

Bibliografia básica:

Arango HG. Bioestatística: teórica e computacional. 3ªed. Rio de Janeiro: Guanabara Koogan; 2011.

SPIEGEL, Murray Ralph; FARIA, Alfredo Alves De Probabilidade e estatística. São Paulo, SP: McGraw-Hill, 1978.

Podemos determinar também a probabilidade de erro tipo um (nível de significância) do resultado.

Por exemplo: no caso da experiência com portadores de Alzheimer, o pesquisador tinha encontrado 16 casos da síndrome em 50 indivíduos com mais de 60 anos. Rejeitar H₀ com este resultado implica uma probabilidade de erro de que ordem?

Cálculo de Z
$$\rightarrow$$
 z = $\frac{x - \mu}{\sigma} = \frac{16 - 10}{2,8284} \cong 2,12$

Cálculo de Z
$$\rightarrow$$
 z = $\frac{x - \mu}{\sigma} = \frac{16 - 10}{2,8284} \approx 2,12$

Na tabela, para z = 2,12, tem-se: A = 0,98299 (área da esquerda)

								T		
Area acumulada sob a curva normal padronizada (valores positivos de z)										
	Z	Α	Z	A	z	Α	z	Α /	Z	Α
9146	1	0,84134	1,5	0,93319	2	0,97725	2,5	0/99379	3	0,
i9497	1,01	0,84375	1,51	0,93448	2,01	0,97778	2,51	7,99396	3,01	0,
i9847	1,02	0,84614	1,52	0,93574	2,02	0,97831	2,52	0,99413	3,02	0,
0194	1,03	0,84849	1,53	0,93699	2,03	0,97882	2,53	0,99430	3,03	0,
0540	1,04	0,85083	1,54	0,93822	2,04	0,97932	2,54	0,99446	3,04	0,
0884	1,05	0,85314	1,55	0,93943	2,05	0,97982	2,65	0,99461	3,05	0,
1226	1,06	0,85543	1,56	0,94062	2,06	0,98030	/2,56	0,99477	3,06	0,
1566	1,07	0,85769	1,57	0,94179	2,07	0,98077	2,57	0,99492	3,07	0,
1904	1,08	0,85993	1,58	0,94295	2,08	0,98124	2,58	0,99506	3,08	0,
2240	1,09	0,86214	1,59	0,94408	2,09	0,98169	2,59	0,99520	3,09	0,
2575	1,1	0,86433	1,6	0,94520	2,1	0,982/14	2,6	0,99534	3,1	0,
2907	1,11	0,86650	1,61	0,94630	2.11	0,98257	2,61	0,99547	3,11	0,
'3237	1,12	0,86864	1,62	0,94738	2,12	0,98300	2,62	0,99560	3,12	0,
3565	1,13	0,87076	1,63	0,94845	2.13	0,98341	2,63	0,99573	3,13	0,
'3891	1,14	0,87286	1,64	0,94950	2,14	0,98382	2,64	0,99585	3,14	0,
4215	1,15	0,87493	1,65	0,95053	2,15	0,98422	2,65	0,99598	3,15	0,

Cálculo de Z
$$\rightarrow$$
 z = $\frac{x - \mu}{\sigma} = \frac{16 - 10}{2,8284} \cong 2,12$

Na tabela, para z = 2,12, tem-se: A = 0,98299 (área da esquerda)

A área da direita é: 1-0.98299 = 0.017

Como é bilateral, $p = 2 \times 0.017 = 0.034$ ou 3.4%

Conclusão: Como *p* está entre 1 e 5%, pode-se afirmar que a diferença encontrada pelo pesquisador é significante.

A probabilidade de rejeição de H₀ associada ao resultado da experiência é denominada **nível de significância do teste**, ou simplesmente *p*

NÍVEL CLÁSSICOS DE SIGNIFICÂNCIA

De um modo geral as hipóteses são testadas em três níveis de significância: 1, 5 e 10%

Nível de Significância	Conclusão				
Menor que 1%	Diferença altamente significante (certeza máxima para se rejeitar H ₀)				
Entre 1 e 5%	Diferença significante (maior certeza para se rejeitar H ₀)				
Entre 5 e 10%	Diferença <u>provavelmente</u> significante (provavelmente, maior certeza para aceitar H ₀)				
Maior que 10%	Diferença não significante (certeza máxima para aceitar H ₀)				

