Support vector machines

CS 446 / ECE 449

2022-02-16 19:35:44 -0600 (0670ь06)

"pytorch meta-algorithm".

- -
- 5. Tweak 1-4 until training error is small.
- 6. Tweak 1-5, possibly reducing model complexity, until testing error is small.

Support vector machines (SVMs) have three purposes for us.

- 1. Demonstrate maximum margin predictors, an example of "low complexity models", which appear throughout machine learning (not just linear predictors).
- 2. Demonstrate nonlinear kernels, also pervasive.
- 3. Exercise convex optimization and duality.

Plan for SVM

- ► Hard-margin SVM.
- ► Soft-margin SVM.
- SVM duality.
- ► Nonlinear SVM: kernels

Maximum margin linear separators Which linear separator is best? 4/36

Maximum margin linear separators

Which linear separator is best?

The max margin separator is **one** choice for a good predictor. It is not always the best idea. Recall from lecture 3:

Even so, the maximum margin concept is pervasive in machine learning.

Input $\boldsymbol{x} \in \mathbb{R}^d$, label $y \in \{\pm 1\}$, predictor $\boldsymbol{w} \in \mathbb{R}^d$ with $H := \{\boldsymbol{z} \in \mathbb{R}^d : \boldsymbol{w}^{\mathsf{T}} \boldsymbol{z} = 0\}$.

 $\text{Input } \boldsymbol{x} \in \mathbb{R}^d \text{, label } \boldsymbol{y} \in \{\pm 1\} \text{, predictor } \boldsymbol{w} \in \mathbb{R}^d \text{ with } \boldsymbol{H} := \{\boldsymbol{z} \in \mathbb{R}^d : \boldsymbol{w}^{\mathsf{T}} \boldsymbol{z} = 0\}.$

Input $\boldsymbol{x} \in \mathbb{R}^d$, label $y \in \{\pm 1\}$, predictor $\boldsymbol{w} \in \mathbb{R}^d$ with $H := \{\boldsymbol{z} \in \mathbb{R}^d : \boldsymbol{w}^{\mathsf{T}} \boldsymbol{z} = 0\}$.

Formulation #1: constrain the norm.

Single margin $\frac{yx^Tw}{\|w\|}$.

Overall margin $\min_i \frac{y_i \boldsymbol{x}_i^\mathsf{T} \boldsymbol{w}}{\|\boldsymbol{w}\|}$.

 $\mathsf{Max}\ \mathsf{margin}\ \mathrm{max}_{\|\boldsymbol{u}\|=1}\ \mathrm{min}_i\ y_i\boldsymbol{x}_i^{\mathsf{T}}\boldsymbol{u}.$

 $\text{Input } \boldsymbol{x} \in \mathbb{R}^d \text{, label } \boldsymbol{y} \in \{\pm 1\} \text{, predictor } \boldsymbol{w} \in \mathbb{R}^d \text{ with } \boldsymbol{H} := \{\boldsymbol{z} \in \mathbb{R}^d : \boldsymbol{w}^{\mathsf{T}} \boldsymbol{z} = 0\}.$

Formulation #1: constrain the norm.

Single margin $\frac{y \boldsymbol{x}^\mathsf{T} \boldsymbol{w}}{\|\boldsymbol{w}\|}$.

Overall margin $\min_i \frac{y_i \boldsymbol{x}_i^{\mathsf{T}} \boldsymbol{w}}{\|\boldsymbol{w}\|}$.

 $\mathsf{Max}\;\mathsf{margin}\; \max_{\|\boldsymbol{u}\|=1} \min_{i} y_{i}\boldsymbol{x}_{i}^{\mathsf{T}}\boldsymbol{u}.$

Formulation #2: constrain the margins.

Input $\boldsymbol{x} \in \mathbb{R}^d$, label $y \in \{\pm 1\}$, predictor $\boldsymbol{w} \in \mathbb{R}^d$ with $H := \{\boldsymbol{z} \in \mathbb{R}^d : \boldsymbol{w}^{\mathsf{T}} \boldsymbol{z} = 0\}$.

Formulation #1: constrain the norm.

Single margin $\frac{y x^T w}{\|w\|}$.

Overall margin $\min_i \frac{y_i \boldsymbol{x}_i^\mathsf{T} \boldsymbol{w}}{\|\boldsymbol{w}\|}$.

 $\mathsf{Max}\;\mathsf{margin}\;\max_{\|\boldsymbol{u}\|=1}\min_{i}y_{i}\boldsymbol{x}_{i}^{\mathsf{T}}\boldsymbol{u}.$

Formulation #2: constrain the margins.

Consider any \boldsymbol{v} with $\min_i y_i \boldsymbol{x}_i^{\mathsf{T}} \boldsymbol{v} \geq 1$.

Can suppose $y_k \boldsymbol{x}_k^\mathsf{T} \boldsymbol{v} = 1$ for some k (why?). Since margin scales with $\frac{1}{\|\boldsymbol{v}\|}$, choose

$$\begin{aligned} & \min & & \frac{1}{2} \| \boldsymbol{v} \|^2 \\ & \text{subject to} & & \boldsymbol{v} \in \mathbb{R}^d, \\ & & & y_i \boldsymbol{x}_i^\mathsf{T} \boldsymbol{v} \geq 1 \quad \forall i \end{aligned}$$

Input $\boldsymbol{x} \in \mathbb{R}^d$, label $y \in \{\pm 1\}$, predictor $\boldsymbol{w} \in \mathbb{R}^d$ with $H := \{\boldsymbol{z} \in \mathbb{R}^d : \boldsymbol{w}^{\mathsf{T}} \boldsymbol{z} = 0\}$.

Formulation #1: constrain the norm.

Single margin $\frac{yx^Tw}{\|w\|}$.

Overall margin $\min_i \frac{y_i \boldsymbol{x}_i^\mathsf{T} \boldsymbol{w}}{\|\boldsymbol{w}\|}$.

Max margin $\max_{\|\boldsymbol{u}\|=1} \min_i y_i \boldsymbol{x}_i^\mathsf{T} \boldsymbol{u}$.

Formulation #2: constrain the margins.

Consider any v with $\min_i y_i x_i^{\mathsf{T}} v \geq 1$. Can suppose $y_k x_k^{\mathsf{T}} v = 1$ for some k (why?).

Since margin scales with $\frac{1}{\|\mathbf{r}\|}$, choose

$$\begin{aligned} & \min \quad \frac{1}{2} \| \boldsymbol{v} \|^2 \\ & \text{subject to} \quad \boldsymbol{v} \in \mathbb{R}^d, \\ & y_i \boldsymbol{x}_i^{\mathsf{T}} \boldsymbol{v} \geq 1 \quad \forall i. \end{aligned}$$

These two are equivalent

(up to scaling, when solutions exist).

Hard-margin SVM.

Take the solution to either optimization problem:

$$\begin{array}{lll} \max & \min_i y_i \boldsymbol{x}_i^{\mathsf{T}} \boldsymbol{u}, & \min & \frac{1}{2} \| \boldsymbol{v} \|^2 \\ \text{subject to} & \boldsymbol{u} \in \mathbb{R}^d, & \text{subject to} & \boldsymbol{v} \in \mathbb{R}^d, \\ & \| \boldsymbol{u} \| = 1; & y_i \boldsymbol{x}_i^{\mathsf{T}} \boldsymbol{v} \geq 1 & \forall i. \end{array}$$

Hard-margin SVM.

Take the solution to either optimization problem:

$$\begin{array}{llll} \max & \min_i y_i \boldsymbol{x}_i^{\mathsf{T}} \boldsymbol{u}, & \min & \frac{1}{2} \|\boldsymbol{v}\|^2 \\ & \text{subject to} & \boldsymbol{u} \in \mathbb{R}^d, & \text{subject to} & \boldsymbol{v} \in \mathbb{R}^d, \\ & & \|\boldsymbol{u}\| = 1; & y_i \boldsymbol{x}_i^{\mathsf{T}} \boldsymbol{v} \geq 1 & \forall i. \end{array}$$

Remarks.

- Since the second is a convex program, many approaches exist. Homework will investigate a simple SGD-based strategy.
- Mhat happens if the second formulation is infeasible? (That is, what if no vector v satisfies $\min_i y_i x_i^{\mathsf{T}} v \geq 1$?)

Soft-margin SVM

What is the max margin predictor for the following data?

Soft-margin SVM

What is the max margin predictor for the following data?

