CÁLCULO NUMÉRICO UERJ/2023

Estudo do Erro de Interpolação Polinomial

Rodrigo Madureira rodrigo.madureira@ime.uerj.br IME-UERJ

Sumário

- Forma de Newton
 - Operador diferença dividida
 - Construção da tabela
- 2 Erro na interpolação
 - Erro para f(x) conhecido
 - Erro para f(x) conhecido
 - Estimativa do erro (f(x)) desconhecido)
- 3 Bibliografia

A forma de Newton para um polinômio de grau n, $P_n(x)$, que interpola uma função f(x) nos pontos x_0, x_1, \ldots, x_n é dada por:

$$P_n(x) = d_0 + d_1(x - x_0) + d_2(x - x_0)(x - x_1) + \dots + d_n(x - x_0)(x - x_1) \dots (x - x_{n-1})$$

onde d_k é a diferença dividida de ordem k.

Definimos o operador diferenças divididas através deste bloco

$$d_0 = f[x_0] = f(x_0) \text{ (Ordem zero)}$$

$$d_1 = f[x_0, x_1] = \frac{f[x_1] - f[x_0]}{x_1 - x_0} = \frac{f(x_1) - f(x_0)}{x_1 - x_0} \text{ (Ordem 1)}$$

$$d_n = f[x_0, x_1, x_2, ..., x_n] = \frac{f[x_1, x_2, ..., x_n] - f[x_0, x_1, x_2, ..., x_{n-1}]}{x_n - x_0} \text{ (Ordem n)}$$

A forma de Newton para um polinômio de grau n, $P_n(x)$, que interpola uma função f(x) nos pontos x_0, x_1, \ldots, x_n é dada por:

$$P_n(x) = d_0 + d_1(x - x_0) + d_2(x - x_0)(x - x_1) + \dots + d_n(x - x_0)(x - x_1) \dots (x - x_{n-1})$$

onde d_k é a diferença dividida de ordem k.

Definimos o operador diferenças divididas através deste bloco:

$$d_0 = f[x_0] = f(x_0) \text{ (Ordem zero)}$$

$$d_1 = f[x_0,x_1] = \frac{f[x_1] - f[x_0]}{x_1 - x_0} = \frac{f(x_1) - f(x_0)}{x_1 - x_0} \text{ (Ordem 1)}$$

...

$$d_n = f[x_0, x_1, x_2, ..., x_n] = \frac{f[x_1, x_2, ..., x_n] - f[x_0, x_1, x_2, ..., x_{n-1}]}{x_n - x_0} \; \text{(Ordem n)}$$

Construção da tabela

χ	Ordem 0	Ordem 1	Ordem 2		Ordem n
$\overline{x_0}$	$f[x_0]$				
		$f[x_0, x_1]$			
x_1	$f[x_1]$		$f[x_0, x_1, x_2]$		
		$f[x_1, x_2]$			
χ_2	$f[x_2]$		$f[x_1, x_2, x_3]$		
		$f[x_2, x_3]$		()	$f[x_0, x_1, x_n]$
χ_3	$f[x_3]$		$f[x_2, x_3, x_4]$		
		$f[x_3, x_4]$			
		-5	$f[x_{n-2},x_{n-1},x_n]$		
	-5 3	$f[x_{n-1},x_n]$			
χ_n	$f[x_n]$				

Construção da tabela

χ	Ordem 0	Ordem 1	Ordem 2		Ordem n
$\overline{x_0}$	$f[x_0] = d_0$				
		$f[x_0, x_1] = d_1$			
χ_1	$f[x_1]$		$f[x_0, x_1, x_2] = d_2$		
		$f[x_1, x_2]$			
χ_2	$f[x_2]$		$f[x_1, x_2, x_3]$		
		$f[x_2, x_3]$		()	$f[x_0, x_1,, x_n] = d_1$
χ_3	$f[x_3]$		$f[x_2, x_3, x_4]$		
		$f[x_3, x_4]$			
			•••		
			$f[x_{n-2},x_{n-1},x_n]$		
		$f[x_{n-1}, x_n]$			
χ_n	$f[x_n]$				

 $P_n(x) = f[x_0] + f[x_0, x_1] (x - x_0) + f[x_0, x_1, x_2](x - x_0)(x - x_1) + \dots + f[x_0, x_1, ..., x_n](x - x_0)(x - x_1)...(x - x_{n-1})$

Rodrigo Madureira (IME-UERJ)

