Cours de Signaux et Systèmes

Correction du questionnaire à choix multiples

1. Systèmes linéaires analogiques invariants dans le temps (LIT)

Vrai	Faux	
	V	Le signal constant $f(t)=1$ est l'élément neutre de la convolution. Justification: L'élément neutre de la convolution est $\delta(t)$.
V		tri(t) * tri(t) = rect(t) * tri(t) * rect(t). Justification: Commutativité de la convolution.
	V	Un système LIT est BIBO-stable si et seulement si sa réponse impulsionnelle $h(t)$ vérifie $\int_{\mathbb{R}} h(t) ^2 dt < +\infty$. Justification: Un système est BIBO-stable si et seulement si $\int_{\mathbb{R}} h(t) dt < +\infty$, cf . slide 2.42. Cette condition n'est pas équivalente à celle proposée. Par exemple, si $h(t) = \frac{1}{t}u(t-1)$, on a $\int_{\mathbb{R}} h(t) ^2 dt < +\infty$ mais $\int_{\mathbb{R}} h(t) dt = +\infty$.
		Les sinusoïdales complexes sont les fonctions propres des systèmes LIT. Justification: $\it cf.$ slide 2.48.
V		L'opération de convolution est linéaire. Justification: cf. slide 2.24 (distributivité).
☑		Soit $h(t)$ la réponse impulsionnelle d'un système causal non nul. Il est possible de trouver une entrée $x(t)$ pour laquelle la sortie $(h*x)(t)$ est non-causale. Justification: Soit $a \geq 0$ tel que le support de $h(t)$ commence en a . Pour $x(t) = \delta(t+a+1)$, $(h*x)(t) = h(t+a+1)$ est non-causal.
<u>v</u>		Un système RIF avec réponse impulsionnelle $h(t)$ et $\max h(t) = M < \infty$ est toujours BIBO-stable. Justification: Soit $[a,b]$ le support de $h(t)$, alors $\int_{\mathbb{R}} h(t) \mathrm{d}t \leq \int_a^b M \mathrm{d}t = M(b-a) < +\infty$.
	V	Soient f et g , deux signaux dont les supports sont respectivement $[a,b]$ et $[c,d]$. Le support de $f*g$ est exactement égal à $[a-c,b-d]$. Justification: Prendre par exemple $f=g=\mathrm{rect}$. De plus, le support de $f*g$ est $[a+c,b+d]$, cf . Résultat Général 2 de la correction de la Série 1.

Soit un système dont la réponse impulsionnelle est donnée par h(t) et la fonction de Green par $\phi(t)$. Alors, $h(t) * \phi(t) = 1$.

Justification: $h(t) * \phi(t) = \delta(t)$

 \square La réponse impulsionnelle du système défini par l'équation differentielle y''(t) + 2y'(t) + y(t) = x(t), où y est la sortie et x l'entrée, est causale et RII.

Justification: Le systéme s'écrit $(D^2 + 2D + I)\{y\}(t) = x(t)$, ou encore $y(t) = (D+I)^{-2}\{x\}(t)$. Donc $h(t) = t_+e^{-t}$, qui est causale et RII.

 $\square \qquad (f(t) * \delta(t - t_0)) \cdot \delta(t - t_0) = f(0)\delta(t - t_0).$

Justification:

$$(f(t) * \delta(t - t_0)) \cdot \delta(t - t_0) = f(t - t_0) \cdot \delta(t - t_0)$$

= $f(t_0 - t_0) \cdot \delta(t - t_0)$
= $f(0)\delta(t - t_0)$.

Un système instable est nécessairement à réponse impulsionnelle infinie. Justification : Soit $h(t) = \text{rect}(t - \frac{1}{2}) \cdot \frac{1}{t}$. Le système de réponse impulsionnelle h(t) est RIF mais n'est pas stable car

$$\int_{\mathbb{R}} |h(t)| dt = \int_{0}^{1} \frac{1}{t} dt$$
$$= [\ln(t)]_{0}^{1}$$
$$= +\infty.$$

- $\square \qquad \text{Soit la fonction } g: t \to u(-t). \text{ On a } \frac{\mathrm{d}g(t)}{\mathrm{d}t} = \delta(t).$ $\text{Justification : } g'(t) = -u'(-t) = -\delta(-t) = -\delta(t).$
- Une fonction f appartient à l'espace de fonctions L_1 si et seulement si elle vérifie $\int_{\mathbb{R}} |f(t)|^2 dt < +\infty$.

Justification: Une fonction f appartient à l'espace de fonctions L_1 si et seulement si elle vérifie $\int_{\mathbb{R}} |f(t)| dt < +\infty$. Lorsque son module au carré est intégrable, elle appartient à l'espace de fonctions L_2 .

