The long-run effects of monetary policy

Òscar Jordà * Sanjay R. Singh § Alan M. Taylor‡

CEBRA Annual Meeting July 2023

- * Federal Reserve Bank of San Francisco; University of California, Davis
- § Federal Reserve Bank of San Francisco; University of California, Davis
 - [‡] University of California, Davis; NBER; CEPR

How long do the effects of monetary interventions last? Methods

data: historical panel, 115 years x 17 ; GDP, capital, labor, TFP

identification: trilemma of international macroeconomics

method: local projections instrumental variables (LP-IV)

precedents: check validity for US/UK

This paper

Outline of the key findings

Empirical

- large persistent effects of monetary shocks
- labor returns to pre-trend level, capital and TFP persistently lower
 - asymmetry: loosening shocks harmless, tightening shocks harmful

Other monetary shocks

- US
 - Brunnermeier, Palia, Sastry, and Sims (2021, AER)
 - Miranda-Agrippino and Ricco (2021, AEJ Macro)
- UK
 - Cesa-Bianchi, Thwaites, and Vicondoa (2020, EER)

EMPIRICAL ANALYSIS

Data

Annual 1900–2015 (excluding world wars) for 17 advanced economies

Data requirement: long span of data for outcomes/controls and the IV

Jordà, Schularick & Taylor (2017)
www.macrohistory.net/data/
Interest rates, output, inflation, investment, house & stock prices, consumption ...

Bergeaud, Cette & Lecat (2016)
www.longtermproductivity.com

hours worked, number of employees, capital stock (machines and buildings)...

17 advanced economies in our sample:
Australia, Belgium, Canada, Denmark, Finland, France, Germany, Italy, Japan, Netherlands, Norway, Portugal, Spain, Sweden, Switzerland, U.K., and U.S.

The trilemma instrument. Jordà, Schularick and Taylor (2019, JME) peg + open to capital → correlated interest rates

3 subpopulations: bases (b), pegs, floats

 $k_{i,t}$ index \in [0,1] Quinn, Schindler, and Toyoda (2011), 1 is open

 $q_{j,t}$ indicator $\in \{0,1\}$ if peg in t and t-1

$$\mathbf{z}_{j,t} = k_{j,t} (\Delta i_{b(j,t),t} - \Delta \hat{i}_{b(j,t),t})$$
 (base "pre-cleaned" using $\mathbf{x}_{b(j,t),t}$ controls, à la RR)

- intervention: $\Delta i_{i,t}$ short-rate proxy, 3-mo govt. bill
- instrument: $z_{j,t}$ trilemma IV (for $q_{j,t} = 1$; LATE)
- outcomes: home output and its components (at t, t + 1, ..., t + H)

home-base links summary stats exchange regime switches

IV construction

Residualized component $\Delta \widehat{R}_{b(i,t),t}$ of base country interest rates

 $\Delta \widehat{R}_{b(i,t),t} = (\Delta R_{b(i,t),t} - \Delta \widetilde{R}_{b(i,t),t})$ where b(i,t) denotes the base for country i at time t and the final term is the predicted interest rate from a cleaning regression.

The instrument is relevant

■ intervention: $\Delta i_{j,t}$ 3-mo govt. bill

■ instrument: $z_{j,t}$ trilemma IV

First Stage: $\Delta i_{j,t} = a_j + z_{j,t}b + x_{j,t}g + \eta_{j,t}$

	peg	pegs ($q=1$)		
	All years	PostWW2		
Ь	0.59***	0.61***		
t-statistic	[9.47]	[9.02]		

coefficients ≈ Obstfeld, Shambaugh & Taylor (2005)

Panel local projections with external instruments: LP-IV

assumption that instrument is valid, conditional on controls x (saturate)

$$\Delta i_{j,t} = a_j + x_{j,t}g + z_{j,t}b + \eta_{j,t} o \widehat{\Delta} i_{j,t}$$
 (first stage)

$$y_{j,t+h} - y_{j,t-1} = \alpha_{j,h} + x_{j,t} \gamma_h + \widehat{\Delta} i_{j,t} \beta_h + \nu_{j,t+h}$$
 (second stage LP)

Empirics

baseline result: real GDP — the long shadow

† confidence bands: 68% and 95% Driscoll & Kraay (1998) standard errors

short term nominal interest rate and CPI

† confidence bands: 68% and 95% Driscoll & Kraay (1998) standard errors, sample: 1900–2015

ROBUSTNESS

Robustness with pre-trends: IRF of Real GDP

+ confidence bands: 68% and 95% Driscoll & Kraay (1998) standard errors, sample: 1900–2015

