# DIGITALNI SUSTAVI ZA OBRADU SIGNALA

DSOS21

Julije Ožegović FESB Split

# DIGITALNI SUSTAVI ZA OBRADU SIGNALA

UVOD: ANALOGNI I DIGITALNI SUSTAVI

I. OSNOVE DIGITALNE OBRADE SIGNALA

II. DIGITALNI FILTRI U VREMENSKOM I FREKVENCIJSKOM PODRUČJU

III. STRUKTURA DIGITALNIH SUSTAVA ZA OBRADU SIGNALA

IV. DIGITALNA OBRADA SIGNALA U PRIMJENI

# II. DIGITALNI FILTRI U VREMENSKOM I FREKVENCIJSKOM PODRUČJU

- 8. SINTEZA NEREKURZIVNIH FILTARA
- 9. SINTEZA NEREKURZIVNIH FILTARA FOURIEROVOM TRANSFORMACIJOM
- 10. SINTEZA REKURZIVNIH FILTARA
- 11. DISKRETNA FOURIEROVA TRANSFORMACIJA
- 12. BRZA FOURIEROVA TRANSFORMACIJA
- 13. POSTUPCI BRZE FOURIEROVE TRANSFORMACIJE
- 14. FFT OBRADA SIGNALA

# 8. SINTEZA NEREKURZIVNIH FILTARA

8.1. NEREKURZIVNI DIGITALNI FILTRI I NJIHOVA SVOJSTVA

8.2. FILTAR POMIČNE SREDNJE VRIJEDNOSTI

# 8.1. NEREKURZIVNI DIGITALNI FILTRI I NJIHOVA SVOJSTVA

- MOTIVACIJA

- DEFINICIJA FIR FILTARA

- OSNOVNA SVOJSTVA FIR FILTARA

### - MOTIVACIJA ZA FIR FILTRE

- LTI kao filtar:
  - konvolucija:

$$y[n] = \sum_{k=-\infty}^{\infty} x[k] \cdot h[n-k]$$

- to je suma prethodnih uzoraka x[n]
   pomnoženih s težinskim faktorima h[n]
- ima karakter srednje vrijednosti ali težinski koeficijenti mogu biti različiti
- svako usrednjavanje ima svojstvo filtriranja:
  - ovisno o broju uzoraka za koje koeficijent nije 0
  - to je zapravo dužina odziva filtra h[n]
  - ovisno o vrijednostima samih koeficijenata

### - MOTIVACIJA ZA FIR FILTRE

# • LTI kao filtar:

- FIR = Finite Impulse Response,
  - konačan odziv na impuls
  - konačan broj koeficijenata
  - moguća nerekurzivna implementacija
  - samo iznimno moguća rekurzivna implementacija
- IIR = Infinite Impulse Response,
  - beskonačan odziv na impuls
  - beskonačan broj koeficijenata
  - moguća isključivo rekurzivna implementacija

# DEFINICIJA FIR FILTARA

Polazimo od jednadžbe diferencija:

$$\sum_{k=0}^{N} a_{k} \cdot y[n-k] = \sum_{k=0}^{M} b_{k} \cdot x[n-k]$$

- za sve rekurzivna članove  $a_k=0$ , k=1,2....;  $a_0=1$ 

$$y[n] = \sum_{k=0}^{M} b_k \cdot x[n-k]$$

- ako su b<sub>k</sub> M koeficijenata impulsnog odziva h[k] imamo konvoluciju:  $y[n] = \sum_{k=0}^{\infty} h[k] \cdot x[n-k]$
- M konačan!

# DEFINICIJA FIR FILTARA

- Vrste filtara idealne frekvencijske karakteristike:
  - niskopropusni(low pass)



visokopropusni(high pass)



propusnik pojasa(band pass)



nepropusnik pojasa (band stop)



# DEFINICIJA FIR FILTARA

• Treba odrediti koeficijente b<sub>k</sub>:

$$H(z) = \sum_{n=0}^{\infty} h[n] \cdot z^{-n} = \sum_{k=0}^{M} b_k \cdot z^{-k}$$

- odnosno:  $H(\Omega) = \sum_{k=0}^{M} b_k \cdot \exp(-jk\Omega)$
- dakle biramo koeficijente b<sub>k</sub>
  - kako bi modelirali željenu frekvencijsku karakteristiku
  - pri tome smijemo koristiti konačan broj koeficijenata
  - odstupanje od željene karakteristike treba biti minimalno
  - pitanje je kriterija koje odstupanje dozvoljavamo

- Praktičan izbor koeficijenata:
  - nekad treba i do 150 koeficijenata
  - ostale koeficijente zanemarujemo!



- rad filtra je spor i zahtjevan po brzini procesora
- postižemo dvije bitne prednosti:
  - stabilnost: u z ravnini ima samo nule!
  - linearna fazna karakteristika!

