

UNIVERSIDADE DE SÃO PAULO

INSTITUTO DE CIÊNCIAS MATEMÁTICAS E COMPUTACIONAIS - ICMC

Notas de Física

Renan Wenzel - 11169472

Patrícia Christina Marques Castilho - patricia.castilho@ifsc.usp.br

30 de março de 2023

Conteúdo

1	Aula 00 - 23/03/2023
2	Aula 01 - 27/03/2023 2.1 Movimentos 1D
3	Aula 02 - 29/03/2023
	3.1 Motivações
	3.2 Aceleração
	3.3 Movimento Retilíneo Uniformemente Variado
4	Aula 03 - 30/03/2023
	4.1 Motivações
	4.2 Exercício 29 - Tipler
	4.3 Exercício 44 - Tipler
	4.4 Exercício 58 - Tipler
	4.5 Exercício 67 - Tipler
	4.6 Exercício 72 - Tipler
	4.7 Exemplo - Aula 06 Vanderlei

1 Aula 00 - 23/03/2023

(Revisão Unidades de Medidas)

2 Aula 01 - 27/03/2023

- Revisar propriedades de derivadas;
- Aplicar derivadas em movimento 1D.

2.1 Movimentos 1D

Dada uma partícula com posição descrita por x=x(t), em que t é a variável de tempo, denotamos seu deslocamento por $\Delta x=x_2-x_1=x(t_2)-x(t_1)$. Analogamente, o intervalo de tmepo é definido por $\Delta t=t_2-t_1$. Com essas ferramentas, já podemos definir a velocidade média de um objeto em uma dimensão como $\vec{v}=\frac{\Delta x}{\Delta t}$. Observe que, quanto menor o intervalo de tempo, mais momentâneo se torna essa definição, de modo que a velocidade instantânea pode ser encontrada como

$$\lim_{\Delta t \to 0} \frac{x(t + \Delta t) - x(t)}{\Delta t} = \vec{v}(t).$$

Regras de derivadas:

$$\begin{split} f(t) &= c \Rightarrow \frac{df}{dt} = 0 \text{ Derivada de uma constante \'e sempre nula;} \\ f(t) &= x^n \Rightarrow \frac{df}{dt} = nx^{n-1} \text{ Regra do tombo;} \\ f(t) &= A\sin\left(t\right) \Rightarrow \frac{df}{dt} = A\cos\left(t\right); \\ f(t) &= B\cos\left(t\right) \Rightarrow \frac{df}{dt} = -B\sin\left(t\right); \\ f(t) &= Ce^t \Rightarrow \frac{df}{dt} = Ce^t. \end{split}$$

Exemplo 1.

$$i)f(t) = 3t^4 + t^2 \Rightarrow \frac{df}{dt} = 12t^3 + 2t$$

$$ii)f(t) = 5\sin(t) + 3(t^2 + 1) = 5\sin(t) + 3t^2 + 3 \Rightarrow \frac{df}{dt} = 5\cos(t) + 6t$$

A partir deste ponto, tome t como tempo, x(t) como posição e v(t) a velocidade instantânea.

Esse movimento em que a velocidade é descrita por uma linha reta é conhecido como movimento retilíneo uniforme, pois a velocidade v(t) muda de forma linear, i.e., $\frac{dx}{dt}=c$, em que c é uma constante. Por outro lado, há outro tipo de movimento, o movimento retilíneo uniformemente variado, em que a

Por outro lado, há outro tipo de movimento, o movimento retilíneo uniformemente variado, em que a velocidade não é constante. A ação responsável por mudar a velocidade é conhecida como aceleração, e os gráficos tendem a assumir o seguinte formato

Ou, caso a velocidade cresça com o tempo,

Há ainda o caso em que a velocidade cresce por um tempo e diminui depois, com gráficos como o que segue

Nestes casos, para calcular o deslocamento da particula, precisamos somar muito mais intervalos de tempo. Para isso, observe que cada instante, a posição da partícula pode ser encontrada multiplicando-se o intervalo de tempo pela velocidade instanânea, i.e., $\Delta x_i' = v_i' \Delta t_i'$. Quebrando os intervalos desta forma, o deslocamento de um ponto a outro é denotado por

$$\Delta x_{1,2} = x(t_2) - x(t_1) \approx \sum_{k=1}^{N} \Delta x_i' = \sum_{k=1}^{N} v_i' \Delta t_i'$$

