1 Vorletzte Seite schwarze FS kopieren

2 Möbius Transformation

- 1. Zwei Punkte bestimmen die symmetrisch zu beiden Kreisen liegen: $(z_1 z_0)(\overline{z_2} \overline{z_0}) = R^2$ fuer alle Gleichungen $|z z_0| = R$ aufstellen, Gleichungssystem loesen
- 2. Transformation bestimmen: $T(a) = 0 \Rightarrow T_1(x) = x a$, $T(b) = \infty \Rightarrow T_2(x) = \frac{x a}{x b}$, $T(c) = d \Rightarrow T(x) = \frac{x a}{x b} \cdot e = d$ erfuellen

3 Reihen

3.1 Taylorreihen

Siehe Aufg. 16 Anleitung Umformen, Geometrische Reihe, Integral reinziehen, Grenzen einsetzen nicht vergessen!

3.2 Laurentreihen

- 1. Bestimme Singularitaeten
- 2. Hebe Hebbare Singularitaeten
- 3. In Summe aus Hauptteilen $(\frac{a}{(z-z_k)^k})$ und Nebenteilen $(\frac{z-z_k}{a})$ umformen.

3.2.1 Singularitäten

 $\mathrm{Ringe} \to \mathrm{Pole}$

- 1. Hebbar
- 2. n-facher Pol
- 3. Wesentliche Singularität

3.3 Residuen

 z_k seien die Singularitaeten, $Res(f, a_k)$ die dazugehoerigen Residuen wobei der 1-te Hauptteil wie folgt aussieht: $\frac{Res(f, a_k)}{z-z_0}$

- $\oint\limits_K f(z)dz = 2\pi i \sum\limits_{z_k \neq 0} Res(f,a_k)$ wobe
i $Res(f,a_k)$ im Kreis
- $\oint_{-\infty}^{\infty} f(z)dz = 2\pi i \sum_{z_k \neq 0} Res(f, a_k)$ wobei $Im(Res(f, a_k)) \geq 0$
- $\oint_{0}^{\infty} f(z)dz = \pi i \sum_{z_{k} \neq 0} Res(f, a_{k})$

3.4 Partialbruchzerlegung

- 1. Residuen berechnen
- 2. Fuer alle Residuen: $f = \sum_{a} \frac{Res(f,a)}{z-a}$

4 Kreisintegrale

- 1. Singularitaet liegt ausserhalb des Kreises integral ist null
- 2. Hebbare Singularitaet vorhanden integral ist null
- 3. Nichthebbare Singularitaet im Kreis:
 - (a) Cauchysche Itegralformel
 - (b) Verallg. Cauchysche Integralformel

${\bf 5}\quad {\bf Funktion seigenschaften}$

5.1 Holomorphie

Eine Abbildung f heisst holomorph wenn sie in jedem Punkt z_0 komplex differenzierbar ist. Cauchy-Riemannsche DGL:

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$$
$$\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$$

Holomorphie impliziert harmonie.

5.2 Harmonie

Der Realteil einer Funktion ist harmonisch wenn die Funktion holomorph ist. Eine Funktion f=u+iv ist harmonisch wenn gilt: $f_{xx}+f_{yy}=0$