WESA GAM, ZIP, & ZINB models by N/S

Sarah Popov

2023-02-06

Data summary

Dataset: one count record per N/S region per survey date, 820 records. 8.4% of the records are zeroes.

Histogram of WESA count

Figure 1: Histogram of WESA count per N/S group per survey date. Plenty of zeroes...

Full dataset variables vs. WESA count

Models

From the initial glmmTMB explorations, three things jumped out:

- 1. The negative binomial distribution fits the data best.
- 2. A simplified random effects structure eliminates all model convergence issues.
- 3. A non-linear approach (GAM) potentially might fit the data better.

```
# Base script by Gavin Simpson
# https://fromthebottomoftheheap.net/2017/05/04/compare-mgcv-with-qlmmtmb/
# https://qist.qithub.com/qavinsimpson/8a0f0e072b095295cf5f7af2762e05a7
library("mgcv")
library("glmmTMB")
## Poisson Models
pgam0 <- gam(predicted wesa ~ n s + year c + s(dos) + s(year,
         bs = "re"), data = dat3, family = poisson, method = "ML")
pgam1 <- gam(predicted_wesa ~ n_s + s(flow) + year_c + s(dos) +</pre>
         s(year, bs = "re"), data = dat3, family = poisson, method = "ML")
pgam2 <- gam(predicted_wesa ~ n_s + s(flow) + n_s:flow + year_c +
         s(dos) + s(year, bs = "re"), data = dat3, family = poisson,
         method = "ML")
pm0 <- glmmTMB(predicted_wesa ~ n_s + year_c + I(dos^2) + (1 |</pre>
         year), data = dat3, family = poisson)
pm1 <- glmmTMB(predicted_wesa ~ n_s + scale(flow) + year_c +</pre>
         I(dos^2) + (1 | year), data = dat3, family = poisson)
pm2 <- glmmTMB(predicted_wesa ~ n_s * scale(flow) + year_c +</pre>
         I(dos^2) + (1 | year), data = dat3, family = poisson)
AIC(pgam0, pgam1, pgam2)
##
                     df
                                     AIC
## pgam0 34 8003056
## pgam1 43 7782737
## pgam2 44 7720742
AIC(pm0, pm1, pm2)
##
                df
                                AIC
## pm0 5 8450215
## pm1 6 8304914
## pm2 7 8240747
## Negative binomial models
nbgam0 <- gam(predicted_wesa ~ n_s + year_c + s(dos) + s(year,</pre>
         bs = "re"), data = dat3, family = nb, method = "ML")
nbgam1 \leftarrow gam(predicted_wesa \sim n_s + s(flow) + year_c + s(dos) + year_c + 
         s(year, bs = "re"), data = dat3, family = nb, method = "ML")
nbgam2 <- gam(predicted_wesa ~ n_s + s(flow) + n_s:flow + year_c +</pre>
         s(dos) + s(year, bs = "re"), data = dat3, family = nb, method = "ML")
```

```
nbm0 <- glmmTMB(predicted_wesa ~ n_s + year_c + I(dos^2) + (1 |</pre>
    year), data = dat3, family = nbinom2)
nbm1 <- glmmTMB(predicted_wesa ~ n_s + scale(flow) + year_c +</pre>
    I(dos^2) + (1 | year), data = dat3, family = nbinom2)
nbm2 <- glmmTMB(predicted_wesa ~ n_s * scale(flow) + year_c +</pre>
    I(dos^2) + (1 | year), data = dat3, family = nbinom2)
AIC(nbgam0, nbgam1, nbgam2)
                         AIC
##
                 df
## nbgam0 26.54186 16670.59
## nbgam1 27.79454 16666.51
## nbgam2 28.94616 16668.14
AIC(nbm0, nbm1, nbm2)
##
        df
                AIC
## nbm0 6 16700.31
## nbm1 7 16699.52
## nbm2 8 16700.83
## Zero-inflated Poisson mgcv's ziplss can only fit using
## REML
zipgam0 <- gam(list(predicted_wesa ~ n_s + year_c + s(dos) +</pre>
    s(year, bs = "re"), ~n_s), data = dat3, family = ziplss,
    method = "REML")
zipgam1 <- gam(list(predicted_wesa ~ n_s + s(flow) + year_c +</pre>
    s(dos) + s(year, bs = "re"), ~n_s), data = dat3, family = ziplss,
    method = "REML")
zipgam2 <- gam(list(predicted_wesa ~ n_s + s(flow) + n_s:flow +</pre>
    year_c + s(dos) + s(year, bs = "re"), ~n_s + flow), data = dat3,
    family = ziplss, method = "REML")
zipgam3 <- gam(list(predicted_wesa ~ n_s + year_c + s(dos) +</pre>
    s(year, bs = "re"), ~n_s * flow), data = dat3, family = ziplss,
    method = "REML")
## check the things converged zipgam0$outer.info ## full
## convergence zipgam1$outer.info ## full convergence
## zipgam2$outer.info ## full convergence
## zipgam3$outer.info ## full convergence
zipm0 <- glmmTMB(predicted_wesa ~ n_s + year_c + I(dos^2) + (1 |</pre>
    year), zi = ~n_s, data = dat3, family = poisson)
zipm1 <- glmmTMB(predicted_wesa ~ n_s + scale(flow) + year_c +</pre>
    I(dos^2) + (1 | year), zi = ~n_s, data = dat3, family = poisson)
zipm2 <- glmmTMB(predicted_wesa ~ n_s + scale(flow) + year_c +</pre>
    I(dos^2) + (1 \mid year), zi = ~n_s + flow, data = dat3, family = poisson)
zipm3 <- glmmTMB(predicted_wesa ~ n_s * scale(flow) + year_c +</pre>
    I(dos^2) + (1 \mid year), zi = n_s * flow, data = dat3, family = poisson)
zinb0 <- glmmTMB(predicted_wesa ~ n_s + year_c + I(dos^2) + (1 |</pre>
    year), zi = ~n s, data = dat3, family = nbinom1)
zinb1 <- glmmTMB(predicted_wesa ~ n_s + scale(flow) + year_c +</pre>
```

```
I(dos^2) + (1 | year), zi = ~n_s + flow, data = dat3, family = nbinom1)
zinb2 <- glmmTMB(predicted_wesa ~ n_s * scale(flow) + year_c +</pre>
   I(dos^2) + (1 | year), zi = ~n_s + flow, data = dat3, family = nbinom1)
AIC(zipgam0, zipgam1, zipgam2, zipgam3)
##
                 df
## zipgam0 36.00000 6845442
## zipgam1 45.00000 6652772
## zipgam2 46.99877 6610734
## zipgam3 38.00000 6845443
AIC(zipm0, zipm1, zipm2, zipm3, zinb0, zinb1, zinb2)
                   AIC
##
         df
## zipm0 7 7337842.56
## zipm1 8 7180753.13
## zipm2 9 7180754.98
## zipm3 11 7135974.38
## zinb0 8
              16180.70
## zinb1 10
              16171.51
## zinb2 11
             16167.57
# Compare them all
bbmle::AICtab(pgam0, pgam1, pgam2, pm0, pm1, pm2, nbgam0, nbgam1,
   nbgam2, nbm0, nbm1, nbm2, zipgam0, zipgam1, zipgam2, zipm0,
   zipm1, zipm2, zinb0, zinb1, zinb2)
##
           dAIC
                     df
                 0.0 11
## zinb2
## zinb1
                3.9 10
## zinb0
               13.1 8
## nbgam1
               498.9 27.8
## nbgam2
               500.6 28.9
## nbgam0
               503.0 26.5
## nbm1
               532.0 7
## nbm0
               532.7 6
## nbm2
               533.3 8
## zipgam2 6594566.2 47
## zipgam1 6636604.6 45
## zipgam0 6829274.4 36
## zipm1
           7164585.6 8
## zipm2
           7164587.4 9
## zipmO
           7321675.0 7
## pgam2
           7704574.7 44
## pgam1
           7766569.1 43
## pgam0
           7986888.1 34
```

