

Joint Constrained Learning for Event-Event Relation Extraction

Haoyu Wang¹, Muhao Chen¹, Hongming Zhang^{2*}, Dan Roth¹

¹Department of Computer and Information Science, UPenn ²Department of Computer Science and Engineering, HKUST

^{*} This work was done when the author was visiting the University of Pennsylvania

Event-Event Relation Extraction

- Events are not simple, stand-alone predicates
 - Described at different granularities & may form complex structures
- Event-event relations are needed to induce such "event complex"
 - Temporal Relations
 - Membership
 - Coreference

On Tuesday, there was a typhoon-strength $(e_1:storm)$ in Japan. One man got $(e_2:killed)$ and thousands of people were left stranded. Police said an 81-year-old man $(e_3:died)$ in central Toyama when the wind blew over a shed, trapping him underneath. Later this afternoon, with the agency warning of possible tornadoes, Japan Airlines $(e_4:canceled)$ 230 domestic flights, $(e_5:affecting)$ 31,600 passengers.

Input: document, event triggers

Output: event-event relations

Tasks we study:

- Temporal Relations: Before, After, Equal, Vague
- Membership Relations: Parent-Child, Child-Parent, Coreference, NoRel

Challenges

- Lack of learning resources
 - No large-scale single resource contains annotation for these interrelated tasks
- Global consistency among interrelated predictions
 - Symmetry constraints
 - Transitivity constraints
 - Conjunction constraints

Input: document, event triggers

Output: event-event relations

e₂: killed

e₃: died

e₄: canceled

Tasks we study:

Temporal Relations: Before, After, Equal, Vague

Membership Relations: Parent-Child, Child-Parent, Coreference, NoRel

Challenges

- Lack of learning resources
 - No large-scale single resource contains annotation for these interrelated tasks
- Global consistency among interrelated predictions
 - Symmetry constraints
 - Transitivity constraints
 - Conjunction constraints

e₅: affecting

e₁: canceled

e₅: affecting

Before

Before

e₃: died

Input: document, event triggers

Output: event-event relations

Tasks we study:

- Temporal Relations: Before, After, Equal, Vague
- Membership Relations: Parent-Child, Child-Parent, Coreference, NoRel

Challenges

- Lack of learning resources
 - No large-scale single resource contains annotation for these interrelated tasks

e2: killed

- Global consistency among interrelated predictions
 - Symmetry constraints
 - Transitivity constraints
 - Conjunction constraints

Parent-Child

e₁: canceled

e₅: affecting

Before

Before

e3: died

Input: document, event triggers

Output: event-event relations

Tasks we study:

- Temporal Relations: Before, After, Equal, Vague
- Membership Relations: Parent-Child, Child-Parent, Coreference, NoRel

Challenges

- Lack of learning resources
 - No large-scale single resource contains annotation for these interrelated tasks

Coref

e2: killed

- Global consistency among interrelated predictions
 - Symmetry constraints
 - Transitivity constraints
 - Conjunction constraints

Constraints

Symmetry

e3:died is BEFORE e4:canceled

=> e4:canceled is AFTER e3:died

Conjunction

e3:died is BEFORE e4:canceled

- + e4:canceled is a PARENT of e5:affecting
- => e3:died BEFORE e5:affecting

Transitivity

e1:storm is PARENT of e4:canceled

- + e4:canceled is a PARENT of e5:affecting
- => e1:storm is a PARENT of e5:affecting