NÍVEL CLÁSSICOS DE SIGNIFICÂNCIA

Certeza máxima para não rejeitar Ho ou certeza máxima para aceitar Ho

Menor certeza de rejeitar H₀ ou maior certeza para aceitar H₀

Maior certeza de rejeitar H₀ ou maior certeza para aceitar H₁

Certeza máxima para rejeitar H₀ ou certeza máxima para aceitar H₁

Quanto menor *p*, maior a evidência de que **existem** diferenças, então rejeita-se H₀ com maior certeza

Quanto maior *p*, maior a evidência de que <u>não existem</u> diferenças, então diminui a certeza da rejeição de H₀

A) Teste Bilateral (Testes Para Diferenças)

$$H_o \to \overline{x} = \mu$$
 ou $p = \pi$
 $H_1 \to \overline{x} \neq \mu$ ou $p \neq \pi$

A) Teste Bilateral (Testes Para Diferenças)

B) Teste Unilateral (Verificar se uma estatística é maior que...)

$$H_o \to \overline{x} \le \mu$$
 ou $p \le \pi \to \text{sempre tem a igualdade}$ $H_1 \to \overline{x} > \mu$ ou $p > \pi$

B) Teste Unilateral (Verificar se uma estatística é maior que...)

C) Teste Unilateral (Verificar se uma estatística é menor que...)

$$H_o \to \overline{x} \ge \mu$$
 ou $p \ge \pi \to \text{sempre tem a igualdade}$ $H_1 \to \overline{x} < \mu$ ou $p < \pi$

Exemplos

Exemplo 1:

Suponha que um estudo em determinada região mostra que a ingestão diária média de calorias em adultos é de 2.400kcal. Considere que um grupo de 25 adultos desta população apresentou um consumo médio de 3.000kcal, com um desvio padrão populacional de 1.250kcal. Para testar se o consumo calórico deste grupo é diferente do padrão de consumo da população, pode ser efetivado o teste da Normal para médias, como mostrado a seguir:

$$\begin{array}{ll} \underline{ \text{1º Passo:}} \ \ \text{Hipótese:} & H_o \to \overline{x} = \mu \\ & H_1 \to \overline{x} \neq \mu \end{array}$$

1º Passo: Hipótese:
$$H_o \rightarrow \bar{x} = \mu$$
 $H_1 \rightarrow \bar{x} \neq \mu$

2º Passo: Cálculo de Z, onde EP é o Erro Padrão da Média (Desvio Padrão Real):

$$z = \frac{\bar{x} - \mu}{\frac{S}{\sqrt{n}}}$$

$$EP = \frac{s}{\sqrt{n}} = \frac{1250}{\sqrt{25}} = 250$$
 $\rightarrow Z = \frac{3000 - 2400}{250} = 2,4$

$$\begin{array}{ll} \underline{ \text{1º Passo:}} \ \ \text{Hipótese:} & H_o \to \overline{x} = \mu \\ & H_1 \to \overline{x} \neq \mu \end{array}$$

2º Passo: Cálculo de Z:

$$Z = \frac{3000 - 2400}{250} = 2,4$$

3º Passo: Determinação de *p*:

Na tabela, para Z = 2,4, tem-se A = 0,9918

$$p = 2 \times (1 - 0.9918) = 0.0164$$
 ou 1.64%

4º Passo: Decisão:

Rejeita-se H_0 com um nível de significância de 1,64%. Ou seja, p < 5%.

5º Passo: Conclusão:

Conclui-se que o consumo calórico da amostra pode ser considerado diferente do da população, a um nível de significância de 1,64%.

Agora, calcule a faixa de valores em que H_0 é aceitável ao nível de significância de 5% (α = 5%).

Exemplos

Exemplo 2:

Suponha que um estudo mostre que a média nacional de alturas em jovens é de 1,72m. Considere que uma turma de 10 jovens apresentou média igual 1,75m. Teste se a média das alturas dessa turma é diferente da média nacional.

Exemplo 3:

O registro de vacinação de uma determinada localidade informou que, na última campanha realizada, 10% da população deixaram de ser imunizados. Entretanto, em uma amostra com 130 pessoas de um determinado bairro, foram detectados 18 casos de não-vacinação. Para testar ao nível de significância de 5% se a proporção de indivíduos não-imunizados na amostra é maior que a proporção verificada na população, deve ser feito o teste unilateral para proporções.

Rosimara Salgado

Professora Coordenadora do NEaD

rosimara@inatel.br

