

Na

Na⁺

Exploration of oxyfluoride frameworks as Na-ion cathodes

-Debolina Deb (Presenter),

4th Year Ph.D., Materials Engineering, IISc, debolinadeb@iisc.ac.in

Sai Gautam Gopalakrishnan (Supervisor), Assistant Professor, Materials Engineering, IISc

A paradigm shift to Na-ion battery

~200-600 Wh kg⁻¹

>490 Wh I⁻¹ >1000 cycles >40 Ah >3.5V

Li-ion battery for increasing energy demands

- 1. Choi, J. W., & Aurbach, D. (2016). *Nat. Rev. Mater.*, 1(4), 1-16.
- 2. Whittingham, M. S. (2012). *Proc. IEEE*, 100(Special Centennial Issue), 1518-1534.
- 3. Gifford, S. (2022). Faraday Institution. *Changes*, 2050(6), 500.
- 4. Fleischmann, J. et al. (2023). McKinsey & Company, 2-18.
- 5. IEA (2024), Global Critical Minerals Outlook 2024. IEA Paris. Licence: CC BY 4.0

Na-ion battery cathodes compared

^{1.} Yabuuchi, N. et al. (2014). Chem. Rev., 114(23), 11636-11682.

^{2.} Padhi, A. K. et al. (1997) J. Electrochem. Soc., 144(4), 1188.

^{3.} Shakoor, R. A. et al. (2012). *J. Mater. Chem.*, 22(38), 20535-20541.

^{4.} Jian, Z. et al. (2012). *Electrochem. Commun.*, 14(1), 86-89.

Explore the UNEXPLORED

Structural Framework

Composition ($Na_xMO_yF_{3-y}$): >260 mAhg⁻¹ theoretical capacity

PEROVSKITE

Na-TRANSITION METAL OXYFLUORIDE

^{1.} Evans, H. A. et al. (2020). *Nat. Rev. Mater.*, 5(3), 196-213.

^{2.} Goodenough, J. B. (2014). *Chem. Mater.*, 26(1), 820-829.

^{3.} Wang, Y. et al. (2024). *Nat. Rev. Mater.*, 9(2), 119-133.

$Na_xMO_yF_{3-y}$: Why yet UNEXPLORED?

Structural Framework

Composition ($Na_xMO_yF_{3-y}$): >260 mAhg⁻¹ theoretical capacity

PEROVSKITE

Na-TRANSITION METAL OXYFLUORIDE

Redox-active transition metal facilitate Na⁺ (de)intercalation

Difficulty in synthesis from stable fluoride precursors

^{1.} Evans, H. A. et al. (2020). *Nat. Rev. Mater.*, 5(3), 196-213.

^{2.} Goodenough, J. B. (2014). *Chem. Mater.*, 26(1), 820-829.

^{4.} Deng, D. (2017). ChemNanoMat, 3(3), 146-159.

^{3.} Wang, Y. et al. (2024). *Nat. Rev. Mater.*, 9(2), 119-133.

Oxyfluorides as Na cathode: Limited Studies

Perovskite oxyfluoride as Li cathode

Disordered rocksalt oxyfluoride as cathode

Li₂MO₂F as Li cathode Na₂MnO₂F as Na cathode

NOTE:

Li⁺ mobility unaffected

Na⁺ mobility in disordered rocksalt or amorphized framework not reported yet

- 1. Reddy, M. V. et al. (2006). *J. Power Sources*, 162(2), 1312-1321.
- 3. Kitajou, A. et al. (2018). *Batteries*, 4(4), 68.
- 2. Kuhn, A. et al. (2020). Inorg. Chem., 59(14), 10048-10058.

- 4. Xu, X. et al. (2021). *J. Electrochem. Soc.*, 168(8), 080521.
- 5. Shirazi Moghadam, Y. et al. (2022). ACS Mater. Lett., 5(1), 125-132.
- 6. Clément, R. J. et al. (2020). Energy Environ. Sci., 13(2), 345-373.

Na

Na⁺

Objective of the work

To assess feasibility of Perovskite-based Transition Metal Oxyfluoride as practical Na cathode

Considered Stoichiometries ($M^{4+/3+}$ redox-couple):

- I. Na_xMOF_2 (F-rich oxyfluoride; $0 \le x \le 1$)
- II. Na_{1 + x}MO₂F (O-rich oxyfluoride; $0 \le x \le 1$)

Workflow

STRUCTURE IDENTIFICATION

 Groundstate polymorph identification:
 MOF₂ (F-rich)

NaMO₂F (O-rich)

THERMODYNAMIC ANALYSIS

- Average voltage (V)
 prediction:
 MOF₂↔NaMOF₂
 NaMO₂F↔Na₂MO₂F
- Convex hull construction
 & energy above hull (E^{hull})
 for stability determination

KINETIC ANALYSIS

 Na-ion migration energy determination

Identify groundstate polymorph for perovskite MOF₂ & NaMO₂F

*M: Ti, V, Cr, Mn, Fe, Co, Ni

Search perovskites MOF₂ & NaMO₂F in ICSD

 $TiOF_2(Pm\overline{3}m)$

E.g., TiOF₂ available on ICSD

In absence of ICSD structures

Use ideal perovskite structures from ICSD as templates for MOF₂ & NaMO₂F

^{1.} Ong, S. P. et al. (2013). Comput. Mater. Sci., 68, 314-319.

Do DFT SCAN+*U* on select orderings to identify MOF₂ & NaMO₂F groundstate polymorph

*U values of M in their metal oxide considered;

Sodiate MOF_2 for $NaMOF_2$ & $NaMO_2F$ for Na_2MO_2F ; Do DFT SCAN+U

For Na-sites in:

■ NaMOF₂: A-sites in templates

■ Na₂MO₂F: Manually calculated (absence of 2 Na sites)

Groundstate Polymorph: Results

 $E_{\text{highest-energy polymorph}} - E_{\text{groundstate}}$

 $(Pm\overline{3}m)$ (P4mm) (Pbnm) (P63/mmc) $(R\overline{3}c)$ (P2/b)

Workflow

STRUCTURE IDENTIFICATION

 Groundstate polymorph identification:
 MOF₂ (F-rich)
 NaMO₂F (O-rich)

THERMODYNAMIC ANALYSIS

- Average voltage (V) prediction: MOF₂↔NaMOF₂ NaMO₂F↔Na₂MO₂F
- Convex hull construction
 & energy above hull (E^{hull})
 for stability determination

KINETIC ANALYSIS

 Na-ion migration energy determination

Average Voltage: Results

Energy above the hull (E^{hull}): Results

 $E^{hull} \approx Extent of Instability \propto Difficulty in Synthesis$

Convex hull (pseudo-ternary projection)

Stable compositions

- Metastable compositions \Diamond Other unstable compositions
- (s): solids
- (g): gas

Workflow

STRUCTURE IDENTIFICATION

 Groundstate polymorph identification:
 MOF₂ (F-rich)
 NaMO₂F (O-rich)

THERMODYNAMIC ANALYSIS

- Average voltage (V)
 prediction:
 MOF₂↔NaMOF₂
 NaMO₂F↔Na₂MO₂F
- Convex hull construction
 & energy above hull (E^{hull})
 for stability determination

KINETIC ANALYSIS

 Na-ion migration energy determination

Migration barriers to Na⁺ mobility: Results

 E_m estimation with GGA-based DFT-Nudged Elastic Band method (1000 meV threshold)

Conclusion

Potential Na cathodes:

Strained
TiOF₂, VOF₂, CrOF₂,
NaTiOF₂, NaVOF₂, NaMnOF₂

debolinadeb@iisc.ac.in