

GSP KM SHARING 2019

หน่วยงาน:ทน.ทผก.....

เรื่อง:Hydrogen for fuel cell......

GSP KM SHARING 2019 (วิสัยทัศน์ กลยุทธ์และนโยบาย)

GSP VISION

"To be World's Leading Gas Processing Business by 2020"

"To be World's Leading Gas Processing Business by 2020"

With breakthrough of innovation, operation excellence and Engaged stakeholder

Measure by achieve 6 perspectives KPI Top Quartile

วิสัยทัศน์การจัดการความรู้

PTT Group Vision:

Thai Premier Multinational Energy Company

PTT GBU KM Vision:

บริหารจัดการองค์ความรู้ เพื่อสนับสนุนการดำเนินงานของธุรกิจก๊าซให้บรรลุ ตามกลยุทธ์ที่ตั้งเป้าหมายไว้อย่างยั่งยืน

PTT Group KM Vision:

A World Class and Sustainable Learning Organization

PTT GSP KM Vision:

เป็นขุมความรู้ในการบริหารธุรกิจแยกก๊าซฯให้เกิดประสิทธิภาพอย่างยั่งยืน

วิสัยทัศน์กลุ่มงาน :

Sustainable growth with innovation culture

GSP KM SHARING 2019 (วิสัยทัศน์ กลยุทธ์และนโยบาย)

GSP STRATEGIC DIRECTION & TOP QUARTILE TARGET 2017-2020

GSP STRATEGIC DIRECTION & TOP QUARTILE TARGET 2017-2020

ROIC**-GBU Return on Invested Capital

Strengthen Future

2018A= 45.86% (P32.00%)

@2019= 34.0%

@2020 = >20.0%

(top quartile level, deployed from PTT, GBU)

Annual target is depend on revenue and capital expense

-GBU Energy Index

2018A= 5.34 (P5.35)

@2019=5.21

@2020 =5.20

(Solomon BM: 4.98MMBTU/Ton)

-GBU OPEX/ton

2018A= 1,169 (P1,282)

@2019=<1,400

@2020 = < 1.300

(Solomon BM:1,175 THB/Ton)

TRIR Total Recordable Injury Rate

2018A = 0.0 (P0)

@2019 = 0 (PTT staff)

@2020 = 0 (Ideal)

LOPC Number of Loss of Primary Containment; events (fler 1)

2018A= 0 (P0)

@2019 = 0

@2020 = 0 (Ideal)

% Asset Reliability -GBU

2018A= 98.54% (P97.89%) @2019 = 98.50% @2020> 99.00% (Benchmarking Range: 97%-98%)

Last update: Jan'19

GSP KM SHARING 2019

(วิสัยทัศน์ กลยุทธ์และนโยบาย)

"To be World's Leading Gas Processing Business by 2020"

With breakthrough of innovation, operation excellence and Engaged stakeholder

Measure by achieve 6 perspectives KPI Top Quartile

INNO ORGANIZATION

Production Planning & Technical Management Department

Mr.Supachai Laorrattanasak
Plant Technology & Innovation
Division Manager

Plant Technology
& Innovation Division

Vision Team:

Sustainable Growth with Innovation Culture

Process Technology

Mr.Perapong Lapasathukul

Miss Nutchanat Ivara

Mr.Chanwit Chansatirapanit

Digitization & Start up

Mr.Suragarn Klomkao

1iss Hathaichanok Rodrakhee

New member

Innovation Theme

Process Technology

Digitization & Startup

Project Development

3 topics

- LPG Aerosol Product
- U-Carbon Fertilizer Project
- Green Baking Soda Product

Digitalization

3 topics

- Al-Sensor
- Al-Optimizer
- GSP Data Storage

Feasibility for new S curve
2 topics

- H2 Fuel Cell Business
- Once Through Gas to Liquid (GTL)

New Product / Process Innovation

4 topics

- Smart Log Sheet
- E-nose: Odor Emission Detection
- E-nose: LPG Aerosol Odor detector
- Amine Sampling Mug

Cost Saving
2 topics

- CO2 Membrane Test Skid at GSP6
- SCR Catalyst Business

Start up & Innovation System

3 topics

- Start Up Program
- Innovation Space
- GSP Innovation Culture

- ECO-CURE Water Treatment Skid
- Cold Energy Recovery Skid LNG
 Satellite

Hydrogen Fuel Cell Business

Steam Methane Reforming (SMR) technology for hydrogen production on both a small and large scale. SMR is a cost-effective and energy efficient way of producing hydrogen.

