Class core values

- 1. Be **respect**ful to yourself and others
- 2. Be **confident** and believe in yourself
- 3. Always do your **best**
- 4. Be **cooperative**
- 5. Be **creative**
- 6. Have **fun**
- 7. Be **patient** with yourself while you learn
- 8. Don't be shy to **ask "stupid" questions**

Learning Objectives

- Evaluate a problem to see if computational de novo design is a good fit for it
- 2. Understand the underlying concept of de novo design
- 3. Identify challenges in assessing energies of the systems
- 4. Describe a force field and its basic components
- Identify proper minimization methods to use for design problems

De novo design

De novo design is the process of generating proteins from scratch

Creating <u>new</u> proteins often by physics-based and heuristic methods

Definitions from Oxford Languages

De novo design is the process of generating proteins from scratch

Creating <u>new</u> proteins often by physics-based and heuristic methods

Advantage	Disadvantage
If it works, it generates really good proteins because it considers all the rules	Low success rate
Novelty = less chance of resistance/defense	novel structures → may cause unknown problems downstream
Can create novel function/structure and is not limited to what we know	While not dependent on prior knowledge, still needs the rules
Great for specificity and full control	

In its most general form, de novo design is the reverse of structure prediction

Monte Carlo Fragment Assembly

Physic-based Atomic Refinement

In its most general form, de novo design is the reverse of structure prediction

Monte Carlo Fragment Assembly

Physic-based Atomic Refinement

...TRGEEGCQETSQTGRDKNQVEGEVQIVS TATQTFLATSINGVLWTVYHGAGTRTIASP... Final Sequence

> Scoring based on structural features

Sidechain assignment to stabilize structure

Fragment assembly

The general process of de novo design

1. Is it describable?

- 1. Is it **describable**?
- 2. Is it solvable?

- 1. Is it **describable**?
- 2. Is it solvable?
- 3. Is it **testable**?

- 1. Is it **describable**?
- 2. Is it solvable?
- 3. Is it **testable**?
- 4. Is it tractable?

- 1. Is it **describable**?
- 2. Is it **solvable**?
- 3. Is it **testable**?
- 4. Is it tractable?
- 5. Is it **non-trivial**?

- Is it describable?
- 2. Is it **solvable**?
- 3. Is it **testable**?
- 4. Is it tractable?
- 5. Is it **non-trivial**?

Designing proteins for function and predicting their structure are examples of good design problems.

Everything lies in the objective function

1. Pen-and-paper design

Everything lies in the objective function

- 1. Pen-and-paper design
 - a. Physico-chemical knowledge about proteins and amino acids

Everything lies in the objective function

- 1. Pen-and-paper design
- 2. Automated design
 - a. Gibbs free energy

Quantum mechanical calculations of free energy are intractable

Force fields are generated to approximate the energies of the system

Newtonian systems that simplify interactions among molecules

Force fields are generated to approximate the energies of the system

Newtonian systems that simplify interactions among molecules

Reactions Involving Hydrogen Molecules and Atoms

J. Chem. Phys. 4, 170 (1936); https://doi.org/10.1063/1.1749815

J. Hirschfelder, H. Eyring, and B. Topley

In class activity

Writing up a simple forcefield

E = Intermolecular interactions + Intramolecular interactions

Intermolecular interactions + Intramolecular interactions

$$F \longleftarrow (+q_1) \qquad (+q_2) \longrightarrow F$$

Like Charges Repel

$$+q_1$$
 \longrightarrow F F Unlike Charges Attract

$$F = \frac{1}{4\pi\varepsilon_0} \left(\frac{q_1 q_2}{r^2} \right) = k \frac{q_1 q_2}{r^2}$$

$$k \approx 9 \times 10^9 N m^2 / C^2$$

Coulomb's law

E = Intermolecular interactions +

Intramolecular interactions

Like Charges Repel

Unlike Charges Attract

$$F = \frac{1}{4\pi\varepsilon_0} \left(\frac{q_1 q_2}{r^2} \right) = k \frac{q_1 q_2}{r^2}$$

$$k \approx 9 \times 10^9 \ N \ m^2 / C^2$$

Lennard-Jones potential

Coulomb's law

$$E$$
 = Intermolecular interactions + Intramolecular interactions

$$E = \Sigma_{\frac{1}{2}}^{1} K_{b} (b - b_{0})^{2} + \Sigma_{\frac{1}{2}}^{1} K_{\tau} (\tau - \tau_{0})^{2} + \Sigma_{\frac{1}{2}}^{1} K_{\theta} \{1 + \cos(n\theta - \delta)\}$$
all bonds all bond angles all dihedral angles
$$+ \Sigma_{\epsilon_{ij}} \{(r_{ij}^{0}/r_{ij})^{12} - 2 (r_{ij}^{0}/r_{ij})^{6}\} + \Sigma_{\frac{1}{2}}^{1} w (x_{i} - x_{i}^{0})^{2}$$
all non-bonded all atomic pairs co-ordinates

