日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日
Date of Application:

2004年 5月 7日

出 願 番 号

特願2004-139241

Application Number:

[JP2004-139241]

出 願 人

松下電器産業株式会社

Applicant(s):

[ST. 10/C]:

2005年 1月 7日

1)

11)

BEST AVAILABLE COPY

特許願 【書類名】 7047960043 【整理番号】 平成16年 5月 7日 【提出日】 特許庁長官殿 【あて先】 H04L 27/32 【国際特許分類】 【発明者】 大阪府門真市大字門真1006番地 松下電器産業株式会社内 【住所又は居所】 村上 豊 【氏名】 【発明者】 大阪府門真市大字門真1006番地 松下電器産業株式会社内 【住所又は居所】 小林 聖峰 【氏名】 【発明者】 大阪府門真市大字門真1006番地 松下電器産業株式会社内 【住所又は居所】 折橋 雅之 【氏名】 【発明者】 大阪府門真市大字門真1006番地 松下電器産業株式会社内 【住所又は居所】 【氏名】 松岡 昭彦 【発明者】 大阪府門真市大字門真1006番地 松下電器産業株式会社内 【住所又は居所】 今村 大地 【氏名】 【特許出願人】 000005821 【識別番号】 松下電器產業株式会社 【氏名又は名称】 【代理人】 【識別番号】 100105050 【弁理士】 【氏名又は名称】 鷲田 公一 【先の出願に基づく優先権主張】 特願2003-391860 【出願番号】 平成15年11月21日 【出願日】 【先の出願に基づく優先権主張】 特願2004- 3885 【出願番号】 平成16年 1月 9日 【出願日】 【先の出願に基づく優先権主張】 特願2004-71780 【出願番号】 平成16年 3月12日 【出願日】 【手数料の表示】 【予納台帳番号】 041243 16,000円 【納付金額】 【提出物件の目録】 特許請求の範囲 1 【物件名】 明細書 1 【物件名】 図面 1 【物件名】 要約書 1 【物件名】 【包括委任状番号】 9700376

【書類名】特許請求の範囲

【請求項1】

複数アンテナから同時に送信された複数の変調信号を複数アンテナで受信し、受信信号 から、前記複数の変調信号の各々に対応するデータ系列を復元するマルチアンテナ受信装

前記受信信号から前記変調信号の全て又はいずれか1つ以上を仮判定する仮判定部と、 自変調信号以外の変調信号についての仮判定結果を用いて自変調信号についての候補信 号点を削減する信号点削減部と、

削減された候補信号点と前記受信信号の受信点との信号点距離を計算することにより、 自変調信号についてのディジタルデータを得る主判定部と

を具備するマルチアンテナ受信装置。

【請求項2】

さらに、各変調信号に挿入された既知信号に基づいて、各送信アンテナと各受信アンテ ナ間でのチャネル変動値を推定するチャネル変動推定部を具備し、

前記仮判定部は、前記チャネル変動値を要素とするチャネル変動行列を用いて各送信ア ンテナから送信された変調信号と各受信アンテナで受信した受信信号とを関連付け、前記 チャネル変動行列の逆行列演算を行うことにより、受信信号を各送信アンテナから送信さ れた変調信号に分離する分離部と、分離された各変調信号を軟判定又は硬判定することに よりディジタル信号を得てこれを仮判定値とする判定部と、を有し、

前記信号点削減部は、前記チャネル変動値に基づいて、多重された前記複数の変調信号 の全候補信号点を求め、この全候補信号点から前記仮判定値を用いて自変調信号について の候補信号点を絞り込むことにより、自変調信号についての候補信号点を削減する

請求項1に記載のマルチアンテナ受信装置。

【請求項3】

さらに、前記主判定部により得られたディジタルデータのうち、自変調信号以外のディ ジタルデータを用いて自変調信号についての候補信号点を削減する信号点削減部を具備す

請求項1に記載のマルチアンテナ受信装置。

【請求項4】

さらに、前記主判定部により得られたディジタルデータのうち、自変調信号以外のディ ジタルデータを用いて自変調信号についての候補信号点を削減する信号点削減部を具備し 、前記主判定部により順次得られるディジタルデータを再帰的に用いて候補信号点を削減 する

請求項1に記載のマルチアンテナ受信装置。

【請求項5】

前記複数の変調信号は、各変調信号間で受信品質が異なるように変調された信号である 請求項1から請求項4のいずれかに記載のマルチアンテナ受信装置。

「請求項 C I

前記主判定部は、前記仮判定部での判定の信頼度を用いて判定を行う 請求項1に記載のマルチアンテナ受信装置。

【請求項7】

前記主判定部は、前記仮判定部での各シンボルのパスメトリックを前記信頼度として用 い、当該パスメトリックでブランチメトリックを重み付けて判定を行う

請求項6に記載のマルチアンテナ受信装置。

【請求項8】

前記仮判定部は、候補信号点を送信ビット毎に複数の集合に分類し、各集合の点と受信 信号点との最小2乗ユークリッド距離を用いて軟判定復号する

請求項1に記載のマルチアンテナ受信装置。

【請求項9】

75 m 15 15 15

同時送信された複数の変調信号が伝搬路上で多重されてなる受信信号から、各変調信号 出証特2004-3120426 に対応するデータ系列を復元するマルチアンテナ受信方法であって、

前記受信信号から前記変調信号の全て又はいずれか1つ以上を仮判定する仮判定ステッ プと、

自変調信号以外の変調信号についての仮判定結果を用いて自変調信号についての候補信 号点を削減する信号点削減ステップと、

削減された候補信号点と前記受信信号の受信点とに基づき自変調信号についてのディジ タルデータを得る主判定ステップと

を含むマルチアンテナ受信方法。

【請求項10】

前記仮判定ステップでは大まかな判定を行い、前記主判定ステップでは詳細な判定を行

請求項9に記載のマルチアンテナ受信方法。

【請求項11】

前記仮判定ステップでは、チャネル変動行列の逆行列演算により各変調信号を分離し、 分離後の各変調信号を変調信号毎に判定し、

前記主判定ステップでは、最尤判定を含む演算を行う

請求項10に記載のマルチアンテナ受信方法。

【請求項12】

さらに、前記主判定ステップにより得られたディジタルデータを再帰的に用いたイタレ ーション処理により前記主判定ステップで用いる候補信号点を削減する信号点削減ステッ プを含む

請求項9に記載のマルチアンテナ受信方法。

【請求項13】

前記主判定ステップでは、前記仮判定ステップでの判定の信頼度を用いて判定を行う 請求項9に記載のマルチアンテナ受信方法。

【請求項14】

複数のアンテナと、

前記各アンテナに対応して設けられ、前記各アンテナから送信する信号をそれぞれ異な るインターリーブパターンでインターリーブする複数のインターリーバと

を具備するマルチアンテナ送信装置。

【請求項15】

前記複数のインターリーバにおけるインターリープパターンは、各インターリーバ間で 無相関となるように選定されている

請求項14に記載のマルチアンテナ送信装置。

【請求項16】

さらに、インターリーブ後の各送信信号をOFDM変調するOFDM変調部を具備し、 前記複数のインターリーバのうち第1のインターリーバは、周波数の低いサブキャリア から周波数の高いサブキャリアへレデータを配置するインターリーブパターンが選定され ていると共に、第2のインターリーバは、周波数の高いサブキャリアから周波数の低いサ ブキャリアへとデータを配置するインターリープパターンが選定されている

請求項14に記載のマルチアンテナ送信装置。

【請求項17】

さらに、インターリーブ後の各送信信号をOFDM変調するOFDM変調部を具備し、 前記複数のインターリーバのうち第1のインターリーバは、サブキャリアの時間方向に 時間の早い方から時間の遅い方へとデータを配置するインターリーブパターンが選定され ていると共に、第2のインターリーバは、サブキャリアの時間方向に時間の遅い方から時 間の早い方へとデータを配置するインターリーブパターンが選定されている

請求項14に記載のマルチアンテナ送信装置。

【請求項18】

さらに、時空間符号をデータシンボル間に挿入する時空間符号挿入部を具備する

請求項14に記載のマルチアンテナ送信装置。

【請求項19】

さらに、データシンボルと比較して判定誤りの小さい特殊シンボルを、データシンボル 間に挿入する特殊シンボル挿入部を具備する

請求項14に記載のマルチアンテナ送信装置。

【請求項20】

さらに、符号化ブロック内で、必ず1度は、送信するアンテナを切り替えるアンテナ切 り替え部を具備する

請求項14に記載のマルチアンテナ送信装置。

【請求項21】

前記インターリーバに代えてLDPC (Low Density Parity Check) 符号器を設け、当 該LDPC符号器の生成行列を変えることで、前記各アンテナから送信する信号をそれぞ れ異なるインターリーブパターンでインターリーブする

請求項14に記載のマルチアンテナ送信装置。

【請求項22】

複数のアンテナを有し各アンテナから同時に異なる変調信号を送信するマルチアンテナ 送信装置と、複数のアンテナを有し当該複数アンテナで受信した受信信号を復調すること により、各変調信号に対応するデータ系列を復元するマルチアンテナ受信装置と、を備え るマルチアンテナ通信システムであって、

前記マルチアンテナ送信装置は、

前記各アンテナから送信する信号をそれぞれ異なるインターリーブパターンでインター リーブする複数のインターリーバを具備し、

前記マルチアンテナ受信装置は、

前記受信信号から前記変調信号の全て又はいずれか1つ以上を仮判定する仮判定部と、 自変調信号以外の変調信号についての仮判定結果を用いて自変調信号についての候補信 号点を削減する信号点削減部と、

削減された候補信号点と前記受信信号の受信点との信号点距離を計算することにより、 自変調信号についてのディジタルデータを得る主判定部と、

を具備するマルチアンテナ通信システム。

【請求項23】

前記マルチアンテナ送信装置は、さらに、時空間符号をデータシンボル間に挿入する時 空間符号挿入部を具備する

請求項22に記載のマルチアンテナ通信システム。

【請求項24】

前記マルチアンテナ送信装置は、さらに、データシンボルと比較して判定誤りの小さい 特殊シンボルを、データシンボル間に挿入する特殊シンボル挿入部を具備する

請求項22に記載のマルチアンテナ通信システム。

【遠求項25】

前記マルチアンテナ送信装置は、さらに、符号化ブロック内で、必ず1度は、送信する アンテナを切り替えるアンテナ切り替え部を具備する

請求項22に記載のマルチアンテナ通信システム。

【請求項26】

前記インターリーバに代えてLDPC(Low Density Parity Check)符号器を設け、当 該LDPC符号器の生成行列を変えることで、前記各アンテナから送信する信号をそれぞ れ異なるインターリーブパターンでインターリーブする

請求項22に記載のマルチアンテナ通信システム。

【請求項27】

複数のアンテナを有し各アンテナから同時に異なる変調信号を送信するマルチアンテナ 送信装置と、複数のアンテナを有し当該複数アンテナで受信した受信信号を復調すること により、各変調信号に対応するデータ系列を復元するマルチアンテナ受信装置と、を備え るマルチアンテナ通信システムであって、

前記マルチアンテナ受信装置は、

前記受信信号から前記変調信号の全て又はいずれか1つ以上を仮判定する仮判定部と、 自変調信号以外の変調信号についての仮判定結果を用いて自変調信号についての候補信 号点を削減する信号点削減部と、

削減された候補信号点と前記受信信号の受信点との信号点距離を計算することにより、 自変調信号についてのディジタルデータを得る主判定部とを具備し、

前記マルチアンテナ送信装置は、

再送時に送信する変調信号の数を、再送時以外に送信する変調信号の数よりも少なくす る

マルチアンテナ通信システム。

【請求項28】

前記マルチアンテナ送信装置は、

再送時には、時空間符号又はCycled Delay Diversityを用いて前記変調信号を形成する 請求項27に記載のマルチアンテナ通信システム。

【書類名】明細書

【発明の名称】マルチアンテナ受信装置、マルチアンテナ受信方法、マルチアンテナ送信 装置及びマルチアンテナ通信システム

【技術分野】

[0001]

本発明はマルチアンテナ受信装置、マルチアンテナ受信方法、マルチアンテナ送信装置及びマルチアンテナ通信システムに関し、特に送信側の複数アンテナから同時に送信された異なる変調信号を複数のアンテナで受信し、伝搬路上で複数の変調信号が多重化されてなる受信信号から各変調信号に対応する送信データを復元する技術に関する。

【背景技術】

[0002]

従来、MIMO(Multiple-Input Multiple-Output)と呼ばれる通信方法のように複数系列の送信データをそれぞれ変調し、各変調データを複数のアンテナから同時に送信することで、データの通信速度を高めるようにしたものがある。受信側では、複数のアンテナからの送信信号を複数のアンテナで受信する。

[0003]

ここで各受信アンテナで得られる受信信号は、複数の変調信号が伝搬空間上で混ざり合ったものとなるので、各変調信号に対応するデータを復元するためには、各変調信号の伝搬路での変動値(以下これをチャネル変動と呼ぶ)を推定する必要がある。このため送信装置は予め変調信号にパイロットシンボル等の既知信号を挿入し、受信装置は変調信号に挿入された既知信号に基づいて、各送信アンテナと各受信アンテナ間の伝搬空間でのチャネル変動を推定する。そしてこのチャネル変動推定値を用いて各変調信号を復調する。

[0004]

その一つの方法として、チャネル変動推定値を要素とする行列の逆行列演算を行って各変調信号を分離する方法がある。また別の方法として、チャネル変動推定値を用いて候補信号点位置を求め、この候補信号点位置と受信信号点位置との間で最尤判定(MLD:Maximum Likelihood Detection)を行うことで、各変調信号により送信されたデータを復元する方法がある。

[0005]

このようなマルチアンテナを用いた通信技術については、例えば非特許文献 1 で開示されている。以下、この非特許文献 1 に開示された内容について、図 7 9 を用いて簡単に説明する。マルチアンテナ送信装置 1 は、変調信号生成部 3 に送信信号 1 及び送信信号 1 を入力する。変調信号生成部 1 は各送信信号 1 以及 1 を 1 と 1 に 1 と 1 と 1 と 1 に 1 と 1 と 1 と 1 に 1 と 1 と 1 に 1 と 1 と 1 に 1 と 1 と 1 に 1 と 1 と 1 と 1 に 1 と 1 と 1 と 1 に 1 と 1 に 1 と 1 と 1 と 1 に 1 と 1 と 1 に 1 と 1 と 1 と 1 に 1 と 1 に 1 と 1 と 1 に 1 に 1

[0006]

マルチアンテナ受信装置2は、アンテナ11で受信した受信信号12を無線部13に入力すると共に、アンテナ15で受信した受信信号16を無線部17に入力する。無線部13、17は受信信号12、16に対してダウンコンバート等の無線処理を施し、これにより得たベースバンド信号14、18を復調部19に送出する。

[0007]

復調部19はベースバンド信号14、18を検波することにより、送信信号Aの受信ディジタル信号20及び送信信号Bの受信ディジタル信号21を得る。このとき非特許文献1では、復調部19において、チャネル推定行列の逆行列演算を行って受信ディジタル信号20、21を得る方法と、最尤判定(MLD)を行って受信ディジタル信号20、21を得る方法が記載されている。

[0008]

また従来、複数アンテナを用いた送信方法として、非特許文献2に開示されているよう に時空間ブロック符号 (STBC:Space-Time Block Code) を送信することにより、品 質の良い(誤り率特性の良い)データ伝送を実現する技術が知られている。以下、この非 特許文献2に開示された内容について図面を用いて説明する。

[0009]

図80に示すように、送信装置は複数のアンテナAN1、AN2を有し、各アンテナA N1、AN2から同時に信号を送信する。受信装置は、同時に送信された複数の信号をア ンテナAN3で受信する。

[0010]

図81に、各アンテナAN1、AN2から送信される信号のフレーム構成を示す。アン テナAN1からは送信信号Aが送信され、これと同時にアンテナAN2からは送信信号B が送信される。送信信号A及び送信信号Bは、符号化利得とダイバーシチ利得とが得られ るように同じシンボルが複数回配置されたシンボルブロックからなる。

[0011]

さらに詳しく説明する。図81において、S1、S2はそれぞれ異なるシンボルを示す と共に、複素共役を"*"で示す。時空間ブロック符号化では、時点 i において、第 1 の アンテナAN1からシンボルS1を送信すると同時に第2のアンテナAN2からシンボル S2を送信し、続く時点i+1において、第1のアンテナAN1からシンボルーS2*を 送信すると同時に第2のアンテナAN2からシンボルS1* を送信する。

[0012]

受信装置のアンテナAN3では、アンテナAN1とアンテナAN3間の伝送路変動h1 (t) を受けた送信信号Aと、アンテナAN2とアンテナAN3間の伝送路変動 h2(t) を受けた送信信号Bとが合成された信号が受信される。

[0013]

受信装置は、伝送路変動h1(t)とh2(t)を推定し、その推定値を用いることに より、合成された受信信号から元の送信信号Aと送信信号Bを分離した後に、各シンボル を復調するようになっている。

[0014]

この際、図81に示すような時空間ブロック符号化された信号を用いると、信号分離時 に、伝送路変動h1(t)、h2(t)に拘わらず各シンボルS1、S2を最大比合成で きるようになるので、大きな符号化利得とダイバーシチ利得とが得られるようになる。こ の結果、受信品質すなわち誤り率特性を向上させることができる。

【非特許文献 1】 "Multiple-antenna diversity techniques for transmission ove r fading channels" IEEE WCNC 1999, pp.1038-1042, Sep. 1999.

【非特許文献 2】 "Space-Time Block Codes from Orthogonal Design" IEEE Transa ctions on Information Theory, pp.1456-1467, vol.45, no.5, July 1999

【発明の開示】

【発明が解決しようとする課題】

[0015]

ところで、非特許文献2のようなマルチアンテナを用いたシステムでは、データ通信速 度は上がるものの、特に受信装置の構成が複雑化する問題がある。特に最尤判定(MLD)を行って各変調信号に対応するデータを得る方法では、候補信号点と受信点との間の最 尤判定に要する演算数が多くなるため、回路規模が大きくなってしまう。

[0016]

具体的に、送信アンテナ数が2で、受信アンテナ数が2の場合を考えると、QPSKを 施した変調信号を各アンテナから送信した場合、4×4=16個の候補信号点が存在する ことになる。さらに16QAMを施した変調信号を各アンテナから送信した場合には、1 6×16=256個の候補信号点が存在することになる。最尤判定(MLD)を行う場合 、実際の受信点とこれらの全候補信号との距離を計算する必要があるので、膨大な計算が 必要となり、回路規模の増大に繋がる。

[0017]

これに対して、チャネル推定行列の逆行列を用いて、受信信号から各変調信号を分離した後に判定を行う方法では、最尤判定(MLD)を行う方法と比較して演算数が少なくなるため、回路規模は小さくなるが、電波伝搬環境によっては誤り率特性が低下し、この結果受信データの誤り率特性が劣化する欠点がある。誤り率特性が低下すると、実質的なデータ通信速度が低下することに繋がる。

[0018]

また非特許文献 2 のような時空間ブロック符号化した信号を用いると、確かに受信品質 (誤り率特性) は向上するものの、伝送効率が低下する欠点がある。すなわち、時点 i+1 で送信される S 1 * や-S 2 * は、受信装置においては S 1 、 S 2 として復調されるので、実質的には時点 i で送信された S 1 、 S 2 と同じ情報である。このため、同じ情報を 2 度送信していることになり、この分データの伝送効率が低下する。

[0019]

例えば一般的なマルチアンテナ通信システムにおいては、時点i+1おいてシンボルS1、S2とは異なるシンボルS3、S4を送信するので、時点iから時点i+1の期間では4つのシンボルS1~S4を送信することができる。つまり、単純に考えると、時空間ブロック符号化技術を用いた場合、データ伝送効率が、一般的なマルチアンテナ通信の半分に低下してしまう。

[0020]

本発明はかかる点に鑑みてなされたものであり、STBCを用いた伝送方法と比較してデータ伝送効率を低下させることなく、かつ最大比合成に近い受信品質を得ることができるといった従来技術では為し得なかった通信を可能とし、さらには比較的少ない演算回数でこれを達成することができるマルチアンテナ受信装置、マルチアンテナ受信方法、マルチアンテナ送信装置及びマルチアンテナ通信システムを提供することを目的とする。

【課題を解決するための手段】

[0021]

かかる課題を解決するため本発明のマルチアンテナ受信装置は、複数アンテナから同時に送信された複数の変調信号を複数アンテナで受信し、受信信号から前記複数の変調信号の各々に対応するデータ系列を復元するマルチアンテナ受信装置であって、前記受信信号から前記変調信号の全て又はいずれか1つ以上を仮判定する仮判定部と、自変調信号以外の変調信号についての仮判定結果を用いて自変調信号についての候補信号点を削減する信号点削減部と、削減された候補信号点と前記受信信号の受信点との信号点距離を計算することにより自変調信号についてのディジタルデータを得る主判定部とを具備する構成を採る。

[0022]

この構成によれば、他の変調信号の仮判定結果を使って自変調信号の候補信号点を削減した後に 主判定を行うようにしたので、主判定で最尤判定(MLD)等の詳細な判定を行った場合の演算量が削減される。この結果、目的の変調信号に対応するディジタルデータを小さい回路規模で正確に求めることができるようになる。

[0023]

Property Control

本発明のマルチアンテナ受信装置は、さらに、各変調信号に挿入された既知信号に基づいて各送信アンテナと各受信アンテナ間でのチャネル変動値を推定するチャネル変動推定部を具備し、前記仮判定部は、前記チャネル変動値を要素とするチャネル変動行列を用いて各送信アンテナから送信された変調信号と各受信アンテナで受信した受信信号とを関連付け、前記チャネル変動行列の逆行列演算を行うことにより、受信信号を各送信アンテナから送信された変調信号に分離する分離部と、分離された各変調信号を軟判定又は硬判定することによりディジタル信号を得てこれを仮判定値とする判定部と、を有し、前記信号点削減部は、前記チャネル変動値に基づいて、多重された前記複数の変調信号の全候補信号点を求め、この全候補信号点から前記仮判定値を用いて自変調信号についての候補信号

点を絞り込むことにより自変調信号についての候補信号点を削減する構成を採る。

[0024]

この構成によれば、仮判定部を小さい回路規模で実現できるようになる。

[0025]

本発明のマルチアンテナ受信装置は、さらに、前記主判定部により得られたディジタル データのうち、自変調信号以外のディジタルデータを用いて自変調信号についての候補信 号点を削減する信号点削減部を具備する構成を採る。

[0026]

この構成によれば、主判定部により得られるディジタルデータは、仮判定部により得ら れるディジタルデータよりも誤り率特性の良いデータであり、このデータを用いて候補信 号点を削減するので、的確な候補信号点の絞り込みができるようになる。

[0027]

本発明のマルチアンテナ受信装置は、さらに、前記主判定部により得られたディジタル データのうち、自変調信号以外のディジタルデータを用いて自変調信号についての候補信 号点を削減する信号点削減部を具備し、前記主判定部により順次得られるディジタルデー タを再帰的に用いて候補信号点を削減する構成を採る。

[0028]

この構成によれば、所謂イタレーションにより候補信号点を削減するようにしたので、 一段と的確な候補信号点の絞り込みができるようになるので、主判定部により得られるデ ィジタルデータの誤り率特性を一段と向上させることができるようになる。

[0029]

本発明のマルチアンテナ受信装置は、前記複数の変調信号は、各変調信号間で受信品質 が異なるように変調された信号である構成を採る。

[0030]

この構成によれば、例えば第1の変調信号の変調多値数を第2の変調信号の変調多値数 よりも少なくし、第1の変調信号を仮判定し、その仮判定結果を用いて第2の変調信号に ついての候補信号点を削減すれば、受信品質の良い第1の変調信号の仮判定結果によって 的確な信号点削減を行うことができるようになる。この結果、第2の変調信号を主判定し たディジタルデータは、伝送速度が高くかつ誤り率特性の良いものとなる。これにより、 受信品質の向上と伝送速度の向上の両立を図ることができる。

[0031]

本発明のマルチアンテナ受信装置は、前記主判定部が、前記仮判定部での判定の信頼度 を用いて判定を行うようにする。

[0032]

また本発明のマルチアンテナ受信装置は、前記主判定部が、前記仮判定部での各シンボ ルのパスメトリックを前記信頼度として用い、当該パスメトリックでブランチメトリック を重み付けて判定を行うようにする。

[0033]

これらの構成によれば、主判定処理により得られるデータの誤り率特性を一段と向上さ せることができるようになる。

[0034]

本発明のマルチアンテナ受信装置は、前記仮判定部が、候補信号点を送信ビット毎に複 数の集合に分類し、各集合の点と受信信号点との最小2乗ユークリッド距離を用いて軟判 定復号する構成を採る。

[0035]

この構成によれば、符号化利得の減少を抑制してMLDを行うことができるようになる ため、仮判定時の誤り率特性を向上させることができるようになり、この結果、一段と誤 り率特性の良い受信データを得ることができる。

[0036]

本発明のマルチアンテナ受信方法は、同時送信された複数の変調信号が伝搬路上で多重

されてなる受信信号から、各変調信号に対応するデータ系列を復元するマルチアンテナ受 信方法であって、前記受信信号から前記変調信号の全て又はいずれか1つ以上を仮判定す る仮判定ステップと、自変調信号以外の変調信号についての仮判定結果を用いて自変調信 号についての候補信号点を削減する信号点削減ステップと、削減された候補信号点と前記 受信信号の受信点とに基づき自変調信号についてのディジタルデータを得る主判定ステッ プとを含むようにする。

[0037]

この方法によれば、他の変調信号の仮判定結果を使って自変調信号の候補信号点を削減 した後に、主判定を行うようにしたので、主判定で少ない演算量で的確な判定処理を行う ことができるようになり、小さな回路規模で誤り率特性の良い受信データを得ることがで きる。

[0038]

本発明のマルチアンテナ受信方法は、前記仮判定ステップでは大まかな判定を行い、前 記主判定ステップでは詳細な判定を行うようにする。

[0039]

本発明のマルチアンテナ受信方法は、前記仮判定ステップでは、チャネル変動行列の逆 行列演算により各変調信号を分離し、分離後の各変調信号を変調信号毎に判定し、前記主 判定ステップでは、最尤判定を含む演算を行うようにする。

[0040]

本発明のマルチアンテナ受信方法は、さらに、前記主判定ステップにより得られたディ ジタルデータを再帰的に用いたイタレーション処理により前記主判定ステップで用いる候 補信号点を削減する信号点削減ステップを含むようにする。

[0041]

本発明のマルチアンテナ送信装置は、複数のアンテナと、前記各アンテナに対応して設 けられ、前記各アンテナから送信する信号をそれぞれ異なるインターリーブパターンでイ ンターリーブする複数のインターリーバとを具備する構成を採る。

[0042]

この構成によれば、伝搬路上で多重化された変調信号から、例えばある変調信号の判定 結果に基づいて他の変調信号の候補信号点を絞り込んだ後に、前記他の変調信号の判定を 行うような場合に、両方の変調信号のデータがバースト的に誤る確率を低くできるので、 前記他の変調信号の判定結果であるデータの誤り率特性を向上させることができるように なる。特に、誤り訂正符号を用いている場合に効果的である。

$\{0043\}$

本発明のマルチアンテナ送信装置は、前記複数のインターリーバにおけるインターリー ブパターンは、各インターリーバ間で無相関となるように選定されている構成を採る。

[0044]

この構成によれば、前記ある変調信号と前記他の変調信号の両方のデータがバースト的 に誤る確率を一段と低減できるので、前記他の変調信号の判定結果であるデータの誤り率 特性を一段と向上させることができる。

[0045]

本発明のマルチアンテナ送信装置は、さらに、インターリーブ後の各送信信号をOFD M変調するOFDM変調部を具備し、前記複数のインターリーバのうち第1のインターリ ーバは、周波数の低いサブキャリアから周波数の高いサブキャリアへとデータを配置する インターリーブパターンが選定されていると共に、第2のインターリーバは、周波数の高 いサブキャリアから周波数の低いサブキャリアへとデータを配置するインターリーブパタ ーンが選定されている構成を採る。

[0046]

