Sztuczna inteligencja. Markowowskie procesy decyzyjne i uczenie ze wzmocnieniem

Paweł Rychlikowski

Instytut Informatyki UWr

4 czerwca 2018

MDP. Przypomnienie

- Uogólnienie zadania przeszukiwania, w którym akcje są niedeterministyczne.
- Nagrody wypłacane są w sposób ciągły, co oznacza, że można rozważać nieskończone ciągi akcji (discount factor, $\gamma < 1$)
- Rozwiązaniem MDP jest polityka, czyli stwierdzenie, co mamy robić w danym stanie.

Algorytmy. Przypomnienie

- Policy iteration: wyznaczanie wartości polityki (ile średnio na niej zarobimy, startując w stanie s)
- Value iteration: wyznaczenie wartości stanów dla optymalnej polityki
 - Wyznacza też politykę: (w przybliżeniu) idziemy do stanu o najlepszej wartości.
 - Dokładniej: wykonujemy akcję, która daje największą wartość oczekiwaną rezultatu.

Gridworlds. Wulkany

Sprawdzamy działanie algorytmu Value Iteration w świecie wulkanów.

http://web.stanford.edu/class/cs221/lectures/index.html#inclu

Zadania

- Jak wyznaczyć najkrótszą ścieżkę (dwa sposoby)?
- 2) Gdzie jest przejście między Searching Problem a MDP?
- 3) Kiedy warto odwiedzić wioskę?
- 4) Ile iteracji jest potrzebne?

Warunki zbieżności Value Itaration

Mówiliśmy, że algorytm jest zbieżny, jeżeli zachodzi któryś z warunków

- \bullet $\gamma < 1$
- Graf MDP jest acykliczny

Uwaga

Zwróćmy uwagę na to ci się dzieje, jeżeli $\gamma=1$ i mamy cykl. Dla niezerowych nagród na krawędziach cyklu wartość oczekiwana może być nieokreślona

Przypomnienie. Wyścigi samochodzików.

 Prędkość dyskretna, akcja to zmiana prędkości, olej wprowadza losowość

Wynik algorytmu Value Iteration

Zwróćmy uwagę, że bez żadnych dodatkowych obliczeń można umieszczać w innych miejscach punkt startowy.

Jeszcze o autach i oleju

- Fajnie jest dojechać na metę. (+100)
- Ale jeszcze fajniej nie dać się zabić. (-100?)

Uwaga

Pamiętamy, że monotoniczna zmiana funkcji wypłaty:

- 1. nie zmienia wartości MiniMax-owej gry,
- 2. może zmienić ExpectMinMax

Rozwiązanie podstawowe

Pytanie: Czego spodziewamy się, jeżeli zamienimy karę na wypadek na 10000?

Kara=100

Kara=10000

Przykład. Wyścigi samochodzików. Float

- Prędkość autka jest wektorem $(v \cos(d), v \sin(d))$,
- Możemy zmieniać d (skręcać), oraz v (przyśpieszać, hamować)
- Celem jest meta.
- W pełni deterministyczny świat, ale bardzo duża liczba stanów, zawierających liczby float)

Autka float. Rozwiązanie

- Możemu stworzyć stan abstrakcyjny i opisać mechanikę świata dla takich stanów
- Oczywiście będzie ona niedeterministyczna, bo nigdy nie będziemy wiedzieć, czy zmiana w świecie float-ów przenosi się na zmianę w świecie int-ów.

Uwaga

Możemy myśleć o tym, że modelujemy błędy pomiarowe (int zamiast float) za pomocą losowości.

Bezmodelowe uczenie ze wzmocnieniem

Przypomnienie

Mówiliśmy o metodach Monte Carlo, w których przeprowadzamy eksperymenty (losowe przebiegi), żeby estymować (nieznane) parametry MDP.

- Nowy cel: od razu liczyć Q(s, a), nie przejmując się tworzeniem modelu.
- Zaczniemy od obliczenia $Q_{\pi}(s,a)$

Bezmodelowe Monte Carlo

Definicja

 $Q_\pi(s,a)$ to oczekiwana sumaryczna nagroda, jaką otrzymamy wykonując w stanie s akcję a, a następnie postępując zgodnie z polityką π

- Użyteczność (dla konkretnego przebiegu): $u_t = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \dots$
- $\hat{Q}_{\pi}(s,a) =$ średnie u_t , gdzie $s_{t-1} = s$, $a_t = a$

Bezmodelowe Monte Carlo – inne sformułowanie

- Zamiast liczyć średnią z całości, można myśleć o uaktualnianiu średniej wraz z pojawieniem się kolejnej informacji.
- Niech: $\eta = \frac{1}{1 + \operatorname{cnt}(s, a)}$
- $\hat{Q}_{\pi}(s,a) \leftarrow (1-\eta)\hat{Q}_{\pi}(s,a) + \eta u$ (gdzie u jest użytecznością zaobserwowaną w konkretnym przebiegu)

Sprawdźmy, czy to się zgadza.

Bezmodelowe Monte Carlo – inne sformułowanie (2)

$$\hat{Q}_{\pi}(s,a) \leftarrow (1-\eta)\hat{Q}_{\pi}(s,a) + \eta u$$

- u jest zaobserwowaną użytecznością
- $\hat{Q}_{\pi}(s,a)$ jest naszą predykcją.

Reguła ta minimalizuje odległość między predykcją a obserwacją.

Bootstraping

Uwaga

W informatyce często, rozwiązując jakieś zadanie, korzystamy z niedoskonałego (tymczasowego) rozwiązania, żeby rozwiązać zadanie lepiej.

Przykład

Szukanie dobrych i złych słów (analizujemy wpisy na jakimś forum), na początku znamy kilka przykładowych dobrych i złych słów.

