ESSEC I 2018

Dans tous le sujet :

- \bullet on désigne par n un entier naturel, au moins égal à 2,
- X est une v.a.r. à valeurs dans un intervalle $]0, \alpha[$, où α est un réel strictement positif. On suppose que X admet une densité f strictement positive et continue sur $]0, \alpha[$, et nulle en dehors de $]0, \alpha[$.
- on note F la fonction de répartition de X.
- X_1, \ldots, X_n est une famille de v.a.r. mutuellement indépendantes et de même loi que X.

On admet que toutes les variables aléatoires considérées sont définies sur le même espace probabilisé $(\Omega, \mathscr{A}, \mathbb{P})$.

Partie I - Lois des deux plus grands

Les notations et résultats de cette partie seront utilisés dans le reste du sujet.

On définit deux variables aléatoires Y_n et Z_n de la façon suivante.

Pour tout $\omega \in \Omega$:

- $Y_n(\omega) = \max(X_1(\omega), \dots, X_n(\omega))$ est le plus grand des réels $X_1(\omega), \dots, X_n(\omega)$; on remarque que Y_n est définie également lorsque n vaut 1, de sorte que dans la suite du sujet on pourra considérer Y_{n-1} .
- $Z_n(\omega)$ est le « deuxième plus grand » des nombres $X_1(\omega), \ldots, X_n(\omega)$, autrement dit, une fois que ces n réels sont ordonnés dans l'ordre croissant, Z_n est l'avant-dernière valeur. On note que lorsque la plus grande valeur est présente plusieurs fois, $Z_n(\omega)$ et $Y_n(\omega)$ sont égaux.
- 1. Loi de Y_n .

Soit G_n la fonction de répartition de Y_n .

- a) Montrer que pour tout réel $x: G_n(x) = F(x)^n$.
- b) En déduire que Y_n est une variable aléatoire à densité et exprimer une densité g_n de Y_n en fonction de f, F et n.
- c) Montrer que Y_n admet une espérance.
- **2.** Loi de Z_n .

Soit H_n la fonction de répartition de Z_n .

- a) Soit x un réel.
 - (i) Soit $\omega \in \Omega$, justifier que $Z_n(\omega) \leq x$ si et seulement si dans la liste de n éléments $X_1(\omega), \ldots, X_n(\omega)$, au moins n-1 sont inférieurs ou égaux à x. Donner une expression de l'événement $[Z_n \leq x]$ en fonction des événements $[X_k \leq x]$ et $[X_k > x]$ avec $k \in \{1, \ldots, n\}$.
 - (ii) Établir: $H_n(x) = n(1 F(x))(F(x))^{n-1} + F(x)^n$.
- b) Montrer que \mathbb{Z}_n est une variable à densité et qu'une densité de \mathbb{Z}_n est donnée par :

$$h_n(x) = n(n-1) f(x) (1 - F(x)) (F(x))^{n-2}$$

3. Simulation informatique.

On suppose que l'on a défini une fonction **Scilab** d'entête function x = simulX(n) qui retourne une simulation d'un échantillon de taille n de la loi de X sous la forme d'un vecteur de longueur n. Compléter la fonction qui suit pour qu'elle retourne le couple $(Y_n(\omega), Z_n(\omega))$ associé à l'échantillon simulé par l'instruction X = simulX(n):

```
function [y, z] = DeuxPlusGrands(n)
       X = simulX(n)
2
          \mathbf{y} = X(1) ; \mathbf{z} = X(2)
       end
       for k = 3:n
          if X(k) > y
            z = \ldots; y = \ldots
11
            if ...
\underline{12}
               z = \dots
          end
16
    endfunction
```

4. Premier exemple : loi uniforme.

On suppose dans cette question que X suit la loi uniforme sur $]0, \alpha[$.

- a) Donner une densité de Y_n et une densité de Z_n .
- b) Calculer l'espérance de Y_n et de Z_n .
- 5. Deuxième exemple : loi puissance.

Deuxième exemple : loi puissance. On suppose dans cette question que la densité f est donnée par : $f(x) = \begin{cases} \lambda \frac{x^{\lambda-1}}{\alpha^{\lambda}} & \text{si } x \in]0, \alpha[\\ 0 & \text{sinon} \end{cases}$

où λ est une constante strictement positive.

