전기기사 실기 1회

문제 01 출제년도 : 08. 20.

▶점수 : 5점

건물의 보수공사를 하는데 $32[W] \times 2$ 매입하면 개방형 형광등 30등을 $32[W] \times 3$ 매입루버형으로 교체하고, $20[W] \times 2$ 팬던트형 형광등 20등을 $20[W] \times 2$ 직부 개방형으로 교체하였다. 철거되는 $20[W] \times 2$ 팬던트형 등기구는 재사용할 것이다. 천장 구멍 뚫기 및 취부테 설치와 등기구 보강 작업은 계상하지 않으며, 공구손료 등을 제외한 직접 노무비만 계산하시오.

단. 인공계산은 소수점 셋째 자리까지 구하고. 내선전공의 노임은 225,408원으로 한다.

형광등 기구 설치

(단위: 등, 적용직종 내선전공)

종별	직부형	팬던트형	반매입 및 매입형
10[W]이하 × 1	0.123	0.150	0.182
20[W]이하 × 1	0.141	0.168	0.214
$20[W]$ 이하 $\times 2$	0.177	0.215	0.273
$20[W]$ 이하 $\times 3$	0.223	_	0.335
$20[W]$ 이하 $\times 4$	0.323	_	0.489
$30[W]$ 이하 $\times 1$	0.150	0.177	0.227
$30[W]$ 이하 $\times 2$	0.189	_	0.310
$40[W]$ 이하 $\times 1$	0.223	0.268	0.340
40[W]이하 × 2	0.277	0.332	0.415
$40[W]$ 이하 $\times 3$	0.359	0.432	0.545
$40[W]$ 이하 $\times 4$	0.468	_	0.710
110[W]이하 × 1	0.414	0.495	0.627
110[W]이하 × 2	0.505	0.601	0.764

[해설] ① 하면 개방형 기준임. 루버 또는 아크릴 커버 형일 경우 해당 등기구 설치 품의 110[%]

- ② 등기구 조립·설치, 결선, 지지금구류 설치, 장내 소운반 및 자재 정리포함
- ③ 매입 또는 반매입 등기구의 천정 구멍 뚫기 및 취부테 설치 별도 가산
- ④ 매입 및 반매입 등기구에 등기구보강대를 별도로 설치할 경우 이 품의 20[%] 별도 계상
- ⑤ 광천장 방식은 직부형 품 적용
- ⑥ 방폭형 200[%]
- ⑦ 높이 1.5[m] 이하의 Pole형 등기구는 직부형 품의 150[%] 적용 (기초대 설치별도)
- ⑧ 형광등 안정기 교환은 해당 등기구 신설품의 110[%], 다만, 팬던트형은 90[%]
- ⑨ 아크릴간판의 형광등 안정기 교환은 매입형 등기구 설치품의 120[%]
- ⑩ 공동주택 및 교실 등과 같이 동일 반복 공정으로 비교적 쉬운 공사의 경우는 90[%]
- ⑪ 형광램프만 교체시 해당 등기구 1등용 설치품의 10[%]
- ⑫ T-5(28[W]) 및 FLP(36[W], 55[W])는 FL 40[W] 기준품 적용
- ⑬ 팬던트형은 파이프 팬던트형 기준, 체인 팬던트는 90[%]
- ④ 등의 증가시 매 증가 1등에 대하여 직부형은 0.005[인], 매입 및 반매입형은 0.008[인] 가산
- ⑤ 고조도 반사판 청소시 형별에 관계없이 내선전공 20W 이하 0,03인, 40W 이하 0,05인을 가산
- ⑥ 철거 30[%], 재사용 철거 50[%]

- ① 설치인공
 - 32[W]×3 매입 루버형 : 0.545×30×1.1=17.985[인]
 - 20[W]×2 직부 개방형 : 0.177×20 = 3.54[인]
- ② 철거인공
 - 32[W]×2 매입하면 개방형 : 0.415×30×0.3 = 3.735[인]
 - 20[W]×2 팬던트형 : 0.215×20×0.5=2.15[인]
- ③ 총 소요인공=17.985+3.54+3.735+2.15=27.41[인]
- ④ 직접노무비= 27.41 × 225,408 = 6,178,433.28 [원]

답: 6,178,433,28 [원]

무제 02 출제년도 : 95. 20.

▶점수 : 5점

전등을 3개소에서 점멸하기 위하여 3로 스위치 2개와 4로 스위치 1개를 조합하는 경우 이들의 계 통도(실제 배선도)를 그리시오.

문제 03 출제년도 : 20.

▶점수 : 5점

소선의 직경이 3.2[mm]인 37가닥의 연선을 사용할 경우 외경은 몇 mm인가?

답안작성

N = 3n(n+1) + 1 = 37 : n = 3

 $D = (1+2n)d = (1+2\times3)\times3.2 = 22.4$ [mm]

답: 22.4[mm]

 $500 \, [\mathrm{kVA}]$ 단상 변압기 3대를 $\triangle - \triangle$ 결선의 1뱅크로 하여 사용하고 있는 변전소가 있다. 지금 부하의 증가로 동일한 용량의 단상 변압기 1대를 추가하여 운전한다면 몇 $[\mathrm{kVA}]$ 로 공급할 수 있는가?

답안작성

V-V결선 2뱅크 운전이므로

$$P = 2P_V = 2\sqrt{3}P_1 = 2\sqrt{3} \times 500 = 1732.05 \text{ [kVA]}$$

문제 05 출제년도 : 95. 99. 20.

▶점수 : 9점

답: 1732.05 [kVA]

그림과 같은 평형 3상 회로로 운전하는 유도전동기가 있다. 이 회로에 그림과 같이 2개의 전력계 W_1 , W_2 , 전압계 \odot , 전류계 \bigcirc 를 접속한 후 지시값은 $W_1=6\,[\mathrm{kW}]$, $W_2=2.9\,[\mathrm{kW}]$, $V=200\,[\mathrm{V}]$, $I=30\,[\mathrm{A}]$ 이었다.

- (1) 이 유도 전동기의 역률은 몇 [%]인가?
- (2) 역률을 90[%]로 개선시키려면 몇 [kVA] 용량의 콘덴서가 필요한가?
- (3) 이 전동기로 만일 매분 20[m]의 속도로 물체를 권상한다면 몇 [ton]까지 가능한가? 단, 종합효율은 80[%]로 한다.

답안작성

(1) 유효전력 $P = W_1 + W_2 = 6 + 2.9 = 8.9$ [kW]

피상전력 $P_a = \sqrt{3} VI = \sqrt{3} \times 200 \times 30 \times 10^{-3} = 10.39 \text{ [kVA]}$

역률
$$\cos\theta = \frac{P}{P_a} = \frac{8.9}{10.39} = 0.8566$$

답: 85.66 [%]

(2)
$$Q_c = 8.9 \times \left(\frac{\sqrt{1 - 0.8566^2}}{0.8566} - \frac{\sqrt{1 - 0.9^2}}{0.9} \right) = 1.05 \text{ [kVA]}$$

답: 1.05 [kVA]

(3) 중량
$$W = \frac{P\eta}{\frac{9.8}{60} \times V} = \frac{8.9 \times 0.8}{\frac{9.8}{60} \times 20} = 2.18 [ton]$$

답: 2.18 [ton]

문제 06 출제년도 : 14. 16. 20. ▶점수 : 5점

낙뢰나 혼촉 사고 등에 의하여 이상전압이 발생하였을 때 선로와 기기를 보호하기 위하여 피뢰기를 설치한다. 한국전기설비규정에 의해 시설해야 하는 곳을 3개소를 쓰시오.

답안작성

- ① 발전소·변전소 또는 이에 준하는 장소의 가공전선 인입구 및 인출구
- ② 특고압 가공전선로에 접속하는 배전용 변압기의 고압측 및 특고압측
- ③ 고압 및 특고압 가공전선로로부터 공급을 받는 수용장소의 인입구
- ④ 가공전선로와 지중전선로가 접속되는 곳

문제 07 출제년도 : 20.

▶점수 : 4점

방의 가로 길이가 10[m], 세로 길이가 8[m], 방바닥에서 천장까지의 높이가 4.85[m]인 방에서 조명기구를 천장에 직접 취부하고자 한다. 이 방의 실지수를 구하시오. 단, 작업면은 방바닥에서 0.85[m]이다.

답안작성

H = 4.85 - 0.85 = 4

실지수 =
$$\frac{XY}{H(X+Y)}$$
 = $\frac{10\times8}{4\times(10+8)}$ = 1.11

답: 1.0

문제 08 출제년도 : 20.

▶점수 : 14점

다음 간이수전설비도를 보고 물음에 답하시오.

- (1) ASS의 LOCK 전류값과 LOCK 전류의 기능을 쓰시오.
 - ① LOCK 전류값
 - ② 과전류 LOCK 기능
- (2) LA 정격전압과 제1보호대상은 무엇인지 쓰시오.
 - ① LA 정격전압
 - ② 제1보호대상
- (3) PF(한류퓨즈)의 단점 2가지를 쓰시오.
- (4) 다음 빈칸에 알맞은 값을 작성하시오.

"MOF의 과전류강도는 기기 설치점에서 단락전류에 의하여 계산 적용하되, 22.9 kV급으로서 60 A 이하의 MOF 최소 과전류강도는 전기사업자규격에 의한 (①)배로하고, 계산한 값이 75배 이상인 경우에는 (②)배를 적용하며, 60 A 초과 시 MOF의 과전류강도는 (③)배로 적용한다."

(5) 고장점 F에 흐르는 3상 단락전류와 선간(2상) 단락전류를 구하시오.

답안작성

- (1) ① $800 \text{ A} \pm 10\%$
 - ② 정격차단전류 (900 A) 이상의 고장 발생 시 개폐를 보호하면서 전류가 LOCK 전류 $(800 \text{ A} \pm 10 \%)$ 이상인 경우는 개폐기는 LOCK되며, 후비보호장치의 차단에 의해 고장전류가 제거된 후 무전압 상태에서 ASS가 차단된다.
- (2) ① 18 kV
 - ② 변압기
- (3) ① 재투입을 할 수 없다.
 - ② 과전류에서 용단될 수도 있다.

(그 외)

- ③ 동작시간-전류특성을 계전기처럼 자유로이 조정 불가능하다.
- ④ 용단해도 차단되지 않는 전류 범위를 가진 것이 있다.
- ⑤ 차단시에 이상전압이 발생한다.
- ⑥ 고임피던스 접지계통의 지락보호는 불가능하다.
- (4) ① 75배 ② 150배 ③ 40배
- (5) ① 3상 단락전류

$$I_s = \frac{100}{\%Z}I_n = \frac{100}{5} \times \frac{500 \times 10^3}{\sqrt{3} \times 380} = 15193.43 \text{ [A]}$$

② 선간(2상) 단락전류

선간 단락전류 = 3상 단락전류 $\times \frac{\sqrt{3}}{2}$

$$I_s = \frac{\sqrt{3}}{2} \times \frac{100}{\% Z} I_n = \frac{\sqrt{3}}{2} \times 15193.43 = 13157.89 \text{ [A]}$$

그림과 같은 방전특성을 갖는 부하에 필요한 축전지 용량은 몇 [Ah]인가?

