Es05B: Circuiti lineari con Amplificatori Operazionali

Gruppo 1G.BN Massimo Bilancioni, Alessandro Foligno, Giuseppe Zanichelli

8 novembre 2018

Scopo dell' esperienza

Misurare le caratteristiche di circuiti lineari realizzati con un op-amp TL081 alimentati tra +15 V e -15 V.

1 Amplificatore invertente

Si vuole realizzare un amplificatore invertente con un' impedenza di ingresso superiore a 1 k Ω e con un amplificazione a centro banda di 10.

1.a Scelta dei componenti

Si monta il circuito secondo lo schema mostrato in figura, utilizzando la barra di distribuzione verde per la tensione negativa, quella rosso per la tensione positiva, e quella nera per la massa.

Le resistenze selezionate hanno i seguenti valori, misurati con il multimetro digitale, con il corrispondente valore atteso del guadagno in tensione dell' amplificatore.

$$R_1 = (1.466 \pm 0.012) \,\mathrm{k}\Omega, \quad R_2 = (15.24 \pm 0.12) \,\mathrm{k}\Omega, \quad A_{exp} = -(10.39 \pm 0.11) \,\mathrm{k}\Omega$$

1.b Montaggio circuito

Il circuito è stato montato nella basetta come riportato in figura.

1.c Linearità e misura del guadagno

Si fissa la frequenza del segnale ad $f_{in}=(2.597\pm0.011)$ kHz e si invia all' ingresso dell' amplificatore. L'uscita dell' amplificatore è mostrata qualitativativamente in Fig. 1.c per due differenti ampiezze di V_{in} (circa 1.26 Vpp e 7.20 Vpp). Nel primo caso l' OpAmp si comporta in modo lineare mentre nel secondo caso si osserva clipping. Il datasheet riporta uno Slew rate di $13V/\mu s$ che è quindi trascurabile a questa frequenza .

Variando l'ampiezza di V_{in} si misura V_{out} ed il relativo guadagno $A_V = V_{out}/V_{in}$ riportando i dati ottenuti in tabella 1 e mostrandone un grafico in Fig. 2. Il fit è stato ottenuto mediante media pesata dei valori del guadagno; si può osservare come, alzando l'ampiezza, il guadagno diminuisca impercettibilmente. Trovandosi il tutto dentro una barra d'errore, non è considerabile come un effetto significativo. L'incertezza sul guadagno è

TDS 1012C-EDU - 15:38:28 08/11/2018

TDS 1012C-EDU - 15:40:13 08/11/2018

Figura 1: Ingresso (in blu) ed uscita (in arancione) di un amplificatore invertente con OpAmp, in zona lineare (a sinistra) e non (a destra)

Tabella 1: V_{out} in funzione di V_{in} e relativo rapporto.

V_{in} (V)	V_{out} (V)	A_V
0.50 ± 0.01	5.12 ± 0.1	10.3 ± 0.4
0.71 ± 0.02	7.4 ± 0.2	10.4 ± 0.4
0.90 ± 0.03	9.4 ± 0.3	10.4 ± 0.4
1.2 ± 0.03	12.4 ± 0.3	10.3 ± 0.4
1.46 ± 0.04	15.1 ± 0.4	10.3 ± 0.4
1.58 ± 0.05	16.3 ± 0.5	10.3 ± 0.4
1.82 ± 0.06	18.5 ± 0.6	10.2 ± 0.4
1.98 ± 0.06	20.2 ± 0.6	10.2 ± 0.4
2.18 ± 0.06	22.2 ± 0.6	10.2 ± 0.4
2.46 ± 0.07	24.8 ± 0.7	10.1 ± 0.4
2.68 ± 0.08	27.2 ± 0.8	10.1 ± 0.4

stata ottenuta sommando in quadratura le incertezze su Vin e Vout, dato che queste, essendo state misurate su canali diversi, si assumono scorrelate (anche l'incertezza sul digit è scorrelata).

Gli ultimi 4 dati,riportati in tabella 1.c sono stati presi per verificare il clipping, e quindi non considerati per il fit

V_{in} (V)	V_{out} (V)
2.96 ± 0.09	28.8 ± 0.8
3.04 ± 0.09	29.3 ± 0.8
3.20 ± 0.09	29.4 ± 0.9
3.25 ± 0.1	29.5 ± 0.9

Tabella 2: dati del segnale tagliato (clipping)

Si determina il guadagno mediante fit dei dati ottenuti:

$$A_{best} = 10.3 \pm 0.03 \quad \chi^2 / ndof = 0.06$$

Quindi gli errori sono stati sovrastimati. Cambiando la tensione di alimentazione si osserva clipping circa quando la tensione in uscita è pari a quella di alimentazione (in realtà un po' prima).

