

	S'	LUI)EN	T I.	D N	O	
•							

MULTIMEDIA UNIVERSITY

FINAL EXAMINATION

TRIMESTER 1, 2016/2017

ECP2036 – MICROPROCESSOR SYSTEMS AND INTERFACING (ME)

22 OCTOBER 2016 2.30 P.M. – 4.30 P.M. (2 Hours)

INSTRUCTIONS TO STUDENT

- 1. This Question paper consists of 7 pages with 4 questions only.
- 2. Attempt ALL questions. All questions carry equal marks and the distribution of the marks for each question is given.
- 3. Please write all your answers in the Answer Booklet provided.
- 4. Opcode map and Special Function Register formats are provided in Appendices.

Question 1

- (a) What do these acronyms stand for? Briefly explain the functional description for each of them.
 - (i) PC

[2 marks]

(ii) ALU

[2 marks]

- (b) Answer the following questions:
 - (i) Given a 64-bit laptop computer with a memory capacity of 4Gbytes.

 Determine the number of data and address bus of the system? State your work and explanation. [3 marks]
 - (ii) A memory block has 8 address lines and 16 data lines. Specify its capacity.

 [2 marks]
- (c) An 8051 microcontroller based system is to be designed with requirement of external 32Kbytes ROM and 32Kbytes RAM, with start-up code stored in ROM. Given an available 8Kbytes program memory and 16Kbytes data memory blocks, answer the following questions:
 - (i) What is the size of the data bus of this system?

[1 mark]

(ii) Identify the number of ROM and RAM blocks needed for the system.

[2 marks]

(iii) Calculate the address lines needed by each of these ROM and RAM blocks.

[3 marks]

- (iv) With ROM occupying the first 32K bytes of memory space, determine the starting and ending addresses for each memory blocks. [3 marks]
- (v) Draw the configuration of this system showing the 8051 signal lines to be used for address, data and control buses. (*Hint*: You may use decoder where necessary) [7 marks]

Question 2

(a) What is Opcode and Operand?

[2 Marks]

(b) What are the states of the carry flag, the auxiliary carry flag, the overflow flag, the parity bit and the content of the accumulator after execution of the following instruction sequence?

MOV R2, #8

MOV A, #2

ADD A, R2

[6 marks]

- (c) Write an instruction sequence to perform the following task:
 - (i) Set bit addresses 69H, 6AH and 6DH.

[2 marks]

Continued...

- (ii) Read bit 0 and bit 1 of Port 1 and write a status condition to bit 6 of Port 2 as follows: If either bit read is 1, write a 0 to the output status bit, otherwise write a 1. [3 marks]
- (d) The following is an 8051 instruction:

MOV 50H, #0FFH

- (i) What is the opcode for this instruction? [1 mark]
- (ii) What are the machine language bytes for this instructions? Explain the purpose of each byte of this instruction. [3 marks]
- (iii) If an 8051 is operating from a 16 MHz crystal, how long does this instruction take to execute? [3 marks]
- (e) Write an 8051 assembly instruction sequence to add the data stored in ROM at address 0F01H to the data stored in internal RAM location pointed by R0 and store the result in register R1. [5 Marks]

Question 3

- (a) Write an 8051 assembly language programme to generate a 50Hz square pulse on port pin P1.0 using Timer 0. Explain your timer setting in details and assume a 12MHz crystal. [13 marks]
- (b) Write the assembly language programme to transmit characters "8051" continuously using 8-bit UART serial protocol with 9,600 baud rate. In your programme, you must include the function TRANSMIT so that you can call it repeatedly. (Assume SMOD = 0 and 11.0592MHz crystal is used). [12 marks]

Question 4

- (a) Compare the differences between interrupts and polling methods. [6 marks]
- (b) Two dual carriage roads meet at an intersection, as shown in Figure 1 below. Four traffic lights (E, S, W and N) placed at this junction are to be controlled by an 8051 microcontroller. Each traffic light is controlled via different I/O pins on the microcontroller, as shown in Table 1. The operations of the traffic lights are summarized in Table 2. The operation cycle repeats indefinitely until the microcontroller is powered down. Assume that the traffic lights are properly connected to the microcontroller via an interfacing circuit, write a program for the 8051 microcontroller to control these traffic lights.

