	Olin	Jim Rifat 1
সূচীপত্র 1 DP 1.1 Convex Hull Trick 1.2 DC_dp 1.3 DnC 1.4 Knuth's Optomization 1.5 Li Chao Tree 1.6 SOS DP		4.2.5 Convex hall
2 Data Structures 2.1 2D fenwick tree 2.2 Dsu		4.4 Modular Arithmatic
3 Graph 3.1 Articulation Point Detection 3.2 Bridge Detection 3.3 Centroid Decomposition 3.4 DSU On Tree 3.5 Dinic 3.6 Heavy Light Decomposition 3.7 Hopcroft Karp 3.8 Hungarian 3.9 LCA(sparse table) 3.10MCMF(SPFA)		4.6.2NTT 18 4.7 2-SAT 18 4.8 Catalan_number 19 4.9 Diophantine_Equation 19 4.10Euler_Totient 19 4.11Extended Euclid 19 4.12Mobius Function 20 4.13Primes_stuff 20 4.14Xor basis 21 4.15stirling_number_of_2nd_kind 21 8 5.1 Compilation 21
3.11MCMF(normal)		9 5.2 Ordered_set
4 Math 4.1 Algebra		11 6.4 KMP_full

1 DP

1.1 Convex Hull Trick

```
const ll is_query = -(1LL << 62);</pre>
const ll inf = 1e18L;
struct Line {
 ll m, b;
 mutable function<const Line *()> succ;
 bool operator<(const Line &rhs) const {</pre>
   if (rhs.b != is_query)
     return m < rhs.m;
    const Line *s = succ();
   if (!s)
     return 0:
    int x = rhs.m;
   return b - s -> b < (s -> m - m) * x;
/* will maintain upper hull for maximum
* for minimum insert line as (-m,-b) !!
* then the ans would be -ans
struct HullDynamic : public multiset<Line> {
 bool bad(iterator y) {
   auto z = next(y);
   if (y == begin()) {
     if (z == end())
       return 0:
     return y->m == z->m \&\& y->b <= z->b;
   auto x = prev(y);
   if (z == end())
     return y->m == x->m && y->b <= x->b;
    __int128 left = __int128(x-b - y-b) * (z-m - y-b)
    _{int128} right = _{int128}(y->b-z->b) * (y->m-
    \rightarrow x->m);
   return left >= right;
 void insert_line(ll m, ll b) {
   auto y = insert({m, b});
   y->succ = [=] { return next(y) == end() ? 0 :
    if (bad(y)) {
     erase(y);
     return;
   while (next(y) != end() && bad(next(y)))
     erase(next(v));
   while (y != begin() && bad(prev(y)))
     erase(prev(v)):
 ll query(ll x) {
   auto l = *lower_bound((Line){x, is_query});
    return l.m * x + l.b;
```

1.2 DC_dp

```
int m, n;
vector<long long> dp_before(n), dp_cur(n);
long long C(int i, int j);
```

```
void compute(int l, int r, int optl, int optr) {
  if (l > r)
    return;
  int mid = (l + r) >> 1;
  pair<long long, int> best = {LLONG_MAX, -1};
  for (int k = optl; k <= min(mid, optr); k++)
    best = min(best, \{(k ? dp_before[k - 1] : 0) + C(k,
  → mid), k});
dp_cur[mid] = best.first;
  int opt = best.second;
  compute(l, mid - 1, optl, opt);
  compute(mid + 1, r, opt, optr);
int solve() {
  for (int i = 0; i < n; i++)
    dp_before[i] = C(0, i);
  for (int i = 1; i < m; i++) {
    compute(0, n - 1, 0, n - 1);
    dp_before = dp_cur;
  return dp_before[n - 1];
11.3 DnC
const ll inf = 1e15L:
const int mx = 1e5 + 5;
ll ara[mx], sum[mx];
ll dp[105][mx];
ll C(int i, int j, int k) { return 1LL * k * (sum[j] -

    sum[i - 1]); }

void compute(int groupNo, int l, int r, int optL, int

→ optR) {
  if (l > r)
    return;
  int mid = (l + r) / 2;
  dp[groupNo][mid] = -inf;
  int optNow = optL;
  for (int endOfLast = optL; endOfLast <= optR &&

→ endOfLast < mid;
</p>
        endOfLast++) {
    ll ret = dp[groupNo - 1][endOfLast] + C(endOfLast +

→ 1, mid, groupNo);

    if (ret >= dp[groupNo][mid]) {
      dp[groupNo][mid] = ret;
      optNow = endOfLast;
  compute(groupNo, l, mid - 1, optL, optNow);
  compute(groupNo, mid + 1, r, optNow, optR);
void solve() {
  for (int groupNo = 2; groupNo <= k; groupNo++) {</pre>
    compute(groupNo, 1, n, 1, n);
for (int i = groupNo + 1; i <= n; i++)</pre>
      dp[groupNo][i] = max(dp[groupNo][i - 1],

→ dp[qroupNo][i]);

  cout << dp[k][n] << "\n";
```

```
1.4 Knuth's Optomization
```

```
int solve() {
 int N;
 ... // read N and input int_dp[N][N],
     opt[N][N];
 auto C = [&](int i, int j) {
   ... // Implement cost function C.
 for (int i = 0; i < N; i++) {
   opt[i][i] = i;
    ... // Initialize dp[i][i] according to the problem
 for (int i = N - 2; i >= 0; i--) {
   for (int j = i + 1; j < N; j++) {
     int mn = INT_MAX;
     int cost = C(i, j)
      for (int k = opt[i][j-1]; k <= min(j-1, opt[i])

→ + 1][j]); k++) ·
       if (mn \ge dp[i][k] + dp[k + 1][j] + cost) {
         opt[i][j] = k;
         mn = dp[i][k] + dp[k + 1][j] + cost;
      dp[i][j] = mn;
 cout << dp[0][N - 1] << endl;
```

1.5 Li Chao Tree

```
/* Li Chao Tree for maximum query, represents line as
\rightarrow mx+b
* for minimum query initialize line with (0,inf)
 * change the sign of update and query function too( >

→ to <, max to min)
</p>
 * for update call update(1,n,1,{m,b})
 * for query at point x call query(1,n,1,x)
 * This tree works for almost any functions
 * just change the parameters of the Line
const ll inf = 1LL << 62;</pre>
const int mx = 1e6 + 5;
struct Line {
 ll m, b;
 Line(ll__m = 0, ll _b = -inf) {
    b = b;
ll f(Line line, int x) {    return line.m * x + line.b;  }
Line Tree[4 * mx];
void update(int l, int r, int at, Line line) {
 int mid = (l + r) / 2;
  bool left = f(line, l) > f(Tree[at], l);
  bool middle = f(line, mid) > f(Tree[at], mid);
  if (middle)
    swap(Tree[at], line);
  if (l == r)
   return;
  if (left != middle)
    update(l, mid, at * 2, line);
  else
```

```
update(mid + 1, r, at * 2 + 1, line);
}
ll query(int l, int r, int at, int x) {
    ll val = f(Tree[at], x);
    if (l == r)
        return val;
    int mid = (l + r) / 2;
    if (x <= mid)
        return max(val, query(l, mid, at * 2, x));
    return max(val, query(mid + 1, r, at * 2 + 1, x));
}</pre>
```

```
1.6 SOS DP
/// 0(N * 2^N)
/// memory optimized version
for (int i = 0; i < (1 << N); ++i)
  F[i] = A[i];
for (int i = 0; i < N; ++i)
  for (int mask = 0; mask < (1 << N); ++mask) {
    if (mask & (1 << i))
      F[mask] += F[mask ^ (1 << i)];
/// How many pairs in ara[] such that (ara[i] & ara[j])
/// N --> Max number of bits of any array element
const int N = 20;
int inv = (1 << \hat{N}) - 1;
int F[(1 << N) + 10];
int ara[MAX];
/// ara is 0 based
long long howManyZeroPairs(int n, int ara[]) {
  CLR(F);
  for (int i = 0; i < n; i++)
    F[ara[i]]++;
  for (int i = 0; i < N; ++i)
    for (int mask = 0; mask < (1 << N); ++mask) {
     if (mask & (1 << i))
        F[mask] += F[mask ^ (1 << i)];
  long long ans = 0;
  for (int i = 0; i < n; i++)
    ans += F[ara[i] ^ inv];
  return ans;
/// F[mask] = sum of A[i] given that (i&mask)=mask
for (int i = 0; i < (1 << N); ++i)
  F[i] = A[i];
for (int i = 0; i < N; ++i)
  for (int mask = (1 << N) - 1; mask >= 0; --mask) {
    if (!(mask & (1 << i)))
     F[mask] += F[mask | (1 << i)];
/// Number of subsequences of ara[0:n-1] such that
/// sub[0] \& sub[2] \& ... \& sub[k-1] = 0
const int N = 20;
int inv = (1 << N) - 1;
int F[(1 << N) + 10];
int ara[MAX];
int p2[MAX]; /// p2[i] = 2^i
/// 0 based array
int howManyZeroSubSequences(int n, int ara[]) {
  CLR(F);
  for (int i = 0; i < n; i++)
    F[ara[i]]++;
```

```
for (int i = 0; i < N; ++i)
    for (int mask = (1 << N) - 1; mask >= 0; --mask) {
      if (!(mask & (1 << i)))
        F[mask] += F[mask | (1 << i)];
  int ans = 0;
 for (int mask = 0; mask < (1 << N); mask++) {
   if (__builtin_popcount(mask) & 1)
      ans = sub(ans, p2[F[mask]]);
      ans = add(ans, p2[F[mask]]);
 return ans;
/// Number of subsequences of ara[0:n-1] such that
/// sub[0] | sub[2] | ... | sub[k-1] = Q
int F[(1 << 20) + 10], ara[MAX];
int p2[MAX]; /// p2[i] = 2^i
/// ara is 0 based
int howManySubsequences(int n, int ara[], int m, int Q)
 CLR(F);
 for (int i = 0; i < n; i++)
   F[ara[i]]++;
  if (Q == 0)
    return sub(p2[F[0]], 1);
  for (int i = 0; i < m; ++i)
    for (int mask = 0; mask < (1 << m); ++mask) {
      if (mask & (1 << i))
        F[mask] += F[mask ^ (1 << i)];
  int ans = 0;
  for (int mask = 0; mask < (1 << m); mask++) {
   if (mask & Q != mask)
      continue;
    if (__builtin_popcount(mask ^ Q) & 1)
      ans = sub(ans, p2[F[mask]]);
      ans = add(ans, p2[F[mask]]);
 return ans;
```

2 Data Structures

2.1 2D fenwick tree

```
struct FenwickTree2D {
  vector<vector<int>>> bit;
  int n, m;
  // init(...) { ... }
  int sum(int x, int y) {
    int ret = 0;
    for (int i = x; i >= 0; i = (i & (i + 1)) - 1)
        for (int j = y; j >= 0; j = (j & (j + 1)) - 1)
            ret += bit[i][j];
    return ret;
  }
  void add(int x, int y, int delta) {
    for (int i = x; i < n; i = i | (i + 1))
        for (int j = y; j < m; j = j | (j + 1))
        bit[i][j] += delta;
  }
}</pre>
```

```
2.2 Dsu
```

```
void make_set(int v) {
    parent[v] = v;
    size[v] = 1;
}
int find_set(int v) {
    if (v == parent[v])
        return v;
    return parent[v] = find_set(parent[v]);
}
void union_sets(int a, int b) {
    a = find_set(a);
    b = find_set(b);
    if (a != b) {
        if (size[a] < size[b])
            swap(a, b);
        parent[b] = a;
        size[a] += size[b];
}
</pre>
```

2.3 Fenwick_tree

```
int bit[1000], arra[1000];
int n;
void update(int idx, int val) {
  for (int i = idx; i <= n; i += i & (-i))
      bit[i] += val;
  return;
}
int query(int idx) {
  int sum = 0;
  for (int i = idx; i > 0; i -= i & (-i))
      sum += bit[i];
  return sum;
}
```

2.4 GP Hash Table

2.5 LCA

```
const int N = 3e5 + 9, LG = 18;
vector<int> g[N];
int par[N][LG + 1], dep[N], sz[N];
```

```
void dfs(int u, int p = 0) {
  par[u][0] = p
  dep[u] = dep[p] + 1;
  sz[\bar{u}] = 1;
  for (int i = 1; i <= LG; i++)
    par[u][i] = par[par[u][i - 1]][i - 1];
  for (auto v : g[u])
    if (v != p) {
      dfs(v, u);
      sz[u] += sz[v];
int lca(int u, int v) {
  if (dep[u] < dep[v])</pre>
    swap(u, v);
  for (int k = LG; k >= 0; k--)
    if (dep[par[u][k]] >= dep[v])
      u = par[u][k];
  if (u == v)
    return u;
 for (int k = LG; k >= 0; k--)
  if (par[u][k] != par[v][k])
  u = par[u][k], v = par[v][k];
  return par[u][0];
int kth(int u, int k) {
  assert(k >= 0);
  for (int i = 0; i <= LG; i++)
    if (k & (1 << i))
      u = par[u][i];
  return u;
int dist(int u, int v) {
  int l = lca(u, v);
  return dep[u] + dep[v] - (dep[l] << 1);</pre>
// kth node from u to v, 0th node is u
int go(int u, int v, int k) {
  int l = lca(u, v);
  int d = dep[u] + dep[v] - (dep[l] << 1);</pre>
  assert(k <= d);</pre>
  if (dep[l] + k \le dep[u])
   return kth(u, k);
  k = dep[u] - dep[l];
  return kth(v, dep[v] - dep[l] - k);
int32_t main() {
  int n;
  cin >> n;
  for (int i = 1; i < n; i++) {
    int u, v;
    cin >> u >> v;
    g[u].push_back(v);
    g[v].push_back(u);
  dfs(1);
  int q;
  cin >> q;
  while (q--) {
    int u, v;
    cin >> u >> v;
    cout << dist(u, v) << '\n';
  return 0;
```

```
2.6 LIS
int lis(vector<int> a) {
  int n = a.size();
  vector<int> d(n + 1, INF);
  d[0] = -INF;
  for (int i = 0; i < n; i++) {
    int j = upper_bound(d.begin(), d.end(), a[i]) -

    d.begin();
    if (d[j - 1] < a[i] and a[i] < d[j])
      d[j] = a[i];
  int ret = 0;
  for (int i = 1; i <= n; i++) {
    if (d[i] < INF)
      ret = i;
  return ret;
2.7 MO_s Algo
const int mx = const int sz = struct query {
  int l, r, id;
  bool operator<(const query &a) const {</pre>
    int x = l / sz;
    int y = a.l / sz;
    if (x != y)
     return x < y;
    if (x % 2)
      return r < a.r;
    return r > a.r;
|} ques[mx];
|<mark>void add(int</mark> indx) {}
void baad(int indx) {}
void solve() {
  // write code here
  int l = 0;
  int r = -1;
  sort(ques + 1, ques + q + 1);
  for (int i = 1; i <= q; i++) {
    while (l > ques[i].l)
      add(--1);
    while (r < ques[i].r)</pre>
      add(++r);
    while (l < ques[i].l)</pre>
      baad(l++);
    while (r > ques[i].r)
    baad(r--);
ans[ques[i].id] = sum[now];
  for (int i = 1; i <= q; i++)
    cout << ans[i] << " ";
2.8 PBDS
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
using namespace __gnu_pbds;
```

template <class T>

```
using ordered_set =
    tree<T, null_type, less<T>, rb_tree_tag,

→ tree order statistics node update>;

PBDS
1) insert(value)
2) erase(value)
3) order_of_key(value) // Number of items strictly
   smaller than value
4) *find_by_order(k) : K-th element in a set (counting
   from zero)
2.9 Persistent Segment Tree(pointer)
struct node {
 ll sum;
 node *left, *right;
 node(ll \_sum = \bar{0}) {
    sum = _sum;
    left = right = NULL;
  void build(int l, int r) {
    if (l == r)
      return;
    left = new node();
    right = new node();
    int mid = (l + r) / 2;
    left->build(l, mid);
    right->build(mid + 1, r);
  node *update(int l, int r, int i, int x) {
    if (l' > i || r < i)
      return this;
    if (l == r)
      return new node(x);
    int mid = (l + r) / 2
    node *ret = new node();
    ret->left = left->update(l, mid, i, x);
    ret->right = right->update(mid + 1, r, i, x);
    ret->sum = ret->left->sum + ret->right->sum;
    return ret;
  ll query(int tL, int tR, int rL, int rR) {
    if (tL > rR || tR < rL)
      return 0;
    if (tL >= rL && tR <= rR)
     return sum;
    int mid = (tL + tR) / 2;
    ll a = left->query(tL, mid, rL, rR);
    ll b = right->query(mid + 1, tR, rL, rR);
    return a + b;
  int size() { return sizeof(*this) / sizeof(node *); }
const int mx = 2e5 + 5;
node *root[mx];
void solve() {
 int n, q;
 cin >> n >> q;
 root[0] = new node();
  root[0]->build(1, n);
  for (int i = 1; i <= n; i++) {
```

int x;

```
root[0] = root[0]->update(1, n, i, x);
int sz = 0;
while (q--) {
 int op;
  cin >> op;
  if (op == 1) {
    int version, i, x;
    cin >> version >> i >> x;
    version--:
    root[version] = root[version]->update(1, n, i, x);
  } else if (op == 2) {
    int version, l, r;
cin >> version >> l >> r;
    version--;
    cout << root[version]->query(1, n, l, r) << "\n";</pre>
  } else {
    int version;
    cin >> version;
    version--;
    root[++sz] = root[version];
```

