Modules

This page shows the list of all the modules, which will be updated as the class progresses. There are three types of modules:

- [date]: It was covered in class, and you are responsible for the material.
- offline: It was not covered in class, but you are responsible for the material.
- optional: It was not covered in class, and you are not responsible for the material.

Date	Module	Links	Description
General			
Sep 23	Course content	html: <u>slides,1pp,6pp</u> pdf: <u>1pp,6pp</u>	What are we covering in this course?
Sep 23	Al History	html: <u>slides,1pp,6pp</u> pdf: <u>1pp,6pp</u>	Three histories of AI (logical, neural, statistical).
Sep 23	Ethics and responsibility	html: <u>slides,1pp,6pp</u> pdf: <u>1pp,6pp</u>	How should we think about the societal impacts of AI?
Prerequi	sites		
offline	Linear algebra	<u>video</u> pdf	Vectors, dot products, geometric interpretations.
offline	Vector calculus	<u>video</u> pdf	Taking gradients.
offline	Probability 1	<u>video</u>	Discrete random variables and probability distributions, mean, variance (from Khan Academy).
offline	Probability 2	<u>video</u>	Marginal and conditional distributions (from Khan Academy).
offline	Complexity	<u>video</u> pdf	Basic big-Oh notation, complexity.
offline	<u>Optimization</u>	<u>video</u> pdf	Continuous optimization, objective functions, gradient descent.
offline	<u>Python</u>	<u>video</u> <u>code</u>	Tutorial on using Python for this course.
Machine	learning		
Sep 25	Overview	<u>video (6:49)</u> html: <u>slides,1pp,6pp</u> pdf: <u>1pp,6pp</u>	Overview of machine learning.
Sep 25	Linear regression	video (22:43) html: <u>slides,1pp,6pp</u> pdf: <u>1pp,6pp</u> code	Linear regression (with loss minimization and gradient descent).
Sep 25	Linear classification	video (28:01) html: <u>slides,1pp,6pp</u> pdf: <u>1pp,6pp</u> code	Linear classification (with loss minimization using hinge loss and gradient descent).
offline	Stochastic gradient descent	video (15:04) html:slides,1pp,6pp pdf:1pp,6pp code	Stochastic gradient descent.

optional	<u>Learning demo</u>	html: <u>slides,1pp,6pp</u> pdf: <u>1pp,6pp</u>	Interactive learning demo for supervised learning and k-means.
Sep 30	Group DRO	<u>video (17:39)</u> html: <u>slides,1pp,6pp</u> pdf: <u>1pp,6pp</u>	How to ensure more equitable performance.
offline	Non-linear features	video (14:04) html: <u>slides,1pp,6pp</u> pdf: <u>1pp,6pp</u>	How to get non-linear functions from linear machinery.
offline	Feature templates	video (11:51) html: <u>slides,1pp,6pp</u> pdf: <u>1pp,6pp</u>	How to design and organize features.
Sep 30	Neural networks	video (18:35) html: <u>slides,1pp,6pp</u> pdf: <u>1pp,6pp</u>	Introduction to neural networks.
Sep 30	Backpropagation	video (30:46) html: <u>slides,1pp,6pp</u> pdf: <u>1pp,6pp</u>	Computation graphs and backpropagation algorithm for computing gradients.
offline	Algorithms and distribution	<u>video</u> pdf	Ethical frameworks related to how algorithms distribute burdens and benefits.
optional	<u>Differentiable</u> <u>programming</u>	<u>video (37:41)</u> html: <u>slides,1pp,6pp</u> pdf: <u>1pp,6pp</u>	How to build larger deep learning models by composition.
Oct 2	Generalization	video (14:53) html: <u>slides,1pp,6pp</u> pdf: <u>1pp,6pp</u>	Basic introduction into generalization.
Oct 2	Best practices	video (23:49) html: <u>slides,1pp,6pp</u> pdf: <u>1pp,6pp</u> code	Best practices, cross-validation, etc.
Oct 2	<u>K-means</u>	video (19:23) html: <u>slides,1pp,6pp</u> pdf: <u>1pp,6pp</u>	K-means algorithm.
Search			
Oct 7	Overview	video html: <u>slides,1pp,6pp</u> pdf: <u>1pp,6pp</u>	Going from single action to sequences.
Oct 7	<u>Modeling</u>	video html: <u>slides,1pp,6pp</u> pdf: <u>1pp,6pp</u>	Defining search problems.
Oct 7	Tree search	video html: <u>slides,1pp,6pp</u> pdf: <u>1pp,6pp</u> code	(Prerequisite) Basic exhaustive search, BFS, DFS.
Oct 7	<u>Dynamic programming</u>	video html: <u>slides,1pp,6pp</u> pdf: <u>1pp,6pp</u> code	Recurrences, practice forming states.
Oct 9	Uniform cost search	video html: <u>slides,1pp,6pp</u> pdf: <u>1pp,6pp</u>	Uniform cost search (UCS).

