

A GUIDE TO BUILDING

ARAG SYSTEM THAT MORKS!

+ Find solutions to fix all your RAG system issues.

COMPONENTS OF A RAG SYSTEM

RETRIEVAL PROCESS

Challenges:

- Data & Query Mismatch
- Search/ Retrieval Algorithm Shortcomings
- Challenges in Chunking
- Embedding Problems

DATA & QUERY

Data & Query Mismatch

Query Ambiguity & Lack of Context

Working with Inaccurate Data Sources

Difficulty with Complex, Multi-faceted Queries

Over-reliance on Keyword Matching

- Add Possible Solutions Along with the Query.
- Add Other Similar Queries
- Personalise each query with context
- Consider which data source(s) will be the most relevant for that RAG system.

SEARCH/RETRIEVAL ALGORITHMS

Search/Retrieval Algorithm Shortcomings

Over-Reliance on Keyword Matching Failure to Handle Synonyms and Related Concepts

Semantic Search Limitations Popularity Bias in Retrieval

- Combine keyword (BM25) and semantic search for balanced results.
- Enhance queries (synonyms, context, rephrasing) for better retrieval.
- Use multiple methods (lexical, dense) with re-ranking for improved coverage and relevance.

CHUNKING

Challenges in Chunking

Inappropriate Chunk Sizes (Too Large or Too Small)

Loss of Context When Splitting Documents

Failure to Maintain Semantic Coherence Across Chunks

- Use NLP to find natural breakpoints, creating meaningful chunks.
- Divide structured documents along existing sections/titles.
- Add overlapping text between chunks to maintain context/references.
- Employ AI to adapt chunk size based on topic shifts for relevance.

EMBEDDING

Embedding Problems in RAG Systems

Limitations of Vector Representations Semantic Drift in High-Dimensional Spaces

Model Biases Reflected in Embeddings

- Adapt embeddings using domain-specific data for accuracy.
- Re-embed knowledge frequently to stay current.
- Combine traditional and contextual models for better understanding.

GENERATION PROCESS FAILURES

Reasons:

- Context Integration Problems
- Reasoning Limitation
- Response Formatting Issues
- Context Window Utilization

CONTEXT INTEGRATION

Context Integration Problems

Failure to Properly Incorporate Retrieved Information Hallucinations Despite
Having Correct
Information in Context

Over-Reliance on Model's Parametric Knowledge vs. Retrieved Information

- Supervised FineTuning for Better Grounding
- Fact Verification Post-Processing
- Retrieval-Aware Training

REASONING

Reasoning Limitations

Inability to Synthesize Information from Multiple Sources

Logical Inconsistencies When Combining Retrieved Facts

Failure to Recognize Contradictions in Retrieved Materials

- Chain-of-thought Prompting
- Multi-step Reasoning Frameworks
- Contradiction Detection Mechanisms

RESPONSE FORMATING

Response Formatting Issues

Incorrect Attribution

Inconsistent Citation Formats

Failure to Maintain the Requested Output Structure

- Enforce structured formatting by using predefined templates
- model with prompt engineering for output formatting
- Automatically checks and corrects attribution, citations, and structure

CONTEXT WINDOW

Context Window Utilization

Inefficient Use of Available Context Space Attention Dilution Across Long Contexts

Recency Bias in Processing Retrieved Documents

- Position key information where the model focuses most
- Maximize value by prioritizing important content and reducing redundancy
- Use structured prompts to direct the model's focus to essential sections.

SYSTEM LEVEL FAILURES

Reasons:

- Time & Latency Related Issues
- Evaluation Challenges
- Architectural Limitations
- Cost & Resource Efficiency

TIME & LATENCY RELATED ISSUES

Time and Latency-Related Issues

High Retrieval Time Impacting User Experience

Real-Time Update Challenges

Computational Overhead of Complex Retrieval Mechanisms

Trade-offs Between Speed and Quality

- Store common data in memory for faster access.
- Adjust retrieval complexity based on the query.
- Get quick results first, then refine if necessary.
- Refresh knowledge in the background without slowing responses.

EVALUATION CHALLENGES

Evaluation Challenges

Difficulty in Measuring RAG System Quality Holistically

Disconnect Between User Satisfaction and Technical Metrics

Overemphasis on Retrieval Metrics at the Expense of Generation Quality

- Assess RAG using retrieval quality, accuracy, coherence, and user engagement.
- Measure user satisfaction via A/B tests, preference modeling, and feedback.
- Test system robustness and grounding by varying retrieval conditions

COST & RESOURCE EFFICIENCY

Cost and Resource Efficiency

Expensive Infrastructure Requirements

Scaling Challenges for Enterprise Applications

Storage Constraints for Large Knowledge Bases Compute-Intensive Processing for Large-Scale Deployment

- Use fast, approximate search first, then precise retrieval.
- Compress large models into smaller, efficient versions.
- Utilize methods like BM25/hybrid search to reduce compute/memory.
- Speed up retrieval and lower costs with optimized indexes (ANN, etc.)

READ THE BLOG TO UNDERSTAND HOW TO BUILD AN EFFICIENT RAG SYSTEM

Build a RAG System
That Works!