Idea. pay a price for each $y_i \boldsymbol{x}_i^\mathsf{T} \boldsymbol{v} < 1$ with slack variables $(\xi_i)_{i=1}^n$:

Soft-margin SVM

What is the max margin predictor for the following data?

Idea. pay a price for each $y_i x_i^\mathsf{T} v < 1$ with slack variables $(\xi_i)_{i=1}^n$:

 $\xi_i \geq 0$

$$\min_{\boldsymbol{w} \in \mathbb{R}^d, \xi_1, \dots, \xi_n \in \mathbb{R}} \qquad \frac{1}{2} \|\boldsymbol{w}\|_2^2 + C \sum_{i=1}^n \xi_i$$
s.t. $y_i \boldsymbol{x}_i^{\mathsf{T}} \boldsymbol{w} \ge 1 - \xi_i$ for all $i = 1, 2, \dots, n$,

$$1-\xi_i \qquad \qquad \text{for all } i=1,2,\dots,n,$$

$$\text{for all } i=1,2,\dots,n.$$

Re-formulation as **regularized ERM**.

Formulation with slack variables $(\xi_i)_{i=1}^n$.

$$\min_{\boldsymbol{w} \in \mathbb{R}^d, \xi_1, \dots, \xi_n \in \mathbb{R}} \qquad \frac{1}{2} \|\boldsymbol{w}\|_2^2 + C \sum_{i=1}^n \xi_i$$

s.t.
$$y_i \boldsymbol{x}_i^{\mathsf{T}} \boldsymbol{w} \ge 1 - \xi_i$$
 for all $i = 1, 2, \dots, n$, $\xi_i \ge 0$ for all $i = 1, 2, \dots, n$.

for all
$$i=1,2,\ldots,n$$
.

Re-formulation as regularized ERM.

Formulation with slack variables $(\xi_i)_{i=1}^n$.

$$\begin{split} \min_{\boldsymbol{w} \in \mathbb{R}^d, \xi_1, \dots, \xi_n \in \mathbb{R}} & \quad \frac{1}{2} \|\boldsymbol{w}\|_2^2 + C \sum_{i=1}^n \xi_i \\ \text{s.t.} & \quad y_i \boldsymbol{x}_i^\mathsf{T} \boldsymbol{w} \geq 1 - \xi_i & \quad \text{for all } i = 1, 2, \dots, n, \\ & \quad \xi_i \geq 0 & \quad \text{for all } i = 1, 2, \dots, n. \end{split}$$

Regularized ERM formulation.

Given any \boldsymbol{w} , choose $\xi_i := \max\{0, 1 - y_i \boldsymbol{x}_i^\mathsf{T} \boldsymbol{w}\}$, whereby

$$\min_{\boldsymbol{w} \in \mathbb{R}^d} \frac{1}{2} \|\boldsymbol{w}\|_2^2 + C \sum_{i=1}^n \max \left\{ 0, 1 - y_i \boldsymbol{x}_i^\mathsf{T} \boldsymbol{w} \right\},$$

where $\ell_{\text{hinge}}(y_i \boldsymbol{x}_i^{\mathsf{T}} \boldsymbol{w}) \coloneqq \max\{0, 1 - y_i \boldsymbol{x}_i^{\mathsf{T}} \boldsymbol{w})$ is the hinge loss.

Re-formulation as regularized ERM.

Formulation with slack variables $(\xi_i)_{i=1}^n$.

$$\begin{split} \min_{\boldsymbol{w} \in \mathbb{R}^d, \xi_1, \dots, \xi_n \in \mathbb{R}} & \quad \frac{1}{2} \|\boldsymbol{w}\|_2^2 + C \sum_{i=1}^n \xi_i \\ \text{s.t.} & \quad y_i \boldsymbol{x}_i^\mathsf{T} \boldsymbol{w} \geq 1 - \xi_i & \text{for all } i = 1, 2, \dots, n, \\ & \quad \xi_i \geq 0 & \text{for all } i = 1, 2, \dots, n. \end{split}$$

Regularized ERM formulation.

Given any \boldsymbol{w} , choose $\xi_i := \max\{0, 1 - y_i \boldsymbol{x}_i^\mathsf{T} \boldsymbol{w}\}$, whereby

$$\min_{\boldsymbol{w} \in \mathbb{R}^d} \frac{1}{2} \|\boldsymbol{w}\|_2^2 + C \sum_{i=1}^n \max \left\{ 0, 1 - y_i \boldsymbol{x}_i^\mathsf{T} \boldsymbol{w} \right\},$$

where $\ell_{\text{hinge}}(y_i \boldsymbol{x}_i^{\mathsf{T}} \boldsymbol{w}) \coloneqq \max\{0, 1 - y_i \boldsymbol{x}_i^{\mathsf{T}} \boldsymbol{w})$ is the hinge loss.

Remarks.

- ▶ Normally we'd write $\frac{1}{n} \sum_{i=1}^{n} \ell_{\text{hinge}}(y_i \boldsymbol{x}_i^\mathsf{T} \boldsymbol{w}) + \frac{\lambda}{2} \|\boldsymbol{w}\|^2$.
- ightharpoonup C (or λ) is a hyper-parameter; it has no good search procedure.

SVM duality A convex program is an optimization problem (minimization or maximization) where a convex objective is minimized over a convex constraint (feasible) set. 10 / 36

SVM duality

A convex program is an optimization problem (minimization or maximization) where a convex objective is minimized over a convex constraint (feasible) set.

Every convex program has a corresponding dual program. For the SVM, the dual has many nice properties:

- Clarifies the role of support vectors.
- Leads to a nice nonlinear approach via kernels.
- Gives another choice for optimization algorithms.

SVM hard-margin duality.

Define the two optimization problems

$$\min \left\{ \frac{1}{2} \| \boldsymbol{w} \|^2 : \boldsymbol{w} \in \mathbb{R}^d, \forall i \cdot 1 - y_i \boldsymbol{x}_i^{\mathsf{T}} \boldsymbol{w} \leq 0 \right\}$$
 (primal),
$$\max \left\{ \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i,j=1}^n \alpha_i \alpha_j y_i y_j \boldsymbol{x}_i^{\mathsf{T}} \boldsymbol{x}_j : \boldsymbol{\alpha} \in \mathbb{R}^n, \boldsymbol{\alpha} \geq 0 \right\}$$
 (dual).

If the primal is feasible, then the primal optimal value equals the dual optimal value. Given a primal optimum \bar{w} and a dual optimum $\bar{\alpha}$, they satisfy

$$\bar{\boldsymbol{w}} = \sum_{i=1}^{n} \bar{\alpha}_i y_i \boldsymbol{x}_i.$$

SVM hard-margin duality.

Define the two optimization problems

$$\min \left\{ \frac{1}{2} \| \boldsymbol{w} \|^2 : \boldsymbol{w} \in \mathbb{R}^d, \forall i \cdot 1 - y_i \boldsymbol{x}_i^{\mathsf{T}} \boldsymbol{w} \leq 0 \right\}$$
 (primal),
$$\max \left\{ \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i,j=1}^n \alpha_i \alpha_j y_i y_j \boldsymbol{x}_i^{\mathsf{T}} \boldsymbol{x}_j : \boldsymbol{\alpha} \in \mathbb{R}^n, \boldsymbol{\alpha} \geq 0 \right\}$$
 (dual).

If the primal is feasible, then the primal optimal value equals the dual optimal value. Given a primal optimum \bar{w} and a dual optimum $\bar{\alpha}$, they satisfy

$$\bar{\boldsymbol{w}} = \sum_{i=1}^{n} \bar{\alpha}_i y_i \boldsymbol{x}_i.$$

- ightharpoonup The dual variables α have dimension n, same as examples.
- ▶ We can write the primal optimum as a linear combination of examples.
- ► The dual objective is a concave quadratic.
- We will derive this duality using Lagrange multipliers.

Lagrange multipliers

Move constraints to objective using Lagrange multipliers.

Original problem:
$$\begin{aligned} \min_{\boldsymbol{w} \in \mathbb{R}^d} & \quad \frac{1}{2} \| \boldsymbol{w} \|_2^2 \\ \text{s.t.} & \quad 1 - y_i \boldsymbol{x}_i^\mathsf{T} \boldsymbol{w} \leq 0 \quad \text{for all } i = 1, \dots, n. \end{aligned}$$

- For each constraint $1 y_i \boldsymbol{x}_i^\mathsf{T} \boldsymbol{w} \leq 0$, associate a <u>dual variable (Lagrange multiplier)</u> $\alpha_i \geq 0$.
- Move constraints to objective by adding $\sum_{i=1}^n \alpha_i (1 y_i \boldsymbol{x}_i^\mathsf{T} \boldsymbol{w})$ and maximizing over $\boldsymbol{\alpha} = (\alpha_1, \dots, \alpha_n) \in \mathbb{R}^n$ s.t. $\boldsymbol{\alpha} \geq \boldsymbol{0}$ (i.e., $\alpha_i \geq 0$ for all i).

