સદિશનું બીજગણિત

6

Mathematics knows no races or geographic boundaries; for mathematics, the cultural world is one country.

- Jules Henri

6.1 પ્રાસ્તાવિક

જયારે આપણે દૈનિક સંવાદમાં કોઈ જથ્થા વિશે ચર્ચા કરતા હોઈએ છીએ, ત્યારે મહદંશે, આપણે જેને ફક્ત માન (માપ) હોય છે તેવા અદિશ જથ્થા વિશે ચર્ચા કરતા હોઈએ છીએ. જો આપણે એમ કહીએ કે મેં 50 કિમી ગાડી હંકારી (ચલાવી), તો આપણે મુસાફરી કરેલ અંતર વિશે વાત કરી કહેવાય. અહીં આપણે કઈ દિશામાં મુસાફરી કરી તે વિશે ચિંતા કરતા નથી. 50 કિમી એ એક 'અદિશ' રાશિ છે. હવે, જો આપણે આપણા ઘર તરફ ગાડી હંકારી ગયા હોઈએ, તો ફક્ત 50 કિમી ગાડી હંકારી ગયા એમ કહેવું પૂરતું નથી, પરંતુ આપણે એમ કહેવું જોઈએ કે, આપણે આપણા ઘરે પહોંચવા માટે દક્ષિણ દિશામાં 50 કિમી ગાડી હંકારી. આ હકીકત ફક્ત માન દર્શાવતી નથી પરંતુ આ માપ સાથે દિશા પણ સૂચવે છે. આવી રાશિને 'સદિશ' રાશિ કહે છે.

લેટિન શબ્દ વેક્ટર (Vector) નો અર્થ 'વાહક' (Carries) થાય છે. સિંદશ એ બે બિંદુઓ (શરૂઆતનું બિંદુ અને અંતિમ બિંદુ) વચ્ચેના અંતરના માપનું તથા શરૂઆતના બિંદુથી અંતિમ બિંદુ તરફની દિશાનું 'વહન' કરે છે. મોટા ભાગની બૈજિક ક્રિયાઓ જેવી કે સરવાળો, બાદબાકી, ગુણાકાર અને ભાગાકારના નિયમો તથા સિંદશ ક્રિયાઓનાં સરવાળા, બાદબાકી, અદિશ વડે ગુણાકારમાં સમાનતા જણાય છે. R પરના બૈજિક ગુણધર્મો જેવા કે, ક્રમ, જૂથના નિયમ પણ સિંદશના સરવાળામાં દેષ્ટિગોચર થાય છે.

ભૌતિકવિજ્ઞાનના અભ્યાસમાં સદિશ અગત્યનો ભાગ ભજવે છે. તેનું ખૂબ જ મહત્ત્વ છે. વેગ, પ્રવેગ, પદાર્થ પર લાગતું બળ જેવાં ઘણાં ભૌતિક પદોની રજુઆતમાં સદિશની આવશ્યકતા છે. ઘણાં ભૌતિક પદો અંતર દર્શાવતાં નથી, પરંતુ તેઓ સદિશ દ્વારા વ્યક્ત કરવામાં આવે છે અને તેથી જ ભૌતિકવિજ્ઞાનના સિદ્ધાંતો સમજવા માટે સદિશ ખૂબ જ અગત્યનો છે.

ભૌતિકવિજ્ઞાન મુખ્યત્વે ગુરુત્વાકર્ષણ, વિદ્યુતબળ, ચુંબકીયબળ, વિદ્યુતચુંબકીયબળ કે યાંત્રિકબળોનો અભ્યાસ કરે છે. ભૌતિકશાસ્ત્રીઓએ વૈજ્ઞાનિક પ્રયોગોથી એ શોધી કાઢવું હતું કે, આ બળો સામાન્ય પરિસ્થિતિમાં રૈખિક (સિદિશ) કાર્યરત હોય છે તથા તેમનાં પરિણામી બળો એ પણ સિદિશ સરવાળાનું જ પરિણામ છે, ઉદાહરણ તરીકે વિદ્યુતબળનો કુલંબનો નિયમ (Coulomb's law of Electrostatics). તેથી આવાં બળોનો અભ્યાસ કરવા માટે સિદિશ અવકાશ, તેની બૈજિકક્રિયા વગેરેનો વિકાસ થયો છે.

આપણે જે અક્ષરનો (ચલ) સિંદશ દર્શાવવા ઉપયોગ કર્યો હોય, તેના ઉપરના ભાગમાં (મથાળે) તીર (→) અથવા બાર (–) ચિદ્ધ કરીએ છીએ અથવા છાપકામમાં ગાઢા અક્ષરથી પણ સિંદશ દર્શાવાય છે. ગણિત, ભૌતિકવિજ્ઞાન અને ઇજનેરી શાખાઓના અભ્યાસમાં લંબાઈ, અંતર, ઝડપ, સમય, દ્રવ્ય વગેરે જેવી અદિશ રાશિ તથા સ્થાનાંતર, વેગ, પ્રવેગ, બળ, વજન જેવી સિંદશ રાશિઓનો ડગલે ને પગલે ઉપયોગ થાય છે.

આપણે ધોરણ XI માં સદિશ અવકાશ R² તથા R³ નો તેમજ સદિશ પરની કેટલીક ક્રિયાઓ જેવી કે, સદિશોના સરવાળા, સદિશનો અદિશ વડે ગુણાકાર અને તેમના ગુણધર્મો, સદિશનું માન, એકમ સદિશ વગેરેનો અભ્યાસ કર્યો. આ મુદ્દાઓ હવે પછીના આગળના અભ્યાસમાં ઉપયોગી છે. તેથી આ પ્રકરણમાં આપણે આ મુદ્દાઓનો સારાંશ આપીશું અને કેટલાંક ઉદાહરણો દ્વારા તેનું દેઢીકરણ કરીશું.

6.2 સદિશ અવકાશના એક ઘટક તરીકે સદિશ :

 $R^2 = \{(x, y) \mid x \in R, y \in R\}$

 $R^3 = \{(x, y, z) \mid x \in R, y \in R, z \in R\}$

આપણે સમાનતા, સરવાળા તથા અદિશ વડે ગુણાકારના પૃષ્ઠ 192 પર આપેલા નિયમથી મળતા ગણ \mathbb{R}^2 અને \mathbb{R}^3 ને \mathbb{R} પરના સદિશ અવકાશ કહીશું.

સદિશ અવકાશ \mathbf{R}^2 અને \mathbf{R}^3 ના ઘટકોને \overline{x} , \overline{y} , \overline{z} વગેરે વડે દર્શાવાય છે. \overline{x} , \overline{y} , \overline{z} વગેરેને સદિશ કહીશું. Rના ઘટકોને અદિશ કહીશું.

સદિશનું બીજગણિત 191

સદિશોની સમાનતા :

$$(x_1, y_1, z_1) = (x_2, y_2, z_2) \Leftrightarrow x_1 = x_2, y_1 = y_2 \text{ with } z_1 = z_2.$$

સદિશનો સરવાળો:

$$(x_1, y_1, z_1) + (x_2, y_2, z_2) = (x_1 + x_2, y_1 + y_2, z_1 + z_2)$$

અદિશ વડે ગુણાકાર :

$$k(x_1, y_1, z_1) = (kx_1, ky_1, kz_1), k \in \mathbb{R}$$

R³ ના ઘટકોના સરવાળા તથા અદિશ વડે ગુણાકારના ગુણધર્મો :

- (1) સંવૃત્તતા : $\forall \overline{x}$, $\overline{y} \in \mathbb{R}^3$, $\overline{x} + \overline{y} \in \mathbb{R}^3$
- (2) સરવાળા માટે ક્રમનો નિયમ : $\overline{x} + \overline{y} = \overline{y} + \overline{x}$; $\forall \overline{x}, \overline{y} \in \mathbb{R}^3$
- (3) સરવાળા માટે જૂથનો ગુણધર્મ : $(\overline{x} + \overline{y}) + \overline{z} = \overline{x} + (\overline{y} + \overline{z}); \forall \overline{x}, \overline{y}, \overline{z} \in \mathbb{R}^3$
- (4) સરવાળા માટે તટસ્થ ઘટકનું અસ્તિત્વ : સદિશ $\overline{0} \in \mathbb{R}^3$ એવો મળે કે જેથી $\overline{x} + \overline{0} = \overline{0} + \overline{x} = \overline{x}$ $\forall \overline{x} \in \mathbb{R}^3$. $\overline{0}$ ને શૂન્ય સદિશ કહે છે. $\overline{0} = (0, 0, 0)$
- (5) વિરોધી ઘટકનું અસ્તિત્વ : પ્રત્યેક સદિશ $\overline{x} \in \mathbb{R}^3$ માટે $-\overline{x} \in \mathbb{R}^3$ એવો અસ્તિત્વ ધરાવે કે જેથી $\overline{x} + (-\overline{x}) = (-\overline{x}) + \overline{x} = \overline{0}$. આ સદિશ $-\overline{x}$ ને \overline{x} નો વિરોધી ઘટક (Additive inverse) કહે છે.
- (6) $\forall k \in \mathbb{R} \text{ and } \overline{x} \in \mathbb{R}^3$; $k\overline{x} \in \mathbb{R}^3$.
- (7) $\forall k \in \mathbb{R}, k(\overline{x} + \overline{y}) = k\overline{x} + k\overline{y}; \forall \overline{x}, \overline{y} \in \mathbb{R}^3$
- (8) $\forall k, l \in \mathbb{R}, (k+l)\overline{x} = k\overline{x} + l\overline{x}; \forall \overline{x} \in \mathbb{R}^3$
- (9) $\forall l, k \in \mathbb{R}, (kl)\overline{x} = k(l\overline{x}), \forall \overline{x} \in \mathbb{R}^3$
- $(10) 1 \overline{x} = \overline{x}, \forall \overline{x} \in \mathbb{R}^3$

આવા જ નિયમો R² ના ઘટકોને માટે પણ સત્ય છે.

કેટલીક પાયાની સંકલ્પનાઓ :

સદિશનું માન : જો $\overline{x}=(x_1,x_2,x_3)$, તો સદિશ \overline{x} નું માન $\sqrt{x_1^2+x_2^2+x_3^2}$ છે. તેને $|\overline{x}|$ વડે દર્શાવાય છે. તે જ રીતે, $\overline{x}=(x_1,x_2)$, તો $|\overline{x}|=\sqrt{x_1^2+x_2^2}$.

ઉદાહરણ તરીકે, $\overline{x} = (1, 2, -2)$, તો $|\overline{x}| = \sqrt{(1)^2 + (2)^2 + (-2)^2} = 3$.

નીચેના ગુણધર્મા સ્પષ્ટ છે : $(\overline{x} \in \mathbb{R}^2)$ અથવા $\overline{x} \in \mathbb{R}^3$)

- (1) $|\overline{x}| \ge 0$
- (2) $|\overline{x}| = 0 \Leftrightarrow \overline{x} = \overline{0}$
- (3) $|k\overline{x}| = |k| |\overline{x}|, k \in \mathbb{R}$

એકમ સદિશ : જો $|\overline{x}|=1$, થાય, તો \overline{x} ને એકમ સદિશ કહેવાય. \overline{x} ને સંગત એકમ સદિશને \hat{x} વડે દર્શાવાય છે.

ઉદાહરણ તરીકે, જો
$$\overline{x} = \left(\frac{1}{\sqrt{3}}, \frac{-1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$$
, હોય, તો $|\overline{x}| = \sqrt{\left(\frac{1}{\sqrt{3}}\right)^2 + \left(\frac{-1}{\sqrt{3}}\right)^2 + \left(\frac{1}{\sqrt{3}}\right)^2} = 1$ અને તેથી \overline{x} એકમ સિદ્દેશ છે.

 $\hat{i}=(1,\ 0,\ 0),\ \hat{j}=(0,\ 1,\ 0),\ \hat{k}=(0,\ 0,\ 1)$ એ અનુક્રમે X-અક્ષ, Y-અક્ષ અને Z-અક્ષની ધન દિશાના એકમ સદિશો છે.

6.3 સદિશની દિશા

ધારો કે \overline{x} અને \overline{y} એ \mathbf{R}^2 અથવા \mathbf{R}^3 ના શૂન્યેતર સદિશ છે તથા $k \in \mathbf{R}$ છે.

- જો (i) $\overline{x} = k\overline{y}$, k > 0, તો \overline{x} અને \overline{y} ની દિશા સમાન છે.
 - (ii) $\overline{x} = k \overline{y}$; k < 0, તો \overline{x} અને \overline{y} એક બીજાની વિરૂદ્ધ દિશાના સદિશો છે.
 - (iii) કોઈપણ શૂન્યેતર $k \in \mathbf{R}$ માટે $\overline{x} \neq k \overline{y}$, તો \overline{x} અને \overline{y} ભિન્ન દિશાના સદિશો છે.

જો શૂન્યેતર સદિશો 😨 તથા 👿 ની દિશા સમાન હોય અથવા પરસ્પર વિરુદ્ધ હોય તો તેમને સમરેખ સદિશ કહે છે.

 $x \cdot \hat{x} = k y \cdot \hat{y}$ તો અને તો જ \bar{x} તથા \bar{y} સમરેખ છે. $(\bar{x} \neq \bar{0}, \bar{y} \neq \bar{0})$

સંકેત : $\overline{x} = (x_1, x_2, x_3)$ થી નિર્ણિત થતી દિશાને $< x_1, x_2, x_3 >$ દ્વારા દર્શાવાય છે. \overline{x} ની દિશાની વિરુદ્ધ દિશાને -<x₁, x₂, x₃> દ્વારા દર્શાવાય છે.

નીચેનું પરિશામ સ્પષ્ટ છે.

(i) % k > 0 $\text{dl } < x_1, x_2, x_3 > = < kx_1, kx_2, kx_3 >$

આપણે \overline{x} ની દિશા $(kx_1, kx_2, kx_3), k \in \mathbb{R} - \{0\}$ વડે પણ દર્શાવીશું.

આપણે નીચેનાં પ્રમેયો સાબિતી આપ્યા વગર સ્વીકારી લઈશું,

પ્રમેય 6.1 : જો શૂન્યેતર સદિશો \overline{x} અને \overline{y} સમાન હોય, તો અને તો જ $|\overline{x}| = |\overline{y}|$ તથા \overline{x} અને \overline{y} સમદિશ છે.

પ્રમેય 6.2 : જો $\overline{x} \neq \overline{0}$ તો \overline{x} થી નિર્ણિત થતી દિશામાં અનન્ય એકમ સદિશ હોય છે.

આપેલ સદિશની દિશામાં એકમ સદિશ : જો \overline{x} એ શૂન્યેતર સદિશ હોય, તો $\frac{1}{|\overline{x}|}$ \overline{x} એ \overline{x} ની દિશામાં એકમ સદિશ છે. તેને જ્વે વડે દર્શાવાય છે.

$$\overline{y}=rac{k\,\overline{x}}{\left|\overline{x}
ight|},\,k>0$$
 એ \overline{x} ની દિશાનો k માનવાળો સદિશ છે.

$$\overline{y} = -\frac{k\overline{x}}{|\overline{x}|}, k > 0$$
 એ \overline{x} ની વિરુદ્ધ દિશાનો k માનવાળો સદિશ છે.

ઉદાહરણ $1: \overline{x} = (3, 0, -4)$ ની વિરુદ્ધ દિશામાં 10 માનવાળો સદિશ શોધો.

$$634: | \overline{x} | = \sqrt{9+0+16} = 5$$

:.
$$\overline{x}$$
 ની વિરૂદ્ધ દિશામાં 10 માનવાળો સદિશ $\frac{-10}{|\overline{x}|}$ $\overline{x} = \frac{-10}{5}$ (3, 0, -4) = (-6, 0, 8).

અવકાશના કોઈ બિંદુ O માંથી પસાર થતી ત્રણ પરસ્પર લંબ રેખાઓ લઈએ. તેમને X-અક્ષ, Y-અક્ષ તથા Z-અક્ષ તરીકે લઈશું. સામાન્ય રીતે X-અક્ષ તથા Y-અક્ષથી સમક્ષિતિજ સમતલ બને છે. Z-અક્ષ આ સમતલને લંબ હોય છે. ત્રણે અક્ષની ધન દિશા જમણા હાથના અંગુઠાના નિયમને અનુસરે છે એટલે કે જો જમણા હાથની મુકીની વળેલી આંગળીઓ ધન X-અક્ષ તરફથી ધન Y-અક્ષ તરફ ઘડિયાળના કાંટાથી ઊલટી દિશામાં $rac{\pi}{2}$ જેટલું પરિભ્રમણ સૂચવે, તો અંગૂઠો ધન Z-અક્ષની દિશામાં હોય છે.

193

6.4 સ્થાન સદિશ :

ધારો કે $\overline{x}=(x_1,\ x_2,\ x_3)\in \mathbb{R}^3$ એ એક સદિશ છે અને અવકાશમાં હોય તેવું બિંદુ $\mathbb{P}(x_1,\ x_2,\ x_3)$ છે. જેનું આરંભબિંદુ O હોય અને અંત્યબિંદુ P હોય, તેવા દિશાયુક્ત રેખાખંડ \overline{OP} ને બિંદુ P ના સ્થાન સદિશનું ભૌમિતિક નિરૂપણ કહે છે. તેને \overrightarrow{OP} વડે દર્શાવાય છે. આમ P નો સ્થાન સદિશ $\overline{x}=(x_1,\,x_2,\,x_3)$ છે એટલે કે $\overrightarrow{OP}=(x_1,\,x_2,\,x_3)$. બિંદુનો સ્થાન સદિશ \overline{x} હોય તો $\overrightarrow{\mathbf{OP}} = \overline{x}$ એ સદિશનું ભૌમિતિક નિરૂપણ છે.

સદિશનું બીજગણિત

જો \mathbf{R}^3 નાં બે ભિન્ન બિંદુઓ $\mathbf{A}(x_1,\,x_2,\,x_3)$ અને $\mathbf{B}(y_1,\,y_2,\,y_3)$ હોય, તો આરંભબિંદુ \mathbf{A} ધરાવતો અને અંત્યબિંદુઓ \mathbf{B} ધરાવતો સદિશ એ $\overrightarrow{\mathbf{AB}}$ થશે.

પ્રમેય 6.3:(1) \mathbb{R}^2 ના પ્રત્યેક સદિશને \hat{i} તથા \hat{j} ના સુરેખ સંયોજન તરીકે અનન્ય રીતે દર્શાવી શકાય.

સાબિતી : ધારોકે
$$\overline{x} = (x_1, x_2) \in \mathbb{R}^2$$

તેથી $\overline{x} = (x_1, x_2) = (x_1, 0) + (0, x_2)$
$$= x_1(1, 0) + x_2(0, 1)$$

$$= x_1\hat{i} + x_2\hat{j}$$

આમ \overline{x} એ \hat{i} તથા \hat{j} નું **સુરેખ સંયોજન** છે. (Linear Combination) હવે ધારો કે \overline{x} ને $\overline{x}=p\hat{i}+q\hat{j}$ પ્રમાણે \hat{i} તથા \hat{j} ના અન્ય સુરેખ સંયોજન તરીકે દર્શાવીએ તો,

$$(x_1, x_2) = \overline{x} = p\hat{i} + q\hat{j}$$

= $p(1, 0) + q(0, 1)$
= $(p, 0) + (0, q)$
= (p, q)

$$\therefore x_1 = p \text{ with } x_2 = q$$

$$\therefore$$
 $p\hat{i} + q\hat{j}$ અને $x_1\hat{i} + x_2\hat{j}$ એક જ છે.

આમ $\overline{x}=x_1\hat{i}+x_2\hat{j}$ એ \overline{x} નું \hat{i} અને \hat{j} ના સુરેખ સંયોજન તરીકે અનન્ય નિરૂપણ છે.

