

UNIVERSIDAD DE GRANADA

Doble Grado en Ingeniería Informática y Matemáticas

EL TÍTULO DEL TRABAJO FIN DE MÁSTER

Trabajo Fin de Grado presentado por Daniel López García

Curso 2017/18

UNIVERSIDAD DE GRANADA

Doble Grado en Ingeniería Informática y Matemáticas

EL TÍTULO DEL TRABAJO FIN DE MÁSTER

Trabajo Fin de Grado presentado por Daniel López García

Curso 2017/18

Tutor: Nombre Apellido
1 Apellido 2 Departamento: Matemática Aplicada

Área de Conocimiento: Matemática Aplicada

(Página de agradecimientos si los hay) Thank you.

Índice

1.	Esfé	éricos Armónicos	1
	1.1.	Preliminares	1
		1.1.1. Notación	1
	1.2.	Esféricos Armónicos a partir de Espacios Primitivos	3
		1.2.1. Espacios de Polinomios Homogéneos	3
		1.2.2. Armónicos de Legendre y Polinomios de Legendre	5
		1.2.3. Esféricos Armónicos	6
	1.3.	Teorema de Adición. Consecuencias	7
	1.4.	Un Operador de Proyección	11
	1.5.	Generando Bases Ortonormales para Espacios de Esféricos	
		Armónicos	14
Α.	La l	Función Gamma	17
в.	Res	ultados básicos de la esfera.	19
c.	Poli	nomios de Legendre	21
	C.1.	Fórmulas de Representación	21
		C.1.1. Fórmula de Rodrigues	21
		C.1.2. Fórmulas de Representación Integral	21
	C.2.	Propiedades	22
D.	Poli	nomios de Gegenbauer	23
Ε.	Fun	ciones de Legendre Asociadas	25
F.	Cál	culo del Gradiente	27
	F 1	title	27

Capítulo 1

Esféricos Armónicos

1.1. Preliminares

1.1.1. Notación

Para empezar fijaremos la notación que seguiremos durante el capítulo. Usaremos $d \in \mathbb{N}$ para representar la dimensión de un conjunto; en particular, el conjunto $\mathbb{R}^d = \{x = (x_1, ..., x_d)^T : x_j \in \mathbb{R}, 1 \leq j \leq d\}$ es el espacio euclídeo de dimensión d con el producto escalar y la norma

$$(x,y) = \sum_{j=1}^{d} x_j y_j$$
 $|x| = (x,x)^{1/2}$ $x, y \in \mathbb{R}^d$

En \mathbb{R}^d usaremos la base canónica

$$e_1 = (1, 0, ..., 0)^T, ..., e_d = (0, 0, ..., 1)^T$$

y escribiremos $x = \sum_{j=1}^{d} x_j e_j, x \in \mathbb{R}^d$.

Para indicar la dimensión explícitamente usaremos $x_{(d)}$ en lugar de x. En tal caso, $x_{(d)} = x_{(d-1)} + x_d e_d$ siendo $x_{(d-1)} = (x_1, ..., x_{d-1}, 0)^T$. También usaremos $x_{(d-1)}$ para referirnos al vector (d-1)-dimensional $(x_1, ..., x_{d-1}, 0)^T$.

Trabajaremos sobre la esfera unidad $\mathbb{S}^{d-1}=\{\xi\in\mathbb{R}^d:|\xi|=1\}$. Por simplicidad, llamaremos esfera a \mathbb{S}^{d-1} .

Definición 1.1. Sean $\xi, \eta \in \mathbb{S}^{d-1}$, definimos las siguientes distancias:

- La distancia euclídea $|\xi \eta| = \sqrt{2(1 \xi \eta)}$
- La distancia geodésica $\theta(\xi, \eta) = arccos(\xi, \eta)$

Nota1.2. Usando que $\frac{2}{\pi} \le sint \le t, t \in [0,\pi/2]$ se deduce la siguiente relación entre ambas distancias:

$$\frac{2}{\pi}\theta(\xi,\theta) \le |\xi - \eta| \le \theta(\xi,\eta)$$

Para $x=(x_1,...,x_d)$ definimos $x^\alpha=x_1^{\alpha_1}...x_d^{\alpha_d}$. Análogamente, para el operador gradiente $\nabla=(\partial_{x_1},...,\partial_{x_d})^T$ definimos

$$\nabla^{\alpha} = \frac{\partial^{|\alpha|}}{\partial x_1^{\alpha_1}...\partial x_d^{\alpha_d}}$$

Y finalmente definimos el operador laplaciano como

$$\triangle = \nabla . \nabla = \sum_{j=1}^{d} \left(\frac{\partial}{\partial x_j}\right)^2$$

Definición 1.3. Dado $x \in (\mathbb{R})^+$ definimos la función gamma como

$$\Gamma(x) := \int_0^\infty t^{x-1} e^{-t} dt$$

Proposición 1.4. Se verifican las siguientes formulas:

$$\int_0^\infty tx - 1e^{-at^b} dt = b^{-1}a^{-x/b}\Gamma(x/b), x, a, b \in \mathbb{R}^+$$

$$\int_0^1 |lnt|^{x-1} dt = \Gamma(x), x \in \mathbb{R}^+$$

$$\Gamma(x+1) = x\Gamma(x), x \in \mathbb{R}^+$$

$$\Gamma^{(k)}(x) = \int_0^\infty (lnt)^k t^{x-1} e^{-t} dt, k \in \mathbb{N}_0, x \in \mathbb{R}^+$$

Nota 1.5. $\Gamma(1)=1$ y de la tercera fórmula se deduce que $\Gamma(n+1)=n!, n\in\mathbb{N}_0$. Es decir, la función Γ extiende el operador factorial de los números naturales a los reales positivos.

Lema 1.6.

$$\Gamma(\frac{1}{2}) = \sqrt{\pi}$$

$$\Gamma(n+\frac{1}{2})=\frac{(2n)!}{2^{2n}n!}\sqrt{\pi}$$

Definición 1.7. Se
a $x\in\mathbbm{R}$ y $n\in\mathbbm{N},$ el símbolo de Pochhammer se define como

$$(x)_0 = 1, (x)_n = x(x+1)(x+2)...(x+n-1)$$

Proposición 1.8. Sea $x \in \mathbb{R}^+$ entonces

$$(x)_n = \frac{\Gamma(x+n)}{\Gamma(x)}$$

1.2. Esféricos Armónicos a partir de Espacios Primitivos.

Consideramos \mathbb{O}^d el conjunto de matrices ortogonales de orden d. Para cualquier $\eta \in \mathbb{O}^d$ vector no nulo, $\mathbb{O}^d(\eta) = \{A \in \mathbb{O}^d : A\eta = \eta\}$ es el subconjunto de matrices ortogonales que deja el subespacio $span\{\eta\} = \{\alpha\eta : \alpha \in \mathbb{R}\}$ invariante.

Definición 1.9. Sea $f: \mathbb{R}^d \to \mathbb{C}$ y $A \in \mathbb{R}^{dxd}$, se define f_A como:

$$f_A(x) = f(Ax), \forall x \in \mathbb{R}^d$$

Consideremos un subespacio $\mathbb V$ de funciones definidas de $\mathbb R^d$ a un subconjunto de $\mathbb R^d.$

Definición 1.10. Sea \mathcal{V} un subespacio de funciones definidas de \mathbb{R}^d a $A \subseteq \mathbb{R}^d$. Se dice que \mathcal{V} es invariante si para $f \in \mathcal{V}$ y $A \in \mathbb{O}^d$, entonces $f_A \in \mathcal{V}$. Considerando \mathcal{V} un subespacio invariante de un espacio proveniente de un producto escalar se define:

- \mathcal{V} es reducible si $\mathcal{V} = \mathcal{V}_1 + \mathcal{V}_2$ con $\mathcal{V}_1 \neq \emptyset$, $\mathcal{V}_2 \neq \emptyset$ verificando $\mathcal{V}_1, \mathcal{V}_2$ irreducibles y $\mathcal{V}_1 \perp \mathcal{V}_2$.
- \mathcal{V} es irreducible si no es reducible.
- \bullet \mathcal{V} es primitivo si es invariante e irreducible.

Proposición 1.11. Si $f_A = f$ para cualquier $A \in \mathbb{O}^d$ entonces f(x) depende de x por medio de |x|, luego f es constante en una esfera de radio arbitrario.

Demostración. Sean $x, y \in \mathbb{R}^d$ con $|\mathbf{x}| = |\mathbf{y}|$, podemos encontrar una matriz $A \in \mathbb{O}^d$ tal que Ax = y. Entonces $f(x) = f_A(x) = f(y)$.

