Scipy 패키지가 제공하는 검정 명령

[뮤. 기댓값 모수 에 대한 귀무가설 검정]

- 1. 이항검정(Binomial Test) : 베르누이 분포 모수 u 검정 (검정통계량 : 1이 나온 횟수), '베르누이 통계량(표본의 합) ~ 이항분포' 성질 활용 즉, 통계량 분포 = 이항분포
- 2. 카이제곱검정(Chi-squared Test) : 카테고리 분포 모수 벡터u 검정 (검정통계량 : 표본분산을 정규화한 값), 적합도 검정법 사용
- 즉, 통계량 분포 != 다항분포. why? 다항분포는 스칼라값이 아님. 통계량은 스칼라값이어야 함 즉, 스칼라값이 나오는 통계량을 만들어야 함 => 통계량 분포로 활용 => 검정통계량으로 활용 (9.5.1)
- 3. 카이제곱 독립검정(Chi-squared Contingency Test) : 범주형 변수 간 상관관계 검정
- 4. 단일표본 z검정(One-sample z-Test)
- 5. 단일표본 t검정(One-sample t-Test) : 정규분포 모수 기댓값 검정 (검정통계량 : 스튜던트 t분포를 갖는 t통계량)
- 6. 독립표본 t검정(Independent two-sample t-Test) : 두 정규분포의 모수 기댓값 동일한지 검정 (검정통계량 : 두 분포의 분산이 같을 때, 다를 때 검정통계량이 다름)
- 7. 대응표본 t검정(Paired two-sample t-Test) : 두 정규분포의 모수 기댓값이 동일핮니 검정 단, paired-two-sample을 구성 \rightarrow 표본평균 자리에 (표본값 차이의 평균) 이 들어감.

[분산 모수 에 대한 귀무가설 검정]

1. 등분산검정(Equal-variance Test)

[확률분포가 정규분포인지 검정]

1. 정규성검정(Normality Test)

검정 과정

- 1) 확률변수 생성 (모수 지정, scipy.stats 모델)
- 2) 실제 데이터 및 검정 대상 지정
- 3) 검정 진행 (scipy.stats 검정 모델)

1. 베르누이 확률변수의 이항검정 시뮬레이션

```
- H0 : u = 0.5
```

1) 10개 샘플링 결과, 귀무가설과 다른 결과 => 귀무가설 기각?

In [13]:

```
# H0 : u = u0 = 0.5
# 데이터 갯수(샘플링) N = 10, 1이 나온 횟수 = 7

# 1. 확률변수 생성
N = 10
mu_0 = 0.5
np.random.seed(0)
rv = sp.stats.bernoulli(mu_0)

# 2. 샘플링
x = rv.rvs(N)

# 3. 샘플링 결과, 1이 나온 횟수
n = np.count_nonzero(x)
n

# 실험 결과 : 모수로 0.5를 지정 후, 샘플링을 했더니, 1이 5번이 아닌 7번 출력됨. 그렇다면, 실제 모수가 0.5라는 귀무가설은 기각되어야 하는가?
```

Out[13]:

7

2) 베르누이 확률변수의 모수 검정: 이항검정

- 이항검정 결과, 유의확률이 약 0.34. u=0.5라는 귀무가설은 기각될 수 없다.

이항검정 이항검정은 이항분포를 이용하여 베르누이 확률변수의 모수 μ 에 대한 가설을 조사하는 검정 방법이다. 사이파이 stats 서브패키지의 binom_test 명령은 이항검정의 유의확률을 계산한다. 디폴트 귀무가설은 μ =0.5 이다. scipy.stats.binom_test(x, n=None, p=0.5, alternative='two-sided') x: 검정통계량. 1이 나온 횟수 n: 총 시도 횟수 p: 귀무가설의 μ 값 alternative: 양측검정인 경우에는 'two-sided', 단측검정인 경우에는 'less' 또는 'greate r'

In [14]:

```
# M = + 0 \Rightarrow = = = = 0.34 \Rightarrow = = 0.34 \Rightarrow = 0.34
```

Out[14]:

0.3437499999999999

3) 100개 샘플링 결과

In [20]:

```
# 1. 확률변수 생성
N = 100
mu_0 = 0.5
rv = sp.stats.bernoulli(mu_0)
# 2. 샘플링
x = rv.rvs(N,random_state=0)
# 3. 샘플링 결과, 1이 나온 횟수
n = np.count_nonzero(x)
n
```

Out[20]:

49

4) 100개 샘플링 결과에 대한 이항검정

• 유의확률이 매우 크므로, 귀무가설은 기각되지 않음. 귀무가설 하 충분히 나올 수 있는 샘플링 결과

In [21]:

sp.stats.binom_test(n, N)

Out[21]:

0.9204107626128206

연습문제

동전을 N 번 던져 앞면이 나오는 횟수를 측정했다. 다음 질문에 답하여라.

