Bochnak - Real Algebraic Geometry

ashiato45 take notes

2016年3月11日

Ordered Fields, Real Closed Fields

Ordered Fields, Real Fields

- (Definition 1.1.1, ordering of a field): \leq is an ordering of a field $F \iff$
 - 1. (total): \leq is a total.
 - 2. (addition): $x \le y \implies x + z \le y + z$
 - 3. (non-negative and mult.): $0 \le x$, $0 \le y \implies 0 \le xy$.
- (Small prop.): $x \le y, z \ge 0 \implies xz \le yz$. $\bigcirc x \le y \iff 0 \le y-x \iff 0 \le (y-x)z \le 0 \le yz-xz \iff 0 \le (y-x)z \le 0 \le yz-xz$
- Let's define a ordering of the field of rational function $\mathbb{R}(X)$. (Think X as "infinite small").
- (Example 1.1.2): There exists the unique ordering of $\mathbb{R}(X)$ satisfying
 - it preserves the ordering of \mathbb{R} .
 - -X is smaller than any positive real number.
 - X is positive.

We prove the ordering is unique if any first. Let FC(f) is the coefficient of the lowest term of f for $f \in \mathbb{R}[X]$. (FC stands for Following Coefficient twinned with Leading Coefficient) Let $\mathbb{R}[X]^+ = \mathbb{R}[X]$ $\{f \in \mathbb{R}[X]; FC()\}$

- 1. $0 < X \cap \text{Requirement}$.
- 2. $\forall a > 0$: X < a \(\text{Requirement.}
- 3. \leq preserves the ordering of \mathbb{R} . \bigcirc Requirement.
- 4. $\forall a > 0$: $\forall n \ge 0$: $X^{n+1} < aX^n$
- 5. $\forall a > 0$: $\forall m > n \ge 0$: $X^m < aX^n$
- 6. $\forall a > 0, b \in \mathbb{R}$: $\forall m > n \ge 0$: $bX^m < aX^n$
- 7. $\forall a > 0, b \in \mathbb{R}$: $\forall m > n \ge 0$: $0 < bX^m + aX^n$
- 8. $\forall P(X) \in \mathbb{R}[X]^+ : 0 < P(X)$
- 9. $\forall Q(X) \in \mathbb{R}[X]^+ \colon 0 < \frac{1}{Q(X)}$
- 10. $\forall P(X), Q(X) \in \mathbb{R}[X]^+ : 0 < \frac{P(X)}{Q(X)}$ 11. $\forall P(X) \in \mathbb{R}[X]^-, Q(X) \in \mathbb{R}[X]^+ : \frac{P(X)}{Q(X)} < 0$ 12.

$${}^{\forall}P(X), R(X) \in \mathbb{R}[X], Q(X), S(X) \in \mathbb{R}[X]^{+} : \begin{cases} FC(PS - RQ) > 0 & \rightarrow \frac{P}{Q} > \frac{R}{S} \\ FC(PS - RQ) = 0 & \rightarrow \frac{P}{Q} = \frac{R}{S} \end{cases}. \tag{1}$$

$$FC(PS - RQ) < 0 & \rightarrow \frac{P}{Q} < \frac{R}{S} \end{cases}$$

This requirement defines a binary relation < (check the sign of FC of the numerator*1). We prove it is

 $^{^{*1}}$ denominator:分母、numerator:分子

exactly an ordering.

