Instituto Superior Técnico - 1º Semestre 2006/2007

Cálculo Diferencial e Integral I

LEA-pB, LEM-pB, LEN-pB, LEAN, MEAer e MEMec

Ficha extra: Exercícios Teóricos de Números Reais, Sucessões e Séries

1. Sejam $a, b \in \mathbb{R}$. Mostre que:

(i) Se
$$a + b = 0$$
, então $b = -a$; (ii) $-(-a) = a$; (iii) $(-1) a = -a$; (iv) $(-1) (-1) = 1$;

$$(v) - (a + b) = (-a) + (-b);$$
 $(vi) (-a) (-b) = ab;$ $(vii) \frac{1}{-a} = -\frac{1}{a}, \text{ se } a \neq 0;$

(viii)
$$-\frac{a}{b} = \frac{-a}{b}$$
, se $b \neq 0$; (ix) Se $a^2 = a$, então ou $a = 0$ ou $a = 1$;

(x) Se
$$a \neq 0$$
, então $\frac{1}{\frac{1}{a}} = a$; (xi) Se $a \neq 0$ e $b \neq 0$, então $\frac{1}{ab} = \frac{1}{a}\frac{1}{b}$;

(xii)
$$|a| = \sqrt{a^2}$$
; (xiii) $\left| \frac{a}{b} \right| = \frac{|a|}{|b|}$ se $b \neq 0$.

2. Sejam
$$a, b, c, d \in \mathbb{R}$$
. Mostre que:

(i) Se
$$a < b$$
 e $c \le d$ então $a + c < b + d$; (ii) Se $0 < a < b$ e $0 \le c \le d$ então $0 \le ac \le bd$;

(iii) Se
$$a > 0$$
 então $\frac{1}{a} > 0$; (iv) Se $a < b$ então $a < \frac{1}{2}(a+b) < b$;

(v) Se
$$0 < a < b$$
 então $a \le \sqrt{ab} < b$; (vi) Se $0 \le a < b$ então $a^2 \le ab < b^2$;

(vii) Se
$$a < b < 0$$
 então $\frac{1}{b} < \frac{1}{a} < 0$; (viii) Se $0 < a < b$ então $0 < \frac{1}{b} < \frac{1}{a}$;

3. Mostre que
$$\frac{1}{a} + a \ge 2$$
 para qualquer $a > 0$.

4. Mostre que, para quaisquer
$$x, y \in \mathbb{R}$$
 e $\alpha > 0$, se tem $xy \leq \frac{1}{\alpha}x^2 + \frac{\alpha}{4}y^2$.

5. Sejam
$$a, b \in \mathbb{R}$$
. Mostre que: (i) $\left[\frac{1}{2}(a+b)\right]^2 \le \frac{1}{2}(a^2+b^2)$.

Verifique ainda que
$$\left[\frac{1}{2}(a+b)\right]^2 = \frac{1}{2}(a^2+b^2) \Leftrightarrow a=b.$$

(ii)
$$a^2 + b^2 = 0 \Leftrightarrow (a = 0 \text{ e } b = 0).$$

6. Mostre que, para todos os reais a e b que satisfazem
$$a^2 + b^2 = 1$$
, se tem $|a + b| \le \sqrt{2}$.

7. Sejam
$$x, y, z \in \mathbb{R}$$
, com $x \le z$. Mostre que: $x \le y \le z \Leftrightarrow |x - y| + |y - z| = |x - z|$.

8. Sejam
$$x, y, a, b \in \mathbb{R}$$
. Mostre que se $a < x < b$ e $a < y < b$ então $|x - y| < b - a$.

9. Sejam
$$A \subset B \subset \mathbb{R}$$
 dois subconjuntos de \mathbb{R} não vazios. Suponha que B é majorado e que, para cada $x \in B$, existe um $y \in A$ tal que $x \leq y$. Mostre que sup $A = \sup B$.

