<u>Likelihood Ratio Test,</u> <u>Most Powerful Test,</u> <u>Uniformly Most Powerful Test</u>

A. We first review the general definition of a hypothesis test.

A hypothesis test is like a lawsuit:

 H_0 : the defendant is innocent **versus**

 H_a : the defendant is guilty

		The truth	
		H_0 : the defendant	H_a the defendant
		is innocent	is guilty
Jury's Decision	H_0	Right decision	Type II error
	H_a	Type I error	Right decision

The significance level and the power of the test.

$$\alpha = P(\text{Type I error}) = P(\text{Reject } H_0 | H_0) \leftarrow \text{significance level}$$

$$\beta = P(\text{Type II error}) = P(\underline{\text{Fail to}} \text{ reject } H_0 | H_a)$$

Power = 1-
$$\beta$$
 = P(Reject $H_0 \mid H_a$)

B. Now we derive the likelihood ratio test for the usual twosided hypotheses for a population mean. (It has a simple null hypothesis and a composite alternative hypothesis.)

Example 1. Please derive the likelihood ratio test for H_0 : $\mu = \mu_0$ versus H_0 : $\mu \neq \mu_0$, when the population is normal and population variance σ^2 is known.

Solution:

For a 2-sided test of H_0 : $\mu = \mu_0$ versus H_a : $\mu \neq \mu_0$, when the population is normal and population variance σ^2 is known, we have:

$$\varpi = \{\mu : \mu = \mu_0\} \text{ and } \Omega = \{\mu : -\infty < \mu < \infty\}$$

The likelihoods are:

$$L(\varpi) = L(\mu_0)$$

$$= \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x_i - \mu_0)^2}{2\sigma^2}\right) = \left(\frac{1}{2\pi\sigma^2}\right)^{\frac{n}{2}} \exp\left[-\frac{1}{2\sigma^2}\sum_{i=1}^{n} (x_i - \mu_0)^2\right]$$

There is no free parameter in $L(\varpi)$, thus $L(\hat{\varpi}) = L(\varpi)$.

$$L(\Omega) = L(\mu)$$

$$= \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^{2}}} \exp\left(-\frac{(x_{i} - \mu)^{2}}{2\sigma^{2}}\right) = \left(\frac{1}{2\pi\sigma^{2}}\right)^{\frac{n}{2}} \exp\left[-\frac{1}{2\sigma^{2}}\sum_{i=1}^{n}(x_{i} - \mu)^{2}\right]$$

There is only one free parameter μ in $L(\Omega)$. Now we shall find the value of μ that maximizes the log likelihood

$$\ln L(\Omega) = -\frac{n}{2} \ln(2\pi\sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2.$$
By solving $\frac{d \ln L(\Omega)}{d\mu} = \frac{1}{\sigma^2} \sum_{i=1}^n (x_i - \mu) = 0$, we have $\hat{\mu} = \overline{x}$

It is easy to verify that $\hat{\mu} = \overline{x}$ indeed maximizes the loglikelihood, and thus the likelihood function.

Therefore the likelihood ratio is:

$$\lambda = \frac{L(\hat{\sigma})}{L(\hat{\Omega})} = \frac{L(\mu_0)}{\max_{\mu} L(\mu)}$$

$$= \frac{L(\mu_0)}{L(\hat{\mu})} = \frac{\left(\frac{1}{2\pi\sigma^2}\right)^{\frac{n}{2}} \exp\left[-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu_0)^2\right]}{\left(\frac{1}{2\pi\sigma^2}\right)^{\frac{n}{2}} \exp\left[-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \bar{x})^2\right]}$$

$$= \exp\left\{-\frac{1}{2\sigma^2} \sum_{i=1}^n \left[(x_i - \mu_0)^2 - (x_i - \bar{x})^2\right]\right\}$$

$$= \exp\left[-\frac{1}{2} \left(\frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}}\right)^2\right] = \exp\left[-\frac{1}{2} (z_0)^2\right]$$

Therefore, the likelihood ratio test that will reject H_0 when $\lambda \leq \lambda^*$ is equivalent to the z-test that will reject H_0 when $|Z_0| \geq c$, where c can be determined by the significance level α as $c = z_{\alpha/2}$.

