

PERTEMUAN 6

Normalisasi Database (Conoly-chap 14) (Ramakisman -chap 15)

Normalisasi adalah teknik desain database yang dimulai dengan memeriksa hubungan antar atribut.

Dimana atribut menjelaskan dari data atau hubungan antara data. Normalisasi menggunakan serangkaian tes untuk membantu mengidentifikasi pengelompokan optimal untuk atribut-atribut yang akhirnya mengidentifikasi seperangkat hubungan sesuai dengan kebutuhan data perusahaan.

Bagaimana Normalisasi Mendesign Database

Dua pendekatan utama menggunakan normalisasi:

- Pendekatan pertama menunjukkan bagaimana normalisasi dapat digunakan sebagai teknik bottom-up desain database mandiri
- 2. Pendekatan 2 menunjukkan bagaimana normalisasi dapat digunakan sebagai teknik validasi untuk memeriksa struktur hubungan, yang mungkin telah dibuat dengan menggunakan pendekatan top-down

Bagaimana normalisasi digunakan untuk desain database.

Program Studi Sistem Informasi

STMIK NUSA MANDIRI

COPYRIGHT (C) Sept 2012

Pengantar Penyempurnaan Skema: Persoalan yang Ditimbulkan oleh Redundansi

- Redundansi ruang penyimpanan: beberapa data disimpan secara berulang
- Update anomaly: Jika satu copy data terulang tsb diubah, inkonsistensi data dpt terjadi kecuali kalau semua copy dari data tsb diubah dengan cara yang sama
- Insertion anomaly: Mungkin dpt terjadi kesulitan utk menyisipkan data tertentu kecuali kalau beberapa data tidak terkait lainnya juga ikut disisipkan
- Deletion anomaly: Mungkin dpt terjadi kesulitan utk menghapus data tertentu tanpa harus kehilangan beberapa data tidak terkait lainnya

Persoalan yang Ditimbulkan oleh Redundansi: Contoh

SSN	Name	Lot	Rating	W ages	Hours
123-22-3666	Attishoo	48	8	10	40
231-31-5368	Smiley	22	8	10	30
131-24-3650	Smethurst	35	5	7	30
434-26-3751	Guldu	35	5	7	32
612-67-4134	Madayan	35	8	10	40

Asumsi: nılai attribut wages ditentukan oleh nılai rating (utk satu nılai rating yang diberikan, hanya diperbolehkan terdapat satu nılai wages

- Redundansi ruang penyimpanan: nilai rating 8 yang berkorespondensi dg wages 10 diulang tiga kali
- Update anomaly: Nilai wages (yg terkait dengan nilai rating) dlm baris pertama dpt diubah tanpa membuat perubahan yg sama pada baris kedua dan kelima

Persoalan yang Ditimbulkan oleh Redundansi: Contoh (cont'd)

SSN	N am e	Lot	Rating	W ages	Hours
123-22-3666	Attishoo	48	8	10	40
231-31-5368	Smiley	22	8	10	30
131-24-3650	Smethurst	35	5	7	30
434-26-3751	Guldu	35	5	7	32
612-67-4134	Madayan	35	8	10	40

Asumsi: nılai attribut wages ditentukan oleh nılai rating (utk satu nılai rating yang diberikan, hanya diperbolehkan terdapat satu nılai wages

- Insertion anomaly: Kesulitan utk menyisipkan employee baru kecuali nilai wage untuk rating dari employee tsb sudah diketahui
- Deletion anomaly: Jika semua baris yang terkait dg nilai rating tertentu dihapus (misalnya baris utk employee 'Smethurst' dan 'Guldu' dihapus), maka kita akan kehilangan informasi ketergantungan antara nilai rating dan nilai wages yang diasosiasikan dengan nilai rating tsb (yaitu rating = 5 dan wages = 7)

Mengapa anomali - anomali ini terjadi ?

 Karena menggabungkan dua tema (konsep entitas) dalam satu relasi. Ini mengakibatkan duplikasi – duplikasi sebagai akibat dari ketergantungan antar atribut yang tidak pada tempatnya.

