PRODUCTION OF LOW ALPHA-OLEFIN POLYMER

Publication number: JP8301921 Publication date: 1996-11-19

Inventor: ARAKI YOSHITAKE; NAKAMURA HIROFUMI;

AOSHIMA NORIYUKI: OKANO TAKESHI: IWADE

SHINJI

Applicant: MITSUBISHI CHEM CORP

Classification:

- international: C08F4/69; C08F4/60; C08F6/06; C08F6/08;

C08F110/00; C08F110/02; C08F4/00; C08F6/00; C08F110/00; (IPC1-7); C08F4/69; C08F6/08;

C08F110/02

- European:

Application number: JP19950110742 19950509 Priority number(s): JP19950110742 19950509

Report a data error here

Abstract of JP8301921

PURPOSE: To remove the catalyst components from a liquid reaction product formed in the reaction for forming a low &alpha -olefin polymer in the presence of a chromium-base catalyst. CONSTITUTION: A reaction for forming a low &alpha -olefin polymer is performed in a solvent in the presence of a catalyst comprising either a combination essentially consisting of a chromium compound (a), a nitrogenous compound (b) selected from the group consisting of anines, amides and imides and an alkylaluminum compound (c) or a combination containing these components and a halogen compound (b). The formed liquid reaction product is brought into contact with a carboxylic acid insoluble therein to remove the catalyst components from the liquid. In this way, the catalyst can be removed at good efficiency by a simple operation.

Data supplied from the esp@cenet database - Worldwide

(19)日本国特許庁 (JP) (12) 公開特許公報(A)

(11)特許出願公開番号 特開平8-301921

(43)公開日 平成8年(1996)11月19日

(51) Int.Cl. ⁶	識別記号	庁内整理番号	FI		技術表示箇所
C08F 4/69	MFG		C08F 4/69	MFG	
6/08	MFM		6/08	MFM	
110/02			110/02		

審査請求 未請求 請求項の数6 OL (全 8 頁)

(21)出願番号	特顧平7-110742	(71)出順人 000005968		
		三菱化学株式会社		
(22)出驟日	平成7年(1995)5月9日	東京都千代田区丸の内二丁目 5番2号		
		(72)発明者 荒木 良剛		
		岡山県倉敷市潮通三丁目10番地 三菱化学		
		株式会社水島開発研究所内		
		(72)発明者 中村 宏文		
		岡山県倉敷市湖涌三丁目10番地 三菱化学		
		株式会社水島開発研究所内		
		(72)発明者 青島 敬之		
		神奈川県横浜市青葦区鴨末田町1000番地		
		三菱化学株式会社横浜総合研究所内		
		(74)代理人 弁理士 長谷川 疄司		
		最終頁に続く		

(54) 【発明の名称】 α-オレフィン低重合体の製造方法

(57) 【要約】

【目的】 クロム系触媒を用いるαーオレフィン低重合 反応の反応生成液から触媒成分を除去する方法を提供す

【構成】 少くとも (a) クロム化合物、(b) アミ ン、アミド及びイミドからなる群から選ばれた含窒素化 合物、並びに (c) アルキルアルミニウム化合物から成 る組合せ、乃至はこれに(d)ハロゲン含有化合物を組 合せた触媒を用いて、溶媒中でα-オレフィンの低重合 を行ない、反応生成液をこれに不溶のカルボン酸と接触 させて液中の触媒成分を除去する。

【効果】 簡単な操作で効率よく触媒が除去できる。

【特許請求の範囲】

1 【請求項1】 クロム系触媒の存在下に溶媒中でαーオ レフィンを低重合させて αーオレフィン低重合体を製造 する方法において、クロム系触媒として、少くとも、

(a) クロム化合物、(b) アミン、アミド及びイミド からなる群から選ばれる含窒素化合物、並びに(c)ア ルキルアルミニウム化合物から成るものを用い、かつ触 媒成分を含む反応生成液をこれに不溶なカルボン酸と接 触させて、触媒成分を反応生成液から除去することを特 微とするα-オレフィン低重合体の製造方法。

【請求項2】 クロム系触媒が、少くとも、(a) クロ ム化合物、(b) アミン、アミド及びイミドからなる群 から選ばれる含窒素化合物、(c)アルキルアルミニウ ム化合物、並びに(d)ハロゲン含有化合物から成るも のである請求項1に記載のα-オレフィン低重合体の製 造方法。

【結求項3】 ハロゲン含有化合物が、周期律表のIII A、III B、IVA、IVB、VA、VB及びVIB族からな る群から選ばれる元素を含むものである請求項2に記載 のα-オレフィン低重合体の製造方法。

【鯖求項4】 クロム化合物とアルキルアルミニウム化 合物とを予め接触させることなく、αーオレフィンとク ロム系触媒とを接触させる請求項1~3のいずれかに記 載のα-オレフィン低重合体の製造方法。

