Algebraic Topology

Swayam Chube

June 4, 2023

Contents

1		e Fundamental Group	2	
	1.1	Fundamental Groupoid and Group	2	
	1.2	Computing Fundamental Groups	4	
	1.3	Retracts and Deformation Retracts	4	
	1.4	Seifert-van Kampen's Theorem	į	
2	Covering Spaces			
		Lifting Properties		
		The Universal Cover		
		Deck Transformations and Covering Space Actions		
		2.3.1 Deck Transformations	1	
		2.3.2 Covering Space Actions	1	
3	Hor	mology	13	

Chapter 1

The Fundamental Group

1.1 Fundamental Groupoid and Group

Definition 1.1 (Homotopy). Let X and Y be topological spaces. A homotopy is a continuous function $H: X \times I \to Y$. A *homotopy* between two functions $f, g: X \to Y$ is a continuous map $H: X \times I \to Y$ such that H(x,0) = f(x) and H(x,1) = g(x).

Definition 1.2 (Homotopy of Paths). Let X be a topological space and $f,g:I\to X$ be paths. Then, f and g are said to be *path homotopic* if there is a continuous function $H:I\times I\to X$ such that H(s,0)=f(s) and H(s,1)=g(s) for all $s\in I$. We denote this by $f\simeq_p g$.

Proposition 1.3. *The relation* \simeq *on the set of all paths in X is an equivalence relation.*

Proposition 1.4. Let $f: I \to X$ be a path and $\varphi: I \to I$ be a continuous function such that $\varphi(0) = 0$ and $\varphi(1) = 1$. Then, $f \simeq_p f \circ \varphi$.

Proof. Define the function $\Phi: I \times I \to X$ by

$$\Phi(s,t) = f(t\varphi(s) + (1-t)s)$$

It is not hard to see that Φ is a path homotopy between f and $f \circ \varphi$.

Consider the set of all equivalence classes of paths in X under the equivalence relation \simeq_p . Define the operation * on pairs of equivalence classes [f] and [g] where f(1) = g(0) by

$$[f] * [g] = [f * g]$$

where

$$(f * g)(t) = \begin{cases} f(2t) & 0 \le t \le 1/2\\ g(2t-1) & 1/2 < t \le 1 \end{cases}$$

Proposition 1.5. *The operation* * *is associative. That is,*

$$[f] * ([g] * [h]) = ([f] * [g]) * h$$

Proof. Note that [f] * ([g] * [h]) is the equivalence class containing the path:

$$\alpha(t) = \begin{cases} f(2t) & 0 \le t \le 1/2\\ g(4t-2) & 1/2 < t \le 3/4\\ h(4t-3) & 3/4 < t \le 1 \end{cases}$$

Consider the piecewise linear function $\varphi : [0,1] \to [0,1]$ that maps [0,1/2] to [0,1/4], [1/2,3/4] to [1/4,1/2] and [1/2,1] to [3/4,1], then through $\alpha \circ \varphi$, the conclusion follows.

Definition 1.6 (Fundamental Group). Let $\pi_1(X, x_0)$ be the set of equivalence classes of paths $\alpha: I \to X$ with $\alpha(0) = \alpha(1) = x_0$. It is not hard to see from the discussion above that $\pi_1(X, x_0)$ has a group structure. This is known as the *fundamental group*.

Let **Top**_{*} denote the category of pointed topological spaces, that is, the category wherein objects are pairs (X, x_0) where $x_0 \in X$ and a morphism $f: (X, x_0) \to (Y, y_0)$ is a continuous map $f: X \to Y$ with $f(x_0) = y_0$.

Proposition 1.7. Let $f:(X,x_0)\to (Y,y_0)$ be a morphism in \mathbf{Top}_* . Then, the map $f_*:\pi_1(X,x_0)\to \pi_1(Y,y_0)$ given by $[\alpha]\mapsto [f\circ\alpha]$ is a homomorphism of groups. Further, if

$$(X, x_0) \xrightarrow{f} (Y, y_0) \xrightarrow{g} (Z, z_0)$$

then $(g \circ f)_* = g_* \circ f_*$.

Proof. If H is a path homotopy between α_1 and α_2 in X, then $f \circ H$ is a homotopy between $f \circ \alpha_1$ and $f \circ \alpha_2$ in Y. Thus, the map f_* is well defined. Next, suppose $[\alpha], [\beta] \in \pi_1(X, x_0)$, then, it is not hard to see that $(f \circ \alpha) * (f \circ \beta) = f \circ (\alpha * \beta)$, consequently, f_* is a homomorphism of groups. The final assertion is obvious from the definition.

As a result, we see that π_1 is a (covariant) functor from **Top**_{*} to **Grp**.

Theorem 1.8. Let X be path connected and $x_0, x_1 \in X$. Let $\alpha : I \to X$ be a path from x_0 to x_1 . Then, the map $\hat{\alpha} : \pi_1(X, x_0) \to \pi_1(X, x_1)$ given by $[f] \mapsto [\bar{\alpha} * f * \alpha]$ is a group isomorphism.

