Chapitre 22

Matrices

Sommaire

I	Matrices, liens avec les applications linéaires	
	1) Définitions	
	2) Structure d'espace vectoriel sur les matrices	
	3) Matrice d'une application linéaire	
II	Produit matriciel	
	1) Définition	
	2) Retour aux applications linéaires	
	3) Propriétés du produit matriciel	
III	Matrices carrées inversibles	
	1) Définition	
	2) Retour aux applications linéaires	
IV	Changement de bases	
	1) Matrice de passage	
	2) Formules du changement de bases	
	3) Changement de bases et applications linéaires	
	4) Trace d'un endomorphisme	
V	Opérations élémentaires sur les matrices	
	1) Rang d'une matrice	
	2) Propriétés du rang d'une matrice	
	3) Opérations élémentaires	
	4) Calcul pratique du rang d'une matrice	
	5) Calcul pratique de l'inverse d'une matrice	
VI	Matrices par blocs, matrices extraites	
	1) Matrices par blocs	
	2) Matrices extraites	
VII	Solution des exercices	

 $\mathbb K$ désigne un sous-corps de $\mathbb C.$

I MATRICES, LIENS AVEC LES APPLICATIONS LINÉAIRES

1) Définitions

Définition 22.1

Soient $n, p \in \mathbb{N}^*$, on appelle matrice à n lignes et p colonnes à coefficients dans \mathbb{K} , toute application $M: [1; n] \times [1; p] \to \mathbb{K}$. Pour $(i, j) \in [1; n] \times [1; p]$, on pose $M(i, j) = M_{i,j}$ (ou $m_{i,j}$), c'est le coefficient de la matrice M d'indices i et j, le premier indice est appelé indice de ligne, et le second indice de colonne.

L'ensemble des matrices à n lignes et p colonnes à coefficients dans \mathbb{K} est noté $\mathcal{M}_{n,p}(\mathbb{K})$, on a donc $\mathcal{M}_{n,p}(\mathbb{K}) = \mathscr{F}(\llbracket 1;n \rrbracket \times \llbracket 1;p \rrbracket, \mathbb{K})$.

Notations: Si M
$$\in \mathcal{M}_{n,p}(\mathbb{K})$$
, on peut écrire: M = $(m_{i,j})_{\substack{1 \leq i \leq n \\ 1 \leq j \leq p}}$ ou bien M = $\begin{pmatrix} m_{1,1} & \cdots & m_{1,p} \\ \vdots & & \vdots \\ m_{n,1} & \cdots & m_{n,p} \end{pmatrix}$

Remarque 22.1 – L'égalité entre deux matrices est en fait l'égalité entre deux fonctions, par conséquent deux matrices sont égales lorsqu'elles ont la même taille et les mêmes coefficients.

Cas particuliers:

- Lorsque n = p on dit que la matrice est **carrée**, l'ensemble des matrices carrées à n lignes est noté $\mathcal{M}_n(\mathbb{K})$ au lieu de $\mathcal{M}_{n,n}(\mathbb{K})$.
- Lorsque n = 1 on dit que M est une matrice **ligne** : $\begin{pmatrix} 1 & 2 & -3 \end{pmatrix}$ ∈ $\mathcal{M}_{1,3}(\mathbb{K})$.
- Lorsque p = 1 on dit que M est une matrice **colonne** : $\begin{pmatrix} 2 \\ 0 \\ 5 \end{pmatrix} \in \mathcal{M}_{3,1}(\mathbb{K})$.

Définition 22.2

Soit $M \in \mathcal{M}_{n,p}(\mathbb{K})$, pour $k \in [1; p]$:

On appelle k-ième vecteur colonne de M le vecteur $c_k(M) = (m_{1,k}, ..., m_{n,k})$, c'est un élément de \mathbb{K}^n .

On appelle k-ième matrice colonne de M la matrice $\mathscr{C}_k(M) = \begin{pmatrix} m_{1,k} \\ \vdots \\ m_{n,k} \end{pmatrix} \in \mathscr{M}_{n,1}(\mathbb{K}).$

On appelle k-ième vecteur ligne de M le vecteur $L_k(M) = (m_{k,1}, \dots, m_{k,p})$, c'est un élément de \mathbb{K}^p . On appelle k-ième matrice ligne de M la matrice $\mathcal{L}_k(M) = \begin{pmatrix} m_{k,1} & \cdots & m_{k,p} \end{pmatrix} \in \mathcal{M}_{1,p}(\mathbb{K})$.

Définition 22.3 (transposition)

Soit $M \in \mathcal{M}_{n,p}(\mathbb{K})$, on appelle **transposée** de M la matrice de $\mathcal{M}_{p,n}(\mathbb{K})$ notée ^tM et définie par : $[^{\mathbf{t}}\mathbf{M}]_{i,j} = \mathbf{M}_{j,i} \ pour \ i \in [1; p] \ et \ j \in [1; n]$

Autrement dit, la ligne i de ^tM est la colonne i de M.

Exemple: Soit $M = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} \in \mathcal{M}_{2,3}(\mathbb{K})$, on a ${}^{t}M = \begin{pmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{pmatrix} \in \mathcal{M}_{3,2}(\mathbb{K})$.

Théorème 22.1 (propriétés de la transposition)

On a les propriétés suivantes :

- $\mathcal{M}_n(\mathbb{K})$ est stable pour la transposition.
- ${}^{\mathbf{t}}({}^{\mathbf{t}}\mathbf{M}) = \mathbf{M}$, on en déduit en particulier que la transposition est une involution dans $\mathcal{M}_n(\mathbb{K})$.
- $L_k(^{\mathbf{t}}M) = C_k(M)$ et $C_k(^{\mathbf{t}}M) = L_k(M)$.

Preuve : Celle-ci est simple et laissée en exercice.

Définition 22.4 (trace d'une matrice carrée)

Soit $M \in \mathcal{M}_n(\mathbb{K})$, on appelle trace de M le scalaire noté tr(M) et défini par : $tr(M) = \sum_{i=1}^n M_{i,i}$, c'est donc la somme des coefficients diagonaux.

Matrices particulières :

- Matrice nulle : la matrice nulle à n lignes et p colonnes est la matrice de $\mathcal{M}_{n,p}(\mathbb{K})$ dont tous les coefficients sont nuls, celle-ci est notée $O_{n,p}$. Lorsque p = n, la matrice $O_{n,n}$ est notée simplement O_n , c'est la matrice nulle de $\mathcal{M}_n(\mathbb{K})$.
- Matrice unité : la matrice unité de $\mathcal{M}_n(\mathbb{K})$ est la matrice carrée de taille n, notée I_n et définie par $I_n = (\delta_{i,j})_{1 \le i,j \le n}$, c'est à dire, I_n est la matrice dont tous les coefficients diagonaux sont égaux à 1, les autres (coefficients extra-diagonaux) sont tous nuls.
- **Exemple**: $I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ est la matrice unité de $\mathcal{M}_3(\mathbb{K})$.

- Matrice diagonale : une matrice diagonale est une matrice carrée dont tous les coefficients extra-

diagonaux sont nuls. C'est donc une matrice de la forme
$$M = \begin{pmatrix} a_1 & 0 & \cdots & 0 \\ 0 & a_2 & 0 \cdots & 0 \\ \vdots & & \ddots & \vdots \\ 0 & \cdots & 0 & a_n \end{pmatrix}$$
, une telle matrice

- est notée parfois $M = diag(a_1, ..., a_n)$.
- **Matrice élémentaire** : une matrice élémentaire de $\mathcal{M}_{n,p}(\mathbb{K})$ est une matrice dont tous les coefficients sont nuls sauf un qui vaut 1. Il y a donc np matrices élémentaires dans $\mathcal{M}_{n,p}(\mathbb{K})$, pour $(i,j) \in [1;n] \times$ [1;p], on note $E^{i,j}$ la matrice élémentaire qui possède un 1 ligne i colonne j, et des 0 ailleurs, plus précisément : $(E^{i,j})_{k,l} = \delta_{i,k}\delta_{j,l}$.
- **Exemple**: Dans $\mathcal{M}_{2,3}(\mathbb{K})$, on a $E^{1,2} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$.
- Matrice triangulaire supérieure : c'est une matrice carrée dont tous les éléments situés sous la diagonale principale sont nuls. L'ensemble des matrices triangulaires supérieures de $\mathcal{M}_n(\mathbb{K})$ est noté $\mathcal{T}_n^s(\mathbb{K})$, on a donc:

$$M \in \mathcal{T}_n^s(\mathbb{K}) \iff \forall i, j \in [1; n], i > j \implies M_{i,j} = 0.$$

- Matrice triangulaire inférieure : c'est une matrice carrée dont tous les éléments situés au-dessus de la diagonale principale sont nuls. L'ensemble des matrices triangulaires inférieures de $\mathcal{M}_n(\mathbb{K})$ est noté $\mathcal{T}_n^i(\mathbb{K})$, on a donc:

$$\mathbf{M} \in \mathcal{T}_n^i(\mathbb{K}) \iff \forall \ i,j \in [\![1;n]\!], i < j \Longrightarrow \mathbf{M}_{i,j} = 0.$$

- Matrice symétrique : c'est une matrice qui est égale à sa transposée (elle est donc nécessairement carrée): $M = {}^{t}M$. L'ensemble des matrices symétriques de taille n est noté $\mathscr{S}_{n}(\mathbb{K})$, on a donc:

$$\mathbf{M} \in \mathcal{S}_n(\mathbb{K}) \iff \forall \ i,j \in [[1;n]], \mathbf{M}_{i,j} = \mathbf{M}_{j,i}.$$

- Matrice antisymétrique : c'est une matrice qui est égale à l'opposé de sa transposée (elle est donc nécessairement carrée) : $M = -^{t}M$. L'ensemble des matrices antisymétriques de taille n est noté $\mathcal{A}_{n}(\mathbb{K})$, on a donc:

$$M \in \mathcal{A}_n(\mathbb{K}) \iff \forall i, j \in [1; n], M_{i,j} = -M_{j,i},$$

- on en déduit en particulier que $M_{i,i} = 0$ (les coefficients diagonaux sont nuls).
- Structure d'espace vectoriel sur les matrices

Définition 22.5 (somme de deux matrices)

Soient A, B $\in \mathcal{M}_{n,p}(\mathbb{K})$, on appelle somme de A et B la matrice de $\mathcal{M}_{n,p}(\mathbb{K})$ notée A + B et définie par : $\forall (i, j) \in [1; n] \times [1; p], (A + B)_{i,j} = A_{i,j} + B_{i,j}.$ On additionne entre eux les éléments ayant les mêmes indices.

Exemple:
$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} + \begin{pmatrix} -1 & 0 & 1 \\ -2 & 3 & 4 \end{pmatrix} = \begin{pmatrix} 0 & 2 & 4 \\ 2 & 8 & 10 \end{pmatrix}$$
.

🛂 Théorème 22.2

 $(\mathcal{M}_{n,p}(\mathbb{K}),+)$ est un groupe abélien. L'élément neutre est la matrice nulle : $O_{n,p}$, et si $A \in \mathcal{M}_{n,p}(\mathbb{K})$, l'opposé de A est la matrice -A définie par $\forall (i, j) \in [1; n] \times [1; p], (-A)_{i,j} = -A_{i,j}$.

Preuve : Celle-ci est simple et laissée en exercice.

Définition 22.6 (produit par un scalaire)

Soit $M \in \mathcal{M}_{n,p}(\mathbb{K})$ et soit $\lambda \in \mathbb{K}$, on appelle produit de la matrice M par le scalaire λ la matrice de $\mathcal{M}_{n,p}(\mathbb{K})$ notée $\lambda.\mathrm{M}$ et définie par : $\forall (i,j) \in [1;n] \times [1;p], (\lambda.\mathrm{M})_{i,j} = \lambda \times \mathrm{M}_{i,j}$. C'est à dire, chaque coefficient de M est multiplié par λ.

Exemple:
$$2 \cdot \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix} = \begin{pmatrix} 2 & 4 \\ 6 & 8 \\ 10 & 12 \end{pmatrix}$$
.

Propriétés: On peut vérifier facilement, soient A, B $\in \mathcal{M}_{n,p}(\mathbb{K})$, soient $\lambda, \mu \in \mathbb{K}$:

$$-1.A = A.$$

- $-\lambda .(A + B) = \lambda .A + \lambda .B.$
- $(\lambda + \mu).A = \lambda.A + \mu.A.$
- $-(\lambda \mu).A = \lambda.(\mu.A).$

On peut donc énoncer le résultat suivant : $(\mathcal{M}_{n,p}(\mathbb{K}), +, .)$ est un \mathbb{K} -espace vectoriel.

Théorème 22.3 (dimension de $\mathcal{M}_{n,p}(\mathbb{K})$)

 $\mathcal{M}_{n,p}(\mathbb{K})$ est un \mathbb{K} -e.v de dimension np, et les matrices élémentaires $(\mathbb{E}^{i,j})_{1 \leq i \leq n}$ constituent une base

 $de \mathcal{M}_{n,p}(\mathbb{K})$. Cette base est appelée **base canonique** $de \mathcal{M}_{n,p}(\mathbb{K})$, car les coordonnées d'une matrice $M \in \mathcal{M}_{n,p}(\mathbb{K})$ dans cette base sont les coefficients de M, c'est à dire :

$$\mathbf{M} = \sum_{\substack{1 \leqslant i \leqslant n \\ 1 \leqslant j \leqslant p}} \mathbf{M}_{i,j}.\mathbf{E}^{i,j}.$$

Preuve : Il reste à montrer que la famille des matrices élémentaires est libre et génératrice de $\mathcal{M}_{n,p}(\mathbb{K})$. Soit $\mathbb{M} \in$ $\mathcal{M}_{n,p}(\mathbb{K})$, posons $\mathbf{B} = \sum_{1 \leq i \leq n} \mathbf{M}_{i,j} \cdot \mathbf{E}^{i,j}$, on a alors $\forall (k,l) \in [1;n] \times [1;p]$, $\mathbf{B}_{k,l} = \sum_{1 \leq i \leq n} \mathbf{M}_{i,j} \cdot (\mathbf{E}^{i,j})_{k,l}$, ce qui donne $\mathbf{B}_{k,l} = \sum_{1 \leq i \leq n} \mathbf{M}_{i,j} \cdot (\mathbf{E}^{i,j})_{k,l}$, ce qui donne $\mathbf{B}_{k,l} = \mathbf{E}_{k,l} \cdot (\mathbf{E}^{i,j})_{k,l}$, ce qui donne $\mathbf{B}_{k,l} = \mathbf{E}_{k,l} \cdot (\mathbf{E}^{i,j})_{k,l}$, ce qui donne $\mathbf{B}_{k,l} = \mathbf{E}_{k,l} \cdot (\mathbf{E}^{i,j})_{k,l}$, ce qui donne $\mathbf{B}_{k,l} = \mathbf{E}_{k,l} \cdot (\mathbf{E}^{i,j})_{k,l}$, ce qui donne $\mathbf{B}_{k,l} = \mathbf{E}_{k,l} \cdot (\mathbf{E}^{i,j})_{k,l}$

 $\sum M_{i,j}\delta_{i,k}\delta_{j,l}$, et donc $B_{k,l}=M_{k,l}$, d'où B=M. Ce qui prouve que toute matrice M s'écrit de manière unique

comme combinaison linéaire des matrices élémentaires, celles-ci constituent donc une base de $\mathcal{M}_{n,p}(\mathbb{K})$, or elles sont au nombre de np, donc dim $(\mathcal{M}_{n,p}(\mathbb{K})) = np$. Celle-ci est simple et laissée en exercice.

