TEMA 5: Integral de Riemann

La integral como una área (I)

Sea $f:[a,b]\to\mathbb{R}$ una función **acotada**. Queremos hallar el área de la región que queda comprendida entre la gráfica de f y el eje X (donde se entiende como negativa el área de las regiones que estén por debajo del eje).

Para aproximar esa área (y de hecho, para definirla), usamos **sumas superiores** y **sumas inferiores**: decimos que $P = \{x_j\}_{j=1}^N$ es una **partición** de [a,b] si

$$a = x_0 < x_1 < \dots < x_N = b$$
. Definimos para $j = 1, 2, \dots, N$, $I_j = [x_{j-1}, x_j]$, $M_j = \sup_{l_j} f, m_j = \inf_{l_j} f$. La suma inferior asociada es $s_P = \sum_{j=1}^N m_j \log(l_j)$.

Estas sumas aproximan el área por defecto.

La integral como un área (II)

La suma superior asociada es $S_P = \sum_{j=1}^N M_j \log(I_j)$.

Estas sumas también aproximan el área, pero por exceso.

Definición

Dadas dos particiones P y P' de [a,b] se dice que P' es más fina que P si $P \subset P'$.

Lema (5.1)

Si P' es más fina que P entonces $s_P \leq s_{P'}$ y $S_{P'} \leq S_P$.

Dem.: Esto se debe a que si $J_0 = J_1 \cup J_2$ (unión disjunta) y llamamos $m_k = \inf_{J_k} f$, $M_k = \sup_{J_k} f$ y $|J_k| = \log(J_k)$, entonces $m_0|J_0| \leq m_1|J_1| + m_2|J_2|$ y $M_1|J_1| + M_2|J_2| \leq M_0|J_0|$.

Función integrable en [a, b].

Lema (5.2)

Dadas dos particiones P_1 y P_2 se tiene $s_{P_1} \leq S_{P_2}$.

Dem.: : Basta considerar la partición más fina $P'=P_1\cup P_2$ y usar el lema anterior.

Definición

Se dice que la función acotada $f:[a,b]\to\mathbb{R}$ es integrable si el supremo de las sumas inferiores es igual al ínfimo de las sumas superiores. Ese valor común se denota por $\int_{-b}^{b} f(x) \, dx$, (integral definida de f entre a g g).

Teorema (5.3)

He (i/ ().5)

Una función acotada $f:[a,b] \to \mathbb{R}$ es integrable en [a,b] si y solo si dado $\epsilon > 0$ existe una partición $P = \{x_j\}_{j=1}^N$ de [a,b] tal que $S_P - s_P = \sum_{j=1}^N (M_j - m_j) \log(l_j) < \epsilon$.

(Ver demostración por separado)

Teorema (5.4)

Toda función continua definida en un intervalo cerrado es integrable.

(Ver demostración por separado)

- CAL 1-Definición: Se dice que la función f: A-> R es uniformemente continua si VE.o. 7 doo tal que Vx, ye A con |x-y| < 5 se tiene | f(x)-f(y) < E

Lema: Toda función continua sobre un juternalo cernado f: [a,b] → R or uniformemorale continua

Deut: lo probatuos por reducción al absurdo. Si no lo funco ∃ ε>0, √δ>0 t.q. ∃ x, y ∈ A=tollon |x-y| cδ pero | for-fin > ε Towards | b=1, 1/2, 1/2, -, 1/4, ... k & N, encoutraces x , y & A=[a,k] con |xh-yh| < 1/4 , poo | f(xh)-f(yh) > E.

Como d'intervalo es cernado, {xk} porce una subrucezion convengente $\{x_{k_n}\}$ con $\lim_{k\to\infty} x_{k_n} = \overline{\epsilon} \in [\alpha, b]$.

Peno entouces (You) converge a + también, porque $\lim_{k_{n}\to 0} \gamma_{n_{n}} = \lim_{k_{n}\to 0} \left[\gamma_{n_{n}} - \chi_{n_{n}} \right] + \chi_{n_{k}} = \emptyset, \text{ you que } \lim_{k_{n}\to \infty} (\chi_{n} - \chi_{n_{n}}) = 0$

Como f en continua, se deduce que lim $f(x_{kn}) = \lim_{k \to \infty} f(x_{kn}) = f(2)$.

