RELATIONSHIP BETWEEN TOXICITY VALUES FOR THE HEALTHY SUBPOPULATION AND THE GENERAL POPULATION

Ronald B. Crosier and Douglas R. Sommerville, PE U.S. Army Edgewood Chemical Biological Center 5183 Blackhawk Road Aberdeen Proving Ground, MD 21010-5424

ABSTRACT

The present chemical warfare (CW) agent toxicity estimates are not suitable for use with the general population (GP) because they are framed for male soldiers. A method was created to convert the median effective dose and probit (or Bliss) slope to estimates applicable to the GP. It was assumed that individual susceptibilities have a log-normal distribution. Two mathematical models were developed to describe a healthy or sensitive subpopulation (SP). In the tail model, the SP consists of all individuals having susceptibilities within a tail of the GP distribution. In the bell model, the SP has a lognormal distribution. The median and the probit slope of an SP were determined as a function of the SP size. The two models gave similar results. Historical military demographics were used to estimate the size of the healthy SP from which military personnel are drawn. Uncertainty factors were obtained from the tail and bell models. Uncertainty factors from both models were consistent with the results of two previous studies that quantified differences between populations. The model can be readily incorporated into an casualty assessment module to permit rapid recalculation of toxicity estimates. This will allow the commander or staff to better estimate the degree of collateral damage to civilian populations from CW agent attacks and incidents.

maintaining the data needed, and of including suggestions for reducing	llection of information is estimated to completing and reviewing the collect this burden, to Washington Headqu ald be aware that notwithstanding ar OMB control number.	ion of information. Send comments arters Services, Directorate for Info	regarding this burden estimate rmation Operations and Reports	or any other aspect of the 1215 Jefferson Davis	nis collection of information, Highway, Suite 1204, Arlington		
1. REPORT DATE 01 JUL 2003				3. DATES COVERED -			
4. TITLE AND SUBTITLE			5a. CONTRACT NUMBER				
Relationship Betwo	5b. GRANT NUMBER						
And The General l	ropulation		5c. PROGRAM ELEMENT NUMBER				
6. AUTHOR(S)			5d. PROJECT NUMBER				
		5e. TASK NUMBER					
			5f. WORK UNIT NUMBER				
U.S. Army Edgewo	IZATION NAME(S) AND AE ood Chemical Biolog Ground, MD 21010	cical Center 5183 Bl	ackhawk Road	8. PERFORMING REPORT NUMB	G ORGANIZATION ER		
9. SPONSORING/MONITO		10. SPONSOR/MONITOR'S ACRONYM(S)					
			11. SPONSOR/MONITOR'S REPORT NUMBER(S)				
12. DISTRIBUTION/AVAIL Approved for publ	LABILITY STATEMENT lic release, distributi	on unlimited					
13. SUPPLEMENTARY NO See also ADM0015	OTES 23., The original do	cument contains col	or images.				
14. ABSTRACT							
15. SUBJECT TERMS							
16. SECURITY CLASSIFIC	17. LIMITATION OF	18. NUMBER	19a. NAME OF				
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	- ABSTRACT UU	OF PAGES 10	RESPONSIBLE PERSON		

Report Documentation Page

Form Approved OMB No. 0704-0188 The complete documentation for this poster is available from the following published technical report:

Crosier, Ronald B. and Sommerville, Douglas R., *Relationship Between Toxicity Values for the Military Population and Toxicity Values for the General Population*, **ECBC-TR-224**. U.S. Army Chemical Biological Center, Aberdeen Proving Ground, MD, March 2002. AD-A400 214. (40 pages).

The technical report has been approved for public release, distribution is unlimited. Registered users should request copies from the Defense Technical Information Center; unregistered users should direct such requests to the National Technical Information Center.

The following is a breakdown of the poster into individual slides.

