Departamento de Sistemas e Computação – FURB Curso de Ciência da Computação Disciplina de Teoria dos Grafos

Conexidade

Prof. Aurélio Hoppe aureliof@furb.br http://www.inf.furb.br/~aurelio/

Bibliografia

Márcia A. Rabuske. **Introdução à Teoria dos Grafos**. Editora da UFSC. 1992

Thomas Cormen et al. Algoritmos: teoria e prática. Ed. Campus. 2004.

Joan M. Aldous, Robin J. Wilson. **Graphs and Applications**: as introductory approach. Springer. 2001

Introdução

 A conexidade está relacionada a passagem de um vértice a outro em um grafo através de ligações existentes

Está passagem diz respeito a atingibilidade

- Exemplo na prática?
 - Um vértice servidor pode enviar mensagens de dados para um determinado cliente?

Introdução

quantos grafos há na figura abaixo?

Definição 4.1 (Grafo conexo). Um grafo G é **conexo** se, para cada par de vértices u e v do grafo, existe pelo menos um caminho de u para v.

Definição 4.2 (Componente conexa). Uma **componente conexa** de um grafo G é um sub-grafo conexo de G

Definições

- Um grafo não dirigido é "conexo" se para cada par de vértices u e v ∈ V, existe caminho entre u e v
- caso contrário, o grafo é "não-conexo"
- Cada subgrafo conexo de um grafo não conexo é chamado de "componente conexa" do grafo

Conexidade

Algoritmos para avaliação de conexidade em grafos não dirigidos:

- busca em largura
- busca em profundidade
- algoritmo de Goodman (Rabuske, 1992)
- estruturas de conjuntos (Cormen, 2004)

Ideia Geral

- o algoritmo realiza uma redução sequencial do grafo, por meio de fusão de vértices, até que cada componente conexa seja reduzida a um único vértice
- na fusão de dois vértices adjacentes u e v, a aresta (u,v) é eliminada, é criado um novo vértice w, adjacente a todos os vértices adjacentes a u e v antes da fusão. Os vértices u e v são removidos

• Fusão de vértices:


```
[Inicialização]
01. H = G;
02. C = 0;
[Gere a próxima componente conexa]
03. Enquanto (H \neq \emptyset)
04.
       Selecione um vértice v pertencente a H
05.
      Enquanto ( v for adjacente a algum vértice u ∈ H)
05.
           w = grafo resultante da fusão de u com v
06. Remova v, isto é, faça H = H - w
07. c = c + 1
[Teste de conexidade]
08. Se (c > 1) G é não conexo
09. Senão G é Conexo
```


Estágio 3
$$v1 \quad w = (v2+v3+v4)$$

Algumas aplicações envolvem o agrupamento de n elementos em uma coleção de conjuntos disjuntos, ou seja, um particionamento dos elementos em conjuntos

– Cada conjunto C_k é identificado por um representante, que é um membro do conjunto

Operações:

Make-Set(x):	cria um novo conjunto cujo único elemento é apontado por x. x não pode pertencer a outro conjunto da coleção
Union(x, y):	executa a união dos conjuntos que contêm x e y , digamos Sx e Sy , em um conjunto único. $-Sx \cap Sy = \emptyset$ $-O representante de S = Sx \cup Sy é um elemento de S$
Find-Set(x):	retorna um ponteiro para o representante (único) do conjunto que contém x

Algoritmo:

```
CONNECTED-COMPONENTS (G)

01. for each vertex v ∈ V[G]

02. do MAKE-SET(v)

03. for each edge(u,v) ∈ E[G]

04. do if FIND-SET(u) ≠ FIND-SET(v)

05. then UNION(u,v)

SAME-COMPONENT(u,v)

01. if FIND-SET(u) = FIND-SET(V)

02. then return TRUE

03. else return FALSE
```

```
CONNECTED-COMPONENTS (G)

01. for each vertex v ∈ V[G]

02. do MAKE-SET(v)

03. for each edge(u,v) ∈ E[G]

04. do if FIND-SET(u) ≠ FIND-SET(v)

05. then UNION(u,v)

SAME-COMPONENT(u,v)

01. if FIND-SET(u) = FIND-SET(V)

02. then return TRUE

03. else return FALSE
```



```
CONNECTED-COMPONENTS (G)
```

