Líkindi – Skilgreining

Hugsum okkur að tilraun sé gerð og setjum

 $\Omega = \mathbf{\acute{u}tkomumengi} = \mathbf{mengi}$ allra hugsanlegra $\mathbf{\acute{u}tkoma}$

T.D. EF TENINGI ER KASTAÐ: $\Omega = \{1, 2, 3, 4, 5, 6\}$.

EĐA LENGD ER MÆLD: $\Omega = [0, \infty)$.

Atburður er hlutmengi í Ω .

- Ω kallast **ö**ruggi atburðurinn.
- Ø kallast ómögulegi atburðurinn.

T.D. EF TENINGI ER KASTAÐ ER $\{1,3,5\}$ ATBURÐURINN AÐ ODDATALA KOMI UPP.

Atburðir A og B kallast sundurlægir ef $A \cap B = \emptyset$.

Atburðir A_1, A_2, \ldots kallast **sundurlægir** ef þeir eru sundurlægir tveir og tveir: $A_i \cap A_j = \emptyset$, $i \neq j$.

Skilgreining: Likindi (eða likur) eru fall P sem úthlutar sérhverjum atburði A tölu P(A) þannig að

- (1) $P(\Omega) = 1$.
- (2) $\mathbf{P}(A) \geqslant 0$ fyrir alla atburði A.
- (3) Ef A_1, A_2, \ldots eru sundurlægir atburðir gildir:

$$\mathbf{P}\bigg(\bigcup_{i=1}^{\infty} A_i\bigg) = \sum_{i=1}^{\infty} \mathbf{P}(A_i).$$

T.D. EF TENINGI ER KASTAÐ KALLAST P JAFNAR LÍKUR EF P(A) = (fjöldi staka í A)/6

Nokkrar einfaldar reiknireglur fyrir líkindi

- (1) $\mathbf{P}(\varnothing) = 0$ og $0 \leqslant \mathbf{P} \leqslant 1$ og $\mathbf{P}(\Omega) = 1$
- (2) Um alla atburði A og B gildir:

(3) Um sundurlæga atburði A og B gildir:

(4) Um alla atburði A gildir:

$$\mathbf{P}(A^c) = 1 - \mathbf{P}(A)$$

$$\Omega$$
 A A^c

(5) Um alla atburði $A \circ B$ gildir:

$$A \subseteq B \Rightarrow \mathbf{P}(A) \leqslant \mathbf{P}(B)$$

Jafnar líkur

Skoðum $\Omega = \{\omega_1, \ldots, \omega_n\}$ og setjum $p_i = \mathbf{P}(\{\omega_i\})$.

Skilgreining: Líkindi P á $\{\omega_1, \ldots, \omega_n\}$ kallast jöfn ef

$$p_1 = p_2 = \ldots = p_n = \frac{1}{n}$$
.

Við segjum þá líka að útkoman sé valin af *handa-hófi* úr menginu $\{\omega_1, \ldots, \omega_n\}$.

Takið eftir að líkindi eru jöfn ef og aðeins ef

$$\mathbf{P}(A) = \frac{\mathbf{fj\"{o}ldi\ staka\ \'{i}\ }A}{n}, \quad A \subseteq \{\omega_1, \dots, \omega_n\}.$$

Strjál líkindi

Líkindi P kallast *strjál* ef

$$\Omega = \{\omega_1, \ldots, \omega_n\} \quad e\delta a \quad \Omega = \{\omega_1, \omega_2, \ldots\}.$$

Líkur á atburði $A \subseteq \Omega$ er þá hægt að reikna svona

$$\mathbf{P}(A) = \sum_{\omega \in A} \mathbf{P}(\{\omega\}).$$

Takið eftir því að þegar $\Omega = \{\omega_1, \omega_2, \ldots\}$ þá eru jafnar líkur ekki til. Vegna þess að $p_1 = p_2 = p_3 = \ldots$ hefur í för með sér þá mótsögn að $1 \neq 1$,

$$1 = \mathbf{P}(\Omega) = \sum_{i=1}^{\infty} p_i = \sum_{i=1}^{\infty} p_i = \begin{cases} \infty, & \text{ef } p_1 > 0, \\ 0, & \text{ef } p_1 = 0. \end{cases}$$

Skilyrtar líkur

Skilgreining: Ef A og B eru atburðir og $\mathbf{P}(B) > 0$ þá kallast $\mathbf{P}(A \cap B) := \mathbf{P}(A \cap B)$

$$\mathbf{P}(A \mid B) := \frac{\mathbf{P}(A \cap B)}{\mathbf{P}(B)}$$

skilyrtu líkurnar á A gefið B.

Takið eftir að
$$\mathbf{P}(A \cap B) = \mathbf{P}(B)\mathbf{P}(A \mid B)$$
.

Takið líka eftir að fyrir **jafnar** líkur gildir (ef $B \neq \emptyset$)

$$\mathbf{P}(A \mid B) = \frac{\mathbf{fj\"{o}ldinn \'{i}} \ A \cap B}{\mathbf{fj\"{o}ldinn \'{i}} \ B}.$$

Sundurlægir atburðir B_1, B_2, \ldots mynda skiptingu á Ω ef þeir þekja Ω þ.e. ef $\bigcup_{i=1}^{\infty} B_i = \Omega$.

Skiptingarregla: Ef B_1, B_2, \dots mynda skiptingu á Ω gildir $\mathbf{P}(A) = \sum_i \mathbf{P}(A \cap B_i)$ og því

$$\mathbf{P}(A) = \sum_{i} \mathbf{P}(B_i) \mathbf{P}(A \mid B_i).$$

Bayes-lögmálið: Ef P(A) > 0 og P(B) > 0 þá gildir

$$\mathbf{P}(B \mid A) = \frac{\mathbf{P}(B)\mathbf{P}(A \mid B)}{\mathbf{P}(A)}$$

Óháðir atburðir

Það væri eðlilegt að segja að A sé óháður B ef

$$\mathbf{P}(A \mid B) = \mathbf{P}(A)$$
 b.e. $\frac{\mathbf{P}(A \cap B)}{\mathbf{P}(B)} = \mathbf{P}(A)$

og að B sé óháður A ef

$$\mathbf{P}(B|A) = \mathbf{P}(B)$$
 b.e. $\frac{\mathbf{P}(A \cap B)}{\mathbf{P}(A)} = \mathbf{P}(B)$.

Þar sem þetta eru sömu eiginleikarnir er óþarfi að taka fram hvor sé óháður hvorum.

Skilgreining: Atburðir A og B kallast $\delta h \delta \delta ir$ ef $\mathbf{P}(A \cap B) = \mathbf{P}(A)\mathbf{P}(B)$.

Skilgreining: Atburðir A, B og C kallast $\acute{o}h\acute{a}\check{o}ir$ ef

$$\mathbf{P}(A \cap B) = \mathbf{P}(A)\mathbf{P}(B)$$

$$\mathbf{P}(A \cap C) = \mathbf{P}(A)\mathbf{P}(C)$$

$$\mathbf{P}(B \cap C) = \mathbf{P}(B)\mathbf{P}(C)$$

og
$$\mathbf{P}(A \cap B \cap C) = \mathbf{P}(A)\mathbf{P}(B)\mathbf{P}(C)$$
.

Almenn skilgreining: Atburðir A_1, \ldots, A_n kallast *óháðir* ef fyrir öll k og $n_1 < \ldots < n_k$ gildir:

$$\mathbf{P}(A_{n_1} \cap \ldots \cap A_{n_k}) = \mathbf{P}(A_{n_1}) \cdots \mathbf{P}(A_{n_k}).$$

Atburðir $A_1, A_2 \dots$ kallast líka *óháðir* ef þetta gildir fyrir öll n.