\bigstar Exercice 22.1 Montrer que $\mathcal{F}_n^s(\mathbb{K}), \mathcal{F}_n^i(\mathbb{K}), \mathcal{S}_n(\mathbb{K})$ et $\mathcal{A}_n(\mathbb{K})$ sont des s.e.v de $\mathcal{M}_n(\mathbb{K})$. Pour chacun d'eux donner une base et la dimension.

🙀 Théorème 22.4 (propriétés de la transposition et de la trace)

On a les propriétés suivantes :

- La transposition est linéaire, plus précisément, c'est un isomorphisme de $\mathcal{M}_{n,p}(\mathbb{K})$ sur $\mathcal{M}_{p,n}(\mathbb{K})$.
- La trace est une forme linéaire non nulle sur $\mathcal{M}_n(\mathbb{K})$.

Preuve : Pour le premier point, la linéarité est simple à vérifier. On peut voir ensuite que la transposition transforme la base canonique de $\mathcal{M}_{n,p}(\mathbb{K})$ en la base canonique de $\mathcal{M}_{p,n}(\mathbb{K})$.

Pour le second point, il s'agit d'une simple vérification de la linéarité, d'autre part, $tr(I_n) = n \neq 0$.

\bigstar Exercice 22.2 Montrer que la transposition dans $\mathcal{M}_n(\mathbb{K})$ est une symétrie, déterminer ses éléments caractéristiques.

3) Matrice d'une application linéaire

Soit E un \mathbb{K} -e.v de dimension p, soit $\mathfrak{B} = (e_1, \dots, e_p)$ une base de E. Soit F un \mathbb{K} -e.v de dimension n et soit $\mathfrak{B}'=(u_1,\ldots,u_n)$ une base de F. Soit $f\in\mathcal{L}(E,F)$, on sait que f est entièrement déterminée par la donnée de $f(e_1), \dots, f(e_p)$, mais chacun de ces vecteurs est lui-même déterminé par ses coordonnées dans la base \mathfrak{B}' de F. Notons $\operatorname{coord}(f(e_j)) = (a_{1,j}, \dots, a_{n,j})$ pour $j \in [1; p]$, c'est à dire :

$$\forall j \in [1; p], f(e_j) = \sum_{i=1}^n a_{i,j} u_i.$$

On obtient ainsi une matrice $A = (a_{i,j})_{\substack{1 \leqslant i \leqslant n \\ 1 \leqslant j \leqslant p}}$ cette matrice est définie par : $c_j(A) = \operatorname{coord}(f(e_j))$.

Définition 22.7

Soit $f \in \mathcal{L}(E,F)$, soit $\mathfrak{B} = (e_1, \dots, e_p)$ une base de E et soit $\mathfrak{B}' = (u_1, \dots, u_n)$ une base de F, on appelle matrice de f relative aux bases \mathfrak{B} et \mathfrak{B}' la matrice de $\mathcal{M}_{n,p}(\mathbb{K})$ notée $\max_{\mathfrak{B},\mathfrak{B}'}(f)$ et définie par : pour $j \in [1; p]$, le j-ième vecteur colonne de cette matrice est $\operatorname{coord}(f(e_j))$, autrement dit, le coefficient de la ligne i colonne j est la coordonnée sur u_i du vecteur $f(e_i)$.

Construction de cette matrice :

$$f(e_1) \dots f(e_p)$$

$$\downarrow \qquad \qquad \downarrow$$

$$\max_{\mathfrak{B},\mathfrak{B}'}(f) = \begin{pmatrix} a_{1,1} & \cdots & a_{1,p} \\ \vdots & \vdots & \vdots \\ a_{n,1} & \cdots & a_{n,p} \end{pmatrix} \xrightarrow{} u_n$$

Exemples:

- Soit \mathfrak{B} = (e_1, e_2, e_3) la base canonique de \mathbb{K}^3 et soit \mathfrak{B}' = (u, v) la base canonique de \mathbb{K}^2 , soit f ∈ $\mathscr{L}(\mathbb{K}^3,\mathbb{K}^2)$ définie par $\forall (x,y,z) \in \mathbb{K}^3$, f(x,y,z) = (2x-y+z,x+2y-3z). Déterminons $A = \max_{\mathfrak{R},\mathfrak{R}'}(f)$, on

$$\mathbf{a} \begin{cases} f(e_1) = f(1,0,0) = (2,1) = 2u + v \\ f(e_2) = f(0,1,0) = (-1,2) = -u + v \\ f(e_3) = f(0,0,1) = (1,-3) = u - 3v \end{cases} \text{, donc la matrice de } f \text{ est : }$$

$$A = \begin{pmatrix} 2 & -1 & 1 \\ 1 & 2 & -3 \end{pmatrix}.$$

- Avec les notations précédentes, déterminons l'application linéaire $g: \mathbb{K}^3 \to \mathbb{K}^2$ donnée par :

$$\max_{\mathfrak{B},\mathfrak{B}'}(g) = \begin{pmatrix} 6 & -2 & 1 \\ 4 & 5 & -1 \end{pmatrix}.$$

On a
$$g(x, y, z) = xg(e_1) + yg(e_2) + zg(e_3) = x(6, 4) + y(-2, 5) + z(1, -1) = (6x - 2y + z, 4x + 5y - z).$$

Remarque 22.2 - Cas particuliers des endomorphismes : lorsque l'espace d'arrivée est le même que celui de départ (F = E), on choisit en général la même base à l'arrivée qu'au départ ($\mathfrak{B}' = \mathfrak{B}$), on note alors mat(f) = $\max_{\mathfrak{B}}(f)$, c'est une matrice carrée.

★Exercice 22.3

1/ Soit $E = \mathbb{K}_3[X]$ et soit \mathfrak{B} la base canonique de E:

- a) On note D la dérivation dans E, calculer mat(D).
- **b)** Soit Δ définie par $\Delta(P) = P(X+1) P(X)$, calculer $\max_{\mathfrak{R}}(\Delta)$.
- c) Soit $P_0 = 1, P_1 = X, P_2 = \frac{X(X-1)}{2}$ et $P_3 = \frac{X(X-1)(X-2)}{6}$, montrer que $\mathfrak{B}' = (P_0, P_1, P_2, P_3)$ est une base de E et calculer $\max_{\mathfrak{B}'}(\Delta)$.
- **2**/ Calculer la matrice de la transposition dans la base canonique de $\mathcal{M}_2(\mathbb{K})$.

Théorème 22.5 (caractérisation de l'identité et de l'application nulle)

Soit E un e.v de dimension n et soit \mathfrak{B} une base de E :

- Soit $f \in \mathcal{L}(E)$, alors $f = id_E \iff \max_{\infty} (f) = I_n$.
- Soit F un e.v de dimension p et soit \mathfrak{B}' une base de F, soit $f \in \mathcal{L}(E,F)$, alors :

$$f = 0 \iff \max_{\mathfrak{B},\mathfrak{B}'}(f) = \mathcal{O}_{p,n}.$$

Preuve : Celle-ci est simple et laissée en exercice.

🌉 Théorème 22.6

Soient E, F deux \mathbb{K} -e.v, soit \mathfrak{B} une base de E et soit \mathfrak{B}' une base de F, soient $f,g\in\mathcal{L}(E,F)$ et soit $\lambda\in\mathbb{K}$. On a:

$$\max_{\mathfrak{B},\mathfrak{B}'}(f+g) = \max_{\mathfrak{B},\mathfrak{B}'}(f) + \max_{\mathfrak{B},\mathfrak{B}'}(g) \ \ et \ \ \max_{\mathfrak{B},\mathfrak{B}'}(\lambda.f) = \lambda.\max_{\mathfrak{B},\mathfrak{B}'}(f)$$

 $\max_{\mathfrak{B},\mathfrak{B}'}(f+g) = \max_{\mathfrak{B},\mathfrak{B}'}(f) + \max_{\mathfrak{B},\mathfrak{B}'}(g) \ \ \text{et} \ \ \max_{\mathfrak{B},\mathfrak{B}'}(\lambda.f) = \lambda.\max_{\mathfrak{B},\mathfrak{B}'}(f).$ Autrement dit, l'application : $\max_{\mathfrak{B},\mathfrak{B}'}: \mathscr{L}(E,F) \to \mathscr{M}_{n,p}(\mathbb{K}) \ \ \text{(avec } n = \dim(F) \ \text{et } p = \dim(E)), \ \text{est une}$ application linéaire. Plus précisément, cette application est un isomorphisme.

Preuve: La vérification de la linéarité est simple (elle découle de la linéarité de l'application coordonnées). Si $\max_{\mathfrak{R},\mathfrak{R}'}(f) =$ $O_{n,p}$, alors on sait que f est nulle, donc l'application $\max_{\mathfrak{B},\mathfrak{B}'}$ est injective, la surjectivité étant évidente, on a donc bien un isomorphisme.

阿 Théorème 22.7

Soit E un \mathbb{K} -espace vectoriel de dimension p, soit F un \mathbb{K} -espace vectoriel de dimension n, et soit $u \in \mathcal{L}(E,F)$ une application linéaire de rang r, alors il existe une base \mathfrak{B} de E et une base \mathfrak{B}' de F telles que $\max_{\mathfrak{R},\mathfrak{R}'}(u)=\mathsf{J}_{n,p,r}$ où $\mathsf{J}_{n,p,r}$ désigne la matrice de $\mathcal{M}_{n,p}(\mathbb{K})$ définie par :

$$J_{n,p,r} = \begin{pmatrix} 1 & 0 & & \cdots & & 0 \\ 0 & \ddots & & & & \vdots \\ \vdots & & 1 & & & \\ 0 & \cdots & & 0 & \cdots & 0 \\ \vdots & & & \ddots & \\ 0 & & \cdots & & & 0 \end{pmatrix}$$

Il y a r fois le scalaire 1 sur la diagonale.

Preuve: D'après le théorème du rang, dim $(\ker(u)) = p - r$, soit H un supplémentaire de $\ker(u)$ dans E et soit (e_1, \dots, e_r) une base de H, soit (e_{r+1}, \dots, e_n) une base de ker(u), alors $\mathfrak{B} = (e_1, \dots, e_n)$ est une base de E. On sait que $(u(e_1), \dots, u(e_r))$ est une base de $\operatorname{Im}(u)$, on peut compléter en une base de $\operatorname{F}:\mathfrak{B}'=(u(e_1),\ldots,u(e_r),v_{r+1},\ldots,v_n)$ et la matrice de u dans les bases \mathfrak{B} et \mathfrak{B}' a exactement la forme voulue.

PRODUIT MATRICIEL

Matrice d'une composée : Soient $\mathfrak{B}=(e_1,\ldots,e_q)$ une base de E, $\mathfrak{B}'=(u_1,\ldots,u_p)$ une base de F, et $\mathfrak{B}''=(u_1,\ldots,u_p)$ (v_1,\ldots,v_n) une base de G, soit $f\in\mathcal{L}(E,F),g\in\mathcal{L}(F,G),$ on pose $B=\max_{\mathfrak{B},\mathfrak{B}'}(f)\in\mathcal{M}_{p,q}(\mathbb{K}),$ $A=\max_{\mathfrak{B}',\mathfrak{B}''}(g)\in\mathcal{M}_{n,p}(\mathbb{K})$ et $C = \max_{\mathfrak{B},\mathfrak{B}''}(g \circ f) \in \mathcal{M}_{n,q}(\mathbb{K})$. Il s'agit de calculer $g \circ f(e_j)$ dans la base \mathfrak{B}'' , on a : $f(e_j) = \sum_{k=1}^p B_{k,j} u_k$, donc : $g \circ f(e_j) = \sum_{k=1}^p B_{k,j} g(u_k) = \sum_{k=1}^p \sum_{i=1}^n B_{k,j} A_{i,k} v_i$, c'est à dire : $g \circ f(e_j) = \sum_{i=1}^n \left(\sum_{k=1}^p A_{i,k} B_{k,j}\right) v_i$. On doit donc avoir : $C \in \mathcal{M}_{n,q}(\mathbb{K})$ avec $C_{i,j} = \sum_{k=1}^{p} A_{i,k} B_{k,j}$. On voit que l'opération à effectuer sur les matrices A et B pour obtenir C n'est pas aussi simple que pour la somme. Nous allons définir cette opération comme étant le **produit entre** les deux matrices A et B.

1) **Définition**

Définition 22.8

Soient $A \in \mathcal{M}_{n,p}(\mathbb{K})$, soit $B \in \mathcal{M}_{p,q}(\mathbb{K})$, on appelle produit de A par B la matrice de $\mathcal{M}_{n,q}(\mathbb{K})$ notée $A \times B$ et définie par :

$$\forall (i, j) \in [1; n] \times [1; q], [A \times B]_{i,j} = \sum_{k=1}^{p} A_{i,k} B_{k,j}$$

 $\forall \ (i,j) \in [\![1;n]\!] \times [\![1;q]\!], [\mathbf{A} \times \mathbf{B}]_{i,j} = \sum_{k=1}^p \mathbf{A}_{i,k} \mathbf{B}_{k,j}.$ On retient ceci en disant que le coefficient $[\mathbf{A} \times \mathbf{B}]_{i,j}$ est le résultat du « produit de la ligne i de \mathbf{A} avec la colonne j de B ».

Disposition des calculs :

Remarque 22.3:

- Le produit A × B n'est possible que si le nombre de colonnes de A est égal au nombre de lignes de B. Le résultat a alors autant de lignes que A et autant de colonnes que B.
- Dans $\mathcal{M}_n(\mathbb{K})$ le produit matriciel est interne.
- En général $A \times B \neq B \times A$, il se peut même que $A \times B$ soit défini, mais pas $B \times A$.

