

$$I(J^P) = \frac{1}{2}(0^-)$$

Quantum numbers not measured. Values shown are quark-model predictions.

See also the B^{\pm}/B^0 ADMIXTURE and $B^{\pm}/B^0/B_s^0/b$ -baryon ADMIXTURE sections.

B[±] MASS

The fit uses m_{B^+} , $(m_{B^0}-m_{B^+})$, and m_{B^0} to determine m_{B^+} , m_{B^0} , and the mass difference.

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT						
5279.26±0.17 OUR FI	Г										
5279.25±0.26 OUR AVERAGE											
$5279.38 \!\pm\! 0.11 \!\pm\! 0.33$		$^{ m 1}$ AAIJ	12E	LHCB	pp at 7 TeV						
$5279.10 \pm 0.41 \pm 0.36$		² ACOSTA	06	CDF	$p\overline{p}$ at 1.96 TeV						
5279.1 ± 0.4 ± 0.4	526	³ CSORNA	00	CLE2	$e^+e^- ightarrow ~ \varUpsilon(4S)$						
5279.1 ± 1.7 ± 1.4	147	ABE	96 B	CDF	$p\overline{p}$ at 1.8 TeV						
• • • We do not use th	ne followin	g data for average	s, fits,	limits, 6	etc. • • •						
$5278.8 \pm 0.54 \pm 2.0$	362	ALAM	94	CLE2	$e^+e^- ightarrow~\gamma(4S)$						
5278.3 ± 0.4 ± 2.0		BORTOLETT	O92	CLEO	$e^+e^- ightarrow \gamma(4S)$						
5280.5 ± 1.0 ± 2.0		⁴ ALBRECHT	90J	ARG	$e^+e^- ightarrow ~ \varUpsilon(4S)$						
5275.8 ± 1.3 ± 3.0	32	ALBRECHT	87C	ARG	$e^+e^- ightarrow \gamma(4S)$						
5278.2 ± 1.8 ± 3.0	12	⁵ ALBRECHT	87 D	ARG	$e^+e^- \rightarrow \Upsilon(4S)$						
5278.6 ± 0.8 ± 2.0		BEBEK	87	CLEO	$e^+e^- \rightarrow \Upsilon(4S)$						
					` ,						

¹Uses $B^+ \rightarrow J/\psi K^+$ fully reconstructed decays.

B[±] MEAN LIFE

See $B^\pm/B^0/B_s^0/b$ -baryon ADMIXTURE section for data on B-hadron mean life averaged over species of bottom particles.

"OUR EVALUATION" is an average using rescaled values of the data listed below. The average and rescaling were performed by the Heavy Flavor Averaging Group (HFAG) and are described at http://www.slac.stanford.edu/xorg/hfag/. The averaging/rescaling procedure takes into account correlations between the measurements and asymmetric lifetime errors.

² Uses exclusively reconstructed final states containing a $J/\psi \to \mu^+\mu^-$ decays.

³ CSORNA 00 uses fully reconstructed 526 $B^+ \to J/\psi^{(')} K^+$ events and invariant masses without beam constraint.

 $^{^4}$ ALBRECHT 90J assumes 10580 for $\varUpsilon(4S)$ mass. Supersedes ALBRECHT 87C and ALBRECHT 87D.

Found using fully reconstructed decays with $J/\psi(1S)$. ALBRECHT 87D assume $m \gamma(4S) = 10577 \text{ MeV}$.

<i>VALUE</i> (10^{-12} s)	EVTS	DOCUMENT ID		TECN	COMMENT
1.638 ± 0.004 OUR EV	ALUATIO	ON			
$1.637 \pm 0.004 \pm 0.003$		AAIJ	14E	LHCB	pp at 7 TeV
$1.639 \pm 0.009 \pm 0.009$		¹ AALTONEN	11	CDF	$p\overline{p}$ at 1.96 TeV
$1.663 \pm 0.023 \pm 0.015$		² AALTONEN	11 B	CDF	$p\overline{p}$ at 1.96 TeV
$1.635 \pm 0.011 \pm 0.011$		³ ABE	05 B	BELL	$e^+e^- ightarrow \ \varUpsilon(4S)$
$1.624 \pm 0.014 \pm 0.018$		⁴ ABDALLAH	04E	DLPH	$e^+e^- ightarrow Z$
$1.636 \pm 0.058 \pm 0.025$		⁵ ACOSTA	02C	CDF	$p\overline{p}$ at 1.8 TeV
$1.673 \pm 0.032 \pm 0.023$		⁶ AUBERT	01F	BABR	$e^+e^- \rightarrow \Upsilon(4S)$
$1.648 \pm 0.049 \pm 0.035$		⁷ BARATE	00 R	ALEP	$e^+e^- \rightarrow Z$
$1.643\!\pm\!0.037\!\pm\!0.025$		⁸ ABBIENDI	99J	OPAL	$e^+e^- \rightarrow Z$
$1.637\!\pm\!0.058\!+\!0.045\\-0.043$		⁷ ABE	98Q	CDF	$p\overline{p}$ at 1.8 TeV
$1.66 \pm 0.06 \pm 0.03$		⁸ ACCIARRI	98 S	L3	$e^+e^- ightarrow Z$
$1.66 \pm 0.06 \pm 0.05$		⁸ ABE	97J	SLD	$e^+e^- \rightarrow Z$
$1.58 \begin{array}{l} +0.21 & +0.04 \\ -0.18 & -0.03 \end{array}$	94	⁵ BUSKULIC	96J	ALEP	$e^+e^- ightarrow Z$
$1.61 \pm 0.16 \pm 0.12$		^{7,9} ABREU	95Q	DLPH	$e^+e^- \rightarrow Z$
$1.72 \pm 0.08 \pm 0.06$		¹⁰ ADAM	95	DLPH	$e^+e^- ightarrow Z$
$1.52 \pm 0.14 \pm 0.09$		⁷ AKERS	95T	OPAL	$e^+e^- \rightarrow Z$
• • • We do not use t	he follow	-	es, fits	s, limits,	etc. • • •
$1.695 \pm 0.026 \pm 0.015$		⁶ ABE	02H	BELL	Repl. by ABE 05B
$1.68 \pm 0.07 \pm 0.02$		⁵ ABE	98 B	CDF	Repl. by ACOSTA 02C
$1.56 \pm 0.13 \pm 0.06$		⁷ ABE	96 C	CDF	Repl. by ABE 98Q
$1.58 \pm 0.09 \pm 0.03$		11 BUSKULIC	96J	ALEP	$e^+e^- \rightarrow Z$
$1.58 \pm 0.09 \pm 0.04$		⁷ BUSKULIC	96J	ALEP	Repl. by BARATE 00R
1.70 ± 0.09		¹² ADAM	95	DLPH	$e^+e^- \rightarrow Z$
$1.61 \pm 0.16 \pm 0.05$	148	⁵ ABE	94 D	CDF	Repl. by ABE 98B
$1.30 \ ^{+0.33}_{-0.29} \ \pm 0.16$	92	⁷ ABREU	93 D	DLPH	Sup. by ABREU 95Q
$1.56 \ \pm 0.19 \ \pm 0.13$	134	¹⁰ ABREU	93G	DLPH	Sup. by ADAM 95
$1.51 \begin{array}{c} +0.30 \\ -0.28 \end{array} \begin{array}{c} +0.12 \\ -0.14 \end{array}$	59	⁷ ACTON	93 C	OPAL	Sup. by AKERS 95T
$1.47 \begin{array}{l} +0.22 & +0.15 \\ -0.19 & -0.14 \end{array}$	77	⁷ BUSKULIC	93 D	ALEP	Sup. by BUSKULIC 96J
				,	`

 $^{^1}$ Measured mean life using fully reconstructed decays ($J/\psi\,K^{\left(*\right)}$). 2 Measured using $B^-\to\,D^0\,\pi^-$ with $D^0\to\,K^-\,\pi^+$ events that were selected using a silicon vertex trigger.

³ Measurement performed using a combined fit of *CP*-violation, mixing and lifetimes.

⁴ Measurement performed using an inclusive reconstruction and B flavor identification

⁵ Measured mean life using fully reconstructed decays.

⁶ Events are selected in which one B meson is fully reconstructed while the second B meson is reconstructed inclusively.

⁷ Data analyzed using $D/D^*\ell X$ event vertices.

⁸ Data analyzed using charge of secondary vertex.

⁹ ABREU 95Q assumes B($B^0 \to D^{**-}\ell^+\nu_{\ell}$) = 3.2 ± 1.7%.

 $^{^{10}\,\}mathrm{Data}$ analyzed using vertex-charge technique to tag B charge.

¹¹ Combined result of $D/D^*\ell X$ analysis and fully reconstructed B analysis.

¹² Combined ABREU 95Q and ADAM 95 result.

B⁺ DECAY MODES

 B^- modes are charge conjugates of the modes below. Modes which do not identify the charge state of the B are listed in the B^\pm/B^0 ADMIXTURE section.

The branching fractions listed below assume 50% $B^0\overline{B}^0$ and 50% B^+B^- production at the $\Upsilon(4S)$. We have attempted to bring older measurements up to date by rescaling their assumed $\Upsilon(4S)$ production ratio to 50:50 and their assumed D, D_S , D^* , and ψ branching ratios to current values whenever this would affect our averages and best limits significantly.

Indentation is used to indicate a subchannel of a previous reaction. All resonant subchannels have been corrected for resonance branching fractions to the final state so the sum of the subchannel branching fractions can exceed that of the final state.

For inclusive branching fractions, e.g., $B \to D^{\pm}$ anything, the values usually are multiplicities, not branching fractions. They can be greater than one.

Scale factor/
Mode Fraction (Γ_i/Γ) Confidence level

Semileptonic and leptonic modes

Γ_1	$\ell^+ u_\ell$ anything	[a]	(10.99	± 0.28) %
Γ_2	$e^+ \nu_e X_c$		(10.8	± 0.4) %
Γ_3	$D\ell^+ u_\ell$ anything		(9.8	±0.7) %
Γ_4	$\overline{D}{}^0 \ell^+ u_{\ell}$	[a]	(2.27	±0.11) %
Γ_5	$\overline{D}{}^0 au^+ u_ au$		(7.7	±2.5	$) \times 10^{-3}$
Γ_6	$\overline{D}^*(2007)^0\ell^+ u_\ell$	[a]	(5.69	±0.19) %
Γ_7	$\overline{\it D}^*$ (2007) $^0 au^+ u_ au$		(1.88	±0.20) %
Γ ₈	$D^-\pi^+\ell^+ u_\ell$		(4.2	± 0.5	$) \times 10^{-3}$
Γ ₉	$\overline{D}_0^*(2420)^0\ell^+ u_\ell,\ \overline{D}_0^{*0} ightarrow$		(2.5	± 0.5	$) \times 10^{-3}$
Γ ₁₀	$\overline{D}_{2}^{+}(2460)^{0}\ell^{+}\nu_{\ell}, \ \overline{D}_{2}^{*0} ightarrow D^{-}\pi^{+}$		(1.53	±0.16) × 10 ⁻³
Γ_{11}	$D^{(*)} n \pi \ell^+ u_\ell (n \geq 1)$		(1.87	± 0.26) %
Γ_{12}	$D^{*-}\pi^+\ell^+ u_\ell$		(6.1	± 0.6	$) \times 10^{-3}$
Γ_{13}	$\overline{D}_1(2420)^0\ell^+ u_\ell$, \overline{D}_1^0 $ ightarrow$		(3.03	±0.20	$) \times 10^{-3}$
Γ ₁₄	$\overline{D}_{1}^{*-}\pi^{+}$ $D_{1}^{*-}(2430)^{0}\ell^{+}\nu_{\ell}, \ \overline{D}_{1}^{\prime0} \rightarrow D^{*-}\pi^{+}$		(2.7	±0.6) × 10 ⁻³

Inclusive modes

	inclusive mo	aes	5			
Γ ₃₅	$D_{\cdot}^{0}X$		(8.6	± 0.7) %
Γ ₃₆	$\overline{D}{}^{0}X$		(79	± 4) %
Γ ₃₇	D^+X		(2.5	± 0.5) %
Γ ₃₈	D^-X		(9.9	± 1.2) %
Γ ₃₉	$D_s^+ X$		(7.9	$^{+1.4}_{-1.3}$) %
Γ ₄₀	$D_s^- X$		(1.10	$^{+0.40}_{-0.32}$) %
Γ ₄₁	$\Lambda_c^+ X$		(2.1	$^{+0.9}_{-0.6}$) %
Γ_{42}	$\overline{\Lambda}_c^- X$		(2.8	$^{+1.1}_{-0.9}$) %
Γ_{43}	$\overline{c}X$		(97	± 4) %
Γ ₄₄	cX		(23.4	$+2.2 \\ -1.8$) %
Γ_{45}	c / c X		(1	20	± 6) %

D, D^* , or D_s modes

```
\overline{D}^0\pi^+
\Gamma_{46}
                                                                            (4.81 \pm 0.15) \times 10^{-3}
              D_{CP(+1)}\pi^+
                                                                    [b] (2.20 \pm 0.24) \times 10^{-3}
\Gamma_{47}
              D_{CP(-1)}\pi^+
\Gamma_{48}
                                                                                2.1 \pm 0.4 \times 10^{-3}
\Gamma_{49}
         \overline{D}^0 \rho^+
                                                                                1.34 \pm 0.18 ) %
         \overline{D}{}^0K^+
\Gamma_{50}
                                                                                3.70 \pm 0.17 \times 10^{-4}
        D_{CP(+1)}K^{+}
                                                                                1.92 \pm 0.14 \times 10^{-4}
\Gamma_{51}
                                                                    [b] (
           D_{CP(-1)}K^+
\Gamma_{52}
                                                                                2.00 \pm 0.19 \times 10^{-4}
        [K^{-}\pi^{+}]_{D}K^{+}
                                                                                                     \times 10^{-7} CL=90%
                                                                    [c] <
        [K^{+}\pi^{-}]_{D}K^{+}
\Gamma_{54}
                                                                                                  \times 10^{-5} CL=90%
                                                                    [c] <
                                                                                1.8
        [K^-\pi^+\pi^0]_DK^+
        [K^{+}\pi^{-}\pi^{0}]_{D}K^{+}
        [K^-\pi^+\pi^+\pi^-]_DK^+
       [K^{+}\pi^{-}\pi^{+}\pi^{-}]_{D}^{-}K^{+}
       [K^-\pi^+]_D K^*(892)^+
                                                                    [c]
        [K^{+}\pi^{-}]_{D}K^{*}(892)^{+}
                                                                    [c]
        [K^-\pi^+]_D\pi^+
\Gamma_{61}
                                                                    [c] (6.3 \pm 1.1) \times 10^{-7}
        [K^{+}\pi^{-}]_{D}\pi^{+}
                                                                               1.68 \pm 0.31 \times 10^{-4}
\Gamma_{62}
       [K^-\pi^+\pi^0]_D\pi^+
       [K^{+}\pi^{-}\pi^{0}]_{D}^{D}\pi^{+}
       [K^-\pi^+\pi^+\pi^-]_D\pi^+
       [K^{+}\pi^{-}\pi^{+}\pi^{-}]_{D}^{-}\pi^{+}
       [K^-\pi^+]_{(D\pi)}\pi^+
       [K^{+}\pi^{-}]_{(D\pi)}\pi^{+}
       [K^-\pi^+]_{(D\gamma)}\pi^+
       [K^{+}\pi^{-}]_{(D\gamma)}\pi^{+}
        [K^-\pi^+]_{(D\pi)}K^+
       [K^{+}\pi^{-}]_{(D\pi)}K^{+}
       [K^-\pi^+]_{(D\gamma)}K^+
\Gamma_{74} \quad [K^+\pi^-]_{(D\gamma)}K^+
       [\pi^{+}\pi^{-}\pi^{0}]_{D}K^{-}
\Gamma_{75}
                                                                                4.6 \pm 0.9 ) \times 10^{-6}
\Gamma_{76} \quad \overline{D}{}^{0} K^{*}(892)^{+}
                                                                                5.3 \pm 0.4 ) \times 10^{-4}
       D_{CP(-1)}K^*(892)^+
\Gamma_{77}
                                                                                        \pm 0.8 ) \times 10^{-4}
          D_{CP(+1)}K^*(892)^+
                                                                                        \pm 1.1 ) × 10<sup>-4</sup>
                                                                    [b]
                                                                                5.8
        \overline{D}{}^0 K^+ \pi^+ \pi^-
\Gamma_{79}
                                                                                        \pm 2.2 ) \times 10^{-4}
                                                                                5.4
        \overline{D}{}^0K^+\overline{K}{}^0
                                                                                        \pm 1.6 ) × 10<sup>-4</sup>
\Gamma_{80}
                                                                                5.5
         \overline{D}{}^{0}K^{+}\overline{K}^{*}(892)^{0}
                                                                                        \pm 1.7 ) × 10<sup>-4</sup>
                                                                                7.5
        \overline{D}{}^0\pi^+\pi^+\pi^-
\Gamma_{82}
                                                                                5.7
                                                                                        \pm 2.2 ) × 10<sup>-3</sup>
                                                                                                                       S = 3.6
           \overline{D}{}^0\pi^+\pi^+\pi^- nonresonant
\Gamma_{83}
                                                                                                   ) \times 10^{-3}
                                                                                5
                                                                                         \pm 4
             \overline{D}^0 \pi^+ \rho^0
                                                                                4.2 \pm 3.0 \times 10^{-3}
Γ<sub>84</sub>
                  \overline{D}^0 a_1(1260)^+
\Gamma_{85}
                                                                                 4
                                                                                         \pm 4
                                                                                                   ) \times 10^{-3}
          \overline{D}^0 \omega \pi^+
\Gamma_{86}
                                                                                4.1
                                                                                      \pm 0.9
                                                                                                 ) \times 10^{-3}
```

$$\begin{split} &\Gamma_{120} \quad \overline{D}_{0}^{*}(2400)^{0} \pi^{+} & (6.4 \pm 1.4) \times 10^{-4} \\ & \times B(\overline{D}_{0}^{*}(2400)^{0} \rightarrow D^{-}\pi^{+}) \\ & \Gamma_{121} \quad \overline{D}_{1}(2421)^{0} \pi^{+} & (6.8 \pm 1.5) \times 10^{-4} \\ & \times B(\overline{D}_{1}(2421)^{0} \rightarrow D^{*-}\pi^{+}) \\ & \Gamma_{122} \quad \overline{D}_{2}^{*}(2462)^{0} \pi^{+} & (1.8 \pm 0.5) \times 10^{-4} \\ & \times B(\overline{D}_{2}^{*}(2422)^{0} \pi^{+} & (5.0 \pm 1.2) \times 10^{-4} \\ & \times B(\overline{D}_{1}^{*}(2427)^{0} \rightarrow D^{*-}\pi^{+}) \\ & \Gamma_{123} \quad \overline{D}_{1}^{*}(2427)^{0} \pi^{+} & (5.0 \pm 1.2) \times 10^{-4} \\ & \times B(\overline{D}_{1}^{*}(2427)^{0} \rightarrow D^{*-}\pi^{+}) \\ & \Gamma_{124} \quad \overline{D}_{1}(2420)^{0} \pi^{+} \times B(\overline{D}_{1}^{*} \rightarrow 0 \times 10^{-4} \times 10^{-3} \text{ CL=90\%} \\ & \overline{D}_{1}^{*}(2420)^{0} \pi^{+} \times B(\overline{D}_{1}^{*} \rightarrow 0 \times 10^{-4} \times 10^{-3} \text{ CL=90\%} \\ & \Gamma_{125} \quad \overline{D}_{1}^{*}(2420)^{0} \pi^{+} \times B(\overline{D}_{2}^{*} \rightarrow 0 \times 10^{-4} \times 10^{-3} \text{ CL=90\%} \\ & \Gamma_{126} \quad \overline{D}_{2}^{*}(2460)^{0} \pi^{+} \times B(\overline{D}_{2}^{*} \rightarrow 0 \times 10^{-4} \times 10^{-3} \text{ CL=90\%} \\ & \Gamma_{127} \quad \overline{D}_{2}^{*}(2460)^{0} \pi^{+} \times B(\overline{D}_{2}^{*} \rightarrow 0 \times 10^{-4} \times 10^{-3} \text{ CL=90\%} \\ & \Gamma_{128} \quad \overline{D}_{2}^{*}(2460)^{0} \pi^{+} \times B(\overline{D}_{2}^{*} \rightarrow 0 \times 10^{-3} \times 10^{-3} \text{ CL=90\%} \\ & \Gamma_{130} \quad D_{s0}(2317)^{+} \overline{D}^{0} \times (9.0 \pm 0.9) \times 10^{-3} \text{ CL=90\%} \\ & B(D_{s0}(2317)^{+} \overline{D}^{0} \times (9.0 \pm 0.9) \times 10^{-3} \text{ CL=90\%} \\ & B(D_{s0}(2317)^{+} \overline{D}^{0} \times (9.0 \pm 0.9) \times 10^{-3} \text{ CL=90\%} \\ & B(D_{s0}(2317)^{+} \overline{D}^{0} \times (9.0 \pm 0.9) \times 10^{-3} \text{ CL=90\%} \\ & B(D_{s0}(2317)^{+} \overline{D}^{0} \times (9.0 \pm 0.9) \times 10^{-3} \text{ CL=90\%} \\ & B(D_{s0}(2317)^{+} \overline{D}^{0} \times (9.0 \pm 0.9) \times 10^{-3} \text{ CL=90\%} \\ & B(D_{s0}(2317)^{+} \overline{D}^{0} \times (9.0 \pm 0.9) \times 10^{-3} \text{ CL=90\%} \\ & B(D_{s0}(2317)^{+} \overline{D}^{0} \times (9.0 \pm 0.9) \times 10^{-3} \text{ CL=90\%} \\ & B(D_{s0}(2317)^{+} \overline{D}^{0} \times (9.0 \pm 0.9) \times 10^{-3} \text{ CL=90\%} \\ & B(D_{s0}(2317)^{+} \overline{D}^{0} \times (9.0 \pm 0.9) \times 10^{-3} \text{ CL=90\%} \\ & B(D_{s0}(2317)^{+} \overline{D}^{0} \times (9.0 \pm 0.9) \times 10^{-3} \text{ CL=90\%} \\ & B(D_{s0}(2457)^{+} \overline{D}^{0} \times (9.0 \pm 0.9) \times 10^{-3} \text{ CL=90\%} \\ & B(D_{s0}(2457)^{+} \overline{D}^{0} \times (9.0 \pm 0.9) \times 10^{-3} \text{ CL=90\%} \\ & B(D_{s0}(2457)^{+} \overline{D}^{0} \times (9.0 \pm 0.9) \times 10^{-3} \text{ CL=90\%} \\ & B(D_{s0}(2457)^{+} \overline{D}^{0} \times (9.0$$

```
\Gamma_{141}
              \overline{D}^{0}D_{s1}(2536)^{+}\times
                                                                             (2.2 \pm 0.7) \times 10^{-4}
                    B(D_{s1}(2536)^{+} \rightarrow
                    D^*(2007)^0 K^+
\Gamma_{142} \ \overline{D}^*(2007)^0 D_{s1}(2536)^+ \times
                                                                            (5.5 \pm 1.6) \times 10^{-4}
                B(D_{s1}(2536)^{+} \rightarrow
                D^*(2007)^0 K^+
\Gamma_{143} \ \overline{D}{}^0 D_{s1}(2536)^+ \times
                                                                             (2.3 \pm 1.1) \times 10^{-4}
                B(D_{s1}(2536)^+ \rightarrow D^{*+}K^0)
                                                                            ( 1.13 ^{+0.26}_{-0.40} ) \times\,10^{-3}
\Gamma_{144} \ \overline{D}{}^0 D_{s,J}(2700)^+ \times
                B(D_{sJ}(2700)^+ \to D^0 K^+)
         \overline{D}^{*0} D_{s1}(2536)^+ \times
                                                                                 3.9 \pm 2.6 ) \times 10^{-4}
                B(D_{s1}(2536)^+ \rightarrow D^{*+}K^0)
\Gamma_{146} \ \overline{D}^{*0} D_{s,J}(2573)^+ \times
                                                                                                     \times 10^{-4} CL=90%
                B(D_{s,J}(2573)^+ \to D^0 K^+)
\Gamma_{147} \ \overline{D}^*(2007)^0 D_{s,I}(2573)^+ \times
                                                                                                      \times 10^{-4} CL=90%
                B(D_{sJ}(2573)^+ \rightarrow D^0 K^+)
\Gamma_{148} \ \overline{D}{}^0 D_s^{*+}
                                                                                 7.6 \pm 1.6 ) \times 10^{-3}
\Gamma_{149} \ \overline{D}^*(2007)^0 D_s^+
                                                                                 8.2 \pm 1.7 ) \times 10^{-3}
\Gamma_{150} \ \overline{D}^*(2007)^0 D_s^{*+}
                                                                                 1.71 \pm 0.24 ) %
\Gamma_{151} D^{(*)} + \overline{D}^{**0}
                                                                                 2.7 \pm 1.2 ) %
\Gamma_{152} \ \overline{D}^*(2007)^0 D^*(2010)^+
                                                                                 8.1 \pm 1.7 \times 10^{-4}
\Gamma_{153} \ \overline{D}{}^{0} D^{*}(2010)^{+} +
                                                                                 1.30
                                                                                                      %
                                                                                                                    CL=90%
                \overline{D}^*(2007)^0 D^+
\Gamma_{154} \ \overline{D}{}^0 D^* (2010)^+
                                                                                 3.9 \pm 0.5 \times 10^{-4}
\Gamma_{155} \overline{D}^0 D^+
                                                                                 3.8 \pm 0.4 ) \times 10^{-4}
\Gamma_{156} \ \overline{D}{}^0 D^+ K^0
                                                                                 1.55 \pm 0.21 \times 10^{-3}
\Gamma_{157} D^{+} \overline{D}^{*} (2007)^{0}
                                                                                 6.3 \pm 1.7 ) \times 10^{-4}
\Gamma_{158} \ \overline{D}^*(2007)^0 D^+ K^0
                                                                                 2.1 \pm 0.5 \times 10^{-3}
\Gamma_{159} \ \overline{D}^{0} \overline{D}^{*} (2010)^{+} K^{0}
                                                                                 3.8 \pm 0.4 ) \times 10^{-3}
\Gamma_{160} \ \overline{D}^*(2007)^0 D^*(2010)^+ K^0
                                                                                 9.2 \pm 1.2 ) \times 10^{-3}
\Gamma_{161} \ \overline{D}{}^0 D^0 K^{+}
                                                                                1.45 \pm 0.33 ) \times 10^{-3}
                                                                                                                        S = 2.6
\Gamma_{162} \ \overline{D}^*(2007)^0 D^0 K^+
                                                                                 2.26 \pm 0.23 \times 10^{-3}
\Gamma_{163} \ \ \underline{\overline{D}}{}^0 D^* (2007)^0 K^+
                                                                                 6.3 \pm 0.5 ) \times 10^{-3}
\Gamma_{164} \ \overline{D}^*(2007)^0 D^*(2007)^0 K^+
                                                                                 1.12 \pm 0.13 ) %
\Gamma_{165} D^- D^+ K^+
                                                                                 2.2 \pm 0.7 \times 10^{-4}
                                                                                 6.3 \pm 1.1 ) \times 10^{-4}
\Gamma_{166} D^- D^*(2010)^+ K^+
\Gamma_{167} D^*(2010)^- D^+ K^+
                                                                                 6.0 \pm 1.3 ) \times 10^{-4}
\Gamma_{168} D^*(2010)^- D^*(2010)^+ K^+
                                                                                 1.32 \pm 0.18 \times 10^{-3}
\Gamma_{169} (\overline{D} + \overline{D}^*)(D + D^*)K
                                                                                 4.05 \pm 0.30 ) %
\Gamma_{170} D_s^+ \pi^0
                                                                                 1.6 \pm 0.5 ) \times 10^{-5}
\Gamma_{171} D_{s}^{*+} \pi^{0}
                                                                                                      \times 10^{-4} CL=90%
                                                                                 2.6
\Gamma_{172} D_s^+ \eta
                                                                                                      \times 10^{-4} CL=90%
                                                                           <
                                                                                 4
\Gamma_{173} D_s^{*+} \eta
                                                                                                      \times 10^{-4} CL=90%
```

 Γ_{206}

Γ₂₀₇

Γ₂₀₈

 Γ_{209}

 $X(3872)K^+$, $X \rightarrow D^0\overline{D}{}^0$

 $X(3872)K^{+}, X \rightarrow D^{+}D^{-}$ $X(3872)K^{+}, X \rightarrow D^{0}\overline{D}^{0}\pi^{0}$ $X(3872)K^{+}, X \rightarrow \overline{D}^{*0}D^{0}$

6.0

 $(1.0 \pm 0.4) \times 10^{-4}$

 $(8.5 \pm 2.6) \times 10^{-5}$

< 4.0

 $\times 10^{-5}$ CL=90%

S = 1.4

 $\times 10^{-5}$ CL=90%

```
\Gamma_{210} \ \ X(3872) \, K^*(892)^+, \ \ X \rightarrow
                                                                                   \times 10^{-6} CL=90%
                                                                        4.8
              J/\psi \gamma
\Gamma_{211} \ \ X(3872) \, K^*(892)^+, \ \ X \rightarrow
                                                                                        \times 10^{-5} CL=90%
                                                                        2.8
              \psi(2S)\gamma
\Gamma_{212} \ \ X(3872)^+ K^0, \ \ X^+ \rightarrow
                                             [f]
                                                                        6.1
                                                                                        \times 10^{-6} CL=90%
              J/\psi(1S)\pi^{+}\pi^{0}
\Gamma_{213} \quad X(4430)^{+} \stackrel{7}{K^{0}}, \quad X^{+} \rightarrow J/\psi \pi^{+} \\ \Gamma_{214} \quad X(4430)^{+} \stackrel{7}{K^{0}}, \quad X^{+} \rightarrow
                                                                                          \times 10^{-5} CL=95%
                                                                  <
                                                                        1.5
                                                                                           \times 10^{-5} CL=95%
                                                                        4.7
                                                                  <
              \psi(2S)\pi^{+}
\Gamma_{215} \ \ X(4260)^{\acute{0}} K^+, \ \ X^0 \rightarrow
                                                                        2.9
                                                                                        \times 10^{-5} CL=95%
              J/\psi \pi^+\pi^-
\Gamma_{216} \chi_{c0}(2P)K^+, X^0 \rightarrow J/\psi\gamma
                                                                  < 1.4
                                                                                        \times 10^{-5} CL=90%
\Gamma_{217} X(3930)^0 K^+, X^0 \rightarrow J/\psi \gamma
                                                                                          \times 10^{-6} CL=90%
                                                                  < 2.5
                                                                 (1.027\pm0.031)\times10^{-3}
\Gamma_{218} J/\psi(1S)K^{+}
\Gamma_{219} J/\psi(1S) K^0 \pi^+
\Gamma_{220} J/\psi(1S) K^+ \pi^+ \pi^-
                                                                 (8.1 \pm 1.3) \times 10^{-4}
                                                                                                           S = 2.5
\Gamma_{221} \quad \chi_{c0}(2P)K^+, \quad \chi_{c0} \rightarrow p\overline{p} \qquad < 7.1
                                                                                        \times 10^{-8} CL=95%
\Gamma_{222} J/\psi(1S) K^*(892)^+
                                                                (1.44 \pm 0.08) \times 10^{-3}
                                                                 (1.8 \pm 0.5) \times 10^{-3}
\Gamma_{223} J/\psi(1S) K(1270)^+
\Gamma_{224} J/\psi(1S) K(1400)^+
                                                                                        \times 10^{-4} CL=90%
                                                                  < 5
\Gamma_{225} J/\psi(1S) \eta K^{+}
                                                                 (1.08 \pm 0.33) \times 10^{-4}
\Gamma_{226} J/\psi(1S) \eta' K^{+}
                                                                  < 8.8
                                                                                        \times 10^{-5} CL=90%
\Gamma_{227} J/\psi(1S) \phi K^{+}
                                                                 (5.2 \pm 1.7) \times 10^{-5}
                                                                                                           S = 1.2
\Gamma_{228} = X(4140)K^{+}, X \rightarrow
                                                                 ( 10
                                                                               \pm 5 ) × 10<sup>-6</sup>
                 J/\psi(1S)\phi
            X(4274)K^{+}, X \rightarrow
                                                                  < 4 \times 10^{-6} CL=90%
\Gamma_{229}
                 J/\psi(1S)\phi
                                                                   (3.20 \begin{array}{c} +0.60 \\ -0.32 \end{array}) \times 10^{-4}
\Gamma_{230} J/\psi(1S) \omega K^{+}
\Gamma_{231} X(3872)K^+, X \rightarrow J/\psi \omega
                                                              (6.0 \pm 2.2) \times 10^{-6}
\Gamma_{232} \chi_{c0}(2P)K^+, \chi_{c0} \rightarrow J/\psi \omega
                                                                               ^{+0.9}_{-0.7} ) \times 10<sup>-5</sup>
                                                                    ( 3.0
\Gamma_{233} J/\psi(1S)\pi^{+}
                                                                    (4.1 \pm 0.4) \times 10^{-5}
\Gamma_{234} J/\psi(1S) \rho^{+}
                                                                  (5.0 \pm 0.8) \times 10^{-5}
\Gamma_{235} J/\psi(1S)\pi^+\pi^0 nonresonant
                                                                                        \times 10^{-6} CL=90%
                                                                  < 7.3
                                                                                         \times 10^{-3} CL=90%
\Gamma_{236} J/\psi(1S) a_1(1260)^+
                                                                  <
                                                                        1.2
\Gamma_{237} J/\psi p \overline{p} \pi^+
                                                                                        \times 10^{-7} CL=90%
                                                                        5.0
                                           Charmonium modes
                                                                    (1.18 \pm 0.31) \times 10^{-5}
\Gamma_{238} J/\psi(1S) p \overline{\Lambda}
\Gamma_{239} J/\psi(1S)\overline{\Sigma}^0 p
                                                                  < 1.1
                                                                               \times 10^{-5} CL=90%
\Gamma_{240} J/\psi(1S) D^{+}
                                                                                          \times 10^{-4} CL=90%
                                                                  < 1.2
\Gamma_{241} J/\psi(1S)\overline{D}{}^0\pi^+
                                                                                        \times 10^{-5} CL=90%
                                                                  < 2.5
\Gamma_{242} \ \psi(2S)\pi^{+}
                                                                    (2.44 \pm 0.30) \times 10^{-5}
                                                                    (6.27 \pm 0.24) \times 10^{-4}
\Gamma_{243} \ \psi(2S) K^{+}
```

```
\Gamma_{244} \quad \psi(2S) K^*(892)^+
                                                                      (6.7 \pm 1.4) \times 10^{-4}
                                                                                                              S = 1.3
\Gamma_{245} \ \psi(2S) K^0 \pi^+
\Gamma_{246} \ \psi(2S) K^+ \pi^+ \pi^-
                                                                       (4.3 \pm 0.5) \times 10^{-4}
\Gamma_{247} \quad \psi(3770) K^{+}
                                                                      (4.9 \pm 1.3) \times 10^{-4}
\Gamma_{248} \ \psi(3770)K+, \psi \to \ D^0 \overline{D}{}^0
                                                                      (1.6 \pm 0.4) \times 10^{-4}
                                                                                                              S = 1.1
\Gamma_{249} \ \psi(3770)K+, \psi \rightarrow \ D^{+}D^{-}
                                                                      (9.4 \pm 3.5) \times 10^{-5}
\Gamma_{250} \chi_{c0}\pi^+, \chi_{c0}\to\pi^+\pi^-
                                                                    < 1
                                                                                              \times 10^{-7} CL=90%
                                                                          1.50 \ ^{+0.15}_{-0.14} \ ) \times 10^{-4}
\Gamma_{251} \ \chi_{c0}(1P)\,K^+
\Gamma_{252} \quad \chi_{c0} \, K^*(892)^+
                                                                           2.1
                                                                                            \times 10^{-4} CL=90%
                                                                     <
\Gamma_{253} \chi_{c2}\pi^+, \chi_{c2} \rightarrow \pi^+\pi^-
                                                                                            \times 10^{-7} CL=90%
                                                                           1
                                                                    <
\Gamma_{254} \chi_{c2}K^+
                                                                    (1.1 \pm 0.4) \times 10^{-5}
\Gamma_{255} \quad \chi_{c2} K^*(892)^+
                                                                                           \times 10^{-4} CL=90%
                                                                    < 1.2
                                                                    (2.2 \pm 0.5) \times 10^{-5}
\Gamma_{256} \quad \chi_{c1}(1P)\pi^{+}
\Gamma_{257} \quad \chi_{c1}(1P)K^{+}
                                                                           4.79 \pm 0.23 \times 10^{-4}
\Gamma_{258} \quad \chi_{c1}(1P) K^0 \pi^+
\Gamma_{259} \quad \chi_{c1}(1P) \, K^*(892)^+
                                                                      (3.0 \pm 0.6) \times 10^{-4}
                                                                                                              S = 1.1
\Gamma_{260} h_c(1P)K^+
                                                                                            \times 10^{-5}
                                                                    <
                                                                           3.8
\Gamma_{261} \quad h_c(1P)K^+, h_c \rightarrow p\overline{p}
                                                                                           \times 10^{-8} CL=95%
                                                                           6.4
                                               K or K^* modes
\Gamma_{262} \ K^0 \pi^+
                                                                       (2.37 \pm 0.08) \times 10^{-5}
\Gamma_{263} \quad K^+ \, \pi^0
                                                                       (1.29 \pm 0.05) \times 10^{-5}
\Gamma_{264} \eta' K^{+}
                                                                       (7.06 \pm 0.25) \times 10^{-5}
                                                                           4.8 \quad {}^{+\, 1.8}_{-\, 1.6} \quad )\times 10^{-6}
\Gamma_{265} \eta' K^*(892)^+
\Gamma_{266} \eta' K_0^* (1430)^+
                                                                           5.2 \pm 2.1 \times 10^{-6}
\Gamma_{267} \quad \eta' \, K_2^* (1430)^+
                                                                      (2.8 \pm 0.5) \times 10^{-5}
\Gamma_{268} \eta K^{+}
                                                                      (2.4 \pm 0.4) \times 10^{-6}
                                                                                                              S = 1.7
\Gamma_{269} \eta K^*(892)^+
                                                                      (1.93 \pm 0.16) \times 10^{-5}
\Gamma_{270} \eta K_0^* (1430)^+
                                                                          1.8 \pm 0.4 ) \times 10^{-5}
\Gamma_{271} \quad \eta \, K_2^* (1430)^+
                                                                      (9.1 \pm 3.0) \times 10^{-6}
                                                                          2.9 \quad ^{+0.8}_{-0.7} \quad ) \times 10^{-6}
\Gamma_{272} \quad \eta(1295) \, K^+ \times \, \mathsf{B}(\eta(1295) \to
              \eta \pi \pi)
\Gamma_{273} \quad \eta(1405) \, K^+ \times \, \mathsf{B}(\eta(1405) \to
                                                                                  \times 10^{-6} CL=90%
                                                                    < 1.3
              \eta \pi \pi)
\Gamma_{274} \quad \eta(1405) \, K^+ \times \, \mathsf{B}(\eta(1405) \to
                                                                                  \times 10^{-6} CL=90%
                                                                    < 1.2
               K^*K
                                                                   ( 1.38 \begin{array}{c} +0.21 \\ -0.18 \end{array}) \times 10^{-5}
\Gamma_{275} \quad \eta(1475) \, K^+ \times \, \mathsf{B}(\eta(1475) \to
               K^*K
\Gamma_{276} f_1(1285)K^+
                                                                           2.0
                                                                                           \times 10^{-6} CL=90%
\Gamma_{277} f_1(1420) K^+ \times B(f_1(1420) \rightarrow
                                                                                            \times 10^{-6} CL=90%
                                                                          2.9
              \eta \pi \pi)
\Gamma_{278} f_1(1420) \, K^+ \times \, \mathsf{B}(f_1(1420) \to
                                                                    <
                                                                           4.1
                                                                                  \times 10^{-6} CL=90%
               K^*K
HTTP://PDG.LBL.GOV Page 11
                                                                   Created: 8/21/2014 12:56
```

```
\Gamma_{314} \ a_1^+ K^0
                                                                    (3.5 \pm 0.7) \times 10^{-5}
\Gamma_{315} b_1^{\tilde{+}} K^0 \times B(b_1^+ \rightarrow \omega \pi^+)
                                                                       9.6 \pm 1.9 ) \times 10^{-6}
\Gamma_{316} K^*(892)^0 \rho^+
                                                                   (9.2 \pm 1.5) \times 10^{-6}
\Gamma_{317} K_1(1400)^+ \rho^0
                                                                                        \times 10^{-4} CL=90%
                                                                 < 7.8
\Gamma_{318} \quad K_2^*(1430)^+ \rho^0
                                                                 < 1.5
                                                                                        \times 10^{-3} CL=90%
\Gamma_{319} \quad b_1^0 K^+ \times B(b_1^0 \rightarrow \omega \pi^0)
                                                                (9.1 \pm 2.0) \times 10^{-6}
\Gamma_{320} \quad b_1^+ K^{*0} \times B(b_1^+ \to \omega \pi^+) \\ \Gamma_{321} \quad b_1^0 K^{*+} \times B(b_1^0 \to \omega \pi^0)
                                                                 < 5.9
                                                                                        \times 10^{-6} CL=90%
                                                                 < 6.7
                                                                                        \times 10^{-6} CL=90%
\Gamma_{322} \quad K^{+} \overline{K}^{0}
                                                                   (1.31 \pm 0.17) \times 10^{-6}
                                                                                                          S = 1.2
\Gamma_{323} \overline{K}^0 K^+ \pi^0
                                                                                       \times 10^{-5} CL=90%
                                                                 <
\Gamma_{324} K^+ K^0_S K^0_S
                                                                 (1.08 \pm 0.06) \times 10^{-5}
\Gamma_{325} f_0(980)K^+, f_0 \rightarrow K_S^0 K_S^0
                                                                   (1.47 \pm 0.33) \times 10^{-5}
\Gamma_{326} \qquad f_0(1710)\,K^+, \;\; f_0 \to \;\; K^0_S\,K^0_S \qquad \qquad (
                                                                              +4.0 \\ -2.6
                                                                                       ) \times 10^{-7}
\Gamma_{327} K^+K^0_SK^0_S nonresonant
                                                                   (2.0 \pm 0.4) \times 10^{-5}
\Gamma_{328} \quad K_S^0 K_S^0 \pi^+
                                                                               \times 10^{-7} CL=90%
                                                                       5.1
                                                                 <
\Gamma_{320} K^+ K^- \pi^+
                                                                (5.0 \pm 0.7) \times 10^{-6}
\Gamma_{330} K^+K^-\pi^+ nonresonant
                                                                 < 7.5
                                                                                      \times 10^{-5} CL=90%
\Gamma_{331} K^{+} \overline{K}^{*} (892)^{0}
                                                                 < 1.1
                                                                                          \times 10^{-6} CL=90%
\Gamma_{332} K^+ \overline{K}_0^* (1430)^0
                                                                 < 2.2
                                                                                        \times 10^{-6} CL=90%
\Gamma_{333} \quad K^+ K^+ \tilde{\pi}^-
                                                                 < 1.6
                                                                                        \times 10^{-7} CL=90%
         K^+K^+\pi^- nonresonant
                                                                                          \times 10^{-5} CL=90%
                                                                 < 8.79
\Gamma_{335} f_2'(1525)K^+
                                                                       1.8 \pm 0.5 ) \times 10^{-6}
                                                                                                          S = 1.1
\Gamma_{336} K^+ f_J(2220)
\Gamma_{337} K^{*+} \pi^{+} K^{-}
                                                                               \times 10^{-5} CL=90%
                                                                       1.18
\Gamma_{338} K^*(892)^+K^*(892)^0
                                                                 (1.2 \pm 0.5) \times 10^{-6}
\Gamma_{339} K^{*+} K^{+} \pi^{-}
                                                                                          \times 10^{-6} CL=90%
\Gamma_{340} \quad K^+ \, K^- \, K^+
                                                                   (3.40 \pm 0.14) \times 10^{-5}
                                                                                                         S = 1.4
                                                                       8.8 ^{+0.7}_{-0.6} ) \times 10<sup>-6</sup>
         K^+\phi
\Gamma_{341}
\Gamma_{342}
            f_0(980) K^+ \times B(f_0(980) \rightarrow
                                                                       9.4 \pm 3.2 ) \times 10^{-6}
                K^{+}K^{-}
            a_2(1320)\,K^+ \times \, \mathsf{B}(a_2(1320) \to
                                                                              \times 10^{-6} CL=90%
Γ<sub>343</sub>
                                                                 < 1.1
                 K^{+}K^{-}
            X_0(1550) K^+ \times
                                                                   (4.3 \pm 0.7) \times 10^{-6}
                  B(X_0(1550) \to K^+K^-)
            \phi(1680) K^+ \times B(\phi(1680) \rightarrow
                                                                               \times 10^{-7} CL=90%
\Gamma_{345}
                                                                 < 8
                  K^{+}K^{-}
            f_0(1710) K^+ \times B(f_0(1710) \rightarrow (1.1 \pm 0.6) \times 10^{-6}
                 K^{+}K^{-}
                                                              (2.38 \begin{array}{c} +0.28 \\ -0.50 \end{array}) \times 10^{-5}
         K^+K^-K^+ nonresonant
\Gamma_{347}
\Gamma_{348} K^*(892)^+K^+K^-
                                                                   (3.6 \pm 0.5) \times 10^{-5}
                                                                   (10.0 \pm 2.0) \times 10^{-6}
            K^*(892)^+ \phi
\Gamma_{349}
                                                                                                          S = 1.7
```

```
\Gamma_{350} \phi (K\pi)_0^{*+}
                                                                                   \pm 1.6 ) × 10<sup>-6</sup>
                                                                            8.3
\Gamma_{351} \phi K_1(1270)^+
                                                                            6.1
                                                                                   \pm 1.9 ) × 10<sup>-6</sup>
\Gamma_{352} \phi K_1(1400)^+
                                                                                             \times 10^{-6} CL=90%
                                                                      <
                                                                            3.2
                                                                                               \times 10^{-6} CL=90%
\Gamma_{353} \phi K^*(1410)^+
                                                                            4.3
                                                                      <
\Gamma_{354} \phi K_0^* (1430)^+
                                                                       (7.0 \pm 1.6) \times 10^{-6}
\Gamma_{355} \phi K_2^* (1430)^+
                                                                            8.4 \pm 2.1 ) \times 10^{-6}
                                                                                             \times 10^{-5} CL=90%
\Gamma_{356} \phi K_2^* (1770)^+
                                                                            1.50
\Gamma_{357} \phi K_2^* (1820)^+
                                                                                             \times 10^{-5} CL=90%
                                                                            1.63
\Gamma_{358} \quad a_1^+ \, \bar{K}^{*0}
                                                                                               \times 10^{-6} CL=90%
                                                                            3.6
\Gamma_{359} K^+\phi\phi
                                                                            5.0 \pm 1.2 \times 10^{-6}
                                                                                                                 S=2.3
\Gamma_{360} \quad \eta' \, \eta' \, K^+
                                                                                               \times 10^{-5} CL=90%
                                                                      <
                                                                            2.5
\Gamma_{361} \omega \phi K^+
                                                                                               \times 10^{-6} CL=90%
                                                                      <
                                                                            1.9
\Gamma_{362} X(1812)K^+ \times B(X \rightarrow \omega \phi)
                                                                                               \times 10^{-7} CL=90%
                                                                      <
                                                                            3.2
\Gamma_{363} K^*(892)^+ \gamma
                                                                       (4.21 \pm 0.18) \times 10^{-5}
\Gamma_{364} K_1(1270)^+ \gamma
                                                                           4.3 \pm 1.3 ) \times 10^{-5}
\Gamma_{365} \eta K^+ \gamma
                                                                       (7.9 \pm 0.9) \times 10^{-6}
                                                                                   ^{+1.0}_{-0.9}
\Gamma_{366} \eta' K^+ \gamma
                                                                                            ) \times 10^{-6}
                                                                            2.9
\Gamma_{367} \phi K^+ \gamma
                                                                            2.7 \pm 0.4 \times 10^{-6}
                                                                                                                S = 1.2
\Gamma_{368} K^{+} \pi^{-} \pi^{+} \gamma
                                                                            2.76 \pm 0.22 \times 10^{-5}
                                                                                                                S=1.2
                                                                                   ^{+0.7}_{-0.6} \ )\times 10^{-5}
\Gamma_{369} K^*(892)^0 \pi^+ \gamma
                                                                            2.0
\Gamma_{370} K^+ \rho^0 \gamma
                                                                      <
                                                                            2.0
                                                                                             \times 10^{-5} CL=90%
\Gamma_{371} K^+\pi^-\pi^+\gamma nonresonant
                                                                                             \times 10^{-6} CL=90%
                                                                            9.2
                                                                      <
\Gamma_{372} \ K^0 \pi^+ \pi^0 \gamma
                                                                     (4.6 \pm 0.5) \times 10^{-5}
\Gamma_{373} K_1(1400)^+ \gamma
                                                                                             \times 10^{-5} CL=90%
                                                                            1.5
                                                                      <
\Gamma_{374} \quad K_2^*(1430)^+ \gamma
                                                                       (1.4 \pm 0.4) \times 10^{-5}
\Gamma_{375} K^*(1680)^+ \gamma
                                                                                             \times 10^{-3} CL=90%
                                                                      <
                                                                            1.9
\Gamma_{376} \quad K_3^*(1780)^+ \gamma
                                                                                             \times 10^{-5} CL=90%
                                                                            3.9
                                                                                               \times 10^{-3} CL=90%
\Gamma_{377} K_{4}^{*}(2045)^{+} \gamma
                                                                            9.9
                                    Light unflavored meson modes
\Gamma_{378} \rho^+ \gamma
                                                                            9.8 \pm 2.5 ) \times 10^{-7}
\Gamma_{379} \pi^{+} \pi^{0}
                                                                          5.5 \pm 0.4 \times 10^{-6}
                                                                                                                S=1.2
\Gamma_{380} \pi^{+}\pi^{+}\pi^{-}
                                                                        (1.52 \pm 0.14) \times 10^{-5}
\Gamma_{381} \qquad 
ho^0 \, \pi^+
                                                                       (8.3 \pm 1.2) \times 10^{-6}
\Gamma_{382} \pi^+ f_0(980), f_0 \rightarrow \pi^+ \pi^-
                                                                                               \times 10^{-6} CL=90%
                                                                      <
                                                                            1.5
                                                                                   ^{+0.7}_{-0.4} \ )\times 10^{-6}
\Gamma_{383} = \pi^+ f_2(1270)
                                                                            1.6
            \rho(1450)^0 pi+, \rho^0 \to \pi^+ \pi^-
                                                                                   ^{+0.6}_{-0.9} ) \times 10<sup>-6</sup>
\Gamma_{384}
                                                                       ( 1.4
\Gamma_{385} f_0(1370)\pi^+, f_0 \rightarrow \pi^+\pi^-
                                                                      < 4.0
                                                                                             \times 10^{-6} CL=90%
         f_0(500)\pi^+, f_0 
ightarrow \pi^+\pi^-
                                                                                               \times 10^{-6} CL=90%
Γ<sub>386</sub>
                                                                      <
                                                                            4.1
                                                                     (5.3 \begin{array}{c} +1.5 \\ -1.1 \end{array}) \times 10^{-6}
         \pi^+\pi^-\pi^+ nonresonant
\Gamma_{387}
\Gamma_{388} \quad \pi^{+} \pi^{0} \pi^{0}
                                                                                               \times 10^{-4} CL=90%
                                                                      < 8.9
```

Charged particle (h^{\pm}) modes

Γ ₄₂₅	<i>p</i> p <i>K</i> *(892) ⁺	(3.6	$+0.8 \\ -0.7$	$) \times 10^{-6}$	
Γ ₄₂₆	$f_J(2220) K^{*+}, f_J \rightarrow p \overline{p}$	<	7.7	•	$\times 10^{-7}$	CL=90%
Γ ₄₂₇		<	3.2		$\times 10^{-7}$	CL=90%
Γ ₄₂₈	$ otan \overline{\Lambda}\gamma $	(2.4	$^{+0.5}_{-0.4}$	$) \times 10^{-6}$	
Γ ₄₂₉	$ \rho \overline{\Lambda} \pi^0 $	(3.0	$+0.7 \\ -0.6$) × 10 ⁻⁶	
Γ ₄₃₀	$p\overline{\Sigma}(1385)^0$	<	4.7	0.0	\times 10 ⁻⁷	CL=90%
	$\Delta^{+}\overline{\Lambda}$	<	8.2		$\times10^{-7}$	CL=90%
Γ ₄₃₂	$ otan \overline{\Sigma} \gamma $	<	4.6		$\times 10^{-6}$	CL=90%
Γ ₄₃₃	$p \overline{\Lambda} \pi^+ \pi^-$	(5.9	± 1.1	$) \times 10^{-6}$	
Γ ₄₃₄	$ ho \overline{\Lambda} ho^0$	(4.8		$) \times 10^{-6}$	
Γ ₄₃₅	$p\overline{\Lambda}f_2(1270)$	(2.0		$) \times 10^{-6}$	
Γ_{436}	$\Lambda \overline{\Lambda} \pi^+$	<	9.4		$\times 10^{-7}$	CL=90%
Γ_{437}	$\Lambda \overline{\Lambda} K^+$	(3.4	± 0.6	$) \times 10^{-6}$	
Γ ₄₃₈	$\Lambda \overline{\Lambda} K^{*+}$	(2.2	$^{+1.2}_{-0.9}$	$) \times 10^{-6}$	
Γ ₄₃₉	$\overline{\Delta}{}^0 p$	<	1.38		$\times10^{-6}$	CL=90%
Γ ₄₄₀	$\Delta^{++}\overline{p}$	<	1.4		$\times10^{-7}$	CL=90%
Γ_{441}	$D^+ \rho \overline{\overline{\rho}}$	<	1.5			CL=90%
Γ_{442}	$D^*(2010)^+ \rho \overline{\rho}$	<	1.5		$\times10^{-5}$	CL=90%
Γ_{443}	$\overline{D}{}^{0}p\overline{p}\pi^{+}$	(3.72	±0.27	$) \times 10^{-4}$	
Γ_{444}	$\overline{D}^{*0} p \overline{p} \pi^+$	Ì			$) \times 10^{-4}$	
Γ_{445}	$D^- \rho \overline{\rho} \pi^+ \pi^-$	Ì			$) \times 10^{-4}$	
Γ ₄₄₆	$D^{*-} \frac{\rho \overline{\rho} \pi^{+} \pi^{-}}{\rho \overline{\Lambda}^{0} \overline{D}^{0}}$	($) \times 10^{-4}$	
Γ ₄₄₇	$p\overline{\Lambda}{}^{0}\overline{D}{}^{0}$	(1.43	± 0.32	$) \times 10^{-5}$	
Γ ₄₄₈	$p \overline{\Lambda}^0 \overline{D}^* (2007)^0$	<	5		$\times 10^{-5}$	CL=90%
	$\overline{\Lambda}_c^- p \pi^+$	(2.8	± 0.8	$) \times 10^{-4}$	
	$\overline{\Lambda}_{c}^{-} \Delta(1232)^{++}$	<				CL=90%
Γ_{451}	$\overline{\Lambda}_c^- \Delta_X(1600)^{++}$	(5.9	± 1.9	$) \times 10^{-5}$	
Γ_{452}	$\overline{\Lambda}_c^- \Delta_X(2420)^{++}$	(4.7	± 1.6	$) \times 10^{-5}$	
Γ_{453}	$(\overline{\Lambda}_c^- \rho)_s \pi^+$	[h] (3.9	± 1.3	$) \times 10^{-5}$	
Γ_{454}	$\overline{\Sigma}_{c}(2520)^{0}p$		3		$\times 10^{-6}$	CL=90%
Γ ₄₅₅	$\overline{\Sigma}_c(2800)^0 p$	(3.3	± 1.3	$) \times 10^{-5}$	
Γ ₄₅₆	$\overline{\Lambda}_{c}^{-} p \pi^{+} \pi^{0}$	($) \times 10^{-3}$	
	$\overline{\Lambda}_{c}^{c} p \pi^{+} \pi^{+} \pi^{-}$	($) \times 10^{-3}$	
Γ ₄₅₈	$\frac{1}{\Lambda_c} p_{\pi} + \pi + \pi - \pi^0$	<				CL=90%
Γ ₄₅₉	$\Lambda_c^+ \Lambda_c^- K^+$	(8.7	± 3.5	$) \times 10^{-4}$	
Γ ₁₆₀	$\frac{c}{\Sigma_c}(2455)^0 p$	() × 10 ⁻⁵	
Γ ₁₆₁	$\frac{1}{\Sigma_c}(2455)^0 p \pi^0$	(4.4	± 1.8	$) \times 10^{-4}$	
[162	$\frac{\Sigma_{c}}{\Sigma_{c}}$ (2455) 0 $p\pi^{-}\pi^{+}$	($) \times 10^{-4}$	
Γ ₄₆₂	$\frac{\Sigma_c(2455)}{\Sigma_c(2455)} - p\pi^+\pi^+$	($) \times 10^{-4}$	
. 403	- c(- 100) P " "	,	0.0	_ 0.0	, ^ =0	

Lepton Family number (LF) or Lepton number (L) or Baryon number (B) violating modes, or/and $\Delta B = 1$ weak neutral current (B1) modes

	violating modes, or/and AD		can iicu	ciai cuirciic	(D_{\perp}) into	acs
Γ ₄₆₇	$\pi^+\ell^+\ell^-$	B1	<	4.9	$\times 10^{-8}$	CL=90%
Γ ₄₆₈	$\pi^+e^+e^-$	B1	<	8.0	$\times 10^{-8}$	CL=90%
Γ ₄₆₉	$\pi^+\mu^+\mu^-$	B1	<	5.5	$\times 10^{-8}$	CL=90%
Γ_{470}	$\pi^+ u\overline{ u}$	B1	<	9.8	$\times 10^{-5}$	CL=90%
Γ_{471}	$K^+\ell^+\ell^-$	B1	[a] ($4.51\ \pm0.23$		S=1.1
Γ_{472}	$K^+e^+e^-$	B1	(5.5 ± 0.7	$) \times 10^{-7}$	
Γ_{473}	$\mathcal{K}^+\mu^+\mu^-$	B1	(4.49 ± 0.23	$) \times 10^{-7}$	S=1.1
Γ ₄₇₄	ψ (4040) K^+		<	1.3	$\times 10^{-4}$	CL=90%
Γ ₄₇₅	ψ (4160) K^+		(5.1 ± 2.7	$) \times 10^{-4}$	
	$K^{+}\overline{\nu}\nu$	B1	<	1.6		CL=90%
Γ ₄₇₇	$\rho^+ \nu \overline{\nu}$	B1	<	2.13	× 10 ⁻⁴	CL=90%
Γ ₄₇₈	$K^*(892)^+ \ell^+ \ell^-$	B1	[a] ($1.29\ \pm0.21$	$) \times 10^{-6}$	
Γ ₄₇₉	$K^*(892)^+e^+e^-$	B1	($) \times 10^{-6}$	
Γ ₄₈₀	K^* (892) $^+\mu^+\mu^-$	B1	($1.12\ \pm0.15$		
Γ_{481}	$K^*(892)^+ \nu \overline{\nu}$	B1	<	4.0	\times 10 ⁻⁵	CL=90%
Γ ₄₈₂	$\pi^+e^+\mu^-$	LF	<	6.4	$\times 10^{-3}$	CL=90%
Γ ₄₈₃	$\pi^{+}e^{-}\mu^{+}$	LF	<	6.4	$\times 10^{-3}$	CL=90%
Γ ₄₈₄	$\pi^+ e^{\pm} \mu^{\mp}$	LF	<	1.7	\times 10 ⁻⁷	CL=90%
Γ ₄₈₅	$\pi^+e^+\tau^-$	LF	<	7.4		CL=90%
Γ ₄₈₆	$\pi^+e^-\tau^+$	LF	<	2.0	\times 10 ⁻⁵	
Γ ₄₈₇	$\pi^+e^{\pm}\tau^{\mp}$	LF	<	7.5	\times 10 ⁻⁵	CL=90%
Γ ₄₈₈	$\pi^{+}\mu^{+}\tau^{-}$	LF	<	6.2	\times 10 ⁻⁵	CL=90%
Γ ₄₈₉	$\pi^{+}\mu^{-}\tau^{+}$	LF	<	4.5	\times 10 ⁻⁵	CL=90%
Γ ₄₉₀	$\pi^+\mu^{\pm}\tau^{\mp}$	LF	<	7.2	\times 10 ⁻⁵	CL=90%
Γ ₄₉₁	$K^+e^+\mu^-$	LF	<	9.1	\times 10 ⁻⁸	CL=90%
Γ ₄₉₂	$K^{+}e^{-}\mu^{+}$	LF	<	1.3	\times 10 ⁻⁷	
Γ ₄₉₃	$K^+ e^{\pm} \mu^{\mp}$	LF	<	9.1	× 10 ⁻⁸	CL=90%
Γ ₄₉₄	$K^+e^+\tau^-$	LF	<	4.3	\times 10 ⁻⁵	CL=90%
Γ ₄₉₅	$K^+e^- au^+$	LF	<	1.5		CL=90%
Γ ₄₉₆	$K^+e^{\pm} au^{\mp}$	LF	<	3.0		CL=90%
Γ ₄₉₇	$K^+\mu^+\tau^-$	LF	<	4.5		CL=90%
Γ ₄₉₈	$K^+\mu^-\tau^+$	LF	<	2.8		CL=90%
Γ ₄₉₉	$K^+\mu^{\pm}\tau^{\mp}$	LF	<	4.8	\times 10 ⁻⁵	
Γ ₅₀₀	$K^*(892)^+e^+\mu^-$	LF	<	1.3		CL=90%
Γ ₅₀₁	$K^*(892)^+e^-\mu^+$	LF	<	9.9	\times 10 ⁻⁷	
	$K^*(892)^+ e^{\pm} \mu^{\mp}$	LF	<	1.4		CL=90%
Γ ₅₀₃	$\pi - e^+ e^+$	L	<	2.3	\times 10 ⁻⁸	CL=90%

Геол	$\pi^-\mu^+\mu^+$	L	<	1.3	$\times 10^{-8}$	CL=95%
· 504	$\pi^-e^+\mu^+$	I	<	1.5		CL=90%
1 505 F	$n \in \mu$	_	•		_	
¹ 506	$\rho^{-}e^{+}e^{+}$	L	<	1.7	_	CL=90%
I ₅₀₇	$\rho^{-}\mu^{+}\mu^{+}$	L	<	4.2		CL=90%
Γ ₅₀₈	$ ho^-$ e $^+$ μ^+	L	<	4.7	$\times 10^{-7}$	CL=90%
Γ ₅₀₉	$K^{-}e^{+}e^{+}$	L	<	3.0	$\times 10^{-8}$	CL=90%
Γ ₅₁₀	$K^-\mu^+\mu^+$	L	<	4.1	$\times 10^{-8}$	CL=90%
	$K^-e^+\mu^+$	L	<	1.6	$\times 10^{-7}$	CL=90%
	$K^*(892)^-e^+e^+$	L	<	4.0	$\times 10^{-7}$	CL=90%
Γ ₅₁₃	$K^*(892)^- \mu^+ \mu^+$	L	<	5.9	$\times 10^{-7}$	CL=90%
Γ ₅₁₄	$K^*(892)^-e^+\mu^+$	L	<	3.0	$\times 10^{-7}$	CL=90%
Γ ₅₁₅	$D^{-}e^{+}e^{+}$	L	<	2.6	$\times 10^{-6}$	CL=90%
Γ ₅₁₆	$D^-e^+\mu^+$	L	<	1.8	$\times 10^{-6}$	CL=90%
Γ ₅₁₇	$D^-\mu^+\mu^+$	L	<	6.9	$\times 10^{-7}$	CL=95%
	$D^{*-}\mu^{+}\mu^{+}$	L	<	2.4	$\times 10^{-6}$	CL=95%
	$D_{s}^{-}\mu^{+}\mu^{+}$	L	<	5.8	$\times 10^{-7}$	CL=95%
	$\overline{D}^{0}\pi^{-}\mu^{+}\mu^{+}$	L	<	1.5	$\times 10^{-6}$	CL=95%
Γ ₅₂₁	$\Lambda^0 \mu^+$	L,B	<	6	$\times 10^{-8}$	CL=90%
Γ_{522}	$\Lambda^0 e^+$	L,B	<	3.2	$\times 10^{-8}$	CL=90%
Γ ₅₂₃	$\overline{\Lambda}^0 \mu^+$	L,B	<	6		CL=90%
Γ ₅₂₄	$\overline{\Lambda}^0 e^+$	L,B	<	8		CL=90%
524		-, -		-	= 0	5576

- [a] An ℓ indicates an e or a μ mode, not a sum over these modes.
- [b] An $CP(\pm 1)$ indicates the $CP{=}+1$ and $CP{=}-1$ eigenstates of the $D^0{-}\overline{D}{}^0$ system.
- [c] D denotes D^0 or \overline{D}^0 .
- [d] D_{CP+}^{*0} decays into $D^0\pi^0$ with the D^0 reconstructed in CP-even eigenstates K^+K^- and $\pi^+\pi^-$.
- [e] \overline{D}^{**} represents an excited state with mass 2.2 < M < 2.8 GeV/c².
- [f] $X(3872)^+$ is a hypothetical charged partner of the X(3872).
- [g] $\Theta(1710)^{++}$ is a possible narrow pentaquark state and G(2220) is a possible glueball resonance.
- [h] $(\overline{\Lambda}_c^- p)_s$ denotes a low-mass enhancement near 3.35 GeV/c².

CONSTRAINED FIT INFORMATION

An overall fit to 3 branching ratios uses 6 measurements and one constraint to determine 3 parameters. The overall fit has a $\chi^2=3.7$ for 4 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients $\left\langle \delta x_i \delta x_j \right\rangle / (\delta x_i \cdot \delta x_j)$, in percent, from the fit to the branching fractions, $x_i \equiv \Gamma_i / \Gamma_{\text{total}}$. The fit constrains the x_i whose labels appear in this array to sum to one.

CONSTRAINED FIT INFORMATION

An overall fit to 18 branching ratios uses 53 measurements and one constraint to determine 12 parameters. The overall fit has a $\chi^2=48.9$ for 42 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients $\left\langle \delta x_i \delta x_j \right\rangle / (\delta x_i \cdot \delta x_j)$, in percent, from the fit to the branching fractions, $x_i \equiv \Gamma_i / \Gamma_{\text{total}}$. The fit constrains the x_i whose labels appear in this array to sum to one.

<i>x</i> ₇	33									
×46	0	0								
<i>x</i> ₈₂	0	0	8							
<i>×</i> 114	0	0	1	13						
<i>x</i> ₂₁₈	0	0	0	0	0					
x ₂₂₂	0	0	0	0	0	0				
^x 233	0	0	0	0	0	28	0			
^x 243	0	0	0	0	0	58	0	16		
^X 473	0	0	0	0	0	14	0	4	8	
× ₄₈₀	0	0	0	0	0	0	9	0	0	0
	<i>x</i> ₆	<i>x</i> ₇	^x 46	x ₈₂	<i>×</i> 114	<i>X</i> 218	x ₂₂₂	^x 233	^x 243	[×] 473

B⁺ BRANCHING RATIOS

 $\Gamma(\ell^+\nu_\ell \text{ anything})/\Gamma_{\text{total}}$

 Γ_1/Γ

"OUR EVALUATION" is an average using rescaled values of the data listed below. The average and rescaling were performed by the Heavy Flavor Averaging Group (HFAG) and are described at http://www.slac.stanford.edu/xorg/hfag/. The averaging/rescaling procedure takes into account correlations between the measurements.

VALUE (units 10^{-2})	DOCUMENT ID		TECN	COMMENT					
10.99±0.28 OUR EVALUATION									
10.76±0.32 OUR AVERAGE Er	ror includes scale	factor	of 1.1.						
$11.17 \pm 0.25 \pm 0.28$				$e^+e^- ightarrow ~ \varUpsilon(4S)$					
$10.28 \pm 0.26 \pm 0.39$			BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$					
$10.25 \pm 0.57 \pm 0.65$	³ ARTUSO	97	CLE2	$e^+e^- ightarrow ~ \varUpsilon(4S)$					
• • • We do not use the followin	g data for average	s, fits,	limits, e	etc. • • •					
$11.15 \pm 0.26 \pm 0.41$	⁴ OKABE	05	BELL	Repl. by URQUIJO 07					
$10.1 \pm 1.8 \pm 1.5$	ATHANAS	94	CLE2	Sup. by ARTUSO 97					
1 LIBOLILIO 07 report a measur	oment of (10.34 ±	. 023 _	L 0 25/0/	for the partial branching					

URQUIJO 07 report a measurement of $(10.34 \pm 0.23 \pm 0.25)\%$ for the partial branching fraction of $B^+
ightarrow {
m e}^+
u_e X_c$ decay with electron energy above 0.6 GeV. We converted the result to $B^+ \rightarrow e^+ \nu_e X$ branching fraction.

