Table S1a (The hemostatic system entities interaction KCs), Table S1b (The complement system entities interaction KCs), Table S1c (The hemostatic system and complement system cross-talk KCs), Table S1d (The hemostatic and complement systems entities and SARS-CoV-2 structure proteins interaction KCs), and Table S1e (Drug-Target interaction KCs).

Table S1a. The hemostatic system entities interaction KCs

Meaning	Rate constant	Value adopted	Source
Association rate for TF and F7	k _{TFF7}	$3.2 \times 10^6 \text{ M}^{-1} \text{s}^{-1}$	[1], [2]
Disassociation rate for TF:F7	k _{TFF7}	$3.1 \times 10^{-3} \mathrm{s}^{-1}$	
Association rate for TF and F7a	k _{TFF7a}	$2.3 \times 10^7 \text{ M}^{-1} \text{s}^{-1}$	[1], [2]
Disassociation rate for TF:F7a	k _{TFF7a}	$3.1 \times 10^{-3} \mathrm{s}^{-1}$	
Activation of F7 by TF:F7a	k _{catF7} ^{TFF7} a	$4.4 \times 10^5 \text{ M}^{-1} \text{s}^{-1}$	[2]
Activation of F7 by F10a	k ^{F10a} k _{catF7}	$1.3 \times 10^7 \text{ M}^{-1}\text{s}^{-1}$	[2]
Activation of F7 by F2a	k ^{F2a} _{catF7}	$2.3 \times 10^4 \text{ M}^{-1}\text{s}^{-1}$	[2]
Association rate for F7a and F9	k _{F7aF9}	$1.0 \times 10^{8} \text{ M}^{-1} \text{s}^{-1}$	[2]
Disassociation rate for F7a:F9	k _{F7aF9}	0.9 s ⁻¹	
Production of F9a by F7a	k ^{F7a} catF9a	$3.6 \times 10^{-5} \mathrm{s}^{-1}$	[2]
Association rate for F7a and F10	k _{F7aF10}	$1.0 \times 10^{8} \text{ M}^{-1} \text{s}^{-1}$	[2]
Disassociation rate for F7a:F10	k ⁻ _{F7aF10}	210.0 s ⁻¹	
Production of F10a by F7a	k ^{F7a} k _{catF10a}	$1.6 \times 10^{-6} \mathrm{s}^{-1}$	[2]
Association rate for TF:F7a and F9	k ⁺ _{TFF7aF9}	$1.0 \times 10^7 \text{ M}^{-1} \text{s}^{-1}$	[2]
Disassociation rate for TF:F7a:F9	k_ TFF7aF9	2.4 s ⁻¹	
Activation of F9 by TF:F7a	kTFF7a kcatF9	1.8 s ⁻¹	[2]

Association rate for TF:F7a and F10	k ⁺ _{TFF7aF10}	$2.5 \times 10^7 \text{ M}^{-1}\text{s}^{-1}$	[2]
Disassociation rate for TF:F7a:F10	k _{TFF7aF10}	1.05 s ⁻¹	
Activation of F10 by TF:F7a	kTFF7a catF10	6.0 s ⁻¹	[2]
Association rate for TF:F7a and F10a	k ⁺ _{TFF7aF10a}	$2.2 \times 10^7 \text{ M}^{-1}\text{s}^{-1}$	[2]
Disassociation rate for TF:F7a:F10a	k _{TFF7aF10a}	19.0 s ⁻¹	
Association rate for F10a and TFPI	k _{F10aTFPI}	$9.0 \times 10^5 \text{ M}^{-1} \text{s}^{-1}$	[2]
Disassociation rate for F10a:TFPI	k _{F10aTFPI}	$3.6 \times 10^{-4} \mathrm{s}^{-1}$	
Binding of TF:F7a:F10a and TFPI	k ⁺ _{TFF7aF10aTFPI}	$3.2 \times 10^8 \text{ M}^{-1}\text{s}^{-1}$	[2]
Disassociation of TF:F7a:F10a	k _{TFF7aF10aTFPI}	$1.1 \times 10^{-4} \mathrm{s}^{-1}$	
Binding of F10a:TFPI and TF:F7a	k _{F10aTFPITFF7a}	$5.0 \times 10^7 \text{ M}^{-1} \text{s}^{-1}$	[2]
Association rate for F11a and F9	k ⁺ _{F11aF9}	$1.0 \times 10^{8} \text{ M}^{-1} \text{s}^{-1}$	[2], [3]
Disassociation rate for F11a:F9	k _{F11aF9}	41.0 s ⁻¹	
Generation of F9a by F11a	k ^{F11} a catF9a	$7.7 \mathrm{s}^{-1}$	F11a can generate F9a [2], [3].
Inhibition of F11a by AT3	k ⁺ _{F11aAT3}	$3.2 \times 10^2 \text{ M}^{-1}\text{s}^{-1}$	Destruction of F11a by inhibitor AT3 [2], [3].
Binding of F12a and F11	k ⁺ _{F12aF11}	$1.0 \times 10^{8} \text{ M}^{-1} \text{s}^{-1}$	[2], [3].
Disassociation of F12a:F11	k _{F12aF11}	200.0 s ⁻¹	
Production of F11a by F12a	k ^{F12a} catF11a	$5.7 \times 10^{-3} \mathrm{s}^{-1}$	F12a can produce F11a [3].
Binding of F12 and F12a	k ⁺ _{F12F12a}	$1.0 \times 10^{8} \text{ M}^{-1} \text{s}^{-1}$	[2], [3]
Disassociation of F12:F12a	k ⁻ _{F12F12a}	750.0 s ⁻¹	

Autocatalysis of F12a amplification by F12:F12a	k ^{F12F12a} catF12a	$3.3 \times 10^{-2} \mathrm{s}^{-1}$	The product of F12 and F12a autocatalysis of F12a and increase it expression level [2], [3].
Association rate for P-KAL and F12a	k _{PKALF12a}	$1.0 \times 10^{8} \text{ M}^{-1} \text{s}^{-1}$	Binding of P-KAL with F12 and disassociation of their product P-KAL:F12
Disassociation rate for P-KAL:F12a	k _{PKALF12a}	$3.6 \times 10^3 \text{ s}^{-1}$	[2], [3].
Association rate for KAL and F12	k ⁺ _{KALF12}	$1.0 \times 10^{8} \text{ M}^{-1} \text{s}^{-1}$	Binding of KAL with F12 and disassociation of their product KAL:F12 [2], [3].
Disassociation rate for KAL:F12	k-KALF12	45.3 s ⁻¹	
Production of F12a by KAL	k ^{KAL} catF12a	5.7 s ⁻¹	[2], [3]
Association rate for F9a and F10	k ⁺ _{F9aF10}	$1.0 \times 10^8 \text{ M}^{-1}\text{s}^{-1}$	[2], [3]
Disassociation rate for F9a:F10	k _{F9aF10}	0.64 s^{-1}	
Production of F10a by F9a	k ^{F9a} catF10a	$7.0 \times 10^{-4} \mathrm{s}^{-1}$	[2], [3]
Association rate for F9a and F8a	k ⁺ _{F9aF8a}	$1.0 \times 10^7 \text{ M}^{-1}\text{s}^{-1}$	[2], [3]
Disassociation rate for F9a:F8a	k _{F9aF8a}	$5.0 \times 10^{-3} \mathrm{s}^{-1}$	
Binding of F9a and AT3	k _{F9aAT3}	$4.9 \times 10^2 \text{ M}^{-1} \text{s}^{-1}$	Inhibition of F9a by AT3 [2], [3].
Association rate for F9a:F8a and F10	k ⁺ _{F9aF8aF10}	$1.0 \times 10^8 \text{ M}^{-1}\text{s}^{-1}$	[2], [3]
Disassociation rate for F9a:F8a:F10	k _{F9aF8aF10}	$1.0 \times 10^{-3} \mathrm{s}^{-1}$	
Activation of F10 by F9a:F8a	k F9aF8a k catF10	8.2 s ⁻¹	[2], [3]
Association rate for F10a and F8	k _{F10aF8}	$1.0 \times 10^8 \text{ M}^{-1}\text{s}^{-1}$	[2], [3]
Disassociation rate for F10a:F8	k _{F10aF8}	2.1 s ⁻¹	
Production of F8a by F10a	k ^{F10a} catF8a	$2.3 \times 10^{-2} \mathrm{s}^{-1}$	F10a produce F8a [2], [3].

Binding of F10a and F5a	k ⁺ _{F10aF5a}	$4.0 \times 10^{8} \text{ M}^{-1} \text{s}^{-1}$	[2], [3]
Disassociation of F10a:F5a	k ⁻ _{F10aF5a}	$0.2 \mathrm{s}^{-1}$	
Inhibition of F0a by AT3	k ⁺ _{F10aAT3}	$1.5 \times 10^3 \text{ M}^{-1} \text{s}^{-1}$	Binding of F10a and AT3 [2], [3].
Binding of F10a:F5a and F2	k ⁺ _{F10aF5aF2}	$1.0 \times 10^{8} \text{ M}^{-1} \text{s}^{-1}$	[2], [3]
Disassociation of F10a:F5a:F2	k ⁻ _{F10aF5aF2}	103.0 s ⁻¹	
Activation of F2 by F10a	k ^{F10a} catF2	$7.5 \times 10^3 \text{ M}^{-1} \text{s}^{-1}$	Binding of F10a and F2 [2], [3].
Inhibition of F2a by A2M	k _{F2aA2M}	$2.5 \times 10^{3} \text{ M}^{-1} \text{s}^{-1}$	Association rate of A2M and F2a [4].
Association rate for TF:F7a and AT3	k _{TFF7aAT3}	$2.3 \times 10^{2} \text{ M}^{-1} \text{s}^{-1}$	Inhibition of TF:F7a by AT3 [2].
Binding of F11 and F2a	k ⁺ _{F11F2a}	$1.0 \times 10^{8} \text{ M}^{-1} \text{s}^{-1}$	[2], [3]
Disassociation of F11:F2a	k _{F11F2a}	5.0 s ⁻¹	
Generation of F11a	k ^{F11} _{catF2a}	$1.3 \times 10^{-4} \mathrm{s}^{-1}$	[2], [3]
Inhibition of F2a by AT3	k _{F2aAT3}	$7.1 \times 10^3 \text{ M}^{-1} \text{s}^{-1}$	Binding of AT3 and F2a [2], [3].
Activation of F5 by F2a	k ^{F2a} catF5	$2.0 \times 10^7 \text{ M}^{-1} \text{s}^{-1}$	[2], [3]
Binding of F2a and F1	k _{F2aF1}	$1.17 \times 10^7 \text{ M}^{-1}\text{s}^{-1}$	[5], [6]
Disassociation of F2a:F1	k _{F2aF1}	84.0 s ⁻¹	
Production of F1a	k ^{F2a} catF1a	84 s ⁻¹	[5], [6]
Activation of F8 by F2a	k ^{F2a} catF8	$2.0 \times 10^7 \text{ M}^{-1} \text{s}^{-1}$	F2a binds with F8 [2], [3].
Inhibation of F12a by AT3	k _{F12aAT3}	21.6 M ⁻¹ s ⁻¹	AT3 is associated with F12a and inhibits it [2], [3].
Production of KAL by F12a	k ^{F12a} catKAL	40 s ⁻¹	F12a can generates KAL) [2], [3].

Activation of KAL by P-KAL	k _{KALPKAL}	$2.7 \times 10^4 \text{ M}^{-1}\text{s}^{-1}$	KAL auto-activation [2], [3].
Generation of Lys-Pg by Glu-Pg	k _{catLys-Pg}	0.1 s ⁻¹	Pg variants are Lys-Pg and Glu-Pg [7]. Lys-Pg can be generated by Pn hydrolysis of Glu-Pg [8]. Conversion of Glu- to Lys-Lys-Pg [9]–[11]. In literature the generation rate of Lys-Pg not available. Assume a small value for it.
Activation of Glu-Pg by tPA	k ^{F1a} cattPA	$4.1 \times 10^{-7} \mathrm{s}^{-1}$	tPA activates Glu-Pg in the presence of F1a [8].
	k ^{F1a} _{mtPA}	0.073 M	
Activation of Lys-Pg by tPA	k ^{F1a} cattPA	$2.0 \times 10^{-8} \mathrm{s}^{-1}$	tPA activates Lys-Pg in the presence of F1a [8].
	k ^{F1a} mtPA	0.064 M	
Association rate for Glu-Pg and FDPs	k ⁺ _{Glu-PgFDPs}	$5.71 \times 10^5 \text{ M}^{-1} \text{s}^{-1}$	Native Plasminogen (Glu-Pg) binds to FDPs with affinity $(k_d = 175 \times 10^{-9} \text{M})$
Disassociation rate for Glu-Pg:FDPs	k _{Glu-PgFDPs}	0.1 s ⁻¹	[12]. The Association rate (k ⁺) can be computed from the formula $k_d = \frac{k}{k^+}$. Assume a small value for $k^- = 0.1s^{-1}$.
Association rate for Lys-Pg and FDPs	k _{Lys-PgFDPs}	$1.11 \times 10^6 \text{ M}^{-1}\text{s}^{-1}$	Lys-Pg binds to FDPs with affinity ($k_d = 90 \times 10^{-9}$ M) [12]. The Association rate
Disassociation rate for Lys-Pg:FDPs	k ⁻ _{Lys-PgFDPs}	0.1 s ⁻¹	(k ⁺) can be computed from the formula $k_d = \frac{k^-}{k^+}$. Assume a small value for $k^- = 0.1s^{-1}$.
Inhibition of Glu-Pg:FDPs by TAFIa	k ⁺ _{Glu-PgFDPsTAFIa}	$1.7133 \times 10^7 \text{ M}^{-1}\text{s}^{-1}$	Glu-Pg is degraded by TAFIa in the presence of FDPs. Treatment of the FDPs with TAFIa removes Glu-Pg binding sites. When FDPs are treated with TAFIa the k_d increases to 1×10^{-6} M, $k_{cat}=2.35$ s ⁻¹ , $k_m=0.143\mu$ M [12]. The Association rate (k ⁺) can be computed from the formula $k^+=\frac{k^-+k_{cat}}{k_m}$. Assume a small value for $k^-=0.1$ s ⁻¹ .
Inhibition of Lys-Pg:FDPs by TAFIa	k ⁺ _{Lys} -pgFDPsTAFIa	$1.051 \times 10^7 \mathrm{M}^{-1} \mathrm{s}^{-1}$	Lys-Pg is degraded by TAFIa in the presence of FDPs. Treatment of the FDPs with TAFIa removes Glu-Pg binding sites. When FDPs are treated with TAFIa the k_d increases to $1.55 \times 10^{-6} \mathrm{M}$, $k_{\rm cat} = 0.888 \mathrm{s}^{-1}$, $k_m = 0.094 \mu \mathrm{M}$ [12]. The Association rate (k ⁺) can be computed from the formula $k^+ = \frac{k^- + k_{\rm cat}}{k_m}$. Assume a small value for $k^- = 0.1 \mathrm{s}^{-1}$.