Assim como para a velocidade instantânea, quanto menor tomarmos o intervalo de tempo, mais preciso é o valor encontrado para $\Delta x_{1,2}$, o que indica uma boa oportunidade para o uso do limite novamente. Com isso, definimos

$$x(t_2) - x(t_1) = \lim_{\Delta t' \to 0} \sum_{i=1}^{N} v(t_i') \Delta t_i' = \int_{t_1}^{t_2} v(t) dt$$

Este último símbolo, chamado integral, descreve a área "embaixo" da curva da função f(t) dentro do intervalo $[t_1, t_2]$. Supondo que c e k são constantes quaisquer, seguem abaixo algumas das regras de integração:

$$\begin{split} i)f(t) &= ct^n \Rightarrow \frac{df}{dt} = nct^{n-1} \Rightarrow F(t) = \frac{ct^{n+1}}{n+1} \text{ (Primitiva de f)} \\ ii) \int_{t_1}^{t_2} f(t)dt &= F(t_2) - F(t_1) = \frac{c}{n+1}t_2^{n+1} - \frac{c}{n+1}t_1^{n+1} \text{ (Integral definida de f)} \\ iii) \int f(t)dt &= \frac{c}{n+1}t^{n+1} + k \text{ (Integral indefinida de f)} \end{split}$$

Para conferir se a integral está correta, é preciso derivar a função F e, se obter como resultado a função f, significa que está correto. Com este conhecimento em mente, segue que

$$x(t) = \int v_0 dt = v_0 t + x_0$$

Algumas outras regras importantes:

$$iv)\frac{d\sin(t)}{dt} = \cos(t) \Rightarrow \int \cos(t)dt = \sin(t) + c$$

$$v)\frac{d\cos(t)}{dt} = -\sin(t) \Rightarrow \int \sin(t)dt = \cos(t) + c$$

$$vi)\frac{de^t}{dt} = e^t \Rightarrow \int e^t dt = e^t + c$$

Ou seja, em certo sentido, a integral e a derivada são dois lados da mesma moeda, assim como mulitplicação e divisão ou adição e subtração.

3 Aula 02 - 29/03/2023

3.1 Motivações

- Estudar a aceleração;
- Entender o Movimento Retilíneo Uniformemente Variado.

3.2 Aceleração

Definimos previamente a velocidade média como sendo a variação de tempo dividindo o deslocamento, sendo, portanto, uma quantidade representando a taxa de variação da posição em um intervalo de tempo. De forma análoga, definimos a aceleração como a taxa de variação da velocidade em um intervalo de tempo, ou seja,

$$\vec{a_m} = \frac{\Delta \vec{v}}{\Delta t}.$$

Ainda mais, se ela for positiva, a velocidade aumenta. Caso contrário, ela diminui. Ainda repetindo o processo feito para o caso da velocidade, podemos encontrar uma aceleração instanânea como

$$a(t) = \lim_{\Delta t \to 0} \left[\frac{v(t + \Delta t) - v(t)}{\Delta t} \right] = \frac{dv(t)}{dt}$$

Observe também que

$$a(t) = \frac{d}{dt} \left(\frac{dx(t)}{dt} \right) = \frac{d^2x}{dt^2}.$$

Utilizando a análise dimensional, é possível encontrar a dimensão da aceleração como $[a] = \frac{[v]}{[t]} = \frac{\frac{[L]}{[t]}}{[t]} = \frac{[L]}{[t]^2}$. Assim, se o sistema de medida for o Sistema Internacional, $[a] = \frac{m}{s^2}$.