- (Reflexivity): Obvious.
- (Anti-symmetry): Obvious.
- (Total): Obvious.
- (Non-negative and mult.): Assume $\frac{P}{Q} \geq 0$ and $\frac{R}{S} \geq 0$. $FC(P) \geq 0$ and $FC(R) \geq 0$ hold. Paying attention to managing lowest terms, $FC(PR) = FC(P)FC(R) \ge 0$. This means $\frac{PR}{QS} \ge 0$.
- (Transitivity): Assume $\frac{P}{Q} \leq \frac{R}{S}, \frac{R}{S} \leq \frac{T}{U}$ and $Q, S, U \in \mathbb{R}[X]^+$. By (Non-negative and mult.), they are equivalent to $PSU \leq RQU$ and $RQU \leq TQS$. We write for a polynomial f f's n-th coefficient f_n . For a pair of polynomials (f,g), let $\varphi(f,g)$ is an n such that $f_0=g_0,\ldots,f_{n-1}=g_{n-1},\,f_n\neq g_n$. (If f=g,let $\varphi(f,g) = \infty$.) $\varphi(PSU,TQS) = \min(\varphi(PSU,RQU),\varphi(RQU,TQS))$ holds. Let $N = \varphi(PSU,TQS)$.
 - * If $N = \infty$ then $\varphi(PSU, RQU) = \varphi(RQU, TQS) = \infty$. This means PSU = RQU = TQS.
 - * If $N < \infty$ then $(PSU)_0 = (RQU)_0 = (TQS)_0, \dots, (PSU)_{N-1} = (RQU)_{N-1} = (TQS)_{N-1}$ holds. Moreover, $(PSU)_N \leq (RQU)_N$ and $(RQU)_N \leq (TQS)_N$ hold. This means $PSU \leq TQS$.
- (Addition): Obvious.
- Define \leq of $\mathbb{R}(X)$ as

1.

$$[a_k X^k + \dots + a_n X^n \ge 0, \ a_k \ne 0, \ k \le n] \iff [a_k > 0]$$

$$(2)$$

2.

$$[P(X)/Q(X) > 0] \iff [P(X)Q(X) > 0] \tag{3}$$

This implies immediately

$$\dots < X^2 < X < 1 < X^{-1} < X^{-2} < \dots$$
 (4)

- (Small prop.): These two rules generates an ordering of a field (Def. 1.1.1). \(\rightarrow\)TODO.
- (Small prop.): $\mathbb{R}(X)$ is not archimedean *2 i.e.

$$\exists P(X) \in \mathbb{R}(X) \colon \forall n \in \mathbb{N} \colon n < P(X). \tag{5}$$

 \bigcirc Take P(X) = 1/X. Fix $n \in \mathbb{N}$. X < 1/n holds.

$$X < \frac{1}{n} \iff \frac{1}{n} - X > 0$$

$$\iff \frac{1 - nX}{n} > 0$$

$$\iff 1 - nX > 0$$

$$(6)$$

$$(7)$$

$$\iff (8)$$

$$\iff \frac{1 - nX}{n} > 0 \tag{7}$$

$$\iff 1 - nX > 0 \tag{8}$$

$$\iff \frac{1}{X} - n > 0 \tag{9}$$

$$\iff \frac{1}{X} > n.$$
 (10)

- This implies 1/X is "infinitely large", and X is "infinitely small".
- (Definition, cut): (This is probably not the normal definition...) A pair of subsets of $\mathbb{R}(I,J)$ is a cut \iff
 - $-I \cap J = \emptyset$
 - $-I \cup J = \mathbb{R}$
 - $-I < J \text{ i.e. } \forall i \in I \colon \forall j \in J \colon i < j.$
- An ordering of $\mathbb{R}(X)$ deterimnes a cut (I, J) where

$$I = \{ x \in \mathbb{R}; x < X \}, J = \{ x \in \mathbb{R}; X < x \}.$$
(11)

^{*2} Accumulating $1_{\mathbb{R}(X)}$ finitely overwhelms any fixed element of $\mathbb{R}(X)$

(an ordering of
$$\mathbb{R}(X)$$
) \rightsquigarrow (a cut of \mathbb{R}) (12)

Pay attention to forall $x \in \mathbb{R}$ either x < X or X < x holds because the ordering is total.

