

NHẬP MÔN TRÍ TUỆ NHÂN TẠO

ThS Nguyễn Thị Trang CNTT1

Học viện Công nghệ Bưu chính Viễn thông

Email: trangnguyen.hust117@gmail.com

Nhập môn trí tuệ nhân tạo

LOGIC MỆNH ĐỀ

Nội dung

- □ Vấn đề biểu diễn tri thức và suy diễn
- □ Logic mệnh đề
- □ Suy diễn với logic mệnh đề

Sự cần thiết của tri thức và suy diễn

- Con người sống trong môi trường
 - Nhận thức được thế giới nhờ các giác quan(tai, mắt,...)
 - Thông tin thu nhập sẽ được tích luỹ thành tri thức
 - Sử dụng tri thức tích luỹ được và nhờ khả năng lập luận, suy diễn từ đó đưa ra hành động hợp lý.

Sự cần thiết của tri thức và suy diễn

- □ Một hệ thống thông minh cần phải có khả năng sử dụng tri thức và suy diễn.
 - Tính mềm dẻo cao: Việc kết hợp tri thức và suy diễn cho phép tạo tri thức mới
 - Cho phép hệ thống hoạt động trong trường hợp thông tin không đầy đủ: Kết hợp tri thức bổ sung cho thông tin quan sát được
 - Thuận lợi cho việc xây dựng hệ thống:
 - □ Chỉ cần thay đổi cơ sở tri thức, giữ nguyên thủ tục suy diễn.

Ngôn ngữ biểu diễn tri thức

Ngôn ngữ biểu diễn tri thức = Cú pháp + Ngữ nghĩa + Cơ chế lập luận.

- □ Cú pháp:
 - Bao gồm các kí hiệu và các quy tắc liên kết các kí hiệu (các luật cú pháp) để tạo thành các câu (công thức) trong ngôn ngữ.
- □ Ngữ nghĩa:
 - Cho phép ta xác định ý nghĩa của các câu trong một miền nào đó của thế giới thực
- □ Cơ chế lập luận:
 - Là một quá trình tính toán
 - Input: Tập các công thức (đặc tả hình thức của tri thức đã biết)
 - Output: Tập các công thức mới (đặc tả hình thức của tri thức mới)

Ngôn ngữ biểu diễn tri thức tốt

- □ Khả năng biểu diễn tốt
 - Cho phép biểu diễn mọi tri thức cần thiết của bài toán
- □ Hiệu quả
 - Cho phép biểu diễn tri thức ngắn gọn
 - Để đi tới các kết luận, thủ tục suy diễn đòi hỏi ít thời gian tính toán và ít không gian nhớ
- □ Gần với ngôn ngữ tự nhiên
 - Thuận lợi cho người sử dụng trong việc mô tả tri thức.

Nội dung

- □ Vấn đề biểu diễn tri thức suy diễn
- □ Logic mệnh đề
 - Cú pháp
 - Ngữ nghĩa
- □ Suy diễn với logic mệnh đề

Cú pháp logic mệnh đề (1)

- □ Các ký hiệu
 - Các kí hiệu chân lý(hằng logic): True (T) và False (F)
 - Các kí hiệu mệnh đề (biến mệnh đề): P, Q, ...
 - Các kết nối logic: ∧,∨, ¬, ⇒, ⇔
 - Các dấu ngoặc (và)

Cú pháp logic mệnh đề (2)

- □ Các quy tắc xây dựng công thức
 - Các kí hiệu chân lý và các biến mệnh đề là công thức
 - Nếu A và B là các công thức thì:
 - □ (*A* ∧ *B*): "A hội B" Hoặc "A và B"
 - \Box ($A \lor B$): "A tuyển B" hoặc "A hoặc B"
 - \Box ($\neg A$): "Phủ định A"
 - \Box ($A \Rightarrow B$): "A kéo theo B" Hoặc " nếu A thì B"
 - \Box ($A \Leftrightarrow B$): "A và B kéo theo nhau"

Là công thức

Cú pháp logic mệnh đề (3)