【請求項5】 α -オレフィンがエチレンであり、 α -オレフィン低重合体が1-ヘキセンを主体とするもので ある請求項1~4のいずれかに記載の α -オレフィン低 重合体の製造方法。

【請求項6】 触媒成分を含む反応生成液に、これに不 のち反応生成液から触線成分を含む固体を分離する請求 項 $1 \sim 5$ のいずれかに記載の $\alpha - オレフィン低重合体の$ 製造方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、α-オレフィン、特に エチレンを液相で低重合して、αーオレフィン低重合 体、特に1-ヘキセンを製造する方法に関するものであ る。詳しくは本発明は、低重合反応により生成した反応 生成液から触媒成分を除去する方法に関するものであ 40 と接触させることにより、反応生成液中の触媒成分を除

[0002]

【従来の技術】少くとも、クロム化合物と有機アルミニ ウム化合物とから成るクロム系触媒を用いて、エチレン 等のα-オレフィンを低重合することは公知である。例 えば特公昭43-18707号には、クロムを含むVIB 族の遷移金属化合物とボリ(ヒドロカルビルアルミニウ ムオキシド) からなる触媒を用いて、エチレンを低重合 して1-ヘキセンを製造する方法が記載されている。ま た、特開平3-128904号には、クロムーピロリル 50 であり、一般式

結合を有するクロム化合物と金属アルキル化合物又はル イス酸とを反応させて得られた触媒を用いてαーオレフ ィンを三量化する方法が記載されている。さらに、U.S. P5.376.612には、クロム化合物、ピロール含 有化合物、金属アルキル化合物及びハロゲン含有化合物 を溶媒中で混合して得られた触媒を用いて、α-オレフ ィンを低重合する方法が記載されている。

【0003】一方、本発明者らの一部は、少くとも、ク ロム化合物とアミン又は金属アミドとアルキルアルミニ 10 ウム化合物の組み合わせから成る触媒系を使用し、クロ ム化合物とアルキルアルミニウム化合物とが、予め接触 しない態様でαーオレフィンとクロム系触媒とを接触さ せることにより、α-オレフィン低重合体を高活性で得 ることができる方法を提案した (特願平5-28007 号)。

[0004]

[0006]

に説明する。

【発明が解決しようとする課題】α-オレフィンの低重 合により得られる反応生成液は、次いで蒸留により各成 分に分離される。しかし反応生成液中の触媒成分は比較 20 的不安定であり、触媒成分を含む反応生成液をそのまま 蒸留すると、触媒成分、とりわけクロム成分が析出して 蒸留装置に付着するおそれがある。従って、蒸留に先立 ち反応生成液中から触媒成分、とりわけクロム成分を除 去しておくのが望ましい。

【0005】本発明者らは、先に反応生成液を酸または アルカリ水溶液で処理して、触媒成分を除去する方法を 提案した(特顯平5-329668号参照)。この方法 は優れた方法であるが、水溶液を用いるので反応生成液 中に水が混入し、反応溶媒を再使用する際に脱水を必要 溶なカルボン酸を固体で添加し、両者をよく接触させた 30 とするという問題がある。また、酸やアルカリを含む廃 液が発生するという問題もある。本発明はこれらの問題 の無い触媒成分の除去方法を提供するものである。

> 【課題を解決するための手段】本発明によれば、少くと も (a) クロム化合物、(b) アミン、アミド及びイミ ドからなる群から選ばれる含窒素化合物、並びに (c) アルキルアルミニウム化合物から成るクロム系触媒の存 在下に、波媒中でαーオレフィンを任重合させ、生成し た伸媒成分を含む反応生成液をこれに不溶なカルボン酸

去する方法、が提供される。以下、本発明について詳細

【0007】本発明で用いるクロム系触媒は、少くとも (a) クロム化合物、(b) アミン、アミド及びイミド からなる群から選ばれる含窒素化合物、並びに(c)ア ルキルアルミニウム化合物の組合せから成るものであ る。これに更に (d) ハロゲン含有化合物を組合せる と、触媒性能が更に優れたものとなるので好ましい。本 発明で使用するクロム化合物は0~6価のクロム化合物 UE 1.1

CrXn ... (1) で表わされる。上記式において、Xは任意の有機もしく は無機の基、除性原子または配位性分子を示す。 n は 1 ~6の整数を示すが2以上であることが好ましい。また nが2以上の場合にはXは相互に異なっていてもよい。 上記の有機基としては通常炭素数が1~30の各種の基 が挙げられる。例えばアルキル基、シクロアルキル基、 アリール基、アルキルアリール基、アラルキル基、シク ロベンタジエニル基などの炭化水素基、カルボニル基及 10 エステル錯体、ケトン錯体、アルデヒド錯体、アルコー びアルコキシ基が挙げられる。また、カルボキシル基、 βージケトナート基、βーケトカルボキシル基、βーケ トエステル基又はアミド基などを有する炭化水素基も挙 げられる。無機の基としては硝酸基、硫酸基などのクロ ム塩形成基が挙げられる。陰性原子としては、酸素、ハ ロゲンなどが挙げられる。

