

Center of Mass

AP Physics C

Mrs. Coyle

Center of Mass

 The point of an object at which all the mass of the object is thought to be concentrated.

Average location of mass.

Experimental Determination of CM

- Suspend the object from two different points of the object.
- Where two vertical lines from these two points intersect is the CM.

Location of Center of Mass

The CM could be located:

 within the object (human standing straight)

 outside the object (high jumper as she goes over the bar)

Center of Mass is outside the object.

Center of Gravity

 The point of the object where the force of gravity is thought to be acting.

Average location of weight.

 If g is the same throughout the object then the CM coincides with the CG.

Center of Mass of:

System of Particles

Extended Object

Center of Mass of a **System of Particles in one Dimension**

$$X_{CM} = \underline{\Sigma} \underline{m}_{\underline{i}} X_{\underline{i}}$$
 M

• m_i is the mass of each particle

- x_i is the position of each particle with respect to the origin
- M is the sum of the masses of all particles

Example 1: Center of Mass in one Dimension

 Find the CM of a system of four particles that have a mass of 2 kg each. Two are located 3cm and 5 cm from the origin on the + x-axis and two are 2 and 4 cm from the origin on the - x-axis

Answer: 0.5cm

Coordinates of Center of Mass of a System of Particles in Three Dimensions

$$x_{\text{CM}} = \frac{i}{M} x_i \qquad y_{\text{CM}} = \frac{i}{M} z_i \qquad z_{\text{CM}} = \frac{i}{M}$$

Coordinate of CM using the Position Vector, r

$$\mathbf{r}_{\mathrm{CM}} = \frac{i}{M}$$

$$\mathbf{r}_i = x_i \hat{\mathbf{i}} + y_i \hat{\mathbf{j}} + z_i \hat{\mathbf{k}}$$

Example 2: Center of Mass in two Dimensions

Find the CM of the following system:

$$m_1=1kg$$

$$2m$$

$$m_2=2k$$

$$g$$

$$2m$$

$$m_3=3kg$$

Ans: x=1m, y=0.33m

Center of Mass of an Extended Object

An extended object can be considered a distribution of small mass elements, Δm .

Center of Mass of an Extended Object using Position Vector

Position of the center of mass:

$$\mathbf{r}_{\mathrm{CM}} = \frac{1}{M}$$

Center of Mass of an Extended Object

$$x_{\rm CM} = \frac{1}{M} \text{ and } y_{\rm CM} = \frac{1}{M} \text{ and } m$$

$$z_{\rm CM} = \frac{1}{M}$$

CM of Uniform Objects

• Uniform density, ρ=m/V=dm/dV

Uniform mass per unit length,

$$\lambda = m/x = dm/dx$$

Center of Mass of a Rod

Find the center of mass of a rod of mass
 M and length L.

Ans: $x_{CM} = L / 2$, (or $y_{CM} = z_{CM} = 0$)

CM of Symmetrical Object

 The CM of any symmetrical object lies on an axis of symmetry and on any plane of symmetry.

Toppling Rule of Thumb

- If the CG of the object is above the area of support, the object will remain upright.
- If the CG is outside the area of support the object will topple.

Another look at Stability

- Stable equilibrium: when for a balanced object a displacement raises the CG (to higher U so it tends to go back to the lower U).
- Unstable equilibrium: when for a balanced object a displacement lowers the CG (lower U).
- Neutral equilibrium: when the height of the CG does not change with displacement.

Stability

Example #41

A uniform piece of sheet steel is shaped as shown. Compute the x and y coordinates of the center of mass.

Ans: x=11.7cm, y=13.3cm

Example #44 "Fosbury Flop"

Find the CM

Ans: 0.0635L below the top of the arch