Devoir maison 3 - Réduction des endomorphismes

Exercice 1

Soit E un \mathbb{C} -ev de dimension 3, muni d'une base $\mathcal{B} = (e_1, e_2, e_3)$. Soient u l'endomorphisme de E dont la matrice dans \mathcal{B} est $A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$, et v un endomorphisme de E dont la matrice dans \mathcal{B} , notée M est telle que $M^n = A$ où $n \in \mathbb{N}^*$.

- 1. Déterminer les éléments propres de A, et dire si la matrice est diagonalisable. $Sp(A) = \{1; 2\}, m(1) = 2, m(2) = 1; E_2 = Vect\{(1; 0; 0)\} \text{ et } E_1 = Vect\{(0; 1; 0)\}.$ $\dim(E_1) \neq m(1), A$ n'est donc pas diagonalisable.
- 2. On note $E_2 = \text{Ker}(u-2\text{Id})$ et $F_1 = \text{Ker}(u-\text{Id})^2$; montrer que ces espaces sont supplémentaires dans E. $E_2 = \text{Vect}\{(1;0;0)\} = \text{Vect}(e_1) \text{ et } F_1 = \text{Vect}\{(0;1;0);(0;0;1)\} = \text{Vect}\{e_2,e_3\}.$ La concaténation des bases de E_2 et F_1 donne la base canonique de \mathbb{R}^3 ; les espaces sont donc supplémentaires.
- **3.** Montrer que u et v commutent et que les deux noyaux précédents sont stables par v. $MA = A^n A = A A^n = AM$. Ainsi, les endomorphismes commutent; on en déduit que : $(u 2\operatorname{Id}) \circ v = v \circ (u 2\operatorname{Id})$ et $(u \operatorname{Id})^2 \circ v = v \circ (u \operatorname{Id})^2$, donc $(x \in E_2) \Rightarrow (u(v(x)) 2v(x) = v(u(x) 2x) = v(0) = 0) \Rightarrow v(x) \in E_2$ et $(x \in F_1) \Rightarrow (u \operatorname{Id})^2(v(x)) = v \circ (u \operatorname{Id})^2(x) = v(0) = 0) \Rightarrow v(x) \in F_1$.
- 4. Montrer que M est de la forme $\begin{pmatrix} p & 0 \\ 0 & C \end{pmatrix}$, avec $p \in \mathbb{C}$ et $C \in \mathcal{M}_2(\mathbb{C})$. $E_2 = \text{Vect}\{e_1\} \text{ est stable par } v \text{ donc il existe } p \in \mathbb{C} \text{ tel que } v(e_1) = pe_1.$ $F_1 = \text{Vect}\{e_2, e_3\} \text{ est stable par } v \text{ donc il existe } (\lambda_1, \lambda_2) \in \mathbb{C}^2 \text{ et } (\mu_1, \mu_2) \in \mathbb{C}^2 \text{ tels que : } v(e_2) = \lambda_1 e_2 + \lambda_2 e_3 \text{ et } v(e_3) = \mu_1 e_2 + \mu_2 e_3. \text{ On trouve donc la matrice de } v \text{ (dans la base canonique) : } M = \begin{pmatrix} p & 0 & 0 \\ 0 & \lambda_1 & \mu_1 \\ 0 & \lambda_2 & \mu_2 \end{pmatrix}.$
- 5. Résoudre l'équation $M^n=A.$ (On rappelle que E est un \mathbb{C} -espace vectoriel!)

On a:
$$M = \begin{pmatrix} p & 0 \\ 0 & C \end{pmatrix}$$
 donc $A = M^n = \begin{pmatrix} p^n & 0 \\ 0 & C^n \end{pmatrix} = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$.

On en déduit dans un premier temps que $p^n=2$, donc $p\in\{\sqrt[n]{2}\omega^k, k\in[0;n-1]\}$, où $\omega=\mathrm{e}^{\frac{2i\pi}{n}}$. Par ailleurs, en notant $D=\begin{pmatrix}1&1\\0&1\end{pmatrix}$, on a : $C^n=D$. Ainsi, C et D commutent et l'on a :

$$CD = \begin{pmatrix} \lambda_1 & \lambda_1 + \mu_1 \\ \lambda_2 & \lambda_2 + \mu_2 \end{pmatrix} = DC = \begin{pmatrix} \lambda_1 + \lambda_2 & \mu_1 + \mu_2 \\ \lambda_2 & \mu_2 \end{pmatrix}; \text{ on en déduit que } \lambda_2 = 0 \text{ et } \lambda_1 = \mu_2.$$

On a donc : $C = \begin{pmatrix} \lambda_1 & \mu_1 \\ 0 & \lambda_1 \end{pmatrix} = \lambda_1 I_2 + \begin{pmatrix} 0 & \mu_1 \\ 0 & 0 \end{pmatrix}$. Les matrices I_2 et $N = \begin{pmatrix} 0 & \mu_1 \\ 0 & 0 \end{pmatrix}$ commutent,

 $N^2 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$, la formule du binôme de Newton donne donc :

$$C^{n} = a^{n} \mathbf{I}_{2} + na^{n-1} N = \begin{pmatrix} a^{n} & na^{n-1} \mu_{1} \\ 0 & a^{n} \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}.$$

On en déduit que : $\lambda_1^n=1$ d'où $\lambda_1\in\{\omega^k,k\in[0;n-1]\}$ (en particulier $\lambda_1\neq 0$), puis que : $\mu_1 = \frac{1}{na^{n-1}} = \frac{a}{n} (\text{car } \lambda_1^n = 1).$

Finalement,
$$M = \begin{pmatrix} \sqrt[n]{2}\omega^k & 0 & 0 \\ 0 & \omega^l & \omega^l/n \\ 0 & 0 & \omega^l \end{pmatrix}$$
 avec $(k, l) \in [0, n-1]^2$.

