Introduction to Machine Learning Estimating Parameters, Regularization

Mahesan Niranjan University of Southampton

DiscNet Summer School

June 2025

Mahesan Niranjan Machine Learning June 2025 1/1

Polynomial Curve Fitting

- One dimensioanl inputs and targets: $\mathbf{x} = [x_1, x_2, ... x_N]; \mathbf{t} = [t_1, t_2, ... t_N]$
- Fit a function (Eqn 1.1):

$$y(x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + ... + w_M x^M = \sum_{j=0}^{M} w_j x^j$$

Minimize error:

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2$$

Mahesan Niranjan Machine Learning June 2025 2 / 3

Polynomial Curve Fitting

Illustrating Model Complexity

Error with Polynomial Order

Root mean squared error (RMS)

$$E_{RMS} = \sqrt{2E(\mathbf{w}^*)/N}$$

Mahesan Niranjan Machine Learning June 2025 4 / 1

Regularized Least Squares

- As M increases, weight magnitudes get large
- Large positive and large negative weights cancelling out and fitting the data

	M = 0	M = 1	M = 6	M = 9
w_0^{\star}	0.19	0.82	0.31	0.35
w_1^{\star}		-1.27	7.99	232.37
w_2^{\star}			-25.43	-5321.83
w_3^{\star}			17.37	48568.31
w_4^{\star}				-231639.30
w_5^{\star}				640042.26
w_6^{\star}				-1061800.52
w_7^{\star}				1042400.18
w_8^{\star}				-557682.99
w_9^{\star}				125201.43

Mahesan Niranjan Machine Learning June 2025 5/1

Regularized Least Squares

• The way to deal with this is regularization, a very important tool in machine learning.

$$\widetilde{E} = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2 + \frac{\lambda}{2} ||\mathbf{w}||^2$$

- Note the regularization weight in the figures is $\ln \lambda$
- Left hand figure is just about correct, right hand figure is over-doing it.

Mahesan Niranjan Machine Learning June 2025 6 / 3

Choice of Regularization Parameter

Mahesan Niranjan Machine Learning June 2025 7 / 1

Effect of dataset size

- Having a lot of data is good
- Lot of excitement around "big data"
- But is it always the case?

Mahesan Niranjan Machine Learning June 2025 8 / 1

Probabilistic Inference

- In polynomial curve fitting earlier, we estimated the coefficients **w** by minimising the squared error.
- We will formulate it in a probabilistic setting.
- First we note Bayesian versus Frequentist arguments

$$p(\mathbf{w} \mid \mathcal{D}) = \frac{p(\mathcal{D} \mid \mathbf{w}) p(\mathbf{w})}{p(\mathcal{D})}$$

- Denominator is integral over numerator:

$$p(\mathcal{D}) = \int p(\mathcal{D}|\mathbf{w}) p(\mathbf{w})$$

- We will see this in classification, regression and estimation
- Bayesian vs Frequentist paradigms [Section 1.2.3]

Bayesian Just one dataset, uncertainty through $p(\mathbf{w}) \to p(\mathbf{w}|\mathcal{D})$ Frequentist \mathcal{D} is just one realization of a process

Mahesan Niranjan

Machine Learning

June 2025

9/1

Polynomial Regression in a Probabilistic Setting

Section 1.2.5

- Data consists of Inputs $\mathbf{x} = (x_1, x_2, ..., x_N)^T$ and corresponding targets $\mathbf{t} = (t_1, t_2, ..., t_N)^T$
- Our probabilistic model is to assume that given x, the target is generated by a function $y(x; \mathbf{w})$ and is corrupted by zero mean Gaussian noise:

$$p(t|x; \mathbf{w}, \beta) = \mathcal{N}(t|y(x; \mathbf{w}), \beta^{-1})$$

- \bullet β is precision parameter, inverse of variance.
- We assume (and usually this is the case) the data are independent, identically distributed (IID)samples from the (x, t) space.

Likelihood of the data:

$$p(t|x, w, \beta) = \prod_{n=1}^{N} \mathcal{N}(t_n|y(x_n, w), \beta^{-1})$$

Mahesan Niranjan Machine Learning June 2025 10 /

Probabilistic setting (cont'd)

• Likelihood (again) is a function of the parameters \boldsymbol{w} and β

$$p(t|x, \mathbf{w}, \beta) = \prod_{n=1}^{N} \mathcal{N}(t_n|y(x_n, \mathbf{w}), \beta^{-1})$$

- What values of the unknowns maximises the likelihood?
- It is convenient to work with log likelihood
 - Product turns into summation
 - Exponent can be avoided
- Log likelihood:

$$\ln p(t|x, w, \beta) = -\frac{\beta}{2} \sum_{n=1}^{N} \{y(x_n, w) - t_n\}^2 + \frac{N}{2} \ln \beta - \frac{N}{2} \ln(2\pi)$$

- When we maximize this respect to \mathbf{w} , we see we are minimising the mean squared error, giving \mathbf{w}_{ML} (ML Estimation)
- How exactly to solve for \mathbf{w}_{ML} , we will see later.
- When we maximize with respect to β , we get

$$\frac{1}{\beta_{ML}} = \frac{1}{N} \sum_{n=1}^{N} \{ y(x_n, \mathbf{w}) - t_n \}^2$$

Mahesan Niranjan

Machine Learning

June 2025

11 / 1

Probabilistic setting (cont'd)

• With a probabilistic model, we now think of a predictive distribution

$$p(t|x, \mathbf{w}_{ML}, \beta_{ML}) = \mathcal{N}\left(t|y(x, \mathbf{w}_{ML}), \beta_{ML}^{-1}\right)$$

- We can also take a Bayesian inference perspective
- Assume a prior distribution over the parameters an isotropic Gaussian

$$p(\mathbf{w}|\alpha) = \mathcal{N}(\mathbf{w}|\mathbf{0}, \alpha^{-1}\mathbf{I})$$

$$= \left(\frac{\alpha}{2\pi}\right)^{(M+1)/2} \exp\left\{\frac{\alpha}{2}\mathbf{w}^{T}\mathbf{w}\right\}$$

- Make sure you understand the above to be a special case of the general expression: $\mathcal{N}(\mathbf{x}; \boldsymbol{\mu}, \boldsymbol{\Sigma})$ seen earlier!
- We can now write a posterior distribution over w

$$p(\mathbf{w}|\mathbf{x},\mathbf{t},\alpha,\beta) \propto p(\mathbf{t}|\mathbf{x},\mathbf{w},\beta) p(\mathbf{w}|\alpha)$$

We can now maximize the posterior distribution (MAP Estimation); the maximum of this
is the same as the minimum of

$$\frac{\beta}{2}\sum_{n=1}^{N}\left\{y(x_n,\mathbf{w})-t_n\right\}^2+\frac{\alpha}{2}\mathbf{w}^T\mathbf{w}$$

Maximising the posterior is the same as minimising the regularized sum of squares.

Mahesan Niranjan Machine Learning June 2025 12 / 1