Mechanik

Physik

Be schleunigung-Kraft

$$F \equiv m \cdot a$$
$$[N = kg \cdot \frac{m}{s^2}]$$

Physik

Be schleunigung-Weg

$$x = \frac{1}{2} \cdot a \cdot t^2$$

$$x = \frac{1}{2} \cdot a \cdot t$$
$$[\mathbf{m} = \frac{\mathbf{m}}{\mathbf{s}^2} \cdot \mathbf{s}^2]$$

Antwort

Physik	# 3	Mechanik
	Haftreibung	or S

$$F_{
m H} = \mu_{
m H} \cdot F_{
m N}$$

$$F_H$$
: Haftreibung μ_H : Haftreibungskonstante F_N : Normalkraft

Physik	# 4	Mechanik
	Gleitreibung	g

$$F_{\mathrm{Gl}} = \mu_{\mathrm{Gl}} \cdot F_{\mathrm{N}}$$

```
F_{G1}: Gleitreibung

\mu_{G1}: Gleitreibungskonstante

F_{N}: Normalkraft
```

Mechanik

Physik

Haftreibung – Schiefe Ebene

$$\mu_{\rm H} = \tan \alpha$$

Winkel α für gegebenes $\mu_{\rm H}$, ab dem die Haftreibung nicht mehr zum Halten ausreicht, also das Objekt anfängt zu "rutschen"

	// ~	
,		

Mechanik

Physik

Leistung

$$P = F \cdot v$$

$$\left[W = N \cdot \frac{m}{s} \right]$$

$$= kg \frac{m}{s^2} \cdot \frac{m}{s}$$

$$= kg \frac{m^2}{s^3}$$

Physik	# 7	Mechanik
	Wirkungsgra	ad

7 Antwort $n = \frac{P_{\text{out}}}{}$

Mechanik

Physik

Radialbeschleunigung

$$\neq 8$$
 Antwort $a = \frac{v^2}{v^2}$

Physik	# 9	Mechanik
	Arbeit	

$$W = F \cdot s$$

$$J = N \cdot m$$

$$= kg \frac{m}{s^2} \cdot m$$

 $= kg \frac{m^2}{s^2} \bigg]$

potentielle Energie

$$E_{\text{pot}} = m \cdot g \cdot h$$
$$J = \text{kg} \cdot \frac{\text{m}}{\text{s}^2} \cdot \text{m}$$

 $= kg \frac{m^2}{s^2}$

kinteische Energie

```
E_{\rm kin} = \frac{1}{2} \cdot m \cdot v^2
      \left[J = kg \cdot \frac{m^2}{s^2}\right]
```

J	

Mechanik

Physik

Kreisfrequenz

Antwort

$$\omega = \frac{2\pi}{T}$$
$$\left[s^{-1} = \frac{\text{rad}}{s}\right]$$

Mechanik

Physik

Kreisfrequenz Hook'sche Feder

Antwort

$$\omega = \sqrt{\frac{D}{m}}$$
$$\left[s^{-1} = \sqrt{\frac{\frac{N}{m}}{kg}}\right]$$

D: Federkonstante

Mechanik

Physik

harmonische Schwingung: Beschleunigung

 $\left[\frac{\mathbf{m}}{\mathbf{s}^2} = \mathbf{s}^{-2} \cdot \mathbf{m}\right]$

Antwort

 $a(t) = -\omega^2 \cdot y_0 \cdot \sin \omega t = -\omega^2 \cdot y(t)$

Mechanik

Physik

harmonische Schwingung: Geschwindigkeit

15 Antwort
$$v(t) = \omega \cdot v_0 \cdot \cos \omega t$$

$$v(t) = \omega \cdot y_0 \cdot \cos \omega t$$
$$\left[\frac{\mathbf{m}}{\mathbf{s}} = \mathbf{s}^{-1} \cdot \mathbf{m} \right]$$

Physik

harmonische Schwingung: Auslenkung

$$y(t) = y_0 \cdot \sin \omega t$$

Physik

potentielle Energie Hook'sche Feder

$$W = \frac{1}{2} \cdot D \cdot x^2 = E_{\text{pot}}$$
$$\left[J = \frac{N}{m} m^2 \right]$$
$$= \frac{kg \frac{m}{s^2}}{s^2} \cdot m^2$$