- 10. Seja A um subconjunto de \mathbb{R} , majorado e não vazio e seja m um majorante de A, distinto do supremo desse conjunto. Mostre que existe $\epsilon > 0$ tal que $V_{\epsilon}(m) \cap A = \emptyset$.
- 11. Sejam A um subconjunto majorado e não vazio de \mathbb{R} e $\alpha = \sup A$. Mostre que, para qualquer $\delta > 0$, tem-se $V_{\delta}(\alpha) \cap A \neq \emptyset$. No caso de se ter $\alpha \notin A$, o conjunto $V_{\delta}(\alpha) \cap A \neq \emptyset$ pode ser finito? Justifique.
- 12. Sejam $A \in B$ dois subconjuntos de \mathbb{R} tais que $A \subset B$, com $A \neq \emptyset$ e B majorado. Justifique a existência de sup A e de sup B. Verifique que se tem sup $A \leq \sup B$.
- 13. Sejam A e B dois subconjuntos majorados e não vazios de $\mathbb R$ tais que sup $A < \sup B$. Justifique as seguintes afirmações:
 - (a) Se $x \in A$ então $x < \sup B$;
 - (b) Existe pelo menos um $y \in B$ tal que $y > \sup A$.
- 14. Sejam $A \in B$ dois subconjuntos de \mathbb{R} .
 - (a) Mostre que, se sup $A < \inf B$ então $A \in B$ são disjuntos, isto é, $A \cap B = \emptyset$;
 - (b) Mostre, por meio de exemplos, que se sup $A > \inf B$ e sup $B > \inf A$ então A e B poderão ser ou não disjuntos.
- 15. Mostre que se X e Y são dois subconjuntos de $\mathbb R$ tais que sup $X > \inf Y$, então existem $x \in X$ e $y \in Y$ tais que y < x.
- 16. Sejam A e B dois subconjuntos não vazios de \mathbb{R} tais que $a \leq b$, para quaisquer $a \in A$ e $b \in B$. Mostre que existem sup A e inf B, com sup $A \leq \inf B$.
- 17. Seja (u_n) uma sucessão de números reais tal que $u_n > 0$, para todo o $n \in \mathbb{N}$, e $u_n \to 0$. Diga, justificando, se (u_n) é decrescente.
- 18. Sejam $a, b \in \mathbb{R}^+$ tais que a < b. Considere as sucessões (x_n) e (y_n) definidas por

$$x_1 = \sqrt{ab}, \quad y_1 = \frac{a+b}{2}, \quad x_{n+1} = \sqrt{x_n y_n}, \quad y_{n+1} = \frac{x_n + y_n}{2}.$$

Mostre que (x_n) e (y_n) são convergentes e têm o mesmo limite.

19. Seja (t_n) uma sucessão de números reais tal que $0 \le t_n \le 1$, para todo o $n \in \mathbb{N}$. Sejam (x_n) e (y_n) duas sucessões de números reais tais que $\lim x_n = \lim y_n = a \in \mathbb{R}$. Mostre que

$$\lim \left[t_n x_n + (1 - t_n) y_n \right] = a.$$

20. Sejam (x_n) e (y_n) duas sucessões de números reais tais que $x_n>0,\,y_n>0$ e

$$1 \le \frac{x_n}{y_n} \le 1 + \frac{1}{n},$$

para todo o $n \in \mathbb{N}$. Mostre que (x_n) converge se e só se (y_n) fôr convergente, tendo-se $\lim x_n = \lim y_n$ quando ambos os limites existirem.

21. Seja (a_n) uma sucessão de números reais tal que $a_n > 0$, para todo o $n \in \mathbb{N}$, e $\sum_{n=1}^{+\infty} \frac{a_n}{1+a_n}$ converge. Mostre que $a_n \to 0$.

