Modele liniowe

Michał Kos

Uniwersytet Wrocławski

Plan wykładu

- Wstęp
- 2 Regresja liniowa prosta (Simple Linear Regression)
- Metody estymacji
- Teoretyczne własności estymatorów
- 5 Estymacja $E(Y_h) = \mu_h$ i predykcja Y_h
- 6 Pasmo ufności dla prostej regresji
- Podsumowanie

Table of Contents

- Wstęp
- 2 Regresja liniowa prosta (Simple Linear Regression)
- Metody estymacji
- 4 Teoretyczne własności estymatorów
- 5 Estymacja $E(Y_h) = \mu_h$ i predykcja Y_h
- 6 Pasmo ufności dla prostej regresji
- Podsumowanie

Ważne uwagi:

- 1. Modele liniowe to wazny przedmiot.
 - metody analizy danych i ich uogólnienia są powszechnie stosowane w praktycznych zagadnieniach,
 - przynajmniej 4 kontynuacje przedmiotu w IM,

Ważne uwagi:

- 1. Modele liniowe to ważny przedmiot.
 - metody analizy danych i ich uogólnienia są powszechnie stosowane w praktycznych zagadnieniach,
 - przynajmniej 4 kontynuacje przedmiotu w IM,
- 2. Biegła znajomość środowiska R.
 - jeden z podstawowych języków używanych przez statystyków na świecie.
 - rozbudowana baza pakietów statystycznych,
 - Podstawowe narzędzie na wykładzie i na kontynuacjach,

O modelach liniowych można myśleć jako o uogólnieniu testu studenta. Test studenta:

• Populacji podzielona ze względu na przynależność do podgrup: $Y_1, ..., Y_{n_1}$ – i.i.d. $N(\mu_1, \sigma^2)$, n_1 obserwacji cechy Y w grupie 1, $Y_{n_1+1}, ..., Y_{n_1+n_2}$ – i.i.d. $N(\mu_2, \sigma^2)$, n_2 obserwacji cechy Y w grupie 2,

O modelach liniowych można myśleć jako o uogólnieniu testu studenta. Test studenta:

- Populacji podzielona ze względu na przynależność do podgrup: $Y_1,...,Y_{n_1}$ i.i.d. $N(\mu_1,\sigma^2)$, n_1 obserwacji cechy Y w grupie 1, $Y_{n_1+1},...,Y_{n_1+n_2}$ i.i.d. $N(\mu_2,\sigma^2)$, n_2 obserwacji cechy Y w grupie 2,
- porównania średnich w dwóch próbach $H_0: \mu_1 = \mu_2$, przynależność do grupy jest istotna = dodatkowa zmienna X opisująca przynależność do grupy $(X_i \in \{1,2\})$, wpływa na zmienną Y, przynależność do grupy jest nieistotna = zmienna Y jest niezależna od podziału na grupy (zmienna X) = wszystkie Y-ki są z tego samego rozkładu,

O modelach liniowych można myśleć jako o uogólnieniu testu studenta. Test studenta:

- Populacji podzielona ze względu na przynależność do podgrup: $Y_1,...,Y_{n_1}$ i.i.d. $N(\mu_1,\sigma^2)$, n_1 obserwacji cechy Y w grupie 1, $Y_{n_1+1},...,Y_{n_1+n_2}$ i.i.d. $N(\mu_2,\sigma^2)$, n_2 obserwacji cechy Y w grupie 2,
- porównania średnich w dwóch próbach $H_0: \mu_1 = \mu_2$, przynależność do grupy jest istotna = dodatkowa zmienna X opisująca przynależność do grupy $(X_i \in \{1,2\})$, wpływa na zmienną Y, przynależność do grupy jest nieistotna = zmienna Y jest niezależna od podziału na grupy (zmienna X) = wszystkie Y-ki są z tego samego rozkładu,
- Przykład. Badanie wpływu leku na anemię: $Y_1, ..., Y_{n_1}$ poziom hemoglobiny u przyjmujących lek $Y_{n_1+1}, ..., Y_{n_1+n_2}$ poziom hemoglobiny u przyjmujących placebo Czy grupa kontrolna ma średnio niższy poziom hemoglobiny?

W ogólności, w teście studenta, każda obserwacja $Y_1, ..., Y_{n_1+n_2}$ ma postać:

$$Y_i = f(X_i) + \epsilon_i$$

gdzie:

$$f(X_i) = \begin{cases} \mu_1 & \text{gdy} \quad X_i = 1\\ \mu_2 & \text{gdy} \quad X_i = 2 \end{cases}$$

oraz $\epsilon_1, ..., \epsilon_{n_1+n_2}$ są i.i.d. $N(0, \sigma^2)$.

W ogólności, w teście studenta, każda obserwacja $Y_1, ..., Y_{n_1+n_2}$ ma postać:

$$Y_i = f(X_i) + \epsilon_i$$

gdzie:

$$f(X_i) = \begin{cases} \mu_1 & \text{gdy} \quad X_i = 1\\ \mu_2 & \text{gdy} \quad X_i = 2 \end{cases}$$

oraz $\epsilon_1, ..., \epsilon_{n_1+n_2}$ są i.i.d. $N(0, \sigma^2)$.

Wówczas np. dla $X_i = 1$:

$$Y_i = f(X_i) + \epsilon_i = \mu_1 + \epsilon_i \sim N(\mu_1, \sigma^2)$$

W ogólności, w teście studenta, każda obserwacja $Y_1, ..., Y_{n_1+n_2}$ ma postać:

$$Y_i = f(X_i) + \epsilon_i$$

gdzie:

$$f(X_i) = \begin{cases} \mu_1 & \text{gdy} \quad X_i = 1\\ \mu_2 & \text{gdy} \quad X_i = 2 \end{cases}$$

oraz $\epsilon_1, ..., \epsilon_{n_1+n_2}$ są i.i.d. $N(0, \sigma^2)$.

Wówczas np. dla $X_i = 1$:

$$Y_i = f(X_i) + \epsilon_i = \mu_1 + \epsilon_i \sim N(\mu_1, \sigma^2)$$

Badamy zaś czy funkcja $f(\cdot)$ jest stała ($\mu_1 = \mu_2$).

W przypadku <u>testu studenta zmienna X</u> przyjmuje wyłącznie dwa stany.

W przypadku <u>testu studenta zmienna X</u> przyjmuje wyłącznie dwa stany.

W Modelach liniowych obserwacje $Y_1, ..., Y_n$ mają tą samą postać $Y_i = f(X_i) + \epsilon_i$. Modele liniowe idą jednak o krok dalej, w tym sensie, że zmienna X może przyjmować wiele stanów, a w szczególnosci może być zmienną ciągłą np. wagą, wzrost itp.

W przypadku <u>testu studenta zmienna X</u> przyjmuje wyłącznie dwa stany.

W Modelach liniowych obserwacje $Y_1,...,Y_n$ mają tą samą postać $Y_i = f(X_i) + \epsilon_i$. Modele liniowe idą jednak o krok dalej, w tym sensie, że zmienna X może przyjmować wiele stanów, a w szczególnosci może być zmienną ciągłą np. waga, wzrost itp.

Ponadto umożliwiają badanie własnosci zmiennej Y w zależnosci od kilku zmiennych $X^{(1)}, X^{(2)}, X^{(p)}$:

$$Y_i = f(X_i^{(1)}, X_i^{(2)}, ..., X_i^{(p)}) + \epsilon_i$$

gdzie $X_i^{(j)}$ to wartość j-tej cechy dla i-tej obserwacji.

