Department of Computer Science University of Cyprus

EPL342 – Databases

Lecture 5: ER II

Data Modeling Using the ER Model

(Chapter 3.4-3.7, Elmasri-Navathe 7ED)

Demetris Zeinalipour

http://www.cs.ucy.ac.cy/courses/EPL342

Περιεχόμενο Διάλεξης

Κεφάλαιο 3

- 3.4) Συσχετίσεις, Τύποι Συσχετίσεων, Ρόλοι και Δομικοί Περιορισμοί
- 3.5) Μη-Ισχυροί Τύποι Οντοτήτων
- 3.6) Εκλέπτυνση του Σχεδιασμού ΟΣ για τη Βάση Δεδομένων Εταιρεία
- 3.7) Διαγράμματα Οντοτήτων-Συσχετίσεων, Επιλογή Ονομάτων και Θέματα Σχεδιασμού

Συσχετίσεις (Relationships)

- Μέχρι τώρα είδαμε πως μπορούμε να αναπαραστήσουμε τις Οντότητες και τα Γνωρίσματα σε ένα διάγραμμα ΕR.
- Τώρα θα δούμε πως μπορούμε να συσχετίσουμε αυτές τις οντότητες μέσω Συσχετίσεων (Relationships),
- π.χ.,
 - Οντότητες: EMPLOYEE, DEPARTMENT
 - Συσχετίσεις: WORKS_FOR
- Μια Συσχέτιση συνδέει δυο ή περισσότερες οντότητες με συγκεκριμένο νόημα.
 - Π.χ., EMPLOYEE Γιάννης Μιχαήλ works_for CS DEPARTMENT.
- Τυπικά, μια συσχέτιση μεταξύ δυο συνόλων Α, Β είναι ένα υποσύνολο του καρτεσιανού γινομένου ΑxΒ
 - Καρτεσιανό Γινόμενο: A X B = { (a,b) | aεA and bεB}
 - $-R\subseteq AXB$

Συσχετίσεις N:1 (Διαγραμματική Απεικόνιση με Σύνολα)

Όπως θα δούμε αργότερα πρόκειται για μια N:1 σχέση (δηλ., σε ένα Dep. δουλεύουν πολλοί Emp. αλλα κάθε Emp. sε ένα Dep.

Στιγμιότυπα του τύπου σχέσης WORKS_FOR μεταξύ EMPLOYEE και DEPARTMENT

Συσχετίσεις Μ:Ν (Διαγραμματική Απεικόνιση με Σύνολα)

Όπως θα δούμε αργότερα πρόκειται για μια M:N σχέση (δηλ., ένας Emp. δουλεύει σε πολλά Proj. και σε ένα Proj. πολλοί Emp.)

Στιγμιότυπα του τύπου σχέσης WORKS_ΟΝ μεταξύ EMPLOYEE και PROJECT

Τύπος Συσχέτισης και Σύνολο Συσχετίσεων

- Τύπος Συσχέτισης (Relationship Type):
- Relationship

- Το **σχήμα (δομή)** μιας **συσχέτισης.**
- Π.χ., WORK_FOR(SSN, DEPTID, hours)
- Σύνολο Συσχετίσεων (Relat. Set ή Rela. State)
 - Ένα σύνολο συσχετίσεων με τα ίδια χαρακτηριστικά
 - π.χ., {works_for1, works_for2, ...} κτλ.
- Σε ένα διάγραμμα ΕR, οι συσχετίσεις συνδέουν οντότητες μέσω ακμών

EMPLOYEE

WORKS_. FOR

DEPARTMENT

- Βαθμός Σχέσης (Relationship Degree): Αριθμός (τύπων οντοτήτων) που συμμετέχουν στη σχέση
 - Π.χ., WORKS_FOR είναι δυαδική σχέση
 - Υψηλότερου Βαθμού σχέσεις Φαψελετήθούν αργότερα.

Σχήμα COMPANY με Συσχετίσεις

- Μελετώντας τις απαιτήσεις (requirements) της εφαρμογής αυτής (δες διάλεξη 4), εντοπίζουμε τις ακόλουθες έξι δυαδικές συσχετίσεις:
 - WORKS_FOR (μεταξύ EMPLOYEE, DEPARTMENT)
 - «... Κάθε employee δουλεύει για ένα department ...»
 - MANAGES (και αυτή μεταξύ EMPLOYEE, DEPARTMENT)
 - «... Κάθε department έχειένα manager που διαχειρίζεται το department ...»
 - CONTROLS (μεταξύ DEPARTMENT, PROJECT)
 - «... Κάθε department ελέγχει ένα αριθμό από PROJECTs...»
 - WORKS_ON (μεταξύ EMPLOYEE, PROJECT)
 - «Κάθε employee ... εργάζεται πάνω σε πολλά projects.»
 - SUPERVISION (μεταξύ EMPLOYEE (ως υφιστάμενος) και EMPLOYEE (ως προϊστάμενος))
 - «...καταγράφουμε τον προϊστάμενο (direct supervisor) κάθε employee...»
 - DEPENDENTS_OF (μεταξύ EMPLOYEE, DEPENDENT)
 - «...Κάθε employee μπορεί να έχει ένα αριθμό από (DEPENDENTs)...»

