LENGUAJE COTIDIANO Y LENGUAJE MATEMÁTICO

Proposiciones matemáticas

Una proposición matemática es una afirmación que se refiere a objetos ya introducidos o definidos y que es verdadera o falsa (es decir, que tiene necesariamente uno de los dos valores posibles ${\bf V}$ o ${\bf F}$).

- 1. Para cada uno de los siguientes apartados, decide cuáles son proposiciones matemáticas y por qué.
 - a) 2+3=5
 - b) 2+3
 - c) El número 2 es un número par
 - d) $3 + n + n^2$
 - e) sen $\frac{\pi}{2} < \operatorname{sen} \frac{\pi}{4}$
 - f) Para cada ángulo t se tiene sen² $t + \cos^2 t = 1$
 - $ax^{2} + bx + c = 0$
 - h) Existen números reales a,b,c tales que para todo x número real se satisface que $ax^2 + bx + c = 0$
- 2. ¿Cuáles de las siguientes proposiciones matemáticas son verdaderas?
 - a) La raíz cuadrada de cualquier número entero es un número real no negativo.
 - b) Existe un ángulo t tal que sen $t = \cos t$.
 - c) (*) Si x < 1, entonces $x^2 < 1$

Conectores lógicos

El conector /O/ y el conector /Y/

A continuación escribimos la tabla de verdad para la **conjunción** /A y B/ y otra para la **disyunción** /A o B/. Es decir, establecemos la verdad o falsedad de ambas proposiciones según la verdad o falsedad de la proposición A y de la proposición B. La conjunción /y/ se denota con el símbolo \land . La disyunción /o/ se denota con el símbolo \lor .

A	B	$A \wedge B$
V	V	V
V	F	F
F	V	F
F	F	F

A	B	$A \vee B$
V	V	V
V	F	V
F	V	V
F	F	F

3. Explica el significado de esta frase, que se lee en la librería de la Universidad.

/Nuestros clientes en posesión de carnet de estudiante o empleado de la universidad tendrán derecho al $15\,\%$ de descuento./

4. Una niña se empeña en que su padre la lleve el domingo por la mañana al parque de atracciones y por la tarde al cine de su barrio. El padre le dice /No. Saldremos por la tarde e iremos al cine o al parque de atracciones./ Explica lo que el padre quiere decir con toda claridad. ¿Tiene este /o/ el mismo significado que en el ejercicio anterior? ¿A cuál de los dos significados se acerca el del /o/ de las matemáticas?

Marta y Javier necesitan un medicamento. Un amigo dice a Javier: Si conseguimos un casco, puedo llevaros a una farmacia en mi moto o bien a Marta o bien a ti. Observa que este uso de la disyunción sí es excluyente.

- 5. Una profesora de lógica matemática ha tomado su baja de maternidad. Sus compañeros la llaman por teléfono para felicitarla y preguntan: ¿Fue niño o niña? Ella responde: sí ¿Es correcta la respuesta?
- 6. (*) Pepe dice: /Ordené que viniera Pedro o Juan./ Han venido Pedro y Juan. ¿Se cumplió la orden?
- 7. (*) ¿Es correcto decir en el lenguaje matemático /3 es menor o igual que 5/? ¿Es correcto decir /5 es menor o igual que 5/?
- 8. Completa la siguiente tabla de verdad.

A	В	C	$A \wedge (B \vee C)$	$(A \land B) \lor (A \land C)$
V	V	V		
V	V	F		
V	F	V		
V	F	F		
F	V	V		
F	V	F		
F	F	F		
F	F	V		

El conector /NO/

La tabla de verdad del conector /no/, que denotamos con \neg , es la siguiente:

A	$\neg A$
V	F
F	V

- 9. Escribe la negación de las frases siguientes:
 - a) /Su madre es profesora y doctora en Química./
 - b) /Javier tiene en su casa un hurón o una nutria./
 - c) /Todos mis amigos son aficionados al baloncesto./
- 10. Completa las siguientes tablas de verdad:

