

M. Hohle:

Physics 77: Introduction to Computational Techniques in Physics

syllabus

<u>Week</u>	<u>Date</u>	<u>Topic</u>
1	June 12th	Programming Environment & UIs for Python,
		Programming Fundamentals
2	June 19th	Basic Types in Python
3	June 26th	Parsing, Data Processing and File I/O, Visualization
4	July 3rd	Functions, Map & Lambda
5	July 10th	Random Numbers & Probability Distributions,
		Interpreting Measurements
6	July 17th	Numerical Integration and Differentiation
7	July 24th	Root finding, Interpolation
8	July 31st	Systems of Linear Equations, Ordinary Differential Equations (ODEs)
9	Aug 7th	Stability of ODEs, Examples
10	Aug 14th	Final Project Presentations

<u>Outline</u>

root finding

- The Problem
- Newtons Method
- Bisection

interpolation

- Lagrange Polynomials
- Interpolation techniques
- Smoothing

<u>Outline</u>

root finding

- The Problem
- Newtons Method
- Bisection

interpolation

- Lagrange Polynomials
- Interpolation techniques
- Smoothing

We know how to solve a set of linear equations (see also next lecture!):

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \cdots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \cdots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & a_{m3} \cdots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} c_1 \\ c_2 \\ c_3 \\ \vdots \\ c_m \end{bmatrix}$$

However: what about non-linear equations?!

root finding: finding the **zeros** of a polynomial

How many roots does a polynomial have?

How many roots does a polynomial have?

$$f_N(x) = \sum_{i=0}^{N} a_i x^i = \alpha \prod_{i=1}^{N} (x - x_i)$$
 factored form

 x_i : zeros

- a polynomial of Nth order has N roots (real & complex)
- for $N \ge 5$: no analytical solutions
- for N is odd: at least one real zero

$$f(x) = x^3 = (x - x_1)(x - x_2)(x - x_3)$$

zeros:
$$x_1 = x_2 = x_3 = 0$$

one zero with multiplicity m = 3

Calculate the **n-th** root of **1** and **i**. Use Euler's identity and revisit the set of solutions for sin(x) and cos(x).

How many roots does a polynomial have?

$$f_N(x) = \sum_{i=0}^{N} a_i x^i = \alpha \prod_{i=1}^{N} (x - x_i)$$

factored form

 x_i : zeros

- a polynomial of Nth order has N roots (real & complex)
- for $N \ge 5$: no analytical solutions
- for N is odd: at least one real zero

zeros:
$$x_1 = x_2 = 1$$

one zero with multiplicity m = 2

How many roots does a polynomial have?

$$f_N(x) = \sum_{i=0}^{N} a_i x^i = \alpha \prod_{i=1}^{N} (x - x_i)$$

factored form

 x_i : zeros

- a polynomial of **Nth order** has **N roots** (real & complex)
- for $N \ge 5$: no analytical solutions
- for N is odd: at least one real zero

zeros:
$$x_1 = 2$$
, $x_2 = -1$

two zeros with multiplicity m = 1 each

methods:

Root finding [edit]

Main article: Root-finding algorithm

- Bisection method
- False position method: and Illinois method: 2-point, bracketing
- Halley's method: uses first and second derivatives
- ITP method: minmax optimal and superlinear convergence simultaneously
- Muller's method: 3-point, quadratic interpolation
- Newton's method: finds zeros of functions with calculus
- Ridder's method: 3-point, exponential scaling
- · Secant method: 2-point, 1-sided

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

<u>Outline</u>

root finding

- The Problem
- Newtons Method
- Bisection

interpolation

- Lagrange Polynomials
- Interpolation techniques
- Smoothing

Newton's method:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

Newton's method:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

since slope of the function points to next x_{n+1}

needs derivative

convergence depends on initial guess

→ converges quadratically

→ evaluation numerically

→ might not converge!

<u>Outline</u>

root finding

- The Problem
- Newtons Method
- Bisection

interpolation

- Lagrange Polynomials
- Interpolation techniques
- Smoothing

methods:

Root finding [edit]

Main article: Root-finding algorithm

- · Bisection method
- · False position method: and Illinois method: 2-point, bracketing
- Halley's method: uses first and second derivatives
- ITP method: minmax optimal and superlinear convergence simultaneously
- Muller's method: 3-point, quadratic interpolation
- Newton's method: finds zeros of functions with calculus
- Ridder's method: 3-point, exponential scaling
- · Secant method: 2-point, 1-sided

