Homework 6

Math 416, Abstract linear algebra, Fall 2019 Instructor: Daesung Kim

Due date: October 18, 2019

Textbooks: In the assignment, the two texts are abbreviated as follows:

- [FIS]: Freidberg, Insel, and Spence, Linear Algebra, 4th edition, 2002.
- [Bee]: Beezer, A First Course in Linear Algebra, Version 3.5, 2015.
- 1. Let $A, B \in \mathcal{M}_{n \times n}(\mathbb{R})$ be invertible matrices.
 - (a) Prove that AB is invertible and $(AB)^{-1} = B^{-1}A^{-1}$.
 - (b) Prove that A^t is invertible and $(A^t)^{-1} = (A^{-1})^t$.
- 2. Let $A \in \mathcal{M}_{n \times n}(\mathbb{R})$. Prove that A is invertible if and only if L_A is invertible and $(L_A)^{-1} = L_{A^{-1}}$.
- 3. Let $A, B \in \mathcal{M}_{n \times n}(\mathbb{R})$.
 - (a) Prove that if AB is invertible, then A and B are invertible.
 - (b) Prove that if $AB = I_n$, then $A = B^{-1}$.
- 4. Prove that if A and B are similar $n \times n$ matrices, then tr(A) = tr(B).
- 5. Let V be a finite-dimensional vector space over \mathbb{R} with basis β and $\dim(V) = n$. Define $\phi_{\beta} : V \to \mathbb{R}^n$ by $\phi_{\beta}(v) = [v]_{\beta}$. Show that ϕ_{β} is an isomorphism.
- 6. Let T be the linear map on \mathbb{R}^2 defined by

$$T\begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 2a+b \\ a-3b \end{pmatrix}.$$

Let

$$\beta = \left\{ e_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, e_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}, \qquad \beta' = \left\{ v_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, v_2 = \begin{pmatrix} 1 \\ 2 \end{pmatrix} \right\}.$$

Find $[T]_{\beta}$, $[I_{\mathbb{R}^2}]_{\beta'}^{\beta}$, $[I_{\mathbb{R}^2}]_{\beta}^{\beta'}$, and $[T]_{\beta'}$.

- 7. In \mathbb{R}^2 , let L be the line y = mx where $m \neq 0$. Find expressions for the following linear transformations T(x,y).
 - (a) T is the reflection of \mathbb{R}^2 about L.
 - (b) T is the projection on L along the line perpendicular to L. (That is, for each $(x,y) \in \mathbb{R}^2$, T(x,y) is the closest point on L to (x,y).)

1