DS Nanodegree Project: Write A Data Science Blog Post

Stack Overflow Data - 2017 Survey Analysis

Being an aspiring Data Scientist, Stack Overflow is a website that I refer to every single day because how it helps to solve your programming problems we here people from around the globe can comment on it and help optimize it. In this project we will be using a dataset which holds survey results.

Contents of the notebook

- Relevant research question formulation
- · Importing / Gathering Data
- Data Preparation
- Analysis and Visualization

Relevant Research Questions

I am an international student based in United States. I want to explore the differences between Western country trends (North America, Europe) and Eastern country trends.

- 1) What are the Salary differences in western countries and eastern countrie
- s, roughly?
- 2) Are people Overpaid or not, globally?
- 3) Are people satisfied with their job?

With all those questions answered, Where will you prefer to work?

Importing / Gathering Data

Let's start by importing our data

```
In [2]: # importing important libraries and packages
    import pandas as pd
    import numpy as np
    import matplotlib.pyplot as plt
    import seaborn as sns
    import warnings
    from IPython.display import display

# Adjust some settings
pd.pandas.set_option('display.max_columns',None)
pd.pandas.set_option('display.max_rows',None)
sns.set_style(style='darkgrid')
warnings.filterwarnings("ignore")
%matplotlib inline
```

Out[3]:

	Respondent	Professional	ProgramHobby	Country	University	EmploymentStatus	FormalEc
0	1	Student	Yes, both	United States	No	Not employed, and not looking for work	Secondar
1	2	Student	Yes, both	United Kingdom	Yes, full- time	Employed part-time	college/u study e
2	3	Professional developer	Yes, both	United Kingdom	No	Employed full-time	Bachelor'
3	4	Professional non- developer who sometimes write	Yes, both	United States	No	Employed full-time	Doctore
4	5	Professional developer	Yes, I program as a hobby	Switzerland	No	Employed full-time	Master'

Let us work around the imported dataset to know it better

Out[4]:

51391

```
In [4]: df.tail()
```

	Respondent	Professional	ProgramHobby	Country	University	EmploymentStatus	Forma
51387	51388	Professional developer	Yes, I program as a hobby	United States	No	Employed full-time	Bache
51388	51389	Student	No	Venezuela	Yes, full- time	Employed full-time	Mas
51389	51390	Professional developer	Yes, I program as a hobby	Canada	No	Employed full-time	colleç st
51390	51391	Professional developer	Yes, I program as a hobby	United States	No	Employed full-time	Bache

```
In [5]: df.shape
Out[5]: (51392, 154)
```

No

Ireland

No

We can see that there are 154 attributes (quite a large dataset) with around 51392 data points.

Professional nondeveloper

who sometimes write...

51392

• We will start by writing a generalized function which will be used for plotting various kinds of data and will help us better understand the data.

Employed full-time Bache

```
In [6]: def plot column data(df, coln, title):
            This function will give a bar chart as output for provided column wi
        th a title that is provided by user.
            parameters:
            df: the data which is to be used.
            coln: name of the column that is to be plotted
            title: title of the plot
            Returns:
            A bar plot of percentage share
            used_coln = ['Professional', 'Country', 'EmploymentStatus', 'Overpai
        d']
            if coln in used_coln :
                vals = df[coln].value_counts()
                (vals[:5]/df.shape[0]).plot(kind="bar");
                plt.title(title);
            else:
                display('Please enter a column name from Professional, Country,
         EmploymentStatus, Overpaid ')
```


We see that around 22% of reviewers live in United States, followed by India at 10% and UK, Germany and Canada.

```
In [8]: # Lets try to understand the Employment Status of the reviewers
    plot_column_data(df, "EmploymentStatus", "Employmeny Status")
```


70% people are employed full-time and with other categories less than 10%

In [9]: # Lets try to understand the Professional of the reviewers
 plot_column_data(df, "Professional", "Profession")

Around 70% of people on stack Overflow are Professional Developers

11.5% are somewhat underpaid. Infact, in general more people are underpaid than those that are overpaid.