Proof. It is easy to see that $\hat{\alpha}$ is a homomorphism. The surjectivity and injectivity of this map are obvious.

Proposition 1.9. *Let* X *be path connected and* $h: X \to Y$ *be a continuous map. If* $x_0, x_1 \in X$ *with* $\alpha: I \to X$

a path between them and $\beta = h \circ \alpha$ *, then we have the following commutative diagram:*

$$\begin{array}{ccc}
\pi_1(X, x_0) & \xrightarrow{(h_{x_0})_*} \pi_1(Y, y_0) \\
& & \downarrow & \downarrow \hat{\beta} \\
\pi_1(X, x_1) & \xrightarrow{(h_{x_1})_*} \pi_1(Y, y_1)
\end{array}$$

Proof. Let $[f] \in \pi_1(X, x_0)$. Then,

$$\hat{\beta} \circ (h_{x_0})_*([f]) = \hat{\beta}([h \circ f]) = [\overline{\beta} * h \circ f * \beta]$$

and

$$(h_{x_1})_* \circ \hat{\alpha}([f]) = (h_{x_1})_*([\overline{\alpha} * f * \alpha]) = [\overline{\beta} * h \circ f * \beta]$$

This completes the proof.

1.2 Computing Fundamental Groups

Theorem 1.10. *For* $x_0 \in X$ *and* $y_0 \in Y$, $\pi_1(X \times Y, x_0 \times y_0) \cong \pi_1(X, x_0) \times \pi_1(Y, y_0)$.

Proof. Let $p: X \times Y \to X$ and $q: X \times Y \to Y$ be the natural projection maps and p_*, q_* the induced homomorphisms. Let $\Phi: \pi_1(X \times Y, x_0 \times y_0) \to \pi_1(X, x_0) \times \pi_1(Y, y_0)$ be the homomorphism given by $\Phi([f]) = (p_*([f]), q_*([f]))$. We shall show that Φ is both injective and surjective.

Since p and q are covering maps, both p_* and q_* are injective, consequently, so is Φ . Let $([f],[g]) \in \pi_1(X,x_0) \times \pi_1(Y,y_0)$. Consider the function $h:I \to X \times Y$, $h(t)=f(t) \times g(t)$. It is not hard to see that $\Phi([h])=([f],[g])$.

Corollary. $\pi_1(S^1 \times S^1) \cong \mathbb{Z} \times \mathbb{Z}$. Thus, the fundamental group of a torus is isomorphic to $\mathbb{Z} \times \mathbb{Z}$.

1.3 Retracts and Deformation Retracts

Definition 1.11 (Basepoint Preserving Homotopy). A homotopy $H:(X,x_0)\times I\to (Y,y_0)$ is said to be basepoint preserving if $H(x_0,t)=y_0$ for all $t\in I$.

Proposition 1.12. *Let* $H:(X,x_0)\times I\to (Y,y_0)$ *be a basepoint preserving homotopy between* $\phi:(X,x_0)\to (Y,y_0)$ *and* $\psi:(X,x_0)\to (Y,y_0)$. *Then* $\phi_*=\psi_*$.

Proof. Choose some $[f] \in \pi_1(X, x_0)$. We would like to show that $\phi \circ f$ and $\psi \circ f$ are path homotopic. It is not hard to see that $H \circ f$ is the required homotopy.

Definition 1.13 (Retract). If $A \subseteq X$, then a retraction of X onto A is a continuous map $r: X \to A$ such that $r \mid_A$ is the identity map of A. If such a map r exists then A is a *retract* of X.

Definition 1.14 (Deformation Retract). If $A \subseteq X$, then A is said to be a *deformation retract* of X if there is a map $H: X \times I \to X$ such that $H(\cdot,0) = \mathbf{id}_X$ and $H(x,1) \in A$ for all $x \in X$. Moreover, the restriction $H \mid_{A \times \{1\}} = \mathbf{id}_A$.

A deformation retract is said to be *strong* if H(a, t) = a for all $a \in A$ and $t \in I$.

It is evident, from the definition that if *A* is a deformation retract of *X*, then it is a retract of *X*.

Theorem 1.15. *Let* $i: A \to X$ *be the inclusion map and* $i_*: \pi_1(A, a_0) \to \pi_1(X, a_0)$ *be the induced homomorphism for some* $a_0 \in A \subseteq X$.

- (a) If A is a retract of X, then i_* is a monomorphism
- (b) If A is a deformation retract of X, then i_* is an isomorphism

In both the above cases, the basepoint for X is chosen inside A.

Proof.

- (a) Let $r: X \to A$ be the retract. Then $r \circ i = id_A$. Then $r_* \circ i_* = id_*$, therefore i_* is injective.
- (b) Let $H: X \times I \to X$ be the deformation retract and $r: X \to A$ be $H|_{X \times \{1\}}$. Obviously, $r \circ i = \mathbf{id}_A$, consequently, i_* is injective. Let $[f] \in \pi_1(X, a_0)$. Then, $\Phi: I \times I \to X$ given by $\Phi(s, t) = H(f(s), t)$ is a homotopy between f and a loop in A. Hence, i_* is surjective and thus, an isomorphism.

