Занятие 7

Тема: Первое начало термодинамики.

Цель: Обратимые процессы с газом. Количество теплоты, внутренняя энергия газа. Теплоемкость. Первое начало термодинамики. Изопроцессы с газом: при постоянных объеме, давлении, температуре, энтропии, теплоемкости.

Краткая теория

- Обратимый процесс процесс с газом, при котором возможен обратный переход в начальное состояние, причем газ возвращается в него через те же промежуточные состояния, что и при прямом процессе. Необходимым и достаточным условием обратимости процесса является его квазистационарность, то есть очень медленное изменение состояния газа, что позволяет осуществлять процесс через ряд равновесных газовых состояний. Сам такой процесс носит название равновесного.
- Первое начало термодинамики для обратимых процессов:

$$\delta Q = dU + pdV$$
.

Смысл первого начала - закон изменения внутренней энергии газа: полученное газом элементарное количество теплоты δQ идет не только на изменение внутренней энергии газа dU, но и на совершение им элементарной работы

 $\delta A = pdV$ (p - давление газа, dV - изменение объема газа). Другими словами, внутренняя энергия системы многих частиц может изменяться только за счет двух процессов: совершения над системой работы δA (при этом происходит упорядоченное перемещение внешних макроскопических тел, взаимодействующих с системой) и передачи системе количества теплоты δQ (при этом передача энергии происходит за счет обмена энергией хаотически движущихся частиц, из которых состоят внешние тела и рассматриваемая система).

Для идеального газа $dU = v \ c_V dT$, где $c_V -$ молярная теплоемкость газа

при постоянном объеме, $v = \frac{m}{\mu}$ - количество киломолей газа, m - масса

газа, μ - его молярная масса.

Различие в написании d перед внутренней энергией и δ перед количеством теплоты (и работой) объясняется тем, что внутренняя

энергия является функцией состояния (то есть, ее изменение - полный дифференциал), а количество теплоты (и работа) - нет.

• Газ совершает работу (или работу совершают над газом) только при

изменении его объема, полная работа:
$$A = \int_{paq}^{cocm} pdV$$
. Работа газа

зависит от того, по какому пути (через какие промежуточные состояния) переведена система из одного состояние в другое. Отметим, что работа, как интеграл, имеет смысл площади под графиком зависимости давления от объема.

• **Внутренняя** э**нергия** идеального газа: $U = \frac{i}{2} \nu RT = \frac{i}{2} PV$ или

$$U=rac{1}{\gamma-1} vRT=rac{1}{\gamma-1} PV$$
 , где i – количество степеней свободы молекулы

газа, а γ - показатель адиабаты. Количество степеней свободы (число возможных независимых движений молекулы) для одноатомных молекул i=3 (три поступательных движения), для жестких двухатомных и линейных многоатомных i=5 (3 поступательных движения и 2 вращательных), а для жестких многоатомных, не являющихся линейными, i=6 (3 поступательных движения и 3 вращательных).

• Теплоемкость системы многих частиц.

Теплоемкость системы: $C = \frac{\delta Q}{dT}$, где δQ - количество теплоты, полученное системой, dT — соответствующее изменение температуры системы.

Удельная теплоемкость: $c_{yo} = \frac{C}{m}$, где m- масса системы.

Молярная теплоемкость: $c_{{}_{MOR}} = \frac{C}{v} = \frac{C}{m/\mu}$, где v - количество

киломолей вещества в однородной системе, μ - молярная масса вещества.

Количество теплоты, переданное системе, зависит от типа процесса с газом. В зависимости от процесса, принято подразделять молярную теплоемкость на теплоемкость при постоянном объеме $c_v = iR/2$ и теплоемкость при постоянном давлении $c_P = (i+2)R/2$, где R = 8,3 кДж/(кгмоль·К) –газовая постоянная, i – количество степеней свободы

частиц газа (системы). Между молярными теплоемкостями существует связь, называемая **соотношение Майера**: c_p - c_v = R .

Показатель адиабаты газа: $\gamma = \frac{c_P}{c_V} = \frac{i+2}{i}$.

Связь удельной и молярной теплоемкостей:

$$c_{y\partial} = \frac{\rho}{\mu} c_{_{MOJ}}$$
 , где ρ - плотность вещества системы.

