

Today's Tasks

- Closed-loop position control with derivative control action:
 - Experiment #1: Simulink Simulation
 - Experiment #2: Proportional Control of Position
 - Experiment #3: PD Control of Position and Comparison to Simulation
 - Extra Credit: Write code to command the wheel to tick 36 degrees every second
- Deliverable:
 - Lab 4 report (with prelab)

Plant Transfer Functions

$$K = \frac{K_{dc}}{vc2pwm}$$

$$vc2pwm = \frac{255 [PWM]}{5 [V]} = 51$$

Plant TF:

$$G_{p}(s) = \frac{\Theta(s)}{\Theta_{r}(s)} = \frac{1}{s} \frac{K}{\tau s + 1} = \frac{K}{\tau s^{2} + s}$$

A "free" integrator

One open-loop zero:
$$z = \frac{-K_p}{K_d}$$

One open-loop zero:
$$z = \frac{-K_p}{K_d}$$
 Two open-loop poles:
$$\begin{cases} p_1 = 0 \\ p_2 = \frac{-1}{\tau} \end{cases}$$

P, PI and PD Controllers

$$G_c(s) = K_p$$

$$G_c(s) = K_p + \frac{K_i}{s}$$

$$G_c(s) = K_p + K_d s$$

Integral and Derivative

Step Response and Its Derivative

Comparison of Closed-Loop Transfer Functions

P Control:
$$G_{cl}(s) = \frac{K_p K}{\tau s^2 + s + K_p K}$$
 $\Rightarrow \zeta \omega_n = \frac{1}{2\tau}$

A "real" zero at $-\frac{K_p}{K_d}$

$$S^2 + 2\zeta \omega_n s + \omega_n^2$$

PD Control: $G_{cl}(s) = \frac{K(K_p + K_d s)}{\tau s^2 + (1 + K_d K)s + K_p K}$

Settling time (
$$\pm 2\%$$
): $T_s = \frac{4}{\zeta \omega_n}$

2nd Order System Poles

$$s^2 + 2\zeta\omega_n s + \omega_n^2 = 0$$

$$S_{1,2} = -\sigma_d \pm j\omega_d = -\zeta\omega_n \pm j\omega_n \sqrt{1-\zeta^2}$$

$$T_p = \frac{\pi}{\omega_n \sqrt{1 - \xi^2}}$$

$$T_s = \frac{4}{\xi \omega_n} \quad (\pm 2\%)$$

$$\%OS = e^{-\left(\frac{\xi \pi}{\sqrt{1 - \xi^2}}\right)} \times 100$$

PID Simulink Model

Control Action Comparison

- Proportional action improves speed but with steady-state error in some cases
- Integral action improves steady state error but with less stability; may create overshoot, longer transient, or integrator windup
- *Derivative action* improves stability but sensitive to noise; may create large output when the input is not a continuous signal

PID controller transfer function

$$G_c(s) = K_p + \frac{K_i}{s} + K_d s$$

$$= \frac{K_d s^2 + K_p s + K_i}{s}$$

$$= K_d \left(\frac{s^2 + \binom{K_p}{K_d} s + \binom{K_i}{K_d}}{s} \right)$$

Practical Consideration

<u>Use a Pseudo Differentiator</u>

Finite difference method

Band-limited differentiator to eliminate excess noise in the signal.

Practical Consideration

Use a Smooth Step Input

Effect of Saturation

Effects of Zeros

In control design, zeros play a major role

- Zeroes reduce the effect of nearby poles
- The derivative (lead) effect

Effects of Zeros

$$G_0(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

$$G(s) = (\alpha s + 1)G_0(s)$$

$$z = -\frac{1}{\alpha}$$

$$G(s) = \frac{1}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$
Step Response:
$$Y(s) = (\alpha s + 1)G_0(s) \frac{1}{s} = G_0(s) \frac{1}{s} + \alpha G_0(s)$$
The step response of $G_0(s)$ impulse response

The step response of $G_0(s)$

By adding the impulse response, i.e. the derivative of the step response, the resultant response becomes faster, but more overshoot.

For α < 0, the step response exhibits an undershoot. The output first moves in the opposite direction. The response is also very slow.

2.004 Fall 21'

Extra Credit Task

Write code to command the wheel to tick 36 degrees every second