W przypadku <u>testu studenta zmienna X</u> przyjmuje wyłącznie dwa stany.

W Modelach liniowych obserwacje $Y_1,...,Y_n$ mają tą samą postać $Y_i = f(X_i) + \epsilon_i$. Modele liniowe idą jednak o krok dalej, w tym sensie, że zmienna X może przyjmować wiele stanów, a w szczególnosci może być zmienną ciągłą np. waga, wzrost itp.

Ponadto umożliwiają badanie własnosci zmiennej Y w zależnosci od kilku zmiennych $X^{(1)}, X^{(2)}, X^{(p)}$:

$$Y_i = f(X_i^{(1)}, X_i^{(2)}, ..., X_i^{(p)}) + \epsilon_i$$

gdzie $X_i^{(j)}$ to wartość j-tej cechy dla i-tej obserwacji.

W dużej ogólności można powiedzieć, że przedmiotem badania Modeli Liniowych są własności funkcji $f(\cdot)$, o której zakładamy że jest funkcją liniową: $f(X_i^{(1)},...,X_i^{(p)}) = b_0 + b_1 X_i^{(1)} + ... + b_p X_i^{(p)}$.

Modele liniowe – przykłady

Przykład 1

 $\overline{\text{Przyjmijmy}}$, że badamy ciśnienie pacjenta (zmienna Y).

Wiemy, że za ludzkie ciśnienie odpowiada w pewnym stopniu pula genów pacjenta (geny $X^{(1)}, X^{(2)}..., X^{(p)}$). Jeżeli znamy zależność pomiędzy ciśnieniem pacjenta i pulą genetyczną, to jesteśmy w stanie przewidzieć ryzyko wystąpienia nadciśnienia u pacjenta w wieku 40 lat zaraz po jego narodzinach (już wtedy pula genetyczna pacjenta jest ustalona).

Modele liniowe – przykłady

Przykład 1

Przyjmijmy, że badamy ciśnienie pacjenta (zmienna Y).

Wiemy, że za ludzkie ciśnienie odpowiada w pewnym stopniu pula genów pacjenta (geny $X^{(1)}, X^{(2)}..., X^{(p)}$). Jeżeli znamy zależność pomiędzy ciśnieniem pacjenta i pulą genetyczną, to jesteśmy w stanie przewidzieć ryzyko wystąpienia nadciśnienia u pacjenta w wieku 40 lat zaraz po jego narodzinach (już wtedy pula genetyczna pacjenta jest ustalona).

Przykład 2

Podobny mechanizm wykorzystywany jest w ekonomii. Banki modelują ryzyko niespłacenia przez klienta kredytu (Y) na podstawie danych o kliencie w chwili przyznawania kredytu np. wysokość zarobków, wykształcenie, oszczędności itp. $(X^{(1)}, X^{(2)}, ..., X^{(p)})$.

Table of Contents

- Wstęp
- Regresja liniowa prosta (Simple Linear Regression)
- Metody estymacj
- 4 Teoretyczne własności estymatorów
- 5 Estymacja $E(Y_h) = \mu_h$ i predykcja Y_h
- Pasmo ufności dla prostej regresji
- Podsumowanie

Najprostszym modelem liniowym jest tzw. regresja liniowa prosta, w której mamy jedną zmienną odpowiedzi Y (zm. wynikową, objaśnianą, zależną) i jedną zmienną objaśniającą X (zm. niezależną, regresor, predyktor).

Najprostszym modelem liniowym jest tzw. regresja liniowa prosta, w której mamy jedną zmienną odpowiedzi Y (zm. wynikową, objaśnianą, zależną) i jedną zmienną objaśniającą X (zm. niezależną, regresor, predyktor).

Przykład 3 Pochylenie krzywej wieży:

- Pochylenie (Y) zm. objaśniana,
- Czas (X) zm. objaśniająca,
- narysowanie zależności na podstawie dotychczasowych danych (R: plot),
- dopasowanie prostej (R: Im),
- predykcja na podstawie dopasowanej prostej (R: predict).

Rysunek: By Softeis - Praca własna, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=25812

Dane: piza.txt, Kod R: piza.r

Dane: piza.txt, Kod R: piza.r

Jakie jest przewidywane pochylenie dla roku 2000 (pkt. 100)?

Dane: piza.txt, Kod R: piza.r

Jakie jest przewidywane pochylenie dla roku 2000 (pkt. 100)? \approx 870.7

Dane w regresji liniowej prostej

Zakładamy, że dysponujemy zbiorem par $(X_i, Y_i)_{i=1}^n$ oraz, że związek między nimi jest w przybliżeniu liniowy.

 $Y_1,...,Y_n$ – wartości zmiennej zależnej, $X_1,...,X_n$ – wartości zmiennej niezależnej. Od tej pory przez $Y=(Y_1,...,Y_n)'$ oraz $X=(X_1,...,X_n)'$ będziemy oznaczać (odpowiednio) wektor odpowiedzi (Y) oraz wektor wartości zmiennej niezależnej (X).

X	Y
1	4.0
2	4.3
3	6.5
:	:
19	21.5
_20	22.4

Teoretyczny model regresji liniowej prostej

Teoretyczny model regresji liniowej prostej

Zakładamy, że związek między zmiennymi zależnymi i odpowiadającymi im wartościami zmiennych niezależnych jest postaci:

$$Y_i = f(X_i) + \epsilon_i = \beta_0 + \beta_1 X_i + \epsilon_i$$
 $i = 1, ..., n$

gdzie:

 β_0 – Intercept (wyraz wolny) – deterministyczny parametr regresji, β_1 – Slope (współczynnik kierunkowy) – deterministyczny parametr regrsji, ϵ_i – błąd zwiazany z i-tym pomiarem, zmienna losowa $N(0,\sigma^2)$ Dodatkowo zakładamy, że $\epsilon_1,...,\epsilon_n$ są niezależnymi zmiennymi losowymi.

Uwaga

Na tym wykładzie zakładamy, że wartości zmiennej niezależnej $X_1,...,X_n$ są deterministyczne (nie są zmiennymi losowymi) np. moment pomiaru pochylenia krzywej wieży.

Własności wynikające z teoretycznego modelu

Bezpośrednio z założeń modelu oraz relacji

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$$
 $i = 1, ..., n$

wynika kilka faktów dotyczących zmiennych wynikowych $Y_1, ..., Y_n$:

1 ($\forall i$) Y_i jako suma dwóch składników: deterministycznego $\beta_0 + \beta_1 X_i$ oraz losowego ϵ_i , jest zmienną losową z rozkładu normalnego. $Y_1, ..., Y_n$ są stochast. niezależne.

Własności wynikające z teoretycznego modelu

Bezpośrednio z założeń modelu oraz relacji

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$$
 $i = 1, ..., n$

wynika kilka faktów dotyczących zmiennych wynikowych $Y_1,...,Y_n$:

- ($\forall i$) Y_i jako suma dwóch składników: deterministycznego $\beta_0 + \beta_1 X_i$ oraz losowego ϵ_i , jest zmienną losową z rozkładu normalnego. $Y_1, ..., Y_n$ są stochast. niezależne.
- Wartość oczekiwana Yi dana jest wzorem:

$$E(Y_i) = E(\beta_0 + \beta_1 X_i) + E(\epsilon_i) = \beta_0 + \beta_1 X_i$$

Zatem ściśle liniowa relacja zachodzi pomiędzy wartością oczekiwana $E(Y_i)$ a X_i , natomiast relacja pomiędzy Y_i i X_i jest tylko w przybliżeniu liniowa. Z tego względu ϵ_i jest traktowany jako błąd losowy, który może wynikać np. z ograniczonej dokładności pomiarowej urządzenia badawczego.