(2) \mathbb{R}^3 ના પ્રત્યેક સદિશને \hat{i} , \hat{j} તથા \hat{k} ના સુરેખ સંયોજન તરીકે અનન્ય રીતે દર્શાવી શકાય.

સાબિતી : ધારોકે
$$\overline{x} = (x_1, x_2, x_3) \in \mathbb{R}^3$$
.
તેથી $\overline{x} = (x_1, x_2, x_3) = (x_1, 0, 0) + (0, x_2, 0) + (0, 0, x_3)$

$$= x_1(1, 0, 0) + (0, x_2, 0) + (0, 0, x_3)$$

$$= x_1(1, 0, 0) + x_2(0, 1, 0) + x_3(0, 0, 1)$$

$$= x_1\hat{i} + x_2\hat{j} + x_3\hat{k}$$

જો $\overline{x}=p\hat{i}+q\hat{j}+r\hat{k}$, તો (1)ની જેમ જ આપણને $x_1=p,\ x_2=q$ અને $x_3=r$ મળે.

આમ, $\overline{x}=x_1\hat{i}+x_2\hat{j}+x_3\hat{k}$ એ સદિશ \overline{x} નું \hat{i} , \hat{j} તથા \hat{k} ના સુરેખ સંયોજન તરીકે અનન્ય નિરૂપણ છે. ભૌમિતિક નિરૂપણ :

ધારો કે
$$\overrightarrow{OP} = (x_1, x_2, x_3)$$
.

બિંદુ P માંથી XY સમતલ પરનો લંબપાદ L છે. તેથી $L(x_1,\,x_2,\,0)$ થશે. (આકૃતિ 6.3).

$$\overrightarrow{LP} = \overrightarrow{OC} = x_3 \hat{k}$$

તે જ પ્રમાણે P માંથી YZ અને ZX સમતલ પરના લંબપાદ અનુક્રમે M અને N છે. તેથી $M(0, x_2, x_3)$ અને $N(x_1, 0, x_3)$ થશે અને તેથી $\overrightarrow{MP} = \overrightarrow{OA} = x_1 \hat{i}$ અને $\overrightarrow{NP} = \overrightarrow{OB} = x_2 \hat{j}$ મુક્ત સદિશો \overrightarrow{MP} , \overrightarrow{NP} અને \overrightarrow{LP} ને અનુરૂપ બદ્ધ (Bound) સદિશો અનુક્રમે \overrightarrow{OA} , \overrightarrow{OB} અને \overrightarrow{OC} છે.

[A, B અને C ના યામ અનુક્રમે $(x_1, 0, 0), (0, x_2, 0)$ અને $(0, 0, x_3)$ છે.]

હવે, $\overrightarrow{OL} = \overrightarrow{OA} + \overrightarrow{AL} = \overrightarrow{OA} + \overrightarrow{OB} = x_1 \hat{i} + x_2 \hat{j}$ ($\overrightarrow{OB} = \overrightarrow{AL}$) [તેથી L ના યામ $(x_1, x_2, 0)$. તે જ પ્રમાણે M ના યામ $(0, x_2, x_3)$ અને N ના યામ $(x_1, 0, x_3)$ છે.] તથા $\overrightarrow{OP} = \overrightarrow{OL} + \overrightarrow{LP} = x_1 \hat{i} + x_2 \hat{j} + x_3 \hat{k}$.

 $\overrightarrow{OP}=x_1\hat{i}+x_2\hat{j}+x_3\hat{k}$ સ્વરૂપને સદિશનું ઘટક (component) સ્વરૂપ કહે છે. અહીં $x_1,\,x_2$ અને x_3 એ \overrightarrow{OP} ના અદિશ ઘટકો છે જ્યારે $x_1\hat{i},\,x_2\hat{j}$ અને $x_3\hat{k}$ એ \overrightarrow{OP} ના સદિશ ઘટકો. છે.

નોંધ : (1) બિંદુ $P(x_1, x_2, x_3)$ નું XY સમતલથી અંતર $PL = |x_3|$. તેજ પ્રમાણે P નું YZ સમતલથી અંતર $= PM = |x_1|$ અને ZX સમતલથી અંતર $= PN = |x_2|$.

- (2) $P(x_1, x_2, x_3)$ નું X-અક્ષથી અંતર $AP = \sqrt{x_2^2 + x_3^2}$. તે જ પ્રમાણે Y-અક્ષથી અંતર = $BP = \sqrt{x_3^2 + x_1^2}$ અને Z-અક્ષથી અંતર = $CP = \sqrt{x_1^2 + x_2^2}$.
 - (3) $P(x_1, x_2, x_3)$ નું ઊગમબિંદુથી અંતર $OP = \sqrt{x_1^2 + x_2^2 + x_3^2}$

6.5 સદિશના સરવાળાનો ત્રિકોણનો નિયમ :

ધારો કે પદાર્થનું સ્થાનાંતર A થી B થાય છે. તેને \overrightarrow{AB} વડે દર્શાવાય છે અને પછી આ પદાર્થનું સ્થાનાંતર B થી C થાય છે. તેને \overrightarrow{BC} થી દર્શાવાય છે. આકૃતિ 6.4. માં દર્શાવ્યા પ્રમાણે તે પદાર્થના A થી C સુધીના કુલ સ્થાનાંતર ને \overrightarrow{AC} વડે દર્શાવાય છે અને તે $\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BC}$ દ્વારા મેળવી શકાય છે. આ નિયમને સદિશના સરવાળાનો ત્રિકોણનો નિયમ (Triangle Law of Vector Addition) કહે છે.

A, B, અને C ના સ્થાન સદિશ અનુક્રમે
$$\overline{a}$$
, \overline{b} અને \overline{c} લેતાં,
$$\overrightarrow{AB} + \overrightarrow{BC} = (\overline{b} - \overline{a}) + (\overline{c} - \overline{b}) = \overline{c} - \overline{a} = \overrightarrow{AC}$$

 \mathbf{R}^2 ના બે શૂન્યેતર સિંદશો \overline{a} અને \overline{b} પર સરવાળા તથા તફાવતની સિંદશની ક્રિયાઓ આકૃતિ 6.5 માં દર્શાવી છે આકૃતિ 6.6 અને 6.7 એ \mathbf{R}^2 ના સિંદશનો અદિશ વડે ગુણાકાર દર્શાવે છે. અહીં $\overrightarrow{\mathbf{OP}} = \overline{a}$, $\overrightarrow{\mathbf{OQ}} = 2\overline{a}$ અને $\overrightarrow{\mathbf{OR}} = -2\overline{a}$ છે.

સદિશનું બીજગણિત 195

સદિશના સરવાળાનો સમાંતરબાજુ ચતુષ્કોણનો નિયમ :

ધારો કે $\overrightarrow{OA} = \overline{a}$ અને $\overrightarrow{OB} = \overline{b}$ બે ભિન્ન સદિશો છે. આપણે આકૃતિ 6.8 માં બતાવ્યા પ્રમાણે એક સમાંતરબાજુ ચતુષ્કોણ OACB ની રચના કરીએ. બંને સદિશોના સામાન્ય આરંભબિંદુથી શરૂ થતો સદિશ \overrightarrow{OC} એ સદિશો \overline{a} અને \overline{b} નો સરવાળો દર્શાવે છે. આમ, $\overrightarrow{OC} = \overrightarrow{OA} + \overrightarrow{OB}$. આ નિયમને સદિશના સરવાળાનો સમાંતરબાજુ ચતુષ્કોણનો નિયમ કહે છે.

$$\overrightarrow{OC} = \overrightarrow{OA} + \overrightarrow{OB} = \overrightarrow{OA} + \overrightarrow{AC} = \overrightarrow{OC}$$

$$\overrightarrow{OC} = \overrightarrow{OA} + \overrightarrow{OB}$$

$$(\overrightarrow{OB} = \overrightarrow{AC})$$

સદિશનાં સરવાળાના ગુણધર્મો (ભૌમિતિક રીતે):

ગુણધર્મ 1 : કોઈપણ સદિશો \overline{x} અને \overline{y} માટે $\overline{x}+\overline{y}=\overline{y}+\overline{x}$

 $\overrightarrow{AB} = \overline{x}$ અને $\overrightarrow{AD} = \overline{y}$ લો. સમાંતરબાજુ ચતુષ્કોણ ABCD પૂર્ણ કરીએ.

$$\therefore$$
 $\overrightarrow{BC} = \overline{y}$ અને $\overrightarrow{DC} = \overline{x}$ (પ્રમેય 6.1)

હવે $\triangle ABC$ માટે સિંદેશના ત્રિકોણના નિયમના ઉપયોગથી, આપણને $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC} = \overline{x} + \overline{y}$ મળશે.

તે જ પ્રમાણે, $\Delta ext{ADC}$ પરથી $\overrightarrow{ ext{AD}}$ + $\overrightarrow{ ext{DC}}$ = $\overrightarrow{ ext{AC}}$

$$\therefore \ \overline{y} + \overline{x} = \overrightarrow{AC}.$$

આમ, $\overline{x} + \overline{y} = \overline{y} + \overline{x}$.

ગુણધર્મ 2: સદિશો $\overline{x}, \overline{y}, \overline{z},$ માટે $(\overline{x} + \overline{y}) + \overline{z} = \overline{x} + (\overline{y} + \overline{z})$

(જूथनो नियम)

(क्रमनो नियम)

આકૃતિ 6.10

 $\overrightarrow{AB} = \overline{x}$, $\overrightarrow{BC} = \overline{y}$, અને $\overrightarrow{CD} = \overline{z}$ લો. સિંદશોના સરવાળાના નિયમ પરથી.

આકૃતિ 6.10(a) માટે,

ΔABC પરથી,

$$\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$$

$$\vec{x} + \vec{y} = \overrightarrow{AC}$$
.

∆ACD પરથી,

$$\overrightarrow{AC} + \overrightarrow{CD} = \overrightarrow{AD}$$

$$\therefore (\overline{x} + \overline{y}) + \overline{z} = \overrightarrow{AD}.$$

આકૃતિ 6.10(b) માટે,

ΔBCD પરથી,

$$\overrightarrow{BC} + \overrightarrow{CD} = \overrightarrow{BD}$$

$$\therefore \quad \overline{y} + \overline{z} = \overrightarrow{BD}.$$

∆ABD પરથી,

$$\overrightarrow{AB} + \overrightarrow{BD} = \overrightarrow{AD}$$

$$\therefore \quad \overline{x} + (\overline{y} + \overline{z}) = \overrightarrow{AD}.$$

આમ,
$$(\overline{x} + \overline{y}) + \overline{z} = \overline{x} + (\overline{y} + \overline{z})$$
.

ઉદાહરણ 2 : આરંભબિંદુ (3, 2, -1) અને અંત્યબિંદુ (4, -2, 0) હોય તેવો સદિશ અને તેનું માન શોધો.

63લ : A(3, 2, -1) આરંભબિંદુ અને B(4, -2, 0) અંત્યબિંદુ હોય તેવો સદિશ \overrightarrow{AB} છે.

∴
$$\overrightarrow{AB} = B$$
 નો સ્થાન સદિશ $-A$ નો સ્થાન સદિશ
$$= (4, -2, 0) - (3, 2, -1)$$
$$= (1, -4, 1)$$

$$\overrightarrow{AB}$$
 નું માન $|\overrightarrow{AB}| = \sqrt{(1)^2 + (-4)^2 + (1)^2}$

$$\therefore AB = \sqrt{18}$$
$$= 3\sqrt{2}$$

સ્વાધ્યાય 6.1

1. નીચેના સદિશોનું માન શોધો :

(1)
$$(2, 3, \sqrt{3})$$
 (2) $3\hat{i} - 4\hat{k}$ (3) $\hat{i} + \hat{j} - 4\hat{k}$

- 2. $2\hat{i} 2\hat{j} + \hat{k}$ ની દિશામાં એકમ સદિશ શોધો.
- **3.** $2\sqrt{17}$ માનવાળો અને (3, −2, −2) ની દિશાનો સદિશ શોધો.
- **4.** 20 માનવાળો અને $-3\hat{i} + 2\sqrt{3}\hat{j} 2\hat{k}$ ની દિશાની વિરૂદ્ધ દિશાનો સદિશ શોધો.
- 5. $\overline{x} = 3\hat{i} + 4\hat{j} 5\hat{k}$ અને $\overline{y} = 2\hat{i} + \hat{j}$, સદિશો માટે $\overline{x} + 2\overline{y}$ ની દિશામાં એકમ સદિશ મેળવો.
- 6. આરંભબિંદુ (-2, 1, 0) અને અંત્યબિંદુ (1, -5, 7) હોય તેવા સદિશના સદિશ તેમજ અદિશ ઘટકો લખો.
- 7. બિંદુ P નો સ્થાન સદિશ (4, 5, –3) હોય તો P નું (i) ZX સમતલથી (ii) Y-અક્ષથી (iii) ઊગમબિંદુથી અંતર શોધો.

6.6 R² અને R³ માં સદિશોનું અંતઃગુણન

જો $\overline{x}=(x_1,x_2)$ અને $\overline{y}=(y_1,y_2)$ એ \mathbf{R}^2 ના સદિશો હોય, તો તેમનું અંતઃ ગુણન $x_1y_1+x_2y_2$ તરીકે વ્યાખ્યાયિત થાય છે તથા તેને $\overline{x}\cdot\overline{y}$ વડે દર્શાવાય છે. આમ $\overline{x}\cdot\overline{y}=x_1y_1+x_2y_2$.

તે જ પ્રમાણે જો,
$$\overline{x}=(x_1,\,x_2,\,x_3)$$
 અને $\overline{y}=(y_1,\,y_2,\,y_3)$ એ \mathbb{R}^3 ના સદિશો હોય, તો $\overline{x}\cdot\overline{y}=x_1y_1+x_2y_2+x_3y_3$ થાય.

અહીં \overline{x} અને \overline{y} બંને સિંદશ છે, પરંતુ $\overline{x} \cdot \overline{y}$ એ સિંદશ નથી, તે એક વાસ્તવિક સંખ્યા છે. આમ, બે સિંદશોનું અંતઃગુણન અદિશ છે. તેથી અંતઃગુણનને અદિશ ગુણાકારની ક્રિયા (Scalar Product) પણ કહે છે. આ ક્રિયાને અદિશ ગુણાકારની ક્રિયા (Scalar Multiplication) કહે છે. અંતઃગુણનના સંકેત માટે બે સિંદશ વચ્ચે ટપકું-ડોટ (.) મૂકવામાં આવે છે. તેથી તેને માટે ડોટ ગુણાકાર (Dot Product) શબ્દ પણ પ્રયોજવામાં આવે છે.

નોંધ : અદિશ ગુણાકાર અને અદિશ વડે ગુણાકારનો તફાવત

અદિશ ગુણાકાર એ બે સદિશ રાશિ વચ્ચે કરવામાં આવે છે અને તેથી મળતું પરિણામ અદિશ છે, જ્યારે સદિશનો અદિશ વડે ગુણાકાર એ અદિશ અને સદિશ ને સાંકળે છે તથા મળતું પરિણામ સદિશ રાશિ છે.

જો
$$\overline{x}=(2,3,-1)$$
 અને $\overline{y}=(-1,2,-2)$ હોય, તો \overline{x} અને \overline{y} નો અદિશ ગુણાકાર

$$\overline{x} \cdot \overline{y} = 2(-1) + 3 \cdot 2 + (-1)(-2) = -2 + 6 + 2 = 6$$
 અદિશ રાશિ છે.

જયારે $\overline{x}=(2,3,-1)$ નો અદિશ 2 વડે ગુણાકાર $2\overline{x}=2(2,3,-1)=(4,6,-2)$ મળે છે અને તે સદિશ રાશિ છે.

અંતઃગુણનના ગુણધર્મો :

ધારો કે $\overline{x} = (x_1, x_2, x_3), \ \overline{y} = (y_1, y_2, y_3)$ અને $\overline{z} = (z_1, z_2, z_3)$ એ \mathbb{R}^3 ના સદિશો છે અને $k \in \mathbb{R}$ છે.

(1)
$$\overline{x} \cdot \overline{x} \ge 0$$
 અને $\overline{x} \cdot \overline{x} = 0 \Leftrightarrow \overline{x} = \overline{0}$.

$$\overline{x} \cdot \overline{x} = (x_1, x_2, x_3) \cdot (x_1, x_2, x_3)$$

$$= x_1^2 + x_2^2 + x_3^2 \ge 0$$
(R નો ગુણધર્મ)

$$\overline{x} \cdot \overline{x} = 0 \iff x_1 = x_2 = x_3 = 0 \iff \overline{x} = \overline{0}$$

(2)
$$\overline{x} \cdot \overline{x} = |\overline{x}|^2$$
 singly $\overline{x} \cdot \overline{x} = x_1^2 + x_2^2 + x_3^2 = |\overline{x}|^2$

(3)
$$\overline{x} \cdot \overline{y} = \overline{y} \cdot \overline{x}$$

(4)
$$\overline{x} \cdot (k\overline{y}) = (k\overline{x}) \cdot \overline{y} = k(\overline{x} \cdot \overline{y})$$

$$(5) \quad \overline{x} \cdot (\overline{y} + \overline{z}) = \overline{x} \cdot \overline{y} + \overline{x} \cdot \overline{z}$$

$$\overline{x} \cdot (\overline{y} + \overline{z}) = (x_1, x_2, x_3) \cdot (y_1 + z_1, y_2 + z_2, y_3 + z_3)$$

$$= x_1(y_1 + z_1) + x_2(y_2 + z_2) + x_3(y_3 + z_3)$$

$$= x_1y_1 + x_1z_1 + x_2y_2 + x_2z_2 + x_3y_3 + x_3z_3$$

$$= (x_1y_1 + x_2y_2 + x_3y_3) + (x_1z_1 + x_2z_2 + x_3z_3)$$

$$= \overline{x} \cdot \overline{y} + \overline{x} \cdot \overline{z}$$
(R માં વિભાજનનો નિયમ)

ઉપરના ગુણધર્મો \mathbf{R}^2 ના સિંદશો માટે પણ સત્ય છે.

ઉદાહરણ
$$3: \overline{x} = (1, 2, -1), \overline{y} = (-3, 4, -2)$$
 હોય, તો $\overline{x} \cdot \overline{y}$ શોધો.

634:
$$\overline{x} \cdot \overline{y} = (1, 2, -1) \cdot (-3, 4, -2)$$

= -3 + 8 + 2
= 7

ઉદાહરણ 4 : જો
$$\overline{x} = 5\hat{i} + 4\hat{j} - 3\hat{k}$$
 અને $\overline{y} = 2\hat{i} - \hat{j} + 2\hat{k}$, તો $(\overline{x} + 2\overline{y}) \cdot (2\overline{x} - \overline{y})$ શોધો.

