Athreya Lahiri Chapter 4 Solutions

Arthur Chen

October 8, 2025

Problem 4.4

Let $\nu, \mu, \mu_1, \mu_2 \dots$ be σ -finite measures on a measurable space (Ω, \mathcal{F}) . Prove the following.

Part a

If $\mu_1 \ll \mu_2$ and $\mu_2 \ll \mu_3$, then $\mu_1 \ll \mu_3$ and

$$\frac{d\mu_1}{d\mu_3} = \frac{d\mu_1}{d\mu_2} \frac{d\mu_2}{d\mu_3}$$
 a.e. (μ_3)

 $\mu_1 \ll \mu_3$ is trivial; the zero sets of μ_3 are zero sets of μ_2 are zero sets of μ_1 . Using the Radon-Nikodym derivatives,

$$\mu_1(A) = \int_A \frac{d\mu_1}{d\mu_2} d\mu_2$$

where $\frac{d\mu_1}{d\mu_2}$ is non-negative and measurable. Thus the integral can be approximated by a series of non-decreasing simple functions,

$$\int_{A} \frac{d\mu_1}{d\mu_2} d\mu_2 = \lim_{n \to \infty} \int_{A} \left(\frac{d\mu_1}{d\mu_2}\right)^{(n)} d\mu_2$$
$$= \lim_{n \to \infty} \sum_{i=1}^{k_n} \left(\frac{d\mu_1}{d\mu_2}\right)^{(n)}_{i} \mu_2(A_{i_n})$$

Replacing μ_2 with its Radon-Nikodym derivative,

$$\lim_{n \to \infty} \sum_{i=1}^{k_n} \left(\frac{d\mu_1}{d\mu_2} \right)_i^{(n)} \mu_2(A_{i_n}) = \lim_{n \to \infty} \sum_{i=1}^{k_n} \left(\frac{d\mu_1}{d\mu_2} \right)_i^{(n)} \int_{A_{i_n}} \frac{d\mu_2}{d\mu_3} d\mu_3$$

$$= \lim_{n \to \infty} \sum_{i=1}^{k_n} \int_{A_{i_n}} \left(\frac{d\mu_1}{d\mu_2} \right)_i^{(n)} \frac{d\mu_2}{d\mu_3} d\mu_3$$

$$= \lim_{n \to \infty} \int_{A} \left(\frac{d\mu_1}{d\mu_2} \right)_i^{(n)} \frac{d\mu_2}{d\mu_3} d\mu_3$$

$$= \int_{A} \frac{d\mu_1}{d\mu_2} \frac{d\mu_2}{d\mu_3} d\mu_3$$

where the second line follows because $\left(\frac{d\mu_1}{d\mu_2}\right)^{(n)}$ is constant on A_{i_n} , the third line because adding up the integrals on the partition of A gives an integral on the whole of A, and the fourth line by the MCT. Since the Radon-Nikodym derivative of μ_3 is unique a.e. (μ_3) , this implies that $\frac{d\mu_1}{d\mu_2}\frac{d\mu_2}{d\mu_3}=\frac{d\mu_1}{d\mu_3}$ a.e. (μ_3) , as desired