

Comment obtenir la distance entre deux points connus en longitude et latitude sur la sphère ?

Les logiciels Circé

La géodésique est la trajectoire correspondant à la distance minimale entre deux points sur une surface. Dans le cas de la sphère, c'est un arc de grand cercle.

Connaissant la position de deux points A et B sur une sphère, calculer la distance entre eux revient donc à calculer l'abscisse curviligne S (AB) sur le grand cercle passant par A et B.

Si l'on considère deux points A et B sur la sphère, de latitudes ϕ_A et ϕ_B et de longitudes λ_A et λ_B , alors la **distance angulaire en radians** S_{A-B} entre A et B est donnée par la relation fondamentale de trigonométrie sphérique, utilisant $d\lambda = \lambda_B - \lambda_A$:

$$S_{A\text{-}B} = arc \; cos \; (sin \; \phi_A \; sin \; \phi_B + cos \; \phi_A \; cos \; \phi_B \; cos \; d\lambda)$$

La distance S en mètres, s'obtient en multipliant S_{A-B} par un rayon de la Terre conventionnel (6 378 137 mètres par exemple).

Pour davantage de précision, il est possible de calculer un rayon de courbure local :

Le rayon de la sphère qui se rapproche au mieux de l'ellipsoïde de demi grand axe \mathbf{a} et d'excentricité \mathbf{e} en un point de latitude $\boldsymbol{\phi}$ est donné par la racine carrée du produit de $\boldsymbol{\rho}$ et N (rayons de courbure principaux de l'ellipsoïde de révolution, respectivement dans la direction du méridien et dans la direction du parallèle), tels que :

$$\rho = \frac{a \cdot (1 - e^2)}{\left(1 - e^2 \cdot \sin^2(\varphi)\right)^{\frac{3}{2}}} \qquad \text{et} \qquad N = \frac{a}{\sqrt{1 - e^2 \cdot \sin^2(\varphi)}}$$

On obtient ainsi une sphère dont la courbure totale est égale localement à celle de l'ellipsoïde.

Exemples

Soient deux points A et B:

$$\lambda_A=0^\circ$$

$$\phi_A=45^\circ$$

 $\lambda_B = 1^{\circ} 50' 03.156468''$

 $\phi_B = 46^{\circ} 15' 28.463641''$

La distance entre A et B calculée sur l'ellipsoïde IAG-GRS80 est : S = 200 km

Le calcul de la distance sur la sphère de Picard (rayon 6371598m) est : S = 199,7744550 km Le calcul de la distance sur la sphère IAG-GRS80 (rayon 6378137m) est : S = 199,979.4782 km

Soient deux points A et B:

$$\lambda_A = -5^{\circ}$$

$$\phi_A=40^\circ$$

 $\lambda_B = -3^{\circ} 18' 44.877103''$

 $\phi_B = 41^{\circ} 15' 40.924579''$

La distance entre A et B calculée sur l'ellipsoïde IAG-GRS80 est : S = 200 km

Le calcul de la distance sur la sphère de Picard est S = 199,8914187 km

Le calcul de la distance sur la sphère IAG-GRS80 (rayon 6378137m) est S = 200,0965619 km

Au sens **global**, une bonne sphère approchée de l'ellipsoïde de révolution, de demi grand axe a et de demi petit axe b, peut être prise avec un rayon égal à (2a+b)/3.