On dit que X suit la loi puissance de paramètres α et λ .

- a) (i) Vérifier que f est bien une densité de probabilité.
 - (ii) Déterminer la fonction de répartition F de X.
 - (iii) Calculer l'espérance de X.
- b) (i) Montrer que Y_n suit une loi puissance de paramètres à préciser en fonction de n, λ et α .
 - (ii) En déduire l'espérance de Y_n .
- c) Calculer l'espérance de Z_n .

Partie II - Un problème d'optimisation

On reprend la notation de la partie précédente : G_{n-1} est la fonction de répartition de Y_{n-1} , qui est le maximum de X_1, \ldots, X_{n-1} .

On répond dans cette partie au problème d'optimisation suivant : trouver une fonction σ définie sur $]0,\alpha[$ vérifiant les trois propriétés :

- σ est une bijection de $]0, \alpha[$ dans un intervalle $]0, \beta[$, avec β un réel strictement positif.
- σ est de classe \mathcal{C}^1 sur $]0,\alpha[$ et σ' est à valeurs strictement positives sur $]0,\alpha[$.
- on définit, pour tout $x \in]0, \alpha[$ et tout $y \in]0, \beta[$,

$$\gamma(x,y) = (x-y) G_{n-1}(\sigma^{-1}(y))$$

Alors pour tout $x \in]0, \alpha[, \gamma(x, y)]$ atteint son maximum lorsque $y = \sigma(x)$.

6. Analyse.

On suppose dans un premier temps qu'une telle fonction σ vérifiant ces trois propriétés existe.

- a) Montrer que σ^{-1} est dérivable sur $]0,\beta[$ et exprimer sa dérivée $(\sigma^{-1})'$ en fonction de σ' et σ^{-1} .
- b) Calculer la dérivée partielle $\partial_2(\gamma)(x,y)$.
- c) Montrer que pour tout $x \in]0, \alpha[$, on a $\partial_2(\gamma)(x, \sigma(x)) = 0$. En déduire que pour tout $x \in]0, \alpha[$:

$$\sigma'(x) G_{n-1}(x) + \sigma(x) g_{n-1}(x) = x g_{n-1}(x)$$

d) Montrer alors, pour tout $x \in]0, \alpha[$:

$$\sigma(x) = \frac{1}{G_{n-1}(x)} \int_0^x t g_{n-1}(t) dt$$
 (*)

e) À l'aide d'une intégration par parties, montrer que pour tout $x \in [0, \alpha[$, on a également :

$$\sigma(x) = x - \int_0^x \frac{G_{n-1}(t)}{G_{n-1}(x)} dt \qquad (**)$$

7. Synthèse.

On suppose à présent que σ est la fonction définie par l'égalité (*) ou (**).

- a) Montrer que pour tout $x \in]0, \alpha[, 0 < \sigma(x) < x.$
- b) Montrer que σ est de classe \mathcal{C}^1 sur $]0, \alpha[$ et que pour tout $x \in]0, \alpha[$, $\sigma'(x)$ est du signe de $x \sigma(x)$. En déduire que σ' est strictement positive sur $]0, \alpha[$.
- c) Montrer que σ réalise une bijection de $]0, \alpha[$ dans $]0, \beta[$, avec $\beta = \mathbb{E}(Y_{n-1})$.
- d) On fixe un réel $x \in [0, \alpha[$. Soit $y \in [0, \beta[$, on pose $z = \sigma^{-1}(y)$.
 - (i) Établir :

$$\gamma(x,y) = (x-z) G_{n-1}(z) + \int_0^z G_{n-1}(t) dt$$

- (ii) En déduire : $\gamma(x, \sigma(x)) \gamma(x, y) = (z x) G_{n-1}(z) \int_{x}^{z} G_{n-1}(t) dt$.
- (iii) Déterminer le signe de $\gamma(x, \sigma(x)) \gamma(x, y)$ et conclure que $\gamma(x, y)$ est maximal lorsque $y = \sigma(x)$.
- 8. Estimation de $\sigma(x)$.

