Práctica_5_AB_06

- Ada Cembellín Arconada
- Marta Curieses González
- Ainara Diroche Lebrón

¿Será la media de altura de 1,65 en la población de la que se ha obtenido la muestra? Siendo α = 0,05

Hipótesis:

H0: μ = 1,65; H1: $\mu \neq$ 1,65

1. Supuestos:

Pruebas de normalidad

	Kolmogorov-Smirnov ^a			Shapiro-Wilk		
	Estadístico	gl	Sig.	Estadístico	gl	Sig.
Altura(metros)	,143	12	,200*	,928	12	,363

^{*.} Esto es un límite inferior de la significación verdadera.

Se mantiene la normalidad de la población de la variable altura porque Sig. es mayor que 0,05.

2. Estadístico de contraste:

Prueba para una muestra

T = 1,582

3. Distribución muestral:

T se distribuye según t_{11} .

4. Nivel crítico:

p = 0,142

5. Decisión:

Como $p > \alpha$, se mantiene la hipótesis nula. Por lo tanto, la media de altura en la población será 1,65 m .

a. Corrección de significación de Lilliefors