10 Сложение электрических полей

Электрическое поле, создаваемое несколькими зарядами, можно рассматривать как наложение полей, создаваемых каждым зарядом в отдельности.

Принцип суперпозиции для напряженностей. Если заряды q_1, q_2, \ldots по отдельности создают в данной точке поля $\vec{E}_1, \vec{E}_2, \ldots$, то вместе они создают в данной точке поле

$$\vec{E} = \vec{E}_1 + \vec{E}_2 + \dots \tag{1}$$

Этот принцип можно проиллюстрировать для случая двух зарядов (рис. 1).

Рис. 1. Принцип суперпозиции для напряженностей

Положительный заряд q_1 создает в точке A поле \vec{E}_1 , а отрицательный заряд q_2 в этой же точке создает поле \vec{E}_2 . Согласно вышеуказанному принципу вместе они создают в точке A поле $\vec{E} = \vec{E}_1 + \vec{E}_2$ (рис. 1).

Напряженности полей в общем случае складываются векторно.

Принцип суперпозиции для потенциалов. Если заряды q_1, q_2, \ldots по отдельности создают поля с потенциалами $\varphi_1, \varphi_2, \ldots$ в данной точке, то вместе они создают поле, потенциал которого в данной точке равен

$$\varphi = \varphi_1 + \varphi_2 + \dots \tag{2}$$

Пусть снова имеется система двух зарядов (рис. 2).

Рис. 2. Принцип суперпозиции для потенциалов

Положительный заряд q_1 создает поле с потенциалом φ_1 в точке A, а отрицательный заряд q_2 — поле с потенциалом φ_2 в этой же точке. Тогда вместе они создают поле, потенциал которого в точке A равен $\varphi = \varphi_1 + \varphi_2$ (рис. 2).

Следует отметить, что потенциалу поля положительного заряда приписывают знак плюс, потенциалу поля отрицательного заряда — знак минус. Так, в ситуации на рис. 2 это правило дает: $\varphi_1 > 0$ и $\varphi_2 < 0$.