Figura 2: Linearità dell' amplificatore invertente

2 Risposta in frequenza e slew rate

2.a Risposta in frequenza del circuito

Non siamo riusciti a vedere la frequenza di taglio inferiore, che tuttavia deve essere < 10Hz visto che per questa frequenza non si ha una sensibile diminuzione del guadagno.

Per la frequenza di taglio superiore abbiamo campionato il guadagno per frequenze tra 1kHz e 1MHz. Abbiamo abbassato V_{in} per alte frequenze per evitare possibili Slew Rate.

La frequenza di taglio è stata ricavata come l'intersezione delle due rette fittate rispettivamente a bassa e ad alta frequenza. (Figura 3)

$$f_H = (167.7 \pm 0.5) \text{kHz}$$

La pendenza della retta ad alte frequenze risulta -17.6 ± 0.4 dB. Il valore atteso è -20 dB, la discrepanza è imputabile al numero insufficiente di punti ad alte frequenze.

f_{in} (kHz)	V_{in} (V)	V_{out} (V)	A (dB)
0.753 ± 0.015	1.02 ± 0.03	10.4 ± 0.3	20.2 ± 0.3
1.76 ± 0.04	1.03 ± 0.03	10.5 ± 0.3	20.2 ± 0.3
2.90 ± 0.06	1.03 ± 0.03	10.5 ± 0.3	20.2 ± 0.3
6.22 ± 0.12	1.05 ± 0.03	10.7 ± 0.3	20.2 ± 0.3
12.2 ± 0.2	1.06 ± 0.03	10.7 ± 0.3	20.1 ± 0.3
22.5 ± 0.4	1.05 ± 0.03	10.6 ± 0.3	20.1 ± 0.3
44.9 ± 0.9	1.05 ± 0.03	10.5 ± 0.3	20.0 ± 0.3
86.7 ± 1.7	1.06 ± 0.03	9.9 ± 0.3	19.4 ± 0.3
166 ± 3	1.06 ± 0.03	8.5 ± 0.3	18.1 ± 0.3
212 ± 4	0.69 ± 0.02	4.96 ± 0.15	17.2 ± 0.3
251 ± 5	0.68 ± 0.02	4.44 ± 0.14	16.3 ± 0.3
350 ± 7	0.78 ± 0.02	4.02 ± 0.13	14.3 ± 0.3
435 ± 9	0.69 ± 0.02	3.00 ± 0.09	12.8 ± 0.3
555 ± 10	0.70 ± 0.02	2.44 ± 0.08	10.9 ± 0.3
729 ± 14	0.78 ± 0.02	2.22 ± 0.07	9.04 ± 0.3
1220 ± 24	0.80 ± 0.03	1.38 ± 0.05	4.74 ± 0.3

Tabella 3: Guadagno dell' amplificatore invertente in funzione della frequenza.

2.b Misura dello slew-rate

Si misura direttamente lo slew-rate dell'op-amp inviando in ingresso un' onda quadra di frequenza intorno ai $\sim 0.9~\rm kHz$ e di ampiezza 2.08 V. Si ottiene:

$$SR_{\rm misurato} = (12.5 \pm 0.5) \, \text{V}/\mu \text{s}$$
 valore tipico (13) $\, \text{V}/\mu \text{s}$

Figura 3: Plot di Bode in ampiezza per l'amplificatore invertente.

Abbiamo misurato la pendenza massima del segnale V_{out} , che si trova proprio in corrispondenza dell' inizio dell'onda quadra, subito dopo la pendenza diminuisce di circa $0.5~{\rm V}/\mu{\rm s}$. Vedere la Figura 4.

TDS 1012C-EDU - 16:49:23 08/11/2018

Figura 4: Segnale onda quadra (azzurro) e V_{in} (arancione)

3 Circuito integratore

Si monta il circuito integratore con i seguenti valori dei componenti :

$$R_1 = (0.997 \pm 0.008) \,\mathrm{k}\Omega, \qquad R_2 = (9.92 \pm 0.08) \,\mathrm{k}\Omega, \qquad C = (50.4 \pm 2.3) \,\mathrm{nF}$$

3.a Risposta in frequenza

Figura 5: Plot di Bode in ampiezza (a sinistra) e fase (a destra) per il circuito integratore.

Si invia un' onda sinusoidale e si misura la risposta in frequenza dell' amplificazione e della fase. I dati sono riportati in tabella 4 e 5.

Si vedano le figure 5 per i plot di Bode dell'integratore relativi ad ampiezza e fase.