Exemple:

$$\begin{pmatrix} 1 & -1 & 2 \end{pmatrix} \times \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 5 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 2 \\ -2 & 1 \end{pmatrix} \times \begin{pmatrix} 0 & 1 & 1 \\ -1 & 0 & 1 \end{pmatrix} = \begin{pmatrix} -2 & 1 & 3 \\ -1 & -2 & -1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 2 \\ -2 & 1 \end{pmatrix} \times \begin{pmatrix} 0 & 1 \\ -1 & 2 \\ 0 & 1 \end{pmatrix} \text{ n'est pas défini } \begin{pmatrix} 0 & 1 \\ -1 & 2 \\ 0 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 2 \\ -2 & 1 \end{pmatrix} = \begin{pmatrix} -2 & 1 \\ -5 & 0 \\ -2 & 1 \end{pmatrix}$$

2) Retour aux applications linéaires

🙀 Théorème 22.8

Soit \mathfrak{B} une base de E, soit \mathfrak{B}' une base de F et soit \mathfrak{B}'' une base de G, soit $f \in \mathcal{L}(E,F)$ et soit $g \in \mathcal{L}(E,G)$ avec $A = \max_{\mathfrak{B}',\mathfrak{B}''}(g)$ et $B = \max_{\mathfrak{B},\mathfrak{B}'}(f)$, alors :

$$\max_{\mathfrak{B},\mathfrak{B}''}(g\circ f)=\mathsf{A}\times\mathsf{B}=\max_{\mathfrak{B}',\mathfrak{B}''}(g)\times\max_{\mathfrak{B},\mathfrak{B}'}(f).$$

Remarque 22.4 - Cas particulier des endomorphismes : Soit E un K-e.v, soit B une base de E et soient $u, v \in \mathcal{L}(\mathbf{E}) \ avec \ \mathbf{A} = \max_{\mathfrak{B}}(u) \ et \ \mathbf{B} = \max_{\mathfrak{B}}(v), \ on \ a \ alors \ \max_{\mathfrak{B}}(u \circ v) = \max_{\mathfrak{B}}(u) \times \max_{\mathfrak{B}}(v) = \mathbf{A} \times \mathbf{B}, \ en \ particulier:$ $\forall \ n \in \mathbb{N}, \max_{\mathfrak{B}}(u^n) = \left[\max_{\mathfrak{B}}(u)\right]^n = \mathbf{A}^n.$

$$\forall n \in \mathbb{N}, \max_{\mathfrak{B}} (u^n) = \left[\max_{\mathfrak{B}} (u) \right]^n = A^n.$$

Théorème 22.9 (relation fondamentale)

Soit $\mathfrak{B} = (e_1, \dots, e_p)$ une base de E, soit $\mathfrak{B}' = (u_1, \dots, u_n)$ une base de F et soit $f \in \mathcal{L}(E, F)$. Pour $x \in E$, on pose X la **matrice colonne** des coordonnées de x dans la base \mathfrak{B} , ce que l'on note : X = Coord $\mathfrak{B}(x) \in$ $\mathcal{M}_{p,1}(\mathbb{K})$) et Y la matrice colonne des coordonnées de y = f(x) dans la base \mathfrak{B}' : Y = Coord $\mathfrak{B}'(f(x)) \in$ $\mathcal{M}_{n,1}(\mathbb{K})$. En posant A = $\max_{\mathfrak{B},\mathfrak{B}'}(f)$, on a alors la relation suivante :

$$Y = A \times X$$
 i.e. Coord_{B'} $(f(x)) = \max_{\mathfrak{B},\mathfrak{B}'}(f) \times \text{Coord}_{\mathfrak{B}}(x)$.

Preuve: Posons $X = \begin{bmatrix} \vdots \\ \vdots \end{bmatrix}$ et $Y = \begin{bmatrix} \vdots \\ \vdots \end{bmatrix}$, comme $A \in \mathcal{M}_{n,p}(\mathbb{K})$ on voit que le produit $A \times X$ est bien défini et que c'est une

matrice colonne à n lignes. On a $f(x) = \sum_{k=1}^{p} x_k f(e_k)$, mais on a $f(e_k) = \sum_{i=1}^{n} a_{i,k} u_i$, ce qui donne :

$$f(x) = \sum_{i=1}^{n} \left(\sum_{k=1}^{p} a_{i,k} x_{k,1} \right) u_i = \sum_{i=1}^{n} [A \times X]_{i,1} u_i = \sum_{i=1}^{n} y_i u_i.$$

Ce qui prouve que $Y = A \times X$.

★Exercice 22.4

1/ Soient $\mathfrak B$ la base canonique de $\mathbb K^3$ et $\mathfrak B'$ la base canonique de $\mathbb K^2$, soit $f\in \mathcal L(\mathbb K^3,\mathbb K^2)$ définie par sa matrice dans les bases \mathfrak{B} et \mathfrak{B}' : $\max_{\mathfrak{B},\mathfrak{B}'}(f) = A = \begin{pmatrix} 1 & -2 & 3 \\ 2 & 1 & -5 \end{pmatrix}$, calculer f(x, y, z).

2/ Soit $\mathfrak{B} = (i, j, k)$ la base canonique de \mathbb{K}^3 , on pose $\mathfrak{B}' = (i, i + j, i + j + k)$, on vérifie que \mathfrak{B}' est une base de \mathbb{K}^3 . Soit $f \in \mathcal{L}(\mathbb{K}^3) \text{ défini par } \max_{\mathfrak{B}'}(f) = A = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 2 & -1 \\ 0 & 0 & 1 \end{pmatrix}, \text{ calculer } f(x, y, z).$

3/ Soient A, B $\in \mathcal{M}_{n,p}(\mathbb{K})$ telles que $\forall X \in \mathcal{M}_{p,1}(\mathbb{K})$, AX = BX, montrer que A = B.

Définition 22.9 (application linéaire canoniquement associée)

Soit $A \in \mathcal{M}_{n,p}(\mathbb{K})$, on appelle application linéaire canoniquement associée à A l'application linéaire $f_A \in \mathcal{L}(\mathbb{K}^p, \mathbb{K}^n)$ dont la matrice dans **les bases canoniques** de \mathbb{K}^p et \mathbb{K}^n , est A.

Propriétés du produit matriciel

- «**Associativité** » : Si A ∈ $\mathcal{M}_{n,p}(\mathbb{K})$, B ∈ $\mathcal{M}_{p,q}(\mathbb{K})$ et C ∈ $\mathcal{M}_{q,r}(\mathbb{K})$, alors :

$$A \times (B \times C) = (A \times B) \times C \in \mathcal{M}_{n,r}(\mathbb{K}).$$

Preuve: Soit $f \in \mathcal{L}(\mathbb{K}^p, \mathbb{K}^n)$ l'application linéaire canoniquement associée à A, $g \in \mathcal{L}(\mathbb{K}^q, \mathbb{K}^p)$ canoniquement associée à B et $h \in \mathcal{L}(\mathbb{K}^r, \mathbb{K}^q)$ canoniquement associée à C. On a $f \circ (g \circ h) \in \mathcal{L}(\mathbb{K}^r, \mathbb{K}^n)$ et sa matrice dans les bases canoniques est $A \times (B \times C)$. De même $(f \circ g) \circ h \in \mathcal{L}(\mathbb{K}^r, \mathbb{K}^n)$ et sa matrice dans les bases canoniques est $(A \times B) \times C$, or la composition des applications est associative, ce qui donne l'égalité.

- « **Élément neutre** » : Soit A ∈ $\mathcal{M}_{n,p}(\mathbb{K})$, on a : A × I_p = A et I_n × A = A. **Preuve** : Soit $f \in \mathcal{L}(\mathbb{K}^p, \mathbb{K}^n)$ l'application linéaire canoniquement associée à A, id \mathbb{K}^n est l'application linéaire canoniquement associée à I_n , la matrice dans les bases canoniques de $id_{\mathbb{K}^n} \circ f$ est donc $I_n \times A$, or $id_{\mathbb{K}^n} \circ f = f$, donc $A = I_n \times A$.
- « **Distributivité** » : Soient A, B $\in \mathcal{M}_{n,p}(\mathbb{K})$, soit $C \in \mathcal{M}_{p,q}(\mathbb{K})$ et $D \in \mathcal{M}_{r,n}$, on a :

$$(A + B) \times C = A \times C + B \times C$$
 et $D \times (A + B) = D \times A + D \times B$

Preuve: Soit $f \in \mathcal{L}(\mathbb{K}^p, \mathbb{K}^n)$ l'application canoniquement associée à A, soit $g \in \mathcal{L}(\mathbb{K}^p, \mathbb{K}^n)$ l'application canoniquement associée à B, et soit $h \in \mathcal{L}(\mathbb{K}^q, \mathbb{K}^p)$ l'application canoniquement associée à C. L'application linéaire canoniquement associé à la matrice $(A+B) \times C$ est $(f+g) \circ h \in \mathcal{L}(\mathbb{K}^q, \mathbb{K}^n)$, et l'application linéaire canoniquement associée à $A \times C + B \times C$ est $f \circ h + g \circ h \in \mathcal{L}(\mathbb{K}^q, \mathbb{K}^n)$, or $(f + g) \circ h = f \circ h + g \circ h$, ce qui donne la première égalité. La seconde se montre de la même façon.

- Transposée d'un produit : Si $A \in \mathcal{M}_{n,p}(\mathbb{K})$ et $B \in \mathcal{M}_{p,q}(\mathbb{K})$ alors : ${}^{t}(A \times B) = {}^{t}B \times {}^{t}A$.

Preuve:
$$[^{\mathbf{t}}(A \times B)]_{i,j} = [A \times B]_{j,i} = \sum_{k=1}^{p} a_{j,k} b_{k,i} = \sum_{k=1}^{p} [^{\mathbf{t}}B]_{i,k} [^{\mathbf{t}}A]_{k,j} = [^{\mathbf{t}}B \times {}^{\mathbf{t}}A]_{i,j}.$$

★Exercice 22.5 Calculer le produit entre deux matrices carrées élémentaires de même taille.

$lue{}$ Théorème 22.10 (structure de $\mathcal{M}_n(\mathbb{K})$)

On a le résultat suivant : $(\mathcal{M}_n(\mathbb{K}), +, \times, .)$ est une \mathbb{K} -algèbre (non commutative si $n \ge 2$).

Preuve : On sait déjà que $(\mathcal{M}_n(\mathbb{K}), +, .)$ est un \mathbb{K} -espace vectoriel, le reste découle des propriétés du produit matriciel, il reste simplement à vérifier la compatibilité entre le produit interne et le produit externe, i.e. : $\forall \lambda \in \mathbb{K}, \forall \lambda, B \in \mathcal{M}_n(\mathbb{K})$: $\lambda . (A \times B) = (\lambda . A) \times B = A \times (\lambda . B),$

ce qui est laissé en exercice. Donnons un contre-exemple pour la non commutativité : soit $A = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$,

on a AB =
$$\begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}$$
, mais BA = $\begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$.

Remarque 22.5:

- L'algèbre $\mathcal{M}_n(\mathbb{K})$ n'est pas intègre lorsque $n \geqslant 2$. Par exemple : $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \times \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix} = O_2$. De ce fait, il y a dans $\mathcal{M}_n(\mathbb{K})$ des éléments nilpotents, par exemple : $A = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$.
- On peut utiliser dans $\mathcal{M}_n(\mathbb{K})$ les règles du calcul algébrique, en prenant garde toutefois au fait que le produit n'est pas commutatif. Par exemple, si $A, B \in \mathcal{M}_n(\mathbb{K})$ commutent (i.e. AB = BA), alors on peut utiliser le binôme de Newton pour calculer $(A + B)^n$. Mais si $AB \neq BA$ on peut néanmoins développer, par *exemple*: $(A + B)^2 = A^2 + AB + BA + B^2$.

★Exercice 22.6 Soit
$$A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$
. En écrivant $A = I_3 + J$, calculer A^n pour $n \in \mathbb{N}$.

MATRICES CARRÉES INVERSIBLES

1) **Définition**

L'ensemble $(\mathcal{M}_n(\mathbb{K}), +, \times)$ a une structure d'anneau, on peut donc s'intéresser aux éléments inversibles de cet anneau. C'est à dire aux matrices $M \in \mathcal{M}_n(\mathbb{K})$ pour lesquelles il existe une matrice $N \in \mathcal{M}_n(\mathbb{K})$ telle que $M \times N = N \times N = I_n$. Si $M \in \mathcal{M}_n(\mathbb{K})$ est inversible, son inverse sera noté M^{-1} .

Définition 22.10

Le groupe multiplicatif des inversibles de l'anneau $(\mathcal{M}_n(\mathbb{K}), +, \times)$ est noté $GL_n(\mathbb{K})$.

Remarque 22.6 – *Puisque* ($GL_n(\mathbb{K})$, \times) *est un groupe, on a* :

- le produit de deux matrices inversibles est inversible.
- $Si M, N \in GL_n(\mathbb{K}), alors (M \times N)^{-1} = N^{-1} \times M^{-1}.$

Cas particuliers:

- Matrices diagonales inversibles : Soit D = diag($a_1, ..., a_n$) ∈ $\mathcal{M}_n(\mathbb{K})$, alors D est inversible ssi les coef**ficients diagonaux sont tous non nuls**, auquel cas on a : $D^{-1} = diag(\frac{1}{a_1}, \dots, \frac{1}{a_n})$. **Preuve** : Si les coefficients diagonaux sont tous non nuls, il est facile de vérifier que la matrice proposée est bien

l'inverse de D.

Réciproquement, supposons $D \in GL_n(\mathbb{K})$, alors l'équation $DX = O_{n,1}$ d'inconnue $X \in \mathcal{M}_{n,1}(\mathbb{K})$ admet comme unique solution $X = D^{-1} \times O_{n,1} = O_{n,1}$. Supposons $a_1 = 0$ et prenons $X \in \mathcal{M}_{n,1}(\mathbb{K})$ définie par $X_{i,1} = \delta_{i,1}$, il est facile de voir que le produit DX donne la première colonne de D, c'est à dire $O_{n,1}$, pourtant $X \neq O_{n,1}$: contradiction, donc $a_1 \neq 0$. Le raisonnement est similaire pour les autres coefficients.

- **Polynômes de matrices** : Soit P ∈ K[X] et A ∈ $\mathcal{M}_n(K)$, si P = $\sum_{k=0}^{n} a_k X^k$, alors la matrice P(A) est P(A) =

 $\sum\limits_{k=0}^{r}a_k\mathrm{A}^k$ (la substitution de X par A est un morphisme d'algèbres), on a alors le résultat suivant : Si $P(A) = O_n$ et si $P(0) \neq 0$, alors A est inversible.

Preuve: $P(0) \neq 0$ signifie que $a_0 \neq 0$, on a alors:

$$I_n = A \times \left[\sum_{k=1}^r \frac{-a_k}{a_0} A^{k-1} \right] = \left[\sum_{k=1}^r \frac{-a_k}{a_0} A^{k-1} \right] \times A.$$

Par exemple, si $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ avec $ad - bc \neq 0$, on vérifie que $A^2 - (a+d)A + (ad - bc)I_2 = O_2$, donc A est inversible

et
$$A^{-1} = \frac{1}{ad-bc}[(a+d)I_2 - A] = \frac{1}{ad-bc}\begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$
.