- Nule u z ravnini:
  - pođemo od prijenosne funkcije

$$H(z) = \frac{Y(z)}{X(z)} = K \frac{(z - z_1)(z - z_2)(z - z_3) \cdots}{(z - p_1)(z - p_2)(z - p_3) \cdots}$$

odziv u z području je

$$Y(z) \cdot \{(z-p_1)(z-p_2)(z-p_3)\cdots\} = X(z) \cdot K \cdot \{(z-z_1)(z-z_2)(z-z_3)\cdots\}$$

kako nema rekurzivnih članova ostaju samo nule:

$$Y(z) = X(z) \cdot K \cdot \{(z - z_1)(z - z_2)(z - z_3) \cdots \}$$

- Linearna fazna karakteristika:
  - promatramo nekauzalni filtar sa simetričnim odzivom oko 0

k=-M

– frekvencijski odziv je:



– fazni pomak je 0!

- Linearna fazna karakteristika:
  - sada odziv pomaknimo u vremenu:



- sustav postaje kauzalan
- fazni pomak je linearan!

# 8.2. FILTAR POMIČNE SREDNJE VRIJEDNOSTI

- OSNOVNI NISKOPROPUSNI FILTAR
- VISOKOPROPUSNI I FILTAR PROPUSNIK OPSEGA

# OSNOVNI NISKOPROPUSNI FILTAR

- Filtar pomične srednje vrijednosti (PSV):
  - to je najjednostavniji niskopropusni filtar

$$y[n] = \sum_{k=-\infty}^{\infty} h[k] \cdot x[n-k]$$
  $y[n] = \sum_{k=0}^{4} 0.2 \cdot x[n-k]$ 



– za filtar simetričan oko 0 imamo:

$$H(\Omega) = \frac{1}{(2M+1)} \left\{ 1 + 2\cos\Omega + 2\cos 2\Omega + \dots + 2\cos M\Omega \right\}$$

- kauzalni filtar ima isti odziv, samo je fazni pomak linearan
- filtar PSV može biti ostvaren i rekurzivno

# OSNOVNI NISKOPROPUSNI PSV FILTAR

• frekvencijski odziv PSV filtra:

$$- za 2M+1=5$$



- za 2M+1=21



# VISOKOPROPUSNI I FILTAR PROPUSNIK

# Modulacija:

- modulacija (množenje) u vremenskom području odgovara konvoluciji u frekvencijskom području
- moduliramo odziv s  $\cos(n\Omega_0)$ za  $\Omega_0 = \pi/2$  imamo:  $h[n] = \frac{1}{(2M+1)}\cos(\frac{n\pi}{2})$
- $-\Omega_0$  je željena centralna frekvencija filtra
- obavimo konvoluciju sa spektrom  $\cos(n\Omega_0)$  a to je linija na mjestu  $\Omega_0$
- efekt je u pomaku propusnog pojasa sa 0 u  $\Omega_0$

# VISOKOPROPUSNI PSV FILTAR

- Izaberemo centralnu frekvenciju:
  - za  $\Omega_0 = \pi/2$  imamo propusnik opsega:



- za  $\Omega_0 = \pi$  imamo visokopropusni filtar:

# 9. SINTEZA NEREKURZIVNIH FILTARA FOURIEROVOM TRANSFORMACIJOM

9.1. SINTEZA FIR FOURIEROVOM TRANSFORMACIJOM

9.2. PROZORI, KVADRATIČNI I TROKUTASTI

9.3. VON HANN i HAMMING PROZOR

9.4. KAISEROV I PROZOR JEDNAKOG VALOVANJA

9.5. DIGITALNI DIFERENCIJATORI

# 9.1. SINTEZA FIR FOURIEROVOM TRANSFORMACIJOM

- PRIMJENA FOURIEROVE TRANSFORMACIJE
- IDEALNI NISKOPROPUSNI FILTAR
- PRIMJENA MODULACIJE
- ODSTUPANJE STVARNOG FILTRA

#### SINTEZA FIR FOURIEROVOM TRANSFORMACIJOM

- Mane sinteze u vremenskom području:
  - teško je pogađati koeficijente, pa provjeravati frekvencijski odziv
- Mane sinteze u z području
  - veliki broj nula, treba pogađati njihovu poziciju
- Koristimo sintezu u frekvencijskom području
  - specificiramo željenu frekvencijsku karakteristiku
  - inverznom Fourierovom transformacijom
     izračunamo koeficijente vremenskog odziva filtra

#### SINTEZA FIR FOURIEROVOM TRANSFORMACIJOM

- Koristimo Fourierovu transformaciju:
  - Fourierova transformacija aperiodičkog niza

$$X(\Omega) = \sum_{n=-\infty}^{\infty} x[n] \exp(-j\Omega n)$$

inverzna Fourierova transformacija daje:

$$x[n] = \frac{1}{2\pi} \int_{2\pi} X(\Omega) \cdot \exp(j\Omega n) d\Omega$$

odnosno za prijenosnu funkciju

$$h[n] = \frac{1}{2\pi} \int_{2\pi} H(\Omega) \cdot \exp(j\Omega n) \cdot d\Omega$$

#### SINTEZA FIR FOURIEROVOM TRANSFORMACIJOM

- Problem integracije ovisno od  $H(\Omega)$ :
  - određivanje integrala može biti teško
  - stoga koristimo idealizirani frekvencijski odziv
- Problem broja koeficijenata
  - koeficijenti sporije ili brže teže nuli
  - radi konačnosti filtra i kašnjenja koristimo konačni broj koeficijenata
  - ostale koeficijente zanemarujemo
  - rezultat je odstupanje od željene karakteristike filtra

