BITS-Pilani, Hyderabad Campus

First Semester 2022-2023

Course Handout (Part - II)

Date: 29/08/2022

In addition to Part I (General Handout for all courses appended to the Timetable) this portion gives further specific details regarding the course.

Course Number : CSF303

Course Title : Computer Networks
Instructor-in-charge : Gopal Krishna Kamath M

1. Course Description:

The course initially deals with the big picture of networks with discussion on evolution of network concepts in telegraph, telephone, and computer networks. The layered approach of information transmission is also discussed, with detailed emphasison some important layers. These concepts are used to understand the next generation networks.

2. Scope and Objective:

Computer networks are one of the fastest growing areas today. The course introduces the concepts and mechanisms underlying modern telecommunication systems and networks. The course is designed in such a way that the course is accessible to students with minmum technical background in this area. The OSI model is used as a framework to introduce different protocols and standards. Each layer is covered in sufficient detail. Finally some advanced concepts related to all layers are discussed. The course will prepare the student in the areas of telecommunication switching systems, computer networks, and internetworking.

3. Text Books:

T1: James F. Kurose and Keith W. Ross; Computer Networking: A Top-Down Approach; Pearson; Sixth Edition; 2013.

T2: Dimitri Bertsekas and Robert Gallager; Data Networks; PHI; Second Edition; 2009.

4. Reference Book:

R1: Andrew S Tanenbaum; Computer Networks; Pearson; Fourth Edition; 2006

R2. L. Peterson and B. Davie; Computer Networks: A Systems Approach; MK; Fourth Edition; 2007.

5. Course Plan / Schedule:

SI	Topics to be covered	Learning Objectives	Reference	No. of
No.				lectures
1	Introduction: Uses of computer networks, Network hardware: network edge, network core, access networks	Usage of computer networks and its hardware structure	T1 (1)	2

2	ISPs and Internet backbone, delay and loss in packet switched	Internet architetures, performance bottlenecks and software architecture	T1 (1)	2
	networks, network			
	software: protocol			
	hierarchies and their			
	service models		TT4 (4)	4
3	Reference Models (OSI, TCP/IP)	Example protocol stacks	T1 (1)	1
4	Application layer:	World Wide Web and its	T1 (2)	2
	Hypertext Transfer	application layer protocol		
	Protocol, HTTP message			
	format, cookies,			
	conditional GET	Empil application and	TP1(2)	2
5	Simple Mail Transfer	Email application and	T1 (2)	2
	Protocol, Domain Name	domain name systems		
6	Systems (DNS) Socket Programming with	Socket API for building	T1 (2)	2
	TCP and with UDP	applications	11(2)	
7	Transport layer	Transport layer:	T1(3), R1(6)	2
	fundamentals: reliable and	multiplexing,	(-),(-)	_
	unreliable principles	demultiplexing, UDP,		
		principles of reliable data		
		transfer		
8	TCP: segment structure,	Flow control mechanism	T1 (3), R1 (6),	2
	RTT estimation and	and round trip time	R2 (5)	
	timeout, TCP flow control	estimation		
9	Understanding the	TCP error control and	T1 (3), R2 (6)	2
	principles behind reliable	congestion control		
10	packet delivery	T	FI4(4) D4(5)	2
10	Network layer: Virtual	Learning various types of	T1 (4), R1 (5)	2
	circuits and datagram networks. What is inside a	services at network layer		
	router? Forwarding and			
	addressing in the Internet			
11	Routing algorithms:	Learning different	T1(4), R1(5)	3
	shortest path, flooding,	approaches to find paths	(-),(-)	
	link state, distance vector	within a subnet		
	and hierarchichal routing			
12	Routing in the Internet:	Example routing in real	T1 (4), R1 (5)	3
	RIP, OSPF, Border	Internet		
	Gateway Protocol and			
- 10	multicasting	T	TT4 (T) TO 1 (C)	
13	Data link layer: services,	Features of data link	T1 (5), R1 (3)	2
	error detection and	layer and its importance		
1 /	correction techniques	in a network stack	T1(E) D1(A)	2
14	Multiple Access Protocols: ALOHA,	Various protocols at	T1 (5), R1 (4)	3
1	FIULUCUIS, ALUAA,	MAC layer to control		
	Slotted ALOHA CSMA	access to the breadcast		
	Slotted ALOHA, CSMA,	access to the broadcast		
15	Slotted ALOHA, CSMA, Local Area Networks Physical Media:	access to the broadcast medium Physical layer	R1(2)	1

	communication	types		
16	Delay models in data	Queueing-theoretic	T2 (3)	11
	networks: Little's	analysis of computer		
	theorem, Kendall's	networks		
	notation, M/M/1 and			
	M/G/1 queuing systems			

5. Evaluation Scheme:

Component	Duration	Weightage	Marks	Date &	Nature of
				Time	Component
Mid-semester Exam	90 mins	25%	75	03/11 11.00 -	Closed Book
				12.30PM	
Assignment+Seminar	TBA	40%	120	TBA	Open Book
Comprehensive	120 mins	35%	105	24/12 AN	Closed Book
Exam					
Total		100%	300		

- **6.** Chamber Consultation Hour: In IC chamber (I-202). Schedule to be announced in class.
- **7. Make-up Policy**: Make-up will be given only for genuine reasons upon receipt of appropriate proof. For foreseeable circumstances, prior application should be made for seeking the make-up examination.
- **8. Notices**: All notices concerning the course will be put up on CMS.
- **9.Academic Honesty and Integrity Policy:** Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable.

INSTRUCTOR IN-CHARGE CS F303