Probability Recap: CRV

Klejdi Sevdari

May 2021

LN12: Continuous Random Variables (CRV)

- Definition: A random variable X is continuous if its distribution function $F(x) = \int_{-\infty}^{x} f(u)du$.
- PDF: Every function f that satisfies $\int_{-\infty}^{\infty} f(u)du = 1$ and $f(x) \ge 0 \ \forall x$ is called a probability density function.
- Basic properties: Let X be a CRV with PDF f(x). Then:
 - $-\int_{-\infty}^{\infty} f(u)du = \lim_{x \to \infty} F(x) = 1$
 - $-P(X = x) = 0 = F(x) F(x^{-})$ (left limit)
 - $-P(a \le X \le b) = \int_a^b f(u)du = F(b) F(a)$
- Analysis 1: $\frac{d}{dx}F(x) = f(x)$ if F differentiable at x. if f continuous in [a,b] then F is differentiable in (a,b).

Independence of CRV

- Definition: $X \perp Y$ if $\forall x, y \ P((X \leq x) \cap (Y \leq y)) = P(X \leq x)P(Y \leq y)$.
- Borel sets: If $X \perp Y$ and A, B are two borel sets: $P(X \in A, Y \in B) = P(X \in A)P(Y \in B)$.
- Transformations: if $X \perp Y$ then $h(X) \perp q(Y)$.
- Several variables: $X_1 \perp \!\!\! \perp X_2 \ldots \perp \!\!\! \perp X_n$ if $\forall x_1, \ldots x_n \ P(X_1 \leq x_1, X_2 \leq x_2, \ldots X_n \leq x_n) = \prod_i P(X_i \leq x_i)$. The same would hold for Borel sets.

Transformations of CRV

Distribution Functions

• Base case: X is a CRV, $g: \mathbb{R} \to \mathbb{R}$, and Y = g(X) (Y is not necessarily continuous). Then:

$$F_y(y) = P(g(X) \le y) = \int_{\{x: g(X) \le y\}} f_x(u) du$$

• g strictly increasing and continuous:

$$F_y(y) = P(g(X) \le y) = P(x \le g^{-1}(y)) = F_x(g^{-1}(y))$$

• g strictly increasing and continuous:

$$F_y(y) = P(g(X) \le y) = P(x \ge g^{-1}(y)) = 1 - F_x(g^{-1}(y))$$

- g strictly monotonic but not continuous: The same equations above would still hold if we substitute g^{-1} with the generalized inverse functions:
 - g increasing: $g^{-1}(y) = \inf\{x : g(x) \ge y\}$
 - g increasing: $g^{-1}(y) = \inf\{x : g(x) \le y\}$

PDF

• Base case: X is a CRV with PDF f_x , $g: \mathbb{R} \to \mathbb{R}$ is a continuously differentiable function with $g'(x) > 0 \ \forall x$ or $g'(x) < 0 \ \forall x$. Then Y = g(X) is a CRV with pdf:

$$f_y(y) = f_x \left(g^{-1}(y) \right) \left| \frac{d}{dy} g^{-1}(y) \right|$$

• Restriction: If X takes values in an open interval Um g is continuously differentiable with g(x) > 0 or $g(x) < 0 \forall x \in U, V = g(U)$, then:

$$f_y(y) = f_x \left(g^{-1}(y) \right) \left| \frac{d}{dy} g^{-1}(y) \right| I_v(y)$$

LN13: Expectation and Variance

Expectation

- Definition: $E(X) = \int_{-\infty}^{\infty} x f(x) dx$, provided $\int_{-\infty}^{\infty} |x| f(x) dx < \infty$ (converges).
- Behaviour of PDF and CDF at the tails: The existence of the Expectation puts the following constraints on the behaviour of f(x) and F(x):

$$\int_{-\infty}^{\infty} |x| f(x) dx < \infty \implies \lim_{x \to \infty} \int_{x}^{\infty} |u| f(u) du = 0, \lim_{x \to -\infty} \int_{-\infty}^{x} |u| f(u) du = 0$$

$$\int_{-\infty}^{\infty} |x| f(x) dx < \infty \implies F(x) = o\left(\frac{1}{|x|}\right) x \to -\infty, \ 1 - F(x) = o\left(\frac{1}{|x|}\right) x \to \infty$$

- The converse implication: If $\int_0^\infty 1 F(x) < \infty$ and $\int_{-\infty}^0 F(x) < \infty$ then $\int_{-\infty}^\infty |x| f(x) < \infty$.
- Expectation in terms of distribution: $E(X) = -\int_{-\infty}^{0} F(x) + \int_{0}^{\infty} 1 F(x)$.
- Transformations: if Y = g(X), then $E(Y) = \int_{-\infty}^{\infty} g(x) f_x(x) dx$. E(aX + b) = aE(X) + b (follows from above).

