Zadaci za MI

18. studenog 2015.

- 1. Koncentracije primjesa na n i p strani diode iznose $N_D=10^{17}$ cm⁻³ i $N_A=10^{15}$ cm⁻³. Parametri manjinskih nosilaca su μ_n =850 cm²/Vs, μ_n =300 cm²/Vs, τ_n =1,2 μ s, τ_n =0,8 μ s. Površina pn spoja iznosi $S=2 \text{ mm}^2$. Vrijedi $L_p>>w_n=1 \text{ }\mu\text{m}$ i $L_n<< w_p=1 \text{ }m\text{m}$. Pretpostaviti m=1 i da se pokretljivosti ne mijenjaju s temperaturom.
- **1.1.** Izračunati struju zasićenja na *T*=300 K.
- **1.2.** Struju kroz diodu kad se na nju priključi napon U=0.5 V uz $I_S=1.5$ pA i T=300 K.
- **1.3.** Dinamički otpor diode uz priključen napon U=75 mV uz $I_S=150 \text{ pA}$ i T=300 K.

18.11.2015. 15:20 - isječak zaslona

2. Prijenosna karakteristika nekog MOSFET-a prikazana je na slici. Pokretljivost nosilaca u kanalu je 350 cm²/Vs, a omjer širine i duljine kanala je 10. $\lambda = 0$.

- 2.2. Izračunati struju u točki A ako je debljina silicij-dioksida
- 2.3. Izračunati strminu u točki B ako je debljina silicij-dioksida 80 nm.

Rjesenje:

Rjesenje:

Rjesenje:

2.1.

a) obogaćeni NMOS *

a) $I_{DA} = 0.8 \text{ mA}$

b) osiromašeni NMOS

b) $I_{DA} = 0.2 \text{ mA}$

c) obogaćeni PMOS

c) $I_{DA} = 0.1 \text{ mA}$

d) osiromašeni PMOS

e) neutralni NMOS

d) $I_{DA} = 0.450 \text{ mA}$

e) $I_{DA} = 0.225 \text{ mA} *$

2.3.

a) $g_{mB} = 0.9 \text{ mA/V}$

b) $g_{mB} = 0.525 \text{ mA/V}$

c) $g_{mB} = 0.225 \text{ mA/V}$

d) $g_{mB} = 0.3 \text{ mA/V} *$

e) $g_{mB} = 0.4 \text{ mA/V}$

18.11.2015. 15:20 - isječak zaslona

1. ZADATAK

Na slici je zadana CR mreža i napon koji je priključen na njezin ulaz.

1.1. Izračunati vrijednost izlaznog napona u t = 0 ms (1 bod).

1.3. Izračunati vrijednost izlaznog napona u t = 10 ms (1 bod).

(a) u_{iz} (0 ms) = 0 V

(b) u_{iz} (0 ms) = -3 V

(c) u_{iz} (0 ms) = 3 V

(d) u_{iz} (0 ms) = 2 V

(e) u_{iz} (0 ms) = -4 V

Odgovori

1.1.

1.2.

(a) u_{iz} (6 ms) = -1,51 V

(b) u_{iz} (6 ms) = -0,29 V

(c) u_{iz} (6 ms) = -2,02 V

(d) u_{iz} (6 ms) = 2,02 V

(e) u_{iz} (6 ms) = 0,39 V

1.3.

(a) u_{iz} (10 ms) = -2,35 V

(b) u_{iz} (10 ms) = 2,59 V

(c) u_{iz} (10 ms) = 0,59 V

(d) u_{iz} (10 ms) = 3,04 V

(e) u_{iz} (10 ms) = 2,35 V

18.11.2015. 15:22 - isiečak zaslona

7 7 A D A T A IV

L fee Al

2. ZADATAK

Izlazna karakteristika nekog MOSFET-a prikazana je na slici. Napon praga tranzistora iznosi $U_{GS0} = -0.5 \, \mathrm{V}$, a faktor modulacije duljine kanala $\lambda = -0.005 \, \mathrm{V}^{-1}$. Strujna konstanta MOSFET-a iznosi $-2 \, \mathrm{mA/V^2}$.

- 2.1. Odrediti tip MOSFET-a (1 bod).
- 2.2. Izračunati strminu u točki A (1 bod).
- Izračunati struju i izlazni dinamički otpor u točki B (1 bod).

Odgovori

2.1.

