Projet Systèmes Hybrides: Modélisation

Frédéric Gouaisbaut, Pauline Ribot

LAAS-CNRS

7 janvier 2023

Sommaire

- Balle rebondissante
- 2 Capteur et observateur paresseux
- Thermostat
- A Réservoir
- Machine avec réparation
- 6 Modélisation formelle
- Simulation
- 8 A retenir

Modèle avec condition de réinitialisation

Reprenons le modèle de la balle rebondissante, il existe 1 mode (donc 1 état discret!) et deux états à temps continu (position et vitesse) regroupés dans un vecteur x.

• Un espace de flot $C = \{x, x_1 > 0 \text{ ou}(x_1 = 0 \text{ et } x_2 \ge 0)\}$ et équation dynamique:

$$\dot{x}_1 = x_2 \tag{1}$$

$$\dot{x}_2 = -g \tag{2}$$

• Un espace de saut $\mathcal{D} = \{x, x_1 = 0 \text{ et } x_2 \leq 0\}$ et une équation de ré-initialisation :

$$x_1^+ = x_2$$
 (3)

$$x_1^+ = x_2$$
 (3)
 $x_2^+ = -g$ (4)

Observateur paresseux

• On considère un problème de synthèse d'observateur pour un système linéaire pour lequel les mesures sont obtenues de manière sporadique.

$$\dot{x}(t) = Ax(t) + Bu(t) \tag{5}$$

$$y(t) = y(t_k) \tag{6}$$

• On sait qu'une première mesure arrive au pire à T_2 secondes et que deux mesures consécutives sont au moins espacés de T_1 secondes et au pire de T_2 secondes :

$$0 \le t_1 \le T_2 \tag{7}$$

$$T_1 \le t_{k+1} - t_k \le T_2 \tag{8}$$

Comment construire un observateur?

Fonctionnement du thermostat

- Deux modes de fonctionnement *Q*1 et *Q*2 correspondant au chauffage éteint et au chauffage allumé.
- L'état continu x correspond à la température dans la salle.
- Le thermostat est programmé pour maintenir une température entre 68 et 72 degrés. Lorsque le chauffage est allumé (Q2), la condition pour l'éteindre est $x \geq 72$, si le chauffage est éteint (Q1), la condition pour l'allumer est $x \leq 68$. En absence de chauffage, la température descend jusqu'à 50.

Modèle hybride du thermostat - 1

L'automate hybride $G = (Q, X, f, \phi, q_0, x_0)$:

• $f: Q \times X \to X$: la fonction dynamique temporelle

$$\begin{cases}
 f(Q_1, x) &= -x + 50 \\
 f(Q_2, x) &= -x + 80
\end{cases}$$
(9)

• $\phi: Q \times X \rightarrow Q$: la fonction dynamique discrète

$$\phi(Q_1, x) = \begin{cases}
Q_2 & x \le 68 \\
Q_1 & x > 68
\end{cases}
\phi(Q_2, x) = \begin{cases}
Q_1 & x \ge 72 \\
Q_2 & x < 72
\end{cases}$$
(10)

La condition initiale est spécifiée pour compléter le modèle : (q_0, x_0) .

Modèle hybride du thermostat - 2

Dans cet exemple,

- Spécification de conditions de gardes sur les variables d'état continu,
- Pas de spécification des invariants associés aux modes discrets (définition de domaines par défaut),
- Pas d'occurrence d'événement discret,
- Pas de condition de réinitialisation des variables d'état continu.

Fonctionnement du réservoir avec délais

But de la commande : éviter que le bac ne se vide ou se remplisse trop.

- Flux entrant : $\lambda = 3$
- ullet Flux sortant : $\mu=1$
- Délai entre l'envoi de la commande et son exécution : $\delta=0.5$ \rightarrow le temps est donc rajouté dans le vecteur d'état pour représenter ce délai

Modèle hybride de la commande du réservoir

Dans cet exemple,

- Spécification de conditions de gardes sur les variables d'état continu (x, τ) ,
- Pas de spécification des invariants associés aux modes discrets (définition de domaines par défaut),
- Définition de condition de réinitialisation pour la variable temporelle τ .

Fonctionnement d'une machine avec réparation - 1

Exemple de fonctionnement d'une machine non fiable avec des délais :

- Trois modes de fonctionnement : idle (Q1), busy (Q2) et down (Q3)
- L'état physique x(t) est la température de la machine, $\tau(t)$ est une horloge qui permet d'obtenir un délai (timeout) : l'état continu est donc $x(t) = [x(t) \ \tau(t)]^T$

On rajoute des variables d'entrée de deux types :

- des événements discrets : $\Sigma = \{\alpha, \beta, \gamma\}$, extension de la fonction ϕ aux conditions ne dépendant pas de l'état continu x :
 - $\bullet \ \alpha$ représente le démarrage de la machine quand elle est en veille,
 - \bullet β représente l'arrêt de la machine lorsqu'elle est en cours d'utilisation,
 - $\bullet \ \gamma$ représente la réparation de la machine lorsqu'elle est en panne,
- des commandes continues : une entrée contrôlable $u \in U$ est inclus, $\dot{x} = f(q, x, u)$.