- □ Bỏ đi các dấu ngoặc không cần thiết
 - Ví dụ $((A \lor B) \land C)$ sẽ được viết là $(A \lor B) \land C$
- □ Thứ tự thực hiện các phép nối
 - \blacksquare \neg , \land , \lor , \Rightarrow , \Leftrightarrow
- □ Các câu là các kí hiệu mệnh đề được gọi là câu đơn (câu nguyên tử)
 - Ví dụ: P, Q
- □ Nếu P là kí hiệu mệnh đề thì P và $\neg P$ được gọi là literal (P là literal dương, $\neg P$ là literal âm)

Cú pháp logic mệnh đề (4)

 \square Câu phức hợp có dạng $A_1 \lor A_2 \lor \cdots \lor A_m$ trong đó A_i là các literal được gọi là câu tuyển (clause)

Ngữ nghĩa của logic mệnh đề (1)

- Mỗi kí hiệu mệnh đề có thể tương ứng với một phát biểu mệnh đề
 - P = "Paris là thủ đô của nước Pháp"
 - Q = "Hằng số Pi là số nguyên"
- □ Một phát biểu chỉ có thể đúng (True) hoặc sai (False)
 - P đúng, Q sai

Ngữ nghĩa của logic mệnh đề (2)

■ Một minh hoạ là một cách gán cho mỗi biến mệnh đề một giá trị chân lý True hoặc False

A	В	$\neg A$	$A \wedge B$	$A \lor B$	$A \Rightarrow B$	$A \Leftrightarrow B$
True	True	False	True	True	True	True
True	False	False	False	True	False	False
False	True	True	False	True	True	False
False	False	True	False	False	True	True

Ngữ nghĩa của logic mệnh đề (3)

- □ Một công thức là thoả được (satisfiable) nếu nó đúng trong một minh hoạ nào đó.
 - $\blacksquare (P \land Q) \lor \neg R$
- Một công thức không thoả được nếu nó sai trong mọi minh hoạ
 - $\blacksquare P \land \neg R$
- Một công thức là vững chắc (valid) nếu nó đúng trong mọi minh hoạ
 - $\blacksquare P \lor \neg R$

Ngữ nghĩa của logic mệnh đề (4)

- Một mô hình (model) của một công thức là một minh hoạ sao cho công thức là đúng trong minh hoạ này
 - $\{P \leftarrow False, Q \leftarrow True, R \leftarrow False\}$ (CT a đúng với miền giá trị trên)

Các công thức tương đương (1)

- □ Hai công thức A và B được gọi là tương đương nếu chúng có cùng giá trị chân lý trong mọi minh hoạ
 - Kí hiệu: $A \equiv B$
- □ Một số công thức tương đương cơ bản
 - $\blacksquare A \Rightarrow B \equiv \neg A \lor B$
 - $\blacksquare A \Leftrightarrow B \equiv (A \Rightarrow B) \land (B \Rightarrow A)$
 - $\neg (\neg A) \equiv A$
- Luật De Morgan
 - $\neg (A \lor B) \equiv \neg A \land \neg B$
 - $\neg (A \land B) \equiv \neg A \lor \neg B$

Các công thức tương đương (2)

- □ Luật giao hoán
 - $\blacksquare A \lor B \equiv B \lor A$
 - $\blacksquare A \land B \equiv B \land A$
- Luật kết hợp
 - $(A \lor B) \lor C \equiv A \lor (B \lor C)$
 - $(A \land B) \land C \equiv A \land (B \land C)$
- Luật phân phối
 - $A \wedge (B \vee C) \equiv (A \wedge B) \vee (A \wedge C)$
 - $A \lor (B \land C) \equiv (A \lor B) \land (A \lor C)$

Dạng chuẩn tắc hội (1/2)

- Một câu (mệnh đề) tuyển là tuyển của các mệnh đề nguyên thuỷ
 - Câu tuyển có dạng $P_1 \vee P_2 \vee \cdots \vee P_n$ trong đó P_i là các mệnh đề nguyên thuỷ.
- Một công thức ở dạng chuẩn tắc hội nếu nó là hội của các câu tuyển
 - $\blacksquare (A \lor E \lor F \lor G) \land (B \lor C \lor D)$

Dạng chuẩn tắc hội (2)