 $\lim_{\substack{k_{11}\to k\\k_{12}\to k}} \left(\left\{ (x_{k_{11}}) - \left\{ (y_{k_{11}}) \right\} = 0 \right\}, \quad \text{lo wal en absurdo}$

PULL , por construcción

f(xn) - f(yn) > €

Notas: Um función es uniformemente continua, si dado ero la gráfica de f se mede cubrir por rectangulos de la forma Ix I (adjusted on long I < E y bi I de la mirum longitud

Example : 1) $f: (0,1] \longrightarrow \mathbb{R}$ exactions properties f(x) = f(x) = f(x) no uniformity automa

- 2) $f(x) = \sqrt{x}$ or uniformentally continua (x,y)
- 3) Toda fu. Lipschite ([fix]-fix] = K [x-y]) es uniformemente continua.
- 4) Toda fu derivable con derivada acotada es uniformemente continua, (F.g., for = logx, en [1,6))
- 5) f(x)=x2 no exunif. continua en R.

Propiedades de la integral

- ② Si λ , $\mu \in \mathbb{R}$ son constantes reales y f y g son integrables, entonces

$$\int_a^b (\lambda f(x) + \mu g(x)) \ dx = \lambda \int_a^b f(x) \ dx + \mu \int_a^b g(x) \ dx.$$

3 Si $f(x) \le g(x)$ para todo $x \in [a, b]$, son integrables se tiene que

$$\int_a^b f(x) dx \le \int_a^b g(x) dx.$$

• Si f(x) es integrable se tiene que

$$\left| \int_a^b f(x) \, dx \right| \le \int_a^b |f(x)| \, dx.$$

5 Si a < c < b, entonces la integral se puede partir en dos intervalos:

$$\int_a^b f(x) dx = \int_a^c f(x) dx + \int_c^b f(x) dx.$$

Teorema Fundamental del Cálculo

Previo al TFC: Si $f:[a,b]\to\mathbb{R}$ (acotada) es integrable, entonces la función $F(x)=\int_a^x f(t)\,dt$ es continua. Esto se debe a que si $|f(x)|\le M$, entonces $|F(x+h)-F(x)|\le M|h|$

Teorema (Teorema Fundamental del Cálculo)

 $Si\ f:[a,b] o\mathbb{R}$ es una función continua, entonces la función $F(x)=\int_a^x f(t)\,dt$ es derivable y

$$F'(x)=f(x),$$

(Ver demostración por separado)

Esto quiere decir, grosso modo, que integrar es lo contrario de derivar.

Teorema (Regla de Barrow)

Si $f:[a,b] \to \mathbb{R}$ es una función continua, y f=g', entonces

$$\int_a^b f(x) dx = g(b) - g(a).$$

(Ver demostración por separado)

NOTA: Si $\alpha(x)$ y $\beta(x)$ son derivables y definitions $G(x) = \int_{\alpha(x)}^{\beta(x)} f(t) dt$, entonces $G'(x) = \beta'(x)f(\beta(x)) - \alpha'(x)f(\alpha(x))$. Esto es porque $G(x) = g(\beta(x)) - g(\alpha(x))$.

F. Soria (UAM) Cálculo I

Primitiva de una función

Definición

Dada una función f, las funciones g con g' = f se llaman **primitivas** de f.

Si g'=f entonces cualquier otra primitiva de f es de la forma g+K, donde K es una constante (porque si g_1 y g_2 son primitivas entonces $(g_1-g_2)'=0$). Al símbolo $\int f=\int f(x)\,dx$ se le denomina **integral indefinida** de f y denota a todas las primitivas de ésta.

Algunas primitivas de funciones habituales (K es una constante arbitraria):

(1)
$$\int x^{\alpha} dx = \frac{x^{\alpha+1}}{\alpha+1} + K$$
, $(\alpha \neq -1)$, (2) $\int \frac{1}{x} dx = \log|x| + K$,

(3)
$$\int \frac{1}{x+a} dx = \log|x+a| + K$$
, (4) $\int \frac{1}{(x+a)^n} dx = \frac{-1/(n-1)}{(x+a)^{n-1}} + K$, $(n \neq 1)$,

(5)
$$\int e^x dx = e^x + K$$
, (6) $\int \cos x \, dx = \sin x + K$, (7) $\int \frac{1}{x^2 + 1} \, dx = \arctan x + K$.

