9. Dynamics of the particle. General theorems.

The differential equations of the motion

Consider the material point M(m) moving in the Cartesian frame Oxyz under the action of the force $\vec{F} = \vec{F}(\vec{r}, \vec{v}, t)$ where $\vec{F}(X, Y, Z)$.

The differential equation of the motion is

$$m\frac{d^{2}\overrightarrow{r}}{dt^{2}} = \overrightarrow{F}(\overrightarrow{r}, \overrightarrow{v}, t), \ t \in (t_{0}, T]$$
 (9.1)

along with the initial conditions

$$\overrightarrow{r}(t_0) = \overrightarrow{r}_0, \ \overrightarrow{v}(t_0) = \overrightarrow{v}_0, \tag{9.2}$$

In the Cartesian frame Ox yz, Eqs. (9.1) and (9.2) are

$$m\frac{d^2x}{dt^2} = X$$
, $m\frac{d^2y}{dt^2} = Y$, $m\frac{d^2z}{dt^2} = Z$, (9.3)

$$\begin{vmatrix} x(t_0) = x_0, & y(t_0) = y_0, & z(t_0) = z_0 \\ \dot{x}(t_0) = \dot{x}_0, & \dot{y}(t_0) = \dot{y}_0, & \dot{z}(t_0) = \dot{z}_0, \end{vmatrix}$$
(9.4)

where

$$\overrightarrow{r}_0 = (x_0, y_0, z_0), \ \overrightarrow{v}_0 = (\dot{x}_0, \dot{y}_0, \dot{z}_0)$$

A first integral of the differential system of motion (9-3) – (9.4) is a (non-constant) continuously-differentiable function (class C^1)

$$\mathcal{F}(x, y, z, \dot{x}, \dot{y}, \dot{z}, t) = c \in \mathbb{R}, \ \forall \ t \ge t_0$$

$$(9.5)$$

which reduces to a constant when the functions

$$x = x(t), \quad y = y(t), \quad z = z(t)$$
 (9.6)

satisfy (9.3).

If we determine $k \le 6$ first integrals, for which

$$f_j(x_1, x_2, x_3, v_1, v_2, v_3; t) = C_j, \quad C_j = \text{const}, \quad j = 1, 2, ..., k,$$

the matrix

$$\mathbf{M} \equiv \left[\frac{\partial \left(f_1, f_2, \dots, f_k \right)}{\partial \left(x_1, x_2, x_3, v_1, v_2, v_3 \right)} \right]$$

being of rank k, then all the first integrals are functionally independent (for the sake of simplicity, further we say *independent first integrals*):

Thus, the problem is reduced to the integration of a system of equations (9.3) with only 6 - k unknowns (hence, a smaller number of unknowns). If k = 6, then all the first integrals are independent, so that the system (9.5) of first integrals determines all the unknown functions. We notice that for k > 6 the first integrals (9.5) are no more independent; we may thus set up at the most six independent first integrals.

P.P. Teodorescu, Mechanical Systems, Classical Models. Vol. I: Particle Mechanics, Springer, 2007

Momentum of a particle

Newton has introduced the notion of *momentum* (which he called *quantity of motion*) representing the product of the mass by the velocity of a point.

$$\overrightarrow{H} := m \overrightarrow{v} \tag{9.7}$$

momentum is a vector parallel to the velocity vector

From (9.1) we have

$$\frac{d}{dt}(m\overrightarrow{v}) = \overrightarrow{F} \Rightarrow \frac{d\overrightarrow{H}}{dt} = \overrightarrow{F}, \ \frac{d}{dt}(m\dot{x}) = X, \dots \qquad \overrightarrow{H}(t_0) = \overrightarrow{H}_0$$
 (9.8)

Equation (9.8) we have is called the momentum equation. From (9.8) we can formulate the theorem of momentum:

Theorem (theorem of momentum). The derivative with respect to time of the momentum of a free particle is equal to the resultant of the given forces which act upon it.

