High-Fidelity Simulations for Turbulent Flows

Luca Sciacovelli

DynFluid Laboratory Arts et Métiers Institute of Technology http://savoir.ensam.eu/moodle

Master Recherche "Aérodynamique et Aéroacoustique" 2021 - 2022

Part V

Discretization of the Navier-Stokes equations

Classification of PDE

Methods for Hyperbolic Equations

Methods for Parabolic Equations

4 Advection–Diffusion Equation

	1 10 11	_	DDI
1 C	lassification	OT	PDE

Methods for Hyperbolic Equations

Methods for Parabolic Equations

Advection—Diffusion Equation

1st order PDE - Characteristics (I)

- ▶ PDE order determined by **highest derivatives**
 - Linear: no powers or products of the unknown functions or its partial derivatives are present

$$x\frac{\partial w}{\partial x} + y\frac{\partial w}{\partial y} = w, \quad \frac{\partial w}{\partial x} + \frac{\partial w}{\partial y} + 2xw = 0$$

 Quasi-linear if it is true for the partial derivatives of the highest order

$$w\frac{\partial^2 w}{\partial x^2} + \left(\frac{\partial w}{\partial y}\right)^2 = w, \quad x^2 \frac{\partial w}{\partial x} + y^2 \frac{\partial w}{\partial y} = w^2$$

Consider the 1st-order linear PDE

$$\boxed{a\frac{\partial w}{\partial x} + b\frac{\partial w}{\partial y} = c}$$

with a = a(x, y, w), b = b(x, y, w), c = c(x, y, w)

► Arbitrary change in w: $dw = \frac{\partial w}{\partial x} dx + \frac{\partial w}{\partial y} dy$

▶ Normal vector to the curve w = w(x, y)

► Same argument in *y*-direction, thus

$$\vec{n} = \left(\frac{\partial w}{\partial x}, \frac{\partial w}{\partial y}, -1\right)$$

1st order PDE - Characteristics (II)

The original equation and the condition for a small change can be rewritten as

$$a\frac{\partial w}{\partial x} + b\frac{\partial w}{\partial y} = c \implies \left(\frac{\partial w}{\partial x}, \frac{\partial w}{\partial y}, -1\right) \cdot (a, b, c) = 0$$

$$dw = \frac{\partial w}{\partial x} dx + \frac{\partial w}{\partial y} dy \implies \left(\frac{\partial w}{\partial x}, \frac{\partial w}{\partial y}, -1\right) \cdot (dx, dy, dw) = 0$$

- ▶ Both (a, b, c) and (dx, dy, dw) are normal to the surface
- ▶ Picking the displacement in the direction of (a, b, c):

$$(dx, dy, dw) = ds(a, b, c)$$

And separating the components:

$$\frac{\frac{dx}{ds} = a, \quad \frac{dy}{ds} = b,}{\frac{dx}{dy} = \frac{a}{b}} \quad \frac{dw}{ds} = c,$$

• The 3 equations specify lines in the x - y plane

Characteristics

Given the initial conditions:

$$x = x(s, t_0), \quad y = y(s, t_0), \quad w = w(s, t_0)$$

The equations can be integrated in time:

Linear advection equation

$$\boxed{\frac{\partial w}{\partial t} + a \frac{\partial w}{\partial x} = 0} \quad \Longrightarrow \quad \quad \text{Characteristics:} \quad \frac{\mathrm{d}t}{\mathrm{d}s} = 1, \quad \frac{\mathrm{d}x}{\mathrm{d}s} = a, \quad \frac{\mathrm{d}w}{\mathrm{d}s} = 0 \quad \quad \text{or} \quad \frac{\mathrm{d}x}{\mathrm{d}t} = a, \quad \mathrm{d}w = 0$$

$$\frac{\mathsf{d}t}{\mathsf{d}s}=1$$

$$\frac{\mathrm{d}x}{\mathrm{d}s}=a,$$

$$\frac{\mathrm{d}w}{\mathrm{d}s}=0$$

or
$$\frac{dx}{dt} =$$

$$= a, dw =$$

The solution moves along straight characteristics without changing its value!

Graphically:
$$w(x, t) = w_{t=0}(x - at)$$

▶ Solution:
$$w(x, t) = f(x - at)$$
 with $f(x) = w(x, t = 0)$

▶ Verified by direct substitution: set
$$\eta(x, t) = x - at$$
, then:

$$\frac{\partial w}{\partial t} = \frac{\partial f}{\partial \eta} \frac{\partial \eta}{\partial t} = \frac{\partial f}{\partial \eta} (-a)$$
$$\frac{\partial w}{\partial x} = \frac{\partial f}{\partial \eta} \frac{\partial \eta}{\partial x} = \frac{\partial f}{\partial \eta} (1)$$

$$\frac{\partial w}{\partial t} + a \frac{\partial w}{\partial x} = \underbrace{\partial f} / \partial \eta (-a) + a \frac{\partial g}{\partial \eta} = 0$$

Since the solution propagates along characteristics independently of the solution at the next spatial point, there is no requirement that it is differentiable or even continuous

Linear advection equation

► Linear advection with source term:

$$\frac{\partial w}{\partial t} + a \frac{\partial w}{\partial x} = -w$$

Characteristics:
$$\frac{dt}{ds} = 1$$
, $\frac{dx}{ds} = a$, $\frac{dw}{ds} = -w$

or
$$\frac{dx}{dt} = a$$
, $\frac{dw}{dt} = -w$ \implies $w = w(0)e^{-t}$

► Quasi-linear advection equation:

$$\frac{\partial w}{\partial t} + w \frac{\partial w}{\partial x} = 0$$

Characteristics:
$$\frac{dt}{ds} = 1$$
, $\frac{dx}{ds} = w$, $\frac{dw}{ds} = 0$
or $\frac{dx}{dt} = w$, $dw = 0$

- The slope of the characteristics depends on the value of w(x, t)
- Why unphysical solutions? Because mathematical equation neglects some physical process (dissipation)
- Additional (entropy) condition required to pick out the physically relevant solution, using conservation of w

Moving wave with decaying amplitude

Multi-valued solution..

2nd order PDE - Characteristics (I)

$$\boxed{a\frac{\partial^2 w}{\partial x^2} + b\frac{\partial^2 w}{\partial x \partial y} + c\frac{\partial^2 w}{\partial y^2} = d} \quad (\star)$$

with

$$a = a(x, y, w, w_x, w_y)$$

$$b = b(x, y, w, w_x, w_y)$$

$$c = c(x, y, w, w_x, w_y)$$

$$d = d(x, y, w, w_x, w_y)$$

- First write the PDE as a system of 1st-order eqs:

 - Define $f = \frac{\partial w}{\partial x}$ and $g = \frac{\partial w}{\partial y}$ Then (*) becomes: $a\frac{\partial f}{\partial x} + b\frac{\partial f}{\partial y} + c\frac{\partial g}{\partial y} = d$
 - The 2nd eq. is obtained from:

$$\frac{\partial^2 w}{\partial x \partial y} = \frac{\partial^2 w}{\partial y \partial x} \implies \frac{\partial g}{\partial x} - \frac{\partial f}{\partial y} = 0$$

► (*) is then equivalent to

$$\begin{cases} a\frac{\partial f}{\partial x} + b\frac{\partial f}{\partial y} + c\frac{\partial g}{\partial y} = d\\ \frac{\partial g}{\partial x} - \frac{\partial f}{\partial y} = 0 \end{cases}$$

- Any high-order PDE can be rewritten as a system of 1st-order equations
- In matrix form, one has

$$\begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial g}{\partial x} \end{bmatrix} + \underbrace{\begin{bmatrix} \frac{b}{a} & \frac{c}{a} \\ -1 & 0 \end{bmatrix}}_{\mathbf{A}} \cdot \underbrace{\begin{bmatrix} \frac{\partial f}{\partial y} \\ \frac{\partial g}{\partial y} \end{bmatrix}}_{\mathbf{A}} = \begin{bmatrix} \frac{d}{a} \\ 0 \end{bmatrix}$$

or
$$\vec{u}_x + A\vec{u}_y = \vec{s}$$
 with $\vec{u} = \begin{bmatrix} f \\ g \end{bmatrix}$

• Are there lines in the x-y plane, along which the solution is determined by an ODE?

