## Marcin Mikuła

## **Aproksymacja**

Do obliczeń użyłem języka Python na systemie Windows 10.

Funkcja do analizy:

$$f(x) = e^{-\sin(2*x)} + \sin(2*x) - 1$$



Wykres 1. Zadana funkcja

Eksperyment polegał na uruchomieniu programu który wykonywał obliczenia dla liczby węzłów [10, 15, 20, 25, 50, 100, 500], oraz stopni wielomianów [4, 6, 8, 10]. Rysowanie wykresów oraz obliczanie błędów odbywało się dla 1000 równoodległych punktów. Do rozwiązywania układu równań użyto funkcji bibliotecznej numpy.linagl.solve

| Liczba<br>węzłów | Stopień wielomianu | Największy bezwzględny błąd | Suma kwadratów różnic |
|------------------|--------------------|-----------------------------|-----------------------|
| 10               | 4                  | 0.517237                    | 48.389235             |
| 10               | 6                  | 0.522569                    | 47.799450             |
| 10               | 8                  | 0.426312                    | 45.189435             |
| 15               | 4                  | 0.478427                    | 46.400202             |
| 15               | 6                  | 0.499607                    | 45.330175             |
| 15               | 8                  | 0.431514                    | 39.052981             |
| 15               | 10                 | 0.355121                    | 36.339018             |
| 20               | 4                  | 0.467349                    | 45.980683             |
| 20               | 6                  | 0.494647                    | 45.134466             |
| 20               | 8                  | 0.426906                    | 38.177597             |
| 20               | 10                 | 0.337927                    | 33.003884             |
| 25               | 4                  | 0.458687                    | 45.736912             |
| 25               | 6                  | 0.492637                    | 45.013290             |
| 25               | 8                  | 0.425627                    | 37.999599             |
| 25               | 10                 | 0.337224                    | 32.664423             |
| 50               | 4                  | 0.449057                    | 45.352886             |
| 50               | 6                  | 0.488348                    | 44.768006             |
| 50               | 8                  | 0.421586                    | 37.619597             |
| 50               | 10                 | 0.337571                    | 32.147485             |
| 100              | 4                  | 0.453123                    | 45.239062             |
| 100              | 6                  | 0.485658                    | 44.665837             |
| 100              | 8                  | 0.418299                    | 37.439987             |
| 100              | 10                 | 0.338159                    | 31.865757             |
| 500              | 4                  | 0.456595                    | 45.202531             |
| 500              | 6                  | 0.483056                    | 44.625141             |
| 500              | 8                  | 0.414703                    | 37.363679             |
| 500              | 10                 | 0.339000                    | 31.736622             |

Tabela 1. Tabela błędów dla aproksymacji średniokwadratowej algebraicznej



Wykres 2.

Funkcja aproksymująca dla 20 równoodległych węzłów oraz wielomianu 6 stopnia.



Wykres 3.

Funkcja aproksymująca dla 100 równoodległych węzłów oraz wielomianu 6 stopnia.



Funkcja aproksymująca dla 20 równoodległych węzłów oraz wielomianu 13 stopnia

Z wykresów oraz tabeli błędów dobrze widać, że liczba węzłów ma znikomy wpływ na dokładność przybliżenia, natomiast zwiększanie stopnia wielomianu znacznie zwiększa dokładność funkcji aproksymującej.