 $^{^4}$ The measurements are obtained for charged and neutral B mesons partial rates of semileptonic decay to electrons with momentum above 0.6 GeV/c in the B rest frame, and their ratio of B($B^+ \to e^+ \nu_e X$)/B($B^0 \to e^+ \nu_e X$) = 1.08 \pm 0.05 \pm 0.02.

$\Gamma(e^+ u_e X_c)/\Gamma_{ m total}$					Γ_2/Γ
VALUE (units 10^{-2})	DOCUMENT ID		TECN	COMMENT	
10.79+0.25+0.27	1 URQUUO	07	BFH	$e^+e^- \rightarrow$	$\Upsilon(4S)$

 $^{^{}m 1}$ Measure the independent B^+ and B^0 partial branching fractions with electron threshold energies of 0.4 GeV.

 $\Gamma(\overline{D}^0\ell^+\nu_\ell)/\Gamma_{\text{total}}$

"OUR EVALUATION" is an average using rescaled values of the data listed below. The average and rescaling were performed by the Heavy Flavor Averaging Group (HFAG) and are described at http://www.slac.stanford.edu/xorg/hfag/. The averaging/rescaling procedure takes into account correlations between the measurements. $\ell = e$ or μ , not sum over e and μ modes.

, ,	,									
VALUE			TECN	COMMENT						
0.0227±0.0011 OUR EVALUATION										
0.0229±0.0008 OUR AVERAGE										
$0.0229 \pm 0.0008 \pm 0.0009$	¹ AUBERT	10	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$						
$0.0234 \pm 0.0003 \pm 0.0013$	AUBERT	09A	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$						
$0.0221 \pm 0.0013 \pm 0.0019$	² BARTELT	99		$e^+e^- ightarrow ~ \varUpsilon(4S)$						
$0.016\ \pm0.006\ \pm0.003$	³ FULTON	91	CLEO	$e^+e^- ightarrow ~ \varUpsilon(4S)$						
• • • We do not use the following	data for averages	s, fits,	limits, e	etc. • • •						
$0.0233 \pm 0.0009 \pm 0.0009$	¹ AUBERT	08Q	BABR	Repl. by AUBERT 09A						
$0.0194 \pm 0.0015 \pm 0.0034$	⁴ ATHANAS	97	CLE2	Repl. by BARTELT 99						
HTTP://PDG.LBL.GOV	Page 20		Creat	red: 8/21/2014 12:56						

 $^{^2}$ The measurements are obtained for charged and neutral B mesons partial rates of semileptonic decay to electrons with momentum above 0.6 GeV/c in the B rest frame. The best precision on the ratio is achieved for a momentum threshold of 1.0 GeV: B($B^+
ightarrow$ $e^+ \stackrel{\cdot}{\nu_e} X)$ / B($B^0 \rightarrow e^+ \nu_e X$) = 1.074 \pm 0.041 \pm 0.026. 3 ARTUSO 97 uses partial reconstruction of $B \rightarrow D^* \ell \nu_\ell$ and inclusive semileptonic

branching ratio from BARISH 96B (0.1049 \pm 0.0017 \pm 0.0043).

 0.0569 ± 0.0019 OUR EVALUATION 0.0560 ± 0.0026 **OUR FIT** Error includes scale factor of 1.5. **0.0558±0.0026 OUR AVERAGE** Error includes scale factor of 1.5. See the ideogram 09A BABR $e^+e^- \rightarrow \Upsilon(4S)$ **AUBERT** $0.0540 \pm 0.0002 \pm 0.0021$ $0.0556 \pm 0.0008 \pm 0.0041$ ¹ AUBERT 08AT BABR $e^+e^- \rightarrow \Upsilon(4S)$ ² ADAM 03 CLE2 $e^+e^- \rightarrow \Upsilon(4S)$ $0.0650 \pm 0.0020 \pm 0.0043$ ³ ALBRECHT $0.066 \pm 0.016 \pm 0.015$ 92C ARG

Citation: K.A. Olive et al. (Particle Data Group), Chin. Phys. C38, 090001 (2014) (URL: http://pdg.lbl.gov) ¹Uses a fully reconstructed B meson as a tag on the recoil side. ² Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$. ³ FULTON 91 assumes equal production of $B^0 \overline{B}{}^0$ and $B^+ B^-$ at the $\Upsilon(4S)$. ⁴ ATHANAS 97 uses missing energy and missing momentum to reconstruct neutrino. $\Gamma(\overline{D}^0\ell^+\nu_\ell)/\Gamma(\ell^+\nu_\ell)$ anything) BABR $e^+e^- \rightarrow \Upsilon(4S)$ $0.255 \pm 0.009 \pm 0.009$ 1 Uses a fully reconstructed B meson on the recoil side. $\Gamma(\overline{D}^0\ell^+\nu_\ell)/\Gamma(D\ell^+\nu_\ell$ anything) Γ_4/Γ_3 ¹ AUBERT 07AN BABR $e^+e^- \rightarrow \Upsilon(4S)$ $0.227 \pm 0.014 \pm 0.016$ ¹Uses a fully reconstructed B meson on the recoil side. $\Gamma(\overline{D}^0\tau^+\nu_{\tau})/\Gamma_{\rm total}$ Γ_5/Γ VALUE (units 10^{-2}) ¹ BOZEK $0.77 \pm 0.22 \pm 0.12$ BELL • • We do not use the following data for averages, fits, limits, etc. ² AUBERT 08N BABR Repl. by AUBERT 09S $0.67 \pm 0.37 \pm 0.13$ ¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$. 2 Uses a fully reconstructed B meson as a tag on the recoil side. $\Gamma(\overline{D}{}^{0}\tau^{+}\nu_{\tau})/\Gamma(\overline{D}{}^{0}\ell^{+}\nu_{\ell})$ Γ_5/Γ_4 <u>VA</u>LUE 1,2 LEES 12D BABR $e^+e^- \rightarrow \Upsilon(4S)$ $0.429 \pm 0.082 \pm 0.052$ • • • We do not use the following data for averages, fits, limits, etc. • • • ¹ AUBERT $0.314 \pm 0.170 \pm 0.049$ 09S BABR Repl. by LEES 12D 1 Uses a fully reconstructed B meson as a tag on the recoil side. ²Uses $\tau^+ \to e^+ \nu_e \overline{\nu}_{\tau}$ and $\tau^+ \to \mu^+ \nu_\mu \overline{\nu}_{\tau}$ and e^+ or μ^+ as ℓ^+ . $\Gamma(\overline{D}^*(2007)^0\ell^+\nu_\ell)/\Gamma_{\text{total}}$ "OUR EVALUATION" is an average using rescaled values of the data listed below. The average and rescaling were performed by the Heavy Flavor Averaging Group (HFAG) and are described at http://www.slac.stanford.edu/xorg/hfag/. The averaging/rescaling procedure takes into account correlations between the measurements. $\ell = e$ or μ , not sum over e and μ modes. **EVTS** DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, fits, limits, etc. • • •

$0.0583 \pm 0.0015 \pm 0.0030$		⁴ AUBERT	08Q	BABR	Repl. by AUBERT 09A
$0.0650 \pm 0.0020 \pm 0.0043$		⁵ BRIERE	02	CLE2	$e^+e^- ightarrow \Upsilon(4S)$
$0.0513\!\pm\!0.0054\!\pm\!0.0064$	302	⁶ BARISH	95	CLE2	Repl. by ADAM 03
seen	398	⁷ SANGHERA	93	CLE2	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$0.041 \ \pm 0.008 \ ^{+0.008}_{-0.009}$		⁸ FULTON	91	CLEO	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$0.070\ \pm0.018\ \pm0.014$		⁹ ANTREASYAN	1 90 в	CBAL	$e^+e^- ightarrow ~ \Upsilon(4S)$

 $^{^1}$ Measured using the dependence of $B^-\to D^{*0}\,e^-\overline{\nu}_e$ decay differential rate and the form factor description by CAPRINI 98.

² Simultaneous measurements of both $B^0 \to D^*(2010)^- \ell \nu$ and $B^+ \to \overline{D}(2007)^0 \ell \nu$.

⁵ The results are based on the same analysis and data sample reported in ADAM 03.

⁶ BARISH 95 use B($D^0 \rightarrow K^-\pi^+$) = (3.91 \pm 0.08 \pm 0.17)% and B($D^{*0} \rightarrow D^0\pi^0$) = (63.6 \pm 2.3 \pm 3.3)%.

⁷ Combining $\overline{D}^{*0}\ell^+\nu_\ell$ and $\overline{D}^{*-}\ell^+\nu_\ell$ SANGHERA 93 test V-A structure and fit the decay angular distributions to obtain $A_{FB}=3/4*(\Gamma^--\Gamma^+)/\Gamma=0.14\pm0.06\pm0.03$. Assuming a value of V_{cb} , they measure V, A_1 , and A_2 , the three form factors for the $D^*\ell\nu_\ell$ decay, where results are slightly dependent on model assumptions.

⁸ Assumes equal production of $B^0\overline{B}^0$ and B^+B^- at the $\Upsilon(4S)$. Uncorrected for D and D^* branching ratio assumptions.

⁹ ANTREASYAN 90B is average over B and $\overline{D}^*(2010)$ charge states.

WEIGHTED AVERAGE 0.0558±0.0026 (Error scaled by 1.5)

³ALBRECHT 92C reports $0.058\pm0.014\pm0.013$. We rescale using the method described in STONE 94 but with the updated PDG 94 B($D^0 \rightarrow K^-\pi^+$). Assumes equal production of $B^0 \overline{B}{}^0$ and B^+B^- at the $\Upsilon(4S)$.

 $^{^4}$ Uses a fully reconstructed B meson as a tag on the recoil side.

$\Gamma(\overline{D}^*(2007)^0\ell^+\nu_\ell)/\Gamma(D\ell_\ell)$ VALUE	<u>DOCUMENT II</u>	D	TECN	COMMENT	Γ ₆ /Γ ₃
$0.582 \pm 0.018 \pm 0.030$	¹ AUBERT	07AN	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$^{\mathrm{1}}\mathrm{Uses}$ a fully reconstructed					, ,
$\Gamma(\overline{D}^*(2007)^0 \tau^+ \nu_{\tau})/\Gamma_{\mathrm{total}}$	al				Γ ₇ /Ι
VALUE (units 10^{-2})	DOCUMENT II	D	TECN	COMMENT	
1.88±0.20 OUR FIT					
$2.12^{+0.28}_{-0.27}\pm0.29$	¹ BOZEK	10	BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$
• • We do not use the follo	wing data for averag	ges, fits,	limits, e	etc. • • •	
$2.25 \pm 0.48 \pm 0.28$	² AUBERT	08N	BABR	Repl. by A	UBERT 09s
¹ Assumes equal production	of B^+ and B^0 at t	the $\Upsilon(4S)$	5).		
² Uses a fully reconstructed	B meson as a tag o	n the red	oil side		
$\Gamma(\overline{D}^*(2007)^0\tau^+\nu_{\tau})/\Gamma(\overline{D}^*(2007)^0\tau^+\nu_{\tau})$	5*(2007) ⁰ (+ 1/4)				Γ_7/Γ_0
VALUE	• • • • • • • • • • • • • • • • • • • •	D	TECN	COMMENT	. //.
0.335±0.034 OUR FIT					
$0.322 \pm 0.032 \pm 0.022$	^{1,2} LEES	12 D	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
• • We do not use the follo					
$0.346 \pm 0.073 \pm 0.034$	¹ AUBERT	09 S	BABR	Repl. by L	EES 12D
¹ Uses a fully reconstructed	B meson as a tag o	n the red	coil side.		
	The second secon			a 	
2 Uses $ au^+ ightarrow e^+ u_e \overline{ u}_{ au}$ and	$d \tau^+ \rightarrow \mu^+ \nu_\mu \overline{\nu}_\tau$	and e^+	or μ^+ a	is ℓ '.	
	$\mathrm{d} \tau^+ o \mu^+ u_\mu \overline{ u}_\tau$	and e ⁺	or μ^+ a	is ℓ '.	F /
$\Gammaig(D^-\pi^+\ell^+ u_\ellig)/\Gamma_{total}$,				Γ ₈ /Ι
$\Gamma(D^-\pi^+\ell^+ u_\ell)/\Gamma_{ ext{total}}$ VALUE (units 10^{-3})	d $ au^+ o \mu^+ u_\mu \overline{ u}_ au$.				Γ ₈ /Ι
$\Gamma(D^-\pi^+\ell^+\nu_\ell)/\Gamma_{\text{total}}$ VALUE (units 10^{-3}) 4.2±0.5 OUR AVERAGE	DOCUMENT ID	<u>Ti</u>	ECN C	OMMENT	
$\Gamma(D^-\pi^+\ell^+\nu_\ell)/\Gamma_{\text{total}}$ VALUE (units 10^{-3}) 4.2±0.5 OUR AVERAGE 4.2±0.6±0.3	DOCUMENT ID 1 AUBERT		E <u>CN</u> <u>C</u> ABR e	$^+e^- ightarrow \gamma$	·(4S)
$\Gamma(D^-\pi^+\ell^+\nu_\ell)/\Gamma_{\text{total}}$ VALUE (units 10^{-3}) 4.2±0.5 OUR AVERAGE 4.2±0.6±0.3 4.2±0.6±0.2	DOCUMENT ID 1 AUBERT 1,2 LIVENTSEV	08Q B 08 B	E <u>CN</u> <u>C</u> ABR e ELL e	$+ e^- \rightarrow \gamma + e^- \rightarrow \gamma$	·(4S)
$\Gamma(D^-\pi^+\ell^+\nu_\ell)/\Gamma_{\text{total}}$ VALUE (units 10^{-3}) 4.2±0.5 OUR AVERAGE $4.2\pm0.6\pm0.3$	$\frac{DOCUMENT\ ID}{1}$ AUBERT 1,2 LIVENTSEV owing data for averag	08Q B 08 B 08 B	ECN <u>C</u> ABR e ELL e Iimits, e	$+e^- ightarrow \gamma \ +e^- ightarrow \gamma \ m{etc.} ullet$	(45)
$\Gamma(D^-\pi^+\ell^+\nu_\ell)/\Gamma_{\text{total}}$ $VALUE \text{ (units } 10^{-3}\text{)}$ $4.2\pm0.5 \text{ OUR AVERAGE}$ $4.2\pm0.6\pm0.3$ $4.2\pm0.6\pm0.2$ • • • We do not use the follo $5.5\pm0.9\pm0.3$	$\frac{DOCUMENT\ ID}{1}$ AUBERT 1,2 LIVENTSEV owing data for average 3 LIVENTSEV	08Q B 08 B ges, fits, 05 B	ECN <u>C</u> ABR e ELL e limits, e	$+e^- ightarrow \gamma + e^- ightarrow \gamma$ etc. \bullet \bullet epl. by LIVI	(4S) (4S)
$\Gamma(D^-\pi^+\ell^+\nu_\ell)/\Gamma_{\text{total}}$ VALUE (units 10^{-3}) 4.2±0.5 OUR AVERAGE 4.2±0.6±0.3 4.2±0.6±0.2 • • • We do not use the follo 5.5±0.9±0.3 1 Uses a fully reconstructed 2 LIVENTSEV 08 reports (4)	$\frac{DOCUMENT\ ID}{1}$ AUBERT 1,2 LIVENTSEV wing data for average 3 LIVENTSEV B meson as a tag o $4.0\pm0.4\pm0.6) \times$	$08Q$ B. 08 B ges, fits, 05 B on the rec 10^{-3} from	ECN <u>C</u> ABR e ELL e limits, e ELL R coil side.	$e^+e^- ightarrow \gamma + e^- ightarrow \gamma \gamma + e^- ightarrow \gamma \gamma$	$\Gamma(4S)$ $\Gamma(4S)$ ENTSEV 08
$\Gamma(D^-\pi^+\ell^+\nu_\ell)/\Gamma_{ ext{total}}$ VALUE (units 10^{-3}) 4.2±0.5 OUR AVERAGE 4.2±0.6±0.3 4.2±0.6±0.2 • • • We do not use the follo 5.5±0.9±0.3 1 Uses a fully reconstructed 2 LIVENTSEV 08 reports (4 $D^-\pi^+\ell^+\nu_\ell)/\Gamma_{ ext{total}}$] / [E	$\begin{array}{c} \frac{DOCUMENT\ ID}{1} \\ \text{AUBERT} \\ 1,2 \ \text{LIVENTSEV} \\ \text{owing data for average} \\ \text{3} \ \text{LIVENTSEV} \\ B \ \text{meson as a tag o} \\ 4.0 \pm 0.4 \pm 0.6) \times \\ \text{3} \ (B^+ \rightarrow \overline{D}^0 \ell^+ \nu_\ell) \end{array}$	$\frac{T}{08Q}$ B 08 B ges, fits, 05 B on the rec 10^{-3} from assuming	ABR e ELL e limits, e ELL R coil side. om a m	$+e^- \rightarrow \gamma$ $+e^- \rightarrow \gamma$ etc. • • • Repl. by LIVI . easurement $- \rightarrow \overline{D}^0 \ell^+ i$	$\Gamma(4S)$ $\Gamma(4S)$ ENTSEV 08 of $[\Gamma(B^+ - \nu_\ell)] = (2.15 \pm 0.00)$
$\Gamma(D^-\pi^+\ell^+\nu_\ell)/\Gamma_{ ext{total}}$ VALUE (units 10^{-3}) 4.2±0.5 OUR AVERAGE 4.2±0.6±0.3 4.2±0.6±0.2 • • • We do not use the follo 5.5±0.9±0.3 1 Uses a fully reconstructed 2 LIVENTSEV 08 reports ($40^-\pi^+\ell^+\nu_\ell)/\Gamma_{ ext{total}}$] / [E 0.22) × 10^{-2} , which we reserved	$\frac{DOCUMENT\ ID}{1}$ AUBERT 1,2 LIVENTSEV wing data for average 3 LIVENTSEV B meson as a tag of $4.0\pm0.4\pm0.6)\times 3(B^+\to \overline{D}^0\ell^+\nu_\ell)]$ scale to our best value.	$08Q$ B 08 B ges, fits, 05 B on the rec 10^{-3} from 10^{-3} from 10^{-3} graph 10	ABR e ELL e limits, e ELL R coil side om a m og B(B^+	$e^{-i\omega}$ e^{-	$\Gamma(4S)$ $\Gamma(4S)$ ENTSEV 08 of $[\Gamma(B^+ - \nu_\ell) = (2.15 = 0.27 \pm 0.11)$
$\Gamma(D^-\pi^+\ell^+\nu_\ell)/\Gamma_{\text{total}}$ VALUE (units 10^{-3}) 4.2±0.5 OUR AVERAGE 4.2±0.6±0.3 4.2±0.6±0.2 • • • We do not use the follo 5.5±0.9±0.3 ¹ Uses a fully reconstructed ² LIVENTSEV 08 reports ($D^-\pi^+\ell^+\nu_\ell)/\Gamma_{\text{total}}$] / [E 0.22) × 10^{-2} , which we reconstruct of the second secon	$DOCUMENT\ ID$ 1 AUBERT 1,2 LIVENTSEV Invining data for average 3 LIVENTSEV B meson as a tag of 4.0 \pm 0.4 \pm 0.6) \times 3($B^+ \rightarrow \overline{D}^0 \ell^+ \nu_\ell$) scale to our best valuation of the properties of the proper	$08Q$ B 08 B ges, fits, 05 B on the rec 10^{-3} from 10^{-3} from 10^{-3} graph 10	ABR e ELL e limits, e ELL R coil side om a m og B(B^+	$e^{-i\omega}$ e^{-	$\Gamma(4S)$ $\Gamma(4S)$ ENTSEV 08 of $[\Gamma(B^+ - \nu_\ell) = (2.15 = 0.27 \pm 0.11)$
$\Gamma(D^-\pi^+\ell^+\nu_\ell)/\Gamma_{\text{total}}$ VALUE (units 10 ⁻³) 4.2±0.5 OUR AVERAGE 4.2±0.6±0.3 4.2±0.6±0.2 • • • We do not use the follo 5.5±0.9±0.3 ¹ Uses a fully reconstructed ² LIVENTSEV 08 reports (4 $D^-\pi^+\ell^+\nu_\ell)/\Gamma_{\text{total}}$] / [E 0.22) × 10 ⁻² , which we reconstructed of the second of the secon	$DOCUMENT\ ID$ 1 AUBERT 1,2 LIVENTSEV Twing data for average 3 LIVENTSEV B meson as a tag of 4.0 \pm 0.4 \pm 0.6) \times 3 ($B^+ \rightarrow \overline{D}^0 \ell^+ \nu_\ell$) scale to our best value heir experiment's erroralue.	08Q B 08 B ges, fits, 05 B on the rec 10^{-3} fro assumir ue B(B^+	ABR e ELL e limits, e ELL R coil side om a m ag B(B^+ our secon	$\begin{array}{cccc} & & & & & & & \\ + e^- & & & & & \\ + e^- & & & & & \\ \text{etc.} & \bullet & \bullet & & \\ \text{depl. by LIVI} & & & & \\ & & & & \\ \text{easurement} & & & \\ - & & & & & \\ \hline - & & & & & \\ \hline \ell^+ \nu_\ell) = (2 & & \\ \text{nd error is the second support } & & \\ \end{array}$	$\Gamma(4S)$ $\Gamma(4S)$ ENTSEV 08 of $[\Gamma(B^+ - \nu_\ell) = (2.15 \pm 0.27 \pm 0.11) \times 10^{-10}$ the systematic
$\Gamma(D^-\pi^+\ell^+\nu_\ell)/\Gamma_{\text{total}}$ VALUE (units 10^{-3}) 4.2±0.5 OUR AVERAGE 4.2±0.6±0.3 4.2±0.6±0.2 • • • We do not use the follo 5.5±0.9±0.3 ¹ Uses a fully reconstructed ² LIVENTSEV 08 reports ($\frac{D^-\pi^+\ell^+\nu_\ell}{L^0}$)/ Γ_{total}] / [E 0.22)×10 ⁻² , which we result of the error from using our best of the error from using our best of the error section of the error from using our best of the error from using o	DOCUMENT ID 1 AUBERT 1,2 LIVENTSEV INVENTSEV AUBERT 3 LIVENTSEV B meson as a tag of $A = 0.4 \pm 0.6 \times 0.4 \pm 0.6 \times 0.4 + 0.6 \times 0.4 + 0.6 \times 0.4 \times 0.6$ Scale to our best value their experiment's erroralue. $A = 0.0000000000000000000000000000000000$	$-\frac{T}{0}$ 08Q B 08 B ges, fits, 05 B on the rec 10^{-3} fro 10^{-3} suminous B(B^+ or and c 10^{-3}	ABR e ELL e limits, e ELL R coil side. om a m ng B(B^+ $\rightarrow \overline{D}^0$ our secon e total	$e^{+}e^{-} \rightarrow \gamma$ $e^{+}e^{-} \rightarrow \gamma$ $e^{+}e^{-} \rightarrow \gamma$ $e^{-}e^{-}e^{-}e^{-}e^{-}e^{-}e^{-}e^{-}$	ENTSEV 08 of $[\Gamma(B^+ - \nu_\ell) = (2.15 \pm 0.27 \pm 0.11) \times 10^{-1}$ the systemation $D^- \ell^+ \nu_\ell$
$\Gamma(D^-\pi^+\ell^+\nu_\ell)/\Gamma_{\text{total}}$ VALUE (units 10^{-3}) 4.2±0.5 OUR AVERAGE 4.2±0.6±0.3 4.2±0.6±0.2 • • • We do not use the follo 5.5±0.9±0.3 ¹ Uses a fully reconstructed ² LIVENTSEV 08 reports ($\frac{D^-\pi^+\ell^+\nu_\ell}{\Gamma_{\text{total}}}$) / [E 0.22)×10 ⁻² , which we referred from using our best of the second substantial subs	$\frac{DOCUMENT\ ID}{1}$ $^{1}\text{AUBERT}$ $^{1,2}\text{LIVENTSEV}$ wing data for average 3 LIVENTSEV $B \text{ meson as a tag of } (4.0 \pm 0.4 \pm 0.6) \times (1.0 \pm 0.4 \pm 0.4) \times (1$	$\frac{T}{0}$ 08Q B 08 B ges, fits, 05 B on the rec 10^{-3} fro assumir ue B(B^+ for and c $\ell^+\nu_\ell$)/ Γ our bes	ABR e ELL e limits, e ELL R coil side om a m ng B(B^+ our secon total] t value	$\begin{array}{ccc} & & & & & & & & & & & & & & & & & &$	$\Gamma(4S)$ $\Gamma(4S$
$\Gamma(D^-\pi^+\ell^+\nu_\ell)/\Gamma_{\text{total}}$ VALUE (units 10^{-3}) 4.2±0.5 OUR AVERAGE 4.2±0.6±0.3 4.2±0.6±0.2 • • • We do not use the follo 5.5±0.9±0.3 ¹ Uses a fully reconstructed ² LIVENTSEV 08 reports ($\frac{D^-\pi^+\ell^+\nu_\ell}{L^0}$)/ Γ_{total}] / [E 0.22) × 10^{-2} , which we reform using our best of a superior of the error from using our best of the error from us	$\frac{DOCUMENT\ ID}{1}$ AUBERT $1,2\ \text{LIVENTSEV}$ In the second of the se	08Q B 08 B 08 B ges, fits, 05 B on the rec 10 $^{-3}$ fro assumir ue B(B^+ cor and c $\ell^+\nu_\ell$)/ Γ our bes experime	ABR e ELL e limits, e ELL R coil side om a m ng B(B^+ our secon total] t value	$\begin{array}{ccc} & & & & & & & & & & & & & & & & & &$	$\Gamma(4S)$ $\Gamma(4S)$ $\Gamma(4S)$ ENTSEV 08 of $[\Gamma(B^+ - \nu_\ell) = (2.15 = 0.27 \pm 0.11) \times 0.11 \times$
$\Gamma(D^-\pi^+\ell^+\nu_\ell)/\Gamma_{\text{total}}$ VALUE (units 10^{-3}) 4.2±0.5 OUR AVERAGE 4.2±0.6±0.3 4.2±0.6±0.2 • • • We do not use the follo 5.5±0.9±0.3 ¹ Uses a fully reconstructed ² LIVENTSEV 08 reports ($\frac{D^-\pi^+\ell^+\nu_\ell}{\Gamma_{\text{total}}}$] / [E 0.22)×10 ⁻² , which we result of the error from using our best of the error from t	$\begin{array}{c} 1 \text{ AUBERT} \\ 1,2 \text{ LIVENTSEV} \\ \text{owing data for average} \\ 3 \text{ LIVENTSEV} \\ B \text{ meson as a tag of} \\ 4.0 \pm 0.4 \pm 0.6) \times \\ 3(B^+ \to \overline{D}{}^0 \ell^+ \nu_\ell)] \\ \text{scale to our best value.} \\ \Gamma(B^+ \to D^- \pi^+) \\ \text{hich we multiply by} \\ \text{ur first error is their example our best value} \\ \text{using our best value} \\ \end{array}$	$\frac{T_{\ell}}{08Q}$ B 08 B ges, fits, 05 B on the reconstruction 10^{-3} from the 10^{-3} from and 10^{-3} from and 10^{-4} from and 10^{-4} from the experiment.	ABR e ELL e limits, e ELL R coil side om a m ng B(B^+ our secon total] t value	$\begin{array}{ccc} & & & & & & & & & & & & & & & & & &$	ENTSEV 08 of $[\Gamma(B^+ - \nu_\ell) = (2.15 \pm 0.11) \times (2.7 \pm 0.11) \times (2.15 \pm 0.11) \times$
$\Gamma(D^-\pi^+\ell^+\nu_\ell)/\Gamma_{\text{total}}$ VALUE (units 10 ⁻³) 4.2±0.5 OUR AVERAGE 4.2±0.6±0.3 4.2±0.6±0.2 • • • We do not use the follo 5.5±0.9±0.3 ¹ Uses a fully reconstructed ² LIVENTSEV 08 reports (4 $D^-\pi^+\ell^+\nu_\ell)/\Gamma_{\text{total}}]/[E$ 0.22)×10 ⁻² , which we referror from using our best of a surface of the systematic error from $\Gamma(D_0^*(2420)^0\ell^+\nu_\ell, D_0^{*0})$	DOCUMENT ID 1 AUBERT 1,2 LIVENTSEV IN INTERVITY 3 LIVENTSEV B meson as a tag of $(A, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,$	$\frac{T}{0}$ 08Q B 08 B ges, fits, 05 B on the rec 10 $^{-3}$ fro assumir ue B(B^+ for and c $\ell^+\nu_\ell$)/ Γ our bes experime	ABR e ELL e limits, e ELL R coil side om a m ng B(B^+ our secon total] total] t value	$\begin{array}{cccc} & & & & & & & & & & & & & & & & & $	$\Gamma(4S)$ $\Gamma(4S)$ $\Gamma(4S)$ ENTSEV 08 of $[\Gamma(B^+ - \nu_\ell) = (2.15 = 0.27 \pm 0.11) \times 0.11 \times$
$\Gamma(D^-\pi^+\ell^+\nu_\ell)/\Gamma_{\text{total}}$ VALUE (units 10^{-3}) 4.2±0.5 OUR AVERAGE 4.2±0.6±0.3 4.2±0.6±0.2 • • • We do not use the follo 5.5±0.9±0.3 ¹ Uses a fully reconstructed ² LIVENTSEV 08 reports ($\frac{D^-\pi^+\ell^+\nu_\ell}{\Gamma_{\text{total}}}$] / [E 0.22)×10 ⁻² , which we result of the error from using our best of the error from t	$\begin{array}{c} 1 \text{ AUBERT} \\ 1,2 \text{ LIVENTSEV} \\ \text{owing data for average} \\ 3 \text{ LIVENTSEV} \\ B \text{ meson as a tag of} \\ 4.0 \pm 0.4 \pm 0.6) \times \\ 3(B^+ \to \overline{D}{}^0 \ell^+ \nu_\ell)] \\ \text{scale to our best value.} \\ \Gamma(B^+ \to D^- \pi^+) \\ \text{hich we multiply by} \\ \text{ur first error is their example our best value} \\ \text{using our best value} \\ \end{array}$	$\frac{T}{0}$ 08Q B 08 B ges, fits, 05 B on the rec 10 $^{-3}$ fro assumir ue B(B^+ for and c $\ell^+\nu_\ell$)/ Γ our bes experime	ABR e ELL e limits, e ELL R coil side om a m ng B(B^+ our secon total] total] t value	$\begin{array}{ccc} & & & & & & & & & & & & & & & & & &$	ENTSEV 08 of $[\Gamma(B^+ - \nu_\ell) = (2.15 \pm 0.11) \times (2.7 \pm 0.11) \times (2.15 \pm 0.11) \times$
$\Gamma(D^-\pi^+\ell^+\nu_\ell)/\Gamma_{\text{total}}$ VALUE (units 10^{-3}) 4.2±0.5 OUR AVERAGE 4.2±0.6±0.3 4.2±0.6±0.2 • • • We do not use the follo 5.5±0.9±0.3 ¹ Uses a fully reconstructed ² LIVENTSEV 08 reports ($\frac{D^-\pi^+\ell^+\nu_\ell}{D^-\pi^+\ell^+\nu_\ell}$)/ Γ_{total}] / [E 0.22) × 10^{-2} , which we reconstructed error from using our best of the error from using our best of the error from using our best of the systematic error from $\Gamma(D_0^*(2420)^0\ell^+\nu_\ell, D_0^{*0})$ VALUE (units 10^{-3})	DOCUMENT ID 1 AUBERT 1,2 LIVENTSEV IN INTERVITY 3 LIVENTSEV B meson as a tag of $(A, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,$	08Q B 08 B 08 B ges, fits, 05 B on the rec 10 $^{-3}$ fro assumir ue B(B^+ ror and c $\ell^+\nu_\ell$)/ Γ our bes experime	ABR e ELL e limits, e ELL R coil side. om a m ng B(B^+ our secon total] / total] / tot value ent's erro	$\begin{array}{cccc} & & & & & & & & & & & & & & & & & $	$\Gamma(4S)$ $\Gamma(4S)$ ENTSEV 08 of $\Gamma(B^+ - \nu_\ell) = (2.15 = 2.27 \pm 0.11)$ The systemati $D^- \ell^+ \nu_\ell) = (2.15 = 2.27 \pm 0.11)$ Fight
Γ($D^-\pi^+\ell^+\nu_\ell$)/Γ _{total} VALUE (units 10^{-3}) 4.2±0.5 OUR AVERAGE 4.2±0.6±0.3 4.2±0.6±0.2 • • • We do not use the follo 5.5±0.9±0.3 ¹ Uses a fully reconstructed ² LIVENTSEV 08 reports ($4D^-\pi^+\ell^+\nu_\ell$)/Γ _{total}]/[E 0.22)×10 ⁻² , which we reconstructed error from using our best of the error from using our best of the systematic error from [2.19 ± 0.12) × 10 ⁻² . Out the systematic error from Γ(\overline{D}_0^* (2420) $^0\ell^+\nu_\ell$, \overline{D}_0^{*0} - VALUE (units 10^{-3}) 2.5±0.5 OUR AVERAGE	DOCUMENT ID 1 AUBERT 1,2 LIVENTSEV Invining data for average 3 LIVENTSEV B meson as a tag of $4.0 \pm 0.4 \pm 0.6$) × $3(B^+ \rightarrow \overline{D}^0 \ell^+ \nu_\ell)$] scale to our best value, their experiment's error value. If $(B^+ \rightarrow D^- \pi^+)$ total $(B^+ \rightarrow D^- \pi^+)$ / $(B^+ \rightarrow D^- \pi^+)$	$\frac{T}{0}$ 08Q B 08 B ges, fits, 05 B on the rec 10^{-3} fro assuming the second of	ABR e ELL e limits, e ELL R coil side. om a m ng B(B^+ $\rightarrow \overline{D}^0$ our secon total] / et value ent's error \underline{TECN} BABR	$\begin{array}{c} + e^- \rightarrow \gamma \\ + e^- \rightarrow \gamma \\ \text{etc.} \bullet \bullet \\ \text{epl. by LIVI} \\ \text{easurement} \\ - \rightarrow \overline{D}{}^0 \ell^+ \\ \ell^+ \nu_\ell) = (2 \\ \text{ind error is till} \\ / \left[B(B^0 \rightarrow B)))))))))))))))}$	$\Gamma(4S)$ $\Gamma(4S)$ ENTSEV 08 of $[\Gamma(B^+ - \nu_\ell) = (2.15 \pm 0.27 \pm 0.11) \times (2.15 \pm$

HTTP://PDG.LBL.GOV

Page 23

$\Gamma(\overline{D}_{f 2}^*(2460)^0\ell^+ u_\ell,\ \overline{D}_{f 2}^{*0} ightarrow D^-\pi^+)/\Gamma_{f total}$	Γ ₁₀ /Γ
$I(D_{2}^{*}(2460)^{\circ}\ell^{+}\nu_{\ell}, D_{2}^{*\circ} \to D^{-}\pi^{+})/I_{\text{total}}$	l 10

$VALUE$ (units 10^{-3})	DOCUMENT ID		TECN	COMMENT
1.53±0.16 OUR AVERAGE				
$1.42 \pm 0.15 \pm 0.15$	¹ AUBERT	09Y	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$1.5 \pm 0.2 \pm 0.2$	² AUBERT			$e^+e^- ightarrow \gamma(4S)$
$2.2 \pm 0.3 \pm 0.4$	² LIVENTSEV	80	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$

 $^{^{1}}$ Uses a simultaneous fit of all B semileptonic decays without full reconstruction of events. AUBERT 09Y reports B($B^+ \to \overline{D}_2^*(2460)^0 \ell^+ \nu_\ell$) \cdot B($\overline{D}_2^*(2460)^0 \to D^{(*)} - \pi^+$) = $(2.29\pm0.23\pm0.21)\times10^{-3}$ and the authors have provided us the individual measurement.

$\Gamma(D^{(*)} \cap \pi \ell^+ \nu_{\ell} (n \geq 1)) / \Gamma(D\ell^+ \nu_{\ell} \text{ anything})$

 Γ_{11}/Γ_3

<u>VALUE</u>	 •	DOCUMENT ID		TECN	COMMENT
$0.191 \pm 0.013 \pm 0.019$		¹ AUBERT	07AN	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$

¹Uses a fully reconstructed B meson on the recoil side.

$\Gamma(D^{*-}\pi^+\ell^+\nu_\ell)/\Gamma_{\text{total}}$

 $5.9 \pm 1.4 \pm 0.1$

 Γ_{12}/Γ

 Γ_{13}/Γ

Created: 8/21/2014 12:56

VALUE (units 10^{-3})	DOCUMENT ID		TECN	COMMENT
6.1±0.6 OUR AVERAGE				
$5.9 \pm 0.5 \pm 0.4$	¹ AUBERT	08Q	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$6.8 \pm 1.1 \pm 0.3$	^{1,2} LIVENTSEV	80	BELL	$e^+e^- \rightarrow \Upsilon(4S)$
• • • We do not use the follow	wing data for averag	ges, fit	ts, limits	, etc. • • •

^{3,4} LIVENTSEV 05 BELL Repl. by LIVENTSEV 08 1 Uses a fully reconstructed B meson as a tag on the recoil side.

$\Gamma(\overline{D}_1(2420)^0\ell^+\nu_\ell,\ \overline{D}_1^0\to D^{*-}\pi^+)/\Gamma_{\text{total}}$

•					
$VALUE$ (units 10^{-3})	DOCUMENT ID		TECN	COMMENT	
3.03±0.20 OUR AVERAGE					_
$2.97 \pm 0.17 \pm 0.17$	$^{ m 1}$ AUBERT	09Y	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$	
$2.9 \pm 0.3 \pm 0.3$	² AUBERT			$e^+e^- \rightarrow \Upsilon(4S)$	
$4.2 \pm 0.7 \pm 0.7$	² LIVENTSEV	80	BELL	$e^+e^- \rightarrow \Upsilon(4S)$	
$3.73 \pm 0.85 \pm 0.57$	³ ANASTASSOV	98	CLE2	$e^+e^- \rightarrow \Upsilon(4S)$	

 $^{^{}m 1}$ Uses a simultaneous measurement of all B semileptonic decays without full reconstruction

 $^{^2}$ Uses a fully reconstructed B meson as a tag on the recoil side.

 $^{^2}$ LIVENTSEV 08 reports (6.4 \pm 0.8 \pm 0.9) imes 10 $^{-3}$ from a measurement of [$\Gamma(B^+ \to B^+)$ $D^{*-}\pi^{+}\ell^{+}\nu_{\ell})/\Gamma_{\mathsf{total}}$ / [B($B^{+}\to \overline{D}^{0}\ell^{+}\nu_{\ell}$)] assuming B($B^{+}\to \overline{D}^{0}\ell^{+}\nu_{\ell}$) = $(2.15 \pm 0.22) \times 10^{-2}$, which we rescale to our best value B($B^+ \rightarrow \overline{D}^0 \ell^+ \nu_{\ell}$) = $(2.27 \pm 0.11) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

 $^{^3}$ Excludes D^{*+} contribution to $D\pi$ modes. 4 LIVENTSEV 05 reports [$\Gamma(B^+)$ $D^{*-}\pi^{+}\ell^{+}\nu_{\ell})/$ $\Gamma_{
m total} \ / \ [{\sf B}(B^0 o D^*(2010)^- \ell^+
u_\ell)] = 0.12 \pm 0.02 \pm 0.02$ which we multiply by our best value B($B^0 \to D^*(2010)^- \ell^+ \nu_\ell$) = (4.93 \pm 0.11) \times 10⁻². Our first error is their experiment's error and our second error is the systematic error from using our best

 $[\]frac{1}{2}$ Uses a fully reconstructed B meson as a tag on the recoil side.

³ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

 $\Gamma(\overline{D}'_1(2430)^0\ell^+\nu_\ell, \overline{D}'^0_1 \rightarrow D^{*-}\pi^+)/\Gamma_{\text{total}}$ Γ_{14}/Γ *VALUE* (units 10^{-3}) $2.7\pm0.4\pm0.5$ ¹ AUBERT 08BL BABR $e^+e^- \rightarrow \Upsilon(4S)$ • • • We do not use the following data for averages, fits, limits, etc. • 90 ¹ LIVENTSEV 80 BELL $e^+e^- \rightarrow \Upsilon(4S)$ $^{
m 1}$ Uses a fully reconstructed B meson as a tag on the recoil side. $\Gamma(\overline{D}_2^*(2460)^0\ell^+\nu_\ell, \overline{D}_2^{*0} \to D^{*-}\pi^+)/\Gamma_{\text{total}}$ Γ_{15}/Γ VALUE (units 10^{-3}) DOCUMENT ID TECN **1.01\pm0.24 OUR AVERAGE** Error includes scale factor of 2.0. 09Y BABR $e^+e^- \rightarrow \Upsilon(4S)$ ¹ AUBERT $0.87 \pm 0.11 \pm 0.07$ ² AUBERT 08BL BABR $e^+e^- \rightarrow \Upsilon(4S)$ $1.5 \ \pm 0.2 \ \pm 0.2$ ² LIVENTSEV 08 BELL $e^+e^- \rightarrow \Upsilon(4S)$ $1.8 \pm 0.6 \pm 0.3$ ullet ullet We do not use the following data for averages, fits, limits, etc. ullet ullet³ ANASTASSOV 98 CLE2 $e^+e^- \rightarrow \Upsilon(4S)$ < 1.6 1 Uses a simultaneous fit of all B semileptonic decays without full reconstruction of events. AUBERT 09Y reports B($B^+ \to \overline{D}_2^*(2460)^0 \ell^+ \nu_{\ell}$) \cdot B($\overline{D}_2^*(2460)^0 \to D^{(*)} - \pi^+$) = $(2.29\pm0.23\pm0.21)\times10^{-3}$ and the authors have provided us the individual measurement. 2 Uses a fully reconstructed B meson as a tag on the recoil side. 3 Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$. $\Gamma(D_{c}^{(*)-}K^{+}\ell^{+}\nu_{\ell})/\Gamma_{\text{total}}$ Γ_{16}/Γ VALUE (units 10⁻⁴) TECN COMMENT 6.1 ± 1.0 OUR AVERAGE ¹ STYPULA 12 BELL $e^+e^- \rightarrow \Upsilon(4S)$ $5.9 \pm 1.2 \pm 1.5$ $6.13^{\,+\,1.04}_{\,-\,1.03}\,{\pm}\,0.67$ ¹ DEL-AMO-SA..11L BABR $e^+e^- \rightarrow \Upsilon(4S)$ ¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$. $\Gamma(D_s^- K^+ \ell^+ \nu_\ell) / \Gamma_{\text{total}}$ Γ_{17}/Γ VALUE (units 10^{-4}) $3.0\pm0.9^{+1.1}_{-0.8}$ 12 BELL $e^+e^- \rightarrow \Upsilon(4S)$ ¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$. $\Gamma(D_c^{*-}K^+\ell^+\nu_\ell)/\Gamma_{\text{total}}$ Γ_{18}/Γ VALUE (units 10^{-4}) TECN COMMENT

12 BELL $e^+e^- \rightarrow \Upsilon(4S)$ 1,2 STYPULA $2.9\pm1.6^{+1.1}_{-1.0}$

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

 $^{^2}$ STYPULA 12 provides also an upper limit of 0.56×10^{-3} at 90% CL for the same data. Also measures branching fraction of the combined modes of $D_s^-K^+\ell^+\nu_\ell$ and $D_s^{*-}K^+\ell^+\nu_\ell$ as B($B^+\to D_s^{(*)-}K^+\ell^+\nu_\ell$) = (5.9 ± 1.2 ± 1.5) × 10⁻⁴.

 $\Gamma(\pi^0\ell^+\nu_\ell)/\Gamma_{\text{total}}$ "OUR EVALUATION" is an average using rescaled values of the data listed below. The average and rescaling were performed by the Heavy Flavor Averaging Group (HFAG) and are described at http://www.slac.stanford.edu/xorg/hfag/. The averaging/rescaling procedure takes into account correlations between the measurements.

$VALUE$ (units 10^{-4})	DOCUMENT ID		TECN	COMMENT
0.780 ± 0.027 OUR EVALUATION				
0.748±0.029 OUR AVERAGE				
$0.80 \pm 0.08 \pm 0.04$	¹ SIBIDANOV	13	BELL	$e^+e^- ightarrow \gamma(4S)$
$0.77 \pm 0.04 \pm 0.03$	² LEES	12AA	BABR	$e^+e^- \rightarrow \Upsilon(4S)$
$0.705 \pm 0.025 \pm 0.035$	³ DEL-AMO-SA.	. 11 C	BABR	$e^+e^- ightarrow \gamma(4S)$
$0.82 \pm 0.09 \pm 0.05$				$e^+e^- ightarrow \gamma(4S)$
$0.77\ \pm0.14\ \pm0.08$	⁴ HOKUUE	07	BELL	$e^+e^- \rightarrow \Upsilon(4S)$
• • • We do not use the following	data for averages	, fits,	limits, e	etc. • • •
$0.74 \pm 0.05 \pm 0.10$	⁵ AUBERT,B	050	BABR	Repl. by DEL-AMO- SANCHEZ 11C

 $^{^{}m 1}$ The signal events are tagged by a second B meson reconstructed in the fully hadronic

 $\Gamma(\pi^0 \, e^+ \nu_e)/\Gamma_{\rm total}$ Γ_{20}/Γ

VALUE (units 10 ⁻⁴)	CL%	DOCUMENT ID	TECN	COMMENT
● ● We do not use the	following d	lata for averages, fits,	limits, e	tc. • • •
$0.9\!\pm\!0.2\!\pm\!0.2$	1	LALEXANDER 96T	CLE2	$e^+e^- ightarrow ~ \varUpsilon(4S)$
<22	90	ANTREASYAN 90B	CBAL	$e^+e^- ightarrow ~ \varUpsilon(4S)$

¹ Derived based in the reported B^0 result by assuming isospin symmetry: $\Gamma(B^0 \rightarrow$ $\pi^- \ell^+ \nu$)= $2\Gamma(B^+ \to \pi^0 \ell^+ \nu)$.

 $\Gamma\big(\eta\,\ell^+\,\nu_\ell\big)/\Gamma_{\rm total}$ Γ_{21}/Γ

VALUE (units 10 ⁻⁴)	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT	
0.38 ± 0.06 OUR AVE	RAGE					
$0.38\!\pm\!0.05\!\pm\!0.05$		¹ LEES	12AA	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$	
$0.31\!\pm\!0.06\!\pm\!0.08$		¹ AUBERT			$e^+e^- ightarrow \gamma(4S)$	
$0.64 \pm 0.20 \pm 0.03$		² AUBERT	VA80	BABR	$e^+e^- ightarrow \gamma(4S)$	
 ● ● We do not use the 	e following	data for averages	, fits,	limits, e	etc. • • •	
$0.36\!\pm\!0.05\!\pm\!0.04$		_			Repl. by LEES 12AA	
		3		a	20(10)	

³ ADAM ⁴ ATHAR <1.01 90 07 CLE2 $e^+e^- \rightarrow \Upsilon(4S)$ 03 CLE2 Repl. by ADAM 07 $0.84 \pm 0.31 \pm 0.18$

Uses loose neutrino reconstruction technique. Assumes B($Y(4S) \rightarrow B^+B^-$) = (51.6 \pm 0.6)% and B($Y(4S) \rightarrow B^0 \overline{B}^0$) = (48.4 ± 0.6) %.

³ Using the isospin symmetry relation, B^+ and B^0 branching fractions are combined.

 $^{^4}$ The signal events are tagged by a second B meson reconstructed in the semileptonic mode $B \to D^{(*)} \ell \nu_{\ell}$.

 $^{^5}B^+$ and B^0 decays combined assuming isospin symmetry. Systematic errors include both experimental and form-factor uncertainties.

¹ Uses loose neutrino reconstruction technique. Assumes B($\Upsilon(4S) \rightarrow B^+B^-$) = (51.6 \pm 0.6)% and B($\Upsilon(4S) \rightarrow B^0 \overline{B}{}^0$) = (48.4 \pm 0.6)%. ² Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

³ The B^0 and B^+ results are combined assuming the isospin, B lifetimes, and relative charged/neutral B production at the $\Upsilon(4S)$.

 $^{^4}$ ATHAR 03 reports systematic errors 0.16 \pm 0.09, which are experimental systematic and systematic due to model dependence. We combine these in quadrature.

 $\Gamma(\eta'\ell^+\nu_\ell)/\Gamma_{\mathsf{total}}$ Γ_{22}/Γ

VALUE (units 10 ⁻⁴)	DOCUMENT ID		TECN	COMMENT	
0.23±0.08 OUR AVERAGE					
$0.24 \pm 0.08 \pm 0.03$	¹ LEES	12AA	BABR	$e^+e^- o ag{7}(4S)$	
$0.04 \pm 0.22 {+0.05 \atop -0.02}$	² AUBERT	VA80	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$	
$2.66 \pm 0.80 \pm 0.56$	³ ADAM	07	CLE2	$e^+e^- ightarrow ~ \varUpsilon(4S)$	
• • • We do not use the following	data for averages	, fits,	limits, e	etc. • • •	
	4				

 $^{0.24 \}pm 0.08 \pm 0.03$ DEL-AMO-SA...11F BABR Repl. by LEES 12AA

 $\Gamma(\omega \ell^+ \nu_\ell)/\Gamma_{ ext{total}}$ $\ell = e ext{ or } \mu, ext{ not sum over } e ext{ and } \mu ext{ modes.}$

$VALUE$ (units 10^{-4}) $CL\%$	DOCUMENT ID		TECN	COMMENT
1.19±0.09 OUR AVERAGE				
$1.21 \pm 0.14 \pm 0.08$	1,2 LEES			$e^+e^- ightarrow ~ \varUpsilon(4S)$
$1.35 \pm 0.21 \pm 0.11$	³ LEES	13T	BABR	$e^+e^- ightarrow ~ \Upsilon(4S)$
$1.07 \pm 0.16 \pm 0.07$	⁴ SIBIDANOV			$e^+e^- \rightarrow \Upsilon(4S)$
$1.19 \pm 0.16 \pm 0.09$	^{2,5} LEES	12AA	BABR	$e^+e^- \rightarrow \Upsilon(4S)$
$1.3 \pm 0.4 \pm 0.4$	6 5 5 4 1 1 1 1 1 1 1 1 1	04	RELI	$a^{+}a^{-}$ $\gamma(AS)$

• • • We do not use the following data for averages, fits, limits, etc. • • •

$$1.14\pm0.16\pm0.08$$
 2 AUBERT 09Q BABR Repl. by LEES 13A <2.1 90 7 BEAN 93B CLE2 $e^+e^- o au(45)$

 $\Gamma(\omega\,\mu^+
u_\mu)/\Gamma_{ ext{total}}$ Following the document in the

• • • We do not use the following data for averages, fits, limits, etc. • • •

seen ¹ ALBRECHT 91C ARG

¹ Uses loose neutrino reconstruction technique. Assumes B($Y(4S) \rightarrow B^+B^-$) = (51.6 \pm 0.6)% and B($Y(4S) \rightarrow B^0\overline{B}^0$) = (48.4 \pm 0.6)%.

² Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

³ The B^0 and B^+ results are combined assuming the isospin, B lifetimes, and relative charged/neutral B production at the $\Upsilon(4S)$. Corresponds to 90% CL interval $(1.20-4.46) \times 10^{-4}$.

¹ LEES 13A reports (1.21 \pm 0.14 \pm 0.08) \times 10⁻⁴ from a measurement of [Γ($B^+ \rightarrow \omega \ell^+ \nu_\ell$)/Γ_{total}] \times [B(ω (782) $\rightarrow \pi^+ \pi^- \pi^0$)] assuming B(ω (782) $\rightarrow \pi^+ \pi^- \pi^0$) = (89.2 \pm 0.7) \times 10⁻².

² Uses B($\Upsilon(4S) \to B^+B^-$) = (51.6 ± 0.6)% and B($\Upsilon(4S) \to B^0\overline{B}^0$) = (48.4 ± 0.6)%.

³ Uses semileptonic tagging. Assumes $B(\omega \to \pi^+\pi^-\pi^0) = (89.2 \pm 0.7)\%$ and that the production ratio of B^+B^- to $B^0\overline{B}^0$ from $\Upsilon(4S)$ is 1.056 ± 0.028 . The partial branching fractions in three bins of q^2 are also reported.

 $^{^4}$ The signal events are tagged by a second B meson reconstructed in the fully hadronic decays.

⁵ Uses loose neutrino reconstruction technique.

⁶ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

 $^{^7}$ BEAN 93B limit set using ISGW Model. Using isospin and the quark model to combine $\Gamma(\rho^0\,\ell^+\,\nu_\ell)$ and $\Gamma(\rho^-\,\ell^+\,\nu_\ell)$ with this result, they obtain a limit $<\!(1.6\text{--}2.7)\times10^{-4}$ at 90% CL for $B^+\to\,\omega\,\ell^+\,\nu_\ell$. The range corresponds to the ISGW, WSB, and KS models. An upper limit on $|V_{ub}/V_{cb}|<0.8\text{--}0.13$ at 90% CL is derived as well.

 $^{^1}$ In ALBRECHT 91C, one event is fully reconstructed providing evidence for the b oup u transition.

 $\Gamma(
ho^0\ell^+
u_\ell)/\Gamma_{ ext{total}}$ $\ell=e$ or μ , not sum over e and μ modes. Γ_{25}/Γ

"OUR EVALUATION" is an average using rescaled values of the data listed below. The average and rescaling were performed by the Heavy Flavor Averaging Group (HFAG) and are described at http://www.slac.stanford.edu/xorg/hfag/. The averaging/rescaling procedure takes into account correlations between the measurements and asymmetric lifetime errors.

4 <i>LUE</i> (units 10 ⁻⁴)	CL%	DOCUMENT ID		TECN	COMMENT		
1.58 ± 0.11 OUR EVA	UATION						
1.42±0.23 OUR AVE	AGE Erro	r includes scale	factor	of 2.4.	See the ide	ogram belov	Ν.
$1.83\!\pm\!0.10\!\pm\!0.10$		SIBIDANOV					
$0.94 \pm 0.08 \pm 0.14$		DEL-AMO-SA.					
$1.33\!\pm\!0.23\!\pm\!0.18$	3	HOKUUE	07	BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$	
$1.34\!\pm\!0.15\!+\!0.28 \\ -0.32$	4	BEHRENS	00	CLE2	$e^+e^- \rightarrow$	$\Upsilon(4S)$	
• • We do not use th	following da	ata for averages	s, fits,	limits, e	etc. • • •		
$1.16 \pm 0.11 \pm 0.30$	2	AUBERT,B	050	BABR	Repl. by D SANCH	EL-AMO- EZ 11c	
$1.40\!\pm\!0.21\!+\!0.32\\-0.33$	4	BEHRENS	00	CLE2	$e^+e^- \rightarrow$	$\Upsilon(4S)$	
$1.2 \pm 0.2 ^{+ 0.3}_{- 0.4}$	4	ALEXANDER	96T	CLE2	$e^+e^- \rightarrow$	$\Upsilon(4S)$	
<2.1	90 5	BEAN	93 B	CLE2	$e^+e^- \rightarrow$	$\Upsilon(4S)$	
$1.33\pm0.23\pm0.18$ $1.34\pm0.15 {}^{+0.28}_{-0.32}$ • • We do not use the $1.16\pm0.11\pm0.30$ $1.40\pm0.21 {}^{+0.32}_{-0.33}$ $1.2 \pm0.2 {}^{+0.3}_{-0.4}$	3 4 following da 2 4	HOKUUE BEHRENS ata for averages AUBERT,B BEHRENS ALEXANDER	07 00 s, fits, 050 00 96T	BELL CLE2 limits, 6 BABR CLE2 CLE2	$e^{+}e^{-} \rightarrow$ $e^{+}e^{-} \rightarrow$ etc. • • • Repl. by D SANCH $e^{+}e^{-} \rightarrow$ $e^{+}e^{-} \rightarrow$	$\Upsilon(4S)$ $\Upsilon(4S)$ EL-AMC EZ 11c $\Upsilon(4S)$ $\Upsilon(4S)$)_

 $^{^{}m 1}$ The signal events are tagged by a second B meson reconstructed in the fully hadronic

 $^{^2}B^+$ and B^0 decays combined assuming isospin symmetry. Systematic errors include both experimental and form-factor uncertainties.

 $^{^3\}mathrm{The}$ signal events are tagged by a second B meson reconstructed in the semileptonic mode $B \to D^{(*)} \ell \nu_{\ell}$.

⁴ Derived based in the reported B^0 result by assuming isospin symmetry: $\Gamma(B^0 \to \rho^- \ell^+ \nu) = 2\Gamma(B^+ \to \rho^0 \ell^+ \nu) \approx 2\Gamma(B^+ \to \omega \ell^+ \nu)$.

⁵BEAN 93B limit set using ISGW Model. Using isospin and the quark model to combine $\Gamma(\omega^0 \ell^+ \nu_\ell)$ and $\Gamma(\rho^- \ell^+ \nu_\ell)$ with this result, they obtain a limit $<(1.6-2.7)\times 10^{-4}$ at 90% CL for $B^+ \to \rho^0 \ell^+ \nu_\ell$. The range corresponds to the ISGW, WSB, and KS models. An upper limit on $\left|V_{ub}/V_{cb}\right| < 0.8$ –0.13 at 90% CL is derived as well.

$\Gamma(ho\overline{ ho}\ell^+ u_\ell)/\Gamma_{ m total}$					Γ_{26}/Γ
<i>VALUE</i> (units 10^{-6})	DOCUMENT ID		TECN	COMMENT	
$5.8^{+2.4}_{-2.1}\pm0.9$	¹ TIEN	14	BELL	$e^{+}e^{-}\rightarrow$	$\Upsilon(4S)$

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(p\overline{p}\mu^+\nu_\mu)/\Gamma_{\text{total}}$						Γ ₂₇ /Γ
VALUE	CL%	DOCUMENT ID		TECN	COMMENT	
$< 8.5 \times 10^{-6}$	90	¹ TIEN	14	BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$
1 Assumes equal production of B^+ and B^0 at the $\varUpsilon(4S)$.						

 $\Gamma(p\overline{p}e^+\nu_e)/\Gamma_{ ext{total}}$ Γ_{28}/Γ $VALUE (units <math>10^{-6})$ CL% DOCUMENT ID TECN COMMENT 14 BELL $e^+e^- o au(4S)$

• • • We do not use the following data for averages, fits, limits, etc. • • •

<5200 90 ² ADAM 03B CLE2 $e^+e^- \rightarrow \Upsilon(4S)$

 $^{^1}$ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

 $^{^2}$ Based on phase-space model; if $V\!-\!A$ model is used, the 90% CL upper limit becomes $<1.2\times10^{-3}$.

 $\Gamma(e^+\nu_e)/\Gamma_{
m total}$

VALUE (units 10^{-6})	CL%	DOCUMENT ID		TECN	COMMENT	
< 0.98	90	$^{ m 1}$ SATOYAMA	07	BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$
● ● We do not use the	following	data for averages	s, fits,	limits, e	etc. • • •	
< 8	90	¹ AUBERT	10E	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
< 1.9	90	$^{ m 1}$ AUBERT	09∨	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
< 5.2	90	$^{ m 1}$ AUBERT	08AE	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
<15	90	ARTUSO	95	CLE2	$e^+e^- \rightarrow$	$\Upsilon(4S)$

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(\mu^+ u_\mu)/\Gamma_{ m total}$

 Γ_{30}/Γ

 Γ_{29}/Γ

$VALUE$ (units 10^{-6})	CL%	DOCUMENT ID		TECN	COMMENT
< 1.0	90	$^{ m 1}$ AUBERT	09V	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
• • • We do not use the	e following	data for averages	s, fits,	limits, e	etc. • • •
<11	90	¹ AUBERT	10E	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
< 5.6	90	$^{ m 1}$ AUBERT	08AE	BABR	$e^+e^- \rightarrow \Upsilon(4S)$
< 1.7	90	$^{ m 1}$ SATOYAMA	07	BELL	$e^+e^- ightarrow \gamma(4S)$
< 6.6	90	AUBERT	040	BABR	Repl. by AUBERT 09V
<21	90	ARTUSO	95	CLE2	$e^+e^- ightarrow \gamma(4S)$

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(\tau^+ \nu_{ au})/\Gamma_{ ext{total}}$

 Γ_{31}/Γ

Created: 8/21/2014 12:56

See the note on "Decay Constants of Charged Pseudoscalar Mesons" in the D_s^+ Listings.

VALUE (units 10^{-4})	CL%	DOCUMENT ID	TECN	COMMENT
1.14±0.27 OUR A	WERAGE	Error includes scale f	actor of	1.3. See the ideogram
below.				

$$0.72^{+0.27}_{-0.25}\pm0.11$$
 1 HARA 13 BELL $e^{+}e^{-} \rightarrow \Upsilon(4S)$ $1.83^{+0.53}_{-0.49}\pm0.24$ 2,3 LEES 13 K BABR $e^{+}e^{-} \rightarrow \Upsilon(4S)$ $^{1.7}\pm0.8\pm0.2$ 2,4 AUBERT 10 E BABR $e^{+}e^{-} \rightarrow \Upsilon(4S)$ $^{1.54}^{+0.38}_{-0.37}^{+0.29}$ 2,5 HARA 10 BELL $e^{+}e^{-} \rightarrow \Upsilon(4S)$

● We do not use the following data for averages, fits, limits, etc.

	$1.8 \ ^{+0.9}_{-0.8} \ \pm 0.45$		^{2,6} AUBERT	08 D	BABR	Repl. by LEES 13K
	$0.9 \pm 0.6 \pm 0.1$		^{2,4} AUBERT			Repl. by AUBERT 10E
<	2.6	90	² AUBERT	06K	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
	$1.79^{+0.56+0.46}_{-0.49-0.51}$		^{2,6} IKADO	06	BELL	Repl. by HARA 13
<	4.2	90	² AUBERT,B	05 B	BABR	Repl. by AUBERT 06K
<	8.3	90	⁷ BARATE	01E	ALEP	$e^+e^- ightarrow Z$
<	8.4	90	² BROWDER	01	CLE2	$e^+e^- ightarrow ~ \varUpsilon(4S)$
<	5.7	90	⁸ ACCIARRI	97F	L3	$e^+e^- ightarrow Z$
<1	04	90	⁹ ALBRECHT	95 D		$e^+e^- ightarrow ~ \varUpsilon(4S)$
< :	22	90	ARTUSO	95	CLE2	$e^+e^- ightarrow ~ \varUpsilon(4S)$
< 1	18	90	¹⁰ BUSKULIC	95	ALEP	$e^+e^- \rightarrow Z$

² Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

⁴ Requires one reconstructed semileptonic B decay $B^- \to D^0 \ell^- \overline{\nu}_\ell X$ in the recoil.

⁷ The energy-flow and b-tagging algorithms were used.

⁹ALBRECHT 95D uses full reconstruction of one B decay as tag.

¹⁰ BUSKULIC 95 uses same missing-energy technique as in $\overline{b} \to \tau^+ \nu_{\tau} X$, but analysis is restricted to endpoint region of missing-energy distribution.

 $\Gamma(\ell^+\nu_\ell\gamma)/\Gamma_{ ext{total}}$ VALUE CL% OPAT BABR OPAT BAB

HTTP://PDG.LBL.GOV

Page 31

¹ The authors combine their result with that from HARA 10 obtaining B($B^- \to \tau^- \overline{\nu}_{\tau}$)=(0.96 \pm 0.26) \times 10⁻⁴ and deriving $f_B |V_{ub}|$ =(7.4 \pm 0.8 \pm 0.5) \times 10⁻⁴ GeV.

³ Requires a fully reconstructed hadronic *B*-decay in the recoil. Reports that this result combined with AUBERT 10E value gives B($B^- \to \tau^- \overline{\nu}_{\tau}$) = (1.79 \pm 0.48) \times 10⁻⁴.

⁵ Requires one reconstructed semileptonic B decay $B^- \to D^{(*)0} \ell^- \overline{\nu}_{\ell} X$ in the recoil.

⁶ The analysis is based on a sample of events with one fully reconstructed tag B in a hadronic decay mode $B^- \to D^{(*)0} X^-$.

⁸ ACCIARRI 97F uses missing-energy technique and $f(b \rightarrow B^-) = (38.2 \pm 2.5)\%$.

 $\Gamma(\mu^+\nu_\mu\gamma)/\Gamma_{\text{total}}$ VALUE

CL%

DOCUMENT ID

TECN

COMMENT

COMMENT

AUBERT

09AT BABR $e^+e^- \rightarrow \Upsilon(4S)$ • • • We do not use the following data for averages, fits, limits, etc. • • •

<52 × 10⁻⁶

90

BROWDER

97

CLE2 $e^+e^- \rightarrow \Upsilon(4S)$

 $\Gamma(D^0X)/\Gamma_{\text{total}}$ Γ_{35}/Γ

VALUE DOCUMENT ID TECN COMMENT

0.086 \pm 0.006 \pm 0.004

1 AUBERT 07N BABR $e^+e^- \rightarrow \Upsilon(4S)$

• • We do not use the following data for averages, fits, limits, etc.

 $0.098 \pm 0.009 \pm 0.006$ 1 AUBERT,BE 04B BABR Repl. by AUBERT 07N

 $\Gamma(\overline{D^0}X)/\Gamma_{\text{total}}$ VALUE DOCUMENT ID TECN COMMENT0.786 ± 0.016 + 0.034 TECN TEC

• • • We do not use the following data for averages, fits, limits, etc. • • •

 $0.793 \pm 0.025 {+0.045 \atop -0.044}$ 1 AUBERT,BE 04B BABR Repl. by AUBERT 07N

 $\Gamma(D^0X)/[\Gamma(D^0X)+\Gamma(\overline{D}^0X)]$

 $\Gamma_{35}/(\Gamma_{35}+\Gamma_{36})$

Created: 8/21/2014 12:56

VALUEDOCUMENT IDTECNCOMMENT0.098 \pm 0.007 \pm 0.001AUBERT07NBABR $e^+e^- \rightarrow \Upsilon(4S)$

ullet ullet We do not use the following data for averages, fits, limits, etc. ullet ullet

 $0.110\pm0.010\pm0.003$ AUBERT,BE 04B BABR Repl. by AUBERT 07N

 $\Gamma(D^+X)/\Gamma_{\text{total}}$ $\Gamma_{37}/\Gamma_{\text{total}}$

VALUE DOCUMENT ID TECN COMMENT

0.025 \pm 0.005 \pm 0.002 1 AUBERT 07N BABR $e^+e^- \rightarrow \Upsilon(4S)$

• • • We do not use the following data for averages, fits, limits, etc. • • •

 $0.038\pm0.009\pm0.005$ AUBERT, BE 04B BABR Repl. by AUBERT 07N

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

² BROWDER 97 uses the hermiticity of the CLEO II detector to reconstruct the neutrino energy and momentum.

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

² BROWDER 97 uses the hermiticity of the CLEO II detector to reconstruct the neutrino energy and momentum.

¹ Events are selected by completely reconstructing one *B* and searching for a reconstructed charmed particle in the rest of the event. The last error includes systematic and charm branching ratio uncertainties.

¹ Events are selected by completely reconstructing one *B* and searching for a reconstructed charmed particle in the rest of the event. The last error includes systematic and charm branching ratio uncertainties.

¹ Events are selected by completely reconstructing one *B* and searching for a reconstructed charmed particle in the rest of the event. The last error includes systematic and charm branching ratio uncertainties.

