Nombre y Apellido:_____

	puntos	0-19	20-34	35-49	50-54	55-62	63-69	70-79	80-88	89-94	95-100
ſ	onumbernota	1	2	3	4	5	6	7	8	9	10

1	2	3	4	Total	Nota

Recuperatorio Parcial 1

Ejercicio 1. (25 puntos)

Demostrar por inducción que $\sum_{k=1}^{n} (2k+1) \cdot 3^{k-1} = n \cdot 3^n$ para todo $n \in \mathbb{N}$.

Ejercicio 2. (25 puntos)

- (a) Probar que n y 3n + 1 son coprimos para todo $n \in \mathbb{N}$.
- (b) Dar todos los $n \in \mathbb{N}$ tales que $n|71 \cdot (3n+1)$.

Ejercicio 3. (20 puntos) Calcular el máximo común divisor entre 282 y -156.

Ejercicio 4. (30 puntos) Decidir si las siguientes afirmaciones son verdaderas o falsas. Justificar su respuesta.

- (a) Si $a, b \in \mathbb{Z}$ son tales que 16|a+b entonces 16|a y 16|b.
- (b) Si el resto de n dividido 5 es 2, entonces el resto de n al cuadrado dividido 5 es 4.
- (c) $(10001)_3 = (466)_7$.