Matemática atuarial

Aula 1-Revisão de Probabilidade

Danilo Machado Pires

<u>danilo.pires@unifal-mg.edu.br</u>

Leonardo Henrique Costa

<u>Leonardo.costa@unifal-mg.edu.br</u>

- A ciência objetiva a coleta de informações na natureza e a formulação de modelos ... que expliquem parte dos fenômenos ou permitam a sua previsão.
- > Método científico,
 - Conjunto de regras para obtenção do conhecimento durante a investigação científica...
 - As hipóteses formuladas são verificadas posteriormente, com a coleta e interpretação de dados.
- > Modelo e realidade por vezes são erroneamente confundidos.

- > Por melhor que seja um modelo, ele sempre contará com incerteza.
- > Modelos determinísticos
 - ➤ Condições bastante controladas,
 - Variações desprezadas
- > Modelos probabilísticos
 - Controle total e inviabilizado
 - Variações não podem ser ignoradas.

- Fenômeno aleatório é todo aquele que quando observado repetidamente sob as mesmas condições produz resultados diferentes.
 - Quando a repetição do fenômeno é controlada pelo experimentador, é dito ser um experimento probabilístico.

- \triangleright Espaço amostral (Ω) é o conjunto de todos os possíveis resultados de um fenômeno aleatório.
- \blacktriangleright Definição Seja Ω o espaço amostral do experimento. Todo subconjunto $A \subset \Omega$ será chamado evento.
 - $\triangleright \Omega$ é o evento certo,
 - > Ø o evento impossível.
 - \triangleright Se $\omega \subset \Omega$, o evento $\{\omega\}$ é dito elementar (ou simples).

EXEMPLO 1:

1) Jogar um dado

$$\Omega = \{1,2,3,4,5,6\}$$

2) Altura dos alunos da Unifal

$$\Omega = \{x \in \mathbb{R}: 1, 5 \le x \le 2\}$$

3) Tempo de vida restante de uma pessoa

$$\Omega = \{t \in \mathbb{R}: 0 \le t\}$$

1) Jogar um dado

$$\Omega = \{1,2,3,4,5,6\}$$

 $A = \{1,3,5\}$

2) Altura dos alunos da *Unifal*

$$\Omega = \{x \in \mathbb{R}: 1,5 \le x \le 2\}$$

 $A = \{1, 6 \le x \le 1, 7\}$

3) Tempo de vida restante de uma pessoa

$$\Omega = \{t \in \mathbb{R}: t \ge 0\}$$
$$A = \{\mathbf{0} \le t \le \mathbf{30}\}$$

Um evento ao qual atribuímos uma probabilidade é chamado evento aleatório.

Revisão de probabilidade-Conceito de Probabilidade

> Teoria clássica

Dado o espaço de resultados Ω , constituído por um número finito de n elementos <u>igualmente prováveis</u>,..., define-se a probabilidade de acontecimento de A, como sendo a razão de resultados favoráveis A e o número de resultados possíveis.

$$P(A) = \frac{n^{\circ} de \ resultados \ de \ A}{n^{\circ} \ de \ resultados \ possíveis}$$

...se conhece fatos decisivos sobre o mecanismo ou processo que produz os resultados

Revisão de probabilidade-Conceito de Probabilidade

> Teoria Frequentista

➤ Na observação de um certo fenômeno através de um experimento, a probabilidade de um certo evento A é definida como a sua frequência observada, à medida que o número de ensaios tende para o infinito.

$$P(A) = \lim_{n \to \infty} \frac{n_A}{n}$$

em que n_A é o número de ensaios em que o evento A foi observado, e n o número total de ensaios. À medida que o número de repetições da experiência aleatória aumenta, a frequência relativa com quer se realiza A tende a estabilizar para um valor entre 0 e 1.

