All Pairs Shortest Paths

Algorithms we have learned

Graph type	Algorithm	8	Running Time	
		Binary heap Linear array		Fibo. heap
Unweighted graph	BFS	O(V+E)		O(V)
Non- negative edge weight graph	Dijsktra	O(E+VlogV)		O(VlogV)
General graph	Bellman- Ford	O(VE)		
DAG	Bellman- Ford	O(V+E)		O(V)

- weight function $w: E \to R$, |V| = n• given : directed graph G = (V, E),
- goal : create an $n \times n$ matrix $D = (d_{ij})$ of shortest path distances i.e., $d_{ij} = \delta(v_i, v_i)$
- trivial solution: run a shortest path algorithm (SSP) algorithm n times, one for each vertex as the source.

All-pair shortest paths

- How about using the previous algorithms to solve allpair shortest path problem?
- Unweighted graph: run BFS |V| times → O(VE)
- Non-negative graph: run Dijkstra |V| times → $O(VE+V^2IgV)$
- General case: run Bellman-Ford |V| times \rightarrow O(V²E)
- When handling general cases, the time complexity is at most $O(V^4)$
- We can do better!

All Pairs Shortest Paths (APSP)

► all edge weights are nonnegative : use Dijkstra's algorithm

PQ: priority queue implementation method

- PQ = linear array : O (
$$V^3 + VE$$
) = O (V^3)

-
$$PQ$$
 = binary heap : $O(V^2 logV + EV logV) = O(V^3 logV)$

for dense graphs

better only for sparse graphs

– PQ = fibonacci heap : O (
$$V^2 logV + EV$$
) = O (V^3)

for dense graphs

better only for sparse graphs

► negative edge weights : use Bellman-Ford algorithm

 $O(V^2E) = O(V^4)$ on dense graphs

 $\blacktriangleright n \times n$ matrix W = (w_{ii}) of edge weights:

$$\mathbf{w}_{ij} = \left\langle \begin{array}{l} \mathbf{w}(\mathbf{v}_{i}, \mathbf{v}_{j}) & \mathrm{if}(\mathbf{v}_{i}, \mathbf{v}_{j}) \in \mathbf{E} \\ \mathbf{w}_{ij} & \left\langle \begin{array}{l} \mathbf{w}_{i} & \mathbf{v}_{j} \\ \mathbf{w}_{ij} & \left\langle \begin{array}{l} \mathbf{w}_{i} & \mathbf{v}_{j} \\ \mathbf{w}_{ij} & \left\langle \begin{array}{l} \mathbf{w}_{i} & \mathbf{v}_{j} \\ \mathbf{w}_{ij} & \left\langle \begin{array}{l} \mathbf{w}_{i} & \mathbf{w}_{i} \\ \mathbf{w}_{i} & \left\langle \begin{array}{l} \mathbf{w}_{i} & \mathbf{w}_{i} \\ \mathbf{w}_{ij} & \left\langle \begin{array}{l} \mathbf{w}_{i} & \mathbf{w}_{i} \\ \mathbf{w}_{i} & \left\langle \begin{array}{l} \mathbf{w}_{i} & \mathbf{w}_$$

 $if(v_i, v_j) \not\in E$

► assume $w_{ii} = 0$ for all $v_i \in V$, because 8

⇒ shortest path to itself has no edge, no negative weight cycle

i.e., δ (v_i , v_i) = 0

Dynamic Programming

- (1) Characterize the structure of an optimal solution.
- (2) Recursively define the value of an optimal solution.
- (3) Compute the value of an optimal solution in a bottom-up manner.
- (4) Construct an optimal solution from information constructed in (3).

Assumption: negative edge weights may be present, but no negative weight cycles.

- (1) Structure of a Shortest Path:
- Consider a shortest path p_{ij}^{m} from v_i to v_j such that $|p_{ij}^{m}| \le m$ (最多通過m個
- ▶ i.e., path p_{ij}^{m} has at most m edges.
- no negative-weight cycle \Rightarrow all shortest paths are simple \Rightarrow m is finite \Rightarrow $m \le n-1$
- $i=j \Rightarrow |p_{ii}|=0 \& \omega(p_{ii})=0$
- $i \neq j \implies decompose path p_{ij}^{m} into p_{ik}^{m-1} & v_k \rightarrow v_j$, where $|p_{ik}^{m-1}| \leq m-1$
 - $ightharpoonup p_{ik}^{m-1}$ should be a shortest path from v_i to v_k by optimal substructure property. 最佳化原理:所有最短路徑的子路徑均為最短路徑
- ightharpoonup Therefore, $\delta\left(\mathbf{v_i}, \mathbf{v_i}\right) = \delta\left(\mathbf{v_i}, \mathbf{v_k}\right) + \mathbf{w_{k\,i}}$

Shortest Paths and Matrix Multiplication (2) A Recursive Solution to All Pairs Shortest Paths Problem:

- $d_{ij}^m = \text{minimum weight of any path from } v_i \text{ to } v_j \text{ that contains}$ at most "m" edges.
- m=0: There exist a shortest path from v_i to v_i with no edges $\leftrightarrow i = j$.

