Ключевые элементы на биполярных транзисторах

Ключевые элементы. В общем случае, под ключом понимают элемент, который под воздействием управляющих сигналов осуществляет различные коммутации: включение и выключение пассивных и активных элементов, источников питания и т. д. В статическом режиме ключевое устройство находится в одном из двух состояний – замкнутом (включенном) или разомкнутом (выключенном). Пример упрощенной ключевой схемы показан на рис. 10. В состоянии «включено» (ключ SA замкнут) напряжение источника E_n полностью передается в нагрузку R_{H} , если сопротивление замкнутого ключа $r_{\kappa \pi, \kappa \kappa \pi}$ = 0. В состоянии «выключено» (ключ SA разомкнут) ток в нагрузке равен нулю, если сопротивление выключенного ключа $r_{\kappa \pi. 6 \text{ык} \pi} = \infty$. Такими идеальными параметрами обладают металлические контакты (тумблеры, выключатели, реле и т.п.), замыкаемые и размыкаемые путем механического перемещения. У таких механических ключей остаточный ток в разомкнутом состоянии определяется качеством изоляции и обычно не превышает 10пА. В замкнутом состоянии остаточное напряжение на контакте составляет доли микровольта при токах порядка 1мА. По этим параметрам механические ключи пока остаются вне конкуренции.

Однако в динамике, т. е. при переключении из одного режима в другой, механические ключи значительно уступают электронным по максимальной частоте переключения, надежности контакта и сроку службы. Эти показатели оказали решающее влияние на применение электронных ключей в цифровых устройствах.

<u>Ключ на биполярном транзисторе</u>. В основе современных цифровых схем лежат электронные транзисторные ключи. Схема простейшего транзисторного ключа с общим эмиттером приведена на рис. 11,а. Рядом (рис. 11,б) приведена эквивалентная схема, где элементы цепи управления (U_{ex} , R_1 , R_2 , E_{cm}) заменены источником E_{δ} и сопротивлением R_{δ} .

На рис. 12 приведены выходные вольтамперные характеристики с нанесенной нагрузочной прямой $U_{\kappa \ni} = E_n - I_\kappa \cdot R_\kappa$. В зависимости от величины входного сигнала рабочая точка будет находиться в одной из трех областей работы:

- область отсечки, соответствующая режиму закрытого транзистора, при котором оба перехода смещены в обратном направлении;
- область, соответствующая нормальному активному режиму (эмиттерный переход смещен в прямом направлении, а коллекторный в обратном);
- область насыщения, соответствующая режиму открытого транзистора, при котором оба перехода смещены в прямом направлении.

Закрытому состоянию ключа соответствует точка **В**. Ток через транзистор минимален и равен обратному току закрытого транзистора $I_{\kappa 3} = I_{\kappa o}$.

Рис. 12

Открытому состоянию ключа соответствует точка A. Напряжение на транзисторе U_{κ_9} в этой точке минимально и определяется напряжением насыщения транзистора U_{κ_H} , а ток максимален и равен $I_{\kappa_H} \approx E_n/R_\kappa$.

В цифровых устройствах схема ключа (рис. 10) применяется как логический элемент - инвертор, где выходное напряжение снимается с коллектора транзистора. Поэтому в открытом состоянии (точка \boldsymbol{A}) $U_{\text{вых}} = U_{\text{вых мин}} = U_{\text{кн}}$, а в закрытом (точка \boldsymbol{B}) - $U_{\text{вых}} = U_{\text{вых макс}} \approx E_n$. Максимальное напряжение $U_{\text{вых.макс}}$ соответствует напряжению логической единицы $U^l_{\text{вых}}$, а минимальное $U_{\text{вых.мин}}$ — напряжению логического нуля $U^0_{\text{вых}}$.

Из рис. 12 видно, что для получения двух фиксированных уровней $U^l_{\it вых}$ и $U^0_{\it вых}$ необходимо подать на вход такой сигнал, который обеспечивал бы переход

транзистора из режима отсечки в режим насыщения и обратно. При этом рабочая точка перемещается из положения \boldsymbol{B} (область отсечки) в положение \boldsymbol{A} (область насыщения). Этот переход осуществляется через активную область. Таким образом, активная область работы транзистора, являющаяся основной рабочей областью для усилительных схем, служит переходной областью для ключевых элементов (рис. 13).

<u>Режим омсечки</u>. В режиме отсечки оба перехода биполярного транзистора (эмиттерный и коллекторный) смещены в обратном направлении. Токи в транзисторе равны [1]: $I_6 \approx -I_{\kappa o}$, $I_{\kappa} = I_{\kappa o}$, $I_9 \approx 0$. В зависимости от типа транзистора, технологии его изготовления обратный ток закрытого транзистора $I_{\kappa o}$ лежит в пределах от 0,1мА до 1нА. Поэтому транзистор в режиме отсечки можно заменить эквивалентной схемой, показанной на рис. 14,а. Для транзисторов интегральных схем обратными токами можно пренебречь ($I_{\kappa o} = 0$). Тогда эквивалентная схема еще более упростится (рис. 14,6).

Для обеспечения режима обратного смещения эмиттерного перехода в схему ключа (рис. 11,а) добавлена цепь $E_{c_{\mathcal{M}}} - R_2$. (Полярность источника $E_{c_{\mathcal{M}}}$ такова, что в отсутствии входного сигнала он запирает транзистор.) Условие запирания транзистора записывается следующим образом:

$$U69 = \frac{\frac{U_{ex}}{R_1} - \frac{E_{cM}}{R_2} + I_{\kappa o}}{\frac{1}{R_1} + \frac{1}{R_2}} < 0.$$
 (1)

При очень малых обратных токах коллектора в практических случаях допускается работа не в режиме отсечки, а в активном режиме. Этот режим обеспечивается при $U_{69} < U_{60}$, где U_{60} – напряжение отсечки, определяемое по входной характеристике транзистора (рис. 12,а).

$$U\delta \vartheta = \frac{\frac{U_{6x}}{R_1} - \frac{E_{cM}}{R_2} + I_{\kappa o}}{\frac{1}{R_1} + \frac{1}{R_2}} < U_{\delta o}.$$
 (2)

