1.1 System of Linear Equations

線性方程組 (A System of Linear Equation) 的解有三種

- 1. 無解 (no solution)
- 2. 只有一解 (exactly one solution)
- 3. 無限多解 (infinitely many solutions)

初等列運算 (Elementary Row Operations)

- 1. (Replacement) 將一列替代成自身與與另一行的倍數總和
- 2. (Interchange) 將兩列互換
- 3. (Scaling) 將一列每個元素乘以一個非零常數

1.2 Row Reduction and Echelon Forms

若矩陣為階梯型矩陣 (Echelon Form),滿足

- 1. 所有非零列都在全零的列上方
- 2. 每一列的領導元 (leading entry) 都在上一列的領導元右方的行
- 3. 每一個領導元 (leading entry) 所在的行下方的元素都是 0

$$\begin{bmatrix} \blacksquare & * & * & * \\ 0 & \blacksquare & * & * \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & \blacksquare & * & * & * & * & * & * & * \\ 0 & 0 & 0 & \blacksquare & * & * & * & * & * \\ 0 & 0 & 0 & 0 & \blacksquare & * & * & * & * \\ 0 & 0 & 0 & 0 & 0 & \blacksquare & * & * & * & * \\ 0 & 0 & 0 & 0 & 0 & \blacksquare & * & * & * & * \\ 0 & 0 & 0 & 0 & 0 & \blacksquare & * & * & * & * \end{bmatrix}$$

■:領導元 (leading entry); *:任意值 (可為 0)

若矩陣為簡化的階梯型矩陣 (Reduced Echelon Form),額外滿足

- 1. 每一個領導元 (leading entry) 都是 1
- 2. 每一個領導元 (leading entry) 所在的行其他元素都是 0

```
\begin{bmatrix} 1 & 0 & * & * \\ 0 & 1 & * & * \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 & * & 0 & 0 & 0 & * & * & 0 & * \\ 0 & 0 & 0 & 1 & 0 & 0 & * & * & 0 & * \\ 0 & 0 & 0 & 0 & 1 & 0 & * & * & 0 & * \\ 0 & 0 & 0 & 0 & 1 & 0 & * & * & 0 & * \\ 0 & 0 & 0 & 0 & 0 & 1 & * & * & 0 & * \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & * \end{bmatrix}
```

定理 1: 簡化的階梯型矩陣 (Reduced Echelon Form) 有唯一性

每個矩陣最終都只能等價於一個簡化的階梯型矩陣 (reduced echelon form)

軸元位置 (Pivot Position)

軸元位置 (pivot position) 是簡化的階梯型矩陣 (reduced echelon form) 中每一列的領導元 (leading entry) 所在的位置。

(即便是簡化前的矩陣, pivot position 也是簡化的階梯型矩陣中領導元的位置)

列化簡算法 (Row Reduction Algorithm, RRA)

- 1. 從矩陣中最左邊的非零行開始,軸元位置 (pivot position) 必在最上方一列 (若第一列為 0,與其他列互換)
- 2. 選定軸元位置 (pivot position) 後,向下消去其他列,使軸行 (pivot column) 其他元素為 0
- 3. 簡化每一列,使得每一列的軸元 (pivot) 為 1
- 4. 向上消去其他列

定理2:存在唯一性定理

線性方程組 (linear system) 是一致 (consistent) 的,若且唯若 (if and only if) 線性方程組 (linear system) 的增廣矩陣中最右邊的行**不是軸行** (pivot column) ,若且唯若 (if and only if) 階梯型矩陣 (echelon form) 沒有以下形式的列:

$$[0\ 0\ ...\ 0\ b],\,b\neq 0$$

若線性方程組 (linear system) 是一致 (consistent) 的,則解可能為

- 1. 無自由變數 (free variable) 時,有唯一解 (a unique solution)
- 2. 有至少一個自由變數 (free variable) 時,有無限多解 (infinitely many solutions)

<註> 有自由變數不代表一定有無限多解,可能是無解

1.3 Vector Equations

Vector in
$$\mathbb{R}^n$$
 表示為 $\begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$, $x_1 \dots x_n \in \mathbb{R}$

<註>粗體字代表向量

加法平行四邊形法則 (Parallelogram Rule for Addition)

如果 $\mathbf{u} + \mathbf{v}$ in \mathbb{R}^n ,而 $\mathbf{u} \cdot \mathbf{0} \cdot \mathbf{v}$ 分別是平行四邊形的三個向量,則 $\mathbf{u} + \mathbf{v}$ 就是第四個點。如下圖:

ℝⁿ 的代數性質 (Algebraic Properties)

 $\mathbf{u} \cdot \mathbf{v} \cdot \mathbf{w}$ in \mathbb{R}^n ; $\mathbf{c} \cdot \mathbf{d}$ 為純量

1. 有交換 (commutative) 律

$$\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$$

$$\mathbf{u} + \mathbf{0} = \mathbf{0} + \mathbf{u} = \mathbf{u}$$

$$u + (-u) = (-u) + v = 0$$

2. 有結合 (associative) 律

$$(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$$

$$c(d\mathbf{u}) = (cd)\mathbf{u}$$

3. 有分配 (distribution) 律

$$c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$$

$$(c + d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$$

線性組合 (Linear Combinations)

若且唯若 (if and only if) **b** 可以透過 $a_1, a_2, ..., a_n$ 的線性組合 (linear combination) 產生,則下式 1 所示的增廣矩陣 (augmented matrix) 對應的線性方程組有解。

一個向量方程 (vector equation) $x_1 \mathbf{a_1} + x_2 \mathbf{a_2} + \dots + x_n \mathbf{a_n} = \mathbf{b}$ 與下式 1 有相同的解

$$[a_1 \ a_2 \ ... \ a_n \ b] - \stackrel{1}{\lesssim} 1$$

定義: \mathbb{R}^n 生成的子集

如果 $v_1 ... v_p$ in \mathbb{R}^n , $v_1 ... v_p$ 的所有線性組合表示為 $Span\{v_1 ... v_p\}$,稱為 \mathbb{R}^n 生成的子集 (subset of \mathbb{R}^n spanned (or generated) ,生成)。

 $Span\{v_1 \dots v_p\}$ 也可以寫為 $c_1v_1 + c_2v_2 + \dots + c_nv_n$, c 是純量 (scalar) 的形式。

1.4 The Matrix Equation Ax = b

定義:Ax = b

設 A 是 m × n 的矩陣, 其行為 $a_1, ..., a_n$, x in \mathbb{R}^n 。 Ax 為使用 x 的對應項目作為權重的 A 矩陣的行的線性組合 (linear combination), 即:

$$Ax = [a_1, ..., a_n] \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = a_1x_1 + \cdots + a_nx_n$$

定理 3:線性方程 vs 增廣矩陣 vs 向量方程 vs 矩陣方程

直接舉例說明:

$$\begin{cases} x_1 + 2x_2 - x_3 = 4 \\ -5x_2 + 3x_3 = 1 \end{cases}$$
 - 線性方程 (linear equation)

$$\begin{bmatrix} 1 & 2 & -1 & 4 \\ 0 & -5 & 3 & 1 \end{bmatrix} - 增廣矩陣 (augmented matrix)$$

$$x_1\begin{bmatrix}1\\0\end{bmatrix}+x_2\begin{bmatrix}2\\-5\end{bmatrix}+x_3\begin{bmatrix}-1\\3\end{bmatrix}=\begin{bmatrix}4\\1\end{bmatrix}$$
 - 向量方程 (vector equation)

$$\begin{bmatrix} 1 & 2 & -1 \\ 0 & -5 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 4 \\ 1 \end{bmatrix} - 矩陣方程$$
 (matrix equation)

解的存在性 (Existence of Solutions)

當 Ax = b 有解時,若且唯若 (if and only if) b 是 A 各行的線性組合 (linear combination)

定理 4:

以下幾點具有等價性 (全符合或全不符合,不存在部分符合)

A 是 m×n 的矩陣

- 1. 任何 \mathbf{b} in \mathbb{R}^m , $A\mathbf{x} = \mathbf{b}$ 都有解
- 2. 任何 **b** in \mathbb{R}^m 都是 A 的每一行的線性組合 (linear combination)
- 3. A 的行會生成 \mathbb{R}^m
- 4. A 在每一列都有軸元位置 (pivot column)

<註> 寫題目時可利用 4. 證明 1.2.3.

