Ownership Structure and Economic Growth

Koki Okumura

UCLA

Ownership Structure ⇒ Economic Growth?

Ownership structure is concentrated

- BlackRock, Vanguard, State Street, and Fidelity control 30% of votes of S&P 500 firms
- Top 4 chaebols account for 55% of stock market capitalization in Korea
- Firms maximize shareholder values ⇒
 Partially internalize externalities for commonly owned firm
- Ownership structure (common ownership, cross ownership, M&A, FDI, ...) ⇒
 Economic growth?
 - Business stealing effect
 - Technology spillover effect

Quantitative Schumpeterian Growth Model with Ownership Structure

- Existing Schumpeterian growth models:
 - Monopolistic competition (no strategic interaction)
 - Very few firms in Markov perfect equilibrium
- This paper: Many oligopolists
 - Overlapping ownership and technology spillover across industries
- Quantify three inter-firm networks for publicly listed patenting firms in the US (\simeq 1000 firms)
 - Ownership structure
 - Product market rivalry
 - Technology spillover
- Common ownership in the US:
 - Internalization of business stealing $\Longrightarrow g \downarrow \downarrow$
 - Internalization of technology spillover $\Longrightarrow g \uparrow$

Literature

- Competition & Innovation:
 - d'Aspremont and Jacquemin (1988); Kamien et al. (1992); Aghion et al. (2001, 2005); Acemoglu and Akcigit (2012); Aghion et al. (2013); Bloom et al. (2013); Lopez and Vives (2019); Peters (2020); Akcigit and Ates (2021, 2023); Liu et al. (2022); Cavenaile et al. (2023); Anton et al. (2023, 2024); Kini et al. (2024); Hopenhayn and Okumura (2024) Quantitative Schumpeterian growth model with ownership structure
- Hedonic Demand / Empirical IO:
 Lancaster (1966); Rosen (1974); Berry et al. (1995); Nevo (2001); Pellegrino (2024); Ederer and Pellegrino (2024)
 Dynamic general equilibrium / R&D
- Oligopoly / Common Ownership / Market Power:
 Rubinstein and Yaari (1983); Rotemberg (1984); Neary (2003); Atkeson and Burstein (2008); Gutierrez and Philippon (2017); He and Huang (2017); Azar et al. (2018, 2022); Autor et al. (2020); Baqaee and Farhi (2020); De Loecker et al. (2020); Azar and Vives (2021); Edmond et al. (2023)

Simple Model

- Static partial equilibrium model of oligopolistic competition in production and R&D
 - d'Aspremont and Jacquemin (1988); Kamien et al. (1992); Leahy and Neary (1997); Lopez and Vives (2019);
 Anton et al. (2024)
- Firm $i \in \{1, ..., n\}$ chooses quantity q_i and R&D effort x_i
- Linear inverse demand: $p(q) = b \Sigma q$ $(\Sigma = [\sigma_{ij}]_{n \times n}, \sigma_{ii} = 1)$
- CRS production technology with marginal cost: $m(x) = \overline{m} \Omega x$ $(\Omega = [\omega_{ij}]_{n \times n})$
- Quadratic R&D cost: $c(x_i) = \frac{1}{2}x_i^2$

Common Ownership Weights

- $K = [\kappa_{ij}]_{n \times n}$: common ownership weights that firm i places on the value of firm j $(\kappa_{ii} = 1)$
- More overlapping ownership b/w firm i and $j \Longrightarrow$ Higher κ_{ij}

- K = I: dispersed ownership (each firm maximizes its own value)
- $K = \mathbf{1}_{n \times n}$: monopoly (maximizes total producer surplus)

Cournot & R&D Game

• Firm *i*'s profit:

$$\pi_i(\boldsymbol{q}, \boldsymbol{x}) = [p_i(\boldsymbol{q}) - m_i(\boldsymbol{x})]q_i - c(x_i)$$

$$= \left[b_i - \sum_{j=1}^n \sigma_{ij}q_j - \overline{m}_i + \sum_{j=1}^n \omega_{ij}x_j\right]q_i - \frac{1}{2}x_i^2$$

• Given $\{q_j, x_j\}_{j \neq i}$, firm i chooses q_i and x_i to maximize $\sum_j \kappa_{ij} \pi_j(q, x)$

Impact of Common Ownership on R&D

• Comparative statics where $\{q_k, x_k\}_{k\neq i}$ are held constant:

$$\frac{\partial x_i}{\partial \kappa_{ij}} = \frac{q_j}{2 - \omega_{ii}^2} (2\omega_{ij} - \omega_{ii}\sigma_{ij}) \qquad \forall \ j \neq i$$

- SOC: $2 > \omega_{ii}^2$
- Internalize business stealing effect: $\partial^2 x_i/\partial \kappa_{ij}\partial \sigma_{ij} < 0$
- Internalize technology spillover effect: $\partial^2 x_i/\partial \kappa_{ii}\partial \omega_{ii} > 0$

Preview of Identification Strategy

Networks	Measurement
Common ownership K	Institutional investor holdings (Backus et al., 2021)
Product market rivalry Σ	Product proximity (Hoberg and Phillips, 2016):
	Text analysis of business description
Technology spillover Ω	Technological proximity (Jaffe, 1986; Bloom et al., 2013):
	Patent classification

Schumpeterian Growth Model

Linear quadratic aggregator (final good):

$$Y_t = \boldsymbol{q}_t^T \boldsymbol{b}_t - \frac{1}{2} \boldsymbol{q}_t^T \boldsymbol{\Sigma} \boldsymbol{q}_t$$

