Cauchy-Schwarz Inequality

Theorem: Cauchy-Schwarz

Let E be a normed space over a field $\mathbb F$ with an inner product induced norm. $\forall \, \vec{x}, \vec{y} \in E$:

$$|\langle \vec{x}, \vec{y} \rangle| \le ||\vec{x}|| \, ||\vec{y}||$$

with equality iff $\exists \alpha \in \mathbb{F}$ such that $\vec{x} = \alpha \vec{y}$, i.e., \vec{x} and \vec{y} are dependent.

Proof

If $\vec{y} = \vec{0}$ then trivial, so AWLOG: $\vec{y} \neq \vec{0}$.

Assume $\lambda \in \mathbb{F}$:

$$0 \leq \|\vec{x} + \lambda \vec{y}\|^{2}$$

$$= \langle \vec{x} + \lambda \vec{y}, \vec{x} + \lambda \vec{y} \rangle$$

$$= \langle \vec{x}, \vec{x} \rangle + \langle \vec{x}, \lambda \vec{y} \rangle + \langle \lambda \vec{y}, \vec{x} \rangle + \langle \lambda \vec{y}, \lambda \vec{y} \rangle$$

$$= \|\vec{x}\|^{2} + \langle \vec{x}, \lambda \vec{y} \rangle + \overline{\langle \vec{x}, \lambda \vec{y} \rangle} + \|\vec{y}\|^{2}$$

$$= \|\vec{x}\|^{2} + 2 \operatorname{Re}(\langle \vec{x}, \lambda \vec{y} \rangle) + |\lambda|^{2} \|\vec{y}\|^{2}$$

Now, let
$$\lambda = -\frac{\langle \vec{x}, \vec{y} \rangle}{\|\vec{y}\|^2}$$

$$0 \leq \|\vec{x}\|^{2} + 2 \operatorname{Re} \left(\left\langle \vec{x}, -\frac{\langle \vec{x}, \vec{y} \rangle}{\|\vec{y}\|^{2}} \vec{y} \right\rangle \right) + \left| -\frac{\langle \vec{x}, \vec{y} \rangle}{\|\vec{y}\|^{2}} \right|^{2} \|\vec{y}\|^{2}$$

$$= \|\vec{x}\|^{2} + 2 \operatorname{Re} \left(-\frac{\overline{\langle \vec{x}, \vec{y} \rangle}}{\|\vec{y}\|^{2}} \langle \vec{x}, \vec{y} \rangle \right) + \frac{|\langle \vec{x}, \vec{y} \rangle|}{\|\vec{y}\|^{4}} \|\vec{y}\|^{2}$$

$$= \|\vec{x}\|^{2} + 2 \operatorname{Re} \left(-\frac{|\langle \vec{x}, \vec{y} \rangle|^{2}}{\|\vec{y}\|^{2}} \right) + \frac{|\langle \vec{x}, \vec{y} \rangle|}{\|\vec{y}\|^{2}}$$

$$= \|\vec{x}\|^{2} - 2\frac{|\langle \vec{x}, \vec{y} \rangle|^{2}}{\|\vec{y}\|^{2}} + \frac{|\langle \vec{x}, \vec{y} \rangle|}{\|\vec{y}\|^{2}}$$

$$= \|\vec{x}\|^{2} - \frac{|\langle \vec{x}, \vec{y} \rangle|^{2}}{\|\vec{y}\|^{2}}$$

$$= \|\vec{x}\|^{2} - \frac{|\langle \vec{x}, \vec{y} \rangle|^{2}}{\|\vec{y}\|^{2}}$$

But, by assumption, $\vec{y} \neq \vec{0}$ and so $||\vec{y}|| \neq 0$:

$$\begin{aligned} \|\vec{x}\|^{2} \|\vec{y}\|^{2} - |\langle \vec{x}, \vec{y} \rangle|^{2} & \geq 0 \\ \|\vec{x}\|^{2} \|\vec{y}\|^{2} & \geq |\langle \vec{x}, \vec{y} \rangle|^{2} \\ \|\vec{x}\| \|\vec{y}\| & \geq |\langle \vec{x}, \vec{y} \rangle| \end{aligned}$$

$$\therefore |\langle \vec{x}, \vec{y} \rangle| \le ||\vec{x}|| \, ||\vec{y}||$$

Equality
$$\iff \|\vec{x} + \lambda \vec{y}\|^2 = 0 \iff \vec{x} + \lambda \vec{y} = 0 \iff \vec{x} = -\lambda \vec{y} = \alpha \vec{y}$$