Bangladesh Army University of Science and Technology

Department of Computer Science and Engineering

Final Examination, Winter 2018-2019 Course Code: MATH 1141

Level-1

Course Title: Math-I(Differential and Integral Calculus)
Full Marks: 210

Time: 03 (Three) hours

.

(ii) Use separate answer script for each PART

N.B. (i) Answer any three questions from each PART (iii) Marks allotted are indicated in the margin

(iv) Symbols have their usual meanings

PART A

- 1. a) What is a function? If $f(x) = x^2 + 3$ and $g(x) = \sqrt{x}$, then find $f \circ g(x)$ and $g \circ f(x)$.
 - b) Define limit of a function. A function f(x) is defined as follows:

10

$$f(x) = \begin{cases} x^2 & when x < 1\\ 2.5 & when x = 1\\ x^2 + 2 & when x > 1 \end{cases}$$

Does $\lim_{x\to 1} f(x)$ exist?

c) Define continuity of a function. If $f(x) = \begin{cases} x & when 0 \le x < \frac{1}{2} \\ 1 - x & when \frac{1}{2} \le x < 1 \end{cases}$, then show that f(x) is 15

continuous but not differentiable at $x = \frac{1}{2}$.

2. a) Find the 5th derivative of the function $y = x^4 \log x$.

10

- b) State Leibnitz's theorem. If $y = \log(x + \sqrt{a^2 + x^2})$, then show that $(a^2 + x^2)y_2 + xy_1 = 0$.
- c) State Mean Value theorem. Discuss the geometrical interpretation of Mean Value theorem.

13

3. a) State L'Hospital's theorem. Evaluate $\lim_{x\to 0} \left(\frac{\tan x}{x}\right)^{\frac{1}{x}}$.

13

b) If $u = e^{xyz}$, then prove that $\frac{\partial^3 u}{\partial x \partial y \partial z} = (1 + 3xyz + x^2 + y^2 + z^2)e^{xyz}$.

10

c) State Euler's theorem. If $u = \sin^{-1}(\frac{x^2 + y^2}{x + y})$, then show that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \tan u$.

12

4 a) Define tangent. Find the equation of the tangent at the point (x, y) to the curve y = f(x).

10

b) Find the maximum and minimum values of u, where $u = \frac{4}{x} + \frac{36}{y}$ and x + y = 2.

12

c) Define center of curvature. Find the center of curvature at any point (x, y) on the parabola $y^2 = 4ax$.

PART B

5. a) Integrate (i) $\int \frac{e^x dx}{e^{2x} + 2e^x + 5}$ and (ii) $\int \tan x \, dx$.

15

- b) Prove that $\int e^{ax} \sin bx \, dx = \frac{e^{ax} (a \sin bx b \cos bx)}{a^2 + b^2}.$
- c) Integrate $\int \frac{dx}{(x-1)^3(x+1)}$.
- 6. a) Obtain a reduction formula for $\int \sec^n x \, dx$. Also, evaluate $\int \sec^6 x \, dx$.
 - b) Evaluate $\int_0^a \sqrt{a^2 x^2} dx$.
 - c) Show that $\int_0^1 \frac{\log(1+x)}{1+x^2} dx = \frac{\pi}{8} \log 2$.
- 7. a) Prove that $\int_0^{\frac{\pi}{2}} \cos^3 x \sqrt[4]{\sin x} \, dx = \frac{32}{65}$.
 - b) Define beta and gamma function. Prove that $\int_0^\infty e^{-x^2} dx = \frac{1}{2} \sqrt{\pi}$.
 - c) Evaluate $\int_0^a \int_0^{\sqrt{a^2-x^2}} \int_0^b (y^2+z^2) dz dy dx$.
- 8 a) Find the area above the x-axis, included between the parabola $y^2 = ax$ and the circle $x^2 + y^2 = 2ax.$
 - b) Find the length of the arc of the parabola $y^2 = 4ax$ measured from the vertex to one extremity of the latus rectum.
 - c) Find the volume of the solid generated by revolving the cycloid $x = a(\theta + \sin \theta)$, $y = a(1 + \cos \theta)$ about its base.