Estimation, hypothesis testing, and linear regression (偵測與估計)(2-4 hours)

Mendenhall and Sincich, Statistics for engineering and the sciences, 5/e, Prentice Hall. (selected from ch7,8,10)

For cognitive radio, telehealth disease detection, object movement tracking, etc)

1

statistics are about estimation (infinite possibilities) /detection (finite possibilities) in communication systems.

- Point estimate: ML/MAP/MMSE estimation is common in communication systems such as Weiner filter/Kalman filter.
- Interval estimate: confidence level- (inherently assume two hypotheses: equal or not equal)

- Neyman-Pearson detector (one kind of hypothesis testing): in sync vs. not in sync, target in radar or not, spectrum sensing in cognitive radio, etc.
- ML or MAP detector (one kind of hypothesis testing): demodulation, channel decoding etc.
- (optional) Linear regression: find best–fit (in minimum mean square error, MMSE, sense) line for path loss exponent etc.
- Weiner/Kalman filer

3

Chapter 7 General Problem Statement

Where y is rv with unknown parameters (e.g., μ , σ^2 , α , β - the parameters in question depend on y's distribution)

Naming convention:

 $\Theta \equiv$ a parameter of a pdf

 $\hat{\Theta} \equiv \text{estimate for } \Theta$

Characteristics of Good Estimators
$$\text{Let } \Theta = \mu_{y} \quad \Rightarrow \quad \hat{\Theta} = \overline{y} = \frac{1}{n} \sum_{i=1}^{n} y_{i}$$

⊽實驗值少一degree of freedom

What is $E(\overline{y})$? Is the result a desirable characteristic?

In general:

if $E(\hat{\Theta}) = \Theta$ then $\hat{\Theta}$ is unbiased estimator

if $E(\hat{\Theta}) \neq \Theta$ then $\hat{\Theta}$ is biased estimator

Sample variance (n-1) degree of freedom

Note:1) Θ is a rv

2) sample (實驗) variance

$$s^2 = \frac{\sum_{i=1}^{n} \left(y_i - \overline{y}\right)^2}{n-1}$$
 is an unbiased estimator of σ^2 (population理論 variance) proof: see example 7.1

Derivation:

$$\frac{\sum_{i=1}^{n} (y_i - \overline{y})^2}{n-1} = \frac{\sum_{i=1}^{n} y_i^2 - 2\overline{y} \sum_{i=1}^{n} y_i + n\overline{y}^2}{n-1} = \frac{\sum_{i=1}^{n} y_i^2 - 2\overline{y} n\overline{y} + n\overline{y}^2}{n-1}$$

$$\frac{\sum_{i=1}^{n} (y_{i} - \overline{y})^{2}}{n - 1} = \frac{\sum_{i=1}^{n} y_{i}^{2} - 2\overline{y}\sum_{i=1}^{n} y_{i} + n\overline{y}^{2}}{n - 1} = \frac{\sum_{i=1}^{n} y_{i}^{2} - 2\overline{y}n\overline{y} + n\overline{y}^{2}}{n - 1} = \frac{\sum_{i=1}^{n} y_{i}^{2} - 2\overline{y}n\overline{y} + n\overline{y}^{2}}{n - 1} = \frac{\sum_{i=1}^{n} y_{i}^{2} - n\overline{y}^{2}}{n - 1} = \frac{\sum_{i=1}^{n} y_{i}^{2} - n\overline{y}^{2}}{n - 1} = \frac{\sum_{i=1}^{n} y_{i}^{2} - n\overline{y}^{2}}{n - 1} = s^{2} \text{ (sample variance)}$$

Efficiency of Estimator

Which is the better estimator for θ ?

An efficient estimator has the minimum variance. Here the first estimator is more efficient than the second

-

Finding Estimator Values Where We Are Going

- Make estimate based on a sample of n observations
- Point estimate (ML, MAP, MMSE, etc.)
 - \blacksquare A single value estimate for Θ
 - For example, sample 10 Bernoulli trials of which 3 are S then 0.3 most likely value of p
- Interval estimate
 - \blacksquare A range estimate for Θ , with associated probability
 - For example, say that estimate for p is [0.25, 0.35] with 95% confidence

Formal Methods of Point Estimators Though Results Intuitive

Sample: y_1 =0.4 def/hr ... y_{10} =0.5 def/hr

What does the parameter λ represent?

