Geometryczna Teoria Grup

Weronika Jakimowicz

Zima 2024/25

Spis treści

1	Informacje v	wstępne	1
	02.10.2024	Grafy Cayleya	1
	1.	Metryka słów	1
	2.	Graf Cayleya	1
	3.	Quasi-izometrie	3
	09.10.2024	Lemat Milnora-Švarca	6
2	Niezmienni	ki izometrii	11
	16.10.2024	Końce (w nieskończoności) grup przestrzeni	11
	1.	Granica odwrotna	12
	2.	Przestrzeń końców	14
	13.11.2024	To be named	17
	1.	Abstrakcyjne funkcje wzrostu	17
	2.	Tempo wzrostu grupy	17
	3	Grupy o wzroście wielomianowym	20

13.11.2024 To be named

Funkcja wzrostu: $\beta_{G,S}:\mathbb{N}\to\mathbb{N}$ zdefiniowana jako liczność kuli o promieniu k i środku w elemencie neutralnym: $f_{G,S}(k)=|B_k^{G,S}(e)|$

1. Abstrakcyjne funkcje wzrostu

Abstrakcyjna funkcja wzrostu f to po prostu niemalejąca funkcja f : $\mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$. Każda funkcja wzrostu $\beta_{\mathsf{G},\mathsf{S}}$ wyznacza abstrakcyjną funkcję wzrostu

$$\widetilde{\beta}_{\mathsf{G},\mathsf{S}}(\mathsf{t}) := \beta_{\mathsf{G},\mathsf{S}}(\lceil \mathsf{t} \rceil),$$

która nadal jest multiplikatywna, tzn. $\widetilde{\beta}_{G,S}(t+t') \leq \widetilde{\beta}_{G,S}(t) \cdot \widetilde{\beta}_{G,S}(t')$.

Konkurencyjnie możemy zdefiniować $\widetilde{\beta}_{G,S}(t) := \beta_{G,S}(\lfloor t \rfloor)$, ale nie zachowujemy wówczas multiplikatywności funkcji.

Definicja 2.9: quasi-dominacja —

Mówimy, że funkcja g **quasi-dominuje** [g \succ f] funkcję f, jeśli istnieje c ≥ 1 i b ≥ 0 takie, że

$$(\forall \ t \in \mathbb{R}_{\geq 0}) \ f(t) \leq c \cdot g(ct+b) + b$$

Przykłady

- 1. Dla każdego wielomianu w(t) stopnia n o dodatnich współczynnikach $w(t) \prec t^n$.
- 2. Dla dowolnych a, b > 1 zachodzi

$$a^t \succ b^t$$

nawet gdy a > b.

Relacja quasi-dominacji jest relacją przechodnią i zwrotną.

2. Tempo wzrostu grupy

Definicja 2.10: quasi-równoważność

Dwie funkcje f i g są quasi-równoważne [f \sim g], gdy f \succ g i g \succ f. Jest to relacja równoważności. Klasy tej relacji nazywamy typami wzrostu [eng. growth rate types].

Przykłady

- 1. Dla a ≥ 0 funkcje t \mapsto t^a określają parami różne typy wzrostu.
- 2. Dla 0 > a > b zachodzi $e^{ta} \sim e^{tb}$. Jest to tzw. tym wzrostu eksponencjalnego.
- 3. $(\forall \ a \ge 0) \ t^a \prec e^t$ oraz $t^a \not\prec e^t$, czyli wzrost eksponencjalny nigdy nie jest równy wzrostowi t^a .
- 4. Wszystkie funkcje wzrostu grup $\beta_{G,S}$ są quasi-zdominowane przez e^t , $\beta_{G,S} \prec e^t$. Aby pokazać, że grupa (G,S) ma typ wzrostu eksponencjalnego wystarczy pokazać, że $\beta_{G,S} \succ e^t$, co jest równoważne nierówności $\beta_{G,S} \geq ca^t b$ dla a > 1, $b \geq 0$ i c > 0.
- 5. $\widetilde{\beta}_{G,S} \sim \widetilde{\beta}_{G,S}$

Fakt 2.11

Niech (G,S) i (H,T) będą grupami ze skończonym układem generatorów. Jeśli istnieje quasi-izometryczne zanurzenie

$$f:(G,d_S)\to (H,d_T),$$

to wówczas funkcja wzrostu w G jest zdominowana przez funkcję wzrostu w H: $\beta_{\rm G,S} \prec \beta_{\rm H,T}$.

Zanim przejdziemy do dowodu faktu 2.11, wymieńmy kilka ważnych wniosków z niego wynikających.

