Máquinas de Turing 4 - Multicinta

Titulación: Grado en Informática

Curso: 2023-2024

Trabajo: MT4 multicinta

Autores: Cárdenas Palacios, Lucía

Cazorla Rodríguez, Rubén

Cotrina Santos, Joaquín

Martín Conejo, Ana

<u>Índice:</u>

- 1. Datos iniciales.
- 2. Ejemplo.
- 3. Transiciones.
- 4. Demostración por inducción.
- 5. Complejidad.

Datos iniciales

En este ejercicio vamos a diseñar una máquina de Turing multicinta que decida el lenguaje

$$L = \{ \#x_1 \#x_2 \# \dots \#x_l \mid x_i \in \{0,1\}^* \ \forall i, x_i \neq x_i \ \forall i \neq j \}$$

La Máquina de Turing irá tomando como referencia una subcadena x_i y comprobará si es distinta al resto de subcadenas x_j situadas a su derecha (siendo i < j). Una vez terminan las comparaciones de x_i , empieza a comparar con x_{i+1} . Este proceso se repetirá hasta que todas hayan sido comparadas y se realiza usando 2 cintas:

- 1. Cinta inicial con la cadena de entrada.
- 2. Cinta secundaria donde guardaremos la subcadena x_i que vamos a comparar en cada momento con las de su derecha.

Estados

Para ello, definiremos un estado inicial q_{ini} y el resto de los estados con un subíndice, q_i , donde i toma los siguientes valores:

- c, cuando se está copiando la subcadena a la cinta 2.
- r, cuando se retrocede en la subcadena de la cinta 2.
- lee, cuando está preparado para leer un nuevo carácter.
- b, cuando se busca el final de la subcadena en la cinta 1.
- f, para retroceder en la cinta 1 y encontrar otra subcadena a copiar en la cinta 2.

<u>Ejemplo</u>

Para marcar la cabecera en la cinta 1 se usará el estado actual, para la cinta 2 se subrayará.

El orden del recorrido de la cinta procede de arriba hacia abajo y de izquierda a derecha.

q _{ini} #010#01#011	#010\$q _r 01#011	$\#010\$q_{lee}01\#011$	#010\$01#q _r 011
q_{ini}	\$010 <i>q</i> _r #	\$q _{lee} 010#	q _r \$010#
#q _c 010#01#011	#010\$q _r 01#011	$\#010\$0q_{lee}1\#011$	#010\$01#q _{lee} 011
\$q _{c-}	\$01q _r 0#	\$0q _{lee} 10#	\$q _{lee} 010#
#0q _c 10#01#011	#010\$q _r 01#011	$\#010\$01q_{lee}\#011$	#010\$01#0q _{lee} 11
$\$0q_{c_{-}}$	\$0q _r 10#	\$01q _{lee} 0#	\$0q _{lee} 10#
#01q _c 0#01#011	#010\$q _r 01#011	#010\$01#q _r 011	$\#010\$01\#01q_{lee}1$
\$01q _c _	\$q _r 010#	\$0q _r 10#	\$01q _{lee} 0#
#010q _c #01#011	#010\$q _r 01#011	#010\$01#q _r 011	#010\$01#011q _b _
$\$010q_{c_{-}}$	q _r \$010#	\$q _r 010#	\$01q _b 0#
#010\$01#01 <i>q</i> _f 1	Avanza basia la	#010#01q _c #011	#010#01\$0q _{lee} 11
\$01q _f 0#	Avanza hacia la izquierda hasta	\$010\$01q _c _	$\$010\$0q_{lee}1\#$
#010\$01#01q _f 1	llegar al \$	#010#01\$q _r 011	#010#01\$01q _{lee} 1
\$010q _f #		\$010\$0q _r 1#	$\$010\$01q_{lee}\#$
#010\$01#01q _f 1	#010q _f \$01#011	#010#01\$q _r 011	#010#01\$011q _b _
\$010\$q _f _	$$010q_{f-}	\$010\$q _r 01#	\$010\$0 <i>q_b</i> 1#
#010\$01#0 <i>q</i> _f 11	#010#q _c 01#011	#010#01\$q _r 011	#010#01\$01 <i>q</i> _f 1
$\$010\q_{f-}	$\$010\q_{c-}	\$010q _r \$01#	\$010\$0q _f 1#
#010\$01#q _f 011	#010#0q _c 1#011	#010#01\$q _{lee} 011	#010#01\$01q _f 1
$\$010\q_{f-}	$\$010\$0q_{c-}$	\$010\$q _{lee} 01#	\$010\$01q _f #
#010#01\$01q _f 1	#010#01q _f \$011	#010#01#01q _c 1	
\$010\$01\$q _f _	$\$010\$01\$q_{f-}$	\$010\$01\$01 <i>q_c</i> _	
#010#01\$0 <i>q</i> _f 11	#010#01#q _c 011	#010#01#011q _c _	
\$010\$01\$q _f _	\$010\$01\$q _c _	\$010\$01\$011q _c _	
#010#01\$q _f 011	#010#01#0 <i>q</i> _c 11	#010#01#011_q _{acc} _	
\$010\$01\$q _f _	\$010\$01\$0 <i>q</i> _c _	\$010\$01\$011_q _{acc} _	
•			

