10

Множества

Ознаки:

Множество - поим што не се дефинира (интуитивно се подразбира).

Ознаки за множества: А, В, С, ...

Ознаки за елементи на множества: a, b, c, ...

х ∈ А – "елементот х припаѓа на множеството А"

х ∉ А – "елементот х не припаѓа на множеството А".

∅ - множество што не содржи елементи,

 $\emptyset \subseteq A$, каде A е произволно множество.

 $\emptyset \neq \{\emptyset\}.$

P(A) – партитивно множество (булеан) Множество од сите подмножества од A.

 $P(A)=\{X|X\subseteq A\}.$

|A|- број на елементи на множеството A. Ако |A|=n, тогаш |P(A)|= 2^n .

Дефиниции:

- 1. А \subseteq В акко ($\forall x$) ($x \in A \rightarrow x \in B$).
- 2. $A \subseteq B$ акко $A \subseteq B$ и $A \neq B$, т.е. $A \subseteq B$ и $(\exists x) (x \in B \land x \notin A)$.
- 3. A=B акко A \subset Bи B \subset A т.е. ($\forall x$) ($x \in A \leftrightarrow x \in B$).

Операциите со множества:

- 1. $A \cap B = \{x \mid x \in A \land x \in B\}$ пресек.
- 2. $A \cup B = \{x \mid x \in A \lor x \in B\}$ унија.
- 3. A-B={x| x∈A ∧ x∉B}- разлика.
- 4. $A \oplus B = (A \cup B) (A \cap B) = (A B) \cup (B A)$ симетрична разлика.
- 5. Ако U е универзално множество, тогаш

$$A = \{x | x \in U \land x \notin A\} = U - A - комплемент.$$

Користејќи ја дефиницијата за комплемент на множество, дефинициите за разлика и симетрична разлика може да се запишат на следниов начин:

$$A-B=A \cap B$$

 $A \oplus B = (A \cap \overline{B}) \cup (B \cap \overline{A}).$

Задача 1: Нека $A = \{a, \{b\}, c\}$. Кое од следните тврдења се точни:

a) $a \in A$

$$B) \{a\} \in A$$

 $f(b) \in A$

$$\mathbb{X}$$
) {{b}}} $\in A$ 3) {{b}}} $\subseteq A$

Решение: Точни се тврдењата под а, г, ѓ, з.

Задача 2: Кои тврдења се вистинити за А, В и С:

- а) Ако $A \in B$ и $B \in C$, тогаш $A \in C$.
- б) Ако А \subset В и В \in С, тогаш А \subset С.
- в) Ако А \subset В и В \in С, тогаш А \in С.
- г) Ако A≠B и B≠C, тогаш A≠C.

Решение:

a) He.

 $A=\{1\}$, $B=\{\{1\}, a\}$, $C=\{\{\{1\}, a\}, 3\}$, тогаш $A \in B$ и $B \in C$, но $A \notin C$.

б) He.

 $A=\{1,2\}, B=\{1,2,3\}, C=\{\{1,2,3\},1\},$ тогаш $A\subseteq B$ и $B\in C$, но $A\not\subset C$.

 $A=\{1,2\}, B=\{1,2,3\}, C=\{\{1,2,3\},1\},$ тогаш $A\subseteq B$ и $B\in C$, но $A\notin C$.

 $A=\{1,2\}, B=\{1,2,3\}, C=\{1,2\},$ тогаш $A\neq B$ и $B\neq C$, но A=C

Задача 3: Да се напишат еквивалентни услови со дадените со помош на множества:

a) $(\forall x) (x \notin A \leftrightarrow x \notin B)$

(∀x) (x∈A→x∉B)

B) $(\exists x \in M) x \in S$.

 Γ) ($\forall x \in M$) $x \notin S$

 \mathbf{Z}) $\mathbf{X} \notin \mathbf{B} \to \mathbf{X} \notin \mathbf{A}$.

