ATIVIDADE 1 (CONJUNTOS)

- 1. Esta atividade deve ser realizada em grupos de, até, 3 acadêmicos.
- 2. Sugere-se que todos os participantes da equipe tenham as resoluções devidamente registradas em material próprio.
- 3. Apenas um acadêmico deve entregar o material com as resoluções detalhadas pela plataforma Google Classroom, na sala da disciplina, com a indicação, em ordem alfabética, de todos os participantes da equipe.

Questão 1. Calcule o produto cartesiano dos conjuntos $C = \{1, 3, 6\}$, $A = \{2, 4, 18\}$ e $B = \{3, 5, 8\}$ e indique sua cardinalidade.

Questão 2. Para cada um dos seguintes conjuntos: represente-os e indique a respectiva cardinalidade:

```
A = \{x \in N \mid 11 \le x \le 36 \text{ e } x \text{ \'e impar}\}

B = \{x \mid x \text{ \'e capital da Região Geográfica Nordeste do Brasil}\}

C = \{x \in N \mid x < 0\}

D = \{x \in N \mid x \text{ \'e quadrado perfeito entre o e 101}\}

E = \{x \mid x \text{ \'e consoante constritiva fricativa em Português}\}

F = \{x \mid x \text{ \'e primo entre 1 e 100}\}
```

Questão 3. Dados os conjuntos A = $\{0, 1, 2, 3, 5, 8, 13, 21, 34, 55\}$, B = $\{2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 33\}$, C = $\{2, 3, 5, 13\}$ e U = $\{x \mid x \text{ \'e número primo entre 2 e 40 ou x pertence à sequência de Fibonacci até o número 150}, represente graficamente e determine:$

- a) $A \cap B$
- b) $A \cup B$
- c) $A \cap C$
- d) C-A
- e) $B \cup A$
- f) B-C
- g) $A \cap B \cap C$
- h) $A \cup B \cup C$
- i) $A \cap (B \cup C)$
- j) $(A \cap B) \cup (B A)$
- k) $(A-B)\cap (C-A)$
- I) $(A \cap B) \cap (B \cup C)$
- m) $(A B) \cap (B \cup C)$
- n) $(B-C) \cup (A-C) \cup (B-A)$
- o) $(A \Delta B) \cap (A \Delta C) \cap (B \Delta C)$
- p) $(A \Delta B) \cup (A \Delta C) \cup (B \Delta C)$

Universidade Estadual de Montes Claros – Unimontes Centro de Ciências Exatas e Tecnológicas – CCET Departamento de Ciências da Computação – DCC Curso de Graduação em Bacharelado em Sistemas de Informação

- q) $U (A \cap B \cap C)$
- r) $U (A \cup B \cup C)$
- s) $U ((A \Delta B) \cap (A \Delta C) \cap (B \Delta C))$
- t) $U ((C B) \cup (A B))$

Questão 4. Dados os conjuntos A = $\{x \in N \mid x \text{ \'e impar}\}$, B = $\{x \in N \mid x \text{ \'e par}\}$ e C = $\{x \in N \mid x \text{ \'e m\'ultiplo de 3}\}$, determine se as afirmativas a seguir são verdadeiras, justificando:

- a. $3 \in A$
- b. -3 ∈ B
- c. $-12 \in C$
- d. 15 ∉ C
- e. A⊄B
- f. $A \subset C$
- g. $B \cap A = \emptyset$
- h. $(A \cap C) \cap B = \emptyset$
- i. $A \cup B = N$

Questão 5. Dados os conjuntos A = $\{-2, 0, 2, 4\}$, B = $\{-2, 2, 4, 5\}$, C = $\{0, 1, 2, 3, 4\}$ e D = $\{0, 1, 2, 3, 4, 5, 7, 9, 11\}$, determine X = $(A' \cap B) \cap (C \cap D')$. Em seguida, apresente o conjunto das partes do conjunto X e sua cardinalidade.

Questão 6. Dados os conjuntos A = $\{1, 2, 3, 4, 5, 6, 7, 8, 9\}$, B = $\{5, 6, 7, 8, 9, 10, 11, 12, 13\}$, C = $\{3, 6, 7, 11, 12, 13\}$ e U= $\{x \in N \mid 1 \le x \le 15\}$ determine:

- a. $A \cap B \cap C$
- b. $(A \cap B \cap C)'$
- c. $(A' \cup B) \cup C'$
- d. $(A \cap B)' \cup (A \cap C) \cup (B \cap C)'$
- e. (U A) (U B) (U C)
- f. $(A \triangle B) \cup (A \triangle C) \cup (B \triangle C)$
- g. $(A \cap B \cap C) \cup (A \cap B) \cup (A \cap C) \cup (B \cap C)$

Questão 7. Se dois conjuntos A = $\{2, 3\}$ e B = $\{3, 4, 5\}$, determine o conjunto C, tal que A \cap C = $\{2\}$, B \cap C = $\{4\}$ e A \cup B \cup C = $\{2, 3, 4, 5, 6\}$.