 $= kg \frac{m^2}{s^2}$

Physik

Kraft Hook'sche Feder

$$F = D \cdot x$$
$$\left[\mathbf{N} = \frac{\mathbf{N}}{\mathbf{m}} \cdot \mathbf{m} \right]$$

Mechanik

Physik

Inelastischer Stoß

 $v' = \frac{m_1 v_1 + m_2 v_2}{m_1 + m_2}$

Mechanik

Physik

Elastischer Stoß

20 Antwort

$$v_1' = \frac{(m_1 - m_2)v_1 + 2m_2v_2}{m_1 + m_2}$$
$$v_2' = \frac{(m_2 - m_1)v_2 + 1m_1v_1}{m_2 + m_1}$$

· ·	//	

Mechanik

Physik

Drehimpuls

Antwort

$L = \vartheta \cdot \omega$

$$\left[N \text{ m s} = \text{kg m}^2 \cdot \text{s}^{-1}\right]$$
$$\text{kg} \frac{\text{m}}{\text{s}^2} \text{m s} = \text{kg} \frac{\text{m}^2}{\text{s}}$$

 $kg\frac{m^2}{s} = kg\frac{m^2}{s} \bigg]$

Mechanik

Physik

Kinetische Energie Drehbewegung

$$E_{\rm kin} = \frac{1}{2} \cdot \vartheta \cdot \omega^2$$

$$\int J = kg \ m^2 \cdot s^{-2}$$

Antwort

Physik	# 23	Mechanik
	Impuls	

$$\left[\frac{\text{kg m}}{}\right]$$

$$\left[\frac{\text{kg m}}{\text{s}} = \text{kg} \cdot \frac{\text{m}}{\text{s}}\right]$$

$p = m \cdot v$

Antwort

Physik	# 24	Mechanik

Kreisfrequenz Fadenpendel

$$\omega = \sqrt{\frac{g}{l}}$$
$$\left[s^{-1} = \sqrt{\frac{m}{s^2} \cdot \frac{1}{m}}\right]$$
$$= \sqrt{s^{-2}} = s^{-1}$$

Nur bei $\alpha < 5^{\circ}$

Mechanik

Physik

Trägheitsmoment Stab um Stabende

	θ	=	$\frac{1}{3}$	$\cdot m$
kg	m^2	=	kg	· m

Antwort

 $\cdot l^2$

l: Länge des homogenen Stabes

Mechanik

Physik

Trägheitsmoment Stab um Schwerpunkt

 $\left\lceil kg\ m^2 = kg \cdot m^2 \right\rceil$

Länge des homogenen Stabes

 $\vartheta = \frac{1}{12} \cdot m \cdot l^2$

Antwort

Mechanik

Physik

Trägheitsmoment Vollzylinder

Antwort

 $\vartheta = \frac{1}{2} \cdot m \cdot r^2$

$$\left[kg \ m^2 = kg \cdot m^2 \right]$$

Mechanik

Physik

Trägheitsmoment Hohlzylinder

$$\vartheta = m \cdot r^2$$
$$\left[\text{kg m}^2 = \text{kg} \cdot \text{m}^2 \right]$$

Physik

Transformation Geschwindigkeit – Winkelgeschwindigkeit

Mechanik

$$v = r \cdot \omega$$

$$\left[\frac{\mathbf{m}}{\mathbf{s}} = \mathbf{m} \cdot \mathbf{s}^{-1} \right]$$

•	**

Mechanik

Physik

Trägheitsmoment Kugel

30 Antwort
$$\vartheta = \frac{2}{5} \cdot m \cdot r^2$$

$$\vartheta = \frac{2}{5} \cdot m \cdot r$$
$$\left[\text{kg m}^2 = \text{kg} \cdot \text{m}^2 \right]$$

	11	

Mechanik

Physik

leeres Duplikat

31 Antwort

Mechanik

Physik

Leistung Translation

$$P = F \cdot v = M \cdot \omega$$

$$\begin{split} \left[W = N \cdot \frac{m}{s} = Nm \cdot s^{-1} \\ kg \frac{m^2}{s^3} = kg \frac{m}{s^2} \cdot \frac{m}{s} \right] \end{split}$$

1 Hysik	# 55	WICCHAIIK

Mechanik

Physik

Drehmoment

$$M = F \cdot r$$
$$\left[\text{Nm} = \text{N} \cdot \text{m} \right]$$

Mechanik

Physik

Kreisfrequenz Drehschwingung

$$\omega = \sqrt{\frac{D}{\vartheta}}$$

$$\omega = \sqrt{\frac{\omega}{\vartheta}}$$
$$\left[s^{-1} = \sqrt{\frac{N}{m} \cdot \frac{1}{\text{kg m}^2}}\right]$$

