QFT I, Homework 4

Jinyuan Wu

December 7, 2021

Scalar QED Consider the theory of a complex scalar field ϕ interacting with the electromagnetic field A^{μ} . The Lagrangian is

$$\mathcal{L} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} + (D_{\mu}\phi)^* D^{\mu}\phi - m^2\phi^*\phi.$$
 (1)

where $D_{\mu} = \partial_{\mu} + ieA_{\mu}$ is the usual gauge covaraint derivative.

(a) Show the Lagrangian is invariant under the gauge transformations

$$\phi(x) \to e^{-i\alpha(x)}\phi(x), \quad A_{\mu}(x) \to A_{\mu}(x) + \frac{1}{e}\partial_{\mu}\alpha(x).$$
 (2)

- (b) Derive the Feynman rules for the interaction between photons and scalar particles.
- (c) Draw all the leading-order Feynman diagrams and compute the amplitude for the process $\gamma\gamma \to \phi\phi^*$.
- (d) Compute the differential cross section $d\sigma/d\cos\theta$. You can take an average over all initial state polarizations. For simplicity, you can restrict your calculation in the limit m=0.
- (e) Draw all leading order Feynman diagrams, that contribute to the Compton scattering process $\gamma\phi \to \gamma\phi$ and compute the differential cross section $d\sigma/d\cos\theta$ with m=0.

Solution

(a) Under the gauge transformation (2), we have

$$F_{\mu\nu} \to F'_{\mu\nu} = \partial_{\mu}A'_{\nu} - \partial_{\nu}A'_{\mu} = \partial_{\mu}\left(A_{\nu} + \frac{1}{e}\partial_{\nu}\alpha\right) - \partial_{\nu}\left(A_{\mu} + \frac{1}{e}\partial_{\mu}\alpha\right) = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} = F_{\mu\nu},$$

so the first term in (1) remains the same. It is obvious that under (2)

$$\phi^*\phi \to \phi'^*\phi' = e^{i\alpha}\phi^*e^{-i\alpha}\phi = \phi^*\phi$$
.

so the third term in (1) is also invariant. Also we have

$$\begin{split} D^{\mu}\phi &\to (\partial^{\mu} + \mathrm{i}eA'^{\mu})\phi' = (\partial^{\mu} + \mathrm{i}eA^{\mu} + \mathrm{i}\partial^{\mu}\alpha)\mathrm{e}^{-\mathrm{i}\alpha}\phi \\ &= \mathrm{e}^{-\mathrm{i}\alpha}(\partial^{\mu} - \mathrm{i}\partial^{\mu}\alpha + \mathrm{i}eA^{\mu} + \mathrm{i}\partial^{\mu}\alpha)\phi \\ &= \mathrm{e}^{-\mathrm{i}\alpha}D^{\mu}\phi, \end{split}$$

and also

$$(D^{\mu}\phi)^* = e^{i\alpha}D^{\mu}\phi,$$

so $D^{\mu}\phi(D^{\mu}\phi)^*$ is also invariant. Therefore (1) is invariant under (2).

(b) We make the following expansion of Fourier transformation. For the complex scalar field we have

$$\phi(x) = \int \frac{\mathrm{d}^3 \mathbf{p}}{(2\pi)^3} \frac{1}{\sqrt{2\omega_{\mathbf{p}}}} (a_{\mathbf{p}} \mathrm{e}^{-\mathrm{i}\mathbf{p}\cdot x} + b_{\mathbf{p}}^{\dagger} \mathrm{e}^{\mathrm{i}\mathbf{p}\cdot x}). \tag{3}$$

which was proved in (10) in Homework 2. The vector field is expanded as

$$A_{\mu}(x) = \int \frac{\mathrm{d}^{3} \boldsymbol{p}}{(2\pi)^{3}} \frac{1}{\sqrt{2\omega_{\boldsymbol{p}}}} \sum_{r=1}^{2} \epsilon_{\mu}^{r}(\boldsymbol{p}) \left(a_{\boldsymbol{p},r}^{\dagger} e^{\mathrm{i}\boldsymbol{p}\cdot\boldsymbol{x}} + a_{\boldsymbol{p},r} e^{-\mathrm{i}\boldsymbol{p}\cdot\boldsymbol{x}} \right). \tag{4}$$

