CPH576D- Assignment 2

Dominic LaRoche

September 17, 2014

1 Introduction

For this section we need to calculate the eGFR score for cases by both race and gender for each time point in the data: 1 month, 6 months, 1 year, and 3 years. This code include modified code from assignment 2 since many of the objectives were similar. Below is the code calculating the eGFR scores followed by the summary tables and cross-tabulations requested.

2 SAS Code

```
/*create dummy variables for race and female*/
data gfr;
set class.test_sample_3b;
if (r_gender = 'U' or r_gender = '') then r_gender = .; /*set U or blank to missing in gender*/
if r_{gender} = . then fem = .;
if r_gender = 'F' then fem = 1;
if r_gender = 'M' then fem = 0;
if r_race = 'AfrAmeri' then blk = 1;
 else blk = 0;
run;
/*use arrays to loop through each CR measurement
and calculate eGFR*/
data egfr;
set gfr;
array cr{4} CR_1M--CR_3Y;
array eg{4} egfr_1M egfr_6M egfr_1Y egfr_3Y;
do i=1 to 4;
egfr_base = 186*(cr{i}**-1.154)*(r_age**-0.203);
if (fem = 1 \text{ and } blk = 1) then eg\{i\} = egfr\_base*1.21*0.742;
if (fem = 1 and blk = 0) then eg{i} = egfr_base*0.742;
if (fem = 0 \text{ and } blk = 1) then eg\{i\} = egfr\_base*1.21;
if (fem = 0 and blk = 0) then eg{i} = egfr_base;
end:
drop i egfr_base;
run;
/* ceate ckd stages- care must be taken since the range of egfr
is outside the values for ckd stage.
```

```
I will create a stage 0 which indicates healthy kidney function.
Also missing values are considered very
small numbers so I will have to be careful of those*/
data ckd;
set egfr;
if (egfr_1M > 100) then ckdstg = 0;
if (90 le egfr_1M le 100) then ckdstg = 1;
if (60 le egfr_1M lt 90) then ckdstg = 2;
if (30 le egfr_1M lt 60) then ckdstg = 3;
if (15 le egfr_1M lt 30) then ckdstg = 4;
if (0 le egfr_1M lt 15) then ckdstg = 5;
run;
/*Create dichotomous kidney function indicator
for males and females separately*/
data ckd;
set ckd;
array eg{4} egfr_1M -- egfr_3Y;
array kf{4} kfunc_1M kfunc_6M kfunc_1Y kfunc_3Y;
do i=1 to 4;
if (fem = 1) and (1 < eg\{i\} < 70) then kf\{i\} = 0;
if (fem = 1) and (70 < eg\{i\} >= 70) then kf\{i\} = 1;
if (fem = 0) and (1 < eg{i} < 68) then kf{i} = 0;
if (fem = 0) and (68 < eg\{i\} >= 68) then kf\{i\} = 1;
end;
drop i;
run;
proc freq data=class.test_sample_3b;
tables r_age r_gender r_race;
run;
proc univariate data=egfr ;
var egfr_1M;
histogram;
run;
proc freq data=ckd;
tables ckdstg;
run;
proc freq data=ckd;
tables kfunc_1M*kfunc_3Y;
run;
```