Решение:

 $a) \ (\forall x) \ (x \not\in A {\longleftrightarrow} x \not\in B) \Leftrightarrow (\forall x) \ (x \not\in A {\to} x \not\in B \land x \not\in B {\to} x \not\in A) \Leftrightarrow$

 $(\forall x) (\neg (x \notin B) \rightarrow \neg (x \notin A) \land \neg (x \notin A) \rightarrow \neg (x \notin B)) \Leftrightarrow$

 $(\forall x) ((x \in B) \to (x \in A) \land (x \in A) \to (x \in B)) \Leftrightarrow$

 $(\forall x) ((x \in A) \leftrightarrow (x \in B)) \Leftrightarrow A=B.$

 $6) (\forall x) (x \in A \rightarrow x \notin B) \Leftrightarrow (\forall x) (\neg (x \in A) \lor (x \notin B)) \Leftrightarrow$

 $(\forall x)((x \notin A) \lor (x \notin B))) \Leftrightarrow (\forall x)(\neg((x \in A) \land (x \in B))) \Leftrightarrow$

 $(\forall x)(\neg(x\in A\cap B)) \Leftrightarrow A\cap B=\emptyset$.

B) $(\exists x \in M) \ x \in S \Leftrightarrow \{ x \in M | x \in S \} \neq \emptyset \Leftrightarrow$

 $\{x \mid x \in M \land x \in S \} \neq \emptyset \Leftrightarrow M \cap S \neq \emptyset.$

 Γ) $(\forall x \in M) \ x \notin S \Leftrightarrow \neg (\exists x \in M) \ x \in$

 $\neg M \cap S \neq \emptyset \Leftrightarrow M \cap S = \emptyset$.

 $((x \in A) \rightarrow (x \in B)) \Leftrightarrow A \subseteq B.$

Задача 4: Докажи дека за пресек на множества важи асоцијативниот закон:

$$(A \cap B) \cap C = A \cap (B \cap C).$$

Решение:

$$x \in (A \cap B) \cap C \Leftrightarrow x \in A \cap B \land x \in C \Leftrightarrow (x \in A \land x \in B) \land x \in C \Leftrightarrow x \in A \land (x \in B \land x \in C) \Leftrightarrow x \in A \land x \in B \cap C \Leftrightarrow x \in A \cap (B \cap C).$$

Задача 5: Докажи дека е точно:

a)
$$\overline{A \cap B} = \overline{A} \cup \overline{B}$$

6)
$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$
.

Решение:

a)
$$x \in \overline{A \cap B} \Leftrightarrow x \in U \land x \notin A \cap B \Leftrightarrow x \in U \land \neg (x \in A \cap B) \Leftrightarrow x \in U \land \neg (x \in A \land x \in B)) \Leftrightarrow x \in U \land (\neg x \in A \lor \neg x \in B) \Leftrightarrow (x \in U \land \neg x \in A) \lor (x \in U \land \neg x \in B) \Leftrightarrow (x \in \overline{A} \lor x \in \overline{B} \Leftrightarrow x \in \overline{A} \cup \overline{B}.$$

$$\begin{array}{l} \text{ 6) } x \in \overline{A \cup B} \Leftrightarrow x \in U \land x \not\in A \cup B \Leftrightarrow x \in U \land \neg (x \in A \cup B) \Leftrightarrow \\ x \in U \land \neg (x \in A \lor x \in B)) \Leftrightarrow x \in U \land (\neg x \in A \land \neg x \in B) \Leftrightarrow \\ (x \in U \land \neg x \in A) \land (x \in U \land \neg x \in B) \Leftrightarrow (x \in U \land x \not\in A) \land (x \in U \land \neg x \not\in B) \Leftrightarrow \\ x \in \overline{A} \land x \in \overline{B} \Leftrightarrow x \in \overline{A} \cap \overline{B}. \end{array}$$

Задача 6: Докажи дека: А ∪(А∩В)=А.

Решение:

$$x \in A \cup (A \cap B) \Leftrightarrow x \in A \lor x \in (A \cap B) \Leftrightarrow x \in A \lor (x \in A \land x \in B) \Leftrightarrow x \in A$$
.

Задача 7: Докажи дека : $A \cup B = B \Leftrightarrow A \subseteq B$.

