A Simple Framework for Contrastive Learning of Visual Representations

Ting Chen, Simon Kornblith, Mohammad Norouzi, Geffrey Hinton ICML 2020 https://arxiv.org/abs/2002.05709

발표자 : 박민호

Task

• Learning effective visual representations without human supervision

Contribution

- 1. Composition of data augmentation plays a critical role
- 2. Introducing a learnable nonlinear transformation
- 3. Contrastive learning benefits from large batch sizes and more training steps compared to supervised learning

Method

Method

end for

input: batch size N, constant τ , structure of f, g, \mathcal{T} . for sampled minibatch $\{x_k\}_{k=1}^N$ do for all $k \in \{1, \dots, N\}$ do draw two augmentation functions $t \sim T$, $t' \sim T$ # the first augmentation $\tilde{\boldsymbol{x}}_{2k-1} = t(\boldsymbol{x}_k)$ $\boldsymbol{h}_{2k-1} = f(\tilde{\boldsymbol{x}}_{2k-1})$ # representation $z_{2k-1} = g(h_{2k-1})$ # projection # the second augmentation $\tilde{\boldsymbol{x}}_{2k} = t'(\boldsymbol{x}_k)$ $\boldsymbol{h}_{2k} = f(\tilde{\boldsymbol{x}}_{2k})$ # representation $\boldsymbol{z}_{2k} = g(\boldsymbol{h}_{2k})$ # projection end for for all $i \in \{1, \dots, 2N\}$ and $j \in \{1, \dots, 2N\}$ do $s_{i,j} = oldsymbol{z}_i^ op oldsymbol{z}_j / (\|oldsymbol{z}_i\| \|oldsymbol{z}_j\|)$ # pairwise similarity end for define $\ell(i,j)$ as $\ell(i,j) = -\log \frac{\exp(s_{i,j}/\tau)}{\sum_{k=1}^{2N} \mathbb{1}_{[k\neq i]} \exp(s_{i,k}/\tau)}$

 $\mathcal{L} = \frac{1}{2N} \sum_{k=1}^{N} \left[\ell(2k-1, 2k) + \ell(2k, 2k-1) \right]$ update networks f and g to minimize \mathcal{L}

return encoder network $f(\cdot)$, and throw away $g(\cdot)$

Algorithm 1 SimCLR's main learning algorithm.

Let, $Z = \begin{bmatrix} \vdots & \vdots & & \vdots \\ \mathbf{z}_1 & \mathbf{z}_2 & \cdots & \mathbf{z}_{2k} \\ \vdots & \vdots & & \vdots \end{bmatrix}$

we want

we want
$$Z^T Z = \begin{bmatrix} \mathbf{z}_1^T \mathbf{z}_1 & \mathbf{z}_1^T \mathbf{z}_2 & 0 & \cdots & \cdots & 0 \\ \mathbf{z}_2^T \mathbf{z}_1 & \mathbf{z}_2^T \mathbf{z}_2 & 0 & & & 0 \\ 0 & 0 & \ddots & & & \vdots \\ \vdots & & \ddots & 0 & & 0 \\ \vdots & & & 0 & \mathbf{z}_{2k-1}^T \mathbf{z}_{2k-1} & \mathbf{z}_{2k-1}^T \mathbf{z}_{2k} \\ 0 & 0 & \cdots & 0 & \mathbf{z}_{2k}^T \mathbf{z}_{2k-1} & \mathbf{z}_{2k}^T \mathbf{z}_{2k} \end{bmatrix}$$

Data Augmentation

No single transformation suffices to learn good representation

Fig 5. Linear evaluation (ImageNet top-1 accuracy)

Data Augmentation

- Crop and Color distortion are good
- Conjecture: Most patches from an image share a similar color distribution. Neural nets may exploit this shortcut.

Stronger Data Augmentation

- Contrastive learning needs stronger data augmentation than supervised learning
- Data augmentation that does not yield accuracy benefits for supervised learning can still help considerably with contrastive learning

Methods	1/8	1/4	1/2	1	1 (+Blur)	AutoAug
SimCLR	59.6	61.0	62.6	63.2	64.5	61.1
Supervised	77.0	76.7	76.5	75.7	75.4	77.1

AutoAugment (Cubuk et al., 2019): A sophisticated augmentation policy found using supervised learning.

Architecture (Parameters)

• Unsupervised contrastive learning benefits (more) from bigger models

Green: Trained for 90 epochs Red: Trained for 1000 epochs Blue: Trained for 100 epochs

x2, x4: Width R18, R50: Depth

Nonlinear Projection

- A nonlinear projection head improves the representation quality of the layer before it.
- Better than 3%, 10+%

Nonlinear Projection

- Loss of information induced by the contrastive loss.
- In particular, $\mathbf{z} = g(\mathbf{h})$ is trained to be invariant to data transformation. $\Rightarrow g$ can remove information that may be useful for the downstream task, such as the color or orientation of objects.

W/b at to man 1: at 9	D d	Representation		
What to predict?	Random guess	h	$g(\boldsymbol{h})$	
Color vs grayscale	80	99.3	97.4	
Rotation	25	67.6	25.6	
Orig. vs corrupted	50	99.5	59.6	
Orig. vs Sobel filtered	50	96.6	56.3	

Loss Function (omit)

- Ours: Normalized cross entropy loss with adjustable temperature
- Simpler, and better than NT-Xent loss, Logistic loss, and margin loss.