Construção da tabela

<u>x</u>	Ordem 0	Ordem 1	Ordem 2		Ordem n
$\overline{x_0}$	$f[x_0] = d_0$				
x_1	$f[x_1]$	$f[x_0, x_1] = d_1$ $f[x_1, x_2]$	$f[x_0, x_1, x_2] = d_2$		
x_2	$f[x_2]$	$f[x_1, x_2]$ $f[x_2, x_3]$	$f[x_1, x_2, x_3]$	()	$f[x_0, x_1,, x_n] = d_1$
χ_3	$f[x_3]$	$f[x_3, x_4]$	$f[x_2, x_3, x_4]$	()	
			$f[x_{n-2}, x_{n-1}, x_n]$		
$\chi_{\rm n}$	$f[x_n]$	$f[x_{n-1},x_n]$	1\(\alpha\n-2\) \(\alpha\n-1\) \(\alpha\n)		

$$P_{n}(x) = f[x_{0}] + f[x_{0}, x_{1}] (x - x_{0}) + f[x_{0}, x_{1}, x_{2}](x - x_{0})(x - x_{1}) + \dots + f[x_{0}, x_{1}, ..., x_{n}](x - x_{0})(x - x_{1})...(x - x_{n-1})$$

Teorema (Teorema 1)

Seja f(x) uma função contínua, com n derivadas contínuas e sejam x_0, x_1, \ldots, x_n pontos distintos num intervalo [a,b] que contém estes pontos.

Então, existe um número $\xi \in (\mathfrak{a},\mathfrak{b})$ tal que:

$$f[x_0, x_1, ..., x_n] = \frac{f^{(n)}(\xi)}{n!}$$
.

Demonstração:

n = 1:

Basta usar o Teorema do Valor Médio para mostrar que se f(x) é contínua e possui uma derivada em (a,b), então existe $\xi \in (a,b)$ tal que:

$$f[x_0, x_1] = \frac{f(x_1) - f(x_0)}{x_1 - x_0} = f'(\xi).$$

 $\mathbf{n}=\mathbf{2}$: Aqui, a hipótese é de que $\mathbf{f}(\mathbf{x})$ seja contínua e com duas derivadas contínuas.

O polinômio de Newton de grau 2, $P_2(x)$, que interpola f(x) nos pontos x_0, x_1, x_2 é dado por:

$$P_2(x) = f(x_0) + f[x_0, x_1](x - x_0) + f[x_0, x_1, x_2](x - x_0)(x - x_1)$$

Sabemos que nos nós de interpolação x_0, x_1, x_2 :

$$f(x_k) = P_2(x_k)$$
, para todo $k = 0, 1, 2$.

Então, nos nós de interpolação:

$$E_2(x_k) = f(x_k) - P_2(x_k) = 0$$
, para todo $k = 0, 1, 2$.

Isso significa que x_0, x_1, x_2 são raízes de $E_2(x)$.

O **Teorema de Rolle** nos diz que se f(x) for contínua no intervalo [a,b] e f(a)=f(b)=0, então existe no mínimo um número $\xi\in(a,b)$ tal que $f'(\xi)=0$.

Então, aplicando o Teorema de Rolle para $E_2(x)$, temos uma das situações:

Ou seja, existem pontos ξ_1 , ξ_2 tais que:

$$x_0 < \xi_1 < x_1 < \xi_2 < x_2$$

Assim, $E_2'(\xi_1) = E_2'(\xi_2) = 0 \Rightarrow \xi_1, \xi_2$ são raízes de $E_2'(x)$.

Aplicando novamente o Teorema de Rolle para $E_2'(x)$, temos uma das situações:

Ou seja, existe $\xi_1 < \xi < \xi_2$, e consequentemente, $x_0 < \xi < x_2$ (pois vimos anteriormente que $x_0 < \xi_1 < x_1 < \xi_2 < x_2$), tal que $E_2''(\xi) = 0$.

