Summary of Multiple Integration

$$\iiint_R f \ dV$$

ightharpoonup Rect: dV = dz dx dy

ightharpoonup Cylender: $dV = dz \cdot rdrd \theta$

Spherical: $dV = \rho^2 \sin \varphi \, d\rho \, d\varphi \, d\theta$

$\iint_{S} \vec{F} \cdot \hat{n} \, dS \quad \text{or} \quad \iint_{S} \vec{F} \, d\vec{S}$

Calculate formulas for $\hat{n}dS$

$$\underline{\mathsf{Ex}}$$
: $\hat{n}dS = ...dxdy$

Becomes $\iint ... dx dy$

+ general cases:

$$\hat{n}dS = \langle -z_x, -z_y, 1 \rangle dxdy$$

ullet \vec{N} given normal vector

$$\hat{n}dS = \pm \frac{\vec{N}}{\vec{N} \cdot \hat{k}} dxdy$$

Applications

- Mass
- Avg value of f
- Moment of inertia
- Gravitational attraction on mass at O

Typical S

◆ Horizontal plane: yz-plane

$$dS = dydz$$
$$\hat{n} = \pm \hat{i}$$

◆ Sphere, centered at O

$$n = \pm \frac{\langle x, y, z \rangle}{a}$$
, a is radius
 $dS = a^2 \sin \varphi \, d\varphi \, d\theta$

Cylinder, centered at O

$$n = \pm \frac{\langle x, y, 0 \rangle}{a}$$
, a is radius
 $dS = a \, dz d\theta$

$$\int_{C} \vec{F} \cdot d\vec{r}$$

$$= \int_{C} P dx + Q dy + R dz$$
With $\vec{F} = \langle P, Q, R \rangle$

Parameterize C

-> express in terms of a single variable

$$\iiint_R f \ dV \xleftarrow{\text{div thm}} \iiint_S \vec{F} \cdot \hat{n} \ dS \xleftarrow{\text{Stokes thm}} \iint_C \vec{F} \cdot d\vec{r}$$

Divergence Theorem

$$\iint_{S} \vec{F} \cdot \hat{n} dS = \iiint_{D} (\nabla \cdot \vec{F}) dV$$

Stokes Theorem

$$\oint_{C} \vec{F} \cdot d\vec{r} = \iint_{S} (\nabla \times \vec{F}) \cdot \hat{n} dS$$

Fundamental Theorem for Line Integrals

$$f(P_1) - f(P_0) = \int_C (\nabla f) \cdot d\overline{r}$$

Also: given \vec{F} with $\mathit{curl} = 0$, find potential