Transiciones

La máquina de Turing vendría dada por:

$$\begin{split} Q &= \big\{q_{ini}, \ q_i, \ q_{acc}, q_{rej}\big\}, \ donde \ i \in \{lee, \ c, \ r, \ b, \ f\}. \\ \Sigma &= \{0,1,\#\} \\ \Gamma &= \{_,0,1,\#, \ \$\} \end{split}$$

Las transiciones las vamos a denotar por $\delta(q,\sigma_1,\sigma_2)=(p,\tau_1,\tau_2,M_1,M_2)$, con $p,q\in Q$, $\sigma_i,\tau_i\in \Gamma$ y $M_i\in \{L,R,-\}$. Por tanto, estando en el estado q con el cabezal de la cinta inicial está sobre el carácter σ_1 y el cabezal de la cinta secundaria está sobre el carácter σ_2 , pasamos al estado p, escribiendo el carácter τ_1 en la cinta inicial, realizando el movimiento M_1 en la cinta inicial y escribimos el carácter τ_2 en la cinta secundaria, realizando el movimiento M_2 en dicha cinta secundaria.

<u>Transición inicial</u>: al iniciar con el recorrido la cinta debe encontrar en primer lugar un # (en otro caso, lo rechazaría), de forma que copiaría dicho # en la cinta 2, como un \$, y saltaría al siguiente carácter, preparado para copiar (q_c) .

$$\delta(q_{ini}, \#, _) = (q_c, \#, \$, R, R)$$

<u>Transiciones para copiar</u> (q_c)

Cuando se está copiando la cadena, en caso de encontrar un valor 0 o 1 en la cinta inicial, éste se mantiene en la cinta 1, se copia en la segunda cinta y se avanza en ambas para seguir copiando.

$$\delta(q_c, 0, _) = (q_c, 0, 0, R, R)$$

$$\delta(q_c, 1, _) = (q_c, 1, 1, R, R)$$

Alcanzar un # en la cinta inicial mientras se está copiando quiere decir que hemos llegado al final de la subcadena, por lo que copiamos ese # en la cinta 2 y lo cambiamos por un \$ en la cinta 1. Se avanza en ambas cintas, y cambiamos al estado q_r para retroceder en la cinta 2 hasta el signo \$

$$\delta(q_c, \#, _) = (q_r, \$, \#, R, L)$$

En caso de estar copiando y encontrar un blanco, querría decir que no quedan más subcadenas con las que comparar, por lo tanto, se aceptaría la cadena.

$$\delta(q_{c, -}, \sigma) = (q_{acc, -}, -, R, R), \sigma \in \Gamma$$

<u>Transiciones para retroceder en la cinta 2 hasta el \$ (q_r)</u>

Si encuentra un valor 0 o 1 en la cinta 2, deberá seguir avanzando hacia la izquierda en la cinta 2, manteniendo dichos valores. La cinta 1 permanece parada durante este retroceso.

