ÇOK DEĞİŞKENLİ İSTATİSTİKSEL ANALİZ FİNAL

Yasemin Hızarcı

121516005

1.SORU:

Manova ile iki grubu ayıran değişkenlerin tespit edilmesi.

					Co	efficients ^a							
		Unstandardize	d Coefficients	Standardized Coefficients			95.0% Confider	nce Interval for B	c	orrelations		Collinearity	/ Statistics
Model		В	Std. Error	Beta	t	Sig.	Lower Bound	Upper Bound	Zero-order	Partial	Part	Tolerance	VIF
1	(Constant)	.396	.313		1.267	.215	242	1.035					
	RATIO8(YP Aktifler / YP Pasifler)	001	.002	037	250	.804	005	.004	392	046	022	.364	2.74
	RATIO20(şüpheli alacak rasyosu)	.032	.015	1.011	2.178	.037	.002	.062	.393	.370	.195	.037	26.76
	RATIO18(Toplam Gelirler / Toplam Giderler)	004	.002	624	-2.600	.014	008	001	661	429	233	.140	7.10
	RATIO14(Net Dönem Karı / Ortalama Ödenmiş Sermaye)	.000	.000	.420	1.662	.107	.000	.000	393	.290	.149	.126	7.9
	RATIO9(Likit Aktifler / T. Aktifler)	.024	.010	1.154	2.430	.021	.004	.043	.374	.406	.218	.036	28.0
	RATIO10(Likit Aktifler / (Mevduat+Mevduat Dışı Kaynaklar))	017	.009	934	-1.956	.060	036	.001	.044	336	175	.035	28.3
	RATIO19(Takip.Alacak. Karşılığı / T.Krediler)	001	.001	-1.233	-2.342	.026	002	.000	.246	393	210	.029	34.5
	RATIO3(Net Çalışma Sermayesi / T.Aktifler	008	.008	-1.190	-1.007	.322	025	.009	209	181	090	.006	173.5
	RATIO16(Faiz Gelirleri / Faiz Giderleri)	.000	.001	.029	.152	.881	002	.002	509	.028	.014	.223	4.4
	RATIO1((Özkaynak+Kar) / T.Aktifler)	.008	.009	1.074	.851	.401	011	.026	205	.154	.076	.005	198.1

a. Dependent Variable: Y(Mevduat Sigorta Fonuna Devir Durumu)

Vif değeri 10 dan yüksek olan değişkenler analizden çıkarılmıştır. 4 değişken ile manova analizi yapılmıştır.

	Multivariate Tests ^a							
Effect		Value	F	Hypothesis df	Error df	Sig.	Partial Eta Squared	
Intercept	Pillai's Trace	.946	157.540 ^b	4.000	36.000	.000	.946	
	Wilks' Lambda	.054	157.540 ^b	4.000	36.000	.000	.946	
	Hotelling's Trace	17.504	157.540 ^b	4.000	36.000	.000	.946	
	Roy's Largest Root	17.504	157.540 ^b	4.000	36.000	.000	.946	
YMevduatSigortaFonuna	Pillai's Trace	.496	8.866 ^b	4.000	36.000	.000	.496	
DevirDurumu	Wilks' Lambda	.504	8.866 ^b	4.000	36.000	.000	.496	
	Hotelling's Trace	.985	8.866 ^b	4.000	36.000	.000	.496	
	Roy's Largest Root	.985	8.866 ^b	4.000	36.000	.000	.496	

a. Design: Intercept + YMevduatSigortaFonunaDevirDurumu

Yukarıdaki tabloda bağımsız değişken (Y faktör değişkeni) için istatistiksel anlamlılık değerleri ve ETA değerleri kontrol edilir. 0.05 ten küçük olan anlamlılık değerleri için bağımlı değişken vektörleri

b. Exact statistic

açısından gruplar arasında fark olduğu anlaşılır. Buna göre Y değişkeni açısından anlamlı bir fark vardır. Eta değerlerine bakarak da bu değişkenin ne kadar katkı sağladığı anlaşılabilir(0.496)

Box's Test of Equality of Covariance Matrices^a

Box's M	21.471
F	1.660
df1	10
df2	710.171
Sig.	.086

Box'ın anlamlılık değeri > 0.05 olduğundan var-cov matrislerinin eşitliği varsayımı sağlanmaktadır.

