Análisis de presencias con procesos de puntos

Generalidades

Gerardo Martín 2022-06-29 Introducción

¿Qué es un patrón de puntos?

· Base de datos de cosas o eventos en espacio

Figure 1: Patrones de puntos de densidad variable. A la izquierda células de mucosa gástrica en corte histológico. A la derecha, cúmulos de galaxias (Baddeley et al. 2016).

· Densidad \rightarrow conteos/unidad espacial

Tipos de puntos

Puntos pueden representar tipos de objetos

Figure 2: Ubicaciones de dos especie de árbol, abeto y roble, en la misma parcela.

Tipos de puntos

Puntos pueden representar mediciones

Figure 3: Ubicaciones de árboles con mediciones de diámetro.

4

Tipos de puntos

Puntos pueden estar definidos en 1-4 dimensiones

Figure 4: Ejemplos de procesos de puntos en 1 y 3 dimensiones

Covariables

Los procesos de puntos pueden estar definidos en relación a covariables.

Figure 5: Datos de Beilschmiedia pendula sobre un modelo digital de elevación.

El modelado de procesos de puntos

- · Estimar variación de densidad
- · Densidad = No. puntos / unidad de área

Figure 6: Se analiza un patrón para predecir variación contínua.

Procesos de puntos en ecología

- \cdot Datos más comunes ightarrow sólo presencia
- · Colecciones de patrones de puntos

Análisis de procesos de puntos

Es un análisis regresión

- \cdot Medir relación entre x y y que son contínuas
 - \cdot ¿Cómo afecta x al promedio de y?
- $\cdot \ x$ produce a y
 - · x variable independiente
 - $\cdot \ y$ variable dependiente

Ejemplo - Datos contínuos

У	X
-1.2708822	-0.5604756
0.0267062	-0.2301775
1.3120164	1.5587083
-0.2770342	0.0705084
-0.8223308	0.1292877
1.6700373	1.7150650

Ejemplo - Gráfica de dispersión

Ejemplo - Regresión lineal

· Regresión:

$$y(x) = \alpha + \beta_1 x_1 + \dots + \beta_n x_n + \varepsilon$$

- x son las variables ambientales
 - $\cdot \ y$ es la intensidad por unidad de área
 - $\cdot \ \alpha, \beta_i$ son los efectos de x sobre y
 - \cdot ε es el error, varianza de y que x no explica

Ejemplo - La línea de regresión

Ejemplo - La ecuación

$$\cdot y = \alpha + \beta \times x$$

$$\cdot \alpha = 0$$

$$\cdot \beta = 1$$

Regresión consiste en estimar todos los coeficientes para las variables \boldsymbol{x} .

Diferencias entre regresión y PPs

- · Regresión lineal simple
 - $\cdot -\infty > y < \infty, y \in \mathbb{R}$
 - $\cdot \ y pprox \mathcal{N}$ (distribución Normal)
- Procesos de puntos
 - $y > 0, y \in \mathbb{Z}$
 - \cdot $y pprox \mathcal{P}$ (distribución Poisson)

Diferencias entre regresión y PPs

Para que y > 0

· Regresión lineal

$$\cdot \ y(x) = \alpha + \beta_1 x_1 + \dots$$

· Regresión log-lineal

$$\cdot \log y(x) = \alpha + \beta_1 x_1 + \dots$$

Relación con métodos populares

- Equivalentes a MaxEnt
 - · Sin Regularización
 - · Features lineal y cuadrática

Methods in Ecology and Evolution

Methods in Ecology and Evolution 2015, 6, 366-379

doi: 10.1111/2041-210X.12352

SPECIAL FEATURE – REVIEW NEW OPPORTUNITIES AT THE IN

NEW OPPORTUNITIES AT THE INTERFACE BETWEEN ECOLOGY AND STATISTICS

Point process models for presence-only analysis

Ian W. Renner¹*, Jane Elith², Adrian Baddeley³, William Fithian⁴, Trevor Hastie⁴, Steven J. Phillips⁵, Gordana Popovic⁶ and David I. Warton⁶

¹School of Mathematical and Physical Sciences, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia; ²School of BioSciences, The University of Melbourne, Parkville, Vic. 3010, Australia; ³Department of Mathematics & Statistics, Curtin University, GPO Box U1987, Perth, WA 6845, Australia; ⁴Department of Statistics, Stanford University, 390 Serra Mall, Stanford, CA 94303, USA; ⁵2201 4th Street, Boulder, CO 80304, USA; and ⁶School of Mathematics and Statistics and Evolution & Ecology Research Centre, The University of New South Wales, Sydney, NSW 2052, Australia

Relación con otros métodos

- · Regresión log-lineal
 - · Logística
 - Maxent
- Elipsoides (Martín et al. 2022)
 - · Centroide existe en espacio
 - · Sin colinealidad

Relación con otros métodos

Condiciones para equivalencia entre MPPs y envolturas

Discrepancies between point process models and environmental envelopes identify the niche centroid – geography configuration

Gerardo Martín ^{1,*}, Carlos Yáñez-Arenas ², Xavier Chiappa-Carrara ^{1,2}

¹ Departamento de Sistemas y Procesos Naturales, Escuela Nacional de Estudios Superiores unidad Mérida, Universidad Nacional Autónoma de México, Ucú, Yucatán

² Laboratorio de Ecología Geográfica, Unidad de Conservación de la Biodiversidad, UMDI-Sisal, Facultad de Ciencias, Universidad Nacional Autónoma de México, Sierra Papacal, Yucatán 97302, México

Ventajas y Desventajas

Ventajas

- · Herramienta ad-hoc para puntos
- · Transparencia
- Herramientas exploratorias \rightarrow identificar variables
- · Estimación de efectos estadísticos
- Tipos de puntos → interacciones biológicas
- Extensiones para modelar estructura espacial (maximizar utilidad de datos)
- · Herramientas diagnósticas

Desventajas

- Formateo
- · Difícil automatizar
- · Más programación
- · Selección de modelo laboriosa
- · Optimización puede ser difícil
- · Poco práctico para muchas especies

Bibliografía básica

