

KESHAV MEMORIAL INSTITUTE OF TECHNOLOGY (AN AUTONOMOUS INSTITUTE)

Approved by AICTE, Affiliated to JNTUH, Hyderabad-500029 III- B. Tech I Semester-KR23

1. What is Keras?

- Open-source library for deep learning in Python.
- Developed by François Chollet.
- Provides a **high-level API** \rightarrow easy to build and train deep learning models.
- Originally supported multiple backends (Theano, CNTK, TensorFlow).
- Now, TensorFlow's official high-level API (tf.keras).

Think of Keras as a shortcut to deep learning. Instead of writing long math-heavy code, you just "stack layers like Lego blocks."

2. Keras Architecture

User → Keras API (Frontend) → Backend (TensorFlow)

- Frontend: Clean functions & classes (Dense, Conv2D, Sequential).
- **Backend**: Handles heavy computations (matrix multiplications, GPU/TPU).

3. Model Building Approaches

(a) Sequential API – Simple & Linear

Layers are stacked in order. Best for beginners.

```
from tensorflow.keras import Sequential, layers

model = Sequential([

layers.Dense(64, activation='relu', input_dim=100),

layers.Dense(10, activation='softmax')

])
```

(b) Functional API – Flexible

Supports multiple inputs, outputs, and non-linear connections.

```
from tensorflow.keras import layers, Model

inputs = layers.Input(shape=(100,))

x = layers.Dense(64, activation='relu')(inputs)

outputs = layers.Dense(10, activation='softmax')(x)

model = Model(inputs, outputs)
```

(c) Model Subclassing – Full Control

For custom research models.

```
from tensorflow.keras import Model, layers

class MyModel(Model):

def __init__(self):

super().__init__()

self.d1 = layers.Dense(64, activation='relu')

self.d2 = layers.Dense(10, activation='softmax')

def call(self, x):

return self.d2(self.d1(x))
```

4. Model Workflow in Keras

- 1. **Build Model** \rightarrow Add layers.
- 2. Compile \rightarrow Select optimizer, loss, and metrics.
- 3. Train (fit) \rightarrow Learn from training data.
- 4. **Evaluate** \rightarrow Test on unseen data.
- 5. **Predict** \rightarrow Classify new inputs.
- 6. Save/Load \rightarrow Reuse trained models.

5. Example: Training a Classifier

```
model.compile(optimizer='adam',

loss='categorical_crossentropy',

metrics=['accuracy'])

history = model.fit(X_train, y_train,

epochs=10,

validation_data=(X_val, y_val))

test_loss, test_acc = model.evaluate(X_test, y_test)

print("Accuracy:", test_acc)
```

6. Common Layers

Layer	Purpose	Example
Dense	Fully connected layer	Dense(64, activation='relu')
Conv2D	Extract features from images	Conv2D(32, (3,3), activation='relu')
MaxPooling2D	Reduce spatial size	MaxPooling2D((2,2))
Dropout	Prevent overfitting	Dropout(0.5)
LSTM/GRU	Sequence (text, time-series)	LSTM(128)

7. Model Saving

(a) HDF5 Format (Single file)

```
model.save("model.h5")

loaded = keras.models.load_model("model.h5")
```

(b) SavedModel Format (Folder with metadata)

```
model.save("my_model")

loaded = tf.saved_model.load("my_model")
```

₹ HDF5 is simple, but SavedModel is better for deployment (mobile, web, TensorFlow Serving).

8. Pre-trained Models (Transfer Learning)

from tensorflow.keras.applications import ResNet50

resnet = ResNet50(weights='imagenet', include_top=False)

- Transfer Learning: Freeze base layers, train only new layers.
- Fine-tuning: Train entire network on your dataset.

Saves time & works well with small datasets.

9. Metrics in Keras

• Classification:

- Accuracy \rightarrow % correct predictions.
- \circ Precision \rightarrow How many predicted positives are correct.
- \circ Recall \rightarrow How many actual positives were captured.
- \circ F1-score → Balance of precision & recall.
- o AUC-ROC → Ability to distinguish classes.

• Regression:

- o MAE (Mean Absolute Error).
- MSE (Mean Squared Error).
- o RMSE (Root Mean Squared Error).

Custom Accuracy Metric

Sometimes we want to define our own metric (instead of using built-ins).

