Einführung in die Theorie künstlicher neuronaler Netze 1. Übungsserie 1. Aufgabe

Aufgabe 1.1.1:

Die Grundidee des Konnetionismus ist, dass man viele ähnliche Einheiten hat, die nur lokal arbeiten, jedoch in einem Netzwerk miteinander kommunizieren können.

Aufgabe 1.1.2:

von-Neumann-Rechner sind getaktet, konnektionistische Modelle müssen nicht getaktet sein.

Aufgabe 1.1.3:

"Chaos" wäre ein gutes C, da von-Neumann-Rechner einen festen Lösungsweg brauchen, wobei man bei konnektionistischen Modellen nicht immer die Lösung nachvollziehen kann.

Aufgabe 1.1.4:

Im Lernprozess: Mit unterschiedlichen Abarbeitungsreihenfolgen kommt man i.A. nicht zu gleichen Ergebnissen. Ein Takt könnte also das Ergebnis eines Lernprozesses durchaus ändern.

Aufgabe 1.1.5:

Konnektionistisches Modell

von-Neumann-Rechner

Pro	Contra	Pro	Contra
kein exakter Algorithmus	"Black-Box"	nachvollziehbar	man braucht einen exak-
gebraucht			ten Algorithmus
anpassungsfähig	vorhandene Lösungen ge-	Probleme, die einfache	
	braucht	Lösungen haben, dauern	
können gut mit Rauschen		kürzer und brauchen	
umgehen		weniger Speicher	
können mit un-		deterministischer Pro-	
vollständigen		grammablauf	
Datensätzen umgehen			
robust bei Ausfall des			
Systems dank Redundanz			

Aufgabe 1.1.6:

Nein: man kann das eine im jeweils anderen simulieren, wodurch sie gleichmächstig sind. Das sagt allerdings nichts über die Laufzeit- und Speicherkomplexität aus.