Nonlinear Optimization

Derek Li

Contents

1	Rev	iew											2
	1.1	One-Variable Calculus											2
	1.2	Multi-variable Calculus											3

1 Review

1.1 One-Variable Calculus

Theorem 1.1 (Mean Value Theorem). Let $g \in C^1$ on \mathbb{R} . We have

$$\frac{g(x+h) - g(x)}{h} = g'(x+\theta h),$$

for some $\theta \in (0,1)$ and $\frac{g(x+h)-g(x)}{h}$ is the slope of secant line between (x,g(x)) and (x+h,g(x+h)). Or we can write $g(x+h)=g(x)+hg'(x+\theta h)$.

Theorem 1.2 (First Order Taylor Approximation). Let $g \in C^1$ on \mathbb{R} . We have

$$g(x+h) = g(x) + hg'(x) + o(h),$$

where o(h) is the error and we say a function f(h) = o(h) to mean

$$\lim_{h \to 0} \frac{f(h)}{h} = 0.$$

Proof. Want to show g(x+h) - g(x) - hg'(x) = o(h).

We have

$$\lim_{h \to 0} \frac{g(x+h) - g(x) - hg'(x)}{h} = \lim_{h \to 0} \frac{hg'(x+\theta h) - hg'(x)}{h}$$
$$= \lim_{h \to 0} g'(x+\theta h) - g'(x) = 0.$$

Theorem 1.3 (Second Order Mean Value Theorem). Let $g \in \mathbb{C}^2$ on \mathbb{R} . We have

$$g(x+h) = g(x) + hg'(x) + \frac{h^2}{2}g''(x+\theta h),$$

for some $\theta \in (0, 1)$.

Theorem 1.4 (Second Order Taylor Approximation). Let $g \in C^2$ on \mathbb{R} . We have

$$g(x+h) = g(x) + hg'(x) + \frac{h^2}{2}g''(x) + o(h^2).$$

Proof. W.T.S.
$$g(x+h) - g(x) - hg'(x) - \frac{h^2}{2}g''(x) = o(h^2)$$
.

We have

$$\lim_{h \to 0} \frac{g(x+h) - g(x) - hg'(x) - \frac{h^2}{2}g''(x)}{h^2} = \lim_{h \to 0} \frac{\frac{h^2}{2}g''(x+\theta h) - \frac{h^2}{2}g''(x)}{h^2}$$
$$= \lim_{h \to 0} \frac{1}{2} [g''(x+\theta h) - g''(x)] = 0.$$

1.2 Multi-variable Calculus

Definition 1.1 (Gradient). Gradient of $f : \mathbb{R}^n \to \mathbb{R}$ at $\mathbf{x} \in \mathbb{R}^n, \nabla f(\mathbf{x})$, if exists is a vector characterized by the property

$$\lim_{\mathbf{v}\to\mathbf{0}}\frac{f(\mathbf{x}+\mathbf{v})-f(\mathbf{x})-\nabla f(\mathbf{x})\cdot\mathbf{v}}{\|\mathbf{v}\|}=0,$$

and
$$\nabla f(\mathbf{x}) = \left(\frac{\partial f}{\partial x_1}(\mathbf{x}), \cdots, \frac{\partial f}{\partial x_n}(\mathbf{x})\right)$$
.

The instantaneous rate of change of f at \mathbf{x} in direction \mathbf{v} (suppose w.l.o.g. $\|\mathbf{v}\| = 1$) is

$$\frac{\mathrm{d}}{\mathrm{d}t} \Big|_{t=0} f(\mathbf{x} + t\mathbf{v}) = \nabla f(\mathbf{x} + t\mathbf{v}) \cdot \mathbf{v}|_{t=0}$$

$$= \nabla f(\mathbf{x}) \cdot \mathbf{v}$$

$$= |\nabla f(\mathbf{x})| |\mathbf{v}| \cos \theta$$

$$= |\nabla f(\mathbf{x})| \cos \theta,$$

where θ is the angle between $\nabla f(\mathbf{x})$ and \mathbf{v} . Obviously, the instantaneous rate maximizes when $\theta = 0$. Therefore, when it is not equal to zero, $\nabla f(\mathbf{x})$ points in the direction of steepest ascent.

Theorem 1.5 (Mean Value Theorem in \mathbb{R}^n). Let $f \in C^1$ on \mathbb{R}^n , then for any $\mathbf{x}, \mathbf{v} \in \mathbb{R}^n$, we have

$$f(\mathbf{x} + \mathbf{v}) = f(\mathbf{x}) + \nabla f(\mathbf{x} + \theta \mathbf{v}) \cdot \mathbf{v},$$

for some $\theta \in (0, 1)$.

