

• General Description

The AGM28P15C combines advanced trench MOSFET technology with a low resistance package to provide extremely low $R_{\text{DS}(\text{ON})}$.

This device is ideal for load switch and battery protection applications.

Features

- Advance high cell density Trench technology
- Low R_{DS(ON)} to minimize conductive loss
- Low Gate Charge for fast switching
- Low Thermal resistance
- 100% Avalanche tested
- 100% DVDS tested

Application

- MB/VGA Vcore
- SMPS 2nd Synchronous Rectifier
- POL application
- BLDC Motor driver

Product Summary

BVDSS	RDSON	ID
-150V	78mΩ	-30A

TO-220 Pin Configuration

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
AGM28P15C	AGM28P15C	TO-220			1000

Table 1. Absolute Maximum Ratings (TC=25℃)

Symbol	Parameter	Value	Unit
VDS	Drain-Source Voltage (VGS=0V)	-150	V
VGS	Gate-Source Voltage (VDS=0V)	±20	V
ID	Drain Current-Continuous(Tc=25℃) (Note 1)	-30	А
-	Drain Current-Continuous(Tc=100℃)	-21.2	А
IDM (pluse)	Drain Current-Pulsed (Note 2)	-120	А
PD	Maximum Power Dissipation(Tc=25℃)	180	W
	Maximum Power Dissipation(Tc=100℃)	90	W
EAS	Avalanche energy (Note 3)	338	mJ
TJ,TSTG	Operating Junction and Storage Temperature Range	-55 To 175	${\mathbb C}$

Table 2. Thermal Characteristic

Symbol	Parameter	Тур	Max	Unit
RθJA	Thermal Resistance Junction-ambient (Steady State) ¹		62.5	°C/W
RøJC	Thermal Resistance Junction-Case ¹		0.83	°C/W

Table 3. Electrical Characteristics (TJ=25^oC unless otherwise noted)

Table 3. Electrical Characteristics (TJ=25 ℃ unless otherwise noted)						
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
On/Off St	ates					
BVDSS	Drain-Source Breakdown Voltage	VGS=0V ID=-250µA	-150			V
IDSS	Zero Gate Voltage Drain Current	VDS=-150V,VGS=0V			1	μA
IGSS	Gate-Body Leakage Current	VGS=±20V,VDS=0V			±100	nA
VGS(th)	Gate Threshold Voltage	VDS=VGS,ID=-250µA	-1.2		-2.2	V
gFS	Forward Transconductance	VDS=-10V,ID=-20A		50		S
RDS(on)	Drain-Source On-State Resistance	VGS=-10V, ID=-20A		78	88	mΩ
- 120(011)		VGS=-4.5V, ID=-20A		81	95	mΩ
Dynamic	Characteristics					
Ciss	Input Capacitance	VDS=-75V,VGS=0V,		8240		pF
Coss	Output Capacitance	F=1MHZ		182		pF
Crss	Reverse Transfer Capacitance			115		pF
Rg	Gate resistance	VGS=0V, VDS=0V,f=1.0MHz				Ω
Switching Times						
td(on)	Turn-on Delay Time			17		nS
tr	Turn-on Rise Time	VGS=-10V,VDS=-75V,		80		nS
td(off)	Turn-Off Delay Time	ID=-20A,RGEN=9.1Ω		44		nS
tf	Turn-Off Fall Time			65		nS
Qg	Total Gate Charge			123		nC
Qgs	Gate-Source Charge	VGS=-10V, VDS=-75V, ID=-20A		20		nC
Qgd	Gate-Drain Charge	- VD373V, ID20A		27		nC
Source-Drain Diode Characteristics						
ISD	Source-Drain Current(Body Diode)				-30	А
VSD	Forward on Voltage	VGS=0V,IS=-20A			-1.2	V
trr	Reverse Recovery Time	IF=-20A , dl/dt=100A/μs ,		90		ns
Qrr	Reverse Recovery Charge	TJ=25℃		145		nc

Notes 1. The maximum current rating is package limited.

