Name:	
4-digit code:	

- Write your name and the last 4 digits of your SSN in the space provided above.
- The test has five (5) pages, including this one and the table of Laplace transforms at the end.
- Show sufficient work to justify all answers unless otherwise stated in the problem. Correct answers with inconsistent work may not be given credit.
- Credit for each problem is given at the right of each problem number.
- No books, notes or calculators may be used on this test.

Page	Max	Points
2	35	
3	30	
4	35	
Total	100	-

Problem 1 (20 pts). Use exclusively techniques based on the Laplace transform to solve the initial value problem x'' + 3x' + 2x = t that satisfies x(0) = 0, x'(0) = 2.

Problem 2 (15pts). Find the Laplace transform of $f(x) = \sin 3x \cos 3x$.

Problem 3 (20 pts). Use exclusively the technique of variation of parameters to solve the differential equation y'' + 3y' + 2y = x.

Problem 4 (10pts). Find the Laplace transform of $f(x) = \sin(x)/x$.

Problem 5 (15 pts). Use exclusively the method of undetermined coefficients to solve the differential equation $\frac{d^2f}{d\omega^2}(\omega) + 3\frac{df}{d\omega}(\omega) + 2f(\omega) = \omega$.

Problem 6 (20). Find the inverse Laplace transform of $F(s) = (s^2 + b^2)^{-2}$

TABLE 6.2.1 Elementary Laplace Transforms

7 1	
$f(t) = \mathcal{L}^{-1}{F(s)}$	$F(s) = \mathcal{L}\{f(t)\}\$
1. 1	$\frac{1}{s}$, $s > 0$
2. <i>e</i> ^{at}	$\frac{1}{s-a}$, $s>a$
3. t^n , $n = positive integer$	$\frac{n!}{s^{n+1}}, \qquad s > 0$
4. t^p , $p > -1$	$\frac{\Gamma(p+1)}{s^{p+1}}, \qquad s > 0$
5. sin <i>at</i>	$\frac{a}{s^2 + a^2}, \qquad s > 0$
6. cos <i>at</i>	$\frac{s}{s^2 + a^2}, \qquad s > 0$
7. sinh <i>at</i>	$\frac{a}{s^2 - a^2}, \qquad s > a $
8. cosh at	$\frac{s}{s^2 - a^2}, \qquad s > a $
9. $e^{at} \sin bt$	$\frac{b}{(s-a)^2 + b^2}, \qquad s > a$
10. $e^{at}\cos bt$	$\frac{s-a}{(s-a)^2+b^2}, \qquad s>a$
11. $t^n e^{at}$, $n = positive integer$	$\frac{n!}{(s-a)^{n+1}}, \qquad s > a$
12. $u_c(t)$	$\frac{e^{-cs}}{s}, \qquad s > 0$
13. $u_c(t)f(t-c)$	$e^{-cs}F(s)$
14. $e^{ct}f(t)$	F(s-c)
15. <i>f</i> (<i>ct</i>)	$\frac{1}{c}F\left(\frac{s}{c}\right), \qquad c > 0$
$16. \int_0^t f(t-\tau)g(\tau)d\tau$	F(s)G(s)
17. $\delta(t-c)$	e^{-cs}
18. $f^{(n)}(t)$	$s^n F(s) - s^{n-1} f(0) - \dots - f^{(n-1)}(0)$
$19. \ \ (-t)^n f(t)$	$F^{(n)}(s)$