• Изопроцессы в идеальном газе:

изохорический (объем газа V постоянен): p/T = const, $c_v = iR/2$, A = 0, δ $Q = dU = c_v v \, dT$, где v - количество киломолей газа, dT — изменение температуры,

изобарический (давление газа p постоянно): V/T = const,

 $c_P = (i+2)R/2$, $A = p(V_2 - V_1) = vR(T_2 - T_1)$, $dU = c_v v dT$, $\delta Q = c_P dT = dH$, где H = U + pV - энтальпия (термодинамическая функция состояния),

изотермический (температура газа T постоянна): pV = const, $c = \infty$, $A = RT \ln V_2/V_1 = F_1 - F_2$, dU = 0, $\delta Q = \delta A = -dF$, где c – молярная теплоемкость процесса, F = U - TS – свободная энергия (термодинамическая функция состояния), S – энтропия,

адиабатический (нет теплообмена газа с внешней средой, то есть $\delta Q = 0$): $pV^{\gamma} = const$ (или $TV^{\gamma-1} = const$), γ - показатель адиабаты, c = 0, $dU = c_{\nu} v dT = \delta A$,

S = const.

Все перечисленные выше процессы носят название **политропических**, так как теплоемкость газа c в каждом процессе постоянна. При указанном условии общее уравнение этих процессов можно записать в виде $pV^n = const$, где n —характерная только для данного процесса степень.

Примеры решения задач

- 7-1. Какое количество теплоты необходимо сообщить молекулярному азоту при изобарическом нагревании, чтобы он совершил работу A = 2.0 кДж?
- Согласно первому началу термодинамики $Q = \Delta U + A$. Работа при постоянном давлении равна $A = P\Delta V$, для внутренней энергии удобнее воспользоваться формулой, также выражающей ее через

давление и объем $U = \frac{i}{2} PV$, из которой при постоянном давлении

 $\Delta U = \frac{i}{2} P \Delta V$. Отсюда получаем выражение для количества теплоты

через совершенную газом работу $Q = \frac{i}{2}P\Delta V + P\Delta V = \frac{i+2}{2}P\Delta V = \frac{i+2}{2}A$.

Молекулы азота — двухатомные, для них количество степеней свободы i=5, поэтому $Q=\frac{5+2}{2}$ 2,0 = 7,0 Дж.

Ответ: Q = 7,0 Дж.

- 7-2. Один киломоль идеального газа изобарически нагрели на ΔT , сообщив ему количество теплоты Q. Найти совершенную газом работу, приращение внутренней энергии и значение показателя адиабаты.
- Работа при изобарическом процессе: $A = p\Delta V$. С учетом уравнения Клапейрона-Менделеева pV = RT (v = 1) для изобарического процесса получим

$$A = p\Delta V = R\Delta T.$$

Изменение внутренней энергии:

$$\Delta U = c_V \Delta T = \frac{c_V}{R} (R \Delta T) = \frac{c_V}{R} (P \Delta V) = \frac{c_V}{c_P - c_V} (P \Delta V) = \frac{1}{\frac{c_P}{c_V} - 1} (P \Delta V) = \frac{p \Delta V}{\gamma - 1} = \frac{A}{\gamma - 1}.$$

Первое начало дает: $Q = \Delta U + A$, откуда $\Delta U = Q - A = Q - R\Delta T$, а также $Q = \frac{A}{\gamma - 1} + A = \frac{A\gamma}{\gamma - 1}$. Из этого уравнения $\gamma = \frac{Q}{Q - A} = \frac{Q}{Q - R\Delta T}$.

Otbet:
$$A = R\Delta T$$
, $\Delta U = Q - R\Delta T$, $\gamma = \frac{Q}{Q - R\Delta T}$.

- 7-3. Один киломоль идеального газа расширяется изотермически при температуре T. В течение процесса его объем увеличивается в n раз. Найти изменение внутренней и свободной энергии, работу и количество теплоты, полученной газом.
- При изотермическом процессе температура, а значит и внутренняя энергия, остаются постоянными, то есть $\Delta U = 0$. Согласно первому началу работа равна полученному количеству теплоты:

$$A = \int_{V_{1}}^{V_{2}} p dV = \int_{V_{1}}^{V_{2}} \frac{RT}{V} dV = RT \ln \frac{V_{2}}{V_{1}} = RT \ln n = \Delta Q.$$

Уменьшение свободной энергии при изотермическом процессе равно совершенной работе: $-\Delta F = A$.

