

# Проект по Небесна Механика

Хакан Сунай Халил, Компютърни науки,  $3^{\text{ти}}$  курс,  $2^{\text{ра}}$  група,

ФН: 81406

Софийски университет "Св. Климент Охридски" Факултет по математика и информатика

## Задача 1.

# Пресметнете координатите и скоростите на планетите в деня, в който сте родени.

В задачата на Кеплер орбитата на планетата зависи от 6 елемента, следователно необходимите параметри са:

- а дължина на голямата полуос
- **е** ексцентрицитет
- і наклонение на плоскостта на орбитата
- *θ* дължина на възела
- ullet g +  $oldsymbol{ heta}$  дължина на перихелия
- **l** средна аномалия, ( $\mathbf{l}_0$  е средната аномалия в момента  $\mathbf{t}_0$ )

Първите шест от тези параметри са константи, а последният - средната аномалия  $\mathbf{I}$  е линейна функция на времето  $\mathbf{t}$ .

Съществува и допълнителен елемент, който ни е необходим - ексцентричната аномалия  $\mathbf{u}$ . За този параметър е в сила е уравнението на Кеплер

I = u - e.sin u

Сплеснатостта на елипсата се характеризира с ексцентрицитета е:

$$e = \sqrt{1 - \frac{b^2}{a^2}} \in [0; 1)$$

Където **b** - дължина на малката полуос.

Връзката на елиптичните елементи с декартовите координати в  $\mathbb{R}^3$ 

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} \cos(\theta) & -\sin(\theta) & 0 \\ \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos(i) & -\sin(i) \\ 0 & 0 & \cos(i) \end{pmatrix} \times \begin{pmatrix} \cos(g) & -\sin(g) & 0 \\ \sin(g) & \cos(g) & 0 \\ 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} z_1 \\ z_2 \\ 0 \end{pmatrix}$$

Кеплеровите елементи и техните стойности са взети от следния сайт: <a href="https://ssd.jpl.nasa.gov/txt/aprx">https://ssd.jpl.nasa.gov/txt/aprx</a> pos planets.pdf

|         | a           | e           | I             | L               | $\overline{\omega}$ | Ω             |
|---------|-------------|-------------|---------------|-----------------|---------------------|---------------|
|         | [au,au/cty] | [ , /cty]   | [deg,deg/cty] | [deg,deg/cty]   | [deg,deg/cty]       | [deg,deg/cty] |
| Mercury | 0.38709927  | 0.20563593  | 7.00497902    | 252.25032350    | 77.45779628         | 48.33076593   |
|         | 0.00000037  | 0.00001906  | -0.00594749   | 149472.67411175 | 0.16047689          | -0.12534081   |
| Venus   | 0.72333566  | 0.00677672  | 3.39467605    | 181.97909950    | 131.60246718        | 76.67984255   |
|         | 0.00000390  | -0.00004107 | -0.00078890   | 58517.81538729  | 0.00268329          | -0.27769418   |
| EM Bary | 1.00000261  | 0.01671123  | -0.00001531   | 100.46457166    | 102.93768193        | 0.0           |
|         | 0.00000562  | -0.00004392 | -0.01294668   | 35999.37244981  | 0.32327364          | 0.0           |
| Mars    | 1.52371034  | 0.09339410  | 1.84969142    | -4.55343205     | -23.94362959        | 49.55953891   |
|         | 0.00001847  | 0.00007882  | -0.00813131   | 19140.30268499  | 0.44441088          | -0.29257343   |
| Jupiter | 5.20288700  | 0.04838624  | 1.30439695    | 34.39644051     | 14.72847983         | 100.47390909  |
|         | -0.00011607 | -0.00013253 | -0.00183714   | 3034.74612775   | 0.21252668          | 0.20469106    |
| Saturn  | 9.53667594  | 0.05386179  | 2.48599187    | 49.95424423     | 92.59887831         | 113.66242448  |
|         | -0.00125060 | -0.00050991 | 0.00193609    | 1222.49362201   | -0.41897216         | -0.28867794   |
| Uranus  | 19.18916464 | 0.04725744  | 0.77263783    | 313.23810451    | 170.95427630        | 74.01692503   |
|         | -0.00196176 | -0.00004397 | -0.00242939   | 428.48202785    | 0.40805281          | 0.04240589    |
| Neptune | 30.06992276 | 0.00859048  | 1.77004347    | -55.12002969    | 44.96476227         | 131.78422574  |
|         | 0.00026291  | 0.00005105  | 0.00035372    | 218.45945325    | -0.32241464         | -0.00508664   |
| Pluto   | 39.48211675 | 0.24882730  | 17.14001206   | 238.92903833    | 224.06891629        | 110.30393684  |
|         | -0.00031596 | 0.00005170  | 0.00004818    | 145.20780515    | -0.04062942         | -0.01183482   |