2nd order PDE - Characteristics (II)

The total derivative is:

$$\frac{\mathrm{d}f}{\mathrm{d}x} = \frac{\partial f}{\partial x} + \frac{\partial f}{\partial y}\frac{\partial y}{\partial x} = \frac{\partial f}{\partial x} + \alpha\frac{\partial f}{\partial y} \quad \text{with} \quad \alpha = \frac{\partial y}{\partial x}$$

- ▶ Rate of change of f with x, along the line y = y(x)
- ▶ If there are lines (determined by α) where the solution is governed by ODE's, then it must be possible to rewrite the eqs. such that the result contains only α and the total derivatives!
 - Add the original equations:

$$\lambda_1 \left(\frac{\partial f}{\partial x} + \frac{b}{a} \frac{\partial f}{\partial y} + \frac{c}{a} \frac{\partial g}{\partial y} \right) + \lambda_2 \left(\frac{\partial g}{\partial x} - \frac{\partial f}{\partial y} \right) = \lambda_1 \frac{d}{a}$$

And compare to

$$\lambda_1 \left(\frac{\partial f}{\partial x} + \alpha \frac{\partial f}{\partial y} \right) + \lambda_2 \left(\frac{\partial g}{\partial x} + \alpha \frac{\partial g}{\partial y} \right) = \lambda_1 \frac{d}{a}$$

for some λ 's and α

► The two systems are equal if:

The total derivative is:
$$\frac{\mathrm{d}f}{\mathrm{d}x} = \frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial x} = \frac{\partial f}{\partial x} + \alpha \frac{\partial f}{\partial y} \quad \text{with} \quad \alpha = \frac{\partial y}{\partial x} \qquad (\star) \begin{cases} \lambda_1 \frac{b}{a} - \lambda_2 = \lambda_1 \alpha \\ \lambda_1 \frac{c}{a} = \lambda_2 \alpha \end{cases} \Longrightarrow \begin{bmatrix} \frac{b}{a} - \alpha & -1 \\ \frac{c}{a} & -\alpha \end{bmatrix} \cdot \begin{bmatrix} \lambda_1 \\ \lambda_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

- ► Characteristic lines exist if (*) is verified
- ► The system can be recast as

$$\underbrace{\begin{bmatrix} \frac{b}{a} & -1 \\ \frac{c}{a} & 0 \end{bmatrix}}_{A^T} \cdot \begin{bmatrix} \lambda_1 \\ \lambda_2 \end{bmatrix} - \begin{bmatrix} -\alpha & 0 \\ 0 & -\alpha \end{bmatrix} \cdot \begin{bmatrix} \lambda_1 \\ \lambda_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\Rightarrow (A^T - \alpha I)\vec{\lambda} = 0$$

$$-\alpha \left(\frac{b}{a} - \alpha\right) + \frac{c}{a} = 0 \iff \boxed{\alpha = \frac{1}{2a} \left(b \pm \sqrt{b^2 - 4ac}\right)}$$

- 1. $b^2 4ac > 0$: 2 real characteristics: hyperbolic
- 2. $b^2 4ac = 0$: 1 real characteristic: parabolic
- 3. $b^2 4ac < 0$: 0 real characteristics: elliptic

Examples

Comparing with the standard form
$$\frac{\partial^2 w}{\partial x^2} + b \frac{\partial^2 w}{\partial x \partial y} + c \frac{\partial^2 w}{\partial y^2} = c$$

Equation

$$p^{2} - 4ac$$

$$\frac{\partial^2 w}{\partial x^2} - c^2 \frac{\partial^2 w}{\partial y^2} = 0$$

$$0 - c^2$$

$$\frac{\partial w}{\partial x} - \nu \frac{\partial^2 w}{\partial y^2} = 0$$

$$0 - \nu$$

Parabolic

$$\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} = 0$$

$$-4 < 0$$

Elliptic

- ▶ Why the classification is so important?
 - Different initial and boundary conditions
 - Different physics
 - · Different numerical methods

Examples

Incompressible Navier-Stokes

$$\underbrace{\frac{\partial u}{\partial t}}_{(1)} + \underbrace{u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y} = -\frac{1}{\rho}\frac{\partial p}{\partial x}}_{(2)} + \underbrace{v\left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}\right)}_{(3)}$$

	Steady		Uns	steady
		Туре		Туре
Viscous flow	(3)	Elliptic	(1)+(3)	Parabolic
Inviscid flow	(2)	$ extit{\it Ma} \ll 1$: Elliptic $ extit{\it Ma} > 1$: Hyperbolic	(1)+(2)	Hyperbolic
Thin shear layers	(2)+(3)	Parabolic	(1)+(3)	Parabolic

- ▶ NS eqs. contains three equation types having their own characteristic behavior
- ▶ Depending on the configuration, one behavior can be dominant. Examples:
 - Inviscid flows:
 - ullet Ma \ll 1: pressure disturbances travel faster than flow speed \Longrightarrow elliptic character
 - *Ma* > 1: pressure disturbances cannot travel upstream \implies hyperbolic character
 - Thin shear layers: $\frac{\partial (\bullet)}{\partial x} \ll \frac{\partial (\bullet)}{\partial y} \implies$ only one second order term \implies parabolic character

III-posed problems

Consider the IVP:
$$\boxed{\frac{\partial^2 w}{\partial t^2} = -\frac{\partial^2 w}{\partial x^2}}$$

Consider the IVP: $\left| \frac{\partial^2 w}{\partial t^2} = -\frac{\partial^2 w}{\partial x^2} \right|$ with w^0 and $\frac{\partial w^0}{\partial t}$ given on the boundaries

- ▶ This is simply **Laplace's equation**, which has a solution if w(t) or $\frac{\partial w}{\partial t}$ are given on the boundaries
- ▶ Here, it appears as an IVP (BCs given only at t = 0)
- ► General solution: $w(x, t) = \sum_{k} \widehat{w}_{k}(t)e^{ikx}$ $\widehat{w}_k(t)$ depending on ICs
- ► Replacing in the equation: $\frac{d^2 \widehat{w}_k}{dt^2} = k^2 \widehat{w}_k$ For which one has $\widehat{w}_k(t) = Ae^{kt} + Be^{-kt}$
 - A, B determined by the ICs \widehat{w}_{k}^{0} and $ik\widehat{w}_{k}^{0}$
 - $\widehat{w}_k \to \infty$ as $t \to \infty$: III-posed problem!
- Similar behavior obtained for diffusion equation with ν < 0: unbounded growth rate for high-wavenumber modes

- ► Ill-posed problems generally appear when ICs or BCs and the equation type do not match, or because small but important higher-order effects have been neglected
- ► They result in exponential growth of small perturbations, so that the solution does not depend continuously on the initial data
- Examples: inviscid vortex sheet roll-up, multiphase flow models, viscoelastic constitutive models, ...

