Proof of Individual Agent Opinion Convergence in a Weakly Connected Influence Graph Using Classic Update Function

Bernardo T. Amorim

bernardoamorim@dcc.ufmg.br

April 2020

Definition 1. The classic update-function, is defined as:

$$Bel_p^{t+1}(a_i|a_j) = Bel_p^t(a_i) + In(a_j, a_i)(Bel_p^t(a_j) - Bel_p^t(a_i)).$$
 (1)

Definition 2. While the *overall classic update*, is defined as:

$$Bel_p^{t+1}(a_i) = \frac{1}{|A|} \sum_{a_i \in A} Bel_p^{t+1}(a_i|a_j).$$
 (2)

Definition 3. We say a influence graph In over agents A is weakly connected if for all a_i , $a_j \in A$, there exist $a_{k_1}, a_{k_2}, ..., a_{k_l} \subseteq A$ such that $\operatorname{In}(a_i, a_{k_1}) > 0$, $\operatorname{In}(a_{k_l}, a_j) > 0$, and for m = 1, ..., l - 1, $\operatorname{In}(a_{k_m}, a_{k_{m+1}}) > 0$.

Definition 4. max_t and min_t are the maximum and minimum belief values in a given instant t, respectively.

To prove our conjecture, let's do some simplifications:

$$Bel_p^{t+1}(a_i) = \frac{1}{|A|} \sum_{a_j \in A} Bel_p^{t+1}(a_i|a_j).$$

$$= \frac{1}{|A|} \sum_{a_j \in A} \left(Bel_p^t(a_i) + In(a_j, a_i) (Bel_p^t(a_j) - Bel_p^t(a_i)) \right)$$

$$= Bel_p^t(a_i) + \frac{1}{|A|} \sum_{a_i \in A} In(a_j, a_i) (Bel_p^t(a_j) - Bel_p^t(a_i))$$

Since we have a finite number of beliefs and $\forall a_i \in A : Bel_p^t(a_i) \in [0,1]$, there are always min_t and a max_t . We shall also note that, by the squeeze theorem, individual agent opinion converges to the same value if and only if $\lim_{t\to\infty} min_t = \lim_{t\to\infty} max_t$.

Thus, since we want to prove that it always converges, if $min_t = max_t$ we have nothing to prove, so assume $min_t \neq max_t$.

Lemma 1. In a weakly connected graph and under classic belief update, if $max_t \neq min_t$:

$$\forall a_i \in A : Bel_p^{t+1}(a_i) \le max_t \tag{3}$$

and:

$$\forall a_i \in A : Bel_p^{t+1}(a_i) \ge min_t \tag{4}$$

Proof. By definition:

$$Bel_p^{t+1}(a_i) = Bel_p^t(a_i) + \frac{1}{|A|} \sum_{a_i \in A} In(a_j, a_i) (Bel_p^t(a_j) - Bel_p^t(a_i))$$

Trying to maximize the right side, we can substitute $Bel_p^t(a_j)$ by max_t , this turns our equation into an inequity, since $\forall a_j \in A$, $Bel_p^t(a_j) \leq max_t$, by the definition of max_t . That makes the terms inside the summation either equal or smaller than 0, thus:

$$Bel_{p}^{t+1}(a_{i}) \leq Bel_{p}^{t}(a_{i}) + \frac{1}{|A|} \sum_{a_{j} \in A} In(a_{j}, a_{i}) (max_{t} - Bel_{p}^{t}(a_{i}))$$

$$= Bel_{p}^{t}(a_{i}) + \frac{1}{|A|} \sum_{a_{j} \in A} (max_{t} - Bel_{p}^{t}(a_{i})) \qquad \text{(since } In(a_{j}, a_{i}) \leq 1)$$

$$= Bel_{p}^{t}(a_{i}) + \frac{|A|}{|A|} (max_{t} - Bel_{p}^{t}(a_{i}))$$

$$= Bel_{p}^{t}(a_{i}) + max_{t} - Bel_{p}^{t}(a_{i})$$

$$Bel_{p}^{t+1}(a_{i}) \leq max_{t}$$

Since a_i was arbitrary, the lemma is true for all agents. The same reasoning can be used to show the equivalent property for min_t

Corollary 1. In a weakly connected influence graph and a classic update function, if $min_t \neq max_t$, then $max_{t+1} \leq max_t$ and $min_{t+1} \geq min_t$.