3.3 Movimento Retilíneo Uniformemente Variado.

Sabendo que $a = \frac{d^2x(t)}{dt^2}$, podemos fazer o caminho oposto para encontrar uma fórmula para a posição sabendo a aceleração. De fato, dado um intervalo de tempo $[t_0, t]$,

$$v(t) = \int_{t_0}^{t} a(t)dt = at \Big|_{t_0}^{t} = at - at_0$$

Sabemos, também, que $v(t) - v(t_0) = \Delta v$, tal que

$$v(t) = v(t_0) + a(t - t_0) = v_0 + a(t - t_0)$$

Além disso, vimos que

$$\Delta x = x(t) - x(t_0) = \int_{t_0}^t v(t)dt.$$

Juntando tudo, segue a fórmula dita:

$$x(t) - x(t_0) = \int_{t_0}^{t} [v_0 + a(t - t_0)] dt = \int_{t_0}^{t} v_0 dt + \int_{t_0}^{t} at dt - \int_{t_0}^{t} at_0 dt$$

$$\Rightarrow x(t) - x(t_0) = v_0 t \Big|_{t_0}^{t} + a \frac{t^2}{2} \Big|_{t_0}^{t} - at_0 t \Big|_{t_0}^{t}$$

$$= v_0(t - t_0) + a \frac{(t^2 - t_0^2)}{2} - at_0(t - t_0)$$

$$= v_0(t - t_0) + a \frac{t^2 - t_0^2}{2} - at_0 t + at_0^2 = v_0 t - v_0 t_0 + \frac{a}{2}(t^2 - 2t_0 t + 2t_0^2)$$

$$= v_0(t - t_0) + \frac{a}{2}(t - t_0)^2$$

$$\Rightarrow x(t) = x(t_0) + v_0(t - t_0) + \frac{1}{2}a(t - t_0)^2.$$

Com isso, no caso em que $t_0 = 0$, segue que

$$x(t) = x_0 + v_0 t + \frac{at^2}{2}$$

Uma coisa notável é que todas essas fórmulas estão dependentes de tempo. No entanto, será que é possível se livrar dessa variável e relacionar, por exemplo, velocidade e posição? A resposta é sim! E vamos mostrar como a seguir, na equação conhecida como Equação de Torricelli. Com efeito,

$$(I) \quad (t - t_0) = \frac{v(t) - v_0}{a} = \frac{v - v_0}{a}$$

$$(II) \quad x(t) = x_0 + v_0(t - t_0) + \frac{1}{2}a(t - t_0)^2$$

$$(I \text{ com } II) \quad x = x_0 + v_0\frac{v - v_0}{a} + \frac{1}{2}a\frac{v - v_0}{a}$$

$$\Rightarrow x = x_0 + \frac{1}{a}\left\{v_0v - v_0^2 + \frac{1}{2}(v^2 - 2vv_0 + v_0^2)\right\}$$

$$= x_0 + \frac{1}{a}\left\{-v_0^2 + \frac{v^2}{2} + \frac{v_0^2}{2}\right\}$$

$$\Rightarrow x - x_0 = \frac{1}{2a}\left[v^2 - v_0^2\right] \iff [v^2 - v_0^2] = 2a(x - x_0).$$

Portanto, chegamos na Equação de Torricelli

$$v^2 = v_0^2 + 2a(x - x_0)$$

Para reforçar o que foi visto até agora, vejamos um exemplo.

Exemplo 2. Suponha que um carro freia uniformemente, passando de 60km/h para 30km/h em 5 segundos. Qual é a distância que o carro percorrerá até parar? Em quanto tempo?

Solução: Sabemos que $x(t) = x_0 + v_0(t - t_0) + \frac{1}{2}a(t - t_0)^2$, $v(t) = v_0 + a(t - t_0)$, $e v^2 = v_0^2 + 2a(x - x_0)$. Além disso, como é até o carro parar, a velocidade final é 0 km/h, a variação de tempo até o momento em que a velocidade atinge 30 km/h (=8.333m/s) é dada como $\Delta t = 5 - 0 = 5s$, sendo a velocidade inicial 60 km/h (=16,666m/s). Pela equação dois,

$$a = \frac{v(t_1) - v_0}{t_1 - t_0} = \frac{8.33 - 16.66}{5} = -1.66 \frac{m}{s^2}$$

Agora, para obter a distância, sendo $v_2 = 0km/h$ o valor da aceleração no tempo em que o carro para (o segundo percurso), utilizamos Torricelli para obter o deslocamento no pedaço final do percurso

$$v_2^2 = v_1^2 + 2a(x_2 - x_1) \Rightarrow 0 = 8.33^2 + 2(-1.66)\Delta x_2$$

Assim, isolando o Δx_2 ,

$$\Delta x_2 = \frac{8.33^2}{3.32} = Professora vai passar na próxima aula.$$

Ademais, para encontrar todo o caminho que o carro andou, temos

$$0 = v_0^2 + 2a(x_2 - x_0) = 16.66^2 + 2(-1.66)\Delta x \Rightarrow \Delta x = \frac{16.66^2}{3.32}$$

Finalmente, o instante de tempo pode ser encontrado fazendo

$$v_2(t) = v_1 + a(t_2 - t_0) \Rightarrow 0 = 8.33 - 1.66 \Delta t_2 \Rightarrow \Delta t_2 = 5s.$$

4 Aula 03 - 30/03/2023

4.1 Motivações

• Resolução de Exercícios.