Association rate for F1a and Lys-Pg	k _{F1aLys-Pg}	$1.0 \times 10^{-7} \mathrm{M}^{-1} \mathrm{s}^{-1}$	Lys-Pg binds to F1a [7], [8]. The binding rate constant for Pg to F1 and the unbinding rate constant for Pg from F1 [13].
Disassociation rate for F1a:Lys-Pg	k _{F1aLys-Pg}	3.8 s^{-1}	
Activation of F1 by Lys-Pg	k _{catF1} ^{Lys-Pg}	$1.0 \times 10^{-7} \mathrm{M}^{-1} \mathrm{s}^{-1}$	Lys-Pg can binds to F1a, the binding rate measured $1.0 \times 10^{-7} \text{ M}^{-1} \text{s}^{-1}$ [7], [8]. Assumption for activation rate of F1 to F1a by Lys-Pg.
Inhibition of tPA by PAI-1	k _{tPAPAI-1}	$2 \times 10^7 \text{ M}^{-1} \text{s}^{-1}$	PAI-1 is an efficient inhibitor of tPA [14].
Production of tPA by F1a:Lys-Pg	k ^{F1aLys-Pg}	0.1 s ⁻¹	Assumption for the rate of tPA production by F1a: Lys-Pg, as in propagation phase of fibrinolysis, F1a can generates tPA in the presence of Lys-Pg [15].
Generation of Lys-Pg by Pn	k ^{Pn} _{catLys-Pg}	0.1 s ⁻¹	Assumed a small value for the rate of Lys-Pg production by Pn. As in propagation phase of fibrinolysis, Lys-Pg can be produced by Pn [15].
Association rate for P-KAL and HK	k _{PKALHK}	$8.3 \times 10^7 \text{ M}^{-1}\text{s}^{-1}$	P-KAL binds to HK with high specificity and affinity $(k_d = 1.2 \times 10^{-8} \text{M})$ [16].
Disassociation rate for P-KAL:HK	k _{PKALHK}	1s ⁻¹	The Association rate (k ⁺) can be computed from the formula $k_d = \frac{k^-}{k^+}$. Assumed a small value for $k^- = 1s^{-1}$.
Activation of HK by KAL	k ^{KAL} catHK	$8.3 \times 10^7 \text{ M}^{-1}\text{s}^{-1}$	Estimated based on association rate of P-KAL and HK.
Generation of BK by P-KAL:HK	k PKALHK catBK	0.1 s ⁻¹	The product of P-KAL and HK can release BK [17]. The generation rate is unknown, estimated a small value for it.
Association rate for BK and B2R	k _{BKB2R}	$3.4 \times 10^8 \mathrm{M}^{-1} \mathrm{s}^{-1}$	BK binds to B2R with a high affinity $(k_d = 2.90 \times 10^{-9})$ [18]. The disassociation rate (k^{-1}) is unknown, assumed a small value for $k^{-1} = 1$ s ⁻¹ . Using the formula
Disassociation rate for BK:B2R	k _{BKB2R}	$1 s^{-1}$	rate $(k-1)$ is unknown, assumed a small value for $k-1$. Using the formula $k_d=\frac{k^-}{k^+}$, determined k^+ .
Association rate for HK and F11	k _{HKF11}	$0.40 \times 10^7 \mathrm{M}^{-1} \mathrm{s}^{-1}$	F11 can binds to HK with an affinity $k_d = (2-3) \times 10^{-7} \text{M}$ [19], [20]. Considered $k_d = 2.5 \times 10^{-7} \text{M}$. The disassociation rate (k^{-1}) is unknown,
Disassociation rate for HK:F11	k-HKF11	1 s ⁻¹	assumed $k^{-1} = 1 \text{ s}^{-1}$. Using the formula $k_d = \frac{k^-}{k^+}$, determined k^+ .
Production of F11a by HK:F11	k ^{HKF11} _{catF11a}	0.1 s ⁻¹	The association of HK and F11 can generate F11a. Assumed, a small value for the production of F11a by product of HK and F11.

Production of tPA by BK:B2R	k ^{BKB2R} _{cattPA}	$0.1 \ s^{-1}$	The product of BK:B2R stimulates tPA [20]. Assumed, a small value for the production of tPA by BK: B2R.
Activation of the F1 by F2a	k_{catF1}^{F2a} k_{mF1}^{F2a}	$59 s^{-1}$ $3.16 \times 10^{-6} M$	Enzyme reactions between F2a and F1 [1].
Cleavage of TAFI by Pn	k ^{Pn} _{catTAFI}	$4.0 \times 10^{-4} s^{-1}$	Pn cleaves TAFI at Arg92, generating TAFIa. Pn-mediated TAFI activation [9].
	k _{mTAFI}	$5.5 \times 10^{-8} M$	
Cleavage of TAFI by F2a	k ^{F2a} catTAFI	0.17 s ⁻¹	F2a can cleaves TAFI and generates active TAFIa [21].
	k _{mTAFI}	$8.3 \times 10^{-7} M$	
Inhibition of Glu-Pg by TAFIa	k ⁺ _{Glu-PgTAFIa}	$1.69 \times 10^7 \mathrm{M}^{-1} \mathrm{s}^{-1}$	TAFIa inhibits the activation of Glu-Pg and the conversion of Glu- to Lys-Pg [9]– [11]. $k_{cat} = 2.30 \text{ s}^{-1}$, $k_m = 0.142 \mu \text{M}$ [22], [23]. The disassociation rate (k^-) is unknown, assumed a small value for $k^- = 0.1 \text{s}^{-1}$. Using the formula $k^+ = \frac{k^- + k_{cat}}{k_m}$, determined the association rate (k^+) .
Inhibition of Lys-Pg by TAFIa	k _{Lys-PgTAFIa}	$1.051 \times 10^7 \mathrm{M}^{-1}\mathrm{s}^{-1}$	Assumption for association rate of Lys-Pg and TAFIa based on inhibition of Lys-Pg:FDPs by TAFIa.
Inhibition of C3a by TAFIa	k ⁺ _{C3aTAFIa}	$2.36 \times 10^{5} \mathrm{M}^{-1} \mathrm{s}^{-1}$	TAFIa can inhibit C3a. $k_{cat} = 8.4 \text{ s}^{-1}$, $k_m = 35.9 \mu \text{M}$ [22], [23]. Assume a small value for $k^- = 0.1 \text{s}^{-1}$. Using the formula $k^+ = \frac{k^- + k_{cat}}{k_m}$, determined k^+ .
Inhibition of C5a by TAFIa	k ⁺ _{C5aTAFIa}	$1.35 \times 10^{5} \mathrm{M}^{-1} \mathrm{s}^{-1}$	TAFIa can inhibit C5a. $k_{cat} = 29.5 \text{ s}^{-1}$, $k_m = 219.0 \mu \text{M}$ [22], [23]. Assume a small value for $k^- = 0.1 \text{ s}^{-1}$. Using the formula $k^+ = \frac{k^- + k_{cat}}{k_m}$, determined k^+ .
Inhibition of BK by TAFIa	k _{BKTAFIa}	$2.8 \times 10^5 \mathrm{M}^{-1} \mathrm{s}^{-1}$	TAFIa can inactivate BK. $k_{cat} = 19.7 \text{ s}^{-1}$, $k_m = 70.6 \mu \text{M}$ [22], [23]. Assume a small value for $k^- = 0.1 \text{ s}^{-1}$. Using the formula $k^+ = \frac{k^- + k_{cat}}{k_m}$, determined k^+ .
Activation of F12 by Pn	k ^{Pn} _{catF12}	$1.0 \times 10^3 \mathrm{M}^{-1} \mathrm{s}^{-1}$	Pn can cleave and activate F12 [24]. Estimated a small value for activation of F12 by Pn.

Cleavage of F1 by Pn	k ^{Pn} _{catF1}	7.1 s^{-1}	Pn can activates and cleaves F1 [25].
	k _{mF1}	$6.5 \times 10^{-6} M$	
Cleavage of F1a by Pn	k ^{Pn} _{catF1a}	$6.4 \ s^{-1}$	Degradation of F1a by Pn which cleaved F1a [26].
	k ^{Pn} _{mF1a}	$0.14 \times 10^{-6} M$	
Cleavage of Glu-Pg by Pn	k ^{Pn} catGlu-Pg	$0.1 s^{-1}$	Plasmin also enhances fibrinolysis by converting native Pg (Glu-Pg) to Lys-Pg. Pn cleaves Glu-Pg at lysine 77/78 result in Lys-Pg generation [12]. Assumption for
	k ^{Pn} mGlu-Pg	$1.0 \times 10^{-4} M$	the cleavage of Glu-Pg by Pn.
Cleavage of Glu-Pg by KAL	k ^{KAL} catGlu-Pg	$1.6 \times 10^{-4} \ s^{-1}$	[27]
	k KAL mGLu – Pg	$5.6 \times 10^{-7} M$	
Cleavage of Glu-Pg by tPA	k ^{tPA} catGlu-Pg	$4.1 \times 10^{-7} \mathrm{s}^{-1}$	[8]
	k _{mGlu-Pg}	0.073 M	

 Table S1b.
 The complement entities interaction KCs

Meaning	Rate constant	Value adopted	Source
Binding rate for C1r and C1s Disassociation rate for C1r:C1s	k _{C1rC1s} k _{C1rC1s}	$0.61 \times 10^{6} \text{ M}^{-1}\text{s}^{-1}$ $3.44 \times 10^{-3} \text{ s}^{-1}$	Association and disassociation rates of C1r and C1s are measured with respect to different modules such as x-ray structure of the N-terminal CUB-epidermal growth factor (EGF) marked by different residues. Among the high affinity sites at
Disassociation rate for Cir.Cis	Circis	3.77 × 10 3	C1rCUB ₁ -Y56A, binding rates and disassociation rates measured as $k^+ = 0.61 \times 10^6 \text{ M}^{-1}\text{s}^{-1}$ and $k^- = 3.44 \times 10^{-3} \text{ s}^{-1}$ [28].
Binding rate for Clq and Clr:Cls	k _{C1qrs}	$0.82 \times 10^6 \text{ M}^{-1} \text{s}^{-1}$	[28]–[31]
Disassociation rate for Clq :C1r:C1s	k _{C1qrs}	$1.2 \times 10^{-3} \mathrm{s}^{-1}$	
Binding rate for C1s and C4	k _{C1sC4}	$7.9 \times 10^5 \text{ M}^{-1} \text{s}^{-1}$	[32]
Disassociation rate for C1s:C4	k _{C1sC4}	$4.8 \times 10^{-1} \mathrm{s}^{-1}$	
Binding rate for MASP2 and C4	k _{MASP2C4}	$7.9 \times 10^5 \text{ M}^{-1} \text{s}^{-1}$	Estimation based on MASP2 functionally homologous of C1q [32], [33].
Disassociation rate for MASP2:C4	k _{MASP2C4}	$4.8 \times 10^{-1} \mathrm{s}^{-1}$	
Binding rate for C3W and FB	k _{C3WB}	$1.1 \times 10^4 \mathrm{M}^{-1} \mathrm{s}^{-1}$	[30], [31], [34]
Disassociation rate for C3W:FB	k- _{C3WB}	$1.4 \times 10^{-3} \mathrm{s}^{-1}$	
Binding rate for C3W and Factor H (FH)	k _{C3WH}	$1.1 \times 10^6 \mathrm{M^{-1}s^{-1}}$	Estimation structurally/functionally homologous protein C3b and FH [30], [31], [34].
Disassociation rate for C3W:FH	k _{C3WH}	$6.0 \times 10^{-2} \text{s}^{-1}$	
Binding rate for fC3b and FB	k _{fC3bFB}	$21.3 \times 10^4 \mathrm{M}^{-1} \mathrm{s}^{-1}$	[29]–[31].
Disassociation rate for fC3b:FB	k _{fC3bFB}	$15.5 \times 10^{-2} \mathrm{s}^{-1}$	