Remainder: the NS equations

$$\frac{\partial w}{\partial t} + \nabla \cdot (\mathbf{F}^e - \mathbf{F}^v) = 0 \qquad w = \begin{bmatrix} \rho \\ \rho \vec{u} \\ \rho E \end{bmatrix} \qquad F^e = \begin{bmatrix} \rho \vec{u} \\ \rho \vec{u} \vec{u} + p \mathbf{I} \\ \rho \vec{u} H \end{bmatrix} \qquad F^v = \begin{bmatrix} 0 \\ \vec{\tau} \\ \vec{\tau} \vec{u} - \vec{q} \end{bmatrix}$$

- Boundary conditions
 - Inlet/Outlet: viscous effects negligible (no BLs): same BCs as in inviscid flows hold
 - Walls: no-slip condition ($\vec{u} = \vec{u}_{wall}$) + condition on T (Adiabatic, $\vec{q} = 0$, or Isothermal, $T = T_{wall}$)
- ▶ For aerodynamic problems, $Pr \approx 0.72$ and $Re \gg 1$
 - Most of the flow dominated by inviscid effects
 - Viscous effects important in regions with strong gradients
 - ullet Shock waves too thin to be resolved in common use meshes \Longrightarrow captured or seen as discontinuities
- ► A good NS solver should be, first of all, a good **Euler solver**
 - Already seen in the Basics of Numerical Methods course
 - We focus on the discretisation of viscous terms and interactions with convective terms and time derivatives (stability issues)

1 (lassific	ation	ot	PDE

Methods for Hyperbolic Equations

Methods for Parabolic Equations

Advection—Diffusion Equation

Model problem: stability analysis

Consider the wave equation:

$$\frac{\partial^2 w}{\partial t^2} - c^2 \frac{\partial^2 w}{\partial x^2} = 0$$
write as
$$\begin{cases}
\frac{\partial f}{\partial t} - c^2 \frac{\partial g}{\partial x} = 0 \\
\frac{\partial g}{\partial t} - \frac{\partial f}{\partial x} = 0
\end{cases}$$
or
$$\begin{bmatrix}
\frac{\partial f}{\partial t} \\
\frac{\partial g}{\partial t}
\end{bmatrix} + \begin{bmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{bmatrix} \cdot \begin{bmatrix}
\frac{\partial f}{\partial x} \\
\frac{\partial g}{\partial x}
\end{bmatrix} = \begin{bmatrix}0 \\ 0\end{bmatrix}$$

Most of the issues involved can be addressed by examining the linear advection equation $\left| \frac{\partial w}{\partial t} + a \frac{\partial w}{\partial x} \right| = 0$

$$\frac{\partial w}{\partial t} + a \frac{\partial w}{\partial x} = 0$$

Example: Upwind method for advection equation $(\mathcal{O}(\Delta t, \Delta x))$ accurate

- ▶ Write the solution as $\widehat{w}_i^n = \widehat{w}^n e^{ikx_j}$
- Replace in the discretized equation

$$\frac{\partial w}{\partial t} + a \frac{\partial w}{\partial x} = 0$$

$$\frac{w_j^{n+1} - w_j^n}{\Delta t} + a \frac{w_j^n - w_{j-1}^n}{\Delta x} = 0$$

$$\frac{\widehat{w}_j^{n+1} - \widehat{w}_j^n}{\Delta t} + a \frac{\widehat{w}_j^n - \widehat{w}_{j-1}^n}{\Delta x} = 0$$

$$\frac{\widehat{w}_j^{n+1} - \widehat{w}_j^n}{\Delta t} + \frac{a\widehat{w}_j^n}{\Delta t} \left(1 - e^{-ik\Delta x}\right) = 0$$

Evaluate the amplification factor G:

$$\implies G = \frac{\widehat{w}^{n+1}}{\widehat{w}^n} = 1 - \frac{a\Delta t}{\Delta x} \left(1 - e^{-ik\Delta x} \right)$$

$$= 1 - \dot{a} \left(1 - e^{-ik\Delta x} \right) \quad \text{with} \quad \dot{a} = \frac{a\Delta t}{\Delta x}$$

$$= 1 - \dot{a} + \dot{a}e^{-ik\Delta x} = 1 - \dot{a} + \dot{a}e^{-i\beta}$$

- ▶ Stability \iff errors remain bounded (i.e. |G| < 1)
- ▶ Need to find values of \dot{a} for which |G| < 1!

Two classical methods: 1) Analytical, 2) Graphical

Von Neumann Stability Analysis

$$G = 1 - \dot{a} + \dot{a}e^{-i\beta} = (1 - \dot{a} + \dot{a}\cos\beta) - i(\dot{a}\sin\beta) \qquad (\star)$$

Analytical method

$$\begin{aligned} |G|^2 &= (1 - \dot{a} + \dot{a}\cos\beta)^2 + (\dot{a}\sin\beta)^2 \\ &= (1 - \dot{a})^2 + 2(1 - \dot{a})\dot{a}\cos\beta + \dot{a}^2\cos^2\beta + \dot{a}^2\sin^2\beta \\ &= (1 - \dot{a})^2 + 2(1 - \dot{a})\dot{a}\cos\beta + \dot{a}^2 \\ &= 1 - 2\dot{a} + 2\dot{a}^2 + 2(1 - \dot{a})\dot{a}\cos\beta \\ &= 1 + 2\dot{a}(1 - \dot{a})(1 - \cos\beta) \le 1 \\ &\iff \dot{a}(1 - \dot{a})(\cos\beta - 1) \le 0 \end{aligned}$$

▶ Since $\cos \beta - 1 < 0 \quad \forall \beta$, then

$$|G|^2 \le 1 \iff \dot{a}(1-\dot{a}) \ge 0$$

 $\iff 0 \le \dot{a} \le 1$

Graphical method

- Green region: stability zone (|G| < 1)
- ► Red circle: representation of (*)
 - Circle must be contained in green region, thus:
- $|G|^2 \le 1 \iff \dot{a} \le 1$

The signal must travel less than $1 \Delta x$ in $1 \Delta t$!

Generalized Upwind Scheme

$$w_{j}^{n+1} = \begin{cases} w_{j}^{n} - \frac{a\Delta t}{\Delta x} (w_{j}^{n} - w_{j-1}^{n}) & a > 0 \\ w_{j}^{n} - \frac{a\Delta t}{\Delta x} (w_{j+1}^{n} - w_{j}^{n}) & a < 0 \end{cases}$$

Generalized case: define

$$a^+ = rac{1}{2}(a + |a|)$$
 $a^- = rac{1}{2}(a - |a|)$

And combine into a single expression:

$$w_j^{n+1} = w_j^n - rac{\Delta t}{\Delta x} \left[a^+ (w_j^n - w_{j-1}^n) + a^- (w_{j+1}^n - w_j^n) \right]$$

Replacing a^+ and a^- with their definitions:

$$w_j^{n+1} = w_j^n - \frac{a\Delta t}{2\Delta x}(w_{j+1}^n - w_{j-1}^n) + \frac{|a|\Delta t}{2\Delta x}(w_{j+1}^n - 2w_j^n + w_{j-1}^n)$$

ightharpoonup Central difference + numerical viscosity obtained! $v_{\mathsf{num}} = \frac{|\mathsf{a}|\Delta x}{2}$

