

Robertson Chapter 13

Introduction

- OSA = Most common diagnosis in sleep lab
- Up to 25% have at least mild-moderate SDB
- Since 1985, CPAP has been gold standard of treatment for OSA
- Split-night testing has grown in popularity
 - Usually sleep studies are 1 night diagnostic and 1 night titration
- Titration = Manual or auto manipulation of PAP setting to treat SDB
- CSA and complex apnea are challenges to treat
- Must have competent understanding of treatment options and be good at decision making

Respiratory Event Recognition

- Standardized acceptable recording mechanism for respiratory effort in sleep testing is RIP
- Gold standard for measuring respiratory effort is esophageal manometry
- Paradoxical breathing
 - Proper fit of RIP belts is essential for detecting paradoxical breathing
 - Polarity of belts must be adjusted during normal breathing to detect paradoxical breathing in sleep
 - Upper airway obstruction typically presents with paradoxical belt movements

Paradoxical Breathing

Copyright @ 2014 by Mosby, Inc., an affiliate of Elsevier Inc.

Central Apnea

- Little or no respiratory effort in addition to little or no airflow
- Common in patients with cardiovascular disease or on opioid medications
- Cheyne-Stokes respiration
 - Waxing and waning (or crescendo-decrescendo) pattern of breathing
 - May occur during wake and sleep
 - 45% of stable, optimally treated CHF patients have an AHI > 26
 - Treatment of SDB improves LV systolic function

Central Apnea

Copyright @ 2014 by Mosby, Inc., an affiliate of Elsevier Inc.

Cheyne-Stokes Respiration

Copyright @ 2014 by Mosby, Inc., an affiliate of Elsevier Inc.

Mixed Apnea

• Starts as central and converts to obstructive

Copyright @ 2014 by Mosby, Inc., an affiliate of Elsevier Inc.

Other Breathing Issues

- Hypopnea
 - Respiratory event lasting a minimum of 10 seconds with a ≥ 30% reduction in peak signal excursion compared to baseline and associated with a ≥ 3% (recommended rule) or ≥ 4% (CMS/acceptable rule) oxygen desaturation
- Noninvasive positive-pressure ventilation (NPPV)
 - Used for those with complicated breathing patterns due to restriction of thoracic ribcage in addition to upper airway obstruction
 - Examples: Significant obesity, neuromuscular disease

CPAP

- Identifying characteristics of OSA:
 - Loud snoring
 - Gasping for air
 - Disrupted sleep
 - Tiredness during waking hours
- PAP is most common treatment for resolving airway obstruction
 - CPAP is therapy of choice for SDB
- CPAP creates pneumatic splint for obstructed airway
- End exhalation is critical point in respiratory cycle where therapeutic levels of pressure must be applied

Partial Airway Obstruction

CPAP

- Need to educate patient on SDB, his/her health due to SDB, and necessity of treatment
- Importance of therapy must be stressed to patient
- Compliance and adherence can be a challenge
 - Compliance = Measurement of specific usage determinants
 - Adherence = Extent to which patient continues the agreed-upon mode of PAP under limited supervision when faced with conflicting demands

Guidelines for Titrating CPAP

- AASM developed guidelines
 - Industry standard for CPAP titration
- Titration can be started at 4-5 cm H2O
 - Starting low can help prevent overtitration of less severe patients
- If patient has respiratory events, a 1-2 cm H2O increase helps to open the airway more and will decrease the number and severity of the events
- Continue to increase pressure to alleviate obstructive events

Titration Variations Based on Age

- AASM recommendations for adults (≥12 yrs):
 - Initial pressure of 4 cm H2O
 - Higher starting pressure can be used for elevated BMI or re-titrations
 - Maximum CPAP pressure of 20 cm H2O
 - 1 cm H2O increments following each 5-minute period should be continued until > 30 min observed without respiratory events
- AASM recommendations for patients <12 yrs:
 - Maximum CPAP pressure of 15 cm H2O

Titration Guidelines

- Adults (≥ 12 years):
 - Increase if at least 2 obstructive apneas observed
 - Increase if at least 3 hypopneas observed
 - Increase if at least 5 RERAs observed
 - Increase if at least 3 minutes of loud or unambiguous snoring observed
- < 12 years:
 - Increase if at least 1 obstructive apnea observed
 - Increase if at least 1 hypopnea observed
 - Increase if at least 3 RERAs observed
 - Increase if at least 1 minute of loud or unambiguous snoring observed