Binding rate for fC3b:C4b:P and FB	k _{fC3bC4bPFB}	$21.3 \times 10^4 \mathrm{M}^{-1} \mathrm{s}^{-1}$	[29]–[31], [35].
Disassociation rate for fC3b:C4b:P:FB	k-fC3bC4bPFB	$15.5 \times 10^{-2} \mathrm{s}^{-1}$	
Binding rate for lgG:fC3b and FB	k ⁺ _{lgGfC3bFB}	$21.3 \times 10^4 \mathrm{M}^{-1} \mathrm{s}^{-1}$	Estimation functionally homologous protein fC3b and FB.
Disassociation rate for lgG:fC3b:FB	k ⁻ _{lgGfC3bFB}	$15.5 \times 10^{-2} \mathrm{s}^{-1}$	
Binding rate for C3b and P	k _{C3bP}	$1.5 \times 10^5 \mathrm{M}^{-1} \mathrm{s}^{-1}$	[29]–[31], [36]
Disassociation rate for C3b:P	k _{C3bP}	$15.5 \times 10^{-5} \text{ s}^{-1}$	
Binding rate for fC3b:C4b and P	k ⁺ _{fC3bC4bP}	$1.5 \times 10^5 \mathrm{M}^{-1} \mathrm{s}^{-1}$	[29]–[31]
Disassociation rate for fC3b:C4b:P	k- _{fC3bC4bP}	$15.5 \times 10^{-5} \text{ s}^{-1}$	
Binding rate for C3b and FH	k _{C3bFH}	$1.1 \times 10^6 \text{ M}^{-1} \text{s}^{-1}$	[29]–[31], [37]
Disassociation rate for C3b:FH	k _{C3bFH}	$5.9 \times 10^{-2} \mathrm{s}^{-1}$	
Binding rate for fC3b:Bb and FH	k _{fC3bBbFH}	$1.1 \times 10^6 \text{ M}^{-1} \text{s}^{-1}$	Estimation functionally homologous protein C3b and FH.
Disassociation rate for fC3b:Bb:FH	k _{fC3bBbFH}	$5.9 \times 10^{-2} \mathrm{s}^{-1}$	
Binding rate for C3b:Bb:C3b and FH	k ⁺ _{C3bBbC3bFH}	$1.1 \times 10^6 \text{ M}^{-1} \text{s}^{-1}$	Estimation functionally homologous protein C3b and FH.
Disassociation rate for C3b:Bb:C3b:FH	k _{C3bBbC3bFH}	$5.9 \times 10^{-2} \mathrm{s}^{-1}$	
Binding rate for C4b and C4BP	k ⁺ _{C4bC4BP}	$2.0 \times 10^5 \text{ M}^{-1} \text{s}^{-1}$	[29]–[31], [38]–[40].
Disassociation rate for C4b:C4BP	k _{C4bC4BP}	$1.6 \times 10^{-2} \mathrm{s}^{-1}$	
Binding rate for C4b:C2a and C4BP	k ⁺ _{C4bC2aC4BP}	$2.0 \times 10^5 \text{ M}^{-1} \text{s}^{-1}$	Estimation functionally homologous protein C4b and C4BP.
Disassociation rate for C4b:C2a:C4BP	k ⁻ _{C4bC2aC4BP}	$1.6 \times 10^{-2} \mathrm{s}^{-1}$	

Binding rate for C3b and CR1	k ⁺ _{C3bCR1}	$4.4 \times 10^6 \text{ M}^{-1} \text{s}^{-1}$	[29]–[31], [37]
Disassociation rate for C3b:CR1	k _{C3bCR1}	$5.7 \times 10^{-2} \mathrm{s}^{-1}$	
Binding rate for C3b:Bb and CR1	k ⁺ _{C3bBbCR1}	$4.4 \times 10^6 \text{ M}^{-1} \text{s}^{-1}$	Estimation functionally homologous protein C3b and CR1.
Disassociation rate for C3b:Bb:CR1	k-C3bBbCR1	$5.7 \times 10^{-2} \mathrm{s}^{-1}$	
Binding rate for fC3b:Bb:C3b and CR1	k ⁺ _{fC3bBbC3bCR1}	$9.8 \times 10^4 \text{ M}^{-1} \text{s}^{-1}$	[29]–[31], [37]
Disassociation rate for fC3b:Bb:C3b:CR1	k _{fC3bBbC3bCR1}	$2.1 \times 10^{-3} \mathrm{s}^{-1}$	
Binding rate for fC3b:Bb and DAF	k _{fC3bBbDAF}	$1.4 \times 10^3 \text{ M}^{-1} \text{s}^{-1}$	[29]–[31], [41]
Disassociation rate for fC3b:Bb:DAF	k _{fC3bBbDAF}	$1.2 \times 10^{-3} \mathrm{s}^{-1}$	
Binding rate for C4b:C2a and DAF	k ⁺ _{C4bC2aDAF}	$1.4 \times 10^3 \text{ M}^{-1} \text{s}^{-1}$	Estimation functionally homologous protein C3 convertase (fC3b:Bb) and DAF.
Disassociation rate for C4b:C2a:DAF	k _{C4bC2aDAF}	$1.2 \times 10^{-3} \mathrm{s}^{-1}$	
Binding rate for C4b:C2a:C3b and DAF	k ⁺ _{C4bC2aC3bDAF}	$1.4 \times 10^3 \text{ M}^{-1} \text{s}^{-1}$	Estimation functionally homologous protein C3 convertase (C4b:C2a) and DAF.
Disassociation rate for C4b:C2a:C3b:DAF	k _{C4bC2aC3bDAF}	$1.2 \times 10^{-3} \mathrm{s}^{-1}$	
Binding rate for fC3b:Bb:C3b and DAF	k ⁺ _{fC3bBbC3bDAF}	$1.4 \times 10^3 \text{ M}^{-1} \text{s}^{-1}$	Estimation functionally homologous protein C3 convertase (fC3b:Bb) and DAF.
Disassociation rate for fC3b:Bb:C3b:DAF	k _{fC3bBbC3bDAF}	$1.2 \times 10^{-3} \mathrm{s}^{-1}$	
Binding rate for C4b:C2a and CR1	k ⁺ _{C4bC2aCR1}	$3.8 \times 10^6 \text{ M}^{-1} \text{s}^{-1}$	[29]–[31].
Disassociation rate for C4b:C2a:CR1	k _{C4bC2aCR1}	$4.2 \times 10^{-2} \mathrm{s}^{-1}$	
Binding rate for C3W:Bb and FH	k ⁺ _{C3WBbFH}	$1.1 \times 10^6 \text{ M}^{-1} \text{s}^{-1}$	Estimation functionally homologous protein C3b and FH.
Disassociation rate for C3W:Bb:FH	k _{C3WBbFH}	$5.9 \times 10^{-2} \mathrm{s}^{-1}$	
Binding rate for C5b and C6	k ⁺ _{C5bC6}	$6.0 \times 10^4 \text{ M}^{-1} \text{s}^{-1}$	[29]–[31], [38], [42]
Disassociation rate for C5b:C6	k _{C5bC6}	$9.0 \times 10^{-8} \mathrm{s}^{-1}$	

Binding rate for C5b:C6 and C7	k ⁺ _{C5bC6C7}	$7.3 \times 10^5 \text{ M}^{-1} \text{s}^{-1}$	[29]–[31], [38], [42]
Disassociation rate for C5b:C6:C7	k _{C5bC6C7}	$1.5 \times 10^{-7} \mathrm{s}^{-1}$	
Binding rate for C5b:C6:C7 and C8	k ⁺ _{C5bC6C7C8}	$1.1 \times 10^6 \text{ M}^{-1} \text{s}^{-1}$	[29]–[31], [38], [42]
Disassociation rate for C5b:C6:C7:C8	k ⁻ _{C5bC6C7C8}	$9.8 \times 10^{-7} \mathrm{s}^{-1}$	
Binding rate for C5b:C6:C7:C8 and C9	k ⁺ _{C5bC6C7C8C9}	$2.8 \times 10^6 \text{ M}^{-1} \text{s}^{-1}$	[29]–[31], [38], [42]
Disassociation rate for C5b:C6:C7:C8:C9	k ⁻ _{C5bC6C7C8C9}	$2.8 \times 10^{-6} \mathrm{s}^{-1}$	
Association of fC3b to H ₂ 0	k _{fC3b}	$4.2 \times 10^{8} \text{ M}^{-1} \text{s}^{-1}$	[29]–[31]
Binding rate for fC3b and IgG	k ⁺ _{IgGfC3b}	$4.2 \times 10^{8} \text{ M}^{-1} \text{s}^{-1}$	[29]–[31]
Activation rate of C1	k _{C1}	$2.1 \times 10^{-5} \mathrm{s}^{-1}$	[29]–[31]
Binding rate for C1 and inhibitor C1INH	k ⁺ _{C1C1INH}	$4.3 \times 10^5 \text{ M}^{-1}\text{s}^{-1}$	[29]–[31], [43]
Binding rate of C1INH and MASP1	k ⁺ _{C1INHMASP1}	$6.3 \times 10^3 \text{ M}^{-1}\text{s}^{-1}$	[14], [29]–[31], [44]
Binding rate of C1INH and MASP2	k ⁺ _{C1INHMASP2}	$2.2 \times 10^7 \text{ M}^{-1} \text{s}^{-1}$	[29]–[32]
Disassociation of initial C3-convertase C3W:Bb Disassociation of C3-convertase fC3b:Bb	k- _{C3WBb}	$9.0 \times 10^{-3} \mathrm{s}^{-1}$ $7.70 \times 10^{-3} \mathrm{s}^{-1}$	Estimation is based on the increases in decay rate of fC3b:Bb. The enzyme C3W:Bb is less active and less stable compared to C3bBb [29]–[31], [43].
Binding rate for C4b and C2	k _{C4bC2}	$1.6 \times 10^6 \text{ M}^{-1} \text{s}^{-1}$	[29]–[31], [34].
Disassociation rate for C4b:C2	k _{C4bC2}	$4.2 \times 10^{-3} \mathrm{s}^{-1}$	
Binding rate for fC3b:C4b and C2	k _{fC3bC4bC2}	$1.6 \times 10^6 \text{ M}^{-1} \text{s}^{-1}$	[29]–[31].
Disassociation rate for fC3b:C4b:C2	k _{fC3bC4bC2}	$4.2 \times 10^{-3} \mathrm{s}^{-1}$	

Binding rate for C4b and C2a	k ⁺ _{C4bC2a}	$4.4 \times 10^3 \text{ M}^{-1} \text{s}^{-1}$	In Quasi steady-state approximation (QSSA), rapid equilibrium leads to $k_m \approx k_d$,
Disassociation rate for C4b:C2a	k _{C4bC2a}	$5.8 \times 10^{-3} \mathrm{s}^{-1}$	QSSA leads to $k_m \approx \frac{k_{cat}}{k^+}$ [45]. $\frac{k_{cat}}{k_m} = 4.4 \times 10^3 \text{ M}^{-1} \text{s}^{-1}$ [46] , $k^- = 5.8 \times 10^{-3} \text{s}^{-1}$ [38].
Binding rate for C4b:C2a and C3b	k ⁺ _{C4bC2aC3b}	$1.5 \times 10^7 \text{ M}^{-1} \text{s}^{-1}$	In Quasi steady-state approximation (QSSA), rapid equilibrium leads to $k_m \approx k_d$,
Disassociation of C5-convertase C4b:C2a:C3b	k _{C4bC2aC3b}	$5.0 \times 10^{-3} \mathrm{s}^{-1}$	QSSA leads to $k_m \approx \frac{k_{cat}}{k^+}$ [45]. $\frac{k_{cat}}{k_m} = 1.5 \times 10^7 \text{ M}^{-1} \text{s}^{-1}$ [46] , $k^- = 5.0 \times 10^{-3} \text{s}^{-1}$ [30].
Binding rate for fC3b and C3b:FB	k _{fC3bC3bFB}	$21.3 \times 10^4 \mathrm{M}^{-1} \mathrm{s}^{-1}$	Estimation functionally homologous protein fC3b and FB.
Disassociation of fC3b:C3b:FB	k- fC3bC3bFB	$15.5 \times 10^{-2} \mathrm{s}^{-1}$	
Binding rate for fC3b and C3b:FB	k _{fC3bC4bFB}	$21.3 \times 10^4 \mathrm{M}^{-1} \mathrm{s}^{-1}$	Estimation functionally homologous protein fC3b and FB.
Disassociation of fC3b:C3b:FB	k- fC3bC4bFB	$15.5 \times 10^{-2} \mathrm{s}^{-1}$	
Decay of C3-convertase (fC3b:Bb) by down-regulator Factor H (FH)	k ⁻ _{dfC3bBbFH}	$1.7 \times 10^{-2} \mathrm{s}^{-1}$	[47]
Binding rate for fC3b and C4b	k _{fC3bC4b}	$4.2 \times 10^8 \mathrm{M^{-1} s^{-1}}$	[29]–[31]
Decay of initial C3-convertase (C3W:Bb) by inhibitor FH	k-dc3WBbFH	$1.7 \times 10^{-2} \mathrm{s}^{-1}$	It is assumed based on the decay of functionally homologous protein fC3b:Bb down-regulated by FH.
Decay of C3-convertase (fC3b:Bb) by inhibitor DAF	k-dfC3bBbDAF	$1.7 \times 10^{-2} \mathrm{s}^{-1}$	It is assumed based on the decay of functionally homologous protein fC3b:Bb down-regulated by FH.
Decay of C3-convertase (fC3b:Bb) by inhibitor CR1	k ⁻ _{dfC3bBbCR1}	$1.7 \times 10^{-2} \mathrm{s}^{-1}$	It is assumed based on the decay of functionally homologous protein fC3b:Bb down-regulated by FH.
Disassociation of C3-convertase (fC3b:Bb) and properdin (P) complex (fC3b:Bb:P)	k- _{fC3bBbP}	$7.7 \times 10^{-4} \mathrm{s}^{-1}$	[29]–[31], [48]

Disassociation of C5-convertase (C3b:Bb:C3b) and properdin (P) complex (C3b:Bb:C3b:P)	k ⁻ _{C3bBbC3bP}	$5.7 \times 10^{-4} \mathrm{s}^{-1}$	[30], [31], [48]
Decay of C5-convertase (C3b:Bb:C3b) by inhibitor FH	k ⁻ _{dfC3bBbC3bFH}	$1.7 \times 10^{-2} \mathrm{s}^{-1}$	It is assumed based on the decay of functionally homologous protein fC3b:Bb down-regulated by FH.
Decay of C5-convertase (fC3b:Bb:C3b) by inhibitor CR1	k ⁻ _{dfC3bBbC3bCR1}	$1.7 \times 10^{-2} \mathrm{s}^{-1}$	It is assumed based on the decay of functionally homologous protein fC3b:Bb down-regulated by FH.
Decay of C5-convertase (C3b:Bb:C3b) by inhibitor DAF on host cell	k ⁻ _{dC3bBbC3bDAF}	$1.7 \times 10^{-2} \mathrm{s}^{-1}$	It is assumed based on the decay of functionally homologous protein fC3b:Bb down-regulated by FH.
Decay of C5-convertase (C4b:C2a:C3b) by inhibitor CR1on host cell	k ⁻ _{dC4bC2aC3bCR1}	$1.7 \times 10^{-2} \mathrm{s}^{-1}$	It is assumed based on the decay of functionally homologous protein fC3b:Bb down-regulated by FH.
Decay of C5-convertase (C4b:C2a:C3b) by inhibitor DAF on host cell	k ⁻ _{dC4bC2aC3bDAF}	$1.7 \times 10^{-2} \mathrm{s}^{-1}$	It is assumed based on the decay of functionally homologous protein fC3b:Bb down-regulated by FH.
Decay of C3-convertase (C4b:C2a) by down-regulator C4BP on host cell	k ⁻ _{dC4bC2aC4BP}	$1.7 \times 10^{-2} \mathrm{s}^{-1}$	It is assumed based on the decay of functionally homologous protein fC3b:Bb down-regulated by FH.
Decay of C3-convertase (C4b:C2a) by down-regulator CR1 on host cell	k ⁻ _{dC4bC2aCR1}	$1.7 \times 10^{-2} \mathrm{s}^{-1}$	It is assumed based on the decay of functionally homologous protein fC3b:Bb down-regulated by FH.
Decay of C3-convertase (C4b:C2a) by down-regulator CR1 on host cell	k ⁻ _{dC4bC2aDAF}	$1.7 \times 10^{-2} \mathrm{s}^{-1}$	It is assumed based on the decay of functionally homologous protein fC3b:Bb down-regulated by FH.
Decay of C5-convertase (C4b:C2a:C3b) by down-regulator CR1 on host cell	k _{dC4bC2aC3bCR1}	$1.7 \times 10^{-2} \mathrm{s}^{-1}$	It is assumed based on the decay of functionally homologous protein C4b:C2a down-regulated by CR1.