Definition 1.16 (Homotopy Equivalence). A continuous map $\varphi: X \to Y$ is said to be a *homotopy equivalence* if there is a map $\psi: Y \to X$ such that $\varphi \circ \psi \simeq \mathbf{id}_Y$ and $\psi \circ \varphi \simeq \mathbf{id}_X$. In this case, the spaces X and Y are said to be *homotopy equivalent* or said to have the same *homotopy type*.

Theorem 1.17. Let $\varphi: X \to Y$ be a homotopy equivalence. Then, for any $x_0 \in X$, the induced homomorphism $\varphi_*: \pi_1(X, x_0) \to (Y, \varphi(x_0))$ is an isomorphism.

Proof.

1.4 Seifert-van Kampen's Theorem

Theorem 1.18 (Siefert-van Kampen). *Let* $X = U \cup V$ *where* U *and* V *are open in* X. *Further, suppose* U, V *and* $U \cap V$ *are nonempty and path connected. Let* H *be a group,* $x_0 \in U \cap V$ *and*

$$\phi_1: \pi_1(U, x_0) \to H \qquad \phi_2: \pi_1(V, x_0) \to H$$

be homomorphisms. Finally, let i_1, i_2, j_1, j_2 be the homomorphisms of fundamental groups induced by inclusion

maps. Then, there is a unique map $\Phi: \pi_1(X, x_0) \to H$ such that the following diagram commutes:

Notice how the diagram resembles that of a pushout in a general category and hence, has the universal property and hence, the object, if it exists is unique up to a unique isomorphism. In the special case that $U \cap V$ is simply connected, that is, has a trivial fundamental group, the commutative diagram reduces to that of a coproduct. And it is well known that the coproduct in the category of groups is the free product.

Proof. Let $\mathcal{L}(U, x_0)$, $\mathcal{L}(V, x_0)$, $\mathcal{L}(U \cap V, x_0)$ denote the set of loops in U, V and $U \cap V$. The path homotopy class of a path f in X, U, V and $U \cap V$ is denoted by [f], $[f]_U$, $[f]_V$ and $[f]_{U \cap V}$ respectively. The proof proceeds in multiple steps. The main idea is to first define a set map ρ on the set of loops contained completely in either U or V, then extend it to a set map σ on the set of paths contained completely in either U or V and finally extend it to a set map τ on the set of all paths in X.

Once the map τ is defined, we shall show that $\tau(f) = \tau(g)$ whenever $f \simeq_p g$ and therefore, τ would descend to a group homomorphism from $\pi_1(X, x_0)$ to H.

Step 1: Defining the set map ρ : $\mathcal{L}(U, x_0) \cup \mathcal{L}(V, x_0) \to H$.

This has quite a natural definition:

$$\rho(f) = \begin{cases} \phi_1([f]_U) & f \text{ is contained completely in } U \\ \phi_2([f]_V) & f \text{ is contained completely in } V \end{cases}$$

For a loop contained in $U \cap V$, the map ρ is well defined due to the commutativity of the diagram. It is not hard to see that if $f, g \in \mathcal{L}(U, x_0)$, then $\rho(f * g) = \rho(f)\rho(g)$.

Step 2: Extend the map ρ to a map $\sigma : \mathscr{P}(U) \cup \mathscr{P}(V) \to H$.

For each $x \in X$, fix a path α_x from x_0 to x such that whenever x lies in U, V or $U \cap V$, α_x lies completely in U, V or $U \cap V$ respectively.

Let f be a path from x_1 to x_2 that lies completely in U or completely in V. Define

$$\sigma(f) = \rho(\alpha_{x_1} * f * \alpha_{x_2}^{-1})$$

Now, let f and g be paths completely contained in U. If $f \simeq_p g$ in U, then $\alpha_{x_1} * f * \alpha_{x_2}^{-1} \simeq_p \alpha_{x_1} * g * \alpha_{x_2}^{-1}$ in U and from the definition of ρ , we see that

$$\sigma(f) = \rho(\alpha_{x_1} * f * \alpha_{x_2}^{-1}) = \rho(\alpha_{x_1} * g * \alpha_{x_2}^{-1}) = \sigma(g)$$

Next, if f is a path from x_1 to x_2 and g is a path from x_2 to x_3 (both contained in U), then

$$\sigma(f * g) = \rho(\alpha_{x_1} * f * g * \alpha_{x_3}^{-1})$$

$$= \rho(\alpha_{x_1} * f * \alpha_{x_2}^{-1} * \alpha_{x_2} * g * \alpha_{x_3}^{-1})$$

$$= \rho(\alpha_{x_1} * f * \alpha_{x_2}^{-1})\rho(\alpha_{x_2} * g * \alpha_{x_3}^{-1}) = \sigma(f)\sigma(g)$$

Step 3: Extend the map σ to a map $\tau : \mathscr{P}(X) \to H$

Let $f: I \to X$ be a path. It is not hard to argue, using Lebesgue's Number Lemma, that there is a mesh δ such that for every partition $0 = s_1 < s_2 < \cdots < s_{n-1} < s_n = 1$ of [0,1] with mesh less than δ , $f([s_i, s_{i+1}])$ is completely contained in either U or V for $0 \le i \le n-1$.