3 Output

The FREQ Procedure

r_age

r_age	Frequency	Percent	Cumulative Frequency	Cumulative Percent
-1	1	0.33	1	0.33
2	1	0.33	2	0.65
3	1	0.33	3	0.98
20	1	0.33	4	1.30
23	1	0.33	5	1.63
24	1	0.33	6	1.95
26	2	0.65	8	2.61
27	6	1.95	14	4.56
28	4	1.30	18	5.86
29	5	1.63	23	7.49
30	1	0.33	24	7.82
31	5	1.63	29	9.45
32	5	1.63	34	11.07
33	6	1.95	40	13.03
34	10	3.26	50	16.29
35	12	3.91	62	20.20
36	9	2.93	71	23.13
37	4	1.30	75	24.43
38	9	2.93	84	27.36
39	16	5.21	100	32.57
40	11	3.58	111	36.16
41	9	2.93	120	39.09
42	14	4.56	134	43.65
43	11	3.58	145	47.23
43	11	3.58	156	50.81
44 45	9	2.93	165	53.75
46	13	4.23	178	57.98
40 47	11		189	
		3.58 3.26		61.56
48	10		199	64.82
49	7	2.28	206	67.10
50 51	9	2.93	215	70.03
51 50	6	1.95	221	71.99
52	9	2.93	230	74.92
53	10	3.26	240	78.18
54	4	1.30	244	79.48
55 56	7	2.28	251	81.76
56	6	1.95	257	83.71
57	5	1.63	262	85.34
58	3	0.98	265	86.32
59	6	1.95	271	88.27
60	5	1.63	276	89.90
61	3	0.98	279	90.88
62	2	0.65	281	91.53
63	9	2.93	290	94.46
64	4	1.30	294	95.77
65	4	1.303	298	97.07
67	4	1.30	302	98.37
68	2	0.65	304	99.02
70	1	0.33	305	99.35
72	1	0.33	306	99.67
74	1	0.33	307	100.00

r_gender	Frequency	Percent	Cumulative Frequency	Cumulative Percent
F	111	36.27	111	36.27
M	192	62.75	303	99.02
U	3	0.98	306	100.00

Frequency Missing = 1

r_race	Frequency	Percent	Cumulative Frequency	Cumulative Percent
AfrAmeri	3	0.98	3	0.98
AmIndian	9	2.95	12	3.93
Caucasia	292	95.74	304	99.67
Other	1	0.33	305	100.00

Frequency Missing = 2

The UNIVARIATE Procedure Variable: egfr_1M

Moments

N	290	Sum Weights	290
Mean	53.9208838	Sum Observations	15637.0563
Std Deviation	17.847589	Variance	318.536432
Skewness	1.08197961	Kurtosis	3.3437137
Uncorrected SS	935220.923	Corrected SS	92057.0287
Coeff Variation	33.0995854	Std Error Mean	1.04804651

Basic Statistical Measures

Location Variability

Mean	53.92088	Std Deviation	17.84759
Median	51.63445	Variance	318.53643
Mode	61.29646	Range	138.67177
		Interquartile Range	21.91894

Tests for Location: Mu0=0

Test	-S	tatistic-	p Valı	1e
Student's t	t	51.44894	Pr > t	<.0001
Sign	М	145	Pr >= M	<.0001
Signed Rank	S	21097.5	Pr >= S	<.0001

	Quantiles (Definition 5)		
	Quantile	Estimate		
	100% Max	150.1119		
	99%	113.2275		
	95%	86.7046		
	90%	73.9412		
	75% Q3	63.8887		
	50% Median	51.6344		
	25% Q1	41.9698		
	10%	34.5962		
	5%	29.9688		
	1%	14.8842		
	0% Min	11.4402		
	Extreme 0	bservations		
Lo	west	High	est	
Value	0bs	Value	0bs	
11.4402	! 16	106.283	9	
12.7044	13	111.108	96	
14.8842	166	113.228	223	
18.1951	. 52	114.391	230	
19.5155	218	150.112	158	
	Miggin	g Values		
	ritssill	2 varues		
		Percent		
Missing			Missing	
Value	Count	All Obs	0bs	
	17	5.54	100.00	
•	Ι/	0.04	100.00	

ckdstg	Frequency	Percent	Cumulative Frequency	Cumulative Percent
0	5	1.72	5	1.72
1	7	2.41	12	4.14
2	83	28.62	95	32.76
3	179	61.72	274	94.48
4	13	4.48	287	98.97
5	3	1.03	290	100.00

Frequency Missing = 17

The FREQ Procedure

Table of kfunc_1M by kfunc_3Y

kfunc_1M kfunc_3Y

Frequency Percent Row Pct			
Col Pct	01	1	Total
+	+	+	
0	201	19	220
1	76.72	7.25	83.97
1	91.36	8.64	
1	89.73	50.00	
+	+	+	
1	23	19	42
1	8.78	7.25	16.03
1	54.76	45.24	
	10.27	50.00	
+	+	+	
Total	224	38	262
	85.50	14.50	100.00

