Chapter 10

- 10.1 Numerical integration (overview)
- 10.2 Distributional approximations (overview, more in Chapter 4 and 13)
- 10.3 Direct simulation and rejection sampling (overview)
- 10.4 Importance sampling (used in PSIS-LOO discussed later)
- 10.5 How many simulation draws are needed? (Ex 10.1 and 10.2)
- 10.6 Software (can be skipped)
- 10.7 Debugging (can be skipped)

Notation

- In this chapter, generic $p(\theta)$ is used instead of $p(\theta|y)$
- unnormalized distribution is denoted by $q(\cdot)$
- proposal distribution is denoted by $g(\cdot)$

- Floating point presentation of numbers. e.g. with 64bits
 - closest value to zero is $\approx 2.2 \cdot 10^{-308}$
 - qr=rnorm(600);prod(dnorm(qr)) \rightarrow 0

- Floating point presentation of numbers. e.g. with 64bits
 - closest value to zero is $\approx 2.2 \cdot 10^{-308}$
 - qr=rnorm(600);prod(dnorm(qr)) \rightarrow 0
 - closest value to 1 is $\approx 1 \pm 2.2 \cdot 10^{-16}$
 - \bullet pbeta(0.5,241945,251527) \to 1

- Floating point presentation of numbers. e.g. with 64bits
 - closest value to zero is $\approx 2.2 \cdot 10^{-308}$
 - qr=rnorm(600);prod(dnorm(qr)) \rightarrow 0
 - pbeta(0.5,241945,251527, lower.tail=FALSE) $\approx -1.15 \cdot 10^{-42}$
 - closest value to 1 is $\approx 1 \pm 2.2 \cdot 10^{-16}$
 - pbeta(0.5,241945,251527) → 1

- Floating point presentation of numbers. e.g. with 64bits
 - closest value to zero is $\approx 2.2 \cdot 10^{-308}$
 - qr=rnorm(600);prod(dnorm(qr)) \rightarrow 0
 - pbeta(0.5,241945,251527, lower.tail=FALSE) $\approx -1.15 \cdot 10^{-42}$
 - closest value to 1 is $\approx 1 \pm 2.2 \cdot 10^{-16}$
 - pbeta(0.5,241945,251527) → 1
- Log densities
 - use log densities to avoid over- and underflows in floating point presentation
 - sum(dnorm(qr,log=TRUE)) → -847.3

- Floating point presentation of numbers. e.g. with 64bits
 - closest value to zero is $\approx 2.2 \cdot 10^{-308}$
 - qr=rnorm(600);prod(dnorm(qr)) \rightarrow 0
 - pbeta(0.5,241945,251527, lower.tail=FALSE) $\approx -1.15 \cdot 10^{-42}$
 - closest value to 1 is $\approx 1 \pm 2.2 \cdot 10^{-16}$
 - pbeta(0.5,241945,251527) → 1
- Log densities
 - use log densities to avoid over- and underflows in floating point presentation
 - sum(dnorm(qr,log=TRUE)) → -847.3
 - how many observations we can now handle?

- Floating point presentation of numbers. e.g. with 64bits
 - closest value to zero is $\approx 2.2 \cdot 10^{-308}$
 - qr=rnorm(600);prod(dnorm(qr)) \rightarrow 0
 - pbeta(0.5,241945,251527, lower.tail=FALSE) $\approx -1.15 \cdot 10^{-42}$
 - closest value to 1 is $\approx 1 \pm 2.2 \cdot 10^{-16}$
 - pbeta(0.5,241945,251527) → 1
- Log densities
 - use log densities to avoid over- and underflows in floating point presentation
 - sum(dnorm(qr,log=TRUE)) → -847.3
 - how many observations we can now handle?
 - compute exp as late as possible
 - e.g. for a > b, compute $\log(\exp(a) + \exp(b)) = a + \log(1 + \exp(b a))$ e.g. $\log(\exp(800) + \exp(800)) \rightarrow \text{Inf, but}$ $800 + \log(1 + \exp(800 800)) \approx 800.69$

