×

Lecture 21: Introduction to Generalized Linear Models;

<u>Course</u> > <u>Unit 7 Generalized Linear Models</u> > <u>Exponential Families</u>

> 4. Motivation

4. Motivation Motivation: Kyphosis

Video

Download video file

Transcripts

<u>Download SubRip (.srt) file</u> <u>Download Text (.txt) file</u>

Computing the Regression Function for a Known Joint Distribution

1/1 point (graded)

Consider the pair of random variables (X,Y) where we first choose X uniformly at random from [0,1], then Y is chosen uniformly at random from [0,X]. What is the regression function $\mu(x)$?

(Recall that $\mu\left(x
ight)$ is defined to be $\mathbb{E}\left[Y\mid X=x
ight]$, so use lower case x for the variable.)

$$\mu\left(x\right)=$$
 $\frac{x}{2}$ Answer: x/2

STANDARD NOTATION

Submit

You have used 1 of 3 attempts

• Answers are displayed within the problem

Generalizing the Linear Model; the Link Function

Video

Download video file

An Example: Flaky Airline Passengers

1/1 point (graded)

An airline company wishes to build a predictor for **whether or not** a passenger will show up on time for a flight (a yes/no answer), based on predictive features such as: (1) how many times the passenger missed their flight in the past, (2) the time that the ticket was purchased and (3) the predicted amount of traffic for that day.

Let $\mathbf X$ be the vector of predictive features and let Y be the desired feature we wish to predict for future passengers.

Which of the following sets best describes the **range** of the regression function $\mu(\mathbf{x})$?

$\bigcirc \mathbb{R}^+$, the set	of positive	reals.
-------------------------	-----------	-------------	--------

	(0,	1),	the	unit	interva	ıl.
--	-----	-----	-----	------	---------	-----

Solution:

The best choice is (0,1), the unit interval. Since the model calls for Y being a yes/no indicator, the distribution of Y given X ought to be a $\{0,1\}$ -valued random variable – for example, distributed like Bernoulli(p) where p might depend on X in some way. The range of μ , then, ought to be (0,1) since it is defined as an expectation $\mathbb{E}\left[Y|X=x\right]$ – which is p if we do indeed decide to model it as a Bernoulli RV.

Submit

You have used 1 of 1 attempt

1 Answers are displayed within the problem

Flaky Airline Passengers, Continued

1/1 point (graded)

Remark: In this problem, we consider reasons for which a more generalized version of regression – as opposed to simple linear regression – might be more appropriate.

In the same setting as the previous problem (and in the context of the discussion of the solution), which of the following are true statements about μ and the pair (\mathbf{X}, Y) ? Choose all that apply.

The range of values of Y is bounded.

The range of values of μ is strictly positive.

Based on the range of values of Y, it is harder to assume that the noise is Gaussian.

Mathematically, linear regression is impossible to compute for Yes/No responses.

Solution:

- "Y takes values in a bounded interval" is True, since $Y \in \{0,1\}$, which may or may not be Bernoulli given x. Such random variables are sometimes referred to as **categorical** random variables (takes values ranging between multiple choices).
- "The range of values of μ is strictly positive" is True, since μ takes values in the interval (0,1).
- "Based on the range of values of Y, it is harder to assume that the noise is Gaussian" is True, since Gaussian random variables are generally unbounded; i.e. taking values on $\mathbb R$ which can be arbitrarily large. If the predictor is to be a **probability** in the interval (0,1), it is harder to justify using a normal distribution to model the noise (except perhaps in the rare case where the variance is extremely tiny, which we shouldn't take for granted).
- "Mathematically, linear regression is impossible for Yes/No responses" is False. We can always perform linear regression on datasets $\{(X_i,Y_i)\}_{i=1}^N$, by simply calculating a best-fit line. Such an approach operates on the assumption that the provided observations are approximately linear, and does not care about misspecification. The only question is whether or not such a technique is actually appropriate.
- "Mathematically, linear regression is impossible for integer-valued features, (e.g. $X_1 =$ the number of missed flights)" is False for the same reason.

Note: The fact that we mathematically **cannot** perform linear regression (or any other statistical technique, for that matter) is not the true reason why we consider generalized linear models.

Submit

You have used 1 of 3 attempts

• Answers are displayed within the problem

In this unit, we focus on **generalized linear models** , which is a much more powerful and expressive family of models. As it turns out, this comes at a cost: finding the Maximum Likelihood Estimator becomes more difficult (in general). We relax the assumption that μ is linear. Instead, we assume that $g \circ \mu$ is linear, for some function g:

$$g\left(\mu\left(\mathbf{x}\right)\right) = \mathbf{x}^T \beta.$$

The function g is assumed to be known, and is referred to as the **link function** .

We have done this with the following strategy in mind: Through an appropriate choice of the link function, which depends on the model, we will hope to be able to compute an estimator $\hat{\beta}$, usually the MLE.

Domain and Range of the Link Function

1/1 point (graded)

Let (X,Y) be some pair of random variables. Assume that the regression function $\mu(x)$ takes values in the range [-3,5]. In order to fit into the generalized linear model context, which of the following gives the **most accurate description** of the domain and range of any candidate link function q?

$$\bigcirc g:[-3,5] o [-3,5]$$

$$left{igo}g:[-3,5] o\mathbb{R}$$

$\bigcirc g:[-3,5] o \mathbb{R}^+$	
$\bigcirc g: \mathbb{R} o [-3,5]$	
$\bigcirc g: \mathbb{R}^+ o [-3,5]$	
✓	
Solution:	
We want link functions g so that $g(\mu(x))=x^Teta$ for some eta . The right hand side is a linear function of x , which takes values in $[-3,5]$. Therefore, the correct choice is g mapping $[-3,5]$ to all of $\mathbb R$.	lues in \mathbb{R} , while μ
Submit You have used 1 of 3 attempts	
Answers are displayed within the problem	
Discussion Topic: Unit 7 Generalized Linear Models:Lecture 21: Introduction to Generalized Linear Models; Exponential	Hide Discussion
Families / 4. Motivation	Add a Post
Show all posts ▼	by recent activity ▼
There are no posts in this topic yet.	
×	

© All Rights Reserved