Proof. The result of Lemma 1 tells us that all beliefs in the time t+1 are either smaller than max_t or equal to max_t , thus, since max_{t+1} must be one of those elements, $max_{t+1} \leq max_t$. And the same reasoning can be used for min_t .

Corollary 2. $\lim_{t\to\infty} \max_t = U$ and $\lim_{t\to\infty} \min_t = L$ for some $U, L \in [0,1]$.

Proof. Since both max_t and min_t are bounded between 0 and 1 by the definition of belief; and Lemma 1 showed us that they are monotonic, according to the monotonic convergence theorem, the limits exist.

Now that we have this properties, our proof will follow by showing that an agent a_i that holds some belief $Bel_p^t(a_i)$ will influence every other agent by the time t + |A| - 1. To see this, we must open the definition of belief throughout time. But before we do this, let's jump into some small definitions and corollaries that will help us on the way.

Definition 5. Let's call the sequence $P(a_i|a_j) = (a_i, a_k, ..., a_{k+l})$ a path from a_i to a_j , if:

- All elements on the sequence are different.
- The first element in the sequence is a_i .
- a_i doesn't belong to the sequence.
- If a_n is the n'th element in the sequence, if it has a successor a_{n+1} , $In(a_n, a_{n+1}) > 0$.
- If a_n is the last element in the sequence $In(a_n, a_j) > 0$.

Note that many paths from a_i to a_j can exist, although our notation isn't enough to differentiate them. But in subsequent steps we will only need one of those paths, so the notation shouldn't be a problem.

Definition 6. Let's denote by $|P(a_i|a_j)|$ the size of a path from a_i to a_j , which we define as the number of elements in the sequence $P(a_i|a_j)$.

Corollary 3. In a weakly connected influence graph, there is always a path from a_i to a_j .

Proof. This follows almost instantly by the definition of a weakly connected influence graph. The only thing we must address is that, in the definition of weakly connected, the route that it guarantees that exist may have repeated elements, but if it does, we might be able to convince ourselves that it cycles to the same point, thus taking these cycles out we have a path.

Corollary 4.
$$|P(a_j|a_j)| \le |A| - 1$$
.

Proof. This follows directly from the definition of path, since it doesn't have repeated elements, and we have |A| agents, the path can't have more than |A| - 1 elements (remembering that the last element (a_j) doesn't appear in the sequence).

Lemma 2. $\forall a_i, a_k \in A \ and \ \forall n \geq 1$:

$$Bel_p^{t+n}(a_i) \le max_t + \frac{1}{|A|} \left(In(a_k, a_i) (Bel_p^{t+n-1}(a_k) - max_t) \right)$$

Proof. By the definition of belief:

$$Bel_p^{t+n}(a_i) = Bel_p^{t+n-1}(a_i) + \frac{1}{|A|} \sum_{a_i \in A} In(a_j, a_i) (Bel_p^{t+n-1}(a_j) - Bel_p^{t+n-1}(a_i))$$

Now note that the belief in the next time step is maximized when the element itself is the maximum one possible. We can see this easier using the definition of the classic update-function 1. Given this property, we can replace $Bel_p^{t+n}(a_i)$ by max_{t+n-1} and thus turn our equation into an inequity:

$$Bel_p^{t+n}(a_i) \le max_{t+n-1} + \frac{1}{|A|} \sum_{a_i \in A} In(a_j, a_i) (Bel_p^{t+n-1}(a_j) - max_{t+n-1})$$

