Об относительной инъективности $C_0(S)$ -модулей $C_0(S)$

Н. Т. Немеш

Аннотация: В этой статье мы обсудим некоторые необходимые и некоторые достаточные условия относительной инъективности $C_0(S)$ -модулей $C_0(S)$, где S — локально компактное хаусдорфово пространство. Также мы докажем версию теоремы Собчика для банаховых модулей. Основной результат статьи: если $C_0(S)$ -модуль $C_0(S)$ относительно инъективен, то для любой предельной точки $s \in S$ выполнено $S = \beta(S \setminus \{s\})$.

Ключевые слова: инъективный банахов модуль, $C_0(S)$ -пространство, почти компактное пространство.

Abstract: In this note we discuss some necessary and some sufficient conditions for relative injectivity of the $C_0(S)$ -module $C_0(S)$, where S is a locally compact Hausdorff space. We also give a Banach module version of Sobczyk's theorem. The main result of the paper is as follows: if $C_0(S)$ -module $C_0(S)$ is relatively injective then the equality $S = \beta(S \setminus \{s\})$ holds for any limit point $s \in S$.

Keywords: injective Banach module, $C_0(S)$ -space, almost compact space.

1 Введение

Задачи продолжения отображений играли важную роль в функциональном анализе с самого его зарождения. Первый пример успешно решенной задачи подобного рода это теорема Хана-Банаха [1, 2, 3]. В современной терминологии эта теорема утверждает, что поле комплексных чисел является инъективным объектом в категории банаховых пространств. Все известные инъективные банаховы пространства изоморфны пространству непрерывных функций на некотором компактном пространстве [4]. Этот факт дает мотивировку нашему изучению инъективности пространств непрерывных функций, но в этот раз мы рассматриваем их как банаховы модули.

2 Предварительные сведения

Прежде чем мы перейдем к основной теме статьи нам нужно напомнить несколько определений и договориться об обозначениях.

Пусть M — подмножество множества N, тогда χ_M обозначает индикаторную функцию M. Если $f: N \to L$ — произвольная функция, то $f|_M$ обозначает ее ограничение на M.

Пусть S — хаусдорфово топологическое пространство. Пространство S называется экстремально несвязным, если замыкание любого открытого множества в S открыто; стоуновым, если оно компактно и экстремально несвязно; псевдокомпактным, если любая непрерывная функция на S ограничена. Если S — хаусдорфово некомпактное локально компактное пространство, то через αS мы будем обозначать александровскую компактификацию S, а через βS мы будем обозначать стоун-чеховскую компактификацию S. Стоун-чеховский нарост $\beta S \setminus S$ мы будем обозначать через S^* . Хаусдорфово некомпактное топологическое пространство S называется почти компактным, если $\alpha S = \beta S$. Типичный пример почти компактного

пространства это $[0, \omega_1)$, где ω_1 — первый несчетный ординал [6, глава 1.3]. Больше об экстремально несвязных, псевдокомпактных и почти компактных пространствах можно найти в [5, раздел 6.2], [5, раздел 3.10] и [6, глава 1.3] соответственно.

Для заданного некомпактного локально компактного хаусдорфова пространства S можно рассмотреть базу фильтра \mathcal{B}_S , состоящую из дополнений компактных подмножеств S. Фильтр \mathcal{F}_S , порожденный \mathcal{B}_S , называется фильтром Фреше на S. Теперь мы можем определить несколько функциональных пространств на S. Через C(S) мы обозначим пространство непрерывных функций на S. Это пространство нормируемо, если S компактно. Через $C_b(S)$ мы обозначим банахово пространство непрерывных ограниченных функций на S. Символ $C_l(S)$ будет обозначать пространство непрерывных функций сходящихся по фильтру \mathcal{F}_S к конечному пределу. Через $C_0(S)$ мы обозначим замкнутое подпространство $C_l(S)$, состоящее из функций, сходящихся по \mathcal{F}_S к нулю (эти функции также называются исчезающими на бесконечности). Если S компактно, то все вышеперечисленные функциональные пространства совпадают с C(S).

Пусть A — банахова алгебра. Мы будем рассматривать только правые банаховы модули над A с сжимающим билинейным оператором внешнего умножения $\cdot: X \times A \to X$. Пусть X и Y — два правых банаховых A-модуля, тогда отображение $\phi: X \to Y$ называется A-морфизмом, если оно непрерывно и является морфизмом A-модулей. Правые банаховы A-модули и A-морфизмы образуют категорию, которую мы будем обозначать $\mathbf{mod} - A$.