Lagrange multipliers

Move constraints to objective using Lagrange multipliers.

Original problem:
$$\begin{aligned} \min_{\boldsymbol{w} \in \mathbb{R}^d} & \quad \frac{1}{2} \|\boldsymbol{w}\|_2^2 \\ \text{s.t.} & \quad 1 - y_i \boldsymbol{x}_i^\mathsf{T} \boldsymbol{w} \leq 0 \quad \text{for all } i = 1, \dots, n. \end{aligned}$$

- For each constraint $1 y_i \boldsymbol{x}_i^\mathsf{T} \boldsymbol{w} \leq 0$, associate a <u>dual variable (Lagrange multiplier)</u> $\alpha_i \geq 0$.
- Move constraints to objective by adding $\sum_{i=1}^n \alpha_i (1-y_i \boldsymbol{x}_i^{\mathsf{T}} \boldsymbol{w})$ and maximizing over $\boldsymbol{\alpha} = (\alpha_1, \dots, \alpha_n) \in \mathbb{R}^n$ s.t. $\boldsymbol{\alpha} \geq \mathbf{0}$ (i.e., $\alpha_i \geq 0$ for all i).

Lagrangian $L(w, \alpha)$:

$$L(\boldsymbol{w}, \boldsymbol{\alpha}) := \frac{1}{2} \|\boldsymbol{w}\|_2^2 + \sum_{i=1}^n \alpha_i (1 - y_i \boldsymbol{x}_i^\mathsf{T} \boldsymbol{w}).$$

Maximizing over $oldsymbol{lpha} \geq 0$ recovers primal problem: for any $oldsymbol{w} \in \mathbb{R}^d$,

$$P(\boldsymbol{w}) := \sup_{\boldsymbol{\alpha} \geq 0} L(\boldsymbol{w}, \boldsymbol{\alpha}) = \begin{cases} \frac{1}{2} \|\boldsymbol{w}\|_2^2 & \text{if } \min_i y_i \boldsymbol{x}_i^\mathsf{T} \boldsymbol{w} \geq 1, \\ \infty & \text{otherwise.} \end{cases}$$

Lagrange multipliers

Move constraints to objective using Lagrange multipliers.

Original problem:
$$\begin{aligned} \min_{\boldsymbol{w} \in \mathbb{R}^d} & \quad \frac{1}{2} \|\boldsymbol{w}\|_2^2 \\ \text{s.t.} & \quad 1 - y_i \boldsymbol{x}_i^\mathsf{T} \boldsymbol{w} \leq 0 \quad \text{for all } i = 1, \dots, n. \end{aligned}$$

- For each constraint $1 y_i \boldsymbol{x}_i^\mathsf{T} \boldsymbol{w} \leq 0$, associate a <u>dual variable (Lagrange multiplier)</u> $\alpha_i \geq 0$.
- Move constraints to objective by adding $\sum_{i=1}^n \alpha_i (1-y_i \boldsymbol{x}_i^\mathsf{T} \boldsymbol{w})$ and maximizing over $\boldsymbol{\alpha} = (\alpha_1, \dots, \alpha_n) \in \mathbb{R}^n$ s.t. $\boldsymbol{\alpha} \geq \mathbf{0}$ (i.e., $\alpha_i \geq 0$ for all i).

Lagrangian $L(w, \alpha)$:

$$L(\boldsymbol{w}, \boldsymbol{\alpha}) := \frac{1}{2} \|\boldsymbol{w}\|_2^2 + \sum_{i=1}^n \alpha_i (1 - y_i \boldsymbol{x}_i^\mathsf{T} \boldsymbol{w}).$$

Maximizing over $oldsymbol{lpha} \geq 0$ recovers primal problem: for any $oldsymbol{w} \in \mathbb{R}^d$,

$$P(\boldsymbol{w}) := \sup_{\boldsymbol{\alpha} \geq 0} L(\boldsymbol{w}, \boldsymbol{\alpha}) = \begin{cases} \frac{1}{2} \|\boldsymbol{w}\|_2^2 & \text{if } \min_i y_i \boldsymbol{x}_i^\mathsf{T} \boldsymbol{w} \geq 1, \\ \infty & \text{otherwise.} \end{cases}$$

What if we leave lpha fixed, and minimize w?

Dual problem

Lagrangian

$$L(\boldsymbol{w}, \boldsymbol{\alpha}) := \frac{1}{2} \|\boldsymbol{w}\|_2^2 + \sum_{i=1}^n \alpha_i (1 - y_i \boldsymbol{x}_i^\mathsf{T} \boldsymbol{w}).$$

Primal hard-margin SVM

$$P(\boldsymbol{w}) = \sup_{\boldsymbol{\alpha} \geq \mathbf{0}} L(\boldsymbol{w}, \boldsymbol{\alpha}) = \sup_{\boldsymbol{\alpha} \geq \mathbf{0}} \left[\frac{1}{2} \|\boldsymbol{w}\|_{2}^{2} + \sum_{i=1}^{n} \alpha_{i} (1 - y_{i} \boldsymbol{x}_{i}^{\mathsf{T}} \boldsymbol{w}) \right].$$

Dual problem

Lagrangian

$$L(\boldsymbol{w}, \boldsymbol{\alpha}) := \frac{1}{2} \|\boldsymbol{w}\|_2^2 + \sum_{i=1}^n \alpha_i (1 - y_i \boldsymbol{x}_i^\mathsf{T} \boldsymbol{w}).$$

Primal hard-margin SVM

$$P(\boldsymbol{w}) = \sup_{\boldsymbol{\alpha} \geq \boldsymbol{0}} L(\boldsymbol{w}, \boldsymbol{\alpha}) = \sup_{\boldsymbol{\alpha} \geq \boldsymbol{0}} \left[\frac{1}{2} \|\boldsymbol{w}\|_2^2 + \sum_{i=1}^n \alpha_i (1 - y_i \boldsymbol{x}_i^\mathsf{T} \boldsymbol{w}) \right].$$

Dual problem $D(\alpha) = \min_{w} L(w, \alpha)$:

Dual problem

Lagrangian

$$L(\boldsymbol{w}, \boldsymbol{\alpha}) := \frac{1}{2} \|\boldsymbol{w}\|_2^2 + \sum_{i=1}^n \alpha_i (1 - y_i \boldsymbol{x}_i^\mathsf{T} \boldsymbol{w}).$$

Primal hard-margin SVM

$$P(\boldsymbol{w}) = \sup_{\boldsymbol{\alpha} \geq \boldsymbol{0}} L(\boldsymbol{w}, \boldsymbol{\alpha}) = \sup_{\boldsymbol{\alpha} \geq \boldsymbol{0}} \left[\frac{1}{2} \|\boldsymbol{w}\|_2^2 + \sum_{i=1}^n \alpha_i (1 - y_i \boldsymbol{x}_i^\mathsf{T} \boldsymbol{w}) \right].$$

Dual problem $D(\alpha) = \min_{\boldsymbol{w}} L(\boldsymbol{w}, \alpha)$: given $\alpha \geq 0$, then $\boldsymbol{w} \mapsto L(\boldsymbol{w}, \alpha)$ is a convex quadratic with minimum $\boldsymbol{w} = \sum_{i=1}^n \alpha_i y_i \boldsymbol{x}_i$, giving

$$D(\boldsymbol{\alpha}) = \min_{\boldsymbol{w} \in \mathbb{R}^d} L(\boldsymbol{w}, \boldsymbol{\alpha}) = L\left(\sum_{i=1}^n \alpha_i y_i \boldsymbol{x}_i, \boldsymbol{\alpha}\right) = \sum_{i=1}^n \alpha_i - \frac{1}{2} \left\|\sum_{i=1}^n \alpha_i y_i \boldsymbol{x}_i\right\|_2^2$$
$$= \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i,j=1}^n \alpha_i \alpha_j y_i y_j \boldsymbol{x}_i^{\mathsf{T}} \boldsymbol{x}_j.$$

Summarizing,

$$L(oldsymbol{w},oldsymbol{lpha}) = rac{1}{2}\|oldsymbol{w}\|_2^2 + \sum_{i=1}^n lpha_i (1-y_i oldsymbol{x}_i^{\intercal} oldsymbol{w})$$

$$D(\boldsymbol{\alpha}) = \min_{\boldsymbol{w}} L(\boldsymbol{w}, \boldsymbol{\alpha})$$

 $P(\boldsymbol{w}) = \max_{\boldsymbol{\alpha} \geq 0} L(\boldsymbol{w}, \boldsymbol{\alpha})$

$$L(\boldsymbol{w}, \boldsymbol{\alpha})$$

Summarizing,

$$L(\boldsymbol{w}, \boldsymbol{\alpha}) = \frac{1}{2} \|\boldsymbol{w}\|_{2}^{2} + \sum_{i=1}^{n} \alpha_{i} (1 - y_{i} \boldsymbol{x}_{i}^{\mathsf{T}} \boldsymbol{w})$$
 Lagrangian,
$$P(\boldsymbol{w}) = \max_{\boldsymbol{\alpha} \geq 0} L(\boldsymbol{w}, \boldsymbol{\alpha})$$
 primal problem,
$$D(\boldsymbol{\alpha}) = \min_{\boldsymbol{w}} L(\boldsymbol{w}, \boldsymbol{\alpha})$$
 dual problem.

