Similitudes directes plan complexe

Exercice 1

Déterminer en justifiant la nature des transformations du plan suivantes :

- 1. z' = z + 1 2i
- 2. z' = iz + 1
- 3. z' = -3z 1 + i
- 4. z' = (1+i)z 1 + i

Exercice 2

Déterminer l'écriture complexe des transformations suivantes :

- 1. Translation de vecteur \vec{u} d'affixe -2 + 3i.
- 2. Rotation de centre *A* d'affixe -i et d'angle $\frac{3\pi}{4}$.
- 3. Homothétie de centre A d'affixe -1 + i et de rapport $\frac{1}{2}$.
- 4. Similitude directe de centre A d'affixe -2, de rapport 2 et d'angle $-\frac{2\pi}{3}$.

Exercice 3

Dans chacun des cas suivants, déterminer l'écriture complexe, puis la nature et les éléments caractéristiques des transformations $s_2 \circ s_1$ et $s_1 \circ s_2$.

- 1. $s_1: z' = 2iz + 1 2i$ et $s_2: z' = \frac{1}{2}iz + 1 \frac{1}{2}i$
- 2. $s_1: z' = (1-i)z + 1 + i$ et $s_2: z' = -2z$

Exercice 4

Soit f l'application du plan dans lui-même d'expression analytique :

$$\begin{cases} x' = x + y + 2 \\ y' = -x + y + 1 \end{cases}$$

- 1. Déterminer l'écriture complexe de f.
- 2. Déterminer la nature et les éléments caractéristiques de f.

Exercice 5

Dans le plan complexe, on considère les points A et C d'affixes respectives $1+i\sqrt{3}$ et $1-i\sqrt{3}$, et l'application f définie par $z'=e^{2i\frac{\pi}{3}}z$.

1. Déterminer les images des points A et C par f.

2. En déduire l'équation de l'image de la droite (AC).

Exercice 6

Soit le plan muni d'un repère orthonormé (o, \vec{u}, \vec{v}) , Ω est le point de coordonnées (2, 1), S est la similitude de centre Ω , de rapport $\sqrt{2}$ et d'angle $\frac{\pi}{4}$, (D) est la droite 3x + 3y - 4 = 0, (C) le cercle de centre O et de rayon 3.

- 1. Soit M(x, y) un point et M'(x', y') son image par S. Exprimer x' et y' en fonction de x et y.
- 2. En déduire l'équation de (D') image de (D) par S.
- 3. En déduire l'équation de C' image de C par S.

Exercice 7

Soit *S* la similitude directe d'écriture complexe : z' = 3iz - 9 - 3i. Déterminer l'image par *S* :

- 1. Du cercle de centre K(1-3i) et de rayon 1.
- 2. De la droite (D) d'équation x = 1.

Exercice 8

Le plan complexe est rapporté à un repère orthonormal (o, \vec{u}, \vec{v}) . On donne $Z_A = -1 - i$, $Z_B = 2 - i$, $Z_C = -1 + 2i$. On considère la similitude S de centre B qui transforme A en C.

- 1. Déterminer le rapport et l'angle de la similitude *S*.
- 2. Donner l'écriture complexe de S.
- 3. \mathscr{C} est le cercle circonscrit au triangle ABC, déterminer les caractéristiques de \mathscr{C}' image par S.

Exercice 9

On considère les points $Z_A = 2i$, $Z_B = -\sqrt{3} + 2i$, $Z_C = -2\sqrt{3} - i$.

- 1. Donner l'écriture complexe de la similitude directe qui transforme A en B et B en C.
- 2. Déterminer l'affixe du centre, le rapport et l'angle de cette similitude.

Exercice 10

A et B ont pour affixes $Z_A = 3i$ et $Z_B = 4 + i$. r est la rotation de centre A et d'angle $\frac{\pi}{2}$.

- 1. Montrer que z' = iz + 3 + 3i.
- 2. Montrer que $Z_C = 2 + 7i$ si r(B) = C.
- 3. Montrer que ABC est rectangle isocèle en A.
- 4. Soit *D* le milieu de [AC], $h(z) = \frac{1}{2}z + \frac{3}{2}i$.
 - (a) Montrer que h(C) = D.

- (b) Exprimer z' 3i en fonction de z 3i et en déduire la nature de h.
- 5. S est la similitude de centre A, de rapport $\frac{1}{2}$ et d'angle $\frac{\pi}{2}$. Donner son écriture complexe.

Exercice 11

Soit a = -1 - i et (z_n) la suite définie par :

$$\begin{cases} z_0 = 0, & z_1 = i \\ z_{n+1} = (1-a)z_n + az_{n-1} \end{cases}$$

- 1. Déterminer z_2 et z_3 .
- 2. Soit $u_n = z_{n+1} z_n$
 - (a) Déterminer u_0 et u_1 .
 - (b) Montrer que (u_n) est géométrique de raison -a.
 - (c) Exprimer u_n en fonction de n et a.
- 3. Montrer que $S_n=z_n$ avec $S_n=u_0+\cdots+u_{n-1}$, puis que $z_n=-1+(1+\mathrm{i})^n$.
- 4. (a) Déterminer le module et un argument de *a*.
 - (b) Donner la forme algébrique de z_{19} .

Exercice 12

Soit $T(z) = (1 + i\sqrt{3})z + \sqrt{3}$.

- 1. (a) Montrer que *T* admet un point invariant *J*.
 - (b) Déterminer la nature et les éléments caractéristiques de *T*.
 - (c) Exprimer $\overrightarrow{JM'}$ en fonction de \overrightarrow{JM} et donner l'angle $(\overrightarrow{JM}, \overrightarrow{JM'})$.
- 2. Soit I d'affixe -1.
 - (a) Déterminer I' = T(I).
 - (b) Déterminer l'ensemble \mathcal{D} des z tels que |z+1| = |iz+1|.
 - (c) Déterminer \mathscr{C} des z tels que |(1+i)z-1+i|=|1-i|.
 - (d) Déterminer $\mathcal{D}' = T(\mathcal{D}), \mathcal{C}' = T(\mathcal{C}).$
- 3. Soit $S(z) = \frac{i}{2}z i$.
 - (a) Déterminer le rapport et l'angle de $T \circ S$.
 - (b) En déduire la nature de $T \circ S$.
 - (c) Donner l'écriture complexe de $T \circ S$.
- 4. (a) Montrer que T^3 est une homothétie.
 - (b) Déterminer les $n \in \mathbb{N}$ pour lesquels T^n est une homothétie.

Exercice 13

Soit $T(z) = a^2z + b$ et le point I(2i).

- 1. T est une translation de vecteur $\vec{U}(0,2)$.
- 2. T est une homothétie de rapport -4 et de centre I.
- 3. T est une rotation de centre I et d'angle $-\frac{\pi}{2}$.
- 4. T est une similitude directe transformant A(-1,0) en I et de centre B(-1,1).