計算 Ax 的列向量規則 (Row-Vector Rule for Computing Ax)

高中已學過

 a_{ij} 代表 A 中第 i 列、第 j 行的元素 (A 是 $m \times n$ 的矩陣)

 x_i 代表 x 中第 i 列的元素 (x 是 $n \times 1$ 的向量)

 k_i 代表 **b**(解) 中第 i 列的元素(**b** 是 m × 1 的向量)

币 $k_i = a_{i0} \times x_0 + a_{i1} \times x_1 + \cdots + a_{in} \times x_n$

定理5:Ax 的性質

若 A 是 $m \times n$ 的矩陣; $\mathbf{u} \cdot \mathbf{v}$ in \mathbb{R}^n ; \mathbf{c} 是純量

- 有結合 (associative) 律
 A(cu) = c(Au)
- 2. 有分配 (distribution) 律

$$A(\mathbf{u} + \mathbf{v}) = A\mathbf{u} + A\mathbf{v}$$

$$A(\mathbf{u} + \mathbf{v}) = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_3 \end{bmatrix} \begin{bmatrix} u_1 + v_1 \\ u_2 + v_2 \\ u_3 + v_3 \end{bmatrix}$$

$$= (u_1 + v_1)\mathbf{a}_1 + (u_2 + v_2)\mathbf{a}_2 + (u_3 + v_3)\mathbf{a}_3$$

$$\uparrow \qquad \uparrow \qquad \text{Columns of } A$$

$$= (u_1\mathbf{a}_1 + u_2\mathbf{a}_2 + u_3\mathbf{a}_3) + (v_1\mathbf{a}_1 + v_2\mathbf{a}_2 + v_3\mathbf{a}_3)$$

$$= A\mathbf{u} + A\mathbf{v}$$

3. 無交換 (commutative) 律

1.5 Solution Sets of Linear Systems

齊次線性方程組 (Homogeneous Linear Systems)

齊次方程 (homogeneous equation) Ax = 0 有非平凡解 (nontrivial solution) ,若且唯若 (if and only if) 有至少一個自由變數 (free variable)。

參數向量形式 (Parametric Vector Form)

$$\mathbf{x} = \mathbf{s}\mathbf{u} + \mathbf{t}\mathbf{v}$$
 (s, t in \mathbb{R}) 舉例而言

$$3x_1 + 5x_2 - 4x_3 = 0
-3x_1 - 2x_2 + 4x_3 = 0
6x_1 + x_2 - 8x_3 = 0$$

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} \frac{4}{3}x_3 \\ 0 \\ x_3 \end{bmatrix}$$

即
$$\mathbf{x} = x_3 \begin{bmatrix} \frac{4}{3} \\ 0 \\ 1 \end{bmatrix}$$
 $(x_3 \text{ is free})$ — 參數向量方程 (parametric vector equation)

非齊次方程組的解 (Solutions of Nonhomogeneous Systems)

當非齊次方程組是一致(consistent)時,非齊次方程組比齊次方程組多一個p,即特定解 (particular solution)

特定解 p (particular solution) 即平移齊次方程組 (homogeneous linear system)的向量, 平移後即是非齊次方程組 (nonhomogeneous linear system)

舉例而言

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -1 + \frac{4}{3}x_3 \\ 2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -1 \\ 2 \\ 0 \end{bmatrix} + \begin{bmatrix} \frac{4}{3}x_3 \\ 0 \\ x_3 \end{bmatrix} = \begin{bmatrix} -1 \\ 2 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} \frac{4}{3} \\ 0 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} -1 \\ 2 \\ 0 \end{bmatrix}$$
 - 特定解 (particular solution)

定理 6:

假設給定某一向量 \mathbf{b} ,使 $\mathbf{A}\mathbf{x} = \mathbf{b}$ 是一致的 (consistent),並讓 \mathbf{p} 是其中一解。則 $\mathbf{A}\mathbf{x}$ = \mathbf{b} 的解集可寫為 $\mathbf{w} = \mathbf{p} + \boldsymbol{v_h}$,其中 $\boldsymbol{v_h}$ 是齊次方程 $\mathbf{A}\mathbf{x} = \mathbf{0}$ 的任意一解。

1.7 Linear Independence

定義 1:線性獨立 (Linearly Independent)

若一組向量 $\{v_1, v_2, ..., v_n\}$ in \mathbb{R}^n ,而只有平凡解 (trivial solution) 時,即 $x_1, x_2, ..., x_n$ 全為 0,為線性獨立 (linearly independent)

$$x_1v_1 + x_2v_2 + \cdots + x_nv_n = 0$$

定義 2:線性相依 (Linearly Dependent)

若一組向量 $\{v_1, v_2, ..., v_n\}$ in \mathbb{R}^n ,且存在權重 $c_1, c_2, ..., c_n$ 不全為 0,即為線性相依 (linearly dependent)

$$c_1 \boldsymbol{v}_1 + c_2 \boldsymbol{v}_2 + \dots + c_n \boldsymbol{v}_n = \mathbf{0}$$

