

Cambridge International Examinations Cambridge International Advanced Level

CANDIDATE NAME

CENTRE

NUMBER

CANDIDATE NUMBER

MATHEMATICS 9709/32

Paper 3 Pure Mathematics 3 (P3)

October/November 2018

1 hour 45 minutes

Candidates answer on the Question Paper.

Additional Materials: List of Formulae (MF9)

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer **all** the questions in the space provided. If additional space is required, you should use the lined page at the end of this booklet. The question number(s) must be clearly shown.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of an electronic calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 75.

This document consists of 19 printed pages and 1 blank page.

Solve the inequality $3 2x-1 > x+4 $.	[4]
9(22-1)(2x-1) > (x+4) (x+4)	
9[422 -4x+1) = x2 + 8x + 16	
36x2 - 36x+9 = 22 + 8x+16	
35x2 - 456 - 7 > 0	
)
χ =	
	2
α <u>ζ-1</u>	
x 2 7 V	
, , , , , , , , , , , , , , , , , , ,	
3(2(2)-1) 7 1 6) -1	
3 -2-1	7 -1+4
9 7	1
7 4-1 or ~ 2 7	
$x \leftarrow \frac{1}{7}$ or $x > \frac{7}{5}$	

1

2

$ \frac{\sqrt{3} \sin \theta - 1}{2} \cos \theta + \frac{1}{2} \cos \theta = 2 \sin \theta \\ \frac{\sqrt{3}}{2} \sin \theta + \frac{1}{2} = 2 \tan \theta \\ \frac{(2 - \sqrt{3})}{2} \tan \theta = \frac{1}{2} \\ \theta = \frac{1}{2} \cos^{2} \theta^{2} $ $ \frac{\theta = 2 \sin^{2} \theta}{2} $ $ \frac{(2 - \sqrt{3})}{2} \tan^{2} \theta = \frac{1}{2} \tan^{2} \theta$ $ \frac{\theta = 2 \sin^{2} \theta}{2} $ $ \frac{(2 - \sqrt{3})}{2} \tan^{2} \theta = \frac{1}{2} \tan^{2} \theta$ $ \frac{\theta = 2 \sin^{2} \theta}{2} $	Showing all necessary working, solve the equation $\sin(\theta - 30^\circ) + \cos\theta = 2\sin\theta$, for $0^\circ < \theta < 180^\circ$
$ \frac{\sqrt{3} + \sqrt{6}}{2} = 2 + \sqrt{6} $ $\frac{\sqrt{3} + \sqrt{6}}{2} = 2 + \sqrt{6} $ $$	$\sqrt{3}\sin\theta - \frac{1}{3}\cos\theta + \frac{1}{63}\cos\theta = 2\sin\theta$
$ \frac{\sqrt{3} \tan \theta}{2} + \frac{1}{2} = 2 \tan \theta $ $ \left(2 - \frac{\sqrt{3}}{2}\right) \tan \theta = \frac{1}{2} $ $ \theta = \tan^{-1}\left(\frac{\frac{1}{2}}{2}\right) $ $ \frac{2 - \frac{13}{2}}{2} $ $ \theta = 23.79398^{\circ} $	
$ \frac{\sqrt{3} \tan \theta}{2} + \frac{1}{2} = 2 \tan \theta $ $ \left(2 - \frac{\sqrt{3}}{2}\right) \tan \theta = \frac{1}{2} $ $ \theta = \tan^{-1}\left(\frac{\frac{1}{2}}{2}\right) $ $ \frac{2 - \frac{13}{2}}{2} $ $ \theta = 23.79398^{\circ} $	$\frac{\sqrt{3} + \sqrt{6}}{2} = 2 + 2 = 2 + 2$
$(2 - \sqrt{3}) \tan \theta = \frac{1}{2}$ $\theta = \tan^{-1} \left(\frac{1/2}{2 - \sqrt{3}} \right)$ $\theta = 23.79398^{\circ}$	_
$0 = \tan^{-1} \left(\frac{1/2}{2 - \frac{13}{2}} \right)$ $0 = 23.79398^{\circ}$	2 2
$0 = \tan^{-1} \left(\frac{1/2}{2 - \frac{13}{2}} \right)$ $0 = 23.79398^{\circ}$	$\left(2-\sqrt{3}\right)$ ton $0=1$
0-2 23.793 98°	
0-2 23.793 98°	$0 = 100$ $\left(\frac{1}{2}\right)$
	0; 72.793 98°

3 (i) Find $\int \frac{\ln x}{x^3} dx$.