Another usual notation for momentum is: $\vec{P} = m\vec{v}$

Average Force, Momentum, and Impulse

Suppose you are pushing a cart with a force that is non-uniform, but has an average value $\vec{\mathbf{F}}_{ave}$ during the time interval Δt . We can find the average acceleration according to Newton's Second Law,

$$\vec{\mathbf{F}}_{\text{ave}} = m \, \vec{\mathbf{a}}_{\text{ave}} \,. \qquad \vec{\mathbf{a}}_{\text{ave}} = \frac{\Delta \vec{\mathbf{v}}}{\Delta t} \,.$$

Therefore Newton's Second Law can be recast as

$$\vec{\mathbf{F}}_{\text{ave}} = m \, \vec{\mathbf{a}}_{\text{ave}} = \frac{m \, \Delta \vec{\mathbf{v}}}{\Delta t}.$$

The change in momentum is the product of the mass and the change in velocity,

$$\Delta \vec{\mathbf{p}} = m \, \Delta \vec{\mathbf{v}} \; .$$

Newton's Second Law can be restated as follows: the product of the average force acting on an object and the time interval over which the force acts will produce a change in momentum of the object,

$$\vec{\mathbf{F}}_{\text{ave}} \, \Delta t = \Delta \vec{\mathbf{p}}.$$

This change in momentum is called the *impulse*,

$$\vec{\mathbf{I}} = \vec{\mathbf{F}}_{\text{ave}} \, \Delta t = \Delta \vec{\mathbf{p}}.$$

Force is a vector quantity; impulse is obtained by multiplying a vector by a scalar, and so impulse is also a vector quantity. The SI units for impulse are $[N \cdot s] = [kg \cdot m \cdot s^{-1}]$, which are the same units as momentum.

https://sites.ualberta.ca/~ygu/courses/phys144/notes/momentum1.pdf Example

Impulse and momentum:

A tennis ball (mass=0.1 kg) comes in from the right at 40 m/s at an angle 10 deg below horizontal. Then on a bad shot Rafa hits it at 30 deg above the horizontal at a speed of 60 m/s. What is the impulse of the net force and the average net force, assuming the contact (collision) duration is 0.01 sec.

Solution: Take positive X to the Right and positive Y as Up. The velocity components before (subscript 1) and after (2) the tennis ball is hit are:

$$v_{1x} = -40 \cos(10) = -39.39 \text{ m/s}$$
 $v_{1y} = -40 \sin(10) = -6.95 \text{ m/s}$ $v_{2x} = 60 \cos(30) = 51.96 \text{ m/s}$ $v_{2y} = 60 \sin(30) = 30 \text{ m/s}$

X-component of impulse is equal to x-component of momentum change I = p - p = m(v - v)

$$J_x = p_{2x} - p_{1x} = m(v_{2x} - v_{1x})$$

$$= 0.1 \times (51.96 - (-39.39)) = 9.14 \text{ kg} \cdot \text{m/s}$$

$$J_y = p_{2y} - p_{1y} = m(v_{2y} - v_{1y})$$

$$= 0.1 \times (30 - (-6.95)) = 3.70 \text{ kg} \cdot \text{m/s}$$

By vector addition

$$J = \sqrt{{J_x}^2 + {J_y}^2} = \sqrt{9.14^2 + 3.70^2} = 9.86 \text{ kg} \cdot \text{m/s}$$

Average net force: $\overline{F} = \frac{J}{\Delta t} = \frac{9.86}{0.01} = 986 \text{ N}$

Alternatively, we could use components of J to find components of average net force. The components of average net force are:

$$\overline{F}_x = \frac{J_x}{\Delta t} = \frac{9.14}{0.01} = 914 \text{ N}$$
 $\overline{F}_y = \frac{J_y}{\Delta t} = \frac{3.70}{0.01} = 370 \text{ N}$

The average net force is:

$$\overline{F} = \sqrt{\overline{F_x}^2 + \overline{F_y}^2} = \sqrt{914^2 + 370^2} = \sqrt{835,396 + 136,900} = 986.05 \text{ N}$$

Average Force Direction:
$$\theta = \tan^{-1} \left(\frac{\overline{F}_y}{\overline{F}_x} \right) = 22.04^{\circ}$$

Remarks: (1) Keep signs straight due to vector use (2) Because the ball was Not at rest initially, average force direction is NOT the same as ball direction (analogy: projectile motion)

Example

First integrals

• If $\vec{F} = 0$ then $\vec{H} = \overrightarrow{const}$, $\forall t \ge t_0$. This first integral is the law of momentum conservation.

$$\mathbf{H} = m\mathbf{v} = \mathbf{C}, \quad \mathbf{C} = \overrightarrow{\text{const}}, \quad H_i = C_i, \quad i = 1, 2, 3;$$

Theorem (conservation theorem of momentum). The momentum (and the velocity) of a free particle is conserved in time if and only if the resultant of the given forces which act upon it vanishes.

