- 1. 已知 $\cos\alpha=\frac{24}{25},$ 求 $\sin\alpha$. 解答在这里利用"勾股数", 若 α 在第一象限, 则 $\sin\alpha=\frac{7}{25};$ 若 α 在第四象限, 则 $\sin\alpha=-\frac{7}{25}.$
- 2. 已知 $\tan \alpha = -\sqrt{5}$, 求 $\cos \alpha$. 解答在这里如图, 若 α 在第二象限, 则 $\cos \alpha = \frac{-1}{\sqrt{6}} = -\frac{\sqrt{6}}{6}$; 若 α 在第四象限, 则 $\cos \alpha = \frac{1}{\sqrt{6}} = \frac{\sqrt{6}}{6}$.

3. 已知 $\cos \alpha = m(m \neq 0, m \neq \pm 1)$, 求 α 的其他三角函数值.

解答在这里因为 $\sin^2\alpha + \cos^2\alpha = 1$,故可按 $\sin\alpha$ 的符号划分象限. (1) 若 α 在第一、二象限,则 $\sec\alpha = \frac{1}{m}$ (倒), $\sin\alpha = \sqrt{1-m^2}$ (平), $\csc\alpha = \frac{1}{\sqrt{1-m^2}}$ (倒), $\tan\alpha = \frac{\sin\alpha}{\cos\alpha} = \frac{\sqrt{1-m^2}}{m}$ (商), $\cot\alpha = \frac{m}{\sqrt{1-m^2}}$ (倒). (2) 若 α 在第二、四象限,则 $\sec\alpha = \frac{1}{m}$, $\sin\alpha = -\sqrt{1-m^2}$, $\csc\alpha = -\frac{1}{\sqrt{1-m^2}}$, $\tan\alpha = -\frac{\sqrt{1-m^2}}{m}$, $\cot\alpha = -\frac{m}{\sqrt{1-m^2}}$.

4. Riv: $\frac{1-\tan^2 x}{1+\tan^2 x} = \cos^2 x - \sin^2 x$.

解答在这里因为 $\frac{1-\tan^2 x}{1+\tan^2 x} = \frac{1-\frac{\sin^2 x}{\cos^2 x}}{1+\frac{\sin^2 x}{\cos^2 x}} = \frac{\cos^2 x - \sin^2 x}{\cos^2 x + \sin^2 x} = \cos^2 x - \sin^2 x$, 左边 = 右边,所以原式成立.

- 5. 求证: $\frac{\tan \alpha}{\tan \alpha \tan \beta} = \frac{\cot \beta}{\cot \beta \cot \alpha}.$ 解答在这里因为 $\frac{\cot \beta}{\cot \beta \cot \alpha} = \frac{\cot \beta(\tan \alpha \tan \beta)}{(\cot \beta \cot \alpha)(\tan \alpha \tan \beta)} = \frac{\tan \alpha(\cot \beta \tan \beta)}{\tan \alpha(\cot \beta \tan \beta) (\cot \alpha \tan \alpha) \tan \beta} = \frac{\tan \alpha}{\tan \alpha \tan \beta},$ 左边 = 右边, 所以原式成立.
- 6. 求证: $\sin^2 1^\circ + \sin^2 2^\circ + \dots + \sin^2 89^\circ = \frac{89}{2}$. 解答在这里因为 $\sin^2 89^\circ = \cos^2 1^\circ$, $\sin^2 88^\circ = \cos^2 2^\circ$, ..., $\sin^2 46^\circ = \cos^2 44^\circ$, 所以左边 = $(\sin^2 1^\circ + \cos^2 1^\circ) + (\sin^2 2^\circ + \cos^2 2^\circ) + \dots + (\sin^2 44^\circ + \cos^2 44^\circ) + \sin^2 45^\circ = 44 + \frac{1}{2} = \frac{89}{2}$. 所以原式成立.
- 7. 求证 $\frac{1+2\sin\alpha\cos\alpha\cos^2\alpha-\sin^2\alpha=\frac{1}{+}\tan\alpha}{1-\tan\alpha}.$

解答在这里因为左边 = $\frac{\sin^2\alpha + 2\sin\alpha\cos\alpha + \cos^2\alpha\cos^2\alpha - \sin^2\alpha = \frac{(}{\cos}\alpha + \sin\alpha)^2}{(\cos\alpha + \sin\alpha)(\cos\alpha - \sin\alpha)} = \frac{\cos\alpha + \sin\alpha}{\cos\alpha - \sin\alpha} = \frac{1 + \tan\alpha}{1 - \tan\alpha},$ 所以原式成立.

8. 求证 $\frac{1+\sec\alpha+\tan\alpha}{1+\sec\alpha+\tan\alpha}=\frac{1+\sin\alpha}{\cos\alpha}$. 解答在这里因为 $\frac{1+\sec\alpha+\tan\alpha}{1+\sec\alpha-\tan\alpha}=\frac{(\sec^2\alpha-\tan^2\alpha)+(\sec\alpha+\tan\alpha)}{\sec\alpha+1-\tan\alpha}=\frac{(\sec\alpha+\tan\alpha)(\sec\alpha+\tan\alpha)+(\sec\alpha+\tan\alpha)}{\sec\alpha+1-\tan\alpha}=\frac{(\sec\alpha+\tan\alpha)(\sec\alpha+\tan\alpha+1)}{\sec\alpha+1-\tan\alpha}=\sec\alpha+\tan\alpha=\frac{1}{\cos\alpha}+\frac{\sin\alpha}{\cos\alpha}=\frac{1+\sin\alpha}{\cos\alpha}$, 所以原式成立.

9.	已知 $\tan \theta = -3$, 求下列各式的值:				
	(1) $3\sin\theta + \cos\theta$;				
	$(2)\sin^2\theta - 2\sin\theta\cos\theta + 1.$				
	解答在这里 $(1)3\sin\theta + \cos\theta$	$s\theta = \cos\theta(3\tan\theta + 1) =$	$=\pm\frac{1}{\sqrt{10}}(-9+1)=\pm\frac{8}{\sqrt{10}}=$	$= \pm \frac{4}{5}\sqrt{10}. (2)\sin^2\theta$	
	$2\sin\theta\cos\theta + 1 = \frac{2\sin^2\theta - 1}{\sin^2\theta}$	$\frac{2\sin\theta\cos\theta + \cos^2\theta}{\alpha^2\theta + \cos^2\theta} = \frac{2\tan\theta}{12}$	$\frac{\tan^2 \theta - 2 \tan \theta + 1}{\tan^2 \theta + 1} = \frac{18 + 6 + 1}{9 + 1}$	$\frac{1}{2} = \frac{5}{2}.$	
10.	在① 160°, ② 480°, ③ -960	0°, ④ -1600° 这四个角中	,属于第二象限的角有 ().		
	А. ①	В. ①②	С. ①②③	D. ①②③④	
11.	集合 $M = \{\alpha \alpha = k \cdot 90^{\circ}, k \in \mathbb{N} \}$	∈ N} 中各角的终边都在	().		
	A. x 轴的正半轴上		B. y 轴的正半轴上		
	C. x 轴或 y 轴上		D. x 轴正半轴或 y 轴的正半	轴上	
12.	若 α 是第四象限的角, 则 π	- α 是 ().			
	A. 第一象限的角	B. 第二象限的角	C. 第三象限的角	D. 第四象限的角	
13.	. 若一圆弧长等于其所在圆的内接正三角形的边长,则其圆心角的弧度数为 ().				
	A. $\frac{\pi}{3}$	B. $\frac{2}{3}\pi$	C. $\sqrt{3}$	D. 2	
14.	若 α 和 β 的终边关于 y 轴	対称, 则必有 ().			
	A. $\alpha + \beta = \frac{\pi}{2}$		B. $\alpha + \beta = (2k + \frac{1}{2})\pi(k \in \mathbf{Z})$		
	C. $\alpha + \beta = 2k\pi(k \in \mathbf{Z})$		D. $\alpha + \beta = (2k+1)\pi(k \in \mathbf{Z})$		
15.	若 $-\frac{\pi}{2} < \alpha < \beta < \frac{\pi}{2}$,则 α	- β 的取值范围是 ().			
	A. $(-\frac{\pi}{2}, 0)$	B. $(-\frac{\pi}{2}, \frac{\pi}{2})$	C. $(-\pi, 0)$	D. $(-\pi,\pi)$	
16.	集合 $M=\{x x=rac{k\pi}{2}\pmrac{\pi}{4},$	$k \in \mathbf{Z}\} - \mathbf{J} P = \{x x = \frac{k\pi}{4}\}$	· ·, k ∈ Z } 之间的关系是 ()).	
	A. $M \subset P$	B. $M \supset P$	C. $M = P$	D. $M \cap P = \emptyset$	
17.	与 -45° 角终边相同的角的	集合是			
18.	若 α 是第四象限的角, 则 α 的取值范围是				
19.	终边落在 x 轴负半轴上的角的集合为 $_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{$				
20.	终边落在第一、三象限角平分线上的角的集合为				
21.	若角 α 与 β 的终边是互为反向延长线, 则 α , β 之间满足关系式是				
22.	若角 α 的终边和函数 $y = -$	x 的图像重合, 则 $lpha$ 的集	合是		