Slembistærðir

Slembistærð er fall $X: \Omega \to \mathbb{R}$.

Fyrir $x \in \mathbb{R}$ skilgreinum við

$$\{X=x\}:=\{\omega\in\Omega:X(\omega)=x\}.$$

Fyrir a < b skilgreinum við á sama hátt t.d.

$$\{a < X \leqslant b\} := \{\omega \in \Omega : a < X(\omega) \leqslant b\}.$$

Og almennt fyrir $A \subseteq \mathbb{R}$ skilgreinum við

$$\{X\in A\}:=\{\omega\in\Omega:X(\omega)\in A\}.$$

Dreififall slembistærðar

Skilgreining: Dreififall slembistærðar X er

$$F(x) := \mathbf{P}(X \leqslant x), \quad x \in \mathbb{R}.$$

Skrifum oft F_X í stað F. Þetta er gert til að greina F frá dreififöllum annarra slembistærða.

Regla: Dreififall F uppfyllir:

- (1) $0 \le F(x) \le F(y) \le 1$, x < y.
- (2) $F(x) \to 0$ began $x \to -\infty$.
- (3) $F(x) \to 1$ begar $x \to +\infty$.
- (4) F er samfellt frá hægri: $F(y) \rightarrow F(x)$ þegar $y \searrow x$.

Aths: Ef fall F hefur þessa 4 eiginleika, þá er til slembistærð X með F sem dreififall.

Regla:
$$P(a < X \le b) = F(b) - F(a), \quad a < b.$$

Setjum
$$F(b-) := \lim_{a \nearrow b} F(a), \quad b \in \mathbb{R}.$$

Takið eftir að fyrir öll $b \in \mathbb{R}$ gildir

$$\mathbf{P}(X=b) = F(b) - F(b-),$$

og sér í lagi

$$F$$
 samfellt i $b \Rightarrow \mathbf{P}(X = b) = 0$.

Strjálar slembistærðir

Skilgr: X kallast $strj\acute{a}l$ ef hún tekur endanlega mörg gildi $\{a_1, \ldots, a_k\}$ eða teljanlega mörg gildi $\{a_1, a_2, \ldots\}$.

Fallið $x \mapsto \mathbf{P}(X = x)$ kallast þá *líkindafall* X.

Takið eftir að ef X er strjál þá er dreififallið summa:

$$F(x) := \mathbf{P}(X \leqslant x) = \sum_{y \leqslant x} \mathbf{P}(X = y).$$

Dæmi (tveir teningar): Látum P vera jafnar líkur á útkomumenginu $\Omega = \{1, 2, 3, 4, 5, 6\} \times \{1, 2, 3, 4, 5, 6\}$. Látum X vera punktasummuna, þ.e. X(i, j) = i + j. Líkindafall X er þá svona:

Og dreififall X er svona:

Samfelldar slembistærðir

Skilgreining: Fall f sem uppfyllir $f(x) \ge 0$, $x \in \mathbb{R}$, og $\int_{-\infty}^{\infty} f(x) dx = 1$ kallast **béttleiki**. Slembistærð X kallast **samfelld** ef til er béttleiki f b.a.

f kallast þá þéttleiki X. Skrifum oft f_X í stað f.

Aths: Ef f er þéttleiki, þá er til X með þéttleika f.

Regla: Ef X er samfelld slembistærð, þá er dreififallið F samfellt fall. Ennfremur gildir að

$$\mathbf{P}(a < X \leqslant b) = \int_{a}^{b} f(x) \, \mathrm{d}x, \quad a < b,$$

og

$$\mathbf{P}(X=b) = 0, \quad b \in \mathbb{R}.$$

Dæmi: Samfelld slembistærð X kallast $j\ddot{o}fn$ á bilinu [a,b] (þar sem a < b) ef hún hefur þéttleikann

$$f_X(x) = \begin{cases} \frac{1}{b-a}, & a \leqslant x \leqslant b, \\ 0, & \text{annars.} \end{cases}$$

Við segjum þá líka að X hafi $jafna\ dreifingu$ á [a,b] og að X hafi verið valið $af\ handahófi$ á milli a og b.

Samdreififall

Skoðum slembistærðir X_1, \ldots, X_n sem allar koma úr sömu tilraun, þ.e. sem allar eru skilgreindar á sama útkomumengi, $X_i : \Omega \to \mathbb{R}, i = 1, \ldots, n$, með sama \mathbf{P} .

Skilgreining: Fallið F sem er skilgreint svona

$$F(x_1,\ldots,x_n):=\mathbf{P}(X_1\leqslant x_1,\ldots,X_n\leqslant x_n)$$

kallast samdreififall slembistærðana X_1, \ldots, X_n .

Takið eftir að dreififall t.d. X_1 fæst svona úr F,

$$F_{X_1}(x) = F(x, \infty, \dots, \infty)$$

Á sama hátt fást hin dreififöllin F_{X_2}, \ldots, F_{X_n} úr F. Þessi föll eru oft nefnd **jaðardreififöll** X_1, \ldots, X_n .

Samlíkindafall

Skilgreining: Ef X_1, \ldots, X_n eru allar strjálar kallast

$$(x_1,\ldots,x_n)\mapsto \mathbf{P}(X_1=x_1,\ldots,X_n=x_n)$$

samlíkindafall þeirra.

Takið eftir að líkindafall t.d. X_1 fæst svona:

$$x \mapsto \mathbf{P}(X_1 = x) = \sum_{x_2, \dots, x_n} \mathbf{P}(X_1 = x, X_2 = x_2, \dots, X_n = x_n).$$

Á sama hátt fást líkindaföllin fyrir X_2, \ldots, X_n . Þessi föll eru oft nefnd **jaðarlíkindaföll** X_1, \ldots, X_n .

Sambéttleiki

Skilgreining: Látum F vera samdreififall X_1, \ldots, X_n . Ef til er fall $f: \mathbb{R}^n \to [0, \infty)$ þannig að

$$F(x_1,\ldots,x_n)=\int_{-\infty}^{x_n}\ldots\int_{-\infty}^{x_1}f(y_1,\ldots,y_n)\,\mathrm{d}y_1\ldots\,\mathrm{d}y_n$$

þá kallast f samþéttleiki stærðanna X_1, \ldots, X_n .

Fallið f er oft fundið með því að diffra

$$F(x_1,\ldots,x_n)=\mathbf{P}(X_1\leqslant x_1,\ldots,X_n\leqslant x_n)$$

í öllum breytistærðum x_1, \ldots, x_n .

Regla: Ef $C \subseteq \mathbb{R}^n$ er t.d. rétthyrningur, hringur, kassi eða kúla, þá má nota f til að reikna líkurnar á því að vigurinn sem stærðirnar mynda lendi í C:

$$\mathbf{P}((X_1,\ldots,X_n)\in C)=\int\cdots\int f(x_1,\ldots,x_n)\,\mathrm{d}x_1\ldots\,\mathrm{d}x_n$$

$$(x_1,\ldots,x_n)\in C$$

Regla: Ef X_1, \ldots, X_n hafa samþéttleika, þá eru þær samfelldar hver fyrir sig og þéttleiki t.d. X_1 er

$$f_{X_1}(x) = \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f(x, x_2 \dots, x_n) dx_2 \dots dx_n.$$

Á sama hátt fást hinir þéttleikarnir f_{X_2}, \ldots, f_{X_n} úr f. Þessi föll eru oft nefnd $jaðarþéttleikar <math>X_1, \ldots, X_n$.

