Study in Usefulness of Middleware-Only Provenance

Quan(Gabriel) Zhou, Devarshi Ghoshal, Beth Plale

May 6, 2016

Main Contents

- I. Contributions
- II. Overview
- III. Framework
- IV. Completeness of middleware provenance
- V. Evaluation
- VI. Discussion & Limitation
- VII. Conclusion & Future Work

Page 2 5/6/16

Contributions

- I. A provenance collection extension to WorkQueue that requires no application instrumentation and minimal system intrusion
- II. A technique to correlate provenance events from different layers
- III. An evaluation to show the completeness of middleware layer provenance and usefulness in failure tracing and classification

Page 3 5/6/16

Overview

Page 4 5/6/16

Framework

Page 5 5/6/16

Provenance-aware Middleware

A). A provenance-enabled wrapper

- Set up master/worker environment
- Transparently capture the provenance trace in executing a distributed application through WorkQueue
- Capture information related to failures and data corruption
- "What" and "Why" provenance

B). A worker invocation script

- Configure workers for executing an application
- Provenance captured accounts for task distribution and location of data generated in a distributed environment
- "Where" provenance

Page 6 5/6/16

Provenance Adaptor

A). Log Collector

B). Log Parser

C). Correlation Inference Engine

D). Event Mapper

Page 7 5/6/16

Log Collector & Log Parser

- a) Middleware layer-specific rule set
- b) Application layer-specific rule set

```
<mwp:ruleset>
      <mwp:rule>
          <mwp:keyWord>hostname</mwp:keyWord>
          <mwp:criterion>simple</mwp:criterion>
          <mwp:occurrence>1</mwp:occurrence>
      </mwp:rule>
      <mwp:rule>
         <mwp:startingWord>task
             received</mwp:startingWord>
         <mwp:endingWord>task
             completed</mwp:endingWord>
         <mwp:keyWord>starting
             task</mwp:keyWord>
         <mwp:criterion>complex</mwp:criterion>
         <mwp:occurrence>any</mwp:occurrence>
      </mwp:rule>
</mwp:ruleset>
```

Page 8 5/6/16

Correlation Inference Engine

-- Presumptions

 Correlate provenance events from different system layers in order to generate complete provenance graphs

Provenance event tuple presentation:
 (I, O, P, T_s, T_e)

Synchronized Clock

Page 9 5/6/16

Correlation Inference Engine

- Data-flow Correlation: (I, O, P)-Analysis
- Timestamp Correlation:

$$E_A(i).T_s \le E_M(j).T_s \text{ and}$$

$$E_A(i).T_e \ge E_M(j).T_e$$
(1)

$$simT = \frac{\mid B(T_s) \mid + \mid B(T_e) \mid}{T_r}$$
 (2)

 $B(T_s) \leftarrow \mid E_M(i).T_s - E_A(j).T_s \mid //$ Start time bias $B(T_e) \leftarrow \mid E_M(i).T_e - E_A(j).T_e \mid //$ End time bias $T_r \leftarrow E_A(j).T_e - E_A(j).T_s //$ $E_A(j)$ time range

Page 10 5/6/16

Event Mapper

 Mapping the raw provenance data to structured provenance events using OPM for provenance representation and exchange

 Set to a provenance management service which internally stores the data as relational tuples for future query and analysis

Page 11 5/6/16

Completeness of Middleware Provenance

- Contextual analysis for comparing the completeness of provenance from middleware layer to both middleware and application layer
- Equation for completeness index C_M of middleware provenance

$$C_{M} = \frac{1}{w_{e} + w_{d} + w_{r} + w_{a}} \times \left(\frac{|E_{M}| \times w_{e}}{|E_{M+A}|} + \frac{|D_{M}| \times w_{d}}{|D_{M+A}|} + \frac{|R_{M}| \times w_{r}}{|R_{M+A}|} + \frac{|A_{M}| \times w_{a}}{|A_{M+A}|}\right)$$
(3)

Entities(E), Artifacts(D), Relationships(R), Annotations(A), Middleware(M) and Application(A) layer, weights(w_x)

