

Unidade 18 - Grafos Hamiltonianos

Bibliografia

- Fundamentos da Teoria dos Grafos para Computação M.C. Nicoletti, E.R. Hruschka Jr. 3ª Edição LTC
- Grafos Teoria, Modelos, Algoritmos Paulo Oswaldo Boaventura Netto, 5ª edição
- Grafos Conceitos, Algoritmos e Aplicações Marco Goldbarg, Elizabetj Goldbarg, Editora Campus
- A first look at Graph Theory John Clark, Derek Allan Holton 1998, World Cientific
- Introduction to Graph Teory Robin J. Wilson 4th Edition Prentice Hall 1996
- Introduction to Graph Theory Douglas West Second Edition 2001 Pearson Edition
- Mathematics A discrete Introduction Third Edition Edward R. Scheinerman 2012
- Discrete Mathematics and its Applications Kenneth H. Rosen 7th edition McGraw Hill 2012
- Data Structures Theory and Practice A. T. Berztiss New York Academic Press 1975 Second Edition
- Discrete Mathematics R. **Johnsonbaugh** Pearson 2018 Eighth Edition
- Graoy Theory R. **Diestel** Springer 5th Edition 2017
- Teoria Computacional de Grafos Jayme Luiz Szwarcfit<u>er Elsevier 2018</u>

Grafos Hamiltonianos

- ✓ Dado um grafo G, um Caminho Hamiltoniano em G é um caminho que contém todo vértice de G;
- ✓ Dado um grafo G, um Ciclo Hamiltoniano é um ciclo que contém todo vértice de G;
- ✓ Um grafo G é chamado **Grafo Hamiltoniano** se tiver um ciclo hamiltoniano;

Lembrando... Passeio , Trilha e Caminho

Vértice inicial u Vértice final v	u ≠ v	u = v
PASSEIO Nenhuma restrição quanto ao número de vezes que um vértice ou aresta pode aparecer	PASSEIO ABERTO	PASSEIO FECHADO
Trilha Nenhuma aresta pode aparecer mais de uma vez	TRILHA ABERTA	TRILHA FECHADA ou CIRCUITO
CAMINHO Nenhum vértice pode aparecer mais de uma vez, com a possível exceção de que u e v podem ser o mesmo vértice	CAMINHO ABERTO	CAMINHO FECHADO OU CICLO

✓ Dado um grafo **G**, um **Caminho Hamiltoniano** em **G** é um **caminho** que contém todo vértice de G;

√ G1 Contém um Caminho Hamiltoniano ?

✓ Dado um grafo **G**, um **Caminho Hamiltoniano** em **G** é um **caminho** que contém todo vértice de **G**;

√ G1 Contém um Caminho Hamiltoniano ? NÃO

✓ Dado um grafo **G**, um **Caminho Hamiltoniano** em **G** é um **caminho** que contém todo vértice de **G**;

√ G2 Contém um Caminho Hamiltoniano ?

✓ Dado um grafo **G**, um **Caminho Hamiltoniano** em **G** é um **caminho** que contém todo vértice de **G**;

- √ G2 Contém um Caminho Hamiltoniano ?
- ✓ G2 contém o Caminho Hamiltoniano (V₄ V₁ V₂ V₃);

✓ Dado um grafo **G**, um **Caminho Hamiltoniano** em **G** é um **caminho** que contém todo vértice de **G**;

√ G2 Contém um Ciclo Hamiltoniano ?

✓ Dado um grafo G, um Ciclo Hamiltoniano é um ciclo que contém todo vértice de G;

√ G2 Contém um Ciclo Hamiltoniano ?

✓ Dado um grafo G, um Ciclo Hamiltoniano é um ciclo que contém todo vértice de G;

- √ G2 Contém um Ciclo Hamiltoniano ?
- ✓ G2 NÃO contém Ciclo Hamiltoniano (ou Circuito Hamiltoniano)

MAUÁ

Ciclo e Caminho Hamiltoniano Exemplo 3

✓ Dado um grafo **G**, um **Caminho Hamiltoniano** em **G** é um **caminho** que contém todo vértice de **G**;

√ G3 contém um Caminho Hamiltoniano ?

✓ Dado um grafo **G**, um **Caminho Hamiltoniano** em **G** é um **caminho** que contém todo vértice de G;

- √ G3 contém um Caminho Hamiltoniano ?
- √ G3 contém o Caminho Hamiltoniano (V₁ V₂ V₅ V₄ V₃);

✓ Dado um grafo G, um Ciclo Hamiltoniano é um ciclo que contém todo vértice de G;

√ G3 contém um Ciclo Hamiltoniano ?