Retour aux applications linéaires 2)

Théorème 22.11

Soient E et F deux $\mathbb K$ -e.v de même dimension n, soit $\mathfrak B$ une base de E et $\mathfrak B'$ une base de F, soit $u \in \mathcal{L}(E, F)$, alors u est un isomorphisme de E vers F si et seulement si $\max_{\mathfrak{B}, \mathfrak{B}'} (u) \in GL_n(\mathbb{K})$, si c'est le cas,

alors
$$\max_{\mathfrak{B}',\mathfrak{B}}(u^{-1}) = \left[\max_{\mathfrak{B},\mathfrak{B}'}(u)\right]^{-1}$$
.

Preuve: Si u est un isomorphisme, posons $A = \max_{\mathfrak{B},\mathfrak{B}'}(u)$ et $B = \max_{\mathfrak{B}',\mathfrak{B}}(u^{-1})$, on a $A, B \in \mathcal{M}_n(\mathbb{K})$. On sait que $u \circ u^{-1} = \mathrm{id}_F$, d'où $I_n = \max_{\mathfrak{B}'}(\mathrm{id}_F) = \max_{\mathfrak{B},\mathfrak{B}'}(u) \times \max_{\mathfrak{B}',\mathfrak{B}}(u^{-1}) = A \times B$, de même $B \times A = \max_{\mathfrak{B}}(\mathrm{id}_E) = I_n$.

Si la matrice de u est inversible, soit $v \in \mathcal{L}(F, E)$ telle que $\max_{\mathfrak{B}',\mathfrak{B}}(v) = A^{-1}n$ alors en considérant la matrice de $v \circ u$ dans la base \mathfrak{B} , on vérifie que $v \circ u = \mathrm{id}_{\mathrm{E}}$, donc u est un isomorphisme (théorème de la dimension finie).

Cas des endomorphismes : Si E est un \mathbb{K} -espace vectoriel de dimension n et \mathfrak{B} une base de E, alors on sait déjà que l'application mat : $\mathcal{L}(E) \to \mathcal{M}_n(\mathbb{K})$ est un isomorphisme d'espaces vectoriels, mais comme $(\mathcal{L}(E), +, \circ, .)$ et $(\mathcal{M}_n(\mathbb{K}), +, \times; .)$ sont des \mathbb{K} -algèbres et que $\max_{\mathfrak{B}}(u \circ v) = \max_{\mathfrak{B}}(u) \times \max_{\mathfrak{B}}(v)$ et $\max_{\mathfrak{B}}(id_E) = I_n$, on peut affirmer que l'application mat est **un isomorphisme d'algèbres**. En particulier celui-ci induit un isomorphisme de groupes : $\max_{\mathfrak{R}} : \operatorname{GL}(\widetilde{E}) \to \operatorname{GL}_n(\mathbb{K}).$

Théorème 22.12 (caractérisations des matrices carrées inversibles)

Soit $A \in \mathcal{M}_n(\mathbb{K})$, alors les assertions suivantes sont équivalentes :

- a) A est inversible.
- b) Il existe une matrice $B \in \mathcal{M}_n(\mathbb{K})$ telle que $BA = I_n$.
- c) L'équation $AX = O_{n,1}$ d'inconnue $X \in \mathcal{M}_{n,1}(\mathbb{K})$ admet une **unique solution** $X = O_{n,1}$.
- d) $\forall Y \in \mathcal{M}_{n,1}(\mathbb{K})$, l'équation AX = Y d'inconnue $X \in \mathcal{M}_{n,1}(\mathbb{K})$ admet une unique solution.
- e) \forall Y \in $\mathcal{M}_{n,1}(\mathbb{K})$, l'équation AX = Y d'inconnue X \in $\mathcal{M}_{n,1}(\mathbb{K})$ admet au moins une solution.

Preuve: L'implication i) $\Longrightarrow ii$) est évidente en prenant $B = A^{-1}$.

Montrons ii) $\Longrightarrow iii$): On a BA = I_n , d'où AX = $O_{n,1} \Longrightarrow BAX = O_{n,1} = X$.

Montrons $iii) \implies iv$: Soit $f \in \mathcal{L}(\mathbb{K}^n)$ l'endomorphisme de \mathbb{K}^n canoniquement associé à A, soit $x \in \ker(f)$, posons $X = \text{Coord}_{\mathfrak{B}}(x)$ où \mathfrak{B} désigne la base canonique de \mathbb{K}^n , on a alors $\text{Coord}_{\mathfrak{B}}(f(x)) = AX = O_{n,1}$, donc $X = O_{n,1}$ i.e. x = 0, l'application f est donc injective, mais alors elle est bijective : $\forall y \in \mathbb{K}^n, \exists ! x \in \mathbb{K}^n, f(x) = y$, ce qui entraîne $\forall Y \in \mathcal{M}_{n,1}(\mathbb{K}), \exists ! X \in \mathcal{M}_{n,1}(\mathbb{K}), AX = Y \text{ (remarquons que A est inversible puisque } f \text{ est bijective, et que } X = A^{-1}Y).$

L'implication $iv \implies v$) est évidente.

Montrons v = i: Avec les notations précédentes, l'application f est surjective par hypothèse, donc f est bijective et par conséquent sa matrice A est inversible.

Remarque 22.7 – Il découle en particulier de ce théorème que si $BA = I_n$ alors $AB = I_n$ (car $A \in GL_n(\mathbb{K})$ et donc $B = A^{-1}$), ce qui est remarquable.

★Exercice 22.7

1/ $Si A \in GL_n(\mathbb{K})$, montrer que ^tA est inversible et que (^tA)⁻¹ = ^t(A⁻¹).

2/ Soit $A = \begin{pmatrix} 1 & \lambda & -1 \\ 0 & 2 & 1 \\ 1 & 0 & 1 \end{pmatrix}$, déterminer en fonction de λ si A est inversible ou non, si c'est le cas, calculer A^{-1} .

3/ soit $T \in \mathcal{M}_n(\mathbb{K})$ une matrice triangulaire supérieure, montrer que $T \in GL_n(\mathbb{K})$ ssi ses éléments diagonaux sont tous non nuls, si c'est le cas, montrer que T^{-1} est également triangulaire supérieure.

CHANGEMENT DE BASES

Matrice de passage 1)

Définition 22.11

Soit E un \mathbb{K} -espace vectoriel, soit $\mathfrak{B} = (e_1, \dots, e_n)$ une base de E, soit $S = (x_1, \dots, x_p)$ une famille de vecteurs de E, on appelle matrice de la famille S dans la base \mathfrak{B} , la matrice $A \in \mathcal{M}_{n,p}(\mathbb{K})$ définie $par: \forall (i,j) \in [1;n] \times [1;p], a_{i,j}$ est la coordonnée sur e_i de x_j . Autrement dit, pour $j \in [1;p]$, le j-ième vecteur colonne de A est $C_j(A) = \operatorname{coord}(x_j)$. Cette matrice est notée $\mathcal{P}_{\mathfrak{B},S}$ et appelée matrice de passage de $\mathfrak B$ à S, elle exprime les vecteurs de S dans la base $\mathfrak B$:

Exemples:

- Soit \mathfrak{B} la base canonique de \mathbb{K}^3 , soit $x_1 = (1, -1, 0)$ et $x_2 = (2, -1, 3)$, alors la matrice de la famille $S = (x_1, x_2)$ dans la base \mathfrak{B} , est $\mathscr{P}_{\mathfrak{B},S} = \begin{pmatrix} 1 & 2 \\ -1 & -1 \\ 0 & 3 \end{pmatrix}$.
- Soit $\mathfrak{B} = (i, j, k)$ la base canonique de \mathbb{K}^3 , soit $\mathfrak{B}' = (i, i + j, i + j + k)$, on vérifie que \mathfrak{B}' est une base de \mathbb{K}^3 . Déterminons la matrice de la famille S précédent dans la base \mathfrak{B}' : on a $x_1 = i - j = 2i - (i + j)$ et

$$x_2 = 2i - j + 3k = 3(i + j + k) - 4(i + j) + 3i$$
, on a donc $\mathcal{P}_{\mathfrak{B}',S} = \begin{pmatrix} 2 & 3 \\ -1 & -4 \\ 0 & 3 \end{pmatrix}$.

Interprétations de la matrice de passage :

- a) Dans le cas où $p \neq n$: soit $\mathfrak{B} = (e_1, \dots, e_n)$ une base de E et soit $S = (x_1, \dots, x_p)$ une famille de p vecteurs de E. Soit $\mathfrak{B}' = (u_1, \dots, u_p)$ la base canonique de \mathbb{K}^p , on définit l'application linéaire $f : \mathbb{K}^p \to \mathbb{E}$ en posant pour $i \in [1; p]$, $f(u_i) = x_i$, alors : $\mathcal{P}_{\mathfrak{B},S} = \max_{\mathfrak{B}',\mathfrak{B}} (f)$.
- b) Dans le cas où p = n: on a $S = (x_1, ..., x_n)$, soit $u \in \mathcal{L}(E)$ défini par $\forall i \in [1; n]$, $u(e_i) = x_i$, on a alors: $\mathcal{P}_{\mathfrak{B},S} = \max_{\alpha}(u).$

Théorème 22.13 (caractérisation des bases)

Soit \mathfrak{B} une base de E, et soit $\mathfrak{B}' = (x_1, ..., x_n)$ une famille de n vecteurs de E, alors \mathfrak{B}' est une base de E ssi la matrice de passage de \mathfrak{B} à \mathfrak{B}' est inversible ,i.e. $\mathscr{P}_{\mathfrak{B},\mathfrak{B}'} \in GL_n(\mathbb{K})$.

Preuve : Cela découle directement de la deuxième interprétation.

Interprétation de la matrice de passage entre deux bases : Soient \mathfrak{B} et \mathfrak{B}' deux bases de E, en considérant l'application $id_E : (E, \mathfrak{B}') \to (E, \mathfrak{B})$ avec \mathfrak{B}' comme base au départ et \mathfrak{B} comme base à l'arrivée, on a la relation : $\mathscr{P}_{\mathfrak{B},\mathfrak{B}'} = \max_{\mathfrak{B}',\mathfrak{B}} (\mathrm{id}_E)$.

🎮 Théorème 22.14 (application)

Soient $\mathfrak{B},\mathfrak{B}',\mathfrak{B}''$ trois bases de E, on a : $\mathscr{P}_{\mathfrak{B}',\mathfrak{B}} = [\mathscr{P}_{\mathfrak{B},\mathfrak{B}'}]^{-1}$ et $\mathscr{P}_{\mathfrak{B},\mathfrak{B}''} = \mathscr{P}_{\mathfrak{B},\mathfrak{B}'} \times \mathscr{P}_{\mathfrak{B}',\mathfrak{B}''}$.

Preuve: On a $\mathscr{P}_{\mathfrak{B}',\mathfrak{B}} = \max_{\mathfrak{B},\mathfrak{B}'}(\mathrm{id}_{\mathrm{E}}) = \left[\max_{\mathfrak{B}',\mathfrak{B}}(\mathrm{id}_{\mathrm{E}}^{-1})\right]^{-1} = \mathscr{P}_{\mathfrak{B},\mathfrak{B}'}$ car $\mathrm{id}_{\mathrm{E}}^{-1} = \mathrm{id}_{\mathrm{E}}$, ce qui prouve le premier point. Pour le second, on considère la composition : $id_E \circ id_E : (E, \mathfrak{B}'') \to (E, \mathfrak{B}') \to (E, \mathfrak{B})$, ce qui donne $\max_{\mathfrak{B}'',\mathfrak{B}} (id_E) =$ $\max_{\mathfrak{B}',\mathfrak{B}}(\mathrm{id}_E)\times \max_{\mathfrak{B}'',\mathfrak{B}'}(\mathrm{id}_E)\text{, c'est à dire }\mathscr{P}_{\mathfrak{B},\mathfrak{B}''}=\mathscr{P}_{\mathfrak{B},\mathfrak{B}'}\times\mathscr{P}_{\mathfrak{B}',\mathfrak{B}''}.$

2) Formules du changement de bases

Soient \mathfrak{B} et \mathfrak{B}' deux bases de E, pour tout vecteur $x \in E$ on peut calculer ses coordonnées dans la base \mathfrak{B} : $X = Coord_{\mathfrak{B}}(x)$, ou bien ses coordonnées dans la base $\mathfrak{B}': X' = Coord_{\mathfrak{B}'}(x)$, on cherche le lien entre X et X'. Considérons l'identité : $id_E : (E, \mathfrak{B}') \to (E, \mathfrak{B})$, on sait que $\max_{E}(id_E) = \mathscr{P}_{\mathfrak{B},\mathfrak{B}'}$, mais on a $id_E(x) = x$, d'où $Coord_{\mathfrak{B}}(id_{E}(x)) = \mathscr{P}_{\mathfrak{B},\mathfrak{B}'} \times Coord_{B'}(x)$, ce qui donne la relation : $X = \mathscr{P}_{\mathfrak{B},\mathfrak{B}'} \times X'$, et donc $X' = \mathscr{P}_{\mathfrak{B}',\mathfrak{B}} \times X =$ $[\mathscr{P}_{\mathfrak{B},\mathfrak{B}'}]^{-1} \times X$, on peut donc énoncer :

Théorème 22.15 (formules du changement de bases)

Soient \mathfrak{B} et \mathfrak{B}' deux bases de E, soit $x \in E$, on pose $X = \operatorname{Coord}_{\mathfrak{B}}(x)$ et $X' = \operatorname{Coord}_{\mathfrak{B}'}(x)$, on a les formules suivantes : $X = \mathcal{P}_{\mathfrak{B},\mathfrak{B}'} \times X'$ et $X' = \mathcal{P}_{\mathfrak{B}',\mathfrak{B}} \times X$.

Exercice 22.8 Soit \mathfrak{B} la base canonique de $\mathbb{K}_3[X]$, on pose $\mathfrak{B}' = (1,X,X(X-1),X(X-1)(X-2))$, montrer que \mathfrak{B}' est une base $de \mathbb{K}_3[X]$ et pour $P \in \mathbb{K}_3[X]$ calculer coord(P).

3) Changement de bases et applications linéaires

Soient E et F deux K-espaces vectoriels, soit \mathfrak{B}_1 une base de E et soit \mathfrak{B}_2 une base de F. Si $u \in \mathscr{L}(E,F)$ on peut calculer A = $\max_{u}(u)$. Si on prend une autre base dans E: \mathfrak{B}'_1 et une autre base dans F, \mathfrak{B}'_2 , alors on peut calculer A' = mat(u), on cherche le lien entre ces deux matrices.