Now let us also try plotting a column which was not definded in function.

```
In [11]: plot_column_data(df, "University", "Which University do they study in?")
    'Please enter a column name from Professional, Country, EmploymentStatus, Overpaid '
```

Data Preparation

Since we are comparing trends of western and eastern countries, first let us programatically split countries into western and eastern division. The data does not provide us that data, so we will manually specify the countries.

In [12]: df.Country.value_counts()

.020		White A Bata gerence i
Out[12]:	United States	11455
	India	5197
	United Kingdom	4395
	Germany	4143
	Canada	2233
	France	1740
	Poland	1290
	Australia	913
	Russian Federation	873
	Spain	864
	Netherlands	855
	Italy	781
	Brazil	777
	Sweden	611
	Switzerland	595
	Israel Romania	575
		561
	Iran Austria	507 477
	Pakistan	454
	Czech Republic	411
	Belgium	404
	South Africa	380
	Turkey	363
	Ukraine	356
	Mexico	351
	Ireland	345
	Hungary	332
	Philippines	328
	Slovenia	303
	Denmark	300
	Greece	298
	Indonesia	289
	Finland	287
	Portugal	271
	Norway	259
	Bulgaria	258
	Argentina	255
	New Zealand	252
	Japan	248
	China	239
	Serbia	228
	Malaysia	192
	Bangladesh	184
	Singapore Lithuania	177
	Croatia	176 172
	Nigeria	172
	Slovak Republic	170
	Sri Lanka	170
	South Korea	164
	Colombia	149
	I prefer not to say	140
	Egypt	134
	Nepal	125
	Hong Kong	122
	Vietnam	121

	Write A Data Science E
Thailand	119
Chile	111
Latvia	98
United Arab Emirates	98
Kenya	95
Taiwan	91
Belarus	91
Estonia	90
Uruguay	78
Albania	76
Bosnia-Herzegovina	66
Moldavia	65
Dominican Republic	65
Peru	65
Morocco	63
Afghanistan	60
Venezuela	59
Lebanon	56
Tunisia	56
Macedonia	56
Costa Rica	54
Ghana	53
Saudi Arabia	52
Armenia	51
Georgia	46
Malta	46
	43
Jordan	
Algeria	41
Guatemala	38
Ethiopia	37
Ecuador	36
Myanmar	35
Kazakhstan	34
Luxembourg	33
Cuba	33
Iceland	33
Uzbekistan	28
Cyprus	28
Uganda	28
Azerbaidjan	27
Bolivia	23
Paraguay	22
Mongolia	22
Panama	22
Aland Islands	22
El Salvador	21
Puerto Rico	20
Jamaica	20
Zimbabwe	20
Cambodia	19
Tanzania	17
Mauritius	17
Trinidad and Tobago	15
Nicaragua	14
Syria	13
Rwanda	12
Bahrain	12

	Write II Data Science I
Montenegro	12
Sudan	12
Kuwait	12
Cameroon	12
Antarctica	11
Kyrgyzstan	11
Iraq	11
Honduras	11
Qatar	11
Zambia	10
Angola	9
Madagascar	8
Mozambique	8
Brunei Darussalam	7
Botswana	7
New Caledonia (French)	7
Togo	7
North Korea	6
Liechtenstein	6
Andorra	6
Somalia	5
Oman	5
Senegal	5
American Samoa	5
Virgin Islands (USA)	5
Belize	4
Namibia	4
Haiti	4
Libya	4
Guyana	4
Reunion (French)	4
U.S. Minor Outlying Islands	4
Swaziland	3
Fiji	3
Niger	3
Barbados	3
<pre>Ivory Coast (Cote D'Ivoire)</pre>	3
Netherlands Antilles	3
Yemen	3
Antigua and Barbuda	3
Virgin Islands (British)	2
Laos	2
Saint Lucia	2
Bhutan	2
Burundi	2
Bermuda	2
Benin	2
Aruba	2
Cayman Islands	2
Suriname	2
Polynesia (French)	2
Bouvet Island	2
Anguilla	2
Saint Vincent & Grenadines	2
Zaire	2
Malawi	2
Tadjikistan	2