Linear inverse demand:

$$\boldsymbol{p}_t = \boldsymbol{b}_t - \boldsymbol{\Sigma} \boldsymbol{q}_t$$

CRS production technology (intermediate good):

$$q_{i,t} = a_{i,t} l_{i,t}$$

- Each firm has knowledge capital (state variable): $z_{i,t}$
- Each firm allocates knowledge capital to improve labor productivity and product quality:

$$\zeta a_{i,t} + b_{i,t} = z_{i,t}$$

Law of Motion of Knowledge Capital

$$dz_t = \left(\underbrace{\Omega z_t}_{\text{tech spillover}} + \underbrace{\mu x_t}_{\text{R&D}}\right) dt + \underbrace{\gamma z_t \circ dW_t}_{\text{shocks}}$$

- $\Omega = [\omega_{ij}]$: technology spillover matrix
- $\bullet \ x_{i,t} = \sqrt{d_{i,t}}$
 - d_{i,t}: R&D input in terms of final good
 - Innovation elasticity is 0.5
- μ , γ : positive scalars

Market Clearing and Preference

Inelastic labor supply:

$$L = \sum_{i} l_{i,t}$$

Final good market clearing:

$$C_t + \sum_{i} d_{i,t} = Y_t$$
R&D input

Risk neutral representative household:

$$\max E_t \left[\int_t^{\infty} \exp(-\rho s) C_s ds \right]$$

Cournot-Nash Equilibrium

• Firm i's gross profit before subtracting dynamic R&D cost: Diagram

$$\pi_{i,t} = p_{i,t}q_{i,t} - w_t l_{i,t} = \left(b_{i,t} - \sum_j \sigma_{ij}q_{j,t} - \frac{w_t}{a_{i,t}}\right) q_{i,t} \quad \text{where} \quad \zeta a_{i,t} + b_{i,t} = z_{i,t}$$

- Given $w_t, z_{i,t}$, and $\{q_{j,t}\}_{j\neq i}$, firm i chooses $a_{i,t}, b_{i,t}$, and $q_{i,t}$ to maximize $\sum_j \kappa_{ij} \pi_{j,t}$
- Quantity is a linear function of knowledge capital:

$$q(z_t) = \left\{ \underbrace{2\frac{\zeta}{L} \mathbf{1}_{n \times n} + \underbrace{\Sigma}_{\text{substitutability}} + \underbrace{K \circ \Sigma}_{\text{ownership} \times \text{substitutability}} \right\}^{-1} z_t$$

• Ownership-weighted gross profits are expressed in quadratic form: $\sum_i \kappa_{ij} \pi_{j,t} = z_t^T Q^i z_t$ •

Linear-Quadratic Differential Game

• Given other firms' R&D $\{x_{j,t}\}_{i\neq i,t\geq 0}$, firm i chooses R&D $\{x_{i,t}\}_{t\geq 0}$ to maximize

$$\max_{\left\{x_{i,t}\right\}_{t\geq0}} V^{i}\left(z_{0}\right) \equiv E_{0}\left[\int_{0}^{\infty} \exp\left(-\rho t\right) \left\{\sum_{j} \kappa_{ij}\left(\pi_{j,t}-x_{j,t}^{2}\right)\right\} dt\right]$$

subject to $dz_t = (\Omega z_t + \mu x_t) dt + \gamma z_t \circ dW_t$

Firm i's HJB equation:

$$\rho V^{i}(z) = \max_{x_{i}} \left\{ z^{T} Q^{i} z - \sum_{j} \kappa_{ij} x_{j}^{2} + V_{z}^{i}(z) \left[\mathbf{\Omega} z + \mu x \right] + \frac{\gamma^{2}}{2} z^{T} V_{zz}^{i}(z) z \right\}$$

HJB Equations ⇒ Riccati Equations

- Guess and verify $V^{i}(z) = z^{T}X^{i}z$ (for any z)
- ullet X^i is the solution of stacked algebraic Riccati equations
- All public patenting firms in the US in our dataset \approx 1000 firms \Longrightarrow $1000^3 = 1$ billion undetermined coefficients (20 seconds on my laptop)

Cavenaile et al. (2023) $O(2^n)$ 4 6 grid	Oligopolistic Schumpeterian	Computation time	# of firms	Productivity space
Our model $O(n^4)$ ≈ 1000 Continuou	Cavenaile et al. (2023) Our model	$O(2^n)$ $O(n^4)$	4 ≈1000	6 grid Continuous

Balanced Growth Path

- R&D strategy: $x_{i,t} = (\mu X_i^i)^T z_t$ where X_i^i is the *i* th column of X^i
- The law of motion is rewritten as $dz_t = \Phi z_t dt + \gamma z_t \circ dW_t$ where

$$\mathbf{\Phi} \equiv \underbrace{\mathbf{\Omega}}_{\text{Tech Spillover}} + \underbrace{\mu^2 \left[X_1^1 \cdots X_n^n \right]^T}_{\text{R\&D}}$$

Theorem

Consider the deterministic economy ($\gamma = 0$). If Φ is irreducible, then:

- (i) There exists the largest positive eigenvalue of Φ , g, and associated positive eigenvector, z^* .
- (ii) There exists a globally stable BGP such that the knowledge capital growth rate of all firms is g, and the knowledge capital distribution is a scalar multiple of z^* .
 - Proof: Perron–Frobenius Theorem

Intuition of Why the Model Has the BGP

On the BGP, a_t , b_t , z_t , and q_t grow at the same rate

Technological Choice: $\zeta a_{i,t} + b_{i,t} = z_{i,t}$

Linear Production Technology: $q_{i,t} = a_{i,t}l_{i,t}$

 $L = \sum_{i} l_{i,t}$ Inelastic Labor Supply:

Linear and quadratic term in q_t of output grow at the same rate: Equilibrium Summary

$$Y_t = \boldsymbol{q}_t^T \boldsymbol{b}_t - \frac{1}{2} \boldsymbol{q}_t^T \boldsymbol{\Sigma} \boldsymbol{q}_t$$

