

Slow Crack Growth of Germanium

Jon Salem NASA GRC

ICACC, January 2016

Germanium

 Good electromagnetic transmission in 2-15 μm range. Specialty window material:

Germanium

- Brittle transition metal.
- Relatively soft.
- Behaves like a soft, brittle ceramic.
- Stress corrosion cracking?
- What is the fracture toughness?

Material

- Single crystal beams
- Coarse gained disks $(2" \& 5"\Phi)$:

Variable grain structure – not ideal for testing.

Anisotropy

• Anisotropy factor A^* measures relative magnitude of elastic anisotropy exhibited by a crystal. $A^* = 0$ for isotropic materials, $A^* = 0$ to 1 for many single crystals.

 Relatively low. Running mechanical test on off-axis planes is problematic if the anisotropy is large.

Young's Modulus - impulse excitation -

•
$$E_{<111>}$$
 = 154.8 ± 0.9 GPa

•
$$E_{<110>} = 138.3 \pm 0.2$$

•
$$E_{<100>}$$
 = 103.1 ± 0.6

Aggregate Constants					
GPa	E	v			
Voigt	135	0.20			
Hashin	133	0.21			
Shtrikman	132	0.21			
Reuss	129	0.21			

•
$$E_{poly} = 131$$
, $v_{poly} = 0.21$

Ge	McSkimin	Bogardus	McSkimin	Mason	Average	NASA	% Diff.
Young's Modulus (GPa)							
E<100> =	104. 4	102.0	102.2	103.7	103.1	103.1	0.0%
E<110> =	138.7	136.7	137.0	138.0	137.6	138.3	0.5%
E<111> =	155.8	154.2	154.5	155.1	154.9	154.8	-0.1%

Well oriented germanium....

Procedure - Fracture Toughness -

Three standard test methods (C1421):

- Different crack size
- Different crack formation history
- Different effort

Loading Configuration - Fracture Toughness -

Relatively simple fixtures: test frame, load cell, recording device.

Fracture Toughness

Method	{100}	{110}	{111}
SEPB	0.68 ± 0.04	0.68 ± 0.01	< 0.74
SCF	0.74 ± 0.02	0.74 ± 0.02	0.74 ± 0.02
CNB	In progress	In progress	In progress

- Essentially the same on all planes
- $K_{Iscf\{jkl\}} = 0.74 \pm 0.02 \text{ MPa}\sqrt{\text{m}}$
- $K_{Ipb\{100, 110\}} = 0.68 \pm 0.04 \text{ MPa}\sqrt{\text{m}}$
- ~10% difference between SCF and SEPB. Plasticity?
- Practical value of $K_{I\{jkl\}} = 0.70 \pm 0.02 \text{ MPa}\sqrt{\text{m}}$.

SCF Precracks

- » {100} exhibit cathedral Wallner lines.
- » The most planar surface occurs on the {110}.
- {111} tends to exhibit cleavage steps.
- » Secondary orientation was not fixed.

Cathedral Orientation

Peak of cathedral corresponds to the <100> {100}.

$K_{I(111)}$ Data of Jaccodine

- Reported an energy equivalent value of 0.55 MPa√m.
- Used DCB w/ fracture mechanics solution that did not include L/t effects.
- Reanalysis gives $K_{I(111)} = 0.72 \pm 0.05 \text{ MPa} \text{/m}$ (6) w/ trend toward 0.67 MPa√m:

: Engineering value ~0.68 MPa√m for low index planes

Data of Jaccodine

- Cut off

R.J. Jaccodine, "Surface Energy of Germanium and Silicon," J. Electrochemical Soc., Vol. 110, No. 6, June, 1963, pp. 524-527.

Strength Testing

- Constant Stress Rate Tests (5 MPa/s)
- Biaxial Flexure ring-on-ring (ROR)
- ~400 grit as-ground surfaces in distilled, deionized water
- ~Polished surface in lab air

ASTM C1499

Fracture Strength & Weibull Statistics

- Polished m = 6; ground m = 9; spurious damage m = 4.
- Scale effect evident: 168 vs 215 MPa.
- Strength of 235 MPa is predicted vs 215 MPa (10%).

