Sensitivity Analysis

© Copyright 2017, THE HOSPITAL FOR SICK CHILDREN AND THE COLLABORATING INSTITUTIONS.

All rights reserved in Canada, the United States and worldwide. Copyright, trademarks, trade names and any and all associated intellectual property are exclusively owned by THE HOSPITAL FOR Sick CHILDREN and the collaborating institutions. These materials may be used, reproduced, modified, distributed and adapted with proper attribution.

Brief note NMB in CEA

- Consider a CEA that compares D strategies in terms of their effectiveness, E, and costs, C.
- The net benefit of a given strategy is often considered in monetary terms and referred to as Net Monetary Benefit (NMB).
- The **NMB** for strategy d is defined as

$$NMB_d = E_d \lambda - C_d$$

• λ is the willingness-to-pay (WTP) or cost-effectiveness threshold

Term	Concept	Other terms	Model/method
Heterogeneity	Variability between patients that can be attributed to characteristics of those patients		Microsimulation

Term	Concept	Other terms	Model/method
Heterogeneity	Variability between patients that can be attributed to characteristics of those patients		Microsimulation
Stochastic uncertainty	Random variability in outcomes between identical patients	Monte Carlo error/ first-order uncertainty	Microsimulation

Term	Concept	Other terms	Model/method
Heterogeneity	Variability between patients that can be attributed to characteristics of those patients		Microsimulation
Stochastic uncertainty	Random variability in outcomes between identical patients	Monte Carlo error/ first-order uncertainty	Microsimulation
Parameter uncertainty	The uncertainty in estimation of the parameter of interest	Second-order uncertainty	All models / Sensitivity analysis

Term	Concept	Other terms	Model/method
Heterogeneity	Variability between patients that can be attributed to characteristics of those patients		Microsimulation
Stochastic uncertainty	Random variability in outcomes between identical patients	Monte Carlo error/ first-order uncertainty	Microsimulation
Parameter uncertainty	The uncertainty in estimation of the parameter of interest	Second-order uncertainty	All models / Sensitivity analysis
Structural uncertainty	The assumptions inherent in the decision model	Model uncertainty	All models

Term	Concept	Other terms	Model/method
Heterogeneity	Variability between patients that can be attributed to characteristics of those patients		Microsimulation
Stochastic uncertainty	Random variability in outcomes between identical patients	Monte Carlo error/ first-order uncertainty	Microsimulation
Parameter uncertainty	The uncertainty in estimation of the parameter of interest	Second-order uncertainty	All models / Sensitivity analysis
Structural uncertainty	The assumptions inherent in the decision model	Model uncertainty	All models

Parameter Uncertainty

- We have imperfect data about the input parameters and are therefore uncertain about the true parameter value
- Accounts for the likelihood of the values of each of the inputs and their effect on the model outputs
- We use distributions of inputs to reflect current knowledge on the parameters

Distributions

Distribution	Parameter modeled	Form	Comment
Uniform	Any	Range low-high	All values are equally likely. Uninformative distribution
Triangular	Any	Minimum, maximum, likeliest	
Beta	Probability Quality of life weights (utility)	Beta (r,n): $r =$ number of events and $n =$ number of patients. For observed mean μ and standard error: $r = \mu n$ $n = (\mu(1 - \mu)/s^2) - 1$	Bounded between 0 and 1
Dirichlet	Probability in the context of multiple events		Extension of the beta distribution, for multiple events

Distributions (2)

Distribution	Parameter modeled	Form	Comment
Lognormal	Rate Relative risk Hazard rate ratio Odds ratio Costs	In(parameter) has a normal distribution with mean and standard error	Values >0, positively skewed
Gamma	Resource use Costs	Gamma (α,β) For observed mean μ and standard error s: $\alpha = \mu^2/s^2$ $\beta = \mu/s^2$	Values >0, positively skewed
Truncated			Restricting the domain of some other probability distribution
Histogram	Any	non-parametric	Based on trial data: observed relative frequency per value or per interval
Bootstrap	Any	non-parametric	Based on trial data: simulated relative frequency per value

