In the Claims

1. (Currently Amended) Photopolymerizable colorant compounds having Formulas

$$A - \left(-CO_2 X\right)_n \qquad A - \left(-S - N - N - Y\right)_n$$

wherein

A, is a mono-, di-, tri- or tetravalent chromophore;

X is -R₁-O-Q or the phtopolymerizable group -CH₂-C₆H₄-p-C(R₂)=CH₂-

Y is $-R_1$ -O-Q, the photopolymerizable group $-CH_2$ -C₆H₄-p-C(R₂)=CH₂ or Q;

R is selected from hydrogen, C₁-C₆ alkyl, aryl and or C₃-C₈ cycloalkyl;

R₁ is selected from C₂-C₈ alkylene, -(-CH₂CH₂O-)_m-CH₂CH₂- and or

1,4-cyclohexylenedimethylene;

R₂ is selected from hydrogen and or C₁- C₆ alkyl;

n is 1 to 4;

m is 1 - 3;

Q is a photopolymerizable group selected from an organic radical having the formula:

la -COC(R₃)=CH-R₄

IIa -CONHCOC(R₃)=CH-R₄

IIIa -CONH-C₁ - C₆-alkylene OCOC(R_3) =CH- R_4

Docket: 71306

VIa
$$-CO - C(R_3) = CH_2$$

VIIa
$$\begin{array}{c} R_5 \\ C(R_3) = CH_2 \\ R_6 \end{array}$$

IXa
$$\begin{array}{ccc} \mathrm{CH_2} & \mathrm{CH_2} \\ \mathrm{II} & \mathrm{II} \\ -\mathrm{COCH_2CCO_2R_7} \text{ and/or } -\mathrm{COCCH_2CO_2R_7} \end{array}$$

wherein

 R_3 is selected from hydrogen or C_1 - C_6 alkyl;

 R_4 is selected from hydrogen; C_1 - C_6 alkyl; phenyl; phenyl substituted with one or more groups selected from C_1 - C_6 alkyl, C_1 - C_6 alkoxy, -N(C_1 - C_6 alkyl)₂, nitro, cyano, C_2 - C_6 alkoxycarbonyl, C_4 - C_2 - C_6 alkanoyloxy and or halogen; 1- and or 2-naphthyl; 1- and or 2-naphthyl substituted with C_1 - C_6 alkyl or C_1 - C_6 alkoxy; 2- and or 3-thienyl substituted with C_1 - C_6 alkyl or halogen; 2- and or 3-furyl; and or 2- and or 3-furyl substituted with C_1 - C_6 alkyl;

R₅ and R₆ are independently selected from hydrogen, C₁ - C₆ alkyl, substituted C₁ - C₆ alkyl; aryl; or R₅ and R₆ may be combined to represent a -(-CH₂-)₃₋₅- radical; R₇ is selected from hydrogen or a group selected from C₁ - C₆ alkyl, substituted C₁ - C₆ alkyl, C₃ - C₈ alkenyl, C₃ - C₈ cycloalkyl and or aryl; and R₈ is selected from hydrogen, C₁ - C₆ alkyl and or aryl.

- 2. (Currently Amended) Photopolymerizable colorant compounds according to Claim 1 wherein A represents a is a mono-, di-, tri- or tetravalent residue of a chromophore selected from the group consisting of anthraquinone, anthrapyridone, anthrapyrimidine, anthrapyrimidone, isothiazoloanthrone, azo, bis-azo, methine, bis-methine, coumarin, 3-aryl-2,5-dioxypyrroline, 3-aryl-5-dicyanomethylene-2-oxypyrroline, perinone, quinophthalone, phthalocyanine, metal phthalocyanine, nitroaryl-amine and a 2,5-diarylaminoterephthalic ester residue.
- 3. (Currently Amended) Photopolymerizable colorant compounds according to Claim 2 wherein X-and Y, respectively, are selected from- \underline{Y} is -CH₂CH₂OQ, -CH₂CH₂OQ, -CH₂CH₂OQ, -CH₂CH₂OQ, and or -CH₂-C₆H₁₀-CH₂OQ and A is an anthraquinone, anthrapyridone or anthrapyridine residue or a 2,5-diarylaminoterephthalate chromophore residue.
- 4. (Original) Photopolymerizable colorant compounds according to Claim 2 wherein Q is -COCH=CH₂ or -COC(CH₃)=CH₂.
- 5. (Canceled)
- 6. (Canceled)
- 7. (Currently Amended) Process for the preparation of the photopolymerization photopolymerizable colorants defined in Claim 1 having Formula II wherein Y is a p-vinylbenzyl radical having the formula –CH₂-C₆H₄-p-C(R₂)=CH₂ which comprises reacting colored acidic compounds having the structure

$$A \leftarrow S \xrightarrow{N \longrightarrow N} R$$

with 4-chloromethylstyrene compounds having the structure $CICH_{2}$ - C_6H_{4} -p- $C(R_2)$ = CH_2 in the presence of a base.

- 8. (Currently Amended) Process for the preparation of the colored photopolymerizable compounds defined in Claim 1 having Formula I and Formula II wherein X and Y are Y is -CH₂CH₂-O-Q, or CH₂CH(CH₃)-O-Q or Q, which comprises the steps of:
- (a) reacting a colored acidic compounds compound having the structures:

$$A \leftarrow CO_2-H)_n$$
 and $A \leftarrow S \rightarrow N \rightarrow R$

with at least about n molecular equivalents of ethylene or propylene carbonate for each molecular equivalent of acidic compounds compound to produce the 2-hydroxyalkyl derivatives of said acidic compounds compound;

(b) reacting said colored 2-hydroxyalkyl derivatives with about n molecular equivalents of one or more acylating agents having the structures:

Ib
$$CICOC(R_3) = CH-R_4$$
 or $O[COC(R_3) = CH-R_4]_2$,

$$\frac{\text{HibIIb}}{\text{O}}$$
 O=C=N-COC(R₃) = CH-R₄,

IIIb
$$O=C=N-C_1-C_6$$
 alkylene $OCOC(R_3)=CH-R_4$,

$$\begin{array}{ccc} & & & & & & \\ \hline \text{IVb} & & & & & \\ & & & & \\ \hline \text{IVb} & & & & \\ \hline \end{array} \qquad \begin{array}{c} N = & C(R_3) = CH-R_4 \\ \\ R_5 = & O \\ \\ \hline O & , \\ \\ \hline \end{array}$$

$$\frac{\text{Vib}}{\text{CICO}} = \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2$$

VIb

VIIb
$$O = C = N - C - C(R_3) = CH_2$$

lxb

IXb

- 9. (Canceled)
- 10. (Amended) Process for the preparation of the colored photopolymerizable compounds defined in Claim 1 having Formula II according to Claim 8 wherein Y is a photopolymerizable group Q, which comprises the steps of:
- (a) reacting a colored acidic triazolylthio compound having the structure:

with at least about n molecular equivalents of ethylene or propylene carbonate to produce a hydroxyalkyl compound having the formula

wherein R' is hydrogen or methyl, and

(b) reacting the hydroxyalkyl compund produced in step (a) with <u>about n molecular</u>
<u>equivalents of one or more of an acylating agent selected from acylating agents lb</u>
through IXb-of Claim 8.

11.-20. (Canceled)