Soit $x \in [0, \alpha[$.

a) On considère la fonction φ_x définie sur \mathbb{R}_+ par : $\varphi_x(t) = \begin{cases} t & \text{si } t \leq x \\ 0 & \text{sinon} \end{cases}$

En utilisant la relation (*), montrer que $\sigma(x) = \frac{\mathbb{E}(\varphi_x(Y_{n-1}))}{\mathbb{P}([Y_{n-1} \leq x])}$

b) En déduire une fonction Scilab function s = sigma(x,n) qui retourne une valeur approchée de $\sigma(x)$ obtenue comme quotient d'une estimation de $\mathbb{E}(\varphi_x(Y_{n-1}))$ et de $\mathbb{P}([Y_{n-1} \leq x])$. On utilisera la fonction simulX pour simuler des échantillons de la loi de X, et on rappelle que si v est un vecteur, $\max(v)$ est égal au plus grand élément de v.

9. Exemples.

Donner une expression de $\sigma(x)$ pour tout $x \in [0, \alpha]$ dans les cas suivants :

a) X suit la loi uniforme sur $]0, \alpha[$.

b) X suit la loi puissance de paramètres α et λ . Votre résultat est-il en accord avec la courbe ci-dessous obtenue sous cette hypothèse, en utilisant la fonction sigma de la question précédente lorsque $n=6, \lambda=0,2$ et $\alpha=50$? Justifier votre réponse.

Figures/ESSEC-I_2018/Figure_ESSEC-I_2018.png

Partie III - Modélisation d'enchères

Un bien est mis en vente aux enchères et n acheteurs A_1, \ldots, A_n sont intéressés. Chaque acheteur A_k attribue une valeur x_k à ce bien, appelée valeur privée, qui n'est pas connue des autres acheteurs. Afin de se procurer ce bien, A_k propose ensuite, de façon secrète, une mise (on dit aussi une offre) y_k . Toutes les mises sont alors révélées simultanément et l'acheteur qui remporte le bien est celui qui a proposé la plus grande mise. En cas d'égalité, le gagnant est tiré au sort parmi ceux qui ont la mise la plus importante.

Le prix à payer par le gagnant au vendeur dépend du type d'enchère organisé. On étudie ici deux formats d'enchères :

- l'enchère au premier prix, ou enchère hollandaise : l'acheteur gagnant paye la mise qu'il a lui-même proposée. Ce type d'enchère correspond aux enchères dynamiques « descendantes » : la vente commence avec un prix très élevé et baisse progressivement. Le premier qui accepte le prix remporte le bien.
- l'enchère au second prix, ou enchère anglaise : l'acheteur gagnant paye le prix correspondant à la deuxième meilleure mise.

Ce type d'enchère est presque équivalent aux enchères dynamiques « montantes » bien connues : le prix monte progressivement jusqu'à ce qu'il ne reste plus qu'un seul acheteur : celui qui est prêt à mettre le plus haut prix, et qui paye (à peu de chose près) le prix de la deuxième offre après la sienne.

Pour chaque acheteur A_k , on appelle résultat net ou simplement résultat de l'enchère, et on note r_k , le bénéfice ou le perte résultant de l'opération. Pour l'acheteur qui a remporté l'enchère, le résultat est la différence entre la valeur privée et le prix payé. Pour les autres acheteurs, le résultat est considéré comme nul.

À titre d'exemple, considérons quatre acheteurs, dont les mises en euros sont $y_1 = 50$, $y_2 = 100$, $y_3 = 80$ et $y_4 = 40$, alors l'acheteur A_2 gagne l'enchère. Si sa valeur privée x_2 vaut 90 euros, il paye 100 euros au vendeur pour un résultat de $r_2 = -10$ euros s'il s'agit d'une enchère au premier prix, et 80 euros pour un résultat de $r_2 = 10$ euros si c'est une enchère au second prix.

On s'intéresse au problème suivant : à partir de l'information dont dispose l'acheteur k, notamment à partir de sa valeur privée x_k , comment doit-il choisir sa mise y_k afin d'optimiser son résultat net ? On appelle stratégie de l'acheteur k une fonction σ_k telle que $y_k = \sigma_k(x_k)$.

1- Enchère au premier prix

On suppose que chaque acheteur A_k a une valeur privée $x_k = X_k(\omega)$ qui est une réalisation de la variable aléatoire X_k .

Soit σ la fonction définie à la partie II.

