MCS 312: NP Completeness and Approximation algorithms

Instructor

Neelima Gupta

ngupta@cs.du.ac.in

Table of Contents

- NP Hardness
 - Reductions

NP - Hardness

• The aim to study this class is not to solve a problem but to see how hard is a problem?

Reduction

- The crux of NP-Hardness is *reducibility*
 - We say that a problem P is reduced to another problem Q if an instance of P can be easily transformed into an instance of Q, the solution to which provides a solution to the instance of P.
 - Intuitively it means that if one can solve Q then one can solve P also, i.e. P is "no harder to solve" than Q or Q is at least as hard as P.

 I_{P} : Instance of problem P

 I_Q : Instance of problem Q

 $S_{P}^{}$: Solution of problem P

 $\boldsymbol{S}_{\boldsymbol{Q}}\,:$ Solution of problem \boldsymbol{Q}

Transformation Characterstics:

- If A(Q) is yes then A(P) is yes
- Vice versa
- It should be done in polynomial time

Reducibility

- An example:
 - P: Given a set of Booleans, is at least one TRUE?
 - Q: Given a set of integers, is their sum positive?
 - Transformation: $(x_1, x_2, ..., x_n) = (y_1, y_2, ..., y_n)$ where $y_i = 1$ if $x_i = TRUE$, $y_i = 0$ if $x_i = FALSE$
- Another example:
 - Solving linear equations is reducible to solving quadratic equations
 - How can we easily use a quadratic-equation solver to solve linear equations?

NP hard

Q is s.t.b. NP-hard if \forall P \in NP, P \leq_p Q

Thanks to: Shivam Sharma (24, MCS '09)

If all problems $R \in NP$ are reducible to T, then T is NP-Hard And $T \in NP$ then T is NPC.

Thanks to: Shivam Sharma (24, MCS '09)

The SAT Problem

- One of the first problems proved to be NP-Hard was satisfiability (SAT):
 - Given a Boolean expression on *n* variables, can we assign values such that the expression is TRUE?
 - $Ex: ((x_1 \rightarrow x_2) \lor \leftarrow ((\leftarrow x_1 \leftrightarrow x_3) \lor x_4)) \land \leftarrow x_2$
 - Cook's Theorem: The satisfiability problem is NP-Hard (actually NP Complete...will do this later)
 - Note: Argue from first principles, not reduction
 - Proof: not here

Conjunctive Normal Form

- Even if the form of the Boolean expression is simplified, the problem is NP-Hard (NP Complete)
 - Literal: an occurrence of a Boolean or its negation
 - A Boolean formula is in *conjunctive normal form*, or *CNF*, if it is an AND of clauses, each of which is an OR of literals
 - $Ex: (x_1 \lor \leftarrow x_2) \land (\leftarrow x_1 \lor x_3 \lor x_4) \land (\leftarrow x_5)$
 - 3-CNF: each clause has exactly 3 distinct literals
 - $Ex: (x_1 \lor \leftarrow x_2 \lor \leftarrow x_3) \land (\leftarrow x_1 \lor x_3 \lor x_4) \land (\leftarrow x_5 \lor x_3 \lor x_4)$
 - Notice: true if at least one literal in each clause is true

The 3-CNF Problem

- Thm 36.10: Satisfiability of Boolean formulas in 3-CNF form (the 3-CNF Problem) is NP-Hard (NP-Complete)
 - Proof: Nope
- The reason we care about the 3-CNF problem is that it is relatively easy to reduce to others
 - Thus by proving 3-CNF NP-Hard we can prove many seemingly unrelated problems
 NP-Hard

CLIQUE is NP Hard

- Pick up a problem known to be NPHard and
 - Transform (reduce) the known problem to CLIQUE
 - 0 Give the transformation
 - 1. Show that under the transformation : solution of known problem is yes => solution to CLIQUE is yes.
 - 2. Show that under the transformation : solution of CLIQUE is yes => solution of the known problem is yes.
 - 3. Show that the transformation can be done in time polynomial in the length of an instance of the known problem.

SO, THREE STEPS TO REDUCE A KNOWN PROBLEM TO CLIQUE.

