Macroprudential Policy Interactions in a Sectoral DSGE Model with Interest Rate Stickiness

Marc Hinterschweiger, Kunal Khairnar, Tolga Ozden, Tom Stratton

November 1, 2019

Overview

- ► Model summary
- ► Estimation highlights
- ► Macroprudential Policy (CAR, SCR, LTV & CCyB)
- ► Interest rate stickiness & Macroprudential policy
- User Interface

Model Overview-I

▶ Key distortions: (i) Limited liability, (ii) Bankruptcy costs, (iii) Imperfect interest rate pass-through.

Model Overview-II

Estimation

- ▶ Quarterly data for the U.K. economy over 1998Q1-2016Q4.
- ▶ 10 observables in:
 - ► Interest rates (Official bank rate, mortgage & corporate rates)
 - ▶ Real growth rates (output, investment, consumption and wages)
 - Credit growth rates (mortgage & corporate sectors)
 - ► House price growth

Estimated shocks over 1998Q1-2016Q4.

- ▶ What does it take in the model to generate the observed data?
 - Sequence of shocks over the estimation sample.

Historical Variance Decomposition: Household Lending Growth

▶ Each variable over the sample will be given as a combination of different shocks.

Historical Variance Decompositions: Output Growth

Some key unobservables estimated by the model

- ▶ Household defaults are dominant during the crisis period.
- ▶ Welfare of both household types have an upward trend before the crisis, and downward afterwards.

Macroprudential Policy

- ► Available tools in the model:
 - ▶ Minimum and sectoral capital requirements (Benchmark: 11 % CAR, no SCR)
 - LTV limit on businesses and households (Benchmark: 86 %)
 - CCyB (Benchmark: 0)

Macroprudential Policy

- Available tools in the model:
 - ▶ Minimum and sectoral capital requirements (Benchmark: 11 % CAR, no SCR)
 - LTV limit on businesses and households (Benchmark: 86 %)
 - CCyB (Benchmark: 0)

- ▶ Welfare analysis: what is the impact of macroprudential tools on household welfare?
- Counterfactuals: what would have happened if different macroprudential tools had been in place from 1999 onwards?

Example: Sectoral Capital Requirements on Mortgage Lending and Key Variables in Steady-state

Steady state: long-run equilibrium of the model, in the absence of any shocks.

Optimal Policies

- ▶ Ad-hoc mean-variance objective: $E[W_t] \omega \sqrt{Var[W_t]}$
 - Maximizing the level without introducing too much volatility.

Optimal Policies

- Ad-hoc mean-variance objective: $E[W_t] \omega \sqrt{Var[W_t]}$
 - Maximizing the level without introducing too much volatility.

Table: Optimal macroprudential parameters, one at a time. Results with $\omega=0.1$. Benchmark values are: 11 % for CAR, 86 % for LTV limit, no SCR.

Parameter	Optimal Value	Welfare Improvement
LTV Limit	86.6 %	0.001 %
SCR-Mortgage	17.6 % (11 % CAR, 6.6 % add-on)	4.26 %
SCR-Corporate	16.7 % (11 % CAR, 5.7 % add-on)	3.22 %
CAR	14.5 %	3.82 %

Optimal Policies

- Ad-hoc mean-variance objective: $E[W_t] \omega \sqrt{Var[W_t]}$
 - Maximizing the level without introducing too much volatility.

Table: Optimal macroprudential parameters, one at a time. Results with $\omega=0.1$. Benchmark values are: 11 % for CAR, 86 % for LTV limit, no SCR.

Parameter	Optimal Value	Welfare Improvement
LTV Limit	86.6 %	0.001 %
SCR-Mortgage	17.6 % (11 % CAR, 6.6 % add-on)	4.26 %
SCR-Corporate	16.7 % (11 % CAR, 5.7 % add-on)	3.22 %
CAR	14.5 %	3.82 %

Table: Optimal joint SCRs and LTV

Parameter	
LTV	94.06 %
SCR-Mortgage	15.88 %
SCR-Corporate %	12.5 %
Welfare Improvement	4.8 %

- ▶ Larger improvement with lower SCRs when macroprudential tools are coordinated.
- LTV limit can be relaxed if SCRs are sufficiently high.

Counterfactual Exercise

What would be the implied path of economic variables if macroprudential tools had been in place from 1999 onwards?

Figure: Counterfactual with optimized values: SCR-Mortgage 15.88 %, SCR-Corporate 12.5 (CAR 12.5 %), %, LTV 94 %.

Interface

Most policy experiments are available in our user interface.

Other Key Results

- Phasing-in the policies has a smaller impact.
- CCyB typically has a smaller impact than CAR & SCRs.
- Significant interest-rate stickiness in U.K. lending rates:
 - ▶ 5-6 months on corporate rates, 8-11 months on mortgage rates.
- ▶ Interest rate stickiness plays an important role in the transmission of macroprudential tools:
 - ► Stickier rates ⇒ weaker transmission of macroprudential tools.

