Lecture 14

Regression with Time Series Errors, Unit Root Tests, Spurious Correlations, and Prewhitening

Reading: Cryer and Chen (2008): Chapter 3.3-3.4; Chapter 6.4; Chapter 11.3-11.4

MATH 4070: Regression and Time-Series Analysis

Whitney Huang Clemson University

Agenda

- Time Series Regression Models
- Quarter Squares Regression
- Unit Root Tests in Time Series Analysis
- Spurious Correlation and Prewhitening

Notes

Notes

Time Series Regression

Suppose we have the following time series model for $\{Y_t\}$:

$$Y_t = m_t + \eta_t$$

where

- m_t captures the mean of $\{Y_t\}$, i.e., $\mathbb{E}(Y_t) = m_t$
- $\bullet \ \{\eta_t\}$ is a zero mean stationary process with ACVF $\gamma_{\eta}(\cdot)$

The component $\{m_t\}$ may depend on time t, or possibly on other explanatory series

Notes				

Example Models for m_t : Trends and Seasonality

- Constant trend model: For each t let m_t = β_0 for some unknown parameter β_0
- Simple linear regression: For unknown parameters β_0 and β_1 ,

$$m_t = \beta_0 + \beta_1 x_t,$$

where $\{x_t\}$ is some explanatory variable indexed in time (may just be a function of time or could be other series)

• Harmonic regression: For each t let

$$m_t = A\cos(2\pi\omega t + \phi),$$

where A > 0 is the amplitude (an unknown parameter), $\omega > 0$ is the frequency of the sinusoid (usually known), and $\phi \in (-\pi, \pi]$ is the phase (usually unknown). We can rewrite this model as

$$m_t = \beta_0 x_{1,t} + \beta_1 x_{2,t},$$

where $x_{1,t} = \cos(2\pi\omega t)$ and $x_{2,t} = \sin(2\pi\omega t)$

Multiple Linear Regression Model

Suppose there are p explanatory series $\{x_{j,t}\}_{j=1}^p$, the time series model for $\{Y_t\}$ is

$$Y_t = m_t + \eta_t$$

where

$$m_t = \beta_0 + \sum_{j=1}^p \beta_j x_{j,t},$$

and $\{\eta_t\}$ is a mean zero stationary process with ACVF

We can write the linear model in matrix notation:

$$Y = X\beta + \eta$$
,

where $\mathbf{Y} = (Y_1, \dots, Y_n)^T$ is the observation vector, the coefficient vector is $\boldsymbol{\beta}$ = $(\beta_0,\beta_1,\cdots,\beta_p)^T$, $\boldsymbol{\eta}$ = $(\eta_1,\cdots,\eta_n)^T$ is the error vector, and the design matrix is

$$\boldsymbol{X} = \begin{bmatrix} 1 & x_{1,1} & x_{2,1} & \cdots & x_{p,1} \\ 1 & x_{1,2} & x_{2,2} & \cdots & x_{p,2} \\ \vdots & \vdots & \vdots & \cdots & \vdots \\ 1 & x_{1,n} & x_{2,n} & \cdots & x_{p,n} \end{bmatrix}$$

Notes

Notes

Model Estimates & Distribution for i.i.d. Errors

Suppose $\{\eta_t\}$ is i.i.d. $N(0, \sigma^2)$. Then the ordinary least squares (OLS) estimate of β is

$$\hat{\boldsymbol{\beta}}_{OLS} = (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{Y},$$

with

$$\hat{\sigma}^2 = \frac{\left(\boldsymbol{Y} - \boldsymbol{X} \hat{\boldsymbol{\beta}}_{\text{OLS}} \right)^T \left(\boldsymbol{Y} - \boldsymbol{X} \hat{\boldsymbol{\beta}}_{\text{OLS}} \right)}{n - (p + 1)}$$

- Gauss-Markov theorem: $\hat{\beta}_{OLS}$ is the best linear unbiased estimator (BLUE) of β
- We have

$$\hat{\boldsymbol{\beta}}_{\text{OLS}} \sim N(\boldsymbol{\beta}, \sigma^2 (\boldsymbol{X}^T \boldsymbol{X})^{-1})$$

is independent of

$$\frac{(n-(p+1))\hat{\sigma}^2}{\sigma^2} \sim \chi^2_{n-(p+1)}$$

Temperatures and Tree Ring Proxies [Jones & Mann, 2004]

Residuals from a linear regression fit are correlated in time \Rightarrow OLS is not appriate here \odot

Regression with Time Series Errors, Unit Root Tests, Spurious Correlations, and Prewhitening

STATISTICAL SCIENCES

Regression Models Generalized Leas

Unit Root Tests in Time Series Analysis

Correlation and Prewhitening

14.7

Notes

Generalized Least Squares Regression

When dealing with time series the errors $\{\eta_t\}$ are typically correlated in time