GLA:
$$\overline{x} + 2\overline{y} = (5\hat{i} + 4\hat{j} - 3\hat{k}) + 2(2\hat{i} - \hat{j} + 2\hat{k})$$

= $5\hat{i} + 4\hat{j} - 3\hat{k} + 4\hat{i} - 2\hat{j} + 4\hat{k}$
= $9\hat{i} + 2\hat{j} + \hat{k}$

અથવા
$$\overline{x} + 2\overline{y} = (5, 4, -3) + 2(2, -1, 2) = (5, 4, -3) + (4, -2, 4) = (9, 2, 1)$$

$$2\overline{x} - \overline{y} = 2(5\hat{i} + 4\hat{j} - 3\hat{k}) - (2\hat{i} - \hat{j} + 2\hat{k})$$

$$= 10\hat{i} + 8\hat{j} - 6\hat{k} - 2\hat{i} + \hat{j} - 2\hat{k}$$

$$= 8\hat{i} + 9\hat{j} - 8\hat{k}$$

અથવા
$$2\overline{x} - \overline{y} = 2(5, 4, -3) - (2, -1, 2) = (10, 8, -6) + (-2, 1, -2) = (8, 9, -8)$$

$$\begin{array}{l}
\hat{\mathbf{q}}(\bar{x} + 2\bar{y}) \cdot (2\bar{x} - \bar{y}) = (9\hat{i} + 2\hat{j} + \hat{k}) \cdot (8\hat{i} + 9\hat{j} - 8\hat{k}) \\
&= (9, 2, 1) \cdot (8, 9, -8) \\
&= 72 + 18 - 8 \\
&= 82
\end{array}$$

R³ માં સદિશોનું બહિર્ગુણન :

જો $\overline{x}=(x_1,x_2,x_3)$ અને $\overline{y}=(y_1,y_2,y_3)$ એ \mathbb{R}^3 ના સદિશો હોય, તો તેમનું બહિર્ગુણન (Outer Product)

$$= \left(\begin{vmatrix} x_2 & x_3 \\ y_2 & y_3 \end{vmatrix}, - \begin{vmatrix} x_1 & x_3 \\ y_1 & y_3 \end{vmatrix}, \begin{vmatrix} x_1 & x_2 \\ y_1 & y_2 \end{vmatrix} \right)$$

એટલે કે $(x_2y_3-x_3y_2,x_3y_1-x_1y_3,x_1y_2-x_2y_1)$ દ્વારા વ્યાખ્યાયિત થાય છે અને તેનો સંકેત $\overline{x}\times\overline{y}$ છે.

$$\therefore \ \overline{x} \times \overline{y} = (x_1, x_2, x_3) \times (y_1, y_2, y_3) = (x_2y_3 - x_3y_2, x_3y_1 - x_1y_3, x_1y_2 - x_2y_1)$$

અહીં, \overline{x} અને \overline{y} સદિશો છે. તેમનું બહિગુર્શન $\overline{x} \times \overline{y}$ પણ સદિશ છે, તેથી બહિગુર્શનને સદિશ ગુણાકાર (Vector Product) કહે છે. બહિગુર્શનની પ્રક્રિયાને સદિશ ગુણાકારની પ્રક્રિયા (Vector Multiplication) કહે છે. બહિગુર્શન એ બે સદિશો વચ્ચે ક્રોસ (\times) વડે દર્શાવાતું હોવાથી બહિગુર્શનને ક્રોસ ગુણાકાર (Cross Product) પણ કહે છે.

બહિર્ગુણનના ગુણધર્મો :

$$(1) \quad \overline{x} \times \overline{y} = -\overline{y} \times \overline{x}$$

(નિશ્વાયકની બે હારની અદલબદલનું પરિણામ)

(2)
$$\overline{x} \times \overline{x} = \overline{0}$$

(નિશ્વાયકની બે હાર સમાન હોવાથી)

(3)
$$\overline{x} \times (k\overline{y}) = (k\overline{x}) \times \overline{x} = k(\overline{x} \times \overline{y})$$

$$(4) \quad \overline{x} \times (\overline{y} + \overline{z}) = \overline{x} \times \overline{y} + \overline{x} \times \overline{z}$$

$$(5) \quad \overline{x} \times \overline{0} = \overline{0} \times \overline{x} = \overline{0}$$

અંતઃગુણન અને બહિર્ગુણન વચ્ચેનો તફાવત :

- (1) અંતઃગુણન એ અદિશ રાશિ છે જ્યારે બહિર્ગુણન એ સદિશ રાશિ છે.
- (2) અંતઃગુણન એ ${\bf R}^2$ તેમજ ${\bf R}^3$ માં વ્યાખ્યાયિત છે જયારે બહિર્ગુણન એ ${\bf R}^2$ માં વ્યાખ્યાયિત નથી.
- (3) અંતઃગુણન સમક્રમી છે જ્યારે બહિર્ગુણન ક્રમનો ગુણધર્મ ધરાવતું નથી.

નોંધ :
$$\overline{x} \cdot \overline{x} = |\overline{x}|^2$$
, પરંતુ $\overline{x} \times \overline{x} = \overline{0}$.

ઉદાહરણ 5: (1, 3, -2) અને $\overline{y} = (-2, 1, 5)$ હોય, તો $\overline{x} \times \overline{y}$ શોધો.

General Graph
$$\overline{x} \times \overline{y} = \begin{pmatrix} \begin{vmatrix} 3 & -2 \\ 1 & 5 \end{vmatrix}, -\begin{vmatrix} 1 & -2 \\ -2 & 5 \end{vmatrix}, \begin{vmatrix} 1 & 3 \\ -2 & 1 \end{vmatrix} \end{pmatrix}$$

= $(15 + 2, -(5 - 4), 1 + 6) = (17, -1, 7)$

ઉદાહરણ 6 : જો $\overline{x}=2\hat{i}+\hat{j}-3\hat{k}$ અને $\overline{y}=3\hat{i}-2\hat{j}+\hat{k}$, તો $|\overline{x}\times\overline{y}|$ શોધો.

ઉકેલ:
$$\overline{x} = (2, 1, -3)$$
 અને
$$\overline{y} = (3, -2, 1)$$
$$\overline{x} \times \overline{y} = \begin{pmatrix} 1 & -3 \\ 2 & 4 \end{pmatrix}, -\begin{vmatrix} 2 & -3 \\ 3 & 4 \end{vmatrix},$$

$$\overline{x} \times \overline{y} = \begin{pmatrix} \begin{vmatrix} 1 & -3 \\ -2 & 1 \end{vmatrix}, -\begin{vmatrix} 2 & -3 \\ 3 & 1 \end{vmatrix}, \begin{vmatrix} 2 & 1 \\ 3 & -2 \end{vmatrix} \end{pmatrix}$$

= $(1 - 6, -(2 + 9), -4 - 3) = (-5, -11, -7)$

$$\therefore |\overline{x} \times \overline{y}| = \sqrt{25 + 121 + 49} = \sqrt{195}$$

સદિશોનું પેટીગુણન તથા ત્રિગુણન :

જો \overline{x} , \overline{y} અને \overline{z} એ \mathbb{R}^3 ના સિંદિશો હોય, તો $\overline{x} \cdot (\overline{y} \times \overline{z})$ ને સિંદિશો \overline{x} , \overline{y} અને \overline{z} નું પેટીગુણન (Box Product) કહે છે. તેને સંકેતમાં $[\overline{x} \ \overline{y} \ \overline{z}]$ વડે દર્શાવાય છે.

$$\overline{x} = (x_1, x_2, x_3), \ \overline{y} = (y_1, y_2, y_3) \text{ and } \overline{z} = (z_1, z_2, z_3) \text{ eldi,}$$

$$\overline{x} \cdot (\overline{y} \times \overline{z}) = (x_1, x_2, x_3) \cdot (y_2 z_3 - y_3 z_2, -(y_1 z_3 - y_3 z_1), y_1 z_2 - y_2 z_1)$$

$$\therefore \ [\overline{x} \ \overline{y} \ \overline{z}] = x_1 (y_2 z_3 - y_3 z_2) - x_2 (y_1 z_3 - y_3 z_1) + x_3 (y_1 z_2 - y_2 z_1)$$

$$\therefore \ [\overline{x} \ \overline{y} \ \overline{z}] = \begin{vmatrix} x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \\ z_1 & z_2 & z_3 \end{vmatrix}$$

પેટીગુણનના ગુણધર્મો :

(1) $[\overline{x} \ \overline{y} \ \overline{z}] = [\overline{y} \ \overline{z} \ \overline{x}] = [\overline{z} \ \overline{x} \ \overline{y}]$

તે જ પ્રમાણે $[\overline{x} \ \overline{y} \ \overline{z}] = [\overline{z} \ \overline{x} \ \overline{y}]$ સાબિત કરી શકાય.

- (2) $[\overline{x} \ \overline{x} \ \overline{y}] = 0$, $[\overline{x} \ \overline{y} \ \overline{x}] = 0$, $[\overline{x} \ \overline{y} \ \overline{y}] = 0$
- (3) $[m\overline{x} \ \overline{y} \ \overline{z}] = m[\overline{x} \ \overline{y} \ \overline{z}]; [\overline{x} \ m\overline{y} \ \overline{z}] = m[\overline{x} \ \overline{y} \ \overline{z}]; [\overline{x} \ \overline{y} \ m\overline{z}] = m[\overline{x} \ \overline{y} \ \overline{z}]; m \in \mathbb{R}$
- $(4) \quad [\overline{x} \quad \overline{y} \quad \overline{0}] = 0$

નોંધ : (1) જો સદિશોનો ક્રમ વૃત્તીય રીતે (cyclic) બદલાય તો પેટીગુણન બદલાતું નથી.

(2) જો $[\overline{x} \ \overline{y} \ \overline{z}]$ માં કોઈપણ બે સિંદશની અદલાબદલી કરીએ, તો તેમાં નિશ્ચાયકની બે હારની જ અદલા-બદલી થાય છે અને તેથી પેટીગુણનનું ચિક્ષ બદલાય છે, એટલે કે $[\overline{x} \ \overline{y} \ \overline{z}] = -[\overline{y} \ \overline{x} \ \overline{z}]$.

સદિશો \overline{x} , \overline{y} અને \overline{z} ના ગુણાકાર $\overline{x} \times (\overline{y} \times \overline{z})$ ને સદિશનું ત્રિગુણન (vector triple product) કહે છે.

 $\overline{x} \times (\overline{y} \times \overline{z}) = (\overline{x} \cdot \overline{z})\overline{y} - (\overline{x} \cdot \overline{y})\overline{z}$ છે તેમ સાબિત કરી શકાય.

તે જ પ્રમાણે $(\overline{x} \times \overline{y}) \times \overline{z} = (\overline{z} \cdot \overline{x}) \overline{y} - (\overline{z} \cdot \overline{y}) \overline{x}$ થાય.

આપણે નીચેનું પરિણામ સાબિત કરીએ.

પરિણામ :
$$\overline{x} \times (\overline{y} \times \overline{z}) = (\overline{x} \cdot \overline{z})\overline{y} - (\overline{x} \cdot \overline{y})\overline{z}$$

સાબિતી : ધારો કે
$$\overline{x}=(x_1,\,x_2,\,x_3),\,\,\overline{y}=(y_1,\,y_2,\,y_3),\,\,$$
અને $\overline{z}=(z_1,\,z_2,\,z_3)$

હવે,
$$\overline{x} \times (\overline{y} \times \overline{z}) = (x_1, x_2, x_3) \times (y_2 z_3 - y_3 z_2, y_3 z_1 - y_1 z_3, y_1 z_2 - y_2 z_1)$$

= (p_1, p_2, p_3) (ધારો)

$$\begin{aligned} &= y_1(x_2z_2 + x_3z_3) - z_1(x_2y_2 + x_3y_3) \\ &= y_1(x_1z_1 + x_2z_2 + x_3z_3) - z_1(x_1y_1 + x_2y_2 + x_3y_3) \\ &= y_1(\overline{x} \cdot \overline{z}) - z_1(\overline{x} \cdot \overline{y}) \\ \text{if } &\text{while} \ p_2 = y_2(\overline{x} \cdot \overline{z}) - z_2(\overline{x} \cdot \overline{y}) \text{ and } p_3 = y_3(\overline{x} \cdot \overline{z}) - z_3(\overline{x} \cdot \overline{y}) \\ \text{if } &\text{while} \ p_2 = y_2(\overline{x} \cdot \overline{z}) - z_2(\overline{x} \cdot \overline{y}) \text{ and } p_3 = y_3(\overline{x} \cdot \overline{z}) - z_3(\overline{x} \cdot \overline{y}) \\ \text{if } &\text{while} \ p_2 = y_2(\overline{x} \cdot \overline{z}) - z_2(\overline{x} \cdot \overline{y}) \text{ and } p_3 = y_3(\overline{x} \cdot \overline{z}) - z_3(\overline{x} \cdot \overline{y}) \\ \text{if } &\text{while} \ p_2 = y_2(\overline{x} \cdot \overline{z}) - z_2(\overline{x} \cdot \overline{y}) \text{ and } p_3 = y_3(\overline{x} \cdot \overline{z}) - z_3(\overline{x} \cdot \overline{y}) \\ \text{if } &\text{while} \ p_2 = y_2(\overline{x} \cdot \overline{z}) - z_2(\overline{x} \cdot \overline{y}) \text{ and } p_3 = y_3(\overline{x} \cdot \overline{z}) - z_3(\overline{x} \cdot \overline{y}) \\ \text{if } &\text{while} \ p_2 = y_2(\overline{x} \cdot \overline{z}) - z_2(\overline{x} \cdot \overline{y}) \text{ and } p_3 = y_3(\overline{x} \cdot \overline{z}) - z_3(\overline{x} \cdot \overline{y}) \\ \text{if } &\text{while} \ p_2 = y_2(\overline{x} \cdot \overline{z}) - z_2(\overline{x} \cdot \overline{y}) \text{ and } p_3 = y_3(\overline{x} \cdot \overline{z}) - z_3(\overline{x} \cdot \overline{y}) \\ \text{if } &\text{while} \ p_2 = y_2(\overline{x} \cdot \overline{z}) - z_2(\overline{x} \cdot \overline{y}) - (\overline{x} \cdot \overline{y}) \text{ and } p_3 = y_3(\overline{x} \cdot \overline{z}) - z_3(\overline{x} \cdot \overline{y}) \\ \text{if } &\text{while} \ p_2 = y_2(\overline{x} \cdot \overline{z}) - z_2(\overline{x} \cdot \overline{y}) - (\overline{x} \cdot \overline{y}) \text{ and } p_3 = y_3(\overline{x} \cdot \overline{z}) - z_3(\overline{x} \cdot \overline{y}) \\ \text{if } &\text{if } &\text{$$

હવે $p_1 = x_2(y_1z_2 - y_2z_1) - x_3(y_3z_1 - y_1z_3)$

સદિશનું બીજગણિત 201

સ્વાધ્યાય 6.2

નીચેનામાં સદિશ અથવા અદિશ, જે માગ્યા હોય તે મેળવો :

1.
$$(2, 3, 1) \cdot (2, -1, 4)$$

$$3. (2, -1, -2) \times (4, 1, 8)$$

5.
$$|(3, -4, -1) \cdot (1, 2, -2)|$$

7.
$$(1, 0, 1) \cdot [(1, 1, 0) \times (1, 0, -1)]$$

9.
$$[(1, 5, 1) \times (2, -1, 2)] \times (4, 1, -3)$$

2.
$$(1, -1, 2) \times (2, 3, 1)$$

4.
$$|(2, 1, 3) \times (0, -4, -4)|$$

6.
$$(1, 1, 2) \times [(1, 2, 1) \times (2, 1, 1)]$$

8.
$$(2, 3, 4) \cdot [(1, 1, 1) \times (3, 4, 5)]$$

10.
$$| [(2, 3, 4) \cdot (-4, 3, -2)] (1, -1, 2) |$$

6.7 લાગ્રાન્જનો નિત્યસમ

$$\ \ \ \ \vec{x}_1,\,x_2,\,x_3,\,y_1,\,y_2,\,y_3\,\in\,\mathbf{R},\,\mathbf{d})$$

$$(x_1y_1 + x_2y_2 + x_3y_3)^2 + (x_1y_2 - x_2y_1)^2 + (x_1y_3 - x_3y_1)^2 + (x_2y_3 - x_3y_2)^2 = (x_1^2 + x_2^2 + x_3^2)(y_1^2 + y_2^2 + y_3^2)$$
 (ચકાસો !)

આ નિત્યસમને લાગ્રાન્જનો નિત્યસમ કહે છે.

જો આપણે $\overline{x}=(x_1,\,x_2,\,x_3)$ અને $\overline{y}=(y_1,\,y_2,\,y_3)$ લઈએ તો, લાગ્રાન્જના નિત્યસમનું સદિશ સ્વરૂપ

$$|\overline{x} \cdot \overline{y}|^2 + |\overline{x} \times \overline{y}|^2 = |\overline{x}|^2 |\overline{y}|^2$$
 and.

$$\text{sirgl} \ \ \dot{\overline{s}} \ \ \overline{x} \cdot \overline{y} \ = x_1 y_1 + x_2 y_2 + x_3 y_3, \ \ \overline{x} \ \times \ \overline{y} \ = (x_2 y_3 - x_3 y_2, \ -(x_1 y_3 - x_3 y_1), \ x_1 y_2 - x_2 y_1)$$

$$|\overline{x}|^2 = x_1^2 + x_2^2 + x_3^2$$
 અને $|\overline{y}|^2 = y_1^2 + y_2^2 + y_3^2$.

ઉદાહરણ 10 : જો \overline{x} અને \overline{y} એકમ સદિશો હોય તથા $\overline{x}\cdot\overline{y}=0$, તો સાબિત કરો કે $\overline{x} imes\overline{y}$ પણ એકમ સદિશ છે.

ઉકેલ : \overline{x} અને \overline{y} એકમ સદિશો છે.

$$\therefore |\overline{x}| = 1 = |\overline{y}|$$

લાગ્રાન્જના નિત્યસમ

$$|\overline{x} \times \overline{y}|^2 + |\overline{x} \cdot \overline{y}|^2 = |\overline{x}|^2 |\overline{y}|^2$$
 પરથી,

$$\therefore |\overline{x} \times \overline{y}|^2 + 0 = (1)(1)$$

$$\therefore |\overline{x} \times \overline{y}| = 1$$

$$\vec{x} \times \vec{y}$$
 એકમ સદિશ છે.

કોશી-સ્વાર્ત્ઝની અસમતા :

 \overline{x} અને \overline{y} એ \mathbf{R}^2 અથવા \mathbf{R}^3 ના સદિશો હોય, તો $|\overline{x}\cdot\overline{y}|\leq |\overline{x}||\overline{y}|$ ને કોશી-સ્વાર્ત્ઝની અસમતા કહે છે.

