Data Mining: Classification: Part 4

Decision Tree Examples

CS 4821 - CS 5831

Some slides adapted from P. Smyth; A. Moore, D. Klein Han, Kamber, Pei; Tan, Steinbach, Kumar; L. Kaebling; R. Tibshirani; T. Taylor; and L. Hannah

Example: Data

Consider a data set on playing tennis:

Outlook	Temp	Humidity	Windy	Play
Sunny	Hot	High	False	No
Sunny	Hot	Low	True	Yes
Sunny	Mild	Low	True	Yes
Rainy	Mild	High	False	Yes
Overcast	Cool	High	False	Yes
Rainy	Cool	High	True	No
Overcast	Cool	Low	True	No
Sunny	Cool	High	True	Yes
Rainy	Mild	High	True	No
Rainy	Cool	Low	False	Yes
Overcast	Hot	Low	True	Yes
Sunny	Cool	Low	False	Yes
Overcast	Mild	High	False	Yes

Use Outlook, Temp, Humidity and Windy to predict Play

What is the Best Root Feature?

	Temp	
Hot	Mild	Cool
No	Yes	Yes
Yes	Yes	No
Yes	No	No
	Yes	Yes
		Yes
		Yes

Humidity			
Low	High		
Yes	No		
Yes	Yes		
No	Yes		
Yes	No		
Yes	Yes		
Yes	No		
	Yes		

Example: Humidity

Parent node: $p_{Hum,N}=\frac{4}{13}$, $p_{Hum,Y}=\frac{9}{13}$ Entropy:

$$H(X_{Hum}) = -\sum_{i=\{N,Y\}} p_{Hum,i} \log p_{Hum,i}$$

$$Gain(X_{Hum})_H = H(X_{Hum}) - \left(\sum_{l=\{L,H\}} \frac{n_l}{n_{Hum}} H(X_{Hum_l})\right)$$

Example: Humidity

Parent node: $p_{Hum,N}=\frac{4}{13}$, $p_{Hum,Y}=\frac{9}{13}$ Entropy:

$$H(X_{Hum}) = -\sum_{i=\{N,Y\}} p_{Hum,i} \log p_{Hum,i}$$
$$= -\frac{4}{13} \log \frac{4}{13} - \frac{9}{13} \log \frac{9}{13}$$
$$= 0.8905$$

Gain
$$(X_{Hum})_H = H(X_{Hum}) - \left(\sum_{l=\{L,H\}} \frac{n_l}{n_{Hum}} H(X_{Hum_l})\right)$$

$$= H(X_{Hum}) - \frac{6}{13} \left(-\frac{1}{6} \log \frac{1}{6} - \frac{5}{6} \log \frac{5}{6}\right)$$

$$- \frac{7}{13} \left(-\frac{3}{7} \log \frac{3}{7} - \frac{4}{7} \log \frac{4}{7}\right)$$

$$= 0.8905 - 0.8305 = 0.06$$

Example: Windy

Win	dy
False	True
No	Yes
Yes	Yes
Yes	No
Yes	No
Yes	Yes
Yes	No
	Yes

Parent node: $p_{W,N}=\frac{4}{13}$, $p_{W,Y}=\frac{9}{13}$ Entropy:

$$H(X_W) = -\sum_{i=\{N,Y\}} p_{W,i} \log p_{W,i}$$

Gain in Entropy:

=

$$Gain(X_W)_H = H(X_W) - \left(\sum_{l=\{F,T\}} \frac{n_l}{n_W} H(X_{W_l})\right)$$

5

Example: Windy

Win	dy
False	True
No	Yes
Yes	Yes
Yes	No
Yes	No
Yes	Yes
Yes	No
	Yes

Parent node: $p_{W,N}=\frac{4}{13}$, $p_{W,Y}=\frac{9}{13}$ Entropy:

$$H(X_W) = -\sum_{i=\{N,Y\}} p_{W,i} \log p_{W,i}$$
$$= -\frac{4}{13} \log \frac{4}{13} - \frac{9}{13} \log \frac{9}{13}$$
$$= 0.8905$$

$$Gain(X_W)_H = H(X_W) - \left(\sum_{l=\{F,T\}} \frac{n_l}{n_W} H(X_{W_l})\right)$$

$$= H(X_W) - \frac{6}{13} \left(-\frac{1}{6} \log \frac{1}{6} - \frac{5}{6} \log \frac{5}{6}\right)$$

$$- \frac{7}{13} \left(-\frac{3}{7} \log \frac{3}{7} - \frac{4}{7} \log \frac{4}{7}\right)$$

$$= 0.8905 - 0.8305 = 0.06$$

Example: Outlook

Parent node: $p_{Out,N}=\frac{4}{13}$, $p_{Out,Y}=\frac{9}{13}$ Entropy:

$$H(X_{Out}) = -\sum_{i=\{N,Y\}} p_{Out,i} \log p_{Out,i}$$

$$Gain(X_{Out})_H = H(X_{Out}) - \left(\sum_{l=\{S,R,O\}} \frac{n_l}{n_{Out}} H(X_{Out_l})\right)$$
=

