AMPLIACIÓN DE CÁLCULO Hoja 4 Series de Fourier

- 1.- Calcula el periodo de las funciones senax, cosax y e^{iax} .
- **2.** a) Probar que las siguientes familias son ortogonales en los espacios que se indican : *i*) $\{\cos nx, \ sennx\}_{n\geq 0}$ en $L_2[-\pi,\pi]$. *ii*) $\{\ e^{inx}\ \}_{n\in\mathbb{Z}}$ en $\{\ L_2[-\pi,\pi],\ \mathbb{C}\ \}$ *iii*) las familias $\{\ \cos nx\ \}_{n\geq 0}$ y $\{\ sennx\ \}_{n\geq 1}$ en $L_2[0,\pi]$.
 - **3**.- Sea f,g dos funciones de L₂[a,b] ortonormales. Prueba que $\| f g \|_2 = \sqrt{2}$.
- **4.-** Sean $\{f_1,f_2,...,f_n\}\subseteq L_2([a,b],\mathbb{R})$ una familia finita ortonormal de L_2 . Sean $f\in L_2[a,b]$ y $g=f-\sum\limits_{k=1}^n < f,f_k>f_k$. Prueba que h y g son ortogonales, donde h es cualquier vector del espacio vectorial engendrado por $\{f_1,f_2,...,f_n\}$ (el vector $\sum\limits_{k=1}^n < f,f_k>f_k$ se llama la proyección ortogonal de f sobre el espacio vectorial engendrado por $\{f_1,f_2,...,f_n\}$).
- **5.-** Sea (x_n) una sucesión numérica convergente a un número x. Sea $\sigma_k = \frac{x_1 + \ldots + x_k}{k}$, $k \in \mathbb{N}$, la sucesión de medias Césaro de (x_n) . Probar que (σ_n) converge a x. **(El teorema de Fejer** asegura que las medias Césaro de una serie de Fourier de una función continua 2π -periódica convergen uniformemente a dicha función.)
- **6.** Sea $f \in C[-\pi,\pi]$ 2π -periódica y derivable. Probar que si f es par (e.d. f(-x) = f(x)), entonces se puede escribir:

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx.$$

Y por $f(x) = \sum_{n=1}^{\infty} b_n sennx$, si f es impar (e.d. f(-x) = -f(x)).

- 7.- Hallar las series de Fourier de las funciones:
- i) f(x) = |x| ii) $f(x) = \cos^3 x$ iii) $f(x) = e^x$ iv) $f(x) = |\sec x|$ v) $f(x) = |\sec x|$ $f(x) = |\sec x|$ iv) $f(x) = |\sec x|$ iii) $f(x) = |\sec x|$ iv) $f(x) = |\sec x|$ iii) $f(x) = |\sec x|$ iii) $f(x) = |\sec x|$ iv) $f(x) = |\sec x|$
 - 8.- Sea f una función continua y periódica de periodo T. Prueba que:

$$\int\limits_{-T/2}^{T/2} f(t) dt = \int\limits_{0}^{T} f(t) dt = \int\limits_{\alpha}^{T} f(t) dt, \ \ \text{para todo } \alpha \in \mathbb{R}.$$

Obsevación: Si f es 2π -periódica, f(x)sennx y f(x)cosnx son 2π -periódicas y por el ejercicio previo nos da igual trabajar en el intervalo $[-\pi,\pi]$ o en $[-\pi + \alpha,\pi + \alpha]$.

9.- Probar que:

a)
$$x = \pi - 2 \sum_{n=1}^{\infty} \frac{\text{senn} x}{n}$$
, $0 < x < 2\pi$

b)
$$\frac{x^2}{2} = \pi x - \frac{\pi^2}{3} + 2 \sum_{n=1}^{\infty} \frac{\cos nx}{n^2}$$
, $0 \le x \le 2\pi$

c)
$$x = 2\sum_{n=1}^{\infty} (-1)^{n-1} \frac{\text{sennx}}{n}, -\pi < x < \pi$$

d)
$$x^2 = \frac{\pi^2}{3} + 4\sum_{n=1}^{\infty} (-1)^n \frac{\cos nx}{n^2}, -\pi \le x \le \pi$$

10.- Probar las siguientes igualdades:

a)
$$\sum_{n\geq 1} \frac{1}{n^2} = \frac{\pi^2}{6}$$
 b) $\sum_{n\geq 1} \frac{(-1)^n}{n^2} = -\frac{\pi^2}{12}$.

(Indicación: Usar las igualdades del ejercio anterior).

- **11.-** Sean las funciones $f(x) = (x-2)^2$, $x \in [0,4]$ y $g(x) = |x|^3$, $x \in [-3,3]$. Encontrar expresiones en serie de senos y cosenos de estas funciones.
- **12.-** Encuentra expresiones en serie de senos y cosenos (series de Fourier) de las funciones:

a)
$$f(t) = \begin{cases} -1 & \text{si } -T/2 < t < 0 \\ 1 & \text{si } 0 < t < T/2 \end{cases}$$
, siendo f T-periódica.

b)
$$f(x) = \begin{cases} 1 & \text{si } 0 < x \le 12 \\ 0 & \text{si } 1/2 < x \le 1 \end{cases}$$
, siendo f 1-periódica.

c)
$$f(x) = \begin{cases} x & \text{si } 0 \le x \le 1 \\ 2-x & \text{si } 1 < x \le 2 \end{cases}$$
, siendo f 2-periódica.

13.- Sea $f \in C[-\pi,\pi]$ 2π -periódica y tal que las sucesiones de coeficientes de Fourier $(a_n)_{n\geq 0}$ y $(b_n)_{n\geq 1}$ verifican que $\sum\limits_{n=1}^{\infty}|a_n|<\infty$ y $\sum\limits_{n=1}^{\infty}|b_n|<\infty$. Probar que la serie de Fourier de f converge uniformemente a f en $[-\pi,\pi]$.

14.- Prueba las siguientes igualdades: 1)
$$e^{i(t+2\pi)} = e^{it}$$
 2) $|e^{it}| = 1$
3) $e^{it} = e^{-it}$ 4) $\cos nx = (e^{inx} + e^{-inx})/2$ y $\sin nx = (e^{inx} - e^{-inx})/2i$
5) $\int_{-\pi}^{\pi} e^{int} dt = e^{int}/in|_{-\pi}^{\pi}$

(Indicación: tener en cuenta que $\int f(t) + ig(t)dt = \int f(t)dt + i\int g(t)dt$).

15.- Sea
$$\frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx + b_n \sin nx$$
 la serie de Fourier de una función f.

Poner cosnx = $(e^{inx} + e^{-inx})/2$ y sennx = $(e^{inx} - e^{-inx})/2i$ y obtener $\sum_{-\infty}^{\infty} c_n e^{inx}$, donde:

$$c_0 = \frac{a_0}{2}, c_n = \frac{a_n - ib_n}{2}$$
 $y c_{-n} = \frac{a_n + ib_n}{2}$ para $n \ge 1$.

Demostrar que también $c_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x)e^{-inx}dx$ para todo $n \in \mathbb{Z}$.