

Klausur Grundlagen der Programmierung

15 Feb 2022

Kan	4:4	041	in.
Nan	uıu	aι	III.

Name:

Allgemeine Hinweise

- Neben Papier und Schreibutensilien sind keine weiteren Hilfsmittel erlaubt.
- Verwenden Sie keine roten Stifte und keine Bleistifte.
- Sie dürfen alle Aufgaben in beliebiger Reihenfolge lösen aber konzentrieren Sie sich jeweils auf eine Aufgabe, aber teilen Sie sich Ihre Zeit ein.
- Alle Mobiltelefone müssen vollständig ausgeschaltet sein.
- Vergessen Sie nicht, Ihren Namen auf jedes Blatt zu schreiben.
- Blätter ohne diese Angaben werden nicht bewertet.
- Bitte schreiben Sie in Ihrem eigenen Interesse deutlich. Unverständliche oder nicht begründete Antworten werden nicht bewertet.
- In den letzten 15 Minuten der Prüfung kann der Raum nicht mehr verlassen werden.
- Im Fall von Täuschungsversuchen wird die Klausur sofort mit 0 Punkten bewertet. Eine Vorwarnung erfolgt nicht.

Aufgabe	max. Punkte	erreicht
1	30 Punkte	
2	15 Punkte	
3-A	10 Punkte	
3-В	10 Punkte	
4-A	15 Punkte	
4-B	10 Punkte	
Summe	90 + 10 e.o. = 100 Punkte	

Aufgabe 1

Entscheiden Sie für jedes der gegebenen Code-Fragmente, ob es sich um korrekten Python-Code handelt, der vom Python-Interpreter übersetzt wird, oder ob es zu einem Fehler führt. (30 Punkte)

x = 1,2,3	B. x = 5 y = 10 if x==1 else 0	C. [i+i for i in '123']	D. x = 2022 x **= 2	E. def bar (): return 1+2 foo = bar
	,		_	foo()

Aufgabe 2

Implementieren Sie eine rekursive Funktion, welche E(n) berechnet (15 Punkte)

$$E(n) = 1 \cdot 2 - 2 \cdot 3 + 3 \cdot 4 + ... + (-1)^{n+1} \cdot n \cdot (n+1)$$

Gegeben sei die Funktion do_stuff(s1 : str, s2 : str).

- A. Beschreiben Sie kurz den Aufbau der Funktion und nennen Sie anschließend den wahrscheinlichen Einsatzzweck.(10 Punkte)
- B. Enthält die Funktion Fehler? Falls ja, nennen Sie die fehlerhaften Zeilen ein und geben Sie dazu jeweils eine kurze Begründung an. (10 Punkte)

Code-Fragment

```
def do_stuff(s1 : str, s2 : str):
 arr = [0]*256
 if len(s1) != len(s2):
      return False
 for i in range (len(s1)):
      arr[s1[i]] += 1
      arr[s2[i]] -= 1
 for i in arr:
      if i: return False
 return True
```

Aufgabe 4

A. Gegeben seien die Vektoren $\vec{a}, \vec{b} \in R \text{für} k \in N$. Implementieren Sie mit List-Comprehensions eine Funktion zur Berechnung des Skalarproduktes $\vec{a} * \vec{b} = \sum_{i=1}^{n} a_i b_i$. (10 Punkte)

Nutzen Sie die Funktion als Hilfsfunktion, um eine Funktion zu schreiben, die den Ausdruck $f = \frac{\vec{a} * \vec{b}}{|\vec{a}||\vec{b}|}$ berechnet,

wobei $|\vec{a}| = \sqrt{\vec{a} * \vec{a}}$ und entsprechend $|\vec{b}| = \sqrt{\vec{b} * \vec{b}}$. (5 Punkte)

B. Welche der folgenden Aussagen trifft zu? Begründen Sie Ihre Antwort. (10 Punkte)	
QuickSort hat eine Worst-Case Laufzeit von O(nlog(n)).	Γ
Die Korrektheit eines Programms kann durch Testen nicht bewiesen werden.	
Klassenvariable werden innerhalb der Klasse aber außerhalb einer Methode definiert.	
Die Binäre Suche ist basiert auf einer einfachen Form des Schemas Teile und Herrsche.	Г
Die Binare Suche ist basiert auf einer einfachen Form des Schemas Tene und Herrsche.	L