CS 4124

Solutions to Homework Assignment 5 Collin McDevitt

April 12, 2024

[50] 1. Let \mathcal{R}_1 be the (simplified) regular expression $(ba)^* + (abb)(abb)^*$.

Construct an ε -NFA N_1 that accepts the language denoted by \mathcal{R}_1 . You should employ the construction given in class or in the textbook for inspiration, but you do not have to follow the construction precisely. Use reason to construct your N_1 and justify your reasoning. Give N_1 as a labeled directed graph or state diagram. Please draw it neatly!

[50] 2. Let N_2 be the ε -NFA in Figure ??.

A. Compute the ε -reachability set E(q) of each state q of N_2 .

$$E(q_0) = \{q_0, q_1, q_2\}$$

$$E(q_1) = \{q_1\}$$

$$E(q_2) = \{q_2\}$$

В.

bb	$q_0 \xrightarrow{b} q_1 \xrightarrow{b} q_2$
cb	$q_0 \xrightarrow{\varepsilon} q_1 \xrightarrow{c} q_1 \xrightarrow{b} q_2$
ε	$q_0 \stackrel{\varepsilon}{\longrightarrow} q_2$
c	$q_0 \xrightarrow{c} q_2$
b	$q_0 \xrightarrow{\varepsilon} q_1 \xrightarrow{b} q_2$
ab	$q_0 \xrightarrow{\varepsilon} q_1 \xrightarrow{a} q_0 \xrightarrow{\epsilon} q_1 \xrightarrow{b} q_2$
cc	$q_0 \xrightarrow{\epsilon} q_1 \xrightarrow{c} q_0 \xrightarrow{c} q_2$
ac	$q_0 \xrightarrow{\epsilon} q_1 \xrightarrow{a} q_0 \xrightarrow{c} q_2$
ca	$q_0 \xrightarrow{\epsilon} q_1 \xrightarrow{c} q_1 \xrightarrow{a} q_0 \xrightarrow{\epsilon} q_2$
ba	$q_0 \xrightarrow{b} q_1 \xrightarrow{a} q_0 \xrightarrow{\epsilon} q_2$
a	$q_0 \xrightarrow{\epsilon} q_1 \xrightarrow{a} q_0 \xrightarrow{\epsilon} q_2$

C. Use the power set construction to obtain a DFA M_2 equivalent to N_2 . Give M_2 as a labeled directed graph or state diagram. Please draw it neatly!