Real Characteristic Roots

Adam Wilson

Salt Lake Community College

Consider the special case of a linear second-order homogeneous DE where all the coefficients are constant.

$$ay'' + by' + cy = 0$$
, $a, b, c \in \mathbb{R}$ and $a \neq 0$

Consider the special case of a linear second-order homogeneous DE where all the coefficients are constant.

$$ay'' + by' + cy = 0$$
, $a, b, c \in \mathbb{R}$ and $a \neq 0$

Let us try an approach similar to that for first-order linear DEs.

Consider the special case of a linear second-order homogeneous DE where all the coefficients are constant.

$$ay'' + by' + cy = 0$$
, $a, b, c \in \mathbb{R}$ and $a \neq 0$

Let us try an approach similar to that for first-order linear DEs. If we let $y = e^{rt}$

Consider the special case of a linear second-order homogeneous DE where all the coefficients are constant.

$$ay'' + by' + cy = 0$$
, $a, b, c \in \mathbb{R}$ and $a \neq 0$

Let us try an approach similar to that for first-order linear DEs. If we let $y = e^{rt}$, then $y' = re^{rt}$

Consider the special case of a linear second-order homogeneous DE where all the coefficients are constant.

$$ay'' + by' + cy = 0$$
, $a, b, c \in \mathbb{R}$ and $a \neq 0$

Let us try an approach similar to that for first-order linear DEs. If we let $y = e^{rt}$, then $y' = re^{rt}$ and $y'' = r^2 e^{rt}$.

Consider the special case of a linear second-order homogeneous DE where all the coefficients are constant.

$$ay'' + by' + cy = 0$$
, $a, b, c \in \mathbb{R}$ and $a \neq 0$

Let us try an approach similar to that for first-order linear DEs. If we let $y = e^{rt}$, then $y' = re^{rt}$ and $y'' = r^2 e^{rt}$. Thus, the DE becomes:

$$0 = ar^2e^{rt} + bre^{rt} + ce^{rt}$$

Consider the special case of a linear second-order homogeneous DE where all the coefficients are constant.

$$ay'' + by' + cy = 0$$
, $a, b, c \in \mathbb{R}$ and $a \neq 0$

Let us try an approach similar to that for first-order linear DEs. If we let $y = e^{rt}$, then $y' = re^{rt}$ and $y'' = r^2 e^{rt}$. Thus, the DE becomes:

$$0 = ar^2e^{rt} + bre^{rt} + ce^{rt} = e^{rt}(ar^2 + br + c)$$

Consider the special case of a linear second-order homogeneous DE where all the coefficients are constant.

$$ay'' + by' + cy = 0$$
, $a, b, c \in \mathbb{R}$ and $a \neq 0$

Let us try an approach similar to that for first-order linear DEs. If we let $y = e^{rt}$, then $y' = re^{rt}$ and $y'' = r^2 e^{rt}$. Thus, the DE becomes:

$$0 = ar^2e^{rt} + bre^{rt} + ce^{rt} = e^{rt}(ar^2 + br + c)$$

Because the range of e^{rt} is $(0,\infty)$ this will be satisfied only when

$$ar^2 + br + c = 0$$

We call this the **characteristic equation** of the DE and is key to finding the solutions that form a basis of the solution space.

We can solve the characteristic equation for r using the quadratic formula.

$$ar^2 + br + c = 0$$
 \Rightarrow $r = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

We can solve the characteristic equation for r using the quadratic formula.

$$ar^2 + br + c = 0$$
 \Rightarrow $r = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

Recall that the *discriminant* ($\Delta = b^2 - 4ac$) tells us which of the possibilities we have for the solutions:

• $\Delta > 0$: Two distinct real roots.

We can solve the characteristic equation for r using the quadratic formula.

$$ar^2 + br + c = 0$$
 \Rightarrow $r = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

Recall that the *discriminant* ($\Delta = b^2 - 4ac$) tells us which of the possibilities we have for the solutions:

- $\Delta > 0$: Two distinct real roots.
- $\Delta = 0$: One real root.

