The XENIA mission

Cosmic chemical evolution of baryons

Dieter H. Hartmann

C. Kouveliotou, Martin C. Weisskopf, J.W. den Herder, L. Piro, T. Ohashi, D. Burrows and the Xenia team: consortium of Institutes from US, Eu, Japan

Xenia will trace structure formation

Gamma-Ray Bursts

- Evolution of massive star formation using GRBs to trace their explosions back to z > 8)
- Measure the metals in the host galaxies of GRBs and the explosive enrichment in their close environment out to z>8

Clusters of Galaxies

- Trace the evolution and physics of clusters out to their formation epoch (z>1)
- Measure the thermodynamical and chemical properties of a fair sample out to the virial radius

Cosmic Web

• Detect the largest reservoir of baryons from z~1 to the present time by measuring densities ~30 times smaller than previously done

Xenia mission profile

Xenia instruments

CRIS

Cryogenic Imaging Spectrometer

Area 1000cm²@0.5keV

Energy range: 0.1-3 keV

Resolution: 2.5eV (1eV goal)

Field of view=1.0°

ang.res=3'

TES microcalorimeters

Xenia instruments

HARI

High Angular Resolution Imager

Area =1000cm²@1keV Range: 0.3-8 keV Field of view=1.4° ang.res=10" constant CCD

Xenia instruments

TED

Transient Event Detector

Eff area = 1500 cm 2

8-200 keV (goal < 5 keV)

 $3 \operatorname{sr} (\frac{1}{4} \operatorname{of the sky})$

3' localization

2 CZT based coded mask detectors

GRBs as cosmological probes

- TED: 150 GRB localized per year, 80 GRB with Fluence(15-150keV) $> 10^{-6}$ erg cm-2 s-1
- GRB(a) z > 6: 7-14 (goal) per year
- Mid-bright GRB afterglow with a fast (t<60s) pointing CRIS yields 10⁵⁻⁶ X-ray photons, and 10³ cts in 1 eV resolution bin
- In 5 years: Golden sample of >250 afterglows with high resolution X-ray spectra: redshift, metals in host-galaxy and close environment from local to high-z universe
- Platinum sample of 150 afterglows for WHIM studies

Exploring a new region of the Cosmic web

Tomography of the Universe: the X-ray forest from the Cosmic Web with GRBs

~200s OVII-OVIII filaments in 5 years

3D mapping of the Cosmic Web

Model, $\Delta z=0.01$

Detected, OVII+OVIII in emission, 5 σ, 1 Ms

Down to overdensities of 100

GRBs as cosmological probes

- TED: 150 GRB localized per year, 80 GRB with Fluence(15-150keV) $> 10^{-6}$ erg cm-2 s-1
- GRB (a) z>6: 7-14 (goal) per year
- Mid-bright GRB afterglow with a fast (t<60s) pointing CRIS yields 10⁵⁻⁶ X-ray photons, and 10³ cts in 1 eV resolution bin
- In 5 years: Golden sample of >250 afterglows with high resolution X-ray spectra: redshift, metals in host-galaxy and close environment from local to high-z universe
- Platinum sample of 150 afterglows for WHIM studies

Xenia X-ray spectrum of a GRB

MCG-6-30-15, Lee et al, Chandra HEGT 120 ksec

Tracing the metal enrichment in the GRB local environment

X-ray metal edges from a GRB nearby environment at z=7

ISM of the host galaxies

Chemical c., ionization, kinematics (outflows) in galaxies up to z>7

Resonant absorption lines from GRB host galaxy at z=1

Summary

- Medium class mission proposed to the 2010 Decadal Survey
- Xenia Unique capabilities: large grasp, fast reaction, high spectral resolution)
- Core science: GRB as probes, WHIM, clusters
- + Auxiliary science
- Brings in a large community outside GRBs

Cosmic Chemical Evolution Workshop June 2-4, 2010 St. Michael's Maryland

(http://sms.msfc.nasa.gov/xenia/workshop.html)

INVITED SPEAKERS:

Shirley Ho Alex Heger Jason Tumlinson Serena Bertone Takaya Ohashi

Grant Matthews
Art Champagne
Jelle Kaastra
Kyoko Matsushita
Neil Gehrels

Friedel Thielemann David Burrows Renyue Chen Yoh Takei Jochen Greiner Volker Bromm Andreas Burkert Anna Frebel Kazuhisa Mitsuda Josh Grindlay

SOC

Dieter Hartmann -- Chair Tom Abel Stefano Borgani Joel Bregman Dave Burrows Renyue Cen Martin Elvis Jan-Willem den Herder Chryssa Kouveliotou Tiziana di Matteo Neil Gehrels Brad Gibson Pat Henry Jack Hughes Jelle Kaastra Francesca Matteucci Takaya Ohashi Luigi Piro Xavier Prochaska Sandra Savaglio Volker Springel Yasushi Suto

Eli Dwek Thorsten Naab Nobu Kawai Christoph Pfrommer J.-W. den Herder

Avionics: Communication Strategy

Spectroscopy: fast reaction and wide field

Line spectroscopy merit factor for variable sources = S/N for EW=1eV for a typical GRB afterglow

X-ray Narrow abs lines from ISM in our own "host galaxy"

 Bright galactic binary (1820-303) observed with Chandra grating (Yao and Wand 2006)

Fast repointing

Requirement: < 65 sec for 80% GRB)

Ball Aerospace Worldview CMG

- Suggest using Ball Aerospace M-95 CMG 4 wheel pyramid configuration for all slews, station keeping, and observations.
- Provides up to 6.1 Nm torque (~4.0 Nm required for Xenia)