3-CNF → Clique

- What should the reduction do?
- A: Transform a 3-CNF formula to a graph, for which a *k*-clique will exist (for some *k*) iff the 3-CNF formula is satisfiable

3-CNF → Clique

- The reduction:
 - Let $B = C_1 \wedge C_2 \wedge ... \wedge C_k$ be a 3-CNF formula with k clauses, each of which has 3 distinct literals
 - For each clause put a triple of vertices in the graph, one for each literal
 - Put an edge between two vertices if they are in different triples and their literals are *consistent*, meaning not each other's negation

Let the expression in 3CNF be: $(\sim x \ v \ y \ v \ z) \wedge (x \ v \ \sim y \ v \ \sim z) \wedge (x \ v \ y \ v \ z)$

Clique thus formed:

Note:- There are many other possible cliques in previous mapping. This is one of the possible cliques.

3-CNF → Clique

- Prove the reduction works:
 - If B has a satisfying assignment, then each clause has at least one literal (vertex) that evaluates to 1
 - Picking one such "true" literal from each clause gives a set V' of *k* vertices. V' is a clique (*Why?*)
 - If G has a clique V' of size k, it must contain one vertex in each triple (clause) (*Why?*)
 - We can assign 1 to each literal corresponding with a vertex in V', without fear of contradiction

Reduction takes polynomial time

- Let there be n variables in the 3-CNF with k clauses
- \bullet Then, the input size is theta(k + n).
- Size of the graph = 3k*3(k-1)

Vertex Cover is NP-Hard

Pick up a problem known in NP-hard

CLIQUE

Clique ≤ Vertex Cover

• Let the instance of Clique (I_c) be <G, k>.

• Reducing it to instance of VC (I_{vc}) be <G', |V|-k> where G': E(G')=Edges b/w vertex pair not present in G and |V|-k is the vertex cover.

Catch behind this choice: Because it works...!!!

Green ovals represent CLIQUE for this graph

G'

Big ovals represent the VC for graph G'

Clique → Vertex Cover

- Reduce *k*-clique to vertex cover
 - The *complement* G_C of a graph G contains exactly those edges not in G
 - lacktriangle Compute G_C in polynomial time
 - G has a clique of size k iff G_C has a vertex cover of size |V| k

Clique → Vertex Cover

- Claim: If G has a clique of size k, G_C has a vertex cover of size |V| k
 - Let V' be the *k*-clique
 - Then V V' is a vertex cover in G_C
 - Let (u,v) be any edge in G_C
 - Then u and v cannot both be in V'(Why?)
 - Thus at least one of u or v is in V-V' (why?), so edge (u, v) is covered by V-V'
 - Since true for *any* edge in G_C, V-V' is a vertex cover

Clique → Vertex Cover

- Claim: If G_C has a vertex cover $V' \subseteq V$, with |V'| = |V| k, then G has a clique of size k
 - For all $u, v \in V$, if $(u, v) \in G_C$ then $u \in V$ ' or $v \in V$ ' or both (Why?)
 - Contrapositive: if $u \notin V$ ' and $v \notin V$ ', then $(u,v) \in E$
 - In other words, all vertices in V-V' are connected by an edge, thus V-V' is a clique
 - Since |V| |V'| = k, the size of the clique is k

Independent Set Problem

Independent Set: A subset S of V is said to be independent if no 2 nodes in S are joined by an edge.

Problem Statement: Given a graph G=(V,E), find an independent set that is as large as possible.

Exercise

- Show that Independent Set is NP Hard by reducing it from
 - 3 CNF
 - Clique
 - Vertex Cover
- Show that Vertex Cover is NP Hard by reducing it from
 - 3 CNF

Problem Statement

Given: A finite set S of natural numbers.

A target t

N.

To Find: If there exists a subset S' of S whose elements sum up to t.

We now prove that Subset Sum Problem is NP-Complete.

Subset Sum is in NP. For an instance <S,t>, let S' be the certificate. Checking whether elements of S' sum to t can be done in polynomial time.

Subset Sum is NP Hard
We show this by proving that 3-SAT is
reducible to Subset Sum in polynomial time.

