1

Intelligent Agents and their Environments

Claudia Chirita

School of Informatics, University of Edinburgh

1.a

What Is an Intelligent Agent?

INTELLIGENT AGENTS

INTELLIGENT AGENTS

EXAMPLE · MAIL SORTING ROBOT

Environment · conveyor belt of letters

Goals · route letter into correct bin

Percepts · array of pixel intensities

Actions · route letter into bin

EXAMPLE · MAIL SORTING ROBOT

Environment · conveyor belt of letters

Goals · route letter into correct bin

Percepts · array of pixel intensities

Actions · route letter into bin

Wikipedia entry on mail sorters

EXAMPLE · INTELLIGENT HOUSE

- **Environment** · occupants enter and leave house
 - · occupants enter and leave rooms
 - daily variation in outside light & temperature
- **Goals** · occupants are warm
 - · room lights are on when room is occupied
 - house energy efficient
- **Percepts** signals from temperature sensor, movement sensor, clock, sound sensor
- **Actions** · room heaters on/off
 - · lights on/off

EXAMPLE · INTELLIGENT HOUSE

- **Environment** · occupants enter and leave house
 - · occupants enter and leave rooms
 - daily variation in outside light & temperature
- **Goals** · occupants are warm
 - room lights are on when room is occupied
 - house energy efficient
- **Percepts** signals from temperature sensor, movement sensor, clock, sound sensor
- **Actions** · room heaters on/off
 - · lights on/off
- Smarthus a plea for simplicity
- Wikipedia entry on home automation

EXAMPLE · AUTONOMOUS CAR

Environment · streets, other vehicles, pedestrians, traffic signals, lights, signs

Goals · safe, fast, legal trip

Percepts · camera, GPS signals, speedometer, sonar

Actions · steer, accelerate, brake

EXAMPLE · AUTONOMOUS CAR

Environment · streets, other vehicles, pedestrians, traffic signals, lights, signs

Goals ⋅ safe, fast, legal trip

Percepts · camera, GPS signals, speedometer, sonar

Actions · steer, accelerate, brake

- The ethical dilemma of self-driving cars Patrick Lin
- Wikipedia entry on autonomous cars

1.b

Types of Intelligent Agents

SIMPLE REFLEX AGENTS

- Action depends only on immediate percepts.
- Implement by condition-action rules.

EXAMPLE

Agent · mail sorting robot

Environment · conveyor belt of letters

Rule · $city = Edinburgh \rightarrow put in Scotland bag$

SIMPLE REFLEX AGENTS


```
\begin{tabular}{ll} \textbf{function} & \textbf{SIMPLE-REFLEX-AGENT} (percept) \\ \textbf{returns} & action \\ \end{tabular}
```

persistent: rules (set of condition-action rules)

state ← INTERPRET-INPUT(percept)

rule ← RULE-MATCH(state, rules)

action ← rule ACTION

return action

MODEL-BASED REFLEX AGENTS

- Action may depend on history or unperceived aspects of the world.
- Need to maintain internal world model.

EXAMPLE

Agent · robot vacuum cleaner

Environment · dirty room, furniture

Model · map of room, which areas already cleaned

Sensor/model trade-off.

MODEL-BASED REFLEX AGENTS


```
function REFLEX-AGENT-WITH-STATE(percept)
returns action
persistent: state, description of current world state
model, description of how the next state depends
on current state and action
rules, a set of condition-action rules
action, the most recent action, initially none
state ← UPDATE-STATE(state, action, percept, model)
rule ← RULE-MATCH(state, rules)
action ← rule.ACTION
return action
```

GOAL-BASED AGENTS

- The agents so far had fixed, implicit goals.
- We want agents with variable goals.
- Forming plans to achieve goals is a topic for later.

EXAMPLE

Agent · household service robot

Environment · house & people

Goals · clean clothes, tidy room, table laid

GOAL-BASED AGENTS

UTILITY-BASED AGENTS

- The agents so far had a single goal.
- Agents may have to juggle conflicting goals.
- Need to optimise utility over a range of goals.

UTILITY – measure of *goodness* (real number). Combine with probability of success to get *expected utility*.

EXAMPLE

Agent · autonomous car

Environment · roads, vehicles, signs

Goals · stay safe, reach destination, be quick, obey law, save fuel

UTILITY-BASED AGENTS

LEARNING AGENTS

How do agents improve their performance in light of experience?

- Generate problems which will test performance.
- Perform activities according to rules, goals, model, utilities, etc.
- Monitor performance and identify non-optimal activity.
- Identify and implement improvements.

We will not be covering learning agents, but this topic is dealt with in several honours-level courses (see also R&N, Ch. 18-21).

QUESTION TIME!

Consider a chess playing program. What sort of agent would it need to be?

ANSWER TIME!

Consider a chess playing program.

What sort of agent would it need to be?

Might be...

Simple reflex · but some actions require some memory (e.g. castling)

Model-based reflex · but needs to reason about future

Goal based · but only has one goal

Utility based · might consider multiple goals with limited lookahead

Learning · learns from experience or self-play

1.c

Types of Environments

TYPES OF ENVIRONMENTS

A. FULLY OBSERVABLE vs. PARTIALLY OBSERVABLE

Fullly · agent's sensors describe the environment state fully

Partially · some parts of the environment not visible; noisy sensors

B. DETERMINISTIC vs. STOCHASTIC

Deterministic · next state fully determined by current state and agent's actions

Stochastic · random changes (can't be predicted exactly)

An environment may appear stochastic if it is only partially observable.

TYPES OF ENVIRONMENTS

C. EPISODIC vs. SEQUENTIAL

Episodic · next action does not depend on previous actions

mail-sorting robot vs. crossword puzzle

D. STATIC vs. DYNAMIC

Static • environment unchanged while agent deliberates

crossword puzzle vs. chess industrial robot vs. autonomous car

TYPES OF ENVIRONMENTS

E. DISCRETE vs. CONTINUOUS

Discrete · percepts, actions and episodes are discrete

chess vs. autonomous car

F. SINGLE AGENT vs. MULTI-AGENT

Cardinality · how many objects must be modelled as agents?

crossword puzzle vs. poker

Element of choice over which objects are considered agents.

SUMMARY

An agent may have any combination of these properties:

from **benign** – fully observable, deterministic, episodic, static, discrete and single agent

to **chaotic** – partially observable, stochastic, sequential, dynamic, continuous and multi-agent.

- · a mail-sorting robot?
- · an intelligent house?
- · a car-driving robot?