Моментум и ускорение. Оптимальный метод Методы оптимизации

Александр Безносиков

Московский физико-технический институт

21 сентября 2023

Вопрос с прошлой лекции

• Была получена верхняя оценка на сходимость градиентного спуска для L-гладких и μ -сильно выпуклых задач. Вопрос: сколько итераций/оракульных вызовов нужно сделать, чтобы найти ε -решение?

Вопрос с прошлой лекции

• Была получена верхняя оценка на сходимость градиентного спуска для L-гладких и μ -сильно выпуклых задач. Вопрос: сколько итераций/оракульных вызовов нужно сделать, чтобы найти ε -решение?

$$O\left(\frac{L}{\mu}\log\frac{\|x^0-x^*\|_2}{\varepsilon}\right)$$
 итераций/оракульных вызовов.

Вопрос с прошлой лекции

• Была получена верхняя оценка на сходимость градиентного спуска для L-гладких и μ -сильно выпуклых задач. Вопрос: сколько итераций/оракульных вызовов нужно сделать, чтобы найти ε -решение?

$$O\left(\frac{L}{\mu}\log\frac{\|x^0-x^*\|_2}{\varepsilon}\right)$$
 итераций/оракульных вызовов.

• Вопрос на которым ответим сегодня: а можно ли лучше?

Метод тяжелого шарика

• Б.Т. Поляк в 1964 году предложил метод тяжелого шарика.

Алгоритм 1 Метод тяжелого шарика

Вход: размер шагов $\{\gamma_k\}_{k=0}>0$, моментумы $\{\tau_k\}_{k=0}\in[0;1]$, стартовая точка $x^0=x^{-1}\in\mathbb{R}^d$, количество итераций K

- 1: **for** k = 0, 1, ..., K 1 **do**
- 2: Вычислить $\nabla f(x^k)$
- 3: $\underline{x^{k+1} = x^k \gamma_k \nabla f(x^k)} + \tau_k (x^k x^{k-1})$
- 4: end for

Выход: x^K

Метод тяжелого шарика

• Б.Т. Поляк в 1964 году предложил метод тяжелого шарика.

Алгоритм 2 Метод тяжелого шарика

Вход: размер шагов $\{\gamma_k\}_{k=0}>0$, моментумы $\{\tau_k\}_{k=0}\in[0;1]$, стартовая точка $x^0=x^{-1}\in\mathbb{R}^d$, количество итераций K

1 - TK Sk-9 F(xk-9)

- 1: **for** k = 0, 1, ..., K 1 **do**
- 2: Вычислить $\nabla f(x^k)$
- 3: $x^{k+1} = x^k \gamma_k \nabla f(x^k) + \tau_k (x^k x^{k-1})$
- 4: end for

Выход: x^K

• Добавим к градиентному спуску моментумный член — предположим, что у точки, отвечающей за текущее положение значение x^k есть инерция.

Сравнение тяжелого шарика и градиентного спуска

Сравнение тяжелого шарика и градиентного спуска

Интерактивная иллюстрация доступна по ссылке.

Плюсы и минусы

Вопрос: какие плюсы и минусы видите у методы тяжелого шарика?

Плюсы и минусы

Вопрос: какие плюсы и минусы видите у методы тяжелого шарика?

- Понятная физика и интуиция.
- Легкость в имплантации.
- Дешевизна вычислений.

Минусы

- Нужно подбирать теперь 2 параметра. Мы сейчас умеем только в теории оценивать γ_k . Теперь что-то нужно делать с τ_k ... Типично τ_k берут близким к единице или устремляют к единице.
- Мы шли за ускорением градиентного спуска. А оно вообще есть в общем случае?

Плюсы и минусы

Вопрос: какие плюсы и минусы видите у методы тяжелого шарика?

- Понятная физика и интуиция.
- Легкость в имплантации.
- Дешевизна вычислений.

Минусы

- Нужно подбирать теперь 2 параметра. Мы сейчас умеем только в теории оценивать γ_k . Теперь что-то нужно делать с τ_k ... Типично τ_k берут близким к единице или устремляют к единице.
- Мы шли за ускорением градиентного спуска. А оно вообще есть в общем случае? Нет...

Ускоренный градиентный метод

• Ю.Е. Нестеров в 1983 году предложил ускоренный градиентный метод.

Алгоритм 3 Ускоренный градиентный метод

Вход: размер шагов $\{\gamma_k\}_{k=0}>0$, моментумы $\{\tau_k\}_{k=0}\in[0;1]$, стартовая точка $x^0=y^0\in\mathbb{R}^d$, количество итераций K

1: **for**
$$k = 0, 1, ..., K - 1$$
 do

2: Вычислить
$$\nabla f(y^k)$$

3:
$$x^{k+1} = y^k - \gamma_k \nabla f(y^k)$$

4:
$$y^{k+1} = x^{k+1} + \tau_k(x^{k+1} - x^k)$$

5: end for

Выход: x^K

Ускоренный градиентный метод и тяжелый шарик

• **Boпрос**:В чем ключевое отличие метода Нестерова от тяжелого шарика?

