Professor: Ekaterina Kostina Tutor: Julian Matthes

Anmerkung: Wir benutzen für Referenzen unser mit ein paar Kommilitonen zusammen getextes Skript, zu finden unter https://flavigny.de/lecture/pdf/analysis2.

Aufgabe 1

(a) Behauptung: $\partial(K_1(0) \setminus \{0\}) = \{x \in \mathbb{R}^2 | ||x||_2 = 1\} \cup \{0\}.$

Beweis. Nach Beispiel 2.24 (2) ist $\partial K_1(0) = \{x \in \mathbb{R}^n | ||x|| = 1\}$. Außerdem gilt für alle $\varepsilon > 0$: $K_{\varepsilon}(0)$ enthält stets die 0 und $K_{\varepsilon}(0) \cap K_1(0) \setminus \{0\} \neq \emptyset$. Also ist $0 \in \partial(K_1(0) \setminus \{0\})$. Punkte mit ||x|| > 1 gehören nicht zu $\partial K_1(0)$ und daher auch nicht zu $\partial K_1(0) \setminus \{0\}$. Für alle Punkte x mit $||x|| = \varepsilon > 0$ ist $K_{\frac{\varepsilon}{2}}(x) \subset K_1(0) \setminus \{0\}$ und daher kann x nicht auf dem Rand liegen.

Behauptung: M ist nicht zusammenhängend.

Beweis. Mit unserer ersten Behauptung sieht man sofort, dass $M=\{x\in\mathbb{R}^2|\,\|x\|_2=1\}\cup\{0\}$ mit $\{x\in\mathbb{R}^2|\,\|x\|_2=1\}\cap\{0\}=\emptyset$ und $\{x\in\mathbb{R}^2|\,\|x\|_2=1\}$, $\{0\}\neq\emptyset$. Nun müssen wir noch zeigen, dass $\{0\}$ und $\{x\in\mathbb{R}^2|\,\|x\|_2=1\}$ relativ-offen bezüglich M sind. Es gilt $K_{\frac{1}{2}}(0)\cap M=\{0\}\subset\{0\}$. Also ist $\{0\}$ relativ-offen bezüglich M. Außerdem gilt $K_{\frac{1}{2}}(a)\cap M=\{x\in\mathbb{R}^n|\,\|x\|_2=1,\|x-a\|_2<\frac{1}{2}\}\subset\{x\in\mathbb{R}^2|\,\|x\|_2=1\}$, woraus auch die relative Offenheit von $\{x\in\mathbb{R}^2|\,\|x\|_2=1\}$ folgt. \square

(b) Behauptung $M = \emptyset$.

Beweis. Sei $x \in K_1(0) \cap K_1((2,0)^T)$. Dann gilt $||x||_2 < 1$ und

$$\left\|(2,0)^T-x\right\|_2<1 \implies \left\|(2,0)^T\right\|_2-\left\|x\right\|_2<1 \implies 2-\left\|x\right\|<1 \implies 1<\left\|x\right\|_2.$$

Offensichtlich gibt es keine solchen Punkte x und daher ist auch $M = \overline{K_1(0) \cap K_1((2,0)^T)} = \overline{\emptyset} = \emptyset$, da die leere Menge bereits abgeschlossen ist.

Es kann keine Zerlegung in disjunkte, echte Teilmengen der leeren Menge geben, daher ist sie zusammenhängend.

(c) Behauptung: $K \coloneqq \overline{K_{\frac{1}{2}}(\alpha)}$ ist zusammenhängend.

Beweis. Angenommen, es gäbe eine offene Menge $\emptyset \subsetneq U \subsetneq K$ derart, dass $V \coloneqq K \setminus U$ auch offen ist. Als Komplement einer offenen Menge sind U und V dann beide relativ-abgeschlossen bezüglich K und daher beide kompakt. Sei o.B.d.A. $\alpha \in U$ und $r = \sup\{\varepsilon | K_{\varepsilon}(\alpha) \subset U\}$. r > 0, da U offen ist. Dann ist $K_r(\alpha) \subset U$, da U abgeschlossen ist. Sei nun $r' = \inf\{\|v - \alpha\| | v \in V, v_1 = \alpha_1\}$ (wobei v_1 die erste Komponente von v und analog α_1 die erste Komponente von α bezeichne). Da U abgeschlossen ist, gibt es dann einen Punkt $u \in U$ mit $\|u - \alpha\| = r'$. Also muss r' > r sein. Alle Punkte ξ mit $\xi_1 = \alpha_1$ und $r < \|\xi - \alpha\| < r'$ liegen damit weder in U noch in V, ein Widerspruch. Also kann es keine solche Menge U geben.