- □ Ta có thể biến đổi một công thức bất kỳ về dạng chuẩn tắc hội bằng cách biến đổi theo nguyên tắc sau:
 - Khử các phép tương đương: $A \Leftrightarrow B \equiv (A \Rightarrow B) \land (B \Rightarrow A)$
 - Khử các phép kéo theo: $A \Rightarrow B \equiv \neg A \lor B$
 - Chuyển các phép phủ định vào sát các kí hiệu mệnh đề bằng cách áp dụng luật De Morgan
 - Khử phủ định kép: $\neg(\neg A) \equiv A$
 - Áp dụng luật phân phối: $A \lor (B \land C) \equiv (A \lor B) \land (A \lor C)$

Bài tập 1

 Sử dụng bảng chân lý chứng minh các công thức tương đương cơ bản

```
1. A \Rightarrow B \equiv \neg A \lor B (khử kéo theo)

2. A \Leftrightarrow B \equiv (A \Rightarrow B) \land (B \Rightarrow A) (khử tương đương)

3. \neg(\neg A) \equiv A (khử phủ định kép)

4. \neg(A \lor B) \equiv \neg A \land \neg B (Luật De Morgan)

5. \neg(A \land B) \equiv \neg A \lor \neg B (Luật De Morgan)

6. A \land (B \lor C) \equiv (A \land B) \lor (A \land C) (Luật phân phối)

7. A \lor (B \land C) \equiv (A \lor B) \land (A \lor C) (Luật phân phối)
```

Bài tập 2

Chứng minh các mệnh đề sau là vững chắc

$$a) (P \wedge Q) \Rightarrow P$$

b)
$$P \Rightarrow (P \lor Q)$$

$$c) \neg P \Rightarrow (P \Rightarrow Q)$$

$$d) \quad (P \land Q) \Rightarrow (P \Rightarrow Q)$$

$$e) \neg (P \Rightarrow Q) \Rightarrow P$$

$$f) \neg (P \Rightarrow Q) \Rightarrow \neg Q$$

g)
$$\neg P \land (P \lor Q) \Rightarrow Q$$

h)
$$(P \Rightarrow Q) \land (Q \Rightarrow R) \Rightarrow (P \Rightarrow R)$$

i)
$$(P \land (P \Rightarrow Q)) \Rightarrow Q$$

$$\mathsf{j)}\;((P\vee Q)\;\wedge\;(P\Rightarrow R)\;\wedge\;(Q\Rightarrow R))\Rightarrow R$$

Ví dụ

Р	Q	(P ∧ Q)	(P ∧ Q) => P
True	True	True	True
False	False	False	True
True	False	False	True
False	True	False	True

Bài tập 3

Chứng minh các tương đương logic sau

1)
$$(P \Leftrightarrow Q) \equiv (P \land Q) \lor (\neg P \land \neg Q)$$

2)
$$\neg P \Leftrightarrow Q \equiv P \Leftrightarrow \neg Q$$

3)
$$\neg (P \Leftrightarrow Q) \equiv \neg P \Leftrightarrow Q$$

Bài tập 4

Chuẩn hóa về dạng chuẩn tắc hội

$$(P \Rightarrow Q) \lor \neg (R \lor \neg S)$$

Nội dung

- □ Vấn đề biểu diễn tri thức và suy diễn
- □ Logic mệnh đề
- Suy diễn với logic mệnh đề
 - Suy diễn logic
 - Suy diễn sử dụng bảng chân lý
 - Sử dụng các quy tắc suy diễn

Suy diễn logic

- Một công thức H được gọi là hệ quả logic của một tập công thức $G = \{G_1, ..., G_m\}$ nếu trong bất kì minh hoạ nào mà G đúng thì H cũng đúng.
- □ Thủ tục suy diễn gồm một các tập điều kiện và một kết luận

Tập các điều kiện Kết luận

- Đúng đắn: Nếu kết luận là hệ quả logic của điều kiện
- Đầy đủ: Nếu tìm ra mọi hệ quả logic của điều kiện

Suy diễn logic

- □ Một số kí hiệu
 - KB: cơ sở tri thức, tập các công thức đã có (Knowledge base)
 - KB⊢ α: α là hệ quả logic của KB

Làm sao để cm 1 ct là hệ quả logic của 1 tập các ct (cơ sở tri thức)?