# IDEALNI NISKOPROPUSNI FILTAR

- Integracija idealnog nisko propusnog filtra:
  - koristimo filtar
     gornje frekvencije  $\Omega_1$



integriramo

$$\begin{split} h[n] &= \frac{1}{2\pi} \int_{-\pi}^{\pi} H(\Omega) \cdot \exp(j\Omega n) \cdot d\Omega = \\ &= \frac{1}{2\pi} \int_{-\Omega_{1}}^{\Omega_{1}} 1,0 \cdot \exp(j\Omega n) \cdot d\Omega = \frac{1}{2\pi} \left[ \frac{\exp(j\Omega n)}{jn} \right]_{-\Omega_{1}}^{\Omega_{1}} = \\ &= \frac{1}{2\pi jn} \left\{ \exp(j\Omega_{1}n) - \exp(-j\Omega_{1}n) \right\} \end{split}$$

dobijemo

$$h[n] = \frac{1}{n\pi} \sin(n\Omega_1) = \frac{\Omega_1}{\pi} \frac{\sin(n\Omega_1)}{n\Omega_1} = \frac{\Omega_1}{\pi} \sin c(n\Omega_1)$$

# IDEALNI NISKOPROPUSNI FILTAR

- Odziv idealnog nisko propusnog filtra:
  - odziv je oblika sin(x)/x
  - to je beskonačni odziv, +- beskonačno



trebamo odrezati repove
 i pomaknuti od nule desno da postane kauzalan:



# PRIMJENA MODULACIJE

- Modulaciju primijenimo kao prije:
  - odziv oblika sin(x)/x moduliramo frekvencijom filtra

$$h[n] = \frac{1}{n\pi} \sin(n\Omega_1) \cos(n\Omega_0)$$

frekvencijski odziv će biti

$$H(\Omega) = \frac{\Omega_1}{\pi} + 2\sum_{k=1}^{\infty} h[k] \cdot \cos(k\Omega)$$

odnosno za kauzalni filtar s 2M+1 koeficijenata

$$|H(\Omega)| = \frac{\Omega_1}{\pi} + 2\sum_{k=1}^{M} h[k] \cdot \cos(k\Omega)$$

# PRIMJENA MODULACIJE

• Primjeri filtara  $\Omega_0 = \pi/2$ ,  $\Omega_1 = \pi/6$ :



# ODSTUPANJE STVARNOG FILTRA

- Odstupanje Fourierove transformacije:
  - uzimanje redom koeficijenata Fourierove transformacije rezultira najmanjom kvadratnom greškom
  - odbacivanje koeficijenata daje filtar sa najmanjom kvadratnom greškom

$$e = \frac{1}{2\pi} \int_{2\pi} |H_D(\Omega) - H_A(\Omega)|^2 d\Omega$$

- u praksi nas interesiraju druga svojstva filtra:
  - valovanje propusnog opsega
  - valovanje nepropusnog opsega
  - strmina brida

# 9.2. PROZORI, KVADRATIČNI I TROKUTASTI

- KONCEPT PRIMJENE PROZORA

- SPEKTAR PROZORA

- KVADRATIČNI PROZOR

- TROKUTASTI PROZOR

### - KONCEPT PRIMJENE PROZORA

- Tehnika odbacivanja parametara odziva:
  - odbacivanje članova odziva filtra jednako je množenju s konačnom funkcijom prozora
  - prozor definira koliko će članova odziva ostati
     "biti vidljivo", zovemo ga "prozor vidljivosti"
  - funkcija prozora može imati koeficijente jednake 1 to je kvadratični prozor
  - druge prozore dobijemo kad su koeficijenti funkcije različiti od 1
    - trokutasti (Bartlett) prozor
    - Van Hannov, Hammingov, Kaiserov...

# - KONCEPT PRIMJENE PROZORA

Najjednostavniji je kvadratični prozor:



# - SPEKTAR PROZORA

- Svojstvo množenja:
  - množenje u vremenskom području je konvolucija u frekvencijskom području:

$$h_d[n] \cdot w[n] \leftrightarrow H_D(\Omega) * W(\Omega)$$

- dakle obavljamo konvoluciju spektra idealnog filtra sa spektrom prozora!
- prozor je npr. kvadratičan u vremenskom području, pa mu je spektar oblika sin(x)/x ili sinc(x) u frekvencijskom
- slijedi: sva valovanja u frekvencijskom području uzrokuje prozor!

# - KVADRATIČNI PROZOR

- Kvadratični prozor ima spektar sin(x)/x:
  - Gibbsov fenomen: koliko god širili prozor
    - prvi vrh valovanja će uvijek biti oko 9% amplitude
    - vrhovi valovanja će se samo približavati
  - M=21 (program 15)
  - M = 51
  - prednost:
     minimalna
     kvadratna
     pogrješka



#### - TROKUTASTI PROZOR

- Izbjegnimo nagli prekid odziva:
  - linearno smanjenje komponenti daje trokutasti prozor
  - jedinično pojačanje (Bartlett)

$$w[n] = \frac{(M+1)-n}{(M+1)^2}$$
;  $-M \le n \le M$ 



– Jednostavno izračunamo spektar :

$$|W(\Omega)| = \frac{1}{(M+1)} + \frac{2}{(M+1)^2} \{M\cos(\Omega) + (M-1)\cos(2\Omega) + \dots + \cos(M\Omega)\}$$

# - TROKUTASTI PROZOR

Spektar trokutastog prozora:



- Trokutasti prozor dobije se konvolucijom dvaju kvadratičnih
- Spektar je umnožak spektara dvaju kvadratičnih prozora!
- Stoga je valovanje manje nego kod kvadratičnih prozora!

