Speedup Techniques for Hyperparameter Optimization Meta-Learning

Bernd Bischl <u>Frank Hutter</u> Lars Kotthoff Marius Lindauer Joaquin Vanschoren

Introduction

- Learning essentially never stops:
 - ▶ Many models are periodically re-fit to track changes in the data
 - ▶ Many models are re-fit to perform well on new tasks
- The best hyperparameter configuration tends to remain quite stable across tasks

Introduction

- Learning essentially never stops:
 - ▶ Many models are periodically re-fit to track changes in the data
 - Many models are re-fit to perform well on new tasks
- The best hyperparameter configuration tends to remain quite stable across tasks

For a good introduction to meta-learning in general, see [AutoML Book: Chapter 2]

Given:

- ullet a set of prior tasks: $t_j \in \mathcal{T}_{\mathsf{meta}} \subset \mathcal{T}$,
- a set of new tasks: $t_{\mathsf{new}} \in \mathcal{T}$,

Given:

- a set of prior tasks: $t_j \in \mathcal{T}_{\mathsf{meta}} \subset \mathcal{T}$,
- a set of new tasks: $t_{\mathsf{new}} \in \mathcal{T}$,
- ullet a set of learning algorithms, fully defined by $heta_i \in \Theta$

Given:

- a set of prior tasks: $t_j \in \mathcal{T}_{\mathsf{meta}} \subset \mathcal{T}$,
- a set of new tasks: $t_{new} \in \mathcal{T}$,
- ullet a set of learning algorithms, fully defined by $heta_i \in \Theta$
- ullet a set of prior evaluations $\mathcal{D}_{\mathsf{meta}}$ on $t_j \in \mathcal{T}_{\mathsf{meta}}$
- ullet a set of evaluations $\mathcal{D}_{\mathsf{new}}$ on new task t_{new}

Given:

- a set of prior tasks: $t_j \in \mathcal{T}_{\mathsf{meta}} \subset \mathcal{T}$,
- a set of new tasks: $t_{\text{new}} \in \mathcal{T}$,
- ullet a set of learning algorithms, fully defined by $heta_i \in \Theta$
- ullet a set of prior evaluations $\mathcal{D}_{\mathsf{meta}}$ on $t_j \in \mathcal{T}_{\mathsf{meta}}$
- ullet a set of evaluations $\mathcal{D}_{\mathsf{new}}$ on new task t_{new}

Goal of meta-learning:

• use meta-data $\mathcal{D}_{\mathsf{meta}}$ to choose $\theta_i \in \Theta$ for t_{new} better than only based on $\mathcal{D}_{\mathsf{new}}$.

[adapted from AutoML Book: Chapter 2]

The Role of Meta-Features

- We can often extract additional characteristics for each task, called meta-features
- ullet Each task t_i can be described by a vector of K meta-features:

$$m(t_j) = (m_{j,1}, \dots, m_{j,K})$$

The Role of Meta-Features

- We can often extract additional characteristics for each task, called meta-features
- ullet Each task t_i can be described by a vector of K meta-features:

$$m(t_j) = (m_{j,1}, \dots, m_{j,K})$$

- This vector can be used to define a similarity measure between two tasks
 - lacktriangle e.g., calculating the Euclidean distance between $m(t_i)$ and $m(t_j)$
 - lacktriangle Based on similarity, we can transfer information from the most similar tasks to new task $t_{\sf new}$

- Simple easily extracted from the data, describe the basic dataset structure
 - e.g., number of features, data points or classes

- Simple easily extracted from the data, describe the basic dataset structure
 - e.g., number of features, data points or classes
- Statistical characterize the data via descriptive statistics:
 - e.g., average or standard deviation of features, or their correlation with the labels

- Simple easily extracted from the data, describe the basic dataset structure
 - e.g., number of features, data points or classes
- Statistical characterize the data via descriptive statistics:
 - e.g., average or standard deviation of features, or their correlation with the labels
- Information-theoretic measure the class entropy in the data
 - capture the amount of information in the data

- Simple easily extracted from the data, describe the basic dataset structure
 - e.g., number of features, data points or classes
- Statistical characterize the data via descriptive statistics:
 - e.g., average or standard deviation of features, or their correlation with the labels
- Information-theoretic measure the class entropy in the data
 - capture the amount of information in the data
- Model-based extracted from a model induced using the training data
 - these are often based on properties of decision tree models
 - e.g., number of leaves, number of nodes, shape of the tree

- Simple easily extracted from the data, describe the basic dataset structure
 - e.g., number of features, data points or classes
- Statistical characterize the data via descriptive statistics:
 - e.g., average or standard deviation of features, or their correlation with the labels
- Information-theoretic measure the class entropy in the data
 - capture the amount of information in the data
- Model-based extracted from a model induced using the training data
 - these are often based on properties of decision tree models
 - e.g., number of leaves, number of nodes, shape of the tree
- Landmarking computed by running several fast ML algorithms on the dataset
 - e.g., is fast algorithm A better than fast algorithm B on this dataset?
 - ▶ this can capture different properties of the dataset, e.g., linear separability