Table 1:

			Po	rt 1	Port 2									
Pin	0	1	2	3	4	0	1	2	3	4	5			
Light	E-R	Ē-Y	E-G	W-R	W-Y	W-G	N-R	N-Y	N-G	S-R	S-Y	S-G		

Note: R: Red, Y: Yellow, G: Green; E: East, W: West, N: North, S: South

Continued ...

Table 2:

		A DIO IO M.				
Duration	E	W	N	S		
60s	Red	Red	Red	Green		
3s	Red	Red	Red	Yellow		
30s	Red	Red	Green	Red		
3s	Red	Red	Yellow	Red		
60s	Red	Green	Red	Red		
3s	Red	Yellow	Red	Red		
30s	Green	Red	Red	Red		
3s	Yellow	Red	Red	Red		

Continued...

Appendix A: Opcode Map

			Τ-		1		П			Т		т-		7			_		٠,					Т		-1					_	-				T	
'n	1B.2C	MOVX	28, 2C	ACALL	18.3C	MOVX	G-RO, A	1B. 2C	PRI.A	18. IC	CFL	2B, IC	MOV	dir. A	MOV	G-RA), A	1B. IC	MOV	eR1.A	1B. IC	RIJ.	IB, IC	MO 4	(B, IC	MOV	RZ.A	IB. IC	RJ,A	1B, IC	MOV	R4,A	MOV	R5.A	1B, 1C	MOV	18, 10	MOV R7.A
ធ	1B. 2C	MOVX A (#DPTR	3B. 2C	AJMP	18.20	MOVX	A, 4FRU	18 3C	MOVA A GRE	IB, IC	CLR	2B. IC	MOV	A dir	MOV	A, GRO	IB, IC	MOV	A. GRI	18. IC	A. Ro	IB. IC	MOV	18. IC	MOV	A. R2	B. IC	A. R3	IB. IC	MOV	A, R4	MOV	A, RS	18, IC	MOV	1B, IC	MOV A.R.
D	2B. 2C	POP	28.20	ACALL	2B. 1C	SETB	Þit	28, 1C	25.15	19. 1C	DA	3B. 2C	DJNZ	dir. rel	VCHD	A, eRO	18. IC	XCHD	A, GRI		Ri, ref			7B. 2C	DJNZ	R2. rel	28, 3C DTN7	R3, rel	2B, 2C	DINZ	28. ™ 28. ™	DINZ	75. rd	2B, 2C	DJNZ	2B, 2C	DJNZ R7.rel
၁	2B. 2C	PUSH	3B. 3C	A JAIP			ا ـ	28, IC	֓֞֞֞֞֞֞֞֞֞֞֓֞֓֓֓֓֓֞֟֞֓֓֓֓֓֓֓֓֓֓֟֓֓֓֓֟֓	18.1C	SWAP	Т	=	Т		A. @R0			- 1		A.RO						IB, IC	A.R.	IB. JC	XCH	A. R4	ХСН	A. R5	1B. IC	XCH A P6	(B, IC	XCH A.R?
В	2B. 2C	ANL	2B, 2C	ACALL	Т		Ē	38. IC	5 0	3B, 2C	CINE	3B, 2C	CINE	A, dir. rel		⊕Rit#dam,rel					C.J.N.E. RO.#data.rel		CINE	\neg				R3,#data,rel	г	CINE	R4,#dara.rel	CINE	R5.#data,ref	3B, 2C	CINE	3B, 2C	CJNE R7#data.rel
A	3B, 2C	ORL 1	2B, 2C	AJMP		MOV	ı	4		1B, 4C	MUL				MOV	G-RO, dir	2B. 2C	MOV	@RI,dir	28, 2C	RO, dir	28.3C	AOIN N	28.2C	MOV	R2, dir	NOV.	R3. dir	3B, 2C	MOV	R4. dir		15. di	П		Т	
6	3B. 2C	MOV	2B, 2C	ACALL	28. 2C	MOV	bit, C	18. 2C	A @ A+DPTR	28. IC	SUBB	2B, IC	SUBB	- 1			1	SUBB	A. GRI	18, IC	A.R0	18,10	SUBB	18. IC	SUBB	A, R2	IB. IC	Y.R3	18. IC	SUBB	A, R4	STIRE	A. RS	1B. IC	SUBB	IB. IC	SUBB
