16S rRNA microbial diversity using GVL-Galaxy

Part 3: workflow for analysing nonoverlapping paired-end reads

Version 1.1

Contents

1	Int	roduction	4
	1.1	Genomics Virtual Lab - Galaxy	4
2	Wo	orkflow	
3	Da	taset	6
4	16:	S biodiversity analysis for non-overlapping paired-end data	8
	4.1	Workflow data preparation	10
	4.1	.1 Import data	10
	4.1	.2 Import workflow	10
	4.2	Creating a List Dataset Pairs	11
	4.3	Rename Sequence header	12
	4.4	Run workflow	12
	4.5	Specify parameters	13
5	Ex	pected output	17
6	Ve	rsion History	28

16S rRNA biodiversity analysis using GVL-Galaxy

1 Introduction

This is a step-by-step guide in performing a 16S ribosomal RNA (16S rRNA) metagenomic analysis to characterise the microbiome of samples. The aim of this tutorial is to identify the biodiversity and abundance of 16S rRNA in different samples.

The most common method at present to uncover the microbial diversity of a sample is to perform a metagenomic analysis, using the 16S rRNA sequence. The 16S rRNA gene is about 1,500 basepairs (bp) in length and is a component of a prokaryotic ribosome. Profiling 16S rRNA using sequencing technology can help researchers to identify bacterial species in given samples. 16S rRNA is a protein synthesis machinery and is highly conserved. The changes of sequence in 16S gene is used to measure the evolution of bacterial species to study phylogeny and taxonomy. However, the metagenomic study of 16S rRNA is constraint by the annotated 16S database.

All the dataset used in this tutorial is generated using Next Generation Sequencing (NGS) technology. Single-End (SE) and Paired-End (PE) refer to two types of sequencing technique commonly used in NGS. In a single-end run, the sequencer will only sequence from one end of a fragment. In a paired-end run, a fragment will be sequenced from one end and from the opposite end. If the fragments overlap each other, we refer to them as "overlap-PE" in this tutorial. Depending on the protocol used to generate the sequencing data, the workflow used for analysis contains different steps.

We have prepared two different datasets depending on the library protocol that is used for sequencing: (1) overlap-PE or (2) nonoverlap. The steps used for these two protocols are slightly different. If you do not know which protocol your sequencing data used, test it using the **Overlap detection** workflow. Details about the workflows are described in Section 2 Workflow.

1.1 Genomics Virtual Lab - Galaxy

The workflow is setup using Galaxy, which has been deployed using the <u>Genomics Virtual Lab</u> (<u>GVL</u>) platform.

If you are unfamiliar with the Galaxy interface, we recommend you have a look at this **Introduction to Galaxy** quick start guide.

2 Workflow

In total, there are 4 Galaxy workflows in the 16S rRNA suite (see Table 1):

Table 1 Summary of workflows

Workflow		Description
1.	16S_overlap_detection	To detect percentage of paired-end reads that overlap each other by 10bp. This workflow randomly selected 1000 reads from each sample to perform the detection. If over 50% of the PE reads overlap each other by at least 10bp, it is recommended to use workflow 2. If less than 50% of PE reads overlap by at least 10bp, it is recommended to use workflow 3.
2.	16S_biodiversity_for_overlapPE	For use with datasets that are sequenced using overlapping paired-end reads
3.	16S_biodiversity_for_nonoverlap PE	For use with datasets that are sequenced using non- overlapping paired-end reads.
4.	16S_biodivesity_BIOM	Handle BIOM file and generate plots

This tutorial covers workflow 3 16S rRNA biodiversity analysis for nonoverlap PE.

CAUTION:

This metagenomic 16S workflow implemented in Galaxy expects paired-end fastq files with following specified filename format. All the input FASTQ files must be in the format:

FILENAME_R1.fastq and FILENAME_R2.fastq

Where *FILENAME* is the name of the library (e.g. lung, brain etc); *R1* is the forward end and *R2* is the reverse end.

3 Dataset

The data for this tutorial was generated using the Illumina MiSeq sequencer, using PE-sequencing with reads of 2 x 300bp, however, this is a non-overlapping dataset. There are 24 pairs of fastq files (Table 3) with the metadata provided below in Table 2. There are three replicates per *Tissue-Protein* group which we will be interested in looking at further.

