

Autoren: Sven Osterwalder

Mira Günzburger

Professor: Dr. Jürgen Eckerle Experte: Jean-Marie Leclerc

Datum: 30. Januar 2015

Semantische Datenbanken

Verteidigung Bachelor-Thesis

Theoretische Grundlagen; Aufbau und Nutzung einer semantischen Datenbank

Berner Fachhochschule | Haute école spécialisée bernoise | Bern University of Applied Sciences

Inhalt

- Allgemein
 - Motivation
 - Wissensabbildung
- Theorie: Expertensysteme
 - Wissensdatenbank
 - Inferenzmaschine
 - Benutzerschnittstelle
- Praktische Umsetzung
 - Modellierung
 - Lösung
 - Tutorial
 - Benutzerschnittstelle
- Organisatorisches
- Fazit

Allgemein

Motivation

- Beantworten von Fragen
 - Klassische Suchmaschine
 - Konzepte und Zusammenhänge -> Semantisches Wissen

Motivation

Ziel

- Aufbau und Anwendung einer semantischen Datenbank
 - Theoretischer Teil
 - Tutorial
 - Praktischer Teil
 - Aufbau semantische Datenbank
 - Benutzerschnittstelle

Theorie: Expertensystem

Expertensysteme

Expertensystem

Wissensdatenbanken

Ontologie

- Basis einer semantischen Datenbank
- Formale Beschreibung von Wissen
 - Domäne
 - Ausschnitt der Welt
 - Konzepte
 - Klassen und Objekte
 - Beziehungen
 - Zwischen Individuen
 - Axiome und Prinzipien
 - Regeln

Ontologie

- Kommunikation
 - Computeranwendungen
 - Mensch und Computer
- Semantik zur Formulierung von Informationen
- Tripel
 - Subjekt
 - Prädikat
 - Objekt

Wissensrepräsentationsformen

- Semantische Netze
- Frames
- Wissensnetze

Wissensrepräsentationsformen: Semantische Netze

- Abbildung des menschlichen Gedächtnisses
 - Analyse von Wörtern und Sätzen
- Darstellung von Klassen und Beziehungen

Wissensrepräsentationsformen: Semantische Netze

- Repräsentation in Graphen
 - Knoten
 - Begriffe (Klassen und Individuen)
 - Kanten
 - Beziehungen und Eigenschaften

Abgewandelte Form eines semantischen Netzes

Sprachen: RDF

- Resource Description Framework
- Informationen
 - aus Ressourcen formulieren
 - austauschen
- «Syntax»
- XML-artig
- Tripel-Struktur
- Verschiedene Formen

```
<http://example.org/bob> <is published by> <http://example.org>.
```

Sprachen: OWL

- Ontology Web Language
- Wissensbasierte Repräsentationssprache
- Basiert auf RDF-Syntax
 - Verschiedene Schreibweisen
 - Zusätzliches Vokabular
 - Beziehungen zwischen Klassen
- Verschiedene Untersprachen
- Beschreibt Ontologien

Sprachen: OWL

- Wichtigste Elemente
 - Klassen, Subklassen und Individuen
 - Eigenschaften
 - Objekte (Beziehungen)
 - Datentypen

Sprachen: OWL

Sprachen: SWRL

- Semantic Web Rule Language
- Regeln
- Kombination OWL und RuleML

Sprachen: SWRL

- Aufbau
 - ▶ Bedingungen → Folgerung
 - Positive Konjunktionen von Atomen
 - Kopf
 - Körper

```
durchschnittspreis(?r, ?preis), lessThanOrEqual(?preis, 30), greaterThan(?preis, 20) \rightarrow preissegment(?r, "preiswert")
```

Sprachen: SPARQL

- SPARQL Protocol And RDF Query Language
- Abfragen
- Graph-basierte Abfragesprache
- Erinnert an SQL
 - Namespaces
 - Variablen

```
SELECT DISTINCT

*
WHERE {
    ?object ?predicate ?subject
}
LIMIT
    10
```

