CS373 Data Mining and Machine Learning

Lecture 8
Assignment Project Exam Help

https://populoodergem Ruddwechdnivecsityr

(originally prepared by Tommi Jaakkola, MIT CSAIL)

Today's topics

- Ensembles and Boosting
 - ensembles, relation to feature selection
 - myopic forward-fitting and boosting
 - understanding boosting

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

 An ensemble classifier combines a set of m "weak" base learners into a "strong" ensemble

Add WeChat powcoder

 An ensemble classifier combines a set of m "weak" base learners into a "strong" ensemble

• The base learners are typically simple "decision stumps", i.e., linear classifiers based on one coordinate

 An ensemble classifier combines a set of m "weak" base learners into a "strong" ensemble

• The base learners are typically simple "decision stumps", i.e., linear classifiers based on one coordinate

 An ensemble classifier combines a set of m "weak" base learners into a "strong" ensemble

• The base learners are typically simple "decision stumps", i.e., linear classifiers based on one coordinate

$$h_2(\underline{x}) = 0$$

$$h_2(\underline{x}) = h(\underline{x}; \underline{\theta}_1) + h(\underline{x}; \underline{\theta}_2)$$

$$h_2(\underline{x}) = 0$$

Ensemble learning

 We can view the ensemble learning problem as a coordinate selection problem

 The problem of finding the best "coordinates" to include corresponds to finding the parameters of the base learners (out of an uncountable set)

Estimation criterion

• In principle, we can estimate the ensemble

$$h_m(\underline{x}) = \alpha_1 h(\underline{x}; \underline{\theta}_1) + \ldots + \alpha_m h(\underline{x}; \underline{\theta}_m)$$

by minimizing the training loss

with respect to the parameters in the ensemble

Estimation criterion

• In principle, we can estimate the ensemble

$$h_m(\underline{x}) = \alpha_1 h(\underline{x}; \underline{\theta}_1) + \ldots + \alpha_m h(\underline{x}; \underline{\theta}_m)$$

by minimizing the training loss

with respect to the parameters in the ensemble

 This is a hard problem to solve jointly but we can add base learners sequentially (cf. forward fitting)

Estimation criterion

In principle, we can estimate the ensemble

$$h_m(\underline{x}) = \alpha_1 h(\underline{x}; \underline{\theta}_1) + \ldots + \alpha_m h(\underline{x}; \underline{\theta}_m)$$

by minimizing the training loss

with respect to the parameters in the ensemble

 This is a hard problem to solve jointly but we can add base learners sequentially (cf. forward fitting)

Fix
$$h_{m-1}(\underline{x})$$

Find
$$\alpha_m$$
 and $\underline{\theta}_m$ that minimize $y_t h_m(\underline{x}_t)$

$$J(\alpha_m, \underline{\theta}_m) = \sum_{t=1}^n \text{Loss}\left(\underbrace{y_t h_{m-1}(\underline{x}_t) + \alpha_m y_t h(\underline{x}_t; \underline{\theta}_m)}_{\text{fixed}}\right)$$

Myopic forward-fitting

$$J(\alpha_m, \underline{\theta}_m) = \sum_{t=1}^n \operatorname{Loss} \left(\underbrace{y_t h_{m-1}(\underline{x}_t) + \alpha_m y_t h(\underline{x}_t; \underline{\theta}_m)}_{\text{fixed}} \right)$$

• Out of all θ_m we wish to select one that minimizes the derivative of the loss at θ_m (has the most negative derivative at zero) ttps://powcoder.com

$$\begin{split} \frac{\partial J(\alpha_{m},\underline{\theta}_{m})}{\partial \alpha_{m}}\bigg|_{\alpha_{m}=0} &= \sum_{t=1}^{\mathsf{Add}} \underbrace{\begin{bmatrix} \mathsf{Chat} \ \mathsf{powcoder} \\ \overline{\partial z} \mathsf{Loss}(z) \Big|_{z=y_{t}h_{m-1}(\underline{x}_{t})} \end{bmatrix} y_{t}h(\underline{x}_{t};\underline{\theta}_{m})}_{z=1} \\ &= \sum_{t=1}^{n} \underbrace{\mathsf{DLoss}(y_{t}h_{m-1}(\underline{x}_{t}))}_{\text{fixed weights on training examples}} \underbrace{\underbrace{\mathsf{Dhat} \ \mathsf{powcoder}}_{z=y_{t}h_{m-1}(\underline{x}_{t})} \underbrace{}_{y_{t}h(\underline{x}_{t};\underline{\theta}_{m})} \\ &= \underbrace{\mathsf{Dhat} \ \mathsf{DLoss}(y_{t}h_{m-1}(\underline{x}_{t}))}_{\text{fixed weights on training examples}} \underbrace{}_{z=y_{t}h_{m-1}(\underline{x}_{t})} \underbrace{}_{z=y_{t}h_{m$$