Comfort Features for CPAP

- Ramp-delivered pressure increases
- Expiratory pressure relief
 - EPR on ResMed
 - C-Flex for Respironics

Potential Complications and Side Effects of CPAP

- Barotrauma = Pressure trauma to chest wall
- Epistaxis = Nosebleed
- Rhinorrhea = Runny nose
- Nasal bridge sore
- Skin irritation and breakdown
- Nasal drying
- Rhinitis and nasal congestion
- Aerophagia = Intake of air into stomach
- Central apnea

Types of CPAP Leaks

- Intentional leak = Controlled port leak
 - Washes out CO2 and prevents rebreathing
- Unintentional leak = Mouth leak or mask leak
 - Try to refit or readjust mask
 - Add chinstrap
 - Switch to full face mask
 - Increased risk of aerophagia, abdominal distention, and vomiting
 - Use heated humidification to reduce nasal resistance

Goals of a Proper Titration

Observe all positions and sleep stages

Resolve snoring

Minimize arousals and cardiovascular effects

Avoid excessive pressure

See improvement in gas exchange and oxygenation

Not always possible

Complex Apnea

- Over-titration can cause CPAP emergent central apneas (complex apnea)
- Central apneas only present in titration
 - Not present in diagnostic study
- About 15% of SDB patient have this
- AASM recommends switching to BiPAP with backup rate

Spontaneous Bi-level PAP (BiPAP-S)

- Indications for transition from CPAP
 - Patient needs high therapeutic pressure
 - Persistent obstructive events once at CPAP of 15 cm H2O
 - Can't adjust to exhaling against CPAP pressure
 - CPAP caused increase in PCO2

Spontaneous Bi-level PAP (BiPAP-S)

- Guidelines for BiPAP-S titration
 - Set separate IPAP and EPAP pressures
 - The greater the pressure support (IPAP-EPAP difference), the greater the VT
 - Starting pressure should be 8/4 cm H2O
 - Minimum IPAP-EPAP gap = 4 cm H2O
 - Maximum IPAP-EPAP gap = 10 cm H2O
 - Maximum IPAP pressure for patients < 12 yrs = 20 cm H2O
 - Maximum IPAP pressure for patients ≥ 12 yrs = 30 cm H2O
 - Goal = Reduce RDI to < 5 during at least 15 min of REM sleep in supine position

Spontaneous Bi-level PAP (BiPAP-S)

Copyright @ 2014 by Mosby, Inc., an affiliate of Elsevier Inc.

CSA, CSR, and Complex Apnea

- Patient needs time to adjust to each pressure change
 - Allow chemoreceptors time to reset
- If central apneas predominant in diagnostic study, titration approach may differ
- Goal of titration = Normalize minute ventilation, minimize exaggerated response to blood gas changes, and allow patient CO2 level and breathing pattern to stabilize

BiPAP as Noninvasive Ventilation for CSA

- Indications for use
 - 1st line of therapy for CSA may be BiPAP with a backup rate
 - 1st look to see if a low-level CPAP resolved obstructions to determine starting pressure
- Guidelines for titration
 - S/T mode on BiPAP = Breaths delivered are synchronized with spontaneous breathing until patient stops breathing and backup rate kicks in
 - Rate is set as timed breaths in the absence of spontaneous breathing
 - Usually set as 2 breaths below patient's resting RR while awake

BiPAP as Noninvasive Ventilation for CSA

- Guidelines for titration (continued)
 - Initial IPAP and EPAP may be higher for increased BMI, retitration, or air hunger
 - When switching from CPAP, set EPAP at titrated CPAP level that resolved obstructive events
 - Mask fit is critical for success of therapy

Comparison of CPAP to BiPAP

Adaptive Servo Ventilation

- Indications for use
 - Mode of ventilation used to treat Cheyne-Stokes breathing, complex sleep apnea, and other central forms of SDB
 - Dynamically increases pressure support, as needed on a breath-bybreath basis, to ensure target minute ventilation is achieved
 - Physician must decide whether to use ASV
 - Has been shown to be beneficial for patients with CSR associated with CHF, periodic breathing caused by idiopathic CSA, and opioid-induced CSA

Adaptive Servo Ventilation

- Guidelines for titration
 - Uses a minimum end-expiratory pressure to control any component of upper airway obstruction, pressure support (PS) above the set expiratory pressure to increase spontaneous VT, and a back-up rate to supplement the patient's own breathing
 - Each device has their own algorithm
 - Philips Respironics BiPAP autoSV Automatic Servo Ventilation
 - Targets peak flow during a 4-min moving window and adjusts the delivered PS breath by breath as necessary
 - Automatically calculates back-up rate based on patient's spontaneous efforts
 - ResMed VPAP Adapt SV
 - Continuously calculates target minute ventilation by monitoring patient's RR and estimated VT
 - Target maintains 90% of patient's average minute ventilation by gradual variance and adaptation throughout night
 - Data is averaged over a 3-min window