✓ Dado um grafo G, um Ciclo Hamiltoniano é um ciclo que contém todo vértice de G;

- √ G3 contém um Ciclo Hamiltoniano ?
- ✓ G3 não contém Ciclo Hamiltoniano (ou Circuito Hamiltoniano)

INSTITUTO MAUÁ DE TECNOLOGÍA MAUÁ

Ciclo e Caminho Hamiltoniano Exemplo 4

✓ Dado um grafo G, um Ciclo Hamiltoniano é um ciclo que contém todo vértice de G;

√ G4 contém um Ciclo Hamiltoniano ?

✓ Dado um grafo G, um Ciclo Hamiltoniano é um ciclo que contém todo vértice de G;

- √ G4 contém um Ciclo Hamiltoniano ?
- ✓ G4 contém Ciclo Hamiltoniano (ou Circuito Hamiltoniano) (V₁ V₂ V₃ V₄ V₁) ;

MAUÁ

Ciclo e Caminho Hamiltoniano Exemplo 5

✓ Dado um grafo G, um Ciclo Hamiltoniano é um ciclo que contém todo vértice de G;

√ G5 contém um Ciclo Hamiltoniano ?

MAUÁ

Ciclo e Caminho Hamiltoniano Exemplo 5

✓ Dado um grafo G, um Ciclo Hamiltoniano é um ciclo que contém todo vértice de G;

- √ G5 contém um Ciclo Hamiltoniano ?
- ✓ G5 contém Ciclo Hamiltoniano (ou Circuito Hamiltoniano) (V₁ V₅ V₂ V₃ V₄ V₁);

Grafo Hamiltoniano Observação

✓ Dado qualquer grafo hamiltoniano G, se G* é um supergrafo de G, obtido por meio da adição de novas arestas entre vértices de G, G* também será hamiltoniano, uma vez que qualquer ciclo hamiltoniano em G continuará sendo ciclo hamiltoniano em G*.

Grafo Hamiltoniano Observação

✓ Exemplo: Considere o grafo G, mostrado na Figura abaixo, e seu supergrafo G*, obtido por meio da adição das arestas e₅ e e₆.

Grafo Hamiltoniano Observação

✓ Exemplo: Considere o grafo G, mostrado na Figura abaixo, e seu supergrafo G*, obtido por meio da adição das arestas e₅ e e₆.

✓ O Ciclo Hamiltoniano (V₁ V₂ V₃ V₄ V₁) em G continua sendo um Ciclo Hamiltoniano em G*.

✓ Um grafo simples G é chamado não hamiltoniano maximal se não for hamiltoniano, mas a adição a ele de <u>qualquer</u> aresta conectando dois vértices não adjacentes forma um grafo hamiltoniano;

✓ Lembrando, um grafo é chamado simples se não tem loops, nem arestas paralelas;

✓ O grafo G1 é não hamiltoniano maximal ?

- √ O grafo simples G1 não é hamiltoniano;
- ✓ O grafo simples G1 é não hamiltoniano maximal, uma vez que a adição de qualquer aresta transforma G1 em G2 que é hamiltoniano; (V₁V₂V₃V₄V₁)
- \checkmark Com a adição de $\mathbf{e_1}$ em $\mathbf{G1}$, obtem-se $\mathbf{G2}$ que é hamiltoniano.

- √ O grafo simples G1 não é hamiltoniano;
- ✓ O grafo simples G1 é não hamiltoniano maximal, uma vez que a adição de qualquer aresta transforma G1 em G2 que é hamiltoniano; (V₂V₁V₃V₄V₂) (∠♠
- ✓ Com a adição de e₂ em G1, obtem-se G3 que é hamiltoniano.

✓ O grafo G1 é não hamiltoniano maximal ?

- √ O grafo simples G1 não é hamiltoniano;
- ✓ Com a adição de e_1 em G1, obtem-se G2 que é hamiltoniano. $(V_1V_2V_4V_3V_1)$
- ✓ Por outro lado, se a aresta e_2 for adicionada ao **grafo G1**, o grafo resultante **G2** não é hamiltoniano.
- ✓ Portanto, não é adição de qualquer aresta que torna **G1** hamiltoniano, o que faz com que **G1** não possa ser caracterizado como não hamiltoniano maximal.