Definición 1.12. Dado $f: \mathbb{R}^d \to \mathbb{C}$ se define $span\{f_A : A \in \mathbb{O}^d\}$ como el espacio de las series $\sum c_j f_{A_j}$ convergentes con $A_j \in \mathbb{O}^d, c_j \in \mathbb{C}$

De la definición se deduce que $span\{f_A : A \in \mathbb{O}^d\}$ es un subespacio de funciones. Además, si \mathcal{V} es un espacio finito dimensional $\mathcal{V} = span\{f_A\}$

Introduciremos los espacios de armónicos esféricos de diferentes órdenes como subespacios primitivos de $C(\mathbb{S}^{d-1})$.

1.2.1. Espacios de Polinomios Homogéneos.

Consideramos \mathcal{H}_n^d el espacio de polinomios homogéneos de grado n en d dimensiones. Las funciones son de la forma:

$$\sum_{|\alpha|=n} a_{\alpha} x^{\alpha}, a_{\alpha} \in \mathbb{C}$$

Ejemplo 1.13.

$$\mathbb{H}_{2}^{2} = \left\{ a_{1}x_{1}^{2} + a_{2}x_{1}x_{2} + a_{3}x_{2}^{2} \right\}$$

$$\mathbb{H}_{3}^{2} = \left\{ a_{1}x_{1}^{3} + a_{2}x_{2}^{3} + a_{3}x_{1}^{2}x_{2} + a_{4}x_{1}x_{2}^{2} \right\}$$

A continuación vamos a estudiar la dimensión de \mathcal{H}_n^d , llegando a la conclusión de que es un espacio invariante finito dimensional. Para determinar $dim\mathcal{H}_n^d$ contamos los monomios de grado n, es decir, x^α con $\alpha_i \geq 0$ y verificando $\alpha_1 + \alpha_2 + \ldots + \alpha_d = n$. Tomamos un conjunto $S = \{1, 2, \ldots, n + d - 1\}$. Seleccionamos d-1 números de dicho conjunto y los llamamos β_i , $1 \leq i \leq d-1$. Definimos $\beta_0 = 0$ y $\beta_d = n + d$.

Ahora, tomamos α_i como el número elementos de S entre 2 β_i consecutivos, es decir, $\alpha_i = \beta_i - \beta_{i-1} - 1, 1 \le i \le d$. Tenemos que

$$\sum_{i=1}^{d} \alpha_i = \sum_{i=1}^{d} \beta_i - \beta_{i-1} - \sum_{i=1}^{d} 1 = \beta_d - d = n + d - d = n$$

Por tanto tenemos una biyección entre el conjunto de α_i que suman n y el conjunto de β_i . Finalmente, contamos las distintas elecciones posibles de los β_i y tenemos que

$$dim\mathbb{H}_n^d = \binom{n+d-1}{d-1} = \binom{n+d-1}{n}$$

Definición 1.14. Una función f es armónica si $\triangle f(x) = 0$.

Lema 1.15. Si $\triangle f = 0$, entonces $\triangle f_A = 0$, $\forall A \in \mathbb{O}^d$

Demostración. Se
ay=Ax,entonces $\triangledown_x=A\triangledown_y.$ Como $A\in\mathbb{O}^d$
se tiene que

$$\triangle_x = \nabla_x . \nabla_x = \nabla_y . \nabla_y = \triangle_y$$

A continuación, vamos a ver un subespacio de H_n^d importante.

Definición 1.16. Llamamos $\mathbb{Y}_n(\mathbb{R}^d)$ al espacio de los polinomios homogéneos de grado n en \mathbb{R}^d que son armónicos.

Ejemplo 1.17.
$$\mathbb{Y}_n(\mathbb{R}^d) = \mathbb{H}_n^d$$
 si n = 0 o n = 1

Para d = 1, $Y_n(\mathbb{R}) = \emptyset$ para $n \geq 2$

Para d = 2, $\mathbb{Y}_n(\mathbb{R}^2)$, los polinomios de la forma $(x_1 + ix_2)^n$ pertenecen a $\mathbb{Y}_n(\mathbb{R}^2)$. En particular, $\mathbb{Y}_2(\mathbb{R}^2)$ está formado por polinomios de la forma $a(x_1^2 - x_2^2) + bx_1x_2$, $a, b \in \mathbb{C}$

1.2. ESFÉRICOS ARMÓNICOS A PARTIR DE ESPACIOS PRIMITIVOS.5

Calculamos ahora la dimensión de $\mathbb{Y}_n(\mathbb{R}^d)$. Llamaremos $N_{n,d}$ a la dimensión de $\mathbb{Y}_n(\mathbb{R}^d)$. Sea $H_n \in \mathbb{H}_n^d$, dicho polinomio puede ser escrito de la forma

$$H_n(x_1,...,x_d) = \sum_{j=0}^n (x_d)^j h_{n-j}(x_1,...x_{d-1}), h_{n-j} \in \mathbb{H}_{n-j}^{d-1}$$

Aplicamos el operador laplaciano a H_n ,

$$\triangle_{(d)}H_n(x_{(d)}) = \sum_{j=0}^{n-2} (x_d)^j [\triangle_{(d-1)}h_{n-j}(x_{(d-1)}) + (j+2)(j+1)h_{n-j-2}(x_{(d-1)})]$$

Luego, si $H_n \in \mathbb{Y}_n(\mathbb{R}^d)$ entonces $\triangle_{(d)}H_n(x_{(d)}) \equiv 0$ y

$$h_{n-j-2} = -\frac{1}{(j+2)(j+1)} \triangle_{(d-1)} h_{n-j}, 0 \le j \le n-2$$

En consecuencia un armónico homogéneo está únicamente determinado por $h_n \in \mathbb{H}_n^{d-1}$ y $h_{n-1} \in \mathbb{H}_{n-1}^{d-2}$. De este modo, obtenemos la siguiente relación

$$N_{n,d} = dim \mathbb{H}_n^{d-1} + \mathbb{H}_{n-1}^{d-1}$$

Usando la formula obtenida para $dim \mathbb{H}_n^d$ se tiene que para $d \geq 2$,

$$N_{n,d} = \frac{(2n+d-2)(n+d-3)!}{n!(d-2!)}, n \in \mathbb{N}$$

1.2.2. Armónicos de Legendre y Polinomios de Legendre

Ahora, nos centraremos en unos armónicos homogéneos especiales, los armónicos de Legendre de grado n en d dimensiones.

Definición 1.18. Se define los armónicos de Legendre, $L_{n,d} : \mathbb{R} \to \mathbb{R}$ verificando las siguientes condiciones:

- $L_{n,d} \in \mathbb{Y}_n(\mathbb{R}^d)$
- $L_{n,d}(Ax) = L_{n,d}(x)$ $\forall A \in \mathbb{O}^d(e_d), \forall x \in \mathbb{R}^d$
- $L_{n,d}(e_d) = 1$

Nota 1.19. La segunda condición implica que $h_{n-j}(A_1x_{d-1})=h_{n-j}(x_{d-1}), \forall A_1\in\mathbb{O}^{(d-1)},\quad x_{(d-1)}\in\mathbb{R}^{d-1},\quad 0\leq j\leq n$

De la proposición 1.11 se deduce que por ser h_{n-j} polinomio homogéneo,(n-j) es par y

$$h_{n-j}(x_{(d-1)}) = \begin{cases} c_k |x_{(d-1)}|^{2k} & \text{si } n-j=2k\\ 0 & \text{si } n-j=2k+1 \end{cases}$$
 (1.2.1)

Por tanto,

$$L_{n,d}(x) = \sum_{k=0}^{[n/2]} c_k |x_{(d-1)}|^{2k} (x_d)^{n-2k}$$

Determinamos ahora los coeficientes c_k

$$c_k = -\frac{(n-2k+2)(n-2k+1)}{2k(2k+d-3)}c_{k-1}, \qquad 1 \le k \le \lfloor n/2 \rfloor$$

Usando la condición de normalidad se tiene que $c_0=1$ y

$$c_k = (-1)^k \frac{n!\Gamma(\frac{d-1}{2})}{4^k k!(n-2k)!\Gamma(k+\frac{d-1}{2})}, \qquad 0 \le k \le [n/2]$$

Finalmente, obtenemos la siguiente expresión

$$L_{n,d}(x) = n!\Gamma(\frac{d-1}{2}) \sum_{k=0}^{[n/2]} (-1)^k \frac{|x_{(d-1)|^{2k}}(x_d)^{n-2k}}{4^k k! (n-2k)! \Gamma(k+\frac{d-1}{2})}$$

Usando coordenadas polares $x_{(d)} = r\xi_{(d)}, \xi_{(d)} = te_d + \sqrt{1-t^2}\xi_{(d-1)}$, definimos el polinomio de Legendre de grado n en d dimensiones, $P_{n,d}(t) = L_{n,d}(\xi_{(d)})$ como la restricción a la esfera unidad del armónico de Legendre. Por tanto

$$P_{n,d}(t) = n!\Gamma(\frac{d-1}{2}) \sum_{k=0}^{\lfloor n/2 \rfloor} (-1)^k \frac{(1-t^2)^k t^{n-2k}}{4^k k! (n-2k)! \Gamma(k+\frac{d-1}{2})}$$