 3.86 ± 0.12

 66.1 ± 1.2

f_{in} (kHz)	$V_{in}(V)$	V_{out} (V)	A (dB)
$(1.56 \pm 0.03) \cdot 10^{-2}$	0.580 ± 0.017	5.12 ± 0.15	18.9 ± 0.3
$(2.57 \pm 0.05) \cdot 10^{-2}$	0.580 ± 0.017	5.44 ± 0.15	19.4 ± 0.3
$(2.87 \pm 0.06) \cdot 10^{-2}$	0.580 ± 0.017	5.52 ± 0.15	19.6 ± 0.3
$(4.79 \pm 0.01) \cdot 10^{-2}$	1.53 ± 0.05	14.6 ± 0.5	19.6 ± 0.3
$(9.2 \pm 0.2) \cdot 10^{-2}$	1.54 ± 0.05	14.3 ± 0.4	19.4 ± 0.3
0.172 ± 0.003	1.54 ± 0.05	13.2 ± 0.4	18.7 ± 0.3
0.306 ± 0.006	1.53 ± 0.05	10.9 ± 0.3	17.0 ± 0.3
0.460 ± 0.05	0.704 ± 0.021	3.92 ± 0.12	14.9 ± 0.3
1.14 ± 0.02	0.700 ± 0.021	1.94 ± 0.08	8.85 ± 0.3
1.88 ± 0.04	0.696 ± 0.020	1.22 ± 0.04	4.87 ± 0.3
3.46 ± 0.07	0.704 ± 0.020	0.656 ± 0.018	-0.613 ± 0.3
4.57 ± 0.09	1.56 ± 0.05	1.07 ± 0.3	-3.27 ± 0.3
9.14 ± 0.20	0.712 ± 0.021	0.255 ± 0.007	-8.92 ± 0.3
12.9 ± 0.2	1.55 ± 0.05	0.380 ± 0.012	-12.2 ± 0.3
17.7 ± 0.3	3.92 ± 0.12	0.688 ± 0.020	-15.1 ± 0.3
33.0 ± 0.6	3.92 ± 0.12	0.380 ± 0.012	-20.2 ± 0.3
56 ± 1	0.696 ± 0.020	$(4.48 \pm 0.12) \cdot 10^{-2}$	-23.8 ± 0.3

Tabella 4: Guadagno dell' integratore invertente in funzione della frequenza.

Si ricava una stima delle caratteristiche principali dell'andamento (guadagno a bassa frequenza, frequenza di taglio, e pendenza ad alta frequenza) e si confronta con quanto atteso. Non si effettua la stima degli errori, trattandosi di misure qualitative. La frequenza di taglio viene stimata come al solito con l'intesezione delle due rette; quella che misura l'attenuazione è stata ottenuta con un fit lineare, e una pendenza di mentre per disegnare la retta del guadagno massimo si è usato il valore misurato in precedenza di $A \approx 10.3$. Il valore della frequenza di taglio così ottenuto è $f_t \approx 0.32kHz$, in accordo con la frequenza di taglio che ci si aspetterebbe

 0.212 ± 0.006

 25.2 ± 0.3

 $f_t = \frac{1}{2\pi R_2 C} = 0.32 \pm 0.01 kHz$. Si può trascurare del tutto la frequenza di taglio del'opamp,
che è tre decadi più avanti.

Tabella 5: fase dell' integratore invertente in funzione della frequenza.

	acore mivercence in reminere	
f_{in} (kHz)	$\Delta t(\mu s)$	φ(°)
$(1.56 \pm 0.03) \cdot 10^{-2}$	$(28.4 \pm 1.1) \cdot 10^3$	160 ± 6
$(2.57 \pm 0.05) \cdot 10^{-2}$	$(18.2 \pm 0.7) \cdot 10^3$	169 ± 7
$(2.87 \pm 0.06) \cdot 10^{-2}$	$(16.4 \pm 0.7) \cdot 10^3$	170 ± 7
$(4.79 \pm 0.01) \cdot 10^{-2}$	$(10.4 \pm 0.4) \cdot 10^3$	180 ± 7
$(9.20 \pm 0.2) \cdot 10^{-2}$	$(5.1 \pm 0.2) \cdot 10^3$	169 ± 7
0.172 ± 0.003	$(2.49 \pm 0.1) \cdot 10^3$	154 ± 6
0.306 ± 0.006	$(1.25 \pm 0.05) \cdot 10^3$	138 ± 6
0.460 ± 0.05	785 ± 30	130 ± 5
1.14 ± 0.02	258 ± 10	106 ± 4
1.88 ± 0.04	149 ± 6	101 ± 4
3.46 ± 0.07	76.3 ± 3	95 ± 4
4.57 ± 0.09	57.1 ± 2.3	94 ± 4
9.14 ± 0.20	28.2 ± 1.1	93 ± 4
12.9 ± 0.2	19.6 ± 0.8	91 ± 4
17.7 ± 0.3	14.4 ± 0.6	92 ± 4
33 ± 0.6	7.58 ± 0.3	90 ± 4
56 ± 1	4.47 ± 0.18	90 ± 4
66.1 ± 1.2	3.76 ± 0.15	90 ± 4