 $m \ge I : d_{ij}^m = \min \{d_{ij}^{m-1}, \min_{1 \le k \le n \ \land \ k \ne j} \{d_{ik}^{m-1} + w_{kj} \} \}$ = $\min_{1 \le k \le n} \{ d_{ik}^{m-1} + w_{kj} \}$ for all $v_k \in V$, since $w_{\cdot \cdot} = 0$ for all $v_{\cdot} \in V_{\cdot}$

to consider all possible shortest paths with $\leq m$ edges from v_i to v_i

ightharpoonup consider shortest path with $\leq m$ -1 edges, from v_i to v_k , where

 $v_k \in R_{v_i}$ and $(v_k, v_j) \in E$

All possible nodes

<u>note : δ (v_i , v_j) = $d_{ij}^{n-1} = d_{ij}^{n} = d_{ij}^{n+1}$, since $m \le n - 1 = |V| - 1$ </u>

(3) Computing the shortest-path weights bottom-up:

- given $W = D^1$, compute a series of matrices D^2 , D^3 , ..., D^{n-1} where $D^{m} = (d_{ij}^{m})$ for m = 1, 2, ..., n-1
- ► final matrix Dⁿ⁻¹ contains actual shortest path weights, i.e., $d_{ij}^{n-1} = \delta(v_i, v_j)$
- SLOW-APSP(W) $D^{1} \leftarrow W$ $for \ m \leftarrow 2 \text{ to } n\text{-}1 \text{ do}$ $D^{m} \leftarrow \text{EXTEND}(D^{m\text{-}1}, W)$ $return D^{n\text{-}1}$

EXTEND (D, W)

 $ightharpoonup D = (d_{ij})$ is an $n \times n$ matrix

for
$$i \leftarrow I$$
 to n do

for
$$j \leftarrow I$$
 to n do

$$d \xrightarrow{ij} \leftarrow \infty$$

for
$$k \leftarrow I$$
 to n do

$$d_{ij} \leftarrow \text{min}\{d_{ij}\,,\,d_{ik}+\omega_{kj}\}$$

MATRIX-MULT (A, B)

 $ightharpoonup C = (c_{ij})$ is an $n \times n$ result matrix for $i \leftarrow I$ to n do $c_{ij} \leftarrow c_{ij} + a_{ik} \times b_{kj}$ for $k \leftarrow I$ to n do for $j \leftarrow l$ to n do $c_{ii} \leftarrow 0$

relation to matrix multiplication $C = A \times B$: $\textbf{c}_{ij} = \sum_{1 \le k \le n} \textbf{a}_{ik} \times \textbf{b}_{k\,j}$,

▶
$$D^{m-1} \leftrightarrow A & W \leftrightarrow B & D^m \leftrightarrow C$$

"min" $\leftrightarrow "+" & "+" \leftrightarrow "×" & "∞" \leftrightarrow "0"$

$$d_{ij} \leftarrow \min\{d_{ij}, d_{ik} + \omega_{kj}\} \mid \langle \longrightarrow \mid c_{ij} \leftarrow c_{ij} + a_{ik} \mid \langle \longrightarrow \mid c_{ij} \leftarrow c_{ij} + a_{ik} \mid \langle \longrightarrow \mid c_{ij} \leftarrow c_{ij} + a_{ik} \mid \langle \longrightarrow \mid c_{ij} \leftarrow c_{ij} + a_{ik} \mid \langle \longrightarrow \mid c_{ij} \leftarrow c_{ij} + a_{ik} \mid \langle \longrightarrow \mid c_{ij} \leftarrow c_{ij} + a_{ik} \mid \langle \longrightarrow \mid c_{ij} \leftarrow c_{ij} + a_{ik} \mid \langle \longrightarrow \mid c_{ij} \leftarrow c_{ij} + a_{ik} \mid \langle \bigcirc \mid c_{ij} \leftarrow c_{ij} + a_{ik} \mid \langle \bigcirc \mid c_{ij} \leftarrow c_{ij} + a_{ik} \mid \langle \bigcirc \mid c_{ij} \leftarrow c_{ij} + a_{ik} \mid \langle \bigcirc \mid c_{ij} \leftarrow c_{ij} + a_{ik} \mid \langle \bigcirc \mid c_{ij} \leftarrow c_{ij} + a_{ik} \mid \langle \bigcirc \mid c_{ij} \leftarrow c_{ij} + a_{ik} \mid \langle \bigcirc \mid c_{ij} \leftarrow c_{ij} + a_{ik} \mid \langle \bigcirc \mid c_{ij} \leftarrow c_{ij} + a_{ik} \mid \langle \bigcirc \mid c_{ij} \leftarrow c_{ij} + a_{ik} \mid \langle \bigcirc \mid c_{ij} \leftarrow c_{ij} + a_{ik} \mid \langle \bigcirc \mid c_{ij} \leftarrow c_{ij} + a_{ik} \mid \langle \bigcirc \mid c_{ij} \leftarrow c_{ij} + a_{ik} \mid \langle \bigcirc \mid c_{ij} \leftarrow c_{ij} + a_{ik} \mid \langle \bigcirc \mid c_{ij} \leftarrow c_{ij} + a_{ik} \mid \langle \bigcirc \mid c_{ij} \leftarrow c_{ij} + a_{ik} \mid \langle \bigcirc \mid c_{ij} \leftarrow c_{ij} + a_{ik} \mid \langle \bigcirc \mid c_{ij} \leftarrow c_{ij} \mid \langle \bigcirc \mid c_{ij} \mid c_{ij} \mid \langle \bigcirc \mid c_{ij} \mid c_{ij} \mid \langle \bigcirc \mid c_{ij} \mid c_{ij} \mid c_{ij} \mid \langle \bigcirc \mid c_{ij} \mid c_{ij$$

$$d_{ij} \leftarrow \min\{d_{ij}, d_{ik} + \omega_{kj}\}$$
 \longleftrightarrow $c_{ij} \leftarrow c_{ij} + a_{ik} \times b_{kj}$
hus, we compute the sequence of matrix products

