15.31. Найти фокусное расстояние F_1 кварцевой линзы дтя ультрафиолетовой линии спектра ртути ($\lambda_1 = 259 \, \mathrm{нм}$). если фокусное расстояние для желтой линии натрия ($\lambda_2 = 589 \, \mathrm{нм}$) $F_2 = 16 \, \mathrm{см}$. Показатели преломления кварца для этих длин воли равны $n_1 = 1504 \, \mathrm{u} \, n_2 = 1,458$.

Решение:

Для линзы, имеющей радиусы кривизны R_1 и R_2 , имеем $(n-1)\left(\frac{1}{R_1}-\frac{1}{R_2}\right)=\frac{1}{F}$ — (1), гдс n — показатель преломления материала, из которого изготовлена линза. Для желтой линии из (1) имеем $F_2=\frac{R_1R_2}{(n_2-1)(R_2-R_1)}$, откуда $\frac{R_1R_2}{R_2-R_1}=F_2(n_2-1)$ — (2). Поскольку для ультрафиолетовой линии $F_1=\frac{R_1R_2}{(n_1-1)(R_2-R_1)}$ — (3), то, подставляя (2) в (3), получим $F_1=\frac{F_2(n_2-1)}{n_2-1}=0.145$ м.

15.32. Найти фокусное расстояние F для следующих линз: а) линза двояковыпуклая: $R_1 = 15$ см и $R_2 = -25$ см; б) линза плоско-выпуклая: $R_1 = 15$ см и $R_2 = \infty$ см; в) линза вогнуто-выпуклая (положительный мениск): $R_1 = 15$ см и $R_2 = 25$ см; г) линза двояковогнутая: $R_1 = -15$ см и $R_2 = 25$ см; д) линза плоско-вогнутая: $R_1 = \infty$ см; $R_2 = -15$ см; е) линза выпукло-вогнутая (отрицательный мениск): $R_1 = 25$ см, $R_2 = 15$ см. Показатель преломления материала линзы n = 1,5.

По формуле линзы
$$(n-1)\left(\frac{1}{R_1} - \frac{1}{R_2}\right) = \frac{1}{F}$$
 — (1), откуда

$$F = \frac{R_1 R_2}{(n-1)(R_2 - R_1)}$$
 — (2). В случае плоско-выпуклой лин-

зы
$$(R_1 = \infty)$$
 уравнение (1) имеет вид: $(n-1)\frac{1}{R_2} = \frac{1}{F}$, откуда

$$F = \frac{R_i}{n-1}$$
 — (3). В случае плоско-вогнутой линзы $(R_i = \infty)$

уравнение (1) имеет вид:
$$-(n-1)\frac{1}{R_2} = \frac{1}{F}$$
, откуда

$$F = -\frac{R_2}{n-1}$$
 — (4). Подставляя числовые данные, получим:

a) из (2)
$$F = \frac{0.15 \cdot (-0.25)}{0.5 \cdot (-0.25 - 0.15)} = 0.188 \text{ M};$$

(5) u3 (3)
$$F = \frac{0.15}{0.5} = 0.3 \text{ m};$$

B) H3 (2)
$$F = \frac{0.15 \cdot 0.25}{0.5 \cdot (0.25 - 15)} = 0.75 \text{ M};$$

Г) из (2)
$$F = \frac{-0.15 \cdot 0.25}{0.5(0.25 + 0.15)} = -0.188 \text{ м};$$

д) из (4)
$$F = -\frac{-0.15}{0.5} = 0.3 \text{ м};$$

e) из (2)
$$F = \frac{0.25 \cdot 0.15}{0.5(0.15 - 0.25)} = -0.75 \text{ м}.$$

15.33. Из двух стекол с показателями преломления $n_1 = 1.5$ и $n_2 = 1.7$ сделаны две одинаковые двояковыпуклые линзы. Найти отнешение $\frac{F_1}{F_2}$ их фокусных расстояний. Какое действие каждая

из этих линз произведет на луч, параллельный оптической оси, если погрузить линзы в прозрачную жидкость с показателем преломления n = 1.6?

Решение:

Имеем
$$F_1 = \frac{R_1 R_2}{(n_1 - 1)(R_2 - R_1)};$$
 $F_2 = \frac{R_1 R_2}{(n_2 - 1)(R_2 - R_1)}$ (см. захдачу 15.32). Отсюда $\frac{F_1}{F_2} = \frac{n_2 - 1}{n_1 - 1} = 1.4$.