Expanding (2) we have

$$\mathcal{L} = \mathcal{L}_{\text{scalar}} + \mathcal{L}_{\text{vector}} + \mathcal{L}_{\text{scalarQED}}, \tag{5}$$

where $\mathcal{L}_{\text{scalar}}$ and $\mathcal{L}_{\text{vector}}$ are Lagrangians of free scalar field and free massless vector field, and

$$\mathcal{L}_{\text{scalarQED}} = (D_{\mu}\phi)^* D^{\mu}\phi - (\partial_{\mu}\phi)^* \partial^{\mu}\phi$$

= $e^2 \eta_{\mu\nu} A^{\mu} A^{\nu} \phi^* \phi - ieA_{\mu}\phi^* \partial^{\mu}\phi + ie\partial_{\mu}\phi^* A^{\mu}\phi.$ (6)

The first term has no derivatives. Therefore it gives the following (momentum space) vertex:

where the factor i comes from the time evolution operator and the factor 2 comes from the fact that there are two identical photon lines. The two ϕ lines can be any of the following four:

The second term gives

$$-\mathrm{i} e A_{\mu} \phi^* \partial^{\mu} \phi \sim -\mathrm{i} e A_{\mu} (a^{\dagger}_{\boldsymbol{p}} \mathrm{e}^{\mathrm{i} p \cdot x} + b_{\boldsymbol{p}} \mathrm{e}^{-\mathrm{i} p \cdot x}) (-\mathrm{i} (p' \cdot x) a_{\boldsymbol{p}'} \mathrm{e}^{-\mathrm{i} p' \cdot x} + \mathrm{i} (p' \cdot x) b^{\dagger}_{\boldsymbol{p}'} \mathrm{e}^{\mathrm{i} p' \cdot x}),$$

and the third term is its complex conjugate. Therefore, the $a^{\dagger}a$ term in the Lagrangian is

$$\sim -e(p_1+p_2)_{\mu}A^{\mu}a^{\dagger}_{\boldsymbol{p}_1}a_{\boldsymbol{p}_2},$$

so after adding the i factor from the time evolution operator we have

$$\mu \sim -ie(p_{\mu} + q_{\mu}), \tag{8}$$

and we can change the direction of a momentum line and a ϕ -particle line arbitrarily; if a momentum line goes in contrast to the corresponding particle line, then we need to add a minus sign to the corresponding momentum. For example we have

$$\mu \sim \exp(p_{\mu} + q_{\mu}). \tag{9}$$

There are four vertices in this type in total.

Note

Here we follow the notation of Peskin, i.e. using the *momentum* arrow to denote whether this line represents creation or annihilation and using the arrow on a particle line to show whether this line represents a particle (if the direction of the particle line is parallel to the direction of the momentum line) or a antiparticle (otherwise). The real direction of a 4-momentum is *not* represented in any arrow.

(c) We enumerate over all possible diagrams. The vertex (7) itself is a diagram:

Combining two (8)-type vertices we have a t-channel

and a u-channel

Note

We do not need to distinguish the direction of the q' momentum line. This line can be either a particle line or an antiparticle line, but since the ordinary propagator $\mathrm{i}/(p^2-m^2+\mathrm{i}0^+)$ is obtained by summing up the two cases, when we write down this propagator, we have automatically considered both processes.

Summing everything up, we have

$$i\mathcal{M}(\gamma\gamma \to \phi\phi^*) = i(\mathcal{M}_4 + \mathcal{M}_t + \mathcal{M}_u)$$

$$= ie^2 (\epsilon^{\sigma})^{\mu} (\epsilon^{\sigma'})^{\nu} \left(2\eta_{\mu\nu} + \frac{(k-2p)_{\mu}(k'-2q)_{\nu}}{t-m^2} + \frac{(k-2q)^{\mu}(k'-2q)^{\nu}}{u-m^2} \right),$$
(13)

where

$$t = (k - p)^2, \quad u = (q - k)^2.$$
 (14)

(d) The massless limit can be calculated with Eq. (4.85) in Peskin, which is

$$\left(\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}\right)_{\mathrm{CM}} = \frac{|\mathcal{M}|^2}{64\pi^2 E_{\mathrm{CM}}^2},\tag{15}$$

What we need is $|\mathcal{M}|^2$. We have