

超低功耗耳机充电仓专用芯片

芯片介绍

LP7801是一款专为小容量锂电池充电/放电应用设计的单芯片解决方案IC,集成了线性充电管理模块、超低功耗同步升压放电管理模块,内置功率MOS,充电电流外部可编程,最大充电电流1A。

LP7801集成了充电指示、输入过压保护、电池温度检测功能、恒温度电功能;放电部分,升压输出5.1V、负载电流能力500mA,待机功耗1uA,带EN控制功能,控制EN可完全关断输出电压,内置过流、过温保护功能,工作频率1.2MHz,支持2.2uH小电感应用;针对小容量锂电池系统的应用,提供简单易用的解决方案。

LP7801采用的封装形式为ESOP-8

特点

◆ 待机功耗:1uA

- ◆ 高输入耐压:36V◆ 内置6.3V过压保护
- ◆ 线性充电,充电电流可编程
- ◆ 智能恒温充电功能
- ◆ 同步升压输出5.1V
- ◆ 开关频率1.2MHz
- ◆ 效率高达95%
- ◆ 内置EN控制功能
- ◆ 内置过流、短路、过温保护功能

应用原理图

应用范围

- ♦ TWS耳机仓
- ◇ 锂电池系统充电/放电应用

丝印及包装信息

型号	丝印	封装	包装
	LPS		
LP7801SPF	LP7801	ESOP-8	4K/盘
	YWXXX		
丝印标示:	•		

Y: 生产年份 W: 生产周 X: 批次号

LP7801-03 Dec.-2019 Email: marketing@lowpowersemi.com www.lowpowersemi.com Page 1 of 7

引脚信息

无MCU应用原理图

LP7801-03 Dec.-2019 Email: marketing@lowpowersemi.com www.lowpowersemi.com Page 2 of 7

内部框图

极限参数注1

\diamond	VIN	0.3V~36V
	SW	
\diamond	VOUT	
	其他管脚	0.3V~6V
	最高焊接温度(10秒)	260°C
	储存温度	
\Rightarrow	最大结温	150°C

温度性能

\Rightarrow	最大封装切耗	2VV
\Rightarrow	温升	50°C/W

ESD 系数

	人体模型(HBM)	 · 2KV
\Rightarrow	机械模型(MM)	 200V

注1:超出极限参数列出的参数值,可能会导致设备永久性损坏,长时间暴露于极限条件可能会影响设备的可靠性。

推荐工作条件

◆ 工作环境温度范围 ------ -20°C~80°C

LP7801-03

电气参数

(T_A = 25℃. V_{IN} = 5V,除非特别说明.)

符号	参数	条件	最小值	典型值	最大值	单位
		充电部分				
V _{IN}	输入工作电压		4.5		5.8	V
I_{IN}	输入待机电流	$V_{BAT}=4.2V$		40		uA
V _{OVP}	过压保护电压	VIN 上升		6.3		V
V _{OCP-HYS}	过压保护迟滞电压			400		mV
V_{UV}	输入欠压保护			3.3		V
V_{FLOAT}	电池充满电压		4.158	4.2	4.242	V
		ISET=17.5K,充电模式		100		mA
${ m I_{BAT}}$	电池端电流	ISET=3.4K,充电模式		515		mA
1BAT	电102侧电4加	VBAT=4.2V		1		uA
		$V_{BAT}=4.2V$, $VIN=0$, $V_{EN}=0$		1		uA
V_{TRIKL}	涓流充电电压阈值			2.6		V
I_{TRIKL}	涓流充电电流	$V_{\mathrm{BAT}}\!\!$		10		$%I_{BAT}$
I_{TERM}	终止充电电流阀值			10		$\%I_{BAT}$
Δ V _{RECHRG}	再充电电压阈值			150		mV
I_{CHRG}	CHRG 管脚电流				5	uA
$V_{\rm NTC-H}$	低温保护电压阀值			1.15		V
$V_{ m NTC-M}$	50%电流电压阀值			0.75		V
$V_{\text{NTC-L}}$	高温保护电压阀值			0.165		V
I_{NTC}	NTC 电流	R _{NTC} =10K	NIV 25	47		uA
		放电部分	王丛	皇昭言		
V_{out}	升压输出电压	Jul Out of Collin 18 m 102		5.1		V
I_{out}	放电电流			500		mA
I_{BAT}	待机电流	V _{BAT} =3.7V 无负载		1		uA
F_{SW}	开关频率			1.2		MHz
$V_{\rm EN_ON}$	EN 开启电压阀值		0.9			V
$V_{\rm EN_OFF}$	EN 关断电压阀值				0.8	V
I_{EN}	EN 管脚电流	EN=5V		0.01		uA
I_{LIMIT}	开关电流限制			1		A
R _{ON_HIGH}	高端 MOS 开启内阻			160		mΩ
R_{ON_LOW}	低端 MOS 开启内阻			220		mΩ
OTP	过温保护			150		$^{\circ}$

