Cósmicos Analógicos

Daniel Vázquez Lago 12 de abril de 2025

Índice

1.	Objetivos	3
2.	2.1. Determinación de la ventana temporal	3 3
3.	Caracterización estadística de la radiación cósmica secundaria	4
	3.1. Numero de cuentas en 1 segundo	4
	3.2. Numero de cuentas en 2 segundo	4
	3.3. Numero de cuentas en 5 segundo	
	3.4. Numero de cuentas en 10 segundo	4
4.	Atenuación de la radiación cósmica secundaria	4
	4.1. Componente blanda	4
	4.2. Componente blanda y dura	5
	4.3. Componente dura	6
5.	Flujo en la superficie	7
6.	Eficiencia geométrica	7
	6.1. Dependencia con la distancia	7
	6.2. Dependencia con el ángulo	8
	6.3. Montecarlo	8
Α.	Tablas	8
Bil	bliografía	8

1. Objetivos

Los objetivos basicamente son rascarme los huevos con [1].

2. Caracterización de los detectores

2.1. Determinación de la ventana temporal

Tabla 1: Ventana de coincidencias

N_1	N_2	N_{12}	t (s)	$n_1 (s^{-1})$	$n_2 (s^{-1})$	$n_{12} (s^{-1})$	τ (μs)
$4.532(21) \times 10^4$	$1.085(10) \times 10^4$	154(12)	94.21(30)	481.1(27)	115.2(12)	1.63(13)	14.7(12)
$8.490(29) \times 10^4$	$2.146(15) \times 10^4$	268(16)	184.68(30)	459.7(17)	116.19(82)	1.451(89)	13.58(84)
$4.857(22) \times 10^4$	$2.162(15) \times 10^4$	103(10)	98.10(30)	495.1(27)	220.3(16)	1.05(10)	4.81(48)
$4.317(21) \times 10^4$	$1.609(13) \times 10^4$	181(13)	101.74(30)	424.3(24)	158.1(13)	1.78(13)	13.3(10)

2.2. Determinación de la zona de trabajo

Tabla 2: Medidas fijando el voltaje umbral

U_1 (V)	N_1	N_2	N_{12}	<i>t</i> (s)	$n_1 (s^{-1})$	$n_2 (s^{-1})$	$n_{12} (s^{-1})$
-0.059(10)	1822(43)	$4.082(20) \times 10^4$	350(19)	15.50(30)	117.5(36)	2633(53)	22.6(13)
-0.100(10)	9940(100)	3040(55)	223(15)	29.72(30)	334.6(48)	102.3(21)	7.50(51)
-0.314(10)	3764(61)	6482(81)	318(18)	51.45(30)	73.2(13)	126.0(17)	6.18(35)
-0.209(10)	6250(79)	5667(75)	323(18)	47.52(30)	131.5(19)	119.3(18)	6.80(38)
-0.406(10)	8208(91)	3060(55)	320(18)	66.51(30)	123.4(15)	46.01(86)	4.81(27)

Tabla 3: Medidas fijando el voltaje de ganancia

V_1 (V)	N_1	N_2	N_{12}	<i>t</i> (s)	$n_1 (s^{-1})$	$n_2 (s^{-1})$	$n_{12} (s^{-1})$
1.495(10)	1026(32)	7436(86)	300(17)	65.29(30)	15.71(50)	113.9(14)	4.59(27)
1.722(10)	4737(69)	5695(75)	308(18)	48.92(30)	96.8(15)	116.4(17)	6.30(36)
1.899(10)	9940(100)	3040(55)	223(15)	29.72(30)	334.6(48)	102.3(21)	7.50(51)
1.997(10)	$2.492(16) \times 10^4$	3904(62)	338(18)	33.79(30)	737.4(80)	115.5(21)	10.00(55)

3. Caracterización estadística de la radiación cósmica secundaria

- 3.1. Numero de cuentas en 1 segundo
- 3.2. Numero de cuentas en 2 segundo
- 3.3. Numero de cuentas en 5 segundo
- 3.4. Numero de cuentas en 10 segundo