Levene's Test of Equality of Error Variances^a

	F	df1	df2	Sig.
RATIO8(YP Aktifler / YP Pasifler)	.029	1	39	.865
RATIO18(Toplam Gelirler / Toplam Giderler)	.006	1	39	.941
RATIO14(Net Dönem Karı / Ortalama Ödenmiş Sermaye)	.379	1	39	.542
RATIO16(Faiz Gelirleri / Faiz Giderleri)	.083	1	39	.775

Tests the null hypothesis that the error variance of the dependent variable is equal across groups.

Levene testi anlamlılık değerlerine bakıldığında 4 değişken için de varyansların homojenliği varsayımının sağlandığı görülüyor.

a. Design: Intercept + YMevduatSigortaFonunaDevirDurumu

	Tes	sts of Between-Su	ıbjects Effe	cts			
Source	Dependent Variable	Type III Sum of Squares	df	Mean Square	F	Sig.	Partial Eta Squared
Corrected Model	RATIO8(YP Aktifler / YP Pasifler)	4579.969 ^a	1	4579.969	7.074	.011	.154
	RATIO18(Toplam Gelirler / Toplam Giderler)	57331.910 ^b	1	57331.910	30.258	.000	.437
	RATIO14(Net Dönem Karı I Ortalama Ödenmiş Sermaye)	3651355.62°	1	3651355.623	7.110	.011	.154
	RATIO16(Faiz Gelirleri <i>l</i> Faiz Giderleri)	82348.167 ^d	1	82348.167	13.605	.001	.259
Intercept	RATIO8(YP Aktifler / YP Pasifler)	84961.060	1	84961.060	131.229	.000	.771
	RATIO18(Toplam Gelirler / Toplam Giderler)	78265.895	1	78265.895	41.306	.000	.514
	RATIO14(Net Dönem Karı / Ortalama Ödenmiş Sermaye)	8531112.176	1	8531112.176	16.613	.000	.299
	RATIO16(Faiz Gelirleri <i>l</i> Faiz Giderleri)	359237.534	1	359237.534	59.351	.000	.603
YMevduatSigortaFonuna DevirDurumu	RATIO8(YP Aktifler / YP Pasifler)	4579.969	1	4579.969	7.074	.011	.154
	RATIO18(Toplam Gelirler / Toplam Giderler)	57331.910	1	57331.910	30.258	.000	.437
	RATIO14(Net Dönem Karı / Ortalama Ödenmiş Sermaye)	3651355.623	1	3651355.623	7.110	.011	.154
	RATIO16(Faiz Gelirleri <i>l</i> Faiz Giderleri)	82348.167	1	82348.167	13.605	.001	.259

Y değişkeni için bakıldığında 4 değişken için de p değerinin 0.05'ten küçük olduğu görülüyor.

Buna göre bağımsız değişkenin (Y) gruplarına göre Ratio8,Ratio18,Ratio14,Ratio16 değişkenlerinin değerleri arasında anlamlı fark vardır. Yani başarılı ve başarısız gruplar Ratio8,Ratio18,Ratio14,Ratio16 değerlerini etkilemektedir. Bu durumda bu 4 değişken iki grubu(Y değişkenindeki bağımlı bağımsız) ayırabilirler.

2.SORU:

Faktör analizi ile değişkenler arasındaki ilişkilerin incelenmesi ve verinin üzerindeki gruplamaya benzer bir faktörleşme olup olmadığının incelenmesi.

Communalities

	Initial	Extraction
RATIO8(YP Aktifler / YP Pasifler)	1.000	.577
RATIO20(şüpheli alacak rasyosu)	1.000	.969
RATIO18(Toplam Gelirler / Toplam Giderler)	1.000	.799
RATIO14(Net Dönem Karı / Ortalama Ödenmiş Sermaye)	1.000	.852
RATIO9(Likit Aktifler / T. Aktifler)	1.000	.957
RATIO10(Likit Aktifler / (Mevduat+Mevduat Dışı Kaynaklar))	1.000	.972
RATIO19(Takip.Alacak. Karşılığı / T.Krediler)	1.000	.940
RATIO3(Net Çalışma Sermayesi / T.Aktifler	1.000	.882
RATIO16(Faiz Gelirleri / Faiz Giderleri)	1.000	.615
RATIO1((Özkaynak+Kar) / T.Aktifler)	1.000	.873

Extraction Method: Principal Component Analysis.

