1993年全国硕士研究生招生考试

数 学 (一)

(科目代码:301)

一、填空题(本题共5小题,每小题3分,满分)	
(1) 函数 $F(x) = \int_{1}^{x} (2 - \frac{1}{\sqrt{t}}) dt (x > 0)$ 的单词	周减区间为
(2) 由曲线 $\begin{cases} 3x^2 + 2y^2 = 12, \\ z = 0 \end{cases}$ 绕 y 轴旋转一周	而得到的旋转曲面在点 $(0,\sqrt{3},\sqrt{2})$ 处的指向统
侧的单位法向量为	
(3) 设函数 $f(x) = \pi x + x^2(-\pi < x < \pi)$	的傅里叶级数展开式为 $\frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx +$
$b_n \sin nx$),则其中系数 b_3 的值为	_•
(4) 设数量场 $u = \ln \sqrt{x^2 + y^2 + z^2}$,则 div(gl	$rad\ u) = \underline{\hspace{1cm}}.$
(5) 设 n 阶矩阵 A 的各行元素之和均为零,且	A 的秩为 $n-1$,则线性方程组 $AX=0$ 的通
为	
二、选择题(本题共 5 小题,每小题 3 分,满分 15 分)	
(1) $\mathfrak{P}_0 f(x) = \int_0^{\sin x} \sin t^2 dt, g(x) = x^3 + x^4,$	则当 $x \to 0$ 时, $f(x)$ 是 $g(x)$ 的().
(A) 等价无穷小	(B) 同阶但非等价的无穷小
(C) 高阶无穷小	(D) 低阶无穷小
(2) 双纽线 $(x^2 + y^2)^2 = x^2 - y^2$ 所围成的区	域面积可用定积分表示为().
$(A)2\int_{0}^{\frac{\pi}{4}}\cos 2\theta \mathrm{d}\theta$	$(B)4\int_{0}^{\frac{\pi}{4}}\cos 2\theta \mathrm{d}\theta$
$(C)2\int_{0}^{\frac{\pi}{4}}\sqrt{\cos2\theta}\mathrm{d}\theta$	(D) $\frac{1}{2} \int_0^{\frac{\pi}{4}} \cos^2 2\theta \mathrm{d}\theta$
(3) 设有直线 L_1 : $\frac{x-1}{1} = \frac{y-5}{-2} = \frac{z+8}{1}$ 与 L	$x_2:\begin{pmatrix} x-y=6, \\ 2y+z=3, \end{pmatrix}$ 则 L_1 与 L_2 的夹角为().
$(A) \frac{\pi}{6} \qquad (B) \frac{\pi}{4}$	(C) $\frac{\pi}{3}$ (D) $\frac{\pi}{2}$

(4) 设曲线积分 $\int_{L} [f(x) - e^{x}] \sin y dx - f(x) \cos y dy$ 与路径无关,其中 f(x) 具有一阶连续

(A) $\frac{e^{-x} - e^x}{2}$ (B) $\frac{e^x - e^{-x}}{2}$ (C) $\frac{e^x + e^{-x}}{2} - 1$ (D) $1 - \frac{e^x + e^{-x}}{2}$

导数,且 f(0) = 0,则 f(x) 等于().

(5) 已知
$$\mathbf{Q} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & t \\ 3 & 6 & 9 \end{pmatrix}$$
, \mathbf{P} 为 3 阶非零矩阵,且满足 $\mathbf{PQ} = \mathbf{O}$,则().

(A)t = 6 时,**P** 的秩必为 1

 $(B)_t = 6$ 时,**P** 的秩必为 2

 $(C)t \neq 6$ 时,**P** 的秩必为 1

 $(D)t \neq 6$ 时,**P** 的秩必为 2

三、(本题共3小题,每小题5分,满分15分)

(1) 求
$$\lim_{x \to \infty} \left(\sin \frac{2}{x} + \cos \frac{1}{x} \right)^x$$
.

(2)
$$\Re \int \frac{x e^x}{\sqrt{e^x - 1}} dx$$
.

(3) 求微分方程 $x^2y' + xy = y^2$ 满足初始条件 $y|_{x=1} = 1$ 的特解.

四、(本题满分6分)

计算曲面积分 $\iint_{\Sigma} 2xz \, \mathrm{d}y \, \mathrm{d}z + yz \, \mathrm{d}z \, \mathrm{d}x - z^2 \, \mathrm{d}x \, \mathrm{d}y$,其中 Σ 是由曲面 $z = \sqrt{x^2 + y^2}$ 与 $z = \sqrt{2 - x^2 - y^2}$ 所围立体表面的外侧.

五、(本题满分7分)

求级数
$$\sum_{n=0}^{\infty} \frac{(-1)^n (n^2 - n + 1)}{2^n}$$
 的和.

六、(本题共2小题,每小题5分,满分10分)

(1) 设在 $[0, +\infty)$ 上函数 f(x) 有连续导数,且 $f'(x) \ge k > 0$, f(0) < 0. 证明: f(x) 在 $(0, +\infty)$ 内有且仅有一个零点.

(2) 设 b > a > e,证明: $a^b > b^a$.

七、(本题满分8分)

已知二次型 $f(x_1,x_2,x_3) = 2x_1^2 + 3x_2^2 + 3x_3^2 + 2ax_2x_3$ (a > 0),通过正交变换化为标准 形 $f = y_1^2 + 2y_2^2 + 5y_3^2$,求参数 a 及所用的正交变换矩阵.

八、(本题满分6分)

设 A 是 $n \times m$ 矩阵 B 是 $m \times n$ 矩阵 A 其中 n < m E 是 n 阶单位矩阵 A B E ,证明 B 的列向量组线性无关.

九、(本题满分6分)

设物体 A 从点(0,1) 出发,以速度大小为常数 v 沿 y 轴正向运动,物体 B 从点(-1,0) 与 A 同时出发,其速度大小为 2v,方向始终指向 A,试建立物体 B 的运动轨迹所满足的微分方程,并写出初始条件.

十、填空题(本题共2小题,每小题3分,满分6分)

- (1) 一批产品共有 10 个正品和 2 个次品,任意抽取两次,每次抽一个,抽出后不再放回,则第二次抽出的产品是次品的概率为______.
- (2) 设随机变量 X 服从(0,2) 上的均匀分布,则随机变量 $Y = X^2$ 在(0,4) 内的概率密度 $f_Y(y) =$

十一、(本题满分6分)

设随机变量 X 的概率密度为 $f(x) = \frac{1}{2} e^{-|x|}$, $-\infty < x < +\infty$.

- (1) 求 X 的数学期望 E(X) 和方差 D(X);
- (2) 求 X 与 |X| 的协方差,并问 X 与 |X| 是否不相关?
- (3) 问 X 与 | X | 是否相互独立? 为什么?