We can do this by subclassing keras.metrics.Metric.

import tensorflow as tf

from tensorflow.keras.metrics import Metric

```
class AccuracyMetric(Metric):
  def __init__(self, name='accuracy', **kwargs):
     super(). init (name=name, **kwargs)
     self.correct = self.add_weight(name='correct', initializer='zeros')
     self.total = self.add_weight(name='total', initializer='zeros')
  def update state(self, y true, y pred, sample weight=None):
     y_true_idx = tf.argmax(y_true, axis=-1)
     y_pred_idx = tf.argmax(y_pred, axis=-1)
     matches = tf.cast(tf.equal(y true idx, y pred idx), self.dtype)
     self.correct.assign add(tf.reduce sum(matches))
     self.total.assign_add(tf.cast(tf.size(y_true_idx), self.dtype))
  def result(self):
     return self.correct / self.total
  def reset states(self):
     self.correct.assign(0.0)
     self.total.assign(0.0)
```

Usage:

```
metric = AccuracyMetric()

model.compile(optimizer='adam',

loss='categorical_crossentropy',

metrics=[metric])
```

This works exactly like accuracy, but you have full control (can customize for weighted accuracy, top-k accuracy, etc.).

10. Visualization

(a) Training Curves

```
import matplotlib.pyplot as plt

plt.plot(history.history['loss'], label="Train Loss")

plt.plot(history.history['val_loss'], label="Val Loss")

plt.legend()

plt.show()
```

(b) TensorBoard (Interactive)

```
from tensorflow.keras.callbacks import TensorBoard

tb = TensorBoard(log_dir='./logs')

model.fit(X_train, y_train, epochs=5, callbacks=[tb])
```

Run in terminal: tensorboard --logdir=./logs

Q&A – Quick Revision

Q1: Why was Keras chosen as TensorFlow's official high-level API?

A. Because it is simple, consistent, and user-friendly while still allowing advanced customization.

Q2: What is the difference between Sequential API and Functional API?

A. Sequential is for linear models (one input, one output).

Functional API supports complex architectures (multiple inputs/outputs, branching).

Q3: Why do we need to compile a model before training?

A. To define optimizer, loss function, and metrics. Without this, the model doesn't know how to update weights.

Q4: When should we use a Dense layer vs. a Convolutional layer?

A. Dense \rightarrow tabular/classification tasks where all inputs matter equally.

Convolutional → image/video tasks where spatial features matter.

Q5: What is the difference between training loss and validation loss?

A. Training loss = model performance on training data.

Validation loss = model performance on unseen validation data.

Q6: Why is F1-score better than Accuracy for imbalanced datasets?

A. Because it balances precision and recall, while accuracy can be misleading if one class dominates.

Q7: What's the advantage of Transfer Learning?

A. Uses pre-trained models, reduces training time, improves accuracy with limited data.

Q8: Why do we use Dropout layers?

A. To prevent overfitting by randomly disabling neurons during training.

Keras Practice Exercises

Exercise 1: Common Functional Modules

Build a simple feed-forward neural network using **Sequential API** with the following layers:

- Input: 20 features
- Hidden Layer: 64 neurons (ReLU)
- Output Layer: 3 classes (Softmax)

Tasks:

- 1. Print the model summary.
- 2. Train it on dummy data (X train, y train) for 5 epochs.
- 3. Evaluate accuracy on a test split.

Exercise 2: Model Configuration, Training, and Testing

Use the MNIST dataset (handwritten digits).

Tasks:

- 1. Load the dataset from keras.datasets.mnist.
- 2. Preprocess the data (normalize images, one-hot encode labels).
- 3. Build and **compile** a Sequential CNN with:
 - \circ Conv2D \rightarrow MaxPooling \rightarrow Flatten \rightarrow Dense layers.
- 4. Train for 10 epochs, plot training vs validation loss using Matplotlib.
- 5. Report final test accuracy.

Exercise 3: Model Saving & Loading

Extend Exercise 2.

Tasks:

- 1. Save the trained CNN model in both:
 - o model.h5 (HDF5 format)
 - SavedModel format
- 2. Delete the current model and reload it from disk.
- 3. Show that predictions are the same before and after saving.

Exercise 4: Custom Network & Accuracy Metric

Create a **custom accuracy metric** using keras.metrics.Metric.

Tasks:

- 1. Implement a metric class MyAccuracy that computes accuracy.
- 2. Use it in model.compile() along with the optimizer & loss.
- 3. Train a small model (like on Iris dataset).
- 4. Compare results between built-in accuracy vs custom MyAccuracy.

Exercise 5: Model Zoo & Visualization

Use a **pre-trained ResNet50 model** from keras.applications.

Tasks:

- 1. Load ResNet50 with include top=False.
- 2. Freeze its layers and add your own classifier (Dense layer with 5 classes).
- 3. Train on a small image dataset (CIFAR-10 / any available).
- 4. Use **TensorBoard** to visualize training progress.
- 5. Experiment with **fine-tuning** (unfreeze last 10 layers) and compare accuracy.