Własności wynikające z teoretycznego modelu

Bezpośrednio z założeń modelu oraz relacji

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$$
 $i = 1, ..., n$

wynika kilka faktów dotyczących zmiennych wynikowych $Y_1,...,Y_n$:

- **1** ($\forall i$) Y_i jako suma dwóch składników: deterministycznego $\beta_0 + \beta_1 X_i$ oraz losowego ϵ_i , jest zmienną losową z rozkładu normalnego. $Y_1, ..., Y_n$ są stochast. niezależne.
- Wartość oczekiwana Yi dana jest wzorem:

$$E(Y_i) = E(\beta_0 + \beta_1 X_i) + E(\epsilon_i) = \beta_0 + \beta_1 X_i$$

Zatem ściśle liniowa relacja zachodzi pomiędzy wartością oczekiwana $E(Y_i)$ a X_i , natomiast relacja pomiędzy Y_i i X_i jest tylko w przybliżeniu liniowa. Z tego względu ϵ_i jest traktowany jako błąd losowy, który może wynikać np. z ograniczonej dokładności pomiarowej urządzenia badawczego.

3 Dla każdego i, wariancja Yi dana jest wzorem:

$$Var(Y_i) = Var(\beta_0 + \beta_1 X_i + \epsilon_i) = Var(\epsilon_i) = \sigma^2$$

Wariancja Y_i (lub ϵ_i) jest zatem dokładnie taka sama dla każdego i. Jest to relatywnie naturalne założenie w sytuacji, w której dokonujemy pomiarów za pomocą tego samego urządzenia badawczego (np. linijka z centymetrową podziałką). Można wówczas zakładać, że błędy pomiarowe będą miały taką samą wariancję.

Graficzna ilustracja teoretycznego modelu

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$$
 $i = 1, ..., 10$

1. Niebiesko–czarne kropki odpowiadają punktom (X_i, Y_i) , 2. Czerwona linia przedstawia zależność: $E(Y) = \beta_0 + \beta_1 X$, 3. Czarne odcinki opisują wielkość

losowych błędów ϵ_i

Parametry w teoretycznym modelu

W teoretycznym modelu regresji liniowej występują 3 parametry:

- β_0 Intercept,
- β_1 Slope,
- σ^2 wariancja błędów ϵ_i

Znajomość tych parametrów pozwala na generowanie wartości zmiennej odpowiedzi Y_i dla dowolnych wartości regresora X_i . Umożliwia to przeprowadzanie symulacji i empiryczne badanie własności modelu liniowego.

Parametry w teoretycznym modelu

W teoretycznym modelu regresji liniowej występują 3 parametry:

- β_0 Intercept,
- β_1 Slope,
- σ^2 wariancja błędów ϵ_i

Znajomość tych parametrów pozwala na generowanie wartości zmiennej odpowiedzi Y_i dla dowolnych wartości regresora X_i . Umożliwia to przeprowadzanie symulacji i empiryczne badanie własności modelu liniowego.

Jednakże w realnych problemach zwykle dysponujemy wyłącznie zbiorem par $(X_i, Y_i)_{i=1}^n$, a parametry są nieznane. Dlatego ważnym zagadnieniem jest estymacja parametrów modelu teoretycznego.

Table of Contents

- Wstęp
- 2 Regresja liniowa prosta (Simple Linear Regression)
- Metody estymacji
- 4 Teoretyczne własności estymatorów
- 5 Estymacja $E(Y_h) = \mu_h$ i predykcja Y_h
- 6 Pasmo ufności dla prostej regresji
- Podsumowanie

Metoda najmniejszych kwadratów (Ordinary Least Squares)

Ze względu na stochastyczną niezależność, stałą wariancję i symetryczność błędów losowych ϵ_i , naturalnym estymatorem dla prostej $E(Y) = \beta_0 + \beta_1 X$ jest prosta leżąca w jakimś sensie możliwie blisko zbioru danych $(X_i, Y_i)_{i=1}^n$.

Metoda najmniejszych kwadratów (Ordinary Least Squares)

Ze względu na stochastyczną niezależność, stałą wariancję i symetryczność błędów losowych ϵ_i , naturalnym estymatorem dla prostej $E(Y) = \beta_0 + \beta_1 X$ jest prosta leżąca w jakimś sensie możliwie blisko zbioru danych $(X_i,Y_i)_{i=1}^n$.

Wiemy że dowolną funkcję liniową w \mathbb{R}^2 możemy przedstawić w postaci

$$f(b_0, b_1|X) = b_0 + b_1X$$

Odległość takiej prostej od punktu (X_i, Y_i) (dla odciętej X_i) wynosi

$$e_i(b_0,b_1)=Y_i-f(b_0,b_1|X_i)=Y_i-(b_0+b_1X_i)$$

i nazywana jest wartością resztową lub residuum dla punktu (X_i, Y_i) i parametrów (b_0, b_1) .

Metoda najmniejszych kwadratów

Estymator otrzymany metodą najmniejszych kwadratów (Ordinary Least Squares OLS) to wektor $(\hat{\beta}_0, \hat{\beta}_1)'$ dobrany w taki sposób, aby zminimalizować sumę kwadratów residów:

$$(\hat{eta}_0,\hat{eta}_1)' = \mathop{argmin}_{(b_0,b_1)' \in \mathbb{R}^2} \sum_{i=1}^n e_i^2(b_0,b_1) = \mathop{argmin}_{(b_0,b_1)' \in \mathbb{R}^2} \sum_{i=1}^n (Y_i - (b_0 + b_1 X_i))^2$$

Metoda najmniejszych kwadratów

Estymator otrzymany metodą najmniejszych kwadratów (Ordinary Least Squares OLS) to wektor $(\hat{\beta}_0, \hat{\beta}_1)'$ dobrany w taki sposób, aby zminimalizować sumę kwadratów residów:

$$(\hat{eta}_0,\hat{eta}_1)' = \mathop{argmin}_{(b_0,b_1)' \in \mathbb{R}^2} \sum_{i=1}^n e_i^2(b_0,b_1) = \mathop{argmin}_{(b_0,b_1)' \in \mathbb{R}^2} \sum_{i=1}^n (Y_i - (b_0 + b_1 X_i))^2$$

Estymator $(\hat{\beta}_0, \hat{\beta}_1)'$ można wyznaczyć standardowymi metodami analizy matematycznej (pochodne z $\sum_{i=1}^n e_i^2(b_0, b_1)$ po b_0 i b_1 przyrównać do zera = ekstremum; dodatkowo sprawdzić warunki na minimum, np. warunki na hesjan).

Metoda najmniejszych kwadratów

Estymator otrzymany metodą najmniejszych kwadratów (Ordinary Least Squares OLS) to wektor $(\hat{\beta}_0, \hat{\beta}_1)'$ dobrany w taki sposób, aby zminimalizować sumę kwadratów residów:

$$(\hat{eta}_0,\hat{eta}_1)' = \mathop{argmin}_{(b_0,b_1)' \in \mathbb{R}^2} \sum_{i=1}^n e_i^2(b_0,b_1) = \mathop{argmin}_{(b_0,b_1)' \in \mathbb{R}^2} \sum_{i=1}^n (Y_i - (b_0 + b_1 X_i))^2$$

Estymator $(\hat{\beta}_0, \hat{\beta}_1)'$ można wyznaczyć standardowymi metodami analizy matematycznej (pochodne z $\sum_{i=1}^n e_i^2(b_0, b_1)$ po b_0 i b_1 przyrównać do zera = ekstremum; dodatkowo sprawdzić warunki na minimum, np. warunki na hesjan).