We can solve the characteristic equation for r using the quadratic formula.

$$ar^2 + br + c = 0$$
 \Rightarrow $r = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

Recall that the *discriminant* ($\Delta = b^2 - 4ac$) tells us which of the possibilities we have for the solutions:

- $\Delta > 0$: Two distinct real roots.
- $\Delta = 0$: One real root.
- $\Delta < 0$: Two conjugate complex roots. (Section 4.3.)

We can solve the characteristic equation for r using the quadratic formula.

$$ar^2 + br + c = 0$$
 \Rightarrow $r = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

Recall that the *discriminant* ($\Delta = b^2 - 4ac$) tells us which of the possibilities we have for the solutions:

- $\Delta > 0$: Two distinct real roots.
- $\Delta = 0$: One real root.
- $\Delta < 0$: Two conjugate complex roots. (Section 4.3.)

These roots are called characaristic roots or eigenvalues.

(The term *eigenvalue* is from Linear Algebra and we will talk more about them later in the semester.)

Solution for Distinct Real Characteristic Roots

For $\Delta > 0$, the characteristic roots of the DE

$$ay'' + by' + cy = 0$$

are

$$r_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$
, and $r_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$

Solution for Distinct Real Characteristic Roots

For $\Delta > 0$, the characteristic roots of the DE

$$ay'' + by' + cy = 0$$

are

$$r_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$
, and $r_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$

The functions e^{r_1t} and e^{r_2t} are linearly independent solutions, and the general solution is given by

$$y(t) = c_1 e^{r_1 t} + c_2 e^{r_2 t}$$

where c_1 and c_2 are arbitrary constants determined by the initial conditions.

Solution for Distinct Real Characteristic Roots

For $\Delta > 0$, the characteristic roots of the DE

$$ay'' + by' + cy = 0$$

are

$$r_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$
, and $r_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$

The functions e^{r_1t} and e^{r_2t} are linearly independent solutions, and the general solution is given by

$$y(t) = c_1 e^{r_1 t} + c_2 e^{r_2 t}$$

where c_1 and c_2 are arbitrary constants determined by the initial conditions.

The set $\{e^{r_1t}, e^{r_2t}\}$ forms a basis for the solution space \mathbb{S} .

Example

Let us find the general solution of

$$y'' + 5y' + 6y = 0$$

Example

Let us find the general solution of

$$y'' + 5y' + 6y = 0$$

First, let us write the characteristic equation:

$$0 = r^2 + 5r + 6$$

Example

Let us find the general solution of

$$y'' + 5y' + 6y = 0$$

First, let us write the characteristic equation:

$$0 = r^2 + 5r + 6 = (r+2)(r+3)$$

Example

Let us find the general solution of

$$y'' + 5y' + 6y = 0$$

First, let us write the characteristic equation:

$$0 = r^2 + 5r + 6 = (r+2)(r+3)$$

which has solutions $r_1 = -2$ and $r_2 = -3$.

Example

Let us find the general solution of

$$y'' + 5y' + 6y = 0$$

First, let us write the characteristic equation:

$$0 = r^2 + 5r + 6 = (r+2)(r+3)$$

which has solutions $r_1 = -2$ and $r_2 = -3$.

Thus, the general solution is

$$y(t) = c_1 e^{-2t} + c_2 e^{-3t}$$

Example

Let us find the general solution of

$$y'' + 5y' + 6y = 0$$

First, let us write the characteristic equation:

$$0 = r^2 + 5r + 6 = (r+2)(r+3)$$

which has solutions $r_1 = -2$ and $r_2 = -3$.

