Contents

1	This Week			1
	1.1	extract feature		
		1.1.1	using caffe to extract features	1
		1.1.2	general command for extract feature using caffe	1
		1.1.3	read from lmdb	2
		1.1.4	image recognition using cos similarity measure	2
		1.1.5	cos similarity result	2
	1.2	Cuda Note		
		1.2.1	Configuring the kernel launch	2
		1.2.2	Convert color to black and white	3
		1.2.3	nvcc introduction	3
		1.2.4	cs344 Note	3
		1.2.5	GPU memory model	4
		1.2.6	barrier	5
		1.2.7	High-level strategies	5
		1.2.8	cudaMalloc	6
		1.2.9	TODO What Every Programmer Should Know About	
			Memory	6
2	Next Week			
	2.1	Cuda	programming	6
	2.2	caffe		6
1	\mathbf{T}	his W	Veek	
1.	1 6	vtract	t feature	
1.	1.1	using	caffe to extract features	
1.	1.2	genera	al command for extract feature using caffe	
	• 1.	caffemo	odel	
• 2prototxt1caffemodellayer				
• 3blobprototxtblob				
		. r-0		
blo	ob			

• 43

LMDB

• 5batchprototxtDataLayer

 $CaffeDataLayer(ImageDataLayer)batch_{size}$ batch_size * $num_{minibatches}$

• 6lmdbleveldb()

lmdblmdb

• 7GPUCPU

CPU

• 8GPUGPU

0GPU

- Test
 - DropoutTestdropout
 - TrainTestPrototxt (DataLayer)
- –

_

• - Softmax(AlexNetfc8)

1.1.3 read from lmdb

1.1.4 image recognition using cos similarity measure

1.1.5 cos similarity result

- accuracy (true ture) : 53 / 55
- false true : 2 / 100

1.2 Cuda Note

1.2.1 Configuring the kernel launch

```
kernel«<grid of block, block of threads»>(...)
square«<dim3(bx,by,bz), dime(tx,ty,tz), sharem»>(...)
```

- grid of blocks : bx * by * bz
- \bullet block of threads : tx * ty * tz
- shared memory per block in bytes

1.2.2 Convert color to black and white

$$I = (R + G + B)/3$$

$$I = .299 f * R + .587 f * G + .114 f * B$$

1.2.3 nvcc introduction

1.2.4 cs344 Note

- GPU is responsible for allocating blocks to SM(streaming multiprocessors)
- A block cannot run on more than one SM
- An SM may run more than one block
- All the SMs are running in parallel
- Threads in different block shouldn't cooperate
- Cuda make few guarantees about when and where thread blocks will run
- consequences
 - no assumptions blocks -> SM
 - no communication between blocks
- CUDA guarantees that:
 - all threads in a block run on the same SM at the same time
 - all blocks in a kernel finish before any blocks from next run
- threadIdx: thread within block threadIdx.x threadIdx.y

- blockDim : size of block

- blockIdx: block within grid

- gridDim : size of grid

1.2.5 GPU memory model

- All threads from a block can access the same variable in that block shared memory
- Threads from two different blocks can access the same variable in global memory
- \bullet Threads from different blocks have their own copy of local variables in local memory
- Threads from the same block have their own copy of local variables in local memory

1.2.6barrier

point in program where threads stop and wait. when all threads have reached

1.2.7High-level strategies

1. Maximize arithmetic intensity

$$\frac{Math}{Memory}$$

- maximize compute ops per thread
- minimize time spent on memory per thread
 - move frequently-accessed data to fast memory local > shared \gg global » cpu memory

Using coalesced global mem access

1. avoid thread divergence

1.2.8 cudaMalloc

device_data device_data cudaMalloc device_data

- ${\bf 1.2.9}\quad {\bf TODO~What~Every~Programmer~Should~Know~About~Memory}$
- 2 Next Week
- 2.1 Cuda programming
- 2.2 caffe