Для кремниевых транзисторов $U_{\delta o} \approx 0.5...0.6$ В, а для германиевых - $U_{\delta o} \approx 0.2...0.3$ В. В этом случае необходимость в источнике E_{cm} отпадает. Тогда условие запирания транзистора (1) можно переписать так:

$$U\delta 9 = \frac{Uex \cdot R_2}{R_1 + R_2} < U_{\delta o}. \tag{3}$$

<u>Режим насыщения</u>. В режиме насыщения оба перехода биполярного транзистора (эмиттерный и коллекторный) смещены в прямом направлении. Для прямого смещения эмиттерного перехода надо обеспечить правильную полярность входного сигнала. Смещение же коллекторного перехода в прямом направлении обеспечивается величиной входного сигнала. Можно показать [1], что для обеспечения насыщения отпирающий базовый ток транзистора I_{60} должен удовлетворять токовому критерию насыщения (1)

$$I_{\delta o} \ge I_{\delta cp} = \frac{I_{\kappa H}}{\beta} \approx \frac{E_n}{\beta \cdot R_{\kappa}},$$
 (4)

где β — усредненное значение коэффициента передачи тока базы в коллектор, $I_{\textit{бгр}}$ — ток базы на границе насыщения и активного режима.

В режиме насыщения ток коллектора слабо зависит от входного тока и определяется значением $I_{\kappa H} \approx E_n/R_\kappa$. При этом в базе транзистора непосредственно у коллекторного перехода происходит накопление избыточного заряда, что и приводит к отпиранию коллекторного перехода.

Глубина насыщения транзистора определяется коэффициентом, называемым степенью насыщения $S_{\delta\kappa}$, равным

$$S_{\delta\kappa} = \frac{I_{\delta} - I_{\delta p}}{I_{\delta p}}.$$
 (5)

Из вольт-амперных характеристик биполярного транзистора (рис. 12,б) видно, что в режиме насыщения напряжение на коллекторе практически не зависит от входного сигнала. В зависимости OT $U_{\kappa H} = 0,01...0,3B.$ транзистора Аналогично (рис. 11,а), напряжение $U_{\tilde{o}_{\bar{e}}}$ мало меняется равно U_{6H} =0,5...0,8B.

Для транзисторов интегральных схем можно считать $U_{\kappa H}=0.1$ В и $U_{\delta H}=0.7$ В. Это позволяет заменить транзистор в режиме насыщения эквивалентной схемой, показанной на рис. 15,а. Если амплитуда входного сигнала такова, что $U_{\epsilon x}>>U_{\delta H}$, а напряжение источника питания $E_n>>U_{\kappa H}$, то можно считать $U_{\kappa H}=U_{\delta H}=0$. Тогда эквивалентная схема существенно упростится (рис. 15,6). Говорят, что транзистор в режиме насыщения «стянут в точку».

<u>Передаточная характеристика</u>. Специфику цифровых схем удобно пояснить с помощью передаточной характеристики, описывающей зависимость выходного напряжения от входного (управляющего). Такие характеристики свойственны и простейшим ключам, и простейшим усилительным каскадам. Однако рабочие участки этих характеристик в том и другом классе схем принципиально разные.

В электронном ключе (рис. 11) два его рабочих состояния (разомкнутое и замкнутое) соответствуют точкам A и B (рис. 16). В точке B ключ разомкнут и ток через него практически равен нулю, а в точке A ключ замкнут и падение напряжения на нем близко к нулю. Входные и выходные сигналы в ключе принимают только два значения: либо $U^0_{\ \ ex}$ и $U^0_{\ \ ebl}$, либо $U^l_{\ \ ebl}$ и $U^l_{\ \ ebl}$. Форма передаточной характеристики между точками A и B несущественна. Отсюда следует, что ключи, а значит, и цифровые схемы мало чувствительны к разбросу параметров, к их температурному и временному дрейфу, а также к внешним электромагнитным наводкам и собственным шумам. Последний проиллюстрирован на рис. 16. Небольшие колебания напряжения ΔU_a около точки A практически не меняют значения выходного сигнала, а значит и не влияют на работу ключа.

Рис. 16

В усилительном каскаде используется непрерывный рабочий участок передаточной характеристики между точками a и b. Входные и выходные принимать сигналы ΜΟΓΥΤ любые значения в пределах этого участка, и они связаны друг с другом функциональной зависимостью $U_{\rm выx}$ $f(U_{ex})$. любая Очевидно, что «деформация» характеристики на участке a-b, по каким бы причинам она ни произошла, будет непосредственно отражаться на указанной функциональной зависимости и на работе схемы.

Отсюда следует, что усилительный каскад чувствителен к разбросу параметров, к температурному и временному дрейфу, а также к шумам и наводкам. Последний вывод иллюстрируется на рис. 16 тем, что небольшие колебания напряжения ΔU_c около точки C вызывают заметные изменения выходного сигнала в соответствии с функцией $U_{6blx} = f(U_{6x})$.

Практически передаточная характеристика ключа на биполярном транзисторе представляет три прямолинейных участка (рис. 16), соответствующих разным режимам работы транзистора.

Первый участок ($U_{ex} < U^0_{nop}$) соответствует закрытому состоянию транзистора. В этом случае выходное напряжение равно $U_{eblx} = U^l_{eblx Make} \approx E_n$. При входном напряжении $U_{ex} = U^0_{nop}$ транзистор из закрытого состояния переходит в активный режим. Поэтому напряжение U^0_{nop} называется порогом отпирания схемы, которое можно определить из уравнения (2)

$$U^{0}_{nop} = U_{\delta o} \cdot (1 + \frac{R_{1}}{R_{2}}) + E_{cM} \cdot \frac{R_{1}}{R_{2}} - I_{\kappa o} \cdot R_{1} . \tag{6}$$

Следующий участок передаточной характеристики ($U^0_{nop} < U_{ex} < U^l_{nop}$) соответствует активному режиму работы транзистора. В этом случае выходное напряжение схемы определяется соотношением

$$U_{\text{BMX}} = E_n - I_{\kappa} \cdot R_{\kappa} = E_n - \beta \cdot I_{\delta} \cdot R_{\kappa}. \tag{7}$$

Выразив ток I_{δ} через входное напряжение $U_{\epsilon x}$ можно получить аналитическое выражение передаточной характеристики для активной области.