24.	若 $\alpha = -4$, 则 α 是第	象限的角.			
25.	5. 在 -720° 与 720° 之间, 与 60° 角终边相同的角是				
26.	设角 α 的终边与 $\frac{7}{5}\pi$ 的终边关于 y 轴对称, 且 $\alpha \in (-2\pi, 2\pi)$, 则 $\alpha =$				
27.	在扇形 <i>OAB</i> 中, 已知半径 <i>O</i> 积为cm ² .	$OA = 8$ cm, $\stackrel{\frown}{AB} = 12$ cm, 则	圆心角 ∠AOB =	_ 弧度, 扇形 <i>OAB</i> 的面	
28.	若 3 弧度的圆心角所对的弧	长为 9cm, 则此圆心角所夹的	内扇形面积为 cm ²		
29.	若圆中的一条弦长等于其半征	圣 r ,则此弦和劣弧所组成的	弓形的面积等于		
30.	. 若 1 弧度的圆心角所对的弦长为 2, 则此圆心角所夹的扇形的面积等于				
31.	若集合 $A = \{x k\pi + \frac{\pi}{3} \le x \le x \le x \}$	$< k\pi + \frac{\pi}{2}, \ k \in \mathbf{Z}\}, \ B = \{x x \in \mathbf{Z}\}$	$4 - x^2 \ge 0$ },则 $A \cap B = $	·	
32.	已知扇形的周长为 30cm, 当	它的半径和圆心角各取什么	值时, 扇形的面积最大? 最大	面积是多少?	
33.	. 已知一扇形的圆心角是 120°, 求此扇形面积与其内切圆面枳之比.				
34.	. 在 1 时 15 分时, 时针和分针所成的最小正角是多少弧度?				
35.	. 若角 α 的终边落在直线 $y=2x$ 上, 则 $\sin \alpha$ 的值等于 ().				
	A. $\pm \frac{1}{5}$	$B. \pm \frac{\sqrt{5}}{5}$	$C. \pm \frac{2}{5}\sqrt{5}$	D. $\pm \frac{1}{2}$	
36.	若点 $P(3,y)$ 在角 α 的终边_	上,且满足 $y < 0$, $\cos \alpha = \frac{3}{5}$,	, 则 tan α 的值等于 ().		
	A. $-\frac{3}{4}$	B. $\frac{4}{3}$	C. $\frac{3}{4}$	D. $-\frac{4}{3}$	
37.	若三角形的两内角 α, β 满足	$\sin \alpha \cdot \cos \beta < 0$,则此三角	形的形状 ().		
	A. 是锐角三角形	B. 是钝角三角形	C. 是直角三角形	D. 不能确定	
38.	若 α 是第三象限角, 则下列名	各式中不成立的是 ().			
	A. $\sin \alpha + \cos \alpha < 0$	B. $\tan \alpha - \sin \alpha < 0$	C. $\cos \alpha - \cot \alpha < 0$	D. $\cot \alpha \cdot \csc \alpha < 0$	
39.	C. 若 α 是第二象限角, 则 s	数值相等 $ eq \{eta eta=-k\pi+rac{\pi}{6},\ k\in\mathbf{Z}\} $			
40.	若 θ 是第三象限角. 且 $\cos \frac{\theta}{2}$	< 0. 则 θ 是 ().			
	A. 第一象限角	B. 第二象限角	C. 第二象限角	D. 第四象限角	

41. 若 $(\frac{1}{2})^{\sin 2\theta} < 1$, 则 θ 是 ().						
A. 第一或第二象限角 B. 第二或第四象限角	C. 第一或第三象限角	D. 第二或第三象限角				
42 . 直角坐标平面内, 终边过点 $(1,-\sqrt{3})$ 的所有角组成的	的集合可表示成					
43. 若角 α 的终边上有一点 $P(-3,a)$, 且 $\cos \alpha = -\frac{3}{5}$, 则	$\ \ \ a=\underline{\qquad}.$					
44. 若点 $P(-\sqrt{3}, m)$ 是角 θ 终边上一点, 且 $\sin \theta = \frac{\sqrt{1}}{13}$	44. 若点 $P(-\sqrt{3}, m)$ 是角 θ 终边上一点,且 $\sin \theta = \frac{\sqrt{13}}{13}$,则 $m = \underline{\hspace{1cm}}$					
45. 若点 $P(-\sqrt{2}, -\sqrt{3})$ 在角 α 的终边上, 则 $\sin \alpha - \cos \alpha$	$s\alpha =$					
46. $\frac{\sin x}{ \sin x } + \frac{ \cos x }{\cos x} + \frac{\tan x}{ \tan x } + \frac{ \cot x }{\cot x}$ 的取值范围是_						
47. 若 $\sin \alpha \cdot \cos \alpha > 0$, 则 α 的取值范围 (用区间表示)						
48. 若 x 为三角形的内角, 则当 $x =$ 时, $\frac{\sin x}{1 - x}$	48. 若 x 为三角形的内角,则当 $x =$ 时, $\frac{\sin \frac{x}{2}}{1 - \tan x}$ 无意义.					
49. 若函数 $f(x)$ 的定义域是 $[0,1]$, 则 $f(\sin x)$ 的定义域						
50 . 函数 $y = \sqrt{\cos x}$ 的定义域是						
51. 函数 $y = \sqrt{-\cot x} + \lg \cos x$ 的定义域是						
52. 函数 $y = \sqrt{\sin x} + \sqrt{-\tan x}$ 的定义域是						
53. 若实数 α, β 满足 $ \cos \alpha - \cos \beta = \cos \alpha + \cos \beta $,	且 $\alpha \in (\frac{\pi}{2}, \pi)$, 则化简 $\sqrt{(\cos \alpha)}$	$\frac{1}{(1-\cos\beta)^2}$ 结果是 ().				
A. $\cos \alpha - \cos \beta$ B. $ \cos \alpha - \cos \beta $	C. $\cos \beta - \cos \alpha$	D. $ \cos \beta - \cos \alpha $				
54. 已知角 α 终边上一点 P 的坐标是 $(5a,12a)(a<0)$, 轴的距离和与轴的距离之比为 $4:3,$ 且 $\cos\alpha<0$. 求		角 $lpha$ 终边上一点 P 与 x				
55. 求函数 $y = \sqrt{\sin(\cos x)}$ 的定义域.						
56. 求函数 $y = \sqrt{\cos(\sin x)}$ 的定义域.						
57. 下列四个命题中. 能够成立的是 ().						
A. $\sin \alpha = \frac{1}{2} \text{ Id. } \cos \alpha = \frac{1}{2}$	B. $\sin \alpha = \frac{1}{3}$ H. $\csc \alpha = 2$ D. $\cos \alpha = \frac{1}{2}$ H. $\sec \alpha = -2$					
C. $\sin \alpha = 0$ H. $\cos \alpha = -1$	D. $\cos \alpha = \frac{1}{2}$ H. $\sec \alpha = -2$					
58. 已知 $\sin \alpha = \frac{4}{5}$, 且 α 是第二象限的角, 那么 $\tan \alpha$ 的	的值等于 ().					
A. $-\frac{3}{4}$ B. $-\frac{4}{3}$	C. $\frac{3}{4}$	D. $\frac{4}{3}$				
59. 若 $1 + \sin \theta \sqrt{1 - \cos^2 \theta} + \cos \theta \sqrt{1 - \sin^2 \theta} = 0$. 则 θ	的取值范围是().					
A. 第三象限角	B. 第四象限角					
C. $2k\pi \le \theta \le 2k\pi + \frac{3}{2}\pi(k \in \mathbf{Z})$	D. $2k\pi + \frac{3}{2}\pi \le \theta \le 2k\pi + 2\pi$	$\pi(k \in \mathbf{Z})$				