To make our lemma useful in future manipulations, we will take an arbitrary element a_k out of the summation:

$$Bel_p^{t+n}(a_i) \le \max_{t+n-1} + \frac{1}{|A|} \sum_{a_j \in A \setminus \{a_k\}} In(a_j, a_i) (Bel_p^{t+n-1}(a_j) - \max_{t+n-1}) + In(a_k, a_i) (Bel_p^{t+n-1}(a_k) - \max_{t+n-1})$$

Since \max_{t+a-1} is the greatest belief possible in that time step, the summation can be at most 0, thus:

$$Bel_p^{t+n}(a_i) \le max_{t+n-1} + In(a_k, a_i) \left(Bel_p^{t+n-1}(a_k) - max_{t+n-1} \right)$$

Since max decreases throughout time, $max_t \leq max_{t+n-1}$, thus:

$$Bel_p^{t+n}(a_i) \le max_t + In(a_k, a_i) \left(Bel_p^{t+n-1}(a_k) - max_t\right)$$

Definition 7. Let's denote by In_{min} the smallest influence that's different from 0 in the influence graph.

Using the same notation we used in Corollary 2, let's call $\lim_{t\to\infty} \max_t = U$ and $\lim_{t\to\infty} \min_t = L$.

Now that we have all of these tools, let's jump lemma 3 which will be a tool in the most important part of the proof:

Lemma 3.
$$\forall a_i \in A: \max_t -Bel_p^{t+|P(a_k,|a_i)|}(a_i) \geq \epsilon, \text{ with } \epsilon = \left(\frac{In_{min}}{|A|}\right)^{|P(a_k|a_i)|}.(U-L).$$

Proof. By definition:

$$Bel_p^{t+|P(a_k|a_i)|}(a_i) = Bel_p^{t+|P(a_k|a_i)|-1}(a_i) + \frac{1}{|A|} \sum_{a_i \in A} Bel_p^{t+|P(a_k|a_i)|-1}(a_i|a_j)$$

What we will do now is separate, at each step, one element of the summation and apply lemma 2 to modify our inequity. But we will be smart when choosing the elements we separate from the summation. Denoting by a_k the agent that holds the belief min_t in the time t, we will separate from the summation the elements in $P(a_k|a_i)$, starting from the end of the path until we get to a_k .

To simplify our notation, let's index the elements in the path from a_k to a_i , starting from the end of the path (since we are backtracking it will make more sense) by calling a_n the n'th element from the end to the beginning of the sequence.

Thus, by lemma 2:

$$Bel_p^{t+|P(a_k|a_i)|}(a_i) \le max_t + \frac{1}{|A|}In(a_1, a_i)(Bel_p^{t+|P(a_k|a_i)|-1}(a_1) - max_t)$$

Note, now, that if $|P(a_k, a_i)| = 1$, we could prove our hypothesis. Instead of showing it I will expand this one more time, show the general version and then prove the lemma.

Using lemma 2 again:

$$Bel_{p}^{t+|P(a_{k}|a_{i})|}(a_{i})$$

$$\leq \max_{t} + \frac{1}{|A|}In(a_{1}, a_{i})(Bel_{p}^{t+|P(a_{k}|a_{i})|-1}(a_{1}) - \max_{t})$$

$$\leq \max_{t} + \frac{1}{|A|}In(a_{1}, a_{i})\left(\left(\max_{t} + \frac{1}{|A|}In(a_{2}, a_{1})(Bel_{p}^{t+|P(a_{k}|a_{i})|-2}(a_{2}) - \max_{t})\right) - \max_{t}\right)$$

$$= \max_{t} + \frac{1}{|A|}In(a_{1}, a_{i})\left(\frac{1}{|A|}In(a_{2}, a_{1})(Bel_{p}^{t+|P(a_{k}|a_{i})|-2}(a_{2}) - \max_{t})\right)$$

$$= \max_{t} + \frac{1}{|A|^{2}}In(a_{2}, a_{1})In(a_{1}, a_{i})(Bel_{p}^{t+|P(a_{k}|a_{i})|-2}(a_{2}) - \max_{t})$$

