$$Can = \frac{2\pi \mathcal{E}}{en \frac{D}{Dsc}}$$

for symm alignment

$$Can = \frac{2\pi \mathcal{E}}{\ln \frac{Dea}{Dsc}}$$

for asymm alignment with transposition

where D is the distance between bundle centers

charging current was the last cocenpt in Topic 5, Part 1. We didn't get to cover it in Week 7

. Current supplied to line capacitance is charging current

$$T_{chg} = \frac{V_{an}}{Z_c} = \frac{V_{an}}{J\omega C_{an}} = J\omega \cdot C_{an} \cdot V_{an}$$
 $V_{an} = \frac{1}{J\omega C_{an}} \cdot V_{an}$

$$\frac{Q_{chg}}{Z_{cap}} = \frac{\frac{Van}{van}}{\frac{-1}{w.can}} = -w.Can. Van$$

reactive power from Can

Transmission line voltage and current equations

Transmission line models used in previous topics looked like:

Z = R+jX = R+jwL L(H(m) xl

We ignored the line capacitance in these models.

In part 1 of topic 5, we came up with equations to calculate the <u>distributed</u> inductance (H/m) and <u>distributed</u> capacitance (F/m)

Objective of part 2: Determine how to model (lump) this all together.

Consider a small portion of the line with length Δx :

From KVL:
$$V(x + \Delta x) = V(x) + z$$
. Δx . $I(x)$ Therefore: $\frac{V(x + \Delta x) - V(x)}{\Delta x} = z$. $I(x)$

From KCL:
$$I(x + \Delta x) = I(x) + V(x + \Delta x) y \cdot \Delta x$$
 Therefore: $\lim_{\Delta x \to 0} \frac{d\nabla(x)}{dx} = y \cdot V(x + \Delta x)$
Nottage across admittance of cap of cap $dT(x) = y \cdot V(x + \Delta x)$

Soive DEQ from Combining (i) \in (ii) to get: $V(x) = K_1 \cdot \cosh(\gamma x) + K_2 \cdot \sinh(\gamma x)$ where $\gamma = \sqrt{y.z}$ propagation constant (1/m)

If we know V and I at one end, e.g. receiving end (x=0): $V_R = V(0)$ and $I_R = I(0)$, we can find K_1 and K_2 :

$$V(x) = V_R \cdot \cosh(\gamma x) + I_R Z_c \cdot \sinh(\gamma x) \qquad \text{where} \qquad Z_c = \sqrt{z/y} \text{ characteristic impedance } (\Omega)$$
 Similar derivation for I(x) gives:
$$I(x) = I_R \cdot \cosh(\gamma x) + \frac{V_R}{Z_c} \cdot \sinh(\gamma x) \qquad (2)$$

Eq (1) and (2) give us voltage and current at any point x along the line (x is the distance from the receiving end)

Note: voltage and current in above expressions are phasors.

. addition to the "Transmission Line Eq" handout:

combining (i) & (ii) gives us 2hd order DEQ: $\frac{d^2V(x)}{dx^2} = Z.y.V(x)=0$

Transmission Line Models

. we are often interested in terminal characteristics of the line:

· don't care about $\overline{V}(x) \in \overline{I}(x)$

For a between two terminals

where:

$$\begin{bmatrix} \overline{V}_S \\ \overline{I}_S \end{bmatrix} = \begin{bmatrix} A & B \end{bmatrix} \begin{bmatrix} \overline{V}_R \\ C & D \end{bmatrix} \begin{bmatrix} \overline{I}_R \end{bmatrix}$$

$$\begin{cases} \overline{V}_{S} = A.\overline{V}_{R} + B.\overline{I}_{R} \\ \overline{I}_{S} = C.\overline{V}_{R} + D.\overline{I}_{R} \end{cases}$$

need to find ABCD parameters for transmission lines! Let's use

ending receiving

$$\overline{V}_{S} = \overline{V}(x)$$
 = $\cosh(\overline{Y}l).\overline{V}_{R}$ + $Z_{c}.\sinh(\overline{Y}l).\overline{I}_{R}$

$$\overline{T}_S = \overline{T}(x)$$

$$= \frac{1}{x=l} = \frac{1}{z_C} \sinh(yl) \cdot \overline{T}_R + \frac{1}{z_C} \sinh(yl) \cdot \overline{V}_R$$

$$= \frac{1}{z_C} \sin h(yl) \cdot \overline{T}_R + \frac{1}{z_C} \sinh(yl) \cdot \overline{V}_R$$

. These are the exact ABCD parameters for two-port network representation of a line.

