

Docentes: Ing. Jorge E. Morales Téc. Sup. En Mecatrónica Gonzalo Vera.

GRUPO NRO 8:

- Schafrik Maria Victoria
- Vera Emilio Andres
- Rojas Jorge Daniel
- Rojo Pedro Omar
- Narvaez Juan Carlos

PraCTICO 4
SHIELDs V1.0

2.d) Que es el mcp3304 (spi) y como lo utilizaría para hacer una shield que controle 8 sensores?

El MCP3304 es un convertidor A/D (analógico/digital) de baja potencia, con interfaz serial SPI.

Características

- Entradas diferenciales completas
- ±1 LSB máx DNL
- ±1 LSB máx. INL (MCP3302/04-B)
- ±2 LSB máx. INL (MCP3302/04-C)
- Operación de suministro único: 2.7V a 5.5V
- Frecuencia de muestreo de 100 ksps con tensión de alimentación de 5 V
- Frecuencia de muestreo de 50 ksps con tensión de alimentación de 2,7 V
- Corriente de espera típica de 50 nA, 1µ A m á x .
- 4 5 0 µA corriente máxima activa a 5V
- Rango de temperatura industrial: -40 °C a +85 °C
 Paquetes PDIP, SOIC y TSSOP de 14 y 16 pines
- Kit de evaluación MXDEV TM disponible

Descripción

Los convertidores A/D de 13 bits MCP3302/04 de Microchip Technology Inc. cuentan con entradas diferenciales completas y bajo consumo de energía, es ideal para sistemas alimentados por batería y aplicaciones de adquisición remota de datos.

El MCP3304 es programable y proporciona cuatro pares de entradas diferenciales u ocho entradas de un solo extremo.

Los dispositivos MCP3302/04 cuentan con un diseño de baja corriente que permite el funcionamiento con corrientes típicas en espera y activas de solo 50 nA y 300 µA, respectivamente. Los dispositivos funcionan en un amplio rango de voltaje de 2,7 V a 5,5 V y son capaces de tasas de conversión de hasta 100 ksps. El voltaje de referencia se puede variar de 400 mV a 5 V, lo que produce una resolución referida a la entrada entre 98 µV y 1,22 mV.

La implementación del Shield sería el siguiente (cada potenciómetro representa un sensor conectado a cada pin del MCP3304).

En donde deberíamos especificar luego del bit de inicio si queremos realizar una lectura single-ended (lectura de un solo canal) o pseudo-diferencial (lectura compuesta por dos canales), para la primera deberíamos poner el primer bit en 1, y para la segunda este debe estar en 0, luego de esto seleccionar el canal Ej. Lectura de canal 0 = 000, quedando así para single-ended 1000.

Tabla de selección de modo de lectura y canal a leer.

Control Bit Selections				Input	Channel
Single /Diff	D2	D1	DO	Configuration	Selection
1	0	0	0	single-ended	CH0
1	0	0	1	single-ended	CH1
1	0	1	0	single-ended	CH2
1	О	1	1	single-ended	СНЗ
1	1	О	0	single-ended	CH4
1	1	0	1	single-ended	CH5
1	1	1	0	single-ended	CH6
1	1	1	1	single-ended	CH7
0	0	0	0	differential	CH0 = IN+ CH1 = IN-
0	0	0	1	differential	CH0 = IN- CH1 = IN+
0	0	1	0	differential	CH2 = IN+ CH3 = IN-
0	0	1	1	differential	CH2 = IN- CH3 = IN+
0	1	0	0	differential	CH4 = IN+ CH5 = IN-
0	1	0	1	differential	CH4 = IN- CH5 = IN+
0	1	1	0	differential	CH6 = IN+ CH7 = IN-
0	1	1	1	differential	CH6 = IN- CH7 = IN+