This dataset is used to demonstrate using the third workflow

16S_biodiverisy_for_nonoverlap_PE that does not require merging of paired end reads using the PEAR¹ tool. Instead the workflow will only perform the analysis using the R1 (or forward) read files only.

WARNING: Metadata format

The header of first column in your metadata table must be named "**#SampleID**" in order to be recognised by the BIOM converter step in the workflow.

Table 2 Metadata non-overlapping paired-end dataset

#SampleID	Water	Tissue	Protein	Replicate_Group	Expected_Effect	SeqID
Sample13	No	Lung	None	Group5	No	R13
Sample14	No	Lung	None	Group5	No	R14
Sample15	No	Lung	None	Group5	No	R15
Sample16	No	Lung	Protein3	Group6	Yes	R16
Sample17	No	Lung	Protein3	Group6	Yes	R17
Sample18	No	Lung	Protein3	Group6	Yes	R18
Sample19	No	Lung	Protein2	Group7	Yes	R19
Sample20	No	Lung	Protein2	Group7	Yes	R20
Sample21	No	Lung	Protein2	Group7	Yes	R21
Sample22	No	Lung	Protein1	Group8	Yes	R22
Sample23	No	Lung	Protein1	Group8	Yes	R23
Sample24	No	Lung	Protein1	Group8	Yes	R24
Sample37	No	Feces	None	Group13	No	R37
Sample38	No	Feces	None	Group13	No	R38
Sample39	No	Feces	None	Group13	No	R39
Sample40	No	Feces	Protein3	Group14	Yes	R40
Sample41	No	Feces	Protein3	Group14	Yes	R41
Sample42	No	Feces	Protein3	Group14	Yes	R42

¹ https://sco.h-its.org/exelixis/web/software/pear/

_

#SampleID	Water	Tissue	Protein	Replicate_Group	Expected_Effect	SeqID
Sample43	No	Feces	Protein2	Group15	Yes	R43
Sample44	No	Feces	Protein2	Group15	Yes	R44
Sample45	No	Feces	Protein2	Group15	Yes	R45
Sample46	No	Feces	Protein1	Group16	Yes	R46
Sample47	No	Feces	Protein1	Group16	Yes	R47
Sample48	No	Feces	Protein1	Group16	Yes	R48

Table 3 non-overlapping paired-end data filename

Library	Filename(Forward)	Filename(Reverse)
Sample13	Sample13_R1.fastq	Sample13_R2.fastq
Sample14	Sample14_R1.fastq	Sample14_R2.fastq
Sample15	Sample15_R1.fastq	Sample15_R2.fastq
Sample16	Sample16_R1.fastq	Sample16_R2.fastq
Sample17	Sample17_R1.fastq	Sample17_R2.fastq
Sample18	Sample18_R1.fastq	Sample18_R2.fastq
Sample19	Sample19_R1.fastq	Sample19_R2.fastq
Sample20	Sample20_R1.fastq	Sample20_R2.fastq
Sample21	Sample21_R1.fastq	Sample21_R2.fastq
Sample22	Sample22_R1.fastq	Sample22_R2.fastq
Sample23	Sample23_R1.fastq	Sample23_R2.fastq
Sample24	Sample24_R1.fastq	Sample24_R2.fastq
Sample37	Sample37_R1.fastq	Sample37_R2.fastq
Sample38	Sample38_R1.fastq	Sample38_R2.fastq
Sample39	Sample39_R1.fastq	Sample39_R2.fastq
Sample40	Sample40_R1.fastq	Sample40_R2.fastq
Sample41	Sample41_R1.fastq	Sample41_R2.fastq
Sample42	Sample42_R1.fastq	Sample42_R2.fastq
Sample43	Sample43_R1.fastq	Sample43_R2.fastq
Sample44	Sample44_R1.fastq	Sample44_R2.fastq
Sample45	Sample45_R1.fastq	Sample45_R2.fastq
Sample46	Sample46_R1.fastq	Sample46_R2.fastq
Sample47	Sample47_R1.fastq	Sample47_R2.fastq
Sample48	Sample48_R1.fastq	Sample48_R2.fastq

4 16S biodiversity analysis for non-overlapping paired-end data

PRE-REQUISITE:

Before using this workflow the dataset needs to be a *List of Dataset Pairs*. See the **01_16S_OverlapDetection_tutorial** for a step-by-step guide on how to prepare the dataset ready for analysis.

