LECTURE NOTES

MATH 3 / FALL 2012

Week 2

For any fixed base b > 0:

- ▶ $b^0 = 1$ and $b^1 = b$
- $b^{x+y} = b^x b^y$ and $b^{x-y} = b^x/b^y$
- $lacksymbol{b} b^{xy} = (b^x)^y$ and $b^{x/y} = (b^x)^{1/y} = (b^{1/y})^x$

The **exponential function** b^x is the only <u>continuous</u> function with all these properties

Logarithm functions

For any fixed base b > 0, the **logarithm function** $\log_b x$ is the inverse of b^x

$$b^{\log_b x} = x = \log_b b^x$$

Laws of logarithms

For any fixed base b > 0, $b \neq 1$:

▶
$$\log_b(1) = 0$$
 and $\log_b(b) = 1$

and
$$\log_b(x/y) = \log_b(x) - \log_b(y)$$

and
$$\log_b(\sqrt[p]{x}) = \log_b(x)/p$$

Natural exponential and logarithm

The irrational number

$$e = 2.7182818284590452353602874713526624978...$$

is such that the slope of e^x when x = 0 is 1

- ▶ The **natural exponential** is $exp(x) = e^x$
- ▶ The **natural logarithm** is $ln(x) = log_e(x)$

Change of base for exponentials

$$b^{x} = e^{x \ln b}$$

- ▶ If b > 1 then the exponential b^x is a horizontal scaling of e^x
- ▶ If b < 1 then the exponential b^x is a horizontal scaling of e^x reflected across the y-axis

Change of base for logarithms

$$\log_b x = \frac{\ln x}{\ln b}$$

- ▶ If b > 1 then the logarithm $\log_b x$ is a vertical scaling of $\ln x$
- If b < 1 then the logarithm log_b x is a vertical scaling of ln x reflected across the x-axis

Domain and range

For any base b > 0, $b \neq 1$:

▶ The domain of b^x is

$$(-\infty,\infty)$$

▶ The range of b^x is

$$(0,\infty)$$

- Horizontal asymptote y = 0
- ► Goes through (0,1)

▶ The domain of $log_b x$ is

$$(0,\infty)$$

▶ The range of $\log_b x$ is

$$(-\infty,\infty)$$

- ▶ Vertical asymptote x = 0
- ► Goes through (1,0)

Power functions

Continuously compound interest

$$A(t) = A_0 \left(1 + \frac{r}{n}\right)^{nt} \longrightarrow A_0 e^{tr} \text{ as } n \to \infty$$

- \blacktriangleright A(t) is the amount of money accumulated after t years
- $ightharpoonup A_0$ is the initial amount you borrow or deposit
- r is the annual rate of interest
- n is the number of times the interest is compounded per year

Exponential models

If data fits an exponential model then log-data fits a linear model

$$N = N_0 R^t \longrightarrow \ln N = \ln N_0 + t \ln R$$

t	Ν	In <i>N</i>
1	613	6.42
2	746	6.61
3	909	6.81
4	1113	7.01
5	1361	7.22
6	1659	7.41
7	2028	7.61

Least squares best fit:

$$\ln N = 6.216 + 0.199t$$

- $N_0 = e^{6.216} = 500$
- $R = e^{0.199} = 1.22$
- Exponential model:

$$N = 500 \cdot 1.22^t$$

Semi-log graphs

Average rate of change

The average rate of change of the function f from a to b is

$$\frac{\Delta y}{\Delta x} = \frac{f(b) - f(a)}{b - a}$$

Falling object

time (s)	distance (m)
0.0	0.000
0.1	0.049
0.2	0.196
0.3	0.441
0.4	0.784
0.5	1.225
0.6	1.764
0.7	2.401
0.8	3.136
0.9	3.969
1.0	4.900

Falling object: average speed

time (s)	distance (m)	speed (m/s)
0.0	0.000	0.49
0.1	0.049	1.47
0.2	0.196	2.45
0.3	0.441	3.43
0.4	0.784	4.41
0.5	1.225	5.39
0.6	1.764	6.37
0.7	2.401	7.35
0.8	3.136	8.33
0.9	3.969	9.31
1.0	4.900	_

Average speed from 0.2 to 0.3:

$$\frac{0.441 - 0.196}{0.3 - 0.2} = 2.45$$

Falling object: average acceleration

time (s)	distance (m)	speed (m/s)	accel (m/s²)
0.0	0.000	0.49	9.8
0.1	0.049	1.47	9.8
0.2	0.196	2.45	9.8
0.3	0.441	3.43	9.8
0.4	0.784	4.41	9.8
0.5	1.225	5.39	9.8
0.6	1.764	6.37	9.8
0.7	2.401	7.35	9.8
0.8	3.136	8.33	9.8
0.9	3.969	9.31	
1.0	4.900		_

Average velocity and acceleration

Distance:
$$s(t)$$
 (???)

