ЛАБОРАТОРНАЯ РАБОТА № 10

ИССЛЕДОВАНИЕ МАТЕМАТИЧЕСКОЙ МОДЕЛИ ЭЛЕКТРОМЕХАНИЧЕСКОГО ОБЪЕКТА УПРАВЛЕНИЯ

Цель работы. Изучение математических моделей и исследование характеристик электромеханического объекта управления, построенного на основе электродвигателя постоянного тока независимого возбуждения.

Методические рекомендации. До начала работы студенты должны получить от преподавателя вариант задания. К выполнению работы допускаются студенты, рассчитавшие параметры математических моделей ЭМО (см. п.1 порядка выполнения работы). Лабораторная работа рассчитана на 2 часа.

Теоретические сведения. Функциональная схема типичного электромеханического объекта (ЭМО) представлена на рис.10.1. Она включает усилительнопреобразовательное устройство (УПУ), электродвигатель (ЭД), редуктор (Р) и исполнительный механизм (ИМ). Усилительно-преобразовательное устройство служит для формирования напряжения, подаваемого на двигатель в соответствии с управляющим сигналом. Электродвигатель осуществляет преобразование электрической энергии в механическую. Редуктор снижает скорость вращения и повышает момент двигателя на валу ИМ. В качестве исполнительного механизма могут выступать механизмы станков, роботов, поточных линий, рулевые устройства летательных аппаратов, подвижные элементы автоматического оборудования и приборов. Для получения информации о состоянии объекта, используемой в устройстве управления, ЭМО может снабжаться различными измерительными устройствами: углового или линейного перемещения (измерители перемещения — ИП), угловой или линейной скорости (измерители скорости — ИС), измерителями тока якоря и напряжения усилителя мощности.

Рис.10.1 Функциональная схема ЭМО

В работе рассматривается электромеханический объект управления, выходным сигналом которого является угловое перемещение ИМ, а управляющим сигналом — входное напряжение УПУ. Измерение угловой скорости осуществляется на валу двигателя. Момент сопротивления $M_{\it CM}$, приложенный к валу ИМ, выступает в качестве возмущающего воздействия.

Модель ЭМО. В соответствии с законом Ома, для электрической цепи двигателя получаем следующее уравнение

$$U_{y} = E + IR + L\frac{dI}{dt}, (10.1)$$

где U_y — напряжение, подаваемое на двигатель, $E=k_E\omega$ — противо-ЭДС, I— ток, якоря, R и L— сопротивление и индуктивность цепи якоря, k_E — коэффициент ЭДС (первая конструктивная постоянная), ω — угловая скорость ротора. Обозначив $T_R=\frac{L}{R}$, $K_Z=\frac{1}{R}$, уравнение (10.1) можно записать в виде

$$T_{\mathcal{A}}\frac{dI}{dt} + I = K_{\mathcal{A}}(U_{\mathcal{Y}} - k_{\mathcal{E}}\omega). \tag{10.2}$$

Уравнение вращения якоря электродвигателя имеет вид

$$M_{\mathcal{A}} - M_{\mathcal{C}} = J_{\Sigma} \frac{d\omega}{dt} \quad , \tag{10.3}$$

где $M_{\mathcal{A}} = k_{\mathcal{M}}I$ — вращающий момент двигателя, $k_{\mathcal{M}}$ — коэффициент момента (вторая конструктивная постоянная), J_{Σ} — момент инерции, приведенный к валу двигателя, $M_{\mathcal{C}}$ — момент сопротивления, приведенный к валу двигателя. Скорость вращения ω и угол поворота ротора α связаны соотношением

$$\frac{d\alpha}{dt} = \omega. ag{10.4}$$

Редуктор обеспечивает усиление момента двигателя и соответствующее снижение скорости вращения нагрузки

$$M_M = i_p M_{\mathcal{I}}, \quad \omega_M = \frac{\omega}{i_p}, \quad \alpha_M = \frac{\alpha}{i_p},$$
 (10.5)

где i_P — передаточное отношение редуктора, M_M — вращающий момент на выходном валу редуктора (т.е. момент, приложенный к исполнительному механизму), ω_M — угловая скорость вращения выходного вала редуктора, α_M — угол поворота исполнительного механизма (нагрузки) При этом справедливо и обратное преобразование от выходного вала к входному $M_C = M_{CM} \ / \ i_P$. При наличии редуктора момент инерции, приведенный к валу двигателя, определяется по формуле

$$J_{\Sigma} = J_{\mathcal{I}} + J_{P} + \frac{J_{M}}{i_{P}^{2}} , \qquad (10.6)$$

где $J_{\mathcal{A}}$ — момент инерции двигателя, $J_{\mathcal{P}}$ — приведенный момент инерции редуктора, $J_{\mathcal{M}}$ — момент инерции исполнительного механизма (нагрузки).