Следующий участок передаточной характеристики соответствует входному напряжению $U_{\it ex} > U^{\it l}_{\it nop}$. На этом участке транзистор работает в режиме насыщения и поэтому $U_{\it ebix} = U^{\it l}_{\it ebix} = U_{\it kh}$. Напряжение $U_{\it ex} = U^{\it l}_{\it nop}$ соответствует границе активного режима и режима насыщения и называется порогом запирания схемы, так как при уменьшении входного напряжения ниже $U^{\it l}_{\it nop}$ схема выключается. Пороговое напряжение $U^{\it l}_{\it nop}$ можно определить из токового критерия насыщения (4):

$$U^{1}_{nop} = U_{\delta H} \cdot (1 + \frac{R_{1}}{R_{2}}) + E_{cM} \cdot \frac{R_{1}}{R_{2}} + I_{\delta cp} \cdot R_{1} . \tag{8}$$

<u>Нагрузочная способность</u>. Рассмотренная передаточная характеристика инвертора соответствует режиму холостого хода. Однако в практических случаях к выходу логического элемента подключены входы других схем.

Очевидно, что число таких подключений ограничено. Это определяется нагрузочной способностью (или коэффициентом разветвления) n логического элемента — тем максимальным числом аналогичных схем, которые можно подключить к выходу данной схемы без нарушения режимов работы любой из них.

Рис.17

На рис. 17 показана реальная схема соединения ключевых схем. Инвертор на транзисторе VT_0 нагружен на аналогичные схемы, выполненные на транзисторах $VT_1 \dots VT_n$.

Если на входе первого инвертора напряжение $U_{ex} > U^l_{nop}$, то транзистор VT_0 открыт и насыщен и $U_{eblx} = U^0_{eblx} = U_{\kappa H} \approx 0$ В. Поэтому все транзисторы остальных инверторов будут закрыты.

Если же на вход первого инвертора подать напряжение $U_{ex} < U^0_{nop}$, то транзистор VT_0 закроется. Однако выходное напряжение уже не равно $U_{gbix} = U^l_{gbix \ make} \approx E_n$. Можно показать, что в этом случае выходное напряжение зависит от числа подключенных нагрузок:

$$U^{1}_{Gblx} = \frac{U_{GH} + E_n \cdot \frac{R_1}{n \cdot R_{\kappa}}}{1 + \frac{R_1}{n \cdot R_{\kappa}}} . \tag{9}$$

С ростом n напряжение $U^l_{\ вых}$ уменьшается и может стать меньше $U^l_{\ nop}$, что приведет к нарушению режима насыщения транзисторов схем нагрузок. Это и определяет нагрузочную способность ключа-инвертора:

$$n_{\text{\tiny MAKC}} = \frac{(E_n - U_{\text{\tiny DH}}) \cdot \beta \cdot R_2}{E_n \cdot R_2 + (E_{\text{\tiny CM}} + U_{\text{\tiny DH}})\beta \cdot R_{\kappa}} - \frac{R_1}{R_{\kappa}} \ . \tag{10}$$

<u>Помехоустойчивость</u>. В цифровых схемах обычно обеспечивается совместимость (согласование) входных и выходных сигналов, т. е. совпадение по уровням $U_{\it ext}^0$ и $U_{\it ext}^0$ и $U_{\it ext}^1$ и $U_{\it ext}^1$ и $U_{\it ext}^1$. Передаточная характеристика (рис. 16) позволяет наглядно оценить помехоустойчивость устройств, т. е. найти максимально допустимое напряжение помехи, действующей на входе ключа

наряду с регулярным сигналом, при которой еще не происходит изменение логических (информационных) состояний схемы.

Так для закрытой схемы (точка $\mathbf{\textit{B}}$ на рис. 16) опасной будет положительная помеха, способная открыть схему. Запас помехоустойчивости на отпирание схемы

$$\Delta U_{non}^{0} = U_{nop}^{0} - U_{sx}^{0} = U_{nop}^{0} - U_{sbx}^{0}. \tag{11}$$

A для открытой схемы (точка A) отрицательная помеха может закрыть транзистор. Запас помехоустойчивости на запирание схемы

$$\Delta U^{l}_{nom} = U^{l}_{ex} - U^{l}_{nop} = U^{l}_{ebix} - U^{l}_{nop}.$$
 (12)

<u>Переходные процессы</u>. Переключение ключа из закрытого состояния в открытое и обратно не может произойти мгновенно. Связано это с инерционностью биполярного транзистора, обусловленной наличием емкостей переходов, конечным временем переноса заряда от эмиттера к коллектору и накоплением заряда носителей в базе.

<u>Включение ключа</u>. Пусть в исходном состоянии ключ (рис. 11) закрыт, транзистор заперт некоторым обратным напряжением $U_{63} < 0$. Рассмотрим процесс включения при подаче на вход схемы в момент времени t_1 отпирающего напряжения (рис. 18). Весь процесс включения условно можно разбить на три этапа: задержка включения $(t_0...t_1)$, формирование фронта $(t_1...t_2)$ и накопление заряда $(t_2...t_3)$.

3адержка включения. Этот первый этап переходного процесса обусловлен зарядом входной емкости запертого транзистора (рис. 11,6). Заряд емкости начинается после того, как управляющее напряжение скачком меняет свое значение от E_{δ}^{0} до E_{δ}^{1} . Процесс заряда описывается уравнением

$$U_{\delta}(t) = E_{\delta}^{1} - (E_{\delta}^{1} - E_{\delta}^{0}) \cdot \exp(-t/\tau_{c}) , \qquad (13)$$

где $\tau_c = C_{ex}R_{\delta}$ – постоянная времени заряда.

Когда напряжение U_{δ} , нарастая, становится равным напряжению $U_{\delta o}$, отпирается эмиттерный переход транзистора и U_{δ} практически больше не меняется. Значит, время задержки включения $t_{3\ вкл}$ можно найти, полагая $U_{\delta}(t_{3\ вкл})=U_{\delta o}$. Оно выражается следующим образом:

$$t_{3.6KR} = \tau_c \cdot \ln \frac{E_{\delta}^1 - E_{\delta}^0}{E_{\delta}^1 - U_{\delta o}} \ . \tag{14}$$

Рис. 18

Обычно $|U_{\vec{o}\vec{s}}| << E_{\vec{o}}^1$ и $U_{\vec{o}\vec{o}} << E_{\vec{o}}^1$. Поэтому

$$t_{3.6KR} \approx C_{ex} (U_{60} - U_{63}) / I_{ex o} ,$$
 (15)