Moments and Variance

- The k^{th} moment of X: $m_k = E(X^k) = \int_{-\infty}^{\infty} x^k f_x(x) dx$, provided $\int_{-\infty}^{\infty} |x|^k f_x(x) dx < \infty$
- Lower moments: if m_k exists finite, then $\forall j: 1 \leq j \leq k, m_j$ exists finite.
- k^{th} centred moment: $\sigma_k = E((X u)^k)$.
- Variance: $Var(X) = \sigma_2 = E((X-u)^2) = \int_{-\infty}^{\infty} (x-u)^2 f_x(x) dx$, provided $\int_{-\infty}^{\infty} (x-u)^2 f_x(x) dx < \infty$
- Properties of Variance:

$$-V(X) = E(X^{2}) - E(X)^{2}$$
$$-V(aX + b) = a^{2}V(X)$$

- The standard deviation: $\sigma = \sqrt{\sigma^2} = \sqrt{Var(X)}$
- Non-Zero Variance: $Var(X) \neq 0$ if X is a CRV.

LN14: Noteworthy Distributions

Uniform Distribution

$$f(x) = \frac{1}{b-a} I_{[a,b]}(x), \quad F(x) = \frac{x-a}{b-a} \quad \forall x : a \le x \le b$$
$$E(X) = \frac{b+a}{2}, \quad V(X) = \frac{(b-a)^2}{12}$$

Exponential Distribution

 $f(x) = \lambda e^{-\lambda x} I_{(0,\infty)}(x), \quad F(x) = \left(1 - e^{\lambda x}\right) I_{(0,\infty)}(x)$ $E(X) = \lambda, \quad Var(X) = \frac{1}{\lambda^2}$

- Lack of memory property: $P(X > x + z \mid X > z) = P(X > x)$
- Usage: The Exponential Distribution is generally used for waiting times, when time is measured continuously. The Exponential is the limit of a geometric distribution.
- Connection to Poisson: If the number of events in an interval of length t has $Poisson(\lambda t)$. The probability that no events occur in this interval is $P(N=0) = e^{-\lambda t}$, which is exponential.

Normal Distribution

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} exp\left(-\frac{1}{2}\frac{(x-\mu)^2}{\sigma^2}\right), E(X) = \mu, V(X) = \sigma^2$$

- Symmetry of PDF (φ) : $\varphi(\mu + x) = \varphi(\mu x)$.
- Symmetry of CDF (ϕ) : $\phi(x,0,1) = 1 \phi(-x,0,1)$, $\phi(\mu+x,\mu,\sigma^2) = 1 \phi(\mu-x,\mu,\sigma^2)$.
- Standard Normal Distribution: It is the normal distribution with parameters $\mu = 0$, $\sigma^2 = 1$
- Stable under Linear Transformations: $X \sim N(\mu, \sigma^2)$, then $Y = aX + b \sim N(a\mu + b, a^2\sigma^2)$
- Standardization: if $X \sim N(\mu, \sigma^2)$, then $Z = \frac{X \mu}{\sigma} \sim N(0, 1)$.
- Using the Normal table: Say $X \sim N(\mu, \sigma^2)$, then $P(X \le x) = P\left(\frac{X-u}{\sigma} \le \frac{x-u}{\sigma}\right) = \phi(\frac{x-u}{\sigma}, 0, 1)$.

