CHAPITRE 10 : ESPACES PRÉHILBERTIENS

Plan du chapitre

1	1.A Produits scal	en : définitions et propriétés ires et espaces préhilbertiens usuels	
2	Orthogonalité en	Orthogonalité en dimension quelconque	
	2.A Vecteurs orth	gonaux	
	2.B Familles orth	gonales et orthonomales	
		male en dimension finie	
	2.D Orthogonal d	un sous-espace vectoriel	
	2.E Projection or	nogonale sur un sous-espace de dimension finie	

1 - Espace préhilbertien : définitions et propriétés

1.A - Produits scalaires et espaces préhilbertiens usuels

Soit E un \mathbb{R} -espace vectoriel de dimension finie ou non.

Définition 1: Produit scalaire

Un produit scalaire est une application bilinéaire, symétrique et définie positive $\varphi: E \times E \to \mathbb{R}$:

- φ est bilinéaire :
 - $\forall x, y, z \in E, \forall \lambda \in \mathbb{R}, \varphi(\lambda x + y, z) = \lambda \varphi(x, z) + \varphi(y, z).$
 - $\forall x, y, z \in E, \forall \lambda \in \mathbb{R}, \varphi(x, \lambda y + z) = \lambda \varphi(x, y) + \varphi(x, z).$
- φ est symétrique : $\forall x, y \in E, \varphi(y, x) = \varphi(x, y)$.
- φ est **définie positive** : $\forall x \in E, \varphi(x, x) \ge 0$ et $\varphi(x, x) = 0 \iff x = 0_E$.

Le produit scalaire de deux vecteurs $x, y \in E$ est noté (x|y) ou $\langle x, y \rangle$ ou $x \cdot y$.

Remarques

Pour vérifier que φ est bilinéaire, il suffit de vérifier que φ est linéaire à gauche et symétrique car :

$$\varphi(x,\lambda y+z) = \varphi(\lambda y+z,x) = \lambda \varphi(y,x) + \varphi(z,x) = \lambda \varphi(x,y) + \varphi(x,z).$$

Définition 2: Espace préhilbertien réel, espace eucldien

- On appelle espace préhilbertien réel tout \mathbb{R} -espace vectoriel $(E, (\cdot | \cdot))$ muni d'un produit scalaire $(\cdot | \cdot)$.
- On appelle espace euclidien tout R-espace préhilbertien de dimension finie.

Exemple : Exemple usuel (1) - produit scalaire canonique de \mathbb{R}^n

Les vecteurs de \mathbb{R}^n sont notés $x = (x_1, \dots, x_n) \in \mathbb{R}^n$.

 $\mathrm{Sur}\,\mathbb{R}^n, \mathrm{l'application}\,(\cdot|\cdot):\mathbb{R}^n\times\mathbb{R}^n\to\mathbb{R}\ \mathrm{d\'efinie}\ \mathrm{par}\ (\boldsymbol{x}|\boldsymbol{y})=\sum_{k=1}^nx_ky_k\ \mathrm{est}\ \mathrm{produit}\ \mathrm{scalaire}.$

En effet:

- L'application est symétrique. Pour tout $x, y \in \mathbb{R}^n$: $(y|x) = \sum_{k=1}^n y_k x_k = \sum_{k=1}^n x_k y_k = (x|y)$.
- L'application est bilinéaire. Pour tout $x=(x_1,\ldots,x_n)\in\mathbb{R}^n,y=(y_1,\ldots,y_n)\in\mathbb{R}^n,z=(z_1,\ldots,z_n)\in\mathbb{R}^n$:

$$(\lambda x + y|z) = \sum_{k=1}^{n} (\lambda x_k + y_k) z_k = \sum_{k=1}^{n} (\lambda x_k z_k + y_k z_k) = \lambda \sum_{k=1}^{n} x_k z_k + \sum_{k=1}^{n} y_k z_k$$
$$(\lambda x + y|z) = (\lambda x + y|z) = \lambda (x|z) + (y|z).$$

d'où la linéarité à gauche. La linéarité à droite s'en suit par symétrie.

- L'application est positive. Pour tout $x \in \mathbb{R}^n$: $(x|x) = \sum_{k=1}^n x_k^2 \geqslant 0$.
- L'application est définie positive car pour tout $x \in \mathbb{R}$,

$$(x|x) = 0 \Longleftrightarrow \sum_{k=1}^{n} x_k^2 = 0 \Longleftrightarrow \forall k \in [1, n], x_k^2 = x_k = 0 \Longleftrightarrow x = 0_{\mathbb{R}^n}.$$

Si l'on note
$$X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$
 et $Y = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$, alors $(x|y) = {}^t XY = \begin{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \middle| \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} \end{pmatrix}$.

Cette formule définit alors un produit scalaire sur $\mathcal{M}_{n1}(\mathbb{R})$.

Exemple : Exemple usuel (2) - produit scalaire sur $\mathscr{C}^0([a;b],\mathbb{R})$

Pour tout $(f,g) \in \mathscr{C}^0([a,b],\mathbb{R}) \times \mathscr{C}^0([a,b],\mathbb{R})$ on note $(f|g) = \int_a^b f(t)g(t)dt$.

L'intégrale est bien définie car la fonction produit $t \mapsto f(t)g(t)$ est continue sur le segment [a;b].

— L'application $(\cdot|\cdot)$ est symétrique. En effet pour tout $(f,g)\in\mathscr{C}^0([a;b],\mathbb{R})\times\mathscr{C}^0([a;b],\mathbb{R})$:

$$(g|f) = \int_{a}^{b} g(t)f(t)dt = \int_{a}^{b} f(t)g(t)dt = (f|g).$$

— L'application $(\cdot|\cdot)$ est bilinéaire. En effet, pour tout $f,g,h\in\mathscr{C}^0([a;b],\mathbb{R})$ et $\lambda\in\mathbb{R}$:

$$(\lambda f + g|h) = \int_a^b (\lambda f(t) + g(t))h(t)dt = \lambda \int_a^b f(t)h(t)dt + \int_a^b g(t)h(t)dt = \lambda (f|h) + (g|h).$$

d'où la linéarité à gauche. La linéarité à droite s'en suit par symétrie.

- L'application $(\cdot|\cdot)$ est positive. En effet, pour tout $f \in \mathscr{C}^0([a;b],\mathbb{R}), (f|f) = \int_a^b f(t)^2 dt \ge 0$ comme intégrale d'une fonction continue et positive sur un segment [a;b] (a < b).
- L'application est définie positive. En effet, pour tout $f \in \mathscr{C}^0([a;b],\mathbb{R})$

$$(f|f) = 0 \Longleftrightarrow \int_a^b f(t)^2 dt = 0 \Longleftrightarrow (f^2 \operatorname{continue positive sur} [a;b]) \quad \forall t \in [a;b], f^2(t) = 0 \Longleftrightarrow f \text{ est nulle sur } [a;b].$$

Exemple : Exemple usuel (3) - produit scalaire sur $\mathbb{R}[X]$

L'application définie sur $\mathbb{R}[X]^2$ par $(P|Q)=\int_0^1 P(t)Q(t)dt$ est une produit scalaire sur $\mathbb{R}[X]$.

Le fait que l'application soit bien définie, bilinéaire, symétrique et positive se vérifie comme dans l'exemple précédent car une fonction polynomiale est continue sur [0; 1]. Enfin, l'application est définie positive :

$$(P|P) = 0 \Longleftrightarrow \int_0^1 P^2(t) dt = 0 \Longleftrightarrow P \text{ est nulle sur } [0;1] \Longleftrightarrow P \text{ possède une infinité de racines } \Longleftrightarrow P = 0.$$

Exemple : Exemple usuel (4) - Produit scalaire sur $\mathcal{M}_n(\mathbb{R})$

Pour tout $(A, B) \in \mathcal{M}_n(\mathbb{R})^2$, on note $(A|B) = \operatorname{Tr}({}^tAB)$.

— L'application $(\cdot|\cdot)$ est symétrique. En effet, pour tout $(A,B) \in \mathcal{M}_n(\mathbb{R})^2$

$$(B|A) = \operatorname{Tr}({}^{t}BA) = \operatorname{Tr}({}^{t}({}^{t}BA)) = \operatorname{Tr}({}^{t}AB) = (A|B).$$

— L'application est bilinéaire. Pour tout $A,B,C\in \mathcal{M}_n(\mathbb{R})$ et $\lambda\in\mathbb{R}$:

$$(\lambda A + B|C) = \operatorname{Tr}({}^{t}(\lambda A + B)C) = \operatorname{Tr}((\lambda {}^{t}A + {}^{t}B)C) = \lambda \operatorname{Tr}({}^{t}AC) + \operatorname{Tr}({}^{t}BC) = \lambda (A|C) = (B|C),$$

d'où la linéarité à gauche. La linéarité à droite s'en suit par symétrie.