- (Definition, $-\infty, a_-, a_+, \infty$): Let $a \in \mathbb{R}$. $-\infty, a_-, a_+, \infty$ are defined with cuts.
 - $-\infty:=(\emptyset,\mathbb{R})$
 - $-\ a_{-}:=\left(\left[-\infty,a\right[,\left[a,\infty\right[\right)$
 - $-a_{+} := (]-\infty, a],]a, \infty])$
 - $+\infty := (\mathbb{R}, \emptyset)$
- (Small prop.): Y = -1/X is a bijection between $\{ \le (\mathbb{R}(X)) \}$; the cut of \le is $-\infty \}$ and $\{ \le (\mathbb{R}(Y)) \}$ of Def. 1.1.1.

○The bijection of \rightarrow part is defining a ordering $\mathbb{R}(Y)$ from a fixed ordering $\mathbb{R}(X)$ whose cut is $-\infty$. Define it as $P(Y) \geq 0 \iff P(-1/X) \geq 0$. We have to check the cut of P(Y) is $(]-\infty,0]$, $]0,\infty[)$. We have to check if 0 < Y and Y < (any positive). The other side is omitted.

- (Small prop.): $a \in \mathbb{R}$. Y = a X is a bijection between $\{ \leq (\mathbb{R}(X)) \}$; the cut of \leq is a_{-} $\}$ and $\{ \leq (\mathbb{R}(Y)) \}$ of Def. 1.1.1 $\}$.
- (Small prop.): $a \in \mathbb{R}$. Y = X a is a bijection between $\{ \leq (\mathbb{R}(X)) \}$; the cut of \leq is $a_+ \}$ and $\{ \leq (\mathbb{R}(Y)) \}$ of Def. 1.1.1 $\}$.
- (Small prop.): Y = 1/X is a bijection between $\{ \le (\mathbb{R}(X)) \}$; the cut of $\le \text{is} + \infty \}$ and $\{ \le (\mathbb{R}(Y)) \}$ of Def. 1.1.1.
- (Small prop.): These props states that for each cut, there exists the unique ordering. \bigcirc At Def. 1.1.1., we have already seen for cut $(]-\infty,0]$, $]0,\infty[$) the ordering whose cut is it is unique. These props states that the number of ordering whose cut is $-\infty, a_-, a_+, \infty$ equals to the number of Def. 1.1.1.'s ordering.
- (Small prop.): This is stated as: there exists bijection

{all orderings of
$$\mathbb{R}(X)$$
} $\simeq \{a_+; a \in \mathbb{R}\} \cup \{a_-; a \in \mathbb{R}\} \cup \{-\infty, +\infty\}$. (13)

- (Abuse of term.): By the above bijection, we also the orderings by cuts.
- (TODO, p8): Note that the sign of $f \in \mathbb{R}(X)$ for the ordering a_{-} is the sign of f on some small open interval $]a \epsilon, a[$.
- (Definition 1.1.3., cone): A cone P of a field *4 F is a subset P of F such that
 - (Addition): $x, y \in P \implies x + y \in P$
 - (Multiply): $x, y \in P \implies xy \in P$
 - (Square): $x \in K \implies x^2 \in P$

The cone P is said to be proper if $-1 \notin P$.

- (Small example): {0} is obviously a proper cone.
- (Definition 1.1.4., positive cone): Let (F, \leq) be an ordered field. The subset $P = \{x \in F; x \geq 0\}$ is called the positive cone of (F, <).
- (Proposition 1.1.5., ordering and cone): Let F be an ordered field. P be a cone.
 - $\ (F \text{ is ordered } (F, \leq) \text{ and } P \text{ is positive.}) \implies (P \cup (-P) = \mathbb{R}(X) \text{ and } P \text{ is proper.})$
 - $-(P \cup (-P) = \mathbb{R}(X) \text{ and } P \text{ is proper.}) \implies (F \text{ is ordered and its ordering is defined by } (x \leq y \iff y x \in P))$

○Prove the first half. Proving $-1 \ge 0$ is false is sufficient. Assume $-1 \ge 0$. By (non-negative and mult.), $1 = (-1) \cdot (-1) \le 0$. By (addition), adding +1 both sides yields $0 \le 1$. Combining them, $1 \le 0 \le 1$. This means 0 = 1. Contradiction.