Solusi: Normalisasi

Normalisasi

- Normalisasi adalah proses pembentukan struktur basis data sehingga sebagian besar ambiguity bisa dihilangkan.
- Tahap Normalisasi dimulai dari tahap paling ringan (1NF) hingga paling ketat (5NF)
- Biasanya hanya sampai pada tingkat 3NF atau BCNF karena sudah cukup memadai untuk menghasilkan tabel-tabel yang berkualitas baik.

Normalisasi

Sebuah tabel dikatakan baik (efisien) atau normal jika memenuhi 3 kriteria sbb:

- 1. Jika ada dekomposisi (penguraian) tabel, maka dekomposisinya harus dijamin aman (*Lossless-Join Decomposition*). Artinya, setelah tabel tersebut diuraikan / didekomposisi menjadi tabel-tabel baru, tabel-tabel baru tersebut bisa menghasilkan tabel semula dengan sama persis.
- 2. Terpeliharanya ketergantungan fungsional pada saat perubahan data (Dependency Preservation).
- 3. Tidak melanggar Boyce-Code Normal Form (BCNF) (-akan dijelaskan kemudian-)

Normalisasi

Jika kriteria ketiga (BCNF) tidak dapat terpenuhi, maka paling tidak tabel tersebut tidak melanggar Bentuk Normal tahap ketiga (3rd Normal Form / 3NF).

Langkah – Langkah Normalisasi

Program Studi Sistem Informasi

SISTEM / RENODISONBANIA DATE RI

COPYRIGHT (C) Sept 2012

Tabel Universal

Tabel Universal (*Universal / Star Table*) → sebuah tabel yang merangkum semua kelompok data yang saling berhubungan, bukan merupakan tabel yang baik.

Misalnya:

Tabel Universal

	пгр	mhs.nama	mhs.alamat	kodekul	namakul	sks	kodesem	nihuruf	dsn.nama	dsn.alamat
P	11020001	Abdullah Machrus	Jl. Sinoman 1/11 Mojokerto	SP	Software Perkantoran	2	1	А	lmam Kuswardayan	Jl. Teknik Komputer 18 Sby
0	11020002	Achmad Fajril	Jl.Panglima Sudirman XII / 30	SP	Software Perkantoran	2	1	А	lmam Kuswardayan	Jl. Teknik Komputer 18 Sby
	11020003	Achmad Ridho	Geluran RT 13 / 03 Sepanjang S	SP	Software Perkantoran	2	1	E	lmam Kuswardayan	Jl. Teknik Komputer 18 Sby
#:: !#:::::	11020004	Adi Christanto	Jl.Wonorejo IV / 45 Surabaya	SP	Software Perkantoran	2	1	AB	lmam Kuswardayan	Jl. Teknik Komputer 18 Sby
31	11020005	Aloysius Rendy	Pucangan VII / 9 Surabaya	SP	Software Perkantoran	2	1	D	lmam Kuswardayan	Jl. Teknik Komputer 18 Sby
	11020006	Anita Rachmawati	Perum Canda Bhirawa Asri N - 1	SP	Software Perkantoran	2		Е	lmam Kuswardayan	Jl. Teknik Komputer 18 Sby
\$5	11020007	Arif Fachrudin	Jl.Gubernur Suryo No.15	SP	Software Perkantoran	2	1	E	lmam Kuswardayan	Jl. Teknik Komputer 18 Sby
35	11020008	Arohman Agung	Kupang Gunung Timur IV / 24 A	SP	Software Perkantoran	2	1	С	lmam Kuswardayan	Jl. Teknik Komputer 18 Sby

Program Studi Sistem Informasi

STMIK NUSA MANDIRI

COPYRIGHT (C) Sept 2012

Functional Dependency

Notasi: A → B

A dan B adalah atribut dari sebuah tabel. Berarti secara fungsional A menentukan B atau B tergantung pada A, jika dan hanya jika ada 2 baris data dengan nilai A yang sama, maka nilai B juga sama

Notasi: A → B atau A x → B
 Adalah kebalikan dari notasi sebelumnya.

