

Concours d'entrée 2019-2020

Physique (Bac Libanais)

Juillet 2019 Durée 2 h

Exercice I : Polonium 210: "L'assassin qui dévore les globules rouges" [21 points]

« Le Polonium 210 ($^{210}_{84}$ Po) est un million de fois plus toxique que le cyanure ; un seul centième de milligramme (10 microgrammes) suffit à tuer, en quelques semaines, un homme de "poids moyen"...

Il faut de plus l'obtenir vite, car il perd la moitié de sa radioactivité tous les 138 jours ; il doit avoir été récemment fabriqué par irradiation du bismuth ²⁰⁹₈₃Bi en captant un neutron dans un réacteur nucléaire...

Le poison, après son ingestion, passe de l'estomac dans la circulation sanguine. Chaque atome de polonium 210 est alors porteur d'un projectile alpha expulsé à grande vitesse, de quoi littéralement griller toutes les cellules de l'organisme, les globules rouges en premier, et causer une mort dite "multifactorielle"...

D'après Fabien Gruhier- Nouvel Observateur 11-17 Janvier 2007

 $\begin{array}{l} \textbf{Donn\'ees}: \underline{\textbf{Masses de quelques noyaux ou particules}}: m(^{209}_{83}\text{Bi}) = 208,934860 \text{ u} \text{ ; } m(^{210}_{83}\text{Bi}) = 209,938584 \text{ u} \text{ ; } \\ m(^{210}_{84}\text{Po}) = 209,936800 \text{ u} \text{ ; } m(^{206}_{82}\text{Pb}) = 205,929489 \text{ u} \text{ ; } m(^{4}_{2}\text{He}) = 4,00151 \text{ u} \text{ ; } \\ m(^{1}_{1}\text{H}) = 1,007276 \text{ u} \text{ ; } m(^{1}_{0}\text{n}) = 1,008665 \text{ u} \text{ ; } m(^{1}_{0}\text{e}) = 5,49\times10^{-4} \text{ u} \text{ ; } \\ \underline{\textbf{Masse molaire atomique}}: M(^{210}_{84}\text{Po}) = 210 \text{ g mol}^{-1} \text{ ; Nombre d'Avogadro}: N_{A} = 6,022\times10^{23} \text{ mol}^{-1} \text{ ; } \\ 1 \text{ u} = 931,5 \text{ MeV/c}^{2} = 1,66054\times10^{-27} \text{ kg} \text{ ; } c = 2,99792\times10^{8} \text{ m s}^{-1} \text{ ; } h = 6,626\times10^{-34} \text{ J} \cdot \text{s} \text{ ; } 1 \text{ eV} = 1,602\times10^{-19} \text{ J}. \end{array}$

Partie A: Obtention du polonium

- **1.** Le bismuth 209 capte dans une première étape un neutron : $^{209}_{83}$ Bi + $^{1}_{0}$ n \rightarrow $^{210}_{83}$ Bi ; le noyau obtenu subit une désintégration et le noyau fils obtenu est un noyau polonium 210. Écrire, en le justifiant, l'équation de cette désintégration (le noyau fils ne sera pas écrit dans un état excité).
- **2.1.** Calculer l'énergie de liaison par nucléon du noyau de bismuth 210.
- 2.2. Sachant que l'énergie de liaison par nucléon du noyau de bismuth 209 est 7,839 MeV/nucléon, en déduire le noyau qui est plus stable que l'autre.

Partie B: Désintégration du polonium 210

Un seul gramme de polonium 210 présente une activité de 166 761 milliards de becquerels et par conséquent émet 166 761 milliards de particules alpha par seconde.

- 1. Écrire l'équation de désintégration d'un noyau ²¹⁰₈₄Po en précisant les lois de conservation utilisées (on suppose que le noyau fils formé est dans l'état fondamental).
- 2. Calculer, en MeV, l'énergie libérée par la désintégration d'un noyau de polonium 210.
- 3. Le noyau père est initialement au repos et l'énergie libérée apparaît sous forme d'une énergie cinétique pour la particule α et d'une autre pour le noyau fils. Déterminer l'énergie cinétique $E_C(\alpha)$ d'une particule α , en supposant qu'au cours de cette désintégration, on a la conservation de la quantité de mouvement du système (noyau fils, α).
- **4.** Pour vérifier la valeur de $E_C(\alpha)$, on dévie un faisceau de ces particules par un champ électrique uniforme \vec{E} (Doc. 1).

À la date $t_0 = 0$, un faisceau homocinétique de ces particules α pénètre en un point O, situé à égale distance des deux plaques parallèles et horizontales d'un condensateur plan, entre lesquelles règne le champ électrique E d'intensité $E = 5 \times 10^6 \text{ V/m}$; chaque particule est animée d'une vitesse $\vec{v}_0 = v_0 \vec{j}$, la quantité de mouvement étant $\overrightarrow{P_0} = P_{0x} \vec{i} + P_{0y} \vec{j} = m \overrightarrow{v_0}$.

À une date t, chaque particule α possède une quantité de mouvement $\vec{P} = P_x \vec{i} + P_y \vec{j}$ et subit l'action de la force électrique $\vec{F} = q_\alpha \vec{E} = q_\alpha \vec{E}$ i. À la

Film Ē + Échantillo n de Po Doc. 1

distance L = OO' = 10 cm est placé un film photographique sur lequel les impacts des particules alpha créent des taches lumineuses. (En l'absence de É, il se forme une tache en O' du film).

Les particules sont déviées vers la plaque B et il se forme une tache en un point M du film à une distance d = 4,713 mm du point O'.

On négligera le poids de la particule α et cette expérience est réalisée dans le vide.

- **4.1.** En appliquant la deuxième loi de Newton, montrer qu'à une date t, le repère étant $(O, \vec{1}, \vec{j})$: P_y reste constante et égale à P_{0y} et P_x est de la forme $P_x = at + b$, en précisant l'expression de a et la valeur de b.
- **4.2.** Montrer qu'à la date t, $x = \frac{eE}{m}t^2$ et $y = v_0$ t, x et y étant les coordonnées de la particule.
- **4.3.** En déduire l'équation de sa trajectoire.
- 4.4. Déterminer, en eV, son énergie cinétique en O.
- 5. L'expérience montre que certaines particules α ont une énergie cinétique $E_{C1}(\alpha) = 5,30$ MeV et d'autres ont une énergie cinétique $E_{C2}(\alpha) = 4,50$ MeV, et que certaines désintégrations sont accompagnées par l'émission d'un rayonnement γ . Interpréter l'existence de ce rayonnement γ et calculer sa longueur d'onde.
- **6.** Justifier, par un calcul, la phrase « un seul gramme de polonium 210 présente une activité de 166 761 milliards de becquerels ».

Exercice II Convertisseur électromécanique : prototype [18 points]

Un alternateur permet de transformer de l'énergie mécanique en énergie électrique. Son fonctionnement est basé sur le phénomène d'induction électromagnétique. Il est constitué d'un rotor et d'un stator. Le rotor, tournant autour de l'axe Oz, peut être vu comme un aimant, créant dans son voisinage un champ magnétique \vec{B} , de module supposé constant, les lignes de champ \vec{B} étant parallèles au plan (xOy).

Chaque vecteur \vec{B} est un vecteur tournant, repéré, à un instant t, par l'abscisse angulaire θ par rapport à l'axe Ox. La normale \vec{n} aux bobines (S) et (S') est parallèle à l'axe Ox et de même sens (Doc1).

Stator

Le rotor est entraîné par un système mécanique qui exerce un couple moteur dont le moment est noté $\overrightarrow{M}_m = M_m \overrightarrow{k}$ où $M_m = 3.8 \times 10^{-2}$ m·N. Enfin, on considère le moment du couple des forces de frottement $\overrightarrow{M}_f = -M_f \overrightarrow{k}$ où $M_f > 0$. Le stator est constitué d'une association de deux bobines (S) et (S') et d'un conducteur ohmique (R) de résistance $R = 2.0 \Omega$; chacune des deux

conducteur ohmique (R) de résistance $R = 2,0 \Omega$; chacune des deux bobines, de résistance $r = 1,0 \Omega$ et d'inductance L = 0,20 mH, est formée de N spires rectangulaires, chacune d'aire A. On considère le cas où la vitesse angulaire ω du rotor est une constante positive avec $\theta = \omega$ t.

- **1.** Déterminer, à une date t, le flux total Φ à travers les deux bobines (S) et (S').
- **2.** En déduire que la force électromotrice induite "e" créée a pour expression : $e = D \omega \sin(\omega t)$ avec D = 2NAB.

R

Doc. 2

3. Le circuit électrique équivalent au circuit cité précédemment est conforme à celui de Doc 2.

En régime permanent, le circuit est parcouru par un courant d'intensité

- $i = I_m \sin(\omega t \phi)$ où $-\frac{\pi}{2}$ rad $< \phi < \frac{\pi}{2}$ rad.
- 3.1. En appliquant la loi d'additivité des tensions et en donnant à t deux valeurs particulières, montrer que :

$$i = \frac{D \cdot \omega}{\sqrt{(2r+R)^2 + (2L\omega)^2}} \sin \left(\omega t - \phi\right) \text{ avec tan } \phi = \frac{2L\omega}{2r+R} \text{ et } \cos \phi = \frac{2r+R}{\sqrt{(2r+R)^2 + (2L\omega)^2}}.$$

الجامِعة اللبث نانية كليثة الهندسية

- **3.2.** La courbe du document 3 est celle de l'intensité i du courant en fonction du temps.
- **3.2.1.** Déterminer la valeur de la vitesse angulaire ω du rotor.
- **3.2.2.** Écrire, en fonction des données, l'expression de la puissance moyenne P délivrée par les bobines (S) et (S') à (R) et calculer sa valeur.
- **4.1.1.** Déterminer la puissance mécanique P_m reçue par l'alternateur.
- **4.1.2.** En déduire le rendement de l'alternateur
- **4.1.3.** Déterminer la valeur de M_f.
- 5. Déterminer la valeur de D.