Revisão de probabilidade-Conceito de Probabilidade

- > Probabilidade subjetiva e lógica
 - Define-se como uma medida do grau de confiança em relação a uma proposição.
 - Ela é função da quantidade de informação disponível ...
 - >Julgamento pessoal.
 - ► Pensamento Bayesiano.
 - Possui a restrição de que deve obedecer a critérios de consistência, obedecendo aos axiomas de probabilidade.

> Definição formal de probabilidade

Seja o espaço amostral Ω um conjunto não vazio. Uma probabilidade em Ω é uma função de conjunto P() que associa a subconjuntos A de Ω um número real P(A) que satisfaz os axiomas a seguir.

- Para todo $A \subseteq \Omega$, $0 \le P(A) \le 1$;
- $P(\Omega) = 1;$
- Se $A_1, A_2, ..., A_n$ forem, dois a dois, eventualmente excludentes (disjuntos), então:

$$P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$$

- ➤ Na realização de um fenômeno aleatório, é comum termos interesse em uma ou mais quantidades.
 - > Essas quantidades são funções das ocorrências do fenômeno.
- ightharpoonup Variável aleatória: é uma função que associa a cada elemento de Ω um número real.

EXEMPLO 2: Sabe-se que em uma fábrica 25% dos itens produzidos apresentam algum problema de fabricação:

Itens defeituosos
$$\left(D \to P(D) = \frac{1}{4}\right)$$

Itens perfeitos $\left(Pe \to P(Pe) = \frac{3}{4}\right)$

Para uma amostra n=2 peças retiradas é possível construir uma tabela onde X é o número de peças defeituosas que pode ocorrer e P(X) será a probabilidade do resultado.

X	0	1	2
	(<i>Pe</i> , <i>Pe</i>)	(D, Pe)(Pe, D)	(D,D)
P(X)	$\frac{3}{4} \times \frac{3}{4} = \frac{9}{16}$	$\left(\frac{1}{4} \times \frac{3}{4}\right) + \left(\frac{3}{4} \times \frac{1}{4}\right) = \frac{6}{16}$	$\left(\frac{1}{4} \times \frac{1}{4}\right) = \frac{1}{16}$

Variáveis Aleatórias Discretas

Variáveis aleatórias contínuas

- P(X = x)Função de probabilidade.
- $0 \le P(X = x_i) \le 1$ para todo i.
- $\sum_{i=1}^{\infty} P(X = x_i) = 1$

- f(x) Função de densidade (f.d.p)
- $f(x) \ge 0$ para qualquer valor de x
- $\int_{-\infty}^{\infty} f(x) dx = 1$
 - $P(a \le X \le b) = \int_a^b f(x) dx$

EXEMPLO 3:

a)

	X	1	2	3	4	
•	P(X)	0,1	0,2	0,3	0,4	

b)

$$P(X = x) = \begin{cases} 0.6 & se \ x = 0 \\ 0.4 & se \ x = 1 \\ 0. & c.c. \end{cases}$$

 $|c\rangle$

$$P(X = x) = \begin{cases} 0.7 & se \ x = 0 \\ 0.5 & se \ x = 1 \\ 0, & c. \ c. \ c. \end{cases}$$

d

$$f(x) = \begin{cases} \frac{6}{5}(x^2 + x) & \text{se } 0 \le x \le 1\\ 0 & \text{c. c.} \end{cases}$$

e

$$f(x) = 2e^{-2x}, \qquad se \ x \ge 0$$

f)

$$f(x) = \begin{cases} \frac{1}{10}x + \frac{1}{10}, se \ 0 \le x \le 2\\ -\frac{3}{40}x + \frac{9}{20}, se \ 2 < x \le 6\\ 0, c. c. \end{cases}$$

d

$$f(x) = \begin{cases} \frac{6}{5}(x^2 + x) & \text{se } 0 \le x \le 1\\ 0 & \text{c. c.} \end{cases}$$

$$\int_0^1 \frac{6}{5} (x^2 + x) dx = \frac{6}{5} \left(\frac{x^3}{3} + \frac{x^2}{2} \right) \Big|_0^1$$