- ✓O grafo da Figura acima é **não** hamiltoniano **maximal**?
- ✓ Ou seja, a adição de qualquer aresta entre vértices não adjacentes irá redundar um grafo Hamiltoniano?

✓ Adicionando-se a aresta V₃V₄, obtém-se o Ciclo Hamiltoniano V₁V₂V₆V₅V₄V₃V₁

- ✓ O grafo da Figura acima é não hamiltoniano maximal ?
- ✓ Ou seja, a adição de qualquer aresta entre vértices não adjacentes irá redundar um grafo Hamiltoniano?

✓ Adicionando-se a aresta V₄V₁, obtém-se o Ciclo Hamiltoniano V₁V₂V₃V₆V₅V₄V₁

- ✓ O grafo da Figura acima é não hamiltoniano maximal ?
- ✓ Ou seja, a adição de qualquer aresta entre vértices não adjacentes irá redundar um grafo Hamiltoniano?

✓ Adicionando-se a aresta V₅V₂, obtém-se o Ciclo Hamiltoniano V₁V₂V₅V₄V₆V₃V₁

✓ Ou seja, a adição de qualquer aresta entre vértices não adjacentes irá redundar um grafo Hamiltoniano?

- ✓ O grafo da Figura acima é não hamiltoniano maximal ?
- ✓ Ou seja, a adição de qualquer aresta entre vértices não adjacentes irá redundar um grafo Hamiltoniano?

✓ Adicionando-se a aresta V₅V₃, obtém-se o Ciclo Hamiltoniano V₁V₅V₄V₆V₂V₃V₁

- ✓ O grafo da Figura acima é não hamiltoniano maximal ?
- ✓ Ou seja, a adição de qualquer aresta entre vértices não adjacentes irá redundar um grafo Hamiltoniano?

✓ Adicionando-se a aresta V₂V₄, obtém-se o Ciclo Hamiltoniano V₁V₂V₄V₅V₆V₃V₁

- ✓ O grafo da Figura acima é não hamiltoniano maximal ?
- ✓ Ou seja, a adição de qualquer aresta entre vértices não adjacentes irá redundar um grafo Hamiltoniano?

Grafo não hamiltoniano maximal Conclusão

✓ Em razão do Processo de Construção passo a passo descrito nos slides anteriores, observa-se que o grafo G apresentado é Não Hamiltoniano Maximal, uma vez que adicionando-se qualquer aresta entre vértices não adjacentes produz-se um novo Grafo que é Hamiltoniano!

É Não Hamiltoniano Maximal

Teorema de Dirac

✓ Seja G = (V,E) um grafo simples com n vértices, n ≥ 3. Se para todo vértice v ε V, d(v) ≥ n/2, então G é Hamiltoniano.

Teorema de Dirac - Exemplo

✓ Seja G = (V,E) um grafo simples com n vértices, $n \ge 3$. Se para todo vértice v ∈ V, d(v) ≥ n/2, então G é Hamiltoniano.

$$d(A) = 3 >= 6/2$$

 $d(B) = 3 >= 6/2$
 $d(C) = 3 >= 6/2$
 $d(U) = 3 >= 6/2$
 $d(V) = 3 >= 6/2$
 $d(E) = 3 >= 6/2$

O Teorema de Dirac é atendido!

Portanto existe um ciclo hamiltoniano no grafo e, assim, o Grafo é hamiltoniano.

Teorema de Dirac - Observação 1

✓ Seja G = (V,E) um grafo simples com n vértices, $n \ge 3$. Se para todo vértice v ∈ V, d(v) ≥ n/2, então G é Hamiltoniano.

✓ n deve ser maior ou igual a 3, pois se tivermos apenas 2 vértices não se consegue definir um ciclo;

Teorema de Dirac - Observação 1

✓ Seja G = (V,E) um grafo simples com n vértices, $n \ge 3$. Se para todo vértice v ∈ V, d(v) ≥ n/2, então G é Hamiltoniano.

✓ Com n>= 3, é possível construir-se um ciclo hamiltoniano:

v1e1v2e2v3e3v1 é ciclo hamiltoniano!

MAUÁ

Teorema de Dirac – Observação 2

✓ Seja G = (V,E) um grafo simples com n vértices, $n \ge 3$. Se para todo vértice v ∈ V, d(v) ≥ n/2, então G é Hamiltoniano.

✓ A condição imposta pelo Teorema de Dirac é SUFICIENTE, mas NÃO Necessária!

MAUÁ MAUÁ

Teorema de Dirac – Observação 2

✓ Seja G = (V,E) um grafo simples com n vértices, $n \ge 3$. Se para todo vértice v ∈ V, d(v) ≥ n/2, então G é Hamiltoniano.

✓ A condição imposta pelo Teorema de Dirac é SUFICIENTE, mas NÃO Necessária!

✓ Isso significa que podem existir Grafos Hamiltonianos que não verificam a condição d(v) >= n/2. Exemplo:

$$d(v1) = 2 < 5/2$$

 $d(v2) = 2 < 5/2$
 $d(v3) = 2 < 5/2$
 $d(v4) = 2 < 5/2$
 $d(v5) = 2 < 5/2$

O Teorema Dirac NÃO é atendido!

Mas, existe um ciclo hamiltoniano no grafo e, assim, o Grafo é hamiltoniano.

v1e1v2e2v4e3v5e4v3e5v1 é ciclo hamiltoniano! Logo, o Grafo é hamiltoniano!

Teorema de Dirac - Exercício

✓ O Grafo **G** abaixo, com 7 vértices, é um **Grafo Hamiltoniano** ?

MAUÁ

Teorema de Dirac - Exercício

✓ O Grafo G abaixo, com 7 vértices, é um Grafo Hamiltoniano ?

Grafo G

✓ Cálculo do Grau dos Vértices do Grafo G:

vértice	grau
V ₁	4
V ₂	4
V ₃	4
V ₄	5
V ₅	4
V ₆	5
V ₇	5

- ✓ Como n=7 vértices, observa-se que, a partir da tabela acima, todos os vértices têm grau acima de n/2;
- ✓ Portanto, o Grafo G acima é Hamiltoniano;
- ✓ Um exemplo de Circuito Hamiltoniando do Grafo é: V₂V₆V₅V₁V₄V₇V₃V₂

Teorema de Ore

- ✓ Corolário do Teorema de Dirac;
- ✓ Seja G = (V,E) um grafo simples com n vértices, |V| = n ≥ 3.
 Se para cada par de vértices não adjacentes u e v , u ε V e
 v ε V, d(u) + d(v) ≥ n, então G é Hamiltoniano.

Teorema de Ore

✓ Seja G = (V,E) um grafo simples com n vértices, $|V| = n \ge 3$. Se para cada par de vértices não n30 adjacentes n4 u e n5 v e n5 então n6 de Hamiltoniano.

Exemplo:

$$d(v1) + d(v5) = 3 + 2 >= 5$$

 $d(v2) + d(v4) = 3 + 3 >= 6$
 $d(v3) + d(v5) = 3 + 2 >= 5$
 $d(v4) + d(v2) = 3 + 3 >= 5$
 $d(v5) + d(v3) = 2 + 3 >= 5$
 $d(v5) + d(v1) = 2 + 3 >= 5$

O Teorema de Ore é atendido!

Portanto existe um ciclo hamiltoniano no grafo e, assim, o Grafo é hamiltoniano.

✓ O ciclo v1e4v3e6v4e7v5e3v2e1v1 é hamiltoniano. Logo, o grafo é hamiltoniano!

Teorema de Ore - Observação

✓ Seja G = (V,E) um grafo simples com n vértices, $|V| = n \ge 3$. Se para cada par de vértices não adjacentes u e v , u ε V e v ε V, $d(u) + d(v) \ge n$, então G é Hamiltoniano.

✓ A condição imposta pelo Teorema de Ore é SUFICIENTE, mas NÃO Necessária!

✓ Isso significa que podem existir **Grafos Hamiltonianos** que **não** verificam a condição d(u) + d(v) >= n, sendo u e v vértices quaisquer não adjacentes.

Teorema de Ore - Observação

✓ A condição imposta pelo Teorema de Ore é SUFICIENTE, mas NÃO Necessária!

✓ Isso significa que podem existir **Grafos Hamiltonianos** que **não** verificam a condição d(u) + d(v) >= n, sendo u e v vértices quaisquer não adjacentes.

$$d(v1) + d(v4) = 2 + 2 < 5$$

O Teorema Ore NÃO é atendido!