## 9.3. VON HANN I HAMMING PROZOR

- KRITERIJI DIZAJNA FILTARA

- VON HANN PROZOR

- HAMMINGOV PROZOR

- USPOREDBA FIR FILTARA

#### - KRITERIJI DIZAJNA FILTRA

- Biramo prozor prema željenom svojstvu filtra:
  - kvadratični prozor daje najmanju pogrješku i najstrmiji brid između propusnog i nepropusnog područja
  - trokutasti prozor daje nešto bolje gušenje bočnih pojasa ali i nešto lošiju strminu
  - konvolucija spektra prozora i filtra
    - širina prijelaza propusnog i nepropusnog područja ovisi o širini glavnog pojasa prozora
    - valovanje ovisi o razini bočnih pojasa prozora
  - idealni prozor bi bio impuls u frekvencijskoj domeni
  - stvarni prozori su kompromisi oštrog ruba i valovanja

#### - VON HANN PROZOR

- Umjesto trokuta uvodi cos:
  - za 2M+1 komponenti

$$w[n] = 0.5 + 0.5 \cos\left(\frac{n\pi}{M+1}\right) ; -M \le n \le M$$



spektar Von Hannovog prozora je (program 16):



oštar pad, ali značajni bočni pojasi, oko –32 dB

## - HAMMING PROZOR

- Nadalje optimizira bočne pojase:
  - za 2M+1 komponenti

$$w[n] = 0.54 + 0.46 \cos\left(\frac{n\pi}{M}\right) ; -M \le n \le M$$



– spektar Hammingovog prozora je (program 16):



blaži pad, ali bitno smanjeni bočni pojasi, – 40 dB

## - USPOREDBA FIR FILTARA

- Pogledajmo 3 filtra s 51 članom (program 17):
  - kvadratični strm, znatni bočni pojasi
  - Von Hannširi,neznatni bočnipojasi
  - Hamming najpopularniji!



## 9.4. KAISEROV I PROZOR JEDNAKOG VALOVANJA

- KAISEROV PROZOR

- PROZOR JEDNAKOG VALOVANJA

## - KAISEROV PROZOR

- Podešavanje prozora:
  - Von Hann i Hamming prozori su fiksni
  - Kaiser uvodi prozor gdje dizajner bira oblik prozora

$$w[n] = \frac{I_0 \left( \alpha \sqrt{1 - \left(\frac{n}{M}\right)^2} \right)}{I_0(\alpha)} ; -M \le n \le M$$

$$I_0(x) = 1 + \sum_{n=1}^{\infty} \left[ \frac{1}{n!} \left( \frac{x}{2} \right)^n \right]^2$$

- Parametri se specificiraju prema
  - maksimalnom valovanju δ
  - strmini filtra  $\Delta$



## - KAISEROV PROZOR

- Podešavanje prozora:
  - Parametar α određuje strminu i valovanje koriste se empirijske formule:

$$A = -20 \log \delta$$

$$\alpha = 0.1102(A - 8.7)$$

$$\alpha = 0.5842(A - 21)^{0.4} + 0.07886(A - 21)$$

$$\alpha = 0$$

$$A \ge 50$$

$$21 < A < 50$$

$$A \le 21$$

broj parametara M ovisi o strmini Δ:

$$M \ge \frac{A - 7,95}{28,72\Delta}$$

## - KAISEROV PROZOR

- Primjer (Program 18):
  - $-\delta = 0.02 \Delta = 7.5^{\circ} \alpha = 2.652395 M = 89$



## - PROZOR JEDNAKOG VALOVANJA

- Ideja je rasporediti energiju pogrješke:
  - neka valovanje bude jednako u ciklusu frekvencija
  - tada će možda maksimalno valovanje biti prihvatljivo
  - specifikacija filtra



# 9.5. DIGITALNI DIFERENCIJATORI

- DEFINICIJA I SPEKTAR

- VREMENSKI ODZIV

- PRIMJENA PROZORA

## - DEFINICIJA I SPEKTAR DIGIT. DIFER.

- Derivacija:
  - daje brzinu promjene, često se koristi
- Diferencija:
  - možemo koristiti diferenciju prvog reda:

$$\Delta x = x[n] - x[n-1]$$

spektar takvog "diferencijatora" je:

$$H(\Omega) = 1 - \exp(-j\Omega) = 1 - \cos\Omega + j\sin\Omega$$

#### - DEFINICIJA I SPEKTAR DIGIT. DIFER.

- Spektar diferencijatora:
  - odnosno amplituda spektra je:

$$|\mathbf{H}(\Omega)| = \left\{ (1 - \cos \Omega)^2 + (\sin \Omega)^2 \right\}^{1/2} = 2\sin(\Omega/2)$$