$$\delta(q_r, \sigma, 0) = (q_r, \sigma, 0, -, L), \sigma \in \Gamma$$

$$\delta(q_r,\sigma,1)=(q_r,\sigma,1,-,\,L),\sigma\in\Gamma$$

Si la cabeza de la cinta 2 encuentra un \$, quiere decir que ha llegado al principio de la subcadena, por lo que puede empezar a comparar caracteres.

$$\delta(q_r,\sigma,\$)=(q_{lee},\sigma,\,\$,\,-,\,R),\sigma\in\Gamma$$

<u>Transiciones para leer</u> (q_{lee})

Estando en el estado q_{lee} , si encontramos el mismo carácter en ambas cintas, pasamos a leer el siguiente carácter avanzando ambas cintas hacia la derecha.

$$\delta(q_{lee}, 0, 0) = (q_{lee}, 0, 0, R, R)$$

$$\delta(q_{lee}, 1, 1) = (q_{lee}, 1, 1, R, R)$$

Si leemos un carácter 0 o 1 en ambas cintas, pero no son iguales, las subcadenas son distintas. Pasamos al estado q_b que buscar el final de la subcadena en la cinta 1 moviendo el cabezal hacia la derecha. Lo mismo ocurre cuando encontramos un 0 o un 1 en la cinta 1 y un 4 en la cinta 2.

$$\delta(q_{lee}, 0, 1) = (q_b, 0, 1, R, -)$$

$$\delta(q_{lee}, 1, 0) = (q_b, 1, 0, R, -)$$

$$\delta(q_{lee}, 0, \#) = (q_h, 0, \#, R, L)$$

$$\delta(q_{lee}, 1, \#) = (q_b, 1, \#, R, L)$$

Si leemos un # en la cinta 1 y un 0 o un 1 en la cinta 2, significa que la subcadena de la cinta 1 ha terminado antes y, por lo tanto, son distintas. Pero no hace falta buscar el final de la subcadena en la cinta 1 porque ya lo hemos encontrado. Pasamos a q_r para retroceder en la cinta 2 buscando el \$.

$$\delta(q_{lee}, \#, 0) = (q_r, \#, 0, R, L)$$

$$\delta(q_{lee}, \#, 1) = (q_r, \#, 1, R, L)$$

Si leemos un $_$ en la cinta 1 y un 0 o un 1 en la cinta 2, la subcadena de la cinta 1 ha terminado antes, son por tanto distintas, pero hemos terminado de comparar la última subcadena de la cinta 1 con la que está en la cinta 2. Ha por tanto que pasar al estado q_f para cambiar la subcadena principal de comparación (la que se coloca en la cinta 2).

$$\delta(q_{lee}, _, 0) = (q_f, _, 0, L, L)$$

$$\delta(q_{lee}, _, 1) = (q_f, _, 1, L, L)$$

<u>Transiciones buscar el final de la subcadena en la cinta 1</u> (q_h)

Mientras en la cinta 1 se encuentre con un valor 0 o 1, los reescribe y avanza hacia la derecha.

$$\delta(q_b, 0, \sigma) = (q_b, 0, \sigma, R, -), \sigma \in \Gamma$$

$$\delta(q_h, 1, \sigma) = (q_h, 1, \sigma, R, -), \sigma \in \Gamma$$

Si lo que encuentra en la cinta 1 es un #, ha terminado la subcadena, por lo que pasa al estado q_r para retroceder en la cinta 2 hasta el comienzo, señalado con un \$. En la cinta 1 nos movemos a la derecha para estar ya preparados para la siguiente comparación.

$$\delta(q_h, \#, \sigma) = (q_r, \#, \sigma, R, -), \sigma \in \Gamma$$

En caso de encontrar un blanco la subcadena de la cinta 1 es la última y pasamos al estado q_f para cambiar la subcadena principal de comparación que hay que copiar en la cinta 2.

$$\delta(q_b, _, \sigma) = (q_f, _, \sigma, L, -), \sigma \in \Gamma$$

Durante todo este proceso de búsqueda de la siguiente subcadena podríamos ir retrocediendo en la cinta 2 pero, por simplicidad, vamos a dejar el cabezal de la cinta 2 estático.

