

Replacing a cloud based computation tool on DrBoxOnline.com with faster running neural network

Section Instructor

Jigang Wu

Sponsor

Shane Johnson

Group members

- Keye Chen
- Yanzhuo Cao
- Shuo Deng
- Fengyu Zhang
- Yukuan Zhu

Intro: Background

- Problem: Corrugated boxes are often prone to buckling during storage and shipment, leading to damage and losses
- Current solution: Dr. Box Calculator Pro relies on Finite Element Analysis (FEA) to predict how a product reacts to real-world forces. However, FEA is time-consuming and demands extensive computational resources.

Intro: Background

- Proposed solution: Replacing FEA in the Dr. Box Calculator Pro with Deep Neural Networks (DNN).
- Expected outcomes: A predictor interface with improved accuracy, speed and lower inference cost under various conditions and box types.

Customer requirements

- Good Simulation: High-quality predictions that accurately reflect real-world outcomes.
- Very Fast: The system should deliver results rapidly to enable efficient decision-making.
- Can Accept Various Inputs: The system must be capable of handling diverse input variables to accommodate different user needs.
- Very Reliable: The system needs to operate with high reliability and minimal downtime.
- User-Friendly: The interface should be easy to use for all user levels, ensuring a low learning curve.
- Inexpensive: The solution should be cost-effective for the user.

QFD Digram

Correlation between eng. \$

- ++ Strong Positive
- + Medium Positive

										+	ivied	ium	Positi	ive
						/	${}^{\sim}$			- Medium Negative				
				/-	->::-	+>+	Strong Negati			ve				
	/	$\langle \rangle$	$\langle \rangle$	\sim	\searrow	4				- g				
			/	⟨ +→	$\langle \rangle$	$\langle + \rangle$	<->	<+ <i>></i>						
			<u> </u>		 	*	$\langle \rangle$	- />	\times	$\langle \hat{\ } \rangle$				
		/ ÷) ×	X	\times	X	$\times_{}$	• ><	\times	\times	-	Ben	chm	arks
					Б			⊑						
		ڃ	Б		ij	ıţi	ξ	Design						
		DNN Integration	Ē	₹	ar	iza	iq	చ		>				
		ğ	ea	pii	<u> </u>	ţi	elia	8	st	a အ	g	_		
		불	e.	Scalability	띪	Q	A.	[발	Cost	Accuracy	Speed	ır A	ır B	
		Ιz	텵	လွ	9-	E	Ve	뿔	0.550	¥	0,	titc	titc	
	Weight	6	Feature Learning		End-to-End Learning	System Optimization	Server Reliability	User Interface				эдι	эдι	
	(1-10)		_		Ъ	S	-,-	\S				competitor	competitor	
Good simulation	10	10	8		5	10	7			10		9	8	
Very fast	8	8	7	7	7	10		7	7		10	5	4	
Accept various inputs	8	7	6	10	8	7		7		7		10	7	
Very reliable	7	5			4	8	10		7	5	6	9	7	
User friendly	5				3	6	6	10				5	4	
Inexpensive	7	7		5		10	8	8	10	6	7	5	4	
			Score	GB	h	LOP		3core	¥	%	s			
Target Value							99	20		90	300			
Total			184		213						171			
Normalized			0.08	0.07	0.09	0.17	0.10	0.10	0.08	0.10	0.07			

Correlation between customer regs and eng. Specs

- 9 = Strong Relationship
- 3 = Medium Relationship
- 1 = Small Relationship (blank) = Not Related

Specific Engineering Requirements

Basic idea: Current finite element based websites are used as reference.

Requirements	Specifications	Target	Measurement
Accuracy	Predictive accuracy within 90%	≥ 90% accuracy	Statistical analysis of prediction vs actual
Speed	Analysis time per simulation	≤ 5 minutes	Time tracking software
Customization	Support diverse conditions	Handle 20+ variables	System configuration checks
Reliability	System operational uptime	99.9% uptime	Server Monitoring tools

Concept Generation

Concept Generation

1. Data augmentation:

Aim for <u>stable</u> prediction for <u>different scales</u>. However, we only have <u>limited trainable data</u>. (a. Oversampling; b. Customized loss function; c. data symmetry augmentation...)

2. Activation Function:

Ensure stable <u>converging</u> performance during repetitive model training session. (a. LeakyRelu; b. Gaussian Error Linear Unit; c. Hyperbolic Tangent...)

