Contents

- <u>fundamental terminology and concepts</u>
- elements of service-oriented computing
- strategic goals & benefits of service-oriented computing
- service models & service layers
- <u>analysis,service modeling,design</u>
- SOA delivery approaches
- SOA characteristics
- service-orientation design principles
- common SOA technologies
- cloud computing and SOA connection points
- notes

fundamental terminology and concepts

- design characteristic
 - o its a specific **aspect** or quality of a solution logic
 - o eg:vendor-neutral,loosely-coupled,distributable
 - soa characteristics:
 vendor-neutral,composition-centric,enterprise-centric,business-centric
 - object-oriented characteristics: encapsulation,abstraction,polymorphism,inheritance
- design principle
 - its a highly recommended guidelines to shape solution logic to realize specific design characteristics
 - eg:standardized service contract(1 of 8 soa principles),encapsulate what varies,open class for extension but closed for modification(related to decorator pattern),design loosely coupled components that interact(related to observer pattern),program to interfaces not implementation
- design paradigm
 - its an approach or technique to shaping solution logic to meet specific goals
 - its a set of complementary design principles
 - eg:service-orientation(to design distributable solution logic),object-orientation(to design componentized solution logic)
- design pattern
 - o it describes a common problem, and corresponding solution
 - eg:proxy pattern,observer pattern,decorator pattern
- design pattern language
 - o a sequence of related design patterns form the basis of design pattern language
- design standards,industry standards
 - o **custom** standards apply to design of solution logic for a particular **enterprise**
 - industry standard refers to open technologies standards like those related to xml,web services
- best practice

- guidelines as a result of past experience
- o guidelines in the form of general lessons learnt
- approach to solving or preventing certain problems
- eg:reusable logic to be maintained by a separate custodian
- note:design principle is related to design only whereas best practice can relate to anything

elements of service-oriented computing

- service-oriented architecture
 - its a distinct form of distributed technology architecture in support of services, service compositions, and service inventories
 - supports designing service oriented solutions which comprise of services,and service compositions adhering to service orientation(paradigm)
 - types or scopes
 - i. service architecture
 - ii. inventory
 - iii. composition
 - iv. enterprise
- service-orientation
 - o its an approach to shaping solution logic to meet specific goals
 - o its a **paradigm** which comprises of set of service-oriented design principles
 - service interoperability is a natural byproduct of application of service oriented design principles
- service-oriented computing
 - its a new generation distributed computing platform which is like an umbrella term comprising of many elements like SOA, service orientation
- service
 - o its a **fundamental** unit of service oriented solution logic
 - exist as a physically independent software programs
 - o a single service can provide a collection of capabilities
 - when a service is implemented as a component, capabilities are referred as methods, and when expressed as a part of service contract, they are called operations
- service composition
 - a coordinated aggregate of services
- service inventory
 - an independently standardized and governed collection of complementary services within a boundary
 - 2 types:domain,enterprise
 - an enterprise service inventory is not comprised of domain service inventories
 - a service inventory is considered to have **normalized** services when service boundaries within the inventory do not overlap with each other

- service inventory blueprint
 - o conceptual blueprint of all the planned services of an inventory
 - o also known as service enterprise model or service inventory model

strategic goals & benefits of service-oriented computing strategy goals

- 1. increased intrinsic interoperability
 - interoperability refers to **sharing of data**,aml could be used as data format
- 2. increased federation
 - a federated IT environment is where applications are united by standardized service contracts while allowing individual service implementations to remain disparate and independently governed
- 3. increased vendor diversification options
 - achieved using standards based and vendor neutral implementations like web services platform
- 4. increased business & technology alignment
 - achieved through functional abstraction on many levels

benefits

- 5. increased ROI
- 6. increased business agility
- 7. reduced IT burden

service models & service layers

- service model is a classification to indicate to which predefined type(utility,entity,task)
 a service belongs to
- service model provides templates for common types of services
- service models, and service layers are used to classify and organize services within a service inventory
- entity services(agnostic) also known as business entity services, represents business models like customer, invoices
- task services(non-agnostic) also known as business process services
- utility services(agnostic) are non-business centric, also known as application services, technology services, infrastructure services

analysis, service modeling, design

- service modeling
 - its a subprocess of service oriented analysis that produces conceptual service definitions called service candidates
- service modeling gradually results in defining service inventory blueprint
- service oriented design process uses a set of service candidates from service inventory blueprint as a starting point from which they are shaped into actual physical service contracts