 \bullet Assuming the errors $\{\eta_t\}$ are a stationary Gaussian process, consider the model

$$Y = X\beta + \eta$$
,

where η has a multivariate normal distribution, i.e., $\eta \sim \mathrm{N}(\mathbf{0}, \Sigma)$

ullet The generalized least squares (GLS) estimate of eta is

$$\hat{\boldsymbol{\beta}}_{\text{GLS}} = \left(\boldsymbol{X}^T \boldsymbol{\Sigma}^{-1} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^T \boldsymbol{\Sigma}^{-1} \boldsymbol{Y},$$

with

$$\hat{\sigma}^2 = \frac{\left(\boldsymbol{Y} - \boldsymbol{X} \hat{\boldsymbol{\beta}}_{\text{GLS}}\right)^T \left(\boldsymbol{Y} - \boldsymbol{X} \hat{\boldsymbol{\beta}}_{\text{GLS}}\right)}{n - \left(p + 1\right)}$$

Regression with Time Series Errors, Unit Root Tests, Spurious Correlations, and Prewhitening

Time Series

Generalized Least Squares

Unit Root Tests in Time Series

Spurious
Correlation and
Prewhitening

Notes

14.8

Distributional Properties of Estimators

Gauss-Markov theorem: $\beta_{\rm GLS}$ is the best linear unbiased estimator (BLUE) of β

We have

$$\hat{\boldsymbol{\beta}}_{\text{GLS}} \sim \mathrm{N}(\boldsymbol{\beta}, \sigma^2 \left(\boldsymbol{X}^T \boldsymbol{\Sigma}^{-1} \boldsymbol{X} \right)^T)$$

• The variance of linear combinations of $\hat{\beta}_{\rm GLS}$ is less than or equal to the variance of linear combinations of $\hat{\beta}_{\rm OLS}$, that is:

$$\operatorname{Var}\left(\boldsymbol{c}^{T}\hat{\boldsymbol{\beta}}_{\mathrm{GLS}}\right) \leq \operatorname{Var}\left(\boldsymbol{c}^{T}\hat{\boldsymbol{\beta}}_{\mathrm{OLS}}\right)$$

Time Series
Errors, Unit Root
Tests, Spurious
Correlations, and
Prewhitening

Regression Models

Squares Regression

Unit Root Tests in Time Series

Spurious
Correlation and

Applying GLS in Practice

The main problem in applying GLS in practice is that $\boldsymbol{\Sigma}$ depends on ϕ , θ , and σ^2 and we have to estimate these

- A two-step procedure
 - **1** Estimate β by OLS, calculating the residuals $\hat{\boldsymbol{\eta}}$ = \boldsymbol{Y} – $\boldsymbol{X}\hat{\boldsymbol{\beta}}_{\mathrm{OLS}}$, and fit an ARMA to $\hat{\eta}$ to get Σ
 - Re-estimate β using GLS

• Alternatively, we can consider one-shot maximum likelihood methods

Likelihood-Based Regression Methods

Model:

$$Y = X\beta + \eta$$
,

where $\eta \sim N(\mathbf{0}, \Sigma)$

$$\Rightarrow Y \sim N(X\beta, \Sigma)$$

We maximum the Gaussian likelihood

$$L_n(\boldsymbol{\beta}, \boldsymbol{\phi}, \boldsymbol{\theta}, \sigma^2)$$

$$= (2\pi)^{-n/2} |\Sigma|^{-1/2} \exp\left[-\frac{1}{2} (\boldsymbol{Y} - \boldsymbol{X}\boldsymbol{\beta})^T \Sigma^{-1} (\boldsymbol{Y} - \boldsymbol{X}\boldsymbol{\beta})\right]$$

with respect to the regression parameters $\boldsymbol{\beta}$ and ARMA parameters ϕ , θ , σ^2 simultaneously

Notes

Notes

Comparison of Two-Step and One-Step Estimation **Procedures**

Let's conduct a Monte Carlo simulation with the following data-generating mechanism:

$$Y_t = 3 + 0.5x_{ty} + \eta_t,$$

where $\eta_t = 0.8\eta_{t-1} + Z_t - 0.4Z_{t-1}, Z_t \sim N(0, 1).$

- Simulate 500 replications, each with 200 data points
- Apply the two-step procedure: fit OLS, extract residuals, estimate ARMA model for $\hat{\Sigma}$, then refit using GLS.
- Apply the one-step procedure to jointly estimate regression and ARMA parameters
- Compare the estimation performance

Notes				

Comparing Regression Slope Estimates

Method	OLS	GLS	MLE
Bias	-4e-4	9e-4	9e-4
Sd	0.046	0.035	0.035
CI coverage	90.8%	93.6%	93.6%
CI width	0.162	0.129	0.129