<u>Transiciones para retroceder en la cinta 1 y copiar otra subcadena</u> (q_f)

Siempre avanzará hacia la izquierda hasta encontrarse con el \$. En este último caso, cambiamos el \$ de nuevo por un #, pasamos al estado q_c para copiar y poner un \$ en el # previo a la subcadena nueva. Hemos de asegurarnos también en este caso que en la cinta 2 estamos al final de la subcadena, de nuevo por simplicidad,

$$\delta(q_f, \tau, \sigma) = (q_f, \tau, \sigma, -, R), \tau \in \Gamma, \sigma \in \Gamma - \{\#\}$$

$$\delta(q_f, \tau, \#) = (q_f, \tau, \$, -, R), \tau \in \Gamma$$

$$\delta \big(q_f, \tau, _\big) = \big(q_f, \tau, _, L, -\big), \tau \in \Gamma - \{\$\}$$

$$\delta(q_f, \$, _) = (q_c, \#, _, R, -)$$

La función de transición se ve más claramente en el diagrama de la máquina de estados:

Demostración por inducción

Veamos, por inducción sobre el número de subcadenas l, que esta mT admite las cadenas del lenguaje L y rechaza aquellas cadenas que no lo son.

Sea $w = \#x_1$, que es una cadena del lenguaje. Entonces tenemos

$$q_{ini} \# x_{1,1} \dots x_{1,n_1} \xrightarrow{} \# q_c x_{1,1} \dots x_{1,n_1} \xrightarrow{} \# x_{1,1} \dots x_{1,n_1} q_c \xrightarrow{} \# x_{1,1} \dots x_{1,n_1} q_c \xrightarrow{} \# x_{1,1} \dots x_{1,n_1} q_{acc}$$

es decir, se acepta la cadena.

Supongamos que toda cadena del lenguaje $w=\#x_1 \dots \#x_k$, con k subcadenas, es aceptada por la mT. Sea $w=\#x_1 \dots \#x_k \#x_{k+1}$ una cadena del lenguaje. Entonces tenemos

es decir, se ha copiado la primera subcadena en la cinta2 y se procede a la comparación. Como $w \notin L$, en cada subcadena x_i , $2 \le i \le k+1$, habrá una discordancia con x_1 , tras la cual pasamos a comparar la siguiente subcadena con x_1 . Hay varias posibilidades:

Ninguna cadena termina y se encuentra un carácter 0 en una mientras que en la otra hay un 1.

En ese caso, llegamos al final de x_i en la cinta1 y, después, la cinta2 vuelve al comienzo de x_1 .

$$\begin{array}{c} {}^* \#x_1 \$ x_2 \dots \#x_{i,1} \dots q_{lee} x_{i,j} \dots x_{i,n_i} \# \dots \#x_{k+1} \\ \to & \$ x_{1,1} \dots q_{lee} x_{1,j} \dots x_{1,n_1} \# \end{array} \\ \to & \begin{array}{c} \#x_1 \$ x_2 \dots \#x_{i,1} \dots x_{i,j} q_b \dots x_{i,n_i} \# \dots \#x_{k+1} \\ \$ x_{1,1} \dots q_b x_{1,j} \dots x_{1,n_1} \# \end{array} \\ \to & \begin{array}{c} \#x_1 \$ x_2 \dots \#x_{i,1} \dots x_{i,j} \dots x_{1,n_1} \# \end{array} \\ \to & \begin{array}{c} \#x_1 \$ x_2 \dots \#x_{i,1} \dots x_{i,j} \dots x_{i,n_i} \# q_r \dots \#x_{k+1} \\ \$ x_{1,1} \dots q_r x_{1,j} \dots x_{1,n_1} \# \end{array} \\ \to & \begin{array}{c} \#x_1 \$ x_2 \dots \#x_{i,1} \dots x_{i,j} \dots x_{i,n_i} \# q_r \dots \#x_{k+1} \\ q_r \$ x_{1,1} \dots x_{1,j} \dots x_{1,n_1} \# \end{array} \\ \to & \begin{array}{c} \#x_1 \$ x_2 \dots \#x_{i,1} \dots x_{i,j} \dots x_{i,n_i} \# q_{lee} \dots \#x_{k+1} \\ \$ q_{lee} x_{1,1} \dots x_{1,j} \dots x_{1,n_1} \# \end{array}$$

