Semaine 17 - Théorie de la dimension et applications linéaires

Valentin De Bortoli email : valentin.debortoli@gmail.com

Dans la suite k est un corps (on se limite à \mathbb{R} et \mathbb{C}) et E un k-espace vectoriel.

1 Une famille libre?

1 Montrer que $(x \mapsto \cos(nx))_{n \in \mathbb{N}}$ est une famille libre de $\mathcal{F}(\mathbb{R}, \mathbb{R})$.

Remarque : on peut montrer de manière plus générale qu'une famille de fonctions $(f_i)_{i \in [\![1,n]\!]}$ est libre dans $\mathcal{F}(\mathbb{R},\mathbb{R})$ si et seulement si il existe n réels $(x_i)_{i \in [\![1,n]\!]}$ tels que $(f_i(x_j))_{(i,j) \in [\![1,n]\!]^2}$ soit une matrice inversible.

2 Espace vectoriel et fonctions affines

- 1 Soit F l'ensemble des fonctions continues de [-1,1] affines sur [-1,0] et affines sur [0,1]. Montrer que F est un sous-espace vectoriel (de quel espace vectoriel ?).
 - **2** Trouver une base de F.

3 Une base de polynômes

1 Montrer que $(P_k)_{k \in [0,n]}$ avec $P_k = X^k (1-X)^{n-k}$ est une base de $\mathbb{R}_n[X]$.

4 Nombres réels et espace vectoriel

Le but de cet exercice est d'étudier \mathbb{R} comme \mathbb{Q} -espace vectoriel. On note $(p_n)_{n\in\mathbb{N}}$ l'ensemble des nombres premiers rangés par ordre croissant.

- 1 Montrer que $\forall N \in \mathbb{N}, (p_n)_{n \in [\![1,N]\!]}$ est une famille libre de \mathbb{R} . En déduire qu'il n'existe pas de base finie de \mathbb{R} comme \mathbb{Q} -espace vectoriel.
- 2 Autre démonstration : si $(x_n)_{n\in \llbracket 1,N\rrbracket}$ est une base de $\mathbb R$ comme $\mathbb Q$ -espace vectoriel en déduire que tout $x\in \mathbb R$ est racine d'un polynôme de degré N-1.
- 3 En considérant $2^{1/N}$ en déduire une contradiction (on admettra que X^n-2 est un polynôme irréductible de $\mathbb{Q}[X]$).

Remarque : en fait on peut même montrer en considérant la famille $(\sum_{n\geq 1} \frac{1}{10^{\lfloor a^n \rfloor}})_{a>1}$ que toute base de $\mathbb R$ comme $\mathbb Q$ -espace vectoriel est de cardinal celui de $\mathbb R$. L'existence d'une base de $\mathbb R$ est assurée par l'axiome du choix (bases de Hamel) mais n'est pas constructible.

5 Polynômes à valeurs entières

- $\textbf{1} \quad \text{Montrer que } (P_k)_{k \in \llbracket 0,n \rrbracket} \text{ avec } \forall k \in \llbracket 1,n \rrbracket, \ P_k = \frac{X(X-1)\dots(X-k+1)}{k!} \text{ et } P_0 = 1. \ \text{Montrer que } (P_k)_{k \in \llbracket 0,n \rrbracket} \text{ base de } \mathbb{R}_n[X].$
 - **2** Montrer que $\forall m \in \mathbb{Z}, \forall k \in [0, n], P_k(m) \in \mathbb{Z}$.

3 En déduire la forme des polynômes de $\mathbb{R}_n[X]$ qui prennent des valeurs entières sur les entiers.

6 Divisibilité et sous-espace vectoriel

Soit A polynôme de $\mathbb{R}_n[X]$.

- 1 Montrer que $F = \{P \in \mathbb{R}_n[X], A|P\}$ est un sous-espace vectoriel.
- 2 Exhiber une base et un supplémentaire de cet espace.

