What do Multilingual Neural Machine Translation Models Learn about Typology?

Ryokan Ri and Yoshimasa Tsuruoka

Abstract

How do multilingual models handle the multilingualism? In this work, we probed multilingual neural machine translation (NMT) models by typological feature classification task.

Experimental Procedure

Probing Classifier

4. Train and test

a probing classifier

Dataset

Bible Corpus: Translation of the Bible

- contains sentences with the same meaning in multiple languages
- Train: 23,555 sentences for each language (Dev: 455, Test 455)

URIEL database: The database for typology

- Used 103 syntactic features
- For missing data, predicted values are used (by kNN regressions based on phylogenetic or geographical neighbours).

Result

- The encoder is aware of the source language, while the decoder is not. However, the attention module again introduce source-dependent representation. This is undesirable if we expect the multilingual NMT to used shared meaning representation (interlingua).
- Character-level models are better at capturing typology, probably because of its morphological competence.

Top 5 improvements

Feature	Subword	Character	Gain
S ADJECTIVE_AFTER_NOUN	73.33	85.09	11.76
S_ADJECTIVE_BEFORE_NOUN	77.63	87.76	10.13
S_INDEFINITE_WORD	61.81	70.76	8.94
S_ADJECTIVE_WITHOUT_NOUN	65.67	73.85	8.17
$S_{-}TEND_{-}DEPMARK$	70.12	78.13	8.00
S_SVO	85.97	81.47	-4.49
S_SUBORDINATOR_WORD_BEFORE_CLAUSE	92.30	86.75	-5.54
S_SOV	87.75	81.65	-6.10
S_OBJECT_AFTER_VERB	96.44	89.99	-6.45
S_NEGATIVE_WORD_BEFORE_OBJECT	83.79	76.80	-6.98