Trucchi di Analisi 3

TEOREMI DI CONVERGENZA INTEGRALE

CONVERGENZA MONOTONA

CONVERGENZA DOMINATA

EQUAZIONI DIFFERENZIALI CLASSICHE

EQUAZIONE DELLA CORDA VIBRANTE

EQUAZIONE DEL CALORE

EQUAZIONE DI POISSON / LAPLACE

Proiezione su un convesso

Sia H uno spazio di Hilbert e $K \subset H$ un convesso chiuso. Allora si ha che:

- $\exists ! P_K : H \to K$, chiamata mappa di proiezione, tale che $\forall x \in H$ si ha $||x P_K(x)|| = \min_{y \in K} ||x y||$.
- Il proiettato è "sul bordo" del convesso, ovvero $\forall w \in K$ si ha $\langle x P_K x \mid w P_K x \rangle \leq 0$
- La mappa di proiezione è lipschitziana, ovvero $\forall f,g \in X$ si ha $\|P_K f P_K g\| \le \|f g\|$

Inoltre, supponendo che K sia un sottospazio vettoriale chiuso si ha che:

- "La congiungente x e $P_K(x)$ è ortogonale a K", ovvero $\forall w \in K \quad \langle x P_K(x) \mid w \rangle = 0$
- $H = K \oplus K^{\perp}$
- La proiezione P_K è lineare ed inoltre vale ||P|| = 1 (dove la norma è quella operatoriale)
- Definendo Q = I P si ha, $\forall x \in H$ la decomposizione seguente:
 - -x = P(x) + Q(x)
 - $\langle P(x), Q(x) \mid = \rangle 0$
 - $||x||^2 = ||P(x)||^2 + ||Q(x)||^2$

ESISTENZA

Ad x fissato si prenda una successione di $y_n \in K$ che tendono all' $\inf_{y \in K} \|y - x\|$. Vogliamo mostrare che è una successione di Cauchy: in questo modo, per completezza dell'Hilbert, avremmo che $y_n \to y_\infty \in H$ e per chiusura di K si ha $y_\infty \in K$, da cui potremmo definire $P(x) = y_\infty$.

Chiamiamo ora $d_n = \|x - y_n\|$ ed abbiamo che $d_n \to d = \inf_n \|x - y_n\|$. Utilizzando l'identità del parallelogramma si ha, se n, m > N che vale:

$$\left\| \frac{(x - y_n) + (x - y_m)}{2} \right\|^2 + \left\| \frac{(x - y_n) - (x - y_m)}{2} \right\|^2 = \frac{1}{2} (\|x - y_n\|^2 + \|x - y_m\|^2)$$

ovvero, riscrivendo che:

$$||x - \frac{y_n + y_m}{2}||^2 + ||\frac{y_n - y_m}{2}||^2 = \frac{1}{2}(d_n^2 + d_m^2)$$

Ma sappiamo che per convessità si ha $\frac{y_n+y_m}{2}\in K$ e quindi, per definizione di estremo inferiore si ha $\|x-\frac{y_n+y_m}{2}\|^2\geq d^2$ e quindi $\|\frac{y_n-y_m}{2}\|\leq \frac{1}{2}(d_n^2+d_m^2)-d^2=\frac{1}{2}(d_n^2-d^2)+\frac{1}{2}(d_m^2-d^2)\leq \varepsilon$ Ciò significa che la successione y_n è di cauchy in H da cui segue la tesi.

UNICITÀ

Supponiamo per assurdo che esistano due punti che realizzano il minimo, e li denotiamo con p e q. (ovviamente dipendono da x, ma qui li stiamo pensando ad x fissato). Allora dall'identità del parallelogramma si ha

$$\|x - \frac{p+q}{2}\|^2 + \|\frac{p-q}{2}\|^2 = \frac{1}{2}(\|x-p\|^2 + \|x-q\|^2) = d^2$$

Allora siccome, come prima, $\frac{p+q}{2} \in K$ per convessità, si ha che $\|\frac{p-q}{2}\|^2 \le d^2 - d^2 = 0$, da cui segue p = q.

