Mathematics

Edward Wang

2025

Contents

I.	Algebra	3
1.	Group Theory	4
	1.1. Groups, permutations, subgroups	4
	1.2. Cyclic groups	12
2.	Linear Algebra	13
	2.1. Vector spaces	13
II.	Analysis	17
3.	Real Analysis	18
Ш	. Probability	19
4.	Probability	20
	4.1 Basics	20

Part I.

Algebra

Part II.

Analysis

Part III. Probability

4. Probability

4.1. Basics

Definition 4.1.1. The *sample space*, denoted Ω is the set of all possible outcomes of an experiment.

Each element $\omega \in \Omega$ is called an *outcome*. An *event* E is a subset of Ω , and is hence a set of possible outcomes. Thus Ω itself is an event, the *certain event*, and so is the empty set \varnothing , the *impossible event*.

Definition 4.1.2. If Ω is countable, then we say that it is a *discrete* sample space. Otherwise, if Ω is uncountable, we say that it is a *continuous* sample space.

Since events are just sets, we can use the usual properties of sets.

Proposition 4.1.1 (Set theory properties). Let A, B, C be subsets of Ω .

- 1. We have $A \cup \emptyset = A$ and $A \cap \emptyset = \emptyset$.
- 2. We have $A \cup \Omega = \Omega$ and $A \cap \Omega = A$.
- 3. We have $A \cup (\Omega \setminus A) = \Omega$ and $A \cap (\Omega \setminus A) = \emptyset$. In other words, $A \cup A^c = \Omega$ and $A \cap A^c = \emptyset$.
- 4. (Commutativity) We have $A \cup B = B \cup A$ and $A \cap B = B \cap A$.
- 5. (Associativity) We have $A \cup (B \cup C) = (A \cup B) \cup C$ and $A \cap (B \cap C) = (A \cap B) \cap C$.
- 6. (Distributivity) We have $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ and $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.
- 7. (De Morgan's laws) We have $\Omega \setminus (A \cup B) = (\Omega \setminus A) \cap (\Omega \setminus B)$ and $\Omega \setminus (A \cap B) = (\Omega \setminus A) \cup (\Omega \setminus B)$. In other words, $(A \cup B)^c = A^c \cap B^c$ and $(A \cap B)^c = A^c \cup B^c$.

4. Probability

Definition 4.1.3. Two events A and B are mutually exclusive or disjoint if $A \cap B = \emptyset$. A set of events $\{E_i\}_{i \in I}$ is mutually exclusive if for all $i \neq j$, $E_i \cap E_j = \emptyset$.

Definition 4.1.4. Let Ω be a sample space and let 2^{Ω} denote the power set of Ω . Then $\mathbb{P} \colon 2^{\Omega} \to [0,1]$ is a probability function that assigns to each event a probability. This function \mathbb{P} must satisfy the following axioms formulated by Kolmogorov:

- 1. For all events E, we have $\mathbb{P}(E) \geq 0$.
- 2. The probability of the sample space is 1. That is, $\mathbb{P}(\Omega) = 1$.
- 3. (Countable additivity) Let E_1, E_2, \ldots be a countable sequence of mutually exclusive (disjoint) events. Then,

$$\mathbb{P}\left(\bigcup_{i=1}^{\infty} E_i\right) = \sum_{i=1}^{\infty} \mathbb{P}(E_i).$$

Proposition 4.1.2. Properties of the probability function:

- 1. We have $\mathbb{P}(\emptyset) = 0$.
- 2. We have $\mathbb{P}(A^c) = \mathbb{P}(\Omega \setminus A) = 1 \mathbb{P}(A)$.
- 3. If $A \subseteq B$, then $\mathbb{P}(A) \leq \mathbb{P}(B)$.
- 4. (Finite additivity) If E_1, E_2, \ldots, E_n are mutually exclusive events, then

$$\mathbb{P}\left(\bigcup_{i=1}^{n} E_i\right) = \sum_{i=1}^{n} \mathbb{P}(E_i)$$

- 5. If $A_1 \subseteq A_2 \subseteq \ldots$ and $B = \bigcup_{i=1}^{\infty} A_i$, then $\mathbb{P}(B) = \lim_{n \to \infty} \mathbb{P}(A_n)$.
- 6. If $A_1 \supseteq A_2 \supseteq \ldots$ and $B = \bigcap_{i=1}^{\infty} A_i$, then $\mathbb{P}(B) = \lim_{n \to \infty} \mathbb{P}(A_n)$.

Definition 4.1.5. We say that a collection of events $\{E_i\}_{i\in I}$ is exhaustive if

$$\bigcup_{i\in I} E_i = \Omega.$$

Definition 4.1.6. We define the *conditional probability* of event A given event B as

$$\mathbb{P}(A \mid B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)},$$

given that $\mathbb{P}(B) > 0$.