Unit 10: Depth First Search

Agenda:

- ▶ Graph traversal Depth-first search
- ▶ DFS application:
 - ► Finding biconnected components
 - Strongly Connected components
 - ► Topological sorting

Reading:

► CLRS: 603-621

Depth First Search (DFS):

 $s.ftime \leftarrow time$

```
▶ Input: graph G = (V, E)
▶ Idea: search deeper in the graph whenever possible ...
▶ procedure DFS(G) **G = (V, E)
  foreach v \in V do
      v.color \leftarrow \mathtt{WHITE}
                              **unknown yet
      v.predec \leftarrow NIL **predecessor
  time \leftarrow 0
                              **global variable
  foreach v \in V do
      if (v.color = WHITE) then
          DFS-visit(G, v)
                                     **any s \in V
  procedure DFS-visit(G, s)
   s.color \leftarrow GRAY
                                     **start discovering s
   time \leftarrow time + 1
   s.dtime \leftarrow time
   foreach u neighbor of s do
      if (u.color = WHITE) then
          u.predec \leftarrow s
          DFS-visit(G, u)
   s.color \leftarrow BLACK
                                     **finished discovering
  time \leftarrow time + 1
```

DFS example:

 $V = \{1, 2, 3, 4, 5, 6\}$ $E = \{\{1, 3\}, \{1, 5\}, \{2, 4\}, \{2, 5\}, \{3, 4\}, \{3, 5\}, \{4, 6\}\}$ s = 1

Adjacency lists:

1: 3 5 2: 4 5

3: 1 4 5

4: 2 3 6

5: 1 2 3

6: 4

dtime	∞	∞	∞	∞	∞	∞	initialization								
ftime	∞	∞	∞	∞	∞	∞									
color	G	W	W	W	W	W									
parent	NIL	NIL	NIL	NIL	NIL	NIL			1	2	3	4	5	6	DFS-visit path
dtime	1	∞	∞	∞	∞	∞	DFS-visit(1)	color	G	В	G	G	В	G	
ftime	∞	∞	∞	∞	∞	∞		parent	NIL	4	1	3	2	4	
color	G	W	G	W	W	W		dtime	1	4	2	3	5	8	DFS-visit(1-3-4-6)
parent	NIL	NIL	1	NIL	NIL	NIL		ftime	∞	7	∞	∞	6	∞	
dtime	1	∞	2	∞	∞	∞	DFS-visit(1-3)	color	G	В	G	G	В	В	
ftime	∞	∞	∞	∞	∞	∞		parent	NIL	4	1	3	2	4	
color	G	W	G	G	W	W		dtime	1	4	2	3	5	8	DFS-visit(1-3-4-6)
parent	NIL	NIL	1	3	NIL	NIL		ftime	∞	7	∞	∞	6	9	
dtime	1	∞	2	3	∞	∞	DFS-visit(1-3-4)	color	G	В	G	В	В	В	
ftime	∞	∞	∞	∞	∞	∞		parent	NIL	4	1	3	2	4	
color	G	G	G	G	W	W		dtime	1	4	2	3	5	8	DFS-visit(1-3-4)
parent	NIL	4	1	3	NIL	NIL		ftime	∞	7	∞	10	6	9	
dtime	1	4	2	3	∞	∞	DFS-visit(1-3-4-2)	color	G	В	В	В	В	В	
ftime	∞	∞	∞	∞	∞	∞		parent	NIL	4	1	3	2	4	
color	G	G	G	G	G	W		dtime	1	4	2	3	5	8	DFS-visit(1-3)
parent	NIL	4	1	3	2	NIL		ftime	∞	7	11	10	6	9	
dtime	1	4	2	3	5	∞	DFS-visit(1-3-4-2-5)	color	В	В	В	В	В	В	
ftime	∞	∞	∞	∞	∞	∞		parent	NIL	4	1	3	2	4	
color	G	G	G	G	В	W		dtime	1	4	2	3	5	8	DFS-visit(1)
parent	NIL	4	1	3	2	NIL		ftime	12	7	11	10	6	9	
dtime	1	4	2	3	5	∞	DFS-visit(1-3-4-2-5)								
ftime	∞	∞	∞	∞	6	∞									

6 DFS-visit path

W

NIL

 ∞

 ∞

DFS-visit(1-3-4-2)

5

3 4 5

parent NIL NIL NIL NIL NIL NIL

color

color G B parent NIL 4

dtime

ftime

1

2

∞ ∞

3

W W W

DFS example:

▶ DFS tree: [dtime, ftime]