$$\alpha(e3, e4) = BEFORE$$

$$\beta(e4, e5) = Parent-Child$$

α β	PC	СР	CR	NR	BF	AF	EQ	VG
PC	PC, ¬AF	_	PC, ¬AF	$\neg CP, \neg CR$	BF , $\neg CP$, $\neg CR$	_	BF , $\neg CP$, $\neg CR$	—
CP	_	CP, ¬ <mark>BF</mark>	CP, ¬BF	$\neg PC, \neg CR$			AF , $\neg PC$, $\neg CR$	_
CR	PC, ¬AF	CP, ¬BF	CR, EQ	NR	BF , $\neg CP$, $\neg CR$	AF , $\neg PC$, $\neg CR$	EQ	VG
NR	$\neg CP, \neg CR$	$\neg PC, \neg CR$	NR	_	_	_	_	_
BF	BF , $\neg CP$, $\neg CR$	_	BF , $\neg CP$, $\neg CR$	_	BF , $\neg CP$, $\neg CR$		BF , $\neg CP$, $\neg CR$	
AF	_	AF , $\neg PC$, $\neg CR$	AF , $\neg PC$, $\neg CR$	_	_	AF , $\neg PC$, $\neg CR$	AF , $\neg PC$, $\neg CR$	$\neg BF, \neg EQ$
EQ	$\neg AF$	$\neg BF$	EQ	_	BF , $\neg CP$, $\neg CR$	AF , $\neg PC$, $\neg CR$	EQ	VG, ¬CR
VG	_	_	VG, ¬CR	_	$\neg AF, \neg EQ$	$\neg BF, \neg EQ$	VG	

Constrained Learning

Earlier work: Incorporate external knowledge as hard and soft constraints via Constrained Conditional Models (CCMs, Chang et al., 2012); usually post-learning correction

Constrained learning (Li et al., EMNLP'19): convert declarative rules to differentiable learning objectives using t-norm

$$\hat{\mathcal{I}} = \underset{\mathcal{I}}{\operatorname{argmax}} \sum_{ij \in \mathcal{E}} \sum_{r \in R} (x_r(ij) + \underbrace{\lambda f_r(ij)}) \mathcal{I}_r(ij)$$
s.t.
$$\sum_r \mathcal{I}_r(ij) = 1, \ \mathcal{I}_r(ij) = \mathcal{I}_{\overline{r}}(ji),$$
(uniqueness) (symmetry)
$$\mathcal{I}_{r_1}(ij) + \mathcal{I}_{r_2}(jk) - \sum_{m=1}^M \mathcal{I}_{r_3^m}(ik) \leq 1,$$
(transitivity)

- L_A Annotation Loss: $op r(e_1,e_2)$ \longrightarrow $-w_r \log r_{(e_1,e_2)}$
- L_S Symmetric Loss: $\alpha(e_1,e_2) \leftrightarrow \bar{\alpha}(e_2,e_1)$ \rightarrow $|\log \alpha_{(e_1,e_2)} \log \bar{\alpha}_{(e_2,e_1)}|$
- Training Objective: $L = L_A + \lambda_S L_S + \lambda_C L_C$

Exact Inference at decision time via CCMs

Formulate as an ILP problem: Gurobi

Commonsense Knowledge

- TemProb (Ning et al. 2018a)
 - Source: New York Times 1987-2007 (#Articles~1M)
 - Preprocessing: Semantic Role Labeling
 & Temporal relation model
 - 51K semantic frames, 80M relations
- ConceptNet
 - "HasSubevent", "HasFirstSubevent"
 - 30K Positive & 30K Negative

MLP Encoders

More than 10 people *died* on their way to the nearest hospital, police said. A suicide car bomb *exploded* on Friday in the middle of a group of men playing volleyball in northwest Pakistan.

Frame1	Frame2	Before	After	
concern	protect	92%	8%	
conspire	kill	95%	5%	
fight	overthrow	92%	8%	
accuse	defend	92%	8%	
crash	die	97%	3%	
explode	die	83%	17%	

Input sentences

Sentence

On Tuesday, there was a typhoon-strength $(e_1:storm)$ in Japan. One man got $(e_2:killed)$ and thousands of people were left stranded. Police said an 81-year-old man $(e_3:died)$ in central Toyama when the wind blew over a shed, trapping him underneath. Later this afternoon, with the agency warning of possible tornadoes, Japan Airlines $(e_4:canceled)$ 230 domestic flights, $(e_5:affecting)$ 31,600 passengers.

