

GUTI Reallocation Demystified: Cellular Location Tracking with Changing Temporary Identifier

Byeongdo Hong, Sangwook Bae, Yongdae Kim

KAIST SysSec

Feb. 19, 2018

Paging Area in Cellular Network

Paging:

A method to find specific subscriber

How?

By using subscriber's *identifier*

Paging Area in Cellular Network

Paging:

A method to find specific subscriber

How?

By using subscriber's *identifier*

Yongdae

Paging Area in Cellular Network

Paging:

A method to find specific subscriber

How?

By using subscriber's *identifier*

Identifiers in Cellular Networks

- Permanent/Unique identifier
 - IMSI (International Mobile Subscriber Identity)
 - Provisioned in the SIM card
- Temporary identifier
 - Used to hide subscriber
 - TMSI (Temporary Mobile Subscriber Identity)
 - Used in 2G/3G
 - GUTI (Globally Unique Temporary Identity)
 - Used in LTF

Location Tracking in Cellular Network

Location Tracking in Cellular Network

Phone number-Temporary ID mapping

- Traffic analysis to find the same TMSI (Kune et al. NDSS'12)
 - Find intersects of identifier's sets.

- Using "Silent Call"
 - Terminating call before ringing
- Same vulnerability in LTE unchanged GUTI (Shaik et al. NDSS'16)

Defense of Location Tracking

- Temporary Identifier Reallocation
 - GUTI Reallocation in LTE
 - To prevent between subscriber and ID mapping

Q. Is GUTI Reallocation the solution to existing attacks?

A. It is Yes

But simply changing is not a solution!

Experiment Setup

Device Analysis

Diagnostic Monitor

Signaling Collection and Analysis Tool (SCAT) [1]

Broadcast Channel Analysis

Broadcast Channel Receiver

[1] B. Hong, S. Park, H. Kim, D. Kim, H. Hong, H. Choi, J.P. Seifert, S. Lee, Y. Kim, *Peeking over the Cellular Walled Gardens - A Method for Closed Network Diagnosis -,* IEEE Transactions on Mobile Computing.

Worldwide Data Collection

Country	# of OP.	# of USIM	# of signalings	Country	# of OP.	# of USIM	# of signalings
U.S.A	3	22	763K	U.K.	1	1	41K
Austria	3	3	807K	Spain	2	2	51K
Belgium	3	3	372K	Netherlands	3	3	946K
Switzerland	3	3	559K	Japan	1	2	37K
Germany	4	19	841K	South Korea	3	14	1.7M
France	2	6	305K				

Data summary

Collection Period: **2014. 11. ~ 2017. 7.**

of countries: 11 # of operators: 28 # of USIMs: 78 # of voice calls: 58K # of signalings: 6.4M

* OP: operator, USIM: Universal Subscriber Identity Module, Signaling: control plane message

Same vs. Fingerprintable IDs

NDSS'12, '16: Same ID → Location Tracking!!

This work: ID Fingerprinting → Location Tracking!!

Fixed Bytes in GUTI Reallocation

19 operators have fixed bytes

Allocation Pattern	Operators
Assigning the same GUTI	BE-III, DE-II, FR-II, JP-I
Three bytes fixed	CH-II, DE-III, NL-I, NL-II
Two bytes fixed	BE-II, CH-I, CH-III, ES-I, FR-I, NL-III
One bytes fixed	AT-I, AT-II, AT-III, BE-I, DE-I

AT: Austria, BE: Belgium, CH: Switzerland, DE: Germany, ES: Spain, FR: France, JP: Japan, NL: Netherlands

Case I: Netherlands (NL-I)

Case I: Netherlands (NL-I)

Case II: Belgium (BE-II)

Case II: Belgium (BE-II)

Fixed Bytes in GUTI Reallocation

19 operators have fixed bytes

Allocation Pattern	Operators
Assigning the same GUTI	BE-III, DE-II, FR-II, JP-I
Three bytes fixed	CH-II, DE-III, NL-I, NL-II
Two bytes fixed	BE-II, CH-I, CH-III, ES-I, FR-I, NL-III
One bytes fixed	AT-I, AT-II, AT-III, BE-I, DE-I

AT: Austria, BE: Belgium, CH: Switzerland, DE: Germany, ES: Spain, FR: France, JP: Japan, NL: Netherlands

Stress Testing

- No noticeable rule of *GUTI Reallocation* for some operators
- Invoking voice call continuously with a short time
 - Two types of test
 - Weak stress testing
 - Hard stress testing
 - Calls at shorter intervals than weak stress test