Disassociation of C5-convertase C4b:C2a:C3b	k _{C4bC2aC3b}	$5.0 \times 10^{-3} \mathrm{s}^{-1}$	[29]–[31], [46]
Binding rate for CR1 and fC3b:C4b	k _{fC3bC4bCR1}	$9.8 \times 10^4 \text{ M}^{-1} \text{s}^{-1}$	[29]–[31], [49]
Disassociation rate for fC3b:C4b:CR1	k-fC3bC4bCR1	$2.1 \times 10^{-3} \mathrm{s}^{-1}$	
Binding rate for fC3b:C4b and FH	k ⁺ _{fC3bC4bFH}	$1.1 \times 10^6 \text{ M}^{-1}\text{s}^{-1}$	Estimation functionally homologous protein fC3b and FH.
Disassociation rate for fC3b:C4b:FH	k-fC3bC4bFH	$5.9 \times 10^{-2} \mathrm{s}^{-1}$	
Binding rate for CR1 and fC3b:C4b:C2a	k ⁺ _{fC3bC4bC2aCR1}	$9.8 \times 10^4 \text{ M}^{-1} \text{s}^{-1}$	Estimation functionally homologous protein fC3b:C4b and CR1.
Disassociation rate for fC3b:C4b:C2a:CR1	k- fC3bC4bC2aCR1	$2.1 \times 10^{-3} \mathrm{s}^{-1}$	
Binding rate for fC3b:Bb and P	k _{fC3bBbP}	$1.5 \times 10^5 \mathrm{M}^{-1} \mathrm{s}^{-1}$	Estimation functionally homologous protein fC3b and P.
Disassociation rate for fC3b:Bb:P	k-fC3bBbP	$15.5 \times 10^{-5} \text{ s}^{-1}$	
Binding rate for fC3b:Bb:C3b and P	k ⁺ _{fC3bBbC3bP}	$1.5 \times 10^5 \mathrm{M}^{-1} \mathrm{s}^{-1}$	Estimation functionally homologous protein fC3b and P.
Disassociation rate for fC3b:Bb:C3b:P	k-fC3bBbC3bP	$15.5 \times 10^{-5} \text{ s}^{-1}$	
Binding rate for fC3b:FB and P	k ⁺ _{fC3bFBP}	$1.5 \times 10^5 \mathrm{M}^{-1} \mathrm{s}^{-1}$	Estimation functionally homologous protein fC3b and P.
Disassociation rate for fC3b:FB:P	k-fC3bFBP	$15.5 \times 10^{-5} \text{ s}^{-1}$	
Binding rate for lgG:fC3b:FB and P	k ⁺ _{fC3bFBP}	$1.5 \times 10^5 \mathrm{M}^{-1} \mathrm{s}^{-1}$	Estimation functionally homologous protein fC3b and P.
Disassociation rate for lgG:fC3b:FB:P	k-fC3bFBP	$15.5 \times 10^{-5} \text{ s}^{-1}$	
Synthesis rate of FB	k _{sFB}	$0.013 \times 10^{-9} \mathrm{Ms^{-1}}$	[50]
Degradation rate of FB	k _{dFB}	$5.5 \times 10^{-6} \mathrm{s}^{-1}$	[50]
Synthesis rate of FH	k _{sFH}	$0.0117 \times 10^{-9} \mathrm{Ms^{-1}}$	[50]
Degradation rate of FH	k _{dFH}	$3.7 \times 10^{-6} \mathrm{s}^{-1}$	[50]

Synthesis rate of properdin (P)	k _{sP}	$1.17 \times 10^{-12} \text{ Ms}^{-1}$	[50]
Degradation rate of properdin (P)	k _{dP}	$2.7 \times 10^{-7} \mathrm{s}^{-1}$	[50]
Synthesis rate of C3	k _{sC3}	$0.053 \times 10^{-9} \mathrm{Ms^{-1}}$	[50]
Degradation rate of C3	k-dC3	$6.5 \times 10^{-6} \mathrm{s}^{-1}$	[50]
Hydrolysis of C3W	k _{C3W}	$4.5 \times 10^{-6} \mathrm{s}^{-1}$	[29]–[31]
Binding rate for MBL and MASP1	k ⁺ _{MBLMASP1}	$2.1 \times 10^5 \mathrm{M}^{-1} \mathrm{s}^{-1}$	[31], [51]
Disassociation rate for MBL:MASP1	k _{MBLMASP1}	$6.8 \times 10^{-4} \mathrm{s}^{-1}$	
Binding rate for MBL and MASP2	k ⁺ _{MBLMASP2}	$2.3 \times 10^5 \mathrm{M}^{-1} \mathrm{s}^{-1}$	[31], [51]
Disassociation rate for MBL:MASP2	k _{MBLMASP2}	$5.5 \times 10^{-4} \mathrm{s}^{-1}$	
Cleavage of C3 by initial C3-convertase (C3W:Bb)	k ^{C3WBb} _{catC3}	0.78 s ⁻¹	The C3b:Bb have a half-life $(t_{\frac{1}{2}})$ of 90 \pm 2s and $\frac{k_{cat}}{k_m}$ of $31.1 \times 10^4 \pm 0.8 \times 10^4$
(C3W:B0)	k _{mC3} ^{C3WBb}	$11.6 \times 10^{-6} \text{ M}$	M^{-1} s ⁻¹ . The C3b:Bb structurally/functionally homologous C3W:Bb [31] is found slightly less stable than C3b:Bb. It is known that C3W:Bb have $t_{\frac{1}{2}}$ of $77 \pm 3s$ and
			presented only half the activity of C3b:Bb ($\frac{k_{cat}}{k_m}$ is $16.3 \times 10^4 \pm 16.3 \times 10^4$
			M^{-1} s ⁻¹) [43]. Assumption k_m of C3W:Bb found from increasing k_m of C3b:Bb [31].
Cleavage of C3 by C3-convertase (C3b:Bb)	k ^{C3bBb} _{catC3}	1.78 s ⁻¹	[29]–[31], [43]
(C30.B0)	k _{mC3} ^{C3bBb}	$5.86 \times 10^{-6} M$	
Cleavage of C3 by C3-convertase (C4b:C2a)	k ^{C4b2a} catC3	3.17 s ⁻¹	[29]–[31], [38]
(8.8.624)	k ^{C4b2a} _{mC3}	$1.8 \times 10^{-6} \text{ M}$	
Cleavage of C5 by C3-convertase (C3b:Bb)	k ^{C3bBb} _{catC5}	$1.1 \times 10^{-2} \mathrm{s}^{-1}$	[29]–[31], [38]
(С.б., 100)	k ^{C3bBb} _{mC5}	$24.0 \times 10^{-6} \text{ M}$	

Cleavage of C5 by C3-convertase (C4b:C2a)	k ^{C4b2a} catC5	$2.2 \times 10^{-2} \mathrm{s}^{-1}$	[29]–[31], [38]
	k _{mC5} ^{C4b2a}	$8.9 \times 10^{-6} \text{ M}$	
Cleavage of C5 by C5-convertase (C4b:C2a:C3b)	k ^{C4b2a3b}	$2.0 \times 10^{-2} \mathrm{s}^{-1}$	[38]
	k _{mC5} ^{C4b2a3b}	$5.1 \times 10^{-9} \text{ M}$	
Cleavage of C5 by C5-convertase (C3b:Bb:C3b)	k ^{C3bBbC3b}	$3.0 \times 10^{-3} \mathrm{s}^{-1}$	[29]–[31], [38]
	k _{mC5} ^{C3bBbC3b}	$48.0 \times 10^{-9} \text{ M}$	
Activation of the product/complex	k ^{FD} _{catC3WFB}	5.0 s ⁻¹	[29]–[31]
C3W:FB by Factor D (FD)	k _{mC3WFB}	$2.5 \times 10^{-6} \text{ M}$	
Down-regulation/inhibition of the complex fC3b:FH by negative regulator Factor I	k ^{FI} catfC3bFH	1.32 s ⁻¹	It is assumed based on the FI inhibition of functionally homologous protein C3b:FH.
(FI)	k ^{FI} _{mfC3bFH}	$2.52 \times 10^{-7} \text{ M}$	
Down-regulation of the complex C3b:FH by inhibitor FI	k ^{FI} catC3bFH	1.32 s ⁻¹	[29]–[31]
	k _{mC3bFH}	$2.52 \times 10^{-7} \text{ M}$	
Down-regulation of the complex C3W:FH by FI	k ^{FI} _{catC3WFH}	1.32 s ⁻¹	It is assumed based on the FI inhibition of functionally homologous protein C3b:FH.
	k _{mC3WFH}	$2.52 \times 10^{-7} \text{ M}$	
Down-regulation of the complex fC3b:C4b:FH by FI	k ^{FI} catfC3bC4bFH	1.32 s ⁻¹	It is assumed based on the FI inhibition of functionally homologous protein C3b:FH.
	k ^{FI} _{mfC3bC4bFH}	$2.52 \times 10^{-7} \text{ M}$	
Up-regulation of the complex fC3b:FB by FD	k ^{FD} _{catfC3bFB}	1.32 s ⁻¹	Estimation structurally/functionally homologous protein C3W and Factor B [29]–[31], [34].
10	k ^{FD} _{mfC3bFB}	$2.52 \times 10^{-7} \text{ M}$	[27] [31], [34].

Inhibition of the complex fC3b:CR1 by FI	k ^{FI} catfC3bCR1	1.32 s ⁻¹	It is assumed based on the FI inhibition of functionally homologous protein C3b:FH.
	k ^{FI} _{mfC3bCR1}	$2.52 \times 10^{-7} \text{ M}$	
Inhibition of the complex C3b:CR1 by FI	k ^{FI} catC3bCR1	1.32 s ⁻¹	It is assumed based on the FI inhibition of functionally homologous protein C3b:FH.
	k ^{FI} _{mC3bCR1}	$2.52 \times 10^{-7} \text{ M}$	
Inhibition of the complex fC3b:C4b:CR1 by FI	k ^{FI} catfC3bC4bCR1	1.32 s ⁻¹	It is assumed based on the FI inhibition of functionally homologous protein C3b:FH.
	k ^{FI} _{mfC3bC4bCR1}	$2.52 \times 10^{-7} \text{ M}$	
Activation of the complex fC3b:FB:P by FD	k ^{FD} catfC3bFBP	5.0 s ⁻¹	It is assumed based on the FD upregulation of functionally homologous protein C3W:FB.
	k ^{FD} _{mfC3bFBP}	$2.5 \times 10^{-6} \text{ M}$	
Activation of the complex lgG:fC3b:FB by FD	k ^{FD} catlgGfC3bFB	5.0 s ⁻¹	It is assumed based on the FD upregulation of functionally homologous protein C3W/FB.
	k ^{FD} _{mlgGfC3bFB}	$2.5 \times 10^{-6} \text{ M}$	
Activation of the complex lgG:fC3b:FB:P by FD	k ^{FD} catlgGfC3bFBP	5.0 s ⁻¹	It is assumed based on the FD upregulation of functionally homologous protein C3W:FB.
	k ^{FD} _{mlgGfC3bFBP}	$2.5 \times 10^{-6} \text{ M}$	
Activation of the complex fC3b:C4b:FB by FD	k ^{FD} catfC3bC4bFB	5.0 s ⁻¹	It is assumed based on the FD upregulation of functionally homologous protein C3W:FB.
	k _{mfC3bC4bFB}	$2.5 \times 10^{-6} \text{ M}$	
Activation of the complex C3b:FB by FD	k ^{FD} _{catC3bFB}	5.0 s ⁻¹	It is assumed based on the FD upregulation of functionally homologous protein fC3b:FB [29]–[31].
	k _{mC3bFB}	$2.5 \times 10^{-6} \text{ M}$	
Activation of the complex fC3b:C4b:P:FB by FD	k ^{FD} catfC3bC4bPFB	5.0 s ⁻¹	It is assumed based on the FD upregulation of functionally homologous protein C3W:FB [29]–[31].
	k ^{FD} _{mfC3bC4bPFB}	$2.5 \times 10^{-6} \text{ M}$	