Functional Dependency

Contoh tabel nilai

Namakul	Nrp	namaMhs	NiHuruf
Struktur Data	980001	Ali Akbar	Α
Struktur Data	980004	Indah Susanti	В
Basis Data	980001	Ali Akbar	
Basis Data	980002	Budi Haryanto	
Basis Data	980004	Indah Susanti	
Bahasa Indonesia	980001	Ali Akbar	В
Matematika I	980002	Budi Haryanto	С

Functional Dependency

Functional Dependency dari tabel nilai

Nrp → namaMhs

Karena untuk setiap nilai nrp yang sama, maka nilai namaMhs juga sama.

• {Namakul, nrp} → NiHuruf

Karena attribut Nihuruf tergantung pada Namakul dan nrp secara bersama-sama. Dalam arti lain untuk Namakul dan nrp yang sama, maka NiHuruf juga sama, karena Namakul dan nrp merupakan key (bersifat unik).

- Nrp

 → NiHuruf

Bentuk-bentuk Normal

- Bentuk Normal Tahap Pertama (1st Normal Form / 1NF)
- 2. Bentuk Normal Tahap Kedua (2nd Normal Form / 2NF)
- 3. Bentuk Normal Tahap (3rd Normal Form / 3NF)
- Boyce-Code Normal Form (BCNF)
- 5. Bentuk Normal Tahap (4th Normal Form / 4NF)
- 6. Bentuk Normal Tahap (5th Normal Form / 5NF)

Bentuk Normal Tahap Pertama (1st Normal Form / 1NF)

- Bentuk normal 1NF terpenuhi jika sebuah tabel tidak memiliki atribut bernilai banyak (*multivalued attribute*), atribut composite atau kombinasinya dalam domain data yang sama.
- Setiap atribut dalam tabel tersebut harus bernilai atomic (tidak dapat dibagi-bagi lagi)

Contoh 1

Misal data mahasiswa sbb:

Nrp	nama	Hobi			
12020001	Heri Susanto	Sepakbola, membaca komik, berenang			
12020013	Siti Zulaiha	Memasak,mrogram komputer			
12020015	Dini Susanti	Menjahit, membuat roti			

Atau:

Nrp	nama	hobi1	hobi2	Hobi3
12020001	Heri Susanto	Sepak Bola	Membaca komik	berenang
12020013	Siti Zulaiha	Memasak	mrogram komputer	
12020015	Dini Susanti	Menjahit	membuat kue	

Tabel-tabel di atas tidak memenuhi syarat 1NF

Contoh 1

Didekomposisi menjadi:

Tabel Mahasiswa

Nrp	Nama
12020001	Heri Susanto
12020013	Siti Zulaiha
12020015	Dini Susanti

Tabel Hobi

Nrp	Hobi
12020001	Sepakbola
12020001	membaca komik
12020001	Berenang
12020013	Memasak
12020013	mrogram komputer
12020015	Menjahit
12020015	membuat roti

Contoh 2 (composite)

JadwalKuliah

Kodekul NamaKul	Dosen	Kelas	Jadwal
-----------------	-------	-------	--------

- Dimana nilai pada atribut jadwal berisi gabungan antara Hari dan Jam.
- Jika asumsi hari dan jam memegang peranan penting dalam sistem basis data, maka atribut Jadwal perlu dipisah sehingga menjadi JadwalHari dan JadwalJam sbb:

JadwalKuliah

Kodekul	NamaKul	Dosen	Kelas	JadwalHari	JadwalJam

Bentuk Normal Tahap Kedua (2nd Normal Form)

- Bentuk normal 2NF terpenuhi dalam sebuah tabel jika telah memenuhi bentuk 1NF, dan semua atribut selain primary key, secara utuh memiliki Functional Dependency pada primary key
- Sebuah tabel tidak memenuhi 2NF, jika ada atribut yang ketergantungannya (Functional Dependency) hanya bersifat parsial saja (hanya tergantung pada sebagian dari primary key)
- Jika terdapat atribut yang tidak memiliki ketergantungan terhadap primary key, maka atribut tersebut harus dipindah atau dihilangkan

Contoh

Tabel berikut memenuhi 1NF tapi tidak termasuk 2NF:

Mhs_nrp mhs_nama mhs_alama	mk_kode	mk_nama	mk_sks	nihuruf
----------------------------	---------	---------	--------	---------

