

BA

(19) Europäisches Patentamt
European Patent Office
Office européen des brevets

(11) EP 0 992 239 B1

(12)

EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention
of the grant of the patent:

✓ 12.03.2003 Bulletin 2003/11

(21) Application number: 98917633.4

(22) Date of filing: 22.04.1998

(51) Int Cl.7: A61K 31/35

// C07D311/80, A61P3/04,
A61P3/10, A61P9/00,
A61P9/12, A61P13/12,
A61P25/08, A61P25/24,
A61P27/06

(86) International application number:
PCT/JP98/01855

(87) International publication number:
WO 98/047505 (29.10.1998 Gazette 1998/43)

(54) NEUROPEPTIDE Y RECEPTOR ANTAGONIST

NEUROPEPTID Y REZEPTORANTAGONISTEN

ANTAGONISTE DE RECEPTEUR DE NEUROPEPTIDE Y

(84) Designated Contracting States:
DE FR GB IT

(30) Priority: 23.04.1997 JP 12031097

(43) Date of publication of application:
12.04.2000 Bulletin 2000/15

(73) Proprietor: BANYU PHARMACEUTICAL CO., LTD.
Chuo-ku, Tokyo 103-8416 (JP)

(72) Inventors:

- FUKAMI, Takehiro, Banyu Pharma. Co., Ltd.
Tsukuba-shi, Ibaraki 300-2611 (JP)
- FUKURODA, Takahiro, Banyu Pharm. Co., Ltd.
Tsukuba-shi, Ibaraki 300-2611 (JP)

- KANATANI, Akio, Banyu Pharm. Co., Ltd.
Tsukuba-shi, Ibaraki 300-2611 (JP)
- IHARA, Masaki, Banyu Pharm. Co., Ltd.
Tsukuba-shi, Ibaraki 300-2611 (JP)
- OKABE, Takayoshi, Banyu Pharm. Co., Ltd.
Tsukuba-shi, Ibaraki 300-2611 ; (JP)

(74) Representative: Benson, John Everett
J. A. Kemp & Co.,
14 South Square,
Gray's Inn
London WC1R 5JJ (GB)

(56) References cited:
US-A- 5 552 411 US-A- 5 567 714

EP 0 992 239 B1

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

Description**FIELD OF THE INVENTION**

5 [0001] The present invention is useful in the field of medicines. More specifically, medicines containing compounds represented by the formula [I] of the present invention as active ingredients are useful as neuropeptide Y receptor antagonists and as agents for the treatment of various diseases of circulatory organs, central nervous system and metabolic system.

10 BACKGROUND OF THE INVENTION

[0002] Neuropeptide Y (hereinafter abbreviated as NPY) is a peptide consisting of 36 amino acids, which was isolated from porcine brain for the first time by Tatsumoto et al. in 1982 [Nature, vol.296, p.659 (1982)]. NPY is broadly distributed in central and peripheral nervous systems and has various *in vivo* functions as one of the peptides most abundantly present in the nervous systems. That is, in the central nervous system, NPY acts as an aperitive and significantly promotes a fat accumulation associated with the lowering of a basal metabolism via secretion of various hormones and actions of the nervous systems. It is known that a continuous intracerebroventricular administration of NPY induces obesity and insulin resistance based on the above actions. And, it is known that in rodents showing hereditary or dietary obesity, NPY concentration in the brain is increased. Further, the increase in expression of the NPY receptor is reported. NPY is also associated with the control of mood and functions of the central autonomic nervous system. In addition, in the peripheral nervous system, NPY is present together with norepinephrine in the sympathetic nerve terminal and associated with the tension of the sympathetic nervous system [International Journal of Obesity, vol.19, p.517 (1995); Endocrinology, vol.133, p.1753 (1993); Neuropeptide Y and drug development, p.15 (1997); Brain Research, vol.744, p.1 (1997); The biology of neuropeptide Y, p.315 (1993)].