Wille II Bata S)CICIICC I
Eritrea	2
Martinique (French)	2
Cape Verde	1
Cook Islands	1
Burkina Faso	1
Turkmenistan	1
Seychelles	1
Monaco	1
Guam	1
Guinea	1
Northern Mariana Islands	1
Mali	1
S. Georgia & S. Sandwich Isls.	1
Heard and McDonald Islands	1
Djibouti	1
Gibraltar	1
Christmas Island	1
Falkland Islands	1
Gabon	1
Saint Helena	1
British Indian Ocean Territory	1
Comoros	1
Lesotho	1
French Guyana	1
Bahamas	1
Montserrat	1
Chad	1
Macau	1
Pitcairn Island	1
Vatican City State	1
Name: Country, dtype: int64	

```
In [13]:
         def country_div(df):
              Returns a dataframe with a column created denoting western or easter
         n division.
              Parameter:
              df: a raw dataframe
              Returns:
              df: same dataframe with added column denoting western and eastern di
          vision.
              I = I - I
              # Let's start by specifying western and eastern countries in a list,
         manually.
              eastern = ['India','China','Australia','Russian Federation','Isreal'
          ,'Iran','Pakistan','Turkey','Philippines',
                         'Indonesia', 'New Zealand', 'Japan', 'Serbia', 'Malaysia', 'Ba
         ngladesh','Singapore']
             western = ['United States','United Kingdom','Germany','Canada','Fran
         ce', 'Poland', 'Spain', 'Netherlands', 'Italy',
                        'Brazil', 'Sweden', 'Switzerland', 'Austria', 'Belgium', 'South
         Africa', 'Mexico', 'Ireland', 'Hungary',
                        'Denmark','Greece','Finland']
              # Now add a column using the above lists
              df['division'] = df['Country'].apply(lambda x: 'eastern' if x in eas
         tern else ('western' if x in western else 'other'))
              display(df.head())
              return df
```

In [14]: df = country_div(df)

	Respondent	Professional	ProgramHobby	Country	University	EmploymentStatus	FormalEc
0	1	Student	Yes, both	United States	No	Not employed, and not looking for work	Secondar
1	2	Student	Yes, both	United Kingdom	Yes, full- time	Employed part-time	college/u study e:
2	3	Professional developer	Yes, both	United Kingdom	No	Employed full-time	Bachelor'
3	4	Professional non- developer who sometimes write	Yes, both	United States	No	Employed full-time	Doctora
4	5	Professional developer	Yes, I program as a hobby	Switzerland	No	Employed full-time	Master'

We know that there are around 154 columns and most of them are not really useful. So let us extract the columns that are useful to our analysis. Here are some columns that might be useful for our analysis.

- Country: The country where reviewer lives
- EmployemntStatus: The employment status of reviewer
- YearsCodedJob: Time (in years) they have been coding
- Salary: Their salary
- JobSatisfaction & CareerSatisfaction: Are the reviewers satified with their job and career or not?
- Overpaid: How overpaid is the reviewer?
- HaveWorkedLanguage: The languages they have worked with.

Also let us focus on full-time employment data

In [16]: df.HaveWorkedLanguage.value_counts().head(20)

```
Out[16]: C#; JavaScript; SQL
                                              1276
         JavaScript; PHP; SQL
                                              1143
         Java
                                               913
         JavaScript
                                               807
         JavaScript; PHP
                                               662
         Java; JavaScript; SQL
                                               645
         Java; JavaScript
                                               585
         C#
                                               540
         Python
                                               529
         C#; JavaScript
                                               500
         C#; SQL
                                               494
         C#; JavaScript; SQL; TypeScript
                                               410
         JavaScript; Python
                                               384
         Java; SQL
                                               356
         Java; JavaScript; PHP; SQL
                                               342
         C#; JavaScript; PHP; SQL
                                               256
         JavaScript; PHP; Python; SQL
                                               253
         C++
                                               247
         C#; Java; JavaScript; SQL
                                               230
         PHP
                                               217
         Name: HaveWorkedLanguage, dtype: int64
```

```
In [17]: df_1 = data_prep(df)
```

	Country	EmploymentStatus	YearsCodedJob	Salary	JobSatisfaction	CareerSatisfaction
2	United Kingdom	Employed full-time	20 or more years	113750.0	9.0	8.0
3	United States	Employed full-time	9 to 10 years	NaN	3.0	6.0
4	Switzerland	Employed full-time	10 to 11 years	NaN	8.0	6.0
6	United States	Employed full-time	8 to 9 years	NaN	6.0	7.0
7	Poland	Employed full-time	7 to 8 years	NaN	7.0	7.0
16	1 3:::	()				

```
In [18]: df_1.division.unique()
Out[18]: array(['western', 'other', 'eastern'], dtype=object)
```

We have our data in place with all the necessary columns for our analysis. But, we see that some columns are not in the format that we desire for inferential analysis.