► For general Lagrangians, have weak duality

$$P(\boldsymbol{w}) \geq D(\boldsymbol{\alpha}),$$

since
$$P(\boldsymbol{w}) = \max_{\boldsymbol{\alpha}' \geq 0} L(\boldsymbol{w}, \boldsymbol{\alpha}') \geq L(\boldsymbol{w}, \boldsymbol{\alpha}) \geq \min_{\boldsymbol{w}'} L(\boldsymbol{w}', \boldsymbol{\alpha}) = D(\boldsymbol{\alpha}).$$

Summarizing,

$$L(\boldsymbol{w}, \boldsymbol{\alpha}) = \frac{1}{2} \|\boldsymbol{w}\|_{2}^{2} + \sum_{i=1}^{n} \alpha_{i} (1 - y_{i} \boldsymbol{x}_{i}^{\mathsf{T}} \boldsymbol{w})$$
 Lagrangian,
$$P(\boldsymbol{w}) = \max_{\boldsymbol{\alpha} \geq 0} L(\boldsymbol{w}, \boldsymbol{\alpha})$$
 primal problem,
$$D(\boldsymbol{\alpha}) = \min_{\boldsymbol{\alpha}} L(\boldsymbol{w}, \boldsymbol{\alpha})$$
 dual problem.

► For general Lagrangians, have weak duality

$$P(\boldsymbol{w}) \geq D(\boldsymbol{\alpha}),$$

since
$$P(\boldsymbol{w}) = \max_{\boldsymbol{\alpha}' > 0} L(\boldsymbol{w}, \boldsymbol{\alpha}') \ge L(\boldsymbol{w}, \boldsymbol{\alpha}) \ge \min_{\boldsymbol{w}'} L(\boldsymbol{w}', \boldsymbol{\alpha}) = D(\boldsymbol{\alpha}).$$

▶ By convexity, have strong duality $\min_{\boldsymbol{w}} P(\boldsymbol{w}) = \max_{\boldsymbol{\alpha} \geq 0} D(\boldsymbol{\alpha})$, and an optimum $\bar{\boldsymbol{\alpha}}$ for D gives an optimum $\bar{\boldsymbol{w}}$ for P via

$$ar{m{w}} = \sum_{i=1}^n ar{lpha}_i y_i m{x}_i = rg \min_{m{w}} L(m{w}, ar{m{lpha}}).$$

Optimal solutions $ar{m{w}}$ and $ar{m{lpha}}=(ar{lpha}_1,\ldots,ar{lpha}_n)$ satisfy

$$\qquad \qquad \mathbf{\bar{w}} = \sum_{i=1}^n \bar{\alpha}_i y_i \mathbf{x}_i = \sum_{i: \bar{\alpha}_i > 0} \bar{\alpha}_i y_i \mathbf{x}_i,$$

$$\qquad \qquad \bar{\alpha}_i > 0 \quad \Rightarrow \quad y_i \boldsymbol{x}_i^{\mathsf{T}} \bar{\boldsymbol{w}} = 1 \text{ for all } i = 1, \dots, n \text{ (}\underline{\text{complementary slackness}}\text{)}.$$

Optimal solutions $\bar{{m w}}$ and $\bar{{m \alpha}}=(\bar{lpha}_1,\dots,\bar{lpha}_n)$ satisfy

$$\qquad \qquad \bar{\alpha}_i > 0 \quad \Rightarrow \quad y_i \boldsymbol{x}_i^{\mathsf{T}} \bar{\boldsymbol{w}} = 1 \text{ for all } i = 1, \dots, n \text{ (complementary slackness)}.$$

The $y_i \boldsymbol{x}_i$ where $\bar{\alpha}_i > 0$ are called support vectors.

Optimal solutions $\bar{\boldsymbol{w}}$ and $\bar{\boldsymbol{\alpha}}=(\bar{\alpha}_1,\ldots,\bar{\alpha}_n)$ satisfy

$$\qquad \qquad \qquad \bar{\alpha}_i > 0 \quad \Rightarrow \quad y_i \boldsymbol{x}_i^{\mathsf{T}} \bar{\boldsymbol{w}} = 1 \text{ for all } i = 1, \dots, n \text{ (complementary slackness)}.$$

The $y_i x_i$ where $\bar{\alpha}_i > 0$ are called support vectors.

Support vector examples satisfy "margin" constraints with equality.

Optimal solutions $\bar{\boldsymbol{w}}$ and $\bar{\boldsymbol{\alpha}}=(\bar{\alpha}_1,\ldots,\bar{\alpha}_n)$ satisfy

$$\qquad \qquad \qquad \bar{\alpha}_i > 0 \quad \Rightarrow \quad y_i \boldsymbol{x}_i^{\mathsf{T}} \bar{\boldsymbol{w}} = 1 \text{ for all } i = 1, \dots, n \text{ (complementary slackness)}.$$

The $y_i x_i$ where $\bar{\alpha}_i > 0$ are called support vectors.

- Support vector examples satisfy "margin" constraints with equality.
- Get same solution if non-support vectors deleted.

Optimal solutions $\bar{\boldsymbol{w}}$ and $\bar{\boldsymbol{\alpha}}=(\bar{lpha}_1,\ldots,\bar{lpha}_n)$ satisfy

$$\qquad \qquad \bar{\alpha}_i > 0 \quad \Rightarrow \quad y_i \boldsymbol{x}_i^{\mathsf{T}} \bar{\boldsymbol{w}} = 1 \text{ for all } i = 1, \dots, n \text{ (complementary slackness)}.$$

The $y_i x_i$ where $\bar{\alpha}_i > 0$ are called support vectors.

- Support vector examples satisfy "margin" constraints with equality.
- Get same solution if non-support vectors deleted.
- Primal optimum is a linear combination of support vectors.

Optimal solutions $\bar{\boldsymbol{w}}$ and $\bar{\boldsymbol{\alpha}}=(\bar{lpha}_1,\ldots,\bar{lpha}_n)$ satisfy

$$\qquad \qquad \bar{\alpha}_i > 0 \quad \Rightarrow \quad y_i \boldsymbol{x}_i^{\mathsf{T}} \bar{\boldsymbol{w}} = 1 \text{ for all } i = 1, \dots, n \text{ (complementary slackness)}.$$

The $y_i x_i$ where $\bar{\alpha}_i > 0$ are called support vectors.

- Support vector examples satisfy "margin" constraints with equality.
- Get same solution if non-support vectors deleted.
- Primal optimum is a linear combination of support vectors.
- Dual solution and support vectors not necessarily unique! (Why not?)

