Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут»

Кафедра КЕОА

Лабораторна робота №1 з курсу: «Апаратні прискорювачі обчислень на мікросхемах програмованої логіки»

Виконав:

студент III-го курсу ФЕЛ група ДК-02 Овдієнко П.К. 25.10.2022

Хід роботи

1. В Simulink реалізувати підсистему, що розраховує функцію:

$$Y = W0*X0 + W1*X1 + W2*X2 + W*X3$$

Типи даних входів: int8 Тип даних виходу: int16

На входах і виході поставити регістри (блок затримки на 1 такт)

Схема має наступний вигляд:

Вигляд всередині блоку PROCESSING_UNIT:

Налаштування першого Uniform Random number:

Налаштування останнього Uniform Random number:

Як можна побачити параметр seed починається з 8 (номер за списком) і далі збільшується з кількістю uniform random number. Всі інші налаштування були задані на основі параметрів які вказані в методичці і їх можна буде продивитися в надісланому проекті.

2. В логічному аналазаторі переглянути дані на входах і на виході створеної підсистеми у знаковому десятковому поданні (форматі).

Результат виглядає наступним чином:

Зробимо перевірку:

Візьмемо третій такт:

(-52)*39 + (-128)*(-39) + 52*(-115) + (-26)*65 = -4706 і так як через затримка в два такти то на виході через два такти ми і можемо побачити це число -4706.

3. Додати у звіт згенерований код на Verilog та результат синтезу згенерованого коду в Quartus для створеної підсистеми (звіт по апаратним витратам, результат виклику RTL Viewer).

Згенерований Verilog код має наступний вигляд:


```
| The content of the
```

Результат синтезу в RTL Viewer:

5. Створити тестбенч в Matlab для створеної підсистеми і додати в звіт результат симуляції тестбенча в Modelsim/Questasim.

Результат симуляції створеного тестбенчу:

Висновок: під час виконання лабораторної роботи завдяки відео зі знайомством в середовищі Matlab вдалося розробити підсистему і перевірити її роботу. Можна сказати, що симуляція в Matlab та синтез в Quartus Prime мають задовільний результат, у той час як симуляція в середовищі ModelSim має сумніви та невпевненість, що може бути пов'язано з певною при налаштуванні та симуляції проекту.