【0008】好ましいクロム化合物としては、クロムの アルコキシ塩、カルボキシル塩、β-ジケトナート塩、 β-ケトエステルのアニオンとの塩、または、クロムハ ロゲン化物が挙げられ、具体的には、クロム (IV) - t 20 : ・3 PPh: 、CrCl: ・2 THF、CrCl: ・ -プトキシド、クロム (III) アヤチルアヤトナート、 クロム(III) トリフルオロアセチルアセトナート、ク ロム(III) ヘキサフルオロアセチルアセトナート、ク ロム (III) (2, 2, 6, 6-テトラメチル-3, 5 -ヘプタンジオナート)、Cr (PhCOCHCOP h) : (ここでPhはフェニル基を示す。), クロム (II) アセテート、クロム (III) アセテート、クロム (III) - 2-エチルヘキサノエート、クロム (III) ベンゾエート、クロム (III) ナフテネート、Cr (C 第二クロム、臭化第一クロム、臭化第二クロム、ヨウ化 第一クロム、ヨウ化第二クロム、フッ化第一クロム、フ ッ化第二クロム等が挙げられる。

【0009】また、上記のクロム化合物と電子供与体か ら成る錯体も好適に使用することが出来る。電子供与体 としては、窒素、酸素、リン又は硫黄を含有する化合物 の中から選択される。窒素を含有する電子供与体として は、ニトリル、アミン、アミド、ニトロ化合物等が挙げ られ、具体的には、アセトニトリル、ピリジン、ジメチ ルピリジン、ジメチルホルムアミド、N-メチルホルム 40 アミド、アニリン、ニトロベンゼン、テトラメチルエチ レンジアミン、ジエチルアミン、イソプロピルアミン、 ヘキサメチルジシラザン、ピロリドン等が挙げられる。

【0010】酸素を含有する電子供与体としては、エス テル、エーテル、ケトン、アルコール、アルデヒド等が 挙げられ、具体的には、エチルアセテート、メチルアセ テート、テトラヒドロフラン、ジオキサン、ジエチルエ ーテル、ジメトキシエタン、ジグライム、トリグライ アヤトン、メチルエチルケトン、メタノール、エタ

する電子供与体としては、ヘキサメチルホスホルアミ ド、ヘキサメチルホスホラストリアミド、トリエチルホ スファイト、トリプチルホスフィンオキシド、トリエチ ルホスフィン等が何示される。また、硫黄を含有する世 子供与体としては、二硫化炭素、ジメチルスルホキシ ド、テトラメチレンスルホン、チオフェン、ジメチルス ルフィド等が倒示される。

【0011】 このような電子供与体とクロム化合物との 錯体の例としては、ハロゲン化クロムのエーテル錯体、 ル錯体、アミン錯体、ニトリル錯体、ホスフィン錯体、 チオエーテル錯体などが挙げられる。具体的には、Cr Cl: · 3THF, CrCl: · 3dioxane, C rCls · (CHs CO2 n - C4 He) . CrCls · (CH₅ CO₂ C₂H₆) , CrCl₃ · 3 (i-C 1 H7 OH) , CrC1: · 3 (CH2 (CH2) 1 C H (C2 H2) CH2 OH) , CrCl2 · 3 pvri dine, CrC1: · 2 (i-C: H: NH2), [CrCl3 · 3CH2 CN] · CH2 CN, CrCl 2pyridine, CrC12 · 2 ((C2 H5) 2 NH), CrC1: · 2CH: CN, CrC1: · 2 [P(CH:): Ph] 等が挙げられる。(ここで、T HFはテトラヒドロフラン、Phはフェニル基を表 す。)

【0012】クロム化合物は、炭化水素溶媒に可溶な形 態で用いるのが好ましく、このような可溶性のものとし てはクロムのβ-ジケトナート塩、カルボン酸塩、β-ケトエステルのアニオンとの塩、β-ケトカルボン酸 H₁ COCHCOOCH₂)₂、塩化第一クロム、塩化 30 塩、アミド錯体、カルボニル錯体、カルベン錯体、各種 シクロペンタジエニル錯体、アルキル錯体、フェニル錯 体などが挙げられる。クロムの各種カルボニル錯体、カ ルベン錯体、シクロベンタジエニル錯体、アルキル錯 体、フェニル錯体としては、具体的には、Cr (CO) 6 , (C6 H6) Cr (CO) 5 , (CO) 5 Cr (= CCH3 (OCH3)), (CO) 6 Cr (= CC6 H 。(OCHa))、CpCrCla (ここでCpはシク ロペンタジエニル基を示す。)、(Cp*CrC1CH 。) 2 (ここでCp*はペンタメチルシクロペンタジエ ニル基を示す。)、(CH:)2 CrC1等が例示され