Διάγραμμα ER με Συσχετίσεις

Θέματα που θα δούμε αργότερα:

- 1. Λόγοι Πληθικότητας (1:1,1:N, N:1, M:N);
- 2. Περιορισμοί Συμμετοχής (διπλές και μονές γραμμές)
- 3. Ασθενείς Οντότητες (οντότητες με διπλές γραμμές)

Προσέξτε ότι μερικά γνωρίσματα των αρχικών οντοτήτων έχουν μετατραπεί σε σχέσεις. Ποια είναι αυτά; (επόμενη διαφάνεια)

Διάγραμμα ER με Συσχετίσεις

(Γνωρίσματα που Αναπαριστώνται ως Σχέσεις)

EPL342: Databases - Demetris Zeinalipour (University of Cyprus)

Δομικοί Περιορισμοί σε Συσχετίσεις (Structural Constraints on Relationships)

- Δομικοί Περιορισμοί (Structural Constraints)
 - Α. Λόγος Πληθικότητα (Cardinality Ratio) για Δυαδικές Συσχετίσεις: Καθορίζει τον αριθμό στιγμιότυπων της συσχέτισης στα οποία μια οντότητα μπορεί να συμμετέχει.
 - One-to-one (1:1): 1 Τμήμα έχει 1 Πρόεδρο
 - One-to-many (1:N): 1 Μητέρα έχει Ν Παιδιά
 - -• **Many-to-one (N:1):** Ν Παιδιά έχουν 1 Μητέρα
 - -• Many-to-many (M:N): Μ Υπάλληλοι δουλεύουν σε N projects
 - Β. Περιορισμοί Συμμετοχής (Participation Constraint): ορίζει την ελάχιστη συμμετοχή μιας οντότητας σε μια σχέση
 - Μερική Συμμετοχή (Partial): ΚΑΠΟΙΑ ή ΚΑΝΕΝΑ στοιχεία μιας οντότητας Α συσχετίζονται με την οντότητα Β
 - Ολική Συμμετοχή (Total Existence Dependency): ΚΑΘΕ στοιχείο μιας οντότητας Α συσχετίζεται με την οντότητα Β

Ανάγνωση ΕR με Δομικούς Περιορισμούς (Η Ερώτηση Τουλάχιστο / Μέχρι)

Ερώτηση Τουλάχιστο (At least)

- Μονή Γραμμή => Τουλάχιστο 0 (δεν αναφέρεται)
- Διπλή Γραμμή=> Τουλάχιστο 1

Ερώτηση Μέχρι (At-most)

x:1 => Μέχρι 1

χ:Ν => Μέχρι Ν.

* το χ υποδηλοί το οτιδήποτε

Σημείωση: ΠΑΝΤΑ διαβάζουμε τη σχέση και προς τις δυο κατευθύνσεις

Αναδρομικός Τύπος Συσχέτισης (Recursive Relationship Type)

- Αναδρομικός Τύπος Συσχέτισης: Ένας τύπος συσχέτισης ο όποιος έχει τον ίδιο τύπο οντότητας σε επί μέρους ρόλους
- Π.χ., η συσχέτιση **SUPERVISION**, όπου **EMPLOYEE** συμμετέχει διπλά σε επί μέρους ρόλους:
 - 1) supervisor (or boss): ρόλος προϊσταμένου
 - 2) supervisee (or subordinate): ρόλος υφιστάμενου

Αναδρομικός Τύπος Συσχέτισης (Recursive Relationship Type)

- Διαγραμματική Απεικόνιση Αναδρομικής Σχέσης :
 - supervisor (or boss): ρόλος προϊσταμένου
 - supervisee (or subordinate): ρόλος υφιστάμενου

⁵⁻¹³

Ασθενείς Τύποι Οντοτήτων (Weak Entity Types)

- Ασθενής Οντότητα (Weak Entity): Μια οντότητα η οποία δεν έχει κλειδί.
- Αυτές οι οντότητες ορίζονται από κάποιο άλλο τύπο οντοτήτων (τον προσδιορίζοντα – owner entity type).
- Συγκεκριμένα, ορίζονται από τον ακόλουθο συνδυασμό:
 - Ένα μερικό κλειδί (partial key) της ασθενής οντότητας
 - Το (πρωτεύων) κλειδί του προσδιορίζοντα
- Παράδειγμα:
 - Η οντότητα DEPENDENT ορίζεται από το dependent's first name, και το κλειδί της σχέσης EMPLOYEE (με τον οποίο/α συσχετίζεται η/ο DEPENDENT)
 - (<u>EMPLOYEE.SSN, DEPENDENT.Name</u>) γίνεται το κλειδί της σχέσης DEPDENDENT

