

Statischer Druck (dimensionslos)

- am Statoraustritt
- Dauer: 3 "blade passing periods"
- FRAP Messung
- Ausschnitt: 20° Sektor

Thermodynamik III

2 - Dampfkraftprozesse

HS 2021 Prof. Reza S. Abhari

Overview

Vorlesung		Übung/Beispiel	
Datum	Thema	Datum	Thema
09.11	Prozess des Energieaustausches	09.11	Geschwindigkeitsdreiecke
16.11	Dampfkraftprozesse	16.11	Rankine Zyklus
23.11	Gasarbeitsprozesse - Verbrennungsmotoren	23.11	Diesel / Otto Zyklus
30.11	Gasarbeitsprozesse - Gasturbinenprozesse	30.11	Brayton Zyklus
07.12	Gasarbeitsprozesse - Kombinierten Zyklen	07.12	Kombinierter Zyklus
14.12	Kältemaschinen und Wärmepumpen	14.12	Kältemaschine/Wärmepumpe
21.12	Kältemaschinen Oxyfuel, Carbon Capture and Storage	21.12	Wärmepumpe

2.1 Einführung

- Dampfturbinen leisten einen bedeutenden Beitrag zur Stromerzeugung
- Dampfturbinen werden vielseitig eingesetzt

Kohlekraftwerk

Kernkraftwerk

Solarthermie

Source: CMI

Schematische Darstellung eines Kernkraftwerks

Source: Wikipedia

Moderne, mehrstufige Dampfturbine

Dampferzeuger für Kernkraftwerk

Kondensator für Dampfturbine

Kühltürme für Nasskühlung

Überblick der Teilsysteme eines Kraftwerks:

- Teilsystem A: Umwandlung thermischer in mechanische Leistung (Wasserdampfkreislauf)
- Teilsystem B: Dampferzeugung (nuklear, fossil, solar)
- Teilsystem C: Weiterleitung der am Kondensator anfallenden Wärme an die Umgebung
- Teilsystem D: Umwandlung der mechanischen in elektrische Leistung

- 1 → 2 Expansion in der Turbine
- Eintrittsdrücke bis 300 bar
- Eintrittstemperaturen bis 650 °C
- Expansion bis zu sehr tiefen Drücken ins Nassdampfgebiet

Stationärer Betrieb (keine Wärmeübertragung in Turbine und Pumpe):

$$0 = \dot{Q}_{12} - P_{t12} + \dot{m} \left[h_1 - h_2 + \frac{\dot{v}_1^2 - v_2^2}{2} + g(z_1 - z_2) \right]$$

$$P_{t12} = \dot{m} (h_1 - h_2)$$

- 2 → 3 Wärmeabgabe am Kondensator
- wird in der Regel einem weiteren Kreislauf abgegeben (Teilsystem C)
- Der am Kondensator anfallende Wärmestrom P_P ist betragsmässig sehr gross, thermodynamisch jedoch fast wertlos (Exergie nahezu null), denn er hat eine geringe Temperatur (knapp über Umgebung).

$$\frac{\dot{Q}_{Aus}}{\dot{m}} = h_2 - h_3$$

- 3 → 4 Speisewasserpumpe
- Das flüssige Kondensat wird auf den Kesseldruck P₄ gepumpt.

$$\frac{P_P}{\dot{m}} = h_4 - h_3$$

4 → 1 Verdampfung im Dampferzeuger

$$\frac{\dot{Q}_{Ein}}{\dot{m}} = h_1 - h_4$$

Thermischer Wirkungsgrad

$$\eta_{th} = \frac{P_t/\dot{m} - P_P/\dot{m}}{\dot{Q}_{Ein}/\dot{m}} = \frac{(h_1 - h_2) - (h_4 - h_3)}{h_1 - h_4}$$

$$\eta_{th} = \frac{\dot{Q}_{Ein}/\dot{m} - \dot{Q}_{Aus}/\dot{m}}{\dot{Q}_{Ein}/\dot{m}} = 1 - \frac{h_2 - h_3}{h_1 - h_4}$$

2.2 Clausius Rankine Prozess

- 1 \rightarrow 2 isentrope Expansion
- 2 → 3 isotherme Wärmeabfuhr
- 3 \rightarrow 4 isentrope Kompression
- 4 → 1 isobare Wärmezufuhr

Kompressionsarbeit für intern reversibel

$$\left(\frac{P_P}{\dot{m}}\right)_{\text{IntRev}} = \int_3^4 v dp$$

 Im T-s Diagramm entspricht die Fläche unter einer Zustandsänderungskurve der zu- oder abgeführten Wärme:

$$Q = \int T ds$$

$$\left(\frac{\dot{Q}_{Ein}}{\dot{m}}\right)_{IntRev} = \int_{1}^{4} T ds = Fläche c-4-a-1-b$$

$$\left(\frac{\dot{Q}_{Ein}}{\dot{m}}\right)_{IntRev} = \overline{T}_{Ein} \left(s_1 - s_4\right)$$

$$\left(\frac{\dot{Q}_{Aus}}{\dot{m}}\right)_{IntRev} = \overline{T}_{Aus} \left(s_2 - s_3\right)$$