- 1. N=10 이고 유의 수준이 10%라면 앞면이 나온 횟수가 몇 번이어야 동전이 공정하지 않다고 이야기 할 수 있을까?
- 1. N=1000 이고 유의 수준이 10%라면 앞면이 나온 횟수가 몇 번이어야 동전이 공정하지 않다고 이야기 할 수 있을까? 이 때 1 \sim N의 횟수 범위 중에서 동전이 공정하다고 이야기할 수 있는 횟수의 범위(비율)는 N=10 일 때와 비교하여 넓은가 혹은 좁은가?

풀이 (자습)

In [43]:

```
# 1. N=10 이고 유의 수준이 10%라면 앞면이 나온 횟수가 몇 번이어야 동전이 공정하지 않다고 이야기 할 수
있을까?
# 1. 확률변수 생성
mu = 0.5
N = 10 #10번 던지기
sig lev = 0.1
rv = sp.stats.bernoulli(mu)
# 2. 검정 실시 (반복)
def test(N):
    for i in range(0,N+1):
       if sp.stats.binom test(i,N) <= sig lev:</pre>
           print("앞면 횟수: {}, pvalue: {}".format(i, sp.stats.binom test(i,N
)))
count = 0
def num ok(N):
    for i in range(0,N+1):
       if sp.stats.binom test(i,N) <= sig lev:</pre>
           global count
           count += 1
    return count.
# 3. 검정 결과 : 앞면이 0, 1, 9, 10번 나올 경우, 동전은 공정하지 않다.
print("유의확률 벗어난 횟수 : {}".format(num ok(10)))
앞면 횟수: 0, pvalue: 0.001953125
앞면 횟수: 1, pvalue: 0.021484374999999997
앞면 횟수: 9, pvalue: 0.021484374999999997
앞면 횟수 : 10, pvalue : 0.001953125
유의확률 벗어난 횟수 : 4
```

In [45]:

```
# 2. N=1000 이고 유의 수준이 10%라면 앞면이 나온 횟수가 몇 번이어야 동전이 공정하지 않다고 이야기 할
수 있을까?
# 1. 확률변수 생성
mu = 0.5
N = 1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #1000 #
sig lev = 0.1
rv = sp.stats.bernoulli(mu)
# 2. 검정 실시 (반복)
count = 0
def num ok(N):
                          for i in range(0,N+1):
                                                    if sp.stats.binom test(i,N) <= sig lev:</pre>
                                                                              global count
                                                                              count += 1
                          return count
print("유의확률 벗어난 횟수 : {}".format(num ok(1000)))
```

유의확률 벗어난 횟수 : 948

풀이 (정답)

In []:

```
# 1. N=10 이고 유의 수준이 10%라면 앞면이 나온 횟수가 몇 번이어야 동전이 공정하지 않다고 이야기 할 수 있을까?

def detect(N):
   N1 = N
   pvalue1 = np.array([sp.stats.binom_test(n,N1) for n in range(N1+1)])
   fair_range1 = np.where(pvalue1 > 0.1)
   fair_start1, fair_end1 = fair_range1[0][0], fair_range1[-1][-1]
   print("N = {}일 때, 공정한 경우 : 앞면이 나온 횟수가 {}~{}일 때".format(N1,fair_start1,fair_end1))

   plt.plot(pvalue1, "r--")
   plt.hlines(y=0.1, xmin=0, xmax=N1)
```

In [66]:

detect(10)

N = 10일 때, 공정한 경우 : 앞면이 나온 횟수가 2~8일 때

In [67]:

detect(1000)

N = 1000일 때, 공정한 경우 : 앞면이 나온 횟수가 474~526일 때

2. 카테고리 확률변수의 카이제곱 검정 시뮬레이션

카이제곱 검정

사이파이 stats 서브패키지의 chisquare 명령은 카이제곱검정의 검정통계량과 유의확률을 계산한다. f exp이 주어지지 않는 경우의 디폴트 귀무가설은 $\mu=(1K,...,1K)$ 이다.

scipy.stats.chisquare(f obs, f exp=None)

f_obs : 데이터 행렬 f_exp : 기댓값 행렬

예제: 실제 데이터에 대한 검정

데이터 개수 N=10 , 귀무가설 모수 μ 0=(0.25,0.25,0.25,0.25) , 실제 데이터 (0,3,5,2) 인 경우 대해 카이제곱검정 명령을 실시해보자.