25 [0003] The function of NPY is expressed when it is bound to an NPY receptor present in the central or peripheral nervous system. Therefore, the expression of the function of NPY can be prevented if the binding of NPY to the NPY receptor is inhibited. Consequently, it is expected that compounds capable of antagonizing the binding of NPY to the NPY receptor are useful in the prevention or treatment of various diseases associated with NPY, for example, diseases of circulatory organs such as hypertension, nephropathy, cardiopathy and angospasm; diseases of central nervous system such as bulimia, depression, epilepsy and dementia; metabolic diseases such as obesity, diabetes and dysendocrinosis, or glaucoma [Trends in Pharmacological Sciences, vol.15, p.153 (1994)].

30 [0004] Compounds structurally similar to the compounds related to the present invention are disclosed in Eur. J. Med. Chem., vol.23, No.2, p.111 (1988); J. Organic Chemistry, vol.31, No.5, p.1639 (1966); JP-49125364A; US Patent Nos. 3,414,587, 3,454,577, 3,536,757 and 3,539,590; and etc. Especially, J. Organic Chemistry, vol.31, No.5, p.1639 (1966) clearly discloses the compound related to the present invention.

35 [0005] However, an antagonistic action to NPY of the compound in question is not described at all therein.

[0006] An object of the present invention is to provide a new medicine having an antagonistic action to NPY.

[0007] The present inventors have found that a compound represented by the formula [I]:

40

45

50

55

has an antagonistic action to NPY; and the invention therefore provides for the use of such compound, and/or an optical

isomer or tautomer thereof, for the preparation of a composition effective as an antagonist for a neuropeptide Y receptor.

[0008] Since the compound [I] related to the present invention has the antagonistic action to NPY, it is useful as an agent for the treatment of various diseases associated with NPY, for example, diseases of circulatory organs such as hypertension, nephropathy, cardiopathy and angiospasm, diseases of central nervous system such as bulimia, depression, epilepsy and dementia, metabolic diseases such as obesity, diabetes and dysendocrinosis, or glaucoma.

[0009] Especially, the compound [I] related to the present invention is useful as an agent for the treatment of bulimia, obesity, diabetes or the like.

[0010] The present invention relates to a neuropeptide Y receptor antagonist as an agent for the treatment of bulimia, obesity or diabetes.

[0011] The term "agent for the treatment" as used herein means a drug to be used for the treatment and/or prevention of various diseases.

[0012] Although the compounds represented by the formula [I] may exists in optical isomers or tautomers, all of the optical isomers and tautomers and their mixtures are also included in the present invention.

[0013] As the above tautomer, the compound represented by the formula [I-1]:

15

20

25

30

35 can be exemplified.

[0014] The compound related to the present invention can be prepared by, for example, the method as described in the aforementioned publication (J. Organic Chemistry, vol. 31, No.5, p.1639 (1966)) or the method as illustrated in the following Preparation Examples.

[0015] An optically active compound represented by the formula [I] can be prepared by passing a racemate corresponding thereto through an optically active column or by adding an optically active amine such as cinchonidine to the racemate to form a salt and then subjecting to the fractional recrystallization.

[0016] The usefulness of the compound related to the present invention as a medicine is demonstrated by showing its antagonistic activity to NPY in the following pharmacological test examples.

45 Pharmacological Test Example 1 (test of inhibition of NPY binding)

[0017] cDNA Sequence encoding a human NPY Y5 receptor [International Publication WO 96/16542] was cloned into expression vectors pcDNA3, pRc/RSV (manufactured by Invitrogen) and pCI-neo (manufactured by Promega). Using the cationic lipid method [see Proceedings of the National Academy of Science of the United States of America, 50 vol.84, p.7413 (1987)], host cells COS-7, CHO and LM(tk-) (American Type Culture Collection) were transfected with the thus prepared expression vectors to obtain cells in which the NPY Y5 receptor had been expressed.