$$\int_0^1 \frac{6}{5} (x^2 + x) dx = \frac{6}{5} \left(\frac{1}{3} + \frac{1}{2} \right) - \frac{6}{5} \left(\frac{0}{3} + \frac{0}{2} \right) = \frac{6}{5} \left(\frac{5}{6} \right) = 1$$

 e^{i}

$$f(x) = 2e^{-2x}, \qquad se \ x \ge 0$$

$$\int_0^\infty 2e^{-2x}dx = -e^{-2x}\Big|_{x=0}^{x\to\infty}$$

$$\int_{0}^{\infty} 2e^{-2x} dx = \lim_{x \to \infty} -\frac{1}{e^{2x}} - \left(-\frac{1}{e^{2\times 0}} \right) = 1$$

 $|f\rangle$

$$f(x) = \begin{cases} \frac{1}{10}x + \frac{1}{10}, se \ 0 \le x \le 2\\ -\frac{3}{40}x + \frac{9}{20}, se \ 2 < x \le 6\\ 0, c.c. \end{cases}$$

$$\int_0^2 \frac{1}{10}x + \frac{1}{10}dx + \int_2^6 -\frac{3}{40}x + \frac{9}{20}dx$$

$$\left. \frac{x^2}{20} + \frac{x}{10} \right|_{x=0}^{x=2} + \left(-\frac{3x^2}{80} + \frac{9x}{20} \right) \right|_{x=2}^{x=6}$$

$$\frac{2}{5} + \frac{3}{5} = 1$$

Função de distribuição de probabilidade (função de distribuição). Em geral ela é representada por $F_X(x)$.

$$F_X(x) = P(X \le x) = \int_{-\infty}^x f_X(z) dz$$

$$F_X(x_k) = P(X \le x_k) = \sum_{i=0}^k P(X = x_i)$$

O complementar da função acumulada, também chamada de função de sobrevivência, ou função de excesso de danos é representada por $S_X(x)$ ou $\bar{F}_X(x)$.

$$S_X(x) = P(X > x) = 1 - F_X(x)$$

- $\lim_{x\to-\infty}F_X(x)=0;$
- $\lim_{x\to\infty} F_X(x) = 1;$
- Se $x_1 \le x_2$, então $F_X(x_1) \le F_X(x_2)$, $F_X(x)$ é uma função crescente de x;
- $P_X(x_1 \le X \le x_2) = F_X(x_2) F_X(x_1)$;

- $\lim_{x \to -\infty} S_X(x) = 1;$
- $\lim_{x\to\infty} S_X(x) = 0;$
- Se $x_1 > x_2$, então $S_X(x_1) > S_X(x_2)$, $S_X(x)$ é uma função decrescente de x;

>...forma de avaliar ganhos em jogos com apostas a dinheiro.

> Representa o ponto de equilíbrio da distribuição de seus valores.

> ...parâmetro para vários modelos probabilísticos.

Variáveis aleatórias discretas

$$E(X) = \sum_{i=1}^{\infty} x_i P(X = x_i) = \mu_X$$

Variáveis aleatórias Contínuas

$$E(X) = \int_{-\infty}^{\infty} x f(x) dx = \mu_X$$

Seja X uma variável aleatória e $g(\)$ uma função, ambos com domínio e contradomínio real. O valor esperado do valor da função g(X) denotado por E[g(X)] é definido por:

$$E[g(X)] = \int_{-\infty}^{\infty} g(x) f_X(x) dx$$

$$E[g(X)] = \sum_{i} g(x_i) P(X = x_i)$$

Exemplo 4: Segundo determinada tábua de vida, o tempo de vida adicional de uma pessoa de 106 é modelado por:

\overline{T}	0	1	2	3
P(T)	0,67514	0,195183	0,1219955	0,0076815

- a) A expectativa de vida para uma pessoa dessa idade é?
- b) Seja $g(T) = v^{T+1}$ calcule E[g(T)], em que $v = \left(\frac{1}{1.03}\right)$.