Dropping each country one at a time: IRF of Real GDP

Dropping successive 5-year windows one at a time: IRF of Real GDP

Spillover: exclusion restriction violation

If the instrument $z_{i,t}$ affects the outcome through other channels θ

$$y_{j,t+h} - y_{j,t} = \alpha_{j,h} + x_{j,t} \gamma_h + \widehat{\Delta} i_{j,t} \beta_h + z_{j,t} \theta + \nu_{j,t+h}$$

• e.g. a recession in base reduces demand for home exports

Spillover correction:

Employ a control function approach, by using the model to get a bound:

$$\theta = \underbrace{\begin{array}{c} \text{share of exported tradables} \\ \text{in home output} \end{array}}_{\text{calibrate: } \Phi \in [0, \ 0.3]} \times \underbrace{\begin{array}{c} \text{responsiveness of exported} \\ \text{tradable demand to base interest rate} \\ \text{assumption: upper bound } = \beta_h \end{array}}_{\text{assumption: upper bound } = \beta_h$$

→ Estimate an augmented LP :

$$y_{j,t+h} - y_{j,t} = \alpha_{j,h} + x_{j,t} \gamma_h + \left(\widehat{\Delta} i_{j,t} + \Phi z_{j,t}\right) \beta_h + \nu_{j,t+h}$$

Model-based spillover correction

+ confidence bands: 68% and 95% Driscoll & Kraay (1998) standard errors, sample: 1900–2015

open economy variables: exclusion restriction

control for (i) base country GDP, (ii) global GDP, (iii) own current account and (iv) exchange rate wrt USD

+ confidence bands: 68% and 95% Driscoll & Kraay (1998) standard errors, sample: 1900–2015

IRFs of real GDP: structural breaks in TFP

Fernald, 2007, 2014; Gordon 2016

Allow intercept to be regime-dependent based on Bai & Perron (1998)

t confidence bands: 68% and 95% Driscoll & Kraay (1998) standard errors, sample: 1900–2015

SOLOW DECOMPOSITION & ASYMMETRY

Inspecting the mechanism – LPs for the Solow decomposition

† confidence bands: 68% and 95% Driscoll & Kraay (1998) standard errors, sample: 1900–2015

Asymmetric responses, contractionary shocks

 $\mbox{\dag}$ confidence bands: 68% and 95% Driscoll & Kraay (1998) standard errors, sample: 1900–2015

Asymmetric responses, expansionary shocks

† confidence bands: 68% and 95% Driscoll & Kraay (1998) standard errors, sample: 1900–2015

OTHER MONETARY SHOCKS

Miranda-Agrippino and Ricco (2021, AEJ Macro)

Extend replication code of published studies to 8-year horizon

Shaded areas denote 90% posterior coverage bands in panels (a) and (b).

Brunnermeier, Palia, Sastry, and Sims (2021, AER)

Extend replication code of published studies to 8-year horizon

Shaded areas denote 90% posterior coverage bands in panets (a) and (b).

Cesa-Bianchi, Thwaites, and Vicondoa (2020, EER)

Extend replication code of published studies to 8-year horizon

Shaded areas denote 68% confidence intervals computed using moving block bootstrap with 5,000 replications.

Conclusion: Pushing on a long string?

long-run money neutrality may not hold

- a monetary tightening shock:
 - causes output to decline over a long period of time
 - because it causes the capital stock and TFP to decline

evidence based on

- small-open economy NK model to formalize identification
- LP-IV estimation using universe of available historical data
- various robustness exercises and alternative identification schemes

The long-run effects of monetary policy

Òscar Jordà * Sanjay R. Singh § Alan M. Taylor‡

CEBRA Annual Meeting July 2023

- * Federal Reserve Bank of San Francisco; University of California, Davis
- \S Federal Reserve Bank of San Francisco; University of California, Davis
 - [‡] University of California, Davis; NBER; CEPR

The views expressed herein are solely the responsibility of the authors and should not be interpreted as reflecting the views of the Federal Reserve Bank of San Francisco or the Board of Governors of the Federal Reserve System.

additional slides

Households

$$\max_{\{C_t, l_t, B_{t+1}\}} \sum_{t=0}^{\infty} \zeta^t \left[\log(C_t) - \varphi \frac{l_t^{1+\nu}}{1+\nu} \right]$$

subject to

$$P_{Tt}C_{Tt} + P_{Nt}C_{Nt} + P_{Tt}d_t + B_t = W_tl_t + P_{Tt}Y_{Tt} + P_{Tt}\frac{d_{t+1}}{R_t} + \frac{B_{t+1}}{R_t^n} + T_t + Z_t$$

$$C_t = \left(\frac{C_{Tt}}{\omega}\right)^{\omega} \left(\frac{C_{Nt}}{1-\omega}\right)^{1-\omega}$$

