Year 12 - Ext 2 - Trial and HSC Revision - Sheet 1

WORKED SOLUTIONS

Question 1 {Proofs}

Prove by contradiction that $\sqrt{2}$ is irrational.

Assume that $\sqrt{2}$ is rational and see if that leads to a contradiction

1	$\sqrt{2}=rac{m}{n}$	$\frac{\underline{m}}{n}$ Where $\frac{\underline{m}}{n}$ is a fraction in its simplest possible form (i.e. m and n have no common factors)
2	$2=rac{m^2}{n^2}$	Square both sides
3	$2n^2=m^2$	rearrange
4		Which means that m^2 is even. Which means that m is even
5	$m=2k \ m^2=4k^2$	Because m is even
6	$2n^2=4k^2$	Rewriting from line 3
7	$n^2=2k^2$	By the same logic as line 4, this means that n is also even
8		BUT the assumption was that m and n did not have a common factor. If they're both even, they have a common factor of 2.

Therefore, by contradiction, $\sqrt{2}$ must be irrational.

Question 2 (Complex numbers)

Given $z_1=2\Bigl(\cos{\pi\over 6}+i\sin{\pi\over 6}\Bigr)$ and $z_2=3\Bigl(\cos{\pi\over 2}+i\sin{\pi\over 2}\Bigr)$, sketch z_1z_2 on the complex plane.

Using $z_1z_2=r_1r_1\mathrm{cis}(heta_1+ heta_2)$

$$z_3=6{
m cis}igg(rac{2\pi}{3}igg)$$

Question 3 (further induction) Prove by mathematical induction that $3^n + 2^n$ is divisible by 5 for all positive integers n such that n is odd.

Hint: the first step involves proving that it holds for $\,n=1\,$

Step 1 - demonstrate that it works for $\,n=1\,$

$$3^1 + 2^1 = 5$$

Which is clearly divisible by 5

Step 2 - assume that it works for some arbitrary odd integer $\,n=k\,$

$$3^k + 2^k = 5p$$

Which rearranges to $3^k = 5p - 2^k$

Step 3 - demonstrate that is mean it works for n=k+2

Note: it has to be k+2 because, if k is an odd number, the next odd number is k+2

RTP:
$$3^{k+2} + 2^{k+2} = 5q$$

$3^2 3^k + 2^2 2^k = 5q$	Index laws
$LHS = 3^2 \big(5p - 2^k\big) + 2^2 2^k$	Use inductive step
$=9\cdot 5p-9\cdot 2^k+4\cdot 2^k$	Expand brackets
$=9\cdot 5p-5\cdot 2^k$	Collect like terms
$=5ig(9p-2^kig)$	Factorise
=RHS	Because p and k are integers

Therefore, by induction, $P(\boldsymbol{n})$ is true for all positive odd integers \boldsymbol{n}

Question 4 {vectors} Describe / sketch the graph of the vector function $egin{pmatrix} \cos t \\ \sin t \\ -t \end{pmatrix}$ for $t \geq 0$

Ignoring the z-axis, it looks like this

The value on the z-axis just descends as t gets bigger. So the net effect is a spiral that descends from the x-y plane, radius 1.

Question 5 (integration) Integrate the following

$$\int \frac{1}{\sqrt{3-2x-x^2}} dx$$

Complete the square

$$egin{aligned} 3-2x-x^2 \ &= 3-\left(2x+x^2
ight) \ &= 3-\left[(x+1)^2-1
ight] \ &= 4-\left(x+1
ight)^2 \end{aligned}$$

Therefore the integral becomes

$$\int \frac{1}{\sqrt{4-\left(x+1\right)^2}} dx$$

Which we recognise from the formula sheet as matching the pattern

$$\int \frac{f'(x)}{\sqrt{a^2 - [f(x)]^2}} dx = \sin^{-1} \frac{f(x)}{a} + c$$

Where
$$a = 2$$
, $f(x) = x + 1$, $f'(x) = 1$

Therefore the integral evaluates to $\sin^{-1} \, rac{x+1}{2} + C$

$$\int \frac{3x+1}{(x-3)(x+2)} dx$$

Use partial fractions and equate coefficients

$$\frac{3x+1}{(x-3)(x+2)} = \frac{a}{x-3} + \frac{b}{x+2}$$

$$=$$

$$= \frac{a(x+2) + b(x-3)}{(x-3)(x+2)}$$

$$=$$

$$= \frac{(a+b)x + (2a-3b)}{(x-3)(x+2)}$$

Therefore

$$a+b=3$$
$$2a-3b=1$$

a=3-b	Rearrange (1)
$\boxed{2(3-b)-3b=1}$	Sub into (2)
$\boxed{6-5b=1}$	Expand and collect like terms
b=1	Solve
a=2	Sub back into (1)

So the integral becomes

$$\int rac{2}{x-3} dx + \int rac{1}{x+2} dx$$

$$= 2 \ln|x-3| + \ln|x+2| + C$$