

Ŀ

✓	The lower bound on the number of comparisons performed by comparison-based sorting algorithm is *	1/1
\bigcirc	Ω (1)	
0	Ω (n)	
•	Ω (nlogn)	✓
0	Ω (n2)	
✓	How many number of swaps needed to sort the numbers 27, 61, 82, 64, 27, 62 in non-decreasing order, using Bubble Sort? *	1/1
0	8	
0	7	
•	6	✓
0	5	
~	Where is linear searching used? *	1/1
0	When the list has only a few elements	
0	When performing a single search in an unordered list	
0	Used all the time	
•	When the list has only a few elements and When performing a single search in an unordered list	1 🗸
~	What is the best case for linear search? *	1/1
0	O(nlogn)	
0	O(logn)	
0	O(n)	
•	O(1)	✓
		1/1
~	In computer science, algorithm refers to a pictorial representation of a flowchart. *	,,
		,, .

·	The process of drawing a flowchart for an algorithm is called	*1/1
0	Performance	
0	Evaluation	
•	Flowcharting	✓
0	Algorithmic Representation	
✓	What is sparsity of a matrix? *	1/1
	The fraction of zero elements over the total number of elements	✓
0	The fraction of non-zero elements over the total number of elements	
0	The fraction of total number of elements over the zero elements	
0	The fraction of total number of elements over the non-zero elements	
. /	An n × n matrix is known as*	1/1
~	ATTI ATTITIQUIA IS KITOWIT dS	1/1
0	Rectangular matrix	
	Uniform matrix	
\bigcirc	OHIIOHII HIAHIX	
OIO	Square matrix	✓
		✓
	Square matrix	1/1
	Square matrix None of the above A matrix having a larger number of elements with zero value than the	1/1
	Square matrix None of the above A matrix having a larger number of elements with zero value than the number of nonzero elements is said to be a*	1/1
	Square matrix None of the above A matrix having a larger number of elements with zero value than the number of nonzero elements is said to be a* Diagonal matrix	1/1
	Square matrix None of the above A matrix having a larger number of elements with zero value than the number of nonzero elements is said to be a * Diagonal matrix Sparse matrix	1/1
	Square matrix None of the above A matrix having a larger number of elements with zero value than the number of nonzero elements is said to be a * Diagonal matrix Sparse matrix Triangular matrix	1/1
	Square matrix None of the above A matrix having a larger number of elements with zero value than the number of nonzero elements is said to be a * Diagonal matrix Sparse matrix Triangular matrix None of the above A double sub-scripted array declared as int a[3][5]; has how many	✓
	Square matrix None of the above A matrix having a larger number of elements with zero value than the number of nonzero elements is said to be a * Diagonal matrix Sparse matrix Triangular matrix None of the above A double sub-scripted array declared as int a[3][5]; has how many elements? *	✓
	Square matrix None of the above A matrix having a larger number of elements with zero value than the number of nonzero elements is said to be a * Diagonal matrix Sparse matrix Triangular matrix None of the above A double sub-scripted array declared as int a[3][5]; has how many elements? *	✓

 Minimum number of queues required for priority queue implementatio * 	n? 1/1
O 5	
O 4	
O 3	
2	✓
✓ Prefix notation is also known as *	1/1
Polish Notation	✓
O Polish Reverse Notation	
Reverse Notation	
None of above	
 In conversion from prefix to postfix using stack data-structure, if operators and operands are pushed and popped exactly once, then the run-time complexity is * O(1) O(n) O(log n) O(n2) 	1/1 e
✓ If the MAX_SIZE is the size of the array used in the implementation of circular queue. How is rear manipulated while inserting an element in the queue? *	1/1 ne
rear=(rear%1)+MAX_SIZE	
rear=rear%(MAX_SIZE+1)	
rear=(rear+1)%MAX_SIZE	✓
rear=rear+(1%MAX_SIZE)	

H

Ŀ

➤ One difference between a queue and a stack is *	0/1
Queue can be implemented using linked lists, but stack cannot	
Stack can be implemented using linked lists, but queues cannot	
Queues use two ends of the structure; stacks use only one	×
Stacks use two ends of the structure, queues use only one	
Correct answer	
Stacks use two ends of the structure, queues use only one	
✓ Which of the following is not the type of queue? *	1/1
Ordinary queue	✓
Single ended queue	
Circular queue	
O Priority queue	
The meaning of FIFO is and it stands for *	1/1
First In Fast Out, Stack	
First In First Out, Stack	
First In First Out, Queue	✓
First In Fast Out, Queue	
✓ What happens when the stack is full and there is no space for a new element, and an attempt is made to push a new element? *	1/1
Overflow	~
Тор	
Underflow	
None of the above	

H

✓ What will be the front and rear of an initially empty queue after following 1/1 the following operations on it? enqueue(2), enqueue(11), enqueue(3), dequeue(), enqueue(8), dequeue(), enqueue(5), enqueue(5), dequeue() *
O 11,8
3,11
5,8
✓ What is the minimum number of stacks needed to implement a queue? * 1/1
O 1
○ 3
onot possible
✓ If the elements "A", "B", "C" and "D" are placed in a queue and are deleted one at a time, in what order will they be removed? *
● ABCD
O DCBA
O DCAB
None of above
✓ A circular queue is implemented using an array of size 10. The array index 1/1 starts with 0, front is 6, and rear is 9. The insertion of next element takes place at the array index. *
O 7
79

12/5/2020

	Generally collection of Nodes is called as *	1/
0	Неар	
•	linked list	✓
0	array	
0	pointers	
~	Linked list is generally considered as an example of type of memory allocation. *	1/
0	Static	
•	Dynamic	~
0	compile time	
0	none of above	
✓	Linked list data structure usage offers considerable saving in *	1/
\bigcirc	Computational time	
•	Space utilization & computational time	✓
0	Space utilization	
~	An array is passed into a function *	1/
	houseline	
	by reference	,
0	element by element	~
	Any of the above	
~	Each node in a linked list has two pairs of and *	1/
•	Link field and information field	✓
0	Link field and avail field	
\circ	Avail field and information field	

	ear list in which each node has pointers to point to the predecessor successors nodes is called as *	1/1
Singly	y Linked List	
Circu	lar Linked List	
Doub	ly Linked List	
Linea	r Linked List	
✓ In circ	cular linked list, insertion of node requires modification of? *	1/1
One p	pointer	
Two p	pointer	
○ Three	e pointer	
Requi	ires no modification	
Ť	ider a linked list of n elements. What is the time taken to insert an ent after an element pointed by some pointer? *	1/1
0 (1)	~	
O (log	g n)	
O (n)		
O (n l	og n)	
	ear collection of data elements where the linear node is given by as of pointer is called *	1/1
node	list	
linked	d list 🗸	
O primit	tive list	
None	of these	

/	In Linked list implementation, a node carries information regarding*	1/1
C) Data	
C) Link	
•) Data and Link	✓
C) none of above	
~	What is the time complexity of inserting a node in a doubly linked list? *	1/1
С) O(nlogn)	
C) O(1)	
•) O(n)	✓
С) O(logn)	
	This content is neither created nor endorsed by Google <u>Terms of Service</u> - <u>Privacy Policy</u>	
	Google Forms	