

Cambridge IGCSE[™]

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

CHEMISTRY 0620/42

Paper 4 Theory (Extended)

February/March 2023

1 hour 15 minutes

You must answer on the question paper.

No additional materials are needed.

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You may use a calculator.
- You should show all your working and use appropriate units.

INFORMATION

- The total mark for this paper is 80.
- The number of marks for each question or part question is shown in brackets [].
- The Periodic Table is printed in the question paper.

This	s question is about gases found in clean, dry air and gases found in polluted air.	
(a)	Name one gas found in clean, dry air which contributes to global warming.	
		[1]
(b)	State the percentage of nitrogen in clean, dry air.	
(2)		[1]
(c)	Name the substance used to remove sulfur dioxide in flue gas desulfurisation.	
		[1]
(d)	Nitrogen dioxide, NO ₂ , is formed in car engines.	
	Name the equipment in a car exhaust used to remove the NO ₂ formed in car engines.	
		[1]
(e)	All gases diffuse.	
(0)	(i) Choose from the list of formulae the gas which diffuses most quickly.	
	Draw a circle around your answer.	
	CO CO ₂ CH ₄ NO ₂ SO ₂	
		[1]
	(ii) Explain your answer to (i).	[41
		נין
(f)	State one adverse effect of carbon monoxide on human health.	
		[1]
(g)	Carbon dioxide, CO ₂ , is a reactant in photosynthesis.	
	Name the two products of photosynthesis.	
	and	[2]

(h) Complete the dot-and-cross diagram in Fig. 1.1 for a molecule of CO₂.

Show outer shell electrons only.

Fig. 1.1

[2]

[Total: 11]

Lithium, sodium and potassium are Group I elements.	
(a) Name the type of bonding in these elements.	
	[1]
(b) Sodium reacts with cold water to form hydrogen gas and a solution of a strong	alkali
(i) State the test for hydrogen gas.	ainaii.
test	
positive result	[1]
(ii) Suggest the pH of a solution of a strong alkali.	
pH =	[1]
(iii) Name a substance which can be used to confirm the pH of a solution of a s	strong alkali.
	[1]
(iv) Write the symbol equation for the reaction between sodium and cold water.	
Include state symbols.	
	[3]
(a) Lithium has true paturally accuming true of atoms (il i and 71 i	
(c) Lithium has two naturally occurring types of atoms, ⁶ Li and ⁷ Li.	
(i) State the name given to atoms of the same element with different nucleon	
(III) O 1 1 7 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
(ii) Complete Table 2.1 to show the number of protons, neutrons and electron and ion of lithium shown.	ns in the atom
Table 2.1	
⁶ Li ⁷ Li⁺	
protons	
neutrons	

[3]

© UCLES 2023 0620/42/F/M/23

electrons

(iii) Table 2.2 shows the relative abundance of the two naturally occurring atoms of lithium.

Table 2.2

atom	⁶ Li	⁷ Li
relative abundance	10%	90%

Calculate the relative atomic mass of lithium to one decimal place.

relative atomic mass =[2]

(d) Potassium oxide, K₂O, is an ionic compound.

Complete Fig. 2.1 to show the electronic configurations of the ions in potassium oxide. Show the charges on the ions.

Fig. 2.1

[3]

[Total: 16]

The H	laber process is used to ma	anufacture ammonia.		
(a) S	tate the main source of ea	ch gas used in the Haber	process.	
n	itrogen			
h	ydrogen			
				[2]
(b) T	he equation for the Haber	process is shown.		
		$N_2(g) + 3H_2(g) \rightleftharpoons 2NH$	$_{3}(g)$ $\Delta H = -92 \mathrm{kJ/mol}$	
Т	he reaction is reversible. T	he forward reaction is exc	othermic.	
(i) State what is meant by	the symbol ΔH .		
				[1]
(ii) ΔH for the forward react	tion is –92 kJ/mol.		
	State why this value sho	ows that the forward reac	tion is exothermic.	
				[1]
(iii) State the typical condition	ons and name the catalys	at used in the Haber process.	
	temperature	°C		
	pressure	kPa		
	catalyst			[0]
/:) Commisto Table 2.4 to	alanu tha affaat if ann u		[3]
(iv	•		hen the typical conditions in ses, decreases or no change	
		Table 3.1		
	change to typical conditions	effect on the rate of the forward reaction	effect on the concentration of NH ₃ (g) at equilibrium	
	temperature increases	increases		
	pressure decreases			
	no catalyst	decreases		