- (a) obogaćeni NMOS
- (b) osiromašeni PMOS
- (c) obogaćeni PMOS
- (d) osiromašeni NMOS
- (e) neutralni PMOS

2.2.

- (a) $g_{mA} = 2 \text{ mA/V}$
- (b) $g_{mA} = 0.5 \text{ mA/V}$
- (c) $g_{mA} = 4 \text{ mA/V}$
- (d) $g_{mA} = 1 \text{ mA/V}$
- (e) $g_{mA} = 0.25 \text{ mA/V}$

2.3.

- (a) $I_{DB} = -1.01 \text{ mA}, r_d = 200 \text{ k}\Omega$
- (b) $I_{DB} = -2,02 \text{ mA}, r_d = 100 \text{ k}\Omega$
- (c) $I_{DB} = 1.01 \text{ mA}, r_d = 200 \text{ k}\Omega$
- (d) $I_{DB} = 0$ mA, $r_d = \infty$ k Ω
- (e) $I_{DB} = -4 \text{ mA}, r_d = 50 \text{ k}\Omega$

18.11.2015. 15:22 - isiečak zaslona

1. Izlazna karakteristika nekog tranzistora prikazana je na slici. Odrediti strminu g_m i ulazni dinamički otpor r_{bc} u radnoj točki A. $U_T = 25$ mV. (1 bod)

b)
$$g_m = 196 \text{ mA/V}, r_{be} = 5 \Omega,$$

e)
$$g_m = 196 \text{ mA/V}, r_{be} = 5 \Omega,$$

d)
$$g_m = 8 \text{ mA/V}, r_{be} = 250 \Omega,$$

e)
$$g_m = 200 \text{ mA/V}, r_{be} = 100 \Omega.$$

18.11.2015. 15:22 - isječak zaslona

ZADATAK 1. Za sklop na slici a) priključen je ulazni napon $u_{UL}(t)$ prema slici b). U t = 0 ms napon na kondenzatorima C_1 i C_2 iznosi 0 V.

- a) Odrediti vremensku konstantu (0,5 boda).
- b) Napisati izraz za izlazni napon u_{IZ} u intervalu $0 < t < \infty$ ms, te izračunati vrijednosti izlaznog napona u t = 0 ms i 5 ms (2 boda).
- c) Na istom grafu nacrtati ulazni i izlazni napon (0,5 boda).

0 5 10 t [ms]

b)

18.11.2015. 15:23 - isječak zaslona

Rjesenje:

ZADATAK 2. Idealni *n*-kanalni silicijski MOSFET s parametrom modulacije dužine kanala λ =0 u radnoj točki A ima izlazni dinamički otpor 1 kΩ i faktor naponskog pojačanja 5. Napon U_{DSA} u radnoj točki A iznosi 1,67 V.

- a) Odrediti strujni koeficijent K, napon praga U_{GS0} te napon U_{GSA} u radnoj točki A, ako uz dvostruko veći U_{GSB} i U_{DSB}=U_{DSA} struje poraste na I_{DB}=15 mA. (2 boda)
- b) U kojem području rada se nalazi točka A? (0,5 boda)
- c) Kojeg je tipa MOSFET? (0,5 boda)

18.11.2015. 15:23 - isječak zaslona

ZADATAK 1. Homogeno je dopirana silicijska pn-dioda primjesama koncentracija $N_D = 10^{16} \,\mathrm{cm}^{-3}$ i $N_A = 8 \cdot 10^{15} \,\mathrm{cm}^{-3}$. Širine strana su $W_n = 2 \,\mu\mathrm{m} << L_p$ i $W_p = 3 \,\mu\mathrm{m} << L_n$, a površina pn-spoja iznosi $S = 0.5 \,\mathrm{mm}^2$. Pokretljivosti manjinskih nosilaca iznose $\mu_n = 1230 \,\mathrm{cm}^2/\mathrm{Vs}$ i $\mu_p = 425 \,\mathrm{cm}^2/\mathrm{Vs}$, a vremena života $\tau_n = 0.8 \,\mu\mathrm{s}$ i $\tau_p = 0.5 \,\mu\mathrm{s}$. Pretpostaviti $T = 300 \,\mathrm{K}$.