Wzory na estymator \hat{eta}_0 oraz \hat{eta}_1 dane są następującymi formułami:

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (X_i - \bar{X})(Y_i - \bar{Y})}{\sum_{i=1}^n (X_i - \bar{X})^2}, \qquad \hat{\beta}_0 = \bar{Y} - \hat{\beta}_1 \bar{X}$$

Warto zauważyć, że wzór na $\hat{\beta}_1$ jest ilorazem próbkowej kowariancji pomiędzy zmiennymi X i Y przez próbkową wariancję zmiennej X.

Estymator otrzymany metodą Największej Wiarogodności (ML) to wektor $(\hat{\beta}_0,\hat{\beta}_1,\hat{\sigma}^2)'$ dobrany w taki sposób, aby maksymalizował funkcję wiarogodności dla zbioru zmiennych odpowiedzi $Y_1,...,Y_n$:

$$L(b_0, b_1, z^2 | Y) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi z^2}} \exp\left(-\frac{1}{2z^2} (Y_i - b_0 - b_1 X_i)^2\right)$$

Estymator otrzymany metodą Największej Wiarogodności (ML) to wektor $(\hat{\beta}_0, \hat{\beta}_1, \hat{\sigma}^2)'$ dobrany w taki sposób, aby maksymalizował funkcję wiarogodności dla zbioru zmiennych odpowiedzi $Y_1, ..., Y_n$:

$$L(b_0, b_1, z^2 | Y) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi z^2}} \exp\left(-\frac{1}{2z^2} (Y_i - b_0 - b_1 X_i)^2\right)$$

Ze względu na to, że szukanie maksimum funkcji wiarogodności jest uciążliwe, zwykle analizie podlega jej logarytm:

$$\log(L(b_0, b_1, z^2|Y)) = -\frac{n}{2}\log 2\pi - \frac{n}{2}\log z^2 - \frac{1}{2z^2}\sum_{i=1}^n (Y_i - b_0 - b_1X_i)^2$$

Estymator otrzymany metodą Największej Wiarogodności (ML) to wektor $(\hat{\beta}_0,\hat{\beta}_1,\hat{\sigma}^2)'$ dobrany w taki sposób, aby maksymalizował funkcję wiarogodności dla zbioru zmiennych odpowiedzi $Y_1,...,Y_n$:

$$L(b_0, b_1, z^2 | Y) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi z^2}} \exp\left(-\frac{1}{2z^2} (Y_i - b_0 - b_1 X_i)^2\right)$$

Ze względu na to, że szukanie maksimum funkcji wiarogodności jest uciążliwe, zwykle analizie podlega jej logarytm:

$$\log(L(b_0, b_1, z^2|Y)) = -\frac{n}{2}\log 2\pi - \frac{n}{2}\log z^2 - \frac{1}{2z^2}\sum_{i=1}^n (Y_i - b_0 - b_1X_i)^2$$

Z powyższej postaci widać, że dla dowolne wartości z^2 , maksymalizacja po b_0 oraz b_1 jest równoważna minimalizacji wyrażenia:

$$\sum_{i=1}^{n} (Y_i - b_0 - b_1 X_i)^2$$

czyli minimalizacji sumy kwadratów residów. Wynika stąd, że estymatory $\hat{\beta}_0$ oraz $\hat{\beta}_1$ uzyskane metodami ML i OLS są takie same.

Aby wyznaczyć estymator ML dla σ^2 musimy policzyć pochodną z logarytmu funkcji wiarogodności po z^2 i przyrównać do 0 (ekstremum) oraz sprawdzić, że rozwiązanie faktycznie maksymalizuje badaną funkcję. Estmator ML jest postaci:

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (Y_i - \hat{\beta}_0 - \hat{\beta}_1 X_i)^2$$

Można pokazać, że jest on obciążony $(E(\hat{\sigma}^2) < \sigma^2)$. Nieobciążony estymator parametru σ^2 (zwykle stosowany) ma postać:

$$s^{2} = \frac{1}{n-2} \sum_{i=1}^{n} \left(Y_{i} - \hat{\beta}_{0} - \hat{\beta}_{1} X_{i} \right)^{2}$$

$$E(s^2) = \sigma^2$$

Table of Contents

- Wstęp
- 2 Regresja liniowa prosta (Simple Linear Regression)
- Metody estymacj
- 4 Teoretyczne własności estymatorów
- 5 Estymacja $E(Y_h) = \mu_h$ i predykcja Y_h
- 6 Pasmo ufności dla prostej regresji
- Podsumowanie

Teoretyczne własności estymatora \hat{eta}_1

Postać estymatora:
$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (X_i - \bar{X})(Y_i - \bar{Y})}{\sum_{i=1}^n (X_i - \bar{X})^2}$$

Rozkład

Estymator $\hat{\beta}_1$ jako liniowe przekształcenie wektora odpowiedzi $Y=(Y_1,...,Y_n)'$ pochodzi z rozkładu normalnego:

$$\hat{\beta}_1 \sim N(\beta_1, \sigma^2(\hat{\beta}_1))$$

gdzie
$$\sigma^2(\hat{\beta}_1) = \frac{\sigma^2}{\sum_{i=1}^n (X_i - \bar{X})^2}$$
.

Wartość oczekiwana:

$$E(Y_i - \bar{Y}) = \beta_0 + \beta_1 X_i - \frac{1}{n} \sum_{i=1}^n (\beta_0 + \beta_1 X_i) = \beta_1 (X_i - \bar{X})$$

$$E(\hat{\beta}_1) = \frac{\sum_{i=1}^n (X_i - \bar{X}) E(Y_i - \bar{Y})}{\sum_{i=1}^n (X_i - \bar{X})^2} = \beta_1 \frac{\sum_{i=1}^n (X_i - \bar{X}) (X_i - \bar{X})}{\sum_{i=1}^n (X_i - \bar{X})^2} = \beta_1$$

Teoretyczne własności estymatora $\hat{\beta}_1$ (2)

Wariancja:

$$Var(\hat{\beta}_{1}) = cov\left(\frac{\sum_{i=1}^{n}(X_{i} - \bar{X})(Y_{i} - \bar{Y})}{\sum_{i=1}^{n}(X_{i} - \bar{X})^{2}}, \frac{\sum_{j=1}^{n}(X_{j} - \bar{X})(Y_{j} - \bar{Y})}{\sum_{i=1}^{n}(X_{i} - \bar{X})^{2}}\right) =$$

$$= \left(\frac{1}{\sum_{i=1}^{n}(X_{i} - \bar{X})^{2}}\right)^{2} \sum_{i=1}^{n} \sum_{j=1}^{n}(X_{i} - \bar{X})(X_{j} - \bar{X})cov(Y_{i} - \bar{Y}, Y_{j} - \bar{Y}) = \mathbb{A}$$

$$cov(Y_{i} - \bar{Y}, Y_{j} - \bar{Y}) = cov(Y_{i}, Y_{j}) - cov(Y_{i}, \bar{Y}) - cov(\bar{Y}, Y_{j}) + cov(\bar{Y}, \bar{Y}) =$$

$$= \sigma^{2}\mathbb{I}(i = j) - \frac{1}{n}\sigma^{2} - \frac{1}{n}\sigma^{2} + \frac{1}{n}\sigma^{2} = \sigma^{2}\mathbb{I}(i = j) - \frac{1}{n}\sigma^{2}$$

$$\sum_{i=1}^{n} \sum_{j=1}^{n} (X_{i} - \bar{X})(X_{j} - \bar{X}) = \sum_{j=1}^{n} (X_{i} - \bar{X}) \sum_{j=1}^{n} (X_{j} - \bar{X}) = 0$$

$$\mathbb{A} = \left(\frac{1}{\sum_{i=1}^{n} (X_i - \bar{X})^2}\right)^2 \sum_{i=1}^{n} \sum_{j=1}^{n} (X_i - \bar{X})(X_j - \bar{X})\sigma^2 \mathbb{I}(i = j) = \frac{\sigma^2}{\sum_{i=1}^{n} (X_i - \bar{X})^2}$$

