

Low Viscosity Imides Based on Asymmetric Oxydiphthalic Anhydride

Kathy C. Chuang

NASA Glenn Research Center, Cleveland, OH 44135

Jim M. Criss, Jr.

M & P Technologies, Inc. Marietta, GA 30068

Eric A. Mintz

Clark Atlanta University, Atlanta, GA 30314

Daniel A. Scheiman

ASRC Inc, Cleveland, OH 44135

Baochau .N. Nguyen & Linda S. McCorkle Ohio Aerospace Institute, Cleveland, OH

A series of low-melt viscosity imide resins were prepared from asymmetric oxydiphthalic dianhydride (a-ODPA) and 4-phenylethynylphthalic anhydride as the endcap, along with 3,4'-oxydianiline (3,4'-ODA), 3,4'-methylenedianiline (3,4'-MDA), 3,3'-methylenedianiline (3,3'-MDA) and 3,3'-diaminobenzophenone (3,3'-DABP), using a solvent-free melt process. These imide oligomers displays low-melt viscosities (2-15 poise) at 260-280 °C, which made them amenable to low-cost resin transfer molding (RTM) process. The a-ODPA based RTM resins exhibits glass transition temperatures (Tg's) in the range of 265-330 °C after postcure at 343 °C. The mechanical properties of these polyimide/carbon fiber composites fabricated by RTM will be discussed.

Low-Melt Viscosity Imides Based on Asymmetric Oxydiphthalic Anhydride

Kathy C. Chuang NASA Glenn Research Center, Cleveland, OH
(216) 433-3227; Kathy.Chuang@grc.nasa.gov

Jim M. Criss, Jr. M & P Technologies, Inc. Marietta, GA
jim.m.criss@mandptechologies.com
Tel: (770) 652-763

Eric A. Mintz Clark Atlanta University, Atlanta, GA

Daniel A. Scheiman ASRC Inc, Cleveland, OH

Baochau N. Nguyen & Linda S. McCorkle Ohio Aerospace Institute, OH

High Temperature Polyimide Composites Materials and Processing

- ◆ PMR-15, PMR-II-50, AFR-PE4, PETI-5 composites all require solvent-based prepregs for processing
 - *time consuming, costly and hazardous*
- ◆ Process polymer composites via RTM, VARTM
 - *produce 30% cost saving & 12% weight saving*
- ◆ New low-melt viscosity (10-30 poise) imide resins:
 - *amenable to low-cost RTM process*
 - *advance PMC temperature capability to 260-315°C beyond state-of the-art RTM resins, such as epoxy (177 °C) & BMI (232 °C)*

Synthesis of RTM Resins (NASA Glenn)

RTM370
 $(T_g = 370^\circ\text{C})$

RTM350
 $(T_g = 350^\circ\text{C})$

RTM330
 $(T_g = 330^\circ\text{C})$

Melted

↓
Imidized Oligomers

Advantages of polyimide resins containing a-BPDA vs s-BPDA

- Lower melt viscosities
- Higher T_g 's

Open-Hole Compression Strength of RTM370, RTM350, RTM330 vs BMI-5270-1

Open-Hole Compression Modulus of RTM370, RTM350, RTM330 vs BMI-5270-1

Short Beam Shear Strength of RTM370, RTM350 & RTM330 vs BMI-5270-1

New Effort in RTM Resins

- ◆ Prepare novel imide resins with low-melt viscosities (10-30 poise) that are amenable to RTM or VARTM processes
- ◆ Process new imide resins by RTM or VARTM into composite panels and evaluated mechanical properties and durability at 550-600 °F

Low-melt Viscosity Imide Resins Based on a-ODPA

Physical Properties of Imide Oligomers/Resins

Based on a-ODPA / 4-PEPA

Dianhydride	Diamine	Oligomer Min. η @280 °C by Brookfield ¹ (Poise)	Oligomer Min. Complex $[\eta]^*$ @260°C ² (Poise)	Cured Resin T_g (°C) NPC ³ By TMA	Cured Resin T_g (°C) PC ⁴ @ 650°F By TMA ⁵
a-ODPA	3,4'-ODA	3.5	15.0	296	329
a-ODPA	3,4'-MDA	4.0	14.0	270	294
a-ODPA	3,3'-MDA	2.5	3.0	273	266
a-ODPA	3,3'-DABP	3.0	4.0	270	297

¹ Absolute viscosity measured by Brookfield Viscometer at 280 °C.

² Complex viscosity measured by Aries Rheometer, using parallel plates.

³ NPC = No Post cure

⁴ PC = Post cured at 343 °C (650 °F) for 16 hrs.

⁵ TMA =Thermal mechanical analysis heated at 10 °C/min, using expansion mode.

Physical Properties of Imide Oligomers/Resins Based on *a-BPDA* and 4-PEPA

Resin	Diamine	Oligomer Min. η @280 °C by Brookfield ¹ (Poise)	Oligomer Min. Complex $[\eta]^*$ @280°C ² (Poise)	Cured Resin T_g (°C) NPC ³ byTMA	Cured Resin T_g (°C) PC ⁴ @ 650°F By TMA ⁵
RTM370	3,4' -ODA	14	11	342	370
RTM350	3,4' -MDA	7.4	20	338	350
RTM330	3,3' -MDA	1.5	10	288	330

¹ Absolute viscosity measured by Brookfield Viscometer at 280 °C.

² Complex viscosity measured by Aries Rheometer, using parallel plates.

³ NPC = No Postcure

⁴ PC = Postcured at 343 °C (650 °F) for 16 hrs.

⁵ TMA = Thermal mechanical analysis heated at 10 °C/min, using expansion mode.

Rheology of α -ODPA/3,4'-ODA/PEPA Imide Resins at 260 °C Hold

Advantages:

Maintained low-melt viscosity (4-15 poise) at 260 °C

Rheology of α -ODPA/3,3' -DABP/PEPA Imide Resins at 260 °C Hold

Advantages:

Maintained low-melt viscosity (4-15 poise) at 260 °C

Conclusions

- ◆ a-ODPA based RTM imide resins exhibit low melt viscosities at 260 °C comparable to a-BPDA based resins at 280 °C (**10 fold**)
- ◆ a-ODPA based RTM imide resins exhibit lower T_g 's (40- 65 °C lower) than a-BPDA based RTM imide resins

Reason: *Additional flexible –O– linkage*

versus

Steric hindrance of biphenyl unit

Continued Efforts

- ♦ **Fabricate composite panels from a-ODPA imide resins by RTM at 260 °C and VARTM, if feasible**
- ♦ **Evaluate Mechanical properties of a-ODPA/PEPA based imide composites**

Acknowledgements

Funding Sources:

- ◆ Air Force Office of Scientific Research
Grant to Clark Atlanta University
Program manager: Dr. Charles Lee
- ◆ NASA Supersonic Program
Program manager : Dale Hopkin