Chapitre 1

Le corps des nombres réels

1.1 Définition axiomatique

• L'ensemble des nombres réels est l'ensemble noté par \mathbb{R} ; sur lequel sont définies deux lois de composition internes :

l'addition

$$"+": \mathbb{R} \times \mathbb{R} \to \mathbb{R}$$

$$(x,y) \mapsto x+y$$

et la multiplication

$$" \cdot " : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$$
$$(x,y) \mapsto x \cdot y$$

tel que $(\mathbb{R}, +, \cdot)$ est un corps commutatif archimédien.

• La relation " \leq "est une relation d'ordre total sur $\mathbb R$:

$$\forall (x,y) \in \mathbb{R}^2 : (x \le y) \lor (y \le x).$$

- Les deux lois de composition internes ; définies sur $\mathbb R$ sont compatibles avec la relation d'ordre total " < ".
- \bullet Toute partie non vide et majorée de \mathbb{R} ; possède une borne supérieure dans \mathbb{R} .

1.2 La valeur absolue

Définition 1.2.1 La valeur absolue est une application de \mathbb{R} dans l'ensemble des nombres réels positifs \mathbb{R}^+ , notée par |.| et définie par :

$$|.|: \mathbb{R} \to \mathbb{R}^+$$

$$x \mapsto |x| = \begin{cases} x & \text{si } x \ge 0 \\ -x & \text{si } x < 0 \end{cases}$$

Propriétés 1 1. $|x| \ge 0, \forall x \in \mathbb{R}$.

2.
$$|x| = 0 \Leftrightarrow x = 0$$
.

$$3. - |x| \le x \le |x|; \forall x \in \mathbb{R}.$$

- 4. $\forall a \ge 0; |x| \le a \Leftrightarrow -a \le x \le a.$
- 5. $|x.y| = |x| \cdot |y|, \forall x, y \in \mathbb{R}$.
- 6. $\left| \frac{x}{y} \right| = \frac{|x|}{|y|}, \forall (x, y) \in \mathbb{R} \times \mathbb{R}^*.$
- 7. $|x+y| \leq |x| + |y|$, $\forall x, y \in \mathbb{R}$, (L'inégalité triangulaire).
- 8. $||x| |y|| \le |x y|, \forall x, y \in \mathbb{R}$, (La seconde inégalité triangulaire).

Preuve:

7. On a $\forall x, y \in \mathbb{R}$

$$\begin{cases} -|x| \le x \le |x| \\ -|y| \le y \le |y| \end{cases}$$

d'où en faisant la somme

$$-(|x|+|y|) \le x+y \le |x|+|y| \Leftrightarrow |x+y| \le |x|+|y|$$
.

8. On a $\forall x, y \in \mathbb{R}$

$$|x| = |x - y + y| \Rightarrow |x| \le |x - y| + |y| \Leftrightarrow |x| - |y| \le |x - y|$$

et

$$|y| = |y - x + x| \Rightarrow |y| \le |y - x| + |x| \Leftrightarrow -|x - y| \le |x| - |y|$$

donc

$$-|x-y| \le |x| - |y| \le |x-y| \Leftrightarrow ||x| - |y|| \le |x-y|$$
.

1.3 Intervalles de \mathbb{R}

Définition 1.3.1 Une partie I de \mathbb{R} est un intervalle de \mathbb{R} si dès qu'elle contient deux réels a et b alors elle contient tous les réels compris entre eux.

$$\forall a, b \in I, \forall x \in \mathbb{R}; \ a \le x \le b \Rightarrow x \in I.$$

Exemples 1.3.2 1. \mathbb{R} et l'ensemble vide \emptyset sont des intervalles.

- 2. \mathbb{R}^+ est un intervalle.
- 3. \mathbb{R}^* et \mathbb{N} ne sont pas des intervalles.

