Stat 235 Exercise 1

- 1. If \mathcal{F} is a σ -algebra generated by a countable collection of disjoint sets $\{\Lambda_n\}$, such that $\bigcup_n \Lambda_n = \Omega$, show that each member of \mathcal{F} is just the union of countable subcollection of these Λ_n 's.
- 2. Let $(\Omega, \mathcal{F}, \mu)$ be a measure space and A an element of \mathcal{F} . Define \mathcal{G} to be the collection of sets in \mathcal{F} that are subsets of A and $\mu_0: \mathcal{G} \to [0, \infty]$ with $\mu_0(E) = \mu(E)$ for $E \in \mathcal{G}$. Show that (A, \mathcal{G}, μ_0) is a measure space.
- 3. Suppose that μ_1 and μ_2 are finite measures on a σ -algebra \mathcal{F} generated by the algebra \mathcal{A} . Show that, if $\mu_1(A) \leq \mu_2(A)$ holds for all A in \mathcal{A} , then it holds for all A in \mathcal{F} .
- 4. Let $(\Omega_n, \mathcal{F}_n, \mu_n)$ be measure spaces, n = 1, 2, ..., and suppose that the Ω_n are disjoint. Let $\Omega = \bigcup_n \Omega_n$, let \mathcal{F} consist of the sets of the form $A = \bigcup_n A_n$ with $A_n \in \mathcal{F}_n$ and for such an A let $\mu(A) = \sum_n \mu_n(A_n)$. Show that $(\Omega, \mathcal{F}, \mu)$ is a measure space.
- 5. Let $(\Omega, \mathcal{F}, \mu)$ be a σ -finite measure space with $\mu(\Omega) = \infty$. Show that for any $M < \infty$ there is some $A \in \mathcal{F}$ with $M < \mu(A) < \infty$.
- 6. Define for a sequence of numbers $\{x_n\}$ the quantity $\liminf x_n$ by $\liminf x_n = \sup_n \inf_{k \ge n} x_k$ and for a sequence of sets $\{A_n\}$ the set $\liminf A_n$ by $\liminf A_n = \bigcup_n \bigcap_{k \ge n} A_k$. Show that $\mu(\liminf A_n) \le \liminf \mu(A_n)$.
- 7. If μ^* is an outer measure and $\nu^*(E) = \mu^*(E \cap A)$, show that ν^* is monotone ($E \subset F$ implies $\nu^*(E) \leq \nu^*(F)$) and is countably subadditive.