A	В	$\neg (A \land B)$	$\neg A \lor \neg B$
17	V	(217(12)	71 V 1D
V	V		
$\lfloor V \rfloor$	F,		
F	V		
F	F		

A	В	$\neg(A \lor B)$	$\neg A \land \neg B$
V	V		
V	F		
F	V		
F	F		

11. (*) Construye una frase sencilla y clara equivalente a la siguiente:

/No es cierto que se preparara las matemáticas de la prueba de acceso y el teórico de conducir durante la tarde del sábado./

Sobre la proposición /Si A entonces B/

Una de las situaciones que más aparecen en Matemáticas es demostrar que es cierta la afirmación /Si A entonces B/, a veces escrita $A \Rightarrow B$ y leída "A implica B". A continuación escribimos la tabla de verdad sobre esta implicación.

A	B	$A \Rightarrow B$
V	V	V
V	F	F
F	V	V
F	F	V

12. (*) /Si el Granada no gana el partido el domingo, Pepe será muy infeliz./

Tras la victoria del Granada, encontramos a Pepe totalmente infeliz. La verdad de esta proposición, ¿es compatible con esta situación?

- 13. Quieres demostrar que /A implica B/ es falso. ¿Cómo procederías?
 - a) Demostrando que B es falso.
 - b) Demostrando que A es falso.
 - c) Demostrando que B es falso y que A es verdadero.
 - d) Demostrando que B es verdadero y que A es falso.
 - e) Demostrando que B es falso y que A es falso.
- 14. Para cada una de las proposiciones siguientes identifica cuál es la hipótesis y cuál la tesis o conclusión.
 - a) Si ABC es un triángulo rectángulo, de lados a,b,c, tales que a es la hipotenusa y su área es $\frac{a^2}{4}$, entonces el triángulo ABC es isósceles.
 - b) Cualquier número entero n cumple que n^2 es un número entero.

3

- c) (*) Si los números reales a,b,c,d cumplen que $ad-bc\neq 0$, para cualquier par de números reales e,f se cumple que el sistema de ecuaciones $\{ax+by=e,cx+dy=f\}$ tiene una única solución.
- d) La suma de los n primeros enteros positivos es $\frac{n(n+1)}{2}$.

- 15. (*) Tu tarea es demostrar que /A implica B/ es verdadera y sabes que B es falso. ¿Qué tratarás de demostrar y por qué?
 - a) Que A es verdadero.
 - b) Que A es falso.
- 16. Consideremos la siguiente afirmación /Si n-1 es múltiplo de 3, también lo es $n^2-1./$
 - a) ¿Qué dice el enunciado anterior en los casos n=4, n=5 y n=6?
 - b) ¿Puede ser cierta la afirmación anterior?
- 17. Completa la siguiente tabla de verdad y compárala con la tabla de la implicación.

A	В	$\neg A \lor B$	$\neg B \Rightarrow \neg A$
V	V		
V	F		
F	V		
F	F		

18. Decide razonadamente si las siguientes proposiciones son verdaderas o falsas:

A: /Si 0 > 1, entonces $\sqrt{2}$ es racional/.

B: /Si 0 > 1, entonces $\sqrt{2}$ es irracional/.

Equivalencias

- 19. (*) Supongamos que n es un número natural. Decide si la proposición $/n^2$ es par si y sólo si n es par/ es verdadera o es falsa. Justifica tu respuesta.
- 20. Supongamos que r es un número real. La proposición $/r^2$ es racional si y sólo si es r es racional/ ¿es verdadera o es falsa? Demuéstralo.
- 21. Sean A y B dos matrices 2×2 . ¿Es cierto que $AB = A^2$ si y sólo si A = B? Justifica tu respuesta.
- 22. Sea a un número real. Decide si la condición $a^2 < a$ es a) suficiente, b) necesaria, c) necesaria y suficiente ... para que $a^3 < a^2$. ¿Por qué?
- 23. Decide si son ciertas o falsas las siguientes afirmaciones:
 - a) La condición necesaria y suficiente para que dos rectas de \mathbb{R}^3 se corten en un punto es que sean coplanarias.
 - b) Si dos planos π_1 y π_2 son perpendiculares, entonces la dirección de toda recta contenida en π_1 es perpendicular a la de toda recta contenida en π_2 .
 - c) Si la recta r es perpendicular al plano π , entonces la dirección de r es perpendicular a la de toda recta contenida en π .

