Statistiques Volumes

Mylène Moyal, François Ramon

2024-02-14

Contents

\mathbf{St}	atistics on volumes	2
	Analyzing White Matter (WM) volume cm3	2
	Analyzing Normal Appearing White Matter volume cm3	4
	Analyzing Cerebrum WM total volume cm3	5
	Analyzing Cerebrum WM right volume cm3	
	Analyzing Cerebrum WM left volume cm3	7
	Analyzing Cerebellum WM total volume cm3	
	Analyzing Cerebellum WM right volume cm3	
	Analyzing Cerebellum WM left volume cm3	10
	Analyzing Accumbens left volume cm3	11
	Analyzing Thalamus right volume cm3	12
	Analyzing ACgG left volume cm3	
	Analyzing Inf, Lateral Ventricle total volume cm3	14
	Analyzing Inf, Lateral Ventricle right volume cm3	15
	Analyzing Inf, Lateral Ventricle left volume cm3	
	· ·	

 $[1] \ 0.02305457 \ 0.02305457 \ 0.02305457 \ 0.02305457 \ 0.02305457 \ 0.02305457 \ 0.02305457 \ [7] \ 0.02305457$ $0.02305457 \ \ 0.02305457 \ \ 0.02305457 \ \ 0.02305457 \ \ 0.02835630 \ \ [13] \ \ 0.03881905 \ \ 0.03970166$ $0.05492405 \ \ 0.07095851 \ \ 0.09447913 \ \ \ 0.10357678 \ \ [19] \ \ 0.10357678 \ \ \ 0.10357678$ $0.10357678 \ 0.10357678 \ 0.10357678 \ [25] \ 0.10357678 \ 0.10357678 \ 0.10357678 \ 0.10357678$ $0.10357678 \ \ 0.10357678 \ \ [31] \ \ 0.10357678 \ \ 0.11037121 \ \ 0.20836881 \ \ 0.22154981 \ \ 0.22154981$ 0.24826043 [37] 0.24826043 0.24826043 0.24826043 0.25911371 0.25911371 0.25911371 [43] $0.25911371 \ \ 0.25911371 \ \ 0.26942339 \ \ 0.27123691 \ \ 0.28475306 \ \ 0.30101709 \ \ [49] \ \ 0.31133572$ $0.31173360 \ \ 0.31173360 \ \ 0.32320535 \ \ 0.37332051 \ \ \ 0.38816147 \ \ [55] \ \ 0.41208655 \ \ 0.41523747$ $0.41899140 \ \ 0.41933235 \ \ 0.41933235 \ \ 0.41933235 \ \ [61] \ \ 0.41933235 \ \ 0.41933235 \ \ 0.41933235$ $0.41933235 \ \ 0.42060843 \ \ 0.45907887 \ \ [67] \ \ 0.46925865 \ \ 0.46925865 \ \ 0.46925865 \ \ 0.46925865$ $0.46925865 \ \ 0.46965979 \ \ [73] \ \ 0.48647920 \ \ 0.48647920 \ \ 0.48647920 \ \ 0.49265592 \ \ 0.49866969$ 0.51064668 [79] 0.51064668 0.56171512 0.56345418 0.56485633 0.56485633 0.56485633 [85] $0.56485633 \ 0.56485633 \ 0.56485633 \ 0.57212317 \ 0.57212317 \ 0.57322463 \ [91] \ 0.58204413$ $0.58204413 \ \ 0.58477646 \ \ 0.58658393 \ \ \ 0.63182486 \ \ \ 0.63282178 \ \ [97] \ \ \ 0.63567623 \ \ \ 0.69823942$ 0.69823942 0.70943203 0.71135165 0.72370909 [103] 0.72370909 0.72370909 0.72370909 $0.72370909\ 0.73134908\ 0.73134908\ [109]\ 0.73134908\ 0.74649624\ 0.75293660\ 0.75293660$ $0.75293660 \ 0.75293660 \ [115] \ 0.77930338 \ 0.77930338 \ 0.78181989 \ 0.78181989 \ 0.78181989$ $0.78181989 \ [121] \ 0.78181989 \ 0.78181989 \ 0.78278760 \ 0.78278760 \ 0.78278760 \ 0.78278760 \ [127]$ 0.78278760 0.78278760 0.78278760 0.78278760 0.78278760 0.78278760 0.78278760 0.78278760 $0.78278760\ 0.78705832\ 0.78705832\ 0.78705832\ 0.78705832\ [139]\ 0.78878135\ 0.79063904$ 0.79483382 0.79557426 0.79557426 0.79557426 [145] 0.79557426 0.79557426 0.79557426 $0.86413406 \ \ 0.86413406 \ \ [157] \ \ 0.86647847 \ \ \ 0.87237944 \ \ \ 0.87237944 \ \ \ 0.87237944$ $0.87237944 \ [163] \ 0.87237944 \ 0.872379$ $0.88702359 \ 0.88702359 \ 0.88702359 \ 0.88702359 \ 0.88702359 \ 0.88702359 \ [175] \ 0.88702359$ $0.89308505 \ 0.89308505 \ 0.89308505 \ 0.89308505 \ 0.89308505 \ [181] \ 0.89308505 \ 0.89308505$ $0.89308505 \ 0.89308505 \ 0.89308505 \ 0.89308505 \ [187] \ 0.89308505 \ 0.89308505$ $0.89308505 \ 0.89308505 \ 0.89308505 \ [193] \ 0.89308505 \ 0.89308505 \ 0.89308505$ $0.89308505 \ \ 0.89308505 \ \ [199] \ \ 0.89308505 \ \ 0.89308505 \ \ 0.89308505 \ \ 0.89308505$ $0.89308505 \ [205] \ 0.89308505 \ 0.89308505 \ 0.89308505 \ 0.89308505 \ 0.89308505 \ 0.89308505 \ [211]$ $0.89308505 \ 0.89308505 \ 0.89308505 \ 0.89308505 \ 0.89308505 \ 0.89308505 \ [217] \ 0.89308505$ $0.89308505 \ \ 0.89308505 \ \ 0.89308505 \ \ 0.89643614 \ \ 0.89779218 \ \ [223] \ \ 0.89799202 \ \ 0.90835302$ $0.91519924 \ \ 0.92294867 \ \ 0.92909621 \ \ 0.94167976 \ \ [229] \ \ 0.95316167 \ \ 0.96487764 \ \ 0.96487764$ $0.98371321 \ 0.98371321 \ 0.98772909$