Given: 3-SAT formula Φ over variables x_1 , x_2 , x_n with clauses C_1 , C_2 C_k

Without loss of generality, we make the following 2 assumptions:

- No clause contains both a variable and its negation. WHY?
 - (Because such a clause would be trivially satisfied.)
- Each variable appears in at least 1 clause.
 WHY?
 - (Because otherwise, it does not matter what value is assigned to it.)

Reduction Process - through example

Consider the 3-SAT formula : $\Phi = C_1^C_2^C_3^C_3^C_4$

where
$$C_1 = (x_1 \lor x_2' \lor x_3')$$

 $C_2 = (x_1' \lor x_2' \lor x_3')$
 $C_3 = (x_1' \lor x_2' \lor x_3)$
 $C_4 = (x_1 \lor x_2 \lor x_3)$

A satisfying assignment is $\langle x_1=0, x_2=0, x_3=1 \rangle$

Steps:

- □ Create 2 numbers in set S for each variable x_i
 and 2 numbers for each clause C_i.
- These numbers are in base 10 and each has n+k digits.
- Each digit corresponds to a variable or a clause. Label least significant k digits by clauses and most significant n digits by variables.

- Do the following for i = 1....n
- If xi = 1 in the assignment, include v_i in S', otherwise include v_i '. In the example,
- $x1=0 \Rightarrow x1'=1$, v_1' is selected
- $x2=0 \Rightarrow x2'=1$, v_2' is selected
- $x3=1 \Rightarrow x3=1$, v_3 is selected

 $(x1 \ v \ x2' \ v \ x3') \ \Lambda \ (x1' \ v \ x2' \ v \ x3') \ \Lambda \ (x1' \ v \ x2' \ v \ x3) \ \Lambda \ (x1 \ v \ x2 \ v \ x3)$ Satisfying assignment $x1=0, \ x2=0, \ x3=1$ $x_1', x_2' \ and \ x_3 \ are \ selected.$

	X1	X2	ХЗ	C1	C2	C 3	C4
V1	1	0	0	1	0	0	1
V1'	1	0	0	0	1	1	0
V2	0	1	0	0	0	0	1
V2'	0	1	0	1	1	1	0
V3	0	0	1	0	0	1	1
V3 '	0	0	1	1	1	0	0
S1	0	0	0	1	0	0	0
S1'	0	0	0	2	0	0	0
S2	0	0	0	0	1	0	0
\$2'	0	0	0	0	2	0	0
S 3	0	0	0	0	0	1	0
S3'	0	0	0	0	0	2	0
S4	0	0	0	0	0	0	1
S4'	0	0	0	0	0	0	2
t	1	1	1	4	4	4	4

 $(x1\ v\ x2'\ v\ x3')\ \varLambda\ (x1'\ v\ x2'\ v\ x3')\ \varLambda\ (x1'\ v\ x2'\ v\ x3)\ \varLambda\ (x1\ v\ x2\ v\ x3)$

	X1	X2	ХЗ	C1	C2	С3	C4
V1	1	0	0	1	0	0	1
V1'	1	0	0	0	1	1	0
V2	0	1	0	0	0	0	1
V2'	0	1	0	1	1	1	0
V3	0	0	1	0	0	1	1
V3'	0	0	1	1	1	0	0
S1	0	0	0	1	0	0	0
S1'	0	0	0	2	0	0	0
S2	0	0	0	0	1	0	0
\$2'	0	0	0	0	2	0	0
S 3	0	0	0	0	0	1	0
S3'	0	0	0	0	0	2	0
S4	0	0	0	0	0	0	1
S4 '	0	0	0	0	0	0	2
t	1	1	1	4	4	4	4

 $(x1\ v\ x2'\ v\ x3')\ \varLambda\ (x1'\ v\ x2'\ v\ x3')\ \varLambda\ (x1'\ v\ x2'\ v\ x3)\ \varLambda\ (x1\ v\ x2\ v\ x3)$

	X1	X2	ХЗ	C1	C2	C3	C4
V1	1	0	0	1	0	0	1
V1'	1	0	0	0	1	1	0
V2	0	1	0	0	0	0	1
V2'	0	1	0	1	1	1	0
V3	0	0	1	0	0	1	1
V3'	0	0	1	1	1	0	0
S1	0	0	0	1	0	0	0
S1'	0	0	0	2	0	0	0
S2	0	0	0	0	1	0	0
S2'	0	0	0	0	2	0	0
S 3	0	0	0	0	0	1	0
S3'	0	0	0	0	0	2	0
S4	0	0	0	0	0	0	1
S4'	0	0	0	0	0	0	2
t	1	1	1	4	4	4	4