Frequency Missing = 45

4 Log Output

```
1
2
     This file is auto-generated by the statrep package.
3
     Do not edit this file or your changes will be lost.
     Edit the LaTeX file instead.
4
5
6
     See the statrep package documentation and the file
7
     statrep.cfg for information on these settings.
8
9
10
     %include "LaRoche_Assignment3_CPH576D_SR_preamble.sas" /nosource;
1441 /* Remove all output files. */
1442 %hostdel
1444 /* Start program with a null title. */
1445 title;
1446
1447 /*create dummy variables for race and female*/
1448 data gfr;
1449 set class.test_sample_3b;
1450 if (r_gender = 'U' or r_gender = '') then r_gender = .; /*set U or blank
1450! to missing in gender*/
1451 if r_{gender} = . then fem = .;
1452 if r_gender = 'F' then fem = 1;
1453 if r_gender = 'M' then fem = 0;
1454 if r_race = 'AfrAmeri' then blk = 1;
1455
      else blk = 0;
1456 run;
NOTE: Numeric values have been converted to character
      values at the places given by: (Line):(Column).
      1450:54
NOTE: Character values have been converted to numeric
      values at the places given by: (Line):(Column).
      1451:4
NOTE: Invalid numeric data, r_gender='F', at line 1451 column 4.
r_age=50 diabetes_type=2 group=N Cont CR_1M=1.30 CR_6M=1.20 CR_1Y=2.10
CR_3Y=1.70 r_race=AfrAmeri r_gender=F fem=1 blk=1 _ERROR_=1 _N_=1
NOTE: Invalid numeric data, r_gender='M', at line 1451 column 4.
r_age=48 diabetes_type=1 group=N Cont CR_1M=. CR_6M=. CR_1Y=. CR_3Y=.
r_race=AfrAmeri r_gender=M fem=0 blk=1 _ERROR_=1 _N_=2
NOTE: Invalid numeric data, r_gender='M', at line 1451 column 4.
r_age=48 diabetes_type=2 group=PAK Tx CR_1M=2.00 CR_6M=1.80 CR_1Y=2.10
CR_3Y=1.90 r_race=AfrAmeri r_gender=M fem=0 blk=1 _ERROR_=1 _N_=3
NOTE: Invalid numeric data, r_gender='M', at line 1451 column 4.
r_age=67 diabetes_type=2 group=N Cont CR_1M=1.30 CR_6M=1.30 CR_1Y=1.60
CR_3Y=1.70 r_race=AmIndian r_gender=M fem=0 blk=0 _ERROR_=1 _N_=4
NOTE: Invalid numeric data, r_gender='M', at line 1451 column 4.
r_age=47 diabetes_type=2 group=N Cont CR_1M=1.50 CR_6M=1.80 CR_1Y=1.40
CR_3Y=1.30 r_race=AmIndian r_gender=M fem=0 blk=0 _ERROR_=1 _N_=5
```

```
NOTE: Invalid numeric data, r_gender='F' , at line 1451 column 4.
r_age=44 diabetes_type=2 group=N Cont CR_1M=. CR_6M=. CR_1Y=. CR_3Y=.
r_race=AmIndian r_gender=F fem=1 blk=0 _ERROR_=1 _N_=6
NOTE: Invalid numeric data, r_gender='F' , at line 1451 column 4.
r_age=53 diabetes_type=1 group=N Cont CR_1M=0.90 CR_6M=0.80 CR_1Y=0.80
CR_3Y=0.80 r_race=AmIndian r_gender=F fem=1 blk=0 _ERROR_=1 _N_=7
NOTE: Invalid numeric data, r_gender='M', at line 1451 column 4.
r_age=54 diabetes_type=1 group=N Cont CR_1M=1.20 CR_6M=2.00 CR_1Y=1.80
CR_3Y=2.30 r_race=AmIndian r_gender=M fem=0 blk=0 _ERROR_=1 _N_=8
NOTE: Invalid numeric data, r_gender='M', at line 1451 column 4.
r_age=56 diabetes_type=2 group=PAK Tx CR_1M=0.80 CR_6M=0.90 CR_1Y=0.90
CR_3Y=0.90 r_race=AmIndian r_gender=M fem=0 blk=0 _ERROR_=1 _N_=9
NOTE: Invalid numeric data, r_gender='M', at line 1451 column 4.
r_age=38 diabetes_type=1 group=PAK Tx CR_1M=2.50 CR_6M=1.40 CR_1Y=1.60
CR_3Y=1.50 r_race=AmIndian r_gender=M fem=0 blk=0 _ERROR_=1 _N_=10
NOTE: Invalid numeric data, r_gender='M' , at line 1451 column 4.
r_age=42 diabetes_type=1 group=PAK Tx CR_1M=1.30 CR_6M=1.50 CR_1Y=2.40
CR_3Y=1.80 r_race=AmIndian r_gender=M fem=0 blk=0 _ERROR_=1 _N_=11
NOTE: Invalid numeric data, r_gender='M', at line 1451 column 4.
r_age=54 diabetes_type=1 group=Y Cont CR_1M=1.60 CR_6M=1.40 CR_1Y=2.10
