Proiectarea algoritmilor

Tema de casă nr. 2

Cuprins

Compresii de da

Sarcini de lucru și barem de notare

Cuprins

Arbori binari ponderați pe frontieră

Descriere

Algoritm pentru construirea unui arbore cu lungimea externă ponderată minimă

Compresii de date

Descriere

Coduri Huffman

Sarcini de lucru și barem de notare

Bibliografie

Arbori binari ponderați pe frontieră - descriere

- Considerăm arbori binari cu proprietatea că orice vârf are 0 sau 2 succesori și vârfurile de pe frontieră au ca informații (etichete, ponderi) numere, notate cu info(v).
- Convenim să numim acești arbori ca fiind ponderați pe frontieră.
- Pentru un vârf v din arborele t notăm cu d_v lungimea drumului de la rădăcina lui t la vârful v.
- Lungimea externă ponderată a arborelui t este:

$$LEP(t) = \sum_{v \text{ pe frontiera lui } t} d_v \cdot info(v)$$

- Modificăm acești arbori etichetând vârfurile interne cu numere ce reprezintă suma etichetelor din cele două vârfuri fii.
- Pentru orice vârf intern v avem $info(v) = info(v_1) + info(v_2)$, unde v_1, v_2 sunt fiii lui v (Figura 1).

Arbori binari ponderați pe frontieră - exemplu

Figura 1: Arbore ponderat pe frontieră, înainte și după modificare

Lungimea externă ponderată

Lemma (1)

Fie t un arbore binar ponderat pe frontieră.

Atunci

$$LEP(t) = \sum_{v \text{ intern } \hat{v} n t} info(v)$$

Lemma (2)

Fie t un arbore din $\mathcal{T}(x)$ cu LEP minimă și v_1, v_2 două vârfuri pe frontiera lui t. Dacă info $(v_1) < info(v_2)$ atunci $d_{v_1} \ge d_{v_2}$.

Lemma (3)

Presupunem $x_0 \le x_1 \le \cdots \le x_{n-1}$. Există un arbore în $\mathcal{T}(x)$ cu LEP minimă și în care vârfurile etichetate cu x_0 și x_1 (vârfurile sunt situate pe frontieră) sunt frați.

- Ideea algoritmului rezultă direct din Lema 3.
- Presupunem $x_0 \le x_1 \le \cdots \le x_{n-1}$.
- Știm că există un arbore optim t în care x_0 și x_1 sunt memorate în vârfuri frate. Tatăl celor două vârfuri va memora $x_0 + x_1$.
- Prin ștergerea celor două vârfuri ce memorează x_0 și x_1 se obține un arbore t'.
- Fie t1' un arbore optim pentru secvenţa y = (x₀ + x₁, x₂,...,x_{n-1}) şi t1 arborele obţinut din t1' prin "agăţarea" a două vârfuri cu informaţiile x₀ şi x₁ de vârful ce memorează x₀ + x₁.
- Avem $LEP(t1') \leq LEP(t')$ ce implică

$$LEP(t1) = LEP(t1') + x_0 + x_1 \le LEP(t') + x_0 + x_1 = LEP(t)$$

• Cum t este optim, rezultă LEP(t1) = LEP(t) și de aici t' este optim pentru secventa v.

Algoritm pentru construirea unui arbore cu lungimea externă ponderată minimă - pseudocod

- Considerăm în loc de secvente de numere secvente de arbori.
- Notații: $t(x_i)$ desemnează arborele format dintr-un singur vârf etichetat cu x_i iar rad(t) rădăcina arborelui t.
- *Premise*: Inițial se consideră n arbori cu un singur vârf, care memorează numerele x_i , i = 0, ..., n-1.

```
procedure lep(x, n)

1: B \leftarrow \{t(x_0), \dots, t(x_{n-1})\}

2: while (#B > 1) do

3: alege t1, t2 din B cu info(rad(t1)), info(rad(t2)) minime

4: construieşte arborele t în care subarborii rădăcinii

5: sunt t1, t2 şi info(rad(t))=info(rad(t1))+info(rad(t2))

6: B \leftarrow (B \setminus \{t1,t2\}) \cup \{t\}
end
```

Implementarea algoritmului pentru construirea unui arbore cu lungimea externă ponderată minimă

- a) Dacă mulțimea B este implementată printr-o listă liniară, atunci în cazul cel mai nefavorabil operația 3 este are timpul de execuție O(n), iar operația 6 are timpul de execuție O(1).
- b) Dacă mulțimea B este implementată printr-o listă liniară ordonată, atunci în cazul cel mai nefavorabil operația 3 are timpul de execuție O(1), iar operația 6 are timpul de execuție O(n).
- c) Dacă mulțimea B este implementată printr-un heap, atunci în cazul cel mai nefavorabil operația B are timpul de execuție B (B0), iar operația B1 are timpul de execuție B1 (B1).
 - Concluzie: heapul este alegerea cea mai bună pentru implementarea mulțimii B.