Communalities, dikkate alınan her değişkendeki varyans miktarını gösterir. Initial communalities her bir değişkenin toplam varyansıdır ve korelasyon matrisini baz aldığımız için 1'e eşittir.

Extraction communalities, bileşenler tarafından hesaplanan her değişkendeki varyans tahminleridir. Bu tablodaki communalities değerleri yüksektir, bu da çıkarılan bileşenlerin değişkenleri iyi temsil ettiğini gösterir.

	Total Variance Explained															
			Initial Eigenvalu	ies	Extraction	n Sums of Square	d Loadings	Rotation Sums of Squared Loadings								
Component	Tota	al	% of Variance	Cumulative %	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %						
1	5.4	144	54.442	54.442	5.444	54.442	54.442	4.526	45.264	45.264						
2	1.9	978	19.780	74.221	1.978	19.780	74.221	2.000	20.000	65.263						
3	1.0	15	10.145	84.367	1.015	10.145	84.367	1.910	19.103	84.367						
4	.7	736	7.357	91.724												
5	.4	199	4.986	96.710												
6	.1	188	1.877	98.586												
7	.0	99	.992	99.578												
8	.0)27	.273	99.851												
9	.0	12	.122	99.973												
10	.0	003	.027	100.000												
Extraction Met	hod: Pri	incipa	al Component An	alysis.					extraction Method: Principal Component Analysis.							

Açıklanan toplam varyans ile ilgili tabloda Toplam sütunu, her bir bileşen tarafından hesaplanan orijinal değişkenlerdeki özdeğer veya varyans miktarını verir. Varyans Yüzdesi sütunu, her bir bileşen tarafından açıklanan varyansın tüm değişkenlerdeki toplam varyansa oranını yüzde olarak ifade eder. Kümülatif % sütunu, ilk n bileşen tarafından hesaplanan varyans yüzdesini verir.

İlk çözüm için değişkenler kadar çok bileşen vardır ve bir korelasyon analizinde özdeğerlerin toplamı bileşenlerin sayısına eşittir. 1'den büyük özdeğerlerin çıkarılmasını talep ettiğimiz için, ilk üç ana bileşen çıkarılan çözümü oluşturur.

Extraction Sums of Squared Loadings						
Total	% of Variance	Cumulative %				
5.444	54.442	54.442	Γ			
1.978	19.780	74.221	l			
1.015	10.145	84.367	l			
			l			
			l			
			l			
			l			
			l			

Tablonun ikinci bölümü, çıkarılan bileşenleri göstermektedir. Orijinal on değişkendeki değişkenliğin % 84.37'sini açıklarlar, böylece bu bileşenleri kullanarak veri kümesinin karmaşıklığını yalnızca% 15.63'lük bir bilgi kaybıyla önemli ölçüde azaltabiliriz.

Rotation	Rotation Sums of Squared Loadings						
Total	% of Variance	Cumulative %					
4.526	45.264	45.264					
2.000	20.000	65.263					
1.910	19.103	84.367					

Döndürme (rotation), çıkarılan bileşenler tarafından açıklanan kümülatif varyasyon yüzdesini korur, ancak bu varyasyon artık bileşenlere daha eşit bir şekilde yayılır. Bireysel toplamlardaki büyük değişiklikler, döndürülen bileşen matrisinin döndürülmemiş matrise göre yorumlanmasının daha kolay olacağını göstermektedir.

Yamaç (Scree) grafiği, optimum bileşen sayısını belirlemenize yardımcı olur. İlk çözümdeki her bileşenin özdeğerine karşılık çizilir. Genellikle, dik yokuştaki bileşenleri önemli bileşenler olarak seçilir. Düzlükteki bileşenler çözüme çok az katkıda bulunur. Grafiğe bakıldığında 1 ve 2 de büyük düşüşler olmuştur.5'te de bir miktar düşüş olmuş ve sonrasında daha yatay seyretmiştir.