Nota 1.20.
$$P_{n,d}(1) = 1$$
 y $L_{n,d}(x) = L_{n,d}(r\xi_{(d)}) = r^n P_{n,d}(t)$

1.2.3. Esféricos Armónicos

Definición 1.21. Se llama espacio de esféricos armónicos de orden n en d dimensiones a $\mathbb{Y}_n^d = \mathbb{Y}_n(\mathbb{R}^d)_{|\mathbb{S}^{d-1}}$

De la definición se deduce que un esférico armónico $\mathbb{Y}_n \in \mathbb{Y}_n^d$ está asociado a un armónico homogéneo $\mathbb{H}_n \in \mathbb{Y}_n^d$ de la siguiente forma:

$$\mathbb{H}_n(r\xi) = r^n \mathbb{Y}_n(\xi)$$

En consecuencia, $dim \mathbb{Y}_n^d = N_{n,d}$

Teorema 1.22. Sea $\mathbb{Y}^d \in \mathbb{Y}_n^d$ $y \in \mathbb{S}^{d-1}$. Entonces \mathbb{Y}_n es invariante respecto a $\mathbb{O}^d(\xi)$, si y sólo si, $\mathbb{Y}_n(\eta) = \mathbb{Y}_n(\xi)\mathbb{P}_{n,d}(\xi,\eta) \forall \eta \in \mathbb{S}^{d-1}$

Demostración. (\Rightarrow) Dado que ξ es un vector unitario podemos encontrar $A_1\mathbb{O}^d$ tal que $\xi=A_1e_d$. Sea $Y_n(\eta)=Y_n(A_1\eta), \eta\in\mathbb{S}^{d-1}d-1$, que es invariante respecto a $\mathbb{O}^d(e_d)$. De la definición de armónico de Legendre sabemos que $r^nY_n(\eta)=c_1L_{n_d}(r^n\eta), r\geq 0, \eta\in\mathbb{S}^{d-1}$ con c_1 una constante.

Por tanto, $Y_n(\eta) = c_1 L_{n,d}(\eta)$ y tomando $\eta = e_d$ tenemos que $c_1 = Y_n(e_d)$. Finalmente como

$$Y_n(\eta) = Y_n(e_d) \mathbb{P}_{n,d}(\eta.e_d)$$

se tiene que

$$\mathbb{Y}_n(\eta) = Y_n(A_1^T \eta) = Y_n(A_1^T \eta) \mathbb{P}_{n,d}(A_1^T \eta.e_d) = Y_n(A_1^T \eta) \mathbb{P}_{n,d}(\eta.A_1 e_d) = \mathbb{Y}_n(\xi) \mathbb{P}_{n,d}(\xi.\eta)$$
(\Leftarrow) Obvio

1.3. Teorema de Adición. Consecuencias.

Teorema 1.23. Sea $\{Y_{n,j}: 1 \leq j \leq N_{n,d}\}$ una base ortonormal de \mathbb{Y}_n^d , es decir,

$$\int_{\mathbb{S}^{d-1}} Y_{n,j}(\eta) \overline{Y_{n,j}(\eta)} d\mathbb{S}^{d-1} = \delta_{j,k}, \qquad 1 \le j, k \le N_{n,d}$$

Entonces,

$$\sum_{j=1}^{N_{n,d}} Y_{n,j}(\xi) \overline{Y_{n,j}(\eta)} = \frac{N_{n,d}}{|\mathbb{S}^{d-1}|} P_{n,d}(\xi.\eta) \forall \xi, \eta \in \mathbb{S}^{d-1}$$

Demostraci'on. Sean $A\in\mathbb{O}^d$ y 1 $\leq k\leq N_{n,d},\,Y_{n,k}(A\xi)\in\mathbb{Y}_n^d$ podemos escribir

$$Y_{n,k}(A\xi) = \sum_{j=1}^{N_{n,d}} c_{kj} Y_{n,j}(\xi), \qquad c_{kj} \in \mathbb{C}$$

Como

$$\int_{\mathbb{S}^{d-1}} Y_{n,k}(A\xi) \overline{Y_{n,k}(A\xi)} d\mathbb{S}^{d-1}(\xi) = \int_{\mathbb{S}^{d-1}} Y_{n,k}(\eta) \overline{Y_{n,k}(A\eta)} d\mathbb{S}^{d-1}(\eta) = \delta_{j,k}$$

tenemos que

$$\delta_{jk} = \sum_{l,m=1}^{N_{n,d}} c_{j,l} \overline{c_{k,m}}(Y_{n,l}, Y_{n,m}) = \sum_{l,m=1}^{N_{n,d}} c_{j,l} \overline{c_{k,l}}$$

Sea $C=(c_{j,l})$ y C^H su matriz conjugada transpuesta. Se verifica que $CC^H=I$ y $C^HC=I$ luego C es unitaria y

$$\sum_{i=1}^{N_{n,d}} \overline{c_{jl}} c_{jk} = \delta_{lk} \qquad 1 \le l, k \le N_{n,d}$$

Ahora, consideramos la suma

$$Y(\xi,\eta) = \sum_{j=1}^{N_{n,d}} Y_{n,j}(\xi) \overline{Y_{n,j}(\eta)}, \quad \xi, \eta \in \mathbb{S}^{d-1}$$

Para $A \in \mathbb{O}^d$ y fijado ξ se tiene que

$$Y(A\xi, A\eta) = \sum_{j=1}^{N_{n,d}} Y_{n,j}(A\xi) \overline{Y_{n,j}(A\eta)} = \sum_{j,k,l=1}^{N_{n,d}} c_{jk} \overline{c_{jl}} Y_{n,k}(\xi) \overline{Y_{n,l}(\eta)} = \sum_{j=1}^{N_{n,d}} Y_{n,k}(\xi) \overline{Y_{n,k}(\eta)} = Y(\xi, \eta)$$

luego $Y(\xi,.) \in \mathbb{Y}_n^d$ es invariante respecto a $\mathbb{O}^d(\xi)$. Por el teorema 1.22 $Y(\xi,\eta) = Y(\xi,\xi) P_{n,d}(\xi.\eta)$. Análogamente, $Y(\xi,\eta) = Y(\eta,\eta) P_{n,d}(\xi.\eta)$. En consecuencia, $Y(\xi,\xi) = Y(\eta,\eta)$ y es una constante en \mathbb{S}^{d-1} . Para determinar dicha constante, integramos la igualdad $Y(\xi,\xi) = \sum_{j=1}^{N_{n,d}} |Y_{n,j}(\xi)|^2$ sobre la esfera, obteniendo que

$$Y(\xi,\xi)|\mathbb{S}^{d-1}| = \sum_{j=1}^{N_{n,d}} \int_{\mathbb{S}^{d-1}} |Y_{n,j}(\xi)|^2 d\mathbb{S}^{d-1} = N_{n,d}$$

Por tanto,
$$Y(\xi, \xi) = \frac{N_{n,d}}{|S^{d-1}|}$$
 y se cumple $\sum_{j=1}^{N_{n,d}} Y_{n,j}(\xi) \overline{Y_{n,j}(\eta)} = Y(\xi, \eta) = Y(\xi, \xi) P_{n,d}(\xi, \eta) = \frac{N_{n,d}}{|S^{d-1}|} P_{n,d}(\xi, \eta)$

Ejemplo 1.24. En el caso d=2

$$\sum_{i=1}^{2} Y_{n,j}(\xi) \overline{Y_{n,j}(\eta)} = \frac{1}{\pi} P_{n,2}(\xi.\eta) \qquad \forall \xi, \eta \in \mathbb{S}^{1}$$

Si tomamos $\xi=(cos\theta,sen\theta)^T,\eta=(cos\psi,sen\psi)^T.$ Entonces $\xi\cdot\eta=cos(\theta-\psi)$ v

$$Y_{n,1}(\xi) = \frac{1}{\sqrt{\pi}}\cos(n\theta) \tag{1.3.1}$$

$$Y_{n,2}(\xi) = \frac{1}{\sqrt{\pi}} \sin(n\theta) \tag{1.3.2}$$

es una base ortonormal de \mathbb{Y}_n^2 .

Ejemplo 1.25. Si d = 3

$$\sum_{j=1}^{2n+1} Y_{n,j}(\xi) \overline{Y_{n,j}(\eta)} = \frac{2n+1}{4\pi} P_{n,3}(\xi.\eta) \qquad \forall \xi, \eta \in \mathbb{S}^2$$

Veamos ahora algunas aplicaciones del teorema de adición. En primer lugar, aplicaremos el teorema para encontrar una expresión reducida del kernel de \mathbb{Y}_n^d .

