1 Introduction et perspective historique

- > Une première classification pour regrouper les assurés avec *caractéristiques semblables*
- > Il y a encore de l'hétérogénéité dans les sousgroupes
- > On utilise **la tarification basée sur l'expérience** pour éviter l'anti-sélection
- > Permet de rendre la prime équitable pour chacun des assurés

Historique

- 1914 Mowbray : début de la crédibilité de stabilité
- **1918** Whitney : suggère de pondérer l'expérience ind. et l'expérience collective
- **1950** Bailey : introduction explicite du principe de Bayes et découverte de la linéarité de l'estimateur Bayésien
- **Bühlmann** Début de l'histoire contemporaine de la théorie de la crédibilité
- **1974** Jewell : propose une formulation plus générale de Bailey (famille exponentielle et conjugée naturelle)
- **1970 et +** Plusieurs nouveaux modèles sont développés
- 1980 étude des paramètres de structure

2 Crédibilité de stabilité

Définition de la crédibilité totale

Crédibilité complète

Une crédibilité complète d'ordre (k, p) est attribuée à l'expérience S d'un contrat si les paramètres de la distribution de S sont tels que la

relation

 $\Pr\left((1-k)\operatorname{E}[S] \leq S \leq (1+k)\operatorname{E}[S]\right) \geq p$ est vérifiée. Par le théorème Central Limite, on peut démontrer que ça revient à respecter l'inégalité suivante :

$$E[S] \ge \left(\frac{\Phi^{-1}\left(\frac{p+1}{2}\right)}{k}\right) \sqrt{\operatorname{Var}(S)} \tag{1}$$

Nombre de sinistres dans une période

Soit $S = X_1 + ... + X_N$, avec $N \sim Pois(\lambda)$ et X qui a une fonction de répartition F_X . On cherche le nombre moyen de sinistres λ qui donne une plein crédibilité à l'espérience S. On peut démontrer que

$$\lambda \ge \left(\frac{\Phi^{-1}\left(\frac{p+1}{2}\right)}{k}\right)^2 \cdot \left(1 + \frac{\operatorname{Var}(X)}{\operatorname{E}[X]^2}\right) \tag{2}$$

Note si X est une v.a. dégénérée (i.e. $\Pr(X = m) = 1$ pour un m fixé), alors Var(X) = 0 et $\lambda \ge 1082, 41$.

Nombre d'années d'expérience n

Soit la v.a. $W = \frac{S_1 + ... + S_n}{n}$. On a donc E[W] = E[S] et $Var(W) = \frac{Var(S)}{n}$. On cherche le nombre d'années d'expérience n nécessaire pour attribuer une pleine crédibilité au contrat. On peut démontrer que

$$n \ge \left(\frac{\Phi^{-1}\left(\frac{p+1}{2}\right)}{k}\right)^2 \cdot \frac{\operatorname{Var}(S)}{\operatorname{E}[S]^2} \tag{3}$$

Nombre d'employés / unité d'exposition

Soit $S \sim Bin(n,\theta)$ qui représente le nombre de sinistres pour un groupe de n employés. On cherche le nombre minimal n d'employés nécessaires dans un groupe pour attribuer une pleine crédibilité au contrat.

On peut démontrer que

$$n \ge \left(\frac{\Phi^{-1}\left(\frac{p+1}{2}\right)}{k}\right)^2 \cdot \frac{1-\theta}{\theta} \tag{4}$$

Définition crédibilité partielle

Crédibilité partielle

La crédibilité partielle permet de pondérer l'expérience S d'un contrat et la prime collective m par un facteur de crédibilité z, avec 0 < z < 1, afin d'obtenir une prime linéaire de la forme $\pi = zS + (1-z)m$

> Plusieurs formules ont été proposés, on retient celle de Whitney :

$$z = \frac{n}{n+K} \tag{5}$$

- > Dans l'approche de crédibilité de stabilité, on met de côté le concept de précision pour éviter d'avoir des primes qui fluctuent beaucoup d'une année à l'autre.
- > Complément de crédibilité : en pratique, le complément de crédibilité (1-z) n'est pas donné entièrement à la prime collective m. Il peut y avoir une proportion reliée à autre chose.

