Tracking the best Expert

Yoav Freund

February 4, 2020

▶ Let $x \in \{0, 1\}$ and let $y \in [0, 1]$.

- ▶ Let $x \in \{0, 1\}$ and let $y \in [0, 1]$.
- ▶ Show that log loss $x \log y + (1 x) \log(1 y)$ is mixable.

- ▶ Let $x \in \{0, 1\}$ and let $y \in [0, 1]$.
- ► Show that log loss $x \log y + (1 x) \log(1 y)$ is mixable.
- ▶ Show that square loss $(x y)^2$ is mixable.

- ▶ Let $x \in \{0, 1\}$ and let $y \in [0, 1]$.
- ► Show that log loss $x \log y + (1 x) \log(1 y)$ is mixable.
- ▶ Show that square loss $(x y)^2$ is mixable.
- ▶ Show that absolute loss |x y| is not mixable.

- ▶ Let $x \in \{0, 1\}$ and let $y \in [0, 1]$.
- ▶ Show that log loss $x \log y + (1 x) \log(1 y)$ is mixable.
- ▶ Show that square loss $(x y)^2$ is mixable.
- ▶ Show that absolute loss |x y| is not mixable.
- HW 3 is due on Feb 18.

- ▶ Let $x \in \{0, 1\}$ and let $y \in [0, 1]$.
- ▶ Show that log loss $x \log y + (1 x) \log(1 y)$ is mixable.
- ▶ Show that square loss $(x y)^2$ is mixable.
- ▶ Show that absolute loss |x y| is not mixable.
- HW 3 is due on Feb 18.
- No class on Tues 11 (ALT)

- ▶ Let $x \in \{0, 1\}$ and let $y \in [0, 1]$.
- ► Show that log loss $x \log y + (1 x) \log(1 y)$ is mixable.
- ▶ Show that square loss $(x y)^2$ is mixable.
- ▶ Show that absolute loss |x y| is not mixable.
- HW 3 is due on Feb 18.
- No class on Tues 11 (ALT)
- There will be no mid-term exam.

Bregman Divergences [Br,CL,Cs]

For any differentiable convex function F

$$\Delta_F(\widetilde{\boldsymbol{w}}, \boldsymbol{w}) = F(\widetilde{\boldsymbol{w}}) - F(\boldsymbol{w}) - (\widetilde{\boldsymbol{w}} - \boldsymbol{w}) \cdot \underbrace{\nabla_{\boldsymbol{w}} F(\boldsymbol{w})}_{f(\boldsymbol{w})}$$

$$F(\widetilde{\boldsymbol{w}}) - \frac{\text{supporting hyperplane}}{\text{through } (\boldsymbol{w}, F(\boldsymbol{w}))}$$

A Pythagorean Theorem [Br,Cs,A,HW] W w^* is projection of w onto convex set W w.r.t. Bregman divergence Δ_F : $\boldsymbol{w}^* = \operatorname{argmin} \Delta_F(\boldsymbol{u}, \boldsymbol{w})$ $\widetilde{\boldsymbol{u}} \in \mathcal{W}$ Theorem: $\Delta_F(\boldsymbol{u}, w) \geq \Delta_F(\boldsymbol{u}, \boldsymbol{w}^*) + \Delta_F(\boldsymbol{w}^*, \boldsymbol{w})$

Unnormalized Relative entropy

prediction, outcome p, q are n dimensional vectors with non-negative coordinates.

Unnormalized Relative entropy

- prediction, outcome p, q are n dimensional vectors with non-negative coordinates.
- Loss is RE extended to non-negative vectors:

RE
$$(\mathbf{p} \| \mathbf{q}) = \sum_{i=1}^{n} p_{i} \log \frac{p_{i}}{q_{i}} - \sum_{i=1}^{n} (q_{i} - p_{i})$$

Coincides with RE when $\sum_{i=1}^{n} p_i = \sum_{i=1}^{n} q_i = 1$

Unnormalized Relative entropy

- prediction, outcome p, q are n dimensional vectors with non-negative coordinates.
- Loss is RE extended to non-negative vectors:

RE
$$(\mathbf{p} \| \mathbf{q}) = \sum_{i=1}^{n} p_{i} \log \frac{p_{i}}{q_{i}} - \sum_{i=1}^{n} (q_{i} - p_{i})$$

Coincides with RE when $\sum_{i=1}^{n} p_i = \sum_{i=1}^{n} q_i = 1$

Unnormalized RE is the Bregman divergence corresponding to the unnormalized entropy:

$$F(\mathbf{p}) = \sum_{i=1}^{n} p_i \log p_i - \sum_{i=1}^{n} p_i$$

Inequalities for Unnormalized Relative entropy

No triangle inequality $\exists \mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3 \ \mathrm{RE}(\mathbf{p}_1 \parallel \mathbf{p}_3) > \mathrm{RE}(\mathbf{p}_1 \parallel \mathbf{p}_2) + \mathrm{RE}(\mathbf{p}_2 \parallel \mathbf{p}_3)$

Inequalities for Unnormalized Relative entropy

- No triangle inequality $\exists \mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3 \ \mathrm{RE}(\mathbf{p}_1 \parallel \mathbf{p}_3) > \mathrm{RE}(\mathbf{p}_1 \parallel \mathbf{p}_2) + \mathrm{RE}(\mathbf{p}_2 \parallel \mathbf{p}_3)$
- Generalized Pythagorean inequality For any closed convex set S and any point p₁ ∉ S, define the projection of p₁ on S to be p₂ = argmin_{u∈S}RE(p₁ || u), then:

```
\forall \mathbf{p}_3 \in S; \operatorname{RE}(\mathbf{p}_1 \parallel \mathbf{p}_3) \ge \operatorname{RE}(\mathbf{p}_1 \parallel \mathbf{p}_2) + \operatorname{RE}(\mathbf{p}_2 \parallel \mathbf{p}_3)
```

half squared euclidean distance

▶ prediction, outcome $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$

half squared euclidean distance

▶ prediction, outcome $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$

$$\lambda_{sq}(\mathbf{u}, \mathbf{v}) = \frac{1}{2} \|\mathbf{u} - \mathbf{v}\|^2 = \frac{1}{2} \sum_{i=1}^{n} (u_i - v_i)^2$$

Review

- ▶ prediction, outcome $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$

$$\lambda_{sq}(\mathbf{u}, \mathbf{v}) = \frac{1}{2} \|\mathbf{u} - \mathbf{v}\|^2 = \frac{1}{2} \sum_{i=1}^{n} (u_i - v_i)^2$$

Bregman divergence with respect to the square euclidean norm

$$\|{\bf v}\|_{2}$$

- ▶ prediction, outcome $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$

$$\lambda_{sq}(\mathbf{u}, \mathbf{v}) = \frac{1}{2} \|\mathbf{u} - \mathbf{v}\|^2 = \frac{1}{2} \sum_{i=1}^{n} (u_i - v_i)^2$$

Bregman divergence with respect to the square euclidean norm

$$\|{\bf v}\|_{2}$$

Triangle inequality does not hold.

half squared euclidean distance

▶ prediction, outcome $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$

$$\lambda_{sq}(\mathbf{u}, \mathbf{v}) = \frac{1}{2} \|\mathbf{u} - \mathbf{v}\|^2 = \frac{1}{2} \sum_{i=1}^{n} (u_i - v_i)^2$$

Bregman divergence with respect to the square euclidean norm

$$\|{\bf v}\|_{2}$$

- Triangle inequality does not hold.
- Pythagoras inequality: For any closed convex set S and any point v₁ ∉ S, define the projection of v₁ on S to be v₂ = argmin_{u∈S} ||v₁ u||², then:

$$\forall \mathbf{v}_3 \in S; \|\mathbf{v}_1 - \mathbf{v}_3\|^2 \ge \|\mathbf{v}_1 - \mathbf{v}_2\|^2 + \|\mathbf{v}_2 - \mathbf{v}_3\|^2$$

Bregman divergence regularization

▶ Idea: Set \mathbf{w}_{t+1} to be \mathbf{u} that minimizes:

$$\Delta_F(\mathbf{w}_t, \mathbf{u}) + \alpha \ell_t(\mathbf{u})$$

Bregman divergence regularization

▶ Idea: Set \mathbf{w}_{t+1} to be \mathbf{u} that minimizes:

$$\Delta_F(\mathbf{w}_t, \mathbf{u}) + \alpha \ell_t(\mathbf{u})$$

In general, hard to compute the minimum.

Bregman divergence regularization

▶ Idea: Set \mathbf{w}_{t+1} to be \mathbf{u} that minimizes:

$$\Delta_F(\mathbf{w}_t, \mathbf{u}) + \alpha \ell_t(\mathbf{u})$$

- In general, hard to compute the minimum.
- Efficient approximation Mirror Descent. Will be covered later.

Usually: compare algorithm's total loss to total loss of the best expert.

- Usually: compare algorithm's total loss to total loss of the best expert.
- drifting experts: Compare with a sequence of experts that change over time.

- Usually: compare algorithm's total loss to total loss of the best expert.
- drifting experts: Compare with a sequence of experts that change over time.
- ► The amount of change is measured using total bregman divergence.

- Usually: compare algorithm's total loss to total loss of the best expert.
- drifting experts: Compare with a sequence of experts that change over time.
- ► The amount of change is measured using total bregman divergence.
- ▶ Regret depends on $\sum_{t} \Delta_{F}(\mathbf{u}_{t} 1, \mathbf{u}_{t})$

- Usually: compare algorithm's total loss to total loss of the best expert.
- drifting experts: Compare with a sequence of experts that change over time.
- ► The amount of change is measured using total bregman divergence.
- ▶ Regret depends on $\sum_t \Delta_F(\mathbf{u}_t 1, \mathbf{u}_t)$
- ▶ The Projection Update After computing the unconstrained update, project the \mathbf{w}_{t+1} onto a convex set.

- Usually: compare algorithm's total loss to total loss of the best expert.
- drifting experts: Compare with a sequence of experts that change over time.
- The amount of change is measured using total bregman divergence.
- ▶ Regret depends on $\sum_t \Delta_F(\mathbf{u}_t 1, \mathbf{u}_t)$
- ▶ The Projection Update After computing the unconstrained update, project the \mathbf{w}_{t+1} onto a convex set.
- Does not allow the algorithm to over-commit to an extreme vector from which it is hard to recover.

Switching experts setup

Usually: compare algorithm's total loss to total loss of the best expert.

Switching experts setup

- Usually: compare algorithm's total loss to total loss of the best expert.
- ► Switching experts: compare algorithm's total loss to total loss of best expert sequence with *k* switches.

Switching experts setup

- Usually: compare algorithm's total loss to total loss of the best expert.
- Switching experts: compare algorithm's total loss to total loss of best expert sequence with k switches.

.

► Fix:

- ► Fix:
 - / sequence length

- ► Fix:
 - ▶ / sequence length
 - ▶ *k* number of switches

- ► Fix:
 - ► / sequence length
 - k number of switches
 - ▶ *n* number of experts

- ► Fix:
 - / sequence length
 - k number of switches
 - n number of experts
- Consider one partition-expert per sequence of switching experts.

- ► Fix:
 - / sequence length
 - k number of switches
 - n number of experts
- Consider one partition-expert per sequence of switching experts.
- ► No. of partition-experts : $\binom{l}{k-1} n(n-1)^k = O\left(n^{k+1} \left(\frac{el}{k}\right)^k\right)$

- ► Fix:
 - / sequence length
 - k number of switches
 - n number of experts
- Consider one partition-expert per sequence of switching experts.
- ► No. of partition-experts : $\binom{l}{k-1} n(n-1)^k = O\left(n^{k+1} \left(\frac{el}{k}\right)^k\right)$
- ► The log-loss regret is at most $(k+1) \log n + k \log \frac{1}{k} + k$

- ► Fix:
 - / sequence length
 - k number of switches
 - n number of experts
- Consider one partition-expert per sequence of switching experts.
- ► No. of partition-experts : $\binom{l}{k-1} n(n-1)^k = O\left(n^{k+1} \left(\frac{el}{k}\right)^k\right)$
- ► The log-loss regret is at most $(k+1) \log n + k \log \frac{1}{k} + k$
- ► Requires maintaining $O(n^{k+1}(\frac{el}{k})^k)$ weights.

generalization to mixable losses

▶ In this lecture we assume loss function is mixable.

generalization to mixable losses

- ▶ In this lecture we assume loss function is mixable.
- There is an exponential weights algorithm with learning rate η that achieves (in the non-switching case) a bound

$$L_A \leq \min_i L_i + \frac{1}{\eta} \log n$$

generalization to mixable losses

- In this lecture we assume loss function is mixable.
- There is an exponential weights algorithm with learning rate η that achieves (in the non-switching case) a bound

$$L_A \leq \min_i L_i + \frac{1}{\eta} \log n$$

► Then using the partition-expert algorithm for the switching-experts case we get a bound on the regret $\frac{1}{n}((k+1)\log n + k\log \frac{1}{k} + k)$

Update weights in two stages: loss update then share update.

- Update weights in two stages: loss update then share update.
- ▶ Prediction uses the normalized s weights $w_{t,i}^s / \sum_j w_{t,j}^s$

- Update weights in two stages: loss update then share update.
- ▶ Prediction uses the normalized s weights $w_{t,i}^s / \sum_j w_{t,j}^s$
- ► Loss update is the same as always, but defines intermediate *m* weights:

$$\mathbf{w}_{t,i}^m = \mathbf{w}_{t,i}^s \mathbf{e}^{-\eta L(y_t, x_{t,i})}$$

- Update weights in two stages: loss update then share update.
- ► Prediction uses the normalized s weights $w_{t,i}^s/\sum_j w_{t,j}^s$
- ► Loss update is the same as always, but defines intermediate *m* weights:

$$\mathbf{w}_{t,i}^m = \mathbf{w}_{t,i}^s \mathbf{e}^{-\eta L(\mathbf{y}_t, \mathbf{x}_{t,i})}$$

► Share update: redistribute the weights

- Update weights in two stages: loss update then share update.
- ▶ Prediction uses the normalized s weights $w_{t,i}^s / \sum_j w_{t,j}^s$
- Loss update is the same as always, but defines intermediate m weights:

$$\mathbf{w}_{t,i}^m = \mathbf{w}_{t,i}^s \mathbf{e}^{-\eta L(y_t, x_{t,i})}$$

- ► Share update: redistribute the weights
- ▶ Fixed-share:

$$pool = \alpha \sum_{i=1}^{n} w_{t,i}^{m}$$

$$w_{t+1,i}^{s} = (1-\alpha)w_{t,i}^{m} + \frac{1}{n-1}(pool - \alpha w_{t,i}^{m})$$

Proving a bound on the fixed-share

The relation between algorithm loss and total weight does not change because share update does not change the total weight.

Proving a bound on the fixed-share

- The relation between algorithm loss and total weight does not change because share update does not change the total weight.
- Thus we still have

$$L_A \leq \frac{1}{\eta} \sum_{i=1}^n w_{l+1,i}^s$$

Proving a bound on the fixed-share

- The relation between algorithm loss and total weight does not change because share update does not change the total weight.
- Thus we still have

$$L_A \leq \frac{1}{\eta} \sum_{i=1}^n w_{i+1,i}^s$$

► The harder question is how to lower bound $\sum_{i=1}^{n} w_{i+1,i}^{s}$

Fix some switching experts sequence:

▶ "follow" the weight of the chosen expert *i_t*.