- 60. 若 α 是二角形的一个内角,且 $\sin \alpha + \cos \alpha = \frac{2}{3}$,则这个三角形的形状是 ().
 - A. 锐角三角形
- B. 钝角三角形
- C. 不等腰的直角三角形
- D. 等腰直角三角形

- 61. 化简 $(\frac{1}{\sin\alpha} + \frac{1}{\tan\alpha})(1-\cos\alpha)$ 的结果是 ().
 - A. $\sin \alpha$

B. $\cos \alpha$

- C. $1 + \sin \alpha$
- D. $1 + \cos \alpha$

- 62. 若 $\theta \neq \frac{k\pi}{2} (k \in \mathbf{Z})$, 则 $\frac{\sin \theta + \tan \theta}{\cos \theta + \cot \theta}$ ().
 - A. 恒取正值
- B. 恒取负值
- C. 恒取非正值
- D. 恒取非负值
- 63. 若 $0<\alpha<\frac{\pi}{2}$, 且 $\lg(1+\cos\alpha)=m$, $\lg\frac{1}{1-\cos\alpha}=n$, 则 $\lg\sin\alpha=$ 的值等于 ().
 - A. $m + \frac{1}{n}$
- B. m-n
- C. $\frac{1}{2}(m+\frac{1}{n})$
- D. $\frac{1}{2}(m-n)$

- 64. 若 $\frac{\sin^2 \theta + 4}{\cos \theta + 1} = 2$, 则 $(\cos \theta + 3)(\sin \theta + 1)$ 的值是 ().
 - A. 6

B. 4

C. 2

- D. 0
- 65. 若 $\sin \theta \cdot \cos \theta < 0$, $|\cos \theta| = \cos \theta$, 则点 $P(\tan \theta, \sec \theta)$ —定在 ().
 - A. 第一象限
- B. 第二象限
- C. 第三象限
- D. 第四象限

- 66. 若 $\sqrt{\frac{1-\sin x}{1+\sin x}} = \tan x \sec x$, 则 x 的取值范围是 ()
 - A. $2k\pi + \frac{\pi}{2} < x < 2k\pi + \frac{3\pi}{2} (k \in \mathbf{Z})$
- B. $k\pi + \frac{\pi}{2} < x < k\pi + \frac{3\pi}{2} (k \in \mathbf{Z})$
- C. $2k\pi < x < 2k\pi + \pi(k \in \mathbf{Z})$

- D. $2k\pi \frac{\pi}{2} < x < 2k\pi + \frac{\pi}{2}(k \in \mathbf{Z})$
- 67. 若 $\alpha \in (0, 2\pi)$, 则适合 $\sqrt{\frac{1+\cos\alpha}{1-\cos\alpha}} \sqrt{\frac{1-\cos\alpha}{1+\cos\alpha}} = 2\cot\alpha$ 的角 α 的集合是 ().
 - A. $\{\alpha|0<\alpha<\pi\}$

B. $\{\alpha|0<\alpha<\frac{\pi}{2}\pi<\alpha<\frac{3\pi}{2}\}$

C. $\{\alpha | 0 < \alpha < \pi \alpha = \frac{3\pi}{2}\}$

- D. $\{\alpha | 0 < \alpha < \frac{\pi}{2}, \frac{3\pi}{2} < \alpha < 2\pi\}$
- 68. 若角 α 的终边过点 $(1, \tan \theta)$, 且 $\theta \in (\frac{\pi}{2}, \pi)$, 则 $\sin \alpha =$ _____
- 69. 若 $\sin \alpha + \cos \alpha = \frac{1}{3}$, 则 $\sin \alpha \cos \alpha = \underline{\hspace{1cm}}$.
- 70. 化简 $\sin^2 \alpha + \cos^2 \alpha \sin^2 \beta + \cos^2 \alpha \cos^2 \beta =$ _____.
- 71. 化简 $\sin^2 \alpha + \sin^2 \beta \sin^2 \alpha \sin^2 \beta + \cos^2 \alpha \cos^2 \beta =$ ______
- 72. 化简 $\sin^6 \alpha + \cos^6 \alpha + 3\sin^2 \alpha \cos^2 \alpha =$ _____
- 73. 若 θ 是第二象限角,且 $\sin \theta = \frac{m-3}{m+5}, \cos \theta = \frac{1-2m}{m+5}, 则 m = _____.$
- 74. 计算: $\tan \alpha (1 \cot^2 \alpha) + \cot \alpha (1 \tan^2 \alpha) =$ ______.
- 75. 计算: $(\sec^2 \beta 1)(1 \csc^2 \beta) + \tan \beta \cot \beta =$ ______.

- 76. 计算: $(\sec \alpha \cos \alpha)(\csc \alpha \sin \alpha)(\tan \alpha + \cot \alpha) =$ _____.
- 77. 若 $\alpha \in (-\frac{4}{3}\pi \frac{5}{4}\pi)$,则 $\frac{\sin \alpha}{|\sin \alpha|} + \frac{|\cos \alpha|}{\cos \alpha} + \tan \alpha |\cot \alpha| = \underline{\hspace{1cm}}$
- 78. 若 θ 是第四象限的角,则 $\frac{1}{\cos \theta \sqrt{1 + \tan^2 \theta}} + \frac{2 \cot \theta}{\sqrt{\frac{1}{\sin^2 \theta} 1}} = ______.$
- 79. 若 $\cot \theta + \csc \theta = 5$, 则 $\sin \theta =$ _____.
- 80. 若 $\sin \alpha + \cos \alpha = \frac{\sqrt{3}}{3}$,则 $\tan \alpha + \cot \alpha = \underline{\hspace{1cm}}$
- 81. 若 $\cot \alpha + \tan \alpha = \frac{25}{12}$,则 $\tan \alpha \cot \alpha =$ _____.
- 82. 若 $\tan x = 2$,则 $\frac{1}{1-\sin x} + \frac{1}{1+\sin x} = _____; \frac{1}{(\sin x 3\cos x)(\cos x \sin x)} = _____; \frac{1}{4}\sin^2 x + \frac{2}{3}\cos^2 x = _____.$
- 83. 若 $\frac{2\sin^2\alpha 3\cos^2\alpha}{\cos^2\alpha \sin^2\alpha} = -4$, 则 $\tan\alpha =$ _____.
- 84. 若 $(\sin \alpha + \cos \alpha)^2 = \frac{8}{5}$, 则 $\tan \alpha =$ _____.
- 85. 若 $\tan \alpha$ 和 $\tan \beta$ 是关于 x 的方程 $x^2 px + q = 0$ 的两根, $\cot \alpha$ 和 $\cot \beta$ 是关于 x 的方程 $x^2 rx + s = 0$ 的两根, 则 rs 等于 ().
 - A. pq

B. $\frac{1}{pq}$

C. $\frac{p}{a^2}$

- D. $\frac{q}{p^2}$
- 86. 若 $\sin x = \frac{a-b}{a+b}(0 < a < b)$, 则 $\sqrt{\cot^2 x \cos^2 x}$ 的结果是 ().
 - A. $\frac{4ab}{a^2 b^2}$
- B. $-\frac{4ab}{a^2-b^2}$
- C. $\frac{4ab}{a^2 + b^2}$
- D. $-\frac{4ab}{a^2+b^2}$
- 87. 若 α 在第一象限, 且 $\frac{1+\tan\alpha}{1-\tan\alpha}=3+2\sqrt{2}$, 则 $\cos\alpha$ 的值是 ().
 - A. $\frac{\sqrt{6}}{2}$
- B. $\frac{\sqrt{6}}{3}$

C. $\frac{\sqrt{3}}{2}$

D. $\frac{\sqrt{3}}{3}$

- 88. 求 $(1 + \cot \alpha \csc \alpha)(1 + \tan \alpha + \sec \alpha)$ 的值.
- 89. 求 $\frac{1-\sin^6\alpha-\cos^6\alpha}{\sin^2\alpha-\sin^4\alpha}$ 的值.
- 90. 求 $\frac{1-\sin^4\alpha-\cos^4\alpha}{1-\sin^6\alpha-\cos^6\alpha}$ 的值.
- 92. 求证: $\frac{\sin^2\alpha}{1+\cot\alpha}+\frac{\cos^2\alpha}{1+\tan\alpha}=1-\sin\alpha\cos\alpha.$
- 93. Rul: $(\frac{\sin\theta + \tan\theta}{\csc\theta + \cot\theta})^2 = \frac{\sin^2\theta + \tan^2\theta}{\csc^2 + \cot^2\theta}$
- 94. 利用 "1" 的代换证明: $\frac{1-2\cos^2\alpha}{\sin\alpha\cos\alpha} = \tan\alpha \cot\alpha$.