Bisection:

assumption: root is within interval $[x_{left}, x_{right}]$

if
$$f(x_{center}) \cdot f(x_{left}) < 0$$

- $-x_{left} \rightarrow x_{left}$
- set x_{right} to x_{center}
- reset $x_{center} = 0.5 (x_{left} + x_{right})$

if
$$f(x_{center}) \cdot f(x_{left}) < 0$$

- $-x_{left} \rightarrow x_{left}$
- set x_{right} to x_{center}
- reset $x_{center} = 0.5 (x_{left} + x_{right})$

if
$$f(x_{center}) \cdot f(x_{left}) < 0$$

- $-x_{left} \rightarrow x_{left}$
- set x_{right} to x_{center}
- reset $x_{center} = 0.5 (x_{left} + x_{right})$

either we end up with the same situation, or...

if
$$f(x_{center}) \cdot f(x_{left}) > 0$$

- set x_{left} to x_{center}
- $-x_{right} \rightarrow x_{right}$
- reset $x_{center} = 0.5 (x_{left} + x_{right})$

if
$$f(x_{center}) \cdot f(x_{left}) > 0$$

- set x_{left} to x_{center}
- $-x_{right} \rightarrow x_{right}$
- reset $x_{center} = 0.5 (x_{left} + x_{right})$

if
$$f(x_{center}) \cdot f(x_{left}) > 0$$

- set x_{left} to x_{center}
- $-x_{right} \rightarrow x_{right}$
- reset $x_{center} = 0.5 (x_{left} + x_{right})$

...and so on...

Bisection:

- robust: always finds a root
- easy to implement (recursion), → Lecture Exercise
- slow: converges linearly (accuracy increases by factor of 2 for each step n) with n required for a certain accuracy

<u>Outline</u>

root finding

- The Problem
- Newtons Method
- Bisection

interpolation

- Lagrange Polynomials
- Interpolation techniques
- Smoothing

the problem:

How to interpolate?

- polynomials (1st order = linear)
- piecewise polynomials
- trigonometric functions
- exponential functions
- rational functions

called "basis functions"

note: interpolation is not fitting!

the problem:

linear interpolation

$$y_{int} = y_i + m (x_0 - x_i)$$

$$y_{int} = y_i + \frac{y_{i+1} - y_i}{x_{i+1} - x_i} (x_0 - x_i)$$

quadratic interpolation

$$y_{int} = y_i + m (x_0 - x_i) + a (x_0 - x_i)^2$$

this time we need **one more** reference point for calculating **a**

 x_0

the problem:

quadratic interpolation

$$y_{int} = y_i + m (x_0 - x_i) + a (x_0 - x_i)^2$$

this time we need **one more** reference point for calculating **a**

all three reference points need to fit the same parabola

$$y_i = c + mx_i + a x_i^2$$

$$y_{i+1} = c + mx_{i+1} + a x_{i+1}^2$$

$$y_{i+2} = c + mx_{i+2} + a x_{i+2}^2$$

solving for c, m and a

the problem:

linear interpolation:
$$y_{int} = y_i + \frac{y_{i+1} - y_i}{x_{i+1} - x_i} (x_0 - x_i)$$

quadratic interpolation:

$$y_i = c + mx_i + a x_i^2$$

 $y_{i+1} = c + mx_{i+1} + a x_{i+1}^2$ solving for c, m and a
 $y_{i+2} = c + mx_{i+2} + a x_{i+2}^2$

Maybe there is a closed (= general) solution/method? → Lagrange Polynomials

$$y_i = y_{int} + y'_{int}(x_i - x_0) + \sigma(\Delta x^2)$$

Taylor expansion

$$y_{i+1} = y_{int} + y'_{int}(x_{i+1} - x_0) + \sigma(\Delta x^2)$$

$$y_{int} = \frac{y_i(x_{i+1} - x_0)}{(x_{i+1} - x_i)} - \frac{y_{i+1}(x_i - x_0)}{(x_{i+1} - x_i)} = y_i + \frac{y_{i+1} - y_i}{x_{i+1} - x_i} (x_0 - x_i)$$

Maybe there is a closed (= general) solution/method? → Lagrange Polynomials

$$y_i = y_{int} + y'_{int}(x_i - x_0) + \sigma(\Delta x^2)$$

Taylor expansion

$$y_{i+1} = y_{int} + y'_{int}(x_{i+1} - x_0) + \sigma(\Delta x^2)$$

$$y_{int} = \frac{y_i(x_{i+1} - x_0)}{(x_{i+1} - x_i)} - \frac{y_{i+1}(x_i - x_0)}{(x_{i+1} - x_i)} = y_i + \frac{y_{i+1} - y_i}{x_{i+1} - x_i} (x_0 - x_i)$$

$$y_i = y_{int} + y'_{int}(x_i - x_0) + y''_{int}(x_i - x_0)(x_i - x_0)/2 + \sigma(\Delta x^3)$$