15.34. Радиусы кривизны поверхностей двояковыпуклой линзы $R_1 = R_2 = 50$ см. Показатель преломления материала линзы n = 1,5. Найти оптическую силу D линзы.

Решение:

Согласно формуле тонкой линзы
$$D=(n-1)\left(\frac{1}{R_1}-\frac{1}{R_2}\right)$$
. Поскольку по условию $R_1=R_2=R$, то $D=\frac{2(n-1)}{R}$. Подставляя числовые данные, получим $D=\frac{2(1,5-1)}{0,5}=2$ дптр.

15.35. На расстоянии $a_1 = 15$ см от двояковыпуклой линзы, оптическая сила которой D = 10 дптр, поставлен перпендикулярно к оптической оси предмет высотой $y_1 = 2$ см. Найти положение и высоту y_2 изображения. Дать чертеж.

Решение:

Фокусное расстояние линзы $F = \frac{1}{D} = 0.1 \,\mathrm{M}$, т. е. предмет находится за фокусом. По условию $AO = a_i = 0.15 \,\mathrm{M}$, $AB = y_i = 0.02 \,\mathrm{M}$.

Поскольку $\triangle ABO$ подобен $\triangle A'B'O$, то $\frac{AB}{A'B'} = \frac{AO}{A'O}$ — (1). Кроме того, $\triangle ABF$ подобен $\triangle OKF$, следовательно, $\frac{AB}{OK} = \frac{AF}{OF}$ или $\frac{0.02}{OK} = \frac{0.05}{0.1}$, откуда OK = 0.04 м. По построению A'B' = OK = 0.04 м. Подставляя числовые данные в (1), получим $\frac{0.02}{0.04} = \frac{0.15}{OA'}$, откуда OA' = 0.3 м.

15.36. Доказать, что в двояковыпуклой линзе с равными радиусами кривизны поверхностей и с показателем преломления n = 1.5 фокусы совпадают с центрами кривизны.

Решение:

По формуле тонкой линзы $\frac{1}{F} = (n-1)\left(\frac{1}{R_1} - \frac{1}{R_2}\right)$, откуда

при $R_1 = R_2 = R$, имеем $F = \frac{R}{2(n-1)}$. При n = 1.5 получим

$$F = \frac{R}{2(1,5-1)} = R.$$

15.37. Линза с фокусным расстоянием F=16 см дает резкое **изображение** предмета при двух положениях, расстояние между **которыми** d=6 см. Найти расстояние a_1+a_2 от предмета до экрана.

Решение:

Запишем формулу тонкой линзы для двух положений:

$$\frac{1}{a_1} + \frac{1}{a_2} = \frac{1}{F}$$
 — (1) и $\frac{1}{a_1 + d} + \frac{1}{a_2 - d} = \frac{1}{F}$ — (2). Предмет и

экран неподвижны, следовательно, в первом случае предмет по отношению к линзе находится между первым и вторым фокусом, а во втором случае за вторым фокусом. Из (1) получим $\frac{a_1+a_2}{a_1a_2}=\frac{1}{F} \qquad (3). \ \text{Из} \ (2) \ \text{получим}$ $\frac{a_1+a_2}{(a_1+d)(a_2-d)}=\frac{1}{F} \qquad (4). \ \text{Приравняем левые части}$ уравнений (3) и (4) $\frac{a_1+a_2}{a_1a_2}=\frac{a_1+a_2}{(a_1+d)(a_2-d)}, \ \text{откуда}$ из $a_1a_2=(a_1+d)(a_2-d)$. Раскрыв скобки и проведя небольшое преобразование, получим $a_1=a_2-d = (5)$. Подставляя (5) в (3), получим $\frac{a_2-d+a_2}{(a_2-d)a_2}=\frac{1}{F};$ $1+\frac{a_2}{a_2-d}=\frac{1}{F};$ $a_2=\frac{d(1-F)}{1-2F}=0,74$ м. Тогда из (5) $a_1+a_2=2a_2-d=0,88$ м.

15.38. Двояковыпуклая линза с радиусами кривизны поверхностей $R_1 = R_2 = 12$ см поставлена на таком расстоянии от предмета, что изображение на экране получилось в k раз больше предмета. Найти расстояние $a_1 + a_2$ от предмета до экрана, если: а) k = 1; 6) k = 20; в) k = 0.2. Показатель преломления материала линзы n = 1.5.

