A组

	1. 选择题:					
	(1) 已知数列 $\{a_n\}$ 是等差数列,下面的数列中必为等差数列的个数是 ()
		② $\{a_n + a_{n+1}\}$	$(3) \{3a_n+1\}$	$\bigoplus \{ a_n \}$		
	A. 1	B. 2	C. 3	D. 4		
	(2) 已知数列 $\{a_n\}$ 是等比数列,下面的数列中必为等比数列的个数是 ()
		② $\{a_n + a_{n+1}\}$		$\textcircled{4} \{2^{a_n}\}$		
	A. 1	B. 2	C. 3	D. 4		
	(3) 我国古代数学名著《算法统宗》中有如下问题:"远望巍巍塔七层,红光点点倍加增,					
共失	丁三百八十一,请问尖乡	人几盏灯?"意思是:一点	座 7 层塔共挂了 381 盏	盛灯,且相邻两	房中	的
下-	一层的灯的盏数是上一	层灯的盏数的2倍,则	塔的顶层灯的盏数是		()
	A. 1	В. 3	C. 5	D. 9		
	(4) 已知数列 $\{a_n\}$, 表	$\pm a_1 = 3, a_2 = 6, \pm a_{n-1}$	$a_{n+1} = a_{n+1} - a_n$ (n 为正	整数),则数列	的第二	35
项为	50°				()
	A. 6	B. −3	C12	D. -6		
	2 . 在等差数列{a _n }中	,已知公差 $d = \frac{1}{2}$,且	$a_1 + a_3 + a_5 + \cdots + a_{99}$	$a_1 = 60, $ \$\pi a_1 +	$-a_2+a_3$	13
+••	·+a ₉₉ +a ₁₀₀ 的值.					

3. 已知等差数列 $\{a_n\}$ 的前n 项和 $S_n = tn^2 + (t-9)n + t - \frac{3}{2}(t$ 为常数),求数列 $\{a_n\}$ 的通项公式.

4. 设 S_n 为等差数列 $\{a_n\}$ 的前 n 项和,求证:数列 $\left\{\frac{S_n}{n}\right\}$ 是等差数列.

5. 已知数列 $\{\log_3 a_n\}$ 是等差数列,且 $\log_3 a_1 + \log_3 a_2 + \dots + \log_3 a_{10} = 10$,求 $a_5 a_6$.

6. 已知等差数列 $\{a_n\}$ 满足 $a_1=29$,且 $S_{10}=S_{20}$,这个数列的前多少项和最大? 并求此最大值.

7. 在 2 与 9 之间插入两个数,使前三个数成等差数列,后三个数成等比数列,试写出这个数列.

8. 已知数列 $\{a_n\}$ 是等比数列,且 a_1,a_2,a_4 成等差数列,求数列 $\{a_n\}$ 的公比.

9. 用数学归纳法证明

$$\frac{1}{2} + \frac{2}{2^2} + \frac{3}{2^3} + \dots + \frac{n}{2^n} = 2 - \frac{n+2}{2^n} (n 为正整数).$$

10. (1) 依次计算下列各式的值:

$$\frac{1}{1}, \frac{1}{1} + \frac{1}{1+2}, \frac{1}{1} + \frac{1}{1+2} + \frac{1}{1+2+3}, \frac{1}{1} + \frac{1}{1+2} + \frac{1}{1+2+3} + \frac{1}{1+2+3+4}.$$

(2) 根据第(1)题的计算结果,猜想

$$S_n = \frac{1}{1} + \frac{1}{1+2} + \frac{1}{1+2+3} + \dots + \frac{1}{1+2+3+\dots+n} (n$$
 为正整数)

的表达式,并用数学归纳法证明相应的结论.