2 of 7

Oct 9	Uniform cost search correctness	video html: <u>slides,1pp,6pp</u> pdf: <u>1pp,6pp</u>	Programming UCS and proving correctness.
offline	Externalities and dual use technologies	<u>video</u> pdf	Explaining externalities and dual use technologies.
optional	Structured perceptron	<u>video</u> html: <u>slides,1pp,6pp</u> pdf: <u>1pp,6pp</u>	Learning the costs of a search problem.
offline	<u>A-star</u>	<u>video</u> html: <u>slides,1pp,6pp</u> pdf: <u>1pp,6pp</u>	Speeding up UCS with heuristics. Correctness, efficiency, and admissibility.
offline	A-star relaxations	video html: <u>slides,1pp,6pp</u> pdf: <u>1pp,6pp</u>	Generating heuristics using relaxed search problems.
offline	<u>Recap</u>	video html: <u>slides,1pp,6pp</u> pdf: <u>1pp,6pp</u>	Recap of search.
Markov D	Decision Processes (MDPs)		
Oct 14	Overview	<u>video</u> html: <u>slides,1pp,6pp</u> pdf: <u>1pp,6pp</u>	Motivating MDPs.
Oct 14	Modeling	video html: <u>slides,1pp,6pp</u> pdf: <u>1pp,6pp</u> code	Defining MDPs, Dice game, transportation problem.
Oct 14	Policy evaluation	video html: <u>slides,1pp,6pp</u> pdf: <u>1pp,6pp</u>	Policy evaluation, discounting factor.
Oct 16	Value iteration	<u>video</u> html: <u>slides,1pp,6pp</u> pdf: <u>1pp,6pp</u>	Value iteration.
Oct 16	Reinforcement learning	video html:slides,1pp,6pp pdf:1pp,6pp	Introducing to reinforcement learning.
Oct 16	Model-based Monte Carlo	video html: <u>slides,1pp,6pp</u> pdf: <u>1pp,6pp</u>	Model-based Monte Carlo.
Oct 16	Model-free Monte Carlo	<u>video</u> html: <u>slides,1pp,6pp</u> pdf: <u>1pp,6pp</u>	Model-free Monte Carlo.
optional	SARSA	<u>video</u> html: <u>slides,1pp,6pp</u> pdf: <u>1pp,6pp</u>	SARSA, Model-free Monte Carlo vs SARSA.
offline	Q-learning	video html:slides,1pp,6pp pdf:1pp,6pp	Q-learning, on-policy vs off-policy.
offline	Epsilon-greedy	<u>video</u> html: <u>slides,1pp,6pp</u>	Epsilon-greedy exploration.

