

# **Sri Chaitanya IIT Academy, India**

A.P, TELANGANA, KARNATAKA, TAMILNADU, MAHARASHTRA, DELHI, RANCHI A right Choice for the Real Aspirant

ICON CENTRAL OFFICE, MADHAPUR-HYD

 Sec: Sr.IPLCO
 Dt: 27-09-15

 Time: 09:00 AM to 12:00 Noon
 RPTA-8
 Max.Marks: 180

## **PAPER-1**

# **KEY & SOLUTIONS**

#### **PHYSICS**

| 1  | BD   | 2  | ВС   | 3  | BCD | 4  | BD | 5  | CD | 6  | ВС |
|----|------|----|------|----|-----|----|----|----|----|----|----|
| 7  | ABCD | 8  | ABCD | 9  | BCD | 10 | CD | 11 | 3  | 12 | 5  |
| 13 | 5    | 14 | 2    | 15 | 1   | 16 | 2  | 17 | 4  | 18 | 3  |
| 19 | 8    | 20 | 4    |    |     |    |    |    |    |    |    |

#### **CHEMISTRY**

| 21 | ABCD | 22 | AB | 23 | ABCD | 24 | AB   | 25  | D    | 26 | ABC |
|----|------|----|----|----|------|----|------|-----|------|----|-----|
| 27 | AB   | 28 | AD | 29 | ACD  | 30 | ABCD | 31  | 21-y | 32 | 1   |
| 33 | 3    | 34 | 6  | 35 | 4    | 36 | 0    | 37  | 6    | 38 | 2   |
| 39 | 2    | 40 | 6  |    | W    |    | -    | - [ |      |    |     |

#### **MATHS**

| 41 | CD  | 42 | ABC | 43 | AC   | 44 | CD  | 45 | ACD | 46 | ACD |
|----|-----|----|-----|----|------|----|-----|----|-----|----|-----|
| 47 | ACD | 48 | ABC | 49 | ABCD | 50 | ABD | 51 | 4   | 52 | 7   |
| 53 | 1   | 54 | 2   | 55 | 8    | 56 | 6   | 57 | 2   | 58 | 1   |
| 59 | 5   | 60 | 9   |    |      |    |     |    |     |    |     |

# **MATHS**

42. (A) 
$$A = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$
;  $B = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ 

is a counter example. Therefore, (A) is wrong.

(B) We have  $(A^2 + B^2)(A - B) = A^3 - B^3 - A^2B + B^2A = 0$ 

and  $A-B\neq 0 \implies A^2+B^2$  is not invertible. Therefore (B) is also wrong.

(C) 
$$A^T = A$$

$$\left( \left( A^{-1} \right)^{-1} \right)^{-1} = A^{-1}$$

$$\left(\mathbf{A}^{-1}\right)^{\mathrm{T}} = \left(\mathbf{A}^{\mathrm{T}}\right)^{-1} = \mathbf{A}^{-1}$$

So,  $\left(\left(A^{-1}\right)^{-1}\right)^{-1}$  is also symmetric. Therefore (C) is also wrong.

(D) 
$$|A| \neq 0, |B| \neq 0 \Rightarrow |AB| \neq 0$$

So, AB is invertible. Therefore (D) is correct.

43. 
$$\begin{vmatrix} 1 & -\cos\theta & \cos 2\theta \\ \cos 2\theta & -1 & \cos\theta \\ \cos 2\theta & -\cos\theta & 1 \end{vmatrix} = 0$$

44. disc  $\ge 0$ , a < 3 and f(3) > 0 where f(x) =  $x^2 - 2ax + a^2 + a - 3$ 

45: 
$$t^2 + at + 1 = 0 \Rightarrow 3^x = \frac{-a \pm \sqrt{a^2 - 4}}{2}$$

has Z solutions a < 0 and a < -2 or a > 2

two solutions  $a\varepsilon(-\infty, -2)$ 

no solutions if  $a\varepsilon(-2, -\infty)$ 

exactly one solution if a  $a = \{-2\}$ 

at least one real solution if  $a\varepsilon(-\infty, -2)$ 

46: Let 
$$f(x) = (x-a_1)(x-a_3)(x-a_5) + 3(x-a_2)(x-a_4)(x-a_6)$$

Note that,  $f(x) \rightarrow -\infty$  as  $x \rightarrow -\infty$ 

$$f(a_1) = 3(a_1 - a_2)(a_1 - a_4)(a_1 - a_6) < 0$$

Similarly, 
$$f(a_2) > 0$$
,  $f(a_3) > 0$ ,  $f(a_4) < 0$ ,  $f(a_5) < 0$ ,  $f(a_6) < 0$ 

Thus, f(x) = 0 has a root in each of the following intervals  $(a_1, a_2), (a_3, a_4) & (a_5, a_6)$ . Thus f(x) = 0 has three real roots.

