Ausgabe: 7. Juli 2022 ______ Präsentation der Lösungen: 14. Juli 2022

Einführung in die angewandte Stochastik

7. Globalübung

Aufgabe 32

In einer Supermarktfiliale werden innerhalb eines festgelegten Zeitraumes jeweils die Angebotspreise x_1, \ldots, x_7 und die zugehörigen Absatzmengen y_1, \ldots, y_7 eines bestimmten Artikels notiert:

i	1	2	3	4	5	6	7
Preis x_i (in \in /kg)	2.49	2.68	2.62	2.51	2.84	2.65	2.76
Absatzmenge y_i (in 100 kg)	6.7	6.2	5.8	6.2	5.4	6.5	5.9

Es werde das übliche Modell der linearen Regression zugrunde gelegt, d.h.

$$Y_i = a + bx_i + \varepsilon_i$$
 für $i \in \{1, \dots, 7\}$.

Hierbei seien $a,b \in \mathbb{R}$ (unbekannte) Regressionskoeffizienten, und die Fehler $\varepsilon_1, \ldots, \varepsilon_7$ seien stochastisch unabhängig und jeweils $N(0,\sigma^2)$ -verteilt mit unbekannter Varianz $\sigma^2 \in (0,\infty)$.

(a) Berechnen Sie die Kleinste-Quadrate-Schätzungen \hat{a} und \hat{b} für die unbekannten Regressionskoeffizienten a und b, und geben Sie die zugehörige geschätzte Regressionsgerade $\hat{y}(x) = \hat{a} + \hat{b}x$ an.

Berechnen Sie hiermit eine Schätzung für die Absatzmenge bei einem Angebotspreis von $2.70 \in /\mathrm{kg}$.

- (b) Erstellen Sie ein Streudiagramm der Punkte $(x_1,y_1),\ldots,(x_7,y_7)$, und zeichnen Sie in dieses Diagramm die geschätzte Regressionsgerade $\hat{y}(x) = \hat{a} + \hat{b}x$ ein.
- (c) Bestimmen Sie zum Konfidenzniveau $1 \alpha = 0.9$ ein zweiseitiges Konfidenzintervall für die (unbekannte) Varianz σ^2 .
- (d) Bestimmen Sie zum Konfidenzniveau $1 \alpha = 0.95$ ein zweiseitiges Konfidenzintervall für den (unbekannten) Regressionskoeffizienten b.

Aufgabe 33

Die Zufallsvariablen X_1, \ldots, X_n seien stochastisch unabhängig und jeweils Poisson-verteilt mit (unbekanntem) Parameter $\vartheta > 0$ (gemäß Bezeichnung B 2.5).

Hierbei wird der Parameter ϑ – im Sinne der Bayes-Statistik – als Realisation einer Zufallsvariablen θ aufgefasst. Die a-priori Verteilung dieser Zufallsvariablen θ sei gegeben durch die Gamma-Verteilung $\Gamma(1,2)$ (mit erstem Parameter 1 und zweitem Parameter 2 gemäß Bezeichnung B 3.9).

(a) Zeigen Sie (durch Nachrechnen), dass zu Realisationen $x_1, \ldots, x_n \in \mathbb{N}_0$ von X_1, \ldots, X_n mit arithmetischem Mittelwert \overline{x} die zugehörige a-posteriori Verteilung von θ gegeben ist durch

$$\Gamma(1+n,2+n\,\overline{x})$$

(also ebenfalls eine Gamma-Verteilung mit erstem Parameter 1 + n und zweitem Parameter $2 + n \overline{x}$ gemäß Bezeichnung B 3.9).

(b) Es werde die zugehörige quadratische Verlustfunktion gemäß D 8.4 zugrundegelegt. Berechnen Sie unter dieser Annahme für n=9 und Realisationen $x_1,\ldots,x_9\in\mathbb{N}_0$ von X_1,\ldots,X_9 mit $\overline{x}=2$ eine Bayes-Schätzung $\hat{\vartheta}_B(x_1,\ldots,x_9)$ für den unbekannten Parameter ϑ .