CSC165H1 Problem Set 2

Xiaoyu Zhou, Yichen Xu

February 10, 2019

1. Difference of Squares

- (a) $\forall n \in \mathbb{Z}^+$, DifferenceOfSquare(n) $\Rightarrow (\exists k_1 \in \mathbb{Z}, n = 2k_1 1) \lor (\exists k_2 \in \mathbb{Z}, n = 4k_2)$
- (b) Proof

Let $n \in \mathbb{Z}$. Assume that there exits $p, q \in \mathbb{Z}$, $n = p^2 - q^2$. Let's divide the proof into four cases.

i. Both p and q are odd.

Thus,
$$\exists k_1, k_2 \in \mathbb{Z}, p = 2k_1 + 1, q = 2k_2 + 1$$
. Let $k_3 = k_1^2 + k_1 - k_2^2 - k_2$
 $n = p^2 - q^2$
 $n = (2k_1 + 1)^2 - (2k_2 + 1)^2$
 $n = 4k_1^2 + 4k_1 + 1 - 4k_2^2 - 4k_2 - 1$
 $n = 4k_1^2 + 4k_1 - 4k_2^2 - 4k_2$
 $n = 4(k_1^2 + k_1 - k_2^2 - k_2)$
 $n = 4k_3$
So, n can be divided by 4.

ii. Both p and q are even.

Thus,
$$\exists k_1, k_2 \in \mathbb{Z}, p = 2k_1, q = 2k_2$$
. Let $k_3 = k_1^2 - k_2^2$ $n = p^2 - q^2$ $n = (2k_1)^2 - (2k_2)^2$ $n = 4k_1^2 - 4k_2^2$ $n = 4(k_1^2 - k_2^2)$ $n = 4k_3$

So, n can be divided by 4.

iii. p is even, q is odd.

Thus,
$$\exists k_1, k_2 \in \mathbb{Z}, p = 2k_1, q = 2k_2 + 1$$
. Let $k_3 = 2k_1^2 - 2k_2^2 - 2k_2 - 1$ $n = p^2 - q^2$ $n = (2k_1)^2 - (2k_2 + 1)^2$ $n = 4k_1^2 - 4k_2^2 - 4k_2 - 1$ $n = 4k_1^2 - 4k_2^2 - 4k_2 - 2 + 1$ $n = 2(2k_1^2 - 2k_2^2 - 2k_2 - 1) + 1$ $n = 2k_3 + 1$ So, n is an odd number.

iv. p is odd, q is even.

Thus,
$$\exists k_1, k_2 \in \mathbb{Z}, p = 2k_1 + 1, q = 2k_2$$
. Let $k_3 = 2k_1^2 + 2k_1 - 2k_2^2$
 $n = p^2 - q^2$
 $n = (2k_1 + 1)^2 - (2k_2)^2$
 $n = 4k_1^2 + 4k_1 + 1 - 4k_2^2$
 $n = 2(2k_1^2 + 2k_1 - 2k_2^2) + 1$
 $n = 2k_3 + 1$

So, n is an odd number.

(c) Negation: $\exists x, y \in \mathbb{Z}^+$, DifferenceOfSquares(x) \land DifferenceOfSquares(y) $\land \neg$ DifferenceOfSquares(x + y)

Proof

Let
$$x = 3, y = 7$$
.

There exist $p_1 = 2, p_2 = 4, q_1 = 1, q_2 = 3$ to make $x = p_1^2 - q_1^2, y = p_2^2 - q_2^2$. Thus, x, y are difference of squares.

From question a. we can know that every difference of squares is odd or divisible by four.

However, x + y = 3 + 7 = 10, is neither odd nor divisible by four. So, 10 is not a difference of squares.

- 2. Greatest common divisor and divisibility.
 - (a) Translation. $\forall a, m, n \in \mathbb{Z}, \gcd(m, n) = \gcd(n, m an)$ Proof.

Let $a, m, n \in \mathbb{Z}$. Let x = gcd(m, n), y = gcd(n, m - an). That means that x|m, x|n, y|n, y|(m - an). Let's divide the proof into three parts.

i. Proof $x \leq y$

By using fact 2, we can know that x|(m-an).

From the definition of the greatest common divisor, we can know that $x \leq y$.

ii. Proof $y \leq x$

Since m = m - an + an and fact 2, y|m.

From the definition of the greatest common divisor, we can know that $y \leq x$.

iii. Proof x = y

Because $x \leq y$ and $y \leq x$, x = y, which means that gcd(m, n) = gcd(n, m-an)

(b) Negation: $\exists a, m, n \in \mathbb{Z}, \gcd(m, n) \neq \gcd(n, m - an)$ Proof.

Let
$$m = 8, n = 2, a = 2$$
.

Then
$$gcd(m, n) = gcd(8, 2) = 2$$

$$\gcd(m, m - an) = \gcd(8, 4) = 4$$

Since $2 \neq 4$, $gcd(m, n) \neq gcd(m, m - an)$

(c) Translation. $\forall m, n \in \mathbb{Z}, (\exists k \in \mathbb{Z}, m = 2k - 1) \Rightarrow gcd(m, n) = gcd(m, 2n)$ Proof.

