

LU3EE104 : Réseaux électriques et Electronique de puissance

I. CIRCUITS ÉLECTRIQUES MONOPHASÉS

I - Circuits électriques monophasés

- 1. Rappels sur les circuits électriques
- 2. Circuits en régime alternatif sinusoïdal : grandeurs complexes et représentation de Fresnel
- 3. Puissances électriques : active, réactive, apparente
- 4. Compensation de la puissance réactive

Ouvrage de référence (parmi d'autres) : Electrotechnique et énergie électrique (ch. 1 à 4) Luc Lasne, éditions Dunod

1. Rappels sur les circuits électriques

LOI DES MAILLES, LOI DES NŒUDS, ETC

Exemples simples, pour une reprise en douceur

Dans un camping-car:

Batterie 12V 100 Ah

4 ampoules LED 12 V DC - 3 W

Teléphone 2,8 Ah

Bouilloire 120 W

- Comment connecte-t-on les charges à la source ?
- Que peut-on calculer ? (ou pas)

Exemples simples, pour une reprise en douceur

A la maison:

Secteur 230 V

Ampoules LED 230 V AC - 5,5 W

• Similitudes et différences par rapport au cas précédent ?

Lois de base

Loi des mailles :

Loi des nœuds

Comment faut-il interpréter les flèches ?

Puissance et conventions de signe

Convention générateur

$$P(t) = u(t).i(t)$$

P > 0 si P est <u>fournie</u>

(le dipôle fonctionne effectivement en générateur)

Convention récepteur

$$P(t) = u(t).i(t)$$

P > 0 si P est <u>reçue</u>

(le dipôle fonctionne effectivement en récepteur)

Récepteurs électriques linéaires

Résistance : $u(t) = R \cdot i(t)$ (loi d'Ohm)

Inductance : $u(t) = L \cdot \frac{d i(t)}{d t}$

Condensateur : $i(t) = C \cdot \frac{du(t)}{dt}$

Attention : quelle est la convention de signe utilisée dans ces relations ?

Régime continu:

Tension et courant sont constants :

Résistance : $u(t) = R \cdot i(t)$ (loi d'Ohm)

$$P(t) = R.i^2$$

Inductance :
$$u(t) = L \cdot \frac{d i(t)}{d t} = 0$$

Inductance = court-circuit

Condensateur :
$$i(t) = C \cdot \frac{du(t)}{dt}$$

Condensateur = circuit ouvert

Régime continu:

Associations de résistances:

Série Parallèle
$$R_{eq}=R_1+R_2 \qquad \qquad \frac{1}{R_{eq}}=\frac{1}{R_1}+\frac{1}{R_2}$$

Association générateur / récepteur :

Exemple:

E = 100 V et Rs = 10 Ω Calculer l'intensité et la puissance dissipée dans R en fonction de R

2. Circuits en régime sinusoïdal

GRANDEURS COMPLEXES
ET REPRÉSENTATION DE FRESNEL

Régimes variables

Transitoire:

• Evolution suite à la modification brutale d'un paramètre (non répétitif)

Périodique :

- Période T
- Fréquence $f = \frac{1}{T}$, pulsation $\omega = 2\pi f$
- Valeur instantanée s(t)
- Valeur moyenne (s)
- Valeur efficace $S = \sqrt{\langle s^2 \rangle}$

Régime sinusoïdal

Convention en génie électrique

$$u(t) = \sqrt{2}U \cdot \sin(\omega t)$$

$$i(t) = \sqrt{2} I. \sin(\omega t - \varphi)$$

Phase à l'origine : $-\varphi$

 φ : déphasage de u par rapport à i

Régime sinusoidal

Notation complexe et diagramme de Fresnel

$$\underline{\underline{U}} = \underline{U} \cdot e^{j} \cdot \begin{bmatrix} 0 \\ \underline{I} = \underline{I} \cdot e^{j} \cdot (-\varphi) \end{bmatrix}$$

Valeur efficace

Phase à l'origine

Déphasage de u par rapport à i:

$$(\underline{I},\underline{U}) = Arg(\underline{U}) - Arg(\underline{I}) = \varphi$$

Régime sinusoidal

• A retenir:

- φ est orienté de <u>l</u> vers <u>U</u>
- φ est une grandeur <u>algébrique</u>

Impédance complexe

Par définition:

$$\underline{Z} = \frac{\underline{U}}{\underline{I}} = \frac{U}{I} \cdot e^{j\varphi}$$

$$\underline{Z} = Z \cdot e^{j\varphi} = R + j \cdot X$$

R et X : résistance et réactance série

$$\varphi = \operatorname{atan}\left(\frac{X}{R}\right)$$
 du signe de X

Récepteurs électriques linéaires

complexes

Re

Résistance : $\underline{U} = R \cdot \underline{I}$

Inductance : $\underline{U} = jL\omega \cdot \underline{I}$

Condensateur : $\underline{U} = \frac{1}{iC\omega} \cdot \underline{I}$

Dipôle quelconque

Lois de base

Loi des mailles:

Loi des nœuds

Associations:

Exercice d'application

Calculer les courants complexes dans chaque branche du circuit, puis le courant total débité par la source.

Faire la représentation de Fresnel associée.