- 95. 利用 "1" 的代换证明: $\frac{\cot \alpha + \csc \alpha 1}{\cot \alpha \csc \alpha + 1} = \cot \alpha + \csc \alpha$.
- 96. 利用 "1" 的代换证明: $\tan \alpha \cdot \frac{1-\sin \alpha}{1+\cos \alpha} = \cot \alpha \cdot \frac{1-\cos \alpha}{1+\sin \alpha}$
- 97. 已知 $\sin \theta + \cos \theta = \sqrt{2}$, 求 $\sin \theta \cos \theta$ 的值.
- 98. 已知 $\sin \theta \cos \theta = \frac{\sqrt{2}}{3}(0 < \theta < \frac{\pi}{2}),$ 求 $\sin \theta + \cos \theta$ 的值.
- 99. 已知 $\sin \theta + m \cos \theta = n$, 求 $m \sin \theta \cos \theta$ 的值.
- 100. 已知 $\sin \theta + \sin^2 \theta = 1$, 求 $\cos^2 \theta + \cos^4 \theta = 1$ 的值.
- 101. 已知 $\cos A = \cos \theta \cdot \sin C$, $\cos B = \sin \theta \cdot \sin C$ $(C \neq k\pi, k \in \mathbf{Z})$, 求 $\sin^2 A + \sin^2 B + \sin^2 C$ 的值.
- 102. 已知 $\tan \theta = \sqrt{\frac{1-a}{a}}(0 < a < 1)$,求 $\frac{\sin^2 \theta}{a + \cos \theta} + \frac{\sin^2 \theta}{a \cos \theta}$ 的值.
- 103. 已知锐角 θ 满足 $\log_{(\tan\theta+\cot\theta)}\sin\theta = -\frac{3}{4}$, 求 $\log_{\tan\theta}\cos\theta$ 的值.
- 104. 若 $\sin(\pi + \alpha) = -\frac{3}{5}$, 则 ().

A.
$$\cos \alpha = \frac{4}{5}$$

B.
$$\tan \alpha = \frac{3}{4}$$

C.
$$\sec \alpha = -\frac{5}{4}$$

A.
$$\cos \alpha = \frac{4}{5}$$
 B. $\tan \alpha = \frac{3}{4}$ C. $\sec \alpha = -\frac{5}{4}$ D. $\sin(\pi - \alpha) = \frac{3}{5}$

105. 若 $4\pi < \alpha < 5\pi$, $\cos \alpha = -\frac{1}{3}$, 则 $\tan \alpha$ 的值为 ().

A.
$$-2\sqrt{2}$$

B.
$$\pm 2\sqrt{2}$$

C.
$$\pm \frac{\sqrt{2}}{4}$$

D.
$$-\frac{\sqrt{2}}{4}$$

106. 下列各式正确的是().

A.
$$\cos^3(-\alpha - \pi) = \cos^3 \alpha$$

B.
$$\sin(\alpha - 3\pi) = \sin \alpha$$

C.
$$\sec(3\pi - \alpha) = \frac{1}{\cos \alpha}$$

$$D. - \cot(5\pi - 2\alpha) = \cot 2\alpha$$

- 107. 若 α, β, γ 是一个三角形的三个内角,则在① $\sin(\alpha + \beta) \sin\gamma$, ② $\cos(\alpha + \beta) + \cos\gamma$, ③ $\tan\frac{\alpha + \beta}{2} \cdot \tan\frac{\gamma}{2}$, ④ $\tan(\alpha + \beta) - \tan \gamma$ 这四个式子中, 其值为常数的有 (
 - A. 1 个

B. 2 个

C. 3 个

D. 4 个

- 108. 函数 $y = \cos(\tan x)$
 - A. 是奇函数, 但不是偶函数

B. 是偶函数, 但不是奇函数

C. 既不是奇函数, 也不是偶函数

- D. 奇偶性无法确定
- 109. 若函数 $f(x) = a \sin x + b \tan x + 1$ 满足 f(5) = 7, 则 f(-5) 的值等于 (
 - A. 5

B. -5

C. 6

D. -6

- 110. 化简 $\tan(\frac{k\pi}{2} + \alpha)(k \in \mathbf{Z})$ 的结果是 ().

- B. $\pm \tan \alpha$
- C. $\tan \alpha \mathbf{g} \cot \alpha$
- D. tan α \mathbf{g} cot α
- 111. 计算: $\sin^2 20^\circ + \sin^2 70^\circ \cos^2 20^\circ \cdot \cot^2 70^\circ \cdot \csc^2 20^\circ =$ ______

- 112. 计算: $\tan 1^{\circ} \cdot \tan 2^{\circ} \cdot \tan 3^{\circ} \cdot \cdots \cdot \tan 87^{\circ} \cdot \tan 88^{\circ} \cdot \tan 89^{\circ} = \underline{\hspace{1cm}}$
- 113. 计算: $\sin^2(42^\circ + \alpha) + \cot(25^\circ + \beta) \cdot \cot(\beta 65^\circ) + \sin^2(48^\circ \alpha) = \underline{\hspace{1cm}}$
- 114. 计算: $\log_4 \sin \frac{3}{4}\pi + \log_9 \tan(-\frac{5\pi}{6}) =$ ______.
- 115. 计算: $\tan \frac{\pi}{5} + \tan \frac{2\pi}{5} + \tan \frac{3\pi}{5} + \tan \frac{4\pi}{5} = \underline{\hspace{1cm}}$
- 116. 若锐角 α 终边上一点 A 的坐标为 $(2\sin 3, -2\cos 3)$, 则角 α 的弧度数为_____
- 117. 化简: $\frac{\sin(\pi+\alpha)\cos(\pi-\alpha)\tan(-\alpha+3\pi)}{\sin(5\pi-\alpha)\tan(8\pi-\alpha)\cot(\alpha-3\pi)}$
- 118. 化简: $\frac{\sin(\theta \pi)\cos(\theta \frac{3}{2}\pi)\cot(-\theta \pi)}{\tan(\theta + 3\pi)\sec(-\theta 2\pi)\csc(\frac{\pi}{2} \theta)}$ _____
- 119. 若三角形中的两内角 α, β 满足 $\sin 2\alpha = \sin 2\beta$, 则这个三角形的形状 ().
 - A. 只可能是等腰三角形. 不可能是直角三角形
- B. 只可能是直角三角形, 不可能是等腰三角形

C. 只可能是等腰直角三角形

- D. 既可能是等腰三角形, 也可能是直角三角形
- 120. 若函数 f(x) 满足, $f(\cos x) = \frac{x}{2}(0 \le x \le \pi)$, 则 $f(-\frac{1}{2})$ 等于 ().
 - A. $\cos \frac{1}{2}$

B. $\frac{\pi}{3}$

C. $\frac{\pi}{4}$

- D. $\frac{\pi}{2}$
- 121. 若函数 $f(x) = a \sin(\pi x + \alpha) + b \cos(\pi x + \beta)$, 其中 a, b, α, β 都是非零实数, 且满足 f(1997) = -1, 则 f(1998) 等于 ().
 - A. -1

B. 0

C. 1

- D. 2
- 122. 已知 $\cos(\frac{\pi}{6} \theta) = a(|a| \le 1)$, 求 $\cos(\frac{5\pi}{6} + \theta)$ 和 $\sin(\frac{2\pi}{3} \theta)$ 的值.
- 123. 已知 $\tan(\pi \alpha) = a^2$, $|\cos(\pi \alpha)| = -\cos\alpha$, 求 $\sec(\pi + \alpha)$ 的值.
- 124. 求满足 $\sin(\frac{\pi}{4} \alpha) = \frac{\sqrt{2}}{2}, \alpha \in (0, 2\pi)$ 的角 α .
- 125. 求 $\frac{\sin(k\pi-x)}{\sin x} \frac{\cos x}{\cos(k\pi-x)} + \frac{\tan(k\pi-x)}{\tan x} \frac{\cot x}{\cot(k\pi-x)} (k \in \mathbf{Z})$ 的取值范围.
- 126. 求函数 $y = -2\sin^2 x + 2\sin x + 1$ 的值域.