— L'application $(\cdot|\cdot)$ est positive. En effet, ${}^tAA = \left(\sum_{k=1}^n a_{ki}a_{kj}\right)_{1\leqslant i,j\leqslant n}$ pour tout $A\in \mathscr{M}_n(\mathbb{R})$:

$$(A|A) = \text{Tr}({}^{t}AA) = \sum_{i=1}^{n} \sum_{k=1}^{n} a_{ki}^{2} \ge 0$$

— L'application $(\cdot|\cdot)$ est définie positive. En effet, pour tout $A \in \mathcal{M}_n(\mathbb{R})$,

$$(A|A) = 0 \Longleftrightarrow \sum_{1 \leqslant i,k \leqslant n} a_{ki}^2 = 0 \Longleftrightarrow \forall (i,k) \in [[1,n]]^2, a_{i,k}^2 = a_{i,k} = 0 \Longleftrightarrow A = 0_{\mathcal{M}_n(\mathbb{R})}.$$

Exercice 3

Montrer que pour tout $n \in \mathbb{N}^*$, $(P|Q) = \sum_{k=0}^n P(k)Q(k)$ définit un produit scalaire sur E.

Solution. L'application est bien définie sur $\mathbb{R}_n[X]$ à valeurs réelles.

- L'application est symétrique : $(Q, P) = \sum_{k=0}^{n} Q(k)P(k) = \sum_{k=0}^{n} P(k)Q(k) = (P|Q).$
- L'application est bilinéaire. En effet, pour tout $P, Q, R \in \mathbb{R}_n[X]$, et $\lambda \in \mathbb{R}$:

$$(\lambda P + Q|R) = \sum_{k=0}^{n} (\lambda P(k) + Q(k))R(k) = \lambda \sum_{k=0}^{n} P(k)R(k) + \sum_{k=0}^{n} Q(k)R(k) = \lambda (P|R) + (Q|R)$$

d'où la linéarité à gauche. La linéarité à droite s'en suit par symétrie.

- L'application est positive : $\forall P \in \mathbb{R}_n[X], (P|P) = \sum_{k=0}^n P(k)^2 \ge 0.$
- L'application est définie positive. En effet, pour tout $P \in \mathbb{R}_n[X]$,

$$(P|P) = \sum_{k=0}^{n} P(k)^2 = 0 \iff \forall k \in [0, n], P^2(k) = P(k) = 0.$$

Par conséquent si (P|P)=0 alors le polynôme $P\in\mathbb{R}_n[X]$ possède au moins n+1 racines (les entiers $k\in [0,n]$): P est donc le polynôme nul.

Exercice 4

Soit $I \subset \mathbb{R}$ un intervalle réel.

On note $E = \{ f \in \mathscr{C}^0(I, \mathbb{R}) : f^2 \text{ est intégrable sur } I \}.$

- 1. Montrer que E est un \mathbb{R} -espace vectoriel.
- 2. Montrer que l'application $(g,h) \longmapsto \int_T f(t)g(t)dt$ définit un produit scalaire sur E.

Solution. 1. — La fonction nulle est continue et de carré intégrable sur I.

- Si $f \in E$ est continue et de carré intégrable sur I alors λf est continue et de carré intégrable et on a : $\int_{r} \lambda f^2 = \lambda \int_{r} f^2.$
- Si $f, g \in E$ sont continues et de carré intégrable, montrons que $f + g \in E$:

La continuité de la fonction somme f+g sur I est claire.

Montrons que $(f+g)^2$ est intégrable sur I.

Pour cela, on remarque que pour tout $t \in I$,

$$0 \leqslant (f(t) - g(t))^2 = f(t)^2 - 2f(t)g(t) + g(t)^2 \Longrightarrow 2f(t)g(t) \leqslant f(t)^2 + g(t)^2.$$

Ainsi, pour tout $t \in I$,

$$0 \leqslant (f(t) + g(t))^2 = f(t)^2 + 2f(t)g(t) + g(t)^2 \leqslant f(t)^2 + (f(t)^2 + g(t)^2) + g(t)^2 \leqslant 2(f(t)^2 + g(t)^2).$$

Par domination, on en déduit que la fonction $(f+g)^2$ est intégrable sur $I: f+g \in E$ est donc bien continue et de carré intégrable.

Conclusion : E est un sous-espace vectoriel de $\mathscr{C}^0(I;\mathbb{R})$.

E est donc lui-même un \mathbb{R} -espace vectoriel.

2. On considère l'application :

$$\left\{ \begin{array}{ccc} (\cdot|\cdot): E\times E & \longrightarrow & \mathbb{R} \\ & (f,g) & \longmapsto & \int_I f(t)g(t)dt. \end{array} \right.$$

— Elle est bien définie car pour tout $t \in I$:

$$0 \leqslant (f(t) - g(t))^2 \Longrightarrow f(t)g(t) \leqslant \frac{1}{2}(f(t)^2 + g(t)^2)$$

$$0 \leqslant (f(t) + g(t))^2 \Longrightarrow -f(t)g(t) \leqslant \frac{1}{2}(f(t)^2 + g(t)^2)$$

$$|f(t)g(t)| \le \frac{1}{2}(f(t)^2 + g(t)^2).$$

La fonction produit $t \mapsto f(t)g(t)$ est donc intégrable sur I par comparaison avec la fonction $\frac{f^2+g^2}{2}$ intégrable sur I par combinaison linéaire de fonctions intégrables sur I.

- L'application $(\cdot|\cdot)$ est bien entendu symétrique car fg = gf.
- L'application $(\cdot|\cdot)$ est bilinéaire. Cela découle de la linéarité de l'intégrale sur I.

Soient en effet $f, g, h \in E$ et $\lambda \in \mathbb{R}$.

Par ce qui précède, les fonctions $(\lambda f+g)h, \lambda f+g, \lambda fh, gh$ sont intégrables sur I et on a :

$$(\lambda f + g|h) = \int_I (\lambda f + g)h = \lambda \int_I fh + \int_I gh = \lambda (f|h) + (g|h)$$

d'où la linéarité à gauche de l'application $(\cdot|\cdot)$.

La linéarité à droite découle de la symétrie.

- L'application $(\cdot|\cdot)$ est définie positive :
 - * En effet, pour tout $f \in E$, $(f|f) = \int_I f(t)^2 dt \ge 0$ comme intégrale d'une fonction continue, positive et intégrable sur I.
 - * Enfin, $(f|f) = 0 \iff \int_I f^2 = 0 \iff f^2 = f = 0 \text{ sur } I.$

Exercice 5

Montrer que l'ensemble $E=\left\{(u_n)\in\mathbb{R}^\mathbb{N}:\sum_{n\geqslant 0}u_n^2 \text{ converge}\right\}$ est un espace vectoriel.

Montrer que la formule $(u|v) = \sum_{n \geqslant 0} u_n v_n$ définit un produit scalaire sur E.

Remarques

- 1. Pour tout $x \in E$, $(x|0_E) = 0_\mathbb{R}$: le produit scalaire avec 0_E est toujours nul. En effet, $(x|0_E) = (x|0_\mathbb{R}0_E) = 0_\mathbb{R}(x|0_E) = (0_\mathbb{R}x|0_E) = (0_E|0_E) = 0_\mathbb{R}$.
- 2. Un calcul classique : si $x = \sum_{k=1}^{n} x_k e_k$ et $y = \sum_{k=1}^{n} y_k e_k$ alors

$$(x|y) = \left(\sum_{k=1}^{n} x_k e_k \middle| \sum_{k=1}^{n} y_k e_k \right) = \sum_{k=1}^{n} \sum_{\ell=1}^{n} x_k y_{\ell}(e_k|e_{\ell}).$$

1.B -Norme préhilbertienne et distance

Définition 6: Norme préhilbertienne et distance

Soit $(E, (\cdot|\cdot))$ un espace préhilbertien réel.

On appelle norme préhilbertienne sur E, l'application $||\cdot||:E\to\mathbb{R}_+$ définie par :

$$\forall x \in E : ||x|| = \sqrt{(x|x)}.$$

On appelle distance de $x \in E$ à $y \in E$, le nombre $d(x,y) = ||x-y|| \ge 0$.