Sei $\emptyset \neq U \neq M$ eine relativ-offene Teilmenge von M. Behauptung: Dann $\exists a \in \mathbb{Z}^2$ mit $\overline{K_{\frac{1}{2}}(a)} \cap U \neq \emptyset$ und $\overline{K_{\frac{1}{2}}(a)} \cap M \setminus U \neq \emptyset$.

Beweis. Angenommen, das würde nicht gelten. Sei dann $a \in Z^2$ mit $\overline{K_{\frac{1}{2}}(a)} \cap U \neq \emptyset$ (so ein a existiert, weil U nichtleer ist). Dann ist auch $\overline{K_{\frac{1}{2}}(a)} \subset U$. Sei $a \neq a' \in \mathbb{Z}^2$ mit $\|a - a'\|_2 = 1$. Dann gilt $\overline{K_{\frac{1}{2}}(a)} \cap \overline{K_{\frac{1}{2}}(a')} \neq \emptyset$. Also gibt es ein $\xi \in \overline{K_{\frac{1}{2}}(a')}$, sodass $\xi \in \overline{K_{\frac{1}{2}}(a)} \subset U$. Also liegt ein Punkt von $\overline{K_{\frac{1}{2}}(a')}$ in U, also muss bereits $\overline{K_{\frac{1}{2}}(a')} \subset U$ gelten. Wendet man diese Aussage iterativ wieder auf alle a'' mit $\|a'' - a'\|_2 = 1$ an, so erhält man schlussendlich $M \subset U$, was im Widerspruch zur Annahme steht.

Sei also $\alpha \in \mathbb{Z}^2$ mit $\overline{K_{\frac{1}{2}}(\alpha)} \cap U \neq \emptyset$ und $\overline{K_{\frac{1}{2}}(\alpha)} \cap M \setminus U \neq \emptyset$. Behauptung: Dann existiert ein $\xi \in \overline{K_{\frac{1}{2}}(\alpha)}$ derart, dass $\forall \varepsilon > 0 : K_{\varepsilon}(\xi) \cap U \neq \emptyset$ und $K_{\varepsilon}(\xi) \cap M \setminus U \neq \emptyset$.

Beweis. Angenommen das wäre nicht der Fall, dann gäbe es $\forall x \in \overline{K_{\frac{1}{2}}(\alpha)} \cap U$ eine Umgebung $K_{\varepsilon}(x)$, sodass $K_{\varepsilon}(x) \cap M \subset U$. Analog für $M \subset U$. Also gibt es zwei relativ-offene Mengen (bzgl. M) $A := U \cap \overline{K_{\frac{1}{2}}(\alpha)}$ und $B := (M \setminus U) \cap \overline{K_{\frac{1}{2}}(\alpha)}$, sodass $A \cup B = \overline{K_{\frac{1}{2}}(\alpha)}$. Das ist aber ein Widerspruch zu unserer ersten Behauptung.

In jeder Umgebung von ξ liegen also sowohl Punkte von U als auch von $M \setminus U$. Da U offen ist, kann also $\xi \notin U$ liegen. Also ist $\xi \in M \setminus U$. Folglich kann $M \setminus U$ nicht offen sein. Da U beliebig war, gibt es keine relativ-offene Zerlegung $U, M \setminus U$ mit $\emptyset \neq U \neq M$.

(d) Wir bezeichnen die Menge $M \setminus \{0\} = \{x \in \mathbb{R}^2 | x_1 \in \mathbb{R}_+, x_2 = \sin\left(\frac{1}{x_1}\right)\}$ mit M'. Behauptung: $\{0\}$ ist nicht relativ-offen bezüglich M.

Beweis. Sei $\varepsilon > 0$. Dann existiert ein $k \in \mathbb{N}$ mit $\frac{1}{2\pi k} < \varepsilon$. Es gilt $x \coloneqq \left(\frac{1}{2\pi k}, 0\right)^T \in M'$, da $\sin(2\pi k) = 0$. Natürlich ist also auch $x \in K_{\varepsilon}(0)$.

Behauptung: Ist $U \subset M$ relativ offen, so ist auch $U' := U \setminus \{0\} \subset M'$ relativ offen.

