Causal Spatial and Spatio-Temporal Models

"An application to flux estimation"

Andrew Zammit-Mangion and Noel Cressie

National Institute for Applied Statistics Research Australia
University of Wollongong

Outline

- Introduction
 - Multivariate models in practice
 - Current approaches
- Causal spatial models
 - Bivariate models
 - Multivariate models
 - Min-max temperature dataset
- Conclusions

Section 1

Introduction

Introduction

• Univariate spatial model.

- Multivariate spatial model.
 - Two or more interacting spatial variables.
 - Improve prediction on one of the variates by observing the others:
 Cokriging.
 - Determine which variate caused the observed phenomenon: Source separation.

Example 1: Ozone vs MaxT

Royle and Berliner (1999), Midwestern USA.

Example 2: Antarctica Mass Balance

Example 2: Antarctica Mass Balance

• Zammit-Mangion et al. (2014, 2015b,a), Antarctica.

The challenge

• Modelling: Given a bivariate process $(Y_1(\cdot), Y_2(\cdot))$, what is a valid cross-covariance function matrix (CCFM)

$$\begin{pmatrix} C_{11}(\cdot,\cdot) & C_{12}(\cdot,\cdot) \\ C_{21}(\cdot,\cdot) & C_{22}(\cdot,\cdot) \end{pmatrix}, \tag{1}$$

such that any covariance matrix derived from it is positive-definite?

 Computational: Sometimes we struggle with univariate models – how do our algorithms scale to multivariate models?

Current approaches

• Linear model of co-regionalisation (LMC, Wackernagel, 1995): Define

$$Y_1(\cdot) = a_{11}\widetilde{Y}_1(\cdot) + a_{12}\widetilde{Y}_2(\cdot), \tag{2}$$

$$Y_2(\cdot) = a_{21}\widetilde{Y}_1(\cdot) + a_{22}\widetilde{Y}_2(\cdot), \tag{3}$$

where, independently,

$$\widetilde{Y}_1(\cdot) \sim \mathcal{N}(\mu_1(\cdot), C_1(\cdot, \cdot)),$$
 (4)

$$\widetilde{Y}_2(\cdot) \sim \mathcal{N}(\mu_2(\cdot), C_2(\cdot, \cdot)).$$
 (5)

- $\bullet \ \ C_{ij}(\cdot,\cdot)=a_{i1}a_{j1}C_1(\cdot,\cdot)+a_{i2}a_{j2}C_2(\cdot,\cdot).$
- CCFM is positive-definite for any $\{a_{ij}: i, j=1,\ldots,2\}$.

Current approaches

• Bivariate parsimonious Matérn model (Gneiting et al., 2010): Let $C^{o}(\cdot)$ be a stationary, isotropic covariance function. Define

$$C_{ij}^{o}(\cdot) \equiv \beta_{ij} M(\cdot; \nu_{ij}, \kappa_{ij}), \tag{6}$$

where $M(\cdot)$ is a Matérn covariance function. Let $\kappa_{ii}=\kappa_{ij}=\kappa$ and set $\nu_{ij}=(\nu_{ii}+\nu_{jj})/2$. Then if $(\beta_{ij}:i,j=1,2)$ is positive-definite, the CCFM is positive-definite.

• Bivariate full Matérn model: Relaxes assumptions on smoothness and scales, but finding valid parameters is much more involved.

Current approaches (limitations)

• Stuck with homogeneous models (e.g., convolution methods).

- Stuck with fixed scales (parsimonious Matérn).
- Stuck with Matérn models (e.g., full Matérn models).
- Stuck with symmetry (e.g., LMC).

Asymmetry

- $Y_1(\cdot)$: precipitation at present.
- $Y_2(\cdot)$: precipitation in 5 minutes time.

Section 2

Causal spatial models

Causal spatial models

Specification:

$$E\left(Y_2(\mathbf{s})\mid Y_1(\cdot)\right) = \int_D b(\mathbf{s},\mathbf{v})Y_1(\mathbf{v})\,\mathrm{d}\mathbf{v}; \quad \mathbf{s}\in D,\tag{7}$$

$$\operatorname{cov}(Y_2(s), Y_2(u) \mid Y_1(\cdot)) = C_{2|1}(s, u); \quad s, u \in \mathbb{R}^d.$$
 (8)

Building blocks:

- $C_{11}(\cdot,\cdot)$,
- $C_{2|1}(\cdot,\cdot)$,
- $b(\cdot, \cdot)$ (interaction function).