단, 방전전류 : $I_1 = 200[A]$, $I_2 = 300[A]$, $I_3 = 150[A]$, $I_4 = 100[A]$

방전시간 : $T_1 = 130$ [분], $T_2 = 120$ [분], $T_3 = 40$ [분], $T_4 = 5$ [분]

용량환산시간 : $K_1 = 2.45$, $K_2 = 2.45$, $K_3 = 1.46$, $K_4 = 0.45$

보수율은 0.7로 적용한다.

답안작성

$$C = \frac{1}{0.7} \left[2.45 \times 200 + 2.45 (300 - 200) + 1.46 (150 - 300) + 0.45 (100 - 150) \right] = 705 \left[\mathrm{Ah} \right]$$

답: 705[Ah]

문제 10 출제년도 : 20.

▶점수 : 4점

공칭 변류비가 100/5 A이다. 1차측에 250A를 흘렸을 때 2차에 10 A가 흘렸을 경우 비오차[%]는?

답안작성

비오차
$$\epsilon=\frac{$$
 공칭변류비 $-$ 측정변류비 $=\frac{100/5-250/10}{250/10} \times 100=-20\%$ 답: $-20[\%]$

문제 11 출제년도 : 20.

▶점수 : 4점

ACSR 전선에 댐퍼를 설치하는 이유는 무엇인가?

답안작성

진동 방지

다음 그림은 변류기를 영상 접속시켜 그 잔류 회로에 지락 계전기 DG를 삽입시킨 것이다. 선로전압은 66[kV], 중성점에 $300[\Omega]$ 의 저항 접지로 하였고, 변류기의 변류비는 300/5이다. 송전전력 20000[kW], 역률 0.8(지상)이고, a상에 완전 지락사고가 발생하였다고 할 때 다음 각 물음에 답하시오.

- (1) 지락 계전기 DG에 흐르는 전류는 몇 [A]인가?
- (2) a상 전류계 A에 흐르는 전류는 몇 [A]인가?
- (3) b상 전류계 B에 흐르는 전류는 몇 [A]인가?
- (4) c상 전류계 C에 흐르는 전류는 몇 [A]인가?

답안작성

(1) 지락전류
$$I_g = \frac{E}{R} = \frac{V/\sqrt{3}}{R} = \frac{66000}{\sqrt{3} \times 300} = 127.02 [A]$$

지락계전기 DG에 흐르는 전류 $I_{DG} = 127.02 \times \frac{5}{300} = 2.12$

답: 2.12 [A]

(2) ① 부하전류
$$I = \frac{20000}{\sqrt{3} \times 66 \times 0.8} \times (0.8 - j0.6) = 174.95 - j131.22$$
[A]

② 전류계 A에는 부하전류와 지락전류의 합이 흐르므로

$$I_a = I_g + I = 127.02 + 174.95 - j131.22 = 301.97 - j131.22 \mathrm{[A]}$$

$$|I_a| = \sqrt{301.97^2 + 131.22^2} = 329.25 [A]$$

$$\therefore A = 329.25 \times \frac{5}{300} = 5.49$$

답: 5.49 [A]

(3) 전류계 B에는 부하전류가 흐르므로

b상 전류
$$I_{\!\!b} = \frac{20000}{\sqrt{3} \times 66 \times 0.8} = 218.69 [{
m A}]$$

$$\therefore B = 218.69 \times \frac{5}{300} = 3.64$$

답: 3.64 [A]

(4) 전류계 C에도 부하전류가 흐르므로

$$\therefore C = 218.69 \times \frac{5}{300} = 3.64$$

답: 3.64 [A]

그림과 같이 3상 \triangle -Y 결선 30[MVA], 33/11[kV] 변압기가 차동계전기에 의하여 보호되고 있다. 고장전류가 정격전류의 200[%] 이상에서 동작하는 계전기의 전류 (i_r) 정정값을 구하시오. 단, 변압기 1차측 및 2차측 CT의 변류비는 각각 500/5[A], 2000/5[A] 이다.

답안작성

$$i_p = \frac{30 \times 10^3}{\sqrt{3} \times 33} \times \frac{5}{500} = 5.25 [A]$$

$$i_s = \sqrt{3} \times \frac{30 \times 10^3}{\sqrt{3} \times 11} \times \frac{5}{2000} = 6.82 [\mathrm{A}]$$

... 정정값
$$i_r = 2 \times \left|i_p - i_s\right| = 2 \times |5.25 - 6.82| = 3.14 [{\rm A}]$$

답: 3.14[A]

무제 14 출제년도 : 90. 20.

▶점수 : 3점

설계자가 크기, 형상 등 전체적인 조화를 생각하여 형광등 기구를 벽면 상방 모서리에 숨겨서 설치하는 방식으로 기구로부터의 빛이 직접 벽면을 조명하는 건축화 조명을 무슨 조명이라 하는가?

답안작성

코니스 조명

3층 사무실용 건물에 3상 3선식의 6000[V]를 200[V]로 강압하여 수전하는 설비이다. 각종 부하설비가 표와 같을 때 다음 물음에 답하시오. 참고자료도 이용하시오.

[**표1**] 동력 부하 설비

사용목적	용량 [kW]	대수	상 용동 력 [kW]	하계동력 [kW]	동계동력 [kW]
- 난방관계					
• 보일러 펌프	6.0	1			6.0
• 오일 기어 펌프	0.4	1			0.4
 온수순환 펌프 	3.0	1			3.0
• 1, 2, 3층 패키지 콤프레셔	7.5	6		45.0	
• 콤프레셔 팬	5.5	3	16.5		
• 냉각수 펌프	5.5	1		5.5	
• 쿨링 타워	1.5	1		1.5	
 급배수관계					
• 양수펌프	3.0	1	3.0		
기타					
• 소화펌프	5.5	1	5.5		
• 셔터	0.4	2	0.8		
합계			25.8	52.0	9.4

[표2] 조명 및 콘센트 부하설비

사용목적	와트수 [W]	설치 수량	환산용량 [VA]	총용 량 [VA]	비고
전등관계					
• 수은등 A	200	4	260	1040	200[V] 고역률
• 수은등 B	100	8	140	1120	100[V] 고역률
• 형광등	40	820	55	45100	200[V] 고역률
• 백열 전등	60	10	60	600	
콘센트 관계					
• 일반 콘센트		80	150	12000	2P 15[A]
• 환기팬용 콘센트		8	55	440	
• 히터용 콘센트	1500	2		3000	
• 복사기용 콘센트		4		3600	
• 텔레타이프용 콘센트		2		2400	
• 룸 쿨러용 콘센트		6		7200	
기타					
• 전화 교환용 정류기		1		800	
합 계				77300	

[참고자료1] 변압기 보호용 전력퓨즈의 정격전류

상수		단	상		3 상				
공칭전압	3.3[kV]	6.6	kV] 3.3		[kV]	6.6	[kV]	
변압기 용량 [kVA]	변압기 정격전류 [A]	정격전류 [A]	변압기 정격전류 [A]	정격전류 [A]	변압기 정격전류 [A]	정격전류 [A]	변압기 정격전류 [A]	정격전류 [A]	
5	1.52	3	0.76	1.5	0.88	1.5	_	_	
10	3.03	7.5	1.52	3	1.75	3	0.88	1.5	
15	4.55	7.5	2,28	3	2,63	3	1.3	1.5	
20	6.06	7.5	3.03	7.5	_	_	_	_	
30	9.10	15	4.56	7.5	5,26	7.5	2,63	3	
50	15.2	20	7.60	15	8.45	15	4.38	7.5	
75	22.7	30	11.4	15	13.1	15	6.55	7.5	
100	30.3	50	15.2	20	17.5	20	8.75	15	
150	45.5	50	22.7	30	26.3	30	13.1	15	
200	60.7	75	30.3	50	35.0	50	17.5	20	
300	91.0	100	45.5	50	52.0	75	26.3	30	
400	121.4	150	60.7	75	70.0	75	35.0	50	
500	152.0	200	75.8	100	87.5	100	43.8	50	

[참고자료2] 배전용 변압기의 정격

	항 목	-			소형 (6[kV]	유입	변압기			중형 6[kV] 유입 변압기					
정	격용량[l	xVA]	3	5	7.5	10	15	20	30	50	75	100	150	200	300	500
정격	단상	105[V]	28.6	47.6	71.4	95.2	143	190	286	476	714	852	1430	1904	2857	4762
2차 전류	17.8	210[V]	14.3	23.8	35.7	47.6	71.4	95.2	143	238	357	476	714	952	1429	2381
선규 [A]	3상	210[V]	8	13.7	20.6	27.5	41.2	55	82.5	137	206	275	412	550	825	1376
정격 2차 전압 6300[V] 6/3[kV] 공용: 6300[V]/3150[V]							6300[6/3[k		-: 630	0[V]/31	L50[V]					
격 전 압	정격 2차	단상	210[210[V] 및 105[V]								200[kVA] 이하의 것 : 210[V] 및 105[V] 200[kVA] 초과의 것 : 210[V]				
	전압	3상	210[210[V]							210[V	1				
	전용량	단상		6900[V], 6600[V] 6/3[kV] 공용: 6300[V]/3150[V] 6600[V]/3300[V]								6900[V], 6600[V]				
탭 저	탭전압	3상	6600[V] 6/3[kV] 공용:6600[V]/3300[V]							6/3[kV] 공용: 6300[V]/3150[V] 6600[V]/3300[V]						
전 압	저감 용량	단상		6000[V], 5700[V] 6/3[kV] 공용 : 6000[V]/3000[V] 5700[V]/2580[V]							6000[V], 5700[V]					
	탭전압	3상		6600[V] 6/3[kV] 공용: 6000[V]/3300[V]						6/3[kV] 공용: 6000[V]/3000[V] 5700[V]/2580[V]						
벼아기	이 겨서	단상	2차	권선 :	분할경	불선					ગઢ 1차 권선 : 성형권선					
변압기의 결선		3상	1차	권선 :	성형급	担선 , 2	차권선	<u>년</u> : 성	형권선		0.9	3상 2차 권선 : 삼각권선				

[참고자료3] 역률개선용 콘덴서의 용량 계산표[%]

