Grundlagen der Matrizenrechnung

Definition $m \times n$ Matrizen

$$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{in} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}$$

Addition & Subtraktion

Für eine Addition oder Subtraktion müssen die Matrizen die gleichen Grössen besitzen:

$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} + \begin{pmatrix} 5 & 6 \\ 7 & 8 \end{pmatrix} = \begin{pmatrix} 1+5 & 2+6 \\ 3+7 & 4+8 \end{pmatrix} = \begin{pmatrix} 6 & 8 \\ 10 & 12 \end{pmatrix}$$

$$\begin{pmatrix} 5 & 6 \\ 7 & 8 \end{pmatrix} - \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} = \begin{pmatrix} 5 - 1 & 6 - 2 \\ 7 - 3 & 8 - 4 \end{pmatrix} = \begin{pmatrix} 4 & 4 \\ 4 & 4 \end{pmatrix}$$

Rechenregel Addition & Subtraktion

Kommutativ-Gesetz:

$$A + B = B + A$$

Assoziativ-Gesetz:

$$A + (B + C) = (A + B) + C$$

Distributiv-Gesetz:

$$\lambda * (A + B) = \lambda * A + \lambda * B$$

und

$$(\lambda + \mu) * A = \lambda * A + \mu * A$$

Skalare Multiplikation

$$5 \cdot \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} = \begin{pmatrix} 5 \cdot 1 & 5 \cdot 2 \\ 5 \cdot 3 & 5 \cdot 4 \end{pmatrix} = \begin{pmatrix} 5 & 10 \\ 15 & 20 \end{pmatrix}$$

Rechenregel

Multiplikation mit Skalar:

$$(\lambda * A) * B = \lambda * (A * B) = A * (\lambda * B)$$

Multiplikation

Damit zwei Matrizen (A, B) multipliziert werden können müssen die Spaltenanzahl von A gleich der Zeilenanzahl von Matrix B sein.

Rechenregel

Assoziativ-Gesetz: A * (B * C) = (A * B) * C

Distributiv-Gesetzt: A*(B+C) = A*B + A*C und (A+B)*C = A*C + B*C

Transponierte einer Matrix

Die Transponierte Matrix einer $m \times n$ Matrix ist eine $n \times m$ Matrix.

$$\begin{bmatrix}
Z_1 \to \\
Z_2 \to \\
Z_3 \to
\end{bmatrix}^T = \begin{bmatrix}
N \\
\downarrow
\end{bmatrix} \begin{bmatrix}
N$$

Rechenregel

Regel 1: $(A * B)^T = A^T * B^T$

Lineare Gleichungssysteme (LGS)

Jedes LGS entspricht einer Matrizengleichung:

Wir fassen A und \vec{c} zu einer erweiterten Koeffizienten Matrix zusammen:

$$(A \mid \vec{c}) = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} & c_1 \\ a_{21} & a_{22} & \cdots & a_{2n} & c_2 \\ \vdots & \vdots & & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} & c_m \end{pmatrix}$$

Gaus-Jordan-Verfahren

Zeilenstufenform

Wir setzten die freien Unbekannten je mit einem Parameter $\lambda, \mu, ... \in \mathbb{R}$.

$$x_2 = \lambda$$
, $x_4 = \mu$

Wir übersetzen jede Zeile mit einer führenden Eins in eine Gleichung und lösen diese nach der führenden Unbekannten.

$$x_1 - 2x_2 + 3x_4 = 5 \rightarrow x_1 = 5 + 2\lambda - 3\mu$$

 $x_3 + x_4 = 3 \rightarrow x_3 = 3 - \mu$

Parameterdarstellung

$$\vec{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 5 + 2\lambda - 3\mu \\ \lambda \\ 3 - \mu \\ \mu \end{pmatrix} = \begin{pmatrix} 5 \\ 0 \\ 3 \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ 1 \\ 0 \\ 0 \end{pmatrix} + \mu \begin{pmatrix} -3 \\ 0 \\ -1 \\ 1 \end{pmatrix}$$

Lösbarkeit LGS

Definition Rang

Der Rang einer Matrix A = rg(A) wird so bestimmt:

- 1. Wir bringen A in die Zeilenstufenform.
- 2. Dann ist rg(A) = Gesamtanzahl Zeilen Anzahl Nullzeilen.