Mas, existe um ciclo hamiltoniano no grafo e, assim, o Grafo é hamiltoniano.

v1e1v2e2v4e3v5e4v3e5v1 é ciclo hamiltoniano ! Logo, o Grafo é hamiltoniano!

Fechamento de um Grafo G

- ✓ Seja G = (V,E) um grafo simples;
- ✓ Se existem dois vértices não adjacentes u₁ e v₁ em V, tal que d(u₁) + d(v₁) ≥ n em
 G; una-os por uma aresta, formando o supergrafo G1;
- ✓ Se existem dois vértices não adjacentes u₂ e v₂ em G1, tal que d(u₂) + d(v₂) ≥ n em G1, una-os por uma aresta, formando o supergrafo G2;
- ✓ Continue esse processo, recursivamente, unindo pares de vértices não adjacentes, cuja soma de graus seja no mínimo n, até que não restem mais pares para serem conectados;
- ✓ O supergrafo final obtido é chamado Fechamento de G e é denotado por c(G).

$$n=6$$

$$d(V_1) = 4$$

$$d(V_6) = 2$$

$$d(u_1) + d(v_1) \ge n$$

$$n=6$$

$$d(V_1)=4$$

$$d(V_6) = 2$$

$$d(u_1) + d(v_1) \ge n$$

$$n=6$$

$$d(V_2) = 3$$

$$d(V_6) = 3$$

$$d(u_1) + d(v_1) \ge n$$

$$n=6$$

$$d(V_2) = 3$$

$$d(V_6) = 3$$

$$d(u_1) + d(v_1) \ge n$$

Grafo G5

O Fechamento é obtido após 7 passos!

Grafo G

- ✓ n=7
- ✓ Para qualquer par de vértices não adjacentes de G, d(u) + d(v) < 7</p>
- ✓ Logo, tem-se c(G) = G.

Teorema de Bondy

✓ Um grafo simples **G** é **Hamiltoniano se e somente se** seu **Fechamento** c(G) for **Hamiltoniano**;

✓ Corolário: Seja G um grafo simples com n ≥ 3 vértices.
Se c(G) é completo, ou seja, c(G) = k_n, então G é
Hamiltoniano.

O problema do Caixeiro Viajante

- ✓ Suponha um vendedor que atue em várias cidades, sendo que algumas delas são conectadas por estradas;
- ✓ O trabalho do vendedor exige que ele visite cada uma das cidades;
- ✓ É possível para ele planejar uma viagem de carro, partindo e voltando a uma mesma cidade, visitando cada uma delas exatamente uma vez?
- ✓ Se tal viagem for possível, será possível planejá-la de modo a se minimizar a distância total percorrida?
- ✓ Esse problema é conhecido como o "Problema do Caixeiro Viajante";

O problema do Caixeiro Viajante

- ✓ Esse problema poderia ser modelado por um Grafo G, no qual os vértices corresponderiam às cidades e dois vértices estariam unidos por uma aresta ponderada se e somente se as cidades correspondentes forem unidas por uma estrada, a qual não passa por nenhuma das outras cidades;
- ✓ O peso da aresta poderia representar a distância entre as cidades;
- ✓ O problema se resume a: "O grafo G é hamiltoniano?" Se sim, é possível construir um ciclo hamiltoniano de peso (comprimento) mínimo?

O problema do Caixeiro Viajante

✓ O problema se resume a: "O grafo G é hamiltoniano?" Se sim, é possível construir um ciclo hamiltoniano de peso (comprimento) mínimo?

✓ Infelizmente, não existe um algoritmo que possa resolver esse problema em

Tempo Polinomial.

Problema do Caixeiro Viajante

- √ Não existe algoritmo correto e eficiente para este problema;
- ✓ O problema é atacado com Heurísticas;

- ✓ Na Engenharia de Computação, busca-se criar algoritmos com <u>tempo de execução</u> <u>aceitável</u> e ser uma solução ótima para o problema em todas as suas instâncias;
- ✓ Um algoritmo heurístico não cumpre uma dessas propriedades, podendo ser ou um algoritmo que encontra boas soluções a maioria das vezes, mas não há garantias de que sempre as encontrará.

Divisor de Águas

- ✓ A complexidade Polinomial representa o divisor de águas dentre as classes de Algoritmos;
- ✓ Algoritmos polinomais são considerados tratáveis;
- ✓ Algoritmos com complexidades superiores às polinomiais são intratáveis;
- ✓ Exemplo: Caixeiro Viajante TST Travelling Salesman Problem.