Example: Outlook

Parent node: $p_{Out,N}=\frac{4}{13}$, $p_{Out,Y}=\frac{9}{13}$ Entropy:

$$H(X_{Out}) = -\sum_{i=\{N,Y\}} p_{Out,i} \log p_{Out,i}$$
$$= -\frac{4}{13} \log \frac{4}{13} - \frac{9}{13} \log \frac{9}{13}$$
$$= 0.8905$$

$$Gain(X_{Out})_H = H(X_{Out}) - \left(\sum_{l=\{S,R,O\}} \frac{n_l}{n_{Out}} H(X_{Out_l})\right)$$

$$= H(X_{Out}) - \frac{4}{13} \left(-\frac{1}{4} \log \frac{1}{4} - \frac{3}{4} \log \frac{3}{4}\right)$$

$$- \frac{4}{13} \left(-\frac{1}{2} \log \frac{1}{2} - \frac{1}{2} \log \frac{1}{2}\right) - \frac{5}{13} \left(-\frac{1}{5} \log \frac{1}{5} - \frac{4}{5} \log \frac{4}{5}\right)$$

$$= 0.8905 - 0.8345 = 0.056$$

Example: Temperature

Parent node: $p_{T,N} = \frac{4}{13}$, $p_{T,Y} = \frac{9}{13}$

Entropy:

$$H(X_T) = -\sum_{i=\{N,Y\}} p_{T,i} \log p_{T,i}$$

Gain in Entropy:

$$Gain(X_T)_H = H(X_T) - \left(\sum_{l=\{H,M,C\}} \frac{n_l}{n_T} H(X_{T_l})\right)$$

7

Example: Temperature

Parent node: $p_{T,N}=rac{4}{13}$, $p_{T,Y}=rac{9}{13}$

Entropy:

$$H(X_T) = -\sum_{i=\{N,Y\}} p_{T,i} \log p_{T,i}$$
$$= -\frac{4}{13} \log \frac{4}{13} - \frac{9}{13} \log \frac{9}{13}$$
$$= 0.8905$$

$$Gain(X_T)_H = H(X_T) - \left(\sum_{l=\{H,M,C\}} \frac{n_l}{n_T} H(X_{T_l})\right)$$

$$= H(X_T) - \frac{3}{13} \left(-\frac{1}{3} \log \frac{1}{3} - \frac{2}{3} \log \frac{2}{3}\right)$$

$$- \frac{4}{13} \left(-\frac{1}{4} \log \frac{1}{4} - \frac{3}{4} \log \frac{3}{4}\right) - \frac{6}{13} \left(-\frac{1}{3} \log \frac{1}{3} - \frac{2}{3} \log \frac{2}{3}\right)$$

$$= 0.8905 - 0.8854 = 0.051$$

ID3 Example: Best Feature

Compare the Gain in Entropy:

GainEntropy
0.056
0.051
0.060
0.060

Select the maximum - Tie between Humidity and Windy

Example - Next Feature?

- For the low humidity side, compute conditional entropy
- For the high humidity side, compute conditional entropy
- Treat each side separately

Example 2: Numeric Data

Outlook	Temp2	Humidity	Windy	Play
Sunny	97	High	False	No
Sunny	85	Low	True	Yes
Sunny	71	Low	True	Yes
Rainy	75	High	False	Yes
Overcast	56	High	False	Yes
Rainy	42	High	True	No
Overcast	34	Low	True	No
Sunny	44	High	True	Yes
Rainy	64	High	True	No
Rainy	49	Low	False	Yes
Overcast	88	Low	True	Yes
Sunny	47	Low	False	Yes
Overcast	69	High	False	Yes

Example 2: Numeric Data

Temp		
> 50	<= 50	
No	Yes	
Yes	No	
Yes	No	
Yes	Yes	
Yes	Yes	
No	Yes	
Yes		
Yes		

Fix a value for x', say 50:

- ullet find which records have values >50 and ≤50
- compute gain in entropy

Example 2 - Choose best split value How do we find the best x'?

- ullet calculate conditional entropy for all values in range of X_j
- only need to search over "seen" values (in data)

• Conditional entropy is minimized when $42 \le x' \le 43$

Example 3: Kyphosis

Data set to predict kyphosis (type of deformation) using:

• Age, number, start

Example 3: Kyphosis

Titanic Data Set

- 1313 passengers
- 34% survived
- was survival random? or did it depend on feature of the individual?
 - gender
 - age
 - class of ticket

N:1313 p: 0.34

