SYDNEY TECHNICAL HIGH.SCHOOL

HIGHER SCHOOL CERTIFICATE ASSESSMENT TASK 1 November 2016

Mathematics Extension 2

Name	•	
	•	
Teacher		

General Instructions

- Working Time 75 min.
- Write using a blue or black pen.
- Board approved calculators may be used.
- The reference sheet is provided at the back of this paper.
- In Questions 6-9, show relevant mathematical reasoning and /or calculations.
- Begin each question on a fresh sheet of paper.

Total marks (53)

- Attempt Questions 1-9.
- All questions are of equal value.

Section 1

Multiple Choice (5 marks)

Use the multiple choice answer sheet for Question 1-5

1. What is $-\sqrt{3} + i$ expressed in modulus-argument form?

(A)
$$\sqrt{2} \left(\cos \frac{\pi}{6} + i \sin \frac{\pi}{6} \right)$$

(B)
$$2\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)$$

(C)
$$\sqrt{2} \left(\cos \frac{5\pi}{6} + i \sin \frac{5\pi}{6} \right)$$

(D)
$$2\left(\cos\frac{5\pi}{6} + i\sin\frac{5\pi}{6}\right)$$

2. Two secants from the point P intersect a circle as shown in the diagram.

What is the value of x?

- (A) 2
- (B) 5
- (C) 7
- (D) 8

3. Consider the following diagram, drawn to scale, showing the complex numbers z and ω .

Which statement is false?

(A)
$$|z + \omega| = |z - \omega|$$

(B)
$$Re\left(\frac{\omega}{z}\right) = 0$$

(C)
$$-\pi < \arg(z - \omega) < 0$$

- (D) $z^2 = k\omega^2$ for some real number k
- 4. Two equal circles touch externally at B. XB is a diameter of one circle. XZ is the tangent from X to the other circle and cuts the first circle at Y.

Which is the correct expression that relates to XZ to XY?

(A)
$$2XZ = 3XY$$

(B)
$$XZ = 2XY$$

(C)
$$3XZ = 4XY$$

(D)
$$2XZ = 5XY$$

- 5. What is the value of $S = \sum_{r=1}^{\infty} rp(1-p)^{r-1}$ where 0 ?
 - (A) S = 1
 - (B) $S = \frac{1}{p}$
 - $(C) S = \frac{1}{1 p}$
 - $(D) S = \frac{1}{p(1-p)}$

Section II Total Marks (48)

Attempt Questions 6-9.

Answer each question in your writing booklet.

In Questions 6-9, your responses should include relevant mathematical reasoning and/or calculations.

Question 6 (12 Marks) Use a Separate Sheet of paper

a) Let
$$A = 3 - 4i$$
 and $B = 2 + i$
Find in the form $x + iy$

Find in the form
$$x + iy$$

i)
$$A-B$$

1

ii)
$$\overline{A}B$$

1

iii)
$$\frac{5}{A}$$

2

iv)
$$\frac{iB}{\overline{R}}$$

2

b) Use Mathematical Induction to prove that
$$3^{2n+4} - 2^{2n}$$
 is divisible by 5 for an integer $n > 1$

3

c) M, N and P are three points on a circle. The altitudes MB and NC in the acute-angles triangle MNP meet at the point Z. NC produced meets the circle at A as shown below.

3

Copy the diagram into your answer booklet.

Prove that AC=CZ

End of Question 6

a) If $P = \sqrt{3} + i$, find P^4 in modulus-argument form.

3

b) In the diagram below, two circles intersect at A and B. The common tangent TU touches the circles at P and Q respectively. A line through A cuts the left hand circle at R and the right hand at S

It is found that PQRS is a cyclic quadrilateral.

Copy the diagram into your answer booklet.

i) Give a reason why $\angle UQR = \angle PSA$

1

ii) Prove that PS || AQ

2

iii) Hence show that ΔPAS | | | ΔQRA

2

- c) Given that $z = w + \frac{1}{w}$ where $w = 2(\cos \theta + i \sin \theta)$,
 - i) Express the real and imaginary parts of z in terms of θ .

2

ii) Show that the point representing z in the Argand diagram lies on the curve with Cartesian equation $\frac{x^2}{25} + \frac{y^2}{9} = \frac{1}{4}$.

2

- a) Given that A and B represent the complex numbers $\sqrt{3} + i$ and $1 i\sqrt{2}$ respectively, find:
 - i) $\frac{A}{B}$ in the form x+iy
 - ii) the modulus and the argument of A.