Biaxial Fracture Patterns (polished)

Repetitive pattern that makes fractography difficult:

Fracture Path - ground disk -

- Crack initiated at a grinding scratch.
- Transited to a low index planes.
- Deflected at a grain boundary.

Fracture Path in a Polished ROR Disk

- Crack initiated from a semi-elliptical crack emanating from a scratch.
- Turned onto the {111} plane:

- Opportunity to estimate the fracture toughness!
- $K_{I\{hkl\}} = 0.73 \text{ MPa}\sqrt{\text{m}}.$
- Why did the crack turn?

Preferred Fracture Plane

- The fracture toughness on low index planes is similar, so why is the {111} the preferred propagation plane?
- The {111} is the stiffest direction, and stiff directions exhibit high stresses under strain controlled situations.....

But, for a pressurized plate, the stress concentrations are not exhibited.

Fracture Toughness - semi-elliptical cracks on high index planes -

- For polished specimens, $K_I = 0.77 \pm 0.04 \text{ MPa/m} (0.73-0.83).$
- For grinding cracks, $K_I = 0.87 \pm 0.04 \text{ MPa} \sqrt{\text{m}} (0.80 0.90)$.
- Higher due to random orientation and transition to {111}.
- Caveat: local stress not precisely know.....

Slow Crack Growth

- Experimental Approach -
- Constant Stress Rate Testing "dynamic fatigue"
 - ASTM C1368
- Strength based approach with advantages & disadvantages:
 - rapid test; simple geometry
 - samples the inherent, small flaws
 - statistical scatter (many specimens needed)
 - averaging of fatigue regions

Experimental Procedure

- Constant Stress Rate Tests $(5 \text{ to } 5 \times 10^{-4} \text{ MPa/s})$
- Biaxial Flexure (Ring-on-ring)
- Distilled, deionized water
- ~400 grit as-ground surfaces
- ~10 tests per stress rate
- ~40 tests

Slow Crack Growth Analysis

Crack growth function:

$$v = \frac{da}{dt} = AK_I^n = A * \left[\frac{K_I}{K_{IC}}\right]^n$$

Constant stress rate testing:

$$\sigma_f = \left[B(n+1)\sigma_i^{n-2} \dot{\sigma} \right]^{1/(n+1)} \qquad B = \frac{2K_{lc}^{2-n}}{AY^2(n-2)} = \frac{2K_{lc}^2}{A^*Y^2(n-2)}$$

• Parameter extraction via regression:

$$log_{10} \sigma_f = \frac{1}{n+1} log_{10} \dot{\sigma} + log_{10} D \qquad log_{10} D = \frac{1}{n+1} log_{10} [B(n+1)\sigma_i^{n-2}]$$
(Slope α) (Intercept β)

Constant Stress Rate Curve

- Still some scatter.
- Medians clarify the trend.
- Slope is negative to zero; n > 100, no measurable SCG.

Summary and Conclusions

- Ge exhibits similar fracture toughness of $K_I = 0.68 \pm$ 0.02 MPa√m on low index planes. Lower than Si!
- Randomly oriented cracks exhibit higher apparent toughness, but turn and propagate on the stiff {111} directions due to higher stresses (??).....FEA.
- Natural cleavage plane appears to be the {110}.
- Weibull modulus varies from m = 4 (spurious) to m = 19 (ground).
- Strength varies from $S_f = 40$ MPa (ground) to 160 MPa (polished).
- Ge exhibits a Weibull scale effect, but does not exhibit measurable SCG.

Summary and Conclusions

- Aggregate, polycrystalline Yong's modulus and Poisson's ratio are E_{polv} = 131 GPa, v_{polv} = 0.21.
- ROR loading results in stress concentrations at the stiff directions of single crystals.
- From a stress state point-of-view, a lower strength is measurement is expected......
- However, from an effective area perspective, a high strength should be measured.
- POR maybe a better test method, but more effort.

Acknowledgements

- Thanks to Terry McCue for SEM fractography.
- Thanks to Rick Rogers for x-ray diffraction.
- Thanks to Penni Dalton for funding & reviews.