解答在这里 $y=-2(\sin x-\frac{1}{2})^2+\frac{3}{2}$. 考虑到 $-1\leq\sin x\leq 1$, 因此, 若以 $\sin x$ 为横轴, 则函数图像应足抛物线夹在两直线 $\sin x=\pm 1$ 之间的一段 (如图). 观察图像易知 $y_{\max}=\frac{3}{2}$, $y_{\min}=-3$ 所以函数的值域是 $-3\leq y\leq \frac{3}{2}$.

127. 已知 $0 \le x \le \frac{\pi}{2}$, 求函数 $y = \cos^2 x - 2a \cos x$ 的最大值 M(a) 与最小值 m(a).

解答在这里函数 $y = f(\cos x) = (\cos x - a)^2 - a^2$, 又 $0 \le x \le \frac{\pi}{2}$, 所以 $0 \le \cos x \le 1$, 画出函数的图像如下:

- (1) 如图 (1), 此时 a < 0, m(a) = f(0) = 0, M(a) = f(1) = 1 2a.
- (2) 如图 (2), 此时 $0 \le a \le \frac{1}{2}$, $m(a) = f(a) = -a^2$, M(a) = f(1) = 1 2a.
- (3) 如图 (3), 此时 $\frac{1}{2} \le a < 1$, $m(a) = f(a) = -a^2$, M(a) = f(a) = 0.
- (4) 如图 (4), 此时 $a \ge 1$, m(a) = f(1) = 1 2a, M(a) = f(0) = 0.

综上所述,可得
$$M(a) = \begin{cases} 1-2a, & a<\frac{1}{2},\\ 0, & a\geq\frac{1}{2}, \end{cases}$$
 $m(a) = \begin{cases} 0, & a<0,\\ -a^2, & 0\leq a<1,\\ 1-2a, & a\geq 1. \end{cases}$

128. 求函数 $y = \frac{2\sin x - 1}{\sin x + 3}$ 的值域.

解答在这里由已知,得 $\sin x = \frac{3y+1}{2-y}$,而 $|\sin x| \le 1$,故 $|\frac{3y+1}{2-y}| \le 1$,即 $8y^2+10y-3 \le 0$, $(4y-1)(2y+3) \le 0$. 所以函数的值域是 $[-\frac{3}{2},\frac{1}{4}]$.

129. 求函数 $y = \frac{\sec^2 x - \tan x}{\sec^2 x + \tan x}$ 的值域.

解答在这里因为 $\sec^2 x = \tan^2 x + 1$, 故原式时变形为 $(y-1)\tan^2 x + (y+1)\tan x + (y-1) = 0$.

- (1) 若 y = 1, 则 $\tan x = 0$.
- (2) 若 $y \neq 1$, 则 $\tan x \in \mathbf{R}$, 得 $\triangle = (y+1)^2 4(y-1)^2 \ge 0$, 于是 $\frac{1}{3} \le y \le 3$ 且 $y \ne 1$.

综含 (1), (2) 知, 函数的值域是 $[\frac{1}{3}, 3]$.

130. 解不等式 $\sin x \le \frac{1}{2}$.

解答在这里在单位圆内绘出 $\sin x=\frac{1}{2}$ 的正弦线 (如图), 并结合 $y=\sin x$ 的单调性, 可得 $2k\pi-\frac{7\pi}{6}\leq x\leq 2k\pi+\frac{\pi}{6}(k\in\mathbf{Z}).$

131. 解不等式 $|\cos 2x| \leq \frac{1}{2}$. 解答在这里原不等式为 $-\frac{1}{2} \leq \cos 2x \leq \frac{1}{2}$. 如图,可得 $k\pi + \frac{\pi}{3} \leq 2x \leq k\pi + \frac{2\pi}{3}$,于是 $\frac{k\pi}{2} + \frac{\pi}{6} \leq x \leq x$ $\frac{k\pi}{2} + \frac{\pi}{3}(k \in \mathbf{Z}).$

132. 解不等式 $\tan \frac{x}{2} \ge \sqrt{3}$.

解答在这里如图,可得 $k\pi + \frac{\pi}{3} \leq \frac{x}{2} \leq k\pi + \frac{\pi}{2}$,所以 $2k\pi + \frac{2\pi}{3} \leq x < 2k\pi + \pi(k \in \mathbf{Z})$.

133. 在同一个坐标系内, 为了得到 $y=3\sin(2x+\frac{\pi}{4})$ 的图像, 只需将 $y=3\cos2x$ 的图像 (

A. 向左平移 $\frac{\pi}{4}$ B. 向右平移 $\frac{\pi}{4}$

C. 向左平移 $\frac{\pi}{\circ}$

D. 向右平移 $\frac{\pi}{\circ}$

解答在这里令 $f(x) = 3\cos 2x$, 则

$$f(x-m) = 3\cos 2(x-m) = 3\cos(2x-2m) = 3\cos(2m-2x) = 3\sin\left[\frac{\pi}{2} - (2m-2x)\right]$$
$$= 3\sin(2x + \frac{\pi}{2} - 2m).$$

接题意应有 $3\sin(2x+\frac{\pi}{2}-2m)=3\sin(2x+\frac{\pi}{4})$. 令 $\frac{\pi}{2}-2m=\frac{\pi}{4}$, 得 $m=\frac{\pi}{8}$, 故选 D. 也可以这样解: 因为 $f(x)=3\sin(2x+\frac{\pi}{4})=3\cos[(2x+\frac{\pi}{4})-\frac{\pi}{2}]=3\cos(2x-\frac{\pi}{4})=3\cos[2(x-\frac{\pi}{8})]=f(x-\frac{\pi}{8})$, 所以选 D.

134. 将函数 $y=\cos x$ 图像上每一点的纵坐标保持不变,横坐标缩小为原来的一半,再将所得图像沿 x 轴向左平移 $rac{\pi}{4}$ 个单位长度, 则与所得新图像对应的函数的解析式为 ().

A. $y=\cos(2x+\frac{\pi}{4})$ B. $y=\cos(2x-\frac{\pi}{4})$ C. $y=\sin 2x$ D. $y=-\sin 2x$ 解答在这里横坐标缩小为原来的一半,可理解为伸长到原来的 $\frac{1}{2}$,故先得到函数 $y=\cos\frac{x}{1}=\cos 2x$. 再向左

平移 $\frac{\pi}{4}$ 后, 得 $y = \cos 2(x + \frac{\pi}{4})$, 即 $y = \cos(2x + \frac{\pi}{2}) = -\sin 2x$, 故选 D.

135. 函数 $y = 3 \sin x$ 的图像经过怎样的变换后, 可得到 $y = 3 \sin(\frac{x}{2} - \frac{\pi}{4})$ 的图像?

解答在这里解法一先 "伸缩", 后 "平移". 第一步: 将函数 $y=3\sin x$ 的图像上的每一点, 纵坐标保持不变, 横 坐标伸长到原来的 2 倍. 得到函数 $y=3\sin\frac{x}{2}$ 的图像. 第二步: 将函数 $y=3\sin\frac{x}{2}$ 的图像向右平移 $\frac{\pi}{2}$ 个单 位长度, 便得到函数 $y = 3\sin\frac{1}{2}(x - \frac{\pi}{2}) = 3\sin(\frac{x}{2} - \frac{\pi}{4})$ 的图像.

解法二先 "平移",后 "伸缩". 第一步: 将函数 $y=3\sin x$ 的图像,向右平移 $\frac{\pi}{4}$ 个单位长度,得到函数 $y=3\sin(x-\frac{\pi}{4})$ 的图像. 第二步: 将函数 $y=3\sin(x-\frac{\pi}{4})$ 的每一点, 纵坐标保持不变, 横坐标伸长到原来的 2 倍, 得到函数 $y = 3\sin(\frac{x}{2} - \frac{\pi}{4})$ 的图像.

136. 函数 $y = \sin(2x + \frac{\pi}{4})$ 图像的一条对称轴是直线 ().

A. $x=\frac{3\pi}{4}$ B. $x=-\frac{3\pi}{4}$ C. $x=\frac{3\pi}{8}$ D. $x=-\frac{3\pi}{8}$ 解答在这里以 $x=-\frac{3\pi}{8}$ 代入,得 $\sin[1(-\frac{3\pi}{8})+\frac{\pi}{4}]=\sin(-\frac{\pi}{2})=-1$,故选 D.