Beweis. Sei $a \in U'$. Dann $\exists \varepsilon > 0$ mit $K_{\varepsilon}(a) \cap M \subset U$ (da U relativ offen bzgl. M). Ist $0 \neq x \in K_{\varepsilon}(a) \cap M$, so ist $x \in U$ und $x \neq 0$, also $x \in U'$. In $K_{\varepsilon}(a) \cap M'$ sind alle Elemente ungleich 0, sodass $K_{\varepsilon}(a) \cap M' \subset U'$. Also ist U' wieder relativ offen bezüglich M'.

Behauptung: Ein kompaktes Intervall $[a, b] \in \mathbb{R}$ ist zusammenhängend.

Beweis. Angenommen, es gäbe eine offene Menge $\emptyset \subsetneq U \subsetneq [a,b]$ derart, dass $V \coloneqq [a,b] \setminus U$ auch offen ist. Als Komplement einer offenen Menge sind U und V dann beide relativ-abgeschlossen bezüglich [a,b] und daher beide kompakt. Also ist sup $U \in U$ und sup $V \in V$. Sei also b o.B.d.A. das Supremum von U. Dann ist $v \coloneqq \sup V < b$. Sei $U' \coloneqq U \cap [v,b]$. Dann gilt $u \coloneqq \inf U' > v$, sonst würde nämlich $v \in U'$ und $v \in V$ liegen, ein Widerspruch. Sei dann v < x < u. Dann ist $x \notin V$, da sup V < x. Außerdem ist $x \in [v,b]$, aber $x < U \cap [v,b]$. Daher ist $x \notin U$. Das ist aber ein Widerspruch. Also kann es keine solche Menge U geben und [a,b] ist zusammenhängend. \square

Behauptung: \mathbb{R}_+ ist zusammenhängend.

Beweis. Angenommen, es gäbe eine offene Menge $\emptyset \subsetneq U \subsetneq \mathbb{R}_+$ derart, dass $V \coloneqq \mathbb{R}_+ \setminus U$ auch offen ist. Dann gibt es ein kompaktes Intervall [a,b], in dem sowohl Punkte aus U als auch Punkte aus V liegen. Sei nämlich $a \in U$ (existiert wegen $U \neq \emptyset$) und $b \in \mathbb{R}_+$. Dann ist das Intervall [a,b] (bzw. [b,a], wir schreiben o.B.d.A. [a,b]) kompakt. Gäbe es kein kompaktes Intervall, in dem sowohl Punkte aus U als auch Punkte aus V liegen, so folgern wir daraus, dass $b \in U$ liegen muss und daher $U = \mathbb{R}_+$. Nun sind $U \cap [a,b]$ und $V \cap [a,b]$ wieder relativ offen bezüglich [a,b] ($\forall x \in U \exists \varepsilon > 0 : K_{\varepsilon}(x) \cap \mathbb{R}_+ \subset U \implies K_{\varepsilon}(x) \cap [a,b] \subset [a,b] \implies U$ relativ offen, analog für V) und wegen $U \cup V = \mathbb{R}_+$ ist auch $(U \cap [a,b]) \cup (V \cap [a,b]) = (U \cup V) \cap [a,b] = [a,b]$. Da aber jedes kompakte Intervall $[a,b] \subset \mathbb{R}$ zusammenhängend ist, erhalten wir einen Widerspruch. Also gibt es keine solche Menge U und \mathbb{R}_+ ist zusammenhängend.

Behauptung: M' ist zusammenhängend.

Beweis. Die Abbildung $f: \mathbb{R}_+ \to \mathbb{R}, x \mapsto \sin\left(\frac{1}{x}\right)$ ist stetig als Komposition stetiger Funktionen. Also ist auch $g: \mathbb{R}_+ \to \mathbb{R}^2, x \mapsto (x, \sin\left(\frac{1}{x}\right))$ stetig. Die Menge \mathbb{R}_+ ist zusammenhängend, also ist auch das stetige Bild $g(\mathbb{R}_+) = \{x \in \mathbb{R}^2 | x_1 \in \mathbb{R}_+, x_2 = \sin\left(\frac{1}{x_1}\right)\} = M'$ wieder zusammenhängend.

Wir nehmen an, es gäbe eine relativ-offene Teilmenge U von M mit $\emptyset \neq U \neq M$ derart, dass $V \coloneqq M \setminus U$ auch offen ist. Dann ist, wie gezeigt, $U \neq \{0\} \neq V$. Außerdem sind $U' \coloneqq U \cap M'$ und $V' \coloneqq V \cap M'$ relativ offen bezüglich M'. Zudem gilt $U' \cup V' = (U \cup V) \cap M' = M'$. Damit wäre aber M' nicht mehr zusammenhängend \mathcal{L} . Also kann es keine solche Teilmenge U geben und M ist zusammenhängend.