For the optimal (feasible) solutions $ar{w}$ and $ar{lpha}$, we have

$$P(\bar{\boldsymbol{w}}) \ = \ D(\bar{\boldsymbol{\alpha}}) \quad = \quad \min_{\boldsymbol{w} \in \mathbb{R}^d} L(\boldsymbol{w}, \bar{\boldsymbol{\alpha}}) \qquad \text{(by strong duality)}$$

For the optimal (feasible) solutions \bar{w} and \bar{lpha} , we have

$$\begin{array}{lcl} P(\bar{\boldsymbol{w}}) &=& D(\bar{\boldsymbol{\alpha}}) &=& \displaystyle \min_{\boldsymbol{w} \in \mathbb{R}^d} L(\boldsymbol{w}, \bar{\boldsymbol{\alpha}}) & & \text{(by strong duality)} \\ &\leq& L(\bar{\boldsymbol{w}}, \bar{\boldsymbol{\alpha}}) & & & \end{array}$$

For the optimal (feasible) solutions $ar{w}$ and $ar{lpha}$, we have

$$\begin{array}{lcl} P(\bar{\boldsymbol{w}}) \; = \; D(\bar{\boldsymbol{\alpha}}) & = & \displaystyle \min_{\boldsymbol{w} \in \mathbb{R}^d} L(\boldsymbol{w}, \bar{\boldsymbol{\alpha}}) & \text{(by strong duality)} \\ & \leq & L(\bar{\boldsymbol{w}}, \bar{\boldsymbol{\alpha}}) \\ & = & \displaystyle \frac{1}{2} \|\bar{\boldsymbol{w}}\|_2^2 + \sum_{i=1}^n \bar{\alpha}_i (1 - y_i \boldsymbol{x}_i^{\mathsf{T}} \bar{\boldsymbol{w}}) \end{array}$$

For the optimal (feasible) solutions \bar{w} and $\bar{\alpha}$, we have

$$\begin{split} P(\bar{\boldsymbol{w}}) &= D(\bar{\boldsymbol{\alpha}}) &= \min_{\boldsymbol{w} \in \mathbb{R}^d} L(\boldsymbol{w}, \bar{\boldsymbol{\alpha}}) \quad \text{(by strong duality)} \\ &\leq L(\bar{\boldsymbol{w}}, \bar{\boldsymbol{\alpha}}) \\ &= \frac{1}{2} \|\bar{\boldsymbol{w}}\|_2^2 + \sum_{i=1}^n \bar{\alpha}_i (1 - y_i \boldsymbol{x}_i^\mathsf{T} \bar{\boldsymbol{w}}) \\ &\leq \frac{1}{2} \|\bar{\boldsymbol{w}}\|_2^2 \quad \text{(constraints are satisfied)} \\ &= P(\bar{\boldsymbol{w}}). \end{split}$$

For the optimal (feasible) solutions \bar{w} and $\bar{\alpha}$, we have

$$\begin{split} P(\bar{\boldsymbol{w}}) &= D(\bar{\boldsymbol{\alpha}}) &= \min_{\boldsymbol{w} \in \mathbb{R}^d} L(\boldsymbol{w}, \bar{\boldsymbol{\alpha}}) \quad \text{(by strong duality)} \\ &\leq L(\bar{\boldsymbol{w}}, \bar{\boldsymbol{\alpha}}) \\ &= \frac{1}{2} \|\bar{\boldsymbol{w}}\|_2^2 + \sum_{i=1}^n \bar{\alpha}_i (1 - y_i \boldsymbol{x}_i^\mathsf{T} \bar{\boldsymbol{w}}) \\ &\leq \frac{1}{2} \|\bar{\boldsymbol{w}}\|_2^2 \quad \text{(constraints are satisfied)} \\ &= P(\bar{\boldsymbol{w}}). \end{split}$$

Therefore, every term in sum $\sum_{i=1}^{n} \bar{\alpha}_i (1-y_i m{x}_i^{\mathsf{T}} \bar{m{w}})$ must be zero:

$$\bar{\alpha}_i(1 - y_i \boldsymbol{x}_i^\mathsf{T} \bar{\boldsymbol{w}}) = 0 \quad \text{for all } i = 1, \dots, n.$$

For the optimal (feasible) solutions \bar{w} and $\bar{\alpha}$, we have

$$\begin{split} P(\bar{\boldsymbol{w}}) &= D(\bar{\boldsymbol{\alpha}}) &= \min_{\boldsymbol{w} \in \mathbb{R}^d} L(\boldsymbol{w}, \bar{\boldsymbol{\alpha}}) \quad \text{(by strong duality)} \\ &\leq L(\bar{\boldsymbol{w}}, \bar{\boldsymbol{\alpha}}) \\ &= \frac{1}{2} \|\bar{\boldsymbol{w}}\|_2^2 + \sum_{i=1}^n \bar{\alpha}_i (1 - y_i \boldsymbol{x}_i^\mathsf{T} \bar{\boldsymbol{w}}) \\ &\leq \frac{1}{2} \|\bar{\boldsymbol{w}}\|_2^2 \quad \text{(constraints are satisfied)} \\ &= P(\bar{\boldsymbol{w}}). \end{split}$$

Therefore, every term in sum $\sum_{i=1}^{n} \bar{\alpha}_i (1-y_i m{x}_i^{\mathsf{T}} \bar{m{w}})$ must be zero:

$$\bar{\alpha}_i(1 - y_i \boldsymbol{x}_i^{\mathsf{T}} \bar{\boldsymbol{w}}) = 0$$
 for all $i = 1, \dots, n$.

If $\bar{\alpha}_i > 0$, then must have $1 - y_i \boldsymbol{x}_i^{\mathsf{T}} \bar{\boldsymbol{w}} = 0$. (Not iff!)

SVM (hard-margin) duality summary

Lagrangian

$$L(\boldsymbol{w}, \boldsymbol{\alpha}) = \frac{1}{2} \|\boldsymbol{w}\|_2^2 + \sum_{i=1}^n \alpha_i (1 - y_i \boldsymbol{x}_i^\mathsf{T} \boldsymbol{w}).$$

Primal maximum margin problem was

$$P(\boldsymbol{w}) = \sup_{\boldsymbol{lpha} \geq \mathbf{0}} L(\boldsymbol{w}, \boldsymbol{lpha}) = \sup_{\boldsymbol{lpha} \geq \mathbf{0}} \left[\frac{1}{2} \| \boldsymbol{w} \|_2^2 + \sum_{i=1}^n lpha_i (1 - y_i \boldsymbol{x}_i^\mathsf{T} \boldsymbol{w}) \right].$$

Dual problem

$$D(oldsymbol{lpha}) = \min_{oldsymbol{w} \in \mathbb{R}^d} L(oldsymbol{w}, oldsymbol{lpha}) = \sum_{i=1}^n lpha_i - rac{1}{2} \left\| \sum_{i=1}^n lpha_i y_i oldsymbol{x}_i
ight\|_2^2.$$

Given dual optimum \bar{lpha} ,

- Corresponding primal optimum $\bar{\boldsymbol{w}} = \sum_{i=1}^{n} \alpha_i y_i \boldsymbol{x}_i$;
- Strong duality $P(\bar{\boldsymbol{w}}) = D(\bar{\boldsymbol{\alpha}})$;
- $\bar{\alpha}_i > 0$ implies $y_i x_i^{\mathsf{T}} \bar{w} = 1$, and these $y_i x_i$ are support vectors.

SVM soft-margin dual

Similarly,

$$L(\boldsymbol{w}, \boldsymbol{\xi}, \boldsymbol{\alpha}) = \frac{1}{2} \|\boldsymbol{w}\|_{2}^{2} + C \sum_{i=1}^{n} \xi_{i} + \sum_{i=1}^{n} \alpha_{i} (1 - \xi_{i} - y_{i} \boldsymbol{x}_{i}^{\mathsf{T}} \boldsymbol{w}) \qquad \text{(Lagrangian)},$$

$$P(\boldsymbol{w}, \boldsymbol{\xi}) = \sup_{\boldsymbol{\alpha} \geq 0} L(\boldsymbol{w}, \boldsymbol{\xi}, \boldsymbol{\alpha}) \qquad \text{(Primal)},$$

$$= \begin{cases} \frac{1}{2} \|\boldsymbol{w}\|_{2}^{2} + C \sum_{i=1}^{n} \xi_{i} & \forall i \cdot 1 - \xi_{i} - y_{i} \boldsymbol{x}_{i}^{\mathsf{T}} \boldsymbol{w} \leq 0, \\ \infty & \text{otherwise}, \end{cases}$$

$$D(\boldsymbol{\alpha}) = \min_{\boldsymbol{w} \in \mathbb{R}^{d}, \boldsymbol{\xi} \in \mathbb{R}^{n}_{\geq 0}} L(\boldsymbol{w}, \boldsymbol{\xi}, \boldsymbol{\alpha}) \qquad \text{(Dual)},$$

$$= \max_{\substack{\boldsymbol{\alpha} \in \mathbb{R}^{n} \\ 0 \leq \alpha_{i} \leq C}} \left[\sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \left\| \sum_{i=1}^{n} \alpha_{i} y_{i} \boldsymbol{x}_{i} \right\|^{2} \right].$$