Решение:

 \Leftarrow : Нека $A \subseteq B \Rightarrow (\forall x)(x \in A \Rightarrow x \in B)$. Ако $x \in A \cup B \Rightarrow x \in A \lor x \in B \Rightarrow x \in B \lor x \in B \Rightarrow x \in B$. Значи, $A \cup B \subseteq B$. Јасно е дека $B \subseteq A \cup B$, па $A \cup B = B$.

 \Rightarrow : Нека A \cup B= B, тогаш A \subseteq A \cup B= B \Rightarrow A \subseteq B.

Задача 8: Докажи дека следниве услови се еквивалентни:

- 1. A⊆ B
- 2. A-B=∅
- 3. $\overline{A} \cup B = U$
- 4. $A \cap \overline{B} = \emptyset$.

Решение:

**1
$$\Leftrightarrow$$
2:** А \subseteq В \Leftrightarrow (\forall x)(x \in A \to x \in B) \Leftrightarrow (замена на импликација) (\forall x)(x \notin A \lor x \in B) \Leftrightarrow (Де Морганов) (\forall x) \neg (x \in A \land x \notin B) \Leftrightarrow (\forall x) \neg (x \in A \rightarrow B) \Leftrightarrow (\forall x) (x \notin A \rightarrow B) \Leftrightarrow A \rightarrow B= \varnothing .

2
$$\Leftrightarrow$$
4: A-B= $\varnothing \Leftrightarrow \{x \mid x \in A \land x \notin B\} = \varnothing \Leftrightarrow \{x \mid x \in A \land x \in \overline{B}\} = \varnothing \Leftrightarrow A \cap \overline{B} = \varnothing.$

3
$$\Leftrightarrow$$
4: $\overrightarrow{A} \cup B = U \Leftrightarrow \overline{\overrightarrow{A} \cup B} = \overrightarrow{U} \Leftrightarrow \overline{\overrightarrow{A} \cap B} = \emptyset$.

Задача 9: Докажи дека:

a) A- B=A
$$\Leftrightarrow$$
 A \cap B= \varnothing

б)
$$A \subseteq B \Leftrightarrow A = B - (B - A)$$
.

Решение:

а)
$$A - B = A \cap \overline{B} = A \Leftrightarrow \overline{A \cap \overline{B}} = \overline{A} \Leftrightarrow \overline{A \cap \overline{B}} = \overline{A} \Leftrightarrow \overline{A \cup \overline{B}} = \overline{A} \Leftrightarrow \overline{A \cup B} = \overline{A} \Leftrightarrow (задача 7)$$
 $B \subseteq \overline{A} \Leftrightarrow (задача 8) \quad B \cap \overline{A} = \emptyset \Leftrightarrow \overline{B \cap A} = \emptyset.$

$$\begin{array}{l} \text{6) } A = B - (B - A) \Leftrightarrow A = B \cap \overline{B \cap A} \Leftrightarrow A = B \cap (\overline{B} \cup A) \Leftrightarrow \\ A = (B \cap \overline{B}) \cup (B \cap A) = \varnothing \cup (B \cap A) = B \cap A \Leftrightarrow \\ \overline{A} = \overline{B \cap A} \Leftrightarrow \overline{A} = \overline{B} \cup \overline{A} \Leftrightarrow \\ \overline{B} \subseteq \overline{A} \Leftrightarrow A \subseteq B. \end{array}$$

Задача 10: Да се докажат следниве равенства:

a) A-(B
$$\cap$$
C)=(A-B) \cup (A-C)

$$\delta$$
) A-(A-B)=A∩B

B)
$$(A-B)-C=(A-C)-(B-C)=A-(B\cup C)$$

$$\Gamma(A \cap A) = (A \cap B) - (A \cap C) = (A \cap B) - C.$$

дискретна математика

a)
$$A \setminus (B \cap C) = A \cap \overline{B \cap C} = A \cap (\overline{B} \cup \overline{C}) = (A \cap \overline{B}) \cup (A \cap \overline{C}) = (A - B) \cup (A - C).$$

6) A-(A-B)= A
$$\cap$$
 $\overline{A} \cap \overline{B}$ = A \cap ($\overline{A} \cup B$) = (A \cap \overline{A}) \cup (A \cap B)= $\emptyset \cup$ (A \cap B)= A \cap B.

