Problem set 1

Jack Ceroni

Wednesday 13th August, 2025

Contents

1	Problem 0	1
2	Problem 1	1
3	Problem 2	2
4	Problem 3	2

1 Problem 0

Problem 1.1. Prove that if $|\cdot|$ is non-Archimedean on k, and $|x| \neq |y|$, then $|x+y| = \max(|x|, |y|)$.

Proof. We know that $|x + y| \le \max(|x|, |y|)$. In addition, since $|x| \ne |y|$, we have |y| < |x| or |y| < |x|. Suppose without loss of generality the former case. Then we have

$$|y| < |x| = |x + y - y| \le \max(|x + y|, |y|) = |x + y| \tag{1}$$

where the final equality follows from the fact that if $\max(|x+y|,|y|) = |y|$, then we would have $|x| \le |y|$, a contradiction. Thus, $\max(|x|,|y|) \le |x+y|$, and we have equality.

Problem 1.2.

Problem 1.3.

2 Problem 1

Problem 2.1. Prove that $|\cdot|$ is non-Archimedean if and only if $|1+\cdots+1| \le 1$ for every finite sum of 1s.

Proof. Let $n = 1 + \cdots + 1$ repeated n times. Note that if $|\cdot|$ is non-Archimedean, then $|n| = |n-1+1| \le \max(|n-1|,1)$, so the result follows via induction. Conversely, if $|n| \le 1$ for all n, then note that if |z| < 1, we have

$$|1+z|^N = |(1+z)^N| = \left| \sum_{k=0}^N \binom{N}{k} z^k \right| \le \sum_{k=0}^N \left| \binom{N}{k} \right| |z|^k \le \sum_{k=0}^N |z|^k \le \frac{1}{1-|z|}$$
 (2)

for any N. In particular, $|1+z|^N$ is bounded as we take $N \to \infty$, so it must be the case that $|1+z| \le 1$. Therefore, $|1+z| \le \max(|z|, 1)$. It follows immediately that if $|x| \ne |y|$, so |x| < |y| or |y| < |x| (without loss of generality, assume the first case), then $\frac{|x|}{|y|} < 1$, and we have

$$|x+y| = |y| \left| 1 + \frac{x}{y} \right| \le |y| = \max(|x|, |y|)$$
 (3)

Therefore, the only remaining case is when |x| = |y|. Equivalently, suppose we have |z| = 1 and $|1+z| = \alpha > 1$. Then $|(1+z)^N| = \alpha^N$ grows exponentially, but as before

$$|(1+z)^N| \le \sum_{k=0}^N |z|^k = \frac{N(N+1)}{2} \tag{4}$$

which grows polynomially in N. Hence, we have a contradiction: α^N must eventually exceed this bound. It follows that we must have $|1+z| \leq 1$ as well, which completes the proof.

Remark 2.1. As an immediate corollary, it follows that if field F has positive characteristic p, so p = 0, then if $|\cdot|$ is some absolute value, we note that |n| will be bounded for any integer n: it will be the maximum of $|1|, |2|, \ldots, |p-1|$. It follows that we must have $|n| \le 1$ for all n, otherwise we could make $|n^K| = |n|^K$ arbitrarily large. If we have a finite field of characteristic p, pick some n, and note that n^K will eventually return to n for some large enough K > 1, so $|n| = |n|^K$, which means $|n|^{K-1} = 1$ (in the case $n \ne 0$). Thus, |n| = 1, and the absolute value is trivial.

Problem 2.2 (Ostrowski's theorem). Prove that every non-trivial absolute value on \mathbb{Q} is equivalent to $|\cdot|_p$ for some prime $p \leq \infty$.

Proof. Recall that the p-adic absolute value on $\mathbb Q$ is given by taking $|x|_p = p^{-v_p(x)}$, where $v_p(x)$ is the multiplicity of a prime factor in x. If norm $|\cdot|$ is non-trivial, then we will have $|n| \neq 0, 1$ for some $n \neq 0$. We can factor n into primes, so we must have $|p| \neq 0, 1$ for some prime p. Of course, $|p|_p = p^{-1}$, so we let $\alpha = -\frac{\log(p)}{\log(|p|)}$ (well-defined as $|p| \neq 0, 1$) and note that $|p|^\alpha = |p|_p$. Immediately, we have $|p^k|^\alpha = |p^k|_p$ for all powers of p. For any other prime $q \neq p$, we have $|q|_p = 1$, so we must show that |q| = 1 for all such q. We can write, for any n,

$$\frac{1}{p} = \frac{k}{q^n} + r \tag{5}$$

for some $k \in \mathbb{Z}$ less than q^n , and remainder r which has magnitude less than $\frac{1}{q^n}$. Note that we will never have r = 0, as we would have $q^n = pk$, but in the prime factorization of the right-hand side, the exponent of q is at most n - 1. It then follows that

$$\left|\frac{1}{p}\right| = \left|\frac{k}{q^n} + r\right| \le \frac{|k|}{|q|^n} + |r| \tag{6}$$

Problem 2.3.

- 3 Problem 2
- 4 Problem 3
- 5 Problem 4