Remarques

- Si E est un espace euclidien (i.e. préhilbertien de dimension finie) on parle de norme euclidienne.
- Par exemple, si $E = \mathbb{R}^2$ est muni du produit scalaire $(x|y) = x_1y_1 + x_2y_2$ alors

$$||x-y|| = \sqrt{\left(\left(\begin{array}{c} x_1 - y_1 \\ x_2 - y_2 \end{array}\right), \left(\begin{array}{c} x_1 - y_1 \\ x_2 - y_2 \end{array}\right)\right)} = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2}$$

Exercice 7

Donner la norme associée aux produits scalaires sur \mathbb{R}^n , $\mathscr{C}^0([a;b],\mathbb{R})$, $\mathbb{R}[X]$, $\mathscr{M}_n(\mathbb{R})$

Définition 8: Vecteur unitaire

Un vecteur $x \in E$ de norme ||x|| = 1 est dit unitaire.

Si $y \in E$ est non nul alors $||y|| \neq 0$. Dans ce cas, le vecteur $\frac{y}{||y||}$ est unitaire.

Proposition 9: Identités remarquables

Soit E un espace préhilbertien réel. Soient $x, y \in E$.

- identité remarquable (1): $||x+y||^2 = ||x||^2 + ||y||^2 + 2(x|y)$.

- $\begin{array}{l} \text{ identite remarquable (2): } ||x+y||^2 = ||x||^2 + ||y||^2 2(x|y). \\ \text{ identité du parallélogramme: } ||x+y||^2 + ||x-y||^2 = 2||x||^2 + 2||y||^2. \\ \text{ identité de polarisation: } (x|y) = \frac{1}{4}(||x+y||^2 ||x-y||^2). \end{array}$

Démonstration. — Par définition de la norme associée au produit scalaire :

 $||x+y||^2 = (x+y|x+y) = (x|x+y) + (y|x+y)$ par linéarité à gauche du produit scalaire.

Ainsi, $||x+y||^2 = (x|x) + (x|y) + (y|x) + (y|y)$ par linéarité à droite.

Au final $||x+y||^2 = ||x||^2 + 2(x|y) + ||y||^2$ par symétrie du produit scalaire.

 $- ||x - y||^2 = ||x + (-y)||^2 = ||x||^2 + 2(x|-y) + ||-y||^2 = ||x||^2 - 2(x|y) + ||y||^2$ par linéarité à gauche du produit scalaire et la relation $||-y||^2 = (-y|-y) = (-1)^2(y|y) = ||y||^2$.

— En sommant les deux identités précédentes l'identité du parallélogramme vient directement :

$$||x + y||^2 + ||x - y||^2 = 2||x||^2 + 2||y||^2 + 2(x|y) - 2(x|y) = 2||x||^2 + 2||y||^2.$$

— L'identité de polarisation vient de la différence des deux premières identités :

$$||x + y||^2 - ||x - y||^2 = 4(x|y).$$

Théorème 10: Inégalité de Cauchy-Schwarz

Soit $(E, (\cdot|\cdot))$ un espace préhilbertien réel. Alors

$$\forall x, y \in E, |(x|y)| \leqslant ||x|| ||y||.$$

De plus $|(x|y)| = ||x|| \, ||y||$ si et seulement si x et y sont colinéaires.

Démonstration. Soient $x, y \in E$.

Pour tout $\lambda \in \mathbb{R}$, on note $P(\lambda) = (\lambda x + y | \lambda x + y) = \lambda^2 ||x||^2 + 2\lambda(x|y) + ||y||^2$.

Ainsi défini, P est un trinôme (en l'indéterminée λ) égal à $P(\lambda) = ||\lambda x + y||^2$.

Par conséquent P est positif ou nul : P possède donc au plus une racine réelle.

Son discriminant Δ est donc négatif ou nul :

$$\Delta = 4(x|y)^2 - 4||x||^2 ||y||^2 \le 0 \iff |(x|y)| \le ||x|| ||y||.$$

Cas d'égalité.

Ce qui précède montre que

$$|(x|y)| = ||x|| ||y|| \iff \Delta = 0 \iff \exists \lambda_0 \in \mathbb{R}, P(\lambda_0) = ||\lambda_0 x + y||^2 = 0 \text{ donc}$$

 $|(x|y)| = ||x|| ||y|| \iff \exists \lambda_0 \in \mathbb{R}, y = -\lambda_0 x.$

Exemple

Pour tout
$$(a_1, \dots, a_n), (b_1, \dots, b_n) \in \mathbb{R}^n, \sum_{k=1}^n a_k b_k \leqslant \sqrt{\sum_{k=1}^n a_k^2} \sqrt{\sum_{k=1}^n b_k^2}.$$

En effet, on munit \mathbb{R}^n de sa structure euclidienne canonique $(a|b) = \sum_{k=1}^n a_k b_k$

avec $a = (a_1, ..., a_n)$ et $b = (b_1, ..., b_n)$.

L'inégalité de Cauchy-Schwarz donne $|(a|b)| \le ||a|| ||b||$ qui se traduit comme suit :

$$\left|\sum_{k=1}^n a_k b_k\right| \leqslant \sqrt{\sum_{k=1}^n a_k^2} \sqrt{\sum_{k=1}^n b_k^2} \Longrightarrow \sum_{k=1}^n a_k b_k \leqslant \left|\sum_{k=1}^n a_k b_k\right| \leqslant \sqrt{\sum_{k=1}^n a_k^2} \sqrt{\sum_{k=1}^n b_k^2}$$

Exercice 11

- 1. Montrer que pour tout $P \in \mathbb{R}[X]$, $\int_0^1 P(t)dt \leqslant \sqrt{\int_0^1 P^2(t)dt}$.
- 2. Montrer que pour tout $f \in \mathcal{C}^1([a;b], \mathbb{R})$,

$$\int_{a}^{b} f(t)^{2} dt \int_{a}^{b} f'(t)^{2} dt \geqslant \left(\frac{f(b)^{2} - f(a)^{2}}{2}\right)^{2}$$

Théorème 12: Propriétés de la norme préhilbertienne

- $||x|| = 0_{\mathbb{R}} \Longleftrightarrow x = 0_E$
- $-- \forall x \in E, \forall \lambda \in \mathbb{R}, ||\lambda x|| = |\lambda| ||x||.$
- Inégalité triangulaire : $\forall x, y \in E, ||x + y|| \le ||x|| + ||y||$.

Démonstration.

- $-||x|| = 0 \iff ||x||^2 = 0 \iff (x|x) = 0 \iff x = 0_E$ car le produit scalaire $(\cdot|\cdot)$ est défini positif.
- $||\lambda x|| = \sqrt{(\lambda x |\lambda x|)} = \sqrt{\lambda^2(x|x|)} = |\lambda|\sqrt{(x|x|)} = |\lambda| ||x||.$

— On utilise l'inégalité de Cauchy-Schwarz :

$$\begin{aligned} ||x+y||^2 &= ||x||^2 + 2(x|y) + ||y||^2 \leqslant ||x||^2 + 2|(x|y) + ||y||^2 \\ ||x+y||^2 &= ||x||^2 + 2(x|y) + ||y||^2 \leqslant ||x||^2 + 2||x|| ||y|| + ||y||^2 = (||x|| + ||y||)^2 \\ &\Longrightarrow ||x+y||^2 \leqslant (||x|| + ||y||)^2 \\ &\Longrightarrow ||x+y|| \leqslant ||x|| + ||y|| \end{aligned}$$

2 - Orthogonalité en dimension quelconque

Dans cette partie on considère un espace préhilbertien réel de dimension finie ou non.

2.A - Vecteurs orthogonaux

Définition 13: Vecteurs orthogonaux

Deux vecteurs $x, y \in E$ sont dits orthogonaux si (x|y) = 0.

Exemple

- $E = \mathbb{R}^2$, muni du produit scalaire $(x|y) = x_1y_1 + x_2y_2$. Les vecteurs (1,0) et (0,1) sont orthogonaux.
- $E = \mathbb{R}^3$, muni du produit scalaire $(x|y) = \sum_{k=1}^3 x_k y_k$.

Les vecteurs (1,1,1) et $(-\frac{1}{2},1,-\frac{1}{2})$ sont orthogonaux.

— $E = \mathscr{C}^0([0; 2\pi], \mathbb{R})$, muni du produit scalaire $(f|g) = \int_0^{2\pi} f(t)g(t)dt$. Les vecteurs $(t \mapsto \cos(t))$ et $(t \mapsto \sin(t))$ sont orthogonaux :

$$(\cos|\sin) = \int_0^{2\pi} \cos(t)\sin(t)dt = \left[\frac{1}{2}\sin^2(t)\right]_0^{2\pi} = 0.$$

Théorème 14: Théorème de pythagore

Soient $x, y \in E$.

