

CUTTLEFISH ALGORITHM

MEMBERS

- 1. 6410110326 ปาณิสรา สังข์ทอง
- 6410110706 มาเรียนี สารอเอง
 6410110721 ศศิธร ศักดิ์แก้ว

Reference: Cuttlefish Algorithm - A Novel Bio-Inspired Optimization Algorithm By Adel Sabry Eesa, Adnan Mohsin Abdulazeez Brifcani, Zeynep Orman

KEY IDEA CONCEPT

CUTTLEFISH ALGORITHM (CFA) เป็นอัลกอริทีมที่ได้รับแรง บันดาลใจจากพฤติกรรมการเปลี่ยนสีของหมึกกระดอง โดยเลียนแบบการสะท้อนแสงและการแสดงความ ชัดเจนของลวดลายที่ใช้ในการอำพรางตัว อัลกอริทีมนี้ใช้

- กระบวนการสะท้อน (REFLECTION)
- การมองเห็นลวดลาย (VISIBILITY)

ในการค้นหา GLOBAL OPTIMUM SOLUTION โดยการปรับ เปลี่ยนค่าของโซลูซันปัจจุบันให้ใกล้เคียงกับค่าที่ดีที่สุด THEORY

THEORY

การเปลี่ยนสีของหมึกกระดองเป็นการปรับตัวเพื่อเพิ่ม ความสามารถในการอยู่รอด ซึ่งเทียบเท่ากับการค้นหา ใชลูชั้นที่ดีที่สุดในปัญหาการหาค่าเหมาะสมสุด (OPTIMIZATION PROBLEM) ในแง่ของ COST FUNCTION จะ มองเห็นลวดลายที่ดีที่สุดเป็น GLOBAL OPTIMUM SOLUTION และลวดลายที่ยังไม่ใกล้เคียงเป็นค่า COST FUNCTION ที่สูง การสะท้อนแสงและการปรับลวดลาย เปรียบเสมือนการปรับค่าโชลูชั้นเพื่อหาโชลูชั้นที่เหมาะ สมที่สุด

NATURAL BEHAVIOR

การเปลี่ยนสีของหมึกกระดองเป็นการปรับตัวเพื่อเพิ่มความ สามารถในการอยู่รอด ซึ่งเทียบเท่ากับการค้นหาใชลูชันที่ดีที่สุด ในปัญหาการหาค่าเหมาะสมสุด (OPTIMIZATION PROBLEM) ในแง่ของ COST FUNCTION

- การมองเห็นลวดลายเหมาะสมที่สุดเป็น GLOBAL OPTIMUM SOLUTION
- การมองเห็นลวดลายที่ยังไม่ถูกต้องทำให้ค่า COST FUNCTION สูง

การสะท้อนแสงและการปรับลวดลายเปรียบเสมือนการปรับ ค่าโซลูชันเพื่อหาโซลูชันที่เหมาะสมที่สุด

CUTTLEFISH ALGORITHM (CFA)

CFA ทำงานโดยเริ่มต้นด้วยการสุ่มค่าโชลูชั้น แล้วค่อยๆ ปรับค่าโดยใช้กระบวนการสะท้อนแสงและการมองเห็น ลวดลาย กระบวนการทำงานแบ่งเป็น 4 กลุ่มหลัก

กลุ่ม 1: การสะท้อนแสงจาก CHROMATOPHORES และ IRIDOPHORES เพื่อสร้างโซลูซัน ใหม่ (GLOBAL SEARCH)

กลุ่ม 2: การสะท้อนแสงจาก IRIDOPHORES เพื่อปรับโซลูชันใกล้เคียง (LOCAL SEARCH)

กลุ่ม 3: การสะท้อนแสงจาก LEUCOPHORES ที่ใช้ค่าเฉลี่ยของจุดที่ดีที่สุด (LOCAL

SEARCH)

