Index of Refraction Lab Report

Billy Shaw with Raven and Micheal

March 28, 2019

1 Introduction

In the Index of Refrflipping action Lab, we were missioned to measure the index of refraction of a glycol box and the critical angle for a laser moving into a water container, using provided materials.

2 Experimental Setup

3 Data & Result

Yielded Data for Experiment 1

Angle of Incidence	Angle of Refraction
70°	42°
60°	38°
50°	32°
40°	28°
30°	20°
20°	16°
10°	8°

Table 1: Yielded data for experiment 1, including Angles of Refraction (θ_2) and Angles of Incidence (θ_1)

Yielded Data for Experiment 2

Critical Angle	51°
<i>n</i> of the Container	about 1.49

Table 2: Yielded data for experiment 2, where n is the refractive index of the container

3.1 Sample Calculation

To calculate the index of refraction, we apply Snell's law:

$$n_1 \sin \theta_1 = n_2 \sin \theta_2,$$
 (Snell's Law)
$$n_2 = \frac{n_1 \sin \theta_1}{\sin \theta_2}.$$
 (1)

Take row $\theta_1 = 50^\circ$, $\theta_2 = 32^\circ$ as an example:

$$n_2 = \frac{n_1 \sin \theta_1}{\sin \theta_2}$$
$$= \frac{1 \times \sin 50^{\circ}}{\sin 32^{\circ}}$$
$$\approx 1.45$$

4 Discussion Questions

- 4.1 Do we need to consider the central medium when calculating the index of refraction?
- 4.2 Why doesn't the critical angle match up with our expectation. Should it?
- 4.3 2015 AP® Physics 2 FRQ #1
- a.
- b.
- c.