Symbol: a, b, c single symbol

Alphabet Σ : Finite set of symbols

{0, 1} = Binary Alphabet

String: w, x, y, z represents Strings

- Is a list over alphabet Σ where each element of the string is a member of Σ
- Σ^* = Set of all string over the alphabet Σ
- ϵ = Special string (Empty String) of length 0

Example:

 $\{0, 1\}^* = \{\epsilon, 0, 1, 00, 01, 10, 11, 000, 001 \dots \}$ $\{a\}^* = \{\epsilon, a, aa, aaa, aaaa, \dots \}$ $\{ab\}^* = \{\epsilon, ab, abab, ababab, \dots \}$

Language L: is a subset of Σ^*

Example:

List of string of 0's and 1's with no two consecutive 1's $L = \{\epsilon, 0, 1, 00, 01, 10, 000, 001, 010, 100, 101, ...\}$

Transition Function δ :

 $\delta(q_1, a) = \{q_2\}$ means, is in state 'q₁' and input 'a' is received and transits to state set $\{q_2\}$

Extended Transition Function $\hat{\delta}$:

- The effect of a string of inputs on an automaton
- Is computed for state 'q' and inputs $a_1 a_2 a_3 ... a_n$ by following a path in the transition starting at 'q' and selecting the edge with labels $a_1 a_2 a_3 ... a_n$ sequentially.

Inductive Definition of $\hat{\delta}$:

- Induction on length of String
- Basis: $\delta(q, \epsilon) = q$
- Induction $\delta(q, wa) = \delta(\delta(q, w), a)$

Example:

	0	1	$\widehat{\delta}(B,011)$	= $\delta(\delta(B, 01), 1)$
→ * A	Α	В		= $\delta(\delta(\delta(B,0),1),1)$
* B	A	C		$=\delta(\delta(A,1),1)$
C		, c	I	$=\delta(B,1)$
				= C

Deterministic Finite Automata (DFA): Unique state for every input symbol

- A finite set of states Q
- An input alphabet Σ
- A transition function δ
- A starting state q₀ in Q
- A set of final/ accepting states (F ⊆ Q)

Language of DFA:

L(A) = the set of string 'w' such that $\hat{\delta}(q_0, w)$ is in F

Example:

 $L(A) = \{w \mid w \text{ is in } \{0, 1\}^* \text{ and 'w' does not have two consecutive 1's} \}$

	0	1
→ * A	Α	В
* B	Α	C
С	С	, C