M3M6: Methods of Mathematical Physics

Dr. Sheehan Olver

s.olver@imperial.ac.uk

1 Lecture 3: Laurent series and residue calculus

This lecture we cover

- 1. Fourier and Laurent series
- 2. Contour integrals and Laurent coefficients
- 3. Isolated singularities
 - Residue at a point
- 4. Contour integrals in domains with multiple holes
 - The residue theorem
- 5. Calculated integrals
 - Application: Trigonometric integrals with rational functions

1.1 Fourier and Laurent series

Definition (Fourier series) On $[-\pi,\pi)$, Fourier series is an expansion of the form

$$g(\theta) = \sum_{k=-\infty}^{\infty} g_k e^{ik\theta}$$

where

$$g_k = \frac{1}{2\pi} \int_{-\pi}^{\pi} g(\theta) e^{-ik\theta} d\theta$$

Definition (Laurent series) In the complex plane, Laurent series around z_0 is an expansion of the form

$$f(z) = \sum_{k=-\infty}^{\infty} f_k (z - z_0)^k$$

Lemma (Fourier series = Laurent series) On a circle in the complex plane

$$\gamma_r = \{ z_0 + re^{i\theta} : -\pi \le \theta < \pi \},\,$$

Laurent series of f(z) around z_0 converges for $z \in C_r$ if the Fourier series of $g(\theta) = f(z_0 + re^{i\theta})$ converges, and the coefficients are given by

$$f_k = \frac{g_k}{r^k} = \frac{1}{2\pi i} \oint_{\gamma_r} \frac{f(\zeta)}{(\zeta - z_0)^{k+1}} d\zeta.$$

Proof This follows immediately from the change of variables $z = re^{i\theta} + z_0$. \blacksquare Interestingly, analytic properties of f can be used to show decaying properties in g:

1.2 Residue on a circle

In this course, we will always think of Laurent series living on a circle $\gamma = z - z_0 - z_0 = r$. That is,

$$f(z) \approx \sum_{k=-\infty}^{\infty} f_k (z - z_0)^k$$

for $z \in \gamma_r(z_0)$.

Proposition (Residue on a circle) Suppose the Laurent series is absolutely summable on γ_r . Then

$$\oint_{\gamma_r} f(z)dz = 2\pi \mathrm{i} f_{-1}$$

We refer to f_{-1} as the residue over γ_r .

Example For all $0 < r < \infty$,

$$\oint_{\gamma_n} \frac{1}{z} dz = 2\pi i$$

When f is holomorphic in a neighbourhood of the circle, we can extend it to an annulus (like Taylor series and disks):

Proposition (Laurent series in an annulus) Suppose f is holomorphic in an open annulus $A_{\rho R}(z_0) = \{z : \rho < |z - z_0| < R\}$. Then the Laurent series converges uniformly in any closed annulus inside $A_{\rho R}$

Proof Exercise. Hint: use the decay in the Laurent coefficients f_k from last lecture.

Proposition (Residue on a circle) holds true regardless of the radius.

1.3 Isolated singularities

Definition (isolated singularity) f has an *isolated singularity at* z_0 if it is holomorphic in an open annulus with inner radius 0:

$$A_{0R}(z_0) = \{z : 0 < |z - z_0| < R\}.$$

Definition (Removable singularity) f has a removable singularity at z_0 if it has an isolated singularity at z_0 and all negative terms in the Laurent series in $A_{0R}(z_0)$ are zero:

$$f(z) = f_0 + f_1(z - z_0) + f_2(z - z_0)^2 + \cdots$$

```
using Plots, ComplexPhasePortrait
f = z -> (exp(z)-1)/z
f(0.0)
```

NaN

No singularity appears when plotting **f**:

phaseplot(-1..1, -1..1, f)

