Assignment3.2_BrownLincoln.R

Х

2021-06-27

```
# Assignment3.2
# Lincoln Brown
# DSC520-T301
# Dr. Bushart
# Load the data
acs <- read.csv("/media/x/disk/School/DSC520/Wk3/acs-14-1yr-s0201.csv")
# Import ggplot2
library(ggplot2)
library(pastecs)
library(moments)
# Set theme
theme_set(theme_dark())
# 1. What are the elements in your data (including the categories and data types)?
# The columns: Id, Id2, Geography, and POPGROUP.display.label are categorical.
# The column PopGroupID is either binary or categorical.
# The columns RacesReported, HSDegree, and BachDegree are numeric.
# Column Name | Data Type
\# Id
        chr
# Id2
                int
# Geography
                chr
# PopGroupID
# POPGROUP
                chr
# RacesReported int
# HSDegree
                 num
# BachDegree
                 num
#2. Please provide the output from the following functions: str(); nrow(); ncol()
str(acs)
```

```
136 obs. of 8 variables:
## 'data.frame':
                           : chr "0500000US01073" "0500000US04013" "0500000US04019" "0500000US06001"
## $ Id
## $ Id2
                           : int 1073 4013 4019 6001 6013 6019 6029 6037 6059 6065 ...
## $ Geography
                           : chr "Jefferson County, Alabama" "Maricopa County, Arizona" "Pima County,
## $ PopGroupID
                          : int 1 1 1 1 1 1 1 1 1 ...
## $ POPGROUP.display.label: chr "Total population" "Total population" "Total population" "Total population"
## $ RacesReported : int 660793 4087191 1004516 1610921 1111339 965974 874589 10116705 314551
                          : num 89.1 86.8 88 86.9 88.8 73.6 74.5 77.5 84.6 80.6 ...
## $ HSDegree
## $ BachDegree
                          : num 30.5 30.2 30.8 42.8 39.7 19.7 15.4 30.3 38 20.7 ...
```

```
colnames(acs)
## [1] "Id"
                                   "Id2"
                                                              "Geography"
## [4] "PopGroupID"
                                   "POPGROUP.display.label" "RacesReported"
## [7] "HSDegree"
                                   "BachDegree"
rownames(acs)
     [1] "1"
                "2"
                       "3"
                             "4"
                                    "5"
                                          "6"
                                                 "7"
                                                       "8"
                                                              "9"
                                                                     "10"
                                                                           "11"
                                                                                  "12"
##
    [13] "13"
                                    "17"
                                          "18"
                                                 "19"
                                                       "20"
                                                                     "22"
                                                                           "23"
                                                                                  "24"
                "14"
                       "15"
                             "16"
                                                              "21"
##
                                          "30"
    [25] "25"
                       "27"
                                                 "31"
                                                       "32"
                                                                     "34"
                                                                           "35"
                                                                                  "36"
##
                "26"
                             "28"
                                    "29"
                                                              "33"
##
    [37] "37"
                "38"
                      "39"
                             "40"
                                    "41"
                                          "42"
                                                 "43"
                                                       "44"
                                                              "45"
                                                                    "46"
                                                                           "47"
                                                                                  "48"
##
    [49] "49"
                "50"
                       "51"
                             "52"
                                    "53"
                                          "54"
                                                 "55"
                                                       "56"
                                                              "57"
                                                                     "58"
                                                                           "59"
                                                                                  "60"
    [61] "61"
                "62"
                       "63"
                             "64"
                                    "65"
                                          "66"
                                                 "67"
                                                              "69"
                                                                     "70"
                                                                           "71"
                                                                                  "72"
                                                       "68"
##
                             "76"
##
    [73] "73"
                "74"
                       "75"
                                    "77"
                                          "78"
                                                 "79"
                                                       "80"
                                                              "81"
                                                                     "82"
                                                                           "83"
                                                                                  "84"
    [85] "85"
                "86"
                                   "89"
                                          "90"
                                                       "92"
                                                              "93"
                                                                    "94"
                                                                           "95"
                                                                                 "96"
##
                       "87"
                             "88"
                                                "91"
    [97] "97"
                "98"
                      "99"
                             "100" "101" "102" "103" "104" "105" "106" "107" "108"
## [109] "109" "110" "111" "112" "113" "114" "115" "116" "117" "118" "119" "120"
   [121] "121" "122" "123" "124" "125" "126" "127" "128" "129" "130" "131" "132"
## [133] "133" "134" "135" "136"
dim(acs)
## [1] 136
acs[c(2,7)]
         Id2 HSDegree
##
## 1
        1073
                  89.1
## 2
        4013
                  86.8
## 3
        4019
                  88.0
        6001
                  86.9
## 4
## 5
        6013
                  88.8
        6019
                  73.6
## 6
## 7
        6029
                  74.5
        6037
                  77.5
## 8
## 9
        6059
                  84.6
        6065
                  80.6
## 10
## 11
        6067
                  86.8
## 12
        6071
                  78.6
## 13
        6073
                  86.6
## 14
        6075
                  88.1
                  77.6
## 15
        6077
## 16
        6081
                  88.1
## 17
        6085
                  87.4
## 18
        6097
                  87.6
        6099
                  78.4
## 19
## 20
        6111
                  83.6
## 21
        8005
                  91.9
## 22
        8031
                  85.5
## 23
        8041
                  92.8
## 24
        8059
                  94.1
## 25
        9001
                  89.8
        9003
                  89.3
## 26
## 27
        9009
                  89.5
## 28
       10003
                  90.1
```