где $I_{\rm ex\ o}=E_{\rm 6}^1/R_{\rm 6}\approx{\rm const}$ - входной отпирающий ток. Входную емкость принимают равной сумме барьерных емкостей эмиттерного и коллекторного переходов:

$$C_{ex} = C_{\scriptscriptstyle 9} + C_{\scriptscriptstyle K} \ . \tag{16}$$

<u>Формирование фронта</u>. С момента отпирания эмиттерного перехода транзистора, в базовой цепи устанавливается ток

$$i_{\tilde{\rho}}(t) = I_{\text{gyo}} = I_{\tilde{\rho}o} \approx \text{const}.$$
 (17)

Поэтому можно считать, что нарастание коллекторного тока и спад коллекторного напряжения на этом этапе переходного процесса происходят в условиях заданного тока базы. Из зарядовой модели транзистора [1] для активного режима коллекторный ток $i_{\kappa}(t)$ и базовый заряд неосновных носителей $Q_{\delta}(t)$ (например, заряд электронов для p-базы) связаны между собой соотношением:

$$i_{\kappa}(t) = \frac{Q_{\delta}(t)}{\tau_{\kappa}}(t) = \frac{\beta}{\tau_{\delta}} \cdot Q_{\delta}(t), \tag{18}$$

где τ_{δ} — постоянная времени накопления неосновных носителей в базе. Закон изменения заряда в базе можно найти из уравнения баланса заряда [1]:

$$\frac{dQ_{\delta}}{dt} = -\frac{Q_{\delta}}{\tau_{\delta}} + i_{\delta} \ . \tag{19}$$

С учетом вышесказанного можно показать, что коллекторный ток i_{κ} будет меняться экспоненциально:

$$i_{\kappa}(t) = \beta \cdot I_{\delta}(1 - \exp(-t/\tau_{\delta})) . \tag{20}$$

С учетом перезаряда емкости коллекторного перехода C_{κ} и емкости нагрузки C_{μ} эквивалентная постоянная времени для тока $i_{\kappa}(t)$ будет определяться суммой

$$\tau_{\kappa \ni} = \tau_{\tilde{o}} + R_{\kappa} (C_{\kappa} (1+\beta) + C_{\mu}) \,. \label{eq:tauks}$$

Асимптотическое значение тока $I_{\kappa}(\infty) = I_{\delta o} \cdot \beta$ (см. рис. 18) не может быть достигнуто, так как в момент t_2 ток достигает значения $I_{\kappa H}$, после чего транзистор переходит из активного режима в режим насыщения и, следовательно, теряет силу соотношение (18). Длительность фронта легко найти из (20), подставляя $i_{\kappa}(t) = I_{\kappa H}$

$$t_{\phi} = t_{\phi}^{10} = t_{\phi}^{-} = \tau_{\kappa_{9}} \cdot \ln \frac{\beta \cdot I_{\delta o}}{\beta \cdot I_{\delta o} - I_{\kappa u}} . \tag{21}$$

<u>Накопление заряда</u>. После того как транзистор начал работать в режиме насыщения, токи транзистора практически не меняются. Однако заряд в базе продолжает нарастать до уровня $I_{\delta o} \cdot \tau_{\delta n}$, где - $\tau_{\delta n} \approx (0,7...0,9) \cdot \tau_{\delta}$ - постоянная

времени накопления в режиме насыщения. За время $3\tau_{\delta}$ завершится процесс накопления заряда, и транзистор войдет в стационарный режим.

<u>Выключение ключа</u>. Процесс выключения ключа протекает в два этапа: задержка выключения $(t_4...t_5)$ и формирование среза выходного сигнала $(t_5...t_6)$.

 $\frac{3adepжка\ выключения}{2}$. Пусть в момент t_4 на входе насыщенного ключа управляющее напряжение скачком меняется от E_{δ}^1 до E_{δ}^0 . Тогда ток базы скачком изменится от положительного уровня $I_{\delta o}$ до отрицательного $I_{\delta 3}=(E_{\delta}^0-U_{\delta 9})/R_{\delta}\approx {\rm const}$. Отрицательный ток приводит к уменьшению (рассасыванию) заряда, накопленного в базе. Однако, пока заряд в базе $Q_{\delta}>Q_{\delta}$ срежима и режима насыщения), коллекторный ток и напряжение не меняются. Длительность этапа рассасывания t_{pac} определяется временем, в течение которого заряд Q_{δ} уменьшается от исходного уровня $Q_{\delta}(t_5)=I_{\delta o}\cdot \tau_{\delta}$ до граничного Q_{δ} срезиничного Q_{δ} срези

$$t_{pac} = t_3^{01} = \tau_{\delta} \cdot \ln \frac{Q_{\delta}(\infty) - Q_{\delta}(t_5)}{Q_{\delta}(\infty) - Q_{\delta}(t_6)} = \tau_{\delta} \cdot \ln \frac{|I_{\delta 3}| + I_{\delta o}}{|I_{\delta 3}| + I_{\delta cp}}.$$
 (22)

Следовательно, задержка выключения, обусловленная рассасыванием избыточного заряда в базе, тем меньше, чем меньше степень насыщения транзистора и больше запирающий ток.

<u>Фронт выключения</u>. В момент завершения рассасывания избыточного заряда транзистор переходит в активный режим. С этого момента начинается спад коллекторного тока по экспоненциальному закону с постоянной времени τ_6 от начального значения $I_{\kappa H}$. Длительность спада импульса коллекторного тока определяется соотношением:

$$t_{c} = t_{\phi}^{01} = \tau_{\kappa_{9}} \cdot \ln \frac{Q_{\delta}(\infty) - Q_{\delta}(t_{6})}{Q_{\delta}(\infty) - Q_{\delta}(t_{7})} = \tau_{\kappa_{9}} \cdot \ln \frac{|I_{\delta_{3}}| + I_{\delta \rho}}{|I_{\delta_{3}}|} \quad . \tag{23}$$

Если ключ работает на емкостную нагрузку, то длительность среза тока и напряжения будут существенно различаться. Справедливо это для высокочастотных транзисторов и для транзисторов логических интегральных схем. В этом случае длительность фронта коллекторного напряжения определяется зарядом емкости C_{κ} и паразитной емкости нагрузки C_{μ} , т.е. $t_{\phi}^{01} \approx 2, 2 \cdot R_{\kappa}(C_{\mu} + C_{\kappa}\beta)$.