Properties of causal spatial models

CCFM is easy to find:

$$\begin{bmatrix} C_{11}(\mathbf{s}, \mathbf{u}) & \int_D C_{11}(\mathbf{s}, \mathbf{v}) b(\mathbf{u}, \mathbf{v}) d\mathbf{v} \\ \int_D b(\mathbf{s}, \mathbf{v}) C_{11}(\mathbf{v}, \mathbf{u}) d\mathbf{v} & C_{22}(\mathbf{s}, \mathbf{u}) \end{bmatrix};$$
(9)

$$C_{22}(\mathbf{s},\mathbf{u}) = C_{2|1}(\mathbf{s},\mathbf{u}) + \int_{D} \int_{D} b(\mathbf{s},\mathbf{v}) C_{11}(\mathbf{v},\mathbf{w}) b(\mathbf{w},\mathbf{u}) d\mathbf{v} d\mathbf{w}, \qquad (10)$$

and is always valid (we will outline the proof soon).

• Asymmetry (i.e., $C_{12}(\mathbf{s}, \mathbf{u}) \neq C_{21}(\mathbf{s}, \mathbf{u})$) is guaranteed if $b(\cdot, \cdot)$ is not symmetric.

Properties of causal spatial models

- Assume $b^o(\cdot) = b(\cdot, \cdot)$ and that it is off-centre.
- $s, u \in \{-1, -0.9, \dots, 1\}.$

Properties of causal spatial models

• Heterogeneity, since $C_{11}(\cdot,\cdot)$, $C_{2|1}(\cdot,\cdot)$ need not be homogeneous and $b(\mathbf{s},\mathbf{u})$ need not be symmetric.

 We are not restricted to Matérn fields. The bivariate parsimonious Matérn field is a special case.

ullet $Y_2(\cdot)$ can be arbitrarily smoother than $Y_1(\cdot)$ and have a different scale.

- ullet Assume all parameters are known and $Y_1(\cdot)$ is only partially observed.
- Use simple cokriging **or** simple kriging to estimate $Y_1(\cdot)$:

$$\begin{split} \hat{Y}_1(\mathbf{s}_0) &\equiv E(Y_1(\mathbf{s}_0) \mid \mathbf{Z}_1, \mathbf{Z}_2) \quad \text{ simple cokriging predictor,} \\ \widetilde{Y}_1(\mathbf{s}_0) &\equiv E(Y_1(\mathbf{s}_0) \mid \mathbf{Z}_1) \quad \text{ simple kriging predictor.} \end{split}$$

Example

Is the bivariate model always valid?

- If $C_{11}(\mathbf{s}, \mathbf{u})$ and $C_{2|1}(\mathbf{s}, \mathbf{u})$ are positive-definite, then $C_{22}(\cdot, \cdot)$ is positive-definite (recall quadratic form).
- $C_{12}(s, u) = C_{21}(u, s)$.
- CCFM is positive-definite if, for any n_1, n_2 such that $n_1 + n_2 > 0$, any locations $\{s_{1k}\}, \{s_{2l}\}$ and any real numbers $\{a_{1k}\}, \{a_{2l}\},$

$$\begin{aligned} & \operatorname{var}\left(\sum_{k=1}^{n_{1}}a_{1k}Y_{1}^{0}(\mathbf{s}_{1k}) + \sum_{l=1}^{n_{2}}a_{2l}Y_{2}^{0}(\mathbf{s}_{2l})\right) \\ & = \sum_{k=1}^{n_{1}}\sum_{k'=1}^{n_{1}}a_{1k}a_{1k'}C_{11}^{0}(\mathbf{s}_{1k},\mathbf{s}_{1k'}) + \sum_{l=1}^{n_{2}}\sum_{l'=1}^{n_{2}}a_{2l}a_{2l'}C_{22}^{0}(\mathbf{s}_{2l},\mathbf{s}_{2l'}) \\ & + \sum_{k=1}^{n_{1}}\sum_{l'=1}^{n_{2}}a_{1k}a_{2l'}C_{12}^{0}(\mathbf{s}_{1k},\mathbf{s}_{2l'}) + \sum_{l=1}^{n_{2}}\sum_{k'=1}^{n_{1}}a_{2l}a_{1k'}C_{21}^{0}(\mathbf{s}_{2l},\mathbf{s}_{1k'}) \geq 0. \end{aligned}$$

Is the bivariate model always valid?

