CS 6316 Machine Learning

Clustering

Yangfeng Ji

Department of Computer Science University of Virginia

Clustering

Clustering

Clustering is the task of grouping a set of objects such that similar objects end up in the same group and dissimilar objects are separated into different groups

[Shalev-Shwartz and Ben-David, 2014, Page 307]

Motivation

A good clustering can help us understand the data

[MacKay, 2003, Chap 20]

Movitation(II)

A good clustering has predictive power and can be useful to build better classifiers

[MacKay, 2003, Chap 20]

Motivation (III)

Failures of a cluster model may highlight interesting properties of data or a single data point

[MacKay, 2003, Chap 20]

Challenges

Lack of ground truth — like any other unsupervised learning tasks

[Shalev-Shwartz and Ben-David, 2014, Page 307]

Challenges

- Lack of *ground truth* like any other unsupervised learning tasks
- Definition of similarity measurement
 - ► Two images are similar
 - ► Two documents are similar

[Shalev-Shwartz and Ben-David, 2014, Page 307]

K-Means Clustering

K-Means Clustering

- ► A data set $S = \{x_1, ..., x_m\}$ with $x_i \in \mathbb{R}^d$
- ▶ Partition the data set into some number *K* of clusters
- K is a hyper-parameter given before learning
- Another example task of unsupervised learning

Objective Function

- ▶ Introduce $r_i \in [K]$ for each data point x_i , which is a determinstric variable
- ightharpoonup The objective function of k-means clustering

$$J(r, \mu) = \sum_{i=1}^{m} \sum_{k=1}^{K} \delta(r_i = k) ||x_i - \mu_k||_2^2$$
 (1)

where $\{\mu_k\}_{k=1}^K \in \mathbb{R}^d$. Each μ_k is called a *prototype* associated with the k-th cluster.

Objective Function

- ▶ Introduce $r_i \in [K]$ for each data point x_i , which is a determinstric variable
- ► The objective function of *k*-means clustering

$$J(\mathbf{r}, \boldsymbol{\mu}) = \sum_{i=1}^{m} \sum_{k=1}^{K} \delta(r_i = k) ||\mathbf{x}_i - \boldsymbol{\mu}_k||_2^2$$
 (1)

where $\{\mu_k\}_{k=1}^K \in \mathbb{R}^d$. Each μ_k is called a *prototype* associated with the k-th cluster.

► Learning: minimize equation 1

$$\underset{r,\mu}{\operatorname{argmin}} J(r,\mu) \tag{2}$$

Learning: Initialization

Randomly initialize $\{\mu_k\}_{k=1}^K$

Learning: Assignment Step

Given $\{\mu_k\}_{k=1}^K$, for each x_i , find the value of r_i is equivalent to assign the data point to a cluster

$$r_i \leftarrow \underset{k'}{\operatorname{argmin}} \|x_i - \mu_{k'}\|_2^2 \tag{3}$$

Learning: Update Step

Given $\{r_i\}_{i=1}^m$, the algorithm updates μ_k as

$$\mu_{k} = \frac{\sum_{i=1}^{m} \delta(r_{i} = k) x_{i}}{\sum_{i=1}^{m} \delta(r_{i} = k)}$$
(4)

Algorithm

With some randomly initialized $\{\mu_k\}_{k=1}^K$, iterate the following two steps until converge

Assignment Step Assign r_i for each x_i

$$r_i \leftarrow \underset{k'}{\operatorname{argmin}} \|x_i - \mu_{k'}\|_2^2 \tag{5}$$

Update Step Updates μ_k with $\{r_i\}_{i=1}^m$

$$\mu_{k} = \frac{\sum_{i=1}^{m} \delta(r_{i} = k) x_{i}}{\sum_{i=1}^{m} \delta(r_{i} = k)}$$
(6)

Example (Cont.)