<u>Быстродействие ключевого элемента</u> зависит от общей длительности переходного процесса, возникающего при воздействии переключающего сигнала и обусловленного инерционностью транзистора и влиянием паразитных параметров. Для оценки разрешающего времени используются временные

параметры: длительности задержки включения $t_{3\,6 \text{K} \text{Л}} = t_3^{10}$ и фронта включения t_{ϕ}^{10} , длительности задержки $t_{3\,6 \text{K} \text{Л}} = t_3^{01}$ и фронта t_{ϕ}^{01} выключения. Часто для характеристики быстродействия логического элемента используется среднее время задержки сигнала при его передаче через элемент:

$$t_{3CD} = 0.5(t_{3BKI} + t_{3BbKI}). (24)$$

Рис. 19

При конечной длительности фронта входного сигнала, что обычно и имеет место, задержки включения и выключения отсчитываются либо по уровню 10% и 90% (рис. 19,а), либо, чаще, на 50%-ных уровнях входного и выходного сигналов (рис. 19,б).

<u>Сокращение длительности переключения</u>. Длительность переключения можно уменьшить с помощью ускоряющих конденсаторов или применяя отрицательную обратную связь.

<u>Применение ускоряющей емкости</u>. Для повышения быстродействия транзисторных ключей резистор R_I шунтируют ускоряющей емкостью C (рис. 20). Из-за емкости C при подаче на вход схемы отпирающего сигнала в базовой

Рис. 12

цепи в первый момент протекает значительный ток. Начальное значение этого тока равно $I_{\delta o}(0) \approx E_{\delta}^1/r_{ex}$, где r_{ex} - входное сопротивление открывающегося транзистора. По мере заряда конденсатора C ток базы уменьшается и стремится к уровню $I_{\delta o}(\infty) \approx E_{\delta}^1/(R_1+r_{ex})$. При подаче запирающего напряжения конденсатор C разряжается и способствует увеличению запирающего тока, что и приводит к ускорению процессов рассасывания заряда в базе и сокращению длительности выключения транзистора. Емкость конденсатора C небольшая и составляет десятки или сотни пикофарад, чтобы за время действия входного отпирающего импульса конденсатор полностью зарядился.

<u>Применение нелинейной отрицательной обратной связи</u>. Сокращение длительности переключения может быть достигнуто, если предотвратить сколько-нибудь существенное насыщение открытого транзистора. Эта задача решается введением в схему ключа нелинейной отрицательной обратной связи (HOOC). Такая схема показана на рис. 21.

Рис. 21

Для устранения насыщения транзистора параллельно переходу база — коллектор включен диод Шоттки $D_{\it u}$. Диод Шоттки представляет собой переход

металл (обычно алюминий) — полупроводник. В интегральных схемах диод Шоттки вместе с транзистором составляет единую структуру — *транзистор Шотки*. Когда транзистор выключен или работает в активном режиме, напряжение $U_{\delta\kappa}$ отрицательно. Поэтому D_{u} закрыт и не влияет на работу транзистора. При включении транзистора большим входным током напряжение $U_{\delta\kappa}$ становится положительным и диод D_{u} открывается, так как пороговое напряжение диода Шоттки равно (0,2...0,3)В. В результате, значительная часть входного тока начинает протекать по цепи диод — коллекторная цепь транзистора. Базовый ток уменьшается (рис. 21,6) и ограничивается примерно на уровне $I_{\delta cp}$. Поэтому практически можно считать, что в транзисторе Шоттки отсутствует избыточный заряд в базе и, следовательно, отсутствует задержка на рассасывание избыточного заряда при выключении транзистора.

Ключевые элементы на МДП-транзисторах

<u>Ключевой элемент на МДП-транзисторе с резистивной нагрузкой</u>. Схема такого ключа показана на рис. 22. На рис. 23 приведены выходные (стоковые) характеристики транзистора с нанесенной на них нагрузочной прямой $U_c = E_n - I_c R_c$. Как и в случае биполярного ключа с общим эмиттером, при действии на входе большого сигнала рабочая точка проходит три области ВАХ, соответствующие трем возможным режимам работы:

- область отсечки, соответствующая режиму закрытого транзистора;
- активная область, соответствующая пологой области ВАХ;
- крутая область BAX и максимальная проводимость канала.

На вольт-амперной характеристике закрытому состоянию ключа соответствует точка \boldsymbol{B} (область отсечки), а открытому состоянию — точка \boldsymbol{A} (крутая область BAX).

Для запирания транзистора на вход схемы (на затвор транзистора) надо подать напряжение $U_{ex}^0 < U_o$, где U_o -пороговое напряжение транзистора, определяемое по стоко-затворным характеристикам. В закрытом состоянии ток транзистора I_{c3} (остаточный ток) минимален и равен обратному току стокового

ооратному току стокового p-n-перехода. Следовательно, $I_{c3}=10^{-9}...10^{-10}\,\mathrm{A}$, т. е. можно считать, что этот ток практически равен нулю. Выходное же напряжение максимально и равно: $U_{\mathit{bbx}}=U_{\mathit{cus}}\approx E_n=U_{\mathit{bbix}}^1$.

Для отпирания транзистора на затвор подается напряжение $U_{\rm ex}^1 > U_o$. Это напряжение должно быть достаточно большим, чтобы рабочая точка A (рис. 23)

соответствовала как можно меньшему остаточному напряжению: $U_{\it выx} = U_{\it co} = U_{\it выx}^0$. Тогда рабочий ток открытого ключа (ток насыщения) определяется, как и у биполярного ключа, внешними элементами схемы.

$$I_{cH} = (E_n - U_{co}) / R_c \approx E_n / R_c$$
. (25)

Рис. 23

В открытом состоянии ключа рабочая точка A лежит на начальном, квазилинейном участке характеристики МДП-транзистора. Поэтому остаточное напряжение можно определить, умножая ток насыщения (1) на сопротивление канала r_{κ} :

$$U_{co} = U_{ebix}^{0} = I_{ch} r_{\kappa} . {26}$$

При совместной работе ключей в последовательной цепочке отпирающий сигнал U_{ex}^1 поступает от предыдущего (запертого) ключа. Поэтому напряжение на затворе открытого транзистора равно $U_{3u}=E_n$. Следовательно, сопротивление канала открытого транзистора равно [1]:

$$r_{\kappa} \cong [b(E_n - U_o)]^{-1}, \tag{27}$$

где b - удельная крутизна МДП-транзистора. Для МДП-транзисторов логических интегральных схем $b=0.2...2 MA/B^2$, $E_n=5...10B$, $U_o=2...3B$. Поэтому сопротивление канала r_κ составляет величину от сотен Ом до нескольких единиц кОм. Значит, для уменьшения выходного напряжения открытой схемы $U_{\it вых}^0$ необходимо выбирать сопротивление R_c как можно большим (не менее $10~{\rm кOm}$).

