Лабораторна робота 9. Інтерполяція сплайнами.

- а) Розрахувати коефіцієнти сплайну.
- б) Розрахувати значення сплайну у вузлових точках і перевірити їх співпадання зі значеннями вихідної функції.
- в) Розробити програму для розрахунку коефіцієнтів сплайну і обчислення за його допомогою значень функції у вказаних користувачем точках.
- г) В діапазоні значень [x_0, x_n] з кроком $\Delta x = 0,1-0,2$ отримати таблицю значень сплайну і побудувати по ній графік.

д) Зробити висновки.

Побудуємо апроксимуючу функцію у вигляді кубічного сплайну для функції заданої таблично (табл. 3.9).

Таблиця 3.9. Вузлові значення заданої функції

i	1	2	3	4	5
x	0	1,4	2,3	3,3	4,5
y	1	1,155	0,079	-1,145	-1,188

Так як ми маємо чотири відрізки [0; 1,4], [1,4; 2,3], [2,3; 3,3], [3,3; 4,5], відповідні значення кроків будуть порівнювати:

$$h_1 = x_1 - x_0 = 1, 4 - 0 = 1, 4$$

 $h_2 = x_2 - x_1 = 2, 3 - 1, 4 = 0, 9$
 $h_3 = x_3 - x_2 = 3, 3 - 2, 3 = 1$
 $h_4 = x_4 - x_3 = 4, 5 - 3, 3 = 1, 2$

Необхідно знайти:

$$S_1(x) = a_1 + b_1(x - x_0) + c_1(x - x_0)^2 + d_1(x - x_0)^3$$

$$S_2(x) = a_2 + b_2(x - x_1) + c_2(x - x_1)^2 + d_2(x - x_1)^3$$

$$S_3(x) = a_3 + b_3(x - x_2) + c_3(x - x_2)^2 + d_3(x - x_2)^3$$

$$S_4(x) = a_4 + b_4(x - x_3) + c_4(x - x_3)^2 + d_4(x - x_3)^3$$

Знаходимо a_i , виходячи з умови, що у вузлах y_i значення S(x) повинні співпадати із значенням заданої функції y = f(y):

$$a_1 = y_0 = 1$$

 $a_2 = y_1 = 1,155$
 $a_3 = y_2 = 0,079$
 $a_4 = y_3 = -1,145$

Для подальших розрахунків складемо допоміжну таблицю 3.10.

Таблиця 3.10. Вузлові значення заданої функції

i	X _i	<i>h</i> _i	y _i	$\frac{y_i - y_{i-1}}{x_i - x_{i-1}}$	$M_{i}=2(h_{i-1}+h_{i})$	$k_{i} = 3 \left[\frac{y_{i} - y_{i-1}}{h_{i}} - \frac{y_{i-1} - y_{i-2}}{h_{i-1}} \right]$
0	0	-	1	0,1107	-	-
1	1,4	1,4	1,155	-1,1955	-	-
2	2,3	0,9	0,079	-1,224	4,6	-3,9186
3	3,3	1	-1,145	-0,0358	3,8	-0,0855
4	4,5	1,2	-1,188	•	4,4	3,5645

«Прямий хід»

Задаємо $\alpha_1 = \beta_1 = 0$

Знаходимо коефіцієнти α_2 і β_2 за формулою:

$$\alpha_2 = \frac{k_2}{m_2} = \frac{-3,9186}{4,6} = -0,8519 \quad \beta_2 = \frac{h_2}{m_2} = \frac{0,9}{4,6} = 0,1957$$

Знаходимо коефіцієнти α_i і β_i за формулами:

$$\alpha_3 = \frac{k_3 - h_2 \alpha_2}{m_3 - h_2 \beta_2} = \frac{0,6812}{3,6239} = 0,188 \quad \beta_3 = \frac{h_3}{m_3 - h_2 \beta_2} = \frac{1}{3,6239} = 0,2759$$

$$\alpha_4 = \frac{k_4 - h_3 \alpha_3}{m_4 - h_3 \beta_3} = \frac{3,3765}{4,1241} = 0,8187 \quad \beta_4 = \frac{h_4}{m_4 - h_3 \beta_3} = \frac{1,2}{4,124} = 0,291$$

«Зворотний хід»

Знаходимо коефіцієнти с:

$$c_5 = 0$$
 — гранична умова
 $c_4 = \alpha_4 - \beta_4 c_5 = \alpha_4 = 0,8187$
 $c_3 = \alpha_3 - \beta_3 c_4 = -0,0379$
 $c_2 = \alpha_2 - \beta_2 c_3 = -0,8445$
 $c_1 = \alpha_1 - \beta_1 c_2 = 0$

Тепер знаходимо коефіцієнти d_i за формулою $d_i = \frac{c_{i+1} - c_i}{3h_i}$

$$d_4 = \frac{c_5 - c_4}{3h_4} = -0,2274 \qquad d_3 = \frac{c_4 - c_3}{3h_3} = 0,2856$$

$$d_2 = \frac{c_3 - c_2}{3h_4} = 0,2987 \qquad d_1 = \frac{c_2 - c_1}{3h_4} = -0,2011$$