En el caso en que la discrepancia está en que la cadena de la cinta1 termina antes tenemos:

$$\begin{array}{c} * & \#x_{1} \$x_{2} \ldots \#x_{i,1} \ldots x_{i,n_{i}} q_{lee} \# \ldots \#x_{k+1} \\ & \$x_{1,1} \ldots x_{1,n_{i}} q_{lee} \ldots x_{1,n_{1}} \# \end{array} \\ \rightarrow \begin{array}{c} * & \#x_{1} \$x_{2} \ldots \#x_{i,1} \ldots x_{i,n_{i}} \# q_{r} \ldots \#x_{k+1} \\ & \$x_{1,1} \ldots q_{r} x_{1,n_{1}} \ldots x_{1,n_{1}} \# \end{array} \\ \rightarrow \begin{array}{c} * & \#x_{1} \$x_{2} \ldots \#x_{i,1} \ldots x_{i,j} \ldots x_{i,n_{i}} \# q_{r} \ldots \#x_{k+1} \\ & q_{r} \$x_{1,1} \ldots x_{1,n_{1}} \# \end{array} \\ \rightarrow \begin{array}{c} * & \#x_{1} \$x_{2} \ldots \#x_{i,1} \ldots x_{i,j} \ldots x_{i,n_{i}} \# q_{lee} \ldots \#x_{k+1} \\ & \$q_{lee} x_{1,1} \ldots x_{1,j} \ldots x_{1,n_{1}} \# \end{array}$$

En el caso en que la discrepancia está en que la cadena de la cinta2 termina antes, tenemos:

$$\begin{array}{c} \overset{*}{\to} \#x_{1} \$x_{2} \dots \#x_{i,1} \dots x_{i,n_{1}} q_{lee} x_{i,n_{1}+1} \dots x_{i,n_{i}} \# \dots \#x_{k+1} \\ & \qquad \qquad \$x_{1,1} \dots x_{1,n_{1}} q_{lee} \# \\ \\ \to & \qquad \qquad \$x_{1} \$x_{2} \dots \#x_{i,1} \dots x_{i,n_{1}+1} q_{b} \dots x_{i,n_{i}} \# \dots \#x_{k+1} \\ & \qquad \qquad \$x_{1,1} \dots q_{b} x_{1,n_{1}} \# \\ & \qquad \qquad \$x_{1,1} \dots q_{b} x_{1,n_{1}} \# \\ \\ \overset{*}{\to} & \qquad \qquad \$x_{1} \$x_{2} \dots \#x_{i,1} \dots x_{i,n_{i}} \# q_{r} \dots \#x_{k+1} \\ & \qquad \qquad \Rightarrow & \qquad \qquad \$x_{1} \$x_{2} \dots \#x_{i,1} \dots x_{i,n_{i}} \# q_{lee} \dots \#x_{k+1} \\ & \qquad \qquad \Rightarrow & \qquad \qquad \$q_{lee} x_{1,1} \dots x_{1,n_{1}} \# \\ \end{array}$$