Для силовой электроники выпускаются транзисторы с сопротивлением канала открытого транзистора r_{κ} <1 Ом, что намного эффективнее биполярного ключа.

На рис. 24 приведена передаточная характеристика ключевого элемента с резистивной нагрузкой и отмечены области работы транзистора по каждому участку кривой.

Пока входное напряжение $U_{\it ex} < U_o = U_{\it nop}^0$, транзистор закрыт, и $U_{\it eыx} = U_{\it eыx}^1 \approx E_n \, .$

При входном сигнале, лежащем в диапазоне $U^0_{nop} < U_{ex} < U^1_{nop}$, транзистор работает в пологой области характеристик, и схема ведет себя как усилительный каскад с общим истоком, коэффициент усиления которого равен

$$K_u = \Delta U_{e\omega x} / \Delta U_{ex} = -SR_c, \qquad (28)$$

где $S = b(U_{3u} - U_{o})$ – крутизна транзистора для малого сигнала.

При $U_{\it ex}=U^1_{\it nop}$ транзистор переходит в крутую область вольт-амперных характеристик, где крутизна транзистора S уменьшается. Вместе с ней уменьшается и дифференциальный коэффициент передачи K_u . При этом выходное напряжение постепенно стремится к уровню $U^0_{\it sbix}=U_{\it co}$.

<u>Ключ с динамической нагрузкой</u>. В интегральных логических схемах для уменьшения площади логического элемента резистор R_c (рис.22) заменяют МДП-транзистором. Схема такого инвертора, выполненного на однотипных транзисторах, показана на рис. 25. Роль динамической нагрузки выполняет транзистор VT_2 , у которого затвор соединен со стоком и который, тем самым, является двухполюсником — резистором. Транзистор VT_2 называют нагрузочным, а VT_1 — активным.

Можно показать, что транзистор VT_2 всегда работает на пологом участке выходных вольтамперных характеристик. Поэтому линия нагрузки (см. рис. 26) определяется током стока нагрузочного транзистора:

$$I_c = b/2(U_{3u2} - U_{o2})^2 = b/2(E_n - U_{cu1} - U_{o2})^2.$$
(29)

Как видно, эта ВАХ – параболическая, т.е. нелинейная.

В закрытом состоянии ключа, когда на вход подано напряжение $U_{ex}^0 < U_{o1}$, остаточный ток имеет примерно то же значение, что и в резисторном ключе ($10^{-9}...10^{-10}\,\mathrm{A}$ и менее), а максимальное выходное напряжение определяется точкой пересечения линии нагрузки, определяемой уравнением (29), и ВАХ активного транзистора (рис. 26). Видно, что это напряжение равно

$$U_{eblx} \approx E_n - U_{o2} = U_{eblx}^1, \tag{30}$$

т.е. выходное напряжение закрытой схемы с динамической нагрузкой меньше, чем $U^1_{\mathit{eыx}}$ у схемы с резистивной нагрузкой.

Рис. 26

В открытом состоянии ключа, когда на вход подано напряжение $U_{ex}^1 > U_o$ рабочая точка A лежит на квазилинейном участке характеристики активного транзистора VT_1 . Остаточное напряжение в этой точке определяет выходное напряжение логического нуля и равно

$$U_{ocm} = \frac{b_2}{2b_1} \cdot \frac{(U_{3u2} - U_{o2})^2}{U_{3u1} - U_{o1}} = U_{gbix}^0.$$
 (31)

Поскольку на практике всегда выполняется условие $(U_{3u1}-U_{o1}) \leq (U_{3u2}-U_{o2})$, то для того, чтобы остаточное напряжение было мало, в ключе с динамической нагрузкой необходимо выполнить соотношение $\beta_l >> \beta_2$, т.е. транзисторы должны существенно различаться.

Для повышения $U_{\mathit{вых}}^1$ до значения E_n в качестве нагрузочного транзистора VT_2 в современной технологии логических интегральных схем (так называемая n-

МОП технология) используют МДП-транзистор со встроенным каналом. В этом случае нагрузочный транзистор работает в крутой области характеристик и ведет себя как обычный резистор. Работа и характеристики такой схемы ничем не отличаются от ранее рассмотренной схемы с резистивной нагрузкой.

Комплементарный ключ. Схема такого ключа показана на рис. 27. Она базируется на двух транзисторах с разным типом проводимости канала.

Транзистор VT_1 с каналом n-типа играет роль активного элемента, а транзистор VT_2 с каналом p-типа выступает в роли динамической транзисторов объединены и на них подастем управляющее напряжение U_{ex} . Подложки транзисторов соединены с их истоками.

Пусть управляющее напряжение U_{ex} =0. Тогда $U_{3u1} = 0$ и $U_{3u2} = -E_n$. Значит, n-канальный транзистор $U_{3u1} = 0$ и $U_{3u2} = 0$ открыт питания

(считается, что $|U_{o2}| < E_n$). Ток в цепи питания определяется запертым транзистором VT_1 и равен

остаточному току $I_{ocm1} \approx 0$. Открытый транзистор VT_2 работает в крутой области ВАХ, и сопротивление его канала определяется соотношением (6). Падение напряжения на этом транзисторе U_{cu2} можно определить, перемножив остаточный ток первого транзистора на сопротивление канала второго. Нетрудно получить, что $U_{cu2} \approx 0$, т.е. выходное напряжение в этом случае максимально и равно

$$U_{\theta b l x} = E_n - U_{o u 2} = E_n = U_{\theta b l x}^1. \tag{32}$$

Пусть теперь управляющее напряжение $U_{\it ex}=U^1_{\it ebix}=E_n$. Тогда $U_{\it sul}=E_n$ и $U_{2u2} = 0$. Значит, теперь *n*-канальный транзистор VT_1 открыт, а p-канальный транзистор VT_2 закрыт. При этом ток в общей цепи по-прежнему определяется запертым транзистором VT_2 и равен его остаточному току $I_{ocm2} \approx 0$, хотя транзисторы и «поменялись местами». Как и выше, можно показать, что в этом случае

$$U_{\text{Gblx}} = U_{\text{oul}} \approx 0 = U_{\text{Gblx}}^{0}. \tag{33}$$

Таким образом, в любом из рассмотренных статических состояний токи стоков транзисторов равны нулю. Следовательно, и ток источника питания, и потребляемая мощность этой схемы в статическом режиме равны нулю.

