We claim:

1	1. A perpendicular recording write head, comprising:
2	a first and second ferromagnetic pole piece, the second pole piece with a front end
3	recessed from the ABS and magnetically connected to a back gap magnetically coupling
4	the first and second pole pieces;
5	a coil structure between the first and second ferromagnetic pole piece;
6	a write pole sub layer, formed over the second pole piece, the write pole sub layer
7	having a taper at a pole tip region toward the air bearing surface (ABS);
8	a magnetic material disposed on top of the write pole sub layer;
9	a laminated write pole layer, formed over the write pole sub layer, the laminated
10	write pole layer formed of high magnetic saturation material with interspersed non-
11	magnetic film magnetically coupled with the write pole sub layer;
12	a laminated write pole shaped from the laminated write pole layer;
13	a non-magnetic material encapsulating the write pole;
14	a ferromagnetic write shield layer disposed over the non-magnetic material
15	encapsulating the write pole; and
16	at least one ferromagnetic stud magnetically connecting the first pole piece and
17	the write shield layer.
1	2. The perpendicular recording write head of claim 1, wherein the write pole
2	further comprises a trapezoidal shape to prevent adjacent track writing when skew is
3	experienced while flying over the disk.

2 write pole includes a tapered portion. 1 4. The perpendicular recording write head of claim 1, wherein the encapsulating non-magnetic material further comprises a reactive ion etchable (RIEable) 2 3 material. 1 5. The perpendicular recording write head of claim 4, wherein the RIEable material is selected from a group of materials comprising TaO_x, SiO₂, Si₃N₄, Ta, W, 2 3 Al_2O_3 . 1 6. The perpendicular recording write head of claim 1, further comprising a write gap layer of non-magnetic materials formed on the top of the write pole layer. 2 1 7. The perpendicular recording write head of claim 1, further comprising an overcoat deposited over the fourth stud segments and the trailing shield. 2 1 8. The perpendicular recording write head of claim 1, wherein the pole tip is 2 laterally surrounded by a non-magnetic material.

The perpendicular recording write head of claim 1, wherein the laminated

1

3.

1	9. A magnetic head assembly that has a head surface, a read head and a
2	perpendicular recording write head, comprising:
3	the read head including:
4	ferromagnetic first and second shield layers; and
5	a read sensor located between the first and second shield layers; and
6	the perpendicular recording write head including:
7	a first and second ferromagnetic pole piece, the second pole piece with a
8	front end recessed from the ABS and magnetically connected to a back gap magnetically
9	coupling the first and second pole pieces;
10	a coil structure between the first and second ferromagnetic pole piece;
11	a write pole sub layer, formed over the second pole piece, the write pole
12	sub layer having a taper at a pole tip region toward the air bearing surface (ABS);
13	a magnetic material disposed on top of the write pole sub layer;
14	a laminated write pole layer, formed over the write pole sub layer, the
15	laminated write pole layer formed of high magnetic saturation material with interspersed
16	non-magnetic film magnetically coupled with the write pole sub layer;
17	a laminated write pole shaped from the laminated write pole layer;
18	a non-magnetic material encapsulating the write pole;
19	a ferromagnetic write shield layer disposed over the non-magnetic
20	material encapsulating the write pole; and
21	at least one ferromagnetic stud magnetically connecting the first pole piece
22	and the write shield layer.

- 1 10. The magnetic head assembly of claim 9, wherein the write pole further
 2 comprises a trapezoidal shape to prevent adjacent track writing when skew is experienced
 3 while flying over the disk.
- 1 11. The magnetic head assembly of claim 9, wherein the laminated write pole 2 includes a tapered portion.
- 1 12. The magnetic head assembly of claim 9, wherein the encapsulating non-2 magnetic material further comprises a RIEable material.
- 1 13. The magnetic head assembly of claim 12, wherein the RIEable material is selected from a group of materials comprising TaO_x, SiO₂, Si₃N₄, Ta, W, Al₂O₃.
- 1 14. The magnetic head assembly of claim 9, further comprising a write gap
 2 layer of non-magnetic materials formed on the top of the write pole layer.
- 1 15. The magnetic head assembly of claim 9, further comprising an overcoat deposited over the fourth stud segments and the trailing shield.
- 1 16. The magnetic head assembly of claim 9, wherein the pole tip is laterally 2 surrounded by a non-magnetic material.

1	17. A method of making a perpendicular recording write head, which has a
2	head surface comprising:
3	forming a first and second ferromagnetic pole piece, the second pole piece with a
4	front end recessed from the ABS and magnetically connected to a back gap magnetically
5	coupling the first and second pole pieces;
6	forming a coil structure between the first and second ferromagnetic pole piece;
7	forming, over the second pole piece, a write pole sub layer having a taper at a pole
8	tip region toward the air bearing surface (ABS);
9	forming a magnetic material on top of the write pole sub layer;
10	forming, over the write pole sub layer, a laminated write pole layer of high
11	magnetic saturation material with interspersed non-magnetic film magnetically coupled
12	with the write pole sub layer;
13	shaping a laminated write pole from the laminated write pole layer using reactive
14	ion etching;
15	encapsulating the write pole in a non-magnetic material;
16	forming a ferromagnetic write shield layer over the non-magnetic material
17	encapsulating the write pole; and
18	forming at least one ferromagnetic stud magnetically connecting the first pole
19	piece and the write shield layer.

The method of claim 17, wherein the shaping further comprises forming, 1 18. 2 of a CMP stop layer and an ion mill mask, a hard mask layer having a shape of a desired write pole on top of the laminated write pole layer and reactive ion etching laminated 3 4 write pole layer to form the write pole. 1 19. The method of claim 17, wherein the defining the write pole further 2 comprises shaping the write pole with a trapezoidal shape to prevent adjacent track 3 writing when skew is experienced while flying over the disk. 1 20. The method of claim 17, wherein the laminated write pole includes a 2 tapered portion. 1 21. The method of claim 17, wherein the depositing the magnetic material on top of the write pole sub layer further comprises patterning a non-magnetic sacrificial 2 3 layer to form a write pole sub layer having a taper at a pole tip region toward the air bearing surface and planarizing the magnetic material to expose the top surface of write 4 5 pole sub layer. 1 22. The method of claim 21, wherein the planarizing the magnetic material 2 comprises chemical mechanical polishing (CMP).

sacrificial layer is formed by ion mill or reactive ion etching.

The method of claim 21, wherein the patterning the non-magnetic

23.

1

2

1 24. The method of claim 17, wherein the encapsulating the write pole in a 2 non-magnetic material further comprises using a RIEable material. 1 25. The method of claim 24, wherein the RIEable material is selected from a group of materials comprising TaO_x, SiO₂, Si₃N₄, Ta, W, Al₂O₃. 2 The method of claim 17, further comprising depositing a CMP stop layer 1 26. 2 after depositing the encapsulating non-magnetic layer for better CMP control. 1 27. The method of claim 17, further comprising depositing a write gap layer 2 of non-magnetic materials on the top of the write pole layer. 1 28. The method of claim 17, wherein the forming the trailing shield further 2 comprises forming a trailing shield photoresist, forming the trailing shield and lifting the 3 resist off. 1 29. The method of claim 17, wherein the forming the trailing shield further 2 comprises depositing a seed-layer on top of a write gap, plating the trailing shield and 3 removing exposed seed-layer. 1 30. The method of claim 17, further comprising depositing an overcoat over 2 the fourth stud segments and the trailing shield.

The method of claim 17, wherein the pole tip is laterally surrounded by a

31.

non-magnetic material.

1

2