- d) Si los planos π_1 y π_2 se cortan a lo largo de una recta, entonces no existen rectas paralelas $r_1 \subset \pi_1$ y $r_2 \subset \pi_2$.
- 24. Sean **A** y **B** proposiciones matemáticas. Comprueba que son equivalentes **A** y $\neg(\neg \mathbf{A})$. ¿Son equivalentes las proposiciones $/\mathbf{A} \Rightarrow \mathbf{B}/\mathbf{y} / \neg(\mathbf{A} \wedge \neg \mathbf{B})/?$
- 25. Se consideran dos números reales a y b. Marca cada casilla del siguiente cuadro con un número del 1 al 5, de acuerdo con el convenio que se indica al final:

	$a+b \in \mathbb{Q}$	$a+b \notin \mathbb{Q}$	$ab \in \mathbb{Q}$	$ab \notin \mathbb{Q}$
$a \in \mathbb{Q}, b \in \mathbb{Q}$				
$a \in \mathbb{Q}, b \notin \mathbb{Q}$				
$a \notin \mathbb{Q}, b \notin \mathbb{Q}$				

- [1] La condición de la izquierda es suficiente para la condición de arriba.
- [2] La condición de la izquierda hace que la de arriba se cumpla sólo si a = 0.
- [3] La condición de la izquierda hace que la condición de arriba nunca se cumpla.
- [4] La condición de la izquierda es suficiente para la condición de arriba si $a \neq 0$.
- [5] La condición de la izquierda hace que la condición de arriba se cumpla en algunos casos particulares, pero no en otros.

Cuantificadores lógicos, sus concatenaciones y sus negaciones

- 26. Utiliza los cuantificadores lógicos \forall y \exists para escribir las proposiciones de los ejercicios 19 y 20.
- 27. Sean M el conjunto de todas las personas de una cierta ciudad, P el conjunto de todos los periódicos que se publican en esa ciudad y D el conjunto de todos los días del año. Escribe, utilizando los cuantificadores lógicos \forall y \exists , cada una de las siguientes afirmaciones entre barras:
 - a) /Hay alguien que todos los días compra todos los periódicos./
 - b) /Todos los días hay alguien que compra todos los periódicos./
 - c) (*) Esta ciudad es muy instruida. Aquí /todos compran algún periódico todos los días./
 - d) /Todos los días hay algún periódico que todo el mundo compra./
 - e) (*) Somos poco aficionados a la prensa en este pueblo, pero al menos /todos los días hay alguien que compra algún periódico./
 - f) Es una ciudad de maniáticos. /Todos compran todos los periódicos todos los días./
 - g) (*) Aquí sí que somos ajenos a la prensa, pero al menos /hubo un día en que alguien compró algún periódico./
 - h) Esta ciudad está dominada por un diario. /Todo el mundo lo compra todos los días./