Тяжелый шарик:

$$x^{k+1} = x^k - \gamma_k \nabla f(x^k) + \tau_k (x^k - x^{k-1})$$

Ускоренный градиентный метод:

$$y^{k+1} = y^{k} - \gamma_{k} \nabla f(y^{k})$$

$$y^{k+1} = x^{k+1} + \tau_{k}(x^{k+1} - x^{k})$$

$$y^{k} = \chi^{k} + \tau_{k}(x^{k} - \chi^{k-1})$$

Ускоренный градиентный метод и тяжелый шарик

• **Bonpoc**:В чем ключевое отличие метода Нестерова от тяжелого шарика?

Тяжелый шарик:

$$x^{k+1} = x^k - \gamma_k \nabla f(x^k) + \tau_k (x^k - x^{k-1})$$

Ускоренный градиентный метод:

$$x^{k+1} = y^k - \gamma_k \nabla f(y^k)$$
$$y^{k+1} = x^{k+1} + \tau_k (x^{k+1} - x^k)$$

• Перепишем ускоренный градиентный метод:

$$x^{k+1} = x^k + \tau_k (x^k - x^{k-1}) - \gamma_k \nabla f(x^k + \tau_k (x^k - x^{k-1})).$$

Моментум в точке подсчета градиента/«взгляд вперед»/экстраполяция

Ускоренный градиентный метод и тяжелый шарик

- Сходимость метода Нестерова доказана в пособии.
- Сейчас существуют модификации идеи Нестерова, которые также позволяют добиваться того же результата: $f(k) = \frac{k}{k} = \frac{k}{k}$

Алгоритм 4 Линейный каплинг: внутренний цикл

Вход: размер шагов $\{\gamma_k\}_{k=0}>0$ и $\{\eta_k\}_{k=0}>0$, моментумы $\{\tau_k\}_{k=0}\in$ [0; 1], стартовая точка $x^0 = y^0 = z^0 \in \mathbb{R}^d$, количество итераций K

1: **for**
$$k = 0, 1, ..., K - 1$$
 do

2: Вычислить
$$\nabla f(x^k)$$

3:
$$y^{k+1} = x^k - \eta_k \nabla f(x^k) \leftarrow \text{ordinary}$$

4: $z^{k+1} = z^k - \gamma_k \nabla f(x^k) \leftarrow \text{agressive}$

4:
$$z^{k+1} = z^k - \gamma_k \nabla f(x^k) \leftarrow \text{agressive}$$

5:
$$x^{k+1} = \tau_k z^{k+1} + (1 - \tau_k) y^{k+1}$$

6: end for

Выход:
$$(\frac{1}{K}) \sum_{k=0}^{K-1} x^k$$

Нам понадобится

• Сам метод (зафиксировали параметры):

Алгоритм 5 Линейный каплинг: внутренний цикл

Вход: размер шагов $\gamma>0$ и $\eta>0$, моментум $\tau\in[0;1]$, стартовая точка $x^0=y^0=z^0\in\mathbb{R}^d$, количество итераций K

1: **for**
$$k = 0, 1, ..., K - 1$$
 do

2: Вычислить
$$\nabla f(x^k)$$

3:
$$y^{k+1} = x^k - (\eta \nabla f(x^k))$$

4:
$$z^{k+1} = z^k - \gamma \nabla f(x^k)$$

5:
$$x^{k+1} = \tau z^{k+1} + (1-\tau)y^{k+1}$$

6: end for

Выход:
$$\frac{1}{K} \sum_{k=0}^{K-1} x^k$$

• А также выпуклость и гладкость:

$$\frac{\mu}{2} \|x - y\|_2^2 \le \underbrace{f(y) - f(x) - \langle \nabla f(x), y - x \rangle} \le \frac{L}{2} \|x - y\|_2^2.$$

Воспользуемся линией 4 Алгоритма 5:

$$||z^{k+1} - x^*||_2^2 = ||z^k - \gamma \nabla f(x^k) - x^*||_2^2$$

$$= ||z^k - x^*||_2^2 - 2\gamma \langle \nabla f(x^k), z^k - x^* \rangle + \gamma^2 ||\nabla f(x^k)||^2$$

$$= ||z^k - x^*||_2^2 - 2\gamma \langle \nabla f(x^k), x^k - x^* \rangle$$

$$- 2\gamma \langle \nabla f(x^k), z^k - x^k \rangle + \gamma^2 ||\nabla f(x^k)||^2.$$
(1)

Воспользуемся линией 4 Алгоритма 5:

$$||z^{k+1} - x^*||_2^2 = ||z^k - \gamma \nabla f(x^k) - x^*||_2^2$$

$$= ||z^k - x^*||_2^2 - 2\gamma \langle \nabla f(x^k), z^k - x^* \rangle + \gamma^2 ||\nabla f(x^k)||^2$$

$$= ||z^k - x^*||_2^2 - 2\gamma \langle \nabla f(x^k), x^k - x^* \rangle$$

$$- 2\gamma \langle \nabla f(x^k), z^k - x^k \rangle + \gamma^2 ||\nabla f(x^k)||^2.$$
(1)

Оценим $\left[-\langle \nabla f(x^k), z^k - x^k \rangle\right]$ и $\|\nabla f(x^k)\|^2$.