【0013】クロム化合物は、無機酸化物などの担体に 担持して使用することも出来るが、通常は担体に担持さ せずに、他の触媒成分と組み合わせて使用する。すなわ ち、本発明においては、触媒を構成するクロム化合物と アルキルアルミニウム化合物とは後述する特定の接触態 様で使用するのが好ましいが、斯かる態様によれば、ク ロム化合物の担体への担持を行わなくとも高い触媒活性 が得られる。本発明で使用するアミンは、1級または2 ノール、アセトアルデヒド等が挙げられる。リンを含有 50 綴のアミン、またはこれらの混合物である。1級アミン

としては、エチルアミン、イソプロピルアミン、シクロ ヘキシルアミン、ベンジルアミン、アニリン、ナフチル アミン等が例示され、2級アミンとしては、ジエチルア ミン、ジイソプロビルアミン、ジシクロヘキシルアミ ン、ジベンジルアミン、ビス(トリメチルシリル)アミ ン、モルホリン、イミダゾール、インドリン、インドー ル、ピロール、2、5 - ジメチルピロール、3、4 - ジ メチルピロール、3、4-ジエチルピロール、2、3、 4-トリメチルピロール、3、4-ジクロロピロール、 2. 3. 4. 5 - テトラクロロピロール、2 - アセチル 10 3. 3', 4. 4' - テトラメチルジピロロメタン等の ピロール、3,3',4,4'-テトラメチルジピロロ メタン、ピラゾール、ピロリジン等が例示される。

【0014】本発明で使用するアミドとしては、金属ア ミド及び酸アミドが挙げられる。金属アミドとしては1 級または2級のアミンから誘導される金属アミド、また はこれらの混合物が挙げられ、例えば、上記の1級また は2級のアミンとIA族、IIA族、III A族およびIVB 族から選択される金属との反応により得られるアミドが 挙げられる。斯かる金属アミドとしては、具体的には、 リチウムアミド、ナトリウムエチルアミド、カルシウム 20 ド)等が好適である。なかでも、ピロール環に炭化水素 ジエチルアミド、リチウムジイソプロピルアミド、カリ ウムベンジルアミド、ナトリウムピス(トリメチルシリ ル) アミド、リチウムインドリド、ナトリウムピロリ ド、リチウムピロリド、カリウムピロリド、カリウムピ ロリジド、アルミニウムジエチルピロリド、エチルアル*

*ミニウムジピロリド、アルミニウムトリピロリド、リチ ウム (2.5-ジメチルビロリド) 等が挙げられる。

【0.0.1.5】 本発明においては、上記のアミン、金属ア ミドのうち2級のアミン、もしくは2級のアミンから誘 導される金属アミド又はこれらの混合物が好適に使用さ れる。特に、ピロールもしくは2,5-ジメチルピロー ル、3、4-ジメチルピロール、2、3、4-トリメチ ルピロール、3、4-ジクロロピロール、2、3、4、 5-テトラクロロピロール、2-アセチルピロール、 ピロール誘導体、又はこれらから誘導される金属アミ ド、例えばアルミニウムピロリド、エチルアルミニウム ジピロリド、アルミニウムトリピロリド、ナトリウムピ ロリド、リチウムピロリド、カリウムピロリド、アルミ ニウム(2,5-ジメチルピロリド)、エチルアルミニ ウムビス (2, 5-ジメチルピロリド)、アルミニウム トリス (2. 5 - ジメチルピロリド)、ナトリウム (2, 5-ジメチルピロリド)、リチウム(2, 5-ジ メチルピロリド)、カリウム(2,5-ジメチルピロリ 基を有するピロール誘導体が特に好ましい。

【0016】本発明で使用する前記以外の酸アミド又は イミドとしては、下記一般式 (2) ~ (4) で表される 化合物が挙げられる。 [化2]

$$R^{1} = \overset{O}{C} - \overset{M}{N} - R^{2} \qquad \cdots (2)$$

$$\overset{M^{2}}{R^{4}} = \overset{O}{N} - \overset{O}{C} - A - \overset{M}{C} - \overset{S}{N} - R^{5} \qquad \cdots (3)$$

【0017】一般式(2)中、M1は、水素原子または 周期律表 (本明細書では、周期律表はCAS vers 3 B族である。) の I A、II A、I B、III A族から選 ばれる金属元素であり、R1は、水素原子、炭素数1~ 30のアルキル基、アルケニル基、アラルキル基、置換 基を有していてもよいアリール基、または、ヘテロ元素 を含んでいてもよいアリール基を表し、R2は、水素原 子、炭素数1~30のアルキル基、アルケニル基、アラ ルキル基、雷換基を有していてもよいアリール基、ヘテ 口元素を含んでいてもよいアリール基、または、アシル 基COR® (R®の定義はR!と同じであり、R!と異

【0018】一般式 (3) 中、M2 及びM2 は、水素原 ionに基づいている。従ってIII A族はIUPACの 40 子または周期律表のIA、IIA、IB、III A族から選 ばれる金属元素であり、R'及びR'は、水素原子、炭 素数1~30のアルキル基、アルケニル基、アラルキル 基、置換基を有していてもよいアリール基、または、ヘ テロ元素を含んでいてもよいアリール基を表し、R'と R⁶ は環を形成していてもよく、Aは不飽和結合を含ん でいてもよいアルキレン基を表す。