2.10 RMQ

```
template <typename T> struct sparse_table {
  vector<T> ara;
 vector<int> logs;
vector<vector<T>> table;
  sparse_table(int n) {
    ara.resize(n + 1);
    logs.resize(n + 1);
 T func(T a, T b) { }
  void build(int n) {
   logs[1] = 0;
    for (int i = 2; i <= n; i++)
     logs[i] = logs[i / 2] + 1;
    table.resize(n + 1, vector<T>(logs[n] + 1));
    for (int i = 1; i <= n; i++)
      table[i][0] = ara[i];
    for (int j = 1; j <= logs[n]; j++) {
      int sz = 1 << j;
      for (int i = 1; i + sz - 1 <= n; i++) {
        table[i][j] = func(table[i][j - 1], table[i +
         \rightarrow sz / 2][j - 1]);
   }
 T query(int l, int r) {
    int d = logs[r - l + 1];
    return func(table[l][d], table[r - (1 << d) +
    → 1][d]);
};
```

2.11 Segment Tree (Point Update, Range Query)

```
ll tree[4 * N];
inline ll merge(ll a, ll b) { return a + b; }
void update(int rt, int l, int r, int p, ll v) {
```

2.12 Segment Tree (Range Update, Range Query)

```
ll tree[4 * N], lazy[4 * N];
inline ll merge(ll a, ll b) { return a + b; }
|void push(int rt, int l, int r) {
 if (l ^ r) {
    lazy[rt << 1] += lazy[rt];
    lazy[rt << 1 | 1] += lazy[rt];
  tree[rt] += (r - l + 1) * lazy[rt];
 lazy[rt] = 0;
void update(int rt, int l, int r, int b, int e, ll v) {
 if (lazy[rt])
    push(rt, l, r);
  if (l > e or r < b or b > e)
    return;
  if (l >= b and r <= e) {
    lazy[rt] += v;
    return push(rt, l, r);
  int m = l + r >> 1, lc = rt << 1, rc = lc | 1;
  update(lc, l, m, b, e, v);
  update(rc, m + 1, r, b, e, v);
  tree[rt] = merge(tree[lc], tree[rc]);
ll query(int rt, int l, int r, int b, int e) {
 if (lazy[rt])
    push(rt, l, r);
  if (l > e or r < b or b > e)
    return 0;
  if (l >= b and r <= e)
    return tree[rt];
  int m = l + r >> 1, lc = rt << 1, rc = lc | 1;
  return merge(query(lc, l, m, b, e), query(rc, m + 1,
  \rightarrow r, b, e));
```

2.13 segment tree(lazy propagation)

```
int n, q, arra[100005];
struct idk {
  int sum, prop;
} tree[300005];
void init(int node, int b, int e) {
```

```
if (b == e) {
   tree[node].sum = arra[b];
   return;
 int left = node * 2;
 int right = node * 2 + 1;
 int mid = (b + e) / 2;
 init(left, b, mid);
 init(right, mid + 1, e);
 tree[node].sum = tree[left].sum + tree[right].sum;
void update(int node, int b, int e, int i, int j, int
→ val) {
 if (b > j || e < i)
   return;
 if (b >= i && e <= j) {
   tree[node].sum += (e - b + 1) * val;
    tree[node].prop += val;
    return;
 int left = node * 2;
 int right = node * 2 + 1;
 int mid = (b + e) / 2;
 update(left, b, mid, i, j, val);
 update(right, mid + 1, e, i, j, val);
 tree[node].sum =
      tree[left].sum + tree[right].sum + (e - b + 1) *

→ tree[node].prop;

 return;
int query(int node, int b, int e, int i, int j, int

    carry) {

 if (b > j || e < i)
    return 0;</pre>
 if (b >= i && e <= j)
   return tree[node].sum + (e - b + 1) * carry;
 int left = node * 2;
 int right = node * 2 + 1;
 int mid = (b + e) / 2;
 int p1 = query(left, b, mid, i, j, carry +

→ tree[node].prop);

 int p2 = query(right, mid + 1, e, i, j, carry +

    tree[node].prop);
 return p1 + p2;
```

2.14 treap

```
typedef struct item *pitem;
struct item {
  int prior, value, cnt;
  bool rev;
  pitem l, r;
};
int cnt(pitem it) { return it ? it->cnt : 0; }
void upd_cnt(pitem it) {
  if (it)
    it->cnt = cnt(it->l) + cnt(it->r) + 1;
}
void push(pitem it) {
  if (it && it->rev) {
```

```
it->rev = false:
    swap(it->l, it->r);
    if (it->l)
      it->l->rev ^= true;
    if (it->r)
      it->r->rev ^= true;
void merge(pitem &t, pitem l, pitem r) {
  push(l);
  push(r);
 if (!l || !r)
t = l ? l : r;
  else if (l->prior > r->prior)
    merge(l->r, l->r, r), t = l;
    merge(r\rightarrow l, l, r\rightarrow l), t = r;
 upd_cnt(t);
void split(pitem t, pitem &l, pitem &r, int key, int
\rightarrow add = 0) {
 if (!t)
    return void(l = r = 0);
  push(t);
  int cur_key = add + cnt(t->l);
  if (key <= cur_key)</pre>
   split(t->1, l, t->1, key, add), r = t;
    split(t->r, t->r, r, key, add + 1 + cnt(t->l)), l =

    t;
upd_cnt(t);

void reverse(pitem t, int l, int r) {
  pitem t1, t2, t3;
  split(t, t1, t2, l);
  split(t2, t2, t3, r - l + 1);
  t2->rev ^= true;
  merge(t, t1, t2);
  merge(t, t, t3);
void output(pitem t) {
 if (!t)
   return;
  push(t);
  output(t->l);
  printf("%d ", t->value);
  output(t->r);
```

3 Graph

3.1 Articulation Point Detection

```
vector<int> adj[N];
bool vis[N], articulation[N];
int low[N], tin[N], taim;
void dfs(int node, int par = -1) {
  vis[node] = 1;
  tin[node] = low[node] = taim++;
  int children = 0;
  for (int x : adj[node]) {
    if (x == par)
      continue;
    if (vis[x])
      low[node] = min(low[node], tin[x]);
```

```
else {
    dfs(x, node);
    low[node] = min(low[node], low[x]);
    if (low[x] >= tin[node] && par != -1) {
        articulation[node] = 1;
    }
    children++;
    }
}
if (children > 1 and par == -1)
    articulation[node] = 1;
}
```

3.2 Bridge Detection

```
vector<int> adj[N];
bool visited[N];
int low[N], tin[N], timer;
vector<pair<int, int>> bridges;
void IS_BRIDGE(int a, int b) {

→ bridges.push_back({min(a, b), max(a, b)}); }

void dfs(int v, int p = -1) {
  visited[v] = true;
  tin[v] = low[v] = timer++;
  for (int to : adj[v]) {
    if (to == p)
      continue;
    if (visited[to])
      low[v] = min(low[v], tin[to]);
    else {
      dfs(to, v);
      low[v] = min(low[v], low[to]);
      if (low[to] > tin[v])
        IS_BRIDGE(v, to);
  }
```

3.3 Centroid Decomposition

```
const int M = 2e5 + 3;
int sz[M], done[M], cpar[M], root;
|vector<<mark>int</mark>> ctree[M];
void go(int u, int p = -1) {
    sz[u] = 1;
  for (int v : g[u]) {
    if (v == p or done[v])
      continue;
    go(v, u);
    sz[u] += sz[v];
int find_centroid(int v, int p, int n) {
  for (int x : g[v]) {
    if (x != p \text{ and } !done[x] \text{ and } sz[x] > n / 2)
      return find_centroid(x, v, n);
  return v;
void decompose(int v = 0, int p = -1) {
  int c = find_centroid(v, -1, sz[v]);
  if (p == -1)
```

```
root = c;
done[c] = 1;
cpar[c] = p;
if (p != -1)
    ctree[p].push_back(c);
for (int x : g[c]) {
    if (!done[x])
        decompose(x, c);
}
```

3.4 DSU On Tree

```
vector<int> G[mx]; /// adjacency list of the tree
int sub[mx], color[mx], freq[mx],
    n; /// subtree size, color and frequency of node.
void calcSubSize(int s, int p) {
 sub[s] = 1;
 for (int x : G[s]) {
    if (x == p)
      continue;
    calcSubSize(x, s);
    sub[s] += sub[x];
void add(int s, int p, int v, int bigchild = -1) {
 freq[color[s]] += v;
  for (int x : G[s]) {
    if (x == p \mid | x == bigchild)
      continue;
    add(x, s, v);
void dfs(int s, int p, bool keep) {
 int bigChild = -1:
 for (int x : G[s]) {
    if(x == p)
    if (bigChild == -1 || sub[bigChild] < sub[x])
      bigChild = x;
  for (int x : G[s]) {
    if (x == p \mid \mid x == bigChild)
      continue;
    dfs(x, s, 0);
  if (bigChild != −1)
    dfs(bigChild, s, 1);
 add(s, p, 1, bigChild);
/// freq[c] now contains the number of nodes in
/// the subtree of 'node' that have color c
  /// Save the answer for the queries here
 if (keep == 0)
    add(s, p, -1);
int main() {
  input color construct G calcSubSize(root, -1);
  dfs(root, -1, 0);
  return 0;
```

```
3.5 Dinic
```

```
// O(V^2 E). solves SPOJ FASTFLOW
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
struct edge {
 int u, v;
ll cap, flow;
  edge () {}
  edge (int u, int v, ll cap) : u(u), v(v), cap(cap),
  → flow(0) {}
struct Dinic {
  int N;
  vector <edge> E;
  vector <vector <int>> q;
  vector <int> d, pt;
  Dinic (int N): N(N), E(0), g(N), d(N), pt(N) {}
  void AddEdge (int u, int v, ll cap) {
   if (u ^ v) {
      E.emplace_back(u, v, cap);
      g[u].emplace_back(E.size() - 1);
      E.emplace_back(v, u, 0);
      g[v].emplace_back(E.size() - 1);
  bool BFS (int S, int T) {
   queue <int> q({S});
fill(d.begin(), d.end(), N + 1);
    d[S] = 0;
    while (!q.empty()) {
      int u = q.front(); q.pop();
      if (u == T) break;
      for (int k : g[u]) {
        edge &e = E[k];
        if (e.flow < e.cap and d[e.v] > d[e.u] + 1) {
          d[e.v] = d[e.u] + 1;
          q.emplace(e.v);
 } return d[T] != N + 1;
}
  ll DFS (int u, int T, ll flow = -1) {
   if (u == T or flow == 0) return flow;
   for (int &i = pt[u]; i < g[u].size(); ++i) {</pre>
      edge &e = E[g[u][i]];
      edge &oe = E[g[u][i] ^ 1];
      if(d[e.v] == d[e.u] + 1) {
        ll amt = e.cap - e.flow;
        if (flow !=-1 and amt > flow) amt = flow;
        if (ll pushed = DFS(e.v, T, amt)) {
          e.flow += pushed;
          oe.flow -= pushed;
          return pushed;
    } return 0;
```

```
ll MaxFlow (int S, int T) {
   ll total = 0;
   while (BFS(S, T)) {
     fill(pt.begin(), pt.end(), 0);
     while (ll flow = DFS(S, T)) total += flow;
   return total;
int main() {
 int N, E;
 scanf("%d %d", &N, &E);
 Dinic dinic(N);
 for (int i = 0, u, v; i < E; ++i) {
   ll cap;
   scanf("%d %d %lld", &u, &v, &cap);
   dinic.AddEdge(u - 1, v - 1, cap);
   dinic.AddEdge(v - 1, u - 1, cap);
 printf("%lld\n", dinic.MaxFlow(0, N - 1));
```