Notes 3.EAS condition: TJ=25℃

Notes 2.Repetitive Rating: Pulse width limited by maximum junction temperature.

Typical Electrical and Thermal Characteristics (Curves)

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

Figure 3 Rdson- Drain Current

Figure 4 Rdson-JunctionTemperature

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

40 30 20 10 0 25 50 75 100 125 150 175 T_C-Case Temperature(°C)

Figure 7 Capacitance vs Vds

Figure 9 Drain Current vs Case Temperature

Figure 8 Safe Operation Area

Figure 10 Power De-rating

-l₀- Drain Current (A)

Square Wave Pluse Duration(sec)

Figure 11 Normalized Maximum Transient Thermal Impedance

Test Circuit

1) E_{AS} test Circuit

2) Gate charge test Circuit

3) Switch Time Test Circuit

•Dimensions (TO-220)

SYMBOL	MILLIMETER			
SIMBUL	MIN	Typ.	MAX	
A	4.370	4. 570	4.700	
A1	1.250	1. 300	1.400	
A2	2.150	2.350	2. 550	
ь	0.700	0.800	0.950	
b1	1.170	1.270	1.470	
С	0.450	0.500	0.600	
D	15. 100	15.600	16.100	
D1	8.800	9.100	9.400	
D2	5.500	6.300 REF		
Е	9.700	10.000	10.300	
E3	7.000	7.600 REF		
е	2. 540 BSC			
e1	5. 080 BSC			
L	13. 200	13.500	13.800	
L1		3. 100	3.400	
Н	6.250	6.500	1. 352	
Φ	3.400	3.600	3.800	
Q	2.600	2.800	3.000	
θ 1	7° TYP			
θ 2	7° TYP			
θ3	3° TYP			

SYMBOL.	MILLIMETER		
OTMBOL	MIN	Typ.	MAX
A	15.400	15.600	15.800
A1	2. 350	2. 400	2. 500
A2	4.400	4.500	4. 700
b	0.700	0.800	0.900
b2	1. 180	1. 310	1. 440
С	0.480	0.500	0. 560
c1	1. 290	1. 300	1. 320
D	9.800	10.000	10.200
Е	6.400	6. 500	6.600
E1	9.000	9.100	9. 200
е	2. 420	2. 540	2. 660
e1	4.840	5. 080	5. 320
Н	2. 730	2.800	2.870
H1	2. 400	2.500	2.600
L	13.020	13. 370	13.720
R	3. 500	3. 600	3. 730
R1	1.400	1.500	1.600
U	1.650	1.750	1.850
V	0.580	0.680	0. 780
θ 1	2°	2.5°	3°
θ2	6.5°	7°	7.5°

Symbo1	Dimensions (mm)
A	10.0±0.3
A1	8.0±0.2
A2	0.94±0.1
A3	8.7±0.1
В	15.6±0.4
B1	13.2±0.2
С	4.5±0.2
C1	1.3±0.2
D	0.8±0.2
D1	0.5±0.1
Е	10.0±0.3
F	2.8±0.1
Н	3.6±0.1
K	3.1 ± 0.2
L	1.3±0.4
M	1.38±0.1
M1	1.28 ± 0.1
N	2.54 (typ)
P	2.4±0.3
Q	9.15±0.25

TO-220 Marking Instructions:

Model1:

Model2:

Disclaimer:

The information provided in this document is believed to be accurate and reliable. However, Shenzhen Core Control Source Electronics Technology Co., Ltd. does not assume any responsibility for the following consequences. Do not consider the use of such information or use beyond its scope.

The information mentioned in this document may be changed at any time without notice.

The products and information provided in this document do not infringe patents. Shenzhen Core Control Source Electronics Technology Co., Ltd. assumes no responsibility for any infringement of any other rights of third parties. The result of using such products and information.

This document is the first version issued on December 10th, 2024. This document replaces all previously provided information.

It is a registered trademark of Shenzhen Core Control Source Electronics Technology Co., Ltd.

Copyright © 2017 Shenzhen Core Control Source Electronics Technology Co., Ltd. all rights reserved.