This workflow shown in Figure 1 is designed to process non-overlapping paired-end datasets. If you do not know whether your dataset contains overlaps or not, see the

01_16S_overlapDetection_tutorial guide to evaluate the overlapping status of your dataset. As a guideline, if less than 50% of your reads are overlapping, you can run this tutorial. If more than 50% of the reads are overlapping then we suggest you run workflow 2 (see the **02_16S_OverlapPE_tutorial** guide).

This workflow is nearly identical to the second workflow **16S_biodiversity_for_overlapPE**, where boxes 1 and 4 to 7, shown in the figure below are the same. Boxes 2 and 3 are slightly different in that this workflow *does not* perform a merging step of the reads. Instead, it is replaced by a concatenating step (blue box 3) where all forward reads from all samples are combined into one FASTQ file.

Figure 1 16S workflow without PEAR

The following table provides a brief overview of the components in the workflow above.

Box Description

	· ·			
1.	Input dataset collection	Dataset collection type		
2.	Sequence Assessment, cleaning and merging.	This section of the workflow performs quality checking of the raw data, trimming and removing adapters, and merge overlapping PE reads.		
3.	Concatenate dataset	Combines forward reads of all samples into one FASTQ file.		
4.	Remove host genome and search against known data (eg., Greengenes)	This section of the workflow filter out reads that mapped to the human genome (hg19). The remaining reads are then mapped against a database of known sequences (e.g. Greengenes). The remaining unknown sequences are passed to the next section.		
5.	Identify potential novel OTUs	This section of the workflow takes the unknown reads and performs collapsing of duplicate sequences, chimera detection and cluster sequences to build novel Operational Taxonomic Unit (OTU) references. The reads that are not mapped to the Greengenes database are used to map against these newly created novel OTUs.		
6.	BIOM File conversion	This section of the workflow combines the output from component 3 and 4 to create a table in the UCLUST format. Essentially this combined output returns the results whether a match (hit) exists for a query read against a database. Further information about the UCLUST format is available from the site ² . The UCLUST table is transformed to a count table, and then, converted into a BIOM format.		
7.	Run differential analysis testing and plots creation	This last section of the workflow generates the following output for data interpretation: Normalised table Diversity plot Abundance plots Symmetric plot Network plot		

² http://www.drive5.com/uclust/uclust_userguide 1 1 579.html# Toc257997686

4.1 Workflow data preparation

We have prepared the input data already and is shared as a *Data Library* in Galaxy. Follow section 4.1.1 below to import the data to your account.

A reminder, if you are unfamiliar with the Galaxy interface, we recommend you have a look at this **Introduction to Galaxy** quick start guide.

4.1.1 Import data

- 1. Click **Shared Data** from the top menu
- 2. Click **Data Libraries** on the dropdown menu
- 3. Click Tutorial data: Non-Overlapped PE dataset
- 4. As the page can only show 15 items at a time, this will make importing data slow. You can change the number of items that is displayed on one page by clicking on the **15**. A window will appear, enter 48 and press enter. The page should update and show all 48 items on one page.

5. Check the checkbox next to **name**

- 6. Click to History from the top menu
- 7. Type a history name e.g., 16S biodiversity for nonoverlap PE
- 8. Repeat step 1 to step 5 to import Greengenes taxonomy file (gg_13_5_taxonomy.txt from the GreenGenes folder) into the same history that was created in step 6 (16S_biodiversity_for_nonoverlap_PE).
- Repeat Steps 1 to 5 again, but this time click on the folder metadata to import metadata_NonOverlappedPE.txt
- 10. Click **Analyze Data** from the top menu

4.1.2 Import workflow

If you are a new user, follow this section to import the shared Galaxy workflow named **"16S_biodiversity_for_nonoverlap_PE"** into your workspace. You can skip this section if you have already imported the workflow before.

- 1. Click **Shared Data** on the top of the menu bar
- 2. Click Workflows from the dropdown menu
- 3. Click 16S_biodiversity_for_nonoverlap_PE
- 4. Click Import

4.2 Creating a List Dataset Pairs

Note that in this dataset all forward reads have the "_R1.fastq" suffix on the filename and all reverse reads have the "_R2.fastq" suffix. This will become apparent in the step 5.