Force field generation has been a long quest

CHARMM: A program for macromolecular energy, minimization, and dynamics calculations[†]

Bernard R. Brooks, Robert E. Bruccoleri, Barry D. Olafson, David J. States, S. Swaminathan, Martin Karplus

First published: Summer 1983 | https://doi.org/10.1002/jcc.540040211 | Citations: 10,422

Force field generation has been a long quest

Intramolecular (internal, bonded terms)

$$\sum_{bonds} K_b (b - b_0)^2 + \sum_{angles} K_\theta (\theta - \theta_0)^2 + \sum_{dihedrals} K_\varphi (1 + \cos(n\varphi - \delta)) + \sum_{improper} K \phi (\phi - \phi_0)^2 + \sum_{Urey-Bradley} K_{UB} (r_{1,3} - r_{1,3;0})^2$$
dihedrals
$$(1)$$

Intermolecular (external, nonbonded terms)

$$\sum_{nonbonded} \frac{q_i q_j}{4\pi D r_{ij}} + \varepsilon_{ij} \left[\left(\frac{R_{\min,ij}}{r_{ij}} \right)^{12} - 2 \left(\frac{R_{\min,ij}}{r_{ij}} \right)^6 \right]$$

Force field generation has been a long quest

Ariel Warshel

Martin Karplus

Michael Levitt

Force fields generated for molecular dynamics are not well suited for design

Design force fields simplify physics-based terms and combine them with heuristic terms

$$\Delta E_{\text{total}} = \sum_{i} w_{i} E_{i}(\Theta_{i}, \text{ aa}_{i})$$

Table 1. Summary of Terms in REF15 for Proteins

term	description	weight	units	ref(s
fa_atr	attractive energy between two atoms on different residues separated by a distance d	1.0	kcal/mol	5, 6
fa_rep	repulsive energy between two atoms on different residues separated by a distance d	0.55	kcal/mol	5, 6
fa_intra_rep	repulsive energy between two atoms on the same residue separated by a distance d	0.005	kcal/mol	5, 6
fa_sol	Gaussian exclusion implicit solvation energy between protein atoms in different residues	1.0	kcal/mol	36
lk_ball_wtd	orientation-dependent solvation of polar atoms assuming ideal water geometry	1.0	kcal/mol	50, 7
fa_intra_sol	Gaussian exclusion implicit solvation energy between protein atoms in the same residue	1.0	kcal/mol	36
fa_elec	energy of interaction between two nonbonded charged atoms separated by a distance d	1.0	kcal/mol	50
hbond_lr_bb	energy of short-range hydrogen bonds	1.0	kcal/mol	38, 4
hbond_sr_bb	energy of long-range hydrogen bonds	1.0	kcal/mol	38, 4
hbond_bb_sc	energy of backbone-side-chain hydrogen bonds	1.0	kcal/mol	38, 4
hbond_sc	energy of side-chain-side-chain hydrogen bonds	1.0	kcal/mol	38, 4
dslf_fa13	energy of disulfide bridges	1.25	kcal/mol	49
rama_prepro	probability of backbone ϕ , ψ angles given the amino acid type	(0.45 kcal/mol)/kT	kT	50, 5
p_aa_pp	probability of amino acid identity given backbone ϕ , ψ angles	(0.4 kcal/mol)/kT	kT	51
fa_dun	probability that a chosen rotamer is native-like given backbone ϕ , ψ angles	(0.7 kcal/mol)/kT	kT	52
omega	backbone-dependent penalty for cis ω dihedrals that deviate from 0° and trans ω dihedrals that deviate from 180°	(0.6 kcal/mol)/AU	AU ^a	72
pro_close	penalty for an open proline ring and proline ω bonding energy	(1.25 kcal/mol)/AU	AU	51
yhh_planarity	sinusoidal penalty for nonplanar tyrosine χ_3 dihedral angle	(0.625 kcal/mol)/AU	AU	49
ref	reference energies for amino acid types	(1.0 kcal/mol)/AU	AU	1, 5

 $^{^{}a}$ AU = arbitrary units.

