學號:R07942115 系級:電信碩一姓名:謝硯澤

請實做以下兩種不同feature的模型,回答第(1)~(3)題:

- (1) 抽全部9小時內的污染源feature當作一次項(加bias)
- (2) 抽全部9小時內pm2.5的一次項當作feature(加bias)

備註:

- a. NR請皆設為0, 其他的數值不要做任何更動
- b. 所有 advanced 的 gradient descent 技術(如: adam, adagrad 等) 都是可以用的
 - c. 第1-3題請都以題目給訂的兩種model來回答
 - d. 同學可以先把model訓練好, kaggle死線之後便可以無限上傳。
 - e. 根據助教時間的公式表示, (1) 代表 p = 9x18+1 而(2) 代表 p = 9*1+1

1. (2%)記錄誤差值 (RMSE)(根據kaggle public+private分數), 討論兩種featu re的影響

	Pubilc Score	Private Score
前9小時的所有feature	8.02776	9.03806
前9小時只有PM2.5	6.09551	7.04791

在我實作的程式中,只抽取PM2.5的模型,在kaggle上的分數是遠好於抽取全部feature的。但理論來說,如果model有fit的話,抽取全部的feature應該不會比只抽取PM2.5來得差。代表我的model可能還是underfitting的。

2. (1%)將feature從抽前9小時改成抽前5小時, 討論其變化

	Pubilc Score	Private Score
前5小時的所有feature	18.47992	18.90672
前5小時只有PM2.5	17.79629	19.89730

將**feature**從抽前**9**小時改成抽前**5**小時,只取PM2.5的模型,在Kaggle上的分數更低,可能的原因是feature數太少了(p=5+1),抽取全部feature的模型分數會稍微好一點,但兩種模型皆不理想。

3. (1%)Regularization on all the weight with λ =0.1、0.01、0.001、0.00 01、並作圖

λ	AllFeature_public	AllFeature_private	PM2.5_public	PM2.5_private
0.1	7.54748	8.68879	5.91274	7.2816
0.01	6.41488	10.8005	6.14957	7.41655
0.001	8.12723	8.36323	6.04844	7.44476
0.0001	7.23828	8.38745	5.73555	7.0238

加入Regularization後,表現並沒有提升,且各種lamda畫出來的iterations-to-training loss的 折線圖幾乎是重疊在一起的!推測可能是因為我的model並沒有overfitting,所以有沒有 加入Regularization影響不大。

4. (1%)在線性回歸問題中,假設有 N 筆訓練資料,每筆訓練資料的特徵 (feature) 為一向量 \mathbf{x}^n ,其標註(label)為一純量 \mathbf{y}^n ,模型參數為一向量w (此處忽略偏權值 b),則線性回歸的損失函數(loss function)為 $n = I \square N \square \square y \square n \square - x \square n \square \cdot$ w $\square \square 2 \square$ 。若將所有訓練資料的特徵值以矩陣 $\mathbf{X} = [\mathbf{x}^1 \mathbf{x}^2 \cdots \mathbf{x}^N]^T$ 表示,所有訓練資料的標註以向量 $\mathbf{y} = [\mathbf{y}^1 \mathbf{y}^2 \cdots \mathbf{y}^N]^T$ 表示,請問如何以 \mathbf{X} 和 \mathbf{y} 表示可以最小化損失函數的向量 w ? 請選出正確答案。(其中 $\mathbf{X}^T\mathbf{X}$ 為invertible)

- (a) $(X^TX)X^Ty$
- (b) $(X^TX)yX^T$
- (c) $(X^TX)^{-1}X^Ty$
- (d) $(X^TX)^{-1}yX^T$

Ans. (C)

$$\rightarrow x^T x w = x^T y$$