Thus, we compute the sequence of matrix products

$$D_1^1 = D^0 \times W = W$$
; note $D^0 = identity matrix$, i.e., $d_{ij}^0 = d_{ij}^0 = d_{ij$

 $(\infty \text{ if } i \neq j)$

$$D^2 = D^1 \times W = W^2$$

$$D^3 - D^2 \times W - W^3$$

$$D^3 = D^2 \times W = W^3$$

$$D^{n-1} = D^{n-2} \times W = W^{n-1}$$

running time : $\Theta(n^4) = \Theta(V^4)$

 \blacktriangleright each matrix product: $\Theta(n^3)$

 \blacktriangleright number of matrix products : n-1

• Example

2	4 -	7	8	8	0
4	8		8	0	9
3	8	8	0	-5	8
7	3	0	4	8	8
	0	8	8	2	8
l		7	\sim	4	2

$$D^I = D^0 W$$

α		∞	4-		0	•	<u>-</u>	
7		κ	0	_	4	•	<u> </u>	
		0	8		8	·	7	
	,		7	C	·	•	4	
V	,	4	7	8		8	О)
4		8	П	8	(0	9)
κ		∞	8	0	V	<u>-</u>	8)
C	1	\mathcal{C}	0	4	9	8	8)
-	ا ا	0	8	8	(7	8)
			6)			_	7)
			2	α		4	4	
V	ر ا	4-	7	8	8	1	0	
v -		∞-41	1 7 2				0 9	
	+		∞ 1 7 2	8	8		0	
_	t	8	1 7	8	8		0 9	
7	t	8	\infty 1 7 7	8 8	-5 0 \oint \o		0 9 8	
7	t	3 8 ∞	0 ∞ 1 7	8 8	∞ -5 0 ∞		$\begin{bmatrix} 0 & 9 & \infty & \infty \end{bmatrix}$	

 ∞

 $d_{ij} \leftarrow \text{min}\{d_{ij} \;,\, d_{ik} + \omega_{k\,j}\}$

$$D^2 = D^I W$$

			•		
2	4 -	L	11	-2	0
4	2	1	5	0	9
\mathcal{C}	8	- 4	0	-5	1
7	3	0	4	-1	8
$\overline{}$	0	3	8	2	8
		7	3	4	~

	8	∞	8 -	4 1
	D 4	8 0	- 8	- 8
1	8	-5	0	8
	8	8	9	0

4	_	11	-2	0
2	1	5	0	9
-3	-4	0	-5	1
3	0	4	-1	5
0	3	7	2	8
$\overline{}$	7	3	4	2

$$d_{ij} \leftarrow \text{min}\{d_{ij} \;, d_{ik} + \omega_{k \; j}\}$$

$$D^2W=D^3$$

	•				
4	8	1	8	0	9
3	8	8	0	-5	8
2	3	0	4	8	8
1	0	8	8	2	8
	$\overline{}$	7	3	4	2
~	4		11	-2	0
4	2	1	5	0	9
\sim	-3	4-	0	-5	1
7	8	0	4		5
$\overline{}$	0	3	7	2	8
	\leftarrow	7	3	4	5

4-	1-	3	-2	0
2	1	5	0	9
-3	-4	0	-5	
1	0	4	-1	5
0	3	7	2	8
$\overline{}$	2	κ	4	5

5

4

 $d_{ij} \leftarrow \textbf{min}\{d_{ij} , d_{ik} + \omega_{kj}\}$

$$D^3W = D^4$$

SSSP and Matrix-Vector Multiplication

relation of APSP to one step of matrix multiplication

- d_{ii}^{n-1} at row r_i and column c_i of product matrix $= \delta (v_i = s, v_i) \text{ for } j = I, 2, 3, ..., n$
- single-source shortest path problem for $s = \nu_i$. row r_i of the product matrix = solution to
- r_i of C = matrix B multiplied by r_i of A $\Rightarrow D_i^m = D_i^{m-l} \times W$

SSP and Matrix-Vector Multiplication

we compute a sequence of n-1 "matrix-vector" products

∞ otherwise

$$d_{i}^{1} = d_{i}^{0} \times W$$

$$d_{i}^{2} = d_{i}^{1} \times W$$

$$d_{i}^{3} = d_{i}^{2} \times W$$

$$\vdots$$

$$d_i^{n-1} = d_i^{n-2} \times W$$

SSP and Matrix-Vector Multiplication

- this sequence of matrix-vector products
- ▶ same as Bellman-Ford algorithm.
- ightharpoonup vector $d_i^m \Rightarrow d$ values of Bellman-Ford algorithm after m-th relaxation pass.
- $\blacktriangleright \ d_i{}^m \leftarrow d_i{}^{m-1} \times W$

 $\Rightarrow m$ -th relaxation pass over all edges.