Prove the last half.

- (Reflectivity): Let $x \in F$. Cones always contain 0 = x - x. This means $x \le x$.

^{*3} $-\infty$ is the cut defined already. Def 1.1.1's cut is $(]-\infty,0[\,,[0,\infty[)$.

^{*4} Need not be ordered.

- (Anti-symmetry): Let $x, y \in F$ and $x \le y$ and $y \le x$. $y x, x y \in P$ holds. Assume $x y \ne 0$. By (Multiply), $-(x-y)^2 = (y-x)(x-y) \in P$. Because $x-y \ne 0$, there exists $1/(x-y) \in F$. By (Square), $1/(x-y)^2 \in P$. $-(x-y)^2 \cdot 1/(x-y)^2 = -1 \in P$. This contradicts the properness, so x-y=0.
- (Transitivity): Let $x \leq y \in F$ and $y \leq z \in F$. $y x \in P$ and $z y \in P$ hold. By (Addition), $z x = (z y) + (y x) \in P$. This means $x \leq z$.
- (Total): Obvious from $P \cup (-P) = \mathbb{R}(X)$.
- (Addition): Obvious.
- (Non-negative and Mult.): Obvious.
- (Definition, sum of square): The set of sums of squares is denoted by $\sum F^2$.
- (Small prop.): $\sum F^2$ is a cone (not always proper). $\sum F^2$ is contained in every cone of F (smallest!). \bigcirc Obvious.
- (Lemma 1.1.7.): Let P be a proper cone of F.
 - (i) If $-a \notin P$ then $P[a] = \{x + ay; x, y \in P\}$ is a proper cone of F.
 - (ii) There exists an ordering of F and its positive cone P' such that $P \subset P'$.
 - \bigcirc (i) Assume that $-1 \in P[a]$. There exists $x, y \in P$ such that -1 = x + ay. (-a)y = x + 1 holds.
 - When y = 0: $-1 = x \in P$ holds, but this contradicts that P is proper and $-1 \notin P$.
 - When $y \neq 0$: There exists $1/y \in F$ and $1/y^2 \in P$ by the property of cones.

$$-a = \frac{x+1}{y} = \underbrace{y}_{\in P} \cdot \underbrace{\frac{1}{y^2}}_{\in P(\text{square})} \cdot (\underbrace{x}_{\in P} + \underbrace{1}_{\in P(\text{Square})}) \in P. \tag{14}$$

This contradicts the assumption.

Both case lead to contradiction, so $-1 \in P[a]$ is false. $-1 \notin P[a]$.

 \bigcirc (ii)

1. X: Let

$$\mathbb{X} = \{ Q' \subset F; P \subset Q', \ Q' \text{ is a proper cone} \}. \tag{15}$$

- 2. Q: \mathbb{X} is not empty because $P \in \mathbb{X}$. For a chain of \mathbb{X} , its union is a upper bound of it. We can apply the Zorn's lemma now, and we obtain a maximal element of \mathbb{X} . We name it Q, Q is a maximal element of \mathbb{X} .
- $3. \ Q \cup -Q = F?$
 - (a) a: Let $a \in F Q$.
 - (b) By (i), Q[-a] is a proper cone.
 - (c) Q is maximal (by 2), and Q[-a] is a proper cone containing Q (by b). Hence Q = Q[-a].
 - (d) Hence $-a \in Q$.
 - (e) (End of a): $Q \cup -Q = F$.
- 4. Q is proper (by 2) and $Q \cup -Q = F$ (by 3) imply (by Prop. 1.1.5.) the existence of an ordering \leq of F. And Q is positive in the ordering (by Prop. 1.1.5.).
- (Theorem 1.1.8): Let F be a field. The following properties are equivalent:
 - (i) F can be ordered.
 - (ii) The field F has a proper cone.
 - (iii) $-1 \notin \sum F^2$.
 - (iv) For every $x_1, \ldots, x_n \in F$,

$$\sum_{i=1}^{n} x_i^2 = 0 \implies x_1 = \dots = x_n = 0.$$
 (16)