Thus, the general solution is

$$y(t) = c_1 e^{-2t} + c_2 e^{-3t}$$

The set $\left\{e^{-2t},e^{-3t}\right\}$ is a basis of the solution space $\mathbb S$, and $\dim\mathbb S=2.$

Example

Example

Let us find the general solution of

$$y''-y=0$$

Example

Let us find the general solution of

$$y''-y=0$$

First, let us write the characteristic equation:

$$0 = r^2 - 1$$

Example

Let us find the general solution of

$$y''-y=0$$

First, let us write the characteristic equation:

$$0 = r^2 - 1 = (r+1)(r-1)$$

Example

Let us find the general solution of

$$y'' - y = 0$$

First, let us write the characteristic equation:

$$0 = r^2 - 1 = (r+1)(r-1)$$

which has solutions $r_1 = 1$ and $r_2 = -1$.

Example

Let us find the general solution of

$$y''-y=0$$

First, let us write the characteristic equation:

$$0 = r^2 - 1 = (r+1)(r-1)$$

which has solutions $r_1 = 1$ and $r_2 = -1$.

Thus, the general solution is

$$y(t) = c_1 e^t + c_2 e^{-t}$$

Example

Let us find the general solution of

$$y''-y=0$$

First, let us write the characteristic equation:

$$0 = r^2 - 1 = (r+1)(r-1)$$

which has solutions $r_1 = 1$ and $r_2 = -1$.

Thus, the general solution is

$$y(t) = c_1 e^t + c_2 e^{-t}$$

The set $\{e^t, e^{-t}\}$ is a basis of the solution space \mathbb{S} , and $\dim \mathbb{S} = 2$.

Solution for Equal Real Characteristic Roots

For $\Delta = 0$, the characteristic roots of the DE

$$ay'' + by' + cy = 0$$

are

$$r = -\frac{b}{2a}$$

Solution for Equal Real Characteristic Roots

For $\Delta = 0$, the characteristic roots of the DE

$$ay'' + by' + cy = 0$$

are

$$r = -\frac{b}{2a}$$

The functions e^{rt} and te^{rt} are linearly independent solutions, and the general solution is given by

$$y(t) = c_1 e^{rt} + c_2 t e^t$$

where c_1 and c_2 are arbitrary constants determined by the initial conditions.

Solution for Equal Real Characteristic Roots

For $\Delta = 0$, the characteristic roots of the DE

$$ay'' + by' + cy = 0$$

are

$$r = -\frac{b}{2a}$$

The functions e^{rt} and te^{rt} are linearly independent solutions, and the general solution is given by

$$y(t) = c_1 e^{rt} + c_2 t e^t$$

where c_1 and c_2 are arbitrary constants determined by the initial conditions.

The set $\{e^{rt}, te^{rt}\}$ forms a basis for the solution space \mathbb{S} .

Example

Let us find the general solution of

$$y''-4y'+4y=0$$

Example

Let us find the general solution of

$$y'' - 4y' + 4y = 0$$

First, let us write the characteristic equation:

$$0 = r^2 - 4r + 4$$

Example

Let us find the general solution of

$$y'' - 4y' + 4y = 0$$

First, let us write the characteristic equation:

$$0 = r^2 - 4r + 4 = (r - 2)^2$$

Example

Let us find the general solution of

$$y'' - 4y' + 4y = 0$$

First, let us write the characteristic equation:

$$0 = r^2 - 4r + 4 = (r - 2)^2$$

which has solutions r = 2.

Example

Let us find the general solution of

$$y'' - 4y' + 4y = 0$$

First, let us write the characteristic equation:

$$0 = r^2 - 4r + 4 = (r - 2)^2$$

which has solutions r = 2.

Thus, the general solution is

$$y(t) = c_1 e^{2t} + c_2 t e^{2t}$$

Example

Let us find the general solution of

$$y'' - 4y' + 4y = 0$$

First, let us write the characteristic equation:

$$0 = r^2 - 4r + 4 = (r - 2)^2$$

which has solutions r = 2.

Thus, the general solution is

$$y(t) = c_1 e^{2t} + c_2 t e^{2t}$$

The set $\{e^{2t}, te^{2t}\}$ is a basis of the solution space \mathbb{S} , and $\dim \mathbb{S} = 2$.

