Supplementary Materials

Supplementary Table 1. Strains and plasmids used in this study.

Strains and plasmids	Description	Sources
Strains		
E. coli DH5α	$F^-\Delta lac U169 (\Phi 80 lac Z \Delta M15)$ hsdR17 recA1 endA1 supE44 gyrA96 thi-1 relA1	Invitrogen
BW25113	gyrA90 int-1 retA1 F-, λ-, E. coli K-12 strain BD792 (CGSC6159) lacZ	Invitrogen
$BW \Delta CD$	BW25113 strain knocked out codA	Invitrogen
Plasmids		
gY9s-dual T7-Trrnb- HmaS(Scpa1)-Bio 177	Str ^R , CPA1 promoter, Trrnb, T7 promoter, HmaS Am, CD enzyme, mCherry, pobA promoter, PobR	This study
pHyo094	Cmr^{R} , f1 ori,p15A ori, P_{BAD} - UGI	Hyojin <u>.</u> et al. (2020)
PSC101-dCas9(sg-eGFP-1)	Kan ^R , pSC101 ori, Rep 101, lacI, sgRNA1-eGFP, gRNA scaffold, dCas9, tracrRNA	This study
R6K-dCas9(sg-eGFP-1)	Kan ^R , R6K ori, pir, lacI, sgRNA1-eGFP, gRNA scaffold, dCas9, tracrRNA	This study
R6K-dCas9(sg-vec)	Kan ^R , R6K ori, pir, lacI, trc promoter, sgRNA1-eGFP, gRNA scaffold, dCas9, tracrRNA	This study
R6K-dCas9(sg-pykF-1)	Kan ^R , R6K ori, pir, lacI, trc promoter, spacer(pykF), gRNA scaffold, dCas9, tracrRNA	This study
R6K-dCas9(sg-tyrB-2)	Kan ^R , R6K ori, pir, lacI, trc promoter, spacer(tyrB), gRNA scaffold, dCas9, tracrRNA	This study
R6K-dCas9(sg-tyrR-3)	Kan ^R , R6K ori, pir, lacI, trc promoter, spacer(tyrR), gRNA scaffold, dCas9, tracrRNA	This study
R6K-dCas9(sg-pheA-3)	Kan ^R , R6K ori, pir, lacI, trc promoter, spacer(pheA), gRNA scaffold, dCas9, tracrRNA	This study
R6K-dCas9-gRNA-pykF- tyrB-tyrR-pheA	Kan ^R , R6K ori, pir, lacI, tre promoter, spacer(pheA), tre promoter, spacer(tyrR), tre promoter, spacer(tyrB), tre promoter, spacer(pykF), gRNA scaffold, dCas9, tracrRNA	This study

$\begin{tabular}{ll} \textbf{Supplementary Table 2.} Primers used in this study. \\ \end{tabular}$

Primers	Sequences		
gY9s-dual T7-Trrnb-HmaS(Scpa1)-Bio 177 construction			
(1) Bio 177 cloning			
Bio-F=0811	GTGCTGGGTCTCGCCTTTTACCGTTTGTAA		
	TCGATGG		
Bio-R=0811	AGCGTGGGTCTCTTATATCTCCTTCTTAAAA		
	GATCTTTGAA		
(2) dual T7-HmaS cloning			
AM-gg-F=0709	GTGCTGGGTCTCGGCAATAATACGACTCAC		
	TATAGGATGGCGGCGCAGGCGGG		
AM-R=0811	AGCGTGGGTCTCTTAATACGACTCACTATA		
	GGTTAACG		
(3) RE-TrrnB cloning			
RET-F=0811	GTGCTGGGTCTCGTATAAAGGCCCAGTCTT		
	TCGACTG		
RET-R=0811	AGCGTGGGTCTCTTTGCTGCCTGGCGGCA		
	GTAGCG		
(4) TrrnB cloning			
T-F=0811	GTGCTGGGTCTCGATTATGCCTGGCGGCAG		
	TAGCG		
T-R=0811	AGCGTGGGTCTCTAAGGCCCAGTCTTTCG		
	ACTG		
(5) Bio 177-Str construction			
CD-F==0617	GTGCTGGGTCTCGATTCTTACCGTTTGTAA		
	TCGATGGC		
Str-R=0617	AGCGTGGGTCTCTTGTGTTATTTGCCGACT		
	ACCTTG		
(6) HmaS-scpa1 construction			
cpa1-F=0725	GTGCTGGGTCTCGTAATTATCAAAAAGAGT		
	ATTGACATAAAGTC		
Hmas-R=0617	AGCGTGGGTCTCTGAATTCCGACATACAGC		
	AGG		

Supplementary Figure 1

Supplementary Figure 1. Evaluating the specificity of biosensor Bio177. HPP: 4-hydroxyphenylpyruvate, HMA: 4-hydroxymandelate, MA: Mandelic acid, 2PE: 2-Phenylethanol, PALD: phenylacetaldehyde.

Supplementary Figure 2

Supplementary Figure 2. Comparison of the functionality between the Bio177 plasmid (low activity) and the gY9s-HmaS-Bio177 plasmid (high activity) in bacteria under stress conditions. Both strains were plated on media with 0.01, 0.05 and 0.1 mg/L of 5-FC and clones containing the hmaS gene were selected. A 100% selection efficiency was achieved on the plate with 0.01 mg/L 5-FC medium. The wild-type strain was impaired in 0.05 mg/L 5-FC medium and eliminated in 0.1 mg/L 5-FC medium.

Supplementary Figure 3

gY9s-Hma S^{mut} -Bio177 mutant library plates 1, 2, 3

Supplementary Figure 3. By using the error-prone PCR with a low-fidelity DNA polymerase and adjusting Mn^{2+} and Mg^{2+} concentrations and their ratio, the mutation rate was manipulated. The Golden Gate assembly procedure was optimized to increase the insertion probability of mutated fragments into the vector. A mutant library with 10^5 clones was constructed.

Supplementary Figure 4.

Supplementary Figure 4. Colony PCR to screen for plasmids containing HmaS mutants.

Supplementary Figure 5

Supplementary Figure 5. The inhibitory effect of pSC101-dCas9-eGFP plasmid on CRISPRi. IPTG was used to induce sgRNA expression and Ara was used to induce eGFP expression.

Supplementary Figure 6

Supplementary Figure 6. Evaluation of eGFP inhibition by a sgRNA library using the CRISPRi technology. After co-transformation of R6K-dCas9-eGFP mutant library plasmid and pYB1a-eGFP plasmid, 24 colonies were selected for fluorescence characterization and DNA sequencing of the sgRNA 7-8bp spacer. Fi means Fully Interference, transferred to the strain that containing the non-mutated R6K-dCas9-eGFP plasmid.