Sabemos que:

 $E_2(x) = f(x) - P_2(x)$

$$\Rightarrow E_2(x) = f(x) - \{f(x_0) + f[x_0, x_1](x - x_0) + f[x_0, x_1, x_2](x - x_0)(x - x_1)\}$$

$$\Rightarrow E_2''(x) = f''(x) - 2 f[x_0, x_1, x_2]$$

Ou seja, se $E_2''(\xi) = 0$, temos que:

$$E_2''(\xi) = f''(\xi) - 2 f[x_0, x_1, x_2] = 0 \Rightarrow f[x_0, x_1, x_2] = \frac{f''(\xi)}{2!}$$

Para o caso geral n > 1: Aqui, a hipótese é de que f(x) seja contínua e com n derivadas contínuas. O polinômio de Newton de grau n, $P_n(x)$, que interpola f(x) nos pontos x_0, x_1, \ldots, x_n é dado por:

$$P_{n}(x) = f(x_{0}) + f[x_{0}, x_{1}] (x - x_{0}) + f[x_{0}, x_{1}, x_{2}] (x - x_{0})(x - x_{1})$$

$$+ \dots + f[x_{0}, x_{1}, \dots, x_{n}] (x - x_{0})(x - x_{1}) \dots (x - x_{n-1})$$

Sabemos que nos nós de interpolação:

$$f(x_k) = P_n(x_k)$$
, para todo $k = 0, 1, \dots, n$.

Ou seja,
$$E_n(x_k) = f(x_k) - P_n(x_k) = 0$$
, para todo $k = 0, 1, \dots, n$

Rodrigo Madureira (IME-UERJ) Interpolação Polinomial 24 de outubro de 2023 11/24

Isso significa que os nós de interpolação x_0, x_1, \dots, x_n são raízes de $E_n(x)$.

Aplicando o Teorema de Rolle, existem ξ_1,ξ_2,\ldots,ξ_n tais que $\xi_k\in(x_{k-1},x_k)$ e $E'_n(x_k)=0$, para todo $k=1,2,\ldots,n$.

Assim, $\xi_1, \xi_2, \dots, \xi_n$ são raízes de $E'_n(x)$.

Aplicando novamente o teorema de Rolle para $E_n'(x)$, existem $\tilde{\xi}_1, \tilde{\xi}_2, \ldots, \tilde{\xi}_{n-1}$ tais que $\tilde{\xi}_k \in (\xi_k, \xi_{k+1})$ e $E_n''(\tilde{\xi}_k) = 0$, para todo $k = 1, 2, \ldots, n-1$.

Assim, $\tilde{\xi}_1,\tilde{\xi}_2,\dots,\tilde{\xi}_{n-1}$ são raízes de $E_n''(x).$

Logo, o Teorema de Rolle deve ser sucessivamente aplicado até encontrar:

$$E_n^{(n)}(\xi)=0\text{, onde }\xi\in(x_0,x_n).$$

Sabemos que:

$$\mathsf{E}_{\mathsf{n}}(\mathsf{x}) = \mathsf{f}(\mathsf{x}) - \mathsf{P}_{\mathsf{n}}(\mathsf{x})$$

Assim, a n-ésima derivada de $E_n(x)$ é dada por:

$$E_n^{(n)}(x) = f^{(n)}(x) - n! f[x_0, x_1, \dots, x_n]$$

Tomando $x = \xi$ e sabendo que $E_n^{(n)}(\xi) = 0$, obtemos:

$$E_n^{(n)}(\xi) = f^{(n)}(\xi) - n! \ f[x_0, x_1, \dots, x_n] = 0$$

Portanto,

$$\frac{f^{(n)}(\xi)}{n!} = f[x_0, x_1, \dots, x_n] .$$

Vimos durante as aulas do curso que para todo $x \in (x_0, x_n), \ x \neq x_k$, para todo $k=0,1,\dots,n$:

$$f(x) = f(x_0) + f[x_0, x_1] (x - x_0) + f[x_0, x_1, x_2] (x - x_0)(x - x_1) + \dots + f[x_0, x_1, \dots, x_n] (x - x_0)(x - x_1) \dots (x - x_{n-1}) + f[x_0, x_1, \dots, x_n, x] (x - x_0)(x - x_1) \dots (x - x_n),$$

onde:

$$P_{n}(x) = f(x_{0}) + f[x_{0}, x_{1}] (x - x_{0}) + f[x_{0}, x_{1}, x_{2}] (x - x_{0})(x - x_{1})$$

+ \dots + f[x_{0}, x_{1}, \dots, x_{n}] (x - x_{0})(x - x_{1}) \dots (x - x_{n-1}),

$$E_n(x) = f[x_0, x_1, \dots, x_n, x] \ (x - x_0)(x - x_1) \dots (x - x_n)$$

Ou seja, f(x) é um polinômio de grau (n+1), $P_{n+1}(x)$, que interpola f(x) nos pontos x_0, x_1, \ldots, x_n, x , onde $x \neq x_k$, para todo $k = 0, 1, \ldots, n$.