[0018] Each of the membrane preparations thus prepared from the cells in which the NPY Y5 receptor had been expressed was incubated together with each compound to be tested and 20,000 cpm of [¹²⁵I] peptide YY (manufactured by Amersham) at 25°C for 2 hours in an assay buffer solution (25 mM HEPES buffer, pH 7.4, containing 10 mM magnesium chloride, 1 mM phenylmethylsulfonyl fluoride and 0.1% bacitracin) and then, the reaction mixture was filtered through a glass filter GF/C. After washing with 50 mM Tris buffer, pH 7.4, containing 0.3% BSA, radioactivity on the glass filter was measured using a gamma counter. Non-specific binding was measured in the presence of 1 μM of peptide YY to calculate a concentration of each compound to be tested which concentration is needed to inhibit 50%

of the specific binding of the peptide YY (IC_{50} value) [see Endocrinology, vol.131, p.2090 (1992)]. As the result, IC_{50} value of the compound was calculated to be 27 nM.

[0019] As shown in the above, the compound related to the present invention strongly inhibited the binding of the peptide YY (a homologue of NPY) to the NPY Y5 receptor.

5

Pharmacological Test Example 2 (test of inhibition of feeding behavior induced by bPP)

10

[0020] Under pentobarbital anesthesia (single intraperitoneal injection of 50 mg/kg), a chronic guide cannula (outer diameter 0.8 mm; inner diameter 0.5 mm; length 10 mm) was stereotactically inserted in a right lateral cerebral ventricle of each of SD male rats (7 to 8-week-old; 200 to 300 g) and fixed using a dental resin. A tip of the guide cannula was positioned 0.9 mm behind a bregma, 1.2 mm at the right of a median line and in the depth of 1.5 mm from the brain surface. An inner needle was inserted such that its tip projected from the tip of the guide cannula by about 2 mm and arrived to a lateral cerebral ventricle. After a recovery period of about one week, a bovine pancreatic polypeptide (bpp, 5 µg/head/10 µl) was administered to the lateral cerebral ventricle. A compound to be tested was orally administered one hour before the administration of bpp and food intake during two hours from the administration was measured. In this connection, the compound to be tested was administered after dissolving in a 0.5% aqueous methyl cellulose solution and bpp was administered after dissolving in 10 mM phosphate buffered saline.

15

[0021] The compound of the present invention significantly inhibits the increase in food intake induced by bPP (a homologue of NPY).

20

Pharmacological Test Example 3 (acute toxicity test)

25

[0022] A compound to be tested in an amount of 500 mg/kg was orally administered to each of SD male rats (10-week-old; 300 to 400 g). After immediately, 5 minutes, 30 minutes, 1 hour, 2 hours, 4 hours, 6 hours, 8 hours and 24 hours from the administration, the condition of each rat was observed. And, after 24 hours from the administration, the rat was killed by dehematizing via carotid artery and then laparotomized in order to observe the presence or absence of any change in abdominal organs by the naked eye. In this connection, the compound to be tested was administered in a dose of 5 ml/kg after suspending in a 0.5% aqueous methyl cellulose solution.

30

[0023] At any time until 24 hours after the administration of the compound to be tested, no abnormality in general health of each rat was observed. And, abdominal organs were observed to be unchanged.

35

[0024] In consequence, the compound related to the present invention is useful as an agent for the treatment of various diseases associated with NPY, for example, diseases of circulatory organs such as hypertension, nephropathy, cardiopathy and angiospasm, diseases of central nervous system such as bulimia, depression, epilepsy and dementia, metabolic diseases such as obesity, diabetes and dysendocrinosis, or glaucoma, especially bulimia, obesity and diabetes.