- $V = x^{-2}$ $V' = x^{-3}$ = -1
- $-\frac{1}{2x^2} \times \ln x + \int \frac{1}{2x^2} \frac{1}{x} dx$
- $\frac{-\ln x}{2x^{2}} + \frac{1}{2} \int x^{-3} dx$
- $\frac{-\ln \alpha}{2 \, n^2} + \frac{1}{2} \left(\frac{-1}{2n^2} \right) \Rightarrow \frac{1}{4n^2} \left(\frac{-2 \ln \alpha}{2} 1 \right)$
- (ii) Hence show that $\int_{1}^{2} \frac{\ln x}{x^3} dx = \frac{1}{16}(3 \ln 4).$

[2]

- let {(1): 1 (-2 ln2 1)
 - $f(2) = \frac{1}{6} \left(-2 \ln 2 1\right) = \frac{-1}{6} = \frac{1}{6}$
 - $f(1) = \frac{1}{4}(-1) = \frac{-1}{4}$
 - $\frac{3}{16} \frac{2 \ln 2}{16} \frac{1}{12} \left(3 \ln 4 \right)$

1	Showing al	1 necessary	working	colve the	Aduation
-	Showing at	i necessai v	working.	SOLVE HIC	cuuanon

$e^x + e^{-x}$
$\frac{1}{e^x + 1} = 4,$

giving your answer correct to 3 decimal places. x= 1x0.215 5 The equation of a curve is $y = x \ln(8 - x)$. The gradient of the curve is equal to 1 at only one point, when x = a.

(•)		8
(1)	Show that a satisfies the equation $x = 8$ –	$\overline{\ln(8-x)}$

$\frac{dy}{dz} = x(\frac{1}{3-1})(-1) + 1n(3-x) = 1$
- 1 + In 8- x = 1
8-L
$\ln(8-a) > 1+\alpha$
8-2
8-x + 1 = 1m8-x
J-1
<u>8</u> = 14(8-x)
₹-¥
<u> </u>
1n(8-2)
γ ≤ 8 - 8
[η(β-χ)

. Jiii j oj calculatio		between 2.9 and 3.1.	
	54	= 8 - <u>8</u>	
		l n(3-2)	
	+ ((×) . <i>Q</i> ~ \ \	
)= 8-2-8	
		(h(8-x)	
£(2	·9) = 6	3-2.9- <u>8</u> In(b-2.9)	0-1891
		(n(b-2.9)	
5(3	<u> </u>	- 6.11 37 /	
chow	v of s	sigh: root tie	e between
)	g and	B · []	
Use an iterative for	rmula based o	on the equation in part (i) to determine	
Use an iterative for	rmula based of sult of each it	on the equation in part (i) to determine eration to 4 decimal places.	
Use an iterative for	rmula based of sult of each it	on the equation in part (i) to determine eration to 4 decimal places.	a correct to 2 deci
Use an iterative for	rmula based of sult of each it	on the equation in part (i) to determine eration to 4 decimal places. 8 - 8 - 3 0 7	a correct to 2 deci
Use an iterative fo places. Give the re	rmula based of sult of each it	on the equation in part (i) to determine eration to 4 decimal places. $8 - 8 - 3 \cdot 0.3$ $(\sqrt{8-3})$	a correct to 2 deci
Use an iterative for places. Give the re	rmula based of sult of each it	on the equation in part (i) to determine eration to 4 decimal places. $8 - 8 - 3 \cdot 0.7$ $(\sqrt{8-3})$ $3 \cdot 0.111$	a correct to 2 deci
Use an iterative for places. Give the re	rmula based of sult of each it	on the equation in part (i) to determine eration to 4 decimal places. $8 - 8 - 3 \cdot 0.7$ $14(8-3)$ $3 \cdot 0.111$ $3 \cdot 0.22.5$	a correct to 2 deci
Use an iterative for places. Give the re	rmula based of sult of each it	on the equation in part (i) to determine eration to 4 decimal places. $8 - 8 - 3 \cdot 0.3$ $1x(8-3)$ $3 \cdot 0.111$ $3 \cdot 0.22.5$ $3 \cdot 0.64$	a correct to 2 deci
Use an iterative for places. Give the re	rmula based of sult of each it	on the equation in part (i) to determine eration to 4 decimal places. $8 - 8 = 3 \cdot 0.3$ $(n(8-3))$ $3 \cdot 0.111$ $3 \cdot 0.22.5$ $3 \cdot 0.198$	a correct to 2 deci
Use an iterative for places. Give the re	rmula based of sult of each it \(\lambda = \) \(\lambda = \)	on the equation in part (i) to determine eration to 4 decimal places. $8 - 8 - 3 \cdot 0.3$ $1x(8-3)$ $3 \cdot 0.111$ $3 \cdot 0.22.5$ $3 \cdot 0.64$	a correct to 2 deci

