Name: SHEIK PAREETH

Deep learning ¶

ANN

In [8]:

```
#normal library
import numpy as np
import pandas as pd
```

In [7]:

```
# vizualisation library
import matplotlib.pyplot as plt
import pydot
import seaborn as sns
```

In [6]:

```
#evaluation library
from sklearn.metrics import confusion_matrix
from sklearn.metrics import accuracy_score
from sklearn.model_selection import GridSearchCV
```

In [5]:

```
#deep learning libraries
import tensorflow as tf
from tensorflow.keras import layers
import keras
from keras.models import Sequential
from keras.layers.core import Dense,Activation,Dropout
from keras.datasets import mnist
from keras.utils.np_utils import to_categorical
from keras.wrappers.scikit_learn import KerasClassifier
```

In [4]:

```
import tensorflow as tf
```

In [11]:

```
#Digit MNIST dataset
(X_train_digit, y_train_digit), (X_test_digit, y_test_digit) = mnist.load_data()
```

In [13]:

X_train_digit[3]

Out[13]:

array([[0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,
7 ()	0,	0,	0,	0,		ø,	0,	0,	0,	ø,		ø,	-
-	0,	0],											
[0,	0,	0,	0,	0,	0,	0,		0,	0,	0,	0,	-
	0, 0,	0, 0],	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,
]	0, 0,	0 _] ,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,
L	0,	0,	0,	0,		0,	0,	0,	0,	0,	0,	0,	0,
	0,	0],	-	,	,	,	-,					,	
[0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,
	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,
_	0,	0],											
[0,	0,	0,	0,		-	0,		0,	0,		0,	-
	0,	0,		0,	0,	0,	0,	0,	0,	0,	0,	0,	0,
[0, 0,	0], 0,		0,	0,	a	0,	0,	0,	0,	0,	0,	0,
L	0,	0,		0,					63,	0,		0,	0,
	0,	0],		•,	٠,	,		,	00,	٠,	•,	٠,	•,
[ø,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,
	0,	0,	0,	0,	96,	244,	251,	253,	62,	0,	0,	0,	0,
	0,	0],											
[0,	0,		0,	-	-	0,	-	0,	0,	0,	0,	0,
	0,	0,	0,	0,	127,	251,	251,	253,	62,	0,	0,	0,	0,
[0, 0,	0], 0,		0,	0,	a	0,	0,	0,	0,	0,	0,	0,
L	0, 0,	0,		-	236,	-	-	-	8,	0,		0,	0,
	0,	0], 0],		00,		,	,	32,	Ο,	Ο,	Ο,	Ο,	Ο,
[ø,	0,		0,	0,	0,	0,	0,	0,	0,	0,	0,	0,
_	0,	0,	60,	228,	251,	251,	94,	0,	0,	0,	0,	0,	0,
	0,	0],											
[0,	0,	0,		0,		0,	0,	0,	0,		0,	-
	0,			253,	253,	189,	0,	0,	0,	0,	0,	0,	0,
г	0,	0], 0		a	a	a	0,	0,	a	0,	0,	a	a
[0, 0,	0, 20.	0, 253.	0, 251.	0, 235,				0, 0,			0, 0,	
	0,	20, 0],		,	233,	00,	٠,	٠,	Ο,	Ο,	٠,	0,	0,
]	0,			0,	0,	0,	0,	0,	0,	0,	0,	0,	0,
_		205,					0,	0,	0,	0,	0,	0,	
	0,	0],											
_		0,			0,	0,	0,	0,	0,	0,			-
:	-	251,	-	184,	15,	0,	0,	0,	0,	0,	0,	0,	0,
г	0, a	0],		0,	0,	0,	a	0,	a	0,	0,	a	80,
	0, 240.	251,	0, 193.			0, 0,	0, 0,	0, 0,	0, 0,	0, 0,		0, 0,	-
•	240, 0,	0],		23,	0,	٠,	٠,	0,	0,	0,	٠,	٠,	0,
[ø,	0,		0,	0,	0,	0,	0,	0,	0,	0,	32,	253,
		253,		0,	0,	0,	0,	0,	0,			0,	
	0,	0],											
_		0,		0,	0,	0,	0,	0,	0,			151,	-
:		251,		0,	0,	0,	0,	0,	0,	0,	0,	0,	0,
г	0, 0,	0], 0,		0,	0,	0,	0,	0,	0,	a	/1Ω	221,	251
_		172,		0, 0,	0, 0,		0, 0,		0,			0,	
•	0,	0],		٠,	٠,	٠,	٠,	٠,	-,	٠,	٠,	٠,	٠,
[0,		0,	0,	0,	0,	0,	0,	0,	234,	251,	251,

