

รายงาน

การบ้าน 3 วิชา CS358

โดย

นางสาวกัลยาณี คุมเกษม 5809610420

รายงานนี้เป็นส่วนหนึ่งของวิชา คพ.358 สาขาวิชาวิทยาการคอมพิวเตอร์ คณะวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยธรรมศาสตร์ ปีการศึกษา 2/2560 GitHub: https://github.com/boombibi/CS358-R-Project-

รายงานผลการดำเนินการในการทำ Decision Tree Model ดังนี้

1. การเตรียมชุดข้อมูล (Data acquisition)

วิธีการในการเตรียมชุดข้อมูล มีดังนี้

1) เริ่มจากการอ่าน ใฟล์ .csv

```
> mushroomData <- read.csv("C:/Users/tsb/Desktop/R Project/mushroom-class
ification/mushrooms.csv");</pre>
```

2) ดู Structure ของข้อมูล

จากภาพแสดงให้เห็นว่าในชุดข้อมูลนี้มี 8124 Objects และ 23 Attribute แต่ละ Attribute มี ประเภทเป็น Factor

3) ทำการเปลี่ยนชื่อ Columns ให้อ่านง่ายขึ้น

4) ทำการ Assign ค่าตัวแปรใน แต่ละ Attribute ใหม่

2. การแบ่งข้อมูลเพื่อ Train และ Test แบบจำลอง (Data partitioning)

วิธีการแบ่งข้อมูล มีดังนี้

1) ในการแบ่งข้อมูลเพื่อ Train และ Test จะแบ่งโดยวิธีการสุ่ม และแบ่งข้อมูลสำหรับ Train 70% และ สำหรับ Test 30% โดยใช้ฟังก์ชัน ดังต่อไปนี้

set.seed(1420)

- > PartitionedData <- partitionData(mushroomData)
- 2) เมื่อ Partition แล้วจะได้ข้อมูลมา 2 ชุด คือชุดที่ใช้ Train และ Test

```
    PartitionedData list [2] List of length 2
    TrainingData list [5707 x 23] (S3: data.frame) A data.frame with 5707 rows and 23 columns
    testingData list [2417 x 23] (S3: data.frame) A data.frame with 2417 rows and 23 columns
```

ชุดข้อมูลสำหรับ Train มี 5707 แถว 23 คอลัมน์ และข้อมูลสำหรับ Test มี 2417 แถว 23 คอลัมน์

3) ทคสอบว่า การแบ่งข้อมูลถูกต้อง

```
> round(prop.table(table(mushroomData$edibility)), 2)
  edible poisonous
    0.52    0.48
> round(prop.table(table(trainingData$edibility)), 2)
  edible poisonous
    0.52    0.48
> round(prop.table(table(testingData$edibility)), 2)
  edible poisonous
    0.52    0.48
```

จะเห็นได้ว่าความน่าจะเป็นของ edible และ poisonous ในชุดข้อมูล ทั้ง 3 มีค่าเท่ากัน แสดงว่าการแบ่ง ข้อมูลถูกต้องแล้ว

3. การเลือก Attribute เพื่อสร้างแบบจำลอง (Attribute selection)