Exercice III: Pendule de torsion [21 points]

A- Régimes libres

Le pendule de torsion permet de déterminer quelques grandeurs physiques. Un pendule de torsion est constitué d'un fil métallique vertical, de constante de torsion C, auquel est accroché un ensemble (Σ) constitué d'une tige fine en acier, de masse $m_T = 0,090$ kg et de longueur 2L = 0,20 m, portant, à une extrémité, une petite boule (S_1) et à l'autre une autre petite boule (S_1) identique à (S_1); chacune des boules est considérée comme une masse ponctuelle de masse m = 0,050 kg. Le moment d'inertie I_0 de la tige par rapport à l'axe vertical (Δ) confondu avec le fil et passant par O, le centre d'inertie de la tige, est $I_0 = \frac{1}{2} m_T \cdot L^2$.

On fait tourner (Σ) horizontalement dans le sens positif autour de l'axe (Δ) d'un angle θ_0 = 0,080 rad par rapport à sa position d'équilibre, et on le libère

Doc. 1

sans vitesse à la date $t_0 = 0$. À une date t, l'abscisse angulaire de (Σ) est θ et sa vitesse angulaire est $\dot{\theta} = \frac{d\theta}{dt}$; le fil, tordu ainsi d'un angle θ , exerce alors un couple de rappel de torsion de moment $M_1 = -C\theta$ et emmagasine une énergie potentielle élastique de torsion $E_{P\acute{e}} = \frac{1}{2} C \theta^2$. Le plan horizontal passant par O est pris comme niveau de référence de l'énergie potentielle de pesanteur. (Doc. 1)

1. Régime libre non amorti

- **1.1.** Montrer que le moment d'inertie I_{Δ} de (Σ) par rapport à l'axe (Δ) vaut : $I_{\Delta} = 1,30 \times 10^{-3} \, \text{kg} \cdot \text{m}^2$.
- 1.2. En appliquant la conservation de l'énergie mécanique du système (pendule, Terre), déterminer l'équation différentielle en θ qui décrit le mouvement du pendule.
- **1.3.** En déduire l'expression de la pulsation propre ω_0 du pendule ainsi que celle de sa période propre T_0 en fonction des données.

2. Régime libre amorti

En réalité, en conservant les mêmes conditions initiales, (Σ) subit en plus du couple de rappel de torsion de moment M_1 , à une date t, l'action d'un couple de forces de frottement de moment $M_2 = -2\lambda\omega_0\dot{\theta}$, où λ est une constante positive.

2.1. Montrer que l'équation différentielle en θ qui décrit le mouvement du pendule s'écrit alors :

$$\label{eq:theta_def} \ddot{\theta} + \frac{2\lambda\omega_0}{I_\Delta}\,\dot{\theta} + \frac{c}{I_\Delta}\,\theta = 0$$

- **2.2.** Pour $\lambda = 0.25$, la solution de l'équation différentielle s'écrit sous la forme :
- $\theta = A \ e^{-\lambda \omega_0 t} \cos(\omega t \phi)$, où A est une constante positive, $\omega = \omega_0 \sqrt{1 \lambda^2}$ et $\tan \phi = \frac{\lambda}{\sqrt{1 \lambda^2}}$ (Doc 2)
- 2.2.1. Indiquer le régime suivi par le pendule et préciser alors si l'amortissement est fort ou faible.
- **2.2.2.** Le document (Doc 2) montre l'enregistrement des oscillations du pendule. Déterminer la valeur de ω et calculer les valeurs de φ , C et A.

B- Mesure de G

L'intensité F de la force d'attraction gravitationnelle qui s'exerce entre deux corps ponctuels, de masses respectives m_1 et m_2 , séparés par une distance r s'écrit : $F = G \frac{m_1 \cdot m_2}{r^2}$, où G est la constante de gravitation universelle.

 (Σ) est maintenu dans sa position d'équilibre. On place une sphère en plomb de masse M=30 kg, considérée comme une masse ponctuelle, en face de chaque petite boule et à une distance d=17,7 cm de chaque boule. On abandonne (Σ) sans vitesse à la date $t_0=0$. À une date t, l'abscisse angulaire de (Σ) est θ (très petite) et sa vitesse angulaire est $\dot{\theta}=\frac{d\theta}{dt}$ (Doc 3). (Prendre seulement les deux interactions entre les masses ponctuelles qui sont en face l'une de l'autre).

Doc. 3

Le pendule effectue des oscillations, se stabilise et (Σ) prend une nouvelle position d'équilibre (Doc 4). Prendre : $\sin \theta \approx \theta$ et $\cos \theta \approx 1$ (θ en rad).

- **1.1.** À une date t, au cours des oscillations, la distance r entre les masses ponctuelles (S_1) et (S_2) d'une part et (S_1) et (S_2) d'autre part est $r = d L\theta$ avec θ en rad. Justifier.
- **1.2.** Déterminer, à un instant t, les expressions et les valeurs des moments des forces et couples extérieurs qui s'exercent sur (Σ) .
- **2.** En appliquant le théorème du moment cinétique, déterminer l'équation différentielle en θ qui décrit le mouvement de (Σ) .
- 3. En se référant au Doc 4, déduire la valeur de G.

Solution Physique (Bac Libanais)

Exercice I : L'assassin qui dévore les globules rouges

Q		Note
A.1.	$^{210}_{83}\text{Bi} \rightarrow ^{210}_{84}\text{Po} + ^{a}_{z}\text{P}$	1
	D'après la loi de conservation du nombre de masse : $210 = 210 + a \Rightarrow a = 0$.	
	D'après la loi de conservation du nombre de charge : $83 = 84 + z \Rightarrow z = -1$.	
	Ainsi: $^{210}_{83}$ Bi $\rightarrow ^{210}_{84}$ Po + $^{0}_{-1}$ e	
2.1.	Le défaut de masse : $\Delta m = Z m_P + (A-Z) m_n - m(^{210}_{83}Bi)$.	1.75
	$\Delta m = 83 \times 1,007276 + 127 \times 1,008665 - 209,938584 = 1,76578 \text{ u. } \frac{3}{4}$	
	L'énergie de liaison du bismuth 210 est donnée par la relation d'Einstein :	
	$E_{\ell} = \Delta m \cdot c^2 = 1,76578 \times 931,5 = 1644,8 \text{ MeV } \frac{1}{2}$	
	L'énergie de liaison par nucléon du bismuth 210 est :	
	E_{ℓ} /nucléon($^{210}_{83}$ Bi) =1644,8/210 = 7,832 MeV/nucléon. $^{1}_{2}$	
2.2.	Le noyau de bismuth 209 est plus stable que le noyau de bismuth 210 car son énergie de liaison par	0.5
	nucléon E/nucléon($^{209}_{83}$ Bi) = 7,839 MeV/nucléon est plus grande que celle du noyau 210 Bi:	
D 4	$E_{\ell}/\text{nucl\'eon}({}^{210}_{83}\text{Bi}) = 7,832 \text{ MeV/nucl\'eon}$	1
B.1	$^{210}_{84}\text{Po} \rightarrow ^{A}_{Z}\text{Y} + ^{4}_{2}\text{He}$	1
	D'après la loi de conservation du nombre de masse : $210 = A + 4 \Rightarrow A = 206$.	
	D'après la loi de conservation du nombre de charge : $84 = Z + 2 \Rightarrow Z = 82$.	
2	Ainsi: ${}^{210}_{84}\text{Po} \rightarrow {}^{206}_{81}\text{Pb} + {}^{4}_{2}\text{He}$	1
2.	La perte en masse : $\Delta m = [m(^{210}Po) - m(^{206}Pb) - m(^{4}He)] \cdot \frac{1}{4}$	1
	L'énergie libérée : $E_{lib} = \Delta m \cdot c^2 \frac{1}{4}$ $E_{lib} = [209,936800 - 205,929489 - 4,00151] \times 931,5 \text{ MeV/}c^2 \times c^2 = 5,404 \text{ MeV.} \frac{1}{2}$	
3.		3
3.	L'énergie libérée : $E_{lib} = E_C(Pb) + E_C(\alpha) = \frac{1}{2} \frac{m_{Pb} V_{Pb}^2}{m^2 V_{Pb}^2} + \frac{1}{2} \frac{m\alpha V_{\alpha}^2}{m^2 V_{\alpha}^2}$	3
	Conservation de la quantité de mouvement: $\vec{P} = \vec{0} = m_{Pb} \vec{V}_{Pb} + m_{\alpha} \vec{V}_{\alpha}$; $\frac{1}{2}$	
	Les deux vitesses sont de sens contraires. En valeur absolue : $m_{Pb}V_{Pb} = m\alpha V_{\alpha}$ et $V_{Pb} = V_{\alpha} \times m_{\alpha}/m_{Pb}$. $\frac{1}{2}$	
	$\begin{aligned} E_{C}(Pb) &= \frac{1}{2} m_{Pb} V_{Pb}^{2} = \frac{1}{2} m_{Pb} (V_{\alpha} \times m_{\alpha} / m_{Pb})^{2} = E_{C}(\alpha) m_{\alpha} / m_{Pb} = 0,01943 E_{C}(\alpha) \frac{3}{4} \\ E_{lib} &= E_{C}(Pb) + E_{C}(\alpha) \Rightarrow 5,404 = 0,01943 E_{C}(\alpha) + E_{C}(\alpha) \Rightarrow E_{C}(\alpha) = 5,30 \text{ MeV} \frac{3}{4} \end{aligned}$	
	$E_{C}(Pb) = 0.01933 \times 5,303 = 0.103 \text{ MeV}.$	
4.1.	$\vec{v}_0 = v_0 \vec{1}$; alors $P_{0x} = mv_{0x} = 0$ et $P_{0y} = mv_0$. ¹ / ₂	4
7.1.	La seule force extérieure appliquée est $\vec{F} = q_{\alpha} \vec{E} \vec{1} = 2e \vec{E} \vec{1}$. ½	7
	D'après la deuxième loi de Newton : $\Sigma \vec{F} = d\vec{P}/dt = 2e\vec{E} \vec{i}$. Ainsi : $dP_x/dt = 2e\vec{E}$ et $dP_y/dt = 0$. (1½)	
	Par intégration : $P_y = \text{constante} = m_\alpha v_y = m_\alpha v_0$ et $P_x = 2eE$ t + C_x . $C_x = 0$ car $v_{0x} = 0$ et $P_x = 2eE$ t ; (1)	
	ainsi $a = 2eE$ et $b = 0.1/2$	
4.2.	$P_x = mv_x = 2eE t et v_x = \frac{dx}{dt} = \frac{2eE}{m}t par intégration : x = \frac{1}{2}\frac{2eE}{m}t^2 + D_x Comme D_x = 0, alors x = \frac{eE}{m}t^2$. (1)	2
	at m	
	$v_y = \frac{dy}{dt} = v_0$ alors par intégration : $y = v_0 t + D_y$. Comme $D_y = y_0 = 0$ alors $y = v_0 t$. (1)	
4.3.	On a $y = v_0$ t et $t = y/v_0$ par suite, l'équation de la trajectoire est : $x = \frac{eE}{mv_0^2} y^2 \cdot \frac{1}{2}$	0.5
4.4 .	En M, on a x = d et y = L \Rightarrow d = $\frac{eE}{mv_0^2}$ L ² et $v_0^2 = \frac{eE}{md}$ L ² . $\frac{1}{2}$	2
	Par suite: $E_C(\alpha) = \frac{1}{2} m v_0^2 = \frac{1}{2} \frac{eE}{d} L^2 = \frac{1}{2} \frac{1.602 \times 10^{-19} \times 5 \times 10^6}{4.713 \times 10^{-3}} \times 0, 1^2 = 8.498 \times 10^{-13} J = \frac{8.498 \times 10^{-13}}{1.602 \times 10^{-13}} = 5.30$	
	MeV(1½)	
5.	Le noyau fils peut être obtenu dans un état excité. Il se désexcite en libérant un photon γ.½	2.25
	L'énergie du photon : E(γ) = 5,30 – 4,50 = 0,80 MeV. $\frac{3}{4}$	
	$E(\gamma) = \frac{h c}{\lambda} \Rightarrow \text{ la longueur d'onde s'écrit : } \lambda = \frac{h c}{E_{\gamma}} = \frac{6.626 \times 10^{-34} \times 2,99792 \times 10^{8}}{0.80 \times 1,602 \times 10^{-13}} = 1,55 \times 10^{-12} \text{ m. (1)}$	
	$E_{\gamma} = 0.80 \times 1.602 \times 10^{-13}$	
		<u> </u>