Folgende Kriterien gelten:

Vektorgeometrie

Definition Vektor

- Ein Vektor ist ein Objekt mit einem Betrag (Länge) und eine Richtung.
- Der Nullvektor ist der Vektor mit dem Betrag 0.
- Der <u>Einheitsvektor</u> ist ein Vektor mit dem Betrag 1. $(\vec{e}_1, \vec{e}_2, ...)$
- Gegeben sind *n* Vektoren \vec{a}_1 , \vec{a}_2 , \vec{a}_3 , ..., \vec{a}_n . Der Ausdruck

$$\lambda_1 * \vec{a}_1 + \lambda_2 * \vec{a}_2 + \lambda_3 * \vec{a}_3 + \dots + \lambda_n * \vec{a}_n$$

mit $\lambda_1, \lambda_2, \lambda_3, ..., \lambda_n \in \mathbb{R}$ heisst <u>Linearkombination</u> der Vektoren $\vec{a}_1, \vec{a}_2, \vec{a}_3, ..., \vec{a}_n$.

- Zwei Vektoren heissen kollinear, wenn es eine Gerade g gibt zu der beiden parallel sind.
- Drei Vektoren heissen *komplanar*, wenn es eine Ebene *E* gibt zu der alle drei parallel sind.
- Wir können jeden Vektor \vec{a} der Ebene als Linearkombination von \vec{e}_1 und \vec{e}_2 darstellen:

$$\vec{a} = a_1 * \vec{e}_1 + a_2 * \vec{e}_2 = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$$

- Wir können jeden räumlichen Vektor \vec{a} als Linearkombination von \vec{e}_1 , \vec{e}_2 und \vec{e}_3 darstellen:

$$\vec{a} = a_1 * \vec{e}_1 + a_2 * \vec{e}_2 + a_3 * \vec{e}_3 = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$$

- Zu jedem Punkt P der Ebene bzw. des Raumes definieren wir den $\underline{Ortsvektor}\,\vec{r}(P)=\overline{OP}$.

Berechnung Einheitsvektor

$$\vec{a} * \frac{1}{|\vec{a}|} = \vec{e}_a$$
 (zeigt in Richtung von a)

Rechnen mit Vektoren

Addition	Skalare Multiplikation	Gegenvektor
$\vec{a} + \vec{b} = \begin{pmatrix} a_1 + b_1 \\ a_2 + b_2 \\ a_3 + b_3 \end{pmatrix}$	$\lambda * \vec{a} = \begin{pmatrix} \lambda * a_1 \\ \lambda * a_2 \\ \lambda * a_3 \end{pmatrix}$	$-\vec{a} = \begin{pmatrix} -a_1 \\ -a_2 \\ -a_3 \end{pmatrix}$

Verbindungsvektor

Wir haben zwei Punkte P_1 und P_2 mit $P_1 = (x_1 : y_1 : z_1)$ und $P_2 = (x_2 : y_2 : z_2)$. Die Verbindung zwischen den zwei Punkten sieht wie folgt aus:

$$\overrightarrow{P_1P_2} = \begin{pmatrix} x_2 - x_1 \\ y_2 - y_1 \\ z_2 - z_1 \end{pmatrix}$$

Betrag eines Vektors

Betrag eines ebenen Vektors	Betrag eines räumlichen Vektors
$ \vec{a} = \sqrt{a_1^2 + a_2^2}$	$ \vec{a} = \sqrt{a_1^2 + a_2^2 + a_3^2}$

Skalarprodukt

Gegeben sind zwei Vektoren \vec{a} und \vec{b} , dann ist das Skalarprodukt wie folgt vorgegeben:

$$\vec{a} * \vec{b} = |\vec{a}| * |\vec{b}| * \cos(\varphi)$$

Dabei ist φ der Zwischenwinkel von \vec{a} und \vec{b} . $(0 \le \varphi \le \pi)$ oder $(0^{\circ} \le \varphi \le 180^{\circ})$

In der Ebene	Im Raum
$\binom{a_1}{a_2} * \binom{b_1}{b_2} = a_1 b_1 + a_2 b_2$	$ \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} * \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = a_1 b_1 + a_2 b_2 + a_3 b_3 $