- za male vrijednosti  $\Omega$  je:  $|H(\Omega)| = 2\sin(\Omega/2) \approx 2(\Omega/2) = \Omega$
- idealni diferencijator ima fazni pomak 90°



#### VREMENSKI ODZIV DIGIT. DIFER.

- Idealni diferencijator:
  - imamo:

$$H(\Omega) = j\Omega$$

inverzna Fourierova transformacija daje:

$$\begin{split} h[n] &= \frac{1}{2\pi} \int_{-\pi}^{\pi} H(\Omega) \cdot \exp(j\Omega n) \cdot d\Omega = \frac{1}{2\pi} \int_{-\pi}^{\pi} j\Omega \cdot \exp(j\Omega n) \cdot d\Omega = \\ &= \frac{1}{2\pi} \Biggl\{ \Biggl[ j\Omega \frac{\exp(j\Omega n)}{jn} \Biggr]_{-\pi}^{\pi} - \int_{-\pi}^{\pi} \frac{\exp(j\Omega n)}{n} \cdot d\Omega \Biggr\} = \\ &= \frac{1}{2\pi} \Biggl[ \exp(j\Omega n) \Biggl\{ \frac{\Omega}{n} - \frac{1}{jn^2} \Biggr\} \Biggr]_{-\pi}^{\pi} = \frac{1}{2\pi} \Biggl\{ \exp(jn\pi) \Biggl\{ \frac{\pi}{n} - \frac{j}{n^2} \Biggr\} - \exp(-jn\pi) \Biggl\{ \frac{-\pi}{n} + \frac{j}{n^2} \Biggr\} \Biggr\} \end{split}$$

### VREMENSKI ODZIV DIGIT. DIFER.

# Idealni diferencijator:

- kako je: 
$$\exp(jn\pi) = \exp(-jn\pi) = (-1)^n$$

- slijedi: 
$$h[n] = (-1)^n \frac{1}{2\pi} \left\{ \left\{ \frac{\pi}{n} + \frac{j}{n^2} \right\} - \left\{ \frac{-\pi}{n} + \frac{j}{n^2} \right\} \right\} = \frac{(-1)^n}{n}$$

grafički, kauzalan konačan:



## PRIMJENA PROZORA

- Konačnost znači primjenu prozora:
  - kvadratičan prozor, 2M+1=21 parametra (program 19):



– Hammingov prozor 2M+1=21:

## 10. SINTEZA REKURZIVNIH FILTARA

10.1. REKURZIVNI DIGITALNI FILTRI I SVOJSTVA (IIR)

10.2. SINTEZA IIR POMOĆU NULA I POLOVA

10.3. SINTEZA POMOĆU ANALOGNIH FILTARA

10.4. IMPULSNO INVARIJANTNI FILTRI

10.5. FILTRI S UZORKOVANJEM FREKVENCIJA

10.6. DIGITALNI INTEGRATORI

## 10.1. REKURZIVNI DIGITALNI FILTRI I SVOJSTVA

- JEDNADŽBA DIFERENCIJA
- OPĆI OBLIK FREKVENCIJSKOG ODZIVA
- ULOGA NULA I POLOVA

# IIR I JEDNADŽBA DIFERENCIJA

- Jednadžba diferencija
  - opći oblik jednadžbe diferencija

$$\sum_{k=0}^{N} a_{k} \cdot y[n-k] = \sum_{k=0}^{M} b_{k} \cdot x[n-k]$$

u z području daje

$$Y(z) \cdot \sum_{k=0}^{N} a_k \cdot z^{-k} = X(z) \cdot \sum_{k=0}^{M} b_k \cdot z^{-k}$$

odnosno

$$H(z) = \frac{Y(z)}{X(z)} = \frac{\sum_{k=0}^{M} b_k \cdot z^{-k}}{\sum_{k=0}^{N} a_k \cdot z^{-k}}$$

#### IIR I FREKVENCIJSKI ODZIV

- Frekvencijski odziv
  - polinomi se mogu faktorizirati

$$H(z) = K \frac{(z - z_1)(z - z_2)(z - z_3) \cdots}{(z - p_1)(z - p_2)(z - p_3) \cdots}$$

- a za z=exp(j $\Omega$ ) dobijemo frekvencijski odziv:

$$H(\Omega) = K \frac{(\exp(j\Omega) - z_1)(\exp(j\Omega) - z_2)(\exp(j\Omega) - z_3) \cdots}{(\exp(j\Omega) - p_1)(\exp(j\Omega) - p_2)(\exp(j\Omega) - p_3) \cdots}$$

 znamo da polovi i nule mogu biti realni ili konjugirano kompleksni

## IIR I ULOGA NULA I POLOVA

- Nule guše signal određene frekvencije
  - realne: odziv je prigušen na visokim ili niskim frekv.