Remarques:

- 1. Pour les notations, soient $a, b \in \mathbb{R}$, on a les intervalles de \mathbb{R} :
 - bornés : ouverts [a, b], fermés [a, b] ou semi-ouverts [a, b], [a, b].
 - non bornés : ouverts $]-\infty, b[$, $]a, +\infty[$ ou fermés $[a, +\infty[$, $]-\infty, b]$.
 - Si a = b alors $[a, a] = \{a\}, |a, b| = [a, b] = \emptyset.$
- 2. Le complémentaire d'un intervalle ouvert est fermé.

Analyse 1

Remarque : \mathbb{R} et l'ensemble vide \emptyset sont les seules parties ouvertes et fermées de \mathbb{R}

En effet, $\mathbb{R} =]-\infty, +\infty[$ est un intervalle ouvert donc son complémentaire, l'ensemble vide \emptyset est fermé, or l'ensemble vide \emptyset peut s'écrire comme un intervalle ouvert $]\alpha, \alpha[$, $\alpha \in \mathbb{R}$, donc son complémentaire \mathbb{R} est fermé.

Remarques:

- 1. L'intersection de deux intervalles est toujours un intervalle.
- 2. La réunion de deux intervalles ayant une intersection non vide est un intervalle.

Définition 1.3.3 Soient $a, b \in \mathbb{R}$, on appelle segment l'ensemble noté [a, b] défini $par[a, b] = \{x \in \mathbb{R} \mid a \le x \le b\}$. Si a > b alors $[a, b] = \emptyset$.

Définition 1.3.4 Soit V une partie de \mathbb{R} et $x_0 \in \mathbb{R}$, On dit que V est un voisinage de x_0 s'il existe un intervalle ouvert]a,b[de \mathbb{R} contenant x_0 et inclu dans V, on note V_{x_0} ou $V(x_0)$.

- **Exemples 1.3.5** 1. Pour tout $\varepsilon > 0$; l'intervalle $V =]x_0 \varepsilon, x_0 + \varepsilon[$ est un voisinange de x_0 ; car il existe un intervalle ouvert $]x_0 \frac{\varepsilon}{2}, x_0 + \frac{\varepsilon}{2}[$ de \mathbb{R} contenant x_0 et inclu dans V.
 - 2. L'intervalle]a, b[est voisinage de tous les points $x \in]a, b[$.
 - 3. Les ensembles \mathbb{N}, \mathbb{Z} et \mathbb{Q} ne sont des voisinages d'aucun de leurs points.

1.4 Minorants, majorants, borne inférieure, borne supérieure, maximum et minimum.

Définition 1.4.1 Etant donné un ensemble $E \subset \mathbb{R}$ totalement ordonné par la relation d'ordre notée " \leq " et soit $A \subset E$ une partie non vide de E.

- On dit que $M \in E$ est un majorant de A si : $\forall x \in A$; $x \leq M$.
- On dit que $m \in E$ est un minorant de A si : $\forall x \in A$; $m \leq x$.
- A est dite majorée (resp. minorée) si elle possède au moins un majorant (resp. un minorant).

Remarque: Si A possède un majorant (resp. minorant), alors il n'est pas unique.

Définition 1.4.2 - Etant donnée une partie A de E non vide et majorée, et soit $Maj(A) \subset E$ l'ensemble des majorants de A, on dit que $M \in E$ est la borne supérieure de A si M est le plus petit des majorants de A, on le note sup A.

- Etant donnée une partie A de E non vide et minorée, et soit $Min(A) \subset E$ l'ensemble des minorants de A, on dit que $m \in E$ est la borne inférieure de A si m est le plus grand des minorants de A, on le note inf A.

Théorème 1.4.3 Toute partie non vide et majorée (resp. minorée) de \mathbb{R} , possède une borne supérieure (resp. inférieure).

Remarques:

Danielii Danieli A

- 1. Quand la borne supérieure (resp. la borne inférieure) existe alors elle est unique.
- 2. La borne supérieure $\sup A$ (resp. la borne inférieure $\inf A$) n'appartient pas nécessairement à l'ensemble A.

Définition 1.4.4 - On dit que M est le plus grand élément de A ou maximum de A si M est un majorant de A qui appartient à A, on le note par max A.

