資料分類技術

1

Learning Phase

Learning

- The class label attribute is credit_rating
- Training data are analyzed by a classification algorithm
- The classifier is represented in the form of classification rules

Testing Phase

- Testing (Classification)
 - Test data are used to estimate the accuracy of the classification rules
 - If the accuracy is considered acceptable, the rules can be applied to the classification of new data tuples

Classification by ID3 Decision Tree

Training data tuples from the AllElectronics customer database.

RID	age	income	student	credit_rating	Class: buys_computer
	<=30	high	no	fair	no
2	<=30	high	no	excellent	no
3	31 40	high	no	fair	yes
4	>40	medium	no	fair	yes
5	>40	low	yes	fair	yes
6	>40	low	yes	excellent	no
7	31 40	low	yes	excellent	yes st
8	<=30	medium	no	fair	no no
9	<=30	low	yes	fair	yes
10	>40	medium	yes	fair	yes no
11	<=30	medium	yes	excellent	yes
12	31 40	medium	no	 excellent 	yes
13	31 40	high	yes	fair	yes
14	>40	medium	no	excellent	no

A top-down decision tree generation algorithm: ID-3

Example Data 1 (東方人西方人資料集)

	Eye	Hair	Height	Oriental
1	Black	Black	Short	Yes
2	Black	White	Tall	Yes
3	Black	White	Short	Yes
4	Black	Black	Tall	Yes
5	Brown	Black	Tall	Yes
6	Brown	White	Short	Yes
7	Blue	Gold	Tall	No
8	Blue	Gold	Short	No
9	Blue	White	Tall	No
10	Blue	Black	Short	No
11	Brown	Gold	Short	No

-

A Good Decision Tree

A Bad Decision Tree

Example Data 2

(全國電子買電腦資料集)

Training data tuples from the AllElectronics customer database.

RID	age	income	student	credit_rating	Class: buys_computer
1	<=30	high	no	fair	no
2	<=30	high	no	excellent	no
3	31 40	high	no	fair	yes
4	>40	medium	no	fair	yes
5	>40	low	yes	fair	yes
6	>40	low	yes	excellent	no
7	31 40	low	yes	excellent	yes
8	<=30	medium	no	fair	no
9	<=30	low	yes	fair	yes
10	>40	medium	yes	fair	yes
11	<=30	medium	yes	excellent	yes
12	31 40	medium	no	excellent	yes
13	31 40	high	yes	fair	yes
14	>40	medium	no	excellent	no

Decision Tree Generation Algorithm: ID3 (Cont. 1/5)

ID: Iterative Dichotomiser

Let S be a set consisting of s data samples. Suppose the class label attribute has m distinct values defining m distinct classes, C_i (for i = 1, ..., m). Let s_i be the number of samples of S in class C_i . The expected information needed to classify a given sample is given by

$$I(s_1, s_2, ..., s_m) = -\sum_{i=1}^m p_i \log_2(p_i),$$
 (7.1) Entropy

where p_i is the probability that an arbitrary sample belongs to class C_i and is estimated by s_i/s . Note that a log function to the base 2 is used since the information is encoded in bits.

Decision Tree Generation Algorithm: ID3 (Cont. 2/5)

RID	age	income	student	credit_rating	Class: buys_computer
1	<=30	high	no	fair	no
2	<=30	high	no	excellent	no
3	31 40	high	no	fair	yes
4	>40	medium	no	fair	yes
5	>40	low	yes	fair	yes
6	>40	low	yes	excellent	no
7	31 40	low	yes	excellent	yes
8	<=30	medium	no	fair	no
9	<=30	low	yes	fair	yes
10	>40	medium	yes	fair	yes
11	<=30	medium	yes	excellent	yes
12	31 40	medium	no	excellent	yes
13	31 40	high	yes	fair	yes
14	>40	medium	no	excellent	no

The class label attribute, $buys_computer$, has two distinct values (namely, $\{yes, no\}$); therefore, there are two distinct classes (m = 2). Let class C_1 correspond to yes and class C_2 correspond to yes and class C_2 correspond to yes and yes are compute the information gain of each attribute, we first use Equation (7.1) to compute the expected information needed to classify a given sample:

$$I(s_1, s_2) = I(9, 5) = -\frac{9}{14} \log_2 \frac{9}{14} - \frac{5}{14} \log_2 \frac{5}{14} = 0.940.$$

Decision Tree Generation Algorithm: ID3 (Cont. 3/5)

Next, we need to compute the entropy of each attribute. Let's start with the attribute age. We need to look at the distribution of yes and no samples for each value of age. We compute the expected information for each of these distributions.

For
$$age = "<=30"$$
:
 $s_{11} = 2$ $s_{21} = 3$ $I(s_{11}, s_{21}) = 0.971$
For $age = "31 \dots 40"$:
 $s_{12} = 4$ $s_{22} = 0$ $I(s_{12}, s_{22}) = 0$
For $age = ">40"$:
 $s_{13} = 3$ $s_{23} = 2$ $I(s_{13}, s_{23}) = 0.971$

the expected information needed to classify a given sample

$$E(age) = \frac{5}{14}I(s_{11}, s_{21}) + \frac{4}{14}I(s_{12}, s_{22}) + \frac{5}{14}I(s_{13}, s_{23}) = 0.694$$

Decision Tree Generation Algorithm: ID3 (Cont. 4/5)

Hence, the gain in information from such a partitioning would be

$$Gain(age) = I(s_1, s_2) - E(age) = 0.246.$$

Similarly, we can compute Gain(income) = 0.029, Gain(student) = 0.151, and $Gain(credit_rating) = 0.048$. Since age has the highest information gain among the attributes, it is selected as the test attribute. A node is created and labeled with age, and branches are grown for each of the attribute's values. The samples falling into the partition for $age = "31 \dots 40"$ all belong to the same class. Since they all belong to class yes, a leaf should therefore be created at the end of this branch and labeled with yes.

Decision Tree Generation Algorithm: ID3 (Cont. 5/6)

Training data tuples from the AllElectronics customer database.

RID	age	income	student	credit_rating	Class: buys_computer
1	<=30	high	no	fair	no
2	<=30	high	no	excellent	no
3	31 40	high	no	fair	yes
4	>40	medium	no	fair	yes
5	>40	low	yes	fair	yes
6	>40	low	yes	excellent	no
7	31 40	low	yes	excellent	yes
8	<=30	medium	no	fair	no
9	<=30	low	yes	fair	yes
10	>40	medium	yes	fair	yes
11	<=30	medium	yes	excellent	yes
12	31 40	medium	no	excellent	yes
13	31 40	high	yes	fair	yes
14	>40	medium	no	excellent	no

ag	ge?
	7
< 30 3140	

income	student	credit_rating	class
high	no	fair	110
high	no	excellent	no
medium	no	fair	no
1ow	yes	fair	yes
medium	yes	excellent	yes

income	student	credit_rating	class
medium	no	fair	yes
low	yes	fair	yes
1ow	yes	excellent	no
medium	yes	fair	yes
medium	no	excellent	no

income	student	credit_rating	class	
high	no	fair	yes	
1ow	yes	excellent	yes	
medium	no	excellent	yes	
high	yes	fair	yes	

yes

Decision Tree Generation Algorithm: ID3 (Cont. 6/6)