- (a) Izračunati iznos struje kroz diodu ako se na nju spoji napon propusne polarizacije $U_D = 0.5 \text{ V}$ (4 boda).
- (b) Nacrtati raspodjele manjinskih nosilaca, izračunati i označiti rubne te ravnotežne koncentracije za priključeni napon propusne polarizacije $U_D = 0.5 \text{ V } (\textbf{4 boda}).$
- (c) Izračunati dinamičke otpore diode ako su na nju spojen naponi $U_D = 0.5 \text{ V}$ i $U_D = -0.5 \text{ V}$ (2 boda).

18.11.2015. 15:24 - isječak zaslona

ZADATAK 2. *N*-kanalni silicijski MOSFET ima duljinu i širinu kanala od 2 μm, a kapacitet oksida iznosi 12,5 μF/cm². Pokretljivost elektrona u kanalu je 400 cm²/Vs, a pokretljivost šupljina iznosi 100 cm²/Vs. Uz napon $U_{GS} = 1$ V, strmina iznosi 7,5 mA/V, a faktor pojačanja $\mu = 1$. Zanemariti porast struje odvoda u zasićenju. T = 300 K.

- (a) Izračunati napon U_{DS} (4 boda).
- (b) Izračunati napon praga (4 boda).
- (c) Odrediti tip MOSFET-a (obrazložiti) (1 bod).
- (d) Izračunati struju I_D za zadanu radnu točku (1 bod).

18.11.2015. 15:24 - isiečak zaslona

ZADATAK.1.

- 1-1. Uz napon na diodi U= -5 V kroz diodu teče struja iznosa |I|=10 pA. Kolika struja teče uz U=0,475 V. Uzeti mU_T =25 mV. (1bod)
- 1-2. Struja zasićenja diode iznosi I_s =1 nA. Koliki je dinamički otpor uz struju I=2,5 nA. Uzeti mU_T =25 mV. (1bod)
- 1-3. Uz napon na vanjskim priključcima *U*=0,525 V kroz diodu teče struja *I*=5 mA. Koliki je serijski otpor diode *R*_S, ako je struja zasićenja *I*_s=10 pA. Uzeti *mU*_T=25 mV. (1bod)

Odgovori:

1-1. (1bod)	1-2. (1bod)	1-3. (1bod)
a. I_D =1,785 mA,	a. r_d =7,14 M Ω ,	a. $R_S=4,85 \Omega$,
b. I_D =0,66 mA,	b. $r_d=10 \text{ M}\Omega$,	b. $R_S=105 \Omega$,
c. $I_D=1$ mA,	c. $r_d=16,7 \text{ M}\Omega$,	c. $R_S=5 \Omega$,
d. I_D =4,85 mA,	d. $r_d = 8 \Omega$,	d. R_S =250 M Ω ,
e. I_D =65 μ A.	e. $r_d=12 \Omega$.	e. $R_S=12,5 \Omega$.

18.11.2015. 15:25 - isječak zaslona

ZADATAK.2. Prijenosna karakteristika nekog MOSFET-a prikazana je na slici. Strujna konstanta MOSFET-a iznosi $|K| = 0.25 \text{ mA/V}^2$. Pretpostaviti $\lambda = 0$.

Odrediti:

2-1. tip MOSFET-a (1bod)

2-2. struju i strminu u točki A (1bod)

2-3. struju i strminu u točki B (1bod)

Odgovori:

2-1. (1bod)

a. n-kanalni, obogaćeni tip,

b. n-kanalni, osiromašeni tip,

c. p-kanalni, obogaćeni tip,

d. p-kanalni, osiromašeni tip,

e. p-kanalni obogaćeno-osiromašeni tip. e. I_{DA} =- 0,125 mA, g_{mA} =0,625 mA/V

2-2. (1bod)

a. I_{DA} =- 0,125 mA, g_{mA} =0,25 mA/V

b. I_{DA} =- 0,125 mA, g_{mA} =0,375 mA/V

c. I_{DA} =- 93,75 μ A, g_{mA} =0,375 mA/V

d. I_{DA} = - 93,75 μ A, g_{mA} =0,25 mA/V

2-3. (1 bod)

U_{DS}= - 1,5 V

a. I_{DB} =- 0,469 mA, g_{mB} =0,375 mA/V

 I_D , [mA]

U_{GS}, [V]

b. I_{DB} =- 0,469 mA, g_{mB} =0,5 mA/V

c. I_{DB} =- 0,5 mA, g_{mB} =0,5 mA/V d. I_{DB} =- 0,5 mA, g_{mB} =0,375 mA/V

e. I_{DB} =- 1 mA, g_{mB} =1 mA/V

18.11.2015. 15:25 - isječak zaslona

ZADATAK 1. Prijenosna karakteristika nekog MOSFET-a prikazana je na slici. Pretpostaviti da je $\lambda = 0$.

