Registration No:											
------------------	--	--	--	--	--	--	--	--	--	--	--

Total Number of Pages: 02

B.Tech. BSCM1211

4th Semester Back Examination 2017-18
DISCRETE MATHEMATICS
BRANCH: CSE. IT. ITE

Time: 3 Hours Max Marks: 70 Q.CODE: C584

Answer Question No.1 which is compulsory and any five from the rest.

The figures in the right hand margin indicate marks.

Answer all parts of a question at a place.

Q1 Answer the following questions:

 (2×10)

- a) Translate into a logical expression: "You can access the internet from campus only if you are a computer science major or you are not a freshman"
- **b)** Construct the truth table for $(p \land q) \rightarrow (p \land q)$.
- c) Write the principal disjunctive normal form of $(p \land \neg q)$
- **d)** Express the statement "Every student in this class has studied calculus" as a universal quantification.
- **e)** Prove that a tree with n vertices has n-1 edges.
- f) Give an example of graph having Hamiltonian circuit but not an Eulerian circuit.
- **g)** Prove that in an undirected graph numbers of odd degree vertices are even.
- h) Define Monoid and semigroup.
- i) In Boolean Algebra if a+b=1 & a.b=0, show that the complement of every a element is unique.
- j) Simplify the Boolean expressions XY + XZ + YZ
- **Q2 a)** Show that the propositions are $p \lor (q \land r) \& (p \lor q) \land (p \lor r)$ (5) logically equivalent.
 - **b)** Using rule of inference, determine whether the conclusion C is valid in the following premises:

$$H_1: P \Rightarrow (Q \Rightarrow R)$$

 $H_2: P \wedge Q$
 $C: R$

- **Q3** a) Prove that for any integer n > 1 $\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{n}} \ge \sqrt{n}$. (5)
 - **b)** Solve the recurrence relation $a_n = 4(a_{n-1} a_{n-2})$ with initial condition $a_0 = a_1 = 1$.
- Q4 Let $R = \{(1,2), (2,3), (3,1)\}$ and $A = \{1,2,3\}$,find the reflexive, (10) symmetric and transitive closure of R ,using
 - (i) Composition of relation R.
 - (ii) Composition of matrix relation R

- **Q5** a) Let G be a connected planar simple graph with E is number of edges &V is the number of vertices &R is a number of regions then V-E+R=2.
 - b) State & prove five-color theorem for groups. (5)
- **Q6** a) Prove that the number of edges in a bipartite graph with n vertices is at $most \left(\frac{n^2}{2} \right)$.
 - **b)** Let (L, \leq) be a lattice. Thenfor $a, b, c, d \in L$. (5) (i) $a \leq b \Rightarrow a \vee c \leq b \vee c$.
 - (ii) $a \le b \Rightarrow a \land c \le b \land c$.
- Q7 a) Show that every finite lattice has a least upper bound & a greatest lower bound. (5)
 - **b)** Show that if (a,b) are arbitrary elements of a group G, then $(ab)^2 = a^2b^2$ if G is abelian.
- Q8 Answer any TWO: (5 x 2)
 - a) Prim's Algorithm
 - b) Kruskal's Algorithm
 - c) Eulerian and Hamiltonian Graph
 - d) Principal Ideal Domain& Maximal Ideal