Mechanik

Physik

Rückstellmoment Drehschwingung

$$M = -D_{\varphi} \cdot \varphi$$

$$[Nm - Nm?]$$

$$[\mathrm{Nm} = \mathrm{Nm?}]$$

$$D_{\varphi}: \quad \text{Torsionsfederkonstante}$$

$$\varphi: \quad \text{Verdrillungswinkel}$$

Verdrillungswinkel

# 36	Mechanik
	# 36

Präzessionsfrequenz

$$\omega_{\rm p} = \frac{M}{L} = \frac{F \cdot r \cdot \sin \varphi}{\vartheta \cdot \omega_{\rm r}}$$

$$\begin{bmatrix} s^{-1} = \frac{Nm}{N \text{ m s}} = \frac{N \cdot m}{\text{kg m}^2 \cdot s^{-1}} \end{bmatrix}$$

Mechanik

Physik

Satz von Steiner

$$\vartheta = m \cdot a^2 + \vartheta_{\rm SP}$$

$$\left[\text{kg m}^2 = \text{m}^2 \cdot \text{kg} + \text{kg m}^2 \right]$$

 ϑ_{SP} Trägheitsmoment durch Schwerpunkt ϑ Trägheitsmoment durch neue Achse, \parallel zur Achse von ϑ_{SP} Abstand der beiden Achsen

Mechanik

Physik

Gravitationkonstante

$$\gamma = 6,6742 \cdot 10^{-11} \frac{\text{N m}^2}{\text{kg}^2}$$

Mechanik

Physik

Gravitationspotential

$$\varphi = -\frac{\gamma \cdot r}{r}$$
$$\left[m^2 - \frac{N m^2}{kg^2} \right]$$

$$\int \mathrm{m}^2 \ \frac{\mathrm{N} \ \mathrm{m}^2}{\mathrm{kg}^2}$$

 $= N \frac{m}{kg} = kg \frac{m}{s^2} \frac{m}{kg} \bigg|$

Mechanik

Physik

pot. Energie Gravitation

$$E_{
m pot} = -rac{r}{r}$$

$$\left[{
m J} = rac{rac{{
m N} \ {
m m}^2}{{
m kg}^2} \cdot {
m kg} \cdot {
m kg}}{{
m m}}
ight.$$

$$= {
m Nm}
ight]$$

Physik

Gravitationfeldstärke

Mechanik

$$g = -\frac{\gamma \cdot M}{r^2}$$

$$\left[\frac{m}{s^2} = \frac{\frac{N \text{ m}^2}{\text{kg}^2} \cdot \text{kg}}{m^2}\right]$$

$$= \frac{N}{\text{kg}} = \frac{\text{kg}}{\text{kg}}$$

M : Planetenmasse

Mechanik

Physik

Gravitationskraft

$$F_{\rm G} = -\gamma \cdot \frac{m_1 m_2}{r^2}$$
$$\left[N = \frac{\text{N m}^2}{\text{kg}^2} \cdot \frac{\text{kg}^2}{\text{m}^2} \right]$$

Mechanik

Physik

Erhaltungssätze der klassischen Physik

• elektrische Ladungen

Mechanik

Physik

Corioliskraft

Antwort

$$F_{\rm C} = m \cdot a_{\rm c} = 2 \cdot m \cdot v_{\perp} \cdot \omega$$
$$\left[N = \text{kg} \cdot \frac{m}{\text{s}^2} = \text{kg} \cdot \frac{m}{\text{s}} \cdot \text{s}^{-1} \right]$$

 $\begin{array}{lll} \mathbf{a_c} \colon & \mathbf{Coriolisbeschleunigung} \\ v_\perp \colon & \mathbf{Geschwindigkeit\ des\ K\"{o}rpers,\ rel.} \\ & \mathbf{zum\ rotierenden\ Bezugssystem} \\ \omega \colon & \mathbf{Winkelgeschwindigkeit\ Bezugssystem} \end{array}$

Mechanik

Physik

Keplersche Gesetze

4.	5	Antwort		
•	,	Planeten auf Ellipsen mit Sonne	im	ge-
		meinsamen Brennpunkt		

- Radiusvektor überstreicht in gleicher Zeit gleiche Fläche: $\frac{\Delta A}{\Delta t} = \text{const}$
- Umlaufzeit $T_{1,2}$, große Halbachse $a_{1,2}$ zweier Planeten: $\frac{T_1^2}{T_2^2} = \frac{a_1^3}{a_2^3}$

