第1章

数え上げ幾何学

数え上げ幾何学の古典的な問題として、次の問題を考える:

3次元空間中の与えられた4本直線すべてを通る直線は何本存在するか

当然 4 本の直線の位置関係によって答えは変わるが、ある程度一般の状況においてはそれは一定の本数であることが知られており、その値を具体的に計算することができる。この計算方法は Schubert 計算と呼ばれており、現代的には Grassmann 多様体のコホモロジー環の構造を記述することと対応している。

第3章では代数幾何学の言葉を使うが、いくつかの結果は証明せず認めることにする。また、本章で環はすべて可換環を指しているものとする。

1.1 基本的な代数幾何学

数え上げ幾何学について述べる前に、いくつか代数幾何学の言葉を用いるのでその定義をしておく。

1.1.1 代数的集合と Zariski 位相

定義 1.1.1.1. k を体とする。直積集合 k^n を $\mathbb{A}^n(k)$ や \mathbb{A}^n と書き、n 次元アフィン空間という。

定義 1.1.1.2. S を $k[X_1, \cdots, X_n]$ の部分集合とする。

$$V(S) = \{ p \in \mathbb{A}^n \mid F(p) = 0 \text{ for all } F \in S \}$$

とする。V(S) の形の集合を \mathbb{A}^n の代数的集合という。

S の生成するイデアルを $\mathfrak a$ とすれば $V(S)=V(\mathfrak a)$ である。Hilbert の基底定理により体上の多項式環 $k[X_1,\cdots,X_n]$ は Noether 環であるからイデアル $\mathfrak a$ は有限生成である。 したがって $V(S)=V(F_1,\cdots,F_r)$ となる多項式 $F_1,\cdots,F_r\in k[X_1,\cdots,X_n]$ が存在する。

例 1.1.1.3. $V(0)=\mathbb{A}^n,\,V(1)=\varnothing$ である。k が無限体である場合、逆にイデアル $\mathfrak a$ に対して $V(\mathfrak a)=\mathbb{A}^n$ ならば $\mathfrak a=(0)$ である。

実際、 $\mathfrak{a} \neq 0$ であるとして $F \in \mathfrak{a}$ を 0 でも定数でもない多項式とする。F はある変数 X_i に関して 1 次以上であるからとくに X_1 を含むとする。 $F_* = F(X_1,1,\cdots,1) \in k[X_1]$ を考えると、 F_* の根は高々有限かつ、k は無限体であるから、 F_* 根でない X_1 、したがって $V(\mathfrak{a})$ に含まれない点が存在する。

 $V(\mathfrak{a})=\varnothing$ ならば $\mathfrak{a}=(1)$ となることは k が代数閉ならば成り立つが、それは Hilbert の零点定理の帰結である。

例 1.1.1.4. $k=\mathbb{R}$ とする。 $V(Y-X^2)\subset \mathbb{A}^2(\mathbb{R})$ は放物線 $y=x^2$ である。 $V(X^n)=V(X)\subset \mathbb{A}^2(\mathbb{R})$ は直線 x=0 である。

例 1.1.1.5. \mathbb{A}^1 の代数的集合は $\mathbb{A}^1, \varnothing$ と有限集合のいずれかである。実際 $V(F) = \{F \text{ orb}\}$ であるが、 $F \text{ orbital orbital$

命題 1.1.1.6. $S \subset T$ ならば $V(S) \supset V(T)$ である。

 $Proof.\ P\in V(T)$ ならば任意の $F\in S$ について、 $F\in S\subset T$ であるから F(P)=0. したがって $P\in V(S)$

命題 1.1.1.7. Aⁿ の代数的集合について

- (i) $V(0) = \mathbb{A}^n, V(1) = \emptyset$
- (ii) $V(S) \cup V(T) = V(ST)$, ただし $ST = \{ FG \mid F \in S, G \in T \}$
- (iii) $\bigcap_{\lambda \in \Lambda} V(S_{\lambda}) = V(\bigcup_{\lambda \in \Lambda} S_{\lambda})$

が成り立つ

Proof. (i) はよい

- (ii) $p\in V(S)\cup V(T)$ ならば任意の $F\in S, G\in T$ について F(p)=0 または G(p)=0 が成り立つから、FG(p)=F(p)G(p)=0. よって $p\in V(ST)$ である。逆に $p\in V(ST)$ かつ、 $p\notin V(T)$ であるとする。ある $G\in T$ があって $G(p)\neq 0$ であるから任意の $F\in S$ について 0=FG(p)=F(p)G(p) より F(p)=0. すなわち $p\in V(S)$
- (iii) $S_{\lambda} \subset \bigcup_{\lambda \in \Lambda} S_{\lambda}$ であるから、 $V(S_{\lambda}) \supset V(\bigcup_{\lambda \in \Lambda} S_{\lambda})$. よって $\bigcap_{\lambda \in \Lambda} V(S_{\lambda}) \supset V(\bigcup_{\lambda \in \Lambda} S_{\lambda})$. $p \in \bigcap_{\lambda \in \Lambda} V(S_{\lambda})$ ならば、任意の $F \in \bigcup_{\lambda \in \Lambda} S_{\lambda}$ に対して F(p) = 0 すなわち $p \in V(\bigcup_{\lambda \in \Lambda} S_{\lambda})$

命題 1.1.1.7 より、 \mathbb{A}^n には代数的集合 V(S) を閉集合とする位相が定まる。これを \mathbb{A}^n の Zariski 位相といい、以降 $\mathbb{A}^n=k^n$ にはいつもこの位相が入っているとする。

例 1.1.1.8. \mathbb{A}^1 における閉集合は \emptyset , \mathbb{A}^1 , (有限集合) であるから、Zariski 位相はいわゆる補有限位相である。

例 1.1.1.9. \mathbb{A}^{n^2} の座標を x_{ij} , $(i, j = 1, \dots, n)$ で表す。

 $V = V(\det(X_{ij})) = \{ (x_{ij}) \in \mathbb{A}^2 \mid \det(x_{ij}) = \sum_{\sigma \in \mathfrak{S}_n} \operatorname{sgn}(\sigma) x_{1\sigma(1)} \cdots x_{n\sigma(n)} = 0 \}$ とする。 $\operatorname{GL}_n(k) \subset \mathbb{A}^{n^2}$ を k に成分をもつ n 次正則行列のなす集合とすると

$$\operatorname{GL}_n(k) = \mathbb{A}^{n^2} \setminus V$$

であるから $GL_n(k)$ は \mathbb{A}^{n^2} の Zariski 開集合である。

例 1.1.1.10. \mathbb{A}^{nd} の座標を x_{ij} , $(1 \le i \le n, 1 \le j \le d)$ で表す。 $\mathcal{M}(d,n) \subset \mathbb{A}^{nd}$ をランク d の $n \times d$ 行列全

体のなす集合とする。 $A \in \mathbb{A}^{nd}$ に対して、A の i_1, \dots, i_d を取り出した小正方行列を A_{i_1, \dots, i_d} とする。

$$\mathbb{A}^{nd} \setminus \mathcal{M}(d, n) = \{ A \in \mathbb{A}^{nd} \mid \det A_{i_1, \dots, i_d} = 0, \text{ for all } 1 \le i_1 < \dots < i_d \le n \}$$

= $V(\{\det X_{i_1, \dots, i_d}\}_{i_1, \dots, i_d})$

よって $\mathcal{M}(d,n)$ は \mathbb{A}^{nd} の Zariski 開集合である。

命題 1.1.1.11. k を無限体とすると \mathbb{A}^n は Hausdorff でない。

Proof. 実際、空でない任意の 2 つの開集合 U,W に対して、 $\mathbb{A}^n \setminus U = V(F_1 \cdots, F_r)$ 、 $\mathbb{A}^n \setminus W = V(G_1, \cdots, G_s)$ と置けば、

$$U \cap W = (\mathbb{A}^n \setminus V(F_1, \dots, f_r)) \cap (\mathbb{A}^n \setminus V(G_1, \dots, G_s)) = \mathbb{A}^n \setminus (V(F_1, \dots, f_r) \cup V(G_1, \dots, G_s))$$

だが、

$$V(F_1, \dots, F_r) \cup V(G_1, \dots, G_s) = V(\{F_i G_i\}_{ij})$$

となる。U,W は空でないので $\{F_1,\cdots,F_r\},\{F_1,\cdots,G_s\}\neq\{0\}$ ゆえに、 $\{F_iG_j\}_{ij}\neq\{0\}$. したがって例 1.1.1.3 より $V(\{F_iG_j\}_{ij})\subsetneq\mathbb{A}^n$. よって

$$U \cap W \neq \emptyset$$

 \Box

命題 1.1.1.12. $\phi: \mathbb{A}^n \to \mathbb{A}^m$ が、ある多項式 $F_1, \dots, F_m \in k[X_1, \dots, X_n]$ に対して

$$\phi(x_1, \dots, x_n) = (F_1(x_1, \dots, x_n), \dots, F_m(x_1, \dots, x_n))$$

となる (これを多項式写像という) なら、φは Zariski 位相に関して連続である。

Proof. \mathbb{A}^m の閉集合 $V(G_1, \dots, G_r)$ に対して、

$$\phi^{-1}(V(G_1,\cdots,G_r))=V(G_1(F_1,\cdots,F_m),\cdots,G_r(F_1,\cdots,F_m))$$

が成り立つことから、 $\phi^{-1}(V(G_1,\cdots,G_r))$ は閉集合である。

例 1.1.1.13. $V \subset \mathbb{A}^{n^2+1}$ を $V = V(T\det(X_{ij}) - 1) = \left\{ ((x_{ij}), t) \in \mathbb{A}^{n^2+1} \mid t\det(x_{ij}) = 1 \right\}$ とする。 $\phi: V \to \operatorname{GL}_n(k)$ を

$$\phi((x_{ij}),t) = (x_{ij})$$

によて定め、 $\psi: \mathrm{GL}_n(k) \to V$ を $\psi((x_{ij})) = ((x_{ij}), \det(x_{ij})^{-1})$ によって定める。 ϕ, ψ は互いに逆の写像であるが、 ϕ は多項式写像なので連続である。 ψ の連続性を示す。 \mathbb{A}^{n^2+1} の閉集合 $V(F((X_{ij}),T))$ に対して、

$$V \cap V(F) = \{ ((x_{ij}), \det(x_{ij})^{-1}) \mid F((x_{ij}), \det(x_{ij})^{-1}) = 0 \}$$

であるから、十分大きい整数 $r \ge 0$ をとって

$$\psi^{-1}(V \cap V(F)) = \{ (x_{ij}) \in GL_n(k) \mid \det(x_{ij})^r F((x_{ij}), \det(x_{ij})^{-1}) = 0 \}$$

において $\det(x_{ij})^r F((x_{ij}), \det(x_{ij})^{-1})$ を多項式にすることができる。よって $\psi^{-1}(V \cap V(F))$ も閉集合である。一般の \mathbb{A}^{n^2+1} の閉集合に対しても同様である。よって $\mathrm{GL}_n(k) \approx V$ である。

すなわち $\mathrm{GL}_n(k)$ は \mathbb{A}^{n^2} の Zariski 開集合, \mathbb{A}^{n^2+1} の Zariski 閉集合どちらとみなしてもよいから、状況によって扱いやすいほうを選ぶ。

多項式環のイデアルが与えられたときにアフィン空間の部分集合を定めたが、逆にアフィン空間の部分集合からイデアルを作ることを考える。

定義 1.1.1.14. A を \mathbb{A}^n の部分集合とする。

$$I(A) = \{ F \in k[X_1, \dots, X_n] \mid F(p) = 0 \text{ for all } p \in A \}$$

をAのイデアルという。

例 1.1.1.15. \mathbb{A}^1 において、 $V(X^2) = \{0\}$ であるから、 $I(V(X^2)) = (X) \supsetneq (X^2)$ である。

命題 1.1.1.16. $A \subset B$ ならば $I(A) \supset I(B)$ である。

 $Proof. \ F \in I(B)$ ならば、すべての $p \in A \subset B$ に対して F(p) = 0. すなわち $F \in I(A)$

命題 1.1.1.17. 次が成り立つ。

- (i) $A \subset \mathbb{A}^n$ に対して $A \subset V(I(A))$, また I(V(I(A))) = I(A)
- (ii) $S \subset k[X_1, \dots, X_n]$ に対して $S \subset I(V(S))$, また V(I(V(S))) = V(S)

Proof. (i) $p \in A$ として任意の $F \in I(A)$ に対して定義より F(p) = 0. すなわち $p \in V(I(A))$. 1.1.1.16 より $I(V(I(A))) \subset I(A)$. $F \in I(A)$ ならば任意の $p \in V(I(A))$ に対して定義より F(p) = 0. すなわち $I(A) \subset I(V(I(A)))$

(ii) (i) と同様。

命題 1.1.1.18. V,W を \mathbb{A}^n の代数的集合とする。V=W であるための必要十分条件は I(V)=I(W) が成り立つことである。

Proof. 必要性は明らか。十分性を示す。V = V(S), W = V(T) とする。命題 1.1.1.17 より

$$V(S) = V(I(V(S))) = V(I(V(T))) = V(T)$$

1.1.2 アフィン多様体

定義 1.1.2.1. 位相空間 X の部分集合 V について、

X の閉集合 V_1, V_2 が $V = V_1 \cup V_2$ をみたすなら $V_1 = V$ または $V_2 = V$

をみたすとき、V を既約という。既約でない集合は可約であるという。空集合は既約ではないとする。

定義 1.1.2.2. \mathbb{A}^n の既約な代数的集合をアフィン多様体という。アフィン多様体の Zariski 開集合を準アフィン多様体という。

例 1.1.2.3. $V(X,Y) \subset \mathbb{A}^2$ はアフィン多様体である。実際 $V(X,Y) = \{(0,0)\}$ で 1 点集合は既約である。