 $A_M = (19.4) \, dB$ atteso : (20) dB $f_H = (330) \, Hz$ atteso : (318) Hz

 $dA_V/df = (-20.1) dB/decade$ atteso : (-20) dB/decade

3.b Risposta ad un' onda quadra

Si invia all' ingresso un' onda quadra di frequenza $10.0\pm0.7\,kHz$ e ampiezza $1.40\pm0.05\,V$. Si riportano in Fig. 6 le forme d' onda acquisite all' oscillografo per l' ingresso e l' uscita. Come atteso per un integratore, l'uscita è costituita da onde triangolari.

Figura 6: Ingresso (in alto) ed uscita (in basso) del circuito integratore per un' onda quadra.

Si misura l'ampiezza dell'onda in uscita e si confronta il valore atteso.

$$V_{outpp} = (0.66 \pm 0.03) \,\text{V}$$
 atteso: $(0.67 \pm 0.05) \,\text{V}$

Ci si aspetta infatti, per un'onda quadra in ingresso, con un integratore perfetto (trascurando cioè l'effetto di R_2), una relazione del tipo:

$$V_{out} = \frac{V_{in}}{4fR_1C}$$

Si è poi provato a variare la frequenza fino a valori intorno, e sotto, la frequenza di taglio. A questo punto il segnale in uscita risultava distorto rispetto all'onda triangolare. Per frequenze al di sotto della frequenza di taglio, il segnale in uscita è costituito sostanzialmente dalle scariche del condensatore, come riportato ad esempio in Figura 7. Per frequenze ancora al di sotto, come in Figura 8 si osserva un segnale discontinuo in uscita, il che è sorprendente dato che il segnale che si osserva è sostanzialmente proporzionale alla carica sul condensatore, e quindi ce lo si aspetterebbe continuo. In realtà quello che succede è che, dato che il segnale è molto amplificato, al cambio di polarità dell'onda quadra, il condensatore si scarica su R_1 , anzichè su R_2 , e, dato che R_1 è 10 volte più piccola, lo fa con una velocità 10 volte più grande rispetto al solito, il che sembra un processo istantaneo, per la scala dei tempi a cui è impostato l'oscilloscopio, . Finita la scarica su R_1 si osserva quella solita su R_2 .

TDS 1012C-EDU - 18:48:57 08/11/2018

Figura 7: segnale a "pinna di squalo"

TDS 1012C-EDU - 18:47:00 08/11/2018

Figura 8: segnale a bassa frequenza

Figura 9: andamento dei punti sperimentali e modello per la fase in funzione della frequenza.

3.c Discussione

Per i valori teorici attesi abbiamo usato $V_{out} = -\frac{Z_2}{Z_1}V_{in}$ e quindi implicitamente abbiamo considerato valida anche ad alte frequenze l'approssimazione $A_d \gg |\frac{Z_2}{Z_1}|$. Effettivamente per grandi f $A_d \propto 1/f$ (punto 2.a) ma anche l'impedenza del condensatore decresce come 1/f, di conseguenza l'approssimazione resta valida poichè diminuiscono allo stesso ritmo.

L'andamento della fase è qualitativamente quello che ci si aspetta, dato che per alte frequenze lo sfasamento deve essere di 90 $^{\circ}$ (domina l'impedenza del condensatore che sfasa di j), mentre per basse frequenze è quella solita di 180 $^{\circ}$ di un amplificatore invertente.

L'andamento teorico è descritto da una formula del tipo:

$$\Delta \phi = 180^{\circ} - \arctan(f/f_t)$$

usando il valore di f_t stimato prima si può notare un discreto accordo con i dati (che peggiora per basse frequenze), come riportato in figura 9.

Se ci fosse solo il condensatore, per frequenze molto basse avremmo che la sua impedenza diventa infinita, e quindi $V_{in} = A_d V_{out}$, ma questo vuol dire che anche per piccoli segnali in ingresso il circuito va in saturazione.

Per risolvere il problema si introduce una R_2 che limita il guadagno a basse frequenze al valore R_2/R_1 .