 +□ ト ← □ ト ← 豆 ト ← 豆 ト ← 豆 ト ← 豆 ト ← 豆 ト ⊆ √ へ ○

 F. Soria (UAM)
 Cálculo I
 7 / 28

Integración por partes

La derivada de un producto de dos funciones u, v, es $(u \cdot v)' = u' \cdot v + u \cdot v'$, por lo tanto $u \cdot v' = (u \cdot v)' - u' \cdot v$, e integrando

$$\int u \cdot v' = \int (u \cdot v)' - \int u' \cdot v = u \cdot v - \int u' \cdot v.$$

Escribiendo du = u'dx, dv = v'dx (o simplemente du = u', dv = v'), la fórmula anterior queda como

$$\int u\,dv=u\,v-\int v\,du.$$

- Hay que hacer primero una elección de *u* y *dv* y después derivar *u* e integrar *dv* para poder usar la fórmula.
- Muy útil en el producto de polinomios con funciones más complicadas, como exponenciales, funciones trigonométricas, etc.
- **Recurrencia**: a veces, tras usar el método de integración por partes varias veces, la integral original puede volver a aparecer. Esto permite depejarla para conocer su valor. Ejemplo: $\int e^x \sin x \, dx$

Integración por partes: un ejemplo

Ejemplo 1.- Queremos obtener una primitiva de la función $y = xe^x$, es decir, queremos resolver la integral indefinida:

$$\int x e^x dx.$$

Factorizamos $xe^x dx$ de una manera alternativa:

$$\int x e^x dx = \int (x)(e^x dx) = \int u dv,$$

siendo u = x y $dv = e^x dx$.

Tenemos:

$$\begin{array}{ccc} u=x & \Rightarrow & u'=1=\frac{du}{dx} & \Rightarrow & du=dx, \\ dv=e^xdx & \Rightarrow & v=\int dv=\int e^xdx=e^x. \end{array}$$

Por tanto:

$$\int xe^{x}dx = \int udv = uv - \int vdu = xe^{x} - \int e^{x}dx = xe^{x} - e^{x} + C = e^{x}(x-1) + C.$$

4□ > 4回 > 4 = > 4 = > = 9 < ○</p>

Cambio de variables

La regla de la cadena dice que (globalmente) la derivada de F(x) = f(g(x)) es $F'(x) = f'(g(x)) \cdot g'(x)$. La idea de sustituir la variable en una integral usa esta fórmula.

Cambio: Si u = g(x) es una función derivable, entonces

$$\int f(g(x)) \cdot g'(x) dx = \int f(u) du.$$

Para recordar la fórmula, conviene pensar en du = d(g(x)) = g'(x)dx.

La parte más complicada suele ser escoger qué g(x) vamos a renombrar como u.

- se puede intentar escoger como u alguna función g(x) de la integral cuya derivada g'(x) también aparezca en la integral (o que podamos hacer que aparezca);
- aún así es a veces difícil encontrar la sustitución; en ese caso hay que probar alguna y ver si funciona; si no es así, hay que seguir intentando.

4□ > 4回 > 4 回 > 4 回 > 1 回 9 9 0 0

Cambio de variables: un ejemplo

Ejemplo 2.- Queremos obtener una primitiva de la función $y = \frac{1}{x \ln x}$, es decir, queremos resolver la integral indefinida:

$$\int \frac{1}{x \ln x} dx.$$

Con el objetivo de tratar de conseguir una integral inmediata, definimos una nueva variable, $u = \ln x$. Tenemos:

$$u' = \frac{1}{x} = \frac{du}{dx}$$
 \Rightarrow $dx = xdu$

Sustituimos:

$$\int \frac{1}{x \ln x} dx = \int \frac{1}{xu} x du = \int \frac{1}{u} du = \ln |u| + C = \ln |\ln x| + C.$$

F. Soria (UAM)

Cambio de variables en integrales definidas

Cuando se halla una integral definida usando sustitución, hay dos posibilidades:

- se calcula la integral indefinida con la sustitución, y una vez hecha esta, se vuelve a la variable original (calculando x como función de u) y se usan los límites originales;
- se cambian los límites de integración de acuerdo a la fórmula

$$\int_a^b f(g(x)) \cdot g'(x) dx = \int_{g(a)}^{g(b)} f(u) du.$$

Ejemplo: Calcular $\int_1^e \frac{\log x}{x} dx$

- Primer método: Haciendo el cambio $y = \log x$, queda $\int \frac{\log x}{x} dx = \int y dy$ = $\frac{1}{2}y^2 = \frac{1}{2}(\log x)^2$. Luego, $\int_1^e \frac{\log x}{x} dx = \frac{1}{2}(\log x)^2\Big|_{x=1}^{x=e} = \frac{1}{2}$
- Segundo método: De nuevo con $y = \log x$ y adecuando los límites de integración:

$$\int_{1}^{e} \frac{\log x}{x} dx = \int_{0}^{1} y dy = \frac{1}{2} y^{2} \Big|_{y=0}^{y=1} = \frac{1}{2}$$

F. Soria (UAM) Cálculo I 12

Integrales trigonométricas

Primero de todo es necesario recordar las siguientes fórmulas trigonométricas:

- $sen^2 x + cos^2 x = 1$;
- $sen^2 x = \frac{1-\cos 2x}{2}$;
- $\cos^2 x = \frac{1 + \cos 2x}{2}$.
- sen 2x = 2 sen x cos x.

Las dos últimas fórmulas se conocen como las fórmulas del ángulo doble.

Las vamos a aplicar a integrales de la forma

$$\int \operatorname{sen}^m x \cdot \cos^n x \, dx,$$

donde n, m son números enteros.

F. Soria (UAM)

Integrales trigonométricas (cont.)

Caso 1. *n* **o** *m* **son impares:** Supongamos que n = 2k + 1 es impar, por ejemplo; en este caso se usa que $\cos^2 x = 1 - \sin^2 x$, y se hace lo siguiente:

- se escribe $\cos^{2k+1} x = (\cos^2 x)^k \cdot \cos x$;
- se deja todo (salvo un $\cos x$) en términos de sen x usando que $(\cos^2 x)^k = (1 \sin^2 x)^k$,
- se hace el cambio de variable sen x = u.

Por ejemplo,
$$\int \cos^3 x \, dx = \int (1 - \sin^2 x) \cos x dx = \int (1 - u^2) \, du$$
 haciendo el cambio $u = \sin x$. Desde ahí, la integral es inmediata.

Si m es el impar, se hace igual, pero sen x y $\cos x$ intercambian sus roles.

Caso 2. n y m son ambos pares:

En este caso, hay que usar las fórmulas del ángulo doble para ir bajando las potencias.

Integrales trigonométricas (cont.)

Caso 3. Integrales con tangente: Conviene recordar dos identidades:

$$\tan^2 x = \sec^2 x + 1, \quad (\tan x)' = \sec^2 x,$$

y aplicarlas de forma similar al caso anterior.

Finalmente, si todo falla, o si nos dan una función racional de funciones trigonométricas, se pueden usar la siguiente sustitución: $t=\tan\frac{x}{2}$, con lo que

$$\sin x = \frac{2t}{1+t^2}, \qquad \cos x = \frac{1-t^2}{1+t^2}, \qquad dx = \frac{2dt}{1+t^2}.$$

Se sustituyen éstas, y se integra como con funciones racionales (ver a continuación).

4□ > 4□ > 4 = > 4 = > = 90

Funciones racionales: método de las fracciones simples (I)

Aquí hay que recordar las siguientes integrales:

$$\int \frac{1}{x+a} = \log|x+a| + C, \qquad \int \frac{1}{x^2+a^2} \, dx = \frac{1}{a} \arctan \frac{x}{a} + C,$$

que son las que aparecen al final.

Vamos a ver integrales de la forma

$$\int \frac{P(x)}{Q(x)} dx,$$

donde P y Q son polinomios.

 Si el grado de P es mayor o igual que el grado de Q, hacemos la división de polinomios y dejamos la integral como algo de la forma

$$\int p(x) + \frac{P_1(x)}{Q(x)} dx,$$

donde p(x) es un polinomio, que es fácil de integrar, y ahora el grado de P_1 es menor que el de Q.