Понятие инъективности в $\mathbf{mod} - A$ может быть определено несколькими способами. Пусть $\xi: X \to Y - A$ -морфизм. Он называется относительно допустимым, если $\eta \circ \xi = 1_X$ для некоторого ограниченного линейного оператора $\eta: Y \to X$; топологически допустимым, если ξ является линейным гомеоморфизмом на свой образ; метрически допустимым, если ξ изометричен. Банахов A-модуль J называется относительно инъективным (соотв. топологически инъективным, соотв. метрически инъективным) если для любого относительно (соотв. топологически, соотв. метрически) допустимого A-морфизма $\xi: X \to Y$ и любого A-морфизма $\phi: X \to J$ существует непрерывный (соотв. непрерывный, соотв. непрерывный с такой же нормой, как ϕ) морфизм A-модулей $\psi: Y \to J$, делающий диаграмму

коммутативной.

Если $A = \{0\}$, то категория $\mathbf{mod} - A$ превращается в обычную категорию банаховых пространств. В этом случае все банаховы пространства относительно инъективны. Что касается топологически и метрически инъективных банаховых пространств, то в стандартной литературе они называются \mathcal{P}_{λ} -пространствами и \mathcal{P}_{1} -пространствами соответственно. До сих пор не найдено простого описания \mathcal{P}_{λ} -пространств [8, стр. vi], но для \mathcal{P}_{1} -пространств вопрос закрыт. Всякое \mathcal{P}_{1} -пространство изометрически изоморфно C(S)-пространству, где S — стоуново пространство [9].

3 Необходимые и достаточные условия инъективности

В этом параграфе мы обсудим необходимые и достаточные условия относительной инъективности $C_0(S)$ -модулей $C_0(S)$, где S — локально компактное хаусдорфово пространство. Мы начнем с очень ограничительного достаточного условия.

Предложение 3.1. Пусть S — стоуново пространство. Тогда C(S)-моудль C(S) относительно инъективен.

Доказательство. Обозначим A = C(S). Поскольку S — стоуново пространство, то A является AW^* -алгеброй [10, глава 1, параграф 7]. В [11, теорема 2] было показано, что любая AW^* -алгебра метрически инъективна, как бимодуль над собой. Внимательное изучение доказательства этой теоремы показывает, что те же самые рассуждения верны и для правого A-модуля A. Осталось заметить, что всякий метрически инъективный модуль относительно инъективен.

Чтобы дать достаточно обременительное необходимое условие относительной инъективности C(S)-модуля C(S), мы начнем со специального случая.

Предложение 3.2. Пусть S — некомпактное локально компактное хаусдорфово пространство. Предположим, что $C(\alpha S)$ -модуль $C(\alpha S)$ относительно инъективен. Тогда S — почти компактное пространство.

Доказательство. Очевидно, банаховы алгебры $C(\alpha S)$ и $C_l(S)$ изометрически изоморфны, поэтому $C_l(S)$ -модуль $C_l(S)$ относительно инъективен. Заметим, что $C_0(S)$ это двусторонний идеал в $C_l(S)$, состоящий из функций, исчезающих на бесконечности. Этот идеал дополняем посредством проекции $P: C_l(S) \to C_0(S): x \mapsto x - (\lim_{\mathcal{F}_S} x(s))\chi_S$. Рассмотрим изометрическое вложение $\xi: C_0(S) \to C_l(S): x \mapsto x$, которое является $C_l(S)$ -морфизмом. Так как $P \circ \xi = 1_{C_0(S)}$, то ξ относительно допустим.