From GMMs to K-means

Gaussian Mixture Models

Consider a GMM with two components

$$q(x,z) = q(z)q(x \mid z)$$

$$= \alpha^{\delta(z=1)} \cdot \mathcal{N}(x; \mu_1, \Sigma_1)^{\delta(z=1)}$$

$$\cdot (1-\alpha)^{\delta(z=2)} \cdot \mathcal{N}(x; \mu_2, \Sigma_2)^{\delta(z=2)}$$
 (7)

Gaussian Mixture Models

Consider a GMM with two components

$$q(x,z) = q(z)q(x \mid z)$$

$$= \alpha^{\delta(z=1)} \cdot \mathcal{N}(x; \mu_1, \Sigma_1)^{\delta(z=1)}$$

$$\cdot (1-\alpha)^{\delta(z=2)} \cdot \mathcal{N}(x; \mu_2, \Sigma_2)^{\delta(z=2)}$$
 (7)

And the marginal probability p(x) is

$$q(x) = q(z = 1)q(x \mid z = 1) + q(z = 2)q(x \mid z = 2)$$

= $\alpha \cdot \mathcal{N}(x; \mu_1, \Sigma_1) + (1 - \alpha) \cdot \mathcal{N}(x; \mu_2, \Sigma_2)$ (8)

A Special Case

Consider the first component in this GMM with parameters μ_1 and Σ_1

ightharpoonup Assume $\Sigma_1 = \epsilon I$, then

$$|\Sigma_1| = \epsilon^d \tag{9}$$

$$|\Sigma_1| = \epsilon^d$$
 (9)
 $(x - \mu_1)^{\mathsf{T}} \Sigma_1^{-1} (x - \mu) = \frac{1}{\epsilon} ||x - \mu||_2^2$ (10)

A Special Case

Consider the first component in this GMM with parameters μ_1 and Σ_1

Assume $\Sigma_1 = \epsilon I$, then

$$|\Sigma_1| = \epsilon^d \tag{9}$$

$$(x - \mu_1)^{\mathsf{T}} \Sigma_1^{-1} (x - \mu) = \frac{1}{\epsilon} ||x - \mu||_2^2$$
 (10)

A Gaussian component can be simplified as

$$q(x_{i} \mid z_{i} = 1) = \frac{1}{(2\pi)^{\frac{d}{2}} |\Sigma_{1}|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(x_{i} - \mu_{1})^{\mathsf{T}} \Sigma_{1}^{-1}(x_{i} - \mu)\right)$$
$$= \frac{1}{(2\pi\epsilon)^{\frac{d}{2}}} \exp\left(-\frac{1}{2\epsilon} ||x_{i} - \mu_{1}||_{2}^{2}\right) \tag{11}$$

A Special Case

Consider the first component in this GMM with parameters μ_1 and Σ_1

Assume $\Sigma_1 = \epsilon I$, then

$$|\Sigma_1| = \epsilon^d$$
 (9)
 $(x - \mu_1)^{\mathsf{T}} \Sigma_1^{-1} (x - \mu) = \frac{1}{\epsilon} ||x - \mu||_2^2$ (10)

17

► A Gaussian component can be simplified as

$$q(x_i \mid z_i = 1) = \frac{1}{(2\pi)^{\frac{d}{2}} |\Sigma_1|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(x_i - \mu_1)^{\mathsf{T}} \Sigma_1^{-1} (x_i - \mu)\right)$$
$$= \frac{1}{(2\pi\epsilon)^{\frac{d}{2}}} \exp\left(-\frac{1}{2\epsilon} ||x_i - \mu_1||_2^2\right) \tag{11}$$

Similar results with the second component with $\Sigma_2 = \epsilon I$

A Special Case (II)

From the previous discussion, we know that, given θ , $q(z_i \mid x_i)$ is computed as

$$q(z_{i} = 1 \mid x_{i}) = \frac{\alpha \cdot \mathcal{N}(x_{i}; \mu_{1}, \Sigma_{1})}{\alpha \cdot \mathcal{N}(x_{i}; \mu_{1}, \Sigma_{1}) + (1 - \alpha) \cdot \mathcal{N}(x_{i}; \mu_{2}, \Sigma_{2})}$$

$$= \frac{\alpha \exp(-\frac{1}{2\epsilon} ||x_{i} - \mu_{1}||_{2}^{2})}{\alpha \exp(-\frac{1}{2\epsilon} ||x_{i} - \mu_{1}||_{2}^{2}) + (1 - \alpha) \exp(-\frac{1}{2\epsilon} ||x_{i} - \mu_{2}||_{2}^{2})}$$

