### DATA 606 Data Project Proposal

#### Eric Lehmphul

10/31/2021

### **Data Preparation**

Retrieved dataset from Kaggle: https://www.kaggle.com/sulianova/cardiovascular-disease-dataset. It is a dataset relating to cardiovascular disease and relative variables of interest.

```
library(tidyverse)
## -- Attaching packages ----- tidyverse 1.3.1 --
                    v purrr
## v ggplot2 3.3.5
                                 0.3.4
## v tibble 3.1.4 v dplyr 1.0.5
## v tidyr 1.1.3 v stringr 1.4.0
## v readr 2.0.1 v forcats 0.5.1
## -- Conflicts ----- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
# load data
cardio.data <- read.csv("https://raw.githubusercontent.com/SaneSky109/DATA606/main/Data_Project/Data/ca</pre>
# remove unecessary column: id
cardio.data <- cardio.data[,-1]</pre>
# create factors
cardio.data$cardio <- factor(cardio.data$cardio)</pre>
cardio.data$gender <- factor(cardio.data$gender)</pre>
cardio.data$cholesterol <- factor(cardio.data$cholesterol)</pre>
cardio.data$gluc <- factor(cardio.data$gluc)</pre>
cardio.data$smoke <- factor(cardio.data$smoke)</pre>
cardio.data$alco <- factor(cardio.data$alco)</pre>
cardio.data$active <- factor(cardio.data$active)</pre>
# rename factor levels
levels(cardio.data$cardio) <- c("No", "Yes")</pre>
levels(cardio.data$gender) <- c("Female", "Male")</pre>
```

```
levels(cardio.data$cholesterol) <- c("Normal", "Above_Normal", "Well_Above_Normal")</pre>
levels(cardio.data$gluc) <- c("Normal", "Above_Normal", "Well_Above_Normal")</pre>
levels(cardio.data$smoke) <- c("No", "Yes")</pre>
levels(cardio.data$alco) <- c("No", "Yes")</pre>
levels(cardio.data$active) <- c("No", "Yes")</pre>
# transform age since it is in days
cardio.data$age <- cardio.data$age/365</pre>
# remove outliers of ap_hi
\# I am assuming the that these measures are errors and
# I am just dropping them due to problems it will cause with modeling
# Highest pressure recorded in an individual was 370/360.(https://pubmed.ncbi.nlm.nih.gov/7741618/)
summary(cardio.data$ap_hi)
      Min. 1st Qu. Median
                              Mean 3rd Qu.
                                               Max.
## -150.0
           120.0
                    120.0
                             128.8 140.0 16020.0
cardio.data <- cardio.data[cardio.data$ap_hi <= 370,]</pre>
cardio.data <- cardio.data[cardio.data$ap_hi > 0,]
summary(cardio.data$ap_hi)
##
      Min. 1st Qu. Median
                              Mean 3rd Qu.
                                               Max.
       1.0
           120.0
                    120.0
                                              309.0
##
                            126.7 140.0
# remove outliers of ap_lo
summary(cardio.data$ap_lo)
##
       Min. 1st Qu.
                       Median
                                  Mean 3rd Qu.
                                                     Max.
##
     -70.00
               80.00
                        80.00
                                  96.65
                                           90.00 11000.00
cardio.data <- cardio.data[cardio.data$ap_lo <= 360,]</pre>
cardio.data <- cardio.data[cardio.data$ap lo > 0,]
summary(cardio.data$ap_lo)
##
      Min. 1st Qu. Median
                              Mean 3rd Qu.
                                               Max.
      1.00
           80.00 80.00
                             81.35 90.00 190.00
##
glimpse(cardio.data)
## Rows: 68,985
## Columns: 12
                 <dbl> 50.39178, 55.41918, 51.66301, 48.28219, 47.87397, 60.03836~
## $ age
```

```
## $ gender
              <fct> Male, Female, Female, Male, Female, Female, Female, Male, ~
## $ height
              <int> 168, 156, 165, 169, 156, 151, 157, 178, 158, 164, 169, 173~
## $ weight
              <dbl> 62, 85, 64, 82, 56, 67, 93, 95, 71, 68, 80, 60, 60, 78, 95~
              <int> 110, 140, 130, 150, 100, 120, 130, 130, 110, 110, 120, 120~
## $ ap_hi
## $ ap lo
              <int> 80, 90, 70, 100, 60, 80, 80, 90, 70, 60, 80, 80, 80, 70, 9~
## $ cholesterol <fct> Normal, Well Above Normal, Well Above Normal, Normal, Norma
              <fct> Normal, Normal, Normal, Normal, Normal, Above Normal, Norma
## $ gluc
              ## $ smoke
## $ alco
              ## $ active
              <fct> Yes, Yes, No, Yes, No, Yes, Yes, Yes, No, Yes, Yes, No~
## $ cardio
              <fct> No, Yes, Yes, Yes, No, No, No, Yes, No, No, No, No, No, No,
```