$\Gamma(D^-X)/\Gamma_{\text{total}}$						Γ ₃₈ /Γ
VALUE		DOCUMENT ID				22(- 2)
0.099±0.008±0.009 • • • We do not use the		¹ AUBERT data for averages				T(4S)
$0.098 \pm 0.012 \pm 0.014$	_	¹ AUBERT,BE				UBERT 07N
¹ Events are selected by charmed particle in the branching ratio uncer	completel he rest of t	ly reconstructing	one B	and sea	rching for a	reconstructed
$\Gamma(D^+X)/[\Gamma(D^+X)$	$+\Gamma(D^{-})$	x)]			Г ₃₇ ,	/(Г ₃₇ +Г ₃₈)
VALUE		DOCUMENT ID				
$0.204 \pm 0.035 \pm 0.001$		AUBERT	07N	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
• • • We do not use the	following	data for averages	s, fits,	limits, e	etc. • • •	
$0.278\!\pm\!0.052\!\pm\!0.009$		AUBERT,BE	04 B	BABR	Repl. by A	UBERT 07N
$\Gamma(D_s^+ X)/\Gamma_{\text{total}}$		DO CHAISAIT ID		TECH	CO. 44 45 4 T	Γ ₃₉ /Γ
VALUE		DOCUMENT ID				
$0.079 \pm 0.006 ^{+0.013}_{-0.011}$		¹ AUBERT	07N	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
• • • We do not use the		data for averages	s, fits,	limits, e	etc. • • •	
$0.143\!\pm\!0.016\!+\!0.051\\-0.034$		¹ AUBERT,BE	04 B	BABR	Repl. by A	UBERT 07N
¹ Events are selected by charmed particle in tl branching ratio uncer	he rest of t					
$\Gamma(D_s^-X)/\Gamma_{\text{total}}$	CI %	DOCUMENT ID		TECN	COMMENT	Γ ₄₀ /Γ
0.011+0.004+0.002 -0.003-0.001		¹ AUBERT				
• • • We do not use the						7 (43)
<0.022	_	¹ AUBERT,BE				UBERT 07N
¹ Events are selected by charmed particle in the branching ratio uncer	completel he rest of t	ly reconstructing	one B	and sea	rching for a	reconstructed
$\Gamma(D_s^+ X)/[\Gamma(D_s^+ X)]$	$+\Gamma(D_s^-)$	X)]		TECN		/(Г ₃₉ +Г ₄₀)
0.884±0.038±0.002		AUBERT				Υ(45)
• • • We do not use the	following					7 (13)
$0.966 \pm 0.039 \pm 0.012$	J	AUBERT,BE				UBERT 07N
$\Gamma(D_s^-X)/[\Gamma(D_s^+X)$	٠	, -		TECH	,	/(Γ ₃₉ +Γ ₄₀)
VALUE		DOCUMENT ID				20(4.6)
<0.126	90	AUBERT,BE	U4 B	RARK	e ' e →	1 (45)

 $\Gamma(\Lambda_c^+ X)/\Gamma_{\text{total}}$ $0.021 \pm 0.005 ^{+0.008}_{-0.004}$ ¹ AUBFRT 07N BABR $e^+e^- \rightarrow \Upsilon(4S)$ • • • We do not use the following data for averages, fits, limits, etc. • • • $0.029\!\pm\!0.008\!+\!0.011\atop-\,0.007$ ¹ AUBERT.BE 04B BABR Repl. by AUBERT 07N $^{
m 1}$ Events are selected by completely reconstructing one B and searching for a reconstructed charmed particle in the rest of the event. The last error includes systematic and charm branching ratio uncertainties. $\Gamma(\overline{\Lambda}_{c}^{-}X)/\Gamma_{\text{total}}$ Γ_{42}/Γ $0.028 \pm 0.005 ^{+0.010}_{-0.007}$ ¹ AUBERT 07N BABR $e^+e^- \rightarrow \Upsilon(4S)$ • • We do not use the following data for averages, fits, limits, etc. • $0.035 \pm 0.008 ^{+0.013}_{-0.009}$ ¹ AUBERT,BE 04B BABR Repl. by AUBERT 07N $^{
m 1}$ Events are selected by completely reconstructing one B and searching for a reconstructed charmed particle in the rest of the event. The last error includes systematic and charm branching ratio uncertainties. $\Gamma(\Lambda_c^+ X) / \left[\Gamma(\Lambda_c^+ X) + \Gamma(\overline{\Lambda}_c^- X) \right]$ $\Gamma_{41}/(\Gamma_{41}+\Gamma_{42})$ TECN COMMENT 07N BABR $e^+e^- \rightarrow \Upsilon(4S)$ $0.427 \pm 0.071 \pm 0.001$ **AUBERT** • • We do not use the following data for averages, fits, limits, etc. • $0.452 \pm 0.090 \pm 0.003$ AUBERT, BE 04B BABR Repl. by AUBERT 07N $\Gamma(\overline{c}X)/\Gamma_{\text{total}}$ Γ_{43}/Γ TECN COMMENT $0.968\!\pm\!0.019^{\,+\,0.041}_{\,-\,0.039}$ ¹ AUBERT 07N BABR $e^+e^- \rightarrow \Upsilon(4S)$ • • • We do not use the following data for averages, fits, limits, etc. • • • $0.983 \pm 0.030 \, {}^{+\, 0.054}_{-\, 0.051}$ ¹ AUBERT,BE 04B BABR Repl. by AUBERT 07N $^{
m 1}$ Events are selected by completely reconstructing one B and searching for a reconstructed charmed particle in the rest of the event. The last error includes systematic and charm branching ratio uncertainties. $\Gamma(cX)/\Gamma_{\text{total}}$

TECN COMMENT $0.234 \pm 0.012 ^{+0.018}_{-0.014}$ 07N BABR $e^+e^- \rightarrow \Upsilon(4S)$ ¹ AUBERT

• • • We do not use the following data for averages, fits, limits, etc. • • •

 $0.330 \pm 0.022 + 0.055$ ¹ AUBERT,BE 04B BABR Repl. by AUBERT 07N

¹ Events are selected by completely reconstructing one B and searching for a reconstructed charmed particle in the rest of the event. The last error includes systematic and charm branching ratio uncertainties.

 $\Gamma(c/\overline{c}X)/\Gamma_{\text{total}}$ Γ_{45}/Γ TECN COMMENT 07N BABR $e^+e^- \rightarrow \Upsilon(4S)$ ¹ AUBERT

• • We do not use the following data for averages, fits, limits, etc.

 $1.313 \!\pm\! 0.037 \!+\! 0.088 \\ -0.075$ ¹ AUBERT.BE 04B BABR Repl. by AUBERT 07N

 $\Gamma(\overline{D}{}^0\pi^+)/\Gamma_{\text{total}}$ Γ_{46}/Γ VALUE (units 10^{-3}) DOCUMENT ID **TECN** COMMENT 4.81 ± 0.15 OUR FIT 4.84 ± 0.15 OUR AVERAGE $^{
m 1}$ AUBERT 07H BABR $e^+e^- \rightarrow \Upsilon(4S)$ $4.90 \pm 0.07 \pm 0.22$ ² ABULENCIA 06J CDF $p\overline{p}$ at 1.96 TeV $5.3 \pm 0.6 \pm 0.3$ ³ AUBERT,BE 06J BABR $e^+e^- \rightarrow \Upsilon(4S)$ $4.49 \pm 0.21 \pm 0.23$ 1,4 AHMED CLE2 $e^+e^- \rightarrow \Upsilon(4S)$ $4.97 \pm 0.12 \pm 0.29$

⁵ BORTOLETTO92

CLEO $e^+e^- \rightarrow \Upsilon(4S)$

Created: 8/21/2014 12:56

 $5.4 \begin{array}{c} +1.8 \\ -1.5 \end{array} \begin{array}{c} +1.2 \\ -0.9 \end{array}$ ⁶ BEBEK 14 CLEO • • • We do not use the following data for averages, fits, limits, etc. • • •

$4.76\pm0.26^{+0.05}_{-0.06}$		⁷ AUBERT,B	04 P	BABR	Repl. by AUBERT 07H
$5.5 \pm 0.4 \pm 0.5$	304	⁸ ALAM	94	CLE2	Repl. by AHMED 02B
$2.0 \pm 0.8 \pm 0.6$	12				$e^+e^- \rightarrow \Upsilon(4S)$
$1.9 \pm 1.0 \pm 0.6$	7	⁹ ALBRECHT	88K	ARG	$e^+e^- ightarrow ~ \varUpsilon(4S)$

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

54

 $5.0 \pm 0.7 \pm 0.6$

¹ Events are selected by completely reconstructing one B and searching for a reconstructed charmed particle in the rest of the event. The last error includes systematic and charm branching ratio uncertainties.

² ABULENCIA 06J reports $[\Gamma(B^+ \rightarrow \overline{D}{}^0\pi^+)/\Gamma_{\text{total}}]/[B(B^0 \rightarrow D^-\pi^+)] = 1.97 \pm 1.97$ 0.10 ± 0.21 which we multiply by our best value B($B^0\to D^-\pi^+$) = (2.68 \pm 0.13) imes 10^{-3} . Our first error is their experiment's error and our second error is the systematic error from using our best value.

 $^{^3}$ Uses a missing-mass method. Does not depend on D branching fractions or B^+/B^0 production rates.

 $^{^4}$ AHMED 02B reports an additional uncertainty on the branching ratios to account for 4.5% uncertainty on relative production of B^0 and B^+ , which is not included here.

⁵ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$ and uses the Mark III branching fractions for the D.

 $^{^6}$ BEBEK 87 value has been updated in BERKELMAN 91 to use same assumptions as noted for BORTOLETTO 92.

⁷ AUBERT,B 04P reports $[\Gamma(B^+ \to \overline{D}^0 \pi^+)/\Gamma_{\text{total}}] \times [B(D^0 \to K^- \pi^+)] = (1.846 \pm 1.846)$ 0.032 ± 0.097) \times 10^{-4} which we divide by our best value B($D^0 \rightarrow K^- \pi^+$) = (3.88 \pm $0.05) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

 $^{^8}$ ALAM 94 assume equal production of B^+ and B^0 at the arphi(4S) and use the CLEO II absolute B($D^0 o K^-\pi^+$) and the PDG 1992 B($D^0 o K^-\pi^+\pi^0$)/B($D^0 o K^-\pi^+$) and B($D^0 \to K^- 2\pi^+ \pi^-$)/B($D^0 \to K^- \pi^+$). ⁹ ALBRECHT 88K assumes $B^0 \overline{B}{}^0 : B^+ B^-$ ratio is 45:55. Superseded by ALBRECHT 90J.

```
\Gamma(\overline{D}^0 \rho^+)/\Gamma_{\text{total}}
                                                                                                              \Gamma_{49}/\Gamma
                                                                                  TECN
0.0134±0.0018 OUR AVERAGE
                                                   <sup>1</sup> ALAM
0.0135 \pm 0.0012 \pm 0.0015
                                                                                 CLE2
                                                   <sup>2</sup> ALBRECHT
0.013 \pm 0.004 \pm 0.004
                                         19
                                                                          90J ARG
• • We do not use the following data for averages, fits, limits, etc.
                                         10
                                                   <sup>3</sup> ALBRECHT
                                                                          88K ARG
                                                                                            e^+e^- \rightarrow \Upsilon(4S)
0.021 \pm 0.008 \pm 0.009
   ^1 ALAM 94 assume equal production of B^+ and B^0 at the \varUpsilon(4S) and use the CLEO II
     absolute B(D^0 
ightarrow K^- \pi^+) and the PDG 1992 B(D^0 
ightarrow K^- \pi^+ \pi^0)/B(D^0 
ightarrow K^- \pi^+)
  and B(D^0 \to K^- 2\pi^+\pi^-)/B(D^0 \to K^-\pi^+). <sup>2</sup> Assumes equal production of B^+ and B^0 at the \Upsilon(4S) and uses the Mark III branching
   <sup>3</sup> ALBRECHT 88K assumes B^0 \overline{B}{}^0:B^+B^- ratio is 45:55.
```

 $\Gamma\big(\overline{D}{}^0\,K^+\big)/\Gamma\big(\overline{D}{}^0\,\pi^+\big)$

 Γ_{50}/Γ_{46}

<i>VALUE</i> (units 10^{-2})	DOCUMENT ID	TECN	COMMENT
7.69±0.25 OUR AVERAGE	Error includes scale	factor of 1.7	. See the ideogram below.
$7.71 \pm 0.17 \pm 0.26$	$^{ m 1}$ AAIJ	13AE LHCB	pp at 7 TeV
$7.74 \pm 0.12 \pm 0.19$			pp at 7 TeV
$6.77 \pm 0.23 \pm 0.30$	HORII	08 BELL	$e^+e^- o ~ \varUpsilon(4S)$
$8.31 \pm 0.35 \pm 0.20$	AUBERT	04N BABR	$e^+e^- o ~ \varUpsilon(4S)$
$9.9 \begin{array}{c} +1.4 & +0.7 \\ -1.2 & -0.6 \end{array}$	BORNHEIM	03 CLE2	$e^+e^- ightarrow ~ \varUpsilon(4S)$
• • • We do not use the following	owing data for averag	ges, fits, limi	ts, etc. ● ●
$9.4\ \pm0.9\ \pm0.7$	ABE	03D BELL	Repl. by SWAIN 03
$7.7\ \pm0.5\ \pm0.6$	SWAIN	03 BELL	Repl. by HORII 08
$7.9 \pm 0.9 \pm 0.6$	ABE	01ı BELL	Repl. by ABE 03D
$5.5 \pm 1.4 \pm 0.5$	ATHANAS	98 CLE2	Repl. by BORNHEIM 03
1 Uses $B^{\pm} \rightarrow [K^{\pm}\pi^{\mp}\pi^{+}]$	π^- 1 _D h^{\pm} mode.		

 $_{B} : B^{\perp}
ightarrow \ [K^{\perp}\pi^{+}\pi^{+}\pi^{-}]_{D} h^{\perp} \ ext{mode}.$ WEIGHTED AVERAGE

7.69±0.25 (Error scaled by 1.7)

AAIJ

AAIJ

13AE LHCB

0.0

0.0

AAIJ

12M LHCB

0.1

HORII

08 BELL

5.9

AUBERT

AUBERT

AUBERT

04N BABR

2.4

BORNHEIM

03 CLE2

8.3

(Confidence Level = 0.040)

4 6 8 10 12 14 $\Gamma(\overline{D}{}^{0}K^{+})/\Gamma(\overline{D}{}^{0}\pi^{+}) \text{ (units } 10^{-2})$

HTTP://PDG.LBL.GOV

Page 36

```
Citation: K.A. Olive et al. (Particle Data Group), Chin. Phys. C38, 090001 (2014) (URL: http://pdg.lbl.gov)
\Gamma(D_{CP(+1)}K^+)/\Gamma(D_{CP(+1)}\pi^+)
                                                                                                                          \Gamma_{51}/\Gamma_{47}
                                                        DOCUMENT IE
0.087 \pm 0.007 OUR AVERAGE
                                                  ^{1,2}\,\mathrm{ABE}
                                                                                        BELL e^+e^- \rightarrow \Upsilon(4S)
0.087 \pm 0.008 \pm 0.003
                                                     <sup>3</sup> AUBERT
                                                                                04N BABR e^+e^- \rightarrow \Upsilon(4S)
0.088 \pm 0.016 \pm 0.005
ullet ullet We do not use the following data for averages, fits, limits, etc. ullet ullet
                                                     3 ABE
0.125 \pm 0.036 \pm 0.010
                                                                                03D BELL Repl. by SWAIN 03
                                                     <sup>3</sup> SWAIN
0.093 \pm 0.018 \pm 0.008
                                                                                      BELL Repl. by ABE 06
   ^1 Reports a double ratio of B(B^+ 	o D_{CP(+1)}K^+)/B(B^+ 	o D_{CP(+1)}\pi^+) and
      {\rm B}(B^+ \to \ \overline{D}{}^0 \, K^+)/{\rm B}(B^+ \to \ \overline{D}{}^0 \, \pi^+), 1.13 \pm 0.16 \pm 0.08. We multiply by our best
      value of B(B<sup>+</sup> \rightarrow \overline{D}^0 K<sup>+</sup>)/B(B<sup>+</sup> \rightarrow \overline{D}^0 \pi^+) = 0.083 \pm 0.006. Our first error is their experiment's error and the second error is systematic error from using our best value.
   <sup>2</sup>ABE 06 reports [\Gamma(B^+ \rightarrow D_{CP(+1)}K^+)/\Gamma(B^+ \rightarrow D_{CP(+1)}\pi^+)] / [\Gamma(B^+ \rightarrow D_{CP(+1)}K^+)]
      \overline{D}{}^0 K^+)/\Gamma(B^+ \to \overline{D}{}^0 \pi^+)] = 1.13 \pm 0.06 \pm 0.08 which we multiply by our best value
      \Gamma(B^+ \to \overline{D}{}^0 K^+)/\Gamma(B^+ \to \overline{D}{}^0 \pi^+) = 0.0769 \pm 0.0025. Our first error is their experiment's error and our second error is the systematic error from using our best value.
   ^3 CP=+1 eigenstate of D^0\overline{D}^0 system is reconstructed via K^+K^- and \pi^+\pi^-.
\Gamma(D_{CP(+1)}K^+)/\Gamma(\overline{D}{}^0K^+)
                                                                                                                          \Gamma_{51}/\Gamma_{50}
```

VALUE	DOCUMENT ID		TECN	COMMENT
0.518 ± 0.029 OUR AVERAGE	Error includes sca	le facto	or of 1.6	i.
$0.504 \pm 0.019 \pm 0.006$	¹ AAIJ			
$0.65 \pm 0.12 \pm 0.06$				$p\overline{p}$ at 1.96 TeV
$0.590 \pm 0.045 \pm 0.025$	³ DEL-AMO-SA	10 G	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
• • • We do not use the follow	ing data for averag	ges, fits	, limits,	etc. • • •
$0.53 \pm 0.05 \pm 0.025$	AUBERT	AA80	BABR	Repl. by DEL-AMO- SANCHEZ 10G
$0.45 \pm 0.06 \pm 0.02$	AUBERT	06 J	BABR	Repl. by AUBERT 08AA
1 AAIJ 12M reports R_{CP+} =				
2 Reports $R_{CP+}=2$ (B(E	$B^- ightarrow D_{CP(+1)}$	K-) -	+ B(B	$^+ \rightarrow D_{CP(+1)}K^+)) /$
$(B(B^- \rightarrow D^0 K^-) + B($ vided by 2.	$B^+ \rightarrow \overline{D}^0 K^+)$	= 1.30) ± 0.24	4 ± 0.12 that we have di-
3 Reports $R_{CP+}=1.18\pm0$	0.09 ± 0.05 that we	e have o	divided	by 2.

$\Gamma(D_{CP(-1)}K^+)/\Gamma(D_{CP(-1)}\pi^+)$

 Γ_{52}/Γ_{48}

Created: 8/21/2014 12:56

$0.097 \pm 0.016 \pm 0.007$	$^{ m 1}$ ABE	06	BELL $e^+e^- ightarrow \varUpsilon(4S)$	
• • • We do not use the following	g data for averages	s, fits,	limits, etc. • • •	
$0.119 \pm 0.028 \pm 0.006$	² ABE	03 D	BELL Repl. by SWAIN 03	
$0.108 \pm 0.019 \pm 0.007$	² SWAIN	03	BELL Repl. by ABE 06	

DOCUMENT ID

¹ Reports a double ratio of B($B^+ \to D_{CP(-1)}K^+$)/B($B^+ \to D_{CP(-1)}\pi^+$) and B($B^+ \to \overline{D}{}^0K^+$)/B($B^+ \to \overline{D}{}^0\pi^+$), 1.17 \pm 0.14 \pm 0.14. We multiply by our best value of B($B^+ \to \overline{D}{}^0K^+$)/B($B^+ \to \overline{D}{}^0\pi^+$) = 0.083 \pm 0.006. Our first error is their experiment's error and the second error is systematic error from using our best value.

experiment's error and the second error is systematic error from using our best value. ${}^2CP{=}{-}1$ eigenstate of $D^0\overline{D}{}^0$ system is reconstructed via ${}^0K_S^0\pi^0$, ${}^0K_S^0\omega$, ${}^0K_S^0\phi$, ${}^0K_S^0\eta$, and ${}^0K_S^0\eta'$.

```
\Gamma(D_{CP(-1)}K^+)/\Gamma(\overline{D}^0K^+)
                                                                                               \Gamma_{52}/\Gamma_{50}
                                          DOCUMENT ID
                                        ^{1} DEL-AMO-SA..10G BABR e^{+}e^{-}
ightarrow~ \varUpsilon(4S)
0.54 \pm 0.04 \pm 0.02
• • We do not use the following data for averages, fits, limits, etc. •
0.515 \pm 0.05 \pm 0.025
                                          AUBERT
                                                            08AA BABR Repl. by DEL-AMO-
                                                                                SANCHEZ 10G
0.43 \pm 0.05 \pm 0.02
                                          AUBERT
                                                            06J BABR Repl. by AUBERT 08AA
   ^{1} Reports R_{CP\pm}=1.07\pm0.08\pm0.04 that we have divided by 2.
\Gamma([K^-\pi^+]_DK^+)/\Gamma_{\text{total}}
                                                                                                 \Gamma_{53}/\Gamma
                                           DOCUMENT ID
 < 2.8 \times 10^{-7}
                              90
                                           HORII
                                                              80
                                                                    BELL
                                                                              e^+e^- \rightarrow \Upsilon(4S)
• • We do not use the following data for averages, fits, limits, etc.
< 6.3 \times 10^{-7}
                              90
                                           SAIGO
                                                              05
                                                                    BELL
                                                                              e^+e^- \rightarrow \Upsilon(4S)
\Gamma([K^-\pi^+]_DK^+)/\Gamma([K^+\pi^-]_DK^+)
                                                                                               \Gamma_{53}/\Gamma_{54}
VALUE (units 10^{-3})
                                           DOCUMENT ID
                                                                    TECN
                                                                              COMMENT
   15.3 ± 1.7 OUR AVERAGE
   15.2 \pm 2.0 \pm 0.4
                                           AAIJ
                                                              12M LHCB pp at 7 TeV
                                         <sup>1</sup> AALTONEN
   22.0 \pm 8.6 \pm 2.6
                                                              11AJ CDF
                                                                              p\overline{p} at 1.96 TeV
   16.3 + 4.4 + 0.7
                                           HORII
                                                                             e^+e^- \rightarrow \Upsilon(4S)
                                           DEL-AMO-SA..10H BABR e^+e^- \rightarrow \Upsilon(4S)
   11 \pm 6 \pm 2
  • • We do not use the following data for averages, fits, limits, etc. • • •
                                           HORII
                                                                    BELL Repl. by HORII 11
                                                              80
                                         <sup>2</sup> AUBERT
                                                                             Repl. by DEL-AMO-
                              90
                                                                   BABR
                                                                                 SANCHEZ 10H
                                                                              e^{+e^{-}} \rightarrow \Upsilon(4S)
                                         3 SAIGO
 <44
                              90
                                                              05
                                                                    BELL
                                         <sup>4</sup> AUBERT,B
 <26
                              90
                                                              04L BABR Repl. by AUBERT 05G
   ^1 AALTONEN 11AJ also measures the ratio separately for B^+ (R^+(K)) and B^- (R^-(K))
    and obtains: R^+(K) = (42.6 \pm 13.7 \pm 2.8) \times 10^{-3}, R^-(K) = (3.8 \pm 10.3 \pm 2.7) \times 10^{-3}.
  ^2 AUBERT 05G extract a constraint on the magnitude of the ratio of amplitudes |{\sf A}(B^+ \to {\sf A})|
     D^0K^+) / A(B<sup>+</sup> \rightarrow \overline{D}^0K^+)| < 0.23 at 90% CL (Bayesian). Similar measurements
    from B^+ \rightarrow D^{*0} K^+ are also reported.
   ^3SAIGO 05 extract a constraint on the magnitude of the ratio of amplitudes |{\sf A}(B^+ 
ightarrow {\sf B})|
     |D^0K^+| / A(B^+ \to \overline{D}^0K^+)| < 0.27 \text{ at } 90\% \text{ CL}.
   <sup>4</sup>AUBERT,B 04L extract a constraint on the magnitude of the ratio of amplitudes
    |A(B^+ \to D^0 K^+)/A(B^+ \to \overline{D}^0 K^+)| < 0.22 \text{ at } 90\% \text{ CL}.
\Gamma([K^-\pi^+\pi^0]_DK^+)/\Gamma([K^+\pi^-\pi^0]_DK^+)
                                                                                               \Gamma_{55}/\Gamma_{56}
VALUE (units 10^{-3})
                                           DOCUMENT ID
                                                                    TECN
   19.8 \pm 6.2 \pm 2.4
                                           NAYAK
                                                              13
                                                                    BELL
• • We do not use the following data for averages, fits, limits, etc.
                                         <sup>1</sup> LEES
 <21
                              90
                                                              11D BABR e^+e^- \rightarrow \Upsilon(4S)
                                         <sup>2</sup> AUBERT
                                                              07BN BABR Repl. by LEES 11D
 <39
   <sup>1</sup>Extracts a constraint on the magnitude of the ratio of amplitudes |A(B^+ \to D^0 K^+)/
    A(B^+ \to \overline{D}{}^0 K^+)| < 0.13 \text{ at } 95\% \text{ CL.}
   <sup>2</sup> Extracts a constraint on the magnitude of the ratio of amplitudes |A(B^+ \to D^0 K^+)/
    A(B^+ \rightarrow \overline{D}^0 K^+) < 0.19 at 95% CL.
                                                                     Created: 8/21/2014 12:56
```

 $\Gamma([K^-\pi^+\pi^+\pi^-]_DK^+)/\Gamma([K^+\pi^-\pi^+\pi^-]_DK^+)$ Γ_{57}/Γ_{58} 1.24 ± 0.27 **AAIJ** 13AE LHCB pp at 7 TeV $\Gamma([K^-\pi^+]_D K^*(892)^+)/\Gamma([K^+\pi^-]_D K^*(892)^+)$ Γ_{59}/Γ_{60} TECN COMMENT $0.066 \pm 0.031 \pm 0.010$ **AUBERT** 09AJ BABR $e^+e^- \rightarrow \Upsilon(4S)$ • • • We do not use the following data for averages, fits, limits, etc. • • $0.046 \pm 0.031 \pm 0.008$ AUBERT,B 05V BABR Repl. by AUBERT 09AJ $\Gamma([K^-\pi^+]D\pi^+)/\Gamma_{\text{total}}$ Γ_{61}/Γ VALUE (units 10^{-7}) TECN $6.29^{+1.02}_{-0.98}^{+0.37}_{-0.48}$ **HORII BELL** • • • We do not use the following data for averages, fits, limits, etc. • • • $6.6 \begin{array}{c} +1.9 \\ -1.7 \end{array} \pm 0.5$ **SAIGO** BELL Repl. by HORII 08 $\Gamma([K^-\pi^+]_D\pi^+)/\Gamma([K^+\pi^-]_D\pi^+)$ Γ_{61}/Γ_{62} VALUE (units 10^{-3}) TECN COMMENT 3.75 ± 0.26 OUR AVERAGE Error includes scale factor of 1.3. See the ideogram below. $4.10 \pm 0.25 \pm 0.05$ 12M LHCB pp at 7 TeV ¹ AALTONEN $2.8 \pm 0.7 \pm 0.4$ 11AJ CDF $p\overline{p}$ at 1.96 TeV $3.28 {}^{\displaystyle +0.38}_{\displaystyle -0.36} {}^{\displaystyle +0.12}_{\displaystyle -0.18}$ BELL $e^+e^- \rightarrow \Upsilon(4S)$ **HORII** DEL-AMO-SA..10H BABR $e^+e^- \rightarrow \Upsilon(4S)$ $3.3 \pm 0.6 \pm 0.4$ ullet ullet We do not use the following data for averages, fits, limits, etc. ullet ullet $3.40^{\,+\,0.55\,+\,0.15}_{\,-\,0.53\,-\,0.22}$ HORII BELL Repl. by HORII 11 $3.5 \begin{array}{c} +1.0 \\ -0.9 \end{array} \pm 0.2$ **SAIGO** 05 BELL Repl. by HORII 08 ¹ AALTONEN 11AJ also measures the ratio separately for B^+ (R⁺(π)) and B^- (R⁻(π))

and obtains: $R^+(\pi) = (2.4 \pm 1.0 \pm 0.4) \times 10^{-3}$, $R^-(K) = (3.1 \pm 1.1 \pm 0.4) \times 10^{-3}$

$\Gamma([\pi^+\pi^-\pi^0]_DK^-)/\Gamma_{total}$					Γ ₇₅ /Γ
_	DOCUMENT ID		TECN	COMMENT	137
·	1 AUBERT				$\Upsilon(4S)$
• • We do not use the following of					(13)
	¹ AUBERT,B				UBERT 07BJ
1 Assumes equal production of B^{-}					
$\Gamma(\overline{D}^0 K^*(892)^+)/\Gamma_{\text{total}}$		•	,		Γ ₇₆ /Γ
VALUE (units 10 ⁻⁴)	DOCUMENT ID		TECN	COMMENT	
5.3 ±0.4 OUR AVERAGE					
	¹ AUBERT				
	¹ MAHAPATRA				$\Upsilon(4S)$
• • • We do not use the following of	data for averages	, fits,	limits, e	etc. • • •	
$6.3 \pm 0.7 \pm 0.5$	¹ AUBERT	04Q	BABR	Repl. by A	UBERT 06z
1 Assumes equal production of B^{-}	$^+$ and B^0 at the	Y(45	5).		
$\Gamma(D_{CP(-1)}K^*(892)^+)/\Gamma(\overline{D}^0)$	K*(892) ⁺)				Γ_{77}/Γ_{76}
			TECN	COMMENT	
<u>VALUE</u> 0.515±0.135±0.065	¹ AUBERT	09AJ	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
• • • We do not use the following of	data for averages	, fits,	limits, e	etc. • • •	
$0.325 \pm 0.13 \pm 0.04$	² AUBERT,B	05 U	BABR	Repl. by A	UBERT 09AJ
The authors report $R_{CP}=1$. twice the value of the quoted at ² The authors report $R_{CP}=0$. twice the value of the quoted at $\Gamma(D_{CP(+1)}K^*(892)^+)/\Gamma(\overline{D}^0)$	bove branching races $\pm~0.26~\pm~0.0$ bove branching races	atio, 8 whi			
			TECN	COMMENT	,
<u>VALUE</u> 1.085 ± 0.175 ± 0.045	1 ALIBEDT	0041	PARD	a+a-	Υ(4S)
• • • We do not use the following of					7 (43)
	² AUBERT,B				UBERT 09AJ
1 The authors report $R_{CP+}=2$. twice the value of the quoted at 2 The authors report $R_{CP+}=1$. twice the value of the quoted at	$17\pm0.35\pm0.0$ nove branching ra $96\pm0.40\pm0.1$	9 whi atio, 1 whi	ch is, as	ssuming <i>CP</i>	conservation,
$\Gamma(\overline{D}{}^0K^+\pi^+\pi^-)/\Gamma(\overline{D}{}^0\pi^+\pi^+$	•				Γ_{79}/Γ_{82}
VALUE (units 10^{-2})	DOCUMENT ID		TECN	COMMENT	
$9.4 \pm 1.3 \pm 0.9$	AAIJ	12T	LHCB	pp at 7 Te	eV.
$\Gamma(\overline{D}{}^0K^+\overline{K}{}^0)/\Gamma_{total}$					Γ_{80}/Γ
VALUE (units 10 ⁻⁴)	DOCUMENT ID		TECN	COMMENT	
	¹ DRUTSKOY	02	BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$^{ m 1}$ Assumes equal production of $B^{ m -}$	$^+$ and B^0 at the	$\Upsilon(45)$	S).		

VALUE 0.0057±0.0022 OUR FIT Error includes scale factor of 3.6. 0.0115±0.0029±0.0021 1 BORTOLETTO92 CLEO $e^+e^- \rightarrow r(4S)$ 1 BORTOLETTO92 COMMENT 1.2 ±0.4 OUR FIT Error includes scale factor of 3.8. 1.27±0.06±0.11 AAIJ 1 IE LHCB pp at 7 TeV COMMENT CLEO $e^+e^- \rightarrow r(4S)$ TR82/Γ46	$\Gamma(\overline{D}^0K^+\overline{K}^*(892)^0)/\Gamma_{\text{total}}$			Γ ₈₁ /Γ
7.5±1.3±1.1 1 DRUTSKOY 02 BELL $e^+e^- \rightarrow \tau(4S)$ 1 Assumes equal production of B^+ and B^0 at the $\tau(4S)$. $\Gamma(\overline{D^0}\pi^+\pi^+\pi^-)/\Gamma_{\text{total}} \qquad $	VALUE (units 10^{-4})	DOCUMENT ID	TECN	COMMENT
		¹ DRUTSKOY 02	BELL	$e^+e^- ightarrow \gamma(4S)$
VALUE 0.0057±0.0022 OUR FIT Error includes scale factor of 3.6. 0.0115±0.0029±0.0021 1 BORTOLETTO 92 assumes equal production of B+ and B ⁰ at the $\Upsilon(4S)$ and uses Mark III branching fractions for the D. $\Gamma(\overline{D^0}\pi^+\pi^+\pi^-)/\Gamma(\overline{D^0}\pi^+)$ VALUE 1.2 ± 0.4 OUR FIT Error includes scale factor of 3.8. 1.27±0.06±0.11 AAIJ 11E LHCB pp at 7 TeV $\Gamma(\overline{D^0}\pi^+\pi^+\pi^-\text{nonresonant})/\Gamma_{\text{total}}$ VALUE 0.0051±0.0034±0.0023 1 BORTOLETTO 92 assumes equal production of B+ Mark III branching fractions for the D. $\Gamma(\overline{D^0}\pi^+\rho^0)/\Gamma_{\text{total}}$ VALUE 0.0042±0.0023±0.0020 1 BORTOLETTO 92 assumes equal production of B+ Mark III branching fractions for the D. $\Gamma(\overline{D^0}\pi^+\rho^0)/\Gamma_{\text{total}}$ VALUE 0.0042±0.0023±0.0020 1 BORTOLETTO 92 assumes equal production of B+ Mark III branching fractions for the D. $\Gamma(\overline{D^0}\pi^+\rho^0)/\Gamma_{\text{total}}$ VALUE 0.0045±0.0019±0.0031 1 BORTOLETTO 92 assumes equal production of B+ Mark III branching fractions for the D. $\Gamma(\overline{D^0}\pi^+\rho^0)/\Gamma_{\text{total}}$ VALUE 0.0045±0.0019±0.0031 1 BORTOLETTO 92 assumes equal production of B+ Mark III branching fractions for the D. $\Gamma(\overline{D^0}\pi^+\rho^0)/\Gamma_{\text{total}}$ VALUE 0.0045±0.0019±0.0031 1 BORTOLETTO 92 assumes equal production of B+ Mark III branching fractions for the D. $\Gamma(\overline{D^0}\pi^+\rho^0)/\Gamma_{\text{total}}$ VALUE 0.0045±0.0019±0.0031 1 BORTOLETTO 92 assumes equal production of B+ Mark III branching fractions for the D. $\Gamma(\overline{D^0}\pi^+\rho^0)/\Gamma_{\text{total}}$ VALUE 0.0045±0.0019±0.0031 1 BORTOLETTO 92 assumes equal production of B+ Mark III branching fractions for the D. $\Gamma(\overline{D^0}\pi^+\rho^0)/\Gamma_{\text{total}}$ VALUE 0.0045±0.0019±0.0031 1 BORTOLETTO 92 assumes equal production of B+ Mark III branching fractions for the D. $\Gamma(\overline{D^0}\pi^+\rho^0)/\Gamma_{\text{total}}$ VALUE 0.0041±0.0007±0.0006 1 ALEXANDER 01B CLEO e^+e^- → \(\gamma(4S)) COMMENT 0.0046±0.0019±0.0031 1 BORTOLETTO 92 1 BORTOLETO 92 2 BORTOLETO 92 3 BORTOLETO 92	$^{ m 1}$ Assumes equal production of $^{ m 1}$	B^+ and B^0 at the \varUpsilon (4.	S).	
0.0057±0.0022 OUR FIT Error includes scale factor of 3.6. 0.0115±0.0029±0.0021	*	DOCUMENT ID	TECN	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
Mark III branching fractions for the D . $ \Gamma(\overline{D^0}\pi^+\pi^+\pi^-)/\Gamma(\overline{D^0}\pi^+) \qquad \qquad \Gamma_{82}/\Gamma_{46} $ $ \underline{\Gamma_{82}/\Gamma_{46}} \qquad \qquad \underline{\Gamma_{82}/\Gamma_{46}} $ $ \underline{\Gamma_{83}/\Gamma_{46}} \qquad \qquad \underline{\Gamma_{83}/\Gamma_{46}} $ $ \underline{\Gamma_{83}/\Gamma_{46}} \qquad \qquad \underline{\Gamma_{83}/\Gamma_{46}} $ $ \underline{\Gamma_{84}/\Gamma_{46}} \qquad \qquad \underline{\Gamma_{84}/\Gamma_{46}} $ $ \underline{\Gamma_{84}/\Gamma_{46}} \qquad \qquad \underline{\Gamma_{84}/\Gamma_{46}} $ $ \underline{\Gamma_{84}/\Gamma_{46}} \qquad \underline{\Gamma_{84}/\Gamma_{46}} $ $ \underline{\Gamma_{84}/\Gamma_{46}} \qquad \qquad \underline{\Gamma_{84}/\Gamma_{46}} $ $ \underline{\Gamma_{84}/\Gamma_{46}}$	$0.0115\pm0.0029\pm0.0021$	¹ BORTOLETTO92	CLEO	$e^+e^- ightarrow ~ \varUpsilon(4S)$
VALUE 1.2 ±0.4 OUR FIT 1.2 ±0.4 OUR FIT 1.2 ±0.6±0.11 AAIJ 11E LHCB pp at 7 TeV	¹ BORTOLETTO 92 assumes 6 Mark III branching fractions fo	equal production of B^+ r the D .	and B^0	$^{ m O}$ at the $\varUpsilon(4S)$ and uses
1.2 \pm 0.4 OUR FIT Error includes scale factor of 3.8. 1.27 \pm 0.06 \pm 0.11 AAIJ 11E LHCB pp at 7 TeV $\Gamma(\overline{D^0}\pi^+\pi^+\pi^-\text{nonresonant})/\Gamma_{\text{total}} \qquad $	$\Gamma(\overline{D}{}^0\pi^+\pi^+\pi^-)/\Gamma(\overline{D}{}^0\pi^+)$			Γ ₈₂ /Γ ₄₆
1.27 \pm 0.06 \pm 0.11 AAIJ 11E LHCB pp at 7 TeV $\Gamma(\overline{D^0}\pi^+\pi^+\pi^-\text{nonresonant})/\Gamma_{\text{total}} \qquad \qquad \Gamma_{83}/\Gamma_{0.0051} + \sigma^-\text{nonresonant})/\Gamma_{\text{total}} \qquad \qquad \Gamma_{83}/\Gamma_{0.0051} + \sigma^-\text{nonresonant})/\Gamma_{\text{total}} \qquad \qquad \Gamma_{80}/\Gamma_{0.0051} + \sigma^-\text{nonresonant})/\Gamma_{\text{total}} \qquad \qquad \Gamma_{80}/\Gamma_{0.0051} + \sigma^-\text{nonresonant})/\Gamma_{\text{total}} \qquad \qquad \Gamma_{80}/\Gamma_{0.0051} + \sigma^-\text{nonresonant}/\Gamma_{0.0051} + \sigma^-\text{nonresonant}/\Gamma_{0.0$	VALUE	DOCUMENT ID	TECN	COMMENT
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			LHCB	pp at 7 TeV
0.0051±0.0034±0.0023			TECN	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	- -			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	¹ BORTOLETTO 92 assumes e	equal production of B^+		. ,
0.0042±0.0023±0.0020	*	DOCUMENT ID	TE 611	U -7
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
Mark III branching fractions for the D . $\Gamma(\overline{D}^0 a_1(1260)^+)/\Gamma_{total} \qquad \qquad \Gamma_{85}/\Gamma_{total} \qquad \qquad \Gamma_{85}/\Gamma_{to$. ,
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			and B	$^{\prime}$ at the $\varUpsilon(4S)$ and uses
0.0045 \pm 0.0019 \pm 0.0031 BORTOLETTO92 CLEO $e^+e^- \rightarrow \Upsilon(4S)$ BORTOLETTO 92 assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$ and uses Mark III branching fractions for the D . $\Gamma(\overline{D^0}\omega\pi^+)/\Gamma_{\text{total}}$ VALUE 0.0041 \pm 0.0007 \pm 0.0006 BORTOLETTO92 CLEO $e^+e^- \rightarrow \Upsilon(4S)$		DOCUMENT ID	TECN	
	¹ BORTOLETTO 92 assumes e	equal production of B^+		. ,
	* * * * * * * * * * * * * * * * * * * *	DOCUMENT ID	TECN	
		1 ALEXANDED ALD	CLES	ota ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

 $^{^1}$ Assumes equal production of B^+ and B^0 at the $\varUpsilon(4S).$ The signal is consistent with all observed $\omega\,\pi^+$ having proceeded through the ρ'^+ resonance at mass 1349 \pm 25 $^{+}_{-}^{10}_{5}$ MeV and width 547 \pm 86 $^{+}_{-}^{46}_{5}$ MeV.

(' / ''	$\pi^+)/\Gamma_{total}$						Γ ₈₇ /Γ
VALUE (units 10^{-3})	CL% EV	/TS	DOCUMENT ID		TECN	COMMENT	
1.35±0.22 OUR A							
$1.25\!\pm\!0.08\!\pm\!0.22$			¹ ABE			$e^+e^- \rightarrow$	
$1.9 \pm 0.7 \pm 0.3$		14	² ALAM	94	CLE2	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$2.6 \pm 1.4 \pm 0.7$		11	³ ALBRECHT	90 J	ARG	e^+e^-	$\Upsilon(4S)$
$2.4 \begin{array}{c} +1.7 & +1.0 \\ -1.6 & -0.6 \end{array}$		3	⁴ BEBEK	87	CLEO	$e^+e^ \rightarrow$	$\Upsilon(4S)$
• • We do not use	the followir	ng data	for averages, fits,	limit	s, etc. •	• •	
<4.	90		⁵ BORTOLETTO) 92	CLEO	$e^+e^- \rightarrow$	$\Upsilon(4S)$
5. ± 2 . ± 3 .		7	⁶ ALBRECHT	8 7 C	ARG	$e^+e^- \to$	$\Upsilon(4S)$
branching fractio 0.0003 where D^* ⁶ ALBRECHT 870 $B(\Upsilon(4S) \rightarrow B^{-1})$	D. e has been up DLETTO 92 92 assumes g fractions for into $D^{**}\pi$ represents to use PDG	updated equal properties of the left of th	in BERKELMAN production of B^+ and D^* (2010). Hed by $D^{**} \rightarrow D^*$ itally excited D minimum.	and The a (2010 desons	B^0 at the same B^0 at the same B^0 at the same B^* and B^*	the $\Upsilon(4S)$ and also find the e $0.0014 {+0 \atop -0}$	productions as productions and uses productions and a production and a pro
BRECHT 90J.							
$\Gamma(\overline{D}_1(2420)^0\pi^+,$	$\overline{D}_1^0 \rightarrow D^*$	-	, ,		,		₈₈ /Г ₈₂
$\Gamma(\overline{D}_1(2420)^0\pi^+,$ VALUE (units 10^{-2})	$\frac{\overline{D_1^0} \to D^*}{}$	-	CUMENT ID	TECI	<u>ČOM</u>	MENT	₈₈ /Г ₈₂
$\Gamma(\overline{D}_1(2420)^0\pi^+, VALUE \text{ (units } 10^{-2}\text{)}$ $9.3\pm1.6\pm0.9$ $1 \text{ AAIJ } 11\text{E report}$ $\overline{D}_1(2420)^0\pi^+, $	ts (9.3 ± 1) $\overline{D_1^0} \rightarrow$	$1\frac{DO}{AA}$ 1.6 ± 0 D	CUMENT ID IJ 11E	TECI LHC n a r B ⁺	$\frac{V}{D} = \frac{V}{COM}$ B pp a measurer	MENT at 7 TeV ment of Γ $\overline{D}^0 \pi^+ \pi^+ \pi^-$	(B ⁺ →
$\Gamma(\overline{D}_1(2420)^0\pi^+, VALUE \text{ (units } 10^{-2}\text{)})$ $9.3\pm1.6\pm0.9$ $1 \text{ AAIJ } 11\text{E report}$ $\overline{D}_1(2420)^0\pi^+, \text{ [B}(D^*(2010)^+-1))$	ts (9.3 ± 1) $\overline{D_1^0} \rightarrow D^0 \pi^+)] a$	$1\frac{DO}{AA}$ 1.6 ± 0 D	CUMENT ID ALJ 11E 1.9) × 10 ⁻² from $(2010)^{-}\pi^{+})/\Gamma($	TECI LHC n a r B ⁺	$\frac{V}{D} = \frac{V}{COM}$ B pp a measurer \rightarrow	MENT at 7 TeV ment of Γ $\overline{D}^0 \pi^+ \pi^+ \pi^-$	·-)] ×
$\Gamma(\overline{D}_{1}(2420)^{0}\pi^{+}, VALUE \text{ (units }10^{-2})$ $9.3\pm1.6\pm0.9$ $1 \text{ AAIJ } 11\text{E report}$ $\overline{D}_{1}(2420)^{0}\pi^{+}, \text{ [B}(D^{*}(2010)^{+}-1)^{-}$ $\Gamma(D^{-}\pi^{+}\pi^{+})/\Gamma_{\text{to}}$ $VALUE \text{ (units }10^{-3})$	ts (9.3 ± 1) $\overline{D}_{1}^{0} \rightarrow D^{0}\pi^{+}$ otal $\frac{CL\%}{2} \frac{EV}{2}$	$\frac{DO}{1}$ $\frac{DO}{1}$ $\frac{DO}{1}$ $\frac{DO}{1}$ $\frac{DO}{1}$ assumin	CUMENT ID ALJ 11E 1.9) × 10 ⁻² from $(2010)^{-}\pi^{+})/\Gamma($	$\begin{array}{c} \underline{TECI} \\ LHC \\ n & a & i \\ B^+ \\ \rightarrow & D^C \end{array}$	B $pp a$ measurer \rightarrow $(2\pi^+) =$	MENT at 7 TeV ment of [Γ ($\overline{D}^0\pi^+\pi^+\pi$) (67.7 \pm 0.5)	$(B^{+} \rightarrow \times 10^{-2})] \times \times 10^{-2}$
$\Gamma(\overline{D}_1(2420)^0\pi^+, VALUE \text{ (units } 10^{-2}\text{)} $ 9.3 \pm 1.6 \pm 0.9 $\Gamma(\overline{D}_1(2420)^0\pi^+, T^-)$	ts (9.3 ± 1) $\overline{D}_{1}^{0} \rightarrow D^{0}\pi^{+}$ otal $\frac{CL\%}{2} \frac{EV}{2}$	$\frac{DO}{1}$ $\frac{DO}{AA}$ $\frac{DO}{1}$ $\frac{DO}{AA}$ $\frac{DO}{$	CUMENT ID 11E 1.9) $ imes 10^{-2}$ from $ imes (2010)^- \pi^+)/\Gamma(g \ B(D^*(2010)^+ - 1))$	TECI LHC n a i B ⁺ → D ^C	$\frac{COM}{B}$ $\frac{COM}{ppa}$ $$	MENT at 7 TeV ment of Γ $\overline{D}^0 \pi^+ \pi^+ \pi$ (67.7 ± 0.5) COMMENT	(B ⁺)] × ×10 ⁻² Γ₈₉/Γ

 $1.02 \pm 0.04 \pm 0.15$

 $2.5 \ \, ^{\displaystyle +4.1}_{\displaystyle -2.3} \ \, ^{\displaystyle +2.4}_{\displaystyle -0.8}$

<1.4

<7

 $^{1}\,\mathrm{ABE}$

 $^{2}\,\mathrm{ALAM}$

⁴ BEBEK

³ BORTOLETTO92

94

87

• • • We do not use the following data for averages, fits, limits, etc. • • •

90

90

04D BELL $e^+e^- \rightarrow \Upsilon(4S)$

CLE2 $e^+e^- \rightarrow \Upsilon(4S)$

CLEO $e^+e^- \rightarrow \Upsilon(4S)$

CLEO $e^+e^- \rightarrow \Upsilon(4S)$

 $\Gamma(D^+K^0)/\Gamma_{\text{total}}$

 Γ_{90}/Γ

<i>VALUE</i> (units 10^{-6})	CL%	DOCUMENT ID		TECN	COMMENT
<2.9	90	¹ DEL-AMO-SA	10K	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
• • • We do not use	the following	ng data for average	s, fits,	, limits, (etc. • • •
< 5.0	90	¹ AUBERT,B	05E	BABR	Repl. by DEL-AMO- SANCHEZ 10K

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

 $\Gamma(D^+K^{*0})/\Gamma_{\text{total}}$

 Γ_{91}/Γ

VALUE (units 10^{-6})	CL%	DOCUMENT ID)	TECN	COMMENT
<1.8	90	AAIJ	13 R	LHCB	pp at 7 TeV
• • • We do not use t	he followin	data for average	es fits	limits e	etc • • •

ullet ullet We do not use the following data for averages, fits, limits, etc. ullet ullet

<3.0 90 1 DEL-AMO-SA..10K BABR $e^{+}e^{-} \rightarrow \Upsilon(4S)$

 $\Gamma(D^+\overline{K}^{*0})/\Gamma_{\text{total}}$

 Γ_{02}/Γ

(// total						<i>J</i> 2/
VALUE (units 10^{-6})	CL%	DOCUMENT ID		TECN	COMMENT	
<1.4	90	AAIJ	13R	LHCB	pp at 7 TeV	

$\Gamma(\overline{D}^*(2007)^0\pi^+)/\Gamma_{\text{total}}$

 Γ_{93}/Γ

VALUE (units 10 °)	EVIS	DOCUMENT ID	TECN	COMMENT
5.18±0.26 OUR AVERAGE				
$5.52\!\pm\!0.17\!\pm\!0.42$		¹ AUBERT 07H		
$5.5 \pm 0.4 \pm 0.2$		^{2,3} AUBERT,BE 06J	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$4.34 \pm 0.47 \pm 0.18$		⁴ BRANDENB 98	CLE2	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$5.2 \pm 0.7 \pm 0.7$	71	⁵ ALAM 94	CLE2	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$7.2 \pm 1.8 \pm 1.6$		⁶ BORTOLETTO92		
$4.0 \pm 1.4 \pm 1.2$	9	6 ALBRECHT 901	ARG	$e^+e^- ightarrow ~ \varUpsilon(4S)$
			•	

^{• • •} We do not use the following data for averages, fits, limits, etc. • • •

 2.7 ± 4.4

⁷ BEBEK

87 CLEO $e^+e^- \rightarrow \Upsilon(4S)$

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

² ALAM 94 assume equal production of B^+ and B^0 at the $\Upsilon(4S)$ and use the Mark III $B(D^+ \to K^- 2\pi^+)$.

³BORTOLETTO 92 assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$ and uses Mark III branching fractions for the D. The product branching fraction into $D_0^*(2340)\pi$ followed by $D_0^*(2340) \to D\pi$ is < 0.005 at 90%CL and into $D_2^*(2460)$ followed by $D_2^*(2460) \to D\pi$ is < 0.004 at 90%CL.

⁴ BEBEK 87 assume the $\Upsilon(4S)$ decays 43% to $B^0 \, \overline{B}{}^0$. B($D^- \to K^+ \pi^- \pi^-$) = $(9.1 \pm 1.3 \pm 0.4)\%$ is assumed.

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

² AUBERT,BE 06J reports $[\Gamma(B^+ \to \overline{D}^*(2007)^0\pi^+)/\Gamma_{total}]/[B(B^+ \to \overline{D}^0\pi^+)]$ = 1.14 ± 0.07 ± 0.04 which we multiply by our best value $B(B^+ \to \overline{D}^0\pi^+)$ = $(4.81 \pm 0.15) \times 10^{-3}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

³ Uses a missing-mass method. Does not depend on D branching fractions or B^+/B^0 production rates.

- 4 BRANDENBURG 98 assume equal production of B^+ and B^0 at $\Upsilon(4S)$ and use the D^* reconstruction technique. The first error is their experiment's error and the second error is the systematic error from the PDG 96 value of B($D^* \rightarrow D\pi$).
- ⁵ ALAM 94 assume equal production of B^+ and B^0 at the $\Upsilon(4S)$ and use the CLEO II $B(D^*(2007)^0 \rightarrow D^0\pi^0)$ and absolute $B(D^0 \rightarrow K^-\pi^+)$ and the PDG 1992 $B(D^0 \rightarrow K^-\pi^+\pi^0)/B(D^0 \rightarrow K^-\pi^+)$ and $B(D^0 \rightarrow K^-2\pi^+\pi^-)/B(D^0 \rightarrow K^-\pi^+)$. 6 Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$ and uses Mark III branching
- fractions for the D and $D^*(2010)$.
- ⁷This is a derived branching ratio, using the inclusive pion spectrum and other two-body B decays. BEBEK 87 assume the $\Upsilon(4S)$ decays 43% to $B^{0}\overline{B}^{0}$.

$\Gamma(\overline{D}^*(2007)^0\omega\pi^+)/\Gamma_{\text{total}}$

 Γ_{96}/Γ

 $0.0045\pm0.0010\pm0.0007$

DOCUMENT ID TECN COMMENT ¹ ALEXANDER 01B CLE2 $e^+e^- \rightarrow \Upsilon(4S)$

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$. The signal is consistent with all observed $\omega\,\pi^+$ having proceeded through the ho'^+ resonance at mass 1349 \pm 25 $^{+\,10}_{-\,5}$ MeV and width 547 \pm 86 $^{+46}_{-45}$ MeV.

$\Gamma(\overline{D}^*(2007)^0 \rho^+)/\Gamma_{total}$

 Γ_{07}/Γ

\ \ \/ LOLA						<i>311</i>
VALUE	EVTS	DOCUMENT ID		TECN	COMMENT	
0.0098±0.0017 OUR AVER	AGE	·				
$0.0098\!\pm\!0.0006\!\pm\!0.0017$		$^{ m 1}$ CSORNA				
$0.010\ \pm0.006\ \pm0.004$	7	² ALBRECHT	90 J	ARG	$e^+e^- \rightarrow$	$\Upsilon(4S)$
• • • We do not use the fo	llowing d	ata for averages, fi	ts, lim	its, etc.	• • •	
$0.0168\!\pm\!0.0021\!\pm\!0.0028$	86	³ ALAM	94	CLE2	$e^+e^- \rightarrow$	$\Upsilon(4S)$

- ¹ Assumes equal production of B^0 and B^+ at the $\Upsilon(4S)$ resonance. The second error combines the systematic and theoretical uncertainties in quadrature. CSORNA 03 includes data used in ALAM 94. A full angular fit to three complex helicity amplitudes is
- ²Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$ and uses Mark III branching fractions for the D and $D^*(2010)$.
- 3 ALAM 94 assume equal production of B^+ and B^0 at the $\varUpsilon(4S)$ and use the CLEO II B($D^*(2007)^0 o D^0\pi^0$) and absolute B($D^0 o K^-\pi^+$) and the PDG 1992 B($D^0 o K^-\pi^+$) $(K^-\pi^+\pi^0)/B(D^0\to K^-\pi^+)$ and $B(D^0\to K^-2\pi^+\pi^-)/B(D^0\to K^-\pi^+)$. The nonresonant $\pi^+\pi^0$ contribution under the ρ^+ is negligible.

$\Gamma(\overline{D}*(2007)^{0}K^{+})/\Gamma$...

 Γ_{00}/Γ

1 (D (2007) A)/1 total					1 98/1
VALUE (units 10^{-4})	DOCUMENT ID		TECN	COMMENT	
4.20±0.34 OUR AVERAGE					_
$4.21^{\begin{subarray}{c} +0.30 \\ -0.26 \end{subarray}} \pm 0.21$	¹ AUBERT	05N	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$4.0 \pm 1.1 \pm 0.2$	² ABE	011	BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$
1 AUBERT 05N reports [$\Gamma(B^+)$	$\rightarrow \overline{D}^*(2007)^0 K^+$	$^{-})/\Gamma_{to}$	_{tal}] / [B	$(B^+ \rightarrow \overline{D}^*$	$(2007)^{0}\pi^{+})]$
$= 0.0813 \pm 0.0040 {+0.004} {+0.003}$	$rac{2}{1}$ which we mu	ultiply	by our	best value	e B($B^+ \rightarrow$
$\overline{D}^*(2007)^0\pi^+) = (5.18 \pm 0)$	$0.26) \times 10^{-3}$. O	ur first	error is	their exper	riment's error
and our second error is the sy	stematic error fro	m usin	g our be	st value.	
2 ABE 01। reports [$\Gamma(B^+ o \overline{I})$					
$0.078\pm0.019\pm0.009$ which					
$= (5.18 \pm 0.26) \times 10^{-3}$. Out			iment's e	error and our	second error
is the systematic error from u	sing our best valu	e.			

```
Citation: K.A. Olive et al. (Particle Data Group), Chin. Phys. C38, 090001 (2014) (URL: http://pdg.lbl.gov)
\Gamma(\overline{D}_{CP(+1)}^{*0}K^+)/\Gamma_{\text{total}}
                                                                                                                         \Gamma_{99}/\Gamma
VALUE (units 10<sup>-4</sup>)
                                                     DOCUMENT ID TECN COMMENT
2.75\pm0.29^{+0.23}_{-0.22}
                                                                            08BF BABR e^+e^- \rightarrow \Upsilon(4S)
   ^1 AUBERT 08BF reports [\Gamma(B^+	o \overline{D}^*_{CP(+1)} {\it K}^+)/\Gamma_{total}] \,/\, [{\it B}(B^+	o \overline{D}^*(2007)^0 {\it K}^+)]
     =0.655\pm0.065\pm0.020 which we multiply by our best value B(B^+ 
ightarrow \, \overline{D}^*(2007)^0 \, K^+)
     = (4.20 \pm 0.34) \times 10^{-4}. Our first error is their experiment's error and our second error
     is the systematic error from using our best value.
\Gamma(\overline{D}_{CP(+1)}^{*0}K^+)/\Gamma(\overline{D}_{CP(+1)}^{*0}\pi^+)
                                                                                                                      \Gamma_{00}/\Gamma_{04}
                                                                            06 BELL e^+e^- \rightarrow \Upsilon(4S)
05N BABR e^+e^- \rightarrow \Upsilon(4S)
                                                   <sup>1</sup> ABE
                                                   <sup>2</sup> AUBERT
0.086 \pm 0.021 \pm 0.007
```

 0.095 ± 0.017 OUR AVERAGE $0.11 \pm 0.02 \pm 0.02$

 1 Reports a double ratio of B($B^+ o D^{*0}_{CP(+1)}K^+$)/B($B^+ o D^{*0}_{CP(+1)}\pi^+$) and $B(B^+ \to \overline{D}^{*0} K^+)/B(B^+ \to \overline{D}^{*0} \pi^+)$, 1.41 \pm 0.25 \pm 0.06. We multiply by our best value of B($B^+ \rightarrow \overline{D}^{*0} K^+$)/B($B^+ \rightarrow \overline{D}^{*0} \pi^+$) = 0.080 \pm 0.011. Our first error is their experiment's error and the second error is systematic error from using our best

 2 Uses $D^{*0} \rightarrow D^0 \pi^0$ with D^0 reconstructed in the *CP*-even eigenstates $K^+ K^-$ and

 $\Gamma(\overline{D}_{CP(-1)}^{*0}K^+)/\Gamma_{\text{total}}$ Γ_{100}/Γ

VALUE (units 10⁻⁴) $2.31 \pm 0.27 {+0.20 \atop -0.18}$ 08BF BABR $e^+e^- \rightarrow \Upsilon(4S)$

 $^{1}\,\text{AUBERT 08BF reports}\,[\Gamma(B^{+}\to\,\overline{D}_{CP(-1)}^{*0}\,\text{K^{+}})/\Gamma_{\text{total}}]\,/\,[\text{B}(B^{+}\to\,\overline{D}^{*}(2007)^{0}\,\text{K^{+}})]$ = 0.55 \pm 0.06 \pm 0.02 which we multiply by our best value B($B^+ \rightarrow \overline{D}^*(2007)^0 K^+$) $= (4.20 \pm 0.34) \times 10^{-4}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

 $\Gamma(\overline{D}_{CP(-1)}^{*0}K^+)/\Gamma(D_{CP(-1)}^{*0}\pi^+)$

 $\frac{DOCUMENT~ID}{}$ $\frac{TECN}{}$ $\frac{COMMENT}{}$ ABE 06 BELL $e^+e^-
ightarrow \Upsilon(4S)$ $0.09\pm0.03\pm0.01$

¹ Reports a double ratio of B($B^+ \to (D^*_{CP(-1)})^0 K^+$)/B($B^+ \to (D^*_{CP(-1)})^0 \pi^+$) and B($B^+
ightarrow \ \overline{D}{}^{*0} \, K^+)/{\rm B}(B^+
ightarrow \ \overline{D}{}^{*0} \, \pi^+)$, 1.15 \pm 0.31 \pm 0.12. We multiply by our best value of B(B⁺ $\rightarrow \overline{D}^{*0}K^+$)/B(B⁺ $\rightarrow \overline{D}^{*0}\pi^+$) = 0.080 \pm 0.011. Our first error is their experiment's error and the second error is systematic error from using our best

$\Gamma(\overline{D}^*(2007)^0 K^*(892)^+)/\Gamma_{\text{total}}$

 Γ_{101}/Γ

Created: 8/21/2014 12:56

VALUE (units 10^{-4}) DOCUMENT ID TECN COMMENT 8.1 ± 1.4 OUR AVERAGE 04K BABR $e^+e^- \rightarrow \Upsilon(4S)$ $8.3 \pm 1.1 \pm 1.0$ ² MAHAPATRA 02 CLE2 $e^+e^- \rightarrow \Upsilon(4S)$ $7.2 \pm 2.2 \pm 2.6$

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

² Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$ and an unpolarized final state.

$\Gamma(\overline{D}^*(2007)^0 K^+ \overline{K}^0)/\Gamma_{\text{total}}$

 Γ_{102}/Γ

VALUE (units 10^{-4})	CL%	DOCUMENT ID		TECN	COMMENT
<10.6	90	¹ DRUTSKOY (02	BELL	$e^+e^- \rightarrow \gamma(4S)$

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(\overline{D}^*(2007)^0 K^+ K^*(892)^0)/\Gamma_{\text{total}}$

 Γ_{103}/Γ

VALUE (units 10^{-4})	DOCUMENT ID	TECN	COMMENT
15.3±3.1±2.9	¹ DRUTSKOY 0	2 BELL	$e^+e^- \rightarrow \gamma(4S)$

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma\big(\overline{D}^*(2007)^0\pi^+\pi^+\pi^-\big)/\Gamma_{\mathsf{total}}$

 Γ_{104}/Γ

VALUE (units 10^{-2})	EVTS	DOCUMENT ID		TECN	COMMENT
1.03 ±0.12 OUR AVERA	AGE				-
$1.055 \!\pm\! 0.047 \!\pm\! 0.129$		$^{ m 1}$ MAJUMDER	04	BELL	$e^+e^- ightarrow~ \varUpsilon(4S)$
$0.94\ \pm0.20\ \pm0.17$	48	2,3 ALAM	94	CLE2	$e^+e^- ightarrow ~ \varUpsilon(4S)$

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(\overline{D}^*(2007)^0 a_1(1260)^+)/\Gamma_{\text{total}}$

 Γ_{105}/Γ

VALUEDOCUMENT IDTECNCOMMENT0.0188
$$\pm$$
0.0040 \pm 0.00341,2 ALAM94 CLE2 $e^+e^- \rightarrow \Upsilon(4S)$

$\Gamma\big(\overline{D}^*(2007)^0\pi^-\pi^+\pi^+\pi^0\big)/\Gamma_{\rm total}$

 Γ_{106}/Γ

$$\Gamma(\overline{D}^{*0}3\pi^{+}2\pi^{-})/\Gamma_{\text{total}}$$

 Γ_{107}/Γ

VALUE (units
$$10^{-3}$$
)DOCUMENT IDTECNCOMMENT5.67 \pm 0.91 \pm 0.851 MAJUMDER 04BELL $e^+e^- \rightarrow \Upsilon(4S)$

 $^{^2}$ ALAM 94 assume equal production of B^+ and B^0 at the $\Upsilon(4S)$ and use the CLEO II $B(D^*(2007)^0\to D^0\pi^0)$ and absolute $B(D^0\to K^-\pi^+)$ and the PDG 1992 $B(D^0\to K^-\pi^+\pi^0)/B(D^0\to K^-\pi^+)$ and $B(D^0\to K^-2\pi^+\pi^-)/B(D^0\to K^-\pi^+)$.

³ The three pion mass is required to be between 1.0 and 1.6 GeV consistent with an a_1 meson. (If this channel is dominated by a_1^+ , the branching ratio for $\overline{D}^{*0}a_1^+$ is twice that for $\overline{D}^{*0}\pi^+\pi^+\pi^-$.)

 $^{^1}$ ALAM 94 value is twice their $\Gamma(\overline{D}^*(2007)^0\,\pi^+\,\pi^+\,\pi^-)/\Gamma_{\rm total}$ value based on their observation that the three pions are dominantly in the $a_1(1260)$ mass range 1.0 to 1.6 GeV.

GeV. 2 ALAM 94 assume equal production of B^+ and B^0 at the $\varUpsilon(4S)$ and use the CLEO II $B(D^*(2007)^0\to D^0\pi^0)$ and absolute $B(D^0\to K^-\pi^+)$ and the PDG 1992 $B(D^0\to K^-\pi^+\pi^0)/B(D^0\to K^-\pi^+)$ and $B(D^0\to K^-2\pi^+\pi^-)/B(D^0\to K^-\pi^+)$.

 $^{^1}$ Assumes equal production of B^+ and B^0 at the $\varUpsilon(4S).$ The signal is consistent with all observed $\omega\,\pi^+$ having proceeded through the ρ'^+ resonance at mass 1349 \pm 25 $^{+10}_{-5}$ MeV and width 547 \pm 86 $^{+46}_{-45}$ MeV.

