Distribution shape

Shape of the frequency distribution

The shape of the frequency distribution can appear different for several aspects over and above location and variability

Symmetric versus asymetric distribution

Geometrically, a frequency distribution is symmetric if the right half of the distribution is the mirror image of the left half.

This implies that, for symmetric distribution we get

$$\bar{X} = Me$$

Hence an index for skewness is

$$\alpha_3 = \frac{(\bar{X} - Me)^3}{\tilde{\varsigma}^3}$$

Symmetric versus asymmetric distribution

 $\alpha_3=0$ \Longrightarrow symmetric distribution in this case $Me-Q_1\approx Q_3-Me$

 $\alpha_3 > 0 \rightarrow positive$ skewed distribution

$$\rightarrow \bar{X} > Me$$

In this case $Me - Q_1 < Q_3 - Me$

 $\alpha_3 < 0 \rightarrow negative$ skewed distribution

$$\rightarrow \bar{X} < Me$$

In this case $Me - Q_1 > Q_3 - Me$

Kurtosis

Kurtosis measures how much the distribution peaks around its mode.

It is defined as the degree of departure of the observed frequency distribution from the normal or *Gaussian distribution*, which is assumed as a benchmark.

The *normal distribution* is a mathematical model often adopted to describe many phenomena in real life.

The Normal distribution is defined by the following equation

$$f(x; \mu, \sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1(x-\mu)^2}{2\sigma^2}} \quad x \in \mathbb{R}, \mu \in \mathbb{R}, \sigma > 0$$

Kurtosis cont'd

 μ is the maximum of the function.

 σ determines the narrowness of the curve as σ decreases, the curve becomes more peaked around μ .

The observed distribution is called *leptokurtic* if, compared to the normal, it has fatter tails, whereas it is called *platykurtic* if it has thinner tails.

Kurtosis cont'd

The kurtosys index is defined by

$$\gamma = \frac{1}{\tilde{S}^4} \left[\frac{1}{n} \sum_{i=1}^n (x_i - \bar{X})^4 - 3 \right]$$

- $\gamma \approx 0$ \Longrightarrow the distribution is close to the normal shape
- $\gamma > 0 \Rightarrow$ the distribution is leptokurtic (heavy tails)

 $\gamma < 0 \Rightarrow$ the distribution is platykurtic (thin tails)

Summarising...description of a variable: BMI

Q1 23.10 Median 25.58 Mean 25.78 Q3 28.07 Max. 37.50
Mean 25.78 Q3 28.07
Q3 28.07
•
Max. 37.50
7710711
sd 4.97
asimmetry 0
kurt 7.26
NA 2

