

Om Saha Naav[au]-Avatu Saha Nau Bhunaktu Saha Viiryam Karavaavahai Tejasvi Naav[au]-Adhiitam-Astu Maa Vidvissaavahai Om Shaantih Shaantih Shaantih

Om, May we all be protected
May we all be nourished
May we work together with great energy
May our intelect be sharpened (may our study be effective)
Let there be no Animosity amongst us
Om, peace (in me), peace (in nature), peace (in divine forces)

Bayes' Nets: Sampling

Bayes' Net Representation

- A directed, acyclic graph, one node per random variable
- A conditional probability table (CPT) for each node
 - A collection of distributions over X, one for each combination of parents' values

$$P(X|a_1\ldots a_n)$$

- Bayes' nets implicitly encode joint distributions
 - As a product of local conditional distributions
 - To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:

$$P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

Variable Elimination

- Interleave joining and marginalizing
- d^k entries computed for a factor over k variables with domain sizes d
- Ordering of elimination of hidden variables can affect size of factors generated
- Worst case: running time exponential in the size of the Bayes' net

Approximate Inference: Sampling

Trade-off: Computer Time vs. Accuracy

Sampling

- Sampling is a lot like repeated simulation
 - Predicting the weather, basketball games, ...
- Basic idea
 - Draw N samples from a sampling distribution S
 - Compute an approximate posterior probability
 - Show this converges to the true probability P

- Why sample?
 - Learning: get samples from a distribution you don't know [USED IN RL]
 - Inference: getting a sample is faster than computing the right answer (e.g. with variable elimination) [WILL USE NOW]

Sampling

- Sampling from given distribution
 - Step 1: Get sample u from uniform distribution over [0, 1)
 - E.g. random() in python
 - Step 2: Convert this sample u into an outcome for the given distribution by having each target outcome associated with a sub-interval of [0,1) with sub-interval size equal to probability of the outcome

Example

С	P(C)
red	0.6
green	0.1
blue	0.3

$$0 \le u < 0.6, \rightarrow C = red$$

 $0.6 \le u < 0.7, \rightarrow C = green$
 $0.7 \le u < 1, \rightarrow C = blue$

- If random() returns u = 0.83, then our sample is C =blue
- E.g, after sampling 8 times:

Sampling in Bayes' Nets

- Prior Sampling
- Rejection Sampling
- Likelihood Weighting
- Gibbs Sampling

- For i = 1, 2, ..., n
 - Sample x_i from P(X_i | Parents(X_i))
- Return (x₁, x₂, ..., x_n)

This process generates samples with probability:

$$S_{PS}(x_1 \dots x_n) = \prod_{i=1}^n P(x_i | \mathsf{Parents}(X_i)) = P(x_1 \dots x_n)$$

...i.e. the BN's joint probability

- Let the number of samples of an event be $N_{PS}(x_1 \dots x_n)$
- Then $\lim_{N\to\infty} \widehat{P}(x_1,\ldots,x_n) = \lim_{N\to\infty} N_{PS}(x_1,\ldots,x_n)/N$ = $S_{PS}(x_1,\ldots,x_n)$ = $P(x_1\ldots x_n)$
- This shows, the sampling procedure is consistent
 [i.e., Ratio of the samples in the limit goes towards the actual distribution]

Example

We'll get a bunch of samples from the BN:

- If we want to know P(W)
 - We have counts <+w:4, -w:1>
 - Normalize to get P(W) = <+w:0.8, -w:0.2>
 - This will get closer to the true distribution with more samples ___ Problem
 - Can estimate anything else, too
 - What about P(C | +w)? P(C | +r, +w)? P(C | -r, -w)?
 - Fast: can use fewer samples if less time (what's the drawback?)
 - It can be extremely inaccurate

Rejection Sampling

Rejection Sampling

- Let's say we want P(C)
 - No point keeping all samples around
 - Just tally counts of C as we go
- Let's say we want P(C | +s)
 - Same thing: tally C outcomes, but ignore (reject) samples which don't have S=+s
 - This is called rejection sampling
 - It is also consistent for conditional probabilities (i.e., correct in the limit)

Rejection Sampling

- Input: evidence instantiation
- For i = 1, 2, ..., n
 - Sample x_i from P(X_i | Parents(X_i))
 - If x_i not consistent with evidence
 - Reject: return no sample is generated in this cycle
- Return $(x_1, x_2, ..., x_n)$

- Problem with rejection sampling:
 - If evidence is unlikely, rejects lots of samples
 - Evidence not exploited as you sample
 - Consider P(Shape | blue)

pyramid, green
pyramid, red
sphere, blue
cube, red
sphere, green

- Idea: fix evidence variables and sample the rest
 - Problem: sample distribution not consistent!
 - Solution: weight by probability of evidence given parents