137. 若 MP, OM, AT 分别是 60° 角的正弦线、余弦线和正切线, 则 ().

A. MP < OM < AT B. OM < MP < AT C. AT < OM < MP D. OM < AT < MP

138. 在同一坐标系内, 曲线 $y = \sin x$ 与 $y = \cos x$ 的交点坐标是 ().

A. $(2k\pi + \frac{\pi}{2}, 1)(k \in \mathbf{Z})$

B. $(k\pi + \frac{\pi}{2}, (-1)^k)(k \in \mathbf{Z})$

C. $(k\pi + \frac{\pi}{4}, \frac{(-1)^k}{(2)})(k \in \mathbf{Z})$

D. $(k\pi, 0)(k \in \mathbf{Z})$

139. 函数 $y = \log_{\frac{1}{2}}(\sin 2x)$ 为减函数的区间是 ().

A. $(k\pi, k\pi + \frac{\pi}{4}], k \in \mathbf{Z}$ B. $(k\pi, k\pi + \frac{\pi}{2}], k \in \mathbf{Z}$ C. $(2k\pi, 2k\pi + \frac{\pi}{4}], k \in \mathbf{Z}$ D. $(2k\pi, 2k\pi + \frac{\pi}{2}], k \in \mathbf{Z}$

140. 函数 $y = \lg(1 - \sin x) - \lg(1 + \sin x)(.)$

A. 是奇函数, 但非偶函数

B. 是偶函数, 但非奇函数

C. 既不是奇函数, 也不是偶函数

D. 奇偶性无法确定

141. 若 $0 < x < \frac{1}{2}$, 则下列各式不成立的是 (

A. $\sin(1+x) > \sin x$

B. $\cos(1+x) < \cos x$ C. $(1+x)^x > x^x$ D. $\log_x(1+x) > \log_x x$

142. 若函数 $y = \cos(\sin x)$, 则下列结论正确的是 (

A. 它的定义域是 [-1, 1] B. 它是奇函数

C. 它的值域是 [cos 1, 1] D. 它不是周期函数

143. 下列四个函数中,是偶函数且在 $[0,\frac{\pi}{2}]$ 上为增函数,但不是周期函数的函数是 ().

A. $y = |\sin x| (x \in \mathbf{R})$

B. $y = |\cos x| (x \in \mathbf{R})$

C. $y = \sin |x| (x \in \mathbf{R})$

D. $y = |\sin x| + |\cos x| (x \in \mathbf{R})$

144. 下列函数中, 既在 $(0,\frac{\pi}{2})$ 上是增函数, 又是以 π 为最小正周期的偶函数是 (

A. $y = x^2 |\cos x|$

B. $y = \cos 2x$

C. $y = |\sin x|$ D. $y = |\sin 2x|$

145. 要使 $\sqrt{(1+2\sin\theta)^2} = -(1+2\sin\theta)$, 则 θ 的取值范围是 (

A. 第三、四象限

B. $[2k\pi - \frac{5\pi}{6}, 2k\pi - \frac{\pi}{6}](k \in \mathbf{Z})$ D. $[2k\pi - \frac{7\pi}{6}, 2k\pi - \frac{\pi}{6}](k \in \mathbf{Z})$

C. $[2k\pi - \frac{\pi}{6}, 2k\pi + \frac{7\pi}{6}](k \in \mathbf{Z})$

- 146. 设 $\cos^2 x + 4 \sin x a = 0$ ($a, x \in \mathbf{R}$), 则 a 的取值范围是______
- 147. 函数 $y = 1 2\sin x + 3\cos^2 x$ 的值域是
- 148. 函数 $y = \sin^2 x + 2\cos x (-\frac{\pi}{3} \le x \le \frac{2}{3}\pi)$ 的值域是_____.
- 149. 函数 $y = \frac{3\cos x + 1}{\cos x + 2}$ 的值域是______.
- 150. 函数 $f(x) = \log_{\frac{1}{2}}(2\sin x)$ 的最小值是_____.
- 151. 将下列各数由小到大排列: sin 46°, cos 46°, cos 36°:

- 152. 将下列各数由小到大排列: sin 2, cos 2, tan 2:_
- 153. 将下列各数由小到大排列: $\log_x \sin \frac{x}{2}$, $\log_x \cos \frac{x}{2}$ (0 < x < 1):_____.
- 154. 将下列各数由小到大排列: cos 1°, sin 1°, cos 1, sin 1:_____.
- 155. 在 $[0, 2\pi]$ 中, 满足 $\sin x \ge \frac{1}{2}$ 的 x 的取值范围是_
- 156. 不等式 $\sin x \leq \frac{1}{2}$ 的解为
- 157. 不等式 $|\cos 2x| \le \frac{1}{2}$ 的解为______.
- 158. 若集合 $M = \{\theta | \sin \theta \geq \frac{1}{2}, 0 \leq \theta \leq \pi \}, P = \{\theta | \cos \theta \leq \frac{1}{2}, 0 < \theta \leq \pi \}, 则 M \cap P = ______.$
- 159. 若 $-\pi \le x \le \pi$, 则不等式 $\log_2(1 + 2\cos x) < 1$ 的解为_____
- 160. 若锐角 α, β 满足 $\sin \alpha < \cos \beta$ 则 (
 - A. $\alpha > \beta$
- B. $\alpha < \beta$
- C. $\alpha + \beta < \frac{\pi}{2}$ D. $\alpha + \beta > \frac{\pi}{2}$

- 161. 方程 $2^x = \cos x$ 的解有 (
 - A. 0 个

B. 1 个

C. 2 个

- D. 无穷多个
- 162. 函数 $f(x)=(\sin\alpha)^{|\log_{\sin\alpha}x|}(2k\pi<\alpha<2k\pi+\pi$ 且 $\alpha\neq 2k\pi+\frac{\pi}{2},\,k\in\mathbf{Z})$ 的图像是(
 - A.

В.

С.

D.

- 163. 设 $x \in (0, \frac{\pi}{2})$, 则下列各式中正确的是 (
 - A. $\sin(\sin x) < \cos x < \cos(\cos x)$

B. $\sin(\cos x) < \cos x < \cos(\sin x)$

C. $\cos(\sin x) < \cos x < \sin(\cos x)$

- D. $\cos(\cos x) < \cos x < \sin(\sin x)$
- 164. 求函数 $y = \log_{\sin x} (2\cos x + 1)$ 的定义域.
- 165. 求函数 $y = \sqrt{1 2\cos x} + \lg(2\sin x \sqrt{2})$ 的定义域.
- 166. 求函数 $y = \sqrt{\sin x} + \frac{1}{\sqrt{16 x^2}}$ 的定义域.
- 167. 作出函数 $y = |\sin x|$ 的图像.
- 168. 作出函数 $y = |\cos x| + \cos x$ 的图像.

- 169. 作出函数 $y = (\sin \alpha)^{|\log_{\sin \alpha} x|}$ 的图像, 其中 α 为锐角.
- 170. 作出函数 $y = \frac{|\sin x|}{\sin x}$ 的图像.
- 171. 作出函数 $y = f(\sin x)$ 的图像, 其中 $f(x) = \begin{cases} 2, & x \ge 0, \\ -1, & x < 0. \end{cases}$
- 172. 若 $0 < \alpha < \frac{\pi}{4}$, 且 $\lg \sin \alpha + \log \cos \alpha + \lg 9 = \lg \tan \alpha + \lg \cot \alpha + \frac{1}{2} \lg 8$, 求 $\sin \alpha \cos \alpha$ 的值.
- 173. 设 x 是第二象限角,且满足 $\cos \frac{x}{2} + \sin \frac{x}{2} = -\frac{\sqrt{5}}{2}$,求 $\sin \frac{x}{2} \cos \frac{x}{2}$ 的值.
- 174. 若 $0 < \theta < \frac{\pi}{2}$, 比较 $M = \log_{\sin \theta} \cos \theta$ 与 $N = \log_{\cos \theta} \sin \theta$ 的大小.
- 175. 若 α, β 是关于 x 的二次方程 $x^2 + 2(\cos\theta + 1)x + \cos^2\theta = 0$ 的两实根, 且 $|\alpha \beta| \le 2\sqrt{2}$, 求 θ 的范围.
- 176. 求函数 $f(x) = a \sin x \sin^2 x$ 的最大值 g(a), 并画出 g(a) 的图像.
- 177. 若函数 $f(x) = \cos^2 x a \sin x + b$ 的最大值为 0, 最小值为 -4, 实数 a > 0, 求 a, b 的值.
- 178. 函数 $y = 3\sin(2x + \frac{\pi}{6})$ 的图像的一条对称轴是直线 (