- 22. Seja (a_n) uma sucessão de números reais tal que $a_n > 0$, para todo o $n \in \mathbb{N}$, a sucessão (na_n) é limitada e a série $\sum_{n=1}^{+\infty} a_n$ diverge. Mostre que a série $\sum_{n=1}^{+\infty} \frac{a_n}{1 + na_n}$ diverge.
- 23. Seja (a_n) uma sucessão de números reais tal que $a_n > 0$, para todo o $n \in \mathbb{N}$, e $na_n \to +\infty$. Mostre que as séries $\sum_{n=1}^{+\infty} \frac{a_n}{1+na_n}$ e $\sum_{n=1}^{+\infty} a_n$ são divergentes.
- 24. Seja (a_n) uma sucessão de números reais tal que $a_n > 0$, para todo o $n \in \mathbb{N}$, (a_n) é decrescente e a série $\sum_{n=1}^{+\infty} a_n$ converge. Mostre que $\lim (na_n) = 0$.
- 25. Dê um exemplo de uma série $\sum_{n=0}^{+\infty} a_n$ divergente, com (a_n) decrescente e tal que $\lim_{n \to \infty} (na_n) = 0$.
- 26. Dê um exemplo de uma série $\sum_{n=1}^{+\infty} a_n$ convergente tal que $\sum_{n=1}^{+\infty} a_n^2$ não seja convergente. E se a sucessão (a_n) fôr tal que $a_n > 0$, para todo o $n \in \mathbb{N}$, continuará a ser possível dar um exemplo de uma série $\sum_{n=1}^{+\infty} a_n$ convergente tal que $\sum_{n=1}^{+\infty} a_n^2$ não seja convergente?
- 27. Seja (a_n) uma sucessão de números reais tal que $a_n > 0$, para todo o $n \in \mathbb{N}$. Mostre que as séries $\sum_{n=1}^{+\infty} a_n$ e $\sum_{n=1}^{+\infty} \frac{a_n}{1+a_n}$ têm a mesma natureza.
- 28. Seja (a_n) uma sucessão de números reais tal que $a_n>0$, para todo o $n\in\mathbb{N}$. Indique, justificando, a natureza das seguintes séries.

(a)
$$\sum_{n=1}^{+\infty} (1+a_n)$$

(b)
$$\sum_{n=1}^{+\infty} \frac{1}{n^2 + a_n}$$

29. Seja (a_n) uma sucessão de números reais tal que $a_n \to +\infty$. Indique, justificando, a natureza das seguintes séries.

(a)
$$\sum_{n=1}^{+\infty} \frac{a_n}{1+a_n}$$

(b)
$$\sum_{n=1}^{+\infty} \frac{1}{3^n + a_n}$$

$$(\mathbf{c}) \sum_{n=1}^{+\infty} \left(1 + \frac{1}{a_n} \right)^{a_n}$$

30. Sejam $\sum_{n=1}^{+\infty} a_n$ e $\sum_{n=1}^{+\infty} b_n$ duas séries convergentes, de termos positivos. Diga, justificando, se cada uma das seguintes séries é convergente, divergente ou se a sua natureza depende das sucessões

(a)
$$\sum_{n=1}^{+\infty} a_n^2$$

(a)
$$\sum_{n=1}^{+\infty} a_n^2$$
 (b) $\sum_{n=1}^{+\infty} \frac{a_n^2}{1 + a_n^2}$ (c) $\sum_{n=1}^{+\infty} \frac{a_n}{1 + a_n^2}$

(c)
$$\sum_{n=1}^{+\infty} \frac{a_n}{1+a_n^2}$$

(d)
$$\sum_{n=1}^{+\infty} \sqrt{a_n}$$

(e)
$$\sum_{n=1}^{+\infty} \frac{a_1 + a_2 + \dots + a_n}{n}$$
 (f) $\sum_{n=1}^{+\infty} n^{1/n} a_n$ (g) $\sum_{n=1}^{+\infty} \sqrt{n} a_n$

(f)
$$\sum_{n=1}^{+\infty} n^{1/n} a_n$$

(g)
$$\sum_{n=1}^{+\infty} \sqrt{n} a_n$$

(h)
$$\sum_{n=1}^{+\infty} \left(\frac{1}{a_n} - \frac{1}{b_n} \right)$$

(i)
$$\sum_{n=1}^{+\infty} \frac{a_n}{1+b_n}$$

(j)
$$\sum_{n=1}^{+\infty} \sqrt{a_n a_{n+1}}$$

(h)
$$\sum_{n=1}^{+\infty} \left(\frac{1}{a_n} - \frac{1}{b_n} \right)$$
 (i) $\sum_{n=1}^{+\infty} \frac{a_n}{1 + b_n}$ (j) $\sum_{n=1}^{+\infty} \sqrt{a_n a_{n+1}}$ (k) $\sum_{n=1}^{+\infty} (a_{n+2} - a_n)$

31. Seja $\sum_{n=1}^{+\infty} a_n$ uma série convergente, de termos positivos. Seja (b_n) uma sucessão de números reais tal que $b_n > 0$, para todo o $n \in \mathbb{N}$, e $\lim b_n = \alpha$, com $\alpha \in \mathbb{R}$ e $\alpha \neq 0$. Diga, justificando,

se cada uma das seguintes séries é convergente, divergente ou se a sua natureza depende das sucessões (a_n) e (b_n) .

