# Generative Adversarial Approach for HAR Zero-Shot Learning

Mat Ruiz S'22 ECE 209AS Final Proj

## **Project Goals**

- Zero-Shot Learning for HAR: train a HAR classifier to detect activities that are not present in an IMU training dataset
- Apply ZSL Generative approach to HAR, which has yet to be attempted

# Background: Zero Shot Learning (ZSL)

<u>Goal:</u> Train a classifier that observes samples from classes not present in training, and be able to predict what class they belong to

- How? 1) Use auxiliary information from seen and unseen classes to create an embedding that encodes class relationships
  - 2) Map training data to embedding space

# Background: Zero Shot Learning (ZSL)

<u>Classic example:</u> Text (auxiliary space) for Image (classification space)

#### **CLASSIFICATION SPACE**





AUXILIARY SPACE

"zebra" = "horse" + "w/b stripes"

Zero Shot Learner



label = "zebra"

# Background: Zero Shot Learning for HAR

Our use case: Video and/or text (auxiliary space) for IMU (classification space)

#### **CLASSIFICATION SPACE**

"sitting" +

"looking up"





classified label = "lying down"

# Existing ZSL Approaches for HAR

- SVMs to predict new classes based on manually crafted binary auxiliary space
  - Cheng et al., 2013
  - Limitations: costly & non scalable to manually craft auxiliary space for new classes
- Word embeddings as an auxiliary space, and MLPs
  - o Matsuki et al., 2019
  - Word embeddings not robust on creating relationships between certain activity classes
- Video-based auxiliary space
  - Tong and Ge et al., 2021
  - Learn to project seen IMU data onto video-based representations of classes
  - ... more info next slide

# Existing ZSL Approaches for HAR: Tong and Ge, 2021

## ZSL Embeddings-based Framework



Video embeddings for activities of <u>seen</u> IMU data (i3d model) One limitation: training only utilizes video embeddings corresponding to seen IMU data classes

# Importance of my Approach

- Utilize auxiliary information of unseen classes during training
  - ones that aren't present in IMU dataset
- via <u>ZSL Generative based Framework:</u>
  - o Proven better than ZSL Embeddings-based approach in Image-Text domains via Zhu et al., 2018

#### 1) Train GAN

## Labeled IMU data



#### 2) Generate IMU data of unseen & seen classes

- Generate IMU data based on I3D video attributes
  - Seen AND unseen classes
- Train classifier (KNN) on generated IMU data
- Use classifier on real-world IMU data



## Data

- PAMAP for IMU data
  - 18 different activity classes
  - 3 IMU sensors: ankle, chest, wrist
    - 3 axial Accelerometer (XYZ), 3 Axial Gyroscope (XYZ)
    - For each sliding window, calculated mean and std for each instrumental axial
    - 36 features per window/instance
- I3D Video Activity Recognition Model for video auxiliary space
  - Gathered 10 videos for each of the 18 PAMAP classes
  - o Passed videos through I3D, and created mean prototypes of each activity in video space
    - 400 video feature vector
    - Total of 18 vectors (one per each class)

## My Approach

### 1) Train GAN

## Labeled IMU data

(seen classes only)



#### 2) Generate IMU data of unseen & seen classes

- Generate IMU data based on I3D video attributes
  - Seen AND unseen classes
- Train classifier (KNN) on generated IMU data
- Use classifier on real-world IMU data



## **Evaluation + Results**

- Used k-fold evaluation
  - Divided 18 activity classes into 5 folds similar like <u>Tong and Ge et al., 2021</u>
    - Custom mix of "static" and "dynamic" activities in each fold
  - 4 folds used as "seen" data, 1 evaluation fold acts as "unseen" data
- Tong and Ge et al., 2021's KFOLD acc: 56.4%
- My approach acc: 48.5%

## Limitations

- Model didn't perform well on eval folds that included "sitting", "standing
  - o Guess: poor video representations for these classes; classes not present in I3D model
- This approach of ZSL (GAN) takes longer to train, compared to <u>Tong and Ge et al., 2021</u> method
  - Limited time for hyperparameter and model architecture selection/testing
- GAN model not as lightweight as <u>Tong and Ge et al., 2021</u> MLP projection model

# **Future Explorations**

- Experiment combining I3D video features with IMUTube data of videos, to create potentially more robust auxiliary space
- Explore other generative models other than GAN
- Does dataset classes affect learning, how much?
  - If class labels are very distinct, would a dataset with a lot of classes(100) degrade performance or make it easier for adding new classes?
- Add contrastive learning to end of pipeline to make classification on unseen classes more robust