Начнем с $\|\nabla f(x^k)\|^2$. Для этого применим свойство гладкой.

$$f(y^{k+1}) \leq f(x^k) + \langle \nabla f(x^k), y^{k+1} - x^k \rangle + \frac{L}{2} ||y^{k+1} - x^k||_2^2.$$

Начнем с $\|\nabla f(x^k)\|^2$. Для этого применим свойство гладкой.

$$f(y^{k+1}) \le f(x^k) + \langle \nabla f(x^k), y^{k+1} - x^k \rangle + \frac{L}{2} ||y^{k+1} - x^k||_2^2.$$

Подставим итерационный шаг для y^{k+1} (линия 3 Алгоритма 5):

$$f(y^{k+1}) \le f(x^k) - \eta \|\nabla f(x^k)\|_2^2 + \frac{L\eta^2}{2} \|\nabla f(x^k)\|_2^2.$$

$$= f(x^k) - \eta \left(1 - \frac{L\eta}{2}\right) \|\nabla f(x^k)\|_2^2.$$

Начнем с $\|\nabla f(x^k)\|^2$. Для этого применим свойство гладкой.

$$f(y^{k+1}) \le f(x^k) + \langle \nabla f(x^k), y^{k+1} - x^k \rangle + \frac{L}{2} ||y^{k+1} - x^k||_2^2.$$

Подставим итерационный шаг для y^{k+1} (линия 3 Алгоритма 5):

$$f(y^{k+1}) \le f(x^k) - \eta \|\nabla f(x^k)\|_2^2 + \frac{L\eta^2}{2} \|\nabla f(x^k)\|_2^2.$$

$$= f(x^k) - \eta \left(1 - \frac{L\eta}{2}\right) \|\nabla f(x^k)\|_2^2.$$

Выберем $\eta \in \left(0; \frac{2}{L}\right)$, тогда

$$\|\nabla f(x^k)\|_2^2 \le \frac{2}{\eta(2-L\eta)} (f(x^k) - f(y^{k+1})). \tag{2}$$

Соединяем (1) и (2):

$$||z^{k+1} - x^*||_2^2 \le ||z^k - x^*||_2^2 - 2\gamma \langle \nabla f(x^k), x^k - x^* \rangle + \frac{2\gamma^2}{\eta(2 - L\eta)} (f(x^k) - f(y^{k+1})) + 2\gamma \langle \nabla f(x^k), x^k - z^k \rangle.$$
 (3)

Соединяем (1) и (2):

$$||z^{k+1} - x^*||_2^2 \le ||z^k - x^*||_2^2 - 2\gamma \langle \nabla f(x^k), x^k - x^* \rangle + \frac{2\gamma^2}{\eta(2 - L\eta)} (f(x^k) - f(y^{k+1})) + 2\gamma \langle \nabla f(x^k), x^k - z^k \rangle.$$
(3)

Осталось $\left[-\langle \nabla f(x^k), z^k - x^k \rangle\right]$.

Воспользуемся линией 5 Алгоритма 5:

$$\langle \nabla f(x^k), x^k - z^k \rangle = \langle \nabla f(x^k), x^k - \frac{1}{\tau} (x^k - (1 - \tau) y^k) \rangle$$

= $\frac{1 - \tau}{\tau} \langle \nabla f(x^k), y^k - x^k \rangle$.

Воспользуемся линией 5 Алгоритма 5:

$$\langle \nabla f(x^k), x^k - z^k \rangle = \langle \nabla f(x^k), x^k - \frac{1}{\tau} (x^k - (1 - \tau) y^k) \rangle$$

= $\frac{1 - \tau}{\tau} \langle \nabla f(x^k), y^k - x^k \rangle$.

