CPSC 302, Fall 2022, Assignment 5

Released Thursday, November 24, 2022 Due Monday, December 5, 2022, 11:59pm

1. Consider the 2×2 matrix

$$A = \left(\begin{array}{cc} 2 & -1 \\ -1 & 2 \end{array}\right) ,$$

and suppose we are required to solve $A\vec{x} = \vec{b}$, where \vec{b} is an arbitrary right-hand side vector. Clearly, solving a 2×2 linear system using a stationary scheme is an utterly ridiculous idea, but the following is helpful in understanding more about convergence of stationary methods.

- (a) Find the spectral radius of the Jacobi and Gauss-Seidel iteration matrices and the asymptotic rate of convergence for these two schemes, namely $-\log_{10}\rho(T)$, where $\rho(T)$ denotes the spectral radius of the corresponding iteration matrix, T.
- (b) How much faster does Gauss-Seidel converge compared to Jacobi for a fixed reduction in the relative residual norm, $\frac{\|\vec{r}_k\|_2}{\|\vec{b}\|_2}$, in terms of iteration counts?
- (c) Write down the SOR iteration matrix as a function of the relaxation parameter, ω .
- (d) Find the optimal SOR parameter, $\omega_{\rm opt}$, and the spectral radius of the corresponding iteration matrix.
- (e) Approximately how much faster does SOR with ω_{opt} converge compared to Jacobi?
- 2. (a) Download from the assignment webpage the file J_GS.m. In your MATLAB command line, run the command: J_GS(100);

 Include in your assignment solution the convergence graph that you are seeing. This is a linear system with the two-dimensional Laplacian of size $10,000 \times 10,000$ (we have $n = 100, n^2 = 10,000$), and we are plotting the norm of the relative residual after 10,000 iterations for Jacobi and Gauss-Seidel. There is no reason to be impressed with this
 - (b) Given the eigenvalues of the Laplacian in the slides, show that the optimal SOR parameter can be expressed as

graph; convergence here is slow. But we are going to see the effect of using SOR.

$$\omega_{\text{opt}} = \frac{2}{1 + \sin\left(\frac{\pi}{n+1}\right)}.$$

(c) Modify the MATLAB function so that in addition to the Jacobi and Gauss-Seidel graphs (for the same matrix) a convergence plot for the SOR method is included as well. Use the same initial guess (the zero vector) and the same stopping criterion: $\frac{\|\vec{r}_k\|_2}{\|\vec{b}\|_2} < 10^{-6}$.

1

<u>Tip</u>: You should be seeing an *extremely dramatic* improvement in convergence. If you are not seeing such an improvement, then you must have done something wrong.

(d) Explain your results.

- 3. (a) Suppose A is an n-by-n orthogonal matrix. Show that all its singular values are equal to 1.
 - (b) Recall that an orthogonal projector is a symmetric matrix P for which $P^2 = P$. What are the eigenvalues of an orthogonal projector?
- 4. Load the following .mat matrix that appears on the assignment page:

load powerMatrix;

If you hit whos you should be seeing a matrix called A, of size 100×100 . To validate any of your results below, you may run the MATLAB command eig, as long as you understand that in typical eigenvalue computations (in a potentially more challenging computational environment) we generally do not have the luxury of running eig to check ourselves.

(a) Apply the power method. Terminate the iteration once the iterates satisfy

$$|\lambda_1^{(k)} - \lambda_1^{(k-1)}| < 10^{-4}$$
.

Your program should print out the value of the final iterate and a graph of the absolute errors: $|\lambda_1^{(k)} - \lambda_{\max}|$. For better visualization, use **semilogy** for your graphs when necessary. As an initial guess for the eigenvector use a vector produced by the MATLAB command **randn**. (When you repeat your experiments, the number of iterations may slightly vary due to the random initial guess.)

- (b) Repeat your computations with the *inverse* power iteration, with a shift $\alpha = 4$, and produce the same graph as you did for the power method.
- (c) Discuss the differences between the performance of the power and the inverse power methods in terms of the cost of single iterations and the overall computational cost.
- (d) Suppose now that we know that A has an eigenvalue close to 3 and we are interested to compute it to six correct decimal digits. Suggest an efficient procedure for doing so. Implement your suggested algorithm and compute the eigenvalue.
- 5. The following picture appears in MATLAB's repository of images, and can be retrieved by entering

```
load mandrill;
colormpap('gray');
image(X);
```


- (a) Print out the images generated by the truncated SVD. Start with r=2 and go up by powers of 2, to $r=2^6=64$ (six plots in total). For a compact presentation of your figures, you may use the command subplot(3,2). (Check out help subplot.)
- (b) Comment briefly on the quality of the images as a function of r. For what value of r would you say that the quality of the image is acceptable, in that we can be rather confident of what we are seeing? (We are not looking for a specific "correct answer" here just make your subjective observation.)
- (c) For the value of r you stated in part (b), how much storage is required? Compare it to the storage required for the original image.