Zusammenfassung LA

Eigenschaften des Skalarprodukts

- \vec{a} und \vec{b} stehen orthogonal zueinander, wenn $\vec{a} + \vec{b} = 0$ gilt.

$$- \vec{a} * \vec{a} = |\vec{a}|^2$$

Rechenregel des Skalarprodukts

Kommutativ-Gesetz: $\vec{a} * \vec{b} = \vec{b} * \vec{a}$

Distributiv-Gesetz: $\vec{a}*(\vec{b}+\vec{c}) = \vec{a}*\vec{b}+\vec{a}*\vec{c}$ und $(\vec{a}+\vec{b})*\vec{c} = \vec{a}*\vec{c}+\vec{a}*\vec{c}$

Gem. Assoziativ-Gesetz: $\lambda * (\vec{a} * \vec{b}) = (\lambda * \vec{a}) * \vec{b} = \vec{a} * (\lambda * \vec{b})$

Projektion

$$\vec{b}_a = \frac{\vec{a} * \vec{b}}{|\vec{a}|^2} * \vec{a}$$

$$\left|\vec{b}_a\right| = \frac{\left|\vec{a} * \vec{b}\right|}{\left|\vec{a}\right|}$$

Das Vektorprodukt

Das Vektorprodukt ist nur für räumliche Vektoren definiert. Das Ergebnis ist wieder ein Vektor.

Definition Vektorprodukt

Das Vektorprodukt $\vec{a} \times \vec{b}$ hat folgende Eigenschaften:

$$- |\vec{a} \times \vec{b}| = |\vec{a}| * |\vec{b}| * \sin(\varphi)$$

-
$$\vec{a} \times \vec{b}$$
 ist **orthogonal** zu \vec{a} und zu \vec{b} .

-
$$\vec{a}$$
, \vec{b} und $\vec{a} \times \vec{b}$ bilden (in dieser Reihenfolge!) ein Rechensystem.

Für den Zwischenwinkel φ gilt: $(0 \le \varphi \le \pi)$

Berechnung des Vektorproduktes

$$\begin{pmatrix} a_1 \\ a_2 \\ a_3 \\ a_1 \end{pmatrix} \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = \begin{pmatrix} a_2b_3 - a_3b_2 \\ a_3b_1 - a_1b_3 \\ a_1b_2 - a_2b_1 \end{pmatrix}$$

Eigenschaften des Vektorproduktes

- \vec{a} und \vec{b} sind genau dann **kollinear**, wenn $\vec{a} \times \vec{b} = \vec{0}$.

 $- \vec{a} \times \vec{a} = \vec{0}$

Rechenregel des Vektorproduktes

Antikommutativ-Gesetz: $\vec{a} \times \vec{b} = -(\vec{b} \times \vec{a})$

Distributiv-Gesetz: $\vec{a} \times (\vec{b} + \vec{c}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c}$ und $(\vec{a} + \vec{b}) \times \vec{c} = \vec{a} \times \vec{c} + \vec{b} \times \vec{c}$

Gem. Assoziativ-Gesetz: $\lambda*(\vec{a}\times\vec{b})=(\lambda*\vec{a})\times\vec{b}=\vec{a}\times(\lambda*\vec{b})$

Fläche eines Parallelogramms

$$A_P = \left| \vec{a} \times \vec{b} \right|$$

Geraden und Ebenen

Umrechnung Parameterdarstellung – Koordinatendarstellung

Gerade

Für jeden Punkt A = (x, y) auf der Geraden g gilt:

$$\vec{r}(A) = {x \choose y} = \vec{r}(P) + \lambda * \vec{a}$$

Nun lösen wir eine der Gleichungen des LGS nach λ auf. Die Lösung wird nun in die anderen Gleichungen eingesetzt.

Ebene

Das Vektorprodukt $\vec{a} \times \vec{b}$ liefert einen Normalvektor \vec{n}

zurück. Es gilt: $\vec{n} = inom{a}{b}$, nun setzten wir den

Aufpunkt P in die Koordinatendarstellung und bestimmen daraus d.

Umrechnung Koordinatendarstellung – Parameterdarstellung

Gerade

Wir wählen zwei Punkte P und Q, deren Koordinaten die Geradengleichung ax + by + c = 0 lösen:

Dann ist $g: \vec{r}(P) + \lambda * \overrightarrow{PQ}$ eine Parameterdarstellung von g.