Cleavage rate of MASP fragment (MASP1) on C2 substrate	k MASP1	0.1 s^{-1} $4.8 \times 10^{-6} \text{ M}$	[31], [52]
	k _{mC2} ^{MASP1}	4.0 × 10 M	
Cleavage rate of MASP fragment (MASP2) on C2 substrate	k _{catC2} ^{MASP2}	5.6 s ⁻¹	[31], [53]
(MASP2) on C2 substrate	k _{mC2} ^{MASP2}	$5.2 \times 10^{-6} \text{ M}$	
Cleavage rate of MASP fragment	k _{catC4} ^{MASP1}	$2.0 \times 10^{-3} \text{ s}^{-1}$	[31], [53]
(MASP1) on C4 substrate	k _{mC4} ^{MASP1}	$5.2 \times 10^{-6} \text{ M}$	
Cleavage rate of MASP fragment (MASP2) on C4 substrate	k _{catC4} ^{MASP2}	1.9 s ⁻¹	[31], [53]
(WASI 2) OII C4 Substrate	k _{mC4} ^{MASP2}	$8.5 \times 10^{-8} \text{ M}$	
Cleavage rate of C2 by C1	k ^{C1} _{catC2}	5.1 s ⁻¹	[31], [53]
	k _{mC2} ^{C1}	$6.1 \times 10^{-6} \text{ M}$	
Cleavage rate of C4 by C1	k ^{C1} _{catC4}	5.4 s ⁻¹	[31], [53]
	k _{mC4} ^{C1}	$6.10 \times 10^{-6} \text{ M}$	
Cleavage rate of fC3b:C3b:FB by FD	k ^{FD} _{catfC3bC3bFB}	5.0 s ⁻¹	[29]–[31]
	k ^{FD} _{mfC3bC3bFB}	$2.5 \times 10^{-6} \text{ M}$	
Binding rate for C3a and C3aR1	k ⁺ _{C3aC3aR1}	$2.6 \times 10^{8} \text{ M}^{-1} \text{s}^{-1}$	Disassociation constant (k_d) is $3.85 \times 10^{-9} M$ [54]. Assume $k^- = 0.1 \text{ s}^{-1}$, Estimation
Disassociation rate for C3a:C3aR1	k-C3aC3aR1	0.1 s ⁻¹	for k^+ by formula $k_d = \frac{k}{k^+}$.
Binding rate for C5a and C5aR1	k ⁺ _{C5aC5aR1}	$2.2 \times 10^{8} \text{ M}^{-1} \text{s}^{-1}$	Disassociation constant (k_d) for the product C5a:C5aR1 is $\approx 4.5 \times 10^{-9}$ M and free
Disassociation rate for C5a:C5aR1	k _{C5aC5aR1}	0.1 s^{-1}	energy of association (ΔG_{bind}) is $-13.6 \pm 4.1 \text{ kcalmol}^{-1}$ [55]. Assumed $k^- = 0.1 \text{ s}^{-1}$, estimated for k^+ by formula $k_d = \frac{k^-}{k^+} = e^{\frac{\Delta G_{bind}}{RT}}$.

Inhibition of C1s by C1INH	k ⁺ _{C1INHC1s}	$9.5 \times 10^4 \text{ M}^{-1} \text{s}^{-1}$	C1 inhibitor binds to C1s [56].
Degradation rate of FD	k-dFD	$2.2 \times 10^{-4} \mathrm{s}^{-1}$	[57], [58]
Synthesis rate of FD	k _{sFD}	$1.3 \times 10^{-11} \text{ Ms}^{-1}$	[57]
Synthesis rate of C5	k _{sC5}	$2.2 \times 10^{-12} \text{ Ms}^{-1}$	[57]
Degradation rate of C5	k _{dC5}	$5.6 \times 10^{-6} \mathrm{s}^{-1}$	[57]
Synthesis rate of C6	k _{sC6}	$1.8 \times 10^{-10} \text{ Ms}^{-1}$	[57]
Degradation rate of C6	k _{dC6}	$2.9 \times 10^{-4} \mathrm{s}^{-1}$	[57]
Synthesis rate of C7	k _{sC7}	$1.9 \times 10^{-12} \text{ Ms}^{-1}$	[57]
Degradation rate of C7	k _{dC7}	$3.2 \times 10^{-6} \mathrm{s}^{-1}$	[57]
Synthesis rate of C8	k _{sC8}	$1.4 \times 10^{-12} \text{ Ms}^{-1}$	[57]
Degradation rate of C8	k _{dc8}	$4.01 \times 10^{-6} \text{ s}^{-1}$	[57]
Synthesis rate of C9	k _{sC9}	$3.4 \times 10^{-12} \text{ Ms}^{-1}$	[57]
Degradation rate of C9	k ⁻ _{dC9}	$4.01 \times 10^{-6} \text{ s}^{-1}$	[57]
Degradation rate of Ba	k _{dBa}	$7.7 \times 10^{-5} \mathrm{s}^{-1}$	[57]
Degradation rate of Bb	k-dBb	$7.7 \times 10^{-5} \mathrm{s}^{-1}$	[57]
Degradation rate of C3W	k _{dc3W}	$4.01 \times 10^{-6} \text{ s}^{-1}$	[57]
Degradation rate of C3WFB	k _{dC3WFB}	$4.01 \times 10^{-6} \text{ s}^{-1}$	[57]
Degradation rate of C3WBb	k-dC3WBb	$4.01 \times 10^{-6} \text{ s}^{-1}$	[57]
Degradation rate of fC3b	k ⁻ _{dfC3b}	$4.01 \times 10^{-6} \text{ s}^{-1}$	[57]

Degradation rate of fC3bFB	k ⁻ _{dfC3bFB}	$4.01 \times 10^{-6} \text{ s}^{-1}$	[57]
Degradation rate of fC3bBb	k-dfC3bBb	$4.01 \times 10^{-6} \text{ s}^{-1}$	[57]
Degradation rate of C5b	k _{dC5b}	$5.0 \times 10^{-3} \mathrm{s}^{-1}$	[57], [59]
Degradation rate of C5a	k-dC5a	$1.15 \times 10^{-2} \text{ s}^{-1}$	[57], [60]
Degradation rate of C3b	k _{dC3b}	$4.01 \times 10^{-6} \text{ s}^{-1}$	[57]
Degradation rate of C3a	k-dC3a	$1.15 \times 10^{-2} \text{ s}^{-1}$	[57]
Binding rate for Clq and gClqR	k ⁺ _{C1qgC1qR}	$4.0 \times 10^{2} \text{ M}^{-1} \text{s}^{-1}$	C1q binds to gC1q-receptor (gC1qR) with an affinity ($k_d = 250 \times 10^{-6}$) [61][50]. The disassociation rate (k^{-1}) is unknown, assumed a small value for $k^{-1} = 0.1 \text{ s}^{-1}$.
Disassociation rate for Clq:gClqR	$k_{C1qC1qR}^-$	0.1 s ⁻¹	Using the formula $k_d = \frac{k^-}{k^+}$, determined k^+ .
Inhibition of MAC by CD59	k _{MACCD59}	$1.0 \times 10^6 \text{ M}^{-1} \text{s}^{-1}$	The terminal complement complex (TCC), C5b-9 (MAC) bind to CD59 glycoprotein, also known as MAC-inhibitory protein (MAC-IP) [29].

 $\textbf{Table S1c.} \ \ \textbf{The hemostatic} \ \ \textbf{system} \ \ \textbf{and} \ \ \textbf{complement} \ \ \textbf{system} \ \ \textbf{cross-talk} \ \ \textbf{KCs}$

Meaning	Rate constant	Value adopted	Source
Inhibition of F12a by C1INH	k ⁺ _{C1INHF12a}	$3.6 \times 10^3 \text{ M}^{-1} \text{s}^{-1}$	C1INH suppresses F12a [62], [63].
Inhibition of KAL by C1INH	k _{C1INHKAL}	$1.7 \times 10^4 \text{ M}^{-1}\text{s}^{-1}$	C1INH suppresses KAL [62], [63]. Association rate of C1INH and KLK [64].
Inhibation of F2a by FH	k ⁺ _{FHF2a}	$3.367 \times 10^7 \mathrm{M^{-1}s^{-1}}$	For FH and F2a the disassociation constant (k_d) is measured 29.9nM. Binding affinity of FH and F2a range (3.1 - 200 nM) [65]. Estimation for association rate ($k_{\rm FHF2a}^+$) based on k_d .

Inhibation of Fla by FH	k _{FHF1a}	$2.62 \times 10^7 \text{ M}^{-1}\text{s}^{-1}$	FH and F1a disassociation constant (k_d) is measured 38.2nM. Binding affinity of FH and F2a range (3.1 - 200 nM) [65]. Estimation for association rate (k_{FHF1a}^+) based on k_d .
Cleavage of C5 by Pn	k ^{Pn} _{catC5}	0.056 s^{-1} 2.4×10^{-6}	Pn can cleaves C5 generating C5a with a catalytic efficiency $(\frac{k_{cat}}{k_m})$ of 2.3×10^4 M ⁻¹ s ⁻¹ [66], [67].
Cleavage of C5 by F2a	k_{catC5}^{F2a} k_{mC5}^{F2a}	0.56 s^{-1} 2.4×10^{-6}	F2a is less effective than Pn in cleaving C5 to generates C5a [66]. We could estimate catalytic efficiency $(\frac{k_{cat}}{k_m})$ of $2.3 \pm 0.6 \times 10^3$ M ⁻¹ s ⁻¹ based on Pn catalytic efficiency.
Cleavage of C3 by Pn	k ^{Pn} _{catC3} k ^{Pn} _{mC3}	0.056 s^{-1} 2.4×10^{-6}	Pn can cleaves C3. The cleavage of C3 by Pn is assumed based on functionally homologous C5.
Cleavage of C3 by F2a	k_{catC3}^{F2a} k_{mC3}^{F2a}	0.56 s^{-1} 2.4×10^{-6}	The cleavage of C3 by F2a is assumed based on functionally homologous C5.
Cleavage of C3 by F10a	$k_{\rm catC3}^{\rm F10a}$ $k_{\rm mC3}^{\rm F10a}$	0.056 s^{-1} 2.4×10^{-5}	F10a is less effective than Pn in cleaving C3 to generates C3a [66]. We could estimate catalytic efficiency $(\frac{k_{cat}}{k_m})$ of 2.3×10^3 M ⁻¹ s ⁻¹ based on Pn catalytic efficiency.
Cleavage of C5 by F10a	k ^{F10a} _{catC5} k ^{F10a} _{mC5}	0.056 s^{-1} 2.4×10^{-5}	F10a is less effective than Pn in cleaving C5 to generates C5a, respectively [66]. We could estimate catalytic efficiency $(\frac{k_{cat}}{k_m})$ of $2.3 \pm 0.6 \times 10^3$ M ⁻¹ s ⁻¹ based on Pn catalytic efficiency.
Production of TF by C5a	k ^{C5a} catTF	$0.01 \times 10^{-3} \text{ s}^{-1}$	C5a can increase the activity and expression of TF [68]. C5a stimulate the expression of TF on neutrophils via C5aR [62], [69]. Estimated a small value.
Production of TF by C3a	k ^{C3a} c _{atTF}	$0.01 \times 10^{-3} \text{ s}^{-1}$	C3a increases the expression of TF [68]. Assumption based on C3a functional homologous C5a.
Inhibition of F11a by C1INH	k ⁺ _{C1INHF11a}	$1.8 \times 10^3 \text{ M}^{-1} \text{s}^{-1}$	CIINH binds with F11a and inhibit it [2], [3].
Inhibition of F2a by C1INH	k ⁺ _{C1INHF2a}	$1.0 \times 10^{2} \text{ M}^{-1} \text{s}^{-1}$	C1-INH can inhibit F2a. Assumption.

Inhibition of Plasmin by C1INH	k ⁺ _{C1INHPlasmin}	$5.5 \times 10^3 \text{ M}^{-1} \text{s}^{-1}$	Kinetic analysis for inhibition experiment with Pn, generated an association rate for plasma C1INH [70].
Generation of F1 by IL6	k _{catF1} ^{IL6}	$0.01 \times 10^{-6} \mathrm{s}^{-1}$	IL6 induces the expression of F1. IL-6 correlated positively with F1 concentration [71]. Assume a small random value for generation of F1 by IL6.
Activation rate of F2 by MASP1	k _{catF2} ^{MASP1}	$141.0 \times 10^3 \text{ M}^{-1} \text{s}^{-1}$	MASP1 activates and cleaves F2 to F2a [63], [72], [73]. Activation of F2 wildtype by MASP1 computed via kinetic analysis [74].
Activation rate of F2 by MASP2	k _{catF2} ^{MASP2}	$141.0 \times 10^3 \mathrm{M}^{-1} \mathrm{s}^{-1}$	MASP2 activates and cleaves F2 into F2a [63], [73]. Activation rate of F2 by MASP2 estimated based on functionally homologous MASP1.
Activation rate of F1 by MASP1	k _{catF1} ^{MASP1}	$141.0 \times 10^3 \mathrm{M}^{-1} \mathrm{s}^{-1}$	MASP1 activate F1 to F1a [63], [72], [73]. Assumed based on the activation rate of F2 by MASP1.
Activation rate of F1 by MASP2	k _{catF1} ^{MASP2}	$141.0 \times 10^3 \text{ M}^{-1} \text{s}^{-1}$	MASP1 activate F1 to F1a [63], [72], [73]. Activation rate of F1 by MASP2 estimated based on functionally homologous MASP1.
Generation of F2 by MAC	k _{catF2} ^{MAC}	$0.1 \ s^{-1}$	Estimation for MAC (C5b-C9) can generate F2 [62].
Activation of C1r by F12a	k ^{F12a} catC1r	$1.0 \times 10^{2} \text{ M}^{-1} \text{s}^{-1}$	F12a can activate the C1r [62], [68], [75]. Assumed a small value for the activation of C1r by F12a.
Association rate for gClqR and F12	k _{gC1qRF12}	$8.3 \times 10^{13} \mathrm{M}^{-1} \mathrm{s}^{-1}$	gClqR binds to F12 with disassociation constant $k_d = 120 \times 10^{-9} \text{M}$ [76]. Assumed a
Disassociation rate for gC1qR:F12	k _{gC1qRF12}	$0.1 \ s^{-1}$	small value for $k^{-1} = 0.1 s^{-1}$. Using formula $k_d = \frac{k^-}{k^+}$, estimated for k^+ .
Production of F12a by gC1qR:F12	kgC1qRF12 kcatF12a	$0.1 \ s^{-1}$	The complex of gC1qR and F12 can generates F12a [77].
Association rate for gClqR and HK	k _{gC1qRHK}	$5.3 \times 10^{11} \mathrm{M^{-1} s^{-1}}$	gClq-receptor (gClqR) binds to HK with disassociation constant $k_d = 1.9 \times 10^{-9} \text{M}$ [76]. Assumed a small value for $k^{-1} = 0.1 \text{ s}^{-1}$. Using formula $k_d = \frac{k^-}{k^+}$, estimated k^+ .
Disassociation rate for gC1qR:HK	k-gC1qRHK	$0.1 \ s^{-1}$	[76]. Assumed a small value for $k^{-1} = 0.1 s^{-1}$. Using formula $k_d = \frac{\kappa}{k^+}$, estimated k^+ .
Production of BK by gC1qR:HK	k gC1qRHK	$0.1 \ s^{-1}$	The product of gC1qR and HK can release BK [77]. The generation rate is unknown, estimated a small value for it.