- Floating point presentation of numbers. e.g. with 64bits
 - closest value to zero is $\approx 2.2 \cdot 10^{-308}$
 - qr=rnorm(600);prod(dnorm(qr)) \rightarrow 0
 - pbeta(0.5,241945,251527, lower.tail=FALSE) $\approx -1.15 \cdot 10^{-42}$
 - closest value to 1 is $\approx 1 \pm 2.2 \cdot 10^{-16}$
 - pbeta(0.5,241945,251527) → 1
- Log densities
 - use log densities to avoid over- and underflows in floating point presentation
 - sum(dnorm(qr,log=TRUE)) → -847.3
 - how many observations we can now handle?
 - compute exp as late as possible
 - e.g. for a > b, compute $\log(\exp(a) + \exp(b)) = a + \log(1 + \exp(b a))$ e.g. $\log(\exp(800) + \exp(800)) \rightarrow \text{Inf, but}$ $800 + \log(1 + \exp(800 800)) \approx 800.69$
 - e.g. in Metropolis-algorithm compute the log of ratio of densities using the identity log(a/b) = log(a) - log(b)

$$E_{p(\theta|y)}[f(\theta)] = \int f(\theta)p(\theta|y)d\theta,$$
 where
$$p(\theta|y) = \frac{p(y|\theta)p(\theta)}{\int p(y|\theta)p(\theta)d\theta}$$

$$E_{p(\theta|y)}[f(\theta)] = \int f(\theta)p(\theta|y)d\theta,$$
 where
$$p(\theta|y) = \frac{p(y|\theta)p(\theta)}{\int p(y|\theta)p(\theta)d\theta}$$

We can easily evalute $p(y|\theta)p(\theta)$ for any θ , but the integral $\int p(y|\theta)p(\theta)d\theta$ is usually difficult.

$$E_{p(\theta|y)}[f(\theta)] = \int f(\theta)p(\theta|y)d\theta,$$
 where
$$p(\theta|y) = \frac{p(y|\theta)p(\theta)}{\int p(y|\theta)p(\theta)d\theta}$$

We can easily evalute $p(y|\theta)p(\theta)$ for any θ , but the integral $\int p(y|\theta)p(\theta)d\theta$ is usually difficult.

We can use the unnormalized posterior $q(\theta|y) = p(y|\theta)p(\theta)$, for example, in

$$\begin{aligned} E_{p(\theta|y)}[f(\theta)] &= \int f(\theta) p(\theta|y) d\theta, \\ \text{where} \quad p(\theta|y) &= \frac{p(y|\theta) p(\theta)}{\int p(y|\theta) p(\theta) d\theta} \end{aligned}$$

We can easily evalute $p(y|\theta)p(\theta)$ for any θ , but the integral $\int p(y|\theta)p(\theta)d\theta$ is usually difficult.

We can use the unnormalized posterior $q(\theta|y) = p(y|\theta)p(\theta)$, for example, in

Grid (equal spacing) evaluation with self-normalization

$$E_{p(\theta|y)}[f(\theta)] \approx \frac{\sum_{s=1}^{S} \left[f(\theta^{(s)}) q(\theta^{(s)}|y) \right]}{\sum_{s=1}^{S} q(\theta^{(s)}|y)}$$

$$\begin{aligned} E_{p(\theta|y)}[f(\theta)] &= \int f(\theta) p(\theta|y) d\theta, \\ \text{where} \quad p(\theta|y) &= \frac{p(y|\theta) p(\theta)}{\int p(y|\theta) p(\theta) d\theta} \end{aligned}$$

We can easily evalute $p(y|\theta)p(\theta)$ for any θ , but the integral $\int p(y|\theta)p(\theta)d\theta$ is usually difficult.

