Math Document Template

Bee G S Ashuwin

Abstract—This is a document explaining for a question on the concept of triangles.

Download all python codes from

svn co https://github.com/Ashuwin/Summer_2020/ trunk/triangle/codes

and latex-tikz codes from

svn co https://github.com/Ashuwin/Summer_2020/ trunk/triangle/figs

1 Problem

In $\triangle PQR$, PR > PQ and PS bisects $\angle QPR$. Prove that $\angle PSR > \angle PSQ$

2 Construction

Fig. 2.0: Quadilateral by Latex-Tikz

- 2.1. The figure obtained looks like Fig. 2.0. PR > PQ, $\angle QPS = \angle SPR = x$
- 2.2. The design parameters used for construction

Solution: See Table. 2.2.

2.3. Find the coordinates of various points:

Design Parameters				
Parameters	Value			
PQ	4			
PR	5			
QR	6			

TABLE 2.2: Triangle PQR

Solution: From the given information,

$$\mathbf{P} = \begin{pmatrix} a \\ b \end{pmatrix} \tag{2.3.1}$$

$$\mathbf{Q} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \tag{2.3.2}$$

$$\mathbf{R} = \begin{pmatrix} p \\ 0 \end{pmatrix} \tag{2.3.3}$$

$$\mathbf{S} = \begin{pmatrix} y \\ 0 \end{pmatrix} \tag{2.3.4}$$

where

$$a = (p^{2} + r^{2} - q^{2})/2p$$
$$b = \sqrt{r^{2} - a^{2}}$$

2.4. Point *S* can be found by Triangle angle bisector theorem.

$$\frac{|\mathbf{QS}|}{|\mathbf{PQ}|} = \frac{|\mathbf{SR}|}{|\mathbf{PR}|}$$
$$\frac{y}{4} = \frac{6 - y}{5}$$
$$5y = 24 - 4y$$
$$9y = 24$$

$$y = \frac{8}{3}$$

2.5. The derived parameters used for construction

Solution: From the given information, The values are listed in 2.5

2.6. Draw fig. 2.6.

Solution: The following Python code generates

Derived values		
Parameter	values	
P	$\binom{2.25}{3.3072}$	
S	$\binom{8/3}{0}$	

TABLE 2.5: TrianglePQR

	<i>y</i>	P S			— F C C — R R	Q DR P P
0 :	1 2	3	4	. 5	5 (5
		0 1 2	Q S			

Fig. 2.6: Triangle generated using python

Fig. 2.6

codes/tri.py

and the equivalent latex-tikz code generating Fig. 2.6 is

figs/triangle.tex

3 Solution

PS is the bisector of $\angle QPR$. Therefore, $\angle QPS = \angle SPR = x$ In $\triangle PQS$,

$$\angle PSR = \angle PQR + \angle QPS$$

(Exterior angle is sum of interior opposite angles) In $\triangle PSR$,

$$\angle PSQ = \angle PRQ + \angle SPR$$

(Exterior angle is sum of interior opposite angles) Given

Therefore, $\angle PQR > \angle PRQ$ (Angle opposite to the longer side is greater)

Adding x to both sides,

$$\angle PQR + x > \angle PRQ + x$$

 $\angle PSR > \angle PSQ$

Hence proved.