3. Dimension Reduction:

Deal with <u>high-dimensional</u> data outputs (128 dimension vector for each output of six target), dimension reduction becomes essential. (a. PCA; b. t-sne...)

4. Optimizer Selection:

The choice of an optimizer is integral to the training of neural networks, particularly in terms of <u>convergence</u> speed and the model's <u>performance</u> on new, unseen data. (a. AdamW; b. RMSprop; c. SGD...)

Concept Selection

Function	Options	Advantages	Disadvantages
Data Augmentation	Oversampling Customized Loss Function Data Augmentation with x-y spatial symmetry	Balances training data distribution Increases importance of minority data Enhances model's understanding of spatial symmetry	May introduce bias Could overfit on minority samples May not generalize well beyond trained symmetries
Activation Function	More complex models Smoother functions like ReLU Anomaly detection with exception handling	Prevents extreme values Stable performance Warns users of anomalies	May limit model capacity Simple functions may not capture complex patterns Additional computational overhead
Dimension Reduction	• PCA • t-SNE	Simplifies high-dimensional data Preserves global data structure	t-SNE may not scale well with larger datasets PCA assumes linearity
Optimizer Selection	• SGD • RMSprop • AdamW	Adapts learning rate Efficient learning and generalization	SGD may converge slowly RMSprop might not perform well on non-stationary problems AdamW could lead to overfitting in some cases

Selection matrix

· Model A:

- Data Augmentation with x-y spatial symmetry
- Smoother Functions like ReLU and Anomaly Detection with Exception Handling
- PCA Dimension Reduction Method
- AdamW Optimizer

Final Design

Overview:

- **Goal**: Enhance buckling strength prediction for corrugated paper boxes.
- Method: Integrate neural networks into a user friendly interface.

DNN Integration:

- Trained on historical box performance data
- Recognizes complex relationships and patterns affecting box performance

User Interface:

- Simple and user-friendly design
- Easy input of box specifications and rapid output of predictions

DNN Model Design and Optimization

Model Design:

- Training Dataset: Historical data of various box specifications and their performance outcomes
- Specific hidden layers for different prediction tasks (e.g., max force prediction and nodal failure prediction)

Optimization Algorithms:

- Parameter adjustment methods
- Loss Functions: Minimizing Mean Squared Error (MSE) and cosine similarity loss for accuracy improvement

Final design/methodology description

Max Force Prediction:

- Data Preprocessing
 - Augmentation
- Model Definition and Training
 - linear, ReLU, BatchNorm1d, and

Dropout layers

- Adam optimizer
- MSE loss
- Model Evaluation
- Final Results

Last 400 Epochs v.s. Loss

User Interface and System Output

User Interface Design:

- User input parameters: box specifications, material type, expected load conditions
- Intuitive and user-friendly design for accurate data capture

System Output:

- Output results: maximum load capacity and potential nodal failure points
- Results presentation in an accessible format for easy decision-making

Prototype Description

Test Results

Evaluation of our numerical results:

	MF	Nx	Ny	Nz	NF	Displacement	Force
(Length) Precision	93%	92%	95%	88%	95%	70%	85%
Cosine Similarity	NA	99%	99%	99%	90%	99%	99%

Evaluation of our costs:

Cost Analysis	Our method	Original FEA method	
Time	10ms	30s	
Computational Resources	1 core	600 cores Market 100 JOINT IN 交大窓面	STITUTE 机学院

Discussion

Design Choices Reflection

- Rapid prediction: two seconds per input.
- **High cosine similarity accuracy:** above 99%.
- Interactive 3D rendered box diagram.

Areas for Improvement

- Enhance precision for Displacement and Force outputs which fell below the expected 90% accuracy threshold.
- Address the unexpected increase in input dimensions impacting model complexity and training efficacy.

Conclusion

Project Summary

- Integrating DNN to replace traditional FEA.
- Improved prediction accuracy and computational efficiency, significantly enhancing real-time application feasibility.

Solution Impact

- DNN integration facilitates instant buckling strength predictions and substantial reductions in computational costs.
- Potential alternative solution to multi-type box FEA replacements.

Future Works

Model Enhancements

- More nuanced loss function.
- More complex models.

Training and Data Handling

- Explore advanced data augmentation.
- Integrate additional algorithms from FEA to refine the DNN's predictive accuracy.
- A classifier before the DNN when encountering more complex situations.

Q&A

THANK YOU!