LP7801-03 Dec.-2019 Email: marketing@lowpowersemi.com www.lowpowersemi.com Page 4 of 7

充电曲线图

升压效率曲线图

LP7801-03

Dec.-2019

Email: marketing@lowpowersemi.com

应用说明

LP7801 集成了线性充电模块和同步升压放电模块,带充电状态指示灯显示,充电电流可外部设定,支持边充边放,具有过流、短路、过温等多种异常保护,可以有效保护电池及系统安全。

充电模式

LP7801内部集成了完整的线性充电模块,对电池进行 涓流、恒流和恒压充电。恒流模式下充电电流IBAT由电 阻RISET设定,对应关系见以下公式:

$$I_{BAT} = 1750 \times \frac{V_{ISET}}{R_{ISET}}$$

其中V_{ISET}=1V。当电池电压低于预充阈值电压时,芯片进入涓流充电模式 在涓流模式下充电电流为1/10C。当电池电压接近浮充电压时,芯片进入恒压充电模式,在恒压模式下,充电电流逐渐减小,当充电电流减小到1/10C以下时,充电周期结束;当电池电压下降至复充电压以下,系统将自动开始新的充电周期。

CHRG状态指示

LP7801通过CHRG状态来表示充电、充满状态。CHRG输出有两种不同的状态:强下拉(~10mA)和高阻抗。CHRG处于强下拉状态表示处于充电周期,CHRG处于高阻状态表示充电周期结束;当输入电压低于4.5V或高于OVP保护电压值,CHRG处于高阻状态。

温度保护

LP7801的NTC功能是根据锂电池的JEITA温度标准设计的。NTC引脚内部的47uA恒流源通过热敏电阻与GND连接,使引脚电压(V_{NTC})与温度相对应。NTC函数有三个电压阈值:V_{NTC-H}、V_{NTC-M}、V_{NTC-L}。当VNTC处于V_{NTC-L}至V_{NTC-M}阈值范围时,充电电流为设定值的100%。当V_{NTC}处于V_{NTC-M}到V_{NTC-H}阈值范围时,充电电流为设定值的50%。当V_{NTC}低于V_{NTC-L}或高于V_{NTC-H}时,充电功能将关闭,以保护芯片和电池。

应用中通过公式计算V_{NTC-H}、V_{NTC-M}、V_{NTC-L}对应电阻值(R_{NTC-H}、R_{NTC-M}、R_{NTC-L}),计算公式如下:

 $R_{NTC-H} = 1.15 \div 0.047 = 24.47(K)$

 $R_{NTC-M} = 0.75 \div 0.047 = 15.96(K)$

 $R_{NTC-L} = 0.165 \div 0.047 = 3.51(K)$

计算值与NTC规格书对应,确定工作温度范围;如果不需要NTC功能,可以使用固定10K电阻连接到GND。

LP7801-03

Dec.-2019

Email: marketing@lowpowersemi.com

LowPowerSemi

封装信息

ESOP-8

