De la logique propositionnelle à la logique du premier ordre

David Delahaye

Faculté des Sciences David. Delahaye@lirmm.fr

Licence L3 2023-2024

Limites de la logique propositionnelle

Problèmes d'expressivité

- L'« atome » est la variable propositionnelle, qui est indécomposable;
- Comment rendre compte de points communs entre propositions?
 « Marie dort » et « Pierre ne dort pas »;
- Comment représenter le partage d'entités?
 - « Pierre ne dort pas » et « Pierre regarde Marie ».

Logique du premier ordre (ou calcul des prédicats)

Définitions préliminaires

- $V \equiv$ ensemble de variables d'individu x, y, etc.;
- $S_F \equiv$ ensemble de symboles de fonctions f, g, etc.;
- $\mathcal{S}_{\mathcal{P}} \equiv$ ensemble de symboles de prédicats P, Q, etc.;
- $\mathcal{S}_{\mathcal{F}} \cap \mathcal{S}_{\mathcal{P}} = \emptyset$;
- Arité (nombre d'arguments) $m: \mathcal{S}_{\mathcal{F}} \cup \mathcal{S}_{\mathcal{P}} \to \mathbb{N}:$
 - Exemple : pour f(x, y) avec $f \in \mathcal{S}_{\mathcal{F}}$, m(f) = 2;
 - Exemple : pour P(x, y, z) avec $P \in \mathcal{S}_{\mathcal{P}}$, m(P) = 3.

Logique du premier ordre (ou calcul des prédicats)

Termes du premier ordre

- ullet Plus petit ensemble ${\mathcal T}$ t.q. :
 - ▶ Si $x \in \mathcal{V}$ alors $x \in \mathcal{T}$;
 - ▶ Si $f \in \mathcal{S}_{\mathcal{F}}$ d'arité n et $t_1, \ldots, t_n \in \mathcal{T}$ alors $f(t_1, \ldots, t_n) \in \mathcal{T}$.
- Les constantes sont des fonctions d'arité 0;
- Important : dans un premier temps, nous ne considérerons que les fonctions d'arité 0 (constantes) dans nos exemples.

Formules du premier ordre

- ullet Plus petit ensemble ${\mathcal F}$ t.q. :
 - ▶ Si $P \in \mathcal{S}_{\mathcal{P}}$ d'arité n et $t_1, \ldots, t_n \in \mathcal{T}$ alors $P(t_1, \ldots, t_n) \in \mathcal{F}$;
 - \bot , $\top \in \mathcal{F}$;
 - ▶ Si $\Phi \in \mathcal{F}$ alors $\neg \Phi \in \mathcal{F}$;
 - ▶ Si $\Phi, \Phi' \in \mathcal{F}$ alors $\Phi \land \Phi', \Phi \lor \Phi', \Phi \Rightarrow \Phi', \Phi \Leftrightarrow \Phi' \in \mathcal{F}$;
 - ▶ Si $x \in \mathcal{V}$ et $\Phi \in \mathcal{F}$ alors $\forall x.\Phi, \exists x.\Phi \in \mathcal{F}$.

Logique du premier ordre (ou calcul des prédicats)

Associativité et précédence des connecteurs

• Inchangées par rapport à la logique propositionnelle.

Notation pointée pour les quantificateurs

- La portée d'un quantificateur va jusqu'à la parenthèse fermante de la formule du quantificateur;
- Si la formule du quantificateur n'est pas parenthésée, la portée du quantificateur va jusqu'à la fin de la formule;
- Donc, si on veut arrêter la portée d'un quantificateur, il suffit d'utiliser des parenthèses pour limiter explicitement la portée du quantificateur;
- Exemple :
 - $\exists x. P(x) \Rightarrow P(a) \land P(b) \equiv \exists x. (P(x) \Rightarrow P(a) \land P(b));$
 - Si on veut que le \exists ne porte que sur P(x), on doit écrire : $(\exists x.P(x)) \Rightarrow P(a) \land P(b)$.
- Notation : $\forall x, y. \Phi \equiv \forall x. \forall y. \Phi$ (idem pour \exists).

