2024-April Session-06-04-2024 shift

EE24BTECH11009-Mokshith

- 16) If three letters can be posted to any one of the 5 different addresses, then the probability that the three are posted to exactly two addresses is:

 - a) $\frac{12}{25}$ b) $\frac{4}{25}$ c) $\frac{6}{25}$ d) $\frac{18}{25}$
- 17) If the locus of the point, whose distances from the point (2, 1) and (1, 3) are in the ratio 5: 4, is $ax^2 + by^2 + cxy + dx + ey + 170 = 0$, then the value of $a^2 + 2b + 3c + 4d + e$ is equal to:
 - a) 5
 - b) -27
 - c) 437
 - d) 37
- 18) A software company sets up m number of computer systems to finish an assignment in 17 days. If 4 computer systems crashed on the start of the second day, 4 more computer systems crashed on the start of the third day and so on, then it took 8 more days to finish the assignment. The value of m is equal to:
 - a) 180
 - b) 125
 - c) 150
 - d) 160
- 19) If $\int \frac{1}{a^2 \sin^2 x + b^2 \cos^2 x} dx = \frac{1}{12} \tan^{-1}(3 \tan x) + \text{ constant}$, then the maximum value of
 - a) $\sqrt{42}$
 - b) $\sqrt{39}$
 - c) $\sqrt{41}$
 - d) $\sqrt{40}$
- 20) Let $0 \le r \le n$. If $^{n+1}C_{r+1} : {^n}C_r : {^{n-1}}C_{r-1} = 55 : 35 : 21$, then 2n + 5r is equal to:
 - a) 62
 - b) 60
 - c) 55
 - d) 50
- 21) If the shortest distance between the lines $\frac{x-\lambda}{3} = \frac{y-2}{-1} = \frac{z-1}{1}$ and $\frac{x+2}{23} = \frac{y+5}{2} = \frac{z-4}{4}$ is $\frac{44}{\sqrt{20}}$, then the largest possible value of $|\lambda|$ is equal to:

- 22) Let [t] denote the largest integer less than or equal to t. If $\int_0^3 \left(\left[x^2 \right] + \left[\frac{x^2}{2} \right] \right) dx = a + b\sqrt{2} \sqrt{3} \sqrt{5} + c\sqrt{6} \sqrt{7}$, where $a, b, c \in \mathbb{Z}$, then a + b + c is equal to:
- 23) Let α, β be roots of $x^2 + \sqrt{2}x 8 = 0$. If $U_n = \alpha^n + \beta^n$, then $\frac{U_{10} + \sqrt{2}U_9}{2U_8}$ is equal to:
- 24) In a triangle ABC, BC = 7, AC = 8, AB = $\alpha \in \mathbb{N}$ and $\cos A = \frac{2}{3}$. If $49 \cos (3C) + 42 = \frac{m}{n}$, where $\gcd(m, n) = 1$, then m + n is equal to:
- 25) The length of the latus rectum and directrices of a hyperbola with eccentricity e are 9 and $x = \pm \frac{4}{\sqrt{3}}$, respectively. Let the line $y \sqrt{3}x + \sqrt{3} = 0$ touch this hyperbola at (x_0, y_0) . If m is the product of the focal distances of the point (x_0, y_0) , then $4e^2 + m$ is equal to:
- 26) If $S(x) = (1+x)+2(1+x)^2+3(1+x)^3+\cdots+60(1+x)^{60}$ and $(60)^2 S(60) = a(b)^b+b$, where $a, b \in \mathbb{N}$, then a+b is equal to:
- 27) If the system of equations

$$2x + 7y + \lambda z = 3$$
$$3x + 2y + 5z = 4$$
$$x + \mu y + 32z = -1$$

has infinitely many solutions, then $(\lambda - \mu)$ is equal to:

- 28) Let [t] denote the greatest integer less than or equal to t. Let $f:[0,\infty)\to\mathbb{R}$ be a function defined by $f(x)=\left[\frac{x}{2}+3\right]-\left[\sqrt{x}\right]$ Let S be the set of all points in the interval [0,8] at which f is not continuous. Then $\sum a$ is equal to:
- 29) If the solution y(x) of the given differential equation $(e^y + 1)\cos x dx + e^y \sin x dy = 0$ passes through the point $(\frac{\pi}{2}, 0)$, then the value of $e^{y(\frac{\pi}{6})}$ is equal to:
- 30) From a lot of 12 items containing 3 defectives, a sample of 5 items is drawn at random. Let the random variable X denote the number of defective items in the sample. Let items in the sample be drawn one by one without replacement. If variance of X is $\frac{m}{n}$, where gcd(m, n) = 1, then n m is equal to: