Universidade Federal do Pará Programa de Pós-Graduação em Ciência da Computação

Aprendizado de Máquina

Prof. Dr. Bianchi Serique Meiguins

Prof. Dr. Tiago Araújo

verb, ex: Attack the orc

DLSS (ORIGINAL QUALITY MODE)

Ray Tracing - 1080p, Quality: High, RTX 2060

DLSS 2.0 (QUALITY MODE)
Ray Tracing - 1080p, Quality: High, RTX 2060

Tempo de inferência de 20ms

Tempo de inferência < 100ms

Ciência de dados

 Visualização da Informação e Aprendizado de Máquina são parte vital da Ciência de Dados (*Data Science*), gerando representações, sejam visuais ou na forma de modelos.

• Ciência de dados vincula princípios, processos e técnicas para entender um fenômeno pela análise automática de dados.

Apoia a Data Driven Decision Making

NETFLIX

YouTube

Inteligência Artificial

Agentes Inteligentes

Lógica

Robótica

Otimização

Busca

Aprendizado de Máquina

Aprendizado Supervisionado Aprendizado Não-Supervisionado Aprendizado por Reforço

Deep Learning

Definição

• Área de estudo que estuda a habilidade de computadores aprenderem sem programação explícita.

• É dito que um programa de computador aprende com a experiência E em respeito a uma tarefa T baseado na medida de desempenho P, se o desempenho em T, medido por P, melhora com a experiência E.

Pipeline

Pipeline

Aprendizado de máquina

Definir a tarefa

Adquirir dados

Aplicar transformações Implementar o modelo

Treinar o modelo

Colocar em produção

Visualização da informação

Definir o propósito

Adquirir dados

Aplicar transformações

Realizar mapeamento visual

Renderizar

Representação

• A percepção do computador sobre o mundo é limitada.

• Para tarefas de aprendizado de máquina, devemos escolher quais dimensões do nosso problema podem ser utilizadas.

Estudo com antibióticos

Medição do experimento

```
"Bacteria": "Aerobacter aerogenes",
    "Penicillin":870,
    "Streptomycin":1,
    "Neomycin":1.6,
    "Gram Staining": "negative",
    "Genus": "other"
    "Bacteria": "Bacillus anthracis",
    "Penicillin":0.001,
    "Streptomycin":0.01,
    "Neomycin":0.007,
    "Gram_Staining":"positive",
    "Genus": "other"
}, ...
```

Vetor de características

```
[ [870, 1, 1.6, 0], [0] ]
[ [0.001, 0.01, 0.007, 0], [1] ]
```

Tarefas

- Aprendizado Supervisionado
 - Entrada: Conjunto de dados com rótulo
 - Objetivo: Descobrir o rótulo de amostras não vistas
 - Tipos:
 - Classificação Rótulo discreto
 - Regressão Rótulo contínuo
- Aprendizado Não-Supervisionado
 - Entrada: Conjunto de dados sem resposta
 - Objetivo: Encontrar estrutura nos dados

Processo

Dados

- Normalização
- Transformações
- Validação
- Seleção de atributos

Treino

- Seleção de hiperparâmetros
- Seleção de métodos
- Teste e validação

Produção

- Infraestrutura
- Monitoramento
- Refinar modelo para escalar

Tipos de Aprendizado

Aprendizado Supervisionado

Aprendizado Supervisionado

- Dado um conjunto de dados $\{(x_1,y_1),(x_2,y_2),\dots,(x_n,y_n)\}$ um algoritmo de aprendizado procura uma função f(X)=Y
- $X = \text{vetores de características } (x_i \text{ representa o i-ésimo vetor})$
- $Y = \text{rótulos} (y_i \text{ representa o i-ésimo rótulo})$

- Dois tipos, depende de *Y*
 - Regressão quando é Y contínuo
 - Classificação quando é Y categórico

Aprendizado Supervisionado

Otimização

• Sem treino

Mínimos Quadrados

Método do Gradiente

K-Nearest Neighbor (KNN)

• Algoritmo simples, sem otimização

 Pontos novos procuram os vizinhos mais próximos, calculando distância

As classes dos pontos mais próximos define a classe dos pontos novos

K-Nearest Neighbors Demo

This interactive demo lets you explore the K-Nearest Neighbors algorithm for classification.