3.6 Heavy Light Decomposition

```
vector < int > List[ ?? ]; // Tree's Adj List -> Need

→ to Clear??

class HeavyLightDecomposition {
#define L_R ? ?
public:
 vector<int> ValueOfNode;
 vector<int> Position;
 vector<int> Parent;
 vector<int> Depth;
  vector<int> Heavy;
  vector<int> Head;
  int CurrentPosition = 1; // 0/1 - index based
  segmentTree ST = segmentTree( ?? ) / AnyQueryTree;
  HeavyLightDecomposition(int NN) {
    ValueOfNode.resize(NN);
    Position.resize(NN);
    Parent.resize(NN, -1);
   Depth.resize(NN, 0);
   Heavy.resize(NN, −1);
   Head.resize(NN);
  int DFS(int Vertex) {
    int TotalSize = 1;
    int MaxChildSize = 0;
    for (int i = 0; i < List[Vertex].size(); ++i) {</pre>
      int Child = List[Vertex][i];
      if (Child != Parent[Vertex]) {
        Parent[Child] = Vertex;
        Depth[Child] = Depth[Vertex] + 1;
        int ChildSize = DFS(Child);
TotalSize += ChildSize;
        if (ChildSize > MaxChildSize) {
          MaxChildSize = ChildSize;
          Heavy[Vertex] = Child;
```

```
return TotalSize;
void TreeDecompose(int Vertex, int Hd) {
  Head[Vertex] = Hd;
  ST.A[CurrentPosition] = ValueOfNode[Vertex];
  Position[Vertex] = CurrentPosition++;
  if (Heavy[Vertex] != -1)
    TreeDecompose(Heavy[Vertex], Hd);
  for (int i = 0; i < List[Vertex].size(); ++i) {</pre>
    int Child = List[Vertex][i];
    if (Child != Parent[Vertex] && Child !=

→ Heavv[Vertex])

     TreeDecompose(Child, Child);
void MakeQueryTree() { // ?? = Number of Node in Tree;
  // Build Query Data Structure
int Query(int NodeA, int NodeB) {
  int Res = 0;
  while (Head[NodeA] != Head[NodeB]) {
    if (Depth[Head[NodeA]] > Depth[Head[NodeB]])
    swap(NodeA, NodeB);
int CurrentPathResult =
        ST.rangeQuery(L_R, Position[Head[NodeB]],
         → Position[NodeB]).Value;
    Res = ? ? (Res, CurrentPathResult);
    NodeB = Parent[Head[NodeB]];
  if (Depth[NodeA] > Depth[NodeB])
    swap(NodeA, NodeB);
  int LastHeavyPathResult =
      ST.rangeQuery(L_R, Position[NodeA],
      → Position[NodeB]).Value;
  Res = ? ? (Res, LastHeavyPathResult);
 return Res;
int Update(int NodeA, int NodeB, int X) {
  while (Head[NodeA] != Head[NodeB]) {
    if (Depth[Head[NodeA]] > Depth[Head[NodeB]])
      swap(NodeA, NodeB);
    ST.rangeUpdate(L_R, Position[Head[NodeB]],
    → Position[NodeB], X);
    NodeB = Parent[Head[NodeB]];
  if (Depth[NodeA] > Depth[NodeB])
    swap(NodeA, NodeB);
  ST.rangeUpdate(L_R, Position[NodeA],
  → Position[NodeB], X);
```

3.7 Hopcroft Karp

```
// Maximum biparite matching. Complexity : O(E*sqrt(V)) // define NIL (dummy vertex), M and INF vector<int> q[M]:
```

```
int Lmatch[M], Rmatch[M], dist[M];
bool bfs(int n) {
  queue<int> q;
  for (int u = 1; u <= n; u++) {
   if (Lmatch[u] == NIL)
      dist[u] = 0, q.push(u);
      dist[u] = INF;
  dist[NIL] = INF;
  while (!q.empty()) {
    int u = q.front();
    q.pop();
    if (dist[u] < dist[NIL]) {</pre>
      for (int v : g[u])
        if (dist[Rmatch[v]] == INF) {
  dist[Rmatch[v]] = dist[u] + 1;
           q.push(Rmatch[v]);
  return dist[NIL] != INF;
bool dfs(int u) {
  if (u == NIL)
    return true;
  for (int v : g[u]) {
    if (dist[Rmatch[v]] == dist[u] + 1 and

    dfs(Rmatch[v])) {
      Rmatch[v] = \bar{u};
      Lmatch[u] = v;
      return true;
  dist[u] = INF;
  return false;
int HoperoftKarp(int n, int m) {
  fill(Lmatch, Lmatch + n + 1, 0);
  fill(Rmatch, Rmatch + m + 1, 0);
  int res = 0;
  while (bfs(n)) {
    for (int u = 1; u <= n; u++) {
      if (Lmatch[u] == NIL and dfs(u))
  return res;
```

3.8 Hungarian

```
if (n > m)
m = n;
int a, b, d;
ll r, w;
for (int i = 1; i <= n; i++) {
  P[0] = i, b = 0;
  for (int j = 0; j <= m; j++)
   minv[j] = INF, used[j] = false;</pre>
     used[b] = true;
     a = P[b], d = 0, w = INF;
     for (int j = 1; j <= m; j++) {
  if (!used[j]) {
    r = ara[a][j] - U[a] - V[j];</pre>
          if (r < minv[j])</pre>
             minv[j] = r, way[j] = b;
          if (minv[j] < w)</pre>
             w = minv[j], d = j;
     for (int j = 0; j <= m; j++) {
       if (used[j])
          U[P[j]] += w, V[j] -= w;
          minv[j] -= w;
     b = d;
  } while (P[b] != 0);
  do {
     d = way[b];
     P[b] = P[\bar{d}], b = d;
  } while (b != 0);
for (int j = 1; j <= m; j++)
  match[P[j]] = j
return flag * V[0];
```

3.9 LCA(sparse table)

```
vector<<mark>int</mark>> Edges[10000];
int p[10005][17], level[10005], n, lg;
bool vis[10005];
void DFS(int par, int node) {
  vis[node] = 1;
  if (par != -1)
    level[node] = level[par] + 1;
  p[node][0] = par;
  for (int i = 1; i <= lg; i++) {
    if (p[node][i - 1] != -1)
      p[node][i] = p[p[node][i - 1]][i - 1];
  for (int i = 0; i < Edges[node].size(); i++) {</pre>
    if (vis[Edges[node][i]] == 0)
      DFS(node, Edges[node][i]);
 return;
int LCA(int u, int v) {
  if (level[u] < level[v])</pre>
    swap(u, v);
  for (int i = lg; i >= 0; i--) {
    int par = p[u][i];
```

```
if (level[par] >= level[v]) {
    u = par;
}

if (u == v)
    return u;

for (int i = lg; i >= 0; i--) {
    int U = p[u][i];
    int v = p[v][i];
    if (U != v) {
        u = U;
        v = V;
    }
}
return p[u][0];
```

3.10 MCMF(SPFA)

```
* 1 BASED NODE INDEXING
  * call init at the start of every test case
  * Complexity --> E*Flow (A lot less actually, not
  * Maximizes the flow first, then minimizes the cost
  * The algorithm finds a path with minimum cost to
  - send one unit of flow
    and sends flow over the path as much as possible.
     - Then tries to find
    another path in the residual graph.
namespace mcmf {
using T = int;
const T INF = 0x3f3f3f3f; // 0x3f3f3f3f or

→ 0x3f3f3f3f3f3f3f3f1LL

const int MAX = 204;
                            // maximum number of nodes
int n, src, snk;
T dis[MAX], mCap[MAX];
int par[MAX], pos[MAX];
bool vis[MAX];
struct Edge {
 int to, rev_pos;
 T cap, cost, flow;
vector<Edge> ed[MAX];
void init(int _n, int _src, int _snk) {
  n = n, src = src, snk = snk;
  for (int i = 1; i <= n; i++)
    ed[i].clear();
void addEdge(int u, int v, T cap, T cost) {
  Edge a = {v, (int)ed[v].size(), cap, cost, 0};
Edge_b = {u, (int)ed[u].size(), 0, -cost, 0};
  ed[u].pb(a);
  ed[v].pb(b);
inline bool SPFA() {
  CLR(vis);
  for (int i = 1; i <= n; i++)
    mCap[i] = dis[i] = INF;
  queue<int> q;
  dis[src] = 0;
  vis[src] = true; /// src is in the queue now
```

```
q.push(src);
  while (!q.empty()) {
    int u = q.front();
    q.pop();
    vis[u] = false; /// u is not in the queue now
    for (int i = 0; i < (int)ed[u].size(); i++) {
      Edge &e = ed[u][i];
      int v = e.to;
      if (e.cap > e.flow && dis[v] > dis[u] + e.cost) {
        dis[v] = dis[u] + e.cost;
        par[v] = u;
        pos[v] = i;
        mCap[v] = min(mCap[u], e.cap - e.flow);
        if (!vis[v]) {
          vis[v] = true;
          q.push(v);
  return (dis[snk] != INF);
inline pair<T, T> solve() {
 T F = 0, C = 0, f;
  int u, v;
  while (SPFA()) {
    u = snk;
    f = mCap[u];
    F += f;
    while (u != src) {
      v = par[u];
      ed[v][pos[u]].flow += f; // edge of v-->u
      ed[u][ed[v][pos[u]].rev_pos].flow -= f;
    C += dis[snk] * f;
  return make_pair(F, C);
} // namespace mcmf
il arr[103];
int main() {
  ios::sync_with_stdio(0);
  ll i, j, k, l, m, n;
  cin >> n >> m;
  mcmf::init(n + 2, 1, n + 2);
  for (i = 1; i <= n; i++) {
  cin >> arr[i + 1];
  for (i = 0; i < m; i++) {
   ll u, v, c;
    cin >> u >> v >> c;
    mcmf::addEdge(u, v, c, -arr[v]);
  mcmf::addEdge(1, 2, mcmf::INF, -arr[2]);
  mcmf::addEdge(n + 1, n + 2, mcmf::INF, 0);
  mcmf::addEdge(1, n + 1, mcmf::INF, 0);
  // mcmf::addEdge(1 , 2*n , mcmf::INF , 0) ;
  pair<ll, ll> ans = mcmf::solve();
  cout << -ans.ss << endl;</pre>
  return 0;
```

```
3.11 MCMF(normal)
#include <bits/extc++.h>
|using T = int;
const T kInf = numeric_limits<T>::max() / 4;
struct mcf_graph {
  struct Edge {
    int to, from, nxt;
    T flow, cap, cost;
  vector<Edge> edges;
  vector<T> dist, pi;
  vector<int> par, graph;
  mcf_graph(int _n) : n(_n), dist(n), pi(n, 0), par(n),

→ graph(n, -1) {}
  void _addEdge(int from, int to, T cap, T cost) {
    edges.push_back(Edge{to, from, graph[from], 0, cap,
    graph[from] = edges.size() - 1;
  void add_edge(int from, int to, T cap, T cost) {
    _addEdge(from, to, cap, cost);
    _addEdge(to, from, 0, -cost);
  bool dijkstra(int s, int t) {
    fill(dist.begin(), dist.end(), kInf);
    fill(par.begin(), par.end(), -1);
    __gnu_pbds::priority_queue<pair<T, int>> q;
    vector<decltype(q)::point_iterator> its(n);
    dist[s] = 0;
    q.push({0, s});
    while (!q.empty()) {
      int node;
      T d;
      tie(d, node) = q.top();
      q.pop();
      if (dist[node] != -d)
        continue;
      for (int i = graph[node]; i >= 0;) {
        const auto &e = edges[i];
        T now = dist[node] + pi[node] - pi[e.to] +
        if (e.flow < e.cap && now < dist[e.to]) {</pre>
          dist[e.to] = now;
          par[e.to] = i;
          if (its[e.to] == q.end()) {
            its[e.to] = q.push({-dist[e.to], e.to});
            q.modify(its[e.to], {-dist[e.to], e.to});
        i = e.nxt;
    for (int i = 0; i < n; i++)
      pi[i] = min(pi[i] + dist[i], kInf);
    return par[t] != -1;
  pair<T, T> flow(int s, int t) {
    T flow = 0, cost = 0;
    while (dijkstra(s, t)) {
      T now = kInf;
```

```
for (int node = t; node != s;) {
        int ei = par[node];
        now = min(now, edges[ei].cap - edges[ei].flow);
        node = edges[ei ^ 1].to;
      for (int node = t; node != s;) {
        int ei = par[node];
        edges[ei].flow += now;
        edges[ei ^ 1].flow -= now;
        cost += edges[ei].cost * now;
        node = edges[ei ^ 1].to;
      flow += now;
    return {flow, cost};
// use add_edge(from,to,cap,cost) for adding edge
// use flow(s,t) for finding max flow and minimum cost
3.12 Max_Flow-1
int graph[105][105], rgraph[105][105], par[105], n;
int bfs(int s, int d)
  bool vis[105];
  memset(vis, 0, sizeof(vis));
  queue<int> Q;
  Q.push(s);
  while (!Q.empty()) {
    int q = Q.front();
    Q.pop();
    for (int i = 1; i <= n; i++) {
      if (vis[i] == 0 && rgraph[q][i] > 0) {
        vis[i] = 1;
        par[i] = q;
        if (i == d)
          return 1;
        Q.push(i);
  return 0:
int max_flow(int s, int d) {
  int total_flow = 0;
  for (int i = 1; i <= n; i++) {
    for (int j = 1; j <= n; j++)
      rgraph[i][j] = graph[i][j];
  int mn:
  while (bfs(s, d) == 1) {
    mn = INT MAX;
    for (int child = d; child != s; child = par[child])
      int P = par[child];
      mn = min(mn, rgraph[P][child]);
```

for (int child = d; child != s; child = par[child])

int P = par[child];

rgraph[P][child] -= mn;

rgraph[child][P] += mn;

```
}
total_flow += mn;
}
return total_flow;
}
```

3.13 Maximum flow - Edmonds Karp

```
vector<vector<int>> capacity;
vector<vector<int>> adj;
int bfs(int s, int t, vector<int> &parent) {
 fill(parent.begin(), parent.end(), -1);
 parent[s] = -2;
queue<pair<int, int>> q;
  q.push({s, INF});
  while (!q.empty()) {
   int cur = q.front().first;
   int flow = q.front().second;
   q.pop();
   for (int next : adj[cur]) {
     if (parent[next] == -1 && capacity[cur][next]) {
        parent[next] = cur;
        int new_flow = min(flow, capacity[cur][next]);
        if (next == t)
          return new_flow;
        q.push({next, new_flow});
 return 0;
int maxflow(int s, int t) {
 int flow = 0;
  vector<int> parent(n);
  int new_flow;
  while (new_flow = bfs(s, t, parent)) {
   flow += new_flow;
   int cur = t;
   while (cur != s) {
     int prev = parent[cur];
     capacity[prev][cur] -= new_flow;
     capacity[cur][prev] += new_flow;
cur = prev;
 return flow;
```

3.14 Online Bridge

```
vector<int> par, dsu_2ecc, dsu_cc, dsu_cc_size;
int bridges;
int lca_iteration;
vector<int> last_visit;
void init(int n) {
  par.resize(n);
  dsu_2ecc.resize(n);
  dsu_cc_resize(n);
  dsu_cc_size.resize(n);
  lca_iteration = 0;
  last_visit.assign(n, 0);
  for (int i = 0; i < n; ++i) {
    dsu_2ecc[i] = i;
    dsu_cc[i] = i;
</pre>
```

```
dsu_cc_size[i] = 1;
    par[i] = -1:
  bridges = 0;
int find_2ecc(int v) {
 if (v == -1)
    return -1;
  return dsu_2ecc[v] == v ? v : dsu_2ecc[v] =

→ find 2ecc(dsu 2ecc[v]);

int find_cc(int v) {
 v = find_2ecc(v);
  return dsu_cc[v] == v ? v : dsu_cc[v] =

→ find_cc(dsu_cc[v]);

void make_root(int v) {
 v = find 2ecc(v);
  int root = v;
  int child = -1:
  while (v != -1) {
    int p = find_2ecc(par[v]);
    par[v] = child;
    dsu_cc[v] = root;
    child = v;
v = p;
  dsu_cc_size[root] = dsu_cc_size[child];
void merge_path(int a, int b) {
  ++lca_iteration;
  vector<int> path_a, path_b;
  int lca = -1;
  while (lca == -1) {
    if (a != -1) {
      a = find_2ecc(a);
      path_a.push_back(a);
      if (last_visit[a] == lca_iteration) {
        lca = a;
        break;
      last_visit[a] = lca_iteration;
      a = par[a];
    if (b != -1) {
      b = find_2ecc(b);
      path b.push back(b);
      if (last_visit[b] == lca_iteration) {
        lca = b;
        break;
      last_visit[b] = lca_iteration;
      b = par[b];
  for (int v : path_a) {
    dsu_2ecc[v] = lca;
    if (v == lca)
      break;
    --bridges;
  for (int v : path_b) {
    dsu_2ecc[v] = lca;
    if (v == lca)
      break:
    --bridges;
```

```
void add_edge(int a, int b) {
 a = find_Žecc(a);
 b = find_2ecc(b);
 if (a == b)
   return;
 int ca = find_cc(a);
 int cb = find_cc(b);
 if (ca != cb) {
    ++bridges;
    if (dsu_cc_size[ca] > dsu_cc_size[cb]) {
     swap(a, b);
      swap(ca, cb);
    make_root(a);
    par[a] = dsu_cc[a] = b;
    dsu_cc_size[cb] += dsu_cc_size[a];
 } else {
    merge_path(a, b);
```

