L04LogicalEquivalences2

February 2, 2017

1 Lecture 4

In []:

1.1 Logical Equivalences

- Useful laws to simplify and evaluate propositions:
 - Examples for Disjunction and Conjunctions:
 - * Associative Laws
 - * Distribute Laws
 - * Commutative Laws

Tip 1: You do not need to remember the names of the other laws. **Tip 2**: We write $P \equiv Q$ to say that P and Q are equivalent propositions. Note that this is slightly different from $P \iff Q$.

The statement $P \equiv Q$ tells us that $P \iff Q$ is a tautology, e.g., P and Q always take the same truth values. However: $P \iff Q$ is a valid proposition in our propositional logic $P \equiv Q$ is not a proposition. It is something we do outside of the logic system.

1.1.1 Today:

- 1. More equivalences:
 - involving \vee , \wedge and \neg : De Morgan's Laws
 - involving conditional statements
- 2. Predicates, truth sets:
 - set operations
 - analogy between set theory and propositional logic

1.2 Practice Question

Question: Which of the following propositions is logically equivalent to

$$\neg (P \land (Q \lor \neg P)?$$

a. $P \vee Q$;

b. $\neg P \lor Q$;

c. $P \vee \neg Q$;

d. $\neg P \lor \neg Q$;

Answer: d. A truth table gives the solution. Can we develop a law that helps us simplify this kind of statement (negation of disjunction/conjunction?)

1.3 De Morgan's Laws

Example:

Both the Yankees and the Red Sox lost last night.

Its negation is:

Either the Yankees or the Red Sox won last night.

1.4 De Morgan's Laws

1st Law: Negation of Conjunction is Disjunction of Negations

$$\neg (P \land Q) \equiv \neg P \lor \neg Q.$$

• 2nd Law: Negation of Disjunction is Conjunction of Negations

$$\neg (P \lor Q) \equiv \neg P \land \neg Q.$$

Tip: You don't need to remember which one is 1st or 2nd.

1.5 Verifying De Morgan's Laws by Truth Table

Idea: The truth table of the \land operator is the negation of the truth table of the \lor operator.

Exercise: Can you see how to derive De Morgan's 2nd Law from the 1st Law?

Conditional Statements

1.6 Equivalences involving conditional statements

This is a *conditional* statement: $P \implies Q$ this is its *converse*: $Q \implies P$

this is its *inverse*: $\neg P \implies \neg Q$

this is its contrapositive: $\neg Q \implies \neg P$

1.7 Practice Question

Which one of the following statements is logically equivalent to > If at least 10 people are there, then the lecture will be given. ?

- a. If there are fewer than 10 people, then the lecture will not be given.
- b. If the lecture is not given, it means that there were fewer than 10 people there.
- c. If the lecture is given, at least 10 people were there.
- d. The lecture will be given if and only if at least 10 people are there.
- b. Contrapositive

1.8 Equivalence of contrapositive via laws

In this case of chain of equivalences is more elegant than a truth table.

The following uses the equivalence $P \implies Q \equiv P \vee Q$ and the commutative property of \vee :

$$P \implies Q \equiv \neg P \lor Q \equiv Q \lor \neg P \equiv \neg Q \implies \neg P.$$

Question: How about converse and inverse? They are also contrapositive of each other.

1.9 Practice Question

For which of the following statements is the converse true? [Multiple Answers!]

- a. If x > 3 and y < 2, then x > y.
- b. If x > y then x y > 0.
- c. If $x^2 = y^2$, then x = y.
- d. If x > y, then x = y.
- e. If $x \ge y$, then x = y.

Answer: The following: a. the converse is false

- b. both statement and converse are true
- c. statement is false but converse is true
- d. statement and converse are false
- e. statement is false but converse is true

1.10 Use of Contrapositive

Sometimes taking the contrapositive can make the meaning of a statement more obvious. Consider for instance the following:

$$x \le y \implies (x \le 3 \lor y \ge 2)$$

With some thought and a bit of case analysis, you should convince yourself that this is true for all real x and y.

Now, taking the contrapositive (and applying De Morgan's Laws), we obtain the simpler, logically equivalent, implication:

$$(x > 3 \land y < 2) \implies x > y.$$

This is obviously true for all $x, y \in \mathbb{R}$.

1.10.1 We are done with logical equivalences.

Going forward, remember the different ways to show logical equivalence:

- a. truth table
- b. by applying laws (i.e., known logical equivalence)
- c. combining both

1.11 Beyond propositional variables

The propositional logic we covered so far is not very interesting: - we are never looking inside the propositional variables, - does not convey a mathematical meaning.

Next, we'll introduce some mathematical structure. For this purpose, I am assuming you are familiar with basic set notation: $-x \in A$ means x is element of set A, i.e., x belongs to A. $-A \subseteq B$ means that A is a subset of B. $-A = \{x \in \mathbb{R} | x > 0\}$ defines A as the set of positive real numbers.

1.12 Predicates

To use propositiona logic to talk about mathematical structures, we start by introducing **predicates**:

Definition: Predicates are propositions that contain variables.

Examples: - P(x): The integer x is prime. - Q(z): $z \ge 0$.

The truth value of these propositions depends on the setting of the variables: - P(10) is false, but P(11) is true. - Q(1) is true, but Q(-1) is false.

Idea: As the notation suggests, you should think of P(x) as a function of x:

P takes as input an element x from a universe U and returns a proposition P(x).

Note: Be careful that you understand which universe P(x) operates over.

Examples: - P(x): The integer x is prime. Universe $U = \mathbb{Z}$

• Q(z): $x^2 \le 1$. Universe $U = \mathbb{R}$

1.13 Truth Sets

Given a predicate P(x) over a universe U, we can define a corresponding **truth set**, i.e., the set of elements x in U that make P(x) true.

Example:

- For P(x): "The integer x is prime" over the universe of integers, the truth set is exactly the set of prime integers. - For Q(z): " $x^2 \le 1$ " over the universe of reals, the truth set is the interval[-1,1].

Formal Definition: The *truth set* of a predicate P(x) over a universe U is defined as

$$\{x \in U | P(x)\}.$$

1.14 Compound Predicates

Because predicates map to propositions, it is easy to construct new predicates by combining existing predicates using *logical operators*.

Example:

P(x): x > 2.

Q(x): $x \le 3$.

Compound proposition:

$$P(x) \wedge Q(x) : x \geq 2 \wedge x \leq 3.$$

Question: what is the truth set of the compound proposition? **Answer**: It is the set of reals that satisfy both P(x) and Q(x). This set is called the **intersection** of the truth sets of P(x) and Q(x).

Upshot: - This is a formal way of introducing set operations using propositional logic. - It also reveals the completely analogous structure of logical connectives and set operations.

1.15 Logical Connectives and Set Operations

- Suppose we have predicates A(x) and B(x) over universe U with truth sets A and B respectively (Figure 1).
- The truth set of $A(x) \wedge B(x)$ is the intersection $A \cap B$ (Figure 2),
- The truth set of $A(x) \vee B(x)$ is the union $A \cup B$ (Figure 3),

Set Operations

• The truth set of $A(x) \wedge \neg B(x)$ is the difference $A \setminus B$ (Figure 4).