MATH 135: Extra Practice Set 5

December 21^{st} 2016 imjehing

Question 1. (a) Use the Extended Euclidean Algorithm to find three integers x, y and $d = \gcd(1112, 768)$ such that 1112x + 768y = d. (b) Determine integers s and t such that $768s - 1112t = \gcd(768, -1112)$.

Question 2. Prove that for all $a \in \mathbb{Z}$, gcd(9a + 4, 2a + 1) = 1.

Question 3. Let gcd(x,y) = d. Express gcd(18x+3y,3x) in terms of d and prove that you are correct.

Question 4. Prove that if gcd(a,b) = 1, then $gcd(2a + b, a + 2b) \in \{1,3\}$.

Question 5. Prove that for every integer k, $gcd(a,b) \leq gcd(ak,b)$.

Question 6. Given a rational number r, prove that there exist coprime integers p and q, with $q \neq 0$, so that $r = \frac{p}{q}$.

Question 7. Prove that: if $a \mid c$ and $b \mid c$ and gcd(a,b) = 1, then $ab \mid c$.

Question 8. Let $a,b,c \in \mathbb{Z}$. Prove that if gcd(a,b) = 1 and $c \mid a$, then gcd(b,c) = 1.

Question 9. Prove that if gcd(a,b) = 1, then $gcd(a^m,b^n) = 1$ for all $m,n \in \mathbb{N}$. You may use the result of an example in the notes.

Question 10. Suppose a, b and n are integers. Prove that $n \mid gcd(a, n) \cdot gcd(b, n)$ if and only if $n \mid ab$.