Partial Equilibrium Diagram and BGP

- a_i , b_i , q_i (= $a_i l_i$), p_i , and w/a_i grow at the same rate of g
- (i) (consumer surplus / producer surplus) and (ii) (cost / revenue) stay the same

Expected Growth Rate and Utility

Apply Itô's lemma:

$$\log Y_t = \log (z_t^T Q z_t)
dz_t = \Phi z_t dt + \gamma z_t \circ dW_t \implies E_t [g_t | z_t]$$

Expected utility is expressed in quadratic form:

$$E_t \left[\int_t^{\infty} \exp(-\rho s) C_s ds \middle| z_t \right] = z_t^T X z_t$$

• Solve the equilibrium once \Longrightarrow Can compute expected growth and utility for any z_t

Common Ownership Weight K

- Backus et al. (2021) construct a dataset on investors' holdings based on Form 13F
- Baseline: Rotemberg (1984) proportional influence

Proportional Influence

Product Market Rivalry Σ

- Hoberg and Phillips (2016) estimates product proximity using business descriptions in 10-K
- Pellegrino (2024) estimates α to align with the cross-price elasticity of demand micro estimates

$$\underbrace{\sigma_{ij}}_{\text{substitutability}} = \alpha \times \text{product proximity b/w } i \text{ and } j \quad (i \neq j)$$

Technological Proximity $\widetilde{\Omega}$

- Technological profile of firm i
 - ullet The vector of the share of patents held by firm i in each technology class
 - Baseline: group-level patent classifications (≈ 4000)
- Jaffe (1986) technological proximity measure $\tilde{\omega}_{ij}$:
 - ullet Cosine similarity of the technological profiles b/w firm i and j

Distribution of Knowledge Capital z_t

Variables	Identification
$\pi_{i,t}$	Gross profit (before R&D cost) = Revenue - Cost of goods sold
q_t	$\pi_{i,t} = \sum_{i} \kappa_{ij} \sigma_{ij} q_{i,t} q_{j,t}$
ζ/L	Matches sample firms' cost share (average markup)
$oldsymbol{z}_t$	$\boldsymbol{z}_{t} = \left\{ 2\frac{\zeta}{L}\boldsymbol{J} + \boldsymbol{\Sigma} + \boldsymbol{K} \circ \boldsymbol{\Sigma} \right\} \boldsymbol{q}_{t}$

Technology Spillover $\Omega = \beta \times \text{Technological Proximity } \widetilde{\Omega}$

$$z_{i,t+1} - z_{i,t} = \beta \sum_{j \neq i} \tilde{\omega}_{ij,t} z_{j,t} + \text{Year FE}_t + \epsilon_{i,t}$$

	(1)	(2)	(3)
	$z_{i,t+1} - z_{i,t}$	$z_{i,t+1} - z_{i,t}$	$z_{i,t+1} - z_{i,t}$
V	0.000191***	0.000152***	0.000140***
$\sum_{j\neq i} \tilde{\omega}_{ij,t} z_{j,t}$	(0.000035)	(0.000035)	(0.000039)
DOD Everanditura		0.037**	
√R&D Expenditure		(0.021)	
Year Fixed Effects	✓	√	√
IV			\checkmark
IV 1st Stage F-statistics			4176
No. observations	16,324	15,173	14,181

SEs clustered by years and 4-digit NAICS industries are reported in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01.

• IV: Firm-specific tax price of R&D from federal and state-specific rules (Bloom et al., 2013)

Identification: Summary

Publicly available data + Compustat

Notation	Description	Value	Source
Σ	Product proximity		Form 10-K, Hoberg and Phillips (2016)
$\widetilde{\Omega}$	Technological proximity		USPTO, Patent classification
K	Common ownership weights		Form 13-F, Backus et al. (2021)
α	Product proximity → Substitutability	0.12	Pellegrino (2024)
β	Technological proximity → Spillover	0.00014	Estimate the law of motion
γ	Std. of idiosyncratic shocks	0.027	Estimate the law of motion
ζ/L	Labor augmentation efficiency	0.0063	Compustat, Cost of goods sold
ρ	Discount rate	0.10	> risk free rates, < private R&D returns
μ	R&D efficiency	0.05	1.7% economic growth rate

Fit b/w Model and Data

• Comparison of firm-level model-generated values (x-axis) with observed data (y-axis)

Counterfactual Ownership Structures

Ownership Structure	Description
Baseline	Observed ownership structure in 2017
Dispersed	$K^D = I$
Mean=1999	$\kappa_{ij,2017}^{M1999} = {\sf const} \times \kappa_{ij,2017} \ {\sf and} \ E\left[\kappa_{ij,2017}^{M1999}\right] = E\left[\kappa_{ij,1999}\right] \ {\sf for} \ j \neq i$
Uniform	$\kappa_{ij,2017}^{U} = E\left[\kappa_{ij,2017}\right] \text{ for } j \neq i$
Monopoly	$K^M = 1$

Total Output

Total Output in 2017	Ownership (Baseline: 2017)				
(Social Optimum: 100)	Dispersed	Mean=1999	Uniform	Baseline	Monopoly
Baseline	91.30	91.02	90.78	89.08	89.17
Only Business Steal					
$\Omega = [0]$	91.30	91.02	90.78	89.08	89.17
Only Tech Spill					
$\Sigma = I, \ \zeta/L = 0$	75.00	75.00	75.00	75.00	75.00

- Inelastic labor supply ⇒ Changes arise from product misallocation
- Common ownership exacerbates product misallocation