SVM soft-margin dual

Similarly, $L(\boldsymbol{w}, \boldsymbol{\xi}, \boldsymbol{\alpha}) = \frac{1}{2} \|\boldsymbol{w}\|_2^2 + C \sum_{i=1}^n \xi_i + \sum_{i=1}^n \alpha_i (1 - \xi_i - y_i \boldsymbol{x}_i^\mathsf{T} \boldsymbol{w})$

$$P(\boldsymbol{w}, \boldsymbol{\xi}) = \sup_{\boldsymbol{\alpha} \ge 0} L(\boldsymbol{w}, \boldsymbol{\xi}, \boldsymbol{\alpha})$$

 $D(\boldsymbol{\alpha}) = \min_{\boldsymbol{w} \in \mathbb{R}^d, \boldsymbol{\xi} \in \mathbb{R}^n} L(\boldsymbol{w}, \boldsymbol{\xi}, \boldsymbol{\alpha})$

$$= \begin{cases} \frac{1}{2} \|\boldsymbol{w}\|_{2}^{2} + C \sum_{i=1}^{n} \xi_{i} & \forall i \cdot 1 - \xi_{i} - y_{i} \boldsymbol{x}_{i}^{\mathsf{T}} \boldsymbol{w} \leq 0, \\ \infty & \text{otherwise,} \end{cases}$$

(Lagrangian),

(Primal),

(Dual),

$$= \max_{\substack{\boldsymbol{\alpha} \in \mathbb{R}^n \\ 0 \le \alpha_i \le C}} \left| \sum_{i=1}^n \alpha_i - \frac{1}{2} \left\| \sum_{i=1}^n \alpha_i y_i \boldsymbol{x}_i \right\|^2 \right].$$

- Remarks.

 - ▶ Dual solution $\bar{\alpha}$ still gives primal solution $\bar{w} = \sum_{i=1}^{n} \bar{\alpha}_i y_i x_i$.

this introduces a constraint $\sum_{i=1}^{n} y_i \alpha_i = 0$ in dual.

- ightharpoonup Can take $C \to \infty$ to recover hard-margin case.
- Dual is still a constrained concave quadratic (used in many solvers).
- Some presentations include bias in primal $(x_i^T w + b)$;

Nonlinear SVM: feature mapping annoying in the primal?

SVM hard-margin primal, with a feature mapping $\phi: \mathbb{R}^d \to \mathbb{R}^p$:

$$\min \left\{ \frac{1}{2} \| oldsymbol{w} \|^2 \ : \ oldsymbol{w} \in \mathbb{R}^p, orall i. \phi(oldsymbol{x}_i)^\mathsf{T} oldsymbol{w} \geq 1
ight\}.$$

Now the search space has p dimensions; potentially $p\gg d.$

Can we do better?

Feature mapping in the dual

SVM hard-margin dual, with a feature mapping $\phi: \mathbb{R}^d \to \mathbb{R}^p$:

$$\max_{\alpha_1,\alpha_2,...,\alpha_n \geq 0} \qquad \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i,j=1}^n \alpha_i \alpha_j y_i y_j \phi(\boldsymbol{x}_i)^\mathsf{T} \phi(\boldsymbol{x}_j).$$

Given dual optimum $\bar{\alpha}$, since $\bar{w} = \sum_{i=1}^{n} \bar{\alpha}_i y_i \phi(x_i)$, we can predict on future x with

$$oldsymbol{x} \mapsto oldsymbol{\phi}(oldsymbol{x})^{\mathsf{T}} oldsymbol{ar{w}} = \sum_{i=1}^n ar{lpha}_i y_i oldsymbol{\phi}(oldsymbol{x})^{\mathsf{T}} oldsymbol{\phi}(oldsymbol{x}_i).$$

Feature mapping in the dual

SVM hard-margin dual, with a feature mapping $\phi: \mathbb{R}^d \to \mathbb{R}^p$:

$$\max_{\alpha_1,\alpha_2,...,\alpha_n \geq 0} \qquad \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i,j=1}^n \alpha_i \alpha_j y_i y_j \phi(\boldsymbol{x}_i)^\mathsf{T} \phi(\boldsymbol{x}_j).$$

Given dual optimum $\bar{\alpha}$, since $\bar{w} = \sum_{i=1}^n \bar{\alpha}_i y_i \phi(x_i)$, we can predict on future x with

$$oldsymbol{x} \mapsto oldsymbol{\phi}(oldsymbol{x})^{\mathsf{T}}ar{oldsymbol{w}} = \sum_{i=1}^n ar{lpha}_i y_i oldsymbol{\phi}(oldsymbol{x})^{\mathsf{T}} oldsymbol{\phi}(oldsymbol{x}_i).$$

- ▶ Dual form never needs $\phi(x) \in \mathbb{R}^p$, only $\phi(x)^{\mathsf{T}} \phi(x_i) \in \mathbb{R}$.
- ► Kernel trick: replace every $\phi(\boldsymbol{x})^{\mathsf{T}}\phi(\boldsymbol{x}')$ with kernel evaluation $k(\boldsymbol{x}, \boldsymbol{x}')$. Sometimes $k(\cdot, \cdot)$ is much cheaper than $\phi(\boldsymbol{x})^{\mathsf{T}}\phi(\boldsymbol{x}')$.
- ▶ This idea started with SVM, but appears in many other places.
- **Downside:** implementations usually store Gram matrix $G \in \mathbb{R}^{n \times n}$ where $G_{ij} := k(\boldsymbol{x}_i, \boldsymbol{x}_j)$.

Kernel example: affine features

Affine features:
$$\phi: \mathbb{R}^d \to \mathbb{R}^{1+d}$$
, where

$$\phi(\boldsymbol{x}) = (1, x_1, \dots, x_d).$$

$$\phi(\boldsymbol{x})^{\mathsf{T}}\phi(\boldsymbol{x}') = 1 + \boldsymbol{x}^{\mathsf{T}}\boldsymbol{x}'.$$

Kernel example: quadratic features

Consider re-normalized quadratic features $\phi \colon \mathbb{R}^d \to \mathbb{R}^{1+2d+\binom{d}{2}}$, where

$$\phi(\mathbf{x}) = (1, \sqrt{2}x_1, \dots, \sqrt{2}x_d, x_1^2, \dots, x_d^2,$$

$$\sqrt{2}x_1x_2, \ldots, \sqrt{2}x_1x_d, \ldots, \sqrt{2}x_{d-1}x_d).$$

Just writing this down takes time $\mathcal{O}(d^2)$. Meanwhile,

$$\phi(\boldsymbol{x})^{\mathsf{T}}\phi(\boldsymbol{x}') = (1 + \boldsymbol{x}^{\mathsf{T}}\boldsymbol{x}')^{2},$$

time $\mathcal{O}(d)$.

Kernel example: quadratic features

Consider re-normalized quadratic features

 $\phi \colon \mathbb{R}^d o \mathbb{R}^{1+2d+\binom{d}{2}}$, where

$$\phi(\mathbf{x}) = (1, \sqrt{2}x_1, \dots, \sqrt{2}x_d, x_1^2, \dots, x_d^2,$$

$$\sqrt{2}x_1x_2, \ldots, \sqrt{2}x_1x_d, \ldots, \sqrt{2}x_{d-1}x_d\Big).$$

Just writing this down takes time $\mathcal{O}(d^2)$. Meanwhile,

$$\phi(\boldsymbol{x})^{\mathsf{T}}\phi(\boldsymbol{x}') = (1 + \boldsymbol{x}^{\mathsf{T}}\boldsymbol{x}')^{2},$$

 $\mathsf{time}\; \mathcal{O}(d).$

Tweaks:

- ▶ What if we change exponent "2"?
 - ▶ What if we replace additive "1" with 0?

RBF kernel

For any $\sigma > 0$, there is an infinite feature expansion $\phi \colon \mathbb{R}^d \to \mathbb{R}^\infty$ such that

$$oldsymbol{\phi}(oldsymbol{x})^{\mathsf{T}}oldsymbol{\phi}(oldsymbol{x}') = \exp\left(-rac{\left\|oldsymbol{x}-oldsymbol{x}'
ight\|_2^2}{2\sigma^2}
ight),$$

which can be computed in O(d) time.

This is called a Gaussian kernel or RBF kernel. It has some similarities to nearest neighbor methods (later lecture).

 ϕ maps to an infinite-dimensional space, but there's no reason to know that.