Следва да направим промяна на градусите на  $\theta$  ,  $g+\theta$  в Радиани ( $\times \frac{\pi}{180}$ ) Също така, обръщаме і в градуси ( $\times \frac{\pi}{180}$ ). Стойностите на  $\mu$  за планетите са следните:

|          | μ           |  |  |
|----------|-------------|--|--|
| Меркурий | 1/6023600   |  |  |
| Венера   | 1/408523    |  |  |
| Земя     | 1/328900,5  |  |  |
| Марс     | 1/3098708   |  |  |
| Юпитер   | 1/1047,34   |  |  |
| Сатурн   | 1/3497,8    |  |  |
| Уран     | 1/22902,9   |  |  |
| Нептун   | 1/19402     |  |  |
| Плутон   | 1/135000000 |  |  |

$$n = \sqrt{\frac{\gamma}{a^3}}$$

Величината n наричаме средно движение.

Средното движение е моментът на преминаване през перихелия на планета (т.е. начало на епоха).

Преди малко говорихме за уравнението на Кеплер, сега ще го дефинираме. Уравнение на Кеплер наричаме връзката между средната и ексцентричната аномалия.

l = u - e.sin(u) - уравнение на Кеплер.

Въвеждаме t - времето от рождената дата до 2000г. в години.

Моята рождена дата е 4<sup>ти</sup> септември 1997г.

$$\Rightarrow$$
 бройдни $(01.01.2000 - 04.09.1997) = 849 дни$ 

$$\Rightarrow t = \frac{849}{365.25}$$

$$\Rightarrow t = 2.324435318$$

От решението на задачата на Кеплер в декартови координати:

$$l = \sqrt{\gamma} a^{-\frac{3}{2}} (T - T_0)$$
  

$$\Rightarrow l = n[t(2\pi) - T_0] = u - esin(u)$$

$$u = l + esin(l + esin(l + esin(l)))$$

$$r = \begin{pmatrix} x \\ y \\ z \end{pmatrix} = Q.a. \Big(\cos(u) - e; \sin(u); \sqrt{1 - e^2}; 0\Big)$$

$$v = Q. \frac{\left(-\sin(u); \cos(u); \sqrt{1 - e^2}; 0\right).a.n}{1 - e.\cos(u)}$$

Където Q е от Основна формула на сферичната тригонометрия

(Теорема. Всяка матрица Q SO(3,R) може да се представи аналитично във вида:

$$Q = \begin{pmatrix} \cos(\theta) & -\sin(\theta) & 0 \\ \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos(i) & -\sin(i) \\ 0 & \sin(i) & \cos(i) \end{pmatrix} \begin{pmatrix} \cos(g) & -\sin(g) & 0 \\ \sin(g) & \cos(g) & 0 \\ 0 & 0 & 1 \end{pmatrix} =$$

Ротация на ъгъл  ${\bf 6}$  Ротация на ъгъл  ${\bf i}$  Ротация на ъгъл  ${\bf g}$  около Oz около Ох около Оу

$$= \begin{pmatrix} \cos(\theta)\cos(g) - \sin(\theta)\sin(g)\cos(i) & -\cos(\theta)\sin(g) - \sin(\theta)\cos(g)\cos(i) & \sin(\theta)\sin(i) \\ \sin(\theta)\cos(g) + \cos(\theta)\sin(g)\cos(i) & -\sin(\theta)\sin(g) + \cos(\theta)\cos(g)\cos(i) & -\cos(\theta)\sin(i) \\ \sin(g)\sin(i) & \cos(g)\sin(i) & \cos(g)\sin(i) \end{pmatrix}$$

Където  $\theta, g \in [0, 2\pi)$  и  $i \in [0, \pi]$ 

Гореописаният алгоритъм се повтаря за всяка планета.