We can use the unnormalized posterior $q(\theta|y) = p(y|\theta)p(\theta)$, for example, in

Grid (equal spacing) evaluation with self-normalization

$$E_{p(\theta|y)}[f(\theta)] \approx \frac{\sum_{s=1}^{S} \left[f(\theta^{(s)}) q(\theta^{(s)}|y) \right]}{\sum_{s=1}^{S} q(\theta^{(s)}|y)}$$

• Monte Carlo methods which can sample from $p(\theta^{(s)}|y)$ using only $q(\theta^{(s)}|y)$

$$E_{p(\theta|y)}[f(\theta)] \approx \frac{1}{S} \sum_{s=1}^{S} f(\theta^{(s)})$$

$$E_{\theta}[f(\theta)] = \int f(\theta) p(\theta|y) d\theta$$

- Conjugate priors and analytic solutions
- Grid integration and other quadrature rules
- Independent Monte Carlo, rejection and importance sampling
- Markov Chain Monte Carlo
- Distributional approximations (Laplace, VB, EP)

Quadrature integration

- The simplest quadrature integration is grid integration
 - Evaluate function in a grid and compute

where $\mathbf{w}_{\text{cell}}^{(t)}$ is the normalized probability of a grid cell t, and $\alpha^{(t)}$ and $\beta^{(t)}$ are center locations of grid cells

Quadrature integration

- The simplest quadrature integration is grid integration
 - Evaluate function in a grid and compute

where $\mathbf{w}_{\text{cell}}^{(t)}$ is the normalized probability of a grid cell t, and $\alpha^{(t)}$ and $\beta^{(t)}$ are center locations of grid cells

In 1D further variations, e.g. trapezoid

Quadrature integration

- The simplest quadrature integration is grid integration
 - Evaluate function in a grid and compute

where $\mathbf{w}_{\text{cell}}^{(t)}$ is the normalized probability of a grid cell t, and $\alpha^{(t)}$ and $\beta^{(t)}$ are center locations of grid cells

In 1D further variations, e.g. trapezoid

- In 2D and higher
 - nested quadrature
 - product rules

Monte Carlo - history

- Used already before computers
 - Buffon (18th century; needles)
 - De Forest, Darwin, Galton (19th century)
 - Pearson (19th century; roulette)
 - Gosset (Student, 1908; hat)

Monte Carlo - history

- Used already before computers
 - Buffon (18th century; needles)
 - De Forest, Darwin, Galton (19th century)
 - Pearson (19th century; roulette)
 - Gosset (Student, 1908; hat)
- "Monte Carlo method" term was proposed by Metropolis, von Neumann or Ulam in the end of 1940s
 - they worked together in atomic bomb project
 - Metropolis and Ulam, "The Monte Carlo Method", 1949

Monte Carlo - history

- Used already before computers
 - Buffon (18th century; needles)
 - De Forest, Darwin, Galton (19th century)
 - Pearson (19th century; roulette)
 - Gosset (Student, 1908; hat)
- "Monte Carlo method" term was proposed by Metropolis, von Neumann or Ulam in the end of 1940s
 - they worked together in atomic bomb project
 - Metropolis and Ulam, "The Monte Carlo Method", 1949
- Bayesians started to have enough cheap computation time in 1990s
 - BUGS project started 1989 (last OpenBUGS release 2014)
 - Gelfand & Smith, 1990
 - Stan initial release 2012

Monte Carlo

- Simulate draws from the target distribution
 - these draws can be treated as any observations
 - a collection of draws is sample
- Use these draws, for example,
 - to compute means, deviations, quantiles
 - to draw histograms
 - to marginalize
 - etc.

Monte Carlo vs. deterministic

- Monte Carlo = simulation methods
 - evaluation points are selected stochastically (randomly)
- Deterministic methods (e.g. grid)
 - evaluation points are selected by some deterministic rule

- How many draws or how big sample size?
- If draws are independent
 - usual methods to estimate the uncertainty due to a finite number of observations (finite sample size)
- Markov chain Monte Carlo produces dependent draws
 - requires additional work to estimate the effective sample size

Expectation of unknown quantity

$$\mathsf{E}(\theta) \approx \frac{1}{L} \sum_{l} \theta^{(l)}$$

if L is big and $\theta^{(I)}$ are independent, way may assume that the distribution of the expectation approaches normal distribution (see Ch 4) with variance σ_{θ}^2/L (asymptotic normality)

ullet this variance is independent on dimensionality of heta

Expectation of unknown quantity

$$\mathsf{E}(\theta) \approx \frac{1}{L} \sum_{l} \theta^{(l)}$$

if L is big and $\theta^{(I)}$ are independent, way may assume that the distribution of the expectation approaches normal distribution (see Ch 4) with variance σ_{θ}^2/L (asymptotic normality)