- On dit que m est le plus petit élément de A ou minimum de A si m est un minorant de A qui appartient à A, on le note par min A.

Remarques:

 $\S 1.5$

- 1. Si le maximum $\max A$ (resp. le minimum $\min A$) existe alors $\sup A = \max A$ (resp. $\inf A = \min A$).
- 2. Si la borne supérieure sup A (resp. la borne inférieure inf A) appartient à A alors $\max A = \sup A$ (resp. $\min A = \inf A$).
- 3. Si la borne supérieure sup A (resp. la borne inférieure inf A) n'appartient pas à A alors le maximum max A (resp. le minimum min A) n'existe pas.

Remarque : La borne supérieure d'un ensemble majoré A (resp. la borne inférieure d'un ensemble minoré A) existe toujours mais peut ne pas appartenir à A, par contre le maximum d'un ensemble majoré (resp. le minimum d'un ensemble minoré) peut ne pas exister.

Exemple 1.4.5 Soit A =]-5,1]; A est une partie bornée de \mathbb{R} .

L'ensemble des majorants de A est $Maj(A) = [1, +\infty[$,

 $\sup A = \max A = 1.$

 $L'ensemble\ des\ minorants\ de\ A\ est\ Min\left(A\right) = \left]-\infty,-5\right],$

 $\inf A = -5$, $\min A$ n'existe pas $car - 5 \notin A$.

Proposition 1.4.6 Soit A une partie non vide de \mathbb{R} , les deux assertions suivantes sont équivalentes :

- (i) $\exists \alpha > 0, \forall x \in A : |x| \le \alpha$
- (ii) $\exists m, M \in \mathbb{R}, \forall x \in A : m \le x \le M$.

Preuve:

 $(i) \Rightarrow (ii)$

Il suffit de prendre $m = -\alpha$ et $M = \alpha$.

 $(ii) \Rightarrow (i)$

Il suffit de prendre $\alpha = \max(M, -m)$, en effet,

$$-\alpha \le m \le x \le M \le \alpha \Rightarrow -\alpha \le x \le \alpha \Leftrightarrow |x| \le \alpha.$$

Analyse 1

1.5 La partie entière

Définition 1.5.1 La partie entière d'un nombre réel x; est le plus grand entier n inférieur ou égal à x. En d'autres termes, la partie entière de x est le seul entier $n \in \mathbb{Z}$ tel que $n \le x < n + 1$. Elle est notée par [x] ou E(x).

Ainsi tout nombre réel x s'écrit de façon unique sous la forme

$$x = [x] + \alpha$$
; où $\alpha \in [0, 1]$.

Exemple 1.5.2 [5,70911] = 5, [-5,70911] = -6.

Propriétés 2 1. $[x] \in \mathbb{Z}, \forall x \in \mathbb{R}$.

- 2. $[x] \le x \le [x] + 1, \forall x \in \mathbb{R}$.
- 3. $[x+m] = [x] + m, \forall x \in \mathbb{R}, \forall m \in \mathbb{Z}.$
- 4. $[x] + [y] \le [x + y] \le [x] + [y] + 1, \forall x, y \in \mathbb{R}$.
- 5. $x \leq y \Rightarrow [x] \leq [y], \forall x, y \in \mathbb{R}$.

Preuve:

3. On a $\forall x \in \mathbb{R}$

$$[x] \le x \le [x] + 1,$$

d'où

$$[x] + m \stackrel{(1)}{\leq} x + m \stackrel{(2)}{\leq} [x] + m + 1, \forall m \in \mathbb{Z}.$$

D'une autre part, on a

$$[x+m] \stackrel{(3)}{\leq} x + m \stackrel{(4)}{\leq} [x+m] + 1,$$

or [x+m] est le plus grand entier inférieur à x+m alors de (1) et (3) on a

$$[x] + m \le [x+m], \tag{1.1}$$

et [x+m]+1 est le plus petit entier supérieur à x+m alors de (2) et (4) on a

$$[x+m]+1 \le [x]+m+1,$$

d'où

$$[x+m] \le [x] + m. \tag{1.2}$$

De (1.1) et (1.2) on obtient l'égalité [x+m] = [x] + m.