3 Tarification Bayésienne

Modèle d'hétérogénéité

- Θ_i niveau de risque du contrat i
- $U(\Theta)$ fonction de répartition de Θ (fonction de *structure*)
- $u(\theta)$ fonction de densité/masse de probabilité de Θ

Hypothèses

- 1. Les observations du contrat i sont conditionnellement indépendantes 1 et iid avec fonction de répartition $F_{X|\Theta}$
- 2. Les variables $\Theta_1,...,\Theta_I$ sont *iid* avec fonction de répartition $U(\Theta)$
- 3. Les *I* contrats du portefeuille sont indépendants

Définition des 3 types de primes

Prime de risque

Si on connaît le niveau de risque du contrat i, alors la meilleure prévision est la **prime de risque**:

$$\mu(\theta_i) = \mathbb{E}\left[S_{it}|\Theta_i = \theta_i\right] = \int_0^\infty x f(x|\theta_i) dx \tag{6}$$

La prime de risque $\mu(\theta_i)$ serait l'idéal, sauf qu'on ne connait pas le niveau de risque du contrat.

Prime collective

Il s'agit d'une moyenne pondérée de toutes les primes de risque possible pour un contrat donné:

$$m = \mathrm{E}\left[\mu(\Theta_i)\right] = \int_{-\infty}^{\infty} \mu(\theta)u(\theta)d\theta$$
 (7)

Cette prime est globalement adéquate, mais pas équitable (ou optimale).

Prime Bayésienne

Ē

La meilleure approximation de la prime de risque $\mu(\theta_i)$ est une fonction $g^*(x_1,...,x_n)$ qui minimise l'erreur quadratique. On peut prouver que cette fonction est la prime Bayésienne telle que

$$B_{i,n+1} = \mathbb{E}\left[\mu(\Theta_i)|S_{i1} = x_{i1}, ..., S_{in} = x_{in}\right]$$
$$= \int_{-\inf}^{\infty} \mu(\theta)u(\theta|x_{i1}, ..., x_{in})d\theta \qquad (8)$$

- > Comme *m*, la prime Bayésienne est aussi une prime pondérée des primes de risque.
- > La différence ici est qu'on utilise la *distribution a* postériori 2 de Θ_i , i.e. la distribution révisée après avoir observé l'espérience S_{i1} , ..., S_{in} :

avoir observé l'espérience
$$S_{i1}, ..., S_{in}$$
:
$$u(\theta_i|x_{i1}, ..., x_{in}) = \frac{f(x_{i1}, ..., x_{in}|\theta_i)u(\theta_i)}{\int_{-\infty}^{\infty} f(x_{i1}, ..., x_{in}|\theta_i)u(\theta_i)d\theta_i}$$

$$= \frac{\prod_{t=1}^{n} f(x_{it}|\theta_i)u(\theta_i)}{\int_{-\infty}^{\infty} \prod_{t=1}^{n} f(x_{it}|\theta_i)u(\theta_i)d\theta_i}$$

$$\propto u(\theta_i) \prod_{t=1}^{n} f(x_{it}|\theta_i)$$

Calcul de la prime Bayésienne avec la distribution prédictive

En plus de calculer $B_{i,n+1}$ avec les primes de risques, on peut aussi la calculer avec la distribution prédictive $S_{i,n+1}|S_1,...,S_n$, avec la fonction de densité

$$f(x_{n+1}|x_1,...,x_n) = \int_{-\infty}^{\infty} f(x|\theta)u(\theta|x_1,...,x_n)d\theta$$

Crédibilité bayésienne linéaire

Certaines combinaison de distributions permettent d'obtenir une prime Bayésienne qui peut être exprimée sous la forme

$$\pi = z\bar{S} + (1-z) \cdot m$$

avec $z \in [0, 1]$, qu'on appelle la prime de crédibilité.