3/18/25, 9:44 PM

offline	Function approximation	video html: <u>slides,1pp,6pp</u> pdf: <u>1pp,6pp</u>	Generalization, Function approximation.
offline	<u>Recap</u>	<u>video</u> html: <u>slides,1pp,6pp</u> pdf: <u>1pp,6pp</u>	Recap of MDPs and reinforcement learning, Deep RL, and applications.
Games			
Oct 21	Overview	<u>video</u> html: <u>slides,1pp,6pp</u> pdf: <u>1pp,6pp</u>	Overview of games.
Oct 21	Modeling	video html: <u>slides,1pp,6pp</u> pdf: <u>1pp,6pp</u> code	Definition of games, Halving game.
Oct 21	Game evaluation	<u>video</u> html: <u>slides,1pp,6pp</u> pdf: <u>1pp,6pp</u>	Given two policies, what is the value of the game?
Oct 21	Expectimax	<u>video</u> html: <u>slides,1pp,6pp</u> pdf: <u>1pp,6pp</u>	Find the optimal agent policy against a fixed (random) opponent policy.
Oct 21	Minimax	video html: <u>slides,1pp,6pp</u> pdf: <u>1pp,6pp</u> code	Find the optimal agent (max) policy against the worst-case (min) opponent policy.
Oct 23	Expectiminimax	video html: <u>slides,1pp,6pp</u> pdf: <u>1pp,6pp</u>	Minimax with randomness in the game.
Oct 23	Evaluation functions	<u>video</u> html: <u>slides,1pp,6pp</u> pdf: <u>1pp,6pp</u>	Limited depth DFS and bottom out with a cheap evaluation function.
Oct 23	Alpha beta pruning	<u>video</u> html: <u>slides,1pp,6pp</u> pdf: <u>1pp,6pp</u>	Alpha-beta pruning to speed up minimax.
optional	Al Misalignment	<u>video</u> pdf	The Al Alignment problem, specifically reward hacking and negative side effects.
optional	TD learning	video html: <u>slides,1pp,6pp</u> pdf: <u>1pp,6pp</u>	Temporal Difference (TD) learning for learning the value function.
optional	Simultaneous games	<u>video</u> html: <u>slides,1pp,6pp</u> pdf: <u>1pp,6pp</u>	Two players go at the same time, pure and mixed strategies, minimax theorem.
optional	Non-zero-sum games	<u>video</u> html: <u>slides,1pp,6pp</u> pdf: <u>1pp,6pp</u>	Prisoner's Dilemma, Nash equilibria.
Oct 23	Recap	<u>video</u> html: <u>slides,1pp,6pp</u> pdf: <u>1pp,6pp</u>	Recap of games, and applications.

Constraint satisfaction problems

Oct 28	Overview	<u>video (13:49)</u> html: <u>slides,1pp,6pp</u> pdf: <u>1pp,6pp</u>	Overview of variable-based models.
Oct 28	<u>Definitions</u>	<u>video (19:11)</u> html: <u>slides,1pp,6pp</u> pdf: <u>1pp,6pp</u>	Factor graphs (variables, factors, assignments, weights).
Oct 28	Examples	<u>video (24:54)</u> html: <u>slides,1pp,6pp</u> pdf: <u>1pp,6pp</u>	Examples of factor graphs.
Oct 30	Dynamic ordering	<u>video (19:16)</u> html: <u>slides,1pp,6pp</u> pdf: <u>1pp,6pp</u>	Backtracking search, re-order the variables and values.
Oct 30	Arc consistency	<u>video (14:09)</u> html: <u>slides,1pp,6pp</u> pdf: <u>1pp,6pp</u>	Prune the domains locally based on factors. AC-3 algorithm to use in the context of exhaustive search.
Oct 30	Beam search	video (14:29) html: <u>slides,1pp,6pp</u> pdf: <u>1pp,6pp</u>	Approximate search (pruned BFS).
Oct 30	Local search	video (12:42) html: <u>slides,1pp,6pp</u> pdf: <u>1pp,6pp</u>	Start with an assignment and improve each variable greedily.
optional	Inference demo	html: <u>slides,1pp,6pp</u> pdf: <u>1pp,6pp</u>	Interactive inference demo for factor graphs.
Markov n	etworks		
Nov 4	Overview	<u>video (14:11)</u> html: <u>slides,1pp,6pp</u> pdf: <u>1pp,6pp</u>	Connect factor graphs with probability.
Nov 4	Gibbs sampling	video (17:54) html: <u>slides,1pp,6pp</u> pdf: <u>1pp,6pp</u>	Gibbs sampling for computing marginal probabilities.
offline	Encoding human values	<u>video</u> <u>pdf</u>	Encoding human values in AI systems.
optional	Conditional independence	html: <u>slides,1pp,6pp</u> pdf: <u>1pp,6pp</u>	Exploit conditional independence in Markov networks (slides only).
Bayesian	networks		
Nov 4	Overview	video (10:42) html: <u>slides,1pp,6pp</u> pdf: <u>1pp,6pp</u>	Overview of Bayesian networks.
Nov 4	<u>Definitions</u>	<u>video (28:39)</u> html: <u>slides,1pp,6pp</u> pdf: <u>1pp,6pp</u>	Bayesian networks, properties, explaining away, etc.
offline	Probabilistic programming	<u>video (15:32)</u> html: <u>slides,1pp,6pp</u> pdf: <u>1pp,6pp</u>	View Bayesian networks as a program, whirlwind tour of lots of models.
Nov 6	Probabilistic inference	video (15:16) html: <u>slides,1pp,6pp</u> pdf: <u>1pp,6pp</u>	Inference in general Bayesian networks via reduction to Markov networks.

