Extinction risk from climate change: other threats

March 25th, 2024

Load libraries and data

```
rm(list = ls())
 root.dir = "C:/Users/mcu08001/Documents/1New Research/CC MetaRisk2/Analysis"
 #Load Libraries
library(coda); library(ggplot2); library(rstan); library(bayesplot); library(
shinystan); library(loo); library(rstanarm); library(dplyr); library(ggpubr)
options(mc.cores = parallel::detectCores())
rstan_options(auto_write = FALSE)
#Load data
dataP<-read.table("MetaRisk2 aggthres 5.txt",header=T); attach(dataP)</pre>
#other quantities
#betareg requires no 0s or 1s
koffset = 0.001 #the k that gives the best posterior predictive check
percent2 <- adj.percent</pre>
percent2[adj.percent == 0] = koffset;
percent2[adj.percent == 1] = 1 - koffset;
dataP$percent2 <- percent2;</pre>
data.use<-dataP; attach(data.use)</pre>
N = length(data.use$percent2)
n.Study <- length(unique(data.use$Study)) #number of studies</pre>
Studyint<-as.integer(unclass(factor(data.use$Study)))</pre>
phi = data.use$Total.N
```

Test for overall threat effect

```
#form matrix of factors
#create model matrix for coefficients
betamat <- data.frame(
   Intercept = rep(1,N),
   Threatened = ifelse(data.use$Threatened == "Y",1,0),
   Endemic = ifelse(data.use$Endemic == "Y",1,0),
   Non.clim.threat = ifelse(data.use$Non.clim.threat == "Y",1,0),
   Land.Use.Change = ifelse(data.use$Land.Use.Change == "Y",1,0))</pre>
```

```
stan.data<-list(N = N, percent = data.use$percent2, betamat = betamat, phi =</pre>
phi, S = n.Study, P = ncol(betamat), Study = Studyint)
params.to.monitor=c("beta","y rep","stu","sigma stu", "eta","log lik")
init.beta=rep(0,ncol(betamat)-1)
init.fn<- function (chain id) {</pre>
  list(beta = c(-2.5,init.beta))
}
# mod=stan(file="MetaRisk2 RSTAN beta mat.stan",data=stan.data,pars=params.to
.monitor.
#
            chains = 3, warmup=5000, cores=3, iter=8000,
#
           init = init.fn, save_warmup = FALSE, control=list(adapt_delta = 0.
9, max treedepth = 15))#
load("3allthreat.rds")
params.to.monitor2=c("beta")#
sumx = summary(mod,probs=c(.025,0.975), digits=4, pars=params.to.monitor2)
sumx$summary
##
                                                   2.5%
                                                              97.5%
                                                                       n eff
                          se mean
                 mean
                                         sd
## beta[1] -3.0522288 0.003293059 0.1112868 -3.27376905 -2.8347429 1142.059
## beta[2] 0.4840492 0.004937104 0.1726892 0.15147406 0.8305115 1223.448
## beta[3] 0.7477895 0.004101094 0.1375451 0.48040237 1.0151293 1124.840
## beta[4] 0.2685812 0.004075115 0.1830882 -0.08701929 0.6264643 2018.557
## beta[5] -0.2510086 0.005293473 0.2023748 -0.64257554 0.1430060 1461.610
##
               Rhat
## beta[1] 1.004185
## beta[2] 1.002559
## beta[3] 1.003848
## beta[4] 1.000069
## beta[5] 1.003224
#checks
traceplot(mod,pars=params.to.monitor2,inc_warmup=FALSE)
```



```
pp_check(
  stan.data$percent,
  rstan::extract(mod, par = 'y_rep')$y_rep[1:100, ],
  fun = 'dens_overlay'
)
```



```
#calculate loo
# log_lik_1 <- extract_log_lik(mod, merge_chains = FALSE)</pre>
# r_eff <- relative_eff(exp(log_lik_1), cores = 6)</pre>
# loo.mod <- loo(log_lik_1, r_eff = r_eff, cores = 6)</pre>
loo.mod #
##
## Computed from 9000 by 3235 log-likelihood matrix.
##
##
            Estimate
                         SE
## elpd_loo
              7619.0
                      96.6
## p_loo
              1982.3 25.1
## looic
            -15238.0 193.1
## MCSE of elpd_loo is NA.
##
## Pareto k diagnostic values:
                             Count Pct.
                                            Min. ESS
##
## (-Inf, 0.7]
                  (good)
                             1410
                                  43.6%
                                            103
##
      (0.7, 1]
                  (bad)
                             1576
                                   48.7%
                                            <NA>
                  (very bad) 249
      (1, Inf)
##
                                     7.7%
                                            <NA>
## See help('pareto-k-diagnostic') for details.
loo.mod2=loo.mod # rename Loo.mod so can Load n
mod2 = mod
load("2all_interc.rds")
```

```
table.data<-data.frame(
   Model = c("Intercept-only model","Model including all threats"),
   LOOic = c(loo.mod$estimates[3],loo.mod2$estimates[3]),
   SE = c(loo.mod$estimates[6],loo.mod2$estimates[6])
)
knitr::kable(table.data, caption = "Table 1: Comparisons of LOOic between bas eline and all threats", format = "markdown")</pre>
```

Table 1: Comparisons of LOOic between baseline and all threats

L00ic

```
Intercept-only model    -15213.77   193.3243
Model including all threats   -15237.99   193.1132

Looic.diff = loo.mod2$estimates[3] - loo.mod$estimates[3]
cat("Difference in LOOic =", Looic.diff)

## Difference in LOOic = -24.21978
```

SE

Test for effect of perceived threat

Here I tested if extinction predictions change based on whether species were considered threatened a priori, if non-climate threats were modeled, and if land use change was modeled through time. I predicted that extinction risks would increase for each of these categories relative to the overall mean.