pm2

pm1

pm0

8224579.3 7

8288746.9 6

8434047.7 5

Best-fit diagnostics

Diagnostics indicate underdispersion in our data. Even though it's the best-fit model, it's underpredicting zeros.


```
##
   $uniformity
##
    One-sample Kolmogorov-Smirnov test
##
##
## data: simulationOutput$scaledResiduals
  D = 0.030439, p-value = 0.4331
   alternative hypothesis: two-sided
##
##
##
  $dispersion
##
##
    DHARMa nonparametric dispersion test via sd of residuals fitted vs.
    simulated
##
##
##
   data: simulationOutput
   dispersion = 1.2798, p-value = 0.128
   alternative hypothesis: two.sided
##
##
##
## $outliers
##
##
   DHARMa outlier test based on exact binomial test with approximate
##
    expectations
```

```
##
## data: simulationOutput
## outliers at both margin(s) = 9, observations = 820, p-value = 0.3203
## alternative hypothesis: true probability of success is not equal to 0.007968127
## 95 percent confidence interval:
## 0.005030689 0.020732492
## sample estimates:
## frequency of outliers (expected: 0.00796812749003984 )
                                               0.01097561
## $uniformity
##
   One-sample Kolmogorov-Smirnov test
##
##
## data: simulationOutput$scaledResiduals
## D = 0.030439, p-value = 0.4331
## alternative hypothesis: two-sided
##
##
## $dispersion
## DHARMa nonparametric dispersion test via sd of residuals fitted vs.
##
## data: simulationOutput
## dispersion = 1.2798, p-value = 0.128
## alternative hypothesis: two.sided
##
##
## $outliers
## DHARMa outlier test based on exact binomial test with approximate
## expectations
## data: simulationOutput
## outliers at both margin(s) = 9, observations = 820, p-value = 0.3203
## alternative hypothesis: true probability of success is not equal to 0.007968127
## 95 percent confidence interval:
## 0.005030689 0.020732492
## sample estimates:
## frequency of outliers (expected: 0.00796812749003984 )
##
                                               0.01097561
Test for zero inflation
## DHARMa zero-inflation test via comparison to expected zeros with
## simulation under HO = fitted model
## data: simulationOutput
## ratioObsSim = 0.90433, p-value = 0.392
## alternative hypothesis: two.sided
```