SSP and Matrix-Vector Multiplication

BELLMAN-FORD (G, V_i)

▶ perform RELAX (u, v) for

 \blacktriangleright every edge (u, v) \in E

for $j \leftarrow I$ to n do

for $k \leftarrow I$ to n do

RELAX (v_k, v_j)

RELAX (u, v)

 $d_v = min \{ d_v, d_u + \omega_{uv} \}$

EXTEND (d_i , W) • d_i is an n-vector for $j \leftarrow I$ to n do $d_j \leftarrow \infty$ for $k \leftarrow I$ to n do $d_j \leftarrow min \{ d_j, d_k + \omega_{kj} \}$

Improving Running Time Through Repeated Squaring

- idea: goal is not to compute all D^m matrices
- \blacktriangleright we are interested only in matrix D^{n-1}
- recall: no negative-weight cycles $\Rightarrow D^m = D^{n-1}$ for all $m \ge n-1$
 - we can compute D^{n-1} with only $\lceil \lg(n-1) \rceil$ matrix products as

$$D^{1} = W$$
 $D^{2} = W^{2} = W \times W$
 $D^{4} = W^{4} = W^{2} \times W^{2}$
 $D^{8} = W^{8} = W^{4} \times W^{4}$

$$\mathbf{D}^{2\lceil\lg(n-1)\rceil} = \mathbf{W}^{2\lceil\lg(n-1)\rceil} = \mathbf{W}^{2\lceil\lg(n-1)\rceil-1} \times \mathbf{W}^{2\lceil\lg(n-1)\rceil-1}$$

This technique is called repeated squaring.

Improving Running Time Through Repeated Squaring

FASTER-APSP (W)

$$D^{1} \leftarrow W$$
 $m \leftarrow I$

while $m < n-I$ do

 $D^{2m} \leftarrow EXTEND (D^{m}, D^{m})$
 $m \leftarrow 2m$

return D^{m}

final iteration computes D^{2m} for some $n-1 \le 2m \le 2n-2 \Rightarrow D^{2m} = D^{n-1}$

```
running time: \Theta(n^3 \lg n) = \Theta(V^3 \lg V)
```

• each matrix product: $\Theta(n^3)$

of matrix products : [Ig(n-1]

simple code, no complex data structures, small hidden constants in Θ -notation.

All Pairs Shortest Paths

Idea Behind Repeated Squaring decompose p_{ij}^{2m} as $p_{ik}^{m} & p_{kj}^{m}$, where

 $p_{ij}^{2m}:v_i \sim v_j \\ p_{ik}^m:v_i \sim v_k$

Floyd-Warshall Algorithm

- assumption: negative-weight edges, but no negative-weight cycles
- (1) The Structure of a Shortest Path:
- Definition: intermediate vertex of a path $p = \langle v_1, v_2, v_3, ..., v_k \rangle$
- \blacktriangleright any vertex of p other than v_1 or v_k .
- $p_{ij}^{\ m}$: a shortest path from v_i to v_j with all intermediate vertices from $V_m = \{ v_1, v_2, ..., v_m \}$
- rcursive relationship between p_{ij}^{m} and p_{ij}^{m-1}
- ightharpoonup depends on whether v_m is an intermediate vertex of p_{ij}^{m}
- case 1: v_m is not an intermediate vertex of p_{ij}^m $\Rightarrow \text{all intermediate vertices of } p_{ij}^m \text{ are in } V_{m-1}$ $\Rightarrow p_{ij}^m = p_{ij}^{m-1}$

Floyd-Warshall Algorithm

- case 2: v_m is an intermediate vertex of p_{ij}^{m}
 - decompose path as $v_i \bigwedge_{} v_m \bigwedge_{} v_j$

$$\Rightarrow p_1 : v_i ~ \wedge^{\checkmark} v_m ~ \& ~ p_2 : v_m ~ \wedge^{\checkmark} v_j$$

- by opt. structure property both $p_1 & p_2$ are shortest paths.
- v_m is not an intermediate vertex of $p_1 \ \& p_2$

(2) A Recursive Solution to APSP Problem:

 $d_{ii}^{m} = \omega(p_{ii})$: weight of a shortest path from v_i to v_i with all intermediate vertices from

$$V_{m} = \{ V_{1}, V_{2}, ..., V_{m} \}.$$

note: $d_{ij}^{n} = \delta(v_i, v_j)$ since $V_n = V$

▶ i.e., all vertices are considered for being intermediate vertices of p_{ij}.

