CSCI 3202: Intro to Artificial Intelligence Lecture 6: Breadth— First Search (BFS)

Rhonda Hoenigman

Department of Computer
Science

Assignment 1 posted on Canvas

Due: Feb 4 at 6pm.

Python notebook

Review – agents and states

Agents: actions, percepts.

E.g. robot vaccum

States: discrete configuration of the environment.

E.g positions of agents, dirty and clean cells

States: location, **Search algorithms:** find problem solution –sequence of actions to go from current

state to goal state.

suck updirt

Search

Uninformed Search - no additional information about states beyond that in the problem definition

Search strategies this week

Breadth-first search (BFS) – search across the tree before searching deeper into the tree.

Depth-first search (DFS) – search deeper into the tree before searching across the tree

Uniform Cost Search – BFS strategy with additional logic

Many, many, many search algorithms built on basic premise of BFS or DFS.

Search – building a search tree

A few variables:

Branching factor: b, maximum number of successors of any node b = 3

Depth: d, the depth (in the search tree) of the shallowest goal node

Search Inda

- Uninformed
- Expand all nodes at a given depth before proceeding into to the next layer (FIFO)
- Apply a goal test to each node

Example: Traveling in the US northeast

Question: Would changing the step cost function change our BFS result?

-Even if there is a major traffic jam in our route?

Example: Number the nodes in the search graph according to the order in which they would be expanded using BFS to find a path from a to k. Assume that nodes within a layer are expanded in alphabetical order. Edges are unweighted.

Example: Traveling in the northeast again. Sketch a search tree with Chicago as the initial state.

Example: Number the nodes in the search tree according to the order in which they would be expanded using BFS. Assume that the goal is not found, and nodes within a layer are expanded from left to right.

Time Complexity: Suppose that each layer generates b nodes (calling b the "branching factor") and the search problem has d total layers.

- \triangleright layer 0 (root) generates $b^0 = 1$ node
- \triangleright layer 1 generates $b^1 = b$ nodes
- \triangleright layer 2 generates b^2 nodes

... and so on ...

total:
$$1 + b + b^2 + b^3 + ... + b^d = O(b^d)$$

Space Complexity: assumes need to store every node in the explored set $= \mathcal{O}(b^{d-1})$

and every node on the frontier

$$= \mathcal{O}(b^d)$$

$$\triangleright \mathcal{O}(b^d)$$

Memory requirements are a problem. So is Time if all nodes searched.

Depth	Nodes 110	Time		Memory	
2		.11	milliseconds	107	kilobytes
4	11,110	11	milliseconds	10.6	megabytes
6	10^{6}	1.1	seconds	1	gigabyte
8	108	2	minutes	103	gigabytes
10	1010	3	hours	10	terabytes
12	10 ¹²	13	days	1	petabyte
14	1014	3.5	years	99	petabytes
16	10^{16}	350	years	10	exabytes

Figure 3.13 Time and memory requirements for breadth-first search. The numbers shown assume branching factor b = 10; 1 million nodes/second; 1000 bytes/node.

Next Time

Depth-first Search (DFS)

CSCI 3202: Intro to Artificial Intelligence Lecture 7: Depth— First Search (DFS)

Rhonda Hoenigman
Department of
Computer Science

- Uninformed
- Expand deepest node first (LIFO)
- "Back up" to next-deepest node with unexplored successors
- Implementation determines nodes explored and known
 - Iterative and recursive versions

Example: Traveling in the US northeast

Step costs: miles between cities along major highways

Example: Traveling in the US northeast. **Question**: Would changing the step cost function change our DFS result?

Step costs: estimated travel time (minutes) along major highways at 5PM east coast time on

a Friday

Example: Number the nodes in the search graph according to the order in which they would be expanded using DFS to find a path from a to k. Assume that nodes within a layer are added to the stack by alphabetical order. What is the route that DFS yields?