		2
6.	$N = \frac{m}{M}N_A = \frac{1}{210} \times 6,022 \times 10^{23} = 2,87 \times 10^{21} \text{ Noyaux. } \frac{1}{2}$	
	La constante radioactive λ s'écrit : $\lambda = \ln 2/t_{1/2} = 0.693/(138 \times 24 \times 3600) = 5.812 \times 10^{-8} \text{ s}^{-1}$. 34	
	L'activité étant donnée par A = λ ·N, alors A = 5,812× 10 ⁻⁸ ×2,87× 10 ²¹ = 166804×10 ⁹ Bq soit 166804	
	milliards de becquerels. ³ / ₄	
		21

Exercice II Convertisseur électromécanique : prototype

Q		Note
1.	Le flux total Φ à travers (S) et (S') s'écrit : $\Phi = N \overrightarrow{B} \cdot \overrightarrow{A} + N \overrightarrow{B} \cdot \overrightarrow{A} = 2NBA\cos\theta = 2NBA\cos\theta$ t. $1\frac{1}{2}$	1.5
2.	D'après la loi de Faraday : la force électromotrice induite est donnée par : $e = -\frac{d\Phi}{dt} = 2NBA\omega \sin(\omega t)$	1.5
	\Rightarrow e = D ω sin (ω t) avec D = 2NAB. 1½	
3.1.	En appliquant la loi d'additivité des tensions, on obtient :	7.5
	$u_{AM} = u_{AB} + u_{BC} + u_{CM} \text{ soit} : e = 2ri + 2L\frac{di}{dt} + Ri (1)$	
	$D\omega\sin(\omega t) = (2r + R) I_{m} \sin(\omega t - \varphi) + 2L\omega I_{m} \cos(\omega t - \varphi) (1)$	
	Pour $\omega t = 0$: $0 = -(2r + R) I_m \sin(\omega t - \phi) + 2L\omega I_m \cos(\omega t - \phi)$ (1)	
	Pour $\omega t = \pi/2$: $D\omega = (2r + R) I_m \cos(\varphi) + 2L\omega I_m \sin(\varphi) [2] (1/2)$	
	L'équation (1) \Rightarrow tan $\varphi = \frac{2L\omega}{2r+B}$. ½	
	ZI I IX	
	Comme $\frac{1}{\cos^2 \varphi} = 1 + \tan^2 \varphi = 1 + \frac{(2L\omega)^2}{(2r+R)^2} = \frac{(2r+R)^2 + (2L\omega)^2}{(2r+R)^2}$ par suite : $\cos \varphi = \frac{2r+R}{\sqrt{(2r+R)^2 + (2L\omega)^2}}$. (½)	
	$\sin \varphi = \cos \varphi \cdot \tan \varphi = \frac{2L\omega}{\sqrt{(2r+R)^2 + (2L\omega)^2}}.$	
	On a: $D\omega = (2r + R) I_m \cos(\phi) + 2L\omega I_m \sin(\phi) = (2r + R) I_m \frac{2r + R}{\sqrt{(2r + R)^2 + (2L\omega)^2}} + I_m \frac{2L\omega}{\sqrt{(2r + R)^2 + (2L\omega)^2}}$	
	$D\omega = \frac{I_{\rm m}}{\sqrt{(2r+R)^2+(2L\omega)^2}}[(2r+R)^2+(2L\omega)^2]. \text{ Enfin}: I_{\rm m} = \frac{D\omega}{\sqrt{(2r+R)^2+(2L\omega)^2}}(1)$	
	Ce qui donne : $i = \frac{D \cdot \omega}{\sqrt{(2r+R)^2 + (2L\omega)^2}} \sin(\omega t - \phi)$. $\frac{1}{2}$	
3.2.1.	En se référant au document $3: T = 0,4 \text{ s} \frac{1}{2}$	1.5
	qui donne la vitesse angulaire ω du rotor : $\omega = \frac{2\pi}{T} = \frac{2\pi}{0.4} = 5\pi = 15,7$ rad/s. (1)	-
3.2.2.	La puissance moyenne P délivrée par les bobines (S) et (S') à (R) s'écrit :	1.5
	$P = R \cdot I^2$, où $I = \frac{I_m}{\sqrt{2}} = \frac{0.5}{\sqrt{2}} = 0.354 \text{ A.} \frac{1/2}{2}$	
	Ainsi, $P = 2 \times 0.354^2 = 0.25 \text{ W}. \frac{1}{2}$	
4.1.1.	La puissance mécanique P_m reçue par l'alternateur s'écrit : $P_m = M_m \cdot \omega = 3.8 \times 10^{-2} \times 15.7 = 0.597$ W.	1
	(1)	1
4.1.2.	Le rendement s'écrit : $\rho = P/P_m = 0.25/0.597 = 0.419 \approx 42\%$. (1)	1
4.1.3.	On a: $P_m = P + P_{Jint} + P_f$. $P_f = P_m - P_{Jint} - P = 0.597 - 0.25 - 0.25 = 0.097$ W.	1.5
	Comme $P_f = M_{f'}\omega$, alors : $M_f = P_{f'}\omega = 0.097/15,7 = 0.0062 \text{ m·N}.$	
5.	Comme $P_f = M_{f^*}\omega$, alors : $M_f = P_{f^{\prime}}\omega = 0,097/15,7 = 0,0062 \text{ m·N.}$ On a : $I_m = \frac{D \cdot \omega}{\sqrt{(2r+R)^2 + (2L\omega)^2}} \Rightarrow 0,5 = \frac{D \times 15,7}{\sqrt{(2\times 1 + 2)^2 + (2\times 0,2\times 10^{-3}\times 15,7)^2}} = 3,925 \text{ D} \Rightarrow D = 0,5/3,925 = 0,127$	1
	$\sqrt{(2r+R)^2 + (2L\omega)^2} \qquad \sqrt{(2\times1+2)^2 + (2\times0,2\times10^{-3}\times15,7)^2}$ Wb.	
		18