B)
$$(A-C)-(B-C)=(A\cap\overline{C})\cap\overline{B\cap\overline{C}}=$$
 $(A\cap\overline{C})\cap(\overline{B}\cup C)=A\cap(\overline{C}\cap(\overline{B}\cup C))=$
 $A\cap((\overline{C}\cap\overline{B})\cup(\overline{C}\cap C))=A\cap(\overline{C}\cap\overline{B})=$
 $A\cap\overline{B\cup C}=A-(B\cup C).$

$$(A-C)-(B-C)=A\cap (\overline{C} \cap \overline{B})=$$

$$A\cap (\overline{B} \cap \overline{C})=(A\cap \overline{B})\cap \overline{C}=(A-B)-C.$$

$$\begin{array}{l} r)\: (A \cap B) - (A \cap C) = (A \cap B) \cap \overline{A \cap C} = \\ (A \cap B) \cap (\overline{A} \cup \overline{C}) = (A \cap B \cap \overline{A}) \cup (A \cap B \cap \overline{C}) = \\ \varnothing \cup (A \cap B \cap \overline{C}) = A \cap B \cap \overline{C} = (A \cap B) - C. \end{array}$$

$$(A \cap B) - (A \cap C) = A \cap B \cap \overline{C} = A \cap (B \cap \overline{C}) = A \cap (B - C).$$

Задача 11: Докажи дека: $A \oplus B = (A-B) \cup (B-A)$.

Решение:

$$A \oplus B = (A \cup B) - (A \cap B) = (A \cup B) \cap \overline{A \cap B} = (A \cup B) \cap (\overline{A} \cup \overline{B}) = (A \cap \overline{A}) \cup (A \cap \overline{B}) \cup (B \cap \overline{A}) \cup (B \cap \overline{B}) = \emptyset \cup (A \cap \overline{B}) \cup (B \cap \overline{A}) \cup \emptyset = (A - B) \cup (B - A).$$

Задача 12: Докажи дека:

- а) $A \cup B = \emptyset$ акко $A = \emptyset$ и $B = \emptyset$
- б) A=B акко $A \oplus B = \emptyset$.

а)
$$\Leftarrow$$
: Ако A= \varnothing и B= \varnothing , јасно дека и A \cup B= \varnothing

$$\Rightarrow$$
: Нека $A \cup B = \emptyset$, тогаш од законот за апсорпција $A = A \cap (A \cup B) = A \cap \emptyset = \emptyset$.

б)
$$A \oplus B = \emptyset \Leftrightarrow (A-B) \cup (B-A) = \emptyset \Leftrightarrow (A-B) = \emptyset \text{ и } (B-A) = \emptyset \Leftrightarrow (A-B) = \emptyset \text{ и } (B-A) = \emptyset \Leftrightarrow (A-B) = \emptyset \text{ и } (B-A) = \emptyset \Leftrightarrow A \subseteq \overline{B} \text{ и } B \subseteq \overline{A} \Leftrightarrow A \subseteq B \text{ и } B \subseteq A \Leftrightarrow A = B.$$

Задача 13: Докажи дека:

- a) $(A \cup B) C = (A C) \cup (B C)$
- 6) A⊕(A∪B)=B-A
- B) $(A \cap B)$ -C=(A-C) $\cap (B$ -C).

Решение:

a)
$$(A \cup B) - C = (A \cup B) \cap \overline{C} = (A \cap \overline{C}) \cup (B \cap \overline{C}) = (A - C) \cup (B - C)$$
.

6)
$$A \oplus (A \cup B) = (A \cup (A \cup B)) - (A \cap (A \cup B)) = (A \cup B) - A = (A - A) \cup (B - A) = \emptyset \cup (B - A) = B - A.$$

B)
$$(A \cap B)$$
-C= $(A \cap B) \cap \overline{C} = (A \cap \overline{C}) \cap (B \cap \overline{C}) = (A-C) \cap (B-C)$.

