

Next: About this document ...

E84 Home Work 6

1. The resistance *R* of a circuit is a real value which can be measured by a multimeter. However, the impedance *z* of a component in the circuit is complex which cannot be measured directly. Instead, one can use an oscilloscope to find sinusoidal voltage *v*(*t*) across and current *i*(*t*) through the component, and then obtain the impedance as the ratio between the complex representations of the voltage and current. Suppose we find:

$$v(t) = 12\cos(1000t - 30^{\circ}), \quad i(t) = 6\cos(1000t + 15^{\circ})$$

Find the impedance (both resistance and reactance) and the admittance (both conductance and susceptance) of the circuit.

Solution:

Represent voltage and current in complex forms:

$$v(t) = Re[12e^{j(1000t-30^\circ)}], \quad i(t) = Re[6e^{j(1000t+15^\circ)}]$$

$$Z = 2e^{-j45^{\circ}} = 2 \angle -45^{\circ} = \sqrt{2} - j\sqrt{2}$$

$$R = \sqrt{2}, \quad X = -\sqrt{2}.$$

$$Y = 1/Z = G + jB = G + jB$$
, $G = R/(R^2 + X^2) = \sqrt{2}/4$, $B = -X/\sqrt{R^2 + X^2} = \sqrt{2}/4$

2. A voltage $v(t) = 120\sqrt{2}cos(1000t + 90^{\circ})V$ (volt) is applied to a resistor $R = 15\Omega$, a capacitor $C = 83.3\mu F$ and an inductor $L = 30 \ mH$ connected in parallel. Find the over all steady

state current $i = i_R + i_C + i_L$ by phasor method.

Solution:

Express input voltage as a phasor $\dot{V} = 120 \angle 90^{\circ}$. Then

$$\dot{I}_R = \dot{V}/R = 120 \angle 90^\circ/15 = 0 + j8A$$

$$\overline{\dot{I}_C = \dot{V}/Z_C = j\omega C\dot{V}} = (0.00833\angle 90^\circ)(120\angle 90^\circ) = 10\angle 180^\circ = -10 + j0A$$

$$\dot{I}_L = \dot{V}/Z_L = \dot{V}/j\omega L = (120\angle 90^\circ)/(30\angle 90^\circ) = 4 + j0A$$
.

By KCL, we have

$$\dot{I} = \dot{I}_R + \dot{I}_C + \dot{I}_L = (0 - 10 + 4) + j(8 + 0 + 0) = -6 + j8 = 10 \angle 127^{\circ}A$$

$$i(t) = 10\sqrt{2} \; cos(1000t + 127^{\circ}) A$$

3. A voltage $v(t) = 12\sqrt{2}\cos 5000t$ (volt V) is applied to a circuit composed of two branches in parallel. One branch has a capacitor $C = 10\mu F$, while the other has a resistor $R = 20\Omega$ and an inductor L = 3mH in series. Using phasor method, find the impedances Z_C and Z_{RL} of the two branches, and then the overall combined impedance Z_{all} of the circuit. Then find the steady state current i(t) through the circuit.

Solution:

$$Z_R = R = 20 + j0 = 20\angle 0^{\circ}\Omega$$
, $Z_L = j\omega L = j5000 \times 0.003 = 15\angle 90^{\circ}\Omega$, $Z_C = 1/j\omega C = -j/5000 \times 10^{-5} = -j20 = 20\angle - 90^{\circ}\Omega$

$$Z_{RL}=Z_R+Z_L=20+j15=25\angle 37^\circ\Omega$$

$$Z_{all} = Z_C//Z_{RL} = Z_CZ_{RL}/(Z_C + Z_{RL}) = 25 \angle 37^\circ \ 20 \angle -90^\circ/(20 + j15 - j20) = 500 \angle -53^\circ/20.6 \angle -14^\circ = 24.3 \angle -39^\circ = 18.9 - j15.3 \Omega$$

$$\dot{I} = \dot{V}/Z = 12\angle 0^{\circ}/24.3\angle - 39^{\circ} = 0.49\angle 39^{\circ}A$$

$$i(t) = 0.49\sqrt{2}cos(5000t + 39^{\circ})A$$

4. Solve the problem above again but this time use the admittances $Y_C = 1/Z_C$, $Y_{RL} = 1/Z_{RL}$, $Y_{all} = 1/Z_{all}$ (instead of the impedances $\overline{Z_C}$, Z_{RL} , $\overline{Z_{all}}$). Recall that Ohm's law becomes $\overline{I} = \overline{V}/Z = \overline{V}Y$. (Make sure all impedances you found in previous problem are correct before you find the admittances as their reciprocals.)

Solution:

$$Y_C = 1/Z_C = 1/20 \angle 0^\circ = 0.05 \angle 90^\circ = 0 + j0.05 \; S$$

$$Y_{RL} = 1/Z_{RL} = 1/25 \angle 37^{\circ} = 0.04 \angle -37^{\circ} = 0.032 - j0.024 \ S$$

$$Y_{all} = Y_C + Y_{RL} = 0 + j0.05 + 0.032 - j0.024 = 0.032 + j0.026 = 0.04 \angle 39^\circ$$

$$I_C = Y_C V = 0.05 \angle 90^\circ \times 12 \angle 0^\circ = 0.6 \angle 90^\circ A$$

$$I_{RL} = Y_{RL}V = 0.04 \angle -37^{\circ} \times 12 \angle 0^{\circ} = 0.48 \angle -37^{\circ} A$$

$$I = I_C + I_{RL} = 0 + j0.6 + 0.384 - j0.288 = 0.384 + j0.312 = 0.49 \angle 39^{\circ}$$

Alternatively, $I = Y_{all}V = 0.041 \angle 39^{\circ} \times 12 \angle 0^{\circ} = 0.49 \angle 39^{\circ}$

5. Find the output voltage $v_{out}(t)$ across the right most branch containing R_2 and C, when $\omega = 0$ and $\omega \to \infty$ and the input $v_{in}(t) = V = 10 \cos(\omega t)$, assuming $R_1 = 100\Omega$, $R_2 = 100\Omega$, $C = 10\mu F$ and L = 10 mH.

Solution

When $\omega=0$, the inductor is short circuit, and the capacitor is open circuit, $v_{out}(t)=v_{in}(t)$. When $\omega=0$, the inductor is open circuit, and the capacitor is short circuit, $v_{out}(t)=v_{in}(t)/2=5\cos(\omega_0 t)$.

• About this document ...

Next: About this document ...

Ruye Wang 2008-01-16