

SuperMOS – PDFN3*3-8L -30V 5.8mΩ R_{DS(ON)}, P-channel MOSFET

1. Description

The AONR21357-ES uses advanced trench technology MOSFETs to provide excellent $R_{DS(ON)}$ and low gate charge. Device is suitable for use in DC-DC conversion, power switch and charging circuit. Standard Product AONR21357-ES Pb-free

2. Features

- -30V $R_{DS(ON)}$ =5.8m Ω (Typ.) @V_{GS}=-10V $R_{DS(ON)}$ =8m Ω (Typ.) @V_{GS}=-4.5V
- Fast Switching
- High density cell design for low R_{DS(on)}
- Material: Halogen free
- Reliable and rugged
- Avalanche Rated
- Low leakage current

3. Applications

PWM applications

Load switch

- Power management in portable/desktop PCs
- DC/DC conversion

100% UIS TESTED

4. Ordering Information

Dort Number	Dookogo	Morking	Motorial	Doolsing	Quantity	Flammability	Reel
Part Number	Package	Marking	Material	Packing	per reel	Rating	Size
AONR21357-ES	DDEN12*2 01	ESN21357-ES/LOT	Halogen	Tape &	5,000	LII 04\/ 0	13
	PDFIN3"3-8L	E3NZ1337-E3/LU1	free	Reel	PCS	UL 94V-0	inches

5. Pin Configuration and Functions

Pin	Function	Outline	Circuit Diagram
4	Gate	8 7 6 5	Q D
1/2/3	Source	ESN21357	
5/6/7/8	Drain	1 2 3 4	G

6. Specification

Absolute Maximum Rating & Thermal Characteristics

Ratings at 25 °C ambient temperature unless otherwise specified.

Parameter	Symbol	Limited	Unit		
Drain-Source Voltage	BV _{DSS}	-30	V		
Gate-Source Voltage	V _{GS}	±20	V		
Continuous Drain Current	T _C =25°C		-50	^	
Continuous Drain Current	T _C =100°C	- I _D	-32	Α	
Maximum Payer Dissipation	T _C =25°C	В	69	W	
Maximum Power Dissipation	T _C =100°C	$ P_D$	28	VV	
Pulsed Drain Current	I _{DM}	-200	Α		
Single Pulse Avalanche Current ^a	I _{AS}	-40	Α		
Single Pulse Avalanche Energy ^a	E _{AS}	80	mJ		
Operating Junction Temperature	TJ	150	°C		
Storage Temperature Range	T _{stg}	-55 to +150	°C		

Thermal resistance ratings

Parameter	Symbol	Typical	Maximum	Unit
Junction-to-Case Thermal Resistance (t ≤ 10s)	R _{0JC}		1.8	°CAM
Junction-to-Ambient Thermal Resistance	R _{θJA}		65	°C/W

Notes:

a: The EAS data shows Max. rating The test condition is V_{DD} = -25V, V_{GS} = -10V, L= 0.1mH

<u>ElecSuper</u>

At TA = 25°C unless otherwise specified

Parameter	Symbol	Test Conditions N		Тур.	Max.	Unit		
OFF CHARACTERISTICS								
Drain-to-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V, I _D =-250uA	-30			V		
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} =0V, V _{DS} =-30V			-1	uA		
Gate-to-source Leakage Current	I _{GSS}	V _{GS} =±20V, V _{DS} =0V			±100	nA		
	ON CHA	RACTERISTICS						
Gate Threshold Voltage	V _{GS(TH)}	V _{GS} =V _{DS} , I _D =-250uA	-1.0		-2.5	٧		
Drain-to-source On-resistance	R _{DS(on)}	V _{GS} =-10V, I _D =-20A		5.8	9	mΩ		
Diam-to-source On-resistance	NDS(on)	V _{GS} =-4.5V, I _D =-15A		8	14			
Forward Transconductance	g FS	V _{DS} =-10V, I _D =-20A		50		S		
CHARGES, (CAPACITAN	NCES AND GATE RESIST	ANCE					
Input Capacitance	C _{ISS}			3522		pF		
Output Capacitance	Coss	V_{GS} =0V, V_{DS} =-15V f=1MHz		465				
Reverse Transfer Capacitance	C _{RSS}	1 1111112		370				
Total Gate Charge	Q _{G(TOT)}			35				
Gate-to-Source Charge	Q _{GS}	V_{GS} =-10V, V_{DS} =-15V I_{D} =-20A		10		nC		
Gate-to-Drain Charge	Q_{GD}	10 2071		10.5				
SI	WITCHING	CHARACTERISTICS						
Turn-On Delay Time	t _{d(ON)}			11				
Rise Time	t _r	V _{GS} =-10V, V _{DS} =-15V		13.3		ns		
Turn-Off Delay Time	t _{d(OFF)}	I_D =-20A, R_G =3 Ω		74				
Fall Time	t _f			35				
BODY DIODE CHARACTERISTICS								
Forward Voltage	V _{SD}	V _{GS} =0V, I _{SD} =-20A	-0.45		-1.5	V		

<u>ElecSuper</u>

7. Typical Characteristic

Figure 1. Output Characteristics

Figure 3. Forward Characteristics of Reverse

Figure 5. $R_{DS(ON)}$ vs. I_D

Figure 2. Transfer Characteristics

Figure 6. Normalized $R_{\text{DS(on)}}$ vs. Temperature

<u>ElecSuper</u>

Figure 7. Capacitance Characteristics

Figure 8. Gate Charge Characteristics

Figure 11. Normalized Maximum Transient Thermal Impedance

8. Dimension (PDFN3*3-8L)

Symbol	Dimensions in Millimeters			Symbol	Dimensions in Millimeters			
Symbol	Symbol MIN NOM MAX Symbol	MIN	NOM	MAX				
Α	0. 65	0.75	0.85	е	0. 65 BSC.			
b	0. 25	0. 30	0. 35	H1	0. 21	0.31	0. 41	
С	0. 15	0. 20	0. 25	H2	0. 30	0. 40	0.50	
D	3. 00	3.10	3. 20	K	0.78	0. 88	0. 98	
D1	2. 40	2. 50	2. 60	L1/L2	0. 10 REF.			
Е	3. 20	3. 30	3. 40	θ	11° 12° 13		13°	
E1	3. 00	3.10	3. 20	N	0	-	0.15	
E2	1. 60	1.70	1.80	0		0. 2 REF.		

ElecSuper

DISCLAIMER

ELECSUPER PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with ElecSuper products. You are solely responsible for

- $\hbox{(1) selecting the appropriate ElecSuper products for your application;} \\$
- (2) designing, validating and testing your application;
- (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements.

These resources are subject to change without notice. ElecSuper grants you permission to use these resources only for development of an application that uses the ElecSuper products described in the resource. Other reproduction and display of these resources are prohibited. No license is granted to any other ElecSuper intellectual property right or to any third party intellectual property right. ElecSuper disclaims responsibility for, and you will fully indemnify ElecSuper and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources. ElecSuper's products are provided subject to ElecSuper's Terms of Sale or other applicable terms available either on www.elecsuper.com or provided in conjunction with such ElecSuper products. ElecSuper's provision of these resources does not expand or otherwise alter ElecSuper's applicable warranties or warranty disclaimers for ElecSuper products.