Analyse et manipulation des données

DigitalLab@LaPlataforme_

- Descriptive and inferential statistics tools
 - Univariate and multivariate analysis

- Descriptive and inferential statistics tools
 - Univariate and multivariate analysis
- Data transformations: indexing, grouping and aggregation

- Descriptive and inferential statistics tools
 - Univariate and multivariate analysis
- Data transformations: indexing, grouping and aggregation
- Feature Selection

- Descriptive and inferential statistics tools
 - Univariate and multivariate analysis
- Data transformations: indexing, grouping and aggregation
- Feature Selection
- Combination of data sets

- Descriptive and inferential statistics tools
 - Univariate and multivariate analysis
- Data transformations: indexing, grouping and aggregation
- Feature Selection
- Combination of data sets
- Encoding of categorical variables

- Descriptive and inferential statistics tools
 - Univariate and multivariate analysis
- Data transformations: indexing, grouping and aggregation
- Feature Selection
- Combination of data sets
- Encoding of categorical variables
- Dimensionality reduction with PCA

- Descriptive and inferential statistics tools
 - Univariate and multivariate analysis
- Data transformations: indexing, grouping and aggregation
- Feature Selection
- Combination of data sets
- Encoding of categorical variables
- Dimensionality reduction with PCA
- Dimensionality reduction with LDA

Today we add

- Dimensionality reduction with MDS
- Dimensionality reduction with Isomap
- Dimensionality reduction with LLE
- Dimensionality reduction with t-sne

Where are these tools located?

MDS, Isomap, LLE, t-sne, PCA

They are unsupervised machine learning methods.

Usually unsupervised methods are used for visualization or encodings depending on the problem you are trying to solve.

MDS

Steps used by MDS algorithm

1. The algorithm calculates distances between each pair of points.

MDS

Steps used by MDS algorithm

- 1. The algorithm calculates distances between each pair of points.
- 2. With the original distances known, the algorithm attempts to solve an optimization problem by finding a set of coordinates in a lower-dimensional space that minimizes the value of Stress

data points with their

coordinates in lower

dimensional space.

new set of

algorithm is to

stress.

minimize the value of

The closer the value of $||x_i - x_j||$ is to d_{ij} the smaller will be the value of stress.

the two

corresponding data

points in their lower

dimensional space.

between the two

dimensional space

in their original

corresponding data points

Demo notebook 06_MDS.ipynb

Original High-Dimensional Space

LLE

Steps used by LLE algorithm

- 1. Use a KNN approach to find the k nearest neighbors of every data point. Here, "k" is an arbitrary number of neighbors that you can specify within model hyperparameters.
- 2. Construct a weight matrix where every point has its weights determined by minimizing the error of a cost function E. Every point is a linear combination of its neighbors, which means that weights for non-neighbors are 0.

position of the positions of all the Nearest Neighbors
$$E(W) = \sum_i |X_i - \sum_j W_{ij} X_j|^2$$
 The cost function is solved to find the weights,

We know the

We know the

$$\sum_{i} W_{ij}^{\downarrow} = 1$$

where the sum of weights for each X_i is set to equal to 1

LLE

Steps used by LLE algorithm

3. Find the positions of all the points in the new lower-dimensional embedding by minimizing the cost function C. Here we use weights (W) from step 2 and solve for Y.

New Lower-Dimensional Space

We know the weights from the previous step

$$C(Y) = \sum_{i} |Y_{i} - \sum_{j} W_{ij}Y_{j}|^{2}$$

The cost function is solved to find the positions of Y_i and its neighbors in the new lower-dimensional space using weights from the previous step.

Demo notebook 07_LLE.ipynb

Isomap

Steps used by Isomap algorithm

- 1. Use a KNN approach to find the k nearest neighbors of every data point. Here, "k" is an arbitrary number of neighbors that you can specify within model hyperparameters.
- 2. Once the neighbors are found, construct the neighborhood graph where points are connected to each other if they are each other's neighbors. Data points that are not neighbors remain unconnected.

(Similar to LLE)

Isomap

Steps used by Isomap algorithm

- 3. Compute the shortest path between each pair of data points (nodes) (Dijkstra's algorithm). Note, this step is also commonly described as finding a geodesic distance between points.
- 4. Use MDS to compute lower-dimensional embedding. Given distances between each pair of points are known, MDS places each object into the N-dimensional space (hyperparameter) such that the between-point distances are preserved as well as possible.

Demo notebook 08_Isomap.ipynb

t-sne

Steps used by t-sne algorithm

1. Determine the "similarity" of points based on distances between them.

Nearby points are considered "similar," while distant ones are considered "dissimilar."

Measuring distances between the point of interest and other points and then placing them on a Normal curve. It does this for every point, applying some scaling to account for variations in the density of different regions.

t-sne

Steps used by t-sne algorithm

- 2. Randomly map all the points onto a lower-dimensional space and calculates "similarities" between points. One difference, though, this time, the algorithm uses **t-distribution** instead of Normal distribution.
- 3. Make the new "similarity" matrix look like the original one by using an iterative approach. With each iteration, points move towards their "closest neighbors" from the original higher-dimensional space and away from the distant ones.

Example of a new "Similarity" matrix

Demo notebook 09_tsne.ipynb