Proof. Consider $g(t) = f(\mathbf{x} + t\mathbf{v})$, where $t \in \mathbb{R}$ and $g \in C^1$ on \mathbb{R} .

By Mean Value Theorem in \mathbb{R} , we have

$$g(0+1) = g(0) + 1 \cdot g'(0+\theta \cdot 1)$$

$$= g(0) + g'(\theta)$$

$$= f(\mathbf{x}) + \nabla f(\mathbf{x} + \theta \mathbf{v}) \cdot \mathbf{v}$$

$$= g(1) = f(\mathbf{x} + \mathbf{v}),$$

for some $\theta \in (0, 1)$.

Note.

$$g'(t) = \frac{\mathrm{d}}{\mathrm{d}t} f(\mathbf{x} + t\mathbf{v}) = \nabla f(\mathbf{x} + t\mathbf{v}) \cdot \mathbf{v}.$$

Theorem 1.6 (First Order Taylor Approximation in \mathbb{R}^n). Let $f \in C^1$ on \mathbb{R}^n . We have

$$f(\mathbf{x} + \mathbf{v}) = f(\mathbf{x}) + \nabla f(\mathbf{x}) \cdot \mathbf{v} + o(\|\mathbf{v}\|).$$

Proof. We have

$$\lim_{\|\mathbf{v}\| \to 0} \frac{f(\mathbf{x} + \mathbf{v}) - f(\mathbf{x}) - \nabla f(\mathbf{x}) \cdot \mathbf{v}}{\|\mathbf{v}\|} = \lim_{\|\mathbf{v}\| \to 0} \frac{\nabla f(\mathbf{x} + \theta \mathbf{v}) \cdot \mathbf{v} - \nabla f(\mathbf{x}) \cdot \mathbf{v}}{\|\mathbf{v}\|}$$
$$= \lim_{\|\mathbf{v}\| \to 0} \left[\nabla f(\mathbf{x} + \theta \mathbf{v}) - \nabla f(\mathbf{v}) \right] \cdot \frac{\mathbf{v}}{\|\mathbf{v}\|} = 0.$$

Theorem 1.7 (Second Order Mean Value Theorem in \mathbb{R}^n). Let $f \in \mathbb{C}^2$ on \mathbb{R}^n . We have

$$f(\mathbf{x} + \mathbf{v}) = f(\mathbf{x}) + \nabla f(\mathbf{x}) \cdot \mathbf{v} + \frac{1}{2} \mathbf{v}^T \nabla^2 f(\mathbf{x} + \theta \mathbf{v}) \cdot \mathbf{v},$$

for some $\theta \in (0,1)$.

Note 1. Hessian matrix

$$\nabla^2 f(\mathbf{x}) = \left(\frac{\partial^2 f}{\partial x_i \partial x_j}(\mathbf{x})\right)_{1 \le i, j \le n}$$

is a symmetric matrix because of Clairaut's Theorem.

Note 2.

$$\mathbf{v}^T \nabla^2 f(\mathbf{x}) \cdot \mathbf{v} = \sum_{1 \leq i, j \leq n} \frac{\partial^2 f}{\partial x_i \partial x_j} (\mathbf{x}) v_i v_j.$$

Theorem 1.8 (Second Order Taylor Approximation in \mathbb{R}^n). Let $f \in \mathbb{C}^2$ on \mathbb{R}^n . We have

$$f(\mathbf{x} + \mathbf{v}) = f(\mathbf{x}) + \nabla f(\mathbf{x}) \cdot \mathbf{v} + \frac{1}{2} \mathbf{v}^T \nabla^2 f(\mathbf{x}) \cdot \mathbf{v} + o(\|\mathbf{v}\|^2).$$