4.2 Exercício 29 - Tipler

"Considere a trajetória de dois carros, o Carro A e o Carro B. (a) Existe algum instante para o qual os carros estão lado-a-lado? (b) Eles viajam sempre no mesmo sentido? (c) Eles viajam com a mesma velocidade em algum instante t? (d) Para que t os carros estão mais distantes entre si? (e) Esboce os gráficos de $v \times t$ '

Os carros se encontram lado-a-lado quando os gráficos se cruzam, ou seja, em t=1s e t=9s (Tipler mais acurado que meu gráfico.). É notável quer eles não estão sempre no mesmo sentido, visto que, a partir de 6s, o gráfico do carro B passa a mudar o sentido. Em aproximadamente 5s, ambos estão com a reta tangente iguais, ou seja, estão com a mesma velocidade, e distância entre eles está maior exatamente no ponto em que as velocidades estão iguais. Finalmente, seguem os gráficos:

4.3 Exercício 44 - Tipler

"Um carro viaja em linha reta com $\vec{v}=80$ km/h durante $\Delta t_1=2.5$ h. Depois, $\vec{v_2}=40$ km/h, $\Delta t_2=1.5$ h. Qual é o deslocamento total? E qual é a velocidade \vec{v} total?"

(a)
$$\Delta x = \Delta x_1 + \Delta x_2 = \vec{v_1} \Delta t_1 + \vec{v_2} \Delta t_2 \Rightarrow \Delta x = 260 \text{km}.$$

(b)
$$\vec{v} = \frac{\Delta x}{\Delta t} = \frac{260}{4} = 65 \text{km/h}.$$

4.4 Exercício 58 - Tipler

"Um carro acelera de 48.3km/h para 80.5km/h em 3.70s. Qual a aceleração média?"

Primeiramente, precisamos converter as unidades para medidas iguais. Com isso, note que $\vec{v_1} = 48.3 km/h = 13.52 m/s$, $\vec{v_2} = 80.5 km/h = 22.54 m/s$. Assim, chegamos em

$$\vec{a} = \frac{\Delta v}{\Delta t} = \frac{v_2 - v_1}{\Delta t} \approx 2.4 \text{m/s}.$$

4.5 Exercício 67 - Tipler

"Um corpo está em uma posição inicial x_1 com velocidade inicial $\vec{v_1}$. Passado um tempo, ele se encontra na posição x_2 com velocidade $\vec{v_2}$. Qual é a aceleração deste corpo?"

Utilizaremos Torricelli. sabemos que

(1):
$$x_1 = 6m, \vec{v_1} = 10m/s$$

(2):
$$x_2 = 10m, \vec{v_2} = 15m/s.$$

Deste modo, $v^2 = v_0^2 + 2a\Delta x \Rightarrow v_2^2 = v_1^2 + 2a(x_2 - x_1) \Rightarrow a \approx 16m/s^2$

4.6 Exercício 72 - Tipler

"Um parafuso se desprende de um elevador subindo a $v_0 = 6m/s$. O parafuso atinge o fundo do poço em 3s. (a) Qual era a altura do elevador? (b) Qual é a velocidade do parafuso no chão? Tome $g = 9.8 \ m/s^2$ "