5-14

Ασθενείς Τύποι Οντοτήτων (Weak Entity Types)

Η ασθενής οντότητα DEPENDENT

Κλειδί DEPENDENT:

(Emp.SSN, Dep.Name)

Γνωρίσματα σε Τύπους Συσχετίσεων γ

- Μια συσχέτιση μπορεί να φέρει διάφορα γνωρίσματα:
 - Π.χ., Hours στη συσχέτιση WORKS_ON το οποίο περιγράφει πόσες ώρες δουλεύει ένας EMPLOYEE σε ένα PROJECT.

- Στις πλείστες περιπτώσεις, τα γνώρισμα εμφανίζονται στις Μ:Ν συσχετίσεις. Γιατί;
 - Διότι στις υπόλοιπες περιπτώσεις μπορεί να μεταφερθεί το γνώρισμα σε κάποια από τις οντότητες με την ακόλουθη λογική
 - A) 1:1. Το γνώρισμα μπορεί να μεταφερθεί προς οποιαδήποτε από τις δυο οντότητες που συμμετέχουν (προτιμότερο προς ολική συμμετοχή)
 - B) 1:N, N:1. Το γνώρισμα μπορεί να μεταφερθεί προς το N μέρος της συσχέτισης.

hours

5-16

EPL342:

Σχεσιακό Σχήμα

Σημείωση: Δεν χρειάζεται να καταλάβετε ακόμη πως ακριβώς προέκυψε το πιο κάτω Σχεσιακό Σχήμα. Απλά παρατηρήστε την σχέση των γνωρισμάτων μεταξύ του ΕR διαγράμματος (αριστερά) και του Σχεσιακού Σχήματος (δεξιά).

5-17

ΕR-Διαγράμματα (Σύνοψη Σημειογραφίας)

Οντότητα (Δυνατή, Κανον	νική) χαρακτηριστικό
Πλειότιμο (Multivalue) χαρακτηριστικό	Α πρωτεύων κλειδί
	(primary key)
Σύνθετο (Composite) χαρακτηριστικό	εναλλακτικό κλειδί (candidate key)
Υπολογισμένο χαρακτηριστικό	Διευκρινιστικό μερικό κλειδί (partial key)

Τα πιο πάνω παρουσιαστήκαν στη προηγούμενη διάλεξη

ΕR-Διαγράμματα (Σύνοψη Σημειογραφίας)

Ασθενής Οντότητα

σύνολο συσχετίσεων

προσδιορίζων σύνολο συσχετίσεων για ασθενή οντότητα

Ολοκληρωμένο Διάγραμμα ΕR (Διατυπώστε το Διάγραμμα και τη Δομή του)

Εναλλακτική Σημειογραφία (min, max) (για διατύπωση δομικών περιορισμών)

- Ένας εναλλακτικός τρόπος διατύπωσης δομικών περιορισμών σε ένα διάγραμμα ΕR είναι με την χρήση (min, max) περιορισμών.
- Επί της ουσίας, αυτή η σημειογραφία δεν διαφέρει από την προηγούμενη αφού και εκεί ορίζαμε άνω και κάτω όρια (δηλ., τουλάχιστο/μέχρι)
- Η βασική διαφορά είναι ότι με την χρήση (min, max) επιτρέπεται να ορίσουμε ακριβέστερα την Πληθικότητα.
 - Δηλαδή, αντί 0 ή1 στον περιορισμό συμμετοχής (δηλ., μονή ή διπλή γραμμή) μπορούμε να χρησιμοποιήσουμε όποια ακέραια τιμή επιθυμούμε.
 - Δες επόμενη διαφάνεια για παραδείγματα...

Εναλλακτική Σημειογραφία (min, max) (Διατύπωση Περιορισμών)

Η ανάγνωση του (min,max) γίνεται αντίστροφα από ότι στο τουλάχιστο/μέχρι που είδαμε νωρίτερα, δηλ., μια οντότητα χρησιμοποιεί τις πληθικότητες που αναγράφονται δίπλα της.

- Ένας Employee διευθύνει από 0 μέχρι 1 Dept.
- Ένα Dept. διευθύν. από 1 (min) μέχρι 1 (max) Emp. δηλ., πάντα 1 Emp

- Ένας Employee διευθύνει από 1 μέχρι 1 Dept (δηλ., πάντα 1 Dept.)
- Ένα Dept διευθύνεται από 1 (min) μέχρι N (max) Emp

Εναλλακτική Σημειογραφία (min, max) (Ολοκληρωμένο Διάγραμμα ΕR)