Overdamped Mass-Spring System

The motion of a mass-spring system is called **overdamped** when we have $\Delta > 0$. Both characteristic roots are negative and the solutions

$$x(t) = c_1 e^{r_1 t} + c_2 e^{r_2 t}$$

tend towards zero with oscillation, crossing the t-axis at most once.

Example

Let us find the general solution of

$$\ddot{x} + 3\dot{x} + 2x = 0$$

Example

Let us find the general solution of

$$\ddot{x} + 3\dot{x} + 2x = 0$$

First, let us write the characteristic equation:

$$0 = r^2 + 3r + 2$$

Example

Let us find the general solution of

$$\ddot{x} + 3\dot{x} + 2x = 0$$

First, let us write the characteristic equation:

$$0 = r^2 + 3r + 2 = (r+1)(r+2)$$

Example

Let us find the general solution of

$$\ddot{x} + 3\dot{x} + 2x = 0$$

First, let us write the characteristic equation:

$$0 = r^2 + 3r + 2 = (r+1)(r+2)$$

which has solutions $r_1 = -1$ and $r_2 = -2$.

Example

Let us find the general solution of

$$\ddot{x} + 3\dot{x} + 2x = 0$$

First, let us write the characteristic equation:

$$0 = r^2 + 3r + 2 = (r+1)(r+2)$$

which has solutions $r_1 = -1$ and $r_2 = -2$.

Thus, this system is overdamped and has general solution

$$x(t) = c_1 e^{-t} + c_2 e^{-2t}$$

Example

Let us find the general solution of

$$\ddot{x} + 3\dot{x} + 2x = 0$$

First, let us write the characteristic equation:

$$0 = r^2 + 3r + 2 = (r+1)(r+2)$$

which has solutions $r_1 = -1$ and $r_2 = -2$.

Thus, this system is overdamped and has general solution

$$x(t) = c_1 e^{-t} + c_2 e^{-2t}$$

The set $\{e^{-t}, e^{-2t}\}$ is a basis of the solution space \mathbb{S} , and $\dim \mathbb{S} = 2$.

Critically Damped Mass-Spring System

the motion of a mass-spring system is called **critically damped** when we have $\Delta=0$. The single characteristic root are negative and the solutions

$$x(t) = c_1 e^{rt} + c_2 t e^{rt}$$

tend towards zero, crossing the t-axis at most once.

Example

Let us find the general solution of

$$\ddot{x} + 6\dot{x} + 9x = 0$$

Example

Let us find the general solution of

$$\ddot{x} + 6\dot{x} + 9x = 0$$

First, let us write the characteristic equation:

$$0 = r^2 + 6r + 9$$

Example

Let us find the general solution of

$$\ddot{x} + 6\dot{x} + 9x = 0$$

First, let us write the characteristic equation:

$$0 = r^2 + 6r + 9 = (r+3)^2$$

Example

Let us find the general solution of

$$\ddot{x} + 6\dot{x} + 9x = 0$$

First, let us write the characteristic equation:

$$0 = r^2 + 6r + 9 = (r+3)^2$$

which has solution r = -3.

Example

Let us find the general solution of

$$\ddot{x} + 6\dot{x} + 9x = 0$$

First, let us write the characteristic equation:

$$0 = r^2 + 6r + 9 = (r+3)^2$$

which has solution r = -3.

Thus, this system is critically damped and has general solution

$$x(t) = c_1 e^{-3t} + c_2 t e^{-3t}$$

Example

Let us find the general solution of

$$\ddot{x} + 6\dot{x} + 9x = 0$$

First, let us write the characteristic equation:

$$0 = r^2 + 6r + 9 = (r+3)^2$$

which has solution r = -3.

Thus, this system is critically damped and has general solution

$$x(t) = c_1 e^{-3t} + c_2 t e^{-3t}$$

The set $\{e^{-3t}, te^{-3t}\}$ is a basis of the solution space \mathbb{S} , and $\dim \mathbb{S} = 2$.