40

[0025] The compound related to the present invention can be administered orally or parenterally and by formulating into any dosage form suitable for such an administration, it can be used as an agent for the treatment of the diseases of circulatory organs such as hypertension, nephropathy, cardiopathy and angiospasm, the diseases of central nervous system such as bulimia, depression, epilepsy and dementia, the metabolic diseases such as obesity, diabetes and dysendocrinosis, or glaucoma. In clinical use of the compound related to the present invention, it is also possible to administer the compound after formulating it into various dosage forms by adding any pharmaceutically acceptable additive(s). Examples of such additive include those which are generally used in the field of pharmaceuticals such as gelatin, lactose, sucrose, titanium oxide, starch, crystalline cellulose, hydroxypropylmethyl cellulose, carboxymethyl cellulose, corn starch, microcrystalline wax, white soft paraffine, magnesium aluminate methasilicate, anhydrous calcium phosphate, citric acid, trisodium citrate, hydroxypropyl cellulose, sorbitol, sorbitan fatty acid ester, polysorbate, sucrose fatty acid ester, polyoxyethylene, hydrogenated castor oil, polyvinyl pyrrolidone, magnesium stearate, light anhydrous silicic acid, talc, vegetable oil, benzyl alcohol, gum arabic, propylene glycol, polyalkylene glycol, cyclodextrin and hydroxypropyl cyclodextrin.

45

[0026] Examples of the dosage form to be formulated as a mixture with these additives include solid preparations such as tablet, capsule, granule, powder or suppository; and liquid preparations such as syrup, elixir or injection, which can be prepared in accordance with any conventional method in the field of pharmaceuticals. In this connection, in the case of the liquid preparation, it may be in a form which is dissolved or suspended in water or other suitable solvent in time of use. Also, particularly in the case of an injection, it may be dissolved or suspended in physiological saline or glucose solution if necessary or further mixed with buffer and/or preservative.

50

[0027] The pharmaceutical preparation may contain the compound related to the present invention in an amount of from 1.0 to 100% by weight, preferably from 1.0 to 60% by weight, with respect to the total preparation. These pharmaceutical preparations may also contain any other therapeutically effective compounds.

[0028] When the compound related to the present invention is, for example, clinically used, its dosage and the number

of times of its administration vary depending on the sex, age, body weight and the conditions of the patient and the nature and ranges of the intended therapeutic effects and the like. When it is administered to an adult, it is desirable in general to orally administer in an amount of from 0.1 to 100 mg/kg per day by dividing the daily dose into 1 to several times per day, or to parenterally administer in an amount of from 0.001 to 10 mg/kg by dividing the daily dose into 1 to several times per day.

[0029] As described above, the present invention can provide an agent for the treatment of various diseases associated with NPY, for example, diseases of circulatory organs such as hypertension, nephropathy, cardiopathy and angiospasm, diseases of central nervous system such as bulimia, depression, epilepsy and dementia, metabolic diseases such as obesity, diabetes and dysendocriniasis, or glaucoma, especially an agent for the treatment of bulimia, obesity, diabetes or the like. Of course, the present invention can also provide the new method for the treatment of the above diseases using them.

BEST MODE FOR CARRYING OUT THE INVENTION

[0030] The present invention is described further in detail with reference to the following examples, but the invention should in no way be restricted thereby.

Example 1

[0031] 10 Parts of the compound represented by the formula [I], 15 parts of heavy magnesium oxide and 75 parts of lactose are uniformly mixed to make a powdery or particulate preparation having the diameter of 350 µm or less. This preparation is filled in capsules to obtain capsules.

Example 2

[0032] 45 Parts of the compound represented by the formula [I], 15 parts of starch, 16 parts of lactose, 21 parts of crystalline cellulose, 3 parts of polyvinyl alcohol and 30 parts of distilled water are uniformly mixed, and the mixture is granulated, dried and sieved to obtain granules having the diameter of 1410 to 177 µm.

Example 3

[0033] Granules are made in the same manner as that described in Example 2. Then, 96 parts of the granules are mixed with 3 parts of calcium stearate and the mixture is compressed to obtain tablets having the diameter of 10 mm.

Example 4

[0034] 90 Parts of granules made in the same manner as that described in Example 2 are mixed with 10 parts of crystalline cellulose and 3 parts of calcium stearate and the mixture is compressed to obtain tablets having the diameter of 8 mm, to which a suspension of syrup, gelatin and precipitated calcium carbonate is added to obtain sugar coated tablets.

Example 5

[0035] 0.6 Part of the compound represented by the formula [I], 2.4 parts of a nonionic surfactant and 97 parts of a saline are mixed with heating, and the mixture is filled in ampuls and sterilized to obtain injections.