 $(x \text{ et } y \text{ sont orthogonaux}) \iff (x|y) = 0 \iff ||x+y||^2 = ||x^2|| + ||y||^2.$

Démonstration. On utilise la première identité remarquable vérifiée par la norme préhilbertienne :

$$||x+y||^2 = ||x||^2 + ||y||^2 \iff ||x||^2 + 2(x|y) + ||y||^2 = ||x||^2 + ||y||^2 \iff (x|y) = 0.$$

2.B - Familles orthogonales et orthonomales

Définition 15: Familles orthogonales et orthonormales

— Une famille (finie ou non) de vecteurs $(e_i)_{i \in I}$ est dite orthogonale si :

$$\forall (i,j) \in I^2, (i \neq j \Longrightarrow (e_i|e_j) = 0).$$

— Une famille est dite orthonormale (ou orthonormée) si elle est orthogonale et composée de vecteurs unitaires : $\forall i \in I, ||e_i|| = 1$.

Notation 16

On note souvent $\delta_{kl} = \left\{ egin{array}{ll} 1 & {
m si} & k=\ell \\ 0 & {
m si} & k
eq \ell \end{array} \right.$ (symbole de Kronecker).

Avec cette notation si $(\varepsilon_i)_{i\in I}$ est une famille orthonormale alors $(\varepsilon_k|\varepsilon_\ell)=\delta_{kl}$.

Proposition 17: Théorème de Pythagore

Si
$$(e_1,\ldots,e_n)$$
 est une famille orthogonale alors $\left|\left|\sum_{k=1}^n e_k\right|\right|^2 = \sum_{k=1}^n ||e_k||^2$.

Théorème 18

- Toute famille orthogonale de vecteurs non nuls est libre.
- En particulier toute famille orthonormée est libre.

Démonstration.

• Soit $(e_i)_{i \in I}$ une famille orthogonale de vecteurs non nuls.

Soit $J \subset I$ une partie finie. On note (e_1, \ldots, e_n) la famille de vecteurs $(e_j)_{j \in J}$.

Soient
$$\lambda_1, \ldots, \lambda_n \in \mathbb{R}$$
 tels que $\sum_{j=1}^n \lambda_j e_j = 0$.

On calcule le produit scalaire avec e_{j_0} ; avec $j_0 \in [\![1,n]\!]$ quelconque :

$$0 = \left(\sum_{j=1}^{n} \lambda_j e_j |e_{j_0}\right) = \sum_{j=1}^{n} \lambda_j (e_j |e_{j_0}) = \lambda_{j_0} ||e_{j_0}||^2$$

car e_{j_0} est orthogonal à tous les vecteurs $e_j: j \neq j_0$.

Puisque le vecteur e_{j_0} est non nul sa norme $||e_{j_0}||$ est non nul et on obtient : $\lambda_{j_0} = 0$.

Puisque j_0 est quelconque, les scalaires λ_j sont tous nuls. La famille $(e_j)_{j\in J}$ est libre.

Puisque $J \in I$ est quelconque, la famille $(e_i)_{i \in I}$ est libre.

ullet Si $(e_i)_{i\in I}$ est une famille orthonormale alors les vecteurs e_i sont non nuls.

En effet $||e_i|| = 1 \neq 0 \Longrightarrow e_i \neq 0_E$.

On peut donc appliquer le premier point.

Théorème 19: Algorithme d'orthonormalisation de Gram-Schmidt

Soit (u_1, \ldots, u_n) une famille **libre** de vecteurs de E.

Il existe alors une famille orthonormale $(\varepsilon_1, \dots, \varepsilon_n)$ de E telle que

$$\forall k \in \mathbb{N}^*, \operatorname{Vect}(\varepsilon_1, \dots, \varepsilon_k) = \operatorname{Vect}(u_1, \dots, u_k).$$

Démonstration. On démontre le résultat par récurrence sur $n \in \mathbb{N}^*$.

- Si n=1, la famille (u_1) est libre par hypothèse donc $u_1 \neq 0_E$. Ainsi, $||u_1|| \neq 0$. On pose $\varepsilon_1 = \frac{u_1}{||u_1||} : ||\varepsilon_1|| = 1$.
- **2** Si n=2, on considère une famille libre (u_1,u_2) .

On pose $e_1 = u_1$ et $\varepsilon_1 = \frac{u_1}{||u_1||}$: $\operatorname{Vect}(\varepsilon_1) = \operatorname{Vect}(u_1)$.

On cherche ensuite un vecteur e_2 (que l'on normalisera ensuite) de telle sorte que :

- $-- \operatorname{Vect}(e_1, e_2) \subset \operatorname{Vect}(u_1, u_2) \quad (1)$
- $\operatorname{Vect}(u_1, u_2) \subset \operatorname{Vect}(e_1, e_2) \quad (2)$
- ε_1 et e_2 sont orthogonaux (3)

On cherche e_2 sous la forme : $e_2 = u_2 + \lambda \varepsilon_1$.

Pour satisfaire à (3) il s'agit de vérifier :

$$(e_2, \varepsilon_1) = 0 \iff (u_2 + \lambda \varepsilon_1 | \varepsilon_1) = 0 \iff \lambda = -(u_2 | \varepsilon_1).$$

On pose alors $e_2 = u_2 - (u_2|\varepsilon_1)\varepsilon_1$: On a $e_2 \in \text{Vect}(u_2, \varepsilon_1) = \text{Vect}(u_1, u_2)$. Ainsi (1) et (3) sont vérifiés.

La propriété (2) est également vérifiée car $u_2 = e_2 + (u_2|\varepsilon_1)\varepsilon_1 \in \underbrace{\mathrm{Vect}(e_2,\varepsilon_1)}_{\text{c.}}.$

Notons que $e_2 \neq 0$ car u_2 et ε_1 ne sont pas colinéaires. On pose alors $\varepsilon_2 = \frac{e_2}{||e_2||}$.

3 On suppose la propriété vérifiée pour un entier $n \in \mathbb{N}^*$.

On considère alors une famille libre $(u_1, \ldots, u_n, u_{n+1})$ composée de n+1 vecteurs.

Par hypothèse de récurrence, il existe une famille orthonormée $(\varepsilon_1, \ldots, \varepsilon_n)$ telle que pour tout $k \in [1, n]$, $\text{Vect}(\varepsilon_1, \ldots, \varepsilon_k) = \text{Vect}(u_1, \ldots, u_k)$.

On pose alors $e_{n+1} = u_{n+1} - \sum_{k=1}^{n} (u_{n+1}|\varepsilon_k)\varepsilon_k \in \text{Vect}(\varepsilon_1, \dots, \varepsilon_n, u_{n+1}) = \text{Vect}(u_1, \dots, u_n, u_{n+1})$ (*).

Alors pour tout $\ell \in \llbracket 1, n \rrbracket$:

$$(e_{n+1}|\varepsilon_k) = \left(u_{n+1} - \sum_{k=1}^n (u_{n+1}|\varepsilon_k)\varepsilon_k \middle| \varepsilon_\ell\right) = (u_{n+1}|\varepsilon_\ell) - \sum_{k=1}^n (u_{n+1}|\varepsilon_k)(\varepsilon_k|\varepsilon_\ell).$$

Puisque la famille $(\varepsilon_1,\ldots,\varepsilon_n)$ est orthonormée, on a $(\varepsilon_k|\varepsilon_\ell)=\left\{ egin{array}{ll} 1 & \mathrm{si} & k=\ell \\ 0 & \mathrm{si} & k
eq\ell \end{array} \right.$

Ainsi, $(e_{n+1}|\varepsilon_k) = (u_{n+1}|\varepsilon_\ell) - (u_{n+1}|\varepsilon_\ell) = 0.$

La famille $(\varepsilon_1, \dots, \varepsilon_n, e_{n+1})$ est donc **orthogonale**.

On a $\operatorname{Vect}(\varepsilon_1,\ldots,\varepsilon_n,e_{n+1})\subset\operatorname{Vect}(u_1,\ldots,u_n,u_{n+1})$ car $e_{n+1}\in\operatorname{Vect}(u_1,\ldots,u_n,u_{n+1})$ par (*).