Questão 8. Um curso possui 40 estudantes dos quais: 13 estudam física; 30, matemática; e 10, as duas disciplinas. Quantos não estudam nem física nem matemática?

Questão 9. Em uma escola ensinam-se Inglês e Alemão. Sabe-se que cem alunos estudam as duas línguas; 130, só Inglês; e 170, só Alemão. Quantos alunos estudam Inglês? E quantos alunos há na escola?

Questão 10. Uma empresa realizou estudo de mercado com o intuito de compreender o comportamento dos consumidores em relação aos seus produtos (A, B e C). Os resultados apontaram que: 33 entrevistados consomem o produto A e 18 consomem apenas este produto; 71 consomem o produto B; 33 consomem o produto C; 19 consomem simultaneamente A ou B ou C; 7 consomem simultaneamente A e B; 5 consomem os três produtos; 4 consomem simultaneamente B e C; 55 preferem o produto B. Considerando que foram entrevistados 173 consumidores, responda:

- a. quantos entrevistados consomem apenas o produto B?
- b. quantos entrevistados consomem apenas o produto C?
- c. quantos entrevistados não consomem qualquer um dos produtos?

Questão 11. Considerando os conjuntos $A = \{1, 3, 5, 6, 7, 9, 10, 13\}, B = \{2, 2, 5, 6, 7, 8, 10, 14\}, C = \{1, 2, 3, 5, 6, 7, 10, 11, 15\} e D = \{3, 4, 5, 6, 7, 10, 12, 16\} determine:$

- a. $A' \cap B' \cap C' \cap D'$
- b. $A \cap B \cap C \cap D$
- c. $(A-(B\cup C))\Delta D$
- d. $(A B) \cup (C D)$

Questão 12. Uma urna contém nove bolas de cores distintas. Determine o número de conjuntos distintos, não vazios, que podem ser formados com as bolas da urna.

Questão 13. Em uma cidade há 1.000 famílias, das quais 470 assinam o jornal A; 420, o jornal B; 315, o jornal C; 140, B e C; 220, A e C; 110 A e B; e 75 assinam os três jornais. Determine quantas famílias:

- a. não assinam jornais;
- b. assinam apenas um dos jornais;
- c. assinam apenas dois jornais;
- d. assinam pelo menos dois jornais
- e. assinam no máximo dois jornais.

Questão 14. Dados os seguintes conjuntos $E = \{1, 2, 3, 4, 5, 6, 9\}$, $D = \{2, 5, 7, 9, 10, 12, 15\}$, $B = \{1, 2, 3, 4, 5, 6, 7, 8\}$, $C = \{2, 3, 4, 5, 6, 7, 9, 10\}$ e $A = \{3, 4, 5, 7, 8, 9, 10\}$ monte o diagrama de Euler-Venn (se possível) e, em seguida, determine:

- a. $(A \cup B \cap C) \cup (D \cap E)$
- b. $(A \cap B) \cap ((C \cap D) \cap E)$
- c. $(A \cup B) \cap (C \cup D) \cap E$
- d. $(A \cup B) \Delta (C \cup D) \Delta E$
- e. $(C C') \cup (A B) \cap (E E')$

Questão 15. Considere os conjuntos A com 4 elementos, B com 6 elementos, C com 4 elementos e D com 5 elementos. Qual a cardinalidade dos respectivos conjuntos das partes dos conjuntos A, B, C e D?

Questão 16. Dados 4 conjuntos A (com 32 subconjuntos), B (com 25 subconjuntos), C (com 225 subconjuntos) e D (com 1000 subconjuntos). Determine o número de elementos de A, de B, de C e de D. Para os conjuntos viáveis, apresente um conjunto com exemplos.

Questão 17. Explique, com base em fontes acadêmicas e históricas, o motivo pelo qual o conjunto dos números naturais (\mathbb{N}) nem sempre inclui o zero em algumas definições, enquanto em outras inclui. Dê exemplos de áreas que adotam cada convenção.

Questão 18. Diferencie, com exemplos, o conjunto dos números racionais (\mathbb{Q}) e o conjunto dos números irracionais ($\mathbb{R}\setminus\mathbb{Q}$), abordando: Representação decimal ; Forma de fração ; Origem histórica de cada tipo

Questão 19. Pesquise e explique por que certos números irracionais, como π e e, são chamados de transcendentais, enquanto outros, como $\sqrt{2}$, não são. Inclua definições formais.

Questão 20. Investigue a relação entre números reais (\mathbb{R}) e números complexos (\mathbb{C}), destacando por que \mathbb{R} é considerado subconjunto de \mathbb{C} . Inclua explicação de como um número real é representado no plano complexo.

