Skriftlig Eksamen Matematiske Redskaber i Datalogi (DM527)

Institut for Matematik og Datalogi Syddansk Universitet, Odense

Tirsdag den 6. januar 2009, kl. 9–11

Løsningsforslag

Opgave 1 (25%)

- a) -(3) er ækvivalent med (1): $3 \mid (x+y)$ hvis og kun hvis x+y er et multiplum af 3, og det er netop hvad $\exists z \in \mathbb{Z} \colon x+y=3z$ udtrykker.
 - (4) er ækvivalent med negationen af (1) ifølge De Morgans Love for kvantorer.
 - (2) er ikke ækvivalent med (1); f.eks. har de to udsagn forskellige sandhedsværdier for $A = B = \{1, 2\}$. (2) er heller ikke ækvivalent med negeringen af (1), da de to har forskellige sandhedsværdier for f.eks. $A = \{1\}$ og $B = \{2\}$.
 - (5) er ikke ækvivalent med (1), da de to udsagn har forskellige sandhedsværdier for $A = \{1\}$ og $B = \{2\}$. (5) er heller ikke ækvivalent med negeringen af (1), da de to udsagn har forskellige sandhedsværdier for $A = B = \{1, 2\}$.
- b) -(1) er sandt, fordi udsagnet $\forall x \in \mathbb{N}_0 \colon 3 \mid (x+2x)$ er sandt.
 - (2) er falsk, da udsagnet $\exists y \in \mathbb{N}_0$: 3 | ((2y + 1) + y) er falsk.
 - (3) er sandt, da det er ækvivalent med (1).
 - (4) er falsk, da det er ækvivalent med negeringen af (1).
 - (5) er sandt, da $\forall x \in \mathbb{N} : 3 \nmid (x + (2x + 1))$ er sandt.

Opgave 2 (15%)

a)
$$\sum_{x=1}^{n} (6x^2 + 2x + 1) = 6 \sum_{x=1}^{n} x^2 + 2 \sum_{x=1}^{n} x + \sum_{x=1}^{n} 1$$
$$= n(n+1)(2n+1) + n(n+1) + n, \text{ iflg. Tabel 2.4.2}$$
$$= n(n+1)(2n+2) + n$$
$$= 2n^3 + 4n^2 + 3n$$

b)
$$\sum_{i=0}^{n} \sum_{j=0}^{i} 2^{j} = \sum_{i=0}^{n} (2^{i+1} - 1), \text{ iflg. Tabel 2.4.2}$$

$$= 2 \sum_{i=0}^{n} 2^{i} - \sum_{i=0}^{n} 1$$

$$= 2(2^{n+1} - 1) - (n+1)$$

$$= 2^{n+2} - (n+3)$$

Opgave 3 (15%)

- a) $(2,4) \in R$, da $4 = 2 \cdot 2$ $(2,8) \in R^2$, da $(2,4) \in R$ og $(4,8) \in R$
- b) Den transitive lukning af R indeholder alle par $(a, b) \in S \times S$, hvor $b = 2^i a, i \in \mathbb{N}_+$. Dvs. flg. par:

$$(1,2), (1,4), (1,8), (2,4), (2,8), (3,6), (3,12), (4,8), (5,10), (6,12), (7,14)$$

Opgave 4 (13%)

Basis:
$$1 \le n \le 2$$

 $a_1 = 1 = 2^{1-1}$
 $a_2 = 2 = 2^{2-1}$

Induktionsskridt: $n \geq 3$

Induktionsantagelse: $a_{n-1} = 2^{n-2}$ og $a_{n-2} = 2^{n-3}$.

$$a_n = a_{n-1} + 2a_{n-2}$$

= $2^{n-2} + 2 \cdot 2^{n-3}$, ifølge ind.ant.
= $2^{n-2} + 2^{n-2} = 2^{n-1}$

Opgave 5 (12%)

$$5^2 \mod 7 = 4$$

 $5^4 \mod 7 = (5^2 \mod 7)^2 \mod 7 = 4^2 \mod 7 = 2$

 $5^8 \mod 7 = (5^4 \mod 7)^2 \mod 7 = 2^2 \mod 7 = 4$ $5^{16} \mod 7 = (5^8 \mod 7)^2 \mod 7 = 4^2 \mod 7 = 2$ Dvs. $5^{16} \mod 7 = 2$.