Et réciproquement $\operatorname{Vect}(u_1,\ldots,u_n,u_{n+1})\subset\operatorname{Vect}(\varepsilon_1,\ldots,\varepsilon_n,e_{n+1})$ en transformant (*):

$$e_{n+1} = u_{n+1} - \sum_{k=1}^{n} (u_{n+1}|\varepsilon_k)\varepsilon_k \Longleftrightarrow u_{n+1} = e_{n+1} + \sum_{k=1}^{n} (u_{n+1}|\varepsilon_k)\varepsilon_k.$$

On pose alors $\varepsilon_{n+1} = \frac{e_{n+1}}{||e_{n+1}||}$ ce qui est possible car $e_{n+1} \neq 0$ (sinon la relation (*) montrerait que u_{n+1} est combinaison linéaire des vecteurs $\varepsilon_1, \dots, \varepsilon_n$ donc combinaison linéaire des vecteurs u_1, \dots, u_n ce qui n'est pas car la famille $(u_1, \dots, u_n, u_{n+1})$ est libre par hypothèse).

On a donc prouvé qu'il existe une famille **orthonormée** $(\varepsilon_1,\ldots,\varepsilon_n,\varepsilon_{n+1})$ telle que

$$\operatorname{Vect}(u_1,\ldots,u_{n+1}) = \operatorname{Vect}(\varepsilon_1,\ldots,\varepsilon_{n+1}).$$

Ceci achève la récurrence.

Exercice 20

Soit $F = \{(x, y, z, t) : \mathbb{R}^4 : x + y + z - t = 0\}.$

Déterminer une base orthonormale de F pour le produit scalaire canonique sur \mathbb{R}^4 .

Solution. On rappelle que le produit scalaire canonique est donné par $(x|y) = \sum_{k=1}^{4} x_k y_k$.

Une base de F est donnée par $\mathscr{B} = ((1,0,0,1),(0,1,0,1),(0,0,1,1)) = (u_1,u_2,u_3)$. On utilise l'algorithme d'orthonormalisation de Gram-Schmidt.

1 On pose
$$\varepsilon_1 = \frac{u_1}{||u_1||} = \frac{(1,0,0,1)}{||(1,0,0,1)||}$$
 avec

$$||(1,0,0,1)||^2 = \left(\begin{pmatrix} 1\\0\\0\\1 \end{pmatrix} \middle| \begin{pmatrix} 1\\0\\0\\1 \end{pmatrix} \right) = 2 \Longrightarrow ||(1,0,0,1)|| = \sqrt{2} \Longrightarrow \varepsilon_1 = \frac{1}{\sqrt{2}}(1,0,0,1).$$

2 On pose ensuite : $e_2 = u_2 - (u_2|\varepsilon_1)\varepsilon_1$:

$$e_2 = u_2 - \frac{1}{\sqrt{2}}(u_2|u_1)\frac{1}{\sqrt{2}}u_1 = (0,1,0,1) - \frac{1}{2}\underbrace{\left(\begin{pmatrix} 0\\1\\0\\1 \end{pmatrix} \middle \begin{pmatrix} 1\\0\\0\\1 \end{pmatrix}\right)}(1,0,0,1) = \left(-\frac{1}{2},1,0,+\frac{1}{2}\right).$$

On pose alors
$$\varepsilon_2 = \frac{e_2}{||e_2||} = \sqrt{\frac{2}{3}}e_2 \operatorname{car} ||e_2|| = \sqrt{\frac{1}{4} + 1 + 0 + \frac{1}{4}} = \sqrt{\frac{6}{4}} : \varepsilon_2 = \sqrt{\frac{2}{3}}(-\frac{1}{2}, 1, 0, \frac{1}{2}).$$

❸ On pose enfin
$$e_3 = u_3 - \underbrace{\left(\underbrace{u_3|\varepsilon_1}_{=\frac{1}{\sqrt{2}}}\varepsilon_1 + \underbrace{\left(u_3|\varepsilon_2\right)}_{=\frac{1}{2}\sqrt{\frac{2}{3}}}\varepsilon_2\right)}_{=\frac{1}{2}\sqrt{\frac{2}{3}}}$$
:
$$e_3 = (0,0,1,1) - \frac{1}{2}(1,0,0,1) - \frac{1}{3}\left(-\frac{1}{2},1,0,\frac{1}{2}\right) = \left(-\frac{1}{3},-\frac{1}{3},1,\frac{1}{3}\right)$$

et
$$arepsilon_3 = rac{u_3}{||u_3||} = rac{\sqrt{3}}{2} \left(-rac{1}{3}, -rac{1}{3}, 1, rac{1}{3}
ight).$$

La famille $(\varepsilon_1, \varepsilon_2, \varepsilon_3)$ est donc orthonormée et engendre le même espace que la famille (u_1, u_2, u_3) c'est-à-dire F: c'est donc une base orthonormée de F.

2.C - Base orthonormale en dimension finie

Théorème 21

Tout espace euclidien possède une base orthonormale.

Démonstration. Un espace euclidien est un espace préhilbertien de dimension finie.

On se donne alors une base $\mathscr{B} = (u_1, \dots, u_n)$ de E.

L'algorithme de Gram-Schmidt permet d'obtenir une famille orthonormée $(\varepsilon_1, \dots, \varepsilon_n)$ telle que

$$Vect(u_1, \ldots, u_n) = Vect(\varepsilon_1, \ldots, \varepsilon_n).$$

Puisque \mathscr{B} est une base on a $E = \operatorname{Vect}(\mathscr{B}) = \operatorname{Vect}(u_1, \dots, u_n) = \operatorname{Vect}(\varepsilon_1, \dots, \varepsilon_n)$.

On en déduit que $(\varepsilon_1, \dots, \varepsilon_n)$ est une base orthonormée de E.

Dans une base orthonormée, le produit scalaire permet de déterminer les coordonnées d'un vecteur :

Théorème 22: Décomposition dans une base orthonormée

Soit E un espace euclidien et $(\varepsilon_1, \dots, \varepsilon_n)$ une base orthonormée de E. Alors :

$$\forall x \in E, x = (x|\varepsilon_1)\varepsilon_1 + \dots + (x|\varepsilon_n)\varepsilon_n = \sum_{k=1}^n (x|\varepsilon_k)\varepsilon_k.$$

 $\begin{array}{l} \textit{D\'{e}monstration}. \ \ \text{Soit} \ x = \sum_{k=1}^n x_k \varepsilon_k \ \text{avec} \ x_1, \dots, x_n \in \mathbb{R} \ \text{les coordonn\'{e}es} \ \text{de} \ x \in E \ \text{dans la base orthonorm\'{e}e} \\ (\varepsilon_1, \dots, \varepsilon_n). \ \text{Alors} \ \forall \ell \in \llbracket 1, n \rrbracket, (x|\varepsilon_\ell) = \sum_{k=1}^n x_k (\varepsilon_k|\varepsilon_\ell) = x_\ell \ \text{car} \ (\varepsilon_k|\varepsilon_\ell) = \delta_{kl}. \end{array}$

Proposition 23: Produit scalaire dans une base orthonormée

Soit $\mathscr{B} = (\varepsilon_1, \dots, \varepsilon_n)$ une base orthonormée d'un espace euclidien E.

On note $X=(x_1,\ldots,x_n)$ et $Y=(y_1,\ldots,y_n)$ les coordonnées respectives de x et y dans \mathscr{B} . Alors :

$$(x|y) = \sum_{k=1}^{n} x_k y_k = \sum_{k=1}^{n} (x|\varepsilon_k)(y|\varepsilon_k) = {}^t XY \quad \text{ et } \quad ||x||^2 = \sum_{k=1}^{n} x_k^2 = \sum_{k=1}^{n} (x|e_k)^2 = {}^t XX.$$

Démonstration. Il suffit de calculer dans la base orthonormée :

$$(x|y) = \left(\sum_{k=1}^n x_k \varepsilon_k \middle| \sum_{k=1}^n y_k \varepsilon_k \right) = \sum_{k=1}^n \sum_{\ell=1}^n x_k y_\ell (\varepsilon_k | \varepsilon_\ell) = \sum_{k=1}^n \sum_{\ell=1}^n x_k y_\ell \delta_{k\ell} = \sum_{k=1}^n x_k y_k.$$

On peut donc calculer un produit scalaire comme avec le produit scalaire canonique de \mathbb{R}^n

(!) sous réserve de travailler avec les coordonnées dans une base orthonormée(!)

Il y a des formules simples aussi pour la matrice d'un endomorphisme dans une base orthonormée :

Proposition 24: Matrice dans une base orthonormée

Soit $f \in \mathcal{L}(E)$ et $\mathcal{B} = (\varepsilon_1, \dots, \varepsilon_n)$ une base orthonormée de E.

On note $A = (a_{ij})_{1 \leq i,j \leq n} = Mat_{\mathscr{B}}(f)$.

Alors pour tout $(i, j) \in [1, n]^2$, $a_{i,j} = (\varepsilon_i | f(\varepsilon_j))$.