- ▶ "follow" the weight of the chosen expert *i_t*.
- ▶ The loss update reduces the weight by a factor of $e^{-\eta \ell_{t,i_t}}$.

- ▶ "follow" the weight of the chosen expert *i_t*.
- ▶ The loss update reduces the weight by a factor of $e^{-\eta \ell_{t,i_t}}$.
- The share update reduces the weight by a factor larger than:

- ▶ "follow" the weight of the chosen expert *i_t*.
- ► The loss update reduces the weight by a factor of $e^{-\eta \ell_{t,i_t}}$.
- The share update reduces the weight by a factor larger than:
 - ▶ 1α on iterations with no switch.

- "follow" the weight of the chosen expert i_t.
- ► The loss update reduces the weight by a factor of $e^{-\eta \ell_{t,i_t}}$.
- The share update reduces the weight by a factor larger than:
 - ▶ 1α on iterations with no switch.
 - $\rightarrow \frac{\alpha}{n-1}$ on iterations where a switch occurs.

Bound for arbitrary α

Combining we lower bound the final weight of the last expert in the sequence

$$w_{l+1,e_k}^s \ge \frac{1}{n} e^{-\eta L_*} (1-\alpha)^{l-k-1} \left(\frac{\alpha}{n-1}\right)^k$$

Where L_* is the cumulative loss of the switching sequence of experts.

Bound for arbitrary α

Combining we lower bound the final weight of the last expert in the sequence

$$w_{l+1,e_k}^s \ge \frac{1}{n} e^{-\eta L_*} (1-\alpha)^{l-k-1} \left(\frac{\alpha}{n-1}\right)^k$$

Where L_* is the cumulative loss of the switching sequence of experts.

 Combining the upper and lower bounds we get that for any sequence

$$L_{A} \leq L_{*} + \frac{1}{\eta} \left(\ln n + (I - k - 1) \ln \frac{1}{1 - \alpha} + k \left(\ln \frac{1}{\alpha} + \ln(n - 1) \right) \right)$$

▶ let k^* be the best number of switches (in hind sight) and $\alpha^* = k^*/I$

- ▶ let k^* be the best number of switches (in hind sight) and $\alpha^* = k^*/l$
- ▶ Suppose we use $\alpha \approx \alpha^*$ then the bound that we get is

$$L_A \le L_* + \frac{1}{\eta}((k+1)\ln n + (l-1)(H(\alpha^*) + D_{\mathsf{KL}}(\alpha^*||\alpha)))$$

Where

$$H(\alpha^*) = -\alpha^* \ln \alpha^* - (1 - \alpha^*) \ln(1 - \alpha^*)$$

$$D_{\mathsf{KL}}(\alpha^*||\alpha) = \alpha^* \ln \frac{\alpha^*}{\alpha} (1 - \alpha^*) \ln \frac{1 - \alpha^*}{1 - \alpha}$$

- ▶ let k^* be the best number of switches (in hind sight) and $\alpha^* = k^*/l$
- ▶ Suppose we use $\alpha \approx \alpha^*$ then the bound that we get is

$$L_A \leq L_* + \frac{1}{\eta}((k+1)\ln n + (l-1)(H(\alpha^*) + D_{\mathsf{KL}}(\alpha^*||\alpha)))$$

Where

$$H(\alpha^*) = -\alpha^* \ln \alpha^* - (1 - \alpha^*) \ln(1 - \alpha^*)$$

$$D_{\mathsf{KL}}(\alpha^*||\alpha) = \alpha^* \ln \frac{\alpha^*}{\alpha} (1 - \alpha^*) \ln \frac{1 - \alpha^*}{1 - \alpha}$$

This is very close to the loss of the computationally inefficient algorithm.

