Branching Proce	2SS	
(Golton-Watson		process)

Consider the poph Consisting of individuals able to

produce offspring of the same kind.

Suppose that each individual have produced juffsprings with prob. Pj., j. 20, independent of each other.

Xo= size of zeroth generation Xn= size of nth generation

Z0=011,2,....

Manoj C Patil

$$X_n = \sum_{i=1}^{X_{n-1}} Z_i$$

$$E(x_n) = E_{x_{n-1}} (E_z(\sum_{i=1}^{x_{n-1}} / \chi_{n-i} = k))$$

$$= E_{\times_{n-1}} \left(\frac{\sum E(Z_i)}{\sum E(Z_i)} / X_{n-1} = K \right)$$
 (as Z_i are i.i.d)
$$= E_{\times_{n-1}} \left(\frac{\sum E(Z_i)}{\sum E(Z_i)} / X_{n-1} = K \right)$$
 (b)
$$= E_{\times_{n-1}} \left(\frac{\sum E(Z_i)}{\sum E(Z_i)} / X_{n-1} = K \right)$$
 (c)
$$= E_{\times_{n-1}} \left(\frac{\sum E(Z_i)}{\sum E(Z_i)} / X_{n-1} = K \right)$$
 (d)
$$= E_{\times_{n-1}} \left(\frac{\sum E(Z_i)}{\sum E(Z_i)} / X_{n-1} = K \right)$$
 (e)

$$E(X_n) = u \cdot E(X_{n-1}) = u \cdot E(X_{n-2})$$

$$E(x^{ij}) = \pi \cdot \pi \cdot \dots E(x^{o}) = \pi_{ij} E(x^{o})$$

Assume
$$E(x_0)=1$$

 $E(x_n)=u^n$

$$V(x_n) = V(\sum_{i=1}^{\infty} Z_i)$$

$$V(X_n) = 6^2 \cdot E(X_{n-1}) + \mu^2 \sqrt{(X_{n-1})}$$

$$V(X_1) = \delta^2 E(X_0) + \mu^2 \cdot V(X_0) = \delta^2$$

Lecture: Manoj C Patil

$$V(X_{2}) = 6^{2} \cdot E(X_{1}) + U^{2} \cdot V(X_{1})$$

$$= 6^{2} M + U^{2} 6^{2}$$

$$= U6^{2} (1 + U^{2})$$

$$V(X_3) = \delta^2 (E(X_2)) + \mu^2 \cdot V(X_2)$$

$$= \delta^2 \mu^2 + \mu^2 \cdot \delta^2 (\mu + \mu^2)$$

$$= \delta^2 (\mu^2 + \mu^3 + \mu^4)$$

$$- \mu^2 \delta^2 (1 + \mu + \mu^2)$$

$$V(X_n) = u^{n-1} \delta^2 (1 + u + u^2 + ... + u^{n-1})$$

Geometric Series.

$$= \mu^{n-1} \delta^2 \left(\frac{1-\mu^n}{1-\mu} \right) \sqrt{1-\mu^n}$$

* Probability of extinction

Xn=0 for some nEIN

 $TI_o = P_z(TI_o)$ by solving this eq we can get TI_o -

 $Manoj\ C\ Patil$ Lecture:

$$\frac{11_0 = 12(11_0)}{t = P_2(t)}$$
 = $t = (\frac{2}{3} + \frac{1}{3}, t)$

$$\frac{1}{3} + \frac{1}{3} \cdot \frac{1}{3}$$

$$0 = 4 - 5t + t^2$$

$$0 = 4(1-t) - t(1-t)$$

$$0 \Rightarrow (4-t)(1-t)$$

$$t = \sum t^{j} \cdot P_{j} = t^{\circ} \cdot D.3 + t^{1} \cdot 0.3 + t^{2} \cdot 0.4$$

$$t = 0.3 + 0.3 + 0.4 +$$

$$10t = 3+3t+4t^2$$

$$4t^2 - 7t + 3 = 0$$

$$+)$$
 $4t^2-4t-3t+3=0$

$$\Rightarrow$$
 4t(t-1)-3(t-1)=0

$$\frac{1}{2} = \frac{3/4}{\frac{Page 54}{2}}$$

	Lecture: Manoj C Patil
Abse	(200), 4,6, 10, 15, 16, 22, 25, 30, 35, 38, 39, 43, 44, 45, 47, 50, 55
*	Calculate the probability that the pop become extint for the first time in 3rd generation, consider $x_0=1$, $z\sim B(2,p)$
	Consider to the first time in a generation, consider xo-1, 2000
→	So we have to find out $P(x_3=0/x_2 \neq 0, x_1 \neq 0, x_0=1)$
	$Z \sim Bino(2,p)$ Z=0,1,2 $X_0 = 1$.
	Z ₀ =0,1,2
	$P(Z=0) = q^2$
	P(Z=1)=2pq $2pq$
	$P(Z=2) = p^2 \qquad \begin{array}{c} X_1 \leftarrow Z_0 & 0 \\ \vdots & \vdots & \end{array}$
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	·/ · ·
	$x_1 = 2$ \Rightarrow $x_2 = \sum_{i=1}^{k} Z_i = \sum_{i=1}^{k} Z_i \sim B(2,p)$
Hint	i=1 j=1 y /X2 ~ B(4,p)
٦	
Nic.	$/P(X_3=0/X_2 \neq 0, X_1 \neq 0, X_0=1)$ $X_0=1$
Oblain,	$=$? $\times_1 \sim Bin(2,p)$
	$X_2/X_{+0} \sim Bin(2xX_{1,p}) \checkmark$
	$\frac{x_2/x_1+0}{x_3/x_2+0} \sim Bin(2xx_1,p)$ $\frac{x_3/x_2+0}{x_3/x_2+0} \sim Bin(2xx_2,p)$
	3/ ~2+0, ~1+0
	Dandom
	Random
	$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$
	inden.
	$X_n = X_{n-1} + Z_n$ $Z_n = X_n - X_{n-1}$ in cremerts

Department of Statistics, KBC NMU, Jaly 100 i.i.d.

Page 55

 $2n^{-1} \times n^{-1}$