Recurrent Neural Networks

LATEST SUBMISSION GRADE

100%

- 1. Suppose your training examples are sentences (sequences of words). Which of the following refers to the i^{th} word in the i^{th} training example?
 - () $x^{(i) < j >}$
 - $\int x^{\langle i \rangle(j)}$
 - $\chi(j) < i >$
 - $\int x^{< j>(i)}$
 - Correct

We index into the i^{th} row first to get the i^{th} training example (represented by parentheses), then the j^{th} column to get the j^{th} word (represented by the brackets).

2. Consider this RNN: 1/1 point

This specific type of architecture is appropriate when:

- $T_x = T_y$
- $\bigcap T_x < T_y$
- $T_x > T_y$
- $T_x = 1$
 - ✓ Correct

It is appropriate when every input should be matched to an output.

3. To which of these tasks would you apply a many-to-one RNN architecture? (Check all that apply).

1 / 1 point

- Speech recognition (input an audio clip and output a transcript)
- Sentiment classification (input a piece of text and output a 0/1 to denote positive or negative sentiment)
 - ✓ Correct!
- Image classification (input an image and output a label)
- Gender recognition from speech (input an audio clip and output a label indicating the speaker's gender)
 - ✓ Correct!
- 4. You are training this RNN language model.

1 / 1 point

At the t^{th} time step, what is the RNN doing? Choose the best answer.

- Stimating $P(y^{<1>}, y^{<2>}, \dots, y^{<t-1>})$
- \bigcap Estimating $P(y^{< t>})$
- (a) Estimating $P(y^{< t>} | y^{< 1>}, y^{< 2>}, \dots, y^{< t-1>})$
- Stimating $P(y^{<t>} | y^{<1>}, y^{<2>}, \dots, y^{<t>})$

Yes, in a language model we try to predict the next step based on the knowledge of all prior steps.

5. You have finished training a language model RNN and are using it to sample random sentences, as follows:

1 / 1 point

What are you doing at each time step t?

- (i) Use the probabilities output by the RNN to pick the highest probability word for that time-step as $\mathcal{Y}^{<\rho}$. (ii) Then pass the ground-truth word from the training set to the next time-step.
- (i) Use the probabilities output by the RNN to randomly sample a chosen word for that time-step as $\mathcal{Y}^{< p}$. (ii) Then pass the ground-truth word from the training set to the next time-step.
- (i) Use the probabilities output by the RNN to pick the highest probability word for that time-step as $\hat{y}^{<\triangleright}$. (ii) Then pass this selected word to the next time-step.
- (i) Use the probabilities output by the RNN to randomly sample a chosen word for that time-step as $\hat{y}^{</>>}$. (ii) Then pass this selected word to the next time-step.

- 6. You are training an RNN, and find that your weights and activations are all taking on the value of NaN ("Not a Number"). Which of these is the most likely cause of this problem?
- 1 / 1 point

- Vanishing gradient problem.
- Exploding gradient problem.
- ReLU activation function g(.) used to compute g(z), where z is too large.
- Sigmoid activation function g(.) used to compute g(z), where z is too large.
 - ✓ Correct
- 7. Suppose you are training a LSTM. You have a 10000 word vocabulary, and are using an LSTM with 100-dimensional activations $a^{<\rho}$. What is the dimension of Γ_u at each time step?
 - \bigcirc 1
 - 100
 - 300
 - 10000
 - ✓ Correct

Correct, Γ_u is a vector of dimension equal to the number of hidden units in the LSTM.

8. Here're the update equations for the GRU.

1 / 1 point

GRU

$$\tilde{c}^{< t>} = \tanh(W_c[\Gamma_r * c^{< t-1>}, x^{< t>}] + b_c)$$

$$\Gamma_u = \sigma(W_u[\,c^{< t-1>},x^{< t>}] + b_u)$$

$$\Gamma_r = \sigma(W_r[c^{< t-1>}, x^{< t>}] + b_r)$$

$$c^{< t>} = \Gamma_u * \tilde{c}^{< t>} + (1 - \Gamma_u) * c^{< t - 1>}$$

$$a^{< t>} = c^{< t>}$$

Alice proposes to simplify the GRU by always removing the Γ_u . I.e., setting Γ_u = 1. Betty proposes to simplify the GRU by removing the Γ_r . I. e., setting Γ_r = 1 always. Which of these models is more likely to work without vanishing gradient problems even when trained on very long input sequences?

