EC simulate.m – The simulation consists in plotting the graphic of the potential difference between two nodes (M and N) of an electical circuit that contains only resistances, condensators and one single voltage source(V line).

Standard Input:

 $N, M \rightarrow$ the two nodes

V line \rightarrow parameters of the source (N1 N2 \rightarrow bornes)

R lines \rightarrow give resistances positions and their values

C line \rightarrow for condensators

TSTEP, **TSTOP** → plot graphic parameters

```
*N M
V N1 N2 PULSE (VI
                  V2 TD Tr Tf PW Period)
      N2 Value
C N1
     N2 Value
.TRAN TSTEP TSTOP
PLOT TRAN V(i,j)
```


Equations (node potential method):
$$\begin{cases} \sum_{i=1, i \neq k, V(k)=0}^{n} \left(\sum_{j=1}^{n} G_{i,j} * V_{j} + \sum_{j=1}^{n} M_{i,j} * V'_{j} \right) = 0 \\ \frac{dV_{i}}{dt} = V'_{i} \\ V'_{i}(0) = 0 \end{cases}$$

$$\text{Where } G_{i,j} = \begin{cases} \frac{1}{R_{i,j}}, R_{i,j} \neq 0, i = j \\ \frac{1}{R_{i,j}}, R_{i,j} \neq 0, i \neq j \\ 0, R_{i,j} = 0 \end{cases} \quad \text{and} \quad M_{i,j} = \begin{cases} \sum_{k=1}^{n} C_{j,k}, i = j \\ -\sum_{k=1}^{n} C_{j,k}, i \neq j \end{cases}$$

We obtain the differential system:

$$\begin{cases} Mprim * V'(t) + M2 * V(t) + M3 * U(t) + M3prim * slopeU(t) = 0 \\ M2 * V(0) + M3 * U(0) + M3prim * slopeU(0) = 0 \text{ (initial condition, unloaded condensators)} \\ V'(0) = 0 \end{cases}$$

Where
$$V(t) = \begin{bmatrix} V_1(t) \\ . \\ V_n(t) \end{bmatrix}$$
, $V'(t) = \begin{bmatrix} V'_1(t) \\ . \\ V'_n(t) \end{bmatrix}$ and $U(t)$ voltage of the source(given by PULSE

parameters)

Example:

Input:

```
*3 3
V 0 1 PULSE( 0 10 0 0 0 5 10)
R 1 2 10
R 2 0 10
.TRAN 0.2 40
.PLOT TRAN V(2,0)
```

Output:

Other examples: 1.cir, 2.cir, 3.cir, 4.cir <u>Call</u>: EC_simulate('1.cir') Tested with Octave 3.0.3 for Windows