Preparation Example 1

Preparation of 3,3-dimethyl-9-(4,4-dimethyl-2,6-dioxo-cyclohexyl)-1-oxo-1,2,3,4 -tetrahydroxanthene

(compound of formula [II])

[0036] 1.83 Grams of salicyl aldehyde and 4.21 g of dimedone were suspended in 22.5 ml of acetic acid and 30 ml of water and the suspension was stirred at 100°C for 1.5 hours. The reaction mixture was allowed to cool to room temperature. The precipitated solid was filtered to obtain 5.06 g of the title compound as a colorless powder. Yield = 92%.

[0037] m.p. = 210 - 212°C.

[0038] $^1\text{H-NMR}$ (CDCl_3) δ : 0.99 (3H, s), 0.99 (3H, s), 1.03 (3H, s), 1.12 (3H, s), 1.92 (1H, d, $J=16.5$ Hz), 2.00 (1H, d, $J=16.5$ Hz), 2.33 (2H, s), 2.37 (2H, s), 2.47 (1H, d, $J=17.7$ Hz), 2.60 (1H, d, $J=17.7$ Hz), 4.67 (1H, s), 7.00 - 7.04

(3H, m), 7.13 - 7.19 (1H, m), 10.47 (1H, brs).

Preparation Example 2

5 Preparation of (+) and (-)-3,3-dimethyl-9-(4,4-dimethyl-2,6-dioxo-cyclohexyl)-1-oxo-1,2,3,4-tetrahydroxanthene

((+)-and (-)-isomers of compound of formula [I])

10 [0039] 100 Milligrams of the racemic compound of the formula [I] was dissolved in 10 ml of isopropanol, and the solution was injected in an optically active column for preparative high performance liquid chromatography (CHIRAL-PAK AD; 5 cmID x 50 cmL, particle size 20 μ m). This column was eluted with hexane/isopropanol (9:1) at the rate of 100 ml/min. The eluate was detected under UV ray of 236 nm. Relatively initial fractions were collected and concentrated under reduced pressure to obtain 26 mg of the (-)-isomer of the compound of the formula [I] as a white solid. $[\alpha]_D^{20} = -182^\circ$ (c= 1.000, I = 5.0, CHCl₃).

15 [0040] Relatively late fractions were collected and concentrated under reduced pressure to obtain 19 mg of the (+)-isomer of the compound of the formula [I] as a white solid. $[\alpha]_D^{20} = +191^\circ$ (c= 1.000, I = 5.0, CHCl₃).

Preparation Example 3

20 Preparation of (S) -3,3-dimethyl-9 - (4,4 -dimethyl -2,6 -dioxo-cyclohexyl)-1-oxo-1,2 ,3,4-tetrahydroxanthene

((S)-isomer of compound of formula [I])

25 [0041] The racemic compound of the compound of the formula [I] (5g, 13.66 mmol) and cinchonidine (4.02 g, 13.66 mmol) were suspended in 350 ml of acetonitrile, stirred with heating and dissolved. After the solution was allowed to cool to room temperature and then allowed to stand overnight, the produced precipitates were collected by filtration. A part of the precipitates were suspended in chloroform and a 10% aqueous citric acid solution and stirred vigorously to dissolve. After the organic layer was separated, the aqueous layer was re-extracted with chloroform. The organic layer and the extract were combined, washed with a 10% aqueous citric acid solution and dried over anhydrous sodium sulfate. After the solvent was distilled away, an amorphous crude product was obtained. This crude product was dissolved in a minimum amount of methanol without heating and allowed to stand overnight in a refrigerator to prepare crystals. The crystals were filtered to obtain the (S)-isomer of the compound of the formula [I] as a crystalline solid.

30 [0042] Optical purity as determined by HPLC (CHIRALPAK AD column; hexane/isopropanol (9:1) was 99.5 %.

[0043] m.p. = 172 - 174°C.