Démonstration. Par définition de $A=Mat_{\mathscr{B}}(f)$, on a pour tout $j\in [1,n]$: $f(e_j)=\sum_{k=1}^n a_{kj}\varepsilon_k$. Alors:

$$(\varepsilon_i|f(\varepsilon_j)) = \left(\varepsilon_i\left|\sum_{k=1}^n a_{kj}\varepsilon_k\right.\right) = \sum_{k=1}^n a_{kj}(\varepsilon_i|\varepsilon_k) = \sum_{k=1}^n a_{kj}\delta_{ik} = a_{ij}.$$

2.D - Orthogonal d'un sous-espace vectoriel

Soit E un espace préhilbertien réel de dimension quelconque muni d'un produit scalaire $(\cdot | \cdot)$.

Définition 25: Orthogonal d'un s.e.v.

Soit F un sous-espace vectoriel de E. On appelle orthogonal de F l'ensemble :

$$F^{\perp} = \{ x \in E : \forall y \in F, (x|y) = 0 \}.$$

Proposition 26

Soient F et G des sous-espace vectoriels de E. Alors :

- F^{\perp} est un sous-espace vectoriel de E.
- $x \in F^{\perp}$ si et seulement si x est orthogonal aux vecteurs d'une base quelconque de F.
- Si $F \subset G$ alors $G^{\perp} \subset F^{\perp}$.

Démonstration. — Le vecteur nul est bien sûr orthogonal à tous les vecteurs de $F: 0_E \in F^{\perp}$. Si $x_1, x_2 \in F^{\perp}$ et $\lambda \in \mathbb{R}$ alors $\lambda x_1 + x_2 \in F^{\perp}$ car pour tout $y \in F$:

$$((\lambda x_1 + x_2)|y) = \lambda \underbrace{(x_1|y)}_{=0} + \underbrace{(x_2|y)}_{=0} = 0.$$

Conclusion : F^{\perp} est un s.e.v. de E.

— Si $x \in F^{\perp}$ alors x est orthogonal à tout vecteur de F donc en particulier aux vecteurs formant une base de F. **Réciproquement**, soit $(f_i)_{i \in I}$ une base quelconque de F et $x \in E$ tel que $\forall i \in I, (x|f_i) = 0$. Tout vecteur $y \in F$ est combinaison linéaire (finie) des vecteurs $f_i : \exists J \subset I, J$ finie telle que $y = \sum \lambda_j f_j$.

$$\text{Alors } (x|y) = \left(x \left| \sum_{j \in J} \lambda_j f_j \right. \right) = \sum_{j \in J} \lambda_j \underbrace{(x|f_j)}_{=0} = 0 : x \in F^\perp.$$

— On suppose enfin que $F \subset G$. Montrons que $G^{\perp} \subset F^{\perp}$.

Soit $x \in G^{\perp}$. Montrons que $x \in F^{\perp}$.

Par définition $x \in G^{\perp} \iff \forall g \in G, (x|g) = 0$. Soit $f \in F$ quelconque. Alors $f \in G$ car $F \subset G$. Ainsi, $(x|f) = 0 : x \in F^{\perp}$.

Exemple

- $\{0_E\} = E$ car tout vecteur est orthogonal au vecteur nul.
- $E^{\perp} = \{0_E\}$ car seul le vecteur nul est orthogonal à tous les vecteurs de E. En effet, si (x|y) = 0 pour tout $y \in E$ alors en particulier (x|x) = 0 (avec $y = x \in E$). On en déduit que $x = 0_E$ car le produit scalaire est défini positif.

Exercice 27

On considère \mathbb{R}^3 muni de son produit scalaire canonique. Soit $F = Vect((a, b, c)) \in \mathbb{R}^3$. Déterminer F^{\perp} .

Solution. — Si (a, b, c) = (0, 0, 0) alors $F = \{0_E\}$ et $F^{\perp} = E$.

— Si $(a,b,c) \neq (0,0,0)$ alors ((a,b,c)) constitue une base de F qui est donc une droite vectorielle de \mathbb{R}^3 . Ainsi :

$$(x,y,z) \in F^{\perp} \Longleftrightarrow \left(\left(\begin{array}{c} x \\ y \\ z \end{array} \right), \left(\begin{array}{c} a \\ b \\ c \end{array} \right) \right) = 0 \Longleftrightarrow ax + by + cz = 0.$$

Conclusion: l'orthogonal d'une droite vectorielle est un plan vectoriel.

Définition 28: Sous-espaces orthogonaux

Deux sous-espaces F, G sont dits orthogonaux si $\forall (x, y) \in F \times G, (x|y) = 0$.

Exemple

Soit $E = \mathbb{R}^3$ muni de son produit scalaire canonique

- 1. Montrer que les droites F = Vect((1,1,1)) et G = Vect((-1,-1,2)) sont orthogonales.
- 2. A-t-on $F^{\perp} = G ? G^{\perp} = F ?$

Démonstration. 1. On a $\left(\begin{pmatrix} 1\\1\\1 \end{pmatrix}, \begin{pmatrix} -1\\-1\\2 \end{pmatrix}\right) = -1 - 1 + 2 = 0.$

Les espaces F et G sont donc orthogonaux.

2. Bien que F et G soient des espaces orthogonaux, l'orthogonal de F n'est pas G (G est seulement inclus dans F^{\perp}).

En effet l'Exercice 27 montre que $F^{\perp} = \operatorname{Vect}(1,1,1)$ est un plan vectoriel $\mathscr P$ dont une équation cartésienne est donnée par $\mathscr{P}: x + y + z = 0$ et une base par ((-1, 0, 1), (0, -1, 1)).

Notons qu'effectivement $(-1, -1, 2) = (-1, 0, 1) + (0, -1, 1) \in G$. De même $F \subsetneq G^{\perp}$.

2.E -Projection orthogonale sur un sous-espace de dimension finie

Soit E un espace préhilbertien réel de dimension quelconque muni d'un produit scalaire $(\cdot | \cdot)$.

Théorème 29

Soit F un sous-espace vectoriel de dimension finie de E. Alors $E = F \oplus F^{\perp}$.

Démonstration. — Si $x \in F \cap F^{\perp}$ alors x est orthogonal à lui même : $(x|x) = 0 \iff x = 0_E$. Ainsi, $F \cap F^{\perp} = \{0_E\}.$

Montrons maintenant que $E = F + F^{\perp}$. Soit $x \in E$ quelconque. On note $(\varepsilon_1, \dots, \varepsilon_p)$ une base de F et on définit le vecteur de F suivant :

$$x_F = (x|\varepsilon_1)\varepsilon_1 + \dots (x|\varepsilon_p)\varepsilon_p \in F.$$

On pose alors $x_{F^{\perp}} = x - x_F$. On a clairement : $x_F + x_{F^{\perp}} = x$. Montrons que $x_{F^{\perp}} \in F^{\perp}$. On le vérifie sur une base :

$$\forall j \in [\![1,p]\!], (x_{F^\perp}|\varepsilon_j) = (x-x_F|\varepsilon_j) = (x|\varepsilon_j) - \left(\sum_{k=1}^p (x|\varepsilon_k)\varepsilon_k|\varepsilon_j\right) = (x|\varepsilon_j) - \sum_{k=1}^p (x|\varepsilon_k)\underbrace{(\varepsilon_k|\varepsilon_j)}_{\delta_{k_j}} = 0.$$

Corollaire 30: Orthogonal en dimension finie

Soit E un espace **euclidien** (préhilbertien réel de **dimension finie**).

Soit F un sous-espace vectoriel de E.

Alors F^{\perp} est un sous-espace vectoriel de dimension finie et $\dim(F^{\perp}) = \dim(E) - \dim(F)$.

De plus, $(F^{\perp})^{\perp} = F$.

Démonstration. — $E = F \oplus F^{\perp}$ donc $\dim E = \dim F + \dim F^{\perp}$ donc $\dim F^{\perp} = \dim E - \dim F$.

— On a $F \subset (F^{\perp})^{\perp}$. En effet soit $x \in F$.

Alors pour tout $y \in F^{\perp}$, on a $(x|y) = 0 : x \in (F^{\perp})^{\perp}$.

De plus $\dim(F^{\perp})^{\perp} = \dim E - \dim F^{\perp} = \dim(E) - (\dim E - \dim F) = \dim F$.

D'où l'égalité des deux sous-espaces $F = (F^{\perp})^{\perp}$.

Définition 31: projection orthogonale

Soit F un s.e.v. de dimension finie d'un espace préhilbertien E de dimension quelconque.

On appelle projection orthogonale sur F la projection sur F parallèlement à F^{\perp} .

On rappelle que $\operatorname{Im}(p_F) = F$ et $\ker(p_F) = F^{\perp}$.