A Special Case (II)

From the previous discussion, we know that, given θ , $q(z_i \mid x_i)$ is computed as

$$q(z_{i} = 1 \mid x_{i}) = \frac{\alpha \cdot \mathcal{N}(x_{i}; \mu_{1}, \Sigma_{1})}{\alpha \cdot \mathcal{N}(x_{i}; \mu_{1}, \Sigma_{1}) + (1 - \alpha) \cdot \mathcal{N}(x_{i}; \mu_{2}, \Sigma_{2})}$$

$$= \frac{\alpha \exp(-\frac{1}{2\epsilon} ||x_{i} - \mu_{1}||_{2}^{2})}{\alpha \exp(-\frac{1}{2\epsilon} ||x_{i} - \mu_{1}||_{2}^{2}) + (1 - \alpha) \exp(-\frac{1}{2\epsilon} ||x_{i} - \mu_{2}||_{2}^{2})}$$

▶ When $\epsilon \to 0$

$$q(z_i = 1 \mid x_i) \to \begin{cases} 1 & \|x_i - \mu_1\|_2 < \|x_i - \mu_2\|_2 \\ 0 & \|x_i - \mu_1\|_2 > \|x_i - \mu_2\|_2 \end{cases}$$
 (12)

A Special Case (II)

From the previous discussion, we know that, given θ , $q(z_i \mid x_i)$ is computed as

$$q(z_{i} = 1 \mid x_{i}) = \frac{\alpha \cdot \mathcal{N}(x_{i}; \mu_{1}, \Sigma_{1})}{\alpha \cdot \mathcal{N}(x_{i}; \mu_{1}, \Sigma_{1}) + (1 - \alpha) \cdot \mathcal{N}(x_{i}; \mu_{2}, \Sigma_{2})}$$

$$= \frac{\alpha \exp(-\frac{1}{2\epsilon} ||x_{i} - \mu_{1}||_{2}^{2})}{\alpha \exp(-\frac{1}{2\epsilon} ||x_{i} - \mu_{1}||_{2}^{2}) + (1 - \alpha) \exp(-\frac{1}{2\epsilon} ||x_{i} - \mu_{2}||_{2}^{2})}$$

▶ When $\epsilon \to 0$

$$q(z_i = 1 \mid x_i) \to \begin{cases} 1 & \|x_i - \mu_1\|_2 < \|x_i - \mu_2\|_2 \\ 0 & \|x_i - \mu_1\|_2 > \|x_i - \mu_2\|_2 \end{cases}$$
 (12)

 $ightharpoonup r_i$ in K-means is a very special case of z_i in GMM

When *K*-means Will Fail?

Recall that *K*-means is an extreme case of GMM with $\Sigma = \epsilon I$ and $\epsilon \to 0$

Parameters

$$\mu_1 = [1.5, 0]^{\mathsf{T}} \qquad \mu_2 = [-1.5, 0]^{\mathsf{T}}$$

$$\Sigma_1 = \Sigma_2 = \operatorname{diag}(0.1, 10.0) \qquad (13)$$

When K-means Will Fail? (II)

Recall that *K*-means is an extreme case of GMM with $\Sigma = \epsilon I$ and $\epsilon \to 0$

How About GMM?

With the following setup¹

- Randomly initialize GMM parameters (instead of using K-means to initalize)
- Set covariance_type to be tied

¹Please refer to the demo code for more detail

Reference

Bishop, C. M. (2006).

Pattern recognition and machine learning. springer.

MacKay, D. (2003).

*Information theory, inference and learning algorithms.*Cambridge university press.

Shalev-Shwartz, S. and Ben-David, S. (2014). *Understanding machine learning: From theory to algorithms*. Cambridge university press.