F. Soria (UAM) Cálculo I 16 /

Funciones racionales: método de las fracciones simples (II)

• Factorizamos el denominador Q(x). Supongamos primero que Q(x) se puede factorizar como productos de monomios

$$Q(x) = (x - \alpha_1)^{k_1} (x - \alpha_2)^{k_2} \dots (x - \alpha_n)^{k_n}$$

y escribimos P/Q como suma de fracciones simples:

$$\frac{P(x)}{Q(x)} = \left(\frac{A_{11}}{x - \alpha_1} + \frac{A_{12}}{(x - \alpha_1)^2} + \dots + \frac{A_{1k_1}}{(x - \alpha_1)^{k_1}}\right) + \dots +$$

$$+\cdots+\left(\frac{A_{n1}}{x-\alpha_n}+\frac{A_{n2}}{(x-\alpha_n)^2}+\cdots+\frac{A_{1k_1}}{(x-\alpha_n)^{k_n}}\right) \quad (1)$$

Los coeficientes A_{ij} se hallan recomponiendo la fracción a partir de lo anterior e igualando coeficientes de las potencias de x's o, si se puede, dando valores $x = \alpha_i$.

• Si no se puede factorizar Q en la forma anterior es porque posee raíces complejas. En su lugar aparecen factores de la forma $(x-a)^2+b^2$ lo que obliga a incluir fracciones de la forma

$$\frac{M(x-a)+N}{(x-a)^2+b^2}.$$

• Estas fracciones se hacen completando el cuadrado en el denominador y haciendo cambios de variables para dejar el denominador de la forma $t^2 + c^2$. Vamos a verlo en ejemplos.

F. Soria (UAM) Cálculo I 17 / 28

Descomposición en fracciones simples: ejemplos (I)

Ejemplo 1.- Queremos obtener una primitiva de la función $y = \frac{2x}{x^2 - x - 2}$, es decir, queremos resolver la integral indefinida: $\int \frac{2x}{x^2 - x - 2} dx$.

En este ejemplo, el denominador es un polinomio de grado 2 con dos raíces reales simples, x=-1 y x=2. En este caso, el cociente de polinomios admite una descomposición de la siguiente forma: $\frac{2x}{x^2-x-2}=\frac{2x}{(x+1)(x-2)}=\frac{A}{x+1}+\frac{B}{x-2}$

El siguiente paso es determinar el valor de los coeficientes A y B:

$$\frac{2x}{(x+1)(x-2)} = \frac{A}{x+1} + \frac{B}{x-2} = \frac{A(x-2) + B(x+1)}{(x+1)(x-2)} = \frac{(A+B)x + (B-2A)}{(x+1)(x-2)}.$$

$$\Rightarrow A+B = 2 \\ B-2A = 0$$

$$\Rightarrow \begin{cases} A = 2/3 \\ B = 4/3 \end{cases}$$

Una vez que disponemos de los valores de A y B el resto es sencillo:

$$\int \frac{2x}{x^2 - x - 2} dx = \int \frac{2x}{(x+1)(x-2)} dx = \int \left[\frac{2/3}{x+1} + \frac{4/3}{x-2} \right] dx$$
$$= \frac{2}{3} \ln|x+1| + \frac{4}{3} \ln|x-2| + C$$

F. Soria (UAM) Cálculo I 18 / 2

Descomposición en fracciones simples: ejemplos (II)

Ejemplo 2.- Queremos obtener una primitiva de la función $y = \frac{2x}{x^3 - 3x - 2}$, es decir, queremos resolver la integral indefinida:

$$\int \frac{2x}{x^3 - 3x - 2} dx.$$

En este ejemplo, el denominador es un polinomio de grado 3 con una raíz real doble, x=-1, y una raíz real simple, x=2. En este caso, el cociente de polinomios admite una descomposición de la siguiente forma:

$$\frac{2x}{x^3 - 3x - 2} = \frac{2x}{(x+1)^2(x-2)} = \frac{A}{x+1} + \frac{B}{(x+1)^2} + \frac{C}{x-2}.$$

Al igual que antes, el siguiente paso es determinar el valor de A, B y C:

$$\frac{2x}{(x+1)^2(x-2)} = \frac{A(x+1)(x-2) + B(x-2) + C(x+1)^2}{(x+1)^2(x-2)}$$

$$= \frac{(A+C)x^2 + (-A+B+2C)x + (-2A-2B+C)}{(x+1)^2(x-2)}.$$

F. Soria (UAM) Cálculo I 19 / 1

Descomposición en fracciones simples: ejemplos (III)