		-0 -			— .								
개선 후 역률 개선 전 역률	1.0	0.99	0.98	0.97	0.96	0.95	0.94	0.93	0.92	0.91	0.9	0.85	0.8
0.5	173	159	153	148	144	140	137	134	130	128	125	112	98
0.525	162	148	142	137	133	129	126	122	119	117	114	100	87
0.55	152	138	132	127	123	119	116	112	109	106	104	90	77
0.575	142	128	122	117	114	110	106	103	99	96	94	80	67
0.6	133	119	113	108	104	101	97	94	91	88	85	71	58
0.625	125	111	105	100	96	92	89	85	82	79	77	63	50
0.65	117	103	97	92	88	84	81	77	74	71	69	55	42
0.675	109	95	89	84	80	76	73	70	66	64	61	47	34
0.7	102	88	81	77	73	69	66	62	59	56	54	40	27
0.725	95	81	75	70	66	62	59	55	52	49	46	33	20
0.75	88	74	67	63	58	55	52	49	45	43	40	26	13
0.775	81	67	61	57	52	49	45	42	39	36	33	19	6.5
0.8	75	61	54	50	46	42	39	35	32	29	27	13	
0.825	69	54	48	44	40	36	33	29	26	23	21	7	
0.85	62	48	42	37	33	29	26	22	19	16	14		
0.875	55	41	35	30	26	23	19	16	13	10	7		
0.9	48	34	28	23	19	16	12	9	6	2.8			
0.91	45	31	25	21	16	13	9	6	2.8				
0.92	43	28	22	18	13	10	6	3.1					
0.93	40	25	19	15	10	7	3.3						
0.94	36	22	16	11	7	3.6							
0.95	33	18	12	8	3.5								
0.96	29	15	9	4									
0.97	25	11	5										
0.98	20	6											
0.99	10												

- (1) 동계 난방 때 온수 순환 펌프는 상시 운전하고, 보일러용과 오일 기어 펌프의 수용률이 60[%]일 때 난방 동력 수용 부하는 몇 [kW]인가?
- (2) 동력 부하의 역률이 전부 80[%]라고 한다면 피상전력은 각각 몇 [kVA]인가? 단, 상용동력, 하계동력, 동계동력별로 각각 계산하시오.
- (3) 총 전기 설비용량은 몇 [kVA]를 기준으로 하여야 하는가?
- (4) 전등의 수용률은 70[%], 콘센트 설비의 수용률은 50[%]라고 한다면 몇 [kVA]의 단상 변압기에 연결하여야 하는가? 단, 전화 교환용 정류기는 100[%] 수용률로서 계산 결과에 포함시키며 변압기에 비율(여유율)은 무시한다.
- (5) 동력 설비부하의 수용률이 모두 60[%]라면 동력 부하용 3상 변압기의 용량은 몇 [kVA]인가? 단, 동력부하의 역률은 80[%]로 하며 변압기의 예비율은 무시한다.
- (6) 상기 건물에 시설된 변압기 총 용량은 몇 [kVA]인가?
- (7) 단상 변압기와 3상 변압기의 1차측의 전력퓨즈의 정격전류는 각각 몇 [A]의 것을 선택하여야 하는가?
- (8) 선정된 동력용변압기 용량에서 역률을 95[%]로 개선하려면 콘덴서 용량은 몇 [kVA]인가?

(1) 수용부하= 3+(6+0.4) × 0.6 = 6.84[kW]

답: 6.84[kW]

(2) ① 상용동력의 피상전력= $\frac{25.8}{0.8}$ = 32.25[kVA]

답: 32.25[kVA]

② 하계동력의 피상전력= $\frac{52.0}{0.8}$ =65[kVA]

답: 65[kVA]

③ 동계동력의 피상전력= $\frac{9.4}{0.8}$ =11.75[kVA]

답: 11.75[kVA]

(3) 계상: 32.25+65+77.3=174.55[kVA]

답: 174.55[kVA]

(4) ① 전등: $(1040+1120+45100+600)\times0.7\times10^{-3}=33.5[kVA]$

② 콘센트 : $(12000+440+3000+3600+2400+7200)\times0.5\times10^{-3}=14.32[kVA]$

③ 기타: $800 \times 1 \times 10^{-3} = 0.8 [kVA]$

∴ 조명 및 콘센트 부하 : 33.5+14.32+0.8 = 48.62[kVA]

답: 50[kVA]

(5) 동계 동력과 하계 동력 중 큰 부하를 기준하고 상용 동력과 합산하여 계산

$$= \frac{25.8 + 52.0}{0.8} \times 0.6 = 58.35 [\text{kVA}]$$

답: 75[kVA]

(6) 단상변압기+3상변압기=50+75=125[kVA]

답: 125[kVA]

(7) ① 단상변압기 : 15[A] ② 3상변압기 : 7.5[A]

(8) 역률 0.8에서 0.95로 개선하기 위해서는 참고자료3에 의하여 $K_{\theta}=0.42$ 콘데서용량[kVA]= $75\times0.8\times0.42=25.2$ [kVA]

답: 25.2[kVA]

무제 16 출제년도 : 20.

▶점수 : 6점

다음 변류기의 과전류강도에 대하여 답하시오.

- (1) 정격과전류 강도 (S_n) , 통전시간(t)일 때, 열적 과전류강도(S)를 표시하는 식을 쓰시오.
- (2) 기계적 과전류에 대하여 쓰시오.

답안작성

$$(1) S = \frac{S_n}{\sqrt{t}}$$

(2) 변류기의 기계적 과전류는 정격과전류강도에 상당하는 1차 전류(실횻값)의 2.5배에 상당하는 초기 최대 순시 값을 갖는 과전류를 흘려 이에 견디어야 한다.

2020

전기기사 실기 2회

문제 01 출제년도 : 04. 20.

▶점수 : 6점

고압선로에서의 접지사고 검출 및 경보장치를 그림과 같이 시설하였다. A선에 누전사고가 발생하였 을 때 다음 각 물음에 답하시오. 단, 전원이 인가되고 경보벨의 스위치는 닫혀있는 상태라고 한다.

- (1) 1차측 A, B, C선의 대지전압은 몇 [V]인가?
 - ① A선의 대지전압 ② B선의 대지전압 ③ C선의 대지전압
- (2) 2차측 A. B. ©의 전구전압과 전압계 ⓒ의 지시전압, 경보벨 B에 걸리는 전압은 몇 [V]인가?
 - ① 🛦 전구의 전압
 - ② B 전구의 전압
 - ③ ② 전구의 전압
 - ④ 전압계 ♡의 지시 전압
 - ⑤ 경보벨 B에 걸리는 전압

답안작성

- (1) ① 0 [V]
 - ② $\frac{6,600}{\sqrt{3}} \times \sqrt{3} = 6,600 \text{ [V]}$
 - $3 \frac{6,600}{\sqrt{3}} \times \sqrt{3} = 6,600 \text{ [V]}$
- (2) ① 0 [V]
 - ② $6,600 \times \frac{110}{6,600} = 110 \text{ [V]}$
 - $(3) 6,600 \times \frac{110}{6,600} = 110 [V]$
 - (4) $110 \times \sqrt{3} = 190.53 \text{ [V]}$
 - ⑤ $110 \times \sqrt{3} = 190.53 \text{ [V]}$

- 답: 0[V]
- 답: 6,600[V]
- 답: 6,600[V]
- 답: 0[V]
- 답: 110[V]
- 답: 110[V]
- 답: 190.53[V]
- 답: 190.53[V]

문제 02 출제년도 : 20. ▶점수 : 5점

답안지의 도면은 3상 농형 유도 전동기 IM의 Y-△ 기동 운전 제어의 미완성 회로도이다. 다음 보기와 그림을 보고 다음 각 물음에 답하시오.

【보기】

PBS(ON)을 누르면 MCS로 Y결선 기동하고 설정시간 후 MCS와 T가 소자하여 △결선 운전된다. PBS(OFF)를 누르거나 THR이 동작하면 전동기는 정지한다.

- (1) 주회로를 완성하시오.
- (2) 틀린 부분을 고쳐 올바르게 그리시오.

문제 03 출제년도 : 20.

▶점수 : 5점

최대 전류가 흐를 때의 손실이 $100 \, [\mathrm{kW}]$ 이며 부하율이 $60 \, [\%]$ 인 전선로의 평균 손실은 몇 $[\mathrm{kW}]$ 인가? 단, 배전선로의 손실계수를 구하는 α 는 $0.2 \, \mathrm{Or}$.

답안작성

손실계수 $H=\alpha F+(1-\alpha)F^2=0.2\times0.6+(1-0.2)\times0.6^2=0.408$ ∴ 손실전력 = 손실계수 × 최대손실 = $0.408\times100=40.8$ [kW]

답: 40.8 [kW]

문제 04 출제년도 : 94. 03. 05. 07. 11. 13. 18. 20.

▶점수 : 5점

그림과 같은 송전계통 S점에서 3상 단락사고가 발생하였다. 주어진 도면과 조건을 참고하여 다음 각 물음에 답하시오.

【조건】

번호	기기명	용량	전압	%X
1	발전기 (G)	50,000 [kVA]	11 [kV]	30
2	변압기 (T ₁)	50,000 [kVA]	11/154 [kV]	12
3	송전선		154 [kV]	10 (10,000 [kVA])
		1차 : 25,000 [kVA]	154 [kV]	12 (25,000 [kVA], 1차~2차)
4	변압기 (T2)	2차 : 30,000 [kVA]	77 [kV]	15 (25,000 [kVA], 2차~3차)
		3차 : 10,000 [kVA]	11 [kV]	10.8 (10,000 [kVA], 3차~1차)
5	조상기 (C)	10,000 [kVA]	11 [kV]	20 (10,000 [kVA])

- (1) 변압기(T₂)의 각각의 %리액턴스를 100 [MVA] 출력으로 환산하시오.
- (2) 변압기(T₂)의 1차(P), 2차(S), 3차(T)의 %리액턴스를 구하시오.

답안작성

(1) 1차~2차간
$$\%X_{P-S} = \frac{100}{25} \times 12 = 48 [\%]$$
 답: $48 [\%]$
 $2차~3차간$ $\%X_{S-T} = \frac{100}{25} \times 15 = 60 [\%]$ 답: $60 [\%]$
 $3차~1차간$ $\%T_{T-P} = \frac{100}{10} \times 10.8 = 108 [\%]$ 답: $108 [\%]$
 (2) 1차 $\%X_P = \frac{1}{2} (48 + 108 - 60) = 48 [\%]$ 답: $48 [\%]$
 $2차$ $\%X_S = \frac{1}{2} (48 + 60 - 108) = 0 [\%]$ 답: $0 [\%]$
 $3차$ $\%X_T = \frac{1}{2} (60 + 108 - 48) = 60 [\%]$ 답: $60 [\%]$

무제 05 출제년도 : 09. 20.

▶점수 : 5점

도로의 너비가 30 [m]인 곳의 양쪽으로 30 [m] 간격으로 지그재그식으로 등주를 배치하여 도로 위의 평균 조도를 6 [lx]가 되도록 하고자 한다. 도로면의 광속이용률은 32 [%], 유지율은 80 [%]로 한다고 할 때 각 등주에 사용되는 수은등의 규격은 몇[W]의 것을 사용하여야 하는지, 전광속을 계산하고, 주어진 수은등 규격표에서 찾아 쓰시오.