Otbet: $A = \Delta Q = -\Delta F = RT \ln n$, $\Delta U = 0$.

- 7-4. Определить показатель адиабаты смеси идеальных газов, состоящей из $v_1 = 2,0$ киломолей кислорода и $v_2 = 3,0$ киломолей углекислого газа.
- Можно вычислить теплоемкости c_P и c_V , рассматривая изобарический и изохорический процессы в этой смеси, а затем определять показатель адиабаты как отношение этих теплоемкостей. Но это долгий путь. Удобнее использовать две разные формы записи внутренней энергии: выразить полную внутреннюю энергию смеси через подлежащий определению показатель адиабаты $U = \frac{v}{\gamma 1}RT$, а внутренние энергии кислорода и углекислого газа через количество степеней свободы $U_1 = \frac{i_1 v_1}{2}RT$, $U_2 = \frac{i_2 v_2}{2}RT$. Учитывая, что $U = U_1 + U_2$ и $v = v_1 + v_2$, находим $\frac{v_1 + v_2}{\gamma 1}RT = \frac{i_1 v_1}{2}RT + \frac{i_2 v_2}{2}RT$, откуда легко получить выражение $\gamma = 1 + \frac{2(v_1 + v_2)}{i_1 v_1 + i_2 v_2} = 1 + \frac{2(2+3)}{5 \cdot 2 + 6 \cdot 3} = 1,36$. Ответ: $\gamma = 1,36$.
- 7-5. Один киломоль идеального газа изобарически нагрели на $\Delta T = 72$ K, сообщив ему теплоту Q = 1,60 мДж. Найти приращение внутренней энергии и показатель адиабаты газа.
- Приращение внутренней энергии газа найдем из первого начала термодинамики

 $\Delta U = Q - A = Q - R\Delta T = 1600 \cdot 10^3 - 8,31 \cdot 10^3 \cdot 72 = 1002 \cdot 10^3$ Дж. Вместе с тем, для киломоля газа $Q = c_P \Delta T$, а $\Delta U = c_V \Delta T$. Отношение $\frac{Q}{\Delta U}$

равно искомому показателю адиабаты: $\frac{Q}{\Delta U} = \frac{c_P \Delta T}{c_V \Delta T} = \frac{c_P}{c_V} = \gamma$. Поэтому

$$\gamma = \frac{Q}{\Delta U} = \frac{1600 \cdot 10^3}{1002 \cdot 10^3} = 1.6.$$

Ответ: $\Delta U = Q - A = 1002$ кДж, $\gamma = \frac{Q}{\Delta U} = \frac{1600}{1002} = 1.6$.

- 7-6. При давлении p_1 идеальный газ занимал объем V_1 . Его адиабатически расширили до объема V_2 . Определить изменение внутренней энергии и совершенную газом работу.
- Запишем уравнение адиабатического процесса как

$$p_1V_1^{\gamma} = pV^{\gamma}$$
 $_{\text{II}}$ $T_1V_1^{\gamma-1} = TV^{\gamma-1}$.

Для вычисления работы воспользуемся первым уравнением процесса:

$$A = \int_{V_1}^{V_2} p dV = \int_{V_1}^{V_2} \frac{p_1 V_1^{\gamma} dV}{V^{\gamma}} = -p_1 V_1^{\gamma} \cdot \frac{1}{\gamma - 1} \cdot \frac{1}{V^{\gamma - 1}} \cdot \frac{1}{V_1^{\gamma - 1}} \cdot \frac{1}{V_1^{\gamma$$

Для вычисления изменения внутренней энергии $\Delta U = \frac{m}{\mu} c_V (T_2 - T_1)$

воспользуемся вторым уравнением процесса $\frac{T_2}{T_1} = (\frac{V_1}{V_2})^{\gamma-1}$ и уравнением

Клапейрона-Менделеева $p_1V_1=\frac{m}{\mu}RT_1$. Учтем, что

$$c_{V} = \frac{c_{V}}{R}R = \frac{c_{V}}{c_{P} - c_{V}}R = \frac{R}{\gamma - 1}$$
, откуда

$$\Delta U = \frac{m}{\mu} \cdot \frac{R}{\gamma - 1} T_1 \left(\frac{T_2}{T_1} - 1 \right) = \frac{p_1 V_1}{\gamma - 1} \left[\left(\frac{V_1}{V_2} \right)^{\gamma - 1} - 1 \right].$$

A и ΔU совпадают с точностью до знака, что и должно быть согласно первому началу, так как при адиабатическом процессе $\Delta Q = 0$.

