Course Code	Course Name	L-T-P-Credits	Year of Introduction	
BT201	Fluid Flow and Particle Technology	3-1-0-4	2016	

Prerequisite: Nil

Course Objectives

- To serve as a basis for two fundamental unit operations namely, fluid flow and particle technology, which find limitless applications in bioprocess engineering.
- To emphasise on the applications of fluid flow, in the backdrop of existing basic theory.

Syllabus

Properties and nature of fluids, fluid flow characteristics, flow through pipe, transportation and metering of fluids, flow past immersed bodies, Particle technology, describing the size of a single and populations of particles, particle size analysis, particle size reduction, solid-solid and solid-liquid separations, storage and transport of solids.

Expected outcome

Upon successful completion of this course, the students will be able to

- Apply fluid properties to analyze and solve fluid mechanics problems.
- Apply key concepts of fluid flow, to any specific domain of bioprocessing.
- Understand the principles of flow measurement and transportation of fluids.
- Understand and apply the basic methods of characterization of particles and bulk solids
- Analyze solid-solid and solid-liquid separation processes

Reference Books

- 1. McCabe W. L., J. C. Smith and P. Harriott, *Unit Operations of Chemical Engineering*, 6/e, McGraw Hill, 2000.
- 2. Martin J. Rhodes, *Introduction to Particle Technology*, 2/e, John Wiley & Sons, 2008.
- 3. Coulson J. M and J. F Richardson, *Chemical Engineering: Fluid flow*, *Heat transfer and Mass transfer (Vol I)*, 5/e, Butterworth-Heinemann, 1999.
- 4. Coulson J. M and J. F Richardson, *Chemical Engineering: Particle technology and Separation processes (Vol II)*, 5/e, Butterworth-Heinemann, 1999.
- 5. Perry R. H. and D.W. Green, Eds., *Perry's Chemical Engineer's Handbook*, 7/e, McGraw Hill, 1997.

Course Plan				
Module	Contents		Sem. Exam Marks	
I	Properties and nature of fluids - Ideal fluid, Real fluid, Density, Specific weight, Specific Volume, Capillarity and Surface Tension, Viscosity, Vapour pressure, Absolute and Gauge Pressures. Fluid Statics - Forces on fluids and hydrostatic equilibrium, Measurement of Pressure using different types of manometers. Forces on submerged bodies - Buoyancy, Stability of floating and submerged bodies.		15%	

II	Introduction to fluid flow- Flow of incompressible fluids-	8	15%
	Classification of flow - Steady and unsteady state flow,		
	uniform and non-uniform flow, Stream line, Streak line, Path		
	line, Stream tube, Velocity Potential - Laminar and Turbulent		
	flow - Reynold's Experiment. Equations of Change for		
	isothermal systems - Equation of Continuity, Equation of		
	Motion - Navier Stoke's Equation and Euler equation		
	(derivations not required). Newtonian and non- Newtonian		
	fluids - Momentum flux and Newton's Law of Viscosity.	. A	
	Flow in boundary layers - Boundary layer separation and	VI	
	Wake formation.	Y	
	FIRST INTERNAL EXAM	1.6.	
III	Flow through pipe - Bernoulli Equation, Correction factors	8	15%
	in Bernoulli Equation, Pump work - Numerical problems,		
	Shear stress and Velocity distribution in circular channel.		
	Hagen-Poiseuille Equation, Laminar flow of non-Newtonian		
	fluids, Velocity distribution for turbulent flow, The friction		
	factor chart, Fanning Equation- Numerical problems.		
IV	Transportation and Metering of Fluids - Pipes and tubes,	8	15%
	Pipe joints, Valves – Materials of construction, Pumps-		
	Reciprocating and Centrifugal pumps, Characteristics of		
	centrifugal pumps - Priming, Cavitation, NPSH, Water		
	hammer, Loss of head and power in centrifugal pumps,		
	Characteristic curves.		
	Flow measurement - Orifice meter, Venturi meter,		
	Rotameter, Pitot tube, Weirs and notches, velocity meters		
	SECOND INTERNAL EXAM		
V	Flow past immersed bodies- Drag coefficient - Flow	12	20%
	through packed bed - Kozney Carman equation, Blake	1	
	Plummer equation and Ergun equation. Motion of Particles		
	through fluids - Motion from gravitational and Centrifugal		
	fields - Terminal Settling velocity, Stoke's law- Intermediate		
	law - Newton's law - Hindered Settling.		
	Fluidization - Advantages and disadvantages, Applications,		
	Minimum Fluidization velocity, Pressure drop-flow rate		
	diagrams. Types of fluidization.		
777	Poutiale technology Describing the size of a sixely with	10	200/
VI	Particle technology – Describing the size of a single particle-	12	20%
	Shape factor, mean diameter, Description of populations of		
	particles, Particle size analysis-methods of particle size		
	measurement-Sieving, microscopy, sedimentation,		
	permeametry, electrozone sensing, laser diffraction, ICI		
	sedimentation, Photosedimentation, Elutriation, common		
	methods of displaying size distribution-Arithmetic and Log-		
	normal distributions. Particle size reduction – particle fracture		
	mechanisms, models for predicting energy requirements and		
	particle size distribution, types of size reduction equipments,		

factors	affecting	choice	of	equipments.	Particle	size
enlargement - interparticle forces, granulation, equipments for						
granulati	ion. So	lid-liquio	d	separation-Fi	ltration	and
centrifug	gation, Sed	imentatio	on a	nd Decantation	n, floccula	ation,
Solid-solid separation - screening, air classification (theory						
only). Storage and transportation of bulk solids - Different						
methods	and types	of conve	yors.			

END SEMESTER EXAMINATION

QUESTION PAPER PATTERN:

Maximum Marks: 100 Exam Duration: 3 hours

The question paper consists of Part A, Part B and Part C.

Part A consists of three questions of 15 marks each uniformly covering Modules I and II. The student has to answer two questions $(15\times2=30 \text{ marks})$.

Part B consists of three questions of 15 marks each uniformly covering Modules III and IV. The student has to answer two questions ($15\times2=30$ marks).

Part C consists of three questions of 20 marks each uniformly covering Modules V and VI. The student has to answer two questions ($20 \times 2 = 40$ marks).

Note: Each question can have a maximum of 4 subparts, if needed..