Así, vamos comparando subcadena a subcadena de la cinta1 con la que hay en la cinta2 (en este caso x_1). Una vez llegados a la última volvemos a tener tres casos: tenemos una discrepancia de caracteres 0 y 1. Entonces

$$\stackrel{*}{\to} \#x_{1} \$x_{2} \dots \#x_{k+1,1} \dots q_{lee} x_{k+1,j} \dots x_{k+1,n_{k+1}} \\
 & \$x_{1,1} \dots q_{lee} x_{1,j} \dots x_{1,n_{1}} \#$$

$$\stackrel{*}{\to} \#x_{1} \$x_{2} \dots \#x_{k+1,1} \dots x_{k+1,j} q_{b} \dots x_{k+1,n_{k+1}} \\
 & \$x_{1,1} \dots q_{b} x_{1,j} \dots x_{1,n_{1}} \#$$

$$\stackrel{*}{\to} \#x_{1} \$x_{2} \dots \#x_{k+1,1} \dots q_{f} x_{k+1,n_{k+1}} \\
 & \$x_{1,1} \dots q_{f} x_{1,j} \dots x_{1,n_{1}} \#$$

$$\stackrel{*}{\to} \#x_{1} \$x_{2} \dots \#x_{k+1,1} \dots q_{f} x_{k+1,n_{k+1}} \\
 & \$x_{1,1} \dots q_{f} x_{1,j} \dots x_{1,n_{1}} \#$$

$$\stackrel{*}{\to} \#x_{1} \$x_{2} \dots \#x_{k+1,1} \dots q_{f} x_{k+1,n_{k+1}} \\
 & \$x_{1,1} \dots x_{1,j} \dots x_{1,n_{1}} \$q_{f}$$

$$\stackrel{*}{\to} \#x_{1} \$x_{2} \dots \#x_{k+1,1} \dots x_{k+1,n_{k+1}} \\
 & \$x_{1,1} \dots x_{1,j} \dots x_{1,n_{1}} \$q_{f}$$

$$\stackrel{*}{\to} \#x_{1} \#q_{c} x_{2} \dots \#x_{k+1,1} \dots x_{k+1,n_{k+1}} \\
 & \$x_{1,1} \dots x_{1,j} \dots x_{1,n_{1}} \$q_{f}$$

Y estaríamos en como al principio pero con k subcadenas.

Si hay discrepancia porque la cinta1 termina antes tendremos:

$$\overset{*}{\rightarrow} \frac{\#x_{1}\$x_{2} \ldots \#x_{k+1,1} \ldots x_{k+1,n_{k+1}} q_{lee-}}{\$x_{1,1} \ldots x_{1,n_{k+1}} q_{lee} \ldots x_{1,n_{1}} \#} \quad \xrightarrow{} \frac{\#x_{1}\$x_{2} \ldots \#x_{k+1,1} \ldots q_{f} x_{k+1,n_{k+1}}}{\$x_{1,1} \ldots q_{f} x_{1,n_{k+1}} \ldots x_{1,n_{1}} \#}}$$

Y a partir de aquí es análogo al caso anterior:

$$\overset{*}{\to} \overset{\#x_{1} \$ x_{2} \dots \#x_{k+1,1} \dots q_{f} x_{k+1,n_{k+1}-}}{\$ x_{1,1} \dots x_{1,n_{1}} q_{f} \#} \xrightarrow{\#x_{1} \$ x_{2} \dots \#x_{k+1,1} \dots q_{f} x_{k+1,n_{k+1}-}}{\$ x_{1,1} \dots x_{1,n_{1}} \$ q_{f}}$$

$$\overset{*}{\to} \overset{\#x_{1} q_{f} \$ x_{2} \dots \#x_{k+1,1} \dots x_{k+1,n_{k+1}-}}{\$ x_{1,1} \dots x_{1,j} \dots x_{1,n_{1}} \$ q_{f}} \xrightarrow{\#x_{1} \#q_{c} x_{2} \dots \#x_{k+1,1} \dots x_{k+1,n_{k+1}-}}{\$ x_{1,1} \dots x_{1,j} \dots x_{1,n_{1}} \$ q_{f}}$$