Зафиксируем $f \in C_b(S)$ и рассмотрим $C_l(S)$ -морфизм $\phi: C_0(S) \to C_l(S): x \mapsto f \cdot x$. Поскольку $C_l(S)$ — относительно инъективный $C_l(S)$ -модуль, то существует $C_l(S)$ -морфизм $\psi: C_l(S) \to C_l(S)$ такой, что $\phi = \psi \circ \xi$. В частности, для всех $x \in C_0(S)$ мы имеем $f \cdot x = \phi(x) = \psi(\xi(x)) = \psi(x) = \psi(x \cdot \chi_S) = x \cdot \psi(\chi_S)$. Рассмотрим произвольную точку $s \in S$. Так как пространство S хаусдорфово и локально компактно, то существует непрерывная функция $e \in C_0(S)$ такая, что e(s) = 1 [5, следствие 3.3.3]. Значит, $f(s) = f(s)e(s) = (f \cdot e)(s) = (e \cdot \psi(\chi_S))(s) = e(s)\psi(\chi_S)(s) = \psi(\chi_S)(s)$. Поскольку $s \in S$ произвольно $f = \psi(\chi_S)$. По построению $f \in C_l(S)$, поэтому $f \in C_l(S)$. Так как функция $f \in C_l(S)$ была выбрана произвольно, то $f \in C_l(S)$. Это возможно только, если $f \in C_l(S)$.

Вспомним, что в категории банаховых пространств $C_b(S)$ изометрически изоморфно $C(\beta S)$ и $C_l(S)$ изометрически изоморфно $C(\alpha S)$. Отсюда мы заключаем, что банаховы пространства $C(\beta S)$ и $C(\alpha S)$ изометрически изоморфны. По теореме Банаха-Стоуна [12, теорема 83] пространства αS и βS гомеоморфны. Следовательно, S почти компактно.

Настало время определить еще одно понятие компактности.

Определение 3.3. Компактное хаусдорфово пространство S называется равномерно компактным, если для каждой предельной точки $s \in S$ пространство $S \setminus \{s\}$ почти компактно.

Другими словами компактное хаусдорфово пространство S равномерно компактно если для каждой предельной точки $s \in S$ выполнено $S = \beta(S \setminus \{s\})$.

Предложение 3.4. Стоуновы пространства равномерно компактны.

Доказательство. Пусть S — стоуново пространство и $s \in S$ его предельная точка. Обозначим $S_{\circ} = S \setminus \{s\}$. Так как пространство S компактно и S_{\circ} его открытое подмножество, то S_{\circ} локально компактно. Поскольку s — предельная точка в S, то пространство S_{\circ} некомпактно и $\alpha S_{\circ} = S$. Рассмотрим два функционально отделимых множества $A, B \subset S_{\circ}$. По

определению это значит, что существует непрерывная функция $f: S_{\circ} \to [0,1]$ такая, что $f(A) = \{0\}$ и $f(B) = \{1\}$. Рассмотрим непересекающиеся множества $U = f^{-1}([0,1/3)) \subset S_{\circ}$ и $V = f^{-1}((1/2,1]) \subset S_{\circ}$. Очевидно, U и V открыты в S. Так как S экстремально несвязно, то U и V имеют непересекающиеся замыкания в S. Так как $A \subset U$, $B \subset V$, то множества A и B так же имеют непересекающиеся замыкания в S. По теореме [5, теорема [5,] мы получаем, что $S_{\circ} = \alpha S_{\circ} = S$.

Следствие 3.5. Метризуемое пространство равномерно компактно тогда и только тогда, когда оно конечно.

Доказательство. Пусть S — метризуемое пространство с топологией индуцированной метрикой d. Предположим, что S равномерно компактно. Допустим, что S имеет предельную точку $s \in S$. Тогда пространство $S_{\circ} = S \setminus \{s\}$ почти компактно и как следствие псевдокомпактно [6, предложение 1.3.10]. Рассмотрим непрерывную функцию $f: S_{\circ} \to \mathbb{R}: x \mapsto d(x,s)^{-1}$. Эта функция неограниченна потому, что $s \in S$ передельная точка. Таким образом, S_{\circ} не псевдокомпактно. Противоречие, значит S — компактное метризуемое пространство без предельных точек, т.е. S конечно.

Обратно, если пространство S конечно, то оно по тривиальным причинам равномерно компактно. \square

Следующий пример принадлежит К.П. Харту.

Предложение 3.6. Тихоновское произведение несчетного семейства компактных хаусдорфовых пространств, состоящих из более чем одной точки, равномерно компактно.

