

Grundlagen Datenbanken

Benjamin Wagner

21. Dezember 2018

Allgemeines

- Folien von mir sollen unterstützend dienen. Sie sind nicht von der Übungsleitung abgesegnet und haben keinen Anspruch auf Vollständigkeit (oder Richtigkeit).
- Bei Fragen oder Korrekturvorschlägen: wagnerbe@in.tum.de
- Vorlesungsbegleitendes Buch von Professor Kemper (Chemiebib)
- Mein Foliensatz ist online: https://github.com/wagjamin/GDB2018

Speicherhierachie

- Moderne Rechner haben verschiedene Arten des Speichers
- Dieser ist hierarchisch angeordnet: größerer Speicher ist langsamer
- Bei Festplatten kann zusätzlicher Aufwand entstehen (z.B. disk seek)

Speicher	Größe	Latenz	Vergleich
Register	bytes	1ns	Schreibtisch
Cache	K-M bytes	<10ns	Zimmer
Hauptspeicher	G bytes	<100ns	Nachbarschaft
Externer Speicher	T bytes	1ms	Tokyo

RAID

- Ziel: Hoher Durchsatz, Fehlertoleranz in Festplattenverbund
- RAID0: Block-Striping
- RAID1: Block-Mirroring
- RAID3: Bit-Striping & Paritätsplatte
- RAID4: Block-Striping & Paritätsplatte
- RAID5: Block-Striping, verteilte Paritätsblöcke
- RAID5 bietet gutes Verhältnis zwischen Overhead & Leistung

Buffer Manager

- Historisch waren Datenbestände größer als der Hauptspeicher
- Es mussten zusätzlich Daten auf Festplatten gespeichert werden
- Hierfür werden Tupel in "Slotted Pages" angeordnet
- Buffer Manager verwaltet, welche Slotted Pages im Hauptspeicher sind

Datenstrukturen

- Datenstrukturen sollen diesen Aufbau berücksichtigen
- Wenige Speicherzugriffe, große und zusammenhängende Speicherbereiche
- Trotzdem noch schnelle Zugriffszeiten
- ⇒ Klassische Binärbäume reichen nicht aus
 - Frage: Warum nicht? Was verschafft Abhilfe?

B-Bäume

- Knoten speichern (Tupel, Pointer) Paare
- Ein Knoten kann viele hundert Einträge haben
- Binäre Suche im Knoten
- Knoten können ebenfalls auf Festplatte ausgelagert werden
- B-Baum garantiert Auslastung von $\geq 50\%$
- B⁺-Baum speichert Daten nur in Blättern
- Achtung: Löschen und Einfügen kann Knotenstruktur ändern