Caleb Logemann MATH 520 Methods of Applied Math II Homework 2

Section 10.9

#10 Let S_+ and S_- be the left and right shift operators on ℓ^2 . Show that $S_- = S_+^*$ and $S_+ = S_-^*$.

Proof. Both S_+ and S_- are in $\mathcal{B}(\ell^2)$ therefore they both have unique adjoints. Consider $x, y \in \ell^2$, then

$$\langle S_{+}x, y \rangle = \sum_{n=1}^{\infty} ((S_{+}x)_{n} \cdot \overline{y_{n}})$$

$$= \sum_{n=2}^{\infty} (x_{n-1} \cdot \overline{y_{n}})$$

$$= \sum_{n=1}^{\infty} (x_{n} \cdot \overline{y_{n+1}})$$

$$= \sum_{n=1}^{\infty} (x_{n} \cdot \overline{(S_{-}y)_{n}})$$

$$= \langle x, S_{-}y \rangle$$

This shows that $S_+^* = S_-$. Now since $S_+, S_- \in \mathcal{B}(\ell^2)$ it is true that $(S_+^*)^* = S_+$ or $S_-^* = S_+$. \square

#11 Let T be the Volterra integral operator $Tu = \int_0^x u(y) dy$ considered as an operator on $L^2(0,1)$. Find T^* and $N(T^*)$.

Consider $u, v \in L^2(0, 1)$.

$$\langle Tu, v \rangle = \int_0^1 Tu(x) \overline{v(x)} \, dx$$

$$= \int_0^1 \int_0^x u(y) \, dy \overline{v(x)} \, dx$$

$$= \int_0^1 \int_y^1 \overline{v(x)} \, dx u(y) \, dy$$

$$= \int_0^1 \overline{\int_y^1} v(x) \, dx u(y) \, dy$$

$$= \langle u, T^*v \rangle$$

where

$$T^*v(y) = \int_y^1 v(x) \, \mathrm{d}x$$

Since $T \in \mathcal{B}(L^2(0,1))$ this is the unique adjoint of T.

In order to find $N(T^*)$ consider $u \in L^2(0,1)$ such that

$$T^*u = 0$$

This implies that

$$T^*v(y) = \int_y^1 v(x) \, \mathrm{d}x = 0$$

for every $y \in (0,1)$. Using the Fundamental Theorem of Calculus for L^2 functions it can be seen that

$$0 = -v(y) + v(1)$$

This implies that v(y) = v(1) for every $y \in (0,1)$ or equivalently that v is a constant function. Therefore the $N(T^*) = \{v \in L^2(0,1) : v = c \text{ for some } c \in \mathbb{R}\}.$

#12 Suppose $T \in \mathcal{B}(\mathbf{H})$ is self-adjoint and there exists a constant c > 0 such that $||Tu|| \ge c||u||$ for all $u \in \mathbf{H}$. Show that there exists a solution of Tu = f for all $f \in \mathbf{H}$. Show by example that the conclusion may be false if the assumption of self-adjointedness is removed.

Proof. First note that $N(T) = \{0\}$. Assume that $u \in N(T)$, then $||u|| \leq \frac{||Tu||}{c} = 0$. Since ||u|| = 0, this implies that u = 0. Also since T is self-adjoint, $N(T^*) = \{0\}$. This implies by Proposition 10.3 that $\overline{R(T)} = \mathbf{H} = \{0\}^{\perp}$. Therefore the range of T is dense in \mathbf{H} , and thus if we can show that the range is in fact closed then Tu = f will have a solution for all $f \in \mathbf{H}$.