|          | R - разположение |          |           |           | V - скорост | R         | V       |         |
|----------|------------------|----------|-----------|-----------|-------------|-----------|---------|---------|
|          |                  | -0.04128 |           |           |             |           |         |         |
| Меркурий | 0.359449         | 9        | 0.02557   | -0.15282  | 1.69884     | 0.14342   | 0.36272 | 1.7117  |
|          | -0.10902         | -0.71624 |           |           | -0.181981   |           |         |         |
| Венера   | 2                | 3        | -0.042824 | 1.1573562 | 1           | 0.0053125 | 0.72576 | 1.1716  |
| Земя     | 0.95913          | -0.31012 | 0         | 0.29209   | 0.94804     | 0         | 1.008   | 0.99202 |
| Марс     | -0.25399         | -1.45397 | -0.041042 | 0.832215  | -0.071247   | 0.015676  | 1.4766  | 0.83541 |
|          |                  | -3.28657 |           |           |             |           |         |         |
| Юпитер   | 3.835841         | 4        | -0.089438 | 0.2804341 | 0.3537659   | 0.0067583 | 5.0521  | 0.45149 |
| Сатурн   | 9.046689         | 2.539559 | -0.056624 | -0.104665 | 0.311212    | 0.014194  | 9.3965  | 0.32865 |
|          |                  | -15.8037 |           |           |             |           |         |         |
| Уран     | 11.95767         | 3        | -0.16035  | 0.1805633 | 0.1272664   | 0.0023186 | 19.8184 | 0.22092 |
|          |                  | -26.3648 |           |           |             | -0.001208 |         |         |
| Нептун   | 14.56402         | 5        | -0.9074   | 0.1585851 | 0.0892471   | 9         | 30.1337 | 0.18198 |
| Плутон   | -13.7023         | -26.0267 | -6.0618   | 0.172976  | -0.095956   | -0.046265 | 30.0315 | 0.20315 |

# Задача 2:Пресметнете елементите на Делоне и Поанкаре (от първи и втори вид) в деня, в който сте родени

Елементите на Делоне – L, G,  $\Theta$ , l, g,  $\theta$  се изразяват чрез орбиталните елементи:

- а дължина на голямата полуос,
- е екцентрицитет,
- і наклонение на плоскостта на орбитата,
- I средна аномалия, (IO е средната аномалия в момента tO),
- ullet g + heta дължина на перихелия,
- $\theta$  дължина на възела.

## Както следва:

\*(I,L), (G,g) и ( $\Theta$ ,  $\theta$ ) са спрегнати канонични променливи,

$$L = \mu \sqrt{\gamma a}$$

$$G = \mu \sqrt{\gamma a(1-e^2)} \Rightarrow G = L\sqrt{1-e^2}$$

$$\Theta = \mu \sqrt{\gamma a(1-e^2)} \cos(i) \Rightarrow \Theta = G.\cos(i)$$

Като при това I,g и  $\theta$  съвпадат и в двата случая.

Елементите на Делоне – L,G,  $\Theta$ ,I,g,  $\theta$  са константи с хамилтони:

$$\hat{H} = -\frac{\mu^3 \gamma^2}{2I^2}$$

Обръщаме  $\theta$  в **радиани** (\*  $\frac{\pi}{180}$ ), а і в **градуси** (\*  $\frac{\pi}{180}$ )

 $T_0$  е моментът на преминаване през перихелия на планета (начало на епоха).

$$l = \sqrt{\gamma} a^{-3/2} (t - T_0)$$

l = u - e.sin(u) - уравнение на Кеплер.

$$\Rightarrow u = l + e.sin(l + e.sin(l + e.sin(l)))$$

$$n = \sqrt{\frac{\gamma}{a^3}}$$

Използваме t от предната задача  $\Rightarrow t = 2.324435318$ .

$$l = n(t(2\pi) - T_0)$$

И чрез  $\lambda = I + g + \theta$  (дължина на епохата) ще можем да изразим елементите от двете системи на Поанкаре, и по-точно:

Първа система от шест елемента, характеризираща орбитите на планетите:

$$\begin{pmatrix} L & L - G & G - \Theta \\ l + g + \theta & -g - \theta & -\theta \end{pmatrix}$$

И втората:

$$\begin{cases} L & \xi := \sqrt{2(L-G)} \cos(g+\theta) & p := \sqrt{2(G-\Theta)} \cos(\theta) \\ \lambda := l+g+\theta & \eta := \sqrt{2(L-G)} \sin(g+\theta) & q := \sqrt{2(G-\Theta)} \sin(\theta) \end{cases}$$

