Venkata Raghu Teja Kumar Gollapudi (001529656)

Program Structures & Algorithms Fall 2021

Assignment No. 5

Task

Your task is to implement a parallel sorting algorithm such that each partition of the array is sorted in parallel. You will consider two different schemes for deciding whether to sort in parallel.

- 1. A cutoff (defaults to, say, 1000) which you will update according to the first argument in the command line when running. It's your job to experiment and come up with a good value for this cutoff. If there are fewer elements to sort than the cutoff, then you should use the system sort instead.
- 2. Recursion depth or the number of available threads. Using this determination, you might decide on an ideal number (t) of separate threads (stick to powers of 2) and arrange for that number of partitions to be parallelized (by preventing recursion after the depth of *lg t* is reached).
- 3. An appropriate combination of these.

Output

Here, I set the degree of parallelism in the multiples of 2 while keeping the base as 1. For the experiments, I kept changing the cutoff values and the array sizes to test the sorting to its optimal level.

I have used 3 different array sizes of length 500000, 1 million and 2 million.

Arraysize = 500000 Thread 1 Thread 2 Thread 4 Thread 8 Thread 16 Thread 32 Thread 64 Thread 128 Thread 256 Cutoff Cutoff Cutoff Cutoff Time Cutoff Time Cutoff Time Time Time Cutoff Time Cutoff Time Cutoff Time Time

Arraysize = 1000000																	
Thread 1		Thread 2		Thread 4		Thread 8		Thread 16		Thread 32		Thread 64		Thread 128		Thread 256	
Cutoff	Time	Cutoff	Time	Cutoff	Time	Cutoff	Time	Cutoff	Time	Cutoff	Time	Cutoff	Time	Cutoff	Time	Cutoff	Time
50000	1442	50000	744	50000	779	50000	839	50000	768	50000	589	50000	576	50000	536	50000	568
100000	892	100000	768	100000	654	100000	565	100000	528	100000	556	100000	560	100000	536	100000	534
150000	1080	150000	856	150000	696	150000	560	150000	520	150000	562	150000	529	150000	576	150000	544
200000	1105	200000	880	200000	712	200000	618	200000	560	200000	520	200000	526	200000	568	200000	528
250000	1104	250000	864	250000	704	250000	578	250000	573	250000	536	250000	520	250000	521	250000	544
300000	1296	300000	944	300000	664	300000	623	300000	641	300000	632	300000	640	300000	647	300000	655
350000	1384	350000	953	350000	672	350000	624	350000	653	350000	650	350000	648	350000	632	350000	649
400000	1296	400000	964	400000	689	400000	627	400000	640	400000	641	400000	656	400000	648	400000	631
450000	1279	450000	944	450000	672	450000	669	450000	652	450000	648	450000	657	450000	632	450000	637
500000	1335	500000	936	500000	664	500000	632	500000	648	500000	640	500000	643	500000	648	500000	656

Arraysize = 2000000																	
Thread 1		Thread 2		Thread 4		Thread 8		Thread 16		Thread 32		Thread 64		Thread 128		Thread 256	
Cutoff	Time	Cutoff	Time	Cutoff	Time	Cutoff	Time	Cutoff	Time	Cutoff	Time	Cutoff	Time	Cutoff	Time	Cutoff	Time
100000	2412	100000	1897	100000	1512	100000	1640	100000	1728	100000	1205	100000	1181	100000	1203	100000	1193
200000	1860	200000	1549	200000	1364	200000	1289	200000	1264	200000	1272	200000	1158	200000	1255	200000	1200
300000	2313	300000	1760	300000	1504	300000	1200	300000	1429	300000	1176	300000	1142	300000	1081	300000	1194
400000	2360	400000	1840	400000	1489	400000	1088	400000	1223	400000	1072	400000	1140	400000	1208	400000	1180
500000	2297	500000	1809	500000	1481	500000	1160	500000	1144	500000	1191	500000	1189	500000	1151	500000	1233
600000	3003	600000	2021	600000	1393	600000	1346	600000	1385	600000	1335	600000	1351	600000	1384	600000	1369
700000	3066	700000	2027	700000	1440	700000	1363	700000	1361	700000	1360	700000	1375	700000	1384	700000	1388
800000	2937	800000	2021	800000	1472	800000	1392	800000	1347	800000	1336	800000	1344	800000	1363	800000	1369
900000	2860	900000	2052	900000	1365	900000	1360	900000	1384	900000	1366	900000	1356	900000	1380	900000	1376
1000000	3057	1000000	2000	1000000	1376	1000000	1355	1000000	1371	1000000	1397	1000000	1361	1000000	1392	1000000	1393

The number of threads are taken as the powers of 2 since it is decided by recursion depth.

Relationship Conclusion and Evidence

The cutoff-time chart are as follows:

From the above charts, I have observed that as the cutoff increases, the time drastically decreases at the beginning and then increases. Therefore, it can be concluded that the lowest time is about where cutoff is around **30% of the array size**.

The **optimum number of threads is 8** after which the increase in threads doesn't provide better output.