Odrediti:

1.1. tip MOSFET-a (1 bod),

1.2. strminu u točki A (1 bod),

1.3. struju i strminu u točki B (1 bod).

Odgovori:

a) osiromašeni PMOS 1.1.

b) obogaćeni PMOS

c) osiromašeno-obogaćeni MOSFET

d) osiromašeni NMOS

e) obogaćeni NMOS

1.2. a) $g_{mA} = 0.25 \text{ mA/V}$

b) $g_{mA} = 0.5 \text{ mA/V}$

c) $g_{mA} = 0.33 \text{ mA/V}$ **d)** $g_{mA} = 0.167 \text{ mA/V}$

e) $g_{mA} = 1 \text{ mA/V}$

a) $I_{DB} = 0.5625 \text{ mA}, g_{mB} = 0.75 \text{ mA/V}$

b) $I_{DB} = 1{,}125 \text{ mA}, g_{mB} = 1{,}5 \text{ mA/V}$

c) $I_{DB} = 0.5 \text{ mA}, g_{mB} = 1 \text{ mA/V}$

d) $I_{DB} = 1 \text{ mA}, g_{mB} = 2 \text{ mA/V}$

e) $I_{DB} = 0.4 \text{ mA}, g_{mB} = 0.625 \text{ mA/V}$

18.11.2015. 15:26 - isječak zaslona

1. ZADATAK

Na slici je zadana CR mreža i napon koji je priključen na njezin ulaz.

1.1. Izračunati vrijednosti izlaznog napona u $t = 0^+$ ms (1 bod).

1.2. Izračunati vrijednosti izlaznog napona u t = 9 ms (1 bod).

1.3. Izračunati vrijednosti izlaznog napona u t = 21 ms (1 bod).

Odgovori

1.1. (a) $u_{iz}(0^+\text{ms}) = 0 \text{ V}$

(b) $u_{iz}(0^+\text{ms}) = -3 \text{ V}$

(c) $u_{iz}(0^+\text{ms}) = -1 \text{ V}$

(d) $u_{iz}(0^+\text{ms}) = -2 \text{ V}$

(e) $u_{iz}(0^+\text{ms}) = 2 \text{ V}$

1.2. (a) $u_{iz}(9\text{ms}) = 3{,}22\text{ V}$

(b) $u_{iz}(9\text{ms}) = 5 \text{ V}$

(c) $u_{iz}(9\text{ms}) = 8 \text{ V}$

(d) $u_{iz}(9\text{ms}) = 3.82 \text{ V}$ (e) $u_{iz}(9\text{ms}) = 1,18 \text{ V}$ **1.3.** (a) $u_{iz}(21\text{ms}) = 0 \text{ V}$

(b) $u_{iz}(21\text{ms}) = -2.48 \text{ V}$

(c) $u_{iz}(21\text{ms}) = -3 \text{ V}$

(d) $u_{iz}(21\text{ms}) = 2,11 \text{ V}$

(e) $u_{iz}(21\text{ms}) = -0.89 \text{ V}$

ZADATAK 1. Prijenosna karakteristika nekog MOSFET-a uz $U_{DS} = -2 \text{ V}$ prikazana je na slici.

Pretpostaviti da je $\lambda = 0$. Odrediti:

- 1.1. tip MÖSFET-a (1 bod),
- 1.2. napon praga (1 bod),
- 1.3. strminu u točki A (1 bod),
- 1.4. struju u točki B (1 bod),
- 1.5. strminu i dinamički otpor u točki B (1 bod).

Odgovori:

- 1.1. a) nMOS, obogaćenoosiromašeni tip
 - b) pMOS, obogaćeni tip
 - c) pMOS, osiromašeni tip
 - d) nMOS, osiromašeni tip
 - e) nMOS, obogaćeni tip
- **1.4.** a) $I_{DB} = -4 \text{ mA*}$
 - **b)** $I_{DB} = 2,22 \text{ mA}$
 - c) $I_{DB} = 4.7 \text{ mA}$ **d)** $I_{DB} = -2,22 \text{ mA}$