Perceived threat

Model

```
#form matrix of factors
betamat <- model.matrix(~Non.clim.threat, data = data.use) #</pre>
stan.data<-list(N = N, percent = data.use$percent2, betamat = betamat, phi =</pre>
phi, S = n.Study, P = ncol(betamat), Study = Studyint)
params.to.monitor=c("beta","y_rep","stu","sigma_stu", "eta","log_lik")
init.beta=rep(0,ncol(betamat)-1)
init.fn<- function (chain id) {</pre>
  list(beta = c(-2.5,init.beta))
}
 # mod=stan(file="MetaRisk2 RSTAN beta mat.stan",data=stan.data,pars=params.t
o.monitor,
             chains = 3, warmup=5000, cores=7, iter=8000,
#
#
            init = init.fn, control=list(adapt delta = 0.9, max treedepth = 1
5))
load("2threat.rds")
params.to.monitor2=c("beta")#
```

```
sumx = summary(mod,probs=c(.025,0.975), digits=4, pars=params.to.monitor2)
sumx$summary
##
                 mean
                          se_mean
                                          sd
                                                  2.5%
                                                            97.5%
                                                                     n_eff
## beta[1] -2.6700120 0.002698749 0.08641382 -2.837096 -2.4965599 1025.277
## beta[2] 0.6561329 0.004945721 0.17275113 0.315909 0.9982394 1220.064
##
               Rhat
## beta[1] 1.003345
## beta[2] 1.002287
#checks
traceplot(mod,pars=params.to.monitor2,inc_warmup=FALSE)
```



```
pp_check(
  stan.data$percent,
  rstan::extract(mod, par = 'y_rep')$y_rep[1:100, ],
  fun = 'dens_overlay'
)
```



```
#calculate loo
# log_lik_1 <- extract_log_lik(mod, merge_chains = FALSE)</pre>
# r_eff <- relative_eff(exp(log_lik_1), cores = 6)</pre>
# loo.mod <- loo(log_lik_1, r_eff = r_eff, cores = 6)</pre>
loo.mod #
##
## Computed from 9000 by 3235 log-likelihood matrix.
##
##
            Estimate
                         SE
## elpd_loo
              7608.8
                       96.7
## p_loo
               1990.7 25.0
## looic
            -15217.6 193.4
## MCSE of elpd_loo is NA.
##
## Pareto k diagnostic values:
##
                              Count Pct.
                                            Min. ESS
## (-Inf, 0.7]
                  (good)
                              1405
                                    43.4%
                                             139
##
      (0.7, 1]
                  (bad)
                             1574
                                    48.7%
                                             <NA>
                  (very bad) 256
      (1, Inf)
                                     7.9%
                                             <NA>
## See help('pareto-k-diagnostic') for details.
```

Species thought to be threatened are more threatened.

```
loo.mod2=loo.mod # rename Loo.mod so can Load n
mod2 = mod
#Load("beta interc only.rds")
load("2all_interc.rds")

table.data<-data.frame(
   Model = c("Intercept-only model","Model including threat"),
   LOOic = c(loo.mod$estimates[3],loo.mod2$estimates[3]),
   SE = c(loo.mod$estimates[6],loo.mod2$estimates[6])
)
knitr::kable(table.data, caption = "Table 2: Comparisons of LOOic between bas eline and threat", format = "markdown")</pre>
```

Table 2: Comparisons of LOOic between baseline and threat

L00ic

```
Intercept-only model  -15213.77  193.3243
Model including threat  -15217.62  193.3507

Looic.diff = loo.mod2$estimates[3] - loo.mod$estimates[3]
cat("Difference in LOOic =", Looic.diff)
```

Some limited support for the model (LOOic is lower).