Alice's model (removing Γ_u), because if $\Gamma_rpprox 0$ for a timestep	the gradient can	propagate back through	that timestep
without much decay.			

- Alice's model (removing Γ_u), because if $\Gamma_r \approx 1$ for a timestep, the gradient can propagate back through that timestep without much decay.
- Betty's model (removing Γ_r), because if $\Gamma_u \approx 0$ for a timestep, the gradient can propagate back through that timestep without much decay.
- Betty's model (removing Γ_r), because if $\Gamma_u \approx 1$ for a timestep, the gradient can propagate back through that timestep without much decay.

Yes. For the signal to backpropagate without vanishing, we need $c^{<t>}$ to be highly dependant on $c^{<t-1>}$.

LSTM

9. Here are the equations for the GRU and the LSTM:

1 / 1 point

GRU

$$\tilde{c}^{< t>} = \tanh(W_c[\Gamma_r * c^{< t-1>}, x^{< t>}] + b_c)$$

$$\tilde{c}^{< t>} = \tanh(W_c[a^{< t-1>}, x^{< t>}] + b_c)$$

$$\Gamma_u = \sigma(W_u[c^{< t-1>}, x^{< t>}] + b_u)$$

$$\Gamma_u = \sigma(W_u[a^{< t-1>}, x^{< t>}] + b_u)$$

$$\Gamma_r = \sigma(W_r[c^{< t-1>}, x^{< t>}] + b_r)$$

$$\Gamma_f = \sigma(W_f[a^{< t-1>}, x^{< t>}] + b_f)$$

$$C^{< t>} = \Gamma_u * \tilde{c}^{< t>} + (1 - \Gamma_u) * c^{< t-1>}$$

$$\Gamma_o = \sigma(W_o[a^{< t-1>}, x^{< t>}] + b_o)$$

$$C^{< t>} = \Gamma_u * \tilde{c}^{< t>} + \Gamma_f * c^{< t-1>}$$

$$C^{< t>} = \Gamma_u * \tilde{c}^{< t>} + \Gamma_f * c^{< t-1>}$$

$$C^{< t>} = \Gamma_u * \tilde{c}^{< t>} + \Gamma_f * c^{< t-1>}$$

$$C^{< t>} = \Gamma_u * \tilde{c}^{< t>} + \Gamma_f * c^{< t-1>}$$

From these, we can see that the Update Gate and Forget Gate in the LSTM play a role similar to _____ and ____ in the GRU. What should go in the the blanks?

- $\bigcap \Gamma_u$ and Γ_r
- \bigcirc 1 Γ_u and Γ_u
- \bigcap Γ_r and Γ_u

✓ Correc

Yes, correct!

10.	You have a pet dog whose mood is heavily dependent on the current and past few days' weather. You've collected data for the past 365 days on the weather, which you represent as a sequence as $x^{<1>},\dots,x^{<365>}$. You've also collected data on your dog's mood, which you represent as $y^{<1>},\dots,y^{<365>}$. You'd like to build a model to map from $x\to y$. Should you use a Unidirectional RNN or Bidirectional RNN for this problem?	1 / 1 point
	Bidirectional RNN, because this allows the prediction of mood on day t to take into account	more information.
	Bidirectional RNN, because this allows backpropagation to compute more accurate gradier	its.
	• Unidirectional RNN, because the value of $y^{<\ell>}$ depends only on $x^{<1>},\dots,x^{<\ell>}$, but not on $x^{<1>}$	$x^{< t+1>}, \dots, x^{< 365>}$
	Unidirectional RNN, because the value of $y^{< \triangleright}$ depends only on $x^{< \triangleright}$, and not other days' w	eather.

✓ Correct Yes!