ABDULLAH SAHIN

FLIGHT
DELAY
PREDICTION
USING
LOGISTIC
REGRESSION

OUTLINE

Problem

Data Gathering

Exploratory Data Analysis

Feature Engineering

Logistic Regression

Conclusion and Future Work

Recommendation for Clients

PROBLEM

In the last ten years, according to the Bureau of Transportation Statistics (BTS), only 79.63% of all flights have performed on time. Only a few remaining percentage were cancelled or diverted, less than 2%; rest of them were delayed mainly due to late arriving aircraft followed by the cause of the national aviation system and air carrier.

These series of delays cause a serious financial burden on airlines. In 2010, the Federal Aviation Administration commission estimated that flight delays cost the airline companies \$8 billion a year, most of which due to increased budget on crews, fuel and maintenance

Overall, the findings of this study can provide a high-profile achievement by addressing aviation delay problems with a robust prediction model and helping people and businesses better on planning their flights.

DATA GATHERING

Airline On-Time Performance Data: is available on The Bureau of Transportation Statistics' website.

Weather Data: was obtained from Iowa State University's Environmental Mesonet Platform.

Airport Data: obtained from The Bureau of Transportation Statistics' website manually

ICAO Codes: acquired from OpenFlight dataset.

FLOW CHART

EXPLORATORY DATA ANALYSIS

BUSIEST AIRLINES AND AIRPORTS

Airline On-Time Performance and Delay/Cancellation Percentages

AIRLINE ON-TIME PERFORMANCE

AIRLINE ON-TIME PERFORMANCE PER AIRLINE COMPANIES AND AIRPORTS

An Overview of Average Amount of Delay by Hourly Intervals, Week Days, and Combined

EFFECT OF DEPARTURE TIME AND WEEKDAYS OF A FLIGHT ON DEPARTURE DELAY

Average Amount of Daily Delay for Each Quarter with Emphasized Shaded Area Around National Holidays

TRENDS BY QUARTERS

TOTAL
NUMBER OF
FLIGHTS ON
AVERAGE
AMOUNT OF
DELAY

Total Number of Flights per Day in 2018

NATIONAL HOLIDAY'S EFFECT ON TOTAL NUMBER FLIGHTS

TOTAL NUMBER OF FLIGHTS (DAILY) DISTRIBUTION PER WEEKDAY

EFFECT OF WEATHER CONDITIONS ON DELAYS AND CANCELLATIONS

EFFECT OF WIND SPEED AND DIRECTION ON WEATHER CAUSED DELAYS

EFFECT OF WIND SPEED AND DIRECTION ON WEATHER CAUSED CANCELLATIONS

ORIGIN-DESTINATION PAIR AVERAGE AMOUNT OF DELAY

LATE AIRCRAFT DELAYS

FEATURE ENGINEERING

Time: We start with first and foremost feature for a delayed flight: time-related data. These features will be dummy coded in the modeling part.

Holidays: For particular holidays, such as New Year's Day and Thanksgiving Day, average amount of delay is increased the set threshold, 15 minutes.

Number of Flights: Number of flights is not a function of how close a flight to the federal holidays. Number of flights can cause average amount of delay.

Airline and Airports: Certain airlines and/or airports have better performance than others.

Weather: Extreme weather conditions have an adverse effect on flight delays and cancellation.

Late Aircraft Delay: Almost half of the flight delays caused by late aircraft. It is crucial to take into account this effect.

LOGISTIC REGRESSION

LOGISTIC REGRESSION (BASELINE)

Few steps before modeling:

- One Hot Encoding: On categorical columns
- Data Splitting: 75-25
- Resampling: Random Over Sampling
- Hyperparameter Tuning with Cross Validation: C and class_weight
- Scaling: MaxAbsScaler

Origin-Destination Slicing

LOGISTIC REGRESSION (BASELINE)

Logistic Regression (Baseline)	Average Performance Metrics
Precision (Delayed Class)	0.80
Recall	0.50
F1-Score	0.61
AUC	0.83
AP	0.76
Training Accuracy	0.79
Testing Accuracy	0.79

LOGISTIC REGRESSION (BASELINE)

LOGISTIC REGRESSION

Performance Metrics	Baseline	Logistic Regression
Precision (Delayed Class)	0.80	0.70
Recall	0.50	0.74
F1-Score	0.61	0.72
AUC	0.83	0.87
AP	0.76	0.81
Training Accuracy	0.79	0.80
Testing Accuracy	0.79	0.80

LOGISTIC REGRESSION

CONCLUSIONS AND FUTURE WORK

CONCLUSION AND FUTURE WORK

Over sampling and cross validation improved prediction significantly

SMOTE is computationally expensive

Achieved over-fitting

Late aircraft feature is the most important one

One hot encoding helped in terms of precision and recall metrics

Focus on second, third order time dependencies

Additional feature might help in increasing model performance

More of available data

RECOMMENDATION FOR CLIENTS

Our model can help airline companies to pinpoint underlying causes of flight delays so that they can improve their service

Companies and booking agencies can provide probability of a flight being delayed early to their customers at the time of booking or they can build early alert system in order to avoid wait times at the airport

Passengers can take advantage of flight delay prediction models to schedule their flights to minimize their losses in time, business, and money

Thank you!

For your questions, please email to sahin.csci@gmail.com