

CMT107 Visual Computing

Assignment Project Exam Help Vectors and Watrices

https://tutorcs.com

WeChat: cstutorcs

Xianfang Sun

School of Computer Science & Informatics Cardiff University

Overview

- > Vectors
 - Vector Operations
 - Vector Geometry
 - Vector Projection
- 3D Vectors
 Cross Product

 Project Exam Help

 - 3D Vector Geopset/tyutorcs.com
- Matrices
 - Special Matrices

 WeChat: cstutorcs

 - Matrix Operations
 - Determinant

Vectors

- > A vector is a directed line segment, characterised by:
 - Length

- > A vector with length 0 is a zero vector, denoted by 0
 - Zero vectors Assignment Bireit Exam Help
- A vector with length 1 is a ynit vector with 1
- A vector \mathbf{u} with the same length but opposite direction of vector \mathbf{v} is the negative Vector of \mathbf{v} , denoted by $\mathbf{u} = -\mathbf{v}$.
- Two vectors are equal iff they have the same length and the same direction.
 - Two zero vectors are always equal, though their directions are undefined.

Vector Operations

- A vector **u** multiplied by a scalar α denoted by α **u** has the same direction of **u** if $\alpha > 0$ and the opposite direction if $\alpha < 0$. The length of α **u** is $|\alpha|$ times of the length of **u**.
- > The sum w of two vectors u and v:

Assignment Project Exam Help follows the head-to-tail rule. That is, if the head of **u** is the head of **u** is the directed line segment from the tail of **u** to the head of **v**.

The subtraction of vector **v** from vector **w** is the addition of vector **w** and vector -**v**

$$u = w - v = w + (-v)$$

Vector Operations

> A *n*D vector is represented by:

$$\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix} \quad \mathbf{or} \quad \mathbf{v} = [v_1 \ v_2 \cdots v_n]^T$$

The sum and subtraction of two vectors are: $\mathbf{u} + \mathbf{v} = [u_1 + v_1 u_2 + v_2 \cdots u_n + v_n]^T$

$$\mathbf{u} - \mathbf{v} = [u_1 \text{ https://tutoresverbm}]$$

- The multiplication of a vector \mathbf{v} by a scalar λ is defined by $\lambda \mathbf{v} = [\lambda v_1 \ \lambda v_2 \cdots \lambda v_n]^T$
- The inner product (dot product, scalar product) of two vectors is:

$$\mathbf{u} \cdot \mathbf{v} = \mathbf{u}^T \mathbf{v} = u_1 v_1 + u_2 v_2 + \dots + u_n v_n$$

Vector Geometry

- > A vector has direction and length.
 - The length is defined by $|\mathbf{v}| = \sqrt{\mathbf{v} \cdot \mathbf{v}} = \sqrt{v_1^2 + v_2^2 + \dots + v_n^2}$
 - The direction is parallel to the direction from the origin to the point (v_1, v_2, \dots, v_n) in nD Euclidean space.
 - The angle θ Aperiogram two Pections to Pection to Pections to Pections to Pections to Pections to Pections to
- Normalisation of a vector \mathbf{v} gives a unit vector \mathbf{v}' , which has length 1: $\mathbf{v}' = \mathbf{v}/|\mathbf{v}|$
- >Vectors \mathbf{u} and \mathbf{v} are orthogonal if $\mathbf{u} \cdot \mathbf{v} = 0$, which means that they are perpendicular to each other, and the angle between these two vectors are 90° .

Vector Projection

 \succ The vector projection \mathbf{w}_p of a vector \mathbf{w} on a nonzero vector \mathbf{v} is a vector parallel to \mathbf{v} , defined by

$$\mathbf{w}_p = \alpha \mathbf{v}$$
 where α is a scalar calculated by $\mathbf{w} \cdot \mathbf{v}$ Assignment Project Example \mathbf{w}_p

The vector \mathbf{w} then chatpe represented by the sum of \mathbf{w}_p and vector \mathbf{u} , which is perpendicular to \mathbf{v} (and \mathbf{w}_p).