Expertensystem

Inferenzmaschine

Allgemein

- Inferenz
 - Schlussfolgerung mittels Resolution
- Resolution
 - Verallgemeinerung des Modus Ponens
 - Logische Formeln auf Gültigkeit testen

Inferenz und Resolution zur Ziehung von Schlüssen

- Inferenz in der Semantik
 - Neue Beziehungen zwischen Entitäten
 - → Reasoner
- Beschreibungslogik
 - Teilmenge der Prädikatenlogik
 - Formalismen zur Wissensdarstellung
 - Kern von Wissensrepräsentationssystemen
 - Wissensbasis

Reasoner: Pellet

Tableau-Reasoner

- Ontologie auf Konsistenz prüfen
 - Gültige Interpretation der Ontologie
 - → Modell
- Suche Modell
 - Beginnt mit initialen Graphen der Abox
 - Durch Vervollständigung
 - Inkrementeller Aufbau Tafel
 - → Tableau Algorithmus
 - → Aufbau von widerspruchsfreiem Graph

Tableau-Kalkül

- Erzeugung Modell
 - Widerspruchsbeweis
 - Vereinigung
 - Negation der Konklusion (Folgerung)
 - Menge der Prämissen (Anforderungen)
 - Erweiterung Graph
 - Anwendung von Transformationsregeln

Tableau-Kalkül: Beispiel

$$\{S \land O \rightarrow R, S, O, \neg R\}$$

- (a): $S \wedge O \rightarrow R$
- (b): S
- (c): O
- (d): ¬R

Tableau-Kalkül: Beispiel

$$\{S \land O \rightarrow R, S, O, \neg R\}$$

Expertensystem

Benutzerschnittstelle

Praktische Umsetzung

Praktische Umsetzung

Modellierung

Modellierung

- Problemdomäne
 - Ursprünglich Prolog
 - Klarer Rahmen
 - → Reiseplanung

- Ansätze
 - Papier
 - Graph
 - Semantische Netze
 - Prolog

- Werkzeuge
 - yEd
 - Protégé
 - Stardog

Aufbau Ontologie

- Bestandteile
 - Klassen
 - Individuen
 - Eigenschaften
 - Beziehungen
 - Regeln

Ontologie abbilden

Ontologie abbilden

Anforderungen

Fakten:

Regel:

erfordert(?a, "mut") -> nervenkitzel(?a, true)

Ontologie abbilden

Schlussfolgerung

Praktische Umsetzung

Modellierung: Lösung

Ausflug

Berner Fachhochschule | Haute école spécialisée bernoise | Bern University of Applied Sciences

Ausflug (Regeln)

Restaurant

Berner Fachhochschule | Haute école spécialisée bernoise | Bern University of Applied Sciences

Restaurant (Regeln)

Praktische Umsetzung

Tutorial

Tutorial

- Vorgehen Knowledge-Engineer
 - Problemdomäne systematisch modellieren und formalisieren

- Aufbau
 - Theoretisches Hintergrundwissen zur Wissensmodellierung
 - Praktisches Beispiel Expertensystem
 - Gesammelte Erfahrungen

Praktische Umsetzung

Benutzerschnittstelle

Benutzerschnittstelle

- Technische Umsetzung
 - Backend
 - Graphdatenbank (Stardog)
 - Reasoner
 - REST-Schnittstelle
 - Frontend
 - Schritt-für-Schritt Assistent

Assistent

OWL Reiseplaner Start Über Impressum

Schritt 2

Welche Kriterien soll dein Ausflug erfüllen?

Organisatorisches

Organisatorisches

- Milestones
 - Detailliertere TODO-Liste um diese Milestones zu erreichen
- Regelmässige Treffen
 - Fragedokument
- Erkenntnisdokument
 - als Grundlage für Abschlussdokument
- Journal

Fazit

Fazit

- Fokus auf Prozess
- Wechsel Problemdomäne
- Mächtig aber doch mit gewissen Einschränkungen
 - Beschränkt intelligent
 - Werkzeuge
- Persönliches Fazit
 - Forschen und Experimentieren
 - Umdenken
 - Viele neue Lerninhalte

Danke für Ihre Aufmerksamkeit