- 1. Make sure the correct history ("16S_biodiversity_for_nonoverlap_PE") is selected.
- 2. Click on the icon near the top of the history panel, just under the title.
- 3. Click on All
- 4. Click on For all selected ... > Build List of Dataset Pairs
- 5. Follow the steps in Figure 2
 - 1 = type "_R1" (as determined by your file naming format)
 - 2 = type "_R2" (as determined by your file naming format)
 - 3 = click on Auto pair
 - 4 = type "**PE**"
 - 5 = click on **Create list**

Figure 2 Build a list of dataset pairs

Cancel

4.3 Rename Sequence header

This workflow is designed to work with a collection of FASTQ files from a study. Throughout its analysis, it will concatenate all reads into a master file, at which point we loose the information of which library the reads originates. In order to address this issue, we have developed a tool called **reheader** to append the library filename to the end of the FASTQ identifier. This allows us to track which read belongs to which library and perform the quantification step.

A fastq header before applying the **reheader** tool will look like this:

@M00967:43:000000000-A3JHG:1:1101:18327:1699 1:N:0:188

A fastq header after applying the **reheader** tool will look like this:

@M00967:43:000000000-A3JHG:1:1101:18327:1699_**F3D0/1**

- 1. Click on **reheader** in the *Tools: Data processing* at the left panel in galaxy.
- 2. Select **Data collection** icon

3. Select the newly created *Dataset Pairs* (e.g., **49:PE**) Yours may be named differently.

Short read data from your current history

4. Click Execute

4.4 Run workflow

- 1. Click on Workflow from the top menu
- 2. Click on 16S_biodiversity_for_nonoverlap_PE workflow
- 3. Click **Run** from the dropdown menu

4.5 Specify parameters

While the entire workflow consists of 27 total steps, you do not need to specify the parameters for all steps. Follow the following step-by-step guide which highlights the parameters that need modification.

Step	Actions	Screenshot
Step 1: Input dataset collection	Select reheader.PE from the "Input Dataset Collection"	Input Dataset Collection ☐ 146: reheader.PE ▼
Step 10: Vsearch search	 Select green genes reference sequences gg_13_5.fasta from the "Select your datasbase FASTA file" dropdown menu Type "0.97" in the textbox under "Reject hit if identity is lower than this value" Make sure "UCLUST-like output" is "Yes" 	Select your database FASTA file 149: gg_13_5.fasta ▼ Reject hit if identity is lower than to 10.97 **The identity is lower than the 10.97 **
Step 15: Add column	 Type "NewOTU.Ref" in the textbox under "Add this value" Select "YES" from the "Iterate?" dropdown menu 	Add this value NewOTU.Ref Iterate? YES
Step 20: Convert BIOM	Select metadata file (e.g., metadata_OverlappedPE.txt) from the "Add sample metadata from metadata mapping file" dropdown menu	Add sample metadata from metadata 148: metadata_NonOverlappingPE.txt
Step 21: BIOM metadata	 Select green genes annotation file "gg_13_5_taxonomy" from the "Observation Metadata Tabular File" dropdown menu Type "taxonomy" in the textbox 	Observation Metadata Tabular File 150: gg_13_5_taxonomy
	under "Comma-separated list of the metadata fields to split on semicolons"	Comma-separated list of the metadat taxonomy &

Step	Actions	Screenshot
	Type "OTUID" and "taxonomy" separated by comma in the textbox under "Comma-separated list of the observation metadata field names"	Comma-separated list of the observation OTUID,taxonomy

From Step 22 onwards, you can change the parameters for different comparisons depending on your study. For this tutorial we are interested in looking at the differences between the microbiome of the mice in the *early* versus *late* time.