La tercera posibilidad es que la subcadena de la cinta2 termine antes:

$$\overset{*}{\rightarrow} \overset{\#x_{1}\$x_{2} \ldots \#x_{k+1,1} \ldots q_{lee}x_{k+1,n_{1}} \ldots x_{k+1,n_{k+1}}}{\$x_{1,1} \ldots x_{1,n_{1}}q_{lee}\#}$$

$$\rightarrow \begin{tabular}{l} \#x_1 \$x_2 \dots \#x_{k+1,1} \dots x_{k+1,j} q_b \dots x_{k+1,n_{k+1}} & \Rightarrow \begin{tabular}{l} \#x_1 \$x_2 \dots \#x_{k+1,1} \dots x_{k+1,n_{k+1}} q_{b-1} \\ \$x_{1,1} \dots q_b x_{1,n_1} \# & \Rightarrow \begin{tabular}{l} \#x_1 \$x_2 \dots \#x_{k+1,1} \dots q_b x_{1,n_1} \# \\ & \Rightarrow \begin{tabular}{l} \#x_1 \$x_2 \dots \#x_{k+1,1} \dots q_f x_{k+1,n_{k+1-1}} \\ \$x_{1,1} \dots q_f x_{1,n_1} \# & \Rightarrow \begin{tabular}{l} \#x_1 \$x_2 \dots \#x_{k+1,1} \dots q_f x_{k+1,n_{k+1-1}} \\ \$x_{1,1} \dots x_{1,n_1} q_f \# \\ & \Rightarrow \begin{tabular}{l} \#x_1 \$x_2 \dots \#x_{k+1,1} \dots q_f x_{k+1,n_{k+1-1}} \\ \$x_{1,1} \dots x_{1,j} \dots x_{1,n_1} \$q_f \\ & \Rightarrow \begin{tabular}{l} \#x_1 \#q_c x_2 \dots \#x_{k+1,1} \dots x_{k+1,n_{k+1-1}} \\ \$x_{1,1} \dots x_{1,j} \dots x_{1,n_1} \$q_c \\ & \Rightarrow \begin{tabular}{l} \#x_1 \#q_c x_2 \dots \#x_{k+1,1} \dots x_{k+1,n_{k+1-1}} \\ \$x_{1,1} \dots x_{1,j} \dots x_{1,n_1} \$q_c \\ & \Rightarrow \begin{tabular}{l} \#x_1 \#q_c x_2 \dots \#x_{k+1,1} \dots x_{k+1,n_{k+1-1}} \\ \$x_{1,1} \dots x_{1,j} \dots x_{1,n_1} \$q_c \\ & \Rightarrow \begin{tabular}{l} \#x_1 \#q_c x_2 \dots \#x_{k+1,1} \dots x_{k+1,n_{k+1-1}} \\ \$x_{1,1} \dots x_{1,j} \dots x_{1,n_1} \$q_c \\ & \Rightarrow \begin{tabular}{l} \#x_1 \#q_c x_2 \dots \#x_{k+1,1} \dots x_{k+1,n_{k+1-1}} \\ \$x_{1,1} \dots x_{1,j} \dots x_{1,n_1} \$q_c \\ & \Rightarrow \begin{tabular}{l} \#x_1 \#q_c x_2 \dots \#x_{k+1,1} \dots x_{k+1,n_{k+1-1}} \\ \$x_{1,1} \dots x_{1,j} \dots x_{1,n_1} \$q_c \\ & \Rightarrow \begin{tabular}{l} \#x_1 \#q_c x_2 \dots \#x_{k+1,1} \dots x_{k+1,n_{k+1-1}} \\ \$x_{1,1} \dots x_{1,j} \dots x_{1,n_1} \$q_c \\ & \Rightarrow \begin{tabular}{l} \#x_1 \#q_c x_2 \dots \#x_{k+1,1} \dots x_{k+1,n_{k+1-1}} \\ \$x_1 \#q_c x_2 \dots \#x_{k+1,1} \\ \$x_1 \#q_c x$$

En cualquier caso, nos encontramos con una situación análoga a la inicial pero con k subcadenas, por lo que aplicando la hipótesis de inducción, llegamos a que la mT acepta todas las cadenas del lenguaje.