Defining kernels without ϕ

A (positive definite) kernel function $k \colon \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is a symmetric function so that for any n and any data examples $(\boldsymbol{x}_i)_{i=1}^n$, the corresponding Gram matrix $G \in \mathbb{R}^{n \times n}$ with $G_{ij} := k(\boldsymbol{x}_i, \boldsymbol{x}_j)$ is positive semi-definite.

Defining kernels without ϕ

A (positive definite) kernel function $k \colon \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is a symmetric function so that for any n and any data examples $(\boldsymbol{x}_i)_{i=1}^n$, the corresponding Gram matrix $G \in \mathbb{R}^{n \times n}$ with $G_{ij} := k(\boldsymbol{x}_i, \boldsymbol{x}_j)$ is positive semi-definite.

- There is a ton of theory about this formalism; e.g., keywords RKHS, representer theorem, Mercer's theorem.
- Given any such k, there always exists a corresponding ϕ .
- This definition ensures the SVM dual is still concave.

Summary for SVM

- ► Hard-margin SVM.
- ► Soft-margin SVM.
- SVM duality.
- ► Nonlinear SVM: kernels

Equivalence of two hard-margin formulations.

Proof. First note that both have unique solutions (when feasible). For the first formulation, suppose we have two solutions u and u', and define another vector u'' := (u+u')/2. Then u'' achieves the same margin value as u and u', but if $u \neq u'$, then $\|u''\| < 1$, which means $u''/\|u''\|$ achieves a larger margin value than the purported optima u and u', a contradiction. For the second formulation, it suffices to note that the objective is strictly convex.

Now consider solution ${\boldsymbol u}$ to the first, with margin γ . Then ${\boldsymbol v}:={\boldsymbol u}/\gamma$ is feasible for second, with optimal value $1/(2\gamma^2)$. So the optimal value is at most this; if it is exactly the optimal value, we are done, otherwise suppose the optimum $\bar{{\boldsymbol v}}$ has $\|\bar{{\boldsymbol v}}\|^2/2=1/(2\rho^2)<1/(2\gamma^2)$. Then $\bar{{\boldsymbol u}}:=\rho\bar{{\boldsymbol v}}$ is a unit vector, and moreover has $\min_i y_i {\boldsymbol x}_i^{\mathsf T} \bar{{\boldsymbol u}}=\rho>\gamma$, a contradiction since this is better than the supposed optimum ${\boldsymbol u}$.

28 / 36

Soft-margin dual derivation

Let's derive the final dual form:

$$L(\boldsymbol{w}, \boldsymbol{\xi}, \boldsymbol{\alpha}) = \frac{1}{2} \|\boldsymbol{w}\|_2^2 + C \sum_{i=1}^n \xi_i + \sum_{i=1}^n \alpha_i (1 - \xi_i - y_i \boldsymbol{x}_i^\mathsf{T} \boldsymbol{w})$$

$$D(\boldsymbol{\alpha}) = \min_{\boldsymbol{w} \in \mathbb{R}^d, \boldsymbol{\xi} \in \mathbb{R}^n_{\geq 0}} L(\boldsymbol{w}, \boldsymbol{\xi}, \boldsymbol{\alpha}) = \max_{\substack{\boldsymbol{\alpha} \in \mathbb{R}^n \\ 0 \leq \alpha_i \leq C}} \left[\sum_{i=1}^n \alpha_i - \frac{1}{2} \left\| \sum_{i=1}^n \alpha_i y_i \boldsymbol{x}_i \right\|^2 \right].$$

Given $\pmb{\alpha}$ and $\pmb{\xi}$, the minimizing \pmb{w} is still $\pmb{w} = \sum_{i=1}^n \alpha_i y_i \pmb{x}_i$; plugging in,

$$D(\boldsymbol{\alpha}) = \min_{\boldsymbol{\xi} \in \mathbb{R}^n_{\geq 0}} L\left(\sum_{i=1}^n \alpha_i y_i \boldsymbol{x}_i, \boldsymbol{\xi}, \boldsymbol{\alpha}\right) = \sum_{i=1}^n \alpha_i - \frac{1}{2} \left\|\sum_{i=1}^n \alpha_i y_i \boldsymbol{x}_i\right\|^2 + \sum_{i=1}^n \xi_i (C - \alpha_i).$$

The goal is to maximize D; if $\alpha_i > C$, then $\xi_i \uparrow \infty$ gives $D(\alpha) = -\infty$. Otherwise, minimized at $\xi_i = 0$. Therefore the dual problem is

$$\max_{\substack{\boldsymbol{\alpha} \in \mathbb{R}^n \\ 0 \le \alpha_i \le C}} \left[\sum_{i=1}^n \alpha_i - \frac{1}{2} \left\| \sum_{i=1}^n \alpha_i y_i \boldsymbol{x}_i \right\|^2 \right].$$

First consider d=1, meaning $\phi\colon \mathbb{R} \to \mathbb{R}^{\infty}$.

First consider d = 1, meaning $\phi \colon \mathbb{R} \to \mathbb{R}^{\infty}$.

What
$$\phi$$
 has $\phi(x)\phi(y) = e^{-(x-y)^2/(2\sigma^2)}$?

Reverse engineer using Taylor expansion:

$$e^{-(x-y)^2/(2\sigma^2)} = e^{-x^2/(2\sigma^2)} \cdot e^{-y^2/(2\sigma^2)} \cdot e^{xy/\sigma^2}$$

First consider d = 1, meaning $\phi \colon \mathbb{R} \to \mathbb{R}^{\infty}$.

What
$$\phi$$
 has $\phi(x)\phi(y) = e^{-(x-y)^2/(2\sigma^2)}$?

Reverse engineer using Taylor expansion:

$$\begin{array}{lcl} e^{-(x-y)^2/(2\sigma^2)} & = & e^{-x^2/(2\sigma^2)} \cdot e^{-y^2/(2\sigma^2)} \cdot e^{xy/\sigma^2} \\ & = & e^{-x^2/(2\sigma^2)} \cdot e^{-y^2/(2\sigma^2)} \cdot \sum_{k=0}^{\infty} \frac{1}{k!} \left(\frac{xy}{\sigma^2}\right)^k \end{array}$$

First consider d = 1, meaning $\phi \colon \mathbb{R} \to \mathbb{R}^{\infty}$.

What
$$\phi$$
 has $\phi(x)\phi(y) = e^{-(x-y)^2/(2\sigma^2)}$?

Reverse engineer using Taylor expansion:

$$\begin{array}{lcl} e^{-(x-y)^2/(2\sigma^2)} & = & e^{-x^2/(2\sigma^2)} \cdot e^{-y^2/(2\sigma^2)} \cdot e^{xy/\sigma^2} \\ & = & e^{-x^2/(2\sigma^2)} \cdot e^{-y^2/(2\sigma^2)} \cdot \sum_{k=0}^{\infty} \frac{1}{k!} \left(\frac{xy}{\sigma^2}\right)^k \end{array}$$

So let

$$\phi(x) := e^{-x^2/(2\sigma^2)} \left(1, \frac{x}{\sigma}, \frac{1}{\sqrt{2!}} \left(\frac{x}{\sigma} \right)^2, \frac{1}{\sqrt{3!}} \left(\frac{x}{\sigma} \right)^3, \dots \right).$$

Gaussian kernel feature expansion

First consider d = 1, meaning $\phi \colon \mathbb{R} \to \mathbb{R}^{\infty}$.

What
$$\phi$$
 has $\phi(x)\phi(y) = e^{-(x-y)^2/(2\sigma^2)}$?

Reverse engineer using Taylor expansion:

$$e^{-(x-y)^2/(2\sigma^2)} = e^{-x^2/(2\sigma^2)} \cdot e^{-y^2/(2\sigma^2)} \cdot e^{xy/\sigma^2}$$
$$= e^{-x^2/(2\sigma^2)} \cdot e^{-y^2/(2\sigma^2)} \cdot \sum_{k=0}^{\infty} \frac{1}{k!} \left(\frac{xy}{\sigma^2}\right)^k$$

So let

$$\phi(x) := e^{-x^2/(2\sigma^2)} \left(1, \frac{x}{\sigma}, \frac{1}{\sqrt{2!}} \left(\frac{x}{\sigma} \right)^2, \frac{1}{\sqrt{3!}} \left(\frac{x}{\sigma} \right)^3, \dots \right).$$

How to handle d>1?

Gaussian kernel feature expansion

First consider d = 1, meaning $\phi \colon \mathbb{R} \to \mathbb{R}^{\infty}$.

What
$$\phi$$
 has $\phi(x)\phi(y) = e^{-(x-y)^2/(2\sigma^2)}$?