Задача 14: Дали важи:

- a) $A \cap (B \oplus C) = (A \cap B) \oplus (A \cap C)$
- b) $A \cup (B \oplus C) = (A \cup B) \oplus (A \cup C)$.

Решение:

- а) Да. $(A \cap B) \oplus (A \cap C) = ((A \cap B) (A \cap C)) \cup ((A \cap C) (A \cap B)) = \\ (A \cap (B C)) \cup (A \cap (C B)) = A \cap ((B C) \cup (C B)) = A \cap (B \oplus C).$
- b) He. $A=\{1,2,3\}, B=\{2,3,4\}, C=\{2,4,5\}$ $B\oplus C=\{3,5\}, A\cup (B\oplus C)=\{1,2,3\}\cup \{3,5\}=\{1,2,3,5\}$ $(A\cup B)\oplus (A\cup C)=\{1,2,3,4\}\oplus \{1,2,3,4,5\}=\{5\}$

Задача 15: Докажи дека:

- a) $B(X) \cap B(Y) = B(X \cap Y)$

- a) $A \in B(X) \cap B(Y) \Leftrightarrow A \in B(X) \land A \in B(Y) \Leftrightarrow A \subseteq X \land A \subseteq Y \Leftrightarrow A \subseteq X \cap Y \Leftrightarrow A \in B(X \cap Y)$.
- б) $A \in B(X) \cup B(Y) \Leftrightarrow A \in B(X) \lor A \in B(Y) \Leftrightarrow A \subseteq X \lor A \subseteq Y \Rightarrow$ (обратното не важи) $A \subseteq X \cup Y \Leftrightarrow A \in B(X \cup Y)$.

Фамилии од множества

Ознаки:

Фамилија на множества означуваме со: $\{A_i|i\in I\}$, $(A_i|i\in I)$, каде што I е индексно множество.

Дефиниции:

$$x \in \bigcap_{i \in I} A_i \iff (\forall i \in I) \ x \in A_i$$
$$x \in \bigcup_{i \in I} A_i \iff (\exists i \in I) \ x \in A_i$$

Нека $I=\{1,2,...,n\}, x \in \prod_{i=1}^n A_i \Leftrightarrow x=(x_1,x_2,...,x_n), x_i \in A_i$ за i=1,2,...n.

Задача 1: Докажи дека: (Обопштени асоцијативни закони)

a)
$$A \cap (\bigcap_{i} B_{i}) = \bigcap_{i} (A \cap B_{i})$$

6) $A \cup (\bigcup_{i} B_{i}) = \bigcup_{i} (A \cup B_{i})$

6)
$$A \cup (\bigcup B_i) = \bigcup (A \cup B_i)$$

Решение:

a)
$$x \in A \cap (\bigcap_{i} B_{i}) \Leftrightarrow x \in A \land x \in \bigcap_{i} B_{i} \Leftrightarrow x \in A \land (\forall i) x \in B_{i} \Leftrightarrow (\forall i) x \in A \land x \in B_{i} \Leftrightarrow (\forall i) x \in A \cap B_{i} \Leftrightarrow x \in \bigcap_{i} (A \cap B_{i}).$$

$$6) x \in A \cup (\bigcup_{i} B_{i}) \Leftrightarrow x \in A \lor x \in \bigcup_{i} B_{i} \Leftrightarrow x \in A \lor (\exists i) x \in B_{i} \Leftrightarrow (\exists i) x \in A \lor x \in B_{i} \Leftrightarrow (\exists i) x \in A \cup B_{i} \Leftrightarrow x \in \bigcup_{i} (A \cup B_{i}).$$

