CNN

Convolution Newral Network

▼ Convolution Filter

input : 4×4 , kernel : 3×3 , output : 2×2

• kenel은 일반적으로 3 x 3 사용

▼ Convolution Filter with PAD

원본의 input인 4 x 4를 output으로 유지

• input : 6×6 (with pad), kernel : 3×3 , output : 4×4

다중퍼셉트론의 <mark>가중치(Weight</mark>)는 CNN에서는 Kernel → 압축된 정보를 담고 있다. 즉, <mark>지역정 정보를</mark> 가지고 있다

▼ How it Works

PhotoApp에서 사용하는 filter

sharpen filter

0.0625	0.125	0.0625
0.125	0.25	0.125
0.0625	0.125	0.0625

blur filter

HeatMap

Max Pooling & Stride

▼ Max Pooling & Stride

(b, C, W, H) 중 W, H를 줄이는 것은 MaxPooling과 Stride가 있기 때문인다.

→ 목적 : Parameters를 줄이기 위함

• Pooling : Max, Average 등을 사용

• Stride : 이동범위를 넓게 함

Input & Output Tensors(In Image)

▼ Tensor 모양 (N,C,H,W)

★☆★ Channels이 Filters으로 변환된다 N = Batch Size

- Channels이 3개(RGB), Filters가 5개로 하는 것 처럼

 → Filter 1개가 각각의 Channel마다 Weighted Sum을 적용하여 Channels의 값들은 압축된다.
- 지역정보를 압축해서 하나의 Scalar값으로 표현

▼ CNN Architecture

CNN Block

• Convolution Layer

- Relu
- VGG16 Architecture (Source: https://neurohive.io/en/popular-networks/vgg16/) (w, h, c)

Input & Output Tensors (In NLP)

▼ Text Classification

- n은 문장의 길이, k는 임베딩 차원
- Conv1D에서는 높이만 지정 넚이는 임베딩 차원

▼ 입출력 계산 방법

$$|x| = (b, C_{in}, x_{height}, x_{width})$$

$$|y| = (b, C_{out}, x_{height} - k_{height} + 1, x_{width} - k_{width} + 1)$$

$$|y| = (b, C_{out}, x_{height} + 2 * P_{height} - k_{height} + 1, x_{width} + 2 * P_{width} - k_{width} + 1)$$
1)

• 샘플계산) input $|x|_{height}$ 10+2* P_{size} 1- k_{height} 3+1 = 10

Convolution Layer의 특징

▼ 속도, 성능

패턴 인식에 탁월함으로 Computer Vision뿐만 아니라 NLP에서도 사용함 적은 Parameter 사용으로 연산이 적어 속도가 빠름

위치에 구애 받지 않고 패턴을 인식한다.

활용분야

▼ Computer Vision, Speech Recognition, Text Classification, Time Series

CNN 4