It can be shown that

$$\begin{split} & \operatorname{var} \left(\sum_{k=1}^{n_1} a_{1k} Y_1^0(\mathbf{s}_{1k}) + \sum_{l=1}^{n_2} a_{2l} Y_2^0(\mathbf{s}_{2l}) \right) \\ & = \sum_{l=1}^{n_2} \sum_{l'=1}^{n_2} a_{2l} a_{2l'} C_{2|1}(\mathbf{s}_{2l}, \mathbf{s}_{2l'}) + \int_D \int_D a(\mathbf{s}) a(\mathbf{u}) C_{11}(\mathbf{s}, \mathbf{u}) \, \mathrm{d}\mathbf{s} \mathrm{d}\mathbf{u}, \end{split}$$

where

$$a(s) \equiv \sum_{k=1}^{n_1} a_{1k} \delta(s - s_{1k}) + \sum_{l=1}^{n_2} a_{2l} b(s_{2l}, s); \quad s \in \mathbb{R}^d.$$

Beyond two dimensions

• $[Y_1(\cdot), \ldots, Y_p(\cdot)]$ can be decomposed as,

$$[Y_p(\cdot) \mid Y_{p-1}(\cdot), Y_{p-2}(\cdot), \ldots, Y_1(\cdot)] \ldots [Y_1(\cdot)].$$

Beyond two dimensions

• $[Y_1(\cdot), \ldots, Y_p(\cdot)]$ can be decomposed as,

$$[Y_p(\cdot) \mid Y_{p-1}(\cdot), Y_{p-2}(\cdot), \dots, Y_1(\cdot)] \dots [Y_1(\cdot)].$$

The conditional expectation is

$$E(Y_q(\mathbf{s}) \mid \{Y_r(\cdot) : r = 1, \dots, (q-1)\}) \equiv \sum_{r=1}^{q-1} \int_D b_{qr}(\mathbf{s}, \mathbf{v}) Y_r(\mathbf{v}) d\mathbf{v};$$

$$\mathbf{s} \in D.$$

Beyond two dimensions

• $[Y_1(\cdot), \ldots, Y_p(\cdot)]$ can be decomposed as,

$$[Y_p(\cdot) \mid Y_{p-1}(\cdot), Y_{p-2}(\cdot), \dots, Y_1(\cdot)] \dots [Y_1(\cdot)].$$

The conditional expectation is

$$E(Y_q(\mathbf{s}) \mid \{Y_r(\cdot) : r = 1, \dots, (q-1)\}) \equiv \sum_{r=1}^{q-1} \int_D b_{qr}(\mathbf{s}, \mathbf{v}) Y_r(\mathbf{v}) d\mathbf{v};$$

$$\mathbf{s} \in D.$$

• The conditional covariance is

$$\operatorname{cov}(Y_q(\mathbf{s}), Y_q(\mathbf{u}) \mid \{Y_r(\cdot) : r = 1, \dots, (q-1)\}) \equiv C_{q \mid (r < q)}(\mathbf{s}, \mathbf{u});$$

 $\mathbf{s}, \mathbf{u} \in \mathbb{R}^d.$

where $\{b_{qr}(\cdot,\cdot): r=1,\ldots,(q-1);\ q=2,\ldots,p\}$ are integrable.

Is the multivariate model always valid?

We need to show that the p-variate process is well defined. The proof is by induction:

- We know that the bivariate process is well defined.
- ullet Assume that the (p-1)-variate process is well defined.
- Show that the p-variate process is well defined.

$$\begin{aligned} \operatorname{var} \left(\sum_{q=1}^{p} \sum_{m=1}^{n_q} a_{qm} Y_q(\mathsf{s}_{qm}) \right) &= \sum_{m=1}^{n_p} \sum_{m'=1}^{n_p} a_{pm} a_{pm'} \mathcal{C}_{p|(q < p)}(\mathsf{s}_{pm}, \mathsf{s}_{pm'}) \\ &+ \sum_{q=1}^{p-1} \sum_{r=1}^{p-1} \int_{D} \int_{D} a_q(\mathsf{s}) a_r(\mathsf{u}) \mathcal{C}_{qr}(\mathsf{s}, \mathsf{u}) \mathrm{d} \mathsf{s} \mathrm{d} \mathsf{u}, \end{aligned}$$

where

$$a_q(\mathbf{s}) \equiv \left(\sum_{k=1}^{n_q} a_{qk} \delta(\mathbf{s} - \mathbf{s}_{qk}) + \sum_{m=1}^{n_p} a_{pm} b_{pq}(\mathbf{s}_{pm}, \mathbf{s})\right).$$

Generalisations

The following can all be shown to be special cases of causal spatial models:

- The parsimonious Matérn model of Gneiting et al. (2010),
- The full Matérn model of Gneiting et al. (2010),
- The linear model of coregionalisation, used for example by Wackernagel (1995),
- The moving average model of Ver Hoef and Barry (1998).