PROIETTATO SUL BORDO

Diciamo che il proiettato sta "sul bordo" (non in maniera propria) del convesso (come è abbastanza intuitivo che sia facendo un disegno in \mathbb{R}^2) e lo esprimiamo dicendo che il segmento che congiunge x a $P_K x$ è "dalla parte opposta" (ovvero ha prodotto scalare negativo) rispetto ad ogni segmento che congiunge un qualunque punto w del compatto a $P_K x$.

Lemma preliminare: Sia $f: [a,b] \to \mathbb{R}$ derivabile e supponiamo che in a vi sia un minimo. Allora $f'(a) \ge 0$ (Dove il limite è inteso sulla parte che sta dentro al dominio di definizione). Dunque, se $f: K \subseteq \mathbb{R}^d \to \mathbb{R}$ è \mathcal{C}^1 e definiamo $\phi(t) = f(x_0 + t(x - x_0))$ per $t \in [0,1]$, allora si ha che $\phi'(0) = \langle \nabla f(x_0) \mid x - x_0 \rangle \ge 0$.

Definiamo ora $\Psi(t) = \|x - ((1-t)P_K(x) + tw)\|^2$. Per il lemma precedente si ha $\Psi'(0) \ge 0 \quad \forall w \in K$. Ma sappiamo che $\Psi(t) = \|x - P_K(x) + t(P_K(x) - w)\|^2 = \|x - P_K(x)\|^2 + 2t\langle x - P_K(x) \mid P_K(x) - w\rangle + t^2\|P_K(x) - w\|^2$ e quindi $\Psi'(0) = 2\langle x - P_K(x) \mid P_K(x) - w\rangle \le 0 \quad \forall w \in K$

(In realtà, ma non lo dimostriamo, vale anche il viceversa: se il punto $P_K(x)$ gode della proprietà precedente, allora è il punto di proiezione)

LIPSCHITZIANITÀ

Sappiamo che $\langle x - P_K(x) \mid w - P_K(x) \rangle \le 0$ e ci giochiamo la disuguaglianza con $(x, w) = (f, P_K(g)) = (g, P_K(f))$, ovvero si ottiene:

$$0 \ge \langle f - P_K(f) \mid P_K(g) - P_K(f) \rangle + \langle g - P_K(g) \mid P_K(f) - P_K(g) \rangle = \langle f - P_K(f) \mid P_K(g) - P_K(f) \rangle - \langle g - P_K(g) \mid P_K(g) - P_K(f) \rangle = \langle g - P_K(g) \mid P_K(g) - P_K(g) \mid P_K(g) - P_K(g) \rangle$$

Allora si ha

$$\|P_K(g) - P_K(f)\|^2 = \langle P_K(g) - P_K(f) \mid P_K(g) - P_K(f) \rangle \leq \langle g - f \mid P_K(g) - P_K(f) \rangle \leq \|g - f\| \|P_K(g) - P_K(f)\|$$

E si ottiene la disuguaglianza cercata dividendo per $||P_K(g) - P_K(f)||$

ORTOGONALITÀ DELLA CONGIUNGENTE

Supponendo ora che K sia un sottospazio vettoriale chiuso possiamo sostituire nella disuguaglianza precedente w=0 e $w=2P_K(x)$ ottenendo che $\langle x-P_K(x)\mid P_K(x)\rangle\geq 0$ e $\langle x-P_K(x)\mid P_K(x)\rangle\leq 0$, ovvero $\langle x-P_K(x)\mid P_K(x)\rangle=0$, ma allora otteniamo $\langle x-P_K(x)\mid w\rangle=\langle x-P_K(x)\mid w-P_K(x)\rangle\leq 0$. Inoltre, valendo la disuguaglianza sia per w che per -w, si ottiene facilmente che $\langle x-P_K(x)\mid w\rangle=0$, che è la tesi.