## IIR I ULOGA NULA I POLOVA

- Polovi pojačavaju signal određene frekvencije
  - realni: odziv je pojačan na visokim ili niskim frekv.



imaginarni: odziv je pojačan na frekvenciji pola 0,9; 90°:



#### 10.2. REKURZIVNI DIGITALNI FILTRI I SVOJSTVA

- PRISTUP I SVOJSTVA POSTUPKA
- SERIJSKI SPOJ ELEMTENTARNIH FILTARA
- MEĐUSOBNI UTJECAJ POLOVA I NULA

## IIR POLOVI I NULE - SVOJSTVA POSTUPKA

- Biramo raspored polova i nula u Z ravnini
  - postavimo polove i nule
  - izračunamo jednadžbu diferencija
  - izračunamo frekvencijski odziv
  - korigiramo položaj polova i nula
    - NEPRECIZNO!
    - ali ipak daje nekakve rezultate
  - koristimo poznavanje utjecaja polova i nula na frekvencijski odziv

#### IIR SERIJSKI SPOJ ELEMENTARNIH FILTARA

- Biramo raspored polova i nula u Z ravnini
  - ako je prijenosna funkcija:

$$H(z) = K \frac{(z - z_1)(z - z_2)(z - z_3) \cdots}{(z - p_1)(z - p_2)(z - p_3) \cdots}$$

– možemo pisati:

$$H(z) = K \frac{(z-z_1)}{(z-p_1)} \cdot \frac{(z-z_2)}{(z-p_2)} \cdot \frac{(z-z_3)}{(z-p_3)} \cdots$$

- to je serijski spoj elementarnih filtara
- ponašanje elementarnih filtara je poznato i predvidivo

## IIR SERIJSKI SPOJ ELEMENTARNIH FILTARA

- Za pojačani efekt dupliciramo nule i polove
  - npr. jednostruka i dvostruka realna nula 0,9 reda 1 i 2:



– jednostruki i dvostruki realni pol 0,9 reda 1 i 2



## IIR MEĐUSOBNI UTJECAJ POLOVA I NULA

- Također kombiniramo nule i polove
  - npr. udaljeni pol i nula:





– bliski pol i nula:





# 10.3. SINTEZA IIR POMOĆU ANALOGNIH FILTARA

- ANALOGNI FILTRI I LAPLACE TRANSFORMACIJA
- BILINEARNA TRANSFORMACIJA
- BUTTERWORTH FILTAR
- CHEBYSHEV FILTAR

### ANALOGNI FILTRI

- Analogni filtri
  - izrađuju se od kondenzatora, otpornika i pojačala
  - matematski se opisuju diferencijalnim jednadžbama
  - jedna od metoda rješavanja je Laplace transformacija
- Laplace transformacija
  - daje prijenosne funkcije slične z transformaciji, s=jω

$$H(s) = K \frac{(s-z_1)(s-z_2)(s-z_3)\cdots}{(s-p_1)(s-p_2)(s-p_3)\cdots}$$

područje je 0 < ω < ∞ , odgovara I osi kompleksne s ravnine</li>

#### BILINEARNA TRANSFORMACIJA

- Transformiramo kutnu frekvenciju  $\omega$  u  $\Omega$ 
  - područje 0-∞ treba transformirati u 0-π
  - koristimo bilinearnu transformaciju:

$$F(z) = \frac{z-1}{z+1}$$

– spektar bilinearne funkcije je:

$$F(\Omega) = \frac{\exp(j\Omega) - 1}{\exp(j\Omega) + 1} = \frac{\exp(j\Omega/2) \{ \exp(j\Omega/2) - \exp(-j\Omega/2) \}}{\exp(j\Omega/2) \{ \exp(j\Omega/2) + \exp(-j\Omega/2) \}} =$$

$$= \frac{2j\sin(\Omega/2)}{2\cos(\Omega/2)} = j \cdot \tan\left(\frac{\Omega}{2}\right)$$

#### BILINEARNA TRANSFORMACIJA

- Svojstva spektra bilinearne funkcije:
  - tan(x) je periodičan s periodom  $2\pi$ , od -∞ do -∞
  - nelinearno transformiramo  $\omega$  u  $\Omega$
  - iz H(s) izvedemo H(ω) jer je s=jω

$$H(\omega) = K \frac{(j\omega - z_1)(j\omega - z_2)(j\omega - z_3)\cdots}{(j\omega - p_1)(j\omega - p_2)(j\omega - p_3)\cdots}$$

sad se zamijeni

$$j\omega = j \cdot \tan\left(\frac{\Omega}{2}\right)$$

- i dobije se  $H(\Omega)$ 

## BILINEARNA TRANSFORMACIJA

- Ostvarenje filtra u vremenskom području:
  - na osnovu poznatog  $H(\Omega)$
  - izračuna se H(z)
  - sada su na raspolaganju dvije mogućnosti:
    - koristiti polove i nule, za serijski spoj elementarnih filtara
    - koristiti jednadžbu diferencija

#### **BUTTERWORTH FILTAR**

- Definicija i svojstva Butterworth filtra:
  - prijenosna funkcija je:

$$\left| \mathbf{H}(\boldsymbol{\omega}) \right| = \frac{1}{\left\{ 1 + \left( \frac{\boldsymbol{\omega}}{\boldsymbol{\omega}_1} \right)^{2n} \right\}^{1/2}}$$



posjeduje svojstvo maksimalne plosnatosti,
 tj. nema valovanja u propusnom i nepropusnom pojasu

#### **BUTTERWORTH FILTAR**

- Polovi i nule Butterworth filtra:
  - bilinearna transformacija daje:

$$\left| \mathbf{H}(\omega) \right| = \frac{1}{\left\{ 1 + \left( \frac{\tan(\Omega/2)}{\tan(\Omega_1/2)} \right)^{2n} \right\}^{1/2}}$$