Total R&D Expenditure

Total R&D in 2017	Ownership (Baseline: 2017)				
(Social Optimum: 100)	Dispersed	Mean=1999	Uniform	Baseline	Monopoly
Baseline	27.08	26.83	26.44	23.21	18.48
Only Business Steal $\Omega = [0]$	29.08	28.72	27.95	24.23	18.85
Only Tech Spill	20.00	20.72	27.00	24.20	10.00
$\Sigma = I, \zeta/L = 0$	18.27	18.34	18.75	18.86	19.84

- Internalization of business stealing > Internalization of technology spillover
- Network heterogeneity is important

Expected Growth Rate

Expected Economic	Ownership (Baseline: 2017)				
Growth Rate in 2017 (%)	Dispersed	Mean=1999	Uniform	Baseline	Monopoly
Baseline	1.796	1.793	1.791	1.753	1.713
Only Business Steal					
$\mathbf{\Omega} = [0]$	1.097	1.094	1.093	1.062	1.020
Only Tech Spill					
$\Sigma = I, \ \zeta/L = 0$	2.051	2.054	2.068	2.072	2.107

- In baseline, the expected growth rate is
 - 0.043 pp (2.4%) lower compared to dispersed ownership, and
 - 0.040 pp (2.2%) lower compared to common ownership level in 1999.

Expected Social Welfare

Expected Social Welfare	Ownership (Baseline: 2017)				
(Social Optimum: 100)	Dispersed	Mean=1999	Uniform	Baseline	Monopoly
Baseline	87.72	87.42	87.16	85.25	85.18
Only Business Steal					
$\mathbf{\Omega} = [0]$	88.83	88.53	88.30	86.44	86.41
Only Tech Spill					
$\Sigma = I, \zeta/L = 0$	68.81	68.82	68.88	68.89	69.02

- In the baseline, the consumption-equivalent welfare loss is
 - 2.8% compared to dispersed ownership, and
 - 2.5% compared to the common ownership level in 1999.

Firm Value Share

Firm Value	Ownership (Baseline: 2017)				
Share in 2017 (%)	Dispersed	Mean=1999	Uniform	Baseline	Monopoly
Baseline	28.74	29.63	33.43	33.34	40.92
Only Business Steal $\Omega = [0]$	27.91	28.80	32.60	33.51	40.14
Only Tech Spill $\Sigma = I$, $\zeta/L = 0$	64.82	64.81	64.76	64.74	64.63

- In baseline, firm value share is
 - 5.6% lower compared to dispersed ownership, and
 - 4.7% lower compared to common ownership level in 1999.

When Common Ownership Affects only R&D Decisions

Common ownership only influences R&D decisions (cf. d'Aspremont and Jacquemin (1988))

	Ownership Structure			
	Dispersed	Common R&D	Baseline	
Output (Social Optimum: 100)	91.30	91.30	89.08	
R&D Expenditure (Social Optimum: 100)	26.17	19.76	22.36	
Expected Growth Rate (%)	1.796	1.726	1.753	
Expected Social Welfare (Social Optimum: 100)	87.72	87.49	85.25	
Firm Value Share (%)	28.74	29.04	34.34	

- Lowest R&D expenditure and expected growth rate
- Intermediate social welfare and firm value share

Optimal Uniform R&D Subsidy Social Optimum

• Optimal rate is s = 33%, which increases g by 0.25 pp (14%)

Conclusion

- Quantitative Schumpeterian growth model with ownership structure
 - Utilize micro data and computational capability
- Common ownership in the US:
 - 1. Internalization of business stealing effect $\Longrightarrow g \downarrow \downarrow$
 - 2. Internalization of technology spillover effect $\Longrightarrow g \uparrow$
- Potential applications:
 - Chaebols in Korea
 - Zaibatsu (pre-WWII) and cross-shareholding (late 20th century) in Japan
 - FDI / multinational companies and international technology diffusion
 - Technology licensing

Share of Top 5 Shareholders in Largest Market Cap Firms

Microsoft	
Vanguard	9.20%
Blackrock	7.75%
Steven Ballmer	4.48%
State Street	3.97%
Fidelity	2.66%

Google	
Vanguard	7.36%
Blackrock	6.47%
State Street	3.39%
Fidelity	3.01%
Sergey Brin	2.99%

Nvidia	
Vanguard	8.93%
BlackRock	7.74%
Fidelity	4.12%
State Street	3.97%
Jensen Huang	3.80%

Amazon	
Jeffrey Bezos	8.58%
Vanguard	7.77%
Blackrock	6.50%
State Street	3.44%
Fidelity	3.10%

Apple	
Vanguard	9.29%
Blackrock	7.48%
State Street	3.96%
Fidelity	2.27%
Geode Canital	2 26%

7.55%
6.50%
5.38%
3.88%
3.40%

Equity Investments by Big Tech in Al Startups (Back)

Shareholding percentage	Microsoft	Google	Amazon
OpenAl (ChatGPT)	49%	_	_
Anthropic (Claude)	_	14%	23%

Technology & Product Proximity: Example

Tesla vs. Ford	
Technology Proximity	0.11
Product Proximity	0.15

Apple vs. Intel	
Technology Proximity	0.57
Product Proximity	0.00

Rotemberg (1984) Proportional Influence

- $o \in \{1, 2, ..., n_o\}$: owners
- s_{io} : the proportion of shares in firm i owned by owner o where $\sum_{o} s_{io} = 1$
- \widehat{V}_i : value of firm i
- $\widetilde{V}_o \equiv \sum_i s_{io} \widehat{V}_i$: value of owner o
- · Firms' objective:

$$\sum_{o} s_{io} \widetilde{V}_{o} \propto \sum_{j} \kappa_{ij} \widehat{V}_{j}$$

where

$$\kappa_{ij} \equiv \frac{\mathbf{s}_i^T \mathbf{s}_j}{\mathbf{s}_i^T \mathbf{s}_i} = \cos(\mathbf{s}_i, \mathbf{s}_j) \sqrt{\frac{IHHI_j}{IHHI_i}} \quad \text{where} \quad \mathbf{s}_i \equiv [s_{i1}, ..., s_{io}, ..., s_{in_o}]^T$$