例 1.1.2.4. $V(Y^2 - X^2) \subset \mathbb{A}^2$ はアフィン多様体でない。実際

$$V(Y^{2} - X^{2}) = V((Y - X)(Y + X)) = V(Y - X) \cup V(Y + X)$$

4

命題 1.1.2.5. 代数的集合 V がアフィン多様体となるための必要十分条件は I(V) が素イデアルとなることである。

Proof. V が可約であるとし、 $V = V_1 \cup V_2$, $\emptyset \subseteq V_1, V_2 \subseteq V$ とする。このとき

$$I(V) = I(V_1 \cup V_2) = I(V_1) \cap I(V_2)$$

である。 $\varnothing \subsetneq V_1, V_2 \subsetneq V$ より、 $F \in I(V_1) \setminus I(V)$, $G \in I(V_2) \setminus I(V)$ が存在するが、 $FG \in I(V_1) \cap I(V_2) = I(V)$ であるから、I(V) は素イデアルでない。

逆に I(V) が素イデアルでないとする。このとき $F,G \notin I(V)$ で $FG \in I(V)$ をみたすものが存在する。したがって

$$V \subset V(I(V)) \subset V(FG)$$

が成り立つ。よって

$$V = V \cap V(FG) = V \cap (V(F) \cup V(G)) = (V \cap V(F)) \cup V(\cap V(G))$$

 $F \notin I(V), G \notin I(V)$ より $V \cap V(F), V \cap V(G) \subsetneq V$. よって V は可約である。

例 1.1.2.6. $\operatorname{GL}_n(k)$ は \mathbb{A}^{n^2} の準アフィン多様体であり、 \mathbb{A}^{n^2+1} のアフィン多様体としての構造ももつ。実際 $\operatorname{GL}_n(k) = V(T\det(X_{ij})-1)$ であるが、 $T\det(X_{ij})-1$ は既約多項式である。 $k[(X_{ij}),T]$ は UFD なので $T\det(X_{ij})-1$ は素元。したがって $V(T\det(X_{ij})-1)$ は既約である。

以降 k は $\mathbb C$ などの代数閉体とする。代数閉体で考える理由の一つは次の事実である。

事実 1.1.2.7 (Hilbert の零点定理 [?]). k を代数閉体, \mathfrak{a} を $k[X_1, \cdots, X_n]$ のイデアルとする。 $I(V(\mathfrak{a})) = \sqrt{\mathfrak{a}}$ が成り立つ。

ここで、 $\sqrt{\mathfrak{a}}$ は \mathfrak{a} の根基と呼ばれるイデアルで、

$$\sqrt{\mathfrak{a}} = \{ F \in k[X_1, \cdots, X_n] \mid$$
ある整数 $n \ge 0$ で $F^n \in \mathfrak{a} \}$

で定義される。イデアルの根基に関しては、次の特徴づけがある。

$$\sqrt{\mathfrak{a}} = \bigcap_{\mathfrak{a} \in \mathfrak{p}} \mathfrak{p}$$

よってとくに、 \mathfrak{a} が素イデアルならば $\mathfrak{a} = \sqrt{\mathfrak{a}}$ が成り立つ (逆は一般に成り立たない*1)。

 $\sqrt{\mathfrak{a}}=\mathfrak{a}$ が成り立つとき、 \mathfrak{a} を根基イデアルという。 $V(\mathfrak{a})=V(\sqrt{\mathfrak{a}})$ に注意すると、事実 1.1.2.7 と命題 1.1.2.5 より、 \mathbb{A}^n の代数的集合は $k[X_1,\cdots,X_n]$ の根基イデアルと 1 対 1 に対応し、アフィン多様体は素イデアルと 1 対 1 に対応することがわかる。例 1.1.1.3 で述べたことを示そう。すなわち $V(\mathfrak{a})=\varnothing$ であるとすると $\mathfrak{a}=(1)$ となるのである。実際、このとき $\sqrt{\mathfrak{a}}=I(V(\mathfrak{a}))=I(\varnothing)=(1)$ ゆえに $\mathfrak{a}=(1)$ が従う。

定義 1.1.2.8. X を位相空間とする。X の既約な閉集合の列

$$Z_0 \subseteq Z_1 \subseteq Z_2 \subseteq \cdots \subseteq Z_n \subseteq X$$

の長さnの上限値をXの次元といい、 $\dim X = n$ と書く。

^{*1} 例えば a =

例 1.1.2.9. $\dim \mathbb{A}^n = n$ である。例えば、 \mathbb{A}^1 の既約閉集合は \mathbb{A}^1 と 1 点集合のみであるから、たしかに $\dim \mathbb{A}^1 = 1$ である。一般の場合の証明は省略する ([?])。

例 1.1.2.10. $V=V(Y-X^2)\subset \mathbb{A}^2$ について、 $\dim V=1$ であることを示す。 $\phi:\mathbb{A}^1\to V$ を $\phi(t)=(t,t^2)$ とすると ϕ は多項式写像なので、命題 1.1.1.12(Zariski 位相に関して) 連続である。逆に $\psi:V\to\mathbb{A}^1$ を $\psi(x,y)=x$ とすると ψ も多項式写像であるから連続である。 ϕ,ψ は互いに逆の写像であるから、 $\mathbb{A}^1\approx V$. よって $\dim V=1$

事実 1.1.2.11 ([?]). \mathbb{A}^n の任意の代数的集合は有限個のアフィン多様体の和集合で書ける

1.1.3 射影空間と射影多様体

次に4直線問題の舞台となる射影空間について解説し、射影空間においてもアフィン空間と同様に代数的集合が定義され、既約性や次元などの概念を定義する。

定義 1.1.3.1. $k^{n+1} \setminus \{0\}$ 上の同値関係 \sim を

 $z \sim w \Leftrightarrow$ ある $c \in k$ が存在してw = cz

と定義する。 $\mathbb{P}^n=(k^{n+1}\setminus\{0\})/\sim e^n$ 次元射影空間という。 $(x_0,x_1,\cdots,x_n)\in k^{n+1}$ の同値類を $[x_0:x_1:\cdots:x_n]$ と書いて、これを斉次座標という。自然な全射 $p:k^{n+1}\setminus\{0\}\to\mathbb{P}^n$ を射影化と呼ぶ。また、 $S\subset k^{n+1}\setminus\{0\}$ が任意の $\lambda\in k^\times$ に対して $\lambda S\subset S$ を満たすとき、p(S) を S の射影化と呼び、 $\mathbb{P}(S)$ と書いたりする。

射影空間においても、多項式の零点集合を定義したいが、アフィン空間と同じ方法ではうまくいかない。例えば、 $k=\mathbb{C},\,F=Y-X^2$ として $V=\left\{\,[x:y]\in\mathbb{P}^1\ \middle|\ F(x,y)=0\,\right\}$ を考えてみる。このとき F(1,1)=0 であるから、 $[1:1]\in V$ となるはずだが、[1:1]=[2:2] かつ $F(2,2)\neq 0$ であるから $[1:1]\notin V$ にもなってしまう。これを回避するには、多項式に少し制限を設けなければならない。

定義 1.1.3.2. $S \subset k[X_0, \cdots, X_n]$ を斉次多項式の集合とする。

$$V(S) = \{ [x_0 : x_1 : \cdots : x_n] \mid F(x_0, x_1, \cdots, x_n) = 0 \text{ for all } F \in S \}$$

を \mathbb{P}^n の代数的集合という。

F が d 次斉次多項式であるならば、 $\lambda \in k$ に対して $F(\lambda X_0, \cdots, \lambda X_n) = \lambda^d F(X_0, \cdots, X_n)$ が成り立つから、 $p = [x_0 : \cdots : x_n] \in \mathbb{P}^n$ に対して $p \in V(F)$ となることは p の代表元 (x_0, \cdots, x_n) の取り方によらない。また、アフィン空間の場合と同様、 $k[X_0, X_1, \cdots, X_n]$ は Noether 環であるから、S の有限個の元 F_1, \cdots, F_r をとることで $V(S) = V(F_1, \cdots, F_r)$ とすることができる。

命題 1.1.3.3. \mathbb{P}^n の代数的集合について次が成り立つ

- (i) $V(0) = \mathbb{P}^n, V(1) = \emptyset$
- (ii) S,T を斉次多項式の集合とする。 $V(S) \cup V(T) = V(ST)$
- (iii) $\{S_{\lambda}\}_{\lambda \in \Lambda}$ を斉次多項式の集合の族とする。 $\bigcap_{\lambda \in \Lambda} V(S_{\lambda}) = V(\bigcup_{\lambda \in \Lambda} S_{\lambda})$

Proof. 命題 1.1.1.7 と同様である。

命題 1.1.3.3 より、アフィン空間と同様射影空間にも、代数的集合を閉集合とする位相が定まる。これを Zariski 位相と呼び、以下射影空間にはいつもこの位相が入っているとする。

 $k^{n+1}\setminus\{0\}$ の部分集合 \tilde{U}_i を

$$\tilde{U}_i = \{ (x_0, x_1, \dots, x_n) \in k^{n+1} \setminus \{0\} \mid x_i \neq 0 \}$$

とする。 \tilde{U}_i の射影化を $U_i = p(\tilde{U}_i)$ とする。

$$U_i = \{ [x_0 : x_1 : \dots : x_n] \in \mathbb{P}^n \mid x_i \neq 0 \} = \{ [x_0 : \dots : x_{i-1} : 1 : x_{i+1} : \dots : x_n] \in \mathbb{P}^n \mid x_j \in k \}$$

また、写像 $\tilde{\varphi}_i: \tilde{U}_i \to \mathbb{A}^n$ を

$$\tilde{\varphi}_i(x_0, x_1, \cdots, x_n) = (\frac{x_0}{x_i}, \frac{x_1}{x_i}, \cdots, \frac{x_{i-1}}{x_i}, \frac{x_{i+1}}{x_i}, \cdots : \frac{x_n}{x_i})$$

によって定めると \tilde{U}_i の射影化 U_i に写像 $\varphi:U_i \to \mathbb{A}^n$ を誘導する。

$$\varphi([x_0:x_1:\cdots:x_n])=[\frac{x_0}{x_i}:\frac{x_1}{x_i}:\cdots:1:\cdots:\frac{x_n}{x_i}]$$

φ は全単射であり

$$\mathbb{P}^n = \bigcup_{i=0}^n U_i$$

がわかるが、さらに次が成り立つ。

命題 1.1.3.4. U_i は Zariski 開集合であり、 $\varphi: U_i \to \mathbb{A}^n$ は Zariski 位相に関して同相である。

Proof. 簡単のため、i=0 の場合についてのみ示す。

$$\mathbb{P}^n \setminus U_0 = \{ [x_0 : x_1 : \dots : x_n] \mid x_0 = 0 \} = V(X_0)$$

であるから U_0 は開集合である。 φ が連続であることを示す。斉次とはかぎらない多項式 $F\in k[X_1,\cdots,X_n]$ に対して \mathbb{A}^n の閉集合 V(F) を考える。ポイントになるのは F を「斉次化」する操作である。F の単項式の 最大次数を d とする。 $F^*\in k[X_0,X_1,\cdots,X_n]$ を

$$F^*(X_0, X_1, \cdots, X_n) = X_0^d F(\frac{X_1}{X_0}, \cdots, \frac{X_n}{X_0})$$

とおくと、 F^* は斉次多項式であり、 $\varphi^{-1}(V(F))=V(F^*)\cap U_0$ が成り立つことを示す。F に含まれる単項式 $X_1^{i_1}\cdots X_n^{i_n}$ について考えると、

$$X_0^d (\frac{X_1}{X_0})^{i_1} \cdots (\frac{X_n}{X_0})^{i_n} = X_0^{d - (i_1 + \dots + i_n)} X_1^{i_1} \cdots X_n^{i_n}$$

となるから、 F^* の単項式の次数はすべて d である。よって F^* は斉次多項式. $p=[x_0:x_1:\cdots:x_n]\in V(F^*)\cap U_0$ であるならば、

$$0 = F^*(x_0, x_1, \dots, x_n) = x_0^d F(\frac{x_1}{x_0}, \dots, \frac{x_n}{x_0})$$

 $x_0 \neq 0$ であるから

$$0 = F(\frac{x_1}{x_0}, \cdots, \frac{x_n}{x_0}) = F(\varphi(p))$$

したがって $p = [x_0: x_1: \dots: x_n] \in \varphi^{-1}(V(F))$. 逆に $p = [x_0: x_1: \dots: x_n] \in U_0$ が $p \in \varphi^{-1}(V(F))$ ならば

$$F(\frac{x_1}{x_0}, \cdots, \frac{x_n}{x_0}) = 0$$

したがって

$$F^*(x_0, x_1, \dots, x_n) = x_0^d F(\frac{x_1}{x_0}, \dots, \frac{x_n}{x_0}) = 0$$

よって $p\in V(F^*)$. したがって $\varphi^{-1}(V(F))$ は閉集合である。一般の \mathbb{A}^n の閉集合 $V(F_1,\cdots,F_r)$ について は、今の議論と同様 $\varphi^{-1}(V(F_1,\cdots,F_r))=V(F_1^*,\cdots,F_r^*)$ となることが示せるので、 φ は連続である。

