CS 383C CAM 383C/M 383E

Numerical Analysis: Linear Algebra

Fall 2008

Solutions to Homework 1

Lecturer: Inderjit Dhillon Date Due: Sept 10, 2008

Keywords: Linear Algebra Basics

1. Problem 2.1

Claim: If a matrix A is upper triangular and unitary then it is a diagonal matrix with nonzero diagonal elements.

Proof: We prove the above claim using induction on size of the matrix (n). Base case is trivial. For induction step, assume that the claim holds for all matrices of size $(n-1) \times (n-1)$. Let A be an $n \times n$ upper triangular unitary matrix:

$$A = \begin{bmatrix} A_{n-1} & \boldsymbol{a}_n \\ 0 & a_{nn} \end{bmatrix},$$

where A_{n-1} is an $(n-1) \times (n-1)$ upper triangular matrix and \boldsymbol{a}_n is a column vector of dimensional (n-1). Now,

$$A^*A = \begin{bmatrix} A_{n-1}^* A_{n-1} & A_{n-1}^* \mathbf{a}_n \\ \mathbf{a}_n^* A_{n-1} & \mathbf{a}_n^* \mathbf{a}_n + a_{nn}^* a_{nn} \end{bmatrix}.$$

Since $A^*A = I_n$, then $A_{n-1}^*A_{n-1} = I_{n-1}$ and thus A_{n-1} is unitary and upper triangular. By the induction hypothesis, A_{n-1} is diagonal with nonzero entries on the diagonal. Further, $A_{n-1}a_n = 0$, which is possible only if $a_n = 0$, which implies $||a_{nn}|| = 1$, i.e. $a_{nn} \neq 0$. Hence proved.

2. Problem 2.2

- (a) $||\boldsymbol{x}_1 + \boldsymbol{x}_2||_2^2 = ||\boldsymbol{x}_1||_2^2 + ||\boldsymbol{x}_2||_2^2 + 2\boldsymbol{x}_1^*\boldsymbol{x}_2$. Now \boldsymbol{x}_1 and \boldsymbol{x}_2 are orthogonal, so $\boldsymbol{x}_1^*\boldsymbol{x}_2 = 0$ and $||\boldsymbol{x}_1 + \boldsymbol{x}_2||_2^2 = ||\boldsymbol{x}_1||_2^2 + ||\boldsymbol{x}_2||_2^2$.
- (b) We prove using induction on the number of vectors. Base case follows from part (a). For induction step, assume that the claim holds for an orthogonal set of (n-1) vectors. Now, $||\sum_{i=1}^{n} \boldsymbol{x}_i||_2^2 = ||\boldsymbol{y} + \boldsymbol{x}_n||_2^2$, where $\boldsymbol{y} = \sum_{i=1}^{n-1} \boldsymbol{x}_i$. Now since \boldsymbol{x}_n is orthogonal to $\boldsymbol{x}_i, \forall 1 \leq i \leq n-1$, therefore $\boldsymbol{x}_n^* \boldsymbol{y} = 0$. Hence using part (a), the claim follows.

3. Problem 2.6

Let $A = I + uv^*$ and $A^{-1} = I + \alpha uv^*$. Then $AA^{-1} = I + (1 + \alpha + \alpha v^*u)uv^* = I \Longrightarrow \alpha = \frac{-1}{1+v^*u}$. So if $v^*u \neq -1$, A is non-singular and A^{-1} is given by $I - \frac{uv^*}{1+v^*u}$ (recall that if inverse of a matrix exists then it is unique). If $v^*u = -1$, then $Au = u + v^*uu = 0$ implying A is singular. To compute Null(A), consider any vector x s.t. $Ax = 0 \Longrightarrow x = -(v^*x)u$. Thus x is parallel to u, i.e., Null(A)=span(u) if $v^*u = -1$ else Null(A)= ϕ .