Mechanik

Physik

Planet auf Kreisbahn

$$\frac{r_{\rm p}^3}{T_{\rm p}^2} = \gamma \frac{m_{\rm s}}{4\pi^2} = const.$$

 $r_{\rm p}$: Radius Planetenbahn $T_{\rm p}$: Umlaufzeit Planet $m_{\rm s}$: Masse der Sonne

Mechanik

Physik

Gebundener und ungebundener Zustand

$$\#$$
 47 Antwort

$$E = E_{\text{kin}} + E_{\text{pot}} = \frac{1}{2}m_2v^2 - \gamma \frac{m_1m_2}{r}$$

$$E \geq 0$$
: ungebunder Zustand, m_2 kann sich beliebig weit von m_1 entfernen $E < 0$: gebunder Zustand

	· ·	**
-		

Deformation

Physik

Elastizitätsmodul

$$E = \frac{\sigma}{\varepsilon}$$

$$\left[\frac{N}{m} - \frac{\frac{N}{m^2}}{m^2}\right]$$

Physik # 49

Zugfestigkeit

Deformation

$$\sigma = \left[\frac{N}{T}\right]$$

Physik	# 50	Deformation

Hooksches Gesetz

$$\sigma = E \cdot \varepsilon$$

$$\left[\frac{N}{m^2} = \frac{N}{m^2} \cdot 1 \right]$$

v .	"

Deformation

Physik

relative Längenänderung

Physik	# 52	Deformation
	D : 7	1.1
	Poisson-Za	hl

// TO D 0

. .

TO 1

$$\mu = \left| rac{rac{\Delta d}{d}}{rac{\Delta l}{l}}
ight|$$

Querkontraktion, Dicke nimmt \(\pm \) zur Dehnung ab.

Antwort

Physik	# 53	Deformation
	Druck	

p =
Pa

Deformation

Physik

Kompressibilität

$$\frac{\Delta V}{V} = -\kappa p$$

$$\Rightarrow \kappa = \frac{3}{E}(1 - 2\mu)$$

Deformation

Physik

Kompressionsmodul

55 Antwort
$$K = \frac{1}{-}$$

$$K = \frac{1}{\kappa}$$

Deformation

Physik

Scherspannung

$$\tau = \frac{F_{\rm s}}{A} = G\alpha$$

 $F_{\rm s}$: Scherkraft, tangential zu A

G: Torsions- oder Schubmodul [Pa] Scherwinkel α :

Physik

Torsionskonstante dünnwandiges Rohr

Deformation

$$D_{\varphi} = \frac{2\pi r^3 d}{l} G$$
$$\left[\text{N m} = \frac{\text{m}^3 \text{ m}}{\text{m}} \frac{\text{N}}{\text{m}^2} \right]$$

r: Rohrradius d: Rohrwandstärke, $d \ll r$ l: Rohrlänge

Deformation

Physik

Torsionskonstante Vollstab

$$D_{\varphi} = \frac{\pi}{2} \frac{R^4}{l} G$$
$$\left[\text{N m} = \frac{\text{m}^4}{\text{m}} \frac{\text{N}}{\text{m}^2} \right]$$

Antwort

Physik	# 59	Deformation

Drehmoment Torsion

$$M = D_{\varphi} \cdot \varphi$$
$$\left[N \, \mathbf{m} = N \, \mathbf{m} \right]$$

$$\begin{bmatrix} N \, m = N \, m \end{bmatrix}$$

Physik

Dehnung eines Stabes Federkonstante

Deformation

Deformation

Physik

potentielle Energie Dehnarbeit

$$W = \frac{1}{2} \cdot E \cdot A \cdot l \cdot \varepsilon^2 = \frac{1}{2} \cdot E \cdot V \cdot \varepsilon^2$$

$$W = \frac{1}{2} \cdot E \cdot A \cdot l \cdot \varepsilon^{2} = \frac{1}{2} \cdot E \cdot V \cdot \varepsilon^{2}$$

$$\left[J = \frac{N}{m^{2}} \cdot m^{2} \cdot m = N m \right]$$

1 Hybrix	77 02	Delormation

Deformation

Physik

Energiedichte Dehnung

62 Antwort

$$w = \frac{W}{V} = \frac{E}{2}\varepsilon^2$$
$$\left[\frac{J}{3} = \frac{N}{2}\right]$$

$$\begin{bmatrix} \frac{J}{m^3} = \frac{N}{m^2} \\ = \frac{N m}{m^3} \end{bmatrix}$$