CRIS

Table 5: CRIS Instrument Requirements

Parameter	Require- ment	Goal
Resolution at 0.5 keV	2.5 eV	1 eV
Field of View	0.9°×0.9°	1º×1º
Array size [pixels]	2000	2176
Energy range [keV]	0.2 - 2.2	0.1 – 3.0
Effective area @ 0.6 keV	1000 cm ²	1300 c m ²
grasp@0.6 keV [cm²deg²]	400	500
Angular resolution (HPD)	4 arcmin	2.5 arcmin
Peak count rate [c/s]	10,000	15,000

- Mirror: 2/4 reflection
- TES microcalorimeter

Transient Event Detector

Table 3: TED Instrument Requirements

Parameter	Require- ment	Goal
Resolution at 100 keV	5 keV	3 keV
Field of View	2.8 sr	3 sr
Array size (pixels, one camera)	24,576	98,304
Energy range (keV)	8–200	5–300
Effective area, 20-50 keV (cm ²)	1500	1500
Angular resolution (FWHM)	34'	17'
Source location accuracy (10σ)	4'	2'
Min. count rate (background) [c/s]	2500	2500
Peak count rate [c/s]	7000	7000
S/W processing time	20s	10s
Continuum sensitivity (1s,15-150 keV; ph/cm ² s)	0.4	0.4

2 Coded Mask / CZT detectors

NGC4051 Krongold et 2009 al

Back up slides

Observing programme

Table 2: Observing program for a 5-year mission

CORE PROGRAM	Fields	ks/target	Total [ks]
GRBs	400	50	20,000
Cluster Formation (10° × 10°)	100	50	5,000
Clusters (1Ms on source+1Ms bg)	10	2000	20,000
WHIM 4.5°x4.5°	25	1000	25,000
Auxiliary Science			40,000
Total (5 years)			110,000

HARI

Table 7: HARI instrument requirements

Parameter	Requirement	Goal	
Resolution at 0.5 keV	80 e∀	70 eV	
Resolution at 5.9 keV	150 eV	130 eV	
Field of View (diameter)	1.40	1.5°	
Energy range [keV]	0.3 – 5.0	0.2 - 10.0	
Effective area @ 1 keV	530 c m ²	1000 cm ²	
Effective area @ 6 keV	25 cm ²	100 c m ²	
Angular resolution (HPD)	15 arcsec	10 arcsec	
Time resolution	0.5 s	0.1 s	
Peak count rate [c/s]	10,000	30,000	
Instrumental background ② 1 keV [cts/cm²/s/keV]	1.5 x 10 ⁻³	6 × 10-4	

Figure 8: Wide-field X-ray optics design.

- Mirror: Polynomial profile with constant PSF
- CCD

Satellite and payload

Back to the Future

- Future X-ray missions based on new generation of Transition Edge Sensor microcalorimeters (<2 eV resolution)
- International X-ray Observatory (IXO) Xenia
- Exciting drivers addressing cosmology in X-rays

Tracing clusters at virial radius

Configuration: Folcon Shroud

Configuration

EDGE/XENIA

Cosmic chemical evolution of baryons

L. Piro on behalf of the EDGE/XENIA collaboration

Table 1: Estimated number of absorption systems detected at $>5\sigma$ per year by Xenia [4]

6513			P - J - J -	9, 110,,,,	T 19
	Fluence	#	EW min	EW _{min}	#
	0.3-10 keV	GRBs	O VII	O VIII	O VII/VIII
	[erg cm-2]	[yr-1]	[eV]	[eV]	[yr-1]
	>1 10 ⁻⁵	6	0.12	0.08	19
	>5 10 ⁻⁶	13	0.18	0.12	29
	>2 10-6	33	0.28	0.19	37

Cluster evolution

Survey	Wide	Deep-1	Deep-2
Exposure	50 ks	1 Ms	2 Ms
Total area (deg ²)	340	11.5	8
Clusters @ z>1	1800	510	600
Clusters, T _X @ z>1	450	140	170

WFImager: polynomial optics

F. L. = 300 cm

 $HEW = 10 \ arcsec$

Auxiliary Science

- Cosmological parameters (Clusters & GRBs)
- Feedback processes
- AGN
- Physics and Progenitors of GRBs
- The densest matter
- Violent accretion on compact objects
- Stars
- Solar system
- Search for light Dark Matter (sterile neutrinos)
- Gravitational waves from SMBH mergers

Metal and ISM evolution with GRB

Metal enrichment in the environment of massive stars upto z > 6

X-ray metal edges from a GRB nearby environment at z=7

ISM of the host galaxy, kinematical studies of the outflows

Resonant absorption lines from GRB host galaxy at z=1

Payload I

• WFM → coded mask, CZT detector

GRBD2 scintillators (NaI)

Payload II

WFS
2/4 fold →
TES calorimeter

Spherical top telescope

2stage

4stage

Mirror length

Detector

L = Mirror Length
= constant

Detector

• WFI →
polinomial,
CCD

HOW?

Most of the baryon of the Universe are locked in large scale, low density structures visible only in X-rays

High resolution spectroscopy and spatial resolution, wide field in emission

GRB as cosmological beacons: fast reaction, high res. absorption spectroscopy

XENIA: Mission and Payload

HARI: High Angular Resolution Imager

1000cm²@1keV 0.3-8 keV CCD Field=1.4° ang.res=10" constant

CRIS: Cryogenic Imaging Spectrometer

 $1000 \text{cm}^2 @ 0.5 \text{keV}$ 0.1-3 keV TES DE<2.5eV Field=1.0° ang.res=3'

TED: Transient Event

Detector

¹/₄ of the sky, 3' localization 8-200 keV

- •Low bkg: LEO equatorial
- •Autonomous fast pointing in 60 s
- •2 tons
- \bullet TRL ≥ 4
- •Decadal Survey
- medium size