We	rsja
	•

Nu	mer	inde	ksu:		

α 1	
t÷runa≛	٠
Grupa	٠
1	

s. 4	s. 5	s. 103	s. 104
s. 105	s. 139	s. 140	nie chodzę na ćwiczenia

Logika dla informatyków

Kolokwium nr 3, 24 stycznia 2020 Czas pisania: 30+60 minut

Zadanie 1 (2 punkty). Dla $m, n \in \mathbb{N}$ niech $A_{m,n}$ oznacza zbiór relacji zawierających parę $\langle m, n \rangle$, czyli

$$A_{m,n} = \{ R \subseteq \mathbb{N} \times \mathbb{N} \mid \langle m, n \rangle \in R \}.$$

Jeśli w zbiorze $\bigcap_{n\in\mathbb{N}} A_{n,n}$ jest jakaś relacja niesymetryczna, to w prostokąt poniżej wpisz dowolny przykład takiej relacji. W przeciwnym przypadku wpisz dowód, że takiej relacji w tym zbiorze nie ma.

$$R = \{\langle n, n \rangle \mid n \in \mathbb{N}\} \cup \{\langle 1, 2 \rangle\}$$

Zadanie 2 (2 punkty). Na rodzinie zbiorów $\mathcal{P}(\mathbb{N} \times \{0,1\})$ definiujemy operację rzutu na drugą oś $\pi: \mathcal{P}(\mathbb{N} \times \{0,1\}) \to \mathcal{P}(\{0,1\})$ wzorem $\pi(X) = \{b \in \{0,1\} \mid \exists n \in \mathbb{N} \ \langle n,b \rangle \in X\}$. Następnie definiujemy relację równoważności \simeq na $\mathcal{P}(\mathbb{N} \times \{0,1\})$ wzorem

$$X \simeq Y \iff \pi(X) = \pi(Y).$$

W tym zadaniu pytamy o istnienie takich zbiorów A,B,C,D, że $|[A]_{\simeq}|=1, |[B]_{\simeq}|=2, |[C]_{\simeq}|=\aleph_0, |[D]_{\simeq}|=\mathfrak{c}.$ Jeśli takie zbiory istnieją, to w odpowiadające im prostokąty poniżej wpisz dowolne przykłady takich zbiorów; w przeciwnym przypadku wpisz słowa "NIE ISTNIE-JE".

A:	Ø
C:	NIE ISTNIEJE

B: NIE ISTNIEJE $D: \{\langle 0,0 \rangle \}$

¹Proszę zakreślić właściwą grupę ćwiczeniową.

Zadanie 3 (2 punkty). Jeśli istnieje relacja równoważności na zbiorze $\{0, 1, 2, 3\}$, która ma 5 klas abstrakcji, to w prostokąt poniżej wpisz dowolną taką relację równoważności. W przeciwnym przypadku wpisz dowód, że taka relacja nie istnieje.

Załóżmy nie wprost, że taka relacja istnieje. Wtedy jej klasy abstrakcji są niepuste i rozłączne, więc zbiór $\{0,1,2,3\}$ ma co najmniej 5 elementów. To daje sprzeczność, bo ten zbiór ma tylko 4 elementy.

Zadanie 4 (2 punkty). Rozważmy takie zbiory A i B, że zbiór wszystkich funkcji z A w B ma moc 2020. W prostokąty poniżej wpisz odpowiednio moce zbiorów wszystkich surjekcji z A w B oraz surjekcji z B w A. $Wskazówka: 2020 = 4 \cdot 5 \cdot 101$.

surjekcje z $A\le B$: 0 surjekcje z $B\le A$: 1

Zadanie 5 (2 punkty). Rozważmy funkcje

 $f: A \to B, \qquad g: B \to C, \qquad h: B^A \to C^B$

oraz elementy $a \in A$, $b \in B$ i $c \in C$. W tym zadaniu uznamy wyrażenie za poprawne, jeśli dla każdej użytej w nim funkcji (i dla dowolnych zbiorów A, B i C) jej argument należy do dziedziny tej funkcji. Np. wyrażenie f(b) nie jest poprawne, bo nie dla wszystkich zbiorów A, B i C jest $b \in A$. Jeśli wyrażenie jest poprawne, to przez jego typ rozumiemy zbiór do którego należy element oznaczany przez to wyrażenie. Np. typem wyrażenia f(a) jest B. W prostokąty obok tych spośród podanych niżej wyrażeń, które są poprawne, wpisz odpowiedni typ wyrażenia. W pozostałe prostokąty wpisz słowo "NIE".