4. Atenuación de la radiación cósmica secundaria

4.1. Componente blanda

Tabla 4: Medidas de atenuación blanda usando únicamente placas de hierro

$x_{\text{Fe}} \text{ (mm)}$	N_1	N_2	N_{12}	<i>t</i> (s)	$n_1 (s^{-1})$	$n_2 (s^{-1})$	$n_{12} (s^{-1})$
0.0000000000	$1.032(10) \times 10^4$	4468(67)	301(17)	41.16(30)	250.7(31)	108.6(18)	7.31(42)
0.0000000000	$1.033(10) \times 10^4$	3988(63)	313(18)	36.60(30)	282.1(36)	109.0(19)	8.55(49)
0.0000000000	$1.712(13) \times 10^4$	6221(79)	462(21)	52.50(30)	326.0(31)	118.5(16)	8.80(41)
3.20(32)	$1.097(10) \times 10^4$	4699(69)	319(18)	46.14(30)	237.8(27)	101.8(16)	6.91(39)
3.20(32)	$1.118(11) \times 10^4$	3966(63)	341(18)	39.07(30)	286.2(35)	101.5(18)	8.73(48)
3.20(32)	$1.625(13) \times 10^4$	5668(75)	406(20)	51.41(30)	316.1(31)	110.3(16)	7.90(39)
6.40(64)	$1.026(10) \times 10^4$	4357(66)	307(18)	43.90(30)	233.8(28)	99.2(16)	6.99(40)
6.40(64)	$1.162(11) \times 10^4$	4059(64)	325(18)	41.48(30)	280.2(33)	97.9(17)	7.84(44)
6.40(64)	$1.725(13) \times 10^4$	6003(77)	461(21)	54.53(30)	316.4(30)	110.1(15)	8.45(40)
6.40(64)	$1.059(10) \times 10^4$	4296(66)	306(17)	43.64(30)	242.7(29)	98.4(16)	7.01(40)
9.60(96)	$1.089(10) \times 10^4$	4153(64)	323(18)	45.53(30)	239.1(28)	91.2(15)	7.09(40)
9.60(96)	9617(98)	4161(65)	314(18)	39.80(30)	241.6(31)	104.5(18)	7.89(45)
9.60(96)	$1.029(10) \times 10^4$	3659(60)	319(18)	53.38(30)	192.8(22)	68.5(12)	5.98(34)
9.60(96)	$1.654(13) \times 10^4$	5511(74)	445(21)	37.51(30)	441.0(49)	146.9(23)	11.86(57)
12.8(13)	$1.450(12) \times 10^4$	3481(59)	314(18)	37.49(30)	386.6(45)	92.9(17)	8.38(48)
12.8(13)	$1.515(12) \times 10^4$	5310(73)	408(20)	53.38(30)	283.8(28)	99.5(15)	7.64(38)
16.0(16)	$1.298(11) \times 10^4$	4297(66)	333(18)	46.18(30)	281.1(31)	93.0(15)	7.21(40)
16.0(16)	$1.488(12) \times 10^4$	5181(72)	421(21)	54.36(30)	273.7(27)	95.3(14)	7.74(38)
19.2(19)	$1.268(11) \times 10^4$	4502(67)	319(18)	50.83(30)	249.5(27)	88.6(14)	6.28(35)
19.2(19)	$1.455(12) \times 10^4$	4987(71)	436(21)	52.31(30)	278.2(28)	95.3(15)	8.33(40)
19.2(19)	$1.702(13) \times 10^4$	5593(75)	415(20)	55.71(30)	305.5(29)	100.4(14)	7.45(37)
22.4(22)	$1.488(12) \times 10^4$	5291(73)	426(21)	54.03(30)	275.3(27)	97.9(15)	7.88(38)
22.4(22)	$1.737(13) \times 10^4$	5844(76)	411(20)	58.06(30)	299.1(27)	100.7(14)	7.08(35)
25.6(26)	$1.585(13) \times 10^4$	5617(75)	417(20)	57.88(30)	273.8(26)	97.0(14)	7.20(35)
28.8(29)	$1.474(12) \times 10^4$	5358(73)	417(20)	53.93(30)	273.2(27)	99.4(15)	7.73(38)
28.8(29)	$1.771(13) \times 10^4$	5842(76)	413(20)	61.26(30)	289.0(26)	95.4(13)	6.74(33)
32.0(32)	$1.609(13) \times 10^4$	5557(75)	415(20)	58.84(30)	273.4(26)	94.4(14)	7.05(35)
32.0(32)	$1.609(13) \times 10^4$	5557(75)	415(20)	58.84(30)	273.4(26)	94.4(14)	7.05(35)