Difference in LOOic = -3.854803

Endemicity

Model

Here I tested if extinction predictions change based on whether species endemic or not to the geographic area analyzed in a study. I predicted that extinction risks would increase because endemic species tend to have smaller initial ranges and are more specialized.

```
#form matrix
betamat <- model.matrix(~Endemic, data = data.use) # 1 - No, 2 - Some, 3 - Ye
s
stan.data<-list(N = N, percent = data.use$percent2, betamat = betamat, phi =
phi, S = n.Study, P = ncol(betamat), Study = Studyint)
params.to.monitor=c("beta","y_rep","stu","sigma_stu", "eta","log_lik")
# init.beta=rep(0,ncol(betamat)-1)
# init.fn<- function (chain_id) {</pre>
```

```
list(beta = c(-2.5, init.beta))
# }
 # mod=stan(file="MetaRisk2 RSTAN beta mat.stan",data=stan.data,pars=params.t
o.monitor,
             chains = 3, warmup=4000, cores=7, iter=7000,
#
#
            init = init.fn, control=list(adapt_delta = 0.9, max_treedepth = 1
5))
load("2endemic.rds")
params.to.monitor2=c("beta")#
sumx = summary(mod,probs=c(.025,0.975), digits=4, pars=params.to.monitor2)
sumx$summary
##
                  mean
                           se_mean
                                          sd
                                                   2.5%
                                                             97.5%
                                                                       n_eff
## beta[1] -2.94626642 0.003626793 0.1059337 -3.1550903 -2.743742 853.1449
## beta[2] -0.06221211 0.017561385 1.4408485 -2.8636109 2.757582 6731.6124
## beta[3] 0.81524023 0.004917579 0.1365016 0.5452175 1.082759 770.4998
##
## beta[1] 1.001334
## beta[2] 0.999872
## beta[3] 1.001257
#checks
traceplot(mod, pars=params.to.monitor2, inc_warmup=FALSE)
```



```
pp_check(
  stan.data$percent,
  rstan::extract(mod, par = 'y_rep')$y_rep[1:100, ],
  fun = 'dens_overlay'
)
```



```
#calculate loo
# log_lik_1 <- extract_log_lik(mod, merge_chains = FALSE)</pre>
# r_eff <- relative_eff(exp(log_lik_1), cores = 6)</pre>
# loo.mod <- loo(log_lik_1, r_eff = r_eff, cores = 6)</pre>
loo.mod #
## Computed from 9000 by 3235 log-likelihood matrix.
##
##
            Estimate
                        SE
## elpd_loo
              7608.6 96.4
## p_loo
              1992.1 25.1
## looic
            -15217.2 192.7
## ----
## MCSE of elpd_loo is NA.
## Pareto k diagnostic values:
                                           Min. ESS
##
                            Count Pct.
## (-Inf, 0.7]
                 (good)
                            1375 42.5%
                                           125
## (0.7, 1] (bad)
                            1602 49.5%
                                           <NA>
```

```
## (1, Inf) (very bad) 258 8.0% <NA>
## See help('pareto-k-diagnostic') for details.
loo.mod2=loo.mod # rename Loo.mod so can Load n
load("2all_interc.rds")

table.data<-data.frame(
   Model = c("Intercept-only model","Model including threat"),
   LOOic = c(loo.mod$estimates[3],loo.mod2$estimates[3]),
   SE = c(loo.mod$estimates[6],loo.mod2$estimates[6])
)
knitr::kable(table.data, caption = "Table 3: Comparisons of LOOic between bas eline and threat", format = "markdown")</pre>
```

Table 3: Comparisons of LOOic between baseline and threat

```
Model     LOOic     SE
Intercept-only model   -15213.77    193.3243

Model including threat   -15217.23    192.7385

Looic.diff = loo.mod2$estimates[3] - loo.mod$estimates[3]
cat("Difference in LOOic =", Looic.diff)

## Difference in LOOic = -3.463133
```

Some limited support for the model (LOOic is lower).