수은등의 규격표

크기[W]	램프전류[A]	전광속[lm]
100	1.0	2,200 ~ 3,000
200	1.9	$4,000 \sim 5,500$
250	2.1	$7,700 \sim 8,500$
300	2.5	$10,000 \sim 11,000$
400	3.7	$13,000 \sim 14,000$

문제 06 출제년도 : 20.

과숙
$$F = \frac{EBS}{2UM} = \frac{6 \times 30 \times 30}{2 \times 0.32 \times 0.8} = 10546.88 \text{ [lm]}$$

표에서 광속이 10.000 ~ 11.000[lm]인 300[W] 선정

▶점수: 12점

답: 300[W]

다음 도면을 보고 물음에 답하시오. 단. 소수점 다섯째 자리에서 반올림하시오.

- (1) 전원측 %Z, %R, %X를 구하시오.
- (2) 선로측 케이블 임피던스 $\%Z_{L}$ 를 구하시오.
- (3) 변압기 임피던스 $\%Z_T$, $\%R_T$, $\%X_T$ 를 구하시오.
- (4) 단락점까지의 합성 $\%Z_{*}$ 를 구하시오.
- (5) 단락점의 단락전류를 구하시오.

답안작성

(1) ①
$$\%Z = \frac{100}{P_s} \times P_n = \frac{100}{1000} \times 100 = 10 \, [\%]$$

답: %Z=10[%]

②
$$\frac{X}{R} = \frac{\%X}{\%R} = 10$$
 $\therefore \%X = 10\%R$

$$\%Z^2 = \%R^2 + \%X^2 = \%R^2 + (10\%R)^2 = 101\%R^2$$

$$\%Z^2 = 10^2 = 101\%R^2$$

$$\therefore \%R = \sqrt{\frac{10^2}{101}} = 0.99503 \, [\%]$$

답: %R=0.9950[%]

답: %X=9.9504[%]

(2)
$$\%R_L = \frac{PR}{10 V^2} = \frac{100 \times 10^3 \times 0.234 \times 3}{10 \times 22.9^2} = 13.3865 \, [\%]$$

$$\%X_{L} = \frac{PX}{10\,V^{2}} = \frac{100\times10^{3}\times0.162\times3}{10\times22.9^{2}} = 9.2676\,[\%]$$

$$\therefore \%Z_L = \sqrt{13.3865^2 + 9.2676^2} = 16.2815 \, [\%]$$

답: 16.2815[%]

(3) ①
$$\%Z_T = \frac{100}{2.5} \times 7 = 280 \, [\%]$$

답:
$$\%Z_T = 280 \, [\%]$$

②
$$\frac{X_T}{R_T} = \frac{\% X_T}{\% R_T} = 8$$
 $\therefore \% X_T = 8\% R_T$

$$\%Z_T^2 = \%R_T^2 + \%X_T^2 = \%R_T^2 + (8\%R_T)^2 = 65\%R_T^2$$

$$\%Z_T^2 = 280^2 = 65\%R_T^2$$

$$\therefore \ \%R_T = \sqrt{\frac{280^2}{65}} = 34.7297 \, [\%]$$

답:
$$\%R_T = 34.7297 \, [\%]$$

$$(3) \%X_T = 8\sqrt{\frac{280^2}{65}} = 277.8378 \ [\%]$$

$$(4) \ \ \, \%R_t = \%R + \%R_L + \%R_T = 0.9950 + 13.3865 + 34.7297 = 49.1112 \, [\%] \\ \%X_t = \%X + \%X_L + \%X_T = 9.9504 + 9.2676 + 277.8378 = 297.0558 \, [\%]$$

$$\therefore \%Z_t = \sqrt{49.1112^2 + 297.0558^2} = 301.0881 \, [\%]$$

답: 301.0881[%]

(5)
$$I_s = \frac{100}{\%Z}I_n = \frac{100}{301.0881} \times \frac{100 \times 10^6}{\sqrt{3} \times 380} \times 10^{-3} = 50.4617 \text{ [kA]}$$

답: 50.4617 [kA]

무제 07 출제년도 : 20

▶점수 : 4점

알칼리 축전지의 정격용량이 200 [Ah]이고, 상시부하가 10 [kW], 표준전압이 100 [V]인 부동충전 방식이 있다. 이 부동충전방식의 충전기 2차 전류는 몇 [A]인지 계산하시오. 단, 연축전지의 방전 율은 10시간율, 알칼리축전지는 5시간 방전율로 한다.

- (1) 연축전지
- (2) 알칼리 축전지

답안작성

(1)
$$I_2 = \frac{200}{10} + \frac{10 \times 10^3}{100} = 120 \text{ A}$$

답: 120[A]

(2)
$$I_2 = \frac{200}{5} + \frac{10 \times 10^3}{100} = 140 \text{A}$$

답: 140[A]

아래의 표에서 금속관 부품의 특징에 해당하는 부품명을 쓰시오.

부품명	특 징
1	관과 박스를 접속할 경우 파이프 나사를 죄어 고정 시키는데 사용되며 6각형과 기어 형이 있다.
2	전선 관단에 끼우고 전선을 넣거나 빼는데 있어서 전선의 피복을 보호하여 전선이 손 상되지 않게 하는 것으로 금속제와 합성수지제의 2종류가 있다.
3	금속관 상호 접속 또는 관과 노멀밴드와의 접속에 사용되며 내면에 나사가 있으며 관 의 양측을 돌리어 사용할 수 없는 경우 유니온 커플링을 사용한다.
4	노출배관에서 금속관을 조영재에 고정시키는데 사용되며 합성수지 전선관, 가요전선 관, 케이블 공사에도 사용된다.
(5)	배관의 직각 굴곡에 사용하며 양단에 나사가 나있어 관과 접속에는 커플링을 사용한 다.
6	금속관을 아웃렛 박스에 노크아웃에 취부할 때 노크아웃의 구멍이 관의 구멍보다 클 때 사용된다.
7	매입형의 스위치나 콘센트를 고정하는데 사용되며 1개용, 2개용, 3개용 등이 있다.
8	전선관 공사에 있어 전등 기구나 점멸기 또는 콘센트의 고정, 접속함으로 사용되며 4 각 및 8각이 있다.

답안작성

- ① 로크너트(lock nut)
- ③ 커플링(coupling)
- ⑤ 노멀밴드(normal band)
- ⑦ 스위치박스(switch box)

- ② 부싱(bushing)
- ④ 새들(saddle)
- ⑥ 링리듀서(ring reducer)
- ⑧ 아웃렛박스(outlet box)

문제 09 출제년도 : 11. 18. 20.

▶점수 : 6점

수전 전압 6600 [V], 가공전선로의 %임피던스가 60.5 [%]일 때 수전점의 3상 단락 전류가 7000 [A]인 경우 다음 각 물음에 답하시오.

차단기의 정격용량 [MVA]

10	20	30	50	75	100	150	250	300	400	500

- (1) 기준용량
- (2) (1)의 기준용량을 이용하여 차단용량을 구하시오.

답안작성

(1) 정격전류 $I_n = \frac{\%Z}{100}I_s = \frac{60.5}{100} \times 7000 = 4235$ [A]

기준용량 $P_n = \sqrt{3} \ VI_n = \sqrt{3} \times 6600 \times 4235 \times 10^{-6} = 48.412 \, [\text{MVA}]$ 답 : $48.41 \, [\text{MVA}]$

(2) 차단용량 $P_s = \frac{100}{\%Z} \times P_n = \frac{100}{60.5} \times 48.41 = 80.02 \, [\text{MVA}]$ 답: 100 [MVA]

문제 10 출제년도 : 20.

▶점수 : 5점

다음에 주어진 단상 유도전동기의 종류에 따른 보기의 전동기 역회전 방법을 골라 짝지으시오.

- (1) 반발 기동형
- (2) 분상 기동형
- (3) 셰이딩 코일형

【보기】

- ㄱ. 역회전이 불가능하다
- ㄴ. 기동권선의 접속을 반대로 한다.
- ㄷ. 브러시 위치를 이동한다.

답안작성

(1) に (2) し (3) ¬

문제 11 출제년도 : 20.

▶점수 : 5점

감리원은 공사가 시작된 경우에는 공사업자로부터 다음 각호의 서류가 포함된 착공신고서를 제출 받아 적정성 여부를 검토하여 7일 이내에 발주자에게 보고하여야 한다. 다음 빈칸을 작성하시오.

- 1. 시공관리책임자 지정통지서 (현장관리조직, 안전관리자)
- 2. (①)
- 3. (2)
- 4. 공사도급 계약서 사본 및 산출내역서
- 5. 공사 시작 전 사진
- 6. 현장기술자 경력사항 확인서 및 자격증 사본
- 7. (③)
- 8. 작업인원 및 장비투입 계획서
- 9. 그 밖에 발주자가 지정한 사항

답안작성

① 공사 예정공정표 ② 품질관리계획서 ③ 안전관리계획서

어느 변전소에서 그림과 같은 일부하 곡선을 갖는 3개의 부하 A, B, C의 $\frac{1}{2}$ C의 $\frac{1}{2}$

[참고자료]

부하	평균전력[kW]	역률 [%]
A	4500	100
В	2400	80
C	900	60

- (1) 합성최대전력[kW]을 구하시오.
- (2) 종합부하율[%]을 구하시오.
- (3) 부등률을 구하시오.
- (4) 최대부하시 종합역률[%]을 구하시오.
- (5) A수용가에 대한 다음 물음에 답하시오.
 - ① 첨두부하는 몇 [kW]인가?
 - ② 첨두부하가 지속되는 시간은 몇 시부터 몇 시 까지인가?
 - ③ 하루 공급된 전력량은 몇 [MWh]인가?

답안작성

(1) 합성최대전력 $=(8+3+1)\times 10^3 = 12,000 [kW]$ 답 : 12,000 [kW]

(2) 종합부하율 = $\frac{4500 + 2400 + 900}{12000} \times 100 = 65[\%]$ **답**: 65[%]

(3) 부등률 = $\frac{8000 + 4000 + 2000}{12000} = 1.166$ 답: 1.17

(4)	구분	유효전력	무효전력
	A	8,000 kW	0 kVar
	В	3,000 kW	$3000 \times \frac{0.6}{0.8} = 2{,}250 \text{ kVar}$
	С	1,000 kW	$1000 \times \frac{0.8}{0.6} = 1,333.33 \text{ kVar}$
	종합	12,000 kW	3,583.33 kVar

종합역률
$$\cos\theta = \frac{12000}{\sqrt{12000^2 + 3583.33^2}} \times 100 = 95.82[\%]$$
 답 : 95.82[%]

(5) ① 8,000 [kW]

문제 13 출제년도 : 09. 20.

- ② 10 ~ 12시
- ③ 계산 : $4500 \times 24 \times 10^{-3} = 108 [MWh]$

퓨즈 정격사항에 대하여 주어진 표의 빈 칸에 쓰시오.