Далее пользуемся выпуклостью:

$$\langle \nabla f(x^k), x^k - z^k \rangle \le \frac{1 - \tau}{\tau} (f(y^k) - f(x^k)). \tag{4}$$

Соединяем (3) и (4):

$$||z^{k+1} - x^*||_2^2 \le ||z^k - x^*||_2^2 - 2\gamma \langle \nabla f(x^k), x^k - x^* \rangle$$

$$+ \frac{2\gamma^2}{\eta(2 - L\eta)} (f(x^k) - f(y^{k+1}))$$

$$+ 2\gamma \cdot \frac{1 - \tau}{\tau} (f(y^k) - f(x^k)).$$

Подгоним параметры следующим образом $\frac{\gamma}{\eta(2-L\eta)}=\frac{1- au}{ au}$:

$$||z^{k+1} - x^*||_2^2 \le ||z^k - x^*||_2^2 - 2\gamma \langle \nabla f(x^k), x^k - x^* \rangle + \frac{2\gamma^2}{\eta(2 - L\eta)} (f(y^k) - f(y^{k+1})).$$

Переставляем:

$$2\gamma \langle \nabla f(x^{k}), x^{k} - x^{*} \rangle \leq ||z^{k} - x^{*}||_{2}^{2} - ||z^{k+1} - x^{*}||_{2}^{2} + \frac{2\gamma^{2}}{\eta(2 - L\eta)} (f(y^{k}) - f(y^{k+1})).$$

Переставляем:

$$2\gamma \langle \nabla f(x^{k}), x^{k} - x^{*} \rangle \leq ||z^{k} - x^{*}||_{2}^{2} - ||z^{k+1} - x^{*}||_{2}^{2} + \frac{2\gamma^{2}}{\eta(2 - L\eta)} (f(y^{k}) - f(y^{k+1})).$$

Далее выпуклость:

$$2\gamma(f(x^{k}) - f(x^{*})) \le ||z^{k} - x^{*}||_{2}^{2} - ||z^{k+1} - x^{*}||_{2}^{2} + \frac{2\gamma^{2}}{\eta(2 - L\eta)} (f(y^{k}) - f(y^{k+1})).$$

Суммируем по k и усредняем:

$$\frac{2\gamma}{K} \sum_{k=0}^{K-1} (f(x^{k}) - f(x^{*})) \leq \frac{1}{K} \sum_{k=0}^{K-1} \left(\|z^{k} - x^{*}\|_{2}^{2} - \|z^{k+1} - x^{*}\|_{2}^{2} \right) \\
+ \frac{2\gamma^{2}}{\eta(2 - L\eta)K} \sum_{k=0}^{K-1} (f(y^{k}) - f(y^{k+1})) \\
= \frac{1}{K} \left(\|z^{0} - x^{*}\|_{2}^{2} - \|z^{K} - x^{*}\|_{2}^{2} \right) \\
+ \frac{2\gamma^{2}}{\eta(2 - L\eta)K} (f(y^{0}) - f(y^{K})) \\
\leq \frac{\|x^{0} - x^{*}\|_{2}^{2}}{K} + \frac{2\gamma^{2} (f(y^{0}) - f(x^{*}))}{\eta(2 - L\eta)K}.$$

Подставим начальные условия: $x^0 = y^0 = z^0$ и применим неравенство Йенсена:

$$2\gamma \left[f\left(\frac{1}{K}\sum_{k=0}^{K-1} x^k\right) - f(x^*) \right] \leq \frac{\|x^0 - x^*\|_2^2}{K} + \frac{2\gamma^2 (f(x^0) - f(x^*))}{\eta(2 - L\eta)K}.$$

Подставим начальные условия: $x^0 = y^0 = z^0$ и применим неравенство Йенсена:

$$2\gamma \left[f\left(\frac{1}{K} \sum_{k=0}^{K-1} x^k\right) - f(x^*) \right] \leq \frac{\|x^0 - x^*\|_2^2}{K} + \frac{2\gamma^2 (f(x^0) - f(x^*))}{\eta (2 - L\eta)K}.$$

Далее μ -сильная выпуклость

$$\int_{\mathbb{R}^{n}} \|X^{\circ}, X^{\bullet}\|^{2} \leq f(X^{\circ}) - f(X^{\bullet})$$

$$f\left(\frac{1}{K}\sum_{k=0}^{K-1}x^{k}\right) - f(x^{*}) \leq \frac{f(x^{0}) - f(x^{*})}{2\mu\gamma K} + \frac{\gamma(f(x^{0}) - f(x^{*}))}{\eta(2 - L\eta)K}$$
$$= \left(\frac{1}{2\mu\gamma K} + \frac{\gamma}{\eta(2 - L\eta)K}\right)(f(x^{0}) - f(x^{*})).$$

Оптимизируем оценку с помощью выбора $\eta=rac{1}{L}$:

$$f\left(\frac{1}{K}\sum_{k=0}^{K-1}x^k\right)-f(x^*)\leq \left(\frac{1}{2\mu\gamma K}+\frac{\gamma L}{K}\right)(f(x^0)-f(x^*)).$$

Оптимизируем оценку с помощью выбора $\eta=rac{1}{L}$:

$$f\left(\frac{1}{K}\sum_{k=0}^{K-1}x^k\right)-f(x^*)\leq \left(\frac{1}{2\mu\gamma K}+\frac{\gamma L}{K}\right)(f(x^0)-f(x^*)).$$

