Задача 3. «Не забудьте посолить»

Однажды юный физик Федя заметил, что кипение воды прекращается при добавлении соли. За разъяснениями он обратился к учителю физики. Опытный учитель привел сразу три объяснения:

- Во-первых, Федя, соль имеет комнатную температуру. Во-вторых, растворение соли происходит с поглощением тепла, в третьих, повышается температура кипения воды.
- А какой же решающий фактор? спросил Федя.
- Это и будет твоим домашним заданием,— сказал учитель и вручил Феде справочник «Таблицы физических величин».

Часть 1. Фактор первый

«С первой причиной я разберусь и без справочника,» - подумал Федя. «Пусть m_B — масса воды, m_C — масса соли, c_B — удельная теплоемкость воды, c_C — удельная теплоемкость соли. Температуру кипения воды обозначим t_K , температуру соли — t_C ».

1.1 Получите выражение для изменения температуры воды при добавлении соли, считая что она не растворяется.

Теплоемкость воды Федя знал наизусть $c_B=4200\,\mbox{$\mathcal{D}$...}\mbox{$\kappa$}\mbox{$\epsilon$}\cdot\mbox{$^{\circ}$}\mbox{$C}$, а теплоемкость соли начал искать в справочнике, но не нашел. Зато увидел таблицу зависимости удельной теплоемкости солевого раствора от его концентрации.

Таблица 1. Зависимость удельной теплоемкости солевого раствора от концентрации

η,%	0	5	10	15	20	25
с,кДж/кг∙°С	4,20	4,00	3,90	3,68	3,55	3,36

Подсказка. Концентрация соли в растворе определяется следующим образом: $\eta = \frac{m_C}{m_P}$,

где m_C — масса соли, m_P — масса раствора.

Кроме того, Федя узнал о «правиле смешения», согласно которому теплоемкость смеси равна сумме теплоемкостей отдельных составляющих.

- **1.2** Используя данные таблицы, убедитесь, что «правило смешения» вполне применимо для раствора поваренной соли в широком диапазоне концентраций, а также определите удельную теплоемкость соли $c_{\scriptscriptstyle C}$.
- **1.3** Масса воды $m_B=1,0\kappa z$, температура воды $t_K=100$ °C, температура соли $t_C=20$ °C. Вычислите изменение температуры (по формуле, полученной Вами в пункте 1.1) для $m_{Cl}=20z$ и $m_{C2}=300z$.

Часть 2. Фактор второй

Чтобы рассчитать, на сколько охлаждается вода при растворении, Федя начал искать в справочнике удельную теплоту растворения q поваренной соли. Удивительно, но оказалось, что эта теплота зависит от того, как много соли растворяется в воде (см. таблицу 2).

Таблица 2. Удельная теплота растворения поваренной соли в воде:

m_C , г - масса соли	10	50	100	200	350
на 1 кг воды					
q,кДж/кг	72,3	66,2	57,3	42,5	32,2

2.1 В воду $m_B = 1 \kappa z$ бросают соль при той же температуре t_K (для исключения первого фактора). Определите изменение температуры раствора в результате растворения соли для $m_{CI} = 20 z$ и $m_{C2} = 300 z$.

Часть 3. Фактор третий

Следующая необходимая для расчета таблица называлась «Температуры кипения раствора соли»

Таблица 3. Температуры кипения раствора соли

η , %	0	5	10	15	20	25
t_{K} ,°C	100	100,5	101,0	101,6	102,2	102,9

- **3.1** Используя табличные данные, покажите, что увеличение температуры кипения раствора пропорционально отношению масс соли и воды, т. е. $\Delta t = \alpha \frac{m_C}{m_B}$. Определите коэффициент пропорциональности α .
- **3.2** Определите, на сколько градусов увеличивается температура кипения при добавлении в воду ($m_B=1.0\,\kappa c$) $m_{CJ}=20c$ и $m_{C2}=300c$ соли.

Часть 4. Когда же снова закипит?

4.1 Один килограмм чистой воды нагрелся от комнатной температуры $t_C=20^{\circ}C$ до температуры кипения $t_K=100^{\circ}C$ за 5*мин* . Оцените, через сколько секунд возобновится кипение при добавлении $m_{CI}=20$ г и $m_{C2}=300$ г соли? Считайте, что растворение соли происходит достаточно быстро.