次に $\psi: \mathbb{A}^n \to U_0$ を

$$\psi(x_1,\cdots,x_n)=[1:x_1:\cdots:x_n]$$

によって定める。 ψ は φ の逆写像であるので ψ が連続であることを示せばよい。 \mathbb{P}^n の閉集合 V(F) (ただし $F \in k[X_0, X_1, \cdots, X_n]$ は斉次多項式) に対して、 $F_* \in k[X_1, \cdots, X_n]$ を

$$F_*(X_1, \cdots, X_n) = F(1, X_1, \cdots, X_n)$$

とすると $\psi^{-1}(V(F) \cap U_0) = V(F_*)$ となる。実際、 $q = (x_1, \dots, x_n) \in V(F_*)$ であるならば

$$0 = F(1, x_1, \cdots, x_n)$$

ゆえに $\psi(q)=[1:x_1:\dots:x_n]\in V(F)\cap U_0$. 逆に $q=(x_1,\dots,x_n)\in\mathbb{A}^n$ が $\psi(q)\in V(F)\cap U_0$ ならば $F(1,x_1,\dots,x_n)=0$ であるので $q\in V(F_*)$. よって $\psi^{-1}(V(F)\cap U_0)$ は \mathbb{A}^n の閉集合である。一般の \mathbb{P}^n の 閉集合 $V(F_1,\dots,F_r)$ に対しても同様に $\psi^{-1}(V(F_1,\dots,F_r)\cap U_0)=V(F_{1*},\dots,F_{r*})$ となることが示せる ので ψ も連続である。

事実 1.1.3.5 ([?]). X を位相空間, U を X の空でない開集合とする。このとき $\dim X = \dim U$ である。

例 1.1.3.6. $\mathbb{P}^n=\bigcup_{i=0}^n U_i,\,U_i\approx\mathbb{A}^n$ より、 $\dim\mathbb{P}^n=n$ である。 $k=\mathbb{R},\mathbb{C}$ の場合、上で与えた射影空間の開被覆は C^∞ 多様体や複素多様体の構造も与える。

例 1.1.3.7. $\operatorname{GL}_n(k) \subset \mathbb{A}^{n^2}$ は Zariski 開集合であったから、 $\dim \operatorname{GL}_n(k) = n^2$ である。

定義 1.1.3.8. \mathbb{P}^n の既約閉集合を射影多様体という。

 $V=V(F_1,\cdots,F_r)\subset \mathbb{P}^n$ を射影多様体とする。 $\mathbb{P}^n=igcup_{i=0}^n U_i$ より、

$$V = \bigcup_{i=0}^{n} (V \cap U_i)$$

となるが、 $\varphi: U_i \to \mathbb{A}^n$ による同一視を思い出せば、例えば i=0 の場合

$$V \cap U_0 = \{ [x_0 : x_1 : \dots : x_n] \in U_0 \mid F_j(x_0, x_1, \dots, x_n) = 0 \text{ for all } j = 1, \dots, r \}$$

$$\approx \left\{ \left(\frac{x_1}{x_0}, \dots, \frac{x_n}{x_0} \right) \in \mathbb{A}^n \mid F_j(x_0, x_1, \dots, x_n) = 0 \text{ for all } j = 1, \dots, r \right\}$$

$$= \left\{ (x_1, \dots, x_n) \in \mathbb{A}^n \mid F_j(1, x_1, \dots, x_n) = 0 \text{ for all } j = 1, \dots, r \right\}$$

$$= V(F_{1*}, \dots, F_{r*})$$

 $V(F_{1*},\cdots,F_{r*})\subset\mathbb{A}^n$ は有限個のアフィン多様体の和集合で表せた (事実 1.1.2.11) から、すべての射影多様体 (さらに \mathbb{P}^n の代数的集合) はアフィン多様体の有限個の和集合で書ける。このようにアフィン多様体の貼り合わせになっているものや、その Zariski 開集合を総称して代数多様体という (より厳密な定義は存在するがここでは省略する)。また、それに付随して代数多様射の間の射や同型*2も定義されるが、ここでは扱わないことにする。

例 1.1.3.9. \mathbb{P}^1 の代数的集合は \emptyset , \mathbb{P}^1 , 有限集合のいずれかである。実際 \mathbb{P}^1 は 2 枚の \mathbb{A}^1 の貼り合わせであり \mathbb{A}^1 の真の代数的集合は有限集合のみである。

冒頭で述べた数え上げ問題において、「3 次元空間」というのは実は「3 次元複素射影空間」を指している。射影空間で考える理由として次2 つがある。

- \mathbb{P}^n における k 次元平面は k^{n+1} の k+1 次元線形部分空間と 1 対 1 に対応する。
- \mathbb{A}^n における平行線は \mathbb{P}^n において交わる

この性質によって \mathbb{P}^n では問題が簡単になるのである。これらのことを説明しよう。

定義 1.1.3.10. $F \in k[X_0, X_1, \cdots, X_n]$ を d 次斉次多項式とする。 $V(F) \subset \mathbb{P}^n$ を \mathbb{P}^n の d 次超曲面という。 とくに d=1 のときは超平面という。 $F_1, \cdots, F_r, (r \leq n)$ を 1 次斉次多項式で、

$$F_i = a_{i0}X_0 + \dots + a_{in}X_n$$

とおいたとき、行列

$$\begin{pmatrix} a_{10} & a_{11} & \cdots & a_{1n} \\ \vdots & \vdots & \cdots & \vdots \\ a_{r0} & a_{r1} & \cdots & a_{rn} \end{pmatrix}$$

のランクがr であるとする。このとき $V(F_1, \cdots, F_r)$ を \mathbb{P}^n の n-r 次元平面、または線形部分多様体という。 とくに r=n-1 のときは直線という。

 $V(F_1, \cdots, F_r)$ はベクトル空間 k^{n+1} の r+1 次元部分空間の射影化として得られる。実際、

$$\tilde{V} = \left\{ (x_0, x_1, \cdots, x_n) \middle| \begin{pmatrix} a_{10} & a_{11} & \cdots & a_{1n} \\ \vdots & \vdots & \cdots & \vdots \\ a_{r0} & a_{r1} & \cdots & a_{rn} \end{pmatrix} \begin{pmatrix} x_0 \\ x_1 \\ \vdots \\ x_n \end{pmatrix} = 0 \right\} \subset k^{n+1}$$

とおくと、 $V=p(\tilde{V}\setminus\{0\})$ である。したがって、とくに \mathbb{P}^n 中の直線全体を考えるときには、 k^{n+1} 中の平面全体を考えればよい。これは次節に Grassmann 多様体として定式化される。

例 1.1.3.11. 直線

$$L = \{ [x_0 : x_1 : x_2] \in \mathbb{P}^2 \mid x_0 - x_1 - x_2 = 0 \}$$

^{*2} 代数多様体 V 上の関数 f が、各点 p の近傍において多項式 F,G を用いて $f=\frac{G}{F}$ と表されるとき、f を正則関数という。代数多様体の間の写像 $\varphi:W\to V$ は V の正則関数の引き戻しが W の正則関数になるとき、代数多様体の射という。V,W が代数的集合の場合、多項式写像は代数多様体の射である。

を考えてみる。

$$L \cap U_0 = \{ [1:x_1:x_2] \in \mathbb{P}^2 \mid 1 - x_1 - x_2 = 0 \} \approx \{ (x,y) \in k^2 \mid 1 - x - y = 0 \} \subset \mathbb{A}^2$$

$$L \cap U_1 = \{ [x_0:1:x_2] \in \mathbb{P}^2 \mid x_0 - 1 - x_2 = 0 \} \approx \{ (x,y) \in k^2 \mid -1 + x - y = 0 \} \subset \mathbb{A}^2$$

$$L \cap U_2 = \{ [x_0:x_1:1] \in \mathbb{P}^2 \mid x_0 - x_1 - 1 = 0 \} \approx \{ (x,y) \in k^2 \mid x - y - 1 = 0 \} \subset \mathbb{A}^2$$

となって、L は各 $U_i \approx \mathbb{A}^2$ 上で直線のようにふるまっていることがわかる。

例 1.1.3.12. \mathbb{P}^2 中の 2 直線

$$L_1 = \{ [x_0 : x_1 : x_2] \in \mathbb{P}^2 \mid x_0 - x_1 - x_2 = 0 \}$$

$$L_2 = \{ [x_0 : x_1 : x_2] \in \mathbb{P}^2 \mid x_0 + x_1 + x_2 = 0 \}$$

を考える。

$$L_1 \cap U_0 \approx \{ (x, y) \in k^2 \mid -1 + x + y = 0 \} \subset \mathbb{A}^2$$

 $L_2 \cap U_0 \approx \{ (x, y) \in k^2 \mid 1 + x + y = 0 \} \subset \mathbb{A}^2$

ゆえに $L_1 \cap U_0$, $L_2 \cap U_0$ は平行である。一方で、

$$L_1 \cap L_2 = \left\{ \begin{array}{ll} [x_0:x_1:x_2] \in \mathbb{P}^2 \; \middle| \; \begin{array}{ll} x_0 - x_1 - x_2 & = 0 \\ x_0 + x_1 + x_2 & = 0 \end{array} \right\} = \left\{ [0:1:-1] \right\} \notin U_0$$

であるから、 \mathbb{A}^2 の平行線が \mathbb{P}^2 にまで拡張することで無限遠で交わっていると考えることができる。

例 1.1.3.13. k を代数閉体とする。 \mathbb{P}^n の d 次超曲面 S=V(F) と直線 $L=V(G_1,\cdots,G_{n-1})$ の交点は重複 もこめてちょうど d 個である。 $\tilde{V}(F),\,\tilde{V}(G_1,\cdots,G_{n-1})$ を \mathbb{A}^{n+1} における代数的集合とすれば、

$$V(F) \cap V(G_1, \dots, G_{n-1}) = p(\tilde{V}(F) \cap \tilde{V}(G_1, \dots, G_{n-1}) \setminus \{0\})$$

である。

$$G_i = a_{i0}X_0 + \dots + a_{in}X_n$$

とおけば

$$\tilde{V}(G_1, \dots, G_{n-1}) = \left\{ (x_0, x_1, \dots, x_n) \in \mathbb{A}^{n+1} \middle| \begin{pmatrix} a_{10} & a_{11} & \dots & a_{1n} \\ \vdots & \vdots & \dots & \vdots \\ a_{n-1,0} & a_{n-1,1} & \dots & a_{n-1,n} \end{pmatrix} \begin{pmatrix} x_0 \\ x_1 \\ \vdots \\ x_n \end{pmatrix} = 0 \right\}$$

$$= \left\{ (\alpha_0 x + \beta_0 y, \dots, \alpha_n x + \beta_n y) \mid x, y \in k \right\}$$

となる $\alpha_0, \dots, \alpha_n, \beta_0, \dots, \beta_n$ が存在し、 $(\alpha_0, \dots, \alpha_n), (\beta_0, \dots, \beta_n)$ は 1 次独立。 よって

$$(\alpha_0 x + \beta_0 y, \dots, \alpha_n x + \beta_n y) \in \tilde{V}(F)$$

$$\Leftrightarrow F(\alpha_0 x + \beta_0 y, \alpha_1 x + \beta_1 y, \dots, \alpha_n x + \beta_n y) = 0$$

 $H(X,Y)=F(\alpha_0X+\beta_0Y,\alpha_1X+\beta_1Y,\cdots,\alpha_nX+\beta_nY)$ とおくと H は X,Y の d 次斉次多項式であるから、k が代数閉より、次に述べる補題により

$$H(X,Y) = \prod_{i=1}^{d} (t_i X + s_i Y)$$

と書くことができる。よって H(X,Y) の零点集合はたかだか d 本の原点を通る直線であるから、それらに対応して $\tilde{V}(F)\cap \tilde{V}(G_1,\cdots,G_{n-1})$ もたかだか d 本の原点を通る直線からなる。したがってその射影化 $V(F)\cap V(G_1,\cdots,G_{n-1})=p(\tilde{V}(F)\cap \tilde{V}(G_1,\cdots,G_{n-1})\setminus\{0\})$ もたかだか d 個の点からなる。

補題 1.1.3.14. k を代数閉体, H(X,Y) を d 次斉次多項式とする。

$$H(X,Y) = \prod_{i=1}^{d} (t_i X + s_i Y)$$

となる $t_i, s_i \in k$ が存在する。

Proof. ここでも多項式の「斉次化」、「非斉次化」がポイントになる。k は代数閉なので

$$H(X,1) = \prod_{i=1}^{d} (t_i X + s_i)$$

と書くことができる。一方、

$$H(X,Y) = \sum_{i=0}^{d} c_i X^i Y^{d-i}$$

とおくと、

$$Y^{d}H(\frac{X}{Y},1) = Y^{d} \sum_{i=0}^{d} c_{i} \frac{X^{i}}{Y^{i}} = \sum_{i=0}^{d} c_{i} X^{i} Y^{d-i} = H(X,Y)$$

となることがわかる。したがって、

$$H(X,Y) = Y^d H(\frac{X}{Y}, 1) = Y^d \prod_{i=1}^d (t_i \frac{X}{Y} + s_i) = \prod_{i=1}^d (t_i X + s_i Y)$$

最後に射影空間の Zariski 位相に関して、後に必要になる命題を1つ示しておく。

命題 1.1.3.15. k を無限体とする。 \mathbb{P}^n の Zariski 位相は、 $p:\mathbb{A}^{n+1}\setminus\{0\}\to\mathbb{P}^n$ によって誘導される位相に一致する。

 $Proof.\ V\subset\mathbb{P}^n$ は Zariski 閉集合であるとする。このとき $V=V(F_1,\cdots,F_r)$ となる斉次多項式 F_1,\cdots,F_r が存在するが、

$$p^{-1}(V) = \{ (x_0, x_1, \dots, x_n) \in \mathbb{A}^{n+1} \setminus \{0\} \mid F_i(x_0, x_1, \dots, x_n) = 0 \text{ for all } i \}$$