Rotated Component Matrix^a

	Component			
	1	2	3	
RATIO8(YP Aktifler / YP Pasifler)	.634	225	352	
RATIO20(şüpheli alacak rasyosu)	192	.962	.087	
RATIO18(Toplam Gelirler / Toplam Giderler)	.881	149	015	
RATIO14(Net Dönem Karı / Ortalama Ödenmiş Sermaye)	.844	374	.021	
RATIO9(Likit Aktifler / T. Aktifler)	185	.176	.944	
RATIO10(Likit Aktifler / (Mevduat+Mevduat Dışı Kaynaklar))	.326	083	.927	
RATIO19(Takip.Alacak. Karşılığı / T.Krediler)	492	.835	.045	
RATIO3(Net Çalışma Sermayesi / T.Aktifler	.910	216	.081	
RATIO16(Faiz Gelirleri / Faiz Giderleri)	.750	189	.130	
RATIO1((Özkaynak+Kar) / T.Aktifler)	.908	215	.052	

Extraction Method: Principal Component Analysis.

Rotation Method: Varimax with Kaiser Normalization.

a. Rotation converged in 4 iterations.

Döndürülen bileşen matrisi, bileşenlerin neyi temsil ettiğini belirlemenize yardımcı olur. İlk bileşen, Ratio3,ikinci bileşen, en yüksek ölçüde Ratio20 ile ilişkilidir. Üçüncü bileşen, en yüksek oranda Ratio9

ile ilişkilidir. Daha sonraki analizlerde Ratio3, Ratio20, Ratio9 değişkenlerine odaklanabileceğimizi, ancak bileşen puanlarını kaydederek daha da iyisini yapabileceğinizi gösterir.

Component Score Coefficient Matrix

	Component		
	1	2	3
RATIO8(YP Aktifler / YP Pasifler)	.167	.059	199
RATIO20(şüpheli alacak rasyosu)	.230	.691	049
RATIO18(Toplam Gelirler / Toplam Giderler)	.258	.159	039
RATIO14(Net Dönem Karı / Ortalama Ödenmiş Sermaye)	.173	034	.007
RATIO9(Likit Aktifler / T. Aktifler)	060	023	.500
RATIO10(Likit Aktifler / (Mevduat+Mevduat Dışı Kaynaklar))	.037	066	.491
RATIO19(Takip.Alacak. Karşılığı / T.Krediler)	.089	.501	041
RATIO3(Net Çalışma Sermayesi / T.Aktifler	.242	.105	.019
RATIO16(Faiz Gelirleri / Faiz Giderleri)	.193	.071	.051
RATIO1((Özkaynak+Kar) / T.Aktifler)	.243	.108	.003

Extraction Method: Principal Component Analysis. Rotation Method: Varimax with Kaiser Normalization. Component Scores.

Her gözlem ve her bileşen için, bileşen(faktör) skoru, gözlemin standartlaştırılmış değişken değerleri (z standartlaştırması) ile bileşenin faktör yükü katsayıları çarpılarak hesaplanır. Ortaya çıkan üç bileşen skor değişkeni, yalnızca % 15.63 bilgi kaybıyla on orijinal değişkeni temsil eder ve bunların yerine kullanılabilir.

Kaydedilen bileşenlerin kullanılması, Ratio3, Ratio20 ve Ratio9 olarak kullanılmasına tercih edilir, çünkü bileşenler on orijinal değişkenin tamamını temsil eder ve bileşenler birbiriyle doğrusal olarak ilişkilendirilmez.

Bileşenler arasındaki doğrusal korelasyonun 0 olması garanti edilse de, bileşenler arasındaki aykırı değerleri ve doğrusal olmayan ilişkileri kontrol etmek için bileşen puanlarının grafiklerine bakılmalıdır.

GGraph

Dağılımlara bakıldığında başarılı ve başarısız olacak şekilde ayrı dağılımlar oluşmadığı görülüyor.Bu durumda verinin üzerindeki gruplaşmaya benzer bir faktörleşme olmadığı sonucuna varılır.

3.SORU

Kümeleme analizi ile bankaların kümelenmesinin incelenmesi ve bu incelemenin başarılı-başarısız banka ayırımına katkı sağlayıp sağlamadığının yorumlanması.

2 aşamalı kümeleme analizi kullanılmıştır.

Model Summary

Algorithm	TwoStep
Inputs	11
Clusters	2

Cluster Quality

• Model özet tablosu, seçilen 11 giriş özelliğine (alanlarına) bağlı olarak 2 küme bulunduğunu gösterir.

Cluster 1 2

• Küme kalite tablosu, genel model kalitesinin "İyi" olduğunu gösterir.