Proof. We have

$$\lim_{\|\mathbf{v}\| \to 0} \frac{f(\mathbf{x} + \mathbf{v}) - f(\mathbf{x}) - \nabla f(\mathbf{x}) \cdot \mathbf{v} - \frac{1}{2}\mathbf{v}^T \nabla^2 f(\mathbf{x}) \cdot \mathbf{v}}{\|\mathbf{v}\|^2}$$

$$= \lim_{\|\mathbf{v}\| \to 0} \frac{\frac{1}{2}\mathbf{v}^T \nabla^2 f(\mathbf{x} + \theta \mathbf{v}) \cdot \mathbf{v} - \frac{1}{2}\mathbf{v}^T \nabla^2 f(\mathbf{x}) \cdot \mathbf{v}}{\|\mathbf{v}\|^2}$$

$$= \lim_{\|\mathbf{v}\| \to 0} \frac{1}{2} \left(\frac{\mathbf{v}}{\|\mathbf{v}\|}\right)^T \cdot \left[\nabla^2 f(\mathbf{x} + \theta \mathbf{v}) - \nabla^2 f(\mathbf{x})\right] \cdot \frac{\mathbf{v}}{\|\mathbf{v}\|}$$

$$= 0.$$

Theorem 1.9 (Implicit Function Theorem). Let $f: \mathbb{R}^{n+1} \to \mathbb{R}$ be a C^1 function. Fix $(\mathbf{a}, b) \in \mathbb{R}^n \times \mathbb{R}$ s.t. $f(\mathbf{a}, b) = 0$ and $\nabla f(\mathbf{a}, b) \neq 0$. We have $\{(\mathbf{x}, y) \in \mathbb{R}^n \times \mathbb{R} | f(\mathbf{x}, y) = 0\}$ is locally the graph of a function.

Definition 1.2 (Level Set). $\{\mathbf{x} \in \mathbb{R}^n | f(\mathbf{x}) = c\}$ is called *c*-level set of f.

Theorem 1.10. Gradient $\nabla f(\mathbf{x}_0) \perp$ level curve through \mathbf{x}_0 .

Definition 1.3 (Convex Set). $\Omega \subseteq \mathbb{R}^n$ is a convex set if for all $\mathbf{x}_1, \mathbf{x}_2 \in \Omega$, we have line segment between $\mathbf{x}_1, \mathbf{x}_2 : s\mathbf{x}_1 + (1-s)\mathbf{x}_2 \in \Omega$, $s \in [0,1]$.

Definition 1.4 (Convex Function). A function $f: \Omega \subseteq \mathbb{R}^n \to \mathbb{R}$ is convex if

$$f(s\mathbf{x}_1 + (1-s)\mathbf{x}_2) \leqslant sf(\mathbf{x}_1) + (1-s)f(\mathbf{x}_2),$$

for all $\mathbf{x}_1, \mathbf{x}_2 \in \Omega$ and all $s \in [0, 1]$, where Ω is a convex set.

Example 1.1. $f: \mathbb{R}^n \to \mathbb{R}$ given by $f(\mathbf{x}) = ||\mathbf{x}||$ is convex.

Proof. Let $\mathbf{x}_1, \mathbf{x}_2 \in \mathbb{R}^n$. We have

$$f(s\mathbf{x}_1 + (1-s)\mathbf{x}_2) = ||s\mathbf{x}_1 + (1-s)\mathbf{x}_2|| \le ||s\mathbf{x}_1|| + ||(1-s)\mathbf{x}_2||$$

= $s||\mathbf{x}_1|| + (1-s)||\mathbf{x}_2|| = s_1 f(\mathbf{x}_1) + (1-s)f(\mathbf{x}_2).$

Definition 1.5 (Concave Function). A function f concave if -f is convex.

Note. The linear function is both convex and concave.

Theorem 1.11 (Basic Properties of Convex Function). Let $\Omega \subseteq \mathbb{R}^n$ be a convex set.

- (1) f_1, f_2 are convex functions on $\Omega \Rightarrow f_1 + f_2$ is convex function on Ω .
- (2) f is convex functions and $a \ge 0 \Rightarrow af$ is a convex function.
- (3) f is a convex function on $\Omega \Rightarrow \operatorname{SL}_c := \{ \mathbf{x} \in \mathbb{R}^n | f(x) \leq c \}$, the sublevel sets are convex.

Proof of (3). W.T.S. for $\mathbf{x}_1, \mathbf{x}_2 \in \mathrm{SL}_c, s\mathbf{x}_1 + (1-s)\mathbf{x}_2 \in \mathrm{SL}_c$ for any $s \in [0,1]$.

Since $\mathbf{x}_1, \mathbf{x}_2 \in \mathrm{SL}_c$, we have $f(\mathbf{x}_1) \leq c, f(\mathbf{x}_2) \leq c$. Because f is a convex function, we have

$$f(s\mathbf{x}_1 + (1-s)\mathbf{x}_2) \le sf(\mathbf{x}_1) + (1-s)f(\mathbf{x}_2) \le sc + (1-s)c = c.$$

Thus,
$$s\mathbf{x}_1 + (1-s)\mathbf{x}_2 \in SL_c$$
.