. For modelling lines in Simulations/ Circuit analysis, need to model the line using circuit elements. Common representation is

notice upper case Z & Y.

objective: find Z' & Y' such that this model has the same behaviour as the 2-poil network?

equating V_s & T_s equations with 2-port network)

$$Z' = Z \cdot \frac{\sinh(Y\ell)}{Y\ell}$$

$$\frac{Y'}{2} = \frac{Y}{2} \frac{\tanh(\frac{y\ell}{2})}{\frac{y\ell}{2}}$$

where
$$Z = z.l$$

1 distributed

total impedance

(n/m)

For short lines (
$$l(80 \text{ km})$$
, use $Z'=Z \approx \frac{Y'}{2}=0$
 V_s

$$\begin{cases} \overline{V_S} = Z.\overline{I_R} + \overline{V_R} & \text{from kvl} \\ \overline{I_S} = \overline{I_R} \end{cases}$$

$$\begin{bmatrix} \overline{\mathsf{v}}_{\mathsf{S}} \\ \overline{\mathsf{I}}_{\mathsf{S}} \end{bmatrix} = \begin{bmatrix} \mathsf{v}_{\mathsf{R}} \\ \mathsf{o}_{\mathsf{l}} \end{bmatrix} \begin{bmatrix} \overline{\mathsf{v}}_{\mathsf{R}} \\ \overline{\mathsf{I}}_{\mathsf{R}} \end{bmatrix}$$

ABCD parameters for short lines

For medium lines (80 < l < 250 km) use $Z'=Z \notin \frac{Y}{2} = \frac{Y}{2}$

Nominal T Circuit

by using KYL & KCL, we can arrive at ABCD parameters

$$\begin{bmatrix} \overline{V}_S \\ \overline{L}_S \end{bmatrix} = \begin{bmatrix} 1 + \frac{YZ}{2} \\ Y(1 + \frac{YZ}{4}) \end{bmatrix} \begin{bmatrix} \overline{V}_R \\ \overline{L}_R \end{bmatrix}$$

ABCD parameters for meaning lines

For long lines (1) 250 km), use Eq. IT model as defined $Z' = Z \frac{\sinh(Ye)}{T}$

previously.
$$Z' = Z \frac{\sinh(Ye)}{Ye} \xrightarrow{TR} + \frac{Y'}{2} = \frac{Y}{2} \frac{\tanh(Ye)_2}{\text{Te}_{12}}$$

Problems 1-2 are from Topic 5 - Part 1 (Transmission line parameters)

Problem 1: Find resistance per phase, inductance per phase and current carrying capacity (ampacity) per phase for 275km long Condor conductor in the following configuration. R is $0.072 \Omega/km$.

Problem 2: Figure below shows the conductor configuration of a completely transposed, three phase, 345 kV, 60 Hz transmission line with a two conductor bundle of 795 kcmil conductors. Bundle spacing is 0.4 m. Flat horizontal spacing is retained, with 10 m between adjacent bundle centers. Length of line is 200 km. (GMR of a 795 kcmil conductor is 0.0114 m, and radius of conductor is 0.0141m.)

- a) Calculate the total capacitance-to-neutral of one phase in F and the admittance-to-neutral in S.
- **b)** If the line voltage is 345 kV, determine the charging current in kA per phase and the total (three phase) reactive power in MVAr supplied by the line capacitance.

The following problems are from Topic 5 - Part 2 (Transmission line models).

Problem 3: 765 kV rated line. $V_R = 765$ kV (line to line). $S_R = 2000 + j1000$ MVA . z = 0.0201 + j0.535 Ω/km , $y = j7.75x10^{-6}$ S/km. Write the expression for V(x).

Problem 4: 500 kV rated line. R = 0.02 Ω /km, x = 0.335 Ω /km, y = j4.807x10⁻⁶ S/km, length = 300 km. Find Z_c, γI, exact ABCD parameters, equivalent π model.