Denote by f_i , the restriction of f to $[s_i, s_{i+1}]$. Define

$$\tau(f, P) = \sigma(f_0) \cdots \sigma(f_{n-1})$$

We contend that the map $\tau(f,P)$ is independent of the partition chosen, so long as its mesh is less than δ . To do so, we first show that refining a partition with mesh less than δ does not change the image under τ , for which, it suffices to show that adding a single point to the partition does not change the image. Indeed, let $c \in (s_i, s_{i+1})$ be added to the partition. But since $f([s_i, c])$ and $f([c, s_{i+1}])$ lie completely either in U or in V, we have that $\sigma(f|_{[s_i,c]})\sigma(f|_{[c,s_{i+1}]}) = \sigma(f|_{[s_i,s_{i+1}]})$ whence the conclusion follows.

Now, let P_1 and P_2 be two partitions of [0,1] with mesh less than δ . Then $P_1 \cup P_2$ is a partition that refines both P_1 and P_2 , consequently,

$$\tau(f, P_1) = \tau(f, P_1 \cup P_2) = \tau(f, P_2)$$

which establishes our claim.

Step 4: If $f \simeq_p g$ in X, then $\tau(f) = \tau(g)$.

Let $F: I \times I \to X$ be a path homotopy between f and g. Using the Lebesgue Number Lemma, there are partitions $0 = s_0 < s_1 < \cdots < s_{n-1} < s_n = 1$ and $0 = t_0 < t_1 < \cdots < t_{m-1} < t_m = 1$ such that $f([s_i, s_{i+1}] \times [t_i, t_{i+1}])$ is completely contained in either U or V.

Step 5: $\tau(f * g) = \tau(f)\tau(g)$

Let P be a partition of f * g such that $(f * g)([s_i, s_{i+1}])$ is completely contained in either U or V. Define $P^* = P \cup \{1/2\}$. It is not hard to see, using P^* that τ is multiplicative.

Step 6: Constructing the homomorphism Φ .

Restrict the map τ to $\tau : \mathcal{L}(X, x_0) \to H$. From **Step 4**, it follows that there is a map $\Phi : \pi_1(X, x_0) \to H$ and from **Step 5**, we get that Φ is a homomorphism.

The above argument establishes the existence of a group homomorphism $\Phi: \pi_1(X, x_0) \to H$ making the diagram commute. We must now show that the map Φ is unique. But this follows from the fact that the generators of Φ are precisely the images of the generators of $\pi_1(U, x_0)$ and $\pi_1(V, x_0)$ under the homomorphisms j_1 and j_2 respectively.

Chapter 2

Covering Spaces

Definition 2.1 (Covering Space). A covering space of a space X is a space \widetilde{X} together with a map $p:\widetilde{X}\to X$ satisfying the condition that there is an open cover $\{U_\alpha\}$ of X such that for each $\alpha\in J$, $p^{-1}(U_\alpha)$ is a disjoint union of open sets in \widetilde{X} , each of which is mapped homeomorphically by p to U_α .

Notice that for each $x \in X$, the subspace $p^{-1}(x)$ of \widetilde{X} has the discrete topology.

Proposition 2.2. Let $p: \widetilde{X} \to X$ be a covering map where X is connected. If for some $x \in X$, $|p^{-1}(x)| = n \in \mathbb{N}$, then for all $x' \in X$, $|p^{-1}(x')| = n$.

Proof. Follows from the fact that the map $x \mapsto |p^{-1}(x)|$ is a continuous map from X to \mathbb{N} .

2.1 Lifting Properties

Definition 2.3 (Lift). Let $f: Y \to X$ be a continuous and $p: \widetilde{X} \to X$ be a covering map. A *lift* of f is a map $\widetilde{f}: Y \to \widetilde{X}$ such that $f = p \circ \widetilde{f}$.

Theorem 2.4. Let Y be connected and $p: \widetilde{X} \to X$ a covering map. If $f: Y \to X$ is a continuous map having two lifts $\widetilde{f}_1, \widetilde{f}_2: Y \to \widetilde{X}$, that agree at some point in Y, then they agree on all of Y.

