PROBLÈME 1

Intégrales de Gauss et théorème de Moivre-Laplace

Le théorème de Moivre-Laplace permet d'approcher les calculs de probabilité pour une variable aléatoire suivant une loi binomiale de paramètres $n \in \mathbb{N}^*$ et $p \in [0; 1]$ par des calculs d'intégrales d'intégrales de fonctions gaussiennes. Une première démonstration a été donnée en 1733 par Abraham de Moivre pour le cas où $p = \frac{1}{2}$.

La partie I permet d'obtenir un résultat de convergence. La partie II aboutit à un calcul exact d'une intégrale de fonction gaussienne dite " intégrale de Gauss ". La partie III permet d'établir une majoration utile à la partie IV qui s'intéresse à la convergence simple d'une suite de fonctions vers une fonction gaussienne. Ce résultat de convergence constitue une étape clé dans une démonstration possible du théorème de Moivre-Laplace.

Partie I - Convergence d'une suite

Soit $n \in \mathbb{N}^*$. Pour tout $k \in [0, 2n]$, on pose :

$$a_{k,n} = \frac{\sqrt{2n}}{2^{2n+1}} \binom{2n}{k} .$$

Pour tout $m \in \mathbb{N}$, on pose :

$$I_m = \int_0^1 (1 - t^2)^{\frac{m}{2}} dt .$$

- **Q1.** Montrer que la suite $(I_m)_{m \in \mathbb{N}}$ est décroissante.
- **Q2.** Montrer que pour tout $m \in \mathbb{N}$:

$$I_{m+2}=\frac{m+2}{m+3}I_m.$$

Q3. En déduire que pour tout $n \in \mathbb{N}^*$:

$$I_{2n} = \frac{\sqrt{2n}}{2(2n+1)a_{n,n}}$$
 et $I_{2n-1} = \frac{\pi}{\sqrt{2n}}a_{n,n}$.

Q4. Montrer que pour tout $n \in \mathbb{N}^*$:

$$1 \le \frac{I_{2n-1}}{I_{2n}} \le \frac{I_{2n-2}}{I_{2n}}.$$

En déduire que :

$$\frac{1}{1+\frac{1}{2n}} \leq 2\pi (a_{n,n})^2 \leq 1.$$

Q5. En déduire la convergence de la suite $(a_{n,n})_{n\geq 1}$ lorsque n tend vers l'infini, puis que :

$$I_{2n} \underset{n\to+\infty}{\sim} \frac{1}{2} \sqrt{\frac{\pi}{n}}$$
.

Partie II - Calcul d'une intégrale de Gauss

Pour tout $n \in \mathbb{N}^*$, on pose :

$$J_n = \int_0^{\sqrt{n}} \left(1 - \frac{t^2}{n}\right)^n dt.$$

Pour tout $n \in \mathbb{N}^*$ et pour tout $t \in \mathbb{R}^+$, on pose :

$$u_n(t) = \begin{cases} \left(1 - \frac{t^2}{n}\right)^n & \text{si } 0 \le t \le \sqrt{n} \\ 0 & \text{sinon} \end{cases}.$$

Enfin, on considère l'intégrale de Gauss :

$$K = \int_{-\infty}^{+\infty} e^{-\frac{t^2}{2}} \frac{1}{\sqrt{2\pi}} dt.$$

- **Q6.** À l'aide d'un changement de variable simple, déduire de la **Q5** que la suite $(J_n)_{n\in\mathbb{N}}$ -converge et donner sa limite.
- Q7. Montrer que la suite de fonctions $(u_n)_{n\in\mathbb{N}^+}$ converge simplement sur \mathbb{R}^+ et donner sa limite.
- **Q8.** Montrer que pour tout $x \in \mathbb{R}$, on a $1 + x \le e^x$ et en déduire que pour tout $n \in \mathbb{N}^*$:

$$\forall t \in \mathbb{R}^+, 0 \leq u_n(t) \leq e^{-t^2}$$
.

Q9. Montrer que l'intégrale K est convergente, puis déduire des questions précédentes une valeur exacte de K.

Partie III - Calcul d'une majoration

Q10. Montrer qu'il existe une fonction $g: \left[0; \frac{1}{2}\right] \to \mathbb{R}$ et un réel $M \ge 0$, tels que :

$$\forall x \in \left[0; \frac{1}{2}\right], \quad \frac{1-x}{1+x} = e^{-2x^2+g(x)} \quad \text{et} \quad |g(x)| \le Mx^3.$$