また本発明のマルチアンテナ送信装置は、さらに、インターリーブ後の各送信信号を〇 FDM変調するOFDM変調部を具備し、前記複数のインターリーバのうち第1のインタ ーリーバは、サブキャリアの時間方向に時間の早い方から時間の遅い方へとデータを配置 するインターリーブパターンが選定されていると共に、第2のインターリーバは、サブキ ャリアの時間方向に時間の遅い方から時間の早い方へとデータを配置するインターリーブ パターンが選定されている構成を採る。

[0047]

これら構成によれば、第1のインターリーバによりインターリーブされて第1のアンテ ナから送信されたOFDM変調信号の判定後のデータと、第2のインターリーバによりイ ンターリーブされて第2のアンテナから送信されたOFDM変調信号の判定後のデータの 両方がバースト的に誤る確率が低くなるので、前記他の変調信号の判定結果であるデータ の誤り率特性を向上させることができるようになる。

[0048]

本発明のマルチアンテナ送信装置は、さらに、時空間符号をデータシンボル間に挿入す る時空間符号挿入部を具備する構成を採る。

[0049]

また本発明のマルチアンテナ送信装置は、さらに、データシンボルと比較して判定誤り の小さい特殊シンボルを、データシンボル間に挿入する特殊シンボル挿入部を具備する構 成を採る。

[0050]

これらの構成によれば、時空間符号や特殊シンボルによって信頼性の高いシンボル判定 を行うことができるようになるので、この判定結果に基づいてデータシンボルについての 信号点削減を行うと、削減された信号点の信頼性も高くなる。この結果、削減された信号 点を用いてデータシンボルを判定すれば、一段とデータシンボルの誤り率特性を向上させ ることができるようになる。

[0051]

本発明のマルチアンテナ送信装置は、インターリーバに代えてLDPC (Low Density Parity Check) 符号器を設け、当該LDPC符号器の生成行列を変えることで、各アンテ ナから送信する信号をそれぞれ異なるインターリーブパターンでインターリーブする構成 を採る。

[0052]

この構成によれば、インターリーバ用いなくてもインターリーバを用いたのと同等のイ ンターリーブ処理を行うことができるので、回路規模を削減することができる。

本発明のマルチアンテナ通信システムは、複数のアンテナを有し各アンテナから同時に 異なる変調信号を送信するマルチアンテナ送信装置と、複数のアンテナを有し当該複数ア ンテナで受信した受信信号を復調することにより、各変調信号に対応するデータ系列を復 元するマルチアンテナ受信装置と、を備えるマルチアンテナ通信システムであって、前記 マルチアンテナ送信装置は、前記各アンテナから送信する信号をそれぞれ異なるインター リーブパターンでインターリープする複数のインターリーバを具備し、前記マルチアンテ ナ受信装置は、前記受信信号から<u>前記変調信号の全て又はいずれか1つ以上を仮判定する</u> 仮判定部と、自変調信号以外の変調信号についての仮判定結果を用いて自変調信号につい ての候補信号点を削減する信号点削減部と、削減された候補信号点と前記受信信号の受信 点との信号点距離を計算することにより、自変調信号についてのディジタルデータを得る 主判定部と、を具備する構成を採る。

[0054]

この構成によれば、他の変調信号の仮判定結果を使って自変調信号の候補信号点を削減 した後に、主判定を行うようにしたので、主判定で最尤判定 (MLD) 等の詳細な判定を 行った場合の演算量が削減される。この結果、目的の変調信号に対応するディジタルデー タを小さい回路規模で正確に求めることができるようになる。さらに、各変調信号のイン ターリーブパターンが異なるので、両方の変調信号のデータがバースト的に誤る確率が低 くなり、主判定を一段と正確に行うことができ、この結果データの誤り率特性を一段と向 上させることができるようになる。

[0055]

本発明のマルチアンテナ通信システムは、複数のアンテナを有し各アンテナから同時に 異なる変調信号を送信するマルチアンテナ送信装置と、複数のアンテナを有し当該複数ア ンテナで受信した受信信号を復調することにより、各変調信号に対応するデータ系列を復 元するマルチアンテナ受信装置と、を備えるマルチアンテナ通信システムであって、マル チアンテナ受信装置は、受信信号から変調信号の全て又はいずれか1つ以上を仮判定する 仮判定部と、自変調信号以外の変調信号についての仮判定結果を用いて自変調信号につい ての候補信号点を削減する信号点削減部と、削減された候補信号点と受信信号の受信点と の信号点距離を計算することにより自変調信号についてのディジタルデータを得る主判定 部とを具備し、マルチアンテナ送信装置は、再送時に送信する変調信号の数を、再送時以 外に送信する変調信号の数よりも少なくする構成を採る。

[0056]

この構成によれば、受信側において、再送された変調信号の合成利得が大きくなるので 、再送信号の受信品質が向上する。この結果、再送された信号を用いて再送されなかった 信号の信号点削減処理を行うと、その精度も向上する。よって、全ての変調信号を誤り率 特性の良い状態で復調することができるようになる。

[0057]

本発明のマルチアンテナ通信システムは、前記マルチアンテナ送信装置が、再送時には 、時空間符号又はCycled Delay Diversityを用いて変調信号を形成する構成を採る。

この構成によれば、再送信号のダイバーシチゲインを大きくすることができるので、各 変調信号を一段と誤り率特性の良い状態で復調することができるようになる、

【発明の効果】

[0059]

このように本発明によれば、同時送信された複数の変調信号が伝搬路上で多重されてな る受信信号から、各変調信号の全て又はいずれか1つ以上を仮判定し、自変調信号以外の 変調信号についての仮判定結果を用いて自変調信号についての候補信号点を削減し、削減 した候補信号点と前記受信信号の受信点とに基づき自変調信号についてのディジタルデー タを得るようにしたことにより、STBCを用いた伝送方法と比較してデータ伝送効率を 低下させることなく、かつ最大比合成に近い受信品質を得ることができるといった従来技 術では為し得なかった通信を可能とし、さらには比較的少ない演算回数でこれを達成する ことができるようになる。

[0060]

また各アンテナから送信する送信信号を異なるインターリーブパターンでインターリー ブするようにしたことにより、マルチアンテナ受信装置での誤り率特性を一段と向上させ ることができるようになる。

【発明を実施するための最良の形態】

[0061]

マルチアンテナ送信装置から同時送信され、伝搬路上で多重化された複数の変調信号を マルチアンテナ受信装置で受信し、各変調信号の信号点判定を行って誤り率特性の良いデ ータを得るには、膨大な演算量が必要となる。特にチャネル数(アンテナ数)が多いほど 、変調多値数が多いほど、演算回数が多くなる。

[0062]

本発明の骨子は、変調信号の受信点を判定して受信データを得る際に用いる候補信号点 を、自変調信号以外の他の変調信号の判定値を使って削減し、削減した候補信号点を用い て自変調信号についての判定(主判定)を行うことである。

[0063]

以下、本発明の実施の形態について図面を参照して詳細に説明する。

[0064]

(実施の形態1)

図1に、本実施の形態で説明するマルチアンテナ通信システムの全体構成を示す。本実 施の形態では、説明を簡単化するために、送信アンテナが2本で、受信アンテナが2本の 場合について記述するが、M($M \ge 2$)本の送信アンテナと、N($N \ge 2$)本の受信アン テナを有するマルチアンテナシステムに適用可能である。

[0065]

マルチアンテナ通信システム100のマルチアンテナ送信装置110は、送信部111 において各送信ディジタル信号TA、TBに対して所定の変調処理や無線周波数への変換 処理を施すことにより変調信号Ta、Tbを得、これを各アンテナAN1、AN2から送 信する。マルチアンテナ受信装置120は、各アンテナAN3、AN4で受信した受信信 号R1、R2を受信部121に入力する。受信部121は受信信号R1、R2に対して復 調処理を施すことにより、送信ディジタル信号TA、TBに対応する受信データRA、R Bを得る。

[0066]

ここでアンテナAN1から送信された変調信号Taは、チャネル変動h11 (t)、h 12 (t) を受けた後にアンテナAN3、AN4で受信される。またアンテナAN2から 送信された変調信号Tbは、チャネル変動h21(t)、h22(t)を受けた後にアン テナAN3、AN4で受信される。

[0067]

よって、時間のパラメータtを用いて、アンテナAN1から送信される信号をTa(t)、アンテナAN2から送信される信号をTb(t)、受信アンテナAN3で受信した信 号をR1(t)、受信アンテナAN4で受信した信号をR2(t)とすると、以下の関係 式が成立する。

【数1】

[0068]

図2に、マルチアンテナ送信装置110の構成を示す。マルチアンテナ送信装置110 は符号化部201A、201Bに送信ディジタル信号TA、TBを入力する。符号化部2 01A、201Bは、フレーム構成信号生成部210からのフレーム構成信号S10に従 って、送信ディジタル信号TA、TBに畳み込み符号化処理を施すことにより符号化デー タS1A、S1Bを形成し、これを変調部202A、202Bに送出する。

[0069]

変調部202A、202Bは、符号化データS1A、S1Bに対してQPSKや16Q AM等の変調処理を施すと共に、フレーム構成信号S10に従ったタイミングでチャネル 推定用のシンボルを挿入することにより、ベースバンド信号S2A、S2Bを形成し、こ れを拡散部203A、203Bに送出する。図3に、各ベースバンド信号のフレーム構成 例を示す。

[0070]

拡散部203A、203Bは、ベースバンド信号に拡散符号を乗算することにより拡散 されたベースバンド信号S3A、S3Bを得、これを無線部204A、204Bに送出す る。なお拡散部203Aと拡散部203Bとでは異なる拡散符号を用いるようになってい る。無線部204A、204Bは、拡散されたベースバンド信号S3A、S3Bに対して アップコンバートや増幅等の無線処理を施すことにより変調信号Ta、Tbを形成し、こ れをアンテナAN1、AN2に供給する。

[0071]

かくして各アンテナAN1、AN2からは、時間軸方向に畳み込み符号化された異なる 変調信号Ta、Tbが同時に送信される。

図4に、マルチアンテナ受信装置120の全体構成を示す。マルチアンテナ受信装置1

20はアンテナAN3、AN4で受信した受信信号R1、R2をそれぞれ無線部401-1、401-2に供給する。無線部401-1、401-2は、受信信号に対してダウン コンバートや直交復調などの無線処理を施すことによりベースバンド信号R1-1、R2 - 1を得、これを逆拡散部402-1、402-2に送出する。

逆拡散部402-1は、ベースバンド信号R1-1に対して図2の拡散部203A及び 拡散部203Bで用いた拡散符号と同じ拡散符号を用いた逆拡散処理を施すことにより逆 拡散後のベースバンド信号R1-2を得、これを変調信号Aのチャネル変動推定部403 -1A、変調信号Bのチャネル変動推定部403-1B及び信号処理部404に送出する

[0074]

同様に、逆拡散部402-2は、ベースバンド信号R2-1に対して図2の拡散部20 3 A 及び拡散部 2 0 3 B で用いた拡散符号と同じ拡散符号を用いた逆拡散処理を施すこと により逆拡散後のベースバンド信号R2-2を得、これを変調信号Aのチャネル変動推定 部403-2A、変調信号Bのチャネル変動推定部403-2B及び信号処理部404に 送出する。

[0075]

変調信号Aのチャネル変動推定部403-1Aは、チャネル推定シンボルに基づき変調 信号A(アンテナAN1から送信された変調信号Ta)のチャネル変動を推定することに よりチャネル変動推定値h11を得る。これにより、アンテナAN1とアンテナAN3間 のチャネル変動が推定される。変調信号Bのチャネル変動推定部403-1Bはチャネル 推定シンボルに基づき変調信号B(アンテナAN2から送信された変調信号Tb)のチャ ネル変動を推定することによりチャネル変動推定値h21を得る。これによりアンテナA N2とアンテナAN3間のチャネル変動が推定される。

[0076]

同様に、変調信号Aのチャネル変動推定部403-2Aは、チャネル推定シンボルに基 づき変調信号A(アンテナAN1から送信された変調信号Ta)のチャネル変動を推定す ることによりチャネル変動推定値h12を得る。これにより、アンテナAN1とアンテナ AN4間のチャネル変動が推定される。変調信号Bのチャネル変動推定部403-2Bは チャネル推定シンボルに基づき変調信号B (アンテナAN2から送信された変調信号Tb) のチャネル変動を推定することによりチャネル変動推定値 h 2 2 を得る。これによりア ンテナAN2とアンテナAN4間のチャネル変動が推定される。

[0077]

信号処理部404は、逆拡散後のベースバンド信号R1-2、R2-2に加えて、チャ ネル変動推定値 h 1 1 、 h 2 1 、 h 1 2 、 h 2 2 を入力し、チャネル変動推定値 h 1 1 、 h 2 1、h 1 2、h 2 2を用いてベースバンド信号R 1-2、R 2-2の復号や検波等を 行うことにより、送信ディジタル信号TA、TBに対応する受信データRA、RBを得る ようになっている。

[0078]

図 5 に、本実施の形態の信号処理部 4 0 4 の構成を示す。信号処理部 4 0 4 は分離部 5 01にベースバンド信号R1−2、R2−2、チャネル変動推定値h11、h21、h1 2、h22を入力する。

[0079]

 $t \sim 2.5 \pm 1$

分離部501は、ベースバンド信号R1-2、R2-2と、チャネル変動推定値 h11 、h21、h12、h22とを、(1)式に当てはめて(1)式の逆行列演算を行うこと により、送信ディジタル信号TAの推定ベースバンド信号502と送信ディジタル信号T Bの推定ベースバンド信号505を得る。このように分離部501は、最尤判定(MLD)を行うのではなく、逆行列演算によって信号分離を行うため、最尤判定を行う場合に比 して小さな回路規模で信号分離を行うことができる。分離部501は、送信ディジタル信 号TAの推定ベースバンド信号502を軟判定部503に送出すると共に、送信ディジタ

ル信号TBの推定ベースバンド信号505を軟判定部506に送出する。

軟判定部503、506は、それぞれ、推定ベースバンド信号502、505の軟判定 値を求めた後、軟判定値に対して誤り訂正処理を施すことにより、ディジタルデータでな る判定値504、507を得る。軟判定部503により得られた判定値504は、信号点 削減部514、516に送出される。また軟判定部506により得られた判定値507は 、信号点削減部508、510に送出される。

[0081]

図6に、軟判定部503、506の構成を示す。軟判定部503と軟判定部506の構 成は同様なので、ここでは軟判定部503の構成のみ説明する。軟判定部503は推定べ ースバンド信号502を軟判定値計算部601に入力する。軟判定値計算部601は、推 定ベースバンド信号502のプランチメトリック及びパスメトリックを求めることにより 、推定ベースバンド信号502のデータ系列602を計算し、このデータ系列602を判 定部603に送出する。判定部603はデータ系列602に対して誤り訂正処理を施し、 誤り訂正後のデータを判定値504として出力する。

[0082]

図7を用いて軟判定部503、506での処理を具体的に説明する。図7は、送信ディ ジタル信号TA、TBがQPSK変調されたときの信号点配置例を示す。図中、701は 受信信号点であり、推定ベースバンド信号502、505に相当する。軟判定部503、 506は、図7における受信信号点701とQPSKの信号点との、例えばユークリッド 距離の2乗を求め、この値をブランチメトリックとし、このブランチメトリックを利用し パスメトリックを求める。そして畳み込み符号を用いている場合は、例えばビタビアルゴ リズムに従って復号し、送信ディジタル信号TAについての判定値504及び送信ディジ タル信号TBについての判定値507を得る。

[0083]

かかる構成に加えて、信号処理部404は、変調信号Aについての信号点削減部508 、510と、変調信号Bについての信号点削減部514、516を有する。

変調信号Aについての信号点削減部508、510は、軟判定部506により得られた 変調信号Bについての判定値を入力する。また信号点削減部508には一方の受信アンテ ナAN4の受信信号に基づいて得られた変調信号Aのチャネル変動値h12及び変調信号 Bのチャネル変動値 h 2 2 が入力されると共に、信号点削減部 5 1 0 には他方の受信アン テナAN3の受信信号に基づいて得られた変調信号Aのチャネル変動値h11及び変調信 号Bのチャネル変動値h21が入力される。

[0085]

信号点削減部508は、先ず変調信号Aのチャネル変動値h12及び変調信号Bのチャ ネル変動値h22に基づき、図8に示すように、16点の候補信号点801~816を推 定する。次に信号点削減部508は、動判完部506により得られた変調信号Bの判定値 507を使って、図9に示すように、候補信号点の数を4点に絞り込む。なお図9は、変 調信号Bの判定値507が(0, 0)、つまり変調信号Bで送信された2ビットが(0, 0) と判定された場合の候補信号点削減の例を示すものである。そして信号点削減部50 8は、信号点801、806、811、816の情報を信号点情報509として軟判定部 5 1 2 に送出する。

[0086]

同様に、信号点削減部510は、変調信号Aのチャネル変動値h11及び変調信号Bの チャネル変動値h21に基づき16点の候補信号点801~816を推定し、次に軟判定 部506により得られた変調信号Bの判定値507を使って候補信号点の数を4点に削減 し、その4点の信号点の情報を信号点情報511として軟判定部512に送出する。

[0087]

変調信号Bについての信号点削減部514、516は、軟判定部503により得られた 出証特2004-3120426 変調信号Aについての判定値504を入力する。また信号点削減部514には一方の受信 アンテナAN4の受信信号に基づいて得られた変調信号Aのチャネル変動値h12及び変 調信号Bのチャネル変動値h22が入力されると共に、信号点削減部516には他方の受 信アンテナAN3の受信信号に基づいて得られた変調信号Aのチャネル変動値h11及び 変調信号Bのチャネル変動値h21が入力される。

[0088]

信号点削減部514は、先ず変調信号Aのチャネル変動値h12及び変調信号Bのチャ ネル変動値 h 2 2 に基づき、図 8 に示すように、1 6 点の候補信号点 8 0 1 ~ 8 1 6 を推 定する。次に信号点削減部514は、軟判定部503により得られた変調信号Aの判定値 504を使って、図10に示すように、候補信号点の数を4点に絞り込む。なお図10は 、変調信号Aの判定値504が(1,0)、つまり変調信号Aで送信された2ビットが(1,0)と判定された場合の候補信号点削減の例を示すものである。そして信号点削減部 514は、信号点805、806、807、808の情報を信号点情報515として軟判 定部518に送出する。

[0089]

同様に、信号点削減部516は、変調信号Aのチャネル変動値h11及び変調信号Bの チャネル変動値h21に基づき16点の候補信号点801~816を推定し、次に軟判定 部503により得られた変調信号Aの判定値504を使って候補信号点の数を4点に削減 し、その4点の信号点の情報を信号点情報517として軟判定部518に送出する。

[0090]

このように本実施の形態のマルチアンテナ受信装置120においては、チャネル変動行 列の逆行列演算により各変調信号A、Bを分離する分離部501と、分離された変調信号 502、505を軟判定する軟判定部503、506とに加えて、各変調信号A、Bに対 応した信号点削減部508、510、514、516を設け、信号点削減部508、51 0、514、516において自変調信号を除く他の変調信号の軟判定値507、504を 使って自変調信号についての候補信号点数を削減するようになっている。

[0091]

すなわち分離部 5 0 1、軟判定部 5 0 3、 5 0 6 において各変調信号A、 Bを仮判定し 、信号点削減部508、510、514、516においてその仮判定結果507、504 に基づいて候補信号点を削減する。

[0092]

各軟判定部512、518は、ベースバンド信号R1-2、R2-2を、削減された自 変調信号についての候補信号点を用いて軟判定することにより、送信ディジタル信号TA 、TBに対応する受信データRA、RBを得るようになっている。

[0093]

これを具体的に説明する。軟判定部512は、信号点情報509、511として図9の 候補信号点801、806、811、816の情報を入力すると共に、受信ベースバンド 信号只1-2、R2-2を入力する。軟判定部512は、受信ベースバンド信号R1-2 、R2-2の両方について候補信号点801、806、811、816を用いて軟判定を 行う。例えば、受信ベースバンド信号R1-2で示される受信点が、図9の信号点800 とすると、受信信号点800と候補信号点801、806、811、816とのユークリ ッド距離の2乗を計算することで、ブランチメトリック (これをBxと呼ぶ)を求める。 同様に、受信ベースバンド信号R2-2で示される受信点が、図9の信号点800(但し 、実際には受信ベースバンド信号R2-1の受信点と受信ベースバンド信号R2-2の受 信点は異なるものとなる)とすると、受信信号点800と候補信号点801、806、8 11、816とのユークリッド距離の2乗を計算することで、ブランチメトリック (これ をByと呼ぶ) を求める。

[0094]

そして軟判定部512は、プランチメトリックBx及びブランチメトリックByを加算 したプランチメトリックからパスメトリックを求め、例えば畳み込み符号を用いている場 合は、ビタビアルゴリズムに従って復号を行うことで、変調信号Aの受信データRAを得 る。

[0095]

同様に、軟判定部518は、信号点情報515、517として図10の候補信号点80 5、806、807、808の情報を入力すると共に、受信ベースバンド信号R1-2、 R2-2を入力する。軟判定部518は、受信ベースバンド信号R1-2、R2-2の両 方について候補信号点805、806、807、808を用いて軟判定を行う。例えば、 受信ベースバンド信号R1-2で示される受信点が、図10の信号点800とすると、受 信信号点800と候補信号点805、806、807、808とのユークリッド距離の2 乗を計算することで、ブランチメトリック(これをBvと呼ぶ)を求める。同様に、受信 ベースバンド信号R2-2で示される受信点が、図10の信号点800(但し、実際には 受信ベースバンド信号R2-1の受信点と受信ベースバンド信号R2-2の受信点は異な るものとなる)とすると、受信信号点800と候補信号点805、806、807、80 8とのユークリッド距離の2乗を計算することで、ブランチメトリック (これをBwと呼 ぶ)を求める。

[0096]

そして軟判定部518は、ブランチメトリックBv及びブランチメトリックBwを加算 したブランチメトリックからパスメトリックを求め、例えば畳み込み符号を用いている場 合は、ビタビアルゴリズムに従って復号を行うことで、変調信号Bの受信データRBを得

[0097]

次に本実施の形態のマルチアンテナ受信装置120の動作について説明する。マルチア ンテナ受信装置120は、2つのアンテナAN1、AN2から同時に送信された2つの変 調信号A、Bを2つのアンテナAN3、AN4で受信する。マルチアンテナ受信装置12 0は、チャネル変動推定部403-1A、403-1B、403-2A、403-2Bに よって、各変調信号A、Bに挿入された既知信号に基づいて、各送信アンテナAN1、A N2と受信アンテナAN3、AN4間でのチャネル変動を推定する。

[0098]

ここで変調信号A、変調信号BがQPSK変調されているとき、多重されて受信された 受信信号には、 $4 \times 4 = 1$ 6 点の信号点が存在する。つまり、チャネル変動推定値に基づ いて形成される候補信号点の数も16個となる。

[0099]

ここで従来のマルチアンテナ受信装置では、16個の候補信号点と受信点との信号点距 離を求め、最も距離の小さい値をとる候補信号点を検出し、この候補信号点で示されるデ ータを受信データとするようになっている。

[0100]

これに対して本実施の形態のマルチアンテナ受信装置120においては、チャネル変動 行列の逆行列演算により各変課信号A Pを全難する分離部501と、分離された変調信 号を軟判定する軟判定部503、506とを設けて、一旦、各変調信号A、Bのディジタ ル信号(判定値)を得、このディジタル信号を用いて各変調信号A、Bの候補信号点を絞 り込む。そして絞り込んだ候補信号点のみを用いて軟判定部により正確な判定を行う。こ れは、換言すれば、分離部501、軟判定部503、504により変調信号A、Bの仮判 定を行い、その仮判定値を用いて候補信号点を絞り込み、絞り込んだ候補信号点のみにつ いて正確なディジタル判定(主判定)を行っていると言うことができる。

[0101]

これにより、軟判定部512、518により全ての候補信号点を用いて受信点を判定す る場合と比較して、格段に演算量を削減することができる。例えばこの実施の形態では、 変調方式としてQPSKを用いているが、多値数が増加するにつれその効果はさらに大き くなる。例えば、変調信号A、Bともに64QAMで変調されているとすると、信号点数 を削減しない場合、64×64=4096の候補信号点が存在し、4096個の候補信号 点に対しブランチメトリックを求めようとすると非常に大規模な回路が必要となる。

[0102]

また逆行列演算のみを用いて受信データを得る場合と比較して、つまり軟判定部503 、506の判定結果をそのまま受信データとする場合と比較して、誤り率特性を向上させ ることができる。特に信号点数削減を行う際、正しい削減を行うと、フルダイバーシチゲ インを得ることができ、一段と誤り率特性を向上させることができるようになる。信号点 削減のより好適な構成は、以下の実施の形態で説明する。

[0103]

かくして本実施の形態によれば、チャネル変動行列の逆行列演算を用いて分離した各変 調信号502、505に基づいて各変調信号502、505を仮判定し、多重化された変 調信号の候補信号点数を仮判定結果504、507を用いて削減した後に、削減した候補 信号点を用いて正確な判定を行って各変調信号の受信データRA、RBを得るようにした ことにより、少ない演算量で誤り率特性の良い受信データRA、RBを得ることができる 。この結果、誤り率特性を維持しつつ、装置構成を簡単化できるマルチアンテナ受信装置 及びマルチアンテナ受信方法を実現することができる。

[0104]

なお上述した実施の形態では、候補信号点を削減するための各変調信号を分離するにあ たって、分離部501によってチャネル変動行列の逆行列演算を行うようにした場合につ いて述べたが、分離方法は逆行列演算に限らず、例えばMMSE (Minimum Mean Square Error)アルゴリズムを用いて各変調信号を推定して分離してもよい。

[0105]

また上述した実施の形態では、候補信号点を削減するための各変調信号の仮判定を分離 部501及び軟判定部503、506により行うようにした場合について述べたが、仮判 定の仕方はこれに限らない。回路規模を問題にしない場合には、例えば図11に示すよう に、変調信号の分離のための逆行列演算を行わずに、仮判定を軟判定部1101により行 うようにしてもよい。

[0106]

図5との対応部分に同一符号を付して示す図11において、信号処理部1100の軟判 定部1101には、ベースバンド信号R1-2、R2-2と、チャネル変動推定値h11 、h21、h12、h22とが入力される。軟判定部1101は、変調信号Aのチャネル 変動値h11及び変調信号Bのチャネル変動値h21に基づき、図8に示すように、16 点の候補信号点801~816を推定する。そして逆拡散後のベースバンド信号R1-2 から、図8の受信信号点800を推定し、例えば受信信号点800と16個の候補信号点 801~816との各ユークリッド距離の2乗を求め、ブランチメトリックを求める。同 様に、軟判定部1101は、変調信号Aのチャネル変動信号 h 1 2 、 h 2 2 、逆拡散後の ベースバンド信号R2-2からブランチメトリックを求める。そして軟判定部1100は 、畳み込み符号を用いている場合、2つのブランチメトリックからパスメトリックを求め 、変調信号Aの判定値1102、変調信号Bの判定値1103を出力する。

[0107]

(実施の形態2)

この実施の形態では、実施の形態1と比較して、候補信号点を削減するための仮判定を 行う部分の構成をより簡易なものとすることにより、一段と簡易な構成で誤り率特性の良 い受信データを得ることができるマルチアンテナ受信装置を提案する。

[0108]

図5との対応部分に同一符号を付して示す図12に、本実施の形態のマルチアンテナ受 信装置の信号処理部1200の構成を示す。図12の信号処理部1200は、図5の信号 処理部404と比較して、分離部501により分離された変調信号Bの推定ベースバンド 信号505を判定するための軟判定部506 (図5)を省略した構成となっている。そし て信号点削減部1201、1202には、軟判定部518により得られた変調信号Bの受 信データRBを入力させるようになっている。信号点削減部1201、1202は、軟判 定部506(図5)からの判定値507の代わりに、軟判定部518により得られた受信 データRBを用いて、実施の形態1で説明したのと同様の方法で候補信号点数を削減する 。これにより、軟判定部506を省略した分だけ、全体的な回路構成を簡単化できる。

[0109]

