UNBOUNDED LP

For a <u>max problem</u>, an unbounded LP occurs if it is possible to find points in the feasible region with arbitrarily large z values corresponding to a decision maker earning arbitrarily large revenues or profits.

This would indicate that an unbounded optimal solution **should not occur in a correctly formulated LP.**

For a min problem an LP is unbounded if there are points in a feasible region with arbitrarily small z values.

Example (UNBOUNDED LP)

Max
$$Z = x_1 + 2 x_2$$

s.t
 $x_1 - x_2 \le 4$
 $-x_1 + x_2 \le 1$
 $x_1, x_2 \ge 0$

	Enter the linear programming	problem here:					
Maximize	z = x + 2y	subject to the constraints					
Minimize							
Show only to	he region defined by the follow	ing contraints:					
X> -x	=0						
L	P Examples Graphing Examples	amples Solve					
Rot	inding: 2 decimal places	Fraction Mode					
	Erase Everythin	ng					
	The solution will appe	ar below.					
Vertex	Lines through vertex	Value of objective					
• (4, 0)	$ \begin{aligned} x - y &= 4 \\ y &= 0 \end{aligned} $	4					
• (0, 1)	$ \begin{aligned} -x + y &= 1 \\ x &= 0 \end{aligned} $	2					
$ \begin{array}{c c} \bullet (0,0) & x=0 \\ y=0 \end{array} $							
***[Jnbounded feasible region No	o optimal solution ***					

Standard Form

$$Z - x_1 - 2 x_2 = 0$$

 $x_1 - x_2 + x_3 = 4$
 $- x_1 + x_2 + x_4 = 1$

Initial Simplex Tableau

BASIS	X 1	X 2	Х3	X 4	RHS	RATIO
X 3	1	-1	1	0	4	
X 4	-1	1<<	0	1	1	1<
Z	-1	-2 <	0	0	0	

Entering Variable: x_2

Leaving Variable: x₄

The First Improved Simplex Tableau

BASIS	X 1	X 2	Х3	X 4	RHS	RATIO
X3	0	0	1	1	5	NONE
X 2	-1	1	0	1	1	
Z	-3	0	0	2	2	

Unbounded (Pivot element not available)

UNBOUNDED SIMPLEX TABLEAU

BASIS	X 1	X 2	X 3	X 4	RHS	RATIO
X 3	1	-1	1	0	4	
X 4	-1	1<<	0	1	1	1<
Z	-1	-2<	0	0	0	
X 3	0	0	1	1	5	NONE
X 2	-1	1	0	1	1	
Z	-3	0	0	2	2	

An unbounded LP occurs when a variable with a negative coefficient in row Z has a non-positive coefficient in each constraint (row).

Example (UNBOUNDED LP)

$$\begin{aligned} \text{Max Z} &= 36 \ x_1 + 30 \ x_2 - 3 \ x_3 - 4 \ x_4 \\ \text{s.t} \\ & x_1 + x_2 - x_3 \le 5 \\ & 6 \ x_1 + 5 \ x_2 - x_4 \le 10 \\ & x_i \ge 0 \end{aligned}$$

$$\mathbf{Z} - 36 \ x_1 - 30 \ x_2 + 3 \ x_3 + 4 \ x_4 = \mathbf{0}$$

$$x_1 + x_2 - x_3 + x_5 = 5$$

 $6 x_1 + 5 x_2 - x_4 + x_6 = 10$

$$BV=(x_5,x_6)=5,10$$
 $NBV=(x_1,x_2,x_3,x_4)=0$

Initial Tableau

BASIS	X 1	X 2	X 3	X 4	X 5	X 6	RHS	RATIO
X 5	1	1	-1	0	1	0	5	5.0
X 6	6<<	5	0	-1	0	1	10	1.666<
Z	-36<	-30	3	4	0	0	0	

Entering Variable : x_1 Leaving Variable : x_6

The first tableau

BASIS X5	X 1	X 2	X 3	X 4	X 5	X 6	RHS	RATIO
X 5	0	1/6	-1	1/6	1	-1/6	10/3	20.0<<
X 1	1	5/6	0	-1/6	0	1/6	5/3	
Z	0	0	3	-2 <	0	6	60	

Entering Variable : x₄ Leaving Variable : x₅

The second tableau

BASIS	X 1	X 2	X 3	X4	X 5	X 6	RHS	RATIO
X4	0	1	-6	1	6	-1	20	NONE
X1	1	1	-1	0	1	0	20	
Z	0	2	-9	0	12	4	100	

UNBOUNDED

UNBOUNDED SIMPLEX TABLEAU

BASIS	X 1	X 2	X 3	X 4	X 5	X 6	RHS	RATIO
X 5	1	1	-1	0	1	0	5	5.0
X 6	6<<	5	0	-1	0	1	10	1.666<
Z	-36<	-30<	3	4	0	0	0	
X 5	0	1/6	-1	1/6	1	-1/6	10/3	20.0<
X 1	1	5/6	0	-1/6	0	1/6	5/3	
Z	0	0	3	-2	0	6	60	
X4	0	1	-6	1	6	-1	20	NONE
X 1	1	1	-1	0	1	0	20	
Z	0	2	-9	0	12	4	100	