mathbb{P}_3 and the standard basis for \mathbb{R}^4 .

In Exercises 11 and 12, find the \mathcal{B} -matrix for the transformation $\mathbf{x} \mapsto A\mathbf{x}$, where $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2\}$.

11.
$$A = \begin{bmatrix} -4 & -1 \\ 6 & 1 \end{bmatrix}, \mathbf{b}_1 = \begin{bmatrix} -1 \\ 2 \end{bmatrix}, \mathbf{b}_2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

12.
$$A = \begin{bmatrix} -6 & -2 \\ 4 & 0 \end{bmatrix}$$
, $\mathbf{b}_1 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, $\mathbf{b}_2 = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$

In Exercises 13–16, define $T: \mathbb{R}^2 \to \mathbb{R}^2$ by $T(\mathbf{x}) = A\mathbf{x}$. Find a basis $\mathcal B$ for $\mathbb R^2$ with the property that $[T]_{\mathcal B}$ is diagonal.

13.
$$A = \begin{bmatrix} 0 & 1 \\ -3 & 4 \end{bmatrix}$$

14.
$$A = \begin{bmatrix} 2 & 3 \\ 3 & 2 \end{bmatrix}$$

15.
$$A = \begin{bmatrix} 1 & 2 \\ 3 & -4 \end{bmatrix}$$

13.
$$A = \begin{bmatrix} 0 & 1 \\ -3 & 4 \end{bmatrix}$$
 14. $A = \begin{bmatrix} 2 & 3 \\ 3 & 2 \end{bmatrix}$ **15.** $A = \begin{bmatrix} 1 & 2 \\ 3 & -4 \end{bmatrix}$ **16.** $A = \begin{bmatrix} 4 & -2 \\ -1 & 5 \end{bmatrix}$

17. Let
$$A = \begin{bmatrix} 4 & 1 \\ -1 & 2 \end{bmatrix}$$
 and $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2\}$, for $\mathbf{b}_1 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$, $\mathbf{b}_2 = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$. Define $T : \mathbb{R}^2 \to \mathbb{R}^2$ by $T(\mathbf{x}) = A\mathbf{x}$.

- a. Verify that \mathbf{b}_1 is an eigenvector of A but that A is not diagonalizable.
- b. Find the \mathcal{B} -matrix for T.
- **18.** Define $T: \mathbb{R}^3 \to \mathbb{R}^3$ by $T(\mathbf{x}) = A\mathbf{x}$, where A is a 3×3 matrix with eigenvalues 5, 5, and -2. Does there exist a basis \mathcal{B} for \mathbb{R}^3 such that the \mathcal{B} -matrix for T is a diagonal matrix? Discuss.

Verify the statements in Exercises 19–24. The matrices are square.

- 19. If A is invertible and similar to B, then B is invertible and A^{-1} is similar to B^{-1} . [Hint: $P^{-1}AP = B$ for some invertible P. Explain why B is invertible. Then find an invertible Q such that $Q^{-1}A^{-1}Q = B^{-1}$.
- **20.** If A is similar to B, then A^2 is similar to B^2 .
- **21.** If B is similar to A and C is similar to A, then B is similar to *C* .

- 22. If A is diagonalizable and B is similar to A, then B is also diagonalizable.
- 23. If $B = P^{-1}AP$ and x is an eigenvector of A corresponding to an eigenvalue λ , then $P^{-1}\mathbf{x}$ is an eigenvector of B corresponding also to λ .
- **24.** If A and B are similar, then they have the same rank. [Hint: Refer to Supplementary Exercises 13 and 14 in Chapter 4.]
- 25. The trace of a square matrix A is the sum of the diagonal entries in A and is denoted by tr A. It can be verified that tr(FG) = tr(GF) for any two $n \times n$ matrices F and G. Show that if A and B are similar, then $\operatorname{tr} A = \operatorname{tr} B$.
- It can be shown that the trace of a matrix A equals the sum of the eigenvalues of A. Verify this statement for the case when A is diagonalizable.
- **27.** Let V be \mathbb{R}^n with a basis $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$; let W be \mathbb{R}^n with the standard basis, denoted here by \mathcal{E} ; and consider the identity transformation $I: \mathbb{R}^n \to \mathbb{R}^n$, where $I(\mathbf{x}) = \mathbf{x}$. Find the matrix for I relative to \mathcal{B} and \mathcal{E} . What was this matrix called in Section 4.4?
- **28.** Let *V* be a vector space with a basis $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$, let *W* be the same space V with a basis $C = \{\mathbf{c}_1, \dots, \mathbf{c}_n\}$, and let Ibe the identity transformation $I: V \to W$. Find the matrix for I relative to \mathcal{B} and \mathcal{C} . What was this matrix called in Section 4.7?
- **29.** Let V be a vector space with a basis $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$. Find the \mathcal{B} -matrix for the identity transformation $I: V \to V$.

