Architektura počítačů Logické obvody

http://d3s.mff.cuni.cz/teaching/computer_architecture/

Lubomír Bulej

bulej@d3s.mff.cuni.cz

CHARLES UNIVERSITY IN PRAGUE

faculty of mathematics and physics

Digitální počítač

Dvě úrovně napětí

- Vyšší úroveň
 - Logická 1, high, true, asserted
- Nižší úroveň
 - Logická 0, low, false, deasserted
- Hodnoty jsou vzájemně inverzní a doplňkové
- Kombinační obvody
 - Výstup závisí pouze na vstupu (neobsahují paměť)
 - Reprezentace logických funkcí
- Sekvenční obvody
 - Výstup závisí na vstupu a vnitřním stavu (paměť)
 - Umožňují zachytit posloupnost kroků výpočtu

Logické funkce a pravdivostní tabulky

- Výstupní hodnota je funkcí vstupních hodnot
 - $f: \mathbf{B}^k \to \mathbf{B}$, kde $\mathbf{B} = \{0, 1\}$ a $k \in \mathbf{N}$ je arita
- Pravdivostní tabulka
 - Definice logické funkce výčtem hodnot vstupů a výstupů (pro k vstupů má tabulka 2^k řádků)

Vstupy		Výstup		
a	b	f(a, b)		
0	0	0		
0	1	1		
1	0	1		
1	1	1		

Booleova algebra (1)

- Geogle Boole (1815 1864)
 - Matematik, filozof, logik
 - Systematizace aristotelské logiky
 - Symbolická logika (algebraická reprezentace logických výroků)
 - V mnoha ohledech předběhl dobu
 - Před axiomatizací teorie množin atd.
 - Retrospektivně považován za jednoho ze zakladatelů informatiky

[1]

Booleova algebra (2)

- Logické proměnné s oborem hodnot B = {0, 1}
- Základní logické operátory primitivní logické funkce
 - Negace (NOT): \overline{x} , $\neg x$, !x
 - Logický součin, konjunkce (AND): x · y, x Λ y, x && y
 - Logický součet, disjunkce (OR): x + y, x V y, x | | y
- Další logické operátory (16 pro 2 proměnné)
 - NAND, NOR, XOR atd.

Booleova algebra (3)

Vst	иру	Zá	kladní ope	rátory	Univerzální	í operátory	Další operátory						
a	b	NOT a	a AND b	a OR b	a NAND b	a NOR b	a XOR b	a XNOR b					
		٦	٨	V	\uparrow	\downarrow	⊕	\leftrightarrow	\rightarrow	+		H	Т
0	0	1	0	0	1	1	0	1	1	1	• • •	0	1
0	1	1	0	1	1	0	1	0	1	0		0	1
1	0	0	0	1	1	0	1	0	0	1	• • •	0	1
1	1	0	1	1	0	0	0	1	1	1	• • •	0	1

Booleova algebra (4)

Axiomy a odvozené vlastnosti

- **Idempotence:** a + a = a, $a \cdot a = a$
- **Mathematical Example 2.1 Mathematical Exampl**
- **Asociativita:** a + (b + c) = (a + b) + c, $a \cdot (b \cdot c) = (a \cdot b) \cdot c$
- **Absorpce:** $a \cdot (a + b) = a$, $a + (a \cdot b) = a$
- **Distributivita:** $a \cdot (b+c) = (a \cdot b) + (a \cdot c), a + (b \cdot c) = (a+b) \cdot (a+c)$
- **Neutralita 0 a 1:** a + 0 = a, $a \cdot 1 = a$
- **Agresivita 0 a 1:** a + 1 = 1, $a \cdot 0 = 0$
- Komplementarita: $a + \neg a = 1$, $a \cdot \neg a = 0$
- Absorpce negace: $a \cdot (\neg a + b) = a \cdot b$, $a + (\neg a \cdot b) = a + b$
- **De Morganovy zákony:** $\neg(a+b) = \neg a \cdot \neg b$, $\neg(a \cdot b) = \neg a + \neg b$
- **Dvojitá negace:** $\neg(\neg a) = a$

Logické operace (1)

- Rozšíření logických funkcí na operace s (konečnými) posloupnostmi bitů
 - Slovo = konečná posloupnost bitů
 - Délka slova = počet bitů konečné posloupnosti
 - Výstupní hodnota logické operace je funkce vstupních hodnot
 - $f: (\mathbf{B}^n)^k \to \mathbf{B}^n$, kde $\mathbf{B} = \{0, 1\}$, $k \in \mathbb{N}$ je arita a $n \in \mathbb{N}$ je délka slova

Logické operace (2)

Typické logické operace

- Logický součin, logický součet, logická negace atd. po bitech slova (bitwise)
 - Operátory &, |, ~ atd. v jazycích C, Java
 - Odpovídající logická funkce aplikována na jednotlivé bity vstupního slova, výsledky po jednotlivých bitech uloženy do výstupního slova
 - Umožňují izolovat (AND), vynulovat (AND, NOR), nastavit (OR), invertovat (XOR) vybrané bity slova, resp. invertovat bity celého slova (NOT)

Logické operace (3)

- Logické posuny vlevo a vpravo
 - Operátory << a >> v jazycích C, Java
 - Přesun bitů ve slově o i pozic vlevo nebo vpravo
 - "Uvolněné" bity jsou nahrazeny hodnotou 0
 - Pro reprezentaci přirozených čísel jako posloupnost bitů
 - Posun o i bitů vlevo odpovídá násobení číslem 2ⁱ
 - Posun o i bitů vpravo odpovídá dělení číslem 2ⁱ