Définitions

- Une variable x est libre dans une formule Φ ssi il existe une occurrence de x dans Φ qui n'est sous la portée d'aucun quantificateur;
- Une variable x est liée dans une formule Φ ssi il existe une occurrence de x dans Φ qui est sous la portée d'un quantificateur;

Définitions

- L'ensemble des variables libres $FV(\Phi)$ et l'ensemble des variables liées $BV(\Phi)$ d'une formule Φ sont définis par récurrence structurelle par :
 - ▶ Si $x \in V$ alors $FV(x) = \{x\}$, $BV(x) = \emptyset$;
 - Si $f \in \mathcal{S}_{\mathcal{F}}$ d'arité n et $t_1, \ldots, t_n \in \mathcal{T}$ alors $FV(f(t_1, \ldots, t_n)) = FV(t_1) \cup \ldots \cup FV(t_n), BV(f(t_1, \ldots, t_n)) = \emptyset$;
 - Si $P \in \mathcal{S}_{\mathcal{P}}$ d'arité n et $t_1, \ldots, t_n \in \mathcal{T}$ alors $FV(P(t_1, \ldots, t_n)) = FV(t_1) \cup \ldots \cup FV(t_n), \ BV(P(t_1, \ldots, t_n)) = \emptyset$;
 - $FV(\top) = FV(\bot) = \emptyset$, $BV(\top) = BV(\bot) = \emptyset$;
 - ► Si $\Phi \in \mathcal{F}$ alors $FV(\neg \Phi) = FV(\Phi)$, $BV(\neg \Phi) = BV(\Phi)$;
 - Si Φ , $\Phi' \in \mathcal{F}$ alors $FV(\Phi \land \Phi') = FV(\Phi \lor \Phi') = FV(\Phi \Rightarrow \Phi') = FV(\Phi \Leftrightarrow \Phi') = FV(\Phi) \cup FV(\Phi')$, $BV(\Phi \land \Phi') = BV(\Phi \lor \Phi') = BV(\Phi \Leftrightarrow \Phi') = BV(\Phi \Leftrightarrow \Phi') = BV(\Phi) \cup BV(\Phi')$;
 - Si $x \in \mathcal{V}$ et $\Phi \in \mathcal{F}$ alors $FV(\forall x.\Phi) = FV(\exists x.\Phi) = FV(\Phi) \setminus \{x\}$, $BV(\forall x.\Phi) = BV(\exists x.\Phi) = BV(\Phi) \cup \{x\}$.

Exemples

- y est libre dans $\forall x. P(x, y)$;
- x est liée dans $\forall x.P(x,y)$;
- Dans la formule $(\forall x.P(x,y)) \land (\exists z.Q(z) \lor R(t))$:
 - L'ensemble des variables libres est $\{y, t\}$;
 - L'ensemble des variables liées est $\{x, z\}$.
- Une variable peut être libre et liée à la fois (c'est-à-dire qu'elle possède une occurrence où elle est libre et une autre où elle est liée), par exemple : $(\forall x.P(x,y)) \land Q(x)$, où x est libre (deuxième occurrence) et liée (première occurrence) à la fois.

Formule polie ou propre

- Une formule est polie ou propre si aucune variable n'est à la fois libre et liée dans cette formule, et si aucune variable liée n'est soumise à plus d'une quantification;
- Exemples :
 - $(\forall x.P(x,y)) \land (\exists z.Q(z) \lor R(t))$ est une formule polie;
 - $\forall x.P(x,y) \land Q(x)$ n'est pas une formule polie;
 - $\forall x.P(x,y) \land \exists x.Q(x)$ n'est pas une formule polie.