게 토 거아 [1-17]	퓨즈정격					
계통전압 [kV]	퓨즈 정격전압[kV]	최대 설계전압[kV]				
6.6	1)	8.25				
13.2	15	2				
22 또는 22.9	3	25.8				
66	69	4				
154	(5)	169				

답안작성

- ① 6.9 또는 7.5 ② 15.5 ③ 23 ④ 72.5 ⑤ 161

답: 108[MWh]

▶점수 : 5점

옥내배선의 시설에 있어서 인입구 부근에 전기 저항치가 3[Q] 이하의 값을 유지하는 수도관 또는 철골이 있는 경우에는 이것을 접지극으로 사용하여 저압 전로의 중성선 또는 접지측 전선에 추가 접지할수 있다. 이 추가 접지의 목적은 저압 전로에 침입하는 뇌격이나 고저압 혼촉으로 인한 이상전압에 의한 옥내 배선의 전위 상승을 억제하는 역할을 한다. 또 지락 사고시에 지락전류를 증가시킴으로서 과전류 차단기의 동작을 확실하게 하는 것이다. 그림에 있어서 (나)점에서 지락이 발생한 경우 추가접지가 없는 경우의 지락전류와 추가 접지가 있는 경우의 지락전류값을 구하시오.

답안작성

무제 15 출제년도: 20 ▶점수: 5점

특고압 및 저압차단기 종류 3가지의 영문약호와 한글명칭을 쓰시오.

- (1) 특고압 차단기
- (2) 저압 차단기

답안작성

- (1) ① VCB(진공차단기)
 - ② GCB(가스차단기)
 - ③ ABB(공기차단기)
- (2) ① ACB(기중차단기)
 - ② MCCB(배선용 차단기)
 - ③ ELB(누전 차단기)

문제 16 출제년도 : 91. 94. 95. 01. 14. 20.

▶점수 : 7점

3.7 [kW]와 7.5 [kW]의 직입기동 농형 전동기 및 22 [kW]의 권선형 전동기등 3대를 그림과 같이 접속하였다. 이때 다음 각 물음에 답하시오. 단, 공사방법 B1이고, XLPE 절연전선을 사용하였으며, 정격전압은 200 [V]이고, 간선 및 분기회로에 사용되는 전선 도체의 재질 및 종류는 같다고 한다.

- (1) 간선에 사용되는 과전류 차단기와 개폐기(①)의 최소 용량은 몇 [A]인가?
- (2) 간선의 최소 굵기는 몇 [교리인가?

[표 1] 200[V] 3상 유도전동기의 간선의 굵기 및 기구의 용량(B종 퓨즈)

		배선종류에 의한 간선의 최소굵기[폐] ②					직입기동 전동기 중 최대 용량의 것												
전동기 [kW]	최대 사용	공사 A		공사 B	방법 1	공사 (방법 C	0.75	1.5	2.2	3.7	5.5	7.5	11	15	18.5	22	30	37~55
수의 총계	전류 [A]					기동기 사용 전동기 중 최대 용량의 것													
[kW] 이하	이하							-	_	-	5.5	7.5	11 15	18.5 22	_	30 37	-	45	55
① ①'		PVC	XLPE EPR	PVC	XLPE EPR	PVC	XLPE EPR			루차단기 기 용량							위 숫 ⁷ 아래 숫		
3	15	2.5	2.5	2.5	2.5	2.5	2.5	15 30	20 30	30 30	_	_	_	_	ı	_	_	_	_
4.5	20	4	2.5	2.5	2.5	2.5	2.5	20 30	20 30	30 30	50 60	_	_	_	_	_	_	_	_
6.3	30	6	4	6	4	4	2.5	30 30	30 30	50 60	50 60	72 100	_	-	_	_	-	_	_
8.2	40	10	6	10	6	6	4	50 60	50 60	50 60	75 100	75 100	100 100	_	_	_	_	_	_
12	50	16	10	10	10	10	6	50 60	50 60	50 60	75 100	75 100	100 100	150 200	_	_	_	_	_
15.7	75	35	25	25	16	16	16	75 100	75 100	75 100	75 100	100 100	100 100	150 200	150 200	_	_	-	_
19.5	90	50	25	35	25	25	16	100 100	100 100	100 100	100 100	100 100	150 200	150 200	200 200	200 200	_	_	_
23.2	100	50	35	35	25	35	25	100 100	100 100	100 100	100 100	100 100	150 200	150 200	200 200	200 200	200 200	-	_
30	125	70	50	50	35	50	35	150 200	150 200	150 200	150 200	150 200	150 200	150 200	200 200	200 200	200 200	_	_
37.5	150	95	70	70	50	70	50	150 200	150 200	150 200	150 200	150 200	150 200	150 200	200 200	300 300	300 300	300 300	_
45	175	120	70	95	50	70	50	200 200	200 200	200 200	200 200	200 200	200 200	200 200	200 200	300 300	300 300	300 300	300 300
52.5	200	150	95	95	70	95	70	200 200	200 200	200 200	200 200	200 200	200 200	200 200	200 200	300 300	300 300	400 400	400 400
63.7	250	240	150	_	95	120	95	300 300	300 300	300 300	300 300	300 300	300 300	300 300	300 300	300 300	400 400	400 400	500 600
75	300	300	185	_	120	185	120	300 300	300 300	300 300	300 300	300 300	300 300	300 300	300 300	300 300	400 400	400 400	500 600
86.2	350	_	240	_	_	240	150	400 400	400 400	400 400	400 400	400 400	400 400	400 400	400 400	400 400	400 400	400 400	600 600

[비고 1] 최소 전선 굵기는 1회선에 대한 것이며, 2회선 이상일 경우는 부록 500-2의 복수회로 보정계수를 적용하여야 한다.

- [비고 3] "전동기중 최대의 것"에는 동시 기동하는 경우를 포함함
- [비고 4] 과전류 차단기의 용량은 해당 조항에 규정되어 있는 범위에서 실용상 거의 최댓값을 표시함.
- [비고 5] 과전류 차단기의 선정은 최대 용량의 정격전류의 3배에 다른 전동기의 정격전류의 합계를 가산한 값 이하를 표시함.
- [비고 6] 이 표의 전선굵기 및 허용전류는 부록 500-2에서 공사방법 A1, B1, C는 표 A, 52-4와 표 A, 52-5에 의한 값으로 하였다.
- [비고 7] 고리퓨즈는 300[A] 이하에서 사용하여야 한다.

[[]비고 2] 공사방법 A1은 벽 내의 전선관에 공사한 절연전선 또는 단심케이블, B1은 벽면의 전선관에 공사한 절연전선 또는 단심 케이블, 공사방법 C는 벽면에 공사한 단심 또는 다심케이블을 시설하는 경우의 전선 굵기를 표시하였다.

[표2] 200[V] 3상 유도 전동기 1대인 경우의 분기회로(B종 퓨즈의 경우)

			메 14 2	조근세 이치 도	전선의 최소 귤	L-71 [2]			
				1					
		공사빙	법 A1	공사병	\법 B1	공사방법 C			
정격 출력 [kW]	전부하 전 류 [A]	37	H선	37	™ 144	3개선			
		PVC	XLPE, EPR	PVC	XLPE, EPR	PVC	XLPE, EPR		
0.2	1.8	2.5	2.5	2.5	2.5	2.5	2.5		
0.4	3.2	2.5	2.5	2.5	2.5	2.5	2.5		
0.75	4.8	2.5	2.5	2.5	2.5	2.5	2.5		
1.5	8	2.5	2.5	2.5	2.5	2.5	2.5		
2.2	11.1	2.5	2.5	2.5	2.5	2.5	2.5		
3.7	17.4	2.5	2.5	2.5	2.5	2.5	2.5		
5.5	26	6	4	4	2.5	4	2.5		
7.5	34	10	6	6	4	6	4		
11	48	16	10	10	6	10	6		
15	65	25	16	16	10	16	10		
18.5	79	35	25	25	16	25	16		
22	93	50	25	35	25	25	16		
30	124	70	50	50	35	50	35		
37	152	95	70	70	50	70	50		

71-1	-1 LJ 51		개폐기	용량[A]		과전	류 차단기](B <mark>종퓨</mark> 즈	전동기용	71-11101		
정격 전부 ⁶ 출력 전류		직입기동		기동기 사용		직입기동		기동기] 사용	초과눈금	접지선의 최소굵기	
[kW]	[A]	현장 조작	분기	현장 조작	분기	현장 조작	분기	현장 조작	분기	정격전류 [A]	[mm²]	
0.2	1.8	15	15			15	15			3	2.5	
0.4	3.2	15	15			15	15			5	2.5	
0.75	4.8	15	15			15	15			5	2.5	
1.5	8	15	30			15	20			10	4	
2.2	11.1	30	30			20	30			15	4	
3.7	17.4	30	60			30	50			20	6	
5.5	26	60	60	30	60	50	60	30	50	30	6	
7.5	34	100	100	60	100	75	100	50	75	30	10	
11	48	100	200	100	100	100	150	75	100	60	16	
15	65	100	200	100	100	100	15	100	100	60	16	
18.5	79	200	200	100	200	150	200	100	150	100	16	
22	93	200	200	100	200	150	200	100	150	100	16	
30	124	200	400	200	200	200	300	150	200	150	25	
37	152	200	400	200	200	200	300	150	200	200	25	

[비고1] 최소 전선 굵기는 1회선에 대한 것이며, 2회선 이상일 경우는 부록 500-2의 복수회로 보정계수를 적용 하여야 한다. [비고2] 공사방법 A1은 벽 내의 전선관에 공사한 절연전선 또는 단심케이블 B1은 벽면의 전선관에 공사한 절연전선 또는 단심케이블, 공사방법 C는 벽면에 공사한 단심 또는 다심케이블을 시설하는 경우의 전선 굵기를 표시하였다.

[비고3] 전동기 2대 이상을 동일회로로 할 경우는 간선의 표를 적용할 것

(1) 전동기수의 총계=3.7+7.5+22=33.2[kW] 표1에서 전동기의 총계 37.5 [kW]난과 기동기 사용 22 [kW]난에서 과전류 차단기 150[A] 선정, 개폐기 200 [A] 선정

답 : 과전류 차단기 용량 : 150 [A]

개폐기 용량 : 200 [A]

(2) 전동기수의 총계=3.7+7.5+22=33.2[kW] 표1에서 전동기의 총계 37.5[kW]난에서 전선 50[m²] 선정 답: 50[m²]

※ 해당 문제의 표와 과전류 보호장치 및 전선 굵기를 선정하는 방법이 KEC 하에서 유효하지 않으나 테이블 스펙을 활용한 문제풀이 방법의 숙지를 위하여 문제를 수록하였습니다.

해 설

- 간선 굵기/개폐기 및 차단기 용량 선정 기준
- ① 전동기 + 전열기의 경우: 전류 총화
- ② 전동기만 있는 경우: 전동기 총화 또는 전류 총화 (전동기만 존재하므로 전동기 총화의 값이나 전류 총화의 값은 동일)

전기기사 실기 3회

문제 01 출제년도 : 09. 20.