In the steam reforming process, a desulfurized hydrocarbon feedstock (natural gas, refinery off gas, liquefied petroleum gas or naphtha) is pre-heated, mixed with steam and optionally pre-reformed before passing a catalyst in a proprietary top-fired steam reformer to produce hydrogen, carbon monoxide (CO) and carbon dioxide (CO2). And the hydrogen is then separated using Pressure Swing Adsorption.

Fuel Cell Technology

A fuel cell is a device that generates electricity by a chemical reaction. Every fuel cell has two electrodes, one positive and one negative, called, respectively, the anode and cathode. The reactions that produce electricity take place at the electrodes.

Hydrogen is the basic fuel, but fuel cells also require oxygen. One great appeal of fuel cells is that they generate electricity with very little pollution—much of the hydrogen and oxygen used in generating electricity ultimately combine to form a harmless byproduct, namely water.

Fuel Cell Technology

TOYOTA

Fuel diversity and uses diagram by Toyota

EV: Short-distance, HV & PHV: Wide-use, FCV: Medium-to-long distance

Source:

Fuel diversity and uses

https://www.greencarcongress.com/2015/12/20151202-navigant.html

https://insideevs.com/toyota-to-sell-30000-hydrogen-fuel-cell-cars-annually-by-2020/

Navigant Research forecasts that the annual sales of fuel cell vehicles (FCVs)—both cars and buses

World Trend Technology is changed, so we have to changed.

This is External Force Effect!!

Pro-Con

FCVs Technology

<u>Pro</u>	<u>Con</u>
Clean energy with high efficiency	High investment
• Fast refueling per long driving(3-5	Need subsidized policy at
mins for 450 km)	beginning
H ₂ can be made from renewable	Expensive to transport H ₂
sources	
Easily convert NGV station to	
supply H ₂	

Fuel Cell Technology

Two key requirements for fuel cell larger-scale market introduction

- •driving down vehicle costs to be competitive with battery and hybrid vehicle technology.
- developing the hydrogen infrastructure necessary to fuel the vehicles.

The key focus for PTT strength!

Cost reduction of FCV

Project Opportunity

H₂ Refueling Station VS Existing NGV Network

Utilize existing facilities of NGV station and pipeline network

PTT has NGV stations network around Thailand 427 stations, which can utilize facilities of NGV station to Hydrogen station.

Hydrogen Production onsite (SMR)

Hydrogen Refueling Station (HRS)

Hydrogen Production

Steam-methane reforming reaction: **Reaction:**

 $CH_4 + H_2O \rightarrow CO + 3H_2$

Water-gas shift reaction:

 $CO + H_2O \rightarrow CO_2 + H_2$

Hydrogen Production

Project challenge

Our target is NGV bus/truck

Basis of calculation		
Natural gas consumption	292,364.0	Nm3/h
NGV station in Thailand	400	Station
Natural gas consumption per station	730.9	Nm3/h
Fuel consumption of a Bus/Truck	40	kg/day
No of NGV Bus/Truck	46,514	units
assume 10% of NGV bus/truck reform t	4,651	units
H2 bus/truck per NGV station	12	units
Total H2 production per station	465.1	kg/day
H2 production rate	19.4	kg/h
	216	Nm3/h
H2 Production Capacity	250	Nm3/h

Project challenge

Potential player of SMR technology onsite hydrogen production in market

Feasibility Study 2018: Hydrogen Production from Natural Gas

Prism H₂ Generators PHG250 Capacity of H2 Production = 500 kg/d Prism H₂ Generators PHG250