f(b) NIE $h \circ f$ NIE $\Big(h(f)\Big)(b)$ C

Wersja:

Numer indel	su:		

 $Grupa^1$:

s. 4	s. 5	s. 103	s. 104
s. 105	s. 139	s. 140	nie chodzę na ćwiczenia

Zadanie 6 (5 punktów). Rozważmy funkcję $\varphi: \mathbb{Z}^{\mathcal{P}(\mathbb{N}) \cup \mathbb{R}} \to \mathbb{Z}^{\mathcal{P}(\mathbb{N})} \times \mathbb{Z}^{\mathbb{R}}$ zdefiniowaną dla argumentu $f: \mathcal{P}(\mathbb{N}) \cup \mathbb{R} \to \mathbb{Z}$ wzorem $\varphi(f) = \langle g_1, g_2 \rangle$ gdzie dla $X \in \mathcal{P}(\mathbb{N})$ i $y \in \mathbb{R}$ mamy $g_1(X) = f(X)$ i $g_2(y) = f(y)$. Udowodnij, że funkcja φ jest injekcją.

Zadanie 7 (5 punktów). Na zbiorze $\mathcal{P}(\mathbb{N})$ określamy relację równoważności \approx wzorem

$$A \approx B \iff A \sim B \ \land \ (\mathbb{N} \backslash A) \sim (\mathbb{N} \backslash B)$$

Korzystając z twierdzenia Cantora-Bernsteina udowodnij, że zbiór ilorazowy relacji \approx ma moc \aleph_0 . Wskazówka: Możesz (bez dowodu) skorzystać z faktu, że $(\mathbb{N} \cup {\aleph_0}) \times (\mathbb{N} \cup {\aleph_0}) \sim \mathbb{N}$.

Zadanie 8 (5 punktów). Rozważmy relację równoważności \approx zdefiniowaną na zbiorze $\mathcal{P}(\mathbb{N})$ wzorem

$$X \approx Y \iff \text{zbi\'or } (X \setminus Y) \cup (Y \setminus X)$$
jest skończony.

Podaj moc klasy abstrakcji zbioru pustego i udowodnij poprawność swojej odpowiedzi.

¹Proszę zakreślić właściwą grupę ćwiczeniową.

Wersja:	Numer indeksu:	
\mathbf{D}		

$Grupa^1$:			
s. 4	s. 5	s. 103	s. 104
s. 105	s. 139	s. 140	nie chodzę na ćwiczenia

Logika dla informatyków

Kolokwium nr 3, 24 stycznia 2020 Czas pisania: 30+60 minut

Zadanie 1 (2 punkty). Na rodzinie zbiorów $\mathcal{P}(\mathbb{N} \times \{0,1\})$ definiujemy operację rzutu na pierwszą oś $\pi: \mathcal{P}(\mathbb{N} \times \{0,1\}) \to \mathcal{P}(\mathbb{N})$ wzorem $\pi(X) = \{n \in \mathbb{N} \mid \exists b \in \{0,1\} \ \langle n,b \rangle \in X\}$. Następnie definiujemy relację równoważności \simeq na $\mathcal{P}(\mathbb{N} \times \{0,1\})$ wzorem

$$X \simeq Y \iff \pi(X) = \pi(Y).$$

W tym zadaniu pytamy o istnienie takich zbiorów A, B, C, D, że $|[A]_{\simeq}| = 3$, $|[B]_{\simeq}| = 5$, $|[C]_{\simeq}| = \aleph_0$, $|[D]_{\simeq}| = \mathfrak{c}$. Jeśli takie zbiory istnieją, to w odpowiadające im prostokąty poniżej wpisz dowolne przykłady takich zbiorów; w przeciwnym przypadku wpisz słowa "NIE ISTNIE-JE".

Zadanie 2 (2 punkty). Rozważmy takie zbiory A i B, że zbiór wszystkich funkcji z A w B ma moc 2020. W prostokąty poniżej wpisz odpowiednio moce zbiorów wszystkich injekcji z A w B oraz injekcji z B w A. $Wskazówka: 2020 = 4 \cdot 5 \cdot 101$.

injekcje z $A\le B$:	2020	injekcje z $B\le A$:	0
-----------------------	------	-----------------------	---

¹Proszę zakreślić właściwą grupę ćwiczeniową.