Sec: Sr.IPLCO

- 47. Determinants in (A), (B) and (D) are zero, and in (C) the determinant is non zero.
- 48. Given equation are

$$x^2 + ax + b = 0$$
 --(1)

$$xy + l(x + y) + m = 0$$
 --(2)

From (2), we get, x(y+1) = -(m+ly)

$$\therefore x = -\left(\frac{m+ly}{y+l}\right)$$

Substituting this value in (1), we have

$$\left(\frac{m+ly}{y+l}\right)^2 - a\left(\frac{m+ly}{y+l}\right) + b = 0$$

or 
$$(m+ly)^2 - a(m+ly)(y+l) + b(y+l)^2 = 0$$

or 
$$(y^2l^2 + b - al) + y(2lm + 2bl - al^2 - am) + m^2 - alm + bl^2 = 0$$

Since this equation is equivalent to (1)

$$\therefore \frac{l^2 - al + b}{l} = \frac{2lm - al^2 - am + 2bl}{a} = \frac{m^2 - alm + bl^2}{b}$$

From 1<sup>st</sup> and third fraction

$$b(l^2 - al + b) = m^2 - alm + bl^2$$

i.e 
$$al(b-m)-(b^2-m^2)=0$$

or 
$$(b-m)(al-b-m) = 0$$

$$\therefore$$
 either  $b = m$  or  $b + m = al$ 

From  $1^{st}$  and second fraction, putting b = m

$$al^2 - a^2l + am = 4lm - al^2 - am$$

Of 
$$2al^2 - a^2l - 4lm - 2am = 0$$

or 
$$a^2l - 2a(l^2 + m) + 4lm = 0$$

or 
$$(a-2l)(al-2m) = 0$$

$$\therefore a = 2l \text{ or } al = 2m$$

$$b = m$$
 and  $a = 2l$ 

$$b = m$$
 and  $al = 2m$ 

49. 
$$|\alpha| = \text{sum of roots} = b + a$$

$$-|\beta|$$
 = product of root =  $ab$ 

Because |a| < |b| so a is negative and b is positive.

Now, 
$$|\alpha| < b-1 \Rightarrow a+b < b-1 = a < -1$$
.

Because a is negative so magnitude of 'a' is greater than one and magnitude of b is greater than  $1+|\alpha|$  or say greater than 2.

Now, 
$$\log_{|a|} \left(\frac{x}{b}\right)^2 - 1 = 0 \Rightarrow \left(\frac{x}{b}\right)^2 = |a|$$

Sec: Sr.IPLCO Page 13

$$\Rightarrow x = \pm b\sqrt{|a|}$$

Magnitude of x is greater than 'a' as well as greater than 'b' one root lies in  $\Rightarrow (-\infty, a)$  and other root lies in  $(b, \infty)$ .

Let  $\alpha \& \beta$  are the roots of 50.

$$Ax^{2} + Bx + c = 0$$

$$\therefore |ax^{2} + bx + c| \leq |Ax^{2} + Bx + c| \quad \forall \in \mathbb{R}$$

$$\Rightarrow ax^{2} + bx + c = 0 \text{ also has } \alpha, \beta \text{ as roots}$$

$$\Rightarrow |ax^{2} + bx + c| = |a| |x - \alpha||x - \beta| = |A|||x - \alpha||x - \beta|$$

$$\Rightarrow |a| \leq |A|$$
&

$$(\alpha - \beta)^2 = (\alpha + \beta)^2 - 4\alpha\beta \Rightarrow \frac{b^2 - 4ac}{a^2} = \frac{B^2 - 4AC}{A^2} \Rightarrow |d| \le |D|$$
$$(2n+1)^2 - (2m+1)^2 = 4(m+n+1)(n-m) = \text{multiple of } 8$$

Since P(x) divides into both of them 51.

Hence P(x) also divides

$$(3x4 + 4x2 + 28x + 5) - 3(x4 + 6x2 + 25)$$
  
= -14x<sup>2</sup> + 28x - 70 = -14(x<sup>2</sup> - 2x + 5)

Which is a quadratic, Hence  $P(x) = x^2 - 2x + 5$ 

$$\therefore P(1) = 4$$

We have  $a^2 - (2x^2 + 1)a + x^4 + x = 0$ 52.

$$\therefore a = \frac{(2x^2 + 1) \pm \sqrt{(2x^2 + 1)^2 - 4(x^4 + x)}}{2}$$

$$2a = (2x^2 + 1) \pm (2x - 1)$$

On solving +ve & -ve sign we got

$$a \ge \frac{3}{4}$$

$$\therefore m+n=7$$

Let  $x^2 + x = y \Rightarrow (y-2)(y-3) = 12$ 53.