Total Surplus

Total surplus for product i:

$$ts_i(\boldsymbol{q}, \boldsymbol{x}) = \pi_i(\boldsymbol{q}, \boldsymbol{x}) + cs_i(\boldsymbol{q}) = q_i \left[b_i - \frac{1}{2} \sum_{j=1}^n \sigma_{ij} q_j - \overline{m}_i + \sum_{j=1}^n \omega_{ij} x_j \right] - \frac{1}{2} x_i^2$$

R&D Externalities

- Business stealing effect
 - Innovators steel the business (profits) of other firms
- 2. Technology spillover effect
 - Innovation improves the productivity of other firms
- 3. Appropriability effect (market power)
 - Innovators cannot appropriate the entire consumer surplus

R&D Allocation and Externalities

Firms maximize common owner weighted profits:

$$x^* = (\underline{K} \circ \underline{\Omega})[\underline{\Sigma} + \underline{K} \circ \underline{\Sigma} - \underline{\Omega}(\underline{K} \circ \underline{\Omega})]^{-1}(b - \overline{m})$$

Firms maximize common owner weighted total surplus (★):

$$x_{TS}^* = (\mathbf{K} \circ \mathbf{\Omega}) \left[\frac{1}{2} (\mathbf{\Sigma} + \mathbf{K} \circ \mathbf{\Sigma}) - \mathbf{\Omega} (\mathbf{K} \circ \mathbf{\Omega}) \right]^{-1} (\mathbf{b} - \overline{\mathbf{m}})$$

- $K = \mathbf{1}_{n \times n}$ in $(\star) \Longrightarrow$ Social Optimum
- Externalities: (i) Appropriability, (ii) Business stealing, (iii) Technology spillover

Generalized Hedonic-Linear Demand (Pellegrino, 2024)

- $i \in \{1, 2, ..., n\}$: firms / products
- 1 unit of product i provides
 - 1 unit of idiosyncratic characteristic $k \in \{1, 2, ..., n\}$
 - $\psi_{k,i}$ unit of shared characteristic $k \in \{n+1, n+2, ..., n+n_k\}$ where $\sum_k \psi_{k,i}^2 = 1$
- Aggregate each characteristic:

$$y_{k,t} = \begin{cases} q_{k,t} & k = 1, 2, ..., n \\ \sum_{i} \psi_{k,i} q_{i,t} & k = n + 1, n + 2, ..., n + n_k \end{cases}$$

Linear quadratic aggregator over characteristics:

$$Y_t = (1 - \alpha) \sum_{k=1}^n \left(\underbrace{\hat{b}_{k,t} y_{k,t} - \frac{1}{2} y_{k,t}^2}_{\text{idiosyncratic characteristic}} \right) + \alpha \sum_{k=n+1}^{n+n_k} \left(\underbrace{\hat{b}_{k,t} y_{k,t} - \frac{1}{2} y_{k,t}^2}_{\text{shared characteristic}} \right)$$

Generalized Hedonic-Linear Demand (Pellegrino, 2024)

Quality:

$$b_i = (1 - \alpha)\hat{b}_i + \alpha \sum_{k=n+1}^{n+n_k} \psi_k \hat{b}_k$$

Inverse demand:

$$\frac{p}{P} = b - \Sigma q$$

Inverse cross price elasticity of demand:

$$\frac{\partial \log p_i}{\partial \log q_j} = -\frac{q_j}{p_i} \cdot \sigma_{ij}$$

Cross price elasticity of demand:

$$\frac{\partial \log q_i}{\partial \log p_j} = -\frac{p_j}{q_i} (\mathbf{\Sigma}^{-1})_{ij}$$

Static Profits

- Gross profit: $\pi_{i,t} = \sum_{j} \kappa_{ij} \sigma_{ij} q_{i,t} q_{j,t}$
- Firms choose labor productivity and product quality: $\zeta a_{i,t} = \sqrt{\zeta w_t}$, $b_{i,t} = z_{i,t} \sqrt{\zeta w_t}$
- Labor market clearing: $L = \sum_i \frac{q_{i,t}}{a_{i,t}} \Longrightarrow \sqrt{\zeta w_t} = \frac{\zeta}{L} \sum_i q_{i,t}$
- $q_t = Nz_t$ where $N \equiv \left\{2\frac{\zeta}{L}J + \Sigma + K \circ \Sigma\right\}^{-1}$
- N_i : the i th row of N
- Ownership weighted profit:

$$\sum_{j} \kappa_{ij} \frac{\pi_{j,t}}{P_t} = \sum_{j} \kappa_{ij} \sum_{h} \kappa_{jh} \sigma_{jh} q_{j,t} q_{h,t} = z_t^T \mathbf{Q}^i z_t$$

where

$$Q^{i} = \frac{1}{2} \sum_{j} \kappa_{ij} \sum_{h} \kappa_{jh} \sigma_{jh} \left(N_{j}^{T} N_{h} + N_{h}^{T} N_{j} \right)$$

References

Riccati Equations

• $V^{i}(z) = z^{T}X^{i}z$ where X^{i} is the solution of the stacked Riccati equation

$$0 = \mathbf{Q}^{i} - \mu^{2} \sum_{j} \kappa_{ij} \mathbf{X}_{j}^{j} \left(\mathbf{X}_{j}^{j} \right)^{T} + \left(\mathbf{\Phi} - \frac{1}{2} \left(\rho - \gamma^{2} \right) \mathbf{I} \right)^{T} \mathbf{X}^{i} + \mathbf{X}^{i} \left(\mathbf{\Phi} - \frac{1}{2} \left(\rho - \gamma^{2} \right) \mathbf{I} \right)$$