[M] In Exercises 30 and 31, find the \mathcal{B} -matrix for the transformation $\mathbf{x} \mapsto A\mathbf{x}$ where $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3\}$.

30.
$$A = \begin{bmatrix} 6 & -2 & -2 \\ 3 & 1 & -2 \\ 2 & -2 & 2 \end{bmatrix}$$
, $\mathbf{b}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$, $\mathbf{b}_2 = \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix}$, $\mathbf{b}_3 = \begin{bmatrix} -1 \\ -1 \\ 0 \end{bmatrix}$

31.
$$A = \begin{bmatrix} -7 & -48 & -16 \\ 1 & 14 & 6 \\ -3 & -45 & -19 \end{bmatrix}$$
, $\mathbf{b}_1 = \begin{bmatrix} -3 \\ 1 \\ -3 \end{bmatrix}$, $\mathbf{b}_2 = \begin{bmatrix} -2 \\ 1 \\ -3 \end{bmatrix}$, $\mathbf{b}_3 = \begin{bmatrix} 3 \\ -1 \\ 0 \end{bmatrix}$

32. [M] Let T be the transformation whose standard matrix is given below. Find a basis for \mathbb{R}^4 with the property that $[T]_{\mathcal{B}}$

$$A = \begin{bmatrix} -6 & 4 & 0 & 9 \\ -3 & 0 & 1 & 6 \\ -1 & -2 & 1 & 0 \\ -4 & 4 & 0 & 7 \end{bmatrix}$$

SOLUTIONS TO PRACTICE PROBLEMS

1. Let $\mathbf{p}(t) = a_0 + a_1 t + a_2 t^2$ and compute

$$[T(\mathbf{p})]_{\mathcal{B}} = [T]_{\mathcal{B}}[\mathbf{p}]_{\mathcal{B}} = \begin{bmatrix} 3 & 4 & 0 \\ 0 & 5 & -1 \\ 1 & -2 & 7 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} 3a_0 + 4a_1 \\ 5a_1 - a_2 \\ a_0 - 2a_1 + 7a_2 \end{bmatrix}$$

So $T(\mathbf{p}) = (3a_0 + 4a_1) + (5a_1 - a_2)t + (a_0 - 2a_1 + 7a_2)t^2$.

2. a. $A = (I)^{-1}AI$, so A is similar to A.

b. By hypothesis, there exist invertible matrices P and Q with the property that $B = P^{-1}AP$ and $C = Q^{-1}BQ$. Substitute the formula for B into the formula for C, and use a fact about the inverse of a product:

$$C = Q^{-1}BQ = Q^{-1}(P^{-1}AP)Q = (PQ)^{-1}A(PQ)$$

This equation has the proper form to show that A is similar to C.

COMPLEX EIGENVALUES

Since the characteristic equation of an $n \times n$ matrix involves a polynomial of degree n, the equation always has exactly n roots, counting multiplicities, provided that possibly complex roots are included. This section shows that if the characteristic equation of a real matrix A has some complex roots, then these roots provide critical information about A. The key is to let A act on the space \mathbb{C}^n of n-tuples of complex numbers.

Our interest in \mathbb{C}^n does not arise from a desire to "generalize" the results of the earlier chapters, although that would in fact open up significant new applications of linear algebra.² Rather, this study of complex eigenvalues is essential in order to uncover "hidden" information about certain matrices with real entries that arise in a variety of real-life problems. Such problems include many real dynamical systems that involve periodic motion, vibration, or some type of rotation in space.

The matrix eigenvalue-eigenvector theory already developed for \mathbb{R}^n applies equally well to \mathbb{C}^n . So a complex scalar λ satisfies $\det(A - \lambda I) = 0$ if and only if there is a nonzero vector \mathbf{x} in \mathbb{C}^n such that $A\mathbf{x} = \lambda \mathbf{x}$. We call λ a (complex) eigenvalue and x a (complex) eigenvector corresponding to λ .

EXAMPLE 1 If $A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$, then the linear transformation $\mathbf{x} \mapsto A\mathbf{x}$ on \mathbb{R}^2 rotates the plane counterclockwise through a quarter-turn. The action of A is periodic, since after four quarter-turns, a vector is back where it started. Obviously, no nonzero vector is mapped into a multiple of itself, so A has no eigenvectors in \mathbb{R}^2 and hence no real eigenvalues. In fact, the characteristic equation of A is

$$\lambda^2 + 1 = 0$$

¹Refer to Appendix B for a brief discussion of complex numbers. Matrix algebra and concepts about real vector spaces carry over to the case with complex entries and scalars. In particular, $A(c\mathbf{x} + d\mathbf{y}) =$ $cA\mathbf{x} + dA\mathbf{y}$, for A an $m \times n$ matrix with complex entries, \mathbf{x}, \mathbf{y} in \mathbb{C}^n , and c, d in \mathbb{C} .

² A second course in linear algebra often discusses such topics. They are of particular importance in electrical engineering.