Assim, pelo Teorema 1, temos que:

$$\frac{f^{(n+1)}(\xi)}{(n+1)!} = f[x_0, x_1, \dots, x_n, x]$$

Logo, substituindo na equação de $E_n(x)$, temos que:

$$E_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)(x - x_1) \dots (x - x_n).$$

E assim, temos o teorema que define o erro na interpolação de f(x) pelo polinômio de grau n, $P_n(x)$, nos pontos distintos x_0, x_1, \ldots, x_n .

Teorema (Teorema 2)

Sejam $x_0 < x_1 < x_2 < ... < x_n$, (n+1) pontos. Seja f(x) com derivadas até ordem (n+1) para todo $x \in [x_0, x_n]$

O erro em qualquer ponto $x \in [x_0, x_n]$ é dado por

$$E_n(x) = f(x) - P_n(x) = (x - x_0)(x - x_1)(x - x_2)...(x - x_n) \frac{f^{n+1}(\xi)}{(n+1)!},$$

onde $\xi \in (x_0, x_n)$.

Corolário 1: Limitante superior para o erro na interpolação de f(x) por $P_n(x)$ nos pontos distintos x_0, x_1, \ldots, x_n :

$$\begin{split} |E_n(x)| &= |f(x) - P_n(x)| \leq |(x - x_0)(x - x_1)(x - x_2)...(x - x_n)| \frac{M_{n+1}}{(n+1)!}, \\ \text{onde } M_{n+1} &= \max_{x \in [x_0, x_n]} |f^{n+1}(x))| \end{split}$$

Corolário 2: Pontos igualmente espaçados

$$x_1 - x_0 = x_2 - x_1 = \dots = x_n - x_{n-1} = h$$

$$|E_n(x)| = |f(x) - P_n(x)| < h^{n+1} \frac{M_{n+1}}{4(n+1)},$$

Corolário 1: Limitante superior para o erro na interpolação de f(x) por $P_n(x)$ nos pontos distintos x_0, x_1, \ldots, x_n :

$$\begin{split} |E_n(x)| &= |f(x) - P_n(x)| \leq |(x - x_0)(x - x_1)(x - x_2)...(x - x_n)| \frac{M_{n+1}}{(n+1)!}, \\ \text{onde } M_{n+1} &= \max_{x \in [x_0, x_n]} |f^{n+1}(x))| \end{split}$$

Corolário 2: Pontos igualmente espaçados

$$x_1 - x_0 = x_2 - x_1 = \dots = x_n - x_{n-1} = h$$

$$|E_n(x)| = |f(x) - P_n(x)| < h^{n+1} \frac{M_{n+1}}{4(n+1)},$$

Estimativa para o erro

Na maioria das vezes, a função f(x) é dada na forma de tabela.

Neste caso,
$$\frac{M_{n+1}}{(n+1)!} \approx (\text{máx} \mid \text{diferenças divididas de ordem } (n+1) \mid)$$

no intervalo $[x_0, x_n]$.

Assim, dizemos que

$$|\mathsf{E}_n(x)| \approx |(x-x_0)(x-x_1)(x-x_2)...(x-x_n)|$$

(máx | diferenças divididas de ordem $(n+1)$ |)

Interpolação Inversa

Condição: f(x) tem que ser uma função bijetiva.

$$y = f(x) \Rightarrow x = f^{-1}(y) = g(y)$$

Ou seja, fazemos $x = g(y) = P_n(y)$

Interpolação Normal

χ	x_0	x_1	χ_2	χ_n
f(x) = y	$f(x_0) = y_0$	$f(x_1) = y_1$	$f(x_2) = y_2$	$f(x_n) = y_n$

Interpolação Inversa

◆ロト ◆部 ト ◆ 差 ト ◆ 差 ・ 釣 へ ②

Interpolação Inversa

Condição: f(x) tem que ser uma função bijetiva.

$$y = f(x) \Rightarrow x = f^{-1}(y) = g(y)$$

Ou seja, fazemos $x = g(y) = P_n(y)$

Interpolação Normal

χ	x ₀	χ_1	χ_2	 χ_n
f(x) = y	$f(x_0) = y_0$	$f(x_1) = y_1$	$f(x_2) = y_2$	 $f(x_n) = y_n$

Interpolação Inversa

y	y 0	y 1	¥2	Уn
g(y) = x	$g(y_0) = x_0$	$g(y_1) = x_1$	$g(y_2) = x_2$	$g(y_n) = x_n$

| ◆□▶ ◆□▶ ◆□▶ ◆□ ◆ へ○

Interpolação Inversa

Condição: f(x) tem que ser uma função bijetiva.