การเริ่มต้นจะต้องหาค่า Information gain ของแต่ละ Attribute เพื่อใช้ในการเลือก Attribute นั้น โดยการ เรียกใช้ฟังก์ชัน จากที่เรียนในชั่วโมงบรรยาย

```
> #### Information Gain ####
> InformationGain(table(trainingData[,c('cap_shape','edibility')]))
[1] 0.04440139
> InformationGain(table(trainingData[,c('cap_surface','edibility')]))
[1] 0.03023997
> InformationGain(table(trainingData[,c('cap_color','edibility')]))
[1] 0.03591036
> InformationGain(table(trainingData[,c('bruises','edibility')]))
> InformationGain(table(trainingData[,c('odor','edibility')]))
[1] 0.9122506
> InformationGain(table(trainingData[,c('gill_attachement','edibility')]))
[1] 0.01342796
- InformationGain(table(trainingData[,c('gill_spacing','edibility')]))
[1] 0.1064521
> InformationGain(table(trainingData[,c('gill_size','edibility')]))
[1] 0.2349405
> InformationGain(table(trainingData[,c('gill_color','edibility')]))
[1] 0.4183871
> InformationGain(table(trainingData[,c('stalk_shape','edibility')]))
[1] 0.008815155
> InformationGain(table(trainingData[,c('stalk_root','edibility')]))
> InformationGain(table(trainingData[,c('stalk_surface_above_ring','edibility')]))
[1] 0.2823962
- InformationGain(table(trainingData[,c('stalk_surface_below_ring','edibility')]))
[1] 0.2707338
- InformationGain(table(trainingData[,c('stalk_color_above_ring','edibility')]))
[1] 0.2476053
> InformationGain(table(trainingData[,c('stalk_color_below_ring','edibility')]))
[1] 0.2380757
> InformationGain(table(trainingData[,c('veil_type','edibility')]))
[1] 0
> InformationGain(table(trainingData[,c('veil_color','edibility')]))
[1] 0.02252624
> InformationGain(table(trainingData[,c('ring_number','edibility')]))
[1] 0.03940197
> InformationGain(table(trainingData[,c('ring_type','edibility')]))
[1] 0.3129148
 InformationGain(table(trainingData[,c('spore_print_color','edibility')]))
[1] 0.4757143
 InformationGain(table(trainingData[,c('population','edibility')]))
[1] 0.2026837
> InformationGain(table(trainingData[,c('habitat','edibility')]))
[1] 0.158629
```

เลือก Attribute ที่มีค่า Information Gain จากมากที่สุดคังนี้

Odor, Spore print color

4. การแสดงภาพเกี่ยวกับ Attribute ที่เลือก (Attribute visualization)

Attribute ที่มี Information Gain สูงที่สุด คือ Odor

1) แสคงภาพที่เกี่ยวกับ Attribute Odor โดยใช้ฟัง์ชันต่อไปนี้

จะเห็นชัดเจนว่า edible และ poisonous ไม่มีการปะปนกัน แยกกันอย่างเห็นได้ชัด แต่จะมีลักษณะ none ที่ส่วนใหญ่จะเป็น edible ส่วนน้อยจะเป็น poisonous

2) แสดงภาพที่เกี่ยวกับ Attribute Odor และ Spore_print_color โดยใช้ฟังชันต่อไปนี้

จากภาพจะเห็นว่า

- การจับคู่ของ 2 ลักษณะ มีลักษณะ odor none และ spore_print_color white มีการผสมกัน เล็กน้อย ส่วนใหญ่จะเป็น edible
- คู่ของลักษณะอื่นจะมี edible และ poisonous แยกกันชัคเจน

5. Classification ด้วย Decision Tree (Classification with Decision Tree)

สร้าง Tree Model โดยใช้วิธีการเรียกไลบราลสำเร็จรูป โดยใช้ rPart Package โดยมีขั้นตอนการสร้าง ดังนี้

1) สร้าง tree_model ใช้ Library rpart โดยใช้ method = "class" เพราะ data เป็น Factor และใช้ ฟังก์ชัน printep เพื่อดู Fitted rpart

```
> tree_model <- rpart(edibility ~ ., data = trainingData,method = "class", cp = 0.0001)
> printcp(tree_model)
Classification tree:
rpart(formula = edibility ~ ., data = trainingData, method = "class",
   cp = 1e-04)
Variables actually used in tree construction:
[1] odor
                           spore_print_color
                                               stalk_color_below_ring stalk_root
Root node error: 2751/5707 = 0.48204
n= 5707
        CP nsplit rel error
                               xerror
                0 1.0000000 1.0000000 0.01372154
1 0.9720102
2 0.0178117
                1 0.0279898 0.0279898 0.00316814
3 0.0043621
                2 0.0101781 0.0101781 0.00191876
4 0.0018175
               3 0.0058161 0.0058161 0.00145198
               5 0.0021810 0.0021810 0.00088993
5 0.0001000
```

2) ใช้ฟังก์ชัน rapart.plot เพื่อ plot Tree model ที่สร้างในก่อนหน้านี้

```
> rpart.plot(tree_model, extra = 105, box.palette = "Red",
+ branch.lty = 3, shadow.col = "gray", nn = TRUE)
```


3) ใช้ฟังก์ชัน เพื่อคำณวน cross-tabulation ของการ Predict Training Data แสดงผลในรูปแบบสถิติที่ เกี่ยวข้อง