Aufgabe 2

(a) (i) Wir definieren die Nullfolge $X_n = \begin{pmatrix} n^{-3} \\ n^{-3} \\ n^{-1} \end{pmatrix}$. Es gilt

$$\lim_{n \to \infty} f_1(X_n) = \lim_{n \to \infty} \frac{n^{-5} + n^{-9}}{2n^{-6}} = \lim_{n \to \infty} \frac{n + n^{-3}}{2} = \infty.$$

Daher gibt es keinen Wert $f_1(0,0,0)$, sodass die Funktion an der Stelle $0 \in \mathbb{R}^3$ stetig fortsetzbar ist.

(ii) Es gilt $\forall x, y \in \mathbb{R} : (x-y)^2 \ge 0 \Longleftrightarrow x^2 - 2xy + y^2 \ge 0 \Longrightarrow x^2 + y^2 \ge xy \Longrightarrow \frac{xy}{x^2 + y^2} \le 1$. Für alle $(x, y, z)^T$ mit $\left\| (x, y, z)^T - 0 \right\|_1 = |x + y + z| < \varepsilon$ gilt daher für $f_2(0, 0, 0) = 0$

$$|f_2(x,y,z) - f_2(0,0,0)| = \left| \frac{xyz + xy^2}{x^2 + y^2} \right| = \left| \frac{xy}{x^2 + y^2} z + \frac{xy^2}{x^2 + y^2} \right| \le \left| z + \frac{xy^2}{y^2} \right| \le |x + y + z| < \varepsilon$$

Also ist f_2 stetig fortsetzbar an der Stelle $(0,0,0)^T$

(iii) Bonusaufgabe: Wir definieren die Folge
$$Z_n = \begin{pmatrix} n^{-3} \\ n^{-3} \\ z \end{pmatrix}$$
 mit $\lim_{n \to \infty} Z_n = \begin{pmatrix} 0 \\ 0 \\ z \end{pmatrix}$. Es gilt

$$\lim_{n \to \infty} f_1(X_n) = \lim_{n \to \infty} \frac{n^{-3}z^2 + n^{-9}}{2n^{-6}} = \lim_{n \to \infty} \frac{n^3z^2 + n^{-3}}{2} = \infty.$$

Daher gibt es keinen Wert $f_1(0,0,z)$, sodass die Funktion an der Stelle $(0,0,z)^T \in \mathbb{R}^3$ stetig fortsetzbar ist. Für die zweite Funktion erhalten wir, dass für alle $(x,y,z)^T$ mit $||(x,y,z)^T - (0,0,z)^T||_1 = |x+y| < \varepsilon$ und $f_2(0,0,z) = z$ gilt:

$$|f_2(x,y,z) - f_2(0,0,z)| = \left| \frac{xyz + xy^2}{x^2 + y^2} - z \right| = \left| \frac{xy}{x^2 + y^2} z - z + \frac{xy^2}{x^2 + y^2} \right| \le \left| \frac{xy^2}{y^2} \right| \le |x + y| < \varepsilon$$

Also ist f_2 stetig fortsetzbar an der Stelle $(0,0,z)^T$.

(b) Es gilt $\forall x, y \in K^n$

$$(x - y, x - y)_{K} \ge 0$$

$$(x, x)_{K} - 2(x, y)_{K} + (y, y)_{K} \ge 0$$

$$\|x\|_{K}^{2} + \|y\|_{K}^{2} \ge 2(x, y)_{K}$$

$$\frac{1}{2} \left(\|x\|_{K}^{2} + \|y\|_{K}^{2}\right) \ge (x, y)_{K}.$$
(*)

Sei nun $\varepsilon > 0$. Dann gilt $\forall \{x,y\} \in P$ mit $\|\{x,y\}\|_P = \left(\|x\|_K^2 + \|y\|_K^2\right)^{\frac{1}{2}} < \sqrt{\varepsilon}$:

$$(x,y)_K \stackrel{*}{\leq} \frac{1}{2} \left(\left\| x \right\|_K^2 + \left\| y \right\|_K^2 \right) \leq \frac{1}{2} \sqrt{\varepsilon^2} < \varepsilon.$$

Aufgabe 3

Sei $T: \partial K_R(0) \longrightarrow \mathbb{R}$ stetig.

(a) Behauptung: Es existiert ein $x \in \partial K_R(0)$, so dass T(x) = T(-x).