次に本実施の形態の信号処理部1200の動作について説明する。信号処理部1200 は、先ず軟判定部503によって変調信号Aのみ復号し、その結果を用いて、信号点削減 部514、516よって候補信号点を削減し、軟判定部518によって変調信号Bを復号 することで、変調信号Bの受信データRBを得る。

[0110]

信号処理部1200は、続いて、信号点削減部1201、1202によって変調信号B のデータRBを用いて変調信号Aについての候補信号点を削減し、軟判定部512によっ て変調信号Aを復号することで、変調信号Aの受信データRAを得る。このように、本実 施の形態の信号処理部1200は、変調信号Aと変調信号Bを同時に復号するのではなく 、変調信号Aの復号、変調信号Bの復号、変調信号Aの復号のように、交互に復号する。

[0111]

かくして本実施の形態によれば、全ての変調信号について仮判定を行い、全ての信号点 削減部で仮判定結果を用いて候補信号点を削減するのではなく、ある変調信号についての み仮判定を行い、他の変調信号については最終的な判定結果(主判定結果)を用いて候補 信号点を削減するようにしたことにより、実施の形態1での効果に加えて、一段と簡易な 構成のマルチアンテナ受信装置を実現できるようになる。

[0112]

(実施の形態3)

この実施の形態では、候補信号点を削減した後に主判定を行うことにより少ない演算回 数で誤り率特性の良い受信データを得ることに加えて、イタレーション(反復)技術を適 用することにより、一段と誤り率特性を向上させることができるマルチアンテナ受信装置 を提案する。

[0113]

図 5 との対応部分に同一符号を付して示す図 1 3 に、本実施の形態のマルチアンテナ受 信装置の信号処理部1300の構成を示す。すなわち、信号処理部1300は、図4の信 号処理部404に置き換えられてマルチアンテナ受信装置120に用いられる。

[0114]

実施の形態1で説明した図5の信号処理部404と、本実施の形態の信号処理部130 0の異なる点は、信号点削減部1301、1302が軟判定部506からの判定値507 に加えて軟判定部518からの受信データRBを入力している点、および、信号点削減部 1303、1304が軟判定部503からの判定値504に加えて軟判定部512からの 受信データRAを入力している点である。

[0115]

これにより、信号点削減部1301~1304では、実施の形態1の信号点削減部50 8、510、514、516と比較して、正しい信号点削減を行う確率を高めることがで きるようになる。この結果、最終的に得られる受信データRA、RBの誤り率特性を一段 と向上させることができる。

[0116]

次に図14を用いて本実施の形態の信号処理部1300の動作について説明する。図1 4に示すように、信号処理部1300では、変調信号A、Bの軟判定及び復号を並列に行 う。そして変調信号Aの信号点削減は、変調信号Bの軟判定により得られる変調信号Bの 受信データRBを用いて行う。逆に、変調信号Bの信号点削減は、変調信号Aの軟判定に より得られる変調信号Aの受信データRAを用いて行う。そして変調信号A、Bそれぞれ の軟判定(主判定)を行うことで変調信号A、Bの受信データRA、RBを得るようにな っている。さらに、得られた変調信号A、Bの受信データRA、RBを用いて反復して信 号点削減、軟判定(主判定)を行っていく。

[0117]

具体的に説明する。一度目の軟判定及び復号の動作については、実施の形態1で説明し た図5の信号処理部404の動作と同様である。すなわち軟判定部503、504により 得た仮判定値(判定値504、507)に基づいて信号点削減を行う。これに対して、二 度目以降の軟判定及び復号は、軟判定部512、518により得られた受信データRA、 RBを用いて行う。

[0118]

信号処理部1300は、変調信号Aに関して、ステップST1Aで示す一度目の軟判定 処理において、信号点削減部1301、1302が、それぞれ、変調信号Bの軟判定値5 07を用いて変調信号Bで送信された2ビットを推定し、図8の16個の候補信号点を図 9の4個の信号点に削減し、その信号点情報(4個の信号点)509、511を軟判定部 512に送出し、軟判定部512が信号点情報509、511を使って受信データRAを 得る。

[0119]

同様に、信号処理部1300は、変調信号Bに関して、ステップST1Bで示す一度目 の軟判定処理において、信号点削減部1303、1304が、それぞれ、変調信号Aの軟 判定値504を用いて変調信号Aで送信された2ビットを推定し、図8の16個の候補信 号点を図10の4個の信号点に削減し、その信号点情報(4個の信号点)515、517 を軟判定部518に送出し、軟判定部518が信号点情報515、517を使って受信デ ータRBを得る。

[0120]

信号処理部1300は、変調信号Aに関して、ステップST2A、ST3Aで示す二度 目の軟判定処理において、信号点削減部1301、1302が、それぞれ、ステップST 1 Bで得られた受信データ R B を用いて変調信号 B で送信された 2 ビットを推定し、図 8 の16個の候補信号点を図9の4個の信号点に削減し(ステップST2A)、その信号点 情報(4個の信号点)509、511を軟判定部512に送出し、軟判定部512が信号 点情報509、511を使って受信データRAを得る(ステップST3A)。

[0121]

同様に、信号処理部1300は、変調信号Bに関して、ステップST2B、ST3Bで 示す二度目の軟判定処理において、信号点削減部1303、1304が、それぞれ、ステ ップST1Aで得られた受信データRAを用いて変調信号Aで送信された2ビットを推定 し、図8の16個の候補信号点を図10の4個の信号点に削減し(ステップST2B)、 その信号点情報(4個の信号点)515、517を軟判定部518に送出し、軟判定部5 18が信号点情報515、517を使って受信データRBを得る(ステップST3B)。

[0122]

信号処理部1300は、変調信号Aに関して、ステップST4A、ST5Aで示す三度 目の軟判定処理において、信号点削減部1301、1302が、それぞれ、ステップST ②Bで得られた受信データRBを用いて変調信号Bで送信された2ビットを推定し、図8 の16個の候補信号点を図9の4個の信号点に削減し(ステップST4A)、その信号点 情報(4個の信号点)509、511を軟判定部512に送出し、軟判定部512が信号 点情報509、511を使って受信データRAを得る(ステップST5A)。

[0123]

同様に、信号処理部1300は、変調信号Bに関して、ステップST4B、ST5Bで 示す三度目の軟判定処理において、信号点削減部1303、1304が、それぞれ、ステ ップST3Aで得られた受信データRAを用いて変調信号Aで送信された2ビットを推定 し、図8の16個の候補信号点を図10の4個の信号点に削減し(ステップST4B)、 その信号点情報(4個の信号点)515、517を軟判定部518に送出し、軟判定部5 18が信号点情報515、517を使って受信データRBを得る(ステップST5B)。

memaiji.

このように信号処理部1300においては、二度以降の信号点削減を、前回の動作が完

了した後の他方の変調信号の受信データRA、RBを使って行うようになっている。

[0125]

そして軟判定部512、518は、それぞれ、一度目の軟判定、復号を行ったら、一度 目の受信データRA、RBを出力する。次に、二度目の軟判定、復号を行ったら、一度目 の受信データRA、RBに代えて、二度目の受信データRA、RBを出力する。すなわち n度目の軟判定、復号を行ったら、n-1度目の受信データRA、RBに代えて、n度目 の軟判定復号結果である受信データRA、RBを出力する。

[0126]

このように、候補信号点を削減するにあたって、他の変調信号の誤り訂正復号後のデー タ(軟判定部512、518で誤り訂正復号処理を行っているものとする)を用いてイタ レーション(反復)処理を行うようにしたので、正しい候補信号点を残すことができる確 率を高めることができるようになり、受信データRA、RBの誤り率特性を一段と向上さ せることができる。

[0127]

図15に、本実施の形態での復号の処理手順のイメージを示す。変調信号A、変調信号 Bの1フレームは複数のシンボルで構成されている。はじめに1フレーム分の一度目の誤 り訂正を行う。そして、一度目の誤り訂正結果を反映して状態数削減を行い、二度目の1 フレーム分の誤り訂正を行う。このように、(n-1)度の誤り訂正結果を反映して状態 数削減を行った後、n度目の1フレーム分の誤り訂正を行う。

[0128]

図16に、本実施の形態の信号処理部1300を用いた場合の受信特性(キャリアパワ ー対雑音電力比(C/N)とビットエラーレートの関係)のシミュレーション結果を示す 。この図からも明らかなように、変調信号A、Bともに、反復復号の回数が増えるにつれ 、受信品質が向上する。但し、回数を多くすればよいというわけではなく、ある程度の回 数で受信品質の改善効果は飽和する。また変調信号A、Bの受信品質は、変調方式が同じ 場合、同じである。

[0129]

かくして本実施の形態によれば、候補信号点を削減するにあたって、誤り訂正復号後(主判定後の)の他の変調信号のデータRA、RBを用い、かつイタレーション処理を行っ て最終的な受信データ R A 、 R B を得るようにしたことにより、実施の形態 1 と比較して 、一段と誤り率特性の向上した受信データRA、RBを得ることができるようになる。

[0130]

なおこの実施の形態では、候補信号点を削減するための各変調信号の仮判定を分離部 5 01及び軟判定部503、506により行うようにした場合について述べたが、仮判定の 仕方はこれに限らず、回路規模を問題にしない場合には、例えば図17に示すように、変 調信号の分離のための逆行列演算を行わずに、仮判定を軟判定部1705により行うよう にしてもよい。

[0131]

図13との対応部分に同一符号を付して示す図17において、信号処理部1700の軟 判定部1705には、ベースバンド信号R1-2、R2-2と、チャネル変動推定値h1 1、h21、h12、h22とが入力される。軟判定部1705は、変調信号Aのチャネ ル変動値h11及び変調信号Bのチャネル変動値h21に基づき、図8に示すように、1 6点の候補信号点801~816を推定する。そして逆拡散後のベースバンド信号R1-2から、図8の受信信号点800を推定し、例えば受信信号点800と16個の候補信号 点801~816との各ユークリッド距離の2乗を求め、ブランチメトリックを求める。 同様に、軟判定部1705は、変調信号Aのチャネル変動信号 h 1 2、 h 2 2、 逆拡散後 のベースバンド信号R2-2からブランチメトリックを求める。そして軟判定部1705 は、畳み込み符号を用いている場合、2つのブランチメトリックからパスメトリックを求 め、変調信号Aの判定値1706を信号点削減部1703、1704に送出すると共に、 変調信号Bの判定値1707を信号点削減部1701、1702に送出する。

[0132]

ここで図13の信号処理部1300と図17の信号処理部1700とを比較した場合、 信号処理部1700は、軟判定部1705で16個の候補信号点について判定を行うこと になるため、ブランチメトリック、パスメトリックの回路規模が増大し、信号処理部13 00よりも全体的な回路規模が大きくなる欠点がある。特に、QPSKの場合、16点で あるが、64QAMとなると4096個の信号点が存在するので、変調多値数が増大する にしたがって現実性がなくなる。

[0133]

しかし、軟判定部1705では、分離部501と軟判定部503、506を用いた場合 よりも精度の良い判定値を得ることができるので、イタレーションを行う場合の反復回数 が少なくても、誤り率特性の良い受信データRA、RBを得ることができるという利点が ある。

[0134]

(実施の形態4)

この実施の形態の特徴は、実施の形態3では各変調信号を並行して軟判定復号し、他の 変調信号の軟判定復号結果を用いて自変調信号の候補信号点を削減したのに対して、各変 調信号を交互に軟判定復号し、他の変調信号の軟判定復号結果を用いて自変調信号の候補 信号点を削減する点である。これにより、信号点削除にイタレーション技術を採用するに あたっての演算回数を低減できるので、回路構成を一段と簡単化できるようになる。

[0135]

図13との対応部分に同一符号を付して示す図18に、本実施の形態のマルチアンテナ 受信装置の信号処理部の構成を示す。信号処理部1800は、実施の形態3で説明した図 13の信号処理部1300と比較して、軟判定部506を省略した構成となっている。

[0136]

また実施の形態2で説明した図12の信号処理部1200と比較すると、信号処理部1 200にイタレーション処理を追加した構成となっている。

[0137]

信号処理部1800において、変調信号Bについての信号点削減部1803、1804 は、実施の形態3と同様に軟判定部503により得られた判定値504と軟判定部512 により得られた誤り訂正復号後の受信データRAの両方を用いて候補信号点を削減するが 、変調信号Aについての信号点削減部1801、1802は、軟判定部518により得ら れた誤り訂正復号後の受信データRBのみを用いて候補信号点を削減するようになってい る。このように本実施の形態の信号処理部1800は、軟判定部506を省略した分だけ 、実施の形態3の信号処理部1300よりも全体的な回路構成を簡単化できるようになっ ている。

[0138]

次に図19を用いながら本実施の形態の信号処理部1800の動作について説明する。 信号処理部1800は、実施の形態3の信号処理部1300が変調信号A、Bの軟判定及 び復号を並列に行ったのに対して、一度目の軟判定復号は変調信号Aのみ行い、二度目の 軟判定復号は変調信号Bのみ行い、三度目の軟判定復号は変調信号Aのみ行うといったよ うに、変調信号Aと変調信号Bの軟判定復号を交互に行う。

[0139]

具体的に説明する。信号処理部1800は、最初に、軟判定部503によって変調信号 Aのみ軟判定復号し(ステップST10A)、その結果を用いて信号点削減部1803、 1804によって候補信号点を削減し(ステップST10B)、軟判定部518によって 変調信号Bを軟判定復号する(ステップST11B)ことにより、変調信号Bの受信デー タRBを得る。次に信号処理部1800は、信号点削減部1801、1802によって変 調信号Bの受信データRBを用いて候補信号点を削減し(ステップST11A)、軟判定 部512によって変調信号Aの軟判定復号を再度行う(ステップST12A)ことにより 、変調信号Aの受信データRAを得る。以下同様に、他方の軟判定復号結果を用いて候補 信号点を削減しながら、変調信号Aの軟判定復号と変調信号Bの軟判定復号を交互に繰り 返す。

[0140]

図20に、本実施の形態の信号処理部1800を用いた場合の受信特性(キャリアパワ ー対雑音電力比(C/N)とビットエラーレートの関係)のシミュレーション結果を示す 。この図からも分かるように、軟判定復号を各変調信号で交互に行った場合でも、軟判定 復号を各変調信号で並行に行った場合(図16)と同様の誤り率特性の良い受信データを 得ることができる。また変調信号A、Bともに、反復復号の回数が増えるにつれ、受信品 質が向上するが、単純に回数を多くすればよいというわけではなく、ある程度の回数で受 信品質の改善効果は飽和する。

[0141]

かくして本実施の形態によれば、他の変調信号の軟判定復号結果を用いて自変調信号の 候補信号点を削減といった処理を、各変調信号について交互に行うようにしたことにより 、実施の形態3の効果に加えて、復号の回数が半分となるため、一段と回路規模を削減す ることができるようになる。

[0142]

(実施の形態 5)

この実施の形態では、上述した実施の形態1~4に加えて、さらに各アンテナから受信 品質の異なる変調信号を送信することを提案する。

図21にその一例を示す。図21は、図12及び図18の構成を考慮し、変調信号Aの 変調方式をQPSK、変調信号Bの変調方式を16QAMとしたときのI-Q平面におけ る信号点配置の一例を示している。図22に、QPSK、16QAMのそれぞれのキャリ アパワー対雑音電力比とビットエラーレートの関係を示す。

[0144]

ここで、図12や図18の構成を採ったとき、変調信号Aの変調方式をQPSK、変調 信号Bの変調方式を16QAMとした場合、図22に示すように、一度目の軟判定におい て、変調信号Aの変調方式がQPSKであるため良好な受信品質となり(16QAMと比 較し)、軟判定部503によって良好な受信品質の変調信号Aの判定値504 (ディジタ ル信号)が得られる。

[0145]

そして、得られた変調信号Aのディジタル信号の判定値が正確であるため、信号点削減 時に間違った信号点削減を行う可能性が低くなり、軟判定部518によって変調信号Bの 軟判定復号を行った際に得られる変調信号Bの受信データRBの誤り率特性が向上する。 ここで、伝送速度のことを考慮すると、変調信号Bの変調方式はQPSKより変調多値数 の多い、例えば16QAM(64QAMでもよい)とするとよい。これにより、受信品質 と伝送速度の向上の両立を図ることができる。

[0146]

このように、変調信号Aの変調多値数を変調信号Bの変調多値数よりも少なくし、変調 信号Aの受信品質を確保することで、良好な信号点削減を行うことができるようになり、 この結果、変調信号Bの受信品質も確保することができるようになる。これにより、受信 品質の向上と伝送速度の向上の両立を図ることができる。

[0147]

つまり、最初の仮判定に用いられる変調信号の受信品質を良くすれば、信号点削減の引 き込みが的確なものとなるので、その後の主判定で良い判定結果をもたらすことができる

[0148]

また反復復号(イタレーション)を行う場合には、イタレーションの回数を減らすこと にもつながり、回路規模を削減することができる。

[0149]

さらに変調信号Aと変調信号Bの符号化率を異なるように設定することでも同様の効果 を得ることができる。例えば、変調信号Aの符号化率を1/4、変調信号Bの符号化率を 3/4とする。すると、変調信号Aの受信品質が良いため、信号点削減が正しく行われる 可能性が高くなり、変調信号Bの受信品質も向上する。

さらに変調信号Aと変調信号Bの拡散符号長を異なるようにすることでも同様の効果を 得ることができる。例えば変調信号Aの拡散符号長を、変調信号Bの拡散符号長よりも長 くすればよい。

[0151]

かくして本実施の形態によれば、実施の形態 1 ~ 4 の構成に加えて、各変調信号の受信 品質が異なるように、変調方式、符号化率、拡散率等を各変調信号間で変えるようにした ことにより、実施の形態 1 ~ 4 の効果に加えて、誤り率特性の向上と伝送速度の向上を両 立させることができるようになる。

[0152]

(実施の形態 6)

この実施の形態では、各アンテナから送信する変調信号のインターリーブパターンを各 変調信号間で異なるようにするマルチアンテナ送信装置を提案する。

[0153]

図2との対応部分に同一符号を付して示す図23に、本実施の形態のマルチアンテナ送 信装置の構成を示す。マルチアンテナ送信装置2300は、符号化部201Aと変調部2 02Aとの間にインターリーバ2301Aを設けたことと、符号化部201Bと変調部2 02Bとの間にインターリーバ2301Bを設けたことを除いて、実施の形態1で説明し た図2のマルチアンテナ送信装置110と同様の構成でなる。

[0154]

インターリーバ2301Aは、符号化されたディジタル信号S1Aを入力とし、順番の 入れ替えを行い、インターリーブ後のディジタル信号S10Aを変調部202Aに送出す る。同様に、インターリーバ2301Bは、符号化されたディジタル信号S1Bを入力と し、順番の入れ替えを行い、インターリーブ後のディジタル信号S10Bを変調部202 Bに送出する。

[0155]

なおこのように送信装置側でインターリーブ処理を行うと、受信側でデインターリーブ 処理を行う必要がある。この場合の受信装置の構成例を、図24に示す。図24の構成例 は、実施の形態3で説明した信号処理部1300に対応するものである。図13との対応 部分に同一符号を付して示す図24において、信号処理部2400は、送信側のインター リーバ2301Aで並べ替えられた信号を元に戻すデインターリーバ2401A、240 3 A、2 4 0 4 Aを有すると共に、送信側のインターリーバ2 3 0 1 Bで並べ替えられた 信号を元に戻すデインターリーバ2401B、2403B、2404Bを有する。また信 号処理部2400は、インターリーバ2301Aと同様の並べ替えを行うインターリーバ 2402A、2405Aを有すると共に、インターリーバ2301Bと同様の並べ替えを 行うインターリーバ2402B、2405Bを有する。

[0156]

この構成により、信号処理部2400は、分離部501によって分離された送信ディジ タル信号TAについての推定ベースバンド信号をデインターリーバ2401Aによって元 の配列に戻した後に軟判定部503に送出すると共に、送信ディジタル信号TBについて の推定ベースバンド信号をデインターリーバ2401Bによって元の配列に戻した後に軟 判定部506に送出する。また軟判定部503によって得られた判定値はインターリーバ 2402Aによってインターリープされた後に信号点削減部1303、1304に送出さ れると共に、軟判定部506によって得られた判定値はインターリーバ2402Bによっ てインターリープされた後に信号点削減部1301、1302に送出される。さらに信号 点削減部1303、1304には、軟判定部512によって得られた判定値がインターリ ーバ2405Aによってインターリーブされた後に入力されると共に、信号点削減部13 01、1302には、軟判定部518によって得られた判定値がインターリーバ2405 Bによってインターリーブされた後に入力される。

[0157]

これにより、信号点削減部1301、1302では、インターリーブされた受信信号か らインターリーブされた変調信号Bの信号点を削減することで、変調信号Aについての削 減された候補信号点を得ることができる。但し、この削減された候補信号点はインターリ ーブされた信号点なので、デインターリーバ2403A、2404Aによってデインター リーブした後に軟判定部512に入力させる。同様に、信号点削減部1303、1304 では、インターリーブされた受信信号からインターリーブされた変調信号Aの信号点を削 減することで、変調信号Bについての削減された候補信号点を得ることができる。但し、 この削減された候補信号点はインターリーブされた信号点なので、デインターリーバ24 03B、2404Bによってデインターリーブした後に軟判定部518に入力させる。

[0158]

なお、ここでは実施の形態3で説明した信号処理部1300を基本として、送信側でイ ンターリーブされた信号を復号する構成例について説明したが、実施の形態1や実施の形 態2、実施の形態4及び実施の形態5で説明した受信装置においても、適宜送信側のイン ターリーバに対応したデインターリーバ及びインターリーバを設けるようにすれば、上述 したのと同様に、各アンテナから異なるインターリーブパターンの信号を送信した場合に 、各変調信号を復号できるようになる。

[0159]

次に、インターリーブパターン(送信信号の入れ替えの順番)について詳しく説明する 。本実施の形態で最も重要な点は、変調信号Aのためのインターリーブパターンと、変調 信号Bのためのインターリーブパターンを異なるようにしたことである。これにより、受 信側での誤り率特性を向上させることができる。特に、変調信号Aのインターリーブパタ ーンと変調信号Bのためのインターリーブパターンが無相関に近くなるようにインターリ ーブパターンを選定することにより、受信品質を非常に良くすることができる。この点に ついて詳しく説明する。

[0160]

図25は、変調信号Aと変調信号Bのインターリーブパターンが同一の場合のシンボル の状態の一例を示している。図5の軟判定部503において、変調信号Aの復号を行い、 その結果、図25 (A) のように誤った判定を行ったシンボルが5シンボル連続に発生し たものとする。因みに、畳み込み符号などを用いたとき、連続して誤りが発生するのが一 般的である。すると、信号点数削減部514、516において、信号点数の削減を行った 際、図25 (B) のように、5シンボル連続して、信号点削減による信号点選択に誤りが 生じることになる。この結果、軟判定部518によって変調信号Bの復号を行うと効果的 に受信品質が向上しない。これは、誤り訂正符号は、連続的な誤りを訂正する能力が低い ためである。

[0161]

次に、本実施の形態のように、送信側で、変調信号Aのためのインターリーブパターン と、変調信号Bのためのインターリーブパターンを異なるようにした場合について説明す る。この場合、信号点削減を行った際、図26のようなシンボルの状態となる。図24の 軟判定部503において、変調信号Aの復号を行い、その結果、図26(A)のように誤 った判定を行ったシンボルが5シンボル連続に発生したものとする。すると、信号点数削 減部1303、1304において、信号点数の削減を行った際、図25 (B) と異なり、 変調信号Aのインターリーブパターンと変調信号Bのインターリーブパターンが異なるた め、デインターリーブにより、図26 (B) のように、信号点削減による信号点選択の誤 りは、離散的に生じることになる。すなわち、図25(B)のように、連続して信号点削 減による信号点選択の誤りが発生しない。これにより、軟判定部518によって変調信号 Bの復号を行うと効果的に受信品質が向上する。これは、誤り訂正符号は、離散的な誤り

を訂正する能力が高いためである。

[0162]

この作用及び効果は、イタレーション技術を用いた構成の場合も同様である。

[0163]

以上の動作を、変調信号Aを変調信号Bに、変調信号Bを変調信号Aに置き換えて、動作させても同様の作用効果が得られ、これにより、変調信号Aの復号の受信品質も効果的に向上する。

[0164]

かくして本実施の形態によれば、各アンテナから送信する変調信号のインターリーブパターンを変調信号間で異なるものとしたことにより、受信側での復号の際、バーストエラーの影響を軽減して、誤り率特性の良い受信データを得ることができるマルチアンテナ送信装置を実現できる。

[0165]

特に、実施の形態1~4のように信号点削減部を有するマルチアンテナ受信装置に変調信号を送信するマルチアンテナ送信装置に適用して好適である。

[0166]

図27に、本実施の形態のように変調信号間で異なるインターリーブパターンを用いた場合の受信特性と、変調信号間で同一のインターリーブパターンを用いた場合の受信特性のシミュレーション結果を示す。図27では、横軸をEb/No (energy per bit-to-no ise spectral density ratio)とし、縦軸をBER (Bit Error Rate)としている。

[0167]

図中の丸印は、本実施の形態の構成を用いた場合、すなわち図23に示すような構成でなるマルチアンテナ送信装置2300から送信した信号を、図24に示すような構成でなる信号処理部2400を有するマルチアンテナ受信装置で受信復調した場合の特性を示す。これに対して、図中の三角印は、変調信号間で同一のインターリーブパターンを用いた場合の受信特性を示す。なお、シミュレーションでは、反復復号を行わない場合、反復を1回だけ行った場合、反復を5回行った場合の特性を調べた。またこのシミュレーションは、伝搬環境をライスファクタ10dBのライスフェージング環境とし、変調方式をQPSKとし、符号化率1/2の畳み込み符号を行った場合の結果である。

[0168]

このシミュレーション結果からも分かるように、変調信号間でインターリーブパターンが同一の場合には、図中丸印で示すように、反復復号の回数を増やしても、受信品質の改善は僅かである。一方、変調信号間で異なるインターリーブパターンを選定した場合には、図中三角印で示すように、反復回数を増やすにことで受信品質を効果的に改善することができる。

[0169]

なおこの実施の形態では、各アンテナから送信する変調信号のインターリーブパターンを異なるものとするにあたって、インターリーバ2301A、2301Bを設けて、各変調信号のシンボルの順番を変調信号間で異なるようにする場合について述べたが、変調信号間でインターリーブパターンを異なるようにする方法はこれに限らない。

[0170]

各変調信号間でインターリーブを異なるようにする方法としては、例えば以下のような 方法が考えられる。

[0171]

(i) 本実施の形態のように各変調信号のシンボルを構成するデータの並び自身を異なるようにする方法

[0172]

 $1 \leq d^{2} \exp \left(\frac{1}{2} \right) \leq 1$

この方法の具体例を、図28に示す。変調信号Aについては、インターリーブ前にデータ1、データ2、・・・、データ200と並んでいたデータを、インターリープすることで、例えば、5つおきに並び替え、データ1、データ6、・・・データ196、データ2

、データ7、・・・データ197、データ3、データ8、・・・データ198、データ4 、データ9、・・・データ199、データ5、データ10、・・・データ200と並び替 える。これに対して、変調信号Bについては、インターリーブ前にデータ1、データ2、 ・・・、データ200と並んでいたデータを、インターリーブすることで、例えば、8つ おきに並び替え、データ1、データ9、・・・データ193、データ2、データ10、・ ・・データ194、データ3、データ11、・・・データ195、データ4、データ12 、・・・データ196、データ5、データ13、・・・データ197、データ6、データ 14、・・・データ198、データ7、データ15、・・・データ199、データ8、デ ータ16、・・・データ200と並び替える。すなわち、変調信号Aと変調信号Bでデー タの並び自身を異なるようにする。

[0173]

(i i) 変調信号間でのシンボルやデータの並びは同一とするが、例えば図31を用いて 後述するように、シンボルやデータをサブキャリアの周波数方向や時間方向に配置する際 に、その配置自身を異なるものとする方法

[0174]