である*³。右辺は $\mathbb{A}^{n+1}\setminus\{0\}$ の閉集合であるから、V は p の誘導位相で閉である。逆に $V\subset\mathbb{P}^n$ について、 $p^{-1}(V)\subset\mathbb{A}^{n+1}\setminus\{0\}$ が閉集合であったとする。

$$p^{-1}(V) = V(F_1, \cdots, F_r)$$

とおけば各 F_i は次の性質をもつ:

$$F_i(x_0, x_1, \cdots, x_n) = 0$$
 ならば任意の $\lambda \in k$ に対して $F_i(\lambda x_0, \lambda x_1, \cdots, \lambda x_n) = 0$

^{*3} すなわち射影化 $p: \mathbb{A}^{n+1} \setminus \{0\} \to \mathbb{P}^n$ は Zariski 位相に関して連続である。

そこで F_i を斉次成分に分解して $F_i=f_0^{(i)}+f_1^{(i)}+\cdots+f_m^{(i)}$ とすると、 $(x_0,x_1,\cdots,x_n)\in V(F_1,\cdots,F_r)$ ならばすべての $\lambda\in k$ に対して

$$f_0^{(i)}(x_0, x_1, \dots, x_n) + f_1^{(i)}(x_0, x_1, \dots, x_n)\lambda + \dots + f_m^{(i)}(x_0, x_1, \dots, x_n)\lambda^m = 0$$

k は無限体なので

$$f_j^i(x_0, x_1, \cdots, x_n) = 0$$

でなければならない。したがって

$$V(F_1, \cdots, F_r) = V(\{f_i^{(i)}\}_{i,j})$$

が成り立つから、

$$V=p(p^{-1}(V))=p(V(\{f_j^{(i)}\}_{i,j}))=\left\{\;[x_0:x_1:\cdots:x_n]\in\mathbb{P}^n\;\middle|\;f_j^{(i)}(x_0,x_1,\cdots,x_n)=0,\;\text{for all }i,j\;\right\}$$
 ゆえに V は Zariski 位相に関して閉集合である。

1.2 Grassmann 多様体と Schubert 多様体

1.2.1 Grassmann 多様体

前節の準備をもとに数え上げ問題を定式化しよう。以下では係数体はすべて ℂ で考えているとする。

定義 1.2.1.1. \mathbb{C}^n の d 次元部分空間全体のなす集合を $\mathcal{G}(d,n)$ と書き、これを Grassmann 多様体という。

d=1 のとき Grassmann 多様体は射影空間に他ならない。この意味で Grassmann 多様体は射影空間の一般化である。第 3 章冒頭で述べた数え上げ問題においては $\mathcal{G}(2,4)$ を考えることになる。

Grassmann 多様体が代数多様体の構造をもつことを示しておく。

まず、 $\mathcal{M}(d,n)$ をランク d の $n \times d$ 行列全体のなす集合とする。 $\mathcal{M}(d,n)$ は $\mathrm{GL}_d(\mathbb{C})$ が右からの積で作用するが、この商 $\mathcal{M}(d,n)/\mathrm{GL}_d(\mathbb{C})$ は $\mathcal{G}(d,n)$ と同一視される。実際、 \mathbb{C}^n の d 次元部分空間に対して、その基底を並べた行列を考えればそれは $\mathrm{GL}_d(\mathbb{C})$ 軌道の違いを除いて一意的である。逆に $A \in \mathcal{M}(d,n)$ に対して、[A] を A の列ベクトル (それは 1 次独立) が生成する部分空間とすれば $[A] \in \mathcal{G}(d,n)$ である。また、 $\mathcal{M}(d,n)$ は \mathbb{A}^{nd} の Zariski 開集合であった (例 1.1.1.10) が、 $\mathcal{G}(d,n)$ には $\mathcal{M}(d,n)$ から誘導される商位相を入れておく。

次に \mathbb{C}^n の d 階交代テンソル空間 $\bigwedge^d \mathbb{C}^n$ を考える。 $\bigwedge^d \mathbb{C}^n$ は ${}_nC_d$ 次元ベクトル空間であるから、その射影化 $\mathbb{P}(\bigwedge^d \mathbb{C}^n)$ は \mathbb{P}^{nC_d-1} と同一視することができる。また、 e_1, \cdots, e_n を \mathbb{C}^n の標準基底とすれば $\omega \in \bigwedge^d \mathbb{C}^n$ は

$$\omega = \sum_{1 \le i_1 < \dots < i_d \le n} x_{i_1, \dots, i_d} e_{i_1} \wedge \dots \wedge e_{i_d}$$

と表せるので、 $p(\omega)$ の斉次座標は

$$p(\omega) = [x_{i_1, \dots, i_d}]_{1 \le i_1 \le \dots \le i_d \le n}$$

のように書くことができる。ただし p は射影化 $p:\bigwedge^d\mathbb{C}^n\to\mathbb{P}(\bigwedge^d\mathbb{C}^n)$ である。

 $A \in \mathcal{M}(d,n)$ に対して、A の列ベクトルを $v_1, \cdots, v_d \in \mathbb{C}^n$ とし写像 $\tilde{\pi}: \mathcal{M}(d,n) \to \mathbb{P}(\bigwedge^d \mathbb{C}^n)$ を

$$\tilde{\pi}(A) = p(v_1 \wedge \dots \wedge v_d) = [\det(A_{i_1,\dots,i_d})]_{1 \le i_1 < \dots < i_d \le n}$$

とする。 $\tilde{\pi}$ は多項式写像なので連続である。また、 $P=(a_{ij})\in \mathrm{GL}_d(\mathbb{C})$ に対して、

$$\tilde{\pi}(AP) = p\left((a_{11}v_1 + \dots + a_{d1}v_d) \wedge \dots \wedge (a_{d1}v_1 + \dots + a_{dd}v_d)\right)$$

$$= p(\det P(v_1 \wedge \dots \wedge v_d))$$

$$= p(v_1 \wedge \dots \wedge v_d)$$

$$= \tilde{\pi}(A)$$

となるから、 $\tilde{\pi}$ は連続写像 $\pi: \mathcal{G}(d,n) \to \mathbb{P}(\bigwedge^d \mathbb{C}^n)$ を誘導する。

命題 1.2.1.2 (Plucker 埋め込み). $\pi: \mathcal{G}(d,n) \to \mathbb{P}(\bigwedge^d \mathbb{C}^n) = \mathbb{P}^{nC_d-1}$ は単射である。

Proof. 次の補題を用いる。

補題 1.2.1.3. $V \in \mathcal{G}(d,n)$ に対してその基底 v_1, \cdots, v_d を固定して、 $\omega = v_1 \wedge \cdots \wedge v_d \in \bigwedge^d \mathbb{C}^n$ とする。 $\Gamma_\omega : \mathbb{C}^n \to \bigwedge^{d+1} \mathbb{C}^n$ を

$$\Gamma_{\omega}(u) = \omega \wedge u$$

によって定めると、

$$\ker \Gamma_{\omega} = V$$

が成り立つ。

 $Proof.\ V$ の元が $\ker \Gamma_{\omega}$ に含まれることは明らか。 $u \in \ker \Gamma_{\omega}$ であるとする。 v_1, \cdots, v_d を延長して \mathbb{C}^n の基底 $v_1, \cdots, v_d, v_{d+1}, \cdots, v_n$ をとる。

$$u = a_1 v_1 + \dots + a_d v_d + a_{d+1} v_{d+1} + \dots + a_n v_n$$

とおく。

$$0 = \omega \wedge u = v_1 \wedge \dots \wedge v_d \wedge (a_1 v_1 + \dots + a_d v_d + a_{d+1} v_{d+1} + \dots + a_n v_n)$$
$$= a_{d+1} (v_1 \wedge \dots \wedge v_d \wedge v_{d+1}) + \dots + a_n (v_1 \wedge \dots \wedge v_d \wedge v_n)$$

となるが、 $\{v_{i_1}\wedge\cdots\wedge v_{i_{d+1}}\}_{i_1<\cdots< i_{d+1}}$ は 1 次独立であるので、 $a_{d+1}=\cdots=a_n=0$. よって $u\in V$

命題の証明に戻る。 $\pi(V) = \pi(U)$ であるとする。U の基底を u_1, \dots, u_d とすると仮定より

$$cu_1 \wedge \cdots \wedge u_d = v_1 \wedge \cdots \wedge v_d = \omega$$

となる定数 c が存在する。 したがって $\Gamma_{\omega}(u_i) = \omega \wedge u_i = 0$ であるから補題により、 $U = \ker \Gamma_{\omega} = V$ $\pi(\mathcal{G}(d,n)) \subset \mathbb{P}(\bigwedge^d \mathbb{C}^n)$ が代数的集合であることを示す。

定義 1.2.1.4. $\omega \in \bigwedge^d \mathbb{C}^n$ が totally decomposable であるとは、1 次独立な $v_1, \cdots, v_d \in V$ が存在して $\omega = v_1 \wedge \cdots \wedge v_d$ となることをいう。

補題 1.2.1.5. $\omega \in \bigwedge^d \mathbb{C}^n$ が totally decomposable であることと $\Gamma_\omega : \mathbb{C}^n \to \bigwedge^{d+1} \mathbb{C}^n$ のランクが n-d となることは同値である。

Proof. $\omega=v_1\wedge\cdots\wedge v_d$ とおく。このとき補題 1.2.1.3 の証明より $\dim\ker\Gamma_\omega=\dim\langle\,v_1,\cdots,v_d\,
angle=d$ であるから $\operatorname{rank}\Gamma_\omega=n-d$ である。逆に $\operatorname{rank}\Gamma_\omega=n-d$ であるとする。 $\dim\ker\Gamma_\omega=d$ であるから $\ker\Gamma_\omega$ の基底 v_1,\cdots,v_d をとり、これを延長して \mathbb{C}^n の基底 $v_1,\cdots,v_d,v_{d+1},\cdots,v_n$ をとって

$$\omega = \sum_{1 \le i_1 < \dots < i_d \le n} c_{i_1, \dots, i_d} v_{i_1} \wedge \dots \wedge v_{i_d}$$

とおく。すると $\Gamma_{\omega}(v_j) = 0, j = 1, \dots, d$ より

$$v_1 \wedge \omega = 0$$
 すなわち $c_{i_1,\cdots,i_d} = 0$ for $i_1 > 1$ $v_2 \wedge \omega = 0$ すなわち $c_{i_1,\cdots,i_d} = 0$ for $i_2 > 2$:

 $v_d \wedge \omega = 0$ すなわち $c_{i_1, \dots, i_d} = 0$ for $i_d > d$

 $T \subset \bigwedge^d \mathbb{C}^n$ を totally decomposable な元の集合とする。 $\pi(\mathcal{G}(d,n)) = \mathbb{P}(T)$ である。 $e_1, \cdots, e_n \in \mathbb{C}^n$ を標準基底とし、 $\omega \in \bigwedge^d \mathbb{C}^n$ を

$$\omega = \sum_{1 \le i_1 < \dots < i_d \le n} x_{i_1, \dots, i_d} e_{i_1} \wedge \dots \wedge e_{i_d}$$

とおく。補題より、 $p(\omega) \in \pi(\mathcal{G}(d,n))$ であるための必要十分条件は rank $\Gamma_{\omega} = n-d$ となることである。この条件は $\Gamma_{\omega}: \mathbb{C}^n \to \bigwedge^d \mathbb{C}^n$ を行列表示したとき、その $(n-d+1) \times (n-d+1)$ 小行列式がすべて 0 になることと同値である*4。そして Γ_{ω} の小行列式は x_{i_1,\dots,i_d} の多項式で表されるから、 $\pi(\mathcal{G}(d,n))$ は $\mathbb{P}(\bigwedge^d \mathbb{C}^n)$ の代数的集合である。

Grassmann 多様体が既約であることを示そう。

補題 1.2.1.6. X,Y を位相空間, $f:X\to Y$ を連続写像とする。 $A\subset X$ が既約であるならば f(A) も既約である。

Proof. f(A) が可約であったとして $f(A) = Z_1 \cup Z_2$, $\emptyset \subsetneq Z_1, Z_2 \subsetneq f(A)$ となる閉集合 Z_1, Z_2 をとる。

$$A \subset f^{-1}(f(A)) = f^{-1}(Z_1 \cup Z_2) = f^{-1}(Z_1) \cup f^{-1}(Z_2)$$

f は連続であるから $f^{-1}(Z_1), f^{-1}(Z_2)$ は閉集合である。

$$A = (A \cap f^{-1}(Z_1)) \cup (A \cap f^{-1}(Z_2))$$

より A は可約である。

命題 1.2.1.7. $\mathcal{G}(d,n)$ は既約である。

Proof. $V \in \mathcal{G}(d,n)$ を固定して、 $\alpha: \mathrm{GL}_n(\mathbb{C}) \to \mathcal{G}(d,n)$ を

$$\alpha(P) = PV$$

^{*4} Γ_ω のランクは必ず n-d 以上であることに注意。実際、もし $\dim\ker\Gamma_\omega\geq d+1$ であるなら、補題 1.2.1.5 の証明と同様の議論をすると、 $\omega=0$ となってしまう。

によって定める。ただし PV は V の基底を v_1,\cdots,v_d とするとき Pv_1,\cdots,Pv_d によって生成される d 次元 部分空間を表す。 α は全射である。実際任意の d 次元部分空間 $W=\langle w_1,\cdots,w_d\rangle$ に対して、各 v_i を w_i に 写すような n 次正則行列 P をとればよい。また α は多項式写像であるから連続である。 $\mathrm{GL}_n(\mathbb{C})$ は既約であるから、補題 1.2.1.6 より $\mathcal{G}(d,n)$ も既約である。