- ullet this variance is independent on dimensionality of heta
- total variance is sum of the epistemic unecrtainty in the posterior and the uncertainty due to using finite number of Monte Carlo draws

$$\sigma_{\theta}^2 + \sigma_{\theta}^2/L$$

Expectation of unknown quantity

$$\mathsf{E}(\theta) \approx \frac{1}{L} \sum_{l} \theta^{(l)}$$

if L is big and $\theta^{(I)}$ are independent, way may assume that the distribution of the expectation approaches normal distribution (see Ch 4) with variance σ_{θ}^2/L (asymptotic normality)

- ullet this variance is independent on dimensionality of heta
- total variance is sum of the epistemic unecrtainty in the posterior and the uncertainty due to using finite number of Monte Carlo draws

$$\sigma_{\theta}^2 + \sigma_{\theta}^2/L = \sigma_{\theta}^2(1 + 1/L)$$

Expectation of unknown quantity

$$\mathsf{E}(\theta) \approx \frac{1}{L} \sum_{l} \theta^{(l)}$$

if L is big and $\theta^{(I)}$ are independent, way may assume that the distribution of the expectation approaches normal distribution (see Ch 4) with variance σ_{θ}^2/L (asymptotic normality)

- ullet this variance is independent on dimensionality of heta
- total variance is sum of the epistemic unecrtainty in the posterior and the uncertainty due to using finite number of Monte Carlo draws

$$\sigma_{\theta}^2 + \sigma_{\theta}^2/L = \sigma_{\theta}^2(1 + 1/L)$$

• e.g. if L = 100, deviation increases by $\sqrt{1 + 1/L} = 1.005$ ie. Monte Carlo error is very small (for the expectation)

Expectation of unknown quantity

$$\mathsf{E}(\theta) \approx \frac{1}{L} \sum_{l} \theta^{(l)}$$

if L is big and $\theta^{(I)}$ are independent, way may assume that the distribution of the expectation approaches normal distribution (see Ch 4) with variance σ_{θ}^2/L (asymptotic normality)

- ullet this variance is independent on dimensionality of heta
- total variance is sum of the epistemic unecrtainty in the posterior and the uncertainty due to using finite number of Monte Carlo draws

$$\sigma_{\theta}^2 + \sigma_{\theta}^2/L = \sigma_{\theta}^2(1 + 1/L)$$

- e.g. if L = 100, deviation increases by $\sqrt{1 + 1/L} = 1.005$ ie. Monte Carlo error is very small (for the expectation)
- See Ch 4 for counter-examples for asymptotic normality

Average temperature in June, July, and August at Kilpisjärvi, Finland

Average temperature in June, July, and August at Kilpisjärvi, Finland

 $\sigma_{\theta} \approx$ 0.827, MCSE \approx 0.0827, total deviation \approx 0.831

 $\sigma_{\theta} \approx$ 0.827, MCSE \approx 0.0261, total deviation \approx 0.827

Tail quantiles are more difficult to estimate

$$p(\theta \in A) \approx \frac{1}{L} \sum_{l} I(\theta^{(l)} \in A)$$

where
$$I(\theta^{(I)} \in A) = 1$$
 if $\theta^{(I)} \in A$

- $I(\cdot)$ is binomially distributed as $p(\theta \in A)$
 - \rightarrow var($I(\cdot)$) = p(1-p) (Appendix A, p. 579)
 - \rightarrow standard deviation of p is $\sqrt{p(1-p)/L}$

$$p(\theta \in A) \approx \frac{1}{L} \sum_{l} I(\theta^{(l)} \in A)$$

where
$$I(\theta^{(l)} \in A) = 1$$
 if $\theta^{(l)} \in A$

- $I(\cdot)$ is binomially distributed as $p(\theta \in A)$
 - $\rightarrow \operatorname{var}(I(\cdot)) = p(1-p) \text{ (Appendix A, p. 579)}$
 - \rightarrow standard deviation of p is $\sqrt{p(1-p)/L}$
- if L = 100 and $p \approx 0.5$, $\sqrt{p(1-p)/L} = 0.05$ ie. accuracy is about 5% units