И еще раз
$$\gamma = \frac{1}{\sqrt{2\mu L}}$$
:

$$f\left(\frac{1}{K}\sum_{k=0}^{K-1}x^{k}\right)-f(x^{*}) \leq \sqrt{\frac{2L}{\mu K^{2}}}(f(x^{0})-f(x^{*})).$$

А теперь
$$K=\sqrt{\frac{8L}{\mu}}$$

$$f\left(\frac{1}{K}\sum_{k=0}^{K-1}x^k\right)-f(x^*)\leq \frac{1}{2}(f(x^0)-f(x^*)).$$

Доказательство

A теперь
$$K=\sqrt{rac{8L}{\mu}}$$

$$f\left(\frac{1}{K}\sum_{k=0}^{K-1}x^k\right)-f(x^*)\leq \frac{1}{2}(f(x^0)-f(x^*)).$$

Вопрос: а зачем?

Доказательство

A теперь
$$K=\sqrt{rac{8L}{\mu}}$$

$$f\left(\frac{1}{K}\sum_{k=0}^{K-1}x^k\right)-f(x^*)\leq \frac{1}{2}(f(x^0)-f(x^*)).$$

Вопрос: а зачем? за K итераций мы гарантированно «приблизились к решению» в 2 раза. Тогда пусть это одна итерация нашего нового внешнего алгоритма. Т.е. мы запускаем линейный каплинг на K итераций, а потому перезапускаем с новой стартовой точкой $\frac{1}{K}\sum_{k=0}^{K-1}x^k$, взятой из прошлого запуска каплинга. Это называется рестарты.

Доказательство

Тогда, если сделать T рестартов:

$$f(x^T) - f(x^*) \le \frac{1}{2^T} (f(x^0) - f(x^*)).$$

Откуда можно сразу же получить оракульную сложность:

$$f\left(x^{T}\right) - f(x^{*}) \leq \frac{1}{2^{T}}(f(x^{0}) - f(x^{*})) \leq \varepsilon.$$

$$T \ge \log_2\left(\frac{f(x^0) - f(x^*)}{\varepsilon}\right)$$

$$\widetilde{K\cdot T} = O\left(\sqrt{\frac{L}{\mu}\log_2\frac{f(x^0)-f(x^*)}{\varepsilon}}\right)$$
 вызовов оракула.

Сходимость линейного каплинга

О сходимости линейного каплинга

Пусть задача безусловной оптимизации с L-гладкой, μ -сильно выпуклой целевой функцией f решается с помощью реставрированного линейного каплинга. Тогда при $\eta=\frac{1}{L},\ \gamma=\frac{1}{\sqrt{2\mu L}}$ и $K=\sqrt{\frac{8L}{\mu}}$, чтобы добиться точности ε по функции $(f(x)-f(x^*)\leq \varepsilon)$, необходимо

$$O\left(\sqrt{\frac{L}{\mu}}\log\frac{f(x^0)-f(x^*)}{arepsilon}
ight)$$
 вызовов оракула.

Вопросы остаются

- Метод лучше градиентного спуска.
- Но можно ли еще лучше?
- Вопрос: как понять, можно ли лучше?

Вопросы остаются

- Метод лучше градиентного спуска.
- Но можно ли еще лучше?
- Вопрос: как понять, можно ли лучше? получить нижние оценки.

Вопросы остаются

- Метод лучше градиентного спуска.
- Но можно ли еще лучше?
- Вопрос: как понять, можно ли лучше? получить нижние оценки.
- Для получения нижних оценок нужно придумать не метод, а «плохую» функцию, которую будет «долго» оптимизировать любой метод. Вопрос: а что здесь значит «любой метод»?

• Дана начальная точка x^0 . Эта начальная точка порождает некоторое множество M_0 – множество всех достигнутых на данный момент точек (на данном шаге k). $M_0 = \{x^0\}$.

- Дана начальная точка x^0 . Эта начальная точка порождает некоторое множество M_0 множество всех достигнутых на данный момент точек (на данном шаге k). $M_0 = \{x^0\}$.
- На текущем оракульном вызове метод может считать градиент функции в точке x^k : $\nabla f(x^k)$, где $x^k \in M_k$, то есть метод может посчитать градиент во всех точках, которые уже достиг. Изначально можем посчитать градиент только в x^0 .

- Дана начальная точка x^0 . Эта начальная точка порождает некоторое множество M_0 множество всех достигнутых на данный момент точек (на данном шаге k). $M_0 = \{x^0\}$.
- На текущем оракульном вызове метод может считать градиент функции в точке x^k : $\nabla f(x^k)$, где $x^k \in M_k$, то есть метод может посчитать градиент во всех точках, которые уже достиг. Изначально можем посчитать градиент только в x^0 .
- $M_{k+1} = \operatorname{span}\{x', \nabla f(x'')\}$ (линейная оболочка), где $x', x'' \in M_k$.