 $^{^1}$ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

 $\Gamma(D^*(2010)^+\pi^0)/\Gamma_{\text{total}}$ Γ_{108}/Γ $< 3.6 \times 10^{-6}$ • • We do not use the following data for averages, fits, limits, etc. $< 1.7 \times 10^{-4}$ ² BRANDENB... 98 CLE2 $e^+e^- \rightarrow \Upsilon(4S)$ ¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$. 2 BRANDENBURG 98 assume equal production of B^+ and B^0 at \varUpsilon (4S) and use the D^* partial reconstruction technique. The first error is their experiment's error and the second error is the systematic error from the PDG 96 value of B($D^* \rightarrow D\pi$). $\Gamma(D^*(2010)^+ K^0)/\Gamma_{\text{total}}$ Γ_{109}/Γ

<u>VALUE</u>	CL%	DOCUMENT ID		TECN	COMMENT
<9.0 × 10 ⁻⁶	90	¹ AUBERT,B	05E	BABR	$e^+e^- \rightarrow \Upsilon(4S)$
• • • We do not use the	following	data for averages	s, fits,	limits, e	etc. • • •

 $< 9.5 \times 10^{-5}$ ¹ GRITSAN 01 CLE2 $e^+e^- \rightarrow \Upsilon(4S)$ 90

$\Gamma(D^*(2010)^-\pi^+\pi^+\pi^0)/\Gamma_{\text{total}}$

 Γ_{110}/Γ

VALUE ¹ ALBRECHT 90J ARG $0.0152 \pm 0.0071 \pm 0.0001$

• • We do not use the following data for averages, fits, limits, etc. •

² ALBRECHT $0.043 \pm 0.013 \pm 0.026$ 24 87C ARG

 1 ALBRECHT 90J reports 0.018 \pm 0.007 \pm 0.005 from a measurement of $[\Gamma(B^+ \to D^*(2010)^-\pi^+\pi^+\pi^0)/\Gamma_{ ext{total}}] \times [B(D^*(2010)^+ \to D^0\pi^+)]$ assuming B($D^*(2010)^+ \to D^0 \pi^+$) = 0.57 \pm 0.06, which we rescale to our best value B($D^*(2010)^+ \to D^0 \pi^+$) = (67.7 \pm 0.5) \times 10⁻². Our first error is their experiment's error and our second error is the systematic error from using our best value. Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$ and uses Mark III branching fractions for

 2 ALBRECHT 87C use PDG 86 branching ratios for D and $D^*(2010)$ and assume $B(\Upsilon(4S) \rightarrow B^+B^-) = 55\%$ and $B(\Upsilon(4S) \rightarrow B^0\overline{B}^0) = 45\%$. Superseded by AL-

$\Gamma(D^*(2010)^-\pi^+\pi^+\pi^+\pi^-)/\Gamma_{\text{total}}$

 Γ_{111}/Γ

Created: 8/21/2014 12:56

$VALUE$ (units 10^{-3})	CL%	DOC	UMENT ID		TECN	COMMENT
$2.56 \pm 0.26 \pm 0.33$		1 _{MA}	JUMDER	04	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$
\bullet \bullet We do not use the	following	data f	or averages	, fits,	limits,	etc. • • •

² ALBRECHT 90J ARG $e^+e^- \rightarrow \Upsilon(4S)$ 90

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

² Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$ and uses Mark III branching fractions for the D and $D^*(2010)$.

```
\Gamma(\overline{D}^{**0}\pi^+)/\Gamma_{\text{total}}
                                                                                                         \Gamma_{112}/\Gamma
        D^{**0} represents an excited state with mass 2.2 < M < 2.8 GeV/c<sup>2</sup>.
                                               DOCUMENT ID TECN COMMENT
VALUE (units 10^{-3})
                                           ^{1,2} AUBERT,BE 06J BABR e^+e^- \rightarrow \Upsilon(4S)
5.9 \pm 1.3 \pm 0.2
   ^1 AUBERT,BE 06J reports [\Gamma(B^+ 	o \overline{D}^{**0}\pi^+)/\Gamma_{total}] / [B(B^+ 	o \overline{D}^0\pi^+)] = 1.22 \pm 1.00
     0.13 \pm 0.23 which we multiply by our best value B(B^+ \rightarrow \overline{D}^0 \pi^+) = (4.81 \pm 0.15) \times
     10^{-3}. Our first error is their experiment's error and our second error is the systematic
     error from using our best value.
   <sup>2</sup>Uses a missing-mass method. Does not depend on D branching fractions or B^+/B^0
\Gamma(\overline{D}_1^*(2420)^0\pi^+)/\Gamma_{\text{total}}
                                                                                                         \Gamma_{113}/\Gamma
                                                    DOCUMENT ID
                                                                         TECN
0.0015±0.0006 OUR AVERAGE Error includes scale factor of 1.3.
                                                 <sup>1</sup> ALAM
0.0011 \pm 0.0005 \pm 0.0002
                                                  <sup>2</sup> ALBRECHT
0.0025 \pm 0.0007 \pm 0.0006
                                                                        94D ARG
   ^1 ALAM 94 assume equal production of B^+ and B^0 at the \Upsilon(4S) and use the CLEO II
     B(D^*(2010)^+ \rightarrow D^0\pi^+) and absolute B(D^0 \rightarrow K^-\pi^+) and the PDG 1992 B(D^0 \rightarrow K^-\pi^+)
     K^-\pi^+\pi^0)/B(D^0\to K^-\pi^+) and assuming B(D_1(2420)^0\to D^*(2010)^+\pi^-)=67\%.
   <sup>2</sup>ALBRECHT 94D assume equal production of B^{+} and B^{0} at the \Upsilon(4S) and use the
     CLEO II B(D^*(2010)^+ \rightarrow D^0 \pi^+) assuming B(D_1(2420)^0 \rightarrow D^*(2010)^+ \pi^-) =
\Gamma(\overline{D}_1(2420)^0\pi^+ \times B(\overline{D}_1^0 \to \overline{D}^0\pi^+\pi^-))/\Gamma_{\text{total}}
                                                                                                         \Gamma_{114}/\Gamma
VALUE (units 10^{-4})
                                               DOCUMENT ID
                                                                           TECN
2.5 ^{+1.7}_{-1.4} OUR FIT Error includes scale factor of 4.0.
1.85\pm0.29^{igoplus 0.35}_{-0.55}
                                             <sup>1</sup> ABE
                                                                   05A BELL e^+e^- \rightarrow \Upsilon(4S)
   <sup>1</sup> Assumes equal production of B^+ and B^0 at the \Upsilon(4S).
\Gamma(\overline{D}_1(2420)^0\pi^+\times B(\overline{D}_1^0\to \overline{D}^0\pi^+\pi^-))/\Gamma(\overline{D}^0\pi^+\pi^+\pi^-)
                                                                                                      \Gamma_{114}/\Gamma_{82}
                                               DOCUMENT ID TECN COMMENT
VALUE (units 10^{-2})
 4.4^{+3.3}_{-2.6} OUR FIT Error includes scale factor of 4.0.
10.3 \pm 1.5 \pm 0.9
                                               AAIJ
                                                                   11E LHCB pp at 7 TeV
\Gamma(\overline{D}_1(2420)^0\pi^+\times B(\overline{D}_1^0\to \overline{D}^0\pi^+\pi^- \text{(nonresonant))})/\Gamma(\overline{D}^0\pi^+\pi^+\pi^-)
                                                                                                      \Gamma_{115}/\Gamma_{82}
VALUE (units 10^{-2})
                                               DOCUMENT ID TECN COMMENT
4.0±0.7±0.5
                                                                   11E LHCB pp at 7 TeV
   <sup>1</sup> Excludes decays where \overline{D}_1(2420)^0 \rightarrow D*(2010)^-\pi^+.
\Gamma(\overline{D}_{2}^{*}(2462)^{0}\pi^{+} \times B(\overline{D}_{2}^{*}(2462)^{0} \to D^{-}\pi^{+}))/\Gamma_{\text{total}}
                                                                                                         \Gamma_{116}/\Gamma
VALUE (units 10^{-4})
                                               DOCUMENT ID TECN COMMENT
3.5±0.4 OUR AVERAGE
                                             <sup>1</sup> AUBERT
                                                                   09AB BABR e^+e^- \rightarrow \Upsilon(4S)
3.5 \pm 0.2 \pm 0.4
                                             <sup>1</sup> ABE
                                                                   04D BELL e^+e^- \rightarrow \Upsilon(4S)
3.4 \pm 0.3 \pm 0.72
   <sup>1</sup> Assumes equal production of B^+ and B^0 at the \Upsilon(4S).
```

Page 49

Created: 8/21/2014 12:56

HTTP://PDG.LBL.GOV

```
\Gamma(\overline{D}_{2}^{*}(2462)^{0}\pi^{+}\times B(\overline{D}_{2}^{*0}\rightarrow \overline{D}^{0}\pi^{-}\pi^{+}))/\Gamma(\overline{D}^{0}\pi^{+}\pi^{+}\pi^{-})
4.0\pm1.0\pm0.4
                                                                          11E LHCB pp at 7 TeV
\Gamma(\overline{D}_2^*(2462)^0\pi^+\times B(\overline{D}_2^{*0}\to \overline{D}^0\pi^-\pi^+ \text{(nonresonant))})/\Gamma(\overline{D}^0\pi^+\pi^+\pi^-)
                                                                                                                \Gamma_{118}/\Gamma_{82}
 < 3.0 \times 10^{-2}
                                                                          11E LHCB pp at 7 TeV
   <sup>1</sup> Excludes decays where \overline{D}_{2}^{*}(2462)^{0} \rightarrow D^{*}(2010)^{-}\pi^{+}.
\Gamma(\overline{D}_{2}^{*}(2462)^{0}\pi^{+}\times B(\overline{D}_{2}^{*0}\to D^{*}(2010)^{-}\pi^{+}))/\Gamma(\overline{D}^{0}\pi^{+}\pi^{+}\pi^{-})
                                                                                                               \Gamma_{119}/\Gamma_{82}
                                                 DOCUMENT ID TECN COMMENT

AALL 11E LHCR 22 27 7.
VALUE (units 10^{-2}
                                                                         11E LHCB pp at 7 TeV
3.9 \pm 1.2 \pm 0.4
   <sup>1</sup> Uses B(D^*(2010)^+ \rightarrow D^0 \pi^+) = (67.7 +- 0.5)%.
\Gamma(\overline{D}_{0}^{*}(2400)^{0}\pi^{+}\times B(\overline{D}_{0}^{*}(2400)^{0}\to D^{-}\pi^{+}))/\Gamma_{\text{total}}
                                                                                                                   \Gamma_{120}/\Gamma
VALUE (units 10^{-4})
                                                    DOCUMENT ID TECN COMMENT
6.4±1.4 OUR AVERAGE
                                                                          09AB BABR e^+e^- \rightarrow \Upsilon(4S)
                                                 <sup>1</sup> AUBERT
6.8 \pm 0.3 \pm 2.0
                                                 <sup>1</sup> ABE
                                                                          04D BELL e^+e^- \rightarrow \Upsilon(4S)
6.1\!\pm\!0.6\!\pm\!1.8
   <sup>1</sup> Assumes equal production of B^+ and B^0 at the \Upsilon(4S).
\Gamma(\overline{D}_1(2421)^0\pi^+\times B(\overline{D}_1(2421)^0\to D^{*-}\pi^+))/\Gamma_{\text{total}}
VALUE (units 10^{-4})
                                                    DOCUMENT ID
                                                                          TECN COMMENT
                                                 <sup>1</sup> ABE
                                                                          04D BELL e^+e^- \rightarrow \Upsilon(4S)
6.8 \pm 0.7 \pm 1.3
   <sup>1</sup> Assumes equal production of B^+ and B^0 at the \Upsilon(4S).
\Gamma(\overline{D}_{2}^{*}(2462)^{0}\pi^{+}\times B(\overline{D}_{2}^{*}(2462)^{0}\to D^{*-}\pi^{+}))/\Gamma_{\text{total}}
                                                                                                                   \Gamma_{122}/\Gamma
                                                    DOCUMENT ID TECN COMMENT
VALUE (units 10^{-4})
                                                                          04D BELL e^+e^- \rightarrow \Upsilon(4S)
1.8 \pm 0.3 \pm 0.4
   <sup>1</sup> Assumes equal production of B^+ and B^0 at the \Upsilon(4S).
\Gamma(\overline{D}'_1(2427)^0\pi^+ \times B(\overline{D}'_1(2427)^0 \rightarrow D^{*-}\pi^+))/\Gamma_{\text{total}}
                                                                                                                   \Gamma_{123}/\Gamma
VALUE (units 10^{-4})
                                                    DOCUMENT ID TECN COMMENT
5.0 \pm 0.4 \pm 1.1
   <sup>1</sup> Assumes equal production of B^+ and B^0 at the \Upsilon(4S).
\Gamma(\overline{D}_1(2420)^0\pi^+\times \mathsf{B}(\overline{D}_1^0\to \overline{D}^{*0}\pi^+\pi^-)\,\big)/\Gamma_{\mathsf{total}}
                                                                                                                   \Gamma_{124}/\Gamma
                                                    DOCUMENT ID TECN COMMENT
                                                                         05A BELL e^+e^- \rightarrow \Upsilon(4S)
                                                 ^{1} ABF
 < 0.06
                                    90
   <sup>1</sup> Assumes equal production of B^+ and B^0 at the \Upsilon(4S).
\Gamma(\overline{D}_1^*(2420)^0 \rho^+)/\Gamma_{\text{total}}
                                                                                                                   \Gamma_{125}/\Gamma
                                                    DOCUMENT ID TECN COMMENT
<u>VALU</u>E
                                                                          94 CLE2 e^+e^- \rightarrow \Upsilon(4S)
 < 0.0014
   ^1ALAM 94 assume equal production of B^+ and B^0 at the \Upsilon(4S) and use the CLEO II
     B(D^*(2010)^+ \to D^0\pi^+) assuming B(D_1(2420)^0 \to D^*(2010)^+\pi^-) = 67\%.
HTTP://PDG.LBL.GOV
                                                       Page 50
                                                                                   Created: 8/21/2014 12:56
```

 $\Gamma(\overline{D}_2^*(2460)^0\pi^+)/\Gamma_{\text{total}}$

 Γ_{126}/Γ

VALUE	CL%	DOCUMENT ID		TECN	COMMENT
<0.0013	90	¹ ALAM	94	CLE2	$e^+e^- ightarrow \Upsilon(4S)$

• • • We do not use the following data for averages, fits, limits, etc. • • •

<0.0028 90 2 ALAM 94 CLE2 $e^+e^- \rightarrow \Upsilon(4S)$ <0.0023 90 3 ALBRECHT 94D ARG $e^+e^- \rightarrow \Upsilon(4S)$

$\Gamma\big(\overline{D}_2^*(2460)^0\pi^+\times\mathsf{B}(\overline{D}_2^{*0}\to\overline{D}^{*0}\pi^+\pi^-)\,\big)/\Gamma_{\mathsf{total}}$

 Γ_{127}/Γ

VALUE (units 10 ⁻⁴)	CL%	DOCUMENT ID		TECN	COMMENT
<0.22	90	¹ ABE	05A	BELL	$e^+e^- ightarrow \gamma(4S)$

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(\overline{D}_2^*(2460)^0 \rho^+)/\Gamma_{\text{total}}$

 Γ_{128}/Γ

VALUE	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT	
<0.0047	90	¹ ALAM	94	CLE2	$e^+e^- ightarrow \gamma(4S)$	
< 0.005	90	² ALAM	94	CLE2	$e^+e^- \rightarrow \Upsilon(4S)$	

¹ ALAM 94 assume equal production of B^+ and B^0 at the $\Upsilon(4S)$ and use the Mark III $B(D^+ \to K^- 2\pi^+)$ and $B(D_2^*(2460)^0 \to D^+\pi^-) = 30\%$.

$\Gamma(\overline{D}{}^0D_s^+)/\Gamma_{total}$

 Γ_{129}/Γ

VALUE (units 10^{-3})	DOCUMENT ID		TECN	COMMENT
9.0±0.9 OUR AVERAGE				
$8.6 \pm 0.2 \pm 1.1$	¹ AAIJ	13 AP	LHCB	pp at 7 TeV
$9.5\!\pm\!2.0\!\pm\!0.8$	² AUBERT	06N	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$9.8\!\pm\!2.6\!\pm\!0.9$	³ GIBAUT	96	CLE2	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$14 \pm 8 \pm 1$	⁴ ALBRECHT	92G	ARG	$e^+e^- \rightarrow \Upsilon(4S)$
$13 \pm 6 \pm 1$	⁵ BORTOLETTO) 90	CLEO	$e^+e^- \rightarrow \Upsilon(4S)$
1 0			^	

¹Uses B($B^0 \to D^- D_s^+$) = (7.2 ± 0.8) × 10⁻³.

 $^{^1}$ ALAM 94 assume equal production of B^+ and B^0 at the $\varUpsilon(4S)$ and use the Mark III B($D^+\to~K^-\,2\pi^+)$ and B($D_2^*(2460)^0\to~D^+\,\pi^-)=30\%.$

² ALAM 94 assume equal production of B^+ and B^0 at the $\Upsilon(4S)$ and use the Mark III $B(D^+ \to K^- 2\pi^+)$, the CLEO II $B(D^*(2010)^+ \to D^0\pi^+)$ and $B(D_2^*(2460)^0 \to D^*(2010)^+\pi^-) = 20\%$.

³ ALBRECHT 94D assume equal production of B^+ and B^0 at the $\Upsilon(4S)$ and use the CLEO II B($D^*(2010)^+ \rightarrow D^0\pi^+$) and B($D_2^*(2460)^0 \rightarrow D^*(2010)^+\pi^-$) = 30%.

² ALAM 94 assume equal production of B^+ and B^0 at the $\Upsilon(4S)$ and use the Mark III $B(D^+ \to K^- 2\pi^+)$, the CLEO II $B(D^*(2010)^+ \to D^0\pi^+)$ and $B(D_2^*(2460)^0 \to D^*(2010)^+\pi^-) = 20\%$.

² AUBERT 06N reports $(0.92 \pm 0.14 \pm 0.18) \times 10^{-2}$ from a measurement of $[\Gamma(B^+ \to \overline{D}^0 D_s^+)/\Gamma_{\text{total}}] \times [B(D_s^+ \to \phi \pi^+)]$ assuming $B(D_s^+ \to \phi \pi^+) = 0.0462 \pm 0.0062$, which we rescale to our best value $B(D_s^+ \to \phi \pi^+) = (4.5 \pm 0.4) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

our best value. 3 GIBAUT 96 reports 0.0126 \pm 0.0022 \pm 0.0025 from a measurement of $[\Gamma(B^+ \to \overline{D}^0 D_s^+)/\Gamma_{\text{total}}] \times [B(D_s^+ \to \phi \pi^+)]$ assuming $B(D_s^+ \to \phi \pi^+) = 0.035$, which

we rescale to our best value B($D_s^+ \to \phi \pi^+$) = (4.5 ± 0.4) × 10⁻². Our first error is their experiment's error and our second error is the systematic error from using our best

 4 ALBRECHT 92G reports 0.024 \pm 0.012 \pm 0.004 from a measurement of [$\Gamma(B^+$ ightarrow $\overline{D}{}^0D_s^+)/\Gamma_{ ext{total}}] \times [\mathsf{B}(D_s^+ o \ \phi \pi^+)] \text{ assuming } \mathsf{B}(D_s^+ o \ \phi \pi^+) = 0.027, \text{ which we}$ rescale to our best value B($D_s^+ \to \phi \pi^+$) = (4.5 ± 0.4) × 10⁻². Our first error is their experiment's error and our second error is the systematic error from using our best value. Assumes PDG 1990 D^0 branching ratios, e.g., $B(D^0 \rightarrow K^-\pi^+) = 3.71 \pm 0.25\%$.

⁵BORTOLETTO 90 reports 0.029 ± 0.013 from a measurement of $[\Gamma(B^+ \to \overline{D}{}^0 D_s^+)/$ $\Gamma_{ ext{total}}] imes [B(D_{s}^{+}
ightarrow \phi \pi^{+})]$ assuming $B(D_{s}^{+}
ightarrow \phi \pi^{+}) = 0.02$, which we rescale to our best value B($D_s^+ \rightarrow \phi \pi^+$) = $(4.5 \pm 0.4) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$$\Gamma(D_{s0}(2317)^{+}\overline{D}^{0} \times B(D_{s0}(2317)^{+} \to D_{s}^{+}\pi^{0}))/\Gamma_{\text{total}}$$
 Γ_{130}/Γ

VALUE (units 10^{-3})

0.73^{+0.22}_{-0.17} OUR AVERAGE

$\Gamma(D_{s0}(2317)^+ \overline{D}{}^0 \times B(D_{s0}(2317)^+ \to D_s^{*+} \gamma)) / \Gamma_{total}$ Γ_{131}/Γ

VALUE (units 10^{-3})	CL%	DOCUMENT ID	TECN	COMMENT
<0.76	90	¹ KROKOVNY 03	в BELL	$e^+e^- ightarrow \gamma(4S)$

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(D_{s0}(2317)^+ \overline{D}^*(2007)^0 \times B(D_{s0}(2317)^+ \to D_s^+ \pi^0)) / \Gamma_{total}$

VALUE (units 10⁻³)

DOCUMENT ID TECN COMMENT

Created: 8/21/2014 12:56

 $0.9\pm0.6^{+0.4}_{-0.3}$

¹ AUBERT.B 04S BABR $e^+e^- \rightarrow \Upsilon(4S)$

 $^{^1}$ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$. 2 AUBERT,B 04S reports (1.0 \pm 0.3 $^{+0.4}_{-0.2})\times 10^{-3}$ from a measurement of [\Gamma($B^+\to 10^{-3})$ and 10^{-3} from the superior of the superior o $D_{s0}(2317)^+ \overline{D}{}^0 \times B(D_{s0}(2317)^+ \to D_s^+ \pi^0)) / \Gamma_{\text{total}}] \times [B(D_s^+ \to \phi \pi^+)] \text{ assuming}$ $B(D_s^+ \to \phi \pi^+) = 0.036 \pm 0.009$, which we rescale to our best value $B(D_s^+ \to \phi \pi^+)$ $=(4.5\pm0.4)\times10^{-2}$. Our first error is their experiment's error and our second error is

the systematic error from using our best value. 3 KROKOVNY 03B reports $(0.81^{+0.30}_{-0.27}\pm0.24)\times10^{-3}$ from a measurement of $[\Gamma(B^+\to 1.00)]$ $D_{s0}(2317)^+ \overline{D}{}^0 \times B(D_{s0}(2317)^+ \to D_s^+ \pi^0)) / \Gamma_{\text{total}}] \times [B(D_s^+ \to \phi \pi^+)] \text{ assuming}$ $B(D_s^+ \to \phi \pi^+) = 0.036 \pm 0.009$, which we rescale to our best value $B(D_s^+ \to \phi \pi^+)$ $= (4.5 \pm 0.4) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(D_{s,I}(2457)^{+}\overline{D}^{0})/\Gamma_{\text{total}}$

 Γ_{133}/Γ

VALUE (units 10^{-3})

COMMENT

$3.1^{+1.0}_{-0.0}$ OUR AVERAGE

$4.3 \pm 1.6 \pm 1.3$	$^{ m 1}$ AUBERT	06N	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$4.6^{+1.8}_{-1.6}{\pm}1.0$	^{2,3} AUBERT,B	04 S	BABR	$e^+e^- ightarrow \ \varUpsilon(4S)$
$2.1^{+1.1}_{-0.9}\pm0.5$	^{2,4} KROKOVNY	03 B	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$

 $^{^{}m 1}$ Uses a missing-mass method in the events that one of the B mesons is fully reconstructed.

$\Gamma(D_{s,J}(2457)^+\overline{D}^0\times B(D_{s,J}(2457)^+\to D_s^+\gamma))/\Gamma_{\text{total}}$

 Γ_{134}/Γ

VALUE (units 10^{-3})

DOCUMENT ID TECN

Created: 8/21/2014 12:56

$0.46^{+0.13}_{-0.11}$ OUR AVERAGE

$$\Gamma(D_{sJ}(2457)^{+}\overline{D}^{0} \times B(D_{sJ}(2457)^{+} \to D_{s}^{+}\pi^{+}\pi^{-}))/\Gamma_{\text{total}}$$
 Γ_{135}/Γ

VALUE (units 10^{-3})	CL%	DOCUMENT ID	TECN	COMMENT
<0.22	90	1 KROKOVNY 0	3B BELL	$e^+e^- ightarrow \gamma(4S)$

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

² Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

 $^{^3}$ AUBERT,B 04S reports $[\Gamma(B^+ \rightarrow D_{sJ}(2457)^+\overline{D}{}^0)/\Gamma_{ ext{total}}] \times [B(D_{s1}(2460)^+ \rightarrow D_{sJ}(2457)^+\overline{D}{}^0)/\Gamma_{ ext{total}}]$ $[D_s^{*+}\pi^0] = (2.2^{+0.8}_{-0.7}\pm 0.3)\times 10^{-3}$ which we divide by our best value $B(D_{s1}(2460)^+ \rightarrow 0.00)$ $D_s^{*+}\pi^0$) = $(48 \pm 11) \times 10^{-2}$. Our first error is their experiment's error and our second

error is the systematic error from using our best value. ⁴ KROKOVNY 03B reports $[\Gamma(B^+ \to D_{sJ}(2457)^+ \overline{D}{}^0)/\Gamma_{\text{total}}] \times [B(D_{s1}(2460)^+ \to D_{sJ}(2457)^+ \overline{D}{}^0)/\Gamma_{\text{total}}]$ $[D_s^{*+}\pi^0] = (1.0^{+0.5}_{-0.4}\pm0.1)\times10^{-3}$ which we divide by our best value $B(D_{s1}(2460)^+ \rightarrow 0.00)$ $D_s^{*+}\pi^0$) = $(48 \pm 11) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

 $^{^1}$ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$. 2 AUBERT,B 04S reports (0.6 \pm 0.2 $^{+0.2}_{-0.1})\times 10^{-3}$ from a measurement of [\Gamma($B^+\to 10^{-3})$ and 10^{-3} from the surface of the surfa $D_{sJ}(\text{2457})^+ \, \overline{D}{}^0 \times \, \text{B}(D_{sJ}(\text{2457})^+ \, \rightarrow \, D_s^+ \, \gamma)) / \Gamma_{\text{total}}] \, \times \, [\text{B}(D_s^+ \, \rightarrow \, \phi \, \pi^+)] \, \, \text{assuming}$ B($D_s^+ \to \phi \pi^+$) = 0.036 \pm 0.009, which we rescale to our best value B($D_s^+ \to \phi \pi^+$) = $(4.5\pm0.4)\times10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. ³ KROKOVNY 03B reports $(0.56^{+0.16}_{-0.15}\pm0.17)\times10^{-3}$ from a measurement of $[\Gamma(B^+\to B^+)]$

 $D_{sJ}(\text{2457})^+ \, \overline{D}{}^0 \times \, \text{B}(D_{sJ}(\text{2457})^+ \rightarrow \, D_s^+ \, \gamma)) / \Gamma_{\text{total}}] \, \times \, [\text{B}(D_s^+ \rightarrow \, \phi \, \pi^+)] \, \, \text{assuming}$ $B(D_s^+ \to \phi \pi^+) = 0.036 \pm 0.009$, which we rescale to our best value $B(D_s^+ \to \phi \pi^+)$ $= (4.5 \pm 0.4) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

```
\Gamma(D_{sJ}(2457)^+ \overline{D}{}^0 \times B(D_{sJ}(2457)^+ \to D_s^+ \pi^0)) / \Gamma_{\text{total}}
VALUE (units 10^{-3})
                                                  DOCUMENT ID TECN COMMENT
                                                <sup>1</sup> KROKOVNY 03B BELL e^+e^- \rightarrow \Upsilon(4S)
                                   90
 < 0.27
   <sup>1</sup> Assumes equal production of B^+ and B^0 at the \Upsilon(4S).
\Gamma(D_{s,I}(2457)^+\overline{D}^0\times B(D_{s,I}(2457)^+\to D_s^{*+}\gamma))/\Gamma_{\text{total}}
                                                                                                               \Gamma_{137}/\Gamma
                                               \frac{\textit{DOCUMENT ID}}{1} KROKOVNY 03B BELL e^+e^-
ightarrow \varUpsilon(4S)
VALUE (units 10^{-3})
   <sup>1</sup> Assumes equal production of B^+ and B^0 at the \Upsilon(4S).
\Gamma(D_{s,I}(2457)^{+}\overline{D}^{*}(2007)^{0})/\Gamma_{\text{total}}
                                                                                                               \Gamma_{138}/\Gamma
VALUE (units 10^{-3})
                                                  DOCUMENT ID TECN COMMENT
12.0±3.0 OUR AVERAGE
                                                <sup>1</sup> AUBERT
                                                                       06N BABR e^+e^- \rightarrow \Upsilon(4S)
11.2 \pm 2.6 \pm 2.0
16 \begin{array}{cc} +8 \\ -6 \end{array} \pm 4
                                             2,3 AUBERT.B
                                                                       04S BABR e^+e^- \rightarrow \Upsilon(4S)
   ^{
m 1} Uses a missing-mass method in the events that one of the B mesons is fully reconstructed.
     AUBERT,B 04S reports [\Gamma(B^+ \to D_{sJ}(2457)^+ \overline{D}^*(2007)^0)/\Gamma_{total}] \times [B(D_{s1}(2460)^+ \to D_{s}^{*+}\pi^0)] = (7.6 \pm 1.7^{+3.2}_{-2.4}) \times 10^{-3} which we divide by our
   <sup>2</sup>AUBERT,B 04S reports [\Gamma(B^+ \rightarrow
     best value B(D_{s1}(2460)^+ \rightarrow D_s^{*+} \pi^0) = (48 \pm 11) \times 10^{-2}. Our first error is their experiment's error and our second error is the systematic error from using our best value.
   <sup>3</sup> Assumes equal production of B^+ and B^0 at the \Upsilon(4S).
\Gamma(D_{s,J}(2457)^+ \overline{D}^*(2007)^0 \times B(D_{s,J}(2457)^+ \to D_s^+ \gamma)) / \Gamma_{\text{total}}
                                                  DOCUMENT ID TECN COMMENT
VALUE (units 10^{-3})
1.4\pm0.4^{+0.6}_{-0.4}
                                                                    04S BABR e^+e^- \rightarrow \Upsilon(4S)
                                                <sup>1</sup> AUBERT,B
   <sup>1</sup> Assumes equal production of B^+ and B^0 at the \Upsilon(4S).
\Gamma(\overline{D}{}^{0}D_{s1}(2536)^{+} \times B(D_{s1}(2536)^{+} \rightarrow D^{*}(2007)^{0}K^{+}))/\Gamma_{total}
                                                  DOCUMENT ID
VALUE (units 10^{-4})
                                                                       TECN COMMENT
                                                                        08B BABR e^+e^- \rightarrow \Upsilon(4S)
   2.16 \pm 0.52 \pm 0.45
• • • We do not use the following data for averages, fits, limits, etc. • • •
                                   90
                                                                       03X BABR Repl. by AUBERT 08B
                                                  AUBERT
   <sup>1</sup> Assumes equal production of B^+ and B^0 at the \Upsilon(4S).
\Gamma(\overline{D}^0 D_{s1}(2536)^+ \times B(D_{s1}(2536)^+ \to D^*(2007)^0 K^+ + D^*(2010)^+ K^0))/
Γ<sub>total</sub>
                                                                                                               \Gamma_{140}/\Gamma
VALUE (units 10^{-4})
                                                                      3.97 \pm 0.85 \pm 0.56
   <sup>1</sup>Uses \Gamma(D^*(2007)^0 \rightarrow D^0\pi^0) / \Gamma(D^*(2007)^0 \rightarrow D^0\gamma) = 1.74 \pm 0.13 and
     \Gamma(D_{s1}(2536)^+ \to D^*(2007)^0 K^+) / \Gamma(D_{s1}(2536)^+ \to D^*(2010)^+ K^0) = 1.36 \pm 0.2.
```

Created: 8/21/2014 12:56

² Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

```
\Gamma(\overline{D}^*(2007)^0 D_{s1}(2536)^+ \times B(D_{s1}(2536)^+ \to D^*(2007)^0 K^+))/\Gamma_{\text{total}}
                                                                                                                                                                                                   \Gamma_{142}/\Gamma
                                                                                                                                 TECN COMMENT
                                                                                    <sup>1</sup> AUBERT
                                                                                                                             08B BABR e^+e^- \rightarrow \Upsilon(4S)
• • • We do not use the following data for averages, fits, limits, etc. • • •
                                                                                                                             03X BABR Repl. by AUBERT 08B
 <7
                                                                                        AUBERT
      <sup>1</sup> Assumes equal production of B^+ and B^0 at the \Upsilon(4S).
\Gamma(\overline{D}^0 D_{s1}(2536)^+ \times B(D_{s1}(2536)^+ \to D^{*+} K^0)) / \Gamma_{total}
                                                                                                                                                                                                   \Gamma_{143}/\Gamma
                                                                                       DOCUMENT ID TECN COMMENT
VALUE (units 10^{-4})
                                                                                                                             08B BABR e^+e^- \rightarrow \Upsilon(4S)
2.30 \pm 0.98 \pm 0.43
     ^1 Assumes equal production of B^+ and B^0 at the \varUpsilon(4S).
\Gamma(\overline{D}{}^{0}D_{s,I}(2700)^{+} \times B(D_{s,I}(2700)^{+} \to D^{0}K^{+}))/\Gamma_{\text{total}}
                                                                                                                                                                                                   \Gamma_{144}/\Gamma
                                                                                        DOCUMENT ID TECN COMMENT
VALUE (units 10^{-4})
                                                                                    <sup>1</sup> BRODZICKA 08 BELL e^+e^- \rightarrow \Upsilon(4S)
11.3 \pm 2.2 ^{+1.4}_{-2.8}
      <sup>1</sup> Assumes equal production of B^+ and B^0 at the \Upsilon(4S).
\Gamma(\overline{D}^{*0}D_{s1}(2536)^{+} \times B(D_{s1}(2536)^{+} \to D^{*+}K^{0}))/\Gamma_{total}
                                                                                                                                                                                                   \Gamma_{145}/\Gamma
                                                                                    rac{\textit{DOCUMENT ID}}{1} O8B BABR e^+e^-
ightarrow \varUpsilon(4S)
VALUE (units 10^{-4})
      <sup>1</sup> Assumes equal production of B^+ and B^0 at the \Upsilon(4S).
\Gamma(\overline{D}^{*0}D_{s,I}(2573)^{+} \times B(D_{s,I}(2573)^{+} \to D^{0}K^{+}))/\Gamma_{total}
                                                                                                                                                                                                   \Gamma_{146}/\Gamma
                                                                                       DOCUMENT ID TECN COMMENT
VALUE (units 10<sup>-4</sup>)
                                                                                                                             03X BABR e^+e^- \rightarrow \Upsilon(4S)
                                                                                        AUBERT
  <2
\Gamma(\overline{D}^*(2007)^0 D_{s,J}(2573)^+ \times B(D_{s,J}(2573)^+ \to D^0 K^+))/\Gamma_{\text{total}}
                                                                                                                                                                                                   \Gamma_{147}/\Gamma
VALUE (units 10^{-4})
                                                                                        DOCUMENT ID
                                                                                                                             TECN COMMENT
                                                                                                                             03X BABR e^+e^- \rightarrow \Upsilon(4S)
  <5
\Gamma(\overline{D}^0 D_s^{*+})/\Gamma_{\text{total}}
                                                                                                                                                                                                   \Gamma_{148}/\Gamma
0.0076 ± 0.0016 OUR AVERAGE
                                                                                    <sup>1</sup> AUBERT
                                                                                                                             06N BABR e^+e^- \rightarrow \Upsilon(4S)
0.0079 \pm 0.0017 \pm 0.0007
                                                                                    <sup>2</sup> GIBAUT
                                                                                                                             96 CLE2 e^+e^- \rightarrow \Upsilon(4S)
0.0068 \pm 0.0025 \pm 0.0006
                                                                                    <sup>3</sup> ALBRECHT
                                                                                                                             92G ARG
0.010\ \pm0.007\ \pm0.001
      ^1 AUBERT 06N reports (0.77 \pm 0.15 \pm 0.13) 	imes 10^{-2} from a measurement of [\Gamma(B^+ 	o
         \overline{D}{}^0\textit{D}_{\textit{s}}^{*+})/\Gamma_{\mathsf{total}}]\times[\mathsf{B}(\textit{D}_{\textit{s}}^+\rightarrow~\phi\pi^+)]~\mathsf{assuming}~\mathsf{B}(\textit{D}_{\textit{s}}^+\rightarrow~\phi\pi^+)=0.0462\pm0.0062,
         which we rescale to our best value B(D_s^+ \to \phi \pi^+) = (4.5 \pm 0.4) \times 10<sup>-2</sup>. Our first
         error is their experiment's error and our second error is the systematic error from using
         our best value.
      ^2 GIBAUT 96 reports 0.0087 \pm 0.0027 \pm 0.0017 from a measurement of [\Gamma(B^+ 
ightarrow
         \overline{D}{}^0D_s^{*+})/\Gamma_{\mathsf{total}}] \times [\mathsf{B}(D_s^+ 	o \phi \pi^+)] \text{ assuming } \mathsf{B}(D_s^+ 	o \phi \pi^+) = 0.035, \text{ which } 0.035,
         we rescale to our best value B(D_s^+ \to \phi \pi^+) = (4.5 ± 0.4) × 10<sup>-2</sup>. Our first error is
```

their experiment's error and our second error is the systematic error from using our best value.

³ ALBRECHT 92G reports $0.016 \pm 0.012 \pm 0.003$ from a measurement of $[\Gamma(B^+ \to \overline{D}^0 D_s^{*+})/\Gamma_{\text{total}}] \times [B(D_s^+ \to \phi \pi^+)]$ assuming $B(D_s^+ \to \phi \pi^+) = 0.027$, which we rescale to our best value $B(D_s^+ \to \phi \pi^+) = (4.5 \pm 0.4) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. Assumes PDG 1990 D^0 branching ratios, e.g., $B(D^0 \to K^- \pi^+) = 3.71 \pm 0.25\%$.

DOCUMENT ID TECN COMMENT

$\Gamma\big(\overline{D}^*(2007)^0\,D_s^+\big)/\Gamma_{\rm total}$

VALUE

Γ_{149}/Γ

0.0082±0.0017 OUR AVERAGE				
$0.0078\!\pm\!0.0018\!\pm\!0.0007$	$^{ m 1}$ AUBERT	06N	BABR	$e^+e^- ightarrow \gamma(4S)$
$0.011\ \pm0.004\ \pm0.001$	² GIBAUT	96	CLE2	$e^+e^- ightarrow \gamma(4S)$
$0.008\ \pm0.006\ \pm0.001$	³ ALBRECHT	92G	ARG	$e^+e^- ightarrow \gamma(4S)$

- ¹ AUBERT 06N reports $(0.76 \pm 0.15 \pm 0.13) \times 10^{-2}$ from a measurement of $[\Gamma(B^+ \to \overline{D}^*(2007)^0 D_s^+)/\Gamma_{\text{total}}] \times [B(D_s^+ \to \phi \pi^+)]$ assuming $B(D_s^+ \to \phi \pi^+) = 0.0462 \pm 0.0062$, which we rescale to our best value $B(D_s^+ \to \phi \pi^+) = (4.5 \pm 0.4) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
- ² GIBAUT 96 reports $0.0140 \pm 0.0043 \pm 0.0035$ from a measurement of $[\Gamma(B^+ \to \overline{D}^*(2007)^0 D_s^+)/\Gamma_{\text{total}}] \times [B(D_s^+ \to \phi \pi^+)]$ assuming $B(D_s^+ \to \phi \pi^+) = 0.035$, which we rescale to our best value $B(D_s^+ \to \phi \pi^+) = (4.5 \pm 0.4) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
- ³ ALBRECHT 92G reports $0.013\pm0.009\pm0.002$ from a measurement of $[\Gamma(B^+\to \overline{D}^*(2007)^0D_s^+)/\Gamma_{\rm total}] \times [B(D_s^+\to\phi\pi^+)]$ assuming $B(D_s^+\to\phi\pi^+)=0.027$, which we rescale to our best value $B(D_s^+\to\phi\pi^+)=(4.5\pm0.4)\times10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. Assumes PDG 1990 D^0 and $D^*(2007)^0$ branching ratios, e.g., $B(D^0\to K^-\pi^+)=3.71\pm0.25\%$ and $B(D^*(2007)^0\to D^0\pi^0)=55\pm6\%$.

$\Gamma(\overline{D}^*(2007)^0 D_s^{*+})/\Gamma_{\text{total}}$

Γ_{150}/Γ

<u>VALUE</u>	<u>DOCUMENT ID</u>		TECN	COMMENT
0.0171±0.0024 OUR AVERAGE				
$0.0167\!\pm\!0.0019\!\pm\!0.0015$	$^{ m 1}$ AUBERT	06N	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$0.024\ \pm0.009\ \pm0.002$	² GIBAUT	96	CLE2	$e^+e^- \rightarrow \Upsilon(4S)$
$0.019 \pm 0.010 \pm 0.002$	³ ALBRECHT	92G	ARG	$e^+e^- ightarrow \gamma(4S)$

- 1 AUBERT 06N reports (1.62 \pm 0.22 \pm 0.18) \times 10 $^{-2}$ from a measurement of [$\Gamma(B^{+} \to \overline{D}^{*}(2007)^{0}D_{s}^{*+})/\Gamma_{total}] \times [B(D_{s}^{+} \to \phi\pi^{+})]$ assuming $B(D_{s}^{+} \to \phi\pi^{+}) = 0.0462 \pm 0.0062$, which we rescale to our best value $B(D_{s}^{+} \to \phi\pi^{+}) = (4.5 \pm 0.4) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
- ² GIBAUT 96 reports $0.0310 \pm 0.0088 \pm 0.0065$ from a measurement of $[\Gamma(B^+ \to \overline{D}^*(2007)^0 D_s^{*+})/\Gamma_{\text{total}}] \times [B(D_s^+ \to \phi \pi^+)]$ assuming $B(D_s^+ \to \phi \pi^+) = 0.035$, which we rescale to our best value $B(D_s^+ \to \phi \pi^+) = (4.5 \pm 0.4) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

³ ALBRECHT 92G reports $0.031\pm0.016\pm0.005$ from a measurement of $[\Gamma(B^+\to \overline{D}^*(2007)^0D_s^{*+})/\Gamma_{\rm total}] \times [B(D_s^+\to \phi\pi^+)]$ assuming $B(D_s^+\to \phi\pi^+)=0.027$, which we rescale to our best value $B(D_s^+\to \phi\pi^+)=(4.5\pm0.4)\times10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. Assumes PDG 1990 D^0 and $D^*(2007)^0$ branching ratios, e.g., $B(D^0\to K^-\pi^+)=3.71\pm0.25\%$ and $B(D^*(2007)^0\to D^0\pi^0)=55\pm6\%$.

 $\Gamma(D_s^{(*)+}\overline{D}^{**0})/\Gamma_{total}$ VALUE $(2.73\pm0.93\pm0.68)\times 10^{-2}$ DOCUMENT ID TECN TECN COMMENT $E^+e^- \rightarrow \Upsilon(4S)$

$\Gamma(\overline{D}^*(2007)^0 D^*(2010)^+)/\Gamma_{\text{total}}$

 Γ_{152}/Γ

VALUE (units 10^{-4})CL%DOCUMENT IDTECNCOMMENT8.1±1.2±1.21 AUBERT,B06ABABR $e^+e^- \rightarrow \Upsilon(4S)$ • • • We do not use the following data for averages, fits, limits, etc.• • •<110</td>90BARATE98QALEP $e^+e^- \rightarrow Z$

$\left[\Gamma(\overline{D}^0D^*(2010)^+) + \Gamma(\overline{D}^*(2007)^0D^+)\right]/\Gamma_{\text{total}}$

 Γ_{153}/Γ

VALUE (units 10^{-4})	CL%	DOCUMENT ID		TECN	COMMENT
<130	90	BARATE	98Q	ALEP	$e^+e^- \rightarrow Z$

$\Gamma(\overline{D}^0 D^*(2010)^+)/\Gamma_{\text{total}}$

 Γ_{154}/Γ

 VALUE (units 10^{-4})
 DOCUMENT ID
 TECN
 COMMENT

 3.9 ± 0.5 OUR AVERAGE

 3.6 ± 0.5 ± 0.4 1 AUBERT,B 06A BABR $e^+e^- \rightarrow \Upsilon(4S)$

 4.57 $\pm 0.71\pm 0.56$ 1 MAJUMDER 05 BELL $e^+e^- \rightarrow \Upsilon(4S)$

 $\Gamma(\overline{D}{}^0D^+)/\Gamma_{\text{total}}$

 Γ_{1EE}/Γ

I (D D)/I total					' 155/'
VALUE (units 10^{-4})	CL%	DOCUMENT ID		TECN	COMMENT
3.8 \pm 0.4 OUR A	VERAGE				
$3.85\!\pm\!0.31\!\pm\!0.38$		$^{ m 1}$ ADACHI	80	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$3.8 \pm 0.6 \pm 0.5$		$^{ m 1}$ AUBERT,B	06A	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
• • • We do not use t	the following	g data for average	s, fits,	limits, e	etc. • • •
$4.83\!\pm\!0.78\!\pm\!0.58$		¹ MAJUMDER	05	BELL	Repl. by ADACHI 08
<67	90	BARATE	98Q	ALEP	$e^+e^- ightarrow Z$

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

¹ AHMED 00B reports their experiment's uncertainties ($\pm 0.78 \pm 0.48 \pm 0.68$)%, where the first error is statistical, the second is systematic, and the third is the uncertainty in the $D_s \to \phi \pi$ branching fraction. We combine the first two in quadrature.

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

 $^{^{1}}$ Assumes equal production of B^{+} and B^{0} at the $\Upsilon(4S)$.

```
\Gamma(\overline{D}{}^{0}D^{+}K^{0})/\Gamma_{\text{total}}
                                                                                                        \Gamma_{156}/\Gamma
VALUE (units 10<sup>-3</sup>)
                                                                          TECN
                                             <sup>1</sup> DEL-AMO-SA...11B BABR e<sup>+</sup>e
   1.55\pm0.17\pm0.13
• • • We do not use the following data for averages, fits, limits, etc. •
                                             <sup>1</sup> AUBERT
                                                                   03X BABR Repl. by DEL-AMO-
                                 90
                                                                                        SANCHEZ 11B
   <sup>1</sup> Assumes equal production of B^+ and B^0 at the \Upsilon(4S).
\Gamma(D^{+}\overline{D}^{*}(2007)^{0})/\Gamma_{\text{total}}
                                                                                                        \Gamma_{157}/\Gamma
VALUE (units 10^{-4})
                                                                       TECN COMMENT
                                             <sup>1</sup> AUBERT B
                                                                   06A BABR e^+e^- \rightarrow \Upsilon(4S)
6.3 \pm 1.4 \pm 1.0
   <sup>1</sup> Assumes equal production of B^+ and B^0 at the \Upsilon(4S).
\Gamma(\overline{D}^*(2007)^0 D^+ K^0)/\Gamma_{\text{total}}
                                                                                                        \Gamma_{158}/\Gamma
VALUE (units 10^{-3})
                                               DOCUMENT ID
                                                                        TECN COMMENT
                                             <sup>1</sup> DEL-AMO-SA...11B BABR e^+e^- \rightarrow \Upsilon(4S)
   2.06 \pm 0.38 \pm 0.30
• • • We do not use the following data for averages, fits, limits, etc. • • •
                                             <sup>1</sup> AUBERT
                                                                   03X BABR Repl. by DEL-AMO-
                                 90
< 6.1
                                                                                        SANCHEZ 11B
   <sup>1</sup> Assumes equal production of B^+ and B^0 at the \Upsilon(4S).
\Gamma(\overline{D}^0\overline{D}^*(2010)^+K^0)/\Gamma_{\text{total}}
                                                                                                        \Gamma_{159}/\Gamma
VALUE (units 10^{-3})
                                               DOCUMENT ID
                                                                        TECN COMMENT
                                             <sup>1</sup> DEL-AMO-SA..11B BABR e^+e^- \rightarrow \Upsilon(4S)
3.81 \pm 0.31 \pm 0.23
• • • We do not use the following data for averages, fits, limits, etc. • • •
5.2 \begin{array}{c} +1.0 \\ -0.9 \end{array} \pm 0.7
                                             <sup>1</sup> AUBERT
                                                                   03X BABR Repl. by DEL-AMO-
                                                                                        SANCHEZ 11B
   <sup>1</sup> Assumes equal production of B^+ and B^0 at the \Upsilon(4S).
\Gamma(\overline{D}^*(2007)^0 D^*(2010)^+ K^0)/\Gamma_{\text{total}}
                                                                                                        \Gamma_{160}/\Gamma
VALUE (units 10^{-3})
                                                                          TECN
                                             <sup>1</sup> DEL-AMO-SA...11B BABR e^+e^- \rightarrow \Upsilon(4S)
9.17 \pm 0.83 \pm 0.90
• • • We do not use the following data for averages, fits, limits, etc. • • •
7.8 \begin{array}{c} +2.3 \\ -2.1 \end{array} \pm 1.4
                                             <sup>1</sup> AUBERT
                                                                   03X BABR Repl. by DEL-AMO-
                                                                                        SANCHEZ 11B
   <sup>1</sup> Assumes equal production of B^+ and B^0 at the \Upsilon(4S).
\Gamma(\overline{D}{}^{0}D^{0}K^{+})/\Gamma_{\text{total}}
                                                                                                        \Gamma_{161}/\Gamma
VALUE (units 10^{-3})
                                           DOCUMENT ID
                                                                      TECN
1.45±0.33 OUR AVERAGE
                                     Error includes scale factor of 2.6.
                                         <sup>1</sup> DEL-AMO-SA...11B BABR e^+e^- \rightarrow \Upsilon(4S)
1.31\!\pm\!0.07\!\pm\!0.12
2.22\pm0.22^{+0.26}_{-0.24}
                                                                      BELL e^+e^- \rightarrow \Upsilon(4S)
                                         <sup>1</sup> BRODZICKA 08

    We do not use the following data for averages, fits, limits, etc.

                                         <sup>1</sup> CHISTOV
1.17 \pm 0.21 \pm 0.15
                                                                      BELL
                                                                                Repl. by BRODZICKA 08
                                         <sup>1</sup> AUBERT
1.9 \pm 0.3 \pm 0.3
                                                               03X BABR Repl. by DEL-AMO-
                                                                                    SANCHEZ 11B
   <sup>1</sup> Assumes equal production of B^+ and B^0 at the \Upsilon(4S).
HTTP://PDG.LBL.GOV
                                                  Page 58
                                                                           Created: 8/21/2014 12:56
```

$\Gamma(\overline{D}^*(2007)^0 D^0 K^+$	·)/Γ _{total}				Γ ₁₆₂ /Γ
$VALUE$ (units 10^{-3})	CL%	DOCUMENT ID		TECN	COMMENT
$2.26 \pm 0.16 \pm 0.17$					$e^+e^- ightarrow ~ \varUpsilon(4S)$
• • • We do not use the	ne followin				
<3.8	90				Repl. by DEL-AMO- SANCHEZ 11B
$^{ m 1}$ Assumes equal prod	uction of	\mathcal{B}^+ and \mathcal{B}^0 at th	$e \Upsilon(4.5)$	S).	
$\Gamma(\overline{D}{}^0D^*(2007)^0K^+$)/Γ _{total}				Γ ₁₆₃ /Γ
VALUE (units 10^{-3})		DOCUMENT ID			
$6.32 \pm 0.19 \pm 0.45$					$e^+e^- ightarrow ~ \varUpsilon(4S)$
• • • We do not use the	ne followin				
4.7 ±0.7 ±0.7					Repl. by DEL-AMO- SANCHEZ 11B
¹ Assumes equal prod	uction of	${\it B}^+$ and ${\it B}^0$ at th	$e \Upsilon(4.5)$	S).	
$\Gamma(\overline{D}^*(2007)^0 D^*(2007)^0 D^*(2007)^0$	07) ⁰ K ⁺)				Γ ₁₆₄ /Γ
VALUE (units 10^{-3})		DOCUMENT ID			
11.23±0.36±1.26					$e^+e^- ightarrow ~ \varUpsilon(4S)$
• • • We do not use the	ne followin	g data for average	es, fits,	limits, e	etc. • • •
$5.3 \begin{array}{c} +1.1 \\ -1.0 \end{array} \pm 1.2$		¹ AUBERT	03X	BABR	Repl. by DEL-AMO- SANCHEZ 11B
$^{ m 1}$ Assumes equal prod	uction of	${\it B}^+$ and ${\it B}^0$ at th	e γ(4	S).	
$\Gamma(D^-D^+K^+)/\Gamma_{\rm tot}$	al				Γ ₁₆₅ /Γ
VALUE (units 10 ⁻³)	CL%	DOCUMENT ID			
$0.22\pm0.05\pm0.05$					$e^+e^- ightarrow ~ \varUpsilon(4S)$
• • • We do not use the	ne followin	-			
< 0.90	90				$e^+e^- ightarrow ~ \varUpsilon(4S)$
<0.4	90				Repl. by DEL-AMO- SANCHEZ 11B
¹ Assumes equal prod			$e \gamma(4)$	S).	
$\Gamma(D^-D^*(2010)^+K)$	$^+)/\Gamma_{ m tota}$	1			Γ ₁₆₆ /Γ
	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT
0.63±0.09±0.06 • • • We do not use the	ne followin				$e^+e^- ightarrow \ \varUpsilon(4S)$ etc. $ullet$ $ullet$
< 0.7	90				Repl. by DEL-AMO- SANCHEZ 11B
$^{ m 1}$ Assumes equal prod	uction of	${\it B}^+$ and ${\it B}^0$ at th	$e \gamma(4.5)$	S).	
$\Gamma(D^*(2010)^-D^+K^-)$	+)/Γ _{tota}	I			Γ ₁₆₇ /Γ
VALUE (units 10^{-3})		DOCUMENT ID			
$0.60\pm0.10\pm0.08$					$e^+e^- ightarrow \ \varUpsilon(4S)$
• • • We do not use the	ne followin				
$1.5 \pm 0.3 \pm 0.2$					Repl. by DEL-AMO- SANCHEZ 11B
¹ Assumes equal prod	uction of	\mathcal{B}^+ and \mathcal{B}^0 at th	$e \Upsilon(4.5)$	S).	
HTTP://PDG.LBL.	GOV	Page 59		Creat	red: 8/21/2014 12:56

Citation: K.A. Olive et al. (Particle Data Group), Chin. Phys. C38, 090001 (2014) (URL: http://pdg.lbl.gov) $\Gamma(D^*(2010)^-D^*(2010)^+K^+)/\Gamma_{\text{total}}$ Γ_{168}/Γ *VALUE* (units 10^{-3}) TECN COMMENT ¹ DEL-AMO-SA...11B BABR $e^+e^- \rightarrow \Upsilon(4S)$ $1.32 \pm 0.13 \pm 0.12$ • • • We do not use the following data for averages, fits, limits, etc. • • • ¹ AUBERT 03X BABR Repl. by DEL-AMO-¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$. $\Gamma((\overline{D}+\overline{D}^*)(D+D^*)K)/\Gamma_{\text{total}}$ Γ_{169}/Γ VALUE (units 10^{-2}) DOCUMENT ID TECN COMMENT ¹ DEL-AMO-SA...11B BABR $e^+e^- \rightarrow \Upsilon(4S)$ $4.05\pm0.11\pm0.28$ • • We do not use the following data for averages, fits, limits, etc. • •

¹ AUBERT $3.5 \pm 0.3 \pm 0.5$ 03X BABR Repl. by DEL-AMO-**SANCHEZ 11B**

 $\Gamma(D_s^+\pi^0)/\Gamma_{\text{total}}$ Γ_{170}/Γ

VALUE (units 10^{-5}) _____ CL% DOCUMENT ID TECN COMMENT 1 AUBERT 07M BABR $\mathrm{e^{+}\,e^{-}}
ightarrow \ \varUpsilon(4S)$

• • • We do not use the following data for averages, fits, limits, etc. • •

² ALEXANDER 93B CLE2 $e^+e^- \rightarrow \Upsilon(4S)$ 90 <16

 $^{1}\text{AUBERT 07M reports } [\Gamma\big(B^{+} \ \rightarrow \ D_{s}^{+}\,\pi^{0}\big)/\Gamma_{\mathsf{total}}] \ \times \ [\mathsf{B}(D_{s}^{+} \ \rightarrow \ \phi\pi^{+})] \ = \ (1)^{1}$ $(7.0^{+2.4}_{-2.1} + 0.6) \times 10^{-7}$ which we divide by our best value B($D_s^+ \rightarrow \phi \pi^+$) = $(4.5 \pm 0.4) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

 2 ALEXANDER 93B reports $<2.0\times10^{-4}$ from a measurement of $[\Gamma(B^+\to D_s^+\pi^0)/\Gamma_{\rm total}]\times[B(D_s^+\to\phi\pi^+)]$ assuming $B(D_s^+\to\phi\pi^+)=0.037,$ which we rescale to our best value B($D_s^+ \rightarrow \phi \pi^+$) = 4.5 × 10⁻².

 $\frac{\left[\Gamma\left(D_s^+\pi^0\right) + \Gamma\left(D_s^{*+}\pi^0\right)\right]/\Gamma_{\text{total}}}{CL\%} \qquad \frac{\left(\Gamma_{170} + \Gamma_{171}\right)/\Gamma}{CL\%}$ $\frac{CL\%}{\sqrt{2}} \qquad \frac{DOCUMENT\ ID}{\sqrt{2}} \qquad \frac{TECN}{\sqrt{2}} \qquad \frac{COMMENT}{\sqrt{2}}$ $\frac{COMMENT}{\sqrt{2}} \qquad \frac{1}{\sqrt{2}} \qquad \frac{1}{\sqrt$

 1 ALBRECHT 93E reports < 0.9 imes 10 $^{-3}$ from a measurement of [$\left\lceil \Gamma(B^+ o D_s^+ \pi^0)
ight.$ + $\Gamma(B^+ \rightarrow D_s^{*+}\pi^0) \big] / \Gamma_{\mathsf{total}}] \times [\mathsf{B}(D_s^+ \rightarrow \phi\pi^+)] \text{ assuming } \mathsf{B}(\bar{D_s^+} \rightarrow \phi\pi^+) = 0.027,$ which we rescale to our best value B($D_s^+ \rightarrow \phi \pi^+$) = 4.5 × 10⁻².

 $\Gamma(D_s^{*+}\pi^0)/\Gamma_{\text{total}}$ $\frac{\textit{CL\%}}{90}$ $\frac{\textit{DOCUMENT ID}}{1}$ $\frac{\textit{TECN}}{1}$ $\frac{\textit{COMMENT}}{1}$ $\frac{\textit{COMMENT}}{1}$

 1 ALEXANDER 93B reports < 3.2 imes 10 $^{-4}$ from a measurement of [$\Gamma(B^+ o D_s^{*+} \pi^0)/$ $\Gamma_{ ext{total}}] imes [B(D_{s}^{+}
ightarrow \phi \pi^{+})]$ assuming $B(D_{s}^{+}
ightarrow \phi \pi^{+}) = 0.037$, which we rescale to our best value B($D_s^+ \rightarrow \phi \pi^+$) = 4.5 × 10⁻².

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

 $\frac{\Gamma(D_s^+\eta)/\Gamma_{\text{total}}}{\text{VALUE}} \qquad \frac{CL\%}{90} \qquad \frac{DOCUMENT\ ID}{\text{ALEXANDER}} \qquad \frac{TECN}{93B} \qquad \frac{COMMENT}{\text{CLE2}} \qquad \frac{COMMENT}{\text{e}^+e^-} \rightarrow \Upsilon(4S)$

 1 ALEXANDER 93B reports < 4.6 imes 10 $^{-4}$ from a measurement of $[\Gamma(B^+
ightarrow ~D_s^+ \eta)/$ $\Gamma_{ ext{total}}] \times [B(D_s^+ o \phi \pi^+)]$ assuming $B(D_s^+ o \phi \pi^+) = 0.037$, which we rescale to our best value B($D_s^+ \rightarrow \phi \pi^+$) = 4.5 × 10⁻².

 $\Gamma(D_s^{*+}\eta)/\Gamma_{\text{total}}$

 $(D_s^+ \eta)/|_{ ext{total}}$ 1 1

VALUE CL% DOCUMENT ID TECN COMMENT $<6 \times 10^{-4}$ 90 1 ALEXANDER 93B CLE2 $e^+e^- o \Upsilon(4S)$

 1 ALEXANDER 93B reports $<7.5\times10^{-4}$ from a measurement of $[\Gamma(B^+\to D_s^{*+}\eta)/\Gamma_{\rm total}]\times[B(D_s^+\to\phi\pi^+)]$ assuming $B(D_s^+\to\phi\pi^+)=0.037,$ which we rescale to our best value B($D_s^+ \rightarrow \phi \pi^+$) = 4.5 × 10⁻².

 $^1 \, {\rm ALEXANDER}$ 93B reports $< 3.7 \times 10^{-4} \,$ from a measurement of $[\Gamma \big(B^+ \to \ D_s^+ \, \rho^0 \big)/$ $\Gamma_{
m total}] imes [{
m B}(D_{\it s}^+
ightarrow \phi \pi^+)]$ assuming ${
m B}(D_{\it s}^+
ightarrow \phi \pi^+) =$ 0.037, which we rescale to our best value B($D_s^+ \rightarrow \phi \pi^+$) = 4.5 × 10⁻².

 $\frac{\left[\Gamma(D_s^+\rho^0) + \Gamma(D_s^+\overline{K}^*(892)^0)\right]/\Gamma_{\text{total}}}{\frac{VALUE}{2.0 \times 10^{-3}}} \frac{\frac{CL\%}{90} \frac{DOCUMENT\ ID}{1\ \text{ALBRECHT}} \frac{TECN}{93E} \frac{COMMENT}{E^+e^- \rightarrow \Upsilon(4S)}$

 1 ALBRECHT 93E reports $< 3.4 \times 10^{-3}$ from a measurement of [$\left[\Gamma(B^+ o D_s^+
ho^0) \right. + \left[\Gamma(B^+ o D_s^+
ho^0) \right] + \left[\Gamma(B^+ o D_s^+
ho^0) \right]$ $\Gamma(B^+ \to D_s^+ \overline{K}^*(892)^0) \Big] / \Gamma_{\mathsf{total}}] \times [\mathsf{B}(D_s^+ \to \phi \pi^+)] \text{ assuming } \mathsf{B}(D_s^+ \to \phi \pi^+) = 0$ 0.027, which we rescale to our best value B($D_s^+ \rightarrow \phi \pi^+$) = 4.5 × 10⁻².

 $\Gamma(D_s^{*+}\rho^0)/\Gamma_{total}$ VALUE

CL%

DOCUMENT ID

1 ALEXANDER 93B CLE2 $e^+e^- \rightarrow \Upsilon(4S)$

 1 ALEXANDER 93B reports < 4.8 imes 10 $^{-4}$ from a measurement of [$\Gamma(B^+ o D_s^{*+}
ho^0)/$ $\Gamma_{ ext{total}}] imes [B(D_s^+ o \phi \pi^+)]$ assuming $B(D_s^+ o \phi \pi^+) = 0.037$, which we rescale to our best value B($D_s^+ \rightarrow \phi \pi^+$) = 4.5 × 10⁻².

 $\frac{\left[\Gamma\left(D_{s}^{*+}\rho^{0}\right)+\Gamma\left(D_{s}^{*+}\overline{K}^{*}(892)^{0}\right)\right]/\Gamma_{\text{total}}}{CL\%} \qquad \frac{\Gamma_{175}+\Gamma_{186}}{CL\%}/\Gamma_{\text{ALBRECHT 93E ARG}}$

 1 ALBRECHT 93E reports < 2.0 \times 10 $^{-3}$ from a measurement of [$\left[\Gamma(B^+ o D_S^{*+}
ho^0)
ight.$ + $\Gamma\big(B^+ \to D_s^{*+} \overline{K}^*(892)^0\big) \big] / \Gamma_{\mathsf{total}}] \times [\mathsf{B}(D_s^+ \to \phi \pi^+)] \text{ assuming } \mathsf{B}(D_s^+ \to \phi \pi^+)$ = 0.027, which we rescale to our best value B($D_s^+ o \phi \pi^+$) = 4.5 imes 10 $^-$ 2

 $\Gamma(D_s^+\omega)/\Gamma_{\text{total}}$

DOCUMENT ID TECN COMMENT 1 ALEXANDER 93B CLE2 $e^{+}e^{-}
ightarrow \varUpsilon$ (4*S*)

• • • We do not use the following data for averages, fits, limits, etc. •

 $< 2.0 \times 10^{-3}$

90

² ALBRECHT

93E ARG

 $e^+e^- \rightarrow \Upsilon(4S)$

 1 ALEXANDER 93B reports < 4.8 imes 10 $^{-4}$ from a measurement of $[\Gamma(B^+ o D_S^+ \omega)/$ $\Gamma_{\text{total}}] \times [B(D_s^+ \to \phi \pi^+)]$ assuming $B(D_s^+ \to \phi \pi^+) = 0.037$, which we rescale to our best value B($D_s^+ \rightarrow \phi \pi^+$) = 4.5 × 10⁻².

 2 ALBRECHT 93E reports $< 3.4 imes 10^{-3}$ from a measurement of $[\Gamma(B^+ o D_s^+ \omega)/$ $\Gamma_{
m total}] \times [{\rm B}(D_s^+ o \phi \pi^+)]$ assuming ${\rm B}(D_s^+ o \phi \pi^+) = 0.027$, which we rescale to our best value ${\rm B}(D_s^+ o \phi \pi^+) = 4.5 \times 10^{-2}$.

 $\Gamma(D_s^{*+}\omega)/\Gamma_{\text{total}}$

 Γ_{177}/Γ

<u>VALUE</u>	CL%	DOCUMENT ID	TECN	COMMENT
<6 × 10 ⁻⁴	90	¹ ALEXANDER 93B	CLE2	$e^+e^- ightarrow \gamma(4S)$

• • • We do not use the following data for averages, fits, limits, etc. • • •

 $< 1.1 \times 10^{-3}$

90

² ALBRECHT 93E ARG $e^+e^- \rightarrow \Upsilon(4S)$

 1 ALEXANDER 93B reports < 6.8 imes 10 $^{-4}$ from a measurement of $[\Gamma(B^+
ightarrow ~D_{_{f S}}^{*+}\omega)/$ $\Gamma_{\text{total}}] \times [B(D_s^+ \to \phi \pi^+)]$ assuming $B(D_s^+ \to \phi \pi^+) = 0.037$, which we rescale to our best value B($D_s^+ \rightarrow \phi \pi^+$) = 4.5 × 10⁻².

 2 ALBRECHT 93E reports $< 1.9 imes 10^{-3}$ from a measurement of $[\Gamma(B^+ o D_s^{*+} \omega)/D_s^{*+}]$ $\Gamma_{\text{total}}] \times [B(D_s^+ \to \phi \pi^+)]$ assuming $B(D_s^+ \to \phi \pi^+) = 0.027$, which we rescale to our best value $B(D_s^+ \to \phi \pi^+) = 4.5 \times 10^{-2}$.

$\Gamma(D_s^+ a_1(1260)^0)/\Gamma_{total}$

 Γ_{178}/Γ

VALUE	CL%	DOCUMENT ID		TECN	COMMENT
<1.8 × 10 ⁻³	90	¹ ALBRECHT	93E	ARG	$e^+e^- ightarrow \gamma(4S)$

 1 ALBRECHT 93E reports $< 3.0 \times 10^{-3}$ from a measurement of $[\Gamma(B^+ \rightarrow$ $D_s^+ a_1(1260)^0)/\Gamma_{
m total}] \times [B(D_s^+ o \phi \pi^+)] \text{ assuming } B(D_s^+ o \phi \pi^+) = 0.027,$ which we rescale to our best value B($D_s^+ \rightarrow \phi \pi^+$) = 4.5 × 10⁻².

 $\Gamma(D_s^{*+}a_1(1260)^0)/\Gamma_{\text{total}}$

 Γ_{179}/Γ

Created: 8/21/2014 12:56

<u>VALUE</u>	CL%	DOCUMENT ID	TECN	<u>COMMENT</u>
<1.3 × 10 ⁻³	90	¹ ALBRECHT 938	ARG	$e^+e^- ightarrow \gamma(4S)$

 1 ALBRECHT 93E reports $< 2.2 \times 10^{-3}$ from a measurement of $[\Gamma(B^+ \rightarrow$ $D_s^{*+} a_1(1260)^0)/\Gamma_{\mathsf{total}}] \times [\mathsf{B}(D_s^+ \to \phi \pi^+)] \text{ assuming } \mathsf{B}(D_s^+ \to \phi \pi^+) = 0.027,$ which we rescale to our best value B($D_s^+ \rightarrow \phi \pi^+$) = 4.5 × 10⁻².

 $\Gamma(D_s^+\phi)/\Gamma_{\text{total}}$

 Γ_{180}/Γ

(5 /)/ total						1007
<i>VALUE</i> (units 10 ⁻⁶)	CL%	DOCUMENT ID		TECN	COMMENT	
$1.7^{+1.1}_{-0.7}\pm0.2$		¹ AAIJ	13R	LHCB	pp at 7 TeV	

• • We do not use the following data for averages, fits, limits, etc.

< 1.9	90	² AUBERT	06F	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
<1000	90	³ ALBRECHT	93E	ARG	e^+e^-	$\Upsilon(4S)$
< 260	90	⁴ ALEXANDER	93 B	CLE2	$e^+e^- \rightarrow$	$\Upsilon(4S)$

 $^{^1}$ AAIJ 13R reports $(1.87^{+1.25}_{-0.73}\pm0.19\pm0.32)\times10^{-6}$ from a measurement of $[\Gamma(B^+\to D_s^+\phi)/\Gamma_{\rm total}]$ / $[B(B^+\to \overline{D}{}^0D_s^+)]$ assuming $B(B^+\to \overline{D}{}^0D_s^+)=(10.0\pm1.7)\times10^{-3}$, which we rescale to our best value $B(B^+\to \overline{D}{}^0D_s^+)=(9.0\pm0.9)\times10^{-3}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(D_s^{*+}\phi)/\Gamma_{\text{total}}$

 Γ_{181}/Γ

VALUE	CL%	DOCUMENT ID		TECN	COMMENT	
$< 1.2 \times 10^{-5}$	90	¹ AUBERT	06F	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$

• • We do not use the following data for averages, fits, limits, etc.

$$<$$
 1.3 \times 10 $^{-3}$ 90 2 ALBRECHT 93E ARG $e^+e^- \rightarrow \ensuremath{\varUpsilon(4S)}$ $<$ 3.5 \times 10 $^{-4}$ 90 3 ALEXANDER 93B CLE2 $e^+e^- \rightarrow \ensuremath{\varUpsilon(4S)}$

$\Gamma(D_s^+\overline{K}^0)/\Gamma_{\text{total}}$

 Γ_{182}/Γ

<u>VALUE</u>	CL%	DOCUMENT ID TECN COMMENT	
<8 × 10 ⁻⁴	90	1 ALEXANDER 93B CLE2 $e^{+}e^{-} ightarrow \varUpsilon(4S)$	
• • • We do not use t	he followin	ng data for averages, fits, limits, etc. ● ●	
$< 1.5 \times 10^{-3}$	90	² ALRRECHT 03E ARG $e^+e^- \rightarrow r(45)$	

² Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

³ ALBRECHT 93E reports $< 1.7 \times 10^{-3}$ from a measurement of $[\Gamma(B^+ \to D_s^+ \phi)/\Gamma_{\text{total}}] \times [B(D_s^+ \to \phi \pi^+)]$ assuming $B(D_s^+ \to \phi \pi^+) = 0.027$, which we rescale to our best value $B(D_s^+ \to \phi \pi^+) = 4.5 \times 10^{-2}$.

⁴ ALEXANDER 93B reports $< 3.1 \times 10^{-4}$ from a measurement of $[\Gamma(B^+ \to D_s^+ \phi)/\Gamma_{total}] \times [B(D_s^+ \to \phi \pi^+)]$ assuming $B(D_s^+ \to \phi \pi^+) = 0.037$, which we rescale to our best value $B(D_s^+ \to \phi \pi^+) = 4.5 \times 10^{-2}$.