Коефіцієнти b_i обчислюємо за формулою $b_i = \frac{y_i - y_{i-1}}{h_i} - \frac{(c_{i+1} + 2c_i)h_i}{3}$

$$b_4 = \frac{y_4 - y_3}{h_4} - \frac{(c_5 + 2c_4)h_4}{3} = -0,6908 \quad b_3 = \frac{y_3 - y_2}{h_3} - \frac{(c_4 + 2c_3)h_3}{3} = -1,4716$$

$$b_2 = \frac{y_2 - y_1}{h_2} - \frac{(c_3 + 2c_2)h_2}{3} = -0,6774 \quad b_1 = \frac{y_1 - y_0}{h_2} - \frac{(c_2 + 2c_1)h_1}{3} = 0,5048$$

Підставивши отримані значення коефіцієнтів у вираз для S(x), отримаємо вираз кубічного сплайну для кожного із відрізків інтервалу [0; 4,5].

Шуканий сплайн матиме вигляд:

$$P_3(x) = \begin{cases} 1,0 + 0,5048(x - 0) + 0(x - 0)^2 - 0,2011(x - 0)^3 & 0 \le x \le 1,4 \\ 1,155 - 0,6775(x - 1,4) - 0,8445(x - 1,4)^2 + 0,2987(x - 1,4)^3 & 1,4 \le x \le 2,3 \\ 0,079 - 1,4716(x - 2,3) - 0,0379(x - 2,3)^2 + 0,2855(x - 2,3)^3 & 2,3 \le x \le 3,3 \\ -1,145 - 0,6908(x - 3,3) + 08187(x - 3,3)^2 - 0,2274(x - 3,3)^3 & 3,3 \le x \le 4,5 \end{cases}$$

Для оцінки точності знайденого сплайну порівняємо значення таблично заданої функції у вузлових точках інтервалу [0; 4,5] із значеннями сплайну $P_3(x)$ в цих точках, а також значення похідних (табл. 3.11)

Таблиця 3.11. Значення заданої функції, сплайну, першої та другої похідних у вузлових точках

i	x	y	$S_i(x)$	$S_{i+1}(x)$	$S'_{i}(x)$	$S'_{i+1}(x)$	$S''_i(x)$	$S''_{i+1}(x)$
0	0	1	1	-	0,5048	-	0	-
1	1,4	1,155	1,155	1,155	-0,677	-0,677	-1,689	-1,689
2	2,3	0,079	0,079	0,079	-1,472	-1,472	-0,076	-0,076
3	3,3	-1,145	-1,145	-1,145	-0,691	-0,691	1,6375	1,6375
4	4,5	-1,188	-	-1,188	-	0,2916	-	0

Як бачимо відповідні значення співпадають. Отже можна зробити висновок, що сплайн знайдено вірно.

Побудуємо таблицю значень сплайну в точках інтервалу [0; 4,5] з кроком 0,2 (табл. 3.12) і побудуємо графік функції (рис. 3.8).

Таблиця 3.12. Таблиця значень сплайну в точках інтервалу [0; 4,6]

i	1	2	3	4	5	6	7	8
x	0	0,2	0,4	0,6	0,8	1	1,2	1,4
$P_3(x)$	1	1,099	1,189	1,259	1,301	1,304	1,258	1,155
i	9	10	11	12	13	14	15	16
x	1,6	1,8	2	2,2	2,4	2,6	2,8	3
$P_3(x)$	0,988	0,768	0,509	0,226	-0,068	-0,358	-0,631	-0,872
i	17	18	19	20	21	22	23	24
x	3,2	3,4	3,6	3,8	4	4,2	4,4	4,6
$P_3(x)$	-1,068	-1,206	-1,285	-1,314	-1,305	-1,269	-1,217	-1,159

Висновок: Отримані результати (табл. 3.11 та рис. 3.8) свідчать, що отриманий кубічний сплайн досить точно апроксимує задану табличну функцію.

Рис. 3.8. Графічне зображення результатів апроксимації кубічним сплайном

Завдання.

Побудувати апроксимуючу функцію у вигляді кубічного сплайну для таблично заданої функції (табл. 1.7) та перевірити її роботу.

Таблиця 1.7. Варіанти табличних функцій для розв'язання задачі сплайн-інтерполяції.

