

Online Advanced Methods for Cost-Effectiveness Analysis

Presentation 6: Model structure

6.3: Decision trees and Markov models

Objectives

- Understand key features of the most common model types
 - Decision trees
 - Markov models
- Appreciate how to evaluate models and the use of cohort simulation
- Explore alternatives ways that Markov models can be used

Example of prevention of vertical transmission of HIV

Adapted from Ratcliffe et al. AIDS 1998; 12: 1381-1388

Incremental cost per HIV-infected child avoided

Intervention: Expected cost: $0.95 \times £800 = £760$

Risk of vertical transmission:

 $0.0665 (0.95 \times 0.07) + 0.013 (0.05 \times 0.26) = 0.0795$

= £4,211

No intervention: Expected cost: £0

Risk of vertical transmission: 0.26

Incremental cost of interventions per HIV-infected child avoided:

Differential cost: 760 - 0 = 760

Differential risk: 0.26 - 0.0795 = 0.1805

Limitations of the decision tree

- Frequent need to model prognosis
- Decision trees: sequence of events over a particular time period
- Inflexible when events recur over time
- Particular difficulty in modelling chronic diseases: complications, recurrence, remission, mortality
- Decision trees may become excessively 'bushy'

State-Transition Models - Key Features

- Simplification of 'bushy' decision trees
- Organised around states rather than pathways
 - How individuals move among states (transitions)
 - How likely such moves are (transition probabilities)
- States are mutually exclusive and exhaustive
- Cycle length specifies transition intervals
- State values (costs and health outcomes) assigned
- Most common types:
 - Markov models
 - Area under the curve (AUC) models

The basic Markov chain

	Transition to:			
Transition from:	Asymptomatic	Progressive	Dead	
Asymptomatic	0.6	0.3	0.1	
Progressive	0	0.8	0.2	
Dead	0	0	1	

The Markov assumption

Evaluating Markov chains

- Matrix solution
 - Not possible with discounting
- Cohort simulation
- Individual patient simulation (1st order Monte-Carlo simulation)

Cohort simulation

- Simulates a cohort moving through a model
- A proportion of the cohort in each state/passing down a pathway at a given point in time
- Expected values worked out by weighting these proportions by costs/outcome values
- Focus on expected values: size of cohort irrelevant

Cohort simulation

The concept

Cohort simulation

Calculating expected costs

Cycle no.	Numbers in state (total 1000)		Costs		
	Asymptomatic	Progressive	Dead	Per cycle	Cumulative
0	1000				
1	600	300	100	£30,000	£30,000
2	360	420	220	£42,000	£72,000
3	216	444	340	£44,400	£116,400
4	130	420	450	£42,000	£158,400
5	78	375	547	£37,488	£195,888
6	47	323	630	£32,323	£228,211
7	28	273	699	£27,258	£255,469
8	17	226	757	£22,646	£278,116
9	10	186	804	£18,621	£296,737
10	6	152	842	£15,199	£311,936
11	4	123	873	£12,341	£324,277
12	2	100	898	£9,981	£334,258
13	1	81	918	£8,050	£342,309
14	1	65	934	£6,480	£348,788
15	0	52	947	£5,207	£353,995
16	0	42	958	£4,180	£358,175
17	0	34	966	£3,352	£361,527
18	0	27	973	£2,687	£364,214
19	0	22	978	£2,153	£366,367
20	0	17	983	£1,724	£368,091
21	0	14	986	£1,380	£369,471
22	0	11	989	£1,105	£370,576
23	0	9	991	£884	£371,460
24	0	7	993	£708	£372,168
Expected cost/patient over 24 cycles = £372,168 /1000 = £372.17					

Cost assumptions/cycle

Asymptomatic: £0

Progressive: £100

Dead: £0

Correctly estimating transition probabilities (TPs)

- TPs should be estimated to reflect the cycle length. This can be estimated using the rate (r) of the event
- Conversion of probability (p) to r when p is reported for time t_{rep}

$$r = -\frac{\ln(1-p)}{t_{rep}}$$

- Conversion of resulting rate to probability for cycle length, l $p = 1 \exp(-r \cdot l)$
- Example: convert 5 year probability of 20% to a 1 year probability

- Rate =
$$-\frac{\ln(1-0.20)}{5}$$
 = 0.04463

- 1-year probability = $1 - \exp(-0.04463 \times 1) = 0.043648$

Uses of Markov models

- Estimating costs and effects for comparative interventions
 - Two sets of transition probabilities
 - Often applying a relative treatment effect to baseline transitions
- Extrapolation from trial results assuming no continued treatment effect
 - Trial estimate of treatment effect, Markov estimates the implications
 - Could be decision tree to estimate the effect (e.g. screening)

Example of Markov used for direct comparisonModel structure

Source: Chancellor et al. PharmacoEconomics 1997; 12: 54-66

Example of Markov used for direct comparisonBaseline transition probabilities

(a) Transition probabilities - monotherapy

Transition to:

Transition from:	State A	State B	State C	State D
State A	0.721	0.202	0.067	0.01
State B	0	0.581	0.407	0.012
State C	0	0	0.75	0.25
State D	0	0	0	1

Assumed a relative effect of combination therapy of 0.509. This was assumed to slow progression between all states. It was applied by reducing the yearly transitions to all worse states

Source: Chancellor et al. PharmacoEconomics 1997; 12: 54-66

Example of Markov used for direct comparisonApplying the treatment effect

(b) Transition probabilities - combination therapy

Transition to:

Transition from:	State A	State B	State C	State D
State A	0.858	0.103	0.034	0.005
	(1-sum)	(0.202 x RR)	(0.067 x RR)	(0.01 x RR)
State B	0	0.787	0.207	0.006
		(1-sum)	(0.407 x RR)	(0.012 x RR)
State C	0	0	0.873	0.127
			(1-sum)	(0.25 x RR)
State D	0	0	0	1

Source: Chancellor et al. PharmacoEconomics 1997; 12: 54-66

Markov models for extrapolation

Part 1: Baseline event rates

- Observational data from PRAIS-UK (n=1046) and Leeds (n=112)
- Costs of drugs, hospitalisation and procedures

Part 2: GPA effects

 Data from metaanalysis of RCTs

Part 3: lifetime extrapolation

- Observational data from Nottingham Heart Attack Register (n=1279)
- Costs of hospitalisation and procedures

Source: Palmer et al. Technology Assessment Report for NICE, 2002

Summary

- Decision trees simplest but least flexible approach
 - Useful in specific circumstances e.g. acute one-off treatments
 - Can be combined with other model types
- Markov models most common approach
 - Increased flexibility
 - Basic Markov chain can be limiting in some circumstances
 - Some forms of time dependency can be incorporated
- Markov models can be used in different ways
 - Direct comparisons
 - Extrapolation