Non-climate threat

```
data.use<-dataP; attach(data.use)</pre>
## The following object is masked by .GlobalEnv:
##
##
       percent2
## The following objects are masked from data.use (pos = 3):
##
##
       Adaptation, adj.percent, Antarctic, Arctic, Author, ave.percent,
       Climate.Mod, concat, Demography.LH, Disp.Mod, Dispersal, Earth.Sys,
##
##
       Endemic, Fresh, Island, Land. Use. Change, max.percent, min.percent,
       Model.Type, Mtn, N.Middle, Non.clim.threat, Other, Other.Habitat,
##
       percent2, Physiology, Pop.diff, Pre.Ind.Rise, Region, S.Middle,
##
##
       Scenario, Sp.int, Study, Taxa, Threatened, Time, Total.N, Tropics,
##
       version, WtSp, Year, Year.Pred
## The following objects are masked from dataP:
##
       Adaptation, adj.percent, Antarctic, Arctic, Author, ave.percent,
##
```

```
##
       Climate.Mod, concat, Demography.LH, Disp.Mod, Dispersal, Earth.Sys,
       Endemic, Fresh, Island, Land. Use. Change, max.percent, min.percent,
##
       Model.Type, Mtn, N.Middle, Non.clim.threat, Other, Other.Habitat,
##
       Physiology, Pop.diff, Pre.Ind.Rise, Region, S.Middle, Scenario,
##
       Sp.int, Study, Taxa, Threatened, Time, Total.N, Tropics, version,
##
       WtSp, Year, Year.Pred
##
## The following object is masked from package:base:
##
##
       version
N = length(data.use$percent2)
n.Study <- length(unique(data.use$Study)) #number of studies</pre>
Studyint<-as.integer(unclass(factor(data.use$Study)))</pre>
phi = data.use$Total.N
betamat <- model.matrix(~Non.clim.threat, data = data.use) #
stan.data<-list(N = N, percent = data.use$percent2, betamat = betamat, phi =</pre>
phi, S = n.Study, P = ncol(betamat), Study = Studyint)
params.to.monitor=c("beta","y_rep","stu","sigma_stu", "eta","log_lik")
init.beta=rep(0,ncol(betamat)-1)
init.fn<- function (chain_id) {</pre>
  list(beta = c(-2.5,init.beta))
}
 # mod=stan(file="MetaRisk2 RSTAN beta mat.stan",data=stan.data,pars=params.t
o.monitor,
#
             chains = 3, warmup=4000, cores=7, iter=7000,
            init = init.fn, control=list(adapt_delta = 0.9, max_treedepth = 1
#
5))
load("2nc.threat.rds")
params.to.monitor2=c("beta")#
sumx = summary(mod,probs=c(.025,0.975), digits=4, pars=params.to.monitor2)
sumx$summary
##
                 mean
                          se mean
                                          sd
                                                   2.5%
                                                             97.5%
                                                                       n eff
## beta[1] -2.5149171 0.002458583 0.0752971 -2.6625898 -2.3637582 937.9655
## beta[2] 0.1096649 0.005462529 0.1166680 -0.1141653 0.3398413 456.1590
## beta[1] 1.000933
## beta[2] 1.006844
#checks
traceplot(mod,pars=params.to.monitor2,inc_warmup=FALSE)
```



```
pp_check(
  stan.data$percent,
  rstan::extract(mod, par = 'y_rep')$y_rep[1:100, ],
  fun = 'dens_overlay'
)
```



```
#calculate loo
# log_lik_1 <- extract_log_lik(mod, merge_chains = FALSE)</pre>
# r_eff <- relative_eff(exp(log_lik_1), cores = 6)</pre>
# loo.mod <- loo(log_lik_1, r_eff = r_eff, cores = 6)</pre>
loo.mod #
##
## Computed from 9000 by 3235 log-likelihood matrix.
##
##
            Estimate
                         SE
## elpd_loo
               7597.3
                       96.8
## p_loo
               2001.0 25.4
## looic
             -15194.6 193.6
## MCSE of elpd_loo is NA.
##
## Pareto k diagnostic values:
                                            Min. ESS
##
                              Count Pct.
## (-Inf, 0.7]
                  (good)
                              1387
                                    42.9%
                                             125
                                    48.0%
##
      (0.7, 1]
                  (bad)
                              1552
                                             <NA>
      (1, Inf)
                  (very bad) 296
##
                                     9.1%
                                             <NA>
## See help('pareto-k-diagnostic') for details.
#save(mod, loo.mod, file="nc.threat.rds")
```

No support for non-climate threats as contributing substantially to increasing extinction threat.

```
loo.mod2=loo.mod # rename Loo.mod so can Load n
mod2 = mod

load("2all_interc.rds")

table.data<-data.frame(
   Model = c("Intercept-only model","Model including non-climate threat"),
   LOOic = c(loo.mod$estimates[3],loo.mod2$estimates[3]),
   SE = c(loo.mod$estimates[6],loo.mod2$estimates[6])
)
knitr::kable(table.data, caption = "Table 4: Comparisons of LOOic between bas eline and non-climate threat", format = "markdown")</pre>
```

Table 4: Comparisons of LOOic between baseline and non-climate threat

Intercept-only model	-15213.77	193.3243
Model including non-climate threat	-15194.60	193.6465
<pre>Looic.diff = loo.mod2\$estimates[</pre>	[<mark>3</mark>] - loo.m	od \$ estimate:
<pre>cat("Difference in LOOic =", Loc</pre>	oic.diff)	

L00ic

SE

No model support for non-climate threat (LOOic is higher).