Варіант 1	i	0	1	2	3	4
_	x_{i}	0	0,2	0,5	0,9	1,5
	$y_{\rm i}$	1,75	2,68	1,24	0,72	1,35
Варіант 2	i	0	1	2	3	4
_	x_{i}	1	1,3	1,7	2,2	2,8
	$y_{\rm i}$	2,95	3,89	1,54	3,38	2,34
Варіант 3	i	0	1	2	3	4
	x_{i}	0,5	0,7	1	1,4	1,9
	y_{i}	1,83	2,14	1,46	1,15	3,28
Варіант 4	i	0	1	2	3	4
	x_{i}	0,3	0,5	0,8	1,2	1,7
	y_{i}	2,38	2,94	1,46	1,28	2,15
Варіант 5	i	0	1	2	3	4
	x_{i}	0,2	0,6	1,1	1,8	2,6
	y_{i}	3,34	4,53	2,75	3,91	3,57
Варіант 6	i	0	1	2	3	4
	x_{i}	0,1	0,3	0,6	1,1	1,8
	y_{i}	2,65	2,75	2,19	1,76	3,43
Варіант 7	i	0	1	2	3	4
	x_{i}	0,4	0,6	0,9	1,4	2
	y_{i}	2,45	1,63	0,95	0,73	1,95
Варіант 8	i	0	1	2	3	4
	x_{i}	0,8	1	1,3	1,9	2,3
	$y_{\rm i}$	1,72	2,35	1,52	2,43	1,55
Варіант 9	i	0	1	2	3	4
	x_{i}	0,7	0,8	1,3	1,5	2,1
	y_i	2,63	2,87	2,19	1,76	3,34
Варіант 10	i	0	1	2	3	4
	x_{i}	1,2	1,4	1,7	2,3	2,8
Dania 11	y_{i}	1,36	1,15	2,34	0,92	3,12
Варіант 11	i	0	1	2	3	4
	Xi	1,4	1,6	2 2,74	2,5	3,1
Daniaux 12	y _i	2,39	3,85		1,58	3,15
Варіант 12	i	0	1 0.7	1	3	4
	X _i	0,6 2,64	0,7 3,73	1,42	1,5 1,84	1,9 0,65
Paniour 12	y _i i	0	1		3	
Варіант 13		0,3	0,8	2 1,4	2,1	4 2,9
	X _i	5,28	6,83	4,35	3,26	2,35
	y_{i}	3,20	0,05	4,33	3,20	4,33

продовження Таблиці 1.7.

				пре	одовжения 1	aovinui 1.7.
Варіант 14	i	0	1	2	3	4
	x_{i}	1,3	1,9	2,6	2,8	3,1
	$y_{\rm i}$	1,63	2,18	1,46	1,17	2,95
Варіант 15	i	0	1	2	3	4
-	x_{i}	0,9	1,2	1,6	2,1	2,8
	$y_{\rm i}$	3,47	4,53	2,86	1,64	2,25
Варіант 16	i	0	1	2	3	4
	x_{i}	0,4	0,7	1,1	1,7	2,4
	$y_{\rm i}$	2,39	2,86	1,55	3,57	2,94
Варіант 17	i	0	1	2	3	4
	x_{i}	1,1	1,4	1,9	2,5	2,7
	$y_{\rm i}$	2,91	3,64	4,55	2,57	0,24
Варіант 18	i	0	1	2	3	4
	x_{i}	0,8	0,9	1,2	1,6	2,1
	$y_{\rm i}$	1,42	2,34	3,48	1,77	2,66
Варіант 19	i	0	1	2	3	4
	x_{i}	0,8	1,2	1,4	1,7	2,2
	$y_{\rm i}$	3,18	2,15	4,18	3,81	5,07
Варіант 20	i	0	1	2	3	4
	x_{i}	0,3	0,5	0,8	1,2	1,8
	$y_{\rm i}$	1,19	2,65	1,83	3,84	2,86
Варіант 21	i	0	1	2	3	4
	x_{i}	0,5	0,9	1,5	2,3	3
	y_{i}	1,54	3,38	2,53	1,86	4,35
Варіант 22	i	0	1	2	3	4
	x_{i}	0,6	0,8	1,1	1,6	2
	y_{i}	1,76	2,61	3,89	2,18	4,35
Варіант 23	i	0	1	2	3	4
	x_{i}	1,2	1,5	1,9	2,4	3,1
	y_{i}	0,82	1,38	0,45	2,67	1,5
Варіант 24	i	0	1	2	3	4
	x_{i}	0,7	1,1	1,4	1,9	2,6
	y_{i}	2,75	3,87	1,25	4,26	2,43
Варіант 25	i	0	1	2	3	4
	x_{i}	0,6	0,9	1,3	1,8	2,2
	y_{i}	0,53	1,68	3,65	2,13	4,37
Варіант 26	i	0	1	2	3	4
	x_{i}	0,7	0,8	1,2	1,5	1,7
	y_{i}	4,54	6,14	5,43	3,72	4,18

Код

import matplotlib.pyplot as plt from scipy.interpolate import UnivariateSpline import numpy as np

```
x = [0,1.4,2.3,3.3,4.5]
y = [1,1.155,0.079,-1.145,-1.188]
```

```
spl = UnivariateSpline(x, y) #Побудова сплайна
xs = np.linspace(0, 4.5, 1000)
plt.plot(x,y,'ro', xs, spl(xs), 'g')
plt.show()
```


Звіт має містити

- 1. ППП, група, номер варіанта
- 2. Аналітичні розрахунки
- 3. Код+графік