Современные методы в теоретической информатике О связи между различными свойствами жёсткости Золотов Б.

Основные определения

Определение: Конфигурация (G, \mathbf{p}) , состоящая из n точек и рёбер между ними, называется *локально жёсткой*, если не существует непрерывного движения точек конфигурации такого, что

- (a) оно сохраняет длины рёбер из G,
- (б) оно **не** является сужением на точки $\mathbf{p}_1 \dots \mathbf{p}_n$ движения, состоящего из изометрий всего пространства \mathbb{R}^d .

Иными словами, мы могли, немного сдвинув точки, не изменить расстояние между ними, только если мы применили к ним глобальную изометрию, сохранив внешний вид конфигурации.

Определение: *Flex* конфигурации (G, \mathbf{p}) — это набор векторов $\mathbf{p}' = (\mathbf{p}'_1 \dots \mathbf{p}'_n)$ (всё вместе лежит в \mathbb{R}^{nd}) такой, что для любого ребра (i,j) из G верно

$$(\mathbf{p}_i - \mathbf{p}_j) \cdot (\mathbf{p}_i' - \mathbf{p}_j') = 0.$$

Иными словами, это указание направлений в каждой вершине таких, что если начать двигать вершины в этих направлениях, то в нулевой момент времени при этом движении не будут растягиваться / сжиматься рёбра конфигурации.

Определение: Матрица жёсткости — это матрица $R(\mathbf{p})$ такая, что

$$R(\mathbf{p})\mathbf{p}' = \begin{pmatrix} \dots \\ (\mathbf{p}_i - \mathbf{p}_j) \cdot (\mathbf{p}_i' - \mathbf{p}_j') \end{pmatrix}$$

Матрица имеет размер $e \times nd$ — будучи применена к вектору (\mathbf{p}'_k) размера nd, она даёт вектор высоты e, проиндексированный рёбрами $(i,j) \in G$. Заметим, что компоненты такой матрицы линейно зависят от координат вершин \mathbf{p} , поэтому её можно превратить в «билинейную форму»

$$R(\mathbf{p}, \mathbf{p}'): \mathbb{R}^{nd} \times \mathbb{R}^{nd} \longrightarrow \mathbb{R}^e.$$

Таким образом, p' — flex для p тогда и только тогда, когда

$$R(\mathbf{p}, \mathbf{p}') = 0.$$

Определение: Конфигурация (G, \mathbf{p}) называется *первопорядково жёсткой (infinitesimally rigid)*, если у неё не существует нетривиальных флексов — таких, которые **не** получаются взятием в нуле первой производной гладкого движения из изометрий \mathbb{R}^d .

Определение: *Стресс* — сопоставление каждому ребру (i,j) числа $\omega_{ij} = \omega_{ji}$ (для тех пар вершин, которые не являются рёбрами, положим $\omega_{...} = 0$) такого, что для всякой вершины i

$$\sum_{i} \omega_{ij} \cdot \left(\mathbf{p}_{i} - \mathbf{p}_{j}\right) = 0.$$

Определение: Конфигурация (G, \mathbf{p}) называется *prestress stable*, если существует стресс ω такой, что для любого нетривиального флекса \mathbf{p}' выполнено

$$\sum_{i \leq j} \omega_{ij} \cdot \left(\mathbf{p}'_i - \mathbf{p}'_j\right)^2 > 0.$$

Иными словами, то влияние, которые \mathbf{p}' оказывает на длины рёбер конфигурации, незамедлительно портит сумму «весов», расставленных нами на рёбрах.

Определение: *Flex второго порядка* — два набора векторов p', p'' таких, что

$$R(\mathbf{p}, \mathbf{p}') = 0;$$

$$R(\mathbf{p}, \mathbf{p}'') + R(\mathbf{p}', \mathbf{p}') = 0.$$

Определение: Конфигурация называется *второпорядково жёсткой*, если для неё не существует флексов второго порядка, у которых \mathbf{p}' нетривиален как флекс первого порядка.

