Table B8 -- Quantiles (p-values) for Kendall's S statistic and tau correlation coefficient

For N>10 use the normal approximation

One-sided $p = Prob [S \ge x] = Prob [S \le -x]$

For two-sided test (Ha: tau not = 0) use p-value=2(one-sided p)

		N = Nur	mber of				N = Number of data pairs		
		data pairs							
	,	_	0					_	4.0
X	4	5	8	9	X	3	6	7	10
0	0.625	0.592	0.548	0.540	1	0.500	0.500	0.500	0.500
2	0.375	0.408	0.452	0.460	3	0.167	0.360	0.386	0.431
4	0.167	0.242	0.360	0.381	5		0.235	0.281	0.364
6	0.042	0.117	0.274	0.306	7		0.136	0.191	0.300
8		0.042	0.199	0.238	9		0.068	0.119	0.242
10		0.0083	0.138	0.179	11		0.028	0.068	0.190
12			0.089	0.130	13		0.0083	0.035	0.146
14			0.054	0.090	15		0.0014	0.015	0.108
16			0.031	0.060	17			0.0054	0.078
18			0.0156	0.038	19			0.0014	0.054
20			0.0071	0.022	21			0.0002	0.036
22			0.0028	0.0124	23				0.023
24			0.0009	0.0063	25				0.0143
26			0.0002	0.0029	27				0.0083
28			< 0.0001	0.0012	29				0.0046
30				0.0004	31				0.0023
32				0.0001	33				0.0011
34				< 0.0001	35				0.0005
36				< 0.0001	37				0.0002
					39				< 0.0001
					41				< 0.0001
					43				< 0.0001
					45				< 0.0001
	ı		·						