Natural Gas Price Forecast In 2019-2032

A		С	D	E	F	G	н	1	3	K	L	M	N	0	р	0	
Sensitivity Analysis																_	
Year		2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	
Operating Day	Days		350	350	350	350	350	350	350	350	350	350	350	350	350	350	=
Hydrogen Production																	_
Hydrogen Production	kg/year		175,000	175,000	175,000	175,000	175,000	175,000	175,000	175,000	175,000	175,000	175,000	175,000	175,000	175,000	1
Hydrogen Cost	Baht/kg		233	236.48	262.13	303.40	313.44	320.14	325.71	332.41	377.02	388.18	393.76	397.10	402.68	434.77	4
	_														\rightarrow	\rightarrow	_
Total Revenue (Taget for IRR14%)			40.80					40.80					40.80				_
Total Revenue (Taget for BOR14%)	MB/year		40.80	40.80	40.80	40.80	40.80	40.00	40.80	40.80	40.80	40.80	40.80	40.80	40.80	40.80	
CAPEX	MB	136.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	_
DPEX																	
- Natural Gas Price	Baht/MMBTU		209	212	235	272	281	287	292	298	338	348	353	356	361	390	
- Natural Gas Cost	MB/year	-	7.05	7.15	7.93	9.17	9.48	9.68	9.85	10.05	11.40	11.74	11.91	12.01	12.18	13.15	
- Elecity Power Cost	MB/year	3%	3.70	3.82	3.93	4.05	4.17	4.29	4.42	4.56	4.69	4.83	4.98	5.13	5.28	5.44	
- Portable Water Cost	MB/year	3%	0.09	0.09	0.10	0.10	0.10	0.11	0.11	0.11	0.12	0.12	0.12	0.13	0.13	0.13	
- OBM Cost (3%of CAPEX)	MB/year	3%	4.10	4.22	4.34	4,47	4.61	4.75	4.89	5.04	5.19	5.34	5.50	5.67	5.84	6.01	
- SG&A Cost (1%of Revenue)	MB/year	3%	0.41	0.42	0.43	0.45	0.46	0.47	0.49	0.50	0.52	0.53	0.55	0.56	0.58	0.60	
Total OPEX	M8/year		15.35	15.70	16.73	18.24	18.82	19.30	19.76	20.26	21.91	22.56	23.06	23.49	24.01	25.33	=
Summary																	_
Revenue	MB/year		41	41	41	41	41	41	41	41	41	41	41	41	41	41	
CAPEX	MB	136.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
OPEX	MB/year		15.35	15.70	16.73	18.24	18.82	19.30	19.76	20.26	21.91	22.56	23.06	23.49	24.01	25.33	
Raw Gas	MB/year																
EBIT	MB/year	- 136.5	25	25	24	23	22	21	21	21	19	18	18	17	17	15	
Depre (15 years)	MB/year		9	9	9	9	9	9	9	9	9	9	9	9	9	9	
BIT-Depre	MB/year		16.4	16.0	15.0	13.5	12.9	12.4	11.9	11.4	9.8	9.1	8.6	8.2	7.7	6.4	
Tax	MB/year		3.3	3.2	3.0	2.7	2.6	2.5	2.4	2.3	2.0	1.8	1.7	1.6	1.5	1.3	
Net Profit		- 136.5	22.2	21.9	21.1	19.9	19.4	19.0	18.7	18.3	16.9	16.4	16.0	15.7	15.3	14.2	
Economic Analysis MRR NPV		11.05% 29.67	MB														

(2.495 kg), 16 0" x 4 0"			
O F F		NG/Utility	Quality
Options inside container Bi)(0) mater Boycomes Air	Each Containerized H2 generator plant weight = 50,000 (bs (22,680 kg)	Natural Gas	3,650 scfh
(IT 20 m)	Minimum concrete franciscion	Power	126 kw
Reformer assembly weight = 15,000 fbp (6,604 kg)	Fesce	Portable water	204 gph (0.72 m3/h)
		CAPEX	Amount
	On-s	CAPEX site installation	Amount 66.5 MB
H2 Production	0		7
1 1	Equi	ite installation	66.5 MB
H2 Production	Equi	ite installation	66.5 MB 52.5 MB

Economic Study

Project lifetime: 15 yrs Tax: 20% WACC: 11.05%

Therefore H2 Price = 345

Baht/kgH2

Feasibility Study 2018: Hydrogen Production from Natural Gas

Prism H₂ Generators PHG250 Capacity of H2 Production = 500 kg/d

WACC: 11.05%

Therefore H2 Price = 345 Baht/kgH2

Source: https://www.standard.co.uk/lifestyle/motors/how-much-does-a-hydrogen-car-cost-to-run-a3595841.html

Roadmap Timeline

Cross Functional Team

This project is the cooperation of GSP, Inl and GBD team.

Knowledge sharing

Innovation website

THANK YOU