Proof. Let

$$A = \{ y \in Y \mid \widetilde{f}_1(y) = \widetilde{f}_2(y) \}$$

We shall show that A is clopen in Y, whence we would be done owing to A being nonempty. Let $y \in A$ and x = f(y). There is a neighborhood U of x such that $p^{-1}(U)$ is a disjoint union of $\{V_{\alpha}\}$ which are homeomorphically mapped to U. Let V_{β} be the one containing $\widetilde{x} = \widetilde{f}_1(y) = \widetilde{f}_2(y)$. Then, due to continuity, there is a neighborhood N of y that is mapped into V_{β} by both \widetilde{f}_1 and \widetilde{f}_2 . Then, for all $z \in N$, $p \circ \widetilde{f}_1(z) = p \circ \widetilde{f}_2(z)$ but since p is injective on V_{β} , we must have $\widetilde{f}_1(z) = \widetilde{f}_2(z)$, consequently, $N \subseteq A$ and A is open.

On the other hand, if $y \notin A$, then $\widetilde{f}_1(y)$ and $\widetilde{f}_2(y)$ lie in distinct open sets V_{β_1} and V_{β_2} , consequently, for all $z \in N = \widetilde{f}_1^{-1}(V_{\beta_1}) \cap \widetilde{f}_2^{-1}(V_{\beta_2})$, $\widetilde{f}_1(z) \neq \widetilde{f}_2(z)$, thereby completing the proof.

Theorem 2.5 (Homotopy Lifting Property). Let $p: \widetilde{X} \to X$ be a covering map and $F: Y \times I \to X$ a continuous map. Let $\widetilde{F}_0: Y \to \widetilde{X}$ be a lift of $F|_{X \times \{0\}}$. Then, there is a unique lift $\widetilde{F}: Y \times I \to \widetilde{X}$ of F such that $\widetilde{F}|_{X \times \{0\}} = \widetilde{F}_0$.

Proof.

Proposition 2.6 (Path Lifting). Let $f: I \to X$ be a path and let $x_0 = f(0)$. For any $\widetilde{x}_0 \in p^{-1}(x_0)$, there is a unique lift $\widetilde{f}: I \to \widetilde{X}$ such that $\widetilde{f}(0) = \widetilde{x}_0$.

Proposition 2.7. Let $p:(\widetilde{X},\widetilde{x}_0)\to (X,x_0)$ be a covering map. Then the induced homomorphism $p_*:\pi_1(\widetilde{X},\widetilde{x}_0)\to\pi_1(X,x_0)$ is injective.

Theorem 2.8 (Lifting Criterion). Let Y be path connected and locally path connected and $p:(\widetilde{X},\widetilde{x}_0)\to (X,x_0)$ be a covering map. Then, for any continuous map $f:(Y,y_0)\to (X,x_0)$, a lift $\widetilde{f}:(Y,y_0)\to (\widetilde{X},\widetilde{x}_0)$ exists if and only if $f_*(\pi_1(Y,y_0))\subseteq p_*(\pi_1(\widetilde{X},\widetilde{x}_0))$.

Proof.

2.2 The Universal Cover

Definition 2.9 (Semilocally Simply-Connected). A topological space X is said to be *semilocally simply-connected* if each point $x \in X$ has a neighborhood U such that the inclusion induced homomorphism $i_* : \pi(U, x) \to \pi(X, x)$ is trivial.

Henceforth, a topological space is said to be <u>unfathomably based</u> if it is path-connected, locally path-connected and semilocally simply-connected.

Theorem 2.10. If X is <u>unfathomably based</u>, then there is a simply connected space \widetilde{X} and a covering map $p:\widetilde{X}\to X$.

Proof. Pick a basepoint $x_0 \in X$. Define

$$\widetilde{X} = \{ [\gamma] \mid \gamma : I \to X, \ \gamma(0) = x_0 \}$$

and the function $p: \widetilde{X} \to X$ by $p([\gamma]) = \gamma(1)$.

Let \mathscr{U} denote the set of all path connected open sets $U \subseteq X$ such that the homomorphism induced by the inclusion $U \hookrightarrow X$ is trivial. Indeed, if $V \subseteq U \in \mathscr{U}$ is path connected and open, then the homomorphism induced by the inclusion $V \hookrightarrow X$ is the composition of the homomorphisms induced by $V \hookrightarrow U \hookrightarrow X$ and since the latter is trivial, the composition is trivial, consequently, $V \in \mathscr{U}$.

We contend that \mathcal{U} forms a basis for the topology on X. Indeed, let W be a neighborhood of x, then there is a neighborhood U of x such that the homomorphism induced by the inclusion $U \hookrightarrow X$ is trivial. Since X is locally path connected, there is a path connected neighborhood V of x that is contained in $U \cap W$, whence the conclusion follows.

We shall now topologize \widetilde{X} . Let γ be a path in X from x_0 and $U \in \mathcal{U}$ contain $\gamma(1)$. Define the set

$$U_{[\gamma]} = \{ [\gamma * \eta] \mid \eta : I \to U, \, \eta(0) = \gamma(1) \}$$

where the equivalence classes are in X. Since U is path connected, $p:U_{[\gamma]}\to U$ is surjective. Moreover, since the homomorphism induced by the inclusion $U\hookrightarrow X$ is trivial, any two paths from $\gamma(1)$ to any point $x\in U$ are homotopic in X.