C. MP Test, UMP Test, and the Neyman-Pearson Lemma

Now considering some one-sided tests where we have:

$$H_0: \mu = \mu_0 \text{ versus } H_a: \mu > \mu_0$$

or,
$$H_0: \mu \leq \mu_0$$
 versus $H_a: \mu > \mu_0$

Given the composite null hypothesis for the second one-sided test, we need to expand our definition of the significance level as follows:

For
$$H_0$$
: $\theta \in \omega_0$ versus H_a : $\theta \in \omega_1$

Let the random sample be denoted by $X = (X_1, X_2, \dots, X_n)'$. Suppose the rejection region is C such that: (*note: the rejection region can be defined in terms of the sample points directly instead of the test statistic values)

We reject
$$H_0$$
 if $X \in C$
We fail to reject H_0 if $X \in C^C$

Definition: The **size** or significance level of the test is defined as:

$$\alpha = \max_{\theta \in \omega_0} P(X \in C) = \max_{\theta} P_{\theta}(Reject H_0 | \theta \in \omega_0)$$

Definition: The power of a test is given by

$$1 - \beta = \gamma(\theta) = P_{\theta}(Reject H_0 | \theta \in \omega_1)$$

Definition: A most powerful test corresponds to the best rejection region C such that in testing a simple null hypothesis $H_0: \theta = \theta'$ versus a simple alternative hypothesis $H_a: \theta = \theta''$, this test has the largest possible test power $(1 - \beta)$ among all tests of size α .

Theorem (Neyman-Pearson Lemma). The likelihood ratio test for a simple null hypothesis H_0 : $\theta = \theta'$ versus a simple alternative hypothesis H_a : $\theta = \theta''$ is a most powerful test.

Jerzy Neyman (left) and Egon Pearson (right)

Definition: A uniformly most powerful test in testing a simple null hypothesis H_0 : $\theta = \theta'$ versus a composite alternative hypothesis H_a : $\theta \in \omega_1$, or in testing a composite null hypothesis H_0 : $\theta \in \omega_0$ versus a composite alternative H_a : $\theta \in \omega_1$, is a size α test such that this test has the largest possible test power $\gamma(\theta'')$ for every simple alternative hypothesis: H_a : $\theta = \theta'' \in \omega_1$, among all such tests of size α .

Now we derive the likelihood ratio test for the first onesided hypotheses.

Example 2. Let $f(x_i|\mu) = \frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(x_i-\mu)^2}{2\sigma^2}}$, for $i=1,\cdots,n$, where σ^2 is known. Derive the likelihood ratio test for the hypothesis $H_0: \mu = \mu_0 \ vs. H_a: \mu > \mu_0$, and show whether it is a UMP test or not.

Solution:

$$\boldsymbol{\omega} = \{\mu : \mu = \mu_0\}$$
$$\boldsymbol{\Omega} = \{\mu : \mu \ge \mu_0\}$$

Note: Now that we are not just dealing with the two-sided hypothesis, it is important to know that the more general definition of ω is the set of all unknown parameter values under H_0 , while Ω is the set of all unknown parameter values under the union of H_0 and H_a .

Therefore we have

Therefore we have:
$$\begin{cases} L_{\omega} = f(x_1, x_2, \cdots, x_n | \mu = \mu_0) = \prod_{i=1}^n f(x_i | \mu = \mu_0) \\ = \prod_{i=1}^n \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x_i - \mu_0)^2}{2\sigma^2}} = (2\pi\sigma^2)^{-\frac{n}{2}} e^{-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu_0)^2} \\ L_{\Omega} = f(x_1, x_2, \cdots, x_n | \mu \geq \mu_0) = \prod_{i=1}^n f(x_i | \mu \geq \mu_0) \\ = \prod_{i=1}^n \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x_i - \mu)^2}{2\sigma^2}} = (2\pi\sigma^2)^{-\frac{n}{2}} e^{-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2} \\ \text{Since there is no free parameter in } L_{\omega} , \\ \sup(L_{\omega}) = (2\pi\sigma^2)^{-\frac{n}{2}} e^{-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu_0)^2} . \\ \begin{cases} \frac{\partial \log L_{\Omega}}{\partial \mu} = \frac{n}{\sigma^2} (\bar{x} - \mu) \\ \vdots \end{cases} \\ \frac{\partial^2 \log L_{\Omega}}{\partial \mu^2} = -\frac{n}{\sigma^2} < 0 \end{cases} , \text{is sup}(L_{\Omega}) \\ = \begin{cases} (2\pi\sigma^2)^{-\frac{n}{2}} e^{-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \bar{x})^2}, \text{if } \bar{x} > \mu_0 \\ (2\pi\sigma^2)^{-\frac{n}{2}} e^{-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu_0)^2}, \text{if } \bar{x} \leq \mu_0 \end{cases} \\ \therefore LR = \frac{\sup(L_{\omega})}{\sup(L_{\Omega})} = \begin{cases} e^{-\frac{n}{2\sigma^2} (\bar{x} - \mu_0)^2}, \text{if } \bar{x} > \mu_0 \\ 1, \text{if } \bar{x} \leq \mu_0 \end{cases} \\ \therefore P(LR \leq c^* | H_0) = \alpha \Leftrightarrow P\left(Z_0 = \frac{\bar{X} - \mu_0}{\sigma/\sqrt{n}} \geq \sqrt{-2\log c^*} \middle| H_0\right) \\ = \alpha. \end{cases}$$

 \therefore Reject H_0 in favor of H_a if $Z_0 = \frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}} \ge Z_\alpha$

Furthermore, it is easy to show that for each $\mu_1 > \mu_0$, the likelihood ratio test of H_0 : $\mu = \mu_0 \ vs. H_a$: $\mu = \mu_1 \ rejects$ the null hypothesis at the significance level α for $Z_0 = \frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}} \ge Z_\alpha$

By the Neyman-Pearson Lemma, the likelihood ratio test is also the most powerful test.