2

b) Considering the sum of an arithmetic series, show that:

i)
$$(1+2+3+...+n)^2 = \frac{1}{4}n^2(n+1)^2$$

- ii) By mathematical induction prove that: $1^3 + 2^3 + 3^3 + ... + n^3 = (1 + 2 + 3 + ... + n)^2, n \ge 1$
- c) ΔABO lies on the Argand diagram.
 Points A and B represent the complex numbers z₁ and z₂ respectively.
 M, N and P are the midpoints of OB, AB and OA respectively.

i) Which complex number is represented by N?

1

ii) Express \overrightarrow{AM} and \overrightarrow{BP} in terms of z_1 and z_2 .

2

iii) Hence simplify $\overrightarrow{ON} + \overrightarrow{AM} + \overrightarrow{BP}$.

· 1

End of Question 8

Question 9 (12 Marks)

Use a Separate Sheet of paper

a) Sketch the following loci on an Argand diagram:

$$|z| \le |z-2+i|$$

ii)
$$|(z-1)+i|=2$$

iii)
$$\arg\left(\frac{z-2}{z-1}\right) = \frac{\pi}{3}$$

- b) Find the complex square roots of $7 + 6i\sqrt{2}$ giving your answer in the form +ib, where a and b are real.
- c) Let n be a positive integer and z a complex root of the equation

$$(z-1)^n + (z+1)^n = 0$$
(1)

Show that |z-1|=|z+1| and by letting $z=\lambda+i\alpha$ show that all the roots of (1) can be written in the form $z=i\alpha_k$, where α_k is real and k=1,2,...,n.

2

3

3

$C \cdot C \cdot T \cdot C$	/ 11 \ C / \	
Sydney Technical High School		
· Mathematics - Extension 2		
H.S.C Assessment 1-2016		
Marian Charan		
Multiple Choice	b) Step 1 When $n=1$ $3^{2\times 1+4} - 2^{\times 1} = 3^{6} - 2^{2}$	
ń	= 729 - 4	
i. B	= 725	
3. с	which is divisible by 5	
4. A	Hence result is true for n=1	
5. B		
	Step 2	
	l	
Question 6.	Assume the result is true for $n=k$. $3^{k+4}-2^{2k}=5P$ where	
i) A-B = $(3-4i)$ - $(2+i)$	P is an integer	
= 1-5i	<u> </u>	
	Step 3	
\ddot{u}) $AB = (3+4i)(2+i)$	Prove the result is true for $n = K+1$ $3^{2K+b} - 2^{K+2} = 5Q$	
= 6 + 3i + 8i - 4	1	
= 2+11i	Where Q is an integer 2k+2	
\ 5	$3^{2k+b} - 2^{k+2} = 3^{2} (3^{2k+4})^{-1} - 2^{2k+2}$ $= 9(5p+2^{2k}) - 2^{2} (2^{2k})$	
$\frac{3}{A} = \frac{5}{3-4i} \times \frac{3+4i}{3+4i}$	$= \frac{7(5P+2)-2(2)}{=45P+9\times2^{2K}-4\times(2^{2})}$	
	= +5P + 1x2 - +x(2) = $+5P + 5x 2^{k}$	
= 5 (3 + 4·1) 25	$=5(9P+2^{k})$	
- 3 + 4 ;	= 5 Q	
= 3 + 4 x 5 5		
	Where Q=9P+22k which is an	
$\frac{iV)}{B} = \frac{i(2+i)}{2+i}$	integer. Hence the result is two	
B 2-2 2+i	for n=k+1 if it is true for n=k	
= <u>i(4 + 4 i - 1)</u> 5	Since the result is tree for	
	n=1, then it is two for all	
= i(3+4i)	positive integers by induction	
	,	
$= \frac{3i}{5} - \frac{4}{5}$		