▶점수 : 6점

그림과 같은 2:1 로핑의 기어레스 엘리베이터에서 적재하중은 $1000 \, [kg]$, 속도는 $140 \, [m/min]$ 이다. 구동 로프 바퀴의 직경은 $760 \, [m]$ 이며, 기체의 무게는 $1500 \, [kg]$ 인 경우 다음 각 물음에 답하시오. 단, 평형률은 0.6, 엘리베이터의 효율은 기어레스에서 1:1 로핑인 경우는 $85 \, [\%]$, 2:1 로핑인 경우는 $80 \, [\%]$ 이다.

- (1) 권상소요 동력은 몇 [kW]인지 계산하시오.
- (2) 전동기의 회전수는 몇 [rpm]인지 계산하시오.

답안작성

(1)
$$P = \frac{\frac{9.8}{60} WVK}{\eta} = \frac{\frac{9.8}{60} \times 1 \times 140 \times 0.6}{0.8} = 17.15 \text{ [kW]}$$

(2)
$$N = \frac{V}{\pi D} = \frac{140 \times 2}{\pi \times 0.76} = 117.27 \text{ [rpm]}$$

답: 117.27 [rpm]

무제 02 출제년도 : 20.

▶점수 : 5점

 $154~\mathrm{kV}$ 의 병행 2회선 송전선이 있는데 현재 1회선만이 송전중에 있다고 할 때, 휴전 회선의 전선에 대한 정전유도전압을 구하여라. 단, 송전중인 회선의 전선과 이들 전선 간의 상호 정전용량은 $C_a=0.0010\left[\mu\mathrm{F/km}\right],~C_b=0.0006\left[\mu\mathrm{F/km}\right],~C_c=0.0004\left[\mu\mathrm{F/km}\right],~\mathrm{D}$ 선의 대지 정전용량은 $C_s=0.0052\left[\mu\mathrm{F/km}\right]$ 라고 한다.

답안작성

$$\begin{split} \left| \dot{E_s} \right| &= \frac{\sqrt{0.001(0.001 - 0.0006) + 0.0006(0.0006 - 0.0004) + 0.0004(0.0004 - 0.001)}}{0.001 + 0.0006 + 0.0004 + 0.0052} \\ &= 6534.41 \, [\text{V}] \end{split} \\$$

답: 6534.41 [V]

문제 03 출제년도 : 20.

▶점수 : 4점

다음은 옥내용 변류기의 습도상태에 대한 내용이다. () 안에 알맞은 내용을 기입하시오.

- (1) 24시간 동안 측정한 상대 습도의 평균값은 () %를 초과하지 않는다.
- (2) 24시간 동안 측정한 수증기압의 평균값은 () kPa을 초과하지 않는다.
- (3) 1달 동안 측정한 상대 습도와 평균값은 () %를 초과하지 않는다.
- (4) 1달 동안 측정한 수중기압의 평균값은 () kPa을 초과하지 않는다.

답안작성

(1) 95 % (2) 2.2 kPa (3) 90 % (4) 1.8 kPa

문제 04 출제년도 : 20.

▶점수 : 6점

다음은 모선보호 계전방식을 도면화한 것이다. 이 도면을 보고 다음 각 물음에 답하시오.

- (1) 점선 안의 계전기 명칭은?
- (2) A, B, C 코일의 명칭을 쓰시오.
- (3) 모선고장 시 코일 C의 전류 i_C 는 어떻게 표현되는가?

(1) 비율차동계전기

(2) A : 억제코일, B : 억제코일, C : 동작코일

(3) $I_C = |I_1 + I_2 - I_3|$

문제 05 출제년도 : 00. 04. 18. 20.

▶점수: 11점

단상 3선식 110/220[V]을 채용하고 있는 어떤 건물이 있다. 변압기가 설치된 수전실로부터 50[m]되는 곳에 부하집계표와 같은 분전반을 시설하고자 한다. 다음 조건과 전선의 허용전류표를 이용하여 다음 각 물음에 답하시오.

• 전압변동률은 2[%] 이하가 되도록 한다.

- 전압강하율은 2[%] 이하가 되도록 한다. (단, 중성선의 전압강하는 무시한다.)
- 후강 전선관 공사로 한다.
- 3선 모두 같은 선으로 한다.
- 부하의 수용률은 100[%]로 적용
- 후강 전선관 내 전선의 점유율을 48[%] 이내를 유지할 것.

[표1] 전선 허용전류표

단면적[㎡]	허용전류[A]	전선관 3본 이하 수용 시[A]	피복포함 단면적[㎡]
6	54	48	32
10	75	66	43
16	100	88	58
25	133	117	88
35	164	144	104
50	198	175	163

[표2] 부하 집계표

회로	부하	부하	부하 분	담[VA]]	MCCB ユフ		ul –
번호	명칭	[VA]	A	В	극수	AF	AT	비고
1	전등	2,400	1,200	1,200	2	50	15	
2	"	1,400	700	700	2	50	15	
3	콘센트	1,000	1,000	_	1	50	20	
4	"	1,400	1,400	_	1	50	20	
5	"	600	_	600	1	50	20	
6	"	1,000	_	1,000	1	50	20	
7	팬코일	700	700	_	1	30	15	
8	"	700	_	700	1	30	15	
합	·계	9,200	5,000	4,200				

- (1) 가선의 공칭단면적[교기을 선정하시오.
- (2) 후강 전선관의 굵기[㎜]를 선정하시오.
- (3) 간선보호용 과전류차단기의 용량(AF, AT)을 선정하시오.
- (4) 분전반의 복선 결선도를 완성하시오.

(5) 설비 불평형률은 몇 [%]인지 구하시오.

답안작성

(1) A선의 전류
$$I_A = \frac{5000}{110} = 45.45 [A]$$

B선의 전류
$$I_B = \frac{4200}{110} = 38.18$$
[A]

 I_{A} . I_{R} 중 큰 값인 45.45[A]를 기준으로 전선의 굵기를 선정

전선단면적
$$A = \frac{17.8LI}{1000e} = \frac{17.8 \times 50 \times 45.45}{1000 \times 110 \times 0.02} = 18.39 [mr]$$
 답 : $25 [mr]$

(2) 표1에서 25[m] 전선의 피복 포함 단면적이 88[m]이므로 전선의 총 단면적 $A=88\times 3=264[m]$

조건에서 후강전선관 내단면적의 48[%]를 유지 $A=rac{1}{4}\pi d^2 imes 0.48 \ge 264$

후강전선관 직경
$$d=\sqrt{\frac{264\times 4}{0.48\times \pi}}=26.46 [ext{mm}]$$
 답 : $28 [ext{mm}]$

(3) 표1에서 25[m²]의 허용 전류는 전선관 3본 이하 수용 시 117[A]이므로 과전류 차단기는 저압 옥내 간선의 허용 전류 이하인 100[A]의 것이어야 한다.

답: AF: 100[A]. AT: 100[A]

$$(5)$$
 설비 불평형률 = $\dfrac{3100-2300}{\dfrac{1}{2}(5000+4200)} imes 100 = 17.39\,[\%]$

답: 17.39 [%]

문제 06 출제년도 : 20.

▶점수 : 5점

책임 설계감리원이 설계감리의 기성 및 준공을 처리한 때에는 다음 각 호의 준공서류를 구비하여 발주 자에게 제출하여야 한다. 준공서류중 감리기록서류 5가지를 쓰시오.

답안작성

- ① 설계감리일지
- ③ 설계감리지시부
- ④ 설계감리기록부
- ④ 설계감리요청서
- ⑤ 설계자와 협의사항 기록부

문제 07 출제년도 : 20.

▶점수 : 5점

면적 $100 \, [\mathrm{m}^2]$ 강당에 분전반을 설치하려고 한다. 단위 면적당 부하가 $10 \, [\mathrm{VA/m}^2]$ 이고 공사 시공법에 의한 전류감소율은 0.7이라면 간선의 최소 허용전류가 얼마인 것을 사용하여야 하는가? 단, 배전전압은 $220 \, [\mathrm{V}]$ 이다.

$$P = 100 \times 10 = 1000 \text{ [VA]}$$

$$I = \frac{1000}{220 \times 0.7} = 6.49 \text{ [A]}$$

답: 6.49 [A]

무제 08 출제년도 : 20.

▶점수 : 5점

다음 동작설명을 보고 만족하는 주회로 및 제어회로의 미완성 결선도를 직접 그려 완성하시오. 단, 접점기호와 명칭 등을 정확히 나타내시오.

[동작설명]

- 전원스위치 MCCB를 투입하면 주회로 및 제어회로에 전원이 공급된다.
- 누름버튼스위치(PB₁)를 누르면 MC₁이 여자되고 MC₁의 보조접점에 의하여 RL이 점등되며, 전동기는 정회전한다.
- 누름버튼스위치(PB₁)를 누른 후 손을 떼어도 MC₁은 자기유지 되어 전동기는 계속 정회전 한다.
- 전동기 운전 중 누름버튼스위치(PB_2)를 누르면 연동에 의하여 MC_1 이 소자되어 전동기가 정지되고, RL은 소등된다. 이때, MC_2 는 자기유지 되어 전동기는 역회전(역상제동을 함)하고 타이머가 여자되며, GL이 점등된다.
- 타이머 설정시간 후 역회전 중인 전동기는 정지하고 GL도 소등된다. 또한, MC_1 과 MC_2 의 보조 접점에 의하여 상호 인터록이 되어 동시에 동작되지 않는다.
- 전동기 운전중 과전류가 감지되어 EOCR이 동작되면, 모든 제어회로의 전원은 차단되고 YL만 점등된다.
- EOCR을 리셋(Reset)하면 초기상태로 복귀된다.

문제 09 출제년도 : 20.

▶점수 : 5점

 $100 \, [\mathrm{kVA}] \, 6600/210 \, [\mathrm{V}] \,$ 단상변압기 2대를 병렬로 접속하였을 때 2차측에서 단락 시 전원에 유입되는 단락전류의 값은? 단, 단상변압기 임피던스는 $6 \, [\%]$ 이다.

답안작성

단락전류
$$I_s=\frac{100}{\%Z}I_n=\frac{100}{3} imes\frac{100 imes10^3}{6600}=505.05\,\mathrm{A}$$

답: 505.05 [A]

문제 10 출제년도 : 96. 00. 04. 05. 17. 20.

▶점수 : 6점

교류 동기 발전기에 대한 다음 각 물음에 답하시오.

- (1) 정격전압 6000 [V], 용량 5000 [kVA]인 3상 교류 발전기에서 여자전류가 300 [A], 무부하 단자전 압은 6000 [V], 단락전류 700 [A]라고 한다. 이 발전기의 단락비는 얼마인가?
- (2) "단락비가 큰 발전기는 자속수가 (①) 효율은 (②), 안정도는 (③)이다." () 안의 내용은 증가/감소, 크다/작다, 높다/낮다, 적다/많다 등으로 표현한다.

