Aufgabe 5.3

T. Adam, M. ben Ahmed

Universität Osnabrück

Æ

January 25, 2021

Aufgabe 5.3 - Public Transport

Intriguingly Simple and Fast Transit Routing (2013)

- J. Dibbelt, T. Pajor, B. Strasser, D. Wagner
- Berechnen von optimalen Reisen in öffentlichen Verkehrsnetzen
- Connection Scan Algorithmus (CSA)
 - earliest arrival
 - profile queries
 - multi-criteria optimization
 - minimum expected arrival time

Grundbegriffe

Stops und Connections

- Stops p
- Connections c
- $p_{dep}(c)$ Abfahrt-Stop
- $p_{arr}(c)$ Ankunft-Stop
- $\tau_{dep}(c)$ Abfahrtszeit von c
- $\tau_{arr}(c)$ Ankunftszeit von c
- $\tau_{ch}(p)$ Umstiegszeit an Stop p

Grundbegriffe

Trips und Footpaths

- Trip als Reihenfolge von Connections des selben Fahrzeugs
- *t*(*c*) Trip von Connection *c*
- Footpath zwischen zwei nahegelegenen Stops
- Footpaths dürfen nicht auf einander folgen
- Routen als Mengen von Trips mit der selben Stop-Sequenz

Probleme

Earliest Arrival Problem

- Gegeben:
 - Startort und Startzeit
 - Zielort
 - Fahrplan mit Abfahrts- und Ankunftszeiten
- Gesucht: Menge an Verbindungen (Route) mit frühster Ankunftszeit

[deutschebahn.com]

Connection Scan Algorithmus

Connection Scan Algorithmus

- Array aller Connections nach Abfahrtszeit sortieren
- Für jeden Stop ein Label speichern (intial ∞)
- Über Connection Array iterieren und entsprechende Labels aktualisieren
- Beispiel mit 5 Stops und 4 Connections

labels

Osnabrück Hbf	Bremen Hbf Gleis 5	Bremen Hbf Gleis 7	Bremen Hbf Gleis 9
14.00	∞	∞	8

 $\tau_{ch}(\cdot) = 0.05$

connections

RE	RE
14.30	15.50
Osnabrück	Bremen Hbf
Hbf	Gleis 5

IC	IC
15.00	16.00
Osnabrück	Bremen Hbf
Hbf	Gleis 7

ME	ME	
16.00	17.30	
Bremen Hbf Gleis 9	Hamburg Hb	

Hamburg Hbf

 ∞

IC	IC
16.05	17.00
Bremen Hbf Gleis 7	Hamburg Hbf

labels

Osnabrück	Bremen Hbf	Bremen Hbf	Bremen Hbf
Hbf	Gleis 5	Gleis 7	Gleis 9
14.00	15.50	15.55	15.55

 $\tau_{ch}(\cdot) = 0.05$

connections

RE	RE	
14.30	15.50	
Osnabrück	Bremen Hbf	
Hbf	Gleis 5	

IC	IC
15.00	16.00
Osnabrück	Bremen Hbf
Hbf	Gleis 7

ME	ME	
16.00	17.30	
Bremen Hbf Gleis 9	Hamburg Hbf	

Hamburg Hbf

 ∞

IC	IC	
16.05	17.00	
Bremen Hbf Gleis 7	Hamburg Hbf	

labels

Osnabrück	Bremen Hbf	Bremen Hbf	Bremen Hbf
Hbf	Gleis 5	Gleis 7	Gleis 9
14.00	15.50	15.55	15.55

 $\tau_{ch}(\cdot) = 0.05$

connections

RE	RE
14.30	15.50
Osnabrück	Bremen Hbf
Hbf	Gleis 5

IC	IC
15.00	16.00
Osnabrück	Bremen Hbf
Hbf	Gleis 7

ME	ME
16.00	17.30
Bremen Hbf Gleis 9	Hamburg Hb

Hamburg Hbf

17.30

IC	IC
16.05	17.00
Bremen Hbf Gleis 7	Hamburg Hbf

labels

Osnabrück	Bremen Hbf	Bremen Hbf	Bremen Hbf
Hbf	Gleis 5	Gleis 7	Gleis 9
14.00	15.50	15.55	15.55

Hamburg Hbf 17.00

 $\tau_{ch}(\cdot) = 0.05$

connections

RE	RE
14.30	15.50
Osnabrück	Bremen Hbf
Hbf	Gleis 5

IC	IC
15.00	16.00
Osnabrück	Bremen Hbf
Hbf	Gleis 7

ME	ME
16.00	17.30
Bremen Hbf Gleis 9	Hamburg Hb

IC	IC
16.05	17.00
Bremen Hbf Gleis 7	Hamburg Hbf

Profile Queries

- Abfahrts- und Ankufszeiten häufig unbekannt
- Mehrere Reisen kommen in Frage
- Input: Fahrplan, Zielstop t
- Output: st-Profile für jeden Stop s
- Profile sind Mengen von (Ankunftszeit, Abfahrzeit)
 Paaren
- ggf. pareto-optimale Mengen verwalten

Profile Connection Scan

- Sortiere Connections absteigend nach Abfahrtszeit
- Iteriere über alle Connections
- Füge zu $p_{dep}(c)$ Profil hinzu
- Entferne ggf. dominierte Paare

Osnabrück Hbf Hamburg Hbf Details einblenden	14:23 16:14	1:51 0 ICE å	ñi
Osnabrück Hbf Hamburg Hbf Details einblenden	14:29 17:43	3:14 1 RE, ME > Rückfahrt hinzufügen	-
Osnabrück Hbf Hamburg Hbf Details einblenden	15:23 17:14	1:51 0 IG ñ	iii
Osnabrück Hbf Hamburg Hbf Details einblenden	15:29 18:26	2.57 1 RE, ME Rückfahrt hinzufügen	-
Osnabrück Hbf Hamburg Hbf Details einblenden	16:23 18:14	1:51 0 ICE å	iii
	[h:	hn.del	

Multi Criteria

- Profile sind Triple aus (Ankunftszeit, Abfahrzeit, #Umstiege)
- Iteriere über alle Connections
- Füge zu $p_{dep}(c)$ Profil hinzu
- Entferne ggf. dominierte Paare

Minimum Expected Arrival Time

Berechnet alternative Reisen

[bahn.de]

Algorithmen Übersicht

- Connection Scan
- Dijkstra
 - Time-Expanded: Graph mit Knoten = Zeitpunkte und Kanten = Connections
 - ullet Time-Dependent: Graph mit Knoten = Stop und Kanten = elementar Verbindung
- Dynamische Programmierung auf Fahrplan
 - RAPTOR

Ergebnisse

London

- 20.843 Stops
- 25.537 Trips
- 4.850.431 Connections
- 2.135 Routen
- 45.652 Footpaths

Pareto Profile All-to-One	
RAPTOR	1179 ms
Connection Scan	255 ms

Earliest Arrival One-to-All	
Time-Expanded	876,2 ms
Time-Dependent	18,9 ms
Connection Scan	9,7 ms

64,4 ms
10,9 ms
2,0 ms

Ergebnisse

Zusammenfassung

- CSA hat ein relativ einfaches Konzept
- CSA ist schneller als bestehende Ansätze
- Insbesondere MEAT wird besonders schnell gelöst
- Schnell genug für interaktive Anwendungen

Ergebnisse

Zusammenfassung

- CSA hat ein relativ einfaches Konzept
- CSA ist schneller als bestehende Ansätze
- Insbesondere MEAT wird besonders schnell gelöst
- Schnell genug für interaktive Anwendungen

Fragen?