Floyd-Warshall Algorithm

compute d_{ij}^{m} in terms of d_{ij}^{k} with smaller k < m

m = 0: $V_0 = \text{empty set}$

 \Rightarrow path from v_i to v_j with no intermediate vertex. i.e., v_i to v_i paths with at most one edge

 $\Rightarrow d_{ij}^{\ \ 0} = \omega_{i\,i}$

 $m \ge 1: \ d_{ij}^{\ m} = \min \ \{d_{ij}^{\ m-1}, \ d_{im}^{\ m-1} + d_{mi}^{\ m-1} \}$

(3) Computing Shortest Path Weights Bottom Up:

```
d_{ij}^{\ m} \leftarrow min \ \{d_{ij}^{\ m-1} \ , d_{im}^{\ m-1} + d_{mi}^{\ m-1} \}
                                            \triangleright D^0, D^1, ..., D^n are n \times n matrices
FLOYD-WARSHALL(W)
                                                                                                                                                                                                    for j \leftarrow I to n do
                                                                                                                                                   for i \leftarrow I to n do
                                                                                                 for m \leftarrow I to n do
```

FLOYD-WARSHALL (W)

ightharpoonup D is an $n \times n$ matrix

 $D \leftarrow W$

for $m \leftarrow I$ to n do

for $i \leftarrow I$ to n do

for $j \leftarrow I$ to n do

if $d_{ij} > d_{im} + d_{mj}$ then $d_{ij} \leftarrow d_{im} + d_{mj}$

 $\Pi_{\mathtt{i}\,\mathtt{j}}leftright$ $\Pi_{\mathtt{k}\,\mathtt{j}}$

return D

Floyd-Warshall Algorithm

- maintaining n D matrices can be avoided by dropping all superscripts.
- m-th iteration of outermost for-loop

begins with
$$D = D^{m-1}$$

ends with
$$D = D^m$$

- computation of d_{ij}^{m} depends on d_{im}^{m-1} and d_{mj}^{m-1} .
- no problem if d_{im} & d_{mj} are already updated to d_{im} & d_{mj} since d_{im} = d_{im} = d_{mj} = d_{mj} = d_{mj} .
- running time: $\Theta(n^3) = \Theta(V^3)$

simple code, no complex data structures, small hidden constants

Example:

Path Reconstruction

- Before you run Floyd's, you initialize your distance matrix **D** and path matrix II to indicate the use of no immediate
- (Thus, you are only allowed to traverse direct paths between vertices.)
- Then, at each step of Floyd's, you essentially find out whether or not using vertex k will improve an estimate between the distances between vertex i and vertex j.

Path Reconstruction

- If it *does improve* the estimate here's what you need to
- 1) record the new shortest path weight between i and j
- We don't need to change our path and we do not update the path matrix
- record the fact that the shortest path between i and j goes through k
- vertex k to vertex j. This will NOT necessarily be k, but rather, it We want to store the last vertex from the shortest path from will be path[k][j].

```
if (D[i][k]+D[k][j] < D[i][j]) { // Update is necessary to use k as intermediate
This gives us the following update to our algorithm:
                                                                                                                                                  D[i][j] = D[i][k] + D[k][j];
                                                                                                                                                                                                              \Pi[1][j] = \Pi[k][j];
```

Path Reconstruction

- Now, the once this path matrix is computed, we have all the information necessary to reconstruct the path.
- Consider the following path matrix (indexed from 1 to 5 instead of 0 to 4):

NIL	3	4	9	1
4	NIC	4	2	1
4		NIT	7	1
4	3		NIT	1
4	3	4	2	NIT

- Reconstruct the path from vertex 1 to vertex 2:
- First look at path [1][2] = 3. This signifies that on the path from 1 to 2, 3 is the last vertex visited before 2.
- Thus, the path is now, 1...3->2.
- Now, look at path[1][3], this stores a 4. Thus, we find the last vertex visited on the path from 1 to 3 is 4.
- So, our path now looks like 1...4->3->2. So, we must now look at path[1][4]. This stores a 5,
- thus, we know our path is 1...5->4->3->2. When we finally look at path[1][5], we find 1,
- which means our path really is 1->5->4->3->2.

$$D(4) = \begin{pmatrix} 0 & 3 & -1 & 4 & -4 \\ 3 & 0 & -4 & 1 & -1 \\ 7 & 4 & 0 & 5 & 3 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & 5 & 1 & 6 & 0 \end{pmatrix} \qquad \prod (4) = \begin{pmatrix} NIL & 1 & 4 & 2 & 1 \\ 4 & NIL & 4 & 2 & 1 \\ 4 & 3 & 4 & NIL & 1 \\ 4 & 3 & 4 & 5 & NIL \\ 4 & NIL & 2 & 1 \\ 4 & NIL & 2 & 1 \\ 4 & NIL & 2 & 1 \\ 4 & 3 & 4 & NIL & 1 \\ 4 & NIL & 2 & 1 \\ 4 & 3 & 4 & NIL & 1 \\ 4 & 3 & 4 & NIL & 1 \\ 8 & 5 & 1 & 6 & 0 \end{pmatrix}$$

(2)=

Iteration 1: (k = 1) Shorter paths from $2 \sim 3$ and $2 \sim 4$ are found through vertex 1

S

Iteration 3: (k = 3) No shorter paths are found through vertex 3

Iteration 4: (k = 4) Shorter paths from $1 \sim 2$, $1 \sim 3$, $2 \sim 3$, $3 \sim 1$, $3 \sim 2$, $5 \sim 1$, $5 \sim 2$, $5 \sim 3$, and $5 \sim 4$ are found through vertex 4