- ► Notes:
 - the result would be a forest of rooted trees
 - the root of each tree is up to the selection (ordering of the vertices)
 - ightharpoonup parent of x is predecessor x.predec
 - different orderings of adjacency lists might result in different trees
 - ▶ Nested structure of [dtime, ftime]
 - u is a descendant of $v \Rightarrow [u.\text{dtime}, u.\text{ftime}] \subset [v.\text{dtime}, v.\text{ftime}]$ — u & v on different branches $\Rightarrow [u.\text{dtime}, u.\text{ftime}]$ doesn't intersect
 - u & v on different branches $\Rightarrow [u.\mathtt{dtime}, u.\mathtt{itime}]$ doesn't intersect $[v.\mathtt{dtime}, v.\mathtt{ftime}]$

DFS analysis:

- ▶ n = |V|, m = |E|
- ▶ Handshaking Lemma: $\sum_{v \in V} \deg(v) = 2m$
- Analysis:
 - ▶ each vertex is discovered exactly once (WHITE → GRAY → BLACK) in an undirected graph: each edge is examined exactly twice in a directed graph: each edge is examined once
 - running time:
 - 1. adjacency list representation: $\Theta(n+2m) = \Theta(n+m)$
 - 2. adjacency matrix representation: $\Theta(n+n^2) = \Theta(n^2)$
 - space complexity:
 - 1. adjacency list representation: $\Theta(n+m)$
 - 2. adjacency matrix representation: $\Theta(n^2)$

Properties of DFS:

The Parentheses Theorem:

two vertex processing time intervals [dtime[v], ftime[v]] and [dtime[w],ftime[w] can only have one of the following two applied to them: contained or disjoint.

I.e. we either have (i) $[\mathtt{dtime}[v], \mathtt{ftime}[v]] \subset [\mathtt{dtime}[w], \mathtt{ftime}[w]] - v$ is a descendant of \boldsymbol{w} in the DFS forest (or vice-versa) or we have (ii) $[\text{dtime}[v], \text{ftime}[v]] \cap [\text{dtime}[w], \text{ftime}[w]] = \emptyset$ — no ancestor-descendant relationship between v and w

► The White-Path Theorem:

v is a descendant of u iff at time u.dtime there was a path $u \to v$ along which all vertices are white (except for u).

- ► An all gray path at time v.dtime
- and all black path at time u.ftime.
- DFS vertex order:

dtime: pre-order of each tree in the DFS forest ftime: post-order of each tree in the DFS forest

▶ (BFS vertex order:

level-order of each tree in the BFS forest)

Classifying graph edges with BFS/DFS:

- ▶ During the traversal, all vertices and edges are examined
- ▶ Given a BFS/DFS traversal forest:
 - ▶ tree root start vertex for that component
 - ▶ tree edge child discovered while processing the parent
 - (undirected) each edge in the original graph is examined twice (digraph) each edge in the original digraph is examined once
- With respect to the traversal forest, categorize edges into 4 types. An edge e=(u,v) is a
 - 1. Tree edge: the edge (u, v) is in the forest
 - 2. Forward edge: v is a descendant of u
 - 3. Back edge: v is an ancestor of uNote: in undirected graphs, "back" = "forward"
 - 4. Cross edge: v is a non-ancestor and non-descendant of u

An example:

▶ DFS tree (start vertex 1):

(4,2) is a tree edge (1,5) is a forward edge no cross edges BFS Tree (start vertex 2):

Classifying graph edges with BFS/DFS:

- \blacktriangleright With respect to the traversal forest, categorize edges into 4 disjoint sets. An edge e=(u,v) is a
 - 1. Tree edge: the edge (u,v) is in the forest
 - 2. Forward edge: v is a descendant of u
 - 3. Back edge: v is an ancestor of u Note: in undirected graphs, "back" = "forward"
 - 4. Cross edge: v is a non-ancestor and non-descendant of u
- Mhenever we traverse an edge (u, v), u has to be gray (it was discovered and we are not done with u yet)
- ▶ In DFS the color of v classifies the edge:
 - ightharpoonup v is white $\Rightarrow (u,v)$ is a tree edge
 - ightharpoonup v is gray $\Rightarrow (u,v)$ is a back edge
 - $\qquad \qquad \mathbf{v} \ \text{is black} \Rightarrow (u,v) \ \text{is a cross edge} \ / \ \text{forward edge}$
- ▶ In DFS on an undirected graph there are only tree- and back-edges.
 - ▶ ASOC that (u, v) is a cross-edge.
 - ightharpoonup A cross-edge means [v.dtime, v.ftime] comes before [u.dtime, u.ftime] .
 - ▶ Therefore, at time v.ftime, u is white.
 - ightharpoonup So we are done traversing all neighbors of v and ignored u. Contradiction.
- ▶ In BFS on an undirected graph there are only tree- and cross-edges.
 - For any edge (u,v) we have $|L(u)-L(v)| \leq 1$ so a back-edge must be a tree edge.

