

FIG. 1

FIG. 2

FIG. 3

+

Table 2. Comparison of performance provided by two new blends without HCFC's compared with prior blends containing HCFC's.

Parameter	Blend c	ontaining	Blend A		Blend		Blend I		
1 saturitotoi	HCFC's		1102 H		containing				
	(replace	=	110211		HCFC's		PGC-1.	PGC-150	
	Blend A				(replace				
	PFC-11				Blend I				
	110-11	00 110			PGC-1				
	Min.	Max.	Min.	Max.	100-1	30			
	1	Load	1	Load	No	Max.	No	Max.	
		(3600 W)		(3600 W)	Flow	Flow	Flow	Flow	
Evaporator	-134	-108	-135	-109	No	-120	No	-118	
Inlet Temp. C	13 /	100	155	100	data	-120	data	-116	
Evaporator	-128	-97	-134	-91	No	-108	No	-106	
Outlet Temp. C	120	''	15.		data	-108	data	-100	
Compressor	105	124	102	114	100	110	102	110	
Discharge		'		'	100	110	102	110	
Temp. C									
Liquid Line	24	27	25	25	25	28	22	27	
Temp. C									
Compressor	-4	7	13	14	10	14	16	23	
Suction Temp.									
С									
Compressor	12.5	20	13	20	8.6	9.6	8.0	9.1	
Current, A							1		
Voltage, V	460	460	460	460	230	230	230	230	
Discharge	161	350	205	365	180	240	185	255	
Pressure, psig									
Suction	15	44	25	46	18	27	22	32	
Pressure, psig									
Gas Inlet	NA	NA	NA	NA	25	25	25	25	
Temp., C									
Gas Flow Rate,	NA	NA	NA	NA	0	450	0	450	
SCFH			` .						
Gas Outlet	NA	NA	NA	NA	NA	-115	NA	-115	
Temp. C									

Fig. 5

Table 1. Example blends for Polycold models. Percentage by mole for refrigerant mixture being circulated by compressor system.

Fig. 4

	Molar composi mixture used in	ll refrigerant			
	Blend A	Blend B	Blend C	Blend D	Overall range (mole %)
Model number	PFC-1102 HC	PFC-662 HC	PFC-552 HC	PGC-152	
Minimum temperature achieved	-133 C	-150 C	-150 C	-133 C	,
Refrigerant Component					
Argon	13	24	18	8	4-36
R-14	34	26	35	24	10 – 55
R-23	28	22	21	32	10 – 50
R-125	11	11	12	11	5 – 20
R-236fa	14	17	14	25	7 - 40

Table 3: MR formulation for minimal temperature down to 105 K

	Ingredient Name	Range (% by mole)
1	At least one of neon (Ne) or helium (He)	0.0 - 10.0
2	At least one of argon (Ar) or nitrogen (N2)	10.0 – 45.0
3	R-14 (CF4)	20.0 – 50.0
4	R-23 (CHF3)	10.0 – 30.0
5	R-125 (C2HF5)	8.0 – 15.0
6	R-134a	0.0 - 5.0
7	Other high boiling components: at least one of R-236fa, E-347, R-245fa, R-4112	0.0 – 3.0

Fig. 6

Fig. 7

Table 4: MR formulation for minimal temperature down to 118 K

	Ingredient Name	Range (% by mole)
1	At least one of argon (Ar) or nitrogen (N2)	10.0 – 40.0
2	R-14	20.0 – 50.0
3	R-23	10.0 - 40.0
4	R-125	0.0 – 35.0
5	R-134a	0.0 - 10.0
6	At least one of E-347, R-4112, R-236fa, R-245fa.	0.0 – 6.0

Table 5: MR formulation for minimal temperature above 130 K

	Ingredient Name	Range (% by mole)
1	At least one of argon (Ar) or nitrogen (N2)	2.0 - 40.0%
2	R-14	10.0 – 50.0%
3	R-23	10.0 – 40.0%
4	R-125	0.0 - 430.0%
5	R-134a	0.0 - 15.0%
6	At least one of R-245fa, R-236fa, or E-347, or R-4112.	0.0 – 10.0%

F16. 8

Table 6: MR formulation for minimal temperature above 140 $\,\mathrm{K}$

	Ingredient Name	Range (% by mole)
1	At least one of argon (Ar) or nitrogen (N2)	2.0 – 40.0%
2	R-14	10.0 – 50.0%
3	R-23	10.0 – 40.0%
4	R-125	0.0 - 30.0%
5	R-134a	0.0 - 15.0%
6	At least one of R-236fa, R-245fa, or E-347 or	0.0 - 10.0%
	R-4112.	

Fig. 9

1-

Fig. 10

Table 7: MR formulation for minimal temperature above 155 K

	Ingredient Name	Range (% by mole)
1	At least one of argon (Ar) or nitrogen (N2)	0.0 - 40.0%
2	R-14	5.0 - 50.0%
3	R-23	5.0 - 40.0%
4	R-125	0.0 - 40.0%
5	R-134a	0.0 - 30.0 %
6	At least one of R-236fa or R-245fa.	0.0 - 30.0%
7	E-347 or R-4112.	0.0 - 20.0%

Table 8: Freeze out Temperature for Selected Blends Experimental Data of mixed refrigerant composition flowing through the evaporator

Note: (T_{MIN}) is the minimal achieved temperature without freeze out.

No.	T_{FR} , K		Blend Composition:							
	$(T_{MIN}),$	Mole %								
	K									
		Ar	R-14	R-23	R-125	R- 134a	R- 236fa	R- 4112	Ne	
1	(113) *	24.2	46.8	12.5	14.5					
2	(116- 117)	41.0	32.0	18.0	9.0					
3	(115-16)	14.0	29.0	48.5					8.5	
4	115-116	33.0	23.0	39.0					5.0	
5	118-120	27.0	39.0	14.0	14.0		6.0			
15	116-117	25.0	27.0	17.0	R-218-	18.0			13.0	
6	115	15.0	22.0	37.0	24.2	0.0	1.8			
7	116-117	15.0	22.0	35.7	23.3	1.5	2.5			
8	120	17.3	20.0	33.0	21.5	3.7	5.3			
9	130	19.0	22.0	27.5	19.5	3.0	9.0			
10	125-127	15.2	19.3	31.5	21.0	3.5	9.5			
11	153	29.0	40.0			9.4	17.0	4.6		
12	155	32.3	47.0			5.6	11.7	3.4		
13	170	32.7	49.1				10.3	7.9		
14	135-137	24.0	25.0	23.0		12.5	15.5			

Fig. 11

15:

Table 9 Freezing temperatures for pure and mixed refrigerants with a residual oil LT-32

Blend	Refrigerant	Composition (% by weight);	Freezing temp,
		Refrigerant% / Oil LT-32%	K
1	Pure: R-23	94.9% / 5.1%	166.7
2	Pure: R-125	95.5% / 4.5%	169.6
3	Pure: R-218	96.3% / 3.7%	164.8
4	Pure: R-218	97.9% / 2.1%	150.3
5	MR: R-14/R-23/R-125	96.6% / 3.4%	167.4
6	MR: Ar/R-14/R-23/R-	99.0% / 1.0%	150.0
	125/R-236fa		

Fig. 12