- let k* be the best number of switches (in hind sight) and α* = k*/I
- ▶ Suppose we use $\alpha \approx \alpha^*$ then the bound that we get is

$$L_A \leq L_* + \frac{1}{\eta}((k+1)\ln n + (l-1)(H(\alpha^*) + D_{\mathsf{KL}}(\alpha^*||\alpha)))$$

Where

$$H(\alpha^*) = -\alpha^* \ln \alpha^* - (1 - \alpha^*) \ln(1 - \alpha^*)$$

$$D_{\mathsf{KL}}(\alpha^*||\alpha) = \alpha^* \ln \frac{\alpha^*}{\alpha} (1 - \alpha^*) \ln \frac{1 - \alpha^*}{1 - \alpha}$$

- This is very close to the loss of the computationally inefficient algorithm.
- For the log loss case this is essentially optimal.

- ▶ let k^* be the best number of switches (in hind sight) and $\alpha^* = k^*/l$
- ▶ Suppose we use $\alpha \approx \alpha^*$ then the bound that we get is

$$L_A \le L_* + \frac{1}{\eta}((k+1)\ln n + (l-1)(H(\alpha^*) + D_{\mathsf{KL}}(\alpha^*||\alpha)))$$

Where

$$H(\alpha^*) = -\alpha^* \ln \alpha^* - (1 - \alpha^*) \ln(1 - \alpha^*)$$

$$D_{\mathsf{KL}}(\alpha^*||\alpha) = \alpha^* \ln \frac{\alpha^*}{\alpha} (1 - \alpha^*) \ln \frac{1 - \alpha^*}{1 - \alpha}$$

- This is very close to the loss of the computationally inefficient algorithm.
- ► For the log loss case this is essentially optimal.
- Not so for square loss!

What can we hope to improve?

In the fixed-share algorithm, the weight of a suboptimal expert never decreases below α/n .

What can we hope to improve?

- In the fixed-share algorithm, the weight of a suboptimal expert never decreases below α/n .
- ► The algorithm does not concentrate only on the best expert, even if the last switch is in the distant past.

What can we hope to improve?

- In the fixed-share algorithm, the weight of a suboptimal expert never decreases below α/n .
- ► The algorithm does not concentrate only on the best expert, even if the last switch is in the distant past.
- ► The regret depends on the length of the sequence.

The idea of variable-share

► Let the fraction of the total weight given to the best expert get arbitrarily close to 1.

The idea of variable-share

- ► Let the fraction of the total weight given to the best expert get arbitrarily close to 1.
- we can get a regret bound that depends only on the number of switches, not on the length of the sequence.

The idea of variable-share

- ► Let the fraction of the total weight given to the best expert get arbitrarily close to 1.
- we can get a regret bound that depends only on the number of switches, not on the length of the sequence.
- Requires that the loss be bounded.

The idea of variable-share

- Let the fraction of the total weight given to the best expert get arbitrarily close to 1.
- we can get a regret bound that depends only on the number of switches, not on the length of the sequence.
- Requires that the loss be bounded.
- Works for square loss, but not for log loss!

$$pool = \sum_{i=1}^{n} \left(1 - (1 - \alpha)^{\ell_{t,i}} \right) w_{t,i}^{m}$$

$$w_{t+1,i}^{s} = (1 - \alpha)^{\ell_{t,i}} w_{t,i}^{m} + \frac{1}{n-1} \left(pool - \left(1 - (1 - \alpha)^{\ell_{t,i}} \right) w_{t,i}^{m} \right)$$

$$pool = \sum_{i=1}^{n} \left(1 - (1 - \alpha)^{\ell_{t,i}} \right) w_{t,i}^{m}$$

$$w_{t+1,i}^{s} = (1 - \alpha)^{\ell_{t,i}} w_{t,i}^{m} + \frac{1}{n-1} \left(pool - \left(1 - (1 - \alpha)^{\ell_{t,i}} \right) w_{t,i}^{m} \right)$$