Indication : pour obtenir la majoration, on pourra écrire g(x) sous forme d'intégrale. Q11. Soit $n \in \mathbb{N}^*$. Montrer que pour tout $k \in [n+1; 2n]$:

$$\frac{a_{k,n}}{a_{n,n}} = \frac{\prod_{i=1}^{k-n-1} \left(1 - \frac{i}{n}\right)}{\prod_{i=1}^{k-n-1} \left(1 + \frac{i}{n}\right)} \times \frac{n}{k}.$$

cpge-paradise.com

Q12. En déduire que pour tout $k \in \mathbb{N}$ tel que $n+1 \le k \le \frac{3n}{2}+1$, il existe $b_{k,n} \in \mathbb{R}$ tel que

$$|b_{k,n}| \le \frac{M}{n^3} (k - n - 1)^4$$
 et :

$$\frac{a_{k,n}}{a_{n,n}} = \frac{n}{k} \times e^{b_{k,n}} \times e^{-\frac{1}{n}(k-n-1)(k-n)}.$$

Partie IV - Vers le théorème de Moivre-Laplace

On considère une suite de variables aléatoires $(X_n)_{n\geq 1}$ définies sur un espace probabilisé (Ω, Σ, P) . On suppose que pour tout $n \in \mathbb{N}^*$, la variable aléatoire X_n suit une loi binomiale $\mathcal{B}\left(2n,\frac{1}{2}\right)$ et on pose :

$$Z_n = \frac{2X_n - 2n}{\sqrt{2n}} .$$

Pour tout $k \in [0, 2n]$, on pose $t_{k,n} = \frac{2k-2n}{\sqrt{2n}}$ et $J_{k,n} = \left[t_{k,n} - \frac{1}{\sqrt{2n}}, t_{k,n} + \frac{1}{\sqrt{2n}}\right]$. On admet que les intervalles $J_{k,n}$, pour $k \in [0,2n]$, sont disjoints deux à deux et que :

$$\left[-\sqrt{2n}-\frac{1}{\sqrt{2n}}; \sqrt{2n}+\frac{1}{\sqrt{2n}}\right]=\bigcup_{k=0}^{2n}J_{k,n}.$$

Pour tout $n \in \mathbb{N}^*$, on définit une fonction $h_n : \mathbb{R} \to \mathbb{R}$ en escalier de la manière suivante :

$$h_n \colon t \mapsto \begin{cases} \frac{\sqrt{2n}}{2} \mathbf{P}(X_n = k) & \text{s'il existe } k \in \llbracket 0; 2n \rrbracket \text{ tel que } t \in J_{k,n} \\ 0 & \text{sinon} \end{cases}.$$

- Q13. Soit $n \in \mathbb{N}^*$. Déterminer la loi, l'espérance et la variance de la variable aléatoire Z_n .
- **Q14.** Proposer une représentation graphique de la fonction h_2 .
- Q15. Soit $n \in \mathbb{N}^*$. Vérifier que la fonction h_n possède un maximum sur \mathbb{R} et déterminer pour quelles valeurs ce maximum est atteint.
- Q16. Soit $x \in]0; +\infty[$. Montrer qu'il existe $n_0 \in \mathbb{N}$, tel que pour tout $n \in \mathbb{N}$, vérifiant $n \geq n_0$, il existe $k_n \in \mathbb{N}$, tel que $x \in J_{k_n,n}$. Vérifier qu'alors :

$$k_n - n \underset{n \to +\infty}{\sim} \frac{x\sqrt{2n}}{2}$$
 ; $t_{k_n,n} \underset{n \to +\infty}{\sim} x$; $k_n \underset{n \to +\infty}{\sim} n$.

Q17. Soit $n \in \mathbb{N}^*$. Vérifier que pour tout $k \in [0; 2n]$, $h_n(t_{k,n}) = a_{k,n}$. Montrer ensuite, en utilisant les résultats des Q5, Q12, Q16, que la suite de fonctions $(h_n)_{n\in\mathbb{N}^*}$ converge simplement sur R et préciser sa limite.

cpge-paradise.com

La convergence simple de cette suite de fonctions $(h_n)_{n\in\mathbb{N}^*}$ est une étape importante permettant de démontrer un cas particulier du théorème de Moivre-Laplace :

Théorème

Pour tous réels $a \in \mathbb{R}$, $b \in \mathbb{R}$, tels que a < b:

$$\lim_{n\to+\infty} P(a\leq Z_n\leq b) = \int_a^b e^{-\frac{t^2}{2}} \frac{1}{\sqrt{2\pi}} dt.$$

PROBLÈME 2

Factorisation QR

Présentation

Ce problème s'intéresse dans la **partie I** à des propriétés des matrices de rang 1. Certaines de ces matrices sont ensuite utilisées dans la **partie II** pour construire des matrices orthogonales permettant dans la **partie III** de prouver l'existence d'une factorisation *QR* pour une matrice carrée quelconque.