#### Research question

My research question is: Do gender, age, body weight, body height, blood pressure, cholesterol, glucose levels, smoking, drinking alcohol and activity level of an individual significantly influence the likelihood of contracting cardiovascular disease?

I aim to determine what variables are the most important determining factors to cardiovascular disease given the data presented in the dataset.

#### Cases

The cases are the number of people who participate in the medical examination. There were a total of 70,000 cases in the original data file. After data pre-processing, the number of cases is 68,985. This change is due to the removal of rows that seemed to be errors such as extremely high and low blood pressure (-1,000 or 15,000).

```
nrow(cardio.data)
```

## [1] 68985

#### Data collection

The data was collected from medical information given by patient and examination results. "All of the dataset values were collected at the moment of medical examination." (https://www.kaggle.com/sulianova/cardiovascular-disease-dataset)

The data was downloaded from Kaggle (https://www.kaggle.com/sulianova/cardiovascular-disease-dataset) and then I uploaded it to Github to be used to import the data into R.

### Type of study

This is an observational study since the analysis is on events that have already occurred.

#### **Data Source**

The link to where I retrieved the data is: https://www.kaggle.com/sulianova/cardiovascular-disease-dataset

#### Dependent Variable

The response variable is cardio. This is a qualitative variable since it is a categorical binary variable. cardio is an indicator variable that indicates whether or not someone has cardiovascular disease.

### Independent Variable

There are multiple variables that I am considering for analysis. The list contains a group of both quantitative and qualitative variables:

- age (quantitative): Age of patient in years
- gender (qualitative): Gender of patient
- height (quantitative): Height of patient in cm
- weight (quantitative): Weight of patient in kg
- ap\_hi (quantitative): Systolic blood pressure
- ap\_lo (quantitative): Diastolic blood pressure
- cholesterol (qualitative): Cholesterol level of patient
- smoke (qualitative): Binary variable to determine if a patient smokes
- alco (qualitative): Binary variable to determine if a patient drinks alcohol
- gluc (qualitative): Glucose level of patient
- active (qualitative): Yes/No if patient is physically active

### **Relevant Summary Statistics**

#### **Summary Statistics**

#### summary(cardio.data)

```
##
                                         height
                                                           weight
         age
                        gender
                                            : 55.0
##
    Min.
            :29.58
                     Female: 44932
                                     Min.
                                                      Min.
                                                              : 11.00
##
    1st Qu.:48.37
                     Male :24053
                                     1st Qu.:159.0
                                                      1st Qu.: 65.00
                                     Median :165.0
##
    Median :53.98
                                                      Median: 72.00
##
    Mean
           :53.33
                                     Mean
                                             :164.4
                                                      Mean
                                                              : 74.12
    3rd Qu.:58.42
                                     3rd Qu.:170.0
                                                      3rd Qu.: 82.00
##
##
    Max.
            :64.97
                                     Max.
                                             :250.0
                                                      Max.
                                                              :200.00
##
        ap_hi
                                                   cholesterol
                         ap_lo
##
                           : 1.00
                                       Normal
                                                          :51747
    Min.
           : 7.0
                     Min.
##
    1st Qu.:120.0
                     1st Qu.: 80.00
                                       Above_Normal
                                                          : 9339
##
    Median :120.0
                     Median : 80.00
                                       Well_Above_Normal: 7899
##
    Mean
            :126.3
                     Mean
                             : 81.35
    3rd Qu.:140.0
                     3rd Qu.: 90.00
##
##
    Max.
            :240.0
                     Max.
                             :190.00
##
                    gluc
                                                                      cardio
                                smoke
                                              alco
                                                          active
##
    Normal
                      :58650
                                No :62924
                                             No:65288
                                                          No :13571
                                                                      No :34844
                                Yes: 6061
                                                                      Yes:34141
##
    Above_Normal
                      : 5088
                                             Yes: 3697
                                                         Yes:55414
##
    Well_Above_Normal: 5247
##
##
##
```