Now since for each $\mu_{\rm l}>\mu_{\rm 0}$, the most powerful size α test of H_0 : $\mu = \mu_0 \ vs. H_a$: $\mu = \mu_1 \ \text{rejects}$ the null hypothesis for $Z_0 = \frac{X - \mu_0}{\sigma / \sqrt{n}} \ge Z_\alpha$. Since this same test function is most powerful for each $\mu_1 > \mu_0$, this test is UMP for H_0 : $\mu = \mu_0 \ vs. \ H_a$: $\mu > \mu_0$.

D. Monotone Likelihood Ratio, the Karlin-Rubin Theorem, and the Exponential Family.

A condition under which the UMP tests exists is when the family of distributions being considered possesses a property called *monotone likelihood ratio*.

Definition: Let $f(x|\theta)$ be the joint pdf of the sample $X = (X_1, X_2, \dots, X_n)'$. Then $f(x|\theta)$ is said to have a monotone likelihood ratio in the statistic T(X) if for any choice $\theta_1 < \theta_2$ of parameter values, the likelihood ratio $f(x|\theta_2)/f(x|\theta_1)$ depends on values of the data X only through the value of statistic T(X) and, in addition, this ratio is a monotone function of T(X).

Theorem (Karlin-Rubin). Suppose that $f(x|\theta)$ has an increasing monotone likelihood ratio for the statistic T(X). Let α and k_{α} be chosen so that $\alpha = P_{\theta}(T(X) \ge k_{\alpha})$. Then

$$C = \{x: T(x) \ge k_{\alpha}\}$$

is the rejection region (*also called 'critical region') for a UMP test for the one-sided tests of: H_0 : $\theta \le \theta_0$ versus H_1 : $\theta > \theta_0$.

Theorem. For a Regular Exponential Family with only one unknown parameter θ , and a population p.d.f.:

$$f(x;\theta) = c(\theta) \cdot g(x) \cdot \exp[t(x)w(\theta)]$$
 If $w(\theta)$ is a is an increasing function of θ , then we have a monotone likelihood ratio in the statistic $T(\underline{X}) = \sum_{i=1}^{n} t(X_i)$. {*Recall $T(\underline{X}) = \sum_{i=1}^{n} t(X_i)$ } is also complete sufficient for θ }

Examples of a family with monotone likelihood ratio:

For X_1, \ldots, X_n iid Exponential (λ),

$$\frac{p(\boldsymbol{x} \mid \lambda_1)}{p(\boldsymbol{x} \mid \lambda_0)} = \frac{\prod_{i=1}^n \lambda_1 e^{-\lambda_1 X_i}}{\prod_{i=1}^n \lambda_0 e^{-\lambda_0 X_i}} = \left(\frac{\lambda_1}{\lambda_0}\right)^n \exp\left(-(\lambda_1 - \lambda_0) \sum_{i=1}^n X_i\right)$$

For $\lambda_1 > \lambda_0$, $\frac{p(\mathbf{x} \mid \lambda_1)}{p(\mathbf{x} \mid \lambda_0)}$ is an increasing function of $-\sum_{i=1}^n X_i$ so the

family has monotone likelihood ratio in $T(x) = -\sum_{i=1}^{n} X_i$.

Example 3. Let $X_1, X_2, ... X_n \sim N(\mu, \sigma^2)$, where σ^2 is known

- (1) Find the LRT for H_0 : $\mu \le \mu_0$ vs H_a : $\mu > \mu_0$
- (2) Show the test in (1) is a UMP test.

Solution:

$$\boldsymbol{\omega} = \{\mu : \mu \le \mu_0\}$$

$$\boldsymbol{\Omega} = \{\mu : -\infty < \mu < \infty\}$$

Note: Now that we are not just dealing with the two-sided hypothesis, it is important to know that the more general definition of ω is the set of all unknown parameter values under H_0 , while Ω is the set of all unknown parameter values under the union of H_0 and H_a .