Iteration 5: (k = 5) No shorter paths are found through vertex 5

	5	,	,	1	,				
	4	1	1	3	1	5			
	က	4	4	1	4	4			
	2	4	/	4	4	4			
	-	/	2	2	2	2			
		-	2	ю	4	2			
ru 8 8 8 8 0									
4 6 9 2 0 6									
٥	3	4	7	0	1	3			
	2	4	0	3	1	3			
	-	0	3	9	4	9			
	,	-	2	က	4	5			
(a)									
	⟨u⟩ 4								
		(")							

The final shortest paths for all pairs is given by

	2	/	1	,	1	/
	4	1	1	3	1	5
	3	4	4	1	4	4
	2	4	1	4	4	4
	-	1	2	2	2	2
	,	-	7	ю	4	5
	5	8	8	8	8	0
٥	4	3	9	2	0	2
	3	4	7	0	1	3
	2	4	0	3	1	3
	-	0	3	9	4	9
		-	2	3	4	5

What is Binary Relation?

A binary relation R from the set S to the set T is a subset of $S \times T$, R $\subseteq S \times T$. If S = T, we say that the relation is a binary relation on S.

Properties of Binary Relation

Let R be a binary relation on S. Then R is

Reflexive: iff
$$(\forall x)$$
, $(x \in S \to xRx)$

Symmetric: iff
$$(\forall x)(\forall y)$$
, $(x \in S \land y \in S \land xRy \rightarrow yRx)$

<u>Anti-symmetric:</u> iff $(\forall x)(\forall y)$, $(x \in S \land y \in S \land xRy \land yRx$

$$\rightarrow x = y$$

iff $(\forall x) (\forall y)(\forall z), (x \in S \land y \in S \land z \in S)$

Transitive:

$$\wedge xR y \wedge yR z \rightarrow xRz$$

Some binary relations don't have these properties.

Closures of Binary Relation

A binary relation R on a set S may not have a particular property such as reflexivity, symmetry, or transitivity. However, it may be possible to extend the relation so that it does have the property.

contains R and which has the desired property. The closure of a relation on S with respect to a property is the smallest such Extending R means finding a <u>larger subset</u> of S imes S that extension that has the desired property.

Commonly used Closures:

transitive closure

reflexive closure

symmetric closure

Transitive Closure of Binary Relation

A relation R^t is the transitive closure of a binary relation R if and only if:

- then Rt ⊆ S, that is, Rt is the smallest relation that satisfies (1) and (2).

How to find Transitive Closure?

We need to add the minimum number of tuples to R, giving us Rt, such that if (a,b) is in Rt and (b,c) is in R^t, then (a,c) is in R^t.

$$R^{t} = R \cup \Delta$$

(a,b) $\in R^{t} \wedge (b,c) \in R^{t} \rightarrow (a,c) \in R^{t}$

Example of Transitive Closure:

Let
$$S = \{1, 2, 3\}$$
.

$$R = \{(1,1), (1,2), (1,3), (2,3), (3,1)\}.$$

$$(2,3) \in R \land (3,1) \in R \rightarrow (2,1) \in R^{t}$$

$$(3,1) \in R \land (1,2) \in R \rightarrow (3,2) \in R^{t}$$

$$(3,1) \in R \land (1,3) \in R \rightarrow (3,3) \in R^{t}$$

$$(2,1) \in \mathbb{R}^t \wedge (1,2) \in \mathbb{R} \rightarrow (2,2) \in \mathbb{R}^t$$
 (*Must be done iteratively)

So,
$$R^t = R \cup \{(2,1), (3,2), (3,3), (2,2)\}$$

Graphical Construction of Transitive Closure

Warshall's Algorithm

- · Main idea: a path exists between two vertices i, j, iff
- · there is an edge from i to j; or
- · there is a path from i to j going through vertex 1; or
- there is a path from i to j going through vertex 1 and/or 2; or
- there is a path from i to j going through vertex 1, 2, and/or 3; or

.

there is a path from i to j going through any of the other vertices

Transitive Closure of a Directed Graph

- ightharpoonup E' = { (v_i , v_j): there exists a path from v_i to v_j in G } G = (V, E'): transitive closure of G = (V, E), where
- trivial solution: assign W such that

$$\mathbf{\omega}_{ij} = \begin{cases} 1 \text{ if } (\mathbf{v}_i, \mathbf{v}_j) \in \mathbf{E} \\ & \end{cases}$$
 otherwise

- ► run Floyd-Warshall algorithm on W
- $ightharpoonup d_{ij}^{n} < n \implies \text{there exists a path from } v_i \text{ to } v_j$, i.e., $(v_i, v_i) \in E$
- i.e., $(v_i, v_j) \notin E$

 $ightharpoonup d_{ij}{}^{n} = \infty \Rightarrow \text{no path from } v_i \text{ to } v_i$,

running time: $\Theta(n^3) = \Theta(V^3)$

Transitive Closure of a Directed Graph

Better $\Theta(V^3)$ algorithm: saves time and space.

$$\omega_{ij} = \begin{cases} 1 & \text{if } i = j \text{ or } (v_i, v_j) \in \mathbf{E} \\ 0 & \text{otherwise} \end{cases}$$

 \blacktriangleright W = adjacency matrix:

▶ run Floyd-Warshall algorithm by replacing "min" \rightarrow " \checkmark " & "+" \rightarrow " \checkmark "

 \mid 1 if \exists a path from v_i to v_j with all intermediate vertices from V_m

fine
$$t_{ij}^{m} = \begin{cases} 0 \text{ otherwise} \end{cases}$$

$$\mathfrak{t}_{ij}^{n} = 0 \implies (v_i, v_j) \notin E$$

8

 $ightharpoonstact \mathbf{t}_{ij}^{\ n} = 1 \Longrightarrow (\mathbf{v}_i\,,\,\mathbf{v}_j\,) \in \mathbf{E}$

recursive definition for $t_{ij}^{\ m}=t_{ij}^{\ m-1} \lor (t_{im}^{\ m-1} \land t_{mj}^{\ m-1})$ with $t_{ij}^{\ 0}=\omega_{ij}$

```
T-CLOSURE (G)
```

```
For i \leftarrow I to n do

for i \leftarrow I to n do

for j \leftarrow I to n do

if i = j or (v_i, v_j) \in E then

t_{ij} \leftarrow I

else

t_{ij} \leftarrow 0

for m \leftarrow I to n do

for i \leftarrow I to n do

for i \leftarrow I to n do

t_{ij} \leftarrow I to n do
```

Johnson's all-pairs algorithm

- Johnson's演算法可用於計算All pairs shortest path 問題。
- 在邊的數量不多的時候,如|E|=O(|V|log|V|)時,能 有比Warshall-Floyd演算法較佳的效能
- 0 其輸入需求是利用Adjacency list表示的圖

(1) Preserving shortest paths by edge reweighting (重新調整權重):

• L1: given G = (V, E) with $\omega : E \to R$

▶ let $h: V \to R$ be any weighting function (real) on the vertex set

► define $\hat{\omega}(\omega, h)$: E \rightarrow R as $\hat{\omega}(u, v) = \omega(u, v) + h(u) - h(v)$

▶ let $p_{0k} = \langle v_0, v_1, ..., v_k \rangle$ be a path from v_0 to v_k

(a) $\hat{\omega}(p_{0k}) = \omega(p_{0k}) + h(v_0) - h(v_k)$

(b) $\omega(p_{0k}) = \delta(v_0, v_k)$ in (G, ω) $\Leftrightarrow \hat{\omega}(p_{0k}) = \delta(v_0, v_k)$ in (G, $\hat{\omega}$)

(c) (G, ω) has a neg-wgt cycle \Leftrightarrow (G, $\overset{\circ}{\omega}$) has a neg-wgt cycle

Observation

$$\widehat{w}(\mathbf{p_{ok}}) = w(v_0, v_1) + h(v_0) - h(v_1)$$

$$+ w(v_1, v_2) + h(v_1) - h(v_2) + \dots$$

$$+ w(v_{k-2}, v_{k-1}) + h(v_{k-2}) - h(v_{k-1})$$

$$+ w(v_{k-1}, v_k) + h(v_{k-1}) - h(v_k)$$

$$= w(v_0, v_1) + w(v_1, v_2) + \dots + w(v_{k-2}, v_{k-1}) + w(v_{k-1}, v_k) + h(v_0) - h(v_k)$$

$$= w(\mathbf{p}) + h(v_0) - h(v_k)$$

Under the new weighting scheme, weight of every path between $\mathsf{v}_{\scriptscriptstyle 0}$ and v_k is incremented by constant amount (decremented if the constant is negeative).

So shortest paths remain the same under the new weights.

- $\begin{aligned} \text{proof (a): } \hat{\omega}(\ p_{0k}) &= \sum_{1 \le i \le k} \hat{\omega}(\ v_{i-1}, v_i \) \\ &= \sum_{1 \le i \le k} (\ \omega(v_{i-1}, v_i \) + h \ (v_0) h \ (v_k) \) \\ &= \sum_{1 \le i \le k} \omega(v_{i-1}, v_i \) + \sum_{1 \le i \le k} (\ h \ (v_0) h \ (v_k) \) \\ &= \omega(\ p_{0k}) + h \ (v_0) h \ (v_k) \end{aligned}$
- proof (b): (\Rightarrow) show $\omega(p_{0k}) = \delta(v_0, v_k) \Rightarrow \hat{\omega}(p_{0k}) = \delta(v_0, v_k)$ by contradiction.
- \blacktriangleright Suppose that a shorter path p_{0k} from v_0 to v_k in (G, $\dot{\omega}$), then $\hat{\omega}(p_{0k}') < \hat{\omega}(\vec{p}_{0k})$
- due to (a) we have
- $\omega(p_{0k}') + h(v_0) h(v_k) = \hat{\omega}(p_{0k}') < \hat{\omega}(p_{0k}) = \omega(p_{0k}) + h(v_0) h(v_k)$ $\omega(p_{0k}') < \omega(p_{0k}) \Rightarrow \text{contradicts that } p_{0k} \text{ is a shortest path in } (G, \omega)$ $\omega(p_{0k}') + h(v_0) - h(v_k) < \omega(p_{0k}) + h(v_0) - h(v_k)$

proof (b): (<=) similar

proof (c): (\Leftrightarrow) consider a cycle $c = \langle v_0, v_1, \dots, v_k = v_0 \rangle$. Due to (a)