æ	2B. 2C	SJMP	2B. XC	APMP	28 3C	AML	Ę.	18,37	MOVC	1B 4C	DIV	38.2C	MOV	dir, dir	20.3C	di. e-RO	28.3C	MOV	dir. @R!	28.2C	5 S.	2B. 2C	MOV	28.2C	MOV	dir. R2	28, 2C	dr. R3	28. 2C	MOV	dir, R4	MOV	dir, R5	3B, 2C	MOV	2B, 2C	MOV dr. R7
7	2B, 2C	ZNZ	38. X	ACALL				18,30	DML @A-DPTR	3B, IC	MOV	3B. 2C	MOV	dir. #data	28, IL	GRU, #data	2B. 1C	MOV	ORI. Aduta	2B, 1C	NICV RO, #dala	3B. FC	MOV	7B. 1C	MOV	R2, #data	2B, IC	R.3. #data	3B, IC	MOV	R4, #data	MOV	R5. #datn	2B, 1C	MOV 84bm	2B, 1C	NOV R7. Kdan
9	2B, 3C	27	3B. 2C	AIMP	28. IC	XRL	dir, A	38, 20	A. M.	2B, IC	XRL	3B. IC	XRL	A. dir					A, &RI	18, IC	A.R.	1B. IC	XRL	IB. IC	XRL	A.R2	18, IC VDI	A.R.3	IB, IČ	XRL	A.R4	N.	A.R5	18. IC	XRL	IB. IC	XRL
5	28.3C	Z I	1			ANL			ANT.	2B. IC	ANL	2B, IC	ANL	A. dir	B. IC	A. 6. RO	1B. JC	ANE	A. CRI	1B, IC	A'RD	1B, IC	AN .	B. IC	ANE	A.R.2	18, 10 A NI	A.R.	1B. 1C	ANL	A,R4	12 4	A,R5	1B. IC	ANL	1B. 1C	ANL A.R.
4	2B, 2C	ည ည	2B, 2C	AJMIP	28. IC	ORL	dir, A	38.20		2B, IC	ORL 4 Edgs	28, 10	ORL	A. dir	is, ic	A. @RO	1B. IC	ORL	A. &RI	18, 1C	A.R.	1B, IC	OKT.	3,K1	ORL	A.R2	18, 10 O D 1	A.R.	18, IC	ORL	A.R4	ODI	A,R5) B' IC	ORL	1B. IC	ORL AR7
3	3B. 2C	E T	2B, 2C	ACALL	18. JC	RETI		18. IC	STA	2B. IC	ADDC A #/bis	2B, IC	ADDC	A, dir	JB, JC	A. 6.60	1B. IC	ADDC	A. C.R.	18.1C	ADDC AR0	IB, JC	ADDC.	B. IC	ADDC	A.R2	18. IC A PIDIC	A.R.3	rB. ić	ADDC	A,R4	A DINC	A.R.	IB, IC	ADDC	IB. IC	ADDC A.R?
2		8 ·				RET		18. IC	∄ 4	38. IC	ADD A #duta	2B. JC	ADD	A. dir	19, 17	A. GRO	1B. IC	ADD	A. @R1	18. IC	A.Ro	iB. ic	ADD thi	18 C	ADD	A.R2	IB, fC	A,R3	IB. IC	ADD	A.R4	ADD	A.R.		ADD		ADD A.R?
1	3B, 2C	JBC F	28.20	ACALL	38.2C	LCALL	auktr16	18, 1C	KKC	18.1C	DEC	3B. IC	-	ij.	יוני ור	ero C	1B, 1C	DEC	GRI	18, IC	2 8 8		DEC	1		R2	IB, IC DEC	2	1B, IC	DEC	IR IC	DEC	3	18. IC	DEC	IB, IC	DEC
	ا <u>ة</u> ات	NOP	2B, 3C	AIMP	38.2C	LIMP	addrif	1B. IC	¥ -	18,10	INC P	2B, IC	INC	ij	18. IC	e E	IB. 1C	INC	⊕R1	1B, IC	2 S	JB, JC	<u>آ</u>	18. IC	INC	R2	IB. IC INT	2	18, 10	INC	R4	UNI	2 2	18. IC	INC	IB, IC	INC R7
HByte LByte		0		-		2					4		ໝ		C	0		<u>~</u>		(x		5		A		Б			ပ		_	٦		田		ᅜ

Continued...