#### Visualizations

#### Cardiovascular Disease Outcome by Age

```
ggplot(cardio.data, aes(x=cardio, y=age)) +
  geom_boxplot() +
  ggtitle("Age by Cardiovascular Disease Level")
```

### Age by Cardiovascular Disease Level



plot(cardio.data\$cardio ~ cardio.data\$age, xlab = "Age",ylab = "Cardio", main = "Cardiovascular Outcome

# Cardiovascular Outcome vs. Age



```
plot(cardio.data$cardio ~ cardio.data$gender, xlab = "Gender",ylab = "Cardio", main = "Cardiovascular O
```

### Cardiovascular Outcome vs. Gender



```
cardio.data %>%
  group_by(gender) %>%
  count(cardio)
```

#### Cardiovascular Disease Outcome by Height

```
ggplot(cardio.data, aes(x=cardio, y=height)) +
  geom_boxplot() +
  ggtitle("Body Height (cm) by Cardiovascular Disease Level")
```

### Body Height (cm) by Cardiovascular Disease Level



plot(cardio.data\$cardio ~ cardio.data\$height, xlab = "Height",ylab = "Cardio", main = "Cardiovascular O"

# Cardiovascular Outcome vs. Height



#### Cardiovascular Disease Outcome by Weight

```
ggplot(cardio.data, aes(x=cardio, y=weight)) +
  geom_boxplot() +
  ggtitle("Body Weight (kg) by Cardiovascular Disease Level")
```

### Body Weight (kg) by Cardiovascular Disease Level



plot(cardio.data\$cardio ~ cardio.data\$weight, xlab = "Weight",ylab = "Cardio", main = "Cardiovascular O"

# Cardiovascular Outcome vs. Weight



#### Cardiovascular Disease Outcome by Systolic blood pressure

```
ggplot(cardio.data, aes(x=cardio, y=ap_hi)) +
  geom_boxplot() +
  ggtitle("Systolic Blood Pressure by Cardiovascular Disease Level")
```

### Systolic Blood Pressure by Cardiovascular Disease Level



plot(cardio.data\$cardio ~ cardio.data\$ap\_hi, xlab = "Systolic Blood Pressure",ylab = "Cardio", main = "

# Cardiovascular Outcome vs. Systolic Blood Pressure



#### Cardiovascular Disease Outcome by Diastolic blood pressure

```
ggplot(cardio.data, aes(x=cardio, y=ap_lo)) +
  geom_boxplot() +
  ggtitle("Diastolic Blood Pressure by Cardiovascular Disease Level")
```

### Diastolic Blood Pressure by Cardiovascular Disease Level



plot(cardio.data\$cardio ~ cardio.data\$ap\_hi, xlab = "Diastolic Blood Pressure",ylab = "Cardio", main =

## Cardiovascular Outcome vs. Diastolic Blood Pressure



plot(cardio.data\$cardio ~ cardio.data\$cholesterol, xlab = "Cholesterol Level",ylab = "Cardio", main = "

### Cardiovascular Outcome vs. Cholesterol Level



plot(cardio.data\$cardio ~ cardio.data\$gluc, xlab = "Glucose Level",ylab = "Cardio", main = "Cardiovascu

### Cardiovascular Outcome vs. Glucose Level



plot(cardio.data\$cardio ~ cardio.data\$smoke, xlab = "Smoking",ylab = "Cardio", main = "Cardiovascular O

# Cardiovascular Outcome vs. Smoking



plot(cardio.data\$cardio ~ cardio.data\$alco, xlab = "Alcohol",ylab = "Cardio", main = "Cardiovascular Ou

### **Cardiovascular Outcome vs. Alcohol Level**



plot(cardio.data\$cardio ~ cardio.data\$active, xlab = "Active",ylab = "Cardio", main = "Cardiovascular O

# Cardiovascular Outcome vs. Activity Level

