

Integrating genomic and time series data in phylodynamic analyses with TimTam

Alexander E. Zarebski^{1,2}, Antoine Zwaans^{3,4}, Bernardo Gutierrez¹, Louis du Plessis^{3,4}, Oliver G. Pybus^{1,5}

¹Department of Biology, University of Oxford; ²School of Mathematics and Statistics, University of Melbourne; ³Department of Biosystems Science and Engineering, ETH Zürich; ⁴Swiss Institute of Bioinformatics; ⁵Department of Pathobiology and Population Sciences, Royal Veterinary College London

Introduction

How can we efficiently combine sequencing data with a time series of cases in an integrated analysis? The likelihood of the combined model is well-known, but computationally intractable. The time series integration method through approximation of moments (TimTam) uses a negative binomial approximation to the number of unobserved lineages to overcome this limitation.

Why use TimTam?

- Available in BEAST2 via BEAUti (tutorials on GitHub)
- Linear time complexity (nr. of genomes and time series length)
- Combine time-series of cases with genomes in one analysis
- Estimate rate changes through time ("skyline")
- Estimate prevalence through time
- Estimate R, in the presence of scheduled sampling events

Model specifications

Observed data

- Similar to the occurrence birthdeath process
- Each case is an event inefficient!

- How cases are usually reported
- Each scheduled sampling event is only one event in the computation

- Aggregate sequenced samples
- Reduce number of events further
- Introduce small bias in tree length

Real-world example

- 2010 outbreak of WPV1 in Tajikistan Time-varying R_t and
- surveillance rates
 Daily time series of cases and 116 g e n o m e s
 Low prevalence
- before Feb. 2010

 R_t started to decline before first vaccination round

Pandemic-scale phylodynamics?

TimTam is efficient at integrating realistic numbers of cases and the time series aggregation speeds up the computation for large genomic datasets. By combining TimTam with methods for building large trees, like Thorney BEAST or MAPLE, it opens the door to doing pandemic-scale phylodynamics!