【0019】一般式(2)又は一般式(3)で表される 酸アミド類としては、例えば、アセトアミド、N-メチ ルヘキサンアミド、スクシンアミド、マレアミド、N-なっていてもよい)を表し、R1とR2は環を形成して 50 メチルベンズアミド、イミダゾール-2-カルボンアミ ド、ジ-2-テノイルアミン、β-ラクタム、δ-ラク タム、ε-カプロラクタム、および、これらと周期律表 のIA、IIA、IBまたはIII A族の金属との塩が継げ られる。イミド額としては、例えば、1.2-シクロへ キサンジカルボンイミド、スクシンイミド、フタルイミ

ド、マレイミド、2、4、6-ビベリジントリオン、ベ ルヒドロアゼシンー2、10-ジオン、および、これら と周期律表のIA、IIA、IBまたはIII A族の金属と

の塩が挙げられる。

周期律表のIA、IIA、IB、およびIII A核から深ば れる金属元素であり、R[®] は、水素原子、炭素数1~3 0のアルキル基、アルケニル基、アラルキル基、置換基 を有していてもよいアリール基、または、ヘテロ元素を 含んでいてもよいアリール基を表し、R 7 は、水素原 子、炭素数1~30のアルキル基、アルケニル基、アラ ルキル基、置換基を有していてもよいアリール基、ヘテ

口元素を含んでいてもよいアリール基、または、SO2 * R1 . A1 (OR2) . H. X.

【0023】一般式(5)中、R1及びR2は、炭素数20※物、一般式(7)で示されるハロゲン化アルキルアルミ が消常1~15. 好主しくは1~8の能化水素基であっ て互いに同一であっても異なっていてもよく、Xはハロ ゲン原子を表し、mは $0 < m \le 3$ 、nは $0 \le n < 3$ 、pは $0 \le p < 3$ 、qは $0 \le q < 3$ のそれぞれの数であっ T、しかも、m+n+p+q=3である数を表す。上記 のアルキルアルミニウム化合物としては、例えば、下記 一般式(6)で示されるトリアルキルアルミニウム化合※

 $R^1 * A1$

R1 . A 1 X2-.

R1 n A1 (OR2) 8-8 (mは0<m<3、好ましくは1.5≤m<3)

R1 a A 1 Ha-a (mは0<m<3、好ましくは1.5≤m<3)

(mは1.5≤m<3)

【0025】上記のアルキルアルミニウム化合物の具体 例としては、トリメチルアルミニウム、トリエチルアル ミニウム、トリイソプチルアルミニウム、ジエチルアル ミニウムモノクロリド、ジエチルアルミニウムエトキシ ド、ジエチルアルミニウムヒドリド等が挙げられる。こ キルアルミニウムが特に好ましい。アルキルアルミニウ ム化合物は、2種以上の混合物であってもよい。本発明 で使用するハロゲン含有化合物としては、周期律表のII I A、III B、IVA、IVB、VA、VB及びVIB嫉から なる群から選ばれる元素を含むハロゲン含有化合物が好 適に使用される。そして、ハロゲンとしては、塩素また は臭素が好ましい。

【0026】上記のハロゲン含有化合物の具体例として は、塩化スカンジウム、塩化イットリウム、塩化ランタ *R°基(R°の定義はR°と同じであり、R°と異なっ ていてもよい) を表し、R6 とR7 は環を形成していて **キよい**

【0021】一般式(4)で示されるスルホンアミド額 およびスルホンイミド類としては、例えば、ペンゼンス ルホンアミド、Nーメチルメタンスルホンアミド、Nー メチルトリフルオロメタンスルホンアミド、および、こ れらと周期律表のIA、IIA、IBまたはIII A族の企 属との塩が挙げられる。これらのアミド又はイミド化合 【0020】一般式(4)中、M*は、水素原子または 10 物の中では、一般式(2)で表される化合物が好まし く、特に、一般式 (2) 中のR² がアシル基COR¹ を 表し、R1 とR2が環を形成しているイミド化合物が好 ましい。本発明において使用されるアルキルアルミニウ ム化合物としては、下記一般式(5)で示されるアルキ ルアルミニウム化合物が好適に使用される。

[0022] [(E3]

... (5)

二ウム化合物、一般式(8)で示されるアルコキシアル キルアルミニウム化合物、一般式(9)で示される水素 化アルキルアルミニウム化合物などが挙げられる。な お、各式中のR1、XおよびR2の定義は上記一般式 (5) の場合と同じである。 [0024]

【化4】

30

... (6) ... (7)

... (8)

... (9)