Remarque: La partie entière est une fonction croissante mais pas strictement croissante.

Turnerii Turini 4 Titto vit

1.6 Caractérisation de la borne supérieure et de la borne inférieure

Etant donnée une partie A non vide et bornée de \mathbb{R} , soient $m, M \in \mathbb{R}$, on a les caractérisations suivantes

1.
$$M = \sup A \Leftrightarrow \begin{cases} 1/ \ \forall x \in A; \ x \leq M \\ 2/ \ \forall \varepsilon > 0; \ \exists x \in A, \ M - \varepsilon < x \end{cases}$$

2.
$$m = \inf A \Leftrightarrow \begin{cases} 1/ \ \forall x \in A; \ m \le x \\ 2/ \ \forall \varepsilon > 0; \ \exists x \in A, \ x < m + \varepsilon \end{cases}$$

Preuve:

 $\S 1.6$

1. • Montrons tout d'abord que si $M = \sup A$, alors pour tout $\varepsilon > 0$, il existe $x \in A$ tel que $M - \varepsilon < x$.

On supposera par l'absurde que $\exists \varepsilon > 0, \forall x \in A; \ x \leq M - \varepsilon$, par conséquent $M - \varepsilon$ devient un majorant de A, or M étant la borne supérieure de A; c'est le plus petit des majorants de A donc :

 $M \leq M - \varepsilon \Leftrightarrow \varepsilon \leq 0$, qui est une contradiction.

ullet A présent montrons que si M est un majorant de A qui vérifie

$$\forall \varepsilon > 0; \ \exists x_0 \in A, \ M - \varepsilon < x_0$$

alors M est le plus petit des majorants de A.

Soit M' un autre majorant de A, d'où $x_0 \leq M'$, par conséquent;

$$\forall \varepsilon > 0$$
: $M - \varepsilon < x_0 < M' \Rightarrow \forall \varepsilon > 0$: $M - M' < \varepsilon$

d'où
$$M - M' \le 0 \Leftrightarrow M \le M'$$
.

2. On peut montrer la caractérisation de la borne inférieure de la même façon, (à faire en exercice).

Exercice 1.6.1 Etant donné l'ensemble $A = \left\{ \frac{n+2}{n-2} \ / \ n \in \mathbb{N}, \ n \geq 3 \right\}$.

- 1. Montrer que A est borné.
- 2. Montrer que sup A = 5, inf A = 1.
- 3. Déterminer max A et min A s'ils existent.

Solution.

1. On a : $\forall n \geq 3$:

$$1 \le n - 2 \le n + 2 \Rightarrow 1 \le \frac{n+2}{n-2}$$

d'où la partie A est minorée par 1. D'une autre part on a $\forall n \geq 3$:

$$4n \ge 12 \quad \Leftrightarrow 5n - 10 \ge n + 2$$

$$\Leftrightarrow 5(n - 2) \ge n + 2$$

$$\Leftrightarrow \frac{n+2}{n-2} \le 5$$

Analyse 1

d'où la partie A est majorée par 5, donc A est bornée.

- 2. Montrons que $\sup A = 5$ 5 est un majorant de A et $5 \in A$, pour n = 3 donc $\max A = 5 = \sup A$.
- 3. Montrons que inf A = 1

Soit $\varepsilon > 0$; cherchons $x \in A$, tel que $x < 1 + \varepsilon$, ceci revient à chercher $n \in \mathbb{N}, n \geq 3$ tel que

$$\frac{n+2}{n-2} < 1 + \varepsilon \Leftrightarrow \frac{4}{\varepsilon} + 2 < n,$$

alors il suffit de prendre $n = \left[\frac{4}{\varepsilon} + 2\right] + 1$.