矩陣行的線性獨立 (Linear Independence of Matrix Columns)

矩陣 A 的行是線性獨立 (linearly independent)時,若且唯若 (if and only if) 方程 Ax = 0 只有平凡解 (trivial solution)。

兩個向量集的線性關係

若一組兩個向量 $\{v_1, v_2\}$ 是線性相依 (linearly dependent),則至少有一向量是另一個的倍數關係。

若一組兩個向量 $\{v_1, v_2\}$ 是線性獨立 (linearly independent),則兩個向量彼此之間沒有 倍數關係。

定理7:

線性相關集的表徵 (Characterization of Linearly Dependent Sets)

兩個或多個向量 $S = \{v_1, ..., v_p\}$ 是線性相依 (linearly dependent) 時,若且唯若 (if and only if) 向量集 S 中至少一個向量是其他向量的線性組合 (linear combination)。 如果 S 是線性相依 (linearly dependent) 且 $v_1 \neq 0$,則 v_j (j > 1) 是前面的向量 $v_1, ..., v_{j-1}$ 的線性組合 (linear combination)。

定理8:集合內向量超過矩陣列數

若集合包含的向量超過矩陣的列數,則該集合為線性相依 (linearly dependent)。 任何向量集 $\{v_1,...,v_p\}$ in \mathbb{R}^n 且 p>n 時,該集合為線性相依 (linearly dependent)。

定理9:集合內向量有零向量

若向量集 $S = \{v_1, ..., v_p\}$ 中包含零向量,則該集合為線性相依 (linearly dependent)。

1.8 Introduction to Linear Transformations

名詞定義

對於一個變換 (transformation) $T: \mathbb{R}^n \to \mathbb{R}^m$, 說明名詞:

定義域 (domain): 包含在 \mathbb{R}^n 中的集合

對應域 (codomain): 包含在 \mathbb{R}^m 中的集合

像 (image): x in \mathbb{R}^n , 經過 T 轉移後的結果 T(x) 可稱為 x 的像 (image)

值域 (range): T(x) 所形成的集合

變換矩陣 (Matrix Transformations)

對任意 x in \mathbb{R}^n , T(x) 可看為 Ax, A 是 $m \times n$ 矩陣, 有時會簡化寫成 $x \mapsto Ax$ 。

剪切變換(Shear Transformation)

將原本的形狀沿著某一方向推移,推移方向取決於每一列中非對角線的非零元素,而推移大小取決於該元素與對應的 x 的乘積。當 $(x)=\begin{bmatrix}1&0*&1\end{bmatrix}x$ (*表示該位置是非零的數)時,推移的方向是第 2 列,就是 x_2 方向,推移的大小是 * 倍的 x_1 。例如 $T(x)=\begin{bmatrix}1&2\\0&1\end{bmatrix}x$ 即是如下圖一樣,將圖形向 x_1 推移兩倍 x_2 (x_1 從 2 變成 2 $+2\times 2=6$)

定義:線性變換(Linear Transformations)

如果滿足以下條件,代表變換(transformation 或 mapping) T 是線性(linear)的。

- 1. $T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v}), \mathbf{u} \cdot \mathbf{v}$ 在 T 的定義域 (domain)中 式 1
- 2. $T(c\mathbf{u}) = cT(\mathbf{u})$, c 是純量 (scalar), \mathbf{u} 在 T 的定義域 (domain)中 式 2

定義延伸:

若 T 是線性變換 (linear transformation), 則滿足以下幾點:

- 1. $T(\mathbf{0}) = \mathbf{0}$
- \Rightarrow $T(\mathbf{0}) = \mathbf{0}$ 對於式 $1 \cdot 2$ 而言是必要 (necessary) 條件

因為可以從式 1×2 推得本式,但因為不能從本式推得式 1×2 ,因此不是充分 (sufficient)條件

2. T(cu + dv) = cT(u) + dT(v), $c \cdot d$ 是純量 (scalar), $u \cdot v$ 在 T 的定義域 (domain) => T(cu + dv) = cT(u) + dT(v) 對於式 $1 \cdot 2$ 而言是充分且必要 (necessary & sufficient) 的條件

因為可以從式1、2 推得本式,亦可由本式推得式1、2。

- 3. $T(c_1 v_1 + \dots + c_p v_p) = c_1 T(v_1) + \dots + c_p T(v_p)$
- 第2點的標準型,被稱為疊加原理(superposition principle)。

