Faugère's F4 Algorithm Formalization

Dongwook Cheon

 $\mathrm{May}\ 9,\ 2025$

Here we fix a field k of coefficients, and a monomial order \leq on $k[x_1,\cdots,x_n].$

Chapter 1

Gröbner Basis

Let $f \in k[x_1, \dots, x_n]$ {0}.

Definition 1 (Leading monomial & leading term). The **leading monomial** LM(f) of f is the monomial in f maximum under the fixed monomial order. The **leading term** LT(f) of f is the multiple of LM(f) by its coefficient in f.

Definition 2 (Monomial ideal). An ideal $I \leq k[x_1, \dots, x_n]$ is a **monomial ideal** if for some subset of exponents $A \subseteq \mathbb{Z}_{>0}^n$,

$$I = \langle x^{\alpha} : \alpha \in A \rangle.$$

Theorem 3 (Dickson's lemma). For any monomial ideal $I = \langle x^{\alpha} : \alpha \in A \rangle \leq k[x_1, \dots, x_n]$, there exists a finite subset $A' \subseteq A$ such that $I = \langle x^{\alpha} : \alpha \in A' \rangle$.

Definition 4 (Ideal of leading terms). Let $I \leq k[x_1, \dots, x_n]$ a nontrivial ideal. The **ideal of leading terms** of I is the ideal generated by leading terms of each $f \in I$ {0}. Namely,

$$\langle LT(I) \rangle = \langle LT(f) : f \in I \{0\} \rangle.$$

This is equivalent to being generated by leading monomials, i.e. the above ideals are equal to

$$\langle LM(I) \rangle = \langle LM(f) : f \in I \ \{0\} \rangle.$$

Definition 5 (Gröbner basis). A finite subset $G = \{g_1, \dots, g_t\} \neq \{0\}$ of $I \leq k[x_1, \dots, x_n]$ is said to be a **Gröbner basis** of I if

$$\langle LM(I) \rangle = \langle LM(G) \rangle = \langle LM(g_1), \dots, LM(g_t) \rangle.$$

Definition 6 (Monomial set). The **monomial set** of a polynomial f is the set of monomials with nonzero coefficient in f, and is denoted by Mon(f). For $K \subseteq k[x_1, \dots, x_n]$, we define as

$$\mathrm{Mon}(K) = \bigcup_{f \in K} \mathrm{Mon}(f).$$

Chapter 2

Faugère F4 Algorithm

```
Definition 7 (Symbolic preprocessing). Input: L, G = \{f_1, \cdots, f_t\} (two finite sets of polynomi-
als)
    Output: H (a finite set of polynomial containing L)
    \bullet H := L
    • done := LM(H)
    • while done \neq Mon(H):
          -x^{\beta} := \max_{\beta} (\operatorname{Mon}(H) \ done)
          - done := done \cup \{x^{\beta}\}\
         - if \exists g \in G such that LM(g)|x^{\beta}:
               * g := one such choice of g
               * H := H \cup \left\{ \frac{x^{\beta}}{\operatorname{LM}(q)} g \right\}
       return H
Symbolic preprocessing Input: L, G = \{f_1, \dots, f_t\} (two finite sets of polynomials)
    Output: H (a finite set of polynomial containing L)
```

- \bullet H := L
- done := LM(H)
- while $done \neq Mon(H)$:
 - $-x^{\beta} := \max_{<}(\operatorname{Mon}(H) \ done)$
 - $done := done \cup \{x^{\beta}\}\$
 - if $\exists g \in G$ such that $LM(g)|x^{\beta}$:
 - * g := one such choice of g
 - $*\ H := H \cup \left\{ \tfrac{x^\beta}{\mathrm{LM}(g)} g \right\}$

return H

Theorem 8 (Result of symbolic preprocessing). The algorithm above with input L and G terminates and obtains as an output a set of polynomials H satisfying the following two properties:

- (i) $L \subseteq H$, and
- (ii) whenever x^{β} is a monomial in some $f \in H$, and for some $g \in G$ its leading monomial LM(g) divides x^{β} , then $\frac{x^{\beta}}{LM(g)}g \in H$.