- Fie *n* mesaje M_0, \ldots, M_{n-1} receptionate cu frecvențele f_0, \ldots, f_{n-1} .
- Mesajele sunt codificate cu șiruri (cuvinte) construite peste alfabetul $\{0,1\}$ cu proprietatea că pentru orice $i \neq j$, codul mesajului M_i nu este un prefix al codului lui M_j . O astfel de codificare se numește *independentă de prefix* ("prefix-free").
- Notăm cu d_i lungimea codului mesajului M_i . Lungimea medie a codului este $\sum_{i=0}^{n-1} f_i \cdot d_i$.
- Problema constă în determinarea unei codificări cu lungimea medie minimă.
- Unei codificări îi putem asocia un arbore binar cu proprietățile următoare:
 - Mesajele corespund nodurilor de pe frontieră.
 - Muchiile (tata, fiu-stânga) sunt etichetate cu 0;
 - Muchiile (tata, fiu-dreapta) sunt etichetate cu 1.
 - Nodurile de pe frontiera arborelui sunt etichetate cu frecvențele mesajelor corespunzătoare.
- Drumul de la rădăcină la un nod de pe frontieră descrie codul mesajului asociat acestui nod.
- Determinarea unui cod optim coincide cu determinarea unui arbore ponderat pe frontieră optim.

Coduri Huffman - exemplu

- Codurile Huffman pot fi utilizate la scrierea comprimată a textelor.
- Considerăm textul HARABABURA.
- Mesajele sunt literele din text, iar frecvențele sunt date de numărul de apariții ale fiecărei litere în text (Figura 2a).

Literă	Frecvență	Literă	Cod
Н	1	Н	010
Α	4	Α	1
R	2	R	000
В	3	В	001
U	1	U	011
ˈa)		b))

Figura 2: Codificarea caracterelor din textul HARABABURA

Figura 3 : Construcția arborelui Huffman pentru HARABABURA

00000

Algoritm de construcție a arborelui Huffman optim - descriere

- Presupunem că intrarea este memorată într-un tablou T de structuri cu două câmpuri:
 - T[i].mes contine mesaiul Mi:
 - T[i].f conține frecvența f_i.
- Pentru implementare recomandăm reprezentarea arborilor prin tablouri de structuri.
- Notăm cu H tabloul ce reprezintă arborele Huffman.
- Tabloul H conţine structuri formate din trei câmpuri:
 - H[i].elt;
 - H[i].fst = indicele fiului de pe partea stângă;
 - H[i].fdr = indicele fiului de pe partea dreaptă.
- Semnificația câmpului H[i].elt este următoarea:
 - dacă i este nod intern, atunci H[i].elt reprezintă informația calculată din nod;
 - dacă i este pe frontieră (corespunde unui mesaj), atunci H[i].elt este adresa din T a mesajului corespunzător.
- Notăm cu val(i) funcția care intoarce informația din nodul i, calculată ca mai sus.
- Tabloul H, care în final va memora arborele Huffman corespunzător codurilor optime, va memora pe parcursul construcției acestuia colecțiile intermediare de arbori.

Algoritm de construcție a arborelui Huffman optim - descriere (continuare)

 În timpul execuției algoritmului de construcție a arborelui, H este compus din trei părți (Figura 4):

Partea I: un min-heap care va conține rădăcinile arborilor din colecție;

Partea a II-a: conține nodurile care nu sunt rădăcini;

Partea a III-a: zonă vidă în care se poate extinde partea din mijloc.

<i>heap</i> -ul rădăcinilor	noduri care nu nu sunt rădăcini	zonă vidă
-----------------------------	------------------------------------	-----------

Figura 4: Organizarea tabloului H

Algoritm de construcție a arborelui Huffman optim (continuare)

0000

Un pas al algoritmului de construcție ce realizează selecția *greedy* presupune parcurgerea următoarelor etape:

- Mutarea rădăcinii cu informația cea mai mică pe prima poziție liberă din zona a treia, să zicem k. Aceasta este realizată de următoarele operații:
 - a) copierea rădăcinii de pe prima poziție din heap pe poziția k:

$$H[k] \leftarrow H[1]$$
$$k \leftarrow k + 1$$

b) mutarea ultimului element din heap pe prima poziție:

$$\begin{array}{l} \texttt{H[1]} \leftarrow \texttt{H[m]} \\ \texttt{m} \leftarrow \texttt{m-1} \end{array}$$

- c) refacerea min-heapului.
- 2. Copierea rădăcinii cu informația cea mai mică pe prima poziție liberă din zona a treia, fără a o elimina din min-heap:

$$\begin{aligned} \texttt{H[k]} \leftarrow \texttt{H[1]} \\ \texttt{k} \leftarrow \texttt{k + 1} \end{aligned}$$

- 3. Construirea noii rădăcini și memorarea acesteia pe prima poziție în min-heap (în locul celei copiate anterior).
- 4. Refacerea min-heapului. .
- Algoritmul rezultat are timpul de execuție $O(n \log n)$.

Sarcini de lucru și barem de notare

Sarcini de lucru:

 Dat fiind un text memorat într-un fişier, scrieţi un program C/C++ care codifică binar textul astfel încăt lungimea medie a codului rezultat sfie minimă (Vezi algoritmul 1ep, figura 4 şi algoritmul de construcţie a arborelui Huffman optim).

Barem de notare:

- 1. Implementarea algoritmului algoritmul de construcție a arborelui Huffman optim: 6p
- Codificarea binară a textului astfel încăt lungimea medie a codului rezultat să fie minimă: 3p
- 3. Baza: 1p

Bibliografie

Lucanu, D. și Craus, M., Proiectarea algoritmilor, Editura Polirom, 2008.

Moret, B.M.E.si Shapiro, H.D., Algorithms from P to NP: Design and Efficiency, The Benjamin/Cummings Publishing Company, Inc., 1991.