Wniosek

- 1. Jeśli grupy (G, d_S) i (H, d_T) są quasi-izometryczne, to wówczas mają ten sam typ wzrostu: $\beta_{G,S} \sim \beta_{H,T}$.
- 2. Dla różnych skończonych układów generatorów S_1 , S_2 grupy G zachodzi $\beta_{G,S_1} \sim \beta_{G,S_2}$, czyli grupa jednoznacznie determinuje swój typ wzrostu.

Wyróżniamy grupy o wzroście

- wielomianowym, czyli taki dla których funkcja wzrostu jest zdominowana przez t^a dla pewnego a $[\beta_{G,S} \prec t^a]$,
- eksponencjalnym,
- pośrednim [eng. intermediate growth], czyli ani wielomianowym ani eksponencjalnym (dominuje ściśle nad wielomianowym, ale jest zdominowany ściśle nad eksponencjalnym).

Okazuje się, że w przypadku wzrostu nieprzekraczającego wielomianowego, wzrost musi być typu $\beta_{G,S} \sim t^m$ dla pewnego m $\in \mathbb{N}$. Tzn. nie ma grup o typie wzrostu "ułamkowopotęgowego" ani $t \cdot \log t$ etc.

Istnieją grupy o wzroście pośrednim, np. tak zwana grupa Grigorchuka (automorfizmów pewnego drzewa). Wiadomo dla niej, że

$$e^{t^{\alpha}} \prec \beta_{G} \prec e^{t^{\beta}}$$

dla pewnych $0<\alpha<\beta<1$, ale nie mamy wyznaczonej konkretnej funkcji. Grupa ta jest skończenie generowalna, ale nieskończenie prezentowalna.

Istnieje otwarta hipoteza, że jeśli G ma wzrost pośredni, to $\beta_G \succ e^{t^{\alpha}}$ dla pewnego $0 < \alpha < 1$. Nie wiemy też, czy istnieje grupa skończenie prezentowalna, która dopuszcza pośredniego wzrostu (otwarte jest pytanie o dowód, że nie może tak być).

Żadna grupa o wzroście pośrednim nie ma wyznaczonego dokładnego typu wzrostu.

Wracamy do 2.11.

Dowód

Niech $f:(G,d_S) \to (H,d_T)$ będzie q.i. zanurzenie i niech $C \ge 1$ będzie takie, że

$$(\forall \ g,g' \in G) \ \frac{1}{c} d_S(g,g') - C \leq d_T(f(g),f(g')) \leq C d_S(g,g') + C.$$

Niech e'=f(e) i niech $r\in\mathbb{N}$. Wtedy jeśli $g\in B_r^{\mathsf{G},\mathsf{S}}(e)$, to wówczas

$$d_T(f(g),e') \leq C \cdot d_S(g,e) + C \leq C \cdot r + C.$$

W takim razie

$$f\left(B_r^{G,S}(e)\right)\subseteq B_{Cr+C}^{H,T}(e').$$

Niestety, q.i. może sklejać elementy i niekoniecznie jest różnowartościowa. Musimy więc znaleźć oszacowanie na moc przeciwobrazów $f^{-1}(h)$.

Jeśli f(g) = f(g'), to wówczas z faktu, że f jest q.i. mamy

$$\mathsf{d}_\mathsf{S}(\mathsf{g},\mathsf{g}') \leq \mathsf{C} \cdot [\mathsf{d}_\mathsf{T}(\mathsf{f}(\mathsf{g}),\mathsf{f}(\mathsf{g}')) + \mathsf{C}] = \mathsf{C}^2.$$

Stąd $f^{-1}(h)$ zawiera się w kuli o promieniu C^2 wokół dowolnego punktu z $f^{-1}(h)$. Ponieważ kule względem metryki słów o ustalonym promieniu i zmiennym środku są równoliczne, więc mamy oszacowanie

$$|f'(h)| \le \left|B_{C^2}^{G,S}(e)\right|.$$

Stąd dostajemy

$$\left|B_r^{G,S}(e)\right| \leq \left|B_{C^2}^{G,S}(e)\right| \cdot \left|B_{Cr+C}^{H,T}(e')\right| \text{,}$$

czyli

$$eta_{\mathsf{G,S}}(\mathsf{r}) \leq \left|\mathsf{B}_{\mathsf{C}^2}^{\mathsf{G,S}}(\mathsf{e})\right| \cdot eta_{\mathsf{H,T}}(\mathsf{Cr}+\mathsf{C})$$
,

czyli $\beta_{G,S} \prec \beta_{H,T}$.