DFS Application 1: Directed Acyclic Graph (DAG)

- ▶ Thm 1: DFS has a back edge iff G contains a cycle.
 - \blacktriangleright Proof: \Rightarrow the back-edge (u,v) along with the tree edges connecting v to u is a cycle in G.
 - \Leftarrow If there's a cycle let v_1 be the first node on the cycle that turns gray. So the cycle is $(v_1,v_2,..,v_k,v_1)$.

At time $v_1.dtime$ the $v_1 \rightarrow v_k$ path is all white, so v_k is a descendant of v_1 . Thus when the edge (v_k, v_1) is traversed, both vertices are gray, so it is a back-edge.

- ▶ Corollary: G is a DAG iff the DFS has no back-edges.
- An algorithm to determine if G is a DAG: Run DFS
 - ▶ If DFS encounters a gray-gray edge (u, v), abort and output "found a cycle" (traverse predec from u until you reach v to output the cycle itself)
 - ▶ If DFS concludes without a gray-gray edge, output "DAG".
- ▶ Thm 2: G is a DAG iff there exists a topological sorting of its vertices

Topological Sort: An ordering of V such that for every edge (u,v) in the DAG, u appears before v.

- ightharpoonup \Leftarrow If there's a cycle $(v_1,...,v_k,v_1)$, then any ordering of V must place either v_1 after v_k or v_k after v_1 and cannot be a topological sort.
- ightharpoonup ightharpoonup Why if G is a DAG there must be a topological sort???

DFS Application 1: Directed Acyclic Graph (DAG)

- ▶ If *G* is a DAG, we construct the topological sort, using DFS.
 - ightharpoonup G is a DAG \Rightarrow no back-edges
 - No gray-gray edges.
 - ightharpoonup (u,v) is a gray-white edge:

 \blacktriangleright (u,v) is a gray-black edge:

- dtime isn't consistent, but ftime is: we must have v.ftime < u.ftime for any edge (u, v)</p>
- Sort the vertices by descending order of ftime and you got a topological sort.
- ▶ Doesn't have to take extra $O(n \log(n))$. Can be done as part of the DFS algorithm
 - ▶ When a node turns black, insert it to a *TopoSort* array
 - Or Push() it into a TopoSort stack
- After DFS, print the array in reverse order / Pop() and print elements in the stack.
- ▶ Conclusion: A O(n+m)-time algorithm for topologically-sort a DAG or output a cycle.

DFS Application 1: Directed Acyclic Graph (DAG)

- ► An example:
 - Assume nodes are stored in alphabetic order. V = [a, b, c, d, e, f, g]
- Running DFS results in the following timeline (Brackets indicate the subinterval when the node was gray)

- ▶ The resulting topological sort is
- ▶ Note: if V held the nodes in a different order, the resulting topological sort would have been different. (Try it!)

DFS Application's Application: Finding Longest Path in Digraph

- ightharpoonup A O(n+m)-time algorithm for topologically-sort a DAG or output a cycle.
- ▶ If the digraph has a cycle, the longest path in G has length ∞ .
 - So don't confuse this with the LONGEST SIMPLE PATH IN DIGRAPH problem — very hard for digraphs with cycles
- ▶ If G is a DAG, how can we find the longest path?
- ▶ Note: longest-path in $G = \max\{LP(v,G)\}$ where $LP(v,G) \stackrel{\text{def}}{=}$ the longest path in G starting with v.
- ▶ Moreover, denote $V_{\geq v}$ as the set of vertices that appear after v in the topological sorting. Any path starting at v can only traverse nodes in $V_{\geq v}$.
- ▶ Therefore $LP(v,G) = LP(v,G[V_{>v}])$.
- We set an array A such that $A[v] = \text{length of } LP(v, G[V_{>v}]).$
 - For vertices with no out-neighbor (such as the last vertex in the topological order) A[v]=0
 - For vertices with out-neighbors: $A[v] = \max_{\{u \text{ out-neighbor of } v\}} 1 + A[u]$ Hence, runtime per node $= O(|\Gamma(v)|)$.
- ▶ We now use A to print the longest simple path on the DAG:
 - ▶ To find the starting node of the longest simple path FindMax(A).
 - ▶ Given a node v on this path, its following node u is an out-neighbor u of v for which A[v] = 1 + A[u]. (Finding u takes $O(|\Gamma(v)|)$ -time.)
- ▶ All in all: O(|V| + |E|)-time.
- ▶ This is called a "Dynamic Programming" type of an algorithm.

