Relatório Projeto 3.1 AED 2021/2022

Nome: Tomás Bernardo Martins Dias

PL (inscrição):PL3 Login no Mooshak: 2020215701

Tabela

Tempo Computacional						
Nº Nós	500	1000	1500	2000	2500	3000
Tempo	0,0442	0,5859	0,6741	0,8488	0,955	1,1016

Gráfico

N°Estudante:2020215701

A expressão f(N) está de acordo com o esperado? Justifique.

A expressão está de acordo com o esperado, pois pela análise teórica da solução implementada, uma árvore não binaria, a sua complexidade seria linear, ou seja, "O(n)", pois no método recursivo usado para a criação apenas passa uma vez em cada nó, ou seja, percorre os n nós da árvore. Pelo valor do coeficiente da regressão verifica se que os dados estão muito próximos da regressão obtida havendo três valores que estão na vizinha da mesma.

O projeto 3.1 pode ser implementado seguindo uma abordagem iterativa e uma recursiva.

Explique sucintamente o essencial das duas implementações em termos de estruturas de dados utilizadas e do cálculo da valorização das categorias e impressão da árvore.

Independentemente da abordagem utilizada a estrutura de dados adequada a implementar é uma árvore não binaria.

Seguindo uma abordagem iterativa é necessário salvaguardar sempre o nó, cujos filhos estão a ser adicionados, caso esses filhos também possuam também filhos, sendo por isso ser necessário guardar o pai e o número de filhos do nó. O cálculo da valorização será feito no momento de criação da árvore. Para o print da árvore criamos uma FIFO e antes de começarmos a processar a fila, observamos o número de elemento naquele nível. Criamos um novo nível depois de processados todos elementos do nível anterior.

Seguindo uma abordagem recursiva, a criação da arvore e o cálculo da valorização das categorias baseia na ideia de criar primeiro o nó, a raiz, verificar se este tem filhos, e adicionar-lhe os filhos e calcular a valorização do nó com base nos mesmos, no passo seguinte é chamada a mesma função onde esses filhos passam a ser a raiz, e assim sucessivamente O print da arvore tem o mesmo princípio sendo apenas necessário ter uma variável que controle os níveis dos elementos presentes.