Velocity: $v(t) = \frac{s(t+h) - s(t)}{h} = 9.8t + 0.49$ (linear)

Acceleration: $a(t) = \frac{v(t+h) - v(t)}{h} = 9.8$ (constant)

Question: What kind of function has linear rate of change?

Instantaneous velocity and acceleration

Distance:
$$s(t) = 4.9t^2$$

Velocity:
$$v(t) = \lim_{h \to 0} \frac{s(t+h) - s(t)}{h} = 9.8t$$

Acceleration: $a(t) = \lim_{h \to 0} \frac{v(t+h) - v(t)}{h} = 9.8$

Acceleration:
$$a(t) = \lim_{h \to 0} \frac{v(t+h) - v(t)}{h} = 9.8$$

Answer: Quadratic functions have linear rate of change!

Difference quotient and derived functions

The **difference quotient** (with increment h) of f at x is

$$\frac{f(x+h)-f(x)}{h}$$

This is the average rate of change of f from x to x + h

The <u>limit</u> as $h \to 0$ is the **derivative** of f at x

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

This is the **instantaneous rate of change** of f at x

Difference quotient and derived functions

The **derivative** is the slope of the **tangent line**

Natural exponential

Х	e^{x}	$\frac{e^{x+h}-e^x}{h}$
-0.5	0.61	0.64
-0.4	0.67	0.71
-0.3	0.74	0.78
-0.2	0.82	0.86
-0.1	0.91	0.95
0.0	1.00	1.05
0.1	1.11	1.16
0.2	1.22	1.28
0.3	1.35	1.42
0.4	1.49	1.57
0.5	1.65	1.73

Natural exponential

$$\frac{e^{x+h} - e^x}{h} = \frac{e^x e^h - e^x}{h} = e^x \frac{e^h - 1}{h}$$

As $h \rightarrow 0$ the difference quotient

$$\frac{e^h-1}{h}$$

approaches the slope of the exponential function at x=0

Therefore

$$\lim_{h\to 0}\frac{e^h-1}{h}=1$$

because of the definition of e!

Natural exponential

$$\lim_{h\to 0}\frac{e^{x+h}-e^x}{h}=e^x\lim_{h\to 0}\frac{e^h-1}{h}=e^x$$

The derivative of e^x is e^x

Binomial formulas

$$(A + B)^{1} = A + B$$

 $(A + B)^{2} = A^{2} + 2AB + B^{2}$
 $(A + B)^{3} = A^{3} + 3A^{2}B + 3AB^{2} + B^{3}$
 $(A + B)^{4} = A^{4} + 4A^{3}B + 6A^{2}B^{2} + 4AB^{3} + B^{4}$
 $(A + B)^{5} = A^{5} + 5A^{4}B + 10A^{3}B^{2} + 10A^{2}B^{3} + 5AB^{4} + B^{5}$

$$(A+B)^n = \sum_{m=0}^n \binom{n}{m} A^m B^{n-m}$$

Differences of like powers

$$A^{2} - B^{2} = (A - B)(A + B)$$

$$A^{3} - B^{3} = (A - B)(A^{2} + AB + B^{2})$$

$$A^{4} - B^{4} = (A - B)(A^{3} + A^{2}B + AB^{2} + B^{3})$$

$$A^{5} - B^{5} = (A - B)(A^{4} + A^{3}B + A^{2}B^{2} + AB^{3} + B^{4})$$

$$A^{n+1} - B^{n+1} = (A - B) \sum_{n=1}^{n} A^m B^{n-m}$$

We write

$$\lim_{x\to a}f(x)=L$$

when the values f(x) can be made arbitrarily close to the number L whenever x is sufficiently close to a but $x \neq a$

The value f(a) is not relevant in evaluating $\lim_{x\to a} f(x)$

The value f(a) is not relevant in evaluating $\lim_{x\to a} f(x)$

The value f(a) is not relevant in evaluating $\lim_{x\to a} f(x)$

When the limit does not exist...

When the limit does not exist...