 $(x1\ v\ x2'\ v\ x3')\ \varLambda\ (x1'\ v\ x2'\ v\ x3')\ \varLambda\ (x1'\ v\ x2'\ v\ x3)\ \varLambda\ (x1\ v\ x2\ v\ x3)$

	X1	X2	ХЗ	C1	C2	C3	C4
V1	1	0	0	1	0	0	1
V1'	1	0	0	0	1	1	0
V2	0	1	0	0	0	0	1
V2'	0	1	0	1	1	1	0
V3	0	0	1	0	0	1	1
V3'	0	0	1	1	1	0	0
S1	0	0	0	1	0	0	0
S1 '	0	0	0	2	0	0	0
S2	0	0	0	0	1	0	0
S2'	0	0	0	0	2	0	0
S 3	0	0	0	0	0	1	0
S3'	0	0	0	0	0	2	0
S4	0	0	0	0	0	0	1
S4 '	0	0	0	0	0	0	2
t	1	1	1	4	4	4	4

 $(x1\ v\ x2'\ v\ x3')\ \varLambda\ (x1'\ v\ x2'\ v\ x3')\ \varLambda\ (x1'\ v\ x2'\ v\ x3)\ \varLambda\ (x1\ v\ x2\ v\ x3)$

	X1	X2	ХЗ	C1	C2	C3	C4
V1	1	0	0	1	0	0	1
V1'	1	0	0	0	1	1	0
V2	0	1	0	0	0	0	1
V2'	0	1	0	1	1	1	0
V3	0	0	1	0	0	1	1
V3'	0	0	1	1	1	0	0
S1	0	0	0	1	0	0	0
S1'	0	0	0	2	0	0	0
S2	0	0	0	0	1	0	0
S2'	0	0	0	0	2	0	0
S3	0	0	0	0	0	1	0
S3'	0	0	0	0	0	2	0
S4	0	0	0	0	0	0	1
S4'	0	0	0	0	0	0	2
t	1	1	1	4	4	4	4

Construct S and t as follows:

- t has a 1 in each digit labeled by a variable and 4 in each clause-digit.
- For each x_i, there exist 2 integers v_i, v_i' in S. Both v_i and v_i' have 1 corresponding to digit x_i.
- ☐ If x_i appears in C_j , the C_j -digit in $v_i = 1$ If v_i appears in C_j , the C_j -digit in $v_i' = 1$
- ☐ All other digits are zero.

Claim: All v_i and v_i' in S are unique

- v_i (v_i') and v_j (v_j') will be different in most significant positions.
- v_i and v_i' will be different in least significant positions. WHY?

(both cannot belong to the same clause)

- □ For all C_j, there exist s_j and s_j' integers in S. Both have 0's in all digits other than the one labeled by C_j.
- \Box s_j has a 1 corresponding to C_j, and s_j' has a 2 corresponding to C_j.
- ☐ These integers are slack variables, used to get clause labeled digit position to add to the target value of 4.

Claim: All s_j and s_j ' in S are unique (for reasons similar to v_i and v_i ')

Observation: The greatest sum of digits in any digit position is 6. This occurs in clause-digits (v_i and v_i ' make a contribution of 3, s_j and s_j ' make a contribution of 1 and 2 respectively).

Conclusion: Interpretation is in base 10, so no carries would be generated.

REDUCTION DONE!!

Claim: This reduction can be done in polynomial time.

- □ S contains 2n+2k values.
- ☐ Each has n+k digits.
- Each digit takes time polynomial in (n+k) to be produced.
- t has n+k digits each being produced in constant time.

Hence Proved!

To Prove: 3-SAT Φ is satisfiable if and only if there exists a subset S' of S whose elements sum to 't'.

Proof

Part 1

Given: Φ has a satisfying assignment.

Do the following for i = 1.....n
 If x_i = 1 in the assignment, include v_i in S', otherwise include v_i'. In the example, v₁', v₂', v₃ belong to S'.