Figure 2: The zero-inflation test confirms we're underpredicting zeroes, despite this being the 'best-fit' model with the lowest AIC.

Full model

```
## Family: nbinom1 ( log )
## Formula:
## predicted_wesa ~ n_s * scale(flow) + year_c + scale(mean_temp) +
      scale(elev_range) + tide + scale(total_precip) + scale(u) +
##
      I(dos^2) + (1 \mid year)
## Zero inflation:
## Data: dat3
##
##
                BIC logLik deviance df.resid
   16087.8 16205.5 -8018.9 16037.8
##
##
## Random effects:
##
## Conditional model:
## Groups Name
                      Variance Std.Dev.
## year (Intercept) 0.1175 0.3428
## Number of obs: 820, groups: year, 24
## Zero-inflation model:
## Groups Name
                      Variance Std.Dev.
          (Intercept) 0.2803
   year
                              0.5295
## Number of obs: 820, groups: year, 24
##
## Dispersion parameter for nbinom1 family (): 1.24e+04
## Conditional model:
##
                       Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                      ## n sS
                      -1.091614  0.055440  -19.69  < 2e-16 ***
## scale(flow)
                      -0.097463 0.039034
                                           -2.50 0.01253 *
## year c
                      -0.124939 0.071961
                                           -1.74 0.08253 .
## scale(mean_temp)
                      0.053709 0.029644
                                           1.81 0.07002 .
## scale(elev range)
                     -0.085658 0.029694
                                           -2.88 0.00392 **
## tiderising
                      0.029601 0.059018
                                           0.50 0.61598
## scale(total_precip) 0.004169 0.025360
                                            0.16 0.86942
                                            1.66 0.09737 .
## scale(u)
                      0.042797
                                 0.025816
## I(dos^2)
                      -0.737516  0.035440  -20.81  < 2e-16 ***
## n_sS:scale(flow)
                               0.055654
                                          -2.67 0.00768 **
                     -0.148369
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Zero-inflation model:
                      Estimate Std. Error z value Pr(>|z|)
##
                                  1.4317 -5.897 3.70e-09 ***
## (Intercept)
                      -8.4428
## n sS
                       4.6169
                                  1.3413
                                          3.442 0.000577 ***
## scale(flow)
                      -1.3735
                                  1.0139 -1.355 0.175516
## year_c
                      -0.7836
                                  0.2552 -3.071 0.002135 **
## scale(mean_temp)
                      -0.2737
                                  0.2036 -1.344 0.178796
## scale(elev_range)
                                  0.2111 -2.405 0.016156 *
                      -0.5078
## tiderising
                       1.9877
                                  0.4794
                                         4.146 3.38e-05 ***
## scale(total_precip)
                      -0.4051
                                  0.2829 -1.432 0.152218
## scale(u)
                       0.4990
                                  0.2014 2.478 0.013217 *
```