$$p(\theta \in A) \approx \frac{1}{L} \sum_{l} I(\theta^{(l)} \in A)$$

where
$$I(\theta^{(I)} \in A) = 1$$
 if $\theta^{(I)} \in A$

- $I(\cdot)$ is binomially distributed as $p(\theta \in A)$
 - \rightarrow var($I(\cdot)$) = p(1-p) (Appendix A, p. 579) \rightarrow standard deviation of p is $\sqrt{p(1-p)/L}$
- if L=100 and $p\approx 0.5$, $\sqrt{p(1-p)/L}=0.05$ ie. accuracy is about 5% units
- L = 2500 draws needed for 1% unit accuracy

$$p(\theta \in A) \approx \frac{1}{L} \sum_{l} I(\theta^{(l)} \in A)$$

where
$$I(\theta^{(l)} \in A) = 1$$
 if $\theta^{(l)} \in A$

- $I(\cdot)$ is binomially distributed as $p(\theta \in A)$
 - \rightarrow var($I(\cdot)$) = p(1-p) (Appendix A, p. 579) \rightarrow standard deviation of p is $\sqrt{p(1-p)/L}$
- if L=100 and $p\approx 0.5$, $\sqrt{p(1-p)/L}=0.05$ ie. accuracy is about 5% units
- L = 2500 draws needed for 1% unit accuracy
- To estimate small probabilities, a large number of draws is needed
 - to be able to estimate p, need to get draws with $\theta^{(l)} \in A$, which in expectation requires $L \gg 1/p$

- Less draws needed with
 - deterministic methods
 - marginalization (Rao-Blackwellization)
 - variance reduction methods, such, control variates

- Number of independent draws needed doesn't depend on the number of dimensions
 - but it may be difficult to obtain independent draws in high dimensional case

Direct simulation

- Produces independent draws
 - Using analytic transformations of unifrom random numbers (eg. appendix A)
 - factorization
 - numerical inverse-cdf
- Problem: restricted to limited set of models

Random number generators

- Good pseudo random number generators are sufficient for Bayesian inference
 - pseudo random generator uses deterministic algorithm to produce a sequence which is difficult to make difference from truly random sequence
 - modern software used for statistical analysis have good pseudo RNGs

Direct simulation: Example

Box-Muller -method:
If U₁ and U₂ are independent draws from distribution U(0,1), and

$$X_1 = \sqrt{-2\log(U_1)}\cos(2\pi U_2)$$
$$X_2 = \sqrt{-2\log(U_1)}\sin(2\pi U_2)$$

then X_1 and X_2 are independent draws from the distribution N(0,1)

Direct simulation: Example

Box-Muller -method:
If U₁ and U₂ are independent draws from distribution U(0,1), and

$$X_1 = \sqrt{-2\log(U_1)}\cos(2\pi U_2)$$

 $X_2 = \sqrt{-2\log(U_1)}\sin(2\pi U_2)$

then X_1 and X_2 are independent draws from the distribution N(0,1)

- not the fastest method due to trigonometric computations
- for normal distrbution more than ten different methods
- e.g. R uses inverse-CDF

Grid sampling and curse of dimensionality

- 10 parameters
- if we don't know beforehand where the posterior mass is
 - need to choose wide box for the grid
 - need to have enough grid points to get some of them where essential mass is
- e.g. 50 or 1000 grid points per dimension
 - \rightarrow 50¹⁰ \approx 1e17 grid points
 - \rightarrow 1000¹⁰ \approx 1e30 grid points
- R and my current laptop can compute density of normal distribution about 20 million times per second
 - → evaluation in 1e17 grid points would take 150 years
 - ightarrow evaluation in 1e30 grid points would take 1 500 billion years

Indirect sampling

- Rejection sampling
- Importance sampling
- Markov chain Monte Carlo (next week)