Przykłady

- 1. $\mathbb{Z}^n \approx \mathbb{Z}^m$ są q.i. \iff n = m, bo $\beta_{\mathbb{Z}^n} \sim t^n \not\sim t^m \sim \beta_{\mathbb{Z}^m}$.
- 2. Grupa wolna F nie jest q.i. z \mathbb{Z}^m , bo $\beta_F \sim e^t$, a $\beta_{\mathbb{Z}^m} \sim t^m$ i $e^t \not\sim t^m$.
- 3. Dla skończenie generowalnej podgrupy $H \leq G$ zachodzi $\beta_H \prec \beta_G$.

Wniosek

Każda grupa zawierająca podgrupę wolną (nieabelową) ma wzrost eksponencjalny.

4. Grupa Heisenberga

$$\mathsf{H} = \mathbb{Z} \ltimes_{\mathsf{A}} \mathbb{Z}^2$$
, $\mathsf{A} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$

ma $\beta_{\mathsf{H}} \sim \mathsf{t}^4$. Stąd można wywnioskować, że H $\not\approx \mathbb{Z}^3$ nie jest q.i.. Jako ciekawostka można nadmienić, że wymiar asymptotyczny grupy H wynosi 3, a grupy \mathbb{Z}^4 wynosi 4, co mówi, że H $\not\approx \mathbb{Z}^4$ nie są q.i..

3. Grupy o wzroście wielomianowym

Dla przypomnienia, patrzymy teraz na grupy $\beta_{\sf G} \prec {\sf t}^{\sf a}$ dla pewnego a > 0. Zacznijmy od kilku przykładów.

Dla grupy G określamy $C_n(G)$ indukcyjnie przez $C_0(G) := G$, $C_{n+1}(G) = [G, C_n(G)]$. Taki ciąg nazywamy **dolnym ciągiem centralnym grupy**. Zachodzi $C_{j+1}(G) \triangleleft C_j(G)$ oraz $C_j(G)/C_{j+1}(G)$ jest abelowa. Gdy G jest skończenie generowalna, to wszystkie $C_j(G)$ i ilorazy $C_j(G)/C_{j+1}(G)$ też takie są.

Grupa G jest nilpotentna, gdy $C_n(G)$ jest trywialne dla pewnego n.

Definicja 2.12: wymiar jednorodny grupy nilpotentnej

Skończenie generowalna grupa abelowa A ma jednoznaczny rozkład A $\sim \mathbb{Z}^m \oplus B$, gdzie B jest grupą skończoną. Definiujemy wówczas rank(A) = m.

Wymiar jednorodny grupy nilpotentnej to skończona suma (bo od pewnego momentu $\mathsf{C_i}(\mathsf{G}) = 0$)

$$\mathsf{d}(\mathsf{G}) := \sum_{j=0}^{\infty} (\mathsf{j}+1) \, \mathsf{rank}(\mathsf{C}_{\mathsf{j}}(\mathsf{G})/\mathsf{C}_{\mathsf{j}+1}(\mathsf{G})).$$

Fakt 2.13

Dla dowolnej skończenie generowalnej grupy nilpotentnej G zachodzi

$$\beta_{\mathsf{G}} \sim \mathsf{t}^{\mathsf{d}(\mathsf{G})}$$

Przykład

Dla grupy Heisenberga $\mathsf{H}=\mathbb{Z}\ltimes_\mathsf{A}\mathbb{Z}^2$, która jest nilpotentna, mamy

$$\begin{aligned} \mathsf{C}_1(\mathsf{H}) &\cong \mathbb{Z} \quad \mathsf{C}_0(\mathsf{H})/\mathsf{C}_1(\mathsf{H}) = \mathsf{H}/\mathsf{C}_1(\mathsf{H}) \cong \mathbb{Z}^2 \\ \mathsf{C}_2(\mathsf{H}) &= 0 \qquad \mathsf{C}_1(\mathsf{H})/\mathsf{C}_2(\mathsf{H}) \cong \mathsf{C}_1(\mathsf{H}) \cong \mathbb{Z} \end{aligned}$$

$$\operatorname{więc}\operatorname{d}(\operatorname{H})=\operatorname{rank}(\mathbb{Z}^2)+2\cdot\operatorname{rank}(\mathbb{Z})=2+2=4.$$

Definicja 2.14: wirtualna nilpotentność

Skończenie generowana grupa G jest wirtualnie nilpotentna, jeśli zawiera skończonego indeksu podgrupę nilpotentną.

Twierdzenie 2.15: [Gromova]

Skończenie generowalna grupa G ma wzrost wielomianowy $\beta_G \prec t^a \iff G$ jest wirtualnie nilpotentna.