4.2. Componente blanda y dura

Tabla 5: Medidas de atenuación dura usando únicamente placas de plomo con 20 de hierro

$x_{\text{Pb}} \text{ (mm)}$	N_1	N_2	N_{12}	<i>t</i> (s)	$n_1 (s^{-1})$	$n_2 (s^{-1})$	$n_{12} (s^{-1})$
0.000 000 000 0	$1.609(13) \times 10^4$	5557(75)	415(20)	58.84(30)	273.4(26)	94.4(14)	7.05(35)
0.0000000000	$1.609(13) \times 10^4$	5557(75)	415(20)	58.84(30)	273.4(26)	94.4(14)	7.05(35)
7.50(75)	$1.709(13) \times 10^4$	5418(74)	406(20)	62.22(30)	274.7(25)	87.1(13)	6.53(33)
7.50(75)	$1.689(13) \times 10^4$	5633(75)	412(20)	60.66(30)	278.4(25)	92.9(13)	6.79(34)
15.0(15)	$1.794(13) \times 10^4$	5424(74)	409(20)	65.31(30)	274.7(24)	83.1(12)	6.26(31)
15.0(15)	$1.832(14) \times 10^4$	6061(78)	415(20)	67.13(30)	272.9(24)	90.3(12)	6.18(30)
15.0(15)	$1.801(13) \times 10^4$	5570(75)	406(20)	64.86(30)	277.6(24)	85.9(12)	6.26(31)
22.5(23)	$1.665(13) \times 10^4$	5288(73)	414(20)	62.50(30)	266.3(24)	84.6(12)	6.62(33)
37.5(38)	$1.734(13) \times 10^4$	5496(74)	408(20)	66.00(30)	262.7(23)	83.3(12)	6.18(31)
45.0(45)	$1.765(13) \times 10^4$	5710(76)	405(20)	66.66(30)	264.7(23)	85.7(12)	6.08(30)
52.5(53)	$1.804(13) \times 10^4$	5662(75)	419(20)	67.57(30)	266.9(23)	83.8(12)	6.20(30)
60.0(60)	$1.809(13) \times 10^4$	5698(75)	410(20)	67.74(30)	267.1(23)	84.1(12)	6.05(30)
67.5(68)	$1.704(13) \times 10^4$	5252(72)	404(20)	63.49(30)	268.4(24)	82.7(12)	6.36(32)
67.5(68)	$1.825(14) \times 10^4$	5732(76)	416(20)	67.06(30)	272.1(24)	85.5(12)	6.20(31)
75.0(75)	$1.937(14) \times 10^4$	5953(77)	407(20)	72.19(30)	268.4(22)	82.5(11)	5.64(28)

4.3. Componente dura

Tabla 6: Medidas de atenuación dura usando únicamente placas de plomo sin laminas de hierro

$x_{\text{Pb}} \text{ (mm)}$	N_1	N_2	N_{12}	<i>t</i> (s)	$n_1 (s^{-1})$	$n_2 (s^{-1})$	$n_{12} (s^{-1})$
0.000 000 000 0	$1.032(10) \times 10^4$	4468(67)	301(17)	41.16(30)	250.7(31)	108.6(18)	7.31(42)
0.0000000000	$1.033(10) \times 10^4$	3988(63)	313(18)	36.60(30)	282.1(36)	109.0(19)	8.55(49)
0.0000000000	$1.712(13) \times 10^4$	6221(79)	462(21)	52.50(30)	326.0(31)	118.5(16)	8.80(41)
7.50(75)	$1.745(13) \times 10^4$	5952(77)	448(21)	61.68(30)	282.9(25)	96.5(13)	7.26(34)
15.0(15)	$1.633(13) \times 10^4$	5467(74)	429(21)	59.26(30)	275.6(26)	92.3(13)	7.24(35)
22.5(23)	$1.975(14) \times 10^4$	6151(78)	466(22)	77.30(30)	255.5(21)	79.6(11)	6.03(28)
37.5(38)	$1.888(14) \times 10^4$	5947(77)	413(20)	69.00(30)	273.6(23)	86.2(12)	5.99(30)
52.5(53)	$2.155(15) \times 10^4$	6703(82)	471(22)	78.07(30)	276.0(22)	85.9(11)	6.03(28)
67.5(68)	$1.878(14) \times 10^4$	5993(77)	444(21)	69.26(30)	271.2(23)	86.5(12)	6.41(31)

