proposal_english.md 2025-10-06

Systematic Multi-Timeframe Ablation Study for Bitcoin Price Prediction

Student Name: Jeawn Lee

1. Background & Motivation

Bitcoin experiences repeated significant drawdowns due to extreme volatility and fat-tail distributions, degrading risk-adjusted performance while increasing the practical value of decline avoidance. While recent research has demonstrated the effectiveness of multi-timeframe analysis in Bitcoin prediction, existing studies often focus on short-term timeframes (5min-4h) and assume that adding more timeframes continues to improve performance. However, the fundamental question remains: **does adding more timeframes actually continue to improve prediction performance, or does it introduce noise and overfitting?** Additionally, **does utilizing historical information (24h) also contribute meaningfully to risk prediction?** This study employs a controlled Ablation Study $(A0 \rightarrow A1 \rightarrow A2 \rightarrow A3)$ to rigorously test whether each timeframe addition provides meaningful performance gains or introduces diminishing returns.

Research Questions:

- RQ1: What is the optimal MTF combination for long-term risk prediction when expanding H4 → D1 → W1?
- RQ2: Does utilizing historical information (24h) contribute meaningfully to risk prediction?

2. Methods & Hypotheses

2.1. Methods

Features & Ablation Study:

- Core Technical Indicators: RSI, MACD, MA(7/14/20/60/120), Ichimoku, OHLCV derivatives
- Multi-Timeframe Hierarchy: W1 → D1 → H4
- Ablation Study Design:
 - A0 (Baseline): H4 timeframe technical indicators only
 - A1 (MTF-1): A0 + D1 timeframe indicators
 - A2 (MTF-2): A1 + W1 timeframe indicators
 - A3 (MTF-3): A2 + 24h historical features

Model & Validation:

- Model: LightGBM multiclass (class_weight=1/prevalence)
- Cross-Validation: Purged & Embargoed Time-Series CV (H=30, E=30)
- Evaluation: Macro-F1 (primary), Balanced Accuracy, OvR ROC-AUC, Brier Score

2.2. Hypotheses

H1 (Incremental Contribution of MTF): Multi-timeframe addition will show either meaningful improvement (A0 < A1 < A2) or diminishing returns $(A0 \ge A1 \ge A2)$, indicating whether additional timeframes provide value or introduce noise.

proposal_english.md 2025-10-06

H2 (Historical Features Contribution): Historical features will either enhance performance (A2 < A3) or introduce noise (A2 \geq A3), testing the value of 24h lookback information.

H3 (Feature Sensitivity for Sell Signal): SHAP analysis will identify the most important features for 'sell' signal prediction, revealing which features are most critical for decline risk prediction.

3. Materials & Data Sources

3.1. Data Source and Period

• Asset: BTC/USD spot price data

• **Period:** 2020-05-12 ~ 2024-04-20 (post-3rd halving period)

3.2. Technical Indicators & Feature Engineering

Technical Indicators: RSI (14-period), MACD (12,26,9), Moving Averages (7,14,20,60,120), Ichimoku Cloud, OHLCV

Multi-timeframe Feature Engineering: Follows the Ablation Study design $(A0 \rightarrow A1 \rightarrow A2 \rightarrow A3)$ with hierarchical structure $(W1 \rightarrow D1 \rightarrow H4)$ and leakage prevention methods (shift=0).

Labeling Scheme:

Prediction Horizon: 30-day

• Thresholds: -15% (sell), +5% (buy), otherwise (wait)

4. Expected Results & Contribution

Expected Results:

- Scenario 1: Meaningful performance improvement with MTF information addition (A0 < A1 < A2 < A3)
- Scenario 2: Diminishing returns or noise introduction (A0 ≥ A1 ≥ A2 ≥ A3)
- Scenario 3: Mixed results where some timeframes help while others introduce noise
- SHAP analysis will reveal which features are most important for 'sell' signal prediction

5. Validation & Evaluation Protocol

Time-Series Cross-Validation:

- Method: Purged & Embargoed CV (H=30, E=30) to prevent data leakage
- Fold Design: Monthly test periods with embargo periods for temporal independence
- Fair Comparison: All ablation steps (A0→A1→A2→A3) use identical fold indices

Evaluation Metrics:

- Primary: Macro-F1 (class imbalance consideration)
- Secondary: Balanced Accuracy, OvR ROC-AUC, Brier Score
- Statistical Testing: Directional Analysis, Effect Size (Cohen's d), Bootstrap CI (95%), Noise Detection