Digital Design

With an Introduction to the Verilog HDL, VHDL, and SystemVerilog

6th Edition, Global Edition

Chapter 03
Gate-Level Minimization

Two-variable K-map.

		x y	0	$\stackrel{y}{\longrightarrow}$
m_0	m_1	0	x'y'	x'y
m_2	m_3	$x \begin{cases} 1 \end{cases}$	m_2 xy'	m_3 xy
(a)			(1)

Representation of functions in the K-map.

Three-variable K-map.

m_0	m_1	m_3	m_2	
m_4	m_5	m_7	m_6	
(a)				

Map for Example 3.1, $F(x, y, z) = \Sigma(2, 3, 4, 5) = x'y + xy'$.

Map for Example 3.2, $F(x, y, z) = \Sigma(3, 4, 6, 7) = yz + xz'$.

Map for Example 3.3, $F(x, y, z) = \Sigma(0, 2, 4, 5, 6) = z' + xy'$.

Map of Example 3.4, A'C + A'B + AB'C + BC = C + A'B.

Four-variable map.

m_0	m_1	m_3	m_2
m_4	m_5	m_7	m_6
m_{12}	m_{13}	m_{15}	m_{14}
m_8	m_9	m_{11}	m_{10}

(a)

Map for Example 3.5, $F(w, x, y, z) = \Sigma(0, 1, 2, 4, 5, 6, 8, 9, 12, 13, 14) = y' + w'z' + xz'$.

Map for Example 3.6, A'B'C' + B'CD' + A'BCD' + AB'C = B'D' + B'C' + A'CD'.

Simplification using prime implicants.

Note: A'B'C'D' + A'B'CD' = A'B'D' AB'C'D' + AB'CD' = AB'D'A'B'D' + AB'D' = B'D'

(a) Essential prime implicants *BD* and *B'D'*

(b) Prime implicants CD, B'C, AD, and AB'

Map for Example 3.7, $F(A, B, C, D) = \Sigma(0, 1, 2, 5, 8, 9, 10) = BD + BC + ACD = (A' + B')(C' + D')(B' + D).$

Note: BC'D' + BCD' = BD'

Gate implementations of the function of Example 3.7.

Map for the function of Table 3.1.

x	y	z	F
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

Example with don't-care conditions.

Simplify the Boolean function, $F(w, x, y, z) = \Sigma(1,3,7,11,15)$ Don't-care conditions, $d(w, x, y, z) = \Sigma(0, 2, 5)$

Logic operations with NAND gates.

Two graphic symbols for a three-input NAND gate.

Three ways to implement F = AB + CD.

Solution to Example 3.9.

Implementing F = A(CD + B) + BC.

(b) NAND gates

Implementing F = (AB' + A'B)(C + D').

Logic operations with NOR gates.

Two graphic symbols for the NOR gate.

$$x \longrightarrow y \longrightarrow x'y'z' = (x + y + z)'$$
(b) Invert-AND

Implementing F = (A + B)(C + D)E.

Implementing F = (AB' + A'B)(C + D') with NOR gates.

AND-OR-INVERT circuits, F = (AB + CD + E)'.

OR-AND-INVERT circuits, F = [(A + B)(C + D)E]'.

Map for a three-variable exclusive-OR function.

$$x \oplus y = xy' + x'y$$

(a) Odd function $F = A \oplus B \oplus C$

(b) Even function $F = (A \oplus B \oplus C)'$

Logic diagrams for exclusive-OR implementations.

(a) Exclusive-OR with AND-OR-NOT gates

(b) Exclusive-OR with NAND gates

Even-Parity-Generator Truth Table.

Three-Bit Message		Parity Bit	
X	y	Z	P
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Logic diagram of odd and even functions.

Even-Parity-Checker Truth Table.

Four Bits Received			Parity Erro Check	
x	y	Z	P	С
0	0	0	0	0
0	0	0	1	1
0	0	1	0	1
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	0
0	1	1	1	1
1	0	0	0	1
1	0	0	1	0
1	0	1	0	0
1	0	1	1	1
1	1	0	0	0
1	1	0	1	1
1	1	1	0	1
1	1	1	1	0

Map for a four-variable exclusive-OR function.

(a) Odd function $F = A \oplus B \oplus C \oplus D$

(b) Even function $F = (A \oplus B \oplus C \oplus D)'$

Logic diagram of a parity generator and checker.

Schematic for and_or_prop_delay.