_	J	11	

Deformation

Physik

Energiedichte Torsion

63 Antwort
$$w = \frac{G}{2}\alpha^2$$

$$w = \frac{1}{2}\alpha$$

$$\left[\frac{J}{m^3} = \frac{N}{m^2}\right]$$

$$= \frac{N m}{m^3}$$

	"	

Fluide

Physik

Viskosität "Zähigkeit"

# 64	Antwort	
	$\eta \left[\frac{\mathrm{N}\mathrm{s}}{2} \right]$	

Physik # 65 Fluide Dichte

Fluide

Physik

Oberflächenspannung

# 66	Antwort	
	_[J]	

$$\sigma \left[rac{
m J}{
m m^2}
ight]$$

Fluide

Physik

hydrostatischer Druck Schweredruck

$$p(h) = p_0 + \varrho \cdot h \cdot g$$

$$\left[\text{Pa} = \text{Pa} + \underbrace{\frac{\text{kg}}{\text{m}^3} \cdot \text{m} \cdot \frac{\text{m}}{\text{s}^2}}_{\text{kg}} \right]$$

p₀: (Luft-)Druck an der Oberflächeh: Tiefe

Physik	# 68	Fluide
	Auftrieb	

$$F = (\varrho_{FI} - \varrho_{K}) \cdot V_{K} \cdot g$$
$$\left[N = \frac{kg}{m^{3}} \cdot m^{3} \cdot \frac{m}{s^{2}} = kg \frac{m}{s^{2}} \right]$$

$$\begin{array}{ll} \varrho_{\rm Fl} < \varrho_{\rm K} \Leftrightarrow F_{\rm A} < F_{\rm G} \Longrightarrow & {\rm K\"{o}rper~sinkt} \\ \varrho_{\rm Fl} = \varrho_{\rm K} \Leftrightarrow F_{\rm A} = F_{\rm G} \Longrightarrow & {\rm K\"{o}rper~schwebt} \\ \varrho_{\rm Fl} > \varrho_{\rm K} \Leftrightarrow F_{\rm A} > F_{\rm G} \Longrightarrow & {\rm K\"{o}rper~steigt} \end{array}$$

Fluide

Physik

Barometrische Höhenformel

69 Antwort
$$p = p_0 \cdot \exp\left(-\frac{\varrho_0}{p_0} \cdot g \cdot h\right)$$

Physik

Rückstellkraft Oberflächenspannung Fluide

$$F = 2 \cdot \sigma \cdot l$$

$$\left[N = \frac{J}{m^2} \cdot m = \frac{N}{m} \cdot m \right]$$

Antwort

σ: Oberflächenspannungl: Länge der Randlinie des Bügels

Fluide

Physik

Oberflächenenergie

$$W = A \cdot \sigma$$

$$\left[1 - m^2 \right]$$

$$W = A \cdot \sigma$$

$$\left[J = m^2 \cdot \frac{J}{m^2} \right]$$

Fluide

Physik

Druck in Flüssigkeitskugel

$$p=2\frac{\sigma}{r}$$
 Vollkugel (Wassertropfen)
$$p=3\frac{\sigma}{r}$$
 Hohlkugel (Seifenblase)

$$p = 3\frac{J}{r} \text{ Hohlkugel (Seifenblase)}$$

$$\left[\text{Pa} = \frac{\frac{J}{m^2}}{m} = \frac{\frac{N \text{ m}}{m^2}}{m} = \frac{N}{m^2} \right]$$

73

Geometrie

Physik

Kugeloberfläche- und Volumen

$$A = 4\pi r^2$$

Kugeloberfläche Kugelvolumen

$$A = \frac{4}{3}\pi r^3$$

74

Fluide

Physik

Kontinuitätsgleichung für inkompressible Medien

74 Antwort
$$A_1v_1 = A_2v_2$$

für $\varrho = \text{const}$

Fluide

Bernoulli-Gleichung

$$\underbrace{\frac{\varrho}{2}v_1^2}_{\text{Staudruck}} + \underbrace{p_1}_{\text{stat. Druck}} = \underbrace{p_0}_{\text{Gesamtdruck}}$$