Each point in the plane is colored with the class that would be assigned to it using the K-Nearest Neighbors algorithm. Points for which the K-Nearest Neighbor algorithm results in a tie are colored white.

You can move points around by clicking and dragging!

Metric Num Neighbors (K) 1 2 3 4 5 6 7 Num classes Num points 2 3 4 5 20 30 40 50 60

K-Nearest Neighbors Demo

Regressão logística

• Usa uma função para definir o relacionamento entre os dados

Pode assumir muitas formas

• Como escolher a função f(X)? Função de custo

Linear d3.regressionLinear()

Quadratic d3.regressionQuad()

Logarithmic d3.regressionLog()

Exponential d3.regressionExp()

Power law d3.regressionPow()

LOESS d3.regressionLoess()

Função de Custo

• Hipótese: $f(X) = \theta_0 + \theta_1 x$

• Paramêtros: θ_0 , θ_1

• Minimizar: $J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (f(x_i) - y_i)^2$

• Objetivo: $\min_{\theta_0,\theta_1}^{minimizar} J(\theta_0,\theta_1)$

Árvores de decisão

 Usa um conjunto simples de decisões hierárquicas para tomar decisões

• Simples de entender, rápido de executar

 O conjunto de árvores (floresta) perde em interpretabilidade mas ganha em acurácia

 Aprendizado pode ser baseado em entropia, que cria nós baseado no ganho de informação

Árvores de decisão e Florestas Aleatórias

Rede Neural

• Vagamente inspirado por um modelo biológico

• Usa conexões de neurônios para calcular valores e escolher classes

Altamente eficiente em tarefas de percepção

• O uso de Redes Neurais atende por outro nome: Deep Learning

hidden layer 1 hidden layer 2

Treino

A vectorized example:
$$f(x,W) = ||W \cdot x||^2 = \sum_{i=1}^n (W \cdot x)_i^2$$

$$\begin{bmatrix} 0.1 & 0.5 \\ -0.3 & 0.8 \\ 0.104 & 0.208 \end{bmatrix} W \qquad \qquad \begin{bmatrix} 0.22 \\ 0.26 \end{bmatrix} & \\ \begin{bmatrix} 0.2 \\ 0.4 \\ \end{bmatrix} & \\ \begin{bmatrix} 0.104 \\ 0.52 \end{bmatrix} & \\ \end{bmatrix} & \\ \begin{bmatrix} 0.2 \\ 0.636 \end{bmatrix} & \\ q = W \cdot x = \begin{pmatrix} W_{1,1}x_1 + \dots + W_{1,n}x_n \\ \vdots \\ W_{n,1}x_1 + \dots + W_{n,n}x_n \end{pmatrix} & \frac{\partial q_k}{\partial x_i} = W_{k,i} \\ \frac{\partial f}{\partial x_i} = \sum_k \frac{\partial f}{\partial q_k} \frac{\partial q_k}{\partial x_i} \\ & = \sum_k 2q_k W_{k,i} \end{bmatrix}$$

Linear Classification Loss Visualization

Tinker With a **Neural Network** Right Here in Your Browser. Don't Worry, You Can't Break It. We Promise.

Regularization

Regularization rate

Problem type

Activation

Learning rate

Epoch

TensorFlow Playground

Aprendizado não-supervisionado

• Dado um conjunto de dados $\{x_1, x_2, \dots, x_n\}$ um algoritmo de aprendizado procura estruturas latentes

Tarefa comum: clusterização

Maior parte da informação disponível hoje não tem rótulo

This person does not exist

Clusterização

 Mesmo sem rótulo, encontrar meios de agrupar informação tem muitas utilidades

• Exemplos:

- Identificação de células cancerígenas
- Detecção de fraudes e dispor linhas de crédito
- Propaganda
- Redes sociais
- Análise de astros

K-Means

 Método simples de agrupamento, útil quando se sabe um pouco do domínio

 Parâmetro k define o número de clusters, que são definidos em razão de um centroide.

 Os pontos se agrupam nos clusters pela distância até os centroides, que são atualizados em cada etapa

Muito sensível

DBSCAN

• Procura clusters pela densidade de pontos

• Parâmetros ϵ , minPoints: distância e densidade esperada

 Os pontos se agrupam nos clusters pela distância até os centroides, que são atualizados em cada etapa

• Um pouco mais robusto, mas depende muito da densidade

EduClust