Course Code:	Engineering Chemistry	Course Type	LTP
CHY1001	Engineering Chemistry	Credits	4

Course Objectives:

- To impart technological concepts of applied chemistry
- To lay foundation for practical application of chemistry in engineering aspects

Course Outcomes:

• Students will be familiar with the water purification, corrosion and its control, engineering applications of polymers, types of fuels and their applications, basic aspects of electrochemistry and energy storage devices.

Student Outcomes (SO): a, b, e

Module	Module Description	Sessi	SO
No		ons	
1	Types of impurities in water – Types of Hardness in boiler water.	6	a,e
	Alkalinity of water and its estimation; Estimation of hardness by EDTA		
	method-Numerical problems; Scale, Sludge, Reasons for the formation		
	of scale and Removal. Boiler water purification by ion-exchange resin		
	method. Specifications for potable water – Drinking water treatment –		
	Disinfection by chlorination, ozonisation and UV treatment; Sea water		
	to drinking water conversion - Reverse osmosis & its significance		
2	Phase equilibria: Gibbs phase rule, definition of terms with examples,	4	b,e
	One Component Systems- water and carbon dioxide systems - Reduced		
	phase rule. Two Component eutectic System- lead-silver systems. Alloys:		
	Introduction- Definition- Properties of alloys- Significance of alloying-		
	Ferrous alloys- Nichrome and Stainless steel –		
3	Electrochemistry - Corrosion: Introduction to Electrochemical	5	a,b
	reactions; Redox-reactions; Nernst equation; Problem solving using		
	Nernst equation. Standard Reduction Potentials; Cell potentials and Free		
	Energy, Types and Mechanism of corrosion Galvanic Corrosion;		
	Determination of spontaneity of Corrosion, Relationship between		
	corrosion and entropy, enthalpy and free energy.		
	Corrosion prevention; Cathodic protection – sacrificial anodic and		
	impressed current protection methods; Electrolysis-electroplating-		
	process and typical applications, metal cladding; Coating processes -		
	PVD and CVD and applications –		
4	Energy conversion and storage: Fuel cells – Electrochemistry of a H ₂ –	3	a
	O ₂ fuel cell, Basics of solid oxide fuel cells-applications; Limitations of		
	Batteries.		
	Batteries - Chemical change and Electrical Work: Electrochemical		

	reactions; Primary cells: Lechlanche, alkaline and Li-primary cells. Secondary cells - Lead - acid, Ni-Cd, Ni-MH cells; Rechargeable lithium cells - LiCoO ₂ and LiC ₆ chemistry and applications.		
5	Energy sources: Fuels-Definition. Calorific value - Definition of LCV, HCV. Measurement of calorific value using bomb and Boy's calorimeter – problem solving. Coal analysis-proximate and ultimate analysis and significance. Stoichiometric combustion reactions of C, CH ₄ etc. Calculation of minimum quantity of air by volume and by weight-Numerical problems. Knocking and chemical structure, octane number and cetane number and their importance; Alternate fuels and Fuel additives. Biodiesel-synthesis, advantages and commercial applications;	3	a,b
6	Industrial and Conducting polymers: Introduction to Polymers-Classification. Types of Polymerization (Chain & Step growth); Properties and engineering applications of BS, PVC, PMMA, PET, Teflon and Bakelite. Compression, injection, extrusion, Transfer moulding methods of plastics. Fiber reinforced composites - Properties and applications in automobiles and aerospace. Second Law of thermodynamics and entropy in recycling of plastics like PMMA. Introduction to metallic conductors. Conducting polymers: Polyacetylene and Polyaniline - Mechanism of Conduction, doping, Electrical characterization, applications of conducting polymers in semiconductor field.	4	a,b
	Total Lecture:	25	

Text Books:

- 1. O. G. Palanna, "Engineering Chemistry", Tata McGraw-Hill Education, 2009.
- 2. Jain P.C. and Monica Jain, "Engineering Chemistry", Dhanpat Rai Publishing Company (P) Ltd., New Delhi, 2010

Reference Books:

- 1. Dara S.S, Umare S.S, "Engineering Chemistry", S. Chand & Company Ltd., New Delhi 2010
- 2. O.V. Roussak and H.D. Gesser, *Applied Chemistry A Text Book for Engineers and Technologists*, Springer Science Business Media, New York, 2nd Edition, 2013.
- 3. R. Gowarikar, N.V. Viswanathan and J. Sreedhar, *Polymer Science*, John Wiley & Sons, 2007.
- 4. Peter Atkins and Julio De Paula, *Atkins' Physical Chemistry*, Oxford University Press, 2011.
- 5. David Linden, *Hand Book of batteries*, McGraw Hill Publishers, 4th Edition, 2010.
- 6. Brown and Holme, "Chemistry for Engineering Students", 3rd Edition, Cengage, 2015.
- 7. Dr. Eliezer Gileadi, "Electro kinetics for Chemist and chemical engineers", Wiley-VCH, 1993.

List of Experiments:	SO: i			
1.	Determination of total hardness of water by EDTA	ermination of total hardness of water by EDTA method.		
2.	2. Estimation of different types of alkalinity in waste water sample.			
3.	3. Estimation of Copper in an alloy by Iodometry.			
4.	4. Estimation of Iron in an alloy by Cerimetry			
5.	5. Determination of dissolved oxygen content in the Treated water sample			
6.	Assessment of TDS in water samples using TDS-C	essment of TDS in water samples using TDS-Conductivity method.		
7.	Analysis for percentage of Iron in steel by redox po	lysis for percentage of Iron in steel by redox potentiometry		
8.	Assay of copper in brass solution using colorimetry	7		
Recommendation by the Board of Studies on		22-04-2017		
Approval by Academic council on:				
Compiled by:		Dr. S. Arockiasamy		

LTP: L = Lecture, T = Tutorial, P = Practical