ECE374 SP23 HW2

Contributors

Zhirong Chen (zhirong4)

Ziyuan Chen (ziyuanc3)

Problem 2

Let

$$\Sigma = \{ egin{bmatrix} 0 \ 0 \end{bmatrix}, egin{bmatrix} 0 \ 1 \end{bmatrix}, egin{bmatrix} 1 \ 0 \end{bmatrix}, egin{bmatrix} 1 \ 1 \end{bmatrix} \}$$

Consider each row to be a binary number and let

 $C = \{w \in \Sigma^* \mid \text{the bottom row of } w \text{ is three times the top row}\}$

Show that ${\cal C}$ is regular.

Solution

We construct a DFA that accepts ${\cal C}$ to show that the language is regular.

Intuition

Important patterns include:

• Standalone 1

$$\begin{bmatrix} 0 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

Two 1's

$$\begin{bmatrix} 0 \\ 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

• Three or more consequent 1's

$$\begin{bmatrix} 0 \\ 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \qquad \begin{bmatrix} 0 \\ 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} 1$$

Rigid Formulation

Another way to think about the condition that "the bottom row is 3 times the top row" is that

$$Bottom = shiftLeft(Top, 1) + Top$$

- $\bullet \;\;$ The DFA reads the characters of w from right to left as input.
- Each input pair can be viewed operands of a **full adder**.
 - First operand (A) = Digit in the top row
 - \circ Second operand (B) = Digit in the *last input*'s top row
 - Sum (S) = Digit in the bottom row
- ullet To judge if a string is in the language, we check if the sum S (bottom row) is valid under the sum of A, B and C_{in} .

The states can then be formulated as follows:

State	Last Input's Top Row ${\cal B}$	Carry In C_{in}
q_0	0	0
q_{1a}	1	0
q_{1b}	0	1
q_2	1	1

The transition table can be calculated as follows:

This State	Last Input $\begin{bmatrix} B \\ ? \end{bmatrix}$	Carry In C_{in}	This Input $\begin{bmatrix} A \\ S \end{bmatrix}$	Next State	Carry Out C_{out}
q_0	$\begin{bmatrix} 0 \\ ? \end{bmatrix}$	0	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	q_0	0
q_0	$\begin{bmatrix} 0 \\ ? \end{bmatrix}$	0	$\begin{bmatrix} 1 \\ 1 \end{bmatrix}$	q_{1a}	0
q_{1a}	$\begin{bmatrix} 1 \\ ? \end{bmatrix}$	0	$\begin{bmatrix} 0 \\ 1 \end{bmatrix}$	q_0	0
q_{1a}	$\begin{bmatrix} 1 \\ ? \end{bmatrix}$	0	$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$	q_2	1

This State	Last Input $\begin{bmatrix} B \\ ? \end{bmatrix}$	Carry In C_{in}	This Input $\begin{bmatrix} A \\ S \end{bmatrix}$	Next State	Carry Out C_{out}
q_{1b}	$\begin{bmatrix} 0 \\ ? \end{bmatrix}$	1	$\begin{bmatrix} 0 \\ 1 \end{bmatrix}$	q_0	0
q_{1b}	$\begin{bmatrix} 0 \\ ? \end{bmatrix}$	1	$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$	q_2	1
q_2	$\begin{bmatrix} 1 \\ ? \end{bmatrix}$	1	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	q_{1b}	1
q_2	$\begin{bmatrix} 1 \\ ? \end{bmatrix}$	1	$\begin{bmatrix} 1 \\ 1 \end{bmatrix}$	q_2	1

Note that q_{1a} and q_{1b} transition to the same next states upon the same inputs and are thus equivalent.

Unlisted state-input pairs are invalid and therefore transition to the FAIL state.