- 01. for each vertex $v \in V[G]$
- 02. **do** MAKE-SET (v)
- 03. for each edge(u,v) \in E[G]
- 04. do if $FIND-SET(u) \neq FIND-SET(v)$
- 05. **then** UNION(u, v)

SAME-COMPONENT (u, v)

- 01. **if** FIND-SET(u) = FIND-SET(V)
- 02. **then** return TRUE
- 03. **else** return FALSE

Edge processed Initial sets	Collection of disjoint sets										
	{a}	{b}	{c}	{d}	{e}	{f}	{g}	{h}	{i}	{j}	
(b,d)	{a}	{b,d}	{c}		{e}	{f}	{g}	{h}	{i}	{j}	
(e,g)	{a}	{b,d}	{c}		{e,g}	{f}		{h}	{i}	{j}	
(a,c)	{a,c}	{b,d}			{e,g}	{f}		{h}	{i}	{j}	
(h,i)	{a,c}	{b,d}			{e,g}	{f}		{h,i}		{j}	
(a,b)	{a,b,c,d}				{e,g}	{f}		{h,i}		{j}	
(e,f)	{a,b,c,d}				{e,f,g}			{h,i}		{j}	
(b,c)	{a,b,c,d}				{e,f,g}			{h,i}		{j}	

Digrafos - Conexidade

Definição 4.3 (Grafo subjacente). Dado um digrafo D, seu grafo subjacente é um grafo não dirigido obtido pela substituição de todas as arestas dirigidas de D por arestas não dirigidas

Definição 4.4 (Digrafo conexo). Um digrafo D é conexo se seu grafo subjacente for conexo.

Definição 4.5 (Componente fortemente conexa). Uma componente fortemente conexa de um digrafo G=(V,E) é um conjunto maximal de vértices $C \subseteq V$ tal que para cada par de vértices u e v em C, existe caminho do vértice u para o vértice v e vice-versa (de v para u).

 $\mathsf{R} \cap \mathsf{Q}$

 $R(v_i)$ – conjunto de vértices que podem ser atingidos $Q(v_i)$ – vértices tomados como início de um caminho para atingir v_i

Definição 4.6 (Grafo transposto). Dado um digrafo G=(V,E), seu grafo transposto é definido por $G^T=(V,E^T)$, onde $E^T=\{(u,v):(v,u)\in E\}$

Passo 1. Faça a pesquisa em profundidade em G e calcule o tempo de finalização em cada vértice u;

Passo 2. Gere o grafo transposto GT (grafo dual) do grafo G.

Passo 3. Faça a pesquisa em profundidade em GT, mas considerando os vértices acessíveis na ordem decrescente ao seu tempo de finalização encontrado no passo 1.

Cada floresta encontrada no passo 3, corresponde a um componente fortemente conexo de G

Passo 1. Faça a pesquisa em profundidade em G e calcule o tempo de finalização em cada vértice u

Passo 2. Gere o grafo transposto G^T (grafo dual) do grafo G

Passo 3. Faça a pesquisa em profundidade em G^T, mas considerando os vértices acessíveis na ordem decrescente ao seu tempo de finalização encontrado no passo 1

a b c d 7/10 8/9

1/6 3/4 7/10 8/9

12/13 11/14 15/16 h

Lista em ordem decrescente ao tempo de finalização: [a,b,e,c,d,g,h,f]

Cada floresta encontrada no passo 3, corresponde a um componente fortemente conexo de G

Redução por componentes fortemente conexos

Próxima aula...

CAMINHO MÍNIMO