Sensitivity Analysis

- Vary input parameters within plausible ranges
- For which values is each strategy optimal?
- Deterministic sensitivity analysis (DSA)
 - One-way analysis: vary one parameter, hold rest fixed
 - Two-way analysis: vary two parameters, hold rest fixed
- Probabilistic sensitivity analysis (PSA)
 - Simultaneously vary input parameters by randomly sampling from appropriate probability distributions
 - How often is each alternative cost-effective?
 - What strategy has the highest expected net benefit

Deterministic Sensitivity Analysis

 Systematically vary one single parameter over range of values, keeping all others fixed

- For each value of the parameter, calculate the expected outcomes under each strategy
- Identify which strategy is preferred for each parameter value

Probability of early detection (Primary care)

2	0	0	/
၁	U	1	0

35%

40%

45%

50%

55%

60%

65%

Probability of	Life Expectancy		
early detection (Primary care)	Routine practice	Primary Care	Hospital Care
30%			
35%			
40%			
45%			
50%			
55%			
60%			
65%			

Probability of	Life Expectancy		
early detection (Primary care)	Routine practice	Primary Care	Hospital Care
30%	3.1	2.8	3.7
35%	3.1	3.1	3.7
40%	3.1	3.4	3.7
45%	3.1	3.7	3.7
50%	3.1	4.0	3.7
55%	3.1	4.3	3.7
60%	3.1	4.6	3.7
65%	3.1	4.9	3.7

- Systematically vary a single parameter over range of uncertainty, keeping all others fixed
 - p_PCed = 30%; = 40%; = 50%, etc...
- For each parameter value, calculate the expected outcomes under each strategy
- Identify which strategy is preferred

One-way sensitivity analysis

Two-Way Sensitivity Analysis

 Systematically vary two parameters over range of uncertainty, keeping all others fixed

```
p_PCed = 25%, p_HCed = 30%

p_PCed = 25%, p_HCed = 40%

p_PCed = 25%, p_HCed = 50%

p_PCed = 30%, p_HCed = 30%

p_PCed = 30%, p_HCed = 40%

etc...
```

 Particularly useful if one parameter influences the impact of the other on the optimal decision

Two-Way Sensitivity Analysis

Two-way sensitivity analysis Net Monetary Benefit

Probabilistic Sensitivity Analysis (PSA)

Probabilistic Sensitivity Analysis

Probabilistic Sensitivity Analysis (PSA)

Probabilistic Sensitivity Analysis (PSA)

Remember!

Transition Matrix Calculations

Transition probabilities as a matrix

		io: Healthy	Sick	Dead		
::	Healthy	0.75	0.20	0.05		
From:	Sick	0	0.85	0.15	=	Р
	Dead	0	0	1.0		

Calculated cohort distribution

$$\begin{bmatrix} x_1 & & & x_0 \\ 0.75 & 0.20 & 0.05 \end{bmatrix} = \begin{bmatrix} 1.0 & 0.0 & 0.0 \end{bmatrix} \begin{bmatrix} 0.75 & 0.20 & 0.05 \\ 0 & 0.85 & 0.15 \\ 0 & 0 & 1.0 \end{bmatrix}_{25}$$

Update matrix structures for

PSA iteration

Transition probability matrix **P**

To:

 $\mathbf{P_1} = \begin{array}{c} \vdots \\ \vdots \\ \vdots \\ \vdots \\ Dead \end{array}$

Healthy	Sick	Dead
1 – p_HS – p_HD	p_HS	p_HD
0	1 – p_SD	p_SD
0	0	1

Update matrix structures for PSA iteration (2)

Markov Trace M

$$\mathbf{M_1} = \begin{bmatrix} \text{Cycle 0} & 1 & 0 & 0 \\ \text{Cycle 1} & 0.97 & 0.02 & 0.01 \\ \vdots & \vdots & \vdots & \vdots \\ \text{Cycle n} & 0 & 0 & 1.0 \end{bmatrix}$$

Dead

Vector of cycle's cost/outcomes

$$\mathbf{c_1} = \begin{bmatrix} \mathbf{C_H} \\ \mathbf{C_S} \\ \mathbf{0} \end{bmatrix}$$

$$\mathbf{e_1} = \begin{bmatrix} e_H \\ e_S \\ 0 \end{bmatrix}$$

Calculating total costs & effects

Total effects (TE):

$$E_1 = \mathbf{M}_1 \, \mathbf{e}_1$$

$$TE_1 = \iota_T E_1$$

Total costs (TC):

$$C_1 = \mathbf{M}_1 \, \mathbf{e}_1$$
$$TC_1 = \iota_T C_1$$

Monetary Benefit (NMB):

$$NBM_1 = TE_1 \lambda - TC_1$$

 $\iota_T: 1 \times T$ vector of ones

 λ : Willingness-to-pay or cost-effectiveness threshold

Presenting the PSA results

Calculating total costs & effects (2)

