Manchas de pele

 $Nome\ do\ arquivo:$ manchas.c, manchas.cpp, manchas.pas, manchas.java, manchas.js, manchas_py2.py ou manchas_py3.py

O laboratório de dermatologia da Linearlândia está implementando um software para contar o número de manchas presentes numa imagem digital de N por M pixels. Cada pixel na imagem é preto ou branco e dois pixels pretos distintos A e B pertencem à mesma mancha se e somente se: existir uma sequência de pixels $[P_1, P_2, \ldots, P_k]$, onde $k \geq 2$, $A = P_1$, $B = P_k$ e para todo $1 \leq i < k$, P_i é ortogonalmente adjacente a P_{i+1} (P_i imediatamente acima, abaixo, à esquerda ou à direita de P_{i+1}).

A figura acima, para N=8 e M=9, ilustra uma imagem digital onde existem oito manchas. Dada a imagem, seu programa deve contar o número de manchas presentes.

Entrada

A primeira linha da entrada contém dois inteiros N e M, representando, respectivamente, o número de linhas e colunas da imagem. As N linhas seguintes contêm, cada uma, M inteiros P representando os pixels da imagem.

Saída

Seu programa deve imprimir uma linha contendo um inteiro, o número de manchas na imagem.

Restrições

- $1 \le N \le 1000$
- $1 \le M \le 1000$
- \bullet O valor de P é 1, representando um pixel preto, ou 0, representando um pixel branco.

Informações sobre a pontuação

- Para um conjunto de casos de testes valendo 10 pontos, N=M=2.
- Para um conjunto de casos de testes valendo outros 20 pontos, N=1.
- Para um conjunto de casos de testes valendo outros 20 pontos, $N, M \leq 100$.
- Para um conjunto de casos de testes valendo outros 50 pontos, nenhuma restrição adicional (Atenção, para essa parcial, não é recomendada uma implementação recursiva!)

Exemplo de entrada 1	Exemplo de saída 1	
8 9	8	
1 0 0 0 0 0 1 1 1		
1 1 0 1 1 1 0 1 1		
1 0 0 0 0 1 0 1 0		
0 0 1 0 0 1 1 1 0		
0 1 1 0 0 0 0 1 0		
0 1 0 0 1 1 0 0 0		
0 0 0 1 0 1 0 0 1		
1 1 1 0 0 0 0 1 0		

Exemplo de entrada 2	Exemplo de saída 2
1 1	0
0	

Exemplo de entrada 3	Exemplo de saída 3
1 10 0 0 1 0 1 1 1 0 1 0	3