Доказательство. Пусть $S = (S_{\lambda})_{\lambda \in \Lambda}$ — семейство нетривиальных компактных хаусдорфовых пространств. По теореме Тихонова их произведение S компактно [5, теорема 3.2.4]. Пусть $s \in S$ — предельная точка в S. Поскольку пространства S_{λ} состоят из более чем одной точки для всех $\lambda \in \Lambda$, то существует точка $s' \in S$ такая, что $s_{\lambda} \neq s'_{\lambda}$ для всех $\lambda \in \Lambda$. Пусть $\Sigma(s')$ — Σ -произведение S в точке s', то есть $\Sigma(s')$ состоит из всех точек S, отличающихся от s' в не более чем счетном числе координат. Из упражнения [5, упражнение S за S следует, что $S = \beta(\Sigma(s'))$. Так как S следует, что $S = \beta(\Sigma(s'))$ то по следствию S следствие S произвольная предельная точка, то S равномерно компактно.

В некоторых случаях свойство равномерной компактности зависит от выбранных аксиом теории множеств. Обозначим через ZFC стандартную теорию множеств Цермело-Френкеля с добавленной аксиомой выбора. Через CH_n мы обозначим аксиому о том, что мощность континуума равняется n-му несчетному кардиналу. Наконец, MA будет обозначать аксиому Мартина (см. [13]). С одной стороны, \mathbb{N}^* не равномерно компактно в ZFC + CH_1 [14]. С другой стороны, утверждение, что \mathbb{N}^* равномерно компактно совместно с ZFC + MA + CH_2 [15].

Мы готовы сформулировать основной результат статьи.

Теорема 3.7. Пусть S — локально компактное хаусдорфово пространство. Если $C_0(S)$ -модуль $C_0(S)$ относительно инъективен, то S равномерно компактно.

Доказательство. Так как $C_0(S)$ -модуль $C_0(S)$ относительно инъективен, то из [16, следствие 2.2.8 (i)] мы знаем, что $C_0(S)$ обладает левой единицей. Таким образом, $\chi_S \in C_0(S)$, значит S компактно. Пусть s — предельная точка в S и $S_\circ = S \setminus \{s\}$. Так как $\alpha S_\circ = S$, мы видим,

что $C(\alpha S_{\circ})$ -модуль $C(\alpha S_{\circ})$ относительно инъективен. По предложению 3.2 пространство S_{\circ} почти компактно. Так как предельная точка $s \in S$ выбрана произвольно, то пространство S равномерно компактно.

Следствие 3.8. Пусть S- компактное метризуемое пространство. Если C(S)-модуль C(S) относительно инъективен, то S конечно.

Доказательство. Результат непосредственно следует из теоремы 3.7 и следствия 3.5.

На данный момент все известные примеры локально компактных пространств S, для которых $C_0(S)$ -модуль $C_0(S)$ относительно инъективен, являются экстремально несвязными. Было бы интересно построить примеры, не являющиеся экстремально несвязными, если таковые вообще есть. Первый кандидат — это пространство \mathbb{N}^* . Оно не является экстремально несвязным [5, пример 6.2.31], но оно равномерно компактно при некоторых теоретикомножественных предположениях. Однако, следует помнить, что пространство $C(\mathbb{N}^*)$ не является инъективным банаховым пространством [17, следствие 2]. Благодаря предложению 3.6, есть еще один возможный кандидат — это несчетная степень дискретного пространства $\{0,1\}$.

4 Теорема Собчика для банаховых модулей

В классической теории все бесконечномерные инъективные банаховы пространства несепарабельны, поскольку содержат копию $\ell_{\infty}(\mathbb{N})$ [18, следствие 1.1.4]. Собчик показал, что пространство c_0 инъективно, но в категории сепарабельных банаховых пространств [19, теорема 5]. Позже Зиппин доказал [20], что все пространства инъективные в категории сепарабельных банаховых пространств изоморфны c_0 . Мы докажем, что $\ell_{\infty}(\Lambda)$ -модуль $c_0(\Lambda)$ относительно инъективен для любого множества Λ . Заметим, что по теореме 3.7 банахов $c_0(\Lambda)$ -модуль $c_0(\Lambda)$ не является относительно инъективным для бесконечного Λ .

Теперь нам нужно напомнить несколько понятий из теории банаховых пространств. Ограниченный линейный оператор T называется *слабо компактным*, если он переводит ограниченные множества в относительно слабо компактные. Ограниченный линейный оператор T называется *вполне непрерывным*, если он переводит слабо сходящиеся последовательности в последовательности, сходящиеся по норме.