Supongamos ahora que $w \notin L$, es decir, al menos dos de las subcadenas coinciden. Para ello, vemos que el caso base requiere $l \ge 2$. Veamos el caso base, $w = \#x_1 \# x_2$, donde $x_1 = x_2$. En este caso tenemos

que es uno de los casos que no hemos recogido explícitamente y, por tanto, lleva a rechazo

$$\rightarrow \frac{\#x_1\$x_{2_}q_{rej}}{\$x_1\#q_{rej}}$$

Supongamos que nuestra mT rechaza todas las cadenas w que no son del lenguaje, es decir, tienen al menos dos subcadenas iguales. Consideremos $w=\#x_1\dots\#x_k\#x_{k+1}$. Entonces la mT va a copiar x_1 en la cinta2 y empezará a compararla con cada subcadena a su derecha, es decir, x_2, \dots, x_{k+1} . Si x_i es distinta a x_1 , pasará a comparar con x_{i+1} como hemos visto en el caso anterior cuando teníamos $w\in L$. Pueden por tanto pasar dos cosas. x_1 es igual a aluna subcadena $x_i, 2\leq i\leq k+1$ o bien x_1 es distinta a todas. Si hay i con x_1 igual a x_i , sea i con la propiedad de ser la primera (menor i). Entonces

Ya que encontrar # en ambas cintas simultáneamente desde el estado q_{lee} no está explícitamente escrito y, por tanto, lleva a rechazo.

Si fuese i=k+1, es una mezcla entre el caso base y lo inmediatamente anterior descrito, es decir,

La segunda posibilidad es que x_1 sea distinta de todas las subcadenas x_i , $2 \le i \le k+1$. En tal caso, como hemos visto en el caso de aceptación, se llegará a la situación

es decir, habrá comparado x_1 con todas las subcadenas a su derecha sin llegar a rechazo y, por consiguiente, procediendo a copiar x_2 en la cinta2 para compararla con las subcadenas de su derecha, es decir, un nuevo ciclo pero en una cadena con k subcadenas. Por hipótesis de inducción, sabemos que habrá rechazo.

Complejidad

Complejidad espacial

Si tomamos N como:

$$N = \sum_{i=1}^{l} |x_i|$$

En el peor de los casos, la cinta 1 se recorre entera, por lo que sería espacio N.

En el peor de los casos, la cinta 2 debe copiar todas las subcadenas de la cinta 1, lo que sería N.

Por lo tanto, la complejidad espacial sería 2N. Dado que 2 es un número constante, se podría definir la complejidad espacial como O(N)

Complejidad temporal

Veamos la complejidad temporal.

Denotemos |w|=n y $|x_i|=n_i$. Podemos suponer que $n_i=\frac{n}{l}$, que será más o menos así en el peor de los casos. Veamos que ocurre con el primer ciclo, es decir, comparamos x_1 con el resto de subcadenas.

Copiar una subcadena de la cinta1 a la cinta2 tiene $\frac{n}{l}$ pasos.

Realizar las comparaciones con el resto de subcadenas tiene $(l-1)\cdot \frac{n}{l}$ pasos (lo que incluye encontrar el final de la subcadena en la cinta1 si esto fuera necesario).

En cada comparación, la cinta2 tiene que volver al comienzo. En el peor caso se realiza de forma completa, luego $(l-1)\cdot \frac{n}{l}$ pasos.

Al terminar, la cinta1 debe volver a la segunda subcadena, para comenzar a copiarla (siguiente ciclo). Esto tiene $(l-1)\cdot \frac{n}{l}$ pasos.

Por tanto, comparar la subcadena x_i con las subcadenas a su derecha tiene $\frac{n}{l}+3(l-i)\cdot\frac{n}{l}\leq 4(l-i)\cdot\frac{n}{l}$ pasos.

Solo falta sumar en i, es decir,

$$\sum_{1}^{l-1} 4(l-i) \cdot \frac{n}{l}$$

que nos da $4\frac{l\cdot(l-1)}{2}\frac{n}{l}=2(l-1)n=O(n^2)$ ya que, trivialmente, el número de subcadenas coincide con el número de # y este es siempre menor que el número de caracteres n.