Today: More Heat Equation (+ domos)
L Conth	
Initial temporative g(x)	ias a function of x O < x < L)
Hold ends at 0° (et terms host flow. $g(0)=g(L)=0$, Let $u(x+)=$ temp at position xat time t time t figure out consent $a^2 \frac{\partial^2}{\partial x^2} u(x)$	(5(x) (5(x) (1)

We want to first a function
$$u(x+)$$
 satisfying.

• $u(x,0) = g(x)$ (initial temp)

• $u(0,+) = 0$

• $u(L,+) = 0$

• $u(L,+) = 0$

• $u(L,+) = 0$

• $u(L,+) = 0$

• $u(x+) = e^{-\frac{\pi^2 \alpha^2}{L^2} + \sin(\frac{\pi x}{L})}$

• $u_1(x+) = e^{-\frac{\pi^2 \alpha^2}{L^2} + \sin(\frac{2\pi x}{L})}$

• $u_2(x+) = e^{-\frac{\pi^2 \alpha^2}{L^2} + \sin(\frac{2\pi x}{L})}$

• $u_3(x+) = e^{-\frac{\pi^2 \alpha^2}{L^2} + \sin(\frac{2\pi x}{L})}$

• $u_3(x+) = e^{-\frac{\pi^2 \alpha^2}{L^2} + \sin(\frac{2\pi x}{L})}$

Check:
$$u_n(x,t) = e^{-n^2t^2x^2} + s_m(\frac{n\pi x}{L}) eg. n=2$$

$$u_n(x,0) = s_m(\frac{n\pi x}{L})$$

$$this describes evaluation of$$

this describes evolution of temp when initial temps sin(httx)

V

TA.

(et L=17.

If our initial condition was

 $2jv(x) \xrightarrow{20j} 6_{-\alpha_5+} 2jv(x)$

 $SM(2x) \xrightarrow{Sol} e^{-4x^2t}$ SM(2x)

 $sin(3x) \xrightarrow{sol} e^{-9x^2+} sm(3x)$

If initial condition is

7 sin(x)-3 sm(2x), solution is:

 $u(x+)=7e^{-x^2+}sin(x)-3e^{-4x^2+}sin(2x)$

(Swen an initial (bridition, 9(x), mile fourier series; $g(x) = \sum_{n=1}^{\infty} b_n \sinh(nx).$ Then solution to hoot egn is $u(x;t) = \sum_{n=1}^{\infty} b_n e^{-n^2 \alpha^2 t} SM(nx).$

3) What happens if initial function glx) doesn't have g(0)=0?

4) Howgan