Основной характеристикой, позволяющей проследить функционирование ключевого элемента является его передаточная характеристика $U_{\text{вых}} = f(U_{\text{ex}})$. Эта зависимость для случая напряжения питания $E_n \ge U_{o1} + \left| U_{o2} \right|$ показана на рис. 28.

Там же представлена зависимость тока потребления от входного напряжения $I_{\mathit{num}}(U_{\mathit{ex}})$.

Передаточную характеристику можно разбить на пять участков, соответствующих различным режимам работы транзисторов.

При малом входном сигнале ($U_{ex} < U_{nop}^0 = U_{o1}$) транзистор VT_1 закрыт, а VT_2

— работает в крутой области характеристик. Напряжение на выходе максимально и равно $U_{\rm выx}=E_{\rm n}=U_{\rm выx}^1$ (участок 1-2).

При увеличении входного $U_{ex} = U_{nop}^0$ напряжения значения транзистор VT_1 отпирается, и его рабочая точка попадает пологую область характеристик, а VT_2 продолжает работать в крутой области. Выходное напряжение начинает уменьшаться (участок 2-3). Ток источника постепенно увеличивается и определяется пропускной способностью транзистора VT_1 .

Рис. 28

По мере роста $U_{\it ex}$ рабочая точка транзистора VT_2 переходит в пологую область. Дифференциальное сопротивление нагрузочного транзистора резко возрастает и, следовательно, резко увеличивается коэффициент усиления схемы K_u . Выходное напряжение быстро уменьшается (участок 3-4), а ток потребления достигает максимального значения $I_{\it cm}$.

В конце концов, изменяется режим работы транзистора VT_1 . Его рабочая точка перемещается на крутой участок характеристик, и спад выходного напряжения уменьшается (участок 4-5), а ток I_{num} начинает уменьшаться, так как транзистор VT_2 подзакрывается.

U, наконец, при $U_{ex}=U_{nop}^1=E_n-\left|U_{ou2}\right|$ транзистор VT_2 попадает в режим отсечки, и напряжение на выходе фиксируется на уровне $U_{eblx}^0 \approx 0$ (участок 5-6).

Как видно (рис. 28), передаточная характеристика комплементарного ключа близка к релейной, так как коэффициент передачи K_u на участке 3-4 очень большой. Входное напряжение, соответствующее этому участку, можно назвать напряжением переключения U_{nep} комплементарного ключа. В практических

случаях транзисторы VT_1 и VT_2 имеют примерно одинаковые параметры. Поэтому $U_{nep} \approx E_n / 2$.

Широкий диапазон выходного напряжения и низкий уровень мощности, потребляемой от источника питания в статическом режиме, являются основными достоинствами комплементарного ключа.

<u>Переходные процессы</u>. Инерционность МДП-транзисторных ключей обусловлена главным образом перезарядом емкости нагрузки [1]. На рис. 29 показана эквивалентная схема ключа с резистивной нагрузкой, работающего в последовательной цепочке на аналогичные схемы. Конденсатор C_n отражает все паразитные емкости реальной схемы: $C_n = C_{cn} + KC_{3c} + C_{nap} + C_{6x}$. Здесь C_{cn} емкость сток-подложка, C_{3c} – емкость затвор-сток, K – коэффициент, связанный с эффектом Миллера [1], увеличивающий емкость нагрузки в несколько (5...20) раз, C_{nap} — паразитная емкость монтажных соединений, C_{6x} — эквивалентная входная емкость последующей схемы-нагрузки. Суммарная емкость нагрузки в логических интегральных схемах равна $C_n = 1...5$ пФ.

Рис.29

Пусть в исходном состоянии $U_{ex}=E_n$, транзистор открыт и на нем падает небольшое остаточное напряжение. При снятии входного сигнала $(U_{ex}=0)$ ток в транзисторе мгновенно уменьшается до нуля, и емкость C_n заряжается от источника питания E_n через резистор R_c с постоянной времени $\tau_c=R_cC_n$ (рис. 29,а). Рабочая точка транзистора перемещается по пути A-1-2-B. Время заряда, т.е. длительность фронта выходного напряжения, определенная по уровням 0,1...0,9, составляет

$$t_{\phi}^{01} = 2.2R_c C_{H} = 2.2(E_n C_{H} / I_{CH}). \tag{34}$$

Отпирание ключа и формирование среза импульса напряжения протекает несколько сложнее. В этом случае рабочая точка транзистора перемещается по

пути **В-3-4-5-A**. После подачи отпирающего сигнала $U_{ex} = E_n$ ток I_c практически мгновенно достигает значения

$$I_c^* = b/2(E_n - U_o)^2 (35)$$

(см. рис. 29,б). Этим током начинает разряжаться емкость $C_{\rm H}$. По мере разряда емкости напряжение на стоке U_c уменьшается. До тех пор, пока оно остается больше напряжения насыщения $U_{c\rm H}$, равного E_n-U_o , транзистор работает на пологом участке характеристики и ток сохраняет значение I_c^* (рис. 29,в). Затем ток I_c начинает уменьшаться, стремясь в пределе к значению $I_{c\rm H}$. Это замедляет скорость разряда. Для расчета времени спада можно воспользоваться следующим приближенным значением [1]:

$$t_{\phi}^{10} = 1.5(E_n C_{_H} / I_{_C}^*). {36}$$

Можно показать, что срез положительного импульса t_{ϕ}^{10} значительно короче его фронта t_{ϕ}^{01} . В общем случае такой вывод вытекает из структуры выражений (10) и (12), которые различаются только значениями токов. Из рис. 29 ясно, что $I_{c}^{*} >> I_{ch}$. Отсюда неизбежно следует, что $t_{\phi}^{10} << t_{\phi}^{01}$.

данного

Таким образом, быстродействие t_{db}^{01} . фронта длительностью уменьшения времени t_{ϕ}^{01} необходимо уменьшать сопротивление R_c , а это приводит К росту остаточного напряжения на ключе (см. (2)). Следовательно, возможности повышения быстродействия ограничены. Общий вид переходных рассмотренной процессов В показан на рис. 30.