0,

0,

0,

0,

0,

196,

12,

0,

0,

0,

0,

0,

0,

```
0],
   0,
          0,
                0,
                       0,
                                          0,
                                                 0,
                                                       0,
                             0,
                                    0,
                                                              0, 253, 251, 251,
   0,
                                                                                 0,
  89,
          0,
                0,
                       0,
                             0,
                                    0,
                                          0,
                                                 0,
                                                       0,
                                                              0,
                                                                    0,
                                                                           0,
   0,
          0],
          0,
                0,
                                          0,
                                                 0,
                                                       0, 159, 255, 253, 253,
   0,
                       0,
                             0,
                                    0,
          0,
                             0,
  31,
                0,
                       0,
                                    0,
                                          0,
                                                 0,
                                                       0,
                                                              0,
                                                                    0,
                                                                           0,
          0],
   0,
   0,
                0,
                       0,
                                    0,
          0,
                                          0,
                                                 0,
                                                      48, 228, 253, 247, 140,
                             0,
                       0,
   8,
          0,
                0,
                             0,
                                          0,
                                                 0,
                                                       0,
                                                              0,
                                                                    0,
                                                                           0,
                                    0,
   0,
          0],
          0,
                0,
                             0,
                                          0,
                                                 0,
                                                      64, 251, 253, 220,
                                                                                 0,
   0,
                       0,
                                    0,
          0,
   0,
                0,
                       0,
                             0,
                                    0,
                                          0,
                                                 0,
                                                       0,
                                                              0,
                                                                    0,
                                                                           0,
                                                                                 0,
   0,
          0],
   0,
          0,
                0,
                       0,
                             0,
                                    0,
                                          0,
                                                 0,
                                                      64, 251, 253, 220,
                                                                                 0,
0,
          0,
                0,
                       0,
                             0,
                                    0,
                                          0,
                                                 0,
                                                       0,
                                                              0,
                                                                    0,
                                                                                 0,
   0,
          0],
                                                      24, 193, 253, 220,
   0,
          0,
                0,
                       0,
                             0,
                                    0,
                                          0,
                                                 0,
                                                                                 0,
                                          0,
   0,
          0,
                0,
                       0,
                             0,
                                    0,
                                                 0,
                                                       0,
                                                              0,
                                                                    0,
                                                                           0,
                                                                                 0,
          0],
   0,
          0,
                0,
                                          0,
                                                 0,
                                                       0,
                                                              0,
                                                                           0,
   0,
                       0,
                             0,
                                    0,
                                                                    0,
                                                                                 0,
                                                 0,
                                                       0,
   0,
          0,
                0,
                       0,
                             0,
                                    0,
                                          0,
                                                              0,
                                                                    0,
                                                                           0,
                                                                                 0,
          0],
   0,
   0,
          0,
                0,
                       0,
                             0,
                                    0,
                                          0,
                                                 0,
                                                       0,
                                                              0,
                                                                    0,
                                                                           0,
                                                                                 0,
                0,
                                          0,
                                                 0,
   0,
          0,
                       0,
                             0,
                                    0,
                                                       0,
                                                              0,
                                                                    0,
                                                                           0,
                                                                                 0,
   0,
          0],
0,
          0,
                0,
                       0,
                             0,
                                    0,
                                          0,
                                                 0,
                                                       0,
                                                              0,
                                                                    0,
                                                                           0,
                                                                                 0,
                0,
                       0,
                             0,
                                          0,
                                                 0,
                                                       0,
                                                                    0,
                                                                                 0,
   0,
          0,
                                    0,
                                                              0,
                                                                           0,
          0]], dtype=uint8)
```

In [14]:

```
#Names of numbers in the dataset in order
col_names = ['Zero','One','Two','Three','Four','Five','Six','Seven','Eight','Nine']
```

In []:

```
#Visualizing the digits
plt.figure(figsize=(10,10))
for i in range(15):
    plt.subplot(5,5,i+1)
    plt.xticks([])
    plt.yticks([])
    plt.imshow(X_train_digit[i], cmap='gray')
    plt.xlabel(col_names[y_train_digit[i]])
plt.show()
```

In [15]:

```
X_train_digit.shape
```

Out[15]:

(60000, 28, 28)

```
In [16]:
```

```
X_test_digit.shape
```

Out[16]:

(10000, 28, 28)

In [17]:

```
#Preprocessing the input-Converting 3d to 2d
X_train_digit = X_train_digit.reshape(60000, 784)
X_test_digit = X_test_digit.reshape(10000, 784)
```

In [18]:

X_train_digit[3]

Out[18]:

0, array([0, 124, 253, 255, 63, 0, 244, 0, 96, 251, 253, 0, 0, 62, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0. 0, 0, 0, 0, 0, 0, 0, 127, 251, 251, 253, 0, 62, 0, 236, 251, 0, 0, 68, 211, 31, 0, 0, 0, 0, 8, 0, 60, 228, 251, 251, 94, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 155, 253, 0, 0, 0, 0, 0, 0, 253, 189, 0, 20, 253, 251, 0, 0, 235, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 32, 205, 0, 0, 0, 0, 0, 0, 0, 0, 253, 251, 126, 0, 251, 104, 253, 184, 0, 0, 0, 15, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 80, 240, 251, 193, 0, 23, 0, 32, 253, 253, 253, 0, 0, 0, 159, 0, 151, 251, 251, 251, 39, 0, 48, 221, 251, 251, 0, 0, 172, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 234, 251, 251, 196, 0, 0, 0, 0, 0, 0, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 253, 251, 251, 89, 0, 159, 255, 253, 0, 0, 0, 253, 31, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 48, 228, 0, 0, 0, 0, 0, 0, 0, 140, 253, 247, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 251, 253, 0, 220, 64, 0, 64, 251, 253, 220, 24, 193, 253, 220, 0,

```
0,
            0,
                  0,
                         0,
                               0,
                                            0,
                                                        0,
                                                              0,
                                                                           0,
                                     0,
                                                                     0,
0,
      0,
            0,
                  0,
                         0,
                               0,
                                     0,
                                            0,
                                                  0,
                                                        0,
                                                              0,
                                                                     0,
                                                                           0,
      0,
            0,
                         0,
                               0,
                                            0,
                                                              0,
                                                                           0,
0,
                  0,
                                     0,
                                                  0,
                                                        0,
                                                                     0,
                                                                           0,
                  0,
                                                  0,
0,
      0,
            0,
                         0,
                               0,
                                     0,
                                            0,
                                                        0,
                                                              0,
                                                                     0,
0,
      0,
            0,
                  0,
                         0,
                               0,
                                     0,
                                            0,
                                                  0,
                                                        0,
                                                              0,
                                                                           0,
0,
            0,
                  0], dtype=uint8)
      0,
```

In [19]:

```
#Encoding Digit MNIST Labels
y_train_digit = to_categorical(y_train_digit, num_classes=10)
y_test_digit = to_categorical(y_test_digit, num_classes=10)
```

In [24]:

```
y_train_digit[2]
```

Out[24]:

```
array([0., 0., 0., 0., 1., 0., 0., 0., 0., 0.], dtype=float32)
```

In [25]:

```
#Creating base neural network
model = keras.Sequential([
    layers.Dense(256, activation='relu', input_shape=(784,)),
    #Layers.Dropout(0.3),
    #Layers.BatchNormalization(),
    layers.Dense(64, activation='relu'),
    #Layers.Dropout(0.3),
    #Layers.Dense(64, activation='relu'),
    #Layers.Dropout(0.3),
    #Layers.BatchNormalization(),
    layers.BatchNormalization(),
    layers.Dense(10,activation='sigmoid'),
])
```

In [26]:

model.summary()

Model: "sequential"

Layer (type)	Output Shape	Param #
dense (Dense)	(None, 256)	200960
dense_1 (Dense)	(None, 64)	16448
dense_2 (Dense)	(None, 64)	4160
dense_3 (Dense)	(None, 10)	650

Total params: 222,218 Trainable params: 222,218 Non-trainable params: 0

```
In [27]:
```

```
#Compiling the model
model.compile(loss="categorical_crossentropy",optimizer="adam",metrics = ['accuracy'])
```