In order to show that R(T) is closed I will first consider T^{-1} . Since $N(T) = \{0\}$ this inverse is well defined for all $u \in R(T)$. Consider some sequence $u_n \in R(T)$ such that $u_n \to 0$ as $n \to \infty$. Now consider the sequence $v_n = T^{-1}u_n$. Using the property that $||Tu|| \ge c||u||$, it can be seen that

$$||v_n|| \le \frac{||Tv_n||}{c} = \frac{||u_n||}{c}$$

Therefore $\lim_{n\to\infty}(\|v_n\|)=0$ or equivalently $T^{-1}u_n\to 0$, this shows that T^{-1} is continous at 0. Also T^{-1} is bounded because $\frac{\|T^{-1}u\|}{\|u\|}\leq \frac{1}{c}$ for all $u\in R(T)$. Since T^{-1} is bounded and continous at 0, T^{-1} is continous everywhere. Now it is known that continuity implies that for $F\subset \mathbf{H}$ closed $(T^{-1})^{-1}(F)$ is also closed. Since $(T^{-1})^{-1}=T$ and \mathbf{H} is closed when considered as a subset of itself, this implies that $T(\mathbf{H})=R(T)$ is closed. Now that we have shown that R(T) is closed and dense, this implies that $R(T)=\mathbf{H}$.

This conclusion may be false if that operator is not self-adjoint. Consider the operator S_+ on ℓ^2 . We have already shown that $S_+^* = S_-$ so S_+ is not self-adjoint. However $||S_+x|| = ||x||$ for all $x \in \ell^2$, so with c = 1 S_+ satisfies $||S_+x|| \ge c||x||$ for all $x \in \ell^2$. However $R(S_+) = \{x \in \ell^2 : x_1 = 0\}$, so $S_+u = x$ will not have a solution if $x_1 \ne 0$.

#13 Let M be the multiplication operator Mu(x) = xu(x) in $L^2(0,1)$. Show that R(M) is dense but not closed.

Proof. First of all note that M is self adjoint, this is because $M^*u(x) = \overline{x}u(x) = xu(x) = Mu(x)$ on $x \in (0,1)$. Therefore $N(M^*) = N(M)$. By definition

$$N(M) = \left\{ x \in L^2(0,1) : \|xu(x)\|_{L^2} = 0 \forall x \in [0,1] \right\}$$

Equivalently this implies that

$$\int_0^1 |xu(x)|^2 \, \mathrm{d}x = 0$$

which is the same as saying that u(x) = 0 almost everywhere. This shows that $N(M) = \{0\} = N(M^*)$. Now by proposition 10.3, we know that $\overline{R(M)} = N(M^*)^{\perp} = L^2(0,1)$. Thus the range of M is dense in $L^2(0,1)$.

Next I will construct a sequence in R(M) that does not converge to a point in R(M). That is I will find $u_n \in L^2(0,1)$ such that $Mu_n \to v \notin R(M)$. This will show that R(M) is not closed. Let

$$u_n(x) = \begin{cases} 0 & x < \frac{1}{n} \\ x^{\frac{1}{n} - 1} & x \ge \frac{1}{n} \end{cases}$$

First I will show that $u_n(x) \in L^2(0,1)$ for every $n \in \mathbb{N}$, $n \geq 3$. The fact that $n \geq 3$ is used when taking the antiderivative.

$$\int_{0}^{1} |u_{n}(x)|^{2} dx = \int_{\frac{1}{n}}^{1} \left| x^{\frac{1}{n} - 1} \right|^{2} dx$$

$$= \int_{\frac{1}{n}}^{1} x^{\frac{2}{n} - 2} dx$$

$$= \left(\frac{1}{\frac{2}{n} - 1} x^{\frac{2}{n} - 1} \right) \Big|_{x = \frac{1}{n}}^{1}$$

$$= \frac{1}{\frac{2}{n} - 1} \left(1 - \left(\frac{1}{n} \right)^{\frac{2}{n} - 1} \right)$$

$$= \frac{n}{2 - n} \left(1 - \left(\frac{1}{n} \right)^{\frac{2 - n}{n}} \right) < \infty$$

