Name: Richard

TEST 2

MATH 200, SECTION 1 April 2, 2021

Directions: Closed book, closed notes, no calculators. Put all phones, etc., away. You will need only a pencil or pen.

1. (36 points) Find the derivatives of these functions. You do not need to simplify your answers.

(a)
$$\frac{d}{dx}\left[x^3\ln(x)\right] = 3\chi^2\ln(x) + \chi^3\frac{1}{\chi} = 3\chi^2\ln(\chi) + \chi^2$$

(b)
$$\frac{d}{dx} \left[\tan^{-1}(x) \right] = \frac{1}{1 + \chi^2}$$

(c)
$$\frac{d}{dx} \left[\left(2 + \ln \left(x^5 - x^2 \right) \right)^4 \right] = 4 \left(2 + \ln \left(\chi^5 - \chi^2 \right) \right)^3 \frac{5\chi^4 - 2\chi}{\chi^5 - \chi^2}$$

(d)
$$\frac{d}{dx}\left[x + \frac{\ln(x)}{x}\right] = \left[1 + \frac{\frac{1}{\chi}\chi - \ln(\chi)}{\chi^2}\right] + \frac{1 - \ln(\chi)}{\chi^2}$$

(e)
$$\frac{d}{dx} \left[\frac{1}{\sqrt{\ln(x)}} \right] = \frac{d}{dx} \left[\left(\ln(x) \right)^{\frac{-1}{2}} \right] = \frac{-1}{2} \left(\ln(x) \right)^{\frac{-3}{2}} \frac{1}{x} = \left[\frac{-1}{2x \sqrt{\ln(x)^3}} \right]$$

(f)
$$\frac{d}{dx} \left[\sin^{-1} (x^3 + 3x) \right] = \sqrt{\frac{1}{\left| -\left(\times^3 + 3 \times \right)^2} \left(3 \times^2 + 3 \right) \right|}$$

2. (4 points) Find:
$$\lim_{h \to 0} \frac{\tan^{-1}(2+h) - \tan^{-1}(2)}{h} = \frac{1}{1+2^2}$$

(For $f(x) = \tan^{-1}(x)$, this limit is $f'(z) = \frac{1}{1+2^2}$)

3. (12 points) Given the equation $\ln |x+y| = xy+1$, find y'.

$$\frac{d}{dx} \left[\ln |x+y| \right] = \frac{d}{dx} \left[xy + 1 \right]$$

$$\frac{1+y'}{x+y} = 1 \cdot y + xy' + 0$$

$$1+y' = (x+y)(y+xy')$$

$$1+y' = xy + x^2y' + y^2 + xyy'$$

$$1-xy-y^2 = x^2y' + xyy' - y'$$

$$1-xy-y^2 = (x^2 + xy - 1)y'$$

$$y' = \frac{1-xy-y^2}{x^2+xy-1}$$

4. (12 points) A spherical balloon is deflating in such a way that its volume is decreasing at a rate of 18 cubic feet per hour. At what rate is the radius changing when the radius is 3 feet?

Know
$$\frac{dV}{dt} = -18 \text{ ft}^3/\text{m}$$

Want $\frac{dr}{dt}$ (when $r=3$)

$$V = \frac{4}{3}\pi r^3$$

$$\frac{dV}{dt} = \frac{-18}{4\pi r^2} = \frac{-9}{2\pi r^2}$$

Now insert $r=3$:

$$\frac{dV}{dt} = \frac{4}{3}\pi r^3$$

$$\frac{dr}{dt} = \frac{-9}{2\pi 3^2} = \frac{-1}{2\pi} \frac{ft}{hr}$$

$$-18 = 4\pi r^2 \frac{dr}{dt}$$

Sphere formulas Volume: $V = \frac{4}{3}\pi r^3$ Surface area: $S = 4\pi r^2$

5. (12 points) A rocket has a height of $t+t^2$ meters t seconds after it is launched. How high is the rocket when its velocity is 101 meters per second?

position (height) =
$$S(t) = t + t^2$$
 meters at time t.
Velocity = $V(t) = S'(t) = 1 + 2t$ m/sec
To find when velocity is 101 m/sec, solve

$$V(t) = 101$$

$$1 + 2t = 101$$

$$2t = 100$$

$$t = 50$$
 Sec.

Height at this time is
$$S(50) = 50 + 50^2 = 2550 \text{ m}$$
.

6. (12 points) Find the locations (x-coordinates) of any local extrema of $f(x) = x^2 e^x$.

$$f(x) = 2xe^{x} + x^{2}e^{x} = e^{x}x(2+x)$$
.
This is defined for all x and equals 0 for $x = 0 \notin x = -2$.
Thus the critical points are 0 and -2

7. (12 points) The graph of the **derivative** f'(x) of a function f is shown below.

(a) State the critical points of f.

$$\chi = 5$$
 (because $f(5) = 0$)

(b) State the interval(s) on which f increases.

(c) State the interval(s) on which f decreases.

