Computational Biochemistry

Lecture 8
Introduction to Glycobiology

Introduction to glycobiology

- The scope and state of glycobiology (academic and translational)
- The nature of glycans, from their monosaccharide building blocks to the diversity of oligosaccharide structures
- Glycans in space
- Glycans in biological context

What is glycobiology

A term frequently attributed to Raymond Dwek (circa 1990) to encompass the body of research that contributes to understanding:

The structure, biosynthesis, and biology of saccharides

- The diversity of glycan structures
- The processes by which glycans are synthesized
- The determinants of glycan structure
- The mechanisms of glycan-protein interactions
- The impact of glycans on the structure and function of the molecules to which they are attached
- The contribution of glycans to normal cellular function and tissue development
- The participation of glycans in diverse pathologies

Impact of glycobiology

Aspects of glycobiology impact a broad range of disciplines:

organic synthetic chemistry protein biochemistry enzymology analytic chemistry structural biochemistry cell biology membrane developmental biology genetics genomics proteomics parasitology

neurobiology
reproductive medicine
endocrinology
cell signaling
stem cell biology
biophysics
microbiology
cancer biology
immunology
microbiology
biotechnology

And, in fact, glycobiology impacts life, itself, from conception (spermegg interactions) to death (apoptosis, multiple systemic pathologies)

An expanded central dogma

Ignores a role for lipids and carbohydrates, especially at the cell surface

An expanded central dogma

Existence of sugars in cell

Electron micrograph of a human lymphocyte (Ruthenium Red staining)

Carbohydrates – Basic terms

Monosaccharide – a simple sugar

A carbohydrate that can not be broken down into smaller carbohydrates by treatment with acids

Oligosaccharide

Approximately 4-12 mono units

Polysaccharide

- Usually greater then 12 mono units
- Often a long linear repeating chain consiting of a single monosaccharide type or a repeating disaccharide with or without small side chains

Common monosaccharides in vertebrates

но тон он

D-Glucose (Glc) HO OH NHAC OH

N-Acetyl-D-glucosamine (GlcNAc)

но Тон он

D-Galactose (Gal) HO OH HO NHAc

N-Acetyl-p-galactosamine (GalNAc)

HO HO OH

D-Mannose (Man) но Тон он

D-Xylose (Xyl) HO OH OH

D-Glucuronic acid (GlcA)

TOT OH HO

> L-Fucose (Fuc)

HO OH CO₂H
ACHN OH

N-Acetylneuraminic acid (NeuAc)

Complexity of glycan structures

Macromolecule	Building Block	Aproximate Mass	Possible Variations in a Trimer
Protein	Amino acids	125 → 10 ⁴ -10 ⁵	6
Nucleic Acid	Nucleotides	330 → 10 ³ -10 ⁹	6
Carbohydrate	Monosaccharides	200 → 10 ² -10 ⁶	1,056 to 27,648!

D- and L-Sugars

D-"Aldoses" with 4 Carbons

Two possible isomers at each new carbon center.

Mentally insert new carbon center between aldehyde terminus (C1) and what was previously C2.

Note that *D* configuration is retained.

Two sugars that differ only in the configuration around a single chiral carbon are called **EPIMERS**

D-"Aldoses" with 5 Carbons

D-"Aldoses" with 6 Carbons

** special attention to Gal, Man, and Glc abbreviations

Cyclization Can Produce Multiple Isomers

Fischer Projection is NOT good enough

Representation carbohydrate molecules

Representation carbohydrate molecules

 4C_1 chair

 ${}^{1}C_{4}$ chair