$$y = f(x) \Rightarrow x = f^{-1}(y) = g(y)$$

Ou seja, fazemos $x = g(y) = P_n(y)$

Interpolação Normal

x	x ₀	x_1	χ_2	 χ_n
f(x) = y	$f(x_0) = y_0$	$f(x_1) = y_1$	$f(x_2) = y_2$	 $f(x_n) = y_n$

Interpolação Inversa

y	Уo	¥1	y ₂	 y _n
g(y) = x	$g(y_0) = x_0$	$g(y_1) = x_1$	$g(y_2) = x_2$	 $g(y_n) = x_n$

Dada a tabela:

χ	0	0.1	0.2	0.3	0.4	0.5
$y = e^x$	1	1.1052	1.2214	1.3499	1.4918	1.6487

Obter x tal que $e^x = 1.3165$ usando interpolação quadrática.

Pela forma de Newton, temos a seguinte tabela de diferenças divididas

y	Ordem 0	Ordem 1	Ordem 2	Ordem 3
1	0			
		0.9506		
1.1052	0.1		-0.4065	
		0.8606		0.1994
1.2214	0.2		-0.3367	
		0.7782		0.1679
1.3499	0.3		-0.2718	
		0.7047		0.1081
1.4918	0.4		-0.2256	
		0.6373		
1.6487	0.5			

Dada a tabela:

χ	0	0.1	0.2	0.3	0.4	0.5
$y = e^x$	1	1.1052	1.2214	1.3499	1.4918	1.6487

Obter x tal que $e^x = 1.3165$ usando interpolação quadrática.

Pela forma de Newton, temos a seguinte tabela de diferenças divididas:

		,		
y	Ordem 0	Ordem 1	Ordem 2	Ordem 3
1	0			
		0.9506		
1.1052	0.1		-0.4065	
		0.8606		0.1994
1.2214	0.2		-0.3367	
		0.7782		0.1679
1.3499	0.3		-0.2718	
		0.7047		0.1081
1.4918	0.4		-0.2256	
		0.6373		
1.6487	0.5			

y	Ordem 0	Ordem 1	Ordem 2	Ordem 3
1	0			
		0.9506		
1.1052	0.1		-0.4065	
		0.8606		0.1994
1.2214	0.2		-0.3367	
		0.7782		0.1679
1.3499	0.3		-0.2718	
		0.7047		0.1081
1.4918	0.4		-0.2256	
		0.6373		
1.6487	0.5			

 $x \approx P_2(y) = g(y_0) + (y - y_0)g[y_0, y_1] + (y - y_0)(y - y_1)g[y_0, y_1, y_2]$

 $P_2(y) = 0.2 + (y - 1.2214)0.7782 + (y - 1.2214)(y - 1.3499)(-0.2718) = 0.27487$

◆□▶ ◆刪▶ ◆量▶ ◆量▶ ■ めぬべ

y	Ordem 0	Ordem 1	Ordem 2	Ordem 3
1	0			
		0.9506		
1.1052	0.1		-0.4065	
		0.8606		0.1994
1.2214	0.2		-0.3367	
		0.7782		0.1679
1.3499	0.3		-0.2718	
		0.7047		0.1081
1.4918	0.4		-0.2256	
		0.6373		
1.6487	0.5			

$$x \approx P_2(y) = g(y_0) + (y - y_0)g[y_0, y_1] + (y - y_0)(y - y_1)g[y_0, y_1, y_2]$$

$$P_2(y) = 0.2 + (y - 1.2214)0.7782 + (y - 1.2214)(y - 1.3499)(-0.2718) =$$
0.27487

Rodrigo Madureira (IME-UERJ)

Limitante superior para o erro:

$$|E_2(y)| = |g(y) - P_n(y)| \le |(y - y_0)(y - x_1)(y - x_2)| \frac{M_3}{3!},$$

onde $M_3 = max|g'''(y)|$, $y \in [y_0, y_2] = [1.2214, 1.4918]$

$$f(x) = e^x \Rightarrow g(y) = f^{-1}(y) = ln(y)$$

$$g'''(y) = \frac{2}{y^3} \Rightarrow M_3 = \frac{2}{(1.2214)^3} = 1.0976$$

Logo, $|E_2(y)| \le 1.0186 \times 10^{-4}$.