Based on sample, how would you estimate λ ?

- Section 7.2 presents formal confirmation of intuition
 - Moment estimators
 - Method of maximum likelihood

9

Method of Moments

- Have an rv y with assumed distribution
 - Take sample of n observations (y₁, ..., y_n)
 - Parameters of distribution (i.e., Θ_1 , ..., Θ_j) found by solving

kth population moment= kth sample moment

Example Problem 7.8 Illustrate Method

- Assume that y~Bernoulli(p)
 - Took sample of n $(y_1, ..., y_n)$ 1st population moment= 1st sample moment (one equation solve one unknown)

$$E(y) = p \text{ set} = \hat{p}$$

$$\sum_{i=1}^{n} y_{i}$$

$$n = \overline{y} \text{ (pronouced as y_bar)}$$

$$\therefore \hat{p} = \overline{y}$$
A constant found from the sample

P.S. 2 unknown=> use 1st and 2nd moments

11

Maximum Likelihood Approach

- Assume y has some distribution characterized by $\theta_1, ..., \theta_i$
- Took sample of n observations (y₁, ..., y_n)
- What was probability I got sample (y₁, ..., y_n)?
 - L = $p(y_1,) p(y_2) ... p(y_n)$
 - Cannot solve since do not know θ₁, ..., θ_i
- Find $\theta_1, ..., \theta_j$ that max L (the probability that I got what I got (my sample of n observations)

Example Method of Maximum Likelihood

- Recall L = f(θ₁, ..., θ_i)
 - Want to find $\theta_1, ..., \theta_i$ that maximizes L
- Consider case where y~Binomial
 - Take sample n = 30, 18 people bought product

What is L as function of \hat{p} ?

$$L = {30 \choose 18} \hat{p}^{18} (1 - \hat{p})^{12}$$

Now solve for \hat{p} that max $L \Rightarrow \partial L/\partial \hat{p} = 0$

13

Moving Beyond Point Estimates Confidence Intervals

- Interval estimates
 - estimate of population parameter within a range
- Confidence coefficient
 - probability that parameter will lie within interval
- Confidence interval (combi of 2 above)
- Pivotal statistic
 - way of finding confidence interval
 - function only of sample observations & parameters of interest

General Form Confidence Interval

- Have y, a random variable with unknown distribution
 - \blacksquare Unknown distribution characterized by θ

Let $\hat{\Theta}$ be estimator for Θ .

If
$$\hat{\Theta} \sim N(\mu_{\hat{\Theta}}, \sigma_{\hat{\Theta}}^2)$$
 then

$$[\mu_{\hat{\Theta}} - \sigma_{\hat{\Theta}}, \mu_{\hat{\Theta}} + \sigma_{\hat{\Theta}})$$
 is 68.3% CI

$$[\mu_{\hat{\Theta}} - 2\sigma_{\hat{\Theta}}, \mu_{\hat{\Theta}} + 2\sigma_{\hat{\Theta}})$$
 is 95.4% CI

民調95%信心水準

$$[\mu_{\hat{\Theta}} - 3\sigma_{\hat{\Theta}}, \mu_{\hat{\Theta}} + 3\sigma_{\hat{\Theta}})$$
 is 99.7% CI

15

Variance of sample mean

$$\overline{y} = \frac{\sum_{i=1}^{n} y_i}{n} \text{ assume } y_i \quad \text{i.i.d.}$$

$$\sigma_{\overline{y}}^2 = \frac{n\sigma_y^2}{n^2} = \frac{\sigma_y^2}{n}$$

$$\sigma_{\bar{y}} = \frac{\sigma_{y}}{\sqrt{n}}$$

Form of CI & Correct Interpretation (large sample=>CLT)

$$(1-\alpha)100\% \text{ CI for } \mu_y = (\text{LCL}, \text{UCL})$$
$$= \left[\overline{y}_0 - z_{\alpha/2} \frac{s_0}{\sqrt{n}}, \overline{y}_0 + z_{\alpha/2} \frac{s_0}{\sqrt{n}}\right]$$

When the population standard deviation σ_0 is unknown, use sample standard deviation σ_0 (p.6) instead.

