ATGGACCATGCTAATGAGGGTCATCGTATTTGTTTAGCACTGGAATCCATAAT
TTCAGAAGAGGAAAACTAGGAGTGCTCCCTTTTTCCCAATAATCATA
GGAAGAAAACCTGGTAGTACTAGTTCACCTAAGGCCTTATCACCTCCTTC
TGTGGATTCAAATTACCCAACGAGAGATAGAGCATCTTTCAACAGAATGGTC
ATGCATAGTGCTGCTTCTCCAACACAGGCACCAATCCTTAATCCCTCTATGGT
TACAAATGAAGGACTTGGTCTTACAACTACAGCTTCTGGAACAGACATCTTT
CTAATAGTCTAAAAGATTGTCTTCCTAAATCAGCACAACTTTTGAAATCTGTT
TTTGTGAAAAATGTTGGTTGGGCTACACAGTTAACTAGTGGAGCTGTGTGGGT
TCAGTTTAATGATGGGTCCCAGTTGGTTGTGCAGGCAGGAGTGTCTTCTATCA
GTTATACCTCACCAAATGGTCAAACAACTAGGTATGGAGAAAAATGAAAAATT
ACCAGACTACATCAAACAGAAATTACAGTGTCTTCTATCCTTTCTAATCCGACTCCTTATTGATGT
TTTCTAATCCGACTCCTAATTTTCATTGA

>SAK amino acid seq. (SEQ ID NO:2)