A faire, dès ce soir

- TD 0, calculs sur les circuits monophasés
- Énoncé et corrigé disponibles sous moodle
- Indispensable pour le cours de demain

3. Puissances en régime sinusoïdal

NOTIONS DE PUISSANCE ACTIVE, PUISSANCE APPARENTE ET PUISSANCE RÉACTIVE

Puissance instantanée :

$$p(t) = u(t).i(t)$$

$$p(t) = \sqrt{2} \ U.\sin(\omega t).\sqrt{2} \ I.\sin(\omega t - \varphi)$$

$$p(t) = UI.\cos(\varphi) - UI\cos(2\omega t - \varphi)$$
 Puissance moyenne Puissance fluctuante (échangée avec l'extérieur) (moyenne nulle)

Puissance instantanée :

$$p(t) = u(t).i(t)$$

$$p(t) = \sqrt{2} U.\sin(\omega t).\sqrt{2} I.\sin(\omega t - \varphi)$$

$$p(t) = UI.\cos(\varphi) - UI\cos(2\omega t - \varphi)$$

Puissance moyenne (échangée avec l'extérieur)

Puissance fluctuante (moyenne nulle)

Puissance <u>moyenne</u> reçue :

- Dans une résistance : R.I²
- Dans une inductance : 0
- Dans une capacité : 0

Energie alternativement reçue et

restituée par le dipôle

Différents types de puissance:

Puissance apparente : S = U.I [VA]

Puissance *active* : $P = U.I.\cos \varphi$ [W]

Puissance *réactive* : $Q = U.I.\sin \varphi$ [*VAR*]

Puissance apparente complexe :

$$\bullet \underline{S} = \underline{U} . \underline{I}^* = P + jQ$$

∘ <u>I</u>* : conjugué de <u>I</u>

Exercices d'application

Un moteur à induction absorbe une puissance apparente de 400 kVA à un facteur de puissance de 0,8.

- Calculer les puissances active et réactive absorbées par la machine
- A quoi correspondent physiquement ces puissances ?

Une source monophasée de 400 V alimente une charge de 16 kW ayant un FP de 0,8. Calculer le courant dans la ligne.

Une source monophasée de 400 V alimente une charge de 16 kW ayant un FP de 0,5. Calculer le courant dans la ligne.

Théorème de Boucherot

Situation : alimentation de plusieurs charges

Puissances de la charge équivalente :

$$P = P_1 + P_2 + ... + P_n$$

$$Q = Q_1 + Q_2 + ... + Q_n$$

$$\underline{S} = \underline{S}_1 + \underline{S}_2 + ... + \underline{S}_n$$

MAIS attention $S \neq S_1 + S_2 + ... + S_n$

Calcul de I et FP:

- $\underline{S} = P + j.Q$
- S = V.I, d'où I=S/V
- FP = P/S

Théorème de Boucherot

Situation : alimentation de plusieurs charges

Exercices d'application

Une ligne alimente les charges suivantes :

- Une résistance de 120 kW
- Une bobine de 90 kVAR
- Un condensateur de 40 kVAR

Calculer la puissance apparente de l'ensemble de ces charges, ainsi que le facteur de puissance.

Tracer le triangle des puissances.

4. Compensation de la puissance réactive

Améliorer le facteur de puissance ?

Une source monophasée de 400 V alimente une charge de 16 kW ayant un FP de 0,8 AR.

- \circ Calculer le courant dans la ligne, puis tracer \underline{U} et \underline{I}
- Calculer la puissance réactive et tracer \underline{S} .
- Quel élément faudrait-il mettre en parallèle avec la charge pour obtenir un facteur de puissance unitaire ?
 Que vaut alors le courant débité par la source?
- Tracer le diagramme de Fresnel associé à la charge compensée.

Compensation de la puissance réactive

Position du problème :

$$P = \cos \varphi . S \implies S = \frac{P}{\cos \varphi}$$

Pour une puissance active consommée P, la puissance apparente S est d'autant plus grande que le facteur de puissance cos φ est faible.

A U imposé:
$$I = \frac{P}{U \cdot \cos \varphi}$$

EDF applique des pénalités aux clients dont l'installation a un facteur de puissance inférieur à 0,8

Compensation de la puissance réactive

Position du problème :

$$P = \cos \varphi . S \implies S = \frac{P}{\cos \varphi} = U.I$$

Pour une puissance active consommée P, la puissance apparente S est d'autant plus grande que le facteur de puissance cos φ est faible.

A U imposé:
$$I = \frac{S}{U} = \frac{P}{U \cdot \cos \varphi}$$

Solution:

On rajoute une réactance en parallèle, de puissance réactive Q_X de signe opposé à Q.

On peut ainsi diminuer la puissance apparente sans modifier la puissance active.

$$S' = \sqrt{P^2 + (Q + Q_X)^2} < S$$

Compensation de la puissance réactive

Position du problème :

Cas habituel : charge inductive

Solution:

Compensation par un condensateur

Installation compensée : on impose $\cos \varphi'$ sans changer P

On a alors:
$$S' = \frac{P}{\cos \varphi'}$$
 et donc $Q' = \sin \varphi' \cdot S = \tan \varphi' \cdot P$

$$Q' = Q + Q_X$$
 donc $Q_X = Q' - Q$ (négatif car $Q' < Q$)

Par ailleurs :
$$Q_X = -C\omega U^2$$
 donc $C = -\frac{Q_X}{\omega V^2}$

Exemple d'application

Un moteur de puissance P=4 kW, de facteur de puissance 0,7 est alimenté sous 120 V.

- Calculer le courant absorbé par le moteur.
- Calculer la valeur de la capacité à mettre en parallèle avec le moteur pour relever le facteur de puissance à une valeur de 0,8.
- Calculer le courant absorbé par l'ensemble « moteur+condensateur ». Conclusion ?
- Représenter les différents courants de l'installation sur un diagramme de Fresnel.