Ebene

Wir wählen drei Punkte P,Q und R, deren Koordinaten die Ebenengleichung ax + by + cz + d = 0 lösen:

Dann ist $E: \vec{r}(P) + \lambda * \overrightarrow{PQ} + \mu * \overrightarrow{PR}$ eine Parameterdarstellung von E.

Schnittpunkte und Schnittgeraden

Um Schnittpunkte oder Schnittgeraden zu bestimmen bildet man aus den Gleichungen der beteiligten Geraden und Ebenen ein LGS und löst dieses auf.

Abstände

Abstand von Punkt
$$A = \binom{x}{y}$$
 zur Gerade $g = \vec{r}(P) + \lambda * \vec{a}$:
$$\frac{\left| \overrightarrow{PA} \times \vec{a} \right|}{\left| \vec{a} \right|}$$

Abstand von Punkt
$$A = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
 zur Ebene E : $ax + by + cz + d = 0$:
$$\frac{|ax_A + by_A + cz_A + d|}{|\vec{n}|}$$

Quadratische Matrizen

Inverse Matrizen

Die Inverse einer quadratischen Matrix A ist eine Matrix A^{-1} , für die gilt: $A * A^{-1} = E$.

Inverse einer 2x2 Matrix:

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = \frac{1}{ad - bc} * \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

Inverse einer $n \times n$ Matrix, n > 2: Dafür wenden wir das <u>Gauss-Jordan-Verfahren</u> auf die Matrix (A|E) an. Wenn A invertierbar ist, führt dieses auf die Matrix $(E|A^{-1})$.

Determinanten

Die Formel für eine 2×2 Matrix:

Die Formel für eine 3×3 Matrix: $a_{11} \quad a_{12} \quad a_{21} \quad a_{22} \quad a_{23} \quad a_{21} \quad a_{22} \quad a_{23} \quad a_{31} \quad a_{32} \quad a_{31} \quad a_{32} \quad a_{33} \quad a_{31} \quad a_{32} \quad a_{33} \quad a_{34} \quad a_{32} \quad a_{34} \quad a_{35} \quad a_{36} \quad$

Die Elemente auf einer Diagonale werden multipliziert und dann jeweils addiert oder subtrahiert mit den anderen Produkten.

Berechnung der Determinante einer $n \times n$ Matrix

Um die Determinante zu bestimmen, wählen wir eine feste Zeile *i* **oder** eine feste Spalte *j*. Um den Rechenaufwand zu minimieren wählen wir eine Spalte oder Zeile mit **den meisten Nullen**. Dann «entwickeln» wir die Determinante gemäss der folgende Formel:

Entwicklung nach der
$$i$$
-ten Zeile Entwicklung nach der j -ten Spalte
$$\det(A) = \sum_{j=1}^{n} (-1)^{i+j} * a_{ij} * \det(A_{ij})$$

$$\det(A) = \sum_{i=1}^{n} (-1)^{i+j} * a_{ij} * \det(A_{ij})$$

Die Matrix A_{ij} erhält man, wenn man bei A die Zeile i und Spalte j weglässt.

Geometrische Interpretation der Determinante

Der Betrag einer 2×2 Matrix ist gleich dem Flächeninhalt des Parallelogramms das von den **Spalten** der Matrix aufgespannt wird.

Der Betrag einer 3×3 Matrix ist gleich dem Volumeninhalt des Spats das von den **Spalten** der Matrix aufgespannt wird.

Eigenschaften der Determinante

- 1. Für die Einheitsmatrix *E* gilt:
- 2. Für eine $n \times n$ Dreiecksmatrix U gilt:

$$det(E) = 1$$

 $det(U) = u_{11} * u_{22} * ... * u_{nn}$

Zusammenfassung LA

3. Für jede quadratische Matrix A gilt:
$$\det(A^T) = \det(A)$$

4. Für alle
$$n \times n$$
 Matrizen A und B gilt: $\det(A * B) = \det(A) * \det(B)$

5. Für jede invertierbare Matrix
$$A$$
 gilt:
$$\det(A^{-1}) = \frac{1}{\det(A)}$$

6. Für jede
$$n \times n$$
 Matrix A und jedes $\lambda \in \mathbb{R}$ gilt: $\det(\lambda * A) = \lambda^n * \det(A)$

Äquivalente Aussagen zur Determinante

1.
$$det(A) \neq 0$$

- 2. Die Spalten von A sind linear unabhängig.
- 3. Die Zeilen von A sind linear unabhängig.