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

²ALBRECHT 93E reports $< 2.1 \times 10^{-3}$ from a measurement of $[\Gamma(B^+ \to D_s^{*+} \phi)/\Gamma_{total}] \times [B(D_s^+ \to \phi \pi^+)]$ assuming $B(D_s^+ \to \phi \pi^+) = 0.027$, which we rescale to our best value $B(D_s^+ \to \phi \pi^+) = 4.5 \times 10^{-2}$.

³ ALEXANDER 93B reports $< 4.2 \times 10^{-4}$ from a measurement of $[\Gamma(B^+ \to D_s^{*+}\phi)/\Gamma_{total}] \times [B(D_s^+ \to \phi\pi^+)]$ assuming $B(D_s^+ \to \phi\pi^+) = 0.037$, which we rescale to our best value $B(D_s^+ \to \phi\pi^+) = 4.5 \times 10^{-2}$.

 1 ALEXANDER 93B reports $< 10.3 \times 10^{-4}$ from a measurement of $[\Gamma(B^+ \to D_s^+ \overline{K}{}^0)/\Gamma_{total}] \times [B(D_s^+ \to \phi \pi^+)]$ assuming $B(D_s^+ \to \phi \pi^+) = 0.037$, which we rescale to our best value $B(D_s^+ \to \phi \pi^+) = 4.5 \times 10^{-2}$.

²ALBRECHT 93E reports $< 2.5 \times 10^{-3}$ from a measurement of $[\Gamma(B^+ \to D_s^+ \overline{K}^0)/\Gamma_{total}] \times [B(D_s^+ \to \phi \pi^+)]$ assuming $B(D_s^+ \to \phi \pi^+) = 0.027$, which we rescale to our best value $B(D_s^+ \to \phi \pi^+) = 4.5 \times 10^{-2}$.

$\Gamma(D_s^{*+}\overline{K}^0)/\Gamma_{\text{total}}$

 Γ_{183}/Γ

VALUE	CL%	DOCUMENT ID	TECN	COMMENT
<9 × 10 ⁻⁴	90	1 ALEXANDER 93E	CLE2	$e^+e^- \rightarrow \Upsilon(4S)$

ullet ullet We do not use the following data for averages, fits, limits, etc. ullet ullet

<1.9 \times 10 $^{-3}$ 90 2 ALBRECHT 93E ARG $e^+e^-
ightarrow \varUpsilon(4S)$

 1 ALEXANDER 93B reports $< 10.9 \times 10^{-4}$ from a measurement of $[\Gamma(B^+ \to D_s^{*+} \overline{K}{}^0)/\Gamma_{\text{total}}] \times [B(D_s^+ \to \phi \pi^+)]$ assuming $B(D_s^+ \to \phi \pi^+) = 0.037$, which we rescale to our best value $B(D_s^+ \to \phi \pi^+) = 4.5 \times 10^{-2}$.

² ALBRECHT 93E reports $< 3.1 \times 10^{-3}$ from a measurement of $[\Gamma(B^+ \to D_s^{*+} \overline{K}^0)/\Gamma_{total}] \times [B(D_s^+ \to \phi \pi^+)]$ assuming $B(D_s^+ \to \phi \pi^+) = 0.027$, which we rescale to our best value $B(D_s^+ \to \phi \pi^+) = 4.5 \times 10^{-2}$.

$\Gamma(D_s^+ \overline{K}^* (892)^0) / \Gamma_{\text{total}}$

 Γ_{184}/Γ

VALUE	CL%	DOCUMENT ID		TECN	COMMENT	
$<4.4 \times 10^{-6}$	90	AAIJ	13 R	LHCB	pp at 7 TeV	_

 \bullet \bullet We do not use the following data for averages, fits, limits, etc. \bullet \bullet

<4 \times 10⁻⁴ 90 1 ALEXANDER 93B CLE2 $_{e}^{+}$ $_{e}^{-}$ \rightarrow \varUpsilon (4S)

 1 ALEXANDER 93B reports $<4.4\times10^{-4}$ from a measurement of $[\Gamma(B^+\to D_s^+\overline{K}^*(892)^0)/\Gamma_{\text{total}}]\times[B(D_s^+\to\phi\pi^+)]$ assuming $B(D_s^+\to\phi\pi^+)=0.037,$ which we rescale to our best value $B(D_s^+\to\phi\pi^+)=4.5\times10^{-2}.$

$\Gamma(D_s^+ K^{*0})/\Gamma_{\text{total}}$

 Γ_{185}/Γ

VALUE (units 10^{-6})	CL%	DOCUMENT ID		TECN	COMMENT
<3.5	90	AAIJ	13R	LHCB	pp at 7 TeV

$\Gamma(D_s^{*+}\overline{K}^*(892)^0)/\Gamma_{\text{total}}$

 Γ_{186}/Γ

<u>VALUE</u>	CL%	DOCUMENT ID	TECN	COMMENT
$<3.5 \times 10^{-4}$	90	¹ ALEXANDER 93B	CLE2	$e^+e^- ightarrow \gamma(4S)$

¹ ALEXANDER 93B reports $< 4.3 \times 10^{-4}$ from a measurement of $[\Gamma(B^+ \to D_s^{*+} \overline{K}^* (892)^0)/\Gamma_{\text{total}}] \times [B(D_s^+ \to \phi \pi^+)]$ assuming $B(D_s^+ \to \phi \pi^+) = 0.037$, which we rescale to our best value $B(D_s^+ \to \phi \pi^+) = 4.5 \times 10^{-2}$.

$\Gamma(D_s^-\pi^+K^+)/\Gamma_{\text{total}}$ Γ_{187}/Γ VALUE (units 10^{-4}) TECN 1.80 ± 0.22 OUR AVERAGE $1.71^{+0.08}_{-0.07}\pm0.25$ BELL $e^+e^- \rightarrow \Upsilon(4S)$ ¹ WIECHCZYN...09 ¹ AUBERT 08G BABR $e^+e^- \rightarrow \Upsilon(4S)$ $2.02 \pm 0.13 \pm 0.38$ \bullet \bullet We do not use the following data for averages, fits, limits, etc. \bullet ² ALBRECHT $e^+e^- \rightarrow \gamma(4S)$ 93E ARG <7 ¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$. 2 ALBRECHT 93E reports $<1.1\times10^{-3}$ from a measurement of [$\Gamma(B^+\to~D_S^-\pi^+K^+)/$ $\Gamma_{ ext{total}}] \times [B(D_{s}^{+} ightarrow \phi \pi^{+})]$ assuming $B(D_{s}^{+} ightarrow \phi \pi^{+}) = 0.027$, which we rescale to our best value B($D_s^+ \rightarrow \phi \pi^+$) = 4.5 × 10⁻². $\Gamma(D_s^{*-}\pi^+K^+)/\Gamma_{\text{total}}$ Γ_{188}/Γ <u>VALUE (units 10⁻⁴)</u> <u>CL%</u> **1.45±0.24 OUR AVERAGE** $1.31^{+0.13}_{-0.12}\pm0.28$ ¹ WIECHCZYN...09 BELL $e^+e^- \rightarrow \Upsilon(4S)$ 08G BABR $e^+e^- \rightarrow \Upsilon(4S)$ ¹ AUBERT $1.67 \pm 0.16 \pm 0.35$ • • • We do not use the following data for averages, fits, limits, etc. • • • ² ALBRECHT 93E ARG $e^+e^- \rightarrow \Upsilon(4S)$ 90 ¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$. 2 ALBRECHT 93E reports $<1.6\times10^{-3}$ from a measurement of [Γ(B+ \rightarrow $D_{S}^{*-}\pi^+K^+)/$ $\Gamma_{\text{total}}] \times [B(D_s^+ \to \phi \pi^+)]$ assuming $B(D_s^+ \to \phi \pi^+) = 0.027$, which we rescale to our best value B($D_s^+ \rightarrow \phi \pi^+$) = 4.5 × 10⁻². $\Gamma(D_s^-\pi^+K^*(892)^+)/\Gamma_{\text{total}}$ Γ_{189}/Γ $\frac{CL\%}{90}$ $\frac{DOCUMENT~ID}{1}$ $\frac{TECN}{4}$ $\frac{COMMENT}{1}$ $\frac{COMMENT}{1}$ 1 ALBRECHT 93E reports < 8.6 \times 10 $^{-3}$ from a measurement of [$\Gamma(B^+$ ightarrow $D_s^-\pi^+K^*(892)^+)/\Gamma_{\sf total}] \times [{\sf B}(D_s^+ \to \phi\pi^+)] \text{ assuming } {\sf B}(D_s^+ \to \phi\pi^+) = 0.027,$ which we rescale to our best value B($D_s^+ \rightarrow \phi \pi^+$) = 4.5 × 10⁻². $\Gamma(D_s^{*-}\pi^+K^*(892)^+)/\Gamma_{\mathrm{total}}$ Γ_{190}/Γ $\frac{DOCUMENT\ ID}{}$ $\frac{TECN}{}$ $\frac{COMMENT}{}$ 1 ALBRECHT 93E ARG $e^{+}e^{-} ightarrow \Upsilon(4S)$ $^1 \, \text{ALBRECHT}$ 93E reports $<~1.1 \, \times \, 10^{-2}$ from a measurement of $[\Gamma(B^+ \, \rightarrow \,$ $D_s^{*-}\pi^+K^*(892)^+)/\Gamma_{\mathsf{total}}] \times [B(D_s^+ \to \phi\pi^+)] \text{ assuming } B(D_s^+ \to \phi\pi^+) = 0.027,$ which we rescale to our best value B($D_s^+ \rightarrow \phi \pi^+$) = 4.5 × 10⁻². $\Gamma(D_{\epsilon}^{-}K^{+}K^{+})/\Gamma_{\text{total}}$ Γ_{191}/Γ VALUE (units 10⁻⁴) 08G BABR $e^+e^- \rightarrow \Upsilon(4S)$ $0.11 \pm 0.04 \pm 0.02$ ¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

 $\Gamma(D_s^{*-}K^+K^+)/\Gamma_{\text{total}}$

 Γ_{192}/Γ

` 3 /						
$VALUE$ (units 10^{-4})	CL%	DOCUMENT ID		TECN	COMMENT	
<0.15	90	¹ AUBERT	08 G	BABR	$e^+e^- \rightarrow \Upsilon(4S)$)

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

 $\Gamma(\eta_c K^+)/\Gamma_{\text{total}}$

 Γ_{193}/Γ

VALUE (units 10^{-3})	DOCUMENT ID		TECN	COMMENT
0.96±0.11 OUR AVERAGE				
0.87 ± 0.15	^{1,2} AUBERT	06E	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$1.19 {}^{+ 0.24}_{- 0.19} {}^{+ 0.13}_{- 0.12}$	³ AUBERT,B	05L	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$1.25\!\pm\!0.14\!+\!0.39\\-0.40$	⁴ FANG	03	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$0.69^{+0.26}_{-0.21}{\pm0.22}$	⁵ EDWARDS	01	CLE2	$e^+e^- ightarrow \gamma(4S)$
• • • We do not use the following	ar data for average	- f:+c	limita a	+

• • We do not use the following data for averages, fits, limits, etc.

 $1.01 \pm 0.12 \pm 0.07$

^{2,6} AUBERT,B 04B BABR $e^+e^- \rightarrow \Upsilon(4S)$

 1 Perform measurements of absolute branching fractions using a missing mass technique. 2 The ratio of B(B^{\pm} \rightarrow ~ $K^{\pm}\eta_{c})$ B(η_{c} \rightarrow ~ $K\overline{K}\pi)$ = (7.4 \pm 0.5 \pm 0.7) \times 10 $^{-5}$ reported in AUBERT,B 04B and B($B^\pm\to K^\pm\eta_c$) = (8.7 \pm 1.5) \times 10⁻³ reported in AUBERT 06E contribute to the determination of B($\eta_c\to K\overline{K}\pi$), which is used by

others for normalization. 3 AUBERT,B 05L reports $[\Gamma(B^+ \to \eta_c \, K^+)/\Gamma_{\text{total}}] \times [B(\eta_c(1S) \to p\overline{p})] = (1.8^{+0.3}_{-0.2} \pm 1.8^{+0.3}_{-0.2})$ $(0.2)\times 10^{-6}$ which we divide by our best value B $(\eta_c(1S)\to p\overline{p})=(1.52\pm0.16)\times 10^{-3}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

⁴ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

⁵ EDWARDS 01 assumes equal production of B^0 and B^+ at the $\Upsilon(4S)$. The correlated uncertainties (28.3)% from B $(J/\psi(1S) \to \gamma \eta_C)$ in those modes have been accounted

6 for. AUBERT,B 04B reports $[\Gamma(B^+ \to \eta_c K^+)/\Gamma_{\text{total}}] \times [B(\eta_c(1S) \to K\overline{K}\pi)] = (0.074 \pm 1.00)$ $0.005 \pm 0.007) \times 10^{-3}$ which we divide by our best value B $(\eta_c(1S) \rightarrow K\overline{K}\pi) =$ $(7.3 \pm 0.5) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

 $\Gamma(B^+ \to \eta_c K^+)/\Gamma_{\text{total}} \times \Gamma(\eta_c(1S) \to \gamma \gamma)/\Gamma_{\text{total}}$

 $\Gamma_{193}/\Gamma \times \Gamma_{36}^{\eta_c(1S)}/\Gamma^{\eta_c(1S)}$

Created: 8/21/2014 12:56

$$VALUE ext{ (units } 10^{-6})$$
 $DOCUMENT ext{ } ID$
 $TECN$
 $COMMENT$
 $O.22 \begin{array}{c} +0.09 \\ -0.07 \\ -0.02 \end{array}$
 $COMMENT$
 $COMMENT$

$\Gamma(\eta_c\, {\it K}^+,\; \eta_c \to \, {\it K}_S^0\, {\it K}^\mp \pi^\pm \big)/\Gamma_{\rm total}$

 Γ_{194}/Γ

DOCUMENT ID TECN COMMENT 1,2 VINOKUROVA 11 BELL $e^+e^-
ightarrow \varUpsilon(4S)$ $26.7 \pm 1.4 \begin{array}{c} +5.7 \\ -5.5 \end{array}$

 $^{^1}$ Assumes equal production of B^+ and B^0 at the \varUpsilon (4S).

 $^{^1}$ Assumes equal production of B^0 and B^+ from Upsilon(4S) decays. 2 VINOKUROVA 11 reports $(26.7 \pm 1.4 ^{+2.9}_{-2.6} \pm 4.9) \times 10^{-6}$, where the first uncertainty is statistical, the second is due to systematics, and the third comes from interference of $\eta_c(1S) \to \kappa_S^0 \, K^\pm \pi^\mp$ with nonresonant $\kappa_S^0 \, K^\pm \pi^\mp$. We combined both systematic uncertainties to single values.

Citation: K.A. Olive et al. (Particle Data Group), Chin. Phys. C38, 090001 (2014) (URL: http://pdg.lbl.gov) $\Gamma(\eta_c K^*(892)^+)/\Gamma_{total}$ Γ_{195}/Γ VALUE (units 10^{-3}) $1.0^{+0.5}_{-0.4}\pm0.1$ 07AV BABR $e^+e^- \rightarrow \Upsilon(4S)$ ¹ AUBERT 07AV reports $[\Gamma(B^+ \rightarrow \eta_c K^*(892)^+)/\Gamma_{\text{total}}] \times [B(\eta_c(1S) \rightarrow p\overline{p})] =$ $(1.57^{+0.56}_{-0.46}^{+0.45}) \times 10^{-6}$ which we divide by our best value $\mathrm{B}(\eta_{\mathcal{C}}(1S) \to p\overline{p}) =$ $(1.52 \pm 0.16) \times 10^{-3}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. ² Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$. $\Gamma(\eta_c(2S)K^+)/\Gamma_{\text{total}}$ Γ_{196}/Γ VALUE (units 10⁻⁴) $3.4 \pm 1.8 \pm 0.3$ $^{ m 1}$ Perform measurements of absolute branching fractions using a missing mass technique. $\Gamma(\eta_c(2S)K^+, \eta_c \to p\overline{p})/\Gamma_{\text{total}}$ Γ_{197}/Γ ¹ Measured relative to $B^+ \to J/\psi K^+$ decay with charmonia reconstructed in $p\overline{p}$ final state and using B($B^+ \rightarrow J/\psi K^+$) = (1.013 \pm 0.034) \times 10⁻³ and B($J/\psi \rightarrow p\overline{p}$) = $(2.17 \pm 0.07) \times 10^{-3}$.

VALUE (units
$$10^{-4}$$
) CL% DOCUMENT ID TECN COMMENT $e^+e^- \rightarrow \Upsilon(4S)$

$$\Gamma(B^+ \to \eta_c(2S)K^+)/\Gamma_{\text{total}} \times \Gamma(\eta_c(2S) \to \gamma\gamma)/\Gamma_{\text{total}}$$

 $\Gamma_{196}/\Gamma \times \Gamma_{14}^{\eta_c(2S)}/\Gamma^{\eta_c(2S)}$

Created: 8/21/2014 12:56

 Γ_{198}/Γ

<i>VALUE</i> (units 10 ⁻⁶)	CL%	DOCUMENT ID		TECN	COMMENT
<0.18	90	1 WICHT	80	BELL	$e^+e^- ightarrow \ \varUpsilon(4S)$

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$$\Gamma(\eta_c(2S)K^+, \eta_c \to K_S^0K^\mp\pi^\pm)/\Gamma_{\text{total}}$$

VALUE (units 10^{-6})

DOCUMENT ID

TECN

COMMENT

1,2 VINOKUROVA 11

BELL $e^+e^- \rightarrow \Upsilon(4S)$

 $[\]Gamma(B^+ o h_c(1P)K^+)/\Gamma_{
m total} imes \Gamma(h_c(1P) o \eta_c(1S)\gamma)/\Gamma_{
m total} \Gamma_{260}/\Gamma imes \Gamma_4^{h_c(1P)}/\Gamma^{h_c(1P)}$

 $^{^{1}}$ Uses the production ratio of $(B^{+}\,B^{-})/(B^{0}\,\overline{B}{}^{0})$ = 1.026 \pm 0.032 at $\varUpsilon(4S)$

¹ Assumes equal production of B^0 and B^+ from Upsilon(4S) decays.

² The first uncertainty includes both statistical and interference effects while the second is due to systematics.

$\Gamma(J/\psi(1S)K^+)/\Gamma_{\text{total}}$

 Γ_{218}/Γ

VALUE (units 10 ⁻⁴) EVTS	DOCUMENT ID	TECN	COMMENT
10.27± 0.31 OUR FIT			
10.24± 0.35 OUR AVERAGE			
$8.1 \pm 1.3 \pm 0.7$	¹ AUBERT 06E	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$10.61 \pm 0.15 \pm 0.48$	² AUBERT 05J	BABR	$e^+e^- ightarrow~ \varUpsilon(4S)$
$10.4 \pm 1.1 \pm 0.1$	³ AUBERT,B 05L	BABR	$e^+e^- ightarrow~ \varUpsilon(4S)$
$10.1 \pm 0.2 \pm 0.7$	² ABE 03B	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$10.2 \pm 0.8 \pm 0.7$	² JESSOP 97	CLE2	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$9.24 \pm \ 3.04 \pm 0.05$	⁴ BORTOLETTO92	CLEO	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$8.09 \pm 3.50 \pm 0.04$ 6	⁵ ALBRECHT 90J	ARG	$e^+e^- ightarrow ~ \varUpsilon(4S)$
• • • We do not use the following	owing data for averages,	fits, lim	its, etc. ● ●
$10.1 \pm 0.3 \pm 0.5$	² AUBERT 02	BABR	Repl. by AUBERT 05J
$11.0 \pm 1.5 \pm 0.9$ 59	² ALAM 94	CLE2	Repl. by JESSOP 97
$22 \pm 10 \pm 2$	BUSKULIC 92G	ALEP	$e^+e^- \rightarrow Z$
7 ± 4 3	⁶ ALBRECHT 87D	ARG	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$10 \pm 7 \pm 2$ 3	⁷ BEBEK 87	CLEO	$e^+e^- ightarrow ~ \varUpsilon(4S)$
9 ± 5 3	⁸ ALAM 86	CLEO	$e^+e^- ightarrow ~ \varUpsilon(4S)$

 $^{^{}m 1}$ Perform measurements of absolute branching fractions using a missing mass technique.

$\Gamma(\eta_c K^+)/\Gamma(J/\psi(1S)K^+)$

 $\Gamma_{193}/\Gamma_{218}$

VALUE	DOCUMENT ID		TECN	COMMENT
0.84±0.10 OUR AVERAGE				
$0.81 \pm 0.06 \pm 0.09$	¹ AAIJ	13 S	LHCB	pp at 7 TeV
$1.33 \pm 0.10 \pm 0.43$	² AUBERT,B	04 B	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$

² Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

³ AUBERT,B 05L reports $[\Gamma(B^+ \rightarrow J/\psi(1S)K^+)/\Gamma_{\text{total}}] \times [B(J/\psi(1S) \rightarrow p\overline{p})] =$ $(2.2 \pm 0.2 \pm 0.1) \times 10^{-6}$ which we divide by our best value B $(J/\psi(1S) \rightarrow p\overline{p}) =$ $(2.120 \pm 0.029) \times 10^{-3}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

 $^{^4}$ BORTOLETTO 92 reports (8 \pm 2 \pm 2) imes 10 $^{-4}$ from a measurement of [$\Gamma(B^+$ ightarrow $J/\psi(1S)K^+)/\Gamma_{\mathsf{total}}] \times [\mathsf{B}(J/\psi(1S) o e^+e^-)]$ assuming $\mathsf{B}(J/\psi(1S) o e^+e^-) =$ 0.069 ± 0.009 , which we rescale to our best value B($J/\psi(1S) \rightarrow e^+e^-$) = (5.971 \pm $0.032) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

 $^{^5}$ ALBRECHT 90J reports (7 \pm 3 \pm 1) \times 10 $^{-4}$ from a measurement of [Γ(B $^+$ \rightarrow $J/\psi(1S)K^+)/\Gamma_{ ext{total}}] \times [B(J/\psi(1S) \rightarrow e^+e^-)]$ assuming $B(J/\psi(1S) \rightarrow e^+e^-)$ = 0.069 \pm 0.009, which we rescale to our best value B($J/\psi(1S) \rightarrow e^+e^-$) = $(5.971 \pm 0.032) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. Assumes equal production of B^+

⁶ ALBRECHT 87D assume $B^+B^-/B^0\overline{B}^0$ ratio is 55/45. Superseded by ALBRECHT 90J.

 $^{^{7}}$ BEBEK 87 value has been updated in BERKELMAN 91 to use same assumptions as noted for BORTOLETTO 92. 8 ALAM 86 assumes B^{\pm}/B^{0} ratio is 60/40.

¹ AAIJ 13s reports $[\Gamma(B^+ \to \eta_c \, K^+)/\Gamma(B^+ \to J/\psi(1S) \, K^+)] \times [B(\eta_c(1S) \to p\overline{p})] / [B(J/\psi(1S) \to p\overline{p})] = 0.578 \pm 0.035 \pm 0.026$ which we multiply or divide by our best values $B(\eta_c(1S) \to p\overline{p}) = (1.52 \pm 0.16) \times 10^{-3}$, $B(J/\psi(1S) \to p\overline{p}) = (2.120 \pm 0.029) \times 10^{-3}$. Our first error is their experiment's error and our second error is the systematic error from using our best values.

² Uses BABAR measurement of B($B^+ \rightarrow J/\psi K^+$) = (10.1 \pm 0.3 \pm 0.5) \times 10⁻⁴.

$$\begin{split} \Gamma\big(B^+ \to J/\psi(1S)\,K^+\big)/\Gamma_{\text{total}} \, \times \, \Gamma\big(J/\psi(1S) \to \gamma\gamma\big)/\Gamma_{\text{total}} \\ \Gamma_{218}/\Gamma \times \Gamma_{197}^{J/\psi(1S)}/\Gamma^{J/\psi(1S)} \end{split}$$

VALUE (units 10^{-6})

CL%

DOCUMENT ID

TECN

COMMENT

VALUE (units 10^{-6})

VOITE

VO

$\Gamma(J/\psi(1S)K^+\pi^+\pi^-)/\Gamma_{\text{total}}$

VALUE (units 10^{-3})

 Γ_{220}/Γ

TECN COMMENT

Created: 8/21/2014 12:56

0.81 ±0.13 **OUR AVERAGE** Error includes scale factor of 2.5. See the ideogram below. BELL $e^+e^- \rightarrow \Upsilon(4S)$ ¹ GULER $0.716 \pm 0.010 \pm 0.060$ ¹ AUBERT $1.16 \pm 0.07 \pm 0.09$ 05R BABR $e^+e^- \rightarrow \Upsilon(4S)$ ² ACOSTA 02F CDF $0.69 \pm 0.18 \pm 0.12$ ³ BORTOLETTO92 CLEO $e^+e^- \rightarrow \Upsilon(4S)$ $1.39 \pm 0.81 \pm 0.01$ ⁴ ALBRECHT $1.39 \pm 0.91 \pm 0.01$ 87D ARG

DOCUMENT ID

• • • We do not use the following data for averages, fits, limits, etc. • • •

<1.8 90 SALBRECHT 90J ARG $e^+e^-
ightarrow \varUpsilon(4S)$

² ACOSTA 02F uses as reference of B($B \rightarrow J/\psi(1S)K^+$) = (10.1 \pm 0.6) \times 10⁻⁴. The second error includes the systematic error and the uncertainties of the branching ratio.

- ³ BORTOLETTO 92 reports $(1.2\pm0.6\pm0.4)\times10^{-3}$ from a measurement of $[\Gamma(B^+\to J/\psi(1S)K^+\pi^+\pi^-)/\Gamma_{\rm total}]\times[B(J/\psi(1S)\to e^+e^-)]$ assuming $B(J/\psi(1S)\to e^+e^-)=0.069\pm0.009$, which we rescale to our best value $B(J/\psi(1S)\to e^+e^-)=(5.971\pm0.032)\times10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.
- ⁴ALBRECHT 87D reports $(1.2\pm0.8)\times10^{-3}$ from a measurement of $[\Gamma(B^+\to J/\psi(1S)K^+\pi^+\pi^-)/\Gamma_{\rm total}]\times[B(J/\psi(1S)\to e^+e^-)]$ assuming $B(J/\psi(1S)\to e^+e^-)=0.069\pm0.009$, which we rescale to our best value $B(J/\psi(1S)\to e^+e^-)=(5.971\pm0.032)\times10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. They actually report 0.0011 ± 0.0007 assuming $B^+B^-/B^0\overline{B}^0$ ratio is 55/45. We rescale to 50/50. Analysis explicitly removes $B^+\to\psi(2S)K^+$.
- ⁵ ALBRECHT 90J reports $< 1.6 \times 10^{-3}$ from a measurement of $[\Gamma(B^+ \to J/\psi(1S)K^+\pi^+\pi^-)/\Gamma_{\text{total}}] \times [B(J/\psi(1S) \to e^+e^-)]$ assuming $B(J/\psi(1S) \to e^+e^-) = 0.069$, which we rescale to our best value $B(J/\psi(1S) \to e^+e^-) = 5.971 \times 10^{-2}$. Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$$\Gamma \left(J/\psi(1S)\, K^+\, \pi^+\, \pi^- \right)/\Gamma_{\rm total} \; ({\rm units} \; 10^{-3})$$

$\Gamma(h_c(1P)K^+,\ h_c o J/\psi\pi^+\pi^-)/\Gamma_{ m total}$						Γ_{199}/Γ
<u>VALUE</u>	CL%	DOCUMENT ID		TECN	<u>COMMENT</u>	
$< 3.4 \times 10^{-6}$	90	¹ AUBERT	05 R	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

 $\Gamma(X(3872)K^+)/\Gamma_{\text{total}}$ VALUE CL% ODCUMENT ID ODCUMENT ID

$\Gamma(B^+ \to X(3872)K^+)/\Gamma_{\text{total}} \times \Gamma(X(3872) \to \gamma\gamma)/\Gamma_{\text{total}} \\ \Gamma_{200}/\Gamma \times \Gamma_7^{X(3872)}/\Gamma^{X(3872)}$

VALUE (units 10^{-6})CL%DOCUMENT IDTECNCOMMENT<0.2490 1 WICHT08BELL $e^+e^- \rightarrow \Upsilon(4S)$

$\Gamma(X(3872)K^+, X \rightarrow J/\psi \pi^+\pi^-)/\Gamma_{\text{total}}$

 Γ_{202}/Γ

$VALUE$ (units 10^{-6})	DOCUMENT ID		TECN	COMMENT
8.6 \pm 0.8 OUR AVERAGE				
$8.63 \pm 0.82 \pm 0.52$	$^{ m 1}$ CHOI	11	BELL	$e^+e^- ightarrow \Upsilon(4S)$
$8.4 \pm 1.5 \pm 0.7$	$^{ m 1}$ AUBERT	08Y	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$

 $^{^{1}}$ Perform measurements of absolute branching fractions using a missing mass technique.

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

• • • We do not use the following data for averages, fits, limits, etc. • • •

$10.1 \pm 2.5 \pm 1.0$	$^{ m 1}$ AUBERT	06	BABR	Repl. by AUBERT 08Y
12.8 ± 4.1	$^{ m 1}$ AUBERT	05 R	BABR	Repl. by AUBERT 06
$12.5 \pm 2.8 \pm 0.5$	² CHOI	03	BELL	Repl. by CHOI 11

 $^{^1}$ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(X(3872)K^+, X \to J/\psi\gamma)/\Gamma_{\text{total}}$

 Γ_{203}/Γ

VALUE (units 10^{-6})	DOCUMENT ID	TI	ECN	COMMENT		
2.1 ±0.4 OUR AVERAGE E	rror includes scale fa	ctor of 1	.1.			
$1.78^{igoplus 0.48}_{-0.44}\!\pm\!0.12$	¹ BHARDWAJ	11 B	ELL	$e^+e^- ightarrow \Upsilon(4S)$		
$2.8 \pm 0.8 \pm 0.1$	² AUBERT	09в В	ABR	$e^+e^- ightarrow \Upsilon(4S)$		
• • • We do not use the follow	ing data for averages	s, fits, lin	nits, e	tc. • • •		
$3.3 \pm 1.0 \pm 0.3$	$^{ m 1}$ AUBERT,BE	06м В	ABR	Repl. by AUBERT 09B		
¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.						

$\Gamma(X(3872)K^*(892)^+, X \rightarrow J/\psi\gamma)/\Gamma_{\text{total}}$

 Γ_{210}/Γ

$VALUE$ (units 10^{-6})	CL%	DOCUMENT ID		TECN	COMMENT	
<4.8	90	¹ AUBERT	09 B	BABR	$e^+e^- \rightarrow \gamma(4.6)$	<i>S</i>)
_						

¹ Uses B($\Upsilon(4S) \to B^+ B^-$) = (51.6 ± 0.6)% and B($\Upsilon(4S) \to B^0 \overline{B}{}^0$) = (48.4 ± 0.6)%.

$\Gamma(X(3872)K^+, X \rightarrow \psi(2S)\gamma)/\Gamma_{\text{total}}$

 Γ_{204}/Γ

VALUE (units 10 °)		s 10 °)	DOCUMENT IDTEC			COMMENT		
4	±4	OUR AVERAGE	Error includes scale factor of 2.5.					
0.83	$3 + 1.98 \\ -1.83$	$\frac{3}{3} \pm 0.44$	^{1,2} BHARDWAJ	11	BELL	$e^+e^-\to$	$\Upsilon(4S)$	
9.5	± 2.7	± 0.6	³ AUBERT	09 B	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$	

 $^{^{1}\,\}text{BHARDWAJ}$ 11 measurement is equivalent to a limit of $<3.45\times10^{-6}$ at 90% CL.

$\Gamma(X(3872)K^*(892)^+, X \rightarrow \psi(2S)\gamma)/\Gamma_{\text{total}}$

 Γ_{211}/Γ

<i>VALUE</i> (units 10 ⁻⁶)	CL%	DOCUMENT ID		TECN	COMMENT
<28	90	¹ AUBERT	09 B	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
1 Uses B($\Upsilon(4S) ightarrow B$	$+B^{-})=(!$	$51.6\pm0.6)\%$ and	$B(\gamma)$	(4 <i>S</i>) →	$B^{0}\overline{B}^{0}) = (48.4 \pm 0.6)\%.$

$$\Gamma(X(3872)K^+, X \rightarrow D^0\overline{D}^0)/\Gamma_{\text{total}}$$
 Γ_{206}/Γ

 $^{^2}$ CHOI 03 reports [Γ(B $^+$ \rightarrow ~ X(3872) K $^+$, ~ X \rightarrow ~ $J/\psi\,\pi^+\,\pi^-)/\Gamma_{\rm total}]$ / [B(B $^+$ \rightarrow $\psi(2S)K^+)]=0.0200\pm0.0038\pm0.0023$ which we multiply by our best value B($B^+\to$ $\psi(2S)K^{+}$) = $(6.27 \pm 0.24) \times 10^{-4}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

² Uses B($\Upsilon(4S) \to B^+B^-$) = (51.6 ± 0.6)% and B($\Upsilon(4S) \to B^0\overline{B}{}^0$) = (48.4 ± 0.6)%.

² Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

³ Uses B($\Upsilon(4S) \to B^+ B^-$) = (51.6 ± 0.6)% and B($\Upsilon(4S) \to B^0 \overline{B}{}^0$) = (48.4 ± 0.6)%.

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

5(\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	24 2-	\				- /-
$\Gamma(X(3872)K^+, X \rightarrow$,		TECN	COMMENT	Γ ₂₀₇ /Γ
<u>VALUE</u> <4.0 × 10 ^{−5}	<u>CL%</u>	¹ CHISTOV	04	RELL	comment	Υ(15)
¹ Assumes equal produ					e · e →	1 (43)
			e 1 (4	<i>J</i>).		_
$\Gamma(X(3872)K^+, X \rightarrow$	$D^{0}D^{0}$	τ ⁰)/Γ _{total}				Γ ₂₀₈ /Γ
VALUE (units 10^{-4})	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT	
$1.02 \pm 0.31 ^{+0.21}_{-0.29}$		$^{ m 1}$ GOKHROO	06	BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$
• • • We do not use the	e following	data for average	s, fits	, limits, e	etc. • • •	
< 0.6	90	² CHISTOV	04	BELL	Repl. by G	OKHROO 06
¹ Measure the near-thr		nancements in the	$e(D^0)$	$\overline{D}{}^0\pi^0)$ s	ystem at a n	nass 3875.2 \pm
$0.7^{+0.3}_{-1.6}\pm 0.8~{ m MeV}$						
² Assumes equal produ	iction of <i>E</i>	$^{ m H}$ and $B^{ m 0}$ at the	e $\Upsilon(4$	<i>S</i>).		
$\Gamma(X(3872)K^+, X \rightarrow$	$\overline{D}^{*0}D^{0}$)/F _{total}				Γ ₂₀₉ /Γ
VALUE (units 10^{-4})		DOCUMENT ID		TECN	COMMENT	2037
0.85±0.26 OUR AVERA	GE Erro	r includes scale fa	actor o	of 1.4.		
$0.77 \pm 0.16 \pm 0.10$		¹ AUSHEV			$e^+e^- \rightarrow$	
$1.67 \pm 0.36 \pm 0.47$		¹ AUBERT			$e^+e^- \rightarrow$	$\Upsilon(4S)$
$^{ m 1}$ Assumes equal produ	iction of <i>E</i>	B^+ and B^0 at the	e $\Upsilon(4)$	<i>S</i>).		
$\Gamma(X(3872)K^+, X \rightarrow$	$J/\psi(15)$	$(S)\eta)/\Gamma_{total}$				Γ ₂₀₅ /Γ
		DOCUMENT ID AUBERT		TECN	<u>COMMENT</u>	
$< 7.7 \times 10^{-6}$	90	¹ AUBERT	04Y	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$^{ m 1}$ Assumes equal produ	iction of E	$^{ m 8^+}$ and $^{ m 8^0}$ at the	e γ(4	<i>S</i>).		
$\Gamma(X(3872)^+ K^0, X^+$	$\rightarrow I/\psi$	$(15)\pi^{+}\pi^{0})/\Gamma$	tatal			Γ ₂₁₂ /Γ
VALUE (units 10^{-6})	•	• , , , , , , , , , , , , , , , , , , ,		TECN	COMMENT	- 212/ -
< 6.1	90	L,2 CHOI	11	BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$
• • • We do not use the						()
<22	90	³ AUBERT	05 B	BABR	e^+e^-	$\Upsilon(4S)$
1 Assumes $\pi^+\pi^0$ origi						
² Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.						
³ Assumes equal produexcluded with a likeli				S). The	isovector-X	hypothesis is
			eI.			
$\Gamma(X(4430)^+ K^0, X^+)$,,				Γ ₂₁₃ /Γ
<u>VALUE</u> (units 10 ^{−5}) <1.5	CL%	DOCUMENT ID		TECN	COMMENT	
					$e^+e^- \rightarrow$	$\Upsilon(4S)$
$^{ m 1}$ Assumes equal produ	iction of <i>E</i>	$^{ m H}$ and $B^{ m 0}$ at the	e $\Upsilon(4$	<i>S</i>).		
$\Gamma(X(4430)^+ K^0, X^+)$	$\rightarrow \psi$ (2.5	$(5)\pi^+)/\Gamma_{total}$				Γ ₂₁₄ /Γ
VALUE (units 10^{-5})	CL%	DOCUMENT ID		TECN	COMMENT	
<i>VALUE</i> (units 10 ^{−5}) <4.7	95	¹ AUBERT	09A	A BABR	$e^+e^- ightarrow$	$\Upsilon(4S)$
¹ Assumes equal produ						
HTTP://PDG.LBL.C	GOV	Page 72		Creat	ted: 8/21/	2014 12:56

 $\Gamma(X(4260)^0K^+, X^0 \rightarrow J/\psi\pi^+\pi^-)/\Gamma_{\text{total}}$ Γ_{215}/Γ <29 ¹ AUBERT 06 BABR $e^+e^- \rightarrow$ ¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$. $\Gamma(\chi_{c0}(2P)K^+, X^0 \rightarrow J/\psi\gamma)/\Gamma_{total}$ Γ_{216}/Γ *VALUE* (units 10^{-6}) DOCUMENT ID TECN COMMENT CL% 1 AUBERT,BE 06M BABR $e^{+}e^{-}
ightarrow \varUpsilon$ (4S) ¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$. $\Gamma(X(3930)^0 K^+, X^0 \rightarrow J/\psi \gamma)/\Gamma_{\text{total}}$ Γ_{217}/Γ DOCUMENT ID TECN COMMENT ¹ AUBERT, BE 06M BABR $e^+e^- \rightarrow \Upsilon(4S)$ <2.5 ¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$. $\Gamma(J/\psi(1S)K^0\pi^+)/\Gamma_{\text{total}}$ Γ_{219}/Γ *VALUE* (units 10^{-3}) DOCUMENT ID TECN COMMENT • • • We do not use the following data for averages, fits, limits, etc. • • • ¹ AUBERT 09AA BABR $e^+e^ightarrow~ \varUpsilon(4S)$ 1.101 ± 0.021 ¹ Does not report systematic uncertainties. $\Gamma(J/\psi(1S)K^{*}(892)^{+})/\Gamma_{\text{total}}$ Γ_{222}/Γ For polarization information see the Listings at the end of the "B⁰ Branching Ratios" section. VALUE (units 10^{-3}) DOCUMENT ID TECN COMMENT 1.44 ± 0.08 OUR FIT 1.43 ± 0.08 OUR AVERAGE $1.78 \ \, ^{+\, 0.36}_{-\, 0.32} \ \, \pm 0.02$ ^{1,2} AUBERT 07AV BABR $e^+e^- \rightarrow \Upsilon(4S)$ ² AUBERT 05J BABR $e^+e^- \rightarrow \Upsilon(4S)$ $1.454 \pm 0.047 \pm 0.097$ ² ABE 02N BELL $e^+e^- \rightarrow \Upsilon(4S)$ $1.28 \pm 0.07 \pm 0.14$ ² JESSOP $e^+e^- \rightarrow \Upsilon(4S)$ CLE2 $1.41 \pm 0.23 \pm 0.24$ 3 ABE 96H CDF $1.58 \pm 0.47 \pm 0.27$ ⁴ BORTOLETTO92 CLEO $e^+e^- \rightarrow \Upsilon(4S)$ $1.50 \pm 1.08 \pm 0.01$ ⁵ ALBRECHT $1.85 \pm 1.30 \pm 0.01$ 2 90J ARG • • We do not use the following data for averages, fits, limits, etc. ² AUBERT $1.37 \pm 0.09 \pm 0.11$ BABR Repl. by AUBERT 05J ² ALAM Sup. by JESSOP 97 $1.78 \pm 0.51 \pm 0.23$ CLE2 $^{1}\text{AUBERT 07AV reports} \ [\Gamma(B^{+}\rightarrow\ J/\psi(1S)\ K^{*}(892)^{+})/\Gamma_{\text{total}}] \ \times \ [B(J/\psi(1S)\rightarrow\ \rho\,\overline{\rho})]$ $= (3.78 + 0.72 + 0.28) \times 10^{-6} \text{ which we divide by our best value B} (J/\psi(1S) \rightarrow p\overline{p}) =$ $(2.120\pm0.029) imes 10^{-3}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. ² Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$. ³ ABE 96H assumes that B($B^+ \to J/\psi K^+$) = (1.02 ± 0.14) × 10⁻³. 4 BORTOLETTO 92 reports (1.3 \pm 0.9 \pm 0.3) imes 10 $^{-3}$ from a measurement of [$\Gamma(B^+ o$ $J/\psi(1S)K^*(892)^+)/\Gamma_{ ext{total}}] \times [B(J/\psi(1S) \rightarrow e^+e^-)]$ assuming $B(J/\psi(1S) \rightarrow e^+e^-)$

 $e^+e^-)=0.069\pm0.009$, which we rescale to our best value B($J/\psi(1S)\to e^+e^-$) = $(5.971\pm0.032)\times10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

⁵ ALBRECHT 90J reports $(1.6 \pm 1.1 \pm 0.3) \times 10^{-3}$ from a measurement of $[\Gamma(B^+ \to J/\psi(1S) \, K^*(892)^+)/\Gamma_{\text{total}}] \times [B(J/\psi(1S) \to e^+ e^-)]$ assuming $B(J/\psi(1S) \to e^+ e^-) = 0.069 \pm 0.009$, which we rescale to our best value $B(J/\psi(1S) \to e^+ e^-) = (5.971 \pm 0.032) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(J/\psi(1S)K^*(892)^+)/\Gamma(J/\psi(1S)K^+)$

 $\Gamma_{222}/\Gamma_{218}$

VALUE	DOCUMENT ID		TECN	COMMENT			
1.39±0.09 OUR AVERAGE							
$1.37 \pm 0.05 \pm 0.08$	AUBERT			$e^+e^- ightarrow \Upsilon(4S)$			
$1.45 \pm 0.20 \pm 0.17$	¹ JESSOP	97	CLE2	$e^+e^- ightarrow ~ \varUpsilon(4S)$			
$1.92 \pm 0.60 \pm 0.17$	ABE	96Q	CDF	p p			
• • • We do not use the following data for averages, fits, limits, etc. • •							
$1.37 \pm 0.10 \pm 0.08$	² AUBERT	02	BABR	Repl. by AUBERT 05J			

 $^{^1}$ JESSOP 97 assumes equal production of B^+ and B^0 at the $\varUpsilon(4S).$ The measurement is actually measured as an average over kaon charged and neutral states.

$\Gamma(J/\psi(1S)K(1270)^+)/\Gamma_{\text{total}}$

 Γ_{223}/Γ

VALUE (units 10^{-3})	DOC	UMENT ID	TECN	COMMENT
$1.80 \pm 0.34 \pm 0.39$	1 ABE	01L	BELL	$e^+e^- ightarrow \gamma(4S)$
4				2

¹ Uses the PDG value of B($B^+ \to J/\psi(1S) K^+$) = (1.00 ± 0.10) × 10⁻³.

$\Gamma(J/\psi(1S)K(1400)^{+})/\Gamma(J/\psi(1S)K(1270)^{+})$

 $\Gamma_{224}/\Gamma_{223}$

VALUE	CL%	DOCUMENT ID		TECN	COMMENT
<0.30	90	ABE	01L	BELL	$e^+e^- ightarrow \gamma(4S)$

$\Gamma(J/\psi(1S)\eta K^+)/\Gamma_{\text{total}}$

 Γ_{225}/Γ

VALUE (units 10^{-5})	DOCUMENT ID	TECN	COMMENT
10.8±2.3±2.4	¹ AUBERT 04Y	BABR	$e^+e^- ightarrow \gamma(4S)$

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(J/\psi(1S)\eta'K^+)/\Gamma_{\text{total}}$

 Γ_{226}/Γ

<i>VALUE</i> (units 10 ⁻⁵)	CL%	DOCUMENT ID		TECN	COMMENT
<8.8	90	¹ XIE	07	BELL	$e^+e^- ightarrow \gamma(4S)$

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(J/\psi(1S)\phi K^+)/\Gamma_{\text{total}}$

 Γ_{227}/Γ

VALUE (units 10^{-5})	DOCUMENT ID	TECN	COMMENT		
5.2±1.7 OUR AVERAGE					
$4.4 \pm 1.4 \pm 0.5$	$^{ m 1}$ AUBERT	030	BABR	$e^+e^ \rightarrow$	$\Upsilon(4S)$
$8.8^{+3.5}_{-3.0}\pm1.3$	² ANASTASSOV	00	CLE2	$e^+e^- \rightarrow$	$\Upsilon(4S)$

HTTP://PDG.LBL.GOV

Page 74

² Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$. 2 ANASTASSOV 00 finds 10 events on a background of 0.5 \pm 0.2. Assumes equal production of B^0 and B^+ at the $\Upsilon(4S)$, a uniform Dalitz plot distribution, isotropic $J/\psi(1S)$ and ϕ decays, and B($B^+ \rightarrow J/\psi(1S)\phi K^+$)= B($B^0 \rightarrow J/\psi(1S)\phi K^0$). $\Gamma(X(4140)K^+, X \rightarrow J/\psi(1S)\phi)/\Gamma(J/\psi(1S)\phi K^+)$ **VALUE** 14A D0 $0.19\pm0.07\pm0.04$ $p\overline{p}$ at 1.96 TeV • • We do not use the following data for averages, fits, limits, etc. • ² AAIJ < 0.07 12AA LHCB pp at 7 TeV ¹Reported a threshold enhancement in the $J/\psi \phi$ mass distribution consistent with the X(4140) state with a statistical significance of 3.1 standard deviations. ²Branching fractions are normalized to 382 \pm 22 events of $B^+ \rightarrow J/\psi \phi K^+$. $\Gamma(X(4274)K^+, X \rightarrow J/\psi(1S)\phi)/\Gamma(J/\psi(1S)\phi K^+)$ $\Gamma_{229}/\Gamma_{227}$ <0.08 ¹ Branching fractions are normalized to 382 \pm 22 events of $B^+ \rightarrow J/\psi \phi K^+$. $\Gamma(J/\psi(1S)\omega K^+)/\Gamma_{\text{total}}$ Γ_{230}/Γ VALUE (units 10^{-4}) TECN COMMENT $3.2\pm0.1^{+0.6}_{-0.3}$ ¹ DEL-AMO-SA...10B BABR $e^+e^- \rightarrow \Upsilon(4S)$ • • • We do not use the following data for averages, fits, limits, etc. • • • ¹ AUBERT $3.5 \pm 0.2 \pm 0.4$ 08W BABR Repl. by DEL-AMO-¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$. $\Gamma(X(3872)K^+, X \rightarrow J/\psi\omega)/\Gamma_{\text{total}}$ Γ_{231}/Γ DOCUMENT ID TECN COMMENT VALUE (units 10^{-6}) ¹ DEL-AMO-SA...10B BABR $e^+e^- \rightarrow \Upsilon(4S)$ 6±2±1 ¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$. $\Gamma(X(3872)K^+, X \rightarrow p\overline{p})/\Gamma_{\text{total}}$ Γ_{201}/Γ ¹ Measured relative to $B^+ \to J/\psi K^+$ decay with charmonia reconstructed in $p\overline{p}$ final state and using B($B^+ \rightarrow J/\psi K^+$) = (1.013 \pm 0.034) \times 10⁻³ and B($J/\psi \rightarrow p\overline{p}$) = $(2.17 \pm 0.07) \times 10^{-3}$. $\Gamma(\chi_{c0}(2P)K^+, \chi_{c0} \rightarrow J/\psi\omega)/\Gamma_{total}$ Γ_{232}/Γ VALUE (units 10^{-5}) DOCUMENT ID TECN COMMENT $3.0^{+0.7}_{-0.6}^{+0.5}_{-0.3}$ ¹ DEL-AMO-SA..10B BABR $e^+e^- \rightarrow \Upsilon(4S)$ • • We do not use the following data for averages, fits, limits, etc. • • $4.9^{\,+\,1.0}_{\,-\,0.9}\,{\pm}\,0.5$ ¹ AUBERT 08W BABR Repl. by DEL-AMO-SANCHEZ 10B

HTTP://PDG.LBL.GOV

Page 75

Created: 8/21/2014 12:56

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(\chi_{c0}(2P)K^+, \chi_{c0})$	$_0 \rightarrow p \overline{p}$	$/\Gamma_{\text{total}}$				Γ_{221}/Γ
VALUE	<u>CL%</u>	DOCUMENT I	ID	TECN	COMMENT	
$< 7.1 \times 10^{-8}$	95	¹ AAIJ	13 S	LHCB	pp at 7 Te	V
1 Measured relative state and using B($(2.17\pm0.07) imes10$	$B^+ \rightarrow J$					
$\Gamma(J/\psi(1S)\pi^+)/\Gamma_{ m to}$		DOCUMENT I	ID	TECN	COMMENT	Г ₂₃₃ /Г
$(4.1 \pm 0.4) \times 10^{-}$	5 OUR FI	T Error include	s scale fa	actor of	2.6.	
$(3.8\pm0.6\pm0.3)\times10^{-}$					$e^+e^ \rightarrow$	$\Upsilon(4S)$
¹ Assumes equal pro		B^+ and B^0 at Φ	the $\Upsilon(45)$	5).		,
$\Gamma(J/\psi(1S)\pi^+)/\Gamma($	$J/\psi(1S)$	K +)				$\Gamma_{233}/\Gamma_{218}$
VALUE (units 10 ⁻²) 4.0 ±0.4 OUR FIT	EVTS	<u>DOCUMENT</u>	ID	TECN	COMMENT	
4.0 \pm 0.4 OUR AVER $3.83\pm0.11\pm0.07$ $4.86\pm0.82\pm0.15$ $5.37\pm0.45\pm0.11$ $5.0 \begin{array}{c} +1.9 \\ -1.7 \end{array} \pm 0.1$ $5.2 \begin{array}{c} \pm2.4 \\ \bullet \end{array}$ • • • We do not use to the sum of	:he followii 5	AAIJ ABULENCI AUBERT ABE BISHAI ng data for avera AUBERT 1 ALEXAND	12A 1A 09 04P 96R 96 ges, fits, 02F ER 95	C LHCB CDF BABR CDF CLE2 limits, 6 BABR CLE2	Repl. by A	au TeV $ au$ $ au$ (4 S) V $ au$ $ au$ (4 S)
$\Gamma(J/\psi(1S)\rho^+)/\Gamma_{ m tc}$	otal					Γ ₂₃₄ /Γ
VALUE (units 10^{-5})	CL%	DOCUMENT I				
$5.0 \pm 0.7 \pm 0.3$		$^{ m 1}$ AUBERT				$\Upsilon(4S)$
• • • We do not use t	he followii	ng data for avera	ges, fits,	limits, e	etc. • • •	
<77		BISHAI			$e^+e^- \rightarrow$	$\Upsilon(4S)$
¹ Assumes equal pro	duction of	$^{\prime}B^{+}$ and B^{0} at $^{\prime}$	the $\Upsilon(45)$	S).		
$\Gamma(J/\psi(1S)\pi^+\pi^0$ no						Γ ₂₃₅ /Γ
<i>VALUE</i> (units 10 ^{−5}) <0.73	CL%	DOCUMENT I	ID	TECN	COMMENT	
<0.73	90	$^{ m 1}$ AUBERT	07 AC	BABR	$e^+e^ \rightarrow$	$\Upsilon(4S)$
¹ Assumes equal pro	duction of	B^+ and B^0 at Φ	the $\Upsilon(4S)$	5).		
$\Gamma(J/\psi(1S)a_1(1260$) ⁺)/Γ _{tot}					Γ ₂₃₆ /Γ
<u>VALUE</u> <1.2 × 10 ^{−3}	<u>CL%</u>	DOCUMENT I	ID			
$<1.2 \times 10^{-3}$	90	BISHAI	96	CLE2	$e^+e^ \rightarrow$	$\Upsilon(4S)$

$\Gamma(J/\psi p \overline{p} \pi^+)/\Gamma_{\text{total}}$	CL 9/	DOCUMENT ID		TECN	COMMENT	Γ ₂₃₇ /Γ
<i>VALUE</i> <5.0 × 10 ^{−7}	<u>CL /8</u> QN	1 AALL	137	I HCR	nn at 7 Te	٠
1 Uses B($B_s^0 o J/\psi$ (ppatrie	. v
$OSCSD(D_S \rightarrow S) \varphi($	(10) // //) — (1.30 ± 0.2	3) / 1			
$\Gamma(J/\psi(1S)p\overline{\Lambda})/\Gamma_{\text{tot}}$	al					Γ ₂₃₈ /Γ
VALUE (units 10^{-6})	CL%	DOCUMENT ID		TECN	COMMENT	
11.8±3.1 OUR AVER	AGE					
$11.7\!\pm\!2.8\!+\!1.8 \ -2.3$		¹ XIE	05	BELL	e^+e^-	$\Upsilon(4S)$
$\begin{array}{ccc} 12 & +9 \\ -6 & \end{array}$		¹ AUBERT	03K	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
• • • We do not use the	e following	data for averages	s, fits,	limits, e	etc. • • •	
<41		ZANG				$\Upsilon(4S)$
¹ Assumes equal produ	uction of B	$^+$ and B^0 at the	$\Upsilon(4)$	S).		,
_			•	,		F /F
$\Gamma(J/\psi(1S)\overline{\Sigma}^0 p)/\Gamma_{t}$		DOCUMENT ID		TECN	COMMENT	Γ ₂₃₉ /Γ
VALUE <1.1 × 10 ^{−5}		1 VIE	ΩE	DELI	comment	Υ(15)
¹ Assumes equal produ					e ' e →	1 (43)
		and B° at the	1 (43	5).		
$\Gamma(J/\psi(1S)D^+)/\Gamma_{tot}$	tal					Γ ₂₄₀ /Γ
VALUE (units 10^{-5})	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT	
<12		¹ AUBERT			$e^+e^- \rightarrow$	$\Upsilon(4S)$
$^{ m 1}$ Assumes equal produ	uction of B	$^+$ and B^0 at the	$\Upsilon(4.$	S).		
$\Gamma(J/\psi(1S)\overline{D}{}^0\pi^+)/\Gamma$	total					Γ_{241}/Γ
VALUE (units 10^{-5})	CL%	DOCUMENT ID		TECN	COMMENT	-
<2.5	90	¹ ZHANG	05 B	BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$
• • • We do not use the	e following	data for averages	s, fits,	limits, 6	etc. • • •	
< 5.2	90	¹ AUBERT	05 R	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
¹ Assumes equal produ	uction of B	$^+$ and B^0 at the	$\gamma(4)$	S).		
$\Gamma(\psi(2S)\pi^+)/\Gamma_{total}$						Γ ₂₄₂ /Γ
VALUE (units 10^{-5})		DOCUMENT ID		TECN	COMMENT	_
2.44±0.22±0.20		1 BHARDWAJ	08	BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$
¹ Assumes equal produ						. ,
$\Gamma(\psi(2S)\pi^+)/\Gamma(\psi(2S)\pi^+)$	S)K ⁺)					$\Gamma_{242}/\Gamma_{243}$
VALUE (units 10^{-2})	-	DOCUMENT ID		TECN	COMMENT	,
3.97±0.29 OUR AVERA						
$3.95\!\pm\!0.40\!\pm\!0.12$		AAIJ			pp at 7 Te	
$3.99 \pm 0.36 \pm 0.17$		BHARDWAJ	80	BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$

Citation: K.A. Olive et al. (Particle Data Group), Chin. Phys. C38, 090001 (2014) (URL: http://pdg.lbl.gov)					
$\Gamma(\psi(2S)K^+)/\Gamma_{\text{total}}$					Γ ₂₄₃ /Γ
VALUE (units 10^{-4}) EV	/TS	DOCUMENT ID		TECN	COMMENT
6.27± 0.24 OUR FIT					
6.5 ± 0.4 OUR AVERA	AGE				
$6.65 \pm 0.17 \pm 0.55$		¹ GULER			$e^+e^- ightarrow ~ \varUpsilon(4S)$
$4.9 \pm 1.6 \pm 0.4$		² AUBERT			$e^+e^- ightarrow ~ \varUpsilon(4S)$
$6.17 \pm 0.32 \pm 0.44$		¹ AUBERT		BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$7.8 \pm 0.7 \pm 0.9$		$^{ m 1}$ RICHICHI	01	CLE2	` ,
$18 \pm 8 \pm 4$	5	$^{ m 1}$ ALBRECHT	90J	ARG	$e^+e^- ightarrow ~ \varUpsilon(4S)$
• • • We do not use the f	ollowir	ng data for averages	, fits,	limits, e	etc. • • •
6.9 ± 0.6 $6.4 \pm 0.5 \pm 0.8$		¹ ABE ¹ AUBERT	03B 02	BELL	Repl. by GULER 11 Repl. by AUBERT 05J
$6.1 \pm 2.3 \pm 0.9$	7	¹ ALAM	02 94		Repl. by RICHICHI 01
<5 at 90% CL	'	¹ BORTOLETTO			$e^+e^- \rightarrow \Upsilon(4S)$
22 ± 17	3	³ ALBRECHT		ARG	` ,
¹ Assumes equal product	tion of	P^+ and P^0 at the			()
					missing mass technique.
³ ALBRECHT 87D assun	ne <i>B</i> +	$B^-/B^0\overline{B}^0$ ratio is !	55/45	Supers	seded by ALBRECHT 90J.
$\Gamma(\psi(2S)K^+)/\Gamma(J/\psi($	1 <i>5</i>) <i>K</i>	·+)			$\Gamma_{243}/\Gamma_{218}$
VALUE		DOCUMENT ID		TECN	
0.611 ± 0.019 OUR FIT					
0.603 ± 0.021 OUR AVERA	AGE				
$0.61 \pm 0.11 \pm 0.02$		¹ AAIJ	13 S		pp at 7 TeV
$0.604 \pm 0.018 \pm 0.013$		^{2,3} AAIJ	12L		pp at 7 TeV
$0.63 \pm 0.05 \pm 0.08$		ABAZOV	09Y	D0	$p\overline{p}$ at 1.96 TeV
$0.558 \pm 0.082 \pm 0.056$		ABE		CDF	<i>p</i>
• • • We do not use the f	ollowir	ng data for averages	, fits,	limits, e	etc. • • •
$0.64 \pm 0.06 \pm 0.07$		⁴ AUBERT	02	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
¹ AAIJ 13S reports $[\Gamma(I)]$	3 ⁺ →	$\psi(2S)K^+)/\Gamma(B^-)$	+ _→	$J/\psi(1$	$(S)K^+)] \times [B(\psi(2S) \rightarrow$

 $p\overline{p}$] / [B($J/\psi(1S) \rightarrow p\overline{p}$)] = 0.080 \pm 0.012 \pm 0.009 which we multiply or divide by our best values $B(\psi(2S) \rightarrow p\overline{p}) = (2.80 \pm 0.11) \times 10^{-4}, B(J/\psi(1S) \rightarrow p\overline{p}) =$ $(2.120 \pm 0.029) \times 10^{-3}$. Our first error is their experiment's error and our second error is the systematic error from using our best values.

 $^{^2}$ AAIJ 12L reports 0.594 \pm 0.006 \pm 0.016 \pm 0.015 from a measurement of [Γ(B^+ ightarrow $\psi(2S)K^+)/\Gamma(B^+ \rightarrow J/\psi(1S)K^+)] \times [B(J/\psi(1S) \rightarrow e^+e^-)] / [B(\psi(2S) \rightarrow e^+e^-)]$ $e^+e^-)]$ assuming B($J/\psi(1S) \rightarrow e^+e^-) = (5.94 \pm 0.06) \times 10^{-2}$,B($\psi(2S) \rightarrow e^+e^-)$ $=(7.72\pm0.17)\times10^{-3}$, which we rescale to our best values B $(J/\psi(1S)\to e^+e^-)$ = $(5.971 \pm 0.032) \times 10^{-2}$, B($\psi(2S) \rightarrow e^+e^-$) = $(7.89 \pm 0.17) \times 10^{-3}$. Our first error is their experiment's error and our second error is the systematic error from using our best values.

our best values. 3 Assumes B($J/\psi \to \mu^+ \mu^-$) / B($\psi(2S) \to \mu^+ \mu^-$) = B($J/\psi \to e^+ e^-$) / B($\psi(2S) \to \mu^+ \mu^-$) e^+e^-) = 7.69 ± 0.19.