この方法の具体例を、図29に示す。図29 (a) に示すように、インターリーブする 前にデータ1、データ2、・・・、データ200と並んでいたデータを、インターリーブ することで、例えば、5つおきに並べ替え、データ1、データ6、・・・データ196、 データ2、データ7、・・・データ197、データ3、データ8、・・・データ198、 データ4、データ9、・・・データ199、データ5、データ10、・・・データ200 と並び替える。これが変調信号A、Bの各々について行われる。すなわち、この時点での 変調信号間でのインターリーブパターンは同一である。そして図29(b)、(c)に示 すように、各変調信号A、Bのサブキャリアへの配置パターンを異なるようにする。図2 9 (b)、(c)は、OFDM信号のサブキャリア数が200の場合を示しており、周波 数軸又は時間軸に対し、変調信号Aについては、データ1、データ6、・・・データ19 6、データ2、データ7、・・・データ197、データ3、データ8、・・・データ19 8、データ4、データ9、・・・データ199、データ5、データ10、・・・データ2 00と並べる。これに対して、変調信号Bについては、変調信号Aの配置に対して5キャ リア分オフセットし、データ185、データ190、データ195、データ200、デー タ1、データ6、・・・データ175、データ180と並べる。このように、一方の変調 信号を他方の変調信号に対して、いくつかのキャリア分、又は、ある時間分オフセットす ることでも、各変調信号間でインターリーブを異なるようにすることができる。

[0175]

(i i i) 上記 (i) と (i i) の方法を併用する方法

[0176]

つまり、本発明で述べる異なるインターリーブパターンとは、シンボルやデータの並び 自身を異なるものとする場合のみを示すのではなく、シンボルやデータの周波数方向の配 置及び又は時間方向の配置自身を思たストスレオることも含むものとする。これは、イン ターリーブパターンについて説明する、以下のいずれの実施の形態についても同様である

[0177]

(実施の形態7)

この実施の形態では、上述した実施の形態の特徴をマルチキャリア通信に適用した場合 について説明する。特に、OFDM(Orthogonal Frequency Division Multiplexing)方式 を用いた場合について説明する。

[0178]

図2との対応部分に同一符号を付して示す図30に、本実施の形態のマルチアンテナ送 信装置の構成を示す。マルチアンテナ送信装置2700は、図2のマルチアンテナ送信装 置110と比較して、拡散部203A、203Bに換えて、変調部202A、202Bか ら出力されたベースバンド信号S2A、S2Bをシリアルパラレル変換するシリアルパラ

レル変換部 (S/P) 2701A、2701Bと、パラレル信号S20A、S20Bを逆 フーリエ変換する逆フーリエ変換部 (i d f t) 2702A、2702Bとを有すること を除いて図2のマルチアンテナ送信装置110と同様の構成でなる。

[0179]

図31に、マルチアンテナ送信装置2700から送信されるOFDM信号の時間-周波 数軸におけるフレーム構成を示す。この図では、一例としてOFDM信号がキャリア1か らキャリア 5 で構成され、同一時刻のシンボルを同時に送信する場合を示している。なお 図中の斜線で示した部分はパイロットシンボル(既知信号)であり、受信装置で伝搬環境 (チャネル変動)を推定するためのシンボルである。因みに、ここではパイロットシンボ ルとよんでいるが、プリアンブルなど異なる呼び方をしてもよい。また空白で示した部分 はデータシンボルである。

[0180]

データシンボルの符号化の方法として、周波数軸方向に符号化する方法、時間軸方向に 符号化する方法の2種類がある。時間軸方向に符号化した場合、図3のフレーム構成のキ ャリアが複数(図31では5キャリア)存在するのと同様である。OFDM方式を用いた ときの一つの特徴は、周波数軸方向に符号化ができるということである。また周波数軸と 時間軸の両方向に符号化することも可能である。

[0181]

図32に、本実施の形態のマルチアンテナ送信装置の別の構成を示す。この構成は、実 施の形態6での異なるインターリーブパターンを用いたマルチアンテナ送信方法を、マル チキャリア送信に適用したものである。実施の形態6で説明した図23との対応部分に同 一符号を付して示す図32において、マルチアンテナ送信装置2900は、拡散部203 A、203Bに換えて、変調部202A、202Bから出力されたベースバンド信号S2 A、S2Bをシリアルパラレル変換するシリアルパラレル変換部(S/P)2701A、 2701Bと、パラレル信号S20A、S20Bを逆フーリエ変換する逆フーリエ変換部 (i d f t) 2702A、2702Bとを有することを除いて図23のマルチアンテナ送 信装置2300と同様の構成でなる。

[0182]

なおこのように、実施の形態 6 の特徴を O F D M 送信に適用した場合のインターリーブ パターンの選定の仕方として、例えばインターリーバ2301Aのインターリーブパター ンを、周波数の低いサブキャリアから周波数の高いサブキャリアへとデータを並べ替えて 配置するものとし、インターリーバ2301Bのインターリーブパターンを、周波数の高 いサブキャリアから周波数の低いサブキャリアへとデータを並べ替えて配置するものとす ることを提案する。

[0183]

例えば1フレームが図31のように構成されていた場合、インターリーバ2301Aが 変調信号Aについてのデータを、サブキャリア5、サブキャリア3、サブキャリア1、サ ブキャリア4、サブキャリア2の順序で配列し、インターリーバ2301Bが変調信号B についてのデータをサブキャリア1、サブキャリア3、サブキャリア5、サブキャリア2 、サブキャリア4の順序で配列する。このようにすれば、周波数方向でのインターリーブ パターンを無相関に近づけることができるので、2つのOFDM変調信号の両方がバース ト的に誤る確率を低くすることができる。

[0184]

同様に、実施の形態6の特徴をOFDM送信に適用した場合のインターリーブパターン の選定の仕方として、例えばインターリーバ2301Aのインターリーブパターンを、時 間の早い方から時間の遅い方へとデータを並べ替えて配置するものとし、インターリーバ 2301Bのインターリープパターンを、時間の遅い方から時間の早いほうへとデータを 並べ替えて配置するものとすることを提案する。

[0185]

例えば1フレームが図31のように構成されていた場合、例えばサブキャリア1におい

て、インターリーバ2301Aが変調信号Aについてのデータを、時間2、時間4、時間 6、時間8、時間3、時間5、時間7、時間9の順序で配列し、インターリーバ2301 Bが変調信号Bについてのデータを、時間9、時間7、時間5、時間3、時間8、時間6 、時間4、時間2の順序で配列する。このようにすれば、時間方向でのインターリーブパ ターンを無相関に近づけることができるので、2つのOFDM変調信号の両方がバースト 的に誤る確率を低くすることができる。

[0186]

さらに各変調信号を、周波数方向と時間方向の両方向にランダムにインターリーブする ようにしてもよい。このようにすれば、各変調信号をより無相関に近づけることができる ので、2つのOFDM変調信号の両方がバースト的に誤る確率をより低くすることができ る。

[0187]

図4との対応部分に同一符号を付して示す図33に、本実施の形態のマルチアンテナ受 信装置の構成を示す。マルチアンテナ受信装置3000は、実施の形態1で説明した図4 のマルチアンテナ受信装置120と比較して、逆拡散部402-1、402-2に換えて フーリエ変換部(dft)3001-1、3001-2を有することを除いて図4と同 様の構成でなる。また信号処理部3002は、実施の形態1から実施の形態6で提案した いずれの構成を適用してもよい。

[0188]

フーリエ変換部3001-1は、ベースバンド信号R1-1に対してフーリエ変換処理。 を施し、フーリエ変換後の信号R1-2を変調信号Aのチャネル変動推定部403-1A 、変調信号Bのチャネル変動推定部403-1B及び信号処理部3002に送出する。

[0189]

同様に、フーリエ変換部3001-2は、ベースバンド信号R2-1に対してフーリエ 変換処理を施し、フーリエ変換後の信号R2-2を変調信号Aのチャネル変動推定部40 3-2A、変調信号Bのチャネル変動推定部403-2B及び信号処理部3002に送出 する。

[0190]

各チャネル変動推定部403-1A、403-1B、403-2A、403-2Bでは 、図31に示すように各サブキャリアに配置されたパイロットシンボルを用いて、各サブ キャリアについてのチャネル変動を推定する。このようにチャネル変動推定部403-1 A、403-1B、403-2A、403-2Bによって、チャネル毎、サブキャリア毎 のチャネル変動推定値が得られる。すなわちチャネル変動推定値h11、h21、h12 、h22は、サブキャリア1~サブキャリア5それぞれのチャネル変動推定値を含む。

[0191]

ここで信号処理部3002は、フーリエ変換後の信号R1-2、R2-2、変調信号A のチャネル変動信号群h11、h12、変調信号Bのチャネル変動信号群h21、h22 後の信号R1-2、R2-2を判定することにより、変調信号Aの受信データRA、変調 信号Bの受信データRBを得る。

[0192]

信号処理部3002の信号処理の流れは、上述した実施の形態1~6と同様である。例 えば、信号処理部3002として、実施の形態6で説明した信号処理部2400を適用し た場合を例にとって説明する。分離部501は、変調信号Aのチャネル変動推定群h11 、h12、変調信号Bのチャネル変動推定群h21、h22、フーリエ変換後の信号R1 -2、R2-2を入力とし、逆行列演算を施すことにより、変調信号Aと変調信号Bを分 離する。そして各デインターリーバ2401A、2401B、2403A、2404A、 2403B、2404Bによって、周波数-時間軸におけるインターリープパターンに対 応したデインターリーブ処理を施すと共に、各インターリーバ2402A、2402B、 2405A、2405Bによって、周波数-時間軸におけるインターリープパターンに対 応したインターリーブ処理を施す。

[0193]

(実施の形態8)

この実施の形態では、信号点削減のために行った仮判定での信頼度を、信号点削減後の 主判定処理に反映することを提案する。これにより、主判定処理により得られるデータの 誤り率特性を一段と向上させることができるようになる。この実施の形態の場合には、好 適な例として、仮判定として軟判定を行った場合の各シンボルのパスメトリックの値を使 って、主判定処理での各シンボルのブランチメトリックを重み付ける方法を提案する。

[0194]

この実施の形態では、実施の形態6で説明した図24の構成の信号処理部2400を例 にとって説明する。すなわち、異なるインターリーブパターンでインターリーブされた変 調信号Aと変調信号Bを受信し、これらを分離して復号する場合を例に挙げる。

[0195]

ここで図26でも説明したように、軟判定部503から出力される各シンボルの判定値 が図34 (A) のような状態であったと仮定すると、信号点削減部1303、1304に よる信号点削減後の状態は図34(C)のようになる。ここで図34(C)に示すように 変調信号Bについて誤った候補信号点が選択されるシンボルを離散することができるのは 、実施の形態6でも説明したように、変調信号Aのインターリーブパターンと変調信号B のインターリーブパターンを異なるようにしているからである。

[0196]

本実施の形態においては、軟判定部503で求めたパスメトリックを、軟判定部518 での軟判定処理に反映させる。また軟判定部506で求めたパスメトリックを、軟判定部 512での軟判定処理に反映させる。実際には、図24の軟判定部503から軟判定部5 18にパスメトリックを通知し、軟判定部506から軟判定部512にパスメトリックを 通知すればよい。

[0197]

具体的には、軟判定部503で、変調信号Aについての各シンボルに対して、パスメモ リ長nにおけるパスメトリックの最小値として、図34(B)のような値が得られたとす る。軟判定部518は、削減された変調信号Bについての候補信号点を使って変調信号B の各シンボルを判定するにあたって、信号点削減の際に用いられた変調信号Aのシンボル のパスメトリックの最小値を用いて判定を行う。

[0198]

ここで変調信号Aについての各シンボルのパスメトリックの最小値と、そのシンボルの 誤りには相関がある。具体的には、パスメトリックの最小値が大きいほど、そのシシンボ ルは誤り易くなる。

[0199]

本実施の形態では、信号点削減のために用いた他の変調信号(例えば変調信号A)の軟 判定時のパスメトリックの最小値が大きいほど、削減された信号点の信頼度も低くなり、 その信号点を用いて自変調信号(例えば変調信号B)の主判定を行うと、その判定の信頼 度も低くなるといった考察に基づき、主判定を行うにあたって信号点削減の際に用いられ た他の変調信号のシンボルのパスメトリックの最小値を用いる。

[0200]

実際上、軟判定部518は、変調信号Bのプランチメトリックを求めた後にパスメトリ ックを求めるにあたって、各シンボルのブランチメトリックに対して、図34(D)に示 すように、対応するシンボル(すなわち、そのシンボルの候補信号点削減に用いられた変 調信号Aのシンボル)のパスメトリックの最小値の逆数を乗算するようになっている。例 えば、変調信号Bのシンボル3201についてはブランチメトリックに対して1/20を 乗算し、シンボル3202についてはブランチメトリックに対して1/52を乗算する。

[0201]

このように、削減された信号点を用いて主判定を行うにあたって、信号点削減の信頼性

に相当する値をブランチメトリックに乗算するようにしたことにより、パスメトリックの 信頼性を高めることができるようになる。この結果、主判定で得られるデータの誤り率特 性を向上させることができる。

[0202]

かくして本実施の形態によれば、信号点削減のために行った仮判定(他の変調信号につ いての軟判定)での信頼度を、信号点削減後の主判定(自変調信号についての軟判定)に 反映するようにしたことにより、主判定処理により得られるデータの誤り率特性を一段と 向上させることができるようになる。

[0203]

なおこの実施の形態では、仮判定時のパスメトリックの最小値の逆数を、主判定時のブ ランチメトリックに乗算することで、仮判定時の信頼度を主判定に反映させる場合につい て述べたが、仮判定時の信頼度を主判定に反映させる方法はこれに限らず、要はパスメト リックの最小値に関わる係数を用いて主判定を行うようにすればよい。

[0204]

また仮判定時の信頼度を主判定に反映させる方法として、パスメトリックの最小値とパ スメトリックの2番目に小さい値との差を、主判定に反映させるようにしてもよい。ここ でパスメトリックの最小値とパスメトリックの2番目に小さい値の差が大きいほど、その 判定は信頼性が高いといえる。これを考慮して、上述したパスメトリックの最小値の逆数 に換えて、この差を用いて乗算係数を求めるようにしてもよい。

[0205]

またこの実施の形態では、図24を用いて本実施の形態の特徴を説明したが、本実施の 形態の適用範囲はこれに限らない。本実施の形態の特徴は、他の変調信号の判定結果を用 いて自変調信号の候補信号点を削減し、削減した候補信号点を用いて自変調信号を判定す る場合に広く適用することができる。例えば上述した実施の形態1から実施の形態7の全 てに適用可能である。

[0206]

(実施の形態9)

この実施の形態の特徴は、実施の形態1~実施の形態8の特徴に加えて、所定のタイミ ングで特定のシンボルを送信することである。この実施の形態では、第1に、特定のシン ボルとして、時空間符号(この実施の形態では、時空間ブロック符号(STBC:Space-Time Block Code) を用いる) を送信することを提案する。また本実施の形態では、第2 に、特定のシンボルとして、特殊シンボルを送信することを提案する。

[0207]

このように所定のタイミングで特定のシンボルを送信することにより、実施の形態1~ 実施の形態8での効果に加えて、受信データの誤り率特性を一段と向上させることができ るようになる。

[0208]

(i) 時空間ブロック符号を送信する場合

先ず、時空間ブロック符号を送受信する原理について説明する。図35に、送信装置の 各アンテナから送信する変調信号Aと変調信号Bのフレーム構成例を示す。図に示すよう に、送信装置は、第1のアンテナAN1 (図1) から、変調信号Aとして、チャネル推定 シンボル3301、データシンボル3302、3304、3306に加えて、規則的にS TBCシンボル3303を送信するようになっている。また送信装置は、第2のアンテナ AN2(図1)から、変調信号Bとして、チャネル推定シンボル3307、データシンボ ル3308、3310、3312に加えて、規則的にSTBCシンボル3309を送信す るようになっている。

[0209]

なお図35 (A) と図35 (B) の時間軸は同一である。つまり、チャネル推定シンボ ル3301と3307、データシンボル3302と3308、STBCシンボル3303 と3309、データシンボル3304と3310、STBCシンボル3305と3311

、データシンボル3306と3312は、それぞれ同時刻に送信される。また図35の例 では、4シンボルのデータシンボルの間に2シンボルのSTBCシンボルを挿入して送信 する。

[0210]

マルチアンテナ通信にSTBCを用いることは既知の技術であるが、図36を用いて簡 単に説明する。STBCでは、時間tにアンテナ3401からS1の信号の変調信号を送 信すると共にアンテナ3402からS2の信号の変調信号を送信する。そして時間t+1 にアンテナ3401から-S2* の信号の変調信号を送信すると共にアンテナ3402か らS1*の信号の変調信号を送信する。但し、*は共役複素を示す。

[0211]

このとき、アンテナ3403の時間tの受信信号をR1(t)、時間t+1の受信信号 をR1(t+1)とすると、以下の関係式が成立する。

【数2】

$${R1(t) \choose R1(t+1)} = {h1(t) \choose h2*(t+1)} {h2(t) \choose h2*(t+1)} {S1 \choose S2} \cdots (2)$$

[0212]

(2) 式を解くことで送信信号S1、S2を復調することになるが、(2 受信部では、) 式を見れば分かるように、大きなダイバーシチゲインを得ることができるので、信号 S 1、S2を品質良く求めることができる。

[0213]

ここで、図35のように、STBCを挿入する場合、変調信号Aを形成する際に、デー タシンボル3302、3304、3306と、STBCシンボル3303、3305の中 の信号S1とで畳み込み符号化、ターボ符号化、LDPC(Low Density Parity Check) 符号化などの符号化を行うようにするとよい。また変調信号Bを形成する際に、データシ ンボル3308、3310、3312と、STBCシンボル3309、3311の中の信 号S2とで畳み込み符号化、ターボ符号化、LDPC符号化などの符号化を行うようにす るとよい。

[0214]

次に、図35のような信号を送信するためのマルチアンテナ送信装置の構成例と、その 信号を受信復調するためのマルチアンテナ受信装置の構成例を説明する。

[0215]

マルチアンテナ送信装置については、図2や図30の変調部202A、202Bを、例 えば図37のように構成すればよい。変調部202Aと変調部202Bはほぼ同様の構成 でよいので、ここでは変調部202Aについて説明する。

[0216]

変調部202Aは、データシンボル信号生成部3501及びSTBCシンボル信号生成 STBCシンボル信号生成部3502、チャネル推定シンボル信号生成部3503及び信 号選択部3508にフレーム構成信号S10を入力する。

[0217]

データシンボル信号生成部3501は、フレーム構成信号S10がデータシンボルを示 していたとき、符号化データS1Aを変調し、データシンボルのベースバンド信号350 4を出力する。STBCシンボル信号生成部3502は、フレーム構成信号S10がST BCシンボルを示していたとき、符号化データS1Aを変調し、STBCシンボルのベー スバンド信号3506を出力する。チャネル推定シンボル信号生成部3503は、フレー ム構成信号S10がチャネル推定シンボルを示していたとき、チャネル推定シンボルのベ ースバンド信号3507を出力する。

[0218]

7 m 6 5 1 1

信号選択部3508は、入力されたベースバンド信号3504、3506、3507の 出証特2004-3120426 中からフレーム構成信号S10が示しているベースバンド信号を選択し、ベースバンド信 号S2Aとして出力する。これにより、図35に示すようなフレーム構成の変調信号を送 信することができる。

[0219]

図38及び図39に、本実施の形態のマルチアンテナ受信装置の信号処理部の構成例を 示す。図38は、反復復号を用いないときの信号処理部の構成を示し、図5との対応部分 に同一符号を付した。図39は、反復復号を用いるときの信号処理部の構成を示す。

[0220]

先ず、図38の信号処理部3600の構成を説明する。信号処理部3600のSTBC シンボルブランチメトリック計算部4101は、チャネル変動推定値h11、h21、h 12、h22及びベースバンド信号R1-2、R2-2を入力とし、STBCシンボルの プランチメトリックを求め、STBCシンボルのブランチメトリック信号4102、41 03を出力する。

[0221]

このとき、STBCシンボルのプランチメトリック信号は2系統出力されることになる 。これは、(2)式におけるS1、S2に対し、ブランチメトリックが存在するからであ る。4102は変調信号Aとして送信されたSTBCシンボルのブランチメトリック信号 であり、4103は変調信号Bとして送信されたSTBCのブランチメトリック信号であ る。

[0222]

分離部501は、図35におけるデータシンボルについてのみ (1) 式による信号分離 を行い、推定ベースバンド信号502、505を出力する。

データシンボルブランチメトリック計算部4104は、変調信号Aの推定ベースバンド 信号502を入力とし、変調信号Aのデータシンボルのブランチメトリック計算し、デー タシンボルのブランチメトリック信号4105を出力する。同様に、データシンボルブラ ンチメトリック計算部4106は、変調信号Bの推定ベースバンド信号505を入力とし 、変調信号Bのデータシンボルのブランチメトリック計算し、データシンボルのブランチ メトリック信号4107を出力する。

[0224]

復号部4108は、STBCシンボルのブランチメトリック信号4102、データシン ボルのブランチメトリック信号4105を入力とし、パスメトリックを求め、復号するこ とで、送信ディジタル信号TAについての判定値504を出力する。同様に、復号部41 09は、STBCシンボルのプランチメトリック信号4103、データシンボルのブラン チメトリック信号4107を入力とし、パスメトリックを求め、復号することで、送信デ ィジタル信号TBについての判定値507を出力する。

[0225]

信号点削減部508、510 514 516は、データシンボルについて実施の形態 1 で説明したのと同様に信号点削減を行い、信号点削減後の信号点情報を出力する。デー タシンボルブランチメトリック計算部4110、4112は、信号点削減後の信号点情報 とベースバンド信号R1-2、R2-2を入力とし、データシンボルのブランチメトリッ ク信号4111、4113を出力する。復号部4114、4115は、データシンボルの プランチメトリック信号とSTBCシンボルのブランチメトリック信号を入力とし、パス メトリックを求め、復号する。

[0226]

次に、図39の構成について説明する。上述したように図39は、反復復号を用いると きの信号処理部の構成であり、図38の構成と図13の構成を組み合わせたものである。 つまり、図38と図39の関係は、既に説明した図5と図13の関係と同じである。従っ て、図39の図38と対応する部分には同一符号を付して、その説明は省略する。

[0227]

次に、本実施の形態のように規則的に時空間符号を送信した場合の受信時の動作及び効 果について説明する。

[0228]

図40に、図35のようなフレーム構成の信号を受信したときの受信状態例を示す。図 40(A)は変調信号Aのフレーム構成を示す。図40(B)は一度目の判定後の変調信 号Aの状態例を示す。図40(C)は信号点削減後の変調信号Bの状態を示す。なお図4 0 (A)、図40(B)を変調信号Bとし、図40(C)を変調信号Aとして考えても同 様である。

[0229]

STBCシンボルは、符号化によるダイバーシチゲインと受信アンテナにおけるダイバ ーシチゲインが得られるため、ブランチメトリックを求めた際、非常に信頼性が高い。ま たSTBCシンボルは、実施の形態1~8のような信号点削減を必要としない。一方、デ ータシンボルでは、ダイバーシチゲインが小さいため、ブランチメトリックを求めた際、 信頼性が低い。

[0230]

このような特性のなか、変調信号Aの一度目の軟判定後の状態について考える。STB Cシンボルにおけるブランチメトリックの信頼性が非常に高いため、STBCシンボルの パスメトリックを求めて軟判定を行うと、正しいシンボルが得られる可能性が非常に高く なる。

[0231]

従って、変調信号Aのシンボル判定を正しく行うことができるため、この判定結果を用 いてデータシンボルについての信号点削減を行うと、誤った信号点を選択する可能性が低 くなる。この結果、削減された信号点を用いて変調信号Bのブランチメトリックを求めた 際の、ブランチメトリックの信頼性が高くなる。

[0232]

加えて、変調信号BにもSTBCシンボルが挿入されており、STBCシンボルにおけ る符号化によるダイバーシチゲインと受信アンテナにおけるダイバーシチゲインによりS TBCシンボルで求めたブランチメトリックの信頼性が非常に高い。

[0233]

これら2つの効果により、パスメトリックを求め、軟判定復号を行った際の、変調信号 Bの誤り率特性を著しく向上させることができる。

[0234]

また実施の形態3、4のイタレーション処理を行う場合を考えると、本実施の形態のよ うにSTBCシンボルを挿入したフレーム構成とすることで、良好な誤り率特性を得るた めのイタレーションの回数が少なくなると共に、さらなる誤り率特性の改善につながる。 また実施の形態6のように、変調信号Aと変調信号Bのインターリーブパターンを異なる ようにすると、誤り率特性はさらに改善される。その構成については、実施の形態 6 で詳 述したのでここでは説明を省略するが、要は、送信側に、それぞれ異なるインターリーブ パターンをもつ複数のインターリーバを設けて各アンテナから異なるインターリーブパタ ーンでインターリーブされた変調信号を送信すると共に、受信側に、各インターリーバに 対応するデインターリーバ及びインターリーバを設けるようにすればよい。

[0235]

(ii) 特殊シンボルを送信する場合

次に、特殊シンボルを送受信する原理について説明する。図41及び図42に特殊シン ボルのフレーム構成例を示す。

[0236]

図41のフレーム構成について詳しく説明する。このフレーム構成では、変調信号Aと してデータシンボル3701を送信している時間と同一時間に、変調信号Bとして同相I -直交Q平面で(0,0)の信号で構成されたシンボル3703を送信する。すなわち変 調信号Bを送信しない。また変調信号Bとしてデータシンボル3704を送信している時 間と同一時間に、変調信号Aとして同相I-直交Q平面で(0,0)の信号で構成された シンボル3702を送信する。すなわち変調信号Aを送信しない。

[0237]

図41の例では、一つのアンテナのみからデータシンボルを送信し、他のアンテナは無 送信とすることを、特殊シンボルと呼ぶ。つまり、ここではこのような特殊シンボルをS TBCシンボルに換えて、規則的に送信することを提案する。

[0238]

これにより、変調信号Aのデータシンボル3701を受信機が受信するとき、変調信号 Bには信号が存在していないため、複数アンテナで変調シンボルAのみが受信されるので 、ダイバーシチゲインが得られ、データシンボル3701について信頼性の高いブランチ メトリックを得ることができる。加えて、信号点削減を行う必要がない。同様に、変調信 号Bのデータシンボル3704を受信機が受信するとき、変調信号Aには信号が存在して いないため、複数アンテナで変調信号Bのみが受信されるので、ダイバーシチゲインが得 られ、データシンボル3704について信頼性の高いプランチメトリックを得ることがで きる。加えて、信号点削減を行う必要がない。

[0239]

因みに、特殊シンボル中のデータシンボル3701、3704は、このシンボルと時間 的に前後する他のデータシンボルと共に符号化するようにする。このようにして、特殊シ ンボルとこれと前後する他のデータシンボルとを関与付ける。

[0240]

図42のフレーム構成について詳しく説明する。このフレーム構成では、変調信号Aを 既知データシンボル3801とすると共に変調信号Bを既知データシンボル3802とし 、この既知データシンボル3801、3802を同一時間に送信する。ここで既知データ シンボルとは、既知のデータを送信することである。つまり、図42の例では、複数のア ンテナからそれぞれ既知データシンボルを送信することを、特殊シンボルと呼ぶ。つまり 、ここではこのような特殊シンボルをSTBCシンボルに換えて、規則的に送信すること を提案する。

[0241]

これにより、変調信号Aと変調信号Bの既知データシンボル3801、3802を受信 機が受信するとき、これらのシンボルが既知であるため各シンボルを確実に識別できる。 よって、複数アンテナでの受信により、各変調シンボルで十分なダイバーシチゲインが得 られ、各シンボルについて信頼性の高いブランチメトリックを得ることができる。加えて 、信号点削減を行う必要がない。

[0242]

因みに、特殊シンボル中の既知データシンボル3801、3802は、このシンボルと 時間的に前後する他のデータシンボルと共に符号化するようにする。このようにして、特 殊シンボルとこれと前後する他のデータシンボルとを関与付ける。

[0243]

なお図42では、既知データシンボルが1シンボルで構成されている例を説明したが、 STBC方式を用い、2シンボルで構成してもよい。いずれにおいても、既知データシン ボルが符号化に関与していることが重要となる。

[0244]