Practical interpretation of a Confidence Interval: (p.278 text)

If a $(1-\alpha)100\%$ for a parameter is (LCL, UCL), then we are $(1-\alpha)100\%$ confident that the parameter fall between LCL and UCL

	TABLE	TABLE 5 Normal Curve Areas										
					f(z)							
					1 /							
						0	1					
	Z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09	
	.0	.0000	.0040	.0080	.0120	.0160	.0199	.0239	.0279	.0319	.0359	
	.1	.0398	.0438	0478	4 4517	.0557	.0596	.0636	.0675	.0714	.0753	
	.2	.0793	.0832	$Z_{.087}^{047}$ [O.	.0910	.0948	.0987	.1026	.1064	.1103	.1141	
C. L. L.	3	.1179	.1217	1255	.1293	.1331	.1368	.1406	.1443	.1480	.1517	
z-table	A	.1554	.1591	.1628	.1664	.1700	.1736	.1772	.1808	.1844	.1879	
	.5	.1915	.1950	.1985	.2019	.2054	.2088	.2123	.2157	.2190	.2224	
	.6	.2257	.2291	.2324	2357	.2389	.2422	.2454	.2486	.2517	.2549	
	.7	.2580	.2611	.2642	.2673	.2704	.2734	.2764	.2794	.2823	.2852	
	.8	.2881	.2910	.2939	.2967	2995	.3023	.3051	.3078	.3106	3133	
	.9	.3159	.3186	3212	.3238	3264	.3289	.3315	.3340	.3365	3389	
	1.0	.3413	.3438	.3461	.3485	.3508	.3531	.3554	3577	.3599	3621	
	1.1	.3643	.3665	.3686	.3708	3729	.3749	.3770	.3790	.3810	3830	
	1.2	.4032	.3869 .4049	.3888	.3907	.3925	.4115	.3962 .4131	.3980 .4147	.3997	A015 A177	
	1.4	4192	.4207	4222	4236	.4251	.4265	.4279	4292	4306	4319	
	1.5	.4332	.4345	4357	4370	.4382	.4394	4406	.4418	4429	4441	
	1.6	.4452	.4463	4474	,4484	4495	.4505	.4515	4525	4535	A545	
	1.7	4554	.4564	4573	4582	.4591	4599	.4608	4616	4625	4633	
	1.8	.4641	4649	4656	4664	.4671	.4678	,4686	.4693	.4699	.4706	
	1.9	.4713	.4719	4726	4732	.4738	4744	.4750	4756	.4761	.4767	
	2.0	.4772	.4778	4783	4788	4793	4798	.4803	.4808	4812	4817	
	2.1	.4821	.4826	.4830	4834	.4838	.4842	.4846	.4850	4854	.4857	
	2.2	.4861	.4864	.4868	.4871	.4875	.4878	.4881	4884	.4887	4890	
	2.3	.4893	.4896	.4898	.4901	.4904	.4906	.4909	.4911	.4913	.4916	
	2.4	.4918	.4920	.4922	.4925	.4927	.4929	.4931	4932	.4934	.4936	
	2.5	.4938	.4940	.4941	.4943	.4945	.4946	.4948	.4949	.4951	.4952	
	2.6	.4953	.4955	.4956	.4957	.4959	.4960	.4961	.4962	.4963	.4964	
	2.7	.4965	A966	.4967	.4968	.4969	.4970	.4971	.4972	.4973	.4974	
	2.8	.4974	4975	.4976	.4977	.4977	.4978	,4979	.4979	.4980	.4981	
	2.9	.4981	.4982	.4982	.4983	.4984	.4984	.4985	.4985	.4986	.4986	
	3.0	.4987	.4987	.4987	.4988	.4988	.4989	.4989	.4989	.4990	.4990	

(pp.20-29 optional)
Small sample: CLT doe not apply

- In previous statement for CI, large sample means Gaussian distribution by central limit theorem (CLT)
- Now in small sample case, student's T distribution with degree of freedom n-1 replaces N(0,1) distribution, and sample variance replaces variance.