• The Overpaid column is a categorical with object data type. I feel converting it to a numerical category will make sense for our analysis.

Here we convert Overpaid column into a numerical categories.

```
In [19]:
         def overpaid_conv(df):
             This function returns the same dataframe with Overpaid column in num
         erical format.
             Parameters:
             df: the df 1 will be passed as parameter
             Returns:
             df 1: the same dataframe with Overpaid column converted into numeric
         al categories.
              . . .
             overpaid_map = {
                  'Greatly underpaid': 1,
                  'Somewhat underpaid' : 2,
                  'Neither underpaid nor overpaid': 3,
                  'Somewhat overpaid' : 4,
                  'Greatly overpaid' : 5,
                 np.nan: np.nan
             df['Overpaid'] = df['Overpaid'].apply(lambda x: np.nan if x == np.na
         n else overpaid map[x] )
             display(df.head())
             return df
```

	Country	EmploymentStatus	YearsCodedJob	Salary	JobSatisfaction	CareerSatisfaction
2	United Kingdom	Employed full-time	20 or more years	113750.0	9.0	8.0
3	United States	Employed full-time	9 to 10 years	NaN	3.0	6.0
4	Switzerland	Employed full-time	10 to 11 years	NaN	8.0	6.0
6	United States	Employed full-time	8 to 9 years	NaN	6.0	7.0
7	Poland	Employed full-time	7 to 8 years	NaN	7.0	7.0

Out[20]:

		Salary	JobSatisfaction	CareerSatisfaction	HoursPerWeek	Ove
division	YearsCodedJob					
eastern	1 to 2 years	10975.851467	6.000000	6.627419	5.929825	2.17
	10 to 11 years	38954.557683	6.727273	7.327684	2.541667	2.42
	11 to 12 years	43512.961806	6.797753	7.191011	4.027778	2.37
	12 to 13 years	52038.604875	6.925926	7.382716	2.794118	2.36
	13 to 14 years	53160.580357	6.705882	6.843137	3.863636	2.68
	14 to 15 years	57948.411586	6.794521	7.067568	3.033333	2.42
	15 to 16 years	56957.007437	6.819444	7.111111	3.250000	2.54
	16 to 17 years	58415.002742	7.270833	7.458333	3.166667	2.52
	17 to 18 years	74674.590186	7.086957	7.255319	2.722222	2.56
	18 to 19 years	68142.660952	7.450000	7.250000	1.000000	2.37
	19 to 20 years	51794.620890	6.821429	7.137931	1.357143	2.50
	2 to 3 years	13192.955090	6.332375	6.865072	6.103380	2.19
	20 or more years	77494.105133	6.984375	7.496063	3.096154	2.54
	3 to 4 years	17786.735961	6.264557	6.878788	6.300000	2.25
	4 to 5 years	19285.341114	6.575758	6.969748	6.386973	2.31
	5 to 6 years	24470.390075	6.602386	7.097416	5.086364	2.35
	6 to 7 years	26382.885828	6.800000	7.127869	6.838028	2.38
	7 to 8 years	32250.322093	6.735537	7.157025	3.291262	2.41
	8 to 9 years	38098.921320	6.589928	7.115108	3.014493	2.23
	9 to 10 years	35621.406815	6.730942	7.263393	3.572727	2.39
	Less than a year	11863.344413	5.997080	6.318248	5.743860	2.45
other	1 to 2 years	17622.212483	6.704992	7.252976	5.033898	2.30
	10 to 11 years	49313.268882	7.041885	7.675393	3.329114	2.49
	11 to 12 years	56611.673223	7.400000	7.842105	2.512821	2.55
	12 to 13 years	47686.842027	7.128205	7.461538	1.434783	2.48
	13 to 14 years	55022.154432	7.553846	8.169231	3.681818	2.54
	14 to 15 years	62963.576724	7.507042	7.549296	3.318182	2.52
	15 to 16 years	56699.308509	7.457143	7.557143	1.423077	2.72
	16 to 17 years	50661.203043	7.425926	7.629630	1.703704	2.28
	17 to 18 years	58198.182385	7.536585	7.512195	1.000000	2.43
	18 to 19 years	61116.105881	7.709677	7.774194	0.800000	2.50
	19 to 20 years	28927.637315	7.444444	7.592593	4.500000	2.50

