

Why sequence models?

1

Notation

3

Motivating example

x: Harry Potter and Hermione Granger invented a new spell.

Representing words

x: Harry Potter and Hermione Granger invented a new spell. $x^{<1>}$ $x^{<2>}$ $x^{<3>}$... $x^{<9>}$

Andrew Ng

5

Representing words

x: Harry Potter and Hermione Granger invented a new spell.

 $x^{<1}> x^{<2}> x^{<3}>$

x<9>

And = 367

Invented = 4700

A = 1

New = 5976

Spell = 8376 Harry = 4075

Potter = 6830

Hermione = 4200

Gran... = 4000

Andrew Ng

Recurrent Neural Network Model

7

Why not a standard network?

Problems:

- Inputs, outputs can be different lengths in different examples.
- Doesn't share features learned across different positions of text.

He said, "Teddy Roosevelt was a great President."

He said, "Teddy bears are on sale!"

Andrew Ng

q

Forward Propagation

Andrew Ng

Simplified RNN notation

$$a^{< t>} = g(W_{aa}a^{< t-1>} + W_{ax}x^{< t>} + b_a)$$

$$\hat{y}^{< t>} = g(W_{ya}a^{< t>} + b_y)$$

Andrew Ng

11

Recurrent Neural Networks

Backpropagation through time

Forward propagation and backpropagation

Andrew Ng

13

Forward propagation and backpropagation

$$\mathcal{L}^{< t>}(\hat{y}^{< t>}, y^{< t>}) =$$

Backpropagation through time
Andrew Ng

Different types of RNNs

15

47	
	Andrew Ng
Examples of RNN architectures	

Examples of RNN architectures

19

Recurrent Neural Networks

Language model and sequence generation

What is language modelling?

Speech recognition

The apple and pair salad.

The apple and pear salad.

P(The apple and pair salad) =

P(The apple and pear salad) =

Andrew Ng

21

Language modelling with an RNN

Training set: large corpus of english text.

Cats average 15 hours of sleep a day.

The Egyptian Mau is a bread of cat. <EOS>

Andrew Ng

RNN model

Cats average 15 hours of sleep a day. <EOS>

$$\mathcal{L}(\hat{y}^{< t>}, y^{< t>}) = -\sum_{i} y_{i}^{< t>} \log \hat{y}_{i}^{< t>}$$

$$\mathcal{L} = \sum_{t} \mathcal{L}^{< t>}(\hat{y}^{< t>}, y^{< t>})$$

Andrew Ng

23

Recurrent Neural Networks

Sampling novel sequences

Sampling a sequence from a trained RNN

Andrew Ng

25

Character-level language model

 $\label{eq:Vocabulary} Vocabulary = [a, aaron, ..., zulu, <\!UNK\!>]$

Andrew Ng

Sequence generation

News

President enrique peña nieto, announced sench's sulk former coming football langston paring.

"I was not at all surprised," said hich langston.

"Concussion epidemic", to be examined.

The gray football the told some and this has on the uefa icon, should money as.

Shakespeare

The mortal moon hath her eclipse in love.

And subject of this thou art another this fold.

When besser be my love to me see sabl's.

For whose are ruse of mine eyes heaves.

Andrew Ng

27

Recurrent Neural Networks

Vanishing gradients with RNNs

Vanishing gradients with RNNs

Exploding gradients.

Andrew Ng

29

deeplearning.ai

Recurrent Neural Networks

Gated Recurrent Unit (GRU)

RNN unit

$$a^{< t>} = g(W_a[a^{< t-1>}, x^{< t>}] + b_a)$$

Andrew Ng

31

GRU (simplified)

The cat, which already ate ..., was full.

[Cho et al., 2014. On the properties of neural machine translation: Encoder-decoder approaches] [Chung et al., 2014. Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling]

Full GRU

$$\tilde{c}^{< t>} = \tanh(W_c[c^{< t-1>}, x^{< t>}] + b_c)$$

$$\Gamma_u = \sigma(W_u[c^{< t-1>}, x^{< t>}] + b_u)$$

$$c^{< t>} = \Gamma_u * \tilde{c}^{< t>} + (1 - \Gamma_u) + c^{< t - 1>}$$

The cat, which ate already, was full.

Andrew Ng

33

Recurrent Neural Networks

LSTM (long short term memory) unit

GRU and LSTM

GRU

LSTM

$$\tilde{c}^{< t>} = \tanh(W_c[\Gamma_r * c^{< t-1>}, x^{< t>}] + b_c)$$

$$\Gamma_u = \sigma(W_u[c^{< t-1>}, x^{< t>}] + b_u)$$

$$\Gamma_r = \sigma(W_r[c^{< t-1>}, x^{< t>}] + b_r)$$

$$c^{< t>} = \Gamma_u * \tilde{c}^{< t>} + (1 - \Gamma_u) * c^{< t-1>}$$

$$a^{} = c^{}$$

[Hochreiter & Schmidhuber 1997. Long short-term memory]

Andrew Ng

35

LSTM units

GRU

LSTM

$$\tilde{c}^{< t>} = \tanh(W_c[\Gamma_r * c^{< t-1>}, x^{< t>}] + b_c)$$

$$\tilde{c}^{} = \tanh(W_c[\Gamma_r * c^{}, x^{}] + b_c) \qquad \tilde{c}^{}$$

$$\Gamma_u = \sigma(W_u[c^{< t-1>}, x^{< t>}] + b_u)$$

$$\Gamma_r = \sigma(W_r[c^{< t-1>}, x^{< t>}] + b_r)$$

$$c^{< t>} = \Gamma_u * \tilde{c}^{< t>} + (1 - \Gamma_u) * c^{< t-1>}$$

$$a^{} = c^{}$$

$$\tilde{c}^{< t>} = \tanh(W_c[a^{< t-1>}, x^{< t>}] + b_c)$$

$$\Gamma_u = \sigma(W_u[\; a^{< t-1>}, x^{< t>}] + b_u)$$

$$\Gamma_f = \sigma(W_f[\alpha^{< t-1>}, x^{< t>}] + b_f)$$

$$\Gamma_o = \sigma(W_o[\ a^{< t-1>}, x^{< t>}] + b_o)$$

$$c^{< t>} = \Gamma_u * \tilde{c}^{< t>} + \Gamma_f * c^{< t-1>}$$

$$a^{< t>} = \Gamma_o * c^{< t>}$$

[Hochreiter & Schmidhuber 1997. Long short-term memory]

Bidirectional RNN

Getting information from the future

He said, "Teddy bears are on sale!"

He said, "Teddy Roosevelt was a great President!"

Andrew Ng

39

Bidirectional RNN (BRNN)

Andrew Ng

Deep RNNs

41