4.
$$rg(A) = n$$

- 5. A ist invertierbar.
- 6. Das lineare Gleichungssystem $A * \vec{x} = \vec{c}$ hat eine eindeutige Lösung.

Vektorräume

Definition Reeller Vektorraum

Ein reeller Vektorraum ist eine Menge $V \neq \emptyset$ mit zwei Verknüpfungen:

Addition:
$$V \times V \rightarrow V : (\vec{a}; \vec{b}) \mapsto \vec{a} + \vec{b}$$

Multiplikation (skalar): $\mathbb{R} \times V \rightarrow V : (\lambda; \vec{a}) \mapsto \lambda * \vec{a}$

Damit eine Menge V mit einer Addition und einer skalaren Multiplikation ein Vektorraum ist muss also gelten:

- 1. Wenn ich zwei beliebige Elemente aus V addiere, liegt das Ergebnis wieder in V.
- 2. Wenn ich ein beliebiges Element aus V mit λ multipliziere, liegt das Ergebnis wieder in V.
- 3. {nicht erwähnte Regeln} (1) bis (8) werden eingehalten.

Beispiel

$\mathbb{P}_n[x]$	Der Vektorraum der Polynome vom Grad $\leq n$.
$\mathbb{R}^{m imes n}$	Der Vektorraum der reellen $m \times n$ Matrizen.

 \mathbb{R}^n Der Vektorraum der Vektoren mit n reellen Komponente.

Unterräume

Eine Teilmenge U eines Vektorraums V heisst Unterraum von V, wenn U selber auch ein Vektorraum ist. Wenn $\vec{0} \notin U$, dann ist U kein Unterraum.

Definition Linearer Spann

Gegeben ist ein reeller Vektorraum V sowie Vektoren $\vec{b}_1, \vec{b}_2, ..., \vec{b}_n \in V$. Die Menge aller Linearkombinationen

$$\mathrm{span}\big(\vec{b}_1,\vec{b}_2,\ldots,\vec{b}_n\big) = \big\{\lambda_1*\vec{b}_1 + \lambda_2*\vec{b}_2 + \cdots + \lambda_n*\vec{b}_n\big|\lambda_1,\lambda_2,\ldots,\lambda_n \in \mathbb{R}\big\}$$

heisst *linearer Spann* (auch: *lineare Hülle*) der Vektoren $\vec{b}_1, \vec{b}_2, ..., \vec{b}_n$.

Beispiel

- $\{\vec{0}\}$ ist ein Unterraum von jedem Vektorraum V.
- $\mathbb{P}_2[x]$ ist ein Unterraum von $\mathbb{P}_4[x]$.
- Alle symmetrischen 2×2 Matrizen $S^{2 \times 2}$ ist ein Unterraum von $\mathbb{R}^{2 \times 2}$.
- Eine Gerade ist genau dann ein Unterraum von \mathbb{R}^2 bzw. \mathbb{R}^3 , wenn sie durch den **Ursprung** geht.
- Eine Ebene ist genau dann ein Unterraum von \mathbb{R}^3 , wenn sie durch den **Ursprung** geht.
- Der lineare Spann von Vektoren $\vec{b}_1, \vec{b}_2, ..., \vec{b}_n \in V$ ist ein Unterraum von V.

Basis und Dimension

Definition Erzeugendensystem

Eine Menge $\{\vec{b}_1, \vec{b}_2, ..., \vec{b}_n\}$ von Vektoren $\vec{b}_k \in V$ heisst *Erzeugendensystem* von V, wenn gilt: $V = \text{span}(\vec{b}_1, \vec{b}_2, ..., \vec{b}_n)$.

Definition Basis

Eine Menge $\mathcal{B} = \{\vec{b}_1, \vec{b}_2, ..., \vec{b}_n\}$ von Vektoren $\vec{b}_k \in V$ heisst Basis von V, wenn gilt:

- 1. $\mathcal{B} = \{\vec{b}_1, \vec{b}_2, ..., \vec{b}_n\}$ ist ein Erzeugendensystem von V.
- 2. Die Vektoren $\vec{b}_1, \vec{b}_2, ..., \vec{b}_n$ sind linear unabhängig.