differential equation, find the equation of the curve, expressing y in terms of x .	[8]
dy = ky2	
H 2	
$\left(10^{-2}\right)$ les = $\left(1\right)$ les	
$\int y^{-1} dy = + \int \frac{1}{x} dx$	
$=$ $=$ $k \ln x + C$	
y	
-1 = 0 + 4	
(C=4)	
$-\frac{1}{2} = k \ln e - l$	
<u> </u>	
2	
6 _ 1	•••••
R = 1 7	
-1 = Lly X -1	
Y Z	
$-1 = \frac{1}{2}y \ln x - y$	
2)	
_1()	
$-1 = y(\frac{1}{2}\ln x - 1)$	
y = -1 ½ lnx-1	
1 ln x -1	

7	A curve has equation $y =$	$=\frac{3\cos x}{2+\sin x}$, for	$1 - \frac{1}{2}\pi \leqslant x \leqslant$	$\leq \frac{1}{2}\pi$.
		2 511170	4.51	(·5 /

[6]

				`		
(i)	Find the exact	coordinates	of the	stationary	point of	the curve.

 $0 = \frac{dg}{dx} = \frac{(2 + \sin x)(3(-\sin x)) - (3(\cos x)(\cos x))}{(2 + \sin x)^2}$

;	-6Sind	-35in x	- 36	127 =	0	

			9
	_	_	

25m 2 +1	
Sim 1 = -	1
311 1	
	2

 T + Sta-1-1 =	3. 4 5
" (2)	

		. . i					
χ	>	2X-	Sin -1	4)-7	1	_	-17
			τ.				6

u.	3(os(-1t)	353
•	6)	2
	2+5in(-15T)	\$

	-(v . 53	
••••••	•••••	 •••••

(ii)	The constant a is such that $\int_0^a \frac{3\cos x}{2 + \sin x} dx = 1$. Find the value of a, giving your answer correct to 3 significant figures.
	to 3 significant figures.
	0
	3 (62) S== 1
	645ing
	······································
	3 ln/2+ Sinz/0 = 1
	3/4/2+sina/ - 3/42=1
	3 ln 2+sina =1
	2
	2+Sina = 63
	2
	$5m_{0} - 2c_{3} - 2$
	a: 4in (203-2)
	a= 0.913
	0.41)

- 8 Let $f(x) = \frac{7x^2 15x + 8}{(1 2x)(2 x)^2} = \frac{A}{(-2x)^2} + \frac{C}{2 x^2}$
 - (i) Express f(x) in partial fractions.

722-15x =8= A(2-x)2+B(-ex)(2-x)+C(
2-3-
72°-15xx8= A(4-42(+x2)+B(2-5x+2x2)+C
$72^{2}-15x+8=4A-4Ax+4x^{2}+2B-5Bx+2Bx^{2}+0$
7 = 4 x 2 B
-15=-4A-5B-2C
8 = 4A+2B+C
A = 1
ይ = ን
(= 2

(ii) Hence obtain the expansion of $f(x)$ in ascending powers of x , up to and including the term in x^2 $1 \left(\left(\frac{-2a}{-4} \right)^{-1} + 3\left(\frac{2-4}{-4} \right)^{-2} - 2\left(\frac{2-4}{-4} \right)^{-2}$
$\frac{(1-2x)^{-1}}{1+2x} = \frac{(-1)(-2)(-2x)^2}{4x^2}$
$\frac{3}{2}\left(1-\frac{x}{2}\right)' = \frac{3}{2}\left[1+\frac{x}{2}+\frac{(-1)(-2)(-\frac{1}{2}x)^{2}}{2}\right]$ $= \frac{3}{2}+\frac{37}{4}+\frac{37}{8}+37$
$-\frac{1}{2}\left(\frac{(-x)^{-2}}{2}\right)^{-2} = -\frac{1}{2}\left(\frac{(-x)(-\frac{1}{2}x)}{2} + \frac{(-2)(-3)(-\frac{1}{2}x)^{2}}{2}\right)^{-2}$ $= -\frac{1}{2} - \frac{1}{2}x - \frac{3}{2}x$
1+2x+4x°+ 2+3x+3x(-1-1-1-3-3)
2+9x+4xs

