- Det **projektive planet** \mathbb{P}^2 består av $(x,y,z) \in \mathbb{R}^3$ slik at $(x,y,z) \neq \overrightarrow{0}$ og $(x,y,z) = (x',y',z') \Leftrightarrow (x,y,z) = (\lambda x',\lambda y',\lambda z')$ der $\lambda \neq 0$.
- Et punkt i $\{(x,y,0) \mid x,y \in \mathbb{R}, (x,y,0) \neq \overrightarrow{0}\}$ kalles for et **punkt i det uendelige**.
- Et punkt $(x, y, 1) \in \mathbb{P}^2$ korresponderer til et punkt $(x, y) \in \mathbb{R}^2$.
- Homogeniseringen til et polynom f(x,y)=0 er polynomet $Z^g\cdot f(\frac{X}{Z},\frac{Y}{Z})$, der $g=\operatorname{grad}(f)$.

Oppgave 1.

Betrakt følgende system av polynomer

$$\begin{cases} y = x^2 \\ x = 1 \end{cases}$$

- a) Skisser grafene til polynomene. Uten regning, hvor mange skjæringspunkter i \mathbb{P}^2 kan du forvente?
- b) Regn ut alle løsninger av systemet i \mathbb{P}^2 . Tegn opp løsningene dine.

Oppgave 2.

Hvorfor kan \mathbb{P}^2 identifiseres med halvkulen $\mathcal{S} = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = 1, z \geq 0\}$?

Oppgave 3.

Husk at et kjeglesnitt i \mathbb{R}^2 er grafen til et polynom $p(x,y) = Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$. **Diskriminanten** Δ til et slikt polynom er $\Delta = B^2 - 4AC$.

- a) Vi sier at et kjeglesnitt er **degenerert** hvis p(x, y) kan faktoriseres til polynomer av lavere grad. Hvilke kurver kan degenererte kjeglesnitt være?
- b) Anta at kjeglesnittet ikke er degenerert. Vis at følgende er sant:

$$\begin{cases} \text{ Hvis } \Delta < 0, \text{ da har kjeglesnittet 0 projektive punkter i det uendelige.} \\ \text{ Hvis } \Delta = 0, \text{ da har kjeglesnittet 1 projektive punkt i det uendelige.} \\ \text{ Hvis } \Delta > 0, \text{ da har kjeglesnittet 2 projektive punkter i det uendelige.} \end{cases}$$

b) Hva slags kjeglesnitt representerer $2005x^2 + 2006xy + 2007y^2 + 2008x + 2009y + 2010 = 0$?

Oppgave 4. (Litt vanskeligere).

La $p_1,...,p_5 \in \mathbb{R}^2$ være 5 punkter slik at ingen 3 av punktene ligger på en linje. Vis at det finnes et unikt ikke-degenerert kjeglesnitt som passerer gjennom punktene $p_1,...,p_5$.

Oppgave 5. (For de tøffe).

Kurven \mathcal{C} er gitt ved $ZY^2 = X^3 + aXZ^2 + bZ^3$ i \mathbb{P}^2 . La $G = \{\text{Punkter på}\}\ \text{og la } \mathcal{O} = (0,1,0)$. Ved Bezouts teorem vil enhver linje skjære \mathcal{C} i tre punkter $P, Q, R \in G$ (Hvorfor?). Definer addisjon \oplus slik: $P \oplus Q$ er punktet på G som ligger på en linje med R og \mathcal{O} .

- a) $P \oplus \mathcal{O} = P$, for alle $P \in G$.
- b) $P \oplus Q = Q \oplus P$, for alle $P, Q \in G$.
- c) For hver $P \in G$, finnes $P' \in G$ slik at $P \oplus P' = \mathcal{O}$.

 $^{^{0}}$ Faktisk er (G, \oplus) en gruppe. Denne gruppen brukes ofte i bl.a. kryptografi.