IDS Lecture 18: Entailment of Constraints

Implication of Constraints

A set σ of constraints **implies** (or **entails**) a constraint ϕ if *every* instance that satisfies σ also satisfies ϕ

Syntax: $\sigma \models \phi$

Question: Does σ imply ϕ ?

Relevance

- do the given constraints imply bad ones
- to the given constraints look bad but imply good ones

Axiomatisation of Constraints

An axiomatisation is-

Sound if every derived constraint is implied

Complete if every implied constraint can be derived

Sound + **Complete** axiomatisation gives a procedure ⊢ such that

$$\sigma \models \phi \iff \sigma \vdash \phi$$

Intuition: if we derive there is an implicit constraint

Armstrong's Axioms (for FDs)

Essential Axioms

Reflexivity $Y \subseteq X \Rightarrow X \rightarrow Y$

Argumentation $X \to Y \Rightarrow XZ \to YZ \forall Z$

Transitivity $X \to Y \land Y \to Z \Rightarrow X \to Z$

Derived Axioms

Union $X \to Y \land Y \to Z \Rightarrow X \to YZ$

Decomposition $X \to YZ \Rightarrow X \to Y \land X \to Z$

Closure of a set of FDs

Let F be a set of FDs, the Closure (F^+) of F is the set of all FDs implied by the FDs in F.

• can be computed using Armstrong's axioms

Attribute Closure

The Closure $(C_f(X))$ of a set X of Attributes w.r.t. a set F of FDs is the set of attributes we can derive from X using th FDs in F

$$C_F(X) = \{A \mid F \vdash X \to A\}$$

Properties

- $X \subseteq C_F(X)$
- $X \subseteq Y \Rightarrow C_F(X) \subseteq C_F(Y)$
- $C_F(C_F(X)) = C_F(X)$

Solution to implication Problem

$$F \models Y \to Z \iff Z \subseteq C_F(Y)$$

Closure Algorithm

Input: a set F of of FDs and a set X of attributes Output: $C_F(X)$, the closure of X with respect to F

- 1. unused := F
- 2. closure := X
- 3. while $(Y \to Z) \in \text{unused and } Y \subseteq \text{closure}$
- 4. closure := closure $\cup Z$
- 5. unused := unused $-\{Y \to Z\}$
- 6. **return** closure