次に、図41や図42のような信号を送信するためのマルチアンテナ送信装置の構成例 と、その信号を受信復調するためのマルチアンテナ受信装置の構成例を説明する。

[0245]

マルチアンテナ送信装置については、図2や図30の変調部202A、202Bを、例 えば図43のように構成すればよい。変調部202Aと変調部202Bはほぼ同様の構成 でよいので、ここでは変調部202Aについて説明する。

[0246]

ここで図43の構成は、既に説明した図37の構成と比較して、STBCシンボル信号 出証特2004-3120426

生成部3502を特殊シンボル信号生成部4001に換えただけなので、図37と同一の 部分については同一符号を付して説明を省略する。特殊シンボル信号生成部4001は、 符号化データS1A及びフレーム構成信号S10を入力とし、フレーム構成信号S10が 特殊シンボルを示していたとき、図41や図42に示した特殊シンボルのベースバンド信 号4002を出力する。

[0247]

またこのような特殊シンボルが挿入された変調信号を受信復調するマルチアンテナ受信 装置の構成は、図38や図39のSTBCシンボルブランチメトリック計算部4101を 、特殊シンボルブランチメトリック計算部に置き換えればよい。

[0248]

図44に、特殊シンボルを受信したときの受信状態例を示す。図44(A)は変調信号 Aのフレーム構成を示す。図44 (B) は一度目の判定後の変調信号Aの状態例を示す。 図44(C)は信号点削減後の変調信号Bの状態を示す。なお図44(A)、図44(B)を変調信号Bとし、図44(C)を変調信号Aとして考えても同様である。

[0249]

STBCシンボルを挿入した場合と同様に特殊シンボルを挿入すると、特殊シンボルに おけるブランチメトリックの信頼性が非常に高いため、特殊シンボルのパスメトリックを 求めて軟判定を行うと、正しいシンボルが得られる可能性が非常に高くなる。

[0250]

従って、変調信号Aのシンボル判定を正しく行うことができるため、この判定結果を用 いてデータシンボルについての信号点削減を行うと、誤った信号点を選択する可能性が低 くなる。この結果、削減された信号点を用いて変調信号Bのブランチメトリックを求めた 際の、ブランチメトリックの信頼性が高くなる。

[0251]

加えて、変調信号Bにも特殊シンボルが挿入されており、特殊シンボルにおける符号化 によるダイバーシチゲインと受信アンテナにおけるダイバーシチゲインにより特殊シンボ ルで求めたブランチメトリックの信頼性が非常に高い。

[0252]

これら2つの効果により、パスメトリックを求め、軟判定復号を行った際の、変調信号 Bの誤り率特性を著しく向上させることができる。

[0253]

また実施の形態3、4のイタレーション処理を行う場合を考えると、本実施の形態のよ うに特殊シンボルを挿入したフレーム構成とすることで、良好な誤り率特性を得るための イタレーションの回数が少なくなると共に、さらなる誤り率特性の改善につながる。また 実施の形態6のように、変調信号Aと変調信号Bのインターリーブパターンを異なるよう にすると、誤り率特性はさらに改善される。

[0254]

(iii) 他の構成例

上述した実施の形態では、図40に示す位置にSTBCシンボルを挿入し、図44に示 す位置に特殊シンボル3601、3602を挿入する場合を例に挙げたが、STBCシン ボル及び特殊シンボルの挿入位置及び間隔はこれに限らない。またデータシンボルの間に 挿入するシンボルは、STBCシンボルや図41、図42に示した特殊シンボルに限らず 、要は、ブランチメトリックの信頼性が高く、信号点削減が不要なシンボルであれば適用 でき、このようなシンボルであれば上述したのと同様の効果を得ることができる。

[0255]

また挿入するプランチメトリックの信頼性の高いシンボル(図40のSTBCシンボル 及び図44の特殊シンボル)は、信頼性の高いプランチメトリックを得るためのパイロッ トシンボルと呼ぶこともできる。

[0256]

また上述した実施の形態では、スペクトル拡散通信方式に適用した例を説明したがこれ 出証特2004-3120426 に限ったものではなく、例えばOFDM方式に適用することもできる。この場合、符号化する方法は、図40、図44のように時間軸に方向に符号化する方法も可能であるし、また図40、図44の横軸を周波数軸と考え、周波数軸に符号化することも可能である。加えて、時間軸と周波数軸の両方向に符号化することも可能である。またスペクトル拡散通信方式でないシングルキャリア方式にも当然適用することができる。

[0257]

さらに受信装置の構成は、図38、図39の構成に限ったものではなく、例えば、図12、図18のように変調信号Aと変調信号Bを交互に復調する構成をとることもできる。この場合、図38、図39の構成よりも回路規模を削減することができる。

[0258]

(実施の形態10)

この実施の形態では、符号化ブロック内で、必ず1度は、変調信号を送信するアンテナを切り替えることを提案する。これにより、直接波の影響による定常状態を変えることができるため、誤り率特性が符号化ブロック内全てに亘って悪くなる事態を回避して、誤り率特性が良い状態に引き込むことができるようになる。

[0259]

先ず、本実施の形態の原理について説明する。見通しの伝搬環境について考える。このとき、 (1) 式におけるチャネル行列は、直接波成分のチャネル要素 h_1 1, a, h_1 2, a, h_2 1, a, h_2 2, a と散乱波成分のチャネル要素 h_1 1, s, h_1 2, s, h_2 2, s, h_3 2, s, h_4 2, s, h_5 6, h_5 6, h_5 7, h_5 8, h_6 8, h_7 8, h_8 9, h_8 9, h_8 9, h_8 9, h_8 1, h_8 9, h_8 1, h_8 2, h_8 2, h_8 1, h_8 2, h_8 2, h

【数3】

[0260]

直接波のチャネル要素は、定常の状態に陥ると、その状態に応じて受信電界強度が同一であっても全く異なる受信品質を示すことが知られている(例えば、文献 "ライスフェージングにおけるMIMOシステムの解析"電子情報通信学会、信学技報RCS2003-90、pp. 1-6、2003年7月を参照)。特に、直接波が支配的な見通し環境では、実施の形態6のように変調信号間でインターリーブパターンを異なるようにしたことの効果が十分に現れないような定常状態になる可能性がある。このような状態に陥ると、受信電界強度が十分とれていても、良好な誤り率特性を得られないと考えられる。この実施の形態は、このような考察に基づいてなされたものである。

[0261]

先ず、符号化シンボルブロックの説明から始める。図45に、本実施の形態における符号化シンボルブロックの構成と送信する順番の例を示す。図45(A)は、符号化シンボルブロックの構成の一例を示している。符号化されているシンボルは、有限長で構成される。符号化シンボルブロックとは、その有限長で構成されているプロックのことを意味する(ここでは300シンボルで構成されている)。1, 2, ………, 299, 300の数字は、データの符号化の順番を示している。そして、インターリーブを行う際には、例えば、100シンボル単位に分割し、図45(A)の縦から読み出すことで、図45(B)のような順番でデータが送信されることになる。

[0262]

ところで、直接波が支配的な環境のときには、MIMO通信でない従来の変調信号を1 系統送信する場合についても、伝搬環境の変動が小さいため、インターリーブの効果が小 さいが、受信電界強度が十分であるため、良好な受信品質(誤り率特性)が得られる。

[0263]

一方、MIMO通信の場合、直接波が支配的な環境のとき、伝搬環境の変動が小さいため、インターリーブの効果が小さいことは、従来と同様であるが、異なる点は、受信電界強度が十分ではあっても、(3)式の直接波の行列の状態によっては、受信品質が悪くな

る場合が発生することである。

[0264]

そこで本実施の形態では、符号化ブロック内で、必ず1度は、変調信号を送信するアン テナを切り替えるようにする。その具体的なフレーム構成例を、図46に示す。変調信号 Aについて、図45(B)に示すようなインターリーブを施し、図45(B)を3分割し (以下、分割した各ブロックを、ХАブロック、ҮАブロック、 ZAブロックと呼ぶ)、 分割したブロックのうち必ず1つは別のアンテナから送信するようにする。

[0265]

例えば図46に示すように、変調信号Aにおいて、XAブロックはデータシンボル44 02、YAブロックはデータシンボル4404、ZAブロックはデータシンボル4406 に相当するものとしたとき、データシンボル4402、4404(すなわちXAブロック とYAブロック)は同一のアンテナAN1から送信するが、データシンボル4406(す なわちZAブロック)は送信するアンテナを別のアンテナAN2に切り替えるようにする

[0266]

同様に、変調信号Bにおいても図45 (B) に示すようなインターリーブを施し(但し 、実施の形態6で説明したように、変調信号Bについては、図45(B)とは異なるイン ターリーブパターンを用いた方が誤り率特性が良くなる)、図45(B)を3分割し(以 下、分割したブロックを、XBブロック、YBブロック、ZBブロックと呼ぶ)、分割し たブロックのうち必ず1つは別のアンテナから送信するようにする。

[0267]

例えば図46に示すように、変調信号Bにおいて、XBブロックはデータシンボル44 08、YBブロックはデータシンボル4410、ZBブロックはデータシンボル4412 に相当するものとしたとき、データシンボル4408(すなわちXBブロック)はアンテ ナAN2から送信するが、データシンボル4410、4412(すなわちYBブロックと ZBブロック) は別のアンテナAN3から送信するようにする。

[0268]

ここで変調信号A、BをアンテナAN1、アンテナAN2で送信した場合に、直接波の 影響により定常的になった行列の状態が悪く、このため受信電界強度が十分でもブランチ メトリックの信頼性が低いとする。同様に、変調信号A、BをアンテナAN1とアンテナ AN3で送信した場合にも、直接波の影響により定常的になった行列の状態が悪く、この ため受信電界強度が十分でもブランチメトリックの信頼性が低いとする。

[0269]

一方、変調信号A、BをアンテナAN2とアンテナAN3で送信された場合に、直接波 の影響により定常的になった行列の状態が良く、このためブランチメトリックの信頼性が 高いとする。

[0270]

このように、直接波による定常状態に陥ったときの行列の状態は、変調信号を送信する アンテナを切り替えることで変えることができる。この結果、プランチメトリックの信頼 性を、変調信号を送信するアンテナを切り替えることで変化させることができる。具体的 には、図46の期間t1、t2では、信頼性の低いブランチメトリックしか得られないが 、期間t3では、信頼性の高いブランチメトリックを得ることができるようになる。因み に、変調信号を送信するアンテナを切り替えると、受信電界強度が変わるのではなく、行 列の状態が変わるのである。但し、送信アンテナの選択パターンが同一である場合は、ほ ぼ同一の状態である。

[0271]

 $P = \{ e^{i\alpha} \}_{i=1}^n$

また符号化ブロック内で変調信号を送信するアンテナを切り替えるようにしたので、符 号化ブロック内で、デインターリーブにより、信頼性の高いブランチメトリックと低いブ ランチメトリックがランダムに並び換えられるようになる。この結果、パスメトリックを 求め、復号すると、ある程度の信頼性のあるデータを得ることができる。そして、信号点 削減を用いた反復復号により、ある程度の信頼性のあるデータを基に反復してデータを復 号すると、十分信頼性のあるデータを得ることが可能となる。

[0272]

図47に、本実施の形態のマルチアンテナ送信装置の構成例を示す。なお図47では、 図2との対応部分には同一符号を付した。マルチアンテナ送信装置4500のアンテナ選 択部4501は、変調信号Ta、Tb、フレーム構成信号S10を入力とし、フレーム構 成信号S10に従って変調信号Ta、Tbを送信するアンテナAN1~AN3を選択する 。これにより、図46のフレーム構成の変調信号を送信することができる。

[0273]

かくして本実施の形態によれば、符号化ブロック内で、必ず1度は、変調信号を送信す るアンテナを切り替えるようにしたことにより、直接波の影響による定常状態を変えるこ とができるため、誤り率特性の良くなる状態に引き込むことができるようになる。この結 果、上述した実施の形態1~9の特徴と組み合わせると、一段と誤り率特性の良い受信デ ータを得ることができる。因みに、誤り率特性の良い状態に引き込むためには、変調信号 間で異なるインターリーブパターンを選定したり、信号点削減による反復復号を適用する と効果的である。

[0274]

(実施の形態11)

この実施の形態では、各アンテナから異なるインターリーブパターンの変調信号を送信 するにあたって、特にビットインターリーブを用いて異なるインターリーブパターンの変 調信号を形成することを提案する。さらに、受信側での信号点削減を考えた場合に、誤り 率特性の良い受信データが得られるようなビットインターリープの仕方を提案する。

[0275]

図48に、本実施の形態のマルチアンテナ送信装置によって送信する変調信号Aと変調 信号BのI-Q平面における信号点配置例を示す。

図2との対応部分に同一符号を付して示す図49に、本実施の形態のマルチアンテナ送 信装置の構成を示す。ここでマルチアンテナ送信装置4700の変調部202Aにて16 QAMを行う場合、変調信号A(ベースバンド信号2A)の信号点配置は図48(a)の ようになる。具体的には、送信ディジタル信号TAを符号化して得た4つの符号化ビット Sa0、Sa1、Sa2、Sa3に応じて図48(a)の16点のうちのいずれかを割り 当てる。

[0277]

同様に、変調部202Bにて16QAMを行う場合、変調信号B(ベースバンド信号2 B) の信号点配置は図48(b) のようになる。具体的には、送信ディジタル信号TBを 符号化して得た4つの符号化ビットSb0、Sb1、Sb2、Sb3に応じて図48(b) の16点のうちのいずれかを割り当てる。

[0278]

マルチアンテナ送信装置4700は、信号分離部4701に送信ディジタル信号TAを 入力する。信号分離部4701は、送信ディジタル信号TAをディジタル信号4702と ディジタル信号4703に分離し、ディジタル信号4702を(Sa0, Sa2)用符号 化部4704に送出すると共にディジタル信号4703を(Sal, Sa3)用符号化部 4706に送出する。(Sa0, Sa2)用符号化部4704は、ディジタル信号470 2を符号化することにより符号化ビットSa0,Sa2からなる符号化ビット列4705 を得、これをインターリーバ4708に送出する。(Sa1,Sa3)用符号化部470 6は、ディジタル信号4703を符号化することにより符号化ビットSa1,Sa3から なる符号化ビット列4707を得、これをインターリーバ4710に送出する。

[0279]

同様に、マルチアンテナ送信装置4700は、信号分離部4712に送信ディジタル信 号TBを入力する。信号分離部4712は、送信ディジタル信号TBをディジタル信号4

713とディジタル信号4714に分離し、ディジタル信号4713を(Sb0, Sb2) 用符号化部4715に送出すると共にディジタル信号4714を(S b 1, S b 3) 用 符号化部4717に送出する。(Sb0,Sb2)用符号化部4715は、ディジタル信 号4713を符号化することにより符号化ビットSb0、Sb2からなる符号化ビット列 4716を得、これをインターリーバ4719に送出する。(Sb1, Sb3)用符号化 部4717は、ディジタル信号4714を符号化することにより符号化ビットSb1,S b3からなる符号化ビット列4718を得、これをインターリーバ4721に送出する。

[0280]

インターリーバ4708、4710はそれぞれ、符号化ビット列4705、4707を ビットインターリーブすることにより符号化ビット列4709、4711を得、これを変 調部202Aに送出する。同様に、インターリーバ4719、4721はそれぞれ、符号 化ビット列4716、4718をビットインターリーブすることにより符号化ビット列4 720、4722を得、これを変調部202Bに送出する。

[0281]

この実施の形態の場合、インターリーバ4708及びインターリーバ4719のインタ ーリープパターンは同一のインターリーブパターンXとされており、インターリーバ47 10及びインターリーバ4721のインターリーブパターンは同一のインターリーブパタ ーンYとされている。

[0282]

このように、各アンテナから送信する各変調信号についてのビットインターリーブパタ ーンを全て異なるものとするのではなく、変調信号間でビットインターリーブパターンの 同じ組を作ることにより、受信側で信号点削減を行ったときに誤り率特性の良い受信デー タを得ることができるようになる。その理由については後述する。

[0283]

インターリーバ4708、4710、4719、4721によるビットインターリーブ の一例を図50に示す。図50は、インターリーブ前と、インターリーブ後のデータの順 番を示している。

[0284]

変調信号Aについての符号化ビットSa0、Sa2のインターリーブ前の順番に対し、 データ1、データ2、・・・、データ200と順番を付ける。ここでインターリーバ47 08が5つのデータおきに順番を並び替えるビットインターリーブを行ったとすると、先 ずデータ1、データ6、・・・、データ196と並べる。次に、データ2、データ7、・ ・・、データ197と並べる。以下、データ3、データ8、・・・、データ198、次に 、データ4、データ9、・・・、データ199、次に、データ5、データ10、・・・、 データ200と並べる。変調信号Bについての符号化ビットSb0、Sb2のデータにつ いても、インターリーバ4719によって同様の並び替えが行われる。

[0285]

また変調信号Aについての符号化ビットSa1、Sa3のインターリーブ前の順番に対 し、データ1、データ2、・・・、データ200と順番を付ける。ここでインターリーバ 4710が8つおきに順番を並び替えるビットインターリーブを行ったとすると、先ずデ ータ1、データ9、・・・、データ193と並べる。次に、データ2、データ10、・・ ・、データ194と並べる。以下、データ3、データ11、・・・、データ195、次に 、データ4、データ12、・・・、データ196、次に、データ5、データ13、・・・ ,データ197、次に、データ6、データ14、・・・、データ198、次に、データ7 、データ15、・・・データ199、次に、データ8、データ16、・・・、データ20 0と並べる。変調信号Bについての符号化ビットSb1、Sb3のデータについても、イ ンターリーバ4721によって同様の並び替えが行われる。

[0286]

次に本実施の形態のマルチアンテナ受信装置の構成及び動作について説明する。マルチ アンテナ受信装置の全体構成は、図4と同様である。但し、図4の信号処理部404とし て、図51のような構成の信号処理部4900を設ける。

[0287]

図24との対応部分に同一符号を付して示す図51において、信号処理部4900は、符号化ビットSa0, Sa2用のデインターリーバ2401Aによって送信ディジタル信号Aの順番を並び替えることで推定ベースバンド信号502を得、次に符号化ビットSa0, Sa2用の軟判定復号部503によって軟判定復号することで、符号化ビットSa0、Sa2の情報を得る。次に、符号化ビットSa0、Sa2用のインターリーバ2402Aによって順番を並び替え、インターリーブ後の符号化ビットSa0、Sa2の符号化ビット列504を出力する。

[0288]

変調信号Bについても同様であり、符号化ビットSb0, Sb2用のデインターリーバ2401Bによって送信ディジタル信号Bの順番を並び替えることで推定ベースバンド信号505を得、次に符号化ビットSb0, Sb2用の軟判定復号部506によって軟判定復号することで、符号化ビットSb0、Sb2の情報を得る。次に、符号化ビットSb0、Sb2用のインターリーバ2402Bによって順番を並び替え、インターリーブ後の符号化ビットSb0、Sb2の符号化ビット列507を出力する。

[0289]

次に動作する信号点削減部1301、1302の処理について、図52を用いて説明する。

[0290]

図52 (a) は、信号点削減前の候補信号点を示しており(〇:候補信号点)、候補信号点は本実施の形態では、8ビットを伝送しているため、256個の候補信号点が存在することになる。そして、インターリーブ後の符号化ビットSa0、Sa2の情報504、及び、インターリーブ後の符号化ビットSb0, Sb2の情報507から、4ビットが決定しているため、信号点削減部<math>1301、1302は、図52(b) のように、256個の候補信号点を16個の候補信号点に削減する。

[0291]

そして、尤度判定部4901は、図52(b)のように、16個の候補信号点と受信ベースバンド信号(■)とのユークリッド距離の2乗を求め、ブランチメトリックを求める。ブランチメトリックは、各アンテナについて求められるため、2系統求められることになるが、尤度判定部4901は、各アンテナで求められたブランチメトリックの和を求め、そのブランチメトリックを基に符号化ビットSa1, Sa3, Sb1, Sb3を決定し、符号化ビットSa1, Sa3をデインターリーバ4902に、符号化ビットSb1、Sb3をデインターリーバ4905に出力する。

[0292]

デインターリーバ4902は、符号化ビットSa1、Sa3の順番を並び替え、デインターリーブ後の符号化ビットSa1、Sa3を復号部4903に送出する。復号部4903は、デインターリーブ後の符号化ビットSa1、Sa3を、例えば硬判定復号することにより、誤り訂正後の符号化ビットSa1、Sa3の情報4904を出力する。

[0293]

同様に、デインターリーバ4905は、符号化ビットSb1、Sb3の順番を並び替え、デインターリーブ後の符号化ビットSb1, Sb3を復号部4906に送出する。復号部4906は、デインターリープ後の符号化ビットを、例えば硬判定復号することにより、誤り訂正後の符号化ビットSb1, Sb3の情報4907を出力する。

[0294]

以上により、符号化ビットSaOから符号化ビットSaOが得られ、また符号化ビットSbOから符号化ビットSbOが得られることになる。このとき、信号点削減を行っているために、従来であればアンテナごとに256回のユークリッド距離を求める演算が必要であったところを、16回の演算で済ませることができるので、演算規模の削減を図ることができることになる。

[0295]

以降では、さらなる受信品質改善のために、反復復号を適用する方法、及び、インター リーブパターンを上述のように異なるようにした理由について詳しく説明する。

[0296]

先ず、反復復号の適用方法について詳しく説明する。インターリーバ4908は、上記 のように得られた誤り訂正後の符号化ビットSa1、Sa3を入力とし、符号化ビットS a1、Sa3用のインターリーブを施し、インターリーブ後の符号化ビットSa1,Sa 3を信号点削減部1303、1304に送出する。同様に、インターリーバ4909は、 上記のように得られた誤り訂正後の符号化ビットSb1、Sb3を入力とし、符号化ビッ トSb1、Sb3用のインターリーブを施し、インターリーブ後の符号化ビットSb1, Sb3を信号点削減部1303、1304に送出する。

[0297]

信号点削減部1303、1304は、インターリーブ後の符号化ビットSa1、Sa3 情報、及び、インターリーブ後の符号化ビットSb1、Sb3の情報を入力とし、図52 のように256個の候補信号点を、インターリーブ後の符号化ビットSa1、Sa3及び インターリーブ後の符号化ビットSb1,Sb3によって決定されている4ビットを用い て、16個の候補信号点に削減する。

[0298]

そして、尤度判定部4910は、図52(b)のように16個の候補信号点と受信ベー スバンド信号(■)とのユークリッド距離の2乗を求め、ブランチメトリックを求める。 ブランチメトリックは、各アンテナについて求められるため、2系統求められることにな るが、尤度判定部4910は、各アンテナで求められたブランチメトリックの和を求め、 そのブランチメトリックを基に符号化ビットSa0、Sa2、Sb0、Sb2を決定し、 符号化ビットSa0,Sa2をデインターリーバ4911に、符号化ビットSb0、Sb 2をデインターリーバ4914に出力する。

[0299]

デインターリーバ4911は、符号化ビットSa0、Sa2の順番を並び替え、デイン ターリーブ後の符号化ビットSa0,Sa2を復号部4912に送出する。復号部491 2は、デインターリーブ後の符号化ビットSa0, Sa2を、例えば硬判定復号すること により、誤り訂正後の符号化ビットSa0、Sa2の情報4913を出力する。

[0300]

同様に、デインターリーバ4914は、符号化ビットSb0、Sb2の順番を並び替え 、デインターリープ後の符号化ビットSb0,Sb2を復号部4915に送出する。復号 部4915は、デインターリーブ後の符号化ビットSb0,Sb2を、例えば硬判定復号 することにより、誤り訂正後の符号化ビットSb0、Sb2の情報4916を出力する。

[0301]

以上により、受信品質(誤り率特性)が向上した符号化ビットSa0、Sa2、Sb0 、Sb2の情報4913、4916が得られることになる。

[0302]

さらに、インターリーバ4917は、誤り訂正後の符号化ビットSa0,Sa2の情報 4913を入力とし、インターリーブ後の符号化ビットSa0, Sa2の情報を信号点削 減部1301、1302に送出する。同様に、インターリーバ4918は、誤り訂正後の 符号化ビットSb0、Sb2の情報4916を入力とし、インターリーブ後の符号化ビッ トSb0, Sb2の情報を信号点削減部1301、1302に送出する。

[0303]

そして、上述した動作を、信号点削減部1301、1302、尤度判定部4901、デ インターリーバ4902、4905、復号部4903、4906において行うことで、受 信品質の向上した符号化ビットSa1,Sa3,Sb1,Sb3の情報4904、490 7が得られる。

[0304]

以上の操作を複数回行うことで、受信品質を向上させることができる。これらの処理の フローチャートを図53に示す。

[0305]

はじめに、変調信号Aの符号化ビットSaO,Sa2及び変調信号Bの符号化ビットS b O, S b 2を復号する(S T 2 1 A)。次に、得られた符号化ビットS a O, S a 2、 Sb0,Sb2の情報を基に信号点削減を行い(ST21B)、符号化ビットSa1,S a3及び符号化ビットSb1、Sb3を復号する(ST22B)。次に、得られた符号化 ビットSa1,Sa3,Sb1,Sb3の情報を基に信号点削減を行い(ST22A)、 符号化ビットSa0,Sa2及び符号化ビットSb0,Sb2を復号する(ST23A) 。以下同様の処理を繰り返す。

[0306]

本実施の形態においては、符号化ビットSa0, Sa2用のインターリーバと符号化ビ ットSb0、Sb2用のインターリーバのインターリーブパターンを同一とし、符号化ビ ットSa1,Sa3用のインターリーバと符号化ビットSb1,Sb3用のインターリー バのインターリーブパターンを同一とした。これによる効果は、全てのインターリーブパ ターンを異なるようにするよりも、信号点削減を行った際の誤り率を小さくできることで ある。

[0307]

しかし、本質的には、符号化ビットSa0、Sa2用のインターリーバと符号化ビット Sa1、Sa3用のインターリーバのインターリーブパターンを異なるようにしたことが 、受信品質向上のためには重要となる。以下では、その理由について詳しく説明する。

[0308]

図54は、符号化ビットSa0,Sa2用のインターリーバと符号化ビットSb0,S b2用のインターリーバのインターリーブパターンを同一とし、符号化ビットSal, S a3用のインターリーバと符号化ビットSb1,Sb3用のインターリーバのインターリ ーブパターンを同一とし、かつ、符号化ビットSa0,Sa2用のインターリーバと符号 化ビットSa1、Sa3用のインターリーバのインターリーブパターンが同一のときの受 信状態の一例を示している。すなわち、全てのインターリーバのインターリーブパターン が同一の場合の例である。

[0309]

このようなインターリーブパターンのもと、図51の軟判定部503において、符号化 ビットSa0、Sa2の復号を行った結果、誤って判定されたシンボルが図54(A)の ように連続的に発生したと仮定する。因みに、畳み込み符号などを用いたときには、連続 して誤りが発生するのが一般的である。すると、信号点数削減部1301、1302にお いて、信号点数の削減を行った際、図54(B)のように、信号点削減による信号点選択 に連続して誤りが生じることになる。この結果、復号部4903、4906によって符号 化ビットSa1,Sa3及び符号化ビットSb1,Sb3の復号を行っても、受信品質(誤り率特性)が効果的に向上しない。これは、誤り訂正符号は、連続的な誤りを訂正する 能力が低いためである。

[0310]

図55に、本実施の形態のように、符号化ビットSa0,Sa2用のインターリーバと 符号化ビットSb0、Sb2用のインターリーバのインターリーブパターンを同一とし、 符号化ビットSa1, Sa3用のインターリーバと符号化ビットSb1, Sb3用のイン ターリーバのインターリーブパターンを同一とし、かつ、符号化ビットSa0,Sa2用 のインターリーバと符号化ビットSa1, Sa3用のインターリーバのインターリーブパ ターンを異なるものとしたときの受信状態の一例を示す。

[0311]

このようなインターリープパターンのもと、図5.1の軟判定部503において、符号化 ビットSa0、Sa2の復号を行った結果、誤った判定を行ったシンボルが図55(A) のように連続的に発生したと仮定するものとする。すると、信号点数削減部1301、1