Задача 2: Докажи дека: (Обопштени дистрибутивни закони)

a)
$$A \cap (\bigcup_i B_i) = \bigcup_i (A \cap B_i)$$

a)
$$A \cap (\bigcup_{i} B_{i}) = \bigcup_{i} (A \cap B_{i})$$

6) $A \cup (\bigcap_{i} B_{i}) = \bigcap_{i} (A \cup B_{i})$

a)
$$x \in A \cap (\bigcup_{i} B_{i}) \Leftrightarrow x \in A \land x \in \bigcup_{i} B_{i} \Leftrightarrow x \in A \land (\exists i) \ x \in B_{i} \Leftrightarrow (\exists i) \ x \in A \land x \in B_{i} \Leftrightarrow (\exists i) \ x \in A \cap B_{i} \Leftrightarrow x \in \bigcup_{i} (A \cap B_{i}).$$

$$\texttt{6)} \ x \in \mathsf{A} \cup (\bigcap_{i} B_{i} \) \Leftrightarrow x \in \mathsf{A} \lor x \in \bigcap_{i} B_{i} \Leftrightarrow x \in \mathsf{A} \lor (\forall i) \ x \in \mathsf{B}_{i} \Leftrightarrow$$

$$\Leftrightarrow (\forall i) \ x \in A \lor x \in B_i \Leftrightarrow (\forall i) \ x \in A \cup B_i \Leftrightarrow x \in \bigcap_i (A \cup B_i).$$

Задача 3: Докажи дека: (Обопштени Де морганови закони)

a)
$$\overline{\bigcap_{i} A_{i}} = \bigcup_{i} \overline{A_{i}}$$

6) $\overline{\bigcup_{i} A_{i}} = \bigcap_{i} \overline{A_{i}}$.

Решение:

$$\begin{aligned} \mathbf{a}\big) & \ \mathbf{x} \in \overline{\bigcap_{i} \mathbf{A}_{i}} \ \Leftrightarrow \ \mathbf{x} \not \in \bigcap_{i} A_{i} \Leftrightarrow \neg (\ \mathbf{x} \in \bigcap_{i} A_{i}\) \Leftrightarrow \neg ((\forall \mathbf{i}) \ \mathbf{x} \in \mathbf{A}_{i}) \Leftrightarrow \\ & \Leftrightarrow (\exists \mathbf{i}) \ \neg (\mathbf{x} \in \mathbf{A}_{i}) \Leftrightarrow (\exists \mathbf{i}) \ \mathbf{x} \not \in \mathbf{A}_{i} \Leftrightarrow (\exists \mathbf{i}) \ \mathbf{x} \in \overline{\mathbf{A}_{i}} \ \Leftrightarrow \ \mathbf{x} \in \bigcup_{i} \overline{\mathbf{A}_{i}} \ . \end{aligned}$$

$$\mathbf{6}\big) & \ \mathbf{x} \in \overline{\bigcup_{i} \mathbf{A}_{i}} \ \Leftrightarrow \ \mathbf{x} \not \in \bigcup_{i} A_{i} \Leftrightarrow \neg (\ \mathbf{x} \in \bigcup_{i} A_{i}\) \Leftrightarrow \neg ((\exists \mathbf{i}) \ \mathbf{x} \in \mathbf{A}_{i}) \Leftrightarrow \\ & \Leftrightarrow (\forall \mathbf{i}) \ \neg (\mathbf{x} \in \mathbf{A}_{i}) \Leftrightarrow (\forall \mathbf{i}) \ \mathbf{x} \not \in \mathbf{A}_{i} \Leftrightarrow \mathbf{x} \in \bigcap_{i} \overline{\mathbf{A}_{i}} \ . \end{aligned}$$

Задача 4: Нека $\{A_{ij} | (i,j) \text{ I} \times J\}$ е фамилија од множества. Докажи дека:

$$\bigcup_{j} (\bigcap_{i} A_{ij}) \subseteq \bigcap_{i} (\bigcup_{j} A_{ij})$$
 . (равенството не важи во општ случај)