Otbet:
$$\Delta U = \frac{p_1 V_1}{\gamma - 1} [(\frac{V_1}{V_2})^{\gamma - 1} - 1]$$
, $A = \frac{p_1 V_1}{\gamma - 1} [1 - (\frac{V_1}{V_2})^{\gamma - 1}]$.

- 7-7. Из баллона, содержащего близкий к идеальному газ при давлении p_1 и температуре T_1 , выпустили половину газа. Считая процесс адиабатическим, определить окончательные температуру и давление газа.
- Используем из предыдущей задачи две формы записи уравнения адиабатического процесса, чтобы получить новое уравнение:

$$pT^{\frac{\gamma}{1-\gamma}}=const$$
. Отсюда $\frac{p_1}{p_2}=(\frac{T_2}{T_1})^{\frac{\gamma}{1-\gamma}}$ (1). Уравнения Клапейрона-

Менделеева для начального и конечного состояний: $p_1V_1 = \frac{m}{\mu}RT_1$;

 $p_2V_2 = \frac{m}{2\mu}RT_2$. Поделив первое уравнение на второе, получим $\frac{p_1}{p_2} = 2\frac{T_1}{T_2}$

(2) . Выразим
$$p_2$$
 из (1) и подставим в (2): $\frac{p_1}{T_1} = 2\frac{p_2}{T_2} = \frac{2p_1(\frac{T_1}{T_2})^{\frac{\gamma}{1-\gamma}}}{T_2}$, откуда $(\frac{T_1}{T_2})^{\frac{\gamma}{1-\gamma}}\frac{T_1}{T_2} = (\frac{T_1}{T_2})^{\frac{1}{1-\gamma}} = \frac{1}{2}$, следовательно, $T_2 = T_1 \cdot 2^{1-\gamma}$. Далее из (2) можно найти $p_2 = p_1 \cdot 2^{-\gamma}$.

Otbet: $T_2 = T_1 \cdot 2^{1-\gamma}$, $p_2 = p_1 \cdot 2^{-\gamma}$.

- 7-8. Найти молярную теплоемкость газа c при политропическом процессе, описываемом уравнением $pV^n = const.$
- С учетом уравнения Клапейрона-Менделеева запишем уравнение политропического процесса для одного киломоля газа в виде $TV^{n-1} = const$. Перепишем его как $T = \frac{const}{V^{n-1}}$ и вычислим производную от температуры по давлению:

$$\frac{dT}{dV} = \frac{d(\frac{const}{V^{n-1}})}{dV} = const \cdot \frac{d(V^{1-n})}{dV} = const \cdot (1-n)V^{-n} = (1-n)\frac{const/V}{V^{n}/V} = (1-n)\frac{T}{V} \cdot E$$
 сли рассматривать полученную производную, как отношение дифференциалов dT и dV , то производную $\frac{dV}{dT}$ легко найти, перевернув отношение: $\frac{dV}{dT} = -\frac{V}{T(n-1)}$.

Запишем первое начало $\delta Q = c_V dT + p dV$ и подставим δQ в определение теплоемкости ($c = \frac{\delta Q}{dT}$):

$$c = \frac{\delta Q}{dT} = c_V + p \frac{dV}{dT} = c_V + p[-\frac{V}{T(n-1)}] = c_V - \frac{1}{n-1} \cdot \frac{pV}{T} = c_V - \frac{1}{n-1}R = c_V - \frac{1}{n-1}(c_P - c_V) = c_V - \frac{c_V}{n-1}(\frac{c_P}{c_V} - 1) = c_V - \frac{\gamma - 1}{n-1} = c_V \frac{n - \gamma}{n-1}$$
 Otbet: $c = c_V \frac{n - \gamma}{n-1}$.

7-9. Показать, что процесс, при котором работа идеального газа пропорциональна изменению его внутренней энергии, описывается уравнением $P \cdot V^n = \alpha$, где n и α – постоянные.

