Pontificia Universidad Católica de Chile Facultad de Matemáticas 1° semestre 2020

Ayudantía 16

14 de Mayo MAT1106 - Introducción al Cálculo

1) Muestre que $2 \cdot (-1)^n$ no converge a ningún valor real y use esto para mostrar que una sucesión puede estar acotada y no converger a un valor real.

Demostración. Supongamos que $2 \cdot (-1)^n \to L$. Esto implica que para todo $\varepsilon > 0$ existe un n_0 natural tal que para todo $n \ge n_0$ se cumple $|2(-1)^n - L| < \varepsilon$. Lo anterior es equivalente a $-\varepsilon < 2(-1)^n - L < \varepsilon$. Sumando L a ambos lados, tenemos que

$$L - \varepsilon < 2(-1)^n < L + \varepsilon$$

Tomando $\varepsilon = |L|(*)$, tenemos que

$$L - |L| < 2(-1)^n < L + |L|$$

Como alguna de las cotas es 0, esto implica que la sucesión es eventualmente negativa o eventualmente positiva, pero esto es claramente falso (todos los términos pares son positivos y todos los impares son negativos), $\rightarrow \leftarrow$.

(*) Esto funciona solo si $L \neq 0$. Supongamos que L = 0. Esto implica que para todo $\varepsilon > 0$, existe un n_0 tal que para todo $n \geq n_0$, se cumple $|x_n| = |2(-1)^n| = 2 < \varepsilon$. Tomando $\varepsilon = 1$, llegamos a una contradicción.

Por lo tanto, x_n no puede converger a algún valor real. Como $-3 < 2(-1)^n < 3$, tenemos que una sucesión puede estar acotada y no converger.

2) Sean a, b, c, d distintos de 0. Muestre que

$$\lim_{n \to \infty} \frac{an+b}{cn+d} = \frac{a}{c}.$$

Demostración. Notar que

$$\frac{an+b}{cn+d} = \frac{\frac{an+b}{n}}{\frac{cn+d}{n}} = \frac{a+\frac{b}{n}}{c+\frac{d}{n}}.$$

Sabemos que $\lim_{n\to\infty}a=a$. Sabemos lo mismo para $\lim_{n\to\infty}b,\lim_{n\to\infty}c,\lim_{n\to\infty}d$ y también sabemos que $\lim_{n\to\infty}\frac1n=0$. Usando álgebra de límites tenemos que

$$0 = b \cdot 0 = \lim_{n \to \infty} b \cdot \lim_{n \to \infty} \frac{1}{n} = \lim_{n \to \infty} \frac{b}{n}$$

Análogamente, lím $\frac{d}{n\to\infty}\,\frac{d}{n}=0.$ Luego, tenemos que

$$a = a + 0 = \lim_{n \to \infty} a + \lim_{n \to \infty} \frac{b}{n} = \lim_{n \to \infty} a + \frac{b}{n}.$$

Del mismo modo, lím $c+\frac{d}{n}=c.$ Finalmente, como $c\neq 0,$ tenemos que

$$\frac{a}{c} = \frac{\lim_{n \to \infty} a + \frac{b}{n}}{\lim_{n \to \infty} c + \frac{d}{n}} = \lim_{n \to \infty} \frac{a + \frac{b}{n}}{c + \frac{d}{n}} = \lim_{n \to \infty} \frac{an + b}{cn + d},$$

que es lo que queríamos demostrar.

3) Muestre que x_n converge a L si y solo si $y_n = x_n - L$ converge a 0.

Demostración. Sabemos que x_n converge a L si y solo si

$$(\forall \varepsilon > 0)(\exists n_0 \in \mathbb{N})(\forall n \ge n_0) |x_n - L| < \varepsilon$$

Por otro lado, y_n converge a 0 si y solo si

$$(\forall \varepsilon > 0)(\exists n_0 \in \mathbb{N})(\forall n \ge n_0) |y_n| = |x_n - L| < \varepsilon$$

Como la equivalencia es simétrica y transitiva, tenemos lo pedido.

4)

a) Sea $x_n = c$. Muestre por definición que $\lim_{n \to \infty} x_n \to c$.

Demostración. Sea $\varepsilon > 0$. Notar que para todo $n \ge 1$ se cumple que $|x_n - c| = |c - c| = |0| = 0 < \varepsilon$. Por lo tanto, tenemos que $\lim_{n \to \infty} x_n \to c$.

b) Sea x_n una sucesión que cumple $\lim_{n\to\infty} x_n = L$, con $L\in\mathbb{R}$. ¿Es cierto que $\lim_{n\to\infty} \lfloor x_n \rfloor = \lfloor L \rfloor$? ($\lfloor x \rfloor$ es la parte entera de x)

Demostraci'on. No necesariamente. Sea $x_n=1-\frac{1}{n}.$ Por álgebra de límites sabemos que lím $1-\frac{1}{n}=\lim_{n\to\infty}1-\lim_{n\to\infty}\frac{1}{n}=1.$ Por otro lado, sabemos que $0\leq 1-\frac{1}{n}<1,$ por lo que $\lfloor x_n\rfloor=0.$ Luego, tenemos que

$$\lim_{n \to \infty} \lfloor x_n \rfloor = \lim_{n \to \infty} 0 = 0 \neq 1.$$

Por lo tanto, la propiedad no necesariamente se cumple.

c) Sea 0 < c < 1. Pruebe que

$$\lim_{n \to \infty} \sum_{k=0}^{n} c^k = \frac{1}{1-c}.$$

Sabemos que

$$\sum_{k=0}^{n} c^k = \frac{1 - c^{n+1}}{1 - c}$$

Por taller, como -1 < c < 1, tenemos que $c^{n+1} \to 0$. Luego, usando álgebra de límites, tenemos que $\lim_{n \to \infty} 1 - c^{n+1} = 1$. Como $1 - c \neq 0$, tenemos que

$$\lim_{n \to \infty} x_n = \lim_{n \to \infty} \frac{1 - c^{n+1}}{1 - c} = \frac{\lim_{n \to \infty} 1 - c^{n+1}}{\lim_{n \to \infty} 1 - c} = \frac{1}{1 - c},$$

que es lo que queríamos probar.