Theory of Computation

Notes

May 4, 2025

Contents

1	Gra	mmars, Languages and Automata	3
	1.1	Chomsky Hierarchy	3
	1.2	Expressive power of automata	3
2	Fin	ite Automata	4
	2.1	Moore-Mealy machines	4
	2.2	Regular Expression	4
		2.2.1 Operators	4
		2.2.2 Equivalence of languages	5
		2.2.3 Arden's Method	6
	2.3	Myhill-Nerode Theorem	6

Chapter 1

Grammars, Languages and Automata

1.1 Chomsky Hierarchy

All formal Languages are divided into four classes

class	Formal Language	Grammars	Automata
type-3	Regular Language	Regular Grammar	Finite Automata
type-2	Context Free Language	Context Free Grammar	Push Down Automata
type-1	Context Sensitive Language	Context Sensitive Grammar	Linear Bound Automata
type-0	Recursive Enumerable Language	Recursive Enumerable Grammar (unrestricted grammar)	Turing Machine

1.2 Expressive power of automata

FA < DPDA < PDA < LBA < TM $Type3 \subset Type2 \subset Type1 \subset Type0$ DPDA accepts DCFL

Chapter 2

Finite Automata

2.1 Moore-Mealy machines

moore and mealy machines are output generators, there is no final state in those machines.

Moore machine: if the output symbol is associated with each state of the machine then such a machine is moore machine.

Mealy machine: if the output symbol is associated with each transition of the machine then such a machine is mealy machine.

2.2 Regular Expression

2.2.1 Operators

- $R^* \to \text{Kleen closure}$
- $R^+ \to \text{positive closure}$
- \bullet . \rightarrow concatenation
- $+\rightarrow$ union

2.2.2 Equivalence of languages

•
$$L(r_1 + r_2) = L(r_1) \bigcup L(r_2)$$

•
$$L(r_1.r_2) = L(r_1).L(r_2)$$

•
$$L(r^*) = (L(r))^*$$

•
$$r_1(r_2r_3) = (r_1r_2)r_3$$

•
$$\phi . r = r . \phi = r^* . \phi = \phi . \phi = \phi^+ = \phi$$

•
$$\epsilon^* = \epsilon^+ = \epsilon$$

$$\bullet$$
 $r+r=r$

•
$$r^*.r^* = r^*$$

•
$$(r^*)^* = (r^+)^* = (r^*)^+ = r^*$$

$$\bullet \ (\epsilon + r.r^*) = (\epsilon + r^+) = r^*$$

•
$$(p+q)^* = (p^*q^*)^* = (p^*+q^*)^*$$

$$\bullet \ r_1.r_2 \neq r_2.r_1$$

$$\bullet r_1(r_2 + r_3) = r_1 r_2 + r_1 r_3$$

•
$$\epsilon . r = r . \epsilon = r$$

•
$$\phi^* = \epsilon$$

•
$$r.r \neq r$$

•
$$r^*.r^+ = r^+$$

$$p(pq)^* = (pq)^* P$$

•
$$(p+q)^*p^*q^* = (p+q)^*$$

2.2.3 Arden's Method

if P and Q are two regular expression over an alphabet Σ and P does not contain ϵ then the equation

$$R = Q + RP$$

has unique solution given by
 $R = QP^*$

2.3 Myhill-Nerode Theorem

A String u and v are distinguishable by a language L if some string w exists such that uw and vw is a member of L. Otherwise for every string w uw and vw are members of L.