Table 1. Summary of Terms in REF15 for Proteins

term	description	weight	units	ref(s)
fa_atr	attractive energy between two atoms on different residues separated by a distance d	1.0	kcal/mol	5, 6
fa_rep	repulsive energy between two atoms on different residues separated by a distance d	0.55	kcal/mol	5, 6
fa_intra_rep	repulsive energy between two atoms on the same residue separated by a distance d	0.005	kcal/mol	5, 6
fa_sol	Gaussian exclusion implicit solvation energy between protein atoms in different residues	1.0	kcal/mol	36
lk_ball_wtd	orientation-dependent solvation of polar atoms assuming ideal water geometry	1.0	kcal/mol	50, 71
fa_intra_sol	Gaussian exclusion implicit solvation energy between protein atoms in the same residue	1.0	kcal/mol	36
fa_elec	energy of interaction between two nonbonded charged atoms separated by a distance d	1.0	kcal/mol	50
hbond_lr_bb	energy of short-range hydrogen bonds	1.0	kcal/mol	38, 49
hbond sr bb	energy of long-range hydrogen bonds	1.0	kcal/mol	38, 49
hbond_bb_sc	energy of backbone-side-chain hydrogen bonds	1.0	kcal/mol	38, 49
hbond_sc	energy of side-chain-side-chain hydrogen bonds	1.0	kcal/mol	38, 49
dslf_fa13	energy of disulfide bridges	1.25	kcal/mol	49
rama_prepro	probability of backbone ϕ , ψ angles given the amino acid type	(0.45 kcal/mol)/kT	kT	50, 51
p_aa_pp	probability of amino acid identity given backbone ϕ, ψ angles	(0.4 kcal/mol)/kT	kT	51
fa_dun	probability that a chosen rotamer is native-like given backbone ϕ, ψ angles	(0.7 kcal/mol)/kT	kT	52
omega	backbone-dependent penalty for cis ω dihedrals that deviate from 0° and trans ω dihedrals that deviate from 180°	(0.6 kcal/mol)/AU	AU ^a	72
pro_close	penalty for an open proline ring and proline ω bonding energy	(1.25 kcal/mol)/AU	AU	51
yhh_planarity	sinusoidal penalty for nonplanar tyrosine χ_3 dihedral angle	(0.625 kcal/mol)/AU	AU	49
ref	reference energies for amino acid types	(1.0 kcal/mol)/AU	AU	1, 51
ATT - arbitrary unit	and Andrews			

Table 1. Summary of Terms in REF15 for Proteins

term	description	weight	units	ref(s)
fa_atr	attractive energy between two atoms on different residues separated by a distance d	1.0	kcal/mol	5, 6
fa_rep	repulsive energy between two atoms on different residues separated by a distance d	0.55	kcal/mol	5, 6
fa_intra_rep	repulsive energy between two atoms on the same residue separated by a distance d	0.005	kcal/mol	5, 6
fa_sol	Gaussian exclusion implicit solvation energy between protein atoms in different residues	1.0	kcal/mol	36
lk_ball_wtd	orientation-dependent solvation of polar atoms assuming ideal water geometry	1.0	kcal/mol	50, 71
fa_intra_sol	Gaussian exclusion implicit solvation energy between protein atoms in the same residue	1.0	kcal/mol	36
fa_elec	energy of interaction between two nonbonded charged atoms separated by a distance d	1.0	kcal/mol	50
hbond_lr_bb	energy of short-range hydrogen bonds	1.0	kcal/mol	38, 49
hbond_sr_bb	energy of long-range hydrogen bonds	1.0	kcal/mol	38, 49
hbond_bb_sc	energy of backbone-side-chain hydrogen bonds	1.0	kcal/mol	38, 49
hbond_sc	energy of side-chain-side-chain hydrogen bonds	1.0	kcal/mol	38, 49
dslf_fa13	energy of disulfide bridges	1.25	kcal/mol	49
rama_prepro	probability of backbone ϕ , ψ angles given the amino acid type	(0.45 kcal/mol)/kT	kT	50, 51
p_aa_pp	probability of amino acid identity given backbone ϕ, ψ angles	(0.4 kcal/mol)/kT	kT	51
fa_dun	probability that a chosen rotamer is native-like given backbone ϕ,ψ angles	(0.7 kcal/mol)/kT	kT	52
omega	backbone-dependent penalty for cis ω dihedrals that deviate from 0° and trans ω dihedrals that deviate from 180°	(0.6 kcal/mol)/AU	AU^a	72
pro_close	penalty for an open proline ring and proline ω bonding energy	(1.25 kcal/mol)/AU	AU	51
yhh_planarity	sinusoidal penalty for nonplanar tyrosine χ_3 dihedral angle	(0.625 kcal/mol)/AU	AU	49
ref	reference energies for amino acid types	(1.0 kcal/mol)/AU	AU	1, 51

 $^{^{}a}$ AU = arbitrary units.

Force fields makes assumptions/simplifications

Force fields makes assumptions/simplifications

→ they must be parameterized/trained

Force fields makes assumptions/simplifications → they must be parameterized/trained

In class activity

Score optimization

- 1. Brute-force trial of all possible cases
- 2. Branching and dead-end elimination
- 3. Heuristic approaches

In class activity

Finding the minimum

 Brute-force trial of all possible cases

- Brute-force trial of all possible cases
- Branching and dead-end elimination

- Brute-force trial of all possible cases
- Branching and dead-end elimination
- 3. Heuristic approaches

- Brute-force trial of all possible cases
- Branching and dead-end elimination
- 3. Heuristic approaches

For the next lecture:

- 1. Read JC paper moderated by group III
- 2. Keep working on your specific aims!

Next lecture: To control function is to control structure

