МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Физтех-школа фотоники, электроники и молекулярной физики

Отчёт о выполнении лабораторной работы 3.4.4

Петля гистерезиса (статический метод)

Автор: Макаров Лев Евгеньевич Б04-306

1 Введение

Цель работы:

1. наблюдение начальной кривой намагничивания ферромагнетиков и предельной петли гистерезиса

В работе используются:

- источник питания
- тороид
- соленоид
- баллистический гальванометр с осветителем и шкалой
- амперметр
- вольтметр
- магазин сопротивлений
- лабораторный автотрансформатор (ЛАТР)
- разделительный трансформатор
- понижающий трансформатор
- интегрирующая цепочка
- электронный осциллограф
- делитель напряжения

2 Теоретические сведения

К ферромагнетикам принадлежат железо, никель, кобальт, гадолиний, их многочисленные сплавы с другими металлами. К ним примыкают ферриты – диэлектрики со структурой антиферромагнетика.

Ферромагнетики – вещества, которые при определенной температуре обладают самопроизвольной намагниченностью M в отсутствие внешнего магнитного поля. В ферромагнетиках образуются отдельные намагниченные области – домены (от 10^{-2} до 10^{-6} см³), магнитные моменты в которых ориентируются параллельно.

Зависимость вектора магнитной индукции \boldsymbol{B} ферромагнетика от вектора напряженности магнитного поля \boldsymbol{H} нелинейна. В системе СИ эта связь имеет вид

$$\boldsymbol{B} = \mu_0(\boldsymbol{H} + \boldsymbol{M}) \tag{1}$$

При циклическом перемагничивании зависимость (1) изображается замкнутой кривой - симметричной петлей гистерезиса (рис. 1), где $\pm \boldsymbol{H}_c$ – значение напряженности магнитного поля, необходимое для полного размагничивания ферромагнетика (коэрцитивная сила); $\pm \boldsymbol{B}_r$ – магнитная индукция, которую имеет ферромагнетик при напряженности внешнего магнитного поля, равную нулю (остаточная намагниченность); $\pm \boldsymbol{B}_s$ – значение магнитной индукции, при которой материал достигает насыщения (намагниченность насыщения)¹.

 $^{^{1}}$ Кривая, иозображающая зависимость B(H), практически совпадает с зависимостью M(H), поскольку второй член в выражении (1), в малых полях, существенно превосходит первый

Рис. 1: Петля гистерезиса ферромагнетика.

3 Экспериментальная установка

3.1 Статический метод

Рис. 2: Схема установки для исследования петли гистерезиса

Рис. 3: Схема установки для калибровки гальванометра

После снятия петли гистерезиса необходимо размагнитить сердечник, подключив его к цепи переменного тока, постепенно снижая его амплитуду. Только затем следует приступать к снятию основной кривой намагничивания.

3.2 Динамический метод

Схема экспериментальной установки показана на рис. 3.

Действующее значение переменного тока в обмотке N0 измеряется амперметром A (мультиметром GDM). Последовательно с амперметром включено сопротивление R_0 , напряжение с

которого подается на вход X электронного осциллографа (90). 9то напряжение пропорционально току в обмотке N_0 , а следовательно и напряженности H магнитного поля в образце.

Для измерения магнитной индукции В с измерительной обмотки $N_{\rm H}$ на вход интегрирующей RC -цепочки подается напряжение $U_{\rm H}$ (UBX), пропорциональное производной \dot{B} , а с выхода снимается напряжение $U_{\rm C}(U_{\rm Bыx})$, пропорциональное величине В , и подается на вход Y осциллографа. Замкнутая кривая, возникающая на экране, воспроизводит в некотором масштабе (различном для осей X и Y) петлю гистерезиса. Чтобы придать этой кривой количественный смысл, необходимо установить масштабы изображения, т.е. провести калибровку каналов X и Y ЭО. Для этого, во-первых, надо узнать, каким напряжениям (или токам) соответствуют амплитуды сигналов, видимых на экране, и во-вторых, каким значениям В и H соответствуют эти напряжения (или токи).