ウム、三塩化ホウ素、塩化アルミニウム、ジエチルアル ミニウムクロリド、エチルアルミニウムセスキクロリ ド、塩化ガリウム、四塩化炭素、クロロホルム、塩化メ チレン、ジクロロエタン、ヘキサクロロベンゼン、1, 1、1-トリクロロエタン、1、1、2-トリクロロエ タン、1, 1, 2, 2-テトラクロロエタン、ペンタク れらの中、ポリマーの副生が少ないと言う点でトリアル 40 ロロエタン、ヘキサクロロエタン、1、1、1-トリク ロロプロバン、1、1、2、2-テトラクロロプロバ ン、1, 1, 1-トリクロロブタン、1, 1, 2, 2-テトラクロロブタン、1、1、1-トリクロロペンタ ン、1、1、2、2-テトラクロロペンタン、1、1、 1-トリプロモエタン、1, 1, 2, 2-テトラプロモ エタン、1、2、3、4、5、6-ヘキサクロロシクロ ヘキサン、1、3、5-トリクロロベンゼン、トリチル クロリド、四塩化ケイ素、トリメチルクロロシラン、四 塩化ゲルマニウム、四塩化スズ、トリプチルスズクロリ ン、四塩化チタン、四塩化ジルコニウム、四塩化ハフニ 50 ド、三塩化リン、三塩化アンチモン、トリチルヘキサク (6)

ロロアンチモネート、五塩化アンチモン、三塩化ビスマ ス、三臭化ホウ素、三臭化アルミニウム、四臭化炭素、 プロモホルム、プロモベンゼン、ヨードメタン、四臭化 ケイ素、ヘキサフルオロベンゼン、フッ化アルミニウム 等が挙げられる。

【0027】上記のハロゲン含有化合物の中、ハロゲン 原子の数が多いものが好ましく、また、反応溶媒に可溶 の化合物が好ましい。特に好ましいハロゲン含有化合物 の例としては、四塩化炭素、クロロホルム、1, 1, 1 タン、ペンタクロロエタン、ヘキサクロロエタン、1, 2. 3. 4. 5. 6-ヘキサクロロシクロヘキサン、四 塩化チタン、四塩化ゲルマニウム、四塩化スズ等が挙げ られる。なお、ハロゲン含有化合物は、2種以上の混合 物として使用することも出来る。

【0028】本発明においては、上記の各触媒成分から 成る触媒系を使用し、反応溶媒中でαーオレフィンの低 重合を行う。そして、クロム化合物 (a) とアルキルア ルミニウム化合物 (c) とが予め接触しない態様でα-い、これにより、選択的に三量化反応を行わせ、原料工 チレンから1-ヘキセンを高収率で得ることが出来る。 【0029】このような接触態様の具体例としては、

(1) 触媒成分(b) 及び(c) を含む溶液中にα-オ レフィン及び触媒成分 (a) を導入する方法、(2) 触 媒成分(a) および(b) を含む溶液中に α -オレフィ ン及び触媒成分 (c) を導入する方法、(3) 触媒成分 (a) を含む溶液中に α-オレフィン、触媒成分 (b) 及び(c)を導入する方法、(4) 触媒成分(c)を含 (h) を導入する方法、(5) 触媒成分(a) ~ (c) および α-オレフィンをそれぞれ同時かつ独立に反応器 に導入する方法などによって行うことが出来る。そし て、上紀の各湾液は、涌常、反応溶媒を使用して調製さ na.

【0030】また、ハロゲン含有化合物を使用する場合

の上記の接触能様としては、具体的には、(1) 触媒成 分(b) ~ (d) を含む溶液中に α -オレフィン及び触 継成分(a)を導入する方法。(2) 触継成分(a)、 媒成分(c)を導入する方法、(3)触媒成分(a)及 び(d)を含む溶液中にα-オレフィン、触媒成分 (b) 及び(c) を導入する方法、(4) 触媒成分 (c) 及び(d) を含む溶液中にα-オレフィン、触媒 成分(a)及び(b)を導入する方法、(5)触媒成分 (a) 及び(b) を含む溶液中に、α-オレフィン、触 媒成分(c)及び(d)を導入する方法、(6)触媒成 分(b) 及び(c) を含む溶液中にα-オレフィン、触 継成分(a)及び(d)を導入する方法。(7) 触継成

(a)、(b) 及び(d) を導入する方法、(8) 触媒 成分(a)を含む溶液中にα-オレフィン、触媒成分 (b) ~ (d) を導入する方法。(9) αーオレフィン 及び各触媒成分(a)~(d)をそれぞれ同時かつ独立 に反応系に導入する方法などによって行うことが出来 る。そして、上記の各溶液は、通常、反応溶媒を使用し て調製される。

10

【0031】 これらのうちでも、クロム化合物(a)と アルキルアルミニウム化合物(c)とを予め接触しない - トリクロロエタン、1, 1, 2, 2 - テトラクロロエ 10 態様に維持し、且つ、クロム化合物 (a) とアルキルア ルミニウム化合物 (c) とを低重合反応時にαーオレフ ィンに同時に接触させる方法を採用することが好まし W.