Przedział ufności dla β_1

Statystyka T

Oznaczmy przez T następującą statystykę:

$$T = rac{\hat{eta}_1 - eta_1}{s(\hat{eta}_1)}$$
 gdzie $s^2(\hat{eta}_1) = rac{s^2}{\sum_{i=1}^n (X_i - ar{X})^2}$

Wówczas statystyka T pochodzi z rozkładu studenta z n-2 stopniami swobody $T \sim t(n-2)$

Przedział ufności dla β_1

Na podstawie statystyki T możemy skonstruować przedział ufności o współczynniku ufności $1-\alpha$ dla parametru β_1 :

$$\hat{\beta}_1 \pm t_c s(\hat{\beta}_1)$$

gdzie $t_c=t^*(1-\frac{\alpha}{2},n-2)$ jest kwantylem rzędu $1-\frac{\alpha}{2}$ z rozkładu studenta z n-2 stopniami swobody.

Test istotności dla β_1

Test istotności dla β_1

Na podstawie statystyki T możemy testować czy β_1 jest różna od 0:

$$H_0: \ \beta_1 = 0 \ vs \ H_1: \ \beta_1 \neq 0$$

Statystyka testowa jest postaci:

$$T = \frac{\hat{\beta}_1 - 0}{s(\hat{\beta}_1)}$$
 gdzie $s^2(\hat{\beta}_1) = \frac{s^2}{\sum_{i=1}^n (X_i - \bar{X})^2}$

Odrzucamy hipotezę zerową, gdy $|T|>t_c$ gdzie $t_c=t^*(1-\frac{\alpha}{2},n-2)$ jest kwantylem rzędu $1-\frac{\alpha}{2}$ z rozkładu studenta z n-2 stopniami swobody. p-wartość dla tego problemu:

$$p = P(|z| > |T|)$$
, gdzie $z \sim t(n-2)$

Łatwo zmodyfikować powyższy test do badania hipotez jednostronnych.

Teoretyczne własności estymatora \hat{eta}_0

Postać estymatora: $\hat{eta}_0 = ar{Y} - \hat{eta}_1 ar{X}$

Rozkład

Estymator $\hat{\beta}_0$ jako liniowe przekształcenie wektora odpowiedzi $Y = (Y_1, ..., Y_n)'$ pochodzi z rozkładu normalnego:

$$\hat{\beta}_0 \sim N(\beta_0, \sigma^2(\hat{\beta}_0))$$

gdzie
$$\sigma^2(\hat{\beta}_0) = \sigma^2\left(\frac{1}{n} + \frac{\bar{X}^2}{\sum_{i=1}^n (X_i - \bar{X})^2}\right).$$

Wartość oczekiwana:

$$E(\hat{\beta}_0) = E(\bar{Y}) - E(\hat{\beta}_1)\bar{X} = (\beta_0 + \beta_1\bar{X}) - \beta_1\bar{X} = \beta_0$$

Wariancja:

$$extstyle extstyle extstyle Var(\hateta_0) = extstyle Var(ar Y) - \hateta_1ar X) = extstyle Var(ar Y) + extstyle Var(\hateta_1)(ar X)^2 - 2 extstyle cov(ar Y, \hateta_1ar X)$$

Teoretyczne własności estymatora $\hat{\beta}_0$ (2)

Wariancja:

$$Var(\hat{\beta}_0) = Var(\bar{Y} - \hat{\beta}_1 \bar{X}) = Var(\bar{Y}) + \bar{X}^2 Var(\hat{\beta}_1) - 2\bar{X}cov(\bar{Y}, \hat{\beta}_1)$$

$$Var(\bar{Y}) = \frac{\sigma^2}{n}$$

$$\bar{X}^2 Var(\hat{\beta}_1) = \sigma^2 \frac{\bar{X}^2}{\sum_{i=1}^n (X_i - \bar{X})^2}$$

$$cov(\bar{Y}, \hat{\beta}_1) = \frac{1}{\sum_{i=1}^n (X_i - \bar{X})^2} \sum_{j=1}^n (X_j - \bar{X})cov(\bar{Y}, Y_j - \bar{Y}) =$$

$$= \frac{1}{\sum_{i=1}^n (X_i - \bar{X})^2} \sum_{i=1}^n (X_j - \bar{X}) \left(\frac{\sigma^2}{n} - \frac{\sigma^2}{n}\right) = 0$$

Ostatecznie:

$$Var(\hat{eta}_0) = \sigma^2 \left(\frac{1}{n} + \frac{\bar{X}^2}{\sum_{i=1}^n (X_i - \bar{X})^2} \right)$$

Przedział ufności dla β_0

Statystyka T

Oznaczmy przez T następującą statystykę:

$$T = \frac{\hat{\beta}_0 - \beta_0}{s(\hat{\beta}_0)} \quad \text{gdzie} \quad s^2(\hat{\beta}_0) = s^2 \left(\frac{1}{n} + \frac{\bar{X}^2}{\sum_{i=1}^n (X_i - \bar{X})^2}\right)$$

Wówczas statystyka T pochodzi z rozkładu studenta z n-2 stopniami swobody $T \sim t(n-2)$

Przedział ufności dla β_0

Na podstawie statystyki T możemy skonstruować przedział ufności o współczynniku ufności $1-\alpha$ dla parametru β_0 :

$$\hat{\beta}_0 \pm t_c s(\hat{\beta}_0)$$

gdzie $t_c=t^*(1-\frac{\alpha}{2},n-2)$ jest kwantylem rzędu $1-\frac{\alpha}{2}$ z rozkładu studenta z n-2 stopniami swobody.

Test istotności dla β_0

Test istotności dla β_0

Na podstawie statystyki T możemy testować czy β_0 jest równa pewnej dowolnej stałej β_{00} :

Statystyka testowa jest postaci:

$$T = \frac{\hat{\beta}_0 - \beta_{00}}{s(\hat{\beta}_0)} \quad \text{gdzie} \quad s^2(\hat{\beta}_0) = s^2 \left(\frac{1}{n} + \frac{\bar{X}^2}{\sum_{i=1}^n (X_i - \bar{X})^2} \right)$$

Odrzucamy hipotezę zerową, gdy $|T|>t_c$ gdzie $t_c=t^*(1-\frac{\alpha}{2},n-2)$ jest kwantylem rzędu $1-\frac{\alpha}{2}$ z rozkładu studenta z n-2 stopniami swobody. p-wartość dla tego problemu:

$$p = P(|z| > |T|)$$
, gdzie $z \sim t(n-2)$

Łatwo zmodyfikować powyższy test do badania hipotez jednostronnych.