- Дана начальная точка x^0 . Эта начальная точка порождает некоторое множество M_0 множество всех достигнутых на данный момент точек (на данном шаге k). $M_0 = \{x^0\}$.
- На текущем оракульном вызове метод может считать градиент функции в точке x^k : $\nabla f(x^k)$, где $x^k \in M_k$, то есть метод может посчитать градиент во всех точках, которые уже достиг. Изначально можем посчитать градиент только в x^0 .
- ullet $M_{k+1} = \operatorname{span}\{x',
 abla f(x'')\}$ (линейная оболочка), где $x', x'' \in M_k$.
- После K вызовов оракула выход метода есть некоторая точка из M_K .

- Дана начальная точка x^0 . Эта начальная точка порождает некоторое множество M_0 множество всех достигнутых на данный момент точек (на данном шаге k). $M_0 = \{x^0\}$.
- На текущем оракульном вызове метод может считать градиент функции в точке x^k : $\nabla f(x^k)$, где $x^k \in M_k$, то есть метод может посчитать градиент во всех точках, которые уже достиг. Изначально можем посчитать градиент только в x^0 .
- ullet $M_{k+1} = \operatorname{span}\{x', \nabla f(x'')\}$ (линейная оболочка), где $x', x'' \in M_k$.
- После K вызовов оракула выход метода есть некоторая точка из M_K .

Вопрос: подходят ли изученные методы, под такое определение?

- Дана начальная точка x^0 . Эта начальная точка порождает некоторое множество M_0 множество всех достигнутых на данный момент точек (на данном шаге k). $M_0 = \{x^0\}$.
- На текущем оракульном вызове метод может считать градиент функции в точке x^k : $\nabla f(x^k)$, где $x^k \in M_k$, то есть метод может посчитать градиент во всех точках, которые уже достиг. Изначально можем посчитать градиент только в x^0 .
- $M_{k+1} = \operatorname{span}\{x', \nabla f(x'')\}$ (линейная оболочка), где $x', x'' \in M_k$.
- После K вызовов оракула выход метода есть некоторая точка из M_K .

Bonpoc: подходят ли изученные методы, под такое определение? да, градиентный спуск, метод тяжелого шарика, линейный каплинг и ускоренный градиентный метод.

- Дана начальная точка x^0 . Эта начальная точка порождает некоторое множество M_0 множество всех достигнутых на данный момент точек (на данном шаге k). $M_0 = \{x^0\}$.
- На текущем оракульном вызове метод может считать градиент функции в точке x^k : $\nabla f(x^k)$, где $x^k \in M_k$, то есть метод может посчитать градиент во всех точках, которые уже достиг. Изначально можем посчитать градиент только в x^0 .
- $M_{k+1} = \operatorname{span}\{x', \nabla f(x'')\}$ (линейная оболочка), где $x', x'' \in M_k$.
- После K вызовов оракула выход метода есть некоторая точка из M_K .

Bonpoc: подходят ли изученные методы, под такое определение? да, градиентный спуск, метод тяжелого шарика, линейный каплинг и ускоренный градиентный метод.

Вопрос: все ли методы, которые считают градиент здесь учтены?

- Дана начальная точка x^0 . Эта начальная точка порождает некоторое множество M_0 множество всех достигнутых на данный момент точек (на данном шаге k). $M_0 = \{x^0\}$.
- На текущем оракульном вызове метод может считать градиент функции в точке x^k : $\nabla f(x^k)$, где $x^k \in M_k$, то есть метод может посчитать градиент во всех точках, которые уже достиг. Изначально можем посчитать градиент только в x^0 .
- $M_{k+1} = \operatorname{span}\{x', \nabla f(x'')\}$ (линейная оболочка), где $x', x'' \in M_k$.
- После K вызовов оракула выход метода есть некоторая точка из M_K .

Bonpoc: подходят ли изученные методы, под такое определение? да, градиентный спуск, метод тяжелого шарика, линейный каплинг и ускоренный градиентный метод.

Bonpoc: все ли методы, которые считают градиент здесь учтены? нет, но это вопрос уже не сегодняшней лекции.

«Плохая» функция

Квадратичная (ее достаточно) функция:

$$f(x) = \frac{L - \mu}{8} x^{T} A x + \frac{\mu}{2} x^{T} x - \frac{L - \mu}{4} e_{1}^{T} x,$$

где

$$A = egin{pmatrix} 2 & -1 & & 0 \ -1 & 2 & -1 & & \ & -1 & 2 & \ddots & \ & & \ddots & \ddots & -1 \ & 0 & & -1 & \zeta \end{pmatrix}, \quad e_1 = egin{pmatrix} 1 \ 0 \ dots \ 0 \end{pmatrix},$$

 ζ определим позже.