Difference in LOOic = 19.16506

Land-use over time

Model

```
data.use<-dataP; attach(data.use)</pre>
## The following object is masked _by_ .GlobalEnv:
##
##
       percent2
## The following objects are masked from data.use (pos = 3):
##
##
       Adaptation, adj.percent, Antarctic, Arctic, Author, ave.percent,
       Climate.Mod, concat, Demography.LH, Disp.Mod, Dispersal, Earth.Sys,
##
       Endemic, Fresh, Island, Land. Use. Change, max.percent, min.percent,
##
       Model.Type, Mtn, N.Middle, Non.clim.threat, Other, Other.Habitat,
##
       percent2, Physiology, Pop.diff, Pre.Ind.Rise, Region, S.Middle,
##
##
       Scenario, Sp.int, Study, Taxa, Threatened, Time, Total.N, Tropics,
##
       version, WtSp, Year, Year.Pred
```

```
## The following objects are masked from data.use (pos = 4):
##
       Adaptation, adj.percent, Antarctic, Arctic, Author, ave.percent,
##
##
       Climate.Mod, concat, Demography.LH, Disp.Mod, Dispersal, Earth.Sys,
       Endemic, Fresh, Island, Land. Use. Change, max.percent, min.percent,
##
##
       Model.Type, Mtn, N.Middle, Non.clim.threat, Other, Other.Habitat,
       percent2, Physiology, Pop.diff, Pre.Ind.Rise, Region, S.Middle,
##
##
       Scenario, Sp.int, Study, Taxa, Threatened, Time, Total.N, Tropics,
##
       version, WtSp, Year, Year.Pred
## The following objects are masked from dataP:
##
##
       Adaptation, adj.percent, Antarctic, Arctic, Author, ave.percent,
##
       Climate.Mod, concat, Demography.LH, Disp.Mod, Dispersal, Earth.Sys,
##
       Endemic, Fresh, Island, Land.Use.Change, max.percent, min.percent,
       Model.Type, Mtn, N.Middle, Non.clim.threat, Other, Other.Habitat,
##
       Physiology, Pop.diff, Pre.Ind.Rise, Region, S.Middle, Scenario,
##
       Sp.int, Study, Taxa, Threatened, Time, Total.N, Tropics, version,
##
       WtSp, Year, Year.Pred
##
## The following object is masked from package:base:
##
##
       version
N = length(data.use$percent2)
n.Study <- length(unique(data.use$Study)) #number of studies</pre>
Studyint<-as.integer(unclass(factor(data.use$Study)))</pre>
phi = data.use$Total.N
betamat <- model.matrix(~Land.Use.Change)</pre>
stan.data<-list(N = N, percent = data.use$percent2, betamat = betamat, phi =</pre>
phi, S = n.Study, P = ncol(betamat), Study = Studyint)
params.to.monitor=c("beta","y_rep","stu","sigma_stu", "eta","log_lik")
init.beta=rep(0,ncol(betamat)-1)
init.fn<- function (chain_id) {</pre>
  list(beta = c(-2.5,init.beta))
}
# mod=stan(file="MetaRisk2 RSTAN beta mat.stan",data=stan.data,pars=params.t
o.monitor,
#
             chains = 3, warmup=4000, cores=7, iter=7000,
#
            init = init.fn, control=list(adapt delta = 0.9, max treedepth = 1
5))
load("2LUchange.rds")
params.to.monitor2=c("beta")#
sumx = summary(mod,probs=c(.025,0.975), digits=4, pars=params.to.monitor2)
sumx$summary
```

```
## mean se_mean sd 2.5% 97.5% n_eff
## beta[1] -2.49782910 0.002639123 0.07569736 -2.6478832 -2.35355 822.7015
## beta[2] -0.02149434 0.005538077 0.13194628 -0.2830907 0.24110 567.6443
## Rhat
## beta[1] 1.000564
## beta[2] 1.008911

#checks
traceplot(mod,pars=params.to.monitor2,inc_warmup=FALSE)
```



```
pp_check(
  stan.data$percent,
  rstan::extract(mod, par = 'y_rep')$y_rep[1:100, ],
  fun = 'dens_overlay'
)
```



```
#calculate loo
# log_lik_1 <- extract_log_lik(mod, merge_chains = FALSE)</pre>
# r_eff <- relative_eff(exp(log_lik_1), cores = 6)</pre>
# loo.mod <- loo(log_lik_1, r_eff = r_eff, cores = 6)</pre>
loo.mod #
##
## Computed from 9000 by 3235 log-likelihood matrix.
##
##
            Estimate
                         SE
## elpd_loo
               7607.0
                       96.6
## p_loo
               1991.8 25.1
## looic
            -15214.0 193.3
## MCSE of elpd_loo is NA.
##
## Pareto k diagnostic values:
                                            Min. ESS
##
                             Count Pct.
## (-Inf, 0.7]
                  (good)
                             1432
                                   44.3%
                                            104
##
      (0.7, 1]
                  (bad)
                             1548
                                   47.9%
                                            <NA>
                  (very bad) 255
      (1, Inf)
##
                                     7.9%
                                            <NA>
## See help('pareto-k-diagnostic') for details.
#save(mod, loo.mod, file="LUchange.rds")
loo.mod2=loo.mod # rename Loo.mod so can Load n
mod2 = mod
```

```
#Load("beta interc only.rds")
load("2all_interc.rds")

table.data<-data.frame(
    Model = c("Intercept-only model","Model including future land use change"),
    LOOic = c(loo.mod$estimates[3],loo.mod2$estimates[3]),
    SE = c(loo.mod$estimates[6],loo.mod2$estimates[6])
)
knitr::kable(table.data, caption = "Table 5: Comparisons of LOOic between bas eline and land use change", format = "markdown")</pre>
```