Statistics on volumes

Analyzing White Matter (WM) volume cm³

Table 1: Analyzing White Matter (WM) volume cm3 ~ statut + ECT + age +sex + tesla + duree_pec_psy + equivalent_olz_1 + equivalent_valium_10

	Sum Sq	Df	F value	Pr(>F)
statut	2.346430e + 24	1	11.3923077	0.0010694

	Sum Sq	Df	F value	Pr(>F)
Age	1.024416e + 23	1	0.4973711	0.4823831
Sex	1.175454e + 22	1	0.0570703	0.8117025
tesla	1.500354e + 24	1	7.2844680	0.0082330
$duree_pec_psy$	5.682079e + 23	1	2.7587440	0.1000212
equivalent $_$ olz $_1$	1.214006e + 23	1	0.5894202	0.4445475
equivalent_valium_ 10	2.923536e + 23	1	1.4194252	0.2364661
Residuals	1.956679e + 25	95	NA	NA

Analyzing Normal Appearing White Matter volume cm³

Table 2: Analyzing Normal Appearing White Matter volume cm3 \sim statut + ECT + age +sex + tesla + duree_pec_psy + equivalent_olz_1 + equivalent_valium_10

	Sum Sq	Df	F value	Pr(>F)
statut	2.520130e + 24	1	11.9398074	0.0008230
Age	5.043968e + 22	1	0.2389718	0.6260764
Sex	2.201785e + 22	1	0.1043156	0.7474208
tesla	1.633870e + 24	1	7.7409098	0.0065120
$duree_pec_psy$	5.708850e + 23	1	2.7047244	0.1033566
equivalent_olz_1	1.199962e + 23	1	0.5685152	0.4527144
equivalent_valium_10	2.901237e + 23	1	1.3745407	0.2439649
Residuals	$2.005161\mathrm{e}{+25}$	95	NA	NA

Analyzing Cerebrum WM total volume cm3

Table 3: Analyzing Cerebrum WM total volume cm3 ~ statut + ECT + age +sex + tesla + duree_pec_psy + equivalent_olz_1 + equivalent_valium_10

	Sum Sq	Df	F value	Pr(>F)
statut	1.965536e + 24	1	10.8936620	0.0013599
Age	1.218492e + 23	1	0.6753292	0.4132575
Sex	4.064116e + 21	1	0.0225247	0.8810179
tesla	1.342633e + 24	1	7.4413268	0.0075936
$duree_pec_psy$	5.282918e + 23	1	2.9279713	0.0903202
equivalent_olz_1	9.583580e + 22	1	0.5311543	0.4679148
equivalent_valium_10	2.653424e + 23	1	1.4706168	0.2282554
Residuals	1.714078e + 25	95	NA	NA

Analyzing Cerebrum WM right volume cm3

Table 4: Analyzing Cerebrum WM right volume cm3 ~ statut + ECT + age +sex + tesla + duree_pec_psy + equivalent_olz_1 + equivalent_valium_10