Questão 21. Consulte fontes confiáveis e descreva como a reta real é utilizada para representar todos os números reais (\mathbb{R}), discutindo o papel das densidades dos conjuntos \mathbb{Q} e \mathbb{R} no contexto da análise matemática.

Questão 22. Determine se cada número a seguir é natural, inteiro, racional ou irracional, justificando:

- a)o
- b) -12
- c) 2/7
- d) $\sqrt{81}$
- e) 3,141592...

Questão 23. Classifique como racional ou irracional e demonstre:

- a) 0,333...
- b) 2,5
- c) √50
- d) √4
- e) π²

Universidade Estadual de Montes Claros – Unimontes Centro de Ciências Exatas e Tecnológicas – CCET Departamento de Ciências da Computação – DCC Curso de Graduação em Bacharelado em Sistemas de Informação

Questão 24. Sabendo que $x \in \mathbb{Z}$ e que 3x - 7 é par, determine todos os possíveis valores de x no intervalo -10 $\le x \le 10$.

Questão 25. Sejam A = $\{n \in \mathbb{N} \mid 1 \le n \le 12 \text{ e } n \text{ é múltiplo de 3} \} \text{ e } B = \{n \in \mathbb{N} \mid 1 \le n \le 12 \text{ e } n \text{ é divisor de 12} \}.$

Determine:

- a) A∪B
- b) A∩B
- c) A B
- d) B A

Questão 26. Verifique se cada uma das afirmações é verdadeira ou falsa, justificando:

- a) Entre dois números racionais diferentes sempre existe outro racional.
- b) Entre dois números irracionais sempre existe outro irracional.
- c) A soma de dois números irracionais é sempre irracional.
- d) O produto de um número irracional por zero é irracional.

Questão 27. Numa turma de 120 alunos, pesquisou-se o interesse por três disciplinas: A (Algoritmos), B (Banco de Dados) e C (Computação Gráfica). Os resultados foram:

$$|A| = 70$$
, $|B| = 55$, $|C| = 40$.
 $|A \cap B| = 30$, $|A \cap C| = 20$, $|B \cap C| = 15$.
 $|A \cap B \cap C| = 8$.

Pergunta: Quantos alunos não gostam de nenhuma das três disciplinas?

Questão 28. Num conjunto universal U de 200 pessoas, foram registrados os seguintes dados sobre filmes:

```
|A| = 90 (gostam de ação), |B| = 80 (gostam de comédia), |C| = 70 (gostam de drama). |A \cap B| = 40, |A \cap C| = 35, |B \cap C| = 30. |A \cap B \cap C| = 10.
```

Pergunta: Quantas pessoas gostam exclusivamente de ação (apenas A, sem B nem C)?

Questão 29. Num universo de 500 itens, quatro categorias de defeitos são registradas: A, B, C e D. Sabe-se:

$$|A| = 180$$
, $|B| = 150$, $|C| = 130$, $|D| = 120$.
Somatório das interseções de pares (isto é, $|A \cap B| + |A \cap C| + ... + |C \cap D|$) = 260.
Somatório das interseções triplas ($|A \cap B \cap C| + ...$) = 90.
 $|A \cap B \cap C \cap D| = 20$.

Pergunta: Quantos itens têm pelo menos um defeito? (|A ∪ B ∪ C ∪ D|)

Universidade Estadual de Montes Claros – Unimontes Centro de Ciências Exatas e Tecnológicas – CCET Departamento de Ciências da Computação – DCC Curso de Graduação em Bacharelado em Sistemas de Informação

Questão 30. Em uma base de 400 clientes, A = compra online, B = compra em loja física, C = usa cupom. Registros:

$$|A| = 260$$
, $|B| = 180$, $|C| = 120$.
 $|A \cap B| = 90$, $|A \cap C| = 70$, $|B \cap C| = 50$.
 $|A \cap B \cap C| = 30$.

Pergunta: Qual a probabilidade de um cliente, escolhido ao acaso, ter comprado online ou ter usado cupom, mas não ter comprado na loja física?

Num diagrama de Euler–Venn com três conjuntos X, Y, Z (universo U com 90 elementos) sabe-se:

Só X (apenas X) tem 18 elementos.

Só Y tem 12 elementos.

Só Z tem 10 elementos.

 $X \cap Y$, excluindo a interseção tripla, tem 8 elementos. (isto é, $|(X \cap Y) \setminus Z| = 8$)

 $X \cap Z$, excluindo tripla, tem 6 elementos.

 $Y \cap Z$, excluindo tripla, tem 4 elementos.

Pergunta: Quantos elementos estão na interseção tripla $X \cap Y \cap Z$, sabendo que o total $|X \cup Y \cup Z| = 72$?