On Combining Diverse Models for Lyrics-Based Music Genre Classification

Caio L. R. S. Ueno Diego Furtado Silva Laboratório de Mineração de Dados e Aplicações (MIDAS) Departamento de Computação Universidade Federal de São Carlos

Introduction

Automatic music organization and retrieval is a highly required task nowadays, especially for music and video streaming platforms, such as Spotify and YouTube.

However, classifying music by genre is a hard task even for human beings.

Experimental Setup

Only the lyrics were used as input for the genre classification models implemented. Some models are based on traditional NLP techniques, essentially bag-of-words, but also on neural networks and word-embedding.

Related work

Tsaptinos published a paper in which he uses a deep neural network lyric-based. Specifically, the author uses a hierarchical attention network (HAN), which considers the text structure, term/sentence/document.

Other papers present different goals, commonly associated with emotion/sentiment analysis. Besides, they also use the respective audio as one of the inputs for their models.

Datasets

All models were trained and tested with 5 datasets. Only one of them, the smallest, is genre balanced, and it is also a subset of the biggest dataset.

Traditional approach (bag-of-words)

- Naive Bayes
- Support Vector Machines
- Linear Regression
- XGBoosting
- Random Forest

Neural networks and word-embedding

Architectures

Neural network CNN + LSTM.

Neural network LSTM + CNN.

Merge

Merge architecture, first variation.

Merge architecture, second variation.

Hierarchical Attention Network

Ensembles

Combiner options:

- Major voting
- Weighted voting per classifier
- Score averaging per instance
- Meta-learning

Individual Results

Algorithm	Dataset					
	D1	D2	D3	D4	D5	
BoW	0.646	0.608	0.604	0.523	0.434	
CNN	0.582	0.526	0.529	0.422	0.416	
LSTM	0.609	0.563	0.586	0.238	0.350	
LSTM & CNN	0.593	0.534	0.537	0.512	0.348	
CNN & LSTM	0.540	0.479	0.458	0.484	0.136	
Merge LSTM&CNN	0.610	0.554	0.534	0.513	0.364	
Merge LSTM&CNN 2	0.623	0.582	0.569	0.502	0.330	
HAN	0.589	0.568	0.554	0.465	0.413	
Best individual accuracy	0.646	0.608	0.604	0.523	0.434	

Ensemble results

It shows that combinations which use both bag-of-words and neural networks based on word-embedding approaches improve the accuracy.

Combined Algorithms	Ensemble Function				
	MV	WV	SA	CL	
CNN + LSTM	0.583	0.609	0.634	0.605	
CNN + LSTM + HAN	0.637	0.642	0.650	0.578	
Merge LSTM&CNN + HAN	0.559	0.610	0.638	0.553	
BoW + HAN	0.601	0.646	0.639	0.619	
BoW + CNN + LSTM	0.610	0.649	0.624	0.674	
BoW + Merge LSTM&CNN	0.573	0.646	0.606	0.631	
BoW + CNN + LSTM + HAN	0.623	0.658	0.634	0.618	
BoW + Merge LSTM&CNN + HAN	0.614	0.667	0.629	0.614	
All classifiers	0.668	0.669	0.673	0.616	

D1 has best individual accuracy equals to 0.646.

Ensemble results

Combined Algorithms	Ensemble Function				
comemod riigoriimis	MV	WV	SA	CL	
CNN + LSTM	0.504	0.563	0.580	0.551	
CNN + LSTM + HAN	0.586	0.597	0.610	0.573	
Merge LSTM&CNN + HAN	0.533	0.568	0.596	0.571	
BoW + HAN	0.588	0.608	0.616	0.540	
BoW + CNN + LSTM	0.648	0.626	0.650	0.544	
BoW + Merge LSTM&CNN	0.626	0.608	0.647	0.509	
BoW + CNN + LSTM + HAN	0.659	0.634	0.666	0.566	
BoW + Merge LSTM&CNN + HAN	0.655	0.624	0.664	0.555	
All classifiers	0.625	0.636	0.635	0.569	

Combined Algorithms	Ensemble Function			
θ	MV	WV	SA	CL
CNN + LSTM	0.395	0.416	0.419	0.386
CNN + LSTM + HAN	0.429	0.429	0.438	0.414
Merge LSTM&CNN + HAN	0.394	0.413	0.438	0.401
BoW + HAN	0.441	0.434	0.432	0.297
BoW + CNN + LSTM	0.436	0.437	0.436	0.329
BoW + Merge LSTM&CNN	0.403	0.434	0.426	0.268
BoW + CNN + LSTM + HAN	0.451	0.460	0.452	0.294
BoW + Merge LSTM&CNN + HAN	0.445	0.447	0.454	0.279
All classifiers	0.455	0.458	0.458	0.306

D2 has best individual accuracy equals to 0.608.

Balanced dataset has best individual accuracy equals to 0.434.

References

- Y. Murthy and S. G. Koolagudi, "Content-based music information retrieval (cb-mir) and its applications toward the music industry: A review," ACM Computing Surveys (CSUR), vol. 51, no. 3, p. 45, 2018.
- A. Tsaptsinos, "Lyrics-based music genre classification using a hierarchical attention network," in International Society for Music Information Retrieval Conference, 2017, pp. 694–701.
- H. Xue, L. Xue, and F. Su, "Multimodal music mood classification by fusion of audio and lyrics," in International Conference on Multimedia Modeling . Springer, 2015, pp. 26–37.
- M. Huang, W. Rong, T. Arjannikov, N. Jiang, and Z. Xiong, "Bi-modal deep boltzmann machine based musical emotion classification," in International Conference on Artificial Neural Networks. Springer, 2016, pp. 199–207.

Thank you!

My e-mail: caioluiggy@hotmail.com Advisor's e-mail: diego.fsilva@gmail.com

Departamento de Computação Universidade Federal de São Carlos