Gamma Distribution

$$X \sim \Gamma(k,\lambda) \implies f(x) = \frac{\lambda^k}{\Gamma(k)} e^{-\lambda x} x^{k-1} I_{(0,\infty)}(x), \ E(X) = \frac{k}{\lambda}, \ Var(X) = \frac{k}{\lambda^2}$$
$$\Gamma(x) = \int_0^\infty u^{x-1} e^{-u} du$$

- Properties of Gamma function:
 - $-\Gamma(1) = 1$ $-\Gamma(x) = (x-1)\Gamma(x-1)$ $-\Gamma(n) = (n-1)!$ $-\Gamma(\frac{1}{2}) = \sqrt{\pi}$
- λ is a scale parameter. If $X \sim \Gamma(k,\lambda)$, then $Y = \lambda X \sim \Gamma(k,1)$.
- Sum of Exponentials: if $X_1, X_2, ... X_k$ are independent identically distributed random variables with $\xi x p(\lambda)$ distribution, then $\sum_i X_i \sim \Gamma(k, n)$.
- Relation with Normal Distribution: if $Z \sim N(0,1)$, then $Z^2 \sim \Gamma(\frac{1}{2},\frac{1}{2})$

Cauchy Distribution

$$f(x) = \frac{1}{\pi(1+x^2)} F(x) = \frac{1}{2} + \frac{1}{\pi}arctan(x)$$

The Cauchy Distribution has no finite moments.

Beta Distribution

$$f(x) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)}x^{a-1}(1-x)^{b-1}I_{[0,1]}(x), \ E(X) = \frac{a}{a+b}, \ Var(X) = \frac{ab}{(a+b)^2(a+b+1)}$$

Betta(1, 1) = Uniform([0, 1])

LN15: Dependence of CRV

- Joint Distribution of $X, Y: F(x, y) = P(X \le x, Y \le y)$.
- Jointly Continuous: X, Y are jointly continuous if $\exists f(x,y) : P((X,Y) \in A) = \iint_A f(x,y)$. f is called the joint density function.
- Marginal Density functions: If X, Y are jointly continuous, then X, Y are continuous and:

$$f_x(x) = \int_{-\infty}^{\infty} f_{x,y}(x,y)dy, \quad f_y(y) = \int_{-\infty}^{\infty} f_{x,y}(x,y)dx$$

Note: X, Y continuous $\implies X, Y$ jointly continuous.

- Density from Distribution: In the points where f(x,y) is continuous we can find $f(x,y) = \frac{\partial^2}{\partial x \partial y} F(x,y)$.
- Expectation: if X, Y jointly continuous, then for any measurable function $g: \mathbb{R}^2 \to \mathbb{R}$

$$E(g(X,Y) = \iint_{-\infty}^{\infty} g(x,y)f(x,y)dxdy$$

- Properties of the Expectation:
 - Linearity: E(aX + bY) = aE(X) + bE(Y).
 - Product: E(XY) = E(X)E(Y) if $X \perp \!\!\! \perp Y$.
- Independence and Density: $X \perp \!\!\!\perp Y$ if and only if $f_{x,y}(x,y) = f_x(x)f_y(y)$. Note: if f(x,y) = g(x)h(y) then $\exists c : f_x(x) = cg(x), \ f_y(y) = \frac{1}{c}h(y)$.
- Covariance: $Cov(X, Y) = E((X \mu_x)(Y \mu_y)) = E(XY) E(X)E(Y).$
- Covariance is a Multilinear form: Cov(aX + bY, Z) = a Cov(X, Z) + b Cov(Y, Z).
- Correlation: $\rho(X,Y) = \frac{Cov(X,Y)}{\sqrt{Var(X)Var(Y)}}$
- Cauchy Schwarz: if X, Y jointly continuous $E(XY)^2 < E(X^2)E(Y^2)$ (strict inequality). This means that $|Cov(X,Y)| < \sqrt{Var(X)Var(Y)}$ and $-1 < \rho(X,Y) < 1$.
- Bivariate Normal Distribution: If X, Y are jointly continuous with Bivariate Normal Distribution then:

4

- $-X \sim N(\mu_1, \sigma_1^2)$
- $-Y \sim N(\mu_2, \sigma_2^2)$
- $-\rho = \rho(X,Y)$

