INSTRUCCIONES LENGUAJE DE ALTO NIVEL A LENGUAJE DE BAJO NIVEL

INSTRUCCIONES LENGUAJE DE ALTO NIVEL A LENGUAJE DE DAJO NIVEL

EJERCICIO

int main () {

int a = 2050;

int b = 357;

int c = 20513;

d[150];

d[20] = 50 + a;

d[5] = 18332;

return a + b - c + d[20]

¿CÓMO SE REALIZA LA IMPLEMENTACIÓN?

Para realizar la conversión a instrucciones de alto y bajo nivel debemos hacer uso de los principios de diseño de hardware, para desarrollarlo se de tener en cuenta:

- 1. Definir los registros de cada variable.
- 2. Inicializar las variables en cero con la variable global [0] (%G0) utilizando la variable sintética MOV.
- 3. Realizar las operaciones entre los registros.
- 4. Reutilizar registros que no voy a volver a utilizar.
- 5. Cuando se obtenga la conversión de **lenguaje ensamblador** se procede a realizar la conversión a **Lenguaje Máquina (Binario)**.
- **6.** Utilizar el **formato #3**, el cual se utiliza para las instrucciones aritmético-lógicas y Load/Store, en caso de no realizar las operaciones anteriores se puede utilizar el **formato #2** Instrucciones de Salto (SETHI y BRANCH).
- 7. Utilizar el **formato OP** de las operaciones a realizar, en este caso se utiliza el OP 10 (Aritmético-lógica), OP 00 (SETHI) y OP 11 (Load/Store).
- **8.** Utilizar el **formato OP3** de las instrucciones y **OP2**, en este caso se utiliza el OP3 del OR-MOV (000010), ADD (000000), SUB (000100), LOAD (000000) y STORE (000100) y el OP2 del SETHI (100).
- 9. Diligenciar el formato #3 y formato #2 de cada uno.
- 10. Cuando se obtenga la conversión del lenguaje de máquina, se procede a realizar la conversión a código hexadecimal; lo cual se debe separar de a 4 dígitos de derecha a izquierda y obtener el numero binario.

SOLUCIÓN

LENGUAJE ENSAMBLADOR:

Definición de registros

a = %L0, b = %L1, c = %L2, d = %L3

Iniciación de variables

MOV 2050, %L0

MOV 357, %L1

SETHI 20, %L2

OR %L2, 33, %L2

Ejecución de operaciones

ADD %L0, 50, %L0

ST %L0, [%L3 + (20*4)]

SETHI 17, %L4

OR %L4, 924, %L4

ADD %L0, %L1, %L0

LD [%L3 + (20*4)], %L5

ADD %L2, %L5, %L2

SUB %L0, %L2, %O0

LENGUAJE DE MÁQUINA:

			_		•		
Direcciones	ор	rd	op3	rs1	i	imm13	
0X0000	10	10000	000010	00000	1	010000000010	
0X0004	10	10001	000010	00000	1	0000101100101	
	ор	rd	op2	imm22			
0X0008	00	10010	100	0000000000000010100			
	ор	rd	op3	rs1	i	imm13	
0X000C	10	10000	000000	10000	1	0000000110010	
	ор	rd	op3	rs1	i	imm13	
0X0010	11	10000	000100	10011	1	0000001010000	
	ор	rd	op2	imm22			
0X0014	00	10100	100	0000000000000010001			
	ор	rd	op3	rs1	i	unused(zero)	rs2
0X0018	10	10000	000000	10000	0	00000000	10001
	ор	rd	op3	rs1	i	imm13	
0X001C	11	10101	000000	10011	1	0000001010000	
	ор	rd	op3	rs1	i	unused(zero)	rs2
0X0020	10	10010	000000	10010	0	00000000	10101
	ор	rd	op3	rs1	i	unused(zero)	rs2
0X0024	10	01000	000100	10000	0	00000000	10010

LENGUAJE DE MÁQUINA A CÓDIGO HEXADECIMAL:

Direcciones	Conversión Hexadecimal (0X)
0X0000	A0102802
0X0004	A2102165
0X0008	12800014
0X000C	A0042032
0X0010	E024E050
0X0014	14800011
0X0018	A0040011
0X001C	EA04E050
0X0020	A4048015
0X0024	90240012

CONCLUSIONES

- Para iniciar a realizar las conversiones se colocó la práctica de lo aprendido en clase de los principios del diseño del hardware, los cuales me guiaron paso a paso para realizar dichas conversiones.
- Inicialmente le asigné a cada variable un registro Local
- Posterior a la asignación de registro de variable, realicé la inicialización de las variables, en este caso se inicializaron con la variable sintética MOV del operador OR.
- Para realizar las conversiones debo verificar que operaciones voy a realizar para así saber qué tipos de operandos utilizar, en este caso utilicé los operandos SUB, ADD, OR, LOAD, STORE y la instrucción SETHI.
- Para realizar la conversión de lenguaje de máquina verifiqué que tipos de instrucciones iba a utilizar para así seleccionar el tipo de formato, en este caso utilicé el formato #3 el cual se utiliza para las instrucciones Aritmético-lógicas y LOAD/STORE y el formato #2 el cual se utiliza para las instrucciones BRANCH y SETHI.
- Seleccioné el formato OP de las operaciones que voy a realizar en el ejercicio, en este caso utilicé el OP 10 (aritmético-lógicas), OP 00 (SETHI) y OP 11 (LOAD/STORE).
- Se aplicó los conocimientos de los tipos de instrucciones y formatos que se deben utilizar para cada caso, para este ejercicio se utilizó el formato OP3 donde se utiliza las instrucciones aritmético-lógica y LOAD/STORE y OP2 donde se utiliza las instrucciones de salto.
- Para diligenciar el formato #3 tuve en cuenta las direcciones de memoria de cada uno, para posterior realizar la conversión a hexadecimal.