Отчёт по лабораторной работе №3.2.4 Свободные колебания в электрическом контуре.

Плюскова Н.А. Б04-004

17 января 2024 г.

Описание работы

Цель работы: исследования свободных колебаний в колебательном контуре. В работе используются: генератор импульсов, электронное реле, магазин сопротивлений, магазин ёмкостей, индуктивность, электронный осциллограф, унивенреальный мост.

Теория

Свободные колебания

Рассмотрим электрический контур, состоящий из последовательно соединённых конденстора C, катушки индуктивности L и резистора R. Обозначим разность потенциалов на конденсаторе U_C , а ток, текущий в контуре, через I. Второе првило Кирхгофа:

$$L\frac{d^2I}{dt^2} + R\frac{dI}{dt} + \frac{I}{C} = 0. ag{1}$$

Вводя обозначения $\gamma=\frac{R}{2L},\,\omega_0^2=\frac{1}{LC},$ получим уравнение

$$\ddot{I} + 2\gamma \dot{I} + \omega_0^2 I = 0. \tag{2}$$

Его решение в общем виде:

$$I = -\frac{U_0}{L\kappa} e^{-\gamma t} \operatorname{sh}(\kappa t), \tag{3}$$

где $\kappa = \sqrt{\gamma^2 - \omega_0^2}, \ U_0 = U_C$ – начальное напряжение на конденсаторе.

Затухающие колебания

В случае, когда $\gamma < \omega_0$, имеем $\kappa = i\omega$, где $\omega = \sqrt{\omega_0^2 - \gamma^2}$ – часто-ты свободных (собственных) колебаний. Тогда ток

$$I = -\frac{U_0}{L\omega}e^{-\gamma t}\sin(\omega t) \qquad (4)$$

затухает и имеет колебательный характер. Величина γ определяет затухание колебаний: $\gamma=\frac{1}{\tau},$ где τ

Рис. 1: Затухающие колебания.

- время затухание амплитуды в e раз. Формулы для наряжение на кондесаторе и тока в цепи можно переписать иначе:

$$U_C = U_0 \frac{\omega_0}{\omega} e^{-\gamma t} \cos(\omega t - \theta),$$

$$I = -\frac{U_0}{L} e^{-\gamma t} \cos(\omega t - \theta).$$
(5)

Апериодические колебания

В случае $\gamma > \omega_0$, формулы для тока и напряжения на конденсаторе имеют следующий вид:

$$I = -\frac{U_0}{L\kappa} e^{-\gamma t} \operatorname{sh}(\kappa t),$$

$$U_C = U_0 e^{-\gamma t} \left(\frac{\gamma}{\kappa} \operatorname{sh}(\kappa t) + \operatorname{ch}(\kappa t)\right).$$
a)
$$U_0 = U_0 e^{-\gamma t} \left(\frac{\gamma}{\kappa} \operatorname{sh}(\kappa t) + \operatorname{ch}(\kappa t)\right).$$
b)
$$U_0 = U_0 e^{-\gamma t} \left(\frac{\gamma}{\kappa} \operatorname{sh}(\kappa t) + \operatorname{ch}(\kappa t)\right).$$

Процесс в этом случае не является колебательным, его называют апериодическим. Режим, со-

Рис. 2: Критический режим.

ответствующий $\gamma=\omega_0$, называются *критическим*. В этом случае предельный переход $\omega\to 0$ в (5) даст

$$I = -\frac{U_0}{L}te^{-\gamma t},$$

$$U_C = U_0 e^{-\gamma t} (1 + \gamma t).$$

Сопротивление в этом случае

$$R_{\rm \kappa p} = 2\sqrt{\frac{L}{C}} \tag{6}$$

называется *критическим сопротивлением* контура. Добротность контура по определению

$$Q = 2\pi \frac{W}{\Delta W},$$

где W — запасённая энергия, ΔW — потери за период. Тогда

$$Q = 2\pi \frac{CU_0^2/2 \cdot e^{-2\gamma t}}{CU_0^2/2 \cdot (e^{-2\gamma t} - e^{-2\gamma (T+t)})} = \frac{\pi}{\gamma T} = \frac{1}{R} \sqrt{\frac{L}{C}}.$$
 (7)

Логарифмическим декрементом затухания называются число

$$\Theta = \ln \frac{U_k}{U_{k+1}} = \ln e^{\gamma T} = \gamma T. \tag{8}$$

или

$$\Theta = \frac{1}{n} \ln \frac{U_k}{U_{k+n}}.$$
(9)

Описание установки

На рисунке приведена схема для исследования свободных колебаний в контуре, содержащем постоянную индуктивность L и переменные ёмкость C и сопротивление R. Колебания наблюдаются на экране осциллографа.