LN16: Conditioning

• Conditional density function: Let X, Y be jointly continuous with joint density function $f_{x,y}(x,y)$ and marginals f_x, f_y . Then the conditional density of Y given X = x is **the function of y**:

$$f_{(y|x)}(y \mid x) = \frac{f_{x,y}(x,y)}{f_x(x)}$$

- $f_{(t|x)}$ is a density function:
 - $f_{(y|x)}(y \mid x) \ge 0 \ \forall y.$
 - $-\int_{-\infty}^{\infty} f_{(y|x)} dy = 1$
- Conditional Distribution of Y given X=x: $F_{Y|X}(y\mid x)=\int_{-\infty}^y f_{(y\mid x)}dy$ Note: $P(Y\in A\mid X=x)=\int_A f_{(y\mid x)}dy$
- Product Rule: $f_{x,y}(x,y) = f_x(x) f_{(y|x)}(y \mid x)$
- Conditional Expectation: $\psi(X) = E(Y \mid X = x) = \int_{-\infty}^{\infty} y f_{(y|x)} dy$
- Expectation of Expectation: $E(E(Y \mid X)) = E(Y)$ Note: This follows from $E(g(X)E(Y \mid X)) = E(g(X)Y)$
- Conditional Variance: $Var(Y \mid X) = \int_{-\infty}^{\infty} (Y \psi(X))^2 f_{(y\mid x)} dy$
- Variance Decomposition:
 - $Var(Y \mid X) = E(Y^2 \mid X) E(Y \mid X)^2$
 - $Var(Y \mid X) = V(E(Y \mid X)) + E(V(Y \mid X))$
- \bullet Conditioning the Bivariate: Let X,Y have Bivariate joint density function. Then:

$$Y \mid X \sim N \left(\mu_y + \rho \frac{\sigma_y}{\sigma_x} (x - \mu_x), \ \sigma_y^2 (1 - \rho^2) \right)$$

LN17: Transformations

• Main Theorem: Let X, Y be CRVs with joint density function $f_{(x,y)}(x,y)$. Let $U \subset \mathbb{R}^2$ be an open set s.t $P((X,Y) \in U) = 1$. Let $T: U \to V$ be one-to-one and let T^{-1} be its inverse. If all the partial derivatives of T^{-1} exist and are continuous with $det J_{T^{-1}}(z,w) \neq 0 \ \forall (z,w) \in V$, then Z and W are jointly continuous with density:

$$f_{z,w}(z,w) = f_{x,y}(T^{-1}(z,w)) \mid det J_{T^{-1}}(z,w) \mid I_v(z,w)$$

• Sums of Random Variables: Let X and Y be continuous random variables with joint density function f(x, y). Let Z = X + Y. Z is continuous with density function:

$$f_z(z) = \int_{-\infty}^{\infty} f_{x,y}(x, z - x) dx$$

If
$$X \perp Y$$
, then $f_z = \int_{-\infty}^{\infty} f_x(x) f_y(z-x) dx$

LN18: Random Vectors and the Multivariate Distribution

- Random Vectors: Let X_1, \ldots, X_k be CRVs on the same Probability Space. Then $\overline{X} = \begin{bmatrix} X_1 \\ \vdots \\ X_k \end{bmatrix}$ is a random vector.
- Continuity: \overline{X} is said to be continuous with density function $f(x_1, \ldots, x_k)$ if $P(X \in A) = \int \cdots \int_A f(x_1, \ldots, x_k)$. If \overline{X} is continuous, then every subvector is continuous.
- Subvectors: The density function of a subvector can be obtained by integrating out the other variables.
- Independence: Let X_1, \ldots, X_k be jointly continuous random variables. Then they are independent iff $f(x_1, \ldots, x_k) = \prod_i f_{x_i}(x_i)$
- Expectation: $E(\overline{X}) = \overline{u} = \begin{bmatrix} E(X_1) \\ \vdots \\ E(X_k) \end{bmatrix}$, $Var(X) = \Sigma = \left[Cov(X_i, X_j)\right]_{i,j=i,2...k}$
- Non-Singularity of Σ : If $X_1, \ldots X_k$ are jointly continuous, then Σ is non-singular and there exists the inverse Σ^{-1} . It is possible to find $\Sigma^{\frac{1}{2}}$ and $\Sigma^{-\frac{1}{2}}$ such that $\Sigma^{\frac{1}{2}}\Sigma^{\frac{1}{2}} = \Sigma$, $\Sigma^{-\frac{1}{2}}\Sigma^{-\frac{1}{2}} = \Sigma^{-1}$ and $(\Sigma^{1/2})^{-1} = \Sigma^{-\frac{1}{2}}$.
- Variance in term of Expectation: $\Sigma = E\left(\left(\overline{X} \overline{u}\right)\left(\overline{X}^T \overline{u}^T\right)\right)$.
- Linearity of the Expectation: $E(A\overline{X} + b) = AE(\overline{X}) + b$ In particular if A is a row vector, $E(a_iX_i + \dots a_nX_n) = \sum_i a_iE(X_i)$
- Properties of the Variance:

$$-V(\overline{X}) = E(X|X^T) - E(X)E(X)^T$$

$$-V(AX + b) = AV(X)A^T$$

$$-V(a_iX_i + \dots + a_nX_n) = \sum_i a_i^2 V(X_i) + \sum_{i \neq j} a_i a_j Cov(X_i, X_j).$$

• Conditioning: The conditional density of X_1 given that $X_2 = x_2, \dots, X_k = x_k$ is defined as:

$$f_{x_1|x_2,\dots,x_k}(x_1 \mid x_2,\dots,x_k) = \frac{f_{x_1,\dots,x_k}(x_1,\dots,x_k)}{f_{x_2,\dots,x_k}(x_2,\dots,x_k)}$$

Transformations of Random Vectors

• Main Theorem: Let X be a continuous random vector with density function $f(x_1, \ldots, x_k)$. Let $U \subset \mathbb{R}^k$ be a one-to-one function and let T^{-1} be its inverse. If all the partial derivatives of T^{-1} exist and are continuous with $\det J_{T^{-1}}(\overline{y}) \neq 0$, then \overline{Y} is a continuous random variable with density function:

$$f_Y(y) = f_x(T^{-1}(y)) \mid det J_{T^{-1}}(y) \mid I_v(y)$$

• Linear Transformations: Y = AX + b where A is a $k \times k$ non-singular matrix, then Y is also continuous with

$$f_y(y) = f_x(A^{-1}(y-b)) \mid det A^{-1} \mid$$

Since every subvector of a continuous vector is continuous vector is continuous, for every $h \times k$ matrix A of rank h and for every vector b of dimension h, Y = AX + b is continuous.

Multivariate Distribution

• Let μ be a vector of dimension k and let Σ be a $k \times k$ symmetric matrix with positive determinant of all positive leading principal minors. \overline{X} as multivariate normal distribution with parameters μ and Σ $(X \sim N(\mu, \Sigma))$ if \overline{X} has density:

$$f_x(x) = \frac{1}{(\sqrt{2\pi})^k} \frac{1}{\sqrt{\det(\Sigma)}} exp\left(-\frac{1}{2}(x-u)^T \Sigma^{-1}(x-u)\right)$$

• Independence and Uncorrelation: $\overline{X} \sim N(\overline{0}, I)$ (where $\overline{0}$ is the zero vector and I is the identity matrix) if and only if X_1, \ldots, X_k are independent and identically distributed CRVs with univariate standard normal distribution.

Analogously it can be proved that if $X \sim N(\mu, \Sigma)$ then $X_1, \ldots X_k$ are mutually independent iff Σ is a diagonal matrix. That is all covariances are 0. In this case Independence \iff Uncorrelation.

• Linear Transformations: Let $X \sim N(\mu, \Sigma)$, A a $k \times k$, non-singular matrix and b a vector of dimension k. Then $Y = AX + b \sim N(A\mu + b, A\Sigma A^T)$.

Note: This also works if A is a $h \times k$ matrix of rank h.

• Standardization: if $X \sim N(\mu, \Sigma)$, then $Z = \Sigma^{-1/2}(X - u) \sim N(\overline{0}, I)$.