- Input: evidence instantiation
- w = 1.0
- for i = 1, 2, ..., n
 - if X_i is an evidence variable
 - X_i = observation x_i for X_i
 - Set $w = w * P(x_i \mid Parents(X_i))$
 - else
 - Sample x_i from P(X_i | Parents(X_i))
- return (x₁, x₂, ..., x_n), w

Sampling distribution if z sampled and e fixed evidence

$$S_{WS}(\mathbf{z}, \mathbf{e}) = \prod_{i=1}^{l} P(z_i | \mathsf{Parents}(Z_i))$$

Now, samples have weights

$$w(\mathbf{z}, \mathbf{e}) = \prod_{i=1}^{m} P(e_i | \mathsf{Parents}(E_i))$$

Together, weighted sampling distribution is consistent

$$S_{\text{WS}}(z, e) \cdot w(z, e) = \prod_{i=1}^{l} P(z_i | \text{Parents}(z_i)) \prod_{i=1}^{m} P(e_i | \text{Parents}(e_i))$$
$$= P(\mathbf{z}, \mathbf{e})$$

- Likelihood weighting is good
 - We have taken evidence into account as we generate the sample
 - E.g. here, W's value will get picked based on the evidence values of S, R
 - More of our samples will reflect the state of the world suggested by the evidence

- Likelihood weighting doesn't solve all our problems
 - Evidence influences the choice of downstream variables, but not upstream ones (C isn't more likely to get a value matching the evidence)
- We would like to consider evidence when we sample every variable (leads to Gibbs sampling)

Example: Alarm Network

Α	J	P(J A)
+a	+j	0.9
+a	-j	0.1
-a	+j	0.05
-a	-j	0.95

Ш	P(E)	
+e	0.002	
Ψ	0.998	

Α	M	P(M A)
+a	+m	0.7
+a	-m	0.3
-a	+m	0.01
-a	-m	0.99

В	Ш	A	P(A B,E)
+b	+e	+a	0.95
+b	+e	-a	0.05
+b	-е	+a	0.94
+b	-е	-a	0.06
-b	+e	+a	0.29
-b	+e	-a	0.71
-b	-e	+a	0.001
-b	-е	-a	0.999

Most frequent sample weight: 0.05 * 0.01 = 0.0005

Gibbs Sampling

Gibbs Sampling

- Procedure: keep track of a full instantiation $x_1, x_2, ..., x_n$. Start with an arbitrary instantiation consistent with the evidence. Sample one variable at a time, conditioned on all the rest, but keep evidence fixed. Keep repeating this for a long time.
- Property: in the limit of repeating this infinitely many times the resulting samples come from the correct distribution (i.e. conditioned on evidence).
- Rationale: both upstream and downstream variables condition on evidence.
- In contrast: likelihood weighting only conditions on upstream evidence, and hence weights obtained in likelihood weighting can sometimes be very small. Sum of weights over all samples is indicative of how many "effective" samples were obtained, so we want high weight.

Gibbs Sampling Example: P(S | +r)

- Step 1: Fix evidence
 - \blacksquare R = +r

- Step 2: Initialize other variables
 - Randomly

- Steps 3: Repeat
 - Choose a non-evidence variable X
 - Resample X from P(X | all other variables)

Sample from P(S|+c,-w,+r)

Sample from P(C|+s,-w,+r)

Sample from P(W|+s,+c,+r)

Gibbs Sampling

- How is this better than sampling from the full joint?
 - In a Bayes' Net, sampling a variable given all the other variables (e.g. P(R|S,C,W)) is usually much easier than sampling from the full joint distribution
 - Only requires a join on the variable to be sampled (in this case, a join on R)
 - The resulting factor only depends on the variable's parents, its children, and its children's parents (this is often referred to as its Markov blanket)

Efficient Resampling of One Variable

Sample from P(S | +c, +r, -w)

$$\begin{split} P(S|+c,+r,-w) &= \frac{P(S,+c,+r,-w)}{P(+c,+r,-w)} \\ &= \frac{P(S,+c,+r,-w)}{\sum_{s} P(s,+c,+r,-w)} \\ &= \frac{P(+c)P(S|+c)P(+r|+c)P(-w|S,+r)}{\sum_{s} P(+c)P(s|+c)P(+r|+c)P(-w|s,+r)} \\ &= \frac{P(+c)P(S|+c)P(+r|+c)P(-w|S,+r)}{P(+c)P(+r|+c)\sum_{s} P(s|+c)P(-w|s,+r)} \\ &= \frac{P(S|+c)P(-w|S,+r)}{\sum_{s} P(s|+c)P(-w|s,+r)} \end{split}$$

- Many things cancel out only CPTs with S remain!
- More generally: only CPTs that have resampled variable need to be considered, and joined together

Bayes' Net Sampling Summary

Prior Sampling P(Q)

Rejection Sampling P(Q | e)

Likelihood Weighting P(Q | e)

Code

https://pgmpy.org/approx_infer/bn_sampling.html