- dets	
-、defs L原业教-FX、+W	
If F'1の=fco, Fco为も	域原列意
Votes:	
0名100 右原函数、则-定有码	
个情况美	
(x3+c)'=3x	
Cition	
日化所原函数勤常数	
<u> </u>	
1正次 下(x)-6(x)=+ LF(x)-6(x)」つ	(x)
LF(x)-660J 30	
- In fun -C	
(不定积分是长护有原则数	的、在独分从标来快度给)
2、不定积分 — fix)dis = F	(p)tC
找一个人。我们有原则我,我们我	かて定ま分
Notes:	
$0 \stackrel{d}{\approx} + \infty dx = + (2);$	
θ $\int + \omega dx = \int \omega + C$	
<u> </u>	

=
$$\frac{1}{\sqrt{2}}$$
 $\frac{1}{\sqrt{2}}$ \frac

$$(=). \text{ k / k} / \text{ k / $k} / \text{ k / k / k / $k} / \text{ k / $k$$$

$$= \frac{1}{h (\pi)^{2}} = 1 \text{ arc tankt}$$

$$= - \ln |\cos x| \text{ to } i$$

$$= - \ln |\cos x| \text{ to } i$$

$$= - \ln |\sin x| \text{ to } i$$

$$= - \ln |\sin x| \text{ to } i$$

$$= - \ln |\sin x| \text{ to } i$$

$$= - \ln |\sin x| \text{ to } i$$

$$= - \ln |\sin x| \text{ to } i$$

$$= - \ln |\sin x| \text{ to } i$$

$$= - \ln |\sin x| \text{ to } i$$

$$= - \ln |\sin x| \text{ to } i$$

$$= - \ln |\sin x| \text{ to } i$$

$$= - \ln |\sin x| \text{ to } i$$

$$= - \ln |\sin x| \text{ to } i$$

$$= - \ln |\sin x| \text{ to } i$$

$$= - \ln |\sin x| \text{ to } i$$

$$= - \ln |\sin x| \text{ to } i$$

$$= - \ln |\sin x| \text{ to } i$$

$$= - \ln |\sin x| \text{ to } i$$

$$= - \ln |\sin x| \text{ to } i$$

$$= - \ln |\sin x| \text{ to } i$$

$$= - \ln |\sin x| \text{ to } i$$

$$= - \ln |\sin x| \text{ to } i$$

$$= - \ln |\sin x| \text{ to } i$$

$$= - \ln |\sin x| \text{ to } i$$

$$= - \ln |\sin x| \text{ to } i$$

$$= - \ln |\sin x| \text{ to } i$$

$$= - \ln |\sin x| \text{ to } i$$

$$= - \ln |\sin x| \text{ to } i$$

$$= - \ln |\sin x| \text{ to } i$$

$$= - \ln |\cos x| \text{ to } i$$

$$= - \ln |\cos x| \text{ to } i$$

$$= - \ln |\cos x| \text{ to } i$$

$$= - \ln |\cos x| \text{ to } i$$

$$= - \ln |\cos x| \text{ to } i$$

$$= - \ln |\cos x| \text{ to } i$$

$$= - \ln |\cos x| \text{ to } i$$

$$= - \ln |\cos x| \text{ to } i$$

$$= - \ln |\cos x| \text{ to } i$$

$$= - \ln |\cos x| \text{ to } i$$

$$= - \ln |\cos x| \text{ to } i$$

$$= - \ln |\cos x| \text{ to } i$$

$$= - \ln |\cos x| \text{ to } i$$

$$= - \ln |\cos x| \text{ to } i$$

$$= - \ln |\cos x| \text{ to } i$$

$$= - \ln |\cos x| \text{ to } i$$

$$= - \ln |\cos x| \text{ to } i$$

$$= - \ln |\cos x| \text{ to } i$$

$$= - \ln |\cos x| \text{ to } i$$

$$= - \ln |\cos x| \text{ to } i$$

$$= - \ln |\cos x| \text{ to } i$$

$$= - \ln |\cos x| \text{ to } i$$

$$= - \ln |\cos x| \text{ to } i$$

$$= - \ln |\cos x| \text{ to } i$$

$$= - \ln |\cos x| \text{ to } i$$

$$= - \ln |\cos x| \text{ to } i$$

$$= - \ln |\cos x| \text{ to } i$$

$$= - \ln |\cos x| \text{ to } i$$

$$= - \ln |\cos x| \text{ to } i$$

$$= - \ln |\cos x| \text{ to } i$$

$$= - \ln |\cos x| \text{ to } i$$

$$= - \ln |\cos x| \text{ to } i$$

$$= - \ln |\cos x| \text{ to } i$$

$$= - \ln |\cos x| \text{ to } i$$

$$= - \ln |\cos x| \text{ to } i$$

$$= - \ln |\cos x| \text{ to } i$$

$$= - \ln |\cos x| \text{ to } i$$

$$= - \ln |\cos x| \text{ to } i$$

$$= - \ln |\cos x| \text{ to } i$$

$$= - \ln |\cos x| \text{ to } i$$

$$= - \ln |\cos x| \text{ to } i$$

$$= - \ln |\cos x| \text{ to } i$$

$$= - \ln |\cos x| \text{ to } i$$

$$= - \ln |\cos x| \text{ to } i$$

$$= - \ln |\cos x| \text{ to } i$$

$$= - \ln |\cos x| \text{ to } i$$

$$= - \ln |\cos x| \text{ to } i$$

$$= - \ln |\cos x| \text{ to } i$$

$$= - \ln |\cos x| \text{ to } i$$

$$= - \ln |\cos x| \text{ to } i$$

$$= - \ln |\cos x| \text{ to } i$$

$$= - \ln |\cos x| \text{ to } i$$

$$= - \ln |\cos x| \text{ to } i$$

$$= - \ln |\cos x| \text{ to } i$$

$$= - \ln |\cos x| \text$$