Uwagi

• W praktycznych zagadnieniach, zwykle istotne są przede wszystkim pytania dotyczące parametru β_1 (np.: $\beta_1=0$). Jeżeli $\beta_1=0$, to $Y_i=\beta_0+\epsilon_i\sim N(\beta_0,\sigma^2)$. W konsekwencji mamy brak związku pomiędzy Y_i a X_i ,

Uwagi

- W praktycznych zagadnieniach, zwykle istotne są przede wszystkim pytania dotyczące parametru β_1 (np.: $\beta_1=0$). Jeżeli $\beta_1=0$, to $Y_i=\beta_0+\epsilon_i\sim N(\beta_0,\sigma^2)$. W konsekwencji mamy brak związku pomiędzy Y_i a X_i ,
- Wariancja estymatora $\hat{\beta}_1$ dana jest wzorem $\sigma^2(\hat{\beta}_1) = \frac{\sigma^2}{\sum_{i=1}^n (X_i \bar{X})^2}$. Jej postać daje wskazówkę jak konstruować eksperyment, aby $\sigma^2(\hat{\beta}_1)$ była mała (tak dobrać wektor $X = (X_1, ..., X_n)$ aby mianownik był możliwie duży),

Uwagi

- W praktycznych zagadnieniach, zwykle istotne są przede wszystkim pytania dotyczące parametru β_1 (np.: $\beta_1=0$). Jeżeli $\beta_1=0$, to $Y_i=\beta_0+\epsilon_i\sim N(\beta_0,\sigma^2)$. W konsekwencji mamy brak związku pomiędzy Y_i a X_i ,
- Wariancja estymatora $\hat{\beta}_1$ dana jest wzorem $\sigma^2(\hat{\beta}_1) = \frac{\sigma^2}{\sum_{i=1}^n (X_i \bar{X})^2}$. Jej postać daje wskazówkę jak konstruować eksperyment, aby $\sigma^2(\hat{\beta}_1)$ była mała (tak dobrać wektor $X = (X_1, ..., X_n)$ aby mianownik był możliwie duży),
- Jeżeli ϵ_i nie pochodzą z rozkładu normalnego, tylko z rozkładu o podobnych własnościach (np. symetryczność, stała wariancja) to przedziały ufności i testy zwykle mają dobre własności.

Komendy w R

Konstrukcja modelu na podstawie próby, testy i przedziały ufności w R:

- $reg1 < -Im(LEAN \sim YEAR, piza)$ funkcja konstruująca model (na podstawie próby),
- reg1 model + estymatory β_0 , β_1 ,
- summary(reg1) funkcja zwracająca podsumowanie własności modelu,
- reg1\$residuals wektor wartości resztowych,
- confint(reg1) funkcja zwracająca 95% przedziały ufności dla β_0 oraz β_1 ,

Funkcja mocy testu

Moc testu binarnego (o dwoch hipotezach prostych) to prawdopodobieństwo odrzucenia H_0 , gdy prawdziwa jest hipoteza H_1 (pr. uniknięcia błędu II rodzaju).

Na przykład dla testu S badającego następujący problem:

$$H_0$$
 : $\theta = 0$ vs H_1 : $\theta = a$

moc jest równa

$$\pi(a) = P_{\theta=a}(\text{test S odrzucił hipotezę } H_0)$$

Funkcja mocy testu

Moc testu binarnego (o dwoch hipotezach prostych) to prawdopodobieństwo odrzucenia H_0 , gdy prawdziwa jest hipoteza H_1 (pr. uniknięcia błędu II rodzaju).

Na przykład dla testu *S* badającego następujący problem:

$$H_0$$
 : $\theta=0$ vs H_1 : $\theta=a$

moc jest równa

$$\pi(a) = P_{\theta=a}(\text{test S odrzucił hipotezę } H_0)$$

Łatwo zauważyć, że moc zależy od rozpatrywanej alternatywy. Dlatego funkcja $\pi(a):\Theta_1\to [0,1]$, z przestrzeni możliwych alternatyw (Θ_1) w odcinek [0,1], nazywana jest funkcją mocy testu.

Testujemy nastepujacy problem H_0 : $\beta_1=0$ vs H_1 : $\beta_1\neq 0$. Statystyka testowa oraz wartość krytyczna są postaci:

$$\mathcal{T} = rac{\hat{eta}_1}{s(\hat{eta}_1)}, \qquad t_c = t^*(1 - rac{lpha}{2}, n-2)$$

Odrzucamy hipotezę zerową, gdy $|T| > t_c$.

Testujemy nastepujacy problem H_0 : $\beta_1=0$ vs H_1 : $\beta_1\neq 0$. Statystyka testowa oraz wartość krytyczna są postaci:

$$T=rac{\hat{eta}_1}{s(\hat{eta}_1)}, \qquad t_c=t^*(1-rac{lpha}{2},n-2)$$

Odrzucamy hipotezę zerową, gdy $|T| > t_c$.

Aby wyznaczyć funkcję mocy testu musimy obliczyć $\pi(a)=P_{\beta_1=a}(|T|>t_c)$ dla dowolnej wartości $a\in\mathbb{R}\setminus\{0\}$ (Co gdy a=0?)

Testujemy nastepujacy problem H_0 : $\beta_1=0$ vs H_1 : $\beta_1\neq 0$. Statystyka testowa oraz wartość krytyczna są postaci:

$$T=rac{\hat{eta}_1}{s(\hat{eta}_1)}, \qquad t_c=t^*(1-rac{lpha}{2},n-2)$$

Odrzucamy hipotezę zerową, gdy $|T| > t_c$.

Aby wyznaczyć funkcję mocy testu musimy obliczyć $\pi(a)=P_{\beta_1=a}(|T|>t_c)$ dla dowolnej wartości $a\in\mathbb{R}\setminus\{0\}$ (Co gdy a=0?) Przy założeniu że $\beta_1=a$ statystyka T ma niecentralny rozkład studenta z n-2 stopniami swobody i parametrem niecentralności $\delta=\beta_1/\sigma(\hat{\beta}_1)$ ($T\sim t(n-2,\delta)$)

Testujemy nastepujacy problem H_0 : $\beta_1=0$ vs H_1 : $\beta_1\neq 0$. Statystyka testowa oraz wartość krytyczna są postaci:

$$\mathcal{T} = rac{\hat{eta}_1}{s(\hat{eta}_1)}, \qquad t_c = t^*(1-rac{lpha}{2}, n-2)$$

Odrzucamy hipotezę zerową, gdy $|T| > t_c$.

Aby wyznaczyć funkcję mocy testu musimy obliczyć $\pi(a)=P_{\beta_1=a}(|T|>t_c)$ dla dowolnej wartości $a\in\mathbb{R}\setminus\{0\}$ (Co gdy a=0?) Przy założeniu że $\beta_1=a$ statystyka T ma niecentralny rozkład studenta z n-2 stopniami swobody i parametrem niecentralności $\delta=\beta_1/\sigma(\hat{\beta}_1)$ ($T\sim t(n-2,\delta)$)

Aby móc obliczyć moc dla $\beta_1 = a$, musimy znać następujące wartości:

$$n, \sum_{i=1}^{n} (X_i - \bar{X})^2, \sigma^2$$

Moc testu dla $\beta_1 = 1.5$ - Przykład

Załóżmy, że $n = 25, \sum_{i=1}^{n} (X_i - \bar{X})^2 = 19800, \sigma^2 = 2500.$

Wówczas
$$\sigma^2(\hat{\beta}_1) = \sigma^2 / \sum_{i=1}^n (X_i - \bar{X})^2 = 0.1263.$$

Przyjmijmy dodatkowo, że $\beta_1=1.5$, możemy wtedy wyznaczyć parametr niecentralności $\delta=\beta_1/\sigma(\hat{\beta}_1)=4.22$.