なお、Plucker 埋め込み π は実際に埋め込み、すなわち像への同相であることが知られている。 最後に Grassmann 多様体の次元について考える。 $1 < i_1 < \cdots < i_d < n$ とする。

$$\tilde{U}_{i_1,\dots,i_d} = \{ A \in \mathcal{M}(d,n) \mid \det A_{i_1,\dots,i_d} \neq 0 \}$$

とする。ただし A_{i_1,\cdots,i_d} は A の第 i_1,\cdots,i_d 行をとりだした小正方行列であり、 E_d は d 次単位行列である。 $\tilde{U}_{i_1,\cdots i_d}$ は Zariski 開集合であり

$$\mathcal{M}(d,n) = \bigcup_{i_1,\cdots,i_d} \tilde{U}_{i_1,\cdots,i_d}$$

である。 $\phi:\mathcal{M}(d,n)\to\mathcal{M}(d,n)/\mathrm{GL}_d(\mathbb{C})=\mathcal{G}(d,n)$ を自然な写像とすると、 ϕ は開写像である*5。 したがって $U_{i_1,\cdots,i_d}=\phi(\tilde{U}_{i_1,\cdots,i_d})$ は $\mathcal{G}(d,n)$ の開集合であり $\mathcal{G}(d,n)=\bigcup_{i_1,\cdots,i_d}U_{i_1,\cdots,i_d}$ である。 $A\in \tilde{U}_{i_1,\cdots,i_d}$ は適当に右から $\mathrm{GL}_d(\mathbb{C})$ を書けることによって $A_{i_1,\cdots,i_d}=E_d$ となるようにできるから

$$U_{i_1,\dots,i_d} = \{ [A] \in \mathcal{G}(d,n) \mid A_{i_1,\dots,i_d} = E_d \}$$

したがって U_{i_1,\cdots,i_d} は $\mathbb{A}^{d(n-d)}$ と同相であるから、事実 1.1.3.5 より

$$\dim \mathcal{G}(d,n) = \dim U_{i_1,\dots,i_d} = d(n-d)$$

1.2.2 Shubert 胞体と Schubert 多様体

第3章冒頭で述べた数え上げ問題においては \mathbb{P}^3 中の直線全体を考えたいから、 $\mathcal{G}(2,4)$ を考察していくことになる。重要な考え方として、ある条件をみたす直線の集合を $\mathcal{G}(2,4)$ の部分多様体としてとらえることで、「複数の条件を満たす直線の数え上げ \Leftrightarrow いくつかの $\mathcal{G}(2,4)$ の部分多様体の交点を数える」という問題の変換を行う。このように幾何学的な条件をみたす線形部分多様体をパラメトライズする空間を Schubert 多様体という。

正則行列を右からかけることはいくつかの列基本変形を施すことと同値であるから、 $[A] \in \mathcal{G}(d,n)$ に対して、A の第 1 列から順に列基本変形を行えば、 $[A] = [(a_{ij})]$ はある $1 \leq i_1 < i_2 < \cdots < i_d \leq n$ があって A の第 i_1, \cdots, i_d 行を取り出した小正方行列が単位行列であり、 $(i_1,1), (i_2,2), \cdots, (i_d,d)$ 成分よりも右上の成分がすべて 0 になる。式で表すと

$$a_{ij} = \begin{cases} 0 & \text{if } i \le i_j - 1 \text{ or } i = i_k, \ j \le k - 1 \text{ for some } 1 \le k \le d \\ 1 & \text{if } i = i_k, \ j = k \text{ for some } 1 \le k \le d \end{cases}$$

$$(1.1)$$

をみたすということである。

$$\phi^{-1}(\phi(U)) = \bigcup_{g \in G} gU$$

であり q は X 上の同相であるから右辺の各 qU は開集合である。

^{*5} 一般に位相空間 X に群 G が作用しているとき、その軌道空間 X/G への自然な写像 $\phi:X\to X/G$ は開写像である。実際、開集合 $U\subset X$ に対して

例 1.2.2.1. $[A] \in \mathcal{G}(2,4)$ は次のいずれかの形になる。

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \\ * & * \\ * & * \end{bmatrix}, \qquad \begin{bmatrix} 1 & 0 \\ * & 0 \\ 0 & 1 \\ * & * \end{bmatrix}, \qquad \begin{bmatrix} 1 & 0 \\ * & 0 \\ * & 0 \\ 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \\ * & * \end{bmatrix}, \qquad \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ * & 0 \\ 0 & 1 \end{bmatrix}$$

ただし*の部分には任意の複素数が入る。

定義 1.2.2.2. $1 \le i_1 < i_2 < \cdots < i_d \le n$ に対して

$$\Omega_{i_1,\dots,i_d}^{\circ} = \{ [(a_{ij})] \in \mathcal{G}(d,n) \mid a_{ij} \text{ satisfies } (1.1) \}$$

を Schubert 胞体という。

上の議論から、

$$\mathcal{G}(d,n) = \bigcup_{1 \leq i_1 < \dots < i_d \leq n} \Omega_{i_1,\dots,i_d}^{\circ}$$

が成り立つ。

例 1.2.2.3. $\mathcal{G}(2,4)$ の場合

$$\Omega_{1,2}^{\circ} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ * & * \\ * & * \end{bmatrix}, \qquad \Omega_{1,3}^{\circ} = \begin{bmatrix} 1 & 0 \\ * & 0 \\ 0 & 1 \\ * & * \end{bmatrix}, \qquad \Omega_{1,4}^{\circ} = \begin{bmatrix} 1 & 0 \\ * & 0 \\ * & 0 \\ 0 & 1 \end{bmatrix}$$

$$\Omega_{2,3}^{\circ} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \\ * & * \end{bmatrix}, \qquad \Omega_{2,4}^{\circ} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ * & 0 \\ 0 & 1 \end{bmatrix}, \qquad \Omega_{3,4}^{\circ} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}$$

 $\Omega_{i_1,\cdots,i_d}^\circ$ に含まれる * の数を k とすれば $\Omega_{i_1,\cdots,i_d}^\circ$ は \mathbb{A}^k に同相であるから $\dim\Omega_{i_1,\cdots,i_d}^\circ=k$ である。 Schubert 胞体と Young 図形の関係について述べておく。 $1\leq i_1<\cdots< i_d\leq n$ に対して、

$$\lambda_k = i_{d+1-k} - d - 1 + k \tag{1.2}$$

とおくと、 $(\lambda_1, \cdots, \lambda_d)$ は $d \times (n-d)$ の部分 Young 図形になる。逆に式 (1.2) によって $d \times (n-d)$ の部分 Young 図形から Schubert 胞体を得ることができる。そこで $\mathcal{Y}_d(n)$ を $d \times (n-d)$ の部分 Young 図形全体のなす集合とし、 $\lambda \in \mathcal{Y}_d(n)$ に対応する Schubert 胞体を Ω_λ° と表すことにする。

式 (1.2) の対応関係をもう少し詳しく説明する。 $d \times (n-d)$ の Young 図形を用意し、各辺に沿って一番左下の頂点から一番右上の頂点に行く最短経路を考える。そのパターンは、各ステップごとに上に行くか右に行くかを選べば決まる。右上にたどり着くためには d 回上に行く選択をしなければならないから、 i_1, \cdots, i_d ステップ目で上に行き、それ以外では右に行くとすれば、1 つ最短経路が定まる。この最短経路によって分けられる $d \times (n-d)$ Young 図形の左上の部分を、対応する Young 図形 λ とするのである。

またこのとき対応する λ は、A から i_1, \ldots, i_d 行と * の入っている部分を取り除いてできる形 (を 90° 左に 開店したもの) と同じである。

例 1.2.2.4.

$$\Omega^{\circ}_{\varnothing} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ * & * \\ * & * \end{bmatrix}, \qquad \Omega^{\circ}_{\square} = \begin{bmatrix} 1 & 0 \\ * & 0 \\ 0 & 1 \\ * & * \end{bmatrix}, \qquad \Omega^{\circ}_{\square} = \begin{bmatrix} 1 & 0 \\ * & 0 \\ 0 & 1 \end{bmatrix}$$

$$\Omega^{\circ}_{\square} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \\ * & * \end{bmatrix}, \qquad \Omega^{\circ}_{\square} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ * & 0 \\ 0 & 1 \end{bmatrix}, \qquad \Omega^{\circ}_{\square} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}$$

□ で囲った成分のなす形と Young 図形とが対応している。

命題 1.2.2.5. $I=(1\leq i_1<\cdots< i_d\leq n),\ J=(1\leq j_1<\cdots<\leq n)$ に対応する Young 図形をそれぞれ λ,μ とする。このとき

$$\lambda \subset \mu \Leftrightarrow i_k \leq j_k \text{ for all } k$$

である。

Proof. $\lambda \subset \mu$ の定義は $\lambda_k \leq \mu_k$, for all k であるから、式 (1.2) より直ちに従う。

定義 1.2.2.6 (標準的な旗に付随する Shubert 多様体). $\lambda \in \mathcal{Y}_d(n)$ に対して、

$$\Omega_{\lambda} = \bigcup_{\mu \supset \lambda} \Omega_{\mu}^{\circ}$$

を Schubert 多様体という。

ここで定義した Schubert 多様体は、正確には標準的な旗に付随する Schubert 多様体と呼ぶべきものである。旗の概念は後で定義するが、一般の Schubert 多様体はこの標準的な Schubert 多様体のもつ、次の幾何学的な性質を一般化する形で定める。

命題 1.2.2.7. $\lambda \in \mathcal{Y}_d(n)$ とする。 e_1, \cdots, e_n を \mathbb{C}^n の標準基底とし $F^k = \langle e_{k+1}, \cdots, e_n \rangle$ とおく。

$$\Omega_{\lambda} = \{ V \in \mathcal{G}(d, n) \mid \dim(V \cap F^{\lambda_k + d - k}) \ge k \}$$

が成り立つ。

Proof. $\mu \supset \lambda$ とする。式 (1.2) によって λ,μ に対応する整数列をそれぞれ $(i_1,\cdots,i_d),(j_1,\cdots,j_d)$ とする。 すなわち

$$i_k = \lambda_{d+1-k} + k, \qquad j_k = \mu_{d+1-k} + k$$

である。 $\mu \supset \lambda$ より $j_k \geq i_k$ である。

 $V \in \Omega_{\mu}^{\circ}$ はベクトル

$$\begin{split} v_1 &= e_{j_1} + f_1, \quad f_1 \in \langle \, e_{j_1+1}, \cdots, e_n \, \rangle = F^{j_1} \\ v_2 &= e_{j_2} + f_2, \quad f_2 \in \langle \, e_{j_2+1}, \cdots, e_n \, \rangle = F^{j_2} \\ &\vdots \\ v_d &= e_{j_d} + f_d, \quad f_d \in \langle \, e_{j_d+1}, \cdots, e_n \, \rangle = F^{j_d} \end{split}$$

を適当にとって $V=\langle v_1,v_2,\cdots,v_d\rangle$ とできる。 $\lambda_k+d-k=(i_{d+1-k}-d-1+k)+d-k=i_{d+1-k}-1$ であるが、 $\dim(V\cap F^{i_{d+1-k}-1})\geq k$ を示そう。 $v_{d+1-k},v_{d+2-k},\cdots,v_d\in F^{j_{d+1-k}-1}$ である。 $j_k\geq i_k$ であるから $F^{j_{d+1-k}-1}\subset F^{i_{d+1-k}-1}$. したがって

$$\dim(V \cap F^{i_{d+1-k}-1}) \ge k$$

である。

逆に $V \in \mathcal{G}(d,n)$ が $\dim(V \cap F^{i_{d+1-k}-1}) \geq k$ を満たしているとする。このとき V の基底 v_1, \cdots, v_d として次の条件を満たすものがとれる。

$$\begin{aligned} v_d &\in V \cap F^{i_d-1} \\ v_{d-1} &\in V \cap F^{i_{d-1}-1} \setminus F^{i_d-1} \\ &\vdots \\ v_1 &\in V \cap F^{i_1-1} \setminus F^{i_2-1} \end{aligned}$$

よって標準基底に関して成分表示すると

$$\begin{array}{rcl} v_{d} & = & c_{i_{d}}^{(d)}e_{i_{d}} + \cdots + c_{n}^{(1)}e_{n} \\ v_{d-1} & = & c_{i_{d-1}}^{(d-1)}e_{i_{d-1}} + \cdots + c_{i_{d-1}}^{(d-1)}e_{i_{d-1}} + c_{i_{d}}^{(d-1)}e_{i_{d}} + \cdots + c_{n}^{(d-1)}e_{n} \\ & \vdots \\ v_{1} & = & c_{i_{1}}^{(1)}e_{i_{1}} + \cdots + c_{i_{2}-1}^{(1)}e_{i_{2}-1} + \cdots + c_{i_{d}}^{(1)}e_{i_{d}} + \cdots + c_{n}^{(1)}e_{n} \end{array}$$