$$\Rightarrow$$
 y = -1,6;  $x^2+x+1=0 \Rightarrow x = \omega, \omega^2$ 

54. We have  $x_1 + x_2 + x_3 = -p$ (1)

$$x_1 x_2 + x_1 x_3 + x_2 x_3 = q$$
 ..... (2)

$$x_1 x_2 x_3 = -r$$
 ..... (3)

$$x_1^2 = x_2 x_3$$
 ..... (4)

Sec: Sr.IPLCO Page 14

# from (2)

$$x_{1}x_{2} + x_{1}x_{3} + x_{1}^{2} = q$$

$$x_{1}(x_{1} + x_{2} + x_{3}) = q$$

$$x_{1} = -\frac{q}{p}$$

$$\Rightarrow px_{1} + q = 0 \Rightarrow K_{1} = 1 \qquad .... \qquad (5)$$
from (1)
$$x_{2} + x_{3} = \frac{q - p^{2}}{p} \qquad .... \qquad (6)$$

$$x_{2}x_{3} = \frac{rp}{q} \qquad .... \qquad (7)$$

Hence,  $x_2, x_3$  satisfy the equation  $pqx^2 - (q - p^2)qx + p^2r = 0$ 

$$\Rightarrow K_2 = 1 \qquad \dots \qquad (8)$$

From (5) and (8)

$$K_1 + K_2 = 2$$

55. Let  $\alpha$ ,  $\beta$ ,  $\gamma$ ,  $\delta$  be four positive real roots of given equation.

Then 
$$\alpha + \beta + \gamma + \delta = -p$$
  
 $\Sigma \alpha \beta = q$   
 $\Sigma \alpha \beta \gamma = -r$   
 $\alpha \beta \gamma \delta = 5$ 

using A.M.  $\geq$  G.M.

$$\frac{\alpha + \beta + \gamma + \delta}{4} \ge (\alpha \beta \gamma \delta)^{1/4}$$

$$\frac{\Sigma \alpha \beta \gamma}{4} \ge (\alpha^3 \beta^3 \gamma^3 \delta^3)^{1/4}$$

$$\frac{(\Sigma \alpha) \cdot (\Sigma \alpha \beta \gamma)}{16} \ge (\alpha \beta \gamma \delta)$$

$$pr \ge 80$$

56. For non-diagonal entries, we required even no. of 1, even no. of -1 and even no. of 0, for diagonal three entries are remained, -1, 0, 1. So no. of cases in which trace = 0 are 3! And no. of symmetric matrices for each arrangement of 1, -1, 0 in diagonal = 3!

Total such matrices =  $3! \times 3! = 36$ 

57. 
$$a_{ij} = 0 \ \forall \ i \neq j \text{ and } a_{ij} = (n-1)^2 + i \ \forall \ i = j$$

Sum of all the element of  $A_n = \sum_{i=1}^{2n-1} [(n-1)^2 + i]$ 

## Sri Chaitanya IIT Academy

## 27-09-15\_Sr.IPLCO\_Jee-Adv\_2014-P1\_Key &Sol's

$$\begin{split} &= (2n-1) \, (n-1)^2 + (2n-1) n = 2n^3 - 3n^2 + 3n - 1 = n^3 + (n-1)^3 \\ &\text{So, } T_n = (-1)^n \left[ n^3 + (n-1)^3 \right] = (-1)^n \, n^3 - (-1)^{n-1} \, (n-1)^3 = V_n - V_{n-1} \\ &\Rightarrow \sum_{n=1}^{102} T_n = \sum_{n=1}^{102} (V_n - V_{n-1}) = V_{102} - V_0 = (102)^3 \\ &\left[ \frac{\sum_{n=1}^{102} T_n}{520200} \right] = 2 \, . \end{split}$$

58. 
$$\frac{|\text{adj B}|}{|C|} = \frac{|\text{adj}(\text{adjA})|}{|5A|} = \frac{|A|^{(3-1)^2}}{5^3 |A|} = \frac{|A|^3}{125}$$
Now  $|A| = 5$ 

$$\therefore \frac{|\text{adj B}|}{|C|} = 1 \text{ Ans.}$$

$$\begin{aligned} 60. \quad & \left(x_{1}x_{2}-x_{1}x_{4}\right)^{2}+\left(x_{2}x_{3}-x_{2}x_{5}\right)^{2}+\ldots+\left(x_{5}x_{2}-x_{5}x_{4}\right)^{2} \leq 0 \\ \Rightarrow & x_{1}=x_{2}=x_{3}=x_{4}=x_{5}=3 \end{aligned}$$

Hence 
$$|A| = 3^5 = 243$$
.