DSSS and FHSS

Mobile Communications Project - Group 6

Urs Gerber, Gian-Luca Mateo, Niclas Scheuing, Roger Stebler

Outline

- Recall Spread Spectrum
 - o DSSS
 - o FHSS
- Architecture
- Implementation
- Test Scenarios
- Results
- Questions

Recall: Spread Spectrum

- Idea: increase bandwidth of signal by spreading
 - robust against narrowband interference
- Pseudo-random chip sequence pn

DSSS - Direct-Sequence Spread Spectrum

- Apply BPSK to $pn \oplus data$ Spreads signal to $[-f_c, +f_c]$

- NB: this is baseband
- our implementation is bandpass

FHSS - Frequency Hopping Spread Spectrum

- Compute hopping sequence from chip sequence
- Switch channels each chip
 - Slow hopping: multiple symbols per chip
 - Fast hopping: multiple chips per symbol

Architecture

- **Object Oriented MATLAB**
- **Regression Tests**
 - check implementation
- **Jamming Tests**
 - check jamming parameters

Attributes

Operations

+ send(data)

-spread(data)

- Test Script
 - execute test scenarios

Architecture

Sender

- sample data and pn-sequence
- apply spreading (DSSS/FHSS)
- apply BPSK modulation

Jammer

- o jam data on medium
- with specific bandwidth
- with specific power

Medium

- perform FFT on sender write
- handle interference
- perform IFFT on receiver read

- demodulate signal
- apply despreading
- reconstruct signal

We add AWGN with SNR of 10dB to simulate interference of various origins

Implementation DSSS

Example

$$f_c = 100 \text{Hz}$$

$$f_{chip} = 64 \text{Hz}$$

$$l_{pn} = 48$$

Implementation FHSS

- Constant number of sub-carrier channels: 8
- Constant bandwidth per sub-carrier: 128 Hz
- Fast hopping performed worse than expected
- Example

$$\circ$$
 $f_{sym} = 8 \text{Hz}$

$$\begin{array}{ll} \circ & f_{sym} = 8 \mathrm{Hz} \\ \circ & f_{chip} = 32 \mathrm{Hz} \end{array}$$

Implementation Jammer

- Tested various methods
- Time domain + bandpass filter
 - not reliable and hard to control
- Trequency domain + measure SNR
 - incorrect results, possibly flawed implementation
- DSSS user
 - control bandwidth using chipping rate
 - proved to be most reliable
 - power control still hard
- Not entirely satisfied with solution

jammed, 8Hz, Power factor 1

Test Scenarios

- Base Scenario: 1 Sender + 1 Receiver
 - Metric: BER with 4 different chipping rates and 2 pn-sequence lengths
- Narrowband jamming
 - both DSSS and FHSS should be robust
- Wideband jamming
 - both DSSS and FHSS should be susceptible
- Multiple users: 2-15 senders
 - DSSS: high chip rates should be better
- Different noise bandwidths
 - both robust for small bandwidth, error prone for large bandwidth
- Different levels of AWGN
 - expect both to be equal

Results - Narrowband Jamming

FHSS - 64 Hz

Results - Wideband Jamming

DSSS - 200 Hz

FHSS - 1000 Hz

Results - Multiple Users

35

30

25

15

10

Bit error rate (%)

Number of senders

Chipping rate:64, Chip Length:16

Chipping rate:64, Chip Length:64

Chipping rate:96, Chip Length:16

Chipping rate:96, Chip Length:64

10

Results - Adaptive Bandwidth

Results - White Gaussian Noise

Conclusion

- FHSS fast hopping: FSK instead of BPSK
- Jammer: Adaptive power
 - More background needed

- DSSS more efficient for multiple users
 - More robust to Gaussian noise
 - Performed better in our mixed test
- FHSS more robust towards narrowband
 - Probably more flexible

Questions?