Będziemy używać Q (poprzedniej wartości) do obliczenia nowego Q

Bootstraping: SARSA

Obserwujemy ciąg akcji i nagród:

$$s_0, a_1, r_1, s_1, a_2, r_2, s_2, \dots$$

Uaktualnianie Monte Carlo:

$$\hat{Q}_{\pi}(s,a) \leftarrow (1-\eta)\hat{Q}_{\pi}(s,a) + \eta u$$

• SARSA (obserwujemy s, a, r, s', a'):

$$\hat{Q}_{\pi}(s,a) \leftarrow (1-\eta)\hat{Q}_{\pi}(s,a) + \eta(r+\gamma\hat{Q}_{\pi}(s',a'))$$

W algorytmie SARSA zamiast konkretnego (zaobserwowanego) u bierzemy zaobserwowaną jego i pierwszą część (r) i estymowaną resztę (zielony jest cel)

Uwaga

Nie musimy czekać do końca epizodu, żeby uaktualnić wartość Q!

$SARSA(\lambda)$

- Można balansować między SARSA a MC
- W skrócie:
 - MC uwzględnia wszystkie nagrody (od teraz do końca świata)
 - SARSA uwzględnia jedną nagrodę
- A jakbyśmy chcieli uwzględnić 2 nagrody?
- Wówczas cel byłby równy:

$$r_t + \gamma r_{t+1} + \gamma^2 \hat{Q}_{\pi}(s_{t+1}, a_{t+2})$$

Odpowiednik SARSA dla wartości

- Jak nie znamy modelu, to niespecjalnie użyteczne (same V nie wystarczają do wyboru akcji, jak nie wiemy, co ta akcja spowoduje)
- Ale może być użyteczne w grach (znana mechanika, duża przestrzeń)

Value iteration vs. SARSA i spółka

źródło: Sutton, Reinforcement Larning. An introduction

- VI liczy wartości dla stanów "nieoptymalnych"
- VI liczy wartości dla stanów nieosiągalnych (łatwo wymyślić dla autek taką kombinację prędkości i położenia, która jest bezużyteczna)

W momencie, gdy operujemy przebiegami, być może sensownymi, to koncentrujemy się na estymacji rzeczy użytecznych (a na pewno na osiągalnych!)

Q-learning

Uwaga

SARSA estymuje $Q_{\pi}(s,a)$. Najbardziej naturalnym celem jest znajomość Q_{opt} .

- Algorytm umożliwiający bezpośrednie obliczanie $Q_{\rm opt}$ to właśnie **Q-learning**.
- Również radzimy sobie bez modelu.
- Mamy do spamiętania trochę więcej wartości: dla każdej akcji i każdego stanu.

Q-learning

Standardowy kształt reguły:

$$Q(s,a) \leftarrow (1-\eta)Q(s,a) + \eta$$
 cel

Celem jest $r + \gamma V_{\text{opt}}(s')$

Natomiast:

$$V_{\mathsf{opt}}(s') = \max_{a' \in \mathsf{Actions}(s')} Q_{\mathsf{opt}}(s', a'))$$

Algorytm **Q-learning**

Dla zaobserwowanych s, a, r, s':

$$Q(s, a) \leftarrow (1 - \eta)Q(s, a) + \eta(r + \gamma \max_{a' \in \mathsf{Actions}(s')} Q_{\mathsf{opt}}(s', a')))$$

O wadze eksploracji

- Jeżeli chcemy zachowywać się optymalnie powinniśmy wiedzieć coś o każdej parze (s,a)
 - (wyobrażmy sobie katapultę w autkach)
- Istnieją dwie możliwości:
 - 1. Rzeczywiście mamy szansę (w granicy) wygenerować przebieg z każdą parą (s,a)
 - 2. Umiemy jakoś generalizować i wywnioskować coś na temat (s,a) korzystając z podobnego (s', a')

Wulkany

Slajd 33

Do przetestowania

- ullet Pełna eksploatacja: używamy akcji o najwyższym $\hat{Q}_{ ext{opt}}(s,a)$
- Pełna eksploracja: używamy polityki losowej

$$\pi(s) =$$
losowo wybrana $Actions(s)$

Próbu balansu

Inne spojrzenie na generalizację

Uwaga

Jednym z najprostszych algorytmów uczenia jest **k-NN** (czyli k najbliższych sąsiadów.

Algorytm

- 1. Mamy zdefiniowaną odległość pomiędzy obiektami (stanami)
- 2. Spamiętujemy wiele przykładów zawierających pary stan-akcja.
- 3. Dla nowego stanu znajdujemy **K** najbliższych mu stanów, i pozwalamy, by **zagłosowały** nad akcją.

k-NN a jazda samochodem

Uwaga

Algorytmy rozważały sytuację konkretnego toru, czyli kierowcy rajdowego, który korzysta z treningów w miejscu wyścigu.

A jakbyśmy chcieli dać prawo jazdy?

Spróbujmy rozważyć sposoby uogólnienia naszych autek.

Uogólnienie jazdy samochodem

Pomysł 1

Bierzemy mały fragment mapy $(3 \times 3, 5 \times 5)$, z samochodem pośrodku. Ten fragment + prędkość to jest stan. **Pytanie:** Jaki problem?

Nie wiadomo, w którą stronę jechać!

Można dodać informację o odległości w grafie sąsiedztwa kratek między celem a danym punktem (wyjaśnienie na tablicy)

Znaki drogowe

Inne cechy:

- Kąt między osią auta a osią drogi [rysunek]
- Odległości pomiędzy autem i lewym i prawym poboczem
- Informacje o tym, co robi droga:
 - 200m prosto, potem skręt o 30 stopni w prawo.
 - Przy nim ograniczenie prędkości do 70.