- i) Aquí todos somos muy fieles. /Todos compran siempre el mismo periódico/, el suyo de toda la vida.
- j) Fue tal el notición que /aquel día todo el mundo compró todos y cada uno de los periódicos./
- k)"La Ciudad"
se llevó la exclusiva y así /este día hubo un periódico que fue comprado por todo el mundo./
- 28. Sea $\mathbb N$ el conjunto de los números naturales. ¿Es cierta la siguiente afirmación? /Para cada elemento n del conjunto $\mathbb N$, existe un número real M tal que n < M/. ¿Hay alguna diferencia entre la anterior afirmación y la siguiente? /Existe un número real M tal que para cada elemento n del conjunto $\mathbb N$, se cumple que n < M/.
- 29. (*) Escribe con cuantificadores y decide si son verdaderas o falsas las siguientes proposiciones:
 - a) Para cada número real x con $0 \le x \le 1$, existe un número real y con $0 \le y \le 1$ tal que x+y=1.
 - b) Existe un número real y con $0 \le y \le 1$ tal que, para cada número real x con $0 \le x \le 1$, se satisface que x+y=1.
- 30. Explica si en cada uno de los siguientes pares de proposiciones a y b son las dos verdaderas, las dos falsas o una verdadera y otra falsa:
 - (*) a) 1) Para cada número real x con $0 \le x \le 1$ y cada número real y con $0 \le y \le 2$, se cumple $2x^2 + y^2 \le 6$.
 - 2) Para cada número real y con $0 \le y \le 2$ y cada número real x con $0 \le x \le 1$, se cumple $2x^2 + y^2 \le 6$.
 - b) 1) Para cada número real x con $0 \le x \le 1$ y cada número real y con $0 \le y \le 2x$, se tiene que $2x^2 + y^2 \le 6$.
 - 2) Para cada número real y con $0 \le y \le 1$ y cada número real x con $0 \le x \le 2y$, se tiene que $2x^2 + y^2 \le 6$.
- 31. Escribe la negación de la siguiente proposición: No existe un entero x tal que $x^2 + x 11 = 0$. Escribela también usando cuantificadores.
- 32. Escribe la negación de la siguiente proposición: $\forall x \in \mathbb{R} : x > 0$ existe $y \in \mathbb{R}$ tal que $x = y^2$.
- 33. Decide si la siguiente proposición es verdadera o falsa y escribe su negación: $\forall y \in \mathbb{R} \ \exists x \in \mathbb{R} \ \text{tal que} \ \frac{1}{1+x} = y.$
- 34. Decide cuáles de las siguientes proposiciones son verdaderas:
 - a) Para todo par de números reales x,y que satisfagan $x \neq y$ se cumple que $x^3 + 5 \neq y^3 + 5$.
 - b) Ningún par de números reales x,y cumple $x \neq y \, \wedge \, x^3 + 5 = y^3 + 5$.

- c) $\forall x \in \mathbb{R} \ \forall y \in \mathbb{R}$, si $x^2 = y^2 \Rightarrow x = y$.
- d) Existen pares de números reales x, y que satisfacen $x^2 + 5 = y^2 + 5 \land x \neq y$.
- 35. Describe cuál es la diferencia entre las dos proposiciones siguientes:
 - a) $\forall x, y \in \mathbb{R}, \exists c \in \mathbb{R} \text{ tal que si } x < y \Rightarrow x < c < y.$
 - b) $\forall x \in \mathbb{R}, \exists c \in \mathbb{R} \text{ tal que } \forall y \in \mathbb{R} \text{ se satisface que } x < y \Rightarrow x < c < y.$

¿Son verdaderas o falsas?

- 36. Niega la proposición **P**, es decir, escribe la proposición **no P**, de manera que no aparezca explícitamente la palabra **no**. Luego, decide en cada caso si es verdadera **P** o **no P**.
 - a) (*) **P**: /Para cada número real x > 0 se cumple que $x^2 x > 0$ /.
 - b) P: /Hay triángulos rectángulos con los tres lados iguales/.
 - c) P: /Los múltiplos de 3 son impares/.
 - d) (*) P: Para cada número real x tal que $-1 \le x \le 1$, existe un número real y con $-1 \le y \le 1$ tal que $x^2 + y^2 \le 1$.
 - e) **P**: Existe un número real x con $-1 \le x \le 1$ tal que para cualquier número y con $-1 \le y \le 1$ se cumple que $x^2 + y^2 \le 1$.