CR_3Y=2.30 r_race=AmIndian r_gender=M fem=0 blk=0 _ERROR_=1 _N_=12
NOTE: Invalid numeric data, r_gender='M', at line 1451 column 4.
r_age=52 diabetes_type=2 group=N Cont CR_1M=5.10 CR_6M=2.70 CR_1Y=2.50
CR_3Y=3.70 r_race=Caucasia r_gender=M fem=0 blk=0 _ERROR_=1 _N_=13
NOTE: Invalid numeric data, r_gender='M', at line 1451 column 4.
r_age=63 diabetes_type=1 group=N Cont CR_1M=2.10 CR_6M=1.50 CR_1Y=2.10
CR_3Y=2.40 r_race=Caucasia r_gender=M fem=0 blk=0 _ERROR_=1 _N_=14
NOTE: Invalid numeric data, r_gender='M', at line 1451 column 4.
r_age=42 diabetes_type=1 group=N Cont CR_1M=5.80 CR_6M=. CR_1Y=. CR_3Y=.
r_race=Caucasia r_gender=M fem=0 blk=0 _ERROR_=1 _N_=16
NOTE: Invalid numeric data, r_gender='F', at line 1451 column 4.
r_age=39 diabetes_type=1 group=N Cont CR_1M=1.20 CR_6M=1.10 CR_1Y=1.20
CR_3Y=1.10 r_race=Caucasia r_gender=F fem=1 blk=0 _ERROR_=1 _N_=17
NOTE: Invalid numeric data, r_gender='M', at line 1451 column 4.
r_age=45 diabetes_type=1 group=N Cont CR_1M=2.30 CR_6M=2.00 CR_1Y=. CR_3Y=2.10
r_race=Caucasia r_gender=M fem=0 blk=0 _ERROR_=1 _N_=18
NOTE: Invalid numeric data, r_gender='M', at line 1451 column 4.
r_age=68 diabetes_type=2 group=N Cont CR_1M=2.40 CR_6M=2.60 CR_1Y=4.20
CR_3Y=1.80 r_race=Caucasia r_gender=M fem=0 blk=0 _ERROR_=1 _N_=19
NOTE: Invalid numeric data, r_gender='M', at line 1451 column 4.
r_age=55 diabetes_type=1 group=N Cont CR_1M=2.40 CR_6M=1.70 CR_1Y=2.20
CR_3Y=2.10 r_race=Caucasia r_gender=M fem=0 blk=0 _ERROR_=1 _N_=20
NOTE: Invalid numeric data, r_gender='F', at line 1451 column 4.
WARNING: Limit set by ERRORS= option reached. Further errors of this type will
         not be printed.
r_age=49 diabetes_type=2 group=N Cont CR_1M=1.80 CR_6M=1.60 CR_1Y=1.72 CR_3Y=.
r_race=Caucasia r_gender=F fem=1 blk=0 _ERROR_=1 _N_=21
NOTE: There were 307 observations read from the data set CLASS.TEST_SAMPLE_3B.
NOTE: The data set WORK.GFR has 307 observations and 11 variables.
NOTE: DATA statement used (Total process time):
      real time
                          0.05 seconds
```

```
1457
1458 /*use arrays to loop through each CR measurement
1459 and calculate eGFR*/
1460 data egfr;
1461 set gfr;
1462 array cr{4} CR_1M--CR_3Y;
1463 array eg{4} egfr_1M egfr_6M egfr_1Y egfr_3Y;
1464 do i=1 to 4;
1465 egfr_base = 186*(cr{i}**-1.154)*(r_age**-0.203);
1466 if (fem = 1 and blk = 1) then eg\{i\} = egfr_base*1.21*0.742;
1467 if (fem = 1 and blk = 0) then eg\{i\} = egfr\_base*0.742;
1468 if (fem = 0 and blk = 1) then eg\{i\} = egfr\_base*1.21;
1469 if (fem = 0 and blk = 0) then eg\{i\} = egfr\_base;
1470 end;
1471 drop i egfr_base;
1472 run;
NOTE: Invalid argument(s) to the exponential operator "**" at line 1465 column
NOTE: Invalid argument(s) to the exponential operator "**" at line 1465 column
NOTE: Invalid argument(s) to the exponential operator "**" at line 1465 column
NOTE: Invalid argument(s) to the exponential operator "**" at line 1465 column
r_age=-1 diabetes_type=2 group=Y Cont CR_1M=1.50 CR_6M=1.70 CR_1Y=2.10
CR_3Y=1.70 r_race=Caucasia r_gender=M fem=0 blk=0 egfr_1M=. egfr_6M=. egfr_1Y=.
egfr_3Y=. i=5 egfr_base=. _ERROR_=1 _N_=243
NOTE: Missing values were generated as a result of performing an operation on
     missing values.
     Each place is given by: (Number of times) at (Line):(Column).
     4 at 1468:48
NOTE: Mathematical operations could not be performed at the following places.
     The results of the operations have been set to missing values.
     Each place is given by: (Number of times) at (Line):(Column).
     4 at 1465:39
