ANA4 Interrogation écrite2

Sujet1

Exercice1

Soit
$$F(x) = \int_{1}^{+\infty} \frac{1}{t^2(1+xt)} dt$$
, $x \ge 0$

- 1) Montrer que F est continue sur \mathbb{R}^+ .
- 2) Etudier la dérivabilité de F sur \mathbb{R}^+_* .

Exercice2

1) Etant donnée
$$f \in OE$$
 telle que: $f(t) = \begin{cases} t & \text{si } t > 0 \\ 1 & \text{si } t = 0 \end{cases}$

En justifiant votre réponse, dites laquelle des deux égalités est vraie:

a)
$$\mathcal{L}(f'(t))(s) = s\mathcal{L}(f(t))(s) - 1$$
.

b)
$$\mathcal{L}(f(t))(s) = s\mathcal{L}(f(t))(s)$$
.

2)

a) Montrer que:
$$\forall f \in OE, \ \mathcal{L}(e^{at}f(t))(s) = F(s-a) \ \forall s \succ a + \gamma_f.$$

b) Soit Q un polynome de degré n tq:

$$Q(s) = (s - \alpha_1)(s - \alpha_2)...(s - \alpha_n) \text{ où: } \alpha_1, \alpha_2, ..., \alpha_n \in \mathbb{R} \text{ avec } \alpha_i \neq \alpha_j \ \forall i \neq j.$$

$$\text{Montrer que } Q'(\alpha_i) = \prod_{j=1}^n (\alpha_i - \alpha_j).$$

c) Soit $P \in \mathbb{R}[s]$ tq $d^{\circ}P \prec n$: déduire de a) et b) que:

$$\mathcal{L}^{-1}\left(\frac{P}{Q}(s)\right)(t) = \sum_{i=1}^{n} \frac{P(\alpha_i)}{Q'(\alpha_i)} e^{\alpha_i t} \text{ (Formule de developpement d'Heaviside)}$$

d) En déduire
$$\mathcal{L}^{-1}\left(\frac{2s+3}{(s-1)(s-2)(s-3)}\right)(t)$$
.

3)
$$\mathcal{L}^{-1}(Arctgt)$$
 n'existe pas, pourquoi?

Corrigé de l'interro 2 ANA4 section A

Exercice1

Soit
$$F(x) = \int_{1}^{+\infty} \frac{1}{t^2(1+xt)} dt$$
, $x \ge 0$

1) Continuité de F sur \mathbb{R}^+ :

Posons $f(t,x) = \frac{1}{t^2(1+xt)}$, on a:

 $\bigstar f$ est continue sur $[1,+\infty[\times\mathbb{R}^+,\leftarrow]$ 0.5point

 \bigstar Convergence uniforme de f sur \mathbb{R}^+ :— 1point

$$|f(t,x)| = f(t,x) = \frac{1}{t^2(1+xt)} \le \frac{1}{t^2} \quad \forall x \in \mathbb{R}^+.$$

or $\int_{1}^{+\infty} \frac{1}{t^2} dt$ converge alors $\int_{1}^{+\infty} \frac{1}{t^2(1+xt)} dt$ converge uniformément sur \mathbb{R}^+ .

2) La dérivabilité de F sur \mathbb{R}_*^+ .

 $\star f$ et $\frac{\partial f}{\partial x} = \frac{-1}{t(1+xt)^2}$ sont continues sur $[1,+\infty[\times\mathbb{R}^+\leftarrow 0.25point]$.

★ $\int_{\cdot}^{+\infty} f(t,x)dt$ converge uniformément sur \mathbb{R}^+ donc simplement sur \mathbb{R}^+ . ← $\boxed{0.25point}$

 \star Cv unif de $\int_{0}^{+\infty} \frac{\partial f}{\partial x}(t,x)dt$ sur \mathbb{R}_{*}^{+} si possible sinon sur des intervalles: \leftarrow 1 point

 $\left|\frac{\partial f}{\partial x}(t,x)\right| = \left|\frac{1}{t(1+xt)^2}\right| = \frac{1}{t(1+xt)^2} \le \frac{1}{t(xt)^2} = \frac{1}{xt^3} \le \frac{1}{At^3} \quad \forall x \in [A,+\infty[\text{ avec } A \succ 0.$

or $\int_{1}^{+\infty} \frac{1}{At^3} dt$ converge donc $\int_{1}^{+\infty} \frac{\partial f}{\partial x}(t,x) dt$ converge uniformément sur $[A,+\infty[$ $\forall A > 0$.

d'où F est dérivable sur $[A, +\infty[\forall A > 0 \leftarrow \boxed{0.5point}]$ donc F est dérivable sur

$$\bigcup_{A \in \mathbb{R}_{+}^{+}} \left[A, +\infty \right[= \mathbb{R}_{+}^{+}. \leftarrow \boxed{0.5point}$$

Exercice2

1)
$$f(t) = \begin{cases} t & \text{si } t > 0 \\ 1 & \text{si } t = 0 \end{cases}$$
 On a:

 $\bigstar f \in OE$.

 $\bigstar f$ est une fonction dérivable sur \mathbb{R}_*^+ et non dérivable en 0 puisqu'elle n'est pas continue en ce point. $\leftarrow \boxed{0.5point}$

 $\bigstar f'(t) = 1$ est continue sur \mathbb{R}^+_* donc f' est continue par morceaux sur $[\varepsilon, a] \ \forall \varepsilon \succ 0$. donc f vérifie les hypothèses de la deuxième version du théorème sur la dérivabilité. par conséquent:

$$\mathcal{L}(f'(t))(s) = s\mathcal{L}(f(t))(s) - f(0^{+}) \text{ or } f(0^{+}) = \lim_{t \to 0^{+}} f(t) = \lim_{t \to 0^{+}} t = 0$$