35 [0044] $[\alpha]_D^{20} = +191^\circ$ (c= 1.000, I = 5.0, CHCl₃).

[0045] Absolute configuration was confirmed by analyzing the cinchonidine salt using X-ray crystallography.

INDUSTRIAL APPLICABILITY

40 [0046] Since the compound related to the present invention has an antagonistic action to NPY, it is useful as an agent for the treatment of various diseases associated with NPY, for example, diseases of circulatory organs such as hypertension, nephropathy, cardiopathy and angiospasm, diseases of central nervous system such as bulimia, depression, epilepsy and dementia, metabolic diseases such as obesity, diabetes and dysendocrinosis, or glaucoma.

45

Claims

1. Use of a compound represented by formula [I] and/or an optical isomer or tautomer thereof:

50

55

5

10

15

for the preparation of a pharmaceutical composition effective as an antagonist for a neuropeptide Y receptor.

2. An agent for use in the treatment of a disease associated with a neuropeptide Y comprising a compound represented by formula [I] and/or an optical isomer or tautomer thereof

20

25

30

35

as an active ingredient.

3. An agent according to claim 2 for use in the treatment of hypertension, nephropathy, cardiopathy, angiospasm, bulimia, depression, epilepsy, dementia, obesity, diabetes, dysendocriniasis or glaucoma

40

4. An agent according to claim 3 for use in the treatment of bulimia, obesity or diabetes.

5. Use of a compound represented by formula [I] and/or an optical isomer or tautomer thereof:

45

50

55

for the manufacture of a medicament for the treatment of a disease associated with a neuropeptide Y.

5 Patentansprüche

1. Verwendung einer Verbindung der Formel [I] und/oder eines ihrer optischen Isomeren oder Tautomeren

10

[I]

15

20

25

zur Herstellung einer pharmazeutischen Zubereitung, welche ein effektiver Antagonist für einen Neuropeptid-Y-Rezeptor ist.

30

2. Wirkstoff zur Behandlung einer mit Neuropeptid Y assoziierten Erkrankung, enthaltend eine Verbindung der Formel [I] und/oder eine ihrer optischen Isomeren oder Tautomeren

35

40

45

als aktiven Inhaltsstoff.

50

3. Wirkstoff nach Anspruch 2 zur Behandlung von Hypertonie, Nephropathie, Kardiopathie, Angiospasmen, Bulimie, Depressionen, Epilepsie, Demenz, Fettsucht, Diabetes, Dysendokrisie oder Glaukom.

4. Wirkstoff nach Anspruch 3 zur Behandlung von Bulimie, Fettsucht oder Diabetes.

55

5. Verwendung einer Verbindung der Formel [I] und/oder eines ihrer optischen Isomeren oder Tautomeren

5

10

15

[I]

zur Herstellung eines Arzneimittels für die Behandlung einer mit einem Neuropeptid Y assoziierten Erkrankung.

20

Revendications

1. Utilisation d'un composé représenté par la formule [I] et/ou d'un isomère optique ou d'un tautomère de celui-ci :

25

30

35

[I]

40

pour la préparation d'une composition pharmaceutique efficace comme antagoniste d'un récepteur de neuropeptide Y.

2. Agent pour utilisation dans le traitement d'une maladie associée à un neuropeptide Y comprenant un composé représenté par la formule [I] et/ou un isomère optique ou un tautomère de celui-ci :

45

50

55

四

5

10

15

3. Agent selon la revendication 2 pour utilisation dans le traitement de l'hypertension, de la néphropathie, de la cardiopathie, de l'angiospasme, de la boulimie, de la dépression, de l'épilepsie, de la démence, de l'obésité, du diabète, de la dysendocriniasis ou du glaucome.
4. Agent selon la revendication 3 pour utilisation dans le traitement de la boulimie, de l'obésité ou du diabète.
5. Utilisation d'un composé représenté par la formule [I] et/ou d'un isomère optique ou d'un tautomère de celui-ci :

25

30

35

11

40

pour la fabrication d'un médicament pour le traitement d'une maladie associée à un neuropeptide Y.

45

50

55