2002 Joint Service Scientific
Conference on CB Defense Research
Hunt Valley, MD
20 November 2002

Ronald B. Crosier

Douglas R. Sommerville, PE

U.S. Army Soldier and Biological Chemical Command

Edgewood Chemical Biological Center 5183 Blackhawk Road, ATTN: AMSSB-RRT-IM, Bldg. E5951 Aberdeen Proving Ground, Maryland, USA 21010-5424 Email: Douglas.Sommerville@sbccom.apgea.army.mil Phone: (410) 436-4253 FAX: (410) 436-2742

Comparison of Populations via Mathematical Modeling

Edgewood Chemical Biological Center

- Goal: To develop a mathematical model to describe differences in agent toxicity between a healthy subpopulation (SP) and the general population (GP)
 - Parameter value conversion between populations—median dose/dosage values and probit slopes
 - O No known work previously done on this subject
- Only one model parameter: SP Size
- Key assumptions
 - Individual susceptibilities for the GP have a normal distribution (bell-shaped curve) of Log (Effective Dose) or Log (ED) values
 - SPs (either healthy or sensitive) are represented by one of two models: Bell or Tail
- Disclaimer: The content of this poster is not to be construed as an official Department of the Army position unless so designated by other authorizing documents

1

Application to Decision Support Methods

Edgewood Chemical Biological Center

Casualty estimations

Current CW agent toxicity values (LCT_{50} or ECT_{50} and probit slope) for military subpopulation are not appropriate for use in estimating casualties for the general population exposed to CW agent attacks or incidents

Using military toxicity values for the general population will result in the underestimation of civilian casualties

Method offers a simple means to arrive at reasonable approximation of civilian toxicity values based on an extrapolation using mathematical/statistical modeling from known military values

Algorithm for toxicity value conversion can be easily programmed into transport & dispersion models

Models Used to Compare Population Differences

Edgewood Chemical Biological Center

 $Z = m_{GP} [log(ED) - log(ED_{50})]$

 m_{GP} = Probit slope of GP

 ED_{50} = Effective Dose 50% for GP

Bell & Centroid Model

Healthy Subpopulations (Shaded Area) Size = 10% of Population

Defining a Subpopulation

Edgewood Chemical Biological Center

A Subpopulation can be defined in a variety of ways

- Healthy Subpopulations
 - Military
 - Workplace
- Sensitive Subpopulations
 - Infants
 - Elderly
 - People with chronic medical conditions
- Other Subpopulations
 - O Gender

- Mathematical modeling can account for gender differences
 - Separately apply either Bell or Tail Model to each gender
- Use of demographics to estimate SP size
 - Existing chemical warfare (CW) agent toxicity values developed for military SP
 - Workplace SP used for industrial chemicals

4

Calculation of Effective Dose Ratio

Edgewood Chemical Biological Center

EDR =
$$\left[\frac{ED_B}{ED_A}\right]$$
 = antilog $\left[\frac{(Z_B - Z_A)}{m_{GP}}\right]$

EDR = Effective Dose Ratio

 ED_A and ED_B = Effective doses for Populations A and B Z_A , Z_B = Distance (in Z units) of ED_A and ED_B from ED_{50} of GP M_{GP} = Probit slope of GP

Only Three Values Needed

Subpopulation Size Probit Slope (m_{SP} or m_{GP}) Median Dose (for either SP or GP)

EDR Dependency on Probit Slope Ratio of Medians for m_{GP} : 2, 3, 4, 6 and 12

9

Comparison of EDRs from Different Models

Edgewood Chemical Biological Center

Relative Magnitude of Model EDRs at a Fixed Probit Slope and SP Size

> Bell > Centroid

EDRs from Tail, Bell and Centroid Models Ratio of Medians for $m_{GP} = 12$

EDRs from Tail, Bell and Centroid Models Ratio of Medians for $m_{GP} = 2$

CW Agent Acute Exposure Guideline Levels (AEGLs)

Edgewood Chemical Biological Center

- Environmental Protection Agency (EPA) AEGLs-protection of health of sensitive individuals
 - AEGL-1: Threshold notable discomfort
 - AEGL-2: Threshold serious effects
 - AEGL-3: Threshold lethality
- CW agent AEGLs based on most toxic route: inhalation (IH)
- Proposed CW agent AEGLs (posted on EPA website)
 - G-type and VX Nerve Agents (Oct 2000)
 - O Sulfur Mustard (HD) (January 2000)
 - O Phosgene (CG) (August 2000)
 - O Chlorine (October 1997)