กลุ่ม 4: การสะท้อนแสงจาก LEUCOPHORES ในสภาพแวดล้อมเพื่อหาค่าเริ่มต้นใหม่ (GLOBAL SEARCH)

EXAMPLE

ตัวอย่างการใช้ ALGORITHM แก้ปัญหา:

อัลกอริทีม CFA ถูกทดสอบกับปัญหาการ OPTIMIZATION เช่น ROSENBROCK'S VALLEY FUNCTION ซึ่งเป็นฟังก์ชันที่หาจุดต่ำสุด โดยมีการกำหนดค่าของฟังก์ชัน ดังนี้

$$f(x) = \sum_{i=1}^{n-1} \left[100(x_{i+1} - x_i^2)^2 + (1 - x_i)^2 \right], \quad -2.048 \le x_i \le 2.048, \quad i = 1, ..., n$$

$$F _ \min(X) = 0, \quad X(1, 1, ... 1)$$

EXAMPLE การประเมินผล การประเมินผลของ CFA ได้ทำการ เปรียบเทียบกับอัลกอริธีมการเพิ่ม ประสิทธิภาพที่เป็นที่นิยมอื่นๆ เช่น Genetic Algorithms (GA), Particle Swarm Optimization (PSO) Bees Algorithm (BA) โดยมีการใช้ 12 ฟังก์ชันทดสอบที่รู้จักกันดี ซึ่ง ได้แก่ De Jong, Griewangk, Ackley, Rastrigin, และอื่น ๆ

Comparison of CFA with GA, PSA and Bees Algorithm in Term Mean Number of Functions Evaluation and Success Rate, (100 Run, 200 Iteration, 10,000 Function Evaluations)

Function	GA	PSO	BA	CFA
1. d=120	6962	****	****	1311
	(59%)			(100%)
2. d=120	6889.5	****	****	3052
	(53%)			(100%)
3. d=120	7426.5	****	****	2336.5
	(50%)			(100%)
4. d=120	6919.5	****	****	2220
	(58%)			(100%)
5. d=120	7116.5	****	****	1703.5
	(53%)			(100%)
6. d=2	9901	9707.5	1448	236
	(1%)	(3%)	(100%)	(100%)
7. d=2	9900.5	1407.5	7197	968.5
	(1%)	(100%)	(46%)	(100%)
8. d=2	****	2094	5868	335.5
		(100%)	(72%)	(100%)
9. d=2	****	3046	****	876
		(100%)		(100%)
10. d=2	****	3622	5385	560
		(86%)	(85%)	(100%)
11. d=2	5731	1465	9628.5	446
	(72%)	(100%)	(7%)	(100%)
12. d=2	9999	1447	2753	893.5
	(1%)	(100%)	(93%)	(100%)

EXAMPLE

ผลลัพธ์

• ผลลัพธ์ที่ได้จากการทดลองแสดงให้เห็นว่า CFA มีประสิทธิภาพที่เหนือ กว่าอัลกอริธีมอื่นๆ ในแง่ของความถูกต้องและความเร็วในการหาคำตอบ ที่ดีที่สุด โดย CFA สามารถหาคำตอบที่ใกล้เคียงกับค่าต่ำสุดได้อย่าง รวดเร็วและมีอัตราความสำเร็จในการหาค่าต่ำสุดสูงถึง 100% ในหลาย ฟังก์ชัน

การวิเคราะห์

• การวิเคราะห์ผลการทดลองแสดงให้เห็นว่า CFA มีความสามารถในการ ค้นหาคำตอบที่ดีที่สุดได้ดีกว่า GA, PSO, และ BA ในทุกฟังก์ชันที่ ทดสอบ โดยเฉพาะในฟังก์ชันที่มีความซับซ้อนสูง ซึ่งแสดงให้เห็นถึง ความสามารถของ CFA ในการจัดการกับปัญหาการเพิ่มประสิทธิภาพที่ ท้าทาย