Cleavage of FB by KAL	k _{catFB}	$0.01 \ s^{-1}$	KAL can cleaves FB [68], [77]. Assumed small values for the catalytic rate constant and Michaelis constant. FB co-exist with hydrolyzed C3 (C3W) and fC3b.
	k _{mFB}	$1.0 \times 10^{-12} M$	
Cleavage of C3 by KAL	k _{catC3} ^{KAL}	$0.01 \ s^{-1}$	KAL can cleaves C3 [68], [77]. Assumed small values for the catalytic rate constant and Michaelis constant.
	k _{mC3}	$1.0 \times 10^{-12} M$	
Cleavage of C5 by KAL	k _{catC5}	$0.01 \ s^{-1}$	Kallikrein can cleaves C5 [68]. Assumed small values for the catalytic rate constant and Michaelis constant.
	k _{mC5}	$1.0 \times 10^{-12} M$	
Degradation rate of IL-6	k-dile	0.01s ⁻¹	Assumption.
Production of IL6 by BK:B2R	k _{IL6} ^{BKB2R}	0.1 s ⁻¹	BK via B2R can stimulate the production of IL6 [78] Estimation for the production rate of IL6 by BK and B2R complex.
Production of IL6 by C3a:C3aR	k C3aC3aR1 IL6	0.1 s ⁻¹	C3a via C3aR1 can induce IL6 [79]. Estimation for the production rate of IL6 by C3a and C3aR complex.
Production of IL6 by C5a:C5aR	k C5aC5aR1	$0.1 s^{-1}$	C5a via C5aR1 can induce interleukin 6 (IL6) [79]. Estimation for production rate of IL6 by C5a and C5aR complex.
Activation of Pro-FD by MASP1	k _{catPro-DF}	$3.9 \times 10^3 \text{ M}^{-1}\text{s}^{-1}$	Activation and cleavage of Pro-FD by MASP1 that can be converted into active FD [80].
Activation of Pro-FD by MASP2	k _{catPro-FD} k _{catPro-FD}	$7.2 \times 10^3 \text{ M}^{-1} \text{s}^{-1}$	Activation and cleavage of Pro-FD by MASP2 that can be converted into active FD [80].
Activation of Pro-FD by F2a	k ^{F2a} k _{catPro-FD}	$4.6 \times 10^{2} \text{ M}^{-1} \text{s}^{-1}$	The activation rates of pro-FD by thrombin (F2a) [80].
Cleavage of TAFI by MASP1	k ^{MASP1} _{catTAFI}	$0.1 \ s^{-1}$	MASP-1 directly activates/cleaves TAFI [72], [77].
	k _{mTAFI}	$3.9\times10^{-8}M$	

Table S1d. The hemostatic and complement systems entities and SARS-CoV-2 structure proteins interaction KCs

Meaning	Rate constant	Value adopted	Source
Association rate for gClqR and CoV2S	k ⁺ _{gC1qRCoV2S}	$1.1 \times 10^{10} M^{-1} s^{-1}$	Binding of S protein of SARS-CoV-2 (termed as CoV2S) on the surface of wild-type gClqR of classical pathway of the complement system. The binding affinity is $k_d = 91 \times 10^{-12} \text{M}$ [81]. The disassociation rate (k^-) is unknown, assume $k^- = 1s^{-1}$. Using $k_d = \frac{k^-}{k^+}$ determined k^+ .
Association rate for gC1qR and CoV2N	k ⁺ _{C1qRCoV2N}	$1.7 \times 10^5 M^{-1} s^{-1}$	Binding of N protein of SARS-CoV-2 (termed as CoV2N) on the surface of wild-type gC1qR of classical pathway of the complement system. The binding affinity is $k_d = 6 \times 10^{-6} \text{M}$ [81]. Assume $k^- = 1s^{-1}$. Using $k_d = \frac{k^-}{k^+}$ determined k^+ .
Association rate for gC1qR and CoV2M	k ⁺ _{C1qRCoV2M}	$2.4 \times 10^9 M^{-1} s^{-1}$	Binding of the M protein of SARS-CoV-2 (termed as CoV2M) on the surface of wild-type C1qR of classical pathway of the complement system. The binding affinity is $k_d = 410 \times 10^{-12}$ M [81]. Assume $k^- = 1s^{-1}$. Using $k_d = \frac{k^-}{k^+}$ determined k^+ .
Association rate for gClqR and CoV2E	k ⁺ _{C1qRCoV2E}	$2.4 \times 10^9 M^{-1} s^{-1}$	Binding of the E protein of SARS-CoV-2 (termed as CoV2E) on the surface of wild-type C1qR classical pathway of the complement system. The binding affinity $k_d = 410 \times 10^{-12} \mathrm{M}$ [81]. Assume $k^- = 1 \mathrm{s}^{-1}$. Using $k_{\mathrm{d}} = \frac{k^-}{k^+}$ determined k^+ .
Association rate for F12 and CoV2S	k ⁺ _{CoV2SF12}	$1.0 \times 10^6 M^{-1} s^{-1}$	S protein of SARS-CoV-2 (termed as CoV2S) binds to inactive coagulation factor F12 of contact pathway that is intrinsic pathway of the coagulation cascade [81]. Assumed for binding rate of F12 and CoV2S.
Association rate for F12 and CoV2N	k ⁺ _{CoV2NF12}	$1.0 \times 10^4 M^{-1} s^{-1}$	N protein of SARS-CoV-2 (termed as CoV2N) binds to coagulation factor F12 [81]. Assumption for binding rate of F12 and CoV2N.
Association rate for F12 and CoV2M	k ⁺ _{CoV2MF12}	$1.0 \times 10^4 M^{-1} s^{-1}$	M protein of SARS-CoV-2 (termed as CoV2M) binds to coagulation factor F12 [81]. Assumption for binding rate of F12 and CoV2M.

Association rate for F12 and CoV2E	k ⁺ _{CoV2EF12}	$1.0 \times 10^4 M^{-1} s^{-1}$	E protein of SARS-CoV-2 (termed as CoV2E) binds to coagulation factor F12 [81]. Assumption for binding rate of F12 and CoV2S.
Association rate for HK and CoV2S	k ⁺ _{HKCoV2S}	$1.0 \times 10^3 M^{-1} s^{-1}$	S protein of SARS-CoV-2 (termed as CoV2S) binds to HK of the systemKKS [81]. Assumption for binding rate.
Association rate for HK and CoV2N	k ⁺ _{HKCoV2N}	$1.0 \times 10^3 M^{-1} s^{-1}$	N protein of SARS-CoV-2 (termed as CoV2N) binds to HK of the system KKS [81]. Assumption for binding rate.
Association rate for HK and CoV2M	k ⁺ _{HKCoV2M}	$1.0 \times 10^3 M^{-1} s^{-1}$	M protein of SARS-CoV-2 (termed as CoV2M) binds to HK of the systemKKS [81]. Assumption for binding rate.
Association rate for HK and CoV2E	k ⁺ _{HKCoV2E}	$1.0 \times 10^3 M^{-1} s^{-1}$	E protein of SARS-CoV-2 (termed as CoV2E) binds to HK of the system KKS [81]. Assumption for binding rate.
Association rate for MASP2 by CoV2N protein	k ⁺ _{MASP2CoV2N}	$6.9 \times 10^4 M^{-1} s^{-1}$	The N protein of SARS-CoV-2 (termed as CoV2N) can cleaved/activate MASP2 [82]. $k_{cat} = 3.64 \ s^{-1}$ and $k_m = 5.437 \times 10^{-5}$ M. Assume a small value for disassociation rate $k^- = 0.1 s^{-1}$. Using the formula $k^+ = \frac{k^- + k_{cat}}{k_m}$, determined k^+ .
Binding rate for lgG and CoV2S Disassociation rate for the complex lgG/CoV2S	k ⁺ _{CoV2SlgG} k ⁻ _{CoV2SlgG}	$2.14 \times 10^{5} M^{-1} s^{-1}$ $1.70 \times 10^{-2} s^{-1}$	Association rate for lgG via Fab (ID-1F4) bind with spike (S) protein of SARS-CoV-2 [83].
Association rate of CoV2S/lgG and C1q	k ⁺ _{CoV2SlgGC1q}	$2.3 \times 10^5 M^{-1} s^{-1}$	S protein of SARS-CoV-2 binding by antibody lgG mediated C1q activate complement system through classical pathway [44]. An antibody IgG1 subclass antibodies Rituximab (RTX) and Ofatumumab (OFA) bind with C1q. Association rates of C1q and RTX, C1q and OFA are $5.2 \times 10^4 M^{-1} s^{-1}$ and $2.3 \times 10^5 M^{-1} s^{-1}$ [84]. Estimation for lgG based on structurally/ functionally homologous lgG1 subclass.
Cleavage rate of CoV2S by F10a	k ^{F10a} k _{catCoV2S} k ^{F10a} k _{mCoV2S}	$1.79 \times 10^{-1} s^{-1}$ $4.035 \times 10^{-5} M$	Cleavage rate of S protein by active coagulation factor F10a [85].
Cleavage rate of CoV2S by F2a	k ^{F2a} k _{catCoV2S} k ^{F2a} k _{mCoV2S}	$5.20 \times 10^{-2} s^{-1}$ $16.34 \times 10^{-6} M$	Cleavage rate of S protein by activated coagulation factor F2a [85].

 $\textbf{Table S1e.} \ \ \textbf{The Drug-Target interaction } \ \ \textbf{KCs} \\$

Meaning	Rate constant	Value adopted	Source
	1.4		
Association of Heparin to C2	k _{HepC2}	$4.13 \times 10^3 M^{-1} s^{-1}$	[86]
Disassociation of Heparin:C2	k _{HepC2}	$1.32 \times 10^{-3} s^{-1}$	
Association of Heparin to C3	k _{HepC3}	$1.83 \times 10^4 M^{-1} s^{-1}$	[86]
Disassociation of Heparin:C3	k _{HepC3}	$5.73 \times 10^{-4} s^{-1}$	
Association of Heparin to C4	k ⁺ _{HepC4}	$9.64 \times 10^4 M^{-1} s^{-1}$	[86]
Disassociation of Heparin:C4	k _{HepC4}	$3.46 \times 10^{-3} s^{-1}$	
Association of Heparin to C5	k ⁺ _{HepC5}	$2.43 \times 10^5 M^{-1} s^{-1}$	[86]
Disassociation of Heparin:C5	k _{HepC5}	$1.35 \times 10^{-3} \ s^{-1}$	
Association of Heparin to C6	k ⁺ _{HepC6}	$1.72 \times 10^4 M^{-1} s^{-1}$	[86]
Disassociation of Heparin:C6	k _{HepC6}	$5.58 \times 10^{-4} s^{-1}$	
Association of Heparin to C7	k ⁺ _{HepC7}	$6.25 \times 10^4 M^{-1} s^{-1}$	[86]
Disassociation of Heparin:C7	k_HepC7	$9.60 \times 10^{-4} s^{-1}$	
Association of Heparin to C8	k _{HepC8}	$4.17 \times 10^4 M^{-1} s^{-1}$	[86]
Disassociation of Heparin:C8	k _{HepC8}	$5.74 \times 10^{-3} s^{-1}$	
Association of Heparin to C9	k ⁺ _{HepC9}	$3.43 \times 10^4 M^{-1} s^{-1}$	[86]
Disassociation of Heparin:C9	k _{HepC9}	$4.51 \times 10^{-3} s^{-1}$	

Activation of AT3 by Heparin	k _{HepAT3}	$1 \times 10^2 M^{-1} s^{-1}$	Heparin as potentiator of AT3 [87]. Assumption.
Inhibition of C5aR1 by Avdoralimab	k ⁺ _{AvdC5aR1}	$1.0 \times 10^3 M^{-1} s^{-1}$	Avdoralimab (IPH5401) is a therapeutic antibody that specifically binds and blocks C5a receptors (C5aR1). It is safely used in COVID-19 patients [88]. Assumption.
Inhibition of tPA by Tranexamic acid (TXA)	k _{TXAtPA}	$1.0 \times 10^2 M^{-1} s^{-1}$	Assumption.

Abbre viations

MBL, Mannose binding lectin; MASP1 and MASP2 stand for MBL associated Mannan-binding lectin serine protease MASP-1 and MASP-2;

C2, Complement component 2; C2a, Complement component 2a; C2b, Complement component 2a; C3aR1, C3a anaphylatoxin Receptor 1;

C4BP, Complement component 4 binding protein; CR1, Complement receptor 1; DAF, Decay Accelerating Factor;

FB, FD, FH and FI stand for Complement factor B, D, H and I, respectively;

P, Properdin; IgG, Immunoglobulin G; Clq, Clr, Cls Complement components Clq, Clr, Cls; Cl, Activated Complement component 1;

Ba, cleavage fragment of FB; Bb, cleavage fragment of FB; MAC, Membrane attack complex (MAC); IL6, Interleukin 6;

F1 stand for Coagulation factor 1 (Fibrinogen); F1a, Coagulation factor 1a (Fibrin); F2, Coagulation factor 2 (Pro-Thrombin);

F2a, Coagulation factor 2a (Thrombin); F5, Coagulation factor 5 (Labile factor, Proaccelerin);

F5a, Activated coagulation factor 5; F7, Coagulation Factor 7 (Proconvertin); F7a, Activated coagulation factor 7;

F8, Coagulation factor 8 (Antihemophilic factor A); F8a, Activated coagulation factor 8; F9, Coagulation factor 9 (Antihemophilic factor B);

F9a, Activated coagulation factor 9; F10, Coagulation factor 10 (Thrombokinase); F10, Activated coagulation factor 10;

F11, Coagulation factor 11 (Plasma thromboplastin antecedent); F11, Activated coagulation factor 11; F12, Coagulation factor 12 (Hageman factor);

F12a, Activated coagulation factor 12; KAL, Kallikrein; P-KAL, Pre-Kallikrein;

Pn, Plasmin; Pg, Plasminogen; TF, Tissue factor (Tissue thromboplastin); TFPI, Tissue factor pathway inhibitor;

TAFI, Thrombin-activatable fibrinolysis inhibitor; TAFIa, Activated Thrombin-activatable fibrinolysis inhibitor; BK, Bradykinin;

C3a and C5a stand for complement anaphylatoxins;

HK, High-molecular-weight kininogen; tPA, Tissue-type plasminogen activator; A2M, Association rate of Alpha-2 macroglobulin; AT3, Anti-Thrombin 3 (Serpin); PAI-1, Plasminogen activator inhibitor-1; B2R, B2-receptor.

