Regression

Flervariabel & Polynom

Agenda

- Linjär regression med flera variabler
- Kodstruktur
- Kodexempel
- Polynomregression
- Kodexempel
- Statistik
 - o p-value
 - Multivariable regression variable selection
 - \circ R₂
- Övningar

Linjär Regression med flera variabler

Flervariabel Linjär Regression

y är nu beroende av två, eller fler, variabler (years of experience AND years of education)

Varje ny variabel är också oberoende.

Har sin egen riktningskoefficient.

https://images.app.goo.gl/ZuAVS1F2JuiTXN1B8

Flervariabel LR

Simple Linear Regression

$$y = b_0 + b_1 x_1$$

Multiple Linear Regression

Dependent variable (DV) Independent variables (IVs)
$$y = b_0 + b_1^* x_1 + b_2^* x_2 + ... + b_n^* x_n$$
Constant Coefficients

Flervariabler - två oberoende variabler - 3D

bedrooms bathrooms

price

The dummy variable trap

- Ordinal to numerical
- Third can be inferred by the absence of the other two (included in b_o).
- sklearn model is advanced and will figure that out

$$y = b_0 + b_1^* x_1 + b_2^* x_2 + b_3^* x_3 + b_4^* D_1$$

F	State	Marketing Spend	Administration	R&D Spend	
19226	New York	471784.1	136897.8	165349.2	1
19179	California	443898.53	151377.59	162597.7	2
19105	Florida	407934.54	101145.55	153441.51	3
18290	New York	383199.62	118671.85	144372.41	4
16618	Florida	366168.42	91391.77	142107.34	5
15699	New York	362861.36	99814.71	131876.9	6
15612	California	127716.82	147198.87	134615.46	7
1557	Florida	323876.68	145530.06	130298.13	8

$$NY = D_1$$
$$CA = D_2$$

$$D_1 = 1 - D_2$$

Kodstruktur

- 1. Import libraries
- 2. Import dataset
- 3. Encode categorical variables
- 4. Split data from "answer" column
- 5. Split train/tests
 - a. Import "splitter"
- 6. Training
 - a. Import model?
- 7. Testing

Print options

np.set_printoptions(precision=2)

Kod

Övningar

- Ladda ned Iris data
- Omvandla nominell data till numeriska kategorier
- Gör en flervariabelregression för att förutspå Sepal längden.

- <u>Ladda ned Pima indians diabetes</u>
 <u>data</u>
- Gör en flervariabelregression.

Polynom

Polynom Linjär Regression

Simple Linear Regression

$$y=b_0+b_1x_1$$

Multiple Linear Regression

$$y = b_0 + b_1 x_1 + b_2 x_2 + \dots + b_n x_n$$

Polynomial Linear Regression

$$y = b_0 + b_1 x_1 + b_2 x_1^2 + ... + b_n x_1^n$$

Polynom LR

$$y = b + m_0 x_1 + m_1 x_1^2 + ... + m_n x_1^n$$

y är beroende av x

x är oberoende

förhållandet mellan dem som en n-graders polynom av x (relationship between them as a n-th degree polynomial of x)

högre grad -> mer komplex modell

Kan modellera mer komplexa förhållanden.

Linjär - coeffs

https://images.app.goo.gl/qriDKw1nLNMr2fmf9

Polynom regression - när behövs det

Kod

Övning

Titta på datan i följande Kaggle exemplet och försök göra en polynomregression utan att titta på koden.

Pumpkin data

Statistik-ish

p-value

- Statistical significance
- Null hypothesis H₀ assume true
- Is it correct? experiment
 - 0.50
 - o halveras ...
 - **a** = 0.05
 - o domain dependent

"A p-value is the probability that random chance generated the data, or something else that is equal or rarer"

p-value ≠ probability

Bild ref.

StatQuest Youtube vid

Multivariable regression - variable selection

Why select?

- GIGO
- Noise
- Explain

1. **All** Variables

- a. Domain knowledge predictors
- b. Forced by company
- c. Preparing for no. 2

2. **Backward** Elimination

- a. Set significance level (e.g. sl = 0.05)
- b. Fit full model
- c. Remove predictor with highest **p**-val if **p>sl**.
- d. Refit model
- e. Repeat c & d until no p > sl.

3. **Forward** Selection

- a. Select sl
- Fit all simple reg. models for y and X for all x separately.
- c. Select the one with the lowest p-val (\mathbf{x}_n) .
- d. Fit \mathbf{x}_n with all other x variables (X- \mathbf{x}_n) separately for every model. (y and $[\mathbf{x}_a, \mathbf{x}_b]$)
- e. If the model with the lowest p-val has a p<sl, add it to the predictor, and repeat d.

Multivariable regression - variable selection

Stepwise regression: 2,3,4

4. **Bidirectional** Elimination

- a. Select an entry and stay sl (can be different)
- b. Add on new variable using Forward Selection (p < sl_enter).
- Do all steps of Backward elimination. Keep only variables where p < sl_stay is fulfilled.
- d. Repeat b and c until no new variables can enter or exit.

5. Score Comparison

- a. Set a fit score minimum
- b. Create a model for all possible variable combinations (2ⁿ-1)
- c. Select the one with the best score

Scikit-learn does this automatically!

R

How much better than average?

Simple Linear Regression:

$$SS_{res} = SUM (y_i - y_i^2)^2$$

$$SS_{tot} = SUM (y_i - y_{avg})^2$$

$$R^2 = 1 - \frac{SS_{res}}{SS_{tot}}$$

R² och flera variabler

$$R^{2} = 1 - \frac{SS_{res}}{SS_{tot}}$$

$$R^{2} - Goodness of fit (greater is better)$$

$$y = b_{0} + b_{1}^{*}x_{1}$$

$$y = b_{0} + b_{1}^{*}x_{1} + b_{2}^{*}x_{2}$$

$$SS_{res}^{-} > Min$$

$$R^{2} - Goodness of fit (greater is better)$$

$$+ b_{3}^{*}x_{3}$$

$$R^{2} \text{ will never decrease}$$

Justerad R²

$$R^2 = 1 - \frac{SS_{res}}{SS_{tot}}$$

Adj R² = 1 - (1 - R²)
$$\frac{n-1}{n-p-1}$$

- p number of regressors
- n sample size

Sammanfattning

- Linjär regression med flera variabler
- Kodstruktur
- Polynomregression
- Statistik
 - o p-value
 - Multivariable regression variable selection
 - \circ R₂

Länkar

- StatQuest
- <u>Linear regression</u>