Page 12 5/6/16

Evaluation

- Correlation Inference
- II. Failure tracing
- III. Performance overheads
- IV. Completeness evaluation

** All the tests are performed on a set of bare metal nodes on FutureGrid India clusters each of which is an IBM iDataPlex dx 360 M2 node with Intel Xeon X5550 processor @2.66GHz with 2 CPUs and 8 cores/processor. It has 64-bit Red-hat Enterprise Linux server and 24GB DDR3 RAM. Each execution is done on 4 to 32 node clusters with 8 processors per node.We use Karma V3.2.3 with RabbitMQ V3.2.0 for provenance storage and retrieval.

Page 13 5/6/16

Applications

- Atmospheric/oceanographic Workflow: SLOSH application(Sea, Lake, and Overland Surges from Hurricanes)
- Bioinformatics workflows: BLAST, BWA and SHRiMP

TABLE I: Multi-dimensional classification of applications

	SLOSH	BWA	BLAST	SHRiMP	
Structure Pattern	Parallel-merge-split	Parallel-merge-split	Parallel-merge-split	Parallel-merge-split	
Data Pattern	Data reduction	Data processing	Data reduction	Data production	
Usage Scenarios	Event-driven	Interactive	Interactive	Interactive	

Page 14 5/6/16

Correlation Inference

Fig. Layered provenance for SLOSH. The graphs show the significance and extent of middleware provenance as opposed to total provenance which is comprised of middleware and application layer provenance.

Page 15 5/6/16

Fig. Layered provenance for BWA. The graphs show the significance and extent of middleware provenance as opposed to total provenance which is comprised of middleware and application layer provenance.

Page 16 5/6/16

Failure tracing

Fig. Application Failure. Identification of different types of failures using layered provenance capture.

Page 17 5/6/16

Fig. Middleware Failure. Identification of different types of failures using layered provenance capture.

Page 18 5/6/16

Performance Overheads

Fig. Performance overheads of using provenance-aware Middleware.

The blue bars show execution times for different applications using WorkQueue without using the provenance-wrapper. The red bars show the results by making WorkQueue provenance-awage by encapsulating it within our provenance collection framework.

5/6/16

Completeness Evaluation

	SLOSH		BWA		BLAST		SHRiMP	
	M	M+A	M	M+A	M	M+A	M	M+A
Entities (E)	13	17	105	111	114	117	204	206
Artifacts (D)	11	12	311	313	183	185	10159	10161
Relationships (R)	20	29	522	924	313	642	15178	25399
Annotations (A)	100	127	520	975	635	1025	15837	17120
Completeness-index, C_i 0.81		0.83		0.84		0.91		

Table. Completeness of middleware provenance ($w_e = 1$; $w_d = 1$; $w_a = 0$:5; $w_r = 0$:5)

Page 20 5/6/16

Discussion

- Middleware provenance is able to capture job distribution and execution plans of a workflow with WorkQueue specification that outlines the steps of workflow execution;
- Capturing only from middleware can eliminate certain important elements of provenance;
 Application layer provenance can be used as enhancement and also to cross-validate the correctness of middleware provenance.

Page 21 5/6/16

Limitation

Varied and changing log formats

 Quality of middleware provenance depends on different applications middleware

Page 22 5/6/16

Conclusion & Future work

- Sources available at: <u>https://github.com/Data-to-Insight-Center/Prov-scaffold</u>
- Extend methodology to other application middleware

 Refine approach by adding correlation inference rules and user controllers

Page 23 5/6/16

Acknowledgement

 This work is funded by in part by the National Science Foundation under grant OCI-1234983.
 We thank Douglas Thain of University of Notre Dame, Craig Mattocks of the National Hurricane Center, and Abhirup Chakraborty of Indiana University for help and discussions.

Page 24 5/6/16

Contact Information

Quan (Gabriel) Zhou: quzhou@indiana.edu

Devarshi Ghoshal: dghoshal@indiana.edu

• Beth Plale: plale@indiana.edu

Page 25 5/6/16

Questions?

Page 26 5/6/16

Thanks!

Page 27 5/6/16