BIO392-cnv-freq

Yasmine Douar

28.09.2022

Step 1: Install package

```
if (!require(devtools)){ install.packages('devtools')
}

## Loading required package: devtools

## Loading required package: usethis

if (!require(pgxRpi)){ devtools::install_github('progenetix/pgxRpi')}
}

## Loading required package: pgxRpi
library(pgxRpi)
```

Step2: Search esophageal adenocarcinoma NCIt code

C4025

Step3: Access the CNV frequency data from samples with esophageal adenocarcinoma

```
frequency <- pgxLoader(type = "frequency", output = "pgxseg", filters = "NCIT:C3058", codematches=T)</pre>
```

The retreived data is an object containing two slots meta and data.

The meta slot looks like this:

```
frequency$meta
##
                        label sample_count
## 1 NCIT:C3058 Glioblastoma
                                      4384
                                      4384
          total
The data slot includes two matrices.
names(frequency$data)
## [1] "NCIT:C3058" "total"
The frequency matrix looks like this
head(frequency$data$`NCIT:C3058`)
        filters reference name
                                             end gain_frequency loss_frequency no
                                  start
## 1 NCIT:C3058
                                      0 400000
                                                          4.174
                                                                          4.151 1
```

##	2 NCIT:C3058	1 400000	1400000	10.903	6.911	2
##	3 NCIT:C3058	1 1400000 3	2400000	13.047	8.805	3
##	4 NCIT:C3058	1 2400000 3	3400000	14.690	15.420	4
##	5 NCIT:C3058	1 3400000 4	4400000	16.036	17.769	5
##	6 NCIT:C3058	1 4400000 !	5400000	11.747	19.662	6

Dimension of this matrix

Step4: Visualize data

By genome

pgxFreqplot(frequency)

By chromosome

```
for (i in 1:24){
  pgxFreqplot(frequency, chrom = i)
}
```


Step5: Analyse the data

According the plot, we can see frequenct gains on chromosome 7p, 8q, 20p, 20q and frequenct losses on chromosome 4p, 4q, 5q, 9p, 17p, 18q, 21q.

There is a literature where the findings are consistent with the majority of mine. Here is the paper-link.

A more detailed use case see this link.