5. Flujo en la superficie

6. Eficiencia geométrica

6.1. Dependencia con la distancia

Tabla 7: Medidas de coincidencias a una distancia d entre los detectores.

d (cm)	N_1	N_2	N_{12}	t (s)	$n_1 (s^{-1})$	$n_2 (s^{-1})$	$n_{12} (s^{-1})$
3.30(33)	8569(93)	3684(61)	212(15)	35.74(30)	239.8(33)	103.1(19)	5.93(41)
3.30(33)	$1.646(13) \times 10^4$	7216(85)	408(20)	69.11(30)	238.1(21)	104.4(13)	5.90(29)
8.30(83)	$2.259(15) \times 10^4$	9313(97)	411(20)	80.65(30)	280.1(21)	115.5(13)	5.10(25)
8.30(83)	$2.444(16) \times 10^4$	9930(100)	430(21)	89.91(30)	271.8(20)	110.4(12)	4.78(23)
13.6(14)	$2.986(17) \times 10^4$	$1.225(11) \times 10^4$	416(20)	113.48(30)	263.1(17)	108.0(10)	3.67(18)
18.8(19)	$3.708(19) \times 10^4$	$1.596(13) \times 10^4$	406(20)	141.68(30)	261.7(15)	112.68(92)	2.87(14)
23.5(24)	$4.858(22) \times 10^4$	$2.069(14) \times 10^4$	419(20)	190.68(30)	254.8(12)	108.52(77)	2.20(11)
28.2(28)	$3.716(19) \times 10^4$	$1.660(13) \times 10^4$	313(18)	152.24(30)	244.1(14)	109.01(87)	2.06(12)
33.3(33)	$4.404(21) \times 10^4$	$1.830(14) \times 10^4$	324(18)	172.80(30)	254.9(13)	105.89(80)	1.88(10)
38.2(38)	$5.354(23) \times 10^4$	$2.343(15) \times 10^4$	338(18)	218.30(30)	245.2(11)	107.32(72)	1.548(84)
48.2(48)	$5.997(24) \times 10^4$	$2.672(16) \times 10^4$	325(18)	243.63(30)	246.1(10)	109.67(68)	1.334(74)
54.5(55)	$4.451(21) \times 10^4$	$1.994(14) \times 10^4$	210(14)	180.40(30)	246.8(12)	110.54(80)	1.164(80)

6.2. Dependencia con el ángulo

Tabla 8: Medidas de coincidencias a una distancia 33.3 cm entre los detectores a diferentes ángulos.

d (cm)	N_1	N_2	N_{12}	t (s)	$n_1 (s^{-1})$	$n_2 (s^{-1})$	$n_{12} (s^{-1})$
0.0(20)	$4.404(21) \times 10^4$	$1.830(14) \times 10^4$	324(18)	172.80(30)	254.9(13)	105.89(80)	1.88(10)
10.0(20)	$4.579(21) \times 10^4$	5452(74)	399(20)	227.83(30)	200.99(98)	23.93(33)	1.751(88)
25.0(20)	$5.122(23) \times 10^4$	$2.289(15) \times 10^4$	331(18)	210.60(30)	243.2(11)	108.71(73)	1.572(86)
45.0(20)	$6.526(26) \times 10^4$	$2.737(17) \times 10^4$	316(18)	259.87(30)	251.1(10)	105.34(65)	1.216(68)
60.0(20)	$5.212(23) \times 10^4$	$2.361(15) \times 10^4$	303(17)	219.38(30)	237.6(11)	107.63(72)	1.381(79)
67.0(20)	$5.680(24) \times 10^4$	$2.745(17) \times 10^4$	315(18)	218.25(30)	260.3(11)	125.75(78)	1.443(81)
77.0(20)	$6.866(26) \times 10^4$	$2.940(17) \times 10^4$	301(17)	267.50(30)	256.7(10)	109.90(65)	1.125(65)
90.0(20)	$7.219(27) \times 10^4$	$3.016(17) \times 10^4$	292(17)	280.01(30)	257.8(10)	107.72(63)	1.043(61)

6.3. Montecarlo

A. Tablas

Referencias

[1] Luis M. Varela Cabo, Faustino G. Rodríguez y Jesus C. Montaña. *Tratamiendo de datos físicos*. Ed. por Manuais Universitarios. 2010.