Encoding of SAT into congruence closure with full propagation.

Let \mathcal{C} be a set of clause. We introduce a constant v_i for each propositional variable p_i , and a function f_i for each clause c_i in \mathcal{C} , the arity of f_i being the number of literals in c_i . We furthermore introduce the constants \top and \bot .

number of literals in c_i . We furthermore introduce the constants \top and \bot . For every clause $c_i = \{\ell_1, \dots \ell_n\} \in \mathcal{C}$, we build a literal $f_i(v_1, \dots v_n) \neq f_i(\operatorname{pol}(\ell_1), \dots \operatorname{pol}(\ell_n))$, where $\operatorname{pol}(\ell)$ is \bot if ℓ is v, \top otherwise. We furthermore add (might be not necessary) $\top \neq \bot$.

Then $\mathcal C$ is unsatisfiable if and only if $v \neq \top$ and $v \neq \bot$ are both propagated, for some v.

We'd have to precisely define the problem, but I think it is trivially encoded into propositional unsatisfiability, thus trivially in Co-NP.