 ζ is the discount factor, ν is the (inverse) Frisch elasticity of labor supply, and φ is a scaling parameter, C_{Tt} is tradable good, C_{Nt} is non-tradable good, and $\omega \in (0,1)$ is the tradable share

Production of non-tradables

A Dixit-Stiglitz aggregate over a continuum of products

$$C_{Nt} \equiv \left(\int_0^1 C_{Nt}(i)^{(\epsilon_p - 1)/\epsilon_p} di \right)^{\epsilon_p/(\epsilon_p - 1)}$$

where $\epsilon_p > 1$ is the elasticity of substitution.

Each monopolistically competitive firm has identical technology

$$Y_{Nt}(i) = L_{Nt}(i)$$

Prices are set one-period in advance as in Obstfeld and Rogoff (1995).

Policy and Market Clearing

Monetary Policy Rule in

1 the Benchmark Economy:

$$R_t^n = \bar{R}^n e^{\epsilon_t}$$
; (+ equilibrium selection)

2 the Peg economy

$$\mathcal{E}_t = 1$$

Non-tradable goods and labor:

$$l_t = L_{Nt} = Y_{Nt} = C_{Nt}$$

External budget constraint:

$$C_{Tt} + d_t = Y_{Tt} + \frac{d_{t+1}}{R_t}$$

Assume constant weights on GDP aggregator

Equilibrium

- Analyze the economy starting at a deterministic steady state indexed by d_1 .
- One-time unanticipated shock
 - 1 to a domestic policy rule in the benchmark economy configuration
 - 2 to a large economy interest rate in the peg economy configuration

Home—base country links by era

Base country interest rate	Pre-WW1	Interwar	Bretton Woods	Post-BW
UK (Gold standard/BW base)	All countries		Sterling bloc: AUS*	
UK/USA/France composite (Gold standard base)		All countries		
USA (BW/Post-BW base)			All other countries	Dollar bloc: AUS, CAN, CHE, JPN, NOR
Germany (EMS/ERM/Eurozone base)				All other countries

^{*} we treat AUS as moving to a dollar peg in 1967

Summary statistics

average peg: 21 years (note: gold + Bretton Woods)
Obstfeld and Rogoff (1995): 5yrs (developing countries)

pegs are more open than floats

average degree of capital openness: \bar{k}

a	ll years	post	WW2
pegs $(q = 1)$	floats $(q = 0)$	pegs $(q = 1)$	floats $(q=0)$
0.87 (0.21)	0.70 (0.31)	0.76 (0.24)	0.74 (0.30)

how often do countries switch exchange rate regime? excluding wars

	1870–2013		1870-1939		1948–2015	
	Frequency	%	Frequency	%	Frequency	%
float to peg no change peg to float	19 954 19	2 96 2	6 191 8	3 93 4	13 763 11	2 97 1
Total	992	100	205	100	787	100

What are the controls?

implementation details on choice of x:

- log real GDP; log real C; log real I
- log CPI
- short-term (3m) + long-term (5y) govt. rates
- log real stock prices; log real house prices
- credit to GDP
- log real global GDP: common global shocks
- log real base-country GDP: trade linkages

lags: 2

transformations: log differences \times 100

(except interest rates and credit to GDP ratio)

sample: 1900–2015, 17 advanced economies, annual frequency

Back

Other Monetary Shocks: US Economy

Extend replication code of published studies to 8-year horizon

- 1 Miranda-Agrippino and Ricco (2021 AEJ Macro, 2023 JME)
 - high-frequency surprises around FOMC announcements + Greenbook forecasts
 - monthly Bayesian proxy-VAR(12)
 - Sample 1979:1- 2014:12
- 2 Brunnermeier, Palia, Sastry, and Sims (2021, AER)
 - identification by heteroskedasticity (Rigobon 2003)
 - ten-variable monthly Bayesian SVAR(10) model
 - Sample 1973:1–2015:6

Other Monetary Shocks: UK Economy

Extend replication code of published studies to 8-year horizon

- 1 Cesa-Bianchi, Thwaites, and Vicondoa (2020, EER)
 - series of monetary policy surprises for the UK using intra-day three-month Sterling futures data
 - monthly proxy SVAR(4)
 - Sample 1992:1-2015:1