KKMC

CEEX σ and A_{FB} , energy cut-off study

 $u ar u o \mu^- \mu^+$, at 189GeV. Energy cut: $v < v_{
m max}$, $v = 1 - M_{far f}^2/s$.

Scattering angle for $A_{\rm FB}$ is $\theta=\theta^{\bullet}$. No cut in θ^{\bullet} . E-W corr. in \mathcal{KK} according to DIZET 6.x.

EEX3 is $\mathcal{O}(\alpha^3)_{\mathrm{LL}}$ EEX3 matrix element without ISR \otimes FSR interf.

KKsem is semianalytical part of KK. (Angle θ is from Phys. Rev. **D41**, 1425 (1990).)

$v_{ m max}$	KKsem Refer.	$\mathcal{O}(lpha^3)_{ ext{EEX}3}$	$\mathcal{O}(\alpha^2)_{\text{CEEX}} \text{ intOFF}$	$\mathcal{O}(lpha^2)_{ ext{CEEX}}$
	$\sigma(v_{ m max}) \; [m pb]$			
0.01	1.2714 ± 0.0000	1.2718 ± 0.0009	1.2718 ± 0.0009	1.2191 ± 0.0009
0.10	1.6178 ± 0.0000	1.6175 ± 0.0010	1.6175 ± 0.0010	1.5792 ± 0.0010
0.30	1.8058 ± 0.0000	1.8053 ± 0.0010	1.8054 ± 0.0010	1.7784 ± 0.0010
0.50	1.9026 ± 0.0000	1.9018 ± 0.0010	1.9021 ± 0.0010	1.8815 ± 0.0011
0.70	2.0099 ± 0.0000	2.0084 ± 0.0010	2.0094 ± 0.0010	1.9938 ± 0.0011
0.90	3.3101 ± 0.0000	3.3023 ± 0.0010	3.3120 ± 0.0010	3.2993 ± 0.0010
0.99	3.3961 ± 0.0000	3.3881 ± 0.0010	3.3995 ± 0.0010	3.3872 ± 0.0010
	$A_{ m FB}(v_{ m max})$			
0.01	0.6788 ± 0.0000	0.6787 ± 0.0009	0.6787 ± 0.0009	0.6548 ± 0.0009
0.10	0.6791 ± 0.0000	0.6790 ± 0.0008	0.6790 ± 0.0008	0.6656 ± 0.0008
0.30	0.6799 ± 0.0000	0.6798 ± 0.0007	0.6798 ± 0.0007	0.6713 ± 0.0007
0.50	0.6809 ± 0.0000	0.6806 ± 0.0007	0.6806 ± 0.0007	0.6743 ± 0.0007
0.70	0.6800 ± 0.0000	0.6794 ± 0.0006	0.6793 ± 0.0006	0.6749 ± 0.0007
0.90	0.4417 ± 0.0000	0.4415 ± 0.0004	0.4407 ± 0.0004	0.4366 ± 0.0004
0.99	0.4285 ± 0.0000	0.4283 ± 0.0004	0.4274 ± 0.0004	0.4238 ± 0.0004

KKMC

Total cross section σ , energy cut-off stydy

The same as in the table. No cut in θ^{\bullet} . Ref. $\sigma_{\rm ref}$ = semianalytical of \mathcal{KK} sem.

Charge asymmetry $A_{\rm FB}$, energy cut-off study

The same as in the table. No cut in θ^{\bullet} . Reference $A_{\mathrm{FB}}^{\mathrm{ref}}$ = semianalytical \mathcal{KK} sem.

KKMC

Physical Precision of CEEX ISR

The difference between second and first order CEEX results for at 189GeV.

The energy cut is on s'/s , where $s'=m_{f\bar{f}}^2.$ Scattering angle is $\theta=\theta^{\bullet}.$

[Angle θ^{\bullet} is defined in Phys. Rev. **D41**, 1425 (1990)]