Ponieważ wiemy że statystyka $T\sim t(23,4.22)$, zatem (np. przy pomocy funkcji w R) możemy wyznaczyć moc

$$\pi(1.5) = P_{\beta_1=1.5}(|T| > t_c) = P_{\beta_1=1.5}(T < -t_c) + P_{\beta_1=1.5}(T > t_c) =$$

$$= F_{\beta_1=1.5}(-t_c) + 1 - F_{\beta_1=1.5}(t_c) = 0.98$$

Funkcja mocy testu dla β_1 - Przykład

Funkcja mocy testu dla β_1 z przedziału [-2, 2]:

Table of Contents

- Wstęp
- 2 Regresja liniowa prosta (Simple Linear Regression)
- Metody estymacji
- 4 Teoretyczne własności estymatorów
- 5 Estymacja $E(Y_h) = \mu_h$ i predykcja Y_h
- 6 Pasmo ufności dla prostej regresji
- Podsumowanie

Estymacja wartości oczekiwanej Y_h ($E(Y_h) = \mu_h$)

Do tej pory opisane zostały własności estymatorów parametrów w modelu teoretycznym $(\hat{\beta}_0,\hat{\beta}_1,\hat{\sigma}^2)$. Jednakże, pierwotnym zagadnieniem była analiza zachowania zmiennej objaśnianej Y_h w zależności od zmiennej objaśniającej X_h .

Estymacja wartości oczekiwanej Y_h ($E(Y_h) = \mu_h$)

Do tej pory opisane zostały własności estymatorów parametrów w modelu teoretycznym $(\hat{\beta}_0,\hat{\beta}_1,\hat{\sigma}^2)$. Jednakże, pierwotnym zagadnieniem była analiza zachowania zmiennej objaśnianej Y_h w zależności od zmiennej objaśniającej X_h .

Skoncentrujmy się na własnościach wartości oczekiwanej ze zmiennej zależnej $E(Y_h) = \mu_h = \beta_0 + \beta_1 X_h$ dla podpopulacji o wartości zmiennej niezależnej równej X_h .

Estymator μ_h dany jest następującą zależnością: $\hat{\mu}_h = \hat{\beta}_0 + \hat{\beta}_1 X_h$

Rozkład

Estymator $\hat{\mu}_h$ jako liniowe przekształcenie wektora odpowiedzi $Y = (Y_1, ..., Y_n)'$ pochodzi z rozkładu normalnego:

$$\hat{\mu}_h \sim N(\mu_h, \sigma^2(\hat{\mu}_h))$$

gdzie
$$\sigma^2(\hat{\mu}_h) = \sigma^2\left(\frac{1}{n} + \frac{(X_h - \bar{X})^2}{\sum_{i=1}^n (X_i - \bar{X})^2}\right).$$

◆ロト ◆団 ▶ ◆ 恵 ▶ ◆ 恵 ◆ 夕 Q ○

Własności teoretyczne $E(Y_h)$

Wartość oczekiwana:

$$E(\hat{\mu}_h) = E(\hat{\beta}_0) + E(\hat{\beta}_1)X_h = \beta_0 + \beta_1 X_h = \mu_h$$

Wariancja:

$$\sigma^{2}(\hat{\mu}_{h}) = Var(\hat{\beta}_{0} + \hat{\beta}_{1}X_{h}) = Var(\bar{Y} - \hat{\beta}_{1}\bar{X} + \hat{\beta}_{1}X_{h}) = Var(\bar{Y} + \hat{\beta}_{1}(X_{h} - \bar{X})) =$$

$$= Var(\bar{Y}) + Var(\hat{\beta}_{1})(X_{h} - \bar{X})^{2} + 2(X_{h} - \bar{X})\underbrace{cov(\bar{Y}, \hat{\beta}_{1})}_{=0} =$$

$$= \sigma^{2}\left(\frac{1}{n} + \frac{(X_{h} - \bar{X})^{2}}{\sum_{i=1}^{n}(X_{i} - \bar{X})^{2}}\right)$$

Przedział ufności oraz testowanie dla $E(Y_h)$

Statystyka T

Oznaczmy przez T następującą statystykę:

$$T = \frac{\hat{\mu}_h - E(\hat{\mu}_h)}{s(\hat{\mu}_h)} \quad \text{gdzie} \quad s^2(\hat{\mu}_h) = s^2 \left(\frac{1}{n} + \frac{(X_h - \bar{X})^2}{\sum_{i=1}^n (X_i - \bar{X})^2}\right)$$

Wówczas statystyka T pochodzi z rozkładu studenta z n-2 stopniami swobody $T \sim t(n-2)$

Na podstawie statystyki T możemy skonstruować przedział ufności o współczynniku ufności $1-\alpha$ dla parametru $E(Y_h)$:

$$\hat{\mu}_h \pm t_c s(\hat{\mu}_h)$$

Możemy również wykonać testowanie analogicznie jak dla $\hat{\beta}_0$ i $\hat{\beta}_1$.

◆ロト ◆個 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ○

Predykcja punktowa dla <u>nowej</u> wartości zmiennej odpowiedzi Y_h

Przed momentem rozważyliśmy własności estymatora wartości oczekiwanej ze zmiennej objaśnianej μ_h . Co jednak zrobić gdy chcemy przewidzieć wartość nowej zmiennej zależnej Y_h .

 $Y_h=\beta_0+\beta_1X_h+\epsilon$ – wartość <u>nowej</u> zmiennej zależnej dla zmiennej niezależnej o wartości X_h .

Predykcja punktowa dla <u>nowej</u> wartości zmiennej odpowiedzi Y_h

Przed momentem rozważyliśmy własności estymatora wartości oczekiwanej ze zmiennej objaśnianej μ_h . Co jednak zrobić gdy chcemy przewidzieć wartość <u>nowej</u> zmiennej zależnej Y_h .

 $Y_h = \beta_0 + \beta_1 X_h + \epsilon$ – wartość <u>nowej</u> zmiennej zależnej dla zmiennej niezależnej o wartości X_h .

Predykcja punktowa Y_h jest postaci $\hat{Y}_h = \hat{\mu}_h = \hat{\beta}_0 + \hat{\beta}_1 X_h$. Ma on tę samą postać co przed momentem rozważany estymator $E(Y_h)$. Nie jest to zaskakujące, gdyż z założenia nie potrafimy modelować zachowania losowego błędu ϵ , który ma symetryczny rozkład. Jednakże, ze względu na ten sam błąd ϵ zmieniają się własności wariancji predykcji.