\mathbb{R}^3 માં લાગ્રાન્જના નિત્યસમ

$$|\overline{x} \times \overline{y}|^2 + |\overline{x} \cdot \overline{y}|^2 = |\overline{x}|^2 |\overline{y}|^2$$
 પરથી,

$$|\overline{x} \cdot \overline{y}|^2 \le |\overline{x}|^2 |\overline{y}|^2$$

$$(|\overline{x} \times \overline{y}|^2 \ge 0)$$

$$\therefore |\overline{x} \cdot \overline{y}| \leq |\overline{x}| |\overline{y}|$$

$$\mathbf{R}^2$$
 માટે $\overline{x} = (x_1, x_2)$ અને $\overline{y} = (y_1, y_2)$ લેતાં,

$$\overline{x} \cdot \overline{y} = x_1 y_1 + x_2 y_2$$

હવે
$$(x_1y_1 + x_2y_2)^2 + (x_1y_2 - x_2y_1)^2 = (x_1^2 + x_2^2)(y_1^2 + y_2^2)$$

$$\therefore |x_1y_1 + x_2y_2|^2 \le (x_1^2 + x_2^2)(y_1^2 + y_2^2)$$

$$((x_1y_2 - x_2y_1)^2 \ge 0)$$

$$|\overline{x} \cdot \overline{y}|^2 \le |\overline{x}|^2 |\overline{y}|^2$$

$$\therefore |\overline{x} \cdot \overline{y}| \leq |\overline{x}| |\overline{y}|.$$

બીજી સાબિતી : આ સાબિતી R² અને R³ બંને માટે સત્ય છે. જો $\overline{x} = \overline{0}$ અથવા $\overline{y} = \overline{0}$, તો $\overline{x} \cdot \overline{y} = 0$ અને $|\overline{x}| |\overline{y}| = 0$ તેથી $|\overline{x} \cdot \overline{y}| = |\overline{x}| |\overline{y}|$ ધારો કે $\overline{x} \neq \overline{0}$ અને $\overline{y} \neq \overline{0}$ તથા $|\overline{x}| = 1$ અને $|\overline{y}| = 1$ હવે, $(\overline{x} - \overline{y}) \cdot (\overline{x} - \overline{y}) \ge 0$ $\therefore \quad \overline{x} \cdot \overline{x} - 2\overline{x} \cdot \overline{y} + \overline{y} \cdot \overline{y} \ge 0$ $\therefore |\overline{x}|^2 - 2\overline{x} \cdot \overline{y} + |\overline{y}|^2 \ge 0$ $\therefore 2-2\overline{x}\cdot\overline{y}\geq 0$ $(|\overline{x}| = |\overline{y}| = 1)$ તેથી $\overline{x} \cdot \overline{y} \leq 1$ તે જ પ્રમાણે $(\overline{x} + \overline{y}) \cdot (\overline{x} + \overline{y}) \ge 0$ $\therefore |\overline{x}|^2 + 2\overline{x} \cdot \overline{y} + |\overline{y}|^2 \ge 0$ $\therefore 2 + 2\overline{x} \cdot \overline{y} \ge 0$ $(|\overline{x}| = |\overline{y}| = 1)$ \therefore $-1 \leq \overline{x} \cdot \overline{y}$ આમ, $-1 \le \overline{x} \cdot \overline{y} \le 1$ $|\overline{x} \cdot \overline{y}| \le 1$ $(|\overline{x}| = 1 = |\overline{y}|)$ (i) $|\overline{x} \cdot \overline{y}| \le |\overline{x}| |\overline{y}|$ અંતે $\overline{x}\neq \overline{0}$ અને $\overline{y}\neq \overline{0}$ લેતાં, $|\overline{x}|\neq 0, |\overline{y}|\neq 0$. ધારો કે $\overline{u}=\frac{\overline{x}}{|\overline{x}|}$ અને $\overline{v}=\frac{\overline{y}}{|\overline{v}|}$. તેથી $|\overline{u}|=1=|\overline{v}|$ (i) પરથી $|\overline{u} \cdot \overline{v}| \leq |\overline{u}| |\overline{v}|$ $\therefore \quad \left| \frac{\overline{x}}{|\overline{x}|} \cdot \frac{\overline{y}}{|\overline{y}|} \right| \le \left| \frac{\overline{x}}{|\overline{x}|} \right| \left| \frac{\overline{y}}{|\overline{y}|} \right| = \frac{|\overline{x}|}{|\overline{x}|} \frac{|\overline{y}|}{|\overline{y}|} = 1$ $\therefore |\overline{x} \cdot \overline{y}| \leq |\overline{x}| |\overline{y}|$ શૂન્યેતર સદિશો \overline{x} , \overline{y} માટે, જો $\overline{x} \cdot \overline{y} = |\overline{x}| |\overline{y}|$ હોય તો, $|t\overline{x} - \overline{y}|^2 = (t\overline{x} - \overline{y}) \cdot (t\overline{x} - \overline{y})$ $= t^2 |\overline{x}|^2 - 2t\overline{x} \cdot \overline{y} + |\overline{y}|^2$ $= t^2 |\overline{x}|^2 - 2t |\overline{x}| |\overline{y}| + |\overline{y}|^2$ $(\overline{x} \cdot \overline{y} = |\overline{x}| |\overline{y}|)$ $= (t|\overline{x}|-|\overline{y}|)^2$ $t = \frac{|\overline{y}|}{|\overline{x}|}$ elai, $(|\bar{x}| \neq 0)$

 \overline{x} , \overline{y} ની દિશા સમાન છે.

 $| t\overline{x} - \overline{y}|^2 = 0$ $\therefore t\overline{x} = \overline{y}$ $\therefore \overline{y} = t\overline{x}$

(t > 0)

203

તે જ રીતે જો
$$\overline{x} \cdot \overline{y} = -|\overline{x}||\overline{y}|$$
 તો $|t\overline{x} - \overline{y}|^2 = (t|\overline{x}| + |\overline{y}|)^2$

$$t = -\frac{|\overline{y}|}{|\overline{x}|}$$
 elai,

$$t\overline{x}-\overline{y}=0$$

$$\therefore \quad \overline{y} = t\overline{x}$$
 (t < 0)

 \therefore \overline{x} તથા \overline{y} ની દિશા પરસ્પર વિરુદ્ધ છે.

કોશી-સ્વાર્ત્ઝની અસમતામાં જો $|\overline{x}\cdot\overline{y}|=|\overline{x}||\overline{y}|$ તો \overline{x} તથા \overline{y} ની દિશા સમાન અથવા પરસ્પર વિરુદ્ધ હોય.

ત્રિકોણીય અસમતા :

$$\mathbb{R}^2$$
 તથા \mathbb{R}^3 ના સદિશો \overline{x} અને \overline{y} માટે $|\overline{x} + \overline{y}| \le |\overline{x}| + |\overline{y}|$.

સાબિતી :
$$|\overline{x} + \overline{y}|^2 = (\overline{x} + \overline{y}) \cdot (\overline{x} + \overline{y})$$

 $= \overline{x} \cdot \overline{x} + \overline{x} \cdot \overline{y} + \overline{y} \cdot \overline{x} + \overline{y} \cdot \overline{y}$
 $= |\overline{x}|^2 + 2\overline{x} \cdot \overline{y} + |\overline{y}|^2$
 $\leq |\overline{x}|^2 + 2|\overline{x} \cdot \overline{y}| + |\overline{y}|^2$
 $\leq |\overline{x}|^2 + 2|\overline{x}||\overline{y}| + |\overline{y}|^2$
 $\leq (|\overline{x}| + |\overline{y}|)^2$
(કોશી-સ્વાર્તઝ અસમતા)

$$\therefore |\overline{x} + \overline{y}| \leq |\overline{x}| + |\overline{y}|$$

ભૌમિતિક અર્થઘટન :

ધારો કે $P(\overline{x})$ અને $Q(\overline{y})$ બે ભિન્ન બિંદુઓ છે તથા O, P તથા Q સમરેખ નથી. આકૃતિ 6.11 માં બતાવ્યા પ્રમાણે \square OPRQ સમાંતરબાજુ ચતુષ્કોણ છે. તેની બાજુઓ \overline{OP} અને \overline{OQ} સદિશ \overrightarrow{OP} અને \overrightarrow{OQ} દર્શાવે છે.

$$\overrightarrow{OP} + \overrightarrow{OQ} = \overrightarrow{OR}$$

હવે Δ OPR માં OP + PR > OR

$$\therefore$$
 OP + OQ > OR

$$|\overline{x}| + |\overline{y}| > |\overline{x} + \overline{y}|$$

હવે O, P, Q સમરેખ હોય તથા O-P-Q (આકૃતિ 6.12) અથવા O-Q-P હોય તો

$$OP + OQ = OR$$

$$\therefore |\overline{x}| + |\overline{y}| = |\overline{x} + \overline{y}|$$

તથા, જો O-P-Q અથવા O-Q-P ન હોય અને O, P, Q સમરેખ હોય તો OP + OQ > OR.

આમ,
$$|\overline{x}| + |\overline{y}| > |\overline{x} + \overline{y}|$$

$$\therefore |\overline{x} + \overline{y}| \le |\overline{x}| + |\overline{y}|$$

તમામ વિકલ્પમાં $|\overline{x} + \overline{y}| \le |\overline{x}| + |\overline{y}|$.

(સમાંતરબાજુ ચતુષ્કોણની સામસામેની બાજુઓ એકરૂપ)

6.8 સમરેખ તથા સમતલીય સદિશો

આપણે જાણીએ છીએ કે, જો $\overline{x} \neq \overline{0}$, $\overline{y} \neq \overline{0}$ તથા $\overline{x} = k \ \overline{y}$, $k \neq 0$ તો \overline{x} અને \overline{y} સમદિશ અથવા વિરૂદ્ધ દિશાના સિંદશો છે. નિયત સિંદશને સમાન તમામ મૂકત સિંદશો અથવા નિયત સિંદશને શૂન્યેતર સંખ્યા વડે (અદિશ વડે ગુણાકાર) ગુણતાં મળતા સિંદશોને સમાન મૂકત સિંદશો રૂઢિગત રીતે સમાંતર સિંદશો કહેવાય છે. જો નિયત સિંદશો સમરેખ ન હોય, તો તેમની દિશા ભિન્ન છે. તેથી બે નિયત સિંદશો સમરેખ છે અથવા તેમની દિશા ભિન્ન છે અને તેઓ સમાંતર નથી.

પ્રમેય 6.4 : \mathbf{R}^2 ના શૂન્યેતર સિંદેશો $\overline{x}=(x_1,\ x_2)$ અને $\overline{y}=(y_1,\ y_2)$ સમરેખ હોય તો અને તો જ

$$x_1y_2 - x_2y_1 = 0.$$

સાબિતી : \overline{x} અને \overline{y} સમરેખ છે $\Rightarrow \overline{x} = k\overline{y}, k \in \mathbb{R} - \{0\}, \overline{x} \neq \overline{0}, \overline{y} \neq \overline{0}$ $\Rightarrow (x_1, x_2) = k(y_1, y_2)$

$$\therefore x_1 = ky_1, x_2 = ky_2$$

$$\therefore x_1 y_2 - x_2 y_1 = k y_1 y_2 - k y_2 y_1 = 0$$

આથી ઊલટું, ધારો કે $x_1y_2 - x_2y_1 = 0$

$$\therefore x_1 y_2 = x_2 y_1$$

 $y_1 \neq 0, y_2 \neq 0$ લેતાં,

$$\frac{x_1}{y_1} = \frac{x_2}{y_2} = k$$
 (ધારો).

જો k=0, તો $x_1=0$, $x_2=0$ અને તેથી $\overline{x}=\overline{0}$, પરંતું $\overline{x}\neq\overline{0}$ હોવાથી, $k\neq0$.

$$\vec{x} = (x_1, x_2) = (ky_1, ky_2) = k(y_1, y_2) = k\overline{y}, k \in \mathbb{R} - \{0\}$$

ધારો કે $y_1=0$ અથવા $y_2=0$. $(\overline{y}\neq \overline{0}$ હોવાથી બંને સાથે શૂન્ય નથી.)

ચોકસાઈ માટે ધારો કે $y_2 = 0$ અને $y_1 \neq 0$

$$\therefore x_1y_2=0$$

$$\therefore x_2y_1=0$$

 $x_2 = 0$ કારણ કે $y_1 \neq 0$

ધારો કે
$$\frac{x_1}{y_1} = k$$

$$\therefore (x_1, x_2) = (ky_1, 0) = (ky_1, ky_2)$$

$$= k(y_1, y_2)$$

$$(y_2 = 0)$$

વળી $k=0 \Rightarrow x_1=0,\, x_2=0.$ તેથી $\overline{x}=\overline{0},\,$ પરંતુ $\overline{x}\neq \overline{0}.$

$$\therefore \quad \overline{x} = k\overline{y}, \quad k \in \mathbb{R} - \{0\}$$

$$\therefore$$
 જો $x_1y_2-x_2y_1=0$, તો $k\in R-\{0\}$ માટે $\overline{x}=k\overline{y}$ અને તેથી \overline{x} તથા \overline{y} સમરેખ છે.

નોંધ ઃ (1) જો શૂન્યેતર સિંદશો \overline{x} તથા \overline{y} માટે $|\overline{x}\cdot\overline{y}|=|\overline{x}||\overline{y}|$, તો અને તો જ કોઈક $k\in\mathbb{R}-\{0\}$ માટે

$$\overline{x} = k\overline{y}$$

સાબિતી : ધારો કે $\overline{x} = k\overline{y}, k \in \mathbb{R} - \{0\}$

$$\therefore |\overline{x} \cdot \overline{y}| = |(k\overline{y}) \cdot \overline{y}| = |k(\overline{y} \cdot \overline{y})|$$

$$= |k| |\overline{y} \cdot \overline{y}|$$

સદિશનું બીજગણિત

 $(x_1y_2 = x_2y_1)$

$$= |k| |\overline{y}|^{2}$$

$$= |k| |\overline{y}| |\overline{y}|$$

$$= |k\overline{y}| |\overline{y}|$$

$$= |\overline{x}| |\overline{y}|$$

આથી ઉલટું, ધારો કે $|\overline{x}\cdot\overline{y}|=|\overline{x}||\overline{y}|$.

લાગ્રાન્જનો સદિશ સ્વરૂપે નિત્યસમ

$$|\overline{x} \times \overline{y}|^2 + |\overline{x} \cdot \overline{y}|^2 = |\overline{x}|^2 |\overline{y}|^2$$

$$\therefore |\overline{x} \times \overline{y}|^2 = 0$$

 $(|\overline{x} \cdot \overline{y}| = |\overline{x}||\overline{y}|)$

$$\therefore \ \overline{x} \times \overline{y} = \overline{0}$$

આગળની જેમ આપણે કોઈક $k\in\mathbb{R}-\{0\}$ માટે $\overline{x}=k\overline{y}$ સાબિત કરી શકીએ. (સ્વાધ્યાય **6** જુઓ) આમ જો $|\overline{x}\cdot\overline{y}|<|\overline{x}||\overline{y}|$ તો અને તો જ કોઈપણ $k\in\mathbb{R}-\{0\}$ માટે $\overline{x}\neq k\overline{y}, \ \overline{x}\neq\overline{0},$ $\overline{y}\neq\overline{0}.$

(2) જો શૂન્યેતર સિંદશો \overline{x} તથા \overline{y} માટે $|\overline{x} + \overline{y}| = |\overline{x}| + |\overline{y}|$, તો અને તો જ $\overline{x} = k\overline{y}$, k > 0, એટલે કે \overline{x} અને \overline{y} ની દિશા સમાન છે.

સાબિતી : ધારો કે $\overline{x} = k\overline{y}, k > 0.$

આથી ઉલટું, ધારો કે શૂન્યેતર સદિશો \overline{x} તથા \overline{y} માટે $|\overline{x} + \overline{y}| = |\overline{x}| + |\overline{y}|$

$$|\overline{x} + \overline{y}|^2 = (|\overline{x}| + |\overline{y}|)^2$$

$$\therefore (\overline{x} + \overline{y}) \cdot (\overline{x} + \overline{y}) = |\overline{x}|^2 + 2|\overline{x}| |\overline{y}| + |\overline{y}|^2$$

$$\therefore |\overline{x}|^2 + 2\overline{x} \cdot \overline{y} + |\overline{y}|^2 = |\overline{x}|^2 + 2|\overline{x}||\overline{y}| + |\overline{y}|^2$$

$$\therefore \quad \overline{x} \cdot \overline{y} = |\overline{x}| |\overline{y}|$$

 \therefore કોશી સ્વાર્ત્ઝની અસમતામાં મળતી સમતા પરથી $\overline{x}=k\overline{y},\,k\geq 0$

 \therefore \overline{x} અને \overline{y} સમદિશ સદિશ છે.

પ્રમેય 6.5 : \mathbb{R}^3 ના શૂન્યેતર સદિશો \overline{x} અને \overline{y} સમરેખ હોય તો અને તો જ $\overline{x} \times \overline{y} = \overline{0}$.

સાબિતી : \overline{x} અને \overline{y} સમરેખ છે.

$$\vec{x} = k\vec{y}, k \in \mathbb{R} - \{0\}, \vec{x} \neq \vec{0}, \vec{y} \neq \vec{0}$$

$$\therefore \quad \overline{x} \times \overline{y} = (k\overline{y} \times \overline{y}) = k(\overline{y} \times \overline{y}) = k\overline{0} = \overline{0}$$

આથી ઉલટું, ધારો કે $\overline{x} \times \overline{y} = \overline{0}$.

$$|\overline{x} \cdot \overline{y}| = |\overline{x}| |\overline{y}|$$

(લાગ્રાન્જનો નિત્યસમ)

 $\vec{x}=k\overline{y}$ થશે, જ્યાં $\overline{x}\neq \overline{0}$ હોવાથી $k\in R-\{0\}$.

 \therefore \overline{x} અને \overline{y} સમરેખ છે.

સમતલીય સિંદશો : \overline{x} , \overline{y} અને \overline{z} એ \mathbf{R}^3 ના સિંદશો છે. જો α , β , $\gamma \in \mathbf{R}$ પૈકી ઓછામાં ઓછો એક શૂન્યેતર હોય અને $\alpha \overline{x} + \beta \overline{y} + \gamma \overline{z} = \overline{0}$ થાય, તો \overline{x} , \overline{y} અને \overline{z} ને સમતલીય સિંદશો (coplanar vectors) કહે છે. જો \overline{x} , \overline{y} , \overline{z} સમતલીય ના હોય, તો તેમને અસમતલીય સિંદશો અથવા સુરેખ સ્વાયત્ત સિંદશો કહે છે. આમ જો, \overline{x} , \overline{y} અને \overline{z} અસમતલીય સિંદશો હોય, તો $\alpha \overline{x} + \beta \overline{y} + \gamma \overline{z} = \overline{0} \Rightarrow \alpha = 0$, $\beta = 0$ અને $\gamma = 0$. પ્રમેય 6.6 : \mathbf{R}^3 ના ભિન્ન શૂન્યેતર સિંદશો \overline{x} , \overline{y} , \overline{z} સમતલીય હોય તો અને તો જ $[\overline{x} \ \overline{y} \ \overline{z}] = 0$.

સાબિતી : ધારો કે \overline{x} , \overline{y} , \overline{z} સમતલીય છે.

 \therefore ઓછામાં ઓછો એક શૂન્યેતર હોય તેવા α , β , $\gamma \in \mathbb{R}$ મળે કે જેથી $\alpha \overline{x} + \beta \overline{y} + \gamma \overline{z} = \overline{0}$ થાય. ધારો કે $\gamma \neq 0$

$$\therefore \quad \overline{z} = \left(\frac{-\alpha}{\gamma}\right)\overline{x} + \left(\frac{-\beta}{\gamma}\right)\overline{y}$$

$$\therefore \quad [\overline{x} \quad \overline{y} \quad \overline{z}] = 0$$

આથી ઉલટું, ધારો કે $[\overline{x} \ \overline{y} \ \overline{z}] = 0$.

$$\therefore \quad \overline{x} \cdot (\overline{y} \times \overline{z}) = 0$$

જો $\overline{y} \times \overline{z} = \overline{0}$, તો \overline{y} અને \overline{z} સમરેખ છે.

$$\therefore \overline{y} = k\overline{z}, k \neq 0$$

$$\therefore 0\overline{x} + 1\overline{y} - k\overline{z} = \overline{0}$$

ઉપરના પરિશામને $\alpha \overline{x} + \beta \overline{y} + \gamma \overline{z} = \overline{0}$ સાથે સરખાવતાં, $\alpha = 0$, $\beta = 1$ અને $\gamma = -k \neq 0$

 \vec{x} , \vec{y} , \vec{z} સમતલીય છે.

હવે, ધારો કે $\overline{y} \times \overline{z} \neq \overline{0}$.

 \therefore સંખ્યાઓ $y_1z_2-y_2z_1,\ y_2z_3-y_3z_2$ અને $y_1z_3-y_3z_1$ પૈકી ઓછામાં ઓછી એક શૂન્યેતર છે.

ધારો કે $y_1 z_2 - y_2 z_1 \neq 0$

હવે, આપણે કોઈક
$$\alpha$$
, $\beta \in \mathbb{R}$ માટે $\overline{x} - \alpha \overline{y} - \beta \overline{z} = \overline{0}$ સાબિત કરીએ,

સમીકરણો
$$\alpha y_1 + \beta z_1 - x_1 = 0 \tag{ii}$$

$$\alpha y_2 + \beta z_2 - x_2 = 0 \tag{iii}$$

અને
$$\alpha y_3 + \beta z_3 - x_3 = 0$$
 નો વિચાર કરીએ (iv)

 $y_1z_2-y_2z_1\neq 0$, હોવાથી સમીકરણ (ii) અને (iii) ને ઉકેલી α અને β ની કિંમત મેળવીએ તો તે સમીકરણ (iv) નું સમાધાન કરશે, કારણ કે $[\overline{x}\ \overline{y}\ \overline{z}]=0$.

