Compositional Dependence of Electromechanical Behavior of Ba,Zr-Codoped Sodium Bismuth Titanate

Andrey N. Soukhojak
Lehigh University

Yet-Ming Chiang

maintaining the data needed, and of including suggestions for reducing	llection of information is estimated to completing and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding ar OMB control number.	ion of information. Send comments arters Services, Directorate for Information	regarding this burden estimate or mation Operations and Reports	or any other aspect of th , 1215 Jefferson Davis l	is collection of information, Highway, Suite 1204, Arlington	
1. REPORT DATE 00 JUN 2003		2. REPORT TYPE N/A		3. DATES COVERED		
4. TITLE AND SUBTITLE	5a. CONTRACT NUMBER					
Compositional Dep	of 5b. GRANT NUMBER					
Ba,Zr-Codoped Sodium Bismuth Titanate				5c. PROGRAM ELEMENT NUMBER		
6. AUTHOR(S)				5d. PROJECT NUMBER		
				5e. TASK NUMBER		
				5f. WORK UNIT NUMBER		
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Lehigh University; MIT				8. PERFORMING ORGANIZATION REPORT NUMBER		
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)				10. SPONSOR/MONITOR'S ACRONYM(S)		
				11. SPONSOR/MONITOR'S REPORT NUMBER(S)		
12. DISTRIBUTION/AVAIL	LABILITY STATEMENT ic release, distributi	on unlimited				
	OTES 197, ARO-44924.1-E Nanotechnology)., T	•		_	nterials (5th)	
14. ABSTRACT						
15. SUBJECT TERMS						
16. SECURITY CLASSIFIC	17. LIMITATION OF	18. NUMBER	19a. NAME OF			
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	- ABSTRACT UU	OF PAGES 25	RESPONSIBLE PERSON	

Report Documentation Page

Form Approved OMB No. 0704-0188

Collaborators

Greg Farrey

Sossity Sheets

Haifeng Wang

Hong Cai

Ben Nunes

Garry Maskaly

Outline

- Introduction: doped Na_{1/2}Bi_{1/2}TiO₃ (NBT) as the best high-strain lead-free competitor of lead-relaxors
- Studied compositions and experimental setup
- Diverse electromechanical behavior
- Free energy expansion and phase diagram
- Nanostructure imaged by TEM

Doped NBT as a lead-free alternative

Na_{1/2}Bi_{1/2}TiO₃ polycrystals† vs. lead perovskites*

- –New Lead-Free actuator materials
- -High strain at high fields
- -Polycrystals with actuation comparable to PZT-8, PMNT
- -Single crystals 2x higher ultimate strain

[†] Y.-M. Chiang group (MIT).

^{*} Park & Shrout, 1997.

Map of Distortions in Perovskites ABO₃*

^{*} Kassan-Ogly & Naish, *Acta Cryst.* **B42** 297 (1986)

Phases of NBT

Intensities of octahedral tilt superlattice reflections vs. temperature – neutron diffraction data for single crystal NBT.

Vakhrushev et al. Ferroelectrics 63 [1-4] 153-60 (1985).

NBT-BT Solid Solutions

BNT–Na_{1/2}Bi_{1/2}TiO₃, F–ferroelectric phase, AF–antiferroelectric phase, P–paraelectric phase

Takenaka et al., Jap. J. Appl. Phys., 30 [9B], 2236 (1991)

Compositions close to morphotropic phase boundary (MPB) at 6% BT exhibit enhanced piezoelectric performance

$(Bi_{1/2}Na_{1/2})_{1-x}Ba_{x}Zr_{y}Ti_{1-y}O_{3}$ (BNBZT)

Hypothetic Phase Diagram

- Zr on B-site
 suppresses
 ferroelectricity*, so at
 some concentration
 the phase should
 become paraelectric
 (PE)
- Termination of the Rh-Tetr boundary is a tricritical point at which electromechanical response should reach its maximum

^{*} Rossetti, *J. Solid State Chem.* **144** (1) 188-194 (1999)

Electromechanically Tested Polycrystalline

 $(\mathrm{Bi_{1/2}Na_{1/2}})_{1\text{-}x}\mathrm{Ba_x}\mathrm{Zr_y}\mathrm{Ti_{1\text{-}y}O_3}$ (BNBZT) Samples

Samples by solid state synthesis method, sintered into Ø10 mm disks with > 95% density:

- Composition was confirmed by EPMA
 - > 98% perovskite phase purity was confirmed by XRD

Electromechanical Testing Setup

Electromechanical Behavior of BNBZT with 1% Zr and 7% Ba (z1b7)

Electromechanical Behavior of BNBZT with 3% Zr and 4% Ba (z3b4)

Bipolar actuation

Unipolar actuation

Frequency Independent Electrostrictive Relation

Typical for all samples bipolar strain vs. (polarization)²

Compositional map of large signal d_{33} (pC/N)

Compositional map of large signal ϵ_{33} - 10^{-3}

Compositional map of relative unipolar polarization hysteresis ${\cal H}_{P}$ at 0.2 Hz

% Zr

Free Energy Expansion

Envelope curves from free energy expansion and experimental data points

Free energy U [kJ/m 3] vs. polarization P profiles

Phase Diagram
Based on
Electromechanical
Behavior of
Polycrystalline
BNBZT Samples

Phases:

PE—paraelectric

FE—ferroelectric

Nanostructure of High-Strain NBT-BT Crystal

[001] Raw TEM image

Fourier-filtered image

10 nm

No larger scale features observed

Nanodomains in z3b6 Polycrystal

Raw [001] TEM image

Fourier-filtered image

4 nm

No larger scale features observed

Summary

- BNBZT system offers rich possibilities for lead-free ferroelectrics with high electromechanical properties
- The peak of electromechanical response has been found at the composition z2b7
- Compositional dependence of ferroelectric phase stability in the BNBZT system has been mapped by means of a free energy expansion in terms of polarization with coefficients obtained by fitting of the predicted to the observed hysteresis loops.
- Nanodomain relaxation as a mechanism of frequency dependent electromechanical response of BNBZT has been supported by microscopic observations