there was a typhoon-strength storm an 81-year-old man died Japan Airlines canceled 230 flights

e₁ e₂ e₄

Contextualized Representation

BiLSTM Encoder

Event Pair Representation

Adding Common Sense Features

Evaluation on Benchmarks

Benchmark Datasets

Membership relations: HiEve

• Temporal relations: MATRES

Case study: RED

Dataset Statistics

	HiEve	MATRES	RED					
	# of Documents							
Train	80	183	-					
Dev	-	72	-					
Test	20	20	35					
# of Pairs								
Train Test	35001 7093	6332 827	- 1718					
rest	1093	027	1/10					

The proposed method surpasses the SOTA TempRel extraction method on MATRES by relatively 3.27% F₁.

Model	P	R	F_1
CogCompTime (Ning et al., 2018c)	0.616	0.725	0.666
Perceptron (Ning et al., 2018b)	0.660	0.723	0.690
BiLSTM+MAP (Han et al., 2019b)	_	-	0.755
LSTM+CSE+ILP (Ning et al., 2019)	0.713	0.821	0.763
Joint Constrained Learning (ours)	0.734	0.850	0.788

 It also offers promising performance on the HiEve dataset for subevent relation extraction, relatively surpassing previous methods by at least 3.12% in F₁.

	F_1 score		
Model	PC	CP	Avg.
StructLR (Glavaš et al., 2014)	0.522	0.634 0.494	0.577
TACOLM (Zhou et al., 2020a)	0.485	0.494	0.489
Joint Constrained Learning (ours)	0.625	0.564	0.595

Case Study on RED dataset

Mapping for relations

Original labels in RED	Mapped labels
BEFORE,	
BEFORE/CAUSES,	
BEFORE/PRECONDITION,	Before
ENDS-ON,	
OVERLAP/PRECONDITION	
SIMULTANEOUS	EQUAL
OVERLAP,	VACUE
REINITIATES	VAGUE
CONTAINS,	PARENT-CHILD &
CONTAINS-SUBEVENT	BEFORE
BEGINS-ON	AFTER

Example Output

A (e1:convoy) of 280 Russian trucks (e2:headed) for Ukraine, which Moscow says is (e3:carrying) relief goods for war-weary civilians, has suddenly (e4:changed) course, according to a Ukrainian state news agency.

Performance (F₁)

Model	TEMPREL	SUBEVENT
Joint Constrained Learning (ours)	0.72	0.54

Ablation Study

- Single-task Training vs Joint Training
- Constrained Learning
 - Task-specific constraints
 - Cross-task constraints
- Commonsense Knowledge
- Post-learning Correction: ILP

		SUBEVENT		TEMPREL			
	Model	P	R	F_1	P	R	F_1
	Single-task Training	32.5	73.1	45.0	67.7	80.3	73.5
	Joint Training	50.4	43.1	46.5	68.4	82.0	74.6
	+ Task-specific constrained learning	51.6	59.7	55.4	71.3	82.7	76.6
	+ Cross-task constrained learning	51.1	67.0	58.0	72.2	83.8	77.6
	+ Commonsense knowledge	56.9	61.6	59.2	73.3	84.2	78.4
\longrightarrow	+ Global inference (ILP)	57.4	61.7	59.5	73.4	85.0	78.8
	All but constrained learning	54.2	41.8	47.2	72.1	80.8	76.2

Conclusion

Thanks!

- A new paradigm for joint constrained learning
 - Bridge temporal and subevent relations with a comprehensive set of logical constraints
 - Convert constraints into differentiable objective functions
- Address the lack of jointly annotated data
 - Complementary supervision signals from two tasks
- Outperform previous methods on benchmark datasets
 - MATRES: brings about 3.27% F₁ improvement
 - HiEve: brings about 3.12% F₁ improvement
- Present promising results on RED
- Generalizable to other relations / constraints