Решение:

Линейное увеличение линзы $k = \frac{a_2}{a_1}$ — (1). По формуле линзы $\frac{1}{a_1} + \frac{1}{a_2} = (n-1) \left(\frac{1}{R_1} + \frac{1}{R_2} \right)$ или, при $R_1 = R_2 = R$, $\frac{1}{a_1} + \frac{1}{a_2} = \frac{2(n-1)}{R}$; $\frac{a_1 + a_2}{a_1 a_2} = \frac{2(n-1)}{R}$ — (2). Из (1) имеем 378

 $a_2 = ka_1$ — (3). Подставляя (3) в (2), получим $\frac{1+k}{ka_1} = \frac{2(n-1)}{R}$, откуда $a_1 = \frac{R(1+k)}{2k(n-1)}$. Подставляя числовые

данные, получим:

a)
$$a_1 = 0.24 \text{ m}$$
; $a_2 = ka_1 = 0.24 \text{ m}$; $a_1 + a_2 = 0.48 \text{ m}$;

6)
$$a_1 = 0.126 \text{ m}$$
; $a_2 = ka_1 = 2.52 \text{ m}$; $a_1 + a_2 = 2.65 \text{ m}$;

B)
$$a_1 = 0.72 \text{ M}$$
; $a_2 = ka_1 = 0.144 \text{ M}$; $a_1 + a_2 = 0.864 \text{ M}$.

15.39. Линза предыдущей задачи погружена в воду. Найти ее фокусное расстояние F .

Решение:

В общем случае формула для расчета фокусного рас-
стояния линзы имеет вид:
$$\frac{1}{F} = \left(\frac{n_1}{n_2} - 1\right) \left(\frac{1}{R_1} + \frac{1}{R_2}\right)$$
 — (1),

где $n_1 = 1.5$ — показатель преломления стекла, $n_2 = 1.33$ — показатель преломления воды. Т. к. $R_1 = R_2 = R$, то из (1)

получим $F = \frac{R}{2(n_1/n_2-1)}$. Подставляя числовые данные, получим F = 0.46 м.

15.40. Решить предыдущую задачу при условии, что линза погружена в сероуглерод.

Решение:

Имеем $F = \frac{R}{2(n_1/n_2-1)}$. Показатель преломления серо-

углерода $n_2 = 1,63$. Подставляя числовые данные, получим F = -0.75 м. Т. е. линза будет рассеивающей.

15.41. Найти фокусное расстояние F_2 линзы, погруженной в воду, если ее фокусное расстояние в воздухе $F_1 = 20$ см. Показатель преломления материала линзы n = 1,6.

Имеем
$$F_1 = \frac{R}{2(n/n_1-1)}$$
 — (1); $F_2 = \frac{R}{2(n/n_2-1)}$, где n_1 — показатель преломления воздуха, $n_2 = 1{,}33$ — показатель преломления воды. Разделив (1) на (2), получим
$$\frac{F_1}{F_2} = \frac{n/n_2-1}{n/n_2-1} = \frac{n_1(n-n_2)}{n_2(n-n_1)}.$$
 Отсюда $F_2 = \frac{F_1n_2(n-n_1)}{n_1(n-n_2)} = 0.59$ м.

15.42. Плоско-выпуклая линза с радиусом кривизны $R=30~{\rm cm}$ и показателем преломления n=1,5 дает изображение предмета с увеличением k=2. Найти расстояния a_1 и a_2 предмета и изображения от линзы. Дать чертеж.

Решение:

Толстые линзы, имеющие радиус кривизны R_1 и R_2 — двояковыпуклые, или $R_1 = \infty$ и R_2 — плоско-выпуклые, проявляют себя как тонкие линзы, если рассматривать лучи, находящиеся вблизи главной опти-

ческой оси. Тогда аберрация не учитывается и построения аналогичны построениям в топкой линзе. Линейное увеличение линзы $k=\frac{a_2}{a_1}$, откуда $a_2=ka_1$ — (1). Для плосковыпуклой линзы $\frac{1}{F}=\frac{n-1}{R}=-\frac{1}{a_1}+\frac{1}{a_2}$ — (2) (см. задачу 15.32). Из (2) имеем $\frac{n-1}{R}=\frac{a_1-a_2}{a_1a_2}$. Подставляя это выражение в (1), получим $\frac{n-1}{R}=\frac{1-k}{ka_1}$, откуда

$$a_1 = \frac{R(1-k)}{k(n-1)} = -0.9$$
 м. Тогда из (1) найдем $a_2 = 1.8$ м.