Summary: First-order schemes

$$\boxed{\frac{\partial w}{\partial t} + a \frac{\partial w}{\partial x} = 0} \qquad \dot{a} = \frac{a\Delta}{\Delta x}$$

Name / Stencil	Scheme	Error term	Stability
FTCS	$\frac{w_j^{n+1} - w_j^n}{\Delta t} + a \frac{w_{j+1}^n - w_{j-1}^n}{2\Delta x} = 0$	$-\Delta t rac{a^2}{2} \mathit{w}_{\scriptscriptstyle{\mathrm{XX}}} - rac{a \Delta x^2}{6} (1 + 2 \dot{a}^2) \mathit{w}_{\scriptscriptstyle{\mathrm{XXX}}}$	Unconditionally Unstable
Upwind	$\frac{w_{j}^{n+1} - w_{j}^{n}}{\Delta t} + a \frac{w_{j}^{n} - w_{j-1}^{n}}{\Delta x} = 0$	$\frac{a\Delta x}{2}(1-\dot{a})w_{xx}-\frac{a\Delta x^2}{6}(2\dot{a}^2-3\dot{a}+1)w_{xxx}$	Stable for $\dot{a} \leq 1$
Implicit	$\frac{w_j^{n+1} - w_j^n}{\Delta t} + a \frac{w_{j+1}^{n+1} - w_{j-1}^{n+1}}{2\Delta x} = 0$	$\frac{a^2 \Delta t}{2} w_{xx} - \left[\frac{1}{6} a \Delta x^2 + \frac{1}{3} a^3 \Delta t^2 \right] w_{xxx}$	Unconditionally Stable
Lax-Friedrichs	$\frac{w_j^{n+1} - \frac{1}{2}(w_{j+1}^n + w_{j-1}^n)}{\Delta t} + a \frac{w_{j+1}^n - w_{j-1}^n}{2\Delta x} = 0$	$\frac{a\Delta x}{2} \left[\frac{1}{\dot{a}} - \dot{a} \right] w_{xx} + \frac{a\Delta x^2}{3} (1 - \dot{a}^2) w_{xxx}$	Stable for $\dot{a} \leq 1$

Summary: Second-order schemes

Name / Stencil	Scheme	Error term	Stability
Leap Frog	$\frac{w_j^{n+1} - w_j^{n-1}}{2\Delta t} + a \frac{w_{j+1}^n - w_{j-1}^n}{2\Delta x} = 0$	$rac{a\Delta x^2}{6}(\dot{a}^2-1)w_{\scriptscriptstyle m XXXX}$	Stable for $\dot{a} \leq 1$
Lax-Wendroff I	$\begin{aligned} \frac{w_j^{n+1} - w_j^n}{\Delta t} &+ a \frac{w_{j+1}^n - w_{j-1}^n}{2\Delta x} \\ &- a^2 \Delta t^2 \frac{w_{j+1}^n - 2w_j^n + w_{j-1}^n}{2\Delta x^2} &= 0 \end{aligned}$	$-\frac{a\Delta x^2}{6}(1-\dot{a}^2)w_{\scriptscriptstyle \! \!$	Stable for $\dot{a} \leq 1$
Lax-Wendroff II (Lax + Leapfrog)	$\frac{\frac{w_{j+1/2}^{n+1/2} - (w_{j+1}^{n} + w_{j}^{n})/2}{\Delta t/2} + a \frac{w_{j+1}^{n} - w_{j}^{n}}{\Delta x} = 0}{\frac{w_{j}^{n+1} - w_{j}^{n}}{\Delta t}} - a \frac{w_{j+1/2}^{n+1/2} - w_{j-1/2}^{n+1/2}}{\Delta x} = 0$	Same as Lax-Wendroff I	Stable for $\dot{a} \leq 1$
MacCormack (Predictor/Corrector)	$\frac{w_j^t - w_j^n}{\Delta t} + a \frac{w_{j+1}^n - w_j^n}{\Delta x} = 0$ $\frac{w_j^{n+1} - (w_j^n + w_j^t)/2}{\Delta t} + a \frac{w_j^t - w_{j-1}^t}{\Delta x} = 0$	Same as Lax-Wendroff I	Stable for $\dot{a} \leq 1$
Beam-Warming (Predictor/Corrector)	$\frac{w_j^{n+1} - w_j^n}{\Delta t} + a \frac{3w_j^n - 4w_{j-1}^n + w_{j-2}^n}{2\Delta x} - \frac{a^2 \Delta t}{2\Delta x^2} (w_j^n - 2w_{j-1}^n + w_{j-2}^n) = 0$	$rac{a\Delta x^2}{6}(1-\dot{a})(2-\dot{a})w_{\scriptscriptstyle \! \!$	Stable for $0 \le \dot{a} \le 2$
QUICK	$\frac{w_j^{n+1} - w_j^n}{\Delta t} + a \frac{(3w_j^n + 6w_{j-1}^n - w_{j-2}^n) - 8\Delta x}{8\Delta x}$	$\frac{(3w_{j+1}^n + 6w_j^n - w_{j-1}^n)}{4} = 0$	Stable for $\dot{a} \leq 1$

Stability in terms of fluxes: FTCS for Advection

Consider
$$\left[\frac{\partial w}{\partial t} + \frac{\partial F}{\partial x} = 0 \right]$$
 with $F = aw$

► Finite volume approximation:

$$\frac{\mathsf{d} w_j}{\mathsf{d} t} = \frac{F_{j-\frac{1}{2}} - F_{j+\frac{1}{2}}}{\Delta x} \quad F_{j+\frac{1}{2}} = \mathsf{a} w_{j+\frac{1}{2}} \approx \frac{\mathsf{a}}{2} (w_{j+1} + w_j)$$

► Update:

$$w_j^{n+1} = w_j^n - \frac{\Delta t}{\Delta x} (F_{j+\frac{1}{2}}^n - F_{j-\frac{1}{2}}^n)$$

= $w_j^n - \frac{a\Delta t}{2\Delta x} (w_{j+1} - w_{j-1})$

► Consider the following IC with a=1 and $\frac{\Delta t}{\Delta x} = 0.5$:

$$F_{j-\frac{1}{2}} = \frac{a}{2} (w_{j-1}^n + w_j^n) = 1 \qquad F_{j+\frac{1}{2}} = \frac{a}{2} (w_{j+1}^n + w_j^n) = 0.5$$

$$1 \qquad \qquad W_{j-1} \qquad W_j \qquad W_{j+1}$$

$$w_j^{n+1} = w_j^n - \frac{\Delta t}{\Delta x} (F_{j+\frac{1}{2}}^n - F_{j-\frac{1}{2}}^n)$$

= 1 - 0.5 \cdot (0.5 - 1) = 1.25

- ► Cell *j* will overflow immediately!
- ▶ It is easy to see why the centred difference approximation is always unstable

Stability in terms of Fluxes: Upwind for Advection

► Finite volume approximation:

$$\frac{\mathsf{d} w_j}{\mathsf{d} t} = \frac{F_{j-\frac{1}{2}} - F_{j+\frac{1}{2}}}{\Delta x} \quad F_{j+\frac{1}{2}} = \mathsf{a} w_{j+\frac{1}{2}} \approx \mathsf{a} w_j$$

- Consider a = 1, $\frac{\Delta t}{\Delta x} = 1.5a = 1.5$. Start iterations:
 - n = 0: $w_j^0 = 0$ $F_{j+\frac{1}{2}}^0 = 0$ $F_{j-\frac{1}{2}}^0 = 1$
 - n = 2: $w_j^2 = w_j^1 - \frac{\Delta t}{\Delta x} \left(F_{j+\frac{1}{2}}^1 - F_{j-\frac{1}{2}}^1 \right) = 0 - 1.5 \cdot (1.5 - 1) = 0.75$ $w_{j+1}^2 = w_{j+1}^1 - \frac{\Delta t}{\Delta x} \left(F_{j+\frac{3}{2}}^1 - F_{j+\frac{1}{2}}^1 \right) = 0 - 1.5 \cdot (0 - 1.5) = 2.25$
 - n = 3: Even larger positive value, until overflow (NaN)
 - If $\frac{a\Delta t}{\Delta x} > 1$ scheme unstable!