Second I will show that $Mu_n(x) \to 1$ in $L^2(0,1)$. Consider

$$||Mu_n - 1||_{L^2(0,1)}^2 = \int_0^1 (Mu_n(x) - 1)^2 dx$$

$$= \int_0^1 1 - 2Mu_n(x) + Mu_n(x)^2 dx$$

$$= \int_0^1 1 dx - 2 \int_0^1 Mu_n(x) dx + \int_0^1 Mu_n(x)^2 dx$$

$$= 1 - 2 \int_{\frac{1}{n}}^1 x^{\frac{1}{n}} dx + \int_{\frac{1}{n}}^1 x^{\frac{2}{n}} dx$$

$$= 1 - 2 \left(\frac{1}{\frac{1}{n} + 1} x^{\frac{1}{n} + 1} \right) \Big|_{x = \frac{1}{n}}^1 + \left(\frac{1}{\frac{2}{n} + 1} x^{\frac{2}{n} + 1} \right) \Big|_{x = \frac{1}{n}}^1$$

$$= 1 - \frac{2}{\frac{1}{n} + 1} \left(1 - \left(\frac{1}{n} \right)^{\frac{1}{n} + 1} \right) + \frac{1}{\frac{2}{n} + 1} \left(1 - \left(\frac{1}{n} \right)^{\frac{2}{n} + 1} \right)$$

Now consider the limit as $n \to \infty$.

$$\lim_{n \to \infty} \left(\|Mu_n - 1\|_{L^2(0,1)}^2 \right) = \lim_{n \to \infty} \left(1 - \frac{2}{\frac{1}{n} + 1} \left(1 - \left(\frac{1}{n} \right)^{\frac{1}{n} + 1} \right) + \frac{1}{\frac{2}{n} + 1} \left(1 - \left(\frac{1}{n} \right)^{\frac{2}{n} + 1} \right) \right)$$

$$= 1 - \lim_{n \to \infty} \left(\frac{2}{\frac{1}{n} + 1} \left(1 - \left(\frac{1}{n} \right)^{\frac{1}{n} + 1} \right) \right) + \lim_{n \to \infty} \left(\frac{1}{\frac{2}{n} + 1} \left(1 - \left(\frac{1}{n} \right)^{\frac{2}{n} + 1} \right) \right)$$

$$= 1 - 2 + 1 = 0$$

Therefore $Mu_n \to 1$ in $L^2(0,1)$. Lastly I will show that $1 \notin R(M)$ in order to show that R(M) is not closed. If $1 \in R(M)$ then there exists $u \in L^2(0,1)$ such that xu(x) = 1. This would imply that $u(x) = \frac{1}{x}$, however $\frac{1}{x}$ is not in $L^2(0,1)$. To verify this consider the following.

$$\int_{0}^{1} |x^{-1}|^{2} dx = \int_{0}^{1} x^{-2} dx$$
$$= -x^{-1} \Big|_{x=0}^{1}$$
$$= -1 + \infty = \infty$$

This shows that x^{-1} is not in $L^2(0,1)$.

- #15 An operator $T \in \mathcal{B}(\mathbf{H})$ is said to be normal if it commutes with its adjoint, i.e. $TT^* = T^*T$. Thus, for example, any seff-adjoint, skey-adjoint, or unitary operator is normal. For a normal operator T show that
 - (a) $||Tu|| = ||T^*u||$ for every $u \in \mathbf{H}$.

Proof. Let $u \in \mathbf{H}$ and consider the following.

$$||Tu||^{2} = \langle Tu, Tu \rangle$$

$$= \langle u, T^{*}Tu \rangle$$

$$= \langle u, TT^{*}u \rangle$$

$$= \langle u, (T^{*})^{*}T^{*}u \rangle$$

$$= \langle T^{*}u, T^{*}u \rangle$$

$$= ||T^{*}u||^{2}$$

Therefore $||Tu|| = ||T^*u||$ for every $u \in \mathbf{H}$.

(b) T is one to one if and only if it has dense range.