15.43. Найти продольную хроматическую аберрацию двояковыпуклой линзы из флинтгласа с раднусами кривизны $R_1=R_2=8$ см. Показатели преломления флинтгласа для красного ($\lambda_{\rm kp}=760\,{\rm hM}$) и фиолетового ($\lambda_{\rm p}=430\,{\rm hM}$) лучей равны $n_{\rm kp}=1,5\,{\rm m}$ $n_{\rm p}=1,8$.

Решение:

Имеем $F_1 = \frac{R_1}{2(n_1-1)}$ (см. задачу 15.36). Подставляя числовые данные, получим $F_1 = 0.08$ м. Аналогично $F_2 = \frac{R_2}{2(n_2-1)} = 0.05$ м. Таким образом, продольная хроматическая аберрация составляет $F_1 - F_2 = 0.03$ м.

15.44. На расстоянии $a_1 = 40$ см от линзы предыдущей задачи на оптической оси находится светящаяся точка. Найти положение изображения этой точки, если она испускает моножроматический свет с длиной волны: a) $\lambda_1 = 760$ нм; б) $\lambda_2 = 430$.

Решение:

Из формулы линзы имеем $a_2 = \frac{Fa_1}{a_1 - F}$ — (1). В задаче 15.43 мы нашли, что для данной линзы длине волны $\lambda_1 = 760$ нм соответствует фокусное расстояние $F_1 = 0.08$ м, а длине волны $\lambda_2 = 430$ нм соответствует фокусное расстояние $F_2 = 0.05$ м. Подставляя числовые данные в (1), получим: а) $a_2 = 0.1$ м; б) $a_2 = 0.057$ м.

15.45. В фокальной плоскости двояковыпуклой линзы расположено плоское зеркало. Предмет находится перед линзой между фокусом и двойным фокусным расстоянием. Построить изображение предмета.

Построение хода лучей показано на рисунке.

15.46. Найти увеличение k, даваемое лупой с фокусным расстоянием F=2 см, для: а) нормального глаза с расстоянием наилучшего зрения L=25 см; б) близорукого глаза с расстоянием наилучшего зрения L=15 см.

Решение:

Увеличение лупы $k = \frac{L}{F}$. Подставляя числовые данные, получим: a) $k = \frac{0.25}{0.02} = 12.5$; б) $k = \frac{0.15}{0.02} = 7.5$.

15.47. Какими должны быть радиусы кривизны $R_1 = R_2$ поверхностей лупы, чтобы она давала увеличение для нормального глаза k=10? Показатель преломления стекла, из которого сделана лупа, n=1,5.

Решение:

Для нормального глаза расстояние наилучшего зрения $L=0.25\,\mathrm{m}$ — (1). Фокусное расстояние лупы $F=\frac{R}{2(n-1)}$ (см. задачу 15.36), откуда R=2F(n-1) — (2). Увеличение лупы $k=\frac{L}{F}$, откуда $F=\frac{L}{k}$ — (3). Подставляя (3) в (2) и с учетом (1), получим $R=\frac{2L(n-1)}{k}=0.025\,\mathrm{m}$.

15.48. Зрительная труба с фокусным расстоянием F = 50 см установлена на бесконечность. После того как окуляр трубы передвинули на некоторое расстояние, стали ясно видны предметы, удаленные от объектива на расстояние a = 50 м. На какое растояние d передвинули окуляр при наводке?

Решение:

Зрительная труба дает изображение предметов, находящихся на бесконечности, в своей фокальной плоскости. **Изображение** предметов, находящихся на расстоянии a_1 от

объектива, получается на расстоянии
$$a_2 = \frac{a_1 F}{a_1 - F}$$
, т. е. на

$$\Delta a = a_2 - F = \frac{F^2}{a_1 - F}$$
 дальше. Следовательно, окуляр нужно отодвинуть на столько же, чтобы созданное объективом изображение по-прежнему находилось в фокальной плоскости окуляра. Таким образом, $d = \frac{F^2}{a_1 - F} = 0,005 \,\mathrm{m}$.