Bankaların %73.2'si (30) 1. Kümeye, %26.8'i (11) 2. Kümeye atanmıştır.

Predictor Importance

Burada kümelemenin oluşturulmasında hangi değişkenin ne kadar etkili olduğunu görüyoruz.Grafiğe göre kümelemenin oluşturulmasında en önemli (etkili) olan ilk 3 değişken sırası ile Ratio18,Ratio14 ve Y değişkenleridir. En az etkili olan değişken ise Ratio9 değişkenidir.

Cluster	1	2
Label		
Description		
Size	73.2%	
Inputs	RATIO18(Toplam Gelirler / Toplam Giderler) 113.23	RATIO18(Toplam Gelirler / Toplam Giderler) 3.88
	RATIO14(Net Dönem Karı / Ortalama Ödenmiş Sermaye) 15.89	RATIO14(Net Dönem Karı / Ortalama Ödenmiş Sermaye) -1,332.73
	Y(Mevduat Sigorta Fonuna Devir Durumu) Başarılı (100.0%)	Y(Mevduat Sigorta Fonuna Devir Durumu) Başarısız (72.7%)

Y değişkenine bakıldığında 1. Kümedeki bankaların tamamının başarılı olduğu görülüyor.2. kümedeki bankaların ise %72.7 si Başarısız, geri kalanı başarılı bankalardır.

Bu grafiklerle de yukarıdaki tablodan çıkarılan sonuç desteklenmektedir.

Bu durumda yapılan kümelemenin başarılı, başarısız banka ayrımına katkı sağladığı sonucuna ulaşılabilir.

4.SORU:

Çok boyutlu ölçekleme ile bankaların birbirlerine göre konumlarının, benzerlik ve farklılıklarının incelenmesi.

Veri setinin %100 ü kullanılmıştır.

Yapılan iterasyon sonucunda, S-stress değerinin değişimi 4. iterasyondan sonra en küçük halini alıp durur.

Stress = .11030 RSQ = .97542

Configuration derived in 2 dimensions

Uzaklık matrisi ile konfigürasyon matrisi arasındaki uyumun iyiliğini gösterir ve stress değeri <20 omalıdır.0.11 iyi bir uyum olduğunu gösterir.

RSQ , konfigürasyonda elde edilen konumların, gerçek uzaklık konumları arasındaki uyum iyiliğini verir. Uyum>%67 olmalıdır. Uyum %97.5 olup, oldukça iyi bir sonuçtur.

2 Boyutta, mükemmel bir uyum ile iyi bir açıklanma oranı elde edilmiştir.

Dimension

Stimulus	Stimulus	1	2
Number	Name		
1	VAR1	1.0001	.4387
2	VAR2	.5900	.6267
3	VAR3	.4122	.6158
4	VAR4	.7513	1.1226
5	VAR5	3775	7876
6	VAR6	-4.6857	7735
7	VAR7	.5965	.4560
8	VAR8	.4570	.8519
9	VAR9	.9779	1.1630
10	VAR10	.2871	3301
11	VAR11	.5359	4835
12	VAR12	-1.1846	.4523
13	VAR13	-1.0221	.9620
14	VAR14	8968	9669
15	VAR15	.5365	1589
16	VAR16	-2.1011	-1.4284
17	VAR17	-1.3293	-1.0672
18	VAR18	.3913	.0791
19	VAR19	.7065	3727
20	VAR20	.8943	0102
21	VAR21	.1651	6280
22	VAR22	.4854	.0413
23	VAR23	.6295	2973
24	*******	4720	6721
24 25	VAR24 VAR25	.4739	6731 1601
26	VAR25 VAR26	.1212	5401
27	VAR27	7325	2716
28	VAR28	.5674	.3989
29	VAR29	.4411	4673
30	VAR30	.6770	.6671
31	VAR31	.6749	.2033
32	VAR32	1.0192	-1.5323
33	VAR33	.2676	.6727
34	VAR34	.5390	3323
35	VAR35	.5114	3293
36	VAR36	.7132 7092	3853
37 38	VAR37 VAR38	7092 .4314	1.1656 6374
39	VAR30 VAR39	0708	.9128
40	VAR40	.6896	2382
41	VAR41	-3.8362	2.0416

Yukarıdaki tablo her gözleme(bankaya) hangi konumda yer verileceği, boyutlara karşı bankaların x ve y ekseninde konumlarını gösterir.