Proof. First note that when T is normal $N(T) = N(T^*)$. This can be see by using part (a) and by letting Tu = 0, then $0 = ||Tu|| = ||T^*u||$. This implies that $T^*u = 0$. Thus if $u \in N(T)$ then $n \in N(T^*)$. The opposite direction is equivalent, that is when $u \in N(T^*)$, then $u \in N(T)$. Now assume that T is one to one or equivalently $N(T) = \{0\}$. As was shown earlier this implies that $N(T^*) = \{0\}$ and by proposition 10.3 it is clear that

$$\overline{R(T)} = N(T^*)^{\perp} = \{0\}^{\perp} = \mathbf{H}$$

Therefore the range of T is dense in \mathbf{H} .

Finally let T have dense range, that is $\overline{R(T)} = \mathbf{H}$. This implies that $N(T^*)^{\perp} = \mathbf{H}$. Therefore for all $u \in \mathbf{H}$, $u \perp v$ for all $v \in N(T^*)$. The only element of \mathbf{H} that is orthogonal to all of \mathbf{H} is the zero element. Therefore $N(T^*) = \{0\}$ and it follows that $N(T) = \{0\}$, which shows that T is one to one.

(c) Show that any multiplication operator or Fourier multiplication operator is normal in L^2 . Let S be a multiplication operator on L^2 , then Su(x) = w(x)u(x) for some $w \in L^{\infty}$. We have also shown that $S^*u(x) = \overline{w(x)}u(x)$. Now consider any $u \in L^2$.

$$S^*Su(x) = S^*w(x)u(x)$$

$$= \overline{w(x)}\overline{w(x)}u(x)$$

$$= w(x)\overline{w(x)}u(x)$$

$$= S\overline{w(x)}u(x)$$

$$= SS^*u(x)$$

Therefore $S^*S = SS^*$ and S is normal.

Now let T be a Fourier multiplication operator. Then $T = F^{-1}SF$ where F is the Fourier Transform and S is some multiplication operator. Now all of these operators are in $\mathcal{B}(L^2)$ so $T^* = (F^{-1}SF)^* = F^*S^*(F^{-1})^*$. Also note that F is unitary so $F^* = F^{-1}$ and $(F^{-1})^* = F$. Thus $T^* = F^{-1}S^*F$. Now consider

$$TT^* = F^{-1}SFF^{-1}S^*F$$
$$= F^{-1}SS^*F$$

Since S as a multiplication operator is normal

$$=F^{-1}S^*SF$$

$$=F^{-1}S^*FF^{-1}SF$$

$$=T^*T$$

Thus T is a normal operator.

(b) Show that the shift operators S_+ and S_- are not normal in ℓ^2 . Consider $x \in \ell^2$ such that $x_1 \neq 0$, then $S_-S_+x = x$ however $S_+S_-x = (0, x_2, x_3, \cdots)$. Thus $S_+S_+^*x = S_+S_-x \neq S_-S_+x = S_+^*S_+x$. Therefore S_+ is not normal. Also $S_-S_-^*x = S_-S_+x \neq S_+S_-x = S_-^*S_-x$, so S_- is not normal either.

#19 If $T_n \in \mathcal{B}(X)$ and $\sum_{n=1}^{\infty} (\|T_n\|) < \infty$, show that the series $\sum_{n=1}^{\infty} (T_n)$ is uniformly convergent.

Proof. To show that the series $\sum_{n=1}^{\infty} (T_n)$ is uniformly convergent is equivalent to showing that the series of partial sums converges uniformly to the infinite sum. Consider the following

$$\left\| \sum_{n=1}^{\infty} (T_n) - \sum_{n=1}^{N-1} (T_n) \right\| = \left\| \sum_{n=N}^{\infty} (T_n) \right\|$$

$$\leq \sum_{n=N}^{\infty} (\|T_n\|)$$

However since this is part of a convergent sum as N goes to infinity this sum goes to 0, therefore

$$\lim_{N \to \infty} \left(\left\| \sum_{n=1}^{\infty} (T_n) - \sum_{n=1}^{N-1} (T_n) \right\| \right) = 0$$

This shows that the series $\sum_{n=1}^{\infty} (T_n)$ is uniformly convergent.