Existence and Uniqueness Theorem (Second-Order)

Let p(t) and q(t) be continuous on the open interval (a,b) containing t_0 . For any $A,B\in\mathbb{R}$, there exists a unique solution y(t) defined on (a,b) to the IVP

$$y'' + p(t)y' + q(t)y = 0$$
, $y(t_0) = A$, $y'(t_0) = B$

Existence and Uniqueness Theorem (Second-Order)

Let p(t) and q(t) be continuous on the open interval (a,b) containing t_0 . For any $A,B\in\mathbb{R}$, there exists a unique solution y(t) defined on (a,b) to the IVP

$$y'' + p(t)y' + q(t)y = 0$$
, $y(t_0) = A$, $y'(t_0) = B$

Proof

This is just an extension of Picard's Theorem.

Existence and Uniqueness Theorem (Second-Order)

Let p(t) and q(t) be continuous on the open interval (a,b) containing t_0 . For any $A,B\in\mathbb{R}$, there exists a unique solution y(t) defined on (a,b) to the IVP

$$y'' + p(t)y' + q(t)y = 0$$
, $y(t_0) = A$, $y'(t_0) = B$

Proof

This is just an extension of Picard's Theorem.

Solution Space Theorem (Second-Order)

The solution space $\mathbb S$ for a second-order homogeneous differential equation has dimension 2.

Existence and Uniqueness Theorem (Second-Order)

Let p(t) and q(t) be continuous on the open interval (a,b) containing t_0 . For any $A,B\in\mathbb{R}$, there exists a unique solution y(t) defined on (a,b) to the IVP

$$y'' + p(t)y' + q(t)y = 0$$
, $y(t_0) = A$, $y'(t_0) = B$

Proof

This is just an extension of Picard's Theorem.

Solution Space Theorem (Second-Order)

The solution space $\ensuremath{\mathbb{S}}$ for a second-order homogeneous differential equation has dimension 2.

Proof

See Page 217 in your textbook

Solutions of Homogeneous Linear DE (Second-Order)

For any linear second-order homogeneous DE on (a, b),

$$y'' + p(t)y' + q(t)y = 0$$

for which p and q are continuous on (a,b), any two linearly independent solutions $\{y_1,y_2\}$ form a basis of the solution space \mathbb{S} , and every solution y on (a,b) can be written as

$$y(t) = c_1 y_1(t) + c_2 y_2(t)$$

for some $c_1, c_2 \in \mathbb{R}$.

We can generalize these ideas for *n*th-order DEs.

We can generalize these ideas for *n*th-order DEs.

Existence and Uniqueness Theorem (nth-Order)

Let $p_1(t), p_2(t), \ldots, p_n(t)$ be continuous on the open interval (a, b) containing t_0 . For any initial conditions $A_0, A_1, \ldots, A_{n-1} \in \mathbb{R}$, there exists a unique solution y(t) defined on (a, b) to the IVP

$$y^{(n)} + p_1(t)y^{(n-1)} + p_2(t)y^{(n-3)} + \cdots + p_n(t)y = 0$$

where

$$y(t_0) = A_0, \quad y'(t_0) = A_1, \ldots, \quad y^{(n-1)}(t_0) = A_{n-1}$$

We can generalize these ideas for *n*th-order DEs.

Existence and Uniqueness Theorem (nth-Order)

Let $p_1(t), p_2(t), \ldots, p_n(t)$ be continuous on the open interval (a, b) containing t_0 . For any initial conditions $A_0, A_1, \ldots, A_{n-1} \in \mathbb{R}$, there exists a unique solution y(t) defined on (a, b) to the IVP

$$y^{(n)} + p_1(t)y^{(n-1)} + p_2(t)y^{(n-3)} + \cdots + p_n(t)y = 0$$

where

$$y(t_0) = A_0, \quad y'(t_0) = A_1, \ldots, \quad y^{(n-1)}(t_0) = A_{n-1}$$

Solution Space Theorem (nth-Order)

The solution space $\mathbb S$ for a *n*th-order linear homogeneous differential equation has dimension *n*.