Fluide

Physik

Newtonsches Reibungsgesetz Viskosität zwischen Platten

76 Antwort
$$F = \eta \cdot A \cdot \frac{dv}{dx}$$

$$\left[N = \frac{N s}{m^2} \cdot m^2 \cdot \frac{\frac{m}{s}}{m} \right]$$

Fluide

Physik

Geschwindigkeit im Stromröhrchen

$$v(r) = \frac{p_1 - p_2}{4\eta l} (R^2 - r^2)$$

$$\left[\frac{m}{s} = \frac{Pa}{\frac{Ns}{m^2} m} m^2 = \frac{\frac{N}{m^2}}{\frac{Ns}{m^2} m} m^2 = \frac{m^2}{ms} \right]$$

Druck vor und hinter dem Röhrchen $p_{1,2}$: R: Radius des umschließenden Rohres

Radius des Röhrchens r:

78

Fluide

Physik

Antriebskraft Rohrströmung

$$F = \pi \cdot r^2 \cdot \Delta p$$

$$\left[N = m^2 \cdot Pa = m^2 \cdot \frac{N}{m^2} \right]$$

79

Fluide

Physik

Gesetz von Hagen-Poiseuille

# 79	Antwort	

$$\dot{M} = \frac{\varrho \cdot \pi}{8 \cdot \eta} \cdot \frac{\Delta p}{l} \cdot R^4 \sim R^4$$

$$\left[\frac{\text{kg}}{\text{s}} = \frac{\frac{\text{kg}}{\text{m}^3}}{\frac{\text{Ns}}{\text{m}^2}} \cdot \frac{\frac{\text{N}}{\text{m}^2}}{\text{m}} \cdot \text{m}^4 = \frac{\text{N kg m}^6}{\text{N s m}^6} \right]$$

 \dot{M} : Massenstromstärke Δp : Druckdifferenz vor und hinter dem Rohr R: Radius des Rohres

80

Fluide

Physik

Stockesches Gesetz für Kugel

Antwort

$$\left[N = \frac{Ns}{m^2} \cdot m \cdot \frac{m}{s}\right]$$

 $F_{\rm R} = 6 \cdot \pi \cdot \eta \cdot r \cdot v$

$$v = \text{const f\"{u}r}$$
:
 $mq - |F_A| = 6 \cdot \pi \cdot \eta \cdot r \cdot v = F_B$

Physik	# 81	Fluide
	Reynolds-Zahl	

T 1

$$Re = \frac{\varrho \cdot L \cdot v}{\eta}$$

$$\left[1 = \frac{\frac{\frac{kg}{m^3} \cdot m \cdot \frac{m}{s}}{\frac{Ns}{m^2}} = \frac{\frac{kg}{sm}}{\frac{kg}{sm}}\right]$$

Sobald Re einen bestimmten Grenzwert überschreitet (z.B. 2300 bei Rohrströmung), schlägt die Strömung von laminar in turbulent um.

Filysik	# 62	riuide

Luftwiderstand

4 99

Fluida

Dhygil

$$F = c_{\mathbf{w}} \cdot \frac{\varrho}{2} \cdot v^2 \cdot A$$

$$\left[\mathbf{N} = 1 \cdot \frac{\mathbf{kg}}{\mathbf{m}^3} \cdot \frac{\mathbf{m}^2}{\mathbf{s}^2} \cdot \mathbf{m}^2 \right]$$

c_w: StrömungswiderstandskoeffizientA: Stirnfläche

Physik # 83 Schwingungen

83 Antwort =

Physik # 84 Schwingungen

84 Antwort =

Physik # 85 Schwingungen

Physik # 86 Schwingungen

86 Antwort =

Physik #87 Schwingungen

87 Antwort =

Physik # 88 Schwingungen

88 Antwort

Physik # 89 Schwingungen

89 Antwort =

Physik	# 90	Schwingungen

90 Antwort =

Hinweise zur Nutzung dieser Karteilernkarten:

Die Karten wurden von allen Beteiligten nach bestem Wissen und Gewissen erstellt, für Fehlerfreiheit und Klausurgelingen kann aber keine Garantie gegeben werden. # 91

Moritz Augsburger (and others, see

this file. As long as you retain this notice you can do whatever you want with this stuff.

If we meet some day and you think this stuff is worth it, you can buy me a beer or a coffee in return.

https://github.com/maugsburger/exph) wrote

Antwort