**Problem 1.** Consider the path integral for a single point particle, with the action

$$S = \int_0^1 dt \left[ p_{\mu}(t) \dot{x}^{\mu}(t) + \frac{N(t)}{2} [p^2(t) - m^2 - i\epsilon] \right].$$

This represents the quantization of the coordinates and momenta of the particle, subject to the mass shell constraint  $p^2 = m^2$  (together with the  $i\epsilon$  prescription) imposed by the Lagrange multiplier N. This action admits the reparametrization symmetry  $\delta x = \alpha p$ ,  $\delta p = 0$ ,  $\delta N = -\partial_t \alpha$  where  $\alpha(t)$  is any function. This symmetry allows us to fix the gauge condition N(t) = T; the constant T must still be integrated over, however.

**1(a)** Path integrate over x(t), subject to the boundary conditions  $x^{\mu}(0) = x^{\mu}$ ,  $x^{\mu}(1) = y^{\mu}$ , yielding a delta function  $\delta(\dot{p})$  along the path. Solve this constraint (find the set of functions that solve it) and path integrate over those p(t) to find the quantum mechanical propagation amplitude

$$\langle y|x\rangle = D_F(x-y) = \int_0^\infty dT (2\pi i T)^{d/2} \exp\left[-\frac{i}{2}\left((m^2 - i\epsilon)T + \frac{(x-y)^2}{T}\right)\right],$$

where d is the number of spacetime dimensions.

**1(b)** Use this integral representation to show that  $D_F$  satisfies

$$(\delta^2 + m^2)D_F = i\delta^{(d)}(x - y).$$

 $\mathbf{1(c)}$  Evaluate the T integral in terms of Bessel functions.

## Problem 2. Quantum statistical mechanics (Peskin & Schroeder 9.2)

2(a) Evaluate the quantum statistical partition function

$$Z = \text{Tr}\left(e^{-\beta H}\right)$$

(where  $\beta = 1/kT$ ) using the strategy of Section 9.1 for evaluating the matrix elements of  $e^{-iHt}$  in terms of functional integrals. Show that one again finds a functional integral, over functions defined on a domain that is of length  $\beta$  and periodically connected in the time direction. Note that the Euclidean form of the Lagrangian appears in the weight.

**2(b)** Evaluate this integral for a simple harmonic oscillator,

$$L_E = \frac{1}{2}\dot{x}^2 + \frac{1}{2}\omega^2 x^2,$$

by introducing a Fourier decomposition of x(t):

$$x(t) = \sum_{n} x_n \frac{1}{\sqrt{\beta}} e^{2\pi i n t/\beta}.$$

The dependence of the result on  $\beta$  is a bit subtle to obtain explicitly, since the measure for the integral over x(t) depends on  $\beta$  in any discretization. However, the dependence on  $\omega$  should be unambiguous. Show that, up to a (possibly divergent and  $\beta$ -dependent) constant, the integral reproduces exactly the familiar expression for the quantum partition function of an oscillator. [You may find the identity

$$\sinh z = z \prod_{n=1}^{\infty} \left( 1 + \frac{z^2}{(n\pi)^2} \right)$$

useful.

January 24, 2021 1

**2(c)** Generalize this construction to field theory. Show that the quantum statistical partition function for a free scalar field can be written in terms of a functional integral. The value of this integral is given formally by

$$[\det(-\partial^2 + m^2)]^{-1/2},$$

where the operator acts on functions on Euclidean space that are periodic in the time direction with periodicity  $\beta$ . As before, the  $\beta$  dependence of this expression is difficult to compute directly. However, the dependence on  $m^2$  is unambiguous. Show that the determinant indeed reproduces the partition function for relativistic scalar particles.

January 24, 2021 2