302において、信号点数の削減を行った際、図55 (B) と異なり、符号化ビットSa 0、Sa2のインターリーブパターンと符号化ビットSa1、Sa3のインターリーブパ ターンが異なるため、デインターリーブにより、図55(B)のように、信号点削減によ る信号点選択の誤りは、離散的に生じることになる。すなわち、信号点削減による信号点 選択の誤りは、図54(B)のように連続して発生しない。これにより、復号部4903 、4906によって符号化ビットSa1,Sa3及び符号化ビットSb1,Sb3を復号 すると、効果的に誤り率特性が向上する。これは、誤り訂正符号は、離散的な誤りを訂正 する能力が高いためである。

[0312]

さらに符号化ビットSa0、Sa2用のインターリーバと符号化ビットSb0、Sb2 用のインターリーバのインターリーブパターンを同一としているので、符号化ビットSa 0, Sa2と符号化ビットSb0, Sb2の誤りの発生を同一にすることができる。

[0313]

例えば、符号化ビットSa0,Sa2の誤る確率が1/100、符号化ビットSb0, Sb2の誤る確率が、1/100とする。このとき、符号化ビットSa0,Sa2と符号 化ビットSb0, Sb2の誤りの発生が同一の場合には、信号点削減の誤る確率は、1/ 100である。しかし、誤りの発生パターンが異なると、信号点削減の誤る確率は1/1 0.0+1/1.0.0=1/5.0となってしまう。そして、インターリーブパターンが異なる 場合、誤りの発生パターンが異なる可能性が高くなる。

[0314]

このように、信号点削減を行うことを考えると、符号化ビットSa0,Sa2用のイン ターリーバと符号化ビットSb0,Sb2用のインターリーバのインターリーブパターン を同一とするほうが好適である。

[0315]

ただし、全てのインターリーブパターンを異なるようにしても、上述したように信号点 削減による信号点選択の誤りを離散的に生じさせることができるので、同様に誤り率特性 の向上効果が得られる。すなわち、全てのインターリーブパターンを異なるようにするこ とは必須要件ではなく、全てが同一パターンでなければ、信号点削減による信号点選択の 誤りを離散的に生じさせることができるといった点では、同様の効果を発揮することがで きる。

[0316]

かくして本実施の形態によれば、各アンテナから送信する変調信号のビットインターリ ーブパターンを異なるものとしたことにより、受信側での復号の際、バーストエラーの影 響を軽減して、誤り率特性の良い受信データを得ることができるマルチアンテナ送信装置 を実現できる。

[0317]

また各変調信号用に設けられた複数のインターリーバのうち、変調信号間のインターリ - バラアーのインターリープパターンのペア(インターリーバ4708とインターリーバ 4719、インターリーバ4710とインターリーバ4721)を作るようにしたことに より、信号点削減時に誤りが発生する確率を小さくできるので、一段と誤り率特性の良い 受信データを得ることができるようになる。

[0318]

なお上述した実施の形態では、スペクトル拡散通信方式に適用した例を説明したがこれ に限ったものではなく、例えばスペクトル拡散通信方式でないシングルキャリア方式や〇 FDM方式にも適用することもできる。OFDM方式に適用した場合、符号化する方法は 、図54のように時間軸に方向に符号化する方法も可能であるし、また図54の横軸を周 波数軸と考え、周波数軸に符号化することも可能である。加えて、時間軸と周波数軸の両 方向に符号化することも可能である。

[0319]

 $r \circ e^{\alpha_1} \mathcal{S} = 1$

このとき、実施の形態 7 で説明したように、インターリーブパターンXは周波数の高い

サブキャリアから低いサブキャリアへとデータを並び替えて配置するパターンにし、イン ターリーブパターンYは周波数の低いサブキャリアから高いサブキャリアへとデータを並 び替えて配置するパターンにすると、有効に誤り率特性を向上させることができ、さらに 回路構成も簡単化することができる。

[0320]

さらに、インターリーブの方法は、本実施の形態で説明した図は一例でありこれに限っ たものではない。理想的には、ランダムインターリーブが適している。

[0321]

また上述した実施の形態では、インターリーバによってインターリーブを行う場合につ いて述べたが、例えばOFDM方式に適用する場合には、各サブキャリアへのマッピング 処理によってインターリーブを行うようにしてもよい。このようにすれば、インターリー バを省略することができる。

[0322]

(実施の形態12)

この実施の形態では、実施の形態11とは別のビットインターリーブの仕方を提案する

[0323]

図2との対応部分に同一符号を付して示す図56に、本実施の形態のマルチアンテナ送 信装置の構成を示す。この実施の形態のマルチアンテナ送信装置5400が実施の形態1 1のマルチアンテナ送信装置4700と異なる点は、変調信号Aの符号化ビットSa0, Sa2が変調信号Bの符号化ビットSb0、Sb2と共に符号化されたものであり、また 、変調信号Aの符号化ビットSa1,Sa3が変調信号Bの符号化ビットSb1,Sb3 と共に符号化されている点である。

[0324]

マルチアンテナ送信装置5400は、信号分離部5402に送信ディジタル信号540 1を入力する。信号分離部5402は、送信ディジタル信号5401をディジタル信号5 403とディジタル信号5404の2系統に分離し、ディジタル信号5403を符号化部 5405に送出すると共にディジタル信号5404を符号化部5412に送出する。符号 化部5405は、ディジタル信号5403を符号化(例えば畳み込み符号化)することに より符号化ビット列5406を得、これをインターリーバ5407に送出する。符号化部 5412は、ディジタル信号5404を符号化(例えば畳み込み符号化)することにより 符号化ビット列5413を得、これをインターリーバ5415に送出する。

[0325]

インターリーバ5407は、符号化ビット列5406に対してインターリーブパターン Xのインターリーブを施し、インターリーブ後の符号化ビット列5408を分離部540 9に送出する。分離部5409は、インターリーブ後の符号化ビット列5408を、符号 化ビットSa0,Sa2を含む符号化ビット列 5-4 10と符号化ビットSb0,Sb2を 含む符号化ビット列5411に分離し、符号化ビット列5410を変調部202Aに、符 号化ビット列5411を変調部202Bにそれぞれ送出する。

[0326]

インターリーバ5415は、符号化ビット列5413に対してインターリーブパターン Yのインターリーブを施し、インターリーブ後の符号化ビット列5416を分離部541 7に送出する。分離部5417は、インターリーブ後の符号化ビット列5416を、符号 化ビットSa1,Sa3を含む符号化ビット列5418と符号化ビットSb1,Sb3を 含む符号化ビット列5419に分離し、符号化ビット列5418を変調部202Aに、符 号化ビット列5419を変調部202Bにそれぞれ送出する。

[0327]

変調部202Aは、符号化ビットSa0,Sa2及び符号化ビットSa1,Sa3に応 じて、図48(a)の16点のうちのいずれかを割り当て、その信号点を示すベースバン ド信号S2Aを出力する。同様に、変調部202Bは、符号化ビットSb0, Sb2及び 符号化ビットSb1,Sb3に応じて、図48(b)の16点のうちいずれかを割り当て 、その信号点を示すベースバンド信号S2Bを出力する。

[0328]

ここでインターリーバ5407のインターリーブパターンXとインターリーバ5415 のインターリーブパターンYが異なるものとされている。これにより、受信側で信号点削 減を行ったときに誤り率特性の良い受信データを得ることができるようになる。

[0329]

インターリーバ5407、5415によるビットインターリーブの一例を図57に示す 。図57は、インターリーブ前と、インターリーブ後のデータの順番を示している。

[0330]

図57(a)は、インターリーブパターンXのインターリーブ方法を示している。イン ターリーブ前の順番に対し、データ1、データ2、・・・、データ200と順番を付ける 。ここでインターリーバ5407が5つのデータおきに順番を並び替える(この処理は、 実施の形態11で説明した、図50の符号化ビットSa0,Sa2のインターリーブ処理 と同様であるので詳細の説明は省略する)。

[0331]

そして、インターリーブ後に並んだデータを符号化ビットSa0,Sa2及び符号化ビ ットSb0,Sb2に交互に振り分ける。したがって、符号化ビットSa0,Sa2のデ ータは、データ1、データ11、・・・、データ185、データ195という順番になり 、符号化ビットSb0,Sb2のデータは、データ6、データ16、・・・、データ19 0、データ200という順番になる。

[0332]

図57(b)は、インターリーブパターンYのインターリーブ方法を示している。イン ターリーブ前の順番に対し、データ1、データ2、・・・、データ200と順番を付ける 。ここでインターリーバ5415は、8つのデータおきに順番を並べ替える(この処理は 、実施の形態11で説明した、図50の符号化ビットSa1,Sa3のインターリーブ処 理と同様であるので詳細の説明は省略する)。

[0333]

そして、インターリーブ後に並んだデータを符号化ビットSa1, Sa3及び符号化ビ ットSb1、Sb3に交互に振り分ける。したがって、符号化ビットSa1、Sa3のデ ータは、データ1、データ17、・・・、データ176、データ192という順番になり 、符号化ビットSb0,Sb2のデータは、データ9、データ25、・・・、データ18 4、データ200という順番になる。

[0334]

次に本実施の形態のマルチアンテナ受信装置の構成及び動作について説明する。マルチ アンテナ受信装置の全体構成は図4と同様である。但し、図4の信号処理部404として 、図58のような構成の信号処理部5600を設ける。

[0335]

図13との対応部分に同一符号を付して示す図58において、信号処理部5600は、 パターンX用のデインターリーバ5601によって、変調信号Aの推定ベースバンド信号 504及び変調信号Bの推定ベースバンド信号505の並び替えを行う。デインターリー ブ後の推定ベースバンド信号は、軟判定復号部5602に送出される。

[0336]

軟判定復号部5602は、デインターリーブ後の推定ベースバンド信号に対して軟判定 復号処理を施すことにより、符号化ビットSa0,Sa2及び符号化ビットSb0,Sb 2の情報5603を得、これをパターンX用のインターリーバ5604に送出する。パタ ーンX用のインターリーバ5604は、符号化ビットSa0,Sa2及び符号化ビットS b0,Sb2の情報5603に対してパターンXのインターリーブを施し、インターリー ブ後の符号化ビットSa0,Sa2及び符号化ビットSb0,Sb2の情報5605を信 号点削減部1301、1302に送出する。

[0337]

次に動作する信号点削減部1301、1302の処理について、図52を用いて説明す

[0338]

図52 (a) は、信号点削減前の候補信号点を示しており(〇:候補信号点)、候補信 号点は本実施の形態では、8ビットを伝送しているため、256個の候補信号点が存在す ることになる。そして、インターリーブ後の符号化ビットSa0、Sa2及び符号化ビッ トSb0、Sb2の情報5605から、4ビットが決定しているため、信号点削減部13 01、1302は、図52(b)のように、256個の候補信号点を16個の候補信号点 に削減する。

[0339]

そして、尤度判定部5606は、図52(b)のように16個の候補信号点と受信ベー スバンド信号(■)とのユークリッド距離の2乗を求め、ブランチメトリックを求める。 ブランチメトリックは、各アンテナについて求められるため、2系統求められることにな るが、尤度判定部5606は、各アンテナで求められたブランチメトリックの和を求め、 そのブランチメトリックを基に符号化ビットSa1,Sa3及び符号化ビットSb1,S b3を決定し、これをパターンY用のデインターリーバ5607に出力する。

[0340]

パターンY用のデインターリーバ5607は、符号化ビットSa1,Sa3及び符号化 ビットSb1,Sb3の情報の順番を並び替え、デインターリーブ後の符号化ビットSa 1, Sa3及び符号化ビットSb1, Sb3の情報を復号部5608に送出する。復号部 5608は、デインターリーブ後の符号化ビットSa1、Sa3及び符号化ビットSb1 , Sb3の情報を、例えば硬判定復号することにより、誤り訂正後の符号化ビットSa1 ,Sa3及び符号化ビットSb1,Sb3の情報5609を出力する。

[0341]

以上により、符号化ビットSa0から符号化ビットSa3が得られ、符号化ビットSb 0から符号化ビットSb3が得られることになる。このとき、信号点削減を行っているた めに、従来であればアンテナごとに256回のユークリッド距離を求める演算が必要であ ったところを、16回の演算で済ませることができるので、演算規模の削減を図ることが できることになる。

[0342]

以降では、さらなる受信品質改善のために、反復復号を適用する方法、及び、インター リーブパターンを上述のように異なるようにした理由について詳しく説明する。

[0343]

先ず、反復復号の適用方法について詳しく説明する。パターンYのインターリーバ56 10は、上記のように得られた誤り訂正後の符号化ビットSa1,Sa3及び符号化ビッ トSb1、Sb3の情報5609に対してパターンXのインターリーブを施し、インター リーブ後の符号化ビットSa1、Sa3及び符号化ビットSb1、Sb3の情報5611 を信号点削減部1303、1304に送出する。

[0344]

信号点削減部1303、1304は、インターリーブ後の符号化ビットSa1、Sa3 及びインターリーブ後の符号化ビットSb1、Sb3情報5611を入力とし、図52の ように256個の候補信号点を、インターリーブ後の符号化ビットSa1、Sa3及び符 号化ビットSb1,Sb3によって決定されている4ビットを用いて、16個の候補信号 点に削減する。

[0345]

そして、尤度判定部5612は、図52(b)のように16個の候補信号点と受信ベー スバンド信号(■)とのユークリッド距離の2乗を求め、ブランチメトリックを求める。 プランチメトリックは、各アンテナについて求められるため、2系統求められることにな るが、尤度判定部5612は、各アンテナで求められたブランチメトリックの和を求め、

そのブランチメトリックを基に符号化ビットSa0、Sa2、Sb0、Sb2を決定し、 符号化ビットSa0, Sa2, Sb0, Sb2の情報をパターンX用のデインターリーバ 5613に送出する。

[0346]

パターンX用のデインターリーバ5613は、符号化ビットSa0、Sa2及び符号化 ビットSb0、Sb2の情報の順番を並び替えることにより、デインターリーブ後の符号 化ビットSa0,Sa2及び符号化ビットSb0,Sb2の情報を得、これを復号部56 14に送出する。復号部5614は、デインターリーブ後の符号化ビットSa0,Sa2 及び符号化ビットSb0、Sb2の情報5615を、例えば硬判定復号することにより、 誤り訂正後の符号化ビットSa0、Sa2及びSb0、Sb2の情報5615を出力する

[0347]

以上により、受信品質(誤り率特性)が向上した符号化ビットSaO、Sa2、SbO 、Sb2の情報5609、5615が得られることになる。

[0348]

さらに、インターリーバ5616は、誤り訂正後の符号化ビットSa0,Sa2及び符 号化ビットSb0、Sb2の情報5615を入力とし、インターリーブ後の符号化ビット Sa0,Sa2及び符号化ビットSb0,Sb2の情報を信号点削減部1301、130 2に送出する。

[0349]

そして、上述した動作を、信号点削減部1301、1302、尤度判定部5606、デ インターリーバ5607、復号部5608において行うことで、受信品質の向上した符号 化ビットSa1, Sa3, Sb1, Sb3の情報5609、5615が得られる。

[0350]

以上の操作を複数回行うことで、受信品質を向上させることができる。これらの処理の フローチャートを図53に示す。

[0351]

はじめに、変調信号Aの符号化ビットSa0, Sa2及び変調信号Bの符号化ビットS b O, S b 2を復号する(S T 2 1 A)。次に、得られた符号化ビットS a O, S a 2、 Sb0, Sb2の情報を基に信号点削減を行い(ST21B)、符号化ビットSal, S a3及び符号化ビットSb1、Sb3を復号する(ST22B)。次に、得られた符号化 ビットSa1,Sa3,Sb1,Sb3の情報を基に信号点削減を行い(ST22A)、 符号化ビットSaO, Sa2及び符号化ビットSbO, Sb2を復号する(ST23A) 。以下同様の処理を繰り返す。

[0352]

本実施の形態においては、インターリーバのインターリーブパターンを異なるようにし た (パターンXとパターンYは異なる) ことが、受信品質向上のためには重要となる。以 下では、その理由について詳しく説明する。

[0353]

図59は、パターンX(符号化ビットSa0,Sa2,Sb0,Sb2用のインターリ ーブパターン)とパターンY(符号化ビットSa1,Sa3,Sb1,Sb3用のインタ ーリーブパターン)が同一パターンのときの受信状態の一例を示している。

[0354]

このようなインターリーブパターンのもと、図58の軟判定部5602において、符号 化ビットSa0、Sa2、Sb0、Sb2の復号を行った結果、誤って判定されたシンボ ルが図59 (A) のように連続して発生したと仮定する。因みに、畳み込み符号などを用 いたときには、連続して誤りが発生するのが一般的である。すると、信号点数削減部13 01、1302において、信号点数の削減を行った際、図59(B)のように、信号点削 減による信号点選択に連続して誤りが生じることになる。この結果、復号部5608によ って符号化ビットSa1,Sa3及び符号化ビットSb1,Sb3の復号を行っても、受 信品質(誤り率特性)が効果的に向上しない。これは、誤り訂正符号は、連続的な誤りを 訂正する能力が低いためである。

[0355]

図60に、本実施の形態のように、パターンX(符号化ビットSa0,Sa2,Sb0 ,Sb2用のインターリーブパターン)とパターンY(符号化ビットSa1,Sa3,S b1, Sb3用のインターリーブパターン)を異なるようにしたときの受信状態の一例を 示す。

[0356]

このようなインターリーブパターンのもと、図58の軟判定部5602において、符号 化ビットSa0, Sa2、Sb0, Sb2の復号を行った結果、誤った判定を行ったシン ボルが図60(A)のように連続的に発生したと仮定する。すると、信号点数削減部13 01、1302において、信号点数の削減を行った際、図59 (B) と異なり、インター リーブパターンXとインターリーブパターンYが異なるため、デインターリーブにより、 図60(B)のように、信号点削減による信号点選択の誤りは、離散的に生じることにな る。すなわち、信号点削減による信号点選択の誤りは、図60(B)のように連続して発 生しない。これにより、復号部5608によって符号化ビットSa1,Sa3及び符号化 ビットSb1, Sb3を復号すると、効果的に誤り率特性が向上する。これは、誤り訂正 符号は、離散的な誤りを訂正する能力が高いためである。

[0357]

かくして本実施の形態によれば、各アンテナから送信する変調信号のビットインターリ ーブパターンを異なるものとしたことにより、受信側での復号の際、バーストエラーの影 響を軽減して、誤り率特性の良い受信データを得ることができるマルチアンテナ送信装置 を実現できる。また本実施の形態によれば、実施の形態11と比較して、符号化部の数を 少なくすることができるので、演算量削減につながり、回路規模を小さくすることができ る。

[0358]

なお上述した実施の形態では、スペクトル拡散通信方式に適用した例を説明したがこれ に限ったものではなく、例えばスペクトル拡散通信方式でないシングルキャリア方式やO FDM方式に適用することもできる。OFDM方式に適用した場合、符号化する方法は、 図60のように時間軸に方向に符号化する方法も可能であるし、また図60の横軸を周波 数軸と考え、周波数軸に符号化することも可能である。加えて、時間軸と周波数軸の両方 向に符号化することも可能である。加えて、時間軸と周波数軸の両方向に符号化すること も可能である。

[0359]

このとき、実施の形態7で説明したように、インターリーブパターンXは周波数の高い サブキャリアから低いサブキャリアへとデータを並び替えて配置するパターンにし、イン ターリーブパターンYは周波数の低いサブキャリアから高いサブキャリアへとデータを並 び替えて配置するパターンにすると、有効に誤り率特性を向上させることができ、さらに 回路構成も簡単化することができる。

[0360]

さらに、インターリーブの方法は、本実施の形態で説明した図は一例でありこれに限っ たものではない。理想的には、ランダムインターリーブが適している。

[0361]

また上述した実施の形態では、インターリーバによってインターリーブを行う場合につ いて述べたが、例えばOFDM方式に適用する場合には、各サブキャリアへのマッピング 処理によってインターリープを行うようにしてもよい。このようにすれば、インターリー バを省略することができる。

[0362]

(実施の形態13)

実施の形態6では、各アンテナから送信する変調信号のインターリーブパターンを各変

調信号間で異なるようにしたマルチアンテナ送信装置を提案したが、本実施の形態では、 インターリープとしてビットインターリーブを適用したとき具体的な装置例について述べ る。つまり、本実施の形態は、基本的には、ビットインターリーブ処理を行う点で、実施 の形態11や実施の形態12と同様であるが、実施の形態6の基本構成にそのままビット インターリーブを適用する例を説明するものである。

[0363]

図48に、本実施の形態のマルチアンテナ送信装置によって送信する変調信号Aと変調 信号BのI-Q平面における信号点配置例を示す。

[0364]

本実施の形態におけるマルチアンテナ送信装置の基本構成は、実施の形態6で説明した 、図23と同様であり、その動作は実施の形態6と同様である。

[0365]

図23のような構成を採った場合の、インターリーバ2301A、2301Bによるビ ットインターリーブの方法について図61を用いて詳しく説明する。因みに、インターリ ーバ2301Aは、図61(a)のインターリーブパターンXを用いてインターリーブ処 理を行い、インターリーバ2301Bは、図61(b)のインターリーブパターンYを用 いてインターリーブ処理を行う。

[0366]

図61は、インターリーブ前、インターリーブ後、分離後のデータの順番の一例を示し ている。図61(a)は、インターリーブパターンXのインターリーブ方法を示している 。インターリーブ前の順番に対し、データ1、データ2、・・・、データ200と順番を 付ける。インターリーブにより、5つデータおきに順番を並び替える(この処理は、実施 の形態11で説明した、図50の符号化ビットSa0, Sa2のインターリーブ処理と同 様であるので詳細の説明は省略する。)。

[0367]

そして、インターリーブ後に並んだデータを符号化ビットSa0,Sa2及び符号化ビ ットSa1, Sa3に交互に振り分ける。したがって、符号化ビットSa0, Sa2のデ ータは、データ1、データ11、・・・、データ185、データ195という順番になり 、符号化ビットSa1,Sa3のデータは、データ6、データ16、・・・、データ19 0、データ200という順番になる。

[0368]

図61(b)は、インターリーブパターンYのインターリーブ方法を示している。イン ターリーブ前の順番に対し、データ1、データ2、・・・、データ200と順番を付ける 。インターリーブにより、8つのデータおきに順番を並べ替える(この処理は、実施の形 態11で説明した、図50の符号化ビットSa1,Sa3のインターリーブ処理と同様で あるので詳細の説明は省略する)。

[0369]

Z1 ア インターリーブ後に並んだデータを符号化ビットSb0, Sb2及び符号化ビ ットSb1, Sb3に交互に振り分ける。したがって、符号化ビットSb0, Sb2のデ ータは、データ1、データ17、・・・、データ176、データ192という順番になり 、符号化ビットSb0,Sb2のデータは、データ9、データ25、・・・、データ18 4、データ200という順番になる。

[0370]

図23の各変調部202A、202Bは、以上のようにビットインターリーブされた符 号化ビットに応じて、図48(a)、(b)の16点のうちのいずれかを割り当てること で変調を行う。

[0371]

次に、このようにビットインターリーブ処理された複数の変調信号A、Bを受信するマ ルチアンテナ受信装置の構成について説明する。マルチアンテナ受信装置の構成(信号処 理部の構成)の一つとして、実施の形態6で説明した図24の構成が考えられ、その動作 は、各デインターリーバ及びインターリーバでビットデインターリーブ処理及びインター リーブ処理を行う以外は、実施の形態6と同様である。

[0372]

この実施の形態では、図24とは異なる構成として、図62のような構成例について説 明する。図24との対応部分に同一符号を付して示す図62において、信号処理部600 0 の最尤判定部 6 0 0 1 は、チャネル推定値 h 1 1 、 h 2 1 、 h 1 2 、 h 2 2 、ベースバ ンド信号 R 1-2、 R 2-2を入力とし、最尤判定を行うことで、符号化ビット S a 0, Sa1、Sa2、Sa3の情報6004を得てこれをデインターリーバ2401Aに送出 すると共に符号化ビットSb0、Sb1、Sb2、Sb3の情報6005を得てこれをデ インターリーバ2401Bに送出する。

[0373]

デインターリーバ2401A、2401Bによってデインターリーブされた符号化ビッ トSaO, Sa1, Sa2, Sa3の情報6004、符号化ビットSb0, Sb1, Sb 2, Sb3の情報6005は、それぞれ、硬判定復号部6002、6003によって硬判 定復号されて出力される。他の部分については、実施の形態6と同様に動作する。

[0374]

そして信号処理部6000においては、変調信号AのビットインターリーブパターンX と変調信号BのビットインターリーブパターンYが異なるものとされているので、実施の 形態11や実施の形態12で説明したのと同様の理由により、誤り率特性の良い受信デー タRA、RBを得ることができる。

[0375]

かくして本実施の形態によれば、各アンテナから送信する変調信号のインターリーブパ ターンを各変調信号で異なるようにするにあたって、各変調信号のビットインターリーブ パターンを異なるようにしたことにより、受信側での復号の際、バーストエラーの影響を 軽減して、誤り率特性の良い受信データを得ることができるマルチアンテナ送信装置及び マルチアンテナ受信装置を実現できる。

[0376]

なお本実施の形態で説明した信号処理部6000の構成は、例えば実施の形態6などの 実施の形態においても適用することができる。つまり、最尤判定を仮判定に用いることが できる。

[0377]

また本実施の形態では、各変調信号のビットインターリーブパターンを異なるものとす るマルチアンテナ送信装置の構成として、図23のマルチアンテナ送信装置2300及び 図61のビットインターリーブパターンを用いて説明したが、マルチアンテナ装置の全体 構成やビットインターリーブパターンは図23や図61に示したものに限らない。特、ビ ットインターリーブパターンは種々のものを適用でき、要は、各変調信号のビットインタ ーリーブパターンを異なるものとすればよい。

[0378]

図23のマルチアンテナ送信装置2300の構成と異なる構成例として、例えば図63 のような構成が考えられる。図23との対応部分に同一符号を付して示す図63において 、マルチアンテナ送信装置6100の最も特徴的な点は、"符号化ビットSa0,Sa2 のためのインターリーブパターン (インターリーバ4708) と符号化ビットSa1, S a 3 のためのインターリーブパターン(インターリーバ6101)が同一であり、かつ、 符号化ビットSb0, Sb2のためのインターリーブパターン(インターリーバ4719) と符号化ビットSb1, Sb3のためのインターリーブパターン (インターリーバ61 02) が同一である"という点である。これにより、受信装置において、誤り訂正能力が 向上し、受信品質が向上することになる。また、ビットインターリーブのパターンを全て 異なるようにしてもよいが、受信品質の劣化を招くのは、実施の形態 1 1 で説明したとお りである。

[0379]

さらに、インターリーブの方法は、本実施の形態で説明した図は一例でありこれに限っ たものではない。理想的には、ランダムインターリーブが適している。

[0380]

(実施の形態14)

この実施の形態では、LDPC(Low Density Parity Check)を適用したときに、上述 したインターリーブパターンを簡易な構成で設定することができるマルチアンテナ送信装 置を提案する。換言すれば、上述したインターリーブパターンの変調信号を形成するにあ たって、LDPCを有効活用する方法を提案する。

[0381]

上述した実施の形態6、7、11、12、13では、基本的には、図23のように、イ ンターリーバ2301Aとインターリーバ2301Bのインターリーブパターンを異なる ようにすることで、変調信号間でのインターリーブパターンを異なるようにした。この実 施の形態では、LDPCを適用したとき、インターリーバ2301A、2301Bを、異 なる生成行列 G_i (検査行列 H_i) を持つ LDP C符号器に置き換えることを提案す る。これにより、異なるインターリーバを設けてインターリープパターンを異なるように したときと同様の効果を得ることができるようになる。

[0382]

図 2 との対応部分に同一符号を付して示す図 6 4 に、本実施の形態のマルチアンテナ送 信装置の構成を示す。マルチアンテナ送信装置6200は、図2のマルチアンテナ送信装 置110と比較して、符号化部201A、201Bに換えてLDPC符号器6201A、 6201Bが設けられている。

[0383]

変調信号A用のLDPC符号器6201Aは、生成行列Ga、検査行列Haで表され、 送信データTAを入力とし、符号化されたデータS1Aを出力する。変調信号B用のLD PC符号器6201Bは、生成行列Gb、検査行列Hbで表され、送信データTBを入力 とし、符号化されたデータS1Bを出力する。