7 Une équation polynômiale

1 Montrer qu'il existe un unique polynôme $P \in \mathbb{R}_{n+1}[X]$ tel que P(0) = 0 et $P(X+1) - P(X) = X^n$.

8 Une somme directe

- 1 Soit $i \in [0, n]$ et $F_i = \{P \in \mathbb{R}_n[X], \forall j \in [0, n] \setminus \{i\}, P(j) = 0, P(i) \neq 0\}$. Montrer que $F_i \cup \{0\}$ est un espace vectoriel
 - **2** Montrer que $\mathbb{R}_n[X] = F_0 \oplus \cdots \oplus F_n$.

9 Drapeaux

Soit u un endomorphisme de E.

- 1 Montrer que $\forall k \in \mathbb{N}$, $\ker u^k \subset \ker u^{k+1}$. Conjecturer et prouver une propriété similaire sur $\operatorname{Im} u^k$.
- **2** On suppose qu'il existe $p \in \mathbb{N}$ tel que $\ker u^n = \ker u^{n+1}$. Montrer que pour tout $p \in \mathbb{N}, \ p \geq n \implies \ker u^p = \ker u^{p+1}$.
- 3 En déduire que pour ce n, $\ker u^n$ et $\operatorname{Im} u^n$ sont en somme directe. Que peut-on dire dans le cas de la dimension finie ?

10 Stabilisation et endomorphismes

Soit u un endomorphisme de E.

- 1 On suppose que u stabilise toutes les droites (sous espaces vectoriels de dimension 1), c'est-à-dire que pour toute droite D, $u(D) \subset D$. Que peut-on dire de u?
- ${\bf 2}$ On suppose maintenant que u stabilise tous les sous-espaces vectoriels de dimension k. Que peut-on dire de u ?

11 Polynômes annulateurs

Soit u un endomorphisme de E. On suppose que E est de dimension finie.

- 1 Montrer qu'il existe $P \in k[X]$ tel que $P(u) = \sum_{k=0}^{\deg P} a_k u^k = 0$.
- **2** Montrer que u est bijectif si et seulement un de ses polynômes annulateurs vérifie $a_0 \neq 0$.

- 3 Montrer que keru et Imu sont en somme directe si et seulement il existe un polynôme annulateur dont 0 est racine d'ordre au plus 1.
 - 4 Que se passe-t-il en dimension infinie?

12 Rang et endomorphisme

Soit u et v deux endomorphismes de E (k-espace vectoriel de dimension finie) tels que $u \circ v = 0$ et u + v bijectif.

1 Montrer que rgu + rgv = dim E.

13 Rang et composition

Soit (f,g) deux endomorphismes de E un k-espace vectoriel de dimension $n \in \mathbb{N}$.

- 1 Montrer que $rgf + rgf n \le rgf \circ g$.
- **2** En déduire les endomorphismes u de \mathbb{R}^3 tels que $u^2 = 0$.

14 Rang et sous-espace vectoriel

Soit f un endomorphisme de E (k-espace vectoriel de dimension $n \in \mathbb{N}$). Soit F un sous-espace vectoriel de E.

1 Montrer que $\dim(\ker f \cap F) \ge \dim F - \operatorname{rg} f$

15 Endomorphismes et polynômes

Soit $n \in \mathbb{N}$ on note ϕ : $\mathbb{R}_n[X] \to \mathbb{R}_n[X]$ défini par $\phi(P) = P(X+1) + P(X)$.

- 1 Montrer que ϕ est un isomorphisme. On note $\forall k \in [0, n], P_k = \phi^{-1}(2X^k)$.
- 2 Montrer que $P_n(X+1)$ est combinaison linéaire des $(P_k)_{k \in [\![0,n]\!]}$. En considérant $P_n(X+2) P_n(X+1)$ expliciter cette combinaison linéaire.
 - **3** Donner une relation liant P_n aux $(P_k)_{k \in [0,n-1]}$.