

IT2070 – Data Structures and Algorithms

Lecture 08
Heap Sort Algorithms

Contents for Today

- Tree
- Binary Tree
- Complete Binary Tree
- Heaps
- Heap Algorithms
 - Maintaining Heap Property
 - Building Heaps
 - HeapSort Algorithms

Height of a Full Binary Tree

A Full binary tree of height h that contains exactly 2^{h+1}-1 nodes

Height, h = 2, nodes = $2^{2+1}-1=7$

Height of a complete binary tree

Height of a complete binary tree that contains n elements is $\lfloor \log_2(n) \rfloor$

Example

- Above is a Complete Binary Tree with height = 3
- No of nodes: *n* = 10
- Height = $\lfloor \log_2(n) \rfloor = \lfloor \log_2(10) \rfloor = 3$

Heaps

Heap is an array object that can be viewed as a complete binary tree. There are two kinds of heaps

max heaps and min heaps

In both case, values in the nodes satisfy **Heap Property** which depend on the kind of heap

max-heap → max-heap property:

The value of each node is greater than or equal to those of its children.

min-heap → min-heap property:

The value of each node is less than or equal to those of its children.

Max-heaps are used in heapsort algorithm

Heaps

Complete Binary Tree with the max-heap property - examples

Heaps (contd.)

A heap can be represented in a one-dimensional array

Heaps (contd.)

After representing a heap using an array A

Root of the tree is A[1]

\mathbf{A}	1	2	3	4	5	6	7	8	9	10
	16	14	10	8	7	9	3	2	4	1

Given node with index i,

PARENT(i) is the index of parent of i;

$$PARENT(i) = \lfloor i/2 \rfloor$$

• **LEFT_CHILD(i)** is the index of left child of **i**;

$$LEFT_CHILD(i) = 2 \times i$$

RIGHT_CHILD(i) is the index of right child of i;

$$RIGHT_CHILD(i) = 2 \times i + 1$$

Heap Algorithms

MAX_HEAPIFY:

To maintain max-heap property

$$A[PARENT(i)] \ge A[i]$$

BUILD_MAX_HEAP

To build max-heap from an unsorted input array

HEAPSORT

Sorts an array in place.

MAX_HEAPIFY

 The MAX_HEAPIFY algorithm checks the heap elements for violation of the heap property and restores max-heap property;

$$A[PARENT(i)] \ge A[i]$$

- **Input**: An array A and index *i* to the array. *i* =1 if we want to heapify the whole tree. Subtrees rooted at *LEFT_CHILD(i)* and *RIGHT_CHILD(i)* are heaps
- **Output**: The elements of array A forming subtree rooted at *i* satisfy the heap property.

Maintaining the Heap Property

```
MAX_HEAPIFY(A,i)
        I = LEFT(i);
       r = RIGHT(i);
       if l \le A.heap_size and A[l] > A[i]
3.
4.
                largest = I;
5.
        else largest = i;
        if r \le A.heap_size and A[r] > A[largest]
6.
                largest = r;
8.
        if largest \neq i
9.
                exchange A[i] with A[largest]
                MAX_HEAPIFY (A, largest)
10.
```


Example

You are given the following array

A	1	2	3	_										
					7	24	19	21	14	03	10	2	13	11

Now we are going to maintain the max-heap property

Drawing a heap would make our work easy

$MAX_HEAPIFY(A,1)$

To be contd.

$MAX_HEAPIFY(A,1)$ (contd.)

Important point Although we represent this process using a heap actually all the task in done on the input array

Resulting Heap

Array view of MAX_HEAPIFY Algorithm

<u>7</u>	<u>24</u>	19	21	14	03	10	02	13	11
24	<u>7</u>	19	<u>21</u>	14	03	10	02	13	11
24	21	19	<u>07</u>	14	03	10	02	<u>13</u>	11
24	21	19	13	14	03	10	02	07	11

Analysis of Heapify Algorithm.

- The running time of MAX-HEAPIFY on a subtree of size n rooted at given node i is the $\Theta(1)$ time plus the time to run MAX-HEAPIFY on a subtree rooted at one of the children of node i.
- The children's subtrees -the worst case occurs when the last row of the tree is exactly half full

• Alternatively, we can characterize the running time of MAX-HEAPIFY on a node of height h as O(h).

The solution to this recurrence is

$$T(n) = O(\lg n)$$

BUILD_HEAP

Input: An array A of size n = A.length, A.heap_size

Output: A heap of size n

```
BUILD_MAX_HEAP (A)

1. A.heap\_size = A.length
2. for i = [A.length/2] downto 1
3. MAX\_HEAPIFY(A,i)
```

Exercise: We are given the following unordered array to build the heap.

