Final de Lógica 2011

- 1. V o F, Justifique.
 - (a) Las fórmulas $\forall x \exists y (\varphi(x) \to \psi(y))$ y $\exists y \forall x (\varphi(x) \to \psi(y))$ son equivalentes.
 - (b) Sean L y L' reticulados finitos. Si L es un subreticulado de L' entonces el número de congruencias de L' es mayor al de L.
 - (c) Sean A y B τ -álgebras y sea $\varphi = \varphi(x)$. Entonces A × B $\models \varphi[(a,b)]$ sii A $\models \varphi[a]$ y B $\models \varphi[b]$.
 - (d) Sea (Σ, τ) una teoría consistente, y sea $\varphi = \forall x, y \ (x \equiv y)$. Entonces $[\varphi]$ es un átomo del álgebra de Lindenbaum $\mathcal{A}_{(\Sigma,\tau)}$.
- 2. (a) Defina cuando un elemento a es definible en un modelo A.
 - (b) Sea $\tau = (\{c\}, \{f^2\}, \emptyset, a)$ y

$$\varphi = \exists y (f(x,y) \equiv c).$$

Sean A y B τ -álgebras, $a \in A$ y $b \in B$ tales que a es definible en A via φ , y b es definible en B via φ . Pruebe que (a,b) es definible en A \times B via φ .

- 3. Sea $\tau = (\emptyset, \{f^2\}, \{r^1\}, a)$ y sea $\Sigma = \{ \forall x \forall y \ ((r(x) \land r(y)) \rightarrow x \equiv y) \}.$
 - (a) Dar una prueba que atestigüe que

$$(\Sigma,\tau) \vdash \forall x,y,z \ (\exists u \ (r(u) \land x \equiv f(u,z)) \land \exists v \ (r(v) \land y \equiv f(v,z))) \rightarrow x \equiv y$$

- (b) Describa la relación de dependencia de constantes en la prueba dada en el punto a.
- 4. Sea $\tau = (\{c,d\}, \{f^1\}, \{r^1\}, a)$ y sea Σ formado por las siguientes sentencias:

$$\neg(c \equiv d)$$

$$\forall x \ (r(x) \to (x \equiv c \lor x \equiv d))$$

$$f(c) = d \wedge f(d) \equiv c$$

 $\forall x_1 \forall x_2 \forall x_3 \forall x_4 \ (x_1 \equiv x_2 \lor x_1 \equiv x_3 \lor x_1 \equiv x_4 \lor x_2 \equiv x_3 \lor x_2 \equiv x_4 \lor x_3 \equiv x_4).$

Encuentre todos los modelos de la teoría (Σ, τ) salvo isomorfismos.