- $X_i^i \equiv \text{the } i \text{ th column of } X^i$
- $\Phi \equiv \Omega + \mu^2 \begin{bmatrix} X_1^1 & \cdots & X_n^n \end{bmatrix}^T$
- Algorithm: Given $\left[\begin{array}{ccc} X^1_{\tau} & \cdots & X^n_{\tau} \end{array}
 ight]$, update $\left[\begin{array}{ccc} X^1_{\tau-\Delta} & \cdots & X^n_{\tau-\Delta} \end{array}
 ight]$ by

$$-\frac{\boldsymbol{X}_{\tau}^{i}-\boldsymbol{X}_{\tau-\Delta}^{i}}{\Delta}=\boldsymbol{Q}^{i}-\mu^{2}\sum_{j}\kappa_{ij}\boldsymbol{X}_{j,\tau}^{j}\left(\boldsymbol{X}_{j,\tau}^{j}\right)^{T}+\left(\boldsymbol{\Phi}_{\tau}-\frac{1}{2}\left(\rho-\gamma^{2}\right)\boldsymbol{I}\right)^{T}\boldsymbol{X}_{\tau}^{i}+\boldsymbol{X}_{\tau}^{i}\left(\boldsymbol{\Phi}_{\tau}-\frac{1}{2}\left(\rho-\gamma^{2}\right)\boldsymbol{I}\right)$$

Summary of Equilibrium

Expression
$q_t = Nz_t$
$x_t = \mu \tilde{X} z_t$
$dz_t = (\Omega z_t + \mu x_t) dt + \gamma z_t dW_t$
$\Pi_t^F/P_t = \boldsymbol{q}_t^T \left(\frac{1}{2}\Sigma\right) \boldsymbol{q}_t$
$\Pi_t^T/P_t = \boldsymbol{q}_t^T \left(\frac{1}{2}\Sigma \circ (K + K^T)\right) \boldsymbol{q}_t$
$w_t L/P_t = \boldsymbol{q}_t^T \left(\frac{\zeta}{L} \boldsymbol{J} \right) \boldsymbol{q}_t$
$Y_t = \boldsymbol{q}_t^T \left(\frac{\zeta}{L} J + \frac{1}{2} \Sigma + \frac{1}{2} \Sigma \circ (K + K^T) \right) \boldsymbol{q}_t$
$C_t = Y_t - x_t^T x_t$

References

Output and Expected Utility

• Output: $Y_t = q_t^T Q q_t$ where

$$Q = \frac{\zeta}{L} J + \frac{1}{2} \Sigma + \frac{1}{2} \Sigma \circ \left(K + K^T\right)$$

Expected utility:

$$V(z_t) \equiv E_t \left[\int_t^{\infty} \exp(-\rho s) C_s ds \middle| z_t \right] = z_t^T X z_t$$

where X is the solution of the Lyapunov equation (obtained from households' HJB equation):

$$0 = Q - \mu^2 \tilde{X}^T \tilde{X} + X \left(\Phi - \frac{1}{2} \left(\rho - \gamma^2 \right) I \right) + \left(\Phi - \frac{1}{2} \left(\rho - \gamma^2 \right) I \right)^T X$$

Social Optimum

- Static optimal allocation: $q_t^* = N^* z_t$ where $N^* \equiv \left\{ 2\frac{\zeta}{L} J + \Sigma \right\}^{-1}$
- Optimal output: $Y_t^* = z_t^T Q^* z_t$ where $Q^* = \frac{1}{2} N^*$
- Optimal expected utility:

$$V^*(z_t) \equiv E_t \left[\int_t^{\infty} \exp(-\rho s) C_s ds \middle| z_t \right] = z_t^T X^* z_t,$$

where X^* is the solution of the Riccati equation (obtained from planner's HJB equation):

$$0 = Q^* - \mu^2 (X^*)^2 + X^* \left(\Phi^* - \frac{1}{2} (\rho - \gamma^2) I \right) + \left(\Phi^* - \frac{1}{2} (\rho - \gamma^2) I \right) X^*$$

- Optimal R&D: $x_t^* = \mu X^* z_t$
- Optimal technology transition matrix: $\Phi^* = \Omega + \mu^2 X^*$

Stochastic Process of Output

Applying Itô's lemma,

$$d\log Y_t = \left[\frac{z_t^T \left(Q\Phi + \Phi^T Q\right) z_t}{Y_t} + \gamma^2 \left\{\frac{\sum_i z_{i,t}^2 Q_{ii}}{Y_t} - \frac{2z_t^T Q \operatorname{diag}\left(z_t^2\right) Q z_t}{Y_t^2}\right\}\right] dt + \frac{2\gamma z_t^T Q \operatorname{diag}\left(z_t\right)}{Y_t} dW_t$$

where
$$Y_t = z_t^T Q z_t$$
 and $\Phi = \Omega + \mu^2 \widetilde{X}$

$$\begin{array}{ll} \text{Tech Spillover} & \frac{\boldsymbol{z}_t^T \left(Q\Omega + \Omega Q \right) \boldsymbol{z}_t}{Y_t} \\ \text{R\&D Contribution} & \frac{\mu^2 \boldsymbol{z}_t^T \left(Q\widetilde{\boldsymbol{X}} + \widetilde{\boldsymbol{X}}^T Q \right) \boldsymbol{z}_t}{Y_t} \\ \text{Itô Correction} & \gamma^2 \left\{ \frac{\sum_i \boldsymbol{z}_{i,t}^2 Q_{ii}}{Y_t} - \frac{2\boldsymbol{z}_t^T Q \operatorname{diag} \left(\boldsymbol{z}_t^2 \right) Q \boldsymbol{z}_t}{Y_t^2} \right\} \\ \text{Total} & \boldsymbol{E} \left[d \log Y_t \right] \end{array}$$