Solutions of Homogeneous Linear DE (nth-Order)

For any linear nth-order homogeneous DE on (a, b),

$$y^{(n)} + p_1(t)y^{(n-1)} + \cdots + p_n(t)y = 0$$

for which $p_1(t), p_2(t), \ldots, p_n(t)$ are continuous on (a, b), any n linearly independent solutions $\{y_1, y_2, \ldots, y_2\}$ form a basis of the solution space \mathbb{S} , and every solution y on (a, b) can be written as

$$y(t) = c_1 y_1(t) + c_2 y_2(t) + \cdots + c_n y_n(t)$$

for some $c_1, c_2, \ldots, c_n \in \mathbb{R}$.

The Solution Space Theorem provides us with the number of solutions in a basis for all n-th order linear homogeneous DE. If we start with m solutions, then

The Solution Space Theorem provides us with the number of solutions in a basis for all n-th order linear homogeneous DE. If we start with m solutions, then

• if m > n, the solutions cannot be linearly independent.

The Solution Space Theorem provides us with the number of solutions in a basis for all n-th order linear homogeneous DE. If we start with m solutions, then

- if m > n, the solutions cannot be linearly independent.
- if m = n, we must test for linear independence.

The Solution Space Theorem provides us with the number of solutions in a basis for all n-th order linear homogeneous DE. If we start with m solutions, then

- if m > n, the solutions cannot be linearly independent.
- if m = n, we must test for linear independence.
- if m < n, the set of solutions does not span \mathbb{S} .

The Solution Space Theorem provides us with the number of solutions in a basis for all n-th order linear homogeneous DE. If we start with m solutions, then

- if m > n, the solutions cannot be linearly independent.
- if m = n, we must test for linear independence.
- if m < n, the set of solutions does not span \mathbb{S} .

A Wronskian conveys more information in the test for linear independence when the functions are solutions to the same *n*th-order linear homogeneous DE.

The Wronskian Test for Linear Independence of DE Solutions

Suppose $\{y_1, y_2, \dots, y_n\}$ is a set of solutions on (a, b) of a *n*th-order linear homogeneous DE,

$$L(y) = a_n(t)\frac{d^n y}{dt^n} + a_{n-1}(t)\frac{d^{n-1} y}{dt^{n-1}} + \dots + a_1(t)\frac{d^1 y}{dt^1} + a_0 y = 0$$

The Wronskian Test for Linear Independence of DE Solutions

Suppose $\{y_1, y_2, \dots, y_n\}$ is a set of solutions on (a, b) of a *n*th-order linear homogeneous DE,

$$L(y) = a_n(t)\frac{d^n y}{dt^n} + a_{n-1}(t)\frac{d^{n-1} y}{dt^{n-1}} + \cdots + a_1(t)\frac{d^1 y}{dt^1} + a_0 y = 0$$

• If $W[y_1, y_2, ..., y_n] \neq 0$ at any point $t \in (a, b)$, the set $\{y_1, y_2, ..., y_n\}$ is linearly independent.

The Wronskian Test for Linear Independence of DE Solutions

Suppose $\{y_1, y_2, \dots, y_n\}$ is a set of solutions on (a, b) of a *n*th-order linear homogeneous DE,

$$L(y) = a_n(t)\frac{d^n y}{dt^n} + a_{n-1}(t)\frac{d^{n-1} y}{dt^{n-1}} + \dots + a_1(t)\frac{d^1 y}{dt^1} + a_0 y = 0$$

- 1 If $W[y_1, y_2, ..., y_n] \neq 0$ at any point $t \in (a, b)$, the set $\{y_1, y_2, ..., y_n\}$ is linearly independent.
- 2 If $W[y_1, y_2, ..., y_n] = 0$ on all $t \in (a, b)$, the set is linearly dependent.