 \bigcirc

- ($i \Rightarrow ii$): By Prop. 1.1.5., the positive cone of F is proper. So the positive cone satisfies the requirement.
- (ii \Rightarrow iii):
 - 1. Let the proper cone P.
 - 2. By (Small prop.), $\sum F^2$ is the smallest cone, so $\sum F^2 \subset P$.
 - 3. Hence

$$-1 \in F - P \subset F - (\sum F^2). \tag{17}$$

So

$$-1 \notin \sum F^2. \tag{18}$$

- (iii \Rightarrow iv):
 - 1. We prove the contraposition. Assume $\sum_{i} x_i^2 = 0$ and $x_1 \neq 0$.
 - 2. $-x_1^2 = \sum_{i=2}^n x_i^2$.
 - 3. Deviding both side by x_1^2 (by a, we can divide by $x_1 \neq 0$.)

$$-1 = \underbrace{\frac{1}{x_1^2} \sum_{i=2}^n x_i^2}_{\in \sum F^2} \underbrace{\sum_{Cone!} \sum}_{Cone!} F^2.$$
 (19)

- (iv \Rightarrow iii):
 - 1. We prove the contraposition. Assume $-1 \in \sum F^2$.
 - 2. There exists $a_1, \ldots, a_n \in F$ such that $-1 = \sum_{i=1}^n a_i^2$ (by 1).
 - 3. Hence $\sum_{i=1}^{n} a_i^2 + 1^2 = 0$.
- (Definition 1.1.9.): A field satisfying (Proposition 1.1.8.) is called real.
- (Small prop.): A real field has characteristic 0. \bigcirc Assume the characteristic is finite n. $\sum_{i=1}^{n} 1^2 = 0$. This contradicts to (Proposition 1.1.8)'s (iv).
- (Proposition 1.1.10.):
 - -F: a field such that $\mathbb{Q} \subset P$ (characteristic 0)
 - -P: a cone of F

Then

$$P = \bigcap \underbrace{\{Q; [\leq \text{ is an ordering of } F] \land [P \subset Q] \land [Q \text{ is a positive cone of } \leq]\}}_{:=\mathbb{X}}.$$
 (20)

 \bigcirc is obvious. We prove \supset .

- 1. a: Let $a \in F P$.
- 2. P is proper?
 - (a) Assume $-1 \in P$. (Proof by contradiction)
 - (b)

$$a = \underbrace{\frac{1}{4}}_{\in \sum F^2} \underbrace{\left[(1+a)^2 - \underbrace{(1-a)^2}_{-1 \in P} \underbrace{(1-a)^2}\right]}_{=1 \in \sum F^2} \in \sum_{\text{SoS is smallest}} P. \tag{21}$$

(the assumption $\mathbb{Q} \subset F$ supports the existence of 1/4)

- (c) This contradicts to 1.
- 3. $a \notin P$ (by 1), the properness of P (by 2) and (Lemma 1.1.7.) show that P[-a] is proper.
- 4. By (Lemma 1.1.7), there exists an order \leq and its positive cone Q such that $P[-a] \subset Q$ (because P[-a] is proper by 3).
- 5. $a \notin Q$?

- (a) Assume $a \in Q$. (proof by contradiction)
- (b) $-a \in Q$ because $-a \in P[-a] \subset Q$ (by 4).
- (c) $-a^2 \in Q$ because Q is a cone (by 4), 1 and 2.
- (d) $a \neq 0$ because $a \notin P$, P is a cone (cones always contain zero).
- (e) $1/a^2$ is valid and $1/a^2 \in Q$ because Q is a cone.
- (f) (c) and (e) say

$$-1 = \underbrace{-a^2}_{\in Q} \cdot \underbrace{(1/a^2)}_{\in Q} \in Q. \tag{22}$$

(g) This contradicts to the properness of Q ((Prop. 1.1.5) says the positive cone is proper.)