Table 5: Comparisons of LO0ic between baseline and land use change

Little model support for land use change affecting extinction risks.

```
n.total <- nrow(data.use) #total N</pre>
#use common median threat
load("2all interc.rds")
posterior2=as.data.frame(mod)
grand.mean = posterior2[["mu"]]
grand.mean.pred <- invlogit(quantile(grand.mean, probs = c(0.025, 0.5, 0.975)</pre>
))
load("2threat.rds")
mod.a <- mod</pre>
posterior <- as.data.frame(mod.a)</pre>
p.y <- sum(data.use$Threatened == "Y")/n.total #prop of yes
p.n <- sum(data.use$Threatened == "N")/n.total #prop of nos</pre>
beta.Y = invlogit(posterior[["beta[1]"]] + posterior[["beta[2]"]])
beta.N = invlogit(posterior[["beta[1]"]])
\#r.mean.1 = p.n * beta.N + p.y * beta.Y
r.mean.1 = invlogit(grand.mean)
```

```
beta.vs.r.mean.n = (beta.N) - (r.mean.1)
beta.vs.r.mean.y = (beta.Y) - (r.mean.1)
param.vals.1 <- data.frame(</pre>
"r.mean.1" = r.mean.1,
"beta.N" = beta.N,
"beta.Y" = beta.Y,
"beta.vs.r.mean.n" = beta.vs.r.mean.n,
"beta.vs.r.mean.y" = beta.vs.r.mean.y
pred.1 = (apply(param.vals.1, 2, quantile, probs = c(0.025, 0.5, 0.975), na.rm
=TRUE))
threat.vals <- data.frame(overall.mean = pred.1[2,1],
  beta.N.lo = pred.1[1,2],
  beta.N = pred.1[2,2],
  beta.N.hi = pred.1[3,2],
  beta.Y.lo = pred.1[1,3],
  beta.Y = pred.1[2,3],
  beta.Y.hi = pred.1[3,3],
  beta.N.mean.lo = pred.1[1,4],
  beta.N.mean = pred.1[2,4],
  beta.N.mean.hi = pred.1[3,4],
  beta.Y.mean.lo = pred.1[1,5],
  beta.Y.mean = pred.1[2,5],
  beta.Y.mean.hi = pred.1[3,5]
)
load("2endemic.rds")
mod.a <- mod
posterior <- as.data.frame(mod.a)</pre>
p.y <- sum(data.use$Threatened == "Y")/n.total #prop of yes</pre>
p.n <- sum(data.use$Threatened == "N")/n.total #prop of nos</pre>
beta.Y = invlogit(posterior[["beta[1]"]] + posterior[["beta[3]"]])
beta.N = invlogit(posterior[["beta[1]"]])
\#r.mean.1 = p.n * beta.N + p.y * beta.Y
r.mean.1 = invlogit(grand.mean)
beta.vs.r.mean.n = (beta.N) - (r.mean.1)
beta.vs.r.mean.y = (beta.Y) - (r.mean.1)
param.vals.1 <- data.frame(</pre>
"r.mean.1" = r.mean.1,
"beta.N" = beta.N,
"beta.Y" = beta.Y,
"beta.vs.r.mean.n" = beta.vs.r.mean.n,
"beta.vs.r.mean.y" = beta.vs.r.mean.y
```

```
pred.1 = (apply(param.vals.1, 2, quantile, probs = c(0.025, 0.5, 0.975), na.rm
=TRUE))
threat.vals[2,] <- data.frame(overall.mean = pred.1[2,1],
 beta.N.lo = pred.1[1,2],
 beta. N = pred.1[2,2],
 beta.N.hi = pred.1[3,2],
 beta.Y.lo = pred.1[1,3],
 beta.Y = pred.1[2,3],
 beta.Y.hi = pred.1[3,3],
 beta.N.mean.lo = pred.1[1,4],
 beta.N.mean = pred.1[2,4],
 beta.N.mean.hi = pred.1[3,4],
 beta.Y.mean.lo = pred.1[1,5],
 beta.Y.mean = pred.1[2,5],
 beta.Y.mean.hi = pred.1[3,5]
******
load("2nc.threat.rds")
mod.a <- mod</pre>
posterior <- as.data.frame(mod.a)</pre>
p.y <- sum(data.use$Non.clim.threat == "Y")/n.total #prop of yes
p.n <- sum(data.use$Non.clim.threat == "N")/n.total #prop of nos
beta.Y = invlogit(posterior[["beta[1]"]] + posterior[["beta[2]"]])
beta.N = invlogit(posterior[["beta[1]"]])
\#r.mean.1 = p.n * beta.N + p.y * beta.Y
r.mean.1 = invlogit(grand.mean)
beta.vs.r.mean.n = (beta.N) - (r.mean.1)
beta.vs.r.mean.y = (beta.Y) - (r.mean.1)
param.vals.1 <- data.frame(</pre>
"r.mean.1" = r.mean.1,
"beta.N" = beta.N,
"beta.Y" = beta.Y,
"beta.vs.r.mean.n" = beta.vs.r.mean.n,
"beta.vs.r.mean.y" = beta.vs.r.mean.y
pred.1 = (apply(param.vals.1, 2, quantile, probs = c(0.025, 0.5, 0.975), na.rm
=TRUE))
threat.vals[3,] <- cbind(overall.mean = pred.1[2,1],
 beta.N.lo = pred.1[1,2],
 beta.N = pred.1[2,2],
 beta.N.hi = pred.1[3,2],
 beta.Y.lo = pred.1[1,3],
beta.Y = pred.1[2,3],
```

```
beta.Y.hi = pred.1[3,3],
 beta.N.mean.lo = pred.1[1,4],
 beta.N.mean = pred.1[2,4],
 beta.N.mean.hi = pred.1[3,4],
 beta.Y.mean.lo = pred.1[1,5],
 beta.Y.mean = pred.1[2,5],
 beta.Y.mean.hi = pred.1[3,5]
******
load("2LUchange.rds")
mod.a <- mod
posterior <- as.data.frame(mod.a)</pre>
p.y <- sum(data.use$Land.Use.Change == "Y")/n.total #prop of yes
p.n <- sum(data.use$Land.Use.Change == "N")/n.total #prop of nos</pre>
beta.Y = invlogit(posterior[["beta[1]"]] + posterior[["beta[2]"]])
beta.N = invlogit(posterior[["beta[1]"]])
\#r.mean.1 = p.n * beta.N + p.y * beta.Y
r.mean.1 = invlogit(grand.mean)
beta.vs.r.mean.n = (beta.N) - (r.mean.1)
beta.vs.r.mean.y = (beta.Y) - (r.mean.1)
param.vals.1 <- data.frame(</pre>
"r.mean.1" = r.mean.1,
"beta.N" = beta.N,
"beta.Y" = beta.Y,
"beta.vs.r.mean.n" = beta.vs.r.mean.n,
"beta.vs.r.mean.y" = beta.vs.r.mean.y
pred.1 = (apply(param.vals.1, 2, quantile, probs = c(0.025, 0.5, 0.975), na.rm
=TRUE))
threat.vals[4,]<- cbind(overall.mean = pred.1[2,1],
 beta.N.lo = pred.1[1,2],
 beta.N = pred.1[2,2],
 beta.N.hi = pred.1[3,2],
 beta.Y.lo = pred.1[1,3],
 beta.Y = pred.1[2,3],
 beta.Y.hi = pred.1[3,3],
 beta.N.mean.lo = pred.1[1,4],
 beta.N.mean = pred.1[2,4],
 beta.N.mean.hi = pred.1[3,4],
 beta.Y.mean.lo = pred.1[1,5],
 beta.Y.mean = pred.1[2,5],
 beta.Y.mean.hi = pred.1[3,5]
)
#***********************************
******
threat.vals$threat = c("Preconceived Threat", "Endemic", "Other Threats", "Lan
```

```
d use change")
save(threat.vals,file ="2Threat analysis results.rds")
threat.vals.r <- threat.vals
threat.vals.r[,1:13] <- round((threat.vals.r[,1:13]), digits = 4)
knitr::kable(threat.vals.r, caption = "Table 6: Extinction risk by threats an
d difference from mean, with 95% credible intervals", format = "markdown", fo
nt = 5)</pre>
```