Batch size

 When the number of training epochs is small (e.g. 100 epochs), larger batch sizes have a significant advantage over the smaller ones.

Fig 9. Linear evaluation models (ResNet-50)

Batch size

- Larger batch size provides more negative examples.
- Training longer also provides more negative examples.
- Why do more negative examples improve the result?

Figure 9. Linear evaluation models (ResNet-50) trained with different batch size and epochs. Each bar is a single run from scratch. ¹⁰

Figure B.1. Linear evaluation (top-5) of ResNet-50 trained with different batch sizes and epochs. Each bar is a single run from scratch. See Figure 9 for top-1 accuracy.

Figure B.2. Linear evaluation (top-1) of ResNet-50 trained with different batch sizes and *longer* epochs. Here a *square root* learning rate, instead of a linear one, is utilized.

Linear evaluation

Method	Architecture	Param (M)	Top 1	Top 5						
Methods using ResNet-50:										
Local Agg.	ResNet-50	24	60.2	-						
MoCo	ResNet-50	24	60.6	-						
PIRL	ResNet-50	24	63.6	-						
CPC v2	ResNet-50	24	63.8	85.3						
SimCLR (ours)	ResNet-50	24	69.3	89.0						
Methods using other architectures:										
Rotation	RevNet-50 $(4\times)$) 86	55.4	-						
BigBiGAN	RevNet-50 $(4\times)$) 86	61.3	81.9						
AMDIM	Custom-ResNet	626	68.1	-						
CMC	ResNet-50 $(2\times)$	188	68.4	88.2						
MoCo	ResNet-50 $(4\times)$	375	68.6	-						
CPC v2	ResNet-161 (*)	305	71.5	90.1						
SimCLR (ours)	ResNet-50 (2 \times)	94	74.2	92.0						
SimCLR (ours)	ResNet-50 $(4\times)$	375	76.5	93.2						

Table 6. ImageNet accuracies of linear classifiers trained on representations learned with different self-supervised methods.

• Semi-supervised learning

	100	Label fraction		
Method	Architecture	Top 5 48.4 8 51.6 8 47.0 8 - 8 - 9 39.2 7	10%	
		Top 5		
Supervised baseline	ResNet-50	48.4	80.4	
Methods using other labe	l-propagation:	20.00 M to 1		
Pseudo-label	ResNet-50	51.6	82.4	
VAT+Entropy Min.	ResNet-50	47.0	83.4	
UDA (w. RandAug)	ResNet-50	-	88.5	
FixMatch (w. RandAug)	ResNet-50	-	89.1	
S4L (Rot+VAT+En. M.)	ResNet-50 (4 \times)	-	91.2	
Methods using representa	tion learning only:			
InstDisc	ResNet-50	39.2	77.4	
BigBiGAN	RevNet-50 $(4\times)$	55.2	78.8	
PIRL	ResNet-50	57.2	83.8	
CPC v2	ResNet-161(*)	77.9	91.2	
SimCLR (ours)	ResNet-50	75.5	87.8	
SimCLR (ours)	ResNet-50 $(2\times)$	83.0	91.2	
SimCLR (ours)	ResNet-50 $(4\times)$	85.8	92.6	

Table 7. ImageNet accuracy of models trained with few labels.

• Semi-supervised learning

	Label fraction								
Architecture	1	%	10)%	100%				
	Top 1	Top 5	Top 1	Top 5	Top 1	Top 5			
ResNet-50	49.4	76.6	66.1	88.1	76.0	93.1			
ResNet-50 (2 \times)	59.4	83.7	71.8	91.2	79.1	94.8			
ResNet-50 (4 \times)	64.1	86.6	74.8	92.8	80.4	95.4			

Table B.2. Classification accuracy obtained by fine-tuning the SimCLR (which is pretrained with broader data augmentations) on 1%, 10% and full of ImageNet. As a reference, our ResNet-50 ($4\times$) trained from scratch on 100% labels achieves 78.4% top-1 / 94.2% top-5.

Transfer learning

	Food	CIFAR10	CIFAR100	Birdsnap	SUN397	Cars	Aircraft	VOC2007	DTD	Pets	Caltech-101	Flowers
Linear evaluatio	n:	1000 Port 1	19.0000000000					APP 1 APP 2 APP 1 APP 1			22 507 201 2010	100000000000000000000000000000000000000
SimCLR (ours)	76.9	95.3	80.2	48.4	65.9	60.0	61.2	84.2	78.9	89.2	93.9	95.0
Supervised	75.2	95.7	81.2	56.4	64.9	68.8	63.8	83.8	78.7	92.3	94.1	94.2
Fine-tuned:												
SimCLR (ours)	89.4	98.6	89.0	78.2	68.1	92.1	87.0	86.6	77.8	92.1	94.1	97.6
Supervised	88.7	98.3	88.7	77.8	67.0	91.4	88.0	86.5	78.8	93.2	94.2	98.0
Random init	88.3	96.0	81.9	77.0	53.7	91.3	84.8	69.4	64.1	82.7	72.5	92.5

Table 8. Comparison of transfer learning performance of our self-supervised approach with supervised baselines across 12 natural image classification datasets, for ResNet-50 $(4\times)$ models pretrained on ImageNet. Results not significantly worse than the best (p>0.05, permutation test) are shown in bold. See Appendix B.8 for experimental details and results with standard ResNet-50.

Thank you