DFS Application's Application: Finding Longest Path in Digraph

- ► An example:
- We have already sorted it: Sort = [e, g, f, b, c, a, d]
- ▶ We fill A in the reverse order of Sort:
 - ▶ First, $A[d] \leftarrow 0$.
 - ▶ Then $A[a] \leftarrow 1$.
 - ▶ Then $A[c] \leftarrow 1 + \max\{1, 0\} = 2$
 - ▶ Then $A[b] \leftarrow 3$.
 - (skipping ahead), result: A = [2, 1, 1, 3, 2, 1, 0].
- Now printing the longest path:
 - ► Find max entry of A: b
 - Find u neighbor of b such that A[b] = 1 + A[u] $u \leftarrow c$.
 - Find u neighbor of c such that $A[c] = 1 + A[u] u \leftarrow a$
 - Find u neighbor of a such that A[a] = 1 + A[u] $u \leftarrow d$
 - Now A[d] = 0 (or d has no out-degree neighbors), we halt.

DFS Application 2: Finding Strongly-Connected Components

- ightharpoonup Recall: In a digraph G, SCC(u) is the set of all nodes v that are reachable from u and that u is reachable from them.
- ▶ Recall: $v \in SCC(u)$ iff $u \in SCC(v)$
- ▶ Recall: the SCCs of G form a partition of V into $\{C_1, C_2, ..., C_k\}$.
- ▶ Moreover, draw graph G_{SCC} on k nodes: $v_1,...,v_k$ (so that v_i represents C_i). Put en edge (v_i,v_j) iff for some $x \in C_i, y \in C_j$ such that (x,y) is an edge in G. Then G_{SCC} is a DAG.
- Moreover, C is a SCC in G iff it is a SCC in the flipped graph G^T . ((u,v) is an edge in G iff (v,u) is an edge in G^T)
- ▶ To find the SCCs of G
 - 1. Run DFS on G.
 - 2. Flip G's edges to create G^T
 - 3. Run DFS on ${\cal G}^T$ but the main DFS loop traverses nodes in a decreasing ftime order
 - 4. SCCs of G are the trees of the DFS-forest of G^T
- ▶ Runtime O(n+m).

DFS Application 2: Finding Strongly-Connected Components

► An example:

(Note: this graph is a DAG, so the answer should be 7 *singleton* components) ftime order (from smallest to largest): [d, a, c, b, f, q, e]

- ► Flipping the graph:
- ▶ When you do DFS on the *flipped* graph, using the order [e, g, f, b, c, a, d] it doesn't traverse even a single edge.

DFS forest is 7 singleton components: $\stackrel{e}{\bullet} \stackrel{g}{\bullet} \stackrel{f}{\bullet} \stackrel{b}{\bullet} \stackrel{c}{\bullet} \stackrel{a}{\bullet} \stackrel{d}{\bullet}$

• (Test yourself:) Run the algorithm on the same graph but with (c,d)-edge flipped. What forest do you get at the end?

DFS Application 2: Finding Strongly-Connected Components

- ▶ To find the SCCs of *G*
 - 1. Run DFS on G.
 - 2. Flip G's edges to create G^T
 - 3. Run DFS on ${\cal G}^T$ but the main DFS loop traverses nodes in a decreasing ftime order
 - 4. SCCs of G are the trees of the DFS-forest of G^T
- OPTIONAL: Intuition for correctness
 - ▶ First observe that $(G^T)_{SCC} = (G_{SCC})^T$
 - ▶ For any SCC C_i of G, let $x_i \in C_i$ be the node with largest ftime.
 - ▶ Because G_{SCC} is a DAG, sorting $x_1, x_2, ..., x_k$ in descending order of ftime is a topological sort of G_{SCC} .

 Denote this ordering $x_{i_1}, ..., x_{i_k}$.
 - ▶ And so, $x_{i_1}, ..., x_{i_k}$ is the inverse of a topological sort of G_{SCC}^T . This means that not a single edge leaves x_{i_1} in G_{SCC}^T .
 - \mathbf{x}_{i_1} is the first vertex in the second DFS pass (DFS of G^T). Therefore, all node reachable from x_{i_1} are nodes in its SCC.
 - ightharpoonup Continue inductively to argue that by the time we call DFS on x_{i_j} then all nodes in the SCCs $C_{i_1},...,C_{i_{j-1}}$ are already black, so DFS from x_{i_j} only reaches nodes in the SCC of x_{i_i} .