S stand for Spike protein; N, Nucleocapsid; M, Membrane; E, Envelope;

KKS, Kallikrein-kinin system.

Reference

- [1] A. M. Susree and B. M. Anand, "Reaction Mechanisms and Kinetic Constants used in Mechanistic Models of Coagulation and Fibrinolysis," *Math. Model. Nat. Phenom.*, vol. 11, no. 6, pp. 71–90, 2016, doi: 10.1051/mmnp/201611605.
- [2] M. S. Chatterjee, W. S. Denney, H. Jing, and S. L. Diamond, "Systems biology of coagulation initiation: Kinetics of thrombin generation in resting and activated human blood," *PLoS Comput. Biol.*, vol. 6, no. 9, 2010, doi: 10.1371/journal.pcbi.1000950.
- [3] R. Méndez Rojano *et al.*, "Kinetics of the coagulation cascade including the contact activation system: sensitivity analysis and model reduction," *Biomech. Model. Mechanobiol.*, vol. 18, no. 4, pp. 1139–1153, 2019, doi: 10.1007/s10237-019-01134-4.
- [4] R. D. Feinman, A. I. Yuan, S. R. Windwer, and D. Wang, "Kinetics of the reaction of thrombin and α2-macroglobulin," *Biochem. J.*, vol. 231, no. 2, pp. 417–423, 1985, doi: 10.1042/bj2310417.
- [5] M. A. Kelley and K. Leiderman, *Mathematical modeling to understand the role of bivalent thrombin-fibrin binding during polymerization*, vol. 18, no. 9. 2022. doi: 10.1371/journal.pcbi.1010414.
- [6] M. C. Naski and J. A. Shafer, "A kinetic model for the α-thrombin-catalyzed conversion of plasma levels of fibrinogen to fibrin in the presence of antithrombin III," *J. Biol. Chem.*, vol. 266, no. 20, pp. 13003–13010, 1991, doi: 10.1016/s0021-9258(18)98795-8.
- M. Nesheim, J. C. Fredenburgh, and G. R. Larsen, "The dissociation constants and stoichiometries of the interactions of Lys-plasminogen and chloromethyl ketone derivatives of tissue plasminogen activator and the variant ΔFEIX with intact fibrin," *J. Biol. Chem.*, vol. 265, no. 35, pp. 21541–21548, 1990, doi: 10.1016/s0021-9258(18)45774-2.
- [8] P. Y. Kim, L. D. Tieu, A. R. Stafford, J. C. Fredenburgh, and J. I. Weitz, "A high affinity interaction of plasminogen with fibrin is not essential for efficient activation by tissue-type plasminogen activator," *J. Biol. Chem.*, vol. 287, no. 7, pp. 4652–4661, 2012, doi: 10.1074/jbc.M111.317719.
- [9] B. N. Bouma and J. C. M. Meijers, "Thrombin-activatable fibrinolysis inhibitor (TAFI, plasma procarboxypeptidase B, procarboxypeptidase R, procarboxypeptidase U)," *J. Thromb. Haemost.*, vol. 1, no. 7, pp. 1566–1574, 2003, doi: 10.1046/j.1538-7836.2003.00329.x.
- [10] W. Wang, M. B. Boffa, L. Bajzar, J. B. Walker, and M. E. Nesheim, "A study of the mechanism of inhibition of fibrinolysis by activated thrombin-activable fibrinolysis inhibitor," *J. Biol. Chem.*, vol. 273, no. 42, pp. 27176–27181, 1998, doi: 10.1074/jbc.273.42.27176.

- [11] L. Bajzar, R. Manuel, and M. E. Nesheim, "Purification and characterization of TAFI, a thrombin-activable fibrinolysis inhibitor," *J. Biol. Chem.*, vol. 270, no. 24, pp. 14477–14484, 1995, doi: 10.1074/jbc.270.24.14477.
- [12] J. Foley, "A Quantitative and Mechanistic Assessment of Activated Thrombin-Activatable Fibrinolysis Inhibitor and its Role in Pathological Bleeding and Thrombosis," 2010.
- [13] B. E. Bannish, I. N. Chernysh, J. P. Keener, A. L. Fogelson, and J. W. Weisel, "Molecular and Physical Mechanisms of Fibrinolysis and Thrombolysis from Mathematical Modeling and Experiments," *Sci. Rep.*, vol. 7, no. 1, pp. 1–11, 2017, doi: 10.1038/s41598-017-06383-w.
- [14] J. R. Yaron, L. Zhang, Q. Guo, S. E. Haydel, and A. R. Lucas, "Fibrinolytic Serine Proteases, Therapeutic Serpins and Inflammation: Fire Dancers and Firestorms," *Front. Cardiovasc. Med.*, vol. 8, no. March, pp. 1–21, 2021, doi: 10.3389/fcvm.2021.648947.
- [15] L. O. Mosnier and B. N. Bouma, "Regulation of fibrinolysis by Thrombin Activatable Fibrinolysis Inhibitor, an unstable carboxypeptidase B that unites the pathways of coagulation and fibrinolysis," *Arterioscler. Thromb. Vasc. Biol.*, vol. 26, no. 11, pp. 2445–2453, 2006, doi: 10.1161/01.ATV.0000244680.14653.9a.
- T. Renné, J. Dedio, J. C. M. Meijers, D. Chung, and W. Müller-Esterl, "Mapping of the discontinuous H-kininogen binding site of plasma prekallikrein. Evidence for a critical role of apple domain-2," *J. Biol. Chem.*, vol. 274, no. 36, pp. 25777–25784, 1999, doi: 10.1074/jbc.274.36.25777.
- [17] M. L. Merchant *et al.*, "Plasma kininogen and kininogen fragments are biomarkers of progressive renal decline in type 1 diabetes," *Kidney Int.*, vol. 83, no. 6, pp. 1177–1184, Jun. 2013, doi: 10.1038/ki.2013.8.
- J. Feierler, M. Wirth, B. Welte, S. Schüssler, M. Jochum, and A. Faussner, "Helix 8 plays a crucial role in bradykinin B 2 receptor trafficking and signaling," *J. Biol. Chem.*, vol. 286, no. 50, pp. 43282–43293, 2011, doi: 10.1074/jbc.M111.256909.
- [19] F. S. Seaman, F. A. Baglia, J. A. Gurr, B. A. Jameson, and P. N. Walsh, "Binding of high-molecular-mass kininogen to the Apple 1 domain of factor XI is mediated in part by Val64 and Ile77," *Biochem. J.*, vol. 304, no. 3, pp. 715–721, 1994, doi: 10.1042/bj3040715.
- [20] S. Meini *et al.*, "Understanding the Pathophysiology of COVID-19: Could the Contact System Be the Key?," *Front. Immunol.*, vol. 11, no. August, pp. 1–9, 2020, doi: 10.3389/fimmu.2020.02014.
- [21] L. Bajzar, J. Morser, and M. Nesheim, "TAFI, or plasma procarboxypeptidase B, couples the coagulation and fibrinolytic cascades through the thrombin-thrombomodulin complex," *J. Biol. Chem.*, vol. 271, no. 28, pp. 16603–16608, 1996, doi: 10.1074/jbc.271.28.16603.
- [22] J. H. Foley, P. F. Cook, and M. E. Nesheim, "Kinetics of activated thrombin-activatable fibrinolysis inhibitor (TAFIa)-catalyzed cleavage of C-terminal lysine residues of fibrin degradation products and removal of plasminogen-binding sites," *J. Biol. Chem.*, vol. 286, no. 22, pp. 19280–19286, 2011, doi: 10.1074/jbc.M110.215061.
- [23] T. Myles *et al.*, "Thrombin Activatable Fibrinolysis Inhibitor, a Potential Regulator of Vascular Inflammation," *J. Biol. Chem.*, vol. 278, no. 51, pp. 51059–51067, 2003, doi: 10.1074/jbc.M306977200.

- [24] F. Napolitano and N. Montuori, "The role of the plasminogen activation system in angioedema: Novel insights on the pathogenesis," *J. Clin. Med.*, vol. 10, no. 3, pp. 1–14, 2021, doi: 10.3390/jcm10030518.
- J. Vakili, L. Ständker, M. Detheux, G. Vassart, W.-G. Forssmann, and M. Parmentier, "Urokinase Plasminogen Activator and Plasmin Efficiently Convert Hemofiltrate CC Chemokine 1 into Its Active [9–74] Processed Variant," *J. Immunol.*, vol. 167, no. 6, pp. 3406–3413, 2001, doi: 10.4049/jimmunol.167.6.3406.
- [26] E. Komorowicz, K. Kolev, and R. Machovich, "Fibrinolysis with des-kringle derivatives of plasmin and its modulation by plasma protease inhibitors," *Biochemistry*, vol. 37, no. 25, pp. 9112–9118, 1998, doi: 10.1021/bi980180d.
- [27] K. A. Of, P. Acyivation, I. X. Iuufild, P. Igudredi, and C. E. Pi-qisiology, "Kinetic analysis of plasminogen activation by purified plasma kallikrein," no. c, 1985.
- [28] I. Bally, V. Rossi, T. Lunardi, N. M. Thielens, C. Gaboriaud, and G. J. Arlaud, "Identification of the C1q-binding sites of human C1r and C1s. A refined three-dimensional model of the C1 complex of complement," *J. Biol. Chem.*, vol. 284, no. 29, pp. 19340–19348, 2009, doi: 10.1074/jbc.M109.004473.
- [29] N. Zewde, R. D. Gorham, A. Dorado, and D. Morikis, "Quantitative modeling of the alternative pathway of the complement system," *PLoS One*, vol. 11, no. 3, pp. 1–26, 2016, doi: 10.1371/journal.pone.0152337.
- [30] N. Zewde and D. Morikis, "A computational model for the evaluation of complement system regulation under homeostasis, disease, and drug intervention," *PLoS One*, vol. 13, no. 6, pp. 1–28, 2018, doi: 10.1371/journal.pone.0198644.
- [31] N. T. Zewde, R. V. Hsu, D. Morikis, and G. Palermo, "Systems Biology Modeling of the Complement System Under Immune Susceptible Pathogens," *Front. Phys.*, vol. 9, no. April, pp. 1–15, 2021, doi: 10.3389/fphy.2021.603704.
- [32] A. J. Perry *et al.*, "A molecular switch governs the interaction between the human complement protease C1s and its substrate, complement C4," *J. Biol. Chem.*, vol. 288, no. 22, pp. 15821–15829, 2013, doi: 10.1074/jbc.M113.464545.
- [33] R. T. Kidmose *et al.*, "Structural basis for activation of the complement system by component C4 cleavage," *Proc. Natl. Acad. Sci. U. S. A.*, vol. 109, no. 38, pp. 15425–15430, 2012, doi: 10.1073/pnas.1208031109.
- [34] A. Laich and R. B. Sim, "Complement C4bC2 complex formation: An investigation by surface plasmon resonance," *Biochim. Biophys. Acta Protein Struct. Mol. Enzymol.*, vol. 1544, no. 1–2, pp. 96–112, 2001, doi: 10.1016/S0167-4838(00)00208-9.
- [35] H. Chen *et al.*, "Allosteric inhibition of complement function by a staphylococcal immune evasion protein," *Proc. Natl. Acad. Sci. U. S. A.*, vol. 107, no. 41, pp. 17621–17626, 2010, doi: 10.1073/pnas.1003750107.
- [36] D. V Pedersen *et al.*, "Functional and structural insight into properdin control of complement alternative pathway amplification," *EMBO J.*, vol. 36, no. 8, pp. 1084–1099, 2017, doi: 10.15252/embj.201696173.

