Дубровских Никита 221-361

Вариант 7

Задание 20.

Орграф задан матрицей смежности. Необходимо:

- а) нарисовать граф;
- б) заменить все дуги ребрами и в полученном неориентированном графе найти эйлерову цепь (или цикл);
- в) провести раскраску графа и найти его хроматическое число

0	0	0	1	0	0
0	0	0	0	1	0
1	0	0	1	0	0
1	0	1	0	0	0
0	1	0	0	0	0
1	0	1	0	1	0

Решение:

а) Нарисуем граф:

б) Заменим все дуги ребрами. Получим:

В полученном графе степень вершины v_1 - три, поэтому эйлерового цикла нет. Проверим, есть ли эйлерова цепь (может быть максимум две вершины нечетной степени). Это условие не выполняется, т.к. нечетные степени у вершин с номерами 1, 2, 3, 6, следовательно и эйлеровой цепи нет.

Проведем раскраску графа.

Переупорядочим вершины в невозрастающем порядке по локальной степени вершины. Получим:

Берем первую вершину (с самой большой локальной степенью вершины) — это $v_1^{'}$. Ее покрасим в цвет 1. В этот же цвет покрасим и все вершины, которые не являются смежными с первой вершиной, а также между собой (это вершины $v_4^{'}$ и $v_6^{'}$). Эти вершины уберем из рассмотрения.

Повторяем предыдущий шаг для нового списка вершин. Берем первую вершину из не рассмотренных (с самой большой локальной степенью вершины) — это $v_2^{'}$. Ее покрасим в цвет 2. В этот же цвет покрасим и все вершины, которые не являются смежными с этой вершиной, а также между собой - это только вершина $v_5^{'}$. Эти вершины уберем из рассмотрения.

Осталась вершина $v_3^{'}$. Ее покрасим в цвет 3. Раскраска завершена:

Хроматическое число $\chi(G)=3$, поскольку использовались только 3 цвета.