Introducción

Simulaciones micromagnéticas en nanohilos ferromagnéticos de Co-Ni con anisotropía transversal

Anteproyecto de Grado

Nicolás Barrios Pizo

Departamento de Física Universidad del Valle

11 de Junio del 2023

- 2 Marco Teórico
- 3 Objetivos
- 4 Metodología
- **5** Cronograma de Actividades
- **6** Recursos

1 Introducción

Introducción

000

- 2 Marco Teórico
- 3 Objetivos
- 4 Metodología
- **5** Cronograma de Actividades
- 6 Recursos

Introducción

Introducción

El micromagnetismo es una teoría continua que describe los procesos de magnetización en una escala tamaño significativa.

Model	Description	Length Scale
Atomic level theory	Quantum mechanical ab initio calculations	$<1\mathrm{nm}$
Micromagnetic theory	Continuous description of the magnetization	$1-1000\mathrm{nm}$
Domain theory	Description of domain structure	$1-1000\mu\mathrm{m}$
Phase theory	Description of ensembles of domains	$> 0.1\mathrm{mm}$

Figure 1: Modelos establecidos para la descripción del ferromagnetismo en diferentes escalas de longitud.

http:/micromagnetics.org/

Recursos

Exl, L., Suess, D. y Schrefl, T. en Handbook of Magnetism and Magnetic Materials (eds. Coey, M.

y Parkin, S.) 1-44 (Springer International Publishing, Cham, 2020).

Marco Teórico Objetivos Metodología Cronograma de Actividades

Andersen, I. M. et al. Exotic Transverse-Vortex Magnetic Configurations in CoNi Nanowires. ACS

Introducción

000

Recursos

- 1 Introducción
- 2 Marco Teórico
- 4 Metodología
- 6 Cronograma de Actividades

Ecuaciones de Landau-Lifshitz y Gilbert

Magnetización

$$M_s(\mathbf{r},T) = |M_s(T)| \sum_{n=1}^{3} \gamma_n(\mathbf{r}) \hat{\mathbf{e}}_n$$

Ecuaciones Diferenciales

$$\frac{d\textit{\textbf{M}}_{\textit{s}}}{dt} = \gamma_{\textit{G}}(\textit{\textbf{M}}_{\textit{s}} \times \textit{\textbf{H}}_{\textit{eff}}) - \frac{\alpha_{\textit{G}}}{\textit{\textbf{M}}_{\textit{s}}}(\textit{\textbf{M}}_{\textit{s}} \times \frac{d\textit{\textbf{M}}_{\textit{s}}}{dt})$$

$$H_{eff} = -(1/J_s)\partial\phi_I/\partial m \wedge m = M_s/M_s$$

- γ_G: Constante giromagnética de los electrones.
- α_G: Constante de amortiguamiento de Gilbert.

Exl, L., Suess, D. y Schrefl, T. en Handbook of Magnetism and Magnetic Materials (eds. Coey, M.

y Parkin, S.) 1-44 (Springer International Publishing, Cham, 2020). ◀ □ ▶ ◀ ∰ ▶ ◀ 臺 ▶ ◀ 臺 ▶ ■ 臺 ● 夕 久 ⊙

Energía libre de Gibbs

Energía libre de Gibbs

$$\phi_I' = U - TS - \sigma \cdot \epsilon - J_s \cdot H_{\text{ext}}$$
 $\phi_I = \int_V \phi_I' dV$

Densidad de energía interna

(Cambridge University Press, 2003)

$$U = \phi_{\mathrm{s}}' + \phi_{\mathrm{K}}' + \phi_{\mathrm{ex}}' + \phi_{\mathrm{H}}' + \phi_{\mathrm{el}}'$$

- S: Entropía por unidad de volumen.
- σ: Tensor de estrés.
- ϵ : Tensor de Tensión.
- H_{ext}: Campo magnético externo.
- T: Temperatura.
- ϕ_s' : Den. ener. dipolar.
- φ'_K: Den. ener. anisotropía magnetocristalina.
- ϕ'_{ex} : Den. ener. intercambio.
- ϕ'_H : Den. ener. Zeeman.
- $\phi'_{\it el}$: Den. ener. elástica.

En equilibrio termodinámico, la energía libre de Gibbs corresponde de a un mínimo ($\delta \phi_I = 0$). En donde T, σ y $H_{\rm ext}$ son parámetros libres.

Kronm uller, H. y Fahnle, M. Micromagnetism and the Microstructure of Ferromagnetic Solids

$$\mathcal{H}_{\mathsf{ex}} = -2\sum_{i \neq j} J_{ij} \mathbf{S}_i \cdot \mathbf{S}_j \quad o \quad \phi'_{\mathsf{ex}} = A\sum_{n=1}^3 (\nabla \gamma_n(\mathbf{r}))^2$$

El Hamiltoniano de intercambio de Heisenberg describe la interacción magnética entre los momentos magnéticos de los electrones en un sistema cuántico.

