18. Probabilistički grafički modeli II

Strojno učenje 1, UNIZG FER, ak. god. 2023./2024.

Jan Šnajder, vježbe, v2.3

1 Zadatci za učenje

1. [Svrha: Razumjeti i izvježbati egzaktno zaključivanje kod Bayesovih mreža. Postati svjestan složenosti egzaktnog zaključivanja.] Skicirajte Bayesovu mrežu iz zadatka 2 iz cjeline 17. Parametri modele neka su sljedeći. Za čvorove x_1 i x_2 parametri su $P(x_1 = T) = 0.2$ i $P(x_2 = T) = 0.6$. Tablice uvjetnih vjerojatnosti za preostale čvorove su:

$\overline{x_1}$	x_2	$P(x_3 = \top x_1, x_2)$	_		
\perp		0.3	x	3	$P(y = \top x_3)$
\perp	T	0.5	_	L	0.2
T	\perp	0.8	-	Γ	0.9
Τ	Τ	0.9			
			-		
r_2	P(c	$x_4 = 2 x_2 P(x_4 =$	$=3 x_0\rangle$)	$P(x_4 = 4 x_2)$

x_2	$P(x_4 = 2 x_2)$	$P(x_4 = 3 x_2)$	$P(x_4 = 4 x_2)$
\perp	0.4	0.2	0.3
Т	0.2	0.1	0.1

- (a) Postupkom egzaktnog zaključivanja izračunajte $P(y = T | x_1 = T, x_4 = 3)$.
- (b) Koja je razlika između posteriornog i MAP-upita? O kakvom tipu upita se radi u prošlom zadatku? Obrazložite.
- (c) Utječe li broj varijabli u mreži na učinkovitost zaključivanja? Zašto?
- (d) Objasnite ideju približnog zaključivanja uzorkovanjem. Koja je prednost tog postupka? U kratkim crtama objasnite kako biste uzorkovali $P(x_1, x_2, x_3, x_4, y)$ koristeći unaprijedno uzorkovanje (engl. forward sampling).
- 2. [Svrha: Razumjeti učenje Bayesovih mreža i njegovu povezanost s procjenom parametara. Znati kako pristupiti učenju modela ako su podatci nepotpuni.]
 - (a) Što su parametri Bayesove mreže i na koji način ih učimo iz podataka?
 - (b) Izvedite log-izglednost (proizvoljne) Bayesove mreže. Objasnite zašto je moguće procjenjivati parametre svakog čvora mreže zasebno.
 - (c) Objasnite što to znači da neki model ima skrivene (latentne) varijable. Kako one utječu na postupak učenja modela?
- 3. [Svrha: Izvježbati procjenu parametara čvora Bayesove mreže na temelju zadanog skupa podataka. Izvježbati kako napisati izraz za egzaktno zaključivanje na temelju konkretne Bayesove mreže. Razumijeti prednosti i nedostatke egzaktnog zaključivanja naspram metoda uzorkovanja.] Skicirajte Bayesovu mrežu iz zadatka 4 iz cjeline 17. Parametre te mreže procjenjujemo na sljedećem skupu podataka:
 - (a) Primjenom (Laplaceovog) MAP-procjenitelja procijenite P(P|S,T).

S	Р	Т	R
ženski	Т	1	visok
$\check{z}enski$	T	5	umjeren
$mu\check{s}ki$	\perp	3	nizak
$\check{z}enski$	\perp	1	umjeren
$mu\check{s}ki$	Τ	5	nizak
$\check{z}enski$	\perp	1	nizak

- (b) Korištenjem egzaktnog zaključivanja izvedite izraz za vjerojatnost visokog rizika oboljenja osobe koja je pušač i posjećuje teretanu pet puta tjedno. Za svaku od četiri varijable naznačite radi li se o varijabli upita, opaženoj varijabli ili varijabli smetnje.
- (c) Na ovoj mreži ilustrirajte prednosti i nedostatke metoda uzorkovanja nad metodom egzaktnog zaključivanja.
- (d) Na ovoj mreži ilustrirajte nedostatak unaprijednog uzorkovanja. Što su alternative unaprijednom uzorkovanju?

2 Zadatci s ispita

1. (N) Na slici ispod prikazana je Bayesova mreža za problem prskalice za travu, koji smo bili koristili na predavanjima. Varijable su: C (oblačno/cloudy), S (prskalica/sprinkler), R (kiša/rain) i W (mokra trava/ $wet\ grass$). Dane su i tablice uvjetnih vjerojatnosti za svaki čvor.

		S	C	P(S C)	R	C	P(R C)
C	P(C)	0	0	0.5	0	0	0.8
0	0.5	0	1	0.9	0	1	0.2
1	0.5	1	0	0.5	1	0	0.2
		1	1	0.1	1	1	0.8

W	R	S	P(W R,S)
0	0	0	1.0
0	0	1	0.9
0	1	0	0.1
0	1	1	0.01
1	0	0	0.0
1	0	1	0.1
1	1	0	0.9
1	1	1	0.99

Izračunajte aposteriornu vjerojatnost da pada kiša ako je trava mokra i nije oblačno.