α -conversion

- Il est toujours possible de renommer les variables liées d'une formule (en utilisant des variables « fraîches ») sans changer la validité de cette formule;
- Ce processus est appelé α -conversion;
- On peut donc toujours transformer une formule non polie en une formule polie par α -conversion;
- Exemple : $(\forall x.P(x,y)) \land Q(x)$ peut être transformée en $(\forall z.P(z,y)) \land Q(x)$, où l'occurrence liée de x a été transformée en z.

Formule close

- Une formule est close ou fermée si aucune variable n'est libre dans cette formule;
- Un énoncé est une formule close :
- Une théorie est un ensemble d'énoncés.

Conditions nécessaires et suffisantes

- Dire que A est une condition nécessaire pour B signifie que pour que B soit réalisée, il faut que A le soit : $B \Rightarrow A$;
- Dire que A est une condition suffisante pour B signifie que si A est réalisée alors B le sera : $A \Rightarrow B$;
- Dire que A est une condition nécessaire et suffisante pour B signifie que A et B sont réalisées en même temps : $A \Leftrightarrow B$.

Conditions nécessaires et suffisantes

- Condition nécessaire : « Il est nécessaire d'avoir le permis de conduire pour conduire une voiture ».
- Modélisation :
 - $P(x) \equiv x$ a le permis de conduire;
 - $C(x) \equiv x$ conduit une voiture.

$$\forall x. C(x) \Rightarrow P(x).$$

Conditions nécessaires et suffisantes

- Condition suffisante : « Il suffit qu'il neige à Montpellier pour qu'il neige à Oslo »;
- Modélisation :
 - $N(x) \equiv \text{il neige à } x;$
 - $m \equiv Montpellier;$
 - $oldsymbol{o} = Oslo.$
 - $N(m) \Rightarrow N(o)$.

Prédicats de « typage »

- La logique du premier ordre peut être sortée (avec une ou plusieurs sortes) afin de typer les termes du premier ordre manipulés;
- En l'absence de sortes, il faut avoir recours à des prédicats qui vont jouer ce rôle de typage;
- Par exemple, « Les chats n'aiment pas les chiens » :
 - $ightharpoonup Chat(x) \equiv x \text{ est un chat};$
 - Chien(x) $\equiv x$ est un chien;
 - $A(x,y) \equiv x \text{ aime } y.$

 $\forall x. Chat(x) \Rightarrow \forall y. Chien(y) \Rightarrow \neg A(x, y).$

Prédicats de « typage »

- Attention au connecteur utilisé pour introduire les prédicats de typage (selon qu'il s'agit d'un ∀ ou d'un ∃);
- « Tous les chats aiment boire du lait » :
 - $ightharpoonup Chat(x) \equiv x \text{ est un chat};$
 - $B(x) \equiv x$ aime boire du lait.

$$\forall x. Chat(x) \Rightarrow B(x).$$

- « Il existe un chat qui n'aime pas boire du lait » :
 - $ightharpoonup Chat(x) \equiv x \text{ est un chat};$
 - $B(x) \equiv x$ aime boire du lait.
 - $\exists x. Chat(x) \land \neg B(x).$

Modélisations équivalentes

- Deux formules peuvent être équivalentes (même sémantique) même si elles ne sont pas égales syntaxiquement;
- De ce fait, deux modélisations d'un même problème peuvent être équivalentes même si elles ne sont pas syntaxiquement égales;
- Par exemple, « Les chats n'aiment pas les chiens » :
 - $ightharpoonup Chat(x) \equiv x \text{ est un chat};$
 - $ightharpoonup Chien(x) \equiv x \text{ est un chien};$
 - $A(x,y) \equiv x \text{ aime } y.$

```
\forall x. Chat(x) \Rightarrow \forall y. Chien(y) \Rightarrow \neg A(x, y), \\ \forall x, y. Chat(x) \Rightarrow Chien(y) \Rightarrow \neg A(x, y),
```

et $\forall x, y. Chat(x) \land Chien(y) \Rightarrow \neg A(x, y)$

sont des modélisations équivalentes.