		Salary	JobSatisfaction	CareerSatisfaction	HoursPerWeek	Ove
division	YearsCodedJob					
	2 to 3 years	23259.893810	6.814935	7.336570	3.605263	2.25
	20 or more years	64383.628823	7.585526	7.875817	4.052632	2.26
	3 to 4 years	20822.604412	6.813830	7.322124	3.996000	2.29
	4 to 5 years	26539.542576	6.896328	7.451404	3.393443	2.30
	5 to 6 years	33259.397482	6.923664	7.318987	3.612903	2.36
	6 to 7 years	37351.750851	6.762500	7.393305	4.067961	2.42
	7 to 8 years	38885.072197	6.980583	7.545894	4.245098	2.54
	8 to 9 years	38628.365308	6.953333	7.733333	2.000000	2.52
	9 to 10 years	35620.252152	7.195455	7.554545	3.626506	2.49
	Less than a year	14603.183505	6.682216	7.061224	4.261194	2.21
western	1 to 2 years	45997.990903	7.062527	7.470308	3.002210	2.36
	10 to 11 years	73678.586374	7.124266	7.455969	2.119403	2.48
	11 to 12 years	77079.181724	7.011628	7.500000	1.908676	2.44
	12 to 13 years	90733.797524	6.971554	7.518600	2.016854	2.59
	13 to 14 years	80143.821902	6.940994	7.297214	2.616000	2.57
	14 to 15 years	88086.585857	7.005825	7.401163	2.263889	2.53
	15 to 16 years	85772.666161	7.120921	7.519157	2.289474	2.47
	16 to 17 years	84112.928839	7.120430	7.572043	2.456140	2.53
	17 to 18 years	93040.759450	7.196676	7.648199	1.877863	2.67
	18 to 19 years	90402.340275	7.041509	7.547170	1.974790	2.55
	19 to 20 years	91686.285984	6.965517	7.517241	2.036364	2.56
	2 to 3 years	50044.110094	7.084797	7.476231	2.637631	2.30
	20 or more years	101754.743868	7.263422	7.773320	2.379128	2.52
	3 to 4 years	55798.086037	7.030437	7.474277	2.736908	2.34
	4 to 5 years	60270.591071	6.959624	7.455801	2.294118	2.36
	5 to 6 years	61863.116157	7.034230	7.450549	2.972851	2.38
	6 to 7 years	66831.876731	7.169429	7.510129	2.432304	2.43
	7 to 8 years	65819.603313	7.122934	7.471620	2.260753	2.45
	8 to 9 years	73001.009118	7.062344	7.522388	2.270968	2.43
	9 to 10 years	71267.800327	6.985192	7.426215	2.263158	2.43
	Less than a year	45216.168656	7.408195	7.525570	2.615789	2.49

In [21]: **def** years code(df):