Avantages

- > linéaire, donc facile à justifier/expliquer
- \rightarrow lorsque $n \rightarrow \infty$, $z \rightarrow 1$, ce qui est aussi facile à justifier

Il existe 5 combinaisons de distribution qui résultent en une prime Bayésienne linéaire :

- $> S|\Theta \sim Pois(\Theta) \text{ et } \Theta \sim \Gamma(\alpha, \lambda)$
- $> S|\Theta \sim Exp(\Theta) \text{ et } \Theta \sim \Gamma(\alpha, \lambda)$
- $\Rightarrow S|\Theta \sim N(\Theta, \sigma_2^2) \text{ et } \Theta \sim N(\mu, \sigma_1^2)$
- $> S|\Theta \sim Bern(\Theta) \text{ et } \Theta \sim Bta(a,b)$
- $> S|\Theta \sim Geo(\Theta) \text{ et } \Theta \sim Bta(a,b)$

Modèle de Jewell

- > Si $u(\theta|x_1,...,x_n)$ appartiennent à la même famille que $u(\theta)$, on dit de $u(\theta)$ et $f(x|\theta)$ qu'elles sont des *conjugées naturelles*
- > Les loi Poisson, exponentielle, normale, Bernouilli et géométrique appartiennent à la famille exponentielle univariée, i.e. leur fonction de masse/densité peut être écrite sous la forme

$$f(x|\theta) = \frac{p(x)e^{-\theta x}}{q(\theta)}$$

> Lorsqu'une fonction de vraisemblance $f(x|\theta)$ de la famille exponentielle univariée est combinée avec sa conjugée naturelle, alors la prime Bayésienne est toujours une prime de crédibilité exacte.

^{1.} Concept de contagion apparente

^{2.} La distribution sous-jacente de la distribution *a posteriori* sera toujours la même que celle de la distribution *a priori* (avec des paramètres révisés).

Modèle de crédibilité de Bühlmann

Notation et relation de covariance

> La prime collective.

$$m = E[\mu(\Theta_i)]$$

> La variance intra³ (within) ou la variabilité moyenne du portefeuille.

$$s^2 = \mathbf{E}\left[\sigma^2(\Theta_i)\right]$$

> La variance inter 4 (between) ou la variabilité entre les moyennes des contrat, ce qui représente l'homogénéité du portefeuille.

$$a = \text{Var}(\mu(\Theta_i))$$

Par la théorème de la variance totale, on a

$$\operatorname{Var}(S) = \operatorname{E}\left[\sigma^{2}(\theta)\right] + \operatorname{Var}\left(\mu(\theta)\right) = s^{2} + a$$

Covariance Soit X, Y et Θ des variables aléatoires dont la densité conjointe existe.

Cov
$$(X, Y) = \text{Cov}(E[X|\Theta_i], E[Y|\Theta_i]) + E[\text{Cov}(X, Y|\Theta_i)]$$
Approche non paramétrique

Application

$$Cov(S_t, S_u) = a + \delta_{tu}s^2 \quad t, u = 1, ..., n$$

$$Cov(\mu(\Theta_t), S_t) = a$$

où δ_{iu} est le delta de Kronecker

$$\delta_{iu} = \left\{ \begin{array}{ll} 1, & t = u \\ 0. & t \neq u \end{array} \right.$$

Modèle de prévision

- (B1) Les contrats $(\Theta_i, \mathbf{S}_i), i = 1, ..., I$ sont indépendants, les variables aléatoire $\Theta_1, ..., \Theta_I$ sont identiquement distribuées et les variances aléatoire S_{it} ont une variance finie.
- (B2) Les variables aléatoires S_{it} , sont telles que $E[S_{it}|\Theta_i] = \mu(\Theta_i) \quad i = 1,...,I$ $Cov(S_{it}, S_{iu}|\Theta_i) = \delta_{tu}\sigma^2(\Theta_i)$ t, u = 1, ..., n
 - 3. Dans la littérature, aussi appelée expected process variance (EPV).
 - 4. Dans la littérature, aussi appelée variance of hypothetical means (VHM).