$$\frac{\partial J(\alpha_m, \underline{\theta}_m)}{\partial \alpha_m} \Big|_{\alpha_m = 0} = \sum_{t=1}^n \left[\frac{\partial}{\partial z} \text{Loss}(z) \big|_{z = y_t h_{m-1}(\underline{x}_t)} \right] y_t h(\underline{x}_t; \underline{\theta}_m) \\
= \sum_{t=1}^n \text{DLoss}(y_t h_{m-1}(\underline{x}_t)) y_t h(\underline{x}_t; \underline{\theta}_m)$$

Assignment Project Exains Helpnegative

https://powcoder.com

Add WeChat powcoder

$$\begin{split} \frac{\partial J(\alpha_m,\underline{\theta}_m)}{\partial \alpha_m}\bigg|_{\alpha_m=0} &= \sum_{t=1}^n \left[\frac{\partial}{\partial z} \mathrm{Loss}(z)\big|_{z=y_th_{m-1}(\underline{x}_t)}\right] y_t h(\underline{x}_t;\underline{\theta}_m) \\ &= \sum_{t=1}^n \mathrm{DLoss}\big(y_th_{m-1}(\underline{x}_t)\big) y_t h(\underline{x}_t;\underline{\theta}_m) \\ & -\mathrm{Assignment} \, \text{Project Example Perphesisive} \\ & -\mathrm{https://pfw.coder.com} \\ & -\mathrm{Add-WeChat} \, \overline{\mathrm{powcoder.ement}} \, \mathrm{with} \\ & \mathrm{positive \ weight} \, \quad \mathrm{the \ opposite \ label)} \end{split}$$

$$\begin{split} \frac{\partial J(\alpha_m,\underline{\theta}_m)}{\partial \alpha_m}\bigg|_{\alpha_m=0} &= \sum_{t=1}^n \left[\frac{\partial}{\partial z} \mathrm{Loss}(z)\big|_{z=y_t h_{m-1}(\underline{x}_t)}\right] y_t h(\underline{x}_t;\underline{\theta}_m) \\ &= \sum_{t=1}^n \mathrm{DLoss}\big(y_t h_{m-1}(\underline{x}_t)\big) y_t h(\underline{x}_t;\underline{\theta}_m) \\ & + \mathrm{Assignment} \text{ Projecte Exercise Helphesative} \\ &= \mathrm{https://pdw.coder.com/m} \\ & + \mathrm{Add} \text{ WeChat powice determine} \text{ with} \end{split}$$

Add We Chat powcode ement with positive weight the opposite label)

Logistic loss:
$$W_t = g\left(-y_t h_{m-1}(\underline{x}_t)\right), \quad g(z) = (1 + \exp(-z))^{-1}$$

