<u>Задача 9-3</u>

Вещество **X** представляет собой белый порошок, хорошо растворимый в воде и легко разлагающийся при нагревании с выделением газа (*р-ция* 1). Действием на 10,0 г вещества **X** избытком горячего раствора вещества

Y, дающего белый творожистый осадок с нитратом серебра (*p-ция* **2**), получили 5,0 г вещества **Z** в виде белого осадка (*p-ция* **3**). Вещество **Z** встречается в природе в виде многочисленных минералов и входит в состав горных пород. Длительным выдерживанием в автоклаве при 55°C 20 г насыщенного при этой температуре раствора **X** с суспензией 3.6 г **Z** получили 7,2 г кристаллического вещества **N** с выходом 84% (*p-ция* **4**). Вещество **N** обнаружено в природе в виде редкого минерала. При действии воды кристаллы **N** разрушаются. Так, при внесении 11,9 г **N** в 93,1 г воды выпадает осадок **Z** и образуется раствор массой 100 г. При добавлении к 10 г этого раствора избытка соляной кислоты выделяется 111,8 мл газа (н.у.).

Растворимость вещества X при 55°C равна 56,25 г в 100 г воды.

При нагревании твердого **Y** потеря массы в виде газообразных продуктов составляет примерно 49,3%.

Вопросы:

- 1. Определите неизвестные вещества X, Y, Z и N. Ответ обоснуйте, подтвердите расчетами.
- 2. Запишите уравнения реакций 1 4.

Решение задачи 9-3 (автор: Андреев М.Н.)

Рассчитаем массовую долю Х в его насыщенном растворе:

$$\omega = 56,25/156,25 = 0,36$$
 или 36%.

Следовательно, в 20 г насыщенного раствора содержится 7,2 г вещества \mathbf{X} . Найдем массу \mathbf{N} при 100%-ном выходе, она равна 7,2/0,84 = 8,57 г.

Если предположить, что вещества в автоклав помещены в стехиометрических количествах, а реакция протекает количественно, то получается, что схема реакция образования **N** имеет вид:

$$X + Z \rightarrow N + ...$$

7,2 Γ 3,6 Γ 8,57 Γ 2,23 Γ

Рассмотрим разложение N в воде, по разности масс определим массу осадка:

N + H₂O
$$\rightarrow$$
 Z↓ + PacTBop
11,9 Γ 93,1 Γ 5,0 Γ 100 Γ

Отношение массы **Z** к массе **N** равно 5,0/11,9=0,420, что совпадает с соотношением при синтезе **N**: 3,6/8,57=0,420.

Определим число моль газа, выделяющегося при подкислении раствора над осадком **Z**: v = 0.1118/22.4 = 0.00499 моль.

Масса вещества в 100 г раствора 6,9 г, а в 10 г-0,69 г. В расчёте на 1 моль газа на формульную единицу, получается молярная масса растворенного вещества равна M = 0,69/0,00499 = 138,28 г/моль.

Если предположить, что газ – это CO_2 , то в растворе присутствует карбонат калия K_2CO_3 .

 ${\bf X}$ не может быть карбонатом калия, т.к. по условию задачи это вещество легко разлагается, а карбонат калия плавится без разложения. Тем не менее ${\bf X}$ должно содержать и катион калия, и карбонат.

Всем требованиям задачи отвечает гидрокарбонат калия. $X - KHCO_3$. Гидрокарбонаты металлов, как правило, растворимы. В условии указано, что раствор соли Y должен быть горячим, а значит в этих условиях возможно образование среднего карбоната, который выпадает в осадок, или гидроксида.

Запишем уравнения этих реакций в общем виде:

$$n\text{KHCO}_3 + \text{MCl}_n \rightarrow \text{M(OH)}_n + n\text{KCl} + n\text{CO}_2$$

 $n\text{KHCO}_3 + \text{MCl}_n \rightarrow \text{M(CO}_3)_{n/2} + n\text{KCl} + \frac{n}{2}\text{CO}_2 + \frac{n}{2}\text{H}_2\text{O}$

Тогда $M(\mathbf{Z}) = 5 \cdot n \cdot M(KHCO_3)/10 = 50 \cdot n \ г/моль$

n =	1	2	3	4
	50	100	150	200
$M(CO_3)_{n/2}$	_	CaCO ₃	_	_
$M(OH)_n$	_	~Zn(OH) ₂	Tc(OH) ₃	_

Единственный разумный вариант — это $\mathbf{Z} = \text{CaCO}_3$.

Найдем молярную массу N

$$M(N) = m(N)*M(Z)/m(Z) = 8,57*100/3,6 = 238 г/моль.$$

$$N - K_2Ca(CO_3)_2$$

Вещество Y — это соль кальция, дающая белый творожистый осадок с нитратом серебра, предположительно $CaCl_2$. Однако в условии задачи указано, что при нагревании это вещество разлагается. Хлорид кальция образует ряд кристаллогидратов, число молекул воды на формульную единицу

$$x = \frac{M(CaCO_3)}{18(\frac{1}{0.493} - 1)} = \frac{110}{18 \cdot 1,027} \approx 6$$

	X	Y	Z	N
вещества	KHCO ₃	CaCl ₂ ·6H ₂ O	CaCO ₃	$K_2Ca(CO_3)_2$

Уравнения реакций:

1)
$$2KHCO_3 \xrightarrow{t} K_2CO_3 + CO_2 + H_2O$$

2)
$$CaCl_2 + 2AgNO_3 \rightarrow 2AgCl\downarrow + Ca(NO_3)_2$$

3)
$$2KHCO_3 + CaCl_2 \rightarrow CaCO_3 + 2KCl + CO_2 + H_2O$$

4)
$$2KHCO_3 + CaCO_3 \rightarrow K_2Ca(CO_3)_2 + CO_2 + H_2O$$

Система оценивания:

1.	Вещества X, Y, Z, N по 3 балла	12 баллов
2.	Уравнения реакций по 2 балла	8 баллов
	итого:	20 баллов