Усилительно-преобразовательное устройство с высокой степенью точности может быть представлено апериодическим звеном

$$T_{y}\frac{dU_{y}}{dt}+U_{y}=k_{y}U, \qquad (10.7)$$

где U — входное напряжение УПУ, T_y и k_y — постоянная времени и коэффициент усиления УПУ, соответственно. Требуемый коэффициент усиления k_y определяется как отношение номинального напряжения двигателя U_H к максимальному напряжению U_m на входе усилительно-преобразовательного устройства $k_y = U_H / U_m$, (обычно $U_m = 10~B$).

Измерительные устройства будем считать безынерционными. На выходе измерительных устройств формируются измеренные значения напряжения \hat{U}_y , тока \hat{I} , скорости $\hat{\omega}$ и угла поворота $\hat{\alpha}_{_M}$

$$\hat{U}_{v} = K_{U}U_{v}, \quad \hat{I} = K_{I}I, \quad \hat{\omega} = K_{\omega}\omega, \quad \hat{\alpha}_{M} = K_{\alpha}\alpha_{M}.$$
(10.8)

Коэффициенты передачи измерительных устройств K_U , K_I , K_ω и K_α должны обеспечить соответствие максимального значения измеряемого сигнала уровню 10 В на выходе измерительного устройства.

Таким образом, математическая модель ЭМО полностью описывается уравнениями (10.1)-(10.8). Структурная схема ЭМО приведена на рис.10.2.

Упрощенная модель ЭМО. Часто электрические постоянные времени усилителя T_y и ЭД T_g значительно меньше, чем механическая постоянная времени T_M . В этом случае для упрощения математической модели пренебрегают малыми постоянными времени, заменяя апериодические звенья первого порядка с передаточными функциями

Рис.5.2 Структурная схема ЭМО

Рис. 5.3 Структурная схема упрощенной модели ЭМО.

 $W_{1}(s) = \frac{K_{\mathcal{I}}}{T_{\mathcal{I}}s+1} \text{ и } W_{2}(s) = \frac{K_{\mathcal{Y}}}{T_{\mathcal{Y}}s+1} \text{ пропорциональными звеньями с коэффициентами передачи } K_{\mathcal{I}} \text{ и } K_{\mathcal{Y}}, \text{ соответственно. Таким образом, упрощенная модель ЭМО имеет вид,}$ приведенный на рис.5.3, где $K = \frac{K_{\mathcal{Y}}}{k_{\mathcal{E}}i_{\mathcal{Y}}}, \; K_{\mathcal{F}} = \frac{R}{k_{\mathcal{M}}k_{\mathcal{E}}i_{\mathcal{Y}}^{2}}, \; T_{\mathcal{M}} = \frac{RJ_{\Sigma}}{k_{\mathcal{M}}k_{\mathcal{E}}}.$

Порядок выполнения работы.

- **1.** Изучить математические модели ЭМО (полную и упрощенную) и для заданного варианта (см. табл.10.1) рассчитать их параметры. При расчете параметров приведенный момент инерции редуктора считать $J_P = 0.2 J_{\mathcal{I}}$. Коэффициент k_E рассчитывается исходя из формулы скорости вращения холостого хода $\omega_O = \frac{U_H}{k_E}$ (обратите внимание, что в табл.10.1 частота вращения холостого хода n_O измеряется в "оборотах в минуту").
- **2.** Составить схему моделирования полной модели ЭМО и получить графики переходных процессов для \hat{U}_y , \hat{I} , $\hat{\omega}$, $\hat{\alpha}_{\scriptscriptstyle M}$ при $M_{\scriptscriptstyle CM}=0$ Нм и U=5 B. Время моделирования должно быть выбрано таким, чтобы обеспечить наилучшее представление переходного процесса.
- 3. Исследовать влияние момента сопротивления M_{CM} на вид переходных процессов. Для этого получить графики переходных процессов по \hat{U}_{y} , \hat{I} , $\hat{\omega}$ и $\hat{\alpha}_{\mathit{M}}$ при различных значениях момента сопротивления M_{CM} . Диапазон изменения M_{CM} : от 0 Нм до величины, равной $i_{\mathit{P}}M_{\mathit{H}}$. По временным диаграммам определить время переходного процесса t_{II} и установившиеся значения скорости ω_{y} и тока I_{y} .
- **4.** Исследовать влияние момента инерции нагрузки $J_{\scriptscriptstyle M}$ на вид переходных процессов. Определить время переходного процесса $t_{\scriptscriptstyle \Pi}$ и установившиеся значения $\omega_{\scriptscriptstyle y}$ и $I_{\scriptscriptstyle y}$. Диапазон изменения момента инерции: $\pm 50\%$ от заданного значения.
- **5.** Исследовать влияние передаточного отношения редуктора i_P на вид переходных процессов (при изменении i_P учесть, что будет меняться и приведенный момент инерции, см. формулу (10.6)). Исследования проводить при величине момента сопротивления M_{CM} , равного половине максимального значения (см. п.3), рассчитанного для заданного значения i_P , и при $M_{CM}=0$. Диапазон изменения передаточного отношения: $\pm 75\%$ от заданного значения.