Note: For each variable digit, the sum of values of S' must be 1 (= those of target t)

☐ Each clause is satisfied, therefore has at least one positive literal. Thus, each clause digit has at least one '1' through a vi or vi' value in S'. (the sum of clause digit may be 1 or 2 or 3).

□ Include appropriate non empty subset of slack variables {s_i, s_i'} in S' to achieve the target of 4 in each digit labeled by C_i.

Since we have matched all target digits of the sum, and there does not exist any carry, therefore the values of S' sum to t.

Part 2 of the proof

Given: Subset S' of S sums to t.

Observe the following:

S' must include exactly one of v_i and v_i' for all i. WHY?

Because otherwise variable digits would not sum to 1

- \Box If v_i belongs to S', set $x_i = 1$.
- \Box If v_i ' belongs to S', set x_i ' = 0.

Claim: Every clause C_j is satisfied by this assignment.

Proof: Note that in order to achieve a sum of in digits corresponding to Cj, the subset S' must include at least one vi or vi' value that has a value 1 in the digit labeled by Cj.

- □ Since we have xi =1 if vi belongs to S', clause Cj is satisfied.
- □ And since xi =0 if vi' belongs to S', again clause Cj is satisfied.
- ☐ Therefore, all clauses are satisfied.

Hence Proved!

Set Cover Problem

Problem Statement

Given

- 1. A set U of n elements
- 2. A collection S₁, S₂,...., S_m of subsets of U
- 3. A number k

To Find If there exists a collection of at most k of these sets whose union equals all of U.

Set Cover Problem

An Application

- ☐ Suppose we want to build a system with n functionalities using m available pieces of software.
- ☐ Each piece of software possesses some subset of functionalities. Let the set of functionalities possessed by the ith piece of software be denoted by S_i.
- Our goal, then, is to build a system that possesses all the n functionalities using a small number of pieces of software.

Set Cover Problem

An Instance

- The little blue dots are the elements of U
- Black and Red figures represent sets. The dots that lie within a figure are the elements contained by that set.
- The red figure form the set cover.

Set Cover Problem is NP Complete

Prove that it is in NP

•NP – hardness follows from reduction from vertex cover. HOW?.....Assignment

(Metric) Traveling Salesman Problem

Problem Statement

Given A complete graph G with nonnegative edge costs (that satisfy triangle inequality)

To Find A minimum cost cycle visiting every vertex exactly once.

Decision Version: Does there exist a TS tour of cost <=k

TSP is NP Complete

Prove that it is in NP

 NP – hardness follows from reduction from Hamiltonian Cycle. HOW? Assignment.

NP-Complete Problems

- The *NP-Complete* problems are an interesting class of problems whose status is unknown
 - No polynomial-time algorithm has been discovered for an NP-Complete problem
 - No supra-polynomial lower bound has been proved for any NP-Complete problem, either
- We call this the P = NP question
 - The biggest open problem in CS

NP-Completeness

The space NP of all search problems, assuming $P \neq NP$

Significance of NP-Completeness

The interest surrounding the class of NP-complete problems can be attributed to the following reasons.

- No polynomial-time algorithm has yet been discovered for any NP-complete problem; at the same time no NP-complete problem has been shown to have a super polynomial-time (for example exponential time) lower bound.
- If a polynomial-time algorithm is discovered for even one NP-complete problem, then all NP-complete problems will be solvable in polynomial-time.
- It is believed (but so far no proof is available) that NP-complete problems do not have polynomial-time algorithms and therefore are intractable. The basis for this belief is the second fact above, namely that if any single NP-complete problem can be solved in polynomial time, then every NP-complete problem has a polynomial-time algorithm. Given the wide range of NP-complete problems that have been discovered to date, it will be sensational if all of them could be solved in polynomial time.

Why Prove NP-Completeness?

- Though nobody has proved that P := NP, if you prove a problem NP-Complete, most people accept that it is probably intractable
- Therefore it can be important to prove that a problem is NP-Complete
 - Don't need to come up with an efficient algorithm
 - Can instead work on approximation algorithms

Acknowledgment

- Shivam Sharma
- Sufyan Haroon

UP Next

Approximation Algorithms