31251 – Data Structures and Algorithms Week 6

Luke Mathieson

This time, in 31251 DSA:

- Binary Trees
- Tree Traversals
- Expression Trees
- Binary Search Trees

Trees and Binary Trees

- A Graph is a mathematical object that consists of a set of vertices (or nodes) and a set of edges between the vertices.
 - We normally visualise vertices as circles and edges as lines between the circles.
- A Tree is a graph with no cycles.
 - You can't walk through the graph and get back to your starting point without backtracking.
- A Binary Tree is a tree where every vertex has at most three neighbours.

- If it has 3 at most 3 neighbours, why is it "binary"?
- We normally think of them as having an order:
 - One vertex is the root.
 - Each vertex has at most two children, and at most one parent.
 - Vertices with no children are called leaves.

Uses of Binary Trees

- Binary Trees find uses in many areas of computer science:
 - 3D rendering (binary space partition).
 - Networking (Binary Tries, Treaps).
 - Cryptology (GGM Trees).
 - Coding and Compression (Huffman Trees).
 - Hashing (Hash Trees).
 - Sorting (Heaps and Heapsort).
 - Searching (Binary Search Trees).
 - Parsing (Expression Trees)

How do we build them?

- There are two basic methods for building a binary tree:
 - 1 Kind of like a LinkedList with with two next pointers (left and right children).
 - **2** Embedded in an array, where the children of the vertex at index i are at indices 2i and 2i + 1.

How do we get around them?

- No matter which representation you choose, there are number of ways to traverse binary trees:
 - 1 Breadth first start with the root, then visit its children, then their children, then their children...
 - 2 Depth first start at the root, go all the way to the bottom first, then backtrack.

Depth First Traversals

- Very amenable to recursive implementation.
- At each node we have 3 things to do:
 - 1 Deal with the current node,
 - 2 visit the left child,
 - 3 visit the right child.
- Gives 3 different traversals.
 - 1 Pre-order (deal with the current node first)
 - 2 In-order (deal with the current node between visiting the descendents)
 - 3 Post-order (deal with the current node last).

```
Pre-order traversal, recursive:

preorderTraversal(Node n){
   if (n == null) return;

   visit(n);
   preorderTraversal(n.leftChild());
   preorderTraversal(n.rightChild());
}
```

We can switch from recursive to iterative by swapping the implicit use of the call stack with an explicit stack.

```
Pre-order traversal, iterative:
preorderTraversal(Node n){
  Stack<Node> s = new Stack<Node>();
  Node current = n;
  while (current != null){
    visit(current);
    if (current.rightChild() != null)
      s.push(current.rightChild());
    if (current.leftChild() != null)
      s.push(current.leftChild());
    current = stack.pop();
```

```
In-order traversal, recursive:
inorderTraversal(Node n){
  if (n == null) return;

  preorderTraversal(n.leftChild());
  visit(n);
  preorderTraversal(n.rightChild());
}
```

```
In-order traversal, iterative:
inorderTraversal(Node n){
  Stack<Node> s = new Stack<Node>();
  Node current = n;
 while (current != null || !s.isEmpty()){
    if (current != null){
      s.push(current);
      current = current.leftChild();
    }
    else {
      current = s.pop();
      visit(current);
      current = current.rightChild();
```

```
Post-order traversal, recursive:

postorderTraversal(Node n){
  if (n == null) return;

  preorderTraversal(n.leftChild());
  preorderTraversal(n.rightChild());
  visit(n);
}
```

Post-order traversal, iterative:

```
postorderTraversal(Node n){
  Stack<Node> s = new Stack<Node>():
  Node current = n;
  Node last = null;
  while (current != null || !s.isEmpty()){
    if (current != null){
      s.push(current);
      current = current.leftChild();
    else{
      if (s.peek().rightChild() != null &&
            s.peek().rightChild() != last){
        current = s.peek().rightChild();
      else{
        current = s.pop();
        visit(current):
        last = current;
      }
```

Breadth First Traversal

- Visits vertices according to their level in the tree ("left to right, top to bottom").
- Simple to implement iteratively using a queue.