Taylor expansion

$$y_{i+1} = y_{int} + y'_{int}(x_{i+1} - x_0) + y''_{int}(x_{i+1} - x_0)(x_{i+1} - x_0)/2 + \sigma(\Delta x^3)$$

$$y_{i+2} = y_{int} + y'_{int}(x_{i+2} - x_0) + y''_{int}(x_{i+2} - x_0)(x_{i+2} - x_0)/2 + \sigma(\Delta x^3)$$

$$y_{int} = \frac{(x_0 - x_{i+1})(x_0 - x_{i+2})}{(x_i - x_{i+1})(x_i - x_{i+2})} y_i + \frac{(x_0 - x_i)(x_0 - x_{i+2})}{(x_{i+1} - x_i)(x_{i+1} - x_{i+2})} y_{i+1} + \frac{(x_0 - x_i)(x_0 - x_{i+1})}{(x_{i+2} - x_i)(x_{i+2} - x_{i+1})} y_{i+2}$$

Maybe there is a closed (= general) solution/method? → Lagrange Polynomials

$$y_{int} = \frac{(x_0 - x_{i+1})(x_0 - x_{i+2})}{(x_i - x_{i+1})(x_i - x_{i+2})} y_i + \frac{(x_0 - x_i)(x_0 - x_{i+2})}{(x_{i+1} - x_i)(x_{i+1} - x_{i+2})} y_{i+1} + \frac{(x_0 - x_i)(x_0 - x_{i+1})}{(x_{i+2} - x_i)(x_{i+2} - x_{i+1})} y_{i+2}$$

for any polynomial of n-th order:

$$y_{int} = \frac{(x_0 - x_{i+1})(x_0 - x_{i+2}) \dots (x_0 - x_{i+n})}{(x_i - x_{i+1})(x_i - x_{i+2}) \dots (x_i - x_{i+n})} y_i + \frac{(x_0 - x_i)(x_0 - x_{i+2}) \dots (x_0 - x_{i+n})}{(x_{i+1} - x_i)(x_{i+1} - x_{i+2}) \dots (x_{i+1} - x_{i+n})} y_{i+1} + \frac{(x_0 - x_i)(x_0 - x_{i+2}) \dots (x_0 - x_{i+n})}{(x_{i+n} - x_i)(x_n - x_{i+2}) \dots (x_0 - x_{i+n-1})} y_{i+n}$$

$$y_{int} = L(x_0) = \sum_{j=0}^{n} y_j \prod_{\substack{0 \le m < n \\ m \ne j}} \frac{x_0 - x_m}{x_j - x_m}$$

Lagrange Polynomials

$$y_{int} = L(x_0) = \sum_{j=0}^{n} y_j \prod_{\substack{0 \le m < n \\ m \ne j}} \frac{x_0 - x_m}{x_j - x_m}$$

Lagrange Polynomials

- computation is simple
- but not efficient for large n
- \rightarrow only considering data points close to x_0
- → reduces approximation accuracy

<u>Outline</u>

root finding

- The Problem
- Newtons Method
- Bisection

interpolation

- Lagrange Polynomials
- Interpolation techniques
- Smoothing


```
check out
                             InterpolateExamples.py
from scipy import interpolate
    = interpolate.interp1d(x, y)
xint = np.arange(left, right, 0.1)
yint = I(xint)
plt.plot(xint, yint, c = r', linewidth = 3, alpha = 0.3,\
                                                    label = 'interpolation')
plt.scatter(x, y, marker = 'x', c = 'k', label = 'actual data')
plt.xlabel('x')
plt.ylabel('y')
plt.legend()
plt.title('linear interpolation')
plt.show()
```


check out

InterpolateExamples.py

```
from scipy import interpolate
```

```
I = interpolate.interp1d(x, y)
xint = np.arange(left, right, 0.1)
yint = I(xint)
```

```
plt.plot(xint, yint, c = 'r', linewidth =

plt.scatter(x, y, marker = 'x', c = 'k',
 plt.xlabel('x')
 plt.ylabel('y')
 plt.legend()
 plt.title('linear interpolation')
 plt.show()
```



```
check out
                              InterpolateExamples.py
from scipy import interpolate
     = interpolate.interp1d(x, y, kind = 2)
                                                              quadratic interpolation
xint = np.arange(left, right, 0.1)
yint = I(xint)
plt.plot(xint, yint, c = r', linewidth = 3, alpha = 0.3,\
                                                    label = 'interpolation')
plt.scatter(x, y, marker = 'x', c = 'k', label = 'actual data')
plt.xlabel('x')
plt.ylabel('y')
plt.legend()
plt.title('linear interpolation')
plt.show()
```