Exponential loss:
$$W_t = \exp(-y_t h_{m-1}(\underline{x}_t))$$

$$\begin{split} \frac{\partial J(\alpha_{m},\underline{\theta}_{m})}{\partial \alpha_{m}} \bigg|_{\alpha_{m}=0} &= \sum_{t=1}^{n} \left[\frac{\partial}{\partial z} \mathrm{Loss}(z) \big|_{z=y_{t}h_{m-1}(\underline{x}_{t})} \right] y_{t}h(\underline{x}_{t};\underline{\theta}_{m}) \\ &= \sum_{t=1}^{n} \mathrm{DLoss}(y_{t}h_{m-1}(\underline{x}_{t})) y_{t}h(\underline{x}_{t};\underline{\theta}_{m}) \\ & \text{Assignment Projecte Example Propegative} \\ &= \mathrm{http}_{x}//\mathrm{pow}_{\mathcal{C}}(\mathrm{deg}_{\mathcal{C}})h(\underline{x}_{t};\underline{\theta}_{m}) \\ & \mathrm{Add}_{x} \mathrm{deg}_{\mathcal{C}}(\mathrm{deg}_{\mathcal{C}})h(\underline{x}_{t};\underline{\theta}_{m}) \\ & \mathrm{Add}_{x} \mathrm{deg}_{\mathcal{C}}(\mathrm{deg}_{\mathcal{C}}) \mathrm{deg}_{\mathcal{C}}(\mathrm{deg}_{\mathcal{C}}) \\ &= \mathrm{http}_{x}/\mathrm{pow}_{\mathcal{C}}(\mathrm{deg}_{\mathcal{C}}) \mathrm{deg}_{\mathcal{C}}(\mathrm{deg}_{\mathcal{C}}) \\ &= \mathrm{http}_{x}/\mathrm{pow}_{\mathcal{C}}(\mathrm{deg}_{\mathcal{C}}) \mathrm{deg}_{\mathcal{C}}(\mathrm{deg}_{\mathcal{C}}) \\ &= \mathrm{http}_{x}/\mathrm{pow}_{\mathcal{C}}(\mathrm{deg}_{\mathcal{C}}) \mathrm{deg}_{\mathcal{C}}(\mathrm{deg}_{\mathcal{C}}) \\ &= \mathrm{http}_{x}/\mathrm{pow}_{\mathcal{C}}(\mathrm{deg}_{\mathcal{C}}) \\ &= \mathrm{http}_{x}/\mathrm{pow}_{\mathcal{C}}(\mathrm{deg}_{\mathcal{C}}) \\ &= \mathrm{http}_{x}/\mathrm{pow}_{\mathcal{C}}(\mathrm{deg}_{\mathcal{C}}) \mathrm{http}_{x} \\ &= \mathrm{http}_{x}/\mathrm{pow}_{\mathcal{C}}(\mathrm{deg}_{\mathcal{C}}) \\ \\ &= \mathrm{http}_{x}/\mathrm{pow}_{\mathcal{C}}(\mathrm{deg}_{\mathcal{C}})$$

Logistic loss:
$$W_t = g(-y_t h_{m-1}(\underline{x}_t)), \ g(z) = (1 + \exp(-z))^{-1}$$

Exponential loss: $W_t = \exp(-y_t h_{m-1}(\underline{x}_t))$

• We can always normalize the weights without affecting the choice of $\underline{\theta}_m$ $W_t \leftarrow \frac{W_t}{\sum_{i=1}^n W_i}$

We use a myopic forward-fitting method to estimate

$$h_m(\underline{x}) = \alpha_1 h(\underline{x}; \underline{\theta}_1) + \ldots + \alpha_m h(\underline{x}; \underline{\theta}_m)$$

Step 0:
$$h_0(\underline{x}) = 0$$
, $W_t = 1/n$, $t = 1, ..., n$

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

• We use a myopic forward-fitting method to estimate

$$h_m(\underline{x}) = \alpha_1 h(\underline{x}; \underline{\theta}_1) + \ldots + \alpha_m h(\underline{x}; \underline{\theta}_m)$$

Step 0:
$$h_0(\underline{x}) = 0$$
, $W_t = 1/n$, $t = 1, ..., n$

Step I: Find Princetter Projecter and Helpighted error

$$\frac{\partial J(\alpha_m,\underline{\theta}_m)}{\partial \alpha_m} | \text{https://powcoder.com} \\ = \sum_{\substack{W_t \, (-y_t) h(\underline{x}_t;\underline{\theta}_m) \\ \text{Add_WeChat powcoder}}} W_t(-y_t) h(\underline{x}_t;\underline{\theta}_m)$$

We use a myopic forward-fitting method to estimate

$$h_m(\underline{x}) = \alpha_1 h(\underline{x}; \underline{\theta}_1) + \ldots + \alpha_m h(\underline{x}; \underline{\theta}_m)$$

Step 0:
$$h_0(\underline{x}) = 0$$
, $W_t = 1/n$, $t = 1, ..., n$

Step I: Find Assignment Project Exame Heleighted error

$$\frac{\partial J(\alpha_m,\underline{\theta}_m)}{\partial \alpha_m} | \text{https://powcoder.com} \\ = \sum_{\substack{W_t \, (-y_t) h(\underline{x}_t;\underline{\theta}_m) \\ \text{Add_WeChat powcoder}}} W_t(-y_t) h(\underline{x}_t;\underline{\theta}_m)$$

- weights correspond to derivatives of the loss function
- the weight is large if the example is not classified correctly by the ensemble we have so far
- finding the parameters that minimize the weighted error is easily solved, e.g., for decision stumps