Total effects (TE):

$$E_2 = \mathbf{M_2} \, \mathbf{e}_2$$

$$TE_2 = \iota_T E_2$$

Total costs (TC):

$$C_2 = \mathbf{M_2} \, \mathbf{e}_2$$
$$TC_2 = \iota_T C_2$$

Monetary Benefit (NMB): NBM_2 :

$$NBM_2 = TE_2 \lambda - TC_2$$

 ι_T : 1 × T vector of ones

 λ : Willingness-to-pay or cost-effectiveness threshold

Presenting the PSA results (2)

Presenting the PSA results (3)

Example of PSA dataset

# Sim	Param 1	Param 2	Param 3	Param 4	NMB A	NMB B	NMB C	
1	0.8878	1.5732	0.2263	0.4163	442531	446259	445305	
2	1.1635	2.1315	0.1223	0.2879	443420	445029	445305	
3	0.6734	1.6928	0.0587	0.3332	470225	448650	445305	
4	0.6551	2.0667	0.0468	0.3559	475179	442967	445305	
5	0.8546	2.5707	0.1000	0.3562	454703	436838	445305	
6	0.5778	1.3295	0.3880	0.1979	440600	466317	445305	
7	1.0599	1.9610	0.0522	0.2008	456628	453941	445305	
8	0.5983	1.7325	0.1957	0.3190	449875	448901	445305	
9	1.0920	1.4737	0.1201	0.3320	445512	451526	445305	
10	0.9115	1.1154	0.2729	0.6097	440091	444312	445305	

Decision Uncertainty

 The probability that a given strategy, d, is costeffective

$$\Pr(CE)_d = \frac{N_d}{N}$$

• where N_d is the number of simulations in which strategy d has the maximum net benefit and N is the total number of PSA samples.

Cost-Effectiveness Acceptability Curves (CEAC)

- CEAC display the <u>probability</u> that each strategy is cost-effective given a certain willingness-to-pay (WTP) threshold
- The representation of $Pr(CE)_d$ for all D strategies as a function of λ

Pr(CE)_d

Construction of CEAC

$$N_A = 5$$
; $N_B = 3$; $N_C = 2$

$$N = 10$$

# Sim	Param 1	Param 2	Param 3	Param 4	NMB A	NMB B	NMB C	Best Strategy
1	0.8878	1.5732	0.2263	0.4163	442531	446259	445305	В
2	1.1635	2.1315	0.1223	0.2879	443420	445029	445305	С
3	0.6734	1.6928	0.0587	0.3332	470225	448650	445305	Α
4	0.6551	2.0667	0.0468	0.3559	475179	442967	445305	Α
5	0.8546	2.5707	0.1000	0.3562	454703	436838	445305	Α
6	0.5778	1.3295	0.3880	0.1979	440600	466317	445305	В
7	1.0599	1.9610	0.0522	0.2008	456628	453941	445305	Α
8	0.5983	1.7325	0.1957	0.3190	449875	448901	445305	Α
9	1.0920	1.4737	0.1201	0.3320	445512	451526	445305	В
10	0.9115	1.1154	0.2729	0.6097	440091	444312	445305	С

$$Pr(CE)_A = \frac{5}{10} = 0.5$$

$$Pr(CE)_A = \frac{5}{10} = 0.5$$
 $Pr(CE)_B = \frac{3}{10} = 0.3$ $Pr(CE)_B = \frac{2}{10} = 0.2$

Cost-effectiveness acceptability curves (CEACs)

Cost-effectiveness acceptability curves (CEACs)

Cost-Effectiveness Acceptability Frontier (CEAF)

