article P of mass m kg moves along a horizontal straight line with acceleration $a \text{ms}^{-2}$ given by $a = \frac{v(1-2t^2)}{r^2}.$	У
re vms^{-1} is the velocity of P at time ts.	
Find an expression for v in terms of t and an arbitrary constant.	[3]
Given that $a = 5$ when $t = 1$, find an expression, in terms of m and t , for the horizontal force at on P at time t .	eting [3]
	•••••
	$a = \frac{v(1-2t^2)}{t},$ re v ms ⁻¹ is the velocity of P at time t s. Find an expression for v in terms of t and an arbitrary constant. Given that $a = 5$ when $t = 1$, find an expression, in terms of m and t , for the horizontal force a on P at time t .

© UCLES 2021 9231/33/O/N/21