We Chat: cstutorcs

$$\mathbf{w} = \mathbf{w}_p + \mathbf{u}$$

$$\mathbf{u} \cdot \mathbf{v} = 0$$
, $\mathbf{u} \cdot \mathbf{w}_p = 0$

Cross Product

 \triangleright Denote two 3D vectors \mathbf{v}_1 and \mathbf{v}_2 by $\mathbf{v}_i = [x_i, y_i, z_i]^T$, the vector product (also called cross product, outer product) of \mathbf{v}_1 and \mathbf{v}_2 is defined by

 $\mathbf{v}_{1} \times \mathbf{v}_{2} = \begin{bmatrix} \mathbf{y}_{1} \mathbf{z}_{2} - \mathbf{z}_{1} \mathbf{y}_{2} \\ \mathbf{z}_{1} \mathbf{x}_{2} - \mathbf{x}_{1} \mathbf{z}_{2} \end{bmatrix}$ Assignment Project Exam Help

 \triangleright If θ is the angle bethteps: $\sqrt{\text{tutodros}}$, and the length is:

- > The direction satisfies right-hand rule
 - $\mathbf{V}_1 \times \mathbf{V}_2$ is perpendicular to both \mathbf{v}_1 and \mathbf{v}_2 .

3D Vector Geometry

> A point in 3D space can be represented by a 3D vector:

$$\boldsymbol{p} = [\boldsymbol{x} \ \boldsymbol{y} \ \boldsymbol{z}]^T$$

 \triangleright A directed line segment from p_1 to p_2 can be represented by vector:

 $\boldsymbol{v} = \boldsymbol{p}_{\gamma} - \boldsymbol{p}_{1}$

Assignment Project Exam Help \triangleright Let v_1 and v_2 are two directed line segments on a plane, then the normal https://www.cdetermined by the cross product of v_1 and v_2 : Chat: cstutores $n = v_1 \times v_2$

Matrices

- ➤ A matrix is a rectangular array of scalars, arranged in rows and columns. The individual items in a matrix are called its elements or entries. The number of rows and columns are referred to as the row and column dimensions.
- The following matrix **A** has row dimension *m* and column dimension *n*, or simply, may repair project plants and column dimension

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \text{tutorcs.com} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \text{eChat: cstutorcs} \\ a_{mn} & a_{mn} \end{bmatrix} \quad \mathbf{A} = \begin{bmatrix} a_{11} & a_{21} & \cdots & a_{m1} \\ a_{12} & a_{22} & \cdots & a_{m2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{mn} \end{bmatrix}$$

- The transpose of an $m \times n$ matrix **A**, denoted by \mathbf{A}^T , is the $n \times m$ matrix obtained by interchanging the rows and columns of A.
- To save the space, the matrix is often written as $A = [a_{ij}]_{m \times n}$, or simply, $A = [a_{ij}]$, if the dimension of the matrix is implicitly known.

Special Matrices

- > A square matrix is a matrix which has the same row and column dimension.
- A symmetric matrix is a square matrix that is equal to its transpose. Let $A=[a_{ii}]$ be a symmetric matrix, then $A=A^T$. Its elements satisfy $a_{ii} = a_{ii}$
- > A diagonal matrixsisgametrix trysyally square matrix) in which the elements outside the main diagonal are all zero, i.e., $A=[a_{ii}]$,

$$a_{ij}^{\text{https://tutorcs.com}}$$

> An identity matrix, denoted by P, Ista square diagonal matrix with 1's on the diagonal and 0's elsewhere

$$I = [a_{ij}]$$
, $a_{ij} = \begin{cases} 1 & \text{if } i = j; \\ 0 & \text{otherwise.} \end{cases}$

Special Matrices

 \triangleright A row matrix is a matrix of dimension 1 x n. It is also called a row vector.

$$\mathbf{a} = \begin{bmatrix} a_1 & a_2 & \cdots & a_n \end{bmatrix}$$

 \triangleright A column matrix is a matrix of dimension $m \times 1$, also called a column vector.

