THE HONG KONG UNIVERSITY OF SCIENCE & TECHNOLOGY Machine Learning Homework 1

Due Date: See course webpage.

Your answers should be typed, not handwritten. You can submit a Word file or a pdf file. Submissions are to be made via Canvas. Note that penalty applies if your similarity score exceeds 40. To minimize your similarity score, don't copy the questions.

Question 1: Suppose a dataset $\mathcal{D} = \{\mathbf{x}_i\}_{i=1}^N$ is generated from some unknown distribution $p(\mathbf{x})$ and we learn from \mathcal{D} a distribution $q_{\theta}(\mathbf{x})$ with parameters θ . What is the KL divergence $KL(p||q_{\theta})$ of q_{θ} from p? What is the cross entropy $H(p, q_{\theta})$ between p and q_{θ} ? How are they related?

What is the log-likelihood of $l(\theta|\mathcal{D})$? How is maximizing $l(\theta|\mathcal{D})$ related to minimizing the cross entropy and the KL divergence?

Question 2 Consider carrying out linear regression on the following dataset. Manually compute the ordinary least squares solution.

x_1	0	0	1	1	1
x_2	1	1	1	0	0
y	0	1	2	3	4

Question 3 The following figures show linear regression results on a dataset of only three data points (marked blue).

The results were obtained using following regularization schemes:

1.
$$\frac{1}{3}\sum_{i=1}^{3}(y_i - w_0 - w_1x_i)^2 + \lambda w_1^2$$
 where $\lambda = 1$.

2.
$$\frac{1}{3}\sum_{i=1}^{3}(y_i-w_0-w_1x_i)^2+\lambda w_1^2$$
 where $\lambda=10$.

3.
$$\frac{1}{3}\sum_{i=1}^{3}(y_i-w_0-w_1x_i)^2+\lambda(w_0^2+w_1^2)$$
 where $\lambda=1$.

4.
$$\frac{1}{3}\sum_{i=1}^{3}(y_i-w_0-w_1x_i)^2 + \lambda(w_0^2+w_1^2)$$
 where $\lambda=10$.

Match the regularization schemes with the regress results. Briefly explain your answers.

Question 4 Consider applying logistic regression to the following dataset:

The target is to learn a model of the form $p(y = 1 | \mathbf{x}, \mathbf{w}) = \sigma(w_0 + w_1 x_1 + w_2 x_2)$.

Suppose $w_0 = -2$, $w_1 = 1$ and $w_2 = 1$ initially and $\alpha = 0.1$. Manually run the batch gradient descent algorithm for one iteration. Give the weights and training error (i.e., fraction of misclassified examples) after the iteration.

Question 5 Consider applying logistic regression to the following dataset:

1. If we use raw feature x_1 and x_2 , the model is

$$p(y = 1 | \mathbf{x}, \mathbf{w}) = \sigma(w_0 + w_1 x_1 + w_2 x_2).$$

What is the minimum achievable training error in this case? Give weights that achieve the minimum error.

2. Next consider using an additional feature x_1x_2 in addition to the raw feature x_1 and x_2 . The model now is

$$p(y = 1|\mathbf{x}, \mathbf{w}) = \sigma(w_0 + w_1x_1 + w_2x_2 + w_3x_1x_2).$$

What is the minimum achievable training error in this case? Give weights that achieve the minimum error.

Question 6 Consider the gradient vector in logistic regression $\nabla J(\mathbf{w}) = (\frac{\partial J(\mathbf{w})}{\partial w_0}, \frac{\partial J(\mathbf{w})}{\partial w_1}, \dots, \frac{\partial J(\mathbf{w})}{\partial w_D})$ where

$$\frac{\partial J(\mathbf{w})}{\partial w_j} = -\frac{1}{N} \sum_{i=1}^{N} [y_i - \sigma(z_i)] x_{i,j}.$$

Suppose the feature x_1 is binary and, in the training set, it takes value 1 only in a small number of training examples with class label 1 (i.e., y = 1), and it takes value 0 in all training examples with class label 0 (i.e., y = 0). What will happen to the weight w_1 if we update it repeatedly using the following rule:

$$w_1 \leftarrow w_1 + \alpha \frac{1}{N} \sum_{i=1}^{N} [y_i - \sigma(\mathbf{w}^{\top} \mathbf{x}_i)] x_{i,1}$$

What if we use the following update rule instead:

$$w_1 \leftarrow w_1 + \alpha [-\lambda w_1 + \frac{1}{N} \sum_{i=1}^N [y_i - \sigma(\mathbf{w}^\top \mathbf{x}_i)] x_{i,1}],$$

where λ is the regularization constant?