Discontinuous solutions: shocks

Linear advection Equation

$$\frac{\partial w}{\partial t} + a \frac{\partial w}{\partial x} = 0 \quad w(x,0) = \begin{cases} w_L & x < x_0 \\ w_R & x > x_0 \end{cases} \qquad (w_L > w_R)$$
Analytic solution obtained by characteristics:
$$\frac{dx}{dt} = a \qquad \frac{dw}{dt} = 0$$

- Discontinuity of solution is allowed!

Inviscid Burgers' Equation

$$\frac{\partial w}{\partial t} + w \frac{\partial w}{\partial x} = 0 \quad w(x,0) = \begin{cases} w_L & x < x_0 \\ w_R & x > x_0 \end{cases} \quad (w_L > w_R)$$

- ► Characteristics: $\frac{dx}{dt} = w$ $\frac{dw}{dt} = 0$
- Slight variation of the initial condition: formation of shock

How to compute the shock speed?

Shock speed

Reference frame of the shock: x' = x - Ct

$$\implies \frac{\partial w}{\partial t} = \frac{\partial w}{\partial t} + \frac{\partial w}{\partial x'} \frac{\partial x'}{\partial t} = \frac{\partial w}{\partial t} + C \frac{\partial w}{\partial x'}$$

Replace into the equation:

$$\frac{\partial w}{\partial t} + \frac{\partial F}{\partial x} = 0$$

$$\frac{\partial w}{\partial t} - C \frac{\partial w}{\partial x'} + \frac{\partial F}{\partial x'} = 0$$

$$\int_{\Delta \to 0} \left(\frac{\partial w}{\partial t} - C \frac{\partial w}{\partial x'} + \frac{\partial F}{\partial x'} \right) dx = 0$$

$$\int_{\Delta \to 0} C \frac{\partial w}{\partial t} dx - \int_{\Delta \to 0} C \frac{\partial w}{\partial x'} dx + \int_{\Delta \to 0} \frac{\partial F}{\partial x'} dx = 0$$

$$-C(w_R - w_L) + (F_R - F_L) = 0$$

► Rankine-Hugoniot Relations!

$$C = \frac{F_R - F_L}{w_R - w_L}$$

Example:

$$\frac{\partial w}{\partial t} + w \frac{\partial w}{\partial x} = 0 \qquad F = \frac{w^2}{2}$$

$$C = \frac{F_R - F_L}{w_R - w_L} = \frac{1}{2} \frac{w_R^2 - w_L^2}{w_R - w_L}$$

$$= \frac{1}{2} \frac{(w_R + w_L) \cdot (w_R - w_L)}{w_R - w_L}$$

Entropy conditions (I)

Inviscid Burgers equation:

$$\boxed{\frac{\partial w}{\partial t} + w \frac{\partial w}{\partial x} = 0}$$

Characteristics:
$$\frac{dx}{dt} = w$$
, $\frac{dw}{dt} = 0$

$$\frac{dx}{dt} = w, \quad \frac{dw}{dt} = 0$$

- ▶ The transformation $x \to -x$, $t \to -t$ leaves the equation unchanged but results in unphysical solution!
- Need for entropy condition to select the correct one

Consider
$$w(x,0) = \begin{cases} w_L & x < x_0 \\ w_R & x > x_0 \end{cases}$$
 $(w_L < w_R)$

Reverse shock (?) Unstable, entropy-violating solution

Rarefaction wave Physically correct solution

Entropy conditions (II)

Weak solution to hyperbolic equations may not be unique

- How to find the **physical solution** out of many weak solution?
- The actual physics always includes **dissipation**: $\frac{\partial w}{\partial t} + w \frac{\partial w}{\partial x} = v \frac{\partial^2 w}{\partial x^2}$
 - What we are seeking is the solution for viscous Burgers' eq. for $\nu \to 0$

Entropy Condition:

A discontinuity propagating with speed C satisfies the entropy condition if

$$(I) F'(w_L) > C > F'(w_R)$$

(II)
$$\frac{F(w) - F(w_L)}{w - w_L} \ge C \ge \frac{F(w) - F(w_R)}{w - w_R} \quad \text{for} \quad w_L \ge w \ge w_R$$

Given
$$\frac{\partial w}{\partial t} + \frac{\partial F(w)}{\partial x} = 0$$
, in characteristic form:

$$\frac{\partial w}{\partial t} + \frac{\partial F}{\partial w} \frac{\partial w}{\partial x} = 0 \qquad \text{where} \quad \frac{\mathrm{d}t}{\mathrm{d}s} = 1, \quad \frac{\mathrm{d}x}{\mathrm{d}s} = \frac{\partial F}{\partial w} \quad \Longrightarrow \quad \frac{\mathrm{d}x}{\mathrm{d}t} = \frac{\partial F}{\partial w} = F'(w)$$

- ▶ The condition states that characteristics must "enter" the discontinuity ⇒ its speed C must satisfy (I)
- ► Since $C = \frac{F_R F_L}{W_R W_L}$, then (II) is satisfied
 - The hypothetical shock speed for values of w between L and R must give shock speeds that are larger on the left and smaller on the right

Conservative discretization

In FVM, equations in conservative forms are needed in order to satisfy conservation properties!

► Consider a 1D equation

$$\frac{\partial w}{\partial t} + \frac{\partial F[w(x,t)]}{\partial x} = 0$$
 $x \in [0,L]$

with F a general advection or diffusion term

▶ Integrate over the domain *L*:

$$\int_0^L \frac{\partial w}{\partial t} \, dx + \int_0^L \frac{\partial F}{\partial x} \, dx = 0$$

$$F(L) - F(0) = 0 \implies \frac{d}{dt} \int_{L} w \, dx = 0$$

- If F = 0 at the endpoints, w is conserved!
- ► In discretized form:

$$\int_{0}^{L} \frac{\partial F}{\partial x} dx = \sum \frac{F_{j+\frac{1}{2}} - F_{j-\frac{1}{2}}}{\Delta x} \Delta x$$

$$= [..+F_{j-\frac{1}{2}} - F_{j-\frac{3}{2}} + F_{j+\frac{1}{2}}$$

$$-F_{j-\frac{1}{2}} + F_{j+\frac{3}{2}} - F_{j+\frac{1}{2}} + ..]$$

$$= F_{i} - F_{0}$$

Examples:
$$\frac{\partial \left(\frac{1}{2}w^2\right)}{\partial x}$$
 vs $w\frac{\partial w}{\partial x}$

$$\underbrace{\frac{\partial \left(\frac{1}{2} w^2\right)}{\partial x}}_{=} \quad \approx \quad \underbrace{\frac{1}{2\Delta x}(w_j^2 - w_{j-1}^2)}_{\neq} \quad \text{Cons.}$$

$$\underbrace{\frac{\partial w_j}{\partial x}}_{=} \quad \approx \quad \underbrace{\frac{w_j}{\Delta x}(w_j - w_{j-1})}_{=} \quad \text{Non cons.}$$