Exemplo 4: Segundo determinada tábua de vida o tempo de vida adicional de uma pessoa de 106 é modelado por:

\overline{T}	0	1	2	3
P(T)	0,67514	0,195183	0,1219955	0,0076815

Solução

a) A expectativa de vida para uma pessoa dessa idade é?

$$E(T) = \sum tP(T = t) = 0,4622$$

b) Seja $g(T) = v^{T+1}$ calcule E[g(T)], em que $v = \left(\frac{1}{1.03}\right)$.

$$E[g(T)] = E(v^{T+1}) = \sum_{t=0}^{T+1} v^{t+1} P(T=t) = 0,9866602$$

Seja L um valor limite dentro do domínio de X, e seja Y uma variável aleatória "Valor de X sujeito ao limite L". Então:

$$Y = \begin{cases} X, & X < L \\ L, & X \ge L \end{cases}$$

Logo, para o caso de X se contínuo tem-se que:

$$E(Y) = E(X; L) = \int_{-\infty}^{L} x f_X(x) dx + \int_{L}^{\infty} L f_X(x) dx = \int_{-\infty}^{L} x f_X(x) dx + L S_X(L)$$

E no caso de X se discreto, tem-se:

$$E(Y) = E(X; L) = \sum_{i=0}^{x_i < L} x_i P_X(x_i) + \sum_{x_i = L}^{\infty} L P_X(x_i) = \sum_{i=0}^{x_i = L} x_i P_X(x_i) + L P_X(X \ge L)$$

Exemplo 5: Segundo determinada tábua de vida o tempo de vida adicional de uma pessoa de 106 é modelado da seguinte forma:

\overline{T}	0	1	2	3
P(T)	0,67514	0,195183	0,1219955	0,0076815

a) Determinado produto oferecido por uma seguradora tem um prêmio calculado a partir do valor esperado da variável aleatória $g(T) = v \frac{1-v^T}{1-v}$, em que $v = \frac{1}{1,03}$. A seguradora determina que irá cobrar dos seus segurados um prêmio baseado no valor esperado de g(T), sujeito a um limite técnico g(2). Calcule o prêmio sujeito a esse limite.

\overline{T}	0	1	2	3
P(T)	0,67514	0,195183	0,1219955	0,0076815

Solução:

Seja Y, tal que:

$$Y = \begin{cases} g(T), & g(T) < g(2) \\ g(2), & g(T) \ge g(2) \end{cases}$$

Equivalente a

$$Y = \begin{cases} g(T), & T < 2\\ g(2), & T \ge 2 \end{cases}$$

$$\Pi_Y = E(Y) = E[g(T); g(2)]$$

$$\Pi_Y = \sum_{t=0}^{1} g(T) P(T) + g(2) \sum_{t=2}^{3} P(T)$$

\overline{T}	0	1	2	3
P(T)	0,67514	0,195183	0,1219955	0,0076815

Solução:

$$\Pi_Y = \sum_{t=0}^{1} g(T) P(T) + g(2) \sum_{t=2}^{3} P(T)$$

$$\Pi_{Y} = \sum_{t=0}^{1} v \frac{1 - v^{t}}{1 - v} P(T) + v \frac{1 - v^{2}}{1 - v} \sum_{t=2}^{3} P(T) \approx 0.4376311$$

- Portal Halley: https://atuaria.github.io/portalhalley/
- Bowers et al. **Actuarial Mathematics**, 2^a edição. SOA, 1997.
- D. C. M. Dickson, M. R. Hardy and H. R. Waters. Actuarial Mathematics for Life Contingent Risks. Cambridge University Press, 2019.
- CORDEIRO FILHO, Antônio. Cálculo Atuarial Aplicado: teoria e aplicações, exercícios resolvidos e propostos. São Paulo: Atlas, 2009.
- PIRES,M.D.;COSTA,L.H.;FERREIRA,L.;MAR QUES,R. Fundamentos da matemática atuarial: vida e pensões. Curitiba :CRV,2022.