• Рассмотрим два возможных варианта решения.

Способ первый. Из уравнения процесса находим зависимость давления от объема $P = \alpha \cdot V^{-n}$. Работа газа при изменении объема от V_1 до V_2 составляет $A = \int\limits_{V_1}^{V_2} P dV = \frac{\alpha}{1-n} \Big(V_2^{1-n} - V_1^{1-n} \Big)$. Внутренняя энергия газа $U = \frac{1}{\gamma-1} PV$ после подстановки зависимости давления от объема

принимает вид $U = \frac{\alpha}{\gamma - 1} V^{1-n}$, а ее изменение равно

 $\Delta U = \frac{\alpha}{\gamma - 1} \left(V_2^{1-n} - V_1^{1-n} \right)$. Видно, что $\Delta U = \frac{1-n}{\gamma - 1} A$, то есть, работа в этом

процессе действительно пропорциональна приращению внутренней энергии.

Способ второй. Запишем условие пропорциональности работы приращению внутренней энергии в виде $\delta A = \lambda \cdot dU$,

$$PdV = \lambda d(\frac{1}{\gamma - 1}PV)$$
, где λ - коэффициент пропорциональности.

Домножим обе части этого равенства на $(\gamma - 1)$ и раскроем дифференциал произведения PV в правой части по правилу вычисления дифференциала от произведения двух функций, чтобы получить уравнение $(\gamma - 1)PdV = \lambda(PdV + VdP)$, которое после приведения подобных членов принимает вид $\lambda VdP = (\gamma - \lambda - 1)PdV$. Это обыкновенное дифференциальное уравнение первого порядка. Метод решения таких уравнений хорошо известен - надо разделить переменные так, чтобы давление осталось только в левой части уравнения, а объем – только в правой: $\frac{dP}{P} = \frac{\gamma - \lambda - 1}{\lambda} \frac{dV}{V}$. Далее обе части этого уравнения можно проинтегрировать и получить $\ln P = \frac{\gamma - \lambda - 1}{2} \ln V + \ln \alpha$, где α –постоянная интегрирования. Обозначив

 $n = -\frac{\gamma - \lambda - 1}{\lambda}$, находим уравнение процесса $P = \alpha V^{-n}$, что и требовалось показать.

Otbet: $P = \alpha V^{-n}$.

Задачи для самостоятельного решения

7-10. Найти внутреннюю энергию воздуха в помещении объемом $V = 100 \text{ м}^3$ при нормальном атмосферном давлении ($p_0 = 1,01\cdot10^5 \text{ Па}$). Показатель адиабаты воздуха $\gamma = 1,44$.

Ответ:
$$U = \frac{p_0 V}{\gamma - 1} = 2,3 \cdot 10^7 \text{ Дж.}$$

7-11. Водород, находившийся при нормальных условиях в закрытом сосуде объемом V, охладили на ΔT . Найти изменение внутренней энергии и отданное количество теплоты.

Ответ:
$$\Delta U = \Delta Q = p_0 V \Delta T / T_0 (\gamma - 1)$$
.

7-12. Расширяясь, водород совершил работу A. Определить количество теплоты, подведенное газу, если процесс протекал: 1) изобарически, 2) изотермически.

Ответ: 1)
$$A\gamma/(\gamma - 1)$$
, 2) A .

7-13. При изотермическом (температура T) расширении одного киломоля кислорода ему было передано количество теплоты ΔQ . Во сколько раз увеличился объем газа?

Otbet:
$$V_2/V_1 = \exp(\Delta Q/RT)$$
.

7-14. Два теплоизолированных баллона, наполненных воздухом, соединены короткой трубкой с краном. Известны объемы баллонов, давления и температуры воздуха в них $V_1,\ V_2,\ P_1,\ P_2,\ T_1,\ T_2$. Найти температуру и давление воздуха, которые установятся после открытия крана.

Otbet:
$$T = \frac{P_1 V_1 + P_2 V_2}{\frac{P_1 V_1}{T_1} + \frac{P_2 V_2}{T_2}}, \quad P = \frac{P_1 V_1 + P_2 V_2}{V_1 + V_2}.$$

7-15. Вычислить удельные теплоемкости c_P и c_V смеси идеальных газов, состоящей из $m_I = 7.0$ г азота и $m_I = 20.0$ г аргона.