Sabemos que $t_0 = 0s$, $y(t_0) = h$, $v(t_0) = v_0$. Com isso, podemos descrever $y(t) = h + v_0t + \frac{1}{2}gt^2$. Vamos responder, agora, o item a, isto é, qual é o valor da altura h? Segue que, em t = 3s, y(t) = 0. Utilizando a fórmula,

$$h = -v_0t + \frac{1}{2}gt^2 = -6 \cdot 3 + \frac{1}{2}9.8 \cdot 3^2 = 26.1m$$

Com relação ao item (b), vimos que $v(t) = v_0 + at$. Deste modo,

$$v(3s) = 6 - 9.8 \cdot 3 = -23.4m/s$$

Indo um pouco além do que foi pedido, analisemos o movimento do parafuso. É possível concluir que o parafuso atingirá a altura máxima no instante em que $t^* = \frac{v_0}{g} = 0.6s$, visto que este momento ocorre quando $v(t) = v_0 - gt = 0$. Com isso, conclui-se que a altura máxima é $y(t^*) = h + v_0 t^* - \frac{1}{2} g t^{*2} \approx 27.5m$. No gráfico,

4.7 Exemplo - Aula 06 Vanderlei

"Suponha que há um trem parado no instante t=0 com aceleração a. Passados 6s, um passageiro chega ao local e observa o trem na posição x_{trem_1} . Este passageiro sai correndo com velocidade v_0 para tentar alcançar o trem. Qual é a velocidade mínima que o passageiro precisa atingir para alcançá-lo?"

Com relação ao trem, suas condições iniciais são $t_0 = 0, x_{trem} = 0, v_{trem} = 0$, tal que $x_{trem}(t) = \frac{1}{2}at^2$. Por outro lado, quanto ao passageiro, quando $t = 6s, x_p = 0$, de modo que $x_p(t) = x_{p_0} + v_0 t$. Como temos a informação da posição do passageiro aos 6s,

$$x_p(6) = x_{p_0} + v_0 \cdot 6 = 0 \Rightarrow x_{p_0} = -6v_0 \Rightarrow x_p(t) = v_0(t - 6).$$

No momento em que o passageiro alcança o trem, eles possuem posições iguais, isto é, $x_p(t) = x_{trem}(t)$. Graficamente,

Ou seja, buscamos t^* tal que $x_p(t^*) = x_{trem}(t^*), v_p(t^*) = v_{trem}(t^*)$. Com efeito,

$$v_0(t^* - 6) = \frac{at^*^2}{2} \Rightarrow v_0 = at^* \Rightarrow t^* = \frac{v_0}{a}$$
$$v_0 = \frac{a}{2} \frac{\left(\frac{v_0}{a}\right)^2}{\frac{v_0}{a} - 6} \Rightarrow \frac{v_0^2}{2a} = 6v_0 \Rightarrow v_0 = 12a.$$

Outra forma de resolver é utilizando o fato de que quando $\frac{dv}{dt} = 0$, a função está num mínimo. Ou seja, basta encontrar o valor mínimo de v_0 que satisfaça o que buscamos. Temos

$$v_0(t-6) = \frac{at^2}{2} \Rightarrow v_0(t) = \frac{at^2}{2} \frac{1}{(t-6)}.$$

Agora, derivando essa equação para v_0 ,

$$\frac{dv_0}{dt} = \frac{d}{dt} \left(\frac{at^2}{2} \frac{1}{t-6} \right) = \frac{d}{dt} (f(t)g(t)),$$

em que $f(t) = \frac{at^2}{2}$, $g(t) = (t-6)^{-1}$. Fazemos isso porque há uma regra para derivar o produto de funções, a Regra do Produto

$$\frac{df(t)g(t)}{dt} = g(t)\frac{df(t)}{dt} + f(t)\frac{dg(t)}{dt}$$

Derivando individualmente f e g,

$$\frac{df(t)}{dt} = at, \quad \frac{dg(t)}{dt} = -(t-6)^{-2} = -\frac{1}{(t-6)^2}.$$

Agora, vamos juntar tudo para obter a derivada de v_0 :

$$\frac{dv_0}{dt} = \frac{df(t)}{dt}g(t) + \frac{dg(t)}{dt}f(t) = \frac{at}{t-6} - \frac{1}{2(t-6)^2}at^2$$

$$= at\left(\frac{1}{t-6} - \frac{t}{2(t-6)^2}\right) = 0$$

$$\Rightarrow \frac{1}{t-6} = \frac{t}{2(t-6)} \Rightarrow 1 = \frac{t}{2(t-6)}$$

$$\Rightarrow 2(t-6) = t \Rightarrow 2t - t = 12 \Rightarrow t = 12s.$$