We contend that if $[\gamma'] \in U_{[\gamma]}$, then $U_{[\gamma']} = U_{[\gamma]}$. Obviously, there is a path $\eta: I \to U$ such that $\gamma' = \gamma * \eta$, whence it follows that $\gamma' * \mu = \gamma * \eta * \mu$ and thus, $U_{[\gamma']} \subseteq U_{[\gamma]}$. On the other hand, $[\gamma * \mu] = [\gamma * \eta * \overline{\eta} * \mu]$ whereby the conclusion follows.

Next, we claim that the collection $\{U_\gamma\}$ forms a basis for a topology on \widetilde{X} . Suppose $[\gamma''] \in U_{[\gamma]} \cap V_{[\gamma']}$ where $U, V \in \mathscr{U}$, then $U_{[\gamma]} = U_{[\gamma'']}$ and $V_{[\gamma']} = V_{[\gamma'']}$. Since \mathscr{U} forms a basis, there is $W \in \mathscr{U}$ such that $W \subseteq U \cap V$, consequently, $W_{[\gamma'']} \subseteq U_{[\gamma'']} \cap V_{[\gamma'']}$. This proves our claim. Consider the bijection $p: U_{[\gamma]} \to U$, we contend that this is a homeomorphism. For any basis element

Consider the bijection $p:U_{[\gamma]}\to U$, we contend that this is a homeomorphism. For any basis element $V_{[\gamma']}\subseteq U_{[\gamma]}$, we have $p(V_{[\gamma']})=V$, consequently, p is an open map. On the other hand, if $V\subseteq U$ is an open set, then $p^{-1}(V)\cap U_{[\gamma]}=V_{[\gamma']}$ for some $[\gamma']\in U_{[\gamma]}$ with $\gamma'(1)\in V$. Since $V_{[\gamma']}\subseteq U_{[\gamma']}=U_{[\gamma]}$, we see that the restriction of p is continuous and therefore a homeomorphism.

Using the local formulation of continuity, we have that $p: \widetilde{X} \to X$ is a continuous map. Any $x \in X$ has a neighborhood $U \in \mathcal{U}$, consequently, $p^{-1}(U) = \bigcup U_{[\gamma]}$ where $[\gamma]$ ranges over all paths from x_0 to some point in U. It is not hard to argue that the sets $U_{[\gamma]}$ must partition $p^{-1}(U)$, whereby p is a covering map.

Finally, we must show that \widetilde{X} is simply connected. Pick the base point $[x_0] \in \widetilde{X}$. First, we show that \widetilde{X} is path connected. Let $[\gamma] \in \widetilde{X}$. Define $\gamma_t : I \to X$ by

$$\gamma_t(s) = \begin{cases} \gamma(s) & 0 \le s \le t \\ \gamma(t) & t < s \le 1 \end{cases}$$

It suffices to show that the map $\varphi: I \to \widetilde{X}$ given by $\varphi(t) = [\gamma_t]$ is continuous. Using the Lebesgue Number Lemma, there is a partition $0 = t_0 < t_1 < \dots < t_n = 1$ such that $\gamma([t_{i-1}, t_i]) \subseteq U_i \in \mathscr{U}$. Let $p_i: U_{i[\gamma_{t_i}]} \to U_i$ be the restriction of p, which is a homeomorphism. Then, for all $t \in [t_{i-1}, t_i]$, $\varphi(t) = p_i^{-1}(\gamma(t))$ and continuity follows from the Pasting Lemma.

Next, we show $\pi_1(\widetilde{X}, [x_0]) = 0$. Since p_* is injective, it suffices to show that the image of p_* is trivial. Let γ be a loop in the image of p_* . Then, the map $t \mapsto [\gamma_t]$ is a lift of γ as we have seen earlier and is unique due to Theorem 2.5. Now, since the lift is a loop, we must have

$$[x_0] = [\gamma_1] = [\gamma]$$

consequently, γ is nulhomotopic. This completes the proof.

Theorem 2.11. Suppose X is unfathomably based. Then for every subgroup $H \subseteq \pi_1(X, x_0)$, there is a covering space $p: (X_H, \widetilde{x}_0) \to (X, x_0)$ such that $p_*(\pi_1(X_H, \widetilde{x}_0)) = H$.

If $p_1: (\widetilde{X}_1, \widetilde{x}_1) \to (X, x_0)$ and $p_2: (\widetilde{X}_2, \widetilde{x}_2) \to (X, x_0)$ are covering spaces, then an *isomorphism between* them is a homeomorphism $f: (\widetilde{X}_1, \widetilde{x}_1) \to (\widetilde{X}_2, \widetilde{x}_2)$ such that $p_1 = p_2 \circ f$.