[4]

	(v)	Explain in terms of collision theory why increasing the temperature increases the rate of the reaction.
		[3]
(c)	Amı	monia reacts with an acid to form ammonium sulfate, $(NH_4)_2SO_4$.
	(i)	State the formula of the acid used.
		[1]
	(ii)	State one use of ammonium sulfate.
		[1]
(iii)	Calculate the percentage composition by mass of nitrogen in $(NH_4)_2SO_4$.
		percentage of nitrogen = % [2]
		[Total: 18]

Copper	is element 29 in the Periodic Table.	
(a) Bra	ass contains copper.	
(i)	Name the other metal in brass.	
		[1]
(ii)	State the term given to a mixture of a metal with another element.	
		[1]
(b) Co	pper can be stretched into wires. Copper wires conduct electricity.	
(i)	Name the property of metals which means that they can be stretched into wires.	
		[1]
(ii)	Name the particles responsible for the conduction of electricity in solid copper.	
		[1]
(c) Co	pper is a transition element.	
So	me physical and chemical properties of transition elements are shown.	
	physical properties: • high density	
	high strength	
	chemical properties: • form coloured compounds	
	have ions with variable oxidation numbers	
(i)	State one other physical property of transition elements.	
		[1]
(ii)	State one other chemical property of transition elements.	
		[1]

	drated copper(II) sulfate is a coloured compound. It exists as hydrated crystals which tain water molecules.
(i)	State the term given to water molecules present in hydrated crystals.
	[1]
(ii)	State the colour of hydrated copper(II) sulfate crystals.
	[1]
(iii)	Write the formula of hydrated copper(II) sulfate.
	[2]
(a) Co	pper(II) oxide is formed when copper(II) nitrate, $Cu(NO_3)_2$, is heated.
(e) 00	
	$2Cu(NO3)2(s) \rightarrow 2CuO(s) + 4NO2(g) + O2(g)$
(i)	State the class of oxide to which copper(II) oxide belongs.
	[1]
(ii)	State the meaning of the Roman numeral (II) in the name copper(II) oxide.
	[1]
(iii)	0.0200 moles of Cu(NO ₃) ₂ is heated.
	Calculate the mass of 0.0200 moles of Cu(NO ₃) ₂ .
	mass = g [2]
(iv)	Calculate the total volume of gas, in dm^3 at r.t.p., produced when 0.0200 moles of $Cu(NO_3)_2$ is heated.
	volume = dm³ [2]
(v)	Powdered aluminium reduces copper(II) oxide.
	Write the symbol equation for this reaction.
	[2]
	[Total: 18]

	pane, propene, propan-1-ol and propanoic acid are members of different homologous serie lecules of these substances contain three carbon atoms.	? S.
(a)	Explain why members of a homologous series have similar chemical properties.	
		[1]
(b)	Name the homologous series to which propanoic acid belongs.	F 4 1
		[1]
(c)	State the general formula of the homologous series to which propanoic acid belongs.	F41
		[1]
(d)	Propan-1-ol has an unbranched isomer.	
	Name this isomer.	
	Draw the displayed formula of this isomer.	
		[2]
(e)	Propane and propene can be manufactured by heating decane, $C_{10}H_{22}$, in the presence o catalyst. One other product is formed.	fа
	(i) Complete the equation for this reaction.	
		[2]
	(ii) Name this manufacturing process.	[4]
		[1]

