Assignment 1: Linear Algebra

Total Points: 100 Due: 11:59pm 29 Sept, 2020

Rules:

1. This is a group assignment. Within each group I strongly encourage everyone to attempt each question by his/herself first before discussing it with other members of the group.

- 2. You are recommended to **type out your solution** and submit a PDF file. If you choose to write it down and submit a scanned version, please ensure clear handwriting.
- 3. R is the default package / programming language for this course so you should use R for any programming questions in this assignment.
- 4. The R Notebook Vector_Matrix_Operations.rmd is a very useful resource for understanding how to manipulate vectors and matrices in R. It also shows you how to compute the rank of a matrix, how to compute the eigenvalues and eigenvectors of a square matrix etc. You should therefore familiarise yourself with this Notebook by working through it before tackling this assignment.

1. Linear Independence (15 points)

(a) Without doing any calculations explain whether or not the following vectors are linearly independent in \mathbb{R}^3 and justify your answer. Please do not use R or other software in this question. (5 points)

$$\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \quad \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \quad \begin{pmatrix} 2.5 \\ 1.5 \\ 0 \end{pmatrix}, \quad \begin{pmatrix} 9 \\ 8 \\ 7.2 \end{pmatrix}.$$

(b) Do the following vectors from a basis for \mathbb{R}^3 ? Justify your answer. You can use R in this question. (5 points)

$$\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \quad \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \quad \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}.$$

(c) Let $\mathbf{u} = \begin{pmatrix} -1 \\ 1 \\ 3 \end{pmatrix}$, $\mathbf{v} = \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}$ and $\mathbf{w} = \begin{pmatrix} c \\ 1 \\ 0 \end{pmatrix}$ where $c \in \mathbb{R}$. The set $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is a basis for \mathbb{R}^3 provided that c is **not** equal to what value? (5 points)

2. Matrix Rank (15 points)

Consider the $m \times n$ matrix

$$\mathbf{A} = \left(\begin{array}{ccccc} 1 & 1 & 2 & 3 & 1 & 4 \\ 1 & 0 & 0 & 5 & 2 & 3 \\ 1 & 0 & 0 & 5 & 2 & 4 \\ 1 & 0 & 6 & 5 & 2 & 7 \end{array}\right)$$

where m = 4 and n = 6.

- (a) Without any calculations, what is the maximal possible rank of A? (5 points)
- (b) What actually is the rank of A? (It is easy to compute this in R.) (5 points)
- (c) What is the dimension of the null space of **A**? (5 points)

3. Matrix Rank (15 points)

Consider a general $m \times n$ matrix **A** where rank(**A**) = m < n. Consider the $m \times m$ matrix **B** := $\mathbf{A}\mathbf{A}^{\top}$. Prove that rank(**B**) = m. (**Hint:** Suppose $\mathbf{B}\mathbf{x} = \mathbf{0}$, then show this implies $\mathbf{x} = \mathbf{0}$ so that columns of **B** are linearly independent. To do this, consider $\mathbf{x}^{\top}\mathbf{B}\mathbf{x}$...)

4. Ranges and Null Spaces (15 points)

Recall that the range of $\mathbf{A} \in \mathbb{R}^{m \times n}$ is the set of vectors in \mathbb{R}^m that can be obtained as a linear combination of the columns of \mathbf{A} . The range is denoted by $\mathcal{R}(\mathbf{A})$ and we have

$$\mathcal{R}(\mathbf{A}) := {\mathbf{A}\mathbf{x} : \mathbf{x} \in \mathbb{R}^n}.$$

Similarly, recall the null space of **A** is defined according to $\mathcal{N}(\mathbf{A}) := \{\mathbf{x} \in \mathbb{R}^n : \mathbf{A}\mathbf{x} = \mathbf{0}\}.$

- (a) Show that every $\mathbf{x} \in \mathcal{R}(\mathbf{A}^{\top})$ is orthogonal to every $\mathbf{z} \in \mathcal{N}(\mathbf{A})$, i.e. $\mathcal{R}(\mathbf{A}^{\top}) \perp \mathcal{N}(\mathbf{A})$. (**Hint:** If $\mathbf{x} \in \mathcal{R}(\mathbf{A}^{\top})$ then $\mathbf{x} = \mathbf{A}^{\top}\mathbf{v}$ for some $\mathbf{v} \in \mathbb{R}^{m}$.) (10 points)
- (b) Show that every $\mathbf{x} \in \mathcal{R}(\mathbf{A})$ is orthogonal to every $\mathbf{z} \in \mathcal{N}(\mathbf{A}^{\top})$. (5 points)

5. Fibonacci Numbers (20 points)

The Fibonacci sequence

$$0, 1, 1, 2, 3, 5, 8, 13, \dots$$

is such that every number is the sum of its two predecessors, i.e. for $k = 1, 2, \ldots$ we have

$$F_{k+2} = F_{k+1} + F_k, (1)$$

where $F_1 = 0, F_2 = 1, \dots$

- (a) Write (1) in the form $\mathbf{u}_{k+1} = \mathbf{A}\mathbf{u}_k$ where $\mathbf{u}_k, \mathbf{u}_{k+1} \in \mathbb{R}^2$. (**Hint:** Use \mathbf{u} to encapsulate the F's.) (5 points)
- (b) Write some R code to compute F_k for k = 1000 in three different ways: (i) directly by iterating (1), (ii) directly by iterating $\mathbf{u}_{k+1} = \mathbf{A}\mathbf{u}_k$, and (iii) by diagonalizing \mathbf{A} and using this to calculate $\mathbf{u}_k = \mathbf{A}^{k-1}\mathbf{u}_1$. (15 points)

6. Answer the following questions. (20 points)

(a) Let **A** be the $m \times n$ matrix

$$\left(\begin{array}{cccc} \vdots & \vdots & \cdots & \vdots \\ \mathbf{a}_1 & \mathbf{a}_2 & \cdots & \mathbf{a}_n \\ \vdots & \vdots & \cdots & \vdots \end{array}\right)$$

and let $\mathbf{x} = (x_1 \dots x_n)^{\top}$. Give an expression for $\mathbf{A}\mathbf{x}$ in terms of the column vectors of \mathbf{A} , i.e. the \mathbf{a}_i 's. (5 points)

- (b) Suppose $\mathbf{A} \in \mathbb{R}^{n \times n}$ and rank $(\mathbf{A}) = n$. Is there always a solution to the equation $\mathbf{A}\mathbf{x} = \mathbf{b}$ for any $\mathbf{b} \in \mathbb{R}^n$? Justify your answer. (5 points)
- (c) Suppose (λ, \mathbf{u}) is an eigenvalue / eigenvector pair for $\mathbf{A} \in \mathbb{R}^{n \times n}$. Can you find a corresponding eigenvalue / eigenvector pair for \mathbf{A}^2 ? Justify your answer. (5 points)
- (d) Find all eigenvalues and corresponding eigenvectors for matrix **A**. You can use **R** in this question. (5 points)

3

$$\mathbf{A} = \left(\begin{array}{ccc} 2 & -3 & 0 \\ 2 & -5 & 0 \\ 0 & 0 & 3 \end{array} \right).$$