Proposition (Removing a removable singularity) If f has a removable singularity at z_0 , then

$$\tilde{f}(z) = \begin{cases} f_0 & z = z_0 \\ f(z) & 0 < |z - z_0| < R \end{cases}$$

is analytic in the disk $B_R(z_0) = \{z : |z - z_0| < R\}$, with a convergent Taylor series. Hence the name.

$$g = z \rightarrow z \approx 0 ? 1 : f(z)$$

phaseplot(-1..1, -1..1, g)

Definition (simple pole) f has a *simple pole at* z_0 if it is holomorphic in

$$A_{0R}(z_0) = \{z : 0 < |z - z_0| < R\}$$

with only one negative term in the Laurent series in $A_{0R}(z_0)$:

$$f(z) = \frac{f_{-1}}{z - z_0} + f_0 + f_1(z - z_0) + \cdots$$

where $f_{-1} \neq 0$.

Definition (higher order pole) f has a pole of order N at z_0 if it is holomorphic in

$$A_{0R}(z_0) = \{z : 0 < |z - z_0| < R\}$$

with only N negative coefficients in the Laurent series:

$$f(z) = \frac{f_{-N}}{(z - z_0)^N} + \frac{f_{1-N}}{(z - z_0)^{N-1}} + \dots + \frac{f_{-1}}{z - z_0} + f_0 + f_1(z - z_0) + \dots$$

where $f_{-N} \neq 0$.

phaseplot(-1..1, -1..1, $z \rightarrow \exp(z)/z^3$)

Definition (essential singularity) f has an essential singularity at z_0 if it is holomorphic in $A_{0R}(z_0)$ and has an infinite number of negative Laurent coefficients.

phaseplot(-1..1, -1..1,
$$z \rightarrow exp(1/z)$$
)

Even though the singlarity is essential, we can still calculate the integrals using Residue

calculus:

```
using ApproxFun

sum(Fun(z -> exp(1/z), Circle())),

2\pi*im*Fun(z -> exp(1/z), Laurent(Circle())).coefficients[2]

(-8.078182973046723e-16 + 6.283185307179586im, -8.078182973046723e-16 + 6.2

83185307179586im)
```

1.3.1 Residue at a point

Definition (Residue at a point) Suppose f has an isolated singularity at z_0 , and is analytic in the annulus $A_{0R}(z_0)$ for some R > 0. Then we define the residue at z_0 as

$$\operatorname{Res}_{z=z_0} f(z) = f_{-1}$$

where f_{-1} is the first negative coefficient of the Laurent series in $A_{0R}(z_0)$.

Proposition (Residue of ratio of analytic functions with simple pole) Suppose

$$f(z) = \frac{A(z)}{B(z)}$$

and A, B are analytic/holomorphic in a disk of radius R around z_0 and that B has only a single zero at z_0 :

$$A(z) = A_0 + A_1(z - z_0) + \cdots$$

 $B(z) = B_1(z - z_0) + \cdots$

Then $\operatorname{Res}_{z=z_0} f(z) = \frac{A_0}{B_1}$

Exercise (Residue of ratio of analytic functions with higher order poles) What is the residue at z_0 if B has a higher order zero: $B(z) = B_N(z - z_0)^N + \cdots$?

1.4 Contour integrals on domains with multiple holes

Consider the following example:

$$\frac{\sqrt{z-1}\sqrt{z+1}}{z^2+4}$$

We still have the contour integral over a circle, and so *Proposition (Residue on a circle)* still holds true for r > 2. But we can also deform the contour into three contours:

```
f = z -> sqrt(z-1)sqrt(z+1)/(z^2+4)

\Gamma = Circle(1.1) \cup Circle(2.0im, 0.1) \cup Circle(-2.0im, 0.1)

phaseplot(-2..2, -3..3, f)
```

plot!(Γ ; color=:black, label=:contour, arrow=true, linewidth=1.5)

 $sum(Fun(f, Circle(2.1))), sum(Fun(f, \Gamma))$

(-8.270426731549189e-16 + 6.283185307179587im, -1.00975500904025e-15 + 6.283185307179586im)

Thus we can sum over three residues.