Äquivalente Aussagen zu Basen

- 1. Die Vektoren $\vec{b}_1, \vec{b}_2, ..., \vec{b}_n$ bilden eine Basis von \mathbb{R}^n .
- 2. rg(B) = n
- 3. $det(B) \neq 0$
- 4. B ist invertierbar.
- 5. Das LGS $B * \vec{x} = \vec{c}$ hat eine eindeutige Lösung.

Komponentendarstellung bezüglich beliebiger Basen

Lineare Abbildung

Definition lineare Abbildung

Gegeben sind zwei reelle Vektor V und W (V und W können auch gleich sein). Eine Abbildung $f:V\to W$ heisst lineare Abbildung, wenn für alle Vektoren $\vec{x},\vec{y}\in V$ und jeden Skalar $\lambda\in\mathbb{R}$ gilt:

- 1. $f(\vec{x} + \vec{y}) = f(\vec{x}) + f(\vec{y})$
- 2. $f(\lambda * \vec{x}) = \lambda * f(\vec{x})$

Der Vektor $f(\vec{x}) \in W$, der herauskommt, wenn man f auf einen Vektor $\vec{x} \in V$ anwendet, heisst *Bild* von \vec{x} .

Die Abbildungsmatrix einer linearen Abbildung

Die Vektorräume \mathbb{R}^m und \mathbb{R}^n , versehen mit den jeweiligen Standardbasen. Dann lässt sich die lineare Abbildung $f:\mathbb{R}^n \to \mathbb{R}^m$ durch eine $m \times n$ Matrix A darstellen: $f(\vec{x}) = A * \vec{x}$

Zusammenfassung LA

$$A = \begin{pmatrix} | & | & | \\ f(\vec{e}_1) & f(\vec{e}_2) & \dots & f(\vec{e}_n) \\ | & | & | \end{pmatrix}$$

Wir betrachten zwei Vektorräume V mit Basis $\mathcal{B} = \{\vec{b}_1, \vec{b}_2, \dots, \vec{b}_n\}$ und W mit Basis $\mathcal{C} = \{\vec{c}_1, \vec{c}_2, \dots, \vec{c}_m\}$. Dann lässt sich jede lineare Abbildung $f: V \to W$ durch eine $m \times n$ Matrix ${}_{\mathcal{C}}A_{\mathcal{B}}$ darstellen: $\left(f(\vec{x})\right)_{\mathcal{C}} = {}_{\mathcal{C}}A_{\mathcal{B}} * \vec{x}_{\mathcal{B}}$

$${}_{\mathcal{C}}A_{\mathcal{B}} = \begin{pmatrix} \left| & \left| & \left| & \left| \\ \left(f(\vec{b}_{1})\right)_{\mathcal{C}} & \left(f(\vec{b}_{2})\right)_{\mathcal{C}} & \dots & \left(f(\vec{b}_{n})\right)_{\mathcal{C}} \\ \left| & \left| & \right| & \left| & \right| \end{pmatrix}_{\mathcal{B}}$$

Beispiele linearen Abbildungen in der Ebene

$\begin{array}{c} \textbf{Streckung} \\ \text{um } \lambda_1 \text{ in } x \\ \text{um } \lambda_2 \text{ in } y \end{array}$	Projektion auf die Gerade g: ax + by = 0 mit $a^2 + b^2 = 1$	Spiegelung an der Geraden g: ax + by = 0 mit $a^2 + b^2 = 1$	Rotation um den Ursprung und Winkel $oldsymbol{arphi}$	Scherung in x – Richtung mit Faktor m
$\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$	$\begin{pmatrix} 1-a^2 & -ab \\ -ab & 1-b^2 \end{pmatrix}$	$\begin{pmatrix} 1 - 2a^2 & -2ab \\ -2ab & 1 - 2b^2 \end{pmatrix}$	$\begin{pmatrix} \cos(\varphi) & -\sin(\varphi) \\ \sin(\varphi) & \cos(\varphi) \end{pmatrix}$	$\begin{pmatrix} 1 & m \\ 0 & 1 \end{pmatrix}$