Stress Testing Result

- ❖ Force the network to skip the *GUTI reallocation*
 - Perform experiments on US and Korean operators

Two US and two Korean operators

Operator	Weak Stress Testing	Hard Stress Testing
KR-I	0	0
KR-II	X	0
US-I	X	0
US-II	0	Ο

O: Reuse GUTI

X: No noticeable change

Success Rate of our Attack

Required number of calls covering 99% success rate

Location Tracking with GUTI

- Observation of broadcast channels after call invocation
 - Pattern matching (fixed bytes, assigning same GUTI)
 - Location tracking (Tracking Area, Cell)

```
EXTENDED SERVICE REQUEST:
                                                   6027 106.479617
                                                                       LTE RRC PCCH
                                                                                       22 Paging (1 PagingRecords)
                                                   6028 106.489716
                                                                       LTE RRC PCCH
                                                                                      22 Paging
SecurityHeaderType: 0
                                                                       LTE RRC PCCH
                                                                                      33 Paging (3 PagingRecords)
                                                   6029 106.500101
ServiceType: 1 (mobile terminating CS fallback or
1xCS fallback)
                                                   ▲ LTE Radio Resource Control (RRC) protocol
NASKeySetIdentifier:

■ PCCH-Message

■ message: c1 (0)

  TSC: 0 (native security context)

△ c1: paging (0)

  NASKeySetId: 2

■ paging
MTMSI: Identity:

■ pagingRecordList: 3 items
   IdentityDigit:
                                                                 ⊿ Item 0
    01:200 = 0xC8
                                                                    ■ PagingRecord

■ ue-Identity: s-TMSI (0)

     02: 22 = 0x16

■ 5-TMSI

     03:66 = 0x42
                                                                             mmec: 07 [hit length 8, 0000 0111 deci
     04:93 = 0x5D
                                                                             m-TMSI: c816425d bit length 32, 1100
       (a) M-TMSI monitored by Device
                                                           (b) Paging Message in Broadcast Channel (USRP)
```


OpenSignal (at KAIST)

Defenses + Requirements

- Frequent refreshing of temporary identifier
 - Per service request
- Unpredictable identity allocation
 - Cryptographically secure pseudorandom number generation
 - Hash_DRBG can be used
- Collision avoidance
- Stress-testing resistance
- Low cost implementation

Conclusion

- Predictable reallocation logic
 - GUTI reallocation pattern
 - Fixed bytes (19 operators)
 - Same GUTI
 - By stress test (4 test cases)
 - Assigning same GUTI
- Location tracking is still possible in cellular network!
- Secure GUTI reallocation mechanism is required

Thank you

Q & A

BACK UP SLIDES

GUTI Format

Dataset Release?

- Our dataset includes somewhat sensitive information.
 - Name of telcos → Vulnerabilities can be linked to telcos.
 - Some IMSIs
- Not clear if releasing this dataset may cause any legal issues.
- ❖ B. Hong, et. al, "Peeking over the Cellular Walled Gardens A Method for Closed Network Diagnosis -, IEEE Transactions on Mobile Computing.
 - Finding performance bugs by comparative analysis of call flows
- Should we build open-source dataset using crowdsourcing?
 - May help customers to push telcos to build secure and better cellular network!

Stress Testing Result: US-I

(a) Normal GUTI Reallocation with CSFB call

(b) GUTI Reallocation and CSFB call Collision

Probability with Fixed Bytes

$$Pr(\bigcap_{i=1}^{N-1} A_i \neq \emptyset) = Pr(\bigvee_{a=0}^{2^{8k}-1} (a \in \bigcap_{i=1}^{N-1} A_i))$$

$$\leq \sum_{a=0}^{2^{8k}-1} Pr(a \in \bigcap_{i=1}^{N-1} A_i)$$

$$= 2^{8k} Pr(a \in \bigcap_{i=1}^{N-1} A_i) \text{ for some } a$$

$$= 2^{8k} \prod_{i=1}^{N-1} Pr(a \in A_i) \text{ for some a}$$

$$= 2^{8k} \prod_{i=1}^{N-1} (1 - Pr(a \notin A_i)) \text{ for some a}$$

$$= 2^{8k} \prod_{i=1}^{N-1} (1 - (\frac{2^{8k}-1}{2^{8k}})^t) \text{ for some a}$$

$$= 2^{8k} (1 - (\frac{2^{8k}-1}{2^{8k}})^t)^{N-1}$$

Attack Flow

Obtain target information (Phone number, carrier)

Perform GUTI Reallocation?

Attack Flow

Attack Flow

Paging Distribution in Korea (KR-I)