1.4.1 Residue theorem

Theorem (Cauchy's Residue Theorem) Let f be holomprohic inside and on a simple closed, positively oriented contour γ except at isolated points z_1, \ldots, z_r inside γ . Then

$$\oint_{\gamma} f(z)dz = 2\pi i \sum_{j=1}^{r} \operatorname{Res}_{z=z_{j}} f(z)$$

1.5 Calculating integrals

We can use the Residue theorem to calculate "hard" integrals.

First, two trivial examples:

$$f = z \rightarrow 1/(z*(z+2))$$

phaseplot(-3..3, -3..3, f)

sum(Fun(f, Circle(3.0)))

 $7.874234295592502 {e-}19 - 9.742139082662117 {e-}17 {im}\\$

$$f = z \rightarrow \exp(z)/(z*(z+2))$$

phaseplot(-3..3, -3..3, f)


```
\begin{aligned} & \text{sum}(\text{Fun}(\texttt{f}, \, \text{Circle}(3.0))) \\ -5.073166565789438e-16 & + 2.716424322002157 \text{im} \\ & 2\pi*\text{im}*(1/2 - \exp(-2)/2) \\ & 0.0 & + 2.716424322002157 \text{im} \\ & \text{sum}(\text{Fun}(\texttt{z} \rightarrow \exp(\texttt{z})/(\texttt{z}^2*(\texttt{z}+2)), \, \text{Circle}(3.0))) \\ & -2.313334476762615e-16 & + 1.7833804925887144 \text{im} \\ & 2*\text{pi}*\text{im} * (1/4 + \exp(-2)/4) \\ & 0.0 & + 1.783380492588715 \text{im} \end{aligned}
```

1.6 Application: Integrals on the real line of rational functions

We can calculate integrals of the form

$$\int_0^{2\pi} R(\cos\theta, \sin\theta) d\theta$$

where R(x,y) is rational by doing the change of variables $z=e^{i\theta}$ to reduce it to

$$\oint_{\gamma_1} R\left(\frac{z+z^{-1}}{2}, \frac{z-z^{-1}}{2i}\right) \frac{dz}{iz}$$

Example Consider

$$\int_0^{2\pi} \frac{d\theta}{1 - 2\rho\cos\theta + \rho^2}$$

```
for 0 < \rho < 1.

\rho = 0.5

plot(Fun(\theta \rightarrow 1/(1-2\rho*\cos(\theta) + \rho^2), 0 ... 2\pi))

phaseplot(-2..2, -2..2, z \rightarrow 1/(1-\rho*(z+(z^*(-1))) + \rho^2) * 1/(im*z))

sum(Fun(\theta \rightarrow 1/(1-2\rho*\cos(\theta) + \rho^2), 0 ... 2\pi)), 2\pi /(1-\rho^2)

(8.377580409572783, 8.377580409572781)
```

1.7 Demonstration

Example This works for functions not analytic:

$$\oint_{\gamma_1} (\sqrt{z-1}\sqrt{z+1})^3 dz$$

```
f = z -> (sqrt(z-1)*sqrt(z+1))^3
phaseplot(-2..2, -2..2, f)
plot!(Circle(1.1); color=:black, label="contour", linewidth=1.5, arrow=true)
```


@show sum(Fun(f, Laurent(Circle(1.1)))) # integral over circle

 $\label{eq:sum} \begin{aligned} & \text{sum}(\text{Fun(f, Laurent(Circle(1.1)))}) = -1.2751605303035503e-16 \ + \ 2.35619449019 \\ & 23444\text{im} \end{aligned}$

 $f_-_1 = Fun(f, Laurent(Circle(1.1))).coefficients[2] # numerical Laurent coefficient @show <math>2\pi*im*f_-_1;$

 (2π) * im * f_-_1 = -1.1592368457305e-16 + 2.141994991083949im