Step	Actions	Screenshots
DESeq2 metadata_NonOverlappingPE.txt) from the dropdown menu		Add sample metadata from metadata 148: metadata_NonOverlappingPE.txt factor for differential analysis testing c3: Tissue T
Step 23: Phyloseq Richness	 Select metadata file (e.g., metadata_NonOverlappingPE.txt) from "Metadata file" the dropdown menu Select "c5: Replicate_Group" from the "Column used for X-axis" Select "c4: Protein" from the "Column used as legend" dropdown many 	Add sample metadata from metadata 148: metadata_NonOverlappingPE.txt Column used for X-axis c5: Replicate_Group ▼ つ Column used as legend c4: Protein ▼ つ
Step 24: Phyloseq Abundance plot	 Select metadata file (e.g., metadata_NonOverlappingPE.txt) from "Metadata file" the dropdown menu Select "c5: Replicate_Group" from the "Column used for X-axis" 	Add sample metadata from metadata 148: metadata_NonOverlappingPE.txt Column used for X-axis c5: Replicate_Group Column used for X-axis

Step	Actions	Screenshots
	Select "c3: Tissue" from the "Column used as legend" dropdown menu	Column used as legend c3: Tissue
	Select "c4: Protein" from the "Column used as factor 1" dropdown menu	Column used as legend c4: Protein ▼ 5
Step 25: Phyloseq Abundance Kingdom	Select metadata file (e.g., metadata_NonOverlappingPE.txt) from "Metadata file" the dropdown menu	Add sample metadata from metadata mata 148: metadata_NonOverlappingPE.txt
	Select "c4: Protein" from the "Column used for X-axis" dropdown menu	Column used for X-axis c4: Protein
	Select "c3: Tissue" from the "Column used as legend" dropdown menu	Column used as legend c3: Tissue
	Click on "Phylum" in the "select a taxonomy rank"	select a taxonomy rank Kingdom Phylum Class Order Family Genus Species
Step 26: Symmetric Plot	Select metadata file (e.g., metadata_NonOverlappingPE.txt) from "Metadata file" the dropdown menu	Add sample metadata from metadata mata 148: metadata_NonOverlappingPE.txt
	 Select green genes annotation file "gg_13_5_taxonomy" from the "OTU taxonomy file" dropdown menu 	OTU Taxonomy file 150: gg_13_5_taxonomy

Step	Actions	Screenshots
	Select "Phylum" under "Select a taxonomy rank"	Select a taxonomy rank Phylum 🕜
	Check the checkbox under "is the data normalised?"	is the data normalised? ☑ ೨
	Select "c3: Tissue" from the "Variable to compare" dropdown menu"	Variable to compare c3: Tissue ▼ 5
	Type "Lung,Feces" in the textbox under "Fill in two comparable group separated by comma"	Fill in two comparable group separated
Step 27: Phyloseq Network Plot	Select green genes annotation file "gg_13_5_taxonomy" from the "Observation file" dropdown menu	Observation Metadata Tabular File 150: gg_13_5_taxonomy
T lot	Check the checkbox under "is the data normalised?"	is the data normalised? ☑ 勺
	 Select metadata file (e.g., metadata_NonOverlappingPE.txt) from the "Metadata file" dropdown menu 	Add sample metadata from metadata mata 148: metadata_NonOverlappingPE.txt
	Select "c5: Replicate_Group" from the "Select a group for correlation calculation" dropdown menu	Select a group for correlation calculation c5: Replicate_Group
	Select "c4:Protein" from the "Column used as legend" dropdown menu	Column used as legend c4: Protein T

5 Expected output

The following table provides a list of the outputs from each step. Most outputs are intermediate files required for the following step in the workflow. Most of the time you will only be interested in the output from some steps eg. after quality checking, after filtering steps, after plotting.

Step	Brief Description	Output files
n/a, before the workflow we need to run reheader	The reheader tool generates one FASTQ file with the sequence header renamed and one log file for each input. When the input is a data collection of N files, the output is 2 data collections: 1) reheader.PE (holds FASTQ output) 2) reheader.PE.log (holds log outputs) Think of a data collection like a folder, with a nested structure like the one shown on the right. Only the "reheader.PE" collection is used in subsequent steps.	 reheader.PE Sample13 Reverse Sample14 Forward Reverse Etc reheader.PE.log Sample13 Forward Reverse Sample14 Forward Reverse Sample14 Forward Reverse Sample14 Forward Reverse Etc