(1) 정격전류
$$I_n=\frac{P_n}{\sqrt{3}\;V_n}=\frac{5000\times 10^3}{\sqrt{3}\times 6000}=481.13$$
[A] 단락비 $K_s=\frac{I_s}{I_s}=\frac{700}{481.13}=1.45$

(2) ① 증가 ② 낮다 ③ 높다

문제 11 출제년도 : 84. 97. 01. 20.

▶점수 : 5점

답: 1.45

그림과 같이 20[kVA]의 단상 변압기 3대를 사용하여 45[kW], 역률 0.8(지상)인 3상 전동기 부하에 전력을 공급하는 배전선이 있다. 지금 변압기 a, b의 중성점 n에 1선을 접속하여 an, nb 사이에 같은 수의 전구를 점등하고자 한다. 60[W]의 전구를 사용하여 변압기가 과부하되지 않는 한도 내에서 몇 등까지 점등할 수 있겠는가?

답안작성

- ① 1상의 유효전력 $P=\frac{45}{3}=15 [{
 m kW}]$, 무효전력 $P_r=P{
 m tan}\theta=15 imes\frac{0.6}{0.8}=11.25 [{
 m kVar}]$
- ② 20[kVA] 단상 변압기를 과부하 시키지 않는 범위에서 변압기 용량의 유효전력 여유분 $\Delta P = \sqrt{P_a^2 P_r^2} P = \sqrt{20^2 11.25^2} 15 = 1.5359 \rightarrow 1.53[\text{kW}]$
- ③ 증설 가능 부하 $\Delta P' = \frac{3}{2} \times \Delta P = \frac{3}{2} \times 1.53 = 2.3 [\mathrm{kW}]$
- ④ 증설 할 수 있는 전등의 수 $n=\frac{2.3\times10^3}{60}=38.33[등]$ 답 : 38 [등]

전동기에 개별로 콘덴서를 설치할 경우 발생할 수 있는 자기여자 현상의 발생 이유와 현상을 설명하시 오.

- 이유
- 현상

답안작성

- 이유: 콘덴서 전류가 전동기의 무부하 전류보다 큰 경우 발생
- 현상 : 전동기 단자전압이 일시적으로 정격전압을 초과하는 현상

무제 13 출제년도 : 20.

▶점수 : 7점

변압기 용량이 1000 [kVA]에 200 [kW], 500 [kVar] 부하가 있다. 400 kW 역률 0.8 부하를 증설하고. 350 kVA의 커패시터를 병렬로 연결하여 역률을 개선할 때 다음 물음에 답하시오.

- (1) 커패시터 설치 전의 합성역률을 구하시오.
- (2) 커패시터 설치 후 부하 200 kW를 추가할 때 변압기가 과부하되지 않으려면 200 [kW] 부하의 역률은 몇 이상이어야 하는가?
- (3) 부하 추가 시 합성역률은 몇 [%]인가?

답안작성

(1) 유효전력 P = 200 + 400 = 600 [kW]

무효전력
$$P_r = 500 + 400 \times \frac{0.6}{0.8} = 800 \, [\mathrm{kVar}]$$

$$\therefore$$
 합성역률 $\cos\theta = \frac{600}{\sqrt{600^2 + 800^2}} \times 100 = 60\%$

답 : 60 [%]

(2) 변압기 전용량 $1000 = \sqrt{(600 + 200)^2 + (800 - 350 + Q)^2}$ 200 [kW] 부하의 무효전력 Q= 150 [kVar]

$$\therefore 200 \, [\mathrm{kW}] \,$$
부하의 역률 $\cos \theta = \frac{200}{\sqrt{200^2 + 150^2}} \times 100 = 80 \, [\%]$ 답 : $80 \, [\%]$

(3) 유효전력 P = 600 + 200 = 800 [kW]

무효전력
$$P_r = 800 - 350 + 150 = 600 \, [\text{kVar}]$$

$$\therefore$$
 합성역률 $\cos\theta = \frac{800}{\sqrt{800^2 + 600^2}} \times 100 = 80\%$ 답 : 80 [%]

그림과 같은 논리회로의 명칭을 쓰고 진리표를 완성하시오.

A	В	X
0	0	
0	1	
1	0	
1	1	

- (1) 명칭을 쓰시오.
- (2) 출력식을 쓰시오.
- (3) 진리표를 완성하시오.

답안작성

- (1) 배타적 논리합 회로 (Exclusive OR)
- (2) $X = A\overline{B} + \overline{A}B$

(3)	A	В	X
	0	0	0
	0	1	1
	1	0	1
	1	1	0

문제 15 출제년도 : 20.

▶점수 : 5점

폭 15 m의 도로 양측에 간격 20 m를 두고 가로등이 점등되고 있다. 1등당의 전광속은 3000 lm으로 그 45 %가 가로 전면에 방사하는 것으로 하면 가로면의 평균조도[lx]는 얼마 인가?

답안작성

$$E = \frac{FUN}{\frac{1}{2}BS} = \frac{3000 \times 0.45 \times 1}{\frac{1}{2} \times 15 \times 20} = 9 \text{ [lx]}$$

답:9[lx]

문제 16 출제년도: 20 ▶점수: 10점

다음 전동기의 결선도이다. 물음에 답하시오.

- (1) 상기 결선도에서 3상 교류 유도 전동기용 변압기 용량을 계산하여 선정하시오. 단, 수용률은 0.65이고, 역률 0.9, 효율 0.8이다.
- (2) 25 [HP] 3상 농형 유도 전동기의 3선 결선도를 작성하시오.
- (3) Control TR (제어용 변압기)의 설치 목적은?

답안작성

(1) 전동기 출력의 합계 P = 7.5 + 15 + 20 + 25 = 67.5 [HP]

(3) 고전압을 제어회로에 필요한 저전압으로 변환하여 제어기기의 조작 전원으로 공급한다.

2020

전기기사 실기 4.5회

문제 01 출제년도 : 20.

▶점수 : 7점

3상 6600 V 수전 단독 수용가의 전용 수전 T/L이 다음과 같은 경우 각 물음에 대하여 답하시오.

- 전용 수전 T/L : 사용전선 ACSR 240 ㎡ (0,2 [Q/km]) 긍장 1000 m
- 단독수용가 1일 전력 사용 현황 (부하 역률 : 0.9)

- (1) 부하율을 구하시오.
- (2) 손실 계수를 구하시오.
- (3) 1일 손실 전력량을 구하시오.

답안작성

(1) 평균전력 =
$$\frac{1000 \times 8 + 2000 \times 4 + 3000 \times 12}{24}$$
 = 2166.67 [kW]

부하율 = 평균전력
최대전력 × 100 =
$$\frac{2166.67}{3000}$$
 × 100 = 72.22 [%]

답: 72.22 [%]

(2) 1000[kW] 부하전류 I, 1선당 저항 R 일 때

1일 동안 전력손실 $P_l=3I^2R\times 4+3\times (2I)^2R\times 4+3\times (3I)^2R\times 12+3I^2R\times 4$

$$=3I^2R(4+16+108+4)=3I^2R\times 132$$

평균전력손실
$$P_{\text{Lave}} = \frac{3I^2R \times 132}{24} = 3I^2R \times 5.5$$

최대전력손실 $P_{l_{-}\max} = 3I_m^2R = 3(3I)^2R = 3I^2R \times 9$

$$\therefore$$
 손실 계수 $H = \frac{3I^2R \times 5.5}{3I^2R \times 9} \times 100 = 61.11$ [%]

답: 61.11 [%]

(3) 1일 손실전력량

 $W_c = 평균전력손실 \times 24 = 3I^2R \times 5.5 \times 24$

$$= 3 \times \left(\frac{1000}{\sqrt{3} \times 6.6 \times 0.9}\right)^{2} \times 0.2 \times 5.5 \times 24 \times 10^{-3} = 748.22 \text{ [kWh]}$$

가로 10 [m], 세로 14 [m], 천장높이 2.75 [m], 작업면 높이 0.75 [m]인 사무실에 천장 직부 형광등 $F32 \times 2$ 를 설치하려고 한다.

- (1) 이 사무실의 실지수는 얼마인가?
- (2) F32×2의 심벌을 그리시오.
- (3) 이 사무실의 작업면 조도를 250[lx], 천장 반사율 70[%], 벽 반사율 50[%], 바닥 반사율 10[%], 32 [W] 형광등 1등의 광속 3200[lm], 보수율 70[%], 조명률 50[%]로 한다면 이 사무실에 필요한 소요 등기구 수는 몇 등인가?

답안작성

(1) 실지수
$$RI = \frac{XY}{H(X+Y)} = \frac{10 \times 14}{(2.75 - 0.75)(10 + 14)} = 2.92$$
 답: 3

(2)
$$F32\times2$$

$$(3) \ N = \frac{EAD}{FU} = \frac{250 \times 10 \times 14}{(3200 \times 2) \times 0.5 \times 0.7} = 15.63 \, [등 기구]$$
 답: 16 [등기구]

문제 03 출제년도 : 14. 20.

▶점수 : 5점

방폭구조에 관한 다음 물음에 답하시오.

- (1) 방폭형 전동기에 대하여 설명하시오.
- (2) 전기설비의 방폭구조 종류 중 3가지만 쓰시오.

답안작성

- (1) 지정된 폭발성가스 중에서 사용에 적합하도록 특별히 고려된 전동기
- (2) 내압 방폭구조, 유입 방폭구조, 압력 방폭구조, 안전증 방폭구조

CT(변류기)에 관한 다음 각 물음에 답하시오.

- (1) Y-△로 결선한 주변압기의 보호로 비율차동계전기를 사용한다면 CT의 결선은 어떻게 하여야 하는지를 설명하시오.
- (2) 통전 중에 있는 변류기의 2차측 기기를 교체하고자 할 때 가장 먼저 취하여야 할 조치를 설명하시 오.
- (3) 수전전압이 22.9[kV], 수전설비의 부하전류가 40[A]이다. 60/5[A]의 변류기를 통하여 과부하 계 전기를 시설하였다. 120[%]의 과부하에서 차단시킨다면 과부하 트립 전류값은 몇 [A]로 설정해야 하는가?

답안작성

- (1) 주 변압기 1차측에 사용되는 변류기는 △결선, 2차측에 사용되는 변류기는 Y결선
- (2) 변류기 2차측 단락
- (3) 과전류 계전기의 전류 탭 $I_{\!\!4}=40 imes {5\over 60} imes 1.2=4[{
 m A}]$

답: 4[A]

문제 05 출제년도 : 20.

▶점수 : 6점

그림과 같은 3상 3선식 380 V의 수전회로가 있다. 설비불평형률[%]은 얼마인가? 단, ⑪는 전열 부하이고, ⑩은 동력 부하이다.

