Winter 2024-2025 CSSE 386

CSSE 386 – Data Mining with Programming Rose-Hulman Institute of Technology

Worksheet 07

Name (Print):	Section:
1. Identify the correct type (Des	riptive or Inferential statistics):
Type	Objective
1,00	Makes inference about the population
	Provides data summary
2. Fill in the blanks:	
i. When the p-value is less hypothesis.	or equal to 0.05, you the nu
v -	a 0.05, you the null hypothesis
usually represented as the lett	are called variables. They are
4. Provide the general form of line	ear regression:
5. Provide alternative names:	
Independent Variables	Error
$\begin{vmatrix} 1. \\ 2. \end{vmatrix}$	
3.	
4.	

CSSE 386 Winter 2024-2025

6. Match the regression type with its characteristics:

Regression Type	Characteristics
1. Simple	a. Predicts a binary outcome (e.g., success/failure)
2. Multiple	b. More than one independent variable
	predicting a continuous outcome
3. Logistic	c. Handles multicollinearity
	by introducing a penalty term
4. Ridge	d. Performs variable selection and regularization
5. Lasso	e. A single independent variable
	predicting a continuous outcome

7	Fill	in	the	h	lon'	احما
1.	rm	111	ппе	1)	เลก	KS:

. A regression used to predict a count variable is called				
i. When the response variable has more than two nominal categories,				
regression is appropriate.				
iii	regression is used for predicting an ordered response.			

- 8. Based on the regression types discussed, suggest which type of regression is appropriate for the following scenarios:
 - a. Predicting house prices based on size, location, and age

Regression Type:

b. Determining the likelihood of a student passing an exam (Pass/Fail) based on study hours and attendance

Regression Type:

- 9. Which statement is false:
 - a. Logistic regression can be used for continuous dependent variables.
 - b. Ridge regression is suitable when predictor variables are highly correlated (multicollinearity).
 - c. Lasso regression performs variable selection by identifying a simpler model (=it eliminates irrelevant predictors).

Page 2

Winter 2024-2025 CSSE 386

10. Simple Regression assumptions. Complete the table:

Assumption Name	Characteristics
1. Variable type	
2. Linear	
3. Outliers	
4. Independence	
5. Equal variance (homoskedasticity)	

11. How do you determine how well the model fits data? Describe in your own words to see if you understand this concept. See slide 8