Number of Sample Firms

Trend of Product Substitutability

Technological Proximity

- Merge USPTO data with Compustat firms using DISCERN 2 dataset (Arora et al., 2024)
- Jaffe measure, Group-level patent classification, Stack for 5 years

Distributions of Estimated Knowledge Capital and Quantity

Microeconometric Estimates vs. GHL (Pellegrino, 2024) (1/2)

Market	Firm i	Firm j	Micro Estimate	GHL
Auto	Ford	Ford	-4.320	-5.197
Auto	Ford	General Motors	0.034	0.056
Auto	Ford	Toyota	0.007	0.017
Auto	General Motors	Ford	0.065	0.052
Auto	General Motors	General Motors	-6.433	-4.685
Auto	General Motors	Toyota	0.008	0.005
Auto	Toyota	Ford	0.018	0.025
Auto	Toyota	General Motors	0.008	0.008
Auto	Toyota	Toyota	-3.085	-4.851

Microeconometric Estimates vs. GHL (Pellegrino, 2024) (2/2)

Market	Firm i	Firm j	Micro Estimate	GHL
Cereals	Kellogg's	Kellogg's	-3.231	-1.770
Cereals	Kellogg's	Quaker Oats	0.033	0.023
Cereals	Quaker Oats	Kellogg's	0.046	0.031
Cereals	Quaker Oats	Quaker Oats	-3.031	-1.941
Computers	Apple	Apple	-11.979	-8.945
Computers	Apple	Dell	0.018	0.025
Computers	Dell	Apple	0.027	0.047
Computers	Dell	Dell	-5.570	-5.110

First Stage Back

	(1)
Dependent Variable:	$z_{i,t}$
User cost of R&D	-39.495^{***}
USEI COSI OI NAD	(4.7044)
Year Fixed Effects	✓
No. observations	12,947

SEs clustered by years and 4-digit NAICS industries are reported in parentheses.

• IV: User cost of R&D, driven by state-level tax variations (Wilson, 2009; Bloom et al., 2013)

Alternative Corporate Governance Models: Ederer and Pellegrino (2024)

- 1. Super-proportional influence: $\tilde{\kappa}_{ij} = \frac{\sum_{z=1}^{Z} s_{iz} \gamma_{iz} s_{jz}}{\sum_{z=1}^{Z} s_{iz} \gamma_{iz} s_{iz}}$ where $\gamma_{iz} = \sqrt{s_{iz}}$
- 2. Blockholder influence: $\tilde{\kappa}_{ij} = \frac{\sum_{z=1}^{Z} s_{iz}b_{iz}s_{jz}}{\sum_{z=1}^{Z} s_{iz}s_{jz}}$ $(i \neq j)$, where $b_{iz} = 1$ if $s_{iz} > 5\%$
- 3. Governance frictions and entrenchment
 - Azar and Ribeiro (2021) (AR) estimate an objective function where the manager of firm i discounts other firms' profit by τ_i

Alternative Corporate Governance Models

	Ownership Structure in 2017					
	Dispersed Ownership	Baseline: Proportional Influence	Super Proportional Influence	Blockholder Influence	Governance Frictions (Uniform)	Governance Frictions (Firm-Specific)
Total Output	100.00	97.57	97.36	98.25	99.31	99.49
Total R&D Expenditure	100.00	85.73	84.48	91.05	97.57	98.70
Expected Growth Rate (%)	1.796	1.753	1.750	1.771	1.788	1.791
Expected Social Welfare	100.00	97.18	96.94	98.01	99.21	99.41
Firm Value Share (%)	28.74	34.32	34.32	32.79	30.65	30.78

- **Acemoglu, Daron, and Ufuk Akcigit.** 2012. "Intellectual Property Rights Policy, Competition and Innovation." *Journal of the European Economic Association* 10 (1): 1–42.
- **Aghion, P, N Bloom, R Blundell, R Griffith, and P Howitt.** 2005. "Competition and Innovation: An Inverted-U Relationship." *The Quarterly Journal of Economics* 120 (2): 701–728.
- **Aghion, Philippe, Christopher Harris, Peter Howitt, and John Vickers.** 2001. "Competition, Imitation and Growth with Step-by-Step Innovation." *The Review of Economic Studies* 68 (3): 467–492.
- **Aghion, Philippe, John Van Reenen, and Luigi Zingales.** 2013. "Innovation and Institutional Ownership." *American Economic Review* 103 (1): 277–304.
- **Akcigit**, **Ufuk**, **and Sina T Ates.** 2021. "Ten Facts On Declining Business Dynamism and Lessons From Endogenous Growth Theory." *American Economic Journal: Macroeconomics* 13 (1): 257–298.
- **Akcigit, Ufuk, and Sina T Ates.** 2023. "What Happened to US Business Dynamism?" *The Journal of Political Economy* 131 (8): 2059–2124.
- **Anton, Miguel, Florian Ederer, Mireia Gine, and Martin Schmalz.** 2023. "Common Ownership, Competition, and Top Management Incentives." *The journal of political economy* 131 (5): 1294–1355.