Ejercicios de reserva

37. Construye una frase sencilla equivalente a

/No es verdad que tú seas cordobés ni que tu padre sea segoviano./

- 38. Sean P el conjunto de los programas de radio y D el conjunto de todos los días del año. Escribe, utilizando los cuantificadores lógicos \forall (**para todo**, **para cada**) y \exists (**existe, para algún**), cada una de las frases siguientes:
 - a) Cada día oigo algún programa en la radio.
 - b) Hay un programa en la radio que oigo todos los días.
 - c) Algún día oigo algún programa en la radio.
- 39. Para B un subconjunto de \mathbb{R} se consideran las proposiciones:
 - \mathbf{P} : / Existe un número real M que es mayor o igual que todos los elementos de B./ Si la proposición \mathbf{P} es cierta para B, se dice que B está acotado superiormente y que M es una cota superior de B.
 - \mathbf{Q} : / Existe un número real b perteneciente a B que es mayor o igual que todos los elementos de B./ Si la proposición \mathbf{Q} es cierta para B, se dice que b es el máximo del conjunto B.
 - \mathbf{R} : / Existe un número real S que es mayor o igual que todos los elementos de B y, además, si M es cualquier cota superior de B se cumple que S es menor o

igual que M./ Si la proposición \mathbf{R} es cierta para el conjunto B, se dice que S es el supremo de B.

Escribe con cuantificadores las proposiciones \mathbf{P} , \mathbf{Q} y \mathbf{R} . ¿Son ciertas las proposiciones \mathbf{P} , \mathbf{Q} y \mathbf{R} para B=(0,1), para B=(0,1] y para $B=(0,\infty)$?

Soluciones a ejercicios con asterisco

- 2c Es falso, ya que si x = -2 < 1 entonces $x^2 = (-2)^2 = 4 > 1$.
- 6 Sí, pero bastaba que viniera uno de los dos para que se hubiera cumplido.
- 7 Las dos cosas son correctas y aparecen en el lenguaje matemático.
- 11 /No (A y B)/ es equivalente a /no A o no B/. No se preparó las matemáticas la tarde del sábado o no se preparó el teórico de conducir esa tarde.
- 12 Sí es compatible. La implicación $/\mathbf{A} \Rightarrow \mathbf{B}/$ es verdadera siempre que \mathbf{A} es falsa, tanto sea \mathbf{B} verdadera o falsa. En este caso, la proposición \mathbf{A} es *Pierde el Granada* y la proposición \mathbf{B} es *Pepe será muy infeliz*.
- 14c <u>Hipótesis:</u> $a, b, c, d, e, f \in \mathbb{R}$ y $ad bc \neq 0$. <u>Tesis:</u> $\begin{cases} ax + by = e \\ cx + dy = f \end{cases}$ tiene solución única.
 - 15 Tengo que demostrar que A es falso, ya que si A fuera verdadero y es verdad que $A\Rightarrow B,\,B$ tendría que ser verdadero.
 - 19 Es verdadera. En primer lugar, probemos que si n^2 es par entonces n es par. Escribiendo n=2k+r, con r=0 o r=1, se tiene que $n^2=(2k+r)^2=4k^2+4kr+r^2=2(2k^2+2kr)+r^2$. Como $r^2=r$ y n^2 es par, se deduce que r=0. Por otro lado, si n es par, entonces n=2k y, así, $n^2=4k^2=2(2k^2)$ que es par.
- $27c \ \forall d \in D, \forall m \in M, \exists p \in P \mid (m \text{ compra } p \text{ en } d).$
- 27e $\forall d \in D, \exists m \in M, \exists p \in P \mid (m \text{ compra } p \text{ en } d).$
- $27g \ \exists d \in D, \exists m \in M, \exists p \in P \mid (m \text{ compra } p \text{ en } d).$
- 29 a) Es cierta. b) Es falsa.
- 30a 1 y 2 dicen lo mismo y son verdaderas.
- 36a **P** es falsa: para x = 1/2, se tiene que $x^2 x = -1/4 < 0$.
- 36d **P** es verdadera: basta tomar para cada x el número $y = \sqrt{1 x^2}$.