

MANIPAL INSTITUTE OF TECHNOLOGY

(A constituent Unit of Manipal Academy of Higher Education)

MANIPAL

Drives, Controls and Modelling Laboratory Manual (MTE 3161)

Fifth Semester B.Tech (Mechatronics Engineering)

NAME: Swaraj Dangare REG NO: 210929156 ROLL NO: 37

Experiment V:

Control of DC Motor using Buck Converter

Aim:

To model an armature-controlled DC motor from first principles of modelling. Also simulate and analyze the motor performance as per specifications in SIMULINK.

Mathematical Modelling of RLC circuit:

Series RLC circuit

Date: 21/09/2023

Under-Damped:

Critically Damped:

Problem 1:

A Dc armature controlled motor with the following parameters: $R=2~\Omega,~L=1.1mH$ and $K_b=1.26~V/rad/sec,~K_t=1.26~N.m/Amp,$ with rotor parameters of $J=0.05kg-m^2$, B=0~Nm/rad/sec with no load is directly started from a dc supply voltage of 220V. Plot the motor starting speed response and the time taken to reach 157.07 rad/sec (1500 rpm).

Observe the effect of friction with B=0.001

Circuit Description:

Solution

SIMULINK Diagram:

Problem 2:

A Dc armature controlled motor with the following parameters: $R=2~\Omega$, L=1.1mH and $K_b=1.26~V/rad/sec$, $K_t=1.26~N.m/Amp$, with rotor parameters of $J=0.05kg-m^2$, B=0~Nm/rad/sec with no load is directly started from a dc supply voltage of 220V and is given rated field current. Plot the motor starting speed response and the time taken to reach 157.07 rad/sec (1500 rpm) using simscpe. Observe the effect of friction with B=0.001

Armature voltage = 110V, speed response = 665.3 rpm

Problem 3:

A Dc armature controlled motor with the following parameters: $R = 2\Omega$, L = 0.011H and $K_b = K_t$ 1.26V/rad/sec, with rotor parameters of J = 0.0167 kg-m², B = 0 Nm/rad/sec with a load torque is proportional to the speed of rotation, $T_L = 0.08$ ω . Its armature is connected to a dc supply voltage of 220V and is given rated field current. Find speed of motor.

Open-Ended Lab Exercises - 5:

1. A DC armature controlled motor with the following parameters: $R=2\Omega$, L=0.011H and $K_b=K_t$ 1.26V/rad/sec, with rotor parameters of J=0.05 kg-m 2 , B=0 Nm/rad/sec with a FAN load with coefficient 5.67e-4. Calculate the Torque at 750rpm and simulate the same by vary voltage to get 750rpm output.

Torque at 750rpm = 3.5 N.m Vin = 104.52 V

For the same above system, if the input voltage is 100V, what is the speed and torque of the output FAN load. Speed wm = 719.2 rpm
 Torque = 3.218 N.m