1) From table A.4,
$$D_S = 0.0368$$
 ft , amplicity = 900 A = 0.912 m

R: 3 conductors per phase connected in parallel.

$$\therefore \text{ Reg} = \frac{1}{\frac{1}{0.072} + \frac{1}{0.072}} = \frac{0.072}{3} = 0.024 \text{ M/km}$$

R total = Reg x 275 km = 6.6 m

where
$$D_{eq} = \sqrt{D_{xT} \cdot D_{yz} \cdot D_{xz}}$$

 $\sqrt{15^2 + 5^2} \quad 30 \text{ m}$

$$D_{SL} = \sqrt[3]{D_{S.d^2}} = \sqrt[3]{00112 \times (0.38)^2} = 0.1174 \text{ m}$$

total inductance L total = L x 275 000 = 0.28 H

total reactance
$$X$$
 = $W.L = (2tc \times 60) \times L = 106.08 \ \Omega$ (not needed) assumed N. American

ampacity: 3 conductors per bundle: total ampacity per phase = 2700 A

$$2) \quad C_{an} = \frac{2\pi \mathcal{E}}{\ln \frac{D_{eq}}{D_{sc}}} \quad (F/m)$$

$$Can_{total} = Can_{x} \times 200 000 = \frac{2\pi \times 8.85 \times 10^{-12}}{0.075} \times 200 000$$

= 2.17 × 106 F

$$T_{an} = j \omega C_{an} = j (2\pi \kappa 60)(2.17 \kappa 10^{-6}) = j 8.10 \kappa 10^{-4}$$

$$I_{chg} = \frac{V_{an}}{Z_{cap}} = V_{an} \cdot V_{an}$$

$$= \frac{345 \, \text{kV}}{\sqrt{3}} \cdot \left(8.19 \, \text{xio}^{-4}\right) = 0.163 \, \text{kA}$$

$$Q_{chg,3\phi} = 3 \times Q_{chg,1\phi} = 3 \left(V_{an}^{2} \cdot B_{an} \right)$$

= $3 \left(\frac{345 \text{ EV}}{\sqrt{3}} \right)^{2} \cdot \left(8.19 \times 10^{-4} \right) = 97.5 \text{ myar}$

$$\frac{1}{T} Z_{c} = \frac{1}{jwc} = R + jX$$

$$Q = T^{2} \times = \frac{v^{2}}{X}$$

$$Since R = G = 0$$

$$Y_{c} = jwc = A + jB$$

$$= \frac{T^{2}}{B} = v^{2} \cdot B$$

$$X = \frac{1}{B}$$

3)
$$\overline{V}(x) = \overline{V}_R \cdot \cosh(\overline{V}x) + \overline{I}_R \cdot Z_C \cdot \sinh(\overline{V}x)$$

1 1 1 1 need to need to calculate calculate calculate based on $\overline{V}_R = \overline{S}_R$

$$V = \sqrt{Z.y} = \sqrt{4.15 \times 10^6 / 177.8^\circ} = 2.036 \times 10^3 / 88.9^\circ$$
 1/km

To I magnitude divide phase by 2

$$Z_c = \sqrt{\frac{z}{y}} = 262.7 L^{-1.10}$$

$$V_R = \frac{765 \text{ EV}}{\sqrt{3}} = 441.7 \text{ EV}$$
 $\leftarrow V_R.V_S, V(x)$ are line-to-neutral quantities in line models

$$\overline{S}_{R_{10}} = \overline{V}_{R_{10}} \cdot \overline{I}_{R}^{*} \cdot \overline{I}_{R} = \frac{\overline{S}_{R_{10}}^{*}}{\overline{V}_{R_{20}}^{*}} = \frac{11}{3} \frac{2000 + 11000}{441.7 \cdot 10^{\circ}} = 1688 \cdot \frac{1}{26.6^{\circ}}$$

Finally,
$$V(x) = 441.7 [0] \cosh(2.036 \times 10^3 [88.9] \cdot x)$$

+ 443.44 [-27.7° sinh (2.036×10³ [88.9° . x)

point or measured from receiving end.

4)
$$Z = R + jx = 0.02 + j 0.335 = 0.336 [86.6]$$
 $J = j 4.807 \times 10^6$
 $S_{km} = 4.807 \times 10^6 [40^0]$
 S_{km}
 $Z_c = \sqrt{\frac{Z}{y}} = \sqrt{\frac{0.336 [86.6]}{4.807 \times 10^6 [40^0]}} = 264.4 [-1.7]$
 $V.l = \sqrt{Z.y}$
 $l = 0.0113 + j 0.381$
 $A = D = cosh(7l)$
 $C = D = [cosh(7l)]$
 $C = cosh(7l)$
 $C = cosh(6.013)$
 $C = cosh(6.0$

$$Z' = Z \cdot \frac{\sinh(\gamma \ell)}{\gamma \ell} = 98.26 / 86.69^{\circ}$$

$$\frac{Y'}{2} = \frac{Y}{2} + \frac{\tanh(\frac{Y\ell}{2})}{\frac{Y\ell}{2}} = 6.37 \times 10^{7} + j \cdot 7.3 \times 10^{4} \text{ S}$$