Beweis.

Da die Menge $\partial K_R(0)$ beschränkt und abgeschlossen ist, ist sie insbesondere kompakt. Als stetige Funktion auf einem kompakten Intervall nimmt T sowohl Maximum, als auch Minimum an. Seien $x_{\text{max}}, x_{\text{min}} \in \partial K_R(0)$, so dass

$$\max_{x \in \partial K_R(0)} T(x) = T(x_{\text{max}}) \text{ und } \min_{x \in \partial K_R(0)} T(x) = T(x_{\text{min}}).$$

Außerdem definieren wir und die Funkktion $T':\partial K_R(0)\longrightarrow \mathbb{R}, x\longmapsto T(x)-T(-x)$. Wir betrachten zwei Fälle:

1. Fall: $T'(x_{\text{max}}) = 0$ oder $T'(x_{\text{min}}) = 0$: Die Aussage folgt sofort aus dem Mittelwertsatz.

2. Fall: sonst: Gilt $T(x_{\text{max}} > 0, \text{ ist })$

$$T'(x_{\text{max}}) = T(x_{\text{max}}) - T(-x_{\text{max}}) > 0$$

 $T'(x_{\text{min}}) = T(x_{\text{min}}) - T(-x_{\text{min}}) < 0$

und für den Fall $T(x_{\text{max}}) < 0$ analog. Somit gilt ingesamt

$$T'(x_{\text{max}}) \cdot T'(x_{\text{min}}) = 0$$

Da $\partial K_R(0)$ wegzusammenhängend ist folgt aus dem Zwischenwertsatz direkt, dass

$$\exists k \in \partial K_R(0) \text{ s.d. } f(k) = 0 : T(k) = T(-k)$$

(b) Seien $f,g:\mathbb{K}^n\longrightarrow\mathbb{R}$ stetig. Für $x\in\mathbb{K}^n$ sei φ definiert als:

$$\varphi(x) := \max f(x), g(x)$$

Behauptung: $\varphi : \mathbb{K}^n \longrightarrow \mathbb{R}$ ist stetig.

Beweis.

Für alle $x, y \in \mathbb{R}$ gilt:

$$\max x, y = \frac{x+y+|x-y|}{2}.$$

O.B.d.A. $x \ge y$:

$$\frac{x + y + |x - y|}{2} = \frac{x + y + x - y}{2} = x = \max x, y.$$

Daher lässt sich φ schreiben als:

$$\varphi(x) = \max f(x), g(x) = \frac{f(x) + g(x) - |f(x) - g(x)|}{2}.$$

Da f,g stetig sind, ist insbesondere |f-g| stetig. Da der Nenner des Ausdrucks $2 \neq 0$, ist somit φ als Quotient stetiger Funktionen wieder stetig.

Aufgabe 4

Sei $f:\mathbb{K}^n\longrightarrow D\subset\mathbb{K}^n$ beliebig und $g:D\subset\mathbb{K}^n\longrightarrow\mathbb{K}^n$ stetig und injektiv. Sei zusätzlich D kompakt.

(i) Behauptung: $g \circ f$ stetig $\implies f$ stetig.

Beweis.

Wir definieren uns zunächst $C := \operatorname{im}(g)$ und die Funktion $g' : D \longrightarrow C$. Nun ist g stetig und injektiv, weshalb g' ebenfalls stetig und injektiv ist. Außerdem existiert eine stetige Funktion $g'^{-1} : C \longrightarrow D$. Es gilt für alle $x \in \mathbb{K}^n$:

$$g'^{-1}(g(f(x))) = g'^{-1}(g'(f(x))) = f(x).$$

Also gilt

$$f = g'^{-1} \circ g \circ f$$

Sei nun $g \circ f$ stetig. Somit ist f als Komposition stetiger Funktionen wieder stetig.

(ii) Behauptung: $g\circ f$ gleichmäßig stetig $\implies f$ gleichmäßig stetig.

Beweis.

Sei $g\circ f$ gleichmäßig stetig. Seien zusätzlich C,g',g'^{-1} wie in (i) definiert. Also lässt sich f wieder als Komposition

$$f = g'^{-1} \circ g \circ f$$

schreiben. Aufgrund der Kompaktheit von D und der Stetikeit von g, ist C ebenfalls kompakt. Somit ist aufgrund der Stetikeit von g'^{-1} gleichmäßig stetig. Insgesamt folgt daraus, dass f als Komposition gleichmäßig stetiger Funktion auch gleichmäßig stetig ist.