Cada $Y_n \in \mathbb{Y}_n^d$ puede escribirse de la forma

$$Y_n(\xi) = \sum_{j=1}^{N_{n,d}} (Y_n, Y_{n,j})_{\mathbb{S}^{d-1}} Y_{n,j}(\xi)$$

Aplicando el teorema,

$$Y_{(\xi)} = \int_{\mathbb{S}^{d-1}} Y_n(\eta) \sum_{j=1}^{N_{n,d}} Y_{n,j}(\xi) \overline{Y_{n,j}(\eta)} d\mathbb{S}^{d-1}(\eta) = \frac{N_{n,d}}{|\mathbb{S}^{d-1}|} \int_{\mathbb{S}^{d-1}} P_{n,d}(\xi.\eta) Y_n(\eta) d\mathbb{S}^{d-1}(\eta)$$

Por tanto,

$$K_{n,d}(\xi.\eta) = \frac{N_{n,d}}{|\mathbb{S}^{d-1}|} P_{n,d}(\xi.\eta)$$

es el kernel reproductivo de \mathbb{Y}_n^d , es decir,

$$Y_n(\xi) = (Y_n, K_{n,d}(\xi, \cdot))_{\mathbb{S}^{d-1}} \qquad \forall Y_n \in \mathbb{Y}_n^d, \xi \in \mathbb{S}^{d-1}$$

Definimos $\mathbb{Y}_{0:m}^d=\mathop{\oplus}\limits_{n=0}^m\mathbb{Y}_n^d$ como el espacio de todos los esféricos armónicos de orden menor o igual a m. Entonces

$$K_{0:m,d}(\xi,\eta) = \frac{1}{|\mathbb{S}^{d-1}|} \sum_{n=0}^{m} N_{n,d} P_{n,d}(\xi,\eta)$$

es el kernel reproductivo de $\mathbb{Y}_{0:m}^d$.

A continuación, obtendremos límites para los esféricos armónicos y los polinomios de Legendre.

Proposición 1.26. Se verifican las siguientes desigualdades:

$$||Y_n||_{\infty} \le \left(\frac{N_{n,d}}{|\mathbb{S}^{d-1}|}\right)^{\frac{1}{2}} ||Y_n||_{L^2(\mathbb{S}^{d-1})}$$
 (1.3.3)

$$|P_{n,d}(t)| \le 1 = P_{n,d}(1) \tag{1.3.4}$$

Demostración. Tomando $\xi \in \mathbb{S}^{d-1}$ por el teorema de adición

$$\sum_{i=1}^{N_{n,d}} |Y_{n,j}(\xi)|^2 = \frac{N_{n,d}}{|\mathbb{S}^{d-1}|} P_{n,d}(||\xi||^2) = \frac{N_{n,d}}{|\mathbb{S}^{d-1}|}$$
(1.3.5)

Por tanto, $\max\{|Y_{n,j}(\xi)|\} \le \left(\frac{N_{n,d}}{|\mathbb{S}^{d-1}|}\right)^{1/2}$.

Por otro lado,

$$\int_{\mathbb{S}^{d-1}} |Y_n(\xi)|^2 dS^{d-1}(\xi) = \int_{\mathbb{S}^{d-1}} \sum_{j=1}^{N_{n,d}} \sum_{k=1}^{N_{n,d}} (Y_n, Y_{n,j})_{\mathbb{S}^{d-1}} (Y_n, Y_{n,j})_{\mathbb{S}^{d-1}} Y_{n,j} Y_{n,k} dS^{d-1}$$

$$= \sum_{j=1}^{N_{n,d}} |(Y_n, Y_{n,j})_{\mathbb{S}^{d-1}} Y_{n,j}|^2$$

Finalmente uniendo lo anterior se tiene que

$$|Y_n(\xi)|^2 \leq \left(\sum_{j=1}^{N_{n,d}} (Y_n,Y_{n,j})\right)^2 \left(\sum_{j=1}^{N_{n,d}} Y_{n,j}\right)^2 = \frac{N_{n,d}}{|\mathbb{S}^{d-1}|} \int_{\mathbb{S}^{d-1}} |Y_n|^2 dS^{d-1} = \frac{N_{n,d}}{|\mathbb{S}^{d-1}|} ||Y_n||^2_{L^2(\mathbb{S}^{d-1})}$$

y en consecuencia

$$||Y_n||_{\infty} \le \left(\frac{N_{n,d}}{|\mathbb{S}^{d-1}|}\right)^{1/2} ||Y_n||_{L^2(\mathbb{S}^{d-1})}$$

Ahora, usando 1.3.5 y el teorema de adición tenemos que

$$\frac{N_{n,d}}{|\mathbb{S}^{d-1}|}|P_{n,d}(\xi\cdot\eta)| = \sum_{j=1}^{N_{n,d}}|Y_{n,j}(\xi)\overline{Y_{n,j}(\eta)}| \leq \left(\sum_{j=1}^{N_{n,d}}Y_{n,j}^2(\xi)\right)^{1/2} \left(\sum_{j=1}^{N_{n,d}}Y_{n,j}^2(\eta)\right)^{1/2} = \frac{N_{n,d}}{|\mathbb{S}^{d-1}|}$$

es decir,

$$|P_{n,d}(\xi \cdot \eta)| \le 1 = P_{n,d}(1)$$

Proposición 1.27. Se verifica la siguiente igualdad

$$\int_{\mathbb{S}^{d-1}} |P_{n,d}(\xi.\eta)|^2 dS^{d-1}(\eta) = \frac{|\mathbb{S}^{d-1}|}{N_{n,d}}$$

Demostración.

$$\int_{\mathbb{S}^{d-1}} |P_{n,d}(\xi.\eta)|^2 dS^{d-1}(\eta) =$$

$$\left(\frac{|\mathbb{S}^{d-1}|}{N_{n,d}}\right)^2 \int_{\mathbb{S}^{d-1}} |\sum_{j=1}^{N_{n,d}} Y_{n,j}(\xi) \overline{Y_{n,j}(\eta)}|^2 dS^{d-1}(\eta) =$$

$$\left(\frac{|\mathbb{S}^{d-1}|}{N_{n,d}}\right)^2 \sum_{j=1}^{N_{n,d}} |Y_{n,j}(\xi)|^2 = \frac{|\mathbb{S}^{d-1}|}{N_{n,d}}$$

Teorema 1.28. Para cualquier $n \in \mathbb{N}_0$ y $d \in \mathbb{N}$ el espacio \mathbb{Y}_n^d es irreducible

Demostración. Razonamos por deducción al absurdo. Supongamos que \mathbb{Y}_n^d es reducible entonces $\exists V_1, V_2$ no vacíos, verificando que $\mathbb{Y}_n^d = V_1 + V_2$ y $V_1 \perp V_2$. Tomamos una base ortonormal de \mathbb{Y}_n^d tal que las primeras N_1 funciones recubren V_1 y las restantes $N_2 = N_{n,d} - N_1$ recubren V_2 . Podemos aplicar el teorema de adición a V_1 y V_2 con las funciones de Legendre $P_{n,d,1}$ y $P_{n,d,2}$.

Como $V_1 \perp V_2$

$$\int_{\mathbb{S}^{d-1}} P_{n,d,1}(\xi \eta) P_{n,d,2}(\xi \eta) d\mathbb{S}^{d-1}(\eta) = 0 \qquad \forall \xi \in \mathbb{S}^{d-1}$$
 (1.3.6)

Fijamos $\xi \in \mathbb{S}^{d-1}$ y sea ϕ una función tal que $\phi(\eta) = P_{n,d,1}(\xi,\eta)$. Tomamos $A \in \mathbb{O}^d(\xi)$ y se cumple que $A^T \xi = \xi$. Entonces

$$P_{n,d,1}(\xi.A.\eta) = P_{n,d,1}(A^T\xi.\eta) = P_{n,d,1}(\xi.\eta)$$

es decir, ϕ es invariante respecto a $\mathbb{O}^d(\xi)$. Por el teorema 1.22

$$P_{n,d,1}(\xi.\eta) = P_{n,d,1}(\xi.\xi).P_{n,d}(\xi.\eta) = P_{n,d}(\xi.\eta)$$

Razonando de forma análoga para $P_{n,d,2}$ se tiene que

$$P_{n,d,2}(\xi.\eta) = P_{n,d}(\xi.\eta)$$

Sin embargo, tenemos que

$$0 = \int_{\mathbb{S}^{d-1}} P_{n,d,1}(\xi \eta) P_{n,d,2}(\xi \eta) d\mathbb{S}^{d-1}(\eta) = \int_{\mathbb{S}^{d-1}} |P_{n,d}(\xi \eta)|^2 d\mathbb{S}^{d-1}(\eta) = \frac{|\mathbb{S}^{d-1}|}{N_{n,d}}$$