Beispiel von linearen Abbildungen im Raum

Zentrische Streckung mit dem Faktor λ	Orthogonale Projektion auf die Ebene E: ax + by + cz = 0 mit $a^2 + b^2 + c^2 = 1$	Spiegelung an der Ebene $E: ax + by + cz = 0$ mit $a^2 + b^2 + c^2 = 1$
$\begin{pmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda \end{pmatrix}$	$P = \begin{pmatrix} 1 - a^2 & -ab & -ac \\ -ab & 1 - b^2 & -bc \\ -ac & -bc & 1 - c^2 \end{pmatrix}$ oder $P = E - (\vec{n} * \vec{n}^T)$	$S = \begin{pmatrix} 1 - 2a^2 & -2ab & -2ac \\ -2ab & 1 - 2b^2 & -2bc \\ -2ac & -2bc & 1 - 2c^2 \end{pmatrix}$ oder $S = E - (2\vec{n} * \vec{n}^T)$

Rotation um den Winkel $arphi$ um die	Rotation um den Winkel $arphi$ um die	Rotation um den Winkel $arphi$ um die	
x-Achse	<i>y</i> -Achse	z-Achse	
$\begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos(\varphi) & -\sin(\varphi) \\ 0 & \sin(\varphi) & \cos(\varphi) \end{pmatrix}$	$\begin{pmatrix} \cos(\varphi) & 0 & \sin(\varphi) \\ 0 & 1 & 0 \\ -\sin(\varphi) & 0 & \cos(\varphi) \end{pmatrix}$	$ \begin{pmatrix} \cos(\varphi) & -\sin(\varphi) & 0 \\ \sin(\varphi) & \cos(\varphi) & 0 \\ 0 & 0 & 1 \end{pmatrix} $	

Rotation um den Winkel φ um die Achse durch den Ursprung, deren Richtung durch den normierten Vektor \vec{a} festgelegt ist

$$\begin{pmatrix} \cos(\varphi) + a_1^2 (1 - \cos(\varphi)) & a_1 a_2 (1 - \cos(\varphi)) - a_3 \sin(\varphi) & a_1 a_3 (1 - \cos(\varphi)) + a_2 \sin(\varphi) \\ a_1 a_2 (1 - \cos(\varphi)) + a_3 \sin(\varphi) & \cos(\varphi) + a_2^2 (1 - \cos(\varphi)) & a_2 a_3 (1 - \cos(\varphi)) - a_1 \sin(\varphi) \\ a_1 a_3 (1 - \cos(\varphi)) - a_2 \sin(\varphi) & a_2 a_3 (1 - \cos(\varphi)) + a_1 \sin(\varphi) & \cos(\varphi) + a_3^2 (1 - \cos(\varphi)) \end{pmatrix}$$

Kern und Bild einer Abbildungsmatrix

Definition Kern einer Matrix

Der $Kern \ker(A)$ einer $m \times n$ -Matrix A ist die Lösungsmenge des homogenen linearen Gleichungssystem $A * \vec{x} = \vec{0}$

Definition Bild einer Matrix

Das Bild $\operatorname{im}(A)$ einer $m \times n$ -Matrix A ist der Unterraum des m-dimensionalen Vektorraum W, der von den Spalten $\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n$ der Matrix aufgespannt wird:

$$\operatorname{im}(A) = \operatorname{span}(\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n)$$

Seite 9 von 10

Satz

Für jede $m \times n$ -Matrix A gilt:

$$\dim(\operatorname{im}(A)) = \operatorname{rg}(A)$$
 und $\dim(\ker(A)) + \dim(\operatorname{im}(A)) = n$

Verknüpfungen von linearen Abbildungen

Wir betrachten eine lineare Abbildung $f:U\to V$ mit der Abbildungsmatrix A sowie eine lineare Abbildung $g:V\to W$ mit der Abbildungsmatrix B.

Die Verknüpfung $g \circ f : U \to W$ ergibt wieder eine lineare Abbildung mit der Abbildungsmatrix B * A. Wichtig ist die Reihenfolge bei $g \circ f = f(g(\vec{x}))$.

Die Inverse einer linearen Abbildung

Die Inverse einer linearen Abbildung f mit der Abbildungsmatrix A, dann ist die Inverse A^{-1} die Abbildungsmatrix für die inverse Abbildung f^{-1} .