(1)	Without using a calcuand y are real.	lator, express the o	complex number $\frac{2}{1}$	$\frac{1}{2i}$ in the form	x + iy, where x
		(2+6i)(42;	_ 2 + 0	1+12(-1)	1017 01-
		(2 +6;)(42; (1-2i)(+2;)	<u> 2 + 10</u> 1 - 4	(-1)	5
					-2 - 2i
				······································	·
					•••••
(ii)	Hence, without using and $-\pi < \theta \le \pi$, giving		$\frac{2+6i}{1-2i} \text{ in the form}$ of r and θ .	$r(\cos\theta + i\sin\theta)$	θ), where $r > 0$
(ii)	and $-\pi < \theta \leqslant \pi$, giving		of r and θ .	$\frac{r(\cos\theta + i\sin\theta)}{\sqrt{8}}$	θ), where $r > 0$
(ii)	and $-\pi < \theta \leqslant \pi$, giving	g the exact values	of r and θ .		θ), where $r > 0$
(ii)	and $-\pi < \theta \leqslant \pi$, giving	g the exact values	of r and θ .		θ), where $r > 0$
(ii)	and $-\pi < \theta \leqslant \pi$, giving	g the exact values	of r and θ .		θ), where $r > 0$
(ii)	and $-\pi < \theta \leqslant \pi$, giving	g the exact values	of r and θ .		θ), where $r > 0$
(ii)	and $-\pi < \theta \leqslant \pi$, giving	g the exact values	of r and θ .		θ), where $r > 0$ [3]
(ii)	and $-\pi < \theta \leqslant \pi$, giving	g the exact values	of r and θ .		θ), where $r > 0$ [37] $\frac{1}{1} = \frac{1}{1} = \frac{1}{1}$
(ii)	and $-\pi < \theta \leqslant \pi$, giving	g the exact values	of r and θ .		θ), where $r > 0$ [3]
(ii)	and $-\pi < \theta \leqslant \pi$, giving	g the exact values	of r and θ .		θ), where $r > 0$ [37] $T - I_{\theta}$
(ii)	and $-\pi < \theta \leqslant \pi$, giving	g the exact values	of r and θ .		θ), where $r > 0$ [3] $T - I$
(ii)	and $-\pi < \theta \leqslant \pi$, giving	g the exact values	of r and θ .		θ), where $r > 0$ [3]

(b)	satisfying both the inequalit	agram, shade the region whose points represent complex numbers z ies $ z-3i \le 1$ and Re $z \le 0$, where Re z denotes the real part of z . If $z = 1$ g z for points in this region, giving your answer in radians correct to
		Z - (0 + 3i)
		$m_{2} \tan^{-1} \left(\frac{1}{3}\right) = 0.32125$
	Mat ong =	I + m
		$\frac{T_2}{7} + M$ $= (-89)(15)$
		= (-09 676

10 The line l has equation $\mathbf{r} = 5\mathbf{i} - 3\mathbf{j} - \mathbf{k} + \lambda(\mathbf{i} - 2\mathbf{j} + \mathbf{k})$. The plane p has equation $(\mathbf{r} - \mathbf{i} - 2\mathbf{j}) \cdot (3\mathbf{i} + \mathbf{j} + \mathbf{k}) = 0$.

The line l intersects the plane p at the point A.

Find the position vector of <i>A</i> .	

(ii)	Calculate the acute angle between l and p .	[4]

[Question 10(iii) is printed on the next page.]

•••	
•••	
•••	
•••	
•••	
• • •	
• • •	
•••	
•••	
•••	
•••	
•••	
•••	
•••	
• • •	
• • •	

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.				
	•••••			
	•••••			
	•••••			
	•••••			
	•••••			
	•••••			
	•••••			
	•••••			

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

© UCLES 2018 9709/32/O/N/18