We notice that the relation $m\mathbf{v} = m\dot{\mathbf{r}} = \mathbf{C}$ leads to

$$m\mathbf{r} = \mathbf{C}t + \mathbf{C}'$$
, $\mathbf{C}, \mathbf{C}' = \overrightarrow{\text{const}}$, $mx_i = C_it + C_i'$, $i = 1, 2, 3$;

Taking into account the initial conditions we obtain:

$$\overrightarrow{v} = \overrightarrow{v}_0$$

$$\overrightarrow{r}(t) = \overrightarrow{v}_0(t - t_0) + \overrightarrow{r}_0$$

The motion of the particle *P* is thus rectilinear and uniform. Besides, this result corresponds to the principle of inertia, which appears thus as a particular case of the principle of action of forces (lex secunda).

• If $\vec{F} \neq 0$, $\forall t \geq t_0$ and exist a fixed direction $\vec{u} = (\alpha, \beta, \gamma)$ such that $\vec{F} \cdot \vec{u} = 0$, then using this in (9.1) we obtain

$$\frac{d}{dt}(\overrightarrow{H} \cdot \overrightarrow{u}) = \overrightarrow{F} \cdot \overrightarrow{u} = 0 \implies \overrightarrow{H} \cdot \overrightarrow{u} = c \in \mathbb{R}.$$

Thus,

$$\alpha \dot{x} + \beta \dot{y} + \gamma \dot{z} = c, \ \forall \ t \ge t_0, \tag{9.9}$$

is a first integral of the differential equations of motion.

Hence, if the force \mathbf{F} is parallel to a fixed plane, then the projection of the velocity of the free particle \mathbf{P} on the normal to this plane is conserved (is constant) in time

Example

Linear Momentum Conservation (1D)

Moment of momentum (angular momentum)

The moment of the momentum with respect to the pole O (origin of the coordinate system) is called *moment of momentum* (*angular momentum*) of the particle, with respect to this pole, and is given by

$$\overrightarrow{K}_0 := \overrightarrow{r} \times m \overrightarrow{v} = \overrightarrow{r} \times \overrightarrow{H}$$
 (9.10)

$$K_x = m(y\dot{z} - z\dot{y}), \quad K_y = m(z\dot{x} - x\dot{z}), \quad K_z = m(x\dot{y} - y\dot{x})$$
 (9.11)

From the equation of motion (9.1) we have

$$m\frac{d\overrightarrow{v}}{dt} = \overrightarrow{F} \quad | \times \overrightarrow{r}$$

$$\overrightarrow{r} \times \frac{d}{dt}(m\overrightarrow{v}) = \overrightarrow{r} \times \overrightarrow{F} \Rightarrow \frac{d}{dt}(\overrightarrow{r} \times m\overrightarrow{v}) = \overrightarrow{r} \times \overrightarrow{F}$$
 Moment (torque) of force **F** with respect to the pole O:
$$\overrightarrow{M}_{O}(\overrightarrow{F}) = \overrightarrow{r} \times \overrightarrow{F}$$

Theorem (theorem of angular momentum) The derivative with respect to time of the moment of momentum of a particle, with respect to a fixed pole, is equal to the moment of the force which act upon it, with respect to the same pole.