- niskopropusni BF n-tog reda ima
  - jednu n-struku nulu na mjestu -1
  - n polova postavljenih kružno u z ravnini

#### **BUTTERWORTH FILTAR**

- Polovi i nule Butterworth filtra:
  - realne i imaginarne komponente polova se računaju

$$PR_{m} = \left\{ 1 - \tan^{2} \left( \frac{\Omega_{1}}{2} \right) \right\} / d$$

$$PI_{m} = 2 \tan \left( \frac{\Omega_{1}}{2} \right) \sin \left( \frac{m\pi}{n} \right) / d$$

$$d = 1 - 2 \tan \left( \frac{\Omega_{1}}{2} \right) \cos \left( \frac{m\pi}{n} \right) + \tan^{2} \left( \frac{\Omega_{1}}{2} \right)$$

- ako je n paran, mijenjamo m $\pi$ /n sa sa  $(2m+1)\pi$ /2n

## CHEBYSHEV FILTAR

- Definicija i svojstva Chebyshev filtra:
  - prijenosna funkcija je:

$$\left| \mathbf{H}(\omega) \right| = \frac{1}{\left\{ 1 + \epsilon^2 C_n^2 \left( \frac{\omega}{\omega_1} \right) \right\}^{1/2}}$$



– C<sub>n</sub> je Chebyshev polinom n-tog reda

$$C_0(x)=1$$
;  $C_1(x)=x$ ;  $C_n(x)=2xC_{n-1}(x)-C_{n-2}(x)$ 

posjeduje veću strminu brida,
 ali uz cijenu valovanja u propusnom pojasu

### CHEBYSHEV FILTAR

- Polovi i nule Chebyshev filtra:
  - bilinearna transformacija daje:

$$|H(\Omega)| = \frac{1}{\left\{1 + \varepsilon^2 C_n^2 \left(\frac{\tan(\Omega/2)}{\tan(\Omega_1/2)}\right)\right\}^{1/2}}$$

- niskopropusni CF n-tog reda ima
  - jednu n-struku nulu na mjestu -1
  - n polova postavljenih "kardioidno" u z ravnini

### CHEBYSHEV FILTAR

- Polovi i nule Chebyshev filtra:
  - realne i imaginarne komponente polova se računaju

$$\begin{split} \text{PR}_{\,\text{m}} &= 2 \left\{ 1 - a \, \tan \left( \frac{\Omega_{1}}{2} \right) \cos \phi \right\} \middle/ d - 1 \\ \text{PI}_{\,\text{m}} &= 2 b \cdot \tan \left( \frac{\Omega_{1}}{2} \right) \sin \phi \\ d &= \left\{ 1 - a \, \tan \left( \frac{\Omega_{1}}{2} \right) \cos \phi \right\}^{2} + b^{2} \, \tan^{2} \left( \frac{\Omega_{1}}{2} \right) \sin^{2} \phi \\ a &= 0.5 \left( c^{1/n} - c^{-1/n} \right) \; ; \; b = 0.5 \left( c^{1/n} + c^{-1/n} \right) \; ; \; c = \left( 1 + \epsilon^{-1} + \epsilon^{-2} \right)^{1/2} \end{split}$$

- ako je n paran, mijenjamo  $\phi=m\pi/n$  sa sa  $(2m+1)\pi/2n$ 

# 10.4. IMPULSNO INVARIJANTNI FILTRI

- PRISTUP SINTEZI

- IZBOR FREKVENCIJE UZORKOVANJA

- KORIŠTENJE ELEMENTARNIH FILTARA

## PRISTUP SINTEZI IIF

- Impulsno invarijantni filtri:
  - uzmemo vremenski odziv analognog filtra
  - uzorkujemo taj odziv, pazimo na dovoljan broj uzoraka
  - dobijemo vremenski odziv digitalnog filtra
  - ostvarimo konvoluciju!
- Problemi:
  - vremenski odziv analognog filtra često NIJE dostupan
  - radimo konvoluciju a to NIJE rekurzivni filtar!

### IZBOR FREKVENCIJE UZORKOVANJA

- Spektar digitalnog filtra:
  - ako je frekvencija uzorkovanja odziva dovoljna
    - preklapanje frekvencija je zanemarivo
  - ako je frekvencija uzorkovanja niska
    - preklapanje frekvencija znatno izobličava rad filtra

# IZBOR FREKVENCIJE UZORKOVANJA



# KORIŠTENJE ELEMENTARNIH FILTARA

Analogni filtar zadan u s području:

$$H(s) = K \frac{(s-z_1)(s-z_2)(s-z_3)\cdots}{(s-p_1)(s-p_2)(s-p_3)\cdots}$$

– razbijemo na parcijalne razlomke:

$$H(s) = \frac{K_1}{(s-p_1)} + \frac{K_2}{(s-p_2)} + \frac{K_3}{(s-p_3)} \cdots$$

elementarne filtre prebacimo u z područje:

$$H_i(z) = \frac{K_i}{1 - \exp(p_i T)z^{-1}} = \frac{K_i z}{z - \exp(p_i T)}$$

# KORIŠTENJE ELEMENTARNIH FILTARA

- Paralelni spoj filtara:
  - ostvarimo filtar kao PARALELNI spoj elementarnih filtara