- J. Bernet, J. Mullick, Y. Panse, P. B. Parab, and A. Sahu, "Kinetic Analysis of the Interactions between Vaccinia Virus Complement Control Protein and Human Complement Proteins C3b and C4b," *J. Virol.*, vol. 78, no. 17, pp. 9446–9457, 2004, doi: 10.1128/jvi.78.17.9446-9457.2004.
- [38] A. A. Korotaevskiy, L. G. Hanin, and M. A. Khanin, "Non-linear dynamics of the complement system activation," *Math. Biosci.*, vol. 222, no. 2, pp. 127–143, 2009, doi: 10.1016/j.mbs.2009.10.003.
- [39] C. D. C. Vidy, "A Quantitative Analysis of Binding and the Role of C4-binding Protein in Proteolysis of Cell-bound C4b," *Rockefeller Univ. Press*, vol. 157, pp. 1239–1251, 1983.
- [40] R. J. Ziccardi, B. Dahlback, and H. J. Muller-Eberhard, "Characterization of the interaction of human C4b-binding protein with physiological ligands," *J. Biol. Chem.*, vol. 259, no. 22, pp. 13674–13679, 1984, doi: 10.1016/s0021-9258(18)89797-6.
- [41] C. L. Harris, R. J. M. Abbott, R. A. Smith, B. P. Morgan, and S. M. Lea, "Molecular dissection of interactions between components of the alternative pathway of complement and decay accelerating factor (CD55)," *J. Biol. Chem.*, vol. 280, no. 4, pp. 2569–2578, 2005, doi: 10.1074/jbc.M410179200.
- [42] T. B. Laboratories, "RATE PROCESSES IN THE FINAL STAGE OF COMPLEMENT HEMOLYSIS," *Immunochemistry*, vol. 14, pp. 421–428, 1977, doi: 10.1016/0019-2791(77) 90167-7.
- [43] M. K. Pangburn and H. J. Muller-Eberhardt, "The C3 convertase of the alternative pathway of human complement," *Biochem. J*, vol. 235, no. 3, pp. 723–730, 1986.
- [44] R. E. Lamerton *et al.*, "SARS-CoV-2 Spike- and Nucleoprotein-Specific Antibodies Induced After Vaccination or Infection Promote Classical Complement Activation," *Front. Immunol.*, vol. 13, no. July, pp. 1–13, 2022, doi: 10.3389/fimmu.2022.838780.
- [45] J. L. Beltrán and R. Franco, "The meaning of the Michaelis-Menten constant: Km describes a steady-state," *bioRxiv*, pp. 1–16, 2019, doi: https://doi.org/10.1101/608232.
- [46] N. Rawal and M. K. Pangburn, "Formation of high affinity C5 convertase of the classical pathway of complement," *J. Biol. Chem.*, vol. 278, no. 40, pp. 38476–38483, 2003, doi: 10.1074/jbc.M307017200.
- [47] J. Wu, Y. Q. Wu, D. Ricklin, B. J. C. Janssen, J. D. Lambris, and P. Gros, "Structure of complement fragment C3b-factor H and implications for host protection by complement regulators," *Nat. Immunol.*, vol. 10, no. 7, pp. 728–733, 2009, doi: 10.1038/ni.1755.
- D. E. Hourcade, "The role of properdin in the assembly of the alternative pathway C3 convertases of complement," *J. Biol. Chem.*, vol. 281, no. 4, pp. 2128–2132, 2006, doi: 10.1074/jbc.M508928200.
- [49] L. B. Klickstein, S. F. Barbashov, T. Liu, R. M. Jack, and A. Nicholson-Weller, "Complement receptor type 1 (CR1, CD35) is a receptor for C1q," *Immunity*, vol. 7, no. 3, pp. 345–355, 1997, doi: 10.1016/S1074-7613(00)80356-8.

- [50] S. Bakshi *et al.*, "Mathematical Modelling of Alternative Pathway of Complement System," *Bull. Math. Biol.*, vol. 82, no. 2, 2020, doi: 10.1007/s11538-020-00708-z.
- [51] F. Teillet, B. Dublet, J. Andrieu, and C. Gaboriaud, "The Two Major Oligomeric Forms of Human Mannan-Binding Lectin: Chemical Characterization, Carbohydrate-Binding Properties, and Interaction with MBL-Associated Serine Proteases," *J. Immunol.*, vol. 174, no. 5, pp. 2870–2877, 2005, [Online]. Available: https://doi.org/10.4049/jimmunol.174.5.2870% 0D
- [52] G. Ambrus *et al.*, "Natural Substrates and Inhibitors of Mannan-Binding Lectin-Associated Serine Protease-1 and -2: A Study on Recombinant Catalytic Fragments," *J. Immunol.*, vol. 170, no. 3, pp. 1374–1382, 2003, doi: 10.4049/jimmunol.170.3.1374.
- [53] V. Rossi, F. Teillet, N. M. Thielens, I. Bally, and G. J. Arlaud, "Functional characterization of complement proteases C1s/mannan-binding lectin-associated serine protease-2 (MASP-2) chimeras reveals the higher C4 recognition efficacy of the MASP-2 complement control protein modules," *J. Biol. Chem.*, vol. 280, no. 51, pp. 41811–41818, 2005, doi: 10.1074/jbc.M503813200.
- [54] T. H. Chao, J. A. Ember, M. Wang, Y. Bayon, T. E. Hugli, and R. D. Ye, "Role of the second extracellular loop of human C3a receptor in agonist binding and receptor function," *J. Biol. Chem.*, vol. 274, no. 14, pp. 9721–9728, 1999, doi: 10.1074/jbc.274.14.9721.
- [55] A. C. Dumitru *et al.*, "Submolecular probing of the complement C5a receptor–ligand binding reveals a cooperative two-site binding mechanism," *Commun. Biol.*, vol. 3, no. 1, pp. 1–13, 2020, doi: 10.1038/s42003-020-01518-8.
- [56] T. Sulikowski, B. A. Bauer, and P. A. Patston, "α1-Proteinase inhibitor mutants with specificity for plasma kallikrein and C1s but not C1," *Protein Sci.*, vol. 11, no. 9, pp. 2230–2236, 2002, doi: 10.1110/ps.0207302.
- [57] L. Bansal *et al.*, "Mathematical Modeling of Complement Pathway Dynamics for Target Validation and Selection of Drug Modalities for Complement Therapies," *Front. Pharmacol.*, vol. 13, no. April, pp. 1–20, 2022, doi: 10.3389/fphar.2022.855743.
- [58] M. Pascual, G. Steiger, J. Estreicher, K. Macon, J. E. Volanakis, and J. A. Schifferli, "Metabolism of complement factor D in renal failure," *Kidney Int.*, vol. 34, no. 4, pp. 529–536, 1988, doi: 10.1038/ki.1988.214.
- [59] J. D. Greenstein, P. W. Peake, and J. A. Charlesworth, "The kinetics and distribution of C9 and SC5b-9 in vivo: Effects of complement activation," *Clin. Exp. Immunol.*, vol. 100, no. 1, pp. 40–46, 1995, doi: 10.1111/j.1365-2249.1995.tb03601.x.
- [60] M. Oppermann and O. Götze, "Plasma clearance of the human C5a anaphylatoxin by binding to leucocyte C5a receptors.," *Immunology*, vol. 82, no. 4, pp. 516–21, 1994, [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/7835913% 0Ahttp://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC1414921
- [61] I. Ghiran, S. R. Tyagi, L. B. Klickstein, and A. Nicholson-Weller, "Expression and function of C1q receptors and C1q binding proteins at the cell surface," *Immunobiology*, vol. 205, no. 4–5, pp. 407–420, 2002, doi: 10.1078/0171-2985-00142.
- [62] U. Amara *et al.*, "Molecular Intercommunication between the Complement and Coagulation Systems," *J. Immunol.*, vol. 185, no. 9, pp. 5628–5636, Nov. 2010, doi: 10.4049/jimmunol.0903678.

- [63] A. Fletcher-Sandersjöö and B. M. Bellander, "Is COVID-19 associated thrombosis caused by overactivation of the complement cascade? A literature review," *Thromb. Res.*, vol. 194, no. April, pp. 36–41, 2020, doi: 10.1016/j.thromres.2020.06.027.
- [64] D. J. Sexton *et al.*, "Comparison Of Plasma Kallikrein Inhibition By The Endogenous C1-Inhibitor Versus DX-2930, a Monoclonal Antibody Inhibitor," *Blood*, vol. 122, no. 21, pp. 1066–1066, 2013, doi: 10.1182/blood.v122.21.1066.1066.
- [65] Ryan, Cooper, and Tauer, "Complement Regulator Factor H is a Cofactor for Thrombin in both Pro- and Anticoagulant Roles," *Pap. Knowl. . Towar. a Media Hist. Doc.*, vol. 7, no. max 7, pp. 12–26, 2013.
- [66] J. H. Foley *et al.*, "Complement Activation in Arterial and Venous Thrombosis is Mediated by Plasmin," *EBioMedicine*, vol. 5, pp. 175–182, 2016, doi: 10.1016/j.ebiom.2016.02.011.
- [67] N. Rawal and M. K. Pangburn, "Formation of High-Affinity C5 Convertases of the Alternative Pathway of Complement," *J. Immunol.*, vol. 166, no. 4, pp. 2635–2642, 2001, doi: 10.4049/jimmunol.166.4.2635.
- [68] E. M. Conway, "Reincarnation of ancient links between coagulation and complement," *J. Thromb. Haemost.*, vol. 13, no. S1, pp. S121–S132, 2015, doi: 10.1111/jth.12950.
- [69] K. Ritis *et al.*, "A novel C5a receptor-tissue factor cross-talk in neutrophils links innate immunity to coagulation pathways.," *J. Immunol.*, vol. 177, no. 7, pp. 4794–802, Oct. 2006, doi: 10.4049/jimmunol.177.7.4794.
- [70] E. Eldering, C. C. M. Huijbregts, Y. T. P. Lubbers, C. Longstaff, and C. E. Hack, "Characterization of recombinant C1 inhibitor P1 variants," *J. Biol. Chem.*, vol. 267, no. 10, pp. 7013–7020, 1992, doi: 10.1016/s0021-9258(19)50529-4.
- [71] H. T. Cronjé, C. Nienaber-Rousseau, L. Zandberg, Z. De Lange, F. R. Green, and M. Pieters, "Fibrinogen and clot-related phenotypes determined by fibrinogen polymorphisms: Independent and IL-6-interactive associations," *PLoS One*, vol. 12, no. 11, pp. 1–18, 2017, doi: 10.1371/journal.pone.0187712.
- [72] K. Hess, R. Ajjan, F. Phoenix, J. Dobó, P. Gál, and V. Schroeder, "Effects of MASP-1 of the complement system on activation of coagulation factors and plasma clot formation," *PLoS One*, vol. 7, no. 4, 2012, doi: 10.1371/journal.pone.0035690.
- [73] V. Bumiller-Bini *et al.*, "Masps at the crossroad between the complement and the coagulation cascades-the case for covid-19," *Genet. Mol. Biol.*, vol. 44, no. 1, pp. 1–21, 2021, doi: 10.1590/1678-4685-gmb-2020-0199.
- [74] L. Jenny, J. Dobó, P. Gál, and V. Schroeder, "MASP-1 Induced Clotting The First Model of Prothrombin Activation by MASP-1," *PLoS One*, vol. 10, no. 12, pp. 1–13, 2015, doi: 10.1371/journal.pone.0144633.
- [75] A. Fletcher-Sandersjöö, M. Maegele, and B. M. Bellander, "Does complement-mediated hemostatic disturbance occur in traumatic brain injury? A literature review and observational study protocol," *Int. J. Mol. Sci.*, vol. 21, no. 5, pp. 1–15, 2020, doi: 10.3390/ijms21051596.
- [76] B. G. Kaira et al., "Factor XII and kiningen asymmetric assembly with gC1qR/C1QBP/P32 is governed by allostery," Blood, vol. 136, no.

- 14, pp. 1685–1697, Jun. 2020, doi: 10.1182/blood.2020004818.
- [77] Z. Bekassy, I. Lopatko Fagerström, M. Bader, and D. Karpman, "Crosstalk between the renin–angiotensin, complement and kallikrein–kinin systems in inflammation," *Nat. Rev. Immunol.*, vol. 22, no. 7, pp. 411–428, 2022, doi: 10.1038/s41577-021-00634-8.
- [78] G. Wang, Y. Ye, X. Zhang, and J. Song, "Bradykinin stimulates IL-6 production and cell invasion in colorectal cancer cells," *Oncol. Rep.*, vol. 32, no. 4, pp. 1709–1714, 2014, doi: 10.3892/or.2014.3366.
- [79] P. Conigliaro, P. Triggianese, C. Perricone, M. S. Chimenti, and R. Perricone, "COVID-19: disCOVering the role of complement system," *Clin Exp Rheumatol*, vol. 38, pp. 587–591, 2020.
- [80] G. Oroszlán *et al.*, "MASP-1 and MASP-2 Do Not Activate Pro–Factor D in Resting Human Blood, whereas MASP-3 Is a Potential Activator: Kinetic Analysis Involving Specific MASP-1 and MASP-2 Inhibitors," *J. Immunol.*, vol. 196, no. 2, pp. 857–865, 2016, doi: 10.4049/jimmunol.1501717.
- [81] A. G. Savitt *et al.*, "SARS-CoV-2 Exacerbates COVID-19 Pathology Through Activation of the Complement and Kinin Systems," *Front. Immunol.*, vol. 12, no. November, pp. 1–11, 2021, doi: 10.3389/fimmu.2021.767347.
- [82] S. Kang *et al.*, "A SARS-CoV-2 antibody curbs viral nucleocapsid protein-induced complement hyperactivation," *Nat. Commun.*, vol. 12, no. 1, pp. 1–11, 2021, doi: 10.1038/s41467-021-23036-9.
- [83] B. Wang *et al.*, "Bivalent binding of a fully human IgG to the SARS-CoV-2 spike proteins reveals mechanisms of potent neutralization," *bioRxiv*, p. 2020.07.14.203414, 2020, [Online]. Available: https://doi.org/10.1101/2020.07.14.203414
- [84] S. Bondza *et al.*, "Complement-Dependent Activity of CD20-Specific IgG Correlates With Bivalent Antigen Binding and C1q Binding Strength," *Front. Immunol.*, vol. 11, no. January, pp. 1–17, 2021, doi: 10.3389/fimmu.2020.609941.
- [85] E. R. Kastenhuber *et al.*, "Coagulation factors directly cleave SARSCoV-2 spike and enhance viral entry," *Elife*, vol. 11, 2022, doi: 10.7554/eLife.77444.
- [86] H. Yu, E. M. Muñoz, R. E. Edens, and R. J. Linhardt, "Heparin regulation of the complement system," *Chem. Biol. Heparin Heparan Sulfate*, no. 6, pp. 313–343, 2005, doi: 10.1016/B978-008044859-6/50012-5.
- [87] D. Joshi, S. Manohar, G. Goel, S. Saigal, A. P. Pakhare, and A. Goyal, "Adequate Antithrombin III Level Predicts Survival in Severe COVID-19 Pneumonia," *Cureus*, vol. 13, no. 10, 2021, doi: 10.7759/cureus.18538.
- [88] J. Carvelli *et al.*, "Avdoralimab (Anti-C5aR1 mAb) Versus Placebo in Patients With Severe COVID-19: Results From a Randomized Controlled Trial (FOR COVID Elimination [FORCE])*," *Crit. Care Med.*, vol. 50, no. 12, pp. 1788–1798, 2022, doi: 10.1097/CCM.000000000005683.