What is claimed is:

5

10

15

20

- 1. A method of manufacturing a semiconductor memory device, comprising the steps of:
- forming a trench in an isolation region of a semiconductor substrate and then forming an isolation film within the trench;

forming a screen oxide film on the semiconductor substrate and then forming a triple well through an ion implantation process using a given mask;

removing the screen oxide film, forming a tunnel oxide film and a first polysilicon layer on the entire structure and then patterning the first polysilicon layer to form a floating gate over the semiconductor substrate in the memory cell region;

forming a dielectric film and a second polysilicon layer on the entire structure and then patterning the second polysilicon layer to form a control gate over the semiconductor substrate in the memory cell region;

injecting an ion for controlling the threshold voltage into the exposed semiconductor substrate of the peripheral circuit region; and

forming a gate oxide film and a third polysilicon layer over the semiconductor substrate of the peripheral circuit region, thus forming a gate of a transistor.

2. The method as claimed in claim 1, wherein the triple well includes a triple N well and an N well formed within the triple N well.

3. The method as claimed in claim 2, wherein the triple N well is formed by injecting P31 having the dose of $5E12 \sim 5E13$ ion/cm² with energy of $1000 \sim 2000 \text{KeV}$ and the N well is formed by injecting P3 having the dose of $5E12 \sim 5E13$ ion/cm² with energy of $500 \sim 1000 \text{KeV}$.

5

4. The method as claimed in claim 1, further comprising the step of after the step of forming the triple well, injecting an inert ion into a given depth of the semiconductor substrate and then implementing a rapid thermal process to form an ion implantation layer.

10

5. The method as claimed in claim 4, wherein the inert ion is nitrogen (N_2) and is injected with energy of $30 \sim 100 \text{KeV}$ ad the dose of 1E13 $\sim 5\text{E}14$ ion/cm².

15

6. The method as claimed in claim 4, wherein the rapid thermal process is implemented under nitrogen (N_2) atmosphere at a temperature of $900 \sim 1100 \,^{\circ}\mathbb{C}$ for $5 \sim 30$ seconds.

20

- 7. The method as claimed in claim 1, further comprising the step of before the tunnel oxide film is formed, cleaning the surface of the semiconductor substrate using a dilute HF and SC-1 solution.
- 8. The method as claimed in claim 1, wherein the tunnel oxide film is formed by means of a wet oxidization process using hydrogen (H₂) and

oxygen (O₂) at a temperature of $750 \sim 800 \,^{\circ}\text{C}$.

在學學上的解析這一個學、學

10

15

- 9. The method as claimed in claim 1, wherein the first polysilicon layer is formed by means of a low-pressure chemical vapor deposition method using silicon source gas such as SiH_4 or Si_2H_6 and $POCl_3$ or PH_3 gas at a temperature of $510 \sim 550\,^{\circ}\text{C}$ and a pressure of $0.1 \sim 3.0 \text{Torr.}$
- 10. The method as claimed in claim 1, wherein the second polysilicon layer is formed by means of a low-pressure chemical vapor deposition method using silicon source gas such as SiH_4 or Si_2H_6 and PH_3 gas at a temperature of $530 \sim 550$ °C and a pressure of below 1Torr.
- 11. The method as claimed in claim 1, wherein the ion for controlling the threshold voltage is BF_2 and is injected with energy of $10 \sim 50 \text{KeV}$ at the dose of $1E11 \sim 1E14$ ion/cm².