$$\triangleright \overset{\wedge}{\omega}(c) = \sum_{I \le i \le k} \overset{\wedge}{\omega}(v_{i-I}, v_i) = \omega(c) + h(v_0) - h(v_k)$$

$$= \omega(c) + h(v_0) - h(v_0) = \omega(c) \text{ since } v_k = v_0$$

 $\blacktriangleright \stackrel{\wedge}{\omega}(c) = \omega(c).$

OED

Still need to ensure that weight of every edge is nonnegative

$$w_{new}(u,v) = w(u,v) + h(u) - h(v) \ge 0$$

(2) Producing nonnegative edge weights by reweighting:

construct a new graph (G', ω ') with G' = (V', E') and given (G, ω) with G = (V, E) and $\omega : E \to R$

add a node s to the existing network, and add an edge from s to every node

- $\mathfrak{D} = E \rightarrow \mathbb{R}$ and add an $\mathbf{V}' = V \cup S \cup S \cup S$
- \bigvee V' = V \cup { s } for some new vertex s \notin V $\blacktriangleright E' = E \cup \{(s,v):v \in V\}$
- vertex s has no incoming edges \Rightarrow s \notin R_v for any v in V
- \blacktriangleright no shortest paths from $u \neq s$ to v in G contains vertex s
- \blacktriangleright (G', ω) has no neg-wgt cycle \Leftrightarrow (G, ω) has no neg-wgt cycle

suppose that G and G' have no neg-wgt cycle

L2: if we define $h(v) = \delta(s, v)$ $\forall v \in V$ in G' and $\overset{\wedge}{\omega}$ according to L1. \blacktriangleright we will have $\hat{\omega}(u,v) = \omega(u,v) + h(u) - h(v) \ge 0 \ \forall v \in V$

proof: for every edge $(u, v) \in E$

 δ (s, v) $\leq \delta$ (s, u) + ω (u, v) in G' due to triangle inequality $h(v) \le h(u) + \omega(u, v) \Rightarrow 0 \le \omega(u, v) + h(u) - h(v) = \omega(u, v)$

Johnsons Algorithm

- Start with the original graph
- Add the new vertex s and the new edges with 0 weight to all other vertices
- Run Bellman-ford with source s, and original weights to compute shortest path weights p(s,v) to every vertex v.
- Can we run Dijkstra instead?
- Compute the new weights for the original edges:
- $w_{new}(u, v) = w(u, v) + p(s, u) p(s, v)$
- Can get rid of the new vertex and edges at this point
- Run Dijkstra to compute the shortest paths

執行Bellman-Ford演算法, 得到自s出發每一點的最短距

Computing All-Pairs Shortest Paths

- adjacency list representation of G.
- returns $n \times n$ matrix $D = (d_{ij})$ where

$$d_{ij}=\delta_{ij}\;,$$

or reports the existence of a neg-wgt cycle.

$JOHNSON(G,\omega)$

```
construct ( G' = (V', E'), \omega') s.t. V' = V \cup \{s\}; E' = E \cup \{(s,v) : \forall v \in V\}

ightharpoonup \omega'(u,v) = \omega(u,v), \ \ \forall (u,v) \in E \ \ \& \ \ \ \omega'(s,v) = 0 \ \ \ \forall v \in V
                                                                                                                                                                                                                                      if BELLMAN-FORD(G', \omega, s) = FALSE then
                                                                                                                                                                                                                                                                                                                     return "negative-weight cycle"

ightharpoonup D=(d_{ij}) is an nxn matrix
```

```
run DIJKSTRA(G,^\dot, u) to compute^\d[v] = ^{\wedge}\delta (u,v) for all v in V \in (G,^{\pitchfork})
                                                                   h[v] \leftarrow d'[v] \triangleright d'[v] = \delta'(s,v) computed by BELLMAN-FORD(G', \omega, s)
                                                                                                                                                                                                                 edge reweighting
                                                                                                                                                                                                               \widetilde{\omega}(\mathbf{u},\mathbf{v}) \leftarrow \omega(\mathbf{u},\mathbf{v}) + \mathbf{h}[\mathbf{u}] - \mathbf{h}[\mathbf{v}]
for each vertex v \in V'- \{s\} = V do
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             d_{uv} = d[v] - (h[u] - h[v])
                                                                                                                                                                                                                                                                                                                                                                                                                            for each vertex v \in V do
                                                                                                                                               for each edge (u,v) \in E do
                                                                                                                                                                                                                                                                                  for each vertex u \in V do
```

- running time: $O(V^2 lgV + EV)$
- edge reweighting

```
BELLMAN-FORD(G', \omega', s) : O (EV)
```

computing $\mathring{\omega}$ values : O(E)

 $ightharpoonup |V| \text{ runs of DIJKSTRA}: |V| \times O(\text{VlgV} + \text{EV})$ $= O(V^2 lgV + EV);$

PQ = fibonacci heap

Johnson's algorithm 範例

紅線部分是Shortest-paths tree。 點的數字a/b代表自出發點(綠色點)出發,到達該點的最短路徑

o (Reweighting後的圖/原圖)。

Johnson's algorithm 範例

Johnson's algorithm 範例

