Basic R tutorial

February 22, 2024

Contents

\mathbf{Pr}	oblem 3: Learning Bayesian networks from protein data	1
	Preparation to run the code	1
	Loading data	1
	Variables and observations	1
	Visualisation of transformed data	1
	Defining functions	2
	Default parameters	3
	Different parameters	3
	Render this .rmd into a pdf	3

Problem 3: Learning Bayesian networks from protein data

Preparation to run the code

Setting seed for reproducibility and loading packages.

```
set.seed(42)
library("GGally")
library("BiDAG")
```

Loading data

```
data <- read.table("2005_sachs_2_cd3cd28icam2_log_std.csv", sep=",", header=TRUE)</pre>
```

Variables and observations

```
num_variables <- ncol(data)
num_observations <- nrow(data)</pre>
```

Visualisation of transformed data

```
TODO: must resize the plot
```

```
pair_plot <- ggpairs(data, progress=FALSE)
pair_plot</pre>
```


TODO: execute the following routine with different parameters (10 times for each change of parameter) TODO: include possibility of parallelization

Defining functions

```
splitting_data <- function(data) {
    # Shuffling data
    indices <- 1:nrow(data)
    indices <- sample(length(indices))

# Splitting data
    train_size <- ceiling(nrow(data)*0.8)
    train_indices <- indices[1:train_size]
    test_indices <- indices[(train_size+1):(length(indices))]

# Checking if there is no overlap
    if(length(unique(c(train_indices, test_indices))) != length(c(train_indices, test_indices))) {
        print("Overlap!")
    }

    train_data <- data[row.names(data) %in% train_indices, ]
    test_data <- data[row.names(data) %in% test_indices, ]

split_data <- list("train_data"=train_data, "test_data"=test_data)</pre>
```

```
return(split_data)
}

training_BN <- function(data, bgepar) {
    init_score_par <- scoreparameters("bge", data$train_data, bgepar)
    learnt_BN <- iterativeMCMC(init_score_par)

    return(learnt_BN)
}

testing_BN <- function(data, BN, bgepar) {
    test_score_par <- scoreparameters("bge", data$test_data, bgepar)
    test_score <- scoreagainstDAG(test_score_par, BN$DAG)
    return(mean(test_score))
}</pre>
```

Default parameters

```
bgepar <- list(am=1, aw=NULL, edgepf=1)
split_data <- splitting_data(data)
learnt_BN <- training_BN(split_data, bgepar)

## maximum parent set size is 3
## core space defined, score table are being computed
## score tables completed, iterative MCMC is running

mean_test_score <- testing_BN(split_data, learnt_BN, bgepar)
print(paste0("Average BGe score on testing data: ", mean_test_score))

## [1] "Average BGe score on testing data: -12.1192090033328"</pre>
```

Different parameters

```
am \leftarrow c(10^{-5}), 10^{-3}, 10^{-1}, 10, 10^{2}
```

Render this .rmd into a pdf

```
library(rmarkdown)
render("1/1.Rmd", pdf_document(TRUE), "1.pdf") # TRUE adds table of content
```