In [78]:

```
# 1. 카테고리 확률변수 생성
N = 10
k = 4
mu_0 = np.ones(k)/k
rv = sp.stats.multinomial(1,mu_0)

# 2. 데이터 저장
data = np.array([0,3,5,2])

# 3. 검정실시
sp.stats.chisquare(data)

# 4. 검정결과
# 0.16 p-value. 만약 유의수준이 10%라도, 실제 데이터가 0,3,5,2가 나오더라도 귀무가설을 기각할 수 없다
```

Out[78]:

예제 : 실제 데이터에 대한 검정

데이터 개수 N=100 , 귀무가설 모수 μ 0=(0.25,0.25,0.25,0.25) , 실제 데이터 (37,32,20,11) 인 경우 대해 카이제곱검정 명령을 실시해보자.

In [83]:

```
# 1. 카테고리 확률변수 생성
N = 100
k = 4
mu_0 = np.ones(k)/k
rv = sp.stats.multinomial(1,mu_0)

# 2. 데이터 저장
data = np.array([37,32,20,11])

# 3. 검정실시
sp.stats.chisquare(data)

# 4. 검정결과
# 0.01보다 적은 p-value. 실제 데이터가 (37,32,20,11)로 나오는 경우는 귀무가설 하 매우 희귀한 경우. 따라서, 귀무가설 기각
```

Out[83]:

Power_divergenceResult(statistic=16.56, pvalue=0.000870347197891212
7)

연습문제

6면체 주사위를 5번 던졌다. 5번 모두 6이 나왔다면 주사위가 공정하다는 귀무가설의 유의확률은 얼마인가?

풀이 (자습)

In [85]:

```
# 시행횟수 = 5, 실제 데이터 = (1,0,0,0,0,5) or ...
# 귀무가설 = Ħ0 = u = (1/6,1/6, ...,1/6)
# 이 때, 귀무가설의 유의확률은? = 귀무가설 가정 분포 상 검정통계량의 위치?

# 1. 카테고리 확률변수 생성
N = 5
k = 6
mu_0 = np.ones(k)/k
rv = sp.stats.multinomial(1,mu_0)

# 2. 실제 데이터 저장
data = np.array([0,0,0,0,5])

# 3. 검정
sp.stats.chisquare(data)
```

Out[85]:

Power_divergenceResult(statistic=25.00000000000004, pvalue=0.000139 33379118562602)

3. 카이제곱 독립검정

- 실수값 x, y 의 상관관계 <= 상관계수로 판단
- 범주형 x, y 의 상관관계 <= 카이제곱 독립검정
- 상관관계 : 한 변수의 값이 달라지면, 다른 변수의 값도 변동
- 모델 생성 시, 제외해야할 서로 상관관계가 있는 범주형 변수, 특징을 판별 시 카이제곱 독립검정 활용
 - **카이제곱 독립검정**
 - 사이파이의 chi2 contingency() 명령은 이러한 검정을 수행.
 - 디폴트 귀무가설 : 상관관계 없음
 - -X 의 값에 따른 각각의 Y 분포가 2차원 표(contingency table)의 형태로 주어지면 독립인 경우의 분포와 실제 y 표본본포의 차이를 검정통계량으로 계산.
 - 이 값이 충분히 크다면 X 와 Y 는 상관관계가 있음.
 - $chi2_contingency()$ 명령의 결과는 튜플로 반환되며 첫번째 값이 검정통계량, 두번째 값이 유의확률이다.

연습문제

예를 들어 데이터 사이언스 스쿨 수업을 들었는가의 여부가 나중에 대학원에서 머신러닝 수업의 학점과 상관관계가 있는지를 알기 위해 데이터를 구한 결과가 다음과 같다고 하자.