Graphical structure

- No restriction on graphical structure. Starting with a well defined joint distribution, the structure could be undirected, directed, or a chain graph (Lauritzen, 1996).
- Computationally-efficient algorithms available for some structures.

Figure : Ordered nodes

Model flexibility

Figure : Bivariate system: Need to specify three marginal/cross-covariance functions.

Available building blocks: Three functions, $C_{11}(\cdot,\cdot)$, $C_{2|1}(\cdot,\cdot)$, $b(\cdot,\cdot)$.

Model flexibility

$C_{11}(\cdot,\cdot)$		
$C_{21}(\cdot,\cdot)$	$C_{22}(\cdot,\cdot)$	
$C_{31}(\cdot,\cdot)$	$C_{32}(\cdot,\cdot)$	$C_{33}(\cdot,\cdot)$

Figure : Trivariate system: Need to specify six marginal/cross-covariance functions.

Available building blocks: Six functions, $C_{11}(\cdot,\cdot)$, $C_{2|1}(\cdot,\cdot)$, $C_{3|1,2}(\cdot,\cdot)$, $b_{21}(\cdot,\cdot)$, $b_{31}(\cdot,\cdot)$, $b_{32}(\cdot,\cdot)$.

Min-max temperatures in Colorado, USA

- Minimum and maximum temperatures taken on September 19, 2004 in the state of Colorado, USA.
- 94 measurement stations (collocated measurements); residuals are obtained by subtraction of statewide mean.
- Maximum-temperature residual later in the afternoon $(Y_2(\cdot))$ highly dependent on minimum-temperature residual in the early morning hours $(Y_1(\cdot))$.
- Fit three models and compare using DIC:

Model 1:
$$b_o(\mathbf{h}) \equiv 0$$
,
Model 2: $b_o(\mathbf{h}) \equiv A\delta(\mathbf{h})$,
Model 3: $b_o(\mathbf{h}) \equiv \begin{cases} A\{1 - (\|\mathbf{h} - \boldsymbol{\Delta}\|/r)^2\}^2, & \|\mathbf{h} - \boldsymbol{\Delta}\| \leq r \\ 0, & \text{otherwise.} \end{cases}$

Discretisations

• Consider a discretisation of $Y_1(\cdot)$ and $Y_2(\cdot)$, Y_1 and Y_2 respectively, and let $Y \equiv (Y_1, Y_2)'$, $Z \equiv (Z_1, Z_2)'$.

Numerical integrations

$$E\left(Y_2(\mathbf{s})\mid Y_1(\cdot)\right) = \int_{D\atop n} b(\mathbf{s},\mathbf{v})Y_1(\mathbf{v})\,\mathrm{d}\mathbf{v};\quad \mathbf{s}\in D.$$

$$E(Y_2(\mathbf{s}_I) \mid Y_1(\cdot)) \simeq \sum_{k=1}^n A_k b(\mathbf{s}_I, \mathbf{v}_k) Y_1(\mathbf{v}_k),$$

where $\{A_k\}$ are the tessellation areas.

Observation model:

$$\begin{pmatrix} \mathbf{Z}_1 \\ \mathbf{Z}_2 \end{pmatrix} \middle| \begin{pmatrix} \mathbf{Y}_1 \\ \mathbf{Y}_2 \end{pmatrix}, \boldsymbol{\theta} \sim \mathcal{N} \left(\begin{pmatrix} \mathbf{D} \mathbf{Y}_1 \\ \mathbf{D} \mathbf{Y}_2 \end{pmatrix}, \sigma_{\varepsilon}^2 \begin{pmatrix} \mathbf{I} & \rho_{\varepsilon} \mathbf{I} \\ \rho_{\varepsilon} \mathbf{I} & \mathbf{I} \end{pmatrix} \right),$$

where **D** is an incidence matrix and θ includes σ_{ε}^2 and ρ_{ε} .