Assignment Project Exam Help
$$\mathbf{a} = \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} \quad \mathbf{a} = \begin{bmatrix} a_1 & a_2 & \cdots & a_m \end{bmatrix}^T$$
https://tutorcs.com

WeChat: cstutorcs

Matrix Operations

- Scalar-Matrix multiplication is defined by multiplying each element by the scalar
 - $\alpha \mathbf{A} = [\alpha a_{ii}]$
- Matrix-Matrix Addition of two matrices of the same dimension is defined by adding corresponding elements of the two matrices
 - $C = A + B = \begin{bmatrix} a_{ij} & p_{ij} \end{bmatrix}$ ent Project Exam Help
- ightharpoonup Matrix-Matrix Multiplication of the matrix ${\bf A}$ and an $l \times n$ dimensional matrix ${\bf B}$ is defined by
 - $C = AB = [c_{ij}]$, WeChat: cstutorcs
 - Where $c_{ij} = \sum_{k=1}^{l} a_{ik} b_{kj}$
- \triangleright Inverse of a Square Matrix **A** is a square matrix **B**, such that

$$AB = I$$

• Denote by $\mathbf{B} = \mathbf{A}^{-1}$

Orthogonal Matrix

- An orthogonal matrix is a square matrix with real entries whose columns and rows are orthogonal unit vectors (i.e., orthonormal vectors).
- Equivalently, a matrix **Q** is orthogonal if its transpose is equal to its inverse:

Assignment Project Exam Help

which entails

https://duto/ast.com

WeChat: cstutorcs

Determinant

➤ The determinant is a value associated with a square matrix, denoted by det(A), det A, or |A|. It is defined as

$$\left|\mathbf{A}\right| = \sum_{i=1}^{n} (-1)^{i+j} \mathbf{a}_{ij} \left|\mathbf{A}_{ij}\right|$$

- where **A**_{ij} is the (i, j) minor matrix of **A**, which is obtained by deleting the ith row and the ith column of **A**_{ij}
- > The determinant of a 2 x 2 matrix is calculated by

https://tutorcs.com

$$|A| = a_{11} a_{12} = a_{11}a_{22} - a_{12}a_{21}$$

We hat: cstutorcs

 \triangleright The determinant of a 3 x 3 matrix is calculated by

$$\begin{aligned} |\mathbf{A}| &= \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11} |\mathbf{A}_{11}| - a_{12} |\mathbf{A}_{12}| + a_{13} |\mathbf{A}_{13}| = a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{32} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix} \\ &= a_{11} a_{22} a_{33} + a_{12} a_{23} a_{31} + a_{13} a_{21} a_{32} - a_{11} a_{23} a_{32} - a_{12} a_{21} a_{33} - a_{13} a_{22} a_{31} \end{aligned}$$

Cross Product Using Determinant

➤ The cross product of two 3D vectors can be calculated using determinant as follows:

$$\mathbf{v}_{1} \times \mathbf{v}_{2} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \mathbf{x}_{1} & \mathbf{y}_{1} & \mathbf{z}_{1} \\ \mathbf{x}_{2} & \mathbf{y}_{2} & \mathbf{z}_{2} \end{vmatrix} = \mathbf{i} \begin{vmatrix} \mathbf{y}_{1} & \mathbf{z}_{1} \\ \mathbf{y}_{2} & \mathbf{z}_{2} \end{vmatrix} - \mathbf{j} \begin{vmatrix} \mathbf{x}_{1} & \mathbf{z}_{1} \\ \mathbf{x}_{2} & \mathbf{z}_{2} \end{vmatrix} + \mathbf{k} \begin{vmatrix} \mathbf{x}_{1} & \mathbf{y}_{1} \\ \mathbf{x}_{2} & \mathbf{y}_{2} \end{vmatrix}$$
$$= (\mathbf{x}_{1} \times \mathbf{y}_{2} \times \mathbf{y}_{2} \times \mathbf{y}_{2}) \mathbf{x}_{1} \mathbf{x}_{2} \mathbf{y}_{2} \mathbf{y}_{1} \mathbf{y}_{2} \mathbf{y}_{2}$$

https://tutorcs.com

WeChat: cstutorcs

Summary

- What are the characteristics of a vector?
- What operations are defined for vectors.
- > How to calculate the vector projection onto another vector?
- > How to cake interest projecture kany hat is the geometric meaning of cross product?
 https://tutorcs.com
 How to do matrix operations?
- > What is a orthogohat:maturix?cs
- How to calculate determinant?