

Matrix Algebra - Part 1

Bambordé Baldé | Co-Founder at Zaiku Group | Twitter: @zaikubalde • zaikugroup.com • November 6, 2020

Lecture Agenda Summary

- 2. Lecture 07 Recap
- 3. General Matrices
- 4. Square Matrices as Operators
- 5. Basic Matrix Operations
- 6. Invertible Matrices
- 7. Diagonal Matrices
- 8. Study Materials Comments

Foundation Module Review

Rings and Fields 101 #1

Matrix Algebra #2

Quantum Matrix Operators #2

Group Theory 101 #1

Linear Operators 101 #2

Complex Hilbert Spaces #2

Naive Set Theory Overview #1

Complex Vector spaces 101 #2

Matrix Groups: GL(n, C) & U(n) #2

Completed | ____

Ongoing | #n is the number of live lectures

Lecture 07 Recap

Isomorphism Theorems

Theorem (1.0)

Let V and W be vector spaces over \mathbb{C} . Then $V \simeq W$ if and only if dim(V) = dim(W).

Proof: Homework challenge?

- ► A more elegant way of stating the above theorem is to say that the following statements are equivalent:
 - 1. $V \simeq W$
 - 2. dim(V) = dim(W)

Theorem (1.1)

If V is a vector space over $\mathbb C$ and $\dim(V)=n$. Then $V\simeq \mathbb C^n$.

▶ So for example, take $V = \mathbb{C}^2 \otimes \mathbb{C}^2$. Because $\dim(\mathbb{C}^2 \otimes \mathbb{C}^2) = 4$ it then follows that $\mathbb{C}^2 \otimes \mathbb{C}^2 \simeq \mathbb{C}^4$.

Theorem (1.2)

A linear operator $T: V \longrightarrow V$ is invertible if and only if $Ker(T) = \{0\}$.

Proof : Homework challenge?
Hence, the theorem above implies T is invertible iff T is an
isomorphism from V to V?

Theorem (1.3)

Let $T_1: V \longrightarrow V$ and $T_2: V \longrightarrow V$ be invertible linear operators. Then T_2T_1 is invertible.

Proof: Homework challenge?

▶ If $V = \mathbb{C}^2$ then the following linear operators are invertible:

$$X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, H = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix}.$$

Do the set of all invertible linear operators acting on V form a group?

Abstract Eigenvectors and Eigenvalues

Definition (1.6)

Let $T:V\longrightarrow V$. A vector $|\psi\rangle\in V$ is said to be an eigenvector of T if there exists a $\lambda\in\mathbb{C}$ such that $T|\psi\rangle=\lambda|\psi\rangle$. The scalar λ is called an eigenvalue of T.

The set of all eigenvalues of T is called the spectrum of T and often denoted $\operatorname{Spec}(T)$ i.e $\operatorname{Spec}(T) = \{\lambda \in \mathbb{C} \mid T|\psi\rangle = \lambda|\psi\rangle\}$ where $|\psi\rangle \in V$ is obviously an eigenvector of T.

Theorem (1.4)

Let $T: V \longrightarrow V$ be a linear operator with distinct set of eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n \in \mathbb{C}$ with corresponding eigenvectors $|\psi_1\rangle, |\psi_2\rangle, \ldots, |\psi_n\rangle \in V$. Then the vectors $|\psi_1\rangle, |\psi_2\rangle, \ldots, |\psi_n\rangle$ are linearly independent.

- ► Can the eigenvectors of the distinct eigenvalues above form a basis for V if dim(V) = n?
- In quantum mechanics, the eigenvalues and eigenvectors of linear operators encoding physical observables such as the energy (aka the Hamiltonian) are very important!
- ▶ Be aware that physicists often write $|\lambda_1\rangle, |\lambda_2\rangle, \dots, |\lambda_n\rangle$ to denote the eigenvectors of $\lambda_1, \lambda_2, \dots, \lambda_n$!

Lecture 08

Complex Matrices

Definition (1.0)

Let m and n be two natural numbers. We define a $m \times n$ matrix over $\mathbb C$

as
$$A = [a_{ij}] = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}$$
 where $a_{ij} \in \mathbb{C}$.

- The index i indicates the row whereas j indicates the column e.g. a_{11} is the entry in the first row and first column.
- The entries a_{11}, a_{22}, a_{mn} are called the diagonal elements of matrix A. Often diag(A) or diag(a_{11}, a_{22}, a_{mn}) is to denote the diagonal of a matrix A.
- ▶ A is called a square matrix if m = n. We'll also continue using $M_n(\mathbb{C})$ to denote the set of all $n \times n$ matrices.

$M_n(\mathbb{C})$ Matrices as Operators for \mathbb{C}^n

Let
$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} \in M_n(\mathbb{C}) \text{ and } |\psi\rangle = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{pmatrix} \in \mathbb{C}^n.$$

The matrix A is of course a linear operator acting on $|\psi\rangle$ as follows:

$$A|\psi\rangle = \alpha_1 \begin{pmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{n1} \end{pmatrix} + \alpha_2 \begin{pmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{n2} \end{pmatrix} + \ldots + \alpha_n \begin{pmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{nn} \end{pmatrix}.$$

Since A is a linear operator, then we can talk about the eigenvectors and eigenvalues of A. Hence, anything we said about linear operators previously also applies to A!