- 데이터 사이언스 스쿨 수업을 듣지 않은 경우 즉, X 가 0이면 A, B, C 학점(Y값)을 받은 학생의 분포가 4,16,20 이다.
- 데이터 사이언스 스쿨 수업을 들은 사람의 경우 즉, X 가 1일 때 A, B, C 학점(Y 값)을 받은 학생의 분포가 23,18,19 다.
- 이 결과로부터 데이터 사이언스 스쿨 수업을 들었는가의 여부가 머신러닝 수업의 학점과 상관관계가 있다고 말할 수 있는가?

In [88]:

```
# 두 변수의 관찰 값 테이블 생성

obs = np.array([[4,16,20],[23,18,19]])
sp.stats.chi2_contingency(obs)

# 리턴결과의 2번째 값인 p-value가 약 0.7%이다. 따라서, 상관관계가 없다는 귀무가설을 기각할 수 있다.
(상관관계 있다.)
```

Out[88]:

```
(9.910060890453046, 0.00704786570249751, 2, array([[10.8, 13.6, 15.6], [16.2, 20.4, 23.4]]))
```

4. 단일표본 z 검정

- 분산의 값을 정확히 알고 있는 정규분포의 표본에 대한 기댓값을 조사하는 검정방법
- 현실에서 분산의 값을 정확히 알고 있는 경우가 거의 없어, 사용 거의 안함

5. 단일표본 t 검정 (one-sample t-test)

- 검정통계량 : 스튜던트 t분포를 갖는 t통계량

단일표본 t검정(One-sample t-test)은 정규분포의 표본에 대해 기댓값을 조사하는 검정방법이다. 검정통계량으로 스튜던트 t분포를 가진 t통계량을 사용한다.

사이파이의 stats 서브 패키지의 $ttest_1samp$ 명령을 사용한다. $ttest_1samp$ 명령의 경우에는 디폴트 모수가 없으므로 기댓값을 나타내는 popmean 인수를 직접 지정해야 한다.

scipy.stats.ttest 1samp(a, popmean)

a: 표본 데이터 배열

popmean: 귀무가설의 기댓값

예제

- 데이터 갯수 N = 10, 실제 모수 u = 0인 경우에 대해 단일표본 +검정 실시

In [94]:

```
# 1. 확률변수 생성

N = 10
mu_0 = 0
rv = sp.stats.norm(mu_0)

# 2. 샘플링 실시
x = rv.rvs(N,random_state=0)

# 3. 단일표본 t-검정 실시
sp.stats.ttest_lsamp(x,popmean=0) # popmean = 0, 귀무가설의 기댓값

# 4. 검정결과
# 유의수준보다 낮은 p-value로 귀무가설 기각 가능. 실제 모수가 0 임에도, 0이 아니라고 검정결과가 나옴
# type-1 error 발생 (= 귀무가설이 맞음에도 잘못 검정)
```

Out[94]:

Ttest_1sampResult(statistic=2.28943967238967, pvalue=0.0478184649085 7058)

예제

- 데이터 갯수 N = 100, 실제 모수 u = 0인 경우에 대해 단일표본 +검정 실시

In [95]:

```
# 1. 확률변수 생성

N = 100

mu_0 = 0 # 실제 모수

rv = sp.stats.norm(mu_0)

# 2. 샘플링 실시

x = rv.rvs(N,random_state=0)

# 3. 단일표본 t-검정 실시

sp.stats.ttest_1samp(x,popmean=0) # popmean = 0, 귀무가설의 기댓값

# 4. 검정결과

# 유의수준보다 p-value가 매우 높음. 귀무가설 기각할 수 없음.
```

Out[95]:

Ttest_1sampResult(statistic=0.5904283402851698, pvalue=0.55624891586 94675)

Type-1 error : 귀무가설을 잘못 기각 (기각하면 안됨)

Type-2 error : 귀무가설을 잘못 채택 (채택하면 안됨)

6. 독립표본 t-검정

- 두 개의 독립적인 정규분포의 기댓값이 동일한지 검정
- 두 분포의 분산이 같을 때, 다를 때 사용하는 검정통계량이 다름
 - 등분산 검정 : 두 분포의 분산이 같은지 확인
- 1) 두 정규분포의 분산이 같은 경우
- 2) 두 정규분포의 분산이 다른 경우

독립표본 t검정은 사이파이 stats 서브패키지의 ttest ind 명령을 사용하여 계산.