	Sum Sq	Df	F value	Pr(>F)
statut	4.933134e + 23	1	11.0945305	0.0012341
Age	1.511772e + 22	1	0.3399949	0.5612138
Sex	9.433909e + 20	1	0.0212167	0.8844988
tesla	3.501417e + 23	1	7.8746248	0.0060822
$duree_pec_psy$	1.246193e + 23	1	2.8026668	0.0973971
$equivalent_olz_1$	2.736375e + 22	1	0.6154058	0.4347114
equivalent_valium_10	5.722127e + 22	1	1.2868963	0.2594751
Residuals	4.224133e+24	95	NA	NA

Analyzing Cerebrum WM left volume cm3

Table 5: Analyzing Cerebrum WM left volume cm3 ~ statut + ECT + age +sex + tesla + duree_pec_psy + equivalent_olz_1 + equivalent_valium_10

	Sum Sq	Df	F value	Pr(>F)
statut	4.894582e + 23	1	10.5353397	0.0016181
Age	5.112853e + 22	1	1.1005157	0.2968145
Sex	1.091404e + 21	1	0.0234919	0.8785099
tesla	3.214802e+23	1	6.9196992	0.0099466
duree_pec_psy	1.397427e + 23	1	3.0078917	0.0861036
equivalent_olz_1	2.078026e+22	1	0.4472846	0.5052492
equivalent_valium_10	7.612326e + 22	1	1.6385147	0.2036463
Residuals	4.413577e + 24	95	NA	NA

Analyzing Cerebellum WM total volume cm3

Table 6: Analyzing Cerebellum WM total volume cm3 ~ statut + ECT + age +sex + tesla + duree_pec_psy + equivalent_olz_1 + equivalent_valium_10

	Sum Sq	Df	F value	Pr(>F)
statut	1.685597e + 22	1	8.0944270	0.0054386
Age	8.412733e+20	1	0.4039889	0.5265645
Sex	1.995167e + 21	1	0.9581016	0.3301517
tesla	4.378277e + 21	1	2.1024975	0.1503523
$duree_pec_psy$	7.267598e + 20	1	0.3489982	0.5560836
equivalent $_$ olz $_1$	1.509488e + 21	1	0.7248731	0.3966911
equivalent_valium_10	6.545188e + 20	1	0.3143073	0.5763689
Residuals	1.978296e + 23	95	NA	NA

Analyzing Cerebellum WM right volume cm3

Table 7: Analyzing Cerebellum WM right volume cm3 ~ statut + ECT + age +sex + tesla + duree_pec_psy + equivalent_olz_1 + equivalent_valium_10

	Sum Sq	Df	F value	Pr(>F)
statut	4.187104e + 21	1	8.1720349	0.0052286
Age	3.407862e+20	1	0.6651177	0.4167990
Sex	5.730663e+20	1	1.1184623	0.2929316
tesla	1.141122e+21	1	2.2271452	0.1389177
duree_pec_psy	3.537499e + 20	1	0.6904192	0.4081053
equivalent_olz_1	5.393360e + 20	1	1.0526304	0.3075074
equivalent_valium_10	1.581358e + 20	1	0.3086360	0.5798243
Residuals	4.867513e + 22	95	NA	NA

Analyzing Cerebellum WM left volume cm3

Table 8: Analyzing Cerebellum WM left volume cm3 ~ statut + ECT + age +sex + tesla + duree_pec_psy + equivalent_olz_1 + equivalent_valium_10

	Sum Sq	Df	F value	Pr(>F)
statut	4.240956e + 21	1	7.6153186	0.0069445
Age	1.111786e + 20	1	0.1996390	0.6560294
Sex	4.297152e+20	1	0.7716228	0.3819318
tesla	1.048956e + 21	1	1.8835691	0.1731607
duree_pec_psy	6.644317e + 19	1	0.1193094	0.7305484
equivalent_olz_1	2.442371e + 20	1	0.4385670	0.5094183
equivalent_valium_10	1.692303e + 20	1	0.3038803	0.5827542
Residuals	5.290531e+22	95	NA	NA

Analyzing Accumbens left volume cm3

Table 9: Analyzing Accumbens left volume cm3 ~ statut + ECT + age +sex + tesla + duree_pec_psy + equivalent_olz_1 + equivalent_valium_10

	Sum Sq	Df	F value	Pr(>F)
statut	2.267000e + 18	1	9.5844812	0.0025790
Age	$9.950109e{+18}$	1	42.0673280	0.0000000
Sex	1.964458e + 18	1	8.3053849	0.0048872
tesla	$2.194759e{+15}$	1	0.0092791	0.9234631
$duree_pec_psy$	7.016256e + 17	1	2.9663506	0.0882676
equivalent $_$ olz $_1$	5.943890e + 17	1	2.5129732	0.1162360
equivalent_valium_10	7.668337e + 17	1	3.2420393	0.0749446
Residuals	2.247018e + 19	95	NA	NA