Appendix B: Special Function Register Format

TMOD : [Bit	0 (LSB) to Bit 3 is for Timer 0 and Bit 4 to Bit 7 (MSB) is for Timer 1]
GATE	C//T M1 MO GATE C//T MO MI
GATE:	Timer only runs while /INT1 is set.
Cl IT:	'1' for event counter, '0' for interval timer
M1, MO:	Mode bit select
·	"00" Mode 0 – 13-bit timer mode
	"01" Mode $1-16$ -bit timer mode
	"10" Mode 2 – 8-bit auto-reload mode
	"11" Mode 3 – Split timer mode
	•
TCON:	
TF1 TR1	TFO TRO LE1 LT1 LE0 LT0
TCON 7	TEL Time I am G of Catherland and G
TCON.7	TF1 Timer 1 overflow flag. Set by hardware on overflow.
TCON.6	Clear by hardware when processor vectors to interrupt routine. TRI Timer 1 run control bit. Set/cleared by software to start/stop timer.
TCON.5	,
10014.5	TFO Timer 0 overflow flag. Set by hardware on overflow. Clear by hardware when processor vectors to interrupt routine.
TCON.4	TRO Timer 0 run control bit. Set/cleared by software to start/stop timer.
TCON.4	IE1 Interrupt 1 Edge flag. Set by hardware when interrupt 1 falling
TCON.5	edge is detected. Cleared when interrupt is processed.
TCON.2	IT1 Interrupt 1 Type control bit. Set / cleared by software to specify
1 COIV.2	falling edge / low level triggered external interrupts.
TCON. 1	IEO Interrupt 0 Edge flag. Set by hardware when interrupt 1 falling
ICON. 1	edge is detected. Cleared when interrupt is processed.
TCON.0	ITO Interrupt 0 Type control bit. Set / cleared by software to specify
10011.0	falling edge / low level triggered external interrupts.
	taining edge / low level diggered external interrupts.
SCON:	
	SM1 SM2 REN TB8 RB8 TI RI
SMO SM1	
0 0	= Shift register mode
0 1	= 8-bit UART mode
1 0	= 9-bit UART mode (Fixed Baud Rate)
1 1	= 9-bit UART mode (Variable Baud Rate)
SM2 = '1'	= Enable multiprocessor communication
REN	= Receiver Enable
TB8	= Transmit Bit
TI	= Transmit Interrupt
RI	= Receive Interrupt

IE:						_							
EA		ET2	ES	ET1	EX1	ET0	EXO						
•													
Bit Positi	Bit Position Symbol Bit Address Description												
IE.7													
	EA ='1', each individual source is enable/disable												
	By seetting/clearing its enable bit.												
	EA = 'O', disable all interrupts.												
IE.6													
IE.5													
IE.4	ES	•											
IE.3	ET1	ABH	Ţi	mer linterrup	t enable b	oit.							
IE.2	EXI	AAH	Ex	ternal interru	pt enable	bit.							
IE, I	ET0	_											
IE.0	EXO	A8H	Ez	ternal interru	pt enable	bit.							
IP:							_						
	i	PT2	PS	PT1	PX1	PTO	PXO						
IP.7	-	±.	Uı	ndefined.									
IP.6	-	50	U1	idefined.									
IP.5	-	BDH	No	ot implemente	ed in 805	1. PT2 for	8052.						
IP.4	PS	BCH	Se	rial port inter	rupt prior	ity bit.							
IP.3	PT1	BBH	Ti	merl interrup	t priority	bit.							
IP.2	PX1	BAH	Ez	ternal interru	pt priorit	y bit.							
IP.1	PTO	B9H	Ti	mer-0 interrup	t priority	bit.							
IP.0	PX0	B8H	E۶	ternal interru	pt priorit	y bit.							
Selected 1	interrupt Vo	ectors											
Interrupt :		Flag	V	ector Address									
System R	.eset	RST	00	ЮОН									
External (External 0 IEO 0003H												
Timer 2 (Timer 2 (8052) TF2 & EXF2 002BH												
PSW:	·												
CY	AC	FO	RS1	RSO	OV	-	P						

AC: Auxiliary Carry Flag

CY: Carry Flag RS1, RSO: Register Bank Select

OV: Overflow Flag

P: Parity

End of Paper

KRO/YYS