Estimativa para o erro:

 $|E_2(y)| \approx |(y - y_0)(y - y_1)(y - y_2)|$ (máx|diferenças divididas de ordem 3|)

 $|E_2(y)| \approx 1.11028 \times 10^{-4}$

Limitante superior para o erro:

$$|E_2(y)| = |g(y) - P_n(y)| \le |(y - y_0)(y - x_1)(y - x_2)| \frac{M_3}{3!},$$

onde $M_3 = max|g'''(y)|$, $y \in [y_0, y_2] = [1.2214, 1.4918]$

$$f(x) = e^x \Rightarrow g(y) = f^{-1}(y) = ln(y)$$

$$g'''(y) = \frac{2}{y^3} \Rightarrow M_3 = \frac{2}{(1.2214)^3} = 1.0976$$

Logo, $|E_2(y)| \le 1.0186 \times 10^{-4}$.

Estimativa para o erro:

 $|E_2(y)| \approx |(y-y_0)(y-y_1)(y-y_2)|$ (máx|diferenças divididas de ordem 3|)

 $|E_2(y)| \approx 1.11028 \times 10^{-4}$

Limitante superior para o erro:

$$|E_2(y)| = |g(y) - P_n(y)| \le |(y - y_0)(y - x_1)(y - x_2)| \frac{M_3}{3!},$$

onde
$$M_3 = \max |g'''(y)|, y \in [y_0, y_2] = [1.2214, 1.4918]$$

$$f(x) = e^x \Rightarrow g(y) = f^{-1}(y) = ln(y)$$

$$g'''(y) = \frac{2}{y^3} \Rightarrow M_3 = \frac{2}{(1.2214)^3} = 1.0976$$

Logo, $|E_2(y)| \le 1.0186 \times 10^{-4}$.

Estimativa para o erro:

 $|\mathsf{E}_2(\mathsf{y})| pprox |(\mathsf{y}-\mathsf{y}_0)(\mathsf{y}-\mathsf{y}_1)(\mathsf{y}-\mathsf{y}_2)|(\mathsf{máx}|\mathsf{diferenças}\;\mathsf{divididas}\;\mathsf{de}\;\mathsf{ordem}\;3|)$

 $|E_2(y)| \approx 1.11028 \times 10^{-4}$

Limitante superior para o erro:

$$|\mathsf{E}_2(y)| = |\mathsf{g}(y) - \mathsf{P}_n(y)| \le |(y - y_0)(y - x_1)(y - x_2)| \frac{M_3}{3!},$$

onde
$$M_3 = max|g'''(y)|$$
, $y \in [y_0, y_2] = [1.2214, 1.4918]$

$$f(x) = e^x \Rightarrow g(y) = f^{-1}(y) = ln(y)$$

$$g'''(y) = \frac{2}{y^3} \Rightarrow M_3 = \frac{2}{(1.2214)^3} = 1.0976$$

Logo, $|E_2(y)| \le 1.0186 \times 10^{-4}$.

Estimativa para o erro:

$$|E_2(y)| \approx |(y-y_0)(y-y_1)(y-y_2)| (\text{m\'ax}|\text{diferenças divididas de ordem } 3|)$$

$$|E_2(y)| \approx 1.11028 \times 10^{-4}$$

Rodrigo Madureira (IME-UERJ)

Escolha do grau do polinômio interpolador

Considere a tabela

χ	Ordem 0	Ordem 1	Ordem 2
1	1		
		0.5	
1.01	1.005		0
		0.5	
1.02	1.01	A 40	-0.5
1 02	1 0140	0.49	^
1.03	1.0149	0.49	U
1.04	1.0198	0.47	\cap
1.04	1.0170	0.49	U
1.05	1.0247	0.47	

Polinômio de grau 1 é uma boa aproximação.

Escolha do grau do polinômio interpolador

Considere a tabela:

χ	Ordem 0	Ordem 1	Ordem 2
1	1		
		0.5	
1.01	1.005		0
		0.5	
1.02	1.01		-0.5
		0.49	
1.03	1.0149		0
		0.49	•
1.04	1.0198	0.17	0
		0.49	J
1.05	1.0247	0.17	
1.03	1.0217		

Polinômio de grau 1 é uma boa aproximação.

Escolha do grau do polinômio interpolador

Considere a tabela:

χ	Ordem 0	Ordem 1	Ordem 2
1	1		
		0.5	
1.01	1.005		0
		0.5	
1.02	1.01		-0.5
		0.49	
1.03	1.0149		0
		0.49	
1.04	1.0198		0
		0.49	
1.05	1.0247		

Polinômio de grau 1 é uma boa aproximação.

Referências I