If $\ell_{t,i} = 0$, then expert *i* does not contribute to the pool.

$$pool = \sum_{i=1}^{n} \left(1 - (1 - \alpha)^{\ell_{t,i}}\right) w_{t,i}^{m}$$

$$w_{t+1,i}^{s} = (1 - \alpha)^{\ell_{t,i}} w_{t,i}^{m} + \frac{1}{n-1} \left(pool - \left(1 - (1 - \alpha)^{\ell_{t,i}}\right) w_{t,i}^{m}\right)$$

If $\ell_{t,i} = 0$, then expert *i* does not contribute to the pool. Expert can get fraction of the total weight arbitrarily close to 1.

$$pool = \sum_{i=1}^{n} \left(1 - (1 - \alpha)^{\ell_{t,i}}\right) w_{t,i}^{m}$$

$$w_{t+1,i}^{s} = (1 - \alpha)^{\ell_{t,i}} w_{t,i}^{m} + \frac{1}{n-1} \left(pool - \left(1 - (1 - \alpha)^{\ell_{t,i}}\right) w_{t,i}^{m}\right)$$

If $\ell_{t,i}=0$, then expert i does not contribute to the pool. Expert can get fraction of the total weight arbitrarily close to 1. Shares the weight quickly if $\ell_{t,i}>0$

Bound for variable share

$$\frac{1}{\eta}\ln n + \left(1 + \frac{1}{(1-\alpha)\eta}\right)L_* + k\left(1 + \frac{1}{\eta}\left(\ln n - 1 + \ln\frac{1}{\alpha} + \ln\frac{1}{1-\alpha}\right)\right)$$

Bound for variable share

$$\frac{1}{\eta}\ln n + \left(1 + \frac{1}{(1-\alpha)\eta}\right)L_* + k\left(1 + \frac{1}{\eta}\left(\ln n - 1 + \ln\frac{1}{\alpha} + \ln\frac{1}{1-\alpha}\right)\right)$$

 $ightharpoonup \alpha$ should be tuned so that it is (close to) $\frac{k}{2k+l}$

An experiment using variable share

The variable-share algorithm

Switching within a small subset

Suppose the best switching sequence is repeatedly switching among a small subset of the experts n' « n The variable-share algorithm

- Suppose the best switching sequence is repeatedly switching among a small subset of the experts n' « n
- In the context of speech recognition the speaker repeatedly uses a small number of phonemes.

- Suppose the best switching sequence is repeatedly switching among a small subset of the experts n' « n
- ► In the context of speech recognition the speaker repeatedly uses a small number of phonemes.
- If we know the subset, we can pay In n' per switch rather than In n

- Suppose the best switching sequence is repeatedly switching among a small subset of the experts n' « n
- In the context of speech recognition the speaker repeatedly uses a small number of phonemes.
- If we know the subset, we can pay In n' per switch rather than In n
- Can track switches much more closely.

- Suppose the best switching sequence is repeatedly switching among a small subset of the experts n' « n
- ► In the context of speech recognition the speaker repeatedly uses a small number of phonemes.
- If we know the subset, we can pay In n' per switch rather than In n
- Can track switches much more closely.
- ► Easy to describe an inefficient algorithm (consider all $\binom{n}{n'}$ subsets.)

- Suppose the best switching sequence is repeatedly switching among a small subset of the experts n' « n
- In the context of speech recognition the speaker repeatedly uses a small number of phonemes.
- If we know the subset, we can pay In n' per switch rather than In n
- Can track switches much more closely.
- ► Easy to describe an inefficient algorithm (consider all $\binom{n}{n'}$ subsets.)
- Switching to Slides from Manfred Warmuth.