

Handwritten Assignments 3

Question 1:

A resistor, denoted as R₁, is added in series with the inductor as shown in the figure on the left.

- a) Derive the expression for H(s) where H(s)= V_0/V_i
- b) At what frequency will the magnitude of $H(j\omega)$ be maximum?
- c) What is the maximum value of the magnitude of $H(j\omega)$?
- d) At what frequency will the magnitude of $H(j\omega)$ equal its maximum value divided by $\sqrt{2}$?
- e) Assume a resistance of 300 Ω is added in series with the 50 mH inductor in the circuit in the figure on the right. Find ω_c , H(j0), H(j ω_c), H(j0.2 ω_c), and H(j5 ω_c).

Question 2:

A bandpass filter has a center, or resonant, frequency of 50 krad/s and a quality factor of 4. Find the band- width, the upper cutoff frequency, and the lower cut- off frequency. Express all answers in kilohertz.

Question 3:

A block diagram of a system consisting of a sinu- soidal voltage source, an RLC series bandpass fil- ter, and a load is shown in Fig. P14.32. The internal impedance of the sinusoidal source is 80+ jo, and the impedance of the load is 480+ jo n. The RLC series bandpass filter has a 20 nF capacitor, a center frequency of 50 krad/s, and a quality factor of 6.25.

- a) Draw a circuit diagram of the system.
- b) Specify the numerical values of L and R for the filter section of the system.
- c) What is the quality factor of the interconnected system?
- d) What is the bandwidth (in hertz) of the inter-connected system?

