Investigating the structure of abstraction in neural networks with population-level hypothesis testing

Anastasia Dmitrienko¹, Sean R. Bittner², John P. Cunningham¹ Department of Statistics and ²Department of Neuroscience, Columbia University

Motivation

- Research in statistical neuroscience focuses on finding structure in large-scale neural recordings.
- Theoretical models of brain computation are designed to reflect this neural population structure.
- A methodological bottleneck is generating of surrogate neural data for population-level hypothesis testing.
- We use methods from Elsayed et al. (2017) [1] to investigate if primary features give rise to geometrical abstraction in neural networks classifying both magnitude and parity of MNIST digits (Bernardi et al. (2018) [2]).

 Geometrical abstraction is the brain's representation of abstract variables to enable conceptual generalization.

Population-level hypothesis testing.

Mechanics of a hypothesis test:

- We use **tensor maximum entropy** (TME) to control for primary features of neural data.
- TME samples surrogate datasets $S \in \mathbb{R}^{T \times N \times C}$ from a probability distribution p(S) that maximizes Shannon entropy with the average primary features of the data.
- Maximum entropy objective:

$$\hat{p}(S) = \underset{p(S)}{\operatorname{argmax}} - \int p(S) log(p(S)) dS$$

Constraints:

$$\int p(S)dS = 1 \qquad E_p[S] = M$$

$$\bar{S} = S - M$$

$$\Sigma_T = E_p \left[\sum_{n=1}^{N} \sum_{c=1}^{C} \bar{S}(:, n, c) \bar{S}(:, n, c)^T \right]$$

*This expectation is analogous for N and C dimensions.

Additionally, we used the corrected Fisher randomization method (CFR) as a control, which also preserves the tensor-marginal means and covariances.

Cognitive abstraction

- To perform complex tasks, neuronal ensembles must represent multiple variables simultaneously.
- A serial reversal learning task requires inferring how to switch back and forth between two contexts defined by sets of variable mappings (figure below).
- Bernardi et al. (2018)
 [2] trained monkeys to perform this task, and analyzed the geometrical representation of
- -task context
- operant responses
- reinforcement outcomes

Figure credit: Fig. 1b from Bernardi et al. (2018) [2]

• An analysis of the geometrical structure of the points representing the experimental conditions revealed an abstract representation of each variable, separate from randomly distributed representations in firing rate space.

Abstraction metrics ___

CCGP

(Cross Conditional Generalization Performance)

 Ability of linear readout to generalize multiple variables simultaneously

$$CCGP(X) = \sum_{i=1}^{4} \sum_{j=1}^{4} \frac{a_{ij}}{16}$$

 a_{ij} is test set accuracy for train set i from dichotomy side 1 and train set j from side 2

Figure credit: Fig. 4a from Bernardi et al. (2018) [2]

Parallelism Score

 The degree to which the coding directions determined when training a decoder are parallel for different sets of training conditions

$$PS(X) = \max_{y} \sum_{i=1}^{4} \sum_{j>i}^{4} \frac{\cos(\theta_{i,j})}{6}$$

Maximum sum of cosines between all planes i and j for y, where y is one of 24 dichotomy pairings

Figure credit: Fig. 4b from Bernardi et al. (2018) [2]

Multi-tasking networks

- To mimic the computational process required in the serial-reversal learning task, Bernardi et al. (2018) [2] trained a 2-layer neural network to classify MNIST digits by both magnitude and parity.
- 100 neurons per hidden layer (tanh activation, Adam optimizer)
- -Cross entropy was minimized for two classification tasks, parity and magnitude, simultaneously.

Structure of multi-tasking network activity _

- We aim to measure the level of abstraction across all possible abstract variables, or dichotomies of digits.
- -35 possible balanced dichotomies, from the ways to split 8 digits into 2 groups of 4: $\binom{8}{4}/2$.
- Orthogonal dichotomies are balanced in magnitude and parity (2 small/large, 2 even/odd digits)
- Semi-aligned dichotomies are imbalanced

- Digits of different parities and magnitudes are more separated in Layer 2 than Layer 1. This projection reveals orthogonal coding directions for the two variables.
- Orthogonal dichotomies have lowest parallelism score and CCGP for neural network output (Layer 2).

- Orthogonal dichotomies are least similar to the magnitude and parity baselines, representing half of the two trained dichotomies, so their linear separability is lower than others.
- Thus, dichotomies the network wasn't trained to classify are not represented abstractly.

Results

Parallelism in magnitude dichotomy

• For the best pairing of conditions, planes are relatively parallel for the dichotomy, resulting in a high PS.

• The tensor marginal mean lacks parallel structure in this (and any) dichotomy.

• Like TMM, the TME sample data has similar clustering and skewed hyperplanes.

Controlling for primary features

- When examining the 4 pairings of conditions that minimizes angles between all 4 hyperplanes, the PS for neural network data is higher. This is because the NN data is clustered by the trained abstract variables and this improves linear separability.
- However, the surrogate data does not contain this population structure, so the digit clusters are distributed randomly in 100-D space.

*Each data set is ordered according to its own dichotomy rank.

- Neural correlation structure and tuning across conditions are not enough to account for degree of abstraction measured in neural networks by CCGP and PS.
- The trained dichotomies in NN data are significantly higher for CCGP and PS than in TME and CFR data.

Discussion _

- Our testing across primary features of the neural readout using TME and CFR suggests that the surrogate datasets do not have the same higher-order structure as the neural network responses
- This gives greater contextualization to the statistical significance of the conclusions by Bernardi, et al. (2018) [2]
- Future research can investigate which non-linear metrics, such as pairwise distances, give rise to abstracted neural representations.

References 1. Elsayed GF, Cunningham JP. Structure in neural population recordings: an expected byproduct of simpler phenomena? Nature Neuroscience. 2017;20: 13101318. 10.1038/nn.4617

2. Bernardi et al.The geometry of abstraction in hippocampus and prefrontal cortex. bioRxiv (2018): 10.1101/408633

3. Loaiza-Ganem, Gabriel, Gao, Yuanjun, and Cunningham, John P. Maximum entropy flow networks. ICLR 2017.

Code can be found online at github.com/admitrienko/MNIST-Abstraction-Testing