Exercice III: Pendule de torsion

Q		Note
A.	Le moment d'inertie I_{Δ} de (Σ) par rapport à l'axe (Δ) s'écrit :	1.75
1.1.	$I_{\Delta} = I_0 + 2mL^2 = \frac{1}{3}m_T \cdot L^2 + 2mL^2 = (\frac{1}{3}m_T + 2m)L^2$ (1)	
	$I_{\Delta} = (\frac{1}{2}0,090 + 2 \times 0,05)0,1^2 = 1,30 \times 10^{-3} \text{ kg m}^2. \frac{3}{4}$	
1.2.	L'énergie mécanique du système (pendule, Terre) s'écrit : $E_m = \frac{1}{2} I_{\Delta} \dot{\theta}^2 + \frac{1}{2} C \theta^2 = \text{constante}$. (1)	2.5
	$\frac{dE_{m}}{dt} = I_{\Delta}\dot{\theta} \ \ddot{\theta} + C\theta \ \dot{\theta} = 0.1/2$	
	$I_{\Delta}\dot{\theta}(\ddot{\theta} + \frac{c}{I_{\Delta}}\theta) = 0$. Or $\dot{\theta}$ n'est pas toujours nulle, ainsi, on obtient l'équation différentielle : $\ddot{\theta} + \frac{c}{I_{\Delta}}\theta = 0$	
	I_{Λ} 0 = 0. (1)	
1.3.	L'équation différentielle est de la forme $\ddot{\theta} + \omega_0^2 \theta = 0$. Par identification on obtient : $\omega_0^2 = \frac{C}{I_A} \sqrt[3]{4}$	2
	La pulsation propre aura pour expression : $\omega_0 = \sqrt{\frac{C}{I_A}}$. $\frac{1}{2}$	
	L'expression de la période propre T_0 est donnée par : $T_0 = \frac{2\pi}{\omega_0}$ et $T_0 = 2\pi \sqrt{\frac{I_\Delta}{c}}$. 3/4	
2.1	Les fources de frottement cont les coules fources qui ent un effet un le manuel de mande de la contraction de la contrac	2.25
2.1.	Les forces de frottement sont les seules forces qui ont un effet sur le mouvement du pendule. $\frac{1}{4}$	2.25
	La puissance $P = \frac{dE_m}{dt} = M_f \dot{\theta} = -2\lambda\omega_0\dot{\theta}^2 \Rightarrow -2\lambda\omega_0\dot{\theta}^2 = I_\Delta\dot{\theta} \ddot{\theta} + C\theta \dot{\theta}$. (1)	
	Ainsi, $I_{\Delta}\dot{\theta}(\ddot{\theta} + \frac{2\lambda\omega_0}{I_{\Delta}}\dot{\theta} + \frac{C}{I_{\Delta}}\theta) = 0$. Or $\dot{\theta}$ n'est pas toujours nulle, soit : $\ddot{\theta} + \frac{2\lambda\omega_0}{I_{\Delta}}\dot{\theta} + \frac{C}{I_{\Delta}}\theta = 0$. (1)	
2.2.1.	Le pendule suit un régime pseudopériodique et l'amortissement est faible car l'amplitude des	0.5
	oscillations diminue faiblement à chaque oscillation.	
2.2.2.	En se référant au document 2, on trouve que 12 T couvrent 3500 s, alors T = 3500/12 = 292 s. 3/4	4.75
	La pseudo-pulsation s'écrit : $\omega = \frac{2\pi}{T} = \frac{2\pi}{292} = 0.0215 \text{ rad/s.}$ 3/4	light.
	$\tan \varphi = \frac{\lambda}{\sqrt{1-\lambda^2}} = \frac{0.25}{\sqrt{1-0.25^2}} = 0.258 \Rightarrow \varphi = 0.253 \text{ rad. } \frac{3}{4}$	100
	V ± // V = /	
	À la date $t_0 = 0$, $\theta_0 = 0.080 = A \cos \phi = A = \frac{0.080}{0.968} = 0.083 \text{ rad.} \frac{3}{4}$	_
	On a: $\omega_0 = \frac{\omega}{\sqrt{1-\lambda^2}} = \frac{0,0215}{\sqrt{1-0,25^2}} = 0,0222 \text{ rad/s.} \frac{3}{4}$	
	Or $\omega_0^2 = \frac{C}{I_A}$ et $C = I_\Delta \cdot \omega_0^2 = 1,30 \times 10^{-3} \times 0,0222^2 = 6,41 \times 10^{-7}$ SI. (1)	
B.1.1	À une date t, (Σ) fait un angle θ avec sa position d'équilibre, alors la boule (S_1) se trouve à la	1
	distance	
	$s = L\theta$ de sa position d'équilibre initiale. $\frac{1}{2}$	
	Ainsi, à la date t, la distance entre la sphère (S_2) et la boule (S_1) est $r = d - L\theta \frac{1}{2}$	
B.1.2	L'expression de la force gravitationnelle entre (S_1) et (S_2) est : $F = \frac{GMm}{r^2} = \frac{GMm}{(d-L\theta)^2}$. $\frac{1}{2}$	2.5
	\dot{A} la date t, le système (Σ) est soumis	
	- à la tension \vec{T} du fil de moment nul $M_T = 0$; $\frac{1}{2}$	
	- au couple de torsion de moment : $M_1 = -C\theta$; $\frac{1}{4}$	
	- au couple de forces de frottement de moment : $M_2 = -2\lambda\omega_0\dot{\theta}$. ½	
	- au couple de forces gravitationnelles (\vec{F}, \vec{F}') de moment par rapport à (Δ) :	
	$M_3 = 2FL\cos\theta \approx 2FL = \frac{2LGMm}{(d-L\theta)^2}$ (1)	
2.	En appliquant le théorème du moment cinétique, on obtient : $M_T + M_1 + M_2 + M_3 = \frac{d\sigma}{dt} = I_{\Delta}\ddot{\theta}$. (1)	1.75
	ut	

	Par suite, l'équation différentielle en θ est : $\frac{2LGMm}{(d-L\theta)^2}$ - $C\theta$ - $2\lambda\omega_0\dot{\theta}=I_\Delta\ddot{\theta}$, qui décrit le mouvement de (S). $^3\!4$	
3.	En se référant au Doc 4, la position d'équilibre a lieu pour $\theta_e = 1$ mrad = 1×10^{-3} rad. $\frac{1}{2}$ Dans ce cas $\dot{\theta} = 0$ et $\ddot{\theta} = 0$. $\frac{1}{2}$ $\frac{2LGMm}{(d-L\theta)^2} - C\theta = 0$ et $G = \frac{C\theta_e(d-L\theta)^2}{2LMm} = \frac{6.41 \times 10^{-7} \times 1 \times 10^{-3}(0.177 - 0.1 \times 1 \times 10^{-3})}{2 \times 0.1 \times 0.05 \times 30} = 6.7 \times 10^{-11} \text{ SI. } (1)$	2
	$(d-L\theta)^2 - C\theta - \theta C C C - 2LMm - 2x0,1x0,05x30 - 0,7x10 - 31. (1)$	21

Concours d'entrée 2019-2020

Examen de Physique (Bac Français)

Juillet 2019 Durée 2 h

Exercice I : Satellites de télédétection [19 points]

Cet exercice s'intéresse à deux familles de satellites de télédétection : SPOT (document 1) et Météosat (document 2). Il comporte trois parties indépendantes.

Données

- Rayon moyen de la Terre : $R_T = 6.38 \times 10^3$ km.
- Longueur d d'un arc de cercle de rayon R et d'angle α (exprimé en radian) : $d = R \cdot \alpha$.
- Courbe de transmission des radiations électromagnétiques par l'atmosphère terrestre en fonction de la longueur d'onde λ :
- Loi de Wien : $\lambda_{max} \cdot T = 2,90 \times 10^3 \ \mu m \cdot K$, où λ_{max} est la longueur d'onde majoritairement émise dans le spectre d'émission d'un corps porté à une température T (exprimée en kelvin), avec $T = \theta + 273$ où θ s'exprime en degré Celsius.

Document 1. La filière SPOT

SPOT (Satellite Pour l'Observation de la Terre) est un système d'imagerie optique spatiale à haute résolution. Depuis 1986, les satellites de la filière SPOT scrutent notre planète et fournissent des images d'une qualité remarquable, en décrivant une orbite :

- circulaire située à l'altitude $h_s = 832$ km et son centre est le centre de la Terre.
- quasi-polaire, inclinée de 98,7° par rapport au plan de l'équateur et décrite avec une période de 101,4 min. La zone terrestre observée évolue à chaque révolution du satellite dont le cycle orbital est de 26 jours ; c'est-à-dire que tous les 26 jours le satellite observe à nouveau la même région terrestre.

Document 2. Le programme Météosat

Les satellites Météosat et MSG sont géostationnaires*. Ils ont pour mission d'effectuer des observations météorologiques depuis l'espace pour la prévision immédiate et l'évolution à long terme du climat. Ils ont l'avantage de fournir des images de vastes portions de la surface terrestre et de l'atmosphère, mais présentent l'inconvénient qu'un seul satellite géostationnaire ne suffit pas pour observer toute la Terre. Par ailleurs, les régions polaires leur sont hors de portée.

* Un satellite **géostationnaire** paraît immobile par rapport à un point de référence à la surface de la Terre.

1. Mouvements des satellites SPOT et Météosat

- **1.1.** En utilisant la deuxième loi de Kepler, caractériser la nature des mouvements dans le cas particulier des satellites SPOT et Météosat.
- **1.2.1.** Dans quel plan se situe l'orbite circulaire du satellite Météosat et dans quel sens le satellite Météosat tourne-t-il autour de la Terre, par rapport au référentiel géocentrique ? Justifier les réponses.
- **1.2.2.** Expliquer pourquoi un seul satellite géostationnaire ne suffit pas pour observer toute la Terre et que les régions polaires leur sont hors de portée.
- **1.3.1.** La période de révolution du satellite Météosat est de 23 h 56 min 4 s. Expliquer pourquoi.
- **1.3.2.** En utilisant la troisième loi de Kepler aux deux satellites étudiés, montrer que la valeur de l'altitude h_M du satellite Météosat est $h_M = 3,59 \times 10^4$ km

1.3.3. Déterminer la vitesse v du satellite Météosat par rapport au référentiel géocentrique.

2. Les trois canaux de Météosat

Le radiomètre** des satellites Météosat comprend trois canaux de télédétection : le canal C dans le visible et le proche infrarouge, le canal E dans l'infrarouge moyen et le canal D dans l'infrarouge thermique.

	Canal	Gamme de longueurs d'onde en µm	Fonction principale
	С	Entre 0,4 et 1,1	Permet l'observation visuelle de la surface de la Terre et des nuages.
	Е	Entre 5,7 et 7,1	Renseigne sur la teneur en humidité de l'atmosphère. La surface du sol n'est pas visible.
	D	Entre 10,5 et 12,5	Renseigne sur la température des nuages et de la surface terrestre.

^{**} Un **radiomètre** est un appareil de mesure de l'intensité du flux de rayonnement électromagnétique dans différents domaines de longueur d'onde.

- 2.2. Calculer la gamme de température des corps que peut détecter un satellite Météosat sur le canal D.
- **2.3.** Indiquer, en le justifiant, les raisons qui ont guidé le choix de la gamme de longueurs d'onde du canal D, compte tenu de sa fonction principale.

