

Prof. Dr. Andreas Hotho,
M.Sc. Janna Omeliyanenko
Lecture Chair X for Data Science, Universität Würzburg

11. Exercise for "Sprachverarbeitung und Text Mining"

04.02.2022

1 Knowledge Questions

- 1. In the lecture, the Dirichlet Distribution was introduced. Describe the role of the Dirichlet parameter $\overrightarrow{\alpha}$ in your own words. What are the effects of changing these parameter?
 - Entries in vector $\overrightarrow{\alpha}$ can be seen as pseudo counts that represent how many times each outcome has been observed.
 - The Dirichlet distribution, as a prior distribution, then generates probability distributions from which the pseudo counts could originate.
 - The higher the pseudo counts of a random variable x_1 , the more often the Dirichlet distribution generates a probability distribution with a high pseudo count of x_1 .
 - \rightarrow The Dirichlet distribution randomly draws probability distributions, favoring the distributions that better explain the pseudo counts $\overrightarrow{\alpha}$.
- 2. What are the input and output of the Gibbs Sampling Algorithm?
 - Input: corpus D, number of topics K, Dirichlet parameters $\overrightarrow{\alpha}$ and $\overrightarrow{\beta}$
 - Output: Learned distributions θ_d and ϕ_k
- 3. How can LDA be used to cluster words in a corpus? What do the resulting clusters contain?

- Given Dirichlet parameters $\overrightarrow{\alpha}$, $\overrightarrow{\beta}$, number of topics K and corpus D.
- Apply Gibbs sampling until convergence.
- Compute ϕ_k from the resulting topic-term frequencies n_k^t . $\to \phi_k$ contains a probabilistic clustering, which says how often each term occurs in topic/cluster k.
- Resulting clusters contain terms/words that are assigned to semantically similar subject areas/topics.

2 LDA - Generative process

- 1. In the lecture we introduced the generative process of LDA to create a document. Describe this generative process in your own words.
 - Inputs: Dirichlet parameters $\overrightarrow{\alpha}$, $\overrightarrow{\beta}$, document length n, number of topics K.
 - Goal: Create a document d with n words
 - Procedure:
 - Sample ϕ_k for each topic $k \in K$ from α
 - Sample θ_d from β
 - For all positions i in document d:
 - * Sample a topic z_i from θ_d
 - * Sample a term w_i from ϕ_{z_i}
- 2. You want to create a document according to the idea of the generative LDA process. The following document-topic distribution θ_{d_1} and topic-term distributions ϕ_k for topics $k \in (animals, sports, interest)$ have already been sampled from the Dirichlet distributions with parameters $\overrightarrow{\beta}$ and $\overrightarrow{\alpha}$:

$$\theta_{d_1} = \begin{pmatrix} p(animals) & = & 0.4 \\ p(sport) & = & 0.35 \\ p(interest) & = & 0.25 \end{pmatrix} \qquad \phi_{animal} = \begin{pmatrix} p(cat) & = & 0.3 \\ p(dog) & = & 0.2 \\ p(mouse) & = & 0.25 \\ p(ball) & = & 0.05 \\ p(play) & = & 0.1 \\ p(like) & = & 0.1 \end{pmatrix}$$

$$\phi_{sport} = \begin{pmatrix} p(cat) & = & 0.0 \\ p(dog) & = & 0.02 \\ p(mouse) & = & 0.0 \\ p(ball) & = & 0.4 \\ p(play) & = & 0.5 \\ p(like) & = & 0.08 \end{pmatrix} \qquad \phi_{interest} = \begin{pmatrix} p(cat) & = & 0.07 \\ p(dog) & = & 0.04 \\ p(mouse) & = & 0.01 \\ p(ball) & = & 0.13 \\ p(play) & = & 0.15 \\ p(like) & = & 0.6 \end{pmatrix}$$

Generate the document d_1 with 5 words using these distributions. You can use random.org¹ to generate random numbers, or the function

numpy.random.choice(['pick', 'one', 'please'], p=[0.3, 0.5, 0.2])

of the Python library numpy. Specify the resulting document, as well as the topics of each word.

Sample topics and words according to task 2.1, given θ_d and ϕ_k .

Possible example sentence completely generated in Python: (For reproducibility seed of the random generator: numpy.random.seed(234))

Topic z_i	animal	interest	animal	interest	sport
Term w_i	cat	like	mouse	like	play

https://www.random.org/decimal-fractions/

3 Gibbs Sampling for LDA

Consider the following two documents from which stop words have already been removed:

 D_1 : Lecture LDA Gibbs Exam Institute Fun

 D_2 : Fun Exam LDA Gibbs

Given is the following assignment of the topics to the words.

Topic	A	В	С	A	A	С
Word	Lecture	LDA	Gibbs	Exam	Institute	Fun

Topic	С	A	В	В
Word	Fun	Exam	LDA	Gibbs

1. Create a topic-term matrix that contains the corresponding counts over both documents.

	A	В	C
Lecture	1	0	0
LDA	0	2	0
Gibbs	0	1	1
Exam	2	0	0
Institute	1	0	0
Fun	0	0	2

2. Based on your matrix, calculate the topic distribution \vec{z} .

$$\vec{z} = (4, 3, 3)$$

3. Calculate the document-topic distribution \vec{z}_d for the first document D_1 .

$$\vec{z}_d = (3, 1, 2)$$

4. Given the previous results, perform a step of Gibbs Sampling for the word $w_1 = \texttt{Gibbs}$ in the first document D_1 as shown in the lecture. The Apriori counts for $\vec{\alpha}$ and $\vec{\beta}$ are set to $\vec{1}$. Which topic would you most probably assign to Gibbs after the step?

After deleting the current topic from Gibbs, the counts are updated first:

	A	В	C
Lecture	1	0	0
LDA	0	2	0
Gibbs	0	1	0
Exam	2	0	0
Institute	1	0	0
Fun	0	0	2

$$\vec{z} = (4, 3, \mathbf{2}) \ \vec{z}_d = (3, 1, \mathbf{1})$$

Then the new 'probabilities' are calculated for each topic:

$$p(z_1 = A) \sim \frac{0+1}{4+6\cdot 1} \cdot \frac{3+1}{6+3-1} = 0.05$$

$$p(z_1 = B) \sim \frac{1+1}{3+6\cdot 1} \cdot \frac{1+1}{6+3-1} = 0.06$$

$$p(z_1 = C) \sim \frac{0+1}{2+6\cdot 1} \cdot \frac{1+1}{6+3-1} = 0.03$$

These new 'probabilities' are normalized:

$$p(z_1 = A) = \frac{0.05}{0.05 + 0.06 + 0.03} = 0.36$$

$$p(z_1 = B) = \frac{0.06}{0.05 + 0.06 + 0.03} = 0.43$$

$$p(z_1 = C) = \frac{0.03}{0.05 + 0.06 + 0.03} = 0.21$$

 \Rightarrow In this iteration, we would assign Gibbs the topic B.