Soit $x \in E$ et y = u(x), on pose $X = Coord_{\mathfrak{B}_1}(x)$, $Y = Coord_{\mathfrak{B}_2}(u(x))$, $X' = Coord_{\mathfrak{B}_2'}(x)$ et $Y' = Coord_{\mathfrak{B}_2'}(u(x))$. On a la relation $Y = A \times X = A \times \mathscr{P}_{\mathfrak{B}_1,\mathfrak{B}_1'} \times X'$, d'autre part $Y' = \mathscr{P}_{\mathfrak{B}_2',\mathfrak{B}_2} \times Y$, d'où finalement $Y' = \mathscr{P}_{\mathfrak{B}_2',\mathfrak{B}_2} \times A \times Y$ $\mathscr{P}_{\mathfrak{B}_{1},\mathfrak{B}'_{1}} \times X'$, c'est à dire $Y' = \mathscr{P}_{\mathfrak{B}_{2},\mathfrak{B}'_{2}}^{-1} \times A \times \mathscr{P}_{\mathfrak{B}_{1},\mathfrak{B}'_{1}} \times X'$, mais de plus $Y' = A' \times X'$, l'égalité ayant lieu pour toute colonne X', on a : $A' = \mathscr{P}_{\mathfrak{B}_2,\mathfrak{B}_2'}^{-1} \times A \times \mathscr{P}_{\mathfrak{B}_1,\mathfrak{B}_1'}$, on peut donc énoncer :

🎦 Théorème 22.16 (effet d'un changement de bases sur la matrice d'une application linéaire)

Soient $\mathfrak{B}_1, \mathfrak{B}'_1$ deux bases de E et P = $\mathscr{P}_{\mathfrak{B}_1, \mathfrak{B}'_1}$ la matrice de passage, soient $\mathfrak{B}_2, \mathfrak{B}'_2$ deux bases de F et soit $Q = \mathcal{P}_{\mathfrak{B}_2,\mathfrak{B}_2'}$ la matrice de passage, soit $u \in \mathcal{L}(E,F)$, on pose $A = \max_{\mathfrak{B}_1,\mathfrak{B}_2}(u)$, $A' = \max_{\mathfrak{B}_1',\mathfrak{B}_2'}(u)$, on a alors

la relation : $A' = Q^{-1} \times A \times P$.

Théorème 22.17 (cas des endomorphismes)

Soient $\mathfrak{B},\mathfrak{B}'$ deux bases de E et soit $P=\mathscr{P}_{\mathfrak{B},\mathfrak{B}'}$ la matrice de passage, soit $u\in\mathscr{L}(E)$, si on pose $A = \max_{\mathfrak{B}}(u) \text{ et } A' = \max_{\mathfrak{B}'}(u), \text{ alors on a la relation : } A' = P^{-1} \times A \times P.$

Preuve : Cela découle du théorème précédent, puisque l'on a Q = P.

★Exercice 22.9 Soit $\mathfrak{B} = (i, j)$ la base canonique de \mathbb{K}^2 et soit $u \in \mathcal{L}(\mathbb{K}^2)$ défini par $\max_{\mathfrak{B}}(u) = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}$. On pose $e_1 = (1, 1)$ et $e_2 = (1, -1)$, montrer que $\mathfrak{B}' = (e_1, e_2)$ est une base de \mathbb{K}^2 , et calculer la matrice de u dans la base \mathfrak{B}' . En déduire l'expression de $u^n(x, y)$.

Définition 22.12

Soient A, B $\in \mathcal{M}_n(\mathbb{K})$, on dit que les matrices A et B sont semblables si et seulement si il existe une matrice carrée inversible $P \in GL_n(\mathbb{K})$ telle que $A = P^{-1} \times B \times P$.

Remarque 22.8:

- Les matrices d'un endomorphisme dans deux bases sont semblables.
- Deux matrices sont semblables lorsque ce sont deux matrices d'un même endomorphisme exprimées dans deux bases (P étant la matrice de passage).
- La relation «..est semblable à .. » est une relation d'équivalence dans $\mathcal{M}_n(\mathbb{K})$.

4) Trace d'un endomorphisme

🛀 Théorème 22.18

Soient A, B $\in \mathcal{M}_n(\mathbb{K})$, on a la propriété : $tr(A \times B) = tr(B \times A)$.

Preuve: On a tr(A × B) = $\sum_{i=1}^{n} [A \times B]_{i,i} = \sum_{i=1}^{n} \left(\sum_{k=1}^{n} A_{i,k} B_{k,i} \right)$, ce qui donne tr(A × B) = $\sum_{k=1}^{n} \left(\sum_{i=1}^{n} B_{k,i} A_{i,k} \right) = \sum_{k=1}^{n} [B \times A]_{k,k} = \sum_{k=1}^{n} \left(\sum_{i=1}^{n} A_{i,k} B_{k,i} A_{i,k} \right) = \sum_{k=1}^{n} \left(\sum_{i=1}^{n} A_{i,k} B_{i,k} A_{i$ $tr(B \times A)$.

Théorème 22.19 (conséquence)

 $Si A \in \mathcal{M}_n(\mathbb{K}) \text{ et } si P \in GL_n(\mathbb{K}), \text{ alors } tr(A) = tr(P^{-1} \times A \times P).$

Soit E un espace vectoriel de dimension n, soient \mathfrak{B} et \mathfrak{B}' deux bases de E, et soit $u \in \mathcal{L}(E)$, on note $A = \max_{\mathfrak{B}}(u)$ et $A' = \max_{\mathfrak{B}'}(u)$, on sait alors que $A' = P^{-1} \times A \times P$ avec $P = \mathscr{P}_{\mathfrak{B},\mathfrak{B}'}$ la matrice de passage, d'après le théorème précédent, on peut affirmer que tr(A) = tr(A').

Définition 22.13

Soit $u \in \mathcal{L}(E)$ et soit \mathfrak{B} une base de E, on appelle trace de l'endomorphisme u le scalaire noté $\operatorname{tr}(u)$ et défini par $tr(u) = tr(\max_{u}(u))$, ce scalaire est indépendant de la base \mathfrak{B} choisie.

🔛 Théorème 22.20

L'application trace, $\operatorname{tr}: \mathcal{L}(E) \to \mathbb{K}$, est une forme linéaire non nulle sur $\mathcal{L}(E)$, qui vérifie : $\forall u, v \in \mathcal{L}(E), \operatorname{tr}(u \circ v) = \operatorname{tr}(v \circ u).$

 $\textbf{Preuve} : \textbf{Soit } \mathfrak{B} \textbf{ une base de E, soit A} = \max_{\mathfrak{B}}(u) \textbf{ et B} = \max_{\mathfrak{B}}(v), \textbf{ on a par définition, } \text{tr}(u+v) = \text{tr}(\max_{\mathfrak{B}}(u+v)) = \text{tr}(\max_{\mathfrak{B}}(u)) + \text$ $tr(\max_{u}(v)) = tr(u) + tr(v)$. De la même façon, on montre que $tr(\lambda u) = \lambda tr(u)$ avec $\lambda \in \mathbb{K}$. On a donc une forme linéaire $\operatorname{sur} \mathscr{L}(E)$, celle-ci est non nulle, car $\operatorname{tr}(\operatorname{id}_E) = \operatorname{tr}(\operatorname{I}_n) = n = \dim(E) \geqslant 1$. D'autre part : $\operatorname{tr}(u \circ v) = \operatorname{tr}(\max_{\Omega}(u) \times \max_{\Omega}(v)) = \operatorname{tr}(\max_{\Omega}(u) \times \max_{\Omega}(u))$ $\operatorname{tr}(\max_{\alpha}(v) \times \max_{\alpha}(u)) = \operatorname{tr}(\max_{\alpha}(v \circ u)) = \operatorname{tr}(v \circ u).$

\bigstar Exercice 22.10 Soit E un espace vectoriel de dimension n, et soit $p \in \mathcal{L}(E)$ un projecteur, montrer que $\operatorname{tr}(p) = \operatorname{rg}(p)$.

OPÉRATIONS ÉLÉMENTAIRES SUR LES MATRICES

Rang d'une matrice

Définition 22.14

Soit $A \in \mathcal{M}_{n,p}(\mathbb{K})$ une matrice, on appelle rang de la matrice A, le rang dans \mathbb{K}^n de la famille constituée par ses p vecteurs colonnes, notation : $rg(A) = rg(C_1(A), ..., C_p(A))$.

🛂 Théorème 22.21

 $Soit \ u \in \mathcal{L}(E,F), soit \ \mathfrak{B} \ une \ base \ de \ E, soit \ \mathfrak{B}' \ une \ base \ de \ F, \ et soit \ A = \max_{\mathfrak{B},\mathfrak{B}'}(u), \ alors \ \mathrm{rg}(u) = \mathrm{rg}(A).$

Preuve: Soit $\mathfrak{B}=(e_1,\ldots,e_p),\mathfrak{B}'=(e_1',\ldots,e_n')$ et soit $\mathfrak{B}''=(e_1'',\ldots,e_n'')$ la base canonique de \mathbb{K}^n . Soit $v\in\mathcal{L}(F,\mathbb{K}^n)$ défini par $\forall i \in [1; n], v(e'_i) = e''_i$, alors v est bijective (transforme une base en une base), donc $rg(u) = rg(v \circ u) = rg(v \circ u)$ $\operatorname{rg}(v(u(e_1)), \dots, v(u(e_p)))$; or $v(u(e_j)) = \sum_{k=1}^n A_{k,j} e_j'' = C_j(A)$, donc $\operatorname{rg}(u) = \operatorname{rg}(A)$ d'après la définition précédente.

🚰 Théorème 22.22 (conséquence)

Soit E un espace vectoriel de dimension n, soit $S = (x_1, ..., x_p)$ une famille de p vecteurs de E et soit B une base de E, alors le rang de la famille S est égal au rang de la matrice de cette famille dans la base 3.

Preuve: Posons $\mathfrak{B} = (e_1, \dots, e_n)$, soit $\mathfrak{B}' = (e'_1, \dots, e'_p)$ la base canonique de \mathbb{K}^p , soit $u \in \mathcal{L}(\mathbb{K}^p, \mathbb{E})$ l'application linéaire définie par : $\forall i \in [1; p], u(e'_i) = x_i$, alors $A = \max_{\mathfrak{B}', \mathfrak{B}}(u)$ est la matrice de la famille S dans la base \mathfrak{B} , or rg(A) = rg(u) = rg(u) $rg(x_1,...,x_p)$, ce qui donne le résultat.

Calculer le rang d'une application linéaire, ou d'une famille de vecteurs, revient à calculer le rang d'une matrice.

2) Propriétés du rang d'une matrice

Les propriétés suivantes découlent de celles du rang des applications linéaires.

- a) Soit $f \in \mathcal{L}(E, F)$, soit \mathfrak{B} une base de E avec dim(E) = p, soit \mathfrak{B}' une base de F avec dim(F) = n, et soit $A = \max_{\mathfrak{B}, \mathfrak{B}'} (f) \in \mathcal{M}_{n,p}(\mathbb{K}), \text{ on a :}$
 - i) $\operatorname{rg}(A) \leqslant \min(n, p)$.
 - ii) $rg(A) = n \iff f$ est surjective.
 - iii) $rg(A) = p \iff f \text{ est injective.}$
- b) Si $A \in \mathcal{M}_n(\mathbb{K})$, alors $A \in GL_n(\mathbb{K}) \iff rg(A) = n$.
- c) Si $A \in \mathcal{M}_{n,p}(\mathbb{K})$, $B \in \mathcal{M}_{p,q}(\mathbb{K})$, alors $rg(A \times B) \leqslant min(rg(A), rg(B))$.
- d) Si $A \in GL_n(\mathbb{K})$, $B \in \mathcal{M}_{n,p}(\mathbb{K})$, alors $rg(A \times B) = rg(B)$.
- e) Si $A \in \mathcal{M}_{n,p}(\mathbb{K})$, $B \in GL_p(\mathbb{K})$, alors $rg(A \times B) = rg(A)$.

🛂 Théorème 22.23

Soit $A \in \mathcal{M}_{n,p}(\mathbb{K})$, alors : rg(A) = $r \iff \exists U \in GL_n(\mathbb{K}), \exists V \in GL_p(\mathbb{K}), UAV = J_{n,p,r}$.

 $\textbf{Preuve}: \text{Si U et V existent alors } \text{rg}(\text{A}) = \text{rg}(\text{UAV}) = \text{rg}(\text{J}_{n,p,r}) = r.$

Réciproquement, si $\operatorname{rg}(A) = r$, soit \mathfrak{B} la base canonique de \mathbb{K}^p , soit \mathfrak{B}_1 la base canonique de \mathbb{K}^n , et soit $u \in$ $\mathscr{L}(\mathbb{K}^p,\mathbb{K}^n)$ défini par $\max_{\mathfrak{B},\mathfrak{B}_1}(u)=\mathrm{A}$ (u est l'application linéaire canoniquement associée à A), on a $\mathrm{rg}(u)=\mathrm{rg}(\mathrm{A})=r$, on sait alors qu'il existe une base \mathfrak{B}' de \mathbb{K}^p et une base \mathfrak{B}'_1 de \mathbb{K}^n telles que $\max_{\mathfrak{B}',\mathfrak{B}'_1}(u)=J_{n,p,r}$, soit $P=\mathscr{P}_{\mathfrak{B},\mathfrak{B}'}$ et $Q=\mathscr{P}_{\mathfrak{B}_1,\mathfrak{B}'_1}$, d'après les formules de changement de bases, on a $J_{n,p,r} = Q^{-1} \times A \times P$, ce qui termine la preuve, en prenant $U = Q^{-1}$ et

\bigstarExercice 22.11 Montrer qu'une matrice $A \in \mathcal{M}_{n,p}(\mathbb{K})$ et sa transposée ont le même rang.

3) Opérations élémentaires

Définition 22.15

Soit $A \in \mathcal{M}_{n,p}(\mathbb{K})$, on appelle opérations élémentaires sur A les opérations suivantes :

- Permuter deux lignes de A (ou deux colonnes), notation : $L_i \leftrightarrow L_j$ (respectivement $C_i \leftrightarrow C_j$).
- Multiplier une ligne (ou une colonne) par un scalaire **non nul**, notation : $L_i \leftarrow \alpha L_i$ (respectivement $C_i \leftarrow \alpha C_i$).
- Ajouter à une ligne (ou une colonne) un multiple d'une autre ligne (respectivement une autre colonne), notation: $L_i \leftarrow L_i + \alpha L_j$, avec $i \neq j$ (respectivement $C_i \leftarrow C_i + \alpha C_j$).

🔛 Théorème 22.24

Effectuer une opération élémentaire sur une matrice $A \in \mathcal{M}_{n,p}(\mathbb{K})$ revient à multiplier A à gauche par une matrice inversible pour les opérations sur les lignes (à droite pour une opération sur les colonnes).

Preuve : On désigne par $\mathcal{L}_i(A)$ la ligne i de A sous forme d'une matrice ligne.