 \therefore આપણને $\alpha \overline{y} + \beta \overline{z} = \overline{x}$ થાય તેવા $\alpha, \beta \in \mathbb{R}$ મળે.

અહીં $1\overline{x} - \alpha \overline{y} - \beta \overline{z} = \overline{0}$ થશે.

∴ $\overline{x} - \alpha \overline{y} - \beta \overline{z} = \overline{0}$ માં ઓછામાં ઓછો એક સહગુણક $1 \neq 0$ મળે છે.

આમ, \overline{x} , \overline{y} અને \overline{z} સમતલીય છે.

ઉદાહરણ 11 : સાબિત કરો કે (-1, 0, -1), (0, -1, 1) અને (-1, 1, 0) અસમતલીય છે. તથા પ્રત્યેક $\overline{x} \in \mathbb{R}^3$ ને $\overline{x} = \alpha(-1, 0, -1) + \beta(0, -1, 1) + \gamma(-1, 1, 0)$ સ્વરૂપમાં દર્શાવી શકાય, જ્યાં α , β અને γ વાસ્તવિક સંખ્યાઓ છે.

6) :
$$\begin{vmatrix} -1 & 0 & -1 \\ 0 & -1 & 1 \\ -1 & 1 & 0 \end{vmatrix} = -1(-1) + 0 - 1(-1) = 2 \neq 0.$$

 \therefore (-1, 0, -1), (0, -1, 1) અને (-1, 1, 0) અસમતલીય છે.

ધારો કે $\bar{x} = \alpha(-1, 0, -1) + \beta(0, -1, 1) + \gamma(-1, 1, 0), \alpha, \beta, \gamma \in \mathbb{R}$

$$\therefore \ \overline{x} = (x_1, x_2, x_3) \text{ Hiz},$$

$$\therefore (x_1, x_2, x_3) = (-\alpha - \gamma, -\beta + \gamma, -\alpha + \beta)$$

$$-\alpha - \gamma = x_1$$
, $-\beta + \gamma = x_2$, $-\alpha + \beta = x_3$

સમીકરણો ઉકેલતાં,

$$\alpha = -\frac{x_1 + x_2 + x_3}{2}, \ \beta = \frac{x_3 - x_1 - x_2}{2}, \ \gamma = \frac{x_2 + x_3 - x_1}{2}$$

$$\therefore \quad \overline{x} = -\frac{x_1 + x_2 + x_3}{2} (-1, 0, -1) + \frac{x_3 - x_1 - x_2}{2} (0, -1, 1) + \frac{x_2 + x_3 - x_1}{2} (-1, 1, 0).$$

ઉદાહરણ 12 : $|\overline{x} \cdot \overline{y}| < |\overline{x}| |\overline{y}|$ થાય તેવા \overline{x} અને \overline{y} નું એક ઉદાહરણ આપો.

ઉકેલ : ધારો કે
$$\overline{x}=(1,-1,2)$$
 અને $\overline{y}=(2,1,-2)$ $(\overline{x}\neq k\overline{y})$ તેવા \overline{x} તથા \overline{y} પસંદ કરો)

$$\overline{x} \cdot \overline{y} = 2 - 1 - 4 = -3$$

$$=3\sqrt{6}$$
 (ii)

પરિશામ (i) અને (ii), પરથી $3 < 3\sqrt{6}$ હોવાથી $|\overline{x} \cdot \overline{y}| < |\overline{x}||\overline{y}|$.

ઉદાહરણ 13 : $|\overline{x} + \overline{y}| = |\overline{x}| + |\overline{y}|$ કયારે થાય $?\overline{x}$ અને \overline{y} માટે એક ઉદાહરણ લઈ તમારો જવાબ ચકાસો.

ઉકેલ : જો
$$\overline{x}$$
 અને \overline{y} ની દિશા સમાન હોય તો $|\overline{x}+\overline{y}|=|\overline{x}|+|\overline{y}|$.

$$\overline{x} = (1, -1, 1) \text{ and } \overline{y} = (2, -2, 2) \text{ exi,}$$

 $\overline{x} = \frac{1}{2}\overline{y}; \frac{1}{2} > 0$, હોવાથી \overline{x} અને \overline{y} ની દિશા સમાન છે.

હવે
$$\overline{x} + \overline{y} = (3, -3, 3)$$

$$| \overline{x} + \overline{y} | = 3 | (1, -1, 1) | = 3 \sqrt{3}$$

$$\therefore |\overline{x} + \overline{y}| = 3\sqrt{3}$$

$$|\overline{x}| = \sqrt{3}, |\overline{y}| = 2\sqrt{3}$$
(i)

$$\therefore |\overline{x}| + |\overline{y}| = \sqrt{3} + 2\sqrt{3} = 3\sqrt{3}$$

આથી
$$|\overline{x} + \overline{y}| = |\overline{x}| + |\overline{y}|$$
.

6.9 બે શૂન્યેતર સદિશો વચ્ચેનો ખૂણો

જો R³ માં બે શુન્યેતર સદિશો આપેલા હોય તો તેમને સંગત બે નિયત સદિશો વચ્ચેના ખુણાના માપને આપેલ સદિશો વચ્ચેના ખૂશાનું માપ કહીશું.

 \overline{a} તથા \overline{b} ને સંગત નિયત સિંદશો અનુક્રમે \overrightarrow{OA} તથા \overrightarrow{OB} છે. આમ \overline{a} તથા \overline{b} વચ્ચેના ખુણાનું માપ એટલે \overrightarrow{OA} તથા \overrightarrow{OB} વચ્ચેના ખૂણાનું માપ કહેવાય.

ધારો કે \overline{x} અને \overline{y} બે શૂન્યેતર સદિશો છે.

- (1) જો $\overline{x} = k\overline{y}$, k > 0, તો \overline{x} અને \overline{y} ની દિશા સમાન છે. તેથી તેમના વચ્ચેના ખૂણાનું માપ 0 લઈશું.
- (2) જો $\overline{x} = k\overline{y}$, k < 0, તો \overline{x} અને \overline{y} વિરુદ્ધ દિશાના સદિશો છે અને તેથી તેમના વચ્ચેના ખૂશાનું માપ π લઈશું.

$$\therefore -|\overline{x}||\overline{y}| < \overline{x} \cdot \overline{y} < |\overline{x}||\overline{y}|$$

 $(|x| < a \Leftrightarrow -a < x < a)$

209

$$\therefore -1 < \frac{\overline{x} \cdot \overline{y}}{|\overline{x}||\overline{y}|} < 1$$

∴ અનન્ય $\alpha \in (0, \pi)$ મળે કે જેથી, $\cos^{-1}\frac{\overline{x}\cdot\overline{y}}{|\overline{x}||\overline{y}|}=\alpha$ થાય.

સંખ્યા α ને સદિશો \overline{x} અને \overline{y} વચ્ચેના ખૂણાનું માપ કહે છે તથા તેને $\alpha=(\overline{x}, \overline{y})$ રીતે લખાય છે.

આમ, જો
$$\overline{x}\neq \overline{0}, \ \overline{y}\neq \overline{0}$$
 તો $(\overline{x}, \overline{y})=cos^{-1}\frac{\overline{x}\cdot \overline{y}}{|\overline{x}||\overline{y}|}$

વળી, જો $|\overline{x}\cdot\overline{y}|=|\overline{x}||\overline{y}|$ તો $\overline{x}\cdot\overline{y}=|\overline{x}||\overline{y}|$ અથવા $\overline{x}\cdot\overline{y}=-|\overline{x}||\overline{y}|$. તેથી \overline{x} અને \overline{y} ની દિશા અનુક્રમે સમાન અથવા પરસ્પર વિરુદ્ધ હોય તથા \overline{x} અને \overline{y} વચ્ચેના ખૂણાનું માપ અનુક્રમે 0 અથવા π થાય.

ચાલો, આપણે તેની યથાર્થતા ચકાસીએ.

જો \overline{x} અને \overline{y} ની દિશા સમાન હોય, તો $\overline{x} = k\overline{y}$, k > 0.

$$\operatorname{eq} \frac{\overline{x} \cdot \overline{y}}{|\overline{x}||\overline{y}|} = \frac{(k\overline{y}) \cdot \overline{y}}{|k\overline{y}||\overline{y}|} = \frac{k(\overline{y} \cdot \overline{y})}{|k||\overline{y}||\overline{y}|} = \frac{k(\overline{y} \cdot \overline{y})}{|k||\overline{y}||\overline{y}|} = \frac{k|\overline{y}|^2}{k|\overline{y}|^2} = 1$$
 (k > 0)

$$\therefore \cos^{-1} \frac{\overline{x} \cdot \overline{y}}{|\overline{x}| |\overline{y}|} = \cos^{-1} 1 = 0$$

વળી, જો \overline{x} અને \overline{y} પરસ્પર વિરુદ્ધ દિશાના સદિશ હોય, તો $\overline{x}=k\overline{y},\ k<0.$

$$\mathfrak{S}\tilde{\mathfrak{A}}, \frac{\overline{x} \cdot \overline{y}}{|\overline{x}||\overline{y}|} = \frac{(k\overline{y}) \cdot \overline{y}}{|k\overline{y}||\overline{y}|} = \frac{k(\overline{y} \cdot \overline{y})}{|k||\overline{y}||\overline{y}|} = \frac{k|\overline{y}|^2}{|k||\overline{y}||\overline{y}|} = \frac{k|\overline{y}|^2}{-k|\overline{y}|^2} = -1$$
 (k < 0)

$$\therefore cos^{-1} \frac{\overline{x} \cdot \overline{y}}{|\overline{x}||\overline{y}|} = cos^{-1} (-1) = \pi$$

આમ શૂન્યેતર સદિશો \overline{x} અને \overline{y} માટે $\alpha \in [0, \pi]$ મળે કે જેથી,

$$\alpha = (\overline{x}, \overline{y}) = \cos^{-1} \frac{\overline{x} \cdot \overline{y}}{|\overline{x}||\overline{y}|}$$
 થાય.

 ${f R}^2$ માં ભૌમિતિક અર્થ : બે સદિશો વચ્ચેના ખૂણાની આપણી આ વ્યાખ્યા એ ખૂણાના માપની ભૌમિતિક સમજ સાથે સુસંગત છે. ધારો કે ${f P}$ તથા ${f Q}$ ના સ્થાન સદિશ અનુક્રમે ${f x}$ તથા ${f y}$ છે અને ${f x}
eq {f 0}, {f y}
eq {f 0}.$

ધારો કે $\frac{\overline{x}}{|\overline{x}|} = \overline{u}$ અને $\frac{\overline{y}}{|\overline{y}|} = \overline{v}$ એ અનુક્રમે \overline{x} અને \overline{y} ની દિશાના એકમ સદિશો છે.

$$(\overline{x}, \stackrel{\wedge}{\overline{y}}) = (\overline{u}, \stackrel{\wedge}{\overline{v}})$$

આકૃતિ 6.14

ધારો કે R તથા S ના સ્થાન સદિશ અનુક્રમે \overline{u} તથા \overline{v} છે. R તથા S એકમ વર્તુળ પર છે.

 $\overline{u}=(coslpha,\,sinlpha)$ અને $\overline{v}=(coseta,\,sineta)$ લઈ શકાય. જ્યાં $0\leqlpha,\,eta<2\pi.$ હવે જો \overrightarrow{OR} તથા \overrightarrow{OS} દ્વારા બનતા ખૂણાનું રેડિયન માપ eta હોય તો,

 $\theta = \alpha - \beta$ અથવા $\beta - \alpha$.

હવે,
$$cos(\overline{x}, \overline{y}) = \frac{\overline{x} \cdot \overline{y}}{|\overline{x}||\overline{y}|}$$

$$= \overline{u} \cdot \overline{v}$$

$$= (cos\alpha, sin\alpha) \cdot (cos\beta, sin\beta)$$

$$= cos\alpha cos\beta + sin\alpha sin\beta$$

$$= cos(\alpha - \beta) અથવા cos(\beta - \alpha)$$

$$= cos\theta \qquad (0 < \theta < \pi, 0 < (\overline{x}, \overline{y}) < \pi)$$

$$\therefore \quad \theta = (\overline{x}, \overline{y}) = \cos^{-1} \frac{\overline{x} \cdot \overline{y}}{|\overline{x}| |\overline{y}|}$$

આમ \overrightarrow{OP} તથા \overrightarrow{OQ} દ્વારા બનતા ખૂણાનું માપ $oldsymbol{ heta}$ અને \overline{x} તથા \overline{y} વચ્ચેના ખૂણાનું માપ (\overline{x}, \hat{y}) બંને એક જ છે.

લંબ સિંદશો : જો $\overline{x} \neq \overline{0}$ તથા $\overline{y} \neq \overline{0}$ અને $(\overline{x}, \overline{y}) = \frac{\pi}{2}$ હોય, તો \overline{x} તથા \overline{y} ને પરસ્પર લંબ સિંદશો કહે છે. \overline{x} તથા \overline{y} પરસ્પર લંબ છે તેને સંકેતમાં $\overline{x} \perp \overline{y}$ વડે દર્શાવાય છે.

બે શૂન્યેતર સદિશો પરસ્પર લંબ હોવા માટેની આવશ્યક અને પર્યાપ્ત શરત :

ધારો કે \overline{x} અને \overline{y} બે શૂન્યેતર સદિશો છે.

$$\overline{x} \perp \overline{y} \iff (\overline{x}, \overline{y}) = \frac{\pi}{2}$$

$$\iff \cos(\overline{x}, \overline{y}) = \cos\frac{\pi}{2}$$

$$\iff \frac{\overline{x} \cdot \overline{y}}{|\overline{x}||\overline{y}|} = 0$$

$$\iff \overline{x} \cdot \overline{y} = 0$$

આમ, \overline{x} અને \overline{y} પરસ્પર લંબ હોય તો અને તો જ $\overline{x} \cdot \overline{y} = 0$.

પ્રમેય 6.7 : જો \overline{x} , $\overline{y} \in \mathbb{R}^3$, $\overline{x} \neq \overline{0}$, $\overline{y} \neq \overline{0}$ અને $(\overline{x}, \overline{y}) = \alpha$ તો,

(1)
$$\overline{x} \cdot \overline{y} = |\overline{x}| |\overline{y}| \cos \alpha$$

(2)
$$|\overline{x} \times \overline{y}| = |\overline{x}| |\overline{y}| since$$

(3)
$$\overline{x} \perp (\overline{x} \times \overline{y}), \ \overline{y} \perp (\overline{x} \times \overline{y})$$

સાબિતી ઃ (1) બે સદિશો વચ્ચેના ખૂણાના માપની વ્યાખ્યા પરથી $lpha=cos^{-1}$ $\dfrac{\overline{x}\cdot\overline{y}}{|\overline{x}||\overline{y}|}$

$$\therefore \cos\alpha = \frac{\overline{x} \cdot \overline{y}}{|\overline{x}||\overline{y}|}$$

$$\therefore \quad \overline{x} \cdot \overline{y} = |\overline{x}| |\overline{y}| \cos \alpha$$

(2) લાગ્રાન્જના નિત્યસમ પરથી,

$$|\overline{x} \times \overline{y}|^2 + |\overline{x} \cdot \overline{y}|^2 = |\overline{x}|^2 |\overline{y}|^2$$

$$\therefore |\overline{x} \times \overline{y}|^2 = |\overline{x}|^2 |\overline{y}|^2 - |\overline{x} \cdot \overline{y}|^2$$

$$= |\overline{x}|^2 |\overline{y}|^2 - |\overline{x}|^2 |\overline{y}|^2 \cos^2\alpha$$

$$= |\overline{x}|^2 |\overline{y}|^2 (1 - \cos^2\alpha)$$

$$= |\overline{x}|^2 |\overline{y}|^2 \sin^2\alpha$$

$$\therefore |\overline{x} \times \overline{y}| = |\overline{x}| |\overline{y}| \sin \alpha$$

 $(0 \le \alpha \le \pi \text{ share } \sin \alpha \ge 0)$

(3) ધારો કે $\overline{x} = (x_1, x_2, x_3)$ અને $\overline{y} = (y_1, y_2, y_3)$

હવે,
$$\overline{x} \cdot (\overline{x} \times \overline{y}) = \begin{vmatrix} x_1 & x_2 & x_3 \\ x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \end{vmatrix} = 0$$

 $\therefore \quad \overline{x} \perp (\overline{x} \times \overline{y})$ તે જ પ્રમાણે $\overline{y} \cdot (\overline{x} \times \overline{y}) = 0$. અને તેથી $\overline{y} \perp (\overline{x} \times \overline{y})$.

આમ $(\overline{x} \times \overline{y})$ એ \overline{x} અને \overline{y} બંનેને લંબ સદિશ છે અને તેથી $\pm \frac{\overline{x} \times \overline{y}}{|\overline{x} \times \overline{y}|}$ એ \overline{x} અને \overline{y} બંનેને લંબ એકમ સદિશો છે.

$\overline{x} \times \overline{y}$ નું ભૌમિતિક અર્થઘટન ः

જમણી બાજુના આંટાવાળા સ્ક્રુને જ્યારે ધન X-અક્ષની દિશા તરફથી ધન Y-અક્ષની દિશા તરફ ઘડિયાળના કાંટાની વિરૂદ્ધ દિશામાં ફેરવવામાં આવે ત્યારે આકૃતિ 6.15માં દર્શાવ્યા મુજબ તે ધન Z-અક્ષની દિશામાં આગળ વધે છે.

$$\mid \overline{x} \times \overline{y} \mid = \mid \overline{x} \mid \mid \overline{y} \mid sin\theta, \ \theta = (\overline{x}, \stackrel{\frown}{y})$$
 હોવાથી,
$$\overline{x} \times \overline{y} = \mid \overline{x} \mid \mid \overline{y} \mid sin\theta \ \hat{n}, \ \text{જ્યાં} \ \hat{n} \ \ \text{એ} \ \ \overline{x} \times \overline{y} \ \ \text{-fl}$$

દિશાનો એકમ સદિશ છે.

જમણા હાથના અંગૂઠાના નિયમ પરથી $\overline{x} imes \overline{y}$ ની દિશા મેળવી શકાય. આપણે જમણા હાથની આંગળીઓને \overline{x} ની દિશા તરફથી \overline{y} ની દિશા તરફ વાળીએ તો જમણા હાથનો અંગૂઠો $\overline{x} imes \overline{y}$ ની દિશા સૂચવશે.

ઉદાહરણ 14: સિંદશો (1, -1, 2) અને (2, -1, 1) વચ્ચેના ખૂણાનું માપ શોધો.

ઉંકેલ : ધારો કે
$$\overline{x}=(1,-1,2)$$
 અને $\overline{y}=(2,-1,1)$

હવે,
$$cos(\overline{x}, \overline{y}) = \frac{\overline{x} \cdot \overline{y}}{|\overline{x}||\overline{y}|}$$

$$= \frac{(1, -1, 2) \cdot (2, -1, 1)}{\sqrt{1 + 1 + 4} \sqrt{4 + 1 + 1}} = \frac{2 + 1 + 2}{\sqrt{6} \sqrt{6}}$$

$$= \frac{5}{6}$$

$$\therefore \qquad (\overline{x}, \stackrel{\wedge}{\overline{y}}) = \cos^{-1} \frac{5}{6}$$

ઉદાહરણ 15 : જો સદિશો $\sqrt{3}\,\hat{i}\,+\,\hat{j}\,$ અને $a\,\hat{i}\,+\sqrt{3}\,\hat{j}\,$ વચ્ચેના ખૂણાનું માપ $\frac{\pi}{3}$, હોય, તો a શોધો.