Final model

Backwards stepwise selection; first removed insignificant terms from zi model, then subsequently removed insignificant terms from full model using AIC backwards selection (drop1 command).

```
## Family: nbinom1 (log)
## Formula:
## predicted_wesa ~ n_s + scale(flow) + year_c + scale(mean_temp) +
       scale(elev_range) + scale(u) + I(dos^2) + (1 | year) + n_s:scale(flow)
## Zero inflation:
## ~n_s + year_c + scale(elev_range) + tide + scale(u)
## Data: dat3
##
##
        AIC
                BIC
                      logLik deviance df.resid
   16084.2 16164.2 -8025.1 16050.2
##
                                            803
##
## Random effects:
##
## Conditional model:
## Groups Name
                       Variance Std.Dev.
## year (Intercept) 0.1174
                               0.3427
## Number of obs: 820, groups: year, 24
##
## Dispersion parameter for nbinom1 family (): 1.24e+04
##
## Conditional model:
##
                     Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                     10.80899
                                0.07915 136.57 < 2e-16 ***
## n_sS
                     -1.09341
                                0.05547 -19.71 < 2e-16 ***
## scale(flow)
                                0.03896
                                           -2.41 0.015902 *
                     -0.09393
## year_c
                     -0.12782
                                0.07177
                                           -1.78 0.074928 .
## scale(mean_temp)
                     0.05436
                                0.02956
                                           1.84 0.065862 .
## scale(elev_range) -0.09414
                                0.02562
                                           -3.68 0.000238 ***
## scale(u)
                                           1.69 0.091475 .
                     0.04310
                                0.02554
## I(dos^2)
                     -0.73873
                                0.03531 -20.92 < 2e-16 ***
                                           -2.43 0.015141 *
## n_sS:scale(flow) -0.13566
                                0.05585
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Zero-inflation model:
                     Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                                 0.8219 -8.660 < 2e-16 ***
                     -7.1174
## n_sS
                       3.6990
                                 0.7192
                                           5.143 2.70e-07 ***
                                 0.2029 -3.760 0.00017 ***
## year_c
                      -0.7629
                     -0.4890
## scale(elev_range)
                                 0.2053 -2.383 0.01719 *
## tiderising
                       1.9017
                                  0.4727
                                           4.024 5.73e-05 ***
## scale(u)
                       0.5717
                                 0.1816
                                           3.148 0.00165 **
## ---
```

```
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

predicted wesa

Final model diagnostics

```
## $uniformity
##
##
    One-sample Kolmogorov-Smirnov test
##
## data: simulationOutput$scaledResiduals
## D = 0.041122, p-value = 0.1249
## alternative hypothesis: two-sided
##
##
## $dispersion
##
   DHARMa nonparametric dispersion test via sd of residuals fitted vs.
##
##
    simulated
##
## data: simulationOutput
## dispersion = 1.2571, p-value = 0.184
## alternative hypothesis: two.sided
##
##
## $outliers
##
```


Figure 3: Residual diagnostics.

```
## DHARMa outlier test based on exact binomial test with approximate
## expectations
##
## data: simulationOutput
## outliers at both margin(s) = 9, observations = 820, p-value = 0.3203
## alternative hypothesis: true probability of success is not equal to 0.007968127
## 95 percent confidence interval:
## 0.005030689 0.020732492
## sample estimates:
## frequency of outliers (expected: 0.00796812749003984 )
                                               0.01097561
## $uniformity
##
##
   One-sample Kolmogorov-Smirnov test
## data: simulationOutput$scaledResiduals
## D = 0.041122, p-value = 0.1249
## alternative hypothesis: two-sided
##
##
## $dispersion
## DHARMa nonparametric dispersion test via sd of residuals fitted vs.
   simulated
##
## data: simulationOutput
## dispersion = 1.2571, p-value = 0.184
## alternative hypothesis: two.sided
##
##
## $outliers
## DHARMa outlier test based on exact binomial test with approximate
## expectations
## data: simulationOutput
## outliers at both margin(s) = 9, observations = 820, p-value = 0.3203
## alternative hypothesis: true probability of success is not equal to 0.007968127
## 95 percent confidence interval:
## 0.005030689 0.020732492
## sample estimates:
## frequency of outliers (expected: 0.00796812749003984 )
                                               0.01097561
##
## DHARMa zero-inflation test via comparison to expected zeros with
## simulation under HO = fitted model
## data: simulationOutput
## ratioObsSim = 0.87764, p-value = 0.224
## alternative hypothesis: two.sided
```


Simulated values, red line = fitted model. p-value (two.sided) = 0.224

Figure 4: Testing for overdispersion. Still not quite predicting the number of zeroes exactly correctly but better than before.

Residuals vs. predicted

dos

Residual vs. predictor Quantile deviations detected (red curves) Combined adjusted quantile test significant

year_c

Residual vs. predictor Quantile deviations detected (red curves) Combined adjusted quantile test significant

year

Within-group deviations from uniformity significant (red) Levene Test for homogeneity of variance n.s. 1.00 simulationOutput\$scaledResiduals 0.75 0.50 0.25 0 0.00 1997 2001 2004 2007 2010 2013 2016 2019

##

catPred

##

flow

Residual vs. predictor Quantile deviations detected (red curves) Combined adjusted quantile test significant

##
mean_temp

Residual vs. predictor Quantile deviations detected (red curves) Combined adjusted quantile test significant

##
elev_range

Residual vs. predictor No significant problems detected

##
total_precip

Residual vs. predictor No significant problems detected

u

Residual vs. predictor No significant problems detected