The equation above has the same form of the one before it, and this pattern will continue throughout time. Now, denoting as P_{In} the product of the influences in the path, we can write the generalized version of the inequity above as:

$$Bel_p^{t+|P(a_k|a_i)|}(a_i) \le max_t + \frac{P_{In}(min_t - max_t)}{|A||P(a_k|a_i)|}$$

This formulas comes from the fact that the path ends after $|P(a_k|a_i)|$ steps with a_k as the end of the path, and, by definition, the belief of a_k is min_t .

Since the rightmost term in the equation is either equal to or smaller than 0, to make the inequality hold for all a_i 's, we shall substitute P_{In} by the smallest value possible, which is, $In_{min}^{|P(a_k|a_i)|}$. Thus:

$$Bel_p^{t+|P(a_k|a_i)|}(a_i) \le max_t + \left(\frac{In_{min}}{|A|}\right)^{|P(a_k|a_i)|}.(min_t - max_t)$$

Since the maximum value of min_t is L and the minimum value of max_t is U, those are the values we should plug to maintain the inequity:

$$Bel_{p}^{t+|P(a_{k}|a_{i})|}(a_{i}) \leq max_{t} + \left(\frac{In_{min}}{|A|}\right)^{|P(a_{k}|a_{i})|}.(L-U)$$

$$Bel_{p}^{t+|P(a_{k}|a_{i})|}(a_{i}) - max_{t} \leq \left(\frac{In_{min}}{|A|}\right)^{|P(a_{k}|a_{i})|}.(L-U)$$

$$max_{t} - Bel_{p}^{t+|P(a_{k}|a_{i})|}(a_{i}) \geq \left(\frac{In_{min}}{|A|}\right)^{|P(a_{k}|a_{i})|}.(U-L)$$

$$max_{t} - Bel_{p}^{t+|P(a_{k}|a_{i})|}(a_{i}) \geq \epsilon$$

Theorem 1.
$$\forall a_i \in A : \max_t - Bel_p^{t+|A|-1}(a_i) \ge \epsilon, \text{ with } \epsilon = \left(\frac{In_{min}}{|A|}\right)^{|A|-1}.(U-L).$$

Proof. First note that, if $|P(a_k|a_i)| = |A| - 1$, our hypothesis true by the lemma 3 and we nothing to prove.

Else if $|P(a_k|a_i)| \neq |A| - 1$, then $|P(a_k|a_i)| < |A| - 1$ according to corollary 4. What we will do then is manipulate the formula of belief until we can use lemma 3 and then end our proof.

Before going into the proof, I will introduce a new notation. Given the fact that the equations get pretty big, I will call S^t the summation in the definition of Bel^{t+1} . It is pretty strange but I believe it will make it easier to understand.

By definition:

$$Bel_p^{t+|A|-1}(a_i) = Bel_p^{t+|A|-2}(a_i) + \frac{1}{|A|} \sum_{x_j \in A} (Bel_p^{t+|A|-2}(a_j) - Bel_p^{t+|A|-2}(a_i))$$

$$= Bel_p^{t+|A|-2}(a_i) + \frac{1}{|A|} \cdot S^{t+|A|-2}$$

$$= Bel_p^{t+|A|-3}(a_i) + \frac{1}{|A|} \cdot (S^{t+|A|-3} + S^{t+|A|-2})$$

Generalizing:

$$Bel_p^{t+|A|-1}(a_i) = Bel_p^{t+|A|-1-x}(a_i) + \frac{1}{|A|} \sum_{n=t+|A|-1-x}^{t+|A|-2} S^n$$