Reverse engineer using Taylor expansion:

$$e^{-(x-y)^2/(2\sigma^2)} = e^{-x^2/(2\sigma^2)} \cdot e^{-y^2/(2\sigma^2)} \cdot e^{xy/\sigma^2}$$
$$= e^{-x^2/(2\sigma^2)} \cdot e^{-y^2/(2\sigma^2)} \cdot \sum_{k=0}^{\infty} \frac{1}{k!} \left(\frac{xy}{\sigma^2}\right)^k$$

So let

$$\phi(x) := e^{-x^2/(2\sigma^2)} \left(1, \frac{x}{\sigma}, \frac{1}{\sqrt{2!}} \left(\frac{x}{\sigma} \right)^2, \frac{1}{\sqrt{3!}} \left(\frac{x}{\sigma} \right)^3, \dots \right).$$

How to handle d > 1?

$$\begin{array}{lcl} e^{-\|\boldsymbol{x}-\boldsymbol{y}\|^2/(2\sigma^2)} & = & e^{-\|\boldsymbol{x}\|^2/(2\sigma^2)} \cdot e^{-\|\boldsymbol{y}\|^2/(2\sigma^2)} \cdot e^{\boldsymbol{x}^{\mathsf{T}}\boldsymbol{y}/\sigma^2} \\ & = & e^{-\|\boldsymbol{x}\|^2/(2\sigma^2)} \cdot e^{-\|\boldsymbol{y}\|^2/(2\sigma^2)} \cdot \sum_{k=0}^{\infty} \frac{1}{k!} \left(\frac{\boldsymbol{x}^{\mathsf{T}}\boldsymbol{y}}{\sigma^2}\right)^k. \end{array}$$

Kernel example: products of all subsets of coordinates

Consider $\phi \colon \mathbb{R}^d \to \mathbb{R}^{2^d}$, where

$$\phi(\boldsymbol{x}) = \left(\prod_{i \in S} x_i\right)_{S \subseteq \{1, 2, \dots, d\}}$$

Time $\mathcal{O}(2^d)$ just to write down.

Kernel evaluation takes time $\mathcal{O}(d)$:

$$\phi(\boldsymbol{x})^{\mathsf{T}}\phi(\boldsymbol{x}') = \prod_{i=1}^{d} (1 + x_i x_i').$$

Other kernels Suppose k_1 and k_2 are positive definite kernel functions. 32 / 36

Suppose k_1 and k_2 are positive definite kernel functions.

1. $k(x,y) := k_1(x,y) + k_2(x,y)$ define a positive definite kernel?

32 / 36

Suppose k_1 and k_2 are positive definite kernel functions.

- 1. $k(x,y) := k_1(x,y) + k_2(x,y)$ define a positive definite kernel?
- 2. $k(x,y) := c \cdot k_1(x,y)$ (for $c \ge 0$) define a positive definite kernel?

Suppose k_1 and k_2 are positive definite kernel functions.

- 1. $k(x,y) := k_1(x,y) + k_2(x,y)$ define a positive definite kernel?
- 2. $k(x,y) := c \cdot k_1(x,y)$ (for $c \ge 0$) define a positive definite kernel?
- 3. $k(x,y) := k_1(x,y) \cdot k_2(x,y)$ define a positive definite kernel?

Suppose k_1 and k_2 are positive definite kernel functions.

- 1. $k(x,y) := k_1(x,y) + k_2(x,y)$ define a positive definite kernel?
- 2. $k(x,y) := c \cdot k_1(x,y)$ (for $c \ge 0$) define a positive definite kernel?
- 3. $k(x,y) := k_1(x,y) \cdot k_2(x,y)$ define a positive definite kernel?

Another approach: random features $k(\boldsymbol{x}, \boldsymbol{x}') = \mathbb{E}_{\boldsymbol{w}} F(\boldsymbol{w}, \boldsymbol{x}')^{\mathsf{T}} F(\boldsymbol{w}, \boldsymbol{x}')$ for some F; we will revisit this with deep networks and the neural tangent kernel (NTK).

Kernel ridge regression

Kernel ridge regression:

$$\min_{\boldsymbol{w}} \frac{1}{2n} \|\boldsymbol{X}\boldsymbol{w} - \boldsymbol{y}\|^2 + \frac{\lambda}{2} \|\boldsymbol{w}\|^2.$$

Solution:

$$\hat{\boldsymbol{w}} = (\boldsymbol{X}^{\mathsf{T}} \boldsymbol{X} + \lambda n \boldsymbol{I})^{-1} \boldsymbol{X}^{\mathsf{T}} \boldsymbol{y}.$$

Linear algebra fact:

$$\boldsymbol{X}^{\mathsf{T}}(\boldsymbol{X}\boldsymbol{X}^{\mathsf{T}} + \lambda n\boldsymbol{I})^{-1}\boldsymbol{y}.$$

Therefore predict with

$$oldsymbol{x} \mapsto oldsymbol{x}^{\mathsf{T}} \hat{oldsymbol{w}} = (oldsymbol{X} oldsymbol{x})^{\mathsf{T}} (oldsymbol{X} oldsymbol{X}^{\mathsf{T}} + \lambda n oldsymbol{I})^{-1} oldsymbol{y} = \sum_{i=1}^n (oldsymbol{x}_i^{\mathsf{T}} oldsymbol{x})^{\mathsf{T}} \left[(oldsymbol{X} oldsymbol{X}^{\mathsf{T}} + \lambda n oldsymbol{I})^{-1} oldsymbol{y}
ight]_i.$$

Kernel approach:

- ▶ Compute $\alpha := (G + \lambda n I)^{-1}$, where $G \in \mathbb{R}^n$ is the Gram matrix: $G_{ij} = k(x_i, x_j)$.
- ► Predict with $x \mapsto \sum_{i=1}^n \alpha_i x_i^\mathsf{T} x$.

${\sf Multiclass}\ {\sf SVM}$

There are a few ways; one is to use one-against-all as in lecture.

Many researchers have proposed various multiclass SVM methods, but some of them can be shown to fail in trivial cases.

New two-forms explanation idea INCOMPLETE

- All that matters is the direction; so for each direction which is a strict separator (meaning $\min_i y_i \mathbf{x}_i^{\mathsf{T}} v > 0$), we will pick one vector, and then compare the various directions. The final step is to write this as a convex (or concave) program.
- First approach: in each strict separation direction, normalize it so that $\|v\|=1$. If $\|v\|=1$, then the margin on the training set is $\min_i y_i w_i^{\mathsf{T}} v$. We want the maximum amongst all these directions, which is $\max_i \|v\|=1, \min_i y_i w_i^{\mathsf{T}} v>0$ $\min_i y_i w_i^{\mathsf{T}} v$. Firstly we can drop the strict separation constraint since the objective enforces it. The first constraint however is not a convex set, so we don't have a concave program yet, but note that we have the same solutions if we instead write $\max_i \|v\| \le 1 \min_i y_i w_i^{\mathsf{T}} v$. To see this, note that a vector u with $\|u\| < 1$ can not be a maximizer, since $u/\|u\|$ achieves a $1/\|u\| > 1$ factor larger marginm thus the solution to both problems lies on the boundary.
- Second approach: in each strict separation direction, normalize it so that $\min_i y_i \mathbf{w}_i^{\mathsf{T}} \mathbf{v} = 1$. Since the distance to the separator is $y \mathbf{w}^{\mathsf{T}} \mathbf{v} / \| \mathbf{v} \|$, then for a minimizing example k with $y_k x_k^{\mathsf{T}} \mathbf{v} = 1$, it follows that the margin is $y_k x_k^{\mathsf{T}} \mathbf{v} / \| \mathbf{v} \| = 1 / \| \mathbf{v} \|$, and therefore the overall margin after this normalization is $1 / \| \mathbf{v} \|$. We want to maximize the margin, so we could maximize $1 / \| \mathbf{v} \|$, but this is a little awkward for optimization algorithms, so we instead minimize the reciprocal, $\| \mathbf{v} \|$. This too is a little awkward, so we square it, which preserves the optima, and minimize $\| \mathbf{v} \|^2 / 2$.
- Lastly, we can't write the program as $\min\{\|\boldsymbol{v}\|^2/2: \forall i, y_i \boldsymbol{x}_i^{\mathsf{T}} \boldsymbol{v} > 0\}$, because the infimal value is 0, which is not attained despite the set being bounded, so this is not a well-posed formulation for the maximum margin direction.

Supplemental reading ► Shalev-Shwartz/Ben-David: chapter 15. ► Murphy: chapter 14. 36 / 36