3. SPOT en mode panchromatique

Lorsque le satellite SPOT parcourt son orbite, il observe une large bande terrestre de plusieurs dizaines de kilomètres de large. Cette zone « couverte » est appelée la fauchée.

En mode panchromatique, les images réalisées par le satellite SPOT sont recueillies sur une barrette constituée de 6000 détecteurs CCD et numérisées en niveaux de gris.

Chaque détecteur est assimilable à un carré de 13 µm de côté recueillant l'information provenant d'une zone terrestre carrée de 10 m de côté, appelée pixel. On dit que la résolution spatiale est de 10 m.

- 3.1. Évaluer la largeur de la fauchée.
- **3.2.** La fauchée correspondant à la nème révolution de SPOT n'est pas identique à celle de la (n-1)ème révolution. Se situe-t-elle davantage à l'est ou à l'ouest sur la Terre ? Justifier la réponse.

- **3.3.** À chaque révolution du satellite, la zone terrestre observée n'est pas la même, du fait de la rotation de la Terre. De quel angle tourne la Terre entre deux révolutions du satellite? En déduire de quelle distance se déplace la fauchée au niveau de l'Équateur entre deux révolutions du satellite.
- **3.4.** Quelles sont les parties du globe les plus fréquemment « couvertes » par SPOT au cours d'un cycle orbital ?
- **3.5.** Combien de révolutions doit effectuer SPOT pour réaliser une observation complète de la Terre ?

^{2.1.} Expliquer pourquoi seule la télédétection sur les canaux C et D permet-elle d'obtenir des informations en provenance de la surface terrestre.

3.6. En mode panchromatique (numérisation en niveaux de gris), l'image est d'autant plus blanche que le flux lumineux capté est plus intense.

Deux images (images 1 et 2), d'une même zone de terrains agricoles, ont été obtenues par télédétection, respectivement dans le rouge (entre 610 nm et 680 nm de longueur d'onde) et dans le proche infrarouge (entre 790 et 890 nm). En utilisant le tableau suivant, donnant les réflectances* caractéristiques des trois grands types de surfaces naturelles, quelles informations peut-on extraire de l'analyse de ces deux images ? Montrer l'intérêt d'avoir ces deux images pour obtenir des informations sur la zone observée.

Image 1Télédétection dans le rouge.

Image 2 Télédétection dans le proche infrarouge.

*La réflectance d'une surface est le rapport entre le flux lumineux réfléchi et le flux lumineux incident. Le tableau ci-contre donne les valeurs caractéristiques des réflectances des trois grands types de surfaces naturelles en fonction de la gamme de longueur d'onde.

No.	Rouge	Proche infrarouge
	(entre 610 et 680 nm)	(entre 790 et 8 <mark>90 nm</mark>)
Eau	4 à 6 %	0 à 2 <mark>%</mark>
Végétation	10 à 12 %	35 à 4 <mark>0 %</mark>
Sol nu	20 à 22 %	25 à 30 %

EXERCICE II - VOYAGE DANS LA CEINTURE D'ASTÉROÏDES [20 points]

La sonde Dawn avait pour mission d'étudier Vesta et Cérès, les deux principaux corps de la ceinture d'astéroïdes. C'est grâce à ses propulseurs ioniques qu'elle a pu passer d'un astéroïde à l'autre.

Dans cet exercice, on étudiera le principe simplifié de la propulsion ionique, puis dans une partie indépendante, on déterminera la masse de l'astéroïde Cérès.

Données : constante d'Avogadro : $N_A = 6.02 \times 10^{23} \text{ mol}^{-1}$; constante de Planck : $h = 6.63 \times 10^{-34} \text{ J.s}$; charge électrique élémentaire : $e = 1.60 \times 10^{-19} \text{ C}$; $1 \text{ eV} = 1.60 \times 10^{-19} \text{ J}$; constante de gravitation universelle : $G = 6.67 \times 10^{-11} \text{ N.m}^2 \text{.kg}^{-2}$; masse molaire atomique du xénon : $M = 131.3 \text{ g.mol}^{-1}$; la valeur de la célérité c de la lumière dans le vide est supposée connue par le candidat.

1. La propulsion ionique

Les ions xénon créés sont accélérés entre les grilles A et B par un champ électrique \vec{E} supposé uniforme. À la sortie de la chambre d'accélération, un dispositif, appelé neutraliseur, transforme les ions xénon en atomes de xénon, afin de maintenir la charge électrique globale de la sonde Dawn constante.

Figure 1. Schéma de principe simplifié d'un moteur ionique.

1.1. Étude de l'ionisation du xénon

1.1.1. Définir l'énergie d'ionisation d'un atome.

Dans le cas du moteur ionique, le mécanisme d'ionisation est fondé sur des processus physiques complexes. On étudie ici un mécanisme plus simple au cours duquel le xénon est ionisé par une radiation lumineuse.

1.1.2. L'énergie d'ionisation d'un atome de xénon est égale à 12,1 eV. Calculer la valeur maximale de la longueur d'onde de la radiation qui permettrait l'ionisation d'un atome de xénon en ion Xe⁺.

FACULTY OF ENGINEERING

1.1.3. Dans quel domaine d'ondes électromagnétiques se situe cette radiation ? Justifier.

1.2. L'accélération des ions xénon

1.2.1. Les ions xénon Xe^+ , chacun de masse $m = 2,18 \times 10^{-25}$ kg, pénètrent dans la chambre d'accélération en A, avec une vitesse que l'on considèrera nulle. Une tension électrique U constante est appliquée entre les grilles A et B (figure 1).

Établir l'expression du travail $W_{AB}(\vec{F}_e)$ de la force électrique \vec{F}_e appliquée à un ion xénon se déplaçant de la grille A à la grille B en fonction de e et U. En déduire l'expression de la variation de l'énergie potentielle électrique entre les grilles A et B.

- **1.2.2.** En appliquant la conservation de l'énergie mécanique d'un ion xénon entre les grilles A et B, déterminer, en fonction de e, U et m, l'expression de la vitesse d'un ion xénon à la sortie de la chambre d'accélération.
- **1.2.3.** Pour une tension accélératrice de 300 V, montrer que la vitesse d'éjection des ions xénon est donnée par : $v_B = 2,1 \times 10^4 \text{ m.s}^{-1}$.

1.3. Principe de la propulsion par réaction de la sonde spatiale

On désire illustrer le principe de la propulsion par réaction. On se place dans un référentiel R dans lequel la sonde Dawn est initialement immobile, dans une région de l'espace éloignée de tout astre.

La masse de la sonde Dawn, avant le démarrage du moteur ionique, est égale à $M_S = 1240 \text{ kg}$.

On étudie dans un premier temps l'éjection d'un seul atome de xénon, de

vitesse \vec{V}_B par rapport au référentiel R. Après cette éjection, la sonde de masse

 $(M_S - m)$, acquiert une vitesse \vec{V}_S par rapport à R. Le schéma ci-contre représente la sonde Dawn ; les vecteurs vitesse sont représentés sans souci d'échelle.

1.3.4. La sonde Dawn a une réserve de 450 kg de xénon. Indiquer pendant combien d'années le moteur ionique peut fonctionner.

2. L'astéroïde Cérès

En 2015, la sonde Dawn s'est mise en orbite quasi-circulaire de rayon r autour de l'astéroïde Cérès, astéroïde de rayon moyen R = 470 km et de masse $M_C = (9,46 \pm 0,04) \times 10^{20}$ kg. Ses moteurs ioniques désactivés, la sonde Dawn a effectué une révolution autour de Cérès à une altitude moyenne de 13500 km en 15 jours à la vitesse v.

- **2.1.** Donner les caractéristiques de la force exercée par Cérès sur la sonde Dawn. Faire un schéma représentant cette force. On notera M_D la masse de la sonde Dawn.
- **2.2.** Montrer que, dans le cas d'un mouvement circulaire, le mouvement de la sonde Dawn autour de Cérès est uniforme.
- **2.3.** Établir l'expression de la vitesse v de la sonde Dawn sur son orbite de rayon r autour de Cérès.
- **2.4.** En déduire l'expression de la troisième loi de Kepler.
- **2.5.** Déterminer une valeur de la masse de l'astéroïde Cérès dans le cadre de l'hypothèse d'un mouvement circulaire. Commenter.

EXERCICE III - SERVICE ET RÉCEPTION AU VOLLEY-BALL (21 points)

Au volley-ball, après la course d'élan, le serveur saute de façon à frapper le ballon en un point B_0 situé à la hauteur h au-dessus de la ligne de fond du terrain. La hauteur h désigne alors l'altitude initiale du centre du ballon. Le vecteur vitesse initiale \vec{v}_0 du ballon est horizontal et perpendiculaire à la ligne de fond du terrain (voir figure 1.).

j

Le mouvement du ballon est étudié dans le référentiel terrestre supposé galiléen muni du repère (Ox, Oy) et l'instant de la frappe est choisi comme origine des temps : $t_0 = 0$ s.

Le mouvement a lieu dans le plan (Oxy).

Le but de cet exercice est de déterminer la valeur de la vitesse initiale du ballon, de vérifier la validité du service et d'étudier la réception du service par un joueur de l'équipe adverse. Pour cela, on étudie le mouvement du centre du ballon sans tenir compte de l'action de l'air.

Données : Ballon de masse m = 260 g et de rayon r = 10 cm; intensité de la pesanteur : g = 9.81 m.s⁻².

Figure 1. Dimensions du terrain de volley-ball et allure de la trajectoire du ballon.

1. Mesure de la vitesse initiale du ballon

On mesure la valeur de la vitesse initiale v_0 du ballon grâce à un radar portatif qui envoie des ondes électromagnétiques de fréquence $f_{\text{émise}} = 3,47 \times 10^{10} \,\text{Hz}$, que l'on pointe en direction de la position de frappe B_0 . Le radar indique 76 km/h.

