Data: 28 de junho de 2020

Reynaldo Lima

Sumário

1	Problema 1	1
2	Problema 2	3
3	Problema 3	6

1 Problema 1

Os resultados aqui apresentados são obtidos ao executar o arquivo $hm4_test1.py$, enviado junto a este trabalho. Como resultado da otmização SLSQP com as restrições impostas (deslocamento q_1 , seção H_1 e seção H_2), tem-se:

	3 · · · · · · · · · · · · · · · · · · ·
Variável	Valor
n_{iter}	12
$n_{fev} + n_{jac}$	30
Vol.	0.007300032818685251
q_1	1.00005807 (mm)
H_1	0.15
T_1	0.00615343
H_2	0.15
T_2	0.00601329

Tabela 1: Valores da otimização do problema 1.

Além disso, acompanha-se o progresso da otimização nas Figuras 1, 2 e 3, onde o número de iteração 0 refere-se ao estado inicial. Observamos que na Figura 1 o volume converge com as iterações para o valor final apresentado na Tabela 1. Já na Figura 2, é possível observar a restrição seguir (aqui em mm) de forma razoavelmente comportada, com excessão da segunda iteração, onde o valor da variável saiu do escopo plotado. Na Figura 3, por fim, vê-se o progresso de cada componente do vetor área ao ser atualizado em cada iteração. Observamos que o problema converge de forma razoavelmente rápida e no Problema 2 comparar-se-á esse progresso com o do algoritmo de OSA.

Variação do volume

Figura 1: Variação do volume por iteração.

Variação da restrição

Figura 2: Variação da restrição por iteração.

Variação do vetor área

Figura 3: Variação da área por iteração.

2 Problema 2

Os resultados aqui apresentados são obtidos ao executar o arquivo $hm4_test2.py$, enviado junto a este trabalho. Na Tabela 2, apresentamos os resultados para a otimização com a janela fornecida de 30%.

Tabela 2: Valores da otimização do problema 2.

Variável	Valor
Janela	30%
n_{iter}	6
Vol.	0.007300413590515512
q_1	0.9999995351437991 (mm)
H_1	0.15
T_1	0.00617432
H_2	0.15
T_2	0.00599303

Para esse problema, porém, é conveniente analisar o quanto a janela de variações do problema influencia na solução do problema. Os resultados desta análise se encontram na Tabela 3, onde o número de iterações e volume final da otimização são mostrados para 5%, 20%, 30%, 65% e 100% de janelas.

O progresso das otimizações pode ser observado nas Figuras 4, 5 e 6, onde são escolhidas a serem estudadas as janelas de 5% e 30%, pois a primeira apresenta um crescimento lento e a segunda já chegou num ponto ótimo de iterações, consdierando a variação de

Tabela 3: Valores da otimização em função da janela do OSA.

Janela	n_{iter}	Vol.
5%	24	0.007300440124813757
20%	8	0.0073008747404476665
30%	6	0.007300413590515512
65%	5	0.007300413790648535
100%	4	0.007300409621658049

Variação do volume

Figura 4: Variação do volume por iteração, comparando diferentes janelas, em escala logarítmica no número de iterações.

1 iteração para uma diferença de 35% na janela (linhas 3 e 4 da Tabela 3). Observa-se que foi escolhida uma escala logarítmica para o númer ode iterações de modo a melhor analisar o progresso das otimizações.

Quando comparamos ainda os resultados da operação com janela de 30%, já no ótimo do método OSA, observamos uma vantagem em relação ao modo utilizado no problema 1. Isso se deve a não linearidade do problema original, simplificado para funções mais simples e que são muito próximas do valor esperado no intervalo de interesse (janela aplicada).

Os Problemas 1 e 2 resolveram uma mesma estrutura, discretizada como dois elementos para a análise. Este problema limitou o deslocamento vertical no centro da viga linear, que, por mais que seja de interesse para o projeto, não é fundamentalmente o parâmetro de interesse no estudo de falhas. Por isso, no Problema 3 é feita uma análise de critério de falhas, da qual é feita a otimização, introduzindo agora 4 restrições (análise da tensão máxima normal e de flambagem, havendo dois elementos), em comparação com o problema original, de 1 única restrição no deslocamento.

Variação da restrição

Figura 5: Variação da restrição por iteração, comparando diferentes janelas, em escala logarítmica no número de iterações.

Variação do vetor área

Figura 6: Variação da área por iteração, comparando diferentes janelas, em escala logarítmica no número de iterações.

3 Problema 3

Os resultados aqui apresentados são obtidos ao executar o arquivo $hm4_test3.py$, enviado junto a este trabalho. Será descrita a análise com uma otimização SLSQP em comaparação com o resultado do problema aproximado (OSA) com janela de 30%.

Inicialmente, analisam-se os resultados gerais obtidos para a otimização SLSQP, presente na Tabela 4. Observa-se, como um dos resultados de maior interesse, que encontra-se um mínimo no volume ao explorar-se ao extremo as restrições de flambagem (que aparentam limitar uma maior diminuição nas espessuras e comprimento de área), enquanto para a restrição normal, no elemento dois, encontra-se uma tensão longe do máximo (restrição longe do seu limite ativo). Isso mostra que o que restringe uma diminuição posterior no volume é o efeito de flambagem ao longo da viga, junto à resistência no engaste.

Variável	Valor
n_{iter}	9
$n_{fev} + n_{jac}$	20
Vol.	0.0024797076014167903
$(g_{N_{L/U}})_{1,top}^{1}$	4.4643422292267587e-10
$(g_{N_{L/U}})_{1,top}^2$	- 0.37981193465300744
$(g_{CR})_{1,top}^1$	4.4644732355436645e-10
$(g_{CR})_{1,bot}^2$	- 5.865598007304129e-10

Já os resultados obtidos pela otimização OSA, são mostrados na Tabela 5, mostram que o método OSA consegue resultados muito próximos do ótimo encontrado anteriormente, mas com um número de iterações consideravelmente menor.

Tabela 5: Valores da otimização OSA do problema 3.

Variável	Valor
Janela (OSA)	30%
n_{iter}	4
Vol.	0.002479710820558877
$(g_{N_{L/U}})_{1,top}^{1}$	4.054529370023374e-07
$(g_{N_{L/U}})_{1,top}^2$	- 0.3800304201625605
$(g_{CR})_{1,top}^1$	3.9733758994131563e-07
$(g_{CR})_{1,bot}^2$	- 1.1478676091858375e-06

Por fim, nas Figuras 7 e 8, observa-se o progresso do volume e das restrições, respectivamente, comparando a velocidade de convergência entre os métodos SLSQP com o OSA. Como era esperado, o método OSA mostra-se mais rápido, quando escolhida uma janela suficientemente larga. Com a Figura 8, especificamente, observamos ainda o progresso das restrições violadas. A restrição mais violada, $g_{N_{L/U}}$, por sua vez, acaba por ser respeitada no ponto de mínimo volume da otimização.

Variação do volume

Figura 7: Variação do volume por iteração, comparando diferentes métodos.

Variação das restrições

Figura 8: Variação das restrições por iteração, comparando diferentes métodos.