ઉકેલ : ધારો કે
$$\overline{x}=\sqrt{3}\,\hat{i}\,+\,\hat{j}\,=(\sqrt{3},\,1)$$
 અને $\overline{y}=a\,\hat{i}\,+\sqrt{3}\,\hat{j}\,=(a,\,\sqrt{3})$

હવે,
$$(\overline{x}, \stackrel{\frown}{y}) = \frac{\pi}{3}$$
 $\therefore cos(\overline{x}, \stackrel{\frown}{y}) = cos\frac{\pi}{3}$
 $\therefore \frac{\overline{x} \cdot \overline{y}}{|\overline{x}||\overline{y}|} = \frac{1}{2}$

(i)

ed $\overline{x} \cdot \overline{y} = (\sqrt{3}, 1) \cdot (a, \sqrt{3}) = \sqrt{3}a + \sqrt{3}, |\overline{x}| = \sqrt{3+1} = 2, |\overline{y}| = \sqrt{a^2 + 3}$
 $\therefore \frac{\sqrt{3}a + \sqrt{3}}{2\sqrt{a^2 + 3}} = \frac{1}{2}$

(ii)

 $\therefore 3(a + 1) = \sqrt{a^2 + 3}$

(iii)

 $\therefore 3(a^2 + 2a + 1) = a^2 + 3$
 $\therefore 2a^2 + 6a = 0$
 $\therefore 2a(a + 3) = 0$
 $\therefore a = 0$ અથવા $a = -3$
 $a = -3$ એ (ii) 'તું સમાધાન કરશે નહીં કારશ કે $\sqrt{3}(-2) \neq \sqrt{12} = 2\sqrt{3}$
 $a = 0$ માટે, $\sqrt{3}(a + 1) = \sqrt{3}$, $\sqrt{a^2 + 3} = \sqrt{3}$. તેથી $a = 0$.

ઉદાહરણ 16: 'शे $|\overline{x}| = |\overline{y}| = 1$ અને $(\overline{x}, \stackrel{\frown}{y}) = 0$ હોય તો સાહિત કરો કે $|\overline{x} - \overline{y}cos\theta| = sin\theta$

ઉદેધ: $|\overline{x} - \overline{y}cos\theta|^2 = |\overline{x}|^2 - 2\overline{x} \cdot \overline{y}cos\theta + |\overline{y}cos\theta|^2$
 $= 1 - 2cos^2\theta + cos^2\theta$
 $= 1 - cos^2\theta$
 $= sin^2\theta$

ઉદાહરણ 17 : જો $\overline{x}=\hat{i}+a\hat{j}+3\hat{k}$ અને $\overline{y}=2\hat{i}-\hat{j}+5\hat{k}$ પરસ્પર લંબ સદિશો હોય તો a શોધો.

ઉકેલ : અહીં
$$\overline{x} = (1, a, 3), \ \overline{y} = (2, -1, 5)$$

$$\overline{x} \perp \overline{y} \iff \overline{x} \cdot \overline{y} = 0$$

$$\iff 2 - a + 15 = 0$$

$$\iff a = 17$$

$$\therefore a = 17$$

 $\therefore |\overline{x} - \overline{y}\cos\theta| = \sin\theta$

ઉદાહરણ 18:(1, 2, 3) અને (2, -1, 4) બંનેને લંબ એકમ સદિશો શોધો.

(3)
$$\overline{x} = (1, 2, 3),$$
 $\overline{y} = (2, -1, 4)$

$$\overline{x} \times \overline{y} = (11, 2, -5)$$
 અને $|\overline{x} \times \overline{y}| = \sqrt{121 + 4 + 25} = \sqrt{150} = 5\sqrt{6}$

$$\therefore$$
 આપેલા સદિશોને લંબ એકમ સદિશો $\pm \frac{\overline{x} \times \overline{y}}{|\overline{x} \times \overline{y}|} = \pm \left(\frac{11}{5\sqrt{6}}, \frac{2}{5\sqrt{6}}, \frac{-1}{\sqrt{6}}\right)$ છે.

સદિશનું બીજગણિત

 $(0 \le \theta \le \pi)$

6.10 સદિશનો પ્રક્ષેપ

જો \overline{a} તથા \overline{b} પરસ્પર લંબ ન હોય તેવા શૂન્યેતર સદિશો હોય, તો \overline{a} નો \overline{b} પરનો પ્રક્ષેપ સદિશ (Projection Vector)

સમાન આરંભબિંદુ ${f P}$ હોય તેવા સદિશો $\overrightarrow{{f pR}}=\overline{a}$ અને

 $\overrightarrow{PQ} = \overline{b}$ છે. S એ બિંદુ R માંથી \overrightarrow{PQ} પરનો લંબપાદ છે.

તો
$$\overrightarrow{PS} = \text{Proj } \overline{h} \overline{a}$$
 થશે. (આકૃતિ 6.18)

ધારો કે
$$\overline{c} = \overrightarrow{PS}$$
, $\overline{c} \neq \overline{0}$

$$\overrightarrow{SR} = \overline{a} - \overline{c}$$
 sizes $\overrightarrow{SPS} + \overrightarrow{SR} = \overrightarrow{PR} = \overline{a}$

 \overline{c} અને \overline{b} ની દિશા સમાન અથવા પરસ્પર વિરૂદ્ધ હોવાથી,

∴ કોઈક
$$k \in \mathbb{R} - \{0\}$$
 માટે $\overline{c} = k\overline{b}$
∴ $\overline{c} \cdot \overline{b} = k\overline{b} \cdot \overline{b} = k | \overline{b} |^2$

$$\therefore \quad \overline{c} \cdot \overline{b} = k\overline{b} \cdot \overline{b} = k |\overline{b}|^2$$

$$\therefore k = \frac{\overline{c} \cdot \overline{b}}{|\overline{b}|^2}$$

 $\stackrel{\longleftrightarrow}{\mathrm{RS}} \perp \stackrel{\longleftrightarrow}{\mathrm{PS}}$ હોવાથી, $(\overline{a} - \overline{c}) \perp \overline{b}$

$$\therefore (\overline{a} - \overline{c}) \cdot \overline{b} = 0$$

$$\therefore \overline{a} \cdot \overline{b} = \overline{c} \cdot \overline{b}$$

$$\therefore \ \overline{a} \cdot \overline{b} = \overline{c} \cdot \overline{b}$$

$$\therefore \quad k = \frac{\overline{a} \cdot \overline{b}}{|\overline{b}|^2}, \text{ size } \hat{s} \ k = \frac{\overline{c} \cdot \overline{b}}{|\overline{b}|^2}$$

$$\therefore \overrightarrow{\mathbf{PS}} = \overline{c} = \left(\frac{\overline{a} \cdot \overline{b}}{|\overline{b}|^2}\right) \overline{b} = \operatorname{Proj} \overline{b} \overline{a}.$$

((i) પરથી)

(i)

પ્રક્ષેપ સદિશનું માન : $PS = \frac{|\overline{a} \cdot \overline{b}|}{|\overline{b}|^2} |\overline{b}| = \frac{|\overline{a} \cdot \overline{b}|}{|\overline{b}|}$ પ્રક્ષેપ સદિશનું માન છે.

 $\frac{|\overline{a}\cdot\overline{b}\,|}{|\overline{b}\,|}$ તે \overline{a} નો \overline{b} ની દિશામાં ઘટક (Component) કહે છે. તેનો સંકેત Comp $_{\overline{b}}^{\overline{a}}$ છે.

નોંધઃ જો R³ ના બે સદિશો આપેલા હોય તો તેમને સંગત બે નિયત સદિશોનો ઉપર પ્રમાણે વિચાર કરી શકાય.

AB તથા PO એ R3 ના સદિશો હોય તો જેનું આરંભબિંદ

 $\overline{a} - \overline{c}$

આકૃતિ 6.18

A હોય તેવો PO ને સમાન સદિશ લેવાથી આ જ પરિણામ મળશે. \overrightarrow{AB} નો \overrightarrow{PQ} પરનો પ્રક્ષેપ \overrightarrow{AC} બને.

ત્રિકોણનું ક્ષેત્રફળ :

$$\triangle$$
ABC માં $\overrightarrow{AB} = \overline{c}$, $\overrightarrow{BC} = \overline{a}$ અને $\overrightarrow{CA} = \overline{b}$.

$$\Delta ABC$$
 નું ક્ષેત્રફળ = $\frac{1}{2}$ bc $sin A$
= $\frac{1}{2} \mid \overline{b} \mid \mid \overline{c} \mid sin A$
= $\frac{1}{2} \mid \overline{b} \times \overline{c} \mid$

$$(\overline{b}, \overline{c}) = \pi - A \text{ evil} \sin(\pi - A) = \sin A$$

આમ
$$\triangle ABC$$
 નું ક્ષેત્રફળ = $\frac{1}{2}$ | \overline{b} $imes$ \overline{c} | = $\frac{1}{2}$ | \overline{a} $imes$ \overline{b} | = $\frac{1}{2}$ | \overline{c} $imes$ \overline{a} |

નોંધ ઃ ઉપરના સૂત્રનો ઉપયોગ R³ માટે જ શક્ય છે.

વળી, ∆ABC નું ક્ષેત્રફળ

$$\Delta = \frac{1}{2} bc \sqrt{1 - cos^2 A}$$

$$= \frac{1}{2} |\overline{b}| |\overline{c}| \sqrt{1 - \left(\frac{\overline{b} \cdot \overline{c}}{|\overline{b}| |\overline{c}|}\right)^2}$$

$$\therefore \quad \Delta = \frac{1}{2} \sqrt{|\overline{b}|^2 |\overline{c}|^2 - |\overline{b} \cdot \overline{c}|^2}$$

નોંધ : ઉપરના સૂત્રનો ઉપયોગ R² તેમજ R³ બંને માટે શક્ય છે.

સમાંતરબાજુ ચતુષ્કોણનું ક્ષેત્રફળ :

 \square OACB એ $\overrightarrow{OA} = \overline{a}$ અને $\overrightarrow{OB} = \overline{b}$ હોય તેવો સમાંતરબાજુ ચતુષ્કોણ છે.

હવે,
$$\overline{\mathrm{BM}} \perp \overline{\mathrm{OA}}$$

$$\therefore \Re (\overline{a}, \stackrel{\wedge}{b}) = \alpha \text{ slu dl},$$

$$BM = OBsin\alpha = |\overline{b}| sin\alpha$$

$$Arr$$
 OACBનું ક્ષેત્રફળ = OA \cdot BM = $| \overline{a} | | \overline{b} | sin$

$$\therefore$$
 \square^m OACBનું ક્ષેત્રફળ = $|\bar{a} \times \bar{b}|$

નોંધ : જો
$$\overrightarrow{AC} = \overline{x}$$
 અને $\overrightarrow{BD} = \overline{y}$ તથા \overrightarrow{M} એ વિકર્ણોનું છેદબિંદુ હોય,
$$\overrightarrow{AM} = \frac{1}{2} \overline{x} \text{ અને } \overrightarrow{BM} = \frac{1}{2} \overline{y}$$

હવે
$$\square^m ABCD$$
 નું ક્ષેત્રફળ = $4(\triangle ABM$ નું ક્ષેત્રફળ) = $4(\frac{1}{2} \mid \overrightarrow{AM} \times \overrightarrow{BM} \mid)$

$$\therefore$$
 $\square^m ABCD નું ક્ષેત્રફળ = 2 $\Big| \frac{1}{2} \overline{x} \times \frac{1}{2} \overline{y} \Big| = \frac{1}{2} \Big| \overline{x} \times \overline{y} \Big|$ આકૃતિ 6.22$

ઉદાહરણ 19 : સદિશ $2\hat{i} + \hat{j} + \hat{k}$ નો $-4\hat{i} - 2\hat{j} + 4\hat{k}$ પરનો પ્રક્ષેપ સદિશ, પ્રક્ષેપ સદિશનું માન તથા પ્રક્ષેપ સદિશનો ઘટક શોધો.

ઉકેલ : અહીં,
$$\overline{a} = (2, 1, 1), \overline{b} = (-4, -2, 4)$$

∴
$$\overline{a} \cdot \overline{b} = -8 - 2 + 4 = -6$$
 અને $|b| = \sqrt{16 + 4 + 16} = 6$

$$\therefore \text{ Proj } \frac{1}{b} \overline{a} = \left(\frac{\overline{a} \cdot \overline{b}}{|\overline{b}|^2} \right) \overline{b} = \frac{-6}{36} (-4, -2, 4) = \frac{1}{6} (4, 2, -4) = \frac{1}{3} (2, 1, -2)$$

$$\therefore \quad \text{Comp } \frac{1}{b} \overline{a} = \frac{\overline{a} \cdot \overline{b}}{|\overline{b}|} = \frac{-6}{6} = -1$$

સમાંતર ફલકનું ઘનફળ :

જે ઘન પદાર્થના છ પૃષ્ઠ સમાંતરબાજુ ચતુષ્કોણ હોય તેવા ઘન પદાર્થને સમાંતરફલક (Parallelopiped) કહે છે.

ધારો કે
$$\overline{a}$$
, \overline{b} , \overline{c} અસમતલીય સદિશો છે $\therefore (\overline{a} \times \overline{b}) \cdot \overline{c} \neq 0$

$$\overrightarrow{OA} = \overline{a}$$
 તથા $\overrightarrow{OC} = \overline{b}$ એ અનુક્રમે સદિશ

 \overline{a} તથા સદિશ \overline{b} ના નિરૂપણ છે તથા O નો સ્થાન સદિશ $\overline{0}$ છે. અહીં, \square OABC એ સમાંતરબાજુ ચતુષ્કોણ છે.

$$\therefore \quad \Box^m OABC નું ક્ષેત્રફળ = | \overline{a} \times \overline{b} |$$
 વળી $\overline{a} \times \overline{b}$ (એટલે કે \overrightarrow{OM}) એ \overline{a} તથા \overline{b} બંનેને લંબ સદિશ છે.

 \therefore સમાંતરફલક OABC - B'C'O'A' ની ઊંચાઈ $=\overline{c}$ ના $\overline{a} imes\overline{b}$ પરના પ્રક્ષેપ સદિશનું માન (એટલે કે OM)

$$= \frac{|\overline{c} \cdot (\overline{a} \times \overline{b})|}{|\overline{a} \times \overline{b}|}$$

સમાંતરફલકનું ઘનફળ = પાયાનું ક્ષેત્રફળ 🗙 ઊંચાઈ

$$= |\overline{a} \times \overline{b}| \frac{|\overline{c} \cdot (\overline{a} \times \overline{b})|}{|\overline{a} \times \overline{b}|}$$
$$= |\overline{c} \cdot (\overline{a} \times \overline{b})|$$

 \therefore સમાંતરફલકનું ઘનફળ $=|[\overline{c}\ \overline{a}\ \overline{b}]|=|[\overline{a}\ \overline{b}\ \overline{c}]|$

નોંધ ઃ આપણે એ નોંધીએ કે \overline{a} , \overline{b} , \overline{c} એ સમાંતર ફલકની પાસપાસેની ધારો છે.

ઉદાહરણ 20 : જેની ધારો \overrightarrow{OA} = (2, 1, 1), \overrightarrow{OB} = (3, -1, 1) અને \overrightarrow{OC} = (-1, 1, -1) હોય તેવા સમાંતરફલકનું ઘનફળ શોધો.

ઉકેલ : $\overline{a} = (2, 1, 1), \overline{b} = (3, -1, 1), \overline{c} = (-1, 1, -1)$ લેતાં,

$$[\overline{a} \ \overline{b} \ \overline{c}] = \begin{vmatrix} 2 & 1 & 1 \\ 3 & -1 & 1 \\ -1 & 1 & -1 \end{vmatrix} = 2(0) - 1(-2) + 1(2) = 4$$

સમાંતરફલકનું ઘનફળ $= \left| \left[\overline{a} \ \overline{b} \ \overline{c} \, \right] \right| = \left| 4 \right| = 4$

6.11 સદિશની દિફકોસાઈન, દિફખૂણાઓ અને દિફગુણોત્તર

આપણે જાણીએ છીએ કે, $\hat{i}=(1,0,0)$, $\hat{j}=(0,1,0)$ અને $\hat{k}=(0,0,1)$ એ અનુક્રમે X-અક્ષ, Y-અક્ષ અને Z-અક્ષની ધન દિશામાં \mathbb{R}^3 ના એકમ સદિશો છે. જો શૂન્યેતર સદિશ $\overline{x}=(x_1,x_2,x_3)$ એ X-અક્ષ, Y-અક્ષ અને Z-અક્ષની ધન દિશા સાથે અનુક્રમે α , β અને γ માપના ખૂણાઓ બનાવે, તો α , β અને γ ને સદિશ \overline{x} ના દિક્ખૂણાઓનાં માપ (Direction Angles) કહે છે. $\cos\alpha$, $\cos\beta$, $\cos\gamma$ ને \overline{x} ની દિક્કોસાઈન (Direction Cosines) કહે છે.

lpha એ \overline{x} અને \hat{i} , વચ્ચેના ખૂશાનું માપ છે. તેથી

$$cos\alpha = \frac{\overline{x} \cdot \hat{i}}{|\overline{x}||\hat{i}|} = \frac{(x_1, x_2, x_3) \cdot (1, 0, 0)}{\sqrt{x_1^2 + x_2^2 + x_3^2} \cdot 1} = \frac{x_1}{\sqrt{x_1^2 + x_2^2 + x_3^2}}$$

તે જ પ્રમાશે, $cos\beta = \frac{x_2}{\sqrt{x_1^2 + x_2^2 + x_3^2}}$ અને $cos\gamma = \frac{x_3}{\sqrt{x_1^2 + x_2^2 + x_3^2}}$.

જો આપણે $l = cos \alpha$, $m = cos \beta$, $n = cos \gamma$ લઈએ તો,

$$(l, m, n) = (\cos\alpha, \cos\beta, \cos\gamma) = \left(\frac{x_1}{\sqrt{x_1^2 + x_2^2 + x_3^2}}, \frac{x_2}{\sqrt{x_1^2 + x_2^2 + x_3^2}}, \frac{x_3}{\sqrt{x_1^2 + x_2^2 + x_3^2}}\right)$$

$$= \left(\frac{x_1}{|\overline{x}|}, \frac{x_2}{|\overline{x}|}, \frac{x_3}{|\overline{x}|}\right)$$

$$\therefore (l, m, n) = \frac{1}{|\overline{x}|} (x_1, x_2, x_3) = \frac{\overline{x}}{|\overline{x}|} = \hat{x}$$

હવે,
$$l^2 + m^2 + n^2 = \cos^2\alpha + \cos^2\beta + \cos^2\gamma = \frac{x_1^2 + x_2^2 + x_3^2}{x_1^2 + x_2^2 + x_3^2} = 1$$

and $(\cos\alpha, \cos\beta, \cos\gamma) = \frac{\overline{x}}{|\overline{x}|} = \hat{x}$

$$\therefore \quad \frac{\overline{x}}{|\overline{x}|} = k\overline{x}$$
 જયાં $k = \frac{1}{|\overline{x}|} > 0$ હોવાથી, $(\cos\alpha, \, \cos\beta, \, \cos\gamma)$ એ \overline{x} ની દિશાનો એકમ સદિશ છે.

જો $\overline{x}=(x_1,x_2,x_3), \ \overline{x}\neq \overline{0}$ અને $m\neq 0$ તો $m\overline{x}=(mx_1,mx_2,mx_3)$ થશે. $m\overline{x}$ ના ઘટકો mx_1,mx_2 અને mx_3 ને સિદિશ \overline{x} ના દિક્ગુણોત્તર (દિક્સંખ્યાઓ) કહે છે. mના સ્થાને mk $(m\neq 0,\ k\neq 0)$ મૂકતાં સિદિશ $k\overline{x}$ ના દિક્ગુણોત્તર $m(kx_1),\ m(kx_2),\ m(kx_3)$ થશે. m>0, માટે \overline{x} અને $m\overline{x}$ ની દિક્કોસાઈન સમાન થશે, જ્યારે m<0 માટે \overline{x} અને $m\overline{x}$ ની દિક્કોસાઈન એકબીજાની વિરોધી સંખ્યા થશે.