Для периодического возбуждения колебаний в контуре используется генератор импульсов Γ 5-54. С выхода генератора по коаксиальному кабелю импульсы поступают на колебательный контур через электронное реле, смонтированное в отдельном блоке (или на выходе генератора). Реле содержит тиристор D и ограничительный резистор R_1 .

Импульсы заряжают конденсатор C. После каждого импульса генератор отключается от колебательного контура, и в контуре возникают свободные затухающие колебания. Входное сопротивление осциллографа велико ($\approx 1 \text{ MOM}$), так что его влиянием на контур можно пренебречь. Для получения устойчивой картины затухающих колебаний используется режим ждущей развёртки с синхронизацией внешними импульсами, поступающими с выхода «синхроимпульсы» генератора.

Ход работы

На генераторе устанавливаем длительность импульсов 5 мск, частоту повторения $\nu_0=100~\Gamma$ ц. На магазине сопротивлений устанавливаем величину R=0 Ом, на магазине ёмкостей – $C=0.02~{\rm mk\Phi}$. По картине на осциллографе проведём измерение зависимости периода свободных колебаний от ёмкости.

ſ	C , мк Φ								
	T, MKC	0.33	0.43	0.48	0.50	0.57	0.62	0.64	0.73

Таблица 1: Зависимость T = T(C).

Считая $L\approx 200$ мГн, рассчитаем C, при которой $\nu_0=1/2\pi\sqrt{LC}=5$ кГц: $C\approx 5$ нФ. Критическое сопротивление в этом случае $R_{\rm kp}\approx 12500$ Ом. Измерим зависимость $\Theta(R)$ декремента затухания от сопротивления в диапазоне $0.1R_{\rm kp}\div 0.3R_{\rm kp}$, пользуясь формулой (9):

R, Om		l						
Θ	0.7	0.8	1.0	1.3	1.5	1.7	2.1	2.2

Таблица 2: Зависимость $\Theta = \Theta(R)$.

Получив изображение колебаний на фазовой плоскости (в координатах $\left(U_C, \frac{dU_C}{dt}\right)$, убеждаемся, что декремент затухания вычисленный по тем же способом абсолютно совпадает с вычисленным в кооридинатах (U_C, t) . С помощью универсального моста измеряем индуктивность L и R_L катушки для трёх значений частоты:

u, Гц	50	1000	5000
R_L , Om	10.39	11.40	13.50
L , м Γ н	147.0	143.0	143.5

Таблица 3: Значения R_L и L катушки при разных частотах.

Обработка результатов

Рассчитаем теоретически периоды свободных колебаний и сравним с полученными экспериментально:

$T_{\text{эксп}}$, мкс								
T_{reop} , MKC	0.34	0.41	0.48	0.53	0.59	0.63	0.68	0.72

Таблица 4: Сравнение теоретических и экспериментальных периодов.

Результат представим на графике:

Для данных Таблицы 2 рассчитаем критическое сопротивление по формуле

$$R_{\rm kp} = R\sqrt{\left(\frac{2\pi}{\Theta}\right)^2 + 1}$$

и усредним: $R_{\rm kp} = 10800 \pm 500 \,\,{
m Om}$

Теоретическое значение $R_{\rm kp}=2\sqrt{\frac{L}{C}}=10700\pm200~{
m Cm}$ — совпадает в пределах погрешности.

Для конутуров с максимальным и минимальным декрементом Θ рассчитаем добротность Q экспериментальную – $Q = \frac{\pi}{\Theta}$ – и теоретическую – $Q = \frac{1}{R} \sqrt{\frac{L}{C}}$:

	Θ	R	Q_{reop}	$Q_{ m skcn}$
Макс	2.2 ± 0.2	3700	1.443 ± 0.012	1.41 ± 0.13
Мин	0.7 ± 0.2	1200	4.45 ± 0.04	4.5 ± 1.3

Таблица 5: Добротности для конутров с наибольшим и наименьшим затуханием.

Вывод:

Итак, в этой работе мы изучили свободные колебания в электрическом контуре: сначала измеряли периоды при $\gamma \approx 0$, затем находили критическое сопротивление и изучали колебательный контур при сопротивлениях порядка 0,1-0,3R. Мы исследовали зависимость логарифмического декремента затухания от сопротивления контура, а также добротности от параметров контура и от декремента.