Przedział ufności vs. przedział predykcyjny

Przedział predykcyjny dla <u>nowej</u> wartości zmiennej odpowiedzi Y_h

Wariancja błędu predykcji jest postaci:

$$Var(Y_h - \hat{\mu}_h) = Var(Y_h) + Var(\hat{\mu}_h) = \sigma^2 + \sigma^2 \left(\frac{1}{n} + \frac{(X_h - \bar{X})^2}{\sum_{i=1}^n (X_i - \bar{X})^2} \right) =$$

$$= \sigma^2 \left(1 + \frac{1}{n} + \frac{(X_h - \bar{X})^2}{\sum_{i=1}^n (X_i - \bar{X})^2} \right)$$

Widzimy zatem, że jest ona większa niż wariancja estymatora $E(Y_h)$. Przekłada się to na szerokość przedziału predykcyjnego, która jest większa od szerokości przedziału ufności dla $E(Y_h)$.

$$T = \frac{Y_h - \hat{\mu}_h}{s(\textit{pred})} \sim t(n-2) \quad \text{ gdzie } \quad s^2(\textit{pred}) = s^2 \left(1 + \frac{1}{n} + \frac{(X_h - \bar{X})^2}{\sum_{i=1}^n (X_i - \bar{X})^2}\right)$$

Przedział predykcyjny dla Y_h jest postaci:

$$\hat{\mu}_h \pm t_c s(pred)$$

Table of Contents

- Wstęp
- 2 Regresja liniowa prosta (Simple Linear Regression)
- Metody estymacj
- 4 Teoretyczne własności estymatorów
- 5 Estymacja $E(Y_h) = \mu_h$ i predykcja Y_h
- 6 Pasmo ufności dla prostej regresji
- Podsumowanie

Pasmo ufności dla prostej regresji $E(Y|X) = \beta_0 + \beta_1 X$

Na poprzednich slajdach opisano teorię dotyczącą wartości oczekiwanej $E(Y_h)=\mu_h$ dla konkretnej podpopulacji o wartości zmiennej zależnej X_h . W praktycznych zagadnieniach pytamy czasami o równoczesne przedziały ufności dla kilku wartości średniej μ , np. $\mu_{1'},...,\mu_{d'}$, lub o tak zwane pasmo ufności dla prostej regresji (równoczesne przedziały ufności dla wszystkich możliwych wartości μ_h).

Pasmo ufności dla prostej regresji $E(Y|X) = \beta_0 + \beta_1 X$

Na poprzednich slajdach opisano teorię dotyczącą wartości oczekiwanej $E(Y_h)=\mu_h$ dla konkretnej podpopulacji o wartości zmiennej zależnej X_h . W praktycznych zagadnieniach pytamy czasami o równoczesne przedziały ufności dla kilku wartości średniej μ , np. $\mu_{1'},...,\mu_{d'}$, lub o tak zwane pasmo ufności dla prostej regresji (równoczesne przedziały ufności dla wszystkich możliwych wartości μ_h).

Na podstawie teorii opisującej łączny rozkład estymatorów $(\hat{\beta}_0, \hat{\beta}_1)$ ', pasmo ufności (na poziomie α) dla prostej regresji (w dowolnym punkcie X_h) ma postać:

$$\hat{\mu}_h \pm \mathit{Ws}(\hat{\mu}_h)$$

gdzie $W^2=2F(1-\alpha,2,n-2)$ jest podwojonym kwantylem rzędu $1-\alpha$ z rozkładu Fishera-Snedecora z 2 i n-2 stopniami swobody.

Pasmo ufności dla prostej regresji $E(Y|X) = \beta_0 + \beta_1 X$

Na poprzednich slajdach opisano teorię dotyczącą wartości oczekiwanej $E(Y_h)=\mu_h$ dla konkretnej podpopulacji o wartości zmiennej zależnej X_h . W praktycznych zagadnieniach pytamy czasami o równoczesne przedziały ufności dla kilku wartości średniej μ , np. $\mu_{1'},...,\mu_{d'}$, lub o tak zwane pasmo ufności dla prostej regresji (równoczesne przedziały ufności dla wszystkich możliwych wartości μ_h).

Na podstawie teorii opisującej łączny rozkład estymatorów $(\hat{\beta}_0, \hat{\beta}_1)$ ', pasmo ufności (na poziomie α) dla prostej regresji (w dowolnym punkcie X_h) ma postać:

$$\hat{\mu}_h \pm \mathit{Ws}(\hat{\mu}_h)$$

gdzie $W^2=2F(1-\alpha,2,n-2)$ jest podwojonym kwantylem rzędu $1-\alpha$ z rozkładu Fishera-Snedecora z 2 i n-2 stopniami swobody.

Powyższy wzór daje <u>równoczesne przedziały ufności</u> dla wszystkich wartości X_h .

Table of Contents

- Wstęp
- 2 Regresja liniowa prosta (Simple Linear Regression)
- Metody estymacji
- 4 Teoretyczne własności estymatorów
- 5 Estymacja $E(Y_h) = \mu_h$ i predykcja Y_h
- 6 Pasmo ufności dla prostej regresji
- Podsumowanie

Dotychczas poznaliśmy teoretyczny model regresji liniowej prostej

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i \quad i = 1, ..., n$$

Dotychczas poznaliśmy teoretyczny model regresji liniowej prostej

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i \quad i = 1, ..., n$$

- metody estymacji (OLS i ML) parametrów w modelu β_0, β_1 i σ^2 ,
- własności teoretyczne estymatorów $\hat{\beta}_0, \hat{\beta}_1$ i $\hat{\sigma}^2$
- teorię dotyczącą przedziałów ufności, testowania hipotez oraz mocy testów dla $\hat{\beta}_0$ i $\hat{\beta}_1$,

Dotychczas poznaliśmy teoretyczny model regresji liniowej prostej

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i \quad i = 1, ..., n$$

- metody estymacji (OLS i ML) parametrów w modelu β_0, β_1 i σ^2 ,
- własności teoretyczne estymatorów $\hat{\beta}_0, \hat{\beta}_1$ i $\hat{\sigma}^2$
- teorię dotyczącą przedziałów ufności, testowania hipotez oraz mocy testów dla $\hat{\beta}_0$ i $\hat{\beta}_1$,
- teorię dotyczącą estymacji wartości oczekiwanej $E(Y_h) = \mu_h$, testowania hipotez oraz przedziałów ufności dla podpopulacji o wartości zmiennej niezależnej równej X_h ,
- teorię dotyczącą pasma ufności dla prostej regresji. Innymi słowy równoczesnych przedziałów ufności dla wszystkich wartości średnich $E(Y_h)=\mu_h$,

Dotychczas poznaliśmy teoretyczny model regresji liniowej prostej

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i \quad i = 1, ..., n$$

- metody estymacji (OLS i ML) parametrów w modelu β_0, β_1 i σ^2 ,
- własności teoretyczne estymatorów $\hat{\beta}_0, \hat{\beta}_1$ i $\hat{\sigma}^2$
- teorię dotyczącą przedziałów ufności, testowania hipotez oraz mocy testów dla $\hat{\beta}_0$ i $\hat{\beta}_1$,
- teorię dotyczącą estymacji wartości oczekiwanej $E(Y_h) = \mu_h$, testowania hipotez oraz przedziałów ufności dla podpopulacji o wartości zmiennej niezależnej równej X_h ,
- teorię dotyczącą pasma ufności dla prostej regresji. Innymi słowy równoczesnych przedziałów ufności dla wszystkich wartości średnich $E(Y_h)=\mu_h$,
- teorię dotyczącą przedziałów predykcyjnych dla <u>nowych</u> wartości zmienne zależnej Y_h .

W zależności od pytania badacza koncentrujemy się na różnych elementach poznanej teorii.

- Gdy badamy siłę relacji pomiędzy zmienną objaśnianą i zmienną objaśniającą, koncentrujemy się na własnościach parametru β_1 .
- Gdy interesuje nas średnie zachowanie zmiennej objaśnianej dla konkretnej podpopulacji (X_h) , koncentrujemy się na własnościach wartości oczekiwanej μ_h np. przedziały ufności,
- Gdy koncentrujemy się na predykcji zachowania nowych wartości zmiennej wynikowej, korzystamy z teorii dotyczącej przedziałów predykcyjnych,
- Gdy interesuje nas średnie zachowanie zmiennej objaśnianej dla dowolnej wartości X_h, korzystamy z teorii dotyczącej pasma ufności.