Exercice 2

L'objectif de l'exercice est de montrer qu'un endomorphisme est diagonalisable si, et seulement s'il admet un polynôme annulateur scindé à racines simples.

u désigne un endomorphisme d'un espace vectoriel E de dimension $n \in \mathbb{N}^*$.

- 1. Soit $P \in \mathbb{K}[X]$ tel que P(u) = 0, avec P non nul, scindé à racines simples $\lambda_1, ..., \lambda_p$.
 - **a.** Soit $(P_1,...,P_p)$ la famille de $\mathbb{K}_{p-1}[X]$, définie par :

$$\forall k \in [1, p], P_k(X) = \prod_{j \neq k} \frac{X - \lambda_j}{\lambda_k - \lambda_j}$$

Montrer que c'est une base de $\mathbb{K}_{p-1}[X]$ (appelée base d'interpolation de Lagrange).

On remarque dans un premier temps que les polynômes P_k sont de degré p-1 (donc dans $\mathbb{K}_{p-1}[X]$), et que $\forall (i,k) \in [1,p]^2, P_k(\lambda_i) = \delta_{i,k}$.

Soit
$$(\mu_1, ..., \mu_p) \in \mathbb{K}^p$$
 tel que $\sum_{k=0}^p \mu_k P_k = 0$. Alors, $\forall i \in [1, p], \sum_{k=0}^p \mu_k P_k(\lambda_i) = \mu_i = 0$. La famille est donc libre, de cardinal $p = \dim(\mathbb{K}_{p-1}[X])$, c'est donc une base.

b. Soit
$$Q \in \mathbb{K}_{p-1}[X]$$
; montrer que : $Q = \sum_{k=1}^{p} Q(\lambda_k) P_k$.

Soit
$$Q = \sum_{k=1}^{p} q_k P_k \in \mathbb{K}_{p-1}[X]$$
. On a $\forall i \in [1, p], Q(\lambda_i) = \sum_{k=1}^{p} q_k P_k(\lambda_i) = q_i$, d'où

$$Q = \sum_{k=1}^{p} Q(\lambda_k) P_k.$$

c. En déduire que :
$$\mathrm{Id}_E = \sum_{k=1}^p P_k(u)$$
, puis que : $E = \sum_{k=1}^p \mathrm{Im}(P_k(u))$.

En prenant Q=1 dans la question précédente, on a : $1=\sum_{k=1}^r P_k$; pour les polynômes

d'endomorphismes en u cette égalité donne : $\mathrm{Id}_E = \sum_{i=1}^{r} P_k(u)$.

On en déduit que $\forall x \in E, x = \sum_{k=1}^{p} P_k(u)(x) \in \sum_{k=1}^{p} \operatorname{Im}(P_k(u))$. D'où le second résultat.

d. Montrer que $\forall k \in [1, p], \operatorname{Im}(P_k(u)) \subset \operatorname{Ker}(u - \lambda_k \operatorname{Id}_E)$.

On sait que $(u - \lambda_k \operatorname{Id}_E) \circ P_k(u) = (X - \lambda_k)(u) \circ P_k(u) = ((X - \lambda_k)P_k)(u)$, or le polynôme $(X - \lambda_k)P_k$ est égal à P au coefficient dominant près; il annule donc u, ce qui prouve que $(u - \lambda_k \operatorname{Id}_E) \circ P_k(u) = 0.$

On en déduit que $\forall k \in [0, p]$:

$$y \in \operatorname{Im}(P_k(u)) \Rightarrow \exists x \in E, y = P_k(u(x)) \Rightarrow (u - \lambda_k \operatorname{Id}_E)(y) = 0 \Rightarrow y \in \operatorname{Ker}(u - \lambda_k \operatorname{Id}_E)$$

e. Conclure.

On déduit des deux questions précédentes que :
$$\sum_{k=1}^{p} \operatorname{Ker}(u - \lambda_{k} \operatorname{Id}_{E}) = E.$$

Sachant que les valeurs propres de u sont racines des polynômes annulateurs, en sélectionnant parmi les $Ker(u - \lambda_k Id_E)$ ceux qui ne sont pas réduits au vecteur nul, on obtient : $\sum_{\lambda \in Sp(u)} E_{\lambda}(u) = E .$

On en conclut que u est diagonalisable.

2. On suppose que u est diagonalisable, de valeurs propres (distinctes) $\lambda_1, ..., \lambda_p$.

Montrer que
$$P = \prod_{k=1}^{p} (X - \lambda_k)$$
 est un polynôme annulateur de u .

u étant diagonalisable, $E=\bigoplus\limits_{k=1}^p E_{\lambda_k}(u)$; tout vecteur x de E se décompose donc de façon unique sous la forme $x=x_1+\ldots+x_p$ avec $\forall i\in \llbracket 1,p \rrbracket, x_i\in E_{\lambda_i}(u)$. En posant $Q_i=\prod\limits_{k=1\atop k\neq i}^p (X-\lambda_k)$ pour $i\in \llbracket 1,p \rrbracket,$ on a :

En posant
$$Q_i = \prod_{\substack{k=1\\k\neq i}}^p (X - \lambda_k)$$
 pour $i \in [1, p]$, on a:

$$P(u)(x_i) = (Q_i(X - \lambda_i))(u)(x_i) = Q_i(u) \circ (u - \lambda_i \operatorname{Id}_E)(x_i) = Q_i(u)(0_E) = 0_E$$

Par linéarité, on a $P(u)(x) = 0_E$. Ainsi P annule u.