 - **e)** $I_{DB} = 3.1 \text{ mA}$

- - **a)** $U_{GS0} = -0.5 \text{ V}$ **b)** $U_{GS0} = -0.25 \text{ V}$
 - e) $U_{GS0} = -0.75 \text{ V}$
 - **d)** $U_{GS0} = 0.75 \text{ V}$
 - e) $U_{GS0} = 0.5 \text{ V}$
- 1.3.
- **a)** $g_{mA} = 0.33 \text{ mA/V}$
 - **b)** $g_{mA} = 0.67 \text{ mA/V}$ **c)** $g_{mA} = 1,33 \text{ mA/V}$
 - **d)** $g_{mA} = 0.89 \text{ mA/V}$

 - e) $g_{mA} = 1,78 \text{ mA/V}$

- **1.5.** a) $g_{mB} = 2.89 \text{ mA/V}$, $r_{dB} = 900 \Omega$
 - **b)** $g_{mB} = 1,78 \text{ mA/V}, r_{dB} = \infty$
 - **c)** $g_{mB} = 1,78 \text{ mA/V}, r_{dB} = 0,9 \text{ k}\Omega$
 - **d)** $g_{mB} = 2,89 \text{ mA/V}, r_{dB} = \infty$
 - e) $g_{mB} = 2,89 \text{ mA/V}, r_{dB} = 4,5 \text{ k}\Omega$

18.11.2015. 15:27 - isiečak zaslona

ZADATAK 1. N-kanalni idealni silicijski MOSFET ima duljinu kanala 2 μm, a kapacitet upravljačke elektrode prema kanalu iznosi 0.5 pF. Faktor naponskog pojačanja u nekoj točki iznosi $\mu = 1$. Pokretljivost većinskih nosilaca u kanalu je 400 cm²/Vs.

- Odrediti područje rada MOSFET-a (1 bod). 1.1.
- 1.2. Odrediti strujni koeficijent K MOSFET-a (1 bod).
- Ako se promjenom tehnološkog parametra promijeni strujni koeficijent na $K = 4 \text{ mA/V}^2$, izračunati napon U_{DS} pri kojem strmina iznosi $g_m = 6$ mA/V. Pri tome pretpostaviti da je faktor naponskog pojačanja u točki $\mu = 1$. (1 bod).
- Odrediti napon praga U_{GS0} ako je $U_{GS} = 1 \text{ V}$, $U_{DS} = 1.5 \text{ V}$, dinamička vodljivost $g_d = 6 \text{ mS}$ i $K = 4 \text{ mA/V}^2 (1 \text{ bod}).$
- Odrediti strminu ako se u odnosu na 1.4. napon U_{DS} promijeni na 5 V, a U_{GS} ostane nepromijenjen $(U_{GS} = 1 \text{ V}) (1 \text{ bod}).$

ODGOVORI:

- **1.1.** (a) triodno
 - (b) zapiranje
 - (c) u području gdje možemo uzeti da je $r_d = \infty$
 - (d) zasićenju
 - (e) nijedno od navedenih
- **1.2.** (a) $K = 0.5 \text{ mA/V}^2$
 - (b) $K = 10 \text{ mA/V}^2$ (c) $K = 20 \text{ mA/V}^2$
 - (d) $K = 5 \text{ mA/V}^2$
 - (e) $K = 0.1 \text{ mA/V}^2$
- (a) $U_{DS} = 0 \text{ V}$
 - (b) $U_{DS} = 0.75 \text{ V}$
 - (c) $U_{DS} = 3 \text{ V}$
 - (d) $U_{DS} = 1,5 \text{ V}$
 - (e) $U_{DS} = 2 \text{ V}$

- **1.4.** (a) $U_{GS0} = -1.7 \text{ V}$
 - (b) $U_{GS0} = -2 \text{ V}$
 - (c) $U_{GS0} = 1.7 \text{ V}$

 - (d) $U_{GS0} = 2 \text{ V}$ (e) $U_{GS0} = 0 \text{ V}$

- (a) $g_m = 27.5 \text{ mA/V}$
 - (b) $g_m = 10 \text{ mA/V}$
 - (c) $g_m = 13.5 \text{ mA/V}$
 - (d) $g_m = 4 \text{ mA/V}$
 - (e) $g_m = 12 \text{ mA/V}$

18.11.2015. 15:28 - isječak zaslona

Zadatak 1. Izlazne karakteristike nekog MOSFET-a prikazane su na slici 7. U karakteristikama je zanemaren

efekt modulacije duljine kanala.