[0384]

この実施の形態の特徴は、変調信号A用のLDPC符号器6201Aの生成行列Gaと 変調信号B用のLDPC符号器6201Bの生成行列Gを異なるようにしたことである。 その理由について以下で説明する。

[0385]

LDPCは、非常に疎な検査行列により定義される線形符号であり、その特徴の一つは 、様々な符号長、符号化率の符号を容易に構成できる柔軟性を持つことである。同様に、 同一の符号長、符号化率の符号を複数種類構成することも容易である。その他多くの誤り 訂正符号では、符号の種類によって構成可能なパラメータが限られる。

[0386]

ターボ符号や畳み込み符号の復号では、全てのビットは尤度情報を更新するために隣接 するビットの情報を利用する。したがって、フェージング環境などの記憶のある通信路(c hannel with memory)を扱う際には、隣接するビット間の相関のあるノイズを擬似的に白 色化するためにインターリーバが利用される。このため、本発明では、ストリーム毎に異 なるインターリーブパターンを適用する送信機構成を採るようにした。

[0387]

しかし、LDPCの復号では、あるビットnがそのビットに関係するパリティチェック 、つまり検査m、により更新する場合、検査mに関わるいくつかのビットからの情報のみ を利用する。LDPC符号の検査行列Hは一般にランダムに構成されるため、更新に利用 する情報ビットが隣接する確率はきわめて小さい。よってビットnが深いフェード中にあ ったとしても、ビットnに関係する他のビットが、同様に深いフェード中にある確率は低 く、それらのビットはビットnに対して、より信頼性の高い情報を提供する。

つまり、LDPCの検査行列Hにインターリーブ機能が本質的に備わっていることを意 出証特2004-3120426

味しており、原理的に検査行列Hの設計において、行列Hの全ての非零要素をインターリ ーブ利得が最大になるように配置することが可能である。

[0389]

この結果は、J. Hou, P. Siegel, and L. Milstein, "Performance Analysis and Cod e Optimization for Low Density Parity-Check Codes on Rayleigh Fading Channels" IEEE JSAC, Vol. 19, No. 5, May, 2001 でも示されている。

[0390]

次に、LDPCの符号化について説明する。LDPCは、線形符号の一種であるので、 生成行列Ga, Gbを情報ベクトル (ml, m2, …、mk) 、(n1, n2, …、nk) に乗ずることにより得ることができる。すなわち、あらかじめ設計された検査行列 H a およびHbに対応する生成行列Ga,Gbを求めておき(生成行列Ga, GbはGaHa $^{T}=0$ および $G_{\,b}\,\,H_{\,b}\,\,^{T}=0$ を満たす)、 $\,c=m\,G_{\,a}\,\,$ あるいは $\,d=n\,G_{\,b}\,\,$ として符号語 $\,c$ およびdを得ることができる。

[0391]

次に、LDPCの復号化について説明する。本実施の形態におけるマルチアンテナ受信 装置の全体構成は、例えば図4に示すようにすればよい。そして図4の信号処理部404 を、例えば図65のように構成すればよい。

[0392]

図13との対応部分に同一符号を付して示す図65において、信号処理部6300は、 図13の信号処理部1300の軟判定部503、506、512、518を、LDPC用 の復号方法である確率領域sum-product復号部6301、6302、6303 、6304に置き換えた構成でなる。

[0393]

LDPCを利用した場合、デインターリーバとビタビ復号回路(畳み込み符号適用時) の組み合わせの代わりに、例えば、LDPCを利用した場合の代表的な復号方法である、 確率領域sum-product復号法(probability domain sum-product decoding alg orithm)やハードウェア、ソフトウェアへの実装に向いている対数領域 s u m - p r o d u c t 復号法(log domain sum-product decoding algorithm)などを利用することができ

[0394]

変調信号Aのsum-product復号部6301、6303は、送信側で用いた検 査行列Haに対応した復号を行う。また変調信号Bのsum-product復号部63 02、6304は、送信側で用いた検査行列Hbに対応した復号を行う。誤り訂正処理さ れた変調信号A, Bの受信ディジタル信号は、再び送信時と同じ生成行列 G a および G b のLDPCを用いて、再符号化および変調され、信号点削減が行われる。

[0395]

詳細の動作は、LDPC以外で説明した動作と同様であり、LDPCに関わる部分の動 作のみが異なるだけで、他は上述した実施の形態と同様の動作をする。

[0396]かくして本実施の形態によれば、各ストリームに異なる生成行列 G_i (検査行列 H_i) を持つLDPCを適用する構成を採り、その生成行列によってインターリーブ処理と同 等の処理を行うようにしたことにより、図23に示すように、各ストリームに異なるイン ターリープパターンを備えたインターリーバと、ターボ符号や畳み込み符号などLDPC とは異なる誤り訂正符号器とを用いた構成を採る場合と同様の効果を得ることができる。 さらに、LDPC符号はインターリーバ機能そのものを含むため、回路規模を削減するこ とができる。

[0397]

なお、この実施の形態では、LDPC符号器のみでインターリープパターンの異なる変 調信号A、Bを形成する場合について説明したが、LDPC符号器に加えて、実施の形態 6、7と同様にインターリーバを設けてインターリープパターンの異なる変調信号を形成 するようにしてもよく、このようにした場合でも受信品質を向上させることができる。

[0398]

さらには、図66に示すように、LDPC符号器6201AとLDPC符号器6201 Bとして同一のLDPC符号器を用いると共に、一方にのみインターリーバ6601を設 けるようにしてもよい。このようにしても、変調信号Aと変調信号Bのインターリーブパ ターンを異なるようにすることができるので、受信品質を向上させることができる。

[0399]

(実施の形態15)

この実施の形態では、上述した受信装置及び方法(すなわち候補信号点を削減し、復号 する装置及び方法)に好適な再送方法を提案する。

[0400]

先ず、図67に送信側(例えば基地局)で送信する送信信号Aと送信信号Bのフレーム 構成例を示す。変調信号A、Bのチャネル推定シンボル6801A、6802Bは同時刻 に送信され、受信機はこのチャネル推定シンボル6801A、6802Bを用いてフェー ジング等によるそれぞれのチャネル変動を推定する。変調信号A、Bのデータシンボル6 802A、6802Bは、各送信ディジタル信号TA、TBに基づいて形成されたもので あり、このデータシンボル6802A、6802Bによりデータが伝送される。また各変 調信号A、Bには、CRC (Cyclic Redundancy Check) シンボル6803A、6803 Bが付加され、受信機はCRCシンボル6803A、6803Bを検査することで変調信 号A、Bで送信されたデータそれぞれに誤りがあったかどうかを確認する。制御情報シン ボル6804は、受信機で周波数オフセットの検出、AGC(Automatic Gain Control) を行うためや、再送信号か否かを識別させるために設けられている。

[0401]

図68に、受信機(例えば通信端末)の送信系の構成例を示す。誤り判定部6902A は、基地局が送信した信号を復調して得られた変調信号Aのディジタル信号6901Aを 入力とし、図67のCRCシンボル6803Aを利用することで、変調信号Aに誤りがあ ったか否かを示す誤り有無情報6903Aを出力する。同様に、誤り判定部6902Bは 、基地局が送信した信号を復調して得られた変調信号Bのディジタル信号6901Bを入 力とし、図67のCRCシンボル6803Bを利用することで、変調信号Bに誤りがあっ たか否かを示す誤り有無情報6903Bを出力する。

[0402]

再送要求部6904は、変調信号A,Bの誤り有無情報6903A、6903Bに基づ いて、再送を要求するか否かを決定し、再送要求情報6905(例えばACK/NACK の情報)を出力する。この再送要求情報6905は、変調信号Aを再送するか又は変調信 号Bを再送するかの情報でなる。

[0403]

データ生成部6907は、再送要求情報6905及び送信データ6906を入力し、送 信ディジタル信号6908を生成し出力する。送信部6909は、送信ディジタル信号6 908に対して所定の変調処理を施すことで変調信号6910を形成する。変調信号69 10は、アンテナ6911から電波として出力される。

[0404]

図69に、通信端末が送信する変調信号6910のフレーム構成例を示す。変調信号6 9 1 0 は、受信側でチャネル推定を行うためのチャネル推定シンボル7 0 0 1、データシ ンボル7002、再送要求情報シンボル7003により構成されている。

[0405]

図70に、本実施の形態のマルチアンテナ送信装置の構成を示す。マルチアンテナ送信 装置7000は、例えば基地局に設けられている。

[0406]

図 2 との対応部分に同一符号を付して示す図 7 0 において、マルチアンテナ送信装置 7 000は、図68の通信端末から送信された信号をアンテナ7101で受信する。受信信 号7102(図69の変調信号に相当)は受信部7103に入力される。受信部7103 は、受信信号7102を復調することにより受信ディジタル信号7104を得、これを出 力する。再送要求検出部7105は、受信ディジタル信号7104から再送要求情報71 06を抽出し、これを出力する。この再送要求情報7106は、上述したように、変調信 号Aを再送するか又は変調信号Bを再送するかの情報を含む。

[0407]

マルチアンテナ送信装置7000の送信系には、データ蓄積部7107A、7107B 及びデータ選択部7109A、7109Bが設けられ、データ選択部7109A、710 9日には再送要求情報7106が入力される。データ選択部7109Aは、再送要求情報 7106が変調信号Aの再送を要求することを示すものであった場合には、データ蓄積部 7107Aに蓄積された再送データ7108Aを選択して出力する。同様に、データ選択 部7109Bは、再送要求情報7106が変調信号Bの再送を要求することを示すもので あった場合には、データ蓄積部7107Bに蓄積された再送データ7108Bを選択して 出力する。

[0408]

さらに具体的には、データ選択部7109Aは、再送要求情報7106が再送を要求し ており、かつ、変調信号Aの再送を要求している場合、蓄積された変調信号Aの送信ディ ジタル信号7108Aを選択出力する。これに対して、再送要求情報7106が再送を要 求しており、かつ、変調信号Bの再送を要求している場合、データ選択部7109Aは何 も出力しない。再送要求情報7106が再送を要求していない場合、データ選択部710 9 A は送信ディジタル信号TAを選択出力する。

[0409]

同様に、データ選択部7109Bは、再送要求情報7106が再送を要求しており、か つ、変調信号Bの再送を要求している場合、蓄積された変調信号Bの送信ディジタル信号 7108Bを選択出力する。これに対して、再送要求情報7106が再送を要求しており 、かつ、変調信号Aの再送を要求している場合、データ選択部7109Bは何も出力しな い。再送要求情報7106が再送を要求していない場合、データ選択部7109Bは送信 ディジタル信号TBを選択出力する。

[0410]

このように、マルチアンテナ送信装置7000においては、一方の変調信号を再送する 場合には、他方の変調信号の送信を行わないようになっている。

[0411]

フレーム構成信号生成部210は、再送要求情報7106に基づいてフレーム構成を決 定し、フレーム構成信号S10を出力する。フレーム構成の決定方法の一例は、図71を 用いて以降で説明する。

[0412]

図71は、本実施の形態における基地局と通信端末の送信信号の流れを示している。な お、図71では図を簡略化しているが、基地局が送信する信号は、実際にはデータシンボ ルに加えて制御情報、CRCシンボルなどから構成されたフレーム単位の信号となってい る。

[0413]

基地局は、先ず、

〈1〉のように、データ1A、データ1Bを送信する。

[0414]

すると、端末はデータ1A、データ1Bを受信し、誤りが発生していないことを確認し

〈2〉のように、再送を要求しない。

[0415]

次に、基地局は、

〈3〉のように、データ2A、データ2Bを送信する。

[0416]

すると、端末はデータ2A、データ2Bを受信し、誤りが発生していることを確認する 。このとき、端末は、変調信号Aの受信電界強度と変調信号Bの受信電界強度を比較し、 受信電界強度の低い変調信号の再送を要求する。図の場合には、変調信号Aの受信電界強 度が低いことを検出したので、

〈4〉のように、変調信号Aの再送要求を行う。このように、受信電界強度の低い方の変 調信号の再送を行うようにしたことにより、再送による誤り率特性の向上効果を高めるこ とができる。これは、受信電界強度の低い変調信号のほうが、受信品質が悪いため、再送 によって受信電界強度の低い変調信号の受信品質を確保することができるためである。ま た受信電界強度の低い方の変調信号を再送するようにしたことにより、その変調信号を使 ってもう一方の変調信号についての候補信号点の削減するにあたっての精度が向上するの で、もう一方の変調信号の誤り率特性も向上させることができるようになる。

[0417]

なおここでは受信電界強度の低い方の変調信号を再送するようにしたが、別の方法とし て、例えば、データ2A、データ2Bのうち、データ2Bに誤りが発生したとした場合、 データ2Bの再送を要求するというシンプルな方法を用いてもよい。

[0418]

基地局は、データ2Aの再送要求信号を受信すると、

〈5〉のように、データ2Aの再送を行う。

[0419]

すると、端末はデータ2A、データ2Bに誤りが発生しなかったため、

く6〉のように、再送要求を行わない。

[0420]

次に、基地局は、

〈7〉のように、データ3A、データ3Bを送信する。

[0421]

すると、端末はデータ3A、データ3Bを受信し、誤りが発生していることを確認する 。このとき、端末は、変調信号Aの受信電界強度と変調信号Bの受信電界強度を比較し、 変調信号Bの受信電界強度が低いことを検出すると、

〈8〉のように、変調信号Bの再送要求を行う。

[0422]

すると、基地局は、

〈9〉のように、データ3Bの再送を行う。

[0423]

それでも、端末はデータ3A、データ3Bに誤りが発生していると、

〈10〉のように、再度再送を要求する。このとき、端末は1度目に要求した変調信号と は異なる変調信号の再送を要求する。つまり、変調信号Aの再送を要求する。このように することで、再送による誤り率特性の向上効果を高めることができる。つまり、1度目に 再送されたデータ3Bは、〈9〉での再送により優れた受信品質とされているのに対して 、データ3Aの受信品質はこの時点では再送による受信品質の向上作用はないのでデータ 3Bよりも低いと考えられる。したがって、2度目の再送を行うときはデータ3Aという ように、一度目とは異なる変調信号のデータを再送することが好ましい。

[0424]

基地局は、データ3Bの再送要求信号を受信すると、

〈11〉のように、データ3Aの再送を行う。

[0425]

このように、本実施の形態においては、変調信号A、変調信号B両方のデータを再送す るのではなく、一方の変調信号のデータのみ再送するようになっている。この理由につい ては、以降で説明する。

[0426]

 $(r) \cdot (r) \cdot (r) \cdot (r) = 1$

図72に、本実施の形態のマルチアンテナ受信装置の構成を示す。マルチアンテナ受信 装置7200は、例えば通信端末に設けられている。

[0427]

図4との対応部分に同一符号を付して示す図72において、マルチアンテナ受信装置7 200は、マルチアンテナ送信装置7000(図70)から送信された信号を受信して復 調する。

[0428]

制御情報検出部7301は、逆拡散後のベースバンド信号R1-2、R2-2を入力し , マルチアンテナ送信装置7000(基地局)が送信した図67のフレームにおける、制 御情報シンボル6804によって示される制御情報を検出する。すなわち、制御情報シン ボル6804に基づいて、受信信号が再送信号ではなく変調信号Aと変調信号Bが同時に 送信されたものであるか、又は受信信号が再送信号の場合には再送信号が変調信号Aか変 調信号Bかを示す制御情報を検出する。制御情報検出部7301は、検出した制御情報を 送信方法情報7302として出力する。

[0429]

信号処理部404は、チャネル変動推定値h11、h12、h21、h22、逆拡散後 のベースバンド信号R1-2、R2-2及び送信方法情報7302を入力し、送信方法情 報7302が、変調信号A、Bを同時に送信する送信方法であることを示している場合、 復調動作を行い、変調信号Aの受信ディジタル信号RA及び変調信号Bの受信ディジタル 信号RBを得る。この信号処理部404の詳細構成は、例えば、図5、図11、図12, 図13、図17、図18等で示した通りであり、動作については上述した通りである。信 号処理部404は、例えば、図71の〈1〉、〈3〉、〈7〉のときに動作する。

[0430]

チャネル情報・受信信号蓄積部7303は、チャネル推定値h11、h12、h21、 h22及び逆拡散後のベースバンド信号R2-1、R2-2を入力し、これらの情報を蓄 積する。またチャネル情報・受信信号蓄積部7303は、送信方法情報7302を入力し 、送信方法情報7302が再送されたときの送信方法であることを示しているとき、蓄積 していたチャネル推定値及び逆拡散後のベースバンド信号を出力する。

[0431]

再送情報検波部7304は、チャネル変動推定値h11、h12、h21、h22、逆 拡散後のベースバンド信号 R1-2、R2-2及び送信方法情報7302を入力し、送信 方法情報7302が、再送を示し、かつ再送された変調信号が変調信号Aであることを示 している場合、変調信号Aの復調を行い、変調信号Aの受信ディジタル信号RAを出力す る。また再送情報検波部7304は、送信方法情報7302が、再送を示し、かつ再送さ れた変調信号が変調信号Bであることを示している場合、変調信号Bの復調を行い、変調 信号Bの受信ディジタル信号RBを出力する。この動作は、例えば、図71の〈5〉、〈 9〉、〈11〉のときに行われるものである。

[0432]

信号処理部7305は、蓄積されたチャネル推定値h11、h12、h21、h22(図示せず)、蓄積された逆拡散後のベースバンド信号R1-2、R2-2(図示せず)、 送信方法情報7302及び再送された変調信号の受信ディジタル信号RA又はRB(再送 情報検波部7304の出力)を入力する。

[0433]

送信方法情報7302が、再送でかつ再送された変調信号が変調信号Aであることを示 している場合(図71の〈5〉の状況に相当する)、再送情報検出部7304からは、R Aが出力されており(図71の〈5〉の状況では、データ2Aが出力されていることにな る)、信号処理部7305は、蓄積されたチャネル推定値h11、h12、h21、h2 2、蓄積された逆拡散後のベースバンド信号 R 1-2、 R 2-2 及び再送された変調信号 Aの受信ディジタル信号RA(図71の〈5〉の状況では、データ2A)を用いて、信号 点削減を用いた復調動作を行い、変調信号Bのディジタル信号RBを出力する(図71の データ2Bに相当する)。

[0434]

一方、送信方法情報 7302が、再送でかつ再送された変調信号が変調信号 Bであることを示している場合(図 71の〈9〉の状況に相当する)、再送情報検出部 7304からは、R Bが出力されており(図 71の〈9〉の状況では、データ 3 Bが出力されていることになる)、信号処理部 7305 は、蓄積されたチャネル推定値 11, 12,

[0435]

図5との対応部分に同一符号を付して示す図73に、信号処理部7305の構成例を示す。信号処理部7305は、送信方法情報7302を信号点削減部508、510、514、516に入力する。また再送情報検波部7304から出力される受信ディジタル信号RA又はRBを、信号点削減部508、510、514、516、軟判定部512、518及びデータ選択部7401に入力する。

[0436]

ここで送信方法情報 7 3 0 2 が、再送でかつ再送された変調信号が変調信号 A であることを示している場合(図 7 1 の < 5 > の状況に相当する)、信号点削減部 5 0 8、5 1 0、5 1 4、5 1 6 には、変調信号 A の受信ディジタル信号 R A が入力される。このとき信号点削減部 5 1 4、5 1 6 が、決定されている変調信号 A の受信ディジタル信号 R A を用いて、上述した実施の形態で述べたように、変調信号 B のみの信号点を候補に残し、削減した信号点情報 5 1 5、5 1 7をそれぞれ出力する。軟判定部 5 1 8 は、変調信号 B を軟判定復号し、変調信号 B の受信ディジタル信号 R B を出力する。データ選択部 7 4 0 1 は、この変調信号 B の受信ディジタル信号 R B を選択して受信ディジタル信号 7 4 0 2 として出力する。このとき、信号点削減部 5 0 8、5 1 0、軟判定部 5 1 2 は動作しない。

[0437]

一方、送信方法情報 7 3 0 2 が、再送でかつ再送された変調信号が変調信号 B であることを示している場合(図 7 1 の < 9 > の状況に相当する)、信号点削減部 5 0 8 、 5 1 0 、 5 1 4 、 5 1 6 には、変調信号 B の受信ディジタル信号 R B が入力される。このとき信号点削減部 5 0 8 、 5 1 0 は、決定されている変調信号 B の受信ディジタル信号 R B を用いて、上述した実施の形態で述べたように、変調信号 A のみの信号点を候補に残し、削減した信号点情報 5 0 9 、 5 1 1 をそれぞれ出力する。軟判定部 5 1 2 は、変調信号 A を軟判定復号し、変調信号 A の受信ディジタル信号 R A を出力する。データ選択部 7 4 0 1 は、この変調信号 A の受信ディジタル信号 R A を選択して受信ディジタル信号と 7 4 0 2 として出力する。このとき、信号点削減部 5 1 4 、 5 1 6 、軟判定部 5 1 8 は動作しない。

[0438]

次に、マルチアンテナ受信装置 7200のチャネル情報・受信信号蓄積部 7303で蓄積するデータについて、図 74 を用いて詳しく説明する。例えば、図 71 のく3 > のようにデータ 2 A とデータ 2 B が送信された場合を考える。データ 2 A、データ 2 B は、100 シンボルで構成されており、図 74 のように時間 10 の、10 の の時間にそれぞれのシンボルが送信されるものとする。このとき、時間 10 に 10

【数4】

[0439]

チャネル情報・受信信号蓄積部7303には、このチャネル変動h11(t)、h12 (t)、h21(t)、h22(t)及び受信ベースバンド信号R1-2(t)、R2-2 (t) が蓄積される。

[0440]

ところで、本実施の形態では、再送時には、一方の変調信号のみを再送するようにした ので、受信ディジタル信号RA、RBの誤り率特性を向上させることができる。このこと について説明する。

[0441]

図71の〈5〉のようにデータ2Aが再送されると、データ2Aの変調信号が2本の受 信アンテナAN3、AN4で受信され、再送情報検波部7304によって最大比合成され て復調される。したがって、再送情報検波部7304によって受信ディジタル信号RAと して非常に受信品質の良い(誤り率特性の良い)データ2Aを得ることができる。因みに 、図71の〈3〉のようにデータ2Aとデータ2Bが混ざり合った信号から(4)式を用 いてデータ2Aを復調する場合、データ2Bの変調信号が干渉となるので、データ2Bを 単独で受信する場合と比較して品質の良い(誤り率特性の良い)データ2Aを得ることは 困難である。つまり、本実施の形態では、一方の変調信号のみを再送するようにしたこと により、時間 t=T2, 0、T2, 1、 \cdots 、T2, 99において品質の良いT x a (t) の推定値(変調信号Aの推定値)を得ることができる。

[0442]

b (t)以外の推定値が全て得られていることになるため、信号処理部7305では、チ ャネル情報・受信信号蓄積部7303に蓄積されているチャネル変動h11(t)、h1 2 (t)、h 2 1 (t)、h 2 2 (t)、受信ベースバンド信号 R 1 - 2 (t)、 R 2 -2 (t)と、最大比合成され復調された品質の優れたTxa (t)の推定値(変調信号A の推定値)とから、受信アンテナ2本で最大比合成したのに相当するTxb (t) を復調 することができるようになる。この結果、データ2Aと同様に、受信品質の優れたデータ 2 Bを得ることができる。以上が、チャネル情報・受信信号蓄積部7303、再送情報検 波部7304及び信号処理部7305の一連の動作になる。

[0443]

かくして本実施の形態によれば、再送を行うにあたって、変調信号A、変調信号B両方 のデータを再送するのではなく、一方の変調信号のデータのみを再送するようにしたこと により、フレームエラーが発生したデータを、再生できる可能性が高くなるというメリッ トを得ることができる。

[0444]

特に、変調信号A、変調信号B両方のデータを再送する構成としたときと比較し、直接 波が支配的に存在する伝搬環境のとき、受信品質が顕著に向上する。例えば直接波が存在 する場合には、実施の形態10で説明したように、受信電界強度が得られていても、良好 な受信品質が得られないことがある。このようなとき、再度、変調信号A、変調信号B両 方のデータを再送しても、受信品質に対し大きな改善効果が得られない。

[0445]

しかし、本実施の形態のように一方の変調信号のデータのみ再送する構成を採ると、上 述の説明の通り、再送された変調信号は、最大比合成、つまり、受信電界強度が強い状態 で復調できるので優れた品質を得ることができる。加えて、再送されなかった方の信号に ついても、両方の変調信号が混ざり合った信号(すなわち蓄積されている信号)から再送 された方の変調信号をキャンセルした後に復調することで、最大比合成の状態で復調でき る。この結果、直接波が支配的な環境でも、両方の変調信号を最大比合成の状況で復調す ることができるため、受信品質に対し大きな改善効果が得られる。

[0446]

なおこの実施の形態では、再送時以外には2つの変調信号A、Bを送信し、再送時には そのうちの一方の変調信号のみを送信する場合について説明したが、要は、再送時に送信 する変調信号の数を、再送時以外に送信する変調信号の数よりも少なくするようにすれば 、上述した実施の形態と同様の効果を得ることができる。

[0447]

またこの実施の形態では、スペクトル拡散通信方式に用いた例を説明したがこれに限っ たものではなく、例えばスペクトル拡散通信方式でないシングルキャリア方式やOFDM 方式に適用することもできる。OFDM方式に適用した場合、時間軸方向だけでなく周波 数軸方向でも情報を伝送できるので、例えば図71におけるデータ1Aを考えた場合、時 間軸方向と周波数軸方向にデータ1Aを配置してもよい。これは、次に説明する実施の形 態16についても同様である。

[0448]

(実施の形態16)

この実施の形態では、候補信号点を削減し、復号する装置及び方法に好適な再送方法と して、実施の形態 15で説明した図71のフレーム構成とは異なるフレーム構成を用いて 再送する方法を提案する。

[0449]

なお基地局の構成、通信端末の構成、1フレームの構成、端末が基地局に送信する変調 信号のフレーム構成等は、実施の形態15と同様である。ここでは、図71とは異なる基 地局と端末の信号の流れを、図75を用いて説明する。

[0450]

基地局は、先ず、

〈1〉のように、データ1A、データ1B、データ2A、データ2B、データ3A、デー タ3B、データ4A、データ4Bを送信する。

[0451]

すると、端末はデータ1A、データ1B、データ2A、データ2B、データ3A、デー タ3B、データ4A、データ4Bを受信する。そして、端末は、データ2A、データ2B 、データ4A、データ4Bに誤りが発生したことを検出すると、

〈2〉のように、これらのシンボルの再送を要求する。

[0452]

次に、基地局は、

〈3〉のように、データ2A、データ4Aを再送する。

[0453]

すると、端末は、〈1〉のときに得られ、蓄積されているチャネル推定値、ベースバン ド信号と、再送されたデータ2Aとを用い、蓄積されているベースバンド信号からデータ 2 Aの変調信号をキャンセルし、キャンセル後の信号からデータ 2 Bを復調する。同様に 、蓄積されているチャネル推定値、ベースバンド信号と、再送されたデータ4Aとを用い 、蓄積されているベースバンド信号からデータ4Aの変調信号をキャンセルし、キャンセ ル後の信号からデータ4Bを復調する。

[0454]

それでもまだデータ2Bに誤りが発生したことを検出すると、端末は、

〈4〉のように、データ2Bの再送を要求する。

[0455]

すると、基地局は、

〈5〉のように、データ2Bを送信する。

[0456]

端末は、データ2Bを受信し、誤りが発生していないことを確認すると、

〈6〉のように再送の要求がないことを基地局に通知する。

[0457]

そして、基地局は、再送動作から開放され、

〈7〉のように新しいデータ、データ5A、データ5B、データ6A、データ6B、デー タ7A、データ7B、データ8A、データ8Bを送信する。

[0458]

このような動作が繰り返される。

[0459]

本実施の形態のように、複数のフレームごとに再送を要求すると、実施の形態15のよ うに1フレームごとに再送要求する場合と比較し、端末が再送要求を送信する回数が減る ため、データの伝送効率が向上する。

[0460]

(実施の形態17)