(1) The ratio of the likelihood is shown as the following,

$$\lambda(x) = \frac{L(\widehat{\omega})}{L(\widehat{\Omega})}$$

 $L(\widehat{\omega})$ is the maximum likelihood under H_0 : $\mu \leq \mu_0$

$$L(\widehat{\omega}) = \begin{cases} \left(\frac{1}{2\pi\sigma^2}\right)^{n/2} \exp\left(-\frac{\sum (x_i - \bar{x})^2}{2\sigma^2}\right), & \bar{x} < \mu_0 \\ \left(\frac{1}{2\pi\sigma^2}\right)^{n/2} \exp\left(-\frac{\sum (x_i - \mu_0)^2}{2\sigma^2}\right), & \bar{x} \ge \mu_0 \end{cases}$$

 $L(\widehat{\Omega})$ is the maximum likelihood under H_0 union H_a

$$L(\widehat{\Omega}) = \left(\frac{1}{2\pi\sigma^2}\right)^{n/2} \exp\left(-\frac{\sum (x_i - \bar{x})^2}{2\sigma^2}\right)$$

The ratio of the maximized likelihood is,

$$\lambda(x) = \begin{cases} 1, & \bar{x} < \mu_0 \\ exp\left(-\frac{(\sum (x_i - \mu_0)^2 - \sum (x_i - \bar{x})^2)}{2\sigma^2}\right), & \bar{x} \ge \mu_0 \end{cases}$$

 \Rightarrow

$$\lambda(x) = \begin{cases} 1, & \bar{x} < \mu_0 \\ e^{-\frac{n(\bar{x} - \mu_0)^2}{2\sigma^2}}, & \bar{x} \ge \mu_0 \end{cases}$$

By LRT, we reject null hypothesis if $\lambda(x) < c$. Generally, c is chosen to be less than 1. The rejection region is,

$$R = \left\{ X : e^{-\frac{n(\bar{x} - \mu_0)^2}{2\sigma^2}} < c \right\} = \left\{ X : \bar{X} > \mu_0 + \sqrt{-\frac{2\sigma^2}{n} \ln c} \right\}$$

(2) We can use the Karlin-Rubin theorem to show that the LRT is UMP.

First, we need to show the size for the LRT test.

$$\alpha = \sup_{\mu \le \mu_0} P(X \in R)$$

In which,

$$P(X \in R) = P\left(\overline{X} > \mu_0 + \sqrt{-\frac{2\sigma^2}{n}\ln c}\right)$$
$$= P\left(\frac{\overline{X} - \mu}{\sqrt{\sigma^2/n}} > \frac{\mu_0 - \mu}{\sqrt{\sigma^2/n}} + \sqrt{-2\ln c}\right)$$
$$= P\left(Z > \frac{\mu_0 - \mu}{\sqrt{\sigma^2/n}} + \sqrt{-2\ln c}\right)$$

where z follows standard normal distribution,

$$P\left(Z > \frac{\mu_0 - \mu}{\sqrt{\sigma^2/n}} + \sqrt{-2\ln c}\right) \text{ is an increasing function of } \mu. \text{ So}$$

$$\alpha = \sup_{\mu \le \mu_0} P(X \in R) = P\left(Z > \frac{\mu_0 - \mu}{\sqrt{\sigma^2/n}} + \sqrt{-2\ln c} \mid \mu = \mu_0\right)$$

$$= P\left(Z > \sqrt{-2\ln c} \mid \mu = \mu_0\right)$$

So the LRT test a size α test where $\alpha = P(Z > \sqrt{-2 \ln c})$

Next, we prove the family has monotone likelihood ratio (MLR) in \bar{X} . It is straightforward to show that \bar{X} is a sufficient statistics for μ because we have an exponential family. For any pair $\mu_2 > \mu_1$, the ratio of the likelihood is:

$$\frac{f(x|\mu_2)}{f(x|\mu_1)} = \frac{\left(\frac{n}{2\pi\sigma^2}\right)^{1/2} \exp\left(-\frac{(\bar{x} - \mu_2)^2}{2\sigma^2/n}\right)}{\left(\frac{n}{2\pi\sigma^2}\right)^{1/2} \exp\left(-\frac{(\bar{x} - \mu_1)^2}{2\sigma^2/n}\right)} \\
= \exp\left(\frac{2\sigma^2}{n} \left((\bar{x} - \mu_1)^2 - (\bar{x} - \mu_2)^2\right)\right) \\
= \exp\left(\frac{2\sigma^2}{n} \left(\mu_2 - \mu_1\right) \left(2\bar{x} - \mu_1 - \mu_2\right)\right)$$
The pressions in \bar{X} . So the family has manufacture likelihood as

It is increasing in \bar{X} . So the family has monotone likelihood ratio (MLR) in \bar{X} .

By the Karlin-Rubin theorem, we know that the LRT test is also an UMP test.