Рис. 4: Схема установки для исследования намагничивания образцов

• Напряженность магнитного поля H в тороиде зависит от тока, текущего в намагничивающей обмотке:

$$H = \frac{N_{T_0}}{\pi D}I; \tag{2}$$

• Связь между отклонением зайчика баллистического гальванометра в делениях Δx и изменением магнитной индукции ΔB в сердечнике тороида:

$$\Delta B = \mu_0 \left(\frac{d_C}{d_T}\right)^2 \frac{N_{C_0}}{N_{T_1}} \frac{N_{C_1}}{l_C} \Delta I_1 \frac{\Delta x}{\Delta x_1}.$$
 (3)

4 Результаты измерений и обработка данных

4.1 Подготовка к работе

- 1. Соберем схему согласно рис. 2. Расположим ключи так, чтобы было удобно снимать расчеты.
- 2. Включим генератор и амперметр в сеть, установим необходимый режим работы. Проверим, как меняется ток в первичной обмотке. Вернемся к нулевому току.
- 3. Установим сопротивление магазина $R_M = 100$ Ом. Включим осветитель гальванометра.
- 4. Установим максимальный ток $I_{max}=1,46$ А. Замкнем ключ К1. Следя за каждым отклонением зайчика, пройдем всю кривую намагничивания, чтобы убедиться, что он нигде не выходит за пределы шкалы.

4.2 Предельная петля гистерезиса

5. Пройдем по половине петли гистерезиса и замерим все положения тока и отклонения зайчика. Сумма отклонений зайчика по различным участкам цепи одинаков в пределах 10%. Результаты измерений в таблице 2

Таблица 1: Начальная кривая намагничивания

Положение	I, mA	Δx , MM	Н, А/м	ΔB , T	В, Т
0	0.0	1.7	0.0	0.028	0
1	15.35	3.2	85.5	0.055	0.028
2	28.11	3.5	156.6	0.060	0.083
3	39.17	0.9	218.2	0.015	0.143
4	44.52	2.8	248.0	0.048	0.158
5	56.03	2.1	312.1	0.036	0.206
6	66.72	2.9	371.7	0.050	0.242
7	94.99	3.1	529.1	0.052	0.292
8	157.35	4.0	876.5	0.068	0.345
9	250.56	6.7	1395.7	0.113	0.412
10	514.50	13.2	2866.0	0.225	0.526
11	1460.00	12.0	8132.8	0.205	0.750

Таблица 2: Прохожедение цикла гистерезиса

		таолиг
участок	1	
положение	I, ma	Delta x
11	1460,00	
10	514,50	12,4
9	250,56	11,0
8	157,35	7,6
7	94,99	5,8
6	66,72	2,6
5	56,03	1,3
4	44,52	1,3
3	39,17	0,8
2	28,11	1,4
1	15,35	2,0
0	0,00	3,5

2: прохожоение ц			
2			
I, ma	Delta x		
1458,50	12,8		
514,20	14,3		
250,56	11,3		
157,28	16,2		
95,01	16,0		
66,72	9,0		
56,01	17,6		
44,51	11,1		
39,17	16,3		
28,11	6,6		
15,36	5,3		
0,00			

3	
I, ma	Delta x
1459,50	
514,40	12,0
250,61	11,5
157,31	7,1
95,10	5,2
66,75	2,6
56,03	1,3
44,52	1,4
39,17	0,6
28,11	1,2
15,36	1,7
0,00	3,3

4	
I, ma	Delta x
1458,50	12,7
514,20	14,1
250,56	11,2
157,27	16,1
94,96	15,9
66,73	9,0
56,02	17,7
44,51	11,1
39,17	16,0
28,11	6,4
15,36	5,1
0,00	

4.3 Калибровка гальванометра

- 6. Соберем схему на рис. 3.
- 7. Уменьшим сопротивление на магазине на R_C до $R_M' = 40$ Ом.
- 8. Установим генератор на максимум тока. Замкнем ключ П1. Замерим отклонение при изменении от максимального тока до 0. $I_{\rm max}=1,46$ A, $\Delta x=7,9$ см.

4.3.1 Начальная кривая намагничивания

- 9. Размагнитим образец.
- 10. Подсоединим тороид к сети, Установим тумблер генератора на минимальный ток. Снимем начальную кривую намагничивания, скачками увеличивая ток до $I_{\rm max}$.
- 11. Запишем параметры установки: $d_T = 1$ см, D = 10 см. Отключим питание и разберем схему.

4.4 Обработка результатов

Используя формулы (2) и (3) рассчитаем $H = f_1(I)$ и $\Delta B = f_2(\Delta x)$ для начальной и предельной петель гистерезиса. По полученным данным (табл.??-??) построим петлю гистерезиса B = f(H). Стоит отметить, что для выполнения естественного условия f(0) = 0, к нашим результатам была прибавлена величина $B_0 = 1{,}38$ Тл.

По графику найдём коэрцитивную силу H_c , индукцию насыщения B_s и остаточную индукцию B_r . Более того, можно вычислить максимальное значение дифференциальной магнитной проницаемости μ для начальной кривой намагничивания.

Рис. 5: Зависимость B = f(I).

Таблица 3: Анализ петли гистерезиса.

H_C , A/M	B_S , Тл	B_r , Тл	μ
1600 ± 11	$1,410 \pm 0,010$	0.810 ± 0.010	470 ± 20