NOTE: There were 307 observations read from the data set WORK.GFR.
NOTE: The data set WORK.EGFR has 307 observations and 15 variables.
NOTE: DATA statement used (Total process time):
     real time 0.02 seconds
                        0.01 seconds
     cpu time
1473
1474
1475 /* ceate ckd stages- care must be taken since the range of egfr
1476 is outside the values for ckd stage.
```

```
1477 I will create a stage 0 which indicates healthy kidney function.
1478 Also missing values are considered very
1479 small numbers so I will have to be careful of those*/
1480
1481 data ckd;
1482 set egfr;
1483 if (egfr_1M > 100) then ckdstg = 0;
1484 if (90 le egfr_1M le 100) then ckdstg = 1;
1485 if (60 le egfr_1M lt 90) then ckdstg = 2;
1486 if (30 le egfr_1M lt 60) then ckdstg = 3;
1487 if (15 le egfr_1M lt 30) then ckdstg = 4;
1488 if (0 le egfr_1M lt 15) then ckdstg = 5;
1489 run:
NOTE: There were 307 observations read from the data set WORK.EGFR.
NOTE: The data set WORK.CKD has 307 observations and 16 variables.
NOTE: DATA statement used (Total process time):
     real time
                         0.00 seconds
                         0.01 seconds
      cpu time
1490
1491 /*Create dichotomous kidney function indicator
1492 for males and females separately*/
1493
1494 data ckd:
1495 set ckd;
1496 array eg{4} egfr_1M -- egfr_3Y;
1497 array kf{4} kfunc_1M kfunc_6M kfunc_1Y kfunc_3Y;
1498 do i=1 to 4;
1499
1500 if (fem = 1) and (1 < eg\{i\} < 70) then kf\{i\} = 0;
1501 if (fem = 1) and (70 < eg{i} >= 70) then kf{i} = 1;
1502 if (fem = 0) and (1 < eg\{i\} < 68) then kf\{i\} = 0;
1503 if (fem = 0) and (68 < eg{i} >= 68) then kf{i} = 1;
1504 end;
1505 drop i;
1506 run;
NOTE: There were 307 observations read from the data set WORK.CKD.
NOTE: The data set WORK.CKD has 307 observations and 20 variables.
NOTE: DATA statement used (Total process time):
                         0.01 seconds
     real time
                         0.01 seconds
      cpu time
1507
1508 %output(gfr)
1509 proc freq data=class.test_sample_3b;
1510 tables r_age r_gender r_race;
1511 run;
```

```
NOTE: There were 307 observations read from the data set CLASS.TEST_SAMPLE_3B.
NOTE: PROCEDURE FREQ used (Total process time):
                         0.01 seconds
     real time
     cpu time
                         0.00 seconds
1512
1513 proc univariate data=egfr;
1514 var egfr_1M;
1515 histogram;
1516 run;
NOTE: PROCEDURE UNIVARIATE used (Total process time):
                        0.03 seconds
     real time
      cpu time
                         0.04 seconds
1517
1518 proc freq data=ckd;
1519 tables ckdstg;
1520 run;
NOTE: There were 307 observations read from the data set WORK.CKD.
NOTE: PROCEDURE FREQ used (Total process time):
     real time
                        0.01 seconds
     cpu time
                        0.00 seconds
1521
1522 proc freq data=ckd;
1523 tables kfunc_1M*kfunc_3Y;
1524 run;
NOTE: There were 307 observations read from the data set WORK.CKD.
NOTE: PROCEDURE FREQ used (Total process time):
     real time
                        0.01 seconds
     cpu time
                        0.00 seconds
1525
1526
     %endoutput(gfr)
1527
1528 %write(gfra,store=gfr,type=listing)
NOTE: Processing document gfr.
Note: New page for \Freq#1\Table1#1\OneWayFreqs#1
Note: New page for \Univariate#1\egfr_1M#1\Moments#1
Note: New page for \Freq#2\Table1#1\OneWayFreqs#1
Note: New page for \Freq#3\Table1#1\CrossTabFreqs#1
Note: Writing Listing file : lst/gfra.lst
Note: Writing Listing file : lst/gfra1.lst
```