Hemos llegado a una contradicción, por tanto, \mathbb{Y}_n^d es irreducible

1.4. Un Operador de Proyección

Buscamos la mejor aproximación de una función $f \in L^2(\mathbb{S}^{d-1})$ en \mathbb{Y}_n^d , es decir, $\inf\{||f-Y_n||_{L^2(\mathbb{S}^{d-1})}: Y_n \in \mathbb{Y}_n^d\}$. Si $\{Y_{n,j}: 1 \leq j \leq N_{n,d}\}$ es una base ortonormal de \mathbb{Y}_n^d entonces la solución es la proyección de f en \mathbb{Y}_n^d que está definido para $f \in L^1(\mathbb{S}^{d-1})$

$$(P_{n,d}f)(\xi) = \sum_{j=1}^{N_{n,d}} (f, Y_{n,f})_{\mathbb{S}^{d-1}} Y_{n,j}(\xi)$$

Definición 1.29. Se define la proyección de $f \in L^1(\mathbb{S}^{d-1})$ en \mathbb{Y}_n^d como

$$(P_{n,d}f)(\xi) = \frac{N_{n,d}}{|\mathbb{S}^{d-1}|} \int_{\mathbb{S}^{d-1}} P_{n,d}(\xi.\eta) f(\eta) d\mathbb{S}^{d-1}(\eta), \qquad \xi \in \mathbb{S}^{d-1}$$

Nota 1.30. El operador $P_{n,d}$ es lineal

Proposición 1.31. Sea $f \in L^1(\mathbb{S}^{d-1})$ entonces $||P_{n,d}f||_{L^1(\mathbb{S}^{d-1})} \leq N_{n,d}||f||_{L^1(\mathbb{S}^{d-1})}$ Demostración. Como $|P_{\ell}n,d)(t)| \leq 1$ entonces dado $\xi \in \mathbb{S}^{d-1}$

$$|P_{n,d}f(\xi)| \leq \frac{N_{n,d}}{|\mathbb{S}^{d-1}|} \int_{\mathbb{S}^{d-1}} |f(\eta)| dS^{d-1}(\eta) = \frac{N_{n,d}}{|\mathbb{S}^{d-1}|} ||f||_{L^1(\mathbb{S}^{d-1})}$$

Por tanto,

$$||P_{n,d}f||_{L^1(\mathbb{S}^{d-1})} \le N_{n,d}||f||_{L^1(\mathbb{S}^{d-1})}$$

Proposición 1.32. Sea $f \in L^2(\mathbb{S}^{d-1})$ entonces $||P_{n,d}f||_{L^2(\mathbb{S}^{d-1})} \leq (N_{n,d})^{1/2}||f||_{L^2(\mathbb{S}^{d-1})}$ Demostración. Sea $\xi \in \mathbb{S}^{d-1}$

$$|(P_{n,d}f)(\xi)|^2 \le \left(\frac{N_{n,d}}{|\mathbb{S}^{d-1}|}\right)^2 \int_{\mathbb{S}^{d-1}} |P_{n,d}(\xi.\eta)|^2 dS^{d-1}(\eta) \int_{\mathbb{S}^{d-1}} |f(\eta)|^2 dS^{d-1}(\eta)$$

Usando la proposición 1.27 tenemos que

$$|(P_{n,d}f)(\xi)|^2 \le \left(\frac{N_{n,d}}{|\mathbb{S}^{d-1}|}\right)^2 \frac{|\mathbb{S}^{d-1}|}{N_{n,d}} \int_{\mathbb{S}^{d-1}} |f(\eta)|^2 dS^{d-1}(\eta) = \frac{N_{n,d}}{|\mathbb{S}^{d-1}|} ||f||_{L^2(\mathbb{S}^{d-1})}^2$$

Por tanto,

$$\begin{aligned} ||P_{n,d}f||_{C(\mathbb{S}^{d-1})}^2 &\leq \frac{N_{n,d}}{|\mathbb{S}^{d-1}|} ||f||_{L^2(\mathbb{S}^{d-1})}^2 \\ ||P_{n,d}f||_{L^2(\mathbb{S}^{d-1})} &\leq N_{n,d}^{1/2} ||f||_{L^2(\mathbb{S}^{d-1})} \end{aligned}$$

Proposición 1.33. El operador proyección $P_{n,d}$ conmuta con las transformaciones ortogonales, es decir, $P_{n,d}f_A = (P_{n,d}f)_A \quad \forall A \in \mathbb{O}^d$

Demostración.

$$(P_{n,d}f_A)(\xi) = \frac{N_{n,d}}{|\mathbb{S}^{d-1}|} \int_{\mathbb{S}^{d-1}} P_{n,d}(\xi.\eta) f(A\eta) d\mathbb{S}^{d-1}(\eta)$$

$$= \frac{N_{n,d}}{|\mathbb{S}^{d-1}|} \int_{\mathbb{S}^{d-1}} P_{n,d}(A\xi.\zeta) f(\zeta) d\mathbb{S}^{d-1}(\zeta) = (P_{n,d}f)_A(\xi)$$

Corolario 1.34. Si \mathbb{V} es un espacio invariante, entonces $P_{n,d}\mathbb{V} = \{P_{n,d}f : f \in \mathbb{V}\}$ es un subespacio invariante de \mathbb{Y}_n^d .

Teorema 1.35. Si \mathbb{V} es un espacio invariante de $C(\mathbb{S}^{d-1})$ entonces o $\mathbb{V} \perp \mathbb{Y}_n^d$ o $P_{n,d}$ es una biyección de \mathbb{V} sobre \mathbb{Y}_n^d . En el último caso, $\mathbb{V} = \mathbb{Y}_n^d$

Demostración. Veamos que si $P_{n,d}: \mathbb{V} \to \mathbb{Y}_n^d$ es una biyección entonces $\mathbb{V} = \mathbb{Y}_n^d$. Ambos espacios son de dimensión finita y tienen la misma dimensión, $N_{n,d} = dim(\mathbb{Y}_n^d)$. Sea $\{V_j: 1 \leq j \leq N_{n,d}\}$ una base ortonormal de \mathbb{V} . Por ser \mathbb{V} primitivo, para cada $A \in \mathbb{O}^d$

$$V_j(A\xi) = \sum_{k=1}^{N_{n,d}} c_{jk} V_k(\xi), \quad c_{jk} \in \mathbb{C}$$

siendo la matriz (c_{jk}) unitaria. Definimos la función $V(\xi, \eta) = \sum_{k=1}^{N_{n,d}} V_j(\xi) \overline{V_j(\eta)}$ y $V(A\xi, A\eta) = V(\xi, \eta)$, $\forall A \in \mathbb{O}^d$. Dados $\xi, \eta \in \mathbb{S}^{d-1}$ podemos encontrar

 $A\in\mathbb{O}^d$ tal que, $A\xi=e_d,A\eta=te_d+(1-t^2)^{\frac{1}{2}}e_{d-1}$ para $t=\xi.\eta.$ Entonces $V(\xi,\eta)=V(e_d,te_d+(1-t^2)^{\frac{1}{2}}e_{d-1})$ es una función de $t=\xi\eta.$ Llamaremos a esta función $P_d(t).$ Fijado ξ , la aplicación $\eta\to\overline{P_d(\xi.\eta)}$ es una función en $\mathbb{V},$ del mismo modo, fijado ζ la aplicación $\eta\to P_{n,d}(\zeta.\eta)$ es una función en $\mathbb{V}_n^d.$ Consideramos la función $\phi(\xi,\zeta)=\int_{\mathbb{S}^{d-1}}\overline{P_d(\xi.\eta)}P_{n,d}(\zeta.\eta)dS^{d-1}(\eta)$ con $\phi(A\xi,A\zeta)=\phi(\xi,\zeta), \forall A\in\mathbb{O}^d.$ Es decir, $\phi(\xi,\zeta)$ depende sólo de $\xi.\zeta.$ ϕ pertenece a \mathbb{V} y a $\mathbb{Y}_n^d,$ luego o $\mathbb{V}=\mathbb{Y}_n^d$ o $\phi\equiv 0.$ En el último caso tenemos que

$$\sum_{j,k=1}^{N_{n,d}} \overline{V_j(\xi)} Y_{n,k}(\zeta) (V_j, Y_{n,k})_{L^2(\mathbb{S}^{d-1})} = 0 \qquad \forall \xi, \zeta \in \mathbb{S}^{d-1}$$

donde $\{Y_{n,k}: 1 \leq k \leq N_{n,d}\}$ es una base ortonormal de \mathbb{Y}_n^d . Como cada elemento de los conjuntos $\{V_j: 1 \leq j \leq N_{n,d}\}$ y $\{Y_{n,j}: 1 \leq j \leq N_{n,d}\}$ son linealmente independientes, deducimos de la igualdad anterior que

$$(V_j, Y_{n,k})_{L^2(\mathbb{S}^{d-1})} = 0, \qquad 1 \le j, k \le N_{n,d}$$

. Por lo que $(V) \perp \mathbb{Y}_n^d$.

