Problem Set 6

Instructor: Yujung Hwang *

October 7, 2020

DUE DATE : 2020.10.14. time 11:00pm submit your solution and code files on Blackboard page.

Question 1. Solving a Discrete-Continuous Problem without Uncertainty

An agent is endowed with initial asset α_0 and may work until retirement $d_t = 0$. Retirement is an absorbing state, so once retired, an agent can not go back to work. In this question, you are asked to solve for the policy function (consumption plan) $c_t(\alpha_t, d_t)$ and value function $\nu_t(\alpha_t, d_t)$ conditional on work decision d_t .

The flow utility function is as follows. Working incurs a disutility cost δ .

$$u(c,d) = \log(c) - \delta \cdot 1(d=1) \tag{0.1}$$

The structural parameter values are as follows:

Parameter	Description	Value
T	Lifetime	20
r	interest rate	0
β	time discount	0.98
a_0	initial asset	0
<u>c</u>	minimum consumption	$10^{-}5$
\overline{y}	per-period income	20
δ	work disutility	1

When you set an asset grid, use age-specific grid and use an unequal grid point generated from log transformation and use the $N_A = 1000$ gridpoints.

When you need to interpolate any function, use "linear" interpolation.

- (a) Compute $c_t(\alpha_t, d_t)$ using the value function iteration. Show the policy function for worker $c_t(\alpha_t, d_t = 1)$ for t = 18, t = 15, t = 10. Discuss how the number of discontinuities increases as $t \to 1$, using the notion of primary and secondary kink points.
- (b) Compute the marginal utility of consumption $MU_t(c_t(\alpha_t))$ as a function of asset. Plot the $MU_t(c_t(\alpha_t))$ for t=18, t=15, t=10. Using the plot, discuss why the Euler equation may not provide a sufficient condition for

^{*}yujungghwang@gmail.com

optimality.

(c) Compute the unconditional value function $V_t(\alpha_t)$ and conditional value function $V_{t,d=1}(\alpha_t), V_{t,d=0}(\alpha_t)$, conditional on work status. Plot the unconditional value function and conditional value function for t=20. Find the primary kink point. Discuss the how the unconditional value function looks like around the primary kink point.

[Bonus Question, +15 points] Solve the Question 1 using the Iskhakov et al. (2017)'s endogenous grid method.