Intro to Modern Algebra Homework 3

Sam Cook

October 19th, 2017

1 Section 3.3 #8

Problem Let $\mathbb{Q}(\sqrt{2})$ be as in Exercise 39 of Section 3.1 Prove that the function $f: \mathbb{Q}(\sqrt{2}) \to \mathbb{Q}(\sqrt{2})$ given by $f(a+b\sqrt{2}) = a-b\sqrt{2}$ is an isomorphism.

Solution In order for f to be an isomorphism, it must be a bijective homomorphism.

First, to be bijective, it must be both injective and surjective. Take $f(a), f(b) \in \mathbb{Q}\sqrt{2}$ such that f(a) = f(b). Then, for some $k, l, m, n \in \mathbb{Q}$, $f(k + l\sqrt{2}) = f(m + n\sqrt{2})$. This implies that $k - l\sqrt{2} = m - n\sqrt{2}$, by the definition of f.

Now, consider $c - d\sqrt{2}\epsilon \mathbb{Q}(\sqrt{2})$. $c - d\sqrt{2}$ is mapped to from $c + d\sqrt{2}$, since $(c + d\sqrt{2}) = c - d\sqrt{2}$. Therefore, f is surjective, and as a result of that, bijective.

Now, we must prove that f is a homomorphism. Consider $f((k+l\sqrt{2})*(m+n\sqrt{2}))$. This simplifies to $f(km+kn\sqrt{2}+ml\sqrt{2}+nl)$, which again simplifies to $f((km+nl)+(kn+ml)\sqrt{2})$. By applying the function f, we get $f((km+nl)+(kn+ml)\sqrt{2})=(km+nl)-(kn+ml)\sqrt{2}$. Now consider $f(k+l\sqrt{2})*f(m+n\sqrt{2})$. By applying f, we get $(k-l\sqrt{2})*(m-n\sqrt{2})$. We can use distributive laws to get $km-kn\sqrt{2}-ml\sqrt{2}+2nl=(km+2nl)-(kn+ml)\sqrt{2}=f((k+l\sqrt{2})*(m+l\sqrt{2}))$. Therefore, f preserves multiplication

Now consider $f((k+l\sqrt{2})+(m+n\sqrt{2}))$ This simplifies to $f((k+m)+(n+l)\sqrt{2})$. Applying f, $f((k+m)+(n+l)\sqrt{2})=(k+m)-(n+l)\sqrt{2}$. Next consider $f(k+l\sqrt{2})+f(m+n\sqrt{2})$. Applying f, $f(k+l\sqrt{2})+f(m+n\sqrt{2})=(k-l\sqrt{2})+(m-\sqrt{2})=(k+m)-(n+l)\sqrt{2}$, by associativity. But $(k+m)-(n+l)\sqrt{2}=f((k+l\sqrt{2})+(m+n\sqrt{2}))$ and therefore f preserves addition. Since f preserves addition and multiplication, it is a homomorphism, and since it is a bijective homomorphism, it is an isomorphism.