Logická hradla (1)

Základní NOT, OR, AND

Logická hradla (2)

Fyzická realizace logických operátorů

Odvozené NAND, NOR, XOR

Logické obvody

- Spojení více logických operátorů
 - Logické signály jako proměnné
 - Logická hradla jako operátory
- V praxi nejčastější kombinace hradel NAND a NOR

• Funkční blok

- Seskupení logických obvodů do větších celků
- Abstrakce vnitřní struktury

Logický obvod sčítání

Součet dvou 1-bitových čísel

- Nejjednodušší případ
- Vstup: operand a, operand b
- Výstup: součet s, přenos c

•
$$s = a \cdot \neg b + \neg a \cdot b = a \text{ XOR } b$$

•
$$c = a \cdot b = a \text{ AND } b$$

Vst	upy	Výstupy		
a	b	S	C	
0	0	0	0	
0	1	1	0	
1	0	1	0	
1	1	0	1	

Logický obvod sčítání (2)

Logický obvod sčítání (3)

Sčítání n-bitových čísel

Spojení n ½-sčítaček pro jednotlivé bity?

 ½-sčítačka neumí propagovat přenosy mezi řády (málo vstupů)

Logický obvod sčítání (4)

Úplná sčítačka

- Součet dvou 1-bitových čísel s přihlédnutím k přenosu z nižšího řádu
- Vstup: operand a, operand b, přenos c_0
- Výstup: součet s, přenos c

Logický obvod sčítání (5)

Úplná sčítačka

- Součet dvou 1-bitových čísel s přihlédnutím k přenosu z nižšího řádu
- Vstup: operand a, operand b, přenos c_0
- Výstup: součet s, přenos c

•
$$s = \neg c_0 \cdot (a \cdot \neg b + \neg a \cdot b) + c_0 \cdot (a \cdot b + \neg a \cdot \neg b)$$

• $s = ...$
• $s = c_0 \times (a \times b)$

•
$$c = a \cdot b + c_0 \cdot (a \cdot \neg b + \neg a \cdot b)$$

 $c = (a \text{ AND } b) \text{ OR } (c_0 \text{ AND } (a \text{ XOR } b))$

c ₀	а	b	C	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Logický obvod sčítání (6)

Logický obvod sčítání (7)

Logický obvod sčítání (8)

Logický obvod odčítání

- Základní stavební blok: Sčítačka
- Použití XOR hradla jako řízeného invertoru
- Příklad: 2-bitová ALU s podporou sčítání a odčítání
 - Vstup: operand $a_1 a_0$, operand $b_1 b_0$
 - Řídící vstup: určení typu operace SUB
 - SUB = 0 → sčítání
 - SUB = 1 → odčítání
 - **Výstup:** součet/rozdíl $s_1 s_0$, přenos c

2-bitová ALU pro sčítání a odčítání

Logický obvod znaménkového rozšíření

Sekvenční obvody

Kombinační obvody + paměťové prvky

- Paměťové prvky udržují vnitřní stav
- Vstup a obsah paměťových prvků určuje výstup a následující stav (nový obsah paměťových prvků)
 - Synchronní vs. asynchronní sekvenční obvody
 - Způsob a okamžik změny stavu
 - Nutnost docílit stability vstupních hodnot (vstupní hodnoty se nemění)

Synchronní sekvenční obvody

Hodinový signál synchronizuje změny stavu

- Změna stavu během jednoho cyklu hodin
 - Hodnoty vstupů kombinačních obvodů se během čtení nemění
 - Zápis výstupů do paměťových prvků probíhá s náběžnou/sestupnou hranou hodinového signálu

Paměťové prvky

Dvojice invertorů se zpětnou vazbou

- Asynchronní obvod se dvěma stabilními stavy
 - Stav slouží pro uložení 1 bitu informace
- Logický základ paměťových obvodů
 - Potřebujeme stav obvodu nějak řídit...

Klopný obvod Set-Reset (R-S, latch)

Vst	иру	Výstupy		
\bar{r}	S	\boldsymbol{q}_{n}	$\overline{\boldsymbol{q}}_{n}$	
0	0	;	;	
0	1	0	1	
1	0	1	0	
1	1	q _{n-1}	¬q _{n-1}	

Klopný obvod Set-Reset (R-S, latch)

Vst	иру	Výstupy		
r	S	\boldsymbol{q}_{n}	$\overline{\boldsymbol{q}}_{_{\boldsymbol{n}}}$	
0	0	q _{n-1}	$\neg q_{n-1}$	
0	1	1	0	
1	0	0	1	
1	1	5	3	

Další klopné obvody

- Clocked R-S latch
 - Synchronní varianta R-S
 - Mění stav, kdykoliv je nastaveno r, s a hodinový signál je logická jednička
- R-S master/slave (R-S flip-flop)
 - Mění stav jen s náběžnou/sestupnou hranou hodinového signálu

Další klopné obvody (2)

Odvozené od R-S

- J-K master/slave (J-K flip-flop)
 - Rozšíření R-S (J = S, K = R), pro J = K = 1 provede inverzi aktuálního stavu
- Clocked D latch, D flip-flop
 - Jen jedna vstupní hodnota
- T flip-flop
 - Dělič vstupního hodinového signálu

Registr z klopných obvodů

Posuvný registr z klopných obvodů

32-bitová sekvenční násobička

32-bitová sekvenční dělička

Reference

1] http://upload.wikimedia.org/wikipedia/commons/c/ce/George_Boole_color.jpg