LN19: MGF

- Definition: $M_x(t) = E\left(e^{tx}\right) = E\left(\sum_{k=0}^{\infty} (tx)^k/k!\right) = \sum_k t^k m_k/k!$
- MGFs and Distributions: If two random variables have the same MGF, then they have the same distribution.
- Convergence: If $X, X_1, X_2, \dots X_n$ is a sequence of random variables such that the MGFs are defined, then $M_{X_n} \to M_X$ implies $F_{X_n} \to F_X$ at least in the points where F_x is continuous.
- Maclaurin Expansion: If $t \to 0$, then $M_x(t) = 1 + M'_x(0)t + M''_x(0)t^2/2 + o(t^2) = 1 + m_1t + m_2t^2/2 + o(t^2)$. Remark: $M_x^{(k)}(0) = E(X^k)$. (the k^{th} derivative).
- Linear Transformations: $M_{aX+b} = e^{tb} M_x(at)$.
- Independence: $M_{X+Y}(t) = M_X(t)M_Y(t)$.
- Central limit theorem: If $X_1, X_2 ... X_n$ are independent and identically distributed such that $E(X_i^2)$ exists finite, then:

$$\frac{\sum_{i} X_{i} - nu}{\sqrt{n}\sigma} \xrightarrow{\mathrm{d}} Z \sim N(0, 1)$$

LN20: Convergence and the Laws of Large Numbers

Inequalities

- Markov's inequality: $P(|X| \ge k)k^r \le E(|X|^r)$
- Chebyshew's inequality: $P(|X \mu| \ge k)k^2 \le \sigma^2$, where $\sigma^2 = Var(X)$.
- Jensen's inequality: if $g: \mathbb{R} \to \mathbb{R}$ is a convex function: $E(g(X)) \ge g(E(X))$.

Types of Convergence

- Probability: $X_n \to X$ in probability if $P(|X_n X| \ge \epsilon) \to 0$ as $n \to \infty$.
- Almost surely (a.s): $X_n \to X$ a.s if $P(\{\omega \in \Omega : X_n(\omega) \to X(\omega)\}) = 1$
- Rth Mean: $X_n \to X$ in r^{th} mean if $E(|X_n X|^r) \to 0$ as $n \to \infty$
- Implications:
 - $-r^{th}$ mean convergence implies probability convergence.
 - a.s convergence implies probability convergence.
 - probability convergence implies distribution convergence.
 - if X_n converges to a constant in distribution, then X_n converges to the same constant in probability.
- Sufficient Condition for a.s convergence: $\sum_{n=1}^{\infty} P(|X_n X| \ge \epsilon) < \infty$.

Laws of Large Numbers

- Sample Mean: $\overline{X_n} = \frac{1}{n} \sum_{k=1}^n X_k$.
- Weak Law of Large Numbers: if $X_1, X_2, ... X_n$ are uncorrelated with finite second moment then $\overline{X} \to \mu = E(X_i)$ in probability.
- Strong Law of Large Numbers: If $X_1, X_2, ... X_n$ are i.i.d with finite expectation, then $\overline{X_n} \to \mu$ almost surely.

Transformations and Convergence

- Continuous mappings: Let $g: \mathbb{R} \to \mathbb{R}$ be a continuous function. Then:
 - $-X_n \to X \text{ a.s.} \implies g(X_n) \to g(X) \text{ a.s.}$
 - $-X_n \to X$ in probability $\implies g(X_n) \to g(X)$ in probability.
 - $-X_n \to X$ in distribution $\implies g(X_n) \to g(X)$ in distribution.
- Continuous mappings \mathbb{R}^2 case: Let $g: \mathbb{R} \to \mathbb{R}$ be a continuous function. Then:
 - $-X_n \to X$ and $Y_n \to Y$ a.s $\Longrightarrow g(X_n, Y_n) \to g(X, Y)$ a.s.
 - $-X_n \to X$ and $Y_n \to Y$ in probability $\implies g(X_n, Y_n) \to g(X, Y)$ in probability.
 - The property does not hold for convergence in distribution!
- Slutski's Thoerem: $X_n \to X$ in distribution and $Y_n \to c$ in probability, then:
 - $-X_n + Y_n \rightarrow X + c$ in distribution.
 - $-X_nY_n \to Xc$ in distribution.

Useful facts

$$\bullet \ \int_0^\infty e^{-x^2} dx = \frac{\sqrt{\pi}}{2}$$

$$\bullet \ \sum_{x=0}^{\infty} \frac{a^x}{x!} = e^a$$

•
$$\lim_{n\to\infty} (1+\frac{a}{n})^n = e^a$$

• Geometric Sum=
$$\frac{u_1(r^n-1)}{r-1}$$