Aths: Þótt stærðirnar X_1, \ldots, X_n séu samfelldar hver fyrir sig, er ekki víst að þær hafi samþéttleika.

Skilyrt líkindafall

Skilgreining: Ef X_1, \ldots, X_n eru strjálar slembistærðir og $\mathbf{P}(X_2 = x_2, \ldots, X_n = x_n) > 0$, þá kallast fallið

$$x \mapsto \mathbf{P}(X_1 = x \mid X_2 = x_2, \dots, X_n = x_n)$$

skilyrt líkindafall X_1 gefið $X_2 = x_2, \ldots, X_n = x_n$.

Munið að $\mathbf{P}(A \mid B) := \mathbf{P}(A \cap B)/\mathbf{P}(B)$ og því er

$$\mathbf{P}(X_1 = x \mid X_2 = x_2, \dots, X_n = x_n)$$

$$:= \frac{\mathbf{P}(X_1 = x, X_2 = x_2, \dots, X_n = x_n)}{\mathbf{P}(X_2 = x_2, \dots, X_n = x_n)}$$

Skilyrtur þéttleiki

Skilgreining: Látum X_1, \ldots, X_n hafa samþéttleika f. Látum f_{X_2,\ldots,X_n} vera samþéttleika X_2,\ldots,X_n . Ef $f_{X_2,\ldots,X_n}(x_2,\ldots,x_n)>0$, þá kallast fallið

$$x \mapsto f_{X_1|X_2,\dots,X_n}(x \mid x_2,\dots,x_n) := \frac{f(x,x_2,\dots,x_n)}{f_{X_2,\dots,X_n}(x_2,\dots,x_n)}$$

skilyrtur þéttleiki X_1 gefið $X_2 = x_2, \ldots, X_n = x_n$.

Skilgreining: Skilyrtu líkurnar á að X_1 taki t.d. gildi á bili A gefið $X_2 = x_2, \ldots, X_n = x_n$ eru þá

$$\mathbf{P}(X_1 \in A \mid X_2 = x_2, \dots, X_n = x_n)$$

$$:= \int_A f_{X_1 \mid X_2, \dots, X_n}(x \mid x_2, \dots, x_n) \, \mathrm{d}x.$$

Óháðar slembistærðir

Skilgreining: X_1, \ldots, X_n kallast $\delta h \delta \delta ar$ ef

$$\mathbf{P}(X_1 \in A_1, \dots, X_n \in A_n)$$

$$= \mathbf{P}(X_1 \in A_1) \dots \mathbf{P}(X_n \in A_n),$$

fyrir öll bil A_1, \ldots, A_n .

Regla: Petta gildir ef og aðeins ef

$$F(x_1, \ldots, x_n) = F_{X_1}(x_1) \ldots F_{X_n}(x_n), \quad x_1, \ldots, x_n \in \mathbb{R},$$

par sem F er samdreififallið og F_{X_i} er dreififall X_i :

$$F_{X_i}(x_i) = \mathbf{P}(X_i \leqslant x_i), \quad i = 1, \dots, n.$$

Regla: Strjálar slembistærðir X_1, \ldots, X_n eru óháðar ef og aðeins ef

$$\mathbf{P}(X_1 = x_1, \dots, X_n = x_n)$$

$$= \mathbf{P}(X_1 = x_1) \dots \mathbf{P}(X_n = x_n)$$

fyrir öll $x_1, \ldots, x_n \in \mathbb{R}$.

Regla: Samfelldar slembistærðir X_1, \ldots, X_n eru óháðar ef og aðeins ef

$$(x_1,\ldots,x_n)\mapsto f_{X_1}(x_1)\ldots f_{X_n}(x_n)$$

er samþéttleiki fyrir stærðirnar X_1, \ldots, X_n .

Væntigildi

Skilgreining: Væntigildi ($me\delta algildi$) X er

$$\mu = \mu_X = \mathbf{E}[X] := \begin{cases} \sum_x x \mathbf{P}(X = x), & \text{ef } X \text{ er strjál}, \\ \sum_x x f_X(x) \, \mathrm{d} x, & \text{ef } X \text{ er samfelld}. \end{cases}$$

 \mathbf{Demi} : Látum X hafa þéttleikann

$$f_X(x) = 1, \ 0 \le x \le 1, \quad \text{(og } f_X(x) = 0 \text{ annars)}.$$

Væntigildið fæst svona: $\mathbf{E}[X] = \int_{0}^{1} x \, \mathrm{d}x = \left[\frac{1}{2}x^{2}\right]_{0}^{1} = \frac{1}{2}$. Skoðum nú slombistærðina \mathbf{Y}^{3} . Til að finna $\mathbf{E}[X^{3}]$

Skoðum nú slembistærðina X^3 . Til að finna $\mathbf{E}[X^3]$ útfrá skilgreiningunni $\mathbf{E}[X^3] := \int\limits_{-\infty}^{\infty} y f_{X^3}(y) \,\mathrm{d}y$ þurfum

við að finna $f_{X^3} = F'_{X^3}$. Dreififallið F_{X^3} fæst svona:

$$F_{X^3}(y) := \mathbf{P}(X^3 \leqslant y) = \mathbf{P}(X \leqslant y^{\frac{1}{3}}) = \begin{cases} 0, & y < 0, \\ y^{\frac{1}{3}}, & 0 \leqslant y \leqslant 1, \\ 1, & y > 1. \end{cases}$$

Péttleikinn er því

$$f_{X^3}(y) = F'_{X^3}(y) = \begin{cases} \frac{1}{3}y^{-\frac{2}{3}}, & 0 \leqslant y \leqslant 1, \\ 0, & \text{annars.} \end{cases}$$

Væntigildið fæst nú svona:

$$\mathbf{E}[X^3] := \int_{-\infty}^{\infty} y f_{X^3}(y) \, \mathrm{d}y = \int_{0}^{1} y \frac{1}{3} y^{-\frac{2}{3}} \, \mathrm{d}y = \frac{1}{3} \left[\frac{y^{\frac{4}{3}}}{\frac{4}{3}} \right]_{0}^{1} = \frac{1}{4}.$$

Takið eftir að $\frac{1}{4} \neq \left(\frac{1}{2}\right)^3$ þannig að $\mathbf{E}[X^3] \neq (\mathbf{E}[X])^3$.

Pægileg væntigildisregla

Munið skilgreininguna á væntigildi:

$$\mathbf{E}[X] := \begin{cases} \sum_{x} x \mathbf{P}(X = x), & \text{ef } X \text{ er strjál}, \\ \int_{-\infty}^{\infty} x f_X(x) \, \mathrm{d}x, & \text{ef } X \text{ er samfelld}. \end{cases}$$

Lögmál ómeðvitaða tölfræðingsins (ein stærð):

Látum $g: \mathbb{R} \to \mathbb{R}$ vera fall (t.d. $g(x) = x^3$). Pá gildir að

$$\mathbf{E}[g(X)] = \begin{cases} \sum_{x} g(x) \mathbf{P}(X = x), & \text{ef } X \text{ er strjál}, \\ \sum_{x} g(x) f_X(x) \, \mathrm{d} x, & \text{ef } X \text{ er samfelld}. \end{cases}$$