Corolario 1.36. Para $m \neq n$, $\mathbb{Y}_m^d \perp \mathbb{Y}_n^d$

Demostración. Sean $Y_m \in \mathbb{Y}_m^d$ e $Y_n \in \mathbb{Y}_n^d$ restricciones sobre la esfera de $H_m \in \mathbb{Y}_m(\mathbb{R}^d)$ y $H_m \in \mathbb{Y}_n(\mathbb{R}^d)$ respectivamente. Como $\triangle H_m(x) = \triangle H_n(x) = 0$ tenemos que

$$\int_{||x||<1} (H_m \triangle H_n - H_n \triangle H_m) dx = 0$$

Aplicando la fórmula de Green

$$\int_{\mathbb{S}^{d-1}} (H_m \frac{\partial H_n}{\partial r} - H_n \frac{\partial H_m}{\partial r}) d\mathbb{S}^{d-1} = 0$$

Además, por ser H_m un polinomio homogéneo de grado m

$$\frac{\partial H_m(x)}{\partial r}\Big|_{x=\xi} = mY_m(\xi), \quad \xi \in \mathbb{S}^{d-1}$$

Análogamente,

$$\left.\frac{\partial H_n(x)}{\partial r}\right|_{x=\xi}=mY_n(\xi),\quad \xi\in\mathbb{S}^{d-1}$$

Por tanto,

$$\int_{S^{d-1}} (n-m)Y_m(\xi)Y_n(\xi)dS^{d-1}(\xi) = 0$$

Finalmente, como $m \neq n$,

$$\int_{\mathbb{S}^{d-1}} Y_m(\xi) Y_n(\xi) dS^{d-1}(\xi) = 0$$

1.5. Generando Bases Ortonormales para Espacios de Esféricos Armónicos.

A continuación, generaremos una base ortonormal de \mathbb{Y}_n^d a partir de bases ortonormales de dimensión d-1. Para ello, haremos uso de las funciones de Legendre asociadas (Apéndice E).

Proposición 1.37. Si $Y_{j,d-1} \in \mathbb{Y}_j^{d-1}$ entonces $P_{n,d,j}(t)Y_{j,d-1}(\xi_{(d-1)}) \in \mathbb{Y}_n^d$ en coordenadas polares.

Demostración. Tomamos $d \ge 3$ y

$$f(x) = \frac{i^{-j}}{|\mathbb{S}^{d-2}|} \int_{\mathbb{S}^{d-2}} (x_d + ix_{(d-1)} \cdot \eta)^n Y_{j,d-1}(\eta) dS^{d-2}(\eta)$$

es un polinomio homogéneo de grado n. Usando coordenadas polares $x=|x|\xi,\xi=te_d+\sqrt{1-t^2}\xi_{(d-1)},\quad |t|\leq 1, \xi_{(d-1)}\in \mathbb{S}^{d-1}.$ La restricción de f(x) a la esfera es

$$f(\xi) = \frac{i^{-j}}{|\mathbb{S}^{d-2}|} \int_{\mathbb{S}^{d-2}} (t + i\sqrt{1 - t^2} \xi_{(d-1)} \cdot \eta)^n Y_{j,d-1}(\eta) dS^{d-2}(\eta)$$

Ahora, aplicamos la fórmula de Funk-Hecke

$$\int_{\mathbb{S}^{d-2}} (t + i\sqrt{1 - t^2} \xi_{(d-1)} \cdot \eta)^n Y_{j,d-1}(\eta) dS^{d-2}(\eta) = \lambda Y_{j,d-1}(\xi)$$

siendo
$$\lambda = |\mathbb{S}^{d-3}| \int_{-1}^{1} P_{j,d-1}(s) (t + i\sqrt{1 - t^2}s)^j (1 - t^2)^{\frac{d-4}{2}} dt.$$

Por tanto, $f(\xi)=P_{n,d,j}(t)Y_{j,d-1}(\xi_{(d-1)})$ es un esférico armónico de orden n y dimensión d. \Box

Este resultado nos permite construir una base de \mathbb{Y}_n^d a partir de bases de $Y_0^{d-1},...,Y_n^{d-1}$

Definición 1.38. Para $d \ge 3$ y $m \le n$ definimos el operador

$$\tilde{P}_{n,m}: \mathbb{Y}_m^{d-1} \to \mathbb{Y}_n^d$$

como

$$(\tilde{P}_{n,m}Y_{m,d-1})(\xi) = \tilde{P}_{n,d,m}(t)Y_{m,d-1}(\xi_{(d-1)}), \quad Y_{m,d-1} \in \mathbb{Y}_m^{d-1}$$

Llamaremos a $\mathbb{Y}_{n,m}^d = \tilde{P}_{n,m}(\mathbb{Y}_m^{d-1})$ el espacio de orden m asociado a \mathbb{Y}_n^d .

El siguiente resultado nos permite descomponer \mathbb{Y}_n^d como suma ortogonal de espacios asociados.

Teorema 1.39. Para $d \ge 3$ y $n \ge 0$ se tiene que

$$\mathbb{Y}_n^d = \mathbb{Y}_{n,0}^d \oplus \ldots \oplus \mathbb{Y}_{n,n}^d$$

Demostración. En primer lugar, veamos que los subespacios $\mathbb{Y}_{n,i}^d$ son ortogonales 2 a 2. Sea $0 \leq k, m \leq n$ con $k \neq m$. Para cualesquiera $\mathbb{Y}_{k,d-1} \in \mathbb{Y}_k^{d-1}, \mathbb{Y}_{m,d-1} \in \mathbb{Y}_m^{d-1},$

$$(\tilde{P}_{n,k}Y_{k,d-1}, \tilde{P}_{n,m}Y_{m,d-1})_{L^2(\mathbb{S}^{d-1})}$$
(1.5.1)

$$= (Y_{k,d-1}, Y_{m,d-1})_{L^2(\mathbb{S}^-)} \int_{-1}^{1} \tilde{P}_{n,d,k}(t) \tilde{P}_{n,d,m}(t) (1 - t^2)^{\frac{d-3}{2}} dt = 0$$
 (1.5.2)

Por tanto, $\mathbb{Y}_{n,k}^d \perp \mathbb{Y}_{n,m}^d$ para $k \neq m$.

Para cada $0 \le m \le n$, $\mathbb{Y}_{m,n}^d$ es un subespacio de \mathbb{Y}_n^d y

$$\mathbb{Y}_n^d \supset \mathbb{Y}_{n,0}^d \oplus \ldots \oplus \mathbb{Y}_{n,n}^d$$

Como $\tilde{P}_{n,m}: \mathbb{Y}_{,}^{-1} \to \mathbb{Y}$ es una biyección entonces $\dim \mathbb{Y}_{,} = \dim \mathbb{Y}^{-1} = N_{m,d-1}$ Por otro lado, $\sum_{m=0}^{n} \dim \mathbb{Y}_{,} = \sum_{m=0}^{n} N_{m,d-1} = N_{n,d} = \dim \mathbb{Y}_{n}^{d}$. Es decir, ambos lados de la igualdad son espacios de dimensión finita con la misma dimensión.

Nota 1.40. Si $\{Y_{m,d-1,j}: 1 \leq j \leq N_{m,d-1}\}$ es una base ortonormal de $\mathbb{Y}_m^{d-1}, 0 \leq m \leq n$ entonces $\{\tilde{P}_{n,d,m}Y_{m,d-1,j}(\xi_{(d-1)}): 1 \leq j \leq N_{m,d-1}, 0 \leq m \leq n\}$ es una base ortonormal de \mathbb{Y}_n^d

A partir de la base ortonormal de \mathbb{Y}_n^2 obtenida en 1.3.1 y del resultado anterior, construiremos una base ortonormal de \mathbb{Y}_n^3 .

Usaremos que $\xi_{(3)} = te_3 + \sqrt{1-t^2} \begin{pmatrix} \xi_{(2)} \\ 0 \end{pmatrix}$ con $t = cos\theta$, $0 \le \theta \pi$, $\xi_{(2)} = (cos(\phi), sen(\phi))^T$, $0 \le \phi \le 2\pi$ Por lo visto anteriormente,

$$\left\{Y_{m,2,1}(\xi_{(2)}) = \frac{1}{\sqrt{\pi}}cos(m\phi), Y_{m,2,2}(\xi_{(2)}) = \frac{1}{\sqrt{\pi}}sen(m\phi)\right\}$$

es una base ortonormal de \mathbb{Y}_m^2 .

