Oscillatore di Wien

Francesco Sacco

Dicembre 2018

1) Per il primo punto ho usato un segnale in ingresso V_s con un ampiezza picco picco di $260\pm11mV$, e ho fatto delle misurazioni con dei segnali con frequenza compresa tra i 500Hz e 3kHz. I valori delle misure e i grafici sono riportati qui sotto

f[Hz]	$V_A[V]$	$V_A/V_{in}[dB]$	fase [gradi]
$(4.5 \pm 0.0) \times 10^2$	0.125 ± 0.005	-6.4 ± 0.5	43.4 ± 0.9
$(6.81 \pm 0.0) \times 10^2$	0.155 ± 0.007	-4.5 ± 0.5	29.4 ± 0.6
$(1.0 \pm 0.0) \times 10^3$	0.172 ± 0.009	-3.6 ± 0.6	15.9 ± 0.3
$(1.22 \pm 0.0) \times 10^3$	0.178 ± 0.009	-3.3 ± 0.6	11.3 ± 0.2
$(1.6 \pm 0.0) \times 10^3$	0.182 ± 0.009	-3.1 ± 0.6	$0 \pm 4.0 \times 10^{-1}$
$(2.17 \pm 0.0) \times 10^3$	0.174 ± 0.009	-3.5 ± 0.6	-11.6 ± 0.2
$(2.89 \pm 0.0) \times 10^3$	0.166 ± 0.008	-3.9 ± 0.6	-24.2 ± 0.5

dalla figura 1 si evince chiaramente che lo sfasamento aumenta al diminuire della frequenza e si ha uno zero alla frequenza di taglio $f_t=1/2\pi\sqrt{R_1R_2C_1C_2}$, dove R_1,R_2,C_1,C_2 sono quelle indicate nel circuito in figura 3

Figura 1: sfasamento del segnale in funzione della frequenza in ingresso

Figura 2: Attenuazione del segnale in funzione della frequenza in infresso

Figura 3: Circuito 1