Fonctionnement d'une machine avec réparation - 2

- Si la machine reste dans l'état Q2 (busy) pendant une durée T ou plus, cela cause immédiatement une transition vers l'état Q3 (down).
- Dans le mode Q2 (busy), le chauffage de la machine est activé $\dot{x}=u$, où u est une entrée scalaire contrôlable. Une horloge est déclenchée $\dot{\tau}=1$. Dans ce mode Q2, une condition d'invariant est définie $\tau < T$.
- La condition de garde $\tau = T$ provoque le passage dans le mode Q3 (down). Pendant cette évolution, l'état continu x subit une condition de réinitialisation.
- Une autre transition est possible à partir de Q2 lorsque la température est supérieure à K ou que l'événement β apparaît :

$$\phi(Q2; x, \tau; e) = \begin{cases} 3 & \tau = T \\ 1 & x \ge K, e = \beta \\ 2 & sinon \end{cases}$$
 (11)

Modèle hybride de la machine avec réparation - 1

Dans cet exemple,

- Spécification de conditions de garde sur X, défini dans la fonction ϕ ;
- Spécification d'une condition d'invariant (domaine): sous-ensemble X
 associé au mode Q tel que x doit appartenir à cet ensemble pour rester
 dans ce mode;
- Spécification d'une condition de réinitialisation sur *x* quand on change d'état discret.

Modèle hybride de la machine avec réparation - 2

système hybride :

• exogène : vient de l'extérieur pour forcer une transition discrète dans un

Remarque : distinction entre événement exogène et endogène dans un

- exogène : vient de l'extérieur pour forcer une transition discrète dans un automate classique;
- endogène : événement apparaissant quand une variable continue dépendant du temps entre dans un ensemble particulier : $x(t) \ge K$ ou $\tau \ge T$.

Modèle d'un système hybride - version SED

$$G = (Q, X, E, U, f, \phi, Inv, Guard, \rho, q_0, x_0)$$

- Q : ensemble d'états discrets (modes)
- X: espace d'état continu (\mathbb{R}^n)
- E : ensemble fini d'événements
- U : ensemble de commandes admissibles $U \subseteq \mathbb{R}^m$
- f: champs de vecteurs, $f: Q \times X \times U \rightarrow X$
- ullet ϕ : fonction de transition d'état discret, $\phi:Q imes X imes E o Q$
- Inv : ensemble définissant les conditions d'invariants (domaines) : Inv $\subseteq Q \times X$
- Guard : ensemble définissant les conditions de gardes : Guard $\subseteq Q \times Q \times X$
- ρ : fonction de réinitialisation, ρ : $Q \times Q \times X \times E \rightarrow X$
- q₀ : état discret initial
- x_0 : état continu initial

Modèle d'un système hybride - version TC

$$\mathcal{H} = (\mathcal{C}, \mathcal{F}, \mathcal{D}, \mathcal{G})$$

- Un espace d'état $X = \mathbb{R}^n$,
- Un espace de flot $\mathcal{C} \subset X$,
- Un espace de saut $\mathcal{D} \subset X$,
- une équation d'évolution vérifiée dans l'espace du flot *F*.

$$F: \begin{array}{ccc} X & \rightrightarrows & X \\ x & \mapsto & X_x \subset X \end{array}$$

• Une équation de ré-initialisation G.

$$G: \begin{array}{ccc} X & \rightrightarrows & X \\ x & \mapsto & X_{\vee} \subset X \end{array}$$

Remarques

- Il n'existe pas dans la définition des systèmes hybrides au sens TC la notion d'état discret. Lors de la modélisation, cette dernière notion est englobée dans la notion d'état.
- Comme les exemples l'ont montré, il est absolument nécessaire de définir des équations d'évolution et de ré-initialisation multivariées, pour prendre en compte les différents comportements dynamique continue de chaque mode.

Exemple - Exercices

- Déterminer le modèle Hybride au sens de STC du modèle avec Thermostat.
- Déterminer le modèle Hybride au sens automate de l'observateur paresseux.

Simulation d'un système hybride

Simulation d'un automate hybride avec Simulink, Stateflow ou Modelica :

- Simulation ODE
- Zero crossing detection
- Tutoriels disponibles en ligne

Un exemple sous Stateflow:

A retenir!

- Construction des deux modèles et le vocabulaire associé.
- Comment passer d'un modèle à un autre.
- Les outils de simulation.