Conclusions & Future Work

- Conclusions:
 - ▶ Coordination of macroprudential tools may have a welfare improving effect
 - macroprudential tools would have improved some macroeconomic indicators but not have prevented the crisis altogether
 - Interest rate stickiness may weaken the transmission of macroprudential tools that work through interest rates
- ► Future work:
 - ► Interaction between LTI & LTV limits
 - Introduction of monetary policy
 - Household heterogeneity
 - ▶ The impact of heterogeneous expectations on the effectiveness of macroprudential tools

Appendix-Estimation

▶ The model is (partially) estimated using Bayesian methods.

$$egin{cases} extit{Model}: X_t = f(E_t X_{t+1}, X_{t-1}, \epsilon_t) \ extit{Measurement equations}: y_t = F X_t \end{cases}$$

Estimated using Bayesian methods.

Figure: Estimation example: Interest rate pass-through

► Average Bank Rate pass-through is [4.73, 5.93] months on corporate rates and [8.21, 11.1] months on mortgage rates.

Appendix-Counterfactual I: Changes in the Level and Volatility

Variable	Change in Level	Change in Volatility
Corporate Credit	0.039	0.041
Mortgage Credit	0.024	0.041 0.147
Output	0.019	-0.354 0.0437
Household Welfare	0.175	0.0437

Appendix-Counterfactual II: Phasing-in

Figure: Same counterfactual phased-in over a 5-year period over 2001-2006 in equal increments.

Appendix-Changes in the Level and Volatility

Table: Policies introduced at once at the beginning of the sample.

Variable	% Change in Level	% Change in Volatility
Corporate Credit	0.039	0.041
Mortgage Credit	0.024	0.147
Output	0.019	-0.354 0.0437
Household Welfare	0.175	0.0437

Appendix-Changes in the Level and Volatility

Table: Policies introduced at once at the beginning of the sample.

Variable	% Change in Level	% Change in Volatility
Corporate Credit	0.039	0.041
Mortgage Credit	0.024	0.147
Output	0.019	-0.354
Household Welfare	0.175	0.0437

Table: Appendix-Policies phased-in over 2001-2006.

Variable	% Change in Level	% Change in Volatility
Corporate Credit	0.024	-0.001
Mortgage Credit	0.006	-0.007
Output	0.014	-0.356
Household Welfare	0.12	0.096

Appendix-Changes in the Level and Volatility

Table: Policies introduced at once at the beginning of the sample.

Variable	% Change in Level	% Change in Volatility
Corporate Credit	0.039	0.041
Mortgage Credit	0.024	0.147
Output	0.019	-0.354 0.0437
Household Welfare	0.175	0.0437

Table: Appendix-Policies phased-in over 2001-2006.

Variable	% Change in Level	% Change in Volatility
Corporate Credit	0.024	-0.001
Mortgage Credit	0.006	-0.007
Output	0.014	-0.356
Household Welfare	0.12	0.096

Table: Appendix-Policies phased-in over 2001-2006, without interest rate sluggishness.

Variable	% Change in Level	% Change in Volatility
Corporate Credit	0.041	0.02
Mortgage Credit	0.029	0.08
Output	0.02	-0.28
Household Welfare	0.12	0.098

□▶→重▶→重 990

Appendix-Introducing CCyB

CCyB does not improve the outcome nearly as much as the SCRs.

Table: Improvements over baseline when only SCRs and LTV are in place.

Variable	% Change in Level	% Change in Volatility
Optimal SCR+LTV		
Corporate Credit	0.039	0.041
Mortgage Credit	0.024	0.147
Output	0.019	-0.354
Household Welfare	0.175	0.0437

Table: Appendix-Improvements over baseline when only CCyB is in place.

Variable	% Change in Level	% Change in Volatility
Baseline SCR andLTV		
Corporate Credit	0.007	0.042
Mortgage Credit	0.003	0.029
Output	0.0019	0.37
Household Welfare	0.003	-0.002

Appendix-The effect of Interest rate Stickiness on Shock Transmission-I

A shock originating in the household sector: transmission to corporate side and the real economy will depend on the degree of stickiness

Figure: Negative housing preference shock

Appendix-The effect of Interest rate Stickiness on Shock Transmission-II

A shock originating in the banking sector: transmission to both corporate and household sectors will depend on the degree of stickiness

Figure: Negative bank capital shock

Appendix-Interest Rate Pass-through & Prudential Policy Interactions

▶ The impact of macroprudential tools will be weaker in cases where interest rate stickiness is high.

Figure: Positive housing depreciation shock.

(c) Impact of CAR with and without interest-rate stickiness