### Елементи на Делоне:

|          | L          | G          | θ              | I      | g       | θ       | Н               |
|----------|------------|------------|----------------|--------|---------|---------|-----------------|
| Меркурий | 1.0328e-07 | 1.0108e-07 | 1.0033e-0<br>7 | 63.715 | 0.50836 | 0.84352 | -2.1449e-0<br>7 |
| Венера   | 2.0814e-06 | 2.0814e-06 | 2.0777e-0<br>6 | 24.636 | 0.95859 | 1.3383  | -1.6928e-0<br>6 |
| Земя     | 3.0404e-06 | 3.0400e-06 | 3.0400e-0<br>6 | 14.562 | 1.7966  | 0       | -1.5202e-0<br>6 |
| Марс     | 3.9826e-07 | 3.9654e-07 | 3.9633e-0<br>7 | 8.1089 | -1.2829 | 0.86497 | -1.0595e-0<br>7 |
| Юпитер   | 0.0021787  | 0.0021762  | 0.0021757      | 1.5742 | -1.4965 | 1.7536  | -9.1860e-0<br>5 |

| Сатурн | 8.8298e-04 | 8.8174e-04 | 8.8091e-0<br>4 | -0.24832 | -0.36764 | 1.9838 | -1.4995e-0<br>5 |
|--------|------------|------------|----------------|----------|----------|--------|-----------------|
| Уран   | 1.9127e-04 | 1.9106e-04 | 1.9104e-0<br>4 | 2.6571   | 1.6919   | 1.2918 | -1.1377e-0<br>6 |
| Нептун | 2.8263e-04 | 2.8262e-04 | 2.8249e-0<br>4 | -1.6582  | -1.5153  | 2.3001 | -8.5709e-0<br>7 |
| Плутон | 4.6544e-08 | 4.5090e-08 | 4.3088e-0<br>8 | 0.31824  | 1.9856   | 1.9252 | -9.3807e-1<br>1 |

# Първа система на **Поанкаре:**

|          | L          | L-G       | $G	ext{-}oldsymbol{	heta}$ | l + g + θ | -g - θ   | -θ       |
|----------|------------|-----------|----------------------------|-----------|----------|----------|
| Меркурий | 1.0328e-07 | 2.20e-09  | 7.50e-10                   | 65.06688  | -1.35188 | -0.84352 |
| Венера   | 2.0814e-06 | 0         | 3.70e-09                   | 26.93289  | -2.29689 | -1.3383  |
| Земя     | 3.0404e-06 | 4.00e-10  | 0.00e+00                   | 16.3586   | -1.7966  | 0        |
| Марс     | 3.9826e-07 | 1.72e-09  | 2.10e-10                   | 7.69097   | 0.41793  | -0.86497 |
| Юпитер   | 0.0021787  | 0.0000025 | 0.0000005                  | 1.8313    | -0.2571  | -1.7536  |
| Сатурн   | 8.8298e-04 | 1.24e-06  | 8.30e-07                   | 1.36784   | -1.61616 | -1.9838  |
| Уран     | 1.9127e-04 | 2.10e-07  | 2.00e-08                   | 5.6408    | -2.9837  | -1.2918  |
| Нептун   | 2.8263e-04 | 1.00e-08  | 1.30e-07                   | -0.8734   | -0.7848  | -2.3001  |
| Плутон   | 4.6544e-08 | 1.45e-09  | 2.00e-09                   | 4.22904   | -3.9108  | -1.9252  |

### Втора система на Поанкаре:

|          | L          | ξ           | р          | $\lambda = I + g + \theta$ | η           | q           |
|----------|------------|-------------|------------|----------------------------|-------------|-------------|
| Меркурий | 1.0328e-07 | 1.4384e-05  | 2.5823e-05 | 65.06688                   | -6.4652e-05 | -2.9014e-05 |
| Венера   | 2.0814e-06 | -5.7473e-06 | 1.9688e-05 | 26.93289                   | -6.4729e-06 | -8.3148e-05 |
| Земя     | 3.0404e-06 | -6.2462e-06 | 0          | 16.3586                    | -2.7192e-05 | 0           |

| Марс   | 3.9826e-07 | 5.3698e-05  | 1.3181e-05  | 7.69097 | 2.3844e-05  | -1.5466e-05 |
|--------|------------|-------------|-------------|---------|-------------|-------------|
| Юпитер | 0.0021787  | 0.0021675   | -1.9299e-04 | 1.8313  | -5.6977e-04 | -0.0010440  |
| Сатурн | 8.8298e-04 | -7.1412e-05 | -5.1684e-04 | 1.36784 | -0.0015738  | -0.0011795  |
| Уран   | 1.9127e-04 | -6.4210e-04 | 5.1285e-05  | 5.6408  | -1.0223e-04 | -1.7904e-04 |
| Нептун | 2.8263e-04 | 9.5162e-05  | -3.4604e-04 | -0.8734 | -9.5042e-05 | -3.8724e-04 |
| Плутон | 4.6544e-08 | -3.8747e-05 | -2.1959e-05 | 4.22904 | 3.7507e-05  | -5.9354e-05 |