 \square L'amplification g(t) = Af(t) d'un facteur $A \in \mathbb{R}$ préserve la causalité du signal f.

Justification : L'amplification par A implique un changement d'amplitude mais pas de décalage.

- La fonction h(t)=f(t)*u(t) est la réponse impulsionnelle d'un système BIBO-stable si $f(t)=\mathrm{e}^{-at}u(t)$ et a>0.

 Justification: $h(t)=u(t)\frac{\mathrm{e}^{-at}-1}{-a},\ cf$. Table A-4, 3ème ligne. On a $\int_{\mathbb{R}}|h(t)|\mathrm{d}t=\frac{1}{a}\int_{0}^{+\infty}(1-\mathrm{e}^{-at})\mathrm{d}t=+\infty\ \mathrm{car}\int_{0}^{+\infty}\mathrm{d}t=+\infty.$
- ☑ Un système est BIBO-stable si et seulement si tous ses pôles ont une partie réelle positive.
 Justification : Un système est BIBO-stable si et seulement si tous ses pôles ont une partie réelle strictement négative.
- Soient h(t), f(t) et g(t), trois systèmes RIF. Alors, z(t) = h(t) * f(t) * g(t) est RIF.

 Justification: La convolution de deux systèmes RIF donne un système RIF, cf. Résultat Général 2 de la correction de la Série 1. Cela se généralise facilement à un nombre quelconque de systèmes.
- La fonction $h(t) = e^t u(-t) + \delta(t-1)$ correspond à la réponse impulsionnelle d'un système causal BIBO-stable. Justification: La fonction h(t) n'est pas causale à cause du terme $e^t u(-t)$ qui ne l'est pas et qui n'est pas compensé par $\delta(t-1)$. En revanche, elle est BIBO-stable car c'est la somme de deux systèmes BIBO-stables.

2. Produits scalaires et séries de Fourier

Vrai Faux

Une fonction réelle paire f est toujours orthogonale à une fonction réelle impaire g. Autrement dit, le produit scalaire $\langle f,g\rangle=\int_{\mathbb{R}}f(t)g^*(t)\mathrm{d}t$ est toujours nul.

Justification: Le produit $f(t)g^*(t)$ est une fonction impaire, donc son intégrale est nulle.

 \square Soit $\phi_n(t) = \text{rect}(t - \frac{1}{2} - \frac{n}{2})$. Alors, $\{\phi_n\}_{n=0,1,2,3}$ n'est pas une famille orthonormée.

Justification: $\langle \phi_0, \phi_1 \rangle = \frac{1}{2}$. Donc on n'a pas $\langle \phi_n, \phi_m \rangle = \delta_{n-m}$.

 \square L'intercorrélation c_{xy} des signaux réels x(t) et y(t) est toujours égale à (x*y)(t) si y(t) est symétrique par rapport à un $t=t_0$ quelconque.

Justification: On peut considérer par exemple x(t) = u(t) et $y(t) = \delta(t)$.

- L'intercorrélation des signaux $x(t) = \sin(t)$ et $y(t) = \cos(t)$ est toujours égale à zéro.

 Justification: L'intercorrelation, fonction d'une variable τ , est une mesure de similarité entre deux signaux (c.f. slide 3.13). On note que pour un déphasage de $\tau = -\frac{\pi}{2}$, le cosinus et le sinus sont en phase. L'intercorrelation est alors maximale et non nulle.
- La forme $\langle f,g\rangle=\int_{\mathbb{R}}f(t)g^*(t-2)\,\mathrm{d}t$ est un produit scalaire sur $L_2(\mathbb{R})$, l'espace des fonctions à énergie finie.

 Justification: $\langle f,g\rangle$ n'est pas symétrique, ce qu'on vérifie par exemple avec $f(t)=\mathrm{rect}(t)$ et $g(t)=\mathrm{rect}(t-2)$.
- \square Les coefficients c_n de la série de Fourier complexe d'un signal x(t) de période T suffisent pour calculer l'énergie de x(t) au sens de la norme associée à l'espace $L_2\left([-T/2,T/2]\right)$.

Justification: L'énergie s'obtient comme $||x||^2 = \sum_{n \in \mathbb{Z}} |c_n|^2$ cf. slide 3.37.