A.
$$x = 0$$

B.
$$x = \frac{\pi}{6}$$

B.
$$x = \frac{\pi}{6}$$
 C. $x = -\frac{\pi}{6}$

D.
$$x = \frac{\pi}{3}$$

179. 先将函数 $y=\sin 2x$ 的图像向右平移 $\frac{\pi}{3}$ 个单位长度, 再将所得图像作关于 y 轴的对称变换, 则与最后所得图 像对应的函数的解析式是(

A.
$$y = \sin(-2x + \frac{\pi}{3})$$

B.
$$y = \sin(-2x - \frac{\pi}{3})$$

A.
$$y = \sin(-2x + \frac{\pi}{3})$$
 B. $y = \sin(-2x - \frac{\pi}{3})$ C. $y = \sin(-2x + \frac{2}{3}\pi)$ D. $y = \sin(-2x - \frac{2}{3}\pi)$

D.
$$y = \sin(-2x - \frac{2}{3}\pi)$$

180. 将函数 $y=\sin x$ 的图像上所有点向左平移 $\frac{\pi}{3}$ 个单位长度, 再把所得图像上各点横坐标伸长到原来的 2 倍, 则与最后得到的图像对应的函数的解析式为(

A.
$$y = \sin(\frac{x}{2} - \frac{\pi}{3})$$

B.
$$y = \sin(\frac{x}{2} + \frac{\pi}{6})$$

A.
$$y = \sin(\frac{x}{2} - \frac{\pi}{3})$$
 B. $y = \sin(\frac{x}{2} + \frac{\pi}{6})$ C. $y = \sin(\frac{x}{2} + \frac{\pi}{3})$ D. $y = \sin(2x + \frac{\pi}{3})$

D.
$$y = \sin(2x + \frac{\pi}{3})$$

181. 函数 $y=A\sin(\omega x+\varphi)(A>0,\,\omega>0,\,|\varphi|<\frac{\pi}{2})$ 的图像如图所示, 则 y 的表达式是 (

A.
$$2\sin(\frac{10}{11}x + \frac{\pi}{6})$$
 B. $2\sin(\frac{10}{11}x - \frac{\pi}{6})$ C. $2\sin(2x + \frac{\pi}{6})$ D. $2\sin(2x - \frac{\pi}{6})$

B.
$$2\sin(\frac{10}{11}x - \frac{\pi}{6})$$

C.
$$2\sin(2x + \frac{\pi}{6})$$

D.
$$2\sin(2x - \frac{\pi}{6})$$

182. 函数 $y = 2\sin(\frac{1}{2}x + \frac{\pi}{3})$ 在一个周期内的简图是 ().

В.

C.

D.

- 183. 要得到函数 $y = \sin(\frac{x}{2} \frac{\pi}{6})$ 的图像, 只需将函数 $y = \sin\frac{x}{2}$ 的图像 ().
 - A. 向右平移 $\frac{\pi}{6}$
- B. 向左平移 $\frac{\pi}{6}$
- C. 向右平移 $\frac{\pi}{3}$
- D. 向左平移 $\frac{\pi}{3}$

- 184. $f(x) = \log_{\frac{\pi}{4}} \cos(2x + \frac{\pi}{4})$ 为增函数的区间是_____
- 185. 函数 $f(x) = 2\sin(3-2x)$ 为增喊数的区间是_____.
- 186. 函数 $y = \cos(2x \frac{\pi}{5})$ 为减函数的区间是______.
- 187. 函数 $y = \sin(2x + \frac{\pi}{3})$ 的图像可由 $y = \sin 2x$ 的图像向_______ 平移_______ 个单位长度得到.
- 188. 将奇函数 $y = f(x)(x \in \mathbf{R})$ 的图像沿 x 轴正向平移 1 个单位长度后,所得的图像为 C',而图像 C' 与 C 关于原点对称,那么 C 所对应的函数应为______.
- 189. 先将函数 $f(x)=\sin x$ 的图像向右平移 $\frac{\pi}{5}$ 个单位长度, 再改变各点的横坐标 (纵坐标不变), 得到最小正周期 为 $\frac{2\pi}{3}$ 的函数 $y=\sin(\omega x+\varphi)(\omega>0)$ 的图像, 则 $\omega=$ _______, $\varphi=$ ______.
- 190. 若函数 $f(x)=2\cos(\frac{k}{4}x+\frac{\pi}{3})-5$ 的最小正周期不大于 2, 则正整数 k 的最小值为 ().
 - A. 10

R 11

C. 12

- D. 13
- 191. 若函数 $f(x) = \sin(2x + \varphi)(-\pi < \varphi < 0)$ 是偶函数, 则 $\varphi =$ _____.
- 192. 若函数 $f(x) = \cos(x + \varphi)$ 的图像关于坐标原点对称, 则 $\varphi =$ _____.
- 193. 根据周期函数的定义, 求函数 $y = 2\cos(4x \frac{\pi}{3})$ 的最小正周期.
- 194. 若奇函数 f(x) 是最小正周期为 3 的周期函数, 且 f(1) = -1, 则 f(101) =______.
- 195. 若偶函数 y = f(x) 是最小正周期为 2 的周期函数. 且 $2 \le x \le 3$ 时, f(x) = x, 则当 $-2 \le x \le 0$ 时, f(x) 的表达式为______.
- 196. 已知函数 $f(x) = A\sin(\omega x + \varphi)(A>0,\,\omega>0)$ 在同一周期内, 当 $x=\frac{\pi}{9}$ 时取得最大值 $\frac{1}{2}$, 当 $x=\frac{4\pi}{9}$ 时取得最小值 $-\frac{1}{2}$, 求此函数的解析式.

197.	已知函数 $f(x)=A\sin(\omega x+\varphi)(A>0,\omega>0)$ 的图像上一个最高点的坐标为 $(2,\sqrt{2}),$ 由这个最高点到其相邻的最低点间,图像与 x 轴交于点 $(6,0),$ 求此函数的解析式.					
198.	98. 函数 $y = \tan 3\pi x$ 的最小正周期为 ().					
	A. $\frac{1}{3}$	B. $\frac{2}{3}$	C. $\frac{6}{\pi}$	D. $\frac{3}{\pi}$		
199.	下列函数中, 以 π 为最小正	問期的偶函数是 ().				
	A. $y = \sin x \cdot \cos x$	B. $y = \cot x$	C. $y = \cos \frac{x}{2}$	$D. y = \cos^2 x$		
200.	若 $a = \sin \frac{3}{4}, b = \cos \frac{3}{4}, c =$	$\cot \frac{3}{4}$, 则 a,b,c 之间的大小	关系是 ().			
	A. $a > b > c$	B. $b > c > a$	C. $c > a > b$	D. $c > b > a$		
201.	若 $\tan(2x - \frac{\pi}{3}) \le 1$, 则 x 的	取值范围是 ().				
	A. $\frac{k\pi}{2} - \frac{\pi}{12} \le x \le \frac{k\pi}{2} + \frac{\pi}{2}$	$\frac{7}{24}\pi(k\in\mathbf{Z})$	B. $k\pi - \frac{\pi}{12} \le x < k\pi + \frac{7}{24}\pi$	$(k \in \mathbf{Z})$		
	A. $\frac{k\pi}{2} - \frac{\pi}{12} \le x \le \frac{k\pi}{2} + \frac{\pi}{2}$ C. $\frac{k\pi}{2} - \frac{\pi}{12} < x \le \frac{k\pi}{2} + \frac{\pi}{2}$	$\frac{7}{4}\pi(k\in\mathbf{Z})$	D. $k\pi - \frac{\pi}{12} < x < k\pi + \frac{2\pi}{24}\pi$	$(k \in \mathbf{Z})$		
202.	下列函数中,同时满足条件(\bigcirc 在 $(0,rac{\pi}{2})$ 为增函数, \bigcirc 为	奇函数, ③ 以 π 为最小正周期	期的函数是 ().		
	A. $y = \tan x$	B. $y = \cot x$	C. $y = \tan \frac{x}{2}$	D. $y = \sin x $		
203.	函数 $y = \cot x (-\frac{\pi}{4} \le x \le \frac{\pi}{4})$)的值域是().				
	A. [-1.1]	B. $(-\infty, -1] \cup [1, +\infty)$	C. $(-\infty, -1]$	D. $[1, +\infty)$		
204.	已知 x 满足 x , 则 x 的取值	范围为				
205.	. 已知 x 满足 $ an rac{x}{2} \geq \sqrt{3}$,则 x 的取值范围为					
206.	5. 已知 x 满足 $\cot 2x \le -\sqrt{3}$, 则 x 的取值范围为					
207.	$ x $. 已知 $ x $ 满足 $ \sin x \le \cos x $, 则 $ x $ 的取值范围为					
208.	. 已知 x 满足 $\log_x \tan x > 0$, 则 x 的取值范围为					
209.	. 已知 x 满足 $\log_{\sqrt{3}} \sin \frac{x}{2} - \log_{\sqrt{3}} \cos \frac{x}{2} > -1$, 且 $-2\pi < x < 2\pi$, 则 x 的取值范围为					
210.	. 将下列各数按从小到大的顺序排列 tan 1, tan 2, tan 3:					
211.	· 将下列各数按从小到大的顺序排列 1, sin 1, cos 1, tan 1:					
212.	2. 在① $y = \sin 2x $, ② $y = \cos x $, ③ $y = \tan 2x $, ④ $y = \tan x + \cot x $ 这四个函数中,最小正周期为 $\frac{\pi}{2}$ 的偶函数有 ().					
	A. 0 个	B. 1 个	C. 2 个	D. 3 个		