- Proposal forms envelope over the target distribution $q(\theta|y)/Mg(\theta) \le 1$
- Draw from the proposal and accept with probability $Mg(\theta)/q(\theta|y)$

- Proposal forms envelope over the target distribution $q(\theta|y)/Mg(\theta) \le 1$
- Draw from the proposal and accept with probability $Mg(\theta)/q(\theta|y)$

- Proposal forms envelope over the target distribution $q(\theta|y)/Mg(\theta) \le 1$
- Draw from the proposal and accept with probability $Mg(\theta)/q(\theta|y)$
- Common for truncated distributions

- The number of accepted draws is the effective sample size
 - with bad proposal distribution may require a lot of trials
 - selection of good proposal gets very difficult when the number of dimensions increase
 - reliable diagnostics and thus can be a useful part

- Proposal does not need to have a higher value everywhere

- Proposal does not need to have a higher value everywhere

- Proposal does not need to have a higher value everywhere

$$\mathsf{E}[f(heta)] pprox rac{\sum_{\mathcal{S}} w_{\mathcal{S}} f(heta^{(\mathcal{S})})}{\sum_{\mathcal{S}} w_{\mathcal{S}}}, \qquad ext{where} \quad w_{\mathcal{S}} = rac{q(heta^{(\mathcal{S})})}{g(heta^{(\mathcal{S})})}$$

- Resampling using normalized importance weights can be used to pick a smaller number of draws with uniform weights
- Selection of good proposal gets more difficult when the number of dimensions increase
- Often used to correct distributional approximations

- Variation of the weights affect the effective sample size
 - if single weight dominates, we have effectively one sample
 - if weights are equal, we have effectively S draws
- Central limit theorem holds only if variance of the weight distribution is finite
- See Vehtari, Gelman and Gabry (2017). Pareto smoothed importance sampling. arXiv preprint arXiv:1507.02646, https://arxiv.org/abs/1507.02646 for improved diagnostics and stability.

Normal approximation is discussed more in BDA3 Ch 4

Normal approximation is discussed more in BDA3 Ch 4 But the normal approximation is not that good here: Grid $sd(LD50) \approx 0.1$, Normal $sd(LD50) \approx .75!$

Grid sd(LD50) \approx 0.1, SIR sd(LD50) \approx 0.1

BDA3 1st (2013) and 2nd (2014) printing have an error for $\tilde{w}(\theta^s)$. The normalized weights equation should not have the multiplier S (the normalized weights should sum to one). Errata for the book http://www.stat.columbia.edu/~gelman/book/errata_bda3.txt

Pareto-k diagnostic preferably < 0.7:

Pareto-k diagnostic preferably < 0.7: $\hat{k} \approx 0.76$

Pareto smoothed importance sampling

- Pareto-k diagnostic estimate the number of existing moments (|1/k|)
- Finite variance and central limit theorem for k < 1/2
- Finite mean and generalized central limit theorem for k < 1, but pre-asymptotic constant grows impractically large for k > 0.7
- See Vehtari, Gelman and Gabry (2017). Pareto smoothed importance sampling. arXiv preprint arXiv:1507.02646, https://arxiv.org/abs/1507.02646 for improved diagnostics and stability.

Importance sampling leave-one-out cross-validation

- Later in the course you will learn how $p(\theta|y)$ can be used as a proposal distribution for $p(\theta|y_{-i})$
 - which allows fast computation of leave-one-out cross-validation

$$p(y_i|y_{-i}) = \int p(y_i|\theta)p(\theta|y_{-i})d\theta$$

Curse of dimensionality

- Number of grid points increases exponentially
- Concentration of the measure, ie, where is the most of the mass?

Markov chain Monte Carlo (MCMC)

- Pros
 - Markov chain goes where most of the posterior mass is
 - Certain MCMC methods scale well to high dimensions
- Cons
 - Draws are dependent (affects jow many draws are needed)
 - Convergence in practical time is not guaranteed
- MCMC methods in this course
 - Gibbs: "iterative conditional sampling"
 - Metropolis: "random walk in joint distribution"
 - Dynamic Hamiltonian Monte Carlo: "state-of-the-art" used in Stan