Chapitre 5 : Fonctions dérivées

Cours 1 : Dérivée des fonctions usuelles

R. KHODJAOUI

Lycée J.J. HENNER - Première D

Vendredi 29 novembre 2019

Sommaire

Définition

Dérivée des fonctions usuelles

3 Exercice

Fonction dérivée

Définition

Soit D un intervalle de \mathbb{R} ou une réunion d'intervalles.

- On dit que f est dérivable sur D si, et seulement si elle est dérivable en tout réel a de D.
- \square Dans ce cas la fonction qui à tout a de D, associe le nombre dérivé f'(a)de f en a est appelée fonction dérivée de f, on la note :

$$f': D \mapsto \mathbb{R}$$

 $x \mapsto f'(x)$

Fonction dérivée

Définition

Soit D un intervalle de \mathbb{R} ou une réunion d'intervalles.

- regression On dit que f est dérivable sur D si, et seulement si elle est dérivable en tout réel a de D.
- Dans ce cas la fonction qui à tout a de D, associe le nombre dérivé f'(a) de f en a est appelée fonction dérivée de f, on la note :

$$f': D \mapsto \mathbb{R}$$

 $x \mapsto f'(x)$

Exercice

Soit g la fonction carré.

Démontrer que g est dérivable sur $\mathbb R$ et que sa dérivée est la fonction g' définie par :

$$g': \mathbb{R} \mapsto \mathbb{R}$$

 $x \mapsto 2x$

Dérivée des fonctions usuelles

f(x)	f'(x)	f dérivable sur
k	0	\mathbb{R}
x	1	\mathbb{R}
x^2	2x	\mathbb{R}
x^3	$3x^2$	\mathbb{R}
$x^n, n \in \mathbb{N}^*$	nx^{n-1}	\mathbb{R}
\sqrt{x}	$\frac{1}{2\sqrt{x}}$	\mathbb{R}_+^*
$\frac{1}{x}$	$-\frac{1}{x^2}$	ℝ*

◆□▶ ◆圖▶ ◆臺▶ ◆臺▶

- Prouver que la dérivée d'une constante est nulle.

- Prouver que la dérivée d'une constante est nulle.
- Prouver que la dérivée d'une fonction affine est une fonction constante égale à son coefficient directeur.

- Prouver que la dérivée d'une constante est nulle.
- 2 Prouver que la dérivée d'une fonction affine est une fonction constante égale à son coefficient directeur.
- Soit f la fonction définie sur \mathbb{R} par $x \mapsto x^4$. Calculer f'(2).
- Il Soit g la fonction cube. Déterminer l'équation de la tangente à la courbe de g au point d'abscisse 1.
- Soit h la fonction inverse. Déterminer l'équation de la tangente à la courbe de h au point d'abscisse -1.

- Prouver que la dérivée d'une constante est nulle.
- Prouver que la dérivée d'une fonction affine est une fonction constante égale à son coefficient directeur.
- **3** Soit f la fonction définie sur \mathbb{R} par $x \mapsto x^4$. Calculer f'(2).
- Il Soit g la fonction cube. Déterminer l'équation de la tangente à la courbe de g au point d'abscisse 1.
- Soit h la fonction inverse. Déterminer l'équation de la tangente à la courbe de h au point d'abscisse -1.

- Prouver que la dérivée d'une constante est nulle.
- 2 Prouver que la dérivée d'une fonction affine est une fonction constante égale à son coefficient directeur.
- **3** Soit f la fonction définie sur \mathbb{R} par $x \mapsto x^4$. Calculer f'(2).
- Il Soit g la fonction cube. Déterminer l'équation de la tangente à la courbe de g au point d'abscisse 1.
- Soit h la fonction inverse. Déterminer l'équation de la tangente à la courbe de h au point d'abscisse -1.

FIN

Revenir au début

