

Unraveling Immunogenomic Diversity in Single-Cell Data

Ahmad Al Ajami^{1,2,3}, Jonas Schuck^{1,2,3}, Federico Marini⁴, Katharina Imkeller^{1,2,3}

¹Goethe University, University Hospital Frankfurt, Neurological Institute (Edinger Institute), Frankfurt/Main, Germany; ²University Cancer Center, Frankfurt/Main, Germany; ³Frankfurt Cancer Institute, Frankfurt/Main, Germany; ⁴Johannes Gutenberg University, University Medical Center Mainz, IMBEI, Mainz, Germany

Grand Rapids 25 July 2024

Demo material

https://github.com/ahmadalajami/scIGDWorkflowDemoBioC2024

Structural diversity of receptors

Receptors that coordinate antigen specificity in immune responses

created with Biorender

Genetic mechanisms of structural diversity

Polygeny:

Multiple similar genes encode same function

Gene group	Number of similar genes (incl. pseudogenes)
IGHG	5
HLA-DRB	8
•••	

Genetic mechanisms of structural diversity

Polygeny:

Multiple similar genes encode same function

Gene group	Number of similar genes (incl. pseudogenes)
IGHG	5
HLA-DRB	8

Hyperpolymorphism:Multiple alleles for one gene

Gene group	Number of alleles (incl. pseudogenes)
IGHG	71
HLA-DRB	~4200

Source: IMGT and IPD-IMGT/HLA

Typical transcriptomic analysis workflow

- 1. For each sequencing read:
 - a. identify cellular barcode
 - b. identify unique molecular identifier (UMI)
 - c. map read to reference genome
- 2. Count unique transcripts per gene and barcode using UMI
- 3. Generate feature count matrix (genes x cells)
- 4. Downstream analysis
 - a. dimension reduction
 - b. clustering
 - c. differential gene expression
 - d. ..

SingleCellExperiment

Typical transcriptomic analysis workflow

- 1. For each sequencing read:
 - a. identify cellular barcode
 - b. identify unique molecular identifier (UMI)
 - c. map read to reference genome
- 2. Count unique transcripts per gene and barcode using UMI
- 3. Generate feature count matrix (genes x cells)
- 4. Downstream analysis
 - a. dimension reduction
 - b. clustering
 - c. differential gene expression
 - d. ..

SingleCellExperiment

Allelic diversity and polygeny pose a bioinformatic challenge

Polygeny:

Multiple similar genes encode same function

Hyperpolymorphism: Multiple alleles for one gene

Bioinformatic challenge

Cross-mapping: uniquely mapping to the wrong gene

Allelic diversity and polygeny pose a bioinformatic challenge

Polygeny:

Multiple similar genes encode same function

MHC class II

DP DM DQ DR

BABBBA

HLA-DP HLA-DM HLA-DQ HLA-DR

MHC class I variability a1 a2 a3 MHC class I variability B1 A2 A2 MHC class II variability A1 A2 A3

Figure 6.21 Janeway's Immunobiology, 9th ed. (© Garland Science 2017)

Aim

To perform quantification of allele-specific expression for immunogenomic analysis

Hyperpolymorphism: Multiple alleles

for one gene

9

Implementation of allele and functional information What we want

Building a multi-layer data structure for immune gene representation in single-cell data

Workflow How to get there

Example datasets present in scaeData – R/ExperimentHub data package

Acknowledgements

Project partner

Federico Marini

scIGD

Group of Quantitative Immunology

Katharina Imkeller
Jonas Schuck

scaeData

 \bowtie

alajami@med.uni-frankfurt.de

https://agimkeller.github.io

SingleCellAlleleExperiment