15.49. Микроскоп состоит из объектива с фокусным рас **стоянием** $F_1 = 2$ мм и окуляра с фокусным расстоянием $F_2 = 40$ мм. Расстояние между фокусами объектива и окуляра d = 18 см. Найти увеличение k, даваемое микроскопом.

Решение:

Поскольку созданное объективом изображение лежит в фокальной плоскости окуляра, то $\frac{aF_1}{a-F_1} + F_2 = d$ — (1),

где a — расстояние от рассматриваемого предмета до объектива. Объектив дает изображение в фокальной плос-

кости окуляра, линейное увеличение объектива $k = \frac{F_1}{a - F_1}$.

Окуляр работает как лупа, поэтому угловое увеличение окуляра $k_2=\frac{L}{F_2}$, где $L=0.25\,\mathrm{M}$ — расстояние наилучшего зрения нормального глаза. Отсюда полное увеличение микроскопа $k=k_1\cdot k_2=\frac{F_1L}{F_2(a-F_1)}$ — (2). Из (1) найдем $a=\frac{F_1(l-F_2)}{l-(F_2+F_1)}=2.022\cdot 10^{-3}\,\mathrm{M}$. Подставляя числовые данные в (2), получим k=568.

15.50. Картину площадью $S = 2 \times 2 \text{ м}^2$ снимают фотоаппаратом, установленным от нее на расстоянии a = 4.5 м. Изображение получилось размером $s = 5 \times 5 \text{ см}^2$. Найти фокусное расстояние F объектива аппарата. Расстояние от картины до объектива считать большим по сравнению с фокусным расстоянием.

Решение:

Поперечное увеличение объектива
$$k=\frac{a_2}{a_1}=\frac{\sqrt{s}}{\sqrt{S}}=\frac{1}{40}$$
, отсюда $a_2=\frac{a_1}{40}$ — (1). По формуле линзы $\frac{1}{a_1}+\frac{1}{a_2}=\frac{1}{F}$, откуда $F=\frac{a_1a_2}{a_1-a_2}$ — (2). Подставляя (1) в (2), получим $F=\frac{a_1}{30}=0.115\,\mathrm{M}$.

15.51. Телескоп имеет объектив с фокусным расстоянием $F_1 = 150$ см и окуляр с фокусным расстоянием $F_2 = 10$ см. Под каким углом зрения θ видна полная Луна в этот телескоп, если невооруженным глазом она видна под углом $\theta_0 = 31'$?

Из
$$\Delta CB_1O_1$$
 найдем $tg\theta_0 =$

$$= \frac{CB_1}{CO_1} = \frac{CB_1}{F_1}.$$
 Из ΔCB_1O_2
найдем $tg\theta = \frac{CB_1}{CO_2} = \frac{CB_1}{F_2}.$
Углы θ_0 и θ малы, поэтому можно записать $\theta_0 = \frac{CB_1}{F_2}$ и $\theta = \frac{CB_1}{F_2}.$ Уг-

ловое увеличение телескопа $k=\frac{\theta}{\theta_0}=\frac{F_1}{F_2}=15$. Отсюда $\theta=15\theta_0=7^{\circ}45'$.

15.52. При помощи двояковыпуклой линзы, имеющей диаметр D=9 см и фокусное расстояние F=50 см, изображение Солнца проектируется на экран. Каким получается диаметр d изображения Солнца, если угловой диаметр Солнца $\alpha=32'$? Во сколько раз освещенность, создаваемая изображением Солнца, будет больше освещенности, вызываемой Солнцем непосредственно?

Решение:

Диаметр изображения $d=2Fig\frac{\alpha}{2}=4.6\cdot 10^{-3}\,\mathrm{M}$. Поток лучей, попадающих на поверхность линзы площадью $\frac{\pi D^2}{4}$, концентрируется в изображении Солнца площадью $\frac{\pi d^2}{4}$.

Тогда
$$\frac{E_2}{E_1} = \frac{4\pi D^2}{4\pi d^2} = 383$$
.

13-3269

15.53. Свет от электрической лампочки с силой света I=200 кд падает под углом $\alpha=45^\circ$ на рабочее место, создавая освещенность E=141лк. На каком расстоянии r от рабочего места находится лампочка? Над какой высоте h от рабочего места она висит?