(†)	Pro	pene forms a polymer named poly(propene).	
	(i)	Draw the displayed formula of a section of poly(propene) showing three repeat units.	
			[2]
	(ii)	State the type of polymerisation that occurs when propene forms poly(propene).	[1]
(g)	Pro	panoic acid reacts with aqueous sodium carbonate to form a salt.	
	(i)	Suggest the name of the salt formed.	[4]
	(ii)	Suggest the formula of the anion in this salt.	ָני.
			[1]
(h)	Pro	panoic acid forms an ester when it reacts with ethanol in the presence of a catalyst.	
	(i)	Suggest a suitable catalyst.	
			[1]
	(ii)	Name the ester formed.	
(iii)	Draw the displayed formula of this ester.	[1]
			[2]
		[Total:	17

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

The Periodic Table of Elements

								Gro	Group								
	=											≡	2	>	5	=>	=
							- エ										² He
				Key			hydrogen 1										helium 4
	4		a l	atomic number		,						2	9	7	80	6	10
	Be		atoı	atomic symbo	loc							В	ပ	z	0	ш	Ne
	beryllium 9		relat	name relative atomic mass	SSI							boron 11	carbon 12	nitrogen 14	oxygen 16	fluorine 19	neon 20
	12											13	14	15	16	17	18
	Mg											Ν	S	۵	S	Cl	Ā
	magnesium 24											aluminium 27	silicon 28	phosphorus 31	sulfur 32	chlorine 35.5	argon 40
_	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
	Ca	Sc	j=	>	ပ်	Mn	Fe	ပိ	Z	Cn	Zu	Ga	Ge	As	Se	ă	첫
	calcium 40	scandium 45	titanium 48	vanadium 51	chromium 52	manganese 55	iron 56	cobalt 59	nickel 59	copper 64	zinc 65	gallium 70	germanium 73	arsenic 75	selenium 79	bromine 80	krypton 84
-	38	39	40	41	42	43	44	45	46	47	48	49	20	51	52	53	54
	Š	>	Zr	g	Mo	ပ	R	格	Pd	Ag	S	In	Sn	Sb	Те	П	Xe
	strontium 88	yttrium 89	zirconium 91	niobium 93	molybdenum 96	technetium -	ruthenium 101	rhodium 103	palladium 106	silver 108	cadmium 112	indium 115	tin 119	antimony 122	tellurium 128	iodine 127	xenon 131
_	56	57–71	72	73	74	75	92	77	78	62	80	81	82	83	84	85	98
	Ba	lanthanoids	Έ	<u>a</u>	>	Re	SO	٦	₫	Au	Нg	<i>1</i> 1	Pp	B	Ъо	¥	R
	barium 137		hafhium 178	tantalum 181	tungsten 184	rhenium 186	osmium 190	iridium 192	platinum 195	gold 197	mercury 201	thallium 204	lead 207	bismuth 209	molouium –	astatine	radon
-	88	89–103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
	Ra	actinoids	껖	Ор	Sg	Bh	Hs	Μ̈́	Ds		ت ت	R	Εl	Mc		<u>~</u>	Og
	radium		rutherfordium	dubnium	seaborgium	pohrium	hassium	meitnerium	darmstadtium	0	copernicium	nihonium	flerovium	moscovium	livermorium	tennessine	oganesson
-	ı		ı	ı	ı	ı	ı	1	ı		I	ı	ı	I	I	ı	ı

7.1	Γn	lutetium	175	103	۲	lawrencium	ı
	ХÞ					_	
69	H	thulium	169	101	Md	mendelevium	ı
89	ш	erbinm	167	100	Fm	ferminm	1
29	웃	holmium	165	66	Es	einsteinium	1
99	۵	dysprosium	163	86	ర్	californium	ı
65	q	terbium	159	97	BK	berkelium	1
64	В	gadolinium	157	96	Cm	curium	ı
63	En	europium	152	92	Am	americium	ı
62	Sm	samarium	150	94	Pu	plutonium	ı
61	Pm	promethium	ı	93	d N	neptunium	ı
09	pN	neodymium	144	92	\supset	uranium	238
59	Ā	praseodymium	141	91	Ра	protactinium	231
58	Ce	cerium	140	06	Ч	thorium	232
22	Га	lanthanum	139	68	Ac	actinium	ı

lanthanoids

actinoids

The volume of one mole of any gas is $24\,dm^3$ at room temperature and pressure (r.t.p.).