 \overline{x} ના દિક્ષ્યુણાના માપ $\alpha=\cos^{-1}\frac{x_1}{|\overline{x}|},\ \beta=\cos^{-1}\frac{x_2}{|\overline{x}|}$ અને $\gamma=\cos^{-1}\frac{x_3}{|\overline{x}|}$ થશે.

$$\frac{m\overline{x}}{|m\overline{x}|} = \frac{m\overline{x}}{|m||\overline{x}|} = \frac{m\overline{x}}{m|\overline{x}|} = \frac{\overline{x}}{|\overline{x}|}, m > 0$$

 \therefore જો m>0 તો \overline{x} અને $m\overline{x}$ ની દિક્કોસાઈન સમાન છે.

તે જ રીતે જો m<0 તો |m|=-m. \overline{x} અને $m\overline{x}$ ની દિક્કોસાઈન એક બીજાની વિરોધી સંખ્યા છે.

ઉદાહરણ 21 : $\sqrt{2}\;\hat{i}\;-\;\hat{j}\;+\;\hat{k}\;$ ની દિક્કોસાઈન અને દિક્ખૂણાઓ શોધો.

ઉકેલ :
$$\overline{x} = (\sqrt{2}, -1, 1)$$
 લેતાં, $|\overline{x}| = \sqrt{2+1+1} = 2$

જો α , β અને γ એ \overline{x} ના દિક્ષ્ણાઓ હોય, તો $cos \alpha = \frac{\sqrt{2}}{2} = \frac{1}{\sqrt{2}}$, $cos \beta = -\frac{1}{2}$, $cos \gamma = \frac{1}{2}$

$$\therefore \quad \alpha = \frac{\pi}{4}, \ \beta = \pi - \cos^{-1} \frac{1}{2} = \frac{2\pi}{3} \ \text{ with } \gamma = \frac{\pi}{3}$$

 \therefore દિક્કોસાઈન $\frac{1}{\sqrt{2}}, -\frac{1}{2}, \frac{1}{2}$ અને દિક્ખૂણાઓ $\frac{\pi}{4}, \frac{2\pi}{3}$ અને $\frac{\pi}{3}$ છે.

 ${f G}$ દાહરણ ${f 22}$: સદિશ \overline{x} એ ${f X}$ -અક્ષ અને ${f Y}$ -અક્ષ સાથે અનુક્રમે $rac{\pi}{3}$ અને $rac{2\pi}{3}$ માપના ખૂણા બનાવે તો તે ${f Z}$ -અક્ષ સાથે કેટલા માપનો ખૂણો બનાવશે ?

ઉકેલ : જો સદિશ \overline{x} એ X-અક્ષ, Y-અક્ષ અને Z-અક્ષ સાથે અનુક્રમે α , β અને γ માપના ખૂણા બનાવે, તો $cos^2\alpha+cos^2\beta+cos^2\gamma=1$. અહીં, $\alpha=\frac{\pi}{3}$ અને $\beta=\frac{2\pi}{3}$

$$\therefore \cos^2 \frac{\pi}{3} + \cos^2 \frac{2\pi}{3} + \cos^2 \gamma = 1$$

$$\therefore \quad \frac{1}{4} + \frac{1}{4} + \cos^2 \gamma = 1$$

$$\therefore \cos^2 \gamma = 1 - \frac{1}{2} = \frac{1}{2}$$

$$\therefore cos\gamma = \pm \frac{1}{\sqrt{2}}$$

$$\therefore$$
 $\gamma = \frac{\pi}{4}$ અથવા $\frac{3\pi}{4}$

પ્રકીર્ણ ઉદાહરણો

ઉદાહરણ 23 : જો $|\overline{x}| = 2$, $|\overline{y}| = 4$, $|\overline{z}| = 1$ અને $\overline{x} + \overline{y} + \overline{z} = \overline{0}$ તો $\overline{x} \cdot \overline{y} + \overline{y} \cdot \overline{z} + \overline{z} \cdot \overline{x}$ શોધો. ઉક્રેલ : $|\overline{x} + \overline{y}| + \overline{z}|^2 = |\overline{x}|^2 + |\overline{y}|^2 + |\overline{z}|^2 + 2\overline{x} \cdot \overline{y} + 2\overline{y} \cdot \overline{z} + 2\overline{z} \cdot \overline{x}$.

$$\therefore 0 = 4 + 16 + 1 + 2(\overline{x} \cdot \overline{y} + \overline{y} \cdot \overline{z} + \overline{z} \cdot \overline{x})$$

$$\therefore \quad \overline{x} \cdot \overline{y} + \overline{y} \cdot \overline{z} + \overline{z} \cdot \overline{x} = -\frac{21}{2}.$$

ઉદાહરણ 24 : A(1, 1, 1), B(0, 2, 5), C(-3, 3, 2) અને D(-1, 1, -6) R^3 નાં બિંદુઓ છે. \overrightarrow{AB} અને \overrightarrow{CD} વચ્ચેના ખૂણાનું માપ શોધો. \overrightarrow{AB} અને \overrightarrow{CD} વિશે શું નિર્ણય કરશો ?

ઉદ્દેલ :
$$\overrightarrow{AB} = (0, 2, 5) - (1, 1, 1) = (-1, 1, 4)$$
 અને $\overrightarrow{CD} = (-1, 1, -6) - (-3, 3, 2) = (2, -2, -8)$

$$|\overrightarrow{AB}| = \sqrt{1+1+16} = 3\sqrt{2}$$
 અને $|\overrightarrow{CD}| = \sqrt{4+4+64} = 6\sqrt{2}$

$$cos(\overrightarrow{AB}, \overrightarrow{CD}) = \frac{\overrightarrow{AB} \cdot \overrightarrow{CD}}{|\overrightarrow{AB}| |\overrightarrow{CD}|} = \frac{-2 - 2 - 32}{3\sqrt{2} \times 6\sqrt{2}} = \frac{-36}{36} = -1$$

$$\therefore (\overrightarrow{AB}, \overrightarrow{CD}) = \pi$$

 \overrightarrow{AB} અને \overrightarrow{CD} વચ્ચેના ખૂશાનું માપ π હોવાથી \overrightarrow{AB} અને \overrightarrow{CD} એકબીજાની વિરૂદ્ધ દિશાના સદિશો છે.

વળી, $\overrightarrow{AB} \times \overrightarrow{CD} = \overline{0}$ હોવાથી \overrightarrow{AB} અને \overrightarrow{CD} સમરેખ છે.

નોંધ : $\overrightarrow{CD} = -2 \overrightarrow{AB}$. હોવાથી \overrightarrow{AB} અને \overrightarrow{CD} સમરેખ છે.

ઉદાહરણ 25 : સિંદિશ \overline{a} એ $\overline{y}=2\hat{i}-\hat{k}$ ને સમાંતર હોય અને \overline{b} એ \overline{y} ને લંબ હોય તેવા બે સિંદિશો \overline{a} અને \overline{b} ના સરવાળા સ્વરૂપે $\overline{x}=3\hat{i}-\hat{j}+2\hat{k}$ ને દર્શાવો.

ઉકેલ : \overline{a} એ \overline{y} ને સમાંતર છે.

તેથી,
$$\overline{a} = m\overline{y}$$
, $m \in \mathbb{R} - \{0\}$

$$\vec{a} = 2m\hat{i} - m\hat{k} = (2m, 0, -m)$$

હવે.
$$\overline{x} = \overline{a} + \overline{b}$$

$$\vec{b} = \vec{x} - \vec{a} = (3, -1, 2) - (2m, 0, -m) = (3 - 2m, -1, 2 + m)$$

વળી,
$$\overline{b} \perp \overline{y}$$

$$\therefore \quad \overline{b} \cdot \overline{y} = 0$$

$$\therefore$$
 $(3-2m,-1,2+m)\cdot(2,0,-1)=0$

$$\therefore$$
 6 - 4m - 2 - m = 0

$$\therefore m = \frac{4}{5}$$

$$\vec{a} = \frac{8}{5} \hat{i} - \frac{4}{5} \hat{k} \text{ with } \vec{b} = (3 - 2(\frac{4}{5})) \hat{i} - \hat{j} + (2 + \frac{4}{5}) \hat{k} = \frac{7}{5} \hat{i} - \hat{j} + \frac{14}{5} \hat{k}$$

આ \overline{a} અને \overline{b} માટે $\overline{x} = \overline{a} + \overline{b}$ થાય.

ઉદાહરણ 26 : સાબિત કરો : $\overline{a} \times [\overline{a} \times (\overline{a} \times \overline{b})] = |\overline{a}|^2 (\overline{b} \times \overline{a})$

Given:
$$\overline{a} \times [\overline{a} \times (\overline{a} \times \overline{b})] = [\overline{a} \cdot (\overline{a} \times \overline{b})] \overline{a} - (\overline{a} \cdot \overline{a})(\overline{a} \times \overline{b})$$

$$= [\overline{a} \ \overline{a} \ \overline{b}] \overline{a} - |\overline{a}|^2 (-(\overline{b} \times \overline{a}))$$

$$= \overline{0} + |\overline{a}|^2 (\overline{b} \times \overline{a})$$

$$= |\overline{a}|^2 (\overline{b} \times \overline{a})$$

ઉદાહરણ 27 : જો શૂન્યેતર સિંદશો \overline{a} , \overline{b} અને \overline{c} માટે $\overline{a} \times \overline{b} = \overline{c}$ અને $\overline{b} \times \overline{c} = \overline{a}$ તો સાબિત કરો કે $|\overline{b}| = 1$.

$$\mathbf{G} \mathbf{G} \mathbf{G} : \overline{b} \times \overline{c} = \overline{a}$$

$$\therefore (\overline{b} \times \overline{c}) \cdot \overline{b} = \overline{a} \cdot \overline{b}$$

$$\therefore \quad [\overline{b} \ \overline{c} \ \overline{b}] = \overline{a} \cdot \overline{b}$$

$$\therefore \quad \overline{a} \cdot \overline{b} = 0$$
 (i)

હવે,
$$\overline{b} \times \overline{c} = \overline{a}$$

$$\therefore \quad \overline{b} \times (\overline{a} \times \overline{b}) = \overline{a} \qquad (\overline{c} = \overline{a} \times \overline{b})$$

$$\therefore \quad (\overline{b} \cdot \overline{b}) \, \overline{a} \, - (\overline{b} \cdot \overline{a}) \overline{b} \, = \, \overline{a} \tag{(i) 420}$$

$$\therefore |\overline{b}|^2 \overline{a} = \overline{a}$$

$$\therefore (|\overline{b}|^2 - 1)\overline{a} = \overline{0}$$

$$\therefore \quad \overline{a} \neq \overline{0} \text{ shall } |\overline{b}|^2 = 1 \qquad \qquad (\alpha \overline{x} = \overline{0} \Rightarrow \alpha = 0 \text{ shall } \overline{x} = \overline{0})$$

$$|\overline{b}| = 1$$

ઉદાહરણ 28 : જો A(1, 1, 2), B(2, 3, 5), C(1, 3, 4) અને D(0, 1, 1) એ સમાંતર બાજુ ચતુષ્કોણ ABCD નાં શિરોબિંદુઓ હોય, તો તેનું ક્ષેત્રફળ શોધો.

$$\overrightarrow{AB}$$
 = (2, 3, 5) - (1, 1, 2) = (1, 2, 3) અને

$$\overrightarrow{BC} = (1, 3, 4) - (2, 3, 5) = (-1, 0, -1)$$

િ MABCD નું ક્ષેત્રફળ =
$$|\overrightarrow{AB} \times \overrightarrow{BC}| = |(-2 - 0, -(-1 + 3), 0 + 2)|$$

= $|(-2, -2, 2)|$
= $\sqrt{4 + 4 + 4}$
= $2\sqrt{3}$

સદિશનું બીજગણિત

રીત 2 : સમાંતરબાજુ ચતુષ્કોણ ABCD ના વિકર્ણા \overline{AC} અને \overline{BD} દર્શાવતા સદિશો,

$$\overrightarrow{AC} \times \overrightarrow{BD} = (-8 + 4, -(0 + 4), 0 + 4)$$
$$= (-4, -4, 4)$$

∴ ક્ષેત્રફળ =
$$\frac{1}{2}$$
 | \overrightarrow{AC} × \overrightarrow{BD} |
$$= \frac{1}{2} | (-4, -4, 4) |$$

$$= \frac{1}{2} \sqrt{16 + 16 + 16}$$

$$= 2\sqrt{3}$$

ઉદાહરણ 29 : જો α , β , γ એ સદિશ \overline{x} ના દિક્ખૂણાઓ હોય, તો સાબિત કરો કે $\sin^2\alpha + \sin^2\beta + \sin^2\gamma = 2$ તથા $\cos 2\alpha + \cos 2\beta + \cos 2\gamma$ નું મૂલ્ય શોધો.

6કેલ : α , β , γ એ \overline{x} ના દિક્ખૂશાઓ છે.

$$\therefore \cos^2\alpha + \cos^2\beta + \cos^2\gamma = 1$$

$$\therefore 1 - \sin^2\alpha + 1 - \sin^2\beta + 1 - \sin^2\gamma = 1$$

$$\therefore sin^2\alpha + sin^2\beta + sin^2\gamma = 2$$

વળી,
$$cos^2\alpha + cos^2\beta + cos^2\gamma = 1$$

$$\therefore \quad \frac{1+\cos 2\alpha}{2} + \frac{1+\cos 2\beta}{2} + \frac{1+\cos 2\gamma}{2} = 1$$

$$\therefore 3 + \cos 2\alpha + \cos 2\beta + \cos 2\gamma = 2$$

$$\therefore \cos 2\alpha + \cos 2\beta + \cos 2\gamma = -1.$$

ઉદાહરણ 30 : XY-સમતલમાં સદિશ 4 \hat{i} - 3 \hat{j} + 2 \hat{k} ને લંબ હોય તેવો એકમ સદિશ શોધો.

6કેલ ધારો કે XY-સમતલનો એકમ સદિશ (a, b, 0) છે તથા તે (4, -3, 2) ને લંબ છે.

$$\therefore$$
 $(a, b, 0) \cdot (4, -3, 2) = 0$

$$\therefore 4a - 3b = 0$$

$$\therefore \quad a = \frac{3b}{4}$$

હવે, (a, b, 0) એકમ સદિશ છે.

$$\therefore a^2 + b^2 = 1$$

$$\therefore \quad \frac{9b^2}{16} + b^2 = 1$$

$$\therefore$$
 25 $b^2 = 16$

:.
$$b = \pm \frac{4}{5}, a = \pm \frac{3}{5}$$

∴ માંગેલ સદિશ
$$\pm \frac{1}{5}(3, 4, 0)$$
 છે.

ઉદાહરણ 31 : \overline{a} એ એકમ સિંદેશ છે તથા $\overline{b}=(3,0,-4)$ છે. \overline{a} અને \overline{b} વચ્ચેના ખૂણાનું માપ $\frac{\pi}{6}$ છે. જો કોઈ સમાંતરબાજુ ચતુષ્કોણના વિકર્ણો $(3\overline{a}+\overline{b})$ અને $(\overline{a}+3\overline{b})$ હોય, તો તે સમાંતરબાજુ ચતુષ્કોણનું ક્ષેત્રફળ શોધો.

ઉદ્દેવ : સમાંતરબાજુ ચતુષ્કોણનું ક્ષેત્રફળ
$$=\frac{1}{2} \mid (3\overline{a} + \overline{b}\,) \times (\overline{a} + 3\overline{b}\,) \mid$$

$$= \frac{1}{2} \mid 3(\overline{a} \times \overline{a}\,) + \overline{b} \times \overline{a} + 9(\overline{a} \times \overline{b}\,) + 3(\overline{b} \times \overline{b}\,) \mid$$

$$= \frac{1}{2} \mid -(\overline{a} \times \overline{b}\,) + 9(\overline{a} \times \overline{b}\,) \mid = 4 \mid \overline{a} \times \overline{b} \mid$$
હવે, $\mid \overline{a} \times \overline{b} \mid$

$$= (1) \left(\sqrt{9 + 16}\right) \left(\sin\frac{\pi}{6}\right)$$

$$= (5) \left(\frac{1}{2}\right)$$

$$= \frac{5}{2}$$

$\therefore \quad \text{ક્ષેત્રફળ} = 4 \times \frac{5}{2} = 10$

સ્વાધ્યાય 6

- 1. $\overrightarrow{x} = (-1, 2, 3), \ \overline{y} = (2, -1, 3) \ \text{with } \overline{z} = (3, 2, 1) \ \text{slue}, \ \text{di outile} \ \ \overline{x} \times (\overline{y} \times \overline{z}) \neq (\overline{x} \times \overline{y}) \times \overline{z}.$
- 2. સાબિત કરો કે $[\overline{x} + \overline{y} \quad \overline{y} + \overline{z} \quad \overline{z} + \overline{x}] = 2[\overline{x} \quad \overline{y} \quad \overline{z}].$
- 3. જો $\overline{x} \cdot \overline{y} = \overline{x} \cdot \overline{z}$ હોય તો $\overline{y} = \overline{z}$ કહેવાય ? શા માટે ?
- 4. જો $\overline{x} \times \overline{y} = \overline{x} \times \overline{z}$ હોય તો $\overline{y} = \overline{z}$ કહેવાય ? શા માટે ?
- 5. જો $\overline{x} \cdot \overline{y} = \overline{x} \cdot \overline{z}$ અને $\overline{x} \times \overline{y} = \overline{x} \times \overline{z}$ અને $\overline{x} \neq \overline{0}$ હોય તો સાબિત કરો કે $\overline{y} = \overline{z}$.
- **6.** \Re a(1, 3, 2) + b(1, -5, 6) + c(2, 1, -2) = (4, 10, -8) dì a, b, c with.
- 7. જો $m\overline{a}=n\overline{b}$, $m,n\in\mathbb{N}$ તો સાબિત કરો કે $\overline{a}\cdot\overline{b}=|\overline{a}||\overline{b}|$. જો $m,n\in\mathbb{Z}-\{0\}$ હોય તો શું કહી શકાય ?
- **8.** સાબિત કરો કે, $\overline{x} \times (\overline{y} \times \overline{z}) + \overline{y} \times (\overline{z} \times \overline{x}) + \overline{z} \times (\overline{x} \times \overline{y}) = \overline{0}$.
- 9. નીચેનાં સદિશોના દિક્ખુણાઓ અને દિક્કોસાઈન શોધો :
 - (1) (1, 0, -1) (2) $\hat{j} + \hat{k}$ (3) $5 \hat{i} + 12 \hat{j} + 84 \hat{k}$.
- 10. જો $(\overline{x}, \overline{y}) = \alpha$ હોય, તો સાબિત કરો કે $\sin \frac{\alpha}{2} = \frac{1}{2} | \overline{x} \overline{y}|$, જ્યાં \overline{x} અને \overline{y} એકમ સદિશો છે.
- 11. \mathbb{R}^2 માં (5, -12) સદિશને લંબ એકમ સદિશ મેળવો.
- 12. જો \overline{x} , \overline{y} , \overline{z} અસમતલીય હોય, તો સાબિત કરો કે \overline{x} + \overline{y} , \overline{y} + \overline{z} અને \overline{z} + \overline{x} અસમતલીય છે.
- 13. સાબિત કરો કે, $(\overline{a} \text{Proj } \overline{b} \overline{a})$ એ \overline{b} ને લંબ છે.
- **14.** સાબિત કરો કે, (1, 2, 3) અને (2, 1, 3) અસમરેખ છે.
- **15.** સાબિત કરો કે, (1, 2, 3), (2, 3, 5) અને (5, 8, 13) સમતલીય છે.
- **16.** સદિશો (a, 2) અને (a, -2) વચ્ચેના ખૂણાનું માપ $\frac{\pi}{3}$ હોય, તો a શોધો.
- 17. સાબિત કરો કે સદિશ $a\hat{i} + 3\hat{j} + 2\hat{k}$ એ $-a\hat{i} + \hat{j} 2\hat{k}$ ને લંબ નથી.
- 18. જો $|\overline{a}| = 4$, $|\overline{b}| = 5$ અને $(\overline{a} \cdot \overline{b}) = -6$ હોય, તો $|\overline{a} \times \overline{b}|$ શોધો.
- 19. જો (a, 1, 1), (1, b, 1) અને (1, 1, c) સમતલીય હોય, તો સાબિત કરો કે $\frac{1}{1-a} + \frac{1}{1-b} + \frac{1}{1-c} = 1$.