DECOMPOSIZIONE IN SOMMA DIRETTA

Dato $x \in H$, si ha $x = x - P_K(x) + P_K(x)$. Notiamo ora che $P_K(x) \in K$ e che, per quanto detto prima, $x - P_K(x) \in K^{\perp}$

La proiezione è lineare e di norma unitaria

Per vedere che è lineare, basta osservare che:

$$\begin{cases} \langle \alpha x + \beta y - P_K(\alpha x + \beta y), w \mid = \rangle 0 & \forall w \in K \\ \langle \alpha x + \beta y - \alpha P_K(x) - \beta P_K(y) \mid w \rangle = 0 & \forall w \in K \end{cases}$$

Allora $\langle P_K(\alpha x + \beta y) - \alpha P_K(x) - \beta P_K(y) \mid w \rangle = 0 \quad \forall w \in K \text{ ma poiché } P_K(\alpha x + \beta y) - \alpha P_K(x) - \beta P_K(y) \in K \text{ si ha } \|P_K(\alpha x + \beta y) - \alpha P_K(x) - \beta P_K(y)\| = 0 \text{ e quindi } P_K(\alpha x + \beta y) = \alpha P_K(x) + \beta P_K(y).$ Si ha inoltre che $\|x\| \|P_K(x)\| \geq \langle x \mid P_K(x) \rangle = \langle P_K(x) \mid P_K(x) \rangle = \|P_K(x)\|^2 \text{ e quindi } \|P\| \leq 1, \text{ ma preso } k \in K \text{ si ha che } P_K(k) = k \text{ e quindi } \|P\| \geq 1, \text{ ovvero } \|P\| = 1.$

RIESZ-FISHER

LEMMA DELLA CODIMENSIONE

Dato H spazio di Hilbert e $f\in \mathrm{Lincont}(H,\mathbb{R})$ continuo e limitato e lineare non nullo si ha che codim $\mathrm{Ker}\, f=1$

Sia $y \in H$ tale che $f(y) \neq 0$. Allora definiamo $\lambda = \frac{1}{f(y)}$ in modo che $f(\lambda y) = 1$. Sia ora $y_0 = \lambda y$. Dato un qualunque $x \in H$ si ha $x = x - f(x)y_0 + f(x)y_0$, con $x - f(x)y_0 \in \operatorname{Ker} f$. Inoltre tale decomposizione è unica, in quanto se $x = x' + \alpha y_0 = x'' + \beta y_0$ con $x', x'' \in \operatorname{Ker} f$ allora si ha $f(x) = \alpha = \beta$ e dunque x' = x''. Concludiamo quindi che $H = \operatorname{Ker} f \oplus \operatorname{Span}(y_0)$, che è la tesi.

ESISTENZA

Supponiamo $f \neq 0$ e chiamiamo $K = \operatorname{Ker} f$. Allora K è un sottospazio lineare chiuso di codimensione 1. Chiamiamo quindi P la proiezione su K. Visto che $H = K \oplus K^{\perp}$ e $K^{\perp} = Span(y_0)$ con $f(y_0) = 1$, allora dato $h \in H$ si può scomporre come $x = \lambda y_0 + z$ con $z \in \operatorname{Ker} f = K$.

Allora $f(x) = \lambda f(y_0) = \lambda$ e si ha $\langle x \mid y_0 \rangle = \lambda \langle y_0 \mid y_0 \rangle = \lambda ||y_0||^2$ dunque ponendo $y = \frac{y_0}{||y_0||^2}$ si ha l'esistenza.

UNICITÀ

Supponiamo ora che esistano due elementi y,w che rappresentano f. Allora $\langle x,y-w\mid =\rangle 0 \quad \forall x\in H$ e quindi in particolare $\|y-w\|^2=0 \implies y=w$

FUNZIONI ARMONICHE

Serie e Trasformata di Fourier

DEFINIZIONI E PROPRIETÀ

APPROSSIMANTI

RIEMANN-LEBESGUE