Théorème 32: caractérisations de la projection

Soit p_F la projection orthogonale sur F sous-espace vectoriel de dimension finie de E.

- Pour tout $x \in E$, $p_F(x)$ est l'unique vecteur tel que $p_F(x) \in F$ et $x p_F(x) \in F^{\perp}$.
- Si $(\varepsilon_1,\ldots,\varepsilon_p)$ est une base orthonormale de F alors $p_F(x)=(x|\varepsilon_1)\varepsilon_1+\cdots+(x|\varepsilon_p)\varepsilon_p$.

Pour déterminer $p_F(x)$ plusieurs méthodes possibles :

0 On détermine une base orthonormée $(\varepsilon_1, \dots, \varepsilon_p)$ de F. On a alors

$$p_F(x) = (x|\varepsilon_1)\varepsilon_1 + \dots + (x|\varepsilon_p)\varepsilon_p.$$

② On déterminer une base quelconque (f_1, \ldots, f_p) de F. On résout alors le système linéaire obtenu en écrivant les conditions :

$$\begin{cases}
 x - p_F(x) \in F^{\perp} \\
 p_f(x) \in F
\end{cases}
\iff
\begin{cases}
 \forall j \in [1, p], (x - p_F(x)|f_j) = 0 \\
 \exists!(\lambda_1, \dots, \lambda_p) \in \mathbb{R}^p : \\
 p_F(x) = \lambda_1 f_1 + \dots + \lambda_p f_p
\end{cases}$$

Remarques

Puisque $p_F(x) \in F$ et $x - p_F(x) \in F^{\perp}$ on a $||x||^2 = ||x - p_F(x) + p_F(x)||^2 = ||x - p_F(x)||^2 + ||p_F(x)||^2$ par le théorème de Pythagore.

Théorème 33: Inégalité de Bessel

Soit E un espace préhilbertien réel et F un sous-espace vectoriel de dimension finie de E. On note $(\varepsilon_1, \ldots, \varepsilon_p)$ une base orthonormale de F. Alors

$$\sum_{k=1}^{p} |(x|\varepsilon_k)|^2 \leqslant ||x||^2.$$

 $\begin{array}{l} \textit{D\'{e}monstration}. \ \ \text{On note} \ p_F \ \text{la projection orthogonale sur} \ F. \ \text{Alors} \ p_F(x) \in F \ \text{et} \ x - p_F(x) \in F^{\perp}. \\ \text{Ainsi,} \ ||x||^2 = ||p_F(x)||^2 + ||x - p_F(x)||^2 \geqslant ||p_F(x)||^2. \end{array}$

La décomposition de $p_F(x)$ dans la base orthonormée $(\varepsilon_1,\ldots,\varepsilon_p)$ s'écrit $p_F(x)=\sum_{k=1}^n(x|\varepsilon_k)\varepsilon_k$.

Par le théorème de Pythagore : $||p_F(x)||^2 = \sum_{k=1}^p ||(x|\varepsilon_k)\varepsilon_k||^2 = \sum_{k=1}^p |(x|\varepsilon_k)|^2 ||\varepsilon_k||^2 = \sum_{k=1}^p |(x|\varepsilon_k)|^2.$

Ainsi,

$$||p_F(x)||^2 = \sum_{k=1}^p |(x|\varepsilon_k)|^2 \le ||x||^2.$$

Remarques

L'égalité $\sum_{k=1}^p |(x|\varepsilon_k)|^2 = ||x||^2$ est vérifiée si et seulement si $||p_F(x)||^2 = ||x^2||$ c'est-à-dire : $x \in F = \mathrm{Vect}(\varepsilon_1, \dots, \varepsilon_p)$.

Exercice 34

Déterminer la matrice dans la base canonique de la projection orthogonale sur le plan d'équation cartésienne x + y + z = 0.

Démonstration.

Première méthode

On munit \mathbb{R}^3 du produit scalaire canonique.

On détermine une base orthonormée du plan \mathscr{P} d'équation cartésienne : x + y + z = 0. Une base de \mathscr{P} est donnée par $(u_1, u_2) = ((-1, 1, 0), (-1, 0, 1)).$

On utilise l'algorithme de Gram-Schmidt pour déterminer une base orthonormée de \mathscr{P} .

- On pose
$$\varepsilon_1 = \frac{u_1}{||u_1||} = \frac{1}{\sqrt{2}}(-1, 1, 0).$$

— On pose ensuite $e_2 = u_2 - (u_2|\varepsilon_1)\varepsilon_1$

$$e_2 = (-1, 0, 1) - \left(\begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \middle| \frac{1}{\sqrt{2}} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} \right) \frac{1}{\sqrt{2}} (-1, 1, 0)$$
$$= (-1, 0, 1) - \frac{1}{2} (-1, 1, 0) = \left(-\frac{1}{2}, -\frac{1}{2}, 1 \right).$$

On normalise : $\varepsilon_2=\frac{2}{\sqrt{6}}\left(-\frac{1}{2},-\frac{1}{2},1\right)$. On obtient une base orthonormée $(\varepsilon_1,\varepsilon_2)$ de $\mathscr{P}.$ Pour tout $(a, b, c) \in \mathbb{R}^3$, on a

$$((a,b,c)|\varepsilon_1) = \left(\begin{pmatrix} a \\ b \\ c \end{pmatrix} \middle| \frac{1}{\sqrt{2}} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} \right) = \frac{1}{\sqrt{2}} (-a+b).$$

$$((a,b,c)|\varepsilon_2) = \left(\begin{pmatrix} a \\ b \\ c \end{pmatrix} \middle| \frac{2}{\sqrt{6}} \begin{pmatrix} -\frac{1}{2} \\ -\frac{1}{2} \\ 1 \end{pmatrix} \right) = \frac{2}{\sqrt{6}} \left(-\frac{a}{2} - \frac{b}{2} + c \right).$$

La projection de $(a, b, c) \in \mathbb{R}^3$ sur F est alors donnée par la décomposition

$$p(a,b,c) = ((a,b,c)|\varepsilon_1)\varepsilon_1 + ((a,b,c)|\varepsilon_2)\varepsilon_2 = \frac{1}{2}(-a+b)(-1,1,0) + \frac{4}{6}\left(-\frac{a}{2} - \frac{b}{2} + c\right)\left(-\frac{1}{2}, -\frac{1}{2}, 1\right).$$

$$\begin{array}{l} -- \ p(1,0,0) = -\frac{1}{2}(-1,1,0) - \frac{2}{6}\left(-\frac{1}{2},-\frac{1}{2},1\right) = \left(\frac{4}{6},-\frac{2}{6},-\frac{2}{6}\right) = \left(\frac{2}{3},-\frac{1}{3},-\frac{1}{3}\right). \\ -- \ p(0,1,0) = \frac{1}{2}(-1,1,0) - \frac{2}{6}\left(-\frac{1}{2},-\frac{1}{2},1\right) = \left(-\frac{2}{6},\frac{4}{6},-\frac{2}{6}\right) = \left(-\frac{1}{3},\frac{2}{3},-\frac{1}{3}\right). \\ -- \ p(0,0,1) = 0 \times (-1,1,0) + \frac{4}{6}\left(-\frac{1}{2},-\frac{1}{2},1\right) = \left(-\frac{1}{3},-\frac{1}{3},\frac{2}{3}\right). \end{array}$$

$$-p(0,0,1) = 0 \times (-1,1,0) + \frac{4}{6} \left(-\frac{1}{2}, -\frac{1}{2}, 1\right) = \left(-\frac{1}{3}, -\frac{1}{3}, \frac{2}{3}\right).$$

La matrice de la projection orthogonale sur \mathscr{P} es

$$A = \begin{pmatrix} \frac{2}{3} & -\frac{1}{3} & -\frac{1}{3} \\ -\frac{1}{3} & \frac{2}{3} & -\frac{1}{3} \\ -\frac{1}{3} & -\frac{1}{3} & \frac{2}{3} \end{pmatrix}.$$

Deuxième méthode

On utilise la caractérisation du projeté orthogonal de $(a, b, c) \in \mathbb{R}^3$ sur \mathscr{P} :

$$\begin{cases} (a,b,c) - p(a,b,c) \in \mathscr{P}^{\perp} = \operatorname{Vect}(1,1,1) \\ p(a,b,c) \in \mathscr{P} = \operatorname{Vect}((-1,1,0),(-1,0,1)) \end{cases} \iff \begin{cases} (a,b,c) - p(a,b,c) \in \mathscr{P}^{\perp} \\ p(a,b,c) = \alpha(-1,1,0) + \beta(-1,0,1),(\alpha,\beta) \in \mathbb{R}^2 \end{cases}$$

$$\iff \begin{cases} (a,b,c) - p(a,b,c) \in \mathscr{P}^{\perp} \\ p(a,b,c) = (-\alpha-\beta,\alpha,\beta),(\alpha,\beta) \in \mathbb{R}^2 \end{cases}$$