Energía Magnetostática

Energía Zeeman

$$\phi_H' = -\mu_0 \mathbf{H}_{\mathsf{ext}} \cdot \mathbf{M}_{\mathsf{s}}.$$

$$\phi_s'=rac{\mu_0}{2} extbf{ extit{H}}_s^2.$$

$$m{H}_{s}(m{r}) = rac{1}{4\pi} \sum_{i} \left(rac{\mu_{i}(m{r}_{i})}{|m{R}|^{3}} - rac{3(\mu_{i}(m{r}_{i}) \cdot m{R}) \cdot m{R}}{|m{R}|^{3}}
ight)$$

$$\boldsymbol{\mu}_i(\boldsymbol{r}) = g\mu_B \boldsymbol{S}_i(\boldsymbol{r})$$

Energía de anisotropía magnetocristalina

Marco Teórico

0000000

$$\phi_{K}' = k_{0}(\mathbf{r}) + \sum_{i \neq j} k_{ij} \gamma_{i}(\mathbf{r}) \gamma_{j}(\mathbf{r}) + \sum_{ijk} k_{ijk} \gamma_{i}(\mathbf{r}) \gamma_{j}(\mathbf{r}) \gamma_{k}(\mathbf{r}) + \dots$$

Coey, J. M. D. Magnetism and Magnetic Materials (Cambridge University Press, 2010). 🔄

Simulaciones micromagnéticas

Name	Release	FE/FD	GPU capable?	Free?
LLG	1997	FD	No	Commercial
micromagnetics				
simulator				
OOMMF	1998	FD	No	Free
micromagus	2003a	FD	No	Commercial
magpar	2003	FE	No	Free
Nmag	2007	FE	No	Free
GPMagnet	2010	FD	Yes	Commercial
FEMME	2010	FE	No	Commercial
tetramag ^b	2010	FE	Yes	Commercial
finmage	2011	FE	No	Free
Fastmag	2011	FE	Yes	Commercial
Mumax	2011	FD	Yes	Free
micromagnum	2012	FD	Yes	Free
magnum.fd ^d	2014	FD	Yes	Free
magnum.fe	2013	FE	No	Commercial
mumax ³	2014	FD	Yes	Free
LLG	2015	FD	Yes	Commercial
micromagnetics				
simulator v4.				
Grace	2015	FD	Yes	Free
OOMMF (GPU	2016	FD	Yes	Free
version)				
fidimag	2018	FD	No	Free
commics	2018	FE	No	Free

- FD: Diferencias finitas.
- FE: Elementos finitos.

Leliaert, J. Tomorrow's micromagnetic simulations. Journal of Applied Physics 125 (2019).

https://mumax.github.io/index.html

- 1 Introducción
- Marco Teórico
- 3 Objetivos
- 4 Metodología
- 6 Cronograma de Actividades

Recursos

Objetivos

Objetivo General:

Estudiar la microestructura magnética de nanohilos basados en la aleación Co-Ni y su dependencia con variables intrínsecas y extrínsecas.

Objetivos Específicos:

- Estudiar la dependencia de la microestructura remanente como función de la geometría del nanohilo, la anisotropía magnetocristalina y la composición.
- Estudiar el proceso de inversión de la imanación para condiciones y parámetros magnéticos de interés.

Coey, J. M. D. Magnetism and Magnetic Materials (Cambridge University Press, 2010).

Nicolás Barrios Pizo Departamento de Física Universidad del Valle

- 1 Introducción

- 4 Metodología
- 6 Cronograma de Actividades

Metodología

- 1 Introducción

- 4 Metodología
- **5** Cronograma de Actividades

Cronograma de Actividades

	Mes											
Actividades	01	02	03	04	05	06	07	08	09	10	11	12
Actividad 1.1: Revisión bibliográfica.	x	x										
Actividad 1.2: Determinación de parámetros micromagnéticos.		×	х									
Actividad 1.3: Pruebas en el paquete de simulación.			х	х	х							
Actividad 1.4: Pruebas con los parámetros seleccionados.					х	х	х	х				
Actividad 1.5: Simulaciones del sistema.								х	х			
Actividad 2.1: Script para simular ciclos de histéresis.								×	×	×		
Actividad 2.2: Correlaciones.									х	х	х	х

Table 1: Cronograma de actividades

- 1 Introducción

- 4 Metodología
- 6 Cronograma de Actividades
- 6 Recursos

	Valor
Dedicación del asesor: 3 (h/sem)	\$10.600.000
Estación de cálculo (Workstation)	\$4.000.000
Total:	\$ 14.600.000