Model diagnostics

ML workflow

Problem scoping

Experimentation

- Choose architecture (data, model)
- Train model
- Evaluate model

Deployment

Debugging your ML model

$$J = rac{1}{m} \sum_{i=1}^m L(y^{(i)}, \hat{y}^{(i)}) + \lambda \sum_{j=1}^n w_j^2.$$

Got large prediction errors. What do you do?

- Get more training examples
- Try smaller sets of features
- Try getting additional features
- ullet Try adding polynomial features (e.g., $x_1^2, x_1 x_2, x_2^2$)
- ullet Try decreasing λ
- Try increasing λ

Model evaluation/selection

Evaluating your model: plotting

Wiggly shape 🔁 overfit ▶ poor generalization

Plotting for evaluation is not scalable for high-dimensional data

Evaluating your model: Training/test sets

Split the data into *two* sets:

- Training set: the data on which the model is trained
- Test set: the data reserved for evaluation. New to the model

e.g., 80/20 split: 80% training, 20% test

Computing training and test errors: linear regression example

Fit the model parameters by minimizing the cost function:

$$J = \underbrace{\frac{1}{m_{train}} \sum_{i=1}^{m_{train}} (y - f(x))^2 + \lambda \sum_{j=1}^{n} w_j^2}_{ ext{MSE}_{train}}$$

Compute training error:

$$J_{train} = \mathrm{MSE}_{train}$$

Compute test error:

$$J_{test} = \mathrm{MSE}_{test}$$

Overfitting: exam dataset example

 J_{train} is low, J_{test} is high

Model selection: Choosing model based on test error

d: degree of polynomial

$$d=1$$
, $f(x)=w_1x+b$ $d=2$, $f(x)=w_1x+w_2x^2+b$ $d=3$, $f(x)=w_1x+w_2x^2+w_3x^3+b$... $d=10$, $f(x)=w_1x+w_2x^2+\ldots+w_{10}x^{10}+b$

Calculate J_{test} for each model (i.e., each d)

Choose the model with the lowest J_{test}

 J_{test} is likely to be an optimistic estimate of generalization error because an extra parameter d was chosen using the test set

Training/validation/test sets

Split the data into *three* sets:

- Training set: the data on which the model is trained
- Test set: the data reserved for evaluation. New to the model
- (Cross) Validation set: reserve another set of data just for cross-validating across different models

e.g., 60/20/20 split: 60% training, 20% validation, 20% test

Training set → fit the model parameters

Validation set → choose among different models

Test set → evaluate the performance of the final model

Computing training, validation, and test errors: linear regression example

Fit the model parameters by minimizing the cost function:

$$J = \underbrace{\frac{1}{m_{train}} \sum_{i=1}^{m_{train}} (y - f(x))^2 + \lambda \sum_{j=1}^{n} w_j^2}_{ ext{MSE}_{train}}$$

Training error:

$$J_{train} = \mathrm{MSE}_{train}$$

(Cross) validation error (CV) for model selection:

$$J_{cv} = \mathrm{MSE}_{cv}$$

Test error for model evaluation:

$$J_{test} = \mathrm{MSE}_{test}$$

Model selection: Choosing model based on validation error

d: degree of polynomial

$$d=1$$
, $f(x)=w_1x+b$ $d=2$, $f(x)=w_1x+w_2x^2+b$ $d=3$, $f(x)=w_1x+w_2x^2+w_3x^3+b$... $d=10$, $f(x)=w_1x+w_2x^2+\ldots+w_{10}x^{10}+b$

Calculate J_{cv} for each model (i.e., each d)

Choose the model with the lowest J_{cv}

Evaluate the final model using J_{test}

More efficient approach: k-fold cross-validation

k-fold cross validation

- 1. Split the data into k folds
- 2. Train the model on k-1 folds and validate on the remaining fold (compute validation error). Repeat k times, each time choosing a different fold as the validation set
- 3. Compute the average validation error (J_{cv})
- 4. Choose the configuration with the lowest J_{cv}
- 5. Retrain the model with the best configuration on the entire training dataset (m_{train})
- 6. Evaluate the final model using the test set (J_{test})

Hyperparameter tuning: choosing the optimal configuration based on J_{cv}

degree of polynomial (d = 1, 2, 3)

regularization (λ = 0.01, 0.1, 1)

learning rate

initial weights

number of layers in a neural network

number of hidden units in a neural network

•••

Grid Search for hyperparameter tuning

Search a grid of hyperparameters

all possible combinations

Lowest J_{cv} best hyperparameters

Pros: Systematic search

Cons: Computationally expensive

More efficient search algorithms:
 Random search, Bayesian
 optimization, etc.

Grid Search

Hyperparameter_One = [a, b, c] Hyperparameter_Two = [x, y, z] Hyperparameter_X = [i, j, k]

Bias and variance

Bias and variance

High bias (underfit)

 J_{train} is high (red) J_{cv} is high (green) $J_{cv}pprox J_{train}$

High variance (overfit)

 J_{train} is low (red) J_{cv} is high (green) $J_{cv} > J_{train}$

Bias-variance tradeoff

The balance between underfit and overfit

Optimal model complexity

- polynomial degree
- regularization parameter
- number of layers in a neural network

• ...

Learning curves: error vs. training set size

Will collecting more data help?

$$J_{train} < J_{cv}$$

▶ high variance (overfit)

More data helps

Will collecting more data help?

$$J_{train}pprox J_{cv}$$

$$J_{train} > J_{reference}$$

high bias (underfit)

More data won't help

Fit a more complex model

Debugging your ML model: High bias or high variance?

Does it fix bias or variance problem?

$$J = rac{1}{m} \sum_{i=1}^m L(y^{(i)}, \hat{y}^{(i)}) + \lambda \sum_{j=1}^n w_j^2 \, .$$

Got large prediction errors. What do you do?

- Get more training examples
- Try smaller sets of features
- Try getting additional features
- ullet Try adding polynomial features (e.g., $x_1^2, x_1 x_2, x_2^2$)
- ullet Try decreasing λ
- Try increasing λ

Grid search for hyperparameter tuning