⁴ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

VALUE (units 10^-4)CL%DOCUMENT IDTECNCOMMENT6.7 ±1.4 OUR AVERAGEError includes scale factor of 1.3.1.39±0.85±0.891.40BERT05J BABR $e^+e^- \rightarrow \Upsilon(4S)$ 5.92±0.85±0.891.40BERT05J BABR $e^+e^- \rightarrow \Upsilon(4S)$ 9.2 ±1.9 ±1.21 RICHICHI01 CLE2 $e^+e^- \rightarrow \Upsilon(4S)$.•• We do not use the following data for averages, fits, limits, etc••<30901 ALAM94 CLE2 Repl. by RICHICHI 01.35901 BORTOLETTO92 CLE0 $e^+e^- \rightarrow \Upsilon(4S)$ <49901 ALBRECHT90J ARG $e^+e^- \rightarrow \Upsilon(4S)$ 1 Assumes equal production of B+ and B ⁰ at the $\Upsilon(4S)$.Γ244/Γ243VALUEDOCUMENT IDTECNCOMMENT0.96±0.15±0.09AUBERT05J BABR $e^+e^- \rightarrow \Upsilon(4S)$ VALUE (units 10^-3)DOCUMENT IDTECNCOMMENTVALUE (units 10^-3)DOCUMENT IDTECNCOMMENT1 Does not report systematic uncertainties.TOPA BABR $e^+e^- \rightarrow \Upsilon(4S)$ 1 Does not report systematic uncertainties.TOPA BABR $e^+e^- \rightarrow \Upsilon(4S)$ 1 Patter (units 10^-4)EVTSDOCUMENT IDTECNCOMMENT4.3 ± 0.5 OUR AVERAGE1 GULER11 BELL $e^+e^- \rightarrow \Upsilon(4S)$ 1 Assumes equal production of B+ and B ⁰ at the $\Upsilon(4S)$.TOPA BABR $e^+e^- \rightarrow \Upsilon(4S)$ 1 Perform measurements of absolute branching fractions using a missing mass technique.2 Assumes equal production of B+ and B ⁰ at the $\Upsilon(4S)$.Γ(ψ(3770) K+, ψ → D ⁰ D̄0) / ΓtotalTECNCOMMENT1.6 ±0.4 OUR AVERAGEError includes scale factor of 1.1.1.41±0.30±0.221 BR	$\Gamma(\psi(2S)K^*(892)^+)$	/Γ _{total}					Γ ₂₄₄ /Γ
1 AUBERT 05J BABR $e^+e^- \rightarrow \Upsilon(4S)$ 9.2 ±1.9 ±1.2 1.2 1 RICHICHI 01 CLE2 $e^+e^- \rightarrow \Upsilon(4S)$ 9.2 ±1.9 ±1.2 1 RICHICHI 01 CLE2 $e^+e^- \rightarrow \Upsilon(4S)$ 0.0 ± 0.0	VALUE (units 10^{-4})	CL%	DOCUMENT ID		TECN	COMMENT	
9.2 \pm 1.9 \pm 1.2 ••• We do not use the following data for averages, fits, limits, etc. ••• <30 90 1 ALAM 94 CLE2 Repl. by RICHICHI 01 <35 90 1 BORTOLETTO92 CLEO $e^+e^- \rightarrow \Upsilon(45)$ <49 90 1 ALBRECHT 90J ARG $e^+e^- \rightarrow \Upsilon(45)$ 1 Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$. $\Gamma(\psi(2S)K^*(892)^+)/\Gamma(\psi(2S)K^+)$ $\Gamma(\psi(2S)K^*(892)^+)/\Gamma(\psi(2S)K^+)$ $\Gamma(\psi(2S)K^0\pi^+)/\Gamma_{total}$ $\Gamma(2\pi)\Gamma_{total}$	6.7 \pm 1.4 OUR AVI	ERAGE	Error includes scal	e fact	or of 1.3	.	
• • • We do not use the following data for averages, fits, limits, etc. • • • • • • • • • • • • • • • • • • •	$5.92\!\pm\!0.85\!\pm\!0.89$		$^{ m 1}$ AUBERT	05 J	BABR	e^+e^-	$\Upsilon(4S)$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$9.2\ \pm 1.9\ \pm 1.2$		¹ RICHICHI	01	CLE2	e^+e^-	$\Upsilon(4S)$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	• • • We do not use the	e followir	ng data for average	s, fits,	limits, e	etc. • • •	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	<30	90	$^{ m 1}$ ALAM	94	CLE2	Repl. by R	RICHICHI 01
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
1 Assumes equal production of B^+ and B^0 at the $T(4S)$.							
VALUEDOCUMENT IDTECN TECNCOMMENT0.96±0.15±0.09AUBERT05JBABR $e^+e^- \rightarrow \Upsilon(4S)$ Γ(ψ(2S) $K^0\pi^+$)/ΓtotalDOCUMENT IDTECNCOMMENT• • • We do not use the following data for averages, fits, limits, etc. • • •0.588±0.034 1 AUBERT09AA BABR $e^+e^- \rightarrow \Upsilon(4S)$ 1 Does not report systematic uncertainties.Γ(ψ(2S) $K^+\pi^+\pi^-$)/Γtotal 1 AUBERT109AA BABR $e^+e^- \rightarrow \Upsilon(4S)$ 1 ALUE (units 10^{-4})EVTSDOCUMENT IDTECNCOMMENT 1 A3 ± 0.5 OUR AVERAGE 1 GULER11BELL $e^+e^- \rightarrow \Upsilon(4S)$ 1 Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.Γ(ψ(3770) K^+)/ΓtotalΓ247/Γ 1 AUBERT06EBABR $e^+e^- \rightarrow \Upsilon(4S)$ 1 AUBERT06EBABR $e^+e^- \rightarrow \Upsilon(4S)$ 1 Perform measurements of absolute branching fractions using a missing mass technique. 2 Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.Γ(ψ(3770) K^+ , $\psi \rightarrow D^0 D^0$)/Γ totalΓ248/Γ $VALUE$ (units 10^{-4})DOCUMENT IDTECNCOMMENT 1.6 ±0.4 OUR AVERAGEError includes scale factor of 1.1. 1.41 ±0.30 ±0.22 1 BRODZICKA 08BELL $e^+e^- \rightarrow \Upsilon(4S)$ 1 AUBERT08B BABR $e^+e^- \rightarrow \Upsilon(4S)$ 1 AUBERT08B BABR $e^+e^- \rightarrow \Upsilon(4S)$ 1 AUBERT08B BABR $e^+e^- \rightarrow \Upsilon(4S)$	¹ Assumes equal produ	uction of	B^+ and B^0 at the	Υ(4.	S).		` '
0.96±0.15±0.09 AUBERT 05J BABR $e^+e^- \rightarrow \Upsilon(4S)$ $\Gamma(\psi(2S)K^0\pi^+)/\Gamma_{total}$ $\Gamma_{245}/\Gamma_{$	$\Gamma(\psi(2S)K^*(892)^+)$	/Γ(ψ (2:	S) K+)				$\Gamma_{244}/\Gamma_{243}$
$\Gamma(\psi(2S) K^0 \pi^+)/\Gamma_{total}$ PALUE (units 10^{-3}) DOCUMENT ID TECN COMMENT • • • We do not use the following data for averages, fits, limits, etc. • • • 0.588 ± 0.034 1 AUBERT O9AA BABR $e^+e^- \rightarrow \Upsilon(4S)$ 1 Does not report systematic uncertainties. $\Gamma(\psi(2S) K^+ \pi^+ \pi^-)/\Gamma_{total}$ F246/Γ VALUE (units 10^{-4}) EVTS DOCUMENT ID TECN COMMENT 4.3 ± 0.5 OUR AVERAGE 4.31 ± 0.20 ± 0.50 1 GULER 11 BELL $e^+e^- \rightarrow \Upsilon(4S)$ 1 ALBRECHT 90 ARG $e^+e^- \rightarrow \Upsilon(4S)$ Tassumes equal production of B^+ and B^0 at the $\Upsilon(4S)$. $\Gamma(\psi(3770) K^+)/\Gamma_{total}$ F247/Γ VALUE (units 10^{-3}) DOCUMENT ID TECN COMMENT Tecn Tecn COMMENT Tecn	VALUE		DOCUMENT ID		TECN	<u>COMMENT</u>	
value (units 10 ⁻³) DOCUMENT ID TECN COMMENT • • • We do not use the following data for averages, fits, limits, etc. • • • 0.588 ± 0.034	$0.96 \pm 0.15 \pm 0.09$		AUBERT	05 J	BABR	e^+e^-	$\Upsilon(4S)$
• • • We do not use the following data for averages, fits, limits, etc. • • • • 0.588 \pm 0.034	$\Gamma(\psi(2S)K^0\pi^+)/\Gamma_{\rm to}$	tal					Γ ₂₄₅ /Γ
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$VALUE$ (units 10^{-3})		DOCUMENT ID		TECN	COMMENT	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	• • • We do not use the	e followir	ng data for average	s, fits,	limits,	etc. • • •	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							$\Upsilon(4S)$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$^{ m 1}$ Does not report syst	ematic u	ncertainties.				
4.3 \pm 0.5 OUR AVERAGE 4.31 \pm 0.20 \pm 0.50 1 GULER 11 BELL $e^+e^- \rightarrow \Upsilon(4S)$ 19 \pm 11 \pm 4 3 1 ALBRECHT 90J ARG $e^+e^- \rightarrow \Upsilon(4S)$ 1 Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$. $\Gamma(\psi(3770)K^+)/\Gamma_{total}$ VALUE (units 10^{-3}) 0.49 \pm 0.13 OUR AVERAGE 3.5 \pm 2.5 \pm 0.3 1 AUBERT 06E BABR $e^+e^- \rightarrow \Upsilon(4S)$ 1 Perform measurements of absolute branching fractions using a missing mass technique. 2 Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$. $\Gamma(\psi(3770)K^+,\psi \rightarrow D^0\overline{D^0})/\Gamma_{total}$ Γ_{248}/Γ VALUE (units 10^{-4}) 1.6 \pm 0.4 OUR AVERAGE 1.41 \pm 0.30 \pm 0.22 1 BRODZICKA 1 BRODZICKA 1 BRODZICKA 1 BELL $e^+e^- \rightarrow \Upsilon(4S)$ 1 CHISTOV 04 BELL Repl. by BRODZICKA 08 10 STORMENT 11 BELL $e^+e^- \rightarrow \Upsilon(4S)$ 1 CHISTOV 1 BELL Repl. by BRODZICKA 10 STORMENT 10 STORMENT 11 BELL $e^+e^- \rightarrow \Upsilon(4S)$ 1 CHISTOV 1 BELL Repl. by BRODZICKA 10 STORMENT 1 AUBERT 1	•						Γ ₂₄₆ /Γ
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	VALUE (units 10^{-4})	<u>EVT</u>	<u>DOCUMENT</u>	ID	TEC	CN COMME	NT
19 \pm 11 \pm 4 3 \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$		RAGE	1				
$ \Gamma(\psi(3770)K^+)/\Gamma_{\text{total}} \qquad \qquad \Gamma_{247}/\Gamma_{2$							
$ \Gamma(\psi(3770)K^+)/\Gamma_{\text{total}} $						G e ⁺ e ⁻	$\rightarrow \Upsilon(4S)$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	¹ Assumes equal produ	uction of	B^+ and B^0 at the	$\Upsilon(4.$	S).		
0.49 \pm 0.13 OUR AVERAGE 3.5 \pm 2.5 \pm 0.3	$\Gamma(\psi(3770)K^+)/\Gamma_{\text{tot}}$	al					Γ ₂₄₇ /Γ
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			DOCUMENT ID		TECN	COMMENT	
1 Perform measurements of absolute branching fractions using a missing mass technique. 2 Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$. $ \Gamma(\psi(3770)K+,\psi\to D^0\overline{D^0})/\Gamma_{\rm total} $	0.49 ± 0.13 OUR AVERA	IGE					
1 Perform measurements of absolute branching fractions using a missing mass technique. 2 Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$. $ \Gamma(\psi(3770)K+,\psi\to D^0\overline{D^0})/\Gamma_{\rm total} $	$3.5 \pm 2.5 \pm 0.3$		¹ AUBERT	06E	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
² Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$. $\Gamma(\psi(3770)K+,\psi\to D^0\overline{D^0})/\Gamma_{\text{total}} \qquad \qquad \Gamma_{248}/$	$0.48 \pm 0.11 \pm 0.07$		² CHISTOV	04	BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$ \Gamma(\psi(3770)K+,\psi\to D^0\overline{D^0})/\Gamma_{\text{total}} $ $ \Gamma_{248}/\Gamma_{\text{VALUE (units }10^{-4})} $ $ DOCUMENT ID $ TECN COMMENT 10.1. TECN STATE PROPERTY OF 1.1. TECN STATE PROPERTY OF	¹ Perform measuremen	nts of abs	solute branching fra	ction	s using a	missing ma	ss technique.
VALUE (units 10^{-4})DOCUMENT IDTECNCOMMENT1.6 ± 0.4 OUR AVERAGEError includes scale factor of 1.1 . $1.41 \pm 0.30 \pm 0.22$ 1 AUBERT08BBABR $e^+e^- \rightarrow \Upsilon(4S)$ $2.2 \pm 0.5 \pm 0.3$ 1 BRODZICKA08BELL $e^+e^- \rightarrow \Upsilon(4S)$ • • • We do not use the following data for averages, fits, limits, etc. • • $3.4 \pm 0.8 \pm 0.5$ 1 CHISTOV04BELLRepl. by BRODZICKA	² Assumes equal produ	uction of	B^+ and B^0 at the	$\Upsilon(4.$	S).		
1.6 ± 0.4 OUR AVERAGEError includes scale factor of 1.1. $1.41\pm0.30\pm0.22$ 1 AUBERT08B BABR $e^+e^- \rightarrow \Upsilon(4S)$ $2.2 \pm 0.5 \pm 0.3$ 1 BRODZICKA08 BELL $e^+e^- \rightarrow \Upsilon(4S)$ • • We do not use the following data for averages, fits, limits, etc. • • $3.4 \pm 0.8 \pm 0.5$ 1 CHISTOV04 BELL Repl. by BRODZICKA	$\Gamma(\psi(3770)K+,\psi\rightarrow$	$D^0 \overline{D}{}^0$)/Γ _{total}				Γ ₂₄₈ /Γ
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	VALUE (units 10^{-4})	D	OCUMENT ID	TECN	І СОМІ	MENT	
2.2 ± 0.5 ± 0.3	1.6 ±0.4 OUR AVERA	GE Eri	ror includes scale fa	ctor c	of 1.1.		
\bullet \bullet We do not use the following data for averages, fits, limits, etc. \bullet \bullet \bullet 3.4 \pm 0.8 \pm 0.5 1 CHISTOV 04 BELL Repl. by BRODZICKA 08	$1.41\!\pm\!0.30\!\pm\!0.22$	1 A	UBERT 08B	BAB	R e ⁺ e	$^- \rightarrow \gamma (45)$	5)
$3.4~\pm 0.8~\pm 0.5$ 1 CHISTOV 04 BELL Repl. by BRODZICKA 08	$2.2 \pm 0.5 \pm 0.3$	1 B	RODZICKA 08	BEL	L e^+e	$- \rightarrow \gamma(45)$	5)
• •	• • • We do not use the	e followir	ng data for averages	s, fits,	limits, e	etc. • • •	
. ,	$3.4 \pm 0.8 \pm 0.5$	¹ C	HISTOV 04	BEL	L Repl	by BROD	ZICKA 08
· · · · · · · · · · · · · · · · · · ·					=	<i>,</i>	

```
\Gamma(\psi(3770)K+,\psi\to D^+D^-)/\Gamma_{\text{total}}
                                                                                                                \Gamma_{249}/\Gamma
VALUE (units 10^{-4})
0.94 ± 0.35 OUR AVERAGE
                                                                        08B BABR e^+e^- \rightarrow \Upsilon(4S)
0.84 \pm 0.32 \pm 0.21
                                                <sup>1</sup> AUBERT
                                                                                BELL e^+e^- \rightarrow \Upsilon(4S)
                                                <sup>1</sup> CHISTOV
1.4 \pm 0.8 \pm 0.2
   <sup>1</sup> Assumes equal production of B^+ and B^0 at the \Upsilon(4S).
\Gamma(\chi_{c0}\pi^+, \chi_{c0} \rightarrow \pi^+\pi^-)/\Gamma_{total}
                                                                                                                \Gamma_{250}/\Gamma
VALUE (units 10^{-6})
                                                                               TECN COMMENT
 <0.1
                                                <sup>1</sup> AUBERT
                                                                        09L BABR e^+e^- \rightarrow \Upsilon(4S)
• • We do not use the following data for averages, fits, limits, etc.
                                                <sup>1</sup> AUBERT,B
                                   90
                                                                        05G BABR Repl. by AUBERT 09L
< 0.3
   <sup>1</sup> Assumes equal production of B^+ and B^0 at the \Upsilon(4S).
\Gamma(\chi_{c0}(1P)K^+)/\Gamma_{total}
                                                                                                                \Gamma_{251}/\Gamma
VALUE (units 10^{-4}) CL\%
                                                                              TECN
   1.50^{f +0.15}_{-0.14} OUR AVERAGE
                                            ^{1,2}\,\mathrm{LEES}
   1.84 \pm 0.25 \pm 0.14
                                                                       120 BABR e^+e^- \rightarrow \Upsilon(4S)
                                            ^{1,3} LEES
                                                                      120 BABR e^+e^- \rightarrow \Upsilon(4S)
   1.68 \pm 0.32 \pm 0.16
                                                                      111 BABR e^+e^- \rightarrow \Upsilon(4S)
                                              <sup>4</sup> LEES
   1.8 \pm 0.9 \pm 0.1
   1.26^{\,+\,0.28}_{\,-\,0.25}\,{\pm}\,0.05
                                            <sup>1,5</sup> AUBERT
                                                                      08AI BABR e^+e^- \rightarrow \Upsilon(4S)
   4.8 \pm 2.2 \pm 0.2
                                              <sup>6</sup> AUBERT,BE
                                                                      06M BABR e^+e^- \rightarrow \Upsilon(4S)
   1.12\pm0.12^{+0.30}_{-0.20}
                                              <sup>1</sup> GARMASH
                                                                              BELL e^+e^- \rightarrow \Upsilon(4S)
• • • We do not use the following data for averages, fits, limits, etc. • • •
                                              <sup>7</sup> AAIJ
                                                                      13S LHCB pp at 7 TeV
                                 95
 < 2.7
                                            <sup>1,8</sup> WICHT
                                                                              BELL e^+e^- \rightarrow \Upsilon(4S)
 <5
                                 90
                                              <sup>9</sup> AUBERT
                                                                      06E BABR e^+e^- \rightarrow \Upsilon(4S)
 <1.8
                                 90
                                          1,10 AUBERT
                                                                      060 BABR Repl. by LEES 120
   1.84 \pm 0.32 \pm 0.31
                                              ^{
m 1} AUBERT
                                                                       05K BABR e^+e^- \rightarrow \Upsilon(4S)
 < 8.9
                                 90
                                             <sup>11</sup> AUBERT,B
   1.39 \pm 0.49 \pm 0.11
                                                                      05N BABR Repl. by AUBERT 08AI
   1.96 \pm 0.35 {+2.00 \atop -0.42}
                                              <sup>1</sup> GARMASH
                                                                      05
                                                                             BELL
                                                                                         Repl. by GARMASH 06
                                             <sup>12</sup> AUBERT
   2.7 \pm 0.7
                                                                      04T BABR Repl. by AUBERT, B 04P
                                             <sup>13</sup> AUBERT,B
   3.0 \pm 0.8 \pm 0.3
                                                                             BABR Repl. by AUBERT, B 05N
   6.0 \  \, ^{\displaystyle +2.1}_{\displaystyle -1.8} \  \, \pm 1.1
                                             <sup>14</sup> ABE
                                                                      02B BELL Repl. by GARMASH 05
                                             <sup>15</sup> EDWARDS
                                                                             CLE2 e^+e^- \rightarrow \Upsilon(4S)
                                 90
                                                                      01
   <sup>1</sup> Assumes equal production of B^+ and B^0 at the \Upsilon(4S).
   <sup>2</sup> Measured in the B^+ \rightarrow K^+ K^- K^+ decay.
   ^3 Measured in the B^+ 
ightarrow \ K^+ K^0_S \, K^0_S decay.
   <sup>4</sup>LEES 11I reports [\Gamma(B^+ \to \chi_{c0}(1P)\,K^+)/\Gamma_{total}] \times [B(\chi_{c0}(1P) \to \pi\pi)] = (1.53 \pm 0.66 \pm 0.27) \times 10^{-6} which we divide by our best value B(\chi_{c0}(1P) \to \pi\pi) = (8.33 \pm 0.06)
```

 $^{0.35) \}times 10^{-3}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

 $^{^5}$ AUBERT 08AI reports $(0.70\pm0.10^{+0.12}_{-0.10})\times10^{-6}$ for B($B^+\to~\chi_{c0}~K^+$) \times B($\chi_{c0}\to$ $\pi^+\pi^-$). We compute B($B^+\to\chi_{C0}K^+$) using the PDG value B($\chi_{C0}\to\pi\pi$)=(8.33 \pm

- $0.35) \times 10^{-3}$ and 2/3 for the $\pi^+\pi^-$ fraction. Our first error is their experiment's error and the second error is systematic error from using our best value.
- ⁶ AUBERT,BE 06M reports $[\Gamma(B^+ \to \chi_{c0}(1P)K^+)/\Gamma_{total}] \times [B(\chi_{c0}(1P) \to \gamma J/\psi(1S))] = (6.1 \pm 2.6 \pm 1.1) \times 10^{-6}$ which we divide by our best value $B(\chi_{c0}(1P) \to \gamma J/\psi(1S)) = (1.27 \pm 0.06) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. The significance of the observed signal is 2.4 σ.
- 7 AAIJ 13s reports [$\Gamma(B^+\to \chi_{c0}(1P)\, K^+)/\Gamma_{\rm total}] \times [{\rm B}(\chi_{c0}(1P)\to p\overline{p})] < 6\times 10^{-8}$ which we divide by our best value ${\rm B}(\chi_{c0}(1P)\to p\overline{p}) = 2.25\times 10^{-4}$.
- ⁸ WICHT 08 reports $[\Gamma(B^+ \to \chi_{c0}(1P)K^+)/\Gamma_{total}] \times [B(\chi_{c0}(1P) \to \gamma\gamma)] < 0.11 \times 10^{-6}$ which we divide by our best value $B(\chi_{c0}(1P) \to \gamma\gamma) = 2.23 \times 10^{-4}$.
- ⁹ Perform measurements of absolute branching fractions using a missing mass technique.
- ¹⁰ Measured in the $B^+ \rightarrow K^+ K^- K^+$ decay.
- ¹¹ AUBERT,B 05N reports $(0.66\pm0.22\pm0.08)\times10^{-6}$ for B($B^+\to\chi^0_cK^+$) \times B($\chi^0_c\to\pi^+\pi^-$). We compute B($B^+\to\chi^0_cK^+$) using the PDG value B($\chi^0_c\to\pi^+\pi^-$) = $(7.1\pm0.6)\times10^{-3}$ and 2/3 for the $\pi^+\pi^-$ fraction.
- The measurement performed using decay channels $\chi_{c0} \to \pi^+\pi^-$ and $\chi_{c0} \to K^+K^-$. The ratio of the branching ratios for these channels is found to be consistent with world average.
- 13 AUBERT 04P reports B($B^+\to\chi_{c0}\,K^+)\times$ B($\chi_{c0}\to\pi^+\pi^-)=(1.5\pm0.4\pm0.1)\times10^{-6}$ and used PDG value of B($\chi_{c0}\to\pi\pi)=(7.4\pm0.8)\times10^{-3}$ and Clebsh-Gordan coefficient to compute B($B^\pm->\chi_{c0}\,K^+)$.
- ¹⁴ ABE 02B measures the ratio of B($B^+ \to \chi_{c0} \, K^+$)/B($B^+ \to J/\psi(1S) \, K^+$) = 0.60 + 0.21 0.18 ± 0.05 ± 0.08, where the third error is due to the uncertainty in the B($\chi_{c0} \to \pi^+\pi^-$), and uses B($B^+ \to J/\psi(1S) \, K^+$) = (10.0 ± 1.0) × 10⁻⁴ to obtain the result.
- ¹⁵ EDWARDS 01 assumes equal production of B^0 and B^+ at the $\Upsilon(4S)$. The correlated uncertainties (28.3)% from B $(J/\psi(1S) \to \gamma \eta_c)$ in those modes have been accounted for.

$\Gamma(\chi_{c0}\,K^*(892)^+)/\Gamma_{total}$

 Γ_{252}/Γ

VALUE (units 10 ⁻⁴)	CL%	DOCUMENT ID	TECN	COMMENT	
< 2.1	90	¹ AUBERT	08BD BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$

• • We do not use the following data for averages, fits, limits, etc.

<28.6 90 1 AUBERT 05к BABR Repl. by AUBERT 08вD

$\Gamma(\chi_{c2}\pi^+, \chi_{c2} \to \pi^+\pi^-)/\Gamma_{\text{total}}$

 Γ_{253}/Γ

VALUE (units
$$10^{-6}$$
) CL% DOCUMENT ID TECN COMMENT 0 0.1 AUBERT 09L BABR $e^+e^- \rightarrow \Upsilon(4S)$

$$\Gamma(\chi_{c2}K^+)/\Gamma_{total}$$

 Γ_{254}/Γ

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

• • • We do not use the following data for averages, fits, limits, etc. • • •

< 1.8	90	² AUBERT	09B BABR $e^+e^- ightarrow~ \varUpsilon(4S)$
<20	90	³ AUBERT	06E BABR $e^+e^- ightarrow \Upsilon(4S)$
< 2.9	90	¹ SONI	06 BELL Repl. by BHARDWAJ 11
< 3.0	90	¹ AUBERT	05K BABR Repl. by AUBERT 06E

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(B^+ \to \chi_{c2} K^+)/\Gamma_{\text{total}} \times \Gamma(\chi_{c2}(1P) \to \gamma \gamma)/\Gamma_{\text{total}}$

 $\Gamma_{254}/\Gamma\times\Gamma_{71}^{\chi_{c2}(1P)}/\Gamma^{\chi_{c2}(1P)}$

COMMENT

Created: 8/21/2014 12:56

$VALUE$ (units 10^{-6})	CL%	DOCUMENT ID		TECN	COMMENT
<0.09	90	1 WICHT	80	BELL	$e^+e^- ightarrow \gamma(4S)$

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(\chi_{c2}K^*(892)^+)/\Gamma_{total}$

 Γ_{255}/Γ

<u>VALUE</u>	CL%	DOCUMENT ID		TECN	COMMENT
<12 × 10 ⁻⁵	90	¹ AUBERT	09в	BABR	$e^+e^- \rightarrow \Upsilon(4S)$
• • • We do not use the	following	data for averages,	, fits,	limits, e	tc. • • •

<12.7 \times 10⁻⁵ 90 2 SONI 06 BELL $e^+e^- \rightarrow \Upsilon(4S)$ < 1.2 \times 10⁻⁵ 90 2 AUBERT 05K BABR Repl. by AUBERT 09B

$\Gamma(\chi_{c1}(1P)\pi^+)/\Gamma_{total}$

 Γ_{256}/Γ

VALUE (units 10 ⁻⁵)	DOCUMENT ID		TECN	COMMENT
2.2±0.4±0.3	¹ KUMAR	06	BELL	$e^+e^- ightarrow \gamma(4S)$

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(\chi_{c1}(1P)K^+)/\Gamma_{total}$

VALUE (units 10^{-4})

 Γ_{257}/Γ

4.79± 0.23 OUR AVERA	GE		
$4.94 \pm 0.11 \pm 0.33$	¹ BHARDWAJ	11 BEI	$_{-}$ L $e^{+}e^{-} ightarrow$ $arGamma(4S)$
$4.5 \pm 0.1 \pm 0.3$	² AUBERT	09в ВАI	BR $e^+e^- ightarrow~ \varUpsilon(4S)$
$8.1 \pm 1.4 \pm 0.7$	³ AUBERT	06E BAI	BR $e^+e^- ightarrow~ \varUpsilon(4S)$
$15.5 \pm 5.4 \pm 2.0$	⁴ ACOSTA	02F CDI	- р <u></u>
• • • We do not use the fo	llowing data for aver	ages, fits,	imits, etc. • • •
$5.2 \pm 0.4 \pm 0.2$	⁵ AUBERT,BE	06м ВАІ	BR Repl. by AUBERT 09B
$4.49 \pm 0.19 \pm 0.53$	¹ SONI		L Repl. by BHARDWAJ 11
$5.79 \pm 0.26 \pm 0.65$	¹ AUBERT	05J BAI	BR Repl. by AUBERT,BE 06M
$6.0 \pm 0.9 \pm 0.2$	⁶ AUBERT	02 BAI	3R Repl. by AUBERT 05J
$9.7 \pm 4.0 \pm 0.9$ 6	1 ALAM	94 CLE	$e^+e^- ightarrow \Upsilon(4S)$
19 ± 13 ± 6	⁷ ALBRECHT	92E ARG	$G = e^+e^- ightarrow \gamma(4S)$

² Uses $\chi_{c1,2} \rightarrow J/\psi \gamma$. Assumes B($\Upsilon(4S) \rightarrow B^+ B^-$) = (51.6 ± 0.6)% and B($\Upsilon(4S) \rightarrow B^0 \overline{B}^0$) = (48.4 ± 0.6)%.

³ Perform measurements of absolute branching fractions using a missing mass technique.

¹ Uses $\chi_{c1,2}$ → $J/\psi \gamma$. Assumes B($\Upsilon(4S)$ → B^+B^-) = (51.6 ± 0.6)% and B($\Upsilon(4S)$ → $B^0\overline{B}^0$) = (48.4 ± 0.6)%.

² Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

```
<sup>1</sup> Assumes equal production of B^+ and B^0 at the \Upsilon(4S).
```

⁶AUBERT 02 reports $(7.5 \pm 0.9 \pm 0.8) \times 10^{-4}$ from a measurement of $[\Gamma(B^+ \to \chi_{c1}(1P)K^+)/\Gamma_{total}] \times [B(\chi_{c1}(1P) \to \gamma J/\psi(1S))]$ assuming $B(\chi_{c1}(1P) \to \gamma J/\psi(1S)) = 0.273 \pm 0.016$, which we rescale to our best value $B(\chi_{c1}(1P) \to \gamma J/\psi(1S)) = (33.9 \pm 1.2) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(\chi_{c1}(1P)K^+)/\Gamma(J/\psi(1S)K^+)$

 $\Gamma_{257}/\Gamma_{218}$

VALUE	<u>DOCUMENT ID</u>	TECN	<u>COMMENT</u>
0.60±0.07±0.02	1 AUBERT 0	2 BABR	$e^+e^- ightarrow \gamma(4S)$

¹ AUBERT 02 reports $0.75\pm0.08\pm0.05$ from a measurement of $[\Gamma(B^+\to\chi_{c1}(1P)K^+)/\Gamma(B^+\to J/\psi(1S)K^+)] \times [B(\chi_{c1}(1P)\to\gamma J/\psi(1S))]$ assuming $B(\chi_{c1}(1P)\to\gamma J/\psi(1S))=0.273\pm0.016$, which we rescale to our best value $B(\chi_{c1}(1P)\to\gamma J/\psi(1S))=(33.9\pm1.2)\times10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(\chi_{c1}(1P)\pi^+)/\Gamma(\chi_{c1}(1P)K^+)$

 $\Gamma_{256}/\Gamma_{257}$

<u>VALUE</u>	DOCUMENT ID		TECN	COMMENT
0.043±0.008±0.003	¹ KUMAR	06	BELL	$e^+e^- \rightarrow \Upsilon(4S)$

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(\chi_{c1}(1P)K^0\pi^+)/\Gamma(J/\psi(1S)K^0\pi^+)$

 $\Gamma_{258}/\Gamma_{219}$

VALUE	DOCUMENT ID		TECN	COMMENT
$0.508 \pm 0.030 \pm 0.018$	¹ LEES	12 B	BABR	$e^+e^- \rightarrow \gamma(4S)$

¹LEES 12B reports $0.501\pm0.024\pm0.028$ from a measurement of $[\Gamma(B^+\to\chi_{c1}(1P)K^0\pi^+)/\Gamma(B^+\to J/\psi(1S)K^0\pi^+)] \times [B(\chi_{c1}(1P)\to\gamma J/\psi(1S))]$ assuming $B(\chi_{c1}(1P)\to\gamma J/\psi(1S))=(34.4\pm1.5)\times10^{-2}$, which we rescale to our best value $B(\chi_{c1}(1P)\to\gamma J/\psi(1S))=(33.9\pm1.2)\times10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(\chi_{c1}(1P)K^*(892)^+)/\Gamma_{\text{total}}$

 Γ_{259}/Γ

$VALUE$ (units 10^{-4})	CL%	DOCUMENT ID)	TECN	COMMENT
3.0 ±0.6 OUR AVE	RAGE	Error includes sc	ale fact	or of 1.1	
$2.6 \pm 0.5 \pm 0.4$		¹ AUBERT			$e^+e^- ightarrow \ \varUpsilon(4S)$
$4.05\!\pm\!0.59\!\pm\!0.95$		² SONI	06	BELL	$e^+e^- \rightarrow \Upsilon(4S)$
• • • We do not use the	following	ng data for averag	es, fits,	limits, e	etc. • • •
$2.94\!\pm\!0.95\!\pm\!0.98$		² AUBERT			Repl. by AUBERT 09B
<21	90	² ALAM	94	CLE2	$e^+e^- ightarrow \ \varUpsilon(4S)$

HTTP://PDG.LBL.GOV

Page 83

² Uses $\chi_{c1,2} \rightarrow J/\psi \gamma$. Assumes B($\Upsilon(4S) \rightarrow B^+ B^-$) = (51.6 ± 0.6)% and B($\Upsilon(4S) \rightarrow B^0 \overline{B}^0$) = (48.4 ± 0.6)%.

³ Perform measurements of absolute branching fractions using a missing mass technique.

⁴ ACOSTA 02F uses as reference of B($B \to J/\psi(1S)\,K^+$) = (10.1 \pm 0.6) \times 10⁻⁴. The second error includes the systematic error and the uncertainties of the branching ratio.

⁵ AUBERT,BE 06M reports $[\Gamma(B^+ \to \chi_{c1}(1P)K^+)/\Gamma_{total}] \times [B(\chi_{c1}(1P) \to \gamma J/\psi(1S))] = (1.76 \pm 0.07 \pm 0.12) \times 10^{-4}$ which we divide by our best value $B(\chi_{c1}(1P) \to \gamma J/\psi(1S)) = (33.9 \pm 1.2) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. ⁶ AUBERT 02 reports $(7.5 \pm 0.9 \pm 0.8) \times 10^{-4}$ from a measurement of $[\Gamma(B^+ \to 0.09 \pm 0.8)]$

⁷ ALBRECHT 92E assumes no $\chi_{C2}(1P)$ production and B($\Upsilon(4S) \rightarrow B^+B^-$) = 50%.

 $\Gamma(\chi_{c1}(1P)K^*(892)^+)/\Gamma(\chi_{c1}(1P)K^+)$

 $\Gamma_{259}/\Gamma_{257}$

 $0.51 \pm 0.17 \pm 0.16$

05J BABR $e^+e^- \rightarrow$

 $\Gamma(h_c(1P)K^+)/\Gamma_{\text{total}}$

 Γ_{260}/Γ

VALUE (units 10^{-5})	EVTS	DOCUMENT ID		TECN	COMMENT
<3.8	90	¹ FANG	06	BELL	$e^+e^- ightarrow \gamma(4S)$

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$ and $B(h_C \to \eta_C \gamma) = 50\%$.

$\Gamma(h_c(1P)K^+, h_c \rightarrow p\overline{p})/\Gamma_{\text{total}}$

 Γ_{261}/Γ

 $< 6.4 \times 10^{-8}$ ¹ AAIJ 13S LHCB pp at 7 TeV

$\Gamma(K^0\pi^+)/\Gamma_{\text{total}}$

 Γ_{262}/Γ

VALUE (units 10^{-6}) DOCUMENT ID TECN 23.7 \pm 0.8 OUR FIT 23.8 ± 0.7 OUR AVERAGE ¹ DUH $23.97 \pm 0.53 \pm 0.71$ ¹ AUBERT,BE 06C BABR e^+ $23.9 \pm 1.1 \pm 1.0$ $18.8 \begin{array}{c} + & 3.7 & +2.1 \\ - & 3.3 & -1.8 \end{array}$ ¹ BORNHEIM CLE2 $e^+e^- \rightarrow \Upsilon(4S)$

• • We do not use the following data for averages, fits, limits, etc. • • •

$22.8 \ \ \begin{array}{c} + \ 0.8 \\ - \ 0.7 \end{array}$	± 1.3	¹ LIN	07	BELL	Repl. by DUH 13
$26.0\ \pm\ 1.3$	± 1.0	¹ AUBERT,BE	05E	BABR	Repl. by AUBERT, BE 06C
$22.3 ~\pm~ 1.7$	± 1.1	¹ AUBERT	04M	BABR	Repl. by AUBERT, BE 05E
$22.0\ \pm\ 1.9$	± 1.1	¹ CHAO	04	BELL	Repl. by LIN 07
$19.4 \begin{array}{c} + & 3.1 \\ - & 3.0 \end{array}$	± 1.6	¹ CASEY	02	BELL	Repl. by CHAO 04
$13.7 \begin{array}{c} + & 5.7 \\ - & 4.8 \end{array}$	$^{+1.9}_{-1.8}$	¹ ABE	01н	BELL	Repl. by CASEY 02
$18.2 \begin{array}{c} + & 3.3 \\ - & 3.0 \end{array}$	± 2.0	¹ AUBERT	01E	BABR	Repl. by AUBERT 04M
$18.2 \begin{array}{c} + & 4.6 \\ - & 4.0 \end{array}$	± 1.6	1 CRONIN-HEN.	.00	CLE2	Repl. by BORNHEIM 03
$23 \begin{array}{c} +11 \\ -10 \end{array}$	± 3.6	GODANG	98	CLE2	Repl. by CRONIN- HENNESSY 00
< 48	90	ASNER	96	CLE2	Repl. by GODANG 98
<190	90	ALBRECHT	91 B	ARG	$e^+e^- ightarrow \Upsilon(4S)$
<100	90	² AVERY	89 B	CLEO	$e^+e^- ightarrow \Upsilon(4S)$
<680	90	AVERY	87	CLEO	$e^+e^- ightarrow \Upsilon(4S)$

¹ Uses $\chi_{c1.2} \rightarrow J/\psi \gamma$. Assumes B($\Upsilon(4S) \rightarrow B^+B^-$) = (51.6 \pm 0.6)% and B($\Upsilon(4S) \rightarrow B^+B^ B^0 \overline{B}{}^0) = (48.4 \pm 0.6)\%.$

² Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

¹ Measured relative to $B^+ \rightarrow J/\psi K^+$ decay with charmonia reconstructed in $p\overline{p}$ final state and using B($B^+_{-} \rightarrow J/\psi K^+$) = (1.013 \pm 0.034) \times 10⁻³ and B($J/\psi \rightarrow p \overline{p}$) = $(2.17 \pm 0.07) \times 10^{-3}$.

 $^{^1}$ Assumes equal production of B^+ and B^0 at the $\varUpsilon(4S)$. 2 AVERY 89B reports $<9\times10^{-5}$ assuming the $\varUpsilon(4S)$ decays 43% to $B^0\,\overline{B}{}^0$. We rescale to 50%.

$\Gamma(K^+\pi^0)/\Gamma_{\text{total}}$ VALUE (units 10^{-6})	CL%	DOCUMENT	ID	TFCN	COMMENT	Γ ₂₆₃ /Γ
12.9 ±0.5 OUR		<u> </u>		12011	<u> </u>	
$12.62\!\pm\!0.31\!\pm\!0.56$		¹ DUH			$e^+e^- \rightarrow$	
$13.6 \pm 0.6 \pm 0.7$		¹ AUBERT		BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$12.9 \begin{array}{c} +2.4 & +1.2 \\ -2.2 & -1.1 \end{array}$		$^{ m 1}$ Bornhein	M 03	CLE2	$e^+e^- \rightarrow$	$\Upsilon(4S)$
ullet $ullet$ $ullet$ We do not use	the following	data for ave	erages, fit	s, limits,	etc. • • •	
$12.4 \pm 0.5 \pm 0.6$		¹ LIN	07A	BELL	Repl. by D	UH 13
$12.0 \pm 0.7 \pm 0.6$		¹ AUBERT	05L	BABR	Repl. by Al	JBERT 07BC
12.0 $\pm 1.3 {}^{+1.3}_{-0.9}$		¹ CHAO	04	BELL	Repl. by LI	N 07A
$12.8 \begin{array}{c} +1.2 \\ -1.1 \end{array} \pm 1.0$		¹ AUBERT	03L	BABR	Repl. by Al	JBERT 05L
$13.0 \begin{array}{c} +2.5 \\ -2.4 \end{array} \pm 1.3$		$^{ m 1}$ CASEY	02	BELL	Repl. by Cl	HAO 04
$16.3 \begin{array}{l} +3.5 \\ -3.3 \end{array} \begin{array}{l} +1.6 \\ -1.8 \end{array}$		¹ ABE	01н	BELL	Repl. by CA	ASEY 02
$10.8 \ ^{+2.1}_{-1.9} \ \pm 1.0$		¹ AUBERT	01E	BABR	Repl. by Al	JBERT 03L
$11.6 \begin{array}{l} +3.0 \\ -2.7 \end{array} + 1.4$		¹ CRONIN-H	IEN00	CLE2	Repl. by Bo	ORNHEIM 03
<16	90	GODANG	98	CLE2	Repl. by Cl	
<14	90	ASNER	96	CLE2	HENNES Repl. by GO	
$^{ m 1}$ Assumes equal pro	oduction of E	$^{ m H}$ and $B^{ m O}$ a	it the $\Upsilon(4)$	4 <i>S</i>).		
$\Gamma(K^+\pi^0)/\Gamma(K^0\pi)$	+)	DOCUMEN [*]	T ID	TECN	<u>COMMENT</u>	$\Gamma_{263}/\Gamma_{262}$
0.54±0.03±0.04		LIN			$e^+e^- \rightarrow$	Υ(4S)
ullet $ullet$ $ullet$ We do not use	the following	data for ave				,
$2.38 {+0.98 +0.39\atop -1.10 -0.26}$		ABE	01	H BELL	Repl. by L	IN 07A
$\Gamma(\eta' K^+)/\Gamma_{total}$						Γ ₂₆₄ /Γ
VALUE (units 10 ⁻⁶)		CUMENT ID	TEC	CON CON	MENT	
70.6± 2.5 OUR AVE 71.5± 1.3±3.2		BERT	00 AV RA	RR a+	$a^{-} \sim \gamma(A)$	S)
$64 \begin{array}{c} +10 \\ -9 \end{array} \pm 2$					$e^- ightarrow ~ \gamma(4.$,
69.2± 2.2±3.7	$^{1}\mathrm{SC}$	HUEMANN	06 BEI	$LL e^+$	$e^- ightarrow ~ \gamma (4.5)$	S)
80 $^{+10}_{-9}$ ± 7		CHICHI			$e^- ightarrow ~ \gamma (4.5)$	
• • • We do not use	the following	data for ave	erages, fit	s, limits,	etc. • • •	
$70.0\pm\ 1.5\pm2.8$					I. by AUBEI	RT 09AV
$68.9 \pm \ 2.0 \pm 3.2$		BERT	05м ВА	BR Rep	I. by AUBEI	RT 07AE
$76.9 \pm 3.5 \pm 4.4$		BERT	03W BA	BR Rep	I. by AUBEI	RT 05M
79 $^{+12}_{-11}$ ± 9	¹ AB	Ε	01м BEI	LL Rep	I. by SCHUI	EMANN 06
70 \pm 8 \pm 5	$^{ m 1}$ AU	BERT	01G BA	BR Rep	l. by AUBEI	RT 03W
$65 \begin{array}{c} +15 \\ -14 \end{array} \pm 9$	BE	HRENS	98 CLE	E2 Rep	l. by RICHIO	CHI 00

```
^1 Assumes equal production of B^+ and B^0 at the \Upsilon(4S). ^2 WICHT _08 reports [\Gamma(B^+\to \eta'\,K^+)/\Gamma_{total}]\times [B(\eta'(958)\to \gamma\gamma)]=(1.40^{+0.16}_{-0.15}-0.12)\times 10^{-6} which we divide by our best value B(\eta'(958)\to \gamma\gamma)=(2.20\pm0.08)\times 10^{-2}. Our first error is their experiment's error and our second error is the systematic error from using our best value.
```

$\Gamma(\eta' K^*(892)^+)/\Gamma_{\text{total}}$

 Γ_{265}/Γ

VALUE (units 10^{-6})	CL%	DOCUMENT ID	TECN	COMMENT
$4.8^{f +1.6}_{-1.4}{f \pm 0.8}$		¹ DEL-AMO-SA10A	BABR	$e^+e^- \rightarrow \Upsilon(4S)$

• • • We do not use the following data for averages, fits, limits, etc. • • •

$4.9 {+} {1.9 \atop -} \pm 0.8$		¹ AUBERT	07E	BABR	Repl. by DEL-AMO- SANCHEZ 10A
< 2.9	90	¹ SCHUEMANN	07	BELL	$e^+e^- \rightarrow \Upsilon(4S)$
<14	90	¹ AUBERT,B	04 D	BABR	Repl. by AUBERT 07E
<35	90	$^{ m 1}$ RICHICHI	00	CLE2	$e^+e^- ightarrow \gamma(4S)$
<13	90	BEHRENS	98	CLE2	Repl. by RICHICHI 00

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(\eta' K_0^*(1430)^+)/\Gamma_{total}$

 Γ_{266}/Γ

VALUE (units 10^{-6})	DOCUMENT ID	TECN	COMMENT
5.2±1.9±1.0	¹ DEL-AMO-SA10A	BABR	$e^+e^- \rightarrow \Upsilon(4S)$

 $^{^1}$ Assumes equal production of B^+ and B^0 at the $\varUpsilon(4S)$.

$\Gamma(\eta' K_2^*(1430)^+)/\Gamma_{\text{total}}$

 Γ_{267}/Γ

((, , , , , , , , , , , , , , , , , ,			-	,
$VALUE$ (units 10^{-6})	DOCUMENT ID	TECN	COMMENT	
28.0 ^{+4.6} _{-4.3} ±2.6	¹ DEL-AMO-SA10A	BABR	$e^+e^- \rightarrow \Upsilon(4S)$	

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(\eta K^+)/\Gamma_{\text{total}}$

 Γ_{268}/Γ

Created: 8/21/2014 12:56

$VALUE$ (units 10^{-6}) $CL\%$	DOCUMENT ID		TECN	COMMENT
2.4 ± 0.4 OUR AVERAGE	Error includes sca	ale fac	tor of 1.	.7.
$2.12\!\pm\!0.23\!\pm\!0.11$	¹ HOI	12	BELL	$e^+e^- ightarrow \Upsilon(4S)$
$2.94^{+0.39}_{-0.34}{\pm}0.21$	¹ AUBERT	09AV	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$2.2 \begin{array}{c} +2.8 \\ -2.2 \end{array}$	$^{ m 1}$ RICHICHI	00	CLE2	$e^+e^- ightarrow \ \varUpsilon(4S)$

• • • We do not use the following data for averages, fits, limits, etc. • •

$2.21^{+0.48}_{-0.42}\!\pm\!0.01$		^{1,2} WICHT	80	BELL	Repl. by HOI 12
$3.7\ \pm0.4\ \pm0.1$		¹ AUBERT	07AE	BABR	Repl. by AUBERT 09AV
$1.9\ \pm0.3\ ^{+0.2}_{-0.1}$		¹ CHANG	07 B	BELL	Repl. by HOI 12
$3.3 \pm 0.6 \pm 0.3$		¹ AUBERT,B	05K	BABR	Repl. by AUBERT 07AE
$2.1\ \pm0.6\ \pm0.2$		¹ CHANG	05A	BELL	Repl. by CHANG 07B
$3.4 \pm 0.8 \pm 0.2$		¹ AUBERT	04H	BABR	Repl. by AUBERT,B 05K
<14	90	BEHRENS	98	CLE2	Repl. by RICHICHI 00

$\Gamma(\eta K^*(892)^+)/\Gamma_{\text{total}}$

 Γ_{269}/Γ

VALUE (units 10 ⁻⁶)	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT
19.3±1.6 OUR A	VERAGE				
$19.3^{\displaystyle +2.0}_{\displaystyle -1.9}\!\pm\!1.5$		¹ WANG	07 B	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$18.9\!\pm\!1.8\!\pm\!1.3$		¹ AUBERT,B	06н	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$26.4^{+9.6}_{-8.2}\pm3.3$		¹ RICHICHI	00	CLE2	$e^+e^- ightarrow ~ \varUpsilon(4S)$
• • • We do not us	se the followin	g data for average	es, fits	, limits,	etc. • • •
$25.6 \pm 4.0 \pm 2.4$		¹ AUBERT,B	04 D	BABR	Repl. by AUBERT,В 06н
<30	90	BEHRENS	98	CLE2	Repl. by RICHICHI 00
$^{ m 1}$ Assumes equal $_{ m I}$	production of	B^+ and B^0 at th	ie $\Upsilon(4)$	<i>S</i>).	

$\Gamma(\eta K_0^*(1430)^+)/\Gamma_{\text{total}}$

 Γ_{270}/Γ

VALUE (units 10^{-6})	DOCUMENT ID	TECN	COMMENT
18.2±2.6±2.6	¹ AUBERT,B 06H	BABR	$e^+e^- ightarrow \Upsilon(4S)$

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(\eta K_2^*(1430)^+)/\Gamma_{\text{total}}$

 Γ_{271}/Γ

VALUE (units 10^{-6})	DOCUMENT ID	TECN	COMMENT
9.1±2.7±1.4	¹ AUBERT,B 06	н BABR	$e^+e^- \rightarrow \Upsilon(4S)$

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(\eta(1295)K^+ \times B(\eta(1295) \rightarrow \eta\pi\pi))/\Gamma_{\text{total}}$

 Γ_{272}/Γ

$VALUE$ (units 10^{-6})	DOCUMENT ID		TECN	COMMENT
2.9 ^{+0.8} _{-0.7} ±0.2	¹ AUBERT	08x	BABR	$e^+e^- ightarrow \gamma(4S)$

 $^{^1}$ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(\eta(1405)K^+ \times B(\eta(1405) \rightarrow \eta \pi \pi))/\Gamma_{\text{total}}$

 Γ_{273}/Γ

<i>VALUE</i> (units 10 ⁻⁶)	CL%	DOCUMENT ID		TECN	COMMENT
<1.3	90	¹ AUBERT	08x	BABR	$e^+e^- \rightarrow \Upsilon(4S)$

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(\eta(1405)K^+ \times B(\eta(1405) \rightarrow K^*K))/\Gamma_{total}$

 Γ_{274}/Γ

<i>VALUE</i> (units 10 ⁻⁶)	CL%	DOCUMENT ID		TECN	COMMENT
<1.2	90	¹ AUBERT	08X	BABR	$e^+e^- \rightarrow \Upsilon(4S)$

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

 $^{^2}$ WICHT 08 reports $[\Gamma(B^+\to\eta\,K^+)/\Gamma_{\rm total}]\times[B(\eta\to2\gamma)]=(0.87^{+0.16}_{-0.15}^{+0.10}_{-0.07})\times10^{-6}$ which we divide by our best value $B(\eta\to2\gamma)=(39.41\pm0.20)\times10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(\eta(1475)K^+\times B($		•				Γ ₂₇₅ /Γ
		DOCUMENT ID				
$13.8^{+1.8}_{-1.7}^{+1.0}_{-0.6}$		¹ AUBERT			$e^+e^- \rightarrow$	$\Upsilon(4S)$
¹ Assumes equal pro	duction of	B^+ and B^0 at the	ne $\Upsilon(45)$	S).		
$\Gamma(f_1(1285)K^+)/\Gamma_{\rm t}$	otal					Γ ₂₇₆ /Γ
<i>VALUE</i> (units 10 ^{−6}) <2.0		DOCUMENT IC)	TECN	COMMENT	
<2.0	90	$^{ m 1}$ AUBERT	08X	BABR	$e^+e^ \rightarrow$	$\Upsilon(4S)$
¹ Assumes equal pro	duction of	B^+ and B^0 at the	ne $\Upsilon(45)$	S).		
$\Gamma(f_1(1420)K^+\times B)$	$(f_1(1420)$	$) \rightarrow \eta \pi \pi))/\Gamma_{tr}$	otal			Γ ₂₇₇ /Γ
VALUE (units 10^{-6})		,		TECN	COMMENT	
<2.9	90	¹ AUBERT	08x	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
¹ Assumes equal pro	duction of	${\it B}^{+}$ and ${\it B}^{0}$ at th	ne $\Upsilon(45)$	5).		
$\Gamma(f_1(1420)K^+\times B)$	$(f_1(1420)$	$) \rightarrow K^*K))/\Gamma_1$	total			Γ ₂₇₈ /Ι
VALUE (units 10^{-6})	CL%	DOCUMENT ID)	TECN	COMMENT	
<4.1	90	$^{ m 1}$ AUBERT	08x	BABR	$e^{+}e^{-}\rightarrow$	$\Upsilon(4S)$
¹ Assumes equal pro	duction of	${\it B}^{+}$ and ${\it B}^{0}$ at th	ne $\Upsilon(45)$	5).		
$\Gamma(\phi(1680)K^+ \times B($	$(\phi(1680)$	$\rightarrow K^*K))/\Gamma_{tc}$	otal			Γ ₂₇₉ /Ι
VALUE (units 10^{-6})	CL%	DOCUMENT IC)	TECN	COMMENT	
<3.4	90	$^{ m 1}$ AUBERT	08x	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
¹ Assumes equal pro	duction of	B^+ and B^0 at the	ne $\Upsilon(45)$	S).		
$\Gamma(f_0(1500)K^+)/\Gamma_{\rm t}$	otal					Γ ₂₈₀ /Γ
VALUE (units 10^{-6})	CL%	DOCUMENT ID)	TECN	COMMENT	
3.7± 2.2 OUR AV	ERAGE	1, 550	100		+ -	20(4.6)
$17 \pm 4 \pm 12$ $20 \pm 10 \pm 27$		¹ LEES ² LEES			$e^+e^- \rightarrow e^+e^- \rightarrow$	` ,
3.1^{+}_{-} $\overset{2.2}{\overset{2}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{$		^{3,4} AUBERT			$e^+e^- \rightarrow$	` '
- 2.3	the followi					- (-)
• • • We do not use t		9				
• • • We do not use t <19	90	^{4,5} AUBERT,B	05N	BABR	Repl. by A	UBERT 08A

 $^{0.21^{+0.47}}_{-0.48}$) \times 10^{-6} . We divide this result by our best value of B($f_0(1500) \rightarrow \pi^+\pi^-$) = (0.1500) $\pi^+\pi^-\pi^-$) = (0.1500) $\pi^-\pi^-\pi^-$) = (0.1500) $\pi^-\pi^-\pi^-\pi^-$) = (0.1500) $\pi^-\pi^-\pi^-\pi^-$) = (0.1500) $\pi^-\pi^-\pi^-\pi^-$) = (0.1500) $\pi^-\pi^-\pi^-\pi^-$) = $(34.9\pm2.3)\times10^{-2}$ multiplied by 2/3 to account for the $\pi^+\pi^-$ fraction. Our first quoted uncertainty is the combined experiment's uncertainty and our second is the systematic uncertainty from using out best value. ⁴ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

⁵ AUBERT,B 05N reports B($B^+ \to f_0(1500)\,K^+$) \cdot B($f_0(1500) \to \pi^+\pi^-$) $< 4.4 \times 10^{-6}$. We divide this result by our best value of B($f_0(1500) \rightarrow \pi\pi$) = (34.9 \pm 2.3) \times 10⁻² multiplied by 2/3 to account for the $\pi^+\pi^-$ fraction. Our first quoted uncertainty is the combined experiment's uncertainty and our second is the systematic uncertainty from using out best value.

 $\Gamma(\omega K^+)/\Gamma_{\text{total}}$ Γ_{281}/Γ

VALUE (units 10 ⁻⁶)	CL%	DOCUMENT ID		TECN	COMMENT
6.7±0.8 OUR AV	ERAGE Erro	r includes scale fa	actor	of 1.8.	
$6.3\!\pm\!0.5\!\pm\!0.3$	-	¹ AUBERT	07AE	BABR	$e^+e^- ightarrow \Upsilon(4S)$
$8.1\!\pm\!0.6\!\pm\!0.6$	-	¹ JEN	06	BELL	$e^+e^- ightarrow \Upsilon(4S)$
$3.2^{+2.4}_{-1.9}\pm0.8$	-	¹ JESSOP	00	CLE2	$e^+e^- ightarrow \gamma(4S)$
• • • We do not use	e the following	data for average	s, fits	, limits,	etc. • • •
$6.1\!\pm\!0.6\!\pm\!0.4$	=	¹ AUBERT,B	06E	BABR	AUBERT 07AE
$4.8 \pm 0.8 \pm 0.4$	-	¹ AUBERT	04H	BABR	Repl. by AUBERT,B 06E
$6.5^{+1.3}_{-1.2}\!\pm\!0.6$	-	¹ WANG	04A	BELL	Repl. by JEN 06
+ 2 6		1			

 $^{^{1}}$ LU 90 1 AUBERT 1 BERGFELD $9.2^{+2.6}_{-2.3}\pm1.0$ 02 BELL Repl. by WANG 04A 01G BABR $e^+e^- \rightarrow \Upsilon(4S)$

 1.5^{+7}_{-6} ± 2 ¹ BERGFELD 98 CLE2 Repl. by JESSOP 00

$\Gamma(\omega K^*(892)^+)/\Gamma_{total}$

 Γ_{282}/Γ

VALUE (units 10^{-6})	CL%	DOCUMENT ID		TECN	COMMENT
< 7.4	90	$^{ m 1}$ AUBERT	09н	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
ullet $ullet$ We do not use	the follow	ing data for averag	ges, fit	s, limits	, etc. • • •
< 3.4	90	¹ AUBERT,B	06T	BABR	Repl. by AUBERT 09H
< 7.4	90	¹ AUBERT	050	BABR	Repl. by AUBERT, B 06T
<87	90	¹ BERGFELD	98	CLE2	

 $^{^1}$ Assumes equal production of B^+ and B^0 at the $\varUpsilon(4S)$.

$\Gamma(\omega(K\pi)_0^{*+})/\Gamma_{\mathrm{total}}$

 Γ_{283}/Γ

 $(K\pi)_0^{*+}$ is the total S-wave composed of $K_0^*(1430)$ and nonresonant that are described using LASS shape.

$VALUE$ (units 10^{-6})	DOCUMENT ID		TECN	COMMENT
27.5±3.0±2.6	¹ AUBERT	09н	BABR	$e^+e^- ightarrow \gamma(4S)$

 $^{^1}$ Assumes equal production of B^+ and B^0 at the $\varUpsilon(4S)$.

$\Gamma(\omega K_0^*(1430)^+)/\Gamma_{\text{total}}$

 Γ_{284}/Γ

<i>VALUE</i> (units 10^{-6})	DOCUMENT ID	TECN	COMMENT
24.0±2.6±4.4	¹ AUBERT 09	H BABR	$e^+e^- \rightarrow \Upsilon(4S)$

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(\omega K_2^*(1430)^+)/\Gamma_{\text{total}}$

 Γ_{285}/Γ

VALUE (units 10^{-6})	DOCUMENT ID		TECN	COMMENT
21.5±3.6±2.4	¹ AUBERT	09н	BABR	$e^+e^- ightarrow \gamma(4S)$

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(a_0(980)^0 K^+ \times B(a_0(980)^0 \to \eta \pi^0)) / \Gamma_{\text{total}}$

 Γ_{287}/Γ

VALUE (units 10^{-6}) CL% DOCUMENT ID TECN COMMENT **<2.5** 90 1 AUBERT,BE 04 BABR $e^+e^- \rightarrow \Upsilon(4S)$

$\Gamma(a_0(980)^+ K^0 \times B(a_0(980)^+ \rightarrow \eta \pi^+))/\Gamma_{\text{total}}$

 Γ_{286}/Γ

VALUE (units 10^{-6})CL%DOCUMENT IDTECNCOMMENT<3.9</td>901 AUBERT,BE04BABR $e^+e^- \rightarrow \Upsilon(4S)$

$\Gamma(K^*(892)^0\pi^+)/\Gamma_{\text{total}}$

 Γ_{288}/Γ

$VALUE$ (units 10^{-6})	CL%DOCUM	ENT ID	TECN	COMMENT	
10.1 ±0.9 OUR AV	'ERAGE				
$10.8 \ \pm 0.6 \ {}^{+ 1.2}_{- 1.4}$	¹ AUBE	RT 08AI	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$9.67 \pm 0.64 {+0.81 \atop -0.89}$	¹ GARM	ASH 06	BELL	$e^{+}e^{-}\rightarrow$	$\Upsilon(4S)$

• • We do not use the following data for averages, fits, limits, etc.

¹ Assumes equal production of charged and neutral B mesons from $\Upsilon(4S)$ decays.

¹ Assumes equal production of charged and neutral B mesons from $\Upsilon(4S)$ decays.

 $^{^1}$ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

² AUBERT 04P also report a branching ratio for $B^+ \to$ "higher K* resonances" π^+ , $K* \to K^+\pi^-$, $(25.1 \pm 2.0 {+11.0 \atop 5.7}) \times 10^{-6}$.

³ Uses a reference decay mode $B^+ \to \overline{D}{}^0\pi^+$ and $\overline{D}{}^0 \to K^+\pi^-$ with B($B^+ \to \overline{D}{}^0\pi^+$)·B($\overline{D}{}^0 \to K^+\pi^-$) = (20.3 \pm 2.0) \times 10⁻⁵.

⁴ ABE 00C assumes B($Z \rightarrow b\overline{b}$)=(21.7 \pm 0.1)% and the B fractions $f_{B^0} = f_{B^+} = (39.7^{+1.8}_{-2.2})\%$ and $f_{B_s} = (10.5^{+1.8}_{-2.2})\%$.

⁵ Assumes a B^0 , B^- production fraction of 0.39 and a B_s production fraction of 0.12.

 $^{^6}$ AVERY 89B reports $<1.3\times10^{-4}$ assuming the $\Upsilon(4S)$ decays 43% to $B^0\overline{B}^0.$ We rescale to 50%.

Citation: K.A. Olive et a	I. (Particle Dat	a Group), Chin. Ph	ıys. C38	, 090001 (2014) (URL: http://	/pdg.lbl.gov)
$\Gamma(K^*(892)^+\pi^0)/\Gamma$	total					Γ ₂₈₉ /Γ
$VALUE$ (units 10^{-6})	CL%	DOCUMENT	ID	TECN	COMMENT	
$8.2 \pm 1.5 \pm 1.1$		¹ LEES	11	ı BAB	R $e^+e^- \rightarrow $	$\Upsilon(4S)$
ullet $ullet$ We do not use	the followin	g data for aver	ages, fit			` ,
$6.9\!\pm\!2.0\!\pm\!1.3$		$^{ m 1}$ AUBERT	05	X BAB	R Repl. by LE	ES 111
<31	90	$^{ m 1}$ JESSOP	00	CLE	$e^+e^- \rightarrow e^+$	$\Upsilon(4S)$
<99	90	ASNER	96	CLE	Repl. by JE	SSOP 00
$^{ m 1}$ Assumes equal pro	oduction of	\mathcal{B}^+ and \mathcal{B}^0 at	the γ ((4 <i>S</i>).		
$\Gamma(K^+\pi^-\pi^+)/\Gamma_{to}$	tal					Γ ₂₉₀ /Γ
<u>VALUE</u> (units 10 ⁻⁶) 51.0±2.9 OUR AVER		DOCUMENT ID		TECN	COMMENT	
51.0±2.9 OUR AVER						
$54.4 \pm 1.1 \pm 4.6$		AUBERT			$e^+e^- \rightarrow \Upsilon(4)$	
$48.8 \pm 1.1 \pm 3.6$		GARMASH			$e^+e^- \rightarrow \dot{\gamma}(4)$	<i>\S</i>)
• • • We do not use						
$64.1 \pm 2.4 \pm 4.0$		AUBERT,B			Repl. by AUBE	
$46.6 \pm 2.1 \pm 4.3$		GARMASH			Repl. by GARM	
$53.6 \pm 3.1 \pm 5.1$	2	GARMASH			Repl. by GARM	
$59.1 \pm 3.8 \pm 3.2$	3	AUBERT GARMASH			Repl. by AUBE	
$55.6 \pm 5.8 \pm 7.7$					Repl. by GARM	1ASH 04
¹ Assumes equal pro	oduction of	$B^{ m 0}$ and $B^{ m +}$ at	the Υ (4S); cha	orm and charmo	nium contri-
butions are subtra ³ Uses a reference	decay mod	$R^+ \rightarrow \overline{D}^0$	π^+ an	$q \frac{D_0}{D_0} =$	$\rightarrow \kappa^+\pi^-$ with	ances. h B(<i>B</i> +
$\overline{D}{}^0\pi^+)\cdotB(\overline{D}{}^0\to$					/ / / Wit	11 B(B /
$\Gamma(K^+\pi^-\pi^+)$ nonre	esonant)/Γ	total				Γ ₂₉₁ /Γ
VALUE (units 10^{-6})	CL%	DOCUMENT ID)	TECN	COMMENT	
$16.3^{+2.1}_{-1.5}$ OUR A	VERAGE					
$9.3\!\pm\!1.0\!+\!\begin{array}{c} 6.9 \\ - 1.7 \end{array}$	1,	² AUBERT	08AI	BABR	$e^+e^- ightarrow \gamma ($	4 <i>S</i>)
$16.9\!\pm\!1.3\!+\!\begin{array}{cc} 1.7 \\ - \end{array}$		¹ GARMASH	06	BELL	$e^+e^- ightarrow \gamma ($	4 <i>S</i>)
• • • We do not use	the followin	g data for aver	ages, fit	ts, limits	s, etc. • • •	
$2.9\!\pm\!0.6\!+_{-0.5}^{+0.8}$		¹ AUBERT,B	05N	BABR	Repl. by AUB	ERT 08AI

$2.9\!\pm\!0.6\!+_{-0.5}^{+0.8}$		¹ AUBERT,B	05N	BABR	Repl. by AUBERT 08AI
$17.3 \pm 1.7 {+17.2 \atop -8.0}$		¹ GARMASH	05	BELL	Repl. by GARMASH 06
< 17	90	$^{ m 1}$ AUBERT,B	04 P	BABR	Repl. by AUBERT,B 05N
<330	90	³ ADAM			$e^+e^- \rightarrow Z$
< 28	90	BERGFELD	96 B	CLE2	$e^+e^- ightarrow ~ \varUpsilon(4S)$
<400	90	³ ABREU	95N	DLPH	Sup. by ADAM 96D
<330	90	ALBRECHT	91E	ARG	$e^+e^- ightarrow~ \varUpsilon(4S)$
<190	90	⁴ AVERY	89 B	CLEO	$e^+e^- ightarrow ~ \varUpsilon(4S)$

 $^{^{1}}_{2}$ Assumes equal production of B^{+} and B^{0} at the $\Upsilon(4S)$.

 $^{^2}$ Calculate the total nonresonant contribution by combining the S-wave composed of $K_0^*(1430)$ and nonresonant that are described using LASS shape. ³ Assumes a B^0 , B^- production fraction of 0.39 and a B_s production fraction of 0.12. ⁴ AVERY 89B reports $< 1.7 \times 10^{-4}$ assuming the $\Upsilon(4S)$ decays 43% to $B^0\overline{B}^0$. We

rescale to 50%.

 $\Gamma(\omega(782)K^+)/\Gamma_{\text{total}}$

 Γ_{292}/Γ

VALUE (units 10^{-6})DOCUMENT IDTECNCOMMENT $\mathbf{5.9}^{+8.8}_{-9.0}^{+0.5}_{-0.4}$ 1,2 AUBERT08AI BABR $e^+e^- \rightarrow \Upsilon(4S)$

$\Gamma(K^+ f_0(980) \times B(f_0(980) \to \pi^+ \pi^-)) / \Gamma_{\text{total}}$

 Γ_{293}/Γ

 $VALUE ext{ (units } 10^{-6})$ CL% DOCUMENT ID TECN

9.4 $^{+1.0}_{-1.2}$ OUR AVERAGE

 $10.3 \ \pm 0.5 \ {}^{+2.0}_{-1.4}$

 $^{
m 1}$ AUBERT

08AI BABR $e^+e^-
ightarrow \varUpsilon(4S)$

 $8.78 \pm 0.82 \, {+} \, 0.85 \atop {-} \, 1.76$

¹ GARMASH

06 BELL $e^+e^- \rightarrow \Upsilon(4S)$

• • • We do not use the following data for averages, fits, limits, etc. • • •

$9.47\!\pm\!0.97{+0.62\atop -0.88}$		¹ AUBERT,B	05N	BABR	Repl. by AUBERT 08AI
$7.55\!\pm\!1.24\!+\!1.63 \\ -1.18$		¹ GARMASH	05	BELL	Repl. by GARMASH 06
$9.2\ \pm 1.2\ ^{+2.1}_{-2.6}$		² AUBERT,B	04 P	BABR	Repl. by AUBERT,B 05N
$9.6 \begin{array}{c} +2.5 \\ -2.3 \end{array} \begin{array}{c} +3.7 \\ -1.7 \end{array}$		³ GARMASH	02	BELL	Repl. by GARMASH 05
<80	90	⁴ AVERY	89B	CLEO	$e^+e^- \rightarrow \Upsilon(4S)$

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(f_2(1270)^0 K^+)/\Gamma_{\text{total}}$

 Γ_{294}/Γ

05 BELL Repl. by GARMASH 06

Created: 8/21/2014 12:56

VALUE (units 10^{-6})	CL%	DOCUMENT ID		TECN	COMMENT
1.07±0.27 OUR A	/ERAGE				
$0.88 ^{+ 0.38 + 0.01}_{- 0.33 - 0.03}$		^{1,2} AUBERT	08AI	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$1.33\!\pm\!0.30\!+\!0.23\\-0.34$		¹ GARMASH	06	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$
• • • We do not use t	he followi	ng data for averages	s, fits,	limits, e	etc. • • •
<16	90	³ AUBERT,B	05N	BABR	Repl. by AUBERT 08AI

⁴ GARMASH

< 2.3

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

² AUBERT 08AI reports $[\Gamma(B^+ \to \omega(782)K^+)/\Gamma_{\text{total}}] \times [B(\omega(782) \to \pi^+\pi^-)] = (0.09 \pm 0.13^{+0.036}_{-0.045}) \times 10^{-6}$ which we divide by our best value $B(\omega(782) \to \pi^+\pi^-) = (1.53^{+0.11}_{-0.13}) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

² AUBERT,B 04P also reports B($B^+ \to$ "higher f^0 resonances" π^+ , $f(980)^0 \to \pi^+ \pi^-$) = $(3.2 \pm 1.2^{+6.0}_{-2.9}) \times 10^{-6}$.

³ Uses a reference decay mode $B^+ \to \overline{D}{}^0\pi^+$ and $\overline{D}{}^0 \to K^+\pi^-$ with B($B^+ \to \overline{D}{}^0\pi^+$)×B($\overline{D}{}^0 \to K^+\pi^-$) = (20.3 \pm 2.0) × 10⁻⁵. Only charged pions from the $f_0(980)$ are used.

 $^{^4}$ AVERY 89B reports $<7\times10^{-5}$ assuming the $\varUpsilon(4S)$ decays 43% to $B^0\,\overline B{}^0$. We rescale to 50%.

 $B(f_2(1270) \rightarrow \pi^+\pi^-)$. We rescaled it using the PDG value $B(f_2(1270) \rightarrow \pi\pi)$ = 84.7% and 2/3 for the $\pi^+\pi^-$ fraction.

 $^4\, {\sf GARMASH}$ 05 reports 1.3 \times 10^{-6} at 90% CL for ${\sf B}(B^+$ \rightarrow $~\it f_2(1270)\, {\it K}^+)$ \times $B(f_2(1270) \rightarrow \pi^+\pi^-)$. We rescaled it using the PDG value $B(f_2(1270) \rightarrow \pi\pi)$ = 84.7% and 2/3 for the $\pi^+\pi^-$ fraction.

$\Gamma(f_0(1370)^0 K^+ \times B(f_0(1370)^0 \to \pi^+\pi^-))/\Gamma_{\text{total}}$

 Γ_{295}/Γ

<u>VALUE</u>	CL%	DOCUMENT ID		TECN	COMMENT
<10.7 × 10 ⁻⁶	90	¹ AUBERT,B	05N	BABR	$e^+e^- \rightarrow \Upsilon(4S)$

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$$\Gamma\big(\rho^0(1450)\,\mathit{K}^+\times\mathsf{B}(\rho^0(1450)\to\pi^+\pi^-)\big)/\Gamma_{\mathsf{total}}$$

 Γ_{296}/Γ

VALUE CL% DOCUMENT ID TECN COMMENT
$$<$$
11.7 \times 10⁻⁶ 90 1 AUBERT,B 05N BABR $e^+e^- \rightarrow \Upsilon(4S)$

 $\Gamma(f_2'(1525)K^+ \times B(f_2'(1525) \rightarrow \pi^+\pi^-))/\Gamma_{\text{total}}$

 Γ_{297}/Γ

$\Gamma(K^+\rho^0)/\Gamma_{\text{total}}$

 Γ_{298}/Γ

	, , , , , , , , , , , , , , , , , , , ,							•
VALUE (units	(5.10^{-6})	CL%	DOCUMENT ID		TECN	COMMENT		
3.7 ±	0.5 OUR A	AVERAGE						
3.56±	$0.45 + 0.57 \\ -0.46$		¹ AUBERT	08AI	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$	
$3.89\pm$	0.47 + 0.43		¹ GARMASH	06	BELL	$e^+e^ \rightarrow$	$\Upsilon(4S)$	

• • • We do not use the following data for averages, fits, limits, etc. • • •

$5.07 \pm 0.75 {+0.55 \atop -0.88}$		¹ AUBERT,B	05N	BABR	Repl. by AUBERT 08AI
$4.78\pm0.75 {+1.01 \atop -0.97}$		¹ GARMASH	05	BELL	Repl. by GARMASH 06
< 6.2	90	² AUBERT,B	04P	BABR	Repl. by AUBERT,B 05N
< 12	90	³ GARMASH	02	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$
< 86	90	⁴ ABE	00 C	SLD	$e^+e^- \rightarrow Z$
< 17	90	¹ JESSOP	00	CLE2	$e^+e^- ightarrow ~ \varUpsilon(4S)$
<120	90	⁵ ADAM	96 D	DLPH	$e^+e^- \rightarrow Z$
< 19	90	ASNER	96	CLE2	Repl. by JESSOP 00
<190	90	⁵ ABREU	95N	DLPH	Sup. by ADAM 96D
<180	90	ALBRECHT	91 B	ARG	$e^+e^- ightarrow ~ \varUpsilon(4S)$
< 80	90	⁶ AVERY	89 B	CLEO	$e^+e^- ightarrow ~ \gamma(4S)$
<260	90	AVERY	87	CLEO	$e^+e^- ightarrow ~ \varUpsilon(4S)$

HTTP://PDG.LBL.GOV

Page 93

 $^{^1}$ Assumes equal production of B^+ and B^0 at the $\varUpsilon(4S)$. 2 AUBERT 08AI reports $(0.50\pm0.15 {+0.15\atop -0.11})\times 10^{-6}$ for B($B^+\to f_2(1270)\,K^+)\times {\rm B}(f_2\to f_2(1270)\,K^+)$ $\pi^+\pi^-$). We compute B(B $^+\to f_2(1270)\,K^+$) using the PDG value B($f_2(1270)\to f_2(1270)\,K^+$) $\pi\pi$)=(84.8 $^{+2.4}_{-1.2}$) imes 10 $^{-2}$ and 2/3 for the $\pi^+\pi^-$ fraction. Our first error is their experiment's error and the second error is systematic error from using our best value. 3 AUBERT,B 05N reports 8.9 imes 10 $^{-6}$ at 90% CL for B($B^+\to f_2$ (1270) K^+) imes

 $^{^1}$ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(K_0^*(1430)^0\pi^+)/\Gamma_{\text{total}}$

 Γ_{299}/Γ

VALUE (units 10^{-6})	DOCUMENT ID	TECN	COMMENT

45 $\begin{array}{c} +9 \\ -7 \end{array}$ **OUR AVERAGE** Error includes scale factor of 1.5.

$$10.0\pm1.2^{+10.8}_{-6.0}$$
 10.00 AUBERT 08AI BABR $e^+e^- \rightarrow \Upsilon(4S)$ 10.00

• • • We do not use the following data for averages, fits, limits, etc. • • •

$\Gamma(K_2^*(1430)^0\pi^+)/\Gamma_{\text{total}}$

 Γ_{300}/Γ

Created: 8/21/2014 12:56

VALUE (units 10^{-6})	CL%	DOCUMENT ID		TECN	COMMENT
$5.6^{+2.2}_{-1.5}\pm0.1$		1,2 AUBERT	08AI I	BABR	$e^+e^- ightarrow \gamma(4S)$

 \bullet \bullet We do not use the following data for averages, fits, limits, etc. \bullet \bullet

< 23	90	³ AUBERT,B	05N	BABR	Repl. by AUBERT 08AI
< 6.9	90	⁴ GARMASH	05	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$
<680	90	ALBRECHT	91 B	ARG	$e^+e^- ightarrow ~ \varUpsilon(4S)$

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

² AUBERT 04P reports a central value of $(3.9 \pm 1.2 + 1.3) \times 10^{-6}$ for this branching ratio.

