CSE460/560 DATA
MODELS AND QUERY
LANGUAGES

Introduction

Cheng-En Chuang

(Slides Adopted from Jan Chomicki and Ning Deng)

University at Buffalo
Department of Computer Science
and Engineering
School of Engineering and Applied Sciences

Announcement

- About Force Registration
- TA: Zijian An

About Me

- A 2nd year PhD Student
- Worked at TrendMicro for 5 years
- TAed CSE460/560 for last two years
- Office: Capen 212
- Office Hour: 3:00 4:00

About CSE 460/560

- To build a database application
 - data models
 - query languages
- Topics
 - Design data models
 - Query languages
 - Relational Algebra
 - XML DB/XQuery
 - Views/Indexes
 - On-Line Analytic Processing

Textbook

H. Garcia-Molina, J. Ullman, J. Widom.
 Database Systems: The Complete Book, 2nd Edition, Prentice Hall, 2008

Course Webpage: Piazza

- https://piazza.com/buffalo/spring2020/cse460560
- Q&A
 - Form questions in a general manner
 - Do not cut/paste your code in public post
 - You can post anonymously
 - Only staffs know your identity
 - No stupid/wrong question when you are learning!
- Announcements
- Materials

Grades Breakdown

- Exams (55%)
 - In-class Midterm (15%)
 - Mar. 12 tentatively
 - Final Exam (40%)
- Three Projects (45%, 15% per each project)
- Final Grade Allocation (for CSE460)
 - A/A- (at least 80%)
 - B+/B/B-(at least 65%)
 - C+/C/C- (at least 50%)
 - D+/D (at least 40%)
 - F (below 40%)
 - CSE560 may be slightly adjust upwards

Policy

- Make-Up Exams
 - The request should be made at least one week before the test
 - with valid, documented reasons
- Late Submission
 - The submissions are due at midnight on the due date
 - No late submissions are accepted
- Regrading
 - within a week after the grades published

Academic Integrity

- Zero tolerance on cheating (projects or exams)
 - A violation on academic integrity will result in F of the course
- You should NOT copy others' work under any circumstance

- 1. Introduction
 - 1. What is database
 - 2. Database Management System (DBMS)
- 2. Data Models and Query Languages
 - 1. Data Models
 - 2. DBMS Languages
- 3. DBMS Components
 - 1. Major DBMS Components
 - 2. Other Components

- 1. Introduction
 - 1. What is database
 - 2. Database Management System (DBMS)
- 2. Data Models and Query Languages
 - 1. Data Models
 - 2. DBMS Languages
- 3. DBMS Components
 - 1. Major DBMS Components
 - 2. Other Components

What is Database

- Database
 - A computer representation of a collection of information
 - Persistent, Long-Lived
 - Typically shared by many users and programs
- What do we care when we manipulate and persistent data?
 - Correctness
 - Consistency
 - Parallelism
- What do we care when we ask and answer questions about data?
 - Accuracy
 - Efficiency

Databases are powerful

- Massive: terabyes of data every day
- Safey: ensure that data remains consistent
- Multi-User: concurrency control
- Efficient: efficiently data access and manipulation

- 1. Introduction
 - 1. What is database
 - 2. Database Management System (DBMS)
- 2. Data Models and Query Languages
 - 1. Data Models
 - 2. DBMS Languages
- 3. DBMS Components
 - 1. Major DBMS Components
 - 2. Other Components

Database Management System (DBMS)

- DBMS
 - A software system where the power of databases embodies in
 - Make it possible to build, modify and efficiently access large databases
 - Support one or more data models
 - Support multiple alnguages and interfaces for data definition, manipulatin, and querying
 - Application-independent
 - Additional DBMS functions
 - Integrity maintenance
 - Concurrency Control
 - Recovery
 - Access Control

- 1. Introduction
 - 1. What is database
 - 2. Database Management System (DBMS)
- 2. Data Models and Query Languages
 - 1. Data Models
 - 2. DBMS Languages
- 3. DBMS Components
 - 1. Major DBMS Components
 - 2. Other Components

Data Models

- A notation for describing data or information
 - Structure of the data
 - Operations on the data
 - Constraints on the data
- A view of data shared by the programs and users interacting with a database
- Supported by DBMS

Data Models

Data Model	Structure	Operations	Constraints
Relational	Relations	Relational Algebra	Key Constraints
Object-Oriented	Objects	Retrieve, Expand	Key Constraints
XML	Labelled trees	Traversal	Domain Constraints
Graph	Nodes, Edges	Traversal	Domain Constraints
NoSQL	Key-Value pairs		

Schema vs. Instance

- Schema
 - Capture and describes the structure of the data
 - Time-independent
- Instance
 - Capture the crrent state of data
 - Conforms to the schema
 - Time-dependent
 - Only one exists at any given time

A Data model for Flight

• Which part is the schema? And Instances?