Una vez que disponemos de los valores de A, B y C, el resto es sencillo:

$$\int \frac{2x}{x^3 - 3x - 2} dx = \int \frac{2x}{(x+1)^2 (x-2)} dx = \int \left[\frac{-4/9}{x+1} + \frac{2/3}{(x+1)^2} + \frac{4/9}{x-2} \right] dx$$

$$= -\frac{4}{9} \ln|x+1| + \frac{4}{9} \ln|x-2| + \frac{2}{3} \int \frac{1}{(x+1)^2}$$

$$= -\frac{4}{9} \ln|x+1| + \frac{4}{9} \ln|x-2| - \frac{2}{3} \cdot \frac{1}{x+1} + C.$$

La última integral indefinida, $\int \frac{1}{(x+1)^2} = -\frac{1}{x+1}$, es bastante inmediata, pero se puede facilitar su cálculo definiendo u=x+1 y aplicando el método de cambio de variable.

F. Soria (UAM) Cálculo I 20 / 2

Descomposición en fracciones simples: ejemplos (IV)

Ejemplo 3.- Calcular
$$\int \frac{x+7}{(x+1)(x^2-2x+3)} dx.$$

En primer lugar nos damos cuenta de que $x^2 - 2x + 3$ no tiene raíces reales y lo factorizamos como $(x-1)^2 + 2$. Luego podemos escribir

$$\frac{x+7}{(x+1)(x^2-2x+3)} = \frac{A}{x+1} + \frac{M(x-1)+N}{(x-1)^2+2},$$

con $A((x-1)^2+2)+(M(x-1)+N)(x+1)=x+7$, lo que nos da $A=1,\ N=3,\ M=-1$ y por tanto

$$\int \frac{x+7}{(x+1)(x^2-2x+3)} dx = \int \frac{1}{x+1} dx - \int \frac{(x-1)}{(x-1)^2+2} dx + \int \frac{3}{(x-1)^2+2} dx$$
$$= \log|x+1| - \frac{1}{2} \log((x-1)^2+2) + 3\frac{1}{\sqrt{2}} \arctan\left(\frac{x-1}{\sqrt{2}}\right) + K.$$

NOTA: Para la última integral usamos que

$$\int \frac{1}{(x-a)^2 + b^2} dx = \frac{1}{b^2} \int \frac{1}{\left(\frac{x-a}{b}\right)^2 + 1} dx \qquad y = \frac{x-a}{b}, dx = b dy$$

$$= \frac{1}{b} \arctan y = \frac{1}{b} \arctan \left(\frac{x-a}{b}\right)$$

Integrales impropias (I)

Algunas veces las integrales se pueden definir incluso cuando

- la función es continua pero no acotada en el intervalo (a, b);
- o el intervalo de integración no es acotado; i.e, es de la forma $[a, \infty)$, $(-\infty, b]$ o $(-\infty, \infty)$.

Hay dos posibilidades:

• Si (e.g.)
$$f$$
 no es acotada en a , se define $\int_a^b f(x) dx = \lim_{r \to a+} \int_r^b f(x) dx$.

• Si (e.g.), se integra en
$$[a, \infty)$$
, se define $\int_a^\infty f(x) dx = \lim_{R \to \infty} \int_a^R f(x) dx$.

Cuando tal cosa ocurra diremos que la integral existe en el sentido impropio o, simplemente, que es convergente.

Ejemplos:

$$\bullet \int_1^\infty \frac{1}{x^2} dx = \lim_{R \to \infty} \int_1^R \frac{1}{x^2} dx = \lim_{R \to \infty} \left(-\frac{1}{x} \right) \bigg|_1^R = \lim_{R \to \infty} \left(1 - \frac{1}{R} \right) = 1.$$

Integrales impropias (II)

Con más generalidad, dado 0 ,

- la integral impropia $\int_0^1 \frac{1}{x^p} dx$ converge si y solo si p < 1,
- mientras que la integral impropia $\int_{1}^{\infty} \frac{1}{x^{p}} dx$ converge si y solo si p > 1.
- También, $\int_0^1 \log x \, dx = \lim_{r \to 0^+} \int_r^1 \log x \, dx = \lim_{r \to 0^+} x (\log x 1) \Big|_r^1 = -1.$

Integrales impropias (III)

DOS CRITERIOS: Dada $f:[a,\infty) \to \mathbb{R}$ continua

1 Cauchy: la integral impropia $\int_a^\infty f(x) \, dx$ converge si y solo si dado $\epsilon > 0$, $\exists R_0 > a$ de forma que $\forall R, R' \geq R_0$ se cumple $\left| \int_R^{R'} f(x) \, dx \right| < \epsilon$.