- CEAF displays which strategy has <u>highest expected</u> net benefit given a certain WTP threshold
- Let $NMB_{i,d}$ be the NMB for the i-th simulation of the PSA data set for strategy d,

and \overline{NMB}_d be the expected NMB of all D strategies averaged across all N simulations of a PSA, where the expected \overline{NMB}_d is defined as

$$\overline{NMB}_d = \frac{1}{N} \sum_{i=1}^{N} \overline{NMB}_{i,d} \, \forall d \in [1, ..., D]$$

• Then, the **optimal strategy** based on the **highest** expected net benefit, d^* , is defined as:

$$d^* = \max_{d \in [1, \dots, D]} \{ \overline{NMB}_d \}$$

Construction of CEAF

# Sim	Param 1	Param 2	Param 3	Param 4	NMB A	NMB B	NMB C	Best Strategy
1	0.8878	1.5732	0.2263	0.4163	442531	446259	445305	В
2	1.1635	2.1315	0.1223	0.2879	443420	445029	445305	С
3	0.6734	1.6928	0.0587	0.3332	470225	448650	445305	А
4	0.6551	2.0667	0.0468	0.3559	475179	442967	445305	А
5	0.8546	2.5707	0.1000	0.3562	454703	436838	445305	А
6	0.5778	1.3295	0.3880	0.1979	440600	466317	445305	В
7	1.0599	1.9610	0.0522	0.2008	456628	453941	445305	А
8	0.5983	1.7325	0.1957	0.3190	449875	448901	445305	А
9	1.0920	1.4737	0.1201	0.3320	445512	451526	445305	В
10	0.9115	1.1154	0.2729	0.6097	440091	444312	445305	С
			Expect	d NMB ->	451876	448474	445305	

Cost-effectiveness acceptability curves (CEACs) and frontier (CEAF)

Cost-effectiveness acceptability curves (CEACs) and frontier (CEAF)

Limitations of CEACs

- Only provide certain level of comfort in a decision but do not influence decision making
- Not actual influence on policy recommendation
- Could be misleading -> the strategy that is most likely to be costeffective should not be conflated with the strategy that is optimal in expectation in the decision-making process

Limitations of CEACs and CEAF

- Neither capture the magnitude of the net benefit lost in the proportion of PSA samples when chosen strategy is not costeffective
- The expected loss in net benefits is truly the concern of the decision-maker because this represents the foregone benefits resulting from having chosen a given strategy
- Do not communicate the ordinal information in the ranking of the strategies by their expected benefits
 - Useful when implementing the optimal strategy is not feasible.

DARTH Workgroup

Fernando Alarid-Escudero, PhD¹ Eva A. Enns, MS, PhD² M.G. Myriam Hunink, MD, PhD³,⁴ Hawre J. Jalal, MD, PhD⁵ Eline M. Krijkamp, MSc³ Petros Pechlivanoglou, PhD6

In collaboration of:

- ¹ Drug Policy Program, Center for Research and Teaching in Economics, Aguascalientes, Mexico
- ² University of Minnesota School of Public Health, Minneapolis, MN, USA
- ³ Erasmus MC, Rotterdam, The Netherlands
- ⁴ Harvard T.H. Chan School of Public Health, Boston, USA
- ⁵ University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
- ⁶ The Hospital for Sick Children, Toronto and University of Toronto, Toronto ON, Canada

www.darthworkgroup.com

Erasmus MC
Netherlands Institute
for Health Sciences

 $oxtit{@}$ Copyright 2017, THE HOSPITAL FOR SICK CHILDREN AND THE COLLABORATING INSTITUTIONS.

All rights reserved in Canada, the United States and worldwide. Copyright, trademarks, trade names and any and all associated intellectual property are exclusively owned by THE HOSPITAL FOR Sick CHILDREN and the collaborating institutions. These materials may be used, reproduced, modified, distributed and adapted with proper attribution.

http://darthworkgroup.com/

https://github.com/organizations/DARTH-git

https://www.linkedin.com/groups/8635339

@DARTHworkgroup

© Copyright 2017, THE HOSPITAL FOR SICK CHILDREN AND THE COLLABORATING INSTITUTIONS.

All rights reserved in Canada, the United States and worldwide. Copyright, trademarks, trade names and any and all associated intellectual property are exclusively owned by THE HOSPITAL FOR Sick CHILDREN and the collaborating institutions. These materials may be used, reproduced, modified, distributed and adapted with proper attribution.