3.15 SCC

dfs1(i);

```
/*In a directed graph, an SCC is a connected component
→ where all nodes are
pairwise reachable. condesation graph is the DAG built

→ on a directed graph by

compressing each SCC into a node. define M */
vector<int> g[M], gr[M];
set<int> gc[M];
int vis[M], id[M], sz[M];
vector<int> order, comp, roots;
namespace SCC {
void addEdge(int u, int v) { g[u].push_back(v),

¬ gr[v].push_back(u); }

void dfs1(int u) {
 vis[u] = 1;
 for (int x : g[u]) {
   if (!vis[x])
     dfs1(x);
 order.push_back(u);
void dfs2(int u) {
 vis[u] = 1;
 comp.push_back(u);
 for (int x : gr[u]) {
   if (!vis[x])
     dfs2(x);
void condense(int n) {
 fill(vis, vis + n + 1, 0);
 for (int i = 1; i <= n; i++) {
   if (!vis[i])
```

```
reverse(order.begin(), order.end());
  fill(vis, vis + n + 1, 0);
for (int u : order) {
    if (!vis[u]) {
       dfs2(u); // this part of the code processes
       - components, returns them in
                 // comp
       for (int v : comp)
         id[v] = u;
       sz[u] = (int)comp.size();
      roots.push_back(u);
       comp.clear();
  fill(vis, vis + n + 1, 0);
  for (int u = 1; u <= n; u++) {
    for (int v : q[u]) {
      if (id[u] != id[v]) {
         gc[id[u]].insert(id[v]);
void reset(int n) {
  order.clear(), comp.clear(), roots.clear();
  for (int i = 1; i <= n; i++) {
   g[i].clear(), gr[i].clear(), gc[i].clear();
   id[i] = vis[i] = sz[i] = 0;</pre>
} // namespace SCC
```

4 Math

4.1 Algebra

4.1.1 Extended_Euclid

```
/* ax + by = gcd(a,b)*/
int gcd(int a, int b, int &x, int &y) {
   if (b == 0) {
      x = 1;
      y = 0;
      return a;
   }
   int x1, y1;
   int d = gcd(b, a % b, x1, y1);
   x = y1;
   y = x1 - y1 * (a / b);
   return d;
}
```

4.1.2 Factorial mod P

```
/*O(log_p (n))*/
int factmod(int n, int p) {
  vector<int> f(p);
  f[0] = 1;
  for (int i = 1; i < p; i++)
    f[i] = f[i - 1] * i % p;

int res = 1;
  while (n > 1) {
```

```
if ((n/p) %2)
res = p - res;
    res = res * f[n % p] % p;
  return res;
4.1.3 Sieve upto 1e9
vector<int> sieve(const int N, const int Q = 17, const
 → int L = 1 << 15) {</pre>
  static const int rs[] = {1, 7, 11, 13, 17, 19, 23,

→ 29
};

  struct P {
    P(int p) : p(p) {}
    int p;
    int pos[8];
  auto approx_prime_count = [](const int N) -> int {
    return N > 60184 ? N / (log(N) - 1.1) : max(1., N / N)
     \rightarrow (log(N) - 1.11)) + 1;
  const int v = sqrt(N), vv = sqrt(v);
  vector<bool> isp(v + 1, true);
  for (int i = 2; i <= vv; ++i)
if (isp[i]) {
      for (int j = i * i; j <= v; j += i)
        isp[j] = false;
  const int rsize = approx_prime_count(N + 30);
  vector<int> primes = {2, 3, 5};
  int psize = 3;
  primes.resize(rsize);
  vector<P> sprimes;
  size_t pbeq = 0;
  int prod = 1;
  for (int p = 7; p <= v; ++p) {
    if (!isp[p])
      continue;
    if (p <= Q)
      prod *= p, ++pbeg, primes[psize++] = p;
    auto pp = P(p);
    for (int t = 0; t < 8; ++t) {
      int j = (p \le Q) ? p : p * p;
      while (j % 30 != rs[t])
        j += p << 1;
      pp.pos[t] = j / 30;
    sprimes.push_back(pp);
  vector<unsigned char> pre(prod, 0xFF);
  for (size_t pi = 0; pi < pbeg; ++pi) {</pre>
    auto pp = sprimes[pi];
    const int p = pp.p;
    for (int t = 0; t < 8; ++t) {
      const unsigned char m = ~(1 << t);</pre>
      for (int i = pp.pos[t]; i < prod; i += p)
        pre[i] &= m;
```

```
const int block_size = (L + prod - 1) / prod * prod;
 vector<unsigned char> block(block_size);
 unsigned char *pblock = block.data();
 const int M = (N + 29) / 30;
 for (int beg = 0; beg < M; beg += block_size, pblock
  → -= block size) {
   int end = min(M, beg + block_size);
   for (int i = beg; i < end; i += prod) {
  copy(pre.begin(), pre.end(), pblock + i);</pre>
   if (beg == 0)
      pblock[0] &= 0xFE;
    for (size_t pi = pbeg; pi < sprimes.size(); ++pi) {</pre>
      auto &pp = sprimes[pi];
      const int p = pp.p;
      for (int t = 0; t < 8; ++t) {
       int i = pp.pos[t];
        const unsigned char m = \sim(1 << t);
       for (; i < end; i += p)
          pblock[i] &= m;
       pp.pos[t] = i;
   for (int i = beg; i < end; ++i) {
     for (int m = pblock[i]; m > 0; m &= m - 1) {
       primes[psize++] = i * 30 + rs[__builtin_ctz(m)];
 assert(psize <= rsize);
 while (psize > 0 && primes[psize - 1] > N)
 primes.resize(psize);
 return primes;
// https://judge.yosupo.jp/problem/enumerate_primes
```

4.2 Geometry

4.2.1 2D Point Line _ Segment

```
ostream &operator<<(ostream &os, pt p) {
 return os << "(" << p.x << "," << p.y << ")";
// u.v = |u|*|v|*cos(theta)
inline double dot(pt u, pt v) { return u.x * v.x + u.v
\rightarrow * v.y; }
// a x b = |a|*|b|*sin(theta)
inline double cross(pt u, pt v) { return u.x * v.y -
\rightarrow u.v * v.x; }
// returns lui
inline double norm(pt u) { return sqrt(dot(u, u)); }
// returns angle between two vectors
inline double angle(pt u, pt v) {
  double cosTheta = dot(u, v) / norm(u) / norm(v);
  return acos(max(-1.0, min(1.0, cosTheta))); //
  \rightarrow keeping cosTheta in [-1,1]
// returns and radian rotated version of vector u
// ccw rotation if angle is positive else cw rotation
inline pt rotate(pt u, double ang) {
  return pt(u.x * cos(ang) - u.y * sin(ang), u.x *
  \rightarrow sin(ang) + u.v * cos(ang));
// returns a vector perpendicular to v
inline pt perp(pt u) { return pt(-u.y, u.x); }
// returns 2*area of triangle
inline double triArea2(pt a, pt b, pt c) { return
\rightarrow cross(b - a, c - a); }
// compare function for angular sort around point PO
inline bool comp(pt P0, pt a, pt b) {
  double d = triArea2(P0, a, b);
 if (d < 0)
   return false;
 if (d == 0 \&\& dot(P0 - a, P0 - a) > dot(P0 - b, P0 -
   return false;
  return true;
struct line {
  pt v;
  double c:
  line(pt v, double c) : v(v), c(c) {}
  // From equation ax + by = c
  line(double a, double b, double c) : v(\{b, -a\}), c(c)
  → {}
  // From points p and q
  line(pt p, pt q) : v(q - p), c(cross(v, p)) {}
  // |v| * dist
  // dist --> distance of p from the line
  double side(pt p) { return cross(v, p) - c; }
  // better to using sqDist than dist
  double dist(pt p) { return abs(side(p)) / norm(v); }
  double sqDist(pt p) { return side(p) * side(p) /
  → dot(v, v); }
  // perpendicular line through point p
  // 90deg ccw rotated line
 line perpThrough(pt p) { return {p, p + perp(v)}; }
  // translates a line by vector t(dx,dy)
  // every point (x,y) of previous line is translated
  \rightarrow to (x+dx,y+dy)
  line translate(pt t) { return {v, c + cross(v, t)}; }
  // for every point
```

```
// distance between previous position and current
             position is dist
     line shiftLeft(double dist) { return {v, c + dist *
            norm(v)}; }
     // projection of point p on the line
     pt projection(pt p) { return p - perp(v) * side(p) /
             dot(v, v); }
     // reflection of point p wrt the line
     pt reflection(pt p) { return p - perp(v) * side(p) *
      \rightarrow 2.0 / dot(v, v); }
 inline bool lineLineIntersection(line l1, line l2, pt
  double d = cross(l1.v, l2.v);
     if (d == 0)
         return false;
     out = (l2.v * l1.c - l1.v * l2.c) / d;
     return true:
 // interior = true for interior bisector
 // interior = false for exterior bisector
|inline line bisector(line l1, line l2, bool interior) {
     assert(cross(l1.v, l2.v) != 0); // \ell 1 and \ell 2 cannot

→ be parallel!

     double sign = interior ? 1 : -1;
     return \{l2.v / norm(l2.v) + (l1.v * sign) / l2.v / norm(l2.v) + 
      \rightarrow norm(l1.v),
                      l2.c / norm(l2.v) + (l1.c * sign) /
                       → norm(l1.v)};
 /*** Segment ***/
 /// C --> A circle which have diameter ab
 /// returns true if point p is inside C or on the
 inline bool inDisk(pt a, pt b, pt p) {    return dot(a -
        p, b - p) <= 0; }
  /// returns true if point p is on the segment
 inline bool onSegment(pt a, pt b, pt p) {
    return triArea2(a, b, p) == 0 \&\& inDisk(a, b, p);
 inline bool segSegIntersection(pt a, pt b, pt c, pt d,
  → pt &out) {
    if (onSegment(a, b, c))
         return out = c, true;
     if (onSegment(a, b, d))
         return out = d, true;
     if (onSegment(c, d, a))
         return out = a, true;
     if (onSegment(c, d, b))
         return out = b, true;
     double oa = triArea2(c, d, a);
     double ob = triArea2(c, d, b);
     double oc = triArea2(a, b, c);
     double od = triArea2(a, b, d);
     if (oa * ob < 0 && oc * od < 0) {
         out = (a * ob - b * oa) / (ob - oa):
         return true;
     return false;
   // returns distance between segment ab and point p
linline double segPointDist(pt a, pt b, pt p) {
     if (norm(a - b) == 0) {
```

```
line l(a, b);
    pt pr = l.projection(p);
    if (onSegment(a, b, p))
     return l.dist(p);
 return min(norm(a - p), norm(b - p));
// returns distance between segment ab and segment cd
inline double segSegDist(pt a, pt b, pt c, pt d) {
 double oa = triArea2(c, d, a);
 double ob = triArea2(c, d, b);
 double oc = triArea2(a, b, c);
 double od = triArea2(a, b, d);
 if (oa * ob < 0 && oc * od < 0)
   return 0; // proper intersection
 // If the segments don't intersect, the result will
  → be minimum of these four
 return min({segPointDist(a, b, c), segPointDist(a, b,
  \rightarrow d),
              segPointDist(c, d, a), segPointDist(c, d,
              \rightarrow b)\});
```

4.2.2 Circle

struct circle {

```
pt c;
 double r;
 circle() {}
 circle(pt c, double r) : c(c), r(r) {}
circle circumCircle(pt a, pt b, pt c) {
 b = b - a, c = c - a;
                            // consider coordinates

→ relative to point a

 assert(cross(b, c) != 0); // no circumcircle if A,B,C
     are co-linear
 // detecting the intersection point using the same
     technique used in line line
  // intersection
 pt center = a + (perp(b * dot(c, c) - c * dot(b, b))
  \rightarrow / cross(b, c) / 2);
 return {center, norm(center - a)};
int sqn(double val) {
 if (val > 0)
   return 1;
 else if (val == 0)
   return 0;
   return -1;
// returns number of intersection points between a line
→ and a circle
int circleLineIntersection(circle c, line l, pair<pt,</pre>

→ pt> &out) {
 double h2 = c.r * c.r - l.sqDist(c.c); // h^2
 if (h2 >= 0) {
                                          // the line

→ touches the circle

                                          // point P
   pt p = l.proj(c.c);
   pt h = l.v * sqrt(h2) / norm(l.v);
                                          // vector
    - parallel to l, of length h
                                          // {I,J}
    out = \{p - h, p + h\};
 return 1 + sgn(h2); // number of intersection points
```

```
// returns number of intersection points between two

→ circles

int circleCircleIntersection(circle c1, circle c2,
→ pair<pt, pt> &out) {
 pt d = c2.c - c1.c;
  double d2 = dot(d, d); // d^2
 if (d2 == 0) {
                          // concentric circle
   assert(c1.r != c2.r); // same circle
   return 0;
 double pd = (d2 + c1.r * c1.r - c2.r * c2.r) / 2; //
  \Rightarrow = |0_1P| * d
 double h2 = c1.r * c1.r - pd * pd / d2;
  \rightarrow = h^2
 if (h2 >= 0) {
   pt p = c1.c + d * pd / d2, h = perp(d) * sqrt(h2 /
   out = \{p - h, p + h\};
 return 1 + sqn(h2);
// inner --> if true returns inner tangents
int tangents(circle c1, circle c2, bool inner,

    vector<pair<pt, pt>> &out) {
 if (inner)
   c2.r = -c2.r;
  pt d = c2.c - c1.c;
  double dr = c1.r - c2.r, d2 = dot(d, d), h2 = d2 - dr

→ * dr;

 if (d2 = 0 | h2 < 0) {
    // assert(h2 != 0);
   return 0;
 for (double sign : {-1, 1}) {
   pt v = (d * dr + perp(d) * sqrt(h2) * sign) / d2;
   out.push_back({c1.c + v * c1.r, c2.c + v * c2.r});
 return 1 + (h2 > 0);
```

4.2.3 Closest Point Pair

```
void solve() {
 int n;
  cin >> n;
  vector<pair<pii, int>> vec(n);
 for (int i = 0; i < n; i++) {
  cin >> vec[i].first.first >> vec[i].first.second;
    vec[i].second = i;
  sort(vec.begin(), vec.end());
  ll ans = 1e\bar{1}8L;
  int a = -1, b = -1;
  set<pair<pii, int>> st;
 for (int i = 0, j = 0; i < n; i++) {
    int d = ceil(sqrt(ans));
    while (j < i && vec[j].first.first + d <</pre>
    → vec[j].first.first) {
      st.erase({{vec[j].first.second,
       → vec[j].first.first}, vec[j].second});
      j++;
    auto it1 =
```

```
st.lower_bound({{vec[i].first.second - d,

  vec[i].first.first}, -1});
  auto it2 =
       st.lower_bound({{vec[i].first.second + d,
       → vec[i].first.first], -1]);
  for (auto it = it1; it != it2; it++) {
    int dx = vec[i].first.first - it->first.second;
int dy = vec[i].first.second - it->first.first;
     ll curr = 1LL * dx * dx + 1LL * dy * dy;
    if (curr < ans) {
  ans = curr;</pre>
       a = vec[i].second:
       b = it->second;
  st.insert({{vec[i].first.second,
   → vec[i].first.first}, vec[i].second});
if (a > b)
swap(a, b);
cout << a << " " << b << " ";
cout << fixed << setprecision(6) << sgrt(ans) << "\n";</pre>
```

