自 觉

守

考 试

规

诚

信

考 得

试

绝

作 弊

不 题

答

学号 姓名 班级

- 1. (15') Analyze the circuit in Figure 1.
 - (1) Write the output expression for the circuit.

Figure 1

- (2) Develop the truth table for the circuit.
- (3) **Minimize** the gates required to implement the function.

2. (10')A D flip-flop is connected as shown in Figure 2. Determine the Q output in relation to the clock and inputs.

Figure2

- 3. (20') Implement a three inputs parity checker with odd parity. The output is "1" when the number of input "1" is odd.
 - (1) Using NAND Gates only

(2) Using a 74LS151 8-inputs data selector/multiplexer.

Function Table of 74LS151			
INPUTS			OUTPUT
A_2	A_1	A_0	Υ
0	0	0	D_0
0	0	1	D_1
0	1	0	D_2
0	1	1	D_3
1	0	0	D_4
1	0	1	D_5
1	1	0	D_6
1	1	1	D_7

4. (10')You wish to detect only the presence of the codes 1110, 1001, 0101 and 1011. An active-HIGH output is required to indicate their presence. Develop the logic circuit with a single output that will indicate when any one of these codes is on the inputs. For any other code, the output must be LOW. Please use a 4-line-to-16-line decoder with fewer gates as needed.

5. (15')Show how to connect two 74LS161s for a modulus-35 counter with sequence $(1,2,...35)_{10}$.

6. (15')Determine the sequence of the counter in Figure 3, showing the Q_1 , Q_2 and Q_3 waveforms.

Figure 3

7. (15') Design a synchronous counter with sequence $00 \rightarrow 01 \rightarrow 11 \rightarrow 10 \rightarrow 00$, use JK flip-flops.