Theorem 2.12. Let (X, x_0) be path connected and locally path connected and $p_1: \widetilde{X}_1 \to X$ and $p_2: \widetilde{X}_2 \to X$

be covering spaces. Then, for $\widetilde{x}_1 \in p_1^{-1}(x_0)$ and $\widetilde{x}_2 \in p_2^{-1}(x_0)$, there is an isomorphism $f:(\widetilde{X}_1,\widetilde{x}_1) \to (\widetilde{X}_2,\widetilde{x}_2)$ if and only if $p_{1*}(\pi_1(\widetilde{X}_1,\widetilde{x}_1)) = p_{2*}(\pi_1(\widetilde{X}_2,\widetilde{x}_2))$.

Proof. We prove the converse, since the forward direction is trivial. Using Theorem 2.8, there are lifts \widetilde{p}_1 : $(\widetilde{X}_1,\widetilde{x}_1) \to (\widetilde{X}_2,\widetilde{x}_2)$ and \widetilde{p}_2 : $(\widetilde{X}_2,\widetilde{x}_2) \to (\widetilde{X}_1,\widetilde{x}_1)$ of p_1 and p_2 respectively. This give us $p_1 = p_2 \circ \widetilde{p}_1$ and $p_2 = p_1 \circ \widetilde{p}_2$, whereby $p_1 \circ (\widetilde{p}_2 \circ \widetilde{p}_1) = p_1$. Note that this implies $\widetilde{p}_2 \circ \widetilde{p}_1$ is a lift of the map p_1 , but since $\operatorname{id}_{(\widetilde{X}_1,\widetilde{x}_1)}$ is also a lift, and agree on \widetilde{x}_1 , we must have that $\widetilde{p}_2 \circ \widetilde{p}_1 = \operatorname{id}_{(\widetilde{X}_1,\widetilde{x}_1)}$ and similarly, $\widetilde{p}_1 \circ \widetilde{p}_2 = \operatorname{id}_{(\widetilde{X}_2,\widetilde{x}_2)}$. This implies the desired conclusion.

Let X be path connected and $p: \widetilde{X} \to X$ a path connected covering space. Pick some basepoint $x_0 \in X$ and $\widetilde{x}_0, \widetilde{x}_1 \in p^{-1}(x_0)$. Let $\widetilde{\gamma}: I \to \widetilde{X}$ be a path from \widetilde{x}_0 to \widetilde{x}_1 and $\gamma = p \circ \widetilde{\gamma}$. Let $H_0 = p_*(\pi_1(\widetilde{X}, \widetilde{x}_0))$ and $H_1 = p_*(\pi_1(\widetilde{X}, \widetilde{x}_1))$. Let $g = [\gamma] \in \pi_1(X, x_0)$.

If $[f] \in \pi_1(\widetilde{X}, \widetilde{x}_0)$, then $[\overline{\widetilde{\gamma}} * f * \widetilde{\gamma}] \in \pi_1(\widetilde{X}, \widetilde{x}_1)$. Consequently, $g^{-1}H_0g \subseteq H_1$. On the other hand, if $[f] \in \pi_1(\widetilde{X}, \widetilde{x}_1)$, then $[\widetilde{\gamma} * f * \overline{\widetilde{\gamma}}] \in \pi_1(\widetilde{X}, \widetilde{x}_1)$. This gives us that $gH_1g^{-1} \subseteq H_0$, in conclusion, $H_1 = g^{-1}H_0g$. In conclusion, we have proved the following classification theorem.

Theorem 2.13.

2.3 Deck Transformations and Covering Space Actions

2.3.1 Deck Transformations

Definition 2.14. For a covering space $p:\widetilde{X}\to X$, the isomorphisms $f:X\to X$ are called *deck transformations*. These form a group $G(\widetilde{X})$ under composition.

A covering space $p: \widetilde{X} \to X$ is said to be *normal* if for all $x \in X$ and each pair $\widetilde{x}, \widetilde{x}' \in p^{-1}(x)$, there is a deck transformation that maps $\widetilde{x} \mapsto \widetilde{x}'$.

Remark. If \widetilde{X} is path connected, then any two deck transformations agreeing on a single point must agree everywhere.

Theorem 2.15. Let $p:(\widetilde{X},\widetilde{x}_0)\to (X,x_0)$ be a path-connected covering space of the path-connected, locally path-connected space X, and let Y be the subgroup Y be a path-connected covering space of the path-connected, locally path-connected space Y, and let Y be the subgroup Y be a path-connected covering space of the path-connected, locally path-connected space Y.

- (a) the covering space is normal if and only if H is normal in $\pi_1(X, x_0)$
- (b) G(X) is isomorphic to the quotient N(H)/H where N(H) is the normalizer of H in $\pi_1(X,x_0)$.

Proof. Suppose the covering is normal, let $g^{-1}Hg$ be a conjugate of H in $\pi_1(X, x_0)$. Then, there is correspondingly $\widetilde{x}_1 \in p^{-1}(x_0)$ such that $p_*(\pi_1(\widetilde{X}, \widetilde{x}_1)) = g^{-1}Hg$. Since the covering is normal, there is a deck transformation $f: \widetilde{X} \to \widetilde{X}$ taking \widetilde{x}_0 to \widetilde{x}_1 . From Theorem 2.12, we must have that $p_*(\pi_1(\widetilde{X}, \widetilde{x}_0)) = p_*(\pi_1(\widetilde{X}, \widetilde{x}_1))$, whereby $g^{-1}Hg = H$ and $H \subseteq \pi_1(X, x_0)$.