- □ Suy diễn sử dụng bảng chân lý
- □ Suy diễn dùng các luật

Suy diễn sử dụng bảng chân lý

- □ Sử dụng bảng chân lý có thể xác định một công thức có phải là hệ quả logic của một tập các công thức trong cơ sở tri thức hay không
 - Ví dụ: $KB = \{A \lor C, B \lor \neg C\}, \alpha = A \lor B$
- □ Tính chất của suy diễn với logic mệnh đề sử dụng bảng chân lý.
 - Đúng đắn
 - Đầy đủ
 - Độ phức tạp tính toán lớn.

VD cm luật Modus Pones

$$(\alpha \Rightarrow \beta) \land \alpha \Rightarrow \beta$$
 (luật: $\frac{\alpha \Rightarrow \beta, \alpha}{\beta}$)

α	β	$(\alpha \Rightarrow \beta)$	$(\alpha \Rightarrow \beta) \land \alpha$	$(\alpha \Rightarrow \beta) \land \alpha \Rightarrow \beta$
True	True	True	True	True
True	False	Fasle	Fasle	True
False	True	True	Fasle	True
False	Fasle	True	Fasle	True

Sử dụng các quy tắc suy diễn (1)

Luật Modus Ponens

$$\frac{\alpha \Rightarrow \beta, \ \alpha}{\beta}$$

Luật Modus Tollens

$$\frac{\alpha \Rightarrow \beta, \ \neg \beta}{\neg \alpha}$$

Luật loại trừ và

$$\frac{\alpha_1 \wedge \ldots \wedge \alpha_i \wedge \ldots \wedge \alpha_m}{\alpha_i}$$

Luật nhập đề và

$$\frac{\alpha_1, \ldots, \alpha_i, \ldots, \alpha_m}{\alpha_1 \wedge \ldots \wedge \alpha_i \wedge \ldots \wedge \alpha_m}$$

 α, β, α_i là các công thức

- □ "A và B" là đúng => A phải đúng, B phải đúng
- □ A đúng, B đúng => "A và B" là đúng
- □ A đúng => "A hoặc B" là đúng

Sử dụng các quy tắc suy diễn (2)

Luật nhập đề hoặc

$$\frac{\alpha_i}{\alpha_1 \vee \ldots \vee \alpha_i \vee \ldots \vee \alpha_m}$$

Luật loại trừ phủ định kép

$$\frac{\neg(\neg \alpha)}{\alpha}$$

Luật bắc cầu

$$\frac{\alpha \Rightarrow \beta, \beta \Rightarrow \gamma}{\alpha \Rightarrow \gamma}$$

 $\alpha, \beta, \gamma, \alpha_i$ là các công thức

Phép giải đơn vị

$$\frac{\alpha \vee \beta, \neg \beta}{\alpha}$$

Phép giải

$$\frac{\alpha \vee \beta, \neg \beta \vee \gamma}{\alpha \vee \gamma}$$

Bài tập 1

Sử dụng phương pháp bảng chân lý chứng minh

- 1. $\{A \Rightarrow B, A\} \vdash B$
- 2. $\{A \Rightarrow B, \neg B\} \vdash \neg A$
- 3. $\{A \Rightarrow B, B \Rightarrow C\} \vdash A \Rightarrow C$
- $4. \quad \{A \lor B, \neg B\} \vdash A$

Bài tập 2

▶ Cho cơ sở tri thức *KB*:

```
Q \land S \Rightarrow G \land H (1)

P \Rightarrow Q (2)

R \Rightarrow S (3)

P (4)

R (5)
```

Sử dụng các quy tắc suy diễn chứng minh: KB - G

- \square (2) và (4) (sử dụng Modus Ponens) => Q (6)
- \square (3) và (5) (sử dụng Modus Ponens) => S (7)
- \square (6) và (7) (sử dụng phép nhập đề và) => Q hội S (8)
- □ (8) và (1) ((sử dụng Modus Ponens) => G hội H (9)
- □ (9) (Loại trừ và) => G