Adaptive Servo Ventilation

- Guidelines for titration (continued)
 - Tech must determine initial settings
 - Settings may be in physician's orders or tech's decision
- Treatment challenges
 - Must be patient during the process
 - Must have uninterrupted sleep opportunity to make sure patient properly responds
 - Need to be conservative with adjustments to EEP in response to obstructive events
 - Some patients fail all attempts at treatment
 - Known as "chemo-reflex modulated sleep apnea"
 - These patients demonstrate a hypocapneic breathing pattern
 - Use enhanced expiratory rebreathing space (EERS) to shift apnea threshold

ASV in Progress

Copyright @ 2014 by Mosby, Inc., an affiliate of Elsevier Inc.

Good ASV Progress Later in Night

NPPV in Complex Respiratory Diseases

- Chronic Hypoventilation Syndromes
 - Need ventilatory assistance during night to maintain an acceptable PaCO2
 - Have respiratory compromise when awake too and this is intensified in sleep
- Indications for NPPV
 - Respiratory failure = PaCO2 not maintained at or below 45 mm Hg and pH not maintained between 7.35-7.45
 - Have excessive work of breathing, respiratory muscle fatigue and dysfunction, inadequate alveolar ventilation, and severe hypoxemia
 - Metabolic system (renal system) retaining HCO3- to normalize pH
 - These patients are hypersensitive to supplemental O2
 - May cause central apneas

NPPV in Complex Respiratory Diseases

Goals of NPPV

- Relieve the work of breathing, improve and stabilize gas exchange, improve duration and quality of sleep, prolong survival, and maximize QOL
- When to increase backup rate:
 - When PaCO2 can't be kept in acceptable range without excessive IPAP
 - When tech concerned that required IPAP may cause barotrauma (bullous lung disease)
 - When tech concerned that necessary IPAP may cause patient intolerance
 - When central apneas emerge in absence of respiratory alkalosis
 - To decrease excessive spontaneous RR or work of breathing
 - To maintain PaCO2 between awake values and 10 mm Hg lower for hypercapnic patients, provided pH remains at or below 7.49

Guidelines for Titration with NPPV

- Spontaneous Timed or Timed mode
 - Set RR at resting wake rate or lower
 - Adjust rate and IPAP based on ABG or surrogate measures of oxygenation and ventilation
 - To reduce elevated spontaneous RR
 - To reduce work of breathing
 - Adjust EPAP to eliminate upper airway obstruction
 - Adjust IPAP
 - To increase spontaneous breathing by increasing VT
 - To decrease PaCO2
 - To ventilate patient during central events

Guidelines for Titration with NPPV

- Inspiratory to Expiratory Ratio
 - Normal is 1:2
 - Patients with COPD may benefit from longer inspiratory time (1:3)

Special Considerations for Use of NPPV

- COPD and Overlap Syndrome
 - NPPV may be indicated
 - Overlap disorder = Patient has COPD and OSA, restrictive thoracic disorders, obesity hypoventilation, and other forms of hypoventilation, and neuromuscular disorders
 - Significantly affected by body position changes in sleep and by breathing changes in REM
- COPD
 - Often need longer I:E ratio (1:3 or 1:4)
 - When inspiratory flow rate (IFR) adjustable, increase IFR or peak IFR to deliver a shorter inspiratory time and longer expiratory time

Special Considerations for Use of NPPV

- Restrictive lung disease
 - A longer inspiratory time and shorter expiratory time (I:E = 1:1.5)
 - Rise time = Time in seconds to deliver IPAP max
 - Longer rise time makes inspiratory phase more sinusoidal and decreases flow rate
 - Adjusting rise time affects patient comfort
 - Adjusting rise time doesn't alter I:E ratio
- Sleep labs are starting to see more NPPV titrations
 - Must monitor CO2 levels with ETCO2 or TcPCO2 and oxygenation levels
 - Follow AASM guidelines

