

Définition

L'héliostat

Un héliostat est un dispositif permettant de suivre la course du Soleil.

Source wikipédia

L'héliostat (vidéo)

Disponible à l'adresse https://youtu.be/YYp9kMEON68

{1} Le socle

{1} Le socle{2} Bras 1

	{1}	{2}
{1}		Pivot axe y
{2}	Pivot axe y	

{1} Le socle

{2} Bras 1

{3} Bras 2 et panneau solaire

	{1}	{2}	{3}
{1}		Pivot axe y	
{2}	Pivot axe y		Pivot axe x
{3}		Pivot axe x	

Schéma de montage

Chaînes de l'information et de l'énergie Chaîne de l'information Panneau solaire Acquérir Traiter Transmettre non orienté photorésistances microcontrôleur câble du panneau solaire Orientation Alimenter Convertir Transmettre Pile - Cable USB servo-moteur servo-moteur Chaîne de l'énergie Panneau solaire orienté 9 École supérieure du professorat Jean-Michel GOUTIER - Frédéric LLANTE et de l'éducation

Logigramme de fonctionnement

Déclaration des variables

#include <Servo.h>

Inclusion de la librairie

Servo servo_H; Servo servo_V;

Création des objets servomoteurs.

```
int posH = 90, posV = 90;
```

```
const int pr_drt = A0;
const int pr_gch = A1;
const int pr ht = A2;
```

int lum_drt; int lum_gch; int lum_ht; int lum_bas;

Déclaration des variables

```
#include <Servo.h>
```

Servo servo_H; Servo servo V;

int lum bas;

```
int posH = 90, posV = 90;
const int pr_drt = A0;
const int pr_gch = A1;
const int pr_ht = A2;
int lum_drt;
int lum_gch;
int lum ht;
```

Déclaration des variables :

Position du panneau ; Broches de connexion des photorésistances ; Variables de stockage des luminosités.

Initialisation du programme

```
void setup()
{
servo_H.attach(9);
servo_V.attach(8);

servo_H.write(posH);
servo_V.write(posV);

pinMode(pr_ht, INPUT);
pinMode(pr_drt, INPUT);
pinMode(pr_gch, INPUT);
}
```


Initialisation du programme

```
void setup()
{
  servo_H.attach(9);
  servo_V.attach(8);

servo_H.write(posH);
  servo_V.write(posV);

pinMode(pr_ht, INPUT);
  pinMode(pr_drt, INPUT);
  pinMode(pr_gch, INPUT);
}
Positionnement du panneau
```


Initialisation du programme

```
void setup()
{
   servo_H.attach(9);
   servo_V.attach(8);

   servo_H.write(posH);
   servo_V.write(posV);

pinMode(pr_ht, INPUT);
   pinMode(pr_drt, INPUT);
   pinMode(pr_gch, INPUT);
}
Initialisation des broches photorésistances
```


Programme 1/2

```
void loop()
  lum drt = analogRead(pr drt);
  lum gch = analogRead(pr gch);
  lum bas = (lum drt+lum gch)/2;
  lum ht = analogRead(pr ht);
  if (lum drt > lum gch*1.05) {
    if (posH > 1) {
     posH -= 1;
     servo H.write(posH);
     delay(20);
  else if (lum_gch > lum_drt*1.05) {
       Serial.print(" - pos : ");
       Serial.println(posH);
       if (posH < 180) {
          posH += 1;
          servo H.write(posH);
          delay(20);
```

Lecture des valeurs des photorésistances

Programme 1/2

```
void loop()
{
    lum_drt = analogRead(pr_drt);
    lum_gch = analogRead(pr_gch);
    lum_bas = (lum_drt+lum_gch)/2;
    lum_ht = analogRead(pr_ht);
```

Test de luminosité droite et gauche seuil de 5 %

Délais pour fluidifier le mouvement

Programme 2/2

Aspects de développement durable

Aspects d'innovation

En Enseignement Technologique Transversal

	CO2.2	Justifier les so environneme
	CO3.1	Décoder le ca
H	CO4.1	Identifier et carent entrées/sortie

En Enseignement Technologique Transversal

1.1.3	Compror
1.2.1	Étapes de
1.2.2	Mise à dis
2.1.1	Organisat
2.1.2	Organisat
~ ~ 1	

En spécialité SIN

	CO7.sin2	Décoder le cahier des charges fonctionnel décrivant le besoin exprimé, identifier la fonction définie par un besoin exprimé, faire des mesures pour caractériser cette fonction et conclure sur sa conformité
	CO7.sin3	Exprimer le principe de fonctionnement d'un système à partir des diagrammes SysML pertinents Repérer les constituants de la chaîne d'énergie et d'information
SSIN	CO8.sin1	Rechercher et choisir une solution logicielle ou matérielle au regard de la définition d'un système
IENCE	CO8.sin3	Traduire sous forme graphique l'architecture de la chaîne d'information identifiée pour un système et définir les paramètres d'utilisation du simulateur
COMPETENCES	CO9.sin1	Utiliser les outils adaptés pour planifier un projet (diagramme de Gantt, chemin critique, données économiques, réunions de projet)
ö	CO9.sin2	Installer, configurer et instrumenter un système réel Mettre en œuvre la chaîne d'acquisition puis acquérir, traiter, transmettre et restituer l'information
	CO9.sin4	Rechercher et choisir de nouveaux constituants d'un système (ou d'un projet finalisé) au regard d'évolutions technologiques, socio-économiques spécifiées dans un cahier des charges. Organiser le projet permettant de « maquettiser » la solution choisie

En spécialité SIN

	1.1	
SIN	1.2	
	1.3	
ERENTIEL	2.1	
ER	2.3	

En spécialité SIN : mini-projet 1ère

En spécialité SIN : mini-projet 1ère : 1/4

S'adapter à la course du soleil pour optimiser la production électrique.

En spécialité SIN : mini-projet 1ère : 2/4

Limiter les inclinaisons pour éviter des déplacements inadaptés.

En spécialité SIN : mini-projet 1ère : 3/4

Enregistrer la production électrique en continu et stocker l'information dans une carte mémoire. Proposer à l'utilisateur d'afficher la production instantanée, la production hebdomadaire, mensuelle, annuelle.

En spécialité SIN : mini-projet 1ère : 4/4

L'héliostat doit pouvoir se débrayer automatiquement lorsque la vitesse du vent en face dépasse une vitesse donnée.

Au collège : EPI en 3è