- ► Terms cancel out only for conservative form!
 - Cons. schemes guarantee the correct shock speed
 - Non-cons. schemes may or may not. Example:

(NC)
$$w_j^{n+1} = w_j^n - \frac{\Delta t}{\Delta x} w_j^n (w_j^n - w_{j-1}^n) = 0$$

(C) $w_j^{n+1} = w_j^n - \frac{\Delta t}{2\Delta x} \left[(w_j^n)^2 - (w_{j-1}^n)^2 \right] = \frac{\Delta t}{2\Delta x}$

With (NC), shock never moves!

assific		

Methods for Hyperbolic Equations

Methods for Parabolic Equations

Advection—Diffusion Equation

1D heat equation: explicit method

$$\boxed{\frac{\partial w}{\partial t} = \nu \frac{\partial^2 w}{\partial x^2}}, \quad t > 0, a \le x \le b$$

Parabolic equation requiring

- ▶ Initial Condition: $w(x,0) = w_0(x)$
- ► Boundary Conditions:
 - Dirichlet: $w(a, t) = \phi_a(t)$
 - Neumann: $\frac{\partial w}{\partial x}(a,t) = \varphi_a(t)$

- \blacktriangleright Can be viewed as the limit of a hyperbolic equation as signal speed $\to \infty$
- ► Example of explicit method: FTCS

$$\frac{w_{j}^{n+1} - w_{j}^{n}}{\Delta t} = \nu \frac{w_{j+1}^{n} - 2w_{j}^{n} + w_{j-1}^{n}}{\Delta x^{2}}$$

► Modified equation:

$$\begin{split} \frac{\partial w}{\partial t} - \nu \frac{\partial^2 w}{\partial x^2} &= \frac{\nu \Delta x^2}{12} (1 - 6\dot{\nu}) w_{xxxx} \\ &+ \mathcal{O}(\Delta t^2, \Delta x^2 \Delta t, \Delta x^4) w_{6x} \quad \text{with} \quad \dot{\nu} = \frac{\nu \Delta t}{\Delta x^2} \end{split}$$

- Accuracy $\mathcal{O}(\Delta t, \Delta x^2)$
- ► Stability analysis gives the Fourier condition:

$$G = \frac{\widehat{w}^{n+1}}{\widehat{w}^n} = 1 - 4\frac{\nu\Delta t}{\Delta x^2}\sin^2 k\frac{\Delta x}{2} = 1 - 4\nu\sin^2\frac{\beta}{2}$$

$$\implies -1 < 1 - 4\nu < 1 \iff 0 \le \nu \le \frac{1}{2}$$
BC
Initial Data

▶ Boundary effect not felt at P for many time steps with FTCS! May result in unphysical behavior

1D heat equation: implicit method

► Example of implicit method: Backward Euler

$$\frac{w_{j}^{n+1}-w_{j}^{n}}{\Delta t}=\nu\frac{w_{j+1}^{n+1}-2w_{j}^{n+1}+w_{j-1}^{n+1}}{\Delta x^{2}}$$

► Modified equation:

$$\frac{\partial w}{\partial t} - \nu \frac{\partial^2 w}{\partial x^2} = \frac{\nu \Delta x^2}{12} (1 + 6\dot{\nu}) w_{4x} + \mathcal{O}(\Delta t^2, \Delta x^2 \Delta t, \Delta x^4) w_{6x}$$

- The + sign suggests that implicit methods may be less accurate than corresponding explicit ones
- ► Stability analysis:

$$G = \frac{\widehat{w}^{n+1}}{\widehat{w}^n} = \frac{1}{1 + 2\dot{\nu}(1 - \cos\beta)}$$

Unconditionally stable!

► Rewritten as a tridiagonal matrix system:

$$w_j^{n+1} - w_j^n = \frac{\nu \Delta t}{\Delta x^2} (w_{j+1}^{n+1} - 2w_j^{n+1} + w_{j-1}^{n+1})$$

$$\dot{\nu} w_{j-1}^{n+1} - (1+2\dot{\nu}) w_j^{n+1} + \dot{\nu} w_{j+1}^{n+1} = -w_j^n
a_k w_{k-1} - d_k w_k + c_k w_{k+1} = b_k$$

► Write in matrix form:

$$d_1 w_1 + c_1 w_2 = b_1 a_2 w_1 + d_2 w_2 + c_2 w_3 = b_2 \vdots$$

$$a_{N-1}w_{N-2} + d_{N-1}w_{N-1} + c_{N-1}w_N = b_{N-1}$$

 $a_Nw_{N-1} + d_Nw_N = b_N$

If endpoints are given: $b_1 = -a_1 w_0$, $b_N = -c_N w_{N+1}$

Linear system to be solved

Summary

$$\frac{\partial w}{\partial t} + \nu \frac{\partial^2 w}{\partial x^2} = 0 \qquad \dot{\nu} = \frac{\nu \Delta t}{\Delta x^2}$$

Name / Stencil	Scheme	Error term	Stability
FTCS	$\frac{w_j^{n+1} - w_j^n}{\Delta t} = \nu \frac{w_{j+1}^n - 2w_j^n + w_{j-1}^n}{\Delta x^2}$	$\frac{\nu\Delta x^2}{12}(1-6\dot{\nu})w_{4x}$	Stable for $\dot{ u} \leq rac{1}{2}$
BTCS	$\frac{w_j^{n+1} - w_j^n}{\Delta t} = \nu \frac{w_{j+1}^{n+1} - 2w_j^{n+1} + w_{j-1}^{n+1}}{\Delta x^2}$	$\frac{\nu\Delta x^2}{12}(1+6\dot{\nu})w_{4x}$	Unconditionally Stable
Crank-Nicolson	$\frac{w_j^{n+1} - w_j^n}{\Delta t} = \frac{\nu}{2\Delta x^2} \left[\left(w_{j+1}^{n+1} - 2w_j^{n+1} + w_{j-1}^{n+1} \right) + \left(w_{j+1}^n - 2w_j^n + w_{j-1}^n \right) \right]$	$\frac{\nu \Delta x^2}{12} w_{4x} + \frac{\nu^3 \Delta t^2}{12} w_{6x}$	Unconditionally Stable
DuFort-Frankel	$\frac{w_j^{n+1} - w_j^{n-1}}{2\Delta t} = \nu \frac{(w_{j+1}^n - w_j^{n+1} - w_j^{n-1} + w_{j-1}^n)}{\Delta x^2}$	$\frac{\nu \Delta x^2}{12} (1 - 12\dot{\nu}^2) w_{4x}$	Unconditionally Stable, Conditionally consistent

$$\frac{w_{j}^{n+1} - w_{j}^{n}}{\Delta t} = \nu \left[\theta \frac{w_{j+1}^{n+1} - 2w_{j}^{n+1} + w_{j-1}^{n+1}}{\Delta x^{2}} + (1 - \theta) \frac{w_{j+1}^{n} - 2w_{j}^{n} + w_{j-1}^{n}}{\Delta x^{2}} \right] \qquad \theta = \begin{cases} 0 & \text{Explicit (FTCS)} \\ 1 & \text{Implicit (BTCS)} \\ 1/2 & \text{Crank-Nicolson} \end{cases}$$

Stability in terms of fluxes: FTCS for Diffusion

Consider
$$\boxed{\frac{\partial w}{\partial t} + \frac{\partial F}{\partial x} = 0}$$
 with $F = -\nu \frac{\partial w}{\partial x}$

► Finite volume approximation:

$$\frac{dw_j}{dt} = \frac{F_{j-\frac{1}{2}} - F_{j+\frac{1}{2}}}{\Delta x} \quad F_{j+\frac{1}{2}} = -\nu \frac{w_{j+1} - w_j}{\Delta x}$$

► Update:

$$w_j^{n+1} = w_j^n + \frac{\nu \Delta t}{\Delta x^2} (w_{j+1}^n - 2w_j^n - w_{j-1}^n)$$

Consider the following initial conditions:

- $\frac{\nu \Delta t}{\Delta x}$ of w flows into cell j, but nothing flow out
- Eventually, cell j-1 becomes empty and j full..