³ Uses a reference decay mode $B^+ \to \overline{D}{}^0\pi^+$ and $\overline{D}{}^0 \to K^+\pi^-$ with B($B^+ \to \overline{D}{}^0\pi^+$)·B($\overline{D}{}^0 \to K^+\pi^-$) = (20.3 ± 2.0) × 10⁻⁵.

⁴ABE 00¢ assumes B($Z \rightarrow b\overline{b}$)=(21.7 \pm 0.1)% and the B fractions $f_{B^0} = f_{B^+} = (39.7 + \frac{1.8}{2.2})\%$ and $f_{B_c} = (10.5 + \frac{1.8}{2.2})\%$.

⁵ Assumes production fractions $f_{B^0} = f_{B^-} = 0.39$ and $f_{B_s} = 0.12$.

⁶ AVERY 89B reports $< 7 \times 10^{-5}$ assuming the $\Upsilon(4S)$ decays 43% to $B^0 \, \overline{B}{}^0$. We rescale to 50%.

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

² See erratum: AUBERT,BE 06A.

² AUBERT 08AI reports $(1.85 \pm 0.41^{+0.61}_{-0.29}) \times 10^{-6}$ for B($B^+ \rightarrow K_2^*(1430)^0 \pi^+$) \times B($K_2^*(1430)^0 \rightarrow K^+\pi^-$). We compute B($B^+ \rightarrow K_2^*(1430)^0 \pi^+$) using the PDG value B($K_2^*(1430)^0 \rightarrow K\pi$)=(49.9 \pm 1.2) \times 10⁻² and 2/3 for the $K^+\pi^-$ fraction. Our first error is their experiment's error and the second error is systematic error from using our best value.

³ AUBERT,B 05N reports 7.7×10^{-6} at 90% CL for B($B^+ \rightarrow K_2^*(1430)^0 \pi^+$) \times B($K_2^*(1430)^0 \rightarrow K^+ \pi^-$). We rescaled it using the PDG value B($K_2^*(1430)^0 \rightarrow K\pi$) = 49.9% and 2/3 for the $K^+ \pi^-$ fraction.

⁴ GARMASH 05 reports 2.3×10^{-6} at 90% CL for B($B^+ \rightarrow K_2^*(1430)^0 \pi^+$) \times B($K_2^*(1430)^0 \rightarrow K^+ \pi^-$). We rescaled it using the PDG value B($K_2^*(1430)^0 \rightarrow K\pi$) = 49.9% and 2/3 for the $K^+ \pi^-$ mode.

 $\Gamma(K^*(1410)^0\pi^+)/\Gamma_{\text{total}}$

 Γ_{301}/Γ

$VALUE$ (units 10^{-6})	CL%	DOCUMENT ID	TECN	COMMENT
<45	90	¹ GARMASH 0	5 BELL	$e^+e^- \rightarrow \gamma(4S)$

 1 GARMASH 05 reports 2.0 \times 10 $^{-6}$ at 90% CL for B(B $^+$ \rightarrow $K^*(1410)^0\,\pi^+)$ \times B(K*(1410)^0 \rightarrow $K^+\pi^-$). We rescaled it using the PDG value B(K*(1410)^0 \rightarrow $K\pi)$ = 6.6% and 2/3 for the $K^+\pi^-$ mode.

$\Gamma(K^*(1680)^0\pi^+)/\Gamma_{\text{total}}$

 Γ_{302}/Γ

<i>VALUE</i> (units 10 ⁻⁶)	CL%	DOCUMENT ID		TECN	COMMENT
<12	90	¹ GARMASH	05	BELL	$e^+e^- ightarrow \gamma(4S)$

• • • We do not use the following data for averages, fits, limits, etc. • • •

<15 90 2 AUBERT,B 05N BABR $e^+e^- \rightarrow \Upsilon(4S)$

 1 GARMASH 05 reports 3.1×10^{-6} at 90% CL for B($B^+\to K^*(1680)^0\pi^+)\times B(K^*(1680)^0\to K^+\pi^-).$ We rescaled it using the PDG value B($K^*(1680)^0\to K\pi)=38.7\%$ and 2/3 for the $K^+\pi^-$ mode.

² AUBERT,B 05N reports 3.8×10^{-6} at 90% CL for B($B^+ \to K^*(1680)^0 \pi^+$) \times B($K^*(1680)^0 \to K^+ \pi^-$). We rescaled it using the PDG value B($K^*(1680)^0 \to K\pi$) = 38.7% and 2/3 for the $K^+ \pi^-$ fraction.

$\Gamma(K^+\pi^0\pi^0)/\Gamma_{\rm total}$

 Γ_{303}/Γ

 VALUE (units 10⁻⁶)
 DOCUMENT ID

 16.2±1.2±1.5
 1 LEES

 $1 \frac{\textit{DOCUMENT ID}}{\text{LEES}}$ 111 BABR $e^+e^-
ightarrow \varUpsilon(4S)$

$\Gamma(f_0(980)\,K^+ \times B(f_0 o \pi^0\pi^0))/\Gamma_{total}$

 Γ_{304}/Γ

VALUE (units 10^{-6})DOCUMENT IDTECNCOMMENT2.8 \pm 0.6 \pm 0.51BABR $e^+e^- \rightarrow \Upsilon(4S)$

$\Gamma(K^-\pi^+\pi^+)/\Gamma_{\text{total}}$

VALUE (units 10^{-6}) C1%

 Γ_{305}/Γ

VALUE (units 10)	CL /0	DOCUMENT ID		TLCIV	COMMENT
<0.95	90	AUBERT	08BE	BABR	$e^+e^- \rightarrow \gamma(4S)$
\bullet \bullet We do not use the	ne following	data for average	es, fits	s, limits,	etc. • • •
<4.5			04	BELL	$e^+e^- ightarrow ~ \gamma(4S)$
<1.8	90	² AUBERT	03M	BABR	Repl. by AUBERT 08BE
< 7.0	90	³ GARMASH	02	BELL	$e^+e^- ightarrow \Upsilon(4S)$

¹Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(K^-\pi^+\pi^+ \text{ nonresonant})/\Gamma_{\text{total}}$

 Γ_{306}/Γ

VALUE (units 10^{-6})	CL%	DOCUMENT ID		TECN	COMMENT
<56	90	BERGFELD	96 B	CLE2	$e^+e^- ightarrow \gamma(4S)$

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

² Assumes equal production of B^0 and B^+ at the $\Upsilon(4S)$; charm and charmonium contributions are subtracted, otherwise no assumptions about intermediate resonances.

³ Uses a reference decay mode $B^+ \to \overline{D}{}^0\pi^+$ and $\overline{D}{}^0 \to K^+\pi^-$ with $B(B^+ \to \overline{D}{}^0\pi^+) \cdot B(\overline{D}{}^0 \to K^+\pi^-) = (20.3 \pm 2.0) \times 10^{-5}$.

$\Gamma(K_1(1270)^0\pi^+)$	/Γ _{total}	DOCUMENT	. 10	TECN	COMMENT	Γ ₃₀₇ /Γ
VALUE <4.0 × 10 ⁻⁵	00	1 ALIBERT	10n	RARR	comment	$\Upsilon(AS)$
¹ Assumes equal pi					e · e →	7 (43)
		OI B' allu B' at	. the 7 (4.	٥).		
$\Gamma(K_1(1400)^0\pi^+)$	$/\Gamma_{ ext{total}}$					Г ₃₀₈ /Г
VALUE <3.9 × 10^{−5}	CL%	<u>DOCUMENT</u>	ID	TECN	COMMENT	
						$\Upsilon(4S)$
• • • We do not use		_	_			22(: 2)
$< 2.6 \times 10^{-3}$		ALBRECH			$e^+e^- \rightarrow$	7(45)
¹ Assumes equal pi	roduction	of B^+ and B^0 at	the $\Upsilon(4.5)$	5).		
$\Gamma(K^0\pi^+\pi^0)/\Gamma_{\rm tot}$	al					Γ ₃₀₉ /Γ
VALUE	CI %	<u>DOCUMENT</u>	. ID	TECN	COMMENT	
<66 × 10 ⁻⁶	90	¹ ECKHART	02	CLE2	$e^+e^ \rightarrow$	$\Upsilon(4S)$
¹ Assumes equal pi	roduction	of B^+ and B^0 at	the $\Upsilon(45)$	S).		
$\Gamma(K^0 ho^+)/\Gamma_{ m total}$						Γ ₃₁₀ /Γ
VALUE (units 10 ⁻⁶)	C1 %	DOCUMENT	· ID	TECN	COMMENT	. 310/ .
	CL/0					
$8.0^{+1.4}_{-1.3}\pm0.6$		AUBERT	07Z	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
• • • We do not use	the follow	ving data for aver				
<48	90	ASNER	96	CLE2	e^+e^-	$\Upsilon(4S)$
$\Gamma(K^*(892)^+\pi^+\pi^-)$	_)/Γ _{tot}	1				Γ ₃₁₁ /Γ
VALUE (units 10^{-6})	-		· ID	TECN	COMMENT	
75.3±6.0±8.1		1 AUBERT,E				
• • • We do not use	the follow	ving data for aver	ages, fits,	limits, e	etc. • • •	` ,
<1100	90	ALBRECH	T 91E	ARG	$e^+e^- \to$	$\Upsilon(4S)$
¹ Assumes equal pi	roduction	of B^+ and B^0 at	the $\gamma(43)$	S).		
F(V*(000)+ ₀ 0)/	г.					Γ/Γ
$\Gamma(K^*(892)^+\rho^0)/\Gamma(K^*(892)^+\rho^0)$		0.000		- 614 64		Γ ₃₁₂ /Γ
VALUE (units 10^{-6}) 4.6±1.0±0.4	<u>CL%</u>	DOCUMENT ID DEL-AMO-SA				(46)
	the follow	ving data for aver				(43)
< 6.1	90	¹ AUBERT,B			epl. by DEL	-AMO-
	50	,	000 B/	IDIC IN	SANCHEZ	
$10.6^{+3.0}_{-2.6}\!\pm\!2.4$		$^{ m 1}$ AUBERT	03V B	ABR R	epl. by AUB	ERT,B 06G
< 74	90	² GODANG	02 CI	_E2 e	$^+e^- ightarrow \gamma$	(4 <i>S</i>)
<900	90	ALBRECHT			$+e^- \rightarrow \gamma$	(4 <i>S</i>)
¹ Assumes equal pr						
² Assumes a helicit	y 00 conf	iguration. For a h	elicity 11	configu	ation, the li	mit decrease
to 4.9×10^{-5} .						

HTTP://PDG.LBL.GOV

$\Gamma(K^*(892)^+ f_0(986)^+)$	0))/Γ _{total}					Г ₃₁₃ /Г
VALUE (units 10^{-6})	-	- ID TEC	N CO	MMENT		·
		-SA11D BAI				
• • • We do not use					` ,	
$5.2 \pm 1.2 \pm 0.5$	¹ AUBERT,	B 06G BAI	3R Re	pl. by D	EL-AMO-SA	NCHEZ 11D
¹ Assumes equal pro	oduction of B^{-}	$^+$ and B^0 at t	he $\Upsilon(4.5)$	S).		
$\Gamma(a_1^+ K^0)/\Gamma_{\text{total}}$						Г ₃₁₄ /Г
<i>VALUE</i> (units 10 ⁻⁶)		DOCUMENT IL)	TECN	COMMENT	
$34.9 \pm 5.0 \pm 4.4$	1,	² AUBERT	08F	BABR	$e^+e^- \to$	$\Upsilon(4S)$
¹ Assumes equal pro	oduction of B^{-}	$^+$ and $B^{ m 0}$ at t	he $\Upsilon(4)$	S).		
² Assumes a_1^{\pm} deca	ys only to 3π	and B($a_1^\pm o$	$\pi^{\pm}\pi^{\mp}$	$\pi^{\pm}) =$	0.5.	
-/.+0 -/.+	155.4-	_				_ ,_
$\Gamma(b_1^+ K^0 \times B(b_1^+ -$						Г ₃₁₅ /Г
VALUE (units 10 ⁻⁶) 9.6±1.7±0.9		DOCUMENT IL)	TECN	COMMENT	
					$e^+e^- \rightarrow$	$\Upsilon(4S)$
¹ Assumes equal pro	oduction of B^{-}	$^+$ and B^0 at t	he $\Upsilon(4.5)$	S).		
$\Gamma(K^*(892)^0 ho^+)/\Gamma$	total					Г ₃₁₆ /Г
VALUE (units 10^{-6})		DOCUMENT II)	TECN	COMMENT	
9.2±1.5 OUR AVERA		1		5.455		22(+2)
$9.6 \pm 1.7 \pm 1.5$		¹ AUBERT,B ¹ ZHANG	06G	BABR	$e^+e^- \rightarrow$	T(4S)
$8.9 \pm 1.7 \pm 1.2$					e ' e →	1 (43)
¹ Assumes equal pro	oduction of B	and B° at t	he <i>I</i> (43	5).		
$\Gamma(K_1(1400)^+ \rho^0)/$	$\Gamma_{ ext{total}}$					Γ ₃₁₇ /Γ
<u>VALUE</u> <7.8 × 10 ^{−4}		DOCUMENT IL)	TECN	<u>COMMENT</u>	
$< 7.8 \times 10^{-4}$	90	ALBRECHT	91 B	ARG	e^+e^-	$\Upsilon(4S)$
Γ(V*(1420)+ ₂ 0) /	/ F					Γ/Γ
$\Gamma(K_2^*(1430)^+\rho^0)/$		DOCUMENT IL	,	TECN	COMMENT	Г ₃₁₈ /Г
<u>VALUE</u> <1.5 × 10 ^{−3}	90	ALBRECHT				Υ(15)
			910	AING	e · e →	7 (43)
$\Gamma(b_1^0 K^+ \times B(b_1^0 -$	$ ightarrow \omega \pi^0))/\Gamma_{ m t}$	otal				Γ ₃₁₉ /Γ
VALUE (units 10 ⁻⁶) 9.1±1.7±1.0		DOCUMENT IL)	TECN	COMMENT	
$9.1 \pm 1.7 \pm 1.0$		$^{ m 1}$ AUBERT	07 BI	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
¹ Assumes equal pro						
F/1 + 1/*0 D/1 +	± >> /	-				- /-
$\Gamma(b_1^+ K^{*0} \times B(b_1^+$	$\rightarrow \omega \pi$ '))/	total				Г ₃₂₀ /Г
VALUE <5.9 × 10⁻⁶	<u>CL%</u>	1 AUDEDT	00:-	<u>IECN</u>	<u>COMMENT</u> + –	20(4.0)
					$e \cdot e \rightarrow$	1 (45)
¹ Assumes equal pro	oduction of <i>B</i>	and B° at t	he $T(4)$	5).		

```
\Gamma(b_1^0 K^{*+} \times \mathsf{B}(b_1^0 \to \omega \pi^0)) / \Gamma_{\mathsf{total}}
                                                                    09AF BABR e^+e^- \rightarrow \Upsilon(4S)
                                             <sup>1</sup> AUBERT
   <sup>1</sup> Assumes equal production of B^+ and B^0 at the \Upsilon(4S).
\Gamma(K^{+}\overline{K}^{0})/\Gamma_{\text{total}}
                                                                                                         \Gamma_{322}/\Gamma
VALUE (units 10^{-6})
                                           DOCUMENT ID
                             CL%
    1.31 \pm 0.17 OUR FIT Error includes scale factor of 1.2.
    1.19±0.18 OUR AVERAGE
                                         <sup>1</sup> DUH
                                                                13
                                                                      BELL e^+e^- \rightarrow \Upsilon(4S)
    1.11 \pm 0.19 \pm 0.05
                                         <sup>1</sup> AUBERT,BE
                                                               06C BABR e^+e^- \rightarrow \Upsilon(4S)
    1.61 \pm 0.44 \pm 0.09
  • • We do not use the following data for averages, fits, limits, etc. • • •
    1.22^{\,+\,0.32\,+\,0.13}_{\,-\,0.28\,-\,0.16}
                                         ^{1} I IN
                                                                       BELL Repl. by DUH 13
                                         <sup>1</sup> ABE
    1.0 \pm 0.4 \pm 0.1
                                                                05G BELL
                                                                                 Repl. by LIN 07
                                         <sup>1</sup> AUBERT,BE
                                                               05E
                                                                      BABR Repl. by AUBERT, BE 06C
    1.5 \pm 0.5 \pm 0.1
                                         <sup>1</sup> AUBERT
 < 2.5
                             90
                                                                04M BABR Repl. by AUBERT, BE 05E
                                         <sup>1</sup> CHAO
                             90
                                                                       BELL
                                                                                e^+e^- \rightarrow \Upsilon(4S)
 < 3.3
                                                                                 e^+e^- \rightarrow \Upsilon(4S)
 < 3.3
                             90
                                         <sup>1</sup> BORNHEIM
                                                                       CLE2
                                         <sup>1</sup> CASEY
                                                                                 Repl. by CHAO 04
                                                                       BELL
 < 2.0
                             90
                                         <sup>1</sup> ABE
                                                                01H BELL
                                                                                 e^+e^- \rightarrow \Upsilon(4S)
 < 5.0
                             90
                                         <sup>1</sup> AUBERT
                                                                     BABR e^+e^- \rightarrow \Upsilon(4S)
 < 2.4
                             90
                                                                01E
                                         <sup>1</sup> CRONIN-HEN..00
                                                                                 e^+e^- \rightarrow \Upsilon(4S)
 < 5.1
                             90
                                                                       CLE2
 <21
                                           GODANG
                                                                98
                                                                       CLE<sub>2</sub>
                                                                                 Repl. by CRONIN-
                                                                                     HENNESSY 00
   <sup>1</sup> Assumes equal production of B^+ and B^0 at the \Upsilon(4S).
\Gamma(K^+\overline{K}^0)/\Gamma(K^0\pi^+)
                                                                                                     \Gamma_{322}/\Gamma_{262}
                                               DOCUMENT ID
0.055 ± 0.007 OUR FIT
                               Error includes scale factor of 1.2.
0.064 \pm 0.009 \pm 0.004
                                               AAIJ
                                                                    13BS LHCB pp at 7 TeV
\Gamma(\overline{K}^0K^+\pi^0)/\Gamma_{\text{total}}
                                                                                                         \Gamma_{323}/\Gamma
                                               DOCUMENT ID
                                 90
                                             <sup>1</sup> ECKHART
                                                                          CLE2
   <sup>1</sup> Assumes equal production of B^+ and B^0 at the \Upsilon(4S).
\Gamma(K^+K^0_SK^0_S)/\Gamma_{total}
                                                                                                         \Gamma_{324}/\Gamma
VALUE (units 10^{-6})
                                                                           TECN
10.8±0.6 OUR AVERAGE
                                           ^{1,2}\,\mathrm{LEES}
                                                                    120 BABR e^+e^- \rightarrow \Upsilon(4S)
10.6 \pm 0.5 \pm 0.3
                                             <sup>1</sup> GARMASH
13.4 \pm 1.9 \pm 1.5
                                                                    04
                                                                          BELL
• • • We do not use the following data for averages, fits, limits, etc. • • •
                                             <sup>1</sup> AUBERT,B
                                                                    04V BABR Repl. by LEES 120
   <sup>1</sup> Assumes equal production of B^+ and B^0 at the \Upsilon(4S).
   <sup>2</sup> All intermediate charmonium and charm resonances are removed, except of \chi_{c0}.
```

$\Gamma(f_0(980)K^+, f_0 \rightarrow$						Γ ₃₂₅ /Γ
VALUE (units 10^{-6})		DOCUMENT ID		TECN	COMMENT	
<u>VALUE (units 10⁻⁶)</u> 14.7±2.8±1.8		¹ LEES	120	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$^{ m 1}$ Assumes equal produ						
$\Gamma(f_0(1710)K^+, f_0 \rightarrow$		•				Γ ₃₂₆ /Γ
VALUE (units 10^{-6})		DOCUMENT ID				
$0.48^{f +0.40}_{-0.24}{\pm}0.11$		¹ LEES			$e^+e^- \rightarrow$	$\Upsilon(4S)$
¹ Assumes equal produ	uction of	B^+ and B^0 at the	e $\Upsilon(43)$	5).		
$\Gamma(K^+K^0_SK^0_S$ nonreso						Γ ₃₂₇ /Γ
VALUE (units 10 ⁻⁶)		DOCUMENT ID		TECN	COMMENT	
$19.8 \pm 3.7 \pm 2.5$		¹ LEES	120	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
¹ Assumes equal produ	uction of	\mathcal{B}^+ and \mathcal{B}^0 at the	e $\Upsilon(45)$	5).		
$\Gamma(K_S^0K_S^0\pi^+)/\Gamma_{ ext{total}}$						Γ ₃₂₈ /Γ
$VALUE$ (units 10^{-6})						
<0.51		¹ AUBERT				$\Upsilon(4S)$
• • • We do not use the						
<3.2	90	¹ GARMASH	04	BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$
¹ Assumes equal produ	uction of	B^+ and B^0 at the	e $\Upsilon(4.5)$	S).		
$\Gamma(K^+K^-\pi^+)/\Gamma_{\text{total}}$						
						Г ₃₂₉ /Г
VALUE (units 10^{-6})						
VALUE (units 10^{-6}) 5.0±0.5±0.5	CL%	$^{ m 1}$ AUBERT	07 BB	BABR	$e^+e^- \to$	
VALUE (units 10^{-6})	<u>CL%</u> e followin	¹ AUBERT g data for average	07BB s, fits,	BABR limits, e	$e^+e^- \rightarrow$ etc. • •	Υ(4S)
VALUE (units 10^{-6}) 5.0±0.5±0.5 • • • We do not use the <13	e followin	1 AUBERT g data for average 1 GARMASH	07BB s, fits, 04	BABR limits, 6 BELL	$e^+e^- \rightarrow e^+e^- \rightarrow e^- \rightarrow e^-e^- \rightarrow e^-e$	r(4S) $r(4S)$
VALUE (units 10^{-6}) 5.0±0.5±0.5 • • • We do not use the <13 < 6.3	e followin 90 90	1 AUBERT g data for average 1 GARMASH 1,2 AUBERT	07BBes, fits, 04 03M	BABR limits, 6 BELL BABR	$e^+e^- ightarrow$ etc. \bullet \bullet \bullet Repl. by A	$\Upsilon(4S)$ $\Upsilon(4S)$ UBERT 07BB
VALUE (units 10 ⁻⁶) 5.0±0.5±0.5 • • • We do not use the <13 < 6.3 < 12	e followin 90 90 90	¹ AUBERT g data for average ¹ GARMASH ^{1,2} AUBERT ³ GARMASH	07BB es, fits, 04 03M 02	BABR limits, 6 BELL BABR BELL	$e^+e^- ightarrow$ etc. \bullet \bullet \bullet Repl. by A	$\Upsilon(4S)$ $\Upsilon(4S)$ UBERT 07BB
VALUE (units 10 ⁻⁶) 5.0±0.5±0.5 • • • We do not use the <13 < 6.3 <12 ¹ Assumes equal produce 2 Charm and charmon intermediate resonance.	e followin 90 90 90 uction of ium cont	1 AUBERT g data for average 1 GARMASH 1,2 AUBERT 3 GARMASH B^+ and B^0 at the ributions are subtr	$07BB$ es, fits, 04 $03M$ 02 e $\Upsilon(45)$ racted,	BABR limits, e BELL BABR BELL S).	$e^+e^- \rightarrow$ etc. • • • $e^+e^- \rightarrow$ Repl. by A $e^+e^- \rightarrow$ ise no assur	$\Upsilon(4S)$ $\Upsilon(4S)$ UBERT 07BB $\Upsilon(4S)$ Inptions about
VALUE (units 10 ⁻⁶) 5.0±0.5±0.5 • • • We do not use the <13 < 6.3 <12 1 Assumes equal productions and the contractions are the con	e followin 90 90 90 uction of ium contices. cay mode	1 AUBERT g data for average 1 GARMASH 1,2 AUBERT 3 GARMASH B^+ and B^0 at the ributions are subtles $B^+ o \overline{D}{}^0\pi^+$	$07BB$ es, fits, 04 $03M$ 02 e $\Upsilon(43)$ racted, and	BABR limits, e BELL BABR BELL S).	$e^+e^- \rightarrow$ etc. • • • $e^+e^- \rightarrow$ Repl. by A $e^+e^- \rightarrow$ ise no assur	$\Upsilon(4S)$ $\Upsilon(4S)$ UBERT 07BB $\Upsilon(4S)$ Inptions about
VALUE (units 10 ⁻⁶) 5.0±0.5±0.5 • • • We do not use the constant of the co	e following 90 90 uction of ium contacts. cay mode $(+\pi^-)$ =	1 AUBERT g data for average 1 GARMASH 1,2 AUBERT 3 GARMASH B^+ and B^0 at the ributions are subtractions 1 and 2 2 4 4 4 4 4 4 4 4	$07BB$ es, fits, 04 $03M$ 02 e $\Upsilon(43)$ racted, and	BABR limits, e BELL BABR BELL S).	$e^+e^- \rightarrow$ etc. • • • $e^+e^- \rightarrow$ Repl. by A $e^+e^- \rightarrow$ ise no assur	$\Upsilon(4S)$ $\Upsilon(4S)$ UBERT 07BB $\Upsilon(4S)$ Inptions about
$VALUE$ (units 10^{-6}) 5.0±0.5±0.5 • • • We do not use the <13 < 6.3 <12 ¹ Assumes equal produce 2 Charm and charmon intermediate resonant 3 Uses a reference de $\overline{D}^0\pi^+$)·B(\overline{D}^0 → $^{\prime\prime}$ K Γ($K^+K^-\pi^+$ nonresonant $^{\prime\prime}$	e following 90 90 uction of ium contaces. cay mode $(+\pi^-) = 0$	1 AUBERT g data for average 1 GARMASH 1 ,2 AUBERT 3 GARMASH 3 GARMASH 4 and 0 at the ributions are subtresponds as 0 at $^+$ and 0 at 0	$07BB$ es, fits, 04 $03M$ 02 e $\Upsilon(45)$ racted, 0 and 0	BABR limits, of BELL BABR BELL $\overline{D}^0 \rightarrow \overline{D}^0 \rightarrow \overline{D}^0$	$e^+e^- ightarrow$ etc. \bullet \bullet \bullet Repl. by A $e^+e^- ightarrow$ ise no assur $\mathcal{K}^+\pi^-$ w	T(4S) $T(4S)$ UBERT 07BB $T(4S)$ Inptions about $T(4S)$ $T(4S)$ $T(4S)$ $T(4S)$
VALUE (units 10^{-6}) 5.0±0.5±0.5 • • • We do not use the <13 < 6.3 <12 ¹ Assumes equal produce 2 Charm and charmon intermediate resonant 3 Uses a reference de $\overline{D}^0\pi^+$)·B($\overline{D}^0\to K$	e following 90 90 uction of ium contaces. cay mode $(+\pi^-) = 0$	1 AUBERT g data for average 1 GARMASH 1,2 AUBERT 3 GARMASH 3 H and 3 at the ributions are subtle 4 B $^+$ $^ ^ ^ ^ ^ ^ ^ ^-$	$07BB$ es, fits, 04 $03M$ 02 e $\Upsilon(4S)$ racted, 0 and 0	BABR limits, of BELL BABR BELL $\overline{D}^0 \rightarrow \overline{D}^0 \rightarrow \overline{D}^0$	$e^+e^- ightarrow$ etc. \bullet \bullet \bullet Repl. by A $e^+e^- ightarrow$ ise no assur $\mathcal{K}^+\pi^-$ w	T(4S) $T(4S)$ UBERT 07BB $T(4S)$ Inptions about $T(4S)$ $T(4S)$ $T(4S)$
VALUE (units 10^{-6}) 5.0±0.5±0.5 • • • We do not use the 13 < 6.3 <12 ¹ Assumes equal production 2 Charm and charmon intermediate resonant 3 Uses a reference de $\overline{D}^0\pi^+$)·B($\overline{D}^0\to K$ Γ($K^+K^-\pi^+$ nonresonant 10-6) <75 Γ($K^+\overline{K}^*(892)^0$)/Γte	e following 90 90 90 uction of ium containes. cay mode $(x^+\pi^-) = \frac{CL\%}{90}$	1 AUBERT g data for average 1 GARMASH 1 ,2 AUBERT 3 GARMASH 3 GARMASH 4 and 0 at the ributions are subtresponds as 0 at $^+$ and 0 at 0	$07BB$ es, fits, 04 $03M$ 02 e $\Upsilon(4S)$ racted, 0 and 0	BABR limits, of BELL BABR BELL $\overline{D}^0 \rightarrow \overline{D}^0 \rightarrow \overline{D}^0$	$e^+e^- ightarrow$ etc. \bullet \bullet \bullet Repl. by A $e^+e^- ightarrow$ ise no assur $\mathcal{K}^+\pi^-$ w	T(4S) $T(4S)$ UBERT 07BB $T(4S)$ Inptions about $T(4S)$ $T(4S)$ $T(4S)$
VALUE (units 10^{-6}) 5.0±0.5±0.5 • • • We do not use the <13 < 6.3 <12 ¹ Assumes equal produce 2 Charm and charmon intermediate resonant 3 Uses a reference de $\overline{D}^0 \pi^+$)·B($\overline{D}^0 \to K$ Γ($K^+K^-\pi^+$ nonresonant Natue (units 10^{-6}) <75	e following 90 90 90 uction of ium containes. cay mode $(x^+\pi^-) = \frac{CL\%}{90}$	1 AUBERT g data for average 1 GARMASH 1 ,2 AUBERT 3 GARMASH 3 GARMASH 4 and 0 at the ributions are subtresponds as 0 at $^+$ and 0 at 0	$07BB$ ss, fits, 04 $03M$ 02 se $\Upsilon(43)$ racted, $0-5$ $96B$	BABR limits, of BELL BABR BELL \overline{D} 0 \rightarrow	$e^+e^- ightarrow$ etc. \bullet \bullet \bullet $e^+e^- ightarrow$ Repl. by A $e^+e^- ightarrow$ ise no assur $K^+\pi^-$ w $\frac{COMMENT}{e^+e^- ightarrow}$	$T(4S)$ $T(4S)$ UBERT 07BB $T(4S)$ Inptions about ith B($B^+ \rightarrow \Gamma_{330}/\Gamma$ $T(4S)$ T_{331}/Γ

• • We do not use the following data for averages, fits, limits, etc.

<129	90	ABBIENDI	00 B	OPAL	$e^+e^- ightarrow$	Ζ
<138	90	² ABE	00 C	SLD	e^+e^-	Z
< 5.3	90	$^{ m 1}$ JESSOP	00	CLE2	$e^+e^- ightarrow$	$\Upsilon(4S)$

 $^{^{1}}$ Assumes equal production of B^{+} and B^{0} at the $\Upsilon(4S)$.

$\Gamma(K^+\overline{K}_0^*(1430)^0)/\Gamma_{\text{total}}$

 Γ_{332}/Γ

$VALUE$ (units 10^{-6})	CL%	DOCUMENT ID	TECN	COMMENT
<2.2	90	¹ AUBERT	07AR BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$

 $^{^1}$ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

 Γ_{333}/Γ

<1.0 X 10	90	- AUBERT	ORRE DARK	$e \cdot e \rightarrow I(45)$
• • • We do not us	se the follow	ving data for avera	ges, fits, limit	s, etc. • • •
$< 2.4 \times 10^{-6}$	90	¹ GARMASH	04 BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$< 1.3 \times 10^{-6}$	90	² AUBERT	03м BABR	Repl. by AUBERT 08BE
$\sim 2.2 \times 10^{-6}$	00	3 CADMACH	02 RELI	$a^{+}a^{-}$ $\Upsilon(AS)$

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(K^+K^+\pi^-\text{nonresonant})/\Gamma_{\text{total}}$

 Γ_{334}/Γ

VALUE (units 10^{-6})	CL%	DOCUMENT ID		TECN	COMMENT
<87.9	90	ABBIENDI	00 B	OPAL	$e^+e^- \rightarrow Z$

$\Gamma(f_2'(1525)K^+)/\Gamma_{\text{total}}$

 Γ_{335}/Γ

Created: 8/21/2014 12:56

$VALUE$ (units 10^{-6}) $CL\%$	DOCUMENT ID	TECN	COMMENT
1.8 \pm 0.5 OUR AVERAGE	Error includes scale factor	or of 1.1.	
$1.56\!\pm\!0.36\!\pm\!0.30$	^{1,2} LEES 120	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$2.8 \pm 0.9 ^{+0.5}_{-0.4}$	1,3 LEES 120	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$

• • • We do not use the following data for averages, fits, limits, etc. • •

<8 90
$1,4$
 GARMASH 05 BELL $e^+e^-
ightarrow \varUpsilon(4S)$

²ABE 00C assumes B(Z \rightarrow $b\overline{b}$)=(21.7 \pm 0.1)% and the B fractions $f_{B^0} = f_{B^+} =$ $(39.7^{+1.8}_{-2.2})\%$ and $f_{B_s} = (10.5^{+1.8}_{-2.2})\%$.

Assumes equal production of B^0 and B^+ at the $\Upsilon(4S)$; charm and charmonium contributions are subtracted, otherwise no assumptions about intermediate resonances. ³ Uses a reference decay mode $B^+ \to \overline{D}{}^0\pi^+$ and $\overline{D}{}^0 \to K^+\pi^-$ with $B(B^+ \to \overline{D}{}^0\pi^+)\cdot B(\overline{D}{}^0 \to K^+\pi^-) = (20.3 \pm 2.0) \times 10^{-5}$.

 $^{^1}$ Assumes equal production of B^+ and B^0 at the $\varUpsilon(4S)$.

 $^{^2}$ Measured in the $B^+ \rightarrow K^+ K^- K^+$ decay.

³ Measured in the $B^+ \rightarrow K^+ K^0_S K^0_S$ decay.

⁴ GARMASH 05 reports B($B^+ \to f_2'(1525)K^+$) · B($f_2'(1525) \to K^+K^-$) < 4.9×10^{-6} at 90% CL. We divide this result by our best value of B($f_2'(1525) \to K\overline{K}$) = 88.7×10^{-2} multiplied by 2/3 to account for the K^+K^- fraction.

 $\Gamma(K^+ f_I(2220))/\Gamma_{\text{total}}$ Γ_{336}/Γ VALUE (units 10^{-6}) 03 $\Upsilon(4S)$ not seen 1 No such decay for evidence is found limit on B($B^+ \to f_1(2220)$)×B($f_1(2220) \to \phi \phi$) < 1.2 × 10⁻⁶ at 90%CL where the $f_{J}(2220)$ is a possible glueball state. $\Gamma(K^{*+}\pi^+K^-)/\Gamma_{\text{total}}$ Γ_{337}/Γ *VALUE* (units 10^{-6}) ¹ AUBERT,B 06U BABR $e^+e^- \rightarrow \Upsilon(4S)$ <11.8 ¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$. $\Gamma(K^*(892)^+K^*(892)^0)/\Gamma_{\text{total}}$ Γ_{338}/Γ VALUE (units 10^{-6}) DOCUMENT ID TECN COMMENT 09F BABR $e^+e^- \rightarrow \Upsilon(4S)$ $1.2 \pm 0.5 \pm 0.1$ **AUBERT** • • • We do not use the following data for averages, fits, limits, etc. • ¹ GODANG 02 CLE2 $e^+e^- \rightarrow \Upsilon(4S)$ 90 ¹ Assumes a helicity 00 configuration. For a helicity 11 configuration, the limit decreases to 4.8×10^{-5} . $\Gamma(K^{*+}K^{+}\pi^{-})/\Gamma_{\text{total}}$ Γ_{339}/Γ DOCUMENT ID *VALUE* (units 10^{-6}) CL% TECN COMMENT 06U BABR $e^+e^- \rightarrow \Upsilon(4S)$ <6.1 ¹ AUBERT.B 90 ¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$. $\Gamma(K^+K^-K^+)/\Gamma_{\text{total}}$ Γ_{340}/Γ *VALUE* (units 10^{-6}) CL% DOCUMENT ID TECN 34.0±1.4 OUR AVERAGE Error includes scale factor of 1.4. 1,2 LEES 120 BABR e^+e $34.6 \pm 0.6 \pm 0.9$ ¹ GARMASH **BELL** $30.6 \pm 1.2 \pm 2.3$ 05 • • We do not use the following data for averages, fits, limits, etc. ¹ AUBERT $35.2 \pm 0.9 \pm 1.6$ 060 BABR Repl. by LEES 120 ¹ GARMASH BELL Repl. by GARMASH 05 $32.8 \pm 1.8 \pm 2.8$ ³ AUBERT 03M BABR Repl. by AUBERT 060 $29.6 \pm 2.1 \pm 1.6$ ⁴ GARMASH Repl. by GARMASH 04 $35.3 \pm 3.7 \pm 4.5$ 02 BELL ⁵ ADAM 96D DLPH $e^+e^- \rightarrow Z$ <200 90

⁵ ABREU Sup. by ADAM 96D <320 90 95N DLPH $e^+e^- \rightarrow \Upsilon(4S)$ <350 90 **ALBRECHT** 91E ARG

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

 $^{^2}$ All intermediate charmonium and charm resonances are removed, except of χ_{c0} .

³ Assumes equal production of B^0 and B^+ at the $\Upsilon(4S)$; charm and charmonium contributions are subtracted, otherwise no assumptions about intermediate resonances.

⁴Uses a reference decay mode $B^+ \to \overline{D}{}^0\pi^+$ and $\overline{D}{}^0 \to K^+\pi^-$ with B($B^+ \to D^0\pi^+$ $\overline{D}{}^0\pi^+)\cdot B(\overline{D}{}^0 \rightarrow K^+\pi^-) = (20.3 \pm 2.0) \times 10^{-5}.$

⁵ Assumes B^0 and B^- production fractions of 0.39, and B_s production fraction of 0.12.

 $\Gamma(K^+\phi)/\Gamma_{\text{total}}$ Γ_{341}/Γ VALUE (units 10^{-6}) COMMENT **8.8** $^{+0.7}_{-0.6}$ **OUR AVERAGE** Error includes scale factor of 1.1. $9.2 \pm 0.4 \, ^{+0.7}_{-0.5}$ 120 BABR $e^+e^- \rightarrow \Upsilon(4S)$ ¹ LEES ² ACOSTA $7.6 \pm 1.3 \pm 0.6$ 05.1 CDF $p\overline{p}$ at 1.96 TeV $9.60 \pm 0.92 + 1.05 \\ -0.85$ ¹ GARMASH BELL $e^+e^- \rightarrow \Upsilon(4S)$ $5.5 \ ^{+2.1}_{-1.8} \ \pm 0.6$ ¹ BRIERE 01 CLE2 $e^+e^- \rightarrow \Upsilon(4S)$ • • We do not use the following data for averages, fits, limits, etc. • • $8.4 \pm 0.7 \pm 0.7$ ¹ AUBERT 060 BABR Repl. by LEES 120 $10.0 \ \, ^{+\, 0.9}_{-\, 0.8} \ \, \pm 0.5$ ¹ AUBERT 04A BABR Repl. by AUBERT 060 $9.4 \pm 1.1 \pm 0.7$ ¹ CHEN 03B BELL Repl. by GARMASH 05 $14.6 \ \, ^{+\, 3.0}_{-\, 2.8}\ \, \pm 2.0$ ³ GARMASH BELL Repl. by CHEN 03B $7.7 \ ^{+1.6}_{-1.4} \ \pm 0.8$ 01D BABR $e^+e^- \rightarrow \Upsilon(4S)$ ¹ AUBERT $e^+e^- \rightarrow Z$ ⁴ ABE 00c SLD <144 90 90 ¹ BERGFELD CLE2 98 < 5 96D DLPH $e^+e^- \rightarrow Z$ ⁵ ADAM 90 <280 CLE2 $e^+e^- \rightarrow \Upsilon(4S)$ < 12 90 **ASNER** ⁶ ABREU 95N DLPH Sup. by ADAM 96D <440 90 ALBRECHT $e^+e^- \rightarrow \Upsilon(4S)$ <180 90 91B ARG ⁷ AVERY 89B CLEO $e^+e^- \rightarrow \Upsilon(4S)$ < 90 **AVERY** CLEO $e^+e^- \rightarrow \Upsilon(4S)$ <210 1 Assumes equal production of B^+ and B^0 at the $\varUpsilon(4S)$. ² Uses B($B^{+} \rightarrow J/\psi K^{+}$) = (1.00 ± 0.04) × 10⁻³ and B($J/\psi \rightarrow \mu^{+}\mu^{-}$) = 0.0588 ± 3 Uses a reference decay mode $B^+ \to \overline{D}{}^0\pi^+$ and $\overline{D}{}^0 \to K^+\pi^-$ with B($B^+ \to \overline{D}{}^0\pi^+$ $\overline{D}{}^0\pi^+)\cdot \mathsf{B}(\overline{D}{}^0 \to \ \ \mathcal{K}^+\pi^-) = (20.3 \pm 2.0) \times 10^{-5}.$ ⁴ABE 00C assumes B($Z \rightarrow b\overline{b}$)=(21.7 \pm 0.1)% and the B fractions $f_{R0} = f_{R+} =$ $(39.7^{+1.8}_{-2.2})\%$ and $f_{B_s} = (10.5^{+1.8}_{-2.2})\%$. ⁵ ADAM 96D assumes $f_{B^0} = f_{B^-} = 0.39$ and $f_{B_c} = 0.12$. 6 Assumes a B^0 , B^- production fraction of 0.39 and a B_s production fraction of 0.12. ⁷ AVERY 89B reports $< 8 \times 10^{-5}$ assuming the $\Upsilon(4S)$ decays 43% to $B^0 \overline{B}{}^0$. We rescale

 Γ_{342}/Γ

Created: 8/21/2014 12:56

() ,	, , ,	, , ,		J .=,
$VALUE$ (units 10^{-6})	CL%	DOCUMENT ID	TECN	COMMENT
9.4±1.6±2.8		¹ LEES 120	BABR	$e^+e^- ightarrow \Upsilon(4S)$
14/ 1 .			10	

ullet ullet We do not use the following data for averages, fits, limits, etc. ullet ullet

 $6.5\pm2.5\pm1.6$ 1 AUBERT 060 BABR $e^+e^- \rightarrow \Upsilon(4S)$ <2.9 90 1 GARMASH 05 BELL $e^+e^- \rightarrow \Upsilon(4S)$

 $[\]Gamma(f_0(980)K^+ \times B(f_0(980) \to K^+K^-))/\Gamma_{+ \sim -1}$

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(a_2(1320)K^+\times B(a_2(1320)K^+))$	a ₂ (1320) -	$\rightarrow K^+K^-))/$	r _{total}	ı		Γ ₃₄₃ /Γ
VALUE	CL%	DOCUMENT ID		TECN	COMMENT	
<1.1 × 10 ⁻⁶	90	1 GARMASH	05	BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$^{ m 1}$ Assumes equal produ						` '
$\Gamma(X_0(1550)K^+ \times B(X_0(1550)) \text{ is a pos}$				_	ariant mass	Γ ₃₄₄ /Γ
VALUE (units 10^{-6})						OIN N.
4.3±0.6±0.3		¹ AUBERT	060	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
¹ Assumes equal produ						. ()
$\Gamma(\phi(1680)K^+ \times B(\phi))$	(1680) →	$K^+K^-))/\Gamma_t$	otal			Γ ₃₄₅ /Γ
<u>VALUE</u> <0.8 × 10 ^{−6}	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT	
					$e^+e^- \rightarrow$	$\Upsilon(4S)$
$^{ m 1}$ Assumes equal produ	$action of B^{-1}$	$^+$ and B^0 at the	$\Upsilon(45)$	5).		
$\Gamma(f_0(1710)K^+ \times B(f_0(1710)K^+))$		•				Г ₃₄₆ /Г
VALUE (units 10 ⁻⁶) 1.12±0.25±0.50		DOCUMENT ID		TECN	COMMENT	
						$\Upsilon(4S)$
• • • We do not use the						
$1.7 \pm 1.0 \pm 0.3$		¹ AUBERT	060	BABR	Repl. by L	EES 120
¹ Assumes equal produ	uction of B^{-}	$^+$ and $B^{ m 0}$ at the	$\Upsilon(45)$	S).		
$\Gamma(K^+K^-K^+$ nonres	onant $)/\Gamma_{t}$	otal				Γ ₃₄₇ /Γ
VALUE (units 10^{-6})	CL%	DOCUMENT ID		TECN	COMMENT	
23.8 ^{+2.8} _{-5.0} OUR AVER	AGE					
$22.8 \pm 2.7 \pm 7.6$		¹ LEES	120	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$24.0 \pm 1.5 ^{+2.6}_{-6.0}$		¹ GARMASH	05	BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$
• • • We do not use the	e following	data for averages	, fits,	limits, e	etc. • • •	
$50.0\pm6.0\pm4.0$		¹ AUBERT	060	BABR	Repl. by L	EES 120
<38	90	BERGFELD	96 B	CLE2	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$^{ m 1}$ Assumes equal produ	uction of B	$^+$ and $B^{ m 0}$ at the	Y(45	5).		
Γ(K*(892)+K+K-	$)/\Gamma_{ m total}$					Γ ₃₄₈ /Γ
VALUE (units 10^{-6})	CL%	DOCUMENT ID		TECN	COMMENT	
$36.2 \pm 3.3 \pm 3.6$		¹ AUBERT,B	06 U	BABR	$e^+e^- \rightarrow$	
\bullet \bullet We do not use the	e following	data for averages	s, fits,	limits, e	etc. • • •	
<1600	90	ALBRECHT			$e^+e^- \rightarrow$	$\Upsilon(4S)$
¹ Assumes equal produ	uction of B^{-}	$^+$ and $B^{ m 0}$ at the	Y(45	5).		

$\Gamma(K^*(892)^+\phi)/\Gamma_{to}$	otal					Γ ₃₄₉ /Γ
<i>VALUE</i> (units 10^{-6})	CL%	DOCUMENT ID		TECN (COMMENT	
10.0±2.0 OUR A		Error includes s	cale fact	or of 1.7	7.	
$11.2 \pm 1.0 \pm 0.9$					$e^+e^- o 7$	` ,
$6.7 {+2.1 +0.7 \atop -1.9 -1.0}$		¹ CHEN	03B E	3ELL 6	$e^+e^- \rightarrow 7$	r(4S)
• • • We do not use	the followi	ng data for avera	ges, fits,	limits,	etc. • • •	
$12.7^{\displaystyle +2.2}_{\displaystyle -2.0}\!\pm\!1.1$		¹ AUBERT	03V E	3ABR F	Repl. by AU	BERT 07BA
$9.7^{ightarrow 4.2}_{-3.4}\!\pm\! 1.7$		¹ AUBERT	01D E	3ABR F	Repl. by AU	BERT 03V
< 22.5	90	1 BRIERE	01 (CLE2 e	$e^+e^- \rightarrow 7$	r(4S)
< 41	90	¹ BERGFELD	98 C	CLE2		
< 70	90	ASNER	96 (CLE2 e	$e^+e^- \rightarrow 1$	r(4S)
<1300		ALBRECHT			$e^+e^- \rightarrow 1$	r(4S)
¹ Assumes equal pro	duction of	$f B^+$ and B^0 at	the $\Upsilon(4.$	<i>S</i>).		
$\Gamma(\phi(K\pi)_0^{*+})/\Gamma_{\text{tota}}$	J					Γ ₃₅₀ /Γ
• • • • • • • • • • • • • • • • • • • •		e composed of K_0^*	·(1430) :	and none	resonant tha	333,
using LASS sha	pe.	e composed of A)(1.00)	211G 11G111	coonant tha	t are accerbed
VALUE (units 10^{-6})		DOCUMENT I 1 AUBERT	D	TECN	COMMENT	
$8.3 \pm 1.4 \pm 0.8$		$^{ m 1}$ AUBERT	08 BI	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$^{ m 1}$ Assumes equal pro	duction of	fB^+ and B^0 at	the Υ (4.	<i>S</i>).		
$\Gamma(\phi K_1(1270)^+)/\Gamma$	total					Γ ₃₅₁ /Γ
$VALUE$ (units 10^{-6})		DOCUMENT	ID	TECN	COMMENT	
6.1±1.6±1.1		¹ AUBERT	08 BI	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$^{ m 1}$ Assumes equal pro	duction of					. ,
			`	,		Г /г
$\Gamma(\phi K_1(1400)^+)/\Gamma$		50644545	15	TE CN .	601415117	Г ₃₅₂ /Г
VALUE (units 10 ⁻⁶)		DOCUMENT			<u>COMMENT</u>	00(16)
3.2• • We do not use ?		¹ AUBERT			$e^+e^- \rightarrow$	T(4S)
<1100	90	ALBRECHT				Y(45)
¹ Assumes equal pro						, (10)
		D' and D' at	ile / (4.	J).		
$\Gamma(\phi K^*(1410)^+)/\Gamma$	total					Г ₃₅₃ /Г
<u>VALUE (units 10^{−6})</u>	CL%	DOCUMENT	ID	TECN	COMMENT	

VALUE (units 10^{-6})	CL%	DOCUMENT ID	TECN	COMMENT
<4.3	90	¹ AUBERT	08BI BABR	$e^+e^- \rightarrow \Upsilon(4S)$

 $^{^1}$ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

 $\Gamma(\phi K_0^*(1430)^+)/\Gamma_{\text{total}}$

 Γ_{354}/Γ

<i>VALUE</i> (units 10 ⁻⁶)	DOCUMENT ID	TECN	COMMENT
7.0±1.3±0.9	¹ AUBERT	08BI BABR	$e^+e^- ightarrow \gamma(4S)$

 $^{^1}$ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(\phi K_2^*(1430)^+)/\Gamma_{\text{tot}}$	tal					Γ ₃₅₅ /Γ
VALUE (units 10^{-6})	CL%	DOCUMENT ID		TECN	COMMENT	
$8.4 \pm 1.8 \pm 1.0$		¹ AUBERT	08 BI	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
• • • We do not use the	following	data for averages	, fits,	limits, e	etc. • • •	
<3400	90	ALBRECHT	91 B	ARG	$e^+e^-\to$	$\Upsilon(4S)$
$^{ m 1}$ Assumes equal produ	ction of B	$^+$ and $B^{ m 0}$ at the	Y(45	5).		
$\Gamma(\phi K_2^*(1770)^+)/\Gamma_{\text{tot}}$	tal					Г ₃₅₆ /Г
VALUE (units 10^{-6})	CL%	DOCUMENT ID		TECN	COMMENT	330,
VALUE (units 10 ⁻⁶) <15.0	90	¹ AUBERT	08BI	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
¹ Assumes equal produ	oction of B^{-1}	$^+$ and $B^{ m 0}$ at the	$\Upsilon(45)$	5).		(-)
$\Gamma(\phi K_2^*(1820)^+)/\Gamma_{\text{tot}}$			•	,		Γ ₃₅₇ /Γ
$(\psi \wedge_2(1020)^{-1})/1 \text{ to}$	tal	DOCUMENT ID		TECN	COMMENT	1 357/1
VALUE (units 10 ⁻⁶) <16.3	<u>CL%</u>	1 ALIDEDE	0051	DADD	+ -	20(4.0)
					$e \cdot e \rightarrow$	1 (45)
¹ Assumes equal produ	ction of B	$^+$ and B^0 at the	$\Upsilon(45)$	5).		
$\Gamma(a_1^+ K^{*0})/\Gamma_{\text{total}}$						Г ₃₅₈ /Г
<i>VALUE</i> (units 10 ^{−6}) < 3.6	CL%	DOCUMENT ID		TECN	COMMENT	
<3.6	90 1,	² DEL-AMO-SA.	.101	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
1 Assumes B($a_1^\pm ightarrow ~\pi$	$\pm_{\pi} \mp_{\pi} \pm_{1}$	= 0.5				
² Assumes equal produ			Υ(45	5).		
$\Gamma(K^+\phi\phi)/\Gamma_{total}$						Г ₃₅₉ /Г
$VALUE$ (units 10^{-6})		DOCUMENT ID		TECN	COMMENT	
5.0±1.2 OUR AVERAGE	Frror in	cludes scale facto	or of 2	2.3.	COMMENT	
$5.6 \pm 0.5 \pm 0.3$		¹ LEES			$e^+e^- \rightarrow$	$\Upsilon(4S)$
$2.6^{+1.1}_{-0.9}\pm0.3$		¹ HUANG				` '
● • • We do not use the						,
$7.5 \pm 1.0 \pm 0.7$		¹ AUBERT,BE				EES 11A
¹ Assumes equal produ	uction of B	0 and $^{+}$ at th	$r = \gamma$	4 <i>S</i>) and	for a $\phi \phi$ in	nvariant mass
below 2.85 GeV/ c^2 .			• (-,		
$\Gamma(\eta'\eta'K^+)/\Gamma_{ ext{total}}$						Г ₃₆₀ /Г
' ('/ '/ '`)/ ' total	CL 0/	DOCUMENT ID		TECN	COMMENT	' 300/ '
VALUE (units 10 ⁻⁶) <25	<u>CL%</u>	1 ALIDEDE B	060	DADD	+	Υ(AC)
¹ Assumes equal produ					e ' e →	1 (43)
	iction of B	and B at the	7 (45).		
$\Gamma(\omega\phi K^+)/\Gamma_{\text{total}}$						Г ₃₆₁ /Г
<i>VALUE</i> (units 10 ^{−6}) <1.9	CL%	DOCUMENT ID		TECN	COMMENT	
					$e^+e^- \rightarrow$	$\Upsilon(4S)$
$^{ m 1}$ Assumes equal produ	ction of B^{-}	$^+$ and $B^{ m 0}$ at the	$\Upsilon(45)$	5).		

$\Gamma(X(1812)K^+ \times B(X \to \omega \phi))/\Gamma_{\text{total}}$

 Γ_{362}/Γ

•		. ,				-
<i>VALUE</i> (units 10 ⁻⁶)	CL%	DOCUMENT ID		TECN	COMMENT	
<0.32	90	¹ LIU	09	BELL	$e^+e^- ightarrow \gamma(4S)$	

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(K^*(892)^+\gamma)/\Gamma_{\text{total}}$

 Γ_{363}/Γ

ALUE (units 10^{-5})	CL% I	DOCUMENT ID		TECN	COMMENT	
4.21±0.18 OUR A	WERAGE					
$4.22\!\pm\!0.14\!\pm\!0.16$	1,	AUBERT	09 AO	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$4.25\!\pm\!0.31\!\pm\!0.24$	² [NAKAO	04	BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$3.76^{+0.89}_{-0.83}{\pm}0.28$	2 (COAN	00	CLE2	$e^{+}e^{-}\rightarrow$	$\Upsilon(4S)$

• • • We do not use the following data for averages, fits, limits, etc. • • •

$3.87 \pm 0.28 \pm 0.2$	26		04A	BABR	Repl. by AUBERT 09A0
$3.83 \pm 0.62 \pm 0.2$	22	² AUBERT	02 C	BABR	Repl. by AUBERT, BE 04A
$5.7 \pm 3.1 \pm 1.1$	=	⁴ AMMAR			Repl. by COAN 00
< 55	90	⁵ ALBRECHT	89G	ARG	$e^+e^- ightarrow ~ \varUpsilon(4S)$
< 55	90	⁵ AVERY			$e^+e^- ightarrow ~ \varUpsilon(4S)$
<180	90	AVERY	87	CLEO	$e^+e^- ightarrow ~ \varUpsilon(4S)$

¹ Uses B($\Upsilon(4S) \to B^+ B^-$) = (51.6 ± 0.6)% and B($\Upsilon(4S) \to B^0 \overline{B}{}^0$) = (48.4 ± 0.6)%.

$\Gamma(K_1(1270)^+\gamma)/\Gamma_{\text{total}}$

 Γ_{364}/Γ

VAL	<i>UE</i> (units 10 ⁻⁵)	CL%	DOCUMENT ID		TECN	COMMENT		
	$4.3 \pm 0.9 \pm 0.9$		¹ YANG	05	BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$	
• •	• We do not use the	following	data for averages	, fits,	limits, e	etc. • • •		
	0.0	00	1 мистира	00	DELL	D 1 1/4	A N.C. OF	

< 9.9 90 1 NISHIDA 02 BELL Repl. by YANG 05 <730 90 2 ALBRECHT 89G ARG $e^{+}e^{-}
ightarrow \varUpsilon(4S)$

$\Gamma(\eta K^+ \gamma) / \Gamma_{\text{total}}$

 Γ_{365}/Γ

Created: 8/21/2014 12:56

<i>VALUE</i> (units 10^{-6})	DOCUMENT ID		TECN	COMMENT
7.9±0.9 OUR AVERAGE				
$7.7 \pm 1.0 \pm 0.4$	^{1,2} AUBERT	09	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$8.4\pm1.5^{+1.2}_{-0.9}$	^{2,3} NISHIDA	05	BELL	$e^+e^- ightarrow \Upsilon(4S)$

• • • We do not use the following data for averages, fits, limits, etc. • •

$$10.0\pm1.3\pm0.5$$
 1,2 AUBERT,B 06M BABR Repl. by AUBERT 09

² Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

 $^{^3}$ Uses the production ratio of charged and neutral B from $\varUpsilon(4S)$ decays R+/0 = 1.006 \pm 0.048.

 $^{^4}$ AMMAR 93 observed 4.1 \pm 2.3 events above background.

⁵ Assumes the $\Upsilon(4S)$ decays 43% to $B^0 \overline{B}^0$.

 $^{^1}$ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

² ALBRECHT 89G reports < 0.0066 assuming the $\Upsilon(4S)$ decays 45% to $B^0\overline{B}^0$. We rescale to 50%.

 $^{^{1}\,}m_{\eta\,K}$ < 3.25 GeV/c 2 .

²Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

 $^{^{3}}m_{nK} < 2.4 \text{ GeV/c}^{2}$

$\Gamma(\eta' K^+ \gamma) / \Gamma_{\text{total}}$					Γ ₃₆₆ /Γ
$VALUE$ (units 10^{-6})	DOCUMENT ID		TECN	COMMENT	
$2.9_{-0.9}^{+1.0}$ OUR AVERAGE					
$3.6 \pm 1.2 \pm 0.4$	$^{1,2}\mathrm{WEDD}$	10	BELL	$e^+e^ \rightarrow$	$\Upsilon(4S)$
$1.9^{+1.5}_{-1.2} \pm 0.1$	^{1,3} AUBERT,B				` '
1 Assumes equal production of 2 $m_{\eta^\primeK} <$ 3.4 GeV/c 2 . 3 Set the upper limit of 4.2 \times			•	.25 GeV/c ²	
$\Gamma(\phi K^+ \gamma) / \Gamma_{\text{total}}$					Г ₃₆₇ /Г
VALUE (units 10^{-6})	DOCUMENT ID		TECN	COMMENT	
2.7 ±0.4 OUR AVERAGE Er					
$2.48 \pm 0.30 \pm 0.24$	¹ SAHOO				
$3.5 \pm 0.6 \pm 0.4$	¹ AUBERT				$\Upsilon(4S)$
• • • We do not use the followi					
$3.4 \pm 0.9 \pm 0.4$	¹ DRUTSKOY		BELL	Repl. by S	AHOO 11A
$^{ m 1}$ Assumes equal production of	fB^+ and B^0 at $\varUpsilon($	(4 <i>S</i>).			
$\Gamma(K^+\pi^-\pi^+\gamma)/\Gamma_{total}$					Г ₃₆₈ /Г
VALUE (units 10 ⁻⁵)	DOCUMENT ID			COMMENT	
2.76±0.22 OUR AVERAGE Er					00(46)
$2.95 \pm 0.13 \pm 0.20$ $2.50 \pm 0.18 \pm 0.22$	^{1,2} AUBERT ^{2,3} YANG			$e^+e^- \rightarrow e^+e^-$	
• • • We do not use the followi					1 (43)
	^{2,4} NISHIDA				ANG 05
1 $M_{K\pi\pi}$ $<$ 1.8 GeV/ c^{2} . 2 Assumes equal production of 3 $M_{K\pi\pi}$ $<$ 2.0 GeV/ c^{2} . 4 $M_{K\pi\pi}$ $<$ 2.4 GeV/ c^{2} .	FB^+ and B^0 at the	e	S).		
$\Gamma(K^*(892)^0\pi^+\gamma)/\Gamma_{\text{total}}$					Γ ₃₆₉ /Γ
VALUE	DOCUMENT ID				
$(2.0^{+0.7}_{-0.6}\pm0.2)\times10^{-5}$	^{1,2} NISHIDA	02	BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$
1 Assumes equal production of 2 $M_{K\pi\pi} <$ 2.4 GeV/ c^{2} .	$^{+}B^{+}$ and B^{0} at the	e \(\chi \)	S).		
$\Gamma(K^+ ho^0\gamma)/\Gamma_{ m total}$					Г ₃₇₀ /Г
<u>VALUE</u> <u>CL%</u> <2.0 × 10 ^{−5} 90	DOCUMENT ID		TECN	COMMENT	
<2.0 × 10⁻⁵ 90	^{1,2} NISHIDA	02	BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$
1 Assumes equal production of 2 $M_{K\pi\pi} <$ 2.4 GeV/ c^{2} .	$^{+}B^{+}$ and B^{0} at the	r(45	5).		

$\Gamma(K^+\pi^-\pi^+\gamma \text{ nonre})$				TECN	COMMENT	Γ ₃₇₁ /Γ
<i>VALUE</i> <9.2 × 10 ^{−6}	00	1,2 NISHIDA	02	RELI	o+ o-	Υ(15)
¹ Assumes equal prod					e · e →	1 (43)
2 $M_{K\pi\pi}$ < 2.4 GeV/		r B r and B r at the	7 (43	o).		
$\Gamma (K^0 \pi^+ \pi^0 \gamma) / \Gamma_{ m tota}$						Γ ₃₇₂ /Γ
VALUE (units 10 ⁻⁵) 4.56±0.42±0.31		DOCUMENT ID		TECN	COMMENT	
$4.56\pm0.42\pm0.31$		^{1,2} AUBERT	07 R	BABR	$e^+e^ \rightarrow$	$\Upsilon(4S)$
1 $M_{K\pi\pi}$ < 1.8 GeV 2 Assumes equal prod		f B^+ and B^0 at the	Υ(45	5).		
$\Gamma(K_1(1400)^+\gamma)/\Gamma_{to}$	otal					Γ ₃₇₃ /Γ
		DOCUMENT ID		TECN	COMMENT	
<u>VALUE (units 10^{−5})</u> < 1.5	90	¹ YANG	05	BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$
ullet $ullet$ We do not use th						
< 5.0 <220	90 90	¹ NISHIDA ² ALBRECHT				
¹ Assumes equal prod ² ALBRECHT 89G re rescale to 50%.					cays 45% to	в В ⁰ В ⁰ . We
$\Gamma(K_2^*(1430)^+\gamma)/\Gamma_{tc}$	otal					Γ ₃₇₄ /Γ
VALUE (units 10 ⁻⁵) 1.45±0.40±0.15	CL%	DOCUMENT ID		TECN	COMMENT	
						$\Upsilon(4S)$
• • • We do not use th	ie followi					
<140	90	² ALBRECHT			$e^+e^- \rightarrow$	$\Upsilon(4S)$
 Assumes equal prod ALBRECHT 89G re rescale to 50%. 					cays 45% to	$B^0\overline{B}^0$. We
$\Gamma(K^*(1680)^+\gamma)/\Gamma_{tc}$	otal					Г ₃₇₅ /Г
	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT	
<0.0019		¹ ALBRECHT				
¹ ALBRECHT 89G re rescale to 50%.	ports <	0.0017 assuming th	ne $\varUpsilon($	(4 <i>S</i>) dec	cays 45% to	∂ <i>B⁰ B</i> ⁰ . We
$\Gamma(K_3^*(1780)^+\gamma)/\Gamma_{tc}$						Г ₃₇₆ /Г
<u>VALUE (units 10^{−6})</u> < 39	CL%	DOCUMENT	ID	TECI	V <u>COMMEN</u>	IT
< 39 • • • We do not use th						$\rightarrow \Upsilon(4S)$
<5500	90	³ ALBRECH				→ Υ(15)
¹ Assumes equal prod ² Uses B(K_3^* (1780) –	uction of	f B^+ and B^0 at the				7 (43)
³ ALBRECHT 89G rep to 50%.			(45)	decays 4	15% to B ⁰ B	⁰ . We rescale
HTTP://PDG.LBL.	GOV	Page 108		Creat	ed: 8/21/	2014 12:56

 $\Gamma(K_4^*(2045)^+\gamma)/\Gamma_{\text{total}}$

 Γ_{377}/Γ

VALUE	CL%	DOCUMENT ID	TECI	<u>COMMENT</u>
<0.0099	90	¹ ALBRECHT	89G ARG	$e^+e^- ightarrow \gamma(4S)$

 $^{^1}$ ALBRECHT 89G reports < 0.0090 assuming the $\Upsilon(4S)$ decays 45% to $B^0\overline{B}^0$. We

 Γ_{378}/Γ $\Gamma(\rho^+\gamma)/\Gamma_{\text{total}}$

/ALUE (units 10 ⁻⁶)	DOCUMENT ID		TECN	COMMENT		
0.98±0.25 OUR AVERAGE						
$1.20^{+0.42}_{-0.37}{\pm}0.20$	¹ AUBERT	08вн	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$	
$0.87 {+ 0.29 + 0.09 \atop - 0.27 - 0.11}$	¹ TANIGUCHI	80	BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$	

• • • We do not use the following data for averages, fits, limits, etc. • • •

$1.10^{igoplus 0.37}_{-0.33}\!\pm\!0.09$		¹ AUBERT	07L	BABR	Repl. by AUBERT 08BH
$0.55 \! \begin{array}{l} +0.42 + 0.09 \\ -0.36 - 0.08 \end{array}$		¹ MOHAPATRA	06	BELL	Repl. by TANIGUCHI 08
$0.9 \ ^{+0.6}_{-0.5} \ \pm 0.1$	90	¹ AUBERT	05	BABR	Repl. by AUBERT 07L
< 2.2	90	$^{ m 1}$ MOHAPATRA	05	BELL	$e^+e^- ightarrow \Upsilon(4S)$
< 2.1	90	$^{ m 1}$ AUBERT	04 C	BABR	$e^+e^- \rightarrow \Upsilon(4S)$
<13	90	1,2 COAN	00	CLE2	$e^+e^- ightarrow ~ \varUpsilon(4S)$

 $^{^{1}}$ Assumes equal production of B^{+} and B^{0} at $\Upsilon(4S)$.