Let $m, n \in \mathbb{Z}$. Assume m is odd, which means that $\exists k \in \mathbb{Z}, m = 2k - 1$. Let $a = \gcd(m,n)$, $b = \gcd(m, 2n)$. That means that a|m, a|n, b|m, b|2n. Let 2n = b * c where c is an integer. Let's divide the proof into three parts.

i. Proof $b \le a$

By using the contrapositive of fact 1, we can know that $\neg 2|m \Rightarrow \neg 2|b \vee \neg b|m$. Since m is odd, so 2 cannot divide m. Moreover, b|m. Thus, 2 cannot divide b.

By using the contrapositive of fact 3, we can know that $2|2n \Rightarrow 2|c \vee 2|b$. Since 2 cannot divide b, 2|c. Thus $\frac{c}{2}$ is an integer.

 $n = b * \frac{c}{2}$, where b, $\frac{c}{2}$ are all integers. That means that b|n.

Because of the definition of the greatest common divisor, $b \leq a$.

ii. Proof $a \leq b$

Since a|n, b|2n.

Because of the definition of the greatest common divisor, $a \leq b$.

iii. Proof a = b

Because $a \leq b$ and $b \leq a$, a = b, which means that gcd(m, n) = gcd(m, 2n)

(d) $Translation. \forall n \in \mathbb{N}, gcd(n^2 + n + 1, (n + 1)^2 + (n + 1) + 1) = 1$ Proof.

Let $n \in \mathbb{N}, p = n^2, q = n + 1$

$$n^2 + n + 1 = p + q$$

$$(n+1)^2 + (n+1) + 1 = n^2 + 3n + 3 = p + 3q$$

Thus, $gcd(n^2 + n + 1, (n + 1)^2 + (n + 1) + 1) = gcd(p + q, p + 3q).$

As we proven: $\forall a, m, n \in \mathbb{Z}, gcd(m, n) = gcd(n, m - an), gcd(p + q, p + 3q) = gcd(p + 3q, 2q) = gcd(n^2 + 3n + 3, 2n + 2)$

2n + 2 can only divided by 2n + 2, n + 1, 2 and 1. However, $n^2 + 3n + 3$ cannot divided by 2n + 2, n + 1 or 2. Thus, 1 is the only common divisor of $n^2 + 3n + 3$ and 2n + 2, which means that $gcd(n^2 + n + 1, (n + 1)^2 + (n + 1) + 1) = 1$

- 3. Eventually bounded.
 - (a) Translation: $\exists n_0 \in \mathbb{N}, \exists y \in \mathbb{R}^{\geq 0}, \forall n \in \mathbb{N}, n \geq n_0 \Rightarrow \frac{1}{n+1} \leq y$ Proof
 Let n = 1, y = 1

Let
$$n_0 = 1, y = \frac{1}{2}$$
.
 $\frac{1}{n+1} \le \frac{1}{n_0+1}$ (since $n \ge n_0$)
 $= \frac{1}{1+1}$
 $= \frac{1}{2}$
Thus, $\frac{1}{n+1} \le \frac{1}{2}$

(b) Proof

Let $f: \mathbb{N} \to \mathbb{R}^{\geq 0}$ be a function. Assume that $\forall x, y \in \mathbb{R}, x > y \Rightarrow f(x) < f(y)$.

We want to prove $\exists a \in \mathbb{N}, \exists b \in \mathbb{R}^{\geq 0}, \forall n \in \mathbb{N}, n \geq a \Rightarrow f(n) \leq b$. Let $a = 1, n \in \mathbb{N}$ and $n \geq a$. Let b = f(a). Because of the assumption and $n \geq a$, $f(n) \leq f(a) = b$ Thus, $\exists a \in \mathbb{N}, \exists b \in \mathbb{R}^{\geq 0}, \forall n \in \mathbb{N}, n \geq a \Rightarrow f(n) \leq b$.

(c) Proof

Let $f_1: \mathbb{N} \to \mathbb{R}^{\geq 0}$ and $f_2: \mathbb{N} \to \mathbb{R}^{\geq 0}$ be functions. Assume f_1 and f_2 are eventually founded, which means: $(\exists a_1 \in \mathbb{N}, \exists b_1 \in \mathbb{R}^{\geq 0}, \forall n_1 \in \mathbb{N}, n_1 \geq a_1 \Rightarrow f_1(n_1) \leq b_1)$, $(\exists a_2 \in \mathbb{N}, \exists b_2 \in \mathbb{R}^{\geq 0}, \forall n_2 \in \mathbb{N}, n_2 \geq a_2 \Rightarrow f_2(n_2) \leq b_2)$. We want to prove $\exists a_3 \in \mathbb{N}, \exists b_3 \in \mathbb{R}^{\geq 0}, \forall n_3 \in \mathbb{N}, n_3 \geq a_3 \Rightarrow (f_1 \times f_2)(n_3) \leq b_2$. Let $a_3 = a_1 + a_2$. Let $b_3 = b_1 * b_2$. Let $n_3 \in \mathbb{N}$, assume $n_3 \geq a_3$. From the previous assumptions, since $n_3 \geq a_3 \geq a_1$, $f_1(n_3) \leq b_1$. Since $n_3 \geq a_3 \geq a_2$, $f_2(n_3) \leq b_2$. $(f_1 \times f_2)(n_3)$

 $= f_1(n_3) * f_2(n_3)$

 $\leq b_1 * b_2$ (since b_1, b_2 all larger than 0) = b_3

Thus, $\exists a_3 \in \mathbb{N}, \exists b_3 \in \mathbb{R}^{\geq 0}, \forall n_3 \in \mathbb{N}, n_3 \geq a_3 \Rightarrow (f_1 \times f_2)(n_3) \leq b_2$