Ejemplo: Ver práctica 5.

- ② Si además f(x) es positiva, la integral impropia $\int_a^\infty f(x) \, dx$ converge si y solo si las integrales parciales $\int_a^R f(x) \, dx$ están acotadas $\forall R > a$.
 - **Ejemplo:** $\int_0^\infty e^{-x^2} dx$ converge porque $e^{x^2} \ge 1 + x^2$ y, por tanto,

$$\int_0^R e^{-x^2} \, dx \le \int_0^R \frac{1}{1+x^2} \, dx = \arctan R \le \frac{\pi}{2}, \quad \forall R > 0.$$

F. Soria (UAM)

Cálculo I

Aplicaciones de la integral definida (I)

En esta sección, vamos a estudiar varias aplicaciones de la integral definida, es decir, algunos problemas concretos en los que la solución al problema se obtiene mediante la utilización de la integral definida.

Cálculo de áreas

Primer caso: Área entre una función positiva y el eje de abscisas. Este es el problema con el que hemos iniciado el capítulo.

"Área entre
$$y = f(x)$$
 (positiva), el eje de abscisas, $X = a$ y $X = b$ " : $\int_a^b f(x) dx$.

Segundo caso: Área entre una función cualquiera y = f(x) y el eje de abscisas, con f positiva en [a, c] y negativa en [c, b].

"Área entre
$$y = f(x)$$
, el eje de abscisas, $X = a$ y $X = b$ ":
$$\int_a^b |f(x)| dx = \int_a^c f(x) dx + \int_c^b [-f(x)] dx = \int_a^c f(x) dx - \int_c^b f(x) dx.$$

Aplicaciones de la integral definida (II)

Tercer caso: Área entre dos funciones: y = f(x), y = g(x), con $f(x) \ge g(x)$ en [a, c] y $f(x) \le g(x)$ en [c, b].

"Área entre y = f(x), y = g(x), X = a y X = b"

$$\int_a^b |f(x)-g(x)|dx = \left[\int_a^c f(x)dx - \int_a^c g(x)dx\right] + \left[\int_c^b g(x)dx - \int_c^b f(x)dx\right].$$

(Ver ejercicio 20 de la hoja 8)

F. Soria (UAM) Cálculo I

Criterio de la integral para series

Teorema

Supongamos que f es una función positiva y decreciente en (k,∞) , donde $k\in\mathbb{N}$.

Entonces la serie $\sum_{n=k} f(n)$ converge si y solamente si la integral impropia

 $\int_{k}^{\infty} f(x) dx \text{ converge.}$

Demostración.

Al ser f decreciente, en cada intervalo (n, n + 1) tenemos que

$$f(n) = f(n) \cdot ((n+1) - n) \ge \int_{-n+1}^{n+1} f(x) dx \ge f(n+1) \cdot ((n+1) - n) = f(n+1).$$

Por lo tanto

$$\sum_{n=k}^{\infty} f(n) \ge \sum_{n=k}^{\infty} \int_{n}^{n+1} f(x) dx \ge \sum_{n=k+1}^{\infty} f(n).$$

y el comportamiento de la serie debe coincidir con el de la integral.

F. Soria (UAM) Cálculo I 27

Área y volúmenes de cuerpos de revolución.

Sea $f : [a, b] \to \mathbb{R}$ una función derivable.

Definición

La superficie S que se obtiene al girar la gráfica de f alrededor del eje OX se llama la superficie de revolución engendrada por f.

• El **volumen** del cuerpo que limita S se calcula mediante la fórmula

$$V = \int_a^b \pi \left(f(x) \right)^2 dx.$$

② El área de S se calcula con la integral

$$A = \int_{a}^{b} 2\pi f(x) \cdot \sqrt{1 + (f'(x))^{2}} \, dx.$$