Dæmi (framhald): Látum aftur X hafa þéttleikann

$$f_X(x) = 1, \ 0 \le x \le 1, \quad \text{(og } f_X(x) = 0 \text{ annars)}.$$

Við fengum áðan eftir vafstur við að finna $f_{X^3}(y)$

$$\mathbf{E}[X^3] := \int_{-\infty}^{\infty} y f_{X^3}(y) \, \mathrm{d}y = \int_{0}^{1} y \frac{1}{3} y^{-\frac{2}{3}} \, \mathrm{d}y = \frac{1}{3} \left[\frac{y^{\frac{4}{3}}}{\frac{4}{3}} \right]_{0}^{1} = \frac{1}{4}.$$

Við getum nú farið einfaldari leið:

$$\mathbf{E}[X^3] = \int_{-\infty}^{\infty} x^3 f_X(x) \, \mathrm{d}x = \int_{0}^{1} x^3 \, \mathrm{d}x = \left[\frac{x^4}{4}\right]_{0}^{1} = \frac{1}{4}.$$

Reglur um væntigildi

Munið skilgreininguna á væntigildi:

$$\mathbf{E}[X] := \begin{cases} \sum_{x} x \mathbf{P}(X = x), & \text{ef } X \text{ er strj\'al}, \\ \int_{-\infty}^{x} x f_X(x) \, \mathrm{d}x, & \text{ef } X \text{ er samfelld}. \end{cases}$$

Lögmál ómeðvitað tölfræðingsins (margar stærðir):

Látum $g: \mathbb{R}^n \to \mathbb{R}$ vera fall og setjum

Þá gildir að

$$Y=g(X_1,\ldots,X_n).$$

$$\mathbf{E}[Y] = \begin{cases} \sum_{x_n} \cdots \sum_{x_1} g(x_1, \dots, x_n) \mathbf{P}(X_1 = x_1, \dots, X_n = x_n) \\ & \text{ef } X_1, \dots, X_n \text{ eru strjálar,} \\ \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} g(x_1, \dots, x_n) f(x_1, \dots, x_n) \, \mathrm{d}x_1 \dots \, \mathrm{d}x_n \\ & \text{ef } X_1, \dots, X_n \text{ hafa samþéttleika } f. \end{cases}$$

Reglur: Fyrir $a, a_1, \ldots, a_n \in \mathbb{R}$ gildir

- (1) $\mathbf{E}[a] = a$.
- (2) $\mathbf{E}[aX] = a\mathbf{E}[X].$
- (3) $\mathbf{E}[X+Y] = \mathbf{E}[X] + \mathbf{E}[Y].$
- (4) $\mathbf{E}[a_1X_1 + \ldots + a_nX_n] = a_1\mathbf{E}[X_1] + \ldots + a_n\mathbf{E}[X_n]$

Regla: Ef X og Y eru óháð gildir $\mathbf{E}[XY] = \mathbf{E}[X]\mathbf{E}[Y]$.

Dreifni

Skilgreining: Dreifni slembistærðar X er

$$Var[X] := \mathbf{E}[(X - \mu)^2]$$
 (hér er $\mu = \mathbf{E}[X]$)

og *staðalfrávik* hennar er

$$\sigma := \sqrt{\operatorname{Var}[X]}.$$

Takið eftir að $Var[X] \ge 0$.

Reglur:

(1)
$$\operatorname{Var}[X] = \mathbf{E}[X^2] - (\mathbf{E}[X])^2.$$

(2)
$$\operatorname{Var}[a+bX] = b^2 \operatorname{Var}[X], \quad a, b \in \mathbb{R}.$$

Regla: Ef X_1, \ldots, X_n eru óháðar gildir að

$$Var[X_1 + \ldots + X_n] = Var[X_1] + \ldots + Var[X_n].$$

Samdreifni og fylgni

Skilgreining: Samdreifni slembistærða X og Y er

$$Cov[X, Y] := \mathbf{E}[(X - \mu_X)(Y - \mu_Y)]$$

og *fylgnistuðull* þeirra er

$$\rho = \rho_{X,Y} := \frac{\operatorname{Cov}[X,Y]}{\sigma_X \sigma_Y} .$$

Takið eftir að Cov[X, X] = Var[X].

Regla: $-1 \leqslant \rho \leqslant 1$

Regla: $Cov[X, Y] = \mathbf{E}[XY] - \mathbf{E}[X]\mathbf{E}[Y]$

Reglur: Fyrir $a \in \mathbb{R}$ og $n, m \in \mathbb{N}$ gildir að

- (1) $\operatorname{Cov}[aX, Y] = a \operatorname{Cov}[X, Y]$
- (2) $\operatorname{Cov}[X + Y, Z] = \operatorname{Cov}[X, Z] + \operatorname{Cov}[Y, Z]$

(3)
$$\operatorname{Cov}\left[\sum_{i=1}^{n} X_{i}, \sum_{j=1}^{m} Y_{j}\right] = \sum_{i=1}^{n} \sum_{j=1}^{m} \operatorname{Cov}[X_{i}, Y_{j}]$$

(4)
$$\operatorname{Var}\left[\sum_{i=1}^{n} X_{i}\right] = \sum_{i=1}^{n} \operatorname{Var}[X_{i}] + 2 \sum_{i < j} \operatorname{Cov}[X_{i}, X_{j}]$$

Regla: Ef X og Y eru óháðar gildir að Cov[X, Y] = 0.

Aths: Hins vegar þurfa X og Y ekki að vera óháðar þótt Cov[X, Y] = 0. Fylgnileysi útilokar ekki hæði.

Ójöfnur Markovs og Chebyshevs

Ójafna Markovs: Ef $P(X \ge 0) = 1$ þá gildir að

$$\mathbf{P}(X > a) \leqslant \frac{\mathbf{E}[X]}{a}, \quad a > 0.$$

Sönnun: Setjum

$$Y := \begin{cases} 0, & \text{ef } X \leqslant a, \\ a, & \text{ef } X > a. \end{cases}$$

Pá er $P(Y \leq X) = 1$ sem gefur $E[Y] \leq E[X]$.

Takið nú eftir að $\mathbf{E}[Y] = a \mathbf{P}(X > a)$.

Þetta tvennt gefur að $a \mathbf{P}(X > a) \leq \mathbf{E}[X]$.

Ójafna Chebyshevs: Ef $|\mathbf{E}[Y]| < \infty$ þá gildir að

$$\mathbf{P}(|Y - \mathbf{E}[Y]| > \varepsilon) \leqslant \frac{\mathrm{Var}[Y]}{\varepsilon^2}, \quad \varepsilon > 0.$$

Sönnun: Setjum $X := (Y - \mathbf{E}[Y])^2$. Þá er

$$\mathbf{P}(|Y - \mathbf{E}[Y]| > \varepsilon) = \mathbf{P}(X > \varepsilon^{2})$$

$$\leq \frac{\mathbf{E}[X]}{\varepsilon^{2}} \quad \text{(ójafna Markovs)}$$

$$= \frac{\mathbf{E}[(Y - \mathbf{E}[Y])^{2}]}{\varepsilon^{2}}$$

$$= \frac{\text{Var}[Y]}{\varepsilon^{2}}.$$

Lögmál mikils fjölda

Munið ójöfnu Chebyshevs: Ef $|\mathbf{E}[Y]| < \infty$ þá gildir að Vor[V]

$$\mathbf{P}(|Y - \mathbf{E}[Y]| > \varepsilon) \leqslant \frac{\mathrm{Var}[Y]}{\varepsilon^2}, \quad \varepsilon > 0.$$

Við notum nú þessa ójöfnu til að sanna merka reglu.