Le problème étant symétrique, on se met par exemple à la place de l'acheteur n, et on suppose que les n-1 premiers acheteurs appliquent la stratégie σ , c'est-à-dire : pour tout $k \in \{1, \ldots, n-1\}$, l'acheteur k mise $\sigma(X_k)$.

L'acheteur n a une valeur privée x_n et choisit une mise y_n .

On note E_n l'événement « l'acheteur A_n remporte l'enchère ».

10. En remarquant que $\mathbb{P}([Y_{n-1} = \sigma^{-1}(y_n)]) = 0$, montrer que $\mathbb{P}(E_n) = \mathbb{P}([Y_{n-1} < \sigma^{-1}(y_n)])$. On note R_n la variable aléatoire donnant le résultat net de l'enchère pour l'acheteur A_n .

Justifier que $R_n = (x_n - y_n) \mathbbm{1}_{E_n}$ et en déduire que le résultat espéré de l'acheteur A_n en fonction de sa valeur privée $x_n \in]0, \alpha[$ et de l'offre $y_n \in]0, \beta[$ est donné par :

$$\mathbb{E}(R_n) = (x_n - y_n) G_{n-1}(\sigma^{-1}(y_n))$$

11. En déduire que pour optimiser son espérance de résultat, l'acheteur A_n a intérêt à appliquer lui aussi la stratégie σ .

Il s'agit de ce que l'on appelle un équilibre de Nash en théorie des jeux : si tous les acheteurs appliquent cette stratégie d'équilibre σ , alors aucun n'a intérêt à changer de stratégie.

2- Enchère au second prix

On se met à nouveau à la place de l'acheteur n. Soit $m = \max(y_1, \dots, y_{n-1})$ la meilleure offre faite par les acheteurs A_1, \dots, A_{n-1} (que A_n ne connaît pas).

- 12. a) Si on suppose que $m \ge x_n$, montrer que quelle que soit la mise y_n , le résultat net r_n pour A_n est négatif ou nul. Que vaut r_n pour le choix $y_n = x_n$?
 - b) Si on suppose que $m < x_n$, quel est le résultat pour A_n dans les cas $y_n < m$ et $y_n \ge m$?
 - c) En déduire que la meilleure stratégie pour A_n consiste à prendre $y_n = x_n$.

Par symétrie, chaque acheteur a également intérêt à miser le montant de sa valeur privée. On parle de *stratégie dominante* : chaque acheteur a une stratégie optimale indépendamment du comportement des autres acheteurs.

3- Équivalence des revenus

On se met maintenant à la place du vendeur.

Les valeurs privées des acheteurs sont données par les variables aléatoires X_1, \ldots, X_n .

13. Enchère au premier prix.

On suppose que le vendeur organise une enchère au premier prix, et que les acheteurs adoptent la stratégie d'équilibre σ donnée à la partie III-1.

On note B_n la variable aléatoire donnant le *bénéfice*, ou *revenu*, du vendeur. Il s'agit du montant que paye l'acheteur qui a remporté l'enchère.

- a) Justifier que $B_n = \sigma(Y_n)$.
- b) En déduire :

$$\mathbb{E}(B_n) = n \int_0^{\alpha} \sigma(x) G_{n-1}(x) f(x) dx = n \int_0^{\alpha} \left(\int_0^x t g_{n-1}(t) dt \right) f(x) dx$$

c) Montrer, à l'aide d'une intégration par parties :

$$\mathbb{E}(B_n) = n \int_0^\alpha x (1 - F(x)) g_{n-1}(x) dx$$

14. Enchère au second prix.

On suppose que le vendeur organise une enchère au second prix, et que les acheteurs adoptent la stratégie dominante de la partie III-2 : chacun mise autant que sa valeur privée.

On note B'_n la variable aléatoire donnant le revenu du vendeur dans cette enchère.

Justifier que $\mathbb{E}(B'_n) = \mathbb{E}(Z_n)$.

15. Établir : $\mathbb{E}(B_n) = \mathbb{E}(B'_n)$.

Ainsi, le revenu moyen pour le vendeur est le même pour les enchères au premier ou au second prix lorsque les acheteurs adoptent tous la stratégie optimale. Plus généralement, on peut montrer que ce revenu moyen est encore le même dans une très grande classe de formats d'enchères, ce résultat portant le nom de principe d'équivalence du revenu.