 Tidak memenuhi 2NF, karena {Mhs_nrp, mk_kode} yang dianggap sebagai primary key sedangkan:

```
{Mhs_nrp, mk_kode} 

→ nihuruf
```

 Tabel di atas perlu didekomposisi menjadi beberapa tabel yang memenuhi syarat 2NF

Contoh

Functional dependencynya sbb:

```
{Mhs_nrp, mk_kode} → nihuruf (fd1)
Mhs_nrp → {mhs_nama, mhs_alamat} (fd2)
Mk_kode → {mk_nama, mk_sks} (fd3)
```

```
    fd1 (<u>mhs_nrp</u>, <u>mk_kode</u>, nihuruf) → Tabel Nilai
    fd2 (<u>Mhs_nrp</u>, mhs_nama, mhs_alamat) → Tabel Mahasiswa
    fd3 (<u>mk_kode</u>, mk_nama, mk_sks) → Tabel MataKuliah
```

Bentuk Normal Tahap Ketiga (3rd Normal Form /3NF)

- Bentuk normal 3NF terpenuhi jika telah memenuhi bentuk 2NF, dan jika tidak ada atribut non primary key yang memiliki ketergantungan terhadap atribut non primary key yang lainnya.
- Untuk setiap Functional Dependency dengan notasi X → A, maka:
 - X harus menjadi superkey pada tabel tsb.
 - Atau A merupakan bagian dari primary key pada tabel tsb.

Contoh

Tabel berikut memenuhi 2NF, tapi tidak memenuhi 3NF:

Mahasiswa

Nrp	Nama	Alm_Jalan	Alm_Kota	Alm_Provinsi	Alm_Kodepos
-----	------	-----------	----------	--------------	-------------

karena masih terdapat atribut non primary key (yakni alm_kota dan alm_Provinsi) yang memiliki ketergantungan terhadap atribut non primary key yang lain (yakni alm_kodepos):

alm_kodepos → {alm_Provinsi, alm_kota}

Sehingga tabel tersebut perlu didekomposisi menjadi: Mahasiswa (Nrp, nama, alm_jalan, alm_kodepos) Kodepos (alm_kodepos, alm_provinsi, alm_kota)

Boyce-Code Normal Form (BCNF)

- Bentuk BCNF terpenuhi dalam sebuah tabel, jika untuk setiap functional dependency terhadap setiap atribut atau gabungan atribut dalam bentuk: X → Y maka X adalah super key
- tabel tersebut harus di-dekomposisi berdasarkan functional dependency yang ada, sehingga X menjadi super key dari tabel-tabel hasil dekomposisi
- Setiap tabel dalam BCNF merupakan 3NF. Akan tetapi setiap 3NF belum tentu termasuk BCNF.
 Perbedaannya, untuk functional dependency X → A, BCNF tidak membolehkan A sebagai bagian dari primary key.

Bentuk Normal Tahap Keempat (4th Normal Form /4NF)

- Bentuk normal 4NF terpenuhi dalam sebuah tabel jika telah memenuhi bentuk BCNF, dan tabel tersebut tidak boleh memiliki lebih dari sebuah multivalued atribute
- Untuk setiap multivalued dependencies (MVD) juga harus merupakan functional dependencies

Contoh

Misal, tabel berikut tidak memenuhi 4NF:

Employee	Project	Skill
Jim	11	Program
Mary	5	Design
Mary	NULL	Analysis

Setiap employee dapat bekerja di lebih dari project dan dapat memiliki lebih dari satu skill. Untuk kasus seperti ini tabel tersebut harus di-dekomposisi menjadi:

(Employee, Project) (Employee, Skill)

Bentuk Normal Tahap Keempat (5th Normal Form /5NF)

- Bentuk normal 5NF terpenuhi jika tidak dapat memiliki sebuah lossless decomposition menjadi tabel-tabel yg lebih kecil.
- Jika 4 bentuk normal sebelumnya dibentuk berdasarkan functional dependency, 5NF dibentuk berdasarkan konsep join dependence. Yakni apabila sebuah tabel telah di-dekomposisi menjadi tabel-tabel lebih kecil, harus bisa digabungkan lagi (join) untuk membentuk tabel semula