In [28]:

```
history=model.fit(X_train_digit, y_train_digit, batch_size=100, epochs=10, validation_data=(
Epoch 1/10
600/600 [============= ] - 14s 16ms/step - loss: 1.3529 - ac
curacy: 0.8536 - val_loss: 0.3168 - val_accuracy: 0.9181
Epoch 2/10
600/600 [============= ] - 8s 14ms/step - loss: 0.2337 - acc
uracy: 0.9393 - val_loss: 0.2119 - val_accuracy: 0.9425
Epoch 3/10
600/600 [================ ] - 7s 12ms/step - loss: 0.1565 - acc
uracy: 0.9564 - val_loss: 0.2014 - val_accuracy: 0.9478
Epoch 4/10
uracy: 0.9659 - val_loss: 0.2004 - val_accuracy: 0.9480
Epoch 5/10
600/600 [============== ] - 7s 11ms/step - loss: 0.1066 - acc
uracy: 0.9695 - val_loss: 0.1503 - val_accuracy: 0.9595
Epoch 6/10
600/600 [================ ] - 7s 12ms/step - loss: 0.0833 - acc
uracy: 0.9754 - val_loss: 0.1707 - val_accuracy: 0.9600
Epoch 7/10
600/600 [=============== ] - 8s 13ms/step - loss: 0.0868 - acc
uracy: 0.9754 - val_loss: 0.1424 - val_accuracy: 0.9666
Epoch 8/10
600/600 [================ ] - 8s 13ms/step - loss: 0.0760 - acc
uracy: 0.9776 - val_loss: 0.1425 - val_accuracy: 0.9676
Epoch 9/10
600/600 [============ ] - 7s 11ms/step - loss: 0.0779 - acc
uracy: 0.9779 - val_loss: 0.1260 - val_accuracy: 0.9698
Epoch 10/10
600/600 [============ ] - 11s 18ms/step - loss: 0.0638 - ac
curacy: 0.9812 - val loss: 0.1411 - val accuracy: 0.9664
In [29]:
test loss digit, test acc digit = model.evaluate(X test digit, y test digit)
313/313 [=============== ] - 7s 8ms/step - loss: 0.1411 - accu
racy: 0.9664
In [30]:
print("Digit MNIST Test accuracy:", round(test acc digit,4))
Digit MNIST Test accuracy: 0.9664
In [31]:
#Predicting the labels-DIGIT
y_predict = model.predict(X_test_digit)
```

```
In [32]:
y_predict[0]
Out[32]:
array([4.8274117e-11, 8.5088217e-01, 6.5431267e-02, 3.1192201e-01,
       5.3272545e-03, 4.4774115e-03, 1.1904573e-11, 9.9999940e-01,
       1.4269352e-03, 8.6200720e-01], dtype=float32)
In [33]:
# Here we get the index of maximum value in the encoded vector
y_predicts=np.argmax(y_predict, axis=1)
y_test_digit_eval=np.argmax(y_test_digit, axis=1)
In [35]:
y_predicts[0]
Out[35]:
7
In [36]:
y_test_digit_eval
Out[36]:
array([7, 2, 1, ..., 4, 5, 6], dtype=int64)
```

y_pre=pd.DataFrame(y_predicts)

In [38]:

y_pre

Out[38]:

	0	
0	7	
1	2	
2	1	
3	0	
4	4	
9995	2	
9996	3	
9997	4	
9998	5	
9999	6	

10000 rows × 1 columns

In [39]:

```
#Confusion matrix for Digit MNIST
con_mat=confusion_matrix(y_test_digit_eval,y_predicts)
plt.style.use('seaborn-deep')
plt.figure(figsize=(10,10))
sns.heatmap(con_mat,annot=True,annot_kws={'size': 15},linewidths=0.5,fmt="d",cmap="gray")
plt.title('True or False predicted digit MNIST\n',fontweight='bold',fontsize=15)
plt.show()
```

True or False predicted digit MNIST

In [40]:

```
#classification report
from sklearn.metrics import classification_report
print(classification_report(y_test_digit_eval,y_predicts))
```

	precision	recall	f1-score	support
0	0.94	0.99	0.96	980
1	0.92	0.99	0.95	1135
2	0.94	0.87	0.91	1032
3	0.96	0.96	0.96	1010
4	0.95	0.98	0.96	982
5	0.98	0.94	0.96	892
6	0.96	0.91	0.93	958
7	0.97	0.97	0.97	1028
8	0.91	0.97	0.94	974
9	0.97	0.92	0.95	1009
accuracy			0.95	10000
macro avg	0.95	0.95	0.95	10000
weighted avg	0.95	0.95	0.95	10000

In [41]:

```
print(history.history.keys())
```

dict_keys(['loss', 'accuracy', 'val_loss', 'val_accuracy'])

In [42]:

```
# summarize history for accuracy
plt.plot(history.history['accuracy'])
plt.plot(history.history['val_accuracy'])
plt.title('model accuracy')
plt.ylabel('accuracy')
plt.xlabel('epoch')
plt.legend(['train', 'test'], loc='best')
plt.show()
```


In [43]:

```
#Loss graph
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('model loss')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(['train', 'test'], loc='best')
plt.show()
```


In [44]:

```
#tf.expand_dims(X_test_digit[0])
y_predict_single = model.predict(X_test_digit[[2]])
y_predicts_single=np.argmax(y_predict_single, axis=1) # Here we get the index of maximum va
y_test_digit_eval=np.argmax(y_test_digit, axis=1)
```

In [45]:

```
y_predicts_single[0]
```

Out[45]:

1

In [46]:

```
#Names of numbers in the dataset in order
col_names = ['Zero','One','Two','Three','Four','Five','Six','Seven','Eight','Nine']
```

In [47]:

```
#Visualizing the digits
#plt.figure(figsize=(10,10))
plt.imshow(X_test_digit[2].reshape(28,28), cmap='gray')
plt.xlabel("Actual:{},Pred:{}".format(col_names[np.argmax(y_test_digit[2])],col_names[y_preplt.show()
```