It seems reasonable to limit Δt such that we stop when both cells are equally full

$$w_{j-1}^{n} + \frac{\nu \Delta t}{\Delta x^{2}} (w_{j}^{n} - 2w_{j-1}^{n} + w_{j-2}^{n})$$

$$= w_{j}^{n} + \frac{\nu \Delta t}{\Delta x^{2}} (w_{j+1}^{n} - 2w_{j}^{n} + w_{j-1}^{n})$$

Since $w_{j-2}^n = w_{j-1}^n = 1$ and $w_j^n = w_{j+1}^n = 0$ we get:

$$1 + \frac{\nu \Delta t}{\Delta x^2} (0 - 2 + 1) = 0 + \frac{\nu \Delta t}{\Delta x^2} (0 - 0 + 1)$$

• Or $\frac{\nu \Delta t}{\Delta x^2} = 2$ as maximum value for stability!

0.1					
(2111/	catı	O.t	1)	

Methods for Hyperbolic Equations

Methods for Parabolic Equations

4 Advection-Diffusion Equation

Grid requirements for BLs

- ▶ BLs have dramatic consequences on grid requirements:
 - Thickness of the order of $1/\sqrt{Re}$
 - Need for a minimum of 10-20 points in the BL: clustering of the grid points close to the wall

Model problem for BLs: advection-diffusion equation

$$\frac{\partial w}{\partial t} + a \frac{\partial w}{\partial x} = \nu \frac{\partial^2 w}{\partial x^2}$$

Consider the steady-state **model problem** (2-point BVP)

$$a\frac{\partial w}{\partial x} = \nu \frac{\partial^2 w}{\partial x^2} \quad \text{with} \quad w \in [0, L], \quad w(0) = \alpha, \quad w(L) = \beta$$

$$\blacktriangleright \text{ Define } Re_u = \frac{a}{\nu} \qquad \Longrightarrow \qquad (\star) \frac{\partial^2 w}{\partial x^2} - Re_u \frac{\partial w}{\partial x} = 0$$

$$\implies \begin{cases} \textit{Re}_u \ll 1 & \text{heat equation, easy to solve} \\ \textit{Re}_u = \mathcal{O}(1) & \text{usual advection-diffusion eq} \\ \textit{Re}_u \gg 1 & \textbf{problem!} \end{cases}$$

- As $1/Re_u \rightarrow 0$:
 - Singularly perturbed eq.: small perturbations change the behaviour
 - (\star) reduces to 1^{st} -order (**Overimposed problem**)
 - w(x) tends to discontinuous function that jumps to β
 - Region of strong transition called boundary layer of thickness $\mathcal{O}(1/Re)$
- ► Analytical solution:

$$w(x) = \alpha + (\beta - \alpha) \frac{\exp\left[\frac{ax}{\nu}\right] - 1}{\exp\left[\frac{aL}{\nu}\right] - 1} = \alpha + (\beta - \alpha) \frac{\exp(Re_x) - 1}{\exp(Re_L) - 1}$$

Preliminary considerations

▶ Simplest case: $\alpha = 0$, $\beta = 1$:

$$w(x) = \frac{\exp(Re_x) - 1}{\exp(Re_L) - 1}$$

► Suppose to represent the **exact** solution on a discrete mesh, defined as $x_j = j\Delta x$ with $j \in [1, N]$:

$$Re_{x} = \frac{ax}{\nu} = \frac{aJ\Delta x}{\nu} = jR_{m}$$

$$Re_{L} = \frac{aL}{\nu} = \frac{aN\Delta x}{\nu} = NR_{m}$$

$$\implies w_{j} = \frac{e^{jR_{m}} - 1}{e^{NR_{m}} - 1}$$

$$w_{N-1} = \frac{e^{(N-1)R_{m}} - 1}{e^{NR_{m}} - 1} = \frac{1}{e^{R_{m}}} \quad \text{for} \quad N \gg 1$$

- w_{N-1} vanishes quickly for $R_m > 1$: the boundary layer is no longer resolved
- Similar problems for interior layers

- $R_m = \frac{|a|\Delta x}{\nu}$ is the Mesh Reynolds number
 - Ratio of the time needed to advect the solution over one cell to the time needed to diffuse it

Now let's try to solve the **discretized equation**

- ▶ Transport phenomena intrinsically isotropic ⇒ no physical reason for upwinding viscous terms
- ► Try using 1st-order (upwind) or 2nd-order (centred) scheme for convective term

The Advection-Diffusion equation - Upwind

Recall the operators δ and μ :

$$\delta(\bullet)_{j+\frac{1}{2}} = (\bullet)_{j+1} - (\bullet)_{j}$$

$$\mu(\bullet)_{j+\frac{1}{2}} = \frac{1}{2} [(\bullet)_{j+1} + (\bullet)_{j}]$$

$$\delta\mu(w)_{j} = \delta \left[\frac{1}{2} \left(w_{j+\frac{1}{2}} + w_{j-\frac{1}{2}} \right) \right]$$

$$= \frac{1}{2} [(w_{j+1} - w_{j}) + (w_{j} - w_{j-1})] = \frac{w_{j+1} - w_{j-1}}{2}$$

$$\delta^{2}(w)_{j} = \delta \left[w_{j+\frac{1}{2}} - w_{j-\frac{1}{2}} \right]$$

$$= [w_{j+1} - w_{j} - (w_{j} - w_{j-1})] = w_{j+1} - 2w_{j} + w_{j-1}$$

Generalized Upwind:

(sum of centred term + numerical dissipation):

$$\frac{w_j^{n+1} - w_j^n}{\Delta t} + a \frac{\delta \mu w_j^n}{\Delta x} - \frac{1}{2} |a| \Delta x \left[\frac{\delta^2 w_j^n}{\Delta x^2} \right] = \nu \frac{\delta^2 w_j^n}{\Delta x^2}$$
$$\frac{w_j^{n+1} - w_j^n}{\Delta t} + a \frac{\delta \mu w_j^n}{\Delta x} = \nu \left[1 + \frac{R_m}{2} \right] \frac{\delta^2 w_j^n}{\Delta x^2}$$

Velocity profile inside a BL

- ▶ Numerical diffusion **adds** to the physical one
- Computed velocity profiles correspond to a lower Re than the physical one
- ► Possible solutions:
 - Use finer grids (costly)
 - Use a centred (non-dissipative) scheme

The Advection-Diffusion equation - FTCS (I)