Pour l'opération $L_i \leftrightarrow L_j$ (avec $i \neq j$) : soit $P_{ij} \in \mathcal{M}_n(\mathbb{K})$ la matrice obtenue en effectuant cette opération sur la matrice I_n , alors $P_{ij} \times A$ est la matrice que l'on obtient en effectuant l'opération $L_i \leftrightarrow L_j$ dans A, en effet : si $k \notin \{i, j\}$, alors $\mathfrak{L}_k(P_{ij} \times A) = \mathfrak{L}_k(P_{ij}) \times A = \mathfrak{L}_k(I_n) \times A = \mathfrak{L}_k(A)$, si k = i, alors $\mathfrak{L}_i(P_{ij} \times A) = \mathfrak{L}_i(P_{ij}) \times A = \mathfrak{L}_i(I_n) \times A = \mathfrak{L}_i(A)$, de même $\mathcal{L}_j(P_{ij} \times A) = \mathcal{L}_i(A)$. De plus, par définition même, $P_{ij} \times P_{ij} = I_n$, donc P_{ij} est inversible et $P_{ij}^{-1} = P_{ij}$.

Pour l'opération $L_i \leftarrow \alpha L_i$, avec $\alpha \in \mathbb{K}^*$: soit $D_i(\alpha) \in \mathcal{M}_n(\mathbb{K})$ la matrice obtenue en effectuant cette opération sur I_n , alors $D_i(\alpha) \times A$ est la matrice que l'on obtient en effectuant cette même opération sur A, en effet : si $k \neq i$, alors $\mathfrak{L}_k(D_i(\alpha) \times A) = \mathfrak{L}_k(D_i(\alpha)) \times A = \mathfrak{L}_k(I_n) \times A = \mathfrak{L}_k(A), \text{ et } \mathfrak{L}_i(D_i(\alpha) \times A) = \mathfrak{L}_i(D_i(\alpha)) \times A = \alpha. \mathfrak{L}_i(I_n) \times A = \alpha. \mathfrak{L}_i(A). \text{ De plus, il } \mathfrak{L}_i(D_i(\alpha) \times A) = \mathfrak{L}_i(D_i(\alpha)) \times A = \alpha. \mathfrak{L}_i(A).$ est clair que $D_i(\alpha) \times D_i(1/\alpha) = I_n$, donc cette matrice est inversible et $D_i(\alpha)^{-1} = D_i(1/\alpha)$.

Pour l'opération $L_i \leftarrow L_i + \alpha L_j$, avec $i \neq j$ et $\alpha \in \mathbb{K}$: soit $T_{ij}(\alpha) \in \mathcal{M}_n(\mathbb{K})$ la matrice obtenue en effectuant cette opération sur I_n , alors $T_{ij}(\alpha) \times A$ est la matrice que l'on obtient en effectuant cette même opération sur A, en effet : si $k \neq i, \ \mathcal{L}_k(\mathsf{T}_{ij}(\alpha) \times \mathsf{A}) = \mathcal{L}_k(\mathsf{T}_{ij}(\alpha)) \times \mathsf{A} = \mathcal{L}_k(\mathsf{I}_n) \times \mathsf{A} = \mathcal{L}_k(\mathsf{A}), \ \text{et} \ \mathcal{L}_i(\mathsf{T}_{ij}(\alpha) \times \mathsf{A}) = \mathcal{L}_i(\mathsf{T}_{ij}(\alpha)) \times \mathsf{A} = (\mathcal{L}_i(\mathsf{I}_n) + \alpha \mathcal{L}_j(\mathsf{I}_n)) \times \mathsf{A} = (\mathcal{L}_i(\mathsf{I}_n) + \alpha \mathcal{$ $\mathfrak{L}_i(I_n) \times A + \alpha.\mathfrak{L}_i(I_n) \times A = \mathfrak{L}_i(A) + \alpha.\mathfrak{L}_i(A)$. De plus, il est clair que $T_{ij}(\alpha) \times T_{ij}(-\alpha) = I_n$, donc cette matrice est inversible et $T_{i,i}(\alpha)^{-1} = T_{i,i}(-\alpha)$.

🛂 Théorème 22.25

Les opérations élémentaires conservent le rang de la matrice.

Preuve : Découle directement des propriétés du rang et du théorème précédent.

Calcul pratique du rang d'une matrice

Définition 22.16

Soient A, B $\in \mathcal{M}_{n,p}(\mathbb{K})$, on dit que A et B sont équivalentes lorqu'il existe Q $\in GL_n(\mathbb{K})$ et P $\in GL_p(\mathbb{K})$ telles que B = QAP.

Remarque 22.9 -

- On définit ainsi une relation d'équivalence dans $\mathcal{M}_{n,p}(\mathbb{K})$.
- Deux matrices équivalentes ont le même rang.
- Une opération élémentaire donne une matrice équivalente.
- Deux matrices carrées semblables sont équivalentes.
- $-A \in \mathcal{M}_{n,p}(\mathbb{K})$ a un rang égal à r si et seulement si A est équivalente à $J_{n,p,r}$.

🔛 Théorème 22.26

Deux matrices sont équivalentes si et seulement si elles ont le même rang.

Preuve : Celle-ci est simple et laissée en exercice.

Preuve : Le rang de B est le rang de ses vecteurs lignes, d'où $rg(B) = rg(l_1(B), ..., l_r(B)) = r$, or A est équivalente à B donc rg(A) = rg(B) = r.

La méthode

Celle-ci consiste à transformer la matrice A en la matrice B ci-dessus à l'aide des opérations élémentaires sur les lignes ou les colonnes (méthode de Gauss), à chaque étape, la matrice obtenue a le même rang que A, plus précisément, à chaque étape la nouvelle matrice s'écrit sous la forme $U_k \times A \times V_k$ avec U_k, V_k inversibles. À l'étape n^o k, le principe est le suivant :

- a) On choisit un pivot (*i.e.* un coefficient non nul) dans les lignes L_k à L_n et dans les colonnes C_k à C_p .
- b) On amène le pivot à sa place, c'est à dire sur la ligne L_k dans la colonne C_k en échangeant éventuellement deux lignes et/ou deux colonnes.
- c) On fait des éliminations **en dessous** du pivot pour faire apparaître des 0, avec les opérations du type : $L_i \leftarrow L_i + \alpha L_k$.

Exemple: Soit A =
$$\begin{pmatrix} 3 & 1 & 1 \\ 1 & 0 & 2 \\ -1 & 2 & -12 \end{pmatrix}$$

Étape 1 : premier pivot : 1 (ligne L₁ colonne C₂)

$$C_1 \leftrightarrow C_2 \text{ et } L_3 \leftarrow L_3 - 2L_1 \text{ donnent} \begin{pmatrix} \boxed{1} & 3 & 1 \\ 0 & 1 & 2 \\ 0 & -7 & -14 \end{pmatrix}.$$

Étape 2 : deuxième pivot : 1 (ligne L₂ colonne C₂)

$$L_3 \leftarrow L_3 + 7L_2 \text{ donne } \begin{bmatrix} 1 & 3 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}.$$

Étape 3 : pas de troisième pivot.

Donc rg(A) = 2.

- ★Exercice 22.12 Avec la matrice A précédente, déduire de la méthode deux matrices inversibles U et V telles que UAV = J_{3.3.2}.
- **Exemple**: (Variante) Il peut être parfois avantageux de n'effectuer que des transformations sur les colonnes, les éliminations se font alors à droite du pivot avec les opérations du type $C_i \leftarrow C_i + \alpha C_k$ (à l'étape k). Voici quel peut être l'intérêt :

Soit $\mathfrak{B} = (i, j, k)$ une base de E et soit $u \in \mathscr{L}(E)$ défini par $\max_{\mathfrak{B}}(u) = A$ (la matrice précédente), calculons le rang de A (donc le rang de u) en faisant uniquement des opérations sur les colonnes :

Étape 1 : premier pivot 1 (ligne L₁ colonne C₂)

$$C_1 \leftrightarrow C_2 \text{ donne} \begin{pmatrix} \boxed{1} & 3 & 1 \\ 0 & 1 & 2 \\ 2 & -1 & -12 \end{pmatrix}$$

La matrice obtenue est la matrice dans la base \mathfrak{B} de de la famille (u(j), u(i), u(k)).

$$C_2 \leftarrow C_2 - 3C_1 \text{ et } C_3 \leftarrow C_3 - C_1 \text{ donnent} \begin{bmatrix} \boxed{1} & 0 & 0 \\ 0 & 1 & 2 \\ 2 & -7 & -14 \end{bmatrix}.$$

La matrice obtenue est la matrice dans la base \mathfrak{B} de de la famille (u(j), u(i-3j), u(k-j)).

Étape 2 : deuxième pivot 1 (ligne L₂ colonne C₂)

$$C_3 \leftarrow C_3 - 2C_2 \text{ donne} \begin{pmatrix} \boxed{1} & 0 & 0 \\ 0 & \boxed{1} & 0 \\ 2 & -7 & 0 \end{pmatrix}$$

La matrice obtenue est la matrice dans la base \mathfrak{B} de de la famille (u(j), u(i-3j), u(-2i+5j+k)).

On en déduit que le rang de u est égal à 2 et Im(u) = Vect [u(j), u(i-3j)] = Vect [u(j), u(i)]. Le théorème du rang permet d'en déduire que $\dim(\ker(u) = 3 - 2 = 1, \text{ or } -2i + 5j + k \text{ est dans } \ker(u) \text{ et non nul, donc } \ker(u) = Vect [-2i + 5j + k]$

5) Calcul pratique de l'inverse d'une matrice

Soit $A \in \mathcal{M}_n(\mathbb{K})$, supposons qu'en r opérations **sur les lignes** de A on obtienne la matrice I_n , on a alors une relation du type $G_r \times \cdots \times G_1 \times A = I_n$, où G_i est la matrice correspondant à l'opération numéro i. On peut alors en déduire que la matrice A est inversible et que son inverse est $A^{-1} = G_r \times \cdots \times G_1$, pour obtenir cette matrice, il suffit d'effectuer les mêmes opérations (dans le même ordre) sur la matrice I_n en même temps que sur A. La méthode consiste donc à écrire la matrice A suivie de la matrice I_n :

$$egin{array}{c|cccc} A & & & & I_n \\ a_{1,1} & \cdots & a_{1,n} & 1 & & O \\ dots & & dots & & \ddots & \\ a_{n,1} & \cdots & a_{n,n} & O & & 1 \\ \end{array}$$

Les opérations sont effectuées sur toute la longueur de chaque ligne. L'objectif est d'obtenir la matrice I_n à la place de A, alors on pourra conclure que A est inversible, et là où il y avait I_n on aura A^{-1} , on utilise la méthode de *Gauss-Jordan*¹:

À l'étape k:

- On choisit un pivot (*i.e.* un coefficient non nul) dans les lignes $L_k ... L_n$ et **dans la colonne** C_k .
- On amène le pivot à sa place : ligne L_k (en échangeant éventuellement deux lignes).
- On fait les éliminations (pour faire apparaître des zéros) en dessous et au-dessus du pivot avec les opérations : L_i ← L_i + αL_k.

Il y a donc au plus n étapes.

Il y a deux cas possibles au cours du processus :

- Si à chaque étape on peut trouver un pivot, alors après l'étape n, il ne reste plus qu'à diviser chaque ligne par le pivot correspondant pour obtenir la matrice I_n: c'est le cas où la matrice A **est inversible**.
- Si au cours de l'étape k on ne peut pas trouver de pivot dans la colonne C_k et dans les lignes $L_k ... L_n$, alors on est dans la situation suivante, à l'issue de l'étape k-1:

 p_1,\ldots,p_{k-1} désignent les pivots des k-1 étapes précédentes, ces pivots étant non nuls, il est facile de voir qu'avec des opérations sur les colonnes, on peut faire apparaître des zéros dans la colonne k sur les lignes $L_1\ldots L_{k-1}$, sans changer les coefficients des lignes $L_k\ldots L_n$ de cette même colonne. La matrice ainsi obtenue possède une colonne nulle, donc son rang est inférieur ou égal à n-1, or cette matrice a le même rang que A, donc nous sommes dans le cas où A est **non inversible**.

 $^{1. \ \}textit{JORDAN Camille} \ (1838-1922): math\'ematicien français dont l'œuvre consid\'erable touche tous les domaines des math\'ematiques.$

Exemple: Soit
$$A = \begin{pmatrix} 2 & 4 & 2 \\ 0 & 1 & 1 \\ 2 & 2 & -1 \end{pmatrix}$$
, appliquons la méthode de *Gauss-Jordan*: $\begin{pmatrix} 2 & 4 & 2 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 2 & 2 & -1 & 0 & 0 & 1 \end{pmatrix}$.

Étape 1 : pivot $p_1 = 1$, ligne L_1 colonne C_1 , éliminations : $L_3 \leftarrow L_3 - L_1$, ce qui donne :

Étape 2 : pivot $p_2 = 1$, ligne L_2 , colonne C_2 , éliminations : $L_1 \leftarrow L_1 - 4L_2$ et $L_3 \leftarrow L_3 + 2L_2$, ce qui donne :

Étape 3 : pivot $p_3 = -1$, ligne L_3 , colonne C_3 , éliminations : $L_1 \leftarrow L_1 - 2L_3$ et $L_2 \leftarrow L_2 + L_3$, ce qui donne :

En conclusion, la matrice A est inversible et son inverse est : $A^{-1} = \begin{pmatrix} 3/2 & -4 & -1 \\ -1 & 3 & 1 \\ 1 & -2 & -1 \end{pmatrix}$.