Small Sample CI

$$(1-\alpha)100\%$$
 CI for μ_y

$$[\overline{y}_0 - t_{\alpha/2} \frac{s_0}{\sqrt{n}}, \overline{y}_0 + t_{\alpha/2} \frac{s_0}{\sqrt{n}}]$$

Confidence Interval of $(\mu_{y1}$ - $\mu_{y2})$

$$(1-\alpha)100\% \text{ CI for } (\mu_{y_1} - \mu_{y_2})$$

$$[(\overline{y}_1) - (\overline{y}_2) \pm z_{\alpha_2} \sigma_{\overline{y}_1 - \overline{y}_2}]$$

What are these?

What is this variance?

How can we get this value?

$$[(\overline{y}_{1} - \overline{y}_{2}) \pm z_{\alpha/2} (\frac{s_{y_{1}}^{2} - \mu_{y_{2}}}{n_{1}})^{1/2}]$$
 Assumes a large sample

What If n₁ & n₂ Not Large?

The rv w \sim N only if n_1 and n_2 are >30, what if not true?

Substitute $t_{\alpha/2}$ for $z_{\alpha/2}$, based on previous discussions:

- What assumption is needed about y_1 and y_2 ?
- Note that degrees of freedom (i.e., v) now play a role

Two cases possible: \longrightarrow Why worry? Since have define υ & have two samples: n_1 and n_2

- 2) cannot assume $\sigma_1 = \sigma_2 \longrightarrow$ Have to come up with a value of υ based on n_1 and n_2 (skipped)

24

Confidence Interval of $(\mu_{y1}$ - $\mu_{y2})$ Assume $\sigma_1 = \sigma_2$ (實際標準差) s:實驗標準差 (樣本不足)

Small Sample $(1-\alpha)100\%$ CI for $(\mu_{y_1} - \mu_{y_2})$

$$[(\overline{y}_{1} - \overline{y}_{2}) \pm t_{o}(\frac{s_{p}^{2}}{n_{1}} + \frac{s_{p}^{2}}{n_{2}})^{\frac{1}{2}}]$$

$$v = n_{1} + n_{2} - 2$$

$$s_{p}^{2} = \frac{(n_{1} - 1)s_{y_{1}}^{2} + (n_{2} - 1)s_{y_{2}}^{2}}{n_{1} + n_{2} - 2}$$
Degrees of freedom n1-1+n2-1 (combine)
Sample

Degrees of freedom

25

鋁合金

7.37 High-strength aluminum alloys. Mechanical engineers have developed a new high-strength aluminum alloy for use inantisubmarine aircraft, tankers, and long-range↓

bombers. (JOM, Jan. 2003.) The new alloy is obtained by applying a retrogression and reaging (RAA) heat treatment to the current strongest aluminum alloy. A series of strength tests were conducted to compare the new RAA alloy to the current strongest alloy. Three specimens of each type of aluminum alloy were produced and the yield strength (measured in mega-pascals, MPa) of each specimen determined. The results are summarized in the table.

	Alloy Type			
	RAA	Current		
Number of specimens	3	3		
Mean yield strength (MPa)	641.0	592.7		
Standard deviation	19.3 s _{y1} s	s _{y1} s _{y2} given 12.4		

- a. Estimate the difference between the mean yield strengths of the two alloys using a 95% confidence interval.
- b. The researchers concluded that the RAA-processed aluminum alloy is superior to the current strongest aluminum alloy with respect to yield strength. Do you agree?

27

ANS: (small sample variance given, p25

a. Let μ_1 = mean yield strength of the RAA alloy and μ_2 = mean yield strength of the current alloy. The large sample confidence interval for $\mu_1 - \mu_2$ is:

$$(\overline{y}_1 - \overline{y}_2) \pm t_{\alpha/2} s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$$
where $s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2} = \frac{(3 - 1)(19.3)^2 + (3 - 1)(12.4)^2}{3 + 3 - 2} = 263.125$

$$s_p = \sqrt{s_p^2} = \sqrt{263.125} = 16.221$$

ANS:

For confidence coefficient .95, $\alpha = 1 - .95 = .05$ and $\alpha/2 = .05/2 = .025$. From Table 7 in Appendix B, with df = $n_1 + n_2 - 2 = 3 + 3 - 2 = 4$, $t_{.025} = 2.776$. The 95% confidence interval is:

$$(641.0 - 592.7) \pm 2.776(16.221)\sqrt{\frac{1}{3} + \frac{1}{3}} \Rightarrow 48.3 \pm 36.77 \Rightarrow (11.53, 85.07)$$

b. We agree with the researchers. All of the values in the confidence interval are above the value of 0. This indicates that the mean yield strength of the RAA alloy exceeds the mean yield strength of the current alloy.