4.2.4 Common tengents of circle

```
struct pt {
  double x, y;
  pt operator-(pt p) {
    pt res = \{x - p.x, y - p.y\};
    return res;
|struct circle : pt {
 double r;
struct line {
 double a, b, c;
const double EPS = 1E-9;
double sqr(double a) { return a * a; }
void tangents(pt c, double r1, double r2, vector<line>
 double r = r2 - r1;
  double z = sqr(c.x) + sqr(c.y);
  double d = z - sqr(r);
  if (d < -EPS)
    return;
  d = sqrt(abs(d));
  line l:
  l.a = (c.x * r + c.y * d) / z;
  l.b = (c.y * r - c.x * d) / z;
 l.c = r1;
  ans.push_back(l);
vector<line> tangents(circle a, circle b) {
  vector<line> ans;
  for (int i = -1; i <= 1; i += 2)
    for (int j = -1; j <= 1; j += 2)
      tangents(b - a, a.r * i, b.r * j, ans);
  for (size_t i = 0; i < ans.size(); ++i)</pre>
    ans[i].c \rightarrow ans[i].a * a.x + ans[i].b * a.y;
  return ans;
```

```
4.2.5 Convex hall
struct pt {
  double x, y;
int orientation(pt a, pt b, pt c) {
  double v = a.x * (b.y - c.y) + b.x * (c.y - a.y) +
  \leftarrow c.x * (a.y - b.y);
  if (v < 0)
   return -1; // clockwise
  if (v > 0)
    return +1; // counter-clockwise
  return 0;
bool cw(pt a, pt b, pt c, bool include_collinear) {
  int o = orientation(a, b, c);
  return o < 0 || (include_collinear && o == 0);
bool ccw(pt a, pt b, pt c, bool include_collinear) {
  int o = orientation(a, b, c);
  return o > 0 || (include_collinear && o == 0);
void convex_hull(vector<pt> &a, bool include_collinear
\rightarrow = false) {
 if (a.size() == 1)
    return:
  sort(a.begin(), a.end(),
       [](pt a, pt b) { return make_pair(a.x, a.y) <

    make_pair(b.x, b.y); });

  pt p1 = a[0], p2 = a.back();
  vector<pt> up, down;
  up.push_back(p1);
  down.push_back(p1);
  for (int i = 1; i < (int)a.size(); i++) {</pre>
    if (i == a.size() - 1 || cw(p1, a[i], p2,

    include_collinear)) {

      while (up.size() >= 2 &&
             !cw(up[up.size() - 2], up[up.size() - 1],

¬ a[i], include_collinear))
        up.pop_back();
      up.push_back(a[i]);
    if (i == a.size() - 1 || ccw(p1, a[i], p2,

    include_collinear)) {

      while (down.size() >= 2 &&
             !ccw(down[down.size() - 2],

    down[down.size() - 1], a[i],

                  include collinear))
        down.pop_back();
      down.push_back(a[i]);
```

if (include_collinear && up.size() == a.size()) {

reverse(a.begin(), a.end());

a.push_back(up[i]);

for (int i = 0; i < (int)up.size(); i++)

return;

a.clear();

```
for (int i = down.size() - 2; i > 0; i--)
    a.push_back(down[i]);
}
```

4.2.6 Half Plain Intersection

```
const double eps = 1e-9;
template <class T> struct Point {
 typedef Point P;
 T x, y;

Point(T x = 0, T y = 0) {

    x = x;

    y = y;
 bool operator<(P p) const { return tie(x, y) <</pre>

→ tie(p.x, p.y);

 bool operator==(P p) const { return tie(x, y) ==

    tie(p.x, p.y); }

  P operator+(P p) const { return P(x + p.x, y + p.y); }
 P operator-(P p) const { return P(x - p.x, y - p.y); }
 P operator*(T d) const { return P(x * d, y * d); }
 P operator/(T d) const { return P(x / d, y / d); }
 T dot(P p) const { return x * p.x + y * p.y; }
 T cross(P p) const { return x * p.y - y * p.x; }
 T cross(P a, P b) const { return (a - *this).cross(b
  → - *this); }
 T dist2() const { return x * x + y * y; }
  double dist() const { return sqrt(double(dist2())); }
  double angle() const { return atan2(y, x); }
  P unit() const { return *this / dist(); }
 P perp() const { return P(-y, x); }
  P normal() const { return perp().unit(); }
 P rotate(double a) const {
   return P(x * cos(a) - y * sin(a), x * sin(a) + y *
    \rightarrow cos(a));
template <class P>
int lineIntersection(const P &s1, const P &e1, const P
if ((e1 - s1).cross(e2 - s2)) // if not parallel
   r = s2 - (e2 - s2) * (e1 - s1).cross(s2 - s1) / (e1

→ - s1).cross(e2 - s2);
   return 1;
 return -((e1 - s1).cross(s2 - s1) == 0 || s2 == e2);
typedef Point<ld> P;
struct Line {
 P P1, P2;
  // right hand side of the ray P1 --> P2
  Line(P = P(), P = P()) {
   P1 = a;
   P2 = b;
  P intpo(Line y) {
   assert(lineIntersection(P1, P2, y.P1, y.P2, r) ==
   return r;
 P dir() { return P2 - P1; }
  bool contains(P x) { return (P2 - P1).cross(x - P1) <</pre>
  → eps; }
```

```
bool out(P x) { return !contains(x); }
template <class T> bool mycmp(Point<T> a, Point<T> b) {
  if (a.x * b.x < 0)
    return a.x < 0;
  if (abs(a.x) < eps) {
    if (abs(b.x) < eps)
      return a.y > 0 && b.y < 0;
    if (b.x < 0)
      return a.y > 0;
    if (b.x > 0)
      return true;
  if (abs(b.x) < eps) {
    if (a.x < 0)
      return b.y < 0;
    if (a.x > 0)
      return false;
  return a.cross(b) > 0;
bool cmp(Line a, Line b) { return mycmp(a.dir(),
 → b.dir()); }
ld Intersection_Area(vector<Line> b) {
  sort(b.begin(), b.end(), cmp);
  int n = b.size();
  int q = 1, h = 0;
  vector<Line> c(b.size() + 10);
  for (int i = 0; i < n; i++)
    while (q < h \&\& b[i].out(c[h].intpo(c[h - 1])))
    while (q < h && b[i].out(c[q].intpo(c[q + 1])))</pre>
    c[++h] = b[i];
    if (q < h \&\& abs(c[h].dir().cross(c[h - 1].dir()))

    < eps) {</pre>
      h--:
      if (b[i].out(c[h].P1))
        c[h] = b[i];
  while (q < h - 1 \&\& c[q].out(c[h].intpo(c[h - 1])))
  while (q < h - 1 \&\& c[h].out(c[q].intpo(c[q + 1])))
  if (h - q <= 1)
    return 0;
  c[h + 1] = c[q];
  vector<P> s;
  for (int i = q; i <= h; i++)
s.push_back(c[i].intpo(c[i + 1]));</pre>
  s.push_back(s[0]);
  ld ans = 0;
  for (int i = 0; i < int(s.size()) - 1; i++)
    ans += s[i].cross(s[i + 1]);
  ans /= 2.0;
  return ans;
void solve() {
  int n;
  cin >> n;
  vector<P> vec(n);
  for (int i = 0; i < n; i++) {
    ld x, y;
    cin >> x >> y;
    vec[i] = P(x, y);
```

```
}
vector<Line> halfplanes;
for (int i = 0; i < n; i++) {
   int j = (i + 1) % n;
   halfplanes.push_back(Line(vec[i], vec[j]));
}
ld ans = Intersection_Area(halfplanes);
cout << fixed << setprecision(10) << ans << "\n";
}
</pre>
```

4.2.7 Point Inside Poly (Ray Shooting)

```
// if strict, returns false when a is on the boundary
inline bool insidePoly(pt *P, int np, pt a, bool strict
- = true) {
  int numCrossings = 0;
  for (int i = 0; i < np; i++) {
    if (onSegment(P[i], P[(i + 1) % np], a))
      return !strict;
    numCrossings += crossesRay(a, P[i], P[(i + 1) %
      - np]);
  }
  return (numCrossings & 1); // inside if odd number of
      - crossings
}</pre>
```

4.2.8 check if belongs to convex poly

```
struct pt {
 long long x, y;
  pt() {}
  pt(long long _x, long long _y) : x(_x), y(_y) {}
  pt operator+(const pt &p) const { return pt(x + p.x,
  \rightarrow y + p.y); }
  pt operator-(const pt &p) const { return pt(x - p.x,
  long long cross(const pt &p) const { return x * p.y -
  long long dot(const pt &p) const { return x * p.x + y
  long long cross(const pt &a, const pt &b) const {
    return (a - *this).cross(b - *this);
  long long dot(const pt &a, const pt &b) const {
   return (a - *this).dot(b - *this);
  long long sqrLen() const { return this->dot(*this); }
bool lexComp(const pt &l, const pt &r) {
 return l.x < r.x \mid | (l.x == r.x \&\& l.y < r.y);
int sqn(long long val) { return val > 0 ? 1 : (val == 0
\rightarrow ? 0 : -1); }
vector<pt> séq;
pt translation;
int n;
bool pointInTriangle(pt a, pt b, pt c, pt point) {
 long long s1 = abs(a.cross(b, c));
 long long s2 =
      abs(point.cross(a, b)) + abs(point.cross(b, c)) +
      → abs(point.cross(c, a));
```

```
return s1 == s2;
void prepare(vector<pt> &points) {
 n = points.size();
  int pos = 0;
 for (int i = 1; i < n; i++) {
   if (lexComp(points[i], points[pos]))</pre>
      pos = i;
  rotate(points.begin(), points.begin() + pos,
 n--; points.end());
  seq.resize(n);
 for (int i = 0; i < n; i++)
  seq[i] = points[i + 1] - points[0];</pre>
  translation = points[0];
bool pointInConvexPolygon(pt point) {
  point = point - translation;
  if (seq[0].cross(point) != 0 &&
      sgn(seq[0].cross(point)) !=

→ sgn(seq[0].cross(seq[n - 1])))
    return false;
  if (seq[n - 1].cross(point) != 0 &&
      sgn(seq[n - 1].cross(point)) != sgn(seq[n -
       → 1].cross(seq[0])))
    return false;
 if (seq[0].cross(point) == 0)
    return seq[0].sqrLen() >= point.sqrLen();
  int l = 0, r = n - 1;
  while (r - l > 1) {
    int mid = (l + r) / 2;
    int pos = mid;
    if (seq[pos].cross(point) >= 0)
      l = mid;
    else
      r = mid;
  int pos = l;
  return pointInTriangle(seq[pos], seq[pos + 1], pt(0,
  \rightarrow 0), point);
```

4.3 Matrices

4.3.1 Gauss-Jordan Elimination in GF(2)

```
const int SZ = 105;
const int MOD = 1e9 + 7;
bitset<SZ> mat[SZ];
int where[SZ];
bitset<SZ> ans;
ll bigMod(ll a, ll b, ll m) {
    ll ret = 1LL;
    a %= m;
    while (b) {
        if (b & 1LL)
            ret = (ret * a) % m;
        a = (a * a) % m;
        b >>= 1LL;
    }
    return ret;
}
/// n for row, m for column, modulo 2
```

```
int GaussJordan(int n, int m) {
 SET(where); /// sets to -1
 for (int r = 0, c = 0; c < m && r < n; c++) {
   for (int i = r; i < n; i++)
if (mat[i][c]) {
       swap(mat[i], mat[r]);
       break;
   if (!mat[r][c])
     continue;
   where[c] = r;
   for (int i = 0; i < n; ++i)
     if (i != r && mat[i][c])
   mat[i] ^= mat[r];
r++;
 for (int j = 0; j < m; j++) {
   if (where[j] != -1)
     ans[j] = mat[where[j]][m] / mat[where[j]][j];
   else
     ans[j] = 0;
 for (int i = 0; i < n; i++) {
   int sum = 0;
   for (int j = 0; j < m; j++)
     sum ^= (ans[j] & mat[i][j]);
   if (sum != mat[i][m])
     return 0; /// no solution
 int cnt = 0;
 for (int j = 0; j < m; j++)
   if \(\text{where}[j] == -1)
     cnt++;
 return bigMod(2, cnt, MOD); /// how many solutions
  → moduło some other MOD
```

4.3.2 Gauss-Jordan Elimination in GF(P)

```
const int SZ = 105;
const int MOD = 1e9 + 7
int mat[SZ][SZ], where[SZ], ans[SZ];
ll bigMod(ll a, ll b, ll m) {
  ll ret = 1LL;
  a %= m;
while (b) {
    if (b & 1LL)
       ret = (ret * a) % m;
    a = (a * a) % m;
    b >>= 1LL;
  return ret;
int GaussJordan(int n, int m, int P) {
  SET(where); /// sets to -1
  for (int r = 0, c = 0; c < m && r < n; c++) {
    int mx = r;
    for (int i = r; i < n; i++)
  if (mat[i][c] > mat[mx][c])
    mx = i;
if (mat[mx][c] == 0)
       continue;
    if (r != mx)
       for (int j = c; j <= m; j++)
   swap(mat[r][j], mat[mx][j]);</pre>
```

```
where [c] = r;
  int mul, minv = bigMod(mat[r][c], P - 2, P);
  int temp;
 for (int i = 0; i < n; i++) {
  if (i != r && mat[i][c] != 0) {</pre>
      mul = (mat[i][c] * (long long)minv) % P;
      for (int j = c; j <= m; j++) {
  temp = mat[i][j];</pre>
         temp -= ((mul * (long long)mat[r][j]) % P);
        temp += P:
        if (temp >= P)
           temp_-= P;
        mat[i][j] = temp;
  ŕ++;
for (int j = 0; j < m; j++) {
  if (where[j] != -1)
    ans[j] =
         (mat[where[j]][m] * 1LL *

→ bigMod(mat[where[j]][j], P - 2, P)) % P;
    ans[j] = 0;
for (int i = 0; i < n; i++) {
  int sum = 0;
  for (int j = 0; j < m; j++) {
    sum += (ans[j] * 1LL * mat[i][j]) % P;
    if (sum >= P)
      sum -= P;
  if (sum != mat[i][m])
    return 0; /// no solution
int cnt = 0;
for (int j = 0; j < m; j++)
  if (where[i] == -1)
    cnt++;
return bigMod(P, cnt, MOD);
```