Table 6: Extinction risk by threats and difference from mean, with 95% credible intervals

overal	beta	bet	beta	beta	bet	beta	beta.N. mean.l	beta.N	beta.N. mean.h	beta.Y. mean.l	beta.Y	beta.Y. mean.h	
l.mean	.N.lo	a.N	.N.hi	.Y.lo	a.Y	.Y.hi	0	.mean	i	0	.mean	i	threat
0.076	0.05 54	0.0 64 8	0.07 61	0.09 10	0.1 17 8	0.15 18	0.0253	0.011	0.0041	0.0132	0.041	0.0769	Preco nceive d Threat
0.076	0.04 09	0.0 50 0	0.06 04	0.08 84	0.1 06 3	0.12 51	0.0404	0.025 8	0.0115	0.0095	0.030 4	0.0517	Ende mic
0.076	0.06 52	0.0 74 8	0.08 60	0.06 56	0.0 82 7	0.10 36	0.0152	0.001	0.0136	0.0135	0.007	0.0292	Other Threat s
0.076	0.06 61	0.0 76 1	0.08 68	0.05 74	0.0 74 7	0.09 73	0.0139	0.000	0.0152	0.0217	0.001	0.0224	Land use chang e

```
#load("Threat analysis results.rds")
threat.vals$threat <- factor(threat.vals$threat, levels = c("Preconceived Thr
eat", "Endemic", "Other Threats", "Land use change"))
#Figures
Fig2a<-ggplot(data = threat.vals)+
  geom vline(xintercept=grand.mean.pred[2]) +
  geom errorbar(aes(y = threat, xmin = beta.Y.lo, xmax = beta.Y.hi), width =
0) +
  geom_point(stat = "identity", aes(y = threat, x = beta.Y), color = "#416788
", size = 3, shape = 15) +
  xlab("Pre-industrial rise \n in temperature (C)") + <math>xlim(c(0,.2)) +
  theme classic()+
  theme(axis.title.y = element blank(),axis.title=element text(size=14),axis.
text = element text(size=12))+
  guides(size=F)
## Warning: The `<scale>` argument of `guides()` cannot be `FALSE`. Use "none
" instead as
## of ggplot2 3.3.4.
## This warning is displayed once every 8 hours.
```

```
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
Fig2a
```


Fig. 1. Predicted extinction risk based on various threats.

```
#Differences from zero
glob.mean.over <- rep("n",nrow(threat.vals))</pre>
glob.mean.over[threat.vals$beta.Y.mean > 0 & threat.vals$beta.Y.mean.lo > 0]
= "y"
glob.mean.over[threat.vals$beta.Y.mean < 0 & threat.vals$beta.Y.mean.hi < 0]</pre>
threat.vals$glob.mean.over <- glob.mean.over
Fig2b <- ggplot(data = threat.vals)+
  geom vline(xintercept=0) +
  geom_errorbar(aes(y = threat, xmin = beta.Y.mean.lo, xmax = beta.Y.mean.hi)
, width = 0) +
  geom_point(stat = "identity", aes(y = threat, x = beta.Y.mean, color = glob
.mean.over), size = 3, shape = 15) +
  scale_color_manual(values=c('grey','#5B507A'))+
  xlab("Percent difference \n from global mean") + xlim(c(-.12,.12)) +
  theme_classic()+
  theme(axis.title.y = element blank(),axis.ticks.y = element blank(),axis.li
ne.y = element blank(), axis.text.y = element blank(),
        axis.title=element_text(size=14),axis.text = element_text(size=12),le
```

```
gend.position = "none")+
  guides(size=F)
Fig2b
```