Notations

Pour tous $n, p \in \mathbb{N}^*$, on note $M_{n,p}(\mathbb{R})$ l'ensemble des matrices à n lignes et p colonnes à coefficients dans \mathbb{R} . L'ensemble des matrices réelles carrées de taille n est noté $M_n(\mathbb{R})$. Soit $A \in M_n(\mathbb{R})$: on note également A l'endomorphisme de $M_{n,1}(\mathbb{R})$ qui à X associe AX. Pour tout $A \in M_{n,p}(\mathbb{R})$, A^T désigne la matrice transposée de A. Une matrice $A \in M_n(\mathbb{R})$ est dite nilpotente s'il existe un entier $k \in \mathbb{N}^*$, tel que $A^k = 0$. L'ensemble $M_{n,1}(\mathbb{R})$ est muni de son produit scalaire canonique $\langle \cdot, \cdot \rangle$ et de la norme associée $\| \cdot \|$. En identifiant $M_1(\mathbb{R})$ et \mathbb{R} , on a pour tous $X, Y \in M_{n,1}(\mathbb{R})$:

$$\langle X, Y \rangle = X^T Y$$
 et $||X||^2 = \langle X, X \rangle$.

On suppose dans tout ce problème que $n \in \mathbb{N}$ est un entier naturel vérifiant $n \ge 2$.

Partie I - Matrices de rang 1

I.1 - Une expression des matrices de rang 1

- Q18. Soit $A \in M_n(\mathbb{R})$ une matrice de rang 1. Montrer qu'il existe $X, Y \in M_{n,1}(\mathbb{R}) \setminus \{0\}$ tels que $A = XY^T$.
- **Q19.** Réciproquement, soient $X, Y \in M_{n,1}(\mathbb{R}) \setminus \{0\}$. Montrer que la matrice XY^T est de rang 1.

I.2 - Quelques propriétés

Soit $A \in M_n(\mathbb{R})$ une matrice de rang 1.

- **Q20.** Montrer que $A^2 = tr(A)A$.
- **Q21.** En déduire, par récurrence sur k, une expression de A^k en fonction de A pour tout $k \in \mathbb{N}^*$.
- Q22. Donner une condition nécessaire et suffisante sur la trace de A pour que A soit nilpotente.
- Q23. Donner une condition nécessaire et suffisante sur la trace de A pour que A soit diagonalisable.

Partie II - Matrices de Householder

II.1 - Un exemple

On définit :

$$A = \frac{1}{3} \begin{pmatrix} 1 & -2 & 2 \\ -2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix} \in M_3(\mathbb{R}) .$$

Q24. Calculer A^2 . En déduire un polynôme annulateur de A.

Q25. Déterminer les valeurs propres et les vecteurs propres de A.

Q26. Montrer que les sous-espaces propres de A sont orthogonaux.

Q27. Déterminer une matrice $P \in O_3(\mathbb{R})$ et une matrice diagonale $D \in M_3(\mathbb{R})$, telles que $P^TAP = D$.

Q28. Interpréter géométriquement l'endomorphisme A de $M_{3,1}(\mathbb{R})$.

II.2 - Matrices de Householder

Soit $V \in M_{n,1}(\mathbb{R}) \setminus \{0\}$. On définit $P_V, Q_V \in M_n(\mathbb{R})$ par :

$$P_V = \frac{1}{\|V\|^2} V V^T$$
 et $Q_V = I_n - 2 \frac{1}{\|V\|^2} V V^T$. (1)

Q29. Montrer que Im $P_V = \text{Vect}(V)$ et que $\text{Ker } P_V = \text{Vect}(V)^{\perp}$.

Q30. Montrer que P_V est la projection orthogonale sur la droite Vect(V). Préciser le rang et la trace de la matrice P_V .

Q31. Montrer que Q_V est symétrique et orthogonale.

Q32. Montrer que Q_V est la symétrie orthogonale par rapport à $Vect(V)^{\perp}$.

Partie III - Factorisation QR

III.1 - Un résulat préliminaire

Soient $U, V \in M_{n,1}(\mathbb{R})$, tels que ||U|| = ||V||. On note D = Vect(U - V).

Q33. Montrer que D^{\perp} est l'ensemble des $X \in M_{n,1}(\mathbb{R})$, tels que ||X - U|| = ||X - V||.

Q34. Donner la décomposition de U sur la somme directe $M_{n,1}(\mathbb{R}) = D \oplus D^{\perp}$.

Q35. On suppose U et V non colinéaires. Calculer $Q_{U-V}U$ où Q_{U-V} est définie en (1).

Q36. En déduire que pour tous $\widetilde{U},\widetilde{V}\in M_{n,1}(\mathbb{R})$, il existe une matrice orthogonale Q, telle que $Q\widetilde{U}$ est colinéaire à \widetilde{V} .

cpge-paradise.com

III.2 - Factorisation QR

Q37. Soit $A \in M_n(\mathbb{R})$. Montrer qu'il existe une matrice orthogonale Q_1 , telle que Q_1A soit de la forme :

$$Q_1 A = \begin{pmatrix} \alpha & * & \cdots & * \\ 0 & & & \\ \vdots & & C_1 & \\ 0 & & & \end{pmatrix} \quad \text{où } \alpha \in \mathbb{R} \text{ et } C_1 \in M_{n-1}(\mathbb{R}).$$

Q38. En raisonnant par récurrence sur n, montrer que pour tout $A \in M_n(\mathbb{R})$, il existe une matrice Q orthogonale, telle que QA soit triangulaire supérieure.