On remarque que $1 \notin A$; sinon

$$\exists n \in \mathbb{N}, \ n \geq 3 \text{ tel que } \frac{n+2}{n-2} = 1 \Leftrightarrow 2 = -2; \text{ absurde.}$$

d'où $\min A$ n'existe pas.

 \triangle

Propriétés 3 1. Etant donnés A et B deux ensembles non vides, bornés de \mathbb{R} , tels que $A \subset B$, alors :

$$\inf B \le \inf A \le \sup A \le \sup B$$

En effet; on a

$$\inf A \le x \le \sup A; \forall x \in A \Rightarrow \inf A \le \sup A,$$

$$\forall x : x \in A \Rightarrow x \in B \Rightarrow \inf B < x; \ \forall x \in A$$

d'où inf B est un minorant de A, or inf A est le plus grand des minorants de A, donc inf $B \le \inf A$ et on a

$$\forall x : x \in A \Rightarrow x \in B \Rightarrow x \leq \sup B; \ \forall x \in A$$

d'où sup B est un majorant de A, or sup A est le plus petit des majorants de A, donc sup $A \le \sup B$.

- 2. Etant donnés C et D deux ensembles non vides, bornés de \mathbb{R} , alors :
 - (a) $\sup (C \cup D) = \max (\sup C, \sup D)$ $\inf (C \cup D) = \min (\inf C, \inf D)$
 - (b) $\sup (C \cap D) \le \min (\sup C, \sup D)$ $\inf (C \cap D) \ge \max (\inf C, \inf D)$

(c)
$$\sup (C + D) = \sup C + \sup D$$

 $\inf (C + D) = \inf C + \inf D$
 $où C + D = \{x + y \mid x \in C, y \in D\}$

(d)
$$\sup (-C) = -\inf C$$

 $\inf (-C) = -\sup C$
 $ou \cdot -C = \{-x \mid x \in C\}$

Exemple 1.6.2 Soit $A = \left\{\frac{n}{n+1}, (-1)^n, n \in \mathbb{N}\right\}$, Montrer que $\sup A = 1$ et $\inf A = -1$.

On remarque que $A = C \cup D$, où

$$C = \left\{ \frac{n}{n+1} , n \in \mathbb{N} \right\} \text{ et } D = \left\{ (-1)^n , n \in \mathbb{N} \right\} = \left\{ -1, 1 \right\}$$

On $a \ \forall n \in \mathbb{N}$:

$$n \le n + 1 \Leftrightarrow \frac{n}{n+1} \le 1$$
,

d'où 1 est un majorant de C.

Soit $\varepsilon > 0$; cherchons $x \in C$, tel que $1 - \varepsilon < x$, ceci revient à chercher $n \in \mathbb{N}$, tel que

$$1 - \varepsilon < \frac{n}{n+1} \Leftrightarrow \frac{1}{\varepsilon} - 1 < n,$$

alors il suffit de prendre $n = \left[\left|\frac{1}{\varepsilon} - 1\right|\right] + 1$. ou $\max\left(0, \left[\left|\frac{1}{\varepsilon} - 1\right|\right] + 1\right)$ donc $\sup C = 1$. On $a \ \forall n \in \mathbb{N}$:

$$0 \le \frac{n}{n+1},$$

d'où 0 est un minorant de C, or $0 \in C$, pour n = 0 donc $\min C = 0 = \inf C$.

Pour l'ensemble D, on a sup D=1, inf D=-1.

Par conséquent on a :

 $\sup A = \max \{1, 1\} = 1 \ et \inf A = \min \{-1, 0\} = -1.$

Principe d'Archimède 1.7

Le corps des réels R vérifie le principe d'Archimède; qui s'énonce comme suit

$$\forall x \in \mathbb{R}^+, \exists n \in \mathbb{N} : x < n.$$

c'est à dire que N n'est pas majoré.

Supposons par l'absurde que \mathbb{N} est majoré dans \mathbb{R} , alors il existe $S \in \mathbb{R}$; tel que $S = \sup \mathbb{N}, d$ 'où

$$n < S, \ \forall n \in \mathbb{N}.$$

On pose aussi $n_0 = [S] + 1$, où [S] désigne la partie entière de S, or S < [S] + 1, donc $\exists n_0 \in \mathbb{N}, S < n_0$; contradiction.