- 6. $P \subset P[-a] \subset Q$.
- 7. 4 and 6 says $Q \in \mathbb{X}$.
- 8. This shows

$$a \in F - Q \subset F - (\bigcap \mathbb{X}).$$
 (23)

9. (End of 1):

$$F - P \subset F - (\bigcap \mathbb{X}). \tag{24}$$

This means

$$\bigcap \mathbb{X} \subset P.$$
(25)

• (Corollary 1.1.11.): Let F be a field containing \mathbb{Q} . Then

$$\sum F^2 = \bigcap \{Q; [\le \text{ is an ordering of } F] \land [Q \text{ is a positive cone of } \le] \}$$
 (26)

Ouse (Prop. 1.1.10.) to $\sum F^2$.

1.2 Real Closed Fields

- (Fact): 体 F と、F 係数既約多項式 $f \in F[X]$ について、F/(f) は体になる。
- (代数拡大): 体 F' が F の代数拡大体であるとは、F' のすべての元が、F 係数多項式の根になっていること。体 F に、F 係数既約多項式 f の根を追加して体にすることができる。これは、「F にシンボル X を追加して、その X が f(X)=0 となる」という規則を追加することに外ならないので、F[X]/(f) は F の代数拡大となる。 (ただし、拡大したつもりでできていないことはありえる。)
- (Fact:代数的閉包): 体 F について、その代数拡大体で、代数的閉体になっているものが存在し、しかも一意である。これを \overline{F} と書くことがある。
- (Definition 1.2.1): real field F が real closed field である ⇔ F が 非自明な real algebraic extension を持たない i.e. F の真の代数的拡張 $F_1 \supset F$ で、
 - $-F_1$ が real field であり、
 - $-F_1$ が algebraic extension である

というようなものは存在しない。

- (Theorem 1.2.2.):キモだけ。
 - (i⇒ii):
 - *「hence, $F[\sqrt{a}]$ is not real」:真に拡張してしまっているので、「real field である」という方がおかしいということになる。
 - * 「only one possible ordering」: $\sum F^2 \text{ について、} F \text{ threal なので、} -1 \notin \sum F^2 \text{ となり、} \sum F^2 \text{ threal conc} \text{ in a proper cone in a concentration of the concentration}.$ Proposition 1.1.5. より、proper cone によって ordering が定まってしまう。

- * 「it remains to show that, if $f \in F[X]$ has…」:奇数次を持つ $f \in F[X]$ が F に根を持たなかったとする。 $\deg f = 1$ だと根を持つにきまっているから $\deg f > 1$ としてよい。 さらに、 $d = \deg f$ として、d より小さい奇数次までは根を持っていたとしてもよい。
 - すると、f は既約であるということになる。なぜなら、仮に分解できたら、奇数次を分解するのだから分解した因子のほうに d 次より小さい奇数次の多項式が出てきて、それが仮定より根を持つからである。
- *「The polynomial g_h is symmetric in ...」: Fact として、対称多項式は、その係数の基本対称式の和と 積 (つまり多項式) として書くことができる。
 - さらに、 y_1,\ldots,y_d を根に持つ多項式が f であり、f は F 係数だったのだから、根と係数の関係から y_1,\ldots,y_d の基本対称式は \in F であり、したがって $g_h\in F[X]$ である。
- * (range over Z): ハトノスを使う。
- * (The field F is real...): なぜか順序が逆に書いてあるので、 $a^2+b^2=(c^2+d^2)^2$ まで読めばできる。 c,d は、代数的閉体と仮定したので存在する。
- * (To conclude..): F の代数的拡張は、F[X]/(f) だが、F[i] は代数的閉体という仮定から、f が既約ならそれは 2 次以下であることがわかる (共役を根に持つから。)。(cf, $\mathbb C$ の 2 次拡大はない。)