Ответ:
$$c_P = 0.65 \text{ кДж/(кг·К)}, c_V = 0.42 \text{ кДж/(кг·К)}.$$

7-16. Найти количество степеней свободы молекул идеального газа, молярная теплоемкость которого: а) при постоянном давлении $c_P = 29$ кДж/(кгмоль·К), б) в процессе PT = const равна c = 29 кДж/(кгмоль·К).

Otbet: a)
$$i = 2 \binom{c_p}{R} - 1 = 5$$
, 6) $i = 2 \binom{c}{R} - 2 = 3$.

7-17. При адиабатическом сжатии газа его объем уменьшился в n раз, а давление возросло в k раз. Найти показатель адиабаты газа.

Ответ: $\gamma = \ln k / \ln n$.

7-18. При адиабатическом сжатии кислорода массой m (начальное давление p_1) его внутренняя энергия увеличилась на ΔU , а температура

стала T_2 . Определить изменение температуры и конечное давление газа.

Otbet: $\Delta T = \mu(\gamma - 1)\Delta U/mR$.

7-19. Объем одного киломоля идеального газа с показателем адиабаты γ меняли по закону V=a/T, где a — константа. Температура газа изменилась на ΔT . Найти количество теплоты, полученное газом.

OTBET: $\Delta Q = (2 - \gamma)R\Delta T/(\gamma - 1)$.

7-20. Идеальный газ с показателем адиабаты γ расширяется по закону $P = \alpha V$, где α - постоянная. Первоначальный объем газа V_{θ} . В результате расширения его объем увеличился в k раз. Рассчитать приращение внутренней энергии газа и работу, совершенную газом.

Otbet:
$$\Delta U = \frac{\alpha(k^2 - 1)V_0^2}{\gamma - 1}, A = \frac{\alpha}{2}(k^2 - 1)V_0^2$$
.

7-21. Один киломоль идеального газа с показателем адиабаты γ совершает процесс, при котором его давление P пропорционально T^{α} . Найти молярную теплоемкость газа в этом процессе.

OTBET: $C = C_V + (1 - \alpha)R$.

Контрольные задачи

- 7-22. Доказать, что внутренняя энергия U воздуха в комнате не зависит от температуры, если наружное давление P постоянно. Вычислить U при нормальном атмосферном давлении для комнаты объемом 40 м^3 .
- 7-23. Два киломоля идеального газа при температуре T_0 охладили изохорически, в результате давление газа уменьшилось в n раз. Затем газ изобарически расширили так, что его температура стала равна первоначальной. Найти количество теплоты, полученное газом.
- 7-24. Какое количество теплоты выделится, если азот массой m при температуре T и давлении p_1 , изотермически сжать до давления p_2 ?
- 7-25. Азот сжали в η раз, один раз адиабатически, другой изотермически. Начальные состояния газа в обоих случаях одинаковы. Найти соотношение работ, затраченных на сжатие.
- 7-26. Вычислить показатель адиабаты γ для смеси, состоящей из v_1 киломолей одноатомного газа и v_2 киломолей двухатомного газа из жестких молекул.
- 7-27. Показать, что процесс, при котором работа идеального газа прямо пропорциональна приращению внутренней энергии, происходит при постоянной теплоемкости.

- 7-28. Один киломоль идеального газа с показателем адиабаты γ совершил процесс, при котором его давление зависело от температуры по закону $p = AT^{\alpha}$, где A и α постоянные. В результате процесса температура газа изменилась на ΔT . Определить работу, которую совершил газ.
- 7-29. Один киломоль аргона расширяется по закону $PV^n = const, \, n = 1,50$. Его температура понижается на $\Delta T = 26\,$ К. Найти количество теплоты, полученное газом, и работу, совершенную газом.
- 7-30. Объем киломоля идеального газа с показателем адиабаты γ изменяют по закону $V = \frac{a}{T}$, где a постоянная. Найти количество теплоты, полученное газом в этом процессе, если его температура повысилась на ΔT .
- 7-31. Для идеального газа с известной молярной теплоемкостью c_V найти зависимость молярной теплоемкости от объема в процессе $P = P_0 e^{\alpha V}$, где P_0 и α постоянные.