Lögmál mikils fjölda: Ef X_1, X_2, \ldots eru óháðar og hafa allar sama endanlega væntigildi $\mu = \mathbf{E}[X_i]$ og allar sömu endanlegu dreifni $\sigma^2 = \mathrm{Var}[X_i]$, þá gildir fyrir öll $\varepsilon > 0$ að

$$\mathbf{P}\left(\left|\frac{X_1+\ldots+X_n}{n}-\mu\right|>\varepsilon\right)\to 0,\quad n\to\infty.$$

Sönnun: Setjum $Y := (X_1 + \ldots + X_n)/n$. Þá er

$$E[Y] = (\mu + ... + \mu)/n$$
 b.e. $E[Y] = \mu$

og vegna þess að X_1, \ldots, X_n eru óháðar fæst líka

$$Var[Y] = (\sigma^2 + ... + \sigma^2)/n^2$$
 b.e. $Var[Y] = \sigma^2/n$.

Ójafna Chebyshevs gefur nú

$$\mathbf{P}(|Y - \mathbf{E}[Y]| > \varepsilon) \leqslant \frac{\sigma^2/n}{\varepsilon^2} \to 0, \quad n \to \infty.$$

Lögmál mikils fjölda og túlkun líkinda

Við vorum að sanna eftirfarandi reglu:

Lögmál mikils fjölda: Ef X_1, X_2, \ldots eru óháðar og hafa allar sama endanlega væntigildi $\mu = \mathbf{E}[X_i]$ og allar sömu endanlegu dreifni $\sigma^2 = \mathrm{Var}[X_i]$, þá gildir fyrir öll $\varepsilon > 0$ að

$$\mathbf{P}\left(\left|\frac{X_1+\ldots+X_n}{n}-\mu\right|>\varepsilon\right)\to 0,\quad n\to\infty.$$

Þetta skrifum við stundum losaralega svona:

$$\frac{X_1 + \ldots + X_n}{n} \approx \mu$$
 þegar n er stórt.

Um túlkun líkinda: Hugsum okkur að við framkvæmum tilraun í n óháð skipti og skráum hjá okkur 1 eða 0 eftir því hvort tiltekinn atburður gerist eða gerist ekki. Við fáum þá óháðar slembistærðir X_1, \ldots, X_n þ.a. $\mathbf{P}(X_i = 1) = p$ þar sem p eru líkurnar á að atburðurinn gerist í einni tiltekinni tilraun (segjum þá að sú tilraun heppnist). Nú er $\mu = p$ og lögmál mikils fjölda gefur: eftir margar tilraunir er

hlutfallsleg tíðni heppnaðra tilrauna $\approx p$.

Þess vegna er eðlilegt að túlka líkindin p sem hlutfallslega tíðni heppnaðra tilrauna þegar tilraun er endurtekin í mörg óháð skipti.

Nokkrar mikilvægar slembistærðir

STRJÁLAR: Bernoulli-stærð $X \sim \text{Ber}(p)$

tvíkostastærð $X \sim \text{Bin}(n, p)$

Poisson-stærð $X \sim Poi(\lambda)$

strjál veldisstærð $X \sim \text{Geo}(p)$

happadrættisstærð $X \sim \text{Hyp}(N, M, n)$

SAMFELLDAR: jöfn stærð $X \sim \text{Unf}([a, b])$

veldisstærð $X \sim \text{Exp}(\lambda)$

normleg stærð $X \sim N(\mu, \sigma^2)$

Bernoulli-stærð $X \sim \text{Ber}(p)$

Skilgreining: Látum 0 . Slembistærð <math>X kallast Bernoulli-stærð með stika p ef

$$P(X = 1) = p$$
 og $P(X = 0) = 1 - p$.

Reglur: Ef $X \sim \text{Ber}(p)$ gildir að

$$\mathbf{E}[X] = p$$

(2)
$$\operatorname{Var}[X] = p(1-p)$$

Sönnun: (1) $\mathbf{E}[X] = 0 \mathbf{P}(X=0) + 1 \mathbf{P}(X=1) = p$. (2) Par eð $0^2 = 0$ og $1^2 = 1$, er $X^2 \sim \text{Ber}(p)$. Pví er $\mathbf{E}[X^2] = \mathbf{E}[X] = p$. Notum $\text{Var}[X] = \mathbf{E}[X^2] - (\mathbf{E}[X])^2$. Fáum $\text{Var}[X] = p - p^2 = p(1-p)$.

Tvíkostastærð $X \sim \text{Bin}(n, p)$

Skilgreining: Látum $n \ge 1$ og 0 . Slembistærð <math>X kallast tvikostastærð (binomial) með stika n, p ef

$$\mathbf{P}(X = k) = \binom{n}{k} p^k (1 - p)^{n-k}, \quad k = 0, \dots, n.$$

Regla: Ef X_1, \ldots, X_n eru óháðar Ber(p), þá er $X_1 + \ldots + X_n \sim Bin(n, p)$.

Sönnun: Til að $\{X_1+...+X_n=k\}$ gerist þarf að fá 1 í k skipti og 0 í hin. Látum $\{i_1,\ldots,i_k\}$ vera hlutmengi úr $\{1,\ldots,n\}$ með k stökum og $\{j_1,\ldots,j_{n-k}\}$ vera fyllimengið. Notum að X_1,\ldots,X_n eru óháðar $\mathrm{Ber}(p)$:

$$\mathbf{P}(X_{i_1}=1,...,X_{i_k}=1,X_{j_1}=0,...,X_{j_{n-k}}=0)=p^k(1-p)^{n-k}.$$

Margföldun með fjölda hlutmengja $\{i_1, \ldots, i_k\}$ gefur

$$\mathbf{P}(X_1 + \ldots + X_n = k) = \binom{n}{k} p^k (1-p)^{n-k}.$$

Reglur: Ef $X \sim \text{Bin}(n, p)$ gildir að

$$\mathbf{E}[X] = np$$

(2)
$$\operatorname{Var}[X] = np(1-p)$$

Sönnun: Látum $X_1, ..., X_n$ vera óháðar Ber(p). Notum $X_1 + ... + X_n \sim Bin(n, p)$, summureglur um væntigildi og dreifni, og loks að $\mathbf{E}[X_i] = p$ og $Var[X_i] = p(1-p)$: $\mathbf{E}[X] = \mathbf{E}[X_1 + ... + X_n] = \mathbf{E}[X_1] + ... + \mathbf{E}[X_n] = np$, $Var[X] = Var[X_1 + ... + X_n]$ (notum næst óhæðið) $= Var[X_1] + ... + Var[X_n] = np(1-p)$.

Poisson-stærð $X \sim \text{Poi}(\lambda)$

Skilgreining: Látum $0 < \lambda < \infty$. Slembistærð X kallast Poisson-stærð með stika λ ef

$$\mathbf{P}(X = k) = e^{-\lambda} \frac{\lambda^k}{k!}, \quad k = 0, 1, 2, \dots$$

Þetta er líkindafall: $\sum_{k=0}^{\infty} \frac{\lambda^k}{k!} = e^{\lambda}$ svo $\sum_{k=0}^{\infty} e^{-\lambda} \frac{\lambda^k}{k!} = 1$.

Regla: Ef $Y \sim \text{Bin}(n, p)$ og $X \sim \text{Poi}(np)$ þá gildir að

$$|\mathbf{P}(Y \in A) - \mathbf{P}(X \in A)| \leqslant \begin{cases} np^2 \\ p \end{cases} \quad \text{fyrir \"{o}ll } A \subseteq \mathbb{R}.$$

Skrifum betta stundum losaralega svona:

$$Bin(n,p) \approx Poi(np)$$
 begar p er lítið.

Þetta þýðir að ef tilraun er endurtekin í n óháð skipti og líkurnar p á að heppnast í einni tiltekinni tilraun eru hverfandi litlar, þá er fjöldi heppnaðra tilrauna næstum Poisson með $\lambda = np$.