【0032】なお、本発明において、「クロム化合物と アルキルアルミニウム化合物とが予め接触しない態様」 とは、反応の開始時のみならず、その後の追加的なα-オレフィン及び触媒成分の反応器への供給においても新 かる態様が維持されることを意味する。しかし、これ は、触媒成分からの触媒系の形成の際に要求される好ま オレフィンとクロム系触媒とを接触させるのが好まし 20 しい態様であり、触媒系が形成された後は無関係であ る。従って、上記の修繕による触媒系の形成を経た後に 反応系から回収された触媒液を反応系に循環させること は、上記の好ましい態様に反することではない。

【0033】クロム化合物とアルキルアルミニウム化合 物とが予め接触する態様でクロム系触媒を使用した場合 にαーオレフィンの低重合反応の活性が低くなる理由 は、未だ明らかではないが、次の様に推定される。すな わち、クロム化合物とアルキルアルミニウム化合物とを 接触させた場合、クロム化合物に配位している配位子と む溶液中に α-オレフィン、触媒成分 (a) および 30 アルキルアルミニウム化合物中のアルキル基との間で配 位子交換反応が進行すると考えられる。そして、斯かる 反応によって生成するアルキルークロム化合物は、通常 の方法で得られるアルキルークロム化合物と異なり、そ れ自身不安定である。そのため、アルキルークロム化合 物の分解還元反応が優先して進行し、その結果、αーオ レフィンの低重合反応に不適当な脱メタル化が惹起さ れ、α-オレフィンの低重合反応の活性が低下すると推 定される.

【0034】本発明において、原料α-オレフィンとし (b) 及び(d) を含む溶液中にαーオレフィン及び触 40 ては、炭素数が2~30の置換または非置換のαーオレ フィンが使用される。具体的には、エチレン、プロピレ ン、1-プテン、1-ヘキセン、1-オクテン、3-メ チルー1-プテン、4-メチル-1-ペンテン等が挙げ られる。特に、原料 α -オレフィンとしてエチレンが好 適であり、本発明によれば、エチレンからその三量体で ある1-ヘキセンを高収率かつ高選択率で得ることが出 来る。

【0035】本発明において、反応溶媒としては、ブタ ン、ペンタン、3 - メチルペンタン、ヘキサン、ヘプタ 分(c)を含む溶液中に、α-オレフィン、触媒成分 50 ン、2-メチルヘキサン、オクタン、2、2、4-トリ (7)

メチルベンタン、シクロヘキサン、メチルシクロヘキサ ン、デカリン等の炭素数3~20の鎖状または脂環式の **伽和能化水素、ペンゼン、トルエン、キシレン、エチル** ベンゼン、メシチレン、テトラリン等の芳香族炭化水素 などが使用される。これらは、単独で使用する他、混合 溶媒として使用することも出来る。

【0036】また、反応溶媒として、反応原料のαーオ レフィンそれ自体または主原料以外のαーオレフィンを 使用することも出来、例えば、炭素数が4~30のα-ンが特に好ましい。反応溶媒として特に好ましいのは、 炭素数が4~10の鎖状飽和炭化水素または脂環式飽和 炭化水素である。これらの溶媒を使用することにより、 ポリマーの副生を抑制することが出来、更に、脂環式炭 化水素を使用した場合は、高い触媒活性が得られると言 う利点がある。

【0037】本発明において、クロム化合物の使用量 は、反応溶媒 1 リットル当たり、通常 1. 0×10-7~ 5 molである。好ましくは1.0×10⁻⁶~0. 2mol、特に1,0×10-5~0,05molの範囲 20 い。 である。一方、アルキルアルミニウム化合物の使用量 は、クロム化合物 1 m o 1 当たり、通常 5 0 m m o 1 以 上であるが、触媒活性および三量体の選択率の観点か ら、0. 1mol以上とするのがよい。そして、上限 は、通常1、0×10' mo1である。また、アミン、 アミド又はイミドの使用量及びハロゲン含有化合物の使 用量は、クロム化合物1mo1当たり、通常0.001 mol以上である。好ましくは0.005~1000m ol、特に0.01~100molの範囲である。

【0038】本発明においては、(a)クロム化合物、 (b) アミン、アミド及びイミドからなる群から選ばれ る含窒素化合物及び (c) アルキルアルミニウム化合 物、更には収率、選択率向上のために使用する(d)ハ ロゲン含有化合物のモル比は、1:0.1~10:1~ 100:0.1~20が好ましく、1:1~5:5~5 0:1~10が特に好ましい。斯かる特定条件の採用に より、例えばエチレン低重合体として、ヘキセンを90 %以上の収率 (全生成量に対する割合) で製造すること が出来、しかも、ヘキセン中の1-ヘキセンの含有量を 99%以上に高めることが出来る。