Zadanie 3 (2 punkty). Dla $m, n \in \mathbb{N}$ niech $A_{m,n}$ oznacza zbiór relacji zawierających parę $\langle m, n \rangle$, czyli

$$A_{m,n} = \{ R \subseteq \mathbb{N} \times \mathbb{N} \mid \langle m, n \rangle \in R \}.$$

Jeśli w zbiorze $\bigcap_{m\in\mathbb{N}}\bigcup_{n>m}A_{m,n}$ jest jakaś relacja będąca funkcją różnowartościową, to w prostokąt poniżej wpisz dowolny przykład takiej relacji. W przeciwnym przypadku wpisz dowód, że takiej relacji w tym zbiorze nie ma.

$$R = \{\langle n, n+1 \rangle \mid n \in \mathbb{N} \}$$

Zadanie 4 (2 punkty). Rozważmy funkcje

$$f \ : \ C \to B, \qquad \qquad g \ : \ B \to A, \qquad \qquad h \ : \ B^C \to A^B$$

oraz elementy $a \in A$, $b \in B$ i $c \in C$. W tym zadaniu uznamy wyrażenie za poprawne, jeśli dla każdej użytej w nim funkcji (i dla dowolnych zbiorów A, B i C) jej argument należy do dziedziny tej funkcji. Np. wyrażenie f(b) nie jest poprawne, bo nie dla wszystkich zbiorów A, B i C jest $b \in C$. Jeśli wyrażenie jest poprawne, to przez jego typ rozumiemy zbiór do którego należy element oznaczany przez to wyrażenie. Np. typem wyrażenia f(c) jest B. W prostokąty obok tych spośród podanych niżej wyrażeń, które są poprawne, wpisz odpowiedni typ wyrażenia. W pozostałe prostokąty wpisz słowo "NIE".

Zadanie 5 (2 punkty). Jeśli istnieje relacja równoważności na zbiorze $\{0, 1, 2, 3, 4\}$, w której każda klasa abstrakcji ma 2 elementy, to w prostokąt poniżej wpisz dowolną taką relację równoważności. W przeciwnym przypadku wpisz dowód, że taka relacja nie istnieje.

Załóżmy nie wprost, że taka relacja istnieje. Wtedy jej klasy abstrakcji są rozłączne i w sumie dają zbiór $\{0,1,2,3,4\}$, więc ten zbiór ma parzystą liczbę elementów. To daje sprzeczność, bo 5 nie jest liczbą parzystą.

Wersja	

Numer	indeksı	1:	

$Grupa^1$	
-----------	--

s. 4	s. 5	s. 103	s. 104
s. 105	s. 139	s. 140	nie chodzę na ćwiczenia

Zadanie 6 (5 punktów). Na zbiorze $\mathcal{P}(\mathbb{N}) \times \mathcal{P}(\mathbb{N})$ określamy relację równoważności \approx wzorem

$$\langle A, B \rangle \approx \langle C, D \rangle \stackrel{\text{df}}{\iff} A \sim C \wedge B \sim D$$

Korzystając z twierdzenia Cantora-Bernsteina udowodnij, że zbiór ilorazowy relacji \approx ma moc \aleph_0 . Wskazówka: Możesz (bez dowodu) skorzystać z faktu, że $(\mathbb{N} \cup {\aleph_0}) \times (\mathbb{N} \cup {\aleph_0}) \sim \mathbb{N}$.

Zadanie 7 (5 punktów). Rozważmy funkcję $\varphi: \mathbb{Z}^{\mathcal{P}(\mathbb{N}) \cup \mathbb{R}} \to \mathbb{Z}^{\mathcal{P}(\mathbb{N})} \times \mathbb{Z}^{\mathbb{R}}$ zdefiniowaną dla argumentu $f: \mathcal{P}(\mathbb{N}) \cup \mathbb{R} \to \mathbb{Z}$ wzorem $\varphi(f) = \langle g_1, g_2 \rangle$ gdzie dla $X \in \mathcal{P}(\mathbb{N})$ i $y \in \mathbb{R}$ mamy $g_1(X) = f(X)$ i $g_2(y) = f(y)$. Udowodnij, że funkcja φ jest surjekcją.

Zadanie 8 (5 punktów). Rozważmy relację równoważności \approx zdefiniowaną na zbiorze $\{0,1\}^{\mathbb{N}}$ wzorem

$$f \approx g \iff \text{zbi\'or } \{n \in \mathbb{N} \mid f(n) \neq g(n)\} \text{ jest sko\'aczony}$$

oraz funkcję $z: \mathbb{N} \to \mathbb{N}$ daną wzorem z(n)=0 dla $n \in \mathbb{N}$. Podaj moc klasy abstrakcji funkcji z i udowodnij poprawność swojej odpowiedzi.

¹Proszę zakreślić właściwą grupę ćwiczeniową.