025089 – Projeto e Análise de Algoritmos

Aula 09

- As soluções da primeira coluna (algoritmos method1-2sum e method1-3sum) testam todos os pares ou triplas possíveis do vetor, contando quais possuem soma zero.
- As soluções da segunda coluna (algoritmos method2-2sum e method2-3sum) ordenam o vetor e buscam pelo último elemento (segundo no problema 2sum e terceiro no problema 3sum), sendo esse último elemento o complemento da soma dos anteriores, para que a soma total seja zero.
- Complexidade:
 - method1-2sum: $\Theta(N^2)$
 - method1-3sum: $\Theta(N^3)$
 - method2-2sum: $\Theta(NlogN)$, se escolhermos uma ordenação O(NlogN) e uma busca binária O(logN)
 - method2-3sum: $\Theta(N^2logN)$, se escolhermos uma busca binária O(logN)

- Complexidade:
 - POL- $HORNER: \Theta(k)$
 - *k*+1 multiplicações ou somas
 - **POL**: $\Theta(k^2)$
 - O problema aqui é que em cada iteração do for temos um método que não tem custo constante, como acontece no POL-HORNER. O método POT tem custo linear em relação a i, tornando o número de multiplicações em cada iteração: $1 + 2 + 3 + 4 + 5 \dots \sim n^2$
- O *POL-HORNER* é melhor que o *POL*.

```
// int L[N][M], int N, int M
// int resp[N*M][2]
// primeira chamada: backtrack(0,0,0)
bool backtrack( int idx, int n, int m ) {
   L[n][m] = 2; resp[idx][0] = n+1; resp[idx][1] = m+1;
   if( n == N-1 \&\& m == M-1) {
      for(int i=0; i<=idx; i++)
          cout << "(" << resp[i][0] << "," << resp[i][1] << ") ";
       return true;
   } else {
       if( n+1 < N && L[n+1][m] == 0 && backtrack(idx+1,n+1,m) )
          return true; // baixo
       if( n > 0 \&\& L[n-1][m] == 0 \&\& backtrack(idx+1, n-1, m) )
          return true; // cima
       if( m+1 < M \&\& L[n][m+1]==0 \&\& backtrack(idx+1,n,m+1) )
          return true; // direita
       if( m > 0 \&\& L[n][m-1] == 0 \&\& backtrack(idx+1,n,m-1) )
          return true; // esquerda
   L[n][m] = 0;
   return false;
```

- Complexidade:
 - $O(3^{N*M})$
 - 3 possibilidades em cada posição do labirinto (número máximo de filhos de cada nó da árvore de chamadas)
 - Máximo de N*M posições no labirinto

- Complexidade:
 - a) $\Theta(N^2)$, 0 + 1 + 2 + 3 + ... + N comparações
 - **b)** $\Theta(logN)$
 - c) $\Theta(KlogK)$