4.3.3 Gauss-Jordan Elimination

```
// Complexity --> 0(min(n,m)*nm)
const int SZ = 105;
const double EPS = 1e-9:
double mat[SZ][SZ], ans[SZ];
int where[SZ];
int GaussJordan(int n, int m) {
 SET(where); /// sets to -1
  for (int r = 0, c = 0; c < m && r < n; c++) {
    int mx = r;
    for (int i = r; i < n; i++)
      if (abs(mat[i][c]) > abs(mat[mx][c]))
    if (abs(mat[mx][c]) < EPS)</pre>
      continue;
    if (r != mx)
      for (int j = c; j <= m; j++)
   swap(mat[r][j], mat[mx][j]);</pre>
    where[c] = r;
    for (int i = 0; i < n; i++)
```

```
if (i != r) {
    double mul = mat[i][c] / mat[r][c];
    for (int j = c; j <= m; j++)
        mat[i][j] -= mul * mat[r][j];
}

r++;

for (int j = 0; j < m; j++) {
    if (where[j] != -1)
        ans[j] = mat[where[j]][m] / mat[where[j]][j];
    else
        ans[j] = 0;
}

for (int i = 0; i < n; i++) {
    double sum = 0;
    for (int j = 0; j < m; j++)
        sum += ans[j] * mat[i][j];
    if (abs(sum - mat[i][m]) > EPS)
        return 0; // no sofution
}

for (int j = 0; j < m; j++)
    if (where[j] == -1)
    return INF;
return 1;</pre>
```

4.3.4 Space of Binary Vectors

```
// A vector can be added to the space at any moment
// Following queries can be made on the current basis
→ at any moment
const int B = ?;
struct space {
  int base[B];
  int sz;
  void init() {
   CLR(base);
   sz = 0;
  // if the vector val is not currently in the vector
  // then adds val as a basis vector
  void add(int val) {
   for (int i = B - 1; i >= 0; i--) {
     if (val & (1 << i)) {
       if (!base[i]) {
         base[i] = val;
          ++SZ;
         return;
       } else
         val ^= base[i];
 int getSize() { return sz; }
 // returns maximum possible ret such that, ret = (val
 // and x is also in the vector space of the current
  → basis
 int getMax(int val) {
   int ret = val;
   for (int i = B - 1; i >= 0; i--) {
     if (ret & (1 << i))
       continue;
     ret ^= base[i];
```

```
return ret;
// returns minimum possible ret such that, ret = (val
// and x is also in the vector space of the current
→ basis
int getMin(int val) {
 int ret = val;
 for (int i = B - 1; i >= 0; i--) {
   if (!(ret & (1 << i)))
     continue;
   ret ^= base[i];
 return ret;
// returns true if val is in the vector space
bool possible(int val) {
 for (int i = B - 1; i >= 0; i--) {
  if (val & (1 << i))
     val ^= base[i];
 return (val == 0);
// returns the k'th element of the current vector
// if we sort all the elements according to their

→ values

int query(int k) {
 int ret = 0;
 int tot = 1 << getSize();</pre>
 for (int i = B - 1; i >= 0; i--) {
   if (!base[i])
     continue;
    int low = tot >> 1;
   if ((low < k && (ret & 1 << i) == 0) || (low >= k
    ret ^= base[i];
   if (low < k)
     k -= low;
    tot /= 2;
 return ret;
```

4.3.5 matrix_exponentiation

```
}
}
void power(long long N) {
    if (N == 1)
        return;
    if (N % 2 == 0) {
        power(N / 2);
        multiply(F, F);
    } else {
        power(N - 1);
        multiply(F, f);
    }
    return;
}
```

4.4 Modular Arithmatic

4.4.1 Chinese Remainder Theorem

```
struct Congruence {
    ll a, m;
};
ll CRT(vector<Congruence> const &congruences) {
    ll M = 1;
    for (auto const &congruence : congruences) {
        M *= congruence.m;
}

    ll solution = 0;
    for (auto const &congruence : congruences) {
        ll a_i = congruence.a;
        ll M_i = M / congruence.m;
        ll N_i = mod_inv(M_i, congruence.m);
        solution = (solution + a_i * M_i % M * N_i) % M;
}
return solution;
}
```

4.4.2 Discrete log

```
int solve(int a, int b, int m) {
 a %= m, b %= m;
 int k = 1, add = 0, g;
 while ((g = gcd(a, m)) > 1) {
   if (b == k)
      return add;
   if (b % g)
      return -1;
    b \neq g, m \neq g, ++add;
   k = (k * 111 * a / q) % m;
 int n = sqrt(m) + 1;
  int an = 1;
 for (int i = 0; i < n; ++i)
    an = (an * 1ll * a) % m;
  unordered_map<int, int> vals;
 for (int q = 0, cur = b; q <= n; ++q) {
   vals[cur] = q;
cur = (cur * 1ll * a) % m;
 for (int p = 1, cur = k; p <= n; ++p) {
    cur = (cur * 1ll * an) % m;
    if (vals.count(cur)) {
```

```
int ans = n * p - vals[cur] + add;
    return ans;
return -1;
```

4.4.3 Modular_inverse_EGCD

```
int gcdExtended(int a, int b, int *x, int *y) {
 if (a == 0) {
   *x = 0, *y = 1;
   return b;
 int x1, y1;
 int gcd = gcdExtended(b % a, a, &x1, &y1);
 *x = y1 - (b / a) * x1;
 *y = x1;
 return gcd;
void modInverse(int a, int m) {
 int g = gcdExtended(a, m, &x, &y);
 if (g != 1)
   printf("Inverse doesn't exist");
   int res = (x \% m + m) \% m;
   printf("Modular multiplicative inverse is %d\n",

    res);
```

4.4.4 nCr Lucas

```
/*use this to calculate nCr modulo mod, when mod is
→ smaller than n and m. define
MOD Complexity : O(mod + log mod n) */
ll fact[MOD];
ll bigmod(int x, int p) {
  ll res = 1;
  while (p) {
    if (p & 1)
     res = res * x % MOD;
    x = x * x % MOD;
    p >>= 1;
  return res;
ll modinv(ll x) { return bigmod(x, MOD - 2); }
void precalc() { // run this
  fact[0] = 1;
  for (int i = 1; i < MOD; i++) {
   fact[i] = fact[i - 1] * i % MOD;
int C(int n, int m) {
 if (m > n)
   return 0;
  if (m == 0 \text{ or } m == n)
    return 1;
  ll ret = fact[n] * modinv(fact[m]) % MOD;
  return ret * modinv(fact[n - m]) % MOD;
int nCr(int n, int m) {
 if (m > n)
```

```
return 0:
if (m == 0)
 return 1;
return nCr(n / MOD, m / MOD) * C(n % MOD, m % MOD) %
```

4.5 Notes

4.5.1 Counting

|f 4.5.1.1 f Fibonacci Let $A,\ B$ and n be integer numbers.

$$k = A - B$$

$$F_A F_B = F_{k+1} F_A^2 + F_k F_A F_{A-1} \tag{2}$$

$$\sum_{i=0}^{n} F_i^2 = F_{n+1} F_n \tag{3}$$

$$\sum_{i=0}^{n} F_i F_{i+1} = F_{n+1}^2 - (-1)^n$$
 (4)

$$\sum_{i=0}^{n} F_i F_{i+1} = \sum_{i=0}^{n-1} F_i F_{i+1}$$
 (5)

$$gcd(F_m, F_n) = F_{gcd(m,n)}$$
(6)

$$\sum_{0 \le k \le n} = F_{n+1} \tag{7}$$

4.5.2 Geometry

4.5.2.1 Triangle Circumradious:

Inradious: $r = \frac{A}{c}$

Length of radian: $m_a = \frac{1}{2}\sqrt{2b^2 + 2c^2 - a^2}$

Length of bisector: $s_a = \sqrt{bc[1-(\frac{a}{b+c})^2]}$

Law of tangents: $\frac{a+b}{a-b} = \frac{\tan \frac{\alpha-p}{2}}{\tan \frac{\alpha-p}{2}}$

4.5.3 Chinese_reminder_theorem

Let $m=m_1\cdot m_2\cdots m_k$, where m_i are pairwise coprime. In addition to m_i , we are also given $|_{4.6}$ Polynomial Multiplication a system of congruences

$$\begin{cases}
 a \equiv a_1 \pmod{m_1} \\
 a \equiv a_2 \pmod{m_2} \\
 \vdots \\
 a \equiv a_k \pmod{m_k}
\end{cases}$$

where a_i are some given constants. The original $\begin{bmatrix} a_i \\ cd \end{bmatrix}$ |form of CRT then states that the given system|static cd f[N];

of congruences always has *one and exactly one* solution modulo m.

4.5.4 Diophantine

A Linear Diophantine Equation (in two variables) is an equation of the general form:

$$ax + by = c$$

where a, b, c are given integers, and x, y are unknown integers. Code gives a single solution (1) for x and y for any other solution we can use:

$$x = x_0 + k \cdot \frac{b}{g}, \qquad y = y_0 - k \cdot \frac{a}{g}$$

4.5.5 Series

$$e^{x} = 1 + x + \frac{x^{2}}{2} + \frac{x^{3}}{3} + \cdots$$

$$\ln(1+x) = x - \frac{x^{2}}{2} + \frac{x^{3}}{3} - \frac{x^{4}}{4} + \cdots$$

$$\sqrt{1+x} = 1 + \frac{x}{2} - \frac{x^{2}}{8} + \frac{2x^{3}}{32} - \frac{5x^{4}}{128} + \cdots$$

$$\sin x = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} - \frac{x^{7}}{7!} + \cdots$$

$$\cos x = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4} - \frac{x^{6}}{6} + \cdots$$

4.5.6 Sum

(8)

$$1^{2} + 2^{2} + 3^{2} + \dots + n^{2} = \frac{n(2n+1)(n+1)}{6}$$
$$1^{3} + 2^{3} + 3^{3} + \dots + n^{3} = \frac{n^{2}(n+1)^{2}}{4}$$
$$1^{4} + 2^{4} + 3^{4} + \dots + n^{4} = \frac{n(n+1)(2n+1)(3n^{2} + 3n - 1)}{36}$$

4.6.1 FFT

```
typedef cplx cd;
// define N as a power of two greater than the size of
- any possible polynomial
using cd = complex<double>;
const double PI = acosl(-1);
|int rev[N];
```

```
void prepare(int &n) {
 int sz = __builtin_ctz(n);
for (int i = 1; i < n; i++)
  rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << (sz - 1));</pre>
  w[0] = 0, w[1] = 1, sz = 1;
  while (1 << sz < n) {
    cd w_n = cd(cos(2 * PI / (1 << (sz + 1))), sin(2 *
     \rightarrow PI / (1 << (sz + 1))));
    for (int i = 1 << (sz - 1); i < (1 << sz); i++) {
      w[i << 1] = w[i], w[i << 1 | 1] = w[i] * w_n;
    SZ++;
void fft(cd *a, int n) {
 for (int i = 1; i < n - 1; i++) {
    if (i < rev[i])</pre>
      swap(a[i], a[rev[i]]);
 for (int h = 1; h < n; h <<= 1) {
    for (int s = 0; s < n; s += h << 1) {
      for (int i = 0; i < h; i++) {
        cd \& u = a[s + i], \& v = a[s + i + h], t = v *

    w[h + i];

        v = u - t, u' = u + t;
vector<ll> multiply(vector<ll> a, vector<ll> b) {
  int n = a.size(), m = b.size(), sz = 1;
 if (!n or !m)
    return {};
  while (sz < n + m - 1)
    sz <<= 1;
  prepare(sz);
  for (int i = 0; i < sz; i++)
    f[i] = cd(i < n ? a[i] : 0, i < m ? b[i] : 0);
  fft(f, sz);
  for (int i = 0; i <= (sz >> 1); i++) {
    int j = (sz - i) & (sz - 1);
    cd x = (f[i] * f[i] - conj(f[j] * f[j])) * cd(0,
     \rightarrow -0.25);
    f[j] = x, f[i] = conj(x);
 fft(f, sz);
  vector<ll> c(n + m - 1);
 for (int i = 0; i < n + m - 1; i++)
  c[i] = round(f[i].real() / sz);</pre>
  return c;
```

4.6.2 NTT

```
const int G = 3;
const int MOD = 998244353;
const int N =
    ?; // (1 << 20) + 5; greater than maximum possible
    degree of any polynomial
int rev[N], w[N], inv_n;
int bigMod(int a, int e, int mod) {
    if (e == -1)
        assert(false);
    if (e == -1)
        e = mod - 2;</pre>
```

```
int ret = 1;
  while (e) {
    if (e & 1)
      ret = (ll)ret * a % mod;
    a = (ll)a * a % mod;
    e >>= 1:
  return ret;
|void prepare(int &n) {
  int sz = abs(31 - __builtin_clz(n));
int r = bigMod(G, (MOD - 1) / n, MOD);
  inv_n = bigMod(n, MOD - 2, MOD), w[0] = w[n] = 1;
  for (int i = 1; i < n; ++i)
    w[i] = (ll)w[i - 1] * r % MOD;
  for (int i = 1; i < n; ++i)
    rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << (sz - 1));
void ntt(int *a, int n, int dir) {
  for (int i = 1; i < n - 1; ++i) {
    if (i < rev[i])
      swap(a[i], a[rev[i]]);
  for (int m = 2; m <= n; m <<= 1) {
    for (int i = 0; i < n; i += m) {
      for (int j = 0; j < (m >> 1); ++j) {
        int &u = a[i + j], &v = a[i + j + (m >> 1)];
        int t = (ll)v * w[dir ? n - n / m * j : n / m *
        → j] % MOD;
v = u - t < 0 ? u - t + MOD : u - t;
        u = u + t >= MOD ? u + t - MOD : u + t;
  if (dir)
    for (int i = 0; i < n; ++i)
      a[i] = (ll)a[i] * inv_n % MOD;
int f_a[N], f_b[N];
|vector<<mark>int</mark>> multiply(vector<<mark>int</mark>> a, vector<<mark>int</mark>> b) {
  int sz = 1, n = a.size(), m = b.size();
  while (sz < n + m - 1)
    sz <<= 1;
  prepare(sz);
  for (int i = 0; i < sz; ++i)
    f_a[i] = i < n ? a[i] : 0;
  for (int i = 0; i < sz; ++i)
    f_b[i] = i < m ? b[i] : 0;
  ntt(f_a, sz, 0);
  ntt(f_b, sz, 0);
  for (int i = 0; i < sz; ++i)
    f_a[i] = (ll)f_a[i] * f_b[i] % MOD;
  ntt(f_a, sz, 1);
  return vector<int>(f_a, f_a + n + m - 1);
// G = primitive_root(MOD)
int primitive_root(int p) {
  vector<int> factor;
  int tmp = p - 1;
  for (int i = 2; i * i <= tmp; ++i) {
    if (tmp % i == 0) {
      factor.emplace_back(i);
      while (tmp % i == 0)
        tmp /= i;
```

```
}
if (tmp != 1)
    factor.emplace_back(tmp);
for (int root = 1;; ++root) {
    bool flag = true;
    for (int i = 0; i < (int)factor.size(); ++i) {
        if (bigMod(root, (p - 1) / factor[i], p) == 1) {
            flag = false;
            break;
        }
        if (flag)
            return root;
    }
}
</pre>
```