【0039】本発明の低重合反応は、通常0~250℃ で行われる。好適な反応温度は0~150℃、特に20 ~100℃である。一方、反応圧力は、常圧ないし25 0 kg/cm2 の範囲から選択し得るが、通常は、10 0 kg/cm2 までの圧力で十分である。そして、反応 時間は、通常1分から20時間、好ましくは0.5~6 時間の範囲である。反応形式は、回分式、半回分式また は連続式のいずれであってもよい。また、反応系に水素 を共存させるならば、副生するポリマーの形状を粉末状 にすることができるため、装置へのポリマーの付着を防 50 一ブを解放して脱ガスを行なった。ガスクロマトグラフ

12 ぐことができる。共存させる水素の量は、水素分圧とし て、通常0.1~100kg/cm2、好ましくは1. 0~80kg/cm²の範囲である。

【0040】本発明においては、このようにして得た反 応生成液を、これに不溶なカルボン酸と接触させ、溶解 している触媒成分を除去する。カルボン酸としては公知 の種々のものが使用でき、例えば、シュウ酸、半酸等が 挙げられる。反応生成液とカルボン酸との接触は、反応 生成液にカルボン酸の粉末を添加し、窒素等の不活性ガ オレフィンが使用されるが、常温で液状のα-オレフィ 10 ス雰囲気下、0~100℃、好ましくは0~80℃で、 0. 1~120分、好主しくは5~60分程度機能する ことにより行うのがよい。

> 【0041】これにより触媒成分を含む固体が生成する ので、濾過、流心分離など常法の固液分離手段により除 去する。反応生成液中には副生ポリマーが存在している が、固液分離はこの副生ポリマーの除去を兼ねて行なう ようにしてもよい。また、別法として反応生成液に不溶 なカルポン酸を充填した充填塔に反応生成液を遥過さ せ、カルボン酸上に触媒成分を納集するようにしてもよ

【0 0 4 2】回収されたα-オレフィン低重合体は、必 要に応じて精製される。精製には、通常、蒸留精製が採 用され、目的とする成分を高純度で回収することができ る。本発明においては、特に、エチレンから高純度の1 へキセンを工業的有利に製造することができる。 [0 0 4 3]

【実施例】以下、本発明を実施例および比較例により更 に詳細に説明するが、本発明は、その要旨を超えない限 り以下の実施側によって限定されるものではない。

30 実施例1 150℃の妨慢器で妨慢した2Lオートクレープを熱時 に組み立てた後、真空窒素置換した。このオートクレー プには破裂板を備えた触媒フィード管を取り付けておい た。n-ヘプタン (486ml)、2、5-ジメチルビ ロール (0, 30mmol) のn-ヘプタン溶液、トリ エチルアルミニウム (1.52mmol) のn-ヘプタ ン溶液、1、1、2、2-テトラクロロエタン(0.5 0mmo1) のn-ヘプタン溶液をオートクレープに仕 込み、一方、無謀フィード管にCr (III) -2-エチ 40 ルヘキサノエート(0, 10mmol)のn-ヘプタン 溶液を仕込んだ。n-ヘプタンの全体量は500m1で あった。

【0044】先ず、オートクレーブを80℃に加熱し、 次いで80℃でエチレンを触媒フィード管に導入した。 エチレン圧により破裂板が破裂し、クロム化合物がオー トクレープ内に導入されてエチレンの低重合反応が開始 された。全圧が35kg/cm2 となるようにエチレン を導入した。全圧35kg/cm²に、温度80℃で3 0分間反応させた。次いで反応器を冷却し、オートクレ

13 により生成 α-オレフィン低重合体の組成分析をした結 果、触媒活性 $(g-\alpha-\pi)$ フィン $/g-Cr\cdot hr$) は130、433、全生成物中のC。体の含有量は9 0. 1 (wt%)、C。体中の1-ヘキセンの含有量は 98, 0 (wt%) であった。

【0045】反応生成液 (960m1) の一部 (100 m1)を窒素下で採取し、これにシュウ酸の粉末1gを 添加して、窒素雰囲気下、室温で5時間撹拌した。静置 して固体を沈降させ、上澄み液を窒素下で採取し、5% 硝酸で抽出した後、抽出液及び抽残の上澄み液を高周波 10 含有される触媒成分を容易に除去することができる。 プラズマ発光分光装置「ICAP-88」(日本ジャー

レルアッシュ製)で測定したところ、いずれの液中にも Cr及びA1は全く検出されなかった。

特開平8-301921

[0046]

【発明の効果】本発明によれば、少くとも(a) クロム 化合物、(b) アミン、アミド及びイミドからなる群か ら選ばれる含窒素の化合物及び (c) アルキルアルミニ ウム化合物の組み合わせ、更にはこれに (d) ハロゲン 含有化合物を組み合わせて成るクロム系触媒を使用する α-オレフィンの低重合方法において、反応生成液中に

フロントページの続き

(72)発明者 岡野 丈志

岡山県倉敷市潮通三丁目10番地 三菱化学 株式会社水島開発研究所内

(72)発明者 岩出 慎二

岡山県倉敷市潮通三丁目10番地 三菱化学 株式会社水島開発研究所内