Решение:

$$\begin{split} \mathbf{x} &\in \bigcup_{j} (\bigcap_{i} A_{ij}) \Leftrightarrow (\exists \mathbf{j}) \; \mathbf{x} \in \bigcap_{i} A_{ij} \Leftrightarrow (\exists \mathbf{j}) ((\forall \mathbf{i}) \; \mathbf{x} \in \mathbf{A}_{\mathbf{i}\mathbf{j}}) \Rightarrow \\ &\Rightarrow (\forall \mathbf{i}) ((\exists \mathbf{j}) \; \mathbf{x} \in \mathbf{A}_{\mathbf{i}\mathbf{j}}) \Leftrightarrow (\forall \mathbf{i}) \; \mathbf{x} \in \bigcup_{j} A_{ij} \Leftrightarrow \mathbf{x} \in \bigcap_{i} (\bigcup_{j} A_{ij}) \; . \end{split}$$

Задача 5: Докажи дека:

$$(\bigcup_i A_i) \setminus (\bigcup_i B_i) \subseteq (\bigcup_i A_i \setminus B_i).$$

$$\begin{split} \mathbf{x} &\in (\bigcup_{i} A_{i}) \setminus (\bigcup_{i} B_{i}) \Leftrightarrow \mathbf{x} \in \bigcup_{i} A_{i} \wedge \mathbf{x} \not\in (\bigcup_{i} B_{i}) \Leftrightarrow \\ &\Leftrightarrow (\exists \mathbf{i}) \mathbf{x} \in \mathbf{A}_{\mathbf{i}} \wedge \neg (\mathbf{x} \in (\bigcup_{i} B_{i})) \Leftrightarrow (\exists \mathbf{i}) \mathbf{x} \in \mathbf{A}_{\mathbf{i}} \wedge \neg ((\exists \mathbf{i}) \ \mathbf{x} \in \mathbf{B}_{\mathbf{i}}) \Leftrightarrow \\ &\Leftrightarrow (\exists \mathbf{i}) \mathbf{x} \in \mathbf{A}_{\mathbf{i}} \wedge ((\forall \mathbf{i}) \neg \mathbf{x} \in \mathbf{B}_{\mathbf{i}}) \Rightarrow (\exists \mathbf{i}) (\ \mathbf{x} \in \mathbf{A}_{\mathbf{i}} \wedge \mathbf{x} \not\in \mathbf{B}_{\mathbf{i}}) \Leftrightarrow \\ &\Leftrightarrow (\exists \mathbf{i}) (\ \mathbf{x} \in \mathbf{A}_{\mathbf{i}} / \mathbf{B}_{\mathbf{i}}) \Leftrightarrow \mathbf{x} \in \bigcup_{i} A_{i} \setminus B_{i} \ . \end{split}$$

Задача 6: Докажи дека:

a)
$$(\bigcap_{k} A_{k}) \times (\bigcap_{k} B_{k}) = \bigcap_{k} (A_{k} \times B_{k})$$

6) $(\bigcup_{k} A_{k}) \times (\bigcup_{k} B_{k}) \supseteq \bigcup_{k} (A_{k} \times B_{k})$.

a)
$$(x,y) \in (\bigcap_{k} A_{k}) \times (\bigcap_{k} B_{k}) \Leftrightarrow x \in (\bigcap_{k} A_{k}) \wedge y \in (\bigcap_{k} B_{k}) \Leftrightarrow$$

 $\Leftrightarrow (\forall k) x \in A_{k} \wedge (\forall k) y \in B_{k} \Leftrightarrow (\forall k) x \in A_{k} \wedge y \in B_{k} \Leftrightarrow$
 $\Leftrightarrow (\forall k) (x,y) \in A_{k} \times B_{k} \Leftrightarrow (x,y) \in \bigcap_{k} (A_{k} \times B_{k}).$

$$6) (x,y) \in (\bigcup_{k} A_{k}) \times (\bigcup_{k} B_{k}) \Leftrightarrow x \in (\bigcup_{k} A_{k}) \wedge y \in (\bigcup_{k} B_{k}) \Leftrightarrow \Leftrightarrow (\exists k) x \in A_{k} \wedge (\exists k) y \in B_{k} \Leftrightarrow (\exists k) (x,y) \in A_{k} \times B_{k} \Leftrightarrow (x,y) \in \bigcup_{k} (A_{k} \times B_{k}).$$