衍生品作业2

姓名: 叶云鹏

学号: 2501210025

0. 准备: SHIBOR 利率数据

从 SHIBOR 官网查得以下利率 (日期: 2025年9月22日):

期限	利率 (%)	变化 (BP)
O/N	1.4270	-3.40
1W	1.4660	-2.20
2W	1.6750	+2.80
1M	1.5500	+0.30
3M	1.5620	+0.00
6M	1.6300	-0.20
9M	1.6630	+0.00
1Y	1.6730	+0.00

1. 国债期货无套利定价分析

选择国债期货品种: TF2512(2025年12月到期)。

数据日期: 2025年9月22日。

市场数据:

• 期货价格 $F_t = 105.770$

• 交割成本 $S_0 = 100.3012$ (金融终端计算值)

• 转换因子 CF = 0.9405

• 无风险利率:使用3M SHIBOR r=1.5620%

无套利定价分析:

国债期货的无套利定价公式:

$$F_t imes CF = S_0 imes e^{rT}$$

计算参数:

• 交割日: 2025年12月15日

• 时间 $T = 84/365 \approx 0.2301$ 年

• 连续复利因子: $e^{rT} = e^{0.01562 \times 0.2301} \approx 1.00360$

理论期货价格:

$$F_{theoretical} = rac{S_0 imes e^{rT}}{CF} = rac{100.3012 imes 1.00360}{0.9405} pprox rac{100.684}{0.9405} pprox 107.05$$

比较分析:

• 理论价格: 107.05

• 市场价格: 105.77

• 偏差: 约1.28元 (1.20%)

结论: 该国债期货不严格满足无套利定价, 市场价格低于理论价格。可能原因包括:

- 市场摩擦和交易成本
- 流动性差异
- 融资成本与无风险利率的差异
- 转换因子计算的近似性

2. 利率互换无套利定价分析

选择利率互换品种: SHIBOR 3M 6M 期利率互换。

市场数据:

• 互换固定利率报价: 买价1.6275%, 均值1.6450%, 卖价1.6625%

• 采用均值 s = 1.6450%

• SHIBOR 利率: 3M = 1.5620%, 6M = 1.6300%

无套利定价分析:

利率互换要求固定端现值等于浮动端现值。

折现因子计算(年化单利):

- $DF_{3M} = 1/(1 + 0.01562 \times 0.25) \approx 0.99611$
- $DF_{6M} = 1/(1 + 0.01630 \times 0.5) \approx 0.99191$

浮动端现值计算:

- 1. 第一次支付 (3M后): 利率 = 当前3M SHIBOR = 1.5620%
 - 支付额 = $0.01562 \times 0.25 = 0.003905$
 - 现值 = $0.003905 \times 0.99611 \approx 0.003890$
- 2. 第二次支付(6M后): 需要计算3M远期利率
 - ullet (1+0.01630 imes0.5)=(1+0.01562 imes0.25) imes(1+f imes0.25)
 - $f \approx 1.6908\%$
 - 支付额 = $0.016908 \times 0.25 = 0.004227$
 - 现值 = $0.004227 \times 0.99191 \approx 0.004192$

浮动端总现值 = 0.003890 + 0.004192 = 0.008082

固定端现值计算:

- 每次支付额 = $0.01645 \times 0.25 = 0.0041125$
- 现值 = $0.0041125 \times (0.99611 + 0.99191) = 0.0041125 \times 1.98802 \approx 0.008176$

比较分析:

• 固定端现值: 0.008176

• 浮动端现值: 0.008082

• 相对误差: 约1.16%

结论: 在考虑买卖价差的情况下, 该利率互换基本满足无套利定价。

3. 期限不同的期货价格关系

标的资产相同、期限不同的两个期货价格满足以下关系:

$$F_{T1} = F_{T2} imes e^{-r(T2-T1)} \quad (T1 < T2)$$

其中r为无风险利率。

如果资产有持有收益q(如股息、票息等),则关系为:

$$F_{T1} = F_{T2} \times e^{-(r-q)(T2-T1)}$$

特殊情况:

- 当r > q时, $F_{T2} > F_{T1}$ (正向市场)
- 当r < q时, $F_{T2} < F_{T1}$ (反向市场)
- $\stackrel{\text{def}}{=} r = q \, \, orall f$, $F_{T2} = F_{T1}$

4. 利率互换浮动利率利差 c 的表达式

对于支付浮动利率 $X_{kh} + c$ 的一方:

无套利方法

无套利条件要求:

$$\sum s \Delta_k DF_k = \sum (X_{kh} + c) \Delta_k DF_k$$

整理得:

$$c = rac{\sum s \Delta_k DF_k - \sum X_{kh} \Delta_k DF_k}{\sum \Delta_k DF_k}$$

EPV(预期现值)方法

在风险中性测度下:

$$c = rac{\sum s \Delta_k DF_k - \sum \mathbb{E}[X_{kh}] \Delta_k DF_k}{\sum \Delta_k DF_k}$$

其中 $\mathbb{E}[X_{kh}]$ 为远期利率。

```
In [3]: import numpy as np
           from math import comb
           import matplotlib.pyplot as plt
           def binomial_tree_option_pricing(SO, K, T, r, u, d, p, N, option_type='call'):
                     二叉树模型用于欧式期权定价
                     参数:
                     - S0: 标的资产当前价格
                     - K: 行权价
                     - T: 到期时间(年)
                     - r: 无风险利率
                     - u: 上涨因子
                     - d: 下跌因子
                     - p: 上涨概率
                     - N: 时间步数
                     - option_type: 'call' 或 'put'
                     返回:
                     - 期权在t=0时刻的价格
                     dt = T / N
                     discount = np. exp(-r * dt)
                     # 生成到期日的资产价格
                     asset\_prices = np. zeros(N + 1)
                     for j in range (N + 1):
                               asset_prices[j] = S0 * (u ** j) * (d ** (N - j))
                     # 初始化到期日的期权价值
                     if option type == 'call':
                               option_values = np. maximum(asset_prices - K, 0)
                     elif option_type == 'put':
                              option_values = np. maximum(K - asset_prices, 0)
                     else:
                              raise ValueError("期权类型必须是'call'或'put'")
                     # 向后递推
                     for t in range (N - 1, -1, -1):
                               for j in range(t + 1):
                                         option\_values[j] = discount * (p * option\_values[j + 1] + (1 - p) * option\_values[j + 1] + (1 - p
                    return option_values[0]
           # 示例使用
           S0 = 100 # 当前价格
           K = 100 # 行权价
           T = 1 # 到期时间
           r = 0.05 # 无风险利率
           u = 1.1 # 上涨因子
           d = 0.9 # 下跌因子
           p = 0.5 # 上涨概率
           N = 3 # 步数
           call_price = binomial_tree_option_pricing(S0, K, T, r, u, d, p, N, 'call')
           print(f"欧式看涨期权价格: {call_price}")
```

欧式看涨期权价格: 7.110439948142851