One-sided limits

We write

$$\lim_{x\to a^+} f(x) = L$$

when the values f(x) can be made arbitrarily close to the number L whenever x is sufficiently close to a but x > a

We write

$$\lim_{x\to a^-} f(x) = L$$

when the values f(x) can be made arbitrarily close to the number L whenever x is sufficiently close to a but x < a

If both
$$\lim_{x \to a^{-}} f(x) = L$$
 and $\lim_{x \to a^{+}} f(x) = L$
Then $\lim_{x \to a} f(x) = L$

Piecewise defined functions

$$f(x) = \begin{cases} 1 & \text{if } x < -2 \\ (x+2)/2 & \text{if } -2 \le x < 0 \text{ or if } 2 < x \\ 0 & \text{if } x = 0 \\ \sqrt{1-x^2} & \text{if } 0 < x < 1 \\ 3(x-1)^2 & \text{if } 1 \le x \le 2 \end{cases}$$

Algebra of limits

Suppose
$$\lim_{x\to a} f(x) = L$$
 and $\lim_{x\to a} g(x) = M$
Then:

$$\lim_{x \to a} f(x) - g(x) = L - M$$

$$\lim_{x \to a} f(x) \cdot g(x) = L \cdot M$$

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{L}{M} \text{ provided } M \neq 0$$

Limit tricks...

$$\lim_{x \to 2} \frac{x^3 - 8}{x^2 - 4} = \lim_{x \to 2} \frac{(x - 2)(x^2 + 2x + 4)}{(x - 2)(x + 2)} = \lim_{x \to 2} \frac{x^2 + 2x + 4}{x + 2} = 3$$

Limit tricks...

$$\lim_{x \to 2} \frac{\sqrt{6x} - \sqrt{12}}{x - 2} = \lim_{x \to 2} \frac{\sqrt{6x} - \sqrt{12}}{x - 2} \cdot \frac{\sqrt{6x} + \sqrt{12}}{\sqrt{6x} + \sqrt{12}}$$

$$= \lim_{x \to 2} \frac{6x - 12}{x - 2} \cdot \frac{1}{\sqrt{6x} + \sqrt{12}}$$

$$= \lim_{x \to 2} 6 \cdot \frac{1}{\sqrt{6x} + \sqrt{12}} = 6 \cdot \frac{1}{\sqrt{12} + \sqrt{12}} = \frac{3}{\sqrt{12}}$$

Multiply by the conjugate

Limit tricks...

$$\lim_{h \to 0} \frac{(x+h)^2 - x^2}{h} = \lim_{h \to 0} \frac{(x^2 + 2xh + h^2) - x^2}{h} = \lim_{h \to 0} 2x + h = 2x$$

The derivative of x^2 is 2x

Composition and limits

lf

$$\lim_{x \to A} f(x) = \mathbf{B} \quad \text{and} \quad \lim_{x \to \mathbf{B}} g(x) = C$$

then

$$\lim_{x\to A}g(f(x))=C$$

Example

$$\lim_{x\to 2} \sin\left(\frac{x-1}{x+1}\right) = \lim_{x\to 1/3} \sin(x) = \sin(1/3)$$

Limits at infinity

We write

$$\lim_{x\to\infty} f(x) = L$$

when the values f(x) can be made arbitrarily close to the number L whenever x is sufficiently large ("close to ∞ ")

We write

$$\lim_{x\to-\infty}f(x)=L$$

when the values f(x) can be made arbitrarily close to the number L whenever x is sufficiently small ("close to $-\infty$ ")

Limits at infinity correspond to horizontal asymptotes

More limit tricks...

$$\lim_{x \to \infty} \frac{3x - 5}{\sqrt{x^2 + 3x + 9}} = \lim_{x \to \infty} \frac{x(3 - 5/x)}{\sqrt{x^2(1 + 3/x + 9/x^2)}}$$

$$= \lim_{x \to \infty} \frac{x}{\sqrt{x^2}} \cdot \frac{3 - 5/x}{\sqrt{1 + 3/x + 9/x^2}}$$

$$= \lim_{x \to \infty} \frac{3 - 5/x}{\sqrt{1 + 3/x + 9/x^2}}$$

$$= \frac{3 - 0}{\sqrt{1 + 0 + 0}} = 3$$

Factor out dominant terms

Rational functions

Suppose we have:

- ▶ a polynomial of degree n: $p(x) = ax^n + (lower degree terms)$
- ▶ a polynomial of degree m: $q(x) = bx^m + (lower degree terms)$

Then we have:

- ▶ if n < m then $\lim_{x \to \infty} \frac{p(x)}{q(x)} = 0$
- ▶ if n > m then $\lim_{x \to \infty} \frac{p(x)}{q(x)} = \pm \infty$ (same sign as a/b)
- ▶ if n = m then $\lim_{x \to \infty} \frac{p(x)}{q(x)} = \frac{a}{b}$