Addition in $M_n(\mathbb{C})$

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} \qquad B = \begin{pmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \cdots & b_{nn} \end{pmatrix}$$

$$A + B = \begin{pmatrix} a_{11} + b_{11} & a_{12} + b_{12} & \cdots & a_{1n} + b_{1n} \\ a_{21} + b_{21} & a_{22} + b_{22} & \cdots & a_{2n} + b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} + b_{n1} & a_{n2} + b_{n2} & \cdots & a_{nn} + b_{nn} \end{pmatrix}$$

- It's easy to verify the following properties:
- 1. A + B = B + A for all $A, B \in M_n(\mathbb{C})$.
- 2. A + (B + C) = (A + B) + C for all $A, B, C \in M_n(\mathbb{C})$.

Scalar Multiplication in $M_n(\mathbb{C})$

$$\alpha A = \begin{pmatrix} \alpha a_{11} & \alpha a_{12} & \cdots & \alpha a_{1n} \\ \alpha a_{21} & \alpha a_{22} & \cdots & \alpha a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \alpha a_{n1} & \alpha a_{n2} & \cdots & \alpha a_{nn} \end{pmatrix} \text{ for all } A \in M_n(\mathbb{C}) \text{ and } \alpha \in \mathbb{C}.$$

- It's easy to verify that the scalar multiplication above satisfies all the scalar product properties of a vector space. Hence, $M_n(\mathbb{C})$ is of course a vector space \mathbb{C} with dimension $n \times n$.
- ▶ $M_n(\mathbb{C})$ becomes far more interesting if you give it the extra structure of a ring e.g. $M_n(\mathbb{C})$ as a \mathbb{C}^* algebra!
- ▶ Behind the scenes, the so-called density matrix formalism of quantum mechanics uses $M_n(\mathbb{C})$ as a \mathbb{C}^* algebra!

Multiplication in $M_n(\mathbb{C})$

For
$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}$$
 and $B = \begin{pmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \cdots & b_{nn} \end{pmatrix}$.

An easy way to help you see the product AB is as follow:

$$AB = (AB_1 \quad AB_2 \quad AB_3 \quad \dots \quad AB_n)$$
 where B_j is the j - column of B .

$$AB = \left(\begin{array}{ccc} A \begin{pmatrix} b_{11} \\ b_{21} \\ \vdots \\ b_{n1} \end{array}\right) \quad A \begin{pmatrix} b_{12} \\ b_{22} \\ \vdots \\ b_{n2} \end{pmatrix} \quad \cdots \quad A \begin{pmatrix} b_{1n} \\ b_{2n} \\ \vdots \\ b_{nn} \end{pmatrix} \right).$$

- It's easy to verify the following properties:
 - 1. In general $AB \neq BA$.

 - 2. A(BC) = (AB)C for all $A, B, C \in M_n(\mathbb{C})$. 3. A(B+C) = AB + AC for all $A, B, C \in M_n(\mathbb{C})$. 4. Hence, $M_n(\mathbb{C})$ is a non abelian ring with identity $\mathbb{I} = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \end{pmatrix}$.

Invertible Matrices

Definition (1.1)

A matrix $A \in M_n(\mathbb{C})$ is invertible if there exists $A^{-1} \in M_n(\mathbb{C})$ such that $AA^{-1} = A^{-1}A = \mathbb{I}$.

Proposition (1.0)

If $A, B \in M_n(\mathbb{C})$ are invertible, then the following statements are true:

- 1. AB is also invertible.
- 2. $(AB)^{-1} = B^{-1}A^{-1}$.

Proof: Homework challenge?

- ▶ Hence, the set of all invertible matrices in $M_n(\mathbb{C})$ denoted $GL(n,\mathbb{C})$ is a group!
- ▶ Please note that some authors use the notation $GL_n(\mathbb{C})$.

Diagonal Matrices

Definition (1.2)

 $A \in M_n(\mathbb{C})$ is called a diagonal matrix if it has the following form:

$$A = \begin{pmatrix} a_{11} & 0 & \cdots & 0 \\ 0 & a_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{pmatrix} \text{ such that } a_{ij} = 0 \text{ if } i \neq j.$$

▶ The following elements of $M_2(\mathbb{C})$ are examples of diagonal

matrices:
$$A = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
 and $B = \begin{pmatrix} 0 & 0 \\ 0 & -1 \end{pmatrix}$.

Proposition (1.1)

If $A, B \in M_n(\mathbb{C})$ are diagonal, then AB is also diagonal and AB = BA.

Proof: Homework challenge?

Invertible Diagonal Matrices

Proposition (1.2)

Let
$$D = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & 0 & 0 \\ \vdots & 0 & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix}$$
. The following statements are true:

1. *D* is invertible iff $\lambda_i \neq 0$ for all $i \in \{1, 2, ..., n\}$ i.e if all the diagonal elements are nonzero.

2.
$$D^{-1} = \begin{pmatrix} \frac{1}{\lambda_1} & 0 & \cdots & 0 \\ 0 & \frac{1}{\lambda_2} & 0 & 0 \\ \vdots & 0 & \ddots & \vdots \\ 0 & 0 & \cdots & \frac{1}{\lambda_n} \end{pmatrix}.$$

Proof: Homework challenge?

Where should you focus?

3.C Matrices (*Pages 70 - 78*)

Prof. Sheldon Axler

• GitHub (Curated study materials): github.com/quantumformalism

• YouTube: youtube.com/zaikugroup

• Twitter: @ZaikuGroup

• Gitter: gitter.im/quantumformalism/community