- Simple easily extracted from the data, describe the basic dataset structure
 - e.g., number of features, data points or classes
- Statistical characterize the data via descriptive statistics:
 - e.g., average or standard deviation of features, or their correlation with the labels
- Information-theoretic measure the class entropy in the data
 - capture the amount of information in the data
- Model-based extracted from a model induced using the training data
 - these are often based on properties of decision tree models
 - ▶ e.g., number of leaves, number of nodes, shape of the tree
- Landmarking computed by running several fast ML algorithms on the dataset
 - e.g., is fast algorithm A better than fast algorithm B on this dataset?
 - ▶ this can capture different properties of the dataset, e.g., linear separability
- Others not included in the previous groups
 - e.g., time related measures, clustering and distance-based measures

Meta-Learning for HPO Approach 1: Warmstarting

• Experts often start HPO from a strong default (rather than random configurations)

Meta-Learning for HPO Approach 1: Warmstarting

- Experts often start HPO from a strong default (rather than random configurations)
- ullet Can we learn from meta-data \mathcal{D}_{meta} how to initialize HPO?

Meta-Learning for HPO Approach 1: Warmstarting

- Experts often start HPO from a strong default (rather than random configurations)
- Can we learn from meta-data $\mathcal{D}_{\text{meta}}$ how to initialize HPO?
- Note: just a single default configuration often does not perform great on a new dataset
 - Otherwise there would be no point in HPO

Meta-Learning for HPO Approach 2: Model-Warmstarting

- Many HPO methods use a predictive model (e.g., Bayesian optimization)
- By running HPO on different datasets, we learn something about the search landscape
 - ▶ E.g., what are bad regions of the configuration space in general

Meta-Learning for HPO Approach 2: Model-Warmstarting

- Many HPO methods use a predictive model (e.g., Bayesian optimization)
- By running HPO on different datasets, we learn something about the search landscape
 - ▶ E.g., what are bad regions of the configuration space in general
- ullet Given: n predictive models $\hat{c}_{\mathcal{D}_i}: oldsymbol{\Lambda} o \mathbb{R}$ from HPO on $\mathcal{T}_{\mathsf{meta}}$
- How can we use these $\hat{c}_{\mathcal{D}_i}$ to speed up HPO?

Meta-Learning for HPO Approach 3: Task-independent Recommendations

- Idea: learn a sorted list of defaults
- ullet *Method:* mostly greedy on $\mathcal{T}_{\mathsf{meta}}$
- Results: surprisingly strong, better than Bayesian Optimization

Meta-Learning for HPO Approach 3: Task-independent Recommendations

- Idea: learn a sorted list of defaults
- Method: mostly greedy on \mathcal{T}_{meta}
- Results: surprisingly strong, better than Bayesian Optimization

Advantages

- Easy to share and use
- Strong anytime performance
- Embarrassingly parallel

Disadvantages

Not adaptive

Meta-Learning for HPO Approach 4: Joint model for Bayesian optimization

 Jointly train a "deep" neural network on all tasks

[Perrone et al. 2018]

Meta-Learning for HPO Approach 4: Joint model for Bayesian optimization

- Jointly train a "deep" neural network on all tasks
 - ► Have a separate output layer (head) for each task
 - Each head is a Bayesian linear regression (recall DNGO)

Meta-Learning for HPO Approach 4: Joint model for Bayesian optimization

- Jointly train a "deep" neural network on all tasks
 - Have a separate output layer (head) for each task
 - Each head is a Bayesian linear regression (recall DNGO)
- This uses meta-learning for feature extraction on the hyperparameter configurations

[Perrone et al. 2018]

- Learning a blackbox optimization algorithm
 - Use $\mathcal{D}_{\mathsf{meta}}$ to learn a mapping from $\mathcal{D}_{\mathsf{new}}$ to the next configuration $\pmb{\lambda}$ to evaluate
 - ▶ This mapping can be a (recurrent) neural net $\mathsf{NN}_\phi:\mathcal{D}_\mathsf{new}\mapsto \pmb{\lambda}$ parameterized by weights ϕ

- Learning a blackbox optimization algorithm
 - Use $\mathcal{D}_{\text{meta}}$ to learn a mapping from \mathcal{D}_{new} to the next configuration λ to evaluate
 - ▶ This mapping can be a (recurrent) neural net $\mathsf{NN}_\phi:\mathcal{D}_\mathsf{new}\mapsto \pmb{\lambda}$ parameterized by weights ϕ
 - lacktriangle This mapping NN_ϕ constitutes a blackbox optimization algorithm