Analyzing Thalamus right volume cm3

Table 10: Analyzing Thalamus right volume cm3 ~ statut + ECT + age +sex + tesla + duree_pec_psy + equivalent_olz_1 + equivalent_valium_10

	Sum Sq	Df	F value	Pr(>F)
statut	1.604294e + 20	1	6.7100225	0.0110964
Age	1.728973e + 21	1	72.3150031	0.0000000
Sex	3.427917e + 20	1	14.3374004	0.0002677
tesla	1.056236e + 20	1	4.4177477	0.0382128
$duree_pec_psy$	3.504237e + 19	1	1.4656611	0.2290349
equivalent $_$ olz $_1$	$4.226582e{+}19$	1	1.7677851	0.1868403
equivalent_valium_10	3.915346e + 18	1	0.1637609	0.6866270
Residuals	2.271347e + 21	95	NA	NA

Analyzing ACgG left volume cm3

Table 11: Analyzing ACgG left volume cm3 ~ statut + ECT + age +sex + tesla + duree_pec_psy + equivalent_olz_1 + equivalent_valium_10

	Sum Sq	Df	F value	Pr(>F)
statut	6.237052e + 20	1	6.7123996	0.0110826
Age	$1.322460e{+21}$	1	14.2324946	0.0002809
Sex	4.854190e + 19	1	0.5224145	0.4715892
tesla	1.563849e + 20	1	1.6830360	0.1976632
$duree_pec_psy$	1.036970e + 19	1	0.1116001	0.7390660
equivalent $_$ olz $_1$	4.544435e+19	1	0.4890782	0.4860476
equivalent_valium_ 10	2.879362e + 18	1	0.0309881	0.8606417
Residuals	8.827245e + 21	95	NA	NA

Analyzing Inf, Lateral Ventricle total volume cm3

Table 12: Analyzing Inf, Lateral Ventricle total volume cm3 ~ statut + ECT + age +sex + tesla + duree_pec_psy + equivalent_olz_1 + equivalent_valium_10

	$\operatorname{Sum}\operatorname{Sq}$	Df	F value	Pr(>F)
statut	3.909920e + 20	1	9.2268195	0.0030792
Age	5.057695e + 20	1	11.9353933	0.0008248
Sex	8.962009e+19	1	2.1148983	0.1491677
tesla	1.932471e + 20	1	4.5603380	0.0352924
duree_pec_psy	8.527719e + 17	1	0.0201241	0.8874914
equivalent $_$ olz $_1$	1.187693e + 19	1	0.2802775	0.5977544
equivalent_valium_10	1.885935e + 17	1	0.0044505	0.9469510
Residuals	4.025682e+21	95	NA	NA

Analyzing Inf, Lateral Ventricle right volume cm3

Table 13: Analyzing Inf, Lateral Ventricle right volume cm3 ~ statut + ECT + age +sex + tesla + duree_pec_psy + equivalent_olz_1 + equivalent_valium_10

	Sum Sq	Df	F value	Pr(>F)
statut	9.430640e + 19	1	8.3072546	0.0048826
Age	1.252087e + 20	1	11.0293770	0.0012736
Sex	1.100062e + 19	1	0.9690215	0.3274248
tesla	4.936039e+19	1	4.3480541	0.0397329
duree_pec_psy	1.280678e + 17	1	0.0112812	0.9156372
equivalent_olz_1	1.019154e + 18	1	0.0897752	0.7651178
equivalent_valium_10	2.282344e+17	1	0.0201047	0.8875453
Residuals	1.078468e + 21	95	NA	NA

Analyzing Inf, Lateral Ventricle left volume cm3

Table 14: Analyzing Inf, Lateral Ventricle left volume cm3 ~ statut + ECT + age +sex + tesla + duree_pec_psy + equivalent_olz_1 + equivalent_valium_10

	Sum Sq	Df	F value	Pr(>F)
statut	1.012465e + 20	1	9.1864985	0.0031416
Age	1.276789e + 20	1	11.5848244	0.0009751
Sex	3.782079e + 19	1	3.4316330	0.0670638
tesla	4.727173e + 19	1	4.2891549	0.0410680
duree_pec_psy	3.198579e + 17	1	0.0290220	0.8650905
equivalent_olz_1	5.938077e + 18	1	0.5387857	0.4647442
equivalent_valium_10	1.887485e + 15	1	0.0001713	0.9895861
Residuals	1.047016e + 21	95	NA	NA