Решение:

15.54. Лампа, подвешенная к потолку, дает в горизонтальном направлении силу света I=60 кд. Какой световой поток Ф падает на картину площадью S=0.5 м², висящую вертикально на стене на расстоянии r=2 м от лампы, если на противоположной стене находится большое зеркало на расстоянии a=2 м от лампы?

Решение:

Лампа создает на площади S картины освещенность $E_1=\frac{I}{r^2}\cos\alpha$ или, поскольку $\cos\alpha=1$, $E_1=\frac{I}{r^2}$. Изображение лампы в зеркале, находящемся на расстоянии r+2a от картины, создает освещенность $E_2=\frac{I}{(r+2a)^2}$. Результирующая напряженность $E=E_1+E_2=I\left(\frac{1}{r^2}+\frac{1}{(r+2a)^2}\right)$. Кроме того, $E=\frac{\Phi}{S}$, откуда $\Phi=ES=IS\left(\frac{1}{r^2}+\frac{1}{(r+2a)^2}\right)$.

Подставляя числовые данные, получим $\Phi = 8.3$ лм.

15.55. Большой чертеж фотографируют сначала целиком, затем отдельные его детали в натуральную величину. Во сколько раз надо увеличить время экспозиции при фотографировании леталей?

Решение:

При фотографировании всего чертежа, размеры которого гораздо больше фотопластинки, изображение получается приблизительно в главном фокусе объектива. При фотографировании деталей изображение в натуральную величину получается при помещении предмета на двойном фокусном расстоянии от объектива (на таком же расстоянии получается и изображение на фотопластинке).

Площадь изображения при этом увеличится в $\left(\frac{2F}{F}\right)^2 = 4$

раза. Во столько же раз уменьшится освещенность фото-пластинки, следовательно, время экспозиции надо увеличить в 4 раза.

15.56. 21 марта, в день весеннего равноденствия, на Северной **Земле** Солнце стоит в полдень под углом $\alpha = 10^{\circ}$ к горизонту. **Во скольк**о раз освещенность площадки, поставленной вертикально, будет больше освещенности горизонтальной площадки?

Решение:

Освещенность вертикальной площадки

$$E_{\rm I} = \frac{I}{r^2} cos \alpha$$
. Освещенность горизон-

тальной площадки $E_2 = \frac{I}{r^2} cos \left(\frac{\pi}{2} - \alpha\right) =$

$$=\frac{I}{r^2}sinlpha$$
 . Отсюда $\frac{E_1}{E_2}=ctglpha=5.7$.

15.57. В полдень во время весеннего и осеннего равноденствия Солнце стоит на экваторе в зените. Во сколько раз в это время освещенность поверхности Земли на экваторе больше

освещенности поверхности Земли в Ленинграде? Широта Ленинграда $\varphi = 60^{\circ}$.

Решение:

Освещенность поверхности Земли на экваторе r $E_1 = \frac{I}{r^2}$. Освещенность поверхности Земли в Ленинграде $E_2 = \frac{I}{\omega^2} \cos \varphi$. Отсюда отношение $\frac{E_1}{F} = \frac{1}{\cos \alpha} = 2.$

15.58. В центре квадратной комнаты площадью $S = 25 \,\mathrm{M}^2$ висит лампа. На какой высоте h от пола должна находиться лампа. чтобы освещенность в углах комнаты была наибольшей?

Решение:

Освещенность E находится по формуле $E = \frac{I}{r^2} cos \alpha$, где I — сила света источника, r — расстояние от источника до угла комнаты, α — угол падения лучей. Из рисунка видно, что $a = r \sin \alpha = \frac{b}{\sqrt{2}} = htg\alpha$,

поэтому можно записать $E = \frac{I}{\alpha^2} \cos \alpha \sin^2 \alpha$. Для нахождения максимума E возьмем производную $\frac{dE}{d\alpha}$ и приравняем ее нулю: $\frac{dE}{d\alpha} = \frac{I}{c^2} \left(2\cos^2 \alpha \sin \alpha - \sin^3 \alpha \right) = 0$. отсюда $tg^2\alpha = 2$. Тогда $h = \frac{b}{\sqrt{2}t\alpha\alpha} = \frac{\sqrt{S}}{\sqrt{2}t\alpha\alpha} = 2.5$ м.