Notes			

Comparing ARMA Estimates

Method	GLS	MLE
Bias	-0.038	-0.036
Sd	0.090	0.089
CI coverage	96.6%	96.2%
CI width	0.330	0.328

Notes			

An Example: Lake Huron Levels

Model:

 $Y_t = m_t + \eta_t$

where

 $m_t = \beta_0 + \beta_1 t$

 $\{\eta_t\}$ is some ARMA $(p,\,q)$ process

- Scientific Question: Is there evidence that the lake level has changed linearly over the years 1875-1972?
- Statistical Hypothesis:

Errors, Unit Root Tests, Spurious Correlations, and Prewhitening
MATHEMATICAL AND STATISTICAL SCIENCES
Generalized Least Squares Regression

Notes				

Fitting Result form the Two-Step Procedure

OLS:

lm(formula = LakeHuron ~ years)

Residuals:

Min 1Q Median -2.50997 -0.72726 0.00083 0.74402 2.53565

 ${\tt Coefficients:}$

Estimate Std. Error t value (Intercept) 625.554918 7.764293 80.568 years -0.024201 0.004036 -5.996

② AR: arima(x = lm\$residuals, order = c(2, 0, 0), include.mean = FALSE)

Coefficients:

ar1 ar2 1.0050 -0.2925 s.e. 0.0976

Refit GLS

Will leave it to you as an exercise

Fitting Result from One-Step MLE

> mle

tail: arimm(x = LakeHuron, order = c(2, 0, 0), xreg = cbind(rep(1, length(LakeHuron)), years), include.mean = FALSE)

Coefficients:

arl ar2 rep(1, length(LakeHuron))
1.0048 -0.2913 620.5115
s.e. 0.0976 0.1004 15.5771

years -0.0216 0.0081

sigma^2 estimated as 0.4566: log likelihood = -101.2, aic = 212.4

Notes

Notes

MLE Fit Diagnostics

data: y X-squared = 6.2088, df = 19, p-value = 0.9974

Comparing Confidence Intervals

Regression Slope β_1 :

Method	2.5%	Point Est.	97.5%
OLS	-0.0322	-0.0242	-0.0162
MLE	-0.0374	-0.0216	-0.0057

AR ϕ_1 :

Method	2.5%	Point Est.	97.5%
GLS	0.813	1.005	1.196
MLE	0.813	1.005	1.196

AR ϕ_2 :

Method	2.5%	Point Est.	97.5%
GLS	-0.489	-0.293	-0.096
MLE	-0.488	-0.291	-0.095

Notes			
			_
			_

Unit Root Tests: Tests for Non-Stationarity

Suppose we have X_1, \dots, X_n that follow the model

$$(X_t - \mu) = \phi(X_{t-1} - \mu) + Z_t,$$

where $\{Z_t\}$ is a $\mathrm{WN}(0,\sigma^2)$ process

• A unit root test considers the following hypotheses:

$$H_0: \phi$$
 = 1 versus $H_a: |\phi| < 1$

- Note that where $|\phi| < 1$ the process is stationary (and causal) while ϕ = 1 leads to a nonstationary process
- Exercise: Letting $Y_t = \nabla X_t = X_t X_{t-1}$, show that

$$Y_t = (1 - \phi)\mu + (\phi - 1)X_{t-1} + Z_t$$

= $\phi_0^* + \phi_1^* X_{t-1} + Z_t$,

where $\phi_0^* = (1 - \phi)\mu$ and $\phi_1^* = (\phi - 1)$

Notes			
-			

Unit Root Tests via Ordinary Least Squares Argument

- \bullet We can estimate ϕ_0^* and ϕ_1^* using ordinary least squares
- Using the estimate of ϕ_1^* , $\hat{\phi}_1^*$, and its standard error, $\hat{\mathrm{SE}}(\hat{\phi_1^*})$, the Dickey-Fuller statistics is

$$T = \frac{\hat{\phi}_1^*}{\hat{SE}(\hat{\phi}_1^*)}$$

ullet Under H_0 this statistic follows a Dickey-Fuller distribution. For a level α test we reject if the observed test statistic is smaller than a critical value C_{α}

$$\begin{array}{c|cccc} \alpha & 0.01 & 0.05 & 0.10 \\ \hline C_{\alpha} & -3.43 & -2.86 & -2.57 \\ \end{array}$$

 We can extend to other processes (AR(p), $\mathsf{ARMA}(p,q)$, and $\mathsf{MA}(q)$)—see Brockwell and Davis [2016, Section 6.3] for further details

Notes			

Unit Root Test: Simulated Examples

Recall

$$\nabla X_t = \phi_0^* + \phi_1^* X_{t-1} + Z_t,$$

where ϕ_0^\star = $(1-\phi)\mu$ and ϕ_1^\star = $(\phi-1)$

Let's demonstrate the test with a simulated random walk $(\phi = 1)$ and a simulated white noise $(\phi = 0)$

