$12a_{0406} (K12a_{0406})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle u^{89} + u^{88} + \dots + u - 1 \rangle$$

* 1 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 89 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle u^{89} + u^{88} + \dots + u - 1 \rangle$$

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{8} - u^{6} - u^{4} + 1 \\ -u^{10} - 2u^{8} - 3u^{6} - 2u^{4} - u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{2} + 1 \\ u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{14} + 3u^{12} + 6u^{10} + 7u^{8} + 6u^{6} + 4u^{4} + 2u^{2} + 1 \\ u^{14} + 2u^{12} + 3u^{10} + 2u^{8} - u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u^{31} - 6u^{29} + \dots - 18u^{5} - 6u^{3} \\ -u^{31} - 5u^{29} + \dots + 2u^{3} + u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{15} + 3u^{13} + 6u^{11} + 7u^{9} + 6u^{7} + 4u^{5} + 2u^{3} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{42} + 7u^{40} + \dots + u^{2} + 1 \\ u^{44} + 8u^{42} + \dots + 22u^{6} + 5u^{4} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{71} + 12u^{69} + \dots + 16u^{5} + 4u^{3} \\ u^{73} + 13u^{71} + \dots + 2u^{3} + u \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-4u^{88} 60u^{86} + \cdots + 16u 10$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_5	$u^{89} + 31u^{88} + \dots - 3u - 1$
c_2, c_6	$u^{89} - u^{88} + \dots + u + 1$
c_3	$u^{89} + u^{88} + \dots + 361u + 97$
c_4, c_{10}	$u^{89} - u^{88} + \dots + u + 1$
c_7, c_{12}	$u^{89} + 5u^{88} + \dots + 107u + 21$
c ₈	$u^{89} - 7u^{88} + \dots - 1205u - 391$
c_9, c_{11}	$u^{89} + 29u^{88} + \dots - 3u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_5	$y^{89} + 55y^{88} + \dots + 5y - 1$
c_2, c_6	$y^{89} + 31y^{88} + \dots - 3y - 1$
c_3	$y^{89} - 9y^{88} + \dots + 469821y - 9409$
c_4,c_{10}	$y^{89} - 29y^{88} + \dots - 3y - 1$
c_7, c_{12}	$y^{89} + 59y^{88} + \dots - 9131y - 441$
<i>C</i> ₈	$y^{89} + 11y^{88} + \dots - 5202795y - 152881$
c_9,c_{11}	$y^{89} + 63y^{88} + \dots - 27y - 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.792424 + 0.618504I	3.11119 - 5.13284I	0
u = 0.792424 - 0.618504I	3.11119 + 5.13284I	0
u = -0.796751 + 0.614079I	2.10885 + 10.87920I	0
u = -0.796751 - 0.614079I	2.10885 - 10.87920I	0
u = 0.756551 + 0.674024I	5.26973 - 2.66595I	0
u = 0.756551 - 0.674024I	5.26973 + 2.66595I	0
u = -0.781291 + 0.601828I	-3.26113 + 5.11902I	0
u = -0.781291 - 0.601828I	-3.26113 - 5.11902I	0
u = -0.749471 + 0.687801I	4.91888 - 3.02362I	0
u = -0.749471 - 0.687801I	4.91888 + 3.02362I	0
u = 0.762514 + 0.617485I	0.72677 - 2.95488I	0
u = 0.762514 - 0.617485I	0.72677 + 2.95488I	0
u = -0.050173 + 0.978604I	-0.29363 - 2.69848I	0
u = -0.050173 - 0.978604I	-0.29363 + 2.69848I	0
u = 0.414241 + 0.879359I	0.79840 + 7.49051I	0
u = 0.414241 - 0.879359I	0.79840 - 7.49051I	0
u = -0.448726 + 0.856142I	1.61410 - 2.05998I	0
u = -0.448726 - 0.856142I	1.61410 + 2.05998I	0
u = -0.746043 + 0.583768I	-1.104240 - 0.816505I	0
u = -0.746043 - 0.583768I	-1.104240 + 0.816505I	0
u = -0.705718 + 0.816241I	1.374950 - 0.274630I	0
u = -0.705718 - 0.816241I	1.374950 + 0.274630I	0
u = -0.037143 + 1.080270I	-5.00271 - 2.21550I	0
u = -0.037143 - 1.080270I	-5.00271 + 2.21550I	0
u = -0.063504 + 1.094470I	-2.92880 - 4.38942I	0
u = -0.063504 - 1.094470I	-2.92880 + 4.38942I	0
u = 0.018621 + 1.097080I	-6.71736 - 1.83677I	0
u = 0.018621 - 1.097080I	-6.71736 + 1.83677I	0
u = 0.045471 + 1.100660I	-9.16961 + 4.22423I	0
u = 0.045471 - 1.100660I	-9.16961 - 4.22423I	0