독립표본 t검정은 두 정규분포의 분산값이 같은 경우와 같지 않은 경우에 사용하는 검정통계량이 다르기 때문에 equal var 인수를 사용하여 이를 지정해 주어야 함.

두 분포의 분산이 같은지 다른지는 다음에 나올 등분산검정(equal-variance test)을 사용하면 된다. 만약 잘 모르겠으면 equal var=False로 놓으면 됨.

scipy.stats.ttest_ind(a, b, equal_var=True)

a: 1번 표본 집합 데이터

b: 2번 표본 집합 데이터

equal_var: 두 표본 집합의 분산이 같은경우에는 True

연습문제

1반과 2반 학생 들의 성적이 각각 다음과 같다고 가정하자.

- 1반: 80점, 75점, 85점, 50점, 60점, 75점, 45점, 70점, 90점, 95점, 85점, 80점. 평균 74.1점
- 2반: 80점, 85점, 70점, 80점, 35점, 55점, 80점. 평균 69.2점

1반의 실력이 2반보다 좋다고 이야기 할 수 있는가?

In [101]:

```
# 1. 1반과 2반의 정규분포를 그렸을 때, 분포의 기댓값이 다른지 확인

x1 = [80,75,85,50,60,75,45,70,90,95,85,80]

x2 = [80,85,70,80,35,55,80]

# 2. 독립표본 t-검정

sp.stats.ttest_ind(x1,x2,equal_var=True)

# 3. 높은 p-value로, 1반과 2반의 정규분포 상 기댓값이 동일하다는 귀무가설 기각할 수 없음
# 따라서, 1반의 실력이 2반보다 좋다고 할 수 없다.
```

Out[101]:

Ttest_indResult(statistic=0.623010926550264, pvalue=0.5415458608473267)

7. 대응표본 t-검정

- 두 개의 독립적인 정규분포의 기댓값이 동일한지 검정
- 독립표본 t-검정 과 다른점
 - * 집단의 표본에 대해 paired-two-sample 구성 -> 표본평균 대신, (표본차 평균) 대입
- ex) A~E라는 학생이, 스쿨 수강 전과 후의 시험성적을 놓고, 수강 전과 후의 시험점수 분포 기댓 값이 동일한지 검정하는 것.

이처럼, 스쿨 수강에 따른 1:1 대응(pair) 관계를 알면, 표본간의 차이의 영향을 없앨 수 있음(다른 특강의 영향을 보다 정확히 추정 가능)

대응표본 t검정은 ttest rel 명령을 사용한다.

ttest rel(a, b)

a: 1번 표본 집합 데이터

b: 2번 표본 집합 데이터

8. 등분산검정

- 등분산검정: 독립표본 t-검정 (ttest ind)을 시행하기 전, 두 분포의 분산이 같은지 검정이 필요. 이때 활용
- bartlett, fligner, levene 검정을 주로 사용

사이파이의 stats 서브패키지는 이를 위한 bartlett, fligner, levene 명령을 제공

```
sp.stats.bartlett(x1, x2)
sp.stats.fligner(x1, x2)
sp.stats.levene(x1, x2)
```

9. 정규성 검정

사이파이 에서 제공하는 정규성검정 명령어

콜모고로프-스미르노프 검정(Kolmogorov-Smirnov test) : scipy.stats.ks_2samp 샤피로-윌크 검정(Shapiro-Wilk test) : scipy.stats.shapiro 앤더스-달링 검정(Anderson-Darling test) : scipy.stats.anderson 다고스티노 K-제곱 검정(D'Agostino's K-squared test) : scipy.stats.mstats.normal

StatsModels에서 제공하는 정규성검정 명령어

콜모고로프-스미르노프 검정(Kolmogorov-Smirnov test) : statsmodels.stats.diagnost ic.kstest normal

옴니버스 검정(Omnibus Normality test) : statsmodels.stats.stattools.omni_norm test

자크-베라 검정(Jarque—Bera test) : statsmodels.stats.stattools.jarque_bera 릴리포스 검정(Lilliefors test) : statsmodels.stats.diagnostic.lillifors

- 가장 기본적인 검정: KS검정
 - KS검정: 본래 정규성검정을 위한 것이 아님. 두 표본이 같은 분포를 따르는 지 확인할 수 있는 방법(정규분포를 기준으로 다른 표본의 분포를 비교하여 정규성 검정 진행!)