

Notched samples show larger variability

Master curve

Considers the stochastic nature of the cleavage fracture Gives quantitative tools for handling cleavage

- · different experimental data
- temperature dependence

Stochastic nature

$$P_{f} = 1 - \exp\left\{-\overline{N}_{V} \cdot V \cdot \Pr\{I\} \cdot \left(1 - \Pr\{V/O\}\right)\right\}$$

Probability of nucleation

$$P_{f} = 1 - \exp \left\{ -\frac{B}{B_{0}} \cdot \left(\frac{K_{I}}{K_{0}} \right)^{4} \right\}$$

Scatter

$$P_{f} = 1 - \exp \left\{ -\frac{B}{B_{0}} \cdot \left(\frac{K_{I} - K_{min}}{K_{0} - K_{min}} \right)^{4} \right\}$$

Size effect

$$K_{IC_1} = K_{min} + (K_{IC_2} - K_{min}) \cdot \left(\frac{B_2}{B_1}\right)^{1/4}$$

Master - curve

Hajonta

$$P[K_{IC} \le K_I] = 1 - exp\left(-\left[\frac{K_I - K_{min}}{K_0 - K_{min}}\right]^4\right)$$

Koon vaikutus

$$K_{B_2} = K_{min} + [K_{B_1} - K_{min}] \cdot \left(\frac{B_1}{B_2}\right)^{1/4}$$

?

Temperature dependence

$$K_0 = 31 + 77 \cdot \exp(0.019 \cdot [T - T_0])$$

Different steels are in different location on the curve

Measurements to determine T₀

Maximum-likelihood estimate on the data

$$\sum_{i=1}^{n} \frac{\delta_{i} \cdot \exp\{0.019 \cdot [T_{i} - T_{0}]\}}{11 + 77 \cdot \exp\{0.019 \cdot [T_{i} - T_{0}]\}} - \sum_{i=1}^{n} \frac{(K_{IC_{i}} - 20)^{4} \cdot \exp\{0.019 \cdot [T_{i} - T_{0}]\}}{(11 + 77 \cdot \exp\{0.019 \cdot [T_{i} - T_{0}]\})^{5}} = 0$$

Summary

Measure fracture toughness in different temperatures

- · K_{IC} tests
- · Charpy-tests

Estimate T₀

Determine K_{JC} from the Master curve:

- in different temperatures
- · with different failure probabilities

A533B Cl.1 INGHAM & al. (1989)

Design guides

Cracked component assessment (efficient use of available data and methods)

Fracture mechanics

K-calculation easy

- · ready-made solutions
- · linear-elastic models

K -testing expensive

J-computation laborious

· elastic-plastic cracked models

Design guide combines various approach

Use LEFM, when it works
Prevent its use, when it does *not*Trade work for concervativeness

Don't pay for performance you don't need

Methods

R6 "Assessment of the Integrity of Structures Containing Defects"
SINTAP
BS-PD6493
ETM
etc.

Basic components

Simplified limit load concept

- FAD
- · CDF

Analysis levels

- less concervativeness => more input data and work
- · unsatisfactory results guide to next level

Simple model needs alteration

FAD - concept

Failure assessment diagram – FAD R6

Crack driving force - CDF

c) CDF Analysis: Fracture Initiation

FAD vs. CDF

Technically equivalent (nowadays)
Choise is yours
Older guides retain FAD for historic reasons
Newer promote simpler (?) CDF

Summary

There's number of guides to help you through fracture mechanics design

Mostly outside the scope of this course

If the basics are not understood, the guide will get you nowhere (or worse)

Fatigue

1842, Versailles

Wöhler

Aika

Classic fatigue design

Coffin - Manson

Scatter in S-N curve

Cyclic loading

Average stress has an effect

To account for average stress either...

Test with different average stresses
Estimate fatigue strength based on data from different average stress

Average Stress

$$\sigma_a = \sigma_{fs} \left\{ 1 - \frac{\sigma_0}{\sigma_{UTS}} \right\}$$

$$\sigma_a = \sigma_{fs} \left\{ 1 - \left(\frac{\sigma_0}{\sigma_{UTS}} \right)^2 \right\}$$

Average stress effect

Modified Goodman equation

$$\frac{\sigma_a}{\sigma_{ar}} + \frac{\sigma_m}{\sigma_u} = 1$$

Gerber parabola

$$\sigma_{ar} \Rightarrow \sigma_{\max} \sqrt{\frac{1-R}{2}} \quad (\sigma_{\max} > 0)$$

Smith, Watson, and Topper (SWT) equation

$$\sigma_{ar} = \sigma_{\max}^{1-\gamma} \sigma_a^{\gamma} \quad (\sigma_{\max} > 0)$$

$$\sigma_{ar} = \sigma_{\max} \left(\frac{1-R}{2} \right)^{\gamma} \quad \left(\sigma_{\max} > 0 \right)$$

Walker equation

Loading with different cycles

Each cycle (load-sequence) takes part of remaining life

Miner

Simple linear sum Cycle-order assumed insignificant

$$D = \sum_{i=1}^{m} \frac{n_i}{N_{f,i}}$$

... but

In reality the order does have an effect

- small cycles cause damage, after crack has formed
- intermittent overloads extend life (crack blunting)
- Minerin rule still most used (easy and often good enough)

Spectral loading?

What is a cycle?
Many methods
Most used is "rainflow"

Spectral loading

High-cycle vs. Low cycle

Failures, still failures

Alexander Kielland, 1980

UA232, DC-10, 1989

Eschede, 1998

Most common failure

What happens before disaster?

Damage initiation?
Damage accumulation?
What is fatigue?

Material changes during fatigue loading

Small

Changes in dislocation structures
High loads cause cyclic strengthening or softening

Cyclic stress-strain curves

Failure starts with crack initiation

S-N curves

Tested until failure
Time to "engineering crack"

Nucleation

Microscopically irreversible dislocation motion

Slip bands

Deformation localization

Single-grain crack

Nucleation and inclusions

Nucleation happens at local discontinuity (inclusions, notches, corrosion damage, etc.)

=> Large scatter

Inclusion effect

C depends on inclusion location (C=1.56 below surface and C=1.43 on the surface)

$$\sigma_w = C(HV + 120)/(\sqrt{area})^{1/6}$$

$$\sigma_{w} = C(HV + 120)/(\sqrt{area})^{1/6} \cdot [(1-R)/2]^{\alpha_{ME}}$$

Fatigue crack growth

Damage concentrates to crack tip

Stage I - Stage II

Crack growth accelerates crack growth

What is fatigue limit

No fatigue limit with spectral loading, environmental fatigue, etc.

No fatigue limit in all materials

Strength effect

0.5 x UTS 1.6 x HV

Paris: Crack growth can be predicted

Fracture sufrace shows crack growth

Fracture surface analysis

Nucleation Beach marks

... and under microscope

fatigue striations

Fatigue= nucleation+ crack growth

Nucleation portion

Fatigue control

Manufacturing quality control Improvements on fatigue design Safety culture

Improved manufacturing inspection Improved in-service inspection

Improved in-service inspection

Summary

Fatigue is crack growth driven by cyclic loads Fatigue design encompasses whole life cycle

- Design
- · Manufacturing
- In-service inspection