| 一、填空题: (每空1分,共15  | (分)            |              |               |
|-------------------|----------------|--------------|---------------|
| 1. 一个二端元件上的电压 u、F | 电流 i 取关联参      | 考方向,         | 己知 u=10V,     |
| i =2A,则该二端元件产生    | W              | 的电功率         | <b></b><br>率。 |
| 2. 理想电流源的         | 是恒定的,          | 其            | 是             |
| 由与其相连的外电路决定的。     |                |              |               |
| 3. 线性电路线性性质的最重    | 重要体现就是         |              | 性和            |
| 性,它们反映            |                |              |               |
| 了电路中激励与响应的内在关     | 泛系。            |              |               |
| 4. KVL 是关于电路中     | 受到             | ]的约束;        | KCL 则是关       |
| 于电路中              |                |              |               |
|                   | <b>1</b> °     |              |               |
| 5. 在互易二端口网络的各种参数  | 数中,只有          |              | _个是独立的,       |
| 对称二端口网络的各种参数中     | 7,只有           |              | 是独立的。         |
| 6. 某一正弦交流电流的解析式   | 为 i=14. 14sin( | (100 π t+    | 60°)A,贝       |
| 该正弦电流的有效值 I=_     | <i></i>        | <b>A</b> ,频率 | 三为 f=         |
| Hz, 初相 ψ=         | 。当 t=0.1s 时    | ,该电泳         | <b></b>       |
| A。                |                |              |               |
| 7. 线性一阶动态电路的全响应   | ,从响应与激励        | 力在能量         | 方面的关系来        |
| 分析,可分解为           |                |              |               |
|                   | j              |              | _响应之和。        |

## 二、简单计算题: (每空5分,共40分)

1. 试求如图电路中的 i、 $i_1$ 。



2. 试求如图电路中的电位 Va。



3. 求如图二端电路的等效电阻 R。



4. 试计算如图电路中的电压 I。



5. 某二端电路的电压 u 与电流 i 取关联参考方向,已知 u=10cos(5t

 $+30^{\circ}$  )V,  $i=2\sin(5t+60^{\circ})$ A, 试求该二端电路的等效阻抗 Z, 吸收的有功功率 P、无功功率 Q。

6. 如图所示电路中, $R=4\Omega$ ,L=40mH,C=0.25uF, $\dot{U}_s=4∠36$ °V。求:1)谐振频率  $f_0$ ,品质因数 Q; 2)谐振时电路中的电流 I。



7. 如 图 所 示 互 感 电 路 中 , 已 知  $L_1 \! = \! 0. \ 4H, L_2 \! = \! 2. \ 5H, M \! = \! 0. \ 8H, i_1 \! = \! i_2 \! = \! 10sin500t \ mA, 求 \ u_2 \, .$ 



8. 试求如图二端口电路的 Z 参数  $Z_{11}$ 、 $Z_{12}$ 、 $Z_{22}$ 。



三、分析计算题: (每题 9 分, 共 45 分)

(必须有较规范的步骤,否则扣分,只有答案者,该题得零分)

1. 如图所示电路,试用节点法求受控源吸收的功率  $P_{\text{w}}$ 。



2. 如图所示电路,试用网孔法求受控源两端的电压 U。



3. 如图所示电路, 求电阻 R 为何值时它获得最大功率  $P_m$ , 且  $P_m$ 为 多大?



4. 如图所示电路, t=0 时将 S 合上, 求 t $\geq$ 0 时的 i、ic、uc。



5. 已知 $\overset{\bullet}{U_S}=1$  $\angle 0$ °V,求电路中的 $\overset{\bullet}{I_1}$ 、 $\overset{\bullet}{I_2}$ 。



## 电路基础参考答案及评分标准

- 一、填空题: (每空1分,共15分)
- 1. -20 2. 电流、电压 3. 叠加、齐次
- 4. 支路 (回路) 电压、支路电流 5. 3、2 6. 10、50、 60°、  $5\sqrt{6}$
- 7. 零输入、零状态
- 二、简单计算题: (每题 5 分, 共 40 分)
- **1.** i=9+4-3-6=4A (3分)  $i_1=9+4=13A$  (2分)

2. 
$$V_a = -5 - \frac{9}{9 + 12} \times (12 + 9)$$
 (3  $\frac{1}{3}$ ) +12=-2V (2  $\frac{1}{3}$ )

3.  $i = \frac{u}{6} + \frac{u - 3u}{3}$  (3  $\frac{1}{3}$ )  $R = \frac{u}{i} = -2\Omega$  (2  $\frac{1}{3}$ )

