Year 1 Assessed Problems

Semester 1
Problem Sheet 8

SOLUTIONS TO BE SUBMITTED ON CANVAS

By 17:00hrs on Wednesday 27th November 2024

4 Assessed – Applications of differentiation

Problem 4.1 **Stationary Points of a Logarithmic Function** Find and classify the stationary points of the function

$$f(x) = \ln(x^2 - x + 1) - x^2 + x.$$

What are the global maximum and minimum values of this function?

Assessed Problems 1

Richard Mason 03 33961 Introduction to Probability and Statistics

Problem 1. A busy shop has three queues of people. Unfortunately the three tills are somewhat unreliable.

- \bullet Till A fails with probability 0.1.
- \bullet Till B fails with probability 0.1.
- \bullet Till C fails with probability 0.05.

Once a till fails it must be reset, and then it continues to work. After an hour, 30 people used Till A, 35 used Till B and 35 used Till C.

1.	What is the probability that someone (if selected at random) used till A or C?	[2]
2.	What is the probability of someone having a till failure if selected at random? Hint : Marginalise.	[2]
3.	Two poeple are selected at random. What is the probability that exactly one of them had a till failure?	[2]
4.	Thee people are selected at random. What is the probability that they all used different tills? State your sampling assumptions (with or without replacement).	[1]
5.	Given that someone experienced a failing till, what is the probability that the till they used was B ?	[2]
6.	What is the probability that that person did not use Till B?	[1]

Dynamical Systems Assessed Problem 1

Problem 1.3 Range and Height of a Projectile

A particle is projected from the origin in the xy-plane, where gravity acts in the negative y-direction. The particle initially has velocity v at angle of elevation θ with respect to the x-axis, and air resistance may be neglected. You may freely use the results for x(t), y(t) and y(x) derived in lectures.

- (a) Derive expressions for the horizontal range, X, and the maximum height, H, in terms of the parameters of the problem. [3]
- (b) Derive an expression for the angle of elevation, θ , as a function of X and H. [2]
- (c) Derive an expression for the velocity of projection, v, in terms of X, H and g. [3]
- (d) Derive an expression for the time of flight, T, in terms of X, H and g. [2]