となるが、上の条件より

$$c_{i_d}^{(d)},\dots,c_n^{(d)}$$
 は同時に 0 にならない
$$c_{i_{d-1}}^{(d-1)},\dots,c_{i_{d-1}}^{(d-1)}$$
 は同時に 0 にならない
$$\vdots$$

$$c_{i_1}^{(1)},\dots,c_{i_{2-1}}^{(1)}$$
 は同時に 0 にならない

が成り立つ。各 k において 0 でない $c_{i_k}^{(k)},\cdots,c_n^{(k)}$ のうち最も左にあるものを $c_{j_k}^{(k)}$ とおいて、 v_k を $\frac{1}{c_{j_k}^{(k)}}v_k$ で置き換えれば、

$$\begin{aligned} v_d &= e_{j_1} + f_1, \quad f_1 \in \langle \ e_{j_1+1}, \cdots, e_n \ \rangle = F^{j_1} \\ v_{d-1} &= e_{j_2} + f_2, \quad f_2 \in \langle \ e_{j_2+1}, \cdots, e_n \ \rangle = F^{j_2} \\ &\vdots \\ v_d &= e_{j_d} + f_d, \quad f_d \in \langle \ e_{j_d+1}, \cdots, e_n \ \rangle = F^{j_d} \end{aligned}$$

の形にすることができる。 これは $V=\langle\,v_1,\cdots,v_d\,\rangle$ が $V\in\Omega_{j_1,\cdots,j_d}^{\rm o}$ であることに他ならないが、 $j_k\geq i_k$ であるので、 j_1,\cdots,j_d の対応する Young 図形を μ とすれば $\mu\supset\lambda$ である。

定義 1.2.2.8. \mathbb{C}^n の部分空間の列

$$\mathbb{C}^n = F^0 \supset F^1 \supset \cdots \supset F^{n-1} \supset F^n = 0, \quad \dim F^k = n - k$$

を旗といい、 F^{\bullet} と表す。とくに e_1,\cdots,e_n を標準基底として $F^k=\langle\,e_{k+1},\cdots,e_n\,\rangle$ なる旗を標準旗といい F^{\bullet}_{st} と表す。 \mathbb{P}^{n-1} の線形部分多様体は \mathbb{C}^n の部分空間と 1 対 1 に対応することを思い出せば、旗の各部分空間を射影化することで \mathbb{P}^{n-1} の線形部分多様体の列を得る。このような \mathbb{P}^{n-1} の部分集合の列も旗と呼ぶこと にする。

例 1.2.2.9. \mathbb{C}^4 において旗

$$\mathbb{C}^4 = F^0 \supset F^1 \supset F^2 \supset F^3 \supset F^4 = 0$$

の射影化は

$$\mathbb{P}^3 \supset e_0 \supset l_0 \ni p_0 \supset \varnothing$$

である。ここで e_0 , l_0 , p_0 はそれぞれ \mathbb{P}^3 の平面, 直線, 点である。

命題 1.2.2.7 を一般化して次の定義を得る。

定義 1.2.2.10. F^{\bullet} を \mathbb{C}^n の旗とする。 $\lambda \in \mathcal{Y}_d(n)$ に対して、

$$\Omega_{\lambda}(F^{\bullet}) = \{ V \in \mathcal{G}(d,n) \mid \dim(V \cap F^{\lambda_i + d - i}) \ge i \}$$

を F[•] に付随する Schubert 多様体という

例 1.2.2.11. $\mathcal{G}(2,4)$ において、 F^{\bullet} を任意の \mathbb{C}^4 の旗としてその射影化を $\mathbb{P}^3 \supset e_0 \supset l_0 \ni p_0 \supset \emptyset$ とする。このとき

$$\begin{split} &\Omega_{\varnothing} = \mathcal{G}(2,4) \\ &\Omega_{\square} = \left\{ \left. V \in \mathcal{G}(2,4) \mid \dim(V \cap F^2) \geq 1 \right. \right\} \approx \left\{ \left. l \subset \mathbb{P}^3 : \dot{\mathbb{E}} \dot{\mathbb{R}} \mid l \cap l_0 \neq \varnothing \right. \right\} \\ &\Omega_{\square} = \left\{ \left. V \in \mathcal{G}(2,4) \mid \dim(V \cap F^3) \geq 1 \right. \right\} \approx \left\{ \left. l \subset \mathbb{P}^3 : \dot{\mathbb{E}} \dot{\mathbb{R}} \mid l \ni p_0 \right. \right\} \\ &\Omega_{\square} = \left\{ \left. V \in \mathcal{G}(2,4) \mid \dim(V \cap F^2) \geq 1, \, \dim(V \cap F^1) \geq 2 \right. \right\} \approx \left\{ \left. l \subset \mathbb{P}^3 : \dot{\mathbb{E}} \dot{\mathbb{R}} \mid l \subset e_0 \right. \right\} \\ &\Omega_{\square} = \left\{ \left. V \in \mathcal{G}(2,4) \mid \dim(V \cap F^3) \geq 1, \, \dim(V \cap F^1) \geq 2 \right. \right\} \approx \left\{ \left. l \subset \mathbb{P}^3 : \dot{\mathbb{E}} \dot{\mathbb{R}} \mid p_0 \in l \subset e_0 \right. \right\} \\ &\Omega_{\square} \approx \left\{ \left. l = l_0 \right\} \end{split}$$

となり、Schubert 多様体が幾何学的な線形部分多様体をパラメトライズしていることがわかる。

1.2.3 Schubert 多様体の基本性質

Schubert 胞体・Schubert 多様体の基本的な性質をいくつか示しておく。まず、Schubert 多様体が Schubert 胞体の直和であることを示す。

命題 1.2.3.1. $\lambda \neq \mu$ ならば、 $\Omega_{\lambda}^{\circ} \cap \Omega_{\mu}^{\circ} = \emptyset$ である。

Proof. λ,μ に対応する整数列をそれぞれ $(i_1,\cdots,i_d),$ (j_1,\cdots,j_d) とおく。 $V\in\Omega^\circ_\lambda$ とすると、V の基底 v_1,\cdots,v_d を

$$\begin{aligned} v_1 &= e_{i_1} + f_1, & f_1 \in \langle \, e_{i_1+1}, \cdots, e_n \, \rangle = F^{i_1} \\ v_2 &= e_{i_2} + f_2, & f_2 \in \langle \, e_{i_2+1}, \cdots, e_n \, \rangle = F^{i_2} \\ &\vdots \\ v_d &= e_{i_d} + f_d, & f_d \in \langle \, e_{i_d+1}, \cdots, e_n \, \rangle = F^{i_d} \end{aligned}$$

となるように取れる。さらにもし $V \in \Omega^{\circ}_{u}$ でもあるならVの別の基底 w_{1}, \cdots, w_{d} で

$$\begin{aligned} w_1 &= e_{j_1} + s_1, & s_1 \in \langle \ e_{j_1+1}, \cdots, e_n \ \rangle = F^{j_1} \\ w_2 &= e_{j_2} + s_2, & s_2 \in \langle \ e_{j_2+1}, \cdots, e_n \ \rangle = F^{j_2} \\ &\vdots \\ w_d &= e_{j_d} + s_d, & s_d \in \langle \ e_{j_d+1}, \cdots, e_n \ \rangle = F^{j_d} \end{aligned}$$

となるものが存在する。ここで $j_k \neq \{i_1,\cdots,i_d\}$ なる j_k に対して、 $w_k \neq \langle\,v_1,\cdots,v_d\,
angle$ であることを示す。もし

$$w_k = c_1 v_1 + \dots + c_d v_d$$

となったとする。このとき

$$e_{j_k} + s_k = c_1 e_{i_1} + \dots + c_d e_{i_d} + c_1 f_1 + \dots + c_d f_d$$

だが、 $i_1 < \cdots < i_t < j_k < i_{t+1} < \cdots < i_d$ として両辺 F^{j_k} の剰余類を取れば

$$\overline{e_{i_k}} = c_1 \overline{e_{i_1}} + \dots + c_t \overline{e_{i_t}} + c_1 \overline{f_1} + \dots + c_t \overline{f_t}$$

となる。 $\overline{e_{i_1}}\in (F^{i_1-1}/F^{j_k})\setminus (F^{i_1}/F^{j_k})$ かつ、それ以外のすべての元は F^{i_1}/F^{j_k} に含まれている。したがって $c_1=0$ でなければならない。 e_{i_2} に同様の議論をして $c_2=0$. 結局 $c_t=0$ までが言えるので、 $\overline{e_{j_k}}=0$ すなわち $e_{j_k}\in F^{j_k}$ となるがこれは矛盾である。

系 1.2.3.2. 次が成り立つ。

- (i) $\mathcal{G}(d,n) = \bigsqcup_{\lambda \in \mathcal{Y}_d(n)} \Omega_{\lambda}^{\circ}$
- (ii) $\Omega_{\lambda}(F_{st}^{\bullet}) = \bigsqcup_{\mu \supset \lambda} \Omega_{\lambda}^{\circ}(F_{st}^{\bullet})$

つぎに $\mathrm{GL}_n(\mathbb{C})$ の作用について解説する。

 $\mathrm{GL}_n(\mathbb{C})$ は $\mathcal{G}(d,n)$ に左からの積によって自然に作用する。 $g:\mathcal{G}(d,n)\to\mathcal{G}(d,n)$ は多項式写像であるので連続であり、 g^{-1} がが逆写像を与えるので同相である。

旗 F^{\bullet} と $g \in GL_n(\mathbb{C})$ に対して gF^{\bullet} を

$$gF^{\bullet}: \mathbb{C}^n = gF^0 \supset gF^1 \supset \cdots \supset gF^n = 0$$

によって定めれば gF^{\bullet} は新しい旗になる。逆に任意の旗 F^{\bullet} , E^{\bullet} に対して、 $F^{k}=\langle v_{k+1},\cdots,v_{n}\rangle$, $E^{k}=\langle w_{k+1},\cdots,w_{n}\rangle$ となる \mathbb{C}^{n} の基底 $v_{1},\cdots,v_{n},w_{1},\cdots,w_{n}$ をとって変換行列 g を考えれば、 $gF^{\bullet}=E^{\bullet}$ となる。言い換えれば $\mathrm{GL}_{n}(\mathbb{C})$ は \mathbb{C}^{n} の旗全体のなす集合に推移的に作用する。

 $B \subset \mathrm{GL}_n(\mathbb{C})$ を対角成分が 1 の下三角行列全体のなす部分群とし、 $1 \leq i_1 < \cdots < i_d \leq n$ に対して

$$E_{i_1,\dots,i_d} = \langle e_{i_1},\dots,e_{i_d} \rangle \in \Omega_{i_1,\dots,i_d}^{\circ}(F_{st}^{\bullet})$$

とする。このとき

$$Be_{i_k} = e_{i_k} + f_k, \quad f_k \in F^{i_k}$$

と書くことができるから、 $\Omega_{i_1,\cdots,i_d}^{\circ}(F_{st}^{ullet})=BE_{i_1,\cdots,i_d}$ である。また i_1,\cdots,i_d に対応する Young 図形 λ に対して

$$E_{\lambda} = E_{i_1, \dots, i_d}$$

とする。

命題 1.2.3.3. F^{\bullet} を旗、 $g \in \mathrm{GL}_n(\mathbb{C})$ とする。 $g\Omega_{\lambda}(F^{\bullet}) = \Omega_{\lambda}(gF^{\bullet})$ である。

Proof.

$$V \in \Omega_{\lambda}(gF^{\bullet}) \Leftrightarrow \dim(V \cap gF^{\lambda_k + d - k}) \ge k, \text{ for all } k$$

$$\Leftrightarrow \dim(g^{-1}V \cap F^{\lambda_k + d - k}) \ge k, \text{ for all } k$$

$$\Leftrightarrow g^{-1}V \in \Omega_{\lambda}(F^{\bullet})$$

$$\Leftrightarrow V \in g\Omega_{\lambda}(F^{\bullet})$$

任意の旗 F^{\bullet} に対して、 F^{\bullet} はある $g \in \mathrm{GL}_n(\mathbb{C})$ で $F^{\bullet} = gF_{st}^{\bullet}$ と書けるが、

$$\Omega_{\lambda}(F_{st}^{\bullet}) = \bigsqcup_{\mu \supset \lambda} \Omega_{\mu}^{\circ}$$

であったから、

$$\Omega_{\lambda}(F) = \bigsqcup_{\mu \supset \lambda} g \Omega_{\mu}^{\circ}$$

そこで、 $g\Omega_{\mu}^{\circ}$ を旗 F^{\bullet} に付随する Schubert 胞体といい $\Omega_{\mu}^{\circ}(F^{\bullet})$ とかく。

このように一般の Schubert 多様体は $\mathrm{GL}_n(\mathbb{C})$ の作用によって得られる。

次に Schubert 多様体が既約な代数多様体であることを示す。

命題 1.2.3.4. $\Omega_{\lambda}(F^{\bullet}) \subset \mathcal{G}(d,n) \subset \mathbb{P}(\bigwedge^d \mathbb{C}^n)$ は Zariski 閉集合である。

Proof. 命題 1.2.3.3 より $\Omega_{\lambda}(F_{st}^{\bullet})$ に対して示せば十分である。また、命題 1.1.3.15 より、 $\mathcal{M}(d,n)$ によって誘導される位相に関して閉集合であることを示せばよい。 $\Omega_{\lambda}(F_{st}^{\bullet}) = \left\{ \left. V \in \mathcal{G}(d,n) \mid \dim V \cap F^{\lambda_i + d - i} \geq i \right. \right\}$ において、線形写像 $\eta_i(V)$ を

$$\eta_i(V): V \to \mathbb{C}^n \to \mathbb{C}^n/F^{\lambda_i + d - i}$$

なる自然な写像とすれば、 $\dim V \cap F^{\lambda_i+d-i} \geq i$ は rank $\eta_i(V) \geq d-i$ と同値である。 $\phi: \mathcal{M}(d,n) \to \mathcal{M}(d,n)/\mathrm{GL}_d(\mathbb{C}) = \mathcal{G}(d,n)$ を自然な写像とすれば

$$\phi^{-1}(\Omega_{\lambda}(F_{st}^{\bullet})) = \{ A \in \mathcal{M}(d,n) \mid \text{rank } \eta_i([A]) \geq d-i \}$$