- Learning a blackbox optimization algorithm
 - ▶ Use $\mathcal{D}_{\mathsf{meta}}$ to learn a mapping from $\mathcal{D}_{\mathsf{new}}$ to the next configuration λ to evaluate
 - ▶ This mapping can be a (recurrent) neural net $\mathsf{NN}_\phi:\mathcal{D}_\mathsf{new}\mapsto \pmb{\lambda}$ parameterized by weights ϕ
 - lacktriangle This mapping NN_ϕ constitutes a blackbox optimization algorithm
- Existing approaches for learning a blackbox optimizer
 - ▶ Gradient descent on ϕ [Chen et al. 2017]
 - * Simplest technique, but requires backpropagation through the optimization trace
 - \star This also requires the blackbox functions f used for training to be differentiable

- Learning a blackbox optimization algorithm
 - ▶ Use \mathcal{D}_{meta} to learn a mapping from \mathcal{D}_{new} to the next configuration λ to evaluate
 - ▶ This mapping can be a (recurrent) neural net $\mathsf{NN}_\phi:\mathcal{D}_\mathsf{new}\mapsto \pmb{\lambda}$ parameterized by weights ϕ
 - lacktriangle This mapping NN_ϕ constitutes a blackbox optimization algorithm
- Existing approaches for learning a blackbox optimizer
 - ▶ Gradient descent on ϕ [Chen et al. 2017]
 - * Simplest technique, but requires backpropagation through the optimization trace
 - \star This also requires the blackbox functions f used for training to be differentiable
 - ► Reinforcement learning [Li & Malik, 2016]
 - \star Can be harder to get to work, but does not require differentiable f

- Learning a complete optimization algorithm requires a lot of data
- It would be more sample-efficient to only replace hand-designed parts of an algorithm

- Learning a complete optimization algorithm requires a lot of data
- It would be more sample-efficient to only replace hand-designed parts of an algorithm
- In Bayesian optimization, a critical hand-designed heuristic is the acquisition function
 - ► Trade-off between exploitation and exploration, e.g., via PI, EI, UCB, ES, KG, ...
 - ▶ Depending on the problem at hand, you might need a different acquisition function

- Learning a complete optimization algorithm requires a lot of data
- It would be more sample-efficient to only replace hand-designed parts of an algorithm
- In Bayesian optimization, a critical hand-designed heuristic is the acquisition function
 - ▶ Trade-off between exploitation and exploration, e.g., via PI, EI, UCB, ES, KG, ...
 - ▶ Depending on the problem at hand, you might need a different acquisition function
- Idea: Learn a neural acquisition function from data, but still make use of the sample efficiency of Gaussian processes [Volpp et al. 2020]

- Learning a complete optimization algorithm requires a lot of data
- It would be more sample-efficient to only replace hand-designed parts of an algorithm
- In Bayesian optimization, a critical hand-designed heuristic is the acquisition function
 - ► Trade-off between exploitation and exploration, e.g., via PI, EI, UCB, ES, KG, ...
 - ▶ Depending on the problem at hand, you might need a different acquisition function
- Idea: Learn a neural acquisition function from data, but still make use of the sample efficiency of Gaussian processes [Volpp et al. 2020]
- Two options:
 - ▶ Only depend on predicted mean and variance: $u_{\phi}(\lambda) = u_{\phi}(\mu_t(\lambda), \sigma_t(\lambda))$
 - ★ This allows to learn a general acquisition function

- Learning a complete optimization algorithm requires a lot of data
- It would be more sample-efficient to only replace hand-designed parts of an algorithm
- In Bayesian optimization, a critical hand-designed heuristic is the acquisition function
 - ▶ Trade-off between exploitation and exploration, e.g., via PI, EI, UCB, ES, KG, ...
 - ▶ Depending on the problem at hand, you might need a different acquisition function
- Idea: Learn a neural acquisition function from data, but still make use of the sample efficiency of Gaussian processes [Volpp et al. 2020]
- Two options:
 - ▶ Only depend on predicted mean and variance: $u_{\phi}(\lambda) = u_{\phi}(\mu_t(\lambda), \sigma_t(\lambda))$
 - ★ This allows to learn a general acquisition function
 - Also depend on the λ value: $u_{\phi}(\lambda) = u_{\phi}(\mu_t(\lambda), \sigma_t(\lambda), \lambda)$
 - \star This allows to fine-tune to the characteristics of \mathcal{D}_{meta} (e.g., avoid poor parts of the space)

Questions to Answer for Yourself / Discuss with Friends

- Repetition. What are the different kinds of meta-features which can be used to describe machine learning datasets?
- Repetition. List all the different ways of using the meta data for HPO you recall
- Discussion. In the various meta-learning approaches, what will happen if all prior tasks are dissimilar to the target task?