29

Ch. 8 Hypothesis Testing: Format Problem as Two Hypothesis

- Starting point of process
 - Claim you wish to test
 - Is a new design lowering warranty costs?
- Pose as two alternative hypothesis
 - Null hypothesis (H₀)
 - ✓ The status quo 現狀 (warranty costs stay the same)
 - Alternative hypothesis (H_A)
 - The research question (warranty costs are reduced)
- Burden of proof is to support HA. Is this similar to our system of law (you are assumed innocent 政府要證明頂新油品有害人體)?
- Ch7 and ch8 are related:

95% (1- α) confidence interval (H₀ vs. H_A =not H₀) =5% false alarm (α)

Politics, industrial engineering radar, communications

Rejection Region

$$\begin{aligned} z_{\alpha/2} &= 1.96 = \frac{y_0 - \mu_{\,\bar{y}}}{\sigma_{\,\bar{y}}} & \text{Textbook backcover z table} \\ &\approx \frac{y_0 - \mu_{\,\bar{y}}}{s/\sqrt{n}} \\ &= \frac{y_0 - 1.96}{0.712} \\ y_0 &= (0.712)(1.96) + 16 = 17.40 \end{aligned}$$

35

Rejection Region In Terms of Z

Next, convert sample statistic to equivalent z value & see if falls in rejection region.

Two & one Tail Tests

- Previous hypothesis test called two tailed
 - Rejection region both tails of y_bar pdf
 - ✓ Assuming H₀ is true
- Two tailed test take form
 - H_0 : $\mu = \mu_0$
 - H_A : $\mu \neq \mu_0$
- One tailed test take form

• H_0 : $\mu = \mu_0$

- H_A: $\mu > \mu_0$ (or, $\mu < \mu_0$)

Modify previous example:

 H_0 : $\mu = 16$

 H_A : μ < 16

Computation

Given that α = 0.05, why is critical value for rejection = 14.83?

$$z_{\alpha} = 1.645 = \frac{y_0 - 16}{0.712}$$
$$y_0 = (0.712)(1.645) + 16 = 17.17$$

Textbook backcover z table $P(0\sim1.645)=0.45$ => $P(-\infty\sim1.645)=0.95=1-\alpha$

By symmetry, critical value (boundary) = 2*16-17.17 = 14.83sample mean = 14.5 < 14.83, so reject H₀

39

Back to Decision: What Are Potential Errors?

Who defines α & β ? What are ideal values of α & β ?

What do you think happens to β as α decreases?

True States of Nature

Decision made

	H ₀ True	H _A True			
Not Reject	OK	Type II error			
$\mathbf{H_0}$	Prob= 1- α	Prob= β			
Reject H ₀	Type I error	OK			
	Prob= α	$Prob=1-\beta$			

This is defined as power of the test

Hypothesis Testing: Designing the Experiment

- As experimenter can modify
 - n the number of observations
 - α the probability of Type I error (prob. of false alarm)
 - β the probability of Type II error (prob. of miss)
- What are impacts of increasing n?
- What is impact of decreasing α?
- What is impact of decreasing β?

Calculating β : Assuming H_A: μ = 14.0

= 0.122

- $\beta = p(\text{not reject H}_0 \mid H_A \text{ true})$
 - Now assume that $\mu = 14.0$

```
\begin{split} \beta_1 &= p(\text{not reject H}_0 \mid \mu = 14.0 \,) \\ &= p(\ y\_\text{bar}_0 > 14.83 \mid \mu = 14.0) \\ &= p(\ z > [(14.83 - 14.0) / 0.712] \mid \mu = 14.0) \\ &= p(\ z > 1.16 \mid \mu = 14.0) \end{split}
```

43

(pp.44-62 optional) Hypothesis Testing (Sec. 8.7~)

