

Teorema del Límite Central (TLC)

- Introducción
- · TLC para la media
- · Estimación de la varianza
- · Procedimiento básico
- Relación de Varianzas (F)
- Ejemplos

Introducción

El **Teorema del Límite Central (TLC)** establece que, bajo condiciones generales, la *media muestral* de una muestra aleatoria independiente e idénticamente distribuida (iid) se aproxima a una distribución normal cuando el tamaño muestral es grande, aun si la población original no es normal.

Su utilidad central: justificar el uso de la aproximación normal para construir intervalos y contrastes basados en la media muestral y, por extensión, comprender el comportamiento asintótico de otros estimadores.

llustración animada: al aumentar n, la media muestral tiende a normalidad.

TLC para la media (estimación puntual de μ)

Supuestos mínimos: X_1, \ldots, X_n iid con media μ y varianza finita σ^2 .

Enunciado práctico

Sea $ar{X} = rac{1}{n} \sum_{i=1}^n X_i.$ Entonces, cuando n es grande,

$$ar{X} \, pprox \, \mathcal{N}\!\!\left(\mu, \, rac{\sigma^2}{n}
ight)\!.$$

Equivalente estandarizado:

$$Z_n = rac{ar{X} - \mu}{\sigma/\sqrt{n}} \, \stackrel{d}{
ightarrow} \, \mathcal{N}(0,1).$$

En la práctica, se sustituye σ por s (desviación estándar muestral). Para poblaciones normales y n pequeño, $\frac{\bar{X}-\mu}{s/\sqrt{n}}$ sigue una t de Student con n-1 g.l.

Estimador puntual de la media

• Estimador: $\hat{\mu} = \bar{X}$.

• Insesgado: $\mathbb{E}[ar{X}] = \mu$.

• Varianza: $\mathrm{Var}(ilde{X}) = \sigma^2/n$.

ullet Consistencia: $ar{X}
ightarrow \mu$ en probabilidad.

Estimación puntual de la varianza (σ^2)

El estimador clásico de la varianza poblacional es

$$S^2 = rac{1}{n-1} \sum_{i=1}^n (X_i - ar{X})^2, \quad \mathbb{E}[S^2] = \sigma^2.$$

Distribución bajo normalidad

- Si la población es normal, entonces $\left(n-1
ight)S^2/\sigma^2 \sim \chi^2_{n-1}$.

• Además, $\operatorname{Var}(S^2) = \frac{2\sigma^4}{n-1}$.

Comportamiento asintótico general

Sin normalidad, si existe el cuarto momento,

$$\sqrt{n}\left(S^2-\sigma^2
ight) \stackrel{d}{
ightarrow} \mathcal{N}ig(0,\; au^2ig), \quad au^2=\mu_4-\sigma^4,$$

donde $\mu_4=\mathbb{E}[(X-\mu)^4]$. Para poblaciones normales, $\mu_4=3\sigma^4$ y se recupera $\mathrm{Var}(S^2)pprox 2\sigma^4/n$.

Procedimiento básico de estimación puntual

- 1. Plantear supuestos: iid, media y varianza finitas; normalidad si se usarán resultados exactos para S^2 .
- 2. Calcular estimadores: $ar{X}$ y S^2 .
- 3. Evaluar aproximación: tamaño de muestra, asimetría/atípicos.
- 4. Reportar: valores puntuales y errores estándar:
 - $\mathsf{EE}(\bar{X}) = s / \sqrt{n}$.
 - $\mathrm{EE}(S^2) \approx \sqrt{2}\,s^2/\sqrt{n}$ si normalidad (o usar $\hat{\tau}$ en general).

Relación de Dos Varianzas (Distribución F)

Para comparar las varianzas de dos poblaciones independientes y normales, utilizamos la distribución F. El estadístico F se define como la razón de las dos varianzas muestrales:

$$F = rac{S_1^2}{S_2^2} \sim F_{(n_1-1,\; n_2-1)}$$

Donde S_1^2 es la varianza de la muestra 1 (de tamaño n_1) y S_2^2 es la varianza de la muestra 2 (de tamaño n_2). Los valores n_1-1 y n_2-1 son los grados de libertad del numerador y del denominador, respectivamente.

Esta distribución es clave para la prueba F de igualdad de varianzas y para el Análisis de Varianza (ANOVA).

Ejemplos rápidos

			0

Media de tiempos (n=60)

Varianza de pesos (n=80)

Comparar Varianzas (F)

Dos grupos. $n_1 = 21, \, s_1^2 = 35$ $n_2 = 16, \, s_2^2 = 20$

Cálculo

 $ar{x}=12.4$, s=3.0 \Rightarrow EE($ar{X}$)= $3/\sqrt{60}=0.387$

 $s^2=25$. Si normalidad, EE (S^2) pprox

 $\sqrt{2}\cdot 25/\sqrt{80}=3.95$

Estadístico F: $F=rac{35}{20}=1.75$ Grados de libertad: 20,15

Conclusión

Por TLC, $\bar{X} \approx$ Normal. Estimación puntual: 12.4 (EE 0.387).

Estimación puntual de σ^2 : 25 (EE 3.95). Para no normal, ajustar con $\hat{ au}$.

El valor F de 1.75 se compara con un valor crítico de la tabla $F_{(20,15)}$ para decidir si las varianzas son diferentes.

▼ Nota sobre tamaños de muestra

Las reglas $n \geq 30$ o $n \geq 50$ son orientativas. Validar con inspección gráfica (histograma, boxplot) y medidas de asimetría.