- **6.** Получить графики переходных процессов при меньших значениях постоянных времени: T_{v} , T_{g} —уменьшить на порядок.
- **7.** Собрать схему моделирования приближенной модели ЭМО и получить графики переходных процессов для измеренных значений $\hat{\omega}_{\scriptscriptstyle M}$, $\hat{\alpha}_{\scriptscriptstyle M}$ при $M_{\scriptscriptstyle CM}=0$. Проанализировать погрешности, вызванные упрощением модели, для чего результаты исследования сопоставить с данными, полученными в п.2. и в п.6.

Содержание отчета

- 1. Расчет параметров математической модели двигателя.
- 2. Схемы моделирования.
- **3.** Графики переходных процессов по \hat{U}_y , \hat{I} , $\hat{\omega}$, $\hat{\alpha}_{\scriptscriptstyle M}$ и данные, полученные по этим графикам.
- **4.** Вывод математических моделей вход-состояние-выход для полной и упрощенной схем моделирования ЭМО.
 - **5.** Выводы.

Варианти запания

Вопросы к защите лабораторной работы

- 1. Какое назначение имеет усилительно-преобразовательное устройство?
- 2. Какой передаточной функцией описывается редуктор?
- **3.** Рассчитать момент сопротивления на валу двигателя (см. рис.10.1), если известны масса подвешенного груза и диаметр барабана ИМ.
- **4.** Какая размерность коэффициентов передачи K и K_f упрощенной модели двигателя?
- **5.** Какие параметры математической модели ЭМО влияют на время переходного процесса?
- **6.** На основе структурной схемы (рис.10.2) получите методом структурных преобразований передаточную функцию ЭМО от U к $\alpha_{\scriptscriptstyle M}$ (от $M_{\scriptscriptstyle C}$ к $\alpha_{\scriptscriptstyle M}$).
- **7.** В каком случае возможно использование упрощенной математической модели ЭМО?

Таблица 10.1

Барианты задания.										
№ вар.	$U_{\scriptscriptstyle H}$	n_0	$I_{\scriptscriptstyle H}$	$M_{\scriptscriptstyle H}$	R	$T_{\mathcal{A}}$	$oldsymbol{J}_{\mathcal{J}}$	T_y	i_P	$J_{\scriptscriptstyle M}$
	В	об/мин	A	Нм	Ом	мс	$\kappa \Gamma \text{M}^2$	мс		$\kappa \Gamma M^2$
1	27	600	1,4	0,6	6,6	6	1,5.10-3	4	15	0,05
2	48	1000	12	5,5	0,75	5	1,6.10-3	6	16	2,75
3	36	4000	6,5	0,57	0,85	3	$2,2\cdot 10^{-4}$	6	40	0,15
4	27	970	3,76	1	1,5	6	0,001	8	16	0,84
5	120	6000	21	4	0,53	8	1,9.10-3	8	40	5,75
6	27	2500	0,92	0,12	16,6	7	7.10^{-5}	4	50	0,01
7	52	1240	18	7,21	0,3	10	0,004	10	20	2,48
8	110	2400	11,5	5	0,95	7	2.10^{-3}	8	20	3,7
9	27	2440	0,38	0,04	32	6	5,5·10 ⁻⁶	3	40	0,03
10	65	2000	14,7	4,6	0,65	10	3,4·10 ⁻³	8	20	2,25
11	27	1975	1,23	0,16	4,2	5	7.10^{-5}	8	25	0,15
12	27	646	10	4	0,72	2	0,003	10	10	1,6