• We use a myopic forward-fitting method to estimate

$$h_m(\underline{x}) = \alpha_1 h(\underline{x}; \underline{\theta}_1) + \ldots + \alpha_m h(\underline{x}; \underline{\theta}_m)$$

Step 0:
$$h_0(\underline{x}) = 0$$
, $W_t = 1/n$, $t = 1, ..., n$

Step I: Find Princetter Projecter and Helpighted error

$$\frac{\partial J(\alpha_m,\underline{\theta}_m)}{\partial \alpha_m} | \underset{\text{add_WeChat powcoder}}{\text{https://powcoder.com}} | \underset{\text{def}}{\overset{n}{\bigvee}} W_t(-y_t) h(\underline{x}_t;\underline{\theta}_m)$$

Step 2: Find $\hat{\alpha}_m$ that minimizes

$$J(\alpha_m, \underline{\hat{\theta}}_m) = \sum_{t=1}^n \text{Loss}(\underline{y_t h_{m-1}(\underline{x}_t)} + \alpha_m \underline{y_t h(\underline{x}_t; \underline{\hat{\theta}}_m)})$$
fixed

 this is a I-dimensional convex problem that can be solved easily.

We use a myopic forward-fitting method to estimate

$$h_m(\underline{x}) = \alpha_1 h(\underline{x}; \underline{\theta}_1) + \ldots + \alpha_m h(\underline{x}; \underline{\theta}_m)$$

Step 0:
$$h_0(\underline{x}) = 0$$
, $W_t = 1/n$, $t = 1, ..., n$

Step I: Find Assignment Project Exame Heleighted error

$$\frac{\partial J(\alpha_m,\underline{\theta}_m)}{\partial \alpha_m} | \underbrace{\text{https://powcoder.com}}_{\substack{= \\ \text{Add_WeChat powcoder}}}^{\text{https://powcoder.com}} W_t(-y_t) h(\underline{x}_t;\underline{\theta}_m)$$

Step 2: Find $\hat{\alpha}_m$ that minimizes

$$J(\alpha_m, \underline{\hat{\theta}}_m) = \sum_{t=1}^n \text{Loss}\left(\frac{y_t h_{m-1}(\underline{x}_t) + \alpha_m y_t h(\underline{x}_t; \underline{\hat{\theta}}_m)}{\text{fixed}}\right)$$

Step 3: Update example weights

$$W_{t} = -\text{DLoss}\left(\underbrace{y_{t}h_{m-1}(\underline{x}_{t}) + \hat{\alpha}_{m}y_{t}h(\underline{x}_{t}; \underline{\hat{\theta}}_{m})}_{y_{t}h_{m}(\underline{x}_{t})}\right)$$

Logistic loss Loss(z) = log(1 + exp(-z))

Trying the same base learner again

• $\hat{\alpha}_m$ is set to minimize the loss given the base learner

$$J(\alpha_m, \underline{\hat{\theta}}_m) = \sum_{t=1}^n \text{Loss}(y_t h_{m-1}(\underline{x}_t) + \alpha_m y_t h(\underline{x}_t; \underline{\hat{\theta}}_m))$$

• At the optimum value, Assignment Project Exam Help
$$\frac{\partial J(\alpha_m, \hat{\underline{\theta}}_m)}{\partial \alpha_m} \Big|_{\substack{\alpha_m = \hat{\alpha}_m \\ Add WeChat powcoder}}$$
 Add WeChat powcoder

$$\sum_{t=1}^{\infty} DLoss(y_t h_{m-1}(\underline{x}_t) + \hat{\alpha}_m y_t h(\underline{x}_t; \underline{\hat{\theta}}_m)) y_t h(\underline{x}_t; \underline{\hat{\theta}}_m) = 0$$

updated weights (up to normalization and overall sign)

 Thus the current base learner is useless at the next iteration (but may be chosen again later on)

Ensemble training error

The boosting algorithm decreases the training loss

$$\sum_{t=1}^{n} \operatorname{Loss}(y_t h_m(\underline{x}_t))$$

monotonically while the base learners remain effective against the weighted error (derivative is not zero)

• For any non-increasing 1888 function,

$$\sum_{t=1}^{n} I_{[y_t h_m(\underline{x}_t) \leq 0]} \leq \frac{\text{Add WeClast poweder}}{\text{Loss}(0)} \sum_{t=1}^{n} \text{Loss}(y_t h_m(\underline{x}_t))$$

Thus we have a monotonically decreasing upper bound on the 0-1 training error (classification error)

Ensemble training error