On projection on the Oxyz axes:

$$m\frac{d}{dt}(y\dot{z} - z\dot{y}) = yZ - zY,\dots$$
 (9.13)

First integrals

• If $\overrightarrow{M}_O(\overrightarrow{F}) = 0$ we deduce the law of the angular momentum conservation.

$$\overrightarrow{K}_0 = \overrightarrow{C} \in \mathbb{R}^3, \ \forall \ t \ge t_0 \tag{9.14}$$

Thus,

$$\overrightarrow{K}_{0} = \overrightarrow{r} \times m \overrightarrow{v} = \overrightarrow{c}, \ \forall \ t \ge t_{0}$$

$$\overrightarrow{r} \times \overrightarrow{v} = \overrightarrow{c} = \overrightarrow{r}_{0} \times \overrightarrow{v}_{0}$$
(9.15)

Equation (9.15) is equivalent with

$$\frac{d\overrightarrow{A}}{dt} = \overrightarrow{const} \tag{9.16}$$

where $\frac{d\overrightarrow{A}}{dt} = \frac{1}{2}(\overrightarrow{r} \times \overrightarrow{v})$ is the areal velocity of the particle.

From (9.15) the following first integrals are obtained

$$y\dot{z} - z\dot{y} = c_1, \dots \tag{9.17}$$

In the particular case when $\vec{F} \parallel \vec{r}$ (in this case \vec{F} is called central force) we have

$$\overrightarrow{r} \times \overrightarrow{F} = 0 \implies \overrightarrow{r} \times \overrightarrow{v} = \overrightarrow{c} = \overrightarrow{r}_0 \times \overrightarrow{v}_0.$$

Notice that:

- i) the motion is rectilinear if $\overrightarrow{r}_0 \| \overrightarrow{v}_0 \Rightarrow \overrightarrow{r}_0 \times \overrightarrow{v}_0 = 0 = \overrightarrow{r} \times \overrightarrow{v} \Rightarrow \overrightarrow{r} \| \overrightarrow{v}$,
- ii) the motion takes place in a plane if $\overrightarrow{r}_0 \not\parallel \overrightarrow{v}_0 \Rightarrow \overrightarrow{r} \cdot (\overrightarrow{r}_0 \times \overrightarrow{v}_0) = 0$ $\Rightarrow \overrightarrow{r} \in (\overrightarrow{v}_0, \overrightarrow{r}_0)$

• If $\overrightarrow{\mathrm{M}}_{O}(\overrightarrow{\mathrm{F}}) \neq 0$, $\forall t \geq t_{0}$ and exist a fixed direction $\overrightarrow{\boldsymbol{u}} = (\alpha, \beta, \gamma)$ such that $\overrightarrow{\mathrm{M}}_{O}(\overrightarrow{\mathrm{F}}) \cdot \overrightarrow{\boldsymbol{u}} = 0$, then

$$\frac{d}{dt}(\overrightarrow{K}_0 \cdot \overrightarrow{u}) = 0 \implies \overrightarrow{K}_0 \cdot \overrightarrow{u} = c \in \mathbb{R}.$$

Thus, we obtain the first integral

$$(\overrightarrow{r} \times \overrightarrow{v}) \cdot \overrightarrow{u} = (\overrightarrow{r}_0 \times \overrightarrow{v}_0) \cdot \overrightarrow{u}. \tag{9.18}$$

Work

Consider the force \vec{F} acting on the point P $(\vec{r} = \overrightarrow{OP})$ which effects a real displacement $d\vec{r}$. The elementary work of the force \vec{F} is the scalar

$$\delta L = \overrightarrow{F} \cdot d\overrightarrow{r} = xdx + Ydy + Zdz$$
 (9.19)

Next, we suppose \vec{F} depends only on \vec{r} ($\vec{F} = \vec{F}(X,Y,Z)$) and exist a function U = U(x,y,z) with the property:

$$X = \frac{\partial U}{\partial x}, \quad Y = \frac{\partial U}{\partial y}, \quad Z = \frac{\partial U}{\partial z}$$
 (9.20)

or

$$\mathbf{F} = \operatorname{grad} \ U = \nabla U = U_{,j} \mathbf{i}_j \,, \quad F_j = U_{,j} \,, \tag{9.21}$$

where $U = U(\mathbf{r}) = U(x, y, z)$ is the force function (potential function or potential). Function V := -U is the potential energy and we say that \vec{F} is conservative.

Theorem. The force \vec{F} is potential (conservative) if and only if

$$\frac{\partial X}{\partial y} = \frac{\partial Y}{\partial x}, \quad \frac{\partial Y}{\partial z} = \frac{\partial Z}{\partial y}, \quad \frac{\partial Z}{\partial x} = \frac{\partial X}{\partial z}$$
 (9.22)

This is equivalent with the fact that

$$\overrightarrow{F} \cdot d\overrightarrow{r} = Xdx + Ydy + Zdz \tag{9.23}$$

is an exact differential.