1.1. Le radar portatif est positionné face au serveur et vise le ballon. À partir de ces conditions de mesure et à partir d'une analyse dimensionnelle, déterminer, à partir des relations suivantes, la relation correcte :

a) $f_{\text{émise}} = f_{\text{reçue}} (2v_0 - \frac{v_0}{c})$ b) $f_{\text{reçue}} = v_0 (f_{\text{émise}} - 2\frac{v_0}{c})$ c) $f_{\text{émise}} = f_{\text{reçue}} (1 - \frac{2v_0}{c})$ d) $f_{\text{émise}} = f_{\text{reçue}} (1 + \frac{2v_0}{c})$ 1.2. Sachant que le décalage Δf entre la fréquence $f_{\text{émise}}$ de l'onde émise et la fréquence $f_{\text{reçue}}$ de l'onde reçue

1.2. Sachant que le décalage Δf entre la fréquence $f_{\text{émise}}$ de l'onde émise et la fréquence $f_{\text{reçue}}$ de l'onde reçue vaut 4,86 kHz, calculer la valeur v_0 de la vitesse du ballon. Vérifier l'accord avec l'indication de l'écran du radar portatif.

2. Validité du service

Le service est effectué depuis le point B_0 à la vitesse $v_0 = 21,0$ m.s⁻¹.

- 2.1. Déterminer, si on néglige l'action de l'air, les coordonnées du vecteur accélération du centre du ballon après la frappe.
- **2.2.** Établir que les équations horaires x(t) et y(t) du mouvement du centre du ballon.
- **2.3.** En déduire que l'équation de la trajectoire reliant x et y s'écrit : $y(x) = -\frac{g}{2v_0^2}x^2 + h$.
- **2.4.** En admettant que le ballon franchisse le filet, vérifier qu'il touche le sol avant la ligne de fond.
- **2.5.** On suppose que l'énergie potentielle de pesanteur $E_{PP} = 0$ pour y = 0 m.

Figure 2. Allure de l'évolution des énergies du ballon au cours du temps.

FACULTY OF ENGINEERING

2.5.1. Le graphe de la figure 2 représente l'évolution en fonction du temps des trois énergies précédentes. Associer chaque courbe 1, 2, 3 à l'une des trois énergies E_{PP} , cinétique E_{C} et mécanique E_{m} . Justifier.

2.5.2. En déduire la valeur de la vitesse du centre du ballon v_{sol} lorsque le ballon touche le sol.

3. Réception du ballon par un joueur de l'équipe adverse

Au moment où le serveur frappe le ballon ($t_0 = 0$ s), un joueur de l'équipe adverse est placé au niveau de la ligne de fond de son terrain. Il débute sa course vers l'avant

Figure 3.

pour réceptionner le ballon en réalisant une « manchette » comme le montre la figure 3.

Le contact entre le ballon et le joueur se fait au point R situé à une hauteur de 80 cm au-dessus du sol.

- **3.1.** Sachant que les équations horaires du mouvement du ballon établies à la question 2.2. restent valables, déterminer la date à laquelle le joueur réalise la réception du ballon au point R.
- **3.2.** Évaluer la vitesse moyenne minimale du déplacement de ce joueur pour qu'il réalise la réception dans la position de la figure 3.

Solution Physique Bac Français

Exercice I : Satellites de télédétection

Q		Note
1.1.	La deuxième loi de Kepler indique que pour, une durée donnée, les aires balayées par le	1.5
	rayon vecteur \overrightarrow{TS} , reliant le centre de la Terre au satellite, balaye des aires égales pendant	
	des durées égales sont égales. ½	
	Les satellites SPOT et Météosat ont une orbite circulaire, donc le rayon de leur trajectoire est constant. Cela implique que les longueurs d'arcs balayés pendant cette durée sont égales.	100
	$(\sqrt[3]{4})$	
	Ainsi, la vitesse des satellites est constante. Les satellites ont un mouvement circulaire et uniforme. 1/4	
2.1.	Il s'agit du plan équatorial, ¼ car le satellite Météosat, un satellite géostationnaire, ¼ doit	1
	avoir le même axe de rotation et le même centre de rotation que ceux de la Terre ¼ et il doit	
	tourner autour de la Terre avec le même sens de rotation que celui de la Terre sur elle-	
	même. ¼ Ainsi, il paraît immobi <mark>le par rapport à un point de référence à la surface d</mark> e la	
	Terre.	
1.2.2.	Vu que le satellite Météosat, tourne dans le plan équatorial et fixe par rapport au sol, alors un	0.5
	seul satellite ne couvre que la partie de la Terre qui est juste en facer et ne survole pas les régions polaires.	
1.3.1.	Le satellite Météosat doit rester immobile par rapport à la Terre, alors sa période doit être	0.75
	identique à celle de la rotation de la Terre autour de son axe. Soit un jour sidéral, donc 23 h	
	56 min 4 s.	
1.3.2.	(0,5) D'après la troisième loi de Kepler $\frac{T^2}{a^3}$ = Cte . (½) Où T est la période de révolution du	3
	satellite autour de la Terre et a le demi-grand axe de l'ellipse.	
	Les satellites étudiés ont des orbites circulaires, ainsi le demi-grand axe a est égal au rayon	
	de la trajectoire R + h. 1/4	
	T _M période de Météosat, h _M altitude de Météosat et T _S période de SPOT, h _S altitude de SPOT:	

الجامِعت اللبث نانية كلي الهندية

	DELIT OF ENGINEERING	
	$\frac{T_{M}^{2}}{(R_{T}+h_{M})^{3}} = \frac{T_{S}^{2}}{(R_{T}+h_{S})^{3}} \frac{(\sqrt[3]{4})}{(\sqrt[3]{4})} \Leftrightarrow (R_{T}+h_{M})^{3} = \frac{(R_{T}+h_{S})^{3}.T_{M}^{2}}{T_{S}^{2}} \Leftrightarrow R_{T}+h_{M} = \sqrt[3]{\frac{(R_{T}+h_{S})^{3}.T_{M}^{2}}{T_{S}^{2}}} \frac{1}{\sqrt[4]{2}}$	
	$h_{M} = \sqrt[3]{\frac{(R_{T} + h_{S})^{3}.T_{M}^{2}}{T_{S}^{2}}} - R_{T} \iff h_{M} = \sqrt[3]{\frac{(6,38 \times 10^{3} + 832)^{3}.(24 \times 60)^{2}}{101,4^{2}}} - 6,38 \times 10^{3} = 3,59 \times 10^{-24} \text{ km (1)}$	
1.3.3.	(0,5) SPOT possède une orbite circulaire décrite en une période de	1.5
	$T_M = 24 \times 60 = 1440$ min et il est situé à l'altitude $h_M = 3.59 \times 10^{-24}$ km. $\frac{1}{2}$	
	Le rayon de sa trajectoire est $R = R_T + h_M$	
	$v = 2\pi (R + h_M)/T_M = 2\pi \times (6.38 \times 10^3 + 3.59 \times 10^{-24})/86400 = 3.07 \text{ km/s.}$ (1)	
	At the second of AUGUS	
		1.5
2.1.	La courbe de transmission des radiations électromagnétiques par l'atmosphère terrestre en	
	fonction de la longueur d'onde λ montre que la gamme de longueurs d'onde du canal E (entre	
	5,7 et 7,1 μm) n'est pas transmise par l'atmosphère. Les ondes captées par le radiomètre sur	
	ce canal ne peuvent pas provenir de la surface de la Terre. (3/4)	
	Pour les canaux C et D, les gammes de longueurs d'onde sont bien transmises du sol à travers	
	l'atmosphère jusqu'au satellite. (¾)	
2.2.	En utilisant la loi de Wien, on peut calculer la gamme de température qui correspond à la	1.75
2.2.	gamme de longueurs d'onde du canal D.	1.75
	$T = \frac{2,90 \times 10^3}{\lambda_{max}}$ avec 2,90×10 ³ en µm.K. (1/4)	
	Alliax	
	Pour $\lambda_{\text{max}} = 10.5 \ \mu\text{m}$, alors $T_1 = \frac{2.90 \times 10^3}{10.5} = 276 \ \text{K} = 3^{\circ}\text{C}$ (3/4)	
	Pour $\lambda_{\text{max}} = 12.5 \mu\text{m}$, alors $T_2 = \frac{2.90 \times 10^3}{12.5} = 232 \text{K} = -41^{\circ}\text{C}$ (3/4)	
2.3.	(1) Le canal D a pour fonction de nous renseigner sur la température des nuages et de la	1.25
	surface terrestre. Comme vu précédemment, la gamme de longueurs d'onde de ce canal	
	permet la transmission depuis le sol vers le satellite à travers l'atmosphère. (½)	
	D'autre part, la gamme de longu <mark>eurs d'</mark> onde choisie doit être en accord avec ces températures.	
	(1/4) Le satellite pout détacter des corres dont le température verie entre	
	Le satellite peut détecter des corps dont la température varie entre – 41°C et 3°C. Cette gamme	
	de température paraît plutôt faible par rapport aux températures du sol terrestre, mais elle est bien adaptée aux nuages. (½)	
	ofen adaptee aux nuages. (72)	
3.1.	Chaque pixel d'une largeur de 10 m correspond à un seul détecteur. Il y a 6000 détecteurs,	0.5
	donc proportionnellement la fauchée a une largeur de $6000 \times 10 = 6.0 \times 10^4$ m = 60 km. ($\frac{1}{2}$)	
3.2.	La Terre tourne de l'ouest vers l'est. Le déplacement de la fauchée est la conséquence de la	0.5
	rotation propre de la Terre.	
	La fauchée correspondant à la n ^{ème} révolution de SPOT se situe davantage à l'ouest de la	
	Terre. (½)	
2.2	CDOT official and a facilities and 101.4 in T.	2
3.3.	SPOT effectue une révolution en 101,4 min. La Terre tourne de 360° en 24×60 min. Elle tourne de α ° en 101,4 min (½)	2
	Ainsi $\alpha = \frac{360 \times 101,4}{24 \times 60} = 25,35^{\circ}$, soit avec deux chiffres significatifs $\alpha = 25^{\circ}.(\frac{1}{2})$	
	Lorsque la Terre fait un tour complet, soit une rotation de 360°, la fauchée se déplace de $2\pi R_T$.	
	Lorsque la Terre tourne de 25,35°, la fauché se déplace seulement de $d = R \cdot \alpha$ (rad).	
	$d = \frac{2\pi \times 6,38 \times 10^3 \times 25,35}{360} = 2,82 \times 10^3 \text{ km. (1)}$	
	360	