Conversely, suppose $H \le \pi_1(X, x_0)$ and let $\widetilde{x}_1 \in p^{-1}(x_0)$. From Theorem 2.13, we have that $p_*(\pi_1(\widetilde{X}, \widetilde{x}_1))$ is conjugate to H but since H is normal, the former is equal to H. As a result, from Theorem 2.12, there is a deck transformation taking x_0 to x_1 , consequently, the covering space is normal.

Note that given $\widetilde{x}_0, \widetilde{x}_1 \in p^{-1}(x_0)$, there is a unique deck transformation taking \widetilde{x}_0 to \widetilde{x}_1 . Now, given some $[\gamma] \in N(H)$, there is a lift $\widetilde{\gamma} : I \to \widetilde{X}$ such that $\widetilde{\gamma}(0) = \widetilde{x}_0$. Define now the function $\phi : N(H) \to G(\widetilde{X})$ by $\phi([\gamma]) = \widetilde{\gamma}(1)$. Let $[\gamma], [\delta] \in N(H)$ with $\sigma = \phi([\gamma])$ and $\tau = \phi([\delta])$. Then, it is not hard to see that $\gamma * \delta$ lifts to $\widetilde{\gamma} * \sigma(\widetilde{\delta})$, which corresponds to the deck transformation $\sigma \circ \tau$, implying that ϕ is a homomorphism. Moreover, ϕ is also surjective, for if there is a deck transformation σ taking \widetilde{x}_0 to \widetilde{x}_1 , then $p_*(\pi_1(\widetilde{X},\widetilde{x}_1)) = H$. Now, let $\widetilde{\gamma}$ be a path in \widetilde{X} from \widetilde{x}_0 to \widetilde{x}_1 with $\gamma = p \circ \widetilde{\gamma}$. This implies $[\gamma] \in N(H)$, consequently, $\phi([\gamma]]) = \sigma$.

We now contend that $\ker \phi = H$. Obviously $H \subseteq \ker \phi$. On the other hand, if $[\gamma] \in \ker \phi$, then γ lifts to a loop based at \widetilde{x}_0 , whereby, $[\gamma] \in H$. The proof is finished by invoking the first isomorphism theorem.

2.3.2 Covering Space Actions

Definition 2.16 (Covering Space Action). A *group action* of G on a topological space Y is a homomorphism $\varphi : G \to \operatorname{Aut}_{\operatorname{Top}}(Y)$. A *covering space action* is a group action of G on Y such that for each $y \in Y$, there is a neighborhood U of Y such that for all $g_1, g_2 \in G$, $g_1U \cap g_2U \neq \emptyset$, if and only if $g_1 = g_2$.

We may rephrase the definition of a covering space action as:

A *covering space action* of G on Y is a group action such that for each $y \in Y$, there is a neighborhood U of y such that for all $g \in G$, $U \cap gU \neq \emptyset$ if and only if $g = 1_G$.

Proposition 2.17. The group action of the group of deck transformations, $G(\widetilde{X})$, of a covering space $p:\widetilde{X}\to X$ is a covering space action.

Proof.

Theorem 2.18. *Let G act on Y through a covering space action.*

- (a) The quotient map $p: Y \to Y/G$ given by p(y) = Gy is a normal covering space.^a.
- (b) If Y is path connected, then G is the group of deck transformations of the covering space $p: Y \to Y/G$
- (c) If Y is path connected and locally path connected, then $G \cong \pi_1(Y/G, Gy_0)/p_*(\pi_1(Y, y_0))$.

^aHence the nomenclature

- *Proof.* (a) Let $Gy \in Y/G$. Since G acts through a covering space action, there is a neighborhood U of Y such that the collection $\{gU \mid g \in G\}$ is that of disjoint open sets. Obviously, $V = \bigsqcup_{g \in G} gU$ is a saturated open set, whereby, p(V) is open in Y/G and a neighborhood of Gy. We contend that the restriction $p: U \to p(V)$ is a homeomorphism. Indeed, if $W \subseteq U$ is open, then $p(W) \subseteq p(V)$ is open, since $p(W) = p\left(\bigsqcup_{g \in G} gW\right)$ and the term within the brackets is a saturated open set. This immediately implies that p is a covering map.
 - Furthermore, for any g_1y , $g_2y \in Gy$, there is the action $g_2g_1^{-1}$ taking g_1y to g_2y whereby, the covering space is normal.
 - (b) Obviously, each element of G is a deck transformation. On the other hand, if $f: Y \to Y$ is a deck transformation, then for any $y \in Y$, $f(y) \in Gy$, whereby, there is $g \in G$ such that gy = f(y). From Remark 2.3.1, we have that g = f, implying the desired conclusion.
 - (c) This follows from Theorem 2.15.

Chapter 3

Homology