Note: Writing Listing file : lst/gfra2.lst
Note: Writing Listing file : lst/gfra3.lst
Note: Writing Listing file : lst/gfra4.lst
Note: Writing Listing file : lst/gfra5.lst
Note: Writing Listing file : lst/gfra6.lst
Note: Writing Listing file : lst/gfra7.lst
Note: Writing Listing file : lst/gfra8.lst
Note: Writing Listing file : lst/gfra9.lst
Note: Writing Listing file : lst/gfra10.lst

Objects	Туре	Status	Group
Freq.Table1.OneWayFreqs	Table	Selected	1
Freq.Table2.OneWayFreqs	Table	Selected	2
Freq.Table3.OneWayFreqs	Table	Selected	3
Univariate.egfr_1M.Moments	Table	Selected	4
Univariate.egfr_1M.BasicMeasures	Table	Selected	5
Univariate.egfr_1M.TestsForLocation	Table	Selected	6
Univariate.egfr_1M.Quantiles	Table	Selected	7
Univariate.egfr_1M.ExtremeObs	Table	Selected	8
Univariate.egfr_1M.MissingValues	Table	Selected	9
Univariate.egfr_1M.Histogram.Histogram	Graph		
Freq#2.Table1.OneWayFreqs	Table	Selected	10
Freq#3.Table1.CrossTabFreqs	Crosstab	Selected	11
1529			

1530 %write(gfra,store=gfr,type=graphic)

NOTE: Processing document gfr.

NOTE: Writing Graph file: png/gfra.png

Objects	Type	Status	${\tt Group}$
Freq.Table1.OneWayFreqs	Table		•
Freq.Table2.OneWayFreqs	Table		•
Freq.Table3.OneWayFreqs	Table		•
Univariate.egfr_1M.Moments	Table		•
Univariate.egfr_1M.BasicMeasures	Table		•
Univariate.egfr_1M.TestsForLocation	Table		•
Univariate.egfr_1M.Quantiles	Table		•
Univariate.egfr_1M.ExtremeObs	Table		•
Univariate.egfr_1M.MissingValues	Table		•
Univariate.egfr_1M.Histogram.Histogram	Graph	Selected	1
Freq#2.Table1.OneWayFreqs	Table		•
Freq#3.Table1.CrossTabFreqs	Crosstab		•