Theorem 1.12 (Characterization of C^1 convex function). Let $f: \Omega \to \mathbb{R}$ be a C^1 function and Ω is a convex subset of \mathbb{R}^n . Then f is convex on Ω iff

$$f(\mathbf{y}) \geqslant f(\mathbf{x}) + \nabla f(\mathbf{x}) \cdot (\mathbf{y} - \mathbf{x}),$$

for all $\mathbf{x}, \mathbf{y} \in \Omega$.

Proof. (\Rightarrow) Suppose f is convex. By definition,

$$f(s\mathbf{x}_1 + (1-s)\mathbf{x}_2) \leqslant sf(\mathbf{x}_1) + (1-s)f(\mathbf{x}_2), 0 \leqslant s \leqslant 1.$$

$$\Rightarrow \frac{f(s\mathbf{x}_1 + (1-s)\mathbf{x}_2) - f(\mathbf{x}_2)}{s} \leqslant f(\mathbf{x}_1) - f(\mathbf{x}_2), 0 < s \leqslant 1.$$

$$\Rightarrow \lim_{s \to 0} \frac{f(\mathbf{x}_2 + s(\mathbf{x}_1 - \mathbf{x}_2)) - f(\mathbf{x}_2)}{s} \leqslant f(\mathbf{x}_1) - f(\mathbf{x}_2).$$

Recall that $\partial_{\mathbf{x}_1-\mathbf{x}_2} f(\mathbf{x}_2) := \lim_{s \to 0} \frac{f(\mathbf{x}_2 + s(\mathbf{x}_1 - \mathbf{x}_2)) - f(\mathbf{x}_2)}{s}$, i.e., the directional derivative of f at \mathbf{x}_2 in the direction $\mathbf{x}_1 - \mathbf{x}_2$.

Since f is C^1 , we have

$$\nabla f(\mathbf{x}_2) \cdot (\mathbf{x}_1 - \mathbf{x}_2) \leqslant f(\mathbf{x}_1) - f(\mathbf{x}_2) \Rightarrow f(\mathbf{x}_1) \geqslant f(\mathbf{x}_2) + \nabla f(\mathbf{x}_2) \cdot (\mathbf{x}_1 - \mathbf{x}_2),$$

i.e.,

$$f(\mathbf{y}) \geqslant f(\mathbf{x}) + \nabla f(\mathbf{x}) \cdot (\mathbf{y} - \mathbf{x}).$$

$$(\Leftarrow)$$
 Fix $\mathbf{x}_0, \mathbf{x}_1 \in \Omega, s \in (0, 1)$. Let $\mathbf{x} = s\mathbf{x}_0 + (1 - s)\mathbf{x}_1$. We have

$$f(\mathbf{x}_0) \geqslant f(\mathbf{x}) + \nabla f(\mathbf{x}) \cdot (\mathbf{x}_0 - \mathbf{x}) = f(\mathbf{x}) + \nabla f(\mathbf{x}) \cdot (1 - s)(\mathbf{x}_0 - \mathbf{x}_1),$$

$$f(\mathbf{x}_1) \geqslant f(\mathbf{x}) + \nabla f(\mathbf{x}) \cdot (\mathbf{x}_1 - \mathbf{x}) = f(\mathbf{x}) + \nabla f(\mathbf{x}) \cdot s(\mathbf{x}_1 - \mathbf{x}_0).$$

Therefore,

$$sf(\mathbf{x}_0) \geqslant sf(\mathbf{x}) + \nabla f(\mathbf{x}) \cdot s(1-s)(\mathbf{x}_0 - \mathbf{x}_1),$$

$$(1-s)f(\mathbf{x}_1) \geqslant (1-s)f(\mathbf{x}) + \nabla f(\mathbf{x}) \cdot s(1-s)(\mathbf{x}_1 - \mathbf{x}_0).$$

Thus,

$$sf(\mathbf{x}_0) + (1-s)f(\mathbf{x}_1) \ge sf(\mathbf{x}) + (1-s)f(\mathbf{x}) = f(\mathbf{x}) = f(s\mathbf{x}_0 + (1-s)\mathbf{x}_1),$$

for all $\mathbf{x}_0, \mathbf{x}_1 \in \Omega$ and $s \in (0, 1)$.

When
$$s = 0$$
 or $s = 1$, $sf(\mathbf{x}_0) + (1 - s)f(\mathbf{x}_1) = f(s\mathbf{x}_0 + (1 - s)\mathbf{x}_1)$.

In conclusion, f is convex on Ω .