Банахово пространство E называется пространством Гротендика, если каждая слабо* сходящаяся последовательность в E^* сходится слабо. Очевидно все рефлексивные пространства суть пространства Гротендика. Банахово пространство E называется слабо компактное множество $K \subset E$, линейная оболочка которого плотна в E. Типичные примеры слабо компактно порожденных пространств — это рефлексивные и сепарабельные пространства [21, параграф 13.1]. Наконец, мы будем говорить, что банахово пространство E имеет свойство Данфорда-Петтиса, если для любой слабо сходящейся к нулю последовательности $(f_n)_{n\in\mathbb{N}}\subset E^*$ и любой слабо сходящейся к нулю последовательности $(x_n)_{n\in\mathbb{N}}\subset E$ выполнено $\lim_{n\to\infty} f_n(x_n)=0$. Для любого компактного пространства S банахово пространство C(S) имеет свойство Данфорда-Петтиса [23].

Предложение 4.1. Любой ограниченный линейный оператор $T: \ell_{\infty}(\Lambda) \to c_0(\Lambda)$ слабо компактен и вполне непрерывен.

Доказательство. Заметим, что пространство $\ell_{\infty}(\Lambda)$ изометрически изоморфно $C(\beta\Lambda)$. Так как $\beta\Lambda$ является стоуновым пространством, то $\ell_{\infty}(\Lambda)$ — пространство Гротендика [22, теорема

9, стр. 168]. Пространство $c_0(\Lambda)$ слабо компактно порождено [21, параграф 13.1 пример (iii)]. Тогда оператор T слабо компактен [21, пример 13.33]. Снова, поскольку $\ell_{\infty}(\Lambda)$ есть C(S)-пространство для $S = \beta \Lambda$, то $\ell_{\infty}(\Lambda)$ обладает свойством Данфорда-Петтиса [21, теорема 13.43]. Таким образом, всякий слабо компактный оператор с областью определения $\ell_{\infty}(\Lambda)$ вполне непрерывен [21, предложение 13.42].

Предложение 4.2. Пусть Λ — бесконечное множество, $x:\Lambda\to\mathbb{C}$ — функция такая, что $\lim_{n\to\infty}x(\lambda_n)=0$ для всех последовательностей $(\lambda_n)_{n\in\mathbb{N}}$ различных элементов в Λ . Тогда $\lim_{\mathcal{F}_{\Lambda}}x(\lambda)=0$.

Доказательство. Допустим, это не так. Тогда найдется $\epsilon > 0$ такое, что для любого $L \in \mathcal{F}_{\Lambda}$ существует $\lambda \in L$ со свойством $|x(\lambda)| > \epsilon$. По индукции мы можем построить последовательность $(\lambda_k)_{k \in \mathbb{N}}$ различных элементов в Λ такую, что $|x(\lambda_n)| \ge \epsilon$. Следовательно, $\lim_{k \to \infty} x(\lambda_k) \ne 0$. Противоречие.

Предложение 4.3. Пусть Λ — бесконечное множество. Тогда для любого ограниченного линейного оператора $T: \ell_{\infty}(\Lambda) \to c_0(\Lambda)$ выполнено $\lim_{\mathcal{F}_{\Lambda}} T(\chi_{\{\lambda\}})(\lambda) = 0$.

Доказательство. Рассмотрим произвольную последовательность $(\lambda_n)_{n\in\mathbb{N}}$ различных элементов Λ . Тогда $(\chi_{\{\lambda_n\}})_{n\in\mathbb{N}}$ слабо сходится к 0 в $c_0(\Lambda)$, и тем более в $\ell_\infty(\Lambda)$. По предложению 4.1 оператор T вполне непрерывен, поэтому $T(\chi_{\{\lambda_n\}})$ сходится к 0 по норме. В частности, $\lim_{n\to\infty} T(\chi_{\{\lambda_n\}})(\lambda_n) = 0$. Теперь из предложения 4.2 мы получаем нужное равенство.

Теорема 4.4. Для любого множества Λ правый $\ell_{\infty}(\Lambda)$ -модуль $c_0(\Lambda)$ относительно инъективен.