We can see how the data when grouped by divisions and then YearsCodedJob further into various categories. Those categories are a bit abrupt since the intervals are misleading. Let us try and improve it.

```
This will manage the YearsCodedJob column to normalized labels so th
         ey are not misleading.
             Parameters:
             df: the dataframe that has the column YearsCodedJob and needs change
             Returns:
             df: the same dataframe that has the column YearsCodedJob changed to
          the way we want.
              111
             map_year = {'1 to 2 years' : 1,
                          '10 to 11 years' : 10,
                          '11 to 12 years' : 11,
                          '12 to 13 years' : 12,
                          '13 to 14 years' : 13,
                          '14 to 15 years' : 14,
                          '15 to 16 years': 15,
                          '16 to 17 years' : 16,
                          '17 to 18 years' : 17,
                          '18 to 19 years' : 18,
                          '19 to 20 years' : 19,
                          '2 to 3 years' : 2,
                          '20 or more years' : 20,
                          '3 to 4 years' : 3,
                          '4 to 5 years' : 4,
                          '5 to 6 years' : 5,
                          '6 to 7 years' : 6,
                          '7 to 8 years' : 7,
                          '8 to 9 years' : 8,
                          '9 to 10 years' : 9,
                          'Less than a year' : 0}
             df map = df.reset index()
             df map['YearsCodedJob'] = df map['YearsCodedJob'].apply(lambda x: ma
         p year[x])
             df map['YearsCodedJob'] = pd.to numeric(df map['YearsCodedJob'])
             return df map
In [22]:
         q1 mapped = years code(q1)
         q1 mapped = q1 mapped.sort values(by='YearsCodedJob')
In [23]: q1 mapped.set index('YearsCodedJob', inplace=True)
```

```
In [24]: q1_mapped.head()
```

Out[24]:

	division	Salary	JobSatisfaction	CareerSatisfaction	HoursPerWeek	Overp
YearsCodedJob						
0	western	45216.168656	7.408195	7.525570	2.615789	2.493 ⁻
0	other	14603.183505	6.682216	7.061224	4.261194	2.210
0	eastern	11863.344413	5.997080	6.318248	5.743860	2.457 ⁻
1	western	45997.990903	7.062527	7.470308	3.002210	2.364
1	other	17622.212483	6.704992	7.252976	5.033898	2.3020

Analysis and Visualization

Now that we have our data prepared, we will use it to perform various visualization.

We will start by observing how Salary goes with the # of years coded to get a job and also grouped by division.

```
In [25]: q1_mapped.groupby('division')['Salary'].plot(legend=True)
    plt.title("Salary comparison between different country divisions");
    plt.xlabel('YearsCodedJob');
    plt.ylabel('Average Salary');
```


The observation that one can make from this visual is that, for any given amount of coding experience (in years) the western countries have higher salaries for employees. Now we can agrue this observation by considering the fact that we have neglected various other possible attributes that determines salary and hence, making this visual a naive one.

Reasons for western countries paying more could be because of higher standard of livings (in general) increasing overall expenses of individual.

The other correct observation is that with increase in coding experience (in years) the average salary increase which is a fairly correct assumption.

Q2

Now we will analyze if people are overpaid or not, in a global scene (i.e. division based)

```
In [62]: q1_mapped.groupby('division')['Overpaid'].plot(legend=True)
    plt.title("Over Pay comparison between different country divisions");
    plt.xlabel('YearsCodedJob');
    plt.ylabel('Over Pay Status');
```


Let us split the above visual into 3 parts i.e. Entry level (0-5 years), Mid level (5-15 years), and Senior level (above 15 years). This will become a reasonal basis for our analysis since the results are abrupt and can't be generalized for all levels of experience.

- Entry level: One can observe that people in western countries are most overpaid while, the people in eastern countries like India and China feel they are least overpaid.
- Mid level: It is observed that the 'other' country category people feel they are most overpaid while eastern country people still feel that they are compensated less than what their market value is. The western country participants feel they are fairly overpaid during mid level of their career.
- Senior level: Once a participant is at senior level of its career, the people in western countries feel they are
 most overpaid. The eastern country people also feel they are overpaid better than 'other' country
 categories.

The discrepancy can be considered because the division of countries in categories of eastern, western and other are manually done by me hence, the actual scenario may vary on how the countries are split up.