213.
$$\sin \frac{2\pi}{3}$$
, $\cos 1$, $\tan 2$, $\cot 3$ 的大小关系为 ().

A.
$$\sin \frac{2\pi}{3} > \cos 1 > \cot 3 > \tan 2$$

B.
$$\sin \frac{2\pi}{3} > \cos 1 > \tan 2 > \cot 3$$

C.
$$\cos 1 > \sin \frac{2\pi}{3} > \tan 2 > \cot 3$$

D.
$$\cos 1 > \sin \frac{2\pi}{3} > \cot 3 > \tan 2$$

214. 若 $0 < \alpha < 2\pi$, 且满足 $\sin \alpha < \cos \alpha < \cot \alpha < \tan \alpha$, 则有 (

A.
$$0 < \alpha < \frac{\pi}{4}$$

A.
$$0 < \alpha < \frac{\pi}{4}$$
 B. $\frac{\pi}{4} < \alpha < \frac{\pi}{2}$

C.
$$\pi < \alpha < \frac{5}{4}\pi$$

C.
$$\pi < \alpha < \frac{5}{4}\pi$$
 D. $\frac{5\pi}{4} < \alpha < \frac{3\pi}{2}$

215. 求函数
$$y = \sqrt{\sqrt{3} - \cot \frac{x}{2}}$$
 的定义域.

216. 求函数
$$y = \frac{\lg(\tan x - 1)}{\sqrt{1 - 2\sin x}}$$
 的定义域.

217. 求函数
$$y = \lg(\tan x - 1) + \sqrt{\sin 2x}$$
 的定义域.

218. 求函数
$$y = \frac{\sec^2 x + \tan x}{\sec^2 x - \tan x}$$
 的值域.

219. 已知
$$\theta \in [-\frac{\pi}{3}, \frac{\pi}{4}]$$
, 求函数 $y = \sec^2 \theta + 2 \tan \theta + 1$ 的最大值与最小值.

220. 已知
$$\frac{\pi}{3} < \theta < \frac{\pi}{2}$$
, 比较 $\sin \theta$, $\cot \theta$, $\cos \theta$ 的大小.

221. 已知
$$0<\alpha<\frac{\pi}{4}$$
, 比较 $\sin\alpha,\sin(\sin\alpha),\sin(\tan\alpha)$ 的大小.

222. 已知
$$0 < \theta < \frac{\pi}{2}$$
, 比较 $\cos \theta, \sin(\cos \theta), \cos(\sin \theta)$ 的大小.

223. 利用锐角三角函数的定义解决问题"若
$$\alpha,\beta\in(0,\frac{\pi}{2})$$
,且 $17\cos\alpha+13\cos\beta=17$, $17\sin\alpha=13\sin\beta$,求 $\frac{\alpha}{2}+\beta$ ".

224. 利用锐角三角函数的定义解决问题"设
$$x \in [\frac{\pi}{4}, \frac{\pi}{2}]$$
, 求证: $\csc x - \cot x \ge \sqrt{2} - 1$ ".

225. 已知
$$a\cos\alpha + b\sin\alpha = c$$
, $a\cos\beta + b\sin\beta = c(0 < \alpha, \beta < \pi, \alpha \neq \beta)$, 且 $\cos\alpha + \cos\beta = \cos\alpha \cdot \cos\beta$, 求证: $c^2 - b^2 = 2ac$.

226. 已知函数
$$f(x)$$
 满足 $af(\sin x) + bf(-\sin x) = c\sin x \cos x (-\frac{\pi}{2} \le x \le \frac{\pi}{2}, a^2 - b^2 \ne 0)$, 求 $f(x)$ 的解析式.

227. 误
$$\frac{\sin \alpha}{a^2 - 1} = \frac{\cos \alpha}{2a \sin 2\beta} = \frac{1}{1 + 2a \cos 2\beta + a^2},$$
 求证: $\sin \alpha = \frac{a^2 - 1}{a^2 + 1}$.

228. 已知
$$a \sec^2 \alpha - b \cos \alpha = 2a$$
, $b \cos^2 \alpha - a \sec \alpha = 2b$, 求 a, b 的关系式.

229. 已知
$$a\sin^2\theta + b\cos^2\theta = m$$
, $b\sin^2\varphi + a\cos^2\varphi = n$, $a\tan\theta = b\tan\varphi(a,b,m,n$ 互不相等), 求证: $\frac{1}{m} + \frac{1}{n} = \frac{1}{a} + \frac{1}{b}$.

230. 利用单位圆和三角函数线证明:"若
$$\alpha$$
 为锐角, 则 $\sin \alpha + \cos \alpha > 1$ ".

231. 利用单位圆和三角函数线证明:"若
$$\alpha$$
 为锐角, 则 $\sin \alpha < \alpha < \tan \alpha$ ".

232. 利用单位圆和三角函数线证明:"若
$$\alpha$$
 为锐角, 则 $\alpha \cdot \sin \alpha + \cos \alpha > 1$ ".

233. 利用单位圆和三角函数线证明:"若
$$0<\beta<\alpha<\frac{\pi}{2},$$
 则 $\sin\alpha-\sin\beta<\alpha-\beta<\tan\alpha-\tan\beta$ ".

- 234. 若 α 是锐角, 求证: $\cos(\sin \alpha) > \sin(\cos \alpha)$.
- 235. 已知函数 f(x) 满足 $f(x+a)=\dfrac{1-f(x)}{1+f(x)}(a$ 为常数, 且 $a\neq 0)$, 求证: f(x) 是一个以 2a 为周期的周期函数.
- 236. 已知 f(x) 为偶函数, 其图像关于直线 $x=a(a\neq 0)$ 对称, 求证: f(x) 是一个以 2a 为周期的周期函数.
- 237. 已知 f(x), g(x) 是定义在 R 上的两个函数, 且 g(x) 为奇函数. 并满足: ① f(0) = 1; ② 对任何 $x, y \in \mathbf{R}$ 都有 f(x y) = f(x)f(y) + g(x)g(y). 求证:
 - (1) 对任何 $x \in \mathbf{R}$ 都有 $f^2(x) + g^2(x) = 1$;
 - (2) f(x) 是偶函数;
 - (3) 若存在非零实数 a 满足 f(a) = 1, 则 f(x) 是周期函数.
- 238. 利用图像求方程 $\sin x = \tan \frac{x}{2}$ 在区间 $[0,8\pi]$ 上解的个数.
- 239. 设 $0 \le x \le \pi$, $f_1(x) = \sin(\cos x)$, $f_2(x) = \cos(\sin x)$.
 - (1) 求 $f_1(x)$, $f_2(x)$ 的最大值和最小值;
 - (2) 比较 $f_1(x)$ 与 $f_2(x)$ 的大小.