##	29	11001	90.2
##	30	12009	91.6
##	31	12011	88.4
##	32	12031	89.0
##	33	12057	87.3
##	34	12071	86.3
##	35	12086	80.9
##	36	12095	87.9
##	37	12099	87.7
##	38	12103	90.1
##	39	12105	84.9
##	40	12127	88.9
##	41	13067	90.3
##	42	13089	88.4
##	43	13121	91.3
##	44	13135	88.0
##	45	15003	91.8
##	46	17031	85.5
##	47	17043	92.3
##	48	17043	82.9
##	49	17097	90.3
##	50	17197	90.7
##	51	18097	85.0
##	52	20091	95.5
##	53	20173	88.8
##	54	21111	88.5
##	55	24003	91.9
##	56	24005	90.4
##	57	24031	90.9
##	58	24033	85.5
##	59	24510	84.4
##	60	25005	82.5
##	61	25009	89.1
##	62	25017	92.3
##	63	25021	94.1
##	64	25021	92.2
##	65	25025	83.9
##		25027	90.1
##	67	26081	89.1
##	68	26099	89.3
##	69	26125	93.6
##	70	26163	84.9
##	71	27053	93.2
##	72	27123	89.9
##	73	29095	90.0
##	74	29189	93.2
##	75	31055	88.2
##	76	32003	84.5
##	77	34003	91.5
##	78	34007	88.3
##	79	34013	85.5
##	80	34017	83.4
##	81	34023	89.1
##	82	34025	93.1
##	υZ	0 1 020	<i>3</i> 3.1

##	83	34029	91.7
##	84	34031	83.8
##	85	34039	86.2
##	86	35001	88.0
##	87	36005	70.5
##	88	36029	90.6
##	89	36047	80.0
##	90	36055	90.3
##	91	36059	90.7
##	92	36061	86.8
##	93	36081	80.4
##	94	36103	89.8
##	95	36119	87.4
##	96	37081	89.0
##	97	37119	89.5
##	98	37183	92.4
##	99	39035	88.1
##	100	39049	90.0
##	101	39061	90.5
##	102	39113	89.7
##	103	39153	91.1
##	104	40109	86.8
##	105	40143	88.6
##	106	41051	91.1
##	107	41067	90.2
##	108	42003	93.9
##	109	42017	93.9
##	110	42029	92.3
##	111	42045	91.5
##	112	42071	84.9
##	113	42091	93.7
##	114	42101	82.6
##	115	44007	82.0
##	116	47037	86.7
##	117	47157	87.4
##	118	48029	83.0
##	119	48085	93.7
##	120	48113	77.6
##	121	48121	91.9
##	122	48141	75.8
##	123	48157	88.6
##	124	48201	79.8
##	125	48215	62.2
##	126	48339	85.9
##	127	48439	84.9
##	128	48453	88.6
##	129	49035	89.5
##	130	49049	93.7
##	131	51059	91.5
##	132	53033	92.3
##	133	53053	90.3
##	134	53061	92.0
##	135	55025	94.9
##	136	55079	86.9