الجامِعت اللبث نانية كليث الهندسية

FACULTY OF ENGINEERING

3.4.	SPOT repasse toutes les 101,4 minutes aux pôles. Ce sont les parties du globe les plus fréquemment « couvertes » par SPOT au cours d'un cycle orbital. (1/2)	0.5
3.5.	terrestre ». ($\frac{1}{4}$) En T = 101,4 min SPOT effectue une révolution, ($\frac{1}{4}$) en Δt = 26 jours = 26 × 24 × 60 min	
	SPOT effectue N révolutions : $N = \frac{\Delta t}{T} \Rightarrow N = \frac{26 \times 24 \times 60}{101,4} = 3.7 \times 10^2 \text{ révolutions.}$ (34)	
	All and the second seco	1.5
3.6.	La végétation réfléchit bien mieux le proche IR que le rouge. Elle doit paraître plus claire en proche IR (image 2) qu'en rouge (image1). Toutes les zones claires sur l'image 2 mais sombres sur l'image 1 sont dues à de la végétation. D'autre part, l'eau possède dans tous les cas une réflectance faible, les zones qui apparaissent sombres sur les deux images doivent correspondre à de l'eau. Pour finir, la réflectance des sols nus est presque identique dans les deux gammes de longueur d'onde, les zones qui ont environ la même luminosité doivent correspondre à du sol nu. Avec une seule image, il n'aurait pas été possible de repérer les différentes zones avec certitude.	
		19

EXERCICE II. VOYAGE DANS LA CEINTURE D'ASTÉROÏDES

Q		Note
1.1.1.	L'énergie d'ionisation est l'énergie minimale qu'il faut fournir à un atome pour lui	0.5
	arracher un électron périphérique.	
1.1.2.	D'après la relation de Planck-Einstein : $E_{photon} = h v = \frac{h.c}{\lambda}$; (½) donc $\lambda = \frac{h.c}{E_{photon}}$. À une	1.75
	longueur d'onde maximale cor <mark>respond u</mark> ne énergie minimale. (¼)	
	L'énergie du photon doit être au minimum égale à l'énergie d'ionisation d'un atome de	
	xénon : on prendra donc $E_{photon} = 12,1 \text{ eV}. \lambda = \frac{6,63 \times 10^{-34} \times 3,00 \times 10^8}{12,1 \times 1,60 \times 10^{-19}} = 1,03 \times 10^{-7} \text{ m} = 103$	
	nm. Ainsi, la longueur d'onde <u>maximale</u> qui permet l'ionisation d'un atome de xénon est	
	103 nm. (1)	
1.1.3.	λ < 400 nm : le rayonnement se situe donc dans le domaine des UV (UltraViolets).	0.5
1.2.1.	Par définition du travail d'une force constante : $W_{AB}(\vec{F}_e) = \vec{F}_e \cdot \overrightarrow{AB}$ (1/4)	2.5
	Ici : $W_{AB}(\vec{F}_e) = \vec{F}_e \cdot \overrightarrow{AB} = q \vec{E} \cdot \overrightarrow{AB} = q \cdot E \cdot AB \cdot \cos \theta = q \cdot E \cdot AB \cdot (car l'angle entre \vec{E} et \vec{AB} est nul).$ (3/4)	
	$W_{AB}(\vec{F}_e) = e.E.d \text{ (car } q = e \text{ et } AB = d) \text{ et } W_{AB}(\vec{F}_e) = e.\frac{U}{d}.d = e.U \text{ (car } E = \frac{U}{d})$ (3/4)	
	La variation de l'énergie potentielle électrique $\Delta E_{P\acute{e}} = E_{P\acute{e}}(B) - E_{P\acute{e}}(A) = -W_{AB}(\vec{F}_e) = -e$	
	U. $\Delta E_{P\acute{e}} = -e U. (\frac{3}{4})$	
1.2.2.	D'après la conservation de l'énergie mécanique : $E_m(A) = E_m(B) \Leftrightarrow (\frac{1}{4})$	1.75
	$E_{C}(A) + E_{P\acute{e}}(A) = E_{C}(B) + E_{P\acute{e}}(B)$. Comme $E_{C}(A) = 0$ car $v_{(A)} = 0$, alors $E_{C}(B) = E_{P\acute{e}}(A)$	
	$- E_{Pe}(B) = e U.$ (3/4)	
	Donc $\frac{1}{2}$ m·v _B ² = e U. Soit : v _B = $\sqrt{\frac{2.e.U}{m}}$. (3/4)	

الجامِعتة اللبث نانية كليثة الهنديية

IACO	LIT OF ENGINEERING	
1.2.3.	$v_B = \sqrt{\frac{2 \times 1,60 \times 10^{-19} \times 300}{2,18 \times 10^{-25}}} = 2,10 \times 10^4 \text{ m.s}^{-1} = 21,0 \text{ km.s}^{-1}$	0.5
1.3.1.	Le système {sonde + atome de xénon} étant dans une région de l'espace éloignée de tout astre, on peut considérer qu'il est isolé . Ainsi, il y a conservation de la quantité de mouvement du système,	0.5
1.3.2.	Initialement, le système est immobile donc : $\vec{P}_{avant} = \vec{0}$. (½)	2.5
	Donc: $\vec{P}_{après} = \vec{P}_1 + \vec{P}_2 = \vec{0}$. Par suite, $\vec{P}_1 = -\vec{P}_2$ (vecteurs opposés)	
	Par suite : $P_1 = P_2$ (valeurs égales) ($\frac{1}{2}$)	
	Donc: $m \cdot v_B = (M_S - m) v_S$ et $v_S = \frac{m \cdot v_B}{(M_S - m)}$. (½)	
	$v_S = \frac{{}_{2,18\times 10^{-25}\times 2,1\times 10^4}}{{}_{(1240-2,18\times 10^{-25})}} = 3,7\times 10^{-3} \text{ m s}^{-1}.$	
1.3.3.	Le nombre d'atomes éjectés chaque seconde :	1
	$N = \frac{m}{M} N_A = \frac{3.3 \times 10^{-3}}{131.3} \times 6.02 \times 10^{23} = 1.51 \times 10^{19} \text{ atomes.}$ (½)	
	Après la première seconde la vitesse augmente de : $N \cdot v_s = 1,51 \times 10^{19} \times 3.7 \times 10^{-4} =$	
	$5,60\times10^{-5}$ m/s. ($\frac{1}{2}$)	
1.3.4.	Utilisons la proportionnalité : $\Delta t = \frac{450 \times 10^3 \times 1}{3,3 \times 10^{-3}} = 1,36 \times 10^8 \text{ s} = \frac{1,4 \times 10^8}{365,25 \times 24 \times 3600} = 4,32 \text{ ans.}$	0.75
2.1	(3/4)	1
2.1.	La force exercée par Cérès sur la sonde Dawn est la force d'interaction gravitationnelle $\vec{F}_{C/D}$.	1
	Ses caractéristiques sont :	
	- point d'application : le centre d'inertie de la sonde	107
	Dawn July 1 G() 1 Tr	7
	- u direction : la droite reliant les centres de Cérès et de	
	Dawn	
	T C/D Sells : de Dawii vers ceres	
	$-\vec{F}_{C/D} = G \frac{M_C.M_D}{r^2} \cdot \vec{u} (\vec{u} : vecteur unitaire)$ $C\acute{e}r\grave{e}s$	
	de valeur : $F_{C/D} = G \frac{M_C \cdot M_D}{r^2}$.	
2.2.	D'après la 2 ^{ème} loi de Newton appliquée au système {Dawn} dans le référentiel cérèsocentrique, supposé galiléen,	2.5
	$\vec{F}_{C/D} = \frac{d\vec{p}}{dt} = M_D \cdot \vec{a} \text{ (car } M_D = \text{constante.) } (3/4)$	
	Donc $\vec{F}_{C/D} = \frac{d\vec{p}}{dt} = M_D \cdot \vec{a}$ et $G \frac{M_C \cdot M_D}{r^2} \cdot \vec{u} = M_D \cdot \vec{a}$ donc $\vec{a} = G \cdot \frac{M_C}{r^2} \cdot \vec{u}$. (3/4)	
	Ainsi, le vecteur accélération de Dawn est centripète, il n'a pas de composante tangentielle.	
	Par suite : $a_t = \frac{dv}{dt} = 0$ et $v = \text{constante}$, ainsi le mouvement est uniforme. (1)	
2.3.	De plus, pour un mouvement circulaire uniforme, on peut écrire :	1.25
	$a = a_n \Leftrightarrow G \frac{M_C}{r^2} = \frac{v^2}{r}.$ (3/4)	
	Ainsi, $v^2 = G \frac{M_C}{r}$. Finalement on retrouve $v = \sqrt{\frac{G.M_C}{r}}$. (½)	