FTCS:

$$\frac{w_{j}^{n+1}-w_{j}^{n}}{\Delta t}+a\frac{w_{j+1}^{n}-w_{j-1}^{n}}{2\Delta x}=\nu\frac{w_{j+1}^{n}-2w_{j}^{n}+w_{j-1}^{n}}{\Delta x^{2}}$$

► Modified equation:

$$\frac{\partial w}{\partial t} + a \frac{\partial w}{\partial x} = \left(\nu - \frac{a^2 \Delta t}{2}\right) \frac{\partial^2 w}{\partial x^2} - \frac{a \Delta x^2}{6} \frac{\partial^3 w}{\partial x^3} + \mathcal{O}(\Delta x^3, \Delta t^2)$$

► Von Neumann analysis:

$$\frac{\widehat{w}_{j}^{n+1} - \widehat{w}_{j}^{n}}{\Delta t} + a \frac{\widehat{w}_{j+1}^{n} - \widehat{w}_{j-1}^{n}}{\Delta x} = \nu \frac{\widehat{w}_{j+1}^{n} - 2\widehat{w}_{j}^{n} + \widehat{w}_{j-1}^{n}}{\Delta x^{2}}$$

$$\begin{split} G &= 1 - \frac{a\Delta t}{2\Delta x} \left(e^{i\beta} - e^{-i\beta} \right) + \frac{\nu \Delta t}{\Delta x^2} \left(e^{i\beta} - 2 + e^{-i\beta} \right) \\ &= 1 - 2\dot{\nu} (1 - \cos \beta) - i \dot{a} \sin \beta \\ &= 1 - 4\dot{\nu} \sin^2 \frac{\beta}{2} - 2i \dot{a} \sin \frac{\beta}{2} \cos \frac{\beta}{2} \end{split}$$

- 1. $\widehat{w}_{i+1}^n = \widehat{w}^n e^{ikx_j} e^{\pm ik\Delta x}$
- 2. $e^{\pm ik\Delta x} = e^{\pm i\beta} = \cos \beta \pm i \sin \beta$

Rename $\frac{\beta}{2} = \xi$. For stability, $|G|^2 \le 1$:

$$\begin{split} 1 - 8\dot{\nu}\sin^2\xi + 16\dot{\nu}^2\sin^4\xi + 4\dot{a}\sin^2\xi\cos^2\xi &\leq 1 \\ 8\dot{\nu}\sin^2\xi(2\dot{\nu}\sin^2\xi - 1) + 4\dot{a}^2\sin^2\xi\cos^2\xi &\leq 0 \end{split}$$

$$\underbrace{\frac{\dot{\nu}}{\dot{a}^2} \frac{2}{\cos^2 \xi} \left(\frac{2\dot{\nu} \sin^2 \xi - 1}{2} \right)}_{\text{must be} \leq -1} + 1 \leq 0$$

$$\Delta t \le \frac{\Delta x^2}{2\nu}$$
 and $\Delta t \le \frac{2\nu}{a^2}$

- It was unconditionally unstable for pure advection
 - Physical diffusion stabilises the centred scheme

 $2\dot{\nu} < 1$ and $2\dot{\nu} > \dot{a}^2$

- ► Red limit from heat equation
- ▶ Blue limit may also be derived from the modified equation (positive dissipation term)
 - Defining $R_m = \frac{a\Delta x}{\nu}$, one has: $R_m \leq \frac{2}{a}$

The Advection-Diffusion equation - FTCS (II)

▶ It is possible to prove that oscillating solutions are obtained if $R_m > 2!$

► Re-write the scheme under the form:

$$w_j^{n+1} = \left(\dot{\nu} - \frac{\dot{a}}{2}\right) w_{j+1}^n + (1 - 2\dot{\nu}) w_j^n + \left(\dot{\nu} + \frac{\dot{a}}{2}\right) w_{j-1}^n$$

= $\frac{\dot{\nu}}{2} (2 - R_m) w_{j+1}^n + (1 - 2\dot{\nu}) w_j^n + \frac{\dot{\nu}}{2} (2 + R_m) w_{j-1}^n$

▶ Suppose $w^0 = 0$ everywhere (apart for $w_N^0 = 1$ at j = N for B.C.)

$$w_{N-1}^1 = \frac{\dot{\nu}}{2}(2 - R_m)w_N^0 + (1 - 2\dot{\nu})w_{N-1}^0 + \frac{\dot{\nu}}{2}(2 + R_m)w_{N-2}^0$$

- if $R_m > 2 \implies w_{N-1}^1 < 0 \implies$ oscillations!
- This becomes worst at subsequent time levels
- Thus, fine grids again... or compromise solution:
 - Add numerical diss. as smaller as possible (given stab. requirements)
 - High-order dissipative schemes well suited (e.g, 2nd-order upwind)

The Advection-Diffusion equation - Summary

$$\boxed{\frac{\partial w}{\partial t} + a \frac{\partial w}{\partial x} = \nu \frac{\partial^2 w}{\partial x^2}}$$

Upwind

Centred

Exact

$$w_j = rac{1 - (1 + R_m)^j}{1 - (1 + R_m)^N} \quad w_j = rac{\left(rac{2 + R_m}{2 - R_m}
ight)^j - 1}{\left(rac{2 + R_m}{2 - R_m}
ight)^N - 1} \quad w_j$$

	$e^{jR_m}-1$
j —	$e^{NR_m}-1$

Name / Stencil	Error term	Stability
FTCS	$\mathcal{O}(\Delta t, \Delta x^2)$	$\dot{ u} \leq rac{1}{2} \; \& \; \dot{ u} \geq rac{\dot{\pmb{a}}^2}{2}$
Upwind	$\mathcal{O}(\Delta t, \Delta x)$	$\dot{a}+2\dot{ u}\leq 1$
Lax-Wendroff	$\mathcal{O}(\Delta t^2, \Delta x^2)$	$\dot{a}^2 \leq 2\dot{ u} \leq 1$
Crank-Nicolson	$\mathcal{O}(\Delta t^2, \Delta x^2)$	Unconditionally stable

Complexity for discretization of RANS equations

► Time step:

$$\Delta t = \min(\Delta t_c, \Delta t_v) \quad ext{with} \begin{cases} \Delta t_c = \mathcal{O}\left(rac{\Delta x}{|u|+a}
ight) \\ \Delta t_v = \mathcal{O}\left(rac{\Delta x^2}{
u}
ight) \end{cases} \implies rac{\Delta t_v}{\Delta t_c} = \mathcal{O}\left(rac{(|u|+a)\Delta x}{
u}
ight) = \mathcal{O}\left[R_m\left(1+rac{1}{ extit{ extit{Ma}}}
ight)
ight]$$

- For low-Ma flows, $\Delta t_v \gg \Delta t_c$; the opposite for high-Ma flows
- Small grid size near the wall

 explicit schemes costly because of viscous terms
- Implicit schemes relax the constraint but require efficient solution of linear systems at each iteration

► Turbulent transport equations

- Numerical stiffness introduced by source terms
- Strong coupling of equations by means of source and diffusion terms
- Problems related to the need of preserving variable positiveness
 - Crucial point to avoid the use of brutal limiters damaging the solution convergence

► Discretization of convective terms

- 1st-order upwind schemes?
- Ensure positivity of variables
- **X** Low accuracy!
- TVD schemes?
- Ensure positivity of variables
- Difficult to develop schemes that are TVD and implicit at the same time (Needed for using large CFL on stretched grids)
- Positivity-preserving, not-TVD schemes?
- Ensure positivity of variables
 - X Oscillations near discontinuities