

Calculus 3 Workbook

Applications of triple integrals

TRIPLE INTEGRALS TO FIND MASS AND CENTER OF MASS

■ 1. The disk with radius 6 and height 4 has density $\delta = 1/(d+2)$, where d is the distance to the central axis of the disk. Find the mass and center of mass of the disk.

■ 2. The rectangular plate with base dimensions 4×5 m and height 2 m has density $\delta = 4d$ kg/m², where d is the distance from its 4×2 m left face. Find the mass and center of mass of the plate.

■ 3. The half ellipsoid has a base with semi-axes a and b, height h, and constant density δ . Find its mass and center of mass.

MOMENTS OF INERTIA

- 1. The spherical solid object with radius 5 has density $\delta = d^2$, where d is the distance to the center of the sphere. Find the moment of inertia of the object about any line that passes through its center.
- 2. A box (rectangular cuboid) has length 6, width 4, height 2, and constant density δ . Find the moment of inertia of the box about all of its edges.
- 3. The tetrahedron ABCD has constant density δ . Find the moment of inertia of the solid about the line AB, where A(0,0,0), B(1,0,0), C(0,1,0), and D(0,0,1).

W W W . KRISTAKING MATH. COM