Reglur: Ef $X \sim \text{Poi}(\lambda)$ gildir að

$$\mathbf{E}[X] = \lambda$$

(2)
$$Var[X] = \lambda$$

Sönnun: (1) $\mathbf{E}[X] = \sum_{0}^{\infty} k \, e^{-\lambda} \, \frac{\lambda^{k}}{k!} = \lambda \sum_{1}^{\infty} e^{-\lambda} \frac{\lambda^{k-1}}{(k-1)!} = \lambda.$ (2) $\mathbf{E}[X(X-1)] = \sum_{0}^{\infty} k(k-1) e^{-\lambda} \frac{\lambda^{k}}{k!} = \lambda^{2} \sum_{2}^{\infty} e^{-\lambda} \frac{\lambda^{k-2}}{(k-2)!} = \lambda^{2}$ gefur lokaskrefið í $\mathbf{E}[X^{2}] = \mathbf{E}[X(X-1)] + \mathbf{E}[X] = \lambda^{2} + \lambda$ sem gefur $\mathrm{Var}[X] = \mathbf{E}[X^{2}] - (\mathbf{E}[X])^{2} = (\lambda^{2} + \lambda) - \lambda^{2} = \lambda.$

Strjál veldisstærð $X \sim \text{Geo}(p)$

Skilgreining: Látum 0 . Slembistærð <math>X kallast strjál veldisstærð með stika p ef

$$\mathbf{P}(X=k) = p(1-p)^{k-1}, \quad k = 1, 2, \dots$$

Petta er líkindafall: $\sum_{k=1}^{\infty} (1-p)^{k-1} = \frac{1}{1-(1-p)} = \frac{1}{p}.$

Regla: Látum Y_1, Y_2, \ldots vera óháðar Ber(p). Látum X vera fyrsta n þannig að $Y_n = 1$, þ.e.

$$X := \min\{n \geqslant 1 : Y_n = 1\}.$$

Pá er $X \sim \text{Geo}(p)$.

Sönnun:
$$\mathbf{P}(X = k) = \mathbf{P}(Y_1 = 0, \dots, Y_{k-1} = 0, Y_k = 1)$$

= $\mathbf{P}(Y_1 = 0)...\mathbf{P}(Y_{k-1} = 0)\mathbf{P}(Y_k = 1) = (1-p)^{k-1}p, \ k \geqslant 1$

Regla: Ef X tekur eingöngu heiltölugildi þá:

$$X \sim \text{Geo}(p) \iff \mathbf{P}(X > n) = (1 - p)^n, \ n \geqslant 0$$

Sönnun á \Rightarrow : Notum $X \sim \text{Geo}(p)$ úr reglunni hér að ofan: $\mathbf{P}(X > n) = \mathbf{P}(Y_1 = 0, \dots, Y_n = 0) = (1 - p)^n$.

Sönnun á
$$\Leftarrow$$
: $\mathbf{P}(X = k) = \mathbf{P}(X > k - 1) - \mathbf{P}(X > k)$
= $(1 - p)^{k-1} - (1 - p)^k = (1 - p)^{k-1}(1 - (1 - p)), k \ge 1$

Reglur: Ef $X \sim \text{Geo}(p)$ gildir að

$$\mathbf{E}[X] = \frac{1}{p} \qquad \mathbf{og} \qquad \operatorname{Var}[X] = \frac{1-p}{p^2}$$

Happadrættisstærð $X \sim \text{Hyp}(N, M, n)$

Kúlur eru settar í kassa, N hvítar og M svartar. Svo eru dregnar n kúlur af handahófi án skila. Hverjar eru líkurnar á að nákvæmlega k séu hvítar?

Látum X vera fjölda hvítra kúlna sem dregnar eru.

Til að fá $\{X = k\}$ þarf k hvítar og n - k svartar.

Hægt er að draga k úr N hvítum á $\binom{N}{k}$ marga vegu og n-k úr M svörtum á $\binom{M}{n-k}$ marga vegu.

Margföldunarreglan gefur að hægt er að fá $\{X=k\}$ á $\binom{N}{k}\binom{M}{n-k}$ marga vegu.

Heildarfjöldi möguleika á að draga n úr N+M er $\binom{N+M}{n}$ svo líkurnar á að fá nákvæmlega k hvítar eru

$$\mathbf{P}(X=k) = \frac{\binom{N}{k} \binom{M}{n-k}}{\binom{N+M}{n}}$$

 $\mathbf{par} \mathbf{sem} \ k \mathbf{uppfyllir} \max\{0, n-M\} \leqslant k \leqslant \min\{n, N\}.$

Stærð með þetta líkindafall kallast *happadrættistærð*

Regla: Látum $X \sim \mathrm{Hyp}(N,M,n)$. Setjum $p = \frac{N}{N+M}$. Pá gildir $\mathbf{E}[X] = np$

$$Var[X] = np(1-p)\left(1 - \frac{n-1}{N+M-1}\right)$$

Jöfn stærð $X \sim \text{Unf}[a, b]$

Skilgreining: Látum $-\infty < a < b < \infty$. Slembistærð X kallast jöfn stærð á bilinu [a,b] ef

$$f_X(x) = \begin{cases} \frac{1}{b-a}, & a \leqslant x \leqslant b, \\ 0, & \text{annars.} \end{cases}$$

Reglur: Ef $X \sim \text{Unf}[a, b]$ gildir að

(1)
$$F_X(x) = \frac{x-a}{b-a}, \quad a \leqslant x \leqslant b$$

(2)
$$\mathbf{E}[X] = \frac{a+b}{2}$$

(3)
$$\operatorname{Var}[X] = \frac{(b-a)^2}{12} \quad \text{og} \quad \sigma_X = \frac{b-a}{\sqrt{12}}$$

Sönnun: (1) $F_X(x) = \int_a^x \frac{1}{b-a} dy = \frac{x-a}{b-a}, \quad a \le x \le b.$

(2)
$$\mathbf{E}[X] = \int_a^b \frac{x}{b-a} dx = \left[\frac{1}{2} \frac{x^2}{b-a}\right]_a^b = \frac{1}{2} \frac{b^2 - a^2}{b-a} = \frac{1}{2} \frac{(a+b)(b-a)}{b-a} = \frac{a+b}{2}.$$

(3)
$$\mathbf{E}[X^2] = \int_a^b \frac{x^2}{b-a} dx = \frac{1}{3} \frac{b^3 - a^3}{b-a} = \frac{1}{3} \frac{(a^2 + ab + b^2)(b-a)}{b-a} = \frac{a^2 + ab + b^2}{3}$$

og því
$$Var[X] = \mathbf{E}[X^2] - (\mathbf{E}[X])^2 = \frac{a^2 + ab + b^2}{3} - (\frac{a+b}{2})^2$$

$$= \frac{4(a^2+ab+b^2)-3(a^2+2ab+b^2)}{12} = \frac{a^2-2ab+b^2}{12} = \frac{(b-a)^2}{12}.$$

Varðveisluregla: $X \sim \text{Unf}[a, b] \Leftrightarrow \frac{X - a}{b - a} \sim \text{Unf}[0, 1]$

Sönnun: Tökum $u \in [0,1]$ og $x \in [a,b]$ þ.a. $u = \frac{x-a}{b-a}$. Þá er $\mathbf{P}(X \leqslant x) = \frac{x-a}{b-a} \Leftrightarrow \mathbf{P}(\frac{X-a}{b-a} \leqslant u) = u$.

