Step-1

4764-1.6-51P AID: 124

RID: 232 | 27/1/2012

(a) Given that $((AB)^{-1})^T$ comes from $(A^{-1})^T$ and $(B^{-1})^T$.

We have to find the order.

In $\left(\left(AB\right)^{-1}\right)^T$ the order of terms are $\left(A^{-1}\right)^T$, $\left(B^{-1}\right)^T$

Since $((AB)^{-1})^T = (B^{-1}A^{-1})^T$ (Since $(AB)^{-1} = B^{-1}A^{-1}$)

 $= (A^{-1})^T (B^{-1})^T \qquad \left(\text{Since } (AB)^T = B^T A^T \right)$

Hence the $((AB)^{-1})^T$ comes from $(A^{-1})^T$ and $(B^{-1})^T$ in the order of $(A^{-1})^T$ and $(B^{-1})^T$.

Step-2

(b) Suppose U is an upper triangular matrix.

We have to find $(U^{-1})^T$ is which triangular matrix.

Step-3

$$U = \begin{bmatrix} a & b & c \\ 0 & d & e \\ 0 & 0 & f \end{bmatrix}$$
Let

$$U^{-1} = \begin{bmatrix} \frac{1}{a} & -\frac{b}{ad} & \frac{be-cd}{adf} \\ 0 & \frac{1}{d} & -\frac{e}{df} \\ 0 & 0 & \frac{1}{f} \end{bmatrix}$$
en

$$(U^{-1})^T = \begin{bmatrix} \frac{1}{a} & 0 & 0 \\ -\frac{b}{ad} & \frac{1}{d} & 0 \\ \frac{be-cd}{adf} & -\frac{e}{df} & \frac{1}{f} \end{bmatrix}_{\text{which is a lower triangular matrix.}$$

Therefore, if U is an upper triangular matrix then $\left(U^{-1}\right)^T$ is a lower triangular matrix.