SOA delivery approaches

- 1. top down
 - more time,effort,cost needed on analysis of service to be implemented
- 2. bottom up
 - quick analysis related to business requirements,its a tactical approach,could result in governance burden when business requirements change
- 3. agile delivery(meet in the middle)

SOA characteristics

- vendor neutral
 - related to 'increased vendor diversification options' goal of SOA
- business centric
 - o related to 'increased business & technology alignment' goal of SOA
- enterprise centric(agnostic services)
 - o related to 'increased intrinsic interoperability' goal of SOA
 - enterprise centric resources have following primary characteristics
 - a. available beyond a specific implementation boundary
 - b. designed according to established design principles, and standards
- composition centric
 - o related to 'increased federation' goal of SOA

service-orientation design principles

- 1. Standardized service contract
 - a. services within the same service inventory are in **compliance** with the same **contract design standards**
- 2. service loose coupling
 - a. service contracts impose **low** consumer dependency requirements,and themselves **decoupled** from their surrounding environment
 - b. this principle emphasizes loosening dependencies between service **contract**, service **implementation**, and service **consumer**
 - c. it spans both inter,& intra service designs
- 3. service abstraction
 - a. service contract only contain **essential** information,and information about services is limited to what is expressed in the service contracts
 - b. emphasize is to hide as much of the underlying details as possible, this **supports** service loose coupling principle
- 4. service reusability
 - a. services contain and express **agnostic** logic,and position themselves as reusable enterprise resources
- 5. service autonomy
 - a. services exercise a **high level of control** over their underlying runtime execution environment
 - b. this fosters increasing service reliability, and behavioural predictability

- 6. service statelessness
 - a. services **minimize** resource consumption by deferring management of state information when necessary
 - b. this fosters design characteristics like availability, and scalability
- 7. service discoverability
 - a. services supplement **communicative** meta data to effectively discover,& interpret it
- 8. service composability
 - a. services are effective participants of composition regardless of size & complexity of composition

Note

- principles that regulate
 - a. service loose coupling
 - o minimizes dependencies
 - b. service abstraction
 - o minimizes the availability of meta information
 - c. service composability
 - maximizes composability
- principles that **implement**
 - a. standardized service contract
 - o implements standardized contract
 - b. service autonomy
 - o implements independent functional boundary & runtime environment
 - c. service reusability
 - implements generic & reusable logic & contract
 - d. service statelessness
 - o implements management of statelessness logic
 - e. service discovery
 - o implements communicative meta information

common SOA technologies

- 1. cloud computing
- 2. web service
 - a. comprises of the following
 - technical service contract consisting of a wsdl definition, an xml schema definition
 - ii. a body of programming logic
 - iii. message processing logic

Cloud computing and SOA connection points

- cloud computing
 - its a style of distributed computing in which services,softwares,infrastructure are delivered to external customers using internet technologies

https://www.youtube.com/watch?v=iMJCa4QoU8k&list=PL4EF34F7A4FC0B00F

notes

- when planning a transition toward SOA, we are usually required to balance the strategic goals(long term) with tactical(short term) requirements
- **service registry** is a product or technology that is key to facilitating service discovery and service governance in general
- a primary focus of **service modeling** is the abstraction and encapsulation of business logic in support of defining business service candidates
- **grid**,and **virtualization** in simple explanation
 - o each software needs a container
 - virtualization can create multiple logical containers within a single physical system
 - o if service is smaller than container, virtualization could be used
 - o if service is larger than container, grid could be used
 - o grid can uses multiple physical systems together