Основное уравнение МКТ

А. И. Зеленина

23 февраля 2018 года

 $< E_k > = \frac{i}{2} k T$, где k является постоянной Больцмана (отношение универсальной газовой постоянной R к числу Авогадро N_a).

Основное уравнение МКТ связывает макроскопические параметры (давление, объём, температура) газовой системы с микроскопическими (масса молекул, средняя скорость их движения).

Вывод основного уравнения МКТ

Пусть имеется кубический сосуд с ребром длиной l и одна частица массой т в нём.

Обозначим скорость движения V_x , тогда перед столкновением со стенкой сосуда импульс частицы равен mV_x , а после — $-mV_x$, поэтому стенке передается импульс $p = 2m * V_x$. Время, через которое частица сталкивается с одной и той же стенкой, равно $t = \frac{2l}{V_x}$

Отсюда следует:

$$F_x = \frac{p}{t} = \frac{2mV_x^2}{2l}$$

Так как давление $p=\frac{F}{S},$ следовательно сила F=pS

Подставив, получим: $p_xS=\frac{mV_x^2}{l}$ Так как рассматривается кубический сосуд, то V=Sl

Отсюда:

$$p_x = \frac{mV_x^2}{V}$$