Veldisstærð $X \sim \text{Exp}(\lambda)$

Skilgreining: Látum $0 < \lambda < \infty$. Slembistærð X kallast veldisstærð með stika λ ef

$$f_X(x) = \begin{cases} \lambda e^{-\lambda x}, & x \geqslant 0, \\ 0, & x < 0. \end{cases}$$

Reglur: Ef $X \sim \text{Exp}(\lambda)$ gildir að

(1)
$$\mathbf{P}(X > x) = e^{-\lambda x}, \quad x \geqslant 0$$

$$(2) F_X(x) = 1 - e^{-\lambda x}, \quad x \geqslant 0$$

(3)
$$\mathbf{E}[X] = \frac{1}{\lambda}$$

(4)
$$\operatorname{Var}[X] = \frac{1}{\lambda^2}$$

Sönnun: (1) $\mathbf{P}(X > x) = \int_{x}^{\infty} \lambda e^{-\lambda y} dy = e^{-\lambda x}, \qquad x \geqslant 0$

(2)
$$F_X(x) = \mathbf{P}(X \le x) = 1 - \mathbf{P}(X > x) = 1 - e^{-\lambda x}, x \ge 0$$

(3)
$$\mathbf{E}[X] = \int_0^\infty x \lambda e^{-\lambda x} \mathbf{d}x = [-xe^{-\lambda x}]_0^\infty + \int_0^\infty e^{-\lambda x} \mathbf{d}x = \frac{1}{\lambda}$$

(4)
$$\mathbf{E}[X^2] = \int_0^\infty x^2 \lambda e^{-\lambda x} dx = [-x^2 e^{-\lambda x}]_0^\infty + \int_0^\infty 2x e^{-\lambda x} dx$$

$$= \frac{2}{\lambda} \mathbf{E}[X] = \frac{2}{\lambda^2}$$
 og því $Var[X] = \mathbf{E}[X^2] - (\mathbf{E}[X])^2 = \frac{2}{\lambda^2} - \frac{1}{\lambda^2}$

Skilgreining: Slembistærð Xsem tekur bara jákvæð gildi kallast minnislaus ef

$$P(X > a + b | X > a) = P(X > b), \quad a, b \ge 0.$$

Takið eftir að ef tæki er alltaf eins og nýtt meðan það er nothæft, þá er endingartími þess minnislaus.

Regla: X er minnislaus \Leftrightarrow til er λ b.a. $X \sim \text{Exp}(\lambda)$

Normleg stærð $X \sim N(\mu, \sigma^2)$

Skilgreining: Látum $\mu \in \mathbb{R}$ og $0 < \sigma < \infty$. Slembistærð X kallast normleg stærð með stika μ og σ^2 ef

$$f_X(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2\sigma^2}(x-\mu)^2}, \quad x \in \mathbb{R}.$$

Regla: $X \sim N(\mu, \sigma^2) \Rightarrow \mathbf{E}[X] = \mu \text{ og } Var[X] = \sigma^2$

Varðveisluregla:
$$X \sim N(\mu, \sigma^2) \Leftrightarrow \frac{X - \mu}{\sigma} \sim N(0, 1)$$

Z kallast $st\"{o}\eth lu\eth$ normleg stærð ef

$$Z \sim N(0, 1)$$
.

Pá er $\mathbf{E}[Z] = 0$ og Var[Z] = 1 og

$$f_Z(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}, \quad x \in \mathbb{R}.$$

Loks er $F_Z = \Phi$ bar sem

$$\Phi(x) := \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-\frac{y^2}{2}} \, \mathrm{d}y, \quad x \in \mathbb{R}.$$

Notkun á $Z \sim N(0,1)$ og Φ

Regla:
$$X \sim N(\mu, \sigma^2) \Leftrightarrow F_X(x) = \Phi\left(\frac{x-\mu}{\sigma}\right), x \in \mathbb{R}$$

Normleg stærð X er samfelld og því gildir fyrir $a \in \mathbb{R}$ að $\mathbf{P}(X = a) = 0$ og $\mathbf{P}(X < a) = \mathbf{P}(X \leqslant a)$. Þess vegna má skipta á < og \le (og á > og \ge) alls staðar hér fyrir neðan.

Nota má Φ til að reikna líkur fyrir $X \sim N(\mu, \sigma^2)$:

og
$$\mathbf{P}(X < b) = \Phi\left(\frac{b - \mu}{\sigma}\right)$$
$$\mathbf{P}(a < X < b) = \Phi\left(\frac{b - \mu}{\sigma}\right) - \Phi\left(\frac{a - \mu}{\sigma}\right).$$

Vegna samhverfu gildir: $\mathbf{P}(Z<-x)=\mathbf{P}(Z>x)$ $\mathbf{p}(Z<-x)=\mathbf{p}(Z>x)$ $\Phi(-x)=1-\Phi(x).$

Skilgreining: Fyrir $0 < \alpha < 1$ látum við z_{α} vera þá tölu sem uppfyllir

$$\mathbf{P}(Z>z_{\alpha})=\alpha.$$

$$z_{0,05} = 1,645$$
 $z_{0,025} = 1,960$ $z_{0,01} = 2,326$ $z_{0,005} = 2,576$

Varðveislureglur

Eftirfarandi reglur gilda um óháðar stærðir X og Y.

$$X \sim \text{Bin}(n, p)$$

 $Y \sim \text{Bin}(m, p)$ $\Rightarrow X + Y \sim \text{Bin}(n + m, p).$

$$\left. \begin{array}{l} X \sim \operatorname{Poi}(\lambda) \\ Y \sim \operatorname{Poi}(\mu) \end{array} \right\} \Rightarrow X + Y \sim \operatorname{Poi}(\lambda + \mu).$$

$$\left. \begin{array}{l} X \sim \mathrm{N}(\mu_1, \sigma_1^2) \\ Y \sim \mathrm{N}(\mu_2, \sigma_2^2) \end{array} \right\} \Rightarrow X + Y \sim \mathrm{N}(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2).$$

$$\left. \begin{array}{l} X \sim \operatorname{Exp}(\lambda_1) \\ Y \sim \operatorname{Exp}(\lambda_2) \end{array} \right\} \Rightarrow \min\{X,Y\} \sim \operatorname{Exp}(\lambda_1 + \lambda_2).$$

Sönnun á síðustu reglunni: Fyrir x > 0 fæst

$$\mathbf{P}(\min\{X,Y\} > x) = \mathbf{P}(X > x, Y > x)$$

$$= \mathbf{P}(X > x)\mathbf{P}(Y > x) \quad (X \text{ og } Y \text{ eru \'oh\'a\'oar})$$

$$= e^{-\lambda_1 x} e^{-\lambda_2 x} \qquad (X \sim \text{Exp}(\lambda_1) \text{ og } Y \sim \text{Exp}(\lambda_2))$$

það er

$$\mathbf{P}(\min\{X,Y\} > x) = e^{-(\lambda_1 + \lambda_2)x}, \quad x > 0.$$

Petta þýðir að $\min\{X,Y\} \sim \text{Exp}(\lambda_1 + \lambda_2)$.

Athugasemd um stöðlun

Ef X er slembistærð með endanlegt væntigildi μ og endanlega strangt jákvæða dreifni σ^2 , kallast

$$\frac{X-\mu}{\sigma}$$
 stöðluð stærð.