15.59. Над центром круглого стола диаметром D=2 м висит лампа с силой света I=100 кд. Найти изменение освещенности E края стола при постепенном подъеме лампы в интервале $0.5 \le h \le 0.9$ м через каждые 0.1м. Постронть график E=f(h).

Решение:

Освещенность края стола
$$E = \frac{I}{r^2} cos \alpha$$
, где $r = \sqrt{h^2 + \frac{D^2}{4}}$; $cos \alpha = \frac{h}{r} = \frac{h}{\sqrt{h^2 + D^2/4}}$. Отсюда $E = \frac{Ih}{\left(h^2 + D^2/4\right)^{\frac{3}{2}}}$. Подставляя числовые данные, получим $E = \frac{100h}{\left(h^2 + 1\right)^{\frac{3}{2}}}$. Для за-

данного интервала значений h построим график.

15.60. В центре круглого стола днамстром D=1,2 м стоит настольная лампа из одной электрической лампочки, расположенной на высоте $h_1=40$ см от поверхности стола. Над центром стола на высоте $h_2=2$ м от его поверхности висит люстра из четырех таких же лампочек. В каком случае получится большая освещенность на краю стола (и во сколько раз): когда горит настольная лампа или когда горит люстра?

Настольная лампа создает освещенность $E_1 = \frac{lh_1}{\left(h_1^2 + D^2 / 4\right)^{\frac{3}{2}}}$ (см. задачу 15.59). Люстра создает освещенность $E_2 = \frac{4lh_2}{\left(h_2^2 + D^2 / 4\right)^{\frac{3}{2}}}$. Отсюда отношение $\frac{E_1}{E_2} = \frac{h_1}{4h_2} \times \left(\frac{h_2^2 + D^2 / 4}{h_1^2 + D^2 / 4}\right)^{\frac{3}{2}}$. Подставляя числовые данные, получим

15.61. Предмет при фотографировании освещается электрической лампой, расположенной от него на расстоянии $r_1=2\,\mathrm{M}$. Во сколько раз надо увеличить время экспозиции, если эту же лампу отодвинуть на расстояние $r_2=3\,\mathrm{M}$ от предмета?

Решение:

 $\frac{E_1}{E_2} = 1.2.$

Имеем $E_1 = \frac{I}{r_1^2}$; $E_2 = \frac{I}{r_2^2}$, отсюда $\frac{E_1}{E_2} = \frac{r_2^2}{r_1^2} = 2,25$. Освещенность уменьшилась в 2,25 раза, следовательно, время экспозиции необходимо увеличить в 2,25 раза.

15.62. Найти освещенность E на поверхности Земли, вызываемую нормально падающими солнечными лучами. Яркесть Солнца $B = 1.2 \cdot 10^9 \text{ кд/м}^2$.

Решение:

Яркость Солица можно определить по формуле $B = \frac{I}{S \cos \theta}$, где S — площадь видимого диска Солица. По

условию
$$\theta = 90^{\circ}$$
, следовательно, $\cos \theta = 1$; $S = \frac{\pi D^2}{4}$ — (1),

где $D \approx 1,4 \cdot 10^9 \,\mathrm{M}$ — диаметр Солнца. Отсюда освещенность поверхности Земли $E = \frac{I}{R^2}$ — (2), где $R = 1,5 \cdot 10^{11} \,\mathrm{M}$ — расстояние от поверхности Земли до Солнца. Из (1) найдем $I = \frac{B\pi D^2}{4}$ — (3). Подставляя (3) в (2), получим $E = \frac{B\pi D^2}{4R^2} = 82 \cdot 10^3 \,\mathrm{лk}$.

15.63. Спираль электрической лампочки с силой света I = 100 кд заключена в матовую сферическую колбу диаметром:

а) d = 5 см; б) d = 10 см. Найти светимость R и яркость B лампы. Потерей света в оболочке колбы пренебречь.

Решение:

Если потерь света в оболочке колбы не происходит, то **светимо**сть R численно равна освещенности E, т. **е**.

 $R = E = \frac{4I}{d^2}$ — (1). Светимость R и яркость B связаны со-

отношением $R = \pi B$, откуда $B = \frac{R}{\pi}$ — (2). Подставляя числовые данные, получим: а) $R = 16 \cdot 10^4$ лм/м²; $B = 5.1 \times 10^4$ кд/м²; б) $R = 4 \cdot 10^4$ лм/м²; $B = 1.27 \cdot 10^4$ кд/м².