Nov 6	Forward-backward algorithm	<u>video (16:32)</u> html: <u>slides,1pp,6pp</u> pdf: <u>1pp,6pp</u>	Efficient exact inference algorithm for HMMs.
Nov 6	Particle filtering	<u>video (24:01)</u> html: <u>slides,1pp,6pp</u> pdf: <u>1pp,6pp</u>	Approximate inference alogrithm for HMMs with large domains.
Nov 11	Supervised learning	<u>video (31:43)</u> html: <u>slides,1pp,6pp</u> pdf: <u>1pp,6pp</u>	Learning parameters of a Bayesian network when all variables are observed. Maximum likelihood = counting + normalize.
Nov 11	Smoothing	<u>video (7:01)</u> html: <u>slides,1pp,6pp</u> pdf: <u>1pp,6pp</u>	Laplace smoothing to avoid overfitting.
Nov 11	EM algorithm	video (37:28) html:slides,1pp,6pp pdf:1pp,6pp code	Learning parameters of a Bayesian network when only a subset of variables are observed. Maximum marginal likelihood using EM. Application to decipherment.
Logic			
Nov 13	Overview	video html: <u>slides,1pp,6pp</u> pdf: <u>1pp,6pp</u>	Motivation for logic (represent and reason).
Nov 13	Propositional logic syntax	video html: <u>slides,1pp,6pp</u> pdf: <u>1pp,6pp</u>	Syntax of propositional logic.
Nov 13	Propositional logic semantics	video html: <u>slides,1pp,6pp</u> pdf: <u>1pp,6pp</u>	Semantics of propositional logic. General concepts such as entailment, contradiction, contingency, Ask/Tell, satisfiability, model checking.
Nov 13	Inference rules	video html:slides,1pp,6pp pdf:1pp,6pp	Soundness, completeness.
Nov 18	Propositional modus ponens	video html: <u>slides,1pp,6pp</u> pdf: <u>1pp,6pp</u>	Modus ponens is sound and complete for propositional logic with Horn clauses.
Nov 18	Propositional resolution	video html: <u>slides,1pp,6pp</u> pdf: <u>1pp,6pp</u>	Resolution is sound and complete for propositional logic. Conversion to Conjunctive Normal Form (CNF).
Nov 18	First order logic	video html:slides,1pp,6pp pdf:1pp,6pp	Syntax and semantics of first-order logic.
offline	First order modus ponens	video html: <u>slides,1pp,6pp</u> pdf: <u>1pp,6pp</u>	Modus ponens generalized to first-order logic requires notions of substitution and unification.
offline	Explainability and interpretability	<u>video</u> <u>pdf</u>	Explainability and Interpretability in AI Systems
optional	First order resolution	video html: <u>slides,1pp,6pp</u> pdf: <u>1pp,6pp</u>	Generalizes resolution to first-order logic. Conversion to CNF, Skolem functions.
offline	Recap	video html: <u>slides,1pp,6pp</u> pdf: <u>1pp,6pp</u>	Recap of logic.

Conclusion

Dec 2 <u>Conclusion</u>

html:<u>slides,1pp,6pp</u> pdf:<u>1pp,6pp</u> Summary of topics in CS221, future courses, and conclusion.

7 of 7