A force field $\vec{F}: D \subset R^3 \to R^3$ is a conservative force field if $\exists U: D \to R$ with the property:

$$\overrightarrow{F} = \operatorname{grad} U = -\operatorname{grad} V$$

Theorem. Consider $D \subset R^3$ a simply connected domain.

A force field $\vec{F}: D \to R^3$ is potential (conservative) if and only if one of the following equivalent conditions takes place:

$$\operatorname{rot} \overrightarrow{F} = \nabla \times \overrightarrow{F} = 0$$

$$\int_{\Gamma} \underbrace{\overrightarrow{F} \cdot d\overrightarrow{r}}_{=Xdx+Ydy+Zdz} = 0, \ \ \forall \ \ \gamma \ \text{closed curve}$$

$$\int_{\mathcal{C}} \overrightarrow{F} \cdot d\overrightarrow{r} = \int_{\mathcal{C}'} \overrightarrow{F} \cdot d\overrightarrow{r},$$

c c'

 $\forall C, C' \in D$ arbitrary curved from A to B.

the differential form

$$\overrightarrow{F} \cdot d\overrightarrow{r} = Xdx + Ydy + Zdz$$

is an exact differential, i.e.

$$\frac{\partial X}{\partial y} = \frac{\partial Y}{\partial x}, \quad \frac{\partial Y}{\partial z} = \frac{\partial Z}{\partial y}, \quad \frac{\partial Z}{\partial x} = \frac{\partial X}{\partial z}$$

Example

$$\overrightarrow{F} = m\overrightarrow{g} = -\text{grad}V \Leftrightarrow \frac{\partial V}{\partial x} = 0, \ \frac{\partial V}{\partial y} = 0, \ \frac{\partial V}{\partial z} = mg$$

$$\Rightarrow dV = d(mgz)$$

$$\Rightarrow V = mgz + c, \quad U = -mgz$$

 $\Rightarrow \overrightarrow{G} = m\overrightarrow{g}$ is a potential (conservative) force

Force function in the plane

Consider

$$\overrightarrow{F}: D \to \mathbb{R}^2, \ \overrightarrow{F} = (X, Y), \ X = X(x, y), \ Y = Y(x, y)$$

such that

$$\frac{\partial X}{\partial y} = \frac{\partial Y}{\partial x} \tag{9.24}$$

Thus,
$$\exists \ U : D \to \mathbb{R}$$
 such that $\overrightarrow{F} = \operatorname{grad} U \Leftrightarrow X = \frac{\partial U}{\partial x}, \quad Y = \frac{\partial U}{\partial y}$ (9.25)

We integrate $(9.25)_1$ with respect to x

$$U(x,y) = \int_{x_0}^x X(s,y)ds + \varphi(y), \tag{9.26}$$

where $\phi(y)$ is determined from (9.25)₂:

$$\int_{x_0}^{x} \frac{\partial U(s, y)}{\partial y} ds + \varphi'(y) = Y(x, y)$$

Taking into account (9.24) we obtain

$$\int_{x_0}^{x} \frac{\partial Y(s, y)}{\partial s} ds + \varphi'(y) = Y(x, y)$$

$$Y(x,y) - Y(x_0,y) + \varphi'(y) = Y(x,y)$$

$$\varphi'(y) = Y(x_0, y),$$

or

$$\varphi(y) = \int_{y_0}^{y} Y(x_0, u) du + const. \tag{9.27}$$

Using (9.26) and (9.27) we have

$$U(x,y) = \int_{x_0}^{x} X(s,y)ds + \int_{y_0}^{y} Y(x_0,u)du.$$
 (9.28)

Next, we suppose that the force field $\vec{F} = \vec{F}(\vec{r}) = \vec{F}(x, y, z)$ is conservative (potential), i,.e $\exists U: D \to R$ with the property:

$$\overrightarrow{F} = \operatorname{grad} U = -\operatorname{grad} V$$

or

$$X = \frac{\partial U}{\partial x}, \quad Y = \frac{\partial U}{\partial y}, \quad Z = \frac{\partial U}{\partial z}$$