В ключе с динамической нагрузкой (рис. 25) формирование среза происходит так же, как и в ключе

типа ключей

определяется

Рис. 30

с резисторной нагрузкой, а время t_{ϕ}^{10} определяется формулой (12). Ток I_{c}^{*} , входящий в выражение (36), является начальным током активного транзистора VT_{1} и равен

$$I_c^* = b_{01} / 2(E_n - U_{01})^2. {(37)}$$

Формирование фронта происходит в период заряда емкости $C_{\scriptscriptstyle H}$ через нелинейную динамическую нагрузку. Учитывая параболический характер ВАХ (6), можно заранее ожидать, что заряд емкости будет происходить медленнее, чем при резисторной нагрузке, а время t_ϕ^{01} будет больше. Поэтому в ключах с динамической нагрузкой, как и в резисторных ключах, быстродействие определяется длительностью t_ϕ^{01} .

В комплементарном ключе (рис. 27) переходные процессы характеризуются тем, что заряд и разряд нагрузочной емкости C_{H} происходят примерно в одинаковых условиях. Это объясняется симметрией схемы по отношению к запирающему и отпирающему сигналу.

Заряд емкости происходит через открытый транзистор VT_2 при запертом VT_1 . Разряд — через открытый транзистор VT_1 при запертом VT_2 . В том и другом случае транзистор, открывшийся после очередного переключения, сначала работает на пологом участке со сравнительно большим током I_c^* . Затем, по мере заряда или разряда емкости, напряжение сток-исток падает ниже значения U_{ch} , и ток начинает уменьшаться. Следовательно, механизм обоих процессов (заряда и разряда) тот же, который был рассмотрен при анализе разряда в ключе с резисторной нагрузкой (рис. 29).

Соответственно длительности фронта и среза определяются однотипными выражениями, аналогичными (12):

$$t_{\phi}^{10} = 1.5(E_n C_n / I_{c1}^*) = \frac{1.5E_n C_n}{b_1 / 2(E_n - U_{c1})^2}.$$
 (38,a)

$$t_{\phi}^{01} = 1.5(E_n C_n / I_{c2}^*) = \frac{1.5E_n C_n}{b_2 / 2(E_n - |U_{o2}|)^2}.$$
 (38,6)

В формулах (38) индексы 1 и 2 подчеркивают различие параметров *n*- и *p*-канального транзистора. Однако это различие несущественно. Поэтому длительности фронта и среза оказываются одинаковыми.

1. Контрольные вопросы и задачи для самостоятельной работы

- 1. Доказать, что в режиме глубокой отсечки $(U_{69} << 0 \ , U_{\kappa 9} << 0)$ токи через транзистор равны: $I_6 \approx -I_{\kappa 0}$, $I_\kappa = I_{\kappa 0}$, $I_9 \approx 0$.
- 2. Доказать, что для обеспечения режима насыщения должен выполняться токовый критерий (4).
- 3. Для схемы биполярного транзисторного ключа (рис. 11,6) при определении базового тока покоя I_{δ} можно воспользоваться графическим решением (рис. 12). Пояснить, как для схемы рис. 11,а определить эквивалентное напряжение E_{δ} и эквивалентное сопротивление R_{δ} ?
- 4. Получить аналитическое выражение передаточной характеристики схемы биполярного транзисторного ключа для активной области.
- 5. Доказать, что пороговое напряжение запирания биполярного ключа U^{l}_{nop} определяется соотношением (8) .
- 6. Доказать, что выходное напряжение $U^{l}_{s \omega x}$ нагруженного инвертора определяется соотношением (9).
- 7. Получить выражение (10) для коэффициента разветвления схемы инвертора.
- 8. Для схемы ключа (рис. 11,а) получить выражение для напряжения на базе закрытого транзистора $U_{\delta 3}$.
- 9. Доказать, что сопротивление канала открытого МДП-транзистора в последовательной цепочке инверторов (рис. 10) определяется соотношением (27).
- 10.Определить сопротивление R_c в схеме инвертора с резистивной нагрузкой (рис. 22), если E_n = 20B, U_0 = 5B, b = 1.4мA/B², а $U_{\text{вых}}^0$ < 0,5B.
- 11.В схеме МДП-ключа с резистивной нагрузкой (рис. 22) определить выходное напряжение при а) $U_{ex} = 3$ В; б) $U_{ex} = 10$ В; в) $U_{ex} = 20$ В. Параметры схемы и транзистора: $E_n = 20$ В, $R_c = 1$ кОм, $U_0 = 5$ В, b = 1.4мА/В².
- 12.В схеме МДП-ключа с резистивной нагрузкой (рис. 22) определить выходное напряжение $U^0_{\it вых}$ и $U^l_{\it вых}$, если $U^0_{\it вх}$ =0В и $U^l_{\it вх}$ =9В. Параметры схемы: $E_{\it пит}$ =9В, R_c =20кОм. Параметры транзистора: U_0 =3В, b=1300мкА/ B^2 .

- 13. Покажите, что транзистор VT_2 в схеме с динамической нагрузкой (рис. 25) всегда работает на пологом участке выходных вольт-амперных характеристик.
- 14. Докажите, что выходное напряжение логического нуля для схемы с динамической нагрузкой (рис. 25) определяется соотношением (31).
- 15.Докажите, что для комплементарного ключа (рис. 27) напряжение переключения $U_{nep} \approx E_n/2$. Считать, что транзисторы VT_1 и VT_2 имеют одинаковые параметры ($b_1 = b_2$ и $U_{o1} = \left| U_{o2} \right|$). Воспользоваться условием: $U_{nep} = U_{ex} = U_{ebix}$.

2. Литература

- 1. **Опадчий Ю.Ф., Глудкин О.П., Гуров А.И.** Аналоговая и цифровая электроника (Полный курс): Учебник для вузов /Под ред. О.П.Глудкина. М.: Горячая линия Телеком, 2000.
- 2. **Кобяк А.Т., Новикова Н.Р., Паротькин В.И., Титов А.А.** Применение системы Design Lab 8.0 в курсах ТОЭ и электроники: Метод. пособие. –М.: Издательство МЭИ, 2001. –128с. (УДК 621.3 П–764)
- 3. Электротехника и электроника. Учебник для вузов.- В 3-х кн. Кн. 3. Электрические измерения и основы электроники/ Г.П.Гаев, В.Г.Герасимов, О.М.Князьков и др.; Под ред. проф. В.Г.Герасимова. М.: Энергоатомиздат, 1998. (УДК 621.3; Э45).
- 4. **Степаненко И.П.** Основы микроэлектроники: Учебное пособие для ВУЗов. / 2-ое изд. -М.: Лаборатория Базовых Знаний. 2001. -488с.