15.64. Лампа, в которой светящим телом служит иакаленный шарик диаметром d=3 мм, дает силу света I=85 кд. Найти яркость B лампы, если сферическая колба лампы сделана: а) из прозрачного стекла; б) из матового стекла. Диаметр колбы D=6 см.

Решение:

Яркость лампы $B = \frac{I}{S}$, где S — площадь проекции излучающей поверхности на плоскость, перпендикулярную на-

391

правлению наблюдения. а) Излучающей поверхностью является поверхность шарика, т. е. $S = \frac{\pi d^2}{4}$. Отсюда $B = \frac{4I}{\pi d^2} = 1,2 \cdot 10^7 \; \text{кд/м}^2$. б) Если колба лампы сделана из матового стекла, то свет рассеивается и излучающей поверхностью является поверхность лампы, т. е. $S = \frac{\pi D^2}{4}$. Отсюда $B = \frac{4I}{\pi D^2} = 3 \cdot 10^4 \; \text{кд/м}^2$.

15.65. Какую освещенность E дает лампа предыдущей задачи на расстоянии r = 5 м при нормальном падении света?

Решение:

По определению $E = \frac{I}{r^2}$. Таким образом, освещенность будет одинакова и для прозрачной и для матовой колбы. Подставляя числовые данные, получим E = 3.4 лк.

15.66. На лист белой бумаги площадью $S = 20 \times 30 \, \text{см}^2$ перпендикулярно к поверхности падает световой поток $\Phi = 120 \, \text{лм}$. Найти освещенность E, светимость R и яркость B бумажного листа, если коэффициент отражения $\rho = 0.75$.

Решение:

Имеем $E=\frac{\Phi}{S}=2\cdot 10^3$ лк. Поскольку светимость листа обусловлена его освещенностью, то $R=\rho E=1,5\cdot 10^3$ лм/м². Светимость R и яркость B связаны соотношением $R=\pi B$, откуда $B=\frac{R}{\pi}=480$ кд/м².

15.67. Какова должна быть освещенность E листа бумаги в предыдущей задаче, чтобы его яркость была равна $B=10^4$ кд/м²?

Решение:

Имеем
$$B = \frac{R}{\pi}$$
 — (1); $R = \rho E$ — (2). Подставив (2) в (1), получим $B = \frac{\rho E}{\pi}$, откуда $E = \frac{\pi B}{\rho} = 4.2 \cdot 10^4$ лк.

15.68. Лист бумаги площадью $S=10\times30~{\rm cm}^2$ освещается лампой с силой света $I=100~{\rm kg}$, причем на него падает 0,5% всего посылаемого лампой света. Найти освещенность E листа бумаги.

Решение:

Полный световой поток, испускаемый лампой, $\Phi_0=4\pi I$. На лист падает световой поток $\Phi=5\cdot 10^{-3}\,\Phi_0$. Освещенность листа $E=\frac{\Phi}{S}=\frac{5\cdot 10^{-3}\cdot 4\pi I}{S}$. Подставляя числовые данные, получим $E=210\,\mathrm{nk}$.

15.69. Электрическая лампа с силой света I=100 кд посылает во все стороны в единицу времени $W_{\rm r}=122~{\rm Дж/мин}$ световой энергии. Найти механический эквивалент света K и к.п.д. η световой отдачи, если лампа потребляет мощность $N=100~{\rm Br}$.

Решение:

Принято переходный множитель, определяющий в ваттах мощность, необходимую для получения светового ощущения, вызываемого потоком в 1 люмен, измерять для определенного узкого интервала длин волн, соответствующего максимуму чувствительности глаза, а именно, $\lambda = 555\,$ нм. Этот фактор носит название механического

эквивалента света. Он равен $K = \frac{W_{\tau}}{4\pi I}$. Пересчитаем све-

товую энергию $W_{\rm r}$ из Дж/мин в Вт. $W_{\rm r}=\frac{122}{60}=2{,}03$ Дж/с = = 2,03 Вт. Подставляя числовые данные, получим $K=0{,}0016$ Вт/лм. К.п.д. световой отдачи $\eta=\frac{W_{\rm r}}{N}\cdot100\%$; $\eta\approx2\%$.