High School Degrees by County


```
# 4. Answer the following questions based on the Histogram produced:

# 4a. Based on what you see in this histogram, is the data distribution unimodal?

(q4a <- c("Yes this distribution is unimodal"))

## [1] "Yes this distribution is unimodal"

# 4b. Is it approximately symmetrical?

(q4b <- c("No, this distribution is negatively skewed."))

## [1] "No, this distribution is negatively skewed."

# 4c. Is it approximately bell-shaped?

(q4c <- c("Yes it is approximately bell-shaped."))

## [1] "Yes it is approximately bell-shaped."

# 4d. Is it approximately normal?

(q4d <- c("No, it is not normal."))</pre>
```

```
## [1] "No, it is not normal."
```

```
# 4e. If not normal, is the distribution skewed? If so, in which direction? (q4e <- c("The distribution is skewed left or negatively skewed. "))
```

[1] "The distribution is skewed left or negatively skewed. "

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.


```
qqplot.HSDegree <- qplot(sample = acs$HSDegree, stat="qq")</pre>
```

Warning: `stat` is deprecated
qqplot.HSDegree


```
# 6. Answer the following questions based on the Probability Plot:
# 6a Based on what you see in this probability plot,
#is the distribution approximately normal? Explain how you know.
(q6a <- "The negatively skewed central tendencies of this distribution indicate that it is not approximately normal. ")</pre>
```

```
## [1] "The negatively skewed central tendencies of this distribution \n indicate that it is not approx
# 6b If not normal, is the distribution skewed?
#If so, in which direction? Explain how you know.
(q6b <- "The distribution is negatively skewed, or skewed to the left.
   The tail extends further on the left side, indicating a negative skew.")</pre>
```

```
## [1] "The distribution is negatively skewed, or skewed to the left. \n The tail extends further on to
# 7. Now that you have looked at this data visually for normality,
#you will now quantify normality with numbers using the stat.desc() function.
# Include a screen capture of the results produced.
desc <- stat.desc(acs["HSDegree"], norm = TRUE)
kurtosis(acs["HSDegree"])</pre>
```

```
## HSDegree
## 7.462191
skewness(acs["HSDegree"])
```

HSDegree ## -1.69341

```
#8. In several sentences provide an explanation of the result produced for
#skew, kurtosis, and z-scores.
# In addition, explain how a change in the sample size
#may change your explanation?
zskew <- (desc["skewness",] - desc["SE.mean",]) / desc["std.dev",]</pre>
zkurt <- (desc["kurtosis",] - desc["SE.mean",]) / desc["std.dev",]</pre>
zskew1 <- (desc["skewness",]- 0) / desc["std.dev",]</pre>
zkurt1 <- (desc["kurtosis",]- 0) / desc["std.dev",]</pre>
\#\ I am a little confused on which of the above formulas is
#appropriate for calculating the z scores.
# The book indicates that we should use a O for the mean of the distribution,
#which makes sense because we are calculating
# for a z-score which have a mean of 0 and a sd of 1.
# Therefore, I believe that zskew1 and zkurt1 are the correct formulas,
#but I would appreciate some guidance on the matter.
#The scores for kurtosis and skew in the descriptive statistics have the values:
(skew <- desc["skewness",])</pre>
## [1] -1.674767
(kurt <- desc["kurtosis",])</pre>
## [1] 4.352856
(excess_kurtosis <- kurt - 3)</pre>
## [1] 1.352856
# The skew of -1.674767 indicates a significant negative skew (> 1)
# The kurtosis of 4.352856 indicates that it has excess kurtosis of 1.352856
# The skew occurs because there are more counties with a
#higher percent of citizens with HS degrees.
# I suspect that this is particularly affected by the Hidalgo, TX county where
#only 62.2% of the population has a HS diploma.
# More data points are likely to affect this by smoothing out the distribution
#and lessening the impact of the outlier.
# The kurtosis may also be affected because it is likely that more counties
#will occupy the 90% bin, resulting in a more leptokurtic distribution.
```