The Wronskian Test for Linear Independence of DE Solutions

Suppose $\{y_1, y_2, \dots, y_n\}$ is a set of solutions on (a, b) of a *n*th-order linear homogeneous DE,

$$L(y) = a_n(t)\frac{d^n y}{dt^n} + a_{n-1}(t)\frac{d^{n-1} y}{dt^{n-1}} + \dots + a_1(t)\frac{d^1 y}{dt^1} + a_0 y = 0$$

- 1 If $W[y_1, y_2, ..., y_n] \neq 0$ at any point $t \in (a, b)$, the set $\{y_1, y_2, ..., y_n\}$ is linearly independent.
- 2 If $W[y_1, y_2, ..., y_n] = 0$ on all $t \in (a, b)$, the set is linearly dependent.

The Wronskian test works in "both directions" only for n solutions to an nth-order linear homogeneous DE.

The Wronskian Test for Linear Independence of DE Solutions

Suppose $\{y_1, y_2, \dots, y_n\}$ is a set of solutions on (a, b) of a *n*th-order linear homogeneous DE,

$$L(y) = a_n(t)\frac{d^ny}{dt^n} + a_{n-1}(t)\frac{d^{n-1}y}{dt^{n-1}} + \dots + a_1(t)\frac{d^1y}{dt^1} + a_0y = 0$$

- If $W[y_1, y_2, ..., y_n] \neq 0$ at any point $t \in (a, b)$, the set $\{y_1, y_2, ..., y_n\}$ is linearly independent.
- 2 If $W[y_1, y_2, ..., y_n] = 0$ on all $t \in (a, b)$, the set is linearly dependent.

The Wronskian test works in "both directions" only for n solutions to an nth-order linear homogeneous DE.

Proof

See page 220 in your textbook

Example

Example

$$W = \begin{vmatrix} 2 & t-1 & t^2 & t^3+t \\ 0 & 1 & 2t & 3t^2+1 \\ 0 & 0 & 2 & 6t \\ 0 & 0 & 0 & 6 \end{vmatrix}$$

Example

$$W = \begin{vmatrix} 2 & t - 1 & t^2 & t^3 + t \\ 0 & 1 & 2t & 3t^2 + 1 \\ 0 & 0 & 2 & 6t \\ 0 & 0 & 0 & 6 \end{vmatrix}$$
$$= 2 \begin{vmatrix} 1 & 2t & 3t^2 + 1 \\ 0 & 2 & 6t \\ 0 & 0 & 6 \end{vmatrix}$$

Example

$$W = \begin{vmatrix} 2 & t-1 & t^2 & t^3 + t \\ 0 & 1 & 2t & 3t^2 + 1 \\ 0 & 0 & 2 & 6t \\ 0 & 0 & 0 & 6 \end{vmatrix}$$
$$= 2 \begin{vmatrix} 1 & 2t & 3t^2 + 1 \\ 0 & 2 & 6t \\ 0 & 0 & 6 \end{vmatrix}$$
$$= 2 \begin{vmatrix} 2 & 6t \\ 0 & 6 \end{vmatrix}$$

Example

$$W = \begin{vmatrix} 2 & t - 1 & t^2 & t^3 + t \\ 0 & 1 & 2t & 3t^2 + 1 \\ 0 & 0 & 2 & 6t \\ 0 & 0 & 0 & 6 \end{vmatrix}$$
$$= 2 \begin{vmatrix} 1 & 2t & 3t^2 + 1 \\ 0 & 2 & 6t \\ 0 & 0 & 6 \end{vmatrix}$$
$$= 2 \begin{vmatrix} 2 & 6t \\ 0 & 6 \end{vmatrix}$$
$$= 24$$

Example

Consider the set of solutions $A = \{2, t - 1, t^2, t^3 + t\}$ to $\frac{d^4y}{dy^4} = 0$ on \mathbb{R} .