Unit Root Test: Simulated Examples Cont'd

> diff.rw <- diff(rw); n <- length(rw)</pre> > ys <- diff.rw; xs <- rw[1:(n-1)]</pre> > ols.rw <- lm(ys ~ xs); summary(ols.rw)</pre>

Coefficients:

Estimate Std. Error t value Pr(>|t|) (Intercept) 0.10125 0.05973 1.695 0.0906. -0.01438 0.00899 -1.600 0.1102 XS

> diff.wn <- diff(wn)</pre>

> ys <- diff.wn; xs <- wn[1:(n-1)]</pre> > ols.wn <- lm(ys ~ xs); summary(ols.wn)</pre>

Coefficients:

Estimate Std. Error t value Pr(>|t|) 0.98 <2e-16

Notes

Notes

Augmented Dickey-Fuller Test in R

Augmented Dickey-Fuller (ADF) Test: to check for the presence of a unit root in a time series and determine if the series is stationary

 H_0 : The time series has a unit root (non-stationary)

 H_1 : The time series is stationary

If p-value < significance level (e.g., 0.05), reject $H_0 \Rightarrow$ stationary

Augmented Dickey-Fuller Test

data: rM $\label{eq:problem} \text{Dickey-Fuller} = -1,9203, \ \, \text{Lag order} = 7, \ \, \text{p-value} = 0.612 \\ \text{alternative hypothesis: stationary}$

Lagged Regression and Cross-Covariances

Consider the lagged regression model:

$$Y_t = \beta_0 + \beta_1 X_{t-d} + \varepsilon_t,$$

where $X\mbox{'s}$ are iid random variables with variance σ_X^2 and the ε 's are also white noise with variance σ_{ε}^2 and are independent of the X's

The cross-covariance function of $\{Y_t\}$ and $\{X_t\}$ is

$$\gamma_{XY}(h) = \mathbb{E}\left[\left(X_{t+h} - \mu_X\right)\left(Y_t - \mu_Y\right)\right],$$

and the cross-correlation function (CCF) is

$$\rho_{XY}(h) = \frac{\gamma_{XY}(h)}{\sqrt{\gamma_X(0)\gamma_Y(0)}}$$

If d > 0, we say X_t leads Y_t , and we have CCF is identically zero except for lag h=-d, where CCF is $\frac{\beta_1 \sigma_X}{\sqrt{\beta_1^2 \sigma_X^2 + \sigma_\varepsilon^2}}$

Lagged Regression and Its CCF

Consider the following reggression model:

$$Y_t = X_{t-2} + \varepsilon_t,$$

where $X_t \overset{i.i.d}{\sim} \mathrm{N}(0,1)$, $\varepsilon_t \overset{i.i.d}{\sim} \mathrm{N}(0,0.25)$, and X's and ε 's are independent to each other. The CCF is $\frac{1}{\sqrt{1+0.25}}$ = 0.8944 when h = -2, and 0 otherwise

Notes

Notes

Spurious Correlations

- The lagged regression discussed earlier may be too restrictive, as X_t , Y_t , and ε_t could be temporally correlated
- Temporal dependence makes the horizon blue dashed lines $(\pm 1.96/\sqrt{n})$ unreliable
- This can lead to spurious correlations

Example: X_t and Y_t are independent, but both follow an

Regression with Time Series
Errors, Unit Root
Tests, Spurious
Correlations, and
Prewhitening

Notes							

Spurious Correlations: An Example with Milk and **Electricity Data**

- Observed Correlation: Milk production and electricity usage show a high correlation due to shared seasonal patterns
- Temporal Dependence: Both series exhibit seasonality and autocorrelation, making raw correlations misleading
- Key Takeaway: Spurious correlations highlight the need for detrending and deseasonalizing in time series analysis

Understanding Prewhitening Prewhitening: A technique to remove autocorrelation in a time series before analyzing cross-correlations

Steps in Prewhitening:

- ullet Fit a time series model (e.g., ARMA) to $\{X_t\}$ and filter it to obtain residuals
- \bullet Apply the same model to $\{Y_t\}$ for consistent filtering
- Compute the cross-correlation of the residuals

Notes

Notes

Applying Prewhitening to the Milk and Electricity Data Example

- > me.dif = ts.intersect(diff(diff(milk, 12)),
 + diff(diff(log(electricity), 12)))
 > prewhiten(as.vector(me.dif[, 1]), as.vector(me.dif[, 2]), ylab = 'CCF')
 > par(las = 1, mgp = c(2,2,1,0), mar = c(3.6, 3.6, 0.8, 0.6))
 > prewhiten(as.vector(me.dif[, 1]), as.vector(me.dif[, 2]), ylab = 'CCF')
- 0.2 S 0.0 -0.1