Schema 🗪	Number	Airline	Stock Price
Instances	63	American	26.11
	556	Delta	56.83
	1910	United	77.63

- 1. Introduction
 - 1. What is database
 - 2. Database Management System (DBMS)
- 2. Data Models and Query Languages
 - 1. Data Models
 - 2. DBMS Languages
- 3. DBMS Components
 - 1. Major DBMS Components
 - 2. Other Components

DBMS Languages

- Data Definition Language (DDL)
 - Define/Modify database schema
- Data Manipulation Language (DML)
 - Create and update instance
 - Various kinds of updates: incremental, bulk
 - Transactions
- Query Languages
 - Retrieve information from database

Example Queries

Simple lookup query: What is the airline which number is 63?

```
SELECT FLIGHT.AIRLINE
FROM FLIGHT
WHERE FLIGHT.NUMBER = 63
```

Complex lookup query (join): What is the terminal for flight number 63?

```
SELECT TERMINAL.TNAME

FROM FLIGHT, TERMINAL

WHERE FLIGHT.NUMBER = 63

AND FLIGHT.AIRLINE = TERMINAL.AIRLINE
```

Complex lookup query (aggregation): How many flights for each company?

```
SELECT AIRLINE, COUNT(NUMBER)
FROM FLIGHT
GROUP BY AIRLINE
```

- 1. Introduction
 - 1. What is database
 - 2. Database Management System (DBMS)
- 2. Data Models and Query Languages
 - 1. Data Models
 - 2. DBMS Languages
- 3. DBMS Components
 - 1. Major DBMS Components
 - 2. Other Components

- Types of Commands
 - Scheme change
 - Data-Definition Languages
 - Ask for data or modify data
 - Anwering the query (Query Compiler)
 - Transaction Processing (Transaction Manager)
 - Execution Engine
 - Storage and Buffer Management

- Query Compiler
 - 1. Query Parser
 - Build a tree structure from textual query
 - 2. Query Preprocessor
 - Perform semantic checks
 - Transform tree into algebraic operators form, the initial query plan
 - 3. Query Optimizer
 - Transform the initial query plan into best available sequence of operations
 - (x * y) + (x * z) = x * (y + z)
 - 1. (x * y) + (x * z) => 2 multiplications, 1 addition
 - 2. x * (y + z) => 1 multiplication, 1 addition

26

- Transaction Processing (Transaction Manager)
 - ACID Principle
 - Atomicity: All of Nothing
 - Deadlock resolution (roll-back/abort if needed)
 - Consistency: Keep data constraints
 - Isolation: Execution as ther is no others
 - Concurrent Control
 Use locks to ensure isolation
 - Durability: Effect never be lost
 - Logging log every changes to assure durability

- Storage/Buffer Manager
 - Data: the content of database
 - Metadata: the data describes the structure of, and contraints on, the databsae
 - Log Records: information about recent changes
 - Statistics: information gathered by DBMS about the database
 - Indexes: data structure that support efficient access
 - Example?

Client Communications Manager

- Architecture
 - Local and remote protocols
 - Two-tier: Client Server
 - Three-Tier: a middle tier between client and server
- Functions
 - Authentication
 - Connection state handling
 - Forwarding client requests
 - Shipping the result back

- 1. Introduction
 - 1. What is database
 - 2. Database Management System (DBMS)
- 2. Data Models and Query Languages
 - 1. Data Models
 - 2. DBMS Languages
- 3. DBMS Components
 - 1. Major DBMS Components
 - 2. Other Components

Other Components

- Process Manager
 - Allocating/Deallocating DBMS workers to clients
 - Processes and threads
- Shared Components and utilities
 - Catalog manager
 - Memory manager
 - •