2. (N) Bayesovom mrežom s četiri varijable modeliramo konstrukte pozitivne psihologije. Koristimo binarne varijable Ljubav (L), $Sre\acute{c}a$ (S), Tjeskoba (T), s vrijednostima 0 (nema) i 1 (ima), te ternarnu varijablu Novac (N), s vrijednostima 0 (nema), 1 (ima malo) i 2 (ima puno). Strukturu Bayesove mreže definirali smo tako da ona modelira sljedeće pretpostavljene kauzalne odnose: L uzrokuje S, a N uzrokuje S i T. Tako definiranu Bayesovu mrežu zatim treniramo na sljedećem skupu od N=7 primjera:

L	N	S	T
1	0	1	0
1	0	1	0
0	2	0	1
1	2	1	1
1	1	1	0
0	0	0	0
0	2	1	0

Parametre modela procjenjujemo MAP-procjeniteljem sa $\alpha = \beta = 2$ (za binarne varijable) odnosno $\alpha_k = 2$ (za ternarnu varijablu), što je istovjetno Laplaceovom zaglađivanju MLE procjene. Na kraju nas, naravno, zanima koja je vjerojatnost života uz ljubav, sreću i malo novaca. Napravite potrebne MAP-procjene parametara. Koliko iznosi zajednička vjerojatnost P(L=1,S=1,N=1)?

3. (P) Razmotrite jednostavnu Bayesovu mrežu koja odgovara faktorizaciji P(x, y, z) = P(x)P(y)P(z|x, y). Sve varijable su binarne. Vrijedi P(x = 1) = 0.2 i P(y = 1) = 0.3. Tablica uvjetne vjerojatnosti za čvor z je sljedeća:

\overline{z}	x		p(z x,y)				p(z x,y)
0	0	0	0.1	1	0	0	0.9
0	0	1	0.2	1	0	1	0.8
0	1	0	0.5	1	1	0	0.5
0	1	1	0.9	1	1	1	0.1

Postupkom uzorkovanja s odbijanjem uzorkujemo iz aposteriorne distribucije P(y|x=1,z=0). Uzorkovanje smo ponovili ukupno N=1000 puta. Koja je očekivana veličina uzorka, odnosno koliko slučajnih vektora nećemo morati odbaciti?

A 54 B 124 C 200 D 739

4. (N) Bayesovu mrežu koristimo za medicinsku dijagnostiku te modeliramo sljedeće kauzalne odnose. Upala grla (U=1) može biti uzrokovana virusom (V=1) ili bakterijom (B=1). Povišena temperatura (T=1) može biti uzrokovana upalom grla ili sunčanicom (S=1). Sve varijable su binarne. Na temelju podataka o pacijentima procijenili smo parametre mreže: P(V=1)=0.3, P(B=1)=0.1 i P(S=1)=0.05. Uvjetne vjerojatnosti za čvorove U i T su:

\overline{V}	B	P(U=1 V,B)	U	S	P(T=1 U,S)
0	0	0.2	0	0	0
0	1	0.5	0	1	0.2
1	0	0.4	1	0	0.4
1	1	0.7	1	1	0.4

Zanima nas koje je najvjerojatnije objašnjenje izravnog uzroka povišene temperature u pacijenata kod kojih nije dokazano prisustvo virusa. U tu svrhu računamo MAP-upit za par varijabli upita U i S uz opažene varijable V=0 i T=1, tj. računamo $\arg\max_{U,S} P(U,S|V=0,T=1)$. Neka je p_1 vjerojatnost najvjerojatnijeg (MAP) objašnjenja za varijable U i S, a p_2 vjerojatnost drugog po redu najvjerojatnijeg obašnjenja za te varijable. Koliko je puta najvjerojatnije objašnjenje vjerojatnije od drugog najvjerojatnijeg objašnjenja, tj. koliko iznosi p_1/p_2 ?

A 11.35 B 13.35 C 15.52 D 17.88

5. (N) Razmotrite Bayesovu mrežu koja odgovara faktorizaciji P(w,x,y,z) = P(w)P(x)P(y|w,x)P(z|x). Sve varijable su binarne. Vrijedi $P(w=1)=0.1,\ P(x=1)=0.2,\ P(z=1|x=0)=0.9$ i P(z=1|x=1)=0.7. Tablica uvjetnih vjerojatnosti za čvor y je sljedeća:

		(1)
w	x	p(y=1 w,x)
0	0	0
0	1	0.4
1	0	0.2
1	1	0.7

Postupkom uzorkovanja s odbijanjem želimo procijeniti parametar μ uvjetne distribucije P(x=0|y=1,z=0). Uzorkovanje smo ponovili ukupno N=100 puta, od čega smo neke vektore morali odbaciti, pa je naš uzorak manji od N. Na temelju dobivenog uzorka parametar μ procjenjujemo MAP procjeniteljem uz $\alpha=\beta=2$. Koliko iznosi očekivana MAP procjena parametra μ ?