Q3

Are people satisfied with their jobs and career?

```
In [75]: cor = df_1.corr()
cor
```

Out[75]:

	YearsCodedJob	Salary	JobSatisfaction	CareerSatisfaction	HoursPerWeek
YearsCodedJob	1.000000	0.461859	0.063480	0.078306	-0.090662
Salary	0.461859	1.000000	0.121130	0.161014	-0.122765
JobSatisfaction	0.063480	0.121130	1.000000	0.650319	-0.092189
CareerSatisfaction	0.078306	0.161014	0.650319	1.000000	-0.049264
HoursPerWeek	-0.090662	-0.122765	-0.092189	-0.049264	1.000000
Overpaid	0.092839	0.209559	0.233988	0.179309	-0.030045

```
In [90]: plt.figure(figsize=(15,10))
    sns.heatmap(data=cor)
    plt.title("Correlation between important attributes", size=16)
    plt.show();
```


From the above heatmap, we can say that the attributes 'JobSatisfaction' and 'CareerSatisfaction' are highly correlated and that can be fairly correct because if one is content with their job, they are most likely to be satisfied in their career as well. This visual is based on overall reading from around the globe, which is a little abrupt for our analysis because we are focusing on trends on division basis.

So let us try and visualize on division basis.

```
In [91]: df_1.groupby('division').mean().JobSatisfaction

Out[91]: division
    eastern    6.386417
    other    6.939388
    western    7.086506
    Name: JobSatisfaction, dtype: float64
```

df 1.groupby('division').mean().CareerSatisfaction

```
Out[92]: division
          eastern
                     6.863623
          other
                     7.399102
                     7.492738
          western
          Name: CareerSatisfaction, dtype: float64
          df 1.groupby('division').mean().Salary/100 # dividing by 100 just to bri
In [96]:
          ng down the scale of salary to fit on plot
Out[96]: division
          eastern
                     244.266150
          other
                     321.241217
                     669.331896
          western
          Name: Salary, dtype: float64
In [104]: # Let us try and do a scatter plot
          plt.figure(figsize=(10,7))
          plt.scatter(df 1.groupby('division').mean().JobSatisfaction, df 1.groupb
          y('division').mean().CareerSatisfaction,
                      df_1.groupby('division').mean().Salary/100, c=['red','gree
          n','blue'])
          plt.title('Job Satisfaction v/s Career Satisfaction, \n (Red: Eastern, G
          reen: Other, Blue: Western) ')
          plt.xlabel('Job Satisfaction')
          plt.ylabel('Career Satisfaction')
```

Out[104]: Text(0, 0.5, 'Career Satisfaction')

- Although the plot looks like there is a big difference, but I would consider it as a little misleading since the scale starts at 6.something if it were absolutle scale (starting at 0) the visual would make the difference a little less visible.
- The information that one can pull out of this visual is that people in Western countries are much more satisfied with their job and also with their career.
- The reasoning behind it can be attributed to the fact that western countries are overpaid fairly, the jobs provide support in the form of health insurance coverage and other perks which countries of east and other category (which are not as developed as western countries) lack in providing.

Conclusion

- 1) When comparing Salaries of people from different countries, western countries have highest salaries for their employees for all levels of experience. The other countries employees are paid a little more than eastern countries until they turn to senior levels of job experience. Once in the Senior level experience, the eastern country employees are paid more than their counterpart in other countries.
- 2) Let us split the above visual into 3 parts i.e. Entry level (0-5 years), Mid level (5-15 years), and Senior level (above 15 years). This will become a reasonal basis for our analysis since the results are abrupt and can't be generalized for all levels of experience.

Entry level: One can observe that people in western countries are most overp aid while, the people in eastern countries like India and China feel they ar e least overpaid.

Mid level: It is observed that the 'other' country category people feel they are most overpaid while eastern country people still feel that they are comp ensated less than what their market value is. The western country participan ts feel they are fairly overpaid during mid level of their career.

Senior level: Once a participant is at senior level of its career, the peopl e in western countries feel they are most overpaid. The eastern country people also feel they are overpaid better than 'other' country categories.

The discrepancy can be considered because the division of countries in categories of eastern, western and other are manually done by me hence, the actual scenario may vary on how the countries are split up.

- 3) Although the plot looks like there is a big difference, but I would consider it as a little misleading since the scale starts at 6.something if it were absolutle scale (starting at 0) the visual would make the difference a little less visible.
 - The information that one can pull out of this visual is that people in Western countries are much more satisfied with their job and also with their career.
 - The reasoning behind it can be attributed to the fact that western countries are overpaid fairly, the jobs provide support in the form of health insurance coverage and other perks which countries of east and other category (which are not as developed as western countries) lack in providing.

In []:	