(a)
$$\sum_{n=1}^{+\infty} b_n$$
 (b) $\sum_{n=1}^{+\infty} a_n b_n$ (c) $\sum_{n=1}^{+\infty} \frac{a_n}{1+b_n}$ (d) $\sum_{n=1}^{+\infty} \frac{b_n}{1+a_n}$ (e) $\sum_{n=1}^{+\infty} (b_{2n+6}-b_{2n})$ (f) $\sum_{n=1}^{+\infty} \frac{b_n}{a_n}$

- 32. Seja (a_n) uma sucessão de números reais tal que $a_n > 0$, para todo o $n \in \mathbb{N}$, e a série $\sum_{n=0}^{+\infty} a_n^2$ converge. Indique, justificando, a natureza da série $\sum_{n=1}^{+\infty} \frac{a_n}{n}$.
- 33. Seja (a_n) uma sucessão de números reais tal que $a_n > 0$, para todo o $n \in \mathbb{N}$, e $\lim \frac{a_{n+1}}{a_n} = \alpha$, com $\alpha \in \mathbb{R}$ e $\alpha > 1$. Indique, justificando, a natureza das seguintes séries.
 - (a) $\sum_{n=0}^{+\infty} \sqrt[n]{a_n}$

(b) $\sum_{n=1}^{+\infty} \frac{a_n}{n}$

- (c) $\sum_{n=0}^{+\infty} (a_n a_{n+1})$
- 34. Seja (a_n) uma sucessão de números reais tal que $a_n \geq 2$, para todo o $n \in \mathbb{N}$. Indique, justificando, a natureza da série $\sum_{n=1}^{+\infty} \frac{a_n}{1+a_n}$.
- 35. Seja (a_n) uma sucessão de números reais tal que $\frac{1}{2} < a_n < \frac{3}{2}$, para todo o $n \in \mathbb{N}$. Indique, justificando, a natureza das seguintes séries.
 - (a) $\sum_{n=1}^{+\infty} a_n$

(b) $\sum_{n=1}^{+\infty} \left(\frac{a_n}{2}\right)^n$

- (c) $\sum_{n=1}^{+\infty} a_n x^n$ $(x \in \mathbb{R})$
- 36. Sejam (x_n) e (y_n) duas sucessões de números reais tais que $x_n \ge 0$ e $y_n \ge 0$, para todo o $n \in \mathbb{N}$. Sejam (a_n) e (b_n) duas sucessões de números reais tais que

$$a_n = \min \{x_n, y_n\}$$
 e $b_n = \max \{x_n, y_n\}$.

Indique, justificando, a natureza das séries $\sum_{n=1}^{+\infty} a_n$ e $\sum_{n=1}^{+\infty} b_n$ em cada um dos seguintes casos.

- a) $\sum_{n=1}^{+\infty} a_n$ é convergente e $\sum_{n=1}^{+\infty} b_n$ é divergente; (b) $\sum_{n=1}^{+\infty} a_n$ e $\sum_{n=1}^{+\infty} b_n$ são convergentes;

- (c) $\sum_{n=1}^{+\infty} a_n$ e $\sum_{n=1}^{+\infty} b_n$ são divergentes.
- 37. Seja (x_n) uma sucessão de números reais tal que $x_n > 0$, para todo o $n \in \mathbb{N}$, e $\lim_{n \to \infty} \frac{na_{n+1}}{n} = 1$. Justifique a convergência da série $\sum_{n=0}^{+\infty} a_n$.
- 38. Seja (x_n) uma sucessão de números reais tal que $x_n < 0$, para todo o $n \in \mathbb{N}$, e $\lim \frac{a_{n+1}}{na} = 1$. Justifique a divergência da série $\sum_{n=0}^{+\infty} a_n$.
- 39. Seja $\alpha \in \mathbb{R}$. Determine os valores de α para os quais a série $\sum_{n=2}^{+\infty} n^{\alpha} \left(\frac{1}{\sqrt{n-1}} \frac{1}{\sqrt{n}} \right)$ é convergente.