- Testing the difference between two population means (independent samples)
- Did we do this using confidence intervals?
 - What was the key value we were looking for in the CI?
 - Why?
- Let's walk through an example

Example 8.13 (large sample: n>30)

We want to see if new process an improvement over old

New Process

Old Process

 $n_1 = 50$

 $n_2 = 30$

 $\overline{y}_1 = 1,255$ calories

 $\overline{y}_2 = 1,330 \text{ calories}$

 $s_1 = 215$ calories

 $s_2 = 238$ calories

Collect sample data

 μ_1 = average calories per loaf using new process μ_2 = average calories per loaf using old process

Interested in whether $\mu_1 - \mu_2$ is less than zero

45

Set Up Test of Hypothesis

Establish null and alternate hypotheses

$$H_0: (\mu_1 - \mu_2) = 0$$
 (i.e., $D_0 = 0$)

$$H_a: (\mu_1 - \mu_2) < 0 \text{ (i.e., } \mu_1 < \mu_2)$$

Calculate test statistic

$$z = \frac{\left(\overline{y}_1 - \overline{y}_2\right) - D_0}{\sigma_{(\overline{y}_1 - \overline{y}_2)}} = \frac{\left(\overline{y}_1 - \overline{y}_2\right) - 0}{\sigma_{(\overline{y}_1 - \overline{y}_2)}}$$

Difference in Population Means: Matched Pairs

- Large and small sample
- Note the assumption of normality when using small sample test
- Will work through an example problem manually and
- Discuss the observed value of the test statistic (p-value)

Example 8.15

- Cloud seeding (man-made rain) experiment
- Measuring monthly rainfall for two different areas
- Is rainfall higher in the seeded farm area?

Farm Area	1	2	3	4	5	6
Seeded	1.75	2.12	1.53	1.1	1.7	2.42
Unseeded	1.62	1.83	1.4	0.75	1.71	2.33
difference	0.13	0.29	0.13	0.35	-0.01	0.09

Seeded-unseeded mean and standard deviation

$$\mu_d = .1633$$

$$\sigma_d = .13307$$

49

Set Up Test of Hypothesis

 μ_1 = mean monthly precip for seeded areas μ_2 = mean monthly precip for unseeded areas

Establish null and alternate hypotheses

$$H_0: (\mu_1 - \mu_2) = 0$$

 $H_a: (\mu_1 - \mu_2) > 0$
(improved)

Calculate test statistic

$$t = \frac{\overline{d} - D_0}{s_d / \sqrt{n}}$$

 s_d/\sqrt{n} assumption why "t"? Samp! s must we size <30 make?

What

Rejection Region

 $t > t_{\alpha}$

t-distribution Assumptions

- Differences are approximately normally distributed
- How would we test for normality?
- What are the degrees of freedom for this calculation?
- Where can we go to get our t-critical value?
 - Remember: based on v=n-1=6-1=5 degrees of freedom

Definitions
$$SS_{xy} = \sum_{i=1}^{n} (x_i - \overline{x})(y_i + \overline{y})$$

$$= \sum_{i} x_i y_i - \frac{\sum_{i} x_i \sum_{i} y_i}{n}$$

$$SS_{xx} = \sum_{i=1}^{n} (x_i + \overline{x})^2$$

$$= \sum_{i} x_i^2 - \frac{(\sum_{i} x_i)^2}{n}$$

$$= \sum_{i} x_i^2 - \frac{(\sum_{i} x_i)^2}{n}$$

$$= \sum_{i} x_i^2 - \frac{(\sum_{i} x_i)^2}{n}$$

Finding Coefficients Simple Example

•
$$\hat{\beta}_1 = SS_{xy} / SS_{xx}$$

=(-2*-1+-1*-1+0*0+1*0+2*2)/(4+1+0+1+4)

$$=7/10 = 0.7$$

•
$$\hat{\beta}_0 = \overline{y} - \hat{\beta}_1 \overline{x} = 2 - (0.7)(3) = -0.1$$

Resultant model

$$\hat{y} = -0.1 + 0.7 x$$

Next steps: trying to describe $\hat{\beta}_0$ & $\hat{\beta}_1$ and using Excel

61

Using Excel Linear Regression Models

- Excel offers two linear regression approaches
 - TOOLS/DATA ANALYSIS/REGRESSION
 - Create scatterplot
 - √ double click on data set
 - ✓ Select CHART/Add Trendline
- Next step: describing estimators for β_0 & β_1

Introduction to Wiener filters and Kalman filters

(1 hour)

Shu-Ming

Orthogonality principle

Assume x is the column vector to be estimated, and y is the observation column vector.

