Example: Dauble poles at the origin (slightly more bridey) KG(s) H(s) = K(s+1) Sheloh he Nyquist Plot.

A - B Me have
$$s = \varepsilon e^{\int \theta} \theta : 0 \rightarrow \frac{\pi}{2}$$

 $G(s)H(s) = \frac{(\varepsilon e^{\int \theta} + 1)}{\varepsilon^2 e^{\int 2\theta} (\varepsilon e^{\int \theta} - 2)}$
 $s = \varepsilon e^{\int \theta} \frac{(\varepsilon e^{\int \theta} + 1)}{\varepsilon^2 e^{\int 2\theta} (\varepsilon e^{\int \theta} - 2)}$

this negative number

$$= \frac{1}{22^2} e^{-\frac{1}{2}(2\theta + 1)} = Re^{-\frac{1}{2}\theta} \quad \text{with } R \to \infty$$

$$\text{and } \Phi = -(11 + 2\theta)$$

$$\text{as } \theta : 0 \to \frac{1}{2} \text{ we have } \Phi : -11 \to -211$$

Now B - 1
$$S = J\omega$$
 $\omega : 0 \rightarrow \infty$ $U : 0 \rightarrow$

	$w^2(w^2+4)$				
W	0	(2		$w \rightarrow \infty$	
Re (GH)	+ 00	0	-	0	
Im (6H)	1 +00	l to	1	0	-

when
$$w=\sqrt{2}$$
 $ke=0$
 $|m=\frac{1}{2}\sqrt{k}$ $\frac{1}{4}$

We have S= Rej R→0; A: 1/2→0 So consider - 1 point around this shetch: $-\frac{1}{K} \langle 0 \rightarrow 0 \langle K \langle m \rangle$ We have N=1 P=11 = Pa -1 -> [Pa = 2] unstable poles. CO - FCL=1 What about Root Locus System is always unitable