- AEGL development involves use of Uncertainty Factors (UF) to account for various sources of uncertainty
 - O UF values are usually 1, 3 or 10
 - Examples of UF applications in AEGLs:
 - Healthy to sensitive human (Intraspecies)
 - Laboratory animal to human
 - Incomplete to complete database
- Intraspecies UFs
 - Needed to account for response variability in the human population
 - Used to convert from a healthy human SP to a GP basis for threshold effects
 - Essentially ECT₀₁ (healthy SP) to ECT₀₁ (GP)

12

Comparison of Intraspecies UFs for CW Agent AEGLs

Edgewood Chemical Biological Center

- Tail and Bell Models can be used to calculate intraspecies UFs
 - UFs based on EDR of LCT₀₁ (healthy SP) to LCT₀₁ (GP)
 - Military probit slope values from Grotte and Yang (2001)
 - Probit slopes for CG and Chlorine estimated from review of existing experimental data
 - Models provide mathematical basis for setting intraspecies UF values
- EPA AEGL-3 intraspecies UFs shown for comparison
 - Assignment of values more qualitative in nature

Agent	Route	Military Probit Slope	m _{GP}		Uncertainty Factors (Between 1 st Percentiles)		
			Tail	Bell	Tail	Bell	EPA AEGL
G	IH	12.0	5.9	7.2	3.2	1.9	10
G	PC	5.0	2.5	3.0	16.7	4.6	
HD	IH	6.0	3.0	3.6	10.4	3.6	3
HD	PC	7.0	3.4	4.2	7.5	3.0	
VX	IH	6.0	3.0	3.6	10.4	3.6	10
VX	PC	6.0	3.0	3.6	10.4	3.6	
CG	IH		6.7	8.3	2.8	1.7	3
Chlorine	IH		5.9		3.2	2.2	3

IH — Inhalation

PC — Percutaneous

43

Conclusions from Comparison of Intraspecies UFs

Edgewood Chemical Biological Center

UF Comparison Summary

Poor

G-Agents:

AEGL (10) >> Tail (3) & Bell (2)

VX:

AEGL (10) >> Bell (4) AEGL (10) = Tail (10)

CG & Chlorine:

AEGL (3 & 3) > Bell (1.7 & 2.2) AEGL (3 & 3) = Tail (2.8 & 3.2)

Excellent

Caution

HD:

AEGL (3) ≈ Bell (4) **AEGL** (3) << Tail (10)

- Both models are conservative
 - Tail Model the most conservative
 - Sets an absolute upper limit on UF value
 - Bell Model gives more realistic SP distribution
 shape
 - Important for comparing the 1st percentiles of two distributions
 - Suggested course of action on current CW agent AEGL intraspecies UF values
 - G-Agent should be strongly reconsidered
 - VX, CG and Chlorine should be reassessed
 - Strong mathematical support for HD—no change need be considered
 - Any changes should be kept in context of <u>ALL</u>
 <u>other assumptions</u> made in developing AEGLs
 for a particular agent

Summary

Edgewood Chemical Biological Center

- New method developed for converting toxicity
 - Based on the mathematical modeling of a SP and its relationship to the GP
 - Conversion from SP to GP basis
 - Addresses a critical parameter gap (GP CW agent toxicity estimates)
- Method needs only three values:
 - Model parameter: SP size
 - Two toxicity values for conversion
 - Probit slope for either SP or GP
 - Median dose for either SP or GP

- Both healthy and sensitive SPs can be modeled with either of two models: Tail or Bell/Centroid
- Historical military demographics reviewed for modeling military SP
- Intraspecies UFs for EPA CW Agent AEGL-3s investigated with method
 - Method provides mathematical basis for calculation of intraspecies UF values
 - Strong argument exists for current Gagent UF being too high
 - Current VX UF value is questionably high

15

Additional Information

Edgewood Chemical Biological Center

- Work documented in U.S. Army technical report
 - O Crosier, RB and Sommerville, DR, Relationship Between Toxicity Values for the Military Population and Toxicity Values for the General Population, ECBC-TR-224. Edgewood CB Center, Aberdeen Proving Ground, MD, March 2002. UNCLASSIFIED/UNLIMITED. AD # A400214.
- Work funded by U.S. Department of Energy, National Security
 Administration, Chemical and Biological National Security Program
 - Technical point of contact: John E. Brockmann, Sandia National Laboratory
- Authors' acknowledgment
 - Dr. Sharon A. Reutter, Edgewood CB Center, for her technical advice and assistance

16