DAILY ASSESSMENT FORMAT

Date:	02/06/2020	Name:	Apeksha S Shetty
Course:	DIGITAL DESIGN USING HDL	USN:	4AL15EC006
Topic:	FPGA Basics: Architecture, Applications and Uses Verilog HDL Basics by Intel Verilog Testbench code to verify the design under test (DUT)	Semester & Section:	8 A
Github Repository:	Apeksha-97		

IMAGE SECTION

Report-

The field-programmable gate array (FPGA) is an integrated circuit that consists of internal hardware blocks with user-programmable interconnects to customize operation for a specific application.

2 What is FPGA?

- The field-programmable gate array (FPGA) is an integrated circuit that consists of internal hardware blocks with user-programmable interconnects to customize operation for a specific application.
- The interconnects can readily be reprogrammed, allowing an FPGA to accommodate changes to a design or even support a new application during the lifetime of the part.

- The FPGA has its roots in earlier devices such as programmable read-only memories (PROMs) and programmable logic devices (PLDs).
- These devices could be programmed either at the factory or in the field, but they used fuse technology (hence, the expression "burning a PROM") and could not be changed once programmed.
- In contrast, FPGA stores its configuration information in a re-programmable medium such as static RAM (SRAM) or flash memory. FPGA manufacturers

Date:	02/06/2020	Name:	Apeksha S Shetty
Course:	Python	USN:	4AL15EC006
Topic:	Interactive data visualization with bokeh, webscraping with python beautiful soup.	Semester & Section:	8 A
Github Repository:	Apeksha-97		

AFTERNOON SESSION DETAILS

Image of session

REPORT If you haven't installed Bokeh yet, you can easily install it with pip from the terminal: pip install bokeh Or you use pip3: pip3 install bokeh Snippet producing the triangle based plot #Making a basic Bokeh line graph 1. 2. #importing Bokeh 3. from bokeh.plotting import figure 4. 5. from bokeh.io import output_file, show 6. 7. #prepare some data 8. x=[3,7.5,10]9. y=[3,6,9]10.

11.

#prepare the output file

```
output_file("Line.html")
12.
13.
          #create a figure object
14.
         f=figure()
15.
16.
         #create line plot
17.
         f.triangle(x,y)
18.
19.
20.
         #write the plot in the figure object
21.
          show(f)
   #Snippet producing the circle based plot
         #Making a basic Bokeh line graph
1.
2.
3.
         #importing Bokeh
4.
          from bokeh.plotting import figure
5.
          from bokeh.io import output_file, show
6.
```

```
#prepare some data
7.
         x=[3,7.5,10]
8.
         y=[3,6,9]
9.
10.
         #prepare the output file
11.
         output_file("Line.html")
12.
13.13.
         #create a figure object
14.
         f=figure()
15.
16.16.
         #create line plot
17.
18.
         f.circle(x,y)
19.19.
         #write the plot in the figure object
20.
         show(f)
21.
   Visual Attributes
   Once you have built a basic plot, you can customize its visual attributes including
   changing the title color and font, adding labels for xaxis and yaxis, changing the
```

color of the axis ticks, etc. All these properties are illustrated in the diagram below:

And here is the code if you want to play around with it:

```
1. from bokeh.plotting import figure, output_file, show
```

```
2. p = figure(plot_width=500, plot_height=400, tools = 'pan, reset')
```

```
3. p.title.text = "Earthquakes"
```

```
4. p.title.text_color = "Orange"
```

```
5. p.title.text_font = "times"
```

- 7. p.yaxis.minor_tick_line_color = "Yellow"
- 8. p.xaxis.axis_label = "Times"
- 9. p.yaxis.axis_label = "Value"
- 10. p.circle([1,2,3,4,5], [5,6,5,5,3], size = [i*2 for i in [8,12,14,15,20]], color="red", alpha=0.5)
- 11. output_file("Scatter_plotting.html")

12. show(p)

For a complete list of visual attributes, see the <u>Styling Visual Attributes</u> documentation page of Bokeh.