Categorical Semantics for STLC

maple

2022 年 4 月 1 日

目录

1	Firs	st Try	2
	1.1	Category of Baby Type Theory	2
	1.2	Category of Propositions and Derivations	3

First Try

Category of Baby Type Theory

Definition 1.1. A baby type system with only atomic types and where typing context are singletons.

Definition 1.2. A interpretion of baby type system is category C_{bT} such that objects are interpretions of types and morphism are interpretions of term-in-context(sequent).

- objects: $[\![A]\!]$ where A is atomic type;
- $\bullet \ \ \textit{morphism} \colon \llbracket \, \Gamma \vdash E : A \, \rrbracket : \llbracket \, \Gamma \, \rrbracket \to \llbracket \, A \, \rrbracket, \, \text{abbreviate it to} \, \llbracket \, E \, \rrbracket : \llbracket \, \Gamma \, \rrbracket \to \llbracket \, \Gamma \, \rrbracket;$
- identity: $[\![\,x:A\vdash x:A\,]\!]=1_{[\![\,A\,]\!]}:[\![\,A\,]\!]\to [\![\,A\,]\!],$ it corresponds to

$$\overline{x:A \vdash x:A}$$
 Var

 $\bullet \ \ \textit{composition} \colon \left[\!\!\left[\,E_2[y \to E_1]\,\right]\!\!\right] = \left[\!\!\left[\,E_2\,\right]\!\!\right] \circ \left[\!\!\left[\,E_1\,\right]\!\!\right] \colon \left[\!\!\left[\,A\,\right]\!\!\right] \to \left[\!\!\left[\,C\,\right]\!\!\right], \text{ it corresponds to}$

$$\frac{x:A \vdash E_1:B \quad y:B \vdash E_2:C}{x:A \vdash E_2[y \to E_1]} \; Sub$$

• unit law:

- associative law: Given $x:A \vdash E_1:B, y:B \vdash E_2:C, z:C \vdash E_3:D,$ we have

$$\llbracket E_3[z \to E_2[y \to E_1]] \rrbracket = \llbracket E_3[z \to E_2][y \to E_1] \rrbracket : \llbracket A \rrbracket \to \llbracket D \rrbracket$$

.

Category of Propositions and Derivations

Definition 1.3. A netural deduction system corresponds to category $C_{\rm ND}$ such that objects are interpretations of propositions and morphisms are interpretations of derivations.

1. $\mathit{morphism}\colon a \text{ morphism } [\![\mathcal{D}]\!] : [\![\Gamma]\!] \to [\![A]\!]$ corresponds

 $\frac{\Gamma}{\mathcal{D}}$

2. identity: $1_{\llbracket A \rrbracket}$ corresponds identity derivation $\frac{A}{A}$.

参考文献

- [1] Edward Morehouse. Basic Category Theory. OPLSS, 2016. https://www.ioc.ee/~ed/research/notes/intro_categorical_semantics.pdf
- [2] Edward Morehouse. Basic Category Theory. OPLSS, 2015.