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.063947 + 1.101120I	-3.96933 + 10.08100I	0
u = 0.063947 - 1.101120I	-3.96933 - 10.08100I	0
u = 0.111277 + 0.878977I	-0.48030 - 2.60995I	-8.16580 + 1.81655I
u = 0.111277 - 0.878977I	-0.48030 + 2.60995I	-8.16580 - 1.81655I
u = -0.748159 + 0.826966I	6.86792 + 4.32397I	0
u = -0.748159 - 0.826966I	6.86792 - 4.32397I	0
u = 0.715743 + 0.859066I	4.12520 + 2.73162I	0
u = 0.715743 - 0.859066I	4.12520 - 2.73162I	0
u = 0.701524 + 0.532948I	-1.45390 - 3.14036I	-5.81541 + 3.08693I
u = 0.701524 - 0.532948I	-1.45390 + 3.14036I	-5.81541 - 3.08693I
u = 0.745460 + 0.835125I	7.56666 + 1.42671I	0
u = 0.745460 - 0.835125I	7.56666 - 1.42671I	0
u = 0.313983 + 0.821757I	-3.73770 + 2.25778I	-12.76156 - 5.27279I
u = 0.313983 - 0.821757I	-3.73770 - 2.25778I	-12.76156 + 5.27279I
u = -0.702092 + 0.892182I	1.14647 - 5.11858I	0
u = -0.702092 - 0.892182I	1.14647 + 5.11858I	0
u = 0.735138 + 0.888062I	7.40603 + 4.18505I	0
u = 0.735138 - 0.888062I	7.40603 - 4.18505I	0
u = -0.734636 + 0.895406I	6.66040 - 9.94218I	0
u = -0.734636 - 0.895406I	6.66040 + 9.94218I	0
u = -0.611338 + 0.569358I	-0.124299 - 0.982347I	-2.27042 + 3.59861I
u = -0.611338 - 0.569358I	-0.124299 + 0.982347I	-2.27042 - 3.59861I
u = -0.599043 + 1.012220I	0.31919 - 2.05341I	0
u = -0.599043 - 1.012220I	0.31919 + 2.05341I	0
u = 0.596824 + 1.020580I	-0.71708 - 3.53466I	0
u = 0.596824 - 1.020580I	-0.71708 + 3.53466I	0
u = 0.662757 + 0.464863I	-4.15479 + 2.64865I	-8.87639 - 4.03321I
u = 0.662757 - 0.464863I	-4.15479 - 2.64865I	-8.87639 + 4.03321I
u = -0.632747 + 1.010330I	-1.35976 - 4.01784I	0
u = -0.632747 - 1.010330I	-1.35976 + 4.01784I	0

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.616311 + 1.024920I	-5.65284 + 2.29612I	0
u = 0.616311 - 1.024920I	-5.65284 - 2.29612I	0
u = -0.687197 + 0.991834I	4.00117 - 2.45258I	0
u = -0.687197 - 0.991834I	4.00117 + 2.45258I	0
u = 0.638227 + 1.029020I	-2.85651 + 8.30192I	0
u = 0.638227 - 1.029020I	-2.85651 - 8.30192I	0
u = 0.688393 + 1.000560I	4.28705 + 8.16569I	0
u = 0.688393 - 1.000560I	4.28705 - 8.16569I	0
u = -0.664209 + 1.031080I	-2.41122 - 4.56435I	0
u = -0.664209 - 1.031080I	-2.41122 + 4.56435I	0
u = 0.657312 + 0.403482I	0.89298 + 8.30474I	-2.77230 - 7.50293I
u = 0.657312 - 0.403482I	0.89298 - 8.30474I	-2.77230 + 7.50293I
u = 0.677609 + 1.026170I	-0.48705 + 8.43111I	0
u = 0.677609 - 1.026170I	-0.48705 - 8.43111I	0
u = -0.679374 + 1.036700I	-4.55418 - 10.64520I	0
u = -0.679374 - 1.036700I	-4.55418 + 10.64520I	0
u = 0.688505 + 1.034580I	1.86598 + 10.72270I	0
u = 0.688505 - 1.034580I	1.86598 - 10.72270I	0
u = -0.688639 + 1.037620I	0.8409 - 16.4799I	0
u = -0.688639 - 1.037620I	0.8409 + 16.4799I	0
u = -0.635260 + 0.400865I	1.86099 - 2.66579I	-0.88903 + 2.73641I
u = -0.635260 - 0.400865I	1.86099 + 2.66579I	-0.88903 - 2.73641I
u = -0.349167 + 0.527838I	-0.135235 - 1.066210I	-2.23468 + 5.96441I
u = -0.349167 - 0.527838I	-0.135235 + 1.066210I	-2.23468 - 5.96441I
u = -0.501948 + 0.197273I	3.26226 - 1.15588I	2.07588 + 2.90357I
u = -0.501948 - 0.197273I	3.26226 + 1.15588I	2.07588 - 2.90357I
u = 0.507837 + 0.153612I	2.69964 - 4.37412I	0.81673 + 3.12761I
u = 0.507837 - 0.153612I	2.69964 + 4.37412I	0.81673 - 3.12761I
u = 0.403915	-1.63407	-4.55070

II. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_5	$u^{89} + 31u^{88} + \dots - 3u - 1$
c_2, c_6	$u^{89} - u^{88} + \dots + u + 1$
c_3	$u^{89} + u^{88} + \dots + 361u + 97$
c_4, c_{10}	$u^{89} - u^{88} + \dots + u + 1$
c_7, c_{12}	$u^{89} + 5u^{88} + \dots + 107u + 21$
<i>C</i> 8	$u^{89} - 7u^{88} + \dots - 1205u - 391$
c_9, c_{11}	$u^{89} + 29u^{88} + \dots - 3u + 1$

III. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1,c_5	$y^{89} + 55y^{88} + \dots + 5y - 1$
c_2, c_6	$y^{89} + 31y^{88} + \dots - 3y - 1$
c_3	$y^{89} - 9y^{88} + \dots + 469821y - 9409$
c_4, c_{10}	$y^{89} - 29y^{88} + \dots - 3y - 1$
c_7, c_{12}	$y^{89} + 59y^{88} + \dots - 9131y - 441$
c ₈	$y^{89} + 11y^{88} + \dots - 5202795y - 152881$
c_9, c_{11}	$y^{89} + 63y^{88} + \dots - 27y - 1$