# 1 SARS-CoV-2

SARS-CoV-2 Was identified and sequenced in 5 weeks

#### 1.1 Death and Illness

Reported 7 million confirmed COVID-indiced deaths worldwide w/700 million confirmed cases Likely 19.1-36 million COVID induced deaths

The US (4% of population) had over 15% of the cases

COVID-19 hospitalizations and death are highly dependent on age

|             | Hospitalization <sup>1</sup> | Death <sup>2</sup> |
|-------------|------------------------------|--------------------|
| 0-4 years   | 4x lower                     | 9x lower           |
| 5-17 years  | 9x lower                     | 16x lower          |
| 18-29 years | Comparison Group             | Comparison Group   |
| 30-39 years | 2x higher                    | 4x higher          |
| 40-49 years | 3x higher                    | 10x higher         |
| 50-64 years | 4x higher                    | 30x higher         |
| 65-74 years | 5x higher                    | 90x higher         |
| 75-84 years | 8x higher                    | 220x higher        |
| 85+ years   | 13x higher                   | 630x higher        |

Figure 1: COVID-19 hospitalization and death by age

Risk of illness and death from COVID-19 increases due to systemic health and social inequities Risk of hospitalization affected by other conditions

- 1. Asthma
- 2. Hypertension
- 3. Obesity
- 4. Diabetes
- 5. Kidney disease

## 1.2 Long Covid

A chronic condition that occurs after SARS-CoV-2 infection and is present for at least 3 months Estimated at 10-30% of non-hospitalized cases, 50-70% of hospitalized cases, and 10-12% of vaccinated cases

- Dyspnea or increased respiratory effort
- Fatigue
- Anosmia or dysgeusia
- Chest pain
- Headache
- Lightheadedness
- Palpitations and/or tachycardia
- Arthralgia
- MyalgiaParesthesia
- Cough

- Abdominal pain
- Diarrhea
- Insomnia and other sleep difficulties
- Fever
- Impaired daily function and mobility
- Pain
- Rash (e.g., urticaria)
- Mood changes
- Menstrual cycle irregularities
- Post-exertional malaise and/or poor
  - endurance
- "Brain fog," cognitive impairment

Figure 2: Symptoms of long Covid

Proposed contributing mechanisms:

- 1. Viral antigen persistence
- 2. Systemic and tissue-specific inflammation
- 3. Human herpesvirus reactivation
- 4. Dysbiosis
- 5. Microvascular dysfunction
- 6. SARS-CoV-2-specific and autoreactive immune responses

#### 1.3 Vaccines

SARS-CoV-2 Vaccines are very effective

- 1. Pfizer-BioNTech and Moderna mRNA vaccine
- 2. AstraZeneca-Oxford and Covishield chimpanzee-derived adenovirus
- 3. Johnson & Johnson and Janssen human adenovirus (Ad26)
- 4. Sinovac and Sinopharm inactivated SARS-CoV-2 virus

Approximately 14 billion doses administered worldwide, preventing 15-20 million deaths In-vitro transcribed mRNA is formulated into lipid nanoparticle using a cell-free production pipeline



Figure 3: mRNA vaccine formulation

Injected mRNA vaccines are endocytosed by antigen-presenting cells

 $\rightarrow$  By translating the mRNA into protein in the ribosome, the immune system is stimulated

### 1.4 Immune Response

#### 1.4.1 Neutralization

Neutralization is one mechanism of antibody function

→ Antibodies attatch to spike proteins, so viruses cannot attatch to host cells

#### 1.4.2 Immune Sensing

RNA from viruses (or vaccines) are recognized by inate sensors, eliciting the release of cytokines

Early attempts at lipid-mRNA particles resulted in low imunogenicity because they looked like viruses and therefore only created inflammation (production of type I interferons)

 $\rightarrow$  By incorporating modified nucleotides into the mRNA, it strongly reduces the innate immune signaling through decreased activation of TLRs and cytosolic RNA sensors

# 1.5 New mRNA Vaccines in Development

- 1. SARS-CoV-2
- 2. Influenza virus
- 3. Zika virus
- 4. HIV

- 5. RSV
- 6. Ebola virus
- 7. Rabies
- 8. Plasmodium gametocyte (Malaria parasite)

### 1.6 Vaccine Innovation

Most vaccines take years to develop, but multiple vaccines for SARS-CoV-2 were made within a year

How was this possible?

- 1. Coronaviruses were already a concern
- 2. The technology was ready
- 3. Worldwide collaboration
- 4. Funding for vaccine research
- 5. Close collaboration between pharmaceutical companies and governmental agencies
- 6. Very high infection rate in the population and no difficulty recruiting volunteers