Report for 《Introduction to Topology》 by V.A.Vassiliev

Li Yang

Introduction: This book is so thin, but it contains all materials needed for basic algebraic and differentiable topology (including basic general topology, homotopy, covering space, CW-complex, homology, manifolds, fibre, cohomology), and even some higher level contents such as Morse theory and Poincaré duality. It's amazing that a light book like this could offer so much information. And the statement is also charming, so it's quite readable if you take your patience and your hands on.

Contents

1	Top	ological spaces and some properties	2
	1.1	Topological spaces	4
	1.2	Homomorphism and some topological properties	,
	1.3	The operation of topological spaces	4
2	Homotopy group and homotopy equivalence		ļ
	2.1	Homotopy group	,
	2.2	Homotopy equivalence	(

1 Topological spaces and some properties

1.1 Topological spaces

Definition 1.1.1. We call X a **topological space** if it has a structure \pounds that fits the several conjectures below:

- (1) X and $\emptyset \in \pounds$.
- (2) $s_1, s_2 \in \pounds \Rightarrow s_1 \cap s_2 \in \pounds$.
- (3) $\forall family \ of \ sets \ S \subseteq \pounds \Rightarrow (\bigcup_{s \in S} s) \in \pounds.$

From now on,we use X to denote the topological sapce (X, \pounds) and use topo for a topological space. Objects $\in \pounds$ are called **open sets**, and if $s \in \pounds$, s^c is called a **closed set**.

Sometimes it's convenient to describle a topo with **basis**: the basis of X is a family of sets $\mathcal{B} = \{B_i\} \subseteq \mathcal{L}$ such that each open set could be represented as $\bigcup B_i$ for some B_is .

Let's try a special case of topo:

Definition 1.1.2. A topo X is called a **metric space** if there exists a \mathbb{R}_+ -function ρ :

- (1) $\rho(x,y) \geq 0$, and $\rho(x,y) = 0$ if and only if x = y.
- (2) $\rho(x,y) = \rho(y,x)$.
- (3) $\rho(x,y) < \rho(x,z) + \rho(z,y)$.

And we define the basis to be all the sets like $\{x \in X | \rho(x, x_0) < r, x_0 \in X, d > 0\}$, then X is a topo.

Exercise 1.1. Let $X = \mathbb{R}^n$, $I^k := \{x = (x_1, \dots, x_n) \in X | a_i < x_i < b_i\}$, and let I^k be the elements of the basis, does it the same with the topo above?

Definition 1.1.3. (without explaination)

- (1) Convergence.
- (2) **Limitation point** of a set.
- (3) Closure of sets.
- (4) Covering of a set.
- (5) **Restriction** of a topo.

1.2 Homomorphism and some topological properties

Definition 1.2.1. There is a map $f: X \to Y(X, Y \text{ are topos})$:

- (1) f is called continuous if for each open set $s \subseteq Y$, $f^{-1}(s)$ is an open set of X.
- (2) f is called a homomorphism when it's bijective and both f and f^{-1} is continious.

(what's the counterexample that f is continious but f^{-1} is not?)

Definition 1.2.2. Some important topological properties (without explaination):

- (1) Connected spaces.
- (2) **Path**.
- (3) Path-connected spaces.
- (4) Sequence compact sapces and compact spaces.
- (5) Hausdorff spaces.

Theorem 1.2.3. Something about compact sets.

- (1) All the properties above is fixed under homomorphisms.
- (2) (Heine Borel) For a set $s \in \mathbb{R}^n$:
 - s is compact.
 - \Leftrightarrow s is closed and bounded.
 - $\Leftrightarrow \forall infinite subsets of s has limitation points in s.$
- (3) A topo with a countable basis¹ is compact if and only if it's sequence-compact.

 $^{^1\}mathrm{As}$ the name, a basis is countable if the set $\mathcal B$ is countable.

1.3 The operation of topological spaces

Definition 1.3.1. *Some operations(without explaination):*

- (1) **Product**.
- (2) Quotient.
- (3) Conglutinant. (a type of quotient)

e.g.If X is a topo, use ΣX to denote the topo $X \times [-1,1]/\sim$. ~:points in $X \times \{-1\}$ or $X \times \{1\}$ is equivalent. ΣX is called suspensioa.

Theorem 1.3.2. Compactness is fixed under product, conglutinant.³

Exercise 1.2. Construct the Torus, Klein bottle and Möbius strip through conglutinant.

(Hint:start from a rectangle.)

²纬垂

³Pay attention to the conditions

2 Homotopy group and homotopy equivalence

2.1 Homotopy group

Definition 2.1.1. Homotopic maps:

There are two continious maps given: $f: X \to Y, g: X \to Y$, they're homotopic if there exists a continious map $F: X \times I \to Y$ such that F(x,1) = f(x) and F(x,0) = g(x), denote that $f \simeq g$. And F is called a homotopic map.

Lemma 2.1.2. $B^n/\partial B^n, i.e.B^n/S^{n-1} \simeq S^{n-1}.^4$

Proof. Let ∂B^n correspond with the north point of S^n , and from the bound to the center, each surface corresponds with the corresponding circle on S^n from north to south.

Definition 2.1.3. Homotopy group (A, X are both path-continious topos.): Choose $a_0 \in A$ and $x_0 \in X$, consider the set consists of homotopy-equivalent classes of maps $f: A \to X$, $f(a_0) = x_0$, denote it with $\pi[A, X]$. Specially, we use $\pi_n(X)$ for $\pi[S^n, X]$. We claim that $\pi_n(X)$ has a group structure, and we call it n - dimension homotopy group.

Exercise 2.1. Proof that:

- (1) $\pi_n(X)$ actually compose a group. (Hint:use Lemma 2.1.2.)
- (2) Two homomorphous topos have the same homotopy group.
- *(3) The group won't get changed as we change the base point x_0 .⁵

Exercise 2.2. Proof that while $n \geq 2, \pi_n(X)$ is a commutative group.

Question 2.3. When will $\pi[A, X]$ have a group structure and when will the group be commutative?

(Direction:if $\exists B \text{ such that } A = \Sigma B, \pi[A, X] \text{ is a group;if } A = \Sigma \Sigma B, \pi[A, X] \text{ is a commutative group.)}$

Definition 2.1.4. For a given topo, if $\pi_n(X)(n \leq k)$ is trivial and π_{k+1} is not, then we call X k - **connected**. Moreover, we can define "locally k - **connected**".

 $^{^4}B^n$ stands for the disc in dimension n, and ∂ is the bound of the space, here,means S^{n-1} .

⁵If it's too difficult,add the condition:n = 1.

2.2 Homotopy equivalence

Definition 2.2.1. X, Y are called **homotopy equivalent**: If there exist two continious maps: $f: X \to Y, g: Y \to X,$ and two homotopic maps: $F: X \times [0,1] \to X, G: Y \times [0,1] \to Y,$ such that $F(x,0) = x, F(x,1) = g \circ f(x), G(y,0) = y, G(y,1) = f \circ g(y), i.e. f \circ g \simeq I_Y \text{ and } g \circ f \simeq I_X.$

It's easy to see that homomorphism equivalence Chomotopy equivalence, e.g. $I \times S$ and S is homotopy equivalent but not homomorphism equivalent.

Exercise 2.4. Proof that two homotopy equivalent topos have isomorphic homotopy group (for $\forall n$). What about the opposite side?

Oh!Fuck,I don't want to go on with this!