4.7 2-SAT

```
* 1 based index for variables
    *F = (a op b) and (c op d) and \dots (y op z)
      a, b, c ... are the variables
      sat::satisfy() returns true if there is some
      → assignment(True/False)
      for all the variables that make F = True
    * init() at the start of every case
namespace sat {
#define CLR(ara, n) fill(ara + 1, ara + n + 1, 0)
const int MAX = 200010; /// number of variables * 2
bool vis[MAX];
vector<int> ed[MAX], rev[MAX];
int n, m, ptr, dfs_t[MAX], ord[MAX], par[MAX];
inline int inv(int x) { return ((x) <= n ? (x + n) : (x</pre>
\rightarrow - n)); }
/// Call init once
void init(int vars) {
 n = vars, m = vars << 1;
 for (int i = 1; i <= m; i++) {
  ed[i].clear();</pre>
   rev[i].clear();
/// Adding implication, if a then b ( a --> b )
inline void add(int a, int b) {
 ed[a].push_back(b);
 rev[b].push_back(a);
inline void OR(int a, int b) {
 add(inv(a), b);
 add(inv(b), a);
inline void AND(int a, int b) {
 add(a, b);
 add(b, a);
void XOR(int a, int b) {
 add(inv(b), a);
 add(a, inv(b));
 add(inv(a), b);
 add(b, inv(a));
```

```
inline void XNOR(int a, int b) {
  add(a, b);
  add(b, a);
  add(inv(a), inv(b));
  add(inv(b), inv(a));
/// (x <= n) means forcing variable x to be true
/// (x = n + y) means forcing variable y to be false
inline void force_true(int x) { add(inv(x), x); }
inline void topsort(int s) {
  vis[s] = true;
  for (int x : rev[s])
    if (!vis[x])
      topsort(x);
  dfs_t[s] = ++ptr;
inline void dfs(int s, int p) {
  par[s] = p;
  vis[s] = true;
  for (int x : ed[s])
    if (!vis[x])
      dfs(x, p);
void build() {
  CLR(vis, m);
  ptr = 0;
  for (int i = m; i >= 1; i--) {
   if (!vis[i])
      topsort(i):
    ord[dfs_t[i]] = i;
  CLR(vis, m);
  for (int i = m; i >= 1; i--) {
    int x = ord[i];
    if (!vis[x])
      dfs(x, x);
/// Returns true if the system is 2-satisfiable and
→ returns the solution (vars
/// set to true) in vector res
bool satisfy(vector<int> &res) {
  build();
  CLR(vis, m);
  for (int i = 1; i <= m; i++) {
  int x = ord[i];</pre>
    if (par[x] == par[inv(x)])
      return false
    if (!vis[par[x]]) {
      vis[par[x]] = true;
      vis[par[inv(x)]] = false;
  res.clear();
  for (int i = 1; i <= n; i++) {
   if (vis[par[i]])
      res.push_back(i);
  return true;
#undef CLR
```

```
4.8 Catalan_number
```

4.9 Diophantine_Equation

```
int gcd_extend(int a, int b, int &x, int &y) {
  if (b == 0) {

\begin{array}{ccc}
x & = & 1; \\
y & = & 0;
\end{array}

    return a;
  } else {
    int g = gcd_extend(b, a % b, x, y);
    int \tilde{x}1 = x, y1 = y;
    x = y1;
    y = x1 - (a / b) * y1;
    return g;
|void print_solution(int a, int b, int c) {
  int x, y;
  if (a == 0 && b == 0) {
    if (c == 0) {
       cout << "Infinite Solutions Exist" << endl;</pre>
      cout << "No Solution exists" << endl;</pre>
  int gcd = gcd_extend(a, b, x, y);
  if (c % qcd != 0) {
    cout << "No Solution exists" << endl;</pre>
    cout << "x = " << x * (c / gcd) << ", y = " << y *
```

4.10 Euler_Totient

```
int phi(int n) {
  int result = n;
  for (int i = 2; i * i <= n; i++) {
    if (n % i == 0) {
      while (n % i == 0)
      n /= i;
      result -= result / i;
    }
}
if (n > 1)
    result -= result / n;
```

```
return result;
}
void phi_1_to_n(int n) {
  vector<int> phi(n + 1);
  phi[0] = 0;
  phi[1] = 1;
  for (int i = 2; i <= n; i++)
     phi[i] = i;

  for (int i = 2; i <= n; i++) {
     if (phi[i] == i) {
        for (int j = i; j <= n; j += i)
            phi[j] -= phi[j] / i;
     }
}</pre>
```

4.11 Extended Euclid

```
PLL extEuclid(ll a, ll b) {
 ll s = 1, t = 0, st = 0, tt = 1;
  while (b) {
   s = s - (a / b) * st;
   swap(s, st);
   t = t - (a / b) * tt;
   swap(t, tt);
   a = a \% b:
    swap(a, b);
 return mp(s, t);
/// returns number of solutions for the equation ax +
/// where minx <= x <= maxx and miny <= y <= maxy
ll numberOfSolutions(ll a, ll b, ll c, ll minx, ll
→ maxx, ll miny, ll maxy) {
 if (a == 0 && b == 0) {
    if (c != 0)
      return 0;
      return (maxx - minx + 1) *
             (maxv - minv +
              1); /// all possible (x,y) within the

→ ranges can be a solution

  ll gcd = \_gcd(a, b);
  if (c % qcd != 0)
   return 0; /// no solution , gcd(a,b) doesn't divide
  /// If b==0, x will be fixed, any y in the range can
  → form a pair with that x
 if (b == 0) {
   c /= a;
    if (c >= minx \&\& c <= maxx)
      return maxy - miny + 1;
   else
      return 0;
  /// If a==0, x will be fixed, any x in the range can
  → form a pair with that y
  if (a == 0) {
   c /= b;
    if (c >= miny \&\& c <= maxy)
      return maxx - minx + 1;
    else
```

```
return 0;
/// gives a particular solution to the equation ax +
 \rightarrow by = gcd(a,b) {gcd(a,b)
/// can be negative also}
PLL sol = extEuclid(a, b);
a /= qcd;
b /= gcd;
c /= gcd;
ll x, y;
x = sol.xx * c;
y = sol.yy * c;
il lx, ly, rx, ry;
if (x < minx)
  lx = ceil((minx - x) / (double)abs(b));
else
  lx = -floor((x - minx) / (double)abs(b));
if (x < maxx)</pre>
  rx = floor((maxx - x) / (double)abs(b));
else
  rx = -ceil((x - maxx) / (double)abs(b));
/// Doing this I because I ignored sign of b before
→ passing to
/// getCeil/getFloor
if (b < 0) {
  lx *= -1;
  rx *= -1;
  swap(lx, rx);
if (lx > rx)
  return 0;
/// ly -> minimum value of k such that sol.yy - k *
 \rightarrow (a/q) is in
/// range[miny,maxy] ry -> maximum value of k such
 - that sol.yy - k * (a/g) is
/// in range[miny,maxy]
if (v < minv)</pre>
  ly = ceil((miny - y) / (double)abs(a));
else
  ly = -floor((y - miny) / (double)abs(a));
if (y < maxy)
  ry = floor((maxy - y) / (double)abs(a));
else
  ry = -ceil((y - maxy) / (double)abs(a));
/// Doing this because I ignored sign of a before
   passing to getCeil/getFloor
if (a < 0) {
  y *= -1;
ry *= -1;
  swap(ly, ry);
if (ly > ry)
  return 0;
lv *= -1;
rv *= -1;
swap(ly, ry);
/// getting the intersection between (x range) and (y
\rightarrow range) of k
ll li = max(lx, ly);
ll ri = min(rx, ry);
return max(ri - li + 1, OLL);
```

```
4.12 Mobius Function
```

```
mu[1] = 1,
    mu[n] = 0 if n has a squared prime factor,
    mu[n] = 1 if n is square-free with even number of
    → prime factors
    mu[n] = -1 if n is square-free with odd number of

→ prime factors

    *** sum of mu[d] where d | n is 0 ( For n=1, sum is
***/
int mu[MAX] = {0};
void Mobius(int N) {
 int i, j;
 mu[1] = 1;
  for (i = 1; i <= N; i++) {
   if (mu[i]) {
      for (j = i + i; j \le N; j += i) {
        mu[j̄] -= mu[ī];
```

4.13 Primes_stuff

```
const int N = 10000000 + 6;
vector<long long> primes;
|bitset<N> flag;
|vector<long long> v;
|void siv() {
  flaq[1] = 1;
  for (int i = 2; i * i <= N; i++) {
    if (flag[i] == 0) {
      for (int j = i * i; j < N; j += i)
        flag[j] = 1;
  for (int i = 2; i < N; i++) {
    if (flag[i] == 0)
      primes.push_back(i);
long long mul(long long a, long long b, long long mod) {
  long long res = 0;
  a %= mod;
  while (b) {
    if (b & 1)
      res = (res + a) \% mod;
    a = (2 * a) \% mod;
    b >>= 1; // b = b / 2
  return res;
long long gcd(long long x, long long v) {
  if_{X} (x < 0)
x = -x;
  if_{y}(y < 0)
y = -y;
  if (!x || !y)
    return x + y;
  long long temp;
  while (x \% v) {
    temp = x;
```

```
y = temp \% y;
  return y;
long long mod_inverse(long long n, long long p) {
  long long x, y, g;
  g = gcd_extended(n, p, x, y);
  if_{X} (g < 0)
x = -x;
  return (x \% p + p) \% p;
long long mpow(long long x, long long y, long long mod)
  long long ret = 1;
  while (y) {
    if (y & 1)
      ret = mul(ret, x, mod);
    y >>= 1, x = mul(x, x, mod);
  return ret % mod;
int isPrime(long long p) {
  if (p < 2 \mid | !(p \& 1))
    return 0;
  if (p == 2)
    return 1;
  long long q = p - 1, a, t;
  int k = \bar{0}, b = 0;
  while (!(q & 1))
    q >>= 1, k++;
  for (int it = 0; it < 2; it++) {
    a = rand() % (p - 4) + 2;
    t = mpow(a, q, p);
b = (t == 1) || (t == p - 1);
    for (int i = 1; i < k && !b; i++) {
      t = mul(t, t, p);
      if (t == p - 1)
        b = 1;
    if (b == 0)
      return 0;
  return 1;
long long pollard_rho(long long n, long long c) {
  long long x = 2, y = 2, i = 1, k = 2, d;
  while (1) {
    x = (mul(x, x, n) + c);
    if (x > = n)
    d = gcd(x - y, n);
    if (d > 1)
      return d;
    if (++i == k)
      y = x, k <<= 1;
  return n;
|map<long long, int> mp;
void factorize(long long n) {
  int l = primes.size();
  for (int i = 0; primes[i] * primes[i] <= n && i < l;</pre>
   if (n % primes[i] == 0) {
      mp[primes[i]] = 1;
```

```
while (n % primes[i] == 0)
        n /= primes[i];
  if (n != 1)
    mp[n] = 1;
void lfactorize(long long n) {
 if (n == 1)
   return;
  if (n < 1e9) {
    factorize(n);
    return;
  if (isPrime(n)) {
    mp[n] = 1;
    return;
  long long d = n;
  for (int i = 2; d == n; i++)
    d = pollard_rho(n, i);
  lfactorize(d);
  lfactorize(n / d);
long long f(long long r, vector<long long> v1) {
  int sz = v1.size();
  long long res = 0;
  for (long long i = 1; i < (1 << sz); i++) {
    int ct = 0;
    long long mul = 1;
   for (int j = 0; j < sz; j++) {
  if (i & (1 << j)) {
        ct++;
        mul *= v1[j];
    long long sign = -1;
    if (ct & 1)
     sign = 1;
    res += sign * (r / mul);
  return r - res;
```

4.14 Xor basis

4.15 stirling_number_of_2nd_kind

```
long long p = 1e9 + 7;
long long fact[1000005];
int n, m, k;
long long s(long long N, long long R) {
 if (N == 0 && R == 0)
   return 1;
 if (N == 0 | | R == 0)
   return 0;
 long long ans = 0;
 for (int i = 1; i <= R; i++) {
   long long par;
   if ((R - i) % 2 == 0)
     par = 1;
   else
     par = -1;
   par = (par + p) \% p;
   long long temp = (ncr(R, i) * bm(i, N)) % p;
   temp = (temp \% p * par \% p) \% p;
   ans = (ans \% p + temp \% p) \% p;
 return (ans * bm(fact[R], p - 2)) % p;
```

5 Misc

5.1 Compilation

5.2 Ordered_set

5.3 Ternary Search

```
double ternary_search(double l, double r) {
    double eps = 1e-9; // set the error limit here
```

```
while (r - l > eps) {
    double m1 = l + (r - l) / 3;
    double m2 = r - (r - l) / 3;
    double f1 = f(m1); // evaluates the function at m1
    double f2 = f(m2); // evaluates the function at m2
    if (f1 < f2)
        l = m1;
    else
        r = m2;
    }
    return f(l); // return the maximum of f(x) in [l, r]
}</pre>
```

5.4 brute

```
#!/bin/bash
# Compile the C++ files first
g++ test_gen.cpp -o test_gen
g++ answer.cpp -o answer
ğ++ check.cpp -o check
# Initialize counter
counter=0
while true; do
    # Increment counter
    ((counter++))
    # Generate the input data
    ./test_gen > input.txt
    # Run the programs with the input and save their
     → output
    ./answer < input.txt > answer.txt
    ./check < input.txt > check.txt
    # Compare the output files
    if ! diff -q answer.txt check.txt > /dev/null; then
        cat input.txt
        break
    fi
    echo $counter
```

6 String

6.1 Aho-Corasick

```
trie.emplace back();
   v = trie[v].next[x - 'a'];
 trie[v].endmark = 0;
void fail(vector<vartex> &trie) {
  int v = 0;
  trie[v].link = 0;
 queue<int> q;
 q.push(0);
  while (!q.empty()) {
   v = q.front();
   q.pop();
   for (int i = 0; i < 26; i++) {
     if (trie[v].next[i] != -1) {
        if (v == 0) {
          trie[trie[v].next[i]].link = 0;
        } else {
          int x = trie[v].link;
          while (x != 0 && trie[x].next[i] == -1) {
            x = trie[x].link;
          if (trie[x].next[i] == -1) {
            trie[trie[v].next[i]].link = 0;
            trie[trie[v].next[i]].link =

    trie[x].next[i];

        q.push(trie[v].next[i]);
void dictionary_link(vector<vartex> &trie) {
 queue<int> q;
 q.push(0);
  while (!q.empty()) {
   int u = q.front();
   q.pop();
   for (int i = 0; i < 26; i++) {
     if (trie[u].next[i] != -1) {
        q.push(trie[u].next[i]);
   int k = u;
   while (k != 0) {
     if (trie[k].endmark != -1 && k != u) {
        trie[u].dlink.push_back(k);
      k = trie[k].link;
    debug(u, trie[u].dlink);
int search(string &s, vector<vartex> &trie) {
 int v = 0;
 for (auto x : s) {
   v = trie[v].next[x - 'a'];
 return trie[v].endmark;
```

```
|6.2 Hashing_without_inv
#include <bits/stdc++.h>
using namespace std;
long long h[400005];
long long MOD[400005];
int L:
void pre_hash(string s) {
 long long p = 31;
  long long m = 1e9 + 9;
  long long power = 1;
  long long hash = 0;
  int z = 0;
  for (int i = s.size() - 1; i >= 0; i--) {
    hash = (hash * p + (s[i] - 'A' + 1)) \% m;
    h[i] = hash;
    MOD[z] = power;
    power = (power * p) % m;
long long f(int l, int r) {
  long long val = h[r], m = 1e9 + 9;
  if (l != L - 1) {
    long long val2 = (h[l + 1] \% m * MOD[l - r + 1] \%
    → m) % m:
    val -= val2;
    val += m:
    val %= m;
  if (val < 0)
    val = (val + m) \% m;
  return val;
int main() {
  string s;
  cin >> s;
  L = s.size();
  pre_hash(s);
  int q;
  cin >> q;
  while (q--) {
   int l, r;
   cin >> l >> r;
    cout << f(l, r) << endl;
  return 0;
6.3 KMP
#define pii pair<int, int>
vector<<mark>int</mark>> prefix_function(string Z) {
  int n = (int)Z.length();
  vector<int> F(n);
  F[0] = 0;
  for (int i = 1; i < n; ++i) {
```

int j = F[i - 1];

j = F[j - 1];