The linear estimator that minimize $E[(x-wy)^T(x-wy)]$ is the estimator w such that $E[(x-wy)y^T] = 0$

That is, the estimation error and observation (which the estimation is based on) is orthogonal

Also assume x, w, y are all real.

proof: Assume G is another estimator

$$E[(Gy - x)^{T}(Gy - x)] = E[(Gy - wy + wy - x)^{T}(Gy - wy + wy - x)]$$

$$= E[(Gy - wy)^{T}(Gy - wy)] + E[(wy - x)^{T}(wy - x)]$$

$$\left(NoteE[(wy - x)^{T}(Gy - wy)] = trace(E[(wy - x)(Gy - wy)^{T}])\right)$$

$$= trace(E[(wy - x)y^{T}](G - w)^{T}) = 0 \text{ by given condition}$$

$$\geq E[(wy - x)^{T}(wy - x)] \text{ Q.E.D.}$$
Shu-Ming

Wiener filter (linear MMSE)
$$\hat{x} = wy$$

$$-E[(x-wy)y^T] = 0$$

$$E[xy^T] = wE[yy^T]$$

$$w = R_{xy}R_{yy}^{-1}$$
Shu-Ming

Summary of Kalman filter (recursive linear MMSE, underlying AR1 model)

$$\begin{cases} x_{n+1} = a_n x_n + u_n, & E[u_n] = 0, E[u_n^2] = \sigma_u^2 \\ y_n = c_n x_n + n_n, & E[n_n] = 0, E[n_n^2] = \sigma_n^2 \end{cases}$$

$$\alpha_n = y_n - \hat{y}_n, & \hat{y}_n = \sum_{i=1}^{n-1} \frac{E[y_n \alpha_i] \alpha_i}{E[\alpha_i^2]}$$

$$\varepsilon_n = x_n - \hat{x}_n, & \hat{x}_n = \sum_{i=1}^{n-1} \frac{E[x_n \alpha_i] \alpha_i}{E[\alpha_i^2]}$$
iteration

$$\alpha_n = y_n - \hat{y}_n, \ \hat{y}_n = \sum_{i=1}^{n-1} \frac{E[y_n \alpha_i] \alpha_i}{E[\alpha_i^2]}$$

$$\varepsilon_n = x_n - \hat{x}_n, \quad \hat{x}_n = \sum_{i=1}^{n-1} \frac{E[x_n \alpha_i] \alpha_i}{E[\alpha_i^2]}$$

(A)
$$\alpha_n = y_n - c_n \hat{x}_n$$

iteration

(A)
$$\alpha_n = y_n - c_n \hat{x}_n$$

(B)
$$\begin{cases} g_n = \frac{a_n c_n E[\varepsilon_n^2]}{c_n^2 E[\varepsilon_n^2] + \sigma_n^2} \text{Kalman gain} \\ \hat{x}_{n+1} = a_n \hat{x}_n + g_n \alpha_n \end{cases}$$
(C) $E[\varepsilon_{n+1}^2] = a_n (a_n - g_n c_n) E[\varepsilon_n^2] + \sigma_n^2$

(C)
$$E[\varepsilon_{n+1}^2] = a_n(a_n - g_nc_n)E[\varepsilon_n^2] + \sigma_u^2$$

Shu-Ming

Comparisons

- Kalman filters: the values at time n+1 depend on the values at time n only (symbol by symbol processing) but assume additional model on signal x (AR underlying model)
- Wiener filter: block by block processing
- Thus Kalman filter is a popular adaptive filter.

Shu-Ming

Applications of Kalman filters

- Tracking the position of a moving target: The parameters are calculated from military exercise data.
- Tracking the channel coefficient of time-varying fading channels: The parameters are calculated from training sequences.

Shu-Ming