Por otro lado tenemos que (E.7)

$$\tilde{P}_{n,3,m}(t) = \left[\frac{(n+\frac{1}{2})(n-m)!}{(n+m)!} \right]^{\frac{1}{2}} (1-t^2)^{\frac{m}{2}} P_{n,3}^{(m)}(t)$$

Entonces una base ortonormal viene dada por las funciones

$$\left[\frac{(2n+1)(n-m)!}{2\pi(n+m)!}\right]^{\frac{1}{2}} (sen\theta)^m P_{n,3}^{(m)}(cos\theta)cos(m\phi) \quad 0 \le m \le n \quad (1.5.3)$$

$$\left[\frac{(2n+1)(n-m)!}{2\pi(n+m)!} \right]^{\frac{1}{2}} (sen\theta)^m P_{n,3}^{(m)}(cos\theta)sen(m\phi), \quad 1 \le m \le n \quad (1.5.4)$$

Esta base también puede ser escrita de otra forma más cómoda para realizar cálculos

$$(-1)^{(m+|m|)/2} \left[\frac{(2n+1)(n-|m|!)}{4\pi(n+|m|)!} \right]^{\frac{1}{2}} (sen\theta)^m P_{n,3}^{(m)}(cos\theta) e^{im\phi}, \qquad -n \le m \le n$$
(1.5.5)

Apéndice A

La Función Gamma

Definición A.1. Dado $x \in (\mathbb{R})^+$ definimos la función gamma como

$$\Gamma(x) := \int_0^\infty t^{x-1} e^{-t} dt$$

Proposición A.2. Se verifican las siguientes formulas:

$$\int_{0}^{\infty} t^{x-1} e^{-at^{b}} dt = b^{-1} a^{-x/b} \Gamma(x/b), x, a, b \in \mathbb{R}^{+}$$

$$\int_0^1 |lnt|^{x-1} dt = \Gamma(x), x \in \mathbb{R}^+$$

$$\Gamma(x+1) = x\Gamma(x), x \in \mathbb{R}^+$$

$$\Gamma^{(k)}(x) = \int_0^\infty (lnt)^k t^{x-1} e^{-t} dt, k \in \mathbb{N}_0, x \in \mathbb{R}^+$$

Nota A.3. $\Gamma(1)=1$ y de la tercera fórmula se deduce que $\Gamma(n+1)=n!, n\in\mathbb{N}_0$. Es decir, la función Γ extiende el operador factorial de los números naturales a los reales positivos.

Lema A.4.

$$\Gamma(\frac{1}{2}) = \sqrt{\pi}$$

$$\Gamma(n + \frac{1}{2}) = \frac{(2n)!}{2^{2n}n!}\sqrt{\pi}$$

Definición A.5. Sea $x \in \mathbb{R}$ y $n \in \mathbb{N}$,
el símbolo de Pochhammer se define como

$$(x)_0 = 1, (x)_n = x(x+1)(x+2)...(x+n-1)$$

Proposición A.6. Sea $x \in \mathbb{R}^+$ entonces

$$(x)_n = \frac{\Gamma(x+n)}{\Gamma(x)}$$

Apéndice B

Resultados básicos de la esfera.

Usaremos dV^d para elemento diferencial de volumen y dS^{d-1} para elemento diferencial de superficie de la esfera. \mathbb{S}^{-1}

Proposición B.1. Para $d \ge 3$ y $\xi \in \mathbb{S}^{d-1}$, con $\xi_{(d)} = te_d + \sqrt{1 - t^2} \xi_{(d-1)}$, $t \in [-1, 1]$, se tiene que

$$dS^{d-1}(te_d + \sqrt{1 - t^2}\xi_{(d-1)}) = (1 - t^2)^{\frac{d-3}{2}}dtdS^{d-2}(\xi_{(d-1)})$$

Equivalentemente,

$$dS^{d-1} = (1 - t^2)^{\frac{d-3}{2}} dt dS^{d-2}$$

Ejemplo B.2. Sea d=3 y ξ un punto genérico de la esfera. Usando coordenadas esféricas

$$\xi_{(3)} = \begin{pmatrix} \cos\phi \sin\theta \\ \sin\phi \sin\theta \\ \cos\theta \end{pmatrix} 0 \le \phi \le 2\pi, 0 \le \theta \le \pi$$

Sea $t = cos\theta$ entonces

$$\xi_{(2)} = \begin{pmatrix} \cos\phi \\ \sin\phi \\ 0 \end{pmatrix}$$

Por tanto, $\xi_{(3)} = te_3 + \sqrt{1 - t^2} \xi_{(2)}$ y $dS^1 = d\phi, dS^2 = dt d\phi$

Podemos usar la anterior proposición para el cálculo del área de la superficie de la esfera.

Proposición B.3. Se verifica que

$$|\mathbb{S}^{d-1}| = \int_{\mathbb{S}^{d-1}} dS^{d-1} = \frac{2\pi^{\frac{d}{2}}}{\Gamma(\frac{d}{2})}$$

Proposición B.4. Sea $A \in \mathbb{R}^{dxd}$ ortogonal entonces

$$dS^{d-1}(A\xi) = dS^{d-1}(\xi)$$

$$dV^d(A\xi) = dV^d(\xi)$$

Llamamos $C(S^{d-1})$ al espacio de funciones continuas sobre S^{d-1} . Este espacio es un espacio de Banach con la norma $||f||_{\infty} = \sup\{|f(\xi): \xi \in \mathbb{S}^{d-1}\}$. Llamaremos $L^2(S^{d-1})$ al espacio de funciones con cuadrado integrable en S^{d-1} . Dicho espacio es un Hilbert con el producto escalar

$$(f,g) = \int_{S^{d-1}} f\overline{g}dS^{d-1}$$

Consideramos el espacio $C(S^{d-1})$ con la norma inducida por el producto escalar de $L^2(S^{d-1})$. Este espacio no es completo. Además, el cierre de $C(S^{d-1})$ respecto a dicha norma es $L^2(S^{d-1})$. Es decir, dado una función $f \in L^2(S^{d-1})$ existe una sucesión $\{f_n\} \subset C(S^{d-1})$ tal que $f_n \to f$

Proposición B.5. Sean $\Omega_{\delta} = \{x \in \mathbb{R}^d : |x| \in [1 - \delta, 1 + \delta]\}$ $y \ f^*(x) = f(\frac{x}{|x|}), x \in \Omega_{\delta} \ y \ k \in \mathbb{N}.$ Entonces f es k veces diferenciable en S^{d-1} cuando f^* lo es.

Definición B.6. Definimos $C^k(S^{d-1}), k \in \mathbb{N} \cup 0$ como el espacio de funciones k veces diferenciables en S^{d-1}

Proposición B.7. $C^k(S^{d-1})$ es un espacio de Banach con la norma

$$||f||_{C^k(S^{d-1})} = ||f^*||_{C^k(\Sigma_\delta)}$$

Nota B.8. Usaremos $||f||_{\infty} = ||f||_{C(S^{d-1})}$

Apéndice C

Polinomios de Legendre

C.1. Fórmulas de Representación

C.1.1. Fórmula de Rodrigues

Teorema C.1.

$$P_{n,d}(t) = (-1)^n \frac{\Gamma(\frac{d-1}{2})}{2^n \Gamma(n + \frac{d-1}{2})} (1 - t^2)^{\frac{3-d}{2}} (\frac{d}{dt})^n (1 - t^2)^{n + \frac{d-3}{2}}, \quad d \ge 2$$

Nota C.2. A la constante $R_{n,d} = \frac{\Gamma(\frac{d-1}{2})}{2^n\Gamma(n+\frac{d-1}{2})}$ se le llama constante de Rodrigues

Ejemplo C.3. \bullet Si d = 2,

$$P_{n,2}(t) = (-1)^n \frac{2^n n!}{(2n)!} (1 - t^2)^{\frac{1}{2}} (\frac{d}{dt})^n (1 - t^2)^{n - \frac{1}{2}}, \quad n \in \mathbb{N}_0$$

Una forma reducida se obtiene usando el polinomio de Chebyshev obteniendo que $P_{n,2}(t) = cos(n \quad arccost), t \in [-1,1]$

■ Si d=3,

$$P_{n,3}(t) = \frac{1}{2^n n!} (\frac{d}{dt})^n (t^2 - 1)^n, \quad n \in \mathbb{N}_0$$

C.1.2. Fórmulas de Representación Integral.

Teorema C.4. Sea $n \in \mathbb{N}_0$ $y d \geq 3$,

$$P_{n,d}(t) = \frac{|\mathbb{S}^{d-3}|}{|\mathbb{S}^{d-2}|} \int_{-1}^{1} [t + i(1 - t^2)^{\frac{1}{2}} s]^n (1 - s^2)^{\frac{d-4}{2}} ds, \quad t \in [-1, 1]$$

Nota C.5. Como consecuencia de la fórmula anterior se tiene que $P_{n,d}(-t) = (-1)^n P_{n,d}(t), t \in [-1,1]$, es decir $P_{n,d}(t)$ tiene la misma paridad que n.