- 1.1. Odrediti tip MOSFET-a.
- 1.2. Odrediti strujnu konstantu K tranzistora.
- **1.3.** Izračunati struju u točki A ako je $|K| = 5 \text{ mA/V}^2$.
- **1.4.** Izračunati strminu u točki B ako je $|K| = 2 \text{ mA/V}^2$.
- 1.5. Izračunati faktor modulacije duljine kanala uz koji je struja odvoda jednaka 8,3 mA za napone U_{GS} = -1,5 V, U_{DS} = -4 V i |K| = 4 mA/V².

Napon odvoda, $U_{\scriptscriptstyle DS}$ (V) Slika 7. Izlazne karakteristike

1.3.

a) -1,875 mA

b) 1,875 mA

c) -3,125 mA

d) 3,125 mA

e) -3,75 mA

1.1. 1.2. a) -8 mA/V2 a) ne može se odrediti b) PMOS, obogaćeni b) 8 mA/V2 c) -36 mA/V2 c) NMOS, osiromašeni d) -4 mA/V2 d) NMOS, obogaćeni e) PMOS, osiromašeni e) 4 mA/V² 1.4. 1.5. a) +2 mA/V a) 0,006250 V-1 b) 0,009375 V⁻¹ b) +4 mA/V

18.11.2015. 15:28 - isječak zaslona

c) -4 mA/V

d) +8 mA/V e) -2 mA/V

- **ZADATAK 2.** Idealni n-kanalni silicijski MOSFET, s parametrom modulacije dužine kanala λ =0, ima u radnoj točki A izlazni dinamički otpor r_{dA} =333 Ω i faktor naponskog pojačanja μ_A =2. Strujni koeficijent mu je K=3 mA/V².
- a) U kojem području rada se nalazi točka A? (1 bod)

c) $0,009036 \text{ V}^{-1}$

d) -0,009036 V⁻¹

e) -0,009375 V⁻¹

- b) Odrediti napon praga U_{GS0} te napone U_{GSA} i U_{DSA} u točki A ako je u točki B, uz napon U_{GSB} koji je za 50% veći od U_{GSA} i nepromijenjeni napon $U_{DSB}=U_{DSA}$, struja MOSFET-a $I_{DB}=24$ mA. (2 boda)
- c) Odrediti tip MOSFET-a. (1 bod)
- d) Kolika je maksimalna struja odvoda MOSFET-a uz napon U_{GSA} iz točke A. (1 bod)

18.11.2015. 15:29 - isječak zaslona

3. Zadana su dva RC člana čije se vremenske konstante odnose kao $\tau_1 << \tau_2$. Kako se odnose srednje vrijednosti njihovih izlaznih napona ako je na ulaz doveđen napon sa slike (1 **bod**)?

- a) $U_{SRI} \gg U_{SR2}$
- **b)** $U_{SRI}/U_{SR2} = -3$,
- c) Odnos ovisi o drugim parametrima,
- d) $U_{SRI} \ll U_{SR2}$
- e) $U_{SRI}/U_{SR2} = 1$.

4. Silicij je dopiran jednim tipom primjese koncentracije *N*. Fermijeva energija nalazi se 0,2 eV od dna vodljivog pojasa. Koji tip i koliku koncentraciju primjese treba dodati da Fermijeva energija završi na udaljenosti 0,2 eV od vrha valentnog pojasa. Treba dodati (**1 bod**):

- a) akceptore, $N_A = 2 \cdot N$,
- **b)** akceptore, $N_A = N$,
- c) donore, $N_D = N$,
- **d)** donore, $N_D = 2 \cdot N$,
- e) akceptore, $N_A > 2 \cdot N$.

18.11.2015. 15:30 - isječak zaslona

5. Pločica silicija dopirana je donorima koncentracije N_{DI} . Specifična vodljivost pločice je σ_I . Koji tip i koncentraciju primjesa treba dodati u pločicu da silicij promijeni tip vodljivosti, a da specifična vodljivost nakon drugog dopiranja bude $\sigma_2 = \sigma_I$. Treba dodati (1 bod):

- a) akceptore, $N_{A2} = 2 \cdot N_{DI}$,
- **b)** donore, $N_{D2} = N_{D1}$,
- e) akceptore, $N_{A2} = N_{D1}$,
- **d)** akceptore, $N_{A2} > 2 \cdot N_{DI}$,
- e) akceptore, $N_{A2} < 2 \cdot N_{D1}$.

18.11.2015. 15:30 - isječak zaslona