Breadth First Traversal - Implementation

```
breadthFirst(Node n){
  Queue<Node> q = new Queue<Node>();
 q.add(n);
  while (!q.isEmpty()){
   Node current = q.remove();
   visit(current);
    if (current.leftChild != null)
      q.add(current.leftChild());
    if (current.rightChild != null)
      q.add(current.rightChild());
```


Binary Search Trees

- Binary Search Trees (BSTs) are a simple data structure that allows fast insertion, removal and lookup of the elements they store.
- They are an ordered data structure, but because they use a binary tree, you don't have to reshuffle everything to put something new in.
- They follow a simple rule to find or insert:
 - If what you're looking for (or what you have) has a smaller key than the current vertex, go to the left. Otherwise, go to the right. (Special case: duplicate keys)
- Insertion then is just traversing the tree to the bottom and adding the new element wherever you stop.
- Finding something mimics binary search, if you get to the bottom without finding it, it's not there.

Complexity of Binary Search Trees

Operation	Average Case	Worst Case
Space	O(n)	O(n)
Insert	$O(\log n)$	O(n)
Remove	$O(\log n)$	O(n)
Find	$O(\log n)$	<i>O</i> (<i>n</i>)

At the cost of more complicated code, there are several self-balancing BST data structures which reduce the worst case insert, remove and find to $O(\log n)$: 2-3 Trees, Red-Black Trees, AVL Trees, Splay Trees and others,

Representing Grammars with Trees

- Many things in computer science can be expressed in terms of Formal Grammars.
 - (We don't need to know what they are though).
- In particular, expressions that have syntax can be modelled with grammars.
 - e.g. every programming language (and much more).
- One way of showing how a concrete expression derives from a grammar is by using a tree.
 - ... and for certain types of expression grammars, binary trees!

Boolean Expressions

- We can take Boolean expressions as an example. They have simple rules:
 - 1 True is a Boolean expression.
 - 2 False is a Boolean expression.
 - 3 If A a Boolean expression, $\neg A$ is a Boolean expression.
 - 4 If A and B are Boolean expressions, $A \wedge B$ is a Boolean expression.
 - **5** If A and B are Boolean expressions, $A \lor B$ is a Boolean expression.

Boolean Expressions

 Just for those that are interested, a grammar for that looks like:

$$\mathcal{S} \to \neg \mathcal{S} \mid \mathcal{S} \wedge \mathcal{S} \mid \mathcal{S} \vee \mathcal{S} \mid$$
True | False

 You can build more complicated ones that build in operator precedence and associativity too.

Back on Track

- We can convert these rules to a binary tree structure.
- For example, the expression (True ∨ False) ∧ True can be represented by:

Why is this useful?

- Given an expression as text, it is not immediately obvious how to begin computing its value.
- You need to read the whole thing, then decide which bits you are going to do first.
 - Operator precedence is important! $(3 \times 2 1 \text{ vs } 3 \times (2 1))$
- If we can quickly build a tree like this, then we can recursively
 evaluate it!
 - It becomes a simple divide and conquer algorithm!
- We can also traverse it looking for other properties (very useful when compiling code).

Prefix, Infix and Postfix

- Another thing we can do is turn the expression back into a string in different ways.
 - 1 Prefix notation results from a pre-order traversal of the tree,
 - 2 Infix notation results from an in-order traversal, and...
 - (you guessed it) Postfix notation results from a post-order traversal of the tree.
- Prefix and Postfix are unambiguous, and don't require operator precedence or associativity rules to parse.
 - So converting an infix expression (what we meat-bags normally write in) to postfix or prefix can make things easier for the computer (or better still easier for the computer programmer).