Fig. 2. Predicted extinction risk based on various threats.

```
ggarrange(Fig2a, NULL, Fig2b, ncol=3, widths = c(4,.4, 2))
```


Fig. 3. Predicted extinction risk based on various threats.

```
#ggsave("Metarisk2 threats.png",width=8,height=6,unit="in",dpi="print")
#catalog sample sizes
N.pre.st<-length(unique(dataP$Study[dataP$Threatened == "Y"]))</pre>
N.pre.mod<-length((dataP$Study[dataP$Threatened == "Y"]))</pre>
N.end.st<-length(unique(dataP$Study[dataP$Endemic == "Y"]))</pre>
N.end.mod<-length((dataP$Study[dataP$Endemic == "Y"]))</pre>
N.other.st<-length(unique(dataP$Study[dataP$Non.clim.threat == "Y"]))</pre>
N.other.mod<-length((dataP$Study[dataP$Non.clim.threat == "Y"]))</pre>
N.LU.st<-length(unique(dataP$Study[dataP$Land.Use.Change == "Y"]))</pre>
N.LU.mod<-length((dataP$Study[dataP$Land.Use.Change == "Y"]))</pre>
table.data<-data.frame(</pre>
  Factor = c("Preconceived", "Endemic", "Other", "Land use change"),
  Studies = c(N.pre.st, N.end.st, N.other.st, N.LU.st),
  Models = c(N.pre.mod, N.end.mod, N.other.mod, N.LU.mod)
knitr::kable(table.data, caption = "Table 7: Number of studies and models for
each factor", format = "markdown")
```

Table 7: Number of studies and models for each factor

Factor	Studies	Models
Preconceived	127	802
Endemic	267	1676
Other	67	396
Land use change	39	216

Conclusion

Studies that focused on species that were considered to be threatened already or were endemic, indeed had higher extinction risks. However, contrary to expectations, models that included non-climate threats (usually land use change) and that modeled future land use changes did not indicate enhanced extinction risks.

Variation explained

```
#After Gelman 2019 R2 for Bayesian
#Load model and beta matrix - check if mu is modeled separately
load("3allthreat.rds")
posterior=as.data.frame(mod);
betamat <- data.frame(</pre>
  Intercept = rep(1,N),
 Threatened = ifelse(data.use$Threatened == "Y",1,0),
  Endemic = ifelse(data.use$Endemic == "Y",1,0),
  Non.clim.threat = ifelse(data.use$Non.clim.threat == "Y",1,0),
  Land.Use.Change = ifelse(data.use$Land.Use.Change == "Y",1,0))
#Variables and matrices
S = 9000: #samples
K = ncol(betamat); #factors
p.mat <- as.matrix(posterior[,1:K])</pre>
y = dataP$percent2
y.mat = t(matrix(rep(y,S), nrow = N, ncol = S))
y.mean <- mean(y)</pre>
#Calculate y.pred for fixed effects only
y.pred <- matrix(rep(NA, N*S), nrow = S, ncol = N)</pre>
theta <- y.pred
for (i in 1:N) {
      theta[,i] = invlogit(p.mat %*% t(betamat[i,]))#rows = samples, cols = i
      y.pred[,i] = (theta[,i] * data.use$Total.N[i])/(theta[,i] * data.use$To
tal.N[i] + (1-theta[,i]) * data.use$Total.N[i])
}
#Calcluate residual variance
res.f = y.mat - y.pred
RSS.f = rowSums((res.f)^2)
```

```
res.v.f = 1/(N - 1) * RSS.f
#Calculate fit variance
pred.v.f = 1/(N-1) * rowSums((y.pred)^2)
#Calculate R2
R2.v.f = pred.v.f/(pred.v.f + res.v.f)
cat("fixed effects R2 = ", quantile(R2.v.f,probs = c(0.025, 0.5, 0.975),na.rm
= T))
## fixed effects R2 = 0.08371096 0.1121981 0.1526218
#Total model With random effects
y.pred.c <-(as.matrix(posterior[,(K+1):(N+K)])) #calculated in STAN, with all</pre>
RE and weightings
#Calculate residual variance
res.c = y.mat - y.pred.c
RSS.c = rowSums((res.c)^2)
res.v.c = 1/(N-1) * RSS.c
#Calculate fit variance
pred.v.c = 1/(N-1) * rowSums(y.pred.c^2)
#Calculate full model R2
R2.v.c = pred.v.c/(pred.v.c + res.v.c)
print("
                                                           ")
## [1] "
cat("Overall model R2 = ", quantile(R2.v.c, probs = c(0.025, 0.5, 0.975), na.rm
= T))
## Overall model R2 = 0.7665317 0.7873023 0.8077524
```