Свойство, описанное выше, эквивалентно следующему ослаблению описанного ранее свойства prestress stability:

$$orall \, \mathbf{p}'$$
 — нетривиального флекса $\; \exists \, \omega$ — стресс $\; \sum_{i < j} \omega_{ij} \cdot \left(\mathbf{p}'_i - \mathbf{p}'_j
ight)^2 > 0.$

Определение: Привязанная жёсткость второго порядка — то же самое, только ещё дано подмножество $G_0 \subset V(G)$, на котором \mathbf{p}' обязано обращаться в ноль.

Определение: Конфигурация называется *универсально* *** жёсткой, если соответствующее свойство выполнено при любой реализации данной конфигурации в произвольной размерности \mathbb{R}^D . Пример локально жёсткой, но не универсально локально жёсткой конфигурации — два треугольника с общей стороной.

Определение:

$$\mathcal{C}'(d,G_0) = \left\{ \mathbf{p}' \in \mathbb{R}^{nd} \mid \mathbf{p}_j' = 0 ext{ на вершинах из } G_0
ight\}.$$

Супер-стабильность

Пусть дан стресс ω. Определим его энергию как

$$E_{\omega}(\mathbf{q}) = \sum_{i < j} \omega_{ij} (\mathbf{q}_i - \mathbf{q}_j)^2.$$

Понятно, что объект выше является квадратичной формой. Её матрица имеет вид $\mathbb{I}d:\otimes\Omega$. Ω называется матрицей стресса.

Определение: Конфигурация (G, \mathbf{p}) называется *супер-стабильной*, если для неё существует стресс ω , такой что

- (1) Матрица Ω для этого стресса положительно полуопределена:
- (2) Её ранг n-d-1, где d размерность аффинной оболочки $\langle \mathbf{p} \rangle$;
- (3) Направления рёбер этой конфигурации не лежат на общей конике в проективном пространстве $P\langle \mathbf{p} \rangle$.

Теорема: Универсальная prestress stability равносильна супер-стабильности.

Классические результаты

Теорема: Всякий стресс $\omega \in \mathbb{R}^e$ лежит в коядре $R(\mathbf{p})$ — иными словами, перпендикулярен образу этого линейного отображения.

Теорема: Первопорядковая жёсткость \Longrightarrow prestress stability \Longrightarrow второпорядковая жёсткость \Longrightarrow локальная жёсткость.

Teopema: Prestress stable—системы реализуют минимум энергии, определённой специальным образом.

Основные результаты

Определение: Если Y — выпуклый замкнутый конус, то *двойственный к нему* конус определяется как

$$Y^* = \{ \omega \in \mathbb{R}^m \mid \langle \omega, y \rangle \ge 0, \ \forall y \in Y \}.$$

Теорема: Пусть Y — замкнутый выпуклый конус, L — линейное подпространство \mathbb{R}^m , пересекающееся с ним по нулю. Тогда существует элемент из ортогонального дополнения этого подпространства, лежащий во внутренности двойственного конуса Y*.

Теорема: $Y = \{R(\mathbf{p}', \mathbf{p}') \mid \mathbf{p}' \in \mathcal{C}'(d, G_0)\} \subset \mathbb{R}^e$ — замкнутый выпуклый конус.

Теорема: Пусть (G, \mathbf{p}) — второпорядково жёсткая с привязанным множеством вершин G_0 , при этом афинная оболочка у «привязанных» вершин — та же, что и у всех. Тогда Y пересекается разве что по нулю с линейным пространством L столбцов матрицы R.

Теорема: Любой вектор $\omega \in L^{\perp}$ является корректно определённым стрессом для (G, \mathbf{p}) . Любой вектор $\omega \in \operatorname{Int}(Y^*)$ соответствует матрице Ω , положительно определённой на $\mathcal{C}'(1, G_0)$, подпространстве \mathbb{R}^n .

Теорема: Пусть (G, \mathbf{p}) — универсально второпорядково жёсткая конфигурация. Тогда у ней есть стресс с матрицей Ω , положительно определённой на $\mathcal{C}'(1, G_0)$.

Главный результат

Теорема: Пусть конфигурация (G, \mathbf{p}) — универсально второпорядково жёсткая, а также обладает d—мерной аффинной оболочкой. Тогда она обязана имет стресс и матрицу стресса ранга n-d-1, являющуюся положительно определённой — то есть, на самом деле, конфигурация должна быть супер-стабильной.

Отсюда универсальная супер-стабильность равносильна универсальной второпорядковой жёсткости.