Solution

Step1

$$i = \lfloor length[A]/2 \rfloor = \lfloor 10/2 \rfloor = 5$$

MAX_HEAPIFY(A,5)

Solution (Contd.)

loop index *i* refers to node 5

loop index *i* for the next iteration refers to node 4

loop index *i* refers to node 3

loop index i refers to node 1

loop index *i* refers to node 2

max-heap after BUILD-MAX-HEAP finishes.

Analysis of Build Max Heap Algorithm.

Time for MAX-HEAPIFY to run at a node varies with the height of the node in the tree, and the heights of most nodes are small.

- n-element heap has height [lg n]
 and
- at most $\lceil n/2^{h+1} \rceil$ nodes of any height h.

Analysis of Build Max Heap Algorithm.

Complexity analysis of Build-Heap (1)

- For each height $0 < h \le \lg n$, the number of nodes in the tree is at most $n/2^{h+1}$
- For each node, the amount of work is proportional to its height h, $O(h) \rightarrow n/2^{h+1}$. O(h)
- Summing over all heights, we obtain:

$$T(n) = \sum_{h=0}^{\lg n} \left\lceil \frac{n}{2^{h+1}} \right\rceil . O(h) = O\left(n \sum_{h=0}^{\lg n} \left\lceil \frac{h}{2^{h+1}} \right\rceil \right)$$

Complexity analysis of Build-Heap (2)

• We use the fact that $\sum_{k=0}^{\infty} kx^k = \frac{x}{(1-x)^2}$ for |x| < 1

$$\sum_{h=0}^{\infty} \left\lceil \frac{h}{2^h} \right\rceil = \frac{1/2}{(1-1/2)^2} = 2$$

• Therefore:

$$T(n) = O\left(n\sum_{h=0}^{\lfloor \lg n\rfloor} \left\lceil \frac{h}{2^{h+1}} \right\rceil\right) = O\left(n\sum_{h=0}^{\infty} \left\lceil \frac{h}{2^{h}} \right\rceil\right) = O(n)$$

Building a heap takes only linear time and space!

The HEAPSORT Algorithm

```
Input : Array A[1...n], n = A.length
```

Output : Sorted array A[1...n]

```
HEAPSORT(A)

1. BUILD_MAX_HEAP[A]

2. for i = A.length down to 2

3. exchange A[1] with A[i]

4. A.heap_size = A.heap_size - 1;

5. MAX_HEAPIFY(A, 1)
```


The operation of HEAPSORT.

The operation of HEAPSORT.

Heapsort Complexity

Running Time:

Step1: BUILD_MAX_HEAP takes O(n)

Step 2 to 5: MAX_HEAPIFY takes O(log n) and there are (n -1) calls

Running Time is O(n log n)

Priority Queues

- Heap data structure itself has many uses.
- One of the most popular applications of a heap: its use as an efficient priority queue.
- As with heaps, there are two kinds of priority queues:
 - max-priority queues
 - min-priority queues
- We will focus here on how to implement max-priority queues, which are in turn based on max-heaps

Priority queues.

- priority queue is a data structure for maintaining a set S of elements, each with an associated value called a key. A max-priority queue supports the following operations.
- INSERT(S, x) inserts the element x into the set S. This operation could be written as $S = S \cup \{x\}$.
- EXTRACT-MAX(S) removes and returns the element of S with the largest key.

Priority queues.

 One application of max-priority queues is to schedule jobs on a shared computer.

The max-priority queue keeps track of the jobs to be performed and their relative priorities. When a job is finished or interrupted, the highest-priority job is selected from those pending using EXTRACT-MAX. A new job can be added to the queue at any time using INSERT.

HEAP_EXTRACT_MAX

HEAP_EXTRACT_MAX(A[1 .. n])

This will remove the maximum element from heap and return it

Input : heap(A)

Output: Maximum element or root, heap(A[1..n-1])

- 1. if A.heap_size >= 1
- $2. \quad \text{max} = A[1]$
- $3. \qquad A[1] = A[A.heap_size]$
- 4. A.heap_size = A.heap_size -1
- 5. MAX_HEAPIFY(A,1)
- 6. return max

Running time: O(log n)

HEAP_INSERT

HEAP_INSERT(A, key)

This will add a new element to the heap

Input: heap(A[1..n]), key - the new element

Output: heap(A[1..n+1]), with k in the heap

- 1. A.heap_size = A.heap_size + 1
- 2. $i = A.heap_size // assume A[i] = \infty$
- 3. while i > 1 and A[PARENT(i)] < key
- 4. A[i] = A[PARENT(i)]
- $5. \quad i = PARENT(i)$
- 6.A[i] = key

Running time: O(lg n)

Summary

- Complete binary Tree
- Heap property
- Heap
- Maintaining heap Property(HEAPIFY)
- Building Heaps
- HeapSort Algorithm
- Priority queues.
- Heap Extract Max.
- Heap Insert.