- **Anton, Miguel, Florian Ederer, Mireia Gine, and Martin Schmalz.** 2024. "Innovation: The Bright Side of Common Ownership?" *Management science*.
- Arora, Ashish, Sharon Belenzon, Larisa Cioaca, Lia Sheer, Hyun Moh (john) Shin, and Dror Shvadron. 2024. "DISCERN 2: Duke innovation & SCientific Enterprises Research Network."
- **Atkeson, Andrew, and Ariel Burstein.** 2008. "Pricing-to-Market, Trade Costs, and International Relative Prices." *The American Economic Review* 98 (5): 1998–2031.
- Autor, David, David Dorn, Lawrence F Katz, Christina Patterson, and John Van Reenen.2020. "The Fall of The Labor Share and The Rise of Superstar Firms." The Quarterly Journal of Economics 135 (2): 645–709.
- **Azar, Jose, Martin C Schmalz, and Isabel Tecu.** 2018. "Anticompetitive Effects of Common Ownership." *The Journal of Finance* 73 (4): 1513–1565.
- **Azar, Jose, and Xavier Vives.** 2021. "General Equilibrium Oligopoly and Ownership Structure." *Econometrica* 89 (3): 999–1048.
- Azar, José, Sahil Raina, and Martin Schmalz. 2022. "Ultimate ownership and bank competition." *Financial management* 51 (1): 227–269.
- **Azar, José, and Ricardo Ribeiro.** 2021. "Estimating oligopoly with shareholder voting models." *SSRN Electronic Journal.*

- **Backus, Matthew, Christopher Conlon, and Michael Sinkinson.** 2021. "Common Ownership in America: 1980-2017." *American Economic Journal. Microeconomics* 13 (3): 273–308.
- **Baqaee**, **David Rezza**, **and Emmanuel Farhi**. 2020. "Productivity and Misallocation in General Equilibrium." *The Quarterly Journal of Economics* 135 (1): 105–163.
- **Berry, Steven, James Levinsohn, and Ariel Pakes.** 1995. "Automobile Prices in Market Equilibrium." *Econometrica* 63 (4): 841.
- Bloom, Nicholas, Mark Schankerman, and John VAN Reenen. 2013. "Identifying Technology Spillovers and Product Market Rivalry." *Econometrica* 81 (4): 1347–1393.
- Cavenaile, Laurent, Murat Alp Celik, and Xu Tian. 2023. "Are Markups Too High? Competition, Strategic Innovation, and Industry Dynamics."
- **d'Aspremont, Claude, and A Jacquemin.** 1988. "Cooperative and noncooperative R&D in duopoly with spillovers." *The American Economic Review* 78 (5): 1133–1137.
- **De Loecker, Jan, Jan Eeckhout, and Gabriel Unger.** 2020. "The Rise of Market Power and The Macroeconomic Implications." *The Quarterly Journal of Economics* 135 (2): 561–644.
- **Ederer, Florian, and Bruno Pellegrino.** 2024. "A Tale of Two Networks: Common Ownership and Product Market Rivalry."
- **Edmond, Chris, Virgiliu Midrigan, and Daniel Yi Xu.** 2023. "How Costly Are Markups?" *The Journal of Political Economy* 000–000.

- **Gutierrez, German, and Thomas Philippon.** 2017. "An Empirical Investigation." *Brookings Papers on Economic Activity* 89–169.
- **He, Jie (jack), and Jiekun Huang.** 2017. "Product Market Competition in a World of Cross-Ownership: Evidence from Institutional Blockholdings." *The Review of Financial Studies* 30 (8): 2674–2718.
- **Hoberg, Gerard, and Gordon Phillips.** 2016. "Text-Based Network Industries and Endogenous Product Differentiation." *The Journal of Political Economy* 124 (5): 1423–1465.
- **Hopenhayn, Hugo, and Koki Okumura.** 2024. "Dynamic Oligopoly and Innovation: A Quantitative Analysis of Technology Spillovers and Product Market Competition."
- **Jaffe, Adam B.** 1986. "Technological Opportunity and Spillovers of R&D: Evidence from Firms' Patents, Profits, and Market Value." *The American economic review* 76 (5): 984–1001.
- **Kamien, Morton I, Eitan Muller, and Israel Zang.** 1992. "Research Joint Ventures and R&D Cartels." *The American Economic Review* 82 (5): 1293–1306.
- **Kini, Omesh, Sangho Lee, and Mo Shen.** 2024. "Common Institutional Ownership and Product Market Threats." *Management Science* 70 (5): 2705–2731.
- **Lancaster, Kelvin J.** 1966. "A New Approach to Consumer Theory." *The Journal of Political Economy* 74 (2): 132–157.

- **Leahy, Dermot, and J Peter Neary.** 1997. "Public Policy Towards R&D in Oligopolistic Industries." *American Economic Review* 87 (4): 642–662.
- **Liu, Ernest, Atif Mian, and Amir Sufi.** 2022. "Low Interest Rates, Market Power, and Productivity Growth." *Econometrica* 90 (1): 193–221.
- **Lopez, Angel L, and Xavier Vives.** 2019. "Overlapping Ownership, R&D Spillovers, and Antitrust Policy." *The Journal of Political Economy* 127 (5): 2394–2437.
- **Neary, J Peter.** 2003. "Globalization and market structure." *Journal of the European Economic Association* 1 (2-3): 245–271.
- **Nevo, Aviv.** 2001. "Measuring Market Power in the Ready-to-Eat Cereal Industry." *Econometrica* 69 (2): 307–342.
- **Pellegrino, Bruno.** 2024. "Product Differentiation and Oligopoly: A Network Approach." *The American Economic Review*.
- **Peters, Michael.** 2020. "Heterogeneous Markups, Growth, and Endogenous Misallocation." *Econometrica* 88 (5): 2037–2073.
- **Rosen, Sherwin.** 1974. "Hedonic Prices and Implicit Markets: Product Differentiation in Pure Competition." *The Journal of Political Economy* 82 (1): 34–55.
- Rotemberg, Julio. 1984. "Financial transaction costs and industrial performance."

Rubinstein, Ariel, and Menahem E Yaari. 1983. "The Competitive Stock Market as Cartel Maker: Some Examples." *STICERD - Theoretical Economics Paper Series*.

Wilson, Daniel J. 2009. "Beggar thy neighbor? The in-state, out-of-state, and aggregate effects of R&D tax credits." *The Review of Economics and Statistics* 91 (2): 431–436.