# Код

## Задача 1.

### solvePlanet.m

```
function res = solvePlanet(a, e, i, L, w, Omega, myu, t)
      tita = Omega * pi/180;
      g = (w - Omega) * pi/180;
      i = i * pi/180;
     Tita = [cos(tita), -sin(tita), 0;
             sin(tita), cos(tita), 0;
                     0,
                                0, 1];
      I = [cos(i),
                   0, -sin(i);
                   1,
               0,
           sin(i), 0, cos(i)];
     G = [\cos(g), -\sin(g), 0];
           sin(g), cos(g), 0;
               0,
                     0, 1];
      Q = Tita*I*G;
      gamma = 1 + myu;
      n = sqrt(gamma / a^3);
      to = ((w - L) / n) * pi/180;
```

```
1 = n * (-t * 2*pi - to);
      u = 1 + e * sin(1 + e * sin(1 + e * sin(1)));
     r = Q * a * [cos(u) - e; sin(u) * sqrt(1 - e^2); 0]
     v = Q * [-sin(u); cos(u) * sqrt(1 - e^2);0] * a * n / (1 - e*cos(u))
     disp(['Normed V = ', num2str(norm(v))])
      disp(['Normed R = ', num2str(norm(r))])
end
Problem1.m
nasaData=[0.387 0.205 7.004 252.250 77.457 48.330 1/6023600;
         0.723 0.006 3.394 181.979 131.602 76.679 1/408523;
                0.016 0
                             100.464 102.937 0
                                                     1/328900.5;
         1.523 0.093 1.849 -4.553 -23.943 49.559 1/3098708;
         5.202 0.048 1.304 34.396 14.728 100.473 1/1047.34;
         9.536 0.053 2.485 49.954 92.598 113.662 1/3497.8;
         19.189 0.047 0.772 313.238 170.954 74.016 1/22902.9;
         30.069 0.008 1.770 -55.120 44.964 131.784 1/19402;
         39.482 0.248 17.140 238.929 224.068 110.303 1/135000000];
time=2.324435318;
for i=1:9
      disp(['Planet No.', num2str(i)])
      solvePlanet(nasaData(i, 1), nasaData(i, 2), nasaData(i, 3),
                 nasaData(i, 4), nasaData(i, 5), nasaData(i, 6),
                 nasaData(i, 7), time)
end
```

## Задача 2.

#### findElements.m

```
function res = findElements(a, e, i, L, w, Omega, myu, t)
  i = i * pi/180;
  n = sqrt(1 / a^3);
```

```
to = ((w - L) / n) * pi/180;
gamma = 1 + myu;
capL = myu * sqrt(gamma*a)
capG = capL * sqrt(1 - e^2)
capTheta = capG*cos(i)
1 = n * (t*2*pi - to)
g = (w - Omega) * pi/180
theta = Omega * pi/180
H = -myu*gamma / (2*a)
FirstPoincare11 = capL
FirstPoincare12 = capL - capG
FirstPoincare13 = capG - capTheta
FirstPoincare21 = 1 + g + theta
FirstPoincare22 = -g - theta
FirstPoincare23 = -theta
# L
SecondPoincare11 = FirstPoincare11
# ξ
SecondPoincare12 = sqrt(2 * (capL - capG)) * cos(g + theta)
# p
SecondPoincare13 = sqrt(2 * (capG - capTheta)) * cos(theta)
\# \lambda = 1 + g + \theta
SecondPoincare21 = FirstPoincare21
SecondPoincare22 = -sqrt(2 * (capL - capG)) * sin(g + theta)
# q
SecondPoincare23 = -sqrt(2 * (capG - capTheta)) * sin(theta)
```

#### Problem2.m

end

```
nasaData=[0.387 0.205 7.004 252.250 77.457 48.330 1/6023600;
         0.723 0.006 3.394 181.979 131.602 76.679 1/408523;
                0.016 0
                            100.464 102.937 0
                                                   1/328900.5;
         1.523 0.093 1.849 -4.553 -23.943 49.559 1/3098708;
         5.202 0.048 1.304 34.396 14.728 100.473 1/1047.34;
         9.536 0.053 2.485 49.954 92.598 113.662 1/3497.8;
         19.189 0.047 0.772 313.238 170.954 74.016 1/22902.9;
         30.069 0.008 1.770 -55.120 44.964 131.784 1/19402;
         39.482 0.248 17.140 238.929 224.068 110.303 1/135000000];
time=2.324435318;
for i=1:9
     disp(['Planet No.', num2str(i)])
     findElements(nasaData(i, 1), nasaData(i, 2), nasaData(i, 3),
                  nasaData(i, 4), nasaData(i, 5), nasaData(i, 6),
                  nasaData(i, 7), time)
end
```