となる。 したがって rank $\eta_i([A]) \ge d-i$ が (A の成分の多項式)=0 の形で記述できることがわかればよい。 V=[A] とする。 V の基底を A の列ベクトル、 \mathbb{C}^n の基底を標準基底でとれば、

$$V \to \mathbb{C}^n$$

の表現行列はA に他ならない。また、 $\mathbb{C}^n/F^{\lambda_i+d-i}$ の基底として $e_1,\cdots,e_{\lambda_i+d-i}$ がとれるから

$$\mathbb{C}^n \to \mathbb{C}^n/F^{\lambda_i+d-i}$$

の表現行列は

$$(E_{\lambda_i+d-i} \quad 0)$$
, ただし E_{λ_i+d-i} は λ_i+d-i 次単位行列

となる。したがって $\eta_i([A])$ の表現行列は

$$(E_{\lambda_i+d-i} \quad 0) A = (A_{\lambda_i+d-i} \quad 0)$$

となる。ただし A_{λ_i+d-i} は A の第 1 行から λ_i+d-i 行までを取り出した小正方行列である。よって rank $\eta_i(V) \geq d-i$ は $\begin{pmatrix} A_{\lambda_i+d-i} & 0 \end{pmatrix}$ の d-i+1 小行列式がすべて 0 になることと同値であるから、これは (A の成分の多項式)= 0 の形である。

命題 1.2.3.5. Schubert 多様体 $\Omega_{\lambda}(F^{\bullet})$ は Schubert 胞体 $\Omega_{\lambda}^{\circ}(F^{\bullet})$ の閉包である:

$$\Omega_{\lambda}(F^{\bullet}) = \overline{\Omega_{\lambda}^{\circ}(F^{\bullet})}$$

Proof. $\Omega_{\lambda}(F_{st}^{\bullet})$ に対して示せば十分である。次の補題を用いる。

補題 1.2.3.6. $\lambda \subset \mu$ ならば $\Omega_{\mu}^{\circ}(F_{st}^{\bullet}) \subset \overline{\Omega_{\lambda}^{\circ}(F_{st}^{\bullet})}$

Proof. λ, μ に $I = (1 \leq i_1 < \dots < i_d \leq n), J = (1 \leq j_i < \dots < j_d \leq n)$ がそれぞれ対応しているとする。 $i_k \leq j_k$ for all k である。次の操作を考える。

$$\alpha \notin I \setminus J, \beta \in J$$
 なる $\alpha < \beta$ をとり、 J から β を取り除き α を加える。 (1.3)

J に操作 (1.3) を有限回施すことで I を得ることができる。そこで、J が操作 (1.3) を 1 回施すことで I を得ることができる場合を考えればよい。実際、もしこの場合に証明できれば、J に k 回操作 (1.3) を施したものを J_k とおけば、

$$\Omega_J^{\circ}(F_{st}^{\bullet}) \subset \overline{\Omega_{J_1}^{\circ}(F_{st}^{\bullet})} \subset \overline{\overline{\Omega_{J_2}^{\circ}(F_{st}^{\bullet})}} = \overline{\Omega_{J_2}^{\circ}(F_{st}^{\bullet})} \subset \cdots$$

となるから示せる。

例:
$$I = (1,3,6), J = (1,4,6)$$
 \rightarrow $(\alpha = 3, \beta = 4)$

 $E_J \in \overline{\Omega_I^{\circ}(F_{st}^{\bullet})}$ を示せば $\Omega_I^{\circ}(F_{st}^{\bullet}) = BE_J \subset B\overline{\Omega_I^{\circ}(F_{st}^{\bullet})} \subset \overline{\Omega_I^{\circ}(F_{st}^{\bullet})}$ より主張が従う。 $\phi: \mathbb{P}^1 \to \mathcal{G}(d,n)$ を

$$\phi([s:t]) = \langle \{ e_k \mid k \in I \cap J \} \cup \{ se_\alpha + te_\beta \} \rangle$$

によって定める。 ϕ は多項式写像であるので連続である。 $\phi([1:0])=E_I,\,\phi([0:1])=E_J$ であるから、 ϕ は E_I と E_J を結ぶ曲線だと思うことができる。しかも $\phi([1:t])\in\Omega^\circ_T(F^\bullet_{st})$ である。よって

$$E_J = \phi([0:1]) \in \phi(\overline{\mathbb{P}^1 \setminus \{[0:1]\}}) \subset \overline{\phi(\mathbb{P}^1 \setminus \{[0:1]\})} \subset \overline{\Omega_I^{\circ}(F_{st}^{\bullet})}$$

となり示せた。

命題 1.2.3.5 の証明に戻ろう。補題より

$$\Omega_{\lambda}(F_{st}^{\bullet}) = \bigsqcup_{\mu \supset \lambda} \Omega_{\mu}^{\circ}(F_{st}^{\bullet}) \subset \overline{\Omega_{\lambda}^{\circ}(F_{st}^{\bullet})}$$

であり、 $\Omega_{\lambda}^{\circ}(F_{st}^{\bullet}) \subset \Omega_{\lambda}(F_{st}^{\bullet})$ かつ $\Omega_{\lambda}(F_{st}^{\bullet})$ は閉集合であるから、

$$\overline{\Omega_{\lambda}^{\circ}(F_{st}^{\bullet})} \subset \Omega_{\lambda}(F_{st}^{\bullet})$$

系 1.2.3.7. Schubert 多様体は既約である。

Proof. 一般に位相空間 X の部分集合 A が既約であるならその閉包 \overline{A} も既約である。実際、 $\overline{A}=Y_1\cup Y_2$ となる閉集合 Y_1,Y_2 が存在したら、 $A=(\overline{A}\cap Y_1)\cup(\overline{A}\cap Y_2)$ となるから A は可約になる。

Schubert 胞体はアフィン空間と同相であるから既約であるので、その閉包である Schubert 多様体も既約である。

一般に代数多様体 X の部分多様体 Z について、 $\dim X - \dim Z$ を Z の余次元といい $\operatorname{codim} Z$ と書く。

事実 1.2.3.8 ([?]). $\operatorname{codim} \Omega_{\lambda}(F^{\bullet}) = |\lambda|$ である。

1.3 Grassmann 多様体の交叉理論

1.3.1 一般の位置

前節で導入したように、 \mathbb{P}^n の固定された旗に対して、ある特定の位置条件にある線形部分多様体をパラメータづける空間が Schubert 多様体であった。したがって今度は複数の旗に対してそれぞれの Schubert 多様体がどのように交わるかを記述することを考える。ここで重要になるのが 2 つの旗が一般の位置にあるという条件である。これが第 3 章冒頭に述べた「ある程度一般の状況」という言葉の意味である。一般の位置にある 2 つの旗の Schubert 多様体に対してはその次元がうまくふるまうことが知られており、それによって交点の数え上げに整った代数的・組み合わせ的計算が現れる。

定義 1.3.1.1. F^{\bullet} , E^{\bullet} を \mathbb{C}^n の旗とする。各 k において

$$F^k \cap E^{n-k} = 0$$

が成り立つとき、 F^{\bullet} , E^{\bullet} は一般の位置にあるという。

例 1.3.1.2. 旗 F^{\bullet} に対して $F^k = \langle v_{k+1}, \cdots, v_n \rangle$ となる基底 v_1, \cdots, v_n をとる。 F^k_{op} を

$$F_{op}^k = \langle v_1, \cdots, v_{n-k} \rangle$$

とすれば

$$F_{op}^{n-k} \cap F^k = \langle v_1, \cdots, v_k \rangle \cap \langle v_{k+1}, \cdots, v_n \rangle = 0$$

となるから、 $F^{\bullet}, F^{\bullet}_{op}$ は一般の位置にある。 F^{\bullet}_{op} を F^{\bullet} の反対旗という。

例 1.3.1.3. F^{\bullet} を標準旗とする。 $g \in \mathrm{GL}_n(\mathbb{C})$ を $g = (v_1, \cdots, v_n) = (a_{ij})$ とすれば

$$gF^k = \langle v_{k+1}, \cdots, v_n \rangle$$

である。 F^{ullet} , gF^{ullet} が一般の位置にあるための必要十分条件は、各k において

$$e_{k+1}, \cdots, e_n, v_{n-k+1}, \cdots, v_n$$

が一次独立となることである。すなわち $\det(e_{k+1},\cdots,e_n,v_{n-k+1},\cdots,v_n)\neq 0$ である。よって F^{\bullet},gF^{\bullet} が 一般の位置にあるような g のなす $\mathrm{GL}_n(\mathbb{C})$ の部分集合は Zariski 開集合である。Zariski 開集合は稠密であるので、ほとんどすべての旗は一般の位置にあるといってよい。

命題 1.3.1.4. F^{\bullet} , E^{\bullet} を一般の位置にある旗とする。 \mathbb{C}^n の基底 v_1, \dots, v_n を適当にとって、

$$F^k = \langle v_{k+1}, \cdots, v_n \rangle, \quad E^{n-k} = \langle v_1, \cdots, v_k \rangle$$

となるようにできる。

 $Proof. \dim(E^{n-k} \cap F^{k-1}) = 1$ を示す。まず $E^{n-k} \cap F^k = 0$ より

$$\dim(E^{n-k} + F^k) = \dim E^{n-k} + \dim F^k - \dim(E^{n-k} \cap F^k) = n$$

よって $\dim(E^{n-k} + F^{k-1}) = n$ であるから

$$\dim(E^{n-k} \cap F^{k-1}) = \dim E^{n-k} + \dim F^{k-1} - \dim(E^{n-k} + F^{k-1})$$
$$= k + (n - k + 1) - n$$
$$= 1$$

そこで v_k を $E^{n-k}\cap F^{k-1}$ の生成元とする。 $\dim E^{n-1}=1$ だから $E^{n-1}=\langle v_1\rangle$ である。 $E^{n-k}=\langle v_1,\cdots,v_k\rangle$ であるとする。

$$v_{k+1} \in E^{n-k-1} \cap F^k$$

であり $F^k\cap E^{n-k}=0$ であるから $v_{k+1}\notin E^{n-k}$ となる。よって $E^{n-k-1}=\langle\,v_1,\cdots,v_k,v_{k+1}\,\,\rangle$ 。同様に $F^k=\langle\,v_{k+1},\cdots,v_n\,\,\rangle$ も示せる。

1.3.2 双対定理と交叉条件

定義 1.3.2.1. $\lambda \in \mathcal{Y}_d(n)$ に対して、 $d \times (n-d)$ 長方形から λ を取り除いてできる図形を、180° 回転させて 得られる Young 図形を λ の双対といい λ^\vee と書く。

式で書けば $\lambda = (\lambda_1, \dots, \lambda_d)$ に対し

$$\lambda_i^{\vee} = n - d - \lambda_{d+1-i}$$

である。

例 1.3.2.2. d=2, n=4 として

$$\lambda =$$
 $\lambda^{\vee} =$ $\lambda^{\vee} =$

定理 1.3.2.3 (双対定理). $\lambda,\mu\in\mathcal{Y}_d(n)$ を $|\lambda|+|\mu|=d(n-d)$ であるとする。 F^{ullet} を旗とする。このとき

$$|\Omega_{\lambda}(F^{\bullet}) \cap \Omega_{\mu}(F_{op}^{\bullet})| = \delta_{\lambda \mu^{\vee}}$$

が成り立つ。

Proof. $F^k = \langle v_{k+1}, \cdots, v_n \rangle$, $F^k_{op} = \langle v_1, \cdots, v_{n-k} \rangle$ となる基底 v_1, \cdots, v_n をとる。 $i^* = d+1-i$ とおく。 すなわち i が 1 から d まで動くとき i^* は d から 1 へ動く。

 $\mu = \lambda^{\vee}$ であるとする。 $A_i = F^{\lambda_i + d - i}, \ B_i = F^{\lambda_i^{\vee} + d - i^*}_{op}$ とおく。すると $V \in \Omega_{\lambda}(F^{\bullet}) \cap \Omega_{\lambda^{\vee}}(F^{\bullet}_{op})$ ならば

$$\dim(V \cap A_i) \ge i, \qquad \dim(V \cap B_i) \ge i^*$$

である。よって

$$d \ge \dim(V \cap A_i + V \cap B_i)$$

$$= \dim(V \cap A_i) + \dim(V \cap B_i) - \dim(V \cap A_i \cap B_i)$$

$$\ge i + i^* - \dim(V \cap A_i \cap B_i)$$

$$= d + 1 - \dim(V \cap A_i \cap B_i)$$

より

$$\dim(V \cap A_i \cap B_i) \ge 1$$

一方

$$A_i = F^{\lambda_i + d - i} = \langle v_{\lambda_i + d - i + 1}, \cdots, v_n \rangle$$

$$B_i = F_{op}^{\lambda_{i*}^{\vee} + d - i^*}$$

$$= F_{op}^{n - d - \lambda_{d + 1 - i^*} + d - i^*}$$

$$= F^{n - d - \lambda_i + d - d - 1 + i}$$

$$= F^{(n - (\lambda_i + d - i + 1))}$$

$$= \langle v_1, \cdots, v_{\lambda_i + d - i + 1} \rangle$$

より

$$A_i \cap B_i = \langle v_{\lambda_i + d - i + 1} \rangle$$

となるから、

$$v_{\lambda_i+d-i+1} \in V$$

 v_1, \dots, v_n は一次独立であるから

$$V = \langle v_{\lambda_1+d}, v_{\lambda_2+d-1}, \cdots, v_{\lambda_d+1} \rangle$$