الجامِعة اللبث انية كلي الهندية

FACULTY OF ENGINEERING

2.4.	La vitesse étant constante, on peut écrire : $v = \frac{d}{\Delta t} = \frac{2\pi . r}{T}$ pour une révolution complète. (3/4)	1.5
	Ainsi $T = \frac{2\pi . r}{v} \Leftrightarrow T^2 = (\frac{2\pi . r}{v})^2 \Leftrightarrow T^2 = \frac{4\pi^2 . r^2}{\frac{G.M_C}{r}} = \frac{4\pi^2 . r^2}{\frac{G.M_C}{r}} \Leftrightarrow \frac{1^2}{r^3} = \frac{4\pi^2}{\frac{G.M_C}{r}} (\frac{3}{4})$	
	On retrouve donc l'expression de la 3 ^{ème} loi de Kepler ($\frac{T^2}{a^3}$ = constante = $\frac{T^2}{r^3}$ pour une orbite	
	circulaire).	
2.5.	$ \frac{T^2}{r^3} = \frac{4\pi^2}{G.M_C} \Leftrightarrow M_C = \frac{4\pi^2.r^3}{G.T^2}. $ Données à utiliser : $r = R + h = 470 + 13500 = 13970$ km (à convertir en m) ; $T = 15$ jours (à convertir en s)	1.5
	$M_{\rm C} = \frac{4\pi^2 \times ((13970) \times 10^3)^3}{6,67 \times 10^{-11} \times (15 \times 24 \times 3600)^2} = 9,6 \times 10^{20} \text{ kg. (1)}$	
	Ce résultat est cohérent car il est proche de la valeur donnée dans l'énoncé $(9,46 \pm 0,04) \times 10^{20}$ kg) mais il n'est pas inclus dans l'intervalle de confiance.	
	L'hypothèse du mouvement circulaire n'est peut-être pas correcte. (½)	
		19

EXERCICE III: SERVICE ET RECEPTION AU VOLLEY-BALL

Q		Note
1.1.	Du point de vue unités :	1.5
	la relation a): Hz = Hz(m/s -sans unité) ne convient pas; (1/4)	
	la relation b) : $Hz = m/s(Hz - sans unité)$ ne convient pas ; (1/4)	
	Les deux relations c) et d): Hz = Hz (sans unité), elles conviennent. (½)	
	Le ballon se rapproche du radar. La fréquence de l'onde reçue est supérieure à celle de	
	l'onde émise. $f_{\text{reçue}} > f_{\text{émise}}$. Ainsi la relation c) convient. (½)	
1.2.	$f_{\text{émise}} = f_{\text{reçue}} - f_{\text{reçue}} \stackrel{2v_0}{=} \Rightarrow \Delta f = \frac{1}{f_{\text{reçue}}} f_{\text{émise}} = f_{\text{reçue}} \stackrel{2v_0}{=} (\frac{1}{2})$	1.5
	$^{\circ}$	
	Ainsi, $v_0 = \frac{\Delta f c}{2f_{\text{reçue}}} = \frac{c \cdot \Delta f}{2(f_{\text{émise}} + \Delta f)} = \frac{3,00 \times 10^8 \times 4,86 \times 10^3}{2(3,47 \times 10^{10} + 4,86 \times 10^3)}$ (½)	
	Soit: $v_0 = 21.0 \text{ m.s}^{-1} = 75.6 \text{ km.h}^{-1}$. (1/4)	
	Le radar indique 76 km.h ⁻¹ . Il y a accord entre la valeur indiquée par le radar et le calcul.	
	(1/4)	
2.1.	On applique la deuxième loi de Newton, au système {ballon} supposé ponctuel, de masse	1.5
	m constante, dans le référentiel du sol supposé galiléen : $\Sigma \vec{F} = \frac{d\vec{P}}{dt} = \frac{d\vec{P}}{dt} = m \frac{d\vec{v}}{dt} = m \vec{a}$ (m =	
	appetents) (16)	
	constante) (½)	
	Le poids \vec{P} est la seule force prise en considération car l'action de l'air est négligée.	
	$ \vec{P} = m\vec{a} \Leftrightarrow m\vec{g} = m\vec{a} \Leftrightarrow \vec{g} = \vec{a} (\frac{1}{2})$	
	En utilisant le repère (Oxy) indiqué, on vérifie que : $a_x = 0$ et $a_y = -g$. ($\frac{1}{2}$)	
2.2.	Par définition $\vec{a} = \frac{d\vec{v}}{dt}$, on obtient les coordonnées de \vec{v} en intégrant par rapport au temps	3.5
	celles de \vec{a} :	
	$a_x = \frac{dv_x}{dt} = 0$. Par intégration, on trouve : $v_x = C_x = v_{0x}$ et $v_x = v_0$. (3/4)	
	$a_y = \frac{dv_y}{dt} = -g$. Par intégration, on trouve : $v_y = -g t + C_y$. $C_y = v_{0y} = 0$ et $v_y = -g t$. (3/4)	
	De même :	
	$v_x = \frac{dx}{dt} = v_0$. Par intégration, on trouve : $x = v_0 t + D_x$ et $D_x = x_0 = 0$ et et $x = v_0 t$. (1)	
	l dt	

الجامِعتة اللبث نانية كليتة الهنديية

FACU	LIY OF ENGINEERING	
	$v_y = \frac{dy}{dt} = -g$ t. Par intégration, on trouve : $y = -\frac{1}{2}g$ $t^2 + D_y$. $D_y = y_0 = h$ et $y = -\frac{1}{2}g$ $t^2 + h$.	
2.3.	Déterminons l'expression de la trajectoire du point B : $x = v_0 t$, donc $t = \frac{x}{v_0}$. (½)	1.25
	On reporte cette expression du temps dans l'expression de l'ordonnée $y = -\frac{1}{2} gt^2 + h$	
	$y = -\frac{1}{2} g \left(\frac{x}{y_0} \right)^2 + h \text{ soit } y = -\frac{gx^2}{2v_0^2} + h.$ (3/4)	
	$v_0 = v_0 = v_0$	
	ACCEPTED AND	
		2.25
2.4.	Lorsque le ballon touche le sol alors son centre d'inertie se situe à l'altitude $y = r$. Il touche le sol avant la ligne de fond si la solution de l'équation $y(x) = 0.10$ m (1/4) donne une valeur	
	de x inférieure à L = 18,0 m : r = $-\frac{g.x^2}{2.v_0^2} + h \Leftrightarrow \frac{g.x^2}{2.v_0^2} = h - r \Leftrightarrow x^2 = \frac{2v_0^2(h-r)}{g}$	
	En ne gardant que la solution positive : $x = \sqrt{\frac{2v_0^2(h-r)}{g}}$ soit $x = v_0 \sqrt{\frac{2(h-r)}{g}}$. (1.5)	
	$x = 21.0 \times \sqrt{\frac{2 \times (3.5 - 0.10)}{9.81}} = 17 \text{ m} < L = 18.0 \text{ m} \text{ avec deux chiffres significatifs}$	
	Le centre du ballon touche le sol avant la ligne de fond. (½)	
	En négligeant r : x = 21,0 × $\sqrt{\frac{2 \times 3,5}{9,81}}$ = 18 m ~ L avec deux chiffres significatifs	
	Le manque de chiffres significatifs ne permet pas de conclure avec certitude. Le centre du ballon semble toucher le sol avant la ligne de fond.	A
2.5.1.	La courbe 3 est une droite horizontale. En négligeant l'action de l'air, l'énergie mécanique du ballon reste constante au cours du mouvement. La courbe 3 est donc celle de l'énergie mécanique. (3/4)	2.5
	L'énergie associée à la courbe 1 diminue jusqu'à s'annuler. Elle correspond à l'énergie	
	potentielle de pesanteur car y d <mark>iminue jusqu'à devenir nul lorsque $y = 0$. (34) La courbe 2 correspond donc à celle de l'énergie cinétique. Cette énergie augmente car au</mark>	
	cours de la chute du ballon, la vitesse du ballon augmente. (3/4)	
2.5.2	Comme E_m est constante au cours du mouvement on a : $E_m(t=0)=E_m(t_{sol})$ (½) où t_{sol} est la date pour laquelle le ballon touche le sol à la vitesse v_{sol} .	2.5
	$\frac{1}{2}$ mv ₀ ² + m. g. h = $\frac{1}{2}$. m. v _{sol} ² + m. g. r (1) car y(t _{sol}) = r = 0.10 m.	
	On multiplie par $2/m$. $\Rightarrow v_0^2 + 2$. g. $h = v_{sol}^2 + 2$. g. $r \Leftrightarrow v_{sol}^2 = v_0^2 + 2$. g. $(h - r)$ (½)	
	$v_{sol} = \sqrt{v_0^2 + 2. g. (h - r)} \Leftrightarrow v_{sol} = \sqrt{21, 0^2 + 2 \times 9,81 \times (3,5 - 0,10)} = 23 \text{ m.s}^{-1}. (\frac{1}{2})$	
3.1.	Lorsque le joueur réceptionne le ballon à la date t_R à la hauteur $h_R = 0.80$ m, le centre B	2
	du ballon est situé à l'altitude $y_B = h_R + r$, on a :	
	$-\frac{1}{2}g t_{R}^{2} + h = h_{R} + r \Leftrightarrow t_{R}^{2} = \frac{2(h - h_{R} - r)}{g} $ (1)	
	$ - \frac{1}{2} g t_R^2 + h = h_R + r \Leftrightarrow t_R^2 = \frac{2(h - h_R - r)}{g} $ (1) finalement: $ t_R = \sqrt{\frac{2(h - h_R - r)}{g}} = \sqrt{\frac{2 \times (3, 5 - 0, 80 - 0, 10)}{9, 81}} = 0,73 \text{ s (1)} $	

3.2.	Réception du ballon par un joueur de l'équipe adverse	2.5
	Le joueur J est situé sur la ligne de fond en $x_J = L = 18,0$ m à la date $t = 0$ s et se déplace	
	vers le filet avec une vitesse v _J , à déterminer, afin de réceptionner le ballon au point R.	
	Dans le repère choisi, l'équation horaire du joueur sur l'axe des abscisses est alors :	
	$x_J(t) = L - v_J.t.$ (1) Cette abscisse doit être égale à celle du ballon $x_B = v_0 t: (\frac{1}{2})$	
	$x_B = x_J(t) \Rightarrow L - v_J \cdot t_R = v_0 \cdot t_R \Leftrightarrow v_J = \frac{L}{t_R} - v_0$. Soit : $v_J = \frac{18,0}{0,73} - 21,0 = 3,7 \text{ m.s}^{-1}$. (1)	
	En multipliant par 3,6, on obtient $v_J = 13 \text{ km} \cdot \text{h}^{-1}$.	
	All and the second seco	21