답<u>안</u>작성

설비불평형률
$$= \frac{\left(1.5+3+\frac{0.4}{0.6}\right)-\left(0.4+0.5\right)}{\frac{1}{3}\left(1.5+3+\frac{0.4}{0.6}+0.4+0.5+\frac{1.5}{0.8}+7\right)}\times 100 = 85.67\,\%$$

답안지의 그림은 3상 4선식 전력량계의 결선도를 나타낸 것이다. PT와 CT를 사용하여 미완성 부분 의 결선도를 완성하시오.

해 설

■ 내선규정 부록 400-5 전력량계 및 전자개폐기의 표준결선도

무제 07 출제년도 : 16. 20.

▶점수 : 5점

초고압 송전전압이 345[kV]이다. 송전거리가 200[km]인 경우 1회선당 가능한 송전전력은 몇 [kW] 인지 Still 식에 의해 구하시오.

답안작성

송전전압
$$V = 5.5 \sqrt{0.6l + \frac{P}{100}}$$
 [kV]

송전전력
$$P = \left[\left(\frac{V}{5.5} \right)^2 - 0.6l \right] \times 100 = \left[\left(\frac{345}{5.5} \right)^2 - 0.6 \times 200 \right] \times 100 = 381471.07 [\text{kW}]$$

답: 381471.07[kW]

다음과 같은 아파트 단지를 계획하고 있다. 주어진 규모 및 참고자료를 이용하여 다음 각 물음에 답하시오.

[규모]

① 아파트 동수 및 세대수 : 2동, 300세대

② 세대당 면적과 세대수:표

동 별	세대당면적[m²]	세대수	동 별	세대당면적[m²]	세대수
	50	30		50	50
1 5	70	40	0.5	70	30
1 동	90 50 2동	2 5	90	40	
	110	30		110	30

③ 가산[VA] : 80[m²] 이하 750[VA]. 150[m²] 이하 1000[VA]

④ 계단, 복도, 지하실 등의 공용면적 1동: 1700[m²], 2동: 1700[m²]

⑤ [m²]당 상정부하

아파트 : 40[VA/m²], 공용 부분 : 7[VA/m²]

⑥ 수용률

70세대 이하 65[%]100세대 이하 60[%]150세대 이하 55[%]200세대 이하 50[%]

[조건]

- ① 모든 계산은 피상전력을 기준한다.
- ② 역률은 100[%]로 보고 계산한다.
- ③ 주변전실로부터 1동까지는 150[m]이며 동내의 전압강하는 무시한다.
- ④ 각 세대의 공급방식은 110/220[V]의 단상 3선식으로 한다.
- ⑤ 변전실의 변압기는 단상 변압기 3대로 구성한다.
- ⑥ 동간 부등률은 1.4로 본다.
- ⑦ 공용부분의 수용률은 100[%]로 한다.
- ⑧ 주변전실에서 각 동까지의 전압강하는 3[%]로 한다.
- ⑨ 이 아파트 단지의 수전은 13200/22900[V]의 Y 3상 4선식의 계통에서 수전한다.
- ⑩ 사용설비에 의한 계약전력은 사용설비의 개별 입력의 합계에 대하여 다음 표의 계약전력 환산율을 곱한 것으로 한다.

구분	계약전력 환산율	비고
처음 75[kW]에 대하여	100[%]	
다음 75[kW]에 대하여	85[%]] 계산의 합계 수치 단수가 1[kW]
다음 75[kW]에 대하여	75[%]	미만일 경우 소수점 이하 첫째자리
다음 75[kW]에 대하여	65[%]	에서 반올림한다.
300[kW] 초과분에 대하여	60[%]	

- (1) 1동의 상정부하는 몇 [VA]인가?
- (2) 2동의 수용부하는 몇 [VA]인가?
- (3) 이 단지의 변압기는 단상 몇 [kVA]짜리 3대를 설치하여야 하는가? 단, 변압기의 용량은 10[%]의 여유율을 보며 단상 변압기의 표준용량은 75, 100, 150, 200, 300[kVA] 등이다.
- (4) 한국전력공사와 변압기 설비에 의하여 계약한다면 몇 [kW]로 계약하여야 하는가?
- (5) 한국전력공사와 사용설비에 의하여 계약한다면 몇 [kW]로 계약하여야 하는가?

답안작성

(1) 상정부하=바닥면적×[m]당 상정부하+가산부하

세대당 면적 [m²]	상정부하 [VA/m²]	가산부하 [VA]	세대수	상정부하[VA]
50	40	750	30	$[50 \times 40 + 750] \times 30 = 82,500$
70	40	750	40	$[70 \times 40 + 750] \times 40 = 142,000$
90	40	1000	50	$[90 \times 40 + 1000] \times 50 = 230,000$
110	40	1000	30	$[110 \times 40 + 1000] \times 30 = 162,000$
합계	616,500[VA]			

:. 공용면적까지 고려한 상정부하= 616,500 + 1700 × 7 = 628,400 [VA]

답: 628,400[VA]

(2)	세대당 면적 [㎡]	상정부하 [VA/m²]	가산부하 [VA]	세대수	상정부하[VA]
	50	40	750	50	$[50 \times 40 + 750] \times 50 = 137,500$
	70	40	750	30	$[70 \times 40 + 750] \times 30 = 106,500$
	90	40	1000	40	$[90 \times 40 + 1000] \times 40 = 184,000$
	110	40	1000	30	$[110 \times 40 + 1000] \times 30 = 162,000$
	합계	590,000[VA]			

∴ 공용면적까지 고려한 수용부하= 590,000 × 0.55 + 1700 × 7 = 336,400 [VA]

답: 336,400[VA]

(3) 변압기용량 =
$$\frac{(616,500\times0.55+1700\times7)+336,400}{1.4}\times10^{-3}=490.98\,[\mathrm{kVA}]$$

∴ 변압기 1대의 용량 =
$$\frac{490.98}{3} \times 1.1 = 180.03 \, [\text{kVA}]$$
 답: 200[kVA]

(4) 변압기 용량이 200[kVA] 3대이므로 600[kW]로 계약 **답**: 600[kW]

(5) 1동 상정부하 = 628,400 [VA] 2동 상정부하 = 590,000+1700×7=601,900 [VA] 설비용량 = (628,400+601,900)×10⁻³ = 1230.3[kW]

$$\therefore$$
 계약전력 = $75 + (75 \times 0.85) + (75 \times 0.75) + (75 \times 0.65) + (930.3 \times 0.6) = 801.93 [kW]$

답: 802[kW]

문제 09 출제년도 : 05. 13. 20. ▶점수 : 6점

전력계통의 발전기, 변압기 등의 증설이나 송전선의 신·증설로 인하여 단락·지락전류가 증가하여 송 변전 기기의 손상이 증대되고, 부근에 있는 통신선의 유도장해가 증가하는 등의 문제점이 예상된다. 따라서 이러한 문제점을 해결하기 위하여 전력계통의 단락용량의 경감 대책을 세워야 한다. 이 대책을 3가지만 쓰시오.

답안작성

- ① 고임피던스 기기의 채용
- ② 한류리액터의 사용
- ③ 계통분할 방식

무제 10 출제년도 : 20.

▶점수 : 5점

감리원은 해당 공사 완료 후 준공검사 전에 사전 시운전 등이 필요한 부분에 대하여는 공사업자에게 시운전을 위한 계획을 수립하여 시운전 30일 이내에 제출하도록 하여야 하는데, 이때 발주자에게 제출하여야 할 서류 5가지를 쓰시오.

답안작성

- ① 시운전 일정
- ② 시운전 항목 및 종류
- ③ 시운전 절차
- ④ 시험장비 확보 및 보정
- ⑤ 기계·기구 사용계획

문제 11 출제년도 : 20.

▶점수 : 11점

조명에서 광원이 발광하는 원리 3가지를 쓰시오.

답안작성

- ① 온도 방사 (= 열방사 = 열복사 = 온도 복사)
- ② 전기 루미네센스
- ③ 전계 루미네센스

문제 12 출제년도 : 16. 20. ▶점수 : 16점

다음 그림은 어느 수용가의 수전설비 계통도이다. 다음 각 물음에 답하시오.

- (1) AISS의 명칭을 쓰고, 기능을 2가지 쓰시오.
- (2) 피뢰기의 정격전압 및 공칭 방전전류를 쓰고, 도면에서 DISC.의 기능을 간단히 설명하시오.
- (3) MOF의 정격을 구하시오. (CT의 여유율은 1.25배로 한다.)
- (4) Mold TR의 장점 및 단점을 각각 2가지만 쓰시오.
- (5) ACB의 명칭을 쓰시오.
- (6) CT비를 구하시오. (CT의 여유율은 1.25배로 한다.)

답안작성

(1) 명칭: 기중 절연형 자동고장 구분개폐기

기능 : ① 고장구간을 자동으로 개방하여 사고확대를 방지

② 전부하 상태에서 자동(또는 수동)으로 개방하여 과부하 보호

(2) 피뢰기 규격: 정격전압 18[kV], 공칭방전전류 2.5[kA] DISC.의 기능: 피뢰기 고장시 개방되어 피뢰기를 대지로부터 분리

(3) PT 비 :
$$\frac{22900}{\sqrt{3}}/\frac{190}{\sqrt{3}}$$
 답 : PT비 : 13200/110

(4) 장점		단점	
	① 난연성이 우수하다.	① 충격파 내전압이 낮아 서지에 대한 대책이 필요	
	② 소형 경량화 가능	② 가격이 비싸다.	

(5) 기중차단기

(6)
$$I_1 = \frac{300 \times 10^3}{\sqrt{3} \times 380} \times 1.25 = 569.75 \,[A]$$

문제 13 출제년도 : 20.

▶점수: 11점

다음과 같은 레더다이어그램을 보고 PLC 프로그램을 완성하시오. 단, 타이머 설정시간 $t \in 0.1$ 초 단위이다.

ADD	OP	DATA
0	LOAD	P000
1		
2		
3	TON	T000
4	DATA	100
5		
6		
7	OUT	P010
8	END	_

답안작성

ADD	OP	DATA
0	LOAD	P000
1	OR	M000
2	AND NOT	P001
3	TON	T000
4	DATA	100
5	OUT	M000
6	LOAD	T000
7	OUT	P010
8	END	_

전등 60W 8개 사용, 전등 1개 기준으로 정액제일 경우 한 달(30일) 205원, 종량제의 경우 기본요금 100원에 1kWh당 10원이 추가될 때, 종량제와 정액제 한 달 요금이 같아지려면 종량제의 경우 일일 평균 몇 시간 점등시켜야 하는가? 단, 전등 1개의 가격은 65원이고 수명은 1000 h이며, 정액제의 경우 수용가 측에서 전구비를 부담하지 않고, 종량제일 경우 수용가측에서 전구비를 부담한다.

답안작성

- ① 정액제 1개월 요금 = 205×8 = 1640 [원]
- ③ 종량제 1개월 요금 = 정액제 1개월 요금 $100+60\times8\times t\times 30\times 10^{-3}\times 10+\frac{65}{1000}\times 8\times t\times 30=1640\,[원]$

 $\therefore t = 9.65 \, [h]$ 답: 9.65 [h]