check out

InterpolateExamples.py

from scipy import interpolate

```
I = interpolate.interp1d(x, y, kind = 2)
xint = np.arange(left, right, 0.1)
yint = I(xint)
```

quadratic interpolation

```
plt.plot(xint, yint, c = 'r', linewidth =

plt.scatter(x, y, marker = 'x', c = 'k',

plt.xlabel('x')

plt.ylabel('y')

plt.legend()

plt.title('linear interpolation')

plt.show()
```


spline interpolation

A shape (piecewise polynomials, usually cubic) that minimizes the curvature **K** under the constraint of passing through all reference points

$$\kappa = \frac{\frac{d^2y}{dx^2}}{\left(1 + \left[\frac{dy}{dx}\right]^2\right)^{3/2}}$$

$$s_{i}(x_{i}) = s_{i+1}(x_{i}) = y_{i}$$

$$s'_{i}(x_{i}) = s'_{i+1}(x_{i})$$

$$s''_{i}(x_{i}) = s''_{i+1}(x_{i})$$

spline interpolation

A shape (**piecewise** polynomials, usually cubic) that minimizes the curvature k under the constraint of passing through all reference points

$$\kappa = \frac{\frac{d^2y}{dx^2}}{\left(1 + \left[\frac{dy}{dx}\right]^2\right)^{3/2}}$$

x needs to be sorted in ascending order

* stands for unpacking zipped objects

```
sorted_pairs
                   = sorted(zip(x, y))
x_sorted, y_sorted = zip(*sorted_pairs)
```

I = interpolate.CubicSpline(x_sorted, y_sorted, \ extrapolate = 'periodic')

<u>Outline</u>

root finding

- The Problem
- Newtons Method
- Bisection

interpolation

- Lagrange Polynomials
- Interpolation techniques
- Smoothing

the problem:

when interpolating

→ you don't want to interpolate noise

many noise filter are low pass filter

smoothing filter:

Algorithm	Overview and uses	Pros	Cons
Additive smoothing	used to smooth categorical data.		
Butterworth filter	Slower roll-off than a Chebyshev Type I/Type II filter or an elliptic filter	 More linear phase response in the passband than Chebyshev Type I/ Type II and elliptic filters can achieve. Designed to have a frequency response as flat as possible in the passband. 	 requires a higher order to implement a particular stopband specification
Chebyshev filter	Has a steeper roll-off and more passband ripple (type I) or stopband ripple (type II) than Butterworth filters.	Minimizes the error between the idealized and the actual filter characteristic over the range of the filter	Contains ripples in the passband.
Digital filter	Used on a sampled, discrete-time signal to reduce or enhance certain aspects of that signal		
Elliptic filter			
Exponential smoothing	 Used to reduce irregularities (random fluctuations) in time series data, thus providing a clearer view of the true underlying behaviour of the series. Also, provides an effective means of predicting future values of the time series (forecasting).^[3] 		

moving averages

better: → weighted average

→ data points further away from reference point have lower weights w

$$y_{int} \sim \sum_{i=1}^{l} w_i y_i \qquad w_i \sim \frac{1}{d_0}$$

data points further away from reference point have lower weights \boldsymbol{w}

$$y_{int} \sim \sum_{i=1}^{I} w_i y_i \qquad w_i \sim \frac{1}{d_{0i}}$$


```
L = np.random.uniform(0,1,(100,1))
```

check out:

SmoothGaussKernel.py SmoothExamples.py


```
import numpy as np
```

def SmoothGaussKernel(x, xint, y, sigma):

```
diff = np.median(abs(x[:-1] -x[1:]))
sigma *= diff
```

```
Dx = np.tile(x.transpose(), (len(xint), 1))
Dxint = np.tile(xint.transpose(), (len(x), 1))
D = Dx.transpose() - Dxint
```

```
scaling to dispersion of dataset
```

distance calculation

```
W = np.exp(-(D**2)/(sigma**2))
W = W/np.sum(W + 1e-16, axis = 0)

yint = np.dot(W.transpose(), y)

return yint
```

determining how distances are been weighted. Here: normal distribution aka kernel

SmoothExamples.py

M. Hohle:

Thank you very much for your attention!