MATCIGEKIEDFKVGNLLGKGSFAGVYRAESIHTGLEVAIKMIDKKAMYKAGMV ORVONEVKIHCQLKHP

SILELYNYFEDSNYVYLVLEMCHNGEMNRYLKNRVKPFSENEARHFMHQIITGM LYLHSHGILHRDLTLS

NLLLTRNMNIKIADFGLATQLKMPHEKHYTLCGTPNYISPEIATRSAHGLESDVW SLGCMFYTLLIGRPP

FDTDTVKNTLNKVVLADYEMPSFLSIEAKDLIHQLLRRNPADRLSLSSVLDHPFM SRNSSTKSKDLGTVE

DSIDSGHATISTAITASSSTSISGSLFDKRRLLIGQPLPNKMTVFPKNKSSTDFSSSG DGNSFYTQWGNQ

ETSNSGRGRVIQDAEERPHSRYLRRAYSSDRSGTSNSQSQAKTYTMERCHSAEM LSVSKRSGGGENEERY

SPTDNNANIFNFFKEKTSSSSGSFERPDNNQALSNHLCPGKTPFPFADPTPQTETV QQWFGNLQINAHLR

KTTEYDSISPNRDFQGHPDLQKDTSKNAWTDTKVKKNSDASDNAHSVKQQNTM KYMTALHSKPEIIOOEC

VFGSDPLSEQSKTRGMEPPWGYQNRTLRSITSPLVAHRLKPIRQKTKKAVVSILD SEEVCVELVKEYASO

EYVKEVLQISSDGNTITIYYPNGGRGFPLADRPPSPTDNISRYSFDNLPEKYWRKY OYASRFVQLVRSKS

PKITYFTRYAKCILMENSPGADFEVWFYDGVKIHKTEDFIQVIEKTGKSYTLKSES EVNSLKEEIKMYMD

HANEGHRICLALESIISEEERKTRSAPFFPIIIGRKPGSTSSPKALSPPPSVDSNYPTR DRASFNRMVMH

SAASPTQAPILNPSMVTNEGLGLTTTASGTDISSNSLKDCLPKSAQLLKSVFVKNV GWATOLTSGAVWVQ

FNDGSQLVVQAGVSSISYTSPNGQTTRYGENEKLPDYIKQKLQCLSSILLMFSNPT PNFH

	70 80 90 100	180 190 200	280 290 300	380 390 400	480 490 500
	70 TABATAPPAGPG TABATAPPAGPG APAD-PGKAG	170	270	370 LIHQILLRRNPADRLSLS LLAAILRASPRDRPSII LIASMLSKONPEDRPSII LIQKMLQTDPTARPTIN LISRILKHNPSQRPMLF	NSFYTOWGNOETSNSGI
	50 60 PARG-FLSPRPFQR PARSTKMCEQALGKGCG ANTAGKLAR	150 160 CYEAESIHTGLEVAIR CCYEATDLTNIKVYAAR CCYEMTDLTNIKVYAAR CCFEISDADTKEVPAGR VYLAREKQSKGILALIR :	250 260 XTHSHGILHRDLTLSN KYLHEQEILHRDLKLGN KYLHEQEILHRDLKLGN ZYLHRNRVIHRDLKLGN SYCHSKRVIHRDIKPEN * * . :: ***:. '	350 360 	450 460 FPKNKSSTDFSSSGDG FVRKKK
	40 	140 140 EDFKVGNLLGKGSFRG BRTYLKGRLLGKGGFRF BRRYCGGRJLGKGGFRF LEDFELGRDLGKGFRF	30	340 1 PPEDTOTVKNTLNKVVI PPFETADLKETYRCIK PPFETSCLKETYLRIK PPFETSCLKETYLRIK PPFEANTYGETYKKIS PPFEANTYGETYKKIS ***::::::::::::::::::::::::::::::::::	130 440 KRRLLIGOPLENKMTV KVTKSL KRPAPAL
DENTERSHOLISTA TO GOTO TO GOT	20 3	120 1.	220 2. INGEMNYLKNRVKPF: RRSLAHILK-ARKUL, RRSLLELHK-RRKALV RTGTVYRELQ-KLSKF!	320) WSLGCMFYTLLIGR)VWSLGCVMYTLLIGS)IWALGCVMYTMLLGR)VWSIGCIMYTLLIGG)LWSLGVLCYEFLVGK 1:*::*:*:*	420 AITASSSTSISGSLFD SLTPPNPAKSLFA DITTSSPAKNFFK RFSIAPSSLDPSN ASKQS
	10 	110 G GPEIS PLPSAPENNPEEEL	210 EDSNYYYLVLEMCH EDANIYIFLELCS EDNEVFVVLELCR HDATRVYLILEYAE + HDATRVYLILEYAE	310 PEIATRSAHGLESI PEVLLKQGHGPEAL PEVLSKKGHSFEVI PEMIEGRMHDEKVI **: *	

F16.2

Summary of Target Validation Studies: SAK

Activity		nor Hela	PC-3	Tumor A549 Hela PC-3 MCF7 H1299	H1299	Normal HMEC PrEC	I PrEC
Wt GFP fusion IRES GFP	+ +	+ +	‡	-/+ +	-/+	-/+	-/+
K41M GFP fusion IRES GFP	‡‡	‡ ‡	‡ ‡	+ +	-/+ nd	-/+ +	-/+ pu
D154A GFP fusion IRES GFP	‡ ‡	pu	‡ ‡	+ +	-/+	-/+	-/+
Antisense: F	Hela	A549		H1299			

(+ indicates antiproliferative effect in either the GFP positivity study, cell tracker or antisense studies)

Overexpression of SAK Mutants Have a More Pronounced Antiproliferative Effect than Wild Type in A549 Cells

SAK Mutants Have a More Significant Antiproliferative Effect Than Wild Type in MCF7 Cells

FIG. 6

SAK Wild Type and Mutants Have Similar Antiproliferative Effects in PC-3 Cells

FIG. 7

SAK K41M Mutant has a Weak Antiproliferative

FIG. 8

SAK Wild Type and Mutants Have No Antiproliferative Effects in Normal Cells in GFP Positivity Studies

SAK Wild Type and Mutant Proteins Do Not Have Significant Antiproliferative Activity in Normal Cells

SAK K41M Mutant Does Not Have Strong Antiproliferative Effects in Normal Cells

→ GFP-SAK K41M

- GFP-SAK wt

Reduction of SAK With Antisense Oligo Transfections

FIG. 12

Reduction of SAK With Antisense OligoTransfections is Weakly Antiproliferative in Huvec Cells

48 hr BrdU Incorporation

FIG. 13

SAKmRNA is Overexpressed in Some **Tumor Cell Lines**

Relative Expression

FIG. 14

SAK Summary

Identification

Proteomics- Chk2 interacting protein

Functional Studies

Dominant Negative Studies

- · Mutant SAK has a much stronger antiproliferative phenotype than the wild type SAK in tumor cells while neither wild type or mutant SAK is antiproliferative in normal cells.
 - The higher expression level of the mutant SAK relative to wild type makes it difficult to validate SAK only by the dominant negative strategy

Antisense Studies

· Preliminary studies suggests that inhibition of SAK mRNA with antisense oligos is antiproliferative in A549 and Hela cells

Literature

 Strong supporting literature shows antisense reduction of mouse SAK is antiproliferative and that the mouse SAK knockout results in increased cell cycle arrest and apoptosis

FIG. 16

Biochemical assay for Sak kinaseactivity

FIG. 17

Protocol for Sak Autophosphorylation Assay

Bind Sak from E. coli lysates to Ni-NTA agarose O/N at 4°C

25 mM ß-glycerol phosphate, 1 mM NaF, 1 mM Na₃VO₄, 1 mM NaPyP, 10% glycerol Wash Ni-NTA with lysis buffer (20 mM Hepes,pH 7.2, 0.5 M NaCl, 0.5% Tween-20,

Wash Ni-NTA with kinase buffer (20 mM MOPS, pH 7.2, 25 mM eta-glycerol phosphate, 5 mM EGTA, 1 mM Na₃VO₄)

Add 10 µL of labeling mix (20 mM MgCl $_2$, 2 mM MnCl $_2$, 0.2 mM ATP, 0.5 µCi/µL γ -32P ATP in kinase buffer Resuspend resin-bound Sak in 10 µL kinase buffer Incubate at 30°C, 15 min.

Autophosphorylation Activity of Sak Produced in E. coli

FIG. 19