General Recommendations for NPPV

- Increase IPAP or EPAP, or both, to eliminate apneas, hypopneas, RERAs, and snoring
- Increase PS to maintain desired VT
- Increase PS if PaCO2 trends 10 mm Hg or more above desired PaCO2
- Increase PS if needed to provide respiratory muscle rest
- Increase PS if SpO2 remains below 90% for > 5 continuous minutes
- Supplemental O2 may be added if needed
- Monitor RR, VT, CO2, and SpO2
- Conditions Associated with Use of NPPV
 - Lung disease and end-stage COPD
 - Chronic alveolar hypoventilation syndromes

General Recommendations for NPPV

- Contraindications for NPPV
 - Unstable cardiorespiratory status
 - Uncooperative patient
 - Patient unable to protect airway because of impaired swallowing or cough
 - Recent facial, esophageal, or gastric surgery
 - Recent craniofacial trauma or burn
 - Anatomic lesions of upper airway
 - Excessive aerophagia that may result in vomiting, and aspiration
 - Extreme anxiety
 - Massive obesity
 - Copious secretions
 - Need for continuous or nearly continuous ventilatory assistance
 - Bullous lung disease
 - Hyperventilation
 - Hypoventilation
 - Night-to-night variability of need

Optimizing NPPV

- Goal of BiPAP = Reduce chronically elevated PaCO2 by increasing minute ventilation
 - May need BiPAP PS of > 8 cm H2O
 - Neuromuscular disease patients may need ≥ 10 cm H2O
- Improving patient comfort and synchrony is important for long-term adherence
 - Can adjust pressure relief and rise time
 - Mask leak must be in an acceptable range
 - Heated humidification will help with dryness

Supplemental O2

- · AASM guidelines for use
 - Awake supine SpO2 is ≤ 88%
 - SpO2 during PAP titration remains ≤ 88% for 5 min in absence of respiratory events
 - Add 1 L of O2 and titrate up as needed to get SpO2 between 88% and 94%
 - Titrate in 15 min intervals
 - Connect O2 at the PAP device outlet
- Additional O2 may be detrimental to those with advanced respiratory disease due to compensated respiratory acidosis (chronic CO2 retention)
 - Start low (below 1 L) for these patients

Alternative Treatments for OSA

- Tracheostomy
 - Effective cure for OSA
 - Only used if can't use PAP and non-treatment is detrimental to patient's health
 - Advantages:
 - Provides patent airway
 - Obstruction bypassed
 - Upper airway bypassed
 - · Work of breathing decreased
 - Disadvantages and risks:
 - Long-term risk of tracheal stenosis
 - Increased risk of infection
 - Secretion management
 - Social implications
 - Tracheostomy care
 - Procedure-related complications

Alternative Treatments for OSA

- Oral appliances
 - Treatment of choice for many patients
 - Advance the mandible and open the airway
 - Some also hold tongue forward
 - Less effective for those with severe OSA
 - Option for those with mild OSA
 - Must be custom fitted by dentist

Oral Appliances

Used with permission from ResMed Corp., San Diego, California. www.resmedialibrary.com.

Surgical Procedures

- UPPP with maxillomandibular advancement has shown good results for many patients
- First line of treatment for pediatric OSA = Adenotonsillectomy
 - Beneficial in 75% to 100% of children, even with increased BMI

Outcome Management for PAP

- PAP is foreign to the human body
- If patient sees improvement, more likely to use it
- Some side effects may be seen
 - Congestion, runny nose, ear pressure, facial soreness, pressure discomfort, skin breakdown, claustrophobia, anxiety, and aerophagia
- Education is key to dealing with side effects
- Clinical sleep educator is new role to help with PAP compliance
 - Educates PAP user and family
 - Shows benefits of therapy

Efficacy Monitoring

- PAP usage can now be remotely monitored thanks to wireless and wired monitoring technology through secure websites and servers compliant with HIPAA privacy requirements
- Allows clinicians real-time access to data
 - This allows clinicians to contact the patient with solutions to problems and issues and update their PCP if changes in therapy are needed
- Effect of heated humidification and nasal congestion
 - Nasal resistance makes PAP hard to tolerate
 - Heated humidification reduces nasal resistance
 - A heated wire circuit can help with significant nasal issues

Wireless Monitoring of PAP

Used with permission from ResMed Corp., San Diego, California. resmedialibrary.com.

PAP Report from Respironics

Courtesy Philips Respironics, Inc., Andover, MA

PAP Report from ResMed

Data from ResMed Corp., San Diego, California. resmedialibrary.com.

Unintentional Leak

- Must address unintentional leaks
- Sometimes need to refit or readjust the mask
- Add a chin strap to help mouth leak
- Switch to full face mask for mouth leak
- Increased heated humidification may resolve the leak over time
- Requires time to address and patience