- **20.** $\overline{a} \times \overline{b} = \overline{a} \times \overline{c}$, તથા $\overline{a} \neq \overline{0}$, $\overline{b} \neq \overline{c}$. સાબિત કરો કે $\overline{b} = \overline{c} + k\overline{a}$, $k \in \mathbb{R}$
- **21.** \overline{a} એ \overline{b} અને \overline{c} ને લંબ સદિશ છે. \overline{a} , \overline{b} અને \overline{c} એકમ સદિશો છે. જો $(\overline{b}$, $\overline{c}) = \frac{\pi}{6}$, તો સાબિત કરો કે $\overline{a} = \pm 2(\overline{b} \times \overline{c}).$
- **22.** સાબિત કરો $[(\overline{a} \times \overline{b}) \times (\overline{a} \times \overline{c})] \cdot \overline{d} = (\overline{a} \cdot \overline{d})[\overline{a} \ \overline{b} \ \overline{c}].$
- 23. સદિશનો ઉપયોગ કરી $sin(\alpha + \beta) = sin\alpha \cos\beta + \cos\alpha \sin\beta$ સાબિત કરો.
- **24.** (4, -3, 1), (2, -4, 5) અને (1, -1, 0) શિરોબિંદુવાળા ત્રિકોણનું ક્ષેત્રફળ મેળવો.
- **25.** $4 \hat{i} + \hat{j} + 3 \hat{k}$ નો $\hat{i} \hat{j} + \hat{k}$ પરનો પ્રક્ષેપ તથા તેનું માન મેળવો.
- **26.** (a, b, c) નો Y-અક્ષ પરનો પ્રક્ષેપ અને તેનું માન શોધો.
- 27. જો A(3, 2, -4), B(4, 3, -4), C(3, 3, 3) અને D(4, 2, -3) હોય, તો \overrightarrow{AD} નો $\overrightarrow{AB} \times \overrightarrow{AC}$ પરનો પ્રક્ષેપ શોધો.
- **28.** ΔABC માટે, સદિશના ઉપયોગથી $\frac{a}{sinA} = \frac{b}{sinB} = \frac{c}{sinC}$ સાબિત કરો.
- 29. સદિશના ઉપયોગથી ત્રિકોણ માટેનું cosine સૂત્ર મેળવો.

(a) $(\cos \alpha, \sin \alpha)$

- $oldsymbol{30.}$ 2 \hat{i} + 3 \hat{j} + \hat{k} ને એવા બે સદિશના સરવાળા સ્વરૂપે દર્શાવો કે જેથી બે સદિશ પૈકીનો એક સદિશ એ $2\;\hat{i}\;-4\;\hat{j}\;+\;\hat{k}\;$ ને લંબ હોય અને બીજો સદિશ એ $\;2\;\hat{i}\;-4\;\hat{j}\;+\;\hat{k}\;$ ને સમાંતર હોય.
- 31. R^3 માં એવો એકમ સદિશ શોધો, જે \hat{i} સાથે $\frac{\pi}{4}$ માપનો ખૂણો બનાવે અને \hat{k} ને લંબ હોય.
- 32. જો બે એકમ સદિશોના સરવાળાનો સદિશ પણ એકમ સદિશ હોય, તો બતાવો કે તેમના તફાવત સદિશનું માન √3 છે.
- 33. $\overline{a} \times \overline{b} = \overline{c}$ અને $\overline{a} \cdot \overline{b} = 3$ થાય તેવો સદિશ \overline{b} શોધો, જ્યાં $\overline{a} = (1, 1, 1)$ અને $\overline{c} = (0, 1, -1)$.
- **34.** જેની ધારો \overrightarrow{OA} = (3, 1, 4), \overrightarrow{OB} = (1, 2, 3) અને \overrightarrow{OC} = (2, 1, 5) હોય, તેવા સમાંતરફલકનું ઘનફળ શોધો.
- **35.** સાબિત કરો કે જો $\overline{x} \times \overline{y} = \overline{0}$ તો $\overline{x} = k\overline{y}$, $k \in \mathbb{R} \{0\}$, $\overline{x} \neq \overline{0}$, $\overline{y} \neq \overline{0}$
- 36. નીચે આપેલું દરેક વિધાન સાચું બને તે રીતે આપેલા વિકલ્પો (a), (b), (c) (d)માંથી યોગ્ય વિકલ્પ પસંદ કરીને 🔲 માં લખો :
 - (1) $\bar{x} = (-2, 1, -2)$ ની દિશામાં એકમ સદિશ છે. (a) $\left(\frac{2}{3}, -\frac{1}{3}, \frac{2}{3}\right)$ (b) $\left(-\frac{2}{3}, \frac{1}{3}, -\frac{2}{3}\right)$ (c) $\left(-\frac{2}{9}, \frac{1}{9}, -\frac{2}{9}\right)$ (d) $\left(\frac{2}{9}, -\frac{1}{9}, \frac{2}{9}\right)$
 - (2) એકમ સદિશ નથી. $(\alpha \neq \frac{n\pi}{2}; n \in Z)$
 - (b) $(-\cos\alpha, -\sin\alpha)$ (c) $(-\cos2\alpha, \sin2\alpha)$ (d) $(\cos2\alpha, \sin\alpha)$
 - (3) $\overline{x} \times \overline{y} = (7, 2, -3), \text{ di } \overline{y} \times \overline{x} = \dots$
 - (a) (7, 2, -3)(b) (-3, 2, 7)(c) (-7, -2, 3)(d) (3, -2, -7)
 - (4) $|\overline{x}| = |\overline{y}| = 1$, $\overline{x} \perp \overline{y}$, $\operatorname{di} |\overline{x} + \overline{y}| = \dots$
 - (b) $\sqrt{2}$ (a) **√**3 (c) 1 (d) 0
 - (5) $\Re \overline{x} = 3\overline{y}$, $\operatorname{ch} \overline{x} \times \overline{y} = \dots$
 - (d) $\frac{1}{3} | \overline{y} |^2$ (a) $3 | \overline{y} |^2$ (b) $3 | \bar{x} |^2$ (c) $\overline{0}$

સદિશનું બીજગણિત 223

- (20) સદિશો (1, 1, 1), (2, -1, -1) અને (0, 2, 6) ના સરવાળા સદિશની દિશામાં એકમ સદિશ છે.
- (a) $-\frac{1}{7}(3, 2, 6)$ (b) $\frac{1}{49}(3, 2, 6)$ (c) $\frac{1}{7}(3, -2, 6)$ (d) $\frac{1}{7}(3, 2, 6)$

- (21) અર્થ વિહીન છે.

- (a) $\overline{a} \cdot (\overline{b} \times \overline{c})$ (b) $(\overline{a} \cdot \overline{b}) \overline{c}$ (c) $\overline{a} \times (\overline{b} \cdot \overline{c})$ (d) $\overline{a} \times (\overline{b} \times \overline{c})$
- (22) જો $\overline{x}=\hat{i}-\hat{j}+\hat{k}$, $\overline{y}=4\hat{i}+3\hat{j}+4\hat{k}$ અને $\overline{z}=\hat{i}+a\hat{j}+b\hat{k}$ સમતલીય હોય તથા $|\overline{z}| = \sqrt{3}$, $\hat{\alpha}$
 - (a) a = 1, b = -1 (b) a = 1, $b = \pm 1$ (c) a = -1, $b = \pm 1$ (d) $a = \pm 1$, b = 1
- (23) A(3, -1), B(2, 3) અને C(5, 1) હોય, તો *m*∠A =

 - (a) $\cos^{-1} \frac{3}{\sqrt{34}}$ (b) $\pi \cos^{-1} \frac{3}{\sqrt{34}}$ (c) $\sin^{-1} \frac{5}{\sqrt{34}}$

- (24) $\Re |\overline{x} \cdot \overline{y}| = \cos \alpha$, $\Re |\overline{x} \times \overline{y}| = \dots$.
 - (a) $\pm sin\alpha$
- (b) sinα
- (c) -sina
- (d) $sin^2\alpha$
- (25) $\vec{x} \cdot \vec{y} = 0$ $\vec{x} \times (\vec{x} \times \vec{y}) = \dots$ $\vec{x} \mid \vec{x} \mid = 1$.
 - (a) $\overline{x} \times \overline{y}$
- (b) \overline{x}
- (d) $\overline{y} \times \overline{x}$

સારાંશ

આ પ્રકરણમાં આપણે નીચેના મુદ્દાઓનો અભ્યાસ કર્યો :

- 1. $R^2 = \{(x, y) \mid x \in \mathbb{R}, y \in \mathbb{R}\}$ અને $R^3 = \{(x, y, z) \mid x \in \mathbb{R}, y \in \mathbb{R}, z \in \mathbb{R}\}$ એ R પરના સિંદેશ અવકાશ છે.
- 2. સદિશ અવકાશના ગુણધર્મ
- 3. જો $\overline{x} = (x_1, x_2, x_3)$, તો \overline{x} નું માન $|\overline{x}| = \sqrt{x_1^2 + x_2^2 + x_3^2}$.

 $\hat{i}=(1,\,0,\,0),\;\hat{j}=(0,\,1,\,0)$ અને $\hat{k}=(0,\,0,\,1)$ એ અનુક્રમે X-અક્ષ, Y-અક્ષ અને Z-અક્ષની ધન દિશાના

એકમ સદિશો છે. જો $\overline{x}=(x_1,\,x_2)$ તો $|\overline{x}|=\sqrt{x_1^2+x_2^2}$. \mathbb{R}^2 માં $\hat{i}=(1,\,0)$ તથા $\hat{j}=(0,\,1)$

- 4. સદિશની દિશા : $\overline{x} \neq \overline{0}, \ \overline{y} \neq \overline{0}$
 - જો (i) $\overline{x} = k\overline{y}$, k > 0, તો \overline{x} અને \overline{y} ની દિશા સમાન.
 - (ii) $\overline{x} = k\overline{y}$, k < 0 તો \overline{x} અને \overline{y} ની દિશા પરસ્પર વિરૂદ્ધ.
 - (iii) કોઈપણ $k \in \mathbb{R}$ માટે $\overline{x} \neq k\overline{y}$ તો \overline{x} અને \overline{y} ભિન્ન દિશાના સદિશ છે.
- 5. જો શૂન્યેતર સદિશો \overline{x} અને \overline{y} સમાન હોય તો અને તો જ $|\overline{x}| = |\overline{y}|$ અને \overline{x} તથા \overline{y} ની દિશા સમાન છે.

- 6. જો $\overline{x} \neq \overline{0}$, તો $\frac{1}{|\overline{x}|}$ \overline{x} એ \overline{x} ની દિશામાં એકમ સદિશ છે. તેને \hat{x} વડે દર્શાવાય છે.
- 7. જો $A(x_1, x_2, x_3)$ અને $B(y_1, y_2, y_3)$ R^3 નાં બે ભિન્ન બિંદુઓ હોય, તો $\overrightarrow{AB} = (y_1 x_1, y_2 x_2, y_3 x_3)$
- 8. $\Re P(x_1, x_2, x_3) \in \mathbb{R}^3$, all
 - (i) બિંદુ P નું XY-સમતલથી અંતર = $|x_3|$, YZ-સમતલથી અંતર = $|x_1|$ અને ZX-સમતલથી અંતર = $|x_2|$.
 - (ii) P નું X-અક્ષથી અંતર = $\sqrt{x_2^2 + x_3^2}$.
 - (iii) P નું ઊગમબિંદુથી અંતર = $\sqrt{x_1^2 + x_2^2 + x_3^2}$.
- 9. સદિશના સરવાળાનો ત્રિકોણનો નિયમ : A, B અને C એ અસમરેખ બિંદુ હોય, તો \overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC} .
- **10. અંત:ગુણન** : જો $\overline{x} = (x_1, x_2, x_3)$ અને $\overline{y} = (y_1, y_2, y_3)$ તો \overline{x} અને \overline{y} નું અંત:ગુણન $\overline{x} \cdot \overline{y} = x_1 y_1 + x_2 y_2 + x_3 y_3$. $\overline{x} = (x_1, x_2)$, $\overline{y} = (y_1, y_2)$, તો $\overline{x} \cdot \overline{y} = x_1 y_1 + x_2 y_2$. અંત:ગુણનના ગુણધર્મી.
- 11. બહિર્ગુણન : જો $\overline{x}=(x_1,\,x_2,\,x_3)$ અને $\overline{y}=(y_1,\,y_2,\,y_3)$ તો \overline{x} અને \overline{y} નું બહિર્ગુણન

$$\overline{x} \times \overline{y} = \left(\begin{vmatrix} x_2 & x_3 \\ y_2 & y_3 \end{vmatrix}, - \begin{vmatrix} x_1 & x_3 \\ y_1 & y_3 \end{vmatrix}, \begin{vmatrix} x_1 & x_2 \\ y_1 & y_2 \end{vmatrix} \right).$$

બહિર્ગુણનના ગુણધર્મો.

12. પેટીગુણન : જો $\overline{x}=(x_1,x_2,x_3), \ \overline{y}=(y_1,y_2,y_3)$ અને $\overline{z}=(z_1,z_2,z_3)$ હોય તો $\overline{x}, \ \overline{y}$ અને \overline{z} નું પેટીગુણન

$$\overline{x} \cdot (\overline{y} \times \overline{z}) = [\overline{x} \quad \overline{y} \quad \overline{z}] = \begin{vmatrix} x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \\ z_1 & z_2 & z_3 \end{vmatrix}$$

પેટીગુણનના ગુણધર્મો.

- 13. સદિશનું ત્રિગુણન : જો \overline{x} , \overline{y} , $\overline{z} \in \mathbb{R}^3$ તો \overline{x} , \overline{y} અને \overline{z} નું ત્રિગુણન $\overline{x} \times (\overline{y} \times \overline{z}) = (\overline{x} \cdot \overline{z})\overline{y} (\overline{x} \cdot \overline{y})\overline{z}$.
- 14. લાગ્રાન્જનું નિત્યસમ : $(\overline{x} \cdot \overline{y})^2 + |\overline{x} \times \overline{y}|^2 = |\overline{x}|^2 |\overline{y}|^2$
- 15. કોશી-સ્વાર્ત્ઝની અસમતા $|\overline{x} \cdot \overline{y}| \le |\overline{x}| |\overline{y}|$
- 16. ત્રિકોણીય અસમતા : $|\overline{x} + \overline{y}| \le |\overline{x}| + |\overline{y}|$.
- 17. બે શૂન્યેતર સદિશ વચ્ચેના ખૂણાનું માપ : $(\overline{x}, \overline{y}) = cos^{-1} \frac{\overline{x} \cdot \overline{y}}{|\overline{x}||\overline{y}|}$
- 18. $\overline{x} \cdot \overline{y} = 0 \Leftrightarrow \overline{x} \perp \overline{y}$
- 19.સદિશનો પ્રક્ષેપ ઃ જો \overline{a} અને \overline{b} શૂન્યેતર સદિશો હોય તથા તેઓ પરસ્પર લંબ ન હોય, તો \overline{a} નો \overline{b} પરનો પ્રક્ષેપ સદિશ $\operatorname{Proj}\,\overline{b}\,\overline{a}=\left(rac{\overline{a}\cdot\overline{b}}{\overline{b}\,\overline{b}^2}
 ight)\,\overline{b}$.

 \overline{a} ના \overline{b} પરના પ્રક્ષેપનો ઘટક Comp $\frac{1}{b}\overline{a} = \frac{\overline{a} \cdot \overline{b}}{|\overline{b}|}$.

Proj
$$\frac{1}{b}$$
 \overline{a} નું માન $=\frac{|\overline{a}\cdot\overline{b}|}{|\overline{b}|}$.

20. $\triangle ABC$ નું ક્ષેત્રફળ : જો $\overline{a} = \overrightarrow{BC}$, $\overline{b} = \overrightarrow{CA}$, અને $\overline{c} = \overrightarrow{AB}$ તો,

$$\Delta ABC$$
 નું ક્ષેત્રફળ $=\frac{1}{2} \mid \overline{b} \mid \times \overline{c} \mid$
 $=\frac{1}{2} \sqrt{\mid \overline{b}\mid^2 \mid \overline{c}\mid^2 - \mid \overline{b} \cdot \overline{c}\mid^2}$

- 21. સમાંતરબાજુ ચતુષ્કોણનું ક્ષેત્રફળ : \square^m ABCD નું ક્ષેત્રફળ = $|\overrightarrow{AB} \times \overrightarrow{BC}|$ $= \frac{1}{2} |\overrightarrow{AC} \times \overrightarrow{BD}|$
- 22. સમાંતર ફલકનું ઘનકળ : જો \overline{a} , \overline{b} અને \overline{c} એ સમાંતરફલકની ધારો હોય, તો સમાંતરફલકનું ઘનફળ = $|[\overline{a}\ \overline{b}\ \overline{c}]|$.
- **23. સમરેખ સદિશો** : \mathbf{R}^2 ના શૂન્યેતર સદિશ $\overline{x}=(x_1,x_2)$ તથા $\overline{y}=(y_1,y_2)$ સમરેખ હોવાની આવશ્યક તથા પર્યાપ્ત શરત છે, $x_1y_2-x_2y_1=0$.

 R^3 ના સિંદશો \overline{x} અને \overline{y} સમરેખ હોય તો અને તો જ $\overline{x} \times \overline{y} = \overline{0}$.

24. સમતલીય સદિશો : જો α , β , γ પૈકી ઓછામાં ઓછો એક શૂન્યેતર હોય અને $\alpha \overline{x} + \beta \overline{y} + \gamma \overline{z} = \overline{0}$ તો \overline{x} , \overline{y} અને \overline{z} ને સમતલીય સદિશો કહે છે.

જે સદિશો સમતલીય ન હોય તો તે અસમતલીય છે.

- 25. \mathbb{R}^3 ના ભિન્ન શૂન્યેતર સિંદશો \overline{x} , \overline{y} , \overline{z} સમતલીય હોવા માટેની આવશ્યક અને પર્યાપ્ત શરત $[\overline{x} \ \overline{y} \ \overline{z}\,] = 0.$
- 26. સિંદિશની દિક્કોસાઈન, દિક્ખૂણાઓ અને દિક્ગુણોત્તર : જો $\overline{x}=(x_1,\,x_2,\,x_3)$ એ \mathbf{R}^3 નું શૂન્યેતર સિંદશ હોય અને \overline{x} એ X-અક્ષ, Y-અક્ષ અને Z-અક્ષની ધન દિશા સાથે અનુક્રમે α , β અને γ માપના ખૂણા બનાવે તો α , β અને γ એ \overline{x} ના દિક્ખૂણાઓ છે. $\cos\alpha$, $\cos\beta$, $\cos\gamma$ એ \overline{x} ની દિક્કોસાઈન છે.

અહીં
$$cos\alpha = \frac{\overline{x} \cdot \hat{i}}{|\overline{x}||\hat{i}|} = \frac{x_1}{\sqrt{x_1^2 + x_2^2 + x_3^2}}, \ cos\beta = \frac{x_2}{\sqrt{x_1^2 + x_2^2 + x_3^2}}$$
 અને $cos\gamma = \frac{x_3}{\sqrt{x_1^2 + x_2^2 + x_3^2}}$.

 $m \neq 0$ માટે mx_1 , mx_2 , mx_3 ને \overline{x} ના દિક્ગુણોત્તર કહે છે.