เนื่องจากใน factor มี 2 level คือ edible และ poisonous จึงให้ positive = "edible"

```
> caret::confusionMatrix(data=predict(tree_model, type = "class"),
                         reference = trainingData$edibility,
positive="edible")
Confusion Matrix and Statistics
           Reference
Prediction edible poisonous
  edible
              2956
  poisonous
                0
                        2745
               Accuracy: 0.9989
                 95% CI: (0.9977, 0.9996)
    No Information Rate: 0.518
    P-Value [Acc > NIR] : < 2e-16
                  карра : 0.9979
 Mcnemar's Test P-Value: 0.04123
            Sensitivity: 1.0000
            Specificity: 0.9978
         Pos Pred Value: 0.9980
         Neg Pred Value: 1.0000
             Prevalence: 0.5180
         Detection Rate: 0.5180
   Detection Prevalence: 0.5190
      Balanced Accuracy: 0.9989
       'Positive' Class : edible
```

อธิบายผลที่ได้ ดังนี้

- ความแม่นยำ (Accuracy) : 0.9989
- ระดับความั่นใจ 95 % ช่วงความเชื่อมั่น 0.9977 ถึง 0.9996
- ค่าสัมประสิทธิ์ตัวชี้วัคทางสถิติระหว่างผู้ให้ความเห็นสองฝ่าย (Kappa) : 0.9979
- สัคส่วนของผลบวกที่เป็นจริงสำหรับภาวะนั้นๆ (Sensitivity) : 1.0000
- สัดส่วนของผลลบที่เป็นจริงสำหรับภาวะนั้นๆ (Specificity) : 0.9978

4) และใช้ฟังก์ชัน เพื่อคำณวน cross-tabulation ของการ Predict Testing Data แสดงผลในรูปแบบ สถิติที่เกี่ยวข้อง

```
> tree_test <- predict(tree_model, newdata = testingData)</pre>
> caret::confusionMatrix(data = predict(tree_model, newdata = testingData, type = "class"),
                          reference = testingData$edibility,
positive = "edible")
Confusion Matrix and Statistics
           Reference
Prediction edible poisonous
 edible
             1252
                         1163
 poisonous
               Accuracy: 0.9992
95% CI: (0.997, 0.9999)
    No Information Rate: 0.518
    P-Value [Acc > NIR] : <2e-16
                  Карра: 0.9983
Mcnemar's Test P-value : 0.4795
            Sensitivity: 1.0000
            Specificity: 0.9983
         Pos Pred Value: 0.9984
         Neg Pred Value: 1.0000
             Prevalence: 0.5180
         Detection Rate: 0.5180
   Detection Prevalence: 0.5188
      Balanced Accuracy: 0.9991
       'Positive' Class : edible
```

อธิบายผลที่ได้ ดังนี้

- ความแม่นยำ (Accuracy) : 0.9992
- ระดับความั่นใจ 95 % ช่วงความเชื่อมั่น 0.997 ถึง 0.9999
- ค่าสัมประสิทธิ์ตัวชี้วัดทางสถิติระหว่างผู้ให้ความเห็นสองฝ่าย (Kappa) : 0.9979
- สัคส่วนของผลบวกที่เป็นจริงสำหรับภาวะนั้นๆ (Sensitivity) : 1.0000
- สัคส่วนของผลลบที่เป็นจริงสำหรับภาวะนั้นๆ (Specificity): 0.9978

6. สรุปองค์ความรู้ที่ได้จากการใช้แบบจำลองในการแก้ปัญหา

- 1. ใน Data Set Mushroom มีมีเห็ดประเภท Edible มากกว่า เห็ดชนิด Poisonous
- 2. จะสามารถทำนายได้ว่า เห็ด ที่กินได้มีลักษณะ ต่อไปนี้
 - กลิ่น Odor : almond, anise, none
 - สีลายพิมพ์สปอร์ Spore Print Color: buff, chocolate, black, brown, purple, white, yellow
 - สีของลำต้นใต้คอก Stalk color below ring : red, gray, brown, pink, pink, green, purple
 - ก้านของราก Stalk root : bulbous
- 3. จากการสร้างแบบจำลอง Tree Model โดยการใช้ Package สำเร็จรูป rapart ในการสร้าง Tree จะ เลือก Attribute สำหรับสร้าง Node และ Root Node ให้อัตโนมัติ และมี 5 Attribute ที่ถูกนำมาสร้าง ใน Tree