5 Optics

5.1 Refraction of Light

When considering the effect of lenses or mirrors on the path of light, we draw diagrams using **light** rays and normals.

- Light rays represent the direction of travel of wavefronts.
- The **normals** is an imaginary line <u>perpendicular to a boundary</u> between two materials or a surface.

Refraction is the <u>change of direction</u> that occur when light **passes at an angle** across a boundary between two **transparent substances**. When entering a glass block from air, the light ray bends

- Towards the normal when it passes from air into glass.
- Away from the normal when it passes from glass into air.

No refraction takes place if the incident light ray is along the normal.

At a boundary between two transparent substances, the ray bends towards the normal if it passes into a more dense substance.

Investigating Refraction by Glass

- 1. Use a ray box to direct a light ray into a rectangular glass block at different angles of incident at point P on one of the sides.
- 2. For each angle of incidence, mark point Q where the light leaves the block.

The **angle of incidence** is the angle between the incident light ray and the **normal** at the point of incident. The **angle of reflection** is the angle between the refracted light ray and the normal at the point of incident.

- The angle of diffraction r is always less than the angle of incident i.
- Snell's law: the ratio $\sin i / \sin r$ is the same for each light ray.
 - The ratio is referred to as the **refractive index** n of glass.

refractive index of the substance
$$n = \frac{\sin i}{\sin r}$$

Partial reflection also occur when a light ray in air enters any refractive substance.

The angle of refraction of the light ray emerging from a rectangular glass block is the same as the **angle of incidence** of the ray entering the block.

- The two side of the block are **parallel to each other**.
- Refractive index when entering the glass is n, when leaving the glass is 1/n, so the combined effect is n = 1.

5.2 More about Refraction

Refraction occurs because the **speed of light waves** is different in each substance. The amount of refraction that takes place depends on the **speed of the waves in each substance**.

Consider a wavefront of light waves when it passes across a **straight boundary** from a vacuum into a transparent substance.

The wave front moves

- A distance ct at speed c in vacuum from Y to Y'.
- A distance $c_s t$ at speed c_s in the substance from X to X'.

This gives us equations

$$\begin{cases} ct = XY' \sin i \\ c_s t = XY' \sin r \end{cases}$$

Combining the equations give

$$\frac{\sin i}{\sin r} = \frac{c}{c_s}$$

This shows the smaller the speed of light is in a substance, the greater the refractive index of the substance.

Since the **frequency does not change** when refraction occurs

$$n_s = \frac{c}{c_s} = \frac{\lambda}{\lambda_s}$$

Refraction at a Boundary between Two Transparent Substances

Consider light crossing a boundary from a substance which the speed of light is c_1 to one that the speed of light is c_2 .

$$\frac{\sin i}{\sin r} = \frac{c_1}{c_2}$$

$$\frac{1}{c_1} \sin i = \frac{1}{c_2} \sin r$$

$$\frac{c}{c_1} \sin i = \frac{c}{c_2} \sin r$$

$$n_1 \sin \theta_1 = n_2 \sin \theta_2$$

which is the equation form of Snell's law.

Note that the refractive index of air is 1.0003, for most purposes can be assumed to be 1.

White Light Spectrum

A glass prism can be used to split a beam of white light from a filament lamp into the colours of the spectrum. The dispersion effect occur because the speed of light in glass depends on wavelength.

- White light is composed of light with a **continuous range of wavelengths**.
- The shorter the wavelength in air, the greater the amount of diffraction.
- So each colour in the white light beam is refracted by a different amount.