Basiswechsel

Die Abbildungsmatrix $_{\mathcal{S}}T_{\mathcal{B}}$ steht für den Basiswechsel von \mathcal{B} nach \mathcal{S} . Die Spalten von $_{\mathcal{S}}T_{\mathcal{B}}$ sind die Vektoren aus \mathcal{B} in der Komponentendarstellung bezüglich \mathcal{S} :

$$_{\mathcal{S}}T_{\mathcal{B}} = \begin{pmatrix} \begin{vmatrix} & & | \\ \left(\vec{b}_{1}\right)_{\mathcal{S}} & \left(\vec{b}_{2}\right)_{\mathcal{S}} \\ | & & | \end{pmatrix}_{\mathcal{B}}$$

Die Abbildungsmatrix $_{\mathcal{B}}T_{\mathcal{S}}$ steht für den Basiswechsel von \mathcal{S} nach \mathcal{B} . Die Matrix $_{\mathcal{B}}T_{\mathcal{S}}$ ist die Inverse von $_{\mathcal{S}}T_{\mathcal{B}}$:

$$_{\mathcal{S}}T_{\mathcal{B}}: _{\mathcal{B}}T_{\mathcal{S}} = _{\mathcal{S}}T_{\mathcal{B}}^{-1}$$

Satz

Gemäss Bild rechts besteht folgender

Zusammenhang:

$$_{\mathcal{S}}A_{\mathcal{S}} = {_{\mathcal{S}}}T_{\mathcal{B}} * {_{\mathcal{B}}}A_{\mathcal{B}} * {_{\mathcal{B}}}T_{\mathcal{S}} = {_{\mathcal{S}}}T_{\mathcal{B}} * {_{\mathcal{B}}}A_{\mathcal{B}} * {_{\mathcal{S}}}T_{\mathcal{B}}^{-1}$$

$$\mathbb{R}^{2} \xrightarrow{\text{lineare Abbildung } f} \mathbb{R}^{2}$$

$$\vec{x} \xrightarrow{\mathcal{S} A_{\mathcal{S}}} f(\vec{x})$$

$$\vec{x} \xrightarrow{\mathcal{S} T_{\mathcal{S}}} \int_{\mathcal{S} T_{\mathcal{B}}} f(\vec{x})$$

$$\vec{x} \xrightarrow{\mathcal{S} A_{\mathcal{B}}} f(\vec{x})$$

Homogene Koordinaten

Wir erweitern jeden Vektor um eine Komponente:

- Ortsvektor (am Ursprung angeheftet): die zusätzliche Komponente wird 1 gesetzt.
- Freie Vektoren (parallel verschiebbar): die zusätzliche Komponente wird 0 gesetzt.

Beispiel Erweiterung

$$\vec{r}(P) = {2 \choose 2} \rightarrow \text{ an Ursprung ansetzten } \rightarrow \vec{r}(P^*) = {2 \choose 2} \qquad \qquad \vec{a} = {2 \choose -1} \rightarrow \text{ freier Vektor } \rightarrow \vec{a}^* = {2 \choose -1}$$

Erweiterung Abbildungsmatrizen

Abbildungsmatrizen werden mit einer zusätzlichen Spalten und Zeile ergänzt. Nun können wir auch Translationen durch Matrizen darstellen:

Rotation $\mathbb{R}^2 o \mathbb{R}^2$ um $arphi$ um den Ursprung	Translation $\mathbb{R}^2 o \mathbb{R}^2$ um den Vektor $ec{a} = inom{a_1}{a_2}$	Rotation und Translation in einem
$ \begin{pmatrix} \cos(\varphi) & -\sin(\varphi) & 0 \\ \sin(\varphi) & \cos(\varphi) & 0 \\ 0 & 0 & 1 \end{pmatrix} $	$\begin{pmatrix} 1 & 0 & a_1 \\ 0 & 1 & a_2 \\ 0 & 0 & 1 \end{pmatrix}$	$ \begin{pmatrix} \cos(\varphi) & -\sin(\varphi) & a_1 \\ \sin(\varphi) & \cos(\varphi) & a_2 \\ 0 & 0 & 1 \end{pmatrix} $