«Плохая» функция

Квадратичная (ее достаточно) функция:

$$f(x) = \frac{L - \mu}{8} x^T A x + \frac{\mu}{2} x^T x - \frac{L - \mu}{4} e_1^T x,$$

$$A = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix}, \quad \begin{pmatrix} 4 & 4 & 4 \\ 0 & 0 \\ 0 & -1 & \ell \end{pmatrix}, \quad \begin{pmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}, \quad \begin{pmatrix} 1$$

 ζ определим позже.

где

Функция L-гладкая и μ -сильно выпуклая (задача из домашнего задания).

$$X_{i+1} = Z X_i + \beta X_{i-1}$$

$$X_i = C_1 \lambda_1 + C_2 \lambda_2$$

Вопрос: что можем сказать про решение?

Вопрос: что можем сказать про решение? Сильная выпуклая задача — единственное решение.

Вопрос: что можем сказать про решение? Сильная выпуклая задача

— единственное решение.

Вопрос: как найти?

Вопрос: что можем сказать про решение? Сильная выпуклая задача — единственное решение.

Вопрос: как найти? Условие оптимальности:

$$\nabla f(x^*) = 0$$

или

$$Ax^* + \frac{4\mu}{L - \mu}x^* - e_1 = 0$$

Вопрос: что можем сказать про решение? Сильная выпуклая задача — единственное решение.

Вопрос: как найти? Условие оптимальности:

$$\nabla f(x^*) = 0$$

или

$$Ax^* + \frac{4\mu}{L - \mu}x^* - e_1 = 0$$

Распишем покомпонентно. Первая компонента:

$$2x_1^*-x_2^*+rac{4\mu}{L-\mu}x_1^*-1=0$$
 или $rac{2(L+\mu)}{L-\mu}\cdot x^{(1)}-x^{(2)}=1$

Bonpoc: что можем сказать про решение? Сильная выпуклая задача — единственное решение.

Вопрос: как найти? Условие оптимальности:

$$\nabla f(x^*) = 0$$

или

$$Ax^* + \frac{4\mu}{L-\mu}x^* - e_1 = 0$$

Распишем покомпонентно. Первая компонента:

$$2x_1^*-x_2^*+rac{4\mu}{L-\mu}x_1^*-1=0$$
 или $rac{2(L+\mu)}{L-\mu}\cdot x^{(1)}-x^{(2)}=1$

Все координаты (кроме первой и последней):

$$(-x_{k-1}^* + \frac{2(L+\mu)}{L-\mu}x_k^* - x_{k+1}^* = 0)$$

Последняя координата:

$$-x_{d-1}^* + \zeta x_d^* + rac{4\mu}{L-\mu} x_d^* = 0$$
 или $-x_{d-1}^* + \left(\zeta + rac{4\mu}{L-\mu}
ight) x_d^* = 0$

Последняя координата:

$$-x_{d-1}^* + \zeta x_d^* + rac{4\mu}{L-\mu} x_d^* = 0$$
 или $-x_{d-1}^* + \left(\zeta + rac{4\mu}{L-\mu}
ight) x_d^* = 0$

Можно заметить, что все уравнения (кроме 1го и последнего) просто линейная рекуррента. Решение будет следующим, если правильно подобрать ζ :

$$(x_k^* = q^k,) \qquad q = \frac{\sqrt{L} - \sqrt{\mu}}{\sqrt{L} + \sqrt{\mu}}$$

Более того, возьмём стартовую точку $x^0 = (0...0)^T$.

Более того, возьмём стартовую точку $x^0 = (0 \dots 0)^T$. Градиент:

$$\nabla f(x) = \frac{L - \mu}{4} Ax + \mu x - \frac{L - \mu}{4} e_1$$

Более того, возьмём стартовую точку $x^0 = (0...0)^T$. Градиент:

$$\nabla f(x) = \frac{L - \mu}{4} Ax + \mu x - \frac{L - \mu}{4} e_1$$

Заметим, что $\nabla f(x^0) \in \operatorname{span}(e_1)$,

Более того, возьмём стартовую точку $x^0 = (0 \dots 0)^T$. Градиент:

$$\nabla f(x) = \frac{L - \mu}{4} Ax + \mu x - \frac{L - \mu}{4} e_1$$

Заметим, что $\nabla f(x^0) \in \text{span}(e_1)$, поэтому получается, что за первый оракульный вызов только первая координата выхода метода может быть ненулевой

Более того, возьмём стартовую точку $x^0 = (0 \dots 0)^T$. Градиент:

$$\nabla f(x) = \frac{L - \mu}{4} Ax + \mu x - \frac{L - \mu}{4} e_1$$

Заметим, что $\nabla f(x^0) \in \text{span}(e_1)$, поэтому получается, что за первый оракульный вызов только первая координата выхода метода может быть ненулевой

После второго вызова оракула: $\nabla f(x^1) \in \text{span}(e_1, e_2), \quad x^1 \in M_1$, то есть за 2 оракульных вызова максимум 2 первых координаты могут быть ненулевыми.