VI MATRICES PAR BLOCS, MATRICES EXTRAITES

1) Matrices par blocs

Soit $U \in \mathcal{M}_{n,p}(\mathbb{K})$, alors on peut découper la matrice U en quatre (par exemple) blocs de la manière suivante :

$$\mathbf{U} = \begin{pmatrix} a_{11} & \cdots & a_{1r} & a_{1,r+1} & \cdots & a_{1p} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{q1} & \cdots & a_{qr} & a_{q,r+1} & \cdots & a_{qp} \\ \hline a_{q+1,1} & \cdots & a_{q+1,r} & a_{q+1,r+1} & \cdots & a_{q+1,p} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{n1} & \cdots & a_{nr} & a_{n,r+1} & \cdots & a_{np} \end{pmatrix}$$

ce que l'on peut écrire plus simplement sous la forme $U = \begin{pmatrix} A & B \\ \hline C & D \end{pmatrix} \in \mathcal{M}_{n,p}(\mathbb{K})$, avec les blocs $A \in \mathcal{M}_{n,p}(\mathbb{K})$

 $\mathcal{M}_{q,r}(\mathbb{K})$, $\mathbf{B} \in \mathcal{M}_{q,p-r}(\mathbb{K})$, $\mathbf{C} \in \mathcal{M}_{n-q,r}(\mathbb{K})$, $\mathbf{D} \in \mathcal{M}_{n-q,p-r}(\mathbb{K})$, et les correspondances suivantes :

- $A_{ij} = U_{ij} \text{ pour } i \in [1; q] \text{ et } j \in [1; r];$
- $B_{ij} = U_{i,r+j}$ pour $i \in [1;q]$ et $j \in [1;p-r]$ (attention au décalage sur les colonnes!);
- $C_{ij} = U_{q+i,j}$ pour $i \in [1; n-q]$ et $j \in [1; r]$ (attention au décalage sur les lignes!);
- D_{ij} = U_{q+i,r+j} pour $i \in [1; n-q]$ et $j \in [1; p-r]$ (attention au décalage sur les lignes et les colonnes!). Bien entendu on peut faire moins ou bien plus de quatre blocs. Voici plusieurs cas particuliers :

™Exemples :

- − U = $(C_1(U) \mid \cdots \mid C_p(U))$, c'est à dire une ligne de blocs et p colonnes, dans ce cas les blocs sont les matrices colonnes de U;
- $U = \left(\frac{L_1(U)}{\vdots}\right), \text{ c'est à dire } n \text{ lignes de blocs et une colonne, dans ce cas les blocs sont les matrices}$ lignes de U;
- lignes de U;

 Matrices diagonales par blocs, ce sont des matrices **carrées** de la forme $A = \begin{pmatrix} A_1 & (0) & \cdots & (0) \\ (0) & A_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & (0) \\ (0) & \cdots & (0) & A_n \end{pmatrix}$

où les matrices A_i sont **carrées** (par forcément de même taille). Par exemple $A = \begin{bmatrix} -1 & 3 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ est diagonale par blocs.

- Matrices triangulaires par blocs, ce sont des matrices **carrées** de la forme $A = \begin{bmatrix} 0 & A_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & * \\ 0 & \cdots & 0 & A_n \end{bmatrix}$

où les matrices A_i sont **carrées** (par forcément de même taille). Par exemple $A = \begin{pmatrix} 1 & 2 & 5 \\ -1 & 3 & 2 \end{pmatrix}$ est triangulaire par blocs.

Théorème 22.28 (produit par blocs)

Soient
$$U = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in \mathcal{M}_{n,p}(\mathbb{K}), V = \begin{pmatrix} A' & B' \\ C' & D' \end{pmatrix} \in \mathcal{M}_{p,m}(\mathbb{K}), \text{ avec } A \in \mathcal{M}_{q,r}(\mathbb{K}), B \in \mathcal{M}_{q,p-r}(\mathbb{K}),$$

$$C \in \mathcal{M}_{n-q,r}(\mathbb{K}), D \in \mathcal{M}_{n-q,p-r}(\mathbb{K}), A' \in \mathcal{M}_{r,s}(\mathbb{K}), B' \in \mathcal{M}_{r,m-s}(\mathbb{K}), C' \in \mathcal{M}_{p-r,s}(\mathbb{K}), D' \in \mathcal{M}_{p-r,m-s}(\mathbb{K}),$$
alors:

$$\mathbf{U} \times \mathbf{V} = \left(\begin{array}{c|c} \mathbf{A} & \mathbf{B} \\ \hline \mathbf{C} & \mathbf{D} \end{array} \right) \times \left(\begin{array}{c|c} \mathbf{A'} & \mathbf{B'} \\ \hline \mathbf{C'} & \mathbf{D'} \end{array} \right) = \left(\begin{array}{c|c} \mathbf{AA'} + \mathbf{BC'} & \mathbf{AB'} + \mathbf{BD'} \\ \hline \mathbf{CA'} + \mathbf{DC'} & \mathbf{CB'} + \mathbf{DD'} \end{array} \right).$$

Preuve: On vérifie que U est bien de taille (n, p) et V de taille (p, m), donc le produit $W = U \times V$ est défini et de taille (n, m). Calculons les coefficients $w_{ij} = \sum_{k=1}^{p} u_{ik} v_{kj}$, dans les différents « quarts » :

$$w_{ij} = \sum_{k=1}^{r} a_{ik} a'_{kj} + \sum_{k=r+1}^{p} b_{i,k-r} c'_{k-r,j} = [AA']_{ij} + \sum_{k=1}^{p-r} b_{ik} c'_{kj} = [AA']_{ij} + [BC']_{ij} = [AA' + BC']_{ij}$$

- Deuxième « quart » ($i \in [1; q]$ et $j \in [1; m - s]$):

$$w_{i,j+s} = \sum_{k=1}^{r} a_{ik} b'_{k,j} + \sum_{k=r+1}^{p} b_{i,k-r} d'_{k-r,j} = [AB']_{ij} + \sum_{k=1}^{p-r} b_{ik} d'_{kj} = [AB' + BD']_{ij}$$

- Troisième « quart » $(i \in [1; n-q]]$ et $j \in [1; s]$):

$$w_{i+q,j} = \sum_{k=1}^{r} c_{ik} a'_{kj} + \sum_{k=r+1}^{p} d_{i,k-r} c'_{k-r,j} = [CA']_{ij} + \sum_{k=1}^{p-r} d_{ik} c'_{kj} = [CA' + DC']_{ij}$$

– Quatrième « quart » $(i \in [1; n-q]]$ et $j \in [1; m-s]$):

$$w_{i+q,j+s} = \sum_{k=1}^{r} c_{i,k} b'_{kj} + \sum_{k=r+1}^{p} d_{i,k-r} d'_{k-r,j} = [CB']_{ij} + \sum_{k=1}^{p-r} d_{i,k} d'_{kj} = [CB' + DD']_{ij}$$

ce qui prouve la formule.

Remarque 22.10:

- Cette formule n'est valable qu'à certaines conditions. Le nombre de colonnes de blocs de la matrice de gauche doit correspondre au nombre de lignes de blocs de la matrice de droite, mais il y a aussi des conditions sur les tailles des différents blocs (la largueur de la colonne de blocs numéro j de la matrice de gauche, doit être égale à la hauteur de ligne de blocs numéro j de celle de droite, on dit qu'ils doivent être compatibles). C'est la première chose à vérifier avant de faire un produit par blocs.
- La formule a été donnée avec 4 blocs, mais elle est évidemment plus générale. Le résultat a autant de lignes de blocs que la matrice de gauche, et autant de colonnes de blocs que la matrice de droite (sous réserve de compatibilité).

Applications:

- Si A est une matrice diagonale par blocs, alors $\forall p \in \mathbb{N}$, A^p s'obtient en élevant tous les blocs diagonaux à la puissance p.
- Si A est une matrice diagonale par blocs, alors A est inversible si et seulement si tous les blocs diagonaux sont inversibles, auquel cas la matrice inverse s'obtient en inversant chaque bloc de la diagonale.

 Si A est une matrice triangulaire par blocs, alors A est inversible si et seulement si tous les blocs diagonaux sont inversibles.

★Exercice 22.13 Démontrer ces trois applications.

Exemple: Soit
$$A = \begin{pmatrix} 1 & 2 & 0 \\ -1 & 3 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$
, cette matrice est diagonale par blocs. Le bloc $\begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix}$ est inversible est son

inverse est $\frac{1}{5}\begin{pmatrix} 3 & -2 \\ 1 & 1 \end{pmatrix}$, le deuxième bloc (2) est inversible lui aussi d'inverse $(\frac{1}{2})$, donc A est inversible et son

inverse est
$$A^{-1} = \frac{1}{5} \begin{pmatrix} 3 & -2 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & \frac{5}{2} \end{pmatrix}$$
.

2) Matrices extraites

Définition 22.17

Soit $A \in \mathcal{M}_{n,p}(\mathbb{K})$, soit r entier strictement positif et inférieur ou égal à n et p, soient $i_1 < i_2 < \cdots < i_r$ des entiers de l'intervalle [1; n], et $j_1 < j_2 < \cdots < j_r$ des entiers de l'intervalle [1; p], la matrice $M \in \mathcal{M}_r(\mathbb{K})$ définie par $m_{k,l} = a_{i_k,j_l}$ est dite **matrice carrée extraite de** A.

Exemple: Soit
$$A = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \end{pmatrix}$$
, alors la matrice $M = \begin{pmatrix} 1 & 2 & 4 \\ 9 & 10 & 12 \end{pmatrix}$ est une matrice extraite de A en

prenant les lignes 1 et 3, et les colonnes 1, 2 et 4.

Propriété 1

Si $A \in \mathcal{M}_{n,p}(\mathbb{K})$ et si $M \in \mathcal{M}_r(\mathbb{K})$ est une matrice carrée **inversible** extraite de A et de taille r, alors $\operatorname{rg}(A) \geqslant r$. **Preuve**: Notons $1 \leqslant j_1 < \ldots < j_r \leqslant p$ les numéros des colonnes qui ont été extraites de A. Si les colonnes $C_{j_1}(A), \ldots, C_{j_r}(A)$ étaient liées, alors les colonnes de la matrice extraite M serait liées (avec les mêmes coefficients), et donc la matrice M ne serait pas de rang r ce qui est absurde car elle est inversible, on en déduit que les colonnes $C_{j_1}(A), \ldots, C_{j_r}(A)$ forment une famille libre, et donc $\operatorname{rg}(A) \geqslant r$.

Propriété 2

Si $A \in \mathcal{M}_{n,p}(\mathbb{K})$ est de rang r alors toute matrice carrée inversible extraite de A a une taille inférieure ou égale à r. Et il existe une matrice carrée extraite de A qui est inversible et de taille r.

Preuve : D'après la première propriété, si une matrice carrée inversible extraite de A a une taille égale à t, alors on a $t \le rg(A) = r$.

Le rang de la matrice A est le rang de ses colonnes, celui vaut r, donc il existe des entiers $j_1 < \cdots < j_r$ de l'intervalle [1; p] tels que la famille $(C_{j_1}(A), \dots, C_{j_r}(A))$ est libre dans $\mathcal{M}_{n,1}(\mathbb{K})$.

Considérons la matrice B obtenue en ne prenant que les colonnes $C_{j_1}(A), \ldots, C_{j_r}(A)$, le rang de cette matrice est r, or son rang est aussi le rang de ses vecteurs lignes, il existe donc des entiers $i_1 < \cdots < i_r$ de l'intervalle [1; n] tels que les lignes $L_{i_1}(B), \ldots, L_{i_r}(B)$ forment une famille libre, par conséquent la matrice carrée extraite $M \in \mathcal{M}_r(\mathbb{K})$ définie par $m_{k,l} = a_{i_k,j_l}$ est inversible (car de rang r).

Ceci permet d'énoncer le théorème suivant :

还 Théorème 22.29

Le rang d'une matrice est la taille maximale de ses matrices carrées extraites inversibles.

VII SOLUTION DES EXERCICES

Solution 22.1

- $1/\mathcal{T}_n^s(\mathbb{K}) = \text{Vect}\left[(\mathbf{E}^{ij})_{1 \leqslant i \leqslant j \leqslant n} \right], \ la \ famille \ (\mathbf{E}^{ij})_{1 \leqslant i \leqslant j \leqslant n} \ est \ libre, \ c'est \ une \ base \ de \ \mathcal{T}_n^s(\mathbb{K}), \ on \ a \ donc \ \dim(\mathcal{T}_n^s(\mathbb{K})) = \frac{n(n+1)}{2}.$
- $2/\mathcal{T}_n^{-i}(\mathbb{K}) = \operatorname{Vect}\left[(\mathbf{E}^{ij})_{1\leqslant j\leqslant i\leqslant n}\right], \ la \ famille \ (\mathbf{E}^{ij})_{1\leqslant j\leqslant i\leqslant n} \ est \ libre, \ c'est \ une \ base \ de \ \mathcal{T}_n^{i}(\mathbb{K}), \ on \ a \ donc \ \dim(\mathcal{T}_n^{i}(\mathbb{K})) = \frac{n(n+1)}{2}.$

- 3/ $\mathscr{S}_n(\mathbb{K}) = \text{Vect}\left[(\mathbb{E}^{ij} + \mathbb{E}^{ji})_{1 \leqslant i \leqslant j \leqslant n} \right]$, la famille $(\mathbb{E}^{ij} + \mathbb{E}^{ji})_{1 \leqslant i \leqslant j \leqslant n}$ est libre, c'est une base de $\mathscr{S}_n(\mathbb{K})$, on a donc $\dim(\mathscr{S}_n(\mathbb{K})) = \frac{n(n+1)}{2}$.
- 4/ $\mathcal{A}_n(\mathbb{K}) = \text{Vect}\left[(\mathbf{E}^{ij} \mathbf{E}^{ji})_{1 \leqslant i < j \leqslant n}\right]$, la famille $(\mathbf{E}^{ij} \mathbf{E}^{ji})_{1 \leqslant i < j \leqslant n}$ est libre, c'est une base de $\mathcal{A}_n(\mathbb{K})$, on a donc $\dim(\mathcal{A}_n(\mathbb{K})) = \frac{n(n+1)}{2}$.

Solution 22.2 Soit $A \in \mathcal{M}_n(\mathbb{K})$, on sait que ${}^{\mathbf{t}}({}^{\mathbf{t}}A) = A$, donc la transposition dans $\mathcal{M}_n(\mathbb{K})$ est une symétrie (involutive et linéaire). C'est la symétrie par rapport à $\ker(T - \mathrm{id}) = \mathcal{S}_n(\mathbb{K})$ et parallèlement à $\ker(T + \mathrm{id}) = \mathcal{A}_n(\mathbb{K})$.

Solution 22.3

$$\textbf{1/a)} \ D(1) = 0, D(X) = 1, D(X^2) = 2X \ et \ D(X^3) = 3X^2, \ d'où \ \underset{\mathfrak{B}}{\text{mat}}(D) = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

b)
$$\Delta(1) = 0$$
, $\Delta(X) = 1$, $\Delta(X^2) = 2X + 1$ et $\Delta(X^3) = 3X^2 + 3X + 1$, d'où $\max_{\mathfrak{B}}(\Delta) = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 0 & 0 & 2 & 3 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \end{pmatrix}$.

 $\textbf{c)} \ \mathfrak{B}' = (P_0, P_1, P_2, P_3) \ \textit{est une base de} \ E \ \textit{(degr\'es \'etag\'es), et} \ \Delta(P_0) = 0, \ \Delta(P_1) = P_0, \ \Delta(P_2) = P_1 \ \textit{et} \ \Delta(P_3) = P_2, \ \textit{d'où} \ \text{(and the expression)}$

$$\max_{\mathfrak{B}'}(\Delta) = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

2/ Dans
$$\mathcal{M}_2(\mathbb{K})$$
 on $a^t E^{11} = E^{11}$, ${}^t E^{12} = E^{21}$, ${}^t E^{21} = E^{12}$, ${}^t E^{22} = E^{22}$, la matrice demandée est donc $\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$.