Process model:

$$\begin{pmatrix} \textbf{Y}_1 \\ \textbf{Y}_2 \end{pmatrix} \middle| \, \boldsymbol{\theta} \sim \mathcal{N} \left(\begin{pmatrix} \textbf{0} \\ \textbf{0} \end{pmatrix}, \begin{pmatrix} \boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{11} \textbf{B}' \\ \textbf{B}\boldsymbol{\Sigma}_{11} & \textbf{B}\boldsymbol{\Sigma}_{11} \textbf{B}' + \boldsymbol{\Sigma}_{2|1} \end{pmatrix} \right),$$

where $\Sigma_{11}, \Sigma_{2|1}$ and B depend on parameters in θ .

We have many unknown parameters!

• Assume that $C_{11}(\cdot)$ and $C_{2|1}(\cdot)$ are Matérn covariance functions with smoothness parameter $\nu=3/2$.

Model 1	Model 2	Model 3
X	X	X
X	X	X
X	X	X
X	X	X
0.98 [0.76, 1.22]	1 [0.8, 1.26]	1.03 [0.83, 1.25]
0.76 [0.56, 1]	0.62 [0.46, 0.81]	3.65 [1.16, 6.72]
	X	X
		X
		X
		Х
992.45	985.17	982.45
	x x x 0.98 [0.76, 1.22] 0.76 [0.56, 1]	X X X X X X X X 0.98 [0.76, 1.22] 1 [0.8, 1.26] 0.76 [0.56, 1] 0.62 [0.46, 0.81] X

Figure : Interpolated map in degrees Celsius (degC) of $E(\mathbf{Y}_1 \mid \mathbf{Z}_1, \mathbf{Z}_2)$.

Figure : Interpolated map in degrees Celsius (degC) of $E(Y_2 \mid Z_1, Z_2)$.

Interaction function

Figure : Prior (light grey) and posterior (dark grey) median (solid line) and inter-quartile ranges (enclosed by dashed lines) of the interaction function $b_o(\cdot)$ of Model 3, along a unit vector \mathbf{e} originating at Denver (DE) in the direction of Fort Collins (FC)

Section 3

Conclusions

Conclusions

- Bivariate and multivariate models often appear in environmental studies. Usually, one or more of these are 'explained away' prior to commencing the analysis.
- Causal models allow for a (very) flexible model class through interaction functions that can be arbitrarily complex.
- Computation is key: For large, non-Gaussian systems, approximate message passing + variational techniques are probably needed (Cseke et al., 2014).
- Slides and reproducible code available at https://github.com/andrewzm/bicon.
- Thanks to Anita Ganesan and Matthew Rigby (University of Bristol) for help with the case study of CH₄ fluxes.

References I

- Cseke, B., Mangion, A. Z., Sanguinetti, G., and Heskes, T. (2014). Sparse approximations in spatio-temporal point-process models. *arXiv* preprint *arXiv*:1305.4152.
- Gneiting, T., Kleiber, W., and Schlather, M. (2010). Matérn cross-covariance functions for multivariate random fields. *Journal of the American Statistical Association*, 105:1167–1177.
- Lauritzen, S. L. (1996). *Graphical Models*. Oxford University Press, Oxford, UK.
- Royle, J. A. and Berliner, L. M. (1999). A hierarchical approach to multivariate spatial modeling and prediction. *Journal of Agricultural, Biological, and Environmental Statistics*, 4:29–56.
- Ver Hoef, J. M. and Barry, R. P. (1998). Constructing and fitting models for cokriging and multivariable spatial prediction. *Journal of Statistical Planning and Inference*, 69:275–294.
- Wackernagel, H. (1995). Multivariate Geostatistics. Springer, Berlin, DE.

References II

- Zammit-Mangion, A., Bamber, J. L., Schoen, N. W., and Rougier, J. C. (2015a). A data-driven approach for assessing ice-sheet mass balance in space and time. *Annals of Glaciology, in press*.
- Zammit-Mangion, A., Rougier, J. C., Bamber, J. L., and Schoen, N. W. (2014). Resolving the Antarctic contribution to sea-level rise: a hierarchical modelling framework. *Environmetrics*, 25:245–264.
- Zammit-Mangion, A., Rougier, J. C., Schoen, N., Lindgren, F., and Bamber, J. (2015b). Multivariate spatio-temporal modelling for assessing Antarctica's present-day contribution to sea-level rise. *Environmetrics*, :doi: 10.1002/env.2323, in press.