Burada birbirine benzer özellikler gösteren bankalar birbirine yakın olacak şekilde konumlanmıştır.41 ve 6. Bankaların diğerlerinden uzak oldukları, yani diğerleriyle daha az benzer özellikler taşıdıkları görülüyor.

Modelin serpilme diyagramı da uyumun iyiliğini gösterir. Mümkün olduğunca doğrusal ve 45 derecelik doğru üzerinde olması beklenir. Değişkenler arasındaki uzaklıkların doğrusallığa yakın bir

ilişki gösterdiği ,dolayısıyla modelin ortaya koyduğu uzaklıkların gerçek uzaklıklar ile uyum gösterdiği söylenebilir.

5.SORU:

Diskriminant analizi ile başarılı-başarısız banka sınıflandırılmasının yapılması.

Vif değeri 10'dan büyük olan değişkenler veriden çıkarılarak Diskriminant analizi uygulanmıştır.

Tests of Equality of Group Means

	Wilks' Lambda	F	df1	df2	Sig.
RATIO8(YP Aktifler / YP Pasifler)	.846	7.074	1	39	.011
RATIO18(Toplam Gelirler / Toplam Giderler)	.563	30.258	1	39	.000
RATIO14(Net Dönem Karı / Ortalama Ödenmiş Sermaye)	.846	7.110	1	39	.011
RATIO16(Faiz Gelirleri / Faiz Giderleri)	.741	13.605	1	39	.001

P değerleri her değişken için 0.05 ten küçüktür. Bu durumda ortalamalar arasındaki farkın anlamlı olduğu sonucuna varılır ve diskriminant analizi yapılabilir.

Test Results

Box's	М	.000
F	Approx.	.000
	df1	1
	df2	1224.924
	Sig.	.997

Tests null hypothesis of equal population covariance matrices.

Box's M test sonucuna göre Varyans-Kovaryans matrisinin eşitliği varsayımı sağlanmaktadır.

	Variables Entered/Removed ^{a,b,c,d}											
	Wilks' Lambda											
			Exact F									
Step	Entered	Statistic	df1	df2	df3	Statistic	df1	df2	Sig.			
1	RATIO18 (Toplam Gelirler / Toplam Giderler)	.563	1	1	39.000	30.258	1	39.000	.000			

At each step, the variable that minimizes the overall Wilks' Lambda is entered.

- a. Maximum number of steps is 8.
- b. Minimum partial F to enter is 3.84.
- c. Maximum partial F to remove is 2.71.
- d. F level, tolerance, or VIN insufficient for further computation.

Değişkenlerden sadece 1 tanesinin F istatistiği 3.84 ten büyüktür.

Eigenvalues

Function	Eigenvalue	% of Variance	Cumulative %	Canonical Correlation
1	.776ª	100.0	100.0	.661

a. First 1 canonical discriminant functions were used in the analysis.

Wilks' Lambda

Test of Function(s)	Wilks' Lambda	Chi-square	df	Sig.
1	.563	22.110	1	.000

Eigenvalues tablosunda Eigenvalue(özdeğer) büyük olması bağımlı değişkendeki varyansın daha büyük bir kısmının elde edilen fonksiyon tarafından açıklanabileceğini göstermektedir.

Wilks Lambda tablosunda p değerinin 0.05 ten küçük olması fonksiyonun ayırt etme gücünün anlamlı olduğunu gösterir.

Structure Matrix

	Function
	1
RATIO18(Toplam Gelirler / Toplam Giderler)	1.000
RATIO14(Net Dönem Karı / Ortalama Ödenmiş Sermaye) ^a	.780
RATIO16(Faiz Gelirleri / Faiz Giderleri) ^a	.731
RATIO8(YP Aktifler / YP Pasifler) ^a	.445

Pooled within-groups correlations between discriminating variables and standardized canonical discriminant functions

Variables ordered by absolute size of correlation within function.

 a. This variable not used in the analysis.

Oluşturulan ayırım fonksiyonunda en etkili değişken Ratio 18 değişkenidir.

