Swinburne University of Technology

Software Testing and Reliability (SWE30009)

Semester 2, 2022

Tutorial 12

Lecturer: Prof T. Y. Chen

Tutor: Dr Hung Q Luu

Adaptive Random Testing (ART)

Scope: Is used for non-point failure patterns

Intuition: Better spread of random test cases will enhance fault detection

ART methods

- ART by best candidates
 - ART for a fixed-size candidate set
- ART by exclusion
 - Restricted random testing
- ART by partitions
 - ART by random partitions

ART by best candidates

Adaptively pick best test cases from random test case candidates

- Step 1: Generation
 - Generate a set of random candidates
 - Define the specific "best" criterion
- Step 2: Selection
 - Select the "best" candidates amongst this candidate set as the next test case
 - Discard the remaining candidates

ART for a fixed-size candidate set

Adaptively select new test cases far away from executed test cases

- Step 1: Generation
 - Generate a set of random candidates with a fixed size
- Step 2: Selection
 - For each candidate, find its nearest already executed test case
 - Select the candidate with the largest "distance" to its nearest already executed test case, as the next test case
 - Maximin criterion

ART by exclusion

 Adaptively generate + select new test cases outside exclusion regions of executed test cases

- Step 1: Generation
 - Generate an exclusion region for each arealdy excuted test case
- Step 2: Selection
 - Repeat generating a random candidate
 - Check if a candidate that is outside the exclusion regions of all already executed test cases, as the next test case otherwise repeat

Restricted Random Testing (RRT)

Construct exclusion regions based on relative sizes

- Step 1: Generation
 - Define an exclusion ratio (= size of exclusion regions / entire input domain)
 - Define shape of exclusion region
- Step 2: Selection
 - Construct exclusion region for each executed test cases

ART by partitions

Select new test cases in each partition

- Step 1: Generation
 - Divide the input domain into paritions
- Step 2: Selection
 - Select a partition as the target partition
 - Select a random test case from this partition

ART by random partitions

Select new test cases in largest partition

- Step 1: Generation
 - Divide the input domain into paritions with information from executed test cases
- Step 2: Selection
 - Select a partition with the largest size as the target partition
 - Select a random test case from this partition

Forgetting test cases

- Random forgetting
- Forget the oldest
- Total forgetting

Reliability & Fault

Reliability

The **probability** of a system, product or component performs specified functions without failure under specified conditions for a specified period of time.

Components of reliability

- Probability
- Intended function
- Satisfactory
- Specific period of time
- Specified conditions

Characteristics of Reliability [ISO 25010]

- Availablity
- Maturity
- Fault tolerance
- Recoverability

SIG Evaluation Criteria Reliability, Guidance for Producers, Software Improvement Group, 2020

Approaches to software reliability

- Fault avoidance
 - Minimizing faults
- Fault detection
 - Revealing faults
- Fault correction
 - Correcting faults
- Fault tolerance
 - Operating in the presence of faults

Fault avoidance

- Minimizing faults
 - An optimal and well-developed approach

- Commonly used techniques
 - Minimizing complexity
 - Improving communication
 - Early error detection during translation

Fault detection

- Revealing faults
 - As early as possible

- Software testing methods
 - Black box
 - White box
 - Gray box

Fault correction

Fault localization

Program reparing

Fault tolerance

Error isolation

Fallback mechanism

- Redundancy
 - N-version programming
 - Data diversity

Fault prediction

Error seeding

Independent testing

Failure occurences

- Time of failure
- Time interval between failures
- Cumulative failures experienced up to a given time
- Failures experienced in a time interval

Failure measures

- Mean value function
 - Average cumulative failures

- Failure intensity function
 - Number of failures per unit time