したがって $\Omega_{\lambda}(F^{\bullet}) \cap \Omega_{\lambda^{\vee}}(F_{op}^{\bullet})$ は 1 点からなる。

次に $\mu \neq \lambda^\vee$ であるとする。 $|\lambda| + |\mu| = d(n-d)$ より、ある i で $\lambda_i + \mu_{i^*} > n-d$ となる。前半と同様 $A_i = F^{\lambda_i + d - i}, \ B_i = F^{\mu_{i^*} + d - i^*}_{op}$ とおけば

$$A_{i} = \langle v_{\lambda_{i}+d-i+1}, \cdots, v_{n} \rangle$$

$$B_{i} = \langle v_{1}, \cdots, v_{n-\mu_{i^{*}}-d+i^{*}} \rangle$$

$$= \langle v_{1}, \cdots, v_{n-\mu_{i^{*}}+1-i} \rangle$$

$$\subsetneq \langle v_{1}, \cdots, v_{\lambda_{i}+d-i+1} \rangle$$

より $A_i\cap B_i=0$ であるから、前半と同様の議論をすれば $V\in\Omega_\lambda(F^ullet)\cap\Omega_\mu(F^ullet_{op})$ とはなりえないことがわかる。

例 1.3.2.4. 双対定理を例 1.2.2.11 の場合で考えてみる。例えば $|\Omega_{\square}(F^{ullet})\cap\Omega_{\square}(F^{ullet}_{op})|=1$ は、「直線 l_0 と交わり、点 p_0 を通り平面 e_0 に含まれるような直線はただ 1 つ」と解釈できる。また $|\Omega_{\square}(F^{ullet})\cap\Omega_{\square}(F^{ullet}_{op})|=1$ は、「与えられた 2 点を通る直線はただ 1 つ」と解釈でき、これも確かにもっともらしい主張である。さらに $|\Omega_{\square}(F^{ullet})\cap\Omega_{\square}(F^{ullet}_{op})|=1$ は、「与えられた 2 平面両方に含まれる直線はただ 1 つ」となる。

系 1.3.2.5 (交叉条件). $\lambda, \mu \in \mathcal{Y}_d(n)$ に対して、 $\Omega_{\lambda}(F^{\bullet}) \cap \Omega_{\mu}(F^{\bullet}_{op}) \neq \emptyset$ となるための必要十分条件はすべて の i に対して $\lambda_i + \mu_{i^*} \leq n - d$ が成り立つことである。

Proof. 必要性から示す。 $V \in \Omega_{\lambda}(F^{\bullet}) \cap \Omega_{\mu}(F^{\bullet}_{op})$ ならば、定理 1.3.2.3 の証明と同様にして

$$\dim(V \cap A_i \cap B_i) > 1$$

したがって $A_i \cap B_i \neq 0$ が成り立つ。

$$A_i = \langle v_{\lambda_i + d - i + 1}, \cdots, v_n \rangle, \quad B_i = \langle v_1, \cdots, v_{n - \mu_{i^*} + 1 - i} \rangle$$

より

$$\lambda_i + d - i + 1 \le n - \mu_{i^*} + 1 - i$$

$$\lambda_i + \mu_{i^*} \le n - d$$

逆にすべての i に対して $\lambda_i + \mu_{i^*} \leq n - d$ であるならば $\mu \subset \lambda^{\vee}$ であるから、双対定理により

$$\Omega_{\lambda}(F^{\bullet}) \cap \Omega_{\mu}(F_{op}^{\bullet}) \supset \Omega_{\lambda}(F^{\bullet}) \cap \Omega_{\lambda^{\vee}}(F_{op}^{\bullet}) \neq \varnothing$$

となる。 □

命題 1.3.1.4 より双対定理・交叉条件は任意の一般の位置にある旗に対しても成り立つことがわかる。実際 その証明において

$$F^k = \langle v_{k+1}, \cdots, v_n \rangle, \quad E^{n-k} = \langle v_1, \cdots, v_k \rangle$$

なる基底の存在が本質的である。

交叉条件は視覚的には、 μ を 180° 回転させて $d \times (n-d)$ 長方形の右下隅に置いたとき、 λ と重なることがないということと同値である。それがちょうど λ^\vee になるときが双対定理の主張である。

1.3.3 Schubert 計算

いくつかの代数幾何学的事実を認めて、Schubert 多様体の交点を計算する Schubert 計算について説明する。

事実 1.3.3.1 (Kleiman の横断性定理 [?],[?]). $X \subset \mathcal{G}(d,n)$ を部分多様体, F^{\bullet} を標準旗とする。このとき $|\lambda|=k$ なる Young 図形 $\lambda \in \mathcal{Y}_d(n)$ に対して $\mathrm{GL}_n(\mathbb{C})$ の稠密な開集合 U が存在して、 $X \cap \Omega_{\lambda}(gF^{\bullet})$ は空であるか、横断的に交わる。とくに $\mathrm{codim}\, X=k$ であるなら $|X \cap \Omega_{\lambda}(gF^{\bullet})|$ は 0 であるか g によらない一定の値である。

文字の集合 $\{\sigma_{\lambda}\}_{\lambda \in \mathcal{Y}_d(n), |\lambda| = k}$ で生成される自由 \mathbb{Z} 加群を $A^k(\mathcal{G}(d,n))$ とする。 $X \subset \mathcal{G}(d,n)$ を余次元が k の部分多様体とするとき、事実 1.3.3.1 の値が定まるような十分一般の旗 F^{\bullet} に対して

$$[X] = \sum_{\lambda \in \mathcal{Y}_d(n), |\lambda| = k} |X \cap \Omega_{\lambda^{\vee}}(F^{\bullet})| \sigma_{\lambda}$$

とする。これを X のシンボルという。 $\Omega_{\lambda^{\vee}}(F^{\bullet})$ の次元は $|\lambda|=k$ であるから、 $|X\cap\Omega_{\lambda^{\vee}}(F^{\bullet})|$ は 0 次元、すなわち有限集合となるので係数は自然数として定まる。

例 1.3.3.2. $\Omega_{\lambda}(F^{\bullet})$ は余次元が $|\lambda|$ であるから、双対定理より

$$[\Omega_{\lambda}(F^{\bullet})] = \sigma_{\lambda}$$

これを Schubert 類という。

事実 1.3.3.3 ([?]). F^{\bullet} , E^{\bullet} を一般の位置にある旗とする。 $\Omega_{\lambda}(F^{\bullet}) \cap \Omega_{\mu}(E^{\bullet})$ は余次元が $|\lambda| + |\mu|$ の既約部分多様体になる。

そこで、 $A^*(\mathcal{G}(d,n))=\bigoplus_{k=0}^{d(n-d)}A^k(\mathcal{G}(d,n))$ とし、 $\sigma_\lambda\in A^k(\mathcal{G}(d,n)),\,\sigma_\mu\in A^l(\mathcal{G}(d,n))$ に対して、事実 1.3.3.1 の値が定まるような十分一般の $g\in\mathrm{GL}_n(\mathbb{C})$ に対して

$$\sigma_{\lambda} \cdot \sigma_{\mu} = [\Omega_{\lambda}(F^{\bullet}) \cap \Omega_{\mu}(F^{\bullet}_{op})] = \sum_{\nu \in \mathcal{Y}_{d}(n), |\nu| = k+l} |\Omega_{\lambda}(F^{\bullet}) \cap \Omega_{\mu}(F^{\bullet}_{op}) \cap \Omega_{\nu} \vee (gF^{\bullet})|\sigma_{\nu}|$$

と定め、 $A^*(\mathcal{G}(d,n))$ に積を定義する。これによって $A^*(\mathcal{G}(d,n))$ は次数付き可換環の構造をもつ ([?])。 $A^*(\mathcal{G}(d,n))$ を Chow 環という。係数 $|\Omega_{\lambda}(F^{\bullet}) \cap \Omega_{\mu}(F^{\bullet}_{op}) \cap \Omega_{\nu^{\vee}}(gF^{\bullet})|$ を $\eta^{\nu}_{\lambda\mu}$ と置く。 次の事実が重要である。

事実 1.3.3.4 ([?]). $X,Y \subset \mathcal{G}(d,n)$ をほとんどすべての点で横断的に交わる部分多様体とする。このとき

$$[X][Y] = [X \cap Y]$$

が成り立つ。

交叉をとるという幾何学的な操作がそのシンボルの積という代数的な操作に置き換わっているのである。

例 1.3.3.5. 第 3 章冒頭で述べた 4 直線問題について考えよう。例 1.2.2.11 を再掲すると

$$\begin{split} &\Omega_{\varnothing} = \mathcal{G}(2,4) \\ &\Omega_{\square} = \left\{ \left. V \in \mathcal{G}(2,4) \mid \dim(V \cap F^2) \geq 1 \right. \right\} \approx \left\{ \left. l \subset \mathbb{P}^3 : \dot{\mathbb{E}} \dot{\mathbb{R}} \mid l \cap l_0 \neq \varnothing \right. \right\} \\ &\Omega_{\square\square} = \left\{ \left. V \in \mathcal{G}(2,4) \mid \dim(V \cap F^3) \geq 1 \right. \right\} \approx \left\{ \left. l \subset \mathbb{P}^3 : \dot{\mathbb{E}} \dot{\mathbb{R}} \mid l \ni p_0 \right. \right\} \\ &\Omega_{\square} = \left\{ \left. V \in \mathcal{G}(2,4) \mid \dim(V \cap F^2) \geq 1, \, \dim(V \cap F^1) \geq 2 \right. \right\} \approx \left\{ \left. l \subset \mathbb{P}^3 : \dot{\mathbb{E}} \dot{\mathbb{R}} \mid l \subset e_0 \right. \right\} \\ &\Omega_{\square} = \left\{ \left. V \in \mathcal{G}(2,4) \mid \dim(V \cap F^3) \geq 1, \, \dim(V \cap F^1) \geq 2 \right. \right\} \approx \left\{ \left. l \subset \mathbb{P}^3 : \dot{\mathbb{E}} \dot{\mathbb{R}} \mid p_0 \in l \subset e_0 \right. \right\} \\ &\Omega_{\square} \approx \left\{ l = l_0 \right\} \end{split}$$

である。

$$|\Omega_{\square}(F_1^{\bullet}) \cap \Omega_{\square}(F_2^{\bullet}) \cap \Omega_{\square}(F_3^{\bullet}) \cap \Omega_{\square}(F_4^{\bullet})|$$

を計算したい。ここで $F_1^{\bullet}, F_2^{\bullet}, F_3^{\bullet}, F_4^{\bullet}$ は十分一般にとった旗である。

この値を計算するには、事実 1.3.3.4 より

$$|\Omega_{\square}(F_1^{\bullet}) \cap \Omega_{\square}(F_2^{\bullet}) \cap \Omega_{\square}(F_3^{\bullet}) \cap \Omega_{\square}(F_4^{\bullet})|\sigma_{\square} = \sigma_{\square}^4$$

となるから、 σ_{\square}^4 を計算すればよい。

 σ^2_\square を計算する。大きさ 2 の Young 図形は □□ と $_\square$ の 2 つで、どちらも自己双対的であるから、

$$\sigma_{\square}^2 = \alpha \sigma_{\square \square} + \beta \sigma_{\square}$$

である。ここで

$$\alpha = |\Omega_{\square}(F^{\bullet}) \cap \Omega_{\square}(F^{\bullet}_{op}) \cap \Omega_{\square\square}(gF^{\bullet})|, \qquad \beta = |\Omega_{\square}(F^{\bullet}) \cap \Omega_{\square}(F^{\bullet}_{op}) \cap \Omega_{\square}(gF^{\bullet})|$$

である。

 α を求める。 $\Omega_{\square}(F^{\bullet}) \cap \Omega_{\square}(F^{\bullet}_{op}) \cap \Omega_{\square}(gF^{\bullet})$ は「2 つの直線 l_0, l_1 と交わり、1 点 p_0 を通る直線」の全体である。p を通り l_0 と交わる直線全体の軌跡を考えると、これは 1 つの平面となる。この平面ともう 1 本の直線 l_1 は必ず 1 点で交わる (射影空間で考えている!) から、 $\alpha=1$ である。

次に β を求める。 $\Omega_{\square}(F^{\bullet})\cap\Omega_{\square}(F^{\bullet}_{op})\cap\Omega_{\square}(gF^{\bullet})$ は「2 つの直線 l_0,l_1 と交わり、1 つの平面 e_0 に含まれる直線」の全体である。 e_0 と l_0 は 1 点 p_0 で交わり、 e_0 と l_1 も 1 点 p_1 で交わる。よって $l\cap l_0\neq\varnothing,l\cap l_1\neq\varnothing$ $l\subset e_0$ ならば $p_0,p_1\in l$ である。2 点を結ぶ直線は一般にただ 1 つだから $\beta=1$ である。

よって
$$\sigma_{\square}^2 = \sigma_{\square\square} + \sigma_{\square}$$
 である。同様の考察を行うと、

$$\sigma_{\square \square}\sigma_{\square}=\sigma_{\square}\sigma_{\square}=\sigma_{\square}$$

がわかる。したがって、

$$\sigma_{\square}^4 = 2\sigma_{\square}$$

であるから、一般の位置にある4本の直線と交わる直線の数は2である。

1.3.4 Schur 多項式との関係

前小節で 4 直線問題の解を与えたが、Schubert 類の積を計算するために、易しい問題に帰着されたとはいえ幾何学的な考察が必要であった。しかし、実は Grassmann 多様体の Chow 環は対称多項式環の剰余環として表されること、さらには Schubert 類は Schur 多項式と対応することが示され、これによって Schubert 計算は Schur 多項式の展開に帰着される。