Step	Brief Description	Output files n/a • FASTQC on collection Webpage (html) • Sample13 • Forward • Reverse • Sample14 • Forward • Reverse • Etc • FASTQC on collection RawData (text) • Sample13 • Forward • Reverse • Sample14 • Forward • Reverse • Sample14 • Forward • Reverse	
Step 1: Input dataset collection	This component in the workflow is designed to take in a data collection as an input (e.g., the output of reheader.PE above)		
Step 2: FastQC	Quality checks for each library in a HTML or text format. Like the reheader tool, the FastQC tool also generates a 2 data collection as output: 1) "FastQC on collection:RawData" 2) "FastQC on collection:Webpage" The collections have the following hierarchical structure shown on the right.		
Step 3: Trimmomatic	Output after removing adapters and low quality reads. The dataset is separated into <i>paired</i> and <i>unpaired</i> data. The output is two data collections: 1) <i>Trimmomatic across collection XX</i> 2) <i>Trimmomatic across collection XX</i>	The collections have the following hierarchical structure: • Trimmomatic across collection XXXX (paired) • Sample13 • Forward • Reverse • Sample14 • Forward • Reverse	

Step	Brief Description	Output files • Etc • Trimmomatic across collection XXXX (unpaired) • Sample13 • Forward • Reverse • Sample14 • Forward • Reverse Etc	
	NOTE: both data collections will have the same label but the first one is for paired data and the second collection is for unpaired data.		
Step 4: Concatenate multiple datasets	The output is a FASTQ file after merging forward reads from all input samples.	"Concatenate multiple forward reads file merged"	
Step 5: FASTQC	Note: This step happens in parallel with Step 4 and takes the pairedend output from Step 3 output 1. The outputs are the same as Step 2:FastQC above	Same as Step 2	
Step 6: BWA- MEM	The reads are mapped to the host genome and the output is a data collection of BAM files with the naming structure shown on the right. The number of outputs depends on the number of inputs.	Map with BWA-MEM on data XXXX (mapped reads in BAM format)	
Step 7: FilterSamReads	Reads that mapped to the host genome in Step 6 are removed, generated one BAM file with the naming structure shown on the right.	"FilterSamReads on data XXX: filtered BAM"	

Step	Brief Description	Output files	
Step 8: BAM to fastq	The BAM file (step 9) is converted to a FASTQ file with the naming structure shown on the right.	BAM to fastq on data XXX"	
Step 9: FASTQ to FASTA	The FASTQ file (step 9) is converted to a FASTA file with the naming structure shown on the right.	"FASTQ to FASTA on data XXX"	
Step 10: Vsearch search	This step takes in an input query and a database file. It looks for a match for each query sequence in the database and generates three output files with the naming structure shown on the right. 1) Is a tabular file following the UCLUST format 2) Is a FASTA file of the query sequences with a match in the database 3) Is a FASTA file of the query sequences without a match in the database Output 3 is used in the next step.	 "VSearch search on data XXXX and XXXX: UCLUST like output" "VSearch search on data XXXX and XXXX: Matching query sequences" "VSearch search on data XXXX and XXXX: Non-matching query sequence" 	
Step 11: Vsearch dereplication	This steps remove all duplicate sequences and generates one FASTA output listing the unique sequences.	"Vsearch dereplication on data XXXX"	
Step 12: Vsearch chimera detection	The tool searches for possible chimera sequences and generates two FASTA files with the naming structure shown on the right. Only output 2 (non chimera) is used for the next step.	 "Vsearch chimera detection on data XXX" "Vsearch chimera detection on data XXX: Non chimera" 	

Step	Brief Description	Output files	
Step 13: Vsearch clustering	This tool clusters the sequences into groups and generates a FASTA output that contains a list of consensus sequences with the naming structure shown on the right	"Vsearch clustering on data XXXX: Consensus Sequences"	
Step 14: Vsearch search	Similar to step 10: Vsearch search This time we are searching the remaining reads from Step 10, output 3, against a new database created from Step 13. Only two outputs are generated in this step following the naming structure shown on the right.		
Step 15: Add column	This step adds a column (NewOTU.Ref) to the UCLUST output (output 1) from step 16 and generates a new tabular output with the naming structure shown on the right.	"Add column on data XXXX"	
Step 16: Cut	This step extracts columns 10 (original ref sequence ID) and 11 (new ref ID) from the output from step 17 and generates a new file with the two columns. Note: The output of this step can be used as a mapping reference to map the original sequence ID to the new sequence ID. This output is not used in the workflow.		
Step 17: Cut	This step extracts columns 1-9 and 11 to a new file. Essentially we are using the new reference ID instead of the old reference ID.	"Cut on data XXXX"	
	This output is used in the next step.		