— Avec (a, b, c) = (1, 0, 0) alors $p(1, 0, 0) = (-\alpha - \beta, \alpha, \beta)$ vérifie :

$$\begin{cases} ((1,0,0)-(-\alpha-\beta,\alpha,\beta)|(-1,1,0)) &= 0 \\ ((1,0,0)-(-\alpha-\beta,\alpha,\beta)|(-1,0,1)) &= 0 \end{cases} \iff \begin{cases} ((1+\alpha+\beta,-\alpha,-\beta)|(-1,1,0)) &= 0 \\ ((1+\alpha+\beta,-\alpha,-\beta)|(-1,0,1)) &= 0 \end{cases}$$

$$\iff \begin{cases} -1-\alpha-\beta-\alpha &= 0 \\ -1-\alpha-\beta-\beta &= 0 \end{cases}$$

$$\iff \begin{cases} 1+2\alpha+\beta &= 0 \\ 1+\alpha+2\beta &= 0 \end{cases}$$

On trouve
$$\alpha=\beta=-\frac{1}{3}.$$
 Ainsi, $p(1,0,0)=\left(\frac{2}{3},-\frac{1}{3},-\frac{1}{3}\right).$ — On trouve de manière analogue $p(0,1,0)$ en résolvant le système :

$$\left\{ \begin{array}{ll} ((0,1,0)-(-\alpha-\beta,\alpha,\beta)|(-1,1,0)) &=& 0 \\ ((0,1,0)-(-\alpha-\beta,\alpha,\beta)|(-1,0,1)) &=& 0 \end{array} \right. \\ \left. \iff \left\{ \begin{array}{ll} ((\alpha+\beta,1-\alpha,-\beta)|(-1,1,0)) &=& 0 \\ ((\alpha+\beta,1-\alpha,-\beta)|(-1,0,1)) &=& 0 \end{array} \right. \\ \\ \Leftrightarrow \left\{ \begin{array}{ll} -\alpha-\beta+1-\alpha &=& 0 \\ -\alpha-\beta-\beta &=& 0 \end{array} \right. \\ \\ \Leftrightarrow \left\{ \begin{array}{ll} 1-2\alpha-\beta &=& 0 \\ -\alpha-2\beta &=& 0 \end{array} \right. \\ \end{array}$$

On trouve
$$\alpha=\frac{2}{3}$$
 et $\beta=-\frac{1}{3}$. Ainsi, $p(0,1,0)=\left(-\frac{1}{3},\frac{2}{3},-\frac{1}{3}\right)$ Enfin, on détermine $p(0,0,1)$ en résolvant le système

$$\begin{cases} ((0,0,1)-(-\alpha-\beta,\alpha,\beta)|(-1,1,0)) &= 0 \\ ((0,0,1)-(-\alpha-\beta,\alpha,\beta)|(-1,0,1)) &= 0 \end{cases} \iff \begin{cases} ((\alpha+\beta,-\alpha,1-\beta)|(-1,1,0)) &= 0 \\ ((\alpha+\beta,-\alpha,1-\beta)|(-1,0,1)) &= 0 \end{cases}$$

$$\iff \begin{cases} -\alpha-\beta-\alpha &= 0 \\ -\alpha-\beta+1-\beta &= 0 \end{cases}$$

$$\iff \begin{cases} -2\alpha-\beta &= 0 \\ 1-\alpha-2\beta &= 0 \end{cases}$$

On trouve :
$$\alpha=-\frac{1}{3}$$
 et $\beta=\frac{2}{3}$. Ainsi, $p(0,0,1)=\left(-\frac{1}{3},-\frac{1}{3},\frac{2}{3}\right)$.

Finalement, on retrouve que la matrice A est la matrice dans la base canonique de la projection orthogonale sur P (déjà déterminée avec la première méthode).

Exercice 35

1. Soit E un espace préhilbertien réel.

On considère p_D la projection orthogonale sur une droite vectorielle D de E.

Pour $x \in E$, déterminer $p_D(x)$ en fonction de x.

2. On suppose que E est un espace euclidien.

Déterminer en fonction de x, la projection orthogonale sur un hyperplan H de E.

Solution. 1. Soit ε un vecteur directeur unitaire de la droite vectorielle D.

Soit $x \in E$. La projection de x sur D est donnée par la décomposition :

$$p_D(x) = (x|\varepsilon)\varepsilon.$$

Notons que si est un vecteur directeur directeur de D (non nécessairement unitaire, mais nécessairement non nul) alors:

$$p_D(x) = \left(x \left| \frac{u}{||u||} \right) \frac{u}{||u||} = \frac{(x|u)}{||u||^2} u = \frac{(x|u)}{(u|u)} u.$$

2. On note $\dim(E) = n$ et $(\varepsilon_1, \dots, \varepsilon_{n-1})$ une base orthonormée de H. Alors

$$p(x) = (x|\varepsilon_1)\varepsilon_1 + \dots + (x|\varepsilon_{n-1})\varepsilon_{n-1}.$$

On peut également noter que $E = H \oplus H^{\perp}$ avec $\dim H^{\perp} = \dim E - \dim(H) = n - (n-1) = 1$.

L'orthogonal $D = H^{\perp}$ est donc une droite vectorielle. On note p_D et p_H les projections orthogonales associées. On a $p_D + p_H = \mathrm{Id}_E$.

Ainsi, pour tout $x \in E$, $p_H(x) = x - \frac{(x|u)}{||u||^2}u$ où u est un vecteur directeur de H (c'est-à-dire un vecteur générateur de H^{\perp}).

Définition 36: Distance d'un point à un sous-espace

Soient $x \in E$ et F un sous-espace vectoriel de dimension finie de E.

On appelle distance de x à F le nombre $d(x, F) = \inf_{u \in F} ||x - u||$.

Théorème 37: Minimisation

Soit $x \in E$ et F un sous-espace vectoriel de dimension finie de E.

Alors $d(x, F) = \inf_{u \in F} ||x - u|| = ||x - p_F(x)||$ où p_F est la projection orthogonale sur F.

 $\textit{D\'{e}monstration}. \ \ \text{Notons que la d\'{e}finition} \ d(x,f) = \inf_{u \in F} ||x-u|| \ \text{a un sens car l'ensemble} \ A = \{||x-u|| : u \in F\}$ est une partie de \mathbb{R} non vide $(||x - 0_E|| = ||x|| \in A)$ est minorée par 0.

Soit $u \in F$. Par le théorème de Pythagore :

$$||x - u||^2 = \left\| \underbrace{x - p_F(x)}_{\in F^{\perp}} + \underbrace{p_F(x) - u}_{\in F} \right\|^2 = ||x - p_F(x)||^2 + \underbrace{||p_F(x) - u||^2}_{\geqslant 0}$$

Ainsi, pour tout $u \in F: ||x-u|| \geqslant ||x-p_F(x)||$ Par conséquent $\inf_{u \in F} ||x-u|| \geqslant ||x-p_F(x)||$.

Dans l'inégalité précédente l'égalité, et donc le minimum, est réalisé pour $u = p_F(x)$.

Exercice 38

Déterminer la distance du vecteur $(a, b, c) \in \mathbb{R}^3$ au plan $\mathscr{P}: x + y + z = 0$.

Démonstration. Par le théorème précédent, il suffit de déterminer la projection orthogonale p(a,b,c) de (a,b,c)sur \mathscr{P} .

L'Exercice 33 fournit la matrice de cette projection orthogonale.

On obtient les coordonnées de p(a, b, c):

$$\begin{pmatrix} \frac{2}{3} & -\frac{1}{3} & -\frac{1}{3} \\ -\frac{1}{3} & \frac{2}{3} & -\frac{1}{3} \\ -\frac{1}{3} & -\frac{1}{3} & \frac{2}{3} \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \frac{1}{3} \begin{pmatrix} 2a - b - c \\ -a + 2b - c \\ -a - b + 2c \end{pmatrix}.$$

Ainsi, la distance de (a, b, c) à \mathscr{P} est donnée par

$$\left| \left| (a,b,c) - \frac{1}{3}(2a-b-c,-a+2b-c,-a-b+2c) \right| \right| = \frac{|a+b+c|}{3} \left| |(1,1,1)| \right| = \frac{|a+b+c|}{\sqrt{3}}.$$