收縮與擴張 (Contraction & Dilation)

當 $T: \mathbb{R}^n \to \mathbb{R}^n$ 由 $T(\mathbf{x}) = r\mathbf{x}$ 組成:

- 1. $0 \le r \le 1$ 時為收縮 (contraction)
- 2. r > 1 時為擴張 (dilation)

寫成矩陣形式是 $\begin{bmatrix} r & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & r \end{bmatrix}$,即單位矩陣 \times r

1.9 The Matrix of a Linear Transformation

定理 10:線性變換 (Linear Transformation)

當 $T: \mathbb{R}^n \to \mathbb{R}^m$ 是線性變換 (linear transformation) 時,存在唯一的矩陣 A,使得 $T(x) = Ax, \text{ x in } \mathbb{R}^n$

A 是一個 m × n 矩陣,第 j 行是 $T(e_j)$,而 e_j 只在第 j 列是 l,而其他列都是 0,此時 A 稱為線性變換 (linear transformation) T 的標準矩陣 (standard matrix),如下:

$$A = [T(e_1) \cdots T(e_n)]$$

旋轉的標準矩陣

$$A = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$$

定義:滿射(Onto)

一個映射 (mapping) $T: \mathbb{R}^n \to \mathbb{R}^m$ 。如果任意 **b** in \mathbb{R}^m 都由**至少一個 x** in \mathbb{R}^n 經過映射 (mapping) T 變換後得到,就稱為滿射 (onto)。

<註>上述可說明當滿射 (onto) 時,對應域 (codomain) 與值域 (range) 相等,如圖

定義:一對一(One-to-One)

一個映射 (mapping) $T: \mathbb{R}^n \to \mathbb{R}^m$ 。如果任意 **b** in \mathbb{R}^m 都由**至多一個 x** in \mathbb{R}^n 經過映射 (mapping) T 變換後得到,就稱為一對一 (one-to-one)。

<註>上述不可說明當一對一 (one-to-one) 時,對應域 (codomain) 與值域 (range) 相等,因為至多一個對應一個,但可能完全沒被對應,如圖:

定理 11: 一對一 (One-to-One) - 線性變換

令 $T: \mathbb{R}^n \to \mathbb{R}^m$ 為線性變換 (linear transformation)。若且唯若 (if and only if) 方程式 $T(\mathbf{x}) = 0$ 只有平凡解 (trivial solution),T 為一對一 (one-to-one) 的。

<複習> 只有平凡解 (trivial solution): 無自由變數、線性獨立 (linearly independent)

定理12:線性變換的性質

令 $T: \mathbb{R}^n \to \mathbb{R}^m$ 為線性變換 (linear transformation),而 A 為 T 的標準矩陣 (standard matrix),則:

- 1. 若且唯若 (if and only if) A 的行生成 (span) \mathbb{R}^m , T 從 \mathbb{R}^n 到 \mathbb{R}^m 是滿射 (onto)
- 2. 若且唯若 A 的行是線性獨立 (linearly independent) 的, T 是一對一 (one-to-one)

中英對照表

英文	中文
Linear equation	線性方程
Coefficients	
A system of linear equation	線性方程組
(Linear system)	
Equivalent	相等 (等價)
Coefficient matrix	係數矩陣
Augmented matrix	增廣矩陣
Echelon form	階梯型矩陣
Reduced echelon form	簡化的階梯型矩陣
Leading entry	領導元
Pivot	軸元
Pivot column	軸行
Pivot position	軸元位置
Variable	變數
Basic variable	基變數
Free variable	自由變數
Vector	向量
Column vector	向量 (寫成矩陣只有一行)
Scalar	純量
Linear combination	線性組合
Vector equation	向量方程
Matrix equation	矩陣方程
Homogeneous	齊次
Homogeneous equation	齊次方程
Nonhomogeneous	非齊次
Nonhomogeneous equation	非齊次方程
Trivial solution	平凡解 (解為 0)
Nontrivial solution	非平凡解 (解不為 0)
Parametric vector equation	參數向量方程
Particular solution	特定解
Linearly independent	線性獨立
Linearly dependent	線性相依
Transformation	變換

Domain	定義域
Codomain	對應域
Range	值域
Image	像
Matrix transformation	變換矩陣
Shear transformation	剪切變換
Superposition principle	疊加原理
Contraction	收縮
Dilation	擴張
Standard matrix	標準矩陣
Onto	满射