Now we can do something pretty cool. If choose $x = |A| - 1 - |P(a_k|a_i)|$ then we can use lemma 3, but before doing so let's separate $S^{t+|P(a_k|a_i)|}$ from the summation (note that the first two terms in the inequity are actually $Bel_p^{t+|P(a_k|a_i)|+1}(a_i)$, this will be important in the future):

$$Bel_{p}^{t+|A|-1}(a_{i})$$

$$\leq Bel_{p}^{t+|P(a_{k}|a_{i})|}(a_{i}) + \frac{1}{|A|} \cdot S^{t+|P(a_{k}|a_{i})|} + \frac{1}{|A|} \sum_{n=t+|P(a_{k}|a_{i})|+1}^{t+|A|-2} S^{n}$$

$$= Bel_{p}^{t+|P(a_{k}|a_{i})|}(a_{i}) + \frac{1}{|A|} \sum_{a_{j} \in A} (Bel_{p}^{t+|P(a_{k}|a_{i})|}(a_{j}) - Bel_{p}^{t+|P(a_{k}|a_{i})|}(a_{i})) + \frac{1}{|A|} \sum_{n=t+|P(a_{k}|a_{i})|+1}^{t+|A|-2} S^{n}$$

Note that, if we separate a_i the summation, what comes out equals 0, because we subtract the belief of a_i from itself, thus we can take it out of the summation without changing anything more:

$$Bel_p^{t+|A|-1}(a_i) \le Bel_p^{t+|P(a_k|a_i)|}(a_i) + \frac{1}{|A|} \sum_{a_j \in A \setminus \{a_i\}} (Bel_p^{t+|P(a_k|a_i)|}(a_j) - Bel_p^{t+|P(a_k|a_i)|}(a_i)) + \frac{1}{|A|} \sum_{n=t+|P(a_k|a_i)|+1}^{t+|A|-2} S^n$$

Since $Bel_p^{t+|P(a_k|a_i)|}(a_j)$ is positive, we can replace it by \max_t keeping the inequity:

$$Bel_p^{t+|A|-1}(a_i) \le Bel_p^{t+|P(a_k|a_i)|}(a_i) + \frac{1}{|A|} \sum_{a_j \in A \setminus \{a_i\}} (max_t - Bel_p^{t+|P(a_k|a_i)|}(a_i)) + \frac{1}{|A|} \sum_{n=t+|P(a_k|a_i)|+1}^{t+|A|-2} S^n$$

According to lemma 3:

$$Bel_p^{t+|P(a_k|a_i)|}(a_i) \le max_t + \left(\frac{In_{min}}{|A|}\right)^{|P(a_k|a_i)|}.(L-U)$$

To keep things simple, let's call $\delta = \left(\frac{In_{min}}{|A|}\right)^{|P(a_k|a_i)|}.(L-U).$ Using the argument that, the way to maximize the belief is to replace it by

its maximum value possible (this is clear looking at definition 1). We will replace $Bel_p^{t+|P(a_k|a_i)|}(a_i)$ by its upper bound, which is given by lemma 3. Thus:

$$Bel_{p}^{t+|A|-1}(a_{i}) \leq \max_{t} + \delta + \frac{1}{|A|} \sum_{a_{j} \in A \setminus \{a_{i}\}} (\max_{t} - \max_{t} - \delta) + \frac{1}{|A|} \sum_{n=t+|P(a_{k}|a_{i})|+1}^{t+|A|-2} S^{n}$$

$$= \max_{t} + \delta - \frac{1}{|A|} \sum_{a_{j} \in A \setminus \{a_{i}\}} (\delta) + \frac{1}{|A|} \sum_{n=t+|P(a_{k}|a_{i})|+1}^{t+|A|-2} S^{n}$$

$$= \max_{t} + \delta - \frac{(|A|-1)(\delta)}{|A|} + \frac{1}{|A|} \sum_{n=t+|P(a_{k}|a_{i})|+1}^{t+|A|-2} S^{n}$$

$$= \max_{t} + \frac{\delta}{|A|} + \frac{1}{|A|} \sum_{n=t+|P(a_{k}|a_{i})|+1}^{t+|A|-2} S^{n}$$