- $\square \qquad \square \qquad \text{L'intercorrélation } c_{xy} \text{ des signaux réels } x(t) \text{ et } y(t) \text{ est donnée par } c_{xy}(\tau) = x(-\tau) * y(\tau) = y(-\tau) * x(\tau) = \int_{-\infty}^{\infty} x(t)y(t-\tau) \, \mathrm{d}t.$ Justification : L'intercorrélation n'est pas commutative. On a $c_{xy}(\tau) = c_{yx}^*(-\tau)$, cf. slide 3.13.
- Soient deux signaux causaux x(t) et y(t). On a $c_{xy}(\tau) = 0$ pour $\tau < 0$. Justification: Soient $x(t) = y(t) = \text{rect}(t - \frac{1}{2})$.

$$\begin{split} c_{xy}(\tau) &= x(-\tau) * y^*(\tau) \\ &= \mathrm{rect}(-\tau - \frac{1}{2}) * \mathrm{rect}(\tau - \frac{1}{2}) \\ &= \mathrm{rect}(\tau + \frac{1}{2}) * \mathrm{rect}(\tau - \frac{1}{2}) \text{ (car la fonction rect est paire)} \\ &= \mathrm{rect}(\tau) * \delta(\tau + \frac{1}{2}) * \mathrm{rect}(\tau) * \delta(\tau - \frac{1}{2}) \\ &= \mathrm{tri}(\tau). \end{split}$$

La fonction tri n'est pas causale alors que x et y le sont.

- \square Le produit scalaire $\langle f, f \rangle_{L_2}$ est une mesure de l'énergie du signal f. Justification : L'énergie du signal f est donnée par $||f||_{L_2}^2 = \langle f, f \rangle_{L_2}$, cf. slides 3.6 et 3.7.
- Le signal $\sqrt{3}\cos(2\pi t)$ n'a que deux coefficients de Fourier complexes non nuls par rapport à la période T=1.

 Justification: $\sqrt{3}\cos(2\pi t) = \frac{\sqrt{3}}{2}(e^{j2\pi t} + e^{-j2\pi t}) = \frac{\sqrt{3}}{2}(e^{j\omega_0 t} + e^{-j\omega_0 t})$. Les seuls coefficients de Fourier complexes non nuls sont donc $c_1 = c_{-1} = \frac{\sqrt{3}}{2}$.

Soit
$$x(t) = \sum_{n=-3}^{3} n e^{j2\pi nt}$$
.

Vrai Faux

- \square La fonction x(t) est réelle. Justification: $c_{-n} \neq c_n^{\star}$, c.f. slide 3.32.
- $\square \qquad \square \qquad \text{La fonction } x(t) \text{ est paire.}$ $\text{Justification: } x(-t) = \sum_{n=-3}^{3} n \, \mathrm{e}^{-\mathrm{j}2\pi nt} = -\sum_{n=-3}^{3} (-n) \, \mathrm{e}^{\mathrm{j}2\pi(-n)t} = -\sum_{n=-3}^{3} n \, \mathrm{e}^{\mathrm{j}2\pi nt}.$ On obtient x(-t) = -x(t), la fonction est donc impaire.
- \square La valeur moyenne de la fonction x(t) est nulle. Justification: La valeur moyenne de x(t) est donnée par $c_0 = 0$, ce qu'on voit directement dans la définition de c_0 , cf. slide 3.28.
- \square La série de Fourier complexe de x(t) par rapport à la période T=1 possède 6 coefficients non nuls.

 Justification: cf. Figure 1.
- $\square \qquad \square \qquad \int_0^1 |x(t)|^2 dt = \frac{\sqrt{2}}{3}.$ Justification: Avec Parseval (c.f., slide 3-37), on obtient: $||x||^2 = \sum_{n \in \mathbb{Z}} |c_n|^2 = \sum_{n=-3}^3 n^2 = 28 \neq \sqrt{2}/3.$

Figure 1: Coefficients de la série de Fourier complexe de x(t).

Soit $x(t) = \sum_{n=-2}^{2} e^{j\pi nt}$.

Vrai Faux

La série de Fourier complexe de x(t) par rapport à la période T=2 possède 5 coefficients non nuls.

Lustification: On a $x(t) - \sum^2 e^{j\omega_0 nt}$ Il y a donc bien 5 coefficients

Justification : On a $x(t)=\sum_{n=-2}^2 \mathrm{e}^{\mathrm{j}\omega_0 nt}$. Il y a donc bien 5 coefficients non nuls : $c_{-2}=c_{-1}=c_0=c_1=c_2=1$.

- \square La fonction x(t) est réelle. Justification : On a $c_{-n}=c_n^*$, la fonction est donc rélle, cf. slide 3.32.
- \square La fonction x(t) est à valeur moyenne nulle. Justification : La valeur moyenne de x(t) est donnée par $c_0=1,\ cf.$ slide
- $\square \qquad \boxed{ } \int_0^2 |x(t)|^2 \, \mathrm{d}t = 1.$ Justification : Avec Parseval (cf., slide 3.37), on obtient : $||x||^2 = \sum_{n \in \mathbb{Z}} |c_n|^2 = 5 \neq 1.$