Ratio CF_ext_class GCsp_opt/CF_int_class GCsp_opt 1.000 0.999 0.998 0.997 $\ln(b_a\sigma_8)_1$ -1.00 1.00 1.00 1.00 1.00 nan nan 1.00 nan nan $\ln(b_a\sigma_8)_2$ -1.00 1.00 1.00 1.00 nan 1.00 nan nan nan 1.00 nan nan 0.996 $\ln(b_q\sigma_8)_3$ -1.00 1.00 1.00 1.00 nan nan 1.00 nan nan 1.00 nan 0.995 $\ln(b_q\sigma_8)_4$ -1.00 1.00 1.00 1.00 nan nan nan 1.00 nan nan 1.00 P_{S1} -1.00 1.00 1.00 1.00 1.00 1.00 nan nan 1.00 nan nan -0.994 P_{S9} -1.00 1.00 1.00 1.00 1.00 nan 1.00 nan nan 1.00 nan nan -0.993 P_{S3} -1.00 1.00 1.00 1.00 nan nan 1.00 nan nan 1.00 nan P_{S4} -1.00 1.00 1.00 1.00 1.00 nan nan 1.00 nan nan 1.00

 $\Omega_{\mathrm{m},0}$ $\Omega_{\mathrm{b},0}$ n_{s} h $\sigma_{8}\ln(b_{a}\log(b$