++j; F[i] = j;

return F;

if (Z[i] == Z[j])

while (j > 0 && Z[i] != Z[j])

```
6.4 KMP_full
#include <bits/stdc++.h>
using namespace std;
const int N = 3e5 + 9;
// returns the longest proper prefix array of pattern p
// where {ps[i]={ongest proper prefix which is also
\rightarrow suffix of p[0...i]
vector<int> build_lps(string p) {
  int sz = p.size();
  vector<int> lps;
  lps.assign(sz + 1, 0);
  int j = 0;
  lps[\check{0}] = 0;
  for (int i = 1; i < sz; i++) {
    while (j >= 0 && p[i] != p[j]) {
      if (j >= 1)
        j = lps[j - 1];
      else
        j = -1;
    Ĭps[i] = j;
  return lps;
vector<int> ans;
// returns matches in vector ans in 0-indexed
void kmp(vector<int> lps, string s, string p) {
  int psz = p.size(), sz = s.size();
  int j = 0;
  for (int i = 0; i < sz; i++) {
    while (j >= 0 \&\& p[j] != s[i])
      if (j >= 1)
        j = lps[j - 1];
      elše
    if (j == psz) {
      j = lps[j - 1];
// pattern found in string s at position i-psz+1
      ans.push_back(i - psz + 1);
    // after each loop we have j=longest common suffix
     \rightarrow of s[0..i] which is also
    // prefix of p
int main() {
 int i, j, k, n, m, t;
  cin >> t;
  while (t--) {
    string s, p;
    cin >> s >> p;
    vector<int> lps = build_lps(p);
    kmp(lps, s, p);
    if (ans.empty())
      cout << "Not Found\n";</pre>
      cout << ans.size() << endl;</pre>
```

6.5 Manacher

```
vector<int> manacher(char *str) {
  int i, j, k, l = strlen(str), n = l << 1;</pre>
  vector<int> pal(n);
  for (i = 0, j = 0, k = 0; i < n; j = max(0, j - k), i
  \rightarrow += k) {
    while (j \le i \&\& (i + j + 1) \le n \&\&
           str[(i - j) >> 1] == str[(i + j + 1) >> 1])
    for (k = 1, pal[i] = j; k <= i && k <= pal[i] &&
        (pal[i] - k) != pal[i - k];
     pal[i + k] = min(pal[i - k], pal[i] - k);
  pal.pop_back();
  return pal;
int main() {
  char str[100];
  while (scanf("%s", str)) {
    auto v = manacher(str);
    for (auto it : v)
      printf("%d ", it);
    puts("");
  return 0;
```

6.6 Palindromic Tree

```
#define CLR(a) memset(a, 0, sizeof(a))
   * str is 1 based
    Each node in the palindromic tree denotes a STRING
   Node 1 denotes an imaginary string of size -1
   Node 2 denotes a string of size 0
    They are the two roots
    There can be maximum of (string_length + 2) nodes

→ in total

   It's a directed tree. If we reverse the direction
    → of the suffix links, we
get a dag. In this DAG, if node v is reachable from

→ node u iff, u is a substring
of v.
    * if ( tree[A].next[x] == B )
      then, B = xAx
    * if ( tree[A].suffixLink == B )
      Then B is the longest possible palindrome which

→ is a proper suffix of A

      (node 1 is an exception)
    * occ[i] contains the number of occurrences of the

    corresponding palindrome
```

```
* st[i] denotes starting index of the first
     - occurrence of the corresponding
palindrome
    * st[] or occ[] or both can be ignored if not needed
    * If memory limit is compact, a map has to be used

→ instead of
      ed[MAXN][MAXC]. Swapping row and column of the

→ matrix will
      save more memory.
      Example :
      map <int,int> ed[MAXC];
      ed[c][u] = v means, there is an edge from node u
      node v that is labeled character c.
namespace pt {
const int MAXN = 100010; /// maximum possible string
const int MAXC = 26;
                         /// Size of the character set
lint n:
                          /// length of str
char str[MAXN];
int len[MAXN], link[MAXN], ed[MAXN][MAXC], occ[MAXN],

    st[MAXN];

int nc, suff, pos;
 /// nc -> node count
/// suff -> Index of the node denoting the longest
 - palindromic proper suffix of
/// the current prefix
void init() {
 str[0] = -1;
nc = 2;
suff = 2;
  len[1] = -1, link[1] = 1;
  len[2] = 0, link[2] = 1;
  CLR(ed[1]), CLR(ed[2]);
  occ[1] = occ[2] = 0;
inline int nextLink(int cur) {
  while (str[pos - 1 - len[cur]] != str[pos])
    cur = link[cur];
  return cur;
inline bool addLetter(int p) {
  pos = p;
  int let = scale(str[pos]);
  int cur = nextLink(suff);
  if (ed[cur][let]) {
    suff = ed[cur][let];
    occ[suff]++;
    return false;
  suff = ++nc:
  CLR(ed[nc]);
  len[nc] = len[cur] + 2;
  ed[cur][let] = nc;
  occ[nc] = 1;
  if (len[nc] == 1) {
    st[nc] = pos;
link[nc] = 2;
    return true;
  link[nc] = ed[nextLink(link[cur])][let];
  st[nc] = pos - len[nc] + 1;
  return true;
```

```
void build(int _n) {
  init();
 for (int i = 1; i <= n; i++)
    addLetter(i);
  for (int i = nc; i >= 3; i--)
   occ[link[i]]_+= occ[i];
  occ[2] = occ[1] = 0;
void printTree() {
 puts(str);
  cout << "Node\tStart\tLength\t0cc\n";</pre>
 for (int i = 3; i <= nc; i++) {
  cout << i << "\t" << st[i] << "\t" << len[i] <<</pre>
     // namespace pt
int main() {
 scanf("%s", pt::str + 1);
  pt::build(strlen(pt::str + 1));
  return 0;
```

6.7 String Hashing

```
ll bigmod(ll x, ll p, ll md) {
  // code for x^p % md
ll modinv(ll x, ll md) { return bigmod(x, md - 2, md); }
namespace Hash {
ll pw[M][2];
ll invpw[M][2];
const int pr[] = {37, 53};
const int md[] = {10000000007, 10000000009};
void precalc() {
  pw[0][0] = pw[0][1] = 1;
  for (int i = 1; i < M; i++) {
   pw[i][0] = pw[i - 1][0] * pr[0] % md[0];
   pw[i][1] = pw[i - 1][1] * pr[1] % md[1];</pre>
  invpw[M - 1][0] = modinv(pw[M - 1][0], md[0]);
  invpw[M - 1][1] = modinv(pw[M - 1][1], md[1]);
  for (int i = M - 2; i >= 0; i--) {
     invpw[i][0] = invpw[i + 1][0] * pr[0] % md[0];
invpw[i][1] = invpw[i + 1][1] * pr[1] % md[1];
|pii get_hash(const string &s) {
  pii ret = {0, 0};
  for (int i = 0; i < s.size(); i++) {
     ret.first += (s[i] - 'a' + 1) * pw[i][0] % md[0];
     ret.second += (s[i] - 'a' + 1) * pw[i][1] % md[1];
     if (ret.first >= md[0])
       ret.first -= md[0]:
     if (ret.second >= md[1])
       ret.second -= md[1];
  return ret;
void prefix(const string &s, pii *H) {
  H[0] = \{0, 0\};
  for (int i = 1; i <= s.size(); i++) {
```

```
H[i].first = H[i - 1].first + (s[i - 1] - 'a' + 1)
    → * pw[i - 1][0] % md[0];
    H[i].second = H[i-1].second + (s[i-1]-'a'+
    \rightarrow 1) * pw[i - 1][1] % md[1];
    if (H[i].first >= md[0])
    H[i].first -= md[0];
if (H[i].second >= md[1])
      H[i].second -= md[1];
void reverse_prefix(const string &s, pii *H) {
 int n = s.size();
for (int i = 1; i <= s.size(); i++) {</pre>
    H[i].first = H[i - 1].first + (s[i - 1] - 'a' + 1)
    \rightarrow * pw[n - i][0] % md[0];
    H[i].second = H[i - 1].second + (s[i - 1] - 'a' +
    \rightarrow 1) * pw[n - i][1] % md[1];
    if (H[i].first >= md[0])
      H[i].first -= md[0];
    if (H[i].second >= md[1])
      H[i].second -= md[1];
pii range_hash(int L, int R, pii H[]) {
  ret.first = (H[R].first - H[L - 1].first + md[0]) %
  ret.second = (H[R].second - H[L - 1].second + md[1])
  ret.first = ret.first * invpw[L - 1][0] % md[0];
  ret.second = ret.second * invpw[L - 1][1] % md[1];
pii reverse_hash(int L, int R, pii H[], int n) {
  pii ret:
  ret.first = (H[R].first - H[L - 1].first + md[0]) %
  ret.second = (H[R].second - H[L - 1].second + md[1])

→ % md[1];

  ret.first = ret.first * invpw[n - R][0] % md[0];
  ret.second = ret.second * invpw[n - R][1] % md[1];
  return ret;
```

6.8 Suffix Array (nlogn)

```
struct suffix_array {
 vector<int> sa, lcp;
  suffix_array(string &s, int lim = 256) {
   int n = s.size() + 1, k = 0, a, b;
   vector<int> x(s.begin(), s.end() + 1), y(n),

    ws(max(n, lim)), rank(n);

   sa = lcp = y, iota(sa.begin(), sa.end(), 0);
   for (int j = 0, p = 0; p < n; j = max(1, j * 2),
    → lim = p) {
     p = j, iota(y.begin(), y.end(), n - j);
     for (int i = 0; i < n; i++) {
       if (sa[i] >= j) {
  y[p++] = sa[i] - j;
     fill(ws.begin(), ws.end(), 0);
      for (int i = 0; i < n; i++) {
```

```
ws[x[i]]++;
  for (int i = 1; i < lim; i++) {
  ws[i] += ws[i - 1];
  for (int i = n; i--;) {
    sa[--ws[x[y[i]]]] = y[i];
  swap(x, y), p = 1, x[sa[0]] = 0;
  for (int i = 1; i < n; i++) {
    a = sa[i - 1];
    b = sa[i];
    x[b] = (y[a] == y[b] \&\& y[a + j] == y[b + j]) ?
     \rightarrow p - 1 : p++;
for (int i = 1; i < n; i++) {
 rank[sa[i]] = i;
for (int i = 0, j; i < n - 1; lcp[rank[i++]] = k) {
  for (k \&\&k--, j = sa[rank[i] - 1]; s[i + k] ==
   \rightarrow s[j + k]; k++)
```

6.9 Suffix Automaton

```
struct state {
  int len, link, cnt, firstpos; // cnt -> endpos set
  - size, link -> suffix link
  map<char, int> next;
const int MAXLEN = 100002;
|state st[MAXLEN * 2];
struct SuffixAutomata { // 0-based
  int sz, last;
  SuffixAutomata() { // init
    st[0].cnt = st[0].len = 0;
    st[0].link = -1;
    sz = 1, last = 0;
  void add(char c) { // add new char in automata
    int cur = sz++;
    st[cur].len = st[last].len + 1;
st[cur].firstpos = st[cur].len - 1;
    st[cur].cnt = 1;
    int p = last;
    while (p != -1 \&\& !st[p].next.count(c)) {
      st[p].next[c] = cur;
      p = st[p].link;
    if (p == -1) {
      st[cur].link = 0;
    } else {
      int q = st[p].next[c];
      if (st[p].len + 1 == st[q].len) {
        st[cur].link = q;
      } else { // clone state
        int clone = sz++;
        st[clone].len = st[p].len + 1;
        st[clone].next = st[q].next;
        st[clone].link = st[q].link;
        st[clone].firstpos = st[q].firstpos;
```

```
st[clone].cnt = 0;
      while (p != -1 \&\& st[p].next[c] == q) {
        st[p].next[c] = clone;
        p = st[p].link;
     st[q].link = st[cur].link = clone;
  last = cur;
void occurrence() {
 vector<int> rank(sz);
  iota(all(rank), 0);
  sort(all(rank), [&](int i, int j) { return

    st[i].len > st[j].len; });
 for (int ii : rank)
    if (st[ii].link != -1)
     st[st[ii].link].cnt += st[ii].cnt;
int count(string s) { // number of occurrences of

→ string s. #prerequisite ->

                      // call occurrence()
  int node = 0;
  for (char ch : s) {
    if (!st[node].next.count(ch))
     return 0;
    node = st[node].next[ch];
  return st[node].cnt;
int firstOcc(string s) { // first position(occurence)

→ of string s

 int node = 0:
 for (char ch : s) {
    if (!st[node].next.count(ch))
     return -1;
    node = st[node].next[ch];
 return st[node].firstpos + 2 - (int)s.size();
void build(string S) { // build suffix automata
 for (char ch : S)
    add(ch);
bool find(string s) { // find string s in automata
  int node = 0;
 for (char ch : s) {
    if (!st[node].next.count(ch))
     return false;
    node = st[node].next[ch];
  return true;
```

6.10 Trie

```
// define M, K = alphabet size
int trie[M][K], word[M * K + 3], cnt[M * K + 3], sz;
void Insert(string s) {
  int node = 0;
  for (int i = 0; i < s.size(); i++) {
```

```
int c = s[i] - 'a';
    if (!trie[node][c]) {
      trie[node][c] = ++sz;
    node = trie[node][c];
    cnt[node]++;
  word[node]++;
bool Search(string s) {
  int node = 0, ret = 0;
  for (int i = 0; i < s.size(); i++) {
  int c = s[i] - 'a';</pre>
    if (!trie[node][c])
      return false;
    node = trie[node][c];
  return (word[node] > 0);
void Delete(string s) {
  int node = 0;
  vector<int> v(1, 0);
```

```
for (int i = 0; i < s.size(); i++) {
   int c = s[i] - 'a';
   node = trie[node][c];
   cnt[node]--;
   v.push_back(node);
}
word[node]--;
for (int i = 1; i < v.size(); i++) {
   int c = s[i - 1] - 'a';
   if (!cnt[v[i]]) {
      trie[v[i - 1]][c] = 0;
   }
}</pre>
```

6.11 Z algo

```
// z[i] is the maximum fength of substring from
- position(i) which is also a
// prefix of string call with Z zf(x) where x is the
- desired string
```

```
struct Z {
  int n;
  string s;
  vector<int> z;
  Z(const string &a) {
    n = a.size();
    s = a;
    z.assign(n, 0);
  }
  void z_function() {
    for (int i = 1, l = 0, r = 0; i < n; ++i) {
        if (i <= r)
            z[i] = min(r - i + 1, z[i - l]);
        while (i + z[i] < n && s[z[i]] == s[i + z[i]])
            ++z[i];
        if (i + z[i] - 1 > r)
            l = i, r = i + z[i] - 1;
    }
  }
};
```