Now you must remember that the terms we were manipulating in the last steps

where actually $Bel_p^{t+|P(a_k|a_i)|+1}$, thus $max_t + \frac{\delta}{|A|}$ is the maximum value $Bel_p^{t+|P(a_k|a_i)|+1}$. This is not obvious and I don't know how to show it in a better way, but if we repeat the procedure of separating one S from the summation, replace $Bel_p^{t+|P(a_k|a_i)|+1}$ by $max_t \frac{\delta}{|A|}$ we will get $Bel_p^{t+|P(a_k|a_i)|+2} = max_t + \frac{\delta}{|A|^2}$ and we can do it repeatedly until replace all S's.

We will end up with:

$$Bel_{p}^{t+|A|-1}(a_{i}) \leq max_{t} + \frac{\delta}{|A|^{|A|-|P(a_{k}|a_{i})|-1}}$$

$$= max_{t} + \frac{\left(\frac{In_{min}}{|A|}\right)^{|P(a_{k}|a_{i})|}.(L-U)}{|A|^{|A|-|P(a_{k}|a_{i})|-1}}$$

$$= max_{t} + \frac{\left(In_{min}^{|P(a_{k}|a_{i})|}\right).(L-U)}{|A|^{|A|-1}}$$

$$\leq max_{t} + \left(\frac{In_{min}}{|A|}\right)^{|A|-1}.(L-U)$$

$$Bel_{p}^{t+|A|-1}(a_{i}) - max_{t} \leq \left(\frac{In_{min}}{|A|}\right)^{|A|-1}.(L-U)$$

$$max_{t} - Bel_{p}^{t+|A|-1}(a_{i}) \geq \left(\frac{In_{min}}{|A|}\right)^{|A|-1}.(U-L)$$

$$max_{t} - Bel_{p}^{t+|A|-1}(a_{i}) \geq \epsilon$$

Corollary 5. $max_t - max_{t+|A|-1} \ge \epsilon$

Proof. Since $\max_{t+|A|-1}$ must be one of the beliefs in the time t+|A|-1 and, according to theorem 1 all of them are smaller than \max_t by a factor of at least ϵ , $\max_{t+|A|-1}$ must also be smaller than \max_t by a factor of at least ϵ .

Theorem 2. $\lim_{t\to\infty} max_t = U = \lim_{t\to\infty} min_t = L$

Proof. Suppose, by contradiction, that $U \neq L$. Plugging this values into the ϵ formula show us that $\epsilon \neq 0$. Since, according to theorem 1, $\max_{t+|A|-1}$ is smaller than \max_t by a factor of ϵ , we can finally reach to a contradiction and end our proof.

To see this contradiction, let's assume we did $v = (|A| - 1) (\lceil \frac{1}{\epsilon} \rceil + 1)$ time steps after t = 0. Since max diminishes by at least ϵ at each |A| - 1 steps:

$$max_0 \ge max_v + \epsilon \left(\left\lceil \frac{1}{\epsilon} \right\rceil + 1 \right)$$
$$max_0 - \epsilon \left(\left\lceil \frac{1}{\epsilon} \right\rceil + 1 \right) \ge max_v$$

But ϵ . $\left(\left\lceil \frac{1}{\epsilon} \right\rceil + 1\right) > 1$, thus $\max_0 < \epsilon$. $\left(\left\lceil \frac{1}{\epsilon} \right\rceil + 1\right)$. And this would imply that $\max_v < 0$, which contradicts the definition of belief!

Since assuming that $U \neq L$ led us to a contradiction we can conclude that U = L. This result implies that all agents belief converge to the same value, as we wanted to prove.