Prime de crédibilité

Pour un portefeuille sous les hypothèses (B1) et (B2), la meilleur approximation non homogène de la prime de risque $\mu(\Theta_i)$ est

$$\pi_{i,n+1}^{B} = z\bar{S}_i + (1-z)m$$

$$\bar{S}_i = \frac{1}{n} \sum_{t=1}^n S_{it}$$

$$z = \frac{n}{n+K}, \quad K = \frac{s^2}{a}$$

Approche paramétrique

L'approche paramétrique permet de retrouver la prime de crédibilité bayésienne. Puisque les distributions de $(S_t|\Theta=\theta)$ et de (Θ) sont connues, il est possible d'évaluer directement m, s^2 et a.

Avec l'approche non paramétrique, nous délaissons l'approche bayésienne pure pour l'approche bayésienne empirique.

> Estimation de la prime collective.

$$\hat{m} = \bar{S} = \frac{1}{I} \sum_{i=1}^{I} \bar{S}_i$$

> Estimation de la variance intra (within).

$$\hat{s}^2 = \frac{1}{I} \sum_{i=1}^{I} \hat{\sigma}_{i,(n-1)}^2$$

> Estimation de la variance inter (between).

$$\hat{a} = \frac{1}{I-1} \sum_{i=1}^{I} (\bar{S}_i - \hat{m})^2 - \frac{1}{n} \hat{s}^2$$

Il est important de savoir que les estimateurs \hat{m} , \hat{s}^2 et \hat{a} sont tous des estimateurs sans biais, mais \hat{K} et donc \hat{z} ne sont pas nécessairement sans biais.

Interprétation des résultats

- 1. Plus le nombre d'années est grand $(n \to \infty)$, plus l'expérience d'un contrat représente exactement son niveau de risque.
- 2. Plus s^2 est petit ($s^2 \rightarrow 0$), plus l'expérience est globalement stable dans le temps. Les moyennes individuelle \bar{S}_i représente alors bien les niveaux de risque des contrats, ce qui réduit l'utilité de la prime collective.
- 3. Plus *a* est grand ($a \rightarrow \infty$), plus le portefeuille est hétérogène. Les moyennes individuelle \bar{S}_i sont de meilleur approximation des primes de risque que la prime collective.

Modèle de Bühlmann-Straub

Modèle de prévision

- (BS1) Les contrats $(\Theta_i, \mathbf{S}_i), i = 1, ..., I$ sont indépendants, les variables aléatoire $\Theta_1, ..., \Theta_I$ sont identiquement distribuées et les variances aléatoire S_{it} ont une variance finie.
- (BS2) Les variables aléatoire X_{it} , sont telles que $E[X_{it}|\theta_i] = \mu(\theta_i) \quad i = i,...,I$ $Cov(X_{it}, X_{iu}) = \delta_{tu} \frac{\sigma^2(\theta_i)}{m_{iu}} \quad t, u = 1, ..., n$

La définition des ratios X_{it} est $X_{it} = \frac{S_{it}}{w_{it}}$

$$X_{it} = \frac{S_{it}}{w_{it}}$$

Prime de crédibilité

Pour un portefeuille sous les hypothèses (*BS1*) et (*BS2*), la meilleur approximation linéaire non homogène de la prime de risque $\mu(\Theta_i)$ est

$$\pi_{i,n+1}^{BS} = z_i X_{iw} + (1 - z_i) m$$

οù

$$X_{iw} = \sum_{t=1}^{n} \frac{w_{it}}{w_{i\Sigma}} X_{it}$$

$$z = \frac{w_{i\Sigma}}{w_{i\Sigma} + K'}, \quad K = \frac{s^2}{a}$$