Более того, возьмём стартовую точку $x^0 = (0 \dots 0)^T$. Градиент:

$$\nabla f(x) = \frac{L - \mu}{4} Ax + \mu x - \frac{L - \mu}{4} e_1$$

Заметим, что $\nabla f(x^0) \in \text{span}(e_1)$, поэтому получается, что за первый оракульный вызов только первая координата выхода метода может быть ненулевой

После второго вызова оракула: $\nabla f(x^1) \in \text{span}(e_1, e_2), \quad x^1 \in M_1$, то есть за 2 оракульных вызова максимум 2 первых координаты могут быть ненулевыми.

После K оракульных вызовов только первые K координат могут быть ненулевые, остальные точно нулевые.

«Плохая» функция: гарантии

Возьмем d=2K, где K - кол-во вызовов оракула. Вопрос: зачем?

$$\int_{a}^{b} \langle \nabla f(r(t)); dr(t) \rangle = f(r(b)) - f(r(a))$$

$$a = 0 \quad 6=1$$

$$r(\tau) = 0$$

«Плохая» функция: гарантии

Возьмем d=2K, где K - кол-во вызовов оракула. Вопрос: зачем? Изначальное расстояние до решения:

$$||x^{0} - x^{*}||_{2}^{2} = \sum_{i=1}^{2K} q^{2i} = (1 + q^{2K}) \sum_{i=1}^{K} q^{2i}$$

log (poly (L,
$$\mu$$
, ε , $\|x^{\varepsilon} - x^{\varphi}\|$, $f(x^{\circ}) - f(x^{\circ})$)

log (exp $\frac{L}{\mu}$)

«Плохая» функция: гарантии

Возьмем d=2K, где K - кол-во вызовов оракула. Вопрос: зачем? Изначальное расстояние до решения:

$$||x^0 - x^*||_2^2 = \sum_{i=1}^{2K} q^{2i} = (1 + q^{2K}) \sum_{i=1}^{K} q^{2i}$$

После K вызовов оракула итоговый вывод можно оценить так (только первые K координат ненулевые):

$$||x^{K} - x^{*}||_{2}^{2} \ge \sum_{i=K+1}^{2K} q^{2i} = q^{2K} \sum_{i=1}^{K} q^{2i} = \frac{q^{2K}}{1 + q^{2K}} ||x^{0} - x^{*}||_{2}^{2}$$

$$\ge \frac{q^{2K}}{2} ||x^{0} - x^{*}||_{2}^{2} = \left(1 - \frac{2\sqrt{\mu}}{\sqrt{L} + \sqrt{\mu}}\right)^{2K} \frac{||x^{0} - x^{*}||_{2}^{2}}{2}$$

Нижняя оценка на оракульную сложность

Для любого метода из класса, описанного выше, существует безусловная задача оптимизации с L-гладкой, μ -сильно выпуклой целевой функцией f такая, что для решения этой задачи методу необходимо

$$\Omega\left(\sqrt{\frac{L}{\mu}}\log\frac{\|x^0-x^*\|_2}{\varepsilon}\right)$$
 вызовов оракула.

Нижняя оценка на оракульную сложность

Для любого метода из класса, описанного выше, существует безусловная задача оптимизации с L-гладкой, μ -сильно выпуклой целевой функцией f такая, что для решения этой задачи методу необходимо

$$\Omega\left(\sqrt{rac{L}{\mu}}\lograc{\|x^0-x^*\|_2}{arepsilon}
ight)$$
 вызовов оракула.

• Линейный каплинг является оптимальным методом с точки зрения оракульных вызовов для \emph{L} -гладких и μ -сильно выпуклых задач.

Нижняя оценка на оракульную сложность

Для любого метода из класса, описанного выше, существует безусловная задача оптимизации с L-гладкой, μ -сильно выпуклой целевой функцией f такая, что для решения этой задачи методу необходимо

$$\Omega\left(\sqrt{rac{L}{\mu}}\lograc{\|x^0-x^*\|_2}{arepsilon}
ight)$$
 вызовов оракула.

- Линейный каплинг является оптимальным методом с точки зрения оракульных вызовов для L-гладких и µ-сильно выпуклых задач.
- ullet Для L-гладких и выпуклых задач тоже.

Нижняя оценка на оракульную сложность

Для любого метода из класса, описанного выше, существует безусловная задача оптимизации с L-гладкой, μ -сильно выпуклой целевой функцией f такая, что для решения этой задачи методу необходимо

$$\Omega\left(\sqrt{rac{L}{\mu}}\lograc{\|x^0-x^*\|_2}{arepsilon}
ight)$$
 вызовов оракула.

- Линейный каплинг является оптимальным методом с точки зрения оракульных вызовов для L-гладких и µ-сильно выпуклых задач.
- ullet Для L-гладких и выпуклых задач тоже.
- Для ускоренного градиентного метода результаты такие же.