- Wirkungsgrad:
$$(\eta_{th})_{rev} = 1 - \frac{(\dot{Q}_{Aus}/\dot{m})_{Intrev}}{(\dot{Q}_{Ein}/\dot{m})_{Intrev}} = 1 - \frac{\overline{T}_{Aus}}{\overline{T}_{Ein}}$$

- Erhöhung des Kesseldruckes erhöht η_{th}
- Verminderung des Kondensatordruckes erhöht η_{th}

Unterschiede zwischen realem und idealem Prozess:

- Expansion in der Turbine: Aufgrund von Strömungsverlusten ist die Expansion in der Turbine nicht isentrop
- Ebenso die Kompression in der Pumpe
- Druckverluste in den Rohrleitungen
- Irreversibilität der Verbrennung
- Irreversibilitäten bei den Wärmeübergängen

2.3 Überhitzung, Zwischenüberhitzung, Vorwärmung

- Steigerung des Wirkungsgrades durch
 Erhöhung der
 Turbineneintrittstemperatur (TIT)
- Erhöhung des Frischdampfdruckes
- Problem: Dampfgehalt x nach der
 Expansion sinkt (Untere Grenze 0.85 0.9), Erosionsgefahr und Nässeverluste

[`]"blade erosion"

 Reduzierter Dampfgehalt reduziert die Leistung und die Standzeiten von Dampfturbinen

Feuchtigkeitsanteil β steigt über Turbinenstufe weiter an:

Simulation der Turbinenstufe mit Nassdampf und trockenem Dampf

Nassdampf

Trockener Dampf

Überhitzung im

Dampferzeuger (4 \rightarrow 1):

Dampf wird über die Sättigungstemperatur erhit

Zwischenüberhitzung(2 →3)
 (Reheating): Dampf aus dem Dampferzeuger expandiert in Hochdruckturbine (HPT) auf Zwischendruck p_z, wird dann auf T₃ erhitzt und expandiert in Niederdruckturbine (LPT) auf p₀

Zwei Ursachen für Steigerung von TIT

- Erhöhung des Kesseldrucks p
- Zusätzliche Wärmeaufnahme im Zwischenüberhitzer

- Vorwärmung des Speisewassers: Gleichzeitige Anhebung der Wassertemperatur im Dampferzeuger
- Vorwärmung (Regeneration) bewirkt Verminderung des Exergieverlusts

geschlossener Speisewassererhitzer

offener Speisewassererhitzer

Beispiel für Regenerativen Dampfarbeitsprozess: Offener

Speisewasser-Wärmetauscher

Beispiel für Regenerativen Dampfarbeitsprozess: Offener

Speisewasser-Wärmetauscher

- Mischung zweier Strömungen unterschiedlicher Temperatur
- Teil der Strömung wird in der Turbine zur Vorwärmung des Speisewassers abgezweigt
- Einsparung thermischer Energie, aber Turbine produziert weniger Arbeit

Beispiel für Regenerativen Dampfarbeitsprozess: Offener

Speisewasser-Wärmetauscher

Massenbilanz bei der Turbine

$$\dot{m}_1 = \dot{m}_2 + \dot{m}_3$$

$$\frac{\dot{m}_3}{\dot{m}_1} = 1 - y \quad y = \frac{\dot{m}_2}{\dot{m}_1}$$

Energiebilanz Wärmetauscher

$$y \cdot h_2 + (1 - y) \cdot h_5 = h_6$$

$$y = \frac{h_6 - h_5}{h_2 - h_5}$$

Energiebilanz Turbine und Pumpe

$$\frac{\dot{W}_t}{\dot{m}_1} = (h_1 - h_2) + (1 - y) \cdot (h_2 - h_3)$$

$$\frac{\dot{W}_p}{\dot{m}_1} = (h_7 - h_6) + (1 - y) \cdot (h_5 - h_4)$$

Energiebilanz Kessel, Kondensator

$$\frac{\dot{Q}_{Ein}}{\dot{m}_{1}} = (h_{1} - h_{7})$$

$$\frac{\dot{Q}_{Aus}}{\dot{m}_{1}} = (1 - y) \cdot (h_{3} - h_{4})$$

Beispiel für Regenerativen Dampfarbeitsprozess: Geschlossener Speisewasser-Wärmetauscher

 Hauptströmung und abgezweigte Strömung werden nicht gemischt, es liegt lediglich ein Wärmeübergang vor

Beispiel für Regenerativen Dampfarbeitsprozess: Geschlossener

Speisewasser-Wärmetauscher

Energiebilanz beim Wärmetauscher:
$$y \Big(h_2 - h_7\Big) + \Big(h_5 - h_6\Big) = 0$$

$$y = \frac{h_6 - h_5}{h_2 - h_7}$$

2.4 Kraft - Wärme - Kopplung

- Gleichzeitige Bereitstellung von Strom und Wärme
- Temperatur der abfallenden Wärme zu gering
- Anzapfturbine, Gegendruckturbine
- Folge: Wirkungsgradverlust im Wasserdampfkreislauf