Thus, the elementary work is an exact differential

$$\delta L = X dx + \ldots = dU = -dV$$

Total work along an arc AB of a curve

Consider AB an arc of a curve defined by the equations:

$$x = x(q), \quad y = y(q), \quad z = z(q), \quad q \in [q_0, q_1].$$
 (9.29)

The curvilinear integral

$$L_{AB} = L := \int_{AB} \overrightarrow{F} \cdot d\overrightarrow{r} = \int_{AB} X dx + Y dy + Z dz = \int_{AB} (X(x(z), \ldots) dx(q))$$
$$= \int_{q_0}^{q_1} (X(x(q), y(q), z(q)) x'(q) + \ldots) dq$$
(9.30)

is the total work of the force \vec{F} along the arc AB.

If the force is conservative, $\overrightarrow{F} = \operatorname{grad} U$, then

$$L = \int_{AB} \overrightarrow{F} \cdot d\overrightarrow{r} = \int_{AB} dU = U(B) - U(A) \tag{9.31}$$

and the work is independent of the path from A to B.

If the force is not conservative we use:

$$L = \int_{AB} \overrightarrow{F} \cdot d\overrightarrow{r} = \int_{q_0}^{q_1} [X(x(q), y(q), z(q))x'(q) + \ldots] dq \qquad (9.32)$$

and if the force is a function of velocity and time we can use:

$$L = \int_{AB} X dx + Y dy + Z dz = \int_{t_0}^{t_1} X(x(t), \dots) \dot{x}(t) + \dots$$
 (9.33)

Kinetic energy

The scalar quantity

$$T = \frac{1}{2}mv^2 \tag{9.34}$$

is the *kinetic energy of the particle P*; this quantity depends on the mass and the velocity of the particle.

From
$$m \frac{d\overrightarrow{v}}{dt} = \overrightarrow{F} \mid \cdot d\overrightarrow{r}$$
 we deduce

$$m\underbrace{\frac{d\overrightarrow{r}}{dt}}_{=\overrightarrow{v}}\cdot\underbrace{\frac{d\overrightarrow{v}}{dt}}_{=\overrightarrow{d\overrightarrow{v}}}dt = \overrightarrow{F}\cdot d\overrightarrow{r} \Rightarrow m\overrightarrow{v}\cdot d\overrightarrow{v} = \overrightarrow{F}\cdot d\overrightarrow{r} \Rightarrow dT = \delta L \qquad (9.35)$$

Equation (9.35) expresses the following theorem

Theorem (theorem of kinetic energy). The differential of the kinetic energy of a free particle is equal to the elementary work of the resultant of the given forces which act upon it.

If the motion of the particle takes place in a conservative field of forces, $\overrightarrow{F} = \overrightarrow{F}(\overrightarrow{r})$, then exist $V = V(\overrightarrow{r})$ such that $\overrightarrow{F} = -\mathrm{grad}V$.

Thus,
$$\delta L = -dV$$
 and Eq. (9.35) becomes

$$d(T+V) = 0 \implies T+V = h, \ \forall \ t \ge t_0.$$
 (9.36)

The first integral (9.36) is the *energy integral*, V is the *potential energy*, while h is the *energy constant* and has to be calculated from the initial conditions.

$$E = T + V$$
 total (mechanical) energy

Theorem (mechanical energy conservation theorem). The mechanical energy of a free particle is conserved in time if and only if the resultant of the given forces which act upon it is conservative.

https://sites.ualberta.ca/~ygu/courses/phys144/notes/momentum2.pdf

Ex. A Ballistic Pendulum

The mass of the block of wood is 2.50-kg and the mass of the bullet is 0.0100-kg. The block swings to a maximum height of 0.650 m above the initial position. Find the initial speed of the bullet.

What kind of collision? Perfectly inelastic

No net external force → momentum conserved

$$m_1 v_{f1} + m_2 v_{f2} = m_1 v_{o1} + m_2 v_{o2}$$

 $(m_1 + m_2) v_f = m_1 v_{o1}$

Solve for
$$V_{01}$$

$$v_{o1} = \frac{\left(m_1 + m_2\right)v_f}{m_1}$$

What do we not know? The final speed!!

How can we get it? Using the mechanical energy conservation!

