1E Find Patterns Forming Clumps in a String

Clump Finding Problem

Find patterns forming clumps in a string.

Input: A DNA string *Genome*, and integers *k*, *L*, and *t*.

Output: All distinct *k*-mers forming (*L*, *t*)-clumps in *Genome*.

aggtccTGCAATGCATGAAGCCTGCAtgtt

Formatting

Input: A DNA string *Genome* followed by space-separated integers *k*, *L*, and *t*.

Output: A space-separated list of strings containing all distinct k-mers forming (L, t)-clumps in *Genome*.

Constraints

- The length of *Genome* will be between 1 and 10^4 .
- The integer k will be between 1 and 10^1 .
- The integer L will be between 1 and 10^3 .
- The integer t will be between 1 and 10^2 .
- *Genome* will be a DNA string.

Test Cases 🖸

Case 1

Description: The sample dataset is not actually run on your code.

Input:

 ${\tt CGGACTCGACAGATGTGAAGAACGACAATGTGAAGACTCGACACGACAGAGTGAAGAGAAGAGGAAACATTGTAA} 5 \ 50 \ 4$

Output:

GAAGA CGACA

Case 2

Description: This dataset makes sure that your code only counts *k*-mers that fall *completely* within a given *L*-window.

Input:

CTAAAACGTCG

2 4 2

Output:

AA

Case 3

Description: This dataset checks if your code has an off-by-one error when checking k-mers within an L-window. Notice that, for each 1-mer (A, C, G, and T), there are 3 nucleotides between the first and second occurrence. In other words, each nucleotide occurs twice in a specific 5-window: once at the beginning of the 5-window, and once at the end: \mathbf{A} CGT \mathbf{A} CGT \mathbf{A} CGT \mathbf{A} CGT \mathbf{A} CGT \mathbf{A} CGT \mathbf{A} CGT.

Input:

ACGTACGT

1 5 2

Output:

T C A G

Case 4

Description: This dataset checks if your code is correctly handling overlapping *k*-mers.

Input:

CCATATACC 3 5 2

Output:

ATA

Case 5

Description: A larger dataset of the same size as that provided by the randomized autograder.