Remarque: Il existe une autre version du principe d'Archimède.

$$\forall x, y \in \mathbb{R}, \ x > 0, \ y \ge 0; \ \exists n \in \mathbb{N}^* : nx > y.$$

Analyse 1

Preuve:

on va supposer par l'absurde que :

$$\exists x \in \mathbb{R}_+^*, y \in \mathbb{R}_+, \forall n \in \mathbb{N}^* : nx \le y,$$

alors l'ensemble $A = \{nx \mid n \in \mathbb{N}^*\}$ est une partie non vide, majorée par y dans \mathbb{R} donc sup A = M existe, d'où

$$nx \le M; \forall n \in \mathbb{N}^* \quad \Rightarrow (n+1)x \le M; \ \forall n \in \mathbb{N}^* \\ \Leftrightarrow nx \le M - x; \ \forall n \in \mathbb{N}^*,$$

donc M-x est un majorant de A et M-x < M, car x>0, ce qui est absurde car M est le plus petit des majorants de A.

1.8 La densité de $\mathbb Q$ dans $\mathbb R$

Théorème 1.8.1 Etant donnés deux nombres réels a et b distincts tels que a < b, alors l'intervalle]a,b[contient au moins un nombre rationnel $q \in \mathbb{Q}$. On dit que \mathbb{Q} est dense dans \mathbb{R} et on note $\overline{\mathbb{Q}} = \mathbb{R}$.

Preuve:

 $a < b \Leftrightarrow b - a > 0$, alors d'après le principe d'Archimède, il existe $n \in \mathbb{N}$, tel que

$$\frac{1}{b-a} < n,$$

d'où $\frac{1}{n} < b - a$, posons p = [an], alors

$$p \le an < p+1 \iff \frac{p}{n} \le a < \frac{p}{n} + \frac{1}{n} < a + (b-a)$$
$$\Rightarrow a < \frac{p+1}{n} < b,$$

et $\frac{p+1}{n} \in \mathbb{Q}$, donc $\frac{p+1}{n} \in]a, b[\cap \mathbb{Q}$.

1.9 La droite réelle achevée

Définition 1.9.1 On appelle droite réelle achevée qu'on note par \mathbb{R} , l'ensemble $\mathbb{R} \cup \{-\infty, +\infty\}$.

Propriétés 4 1. $\forall x \in \overline{\mathbb{R}}; -\infty \leq x \leq +\infty$.

2.
$$\forall x \in \mathbb{R}; \ x + (+\infty) = (+\infty) + x = +\infty; \ x + (-\infty) = (-\infty) + x = -\infty$$

 $(+\infty) + (+\infty) = (+\infty), (-\infty) + (-\infty) = (-\infty)$

3.
$$\forall x > 0$$
; $x \cdot (+\infty) = (+\infty)$; $x \cdot (-\infty) = (-\infty)$

4.
$$\forall x < 0; \ x. (+\infty) = (-\infty); \ x. (-\infty) = (+\infty)$$

5.
$$(+\infty) \cdot (+\infty) = (+\infty)$$
, $(-\infty) \cdot (-\infty) = (+\infty)$
 $(+\infty) \cdot (-\infty) = (-\infty) \cdot (+\infty) = (-\infty)$

Commence of the Commence of th

6.
$$\forall x \in \mathbb{R}; \frac{x}{+\infty} = \frac{x}{-\infty} = 0.$$

Corollaire 1.9.2 Toute partie non vide de $\overline{\mathbb{R}}$, admet une borne supérieure et une borne inférieure dans $\overline{\mathbb{R}}$.

Exemple 1.9.3 Etant données A et B deux parties de $\overline{\mathbb{R}}$, telles que $A = [5, +\infty]$ et $B = [-\infty, -1]$, alors sup $A = +\infty$, inf $B = -\infty$.

Analyse 1