Casewise Statistics											
				Highest Group				Second Highest Group			Discriminant Scores
			Dec Waterd	P(D>d	G=g)		Squared Mahalanobis			Squared Mahalanobis	
	Case Number	Actual Group	Predicted Group	р	df	P(G=g D=d)	Distance to Centroid	Group	P(G=g D=d)	Distance to Centroid	Function 1
Original	1	0	0	.118	1	.999	2.449	1	.001	13.909	1.988
	2	0	0	.731	1	.989	.118	1	.011	6.299	.767
	3	0	0	.867	1	.984	.028	1	.016	5.442	.590
	4	0	0	.503	1	.995	.449	1	.005	8.040	1.093
	5	1	0**	.160	1	.673	1.975	1	.327	.581	982
	6	0	1**	.176	1	.980	1.834	0	.020	12.417	-3.100
	7	0	0	.990	1	.978	.000	1	.022	4.745	.435
	8	0	0	.815	1	.986	.055	1	.014	5.757	.656
	9	0	0	.328	1	.997	.955	1	.003	9.875	1.400
	10	0	0	.842	1	.966	.040	1	.034	3.868	.224
	11	0	0	.817	1	.986	.053	1	.014	5.744	.654
	12	1	1	.821	1	.806	.051	0	.194	5.736	-1.972
	13	1	1	.978	1	.705	.001	0	.295	4.583	-1.717
	14	0	0	.110	1	.574	2.560	1	.426	.322	-1.177
	15	0	0	.545	1	.994	.366	1	.006	7.673	1.027
	16	0	1**	.810	1	.810	.058	0	.190	5.800	-1.985
	17	1	1	.061	1	.993	3.502	0	.007	16.332	-3.618
	18	0	0	.935	1	.981	.007	1	.019	5.052	.505
	19	0	0	.907	1	.982	.014	1	.018	5.210	.540
	20	0	0	.994	1	.977	.000	1	.023	4.657	.415

		ı			ı	i		ı		
21	0	0	.287	1	.812	1.132	1	.188	1.216	641
22	0	0	.860	1	.984	.031	1	.016	5.487	.599
23	0	0	.807	1	.962	.059	1	.038	3.696	.179
24	0	0	.632	1	.992	.229	1	.008	6.991	.901
25	0	0	.955	1	.980	.003	1	.020	4.939	.479
26	0	0	.500	1	.909	.455	1	.091	2.226	251
27	1	1	.768	1	.572	.087	0	.428	3.507	-1.449
28	0	0	.637	1	.992	.222	1	.008	6.955	.895
29	0	0	.960	1	.980	.003	1	.020	4.912	.473
30	0	0	.424	1	.996	.638	1	.004	8.787	1.222
31	0	0	.653	1	.991	.202	1	.009	6.841	.873
32	0	0	.377	1	.997	.782	1	.003	9.300	1.307
33	1	0**	.578	1	.928	.310	1	.072	2.591	134
34	0	0	.567	1	.993	.328	1	.007	7.495	.995
35	0	0	.994	1	.977	.000	1	.023	4.660	.416
36	0	0	.406	1	.996	.691	1	.004	8.980	1.254
37	1	1	.716	1	.848	.132	0	.152	6.414	-2.109
38	0	0	.932	1	.981	.007	1	.019	5.067	.508
39	0	0	.299	1	.820	1.078	1	.180	1.274	615
40	0	0	.363	1	.997	.827	1	.003	9.453	1.332
41	1	1	.816	1	.808	.054	0	.192	5.764	-1.977
**. Misclassified case										

Yukarıdaki tabloda her bir bankanın skorları görülmektedir. Her bir bankanın başarılı ve başarısız olmasının tahminleri ve gerçek durumları görülmektedir.

Classification Results^a

		Y(Mevduat Sigorta	Predicted Grou		
		Fonuna Devir Durumu)	Başarılı	Başarısız	Total
Original	Count	Başarılı	31	2	33
		Başarısız	2	6	8
	%	Başarılı	93.9	6.1	100.0
		Başarısız	25.0	75.0	100.0

a. 90.2% of original grouped cases correctly classified.

Gerçekte başarılı iken doğru sınıflandırılan banka sayısı 31, yanlış sınıflandırılan banka sayısı 2'dir.

Gerçekte Başarısız iken doğru sınıflandırılan banka sayısı 6, yanlış sınıflandırılan banka sayısı ise 2'dir.

Yüzdelere bakıldığında ise gerçekte başarılı iken doğru tahmin oranı %93.9 dur.

Gerçekte başarısız olan bankaların doğru tahmin oranı ise %75 tir.