Министерство на образованието и науката Съюз на математиците в България

Пролетно математическо състезание "проф. Дочо Дочев"

Русе, 30 март 2024 г.

Русе, 2024 г.

Условия, кратки решения и критерии за оценяване

Задача 10.1. Реалните числа x и y удовлетворяват неравенството

$$x(x-6) \le y(4-y) + 7.$$

Да се намери интервала от стойности за израза a = x + 2y. Отговор. $a \in [-3; 17]$.

 $Peшение. При \ a = x + 2y$ имаме x = a - 2y, откъдето

$$(a-2y)(a-2y-6) \leq y(4-y)+7$$

$$a^{2}-2ay-6a-2ay+4y^{2}+12y \leq 4y-y^{2}+7$$

$$5y^{2}-2(2a-4)y+(a^{2}-6a-7) \leq 0$$

$$D=(2a-4)^{2}-5(a^{2}-6a-7) \geq 0$$

$$4a^{2}-16a+16-5a^{2}+30a+35 \geq 0$$

$$a^{2}-14a-51 \leq 0$$

$$(a-17)(a+3) \leq 0.$$

Окончателно, $a \in [-3; 17]$.

Оценяване. (6 точки) 2 т. за заместване в условието с x = a - 2y; 1 т. за извеждане на квадратното неравенство спрямо y; 2 т. за положителност на дискриминантата и опростяване на формулата; 1 т. за отговор.

Задача 10.2. Даден е триъгълник ABC с описана окръжност k и център на вписаната окръжност I. Окръжност ω през точките C и I пресича страните AC и BC съответно в точките P и Q, и пресича k за втори път в точката L. Ъглополовящата на $\angle ALB$ пресича страната AB в точка K. Да се докаже, че големината на $\angle PKQ$ не зависи от избора на окръжността ω .

Решение. Явно IP = IQ от ъглополовящата CI в ω . Целта ни е да докажем, че IK = IP. Наистина, тогава ще следва, че I е център на описаната окръжност за триъгълник PKQ, откъдето $\angle PKQ = \frac{1}{2} \angle PIQ = 90^{\circ} - \frac{1}{2} \angle ACB$.

Нека ъглополовящите CI и LK се пресичат в средата T на дъгата \widehat{AB} от k, несъдържаща C. Явно $\angle TAK = \angle TAB = \angle BCT = \angle ACT = \angle ALT$, откъдето $\triangle AKT \sim \triangle LAT$ и $TA^2 = TK \cdot TL$. Предвид TA = TI (следва от разписване на ъгли, известно е като лема на тризъбеца), получаваме $TI^2 = TK \cdot TL$ и $\triangle IKT \sim \triangle LIT$. Оттук

$$IK = IT \cdot \frac{LI}{LT} = AT \cdot \frac{LI}{LT}.$$

От друга страна, окръжностите k и ω дават $\angle LPI=180^{\circ}-\angle LCI=\angle LAT$ и $\angle PLI=\angle PCI=\angle ALT$. Оттук $\triangle LAT\sim\triangle LPI$, откъдето

$$\frac{LI}{LT} = \frac{PI}{AT}$$

и исканото следва.

Оценяване. (6 точки) 1 т. за твърдението, че $\angle PKQ = 90^{\circ} - \frac{1}{2} \angle ACB$; по 2 т. за $\triangle IKT \sim \triangle LIT$ и $\triangle LAT \sim \triangle LPI$; 1 т. за довършване.

Задача 10.3. За нечетно естествено число n > 1 дефинираме множеството от различните остатъци на степени на двойката при деление на n:

$$S_n = \{ a \mid a < n, \exists k \in \mathbb{N} : 2^k \equiv a \pmod{n} \}.$$

Съществуват ли различни нечетни числа m и r такива, че $S_m = S_r$? Pewenue. Виж задача 9.4.

Оценяване. (7 точки) 3 т. за обосновка, че $x \in S_n$, $2x \notin S_n$, е вярно за $x = \frac{n+1}{2}$; 3 т. за обосновка, че $x \leq \frac{n-1}{2}$ не изпълняват това свойство; 1 т. за довършване.

Задача 10.4. Ще наричаме граф G $\mathit{граф}$ на $\mathit{делимости}$ ако във всеки от върховете му може да се запише различно естествено число така, че ребрата му да отговарят на всички двойки (u,v) за които или $\frac{u}{v}$ или $\frac{v}{u}$ е цяло число. Да се докаже, че за всяко естествено число n и всяко цяло число $0 \le e \le n(n-1)/2$ съществува граф на делимости с точно n върха и e ребра.

Решение. Разсъждаваме индуктивно по n, като в никой връх няма да записваме числото 1. За n=1 исканото е ясно, за n=2 пример с e=1 е (2,4) и пример с e=0 е (2,3). За n=3 пример с e=0 е (2,3), пример с e=1 е (2,4), пример с (2,4) е (2,4) (2,4)

За $n \geq 4$ имаме $n-1 \leq \frac{(n-1)(n-2)}{2}$, значи поне едно от $e \geq n-1$ и $e \leq \frac{(n-1)(n-2)}{2}$ е изпълнено. Нека първо $e \geq n-1$. В пример с n-1 върха и e-(n-1) ребра добавяме връх (от степен n-1), като в него записваме просто число p, по-голямо от числата в останалите върхове, след което умножаваме числата в останалите върхове по p – това не поражда нови ребра между останалите върхове.

Нека сега $e \leq \frac{(n-1)(n-2)}{2}$. В пример с n-1 върха и e ребра добавяме връх (от степен 0), като в него записваме просто число p, по-голямо от числата в останалите върхове, и не променяме числата в останалите върхове – това не поражда нови ребра.

Оценяване. (7 точки) Непълни решения, в които подходът не е индуктивен, се оценяват с 0 точки. Индуктивни подходи с недовършен преход се оценяват с 1 точка. Индуктивни подходи с коректен преход, в които базата е грешна или използва числото 1 (ако това влияе на аргумента за стъпката), се оценяват с 5 точки.