Þá gildir

$$\mathbf{E}\left[\frac{X-\mu}{\sigma}\right] = 0$$
 og $\operatorname{Var}\left[\frac{X-\mu}{\sigma}\right] = 1.$

Látum X_1, X_2, \ldots vera óháðar slembistærðir sem allar hafa sama endanlega væntigildi

$$\mu = \mathbf{E}[X_i], \quad i = 1, 2, \dots,$$

og sömu endanlegu strangt jákvæðu dreifni

$$\sigma^2 = \operatorname{Var}[X_i], \quad i = 1, 2, \dots$$

Þá gildir fyrir öll $n \in \mathbb{N}$ að

$$\mathbf{E}[X_1 + \ldots + X_n] = n\mu \text{ og } Var[X_1 + \ldots + X_n] = n\sigma^2$$

og því gefur stöðlun

$$\mathbf{E} \left[\frac{X_1 + \ldots + X_n - n\mu}{\sigma \sqrt{n}} \right] = 0$$

og

$$\operatorname{Var}\left[\frac{X_1 + \ldots + X_n - n\mu}{\sigma\sqrt{n}}\right] = 1.$$

Höfuðmarkgildisreglan – Normleg nálgun

Höfuðmarkgildisreglan: Látum X_1, X_2, \ldots vera óháðar slembistærðir sem allar hafa sama dreififall með endanlegt væntigildi

$$\mu = \mathbf{E}[X_i], \quad i = 1, 2, \dots,$$

og endanlega strangt jákvæða dreifni

$$\sigma^2 = \operatorname{Var}[X_i], \quad i = 1, 2, \dots$$

Þá gildir fyrir öll $x \in \mathbb{R}$ að

$$\mathbf{P}\left(\frac{X_1 + \ldots + X_n - n\mu}{\sigma\sqrt{n}} \leqslant x\right) \to \Phi(x), \quad n \to \infty.$$

Við skrifum þetta oft losaralega svona:

$$\frac{X_1 + \ldots + X_n - n\mu}{\sigma\sqrt{n}} \approx N(0,1)$$
 þegar n stórt

eða svona:

$$X_1 + \ldots + X_n \approx N(n\mu, n\sigma^2)$$
 begar n stort.

Dæmi: Byggja á 1000 íbúða hverfi. Vitað er að bílafjöldi á dæmigerða fjölskyldu í svona hverfi hefur eftirfarandi dreifingu:

Spurning: Hvað þarf stóra bílageymslu til að hún dugi fyrir hverfið með u.þ.b. 95% líkum?

Normleg nálgun á Bin(n, p) og á $Poi(\lambda)$

Höfuðmarkgildisreglan segir að ef X_1, \ldots, X_n eru óháðar slembistærðir sem allar hafa sama dreififall með endanlegt væntigildi μ og endanlega strangt jákvæða dreifni σ^2 þá gildir að

$$X_1 + \ldots + X_n \approx N(n\mu, n\sigma^2)$$
 begar n stórt.

Vegna þess að Bin(n,p) er summa n óháðra Ber(p) leiðir af þessu að

$$Bin(n, p) \approx N(np, np(1-p))$$
 þegar n er stórt.

Hversu stórt n þarf að vera fer eftir því hvað p er. Nálgunin verður þeim mun betri sem p er nær $\frac{1}{2}$. Hér er algeng puttaregla:

puttaregla:
$$np(1-p) \geqslant 10$$

Vegna þess að $\mathrm{Poi}(\lambda) \approx \mathrm{Bin}(n,\lambda/n)$ þegar n er stórt leiðir af þessu að

$$Poi(\lambda) \approx N(\lambda, \lambda)$$
 begar λ er stórt.

Hér er algeng puttaregla:

puttaregla:
$$\lambda \geqslant 10$$

Poisson-ferli (c)

Látum T_1, T_2, \ldots vera slembistærðir þ.a.

$$0 < T_1 < T_2 < \dots$$
 og $T_n \to \infty$, $n \to \infty$.

Hugsum okkur að þessi T_n séu tímapunktar þegar einhver viðburður gerist.

Talningarferli viðburðastreymisins er $(N_t)_{t\geqslant 0}$ þar sem $N_t = \#\{n\geqslant 1: T_n\leqslant t\} =$ fjöldi viðburða á bilinu [0,t] Billengdir viðburðastreymisins eru $X_1 = T_1$ og $X_n = T_n - T_{n-1}, \ n\geqslant 2.$

Skilgreining: Látum $0 < c < \infty$. Talningarferli $(N_t)_{t \ge 0}$ kallast *Poisson-ferli* með *tíðni* c ef

- $N_{t_1}, N_{t_2} N_{t_1}, \dots, N_{t_n} N_{t_{n-1}}$ eru óháðar slembistærðir fyrir öll $n \ge 1$ og $0 < t_1 < t_2 < \dots < t_n$.
- $\mathbf{E}[N_t] = ct$ fyrir öll $t \ge 0$.

Regla: Ef $(N_t)_{t\geqslant 0}$ er Poisson-ferli með tíðni c gildir: $N_t \sim \text{Poi}(ct), \quad t\geqslant 0.$

Jafngildisregla: $(N_t)_{t\geqslant 0}$ er Poisson-ferli með tíðni c

$$\Leftrightarrow$$

 X_1, X_2, \ldots eru óháðar og allar Exp(c)

$$\Leftrightarrow$$

 $N_t \sim \text{Poi}(ct), \ t \geqslant 0$, og ef skilyrt er með $\{N_t = n\}$ er eins og þessum n punktum hafi verið stráð af handahófi á bilið [0, t].

Poisson-ferli – samruni og sundrun

Regla (samruni): Látum $(L_t)_{t\geqslant 0}$ og $(M_t)_{t\geqslant 0}$ vera óháð Poisson-ferli með tíðnir a og b. Setjum

$$N_t = L_t + M_t, \quad t \geqslant 0,$$

og fyrir $n \geqslant 1$

$$I_n = \begin{cases} 0 & \text{ef } n^{\text{ti}} \text{ punktur } (N_t)_{t \geqslant 0} \text{ kemur } \text{úr } (L_t)_{t \geqslant 0}, \\ 1 & \text{ef } n^{\text{ti}} \text{ punktur } (N_t)_{t \geqslant 0} \text{ kemur } \text{úr } (M_t)_{t \geqslant 0}. \end{cases}$$

Þá gildir að

- $(N_t)_{t\geqslant 0}$ er Poisson-ferli með tíðni c=a+b,
- I_1, I_2, \ldots eru óháðar og allar Ber(p) þar sem $p = \frac{b}{c}$,
- ullet og runan (I_1,I_2,\ldots) er óháð $(N_t)_{t\geqslant 0}$.

Regla (sundrun): Látum

- $(N_t)_{t\geqslant 0}$ vera Poisson-ferli með tíðni c,
- I_1, I_2, \ldots vera óháðar og allar Ber(p),
- ullet og rununa (I_1,I_2,\ldots) vera óháða $(N_t)_{t\geqslant 0}$.

Látum $(L_t)_{t\geqslant 0}$ og $(M_t)_{t\geqslant 0}$ vera talningarferli þannig að

$$\mathbf{Og} \qquad L_t + M_t = N_t, \quad t \geqslant 0,$$

$$I_n = \begin{cases} 0 & \text{ef } n^{\text{ti}} \text{ punktur } (N_t)_{t \geqslant 0} \text{ kemur } \text{\'ur } (L_t)_{t \geqslant 0}, \\ 1 & \text{ef } n^{\text{ti}} \text{ punktur } (N_t)_{t \geqslant 0} \text{ kemur } \text{\'ur } (M_t)_{t \geqslant 0}. \end{cases}$$

Pá eru $(L_t)_{t\geqslant 0}$ og $(M_t)_{t\geqslant 0}$ óháð Poisson-ferli með tíðnir a=(1-p)c og b=pc.