Podemos obtener otra fórmula de representación integral, usando funciones trigonométricas mediante el cambio de variable $s = tanh(u), u \in \mathbb{R}$

Teorema C.6. Sea $n \in \mathbb{N}_0$ $y \ d \geq 3$,

$$P_{n,d}(t) = \frac{|\mathbb{S}^{d-3}|}{|\mathbb{S}^{d-2}|} \int_{-1}^{1} \frac{(1-s^2)^{\frac{d-4}{2}}}{[t \pm i(1-t^2)^{\frac{1}{2}}s]^{n+d-2}} ds, \quad t \in (0,1]$$

C.2. Propiedades

Proposición C.7. Si $f \in C^n([-1,1])$ entonces

$$\int_{-1}^{1} f(t) P_{n,d}(t) (1-t^2)^{\frac{d-3}{2}} dt = R_{n,d} \int_{-1}^{1} f^{(n)}(t) (1-t^2)^{n+\frac{d-3}{2}} dt$$

siendo $R_{n,d}$ la constante de Rodrigues (Nota C.2)

Proposición C.8. $P_{n,d}(t)$ tiene n raíces distintas en (-1,1)

Proposición C.9. Los polinomios de Legendre satisfacen la siguiente relación de recurrencia

$$P_{n,d}(t) = \frac{2n+d-4}{n+d-3}tP_{n-1,d}(t) - \frac{n-1}{n+d-3}P_{n-2,d}(t), \qquad n \ge 2, d \ge 2$$
$$P_{0,d}(t) = 1, P_{1,d}(t) = t$$

Proposición C.10.

$$(1-t^2)P'_{n,d}(t) = n[P_{n-1,d}(t) - tP_{n,d}(t)], \quad n \ge 1, d \ge 2, t \in [-1, 1]$$

Proposición C.11. $Para d \geq 2$

$$\sum_{n=0}^{\infty} N_{n,d} r^n P_{n,d}(t) = \frac{1 - r^2}{(1 + r^2 - 2rt)^{\frac{d}{2}}}, \quad |r| < 1, t \in [-1, 1]$$

Proposición C.12.

$$P_{n,d}(0) = \frac{|\mathbb{S}^{d-3}|}{|\mathbb{S}^{d-2}|} \int_{-1}^{1} i^n s^n (1 - s^2)^{\frac{d-4}{2}} ds$$
$$P_{n,d}(-1) = (-1)^n$$

Proposición C.13.

$$|P_{n,d}(t)| < \frac{\Gamma(\frac{d-1}{2})}{\sqrt{\pi}} \left[\frac{4}{n(1-t^2)} \right]^{\frac{d-2}{2}}, \quad n \in \mathbb{N}_0, d \ge 2, t \in (-1,1)$$

Apéndice D

Polinomios de Gegenbauer

Definición D.1. Sean $v \ge 0, n \in \mathbb{N}_0$ se define el polinomio de Gegenbauer de grado n e índice v, como:

$$C_{n,v}(t) = \binom{n+2v-1}{n} \frac{\Gamma(v+\frac{1}{2})}{\sqrt{\pi}\Gamma(v)} \int_{-1}^{1} \left[t + i(1-t^2)^{1/2} s \right]^{n} (1-s^2)^{v-1} ds$$

Proposición D.2. Se verifica la siguiente relación

$$C_{n,\frac{d-2}{2}}(t) = \binom{n+d-3}{b} P_{n,d}(t)$$

Proposición D.3. (Identidad de Gegenbauer.)

$$\sum_{n=0}^{\infty} C_{n,v}(t) = \frac{1}{(1+r^2-2rt)^v}, \qquad |r| < 1, t \in [-1,1]$$

Apéndice E

Funciones de Legendre Asociadas

Las funciones asociadas de Legendre nos permiten construir esféricos armónicos a partir de otros de menor dimensión.

Definición E.1. Sea $d \geq 3$ y $n, j \in \mathbb{N}_0$ se define la función asociada de Legendre de grado n y orden j en dimensión d, como

$$P_{n,d,j}(t) = \frac{|\mathbb{S}^{d-3}|}{|\mathbb{S}^{d-2}|} i^{-j} \int_{-1}^{1} \left[t + i(1-t^2)^{1/2} s \right]^n P_{j,d-1}(s) (1-s^2)^{\frac{d-4}{2}}, \quad t \in [-1,1]$$

Nota E.2. Si $j = 0, P_{n,d,0}(t) = P_{n,d}(t)$

Proposición E.3. Sea $d \le 3$ y $0 \le j \le n$

$$P_{n,d,j}(t) = \frac{n!\Gamma(\frac{d-1}{2})}{2^{j}(n-j)!\Gamma(j+\frac{d-1}{2})}(1-t^{2})^{1/2}P_{n-j,d+2j}(t), t \in [-1,1]$$

El siguiente resultado nos proporciona una relación entre las funciones asociadas de Legendre y las derivadas de los polinomios de Legendre.

Proposición E.4. Sea $d \le 3$ y $0 \le j \le n$

$$P_{n,d,j}(t) = \frac{(n+d-3)!}{(n+j+d-3)!} (1-t^2)^{1/2} P_{n,d}^{(j)}(t), t \in [-1,1]$$

Proposición E.5.

$$\int_{-1}^{1} P_{m,d,j}(t) P_{n,d,j}(t) (1-t^2)^{\frac{d-3}{2}} dt = 0, \qquad m \neq n$$

Proposición E.6. Las funciones $\tilde{P}_{n,d,j}$ definidas como

$$\tilde{P}_{n,d,j}(t) = \frac{[(2n+d-2)(n-j)!(n+d+j-3)!]^{1/2}}{2^{\frac{d-2}{2}n!\Gamma(\frac{d-1}{2})}} P_{n,d,j}(t), \quad t \in [-1,1]$$

están normalizadas, es decir $\int_{-1}^{1} [\tilde{P}_{n,d,j}]^2 (1-t^2)^{\frac{d-3}{2}} dt = 1$

NotaE.7. Las funciones $\tilde{P}_{n,d,j}$ pueden ser escritas en función de las derivadas de los polinomios de Legendre

$$\tilde{P}_{n,d,j}(t) = \frac{(n+d-3)!}{n!\Gamma(\frac{d-1}{2})} \frac{[(2n+d-2)(n-j)!]^{1/2}}{2^{d-2}(n+d+j-3)!} (1-t^2)^{j/2} P_{n,d}^{(j)}(t), \quad t \in [-1,1]$$

Apéndice F

Cálculo del Gradiente

F.1. title

Para el cálculo del gradiente usaremos una expresión de la base en términos de los polinomios de Gegenbauer. De D.2, se deduce que esta base es equivalente a la calculada anteriormente. Sean, $T_n(t), U_n(t)$ los polinomios de Chevyschev de 1^{er} y 2° orden respectivamente. Y definimos

$$g_{0,n}(x_1, x_2) = (x_1^2 + x_2^2) T_n^2 (x_2 (x_1^2 + x_2^2)^{-1/2})$$

$$g_{1,n-1}(x_1, x_2) = x_1 (x_1^2 + x_2^2)^{\frac{n-1}{2}} U_{n-1} (x_2 (x_1^2 + x_2^2)^{-1/2})$$

entonces, si tomamos $n = (n_1, ..., n_d)$ con $n_1 = 0, 1$ se define

$$Y_n = g_{n_1,n_2}(x_1, x_2) \prod_{j=3}^d (x_1^2 + \dots + x_j^2)^{n_j/2} C_{n_j,\lambda_j}(x_j(x_1^2 + \dots + x_j^2)^{-1/2})$$

donde
$$\lambda_j = \lambda_j(n_1, ..., n_{j-1}) = \sum_{i=1}^{j-1} n_i + \frac{j-2}{2}$$

Teorema F.1. Sea $n=(n_1,n_2,...,n_d)\in\mathbb{N}_0^d$ con $n_1=0,1$ y |n|=n. Entonces (1) $\partial_i Y_n(x)$ es un esférico armónico de grado n-1

$$<\partial_i Y_n, Y_m>_{\mathbb{S}^{d-1}}\neq 0 \quad |m|=n-1$$

para al menos 2^{d-2} $m \in \mathbb{N}_0^d$ con $m_1 = 0, 1$

Tomamos,
$$F_n^{\lambda}(x) = (x_1^2 + ... + x_j^2)^{n/2} C_{n,\lambda}(\frac{x_d}{\sqrt{(x_1^2 + ... + x_j^2)}})$$
. Si $x = (x_1, ..., x_d), n = (n_1, ..., n_d)$ y $x' = (x_1, ..., x_{d-1}), n = (n_1, ... n_{d-1})$. $Y_n(x) = Y_{n'}(x') F_{n_d}^{\lambda_d}(x)$ siendo $Y_{n'}(x')$ un esférico armónico de dimensión $d-1$ y grado $n-n_d$.

Proposición F.2. *Para* i = 1, ..., d - 1

$$\partial_i F_n^{\lambda}(x) = -2\lambda x_i F_{n-2}^{\lambda+1}(x)$$
$$\partial_d F_n^{\lambda}(x) = (n+2\lambda-1) F_{n-1}^{\lambda}(x)$$