Solution 22.4

$$1/\operatorname{Coord}_{\mathfrak{B}}(x,y,z) = X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}, d'où \operatorname{Coord}_{\mathfrak{B}'}(f(x,y,z)) = A \times X = \begin{pmatrix} x-2y+3z \\ 2x+y-5z \end{pmatrix}, donc \ f(x,y,z) = (x-2y+3z,2x+y-5z)$$

$$\mathfrak{B}' \ \text{est la base canonique } de \ \mathbb{K}^2).$$

2/ On
$$a(x, y, z) = xi + yj + zk = z(i + j + k) + (y - z)(i + j) + (x - y)i$$
, $donc \text{ Coord}_{\mathfrak{B}'}(x, y, z) = X = \begin{pmatrix} x - y \\ y - z \\ z \end{pmatrix}$, $d'où$

$$\operatorname{Coord}_{\mathfrak{B}'}(f(x,y,z)) = \operatorname{A} \times \operatorname{X} = \begin{pmatrix} x - 2y + z \\ 2y - 3z \\ z \end{pmatrix}, \ c'est \ \grave{a} \ dire \ f(x,y,z) = (x - 2y + z)i + (2y - 3z)(i + j) + z(i + j + k), \ et \ donc \ f(x,y,z) = (x - z, 2y - 2z, z).$$

3/ Soit \mathfrak{B} la base canonique de \mathbb{K}^p et \mathfrak{B}' la base canonique de \mathbb{K}^n , soit $f \in \mathcal{L}(\mathbb{K}^p, \mathbb{K}^n)$ l'application linéaire définie par $\operatorname{mat}(f) = A - B$. Pour $x \in \mathbb{K}^p$, posons $X = \operatorname{Coord}_{\mathfrak{B}}(x)$, on a alors $\operatorname{Coord}_{\mathfrak{B}'}(f(x)) = (A - B)X = O_{n,1}$, ce qui montre que f est l'application nulle, donc sa matrice est nulle, ce qui donne A = B.

Solution 22.5 Soient $E^{i,j}$, $E^{k,l}$ deux matrices élémentaires de $\mathcal{M}_n(\mathbb{K})$, soient $(r,s) \in [1;n]^2$:

$$[E^{i,j} \times E^{k,l}]_{r,s} = \sum_{p=1}^{n} [E^{i,j}]_{r,p} [E^{k,l}]_{p,s} = \sum_{p=1}^{n} \delta_{i,r} \delta_{p,j} \delta_{p,k} \delta_{l,s} = \delta_{j,k} \delta_{i,r} \delta_{l,s} = \delta_{j,k} [E^{i,l}]_{r,s},$$
on a donc $E^{i,j} \times E^{k,l} = \delta_{j,k} E^{i,l}$.

Solution 22.6 On $a = I_3 + J$ avec $J = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$, $de \ plus \ J^2 = K = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, $et \ J^3 = O_3$. Comme $I_3 \times J = J \times I_3$, on peut

utiliser le binôme de Newton :

$$\mathbf{A}^{n} = \sum_{k=0}^{n} \binom{n}{k} \mathbf{J}^{k} = \mathbf{I}_{3} + n\mathbf{J} + \frac{n(n-1)}{2} \mathbf{K} = \begin{pmatrix} 1 & n & \frac{n(n-1)}{2} \\ 0 & 1 & n \\ 0 & 0 & 1 \end{pmatrix}.$$

Solution 22.7

1/ Posons B = ${}^{t}(A^{-1})$, alors B × ${}^{t}A = {}^{t}(A \times A^{-1}) = {}^{t}I_{n} = I_{n}$, donc ${}^{t}A$ est inversible et son inverse est B.

2/ Soit
$$X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
 et soit $Y = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$, résolvons l'équation $AX = Y$:

$$AX = Y \iff \begin{cases} x + \lambda y - z = a \\ 2y + z = b \\ x + z = c \end{cases}$$

$$\iff \begin{cases} x + \lambda y - z = a \\ 2y + z = b \\ -\lambda y + 2z = c - a (L_3 \leftarrow L_3 - L_1) \end{cases}$$

$$\iff \begin{cases} x - z + \lambda y = a \\ z + 2y = b \\ -(4 + \lambda)y = c - a - 2b (L_3 \leftarrow L_3 - 2L_2) \end{cases}$$

D'où la discussion:

 $-Si\lambda = -4$: alors le système n'a pas de solution lorsque $c - a - 2b \neq 0$, la matrice A n'est donc pas inversible.

- Si λ ≠ -4 : le système admet une unique solution qui est :

$$\begin{cases} y = \frac{a+2b-c}{4+\lambda} \\ z = \frac{-2a+\lambda b+2c}{4+\lambda} \end{cases}$$

$$\begin{cases} x = \frac{2a-\lambda b+(\lambda+2)c}{4+\lambda} \end{cases}$$
Or on sait que cette unique solution est X = A⁻¹Y, on en déduit alors que :

$$A^{-1} = \frac{1}{4+\lambda} \begin{pmatrix} 2 & -\lambda & \lambda + 2 \\ 1 & 2 & -1 \\ -2 & \lambda & 2 \end{pmatrix}.$$

3/ Supposons les coefficients diagonaux tous non nuls, soit $X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$ et $Y = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$, lorsqu'on résout le système TX = Y

(d'inconnue X) par substitutions remontantes, on obtient une solution de la forme:

$$X = \begin{cases} x_n &= b_{n,n}y_n \\ x_{n-1} &= b_{n-1,n-1}y_{n-1} + b_{n-1,n}y_n \\ \vdots \\ x_1 &= b_{1,1}y_1 + \dots + b_{1,n}y_n \end{cases}.$$

Il y a une seule solution, donc T est inversible, on sait alors que $X = T^{-1}Y$, donc les coefficients de la matrice T^{-1} sont les coefficients $b_{i,j}$ ci-dessus, ce qui prouve que \mathbf{T}^{-1} est triangulaire supérieure.

Réciproquement, si T est inversible, alors $T^{-1}T = I_n$, notons a_{ij} les coefficients de T^{-1} , alors on doit avoir : $a_{11}a_1 = 1$, $donc \ a_1 \neq 0$. Puis $a_{21} \ a_1 = 0$ $donc \ a_{21} = 0$, puis $a_{22} \ a_2 = 1$ $donc \ a_2 \neq 0$. On montre ainsi de proche en proche que T^{-1} est triangulaire supérieure et que les coefficients diagonaux de T sont tous non nuls.

Solution 22.8 La matrice de passage de \mathfrak{B} à \mathfrak{B}' est $A = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & -1 & 2 \\ 0 & 0 & 1 & -3 \\ 0 & 0 & 0 & 1 \end{pmatrix}$, cette matrice est triangulaire et ses éléments

diagonaux sont tous non nuls, elle est donc inversible, ce qui prouve que \mathfrak{B}' est une base de $\mathbb{K}_3[X]$. On a la relation

 $\operatorname{Coord}_{\mathfrak{B}'}(P) = \operatorname{A}^{-1} \times \operatorname{Coord}_{\mathfrak{B}}(P)$, il faut donc calculer A^{-1} , on peut résoudre l'équation $\operatorname{A} \times \begin{bmatrix} y \\ z \end{bmatrix} = \begin{bmatrix} b \\ c \end{bmatrix}$, ce qui donne

$$\begin{cases} x = a \\ y = b + c + d \\ z = c + 3d \\ t = d \end{cases}, on en déduit que A^{-1} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 1 \end{pmatrix}. Finalement, si P = a + bX + cX^2 + dX^3, alors Coord_{\mathfrak{B}'}(P) = \begin{pmatrix} a \\ b + c + d \\ c + 3d \\ d \end{pmatrix}.$$

Solution 22.9 La matrice de passage de \mathfrak{B} à \mathfrak{B}' est $P = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$, cette matrice est inversible et $P^{-1} = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$, on en

 $\begin{aligned} \text{d\'eduit que } \mathfrak{B'} \text{ est bien une base de } \mathbb{K}^2 \text{ et que } \underset{\mathfrak{B'}}{\text{mat}}(u) &= \mathbf{A'} = \mathbf{P}^{-1} \times \mathbf{A} \times \mathbf{A} = \begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix}. \text{ On en d\'eduit que } \mathbf{A'}^n = \begin{pmatrix} 1 & 0 \\ 0 & 3^n \end{pmatrix}, \text{ on a alors } \mathbf{A}^n &= [\mathbf{P} \times \mathbf{A'} \times \mathbf{P}^{-1}]^n = \mathbf{P} \times \mathbf{A'}^n \times \mathbf{P}^{-1} \text{ ce qui donne}: \mathbf{A}^n &= \frac{1}{2} \begin{pmatrix} 1 + 3^n & 1 - 3^n \\ 1 - 3^n & 1 + 3^n \end{pmatrix}, \text{ or } \mathbf{A}^n &= \underset{\mathfrak{B}}{\text{mat}}(u^n), \text{ par cons\'equent}: \\ \forall \ (x,y) \in \mathbb{K}^2, u^n(x,y) &= \frac{1}{2} \left((1 + 3^n)x + (1 - 3^n)y; (1 - 3^n)x + (1 + 3^n)y \right). \end{aligned}$

Solution 22.10 $r = \operatorname{rg}(p)$, on $a \to \operatorname{Im}(p) \oplus \ker(p)$, soit (e_1, \dots, e_r) une base $de \operatorname{Im}(p)$ et soit (e_{r+1}, \dots, e_n) une base $de \ker(p)$, alors $\mathfrak{B} = (e_1, \dots, e_n)$ est une base $de \to \operatorname{Im}(p) = \operatorname{Im}(p) = \operatorname{Im}(p) = \operatorname{Im}(p) = \operatorname{Im}(p) = \operatorname{Im}(p)$, $d'où \operatorname{tr}(p) = \operatorname{tr}(\operatorname{Im}(p) = r = \operatorname{rg}(p)$.

Solution 22.11 *Il existe* $U \in GL_n(\mathbb{K})$, $V \in GL_p(\mathbb{K})$ *telles que* $UAV = J_{n,p,r}$ *avec* r = rg(A). *On a alors* ${}^{\mathbf{t}}V^{\mathbf{t}}A^{\mathbf{t}}U = {}^{\mathbf{t}}J_{n,p,r} = J_{p,n,r}$, *ce qui donne le résultat.*

Solution 22.12 *On transforme la matrice obtonue précédemment en* J_{3,3,2} :

$$C_{2} \leftarrow C_{2} - 3C_{1}, C_{3} \leftarrow C_{3} - C1 \ donnent \ \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix}, C_{3} \leftarrow C_{3} - 2C_{2} \ donne \ \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

On a obtient la matrice U en effectuant sur lignes de I_3 les mêmes opérations que sur les lignes de A (dans le même ordre), et la matrice V en effectuant sur colonnes de I_3 , les mêmes opérations sur les colonnes de A (dans le même ordre):

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -2 & 7 & 1 \end{pmatrix} et V = \begin{pmatrix} 0 & 1 & -2 \\ 1 & -3 & 5 \\ 0 & 0 & 1 \end{pmatrix}$$

Solution 22.13

$$1/\operatorname{Soit} A = \begin{pmatrix} A_1 & (0) & \cdots & (0) \\ (0) & A_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & (0) \\ (0) & \cdots & (0) & A_n \end{pmatrix}, \ une \ matrice \ diagonale \ par \ blocs.$$

a) Une simple récurrence sur p permet de montrer que $A^p = \begin{bmatrix} A_1^p & (0) & \cdots & (0) \\ 0 & A_2^p & \ddots & \vdots \\ \vdots & \ddots & \ddots & (0) \\ (0) & \cdots & (0) & A_n^p \end{bmatrix}$, en écrivant que $A^{p+1} = A \times A^p$ et à l'aide d'un produit par blocs.

b) Si les bloc A_i sont tous inversibles, alors on peut considérer la matrice $B = \begin{pmatrix} A_1^{-1} & (0) & \cdots & (0) \\ (0) & A_2^{-1} & \ddots & \vdots \\ \vdots & \ddots & \ddots & (0) \\ (0) & \cdots & (0) & A_n^{-1} \end{pmatrix}$, on vérifie

$$alors \ (produits \ par \ blocs) \ que \ AB = \begin{pmatrix} A_1A_1^{-1} & (0) & \cdots & (0) \\ \hline (0) & A_2A_2^{-1} & \ddots & \vdots \\ \vdots & \ddots & \ddots & (0) \\ \hline (0) & \cdots & (0) & A_nA_n^{-1} \end{pmatrix} = I_m \ où \ m \ est \ la \ taille \ de \ la \ matrice \ A,$$

celle-ci est donc inversible et son inverse est B.

Réciproquement, si A est inversible, supposons que A_1 est de taille p_1 et non inversible, alors on peut trouver une

$$colonne \, \mathbf{X}_1 = \begin{pmatrix} x_1 \\ \vdots \\ x_{p_1} \end{pmatrix}, \, \textbf{non nulle}, \, telle \, que \, \mathbf{A}_1 \mathbf{X}_1 = \mathbf{O}_{p_1,1}, \, considérons \, la \, colonne \, \mathbf{X} = \begin{pmatrix} x_1 \\ \vdots \\ x_{p_1} \\ \hline 0 \\ \vdots \\ 0 \end{pmatrix} \in \mathcal{M}_{m,1}(\mathbb{K}), \, alors \, on \, a$$

 $AX = \begin{pmatrix} \frac{A_1X_1}{0} \\ \vdots \\ 0 \end{pmatrix} = O_{m,1}, \ or \ la \ colonne \ X \ est \ non \ nulle, \ donc \ A \ n'est \ pas \ inversible : contradiction. \ On \ en \ déduit \ que$

 A_1 est un bloc inversible. Le raisonnement est le même pour les autres blocs.

$$2/\operatorname{Soit} A = \begin{pmatrix} A_1 & * & \cdots & * \\ (0) & A_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & * \\ (0) & \cdots & (0) & A_n \end{pmatrix} une \ matrice \ triangulaire \ par \ blocs.$$

Si A et inversible, on peut démontrer que chaque bloc A_i est inversible en commençant par A_1 .

Supposons tous les blocs inversibles, on peut considérer la matrice $B = \begin{pmatrix} A_1^{-1} & (0) & \cdots & (0) \\ (0) & A_2^{-1} & \ddots & \vdots \\ \vdots & \ddots & \ddots & (0) \\ (0) & \cdots & (0) & A_n^{-1} \end{pmatrix}$, on vérifie alors

$$(produits\ par\ blocs)\ que\ AB = \begin{pmatrix} \boxed{A_1A_1^{-1}} & * & \cdots & * \\ \hline (0) & \boxed{A_2A_2^{-1}} & \ddots & \vdots \\ \vdots & \ddots & \ddots & * \\ \hline (0) & \cdots & (0) & \boxed{A_nA_n^{-1}} \end{pmatrix} = C,\ cette\ matrice\ C\ est\ triangulaire\ supérieure$$

avec que des 1 sur la diagonale, elle est donc inversible, on en déduit que $A = CB^{-1}$ est donc inversible.