Доказательство. Допустим, что множество Λ бесконечно. Из [7, предложение IV.1.39] следует, что достаточно предъявить морфизм правых $\ell_{\infty}(\Lambda)$ -модулей правый обратный к ρ : $c_0(\Lambda) \to \mathcal{B}(\ell_{\infty}(\Lambda), c_0(\Lambda)) : x \mapsto (a \mapsto x \cdot a)$. Он действительно существует. Рассмотрим линейный оператор τ : $\mathcal{B}(\ell_{\infty}(\Lambda), c_0(\Lambda)) \to c_0(\Lambda) : T \mapsto (\lambda \to T(\chi_{\{\lambda\}})(\lambda))$. По предложению 4.3 он корректно определен. Легко показать, что τ — сжимающий морфизм правых $\ell_{\infty}(\Lambda)$ -модулей. Если множество Λ конечно, то оно является стоуновым пространством. Тогда $c_0(\Lambda) = \ell_{\infty}(\Lambda) = C(\Lambda)$ и по предложению 3.1 банахов $\ell_{\infty}(\Lambda)$ -модуль $c_0(\Lambda)$ относительно инъективен.

5 Финансирование

Работа выполнена при поддержке Российского фонда фундаментальных исследований (грант №19–01–00447).

Список литературы

- [1] Hahn, H., Über lineare Gleichungssysteme in linearen Räumen., J. Reine Angew. Math., 157, 214–229, 1927.
- [2] Banach, S., Sur les fonctionnelles linéaires, Stud. Math., 1(1), 211–216, 1929.
- [3] Banach, S., Sur les fonctionnelles linéaires II, Stud. Math., 1(1), 223–239, 1929.

- [4] Blasco, J.L. and Ivorra, C., On constructing injective spaces of type C(K), Indagationes Mathematicae, 9(12), 161-172, 1998.
- [5] Энгелькинг, Р., Общая топология, 1986.
- [6] Hrušák, M. and Tamariz-Mascarúa, A. and Tkachenko, M., Pseudocompact topological spaces, Springer, 2018.
- [7] Helemskii, A. Ya., The homology of Banach and topological algebras, Springer, 1989.
- [8] Avilés, A. and Sánchez, F. C. and Castillo, J. MF. and González, M. and Moreno, Y., Separably injective Banach spaces, 17–65, 2016.
- [9] *Hasumi*, M., The extension property of complex Banach spaces, Tohoku Mathematical Journal, Second Series, 10(2), 135–142, 1958.
- [10] Berberian, S. K. Baer *-rings, 195, 2010.
- [11] Takesaki, M., On the Hahn-Banach type theorem and the Jordan decomposition of module linear mapping over some operator algebras, Kodai Mathematical Seminar Reports, 12, 1–10, 1960.
- [12] Stone, M. H., Applications of the theory of Boolean rings to general topology, Transactions of the American Mathematical Society, 41(3), 375–481, 1937.
- [13] Kunen, K., Set theory: an introduction to independence proofs, Elsevier, 2014.
- [14] Fine, N. J. and Gillman, L. Extension of continuous functions in βN Bull. Amer. Math. Soc., 66, 376–381, 1960.
- [15] van Douwen, E. and Kunen, K. and van Mill, J. There can be C^* -embedded dense proper subspaces in $\beta\omega \omega$, Proc. Amer. Math. Soc., 105(2), 462—470, 1989.
- [16] Ramsden, P., Homological properties of semigroup algebras, The University of Leeds, 2009.
- [17] Amir, D., Projections onto continuous function spaces, Proceedings of the American Mathematical Society, 15(3), 396–402, 1964.
- [18] Rosenthal, H., On relatively disjoint families of measures, with some applications to Banach space theory Stud. Math., 37(1), 13–36, 1970.
- [19] Sobczyk, A., Projection of the space (m) on its subspace (c_0) , Bulletin of the American Mathematical Society, 47(12), 938-947, 1941.
- [20] Zippin, M., The separable extension problem, Israel Journal of Mathematics, 26(3–4), 372–387, 1977.
- [21] Fabian, M. and Habala, P. and Hajek, P. and Montesinos, V. and Zizler, V. Banach space theory. The basis for linear and non-linear analysis. Springer, 2011.
- [22] Grothendieck, A., Sur les applications linéaires faiblement compactes d'espaces du type C(K), Canadian Journal of Mathematics, 5, 129–173, 1953.

[23] Dunford, N. and Pettis, B. J., Linear operations on summable functions, Transactions of the American Mathematical Society, 47(3), 323–392, 1940.

Норберт Немеш, Факультет механики и математики, Московский государственный университет им. М. В. Ломоносова, Москва 119991 Россия

 $E ext{-}mail:$ nemeshnorbert@yandex.ru