$\frac{\ddot{u}}{2} \qquad \qquad$	bi) $(1+2+3++n)^2 = \frac{1}{4}n^2(n+1)^2$
· 11 - 12 - 12 - 12 - 2 - 2 - 2 - 2 - 2 -	2
$\frac{3.4x^2 = \cos^2\theta}{25} \qquad \frac{4y^2 = \sin^2\theta}{9}$	112+31+ m
25 9	$\begin{vmatrix} 1+2+3++n^{2} \\ a=1 & S_{m} = \frac{m}{2} [2a+(n-1)d] \end{vmatrix}$
	$d=1 = \frac{n}{2} \left[2 + n - 1 \right]$
1 0 2 2	$\frac{\omega^{-1}}{n}$
$\frac{4x^2}{25} + \frac{4y^2}{9} = \cos^2\theta + \sin^2\theta$	$=\frac{n}{2}\left[n+1\right]$
25 a	
$\frac{4x^{2}+4y^{2}-1}{25}$	$\left[S_{n}\right]^{2} = \left[\frac{n}{2}\left(n+1\right)\right]^{2}$
25. 9	
	$\left[S_n\right]^2 \frac{n^2}{4} \left(n+1\right)^2$
$4(x^2 + u^2) = 1$	
$\frac{4(x^2+y^2)}{25}=1$	bii) $S_{n=1}^{3} + 2^{3} + + n^{3}$
$\frac{x^{2} + 4^{2} - 1}{25}$	Step 1 $Sn = \frac{n^2(n+1)^2}{7}$ L:H·S = $1^3 = 1$
	R.H.S = 1
	· LHS = RHS
Question 8	1173 - KII 3
1) A 311 1-521	Step 2 Assume it is true for
i) A - \(\frac{1}{2} + i \) \(\frac{1}{2} + \sqrt{2}i \)	
5 1-72x	$n=K$ $S_{k}=\frac{K^{2}}{4}(K+1)^{2}$
$=\sqrt{3}+\sqrt{6}\dot{a}+\dot{a}-\sqrt{2}$	
= \(\overline{3} + \sqrt{6} \overline{4} + \overline{2} - \sqrt{2} \\ 3 \end{array}	Cla 2 C - S T
	Step 3 $S_{k+1} = S_k + T_{k+1}$
$= \frac{\sqrt{3} - \sqrt{2}}{2} + \frac{\sqrt{6} + 1i}{3}$	$= \frac{1}{4} k^{2} (k+1)^{2} + (k+1)^{3}$
2 3	$=(K+1)^2 \left(\frac{1}{4} k^2 + K+1\right)$
	$= (k+1)^{2} [K^{2}+4k+4]$
	$\frac{-(K+1)[K+7K+7]}{2}$
i) $A = 2$	$=\frac{1}{2}(K+1)^{2}(K+2)^{2}$
$A = 2\left(\frac{\sqrt{3}}{2} + \frac{1}{2}\dot{\mathbf{i}}\right)$	7
$\frac{1}{2}$	
	The statement is two for n= k+
Ang A = 0	and by principle of mathematica
$\frac{\omega s}{2} \theta = \sqrt{3} \qquad \sin \theta = \frac{1}{2}$	induction it is the for all
2	n > 1
<u> </u>	·
6	
^ .	
- Hrq A = IT	
5 6	
	g ·

b) Circle centre (1,-1)

- - $-\frac{z_1+z_2+z_2-2z_1+z_1-2z_2}{2}$

radius 2.

Question 9

- (i) 12/5/2-2+il $x^2+y^2 < (x-2)^2+(y+1)^2$ $x^2 + y^2 < x^2 - 4x + 4 + y^2 + 2y + 1$

	-	
$\frac{7+6i\sqrt{2}=(a+ib)^2}{}$	$(z-1)^n + (z+1)^n = 0$	
$= a^2 - b^2 + \lambda ab i$	$(z-1) = -(z-1)^n$	
Real = $a^2 - b^2 = 7$		
$lm = 2ab = 6\sqrt{2}$	$\frac{(z+1)^n}{(z-1)^n} = -1 \qquad (z \neq 1)$	
$ab = 3\sqrt{2}$	$(2-1)^n$	
2 2 2 = 1)	$\frac{\left Z+1\right ^n}{\left Z-1\right ^n} = \left -1\right = 1$	
$2\alpha^2 = 18 \cdots$	12-1)n	
$a^2 = 9$		
$\alpha = \frac{1}{3}$	7+1 7 -1 810/0 71111	
$h = \frac{+3}{3}$	$\frac{ z+1 }{ z-1 } = 1 \text{sin(e)} \frac{ z+1 }{ z-1 } > 0$	
$z = \frac{1}{2} (34 \sqrt{2}i)$	·· Z+1 = Z-1	
(3,100)		
	let z= Aiia	
	J., 33	
] + i \(+ 1 \) =] 7 + i \(- 1 \)	
	$\sqrt{(\gamma+1)^2+\alpha^2} = \sqrt{(\gamma-1)^2+\alpha^2}$	
	1 1 1 1 2 2 1 2 1 1 1 4 2	
\\\\	$\int_{0}^{2} (1+2)^{2} + 1 + \alpha^{2} = 2^{2} - 2 + 1 + \alpha^{2}$	
•	J. 4 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
,	42 = 0	
	7 = 0	
*	<i>f</i> - 0	
_	$z = i\alpha_{K}$ $K = 1, 2, 3n$	
*	2-200 x N-1, 2, 3 7D	
	· · · · · · · · · · · · · · · · · · ·	