関数解析後期メモ

百合川

2018年1月23日

目次

目次 1

 (X, \mathcal{M}, μ) を σ -有限な測度空間, $H = L^2(X, \mathcal{M}, \mu) = L^2(\mu)$ とする. \mathcal{M} -可測関数 $a: X \to \mathbb{C}$ に対して,H から H へのかけ算作用素 M_a を次で定める:

$$\mathcal{D}(M_a) = \{ u \in H ; \quad au \in H \}, \quad (M_a u)(x) = a(x)u(x) \quad (x \in X).$$

- (1) M_a は線型作用素で、 $\mathcal{D}(M_a)$ は H で稠密なことを示せ.
- (2) $M_a^* = M_{\overline{a}}$ が成り立つことを示せ.
- (3) $\sigma(M_a) = \{ \lambda \in \mathbb{C} ; \forall \epsilon > 0 \text{ に対し} \mu(a^{-1}(U_{\epsilon}(\lambda))) > 0 \}$ を示せ. (ただし $U_{\epsilon}(\lambda)$ は λ の ϵ -近傍.)
- (4) $\sigma_p(M_a) = \{ \lambda \in \mathbb{C} ; \mu(a^{-1}(\{\lambda\})) > 0 \}$ を示せ.

証明. σ -有限であるから或る系 $(X_n)_{n=1}^\infty \subset M$ が存在して $X_1 \subset X_2 \subset \cdots$, $\mu(X_n) < \infty$ $(\forall n \in \mathbb{N})$, $\cup_{n \in \infty} X_n = X$ を満たす.

(1) 任意に $v \in H$ を取り $v_n := v \mathbb{1}_{\{|a| \le n\}}$ $(n = 1, 2, 3, \cdots)$ として関数列 $(v_n)_{n=1}^{\infty}$ を作る。全ての $x \in S$ で $|v_n(x)| \le |v(x)|$ が満たされているから $(v_n)_{n \in \mathbb{N}} \subset H$ である。また全ての $n \in \mathbb{N}$ について

$$\int_{S} |a(x)v_{n}(x)|^{2} \mu(dx) = \int_{\{|a| \le n\}} |a(x)v(x)|^{2} \mu(dx) \le n^{2} \int_{S} |v(x)|^{2} \mu(dx)$$

が成り立つから $(v_n)_{n\in\mathbb{N}}\subset D(M_a)$ も満たされる.

$$\|v - v_n\|^2 = \int_S |v(x) - v_n(x)|^2 \, \mu(dx) = \int_S \, 1\!\!1_{\{|a| > n\}}(x) |v(x)|^2 \, \mu(dx)$$

となり、右辺の被積分関数は各点で0に収束し、かつnに関係なく可積分関数 $|v|^2$ で抑えられるから、Lebesgue の収束定理より

$$\lim_{n \to \infty} \|v - v_n\|_{L^2(\mu)}^2 = \lim_{n \to \infty} \int_{S} \mathbb{1}_{\{|a| > n\}}(x) |v(x)|^2 \, \mu(dx) = \int_{S} \lim_{n \to \infty} \mathbb{1}_{\{|a| > n\}}(x) |v(x)|^2 \, \mu(dx) = 0$$

が得られる. v は任意に選んでいたから $D(M_a)$ は X において稠密である.

(2) 任意の $u, v \in \mathcal{D}(M_a) = \mathcal{D}(M_{\overline{a}})$ に対して

$$\langle M_a u, v \rangle = \int_{V} a(x) u(x) \overline{v(x)} \, \mu(dx) = \int_{V} u(x) \overline{\overline{a(x)}v(x)} \, \mu(dx) = \langle u, M_{\overline{a}}v \rangle$$

が成り立つから、 $v \in \mathcal{D}(M_a^*)$ 且つ $M_a^*v = M_{\overline{a}}v$ ($\forall v \in \mathcal{D}(M_{\overline{a}})$) が従う.逆に任意に $u \in \mathcal{D}(M_a)$, $v \in \mathcal{D}(M_a^*)$ を取れば,

$$\langle u, M_a^* v \rangle = \langle M_a u, v \rangle = \langle u, M_{\overline{a}} v \rangle$$

となり $M_a^*v = M_{\overline{a}}v$ $(\forall v \in \mathcal{D}(M_a^*))$ が従う.

(4) 先ず $\sigma_p(M_a) \subset \left\{\lambda \in \mathbb{C} ; \mu\left(a^{-1}(\{\lambda\})\right) > 0\right\}$ が成り立つことを示す.任意の $\lambda \in \sigma_p(M_a)$ に対して固有ベクトル $u \in H$ が存在する. $u \neq 0$ (関数類の意味で) より

$$N := \{ x \in X ; u(x) \neq 0 \}$$

とおけば $\mu(N) > 0$ が満たされる. 一方で点スペクトルの定義より $(\lambda I - M_a)u = 0$ が成り立つから

$$0 = \|(\lambda I - M_a)u\|^2 = \int_X |\lambda - a(x)|^2 |u(x)|^2 \ \mu(dx) = \int_N |\lambda - a(x)|^2 |u(x)|^2 \ \mu(dx)$$

となり

$$\mu(\{x \in N ; |\lambda - a(x)| > 0\}) = 0$$

が従う. $\mu(N) > 0$ であるから

$$\mu\left(a^{-1}(\{\lambda\})\right)\geq\mu\left(\left\{\;x\in N\;\;;\quad\;|\lambda-a(x)|=0\;\right\}\right)>0$$

が成り立ち $\lambda \in \left\{\lambda \in \mathbb{C} \ ; \ \mu\left(a^{-1}(\{\lambda\})\right) > 0\right\}$ を得る。次に $\sigma_p(M_a) \supset \left\{\lambda \in \mathbb{C} \ ; \ \mu\left(a^{-1}(\{\lambda\})\right) > 0\right\}$ が成り立つことを示す。任意の $\lambda \in \left\{\lambda \in \mathbb{C} \ ; \ \mu\left(a^{-1}(\{\lambda\})\right) > 0\right\}$ に対して

$$\Lambda := a^{-1}(\{\lambda\})$$

とおけば $\mu(\Lambda) > 0$ が満たされている.

$$\mu(\Lambda) = \lim_{n \to \infty} \mu(\Lambda \cap X_n)$$

が成り立つから、或る $n \in \mathbb{N}$ が存在して $\mu(\Lambda \cap X_n) > 0$ を満たす.

$$u(x) := \begin{cases} 1 & (x \in \Lambda \cap X_n), \\ 0 & (x \notin \Lambda \cap X_n) \end{cases}$$

として u を定めれば u は二乗可積分であり、 $\mu(\Lambda \cap X_n) > 0$ であるから関数類として $u \neq 0$ を満たす.また

$$||(\lambda I - M_a)u||^2 = \int_X |\lambda - a(x)|^2 |u(x)|^2 \, \mu(dx) = \int_{\Lambda \cap X_n} |\lambda - a(x)|^2 |u(x)|^2 \, \mu(dx) = 0$$

が成り立ち $(\lambda I - M_a)u = 0$ が従うから u は λ の固有ベクトルであり、 $\lambda \in \sigma_p(M_a)$ を得る.