Model

Variables

tasks	The number of tasks to schedule
machines	The number of machines available
$T = \{1 \dots tasks\}$	The tasks
$M = \{1 \dots machines\}$	The machines
$d(task_i) \in \{0 \dots 2^{63} - 1\}, task_i \in T$	The duration of task i
$s(task_i) \in \{0 \dots 2^{63} - 1\}, task_i \in T$	The start time of task i
$m(task_i) \in M, task_i \in T$	The machine task i uses
$dep(task_i, task_j) \in \{0, 1\}, task_i, task_j \in T$	The dependency between task i and task j . If 1, task i needs to be completed before task j
$End = \{0D\}, D = sum(\{d(task_i) \forall task_i \in T\})$	Marks the end of the schedule, i.e. makespan. The variable that is minimized.
$same_machine_k \subset T$	Set of tasks needing the same machine
$concurrent_tasks_k \subset T$	Set of tasks needing concurrent execution
$occupied_k \subset T$	Set of tasks occupying a machine in the order specified by dep
$overlap(task_i, task_j), task_i, task_j \in T$	$task_i$ overlaps $task_j$

Constraints

$$End = max(\{s(task_i) + d(task_i) | \forall task_i \in T\})$$

$$task_i \prec task_j, \quad task_i, task_j \in T \land dep(task_i, task_j) = 1$$

$$overlap(task_i, task_j) \implies m(task_i) \neq m(task_j),$$

$$task_i, task_j \in T$$

$$m(task_i) = m(task_j), \quad \forall task_i, task_j \in same_machine_k$$

$$s(task_i) = s(task_j) \land m(task_i) \neq m(task_j),$$

$$\forall task_i, task_j \in concurrent_tasks_k$$

$$\begin{split} m(task_k) &= m(task_i) \implies task_k \prec task_i \lor task_k \succ task_j, \\ \forall task_k \in T, \quad task_i, task_j \in occupied_k, \quad dep(task_i, task_j) = 1, \\ task_i &\neq task_k, \quad task_j \neq task_k \end{split}$$

The end is where the last task ends

 $task_i$ has to preced $task_j$ if specified in dep.

If $task_i$ and $task_j$ overlap, they cannot use the same machine.

Every task in a *same_machine* set should use the same machine.

Every task in a concurrent_tasks set should execute at the same time, but they cannot use the same machine.

If two tasks are set to occupy a machine following each other, there cannot be another task between them using the same machine.