# 10.5. FILTRI S UZORKOVANJEM FREKVENCIJE

- DEFINICIJA I SVOJSTVA
- DIGITALNI REZONATOR I KOMBINATOR
- FILTAR PROPUSNIK OPSEGA

## FILTRI S UZORKOVANJEM FREKVENCIJE

- Definicija i svojstva:
  - poznato je da su neki FIR filtri ostvarivi rekurzivno
  - ovi filtri su mnogo ekonomičniji
  - koristimo digitalni rezonator i kombinator
  - kombinator daje negativni signal zakašnjen m perioda
  - rezonator
    - pobuđen originalnim impulsom počinje oscilirati
    - pobuđen suprotnim impulsom prestane oscilirati
  - zajedno čine elementarni propusnik opsega

#### DIGITALNI REZONATOR

Rezonator ima polove na jediničnoj kružnici:

$$H(z) = \frac{Y(z)}{X(z)} = \frac{z^2}{\{z - \exp(j\theta)\}\{z - \exp(-j\theta)\}} = \frac{z^2}{z^2 - 2z \cdot \cos \theta + 1}$$

jednadžba diferencija je jednostavna:

$$y[n] = 2\cos\theta y[n-1] - y[n-2] + x[n]$$

 ali odziv oscilira karakterističnom frekvencijom



### DIGITALNI KOMBINATOR

Kombinator je sklop čistog kašnjenja:

$$H(z)=1-z^{-m}=\frac{z^{m}-1}{z^{m}}$$

 ima m nula raspoređenih po jediničnoj kružnici, također i m-struki pol u nuli koji ne smeta:

 frekvencijski odziv je karakterističan





### UZORKOVANJE FREKVENCIJA

- Konstruiramo kombinator i rezonator:
  - tako da par polova rezonatora poništi par nula kombinatora
  - kombinator sada pobuđuje rezonatora (serijski spoj)
  - na mjestu poništenih nula, imamo frekvencijski propust





ostvarenje filtra je vrlo ekonomično

## UZORKOVANJE FREKVENCIJA

- Konstrukcija filtra propusnika opsega:
  - koristimo više rezonatora
  - njihove frekvencije su jednake nulama kombinatora
  - tako poništimo više parova nula, potpuno ili približno
  - postignemo traženi propusni opseg





# 10.6. DIGITALNI INTEGRATORI

- DEFINICIJA I SVOJSTVA
- POMIČNA SUMA
- TRAPEZNO PRAVILO
- SIMPSONOVO PRAVILO

#### SVOJSTVA DIGITALNIH INTEGRATORA

- Digitalni integrator:
  - integrira ulazni signal, daje površinu ispod krivulje
  - često se koristi u praksi
  - koristimo više poznatih algoritama
    - pomičnu sumu
    - trapezno pravilo
    - Simpsonovo pravilo
  - integracija je prirodno rekurzivni proces
  - pribrajamo nove vrijednosti zajedničkoj sumi
  - problem je ocijeniti veličinu elementarnih površina

# POMIČNA SUMA

• Digitalni integrator pomične sume definiramo:

$$y[n] = y[n-1] + x[n]$$

prijenosna funkcija je:

$$H(z) = \frac{Y(z)}{X(z)} = \frac{1}{1-z^{-1}} = \frac{z}{z-1}$$

a frekvencijska karakteristika

$$H(\Omega) = \frac{1}{1 - \exp(-j\Omega)} = \frac{\exp(j\Omega)}{\exp(j\Omega) - 1}$$



#### TRAPEZNO PRAVILO

• Digitalni integrator trapeznog pravila definiramo:

$$y[n] = y[n-1] + 0.5\{x[n] + x[n-1]\}$$

prijenosna funkcija je:

$$H(z) = \frac{0.5(1+z^{-1})}{(1-z^{-1})} = \frac{z+1}{2(z-1)}$$

a frekvencijska karakteristika

$$H(\Omega) = \frac{\exp(j\Omega) + 1}{2\{\exp(j\Omega) - 1\}}$$





### SIMPSONOVO PRAVILO

• Digitalni integrator Simpsonovog pravila definiramo:

$$y[n] = y[n-2] + 0.333[x[n] + 4x[n-1] + x[n-2]]$$

prijenosna funkcija je:

$$H(z) = \frac{0.333(1 + 4z^{-1} + z^{-2})}{(1 - z^{-2})} = \frac{z^2 + 4z + 1}{3(z^2 - 1)}$$

a frekvencijska karakteristika

$$H(\Omega) = \frac{\exp(2j\Omega) + 4\exp(j\Omega) + 1}{3\{\exp(2j\Omega) - 1\}}$$





### **USPOREDBA INTEGRATORA**

- Točnost integracije:
  - ovisi o procjeni signala između uzoraka
  - kod svih je integratora dobra za spore signale
    - tada imamo dovoljno uzoraka
  - kod brzih signala rad integratora je lošiji
    - zbog malog broja uzoraka procjena površina je lošija
  - izbor ovisi o aplikaciji
    - npr. za signale sa šumom, izabrat ćemo trapezni integrator jer potiskuje visoke frekvencije