Step	Brief Description	Output files
Step 18: Concatenate datasets	This step merges the two outputs from step 12 with step 19 and generates a combined tabular file with the naming structure shown on the right. Reminder: Step 12 – is performing a search against Greengenes (known sequences) Step 19 – is the output after performing a search against novel	"Concatenated datasets on data XXXX and XXXX"
Step 19: OTUTable	This step converts the tabular output from step 20 into a count table where the rows are OTUId and the columns are SampleIDs.	"OTU TABLE Concantenate datasets on data XXXX and XXXX"
	Each cell then indicates the number of times OTU-i appears in Sample-j for example.	

Note: Repeating differential analysis without post-processing dataset

Now the dataset is transformed into an OTU Table in step 19, you can use this output in the fourth workflow (**04_16S_biodiversity_BIOM**) directly to perform other comparisons, without re-running all the data processing steps.

Step	Brief Description	Output files	
Step 20: convert BIOM	This step converts the output from step 21 into a BIOM file following the naming structure shown on the right.	"Convert BIOM on data XXXX and XXXX"	

Step	Brief Description	Output files
Step 21: BIOM metadata	 This step takes in two inputs: 1) BIOM file from step 22 and 2) Annotation file from Greengenes that we imported from the Shared data library It generates an annotated BIOM file with information about the study (metadata) and the taxonomy details for the counts. 	"BIOM metadata on data XXXX and XXXX"
Step 22: DESeq2	This step takes the annotated BIOM file from step 23 and generates two output files: 1) Normalised count table and A table listing the significant OTU results between the groups selected for comparison (in this tutorial "Tissue" was selected)	1) "DESeq2 Normalised Table.txt" 2) "DESeq2 DE.txt"
Step 23: Phyloseq Richness	This step creates a biodiversity abundance plot using the R phyloseq package. The plot generated depends on the settings for the Column used for X-axis and the categories used for the legends. The vertical (y) axis is the abundance values.	"Phyloseq Richnness.html" Observed 5000 -

Step	Brief Description	Output files
		In this tutorial, we see the overall abundance (count) for each sample as represented by a dot. The X-axis shows the replicate group.
Step 24: Phyloseq Abundance plot	This is an abundance plot of all samples grouped by the protein type. Within each group, the bars are coloured by the different tissue type (Feces vs Lung). The horizontal (x) axis are the groups and the vertical (y) axis is the abundance. The stacked bar shows the abundance values of each OTU from greatest to least separated by a horizontal line.	#Phyloseq Abundance plot.html" None Prote at Prote a2 Prote a3 Tissue Reces Lung Tissue Reces Constitution of Constitution
Step 25: Phyloseq Abundance taxonomy plot	This is an abundance plot of all samples grouped by the taxonomy "phylum" as selected in Step 27 of the workflow. The bars are coloured by the tissue type (Feces vs Lung). The horizontal (x) axis are the protein type and the vertical (y) axis is the abundance. The stacked bar shows the abundance values of each OTU from greatest to least separated by a horizontal line.	"Phyloseq Abundance Taxonomy.html"

Step	Brief Description	Output files
		Tissue Feces Luag Tissue Feces Luag
Step 26: Symmetric plot	This symmetric plot shows the normalised counts abundance between the two tissue types (Feces vs Lung). The results shown is only for the dataset under taxonomy "phylum" as selected in step 28 of the workflow.	"Symmetric Plot SymmetricPlot.html"

Step	Brief Description	Output files
		Tissue Lung-Feces 346078 728129 3381282 403660 124960 186668 173807 185809 100264 0110264 01107 124488 4473341 1517774 132929 1566663 1666663 1666663 1666663 1666663 16666663 16666663 16666663 16666663 16666663 16666664 166666664 166666665 166666664 1666666664 1666666664 166666666
Step 27: Phyloseq Network plot	This plot shows a correlation network of samples based on the microbiome profiles using the normalised dataset.	"Phyloseq Network Plot.html"

Step	Brief Description	Output files
		Croug 18 Croug

6 Version History

Version	Date	Modified by	Description
1.0	2017-09-20	QFAB (Mike, Xin-Yi)	Initial version
1.1	2017-10-10	QFAB (Mike, Xin-Yi)	 Extra step (4) in Section 4.1.1 to change the number of items to show on one page Add in Section 4.2 Creating a List of Dataset Pairs