Optimization

Conditions for optimality

Learning goals

- Local and global
- First & second order conditions

DEFINITION LOCAL AND GLOBAL MINIMUM

Given $S \subseteq \mathbb{R}^d$, $f : S \to \mathbb{R}$:

- f has global minimum in $\mathbf{x}^* \in \mathcal{S}$, if $f(\mathbf{x}^*) \leq f(\mathbf{x})$ for all $\mathbf{x} \in \mathcal{S}$
- f has a **local minimum** in \mathbf{x}^* , if $f(\mathbf{x}^*) \leq f(\mathbf{x})$ for all $\mathbf{x} \in \mathcal{B}_{\epsilon}(\mathbf{x}^*)$, with $\mathcal{B}_{\epsilon}(\mathbf{x}^*) := {\mathbf{x} \in \mathcal{S} \mid ||\mathbf{x} \mathbf{x}^*|| < \epsilon}$ (" ϵ "-ball round \mathbf{x}^*).

Source (left): https://en.wikipedia.org/wiki/Maxima_and_minima.

Source (right): https://wngaw.github.io/linear-regression/.

Bernd Bischl [©] Optimization − 1 / 8

EXISTENCE OF OPTIMA

$$f: \mathcal{S} \to \mathbb{R}$$

- f continous:
 - A real-valued function *f* defined on a **compact set** must attain a minimum and a maximum (Extreme Value Theorem).
- f not continous:
 - In general no statement possible about existence of maximum/minimum.

Bernd Bischl © Optimization - 2 / 8

FIRST ORDER CONDITION FOR OPTIMALITY

Let $f \in C^1$. **Observation:** At a local minimum 1st order Taylor series approximation is perfectly flat; 1st order derivatives are 0.

(Strictly) convex functions (left: univariate; right: multivariate) with unique local minimum, which is the global one. Tangent (hyperplane) is perfectly flat at the optimum.

Source: Watt, 2020, Machine Learning Refined.

Bernd Bischl © Optimization - 3 / 8

FIRST ORDER CONDITION FOR OPTIMALITY

At every local minimum \mathbf{x}^* the first derivative is necessarily always zero; it is therefore called **first-order** or **necessary** condition.

• First-order condition (univariate): Let $\mathbf{x}^* \in \mathbb{R}$ be a local minimum of f. Then:

$$f'(\mathbf{x}^*) = 0$$

• First-order condition (multivariate): Let $\mathbf{x}^* \in \mathbb{R}^d$ be a local minimum of f. Then:

$$\nabla f(\mathbf{x}^*) = (0, 0, ..., 0)^{\top}$$

The points at which the first order derivative is zero are called **stationary points**.

Bernd Bischl © Optimization - 4 / 8

FIRST ORDER CONDITION FOR OPTIMALITY

The condition is **not sufficient**: Not every stationary point $(\nabla f(\mathbf{x}) = 0)$ is a local minimum.

Left: Four points fulfill the necessary conditions; but two of the points are local maxima (not minima). Middle: One point fulfills the necessary condition, but is not a local optimum. Right: Multiple local minima and maxima.

Source: Watt, 2020, Machine Learning Refined.

Bernd Bischl © Optimization - 5 / 8

SECOND ORDER CONDITION FOR OPTIMALITY

Let $f \in C^2$. A stationary point **x** (i.e., $f(\mathbf{x}) = 0$) is a local minimum if $f''(\mathbf{x}) > 0$ (i.e., the function is locally convex).

Left / Right: Function has positive curvature in all directions at the minima, and negative curvature around the maxima. Middle: Curvature is positive in one, and negative in the other direction.

Source: Watt, 2020, Machine Learning Refined,

Bernd Bischl © Optimization - 6 / 8

SECOND ORDER CONDITION FOR OPTIMALITY

Let $f \in \mathcal{C}^2$.

Second-order condition (univariate): A stationary point

$$x^* \in \mathcal{S} \subseteq \mathbb{R}$$
 fulfills $f''(x^*) > 0$.

• Second-order condition (multivariate): A stationary point $\mathbf{x}^* \in \mathcal{S} \subseteq \mathbb{R}^d$ fulfills

$$\nabla^2 f(\mathbf{x}^*)$$
 is positive semi-definitie

(all eigenvalues are positive). This means the curvature is positive in all directions.

Second-order condition is sufficient to prove a local minimum.

Note: For a convex function, $\nabla^2 f(\mathbf{x})$ is always p.s.d.; therefore, any stationary point is the local (also global) minimum.

Bernd Bischl © Optimization - 7/8

CONDITIONS FOR OPTIMALITY AND CONVEXITY

Let $f: \mathcal{S} \to \mathbb{R}$ be convex on convex set \mathcal{S} . Then the following applies:

- Any local minimum is also global minimum
- If f strictly convex, f has exactly one local minimum which is also unique global minimum on S

Bernd Bischl © Optimization - 8 / 8