$$W = \begin{vmatrix} 2 & t - 1 & t^2 & t^3 + t \\ 0 & 1 & 2t & 3t^2 + 1 \\ 0 & 0 & 2 & 6t \\ 0 & 0 & 0 & 6 \end{vmatrix}$$
$$= 2 \begin{vmatrix} 1 & 2t & 3t^2 + 1 \\ 0 & 2 & 6t \\ 0 & 0 & 6 \end{vmatrix}$$
$$= 2 \begin{vmatrix} 2 & 6t \\ 0 & 6 \end{vmatrix}$$
$$= 24 \neq 0$$

A is linearly independent and hence a basis of S.

Example

Example

$$W = egin{array}{cccc} t & t+1 & t^2-1 & t^2 \ 1 & 1 & 2t & 2t \ 0 & 0 & 2 & 2 \ 0 & 0 & 0 & 0 \ \end{array}$$

Example

Consider the set of solutions $B = \{t, t+1, t^2-1, t^2\}$ to $\frac{d^4y}{dv^4} = 0$ on \mathbb{R} .

$$W = \begin{vmatrix} t & t+1 & t^2-1 & t^2 \\ 1 & 1 & 2t & 2t \\ 0 & 0 & 2 & 2 \\ 0 & 0 & 0 & 0 \end{vmatrix}$$
$$= 0$$

B is linearly dependent.

Example

Consider the set of solutions $B = \{t, t+1, t^2-1, t^2\}$ to $\frac{d^4y}{dy^4} = 0$ on \mathbb{R} .

$$W = \begin{vmatrix} t & t+1 & t^2-1 & t^2 \\ 1 & 1 & 2t & 2t \\ 0 & 0 & 2 & 2 \\ 0 & 0 & 0 & 0 \end{vmatrix}$$

=

B is linearly dependent. (For example, $t = (t+1) + (t^2 - 1) - (t^2)$.)

Example

Example

$$W = \begin{vmatrix} 1 & t^2 & t^3 \\ 0 & 2t & 3t^2 \\ 0 & 2 & 6t \end{vmatrix}$$

Example

$$W = \begin{vmatrix} 1 & t^2 & t^3 \\ 0 & 2t & 3t^2 \\ 0 & 2 & 6t \end{vmatrix}$$
$$= \begin{vmatrix} 2t & 3t^2 \\ 2 & 6t \end{vmatrix}$$

Example

$$W = \begin{vmatrix} 1 & t^2 & t^3 \\ 0 & 2t & 3t^2 \\ 0 & 2 & 6t \end{vmatrix}$$
$$= \begin{vmatrix} 2t & 3t^2 \\ 2 & 6t \end{vmatrix}$$
$$= 6t^2$$

Example

Consider the set of solutions $C = \{1, t^2, t^3\}$ to $\frac{d^4y}{dy^4} = 0$ on \mathbb{R} .

$$W = \begin{vmatrix} 1 & t^2 & t^3 \\ 0 & 2t & 3t^2 \\ 0 & 2 & 6t \end{vmatrix}$$
$$= \begin{vmatrix} 2t & 3t^2 \\ 2 & 6t \end{vmatrix}$$
$$= 6t^2 = 0 \text{ only when } t = 0.$$

W is not identically zero, so we know C is a linearly independent set.

Example

Consider the set of solutions $C = \{1, t^2, t^3\}$ to $\frac{d^4y}{dy^4} = 0$ on \mathbb{R} .

$$W = \begin{vmatrix} 1 & t^2 & t^3 \\ 0 & 2t & 3t^2 \\ 0 & 2 & 6t \end{vmatrix}$$
$$= \begin{vmatrix} 2t & 3t^2 \\ 2 & 6t \end{vmatrix}$$
$$= 6t^2 = 0 \text{ only when } t = 0.$$

W is not identically zero, so we know C is a linearly independent set. But the strong conclusion of the Wronskian test did not occur here because C contains only three solutions for a fourth-order DE.