NOIP H₂O(2)

题目名称	inverse	xor	mole
程序文件名	inverse	xor	mole
输入文件名	inverse.in	xor.in	mole.in
输出文件名	inverse.out	xor.out	mole.out
每个测试点时限	1s	2s	3s
内存限制	64M	128M	128M
测试点数目	10	10	10
每个测试点分值	10	10	10
是否有部分分	无	无	无
试题类型	传统	传统	传统

提交源程序须加后缀

对于 Pascal 语言	inverse.pas	xor. pas	mole.pas
对于 C 语言	inverse.c	xor.c	mole.c
对于 C++语言	inverse.cpp	xor.cpp	mole.cpp

测评环境:

Intel(R) Core(TM) i3-2370M CPU @ 2.40GHz, 4.00GBRAM Cena 0.8.2 @Microsoft Windows 7 Home Basic Service Pack 1 C++选手注意 Windows XP 及以下版本请使用%I64d 输出 64 位整数。

对于全部题测评时不开启编译优化开关-02

逆元 (inverse)

Description

在 $mod\ P$ 意义下,对于已知的正整数 a,我们如果能找到另一个正整数 b,使 $ab=1\ mod\ P$,则称 a 是可逆的,并称 b 是 a 的逆元。

显然,一个数如果存在逆元,那么它的逆元是唯一的。

现在我们要求 1~P-1 中所有在 mod P 意义下存在逆元的数的逆元之和。

(答案可能很大, mod 1000000009 后输出即可)

Input

一行一个正整数 P(P>=2)。

Output

一行一个正整数,即为所求答案 mod 1e9+9 后的值。

Sample Input

5

Sample Output

10

数据范围

总共有 10 个数据点

数据点 1~2: P<=1000

的数据点 3~4: P<=1e7, P 是质数

数据点 5: P<=1e14, P 是质数

数据点 6~7: P<=1e6

数据点 8~9: P<=1e14

数据点 10: P<=1e18, 保证 P 的最大质因子<100

异或和 (xor)

Description

有一个初始长为 n 的序列,序列上每个位置有一个小于 maxint 的非负整数,我们总共要执行 q 次操作,操作共三种类别:

- 1. 在序列的末尾加入一个新的数 x (记做 1 x)
- 2. 删除序列的第 k 个数 (保证当前序列长>=k,记做 2 k)
- 3. 求序列第 L 个数到第 R 个数的异或和 (保证当前序列长>=R, 包含 L 和 R, 记做 3 L R) 对于第三种操作,我们要在新的一行输出答案 (即若第三种操作共有 y 次, 我们最终要输出 y 行, 每行一个整数, 对应于该次所求答案)。

Input

第1行输入2个用空格隔开的正整数, n, q.

第2行n个非负整数表示初始序列各位置的值。

接下来输入 q 行,每行共有 2~3 个空格隔开的正整数,表示以上三种操作。

Output

输出若干行,第 i 行一个整数表示第 i 次查询的答案。

Sample Input

- 5 5
- 1 2 3 4 5
- 3 1 3
- 2 2
- 3 1 3
- 1 6
- 3 3 5

Sample Output

0

6

7

数据范围

共有10个数据点。

数据点 1~3: n, q<=1000

数据点 $4^{\sim}5$: n, q<=100000, 所有的操作中不存在操作 2

数据点 6° 7: n, q<=100000, 所有的操作中不存在操作 1

数据点 8~10: n, q<=100000

鼹鼠(mole)

Description

n 个洞,由 n-1 条隧道连接,第 i (i>1)个洞都会和第 floor (i/2)个洞间有一条隧道,第 i 个洞内有 ci 个食物能供最多 ci 只鼹鼠吃。一共有 m 只鼹鼠,第 i 只鼹鼠住在第 pi 个洞内,一天早晨,前 k 只鼹鼠醒来了,而后 n-k 只鼹鼠均在睡觉,前 k 只开始觅食,最终他们都会到达某一个洞,使得所有洞的 ci>=该洞内醒着的鼹鼠个数。在每一次觅食行动中,鼹鼠们希望所有鼹鼠的移动距离总和最小,现对于所有的 1<=k<=m,输出前 k 只鼹鼠觅食时的最小移动距离总和(每次觅食是相独立的,其后的觅食所有鼹鼠仍从所住洞出发)。

Input

第 1 行两个数 n,m,表示有 n 个洞, m 只鼹鼠。

第2行n个整数ci表示第i个洞的食物数。

第3行m个整数pi表示第i只鼹鼠所在洞pi。

Output

输出一行 m 个整数, 第 i 个整数表示当 k=i 时最小的鼹鼠行动路径总长度。

Sample Input

5 4

0 0 4 1 1

2 4 5 2

Sample Output

1 1 2 4

样例解释

数据范围

共有10个数据点。

数据点 1~3 n, m<=10

数据点 4~6 n, m<=100

数据点 7~10 n, m<=100000

GOOD LUCK FOR NOIP!