4.  $I = \frac{10}{10 + 10}$  (2  $\frac{1}{3}$ )  $-\frac{10}{10 + 10} \times 2$  (2  $\frac{1}{3}$ ) =-0.5A (1  $\frac{1}{3}$ )

$$\frac{U_m}{i} = \frac{10 \angle 120^\circ}{2 \angle 60^\circ}$$

5.  $Z = I_m$  =5 \angle 60° \Omega (1  $\frac{1}{3}$ )

$$P = \frac{1}{2} U_m I_m \cos \phi = 5W$$
 (2  $\frac{1}{3}$ )

$$Q = \frac{1}{2} U_m I_m \sin \phi = 5\sqrt{3} Var$$
 (2  $\frac{1}{3}$ )

6. 1) 
$$f_0 = \frac{1}{2\pi\sqrt{LC}} = 1592 \text{ Hz}$$
 (2  $\%$ )

$$Q = \frac{1}{R} \sqrt{\frac{L}{C}} = 100 \qquad (2 \%)$$

2) 由谐振的特点可知:

**8.**  $Z_{11}=6//(4+5)=3.6\Omega$  (1 %)

$$Z_{12} = \frac{5}{4+5+6} \times 6 = 2 \Omega \quad (2 \%)$$

$$Z_{22} = \frac{5}{(4+6)} = \frac{10}{3} \Omega \quad (2 \%)$$

三、分析计算题: (每题9分, 共45分)

(必须有较规范的步骤,否则扣分,只有答案者,该题得零分)

1. (9分) 设独立节点 n 及参考节点如图: (2分)



列节点方程: 
$$(\frac{1}{2} + \frac{1}{4} + \frac{1}{12})$$
  $U_n=3-\frac{5i}{2}$  (2分)

列控制量方程:  $i=-\frac{U_n}{4}$  (1分)

联立以上方程解得:

$$U_n=14.4V (1 \%)$$
  $i=-3.6A (1 \%)$ 

则受控源吸收的功率为

$$U_n + 5i$$

$$P=5i \left(-\frac{U_n+5i}{2}\right) (1分)=-32.4W$$
(实际发出)(2分)

2. (9分)

设各网孔电流及方向如图: (1.5分)



列网孔方程: 
$$3I_1-I_2-2I_3=40$$
(1 分)  $I_2=-0.5U_1$ (1 分)

$$-2I_1 - I_2 + 5I_3 = 0 \ (1 \ \text{$\beta$})$$

列控制量方程:  $U_1=I_3-I_2$  (1分)

联立以上方程解得:

$$I_1$$
=15A(0.5分)  $I_2$ =-5A(0.5分)  $I_3$ =5A(0.5分) 则  $U$ = $I_2$ - $I_3$ + $I_2$ - $I_1$ =-30V(2分)

## 3. (9分)

断开 R,得一有源二端网络,(1分) 求戴维南等效电路:

$$U_{\text{OC}} = 10 - \frac{6}{6 + 12} \times 12 = 6V \quad (2 \%)$$

 $R_0=3+6//12=7\Omega$  (2分)

: 当  $R=R_0=7\Omega$ 时(2 分),R 获得的功率最大,其最大功率  $P_m$ 为  $\frac{U^2oc}{4R_0} = \frac{9}{7}=1.29W$ (2 分)

## 4. (9分)

1)求初始值

$$U_C(0_-)=25V$$
 则  $U_C(0_+)=U_C(0_-)=25V$  (1分)

$$i(0_{+})=0$$
 (1  $\beta$ )

2)求稳态值

$$U_{C}(\infty) = \frac{5}{20+5} \times 25$$
 =5V (1分)  $i(\infty) = -\frac{25}{20+5} = -1A$  (1分)

3)求时间常数

$$R_{eq}$$
=5//20=4  $\Omega$  (1 分)  $\tau$ =  $R_{eq}$  C=4×1=4s (1 分)

4)根据三要素法公式,

$$U_{C(t)}=5+20e^{-\frac{1}{4}t}V$$
  $t \ge 0$   $(1 \%)$ 

$$i(t)=-1+e^{-\frac{1}{4}t}$$
A t≥0 (1分)

则 
$$i_{C}(t) = C \frac{du_{C}(t)}{dt} = -5e^{-\frac{1}{4}t} A t \ge 0 (1 分)$$

5. (9分)

设节点电压 $U_n$ 及参考节点,则 (1分)

$$(1+\frac{j}{2}+\frac{1}{1+j})U_{n}=U_{s}+\frac{2I}{1+j}$$

$$\overset{\bullet}{I} = \frac{\overset{\bullet}{U_n}}{-j2} \qquad (2 \, \cancel{f})$$

$$U_{n=1.23+j0.15}$$
 (1分)  $I=-0.075+j0.615A$  (1分)

$$I_1 = U_n - U_s = -0.23 - j0.15 = 0.275 \angle -146.9$$
°A (1分)  
 $I_2 = I_1 - I = -0.155 - j0.765 = 0.78 \angle -101.5$ °A (1分)

$$I_2 = I_1 - I = -0.155 - i0.765 = 0.78 \angle -101.5$$
°A (1分)