この実施の形態では、実施の形態15、実施の形態16のような再送方法をとるにあた って、さらにその再送データの送り方を工夫することにより、一段と再送による受信品質 を向上させる方法を提案する。具体的には、実施の形態15や実施の形態16に、時空間 ブロック符号やCycled Delay Diversityを適用する。

[0461]

先ず、本実施の形態に至った過程について説明する。再送していない場合、基地局のマ ルチアンテナ送信装置は、2つのアンテナから異なる変調信号である変調信号Aと変調信 号Bを送信していることになる。したがって、再送するデータについても、 2 つのアンテ ナを有効に活用する方が、1つのアンテナのみを用いる場合よりも、システムとして安定 することになる。本実施の形態では、この点に着目して、再送データを図81に示した時 空間符号やCyclic Delay Diversityなどのダイバーシチゲインが得られる送信方法で送信 する。これにより、受信側で品質の良い再送データを得ることができるので、変調信号A 、Bを復調したときの誤り率特性を一段と向上させることができる。

[0462]

時空間符号の構成については既に説明したので、ここでは、Cycled Delay Diversityに ついて図80、図76を用いて説明する。

[0463] 図76は、12シンボルを用いてCycled Delay Diversityを行ったときのフレーム構成 例を示している。図80のアンテナAN1で送信する信号が図76の送信信号Aであり、 図80のアンテナAN2で送信する信号が図76の送信信号Bである。そして、送信信号 Aについては、時間i+1, i+2, ···, i+11, i+12において、それぞれ、 S1, S2, ···S11, S12が送信される。送信信号Bは、送信信号Aに対してあ る時間分シフトしたフレーム構成とされる。ここでは、時間i+1, i+2, ・・・, i+11, i+12 において、それぞれ、S7、S8,・・・,S5,S6 が送信される。 このようなフレーム構成をとると、受信装置では、受信信号を等化することでダイバーシ チゲインを得ることができるので、信号S1~S12の受信品質が向上し、データの誤り 率特性が向上する。

[0464] 図77に、これを実現するためのマルチアンテナ送信装置の構成例を示す。図70との 対応部分に同一符号を付して示す図77において、マルチアンテナ送信装置7700は、 符号化データS1Aが変調部202Aに加えて変調部202Bにも入力されていると共に 符号化データS1Bが変調部202Bに加えて変調部202Aにも入力されている点を除 いて、図70のマルチアンテナ送信装置7000と同様の構成でなる。

[0465]

図71及び図75を用いて、本実施の形態による再送動作について説明する。

[0466]

変調部202A、202Bは、例えば図71のデータ1A、データ1Bのように再送デ

ータでないデータを送信するときは、実施の形態15のときと同様に動作する。これに対 して、例えば図71の〈5〉のようにデータ2Aを再送するときは、変調部202A、変 調部202Bによって、符号化データS1A(すなわちデータ2A)を、時空間符号やCy clic Delay Diversityの規則に従って変調する。同様に、図71の〈9〉のようにデータ 3 Bを再送するときは、変調部 2 0 2 A、変調部 2 0 2 Bによって、符号化データ S 1 B (すなわちデータ3B) を、時空間符号やCyclic Delay Diversityの規則に従って変調す る。

[0467]

因みに、このような送信するマルチアンテナ受信装置の構成としては、例えば図72の ようなものを用いればよい。但し、再送情報検波部7304では、時空間符号やCycled D elay Diversityの規則に従って復調するようにする。その他の動作については、実施の形 態15や実施の形態16で説明したのと同様である。

[0468]

かくして本実施の形態によれば、再送を行うにあたって、変調信号A、変調信号B両方 のデータを再送するのではなく一方の変調信号のデータのみを再送するのに加えて、再送 を時空間符号やCyclic Delay Diversity等のダイバーシチゲインを得ることができる送信 方法によって行うようにしたことにより、フレームエラーが発生したデータを、再生でき る可能性を一段と高めることができる。

[0469]

なおこの実施の形態では、スペクトル拡散通信方式に用いた例を説明したがこれに限っ たものではなく、例えばスペクトル拡散通信方式でないシングルキャリア方式やOFDM 方式に適用することもできる。OFDM方式に適用した場合には、時空間符号やCycled D elay Diversityを、時間軸方向以外に周波数軸方向に展開して実現することもできる。

[0470]

(実施の形態18)

この実施の形態では、例えば図11、図17に示す信号処理部の軟判定部1101、1 705において行うMLD(Maximum Likelihood Detection)の仕方を工夫することにより 、仮判定の精度を向上させ、一段と誤り率特性の向上した受信ディジタルデータを得るこ とができるマルチアンテナ受信装置及び方法を提案する。

[0471]

MLDによる検波では、推定したチャネル変動 h l l , h l 2 、 h 2 l 、 h 2 2 を用い て作成した全ての候補信号点と、受信信号R1-2、R2-2との2乗ユークリッド距離 が最小となるものを送信信号として判定する。

[0472]

MLDによる検波は、逆行列演算を用いるICD(Inverse Channel Detection)やMM S E (Minimum Mean Square Error)等の検波方法の中で最も良好な受信品質(誤り率特性) を得ることができるが、信号点距離が一様でなくなるため、ICDを用いた場合と同様 の表料定復号は行えない。

[0473]

そこで、硬判定後のハミング距離に対し、最小2乗ユークリッド距離Umin²とその 次に小さな 2 乗ユークリッド距離 U_{min2}^2 の差を重み付けすることによって、擬似的 な軟判定復号を行うことによりBER特性を改善できる(この実施の形態ではこの検波・ 復号方法をMLD-H (MLD-Hard Decision Decoding)と呼ぶ)。

[0474]

チャネルA、BともにQPSK変調を用いる場合の4つのハミング距離をそれぞれdπ [0,0], dн[0,1], dн[1,0], dн[1,1] と定義すると、MLD-H復号法のチャネルA、Bのそれぞれのブランチメトリックmet Txa[i,j], met Txb[i,j]は、次式のように定義される。

【数5】

met
$$T_{X_{a[i,j]}} = \sum_{R_{x,1},R_{x,2}} (U_{min2}^2 - U_{min}^2) d_{H[i,j]}$$
 (i=0,1;j=0,1) (5)

【数6】

met
$$Tx_{b[i,j]} = \sum_{R_{x1},R_{x2}} (U_{min2}^2 - U_{min}^2) d_{H[i,j]}$$
 (i=0,1;j=0,1) (6)

[0475]

MIMOシステムにおけるMLD-H復号法は(5)式、(6)式に基づいて行われ、 ブランチメトリックの和が最小となるパスが選択される。選択されたパスに基づき受信デ ィジタルデータが得られる。

[0476]

MLD-H復号法はハミング距離を用いて硬判定復号するため、ユークリッド距離を用 いて軟判定復号する場合に比べて符号化利得が小さくなってしまうという欠点がある。一 般に、軟判定復号は硬判定復号よりも符号化利得が大きいことが知られている。

[0477]

これを考慮して、本実施の形態においては、MLDによる検波を用いる場合における軟 判定復号方法として、候補信号点を送信ビット毎に2つの集合に分類し、各集合の点と受 信信号点との最小2乗ユークリッド距離を用いて軟判定復号するMLD-S(MLD-Soft De cision Decoding)復号法を提案する。

[0478]

具体的に説明する。図78は、QPSK変調した送信信号をMLD-S復号法を用いて 復号する場合を示す。チャネルAで送信した2ビットaο, ax のうちaο = 0 とaο = 1に対応する最小2乗ユークリッド距離を求める。

[0479]

図78に示すように、 $4^2=16$ 点の候補信号点は $a_0=0$ 、 $a_0=1$ に対応する8点 ずつの集合に分類できる。各集合において8つの候補信号点と受信信号点との最小2乗ユ ークリッド距離Umin (a0=0)²、Umin (a0=1)²を計算する。このよう な分類及び計算をチャネルAで送信したもう1つのビットaı、チャネルBで送信した2 ビットbo、b1に対しても同様に行い、これらの最小2乗ユークリッド距離を用いて軟 判定復号を行う。

[0480]

チャネルA、Bのそれぞれのブランチメトリックmet Txa[i,j], met Тхь[і, ј] は、次式のように定義される。

【数7】

met
$$Tx_{a[i,j]} = \sum_{R_{x1},R_{x2}} (U_{min2}^2 - U_{min}^2) d_{S[i,j]}$$
 (i=0,1;j=0,1) (7)

met
$$Tx_{b[i,j]} = \sum_{R_{x1},R_{x2}} (U_{min2}^2 - U_{min}^2) u_{S[i,j]}$$
 (1=0,1;j=0,1) (8)

ここで(7)式におけるds[i,i] は次式のように定義されるものである。 【数9】

.....(9) $dS[i,j] = U_{\min(a0=i)^2} + U_{\min(a1=j)^2}$

[0482]

また(8)式におけるds [i, j] は次式のように定義されるものである。 【数10】

 $dS[i,j] = U_{\min(b0=i)^2} + U_{\min(b1=j)^2}$ (10)

[0483]

本実施の形態では、MIMOシステムにおけるMLD-S復号を、(7)式~(10) 式に基づいて行い、ブランチメトリックの和が最小となるパスを選択する。そして選択し たパスに基づき受信ディジタルデータを得る。

[0484]

かくして本実施の形態によれば、仮判定時にMLDによる検波を用いるにあたって、候 補信号点を送信ビット毎に2つ(複数)の集合に分類し、各集合の点と受信信号点との最 小2乗ユークリッド距離を用いて軟判定復号するようにしたことにより、符号化利得の減 少を抑制してMLDを行うことができるようになるため、仮判定時の誤り率特性を向上さ せることができるようになる。この結果、一段と誤り率特性の良い受信ディジタルデータ を得ることができる。

[0485]

なおこの実施の形態では、2つに分類した集合の中の最小2乗ユークリッド距離のみを 用いてMLD-S復号を行う場合について説明したが、2番目に小さな2乗ユークリッド 距離を用いるなど、複数の2乗ユークリッド距離を用いてMLD-S復号を行うようにし てもよい。

[0486]

また、この実施の形態ではQPSK変調を用いて説明を行ったが、変調方式はBPSK 、16QAM、64QAM等、他の変調方式でも同様に実施できる。

[0487]

また本実施の形態で提案した復号方法は、反復復号を行う装置に限らず、単独で実施し た場合も上述した実施の形態と同様の効果を得ることができる。

[0488]

(他の実施の形態)

なお上述した実施の形態では、主に、軟判定を行うことによりディジタル信号を得る場 合について述べたが、本発明はこれに限らず、硬判定を得ることによりディジタル信号を 得る場合についても適用でき、この場合でも少ない演算回数で誤り率特性の良い受信デー 夕を得ることができる。

[0489]

また上述した実施の形態では、分離部501や、軟判定部503、506、1101で 仮判定した判定値全てを信号点削減処理に用いるようにした場合について述べたが、一部 の仮判定値はそのまま最終的な受信データとして用いるようにしてもよい。例えばそれほ ど高い受信品質が求められないデータなどは、軟判定部512、518による主判定を行 わずにそのまま出力することが考えられる。

[0490]

さらに上述した実施の形態では、主にスペクトル拡散通信方式を例に説明したが、これ に限ったものではなく、例えば、拡散部を有しないシングルキャリア方式、OFDM方式 においても同様に実施することができる。シングルキャリア方式の場合、拡散部、逆拡散 部を有しない構成となる。マルチキャリア方式とスペクトル拡散通信方式を併用した場合 (例えばOFDM-CDMA方式) についても同様に実施することができる。

【産業上の利用可能性】

[0491]

本発明は、OFDM-MIMO(Multiple-Input Multiple-Output)技術等を用いて高 速データ通信を図ったマルチアンテナ通信システムに適用して好適である。

【図面の簡単な説明】

[0492]

- 【図1】マルチアンテナ通信システムの概略構成を示す図
- 【図2】マルチアンテナ送信装置の構成を示すプロック図
- 【図3】ベースバンド信号のフレーム構成例を示す図
- 【図4】マルチアンテナ受信装置の全体構成を示すプロック図
- 【図 5 】実施の形態 1 によるマルチアンテナ受信装置の信号処理部の構成を示すプロ

ック図

- 【図6】軟判定部503(506)の構成を示すブロック図
- 【図7】軟判定部503(506)での処理の説明に供する図
- 【図8】多重化された変調信号Aと変調信号Bの候補信号点と受信点を示す図
- 【図9】変調信号Aについての削減された候補信号点と受信点とを示す図
- 【図10】変調信号Bについての削減された候補信号点と受信点とを示す図
- 【図11】実施の形態1のマルチアンテナ受信装置に用いる信号処理部の他の構成例 を示すブロック図
- 【図12】実施の形態2によるマルチアンテナ受信装置の信号処理部の構成を示すブ ロック図
- 【図13】実施の形態3によるマルチアンテナ受信装置の信号処理部の構成を示すブ ロック図
- 【図14】実施の形態3によるイタレーション動作の説明に供する図
- 【図15】実施の形態3での復号手順のイメージを示す図
- 【図16】実施の形態3のマルチアンテナ受信装置のシミュレーション結果を示す特 性曲線図
- 【図17】実施の形態3のマルチアンテナ受信装置に用いる信号処理部の他の構成例 を示すブロック図
- 【図18】実施の形態4によるマルチアンテナ受信装置の信号処理部の構成を示すブ ロック図
- 【図19】実施の形態4によるイタレーション動作の説明に供する図
- 【図20】実施の形態4のマルチアンテナ受信装置のシミュレーション結果を示す特 性曲線図
- 【図21】実施の形態5での各変調信号の信号点配置例を示す図
- 【図22】QPSKと16QAMの受信品質を示す特性曲線図
- 【図23】実施の形態6のマルチアンテナ送信装置の構成を示すブロック図
- 【図24】デインターリーバの処理の説明に供するブロック図
- 【図25】変調信号Aと変調信号Bのインターリーブパターンが同一の場合のシンボ ルの状態の一例を示す図
- 【図26】実施の形態6の方法を適用して、変調信号Aのためのインターリーブパタ ーンと、変調信号Bのためのインターリープパターンを異なるようにした場合のシン ボルの状態の一例を示す図
- 【図27】変調信号間でインターリーブパターンを異なるようにした場合と、同一に した場合の受信特性を示す図
- 【図28】実施の形態6のインターリーブパターンの一例を示す図
- 【図29】実施の形態6のインターリーブパターンの一例を示す図
- 【図30】実施の形態7のマルチアンテナ送信装置の構成を示すブロック図
- 【図31】実施の形態7の各変調信号のフレーム構成例を示す図
- 【図32】実施の形態7のマルチアンテナ送信装置の他の構成を示すプロック図
- 【図33】実施の形態7のマルチアンテナ受信装置の構成を示すブロック図
- 【図34】実施の形態8の原理の説明に供する図
- 【図35】STBCシンボルを挿入する場合のフレーム構成例を示す図
- 【図36】STBCの送受信の説明に供する図
- 【図37】STBCシンボルを挿入するための構成例を示すブロック図
- 【図38】実施の形態9のマルチアンテナ受信装置の信号処理部の構成例を示すプロ ック図
- 【図39】実施の形態9のマルチアンテナ受信装置の信号処理部の構成例を示すブロ ック図
- 【図40】STBCシンボルを挿入したときの受信状態例を示す図
- 【図41】特殊シンボルのフレーム構成例を示す図

- 【図42】特殊シンボルのフレーム構成例を示す図
- 【図43】STBCシンボルを挿入するための構成例を示すブロック図
- 【図44】特殊シンボルを挿入したときの受信状態例を示す図
- 【図45】符号化シンボルブロックとインターリーブ後の符号化シンボルブロックを 示す図
- 【図46】実施の形態10の動作の説明に供する図
- 【図47】実施の形態10のマルチアンテナ送信装置の構成を示すブロック図
- 【図48】各変調信号の信号点配置の説明に供する図
- 【図49】実施の形態11のマルチアンテナ送信装置の構成を示すブロック図
- 【図50】実施の形態11のビットインターリーブ処理の説明に供する図
- 【図51】実施の形態11のマルチアンテナ受信装置の信号処理部の構成例を示すブ ロック図
- 【図52】信号点削減部による信号点削減処理の説明に供する図
- 【図53】実施の形態11での復号手順のイメージを示す図
- 【図54】変調信号間でビットインターリーブパターンを同一にした場合の信号点選 択の様子を示す図
- 【図55】実施の形態11のビットインターリーブパターンを用いた場合の信号点選 択の様子を示す図
- 【図 5 6】実施の形態 1 2 のマルチアンテナ送信装置の構成を示すブロック図
- 【図57】実施の形態12のビットインターリーブ処理の説明に供する図
- 【図58】実施の形態12のマルチアンテナ受信装置の信号処理部の構成例を示すブ ロック図
- 【図59】変調信号間でビットインターリーブパターンを同一にした場合の信号点選 択の様子を示す図
- 【図60】実施の形態12のビットインターリーブパターンを用いた場合の信号点選 択の様子を示す図
- 【図61】実施の形態13のビットインターリーブ処理の説明に供する図
- 【図62】実施の形態13のマルチアンテナ受信装置の信号処理部の構成例を示すプ ロック図
- 【図63】実施の形態13のマルチアンテナ送信装置の構成例を示すブロック図
- 【図64】実施の形態14のマルチアンテナ送信装置の構成を示すブロック図
- 【図65】実施の形態14のマルチアンテナ受信装置の信号処理部の構成例を示すブ ロック図
- 【図66】実施の形態14の他の構成例を示すブロック図
- 【図67】実施の形態15の送信フレーム構成例を示す図
- 【図68】実施の形態15のマルチアンテナ受信装置の送信系の構成例を示すプロッ ク図
- 【図69】マルチアンテナ受信装置の送信系から送信されるフレーム構成を示す図
- 【図70】実施の形態15のマルチアンテナ送信装置の構成を示すプロック図
- 【図71】実施の形態15の動作の説明に供する図
- 【図72】実施の形態15のマルチアンテナ受信装置の受信系の構成を示すブロック 図
- 【図73】図72の信号処理部の構成を示すプロック図
- 【図74】チャネル情報・受信信号蓄積部で蓄積するデータの説明に供する図
- 【図75】実施の形態16の動作の説明に供する図
- 【図76】Cycled Delay Diversityの説明に供する図
- 【図77】実施の形態17のマルチアンテナ送信装置の構成を示すブロック図
- 【図78】実施の形態18のMLD-S(MLD-Soft Decision Decoding)復号法の説明 に供する図
- 【図79】一般的なマルチアンテナ通信システムの概略構成を示す図

- 【図80】従来のマルチアンテナ通信システムの構成を示すブロック図
- 【図81】時空間ブロック符号の説明に供する図

【符号の説明】

- [0493]
- 100 マルチアンテナ通信システム
- 110, 2300, 2700, 2900, 4500, 4700, 5400, 6100,
- 6200 マルチアンテナ送信装置
 - 120、3000 マルチアンテナ受信装置
 - 201A、201B、4704、4706、4715、4717 符号化部
 - 202A、202B 変調部
 - 203A、203B 拡散部
 - 403-1A、403-1B、403-2A、403-2B チャネル変動推定部
 - 404,1100,1200,1300,1700,1800,3002,3600,
- 3700、4900、5600、6000、6300 信号処理部
 - 501 分離部
 - 503、506、512、518、1101、1705 軟判定部
 - 504、507、1102、1103、1706、1707 判定値
 - 508, 510, 514, 516, 1201, 1202, 1301~1304, 170
- 1~1704、1801~1804 信号点削減部
 - 509、511、515、517 信号点情報
 - 701、800 受信点
 - 2301A、2301B、4708、4710、4719、4721 インターリーバ
 - 2702A、2702B 逆フーリエ変換部 (idft)
 - 3303、3305、3309、3311 STBCシンボル
 - 3601、3602 特殊シンボル
 - 4701、4712 信号分離部
 - 6201A、6201B LDPC符号器
 - 6301、6302、6303、6304 確率領域Sum-product復号部
 - AN1~AN4 アンテナ
 - TA、TB 送信ディジタル信号
 - Ta、Tb 変調信号
 - hll、hl2、h2l、h22 チャネル変動推定値
 - R1-2、R2-2 ベースバンド信号
 - RA、RB 受信データ

【書類名】図面 【図1】

<u>120</u> マルチアンテナ受信装置

出証特2004-3120426

503 軟判定部

出証特2004-3120426

exemple 1

出証特2004-3120426

【図13】

出証特2004-3120426

出証特2004-3120426

 $\sigma \exp \delta \left(1-\beta\right)$

出証特2004-3120426

【図24】

and the second of the

田口い 田口い 関いた 配った 配った 配った 田口い 田口い 田口い 田口い 田口い 田口い 田口い 田口い コンボラ シンボラ シンボラ シンボラ シンボラ シンボラ シンボラ シンボラ		(信号点数削減	正しい ECLい 誤った 誤った 誤った 誤った 誤った 正しい		(4)
変調信号A			変調信号B 信	1	

(a)変調信号AIC適用したインターリーブパターンX

データ197 データ198 データ199 データ200	データ185データ190データ195データ200
÷	:
データ1 データ2 データ3 データ4	テータ1 データ6 データ11 データ16
11-	11-
インターリーブ前	インターリーブ後

【図29】

(b)変調信号AIこおけるシンボル配置

(c)変調信号Bにおけるシンボル配置

周波数 or 時間

 $c \sim c / (s_{\mathcal{B}_{n+1}})$

8

無線部

岩

チャネル変動推定部

チャネル変動推定部

403-2B

変調信号Bの

h22

8

無線部 R1-1 3001-1 节 3000 マルチアンテナ受信装置 R1-2 チャネル変動推定部 チャネル変動推定部 変調信号Bの 変調信号Aの 変調信号A00 403-1B 403-2A 403-1A h12 三つ 도 전 2 備号処理部

出証特2004-3120426

【図34】

【図35】

出証特2004-3120426

【図39】

出証特2004-3120426

ケーナターボックライ	調った シボル	(新)	誤った 信号点 選択	
データ	誤った ジンポン	信号点数削減	誤った 信号点 選択	
ルータングボック・ボック・ボック・ボック・ボック・ボック・ボック・ボック・ボック・ボック・	正しい 正しい 正しい 正しい 正しい 正しい 正しい 誤ぶた シンボル シンボル シンボル シンボル シンボル		正しい。信号点選択	
STBC シンボル	出 ジ デ ジ デ	\Box	信号点選択 不要	
ゲーダ ジンボド	田 いい ボンボッ		正しい信号点選択	领书
ルーターバンボラ	田しい	信号点数削减	正しい信号点選択	
パータープンボル	品にいまれた。	高 中	正しい信号点機技	/
データンボル	正しい シンボル		正しい信号点選択	
STBC シンボル	正しい シンボル		信号点選択 不要	
ナーター・アンボル	田しい かかポル	· · · · · · · · · · · · · · · · · · ·	正しい信号点選択	
ルーターナンボング	いない。	号点数削減	誤った 信号点 選択	
ルーグンボング	調がいた。	一人	誤った 信号点 選択	
		地		計
変調信号Aの フレーム構成	変調信号A		変調信号B	1
3	<u>B</u>		<u>©</u>	

【図41】

【図42】

 $f^{\mu}\exp(\rho \delta \int_{\mathbb{R}^{2}} 1)$

【図44】

4500 マルチアンテナ送信装置

【図49】

1.000

7	図	5	0	1

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	データ データ データ データ 197 198 199 200 データ データ データ データ	184 192	7 79		9 データ データ 198 199	データ データ データ アータ 176 184 192 200	■ 世
: :	:	:	:	÷	:	:	
Sa0,Sa2 =-71 =-72 =-73 =-74 Sa0,Sa2 =-71 =-76 =-711 =-716	Sa1,Sa3 =-41 =-42 =-43 =-44	Sa1,Sa3 データ1 データ9 データ17データ25	Sb0,Sb2 データ1 データ2 データ3 データ4	Sb0,Sb2 7-91 7-96 7-911 7-916	Sb1,Sb3 =-71 =-72 =-74	Sb1,Sb3 データ1 データ9 データ17データ25	
インターリーブ問インターリーブ後インターリーブ後	インターリーブ削	インターリーブ後	インターリーブ前	インターリーブ後	インターリーブ削	インターリーブ後	
変調	調信号々				退値中の		

【図51】

出証特2004-3120426

【図54】

.【図55】

received the con-

5400 マルチアンテナ送信装置

【図57】

(a)インターリーブパターンX $= \frac{ - \gamma}{197} = \frac{ - \gamma}{199} = \frac{ - \gamma}{199} = \frac{ - \gamma}{200}$ 3 $= \frac{ - \gamma}{197} = \frac{ - \gamma}{199} = \frac{ - \gamma}{200}$	$ \vec{r} - \beta $	データ データ 185 195	データ データ 190 200	(b)インターリーブパターンY	データ データ データ データ 197 198 199 200	$\vec{7}$	データ データ 176 192	データ データ 184 200
a)インター!)- データ4	1 7-416	:	:	b)インターリ	3 7-44	17 425	:	:
(a) 7-41 7-43	データ1 データ6 データ11 データ16	データ1 データ11	データ6 データ16		データ1 データ2 データ3	データ1 データ9 データ17 データ25	7-91 7-917	データ9 データ25
ボンターニーブ	インターリーン後	Sa0,Sa2	Sb0,Sb2		インターリーブ前	インターリーブ後	Sa1,Sa3	Sb1,Sb3

【図58】

出証特2004-3120426

田口い 田口い 歌った 歌った 歌った 田口い		(信号点数削減	正しい 正しい 誤りた 誤った まった 正しい	 Sa1,Sa3およびSb1,Sb3復号
Sa0,Sa2, ELい Sb0.Sb2] 1		正している。	

Sa0, Sa2, Sb0, Sb2

【図61】

 $s \sim 266-1$

【図62】

<u>6100</u> マルチアンテナ送信装置

204A 204B 無線部 無線部 S3A S3B 210 7 203A 203B 拡散部 拡散部 6200 マルチアンテナ送信装置 フレーム構成信号を表現の S2A S2B 校體的 202A 変調部 202B **S10** S1B STA LDPC符号器 生成行列Gb 、検査行列Hb LDPC符号器 生成行列Ga 、検査行列Ha 6201A 6. 01B 送信データ (m1,m2,...,mk) 送信データ (n1,n2,...,nk)

出証特2004-3120426

【図65】

出証特2004-3120426

【図67】

prompto [1]

出証特2004-3120426

出証特2004-3120426

出証特2004-3120426

【図72】

 $\mathcal{C} \sim e^{2\pi i \frac{1}{2\pi i}} \left(\frac{1}{\pi} \right)^{-1}$

出証特2004-3120426

出証特2004-3120426

【図78】

×:受信信号点 ●: a₀=0となる候補信号点

△ : a₀=1となる候補信号点

(2 bits for channel A, 2bits for channel B)=(a₀a₁,b₀b₁)

送信信号A 法信信号B

【書類名】要約書 【要約】

【課題】 データ伝送効率を低下させることなく、比較的少ない演算回数で誤り 率特性の良い受信データを得ることができるマルチアンテナ受信装置を提供すること。

【解決手段】 軟判定部503、506は、分離部501でチャネル変動行列の逆行列演算を用いて分離された各変調信号502、505を仮判定する。信号点削減部508、510、514、516は、多重化された変調信号の候補信号点数を仮判定結果504、507を用いて削減する。軟判定部512、518は、削減した候補信号点を用いて正確な判定を行って各変調信号の受信データRA、RBを得る。これにより、データ伝送効率を低下させることなく、比較的少ない演算回数で誤り率特性の良い受信データRA、RBを得ることができる。

【選択図】 図5

特願2004-139241

出願人履歴情報

識別番号

[000005821]

1. 変更年月日 [変更理由] 住 所

氏

1990年 8月28日

新規登録

大阪府門真市大字門真1006番地

名 松下電器産業株式会社

Document made available under the **Patent Cooperation Treaty (PCT)**

International application number: PCT/JP04/017096

International filing date:

17 November 2004 (17.11.2004)

Document type:

Certified copy of priority document

Document details:

Country/Office: JP

Number:

2004-139241

Filing date:

07 May 2004 (07.05.2004)

Date of receipt at the International Bureau: 20 January 2005 (20.01.2005)

Remark:

Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record.

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.