3.155J/6.152J Lecture 10: Lithography – Part 1

Prof. Martin A. Schmidt

Massachusetts Institute of Technology

10/8/2003

- The Lithographic Process
 - Basic Process
 - Definitions
- Fundamentals of Exposure
- Exposure Systems
- Resists
- Advanced Lithography
- Recommended reading
 - Plummer, Chapter 5
 - Other: Campbell, Chapter 7,8,9

IC Process

Wafer Fab - Lithography

- Most Common Measure of Complexity
 - # of Masks, Minimum Feature (examples)
- Approximately 50% of the Process Steps

- - Cleanliness
 - **Vibration**
 - Temperature and Humidity

Semiconductor Roadmap

Year of first DRAM Shipment	1997	1999	2003	2006	2009	2012
DRAM Bits/Chip	256M	1G	4G	16G	64G	256G
Minimum Feature Size nm Isolated Lines (MPU) Dense Lines (DRAM) Contacts	200 250 280	140 180 200	100 130 140	70 100 110	50 70 80	35 50 60
Gate CD Control 3σ (nm)	20	14	10	7	5	4
Alignment (mean $+ 3\sigma$) (nm)	85	65	45	35	25	20
Depth of Focus (μm)	0.8	0.7	0.6	0.5	0.5	0.5
Defect Density (per layer/m²)	100	80	60	50	40	30
@ Defect Size (nm)	@ 80	@ 60	@ 40	@ 30	@ 20	@ 15
DRAM Chip Size (mm²)	280	400	560	790	1120	1580
MPU Chip Size (mm²)	300	360	430	520	620	750
Field Size (mm)	22x22	25x32	25x36	25x40	25x44	25x52
Exposure Technology	248 nm	248 nm	248 nm	193 nm	193 nm	?
	DUV	DUV	or	DUV	DUV	
			193 nm DUV	or ?	or ?	
Minimum Mask Count	22	22/24	24	24/26	26/28	28

Pattern Transfer Steps

*Wet etch

Definitions

- Metrics
 - Resolution
 - Throughtput
 - Registration (Alignment)
- Exposure Systems UV
 - Projection Fraunhofer
 - Proximity Fresnel
 - Contact Fresnel
 - Advanced
 - DUV, E-Beam, X-Ray, Nano-imprint
- Resists
 - Positive/Negative
 - Contrast
 - CMTF

Lithography Systems

Proximity

Contact

Projection

Mask

Wafer

Contact/Proximity Printing

4

Contact/Proximity Printing

Minimum resolvable feature = $(\lambda g)^{1/2}$ Fall 2003 – M.A. Schmidt 3.155J/6.152J – Lecture 10 – Slide 9

Proximity Printing Limits

Minimum resolvable feature = $(\lambda g)^{1/2}$

Gap = 20 μ m and Source = 436 nm

3.0 μm

Maximum allowable proximity gap for near and deep UV sources as a function of the feature size normalized to the gap required for $2.5~\mu m$ resolution with a deep UV source

Feature Size (μm)	Maximum Gap for Near UV Source	Maximum Gap for Deep UV Source	
2.5	0.63	1.0	
2.0	0.37	0.61	
1.0	0.08	0.24	
0.5	0.05	0.07	

Projection Printing

Image from a Circular Opening

Note limit of d

Resolving Features

Rayleigh Criterion: When the peak of one projection lands on the first zero of the other.

S. Wolf, <u>Microchip Manufacturing</u>, Lattice Press

The Rayleigh Criterion

$$R = 1.22\lambda f/d = 1.22\lambda f/n(2fsin\alpha) = 0.61\lambda/nsin\alpha$$

$$NA = nsin\alpha \text{ (Range from 0.16-0.76)}$$

$$R = 0.61\lambda/NA = k_1\lambda/NA \text{ (practical } k_1 = 0.6-0.8)$$

Modulation Transfer Function (MTF)

MTF vs Feature Size

Depth of Focus

$$\lambda/4 = \delta - \delta \cos \Phi$$

Small
$$\Phi$$
:
 $\lambda/4 = \delta\Phi^2/2$
 $\Phi = \sin \Phi = d/2f = NA$

Depth of Focus =
$$\delta = \lambda/2(NA)^2$$

= $k_2 \lambda/(NA)^2$

$$R = 0.61\lambda/NA = k_1\lambda/NA$$

Resist Contrast

Dose = Intensity (W/cm^{-2}) x time (s)

$$\gamma = 1 / \log_{10}(Q_f/Q_0)$$

Ideal Exposure – Ideal Resist

Real Exposure – Ideal Resist

Real Exposure – Real Resist

Decreasing 'Pitch'

Fall 2003 - M.A. Schmidt

3.155J/6.152J – Lecture 10 – Slide 26

Critical Modulation Transfer Function (CMTF)

$$\frac{Q_f - Q_0}{Q_f + Q_0} = \frac{10^{1/\gamma} - 1}{10^{1/\gamma} + 1}$$

$$\gamma = 1 / \log_{10}(Q_f/Q_0)$$

If
$$\gamma = 3$$
, CMTF = 0.37
If $\gamma = 2$, CMTF = 0.52

Effect of Coherence on MTF