 $\Gamma(\pi^+\pi^0)/\Gamma_{\text{total}}$ Γ_{379}/Γ

$VALUE$ (units 10^{-6}) $CL\%$	DOCUMENT ID		TECN	COMMENT	
5.5 \pm 0.4 OUR AVERAGE	Error includes s	cale fa	ctor of	1.2.	
$5.86 \pm 0.26 \pm 0.38$	¹ DUH	13	BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$5.02\pm0.46\pm0.29$	¹ AUBERT	07 BC	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$\begin{array}{cccc} 4.6 & +1.8 & +0.6 \\ -1.6 & -0.7 \end{array}$	¹ BORNHEIM	03	CLE2	$e^{+}e^{-}\rightarrow$	$\Upsilon(4S)$

• • • We do not use the following data for averages, fits, limits, etc. • • •

$6.5 \pm 0.4 \pm 0.4$ $5.8 \pm 0.6 \pm 0.4$ $5.0 \pm 1.2 \pm 0.5$		¹ LIN ¹ AUBERT ¹ CHAO	07A 05L 04	BELL BABR BELL	Repl. by DUH 13 Repl. by AUBERT 07BC Repl. by LIN 07A
$5.5 \ ^{+1.0}_{-1.9} \ \pm 0.6$		¹ AUBERT	03L		Repl. by AUBERT 05L
$7.4 \ ^{+2.3}_{-2.2} \ \pm 0.9$		¹ CASEY	02	BELL	Repl. by CHAO 04
< 13.4	90	¹ ABE	01н	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$
< 9.6	90	$^{ m 1}$ AUBERT	01E	BABR	$e^+e^- \rightarrow \Upsilon(4S)$
< 12.7	90	¹ CRONIN-HEN.	.00	CLE2	$e^+e^- ightarrow \Upsilon(4S)$
< 20	90	GODANG	98	CLE2	Repl. by CRONIN- HENNESSY 00
< 17	90	ASNER	96	CLE2	Repl. by GODANG 98
< 240	90	$^{ m 1}$ ALBRECHT	90 B	ARG	$e^+e^- ightarrow \Upsilon(4S)$
<2300	90	² BEBEK	87	CLEO	$e^+e^- ightarrow \Upsilon(4S)$

 $^{^2\,\}mathrm{No}$ evidence for a nonresonant $K\,\pi\gamma$ contamination was seen; the central value assumes

 $^{^1}$ Assumes equal production of B^+ and B^0 at the $\varUpsilon(4S)$. 2 BEBEK 87 assume the $\varUpsilon(4S)$ decays 43% to $B^0\overline{B}{}^0$.

$\Gamma(\pi^+\pi^0)/\Gamma(\kappa^0\pi^+)$)	DOCUMENT ID		<u>TECN</u>	<u>COMMENT</u>	$\Gamma_{379}/\Gamma_{262}$
$0.285 \pm 0.02 \pm 0.02$		LIN	07A	BELL	$e^{+}e^{-}\rightarrow$	$\Upsilon(4S)$
$\Gamma(\pi^+\pi^+\pi^-)/\Gamma_{ ext{total}}$						Γ ₃₈₀ /Γ
VALUE (units 10^{-6})	CL%	DOCUMENT ID		TECN	COMMENT	
$15.2 {\pm} 0.6 {+} {1.3 top 1.2}$		¹ AUBERT	09L	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
• • • We do not use th	ie following	g data for averages	, fits,	limits, e	etc. • • •	
$16.2\!\pm\!1.2\!\pm\!0.9$		¹ AUBERT,B	05 G	BABR	Repl. by A	UBERT 09L
$10.9\!\pm\!3.3\!\pm\!1.6$		¹ AUBERT	03M	BABR	Repl. by A	UBERT 05G
<130	90	² ADAM	96 D	DLPH	$e^+e^ \rightarrow$	Z
<220	90	³ ABREU	95N	DLPH	Sup. by Al	D AM 96 D
<450	90	⁴ ALBRECHT		ARG	$e^+e^- \rightarrow$	$\Upsilon(4S)$
<190	90	⁵ BORTOLETTO	D89	CLEO	$e^+e^- \rightarrow$	$\Upsilon(4S)$

 $^{^1}$ Assumes equal production of B^0 and B^+ at the $\Upsilon(4S)$; charm and charmonium contributions are subtracted, otherwise no assumptions about intermediate resonances. 2 ADAM 96D assumes $f_{B^0}=f_{B^-}=0.39$ and $f_{B_s}=0.12$.

 $^{^3}$ Assumes a B^0 , B^- production fraction of 0.39 and a B_s production fraction of 0.12. 4 ALBRECHT 90B limit assumes equal production of $B^0\overline{B}^0$ and B^+B^- at $\Upsilon(4S)$. 5 BORTOLETTO 89 reports $< 1.7 \times 10^{-4}$ assuming the $\Upsilon(4S)$ decays 43% to $B^0\overline{B}^0$. We rescale to 50%.

$\Gamma(ho^0\pi^+)/\Gamma_{ m total}$	Γ ₃₈₁ /Γ
--	---------------------

$VALUE$ (units 10^{-6})	CL%	DOCUMENT ID		TECN	COMMENT	
8.3±1.2 OUR AV	ERAGE					
$8.1\!\pm\!0.7\!+\!\frac{1.3}{-1.6}$		¹ AUBERT	09L	BABR	e^+e^-	$\Upsilon(4S)$
$8.0^{+2.3}_{-2.0}\pm0.7$		$^{ m 1}$ GORDON	02	BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$10.4^{+3.3}_{-3.4}\pm2.1$		¹ JESSOP	00	CLE2	$e^+e^- \rightarrow$	$\Upsilon(4S)$

• • We do not use the following data for averages, fits, limits, etc. • •

$8.8\!\pm\!1.0_{-0.9}^{+0.6}$		$^{ m 1}$ AUBERT,B	05 G	BABR	Repl. by AUBERT 09L
$9.5 \!\pm\! 1.1 \!\pm\! 0.9$		$^{ m 1}$ AUBERT	04Z	BABR	Repl. by AUBERT 05G
< 83	90	² ABE	00 C	SLD	$e^+e^- o Z$
<160	90	³ ADAM	96 D	DLPH	$e^+e^- o Z$
< 43	90	ASNER	96	CLE2	Repl. by JESSOP 00
< 260	90	⁴ ABREU	95N	DLPH	Sup. by ADAM 96D
<150	90	$^{ m 1}$ ALBRECHT	90 B	ARG	$e^+e^- ightarrow~ \varUpsilon(4S)$
<170	90	⁵ BORTOLETT	089	CLEO	$e^+e^- ightarrow~ \varUpsilon(4S)$
<230	90	⁵ BEBEK	87	CLEO	$e^+e^- ightarrow ~ \varUpsilon(4S)$
< 600	90	GILES	84	CLEO	Repl. by BEBEK 87

 $^{^1}$ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$. 2 ABE 00C assumes B(Z \rightarrow $b\overline{b})=$ (21.7 \pm 0.1)% and the B fractions $f_{B^0}=f_{B^+}=$ (39.7 $^{+1.8}_{-2.2}$)% and $f_{B_s}=(10.5^{+1.8}_{-2.2})$ %. ³ ADAM 96D assumes $f_{B^0}=f_{B^-}=0.39$ and $f_{B_s}=0.12$. ⁴ Assumes a B^0 , B^- production fraction of 0.39 and a B_s production fraction of 0.12. ⁵ Papers assume the $\Upsilon(4S)$ decays 43% to $B^0\overline{B}{}^0$. We rescale to 50%.

Citation: K.A. Olive et al. (Particle Data Group), Chin. Phys. C38, 090001 (2014) (URL: http://pdg.lbl.gov) $\left\lceil \Gamma(K^*(892)^0\pi^+) + \Gamma(\rho^0\pi^+) \right\rceil / \Gamma_{\text{total}}$ $(\Gamma_{288} + \Gamma_{381})/\Gamma$ *VALUE* (units 10^{-6}) $170^{+120}_{-80}\pm20$ ¹ ADAM 96D DLPH $e^+e^- \rightarrow Z$ ¹ ADAM 96D assumes $f_{R0} = f_{R^-} = 0.39$ and $f_{B_c} = 0.12$. $\Gamma(\pi^{+}f_{0}(980), f_{0} \rightarrow \pi^{+}\pi^{-})/\Gamma_{\text{total}}$ Γ_{382}/Γ VALUE (units 10^{-6}) DOCUMENT ID TECN COMMENT ¹ AUBERT 09L BABR $e^+e^- \rightarrow \Upsilon(4S)$ < 1.5 90 • • • We do not use the following data for averages, fits, limits, etc. • • •

< 3.0 90 1 AUBERT,B 05G BABR Repl. by AUBERT 09L <140 90 2 BORTOLETTO89 CLEO $e^+e^- \rightarrow \Upsilon(4S)$

$\Gamma(\pi^+ f_2(1270))/\Gamma_{\text{total}}$

 Γ_{383}/Γ

$VALUE$ (units 10^{-6})	CL%	DOCUMENT ID		TECN	COMMENT
$^{1.59}_{-0.43}\substack{+0.66\\-0.43}$		^{1,2} AUBERT	09L	BABR	$e^+e^- ightarrow \ \varUpsilon(4S)$

• • We do not use the following data for averages, fits, limits, etc.

$\Gamma(\rho(1450)^0 pi+, \rho^0 \rightarrow \pi^+\pi^-)/\Gamma_{\text{total}}$

 Γ_{384}/Γ

Created: 8/21/2014 12:56

$VALUE$ (units 10^{-6})	CL%	DOCUMENT ID		TECN	COMMENT
$1.4\pm0.4^{+0.5}_{-0.8}$		¹ AUBERT	09L	BABR	$e^+e^- ightarrow \gamma(4S)$

• • • We do not use the following data for averages, fits, limits, etc. • •

<2.3 90 1 AUBERT,B 05G BABR Repl. by AUBERT 09L

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

 $^{^2}$ BORTOLETTO 89 reports $<1.2\times10^{-4}$ assuming the $\varUpsilon(4S)$ decays 43% to $B^0\overline{B}{}^0$. We rescale to 50%.

 $^{^1}$ AUBERT 09L reports $[\Gamma(B^+\to\pi^+f_2(1270))/\Gamma_{\text{total}}]\times[B(f_2(1270)\to\pi^+\pi^-)]=(0.9\pm0.2\pm0.1^{+0.3}_{-0.1})\times10^{-6}$ which we divide by our best value $B(f_2(1270)\to\pi^+\pi^-)=(56.5^{+1.6}_{-0.8})\times10^{-2}.$ Our first error is their experiment's error and our second error is the systematic error from using our best value.

² Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

³ AUBERT,B 05G reports $[\Gamma(B^+ \to \pi^+ f_2(1270))/\Gamma_{total}] \times [B(f_2(1270) \to \pi^+ \pi^-)]$ = $(2.3 \pm 0.6 \pm 0.4) \times 10^{-6}$ which we divide by our best value $B(f_2(1270) \to \pi^+ \pi^-)$ = $(56.5^{+1.6}_{-0.8}) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

 $^{^4}$ BORTOLETTO 89 reports $< 2.1 \times 10^{-4}$ assuming the $\varUpsilon(4S)$ decays 43% to $B^0\overline{B}^0$. We rescale to 50%.

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(f_0(1370)\pi^+, f_0 -$	\+=	-\/r .				Г/Г
•		•				Г ₃₈₅ /Г
VALUE (units 10^{-6})	<u>CL%</u>	<u>DOCUMENT ID</u>		TECN	COMMENT	22(- 2)
<4.0		¹ AUBERT				T(4S)
• • We do not use t						
<3.0	90	¹ AUBERT,B			Repl. by A	UBERT 09L
¹ Assumes equal pro-	duction of	$^{\mathrm{F}}B^{\mathrm{+}}$ and B^{0} at the	$\Upsilon(4.$	S).		
$\Gamma(f_0(500)\pi^+, f_0 \rightarrow$	$\pi^+\pi^-)$	/Γ _{total}				Г ₃₈₆ /Г
$VALUE$ (units 10^{-6})	CL%	DOCUMENT ID		TECN	COMMENT	
<i>VALUE</i> (units 10 ^{−6}) <4.1	90	¹ AUBERT,B	05 G	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
¹ Assumes equal pro-						. ,
$\Gamma(\pi^+\pi^-\pi^+)$ nonreso	onant)/I	_ total				Γ ₃₈₇ /Γ
VALUE (units 10^{-6})	•			TECN	COMMENT	
$5.3 \pm 0.7 {+1.3 \atop -0.8}$		$^{ m 1}$ AUBERT	09L	BABR	$e^{+}e^{-}\rightarrow$	$\Upsilon(4S)$
• • • We do not use t	he followi	ng data for averages	s, fits,	limits, e	etc. • • •	
< 4.6	90	¹ AUBERT,B	05 G	BABR	Repl. by A	UBERT 09L
<41		BERGFELD				
¹ Assumes equal pro	duction of	$^{\pm}B^{+}$ and B^{0} at the	Υ(4.	S).		
$\Gamma(\pi^+\pi^0\pi^0)/\Gamma_{ m total}$						Г ₃₈₈ /Г
VALUE	CL%	DOCUMENT ID		TECN	COMMENT	
VALUE	90	¹ ALBRECHT	90 B	ARG	$e^{+}e^{-}\rightarrow$	$\Upsilon(4S)$
¹ ALBRECHT 90в li						
$\Gamma(ho^+\pi^0)/\Gamma_{ m total}$						Г ₃₈₉ /Г
VALUE (units 10^{-6})	CL%	DOCUMENT ID		TECN	COMMENT	
10.9±1.4 OUR AV	ERAGE					
$10.2\!\pm\!1.4\!\pm\!0.9$		$^{ m 1}$ AUBERT	07X	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$13.2\!\pm\!2.3\!+\!1.4\\-1.9$		¹ ZHANG	05A	BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$
• • • We do not use t	he followi	ng data for average	s, fits,	limits, e	etc. • • •	
$10.9\!\pm\!1.9\!\pm\!1.9$		¹ AUBERT				UBERT 07X
< 43	90	^{1,2} JESSOP			$e^+e^- \rightarrow$	
< 77	90	ASNER			Repl. by J	
∠EEΩ	90	$^{ m 1}$ ALBRECHT	90R	ARG	$e^+e^- ightarrow$	7(45)
< 550						. (.0)
¹ Assumes equal proc ² Assumes no nonres	duction of	$^{\mathrm{c}}B^{\mathrm{+}}$ and B^{0} at the	$\Upsilon(4.$	S).		. ()

 $[\]begin{array}{c} \Gamma\left(\pi^{+}\pi^{-}\pi^{+}\pi^{0}\right)/\Gamma_{\text{total}} \\ \frac{\text{VALUE}}{<4.0\times10^{-3}} \frac{\text{CL\%}}{90} \end{array}$ Γ_{390}/Γ $1 = \frac{DOCUMENT\ ID}{1}$ ALBRECHT 90B ARG $e^+e^-
ightarrow \varUpsilon(4S)$

 $^{^1}$ ALBRECHT 90B limit assumes equal production of $B^0\overline{B}{}^0$ and B^+B^- at $\varUpsilon(4S)$.

$\Gamma(ho^+ ho^0)/\Gamma_{ m total}$						Γ ₃₉₁ /Γ
* *	,	DOCUMENT ID		TECN	COMMENT	' 391/ '
<u>VALUE (units 10⁻⁶)</u> <u>CL9</u> 24.0±1.9 OUR AVERAG		DOCUMENT ID		TECN	COMMENT	
$23.7 \pm 1.4 \pm 1.4$		AUBERT	09 G	BABR	$e^+e^- \rightarrow \gamma$	^(4 <i>S</i>)
$31.7\pm7.1_{-6.7}^{+3.8}$		ZHANG				` ,
• • • We do not use the						,
$16.8 \pm 2.2 \pm 2.3$		AUBERT,BE				BERT 09G
$22.5 + 5.7 \pm 5.8$		AUBERT				
< 1000 90		ALBRECHT				
¹ Assumes equal produ						()
² The systematic error					e helicity-mix	uncertainty.
$\Gamma(\rho^+ f_0(980), f_0 \rightarrow \pi$						Γ ₃₉₂ /Γ
VALUE (units 10^{-6})	CL%	DOCUMENT	ID	TE	CN COMMEN	
<i>VALUE</i> (units 10 ^{−6}) <2.0	90	¹ AUBERT	C	—— —)9G BA	BR e ⁺ e ⁻ -	$\rightarrow \Upsilon(4S)$
• • • We do not use the						(-)
<1.9	90	¹ AUBERT,E	BE C	06G BA	BR Repl. by	AUBERT 09G
¹ Assumes equal produ	ction of	${\it B}^+$ and ${\it B}^0$ at	the 7	r(45).		
$\Gamma(a_1(1260)^+\pi^0)/\Gamma_{to}$				` ,		Γ ₃₉₃ /Γ
VALUE (units 10^{-6})	CL%	DOCUMENT	ID	TE	CN COMMEN	3337 Т
VALUE (units 10 ⁻⁶) 26.4±5.4±4.1	· <u></u>	1,2 AUBERT	C	—— —)7вь ВА	BR e ⁺ e ⁻ -	$\rightarrow \Upsilon(4S)$
• • • We do not use the	following	g data for aver	ages,	fits, lim	its, etc. • • •	,
<1700	90	¹ ALBRECH	Т 9	9 0 в A R	e^+e^-	$\rightarrow \gamma (4S)$
¹ Assumes equal produ	ction of	\mathcal{B}^+ and \mathcal{B}^0 at	the 7	r(4S).		
² Assumes a_1^+ decays of) = 0.5.	
$\Gamma(a_1(1260)^0\pi^+)/\Gamma_{\rm to}$		-				Г/Г
		DOCUMENT	10	T C	CN COMMEN	Γ ₃₉₄ /Γ
VALUE (units 10 ⁻⁶)						
20.4±4.7±3.4 • • • We do not use the	followin	^{1,2} AUBERT	ages '	fits lim	its etc • • •	→ 1 (43)
<900	90				::G e ⁺ e ⁻ -	$\rightarrow \Upsilon(45)$
¹ Assumes equal produ						(13)
² Assumes a_1^0 decays o					= 1 0	
7 decays o	111y to 3/1	una B(a ₁	, ,	` ' '	— 1.0.	
$\Gamma(\omega\pi^+)/\Gamma_{ ext{total}}$						Г ₃₉₅ /Г
VALUE (units 10^{-6})	CL%	DOCUMENT II	D	TECI	COMMENT	
6.9±0.5 OUR AVEF	RAGE	1				22(- 2)
$6.7 \pm 0.5 \pm 0.4$		1 AUBERT				
$6.9 \pm 0.6 \pm 0.5$		¹ JEN	06		$L e^+e^- \rightarrow$	` '
$11.3^{+3.3}_{-2.9}\!\pm\!1.4$		¹ JESSOP	00) CLE	$e^+e^- \rightarrow$	$\Upsilon(4S)$

 \bullet \bullet \bullet We do not use the following data for averages, fits, limits, etc. \bullet \bullet

$6.1\!\pm\!0.7\!\pm\!0.4$		¹ AUBERT,B	06E	BABR	Repl. by AUBERT 07AE
$5.5 \!\pm\! 0.9 \!\pm\! 0.5$		$^{ m 1}$ AUBERT	04H	BABR	Repl. by AUBERT,B 06E
$5.7^{ightarrow1.4}_{-1.3}\!\pm\!0.6$		¹ WANG	04A	BELL	Repl. by JEN 06
$4.2^{f +2.0}_{f -1.8}{\pm}0.5$		¹ LU	02	BELL	Repl. by WANG 04A
$6.6^{+2.1}_{-1.8}\!\pm\!0.7$		¹ AUBERT	01 G	BABR	Repl. by AUBERT 04H
< 23	90	¹ BERGFELD			Repl. by JESSOP 00
<400	90	$^{ m 1}$ ALBRECHT	90 B	ARG	$e^+e^- ightarrow ~ \varUpsilon(4S)$

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

 $\Gamma(\omega \rho^+)/\Gamma_{ ext{total}}$ Γ_{396}/Γ

<i>VALUE</i> (units 10 ⁻⁶)	CL%	DOCUMENT ID		TECN	COMMENT
$15.9 \pm 1.6 \pm 1.4$	•	¹ AUBERT	09н	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
• • • We do not use	the followin	g data for avera	ges, fi	ts, limits	, etc. • • •
$10.6\!\pm\!2.1\!+\!1.6\\-1.0$:	¹ AUBERT,B	06т	BABR	Repl. by AUBERT 09H
$12.6^{+3.7}_{-3.3}\pm1.6$:	¹ AUBERT	050	BABR	Repl. by AUBERT,B 06T

 $^{^{1}}$ 61 1 BERGFELD 98 CLE2 1 Assumes equal production of 1 and 0 at the 1 1 1 1 1 2

 $\Gamma(\eta\pi^+)/\Gamma_{\mathsf{total}}$ $\Gamma_{\mathsf{397}}/\Gamma$

<i>VALUE</i> (units 10^{-6})	CL%	DOCUMENT ID		TECN	COMMENT	
4.02 ± 0.27 OUR	AVERAGE					
$4.07\!\pm\!0.26\!\pm\!0.21$		¹ HOI			$e^+e^- \rightarrow$	
$4.00\!\pm\!0.40\!\pm\!0.24$		¹ AUBERT	09AV	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$1.2 \begin{array}{c} +2.8 \\ -1.2 \end{array}$		¹ RICHICHI	00	CLE2	e^+e^-	$\Upsilon(4S)$

• • • We do not use the following data for averages, fits, limits, etc. • •

$5.0 \pm 0.5 \pm 0.3$		$^{ m 1}$ AUBERT	07AE BABR	Repl. by AUBERT 09AV
$4.2 \pm 0.4 \pm 0.2$		¹ CHANG	07в BELL	Repl. by HOI 12
$5.1 \pm 0.6 \pm 0.3$		¹ AUBERT,B	05K BABR	Repl. by AUBERT 07AE
$4.8 \pm 0.7 \pm 0.3$		¹ CHANG	05A BELL	Repl. by CHANG 07B
$5.3 \pm 1.0 \pm 0.3$		$^{ m 1}$ AUBERT	04н BABR	Repl. by AUBERT,B 05K
< 15	90	BEHRENS		Repl. by RICHICHI 00
<700	90	$^{ m 1}$ ALBRECHT	90в ARG	$e^+e^- ightarrow \ \varUpsilon(4S)$

 $^{^1}$ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

 $\Gamma(\eta
ho^+)/\Gamma_{ ext{total}}$ Γ_{398}/Γ

$VALUE$ (units 10^{-6})	L%	DOCUMENT ID		TECN	COMMENT	
7.0±2.9 OUR AVERAG	ŝΕ	Error includes scale	factor	of 2.8.		
$9.9\!\pm\!1.2\!\pm\!0.8$		$^{ m 1}$ AUBERT	08AH	BABR	e^+e^-	$\Upsilon(4S)$
$4.1^{+1.4}_{-1.3}\pm0.4$		¹ WANG	07 B	BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$

ullet ullet We do not use the following data for averages, fits, limits, etc. ullet ullet

$8.4 \pm 1.9 \pm 1.1$		¹ AUBERT,B	05K	BABR	Repl. by AUBERT 08AH
<14	90	¹ AUBERT,B	04 D	BABR	Repl. by
					AUBERT,B 05K
<15	90	¹ RICHICHI	00	CLE2	$e^+e^- o \ \varUpsilon(4S)$
<32	90	BEHRENS	98	CLE2	Repl. by RICHICHI 00

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

 $\Gamma(\eta'\pi^+)/\Gamma_{ ext{total}}$ Γ_{399}/Γ

VALUE (units 10^{-6}) CL%	DOCUMENT ID	TECN	COMMENT	
2.7 ±0.9 OUR AVERAGE	Error includes sc	ale factor of 1	9.	
$3.5 \pm 0.6 \pm 0.2$	¹ AUBERT	09AV BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$1.76 ^{igoplus 0.67 + 0.15}_{-0.62 - 0.14}$	$^{1} \rm SCHUEMANN$	06 BELL	$e^+e^-\to$	$\Upsilon(4S)$

• • • We do not use the following data for averages, fits, limits, etc. • • •

$3.9 \pm 0.7 \pm 0.3$		¹ AUBERT	07AE BABR	Repl. by AUBERT 09AV
$4.0 \pm 0.8 \pm 0.4$		¹ AUBERT,B	05K BABR	Repl. by AUBERT 07AE
< 4.5	90	$^{ m 1}$ AUBERT	04н BABR	Repl. by AUBERT,B 05K
< 7.0	90	¹ ABE	01м BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$
<12	90	$^{ m 1}$ AUBERT	01G BABR	$e^+e^- o ~ \varUpsilon(4S)$
<12	90	¹ RICHICHI	00 CLE2	$e^+e^- o ~ \varUpsilon(4S)$
<31	90	BEHRENS	98 CLE2	Repl. by RICHICHI 00

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

 $\Gamma(\eta'
ho^+)/\Gamma_{\mathsf{total}}$ $\Gamma_{\mathsf{400}}/\Gamma$

VALUE (units 10^{-6})	CL%	DOCUMENT ID	TECN	COMMENT
$9.7^{f{+}1.9}_{-1.8}{\pm}1.1$		¹ DEL-AMO-SA10A	BABR	$e^+e^- ightarrow \ \varUpsilon(4S)$

• • • We do not use the following data for averages, fits, limits, etc. • •

$8.7 {+3.1 + 2.3 \atop -2.8 - 1.3}$		¹ AUBERT	07E	BABR	Repl. by DEL-AMO- SANCHEZ 10A
< 5.8	90	¹ SCHUEMANN	07	BELL	$e^+e^- \rightarrow \Upsilon(4S)$
<22	90	$^{ m 1}$ AUBERT,B	04 D	BABR	Repl. by AUBERT 07E
<33	90	¹ RICHICHI	00	CLE2	$e^+e^- ightarrow ~ \varUpsilon(4S)$
<47	90	BEHRENS	98	CLE2	Repl. by RICHICHI 00

 $^{^1}$ Assumes equal production of B^+ and B^0 at the $\varUpsilon(4S)$.

 $\Gamma(\phi\pi^+)/\Gamma_{
m total}$ $\Gamma_{
m 401}/\Gamma$

VALU	<i>JE</i> (units 10 ⁻⁷)	CL%	DOCUMENT ID		TECN	COMMENT
<	1.5	90	$^{ m 1}$ AAIJ	14A	LHCB	pp at 7 TeV
• •	• We do not use	the follow	ing data for averag	es, fits	s, limits,	etc. • • •
<	3.3	90	² KIM	12A	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$
<	2.4	90	² AUBERT,B	06 C	BABR	$e^+e^- \rightarrow \Upsilon(4S)$
<	4.1	90	² AUBERT	04A	BABR	Repl. by AUBERT,B 06C
<	14	90	² AUBERT	01 D	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
<1!	530	90	³ ABE	00 C	SLD	$e^+e^- \rightarrow Z$
<	50	90	² BERGFELD	98	CLE2	

```
Citation: K.A. Olive et al. (Particle Data Group), Chin. Phys. C38, 090001 (2014) (URL: http://pdg.lbl.gov)
   ^{1} Measures B( B^{+} \rightarrow \phi \pi^{+})/ B( B^{+} \rightarrow \phi K^{+}) < 0.018 at 90% C.L. and assumes B( B^{+} \rightarrow \phi K^{+}) < 0.018 at 90% C.L.
     \phi K^+) = (8.8^{+0.7}_{-0.6}) \times 10^{-6}.
   <sup>2</sup> Assumes equal production of B^+ and B^0 at the \Upsilon(4S).
   <sup>3</sup>ABE 00C assumes B(Z \rightarrow b\overline{b})=(21.7 \pm 0.1)% and the B fractions f_{B^0} = f_{B^+} =
     (39.7^{+1.8}_{-2.2})\% and f_{B_c} = (10.5^{+1.8}_{-2.2})\%.
\Gamma(\phi \rho^+)/\Gamma_{\text{total}}
                                                                                                             \Gamma_{402}/\Gamma
VALUE (units 10^{-6})
                                                 DOCUMENT ID TECN COMMENT
                                               <sup>1</sup> AUBERT
                                                                      08BK BABR e^+e^- \rightarrow \Upsilon(4S)
                                  90
• • • We do not use the following data for averages, fits, limits, etc. • •
                                              <sup>1</sup> BERGFELD
   <sup>1</sup> Assumes equal production of B^+ and B^0 at the \Upsilon(4S).
\Gamma(a_0(980)^0\pi^+, a_0^0 \rightarrow \eta\pi^0)/\Gamma_{\text{total}}
                                                                                                             \Gamma_{403}/\Gamma
                                                                      TECN COMMENT
                                               <sup>1</sup> AUBERT.BE
   <sup>1</sup> Assumes equal production of charged and neutral B mesons from \Upsilon(4S) decays.
\Gamma(a_0(980)^+\pi^0, a_0^+ \to \eta\pi^+)/\Gamma_{\text{total}}
                                                                                                             \Gamma_{404}/\Gamma
                                                                      08A BABR e^+e^- \rightarrow \Upsilon(4S)
                                               <sup>1</sup> AUBERT
 <1.4
   <sup>1</sup> Assumes equal production of B^+ and B^0 at the \Upsilon(4S).
\Gamma(\pi^+\pi^+\pi^+\pi^-\pi^-)/\Gamma_{\text{total}}
                                                                                                             \Gamma_{405}/\Gamma
                                                 DOCUMENT ID
                                                                             TECN COMMENT
                                               <sup>1</sup> ALBRECHT
                                                                      90B ARG e^+e^- \rightarrow \Upsilon(4S)
   <sup>1</sup> ALBRECHT 90B limit assumes equal production of B^0 \overline{B}{}^0 and B^+ B^- at \Upsilon(4S).
\Gamma(\rho^0 a_1(1260)^+)/\Gamma_{\text{total}}
                                                                                                             \Gamma_{406}/\Gamma
VALUE
                                                                          TECN COMMENT
 < 6.2 \times 10^{-4}
                                               <sup>1</sup>BORTOLETTO89 CLEO e^+e^- \rightarrow \Upsilon(4S)
                                  90
• • We do not use the following data for averages, fits, limits, etc. •
 < 6.0 \times 10^{-4}
                                               <sup>2</sup> ALBRECHT
                                                                      90B ARG
                                  90
 < 3.2 \times 10^{-3}
                                  90
                                               <sup>1</sup> BEBEK
                                                                      87 CLEO e^+e^- \rightarrow \Upsilon(4S)
   ^{1}BORTOLETTO 89 reports < 5.4 \times 10^{-4} assuming the \Upsilon(4S) decays 43% to B^{0}\overline{B}{}^{0}.
     We rescale to 50%.
   <sup>2</sup> ALBRECHT 90B limit assumes equal production of B^0 \overline{B}{}^0 and B^+ B^- at \Upsilon(4S).
                                                                                                             \Gamma_{407}/\Gamma
                                                                             TECN COMMENT
                                              <sup>1</sup> BORTOLETTO89 CLEO e^+e^- \rightarrow \Upsilon(4S)
• • • We do not use the following data for averages, fits, limits, etc. • • •
```

 $\Gamma(\rho^0 a_2(1320)^+)/\Gamma_{\text{total}}$

 $< 2.6 \times 10^{-3}$ 90 ² BEBEK 87 CLEO $e^+e^- \rightarrow \Upsilon(4S)$

¹BORTOLETTO 89 reports $< 6.3 \times 10^{-4}$ assuming the $\Upsilon(4S)$ decays 43% to $B^0 \overline{B}{}^0$. We rescale to 50%.

² BEBEK 87reports $< 2.3 \times 10^{-3}$ assuming the $\Upsilon(4S)$ decays 43% to $B^0 \overline{B}{}^0$. We rescale to 50%.

$\Gamma(b_1^0\pi^+,\ b_1^0 ightarrow\omega\pi^0$	$)/\Gamma_{ ext{total}}$					Γ ₄₀₈ /Γ
VALUE (units 10^{-6})		DOCUMENT ID		TECN	COMMENT	
$6.7 \pm 1.7 \pm 1.0$		¹ AUBERT	07 BI	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
¹ Assumes equal produ	uction of B	$^+$ and B^0 at the	$\gamma(45)$	S).		
$\Gamma(b_1^+\pi^0, b_1^+ \rightarrow \omega\pi^-)$						Γ ₄₀₉ /Γ
<u>VALUE</u> (units 10 ^{−6}) <3.3	CL%	DOCUMENT ID		TECN	COMMENT	
<3.3	90	¹ AUBERT	08AG	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$^{ m 1}$ Assumes equal produ	uction of B	$^+$ and B^0 at the	r(45)	S).		
$\Gamma(\pi^+\pi^+\pi^+\pi^-\pi^-\pi$	$^{0})/\Gamma_{\text{total}}$					Γ_{410}/Γ
VALUE <6.3 × 10 ⁻³	CL%	DOCUMENT ID		TECN	COMMENT	
¹ ALBRECHT 90B lim	it assumes	equal production	of B	$^0\overline{B}^0$ and	d B^+B^- at	$\Upsilon(4S)$.
$\Gamma(b_1^+ ho^0,\ b_1^+ ightarrow \omega \pi^-$	[⊦])/Γ _{total}					Γ ₄₁₁ /Γ
$\frac{\text{VALUE}}{\text{<5.2} \times 10^{-6}}$	CL%	DOCUMENT ID		TECN	COMMENT	
					$e^+e^- \rightarrow$	$\Upsilon(4S)$
$^{ m 1}$ Assumes equal produ	uction of B	$^+$ and B^0 at the	r(45)	S).		
$\Gamma(b_1^0 ho^+,\ b_1^0 ightarrow\omega\pi^0)$						Γ_{413}/Γ
VALUE <3.3 × 10 ^{−6}	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT	
					$e^+e^- \rightarrow$	$\Upsilon(4S)$
¹ Assumes equal produ	uction of <i>B</i>	$^+$ and B^0 at the	$\Upsilon(45)$	S).		
$\Gamma(a_1(1260)^+a_1(1260)^+)$				T5 CN	COMMENT	Γ_{412}/Γ
			005	<u>TECN</u>	COMMENT	
<u>VALUE</u> <1.3 × 10 ^{−2}	<u>CL%</u> 90	DOCUMENT ID ALBRECHT				Υ(4S)
<u>VALUE</u> <1.3 × 10 ^{−2} 1 ALBRECHT 90B lim	<u>CL%</u> 90	DOCUMENT ID ALBRECHT				$\Upsilon(4S)$ $\Upsilon(4S)$.
VALUE $<1.3 \times 10^{-2}$ ALBRECHT 90B lim $\Gamma(h^+\pi^0)/\Gamma_{\text{total}}$	<u>CL%</u> 90	DOCUMENT ID ALBRECHT				Υ(4S)
<u>VALUE</u> <1.3 × 10 ^{−2} 1 ALBRECHT 90B lim	<u>CL%</u> 90 iit assumes	DOCUMENT ID ALBRECHT	of B	0 <u>B</u> 0 and		$\Upsilon(4S)$ $\Upsilon(4S)$.
$VALUE$ $<1.3 \times 10^{-2}$ ALBRECHT 90B lim $\Gamma(h^{+}\pi^{0})/\Gamma_{\text{total}}$ $h^{+} = K^{+} \text{ or } \pi^{+}$	<u>CL%</u> 90 iit assumes	DOCUMENT ID ALBRECHT equal production	of B	⁰	d B^+B^- at	τ(4S) τ(4S). Γ ₄₁₄ /Γ
VALUE <1.3 × 10 ⁻² ¹ ALBRECHT 90B lim $\Gamma(h^{+}\pi^{0})/\Gamma_{\text{total}}$ $h^{+} = K^{+} \text{ or } \pi^{+}$ $VALUE \text{ (units } 10^{-6}\text{)}$ $16^{+6}_{-5} \pm 3.6$ $\Gamma(\omega h^{+})/\Gamma_{\text{total}}$	<u>CL%</u> 90 iit assumes	DOCUMENT ID 1 ALBRECHT equal production DOCUMENT ID	of B	⁰	d B^+B^- at	τ(4S) τ(4S). Γ ₄₁₄ /Γ
VALUE <1.3 × 10 ⁻² ¹ ALBRECHT 90B lim $\Gamma(h^{+}\pi^{0})/\Gamma_{\text{total}}$ $h^{+} = K^{+} \text{ or } \pi^{+}$ $VALUE \text{ (units } 10^{-6}\text{)}$ $16^{+6}_{-5} \pm 3.6$ $\Gamma(\omega h^{+})/\Gamma_{\text{total}}$ $h^{+} = K^{+} \text{ or } \pi^{+}$	90 it assumes	DOCUMENT ID 1 ALBRECHT equal production DOCUMENT ID GODANG	98	OBO and TECN CLE2	$\frac{COMMENT}{e^+e^-}$ at	r(4S) $r(4S)$ $r(4S)$ $r(4S)$ $r(4S)$ $r(4S)$
VALUE $<1.3 \times 10^{-2}$ 1 ALBRECHT 90B lim $\Gamma(h^+\pi^0)/\Gamma_{\text{total}}$ $h^+ = K^+ \text{ or } \pi^+$ VALUE (units 10^{-6}) $16^{+6}_{-5} \pm 3.6$ $\Gamma(\omega h^+)/\Gamma_{\text{total}}$ $h^+ = K^+ \text{ or } \pi^+$ VALUE (units 10^{-6})	90 it assumes	DOCUMENT ID 1 ALBRECHT equal production DOCUMENT ID	98	OBO and TECN CLE2	$\frac{COMMENT}{e^+e^-}$ at	r(4S) $r(4S)$ $r(4S)$ $r(4S)$ $r(4S)$ $r(4S)$
$VALUE$ <1.3 × 10 ⁻² 1 ALBRECHT 90B lim $\Gamma(h^+\pi^0)/\Gamma_{total}$ $h^+ = K^+ \text{ or } \pi^+$ $VALUE \text{ (units } 10^{-6}\text{)}$ 16 ⁺⁶ ₋₅ ±3.6 $\Gamma(\omega h^+)/\Gamma_{total}$ $h^+ = K^+ \text{ or } \pi^+$ $VALUE \text{ (units } 10^{-6}\text{)}$ 13.8 ^{+2.7} 13.8 ^{+2.7} OUR AVERAGE	90 it assumes	DOCUMENT ID 1 ALBRECHT equal production DOCUMENT ID GODANG	98	TECN CLE2	B^+B^- at $COMMENT$ $e^+e^- ightarrow$	r(4S) $r(4S)$ $r(4S)$ $r(4S)$ $r(4S)$ $r(4S)$
$VALUE$ <1.3 × 10 ⁻² ¹ ALBRECHT 90B lim $\Gamma(h^+\pi^0)/\Gamma_{total}$ $h^+ = K^+ \text{ or } \pi^+$ $VALUE \text{ (units } 10^{-6}\text{)}$ 16 ⁺⁶ ₋₅ ±3.6 $\Gamma(\omega h^+)/\Gamma_{total}$ $h^+ = K^+ \text{ or } \pi^+$ $VALUE \text{ (units } 10^{-6}\text{)}$ 13.8 ^{+2.7} _{-2.4} OUR AVERAGE 13.4 ^{+3.3} _{-2.9} ±1.1	90 it assumes	DOCUMENT ID 1 ALBRECHT equal production DOCUMENT ID GODANG DOCUMENT ID LU	98	TECN CLE2 TECN BELL	B^+B^- at B^+ at B	$\Upsilon(4S)$ $\Upsilon(4S)$ Γ_{414}/Γ $\Upsilon(4S)$ Γ_{415}/Γ
$VALUE$ <1.3 × 10 ⁻² ¹ ALBRECHT 90B lim $\Gamma(h^+\pi^0)/\Gamma_{total}$ $h^+ = K^+ \text{ or } \pi^+$ $VALUE \text{ (units } 10^{-6}\text{)}$ 16 ⁺⁶ / ₋₅ ±3.6 $\Gamma(\omega h^+)/\Gamma_{total}$ $h^+ = K^+ \text{ or } \pi^+$ $VALUE \text{ (units } 10^{-6}\text{)}$ 13.8 ^{+2.7} 13.8 ^{+2.7} 13.4 ^{+3.3} 13.4 ^{+3.3} 14.3 ^{+3.6} 14.3 ^{-3.6} 14.3 ^{-3.6} 14.3 ^{-3.6} 15.5	90 iit assumes	DOCUMENT ID 1 ALBRECHT equal production DOCUMENT ID GODANG 1 LU 1 JESSOP	98 02 00	TECN CLE2 TECN BELL CLE2	$COMMENT$ $e^+e^- ightarrow$ $e^+e^- ightarrow$ $e^+e^- ightarrow$	$\Upsilon(4S)$ $\Upsilon(4S)$ Γ_{414}/Γ $\Upsilon(4S)$ Γ_{415}/Γ
$VALUE$ <1.3 × 10 ⁻² ¹ ALBRECHT 90B lim $\Gamma(h^+\pi^0)/\Gamma_{total}$ $h^+ = K^+ \text{ or } \pi^+$ $VALUE \text{ (units } 10^{-6}\text{)}$ 16 ⁺⁶ 16 ⁺⁶ 15.4 $h^+ = K^+ \text{ or } \pi^+$ $VALUE \text{ (units } 10^{-6}\text{)}$ 13.8 ^{+2.7} 13.8 ^{+2.7} 13.4 ^{+3.3} 13.4 ^{+3.3} 13.4 ^{+3.3} 14.3 ^{+3.6} 14.3 ^{+3.6} 14.3 ^{+3.6} 14.3 ^{+3.6} 15.0 • • • We do not use the	90 iit assumes	DOCUMENT ID 1 ALBRECHT equal production DOCUMENT ID GODANG 1 LU 1 JESSOP data for averages	98 02 00 s, fits,	TECN CLE2 BELL CLE2 limits, 6	$COMMENT$ $e^+e^- ightarrow$ $e^+e^- ightarrow$ etc. • •	$\Upsilon(4S)$ $\Upsilon(4S)$ Γ_{414}/Γ $\Upsilon(4S)$ Γ_{415}/Γ $\Upsilon(4S)$ $\Upsilon(4S)$
$VALUE$ <1.3 × 10 ⁻² ¹ ALBRECHT 90B lim $\Gamma(h^+\pi^0)/\Gamma_{total}$ $h^+ = K^+ \text{ or } \pi^+$ $VALUE \text{ (units } 10^{-6}\text{)}$ 16 ⁺⁶ 16 ⁺⁶ 13.6 $\Gamma(\omega h^+)/\Gamma_{total}$ $h^+ = K^+ \text{ or } \pi^+$ $VALUE \text{ (units } 10^{-6}\text{)}$ 13.8 ^{+2.7} 13.8 ^{+2.7} 13.4 ^{+3.3} 14.3 ^{+3.6} 15.4 ^{+3.3} 15.4 ^{+3.3} 16.4 ^{+3.3} 17.4 ^{+3.3} 18.4 ^{+3.3} 19.4 ^{+3.4} 19.4	90 it assumes GE	DOCUMENT ID 1 ALBRECHT equal production DOCUMENT ID GODANG 1 LU 1 JESSOP data for averages 1 BERGFELD	98 02 00 s, fits,	TECN CLE2 BELL CLE2 limits, 6 CLE2	$COMMENT$ $e^+e^- ightarrow$ $e^+e^- ightarrow$ etc. • •	$\Upsilon(4S)$ $\Upsilon(4S)$ Γ_{414}/Γ $\Upsilon(4S)$ Γ_{415}/Γ $\Upsilon(4S)$ $\Upsilon(4S)$
$VALUE$ <1.3 × 10 ⁻² ¹ ALBRECHT 90B lim $\Gamma(h^+\pi^0)/\Gamma_{total}$ $h^+ = K^+ \text{ or } \pi^+$ $VALUE \text{ (units } 10^{-6}\text{)}$ 16 ⁺⁶ 16 ⁺⁶ 15.4 $h^+ = K^+ \text{ or } \pi^+$ $VALUE \text{ (units } 10^{-6}\text{)}$ 13.8 ^{+2.7} 13.8 ^{+2.7} 13.4 ^{+3.3} 13.4 ^{+3.3} 13.4 ^{+3.3} 14.3 ^{+3.6} 14.3 ^{+3.6} 14.3 ^{+3.6} 14.3 ^{+3.6} 15.0 • • • We do not use the	90 it assumes GE	DOCUMENT ID 1 ALBRECHT equal production DOCUMENT ID GODANG 1 LU 1 JESSOP data for averages 1 BERGFELD	98 02 00 s, fits,	TECN CLE2 BELL CLE2 limits, 6 CLE2	$COMMENT$ $e^+e^- ightarrow$ $e^+e^- ightarrow$ etc. • •	$\Upsilon(4S)$ $\Upsilon(4S)$ Γ_{414}/Γ $\Upsilon(4S)$ Γ_{415}/Γ $\Upsilon(4S)$ $\Upsilon(4S)$

 $\Gamma(h^+X^0(Familon))/\Gamma_{total}$

 Γ_{416}/Γ

•	,,,				
$VALUE$ (units 10^{-6})	CL%	DOCUMENT ID	TECN	COMMENT	
<49	90	¹ AMMAR 0	1B CLE2	$e^+e^- \rightarrow \gamma(4S)$	

 $^{^{1}}$ AMMAR 01B searched for the two-body decay of the B meson to a massless neutral feebly-interacting particle X^0 such as the familion, the Nambu-Goldstone boson associated with a spontaneously broken global family symmetry.

 $\Gamma(p\overline{p}\pi^+)/\Gamma_{\text{total}}$

 Γ_{417}/Γ

<i>VALUE</i> (units	10 ⁻⁰)	<i>CL</i>	<u>.%</u> <u>DOCUMI</u>	ENT ID	TECN	COMMENT
1.62±	0.20 OL	IR AVER	AGE			
1.60 +	$^{0.22}_{0.19} \pm$	0.12	$^{1,2,3}\mathrm{WEI}$	08	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$1.69\pm$	$0.29\pm$	0.26	¹ AUBER	T 07AV	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
• • • We do	o not use	the follo	wing data for ave	erages, fits, li	mits, etc	. • • •
3.06 ⁺	$^{0.73}_{0.62} \pm$	0.37	$^{1,3}\mathrm{WANG}$	04	BELL	Repl. by WEI 08
< 3.7		90	1,2 ABE	02K	BELL	Repl. by WANG 04
< 500		90) ⁴ ABREU	95N	DLPH	Repl. by ADAM 96D
<160		90				$e^+e^- ightarrow ~ \varUpsilon(4S)$
570 ± 1	± 2	10	⁶ ALBRE	CHT 88F	ARG	$e^+e^- ightarrow$ $\varUpsilon(4S)$
1 ^ ~~~~	عمالما المدا	adustian	of $D+$ and $D0$ a	+ +ba ~(15)		

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(p\overline{p}\pi^+ \text{ nonresonant})/\Gamma_{\text{total}}$

 Γ_{418}/Γ

VALUE (units 10^{-6})	CL%	DOCUMENT ID		TECN	COMMENT
<53	90	BERGFELD	96 B	CLE2	$e^+e^- ightarrow \gamma(4S)$

$\Gamma(p\overline{p}\pi^{+}\pi^{+}\pi^{-})/\Gamma_{\text{total}}$

 Γ_{419}/Γ

VALUE	CL%	DOCUMENT ID	TECN	COMMENT

$$<$$
5.2 $imes$ 10 $^{-4}$ 90 1 ALBRECHT 88F ARG $e^{+}e^{-}
ightarrow \varUpsilon(4S)$

$\Gamma(p\overline{p}K^+)/\Gamma_{\text{total}}$

 Γ_{420}/Γ

$VALUE$ (units 10^{-6})	DOCUMENT ID	TECN	COMMENT
5.9 ± 0.5 OUR AVERAGE	Error includes scale factor	of 1.5.	
$5.54^{igoplus 0.27}_{-0.25} \pm 0.36$	1,2,3 WEI	08 BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$
6.7 + 0.5 + 0.4	^{1,3} AUBERT.B	05L BABR	$e^+e^- \rightarrow \Upsilon(4S)$

 $^{^2}$ Explicitly vetoes resonant production of $p\overline{p}$ from Charmonium states.

³ Also provides results with $m_{p\overline{p}} < 2.85 \text{ GeV/c}^2$ and angular asymmetry of $p\overline{p}$ system.

 $^{^4\,\}mathrm{Assumes}$ a B^0 , B^- production fraction of 0.39 and a B_{S} production fraction of 0.12.

⁵ BEBEK 89 reports $< 1.4 \times 10^{-4}$ assuming the $\Upsilon(4S)$ decays 43% to $B^0 \, \overline{B}{}^0$. We rescale

 $^{^6}$ ALBRECHT 88F reports (5.2 \pm 1.4 \pm 1.9) imes 10 $^{-4}$ assuming the \varUpsilon (4S) decays 45% to $B^0 \overline{B}{}^0$. We rescale to 50%.

 $^{^{1}}$ ALBRECHT 88F reports $< 4.7 \times 10^{-4}$ assuming the $\Upsilon(4S)$ decays 45% to $B^{0}\overline{B}^{0}$. We rescale to 50%.

• • • We do not use the following data for averages, fits, limits, etc. • • •

$4.59^{igoplus 0.38}_{-0.34}\!\pm\!0.50$	1,2,3 WANG	05A BELL	Repl. by WEI 08
$5.66^{igoplus 0.67}_{-0.57}\!\pm\!0.62$	1,2,3 WANG	04 BELL	Repl. by WANG 05A
$4.3 \begin{array}{c} +1.1 \\ -0.9 \end{array} \pm 0.5$	^{1,2} ABE	02K BELL	Repl. by WANG 04

 $^{^1}$ Assumes equal production of B^+ and B^0 at the $\varUpsilon(4S)$.

$\Gamma(\rho \overline{\rho} K^+)/\Gamma(J/\psi(1S)K^+)$

 $\Gamma_{420}/\Gamma_{218}$

135 I HCB nn at 7 TeV

+ 0.0000 + 0.0001	7 07 113	100 LITED PP	ut 1 101	
1 AAIJ 13S reports [$\Gamma(B^+ o$	$p\overline{p}K^+)/\Gamma(B^+ -$	$\rightarrow J/\psi(1S)K^+)]/$	$[B(J/\psi(1S)$ –	$\rightarrow p\overline{p}$
$= 4.91 \pm 0.19 \pm 0.14$ whi				
$(2.120 \pm 0.029) \times 10^{-3}$. O	ur first error is the	ir experiment's error	and our secor	nd error
is the systematic error from	using our best val	ue.		

² Measurement includes contribution where $p\overline{p}$ is produced in charmonia decays.

$\Gamma(\Theta(1710)^{++}\overline{p}, \Theta^{++} \rightarrow pK^{+})/\Gamma_{\text{total}}$

 Γ_{421}/Γ

$VALUE$ (units 10^{-6})	CL%	DOCUMENT ID		TECN	COMMENT
<0.091	90	¹ WANG	05A	BELL	$e^+e^- ightarrow \Upsilon(4S)$
• • • We do not use the	following	data for averages	, fits,	limits, e	etc. • • •
< 0.1	90 1	^{1,2} AUBERT,B	05L	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(f_J(2220)K^+, f_J \rightarrow p\overline{p})/\Gamma_{\text{total}}$

 Γ_{422}/Γ

VALUE (units 10 ⁻⁶)	CL%	DOCUMENT ID		TECN	COMMENT
<0.41	90	¹ WANG	05A	BELL	$e^+e^- \rightarrow \Upsilon(4S)$

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(p\overline{\Lambda}(1520))/\Gamma_{\text{total}}$

 Γ_{423}/Γ

VALUE (units 10^{-6})	CL%	DOCUMENT ID	TECN	COMMENT
$0.39^{f +0.10}_{f -0.09} \pm 0.03$		¹ AAIJ	13AU LHCB	pp at 7 TeV

• • • We do not use the following data for averages, fits, limits, etc. • • •

<1.5 90
2
 AUBERT,B 05L BABR $e^+e^- \rightarrow \Upsilon(4S)$

$\Gamma(p\overline{p}K^+ \text{ nonresonant})/\Gamma_{\text{total}}$

 Γ_{424}/Γ

<i>VALUE</i> (units 10 ⁻⁶)	CL%	DOCUMENT ID	TECN	COMMENT
<89	90	BERGFELD 9	6B CLE2	$e^+e^- ightarrow \Upsilon(4S)$

² Explicitly vetoes resonant production of $p\overline{p}$ from Charmonium states.

³ Provides also results with $m_{p\overline{p}} < 2.85 \text{ GeV/c}^2$ and angular asymmetry of $p\overline{p}$ system.

² Provides upper limits depending on the pentaguark masses between 1.43 to 2.0 GeV/ c^2 .

 $^{^{1}\, \}mathrm{Uses}\, \mathrm{B}(B^{+}\to \ J/\psi\, K^{+}) = (1.016\pm 0.033)\times 10^{-3} \text{, } \mathrm{B}(J/\psi\to \ p\, \overline{p}) = (2.17\pm 0.07)\times 10^{-3} \text{ and } \mathrm{B}(B^{+}\to \ J/\psi\, K^{+}) = (1.016\pm 0.033)\times 10^{-3} \text{ and } \mathrm{B}(B^{+}\to \ J/\psi\, K^{+}) = (1.016\pm 0.033)\times 10^{-3} \text{ and } \mathrm{B}(B^{+}\to \ J/\psi\, K^{+}) = (1.016\pm 0.033)\times 10^{-3} \text{ and } \mathrm{B}(B^{+}\to \ J/\psi\, K^{+}) = (1.016\pm 0.033)\times 10^{-3} \text{ and } \mathrm{B}(B^{+}\to \ J/\psi\, K^{+}) = (1.016\pm 0.033)\times 10^{-3} \text{ and } \mathrm{B}(B^{+}\to \ J/\psi\, K^{+}) = (1.016\pm 0.033)\times 10^{-3} \text{ and } \mathrm{B}(B^{+}\to \ J/\psi\, K^{+}) = (1.016\pm 0.033)\times 10^{-3} \text{ and } \mathrm{B}(B^{+}\to \ J/\psi\, K^{+}) = (1.016\pm 0.033)\times 10^{-3} \text{ and } \mathrm{B}(B^{+}\to \ J/\psi\, K^{+}) = (1.016\pm 0.033)\times 10^{-3} \text{ and } \mathrm{B}(B^{+}\to \ J/\psi\, K^{+}) = (1.016\pm 0.033)\times 10^{-3} \text{ and } \mathrm{B}(B^{+}\to \ J/\psi\, K^{+}) = (1.016\pm 0.033)\times 10^{-3} \text{ and } \mathrm{B}(B^{+}\to \ J/\psi\, K^{+}) = (1.016\pm 0.033)\times 10^{-3} \text{ and } \mathrm{B}(B^{+}\to \ J/\psi\, K^{+}) = (1.016\pm 0.033)\times 10^{-3} \text{ and } \mathrm{B}(B^{+}\to \ J/\psi\, K^{+}) = (1.016\pm 0.033)\times 10^{-3} \text{ and } \mathrm{B}(B^{+}\to \ J/\psi\, K^{+}) = (1.016\pm 0.033)\times 10^{-3} \text{ and } \mathrm{B}(B^{+}\to \ J/\psi\, K^{+}) = (1.016\pm 0.033)\times 10^{-3} \text{ and } \mathrm{B}(B^{+}\to \ J/\psi\, K^{+}) = (1.016\pm 0.033)\times 10^{-3} \text{ and } \mathrm{B}(B^{+}\to \ J/\psi\, K^{+}) = (1.016\pm 0.033)\times 10^{-3} \text{ and } \mathrm{B}(B^{+}\to \ J/\psi\, K^{+}) = (1.016\pm 0.033)\times 10^{-3} \text{ and } \mathrm{B}(B^{+}\to \ J/\psi\, K^{+}) = (1.016\pm 0.033)\times 10^{-3} \text{ and } \mathrm{B}(B^{+}\to \ J/\psi\, K^{+}) = (1.016\pm 0.033)\times 10^{-3} \text{ and } \mathrm{B}(B^{+}\to \ J/\psi\, K^{+}) = (1.016\pm 0.033)\times 10^{-3} \text{ and } \mathrm{B}(B^{+}\to \ J/\psi\, K^{+}) = (1.016\pm 0.033)\times 10^{-3} \text{ and } \mathrm{B}(B^{+}\to \ J/\psi\, K^{+}) = (1.016\pm 0.033)\times 10^{-3} \text{ and } \mathrm{B}(B^{+}\to \ J/\psi\, K^{+}) = (1.016\pm 0.033)\times 10^{-3} \text{ and } \mathrm{B}(B^{+}\to \ J/\psi\, K^{+}) = (1.016\pm 0.033)\times 10^{-3} \text{ and } \mathrm{B}(B^{+}\to \ J/\psi\, K^{+}) = (1.016\pm 0.033)\times 10^{-3} \text{ and } \mathrm{B}(B^{+}\to \ J/\psi\, K^{+}) = (1.016\pm 0.033)\times 10^{-3} \text{ and } \mathrm{B}(B^{+}\to \ J/\psi\, K^{+}) = (1.016\pm 0.033)\times 10^{-3} \text{ and } \mathrm{B}(B^{+}\to \ J/\psi\, K^{+}) = (1.016\pm 0.033)\times 10^{-3} \text{ and } \mathrm{B}(B^{+}\to \ J/\psi\, K^{+}) = (1.016\pm 0.033)\times 10^{-3} \text{ and } \mathrm{B}(B^{+}\to \ J/\psi\, K^{+})$ 10^{-3} and B($\Lambda(1520) \rightarrow K^- p$) = 0.234 \pm 0.016. ² Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(p\overline{p}K^*(892)^+)/\Gamma_{\text{total}}$

 Γ_{425}/Γ

VALUE (units 10⁻⁶) DOCUMENT ID TECN COMMENT

$3.6 \begin{array}{c} +0.8 \\ -0.7 \end{array}$ OUR AVERAGE

$$3.38^{\,+\,0.73}_{\,-\,0.60}\,{\pm}\,0.39$$

 1,2 CHEN

08C BELL $e^+e^- \rightarrow \Upsilon(4S)$

5.3 ±1.5 ±1.3

² AUBERT

07AV BABR $e^+e^- \rightarrow \Upsilon(4S)$

ullet ullet We do not use the following data for averages, fits, limits, etc. ullet ullet

$$10.3 \begin{array}{l} +3.6 \\ -2.8 \end{array} \begin{array}{l} +1.3 \\ -1.7 \end{array}$$

^{2,3} WANG

04 BELL Repl. by CHEN 080

$\Gamma(f_J(2220)K^{*+}, f_J \rightarrow p\overline{p})/\Gamma_{\text{total}}$

 Γ_{426}/Γ

<i>VALUE</i> (units 10 ⁻⁶)	CL%	DOCUMENT ID	TECN	COMMENT
<0.77	90	¹ AUBERT	07av BABR	$e^+e^- ightarrow \gamma(4S)$

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

 $\Gamma(p\overline{\Lambda})/\Gamma_{\text{total}}$

 Γ_{427}/Γ

$VALUE$ (units 10^{-6})	CL%	DOCUMENT ID		TECN	COMMENT
< 0.32	90	$^{ m 1}$ TSAI	07	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$
\bullet \bullet We do not use th	e following	g data for average	s, fits,	limits,	etc. • • •
< 0.49	90	¹ CHANG	05	BELL	Repl. by TSAI 07
< 1.5	90	$^{ m 1}$ BORNHEIM	03	CLE2	$e^+e^- \rightarrow \Upsilon(4S)$
< 2.2	90	$^{ m 1}$ ABE	020	BELL	$e^+e^- \rightarrow \Upsilon(4S)$
< 2.6	90	$^{ m 1}$ COAN	99	CLE2	$e^+e^- ightarrow ~ \varUpsilon(4S)$
<60	90	² AVERY	89 B	CLEO	$e^+e^- ightarrow ~ \varUpsilon(4S)$
<93	90	³ ALBRECHT	88F	ARG	$e^+e^- ightarrow \gamma(4S)$

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(p\overline{\Lambda}\gamma)/\Gamma_{\mathsf{total}}$

 Γ_{428}/Γ

$VALUE$ (units 10^{-6})	CL%	DOCUMENT ID	TECN	COMMENT
$2.45^{+0.44}_{-0.38}\pm0.22$		¹ WANG	07C BELL	$e^+e^- ightarrow \ \varUpsilon(4S)$

• • • We do not use the following data for averages, fits, limits, etc. • • •

$$2.16^{+0.58}_{-0.53}\pm0.20$$

 $^{1}\,\mathrm{LEE}$

05 BELL Repl. by WANG 07C

Created: 8/21/2014 12:56

3.9

90

² EDWARDS

03 CLE2 $e^+e^- \rightarrow \Upsilon(4S)$

 $^{^{1}}$ Explicitly vetoes resonant production of $p\,\overline{p}$ from charmonium states.

² Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

³ Explicitly vetoes resonant production of $p\overline{p}$ from charmonium states. The branching fraction for $M_{p\overline{p}} < 2.85 \text{ GeV/c}^2$ is also reported.

 $^{^2}$ AVERY 89B reports $< 5 \times 10^{-5}$ assuming the $\Upsilon(4S)$ decays 43% to $B^0 \, \overline{B}{}^0$. We rescale to 50%.

 $^{^1 \, \}text{Assumes}$ equal production of B^+ and B^0 at the $\varUpsilon(4S).$

 $^{^2}$ Corresponds to $E_{\gamma} >$ 1.5 GeV. The limit changes to 3.3 \times 10 $^{-6}$ for $E_{\gamma} >$ 2.0 GeV.

$\Gamma(p\overline{\Lambda}\pi^0)/\Gamma_{\text{total}}$		DOCUMENT ID		TECN	COMMENT	Γ ₄₂₉ /Γ
VALUE (units 10 ⁻⁶)		1				22(+3)
$3.00^{+0.61}_{-0.53}\pm0.33$		¹ WANG			$e^+e^- \rightarrow$	7(45)
$^{ m 1}$ Assumes equal produ	ction of <i>B</i>	$^+$ and B^0 at th	e $\Upsilon(4.$	S).		
$\Gamma(p\overline{\Sigma}(1385)^0)/\Gamma_{\text{total}}$						Γ ₄₃₀ /Γ
VALUE (units 10^{-6})	CL%	DOCUMENT ID		TECN	COMMENT	
<0.47	90	¹ WANG	07 C	BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$^{ m 1}$ Assumes equal produ	ction of <i>B</i>	$^+$ and $\it B^0$ at th	e γ(4.	S).		
$\Gamma(\Delta^+\overline{\Lambda})/\Gamma_{total}$						Γ ₄₃₁ /Γ
VALUE (units 10^{-6})	CL%	DOCUMENT ID		TECN	COMMENT	191/
<0.82	90	$^{1}\overline{ ext{WANG}}$	07C	BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$
¹ Assumes equal produ		_				,
$\Gamma(p\overline{\Sigma}\gamma)/\Gamma_{ m total}$						Γ ₄₃₂ /Γ
VALUE (units 10^{-6})	CL%	DOCUMENT ID		TECN	COMMENT	.927
<4.6	90	¹ LEE	05	BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$
• • • We do not use the						,
<7.9	90	² EDWARDS	03	CLE2	$e^+e^- \rightarrow$	$\Upsilon(4S)$
1 Assumes equal produ 2 Corresponds to $E_{\gamma} >$	tion of <i>B</i> 1.5 GeV.	The limit chang	ges to 6	5). 5.4 × 10	$^{-6}$ for E_{γ} $>$	> 2.0 GeV.
$\Gamma(\rho \overline{\Lambda} \pi^+ \pi^-)/\Gamma_{\text{total}}$						Γ433/Γ
$\Gamma(\rho \overline{\Lambda} \pi^+ \pi^-)/\Gamma_{\text{total}}$ VALUE (units 10^{-6})	CL%	DOCUMENT ID		TECN	COMMENT	Γ ₄₃₃ /Γ
$\Gamma(p \overline{\Lambda} \pi^+ \pi^-)/\Gamma_{\text{total}}$ VALUE (units 10^{-6}) 5.92 $^{+0.88}_{-0.84} \pm 0.69$		<u>DOCUMENT ID</u> ¹ CHEN				
VALUE (units 10^{-6})		¹ CHEN	09 C	BELL	$e^+e^- \rightarrow$	
$ \frac{\text{VALUE (units } 10^{-6})}{5.92 + 0.88 \pm 0.69} $	following	¹ CHEN	09C es, fits,	BELL limits,	$e^+e^- ightarrow$ etc. • • •	Υ(4S)
$VALUE$ (units 10^{-6}) 5.92 $^{+0.88}_{-0.84}$ ± 0.69 • • • We do not use the	following 90 ction of B	1 CHEN data for average 2 ALBRECHT $^{+}$ and B^{0} at the	09C es, fits, 88F se $\Upsilon(4.$	BELL limits, ARG	$e^+e^- \rightarrow$ etc. • • • $e^+e^- \rightarrow$	r(4 s) r (4 s)
VALUE (units 10 ⁻⁶) 5.92+0.88 ± 0.69 • • • We do not use the <200 1 Assumes equal produ 2 ALBRECHT 88F repo	following 90 ction of B	1 CHEN data for average 2 ALBRECHT $^{+}$ and B^{0} at the	09C es, fits, 88F se $\Upsilon(4.$	BELL limits, ARG	$e^+e^- \rightarrow$ etc. • • • $e^+e^- \rightarrow$	r(4 s) r (4 s)
VALUE (units 10 ⁻⁶) 5.92+0.88 ± 0.69 • • • We do not use the <200 ¹ Assumes equal produ ² ALBRECHT 88F reported to 50%.	following 90 ction of B orts < 1.8	1 CHEN data for average 2 ALBRECHT $^+$ and B^0 at th $ imes$ 10^{-4} assumin	09 C es, fits, 88 F ee $\Upsilon(4.9)$	BELL limits, ARG S). $\Upsilon(4S)$ c	$e^{+}e^{-} ightarrow etc. ullet e ullet$ etc. $\bullet \bullet \bullet$ $e^{+}e^{-} ightarrow$ decays 45% t	$\Upsilon(4S)$ $\Upsilon(4S)$ o $B^0\overline{B}^0$. We
5.92 $^+$ 0.88 $^+$ 0.69 • • • We do not use the <200 1 Assumes equal produ 2 ALBRECHT 88F reports rescale to 50%. $\Gamma(p\overline{\Lambda}\rho^0)/\Gamma_{\text{total}}$	following 90 ction of B orts < 1.8	1 CHEN data for average 2 ALBRECHT $^{+}$ and B^{0} at the	09 C es, fits, 88 F ee $\Upsilon(4.$ eg the	BELL limits, ARG S). $\Upsilon(4S)$ of TECN	$e^{+}e^{-} \rightarrow$ etc. • • • $e^{+}e^{-} \rightarrow$ decays 45% t	$\Upsilon(4S)$ $\Upsilon(4S)$ o $B^0\overline{B}^0$. We
$VALUE$ (units 10^{-6}) 5.92 $^{+0.88}_{-0.84}$ ± 0.69 • • • We do not use the <200 ¹ Assumes equal produ ² ALBRECHT 88F reported to 50%. $\Gamma(p\overline{\Lambda}\rho^{0})/\Gamma_{\text{total}}$ VALUE (units 10^{-6})	following 90 ction of <i>B</i> orts < 1.8	1 CHEN data for average 2 ALBRECHT $^+$ and B^0 at the 1 2 Assuming 2 DOCUMENT ID 1 CHEN	$09C$ es, fits, $88F$ se $\Upsilon(4.6)$ ag the $09C$	BELL limits, ARG S). $\Upsilon(4S)$ of TECN BELL	$e^{+}e^{-} \rightarrow$ etc. • • • $e^{+}e^{-} \rightarrow$ decays 45% t	$\Upsilon(4S)$ $\Upsilon(4S)$ o $B^0\overline{B}^0$. We
$VALUE$ (units 10^{-6}) 5.92 $^{+0.88}_{-0.84}$ ± 0.69 • • • We do not use the <200 ¹ Assumes equal produ ² ALBRECHT 88F reported to 50%. Γ($\rho \overline{\Lambda} \rho^{0}$)/Γ _{total} $VALUE$ (units 10^{-6}) 4.78 $^{+0.67}_{-0.64}$ ± 0.60	following 90 ction of B orts < 1.8 ction of B	1 CHEN data for average 2 ALBRECHT $^+$ and B^0 at the 1 2 Assuming 2 DOCUMENT ID 1 CHEN	$09C$ es, fits, $88F$ se $\Upsilon(4.6)$ ag the $09C$	BELL limits, ARG S). $\Upsilon(4S)$ of TECN BELL	$e^{+}e^{-} \rightarrow$ etc. • • • $e^{+}e^{-} \rightarrow$ decays 45% t	$\Upsilon(4S)$ $\Upsilon(4S)$ o $B^0\overline{B}^0$. We
$VALUE$ (units 10^{-6}) 5.92 $^{+0.88}_{-0.84}$ ± 0.69 • • • We do not use the <200 ¹ Assumes equal produ ² ALBRECHT 88F reported to 50%. Γ($p \overline{\Lambda} \rho^{0}$)/Γ _{total} $VALUE$ (units 10^{-6}) 4.78 $^{+0.67}_{-0.64}$ ± 0.60 ¹ Assumes equal produ Γ($p \overline{\Lambda} f_{2}(1270)$)/Γ _{total}	following 90 ction of B orts < 1.8	1 CHEN data for average 2 ALBRECHT $^+$ and B^0 at the 1 ASSUMING 1 CHEN $^+$ and B^0 at the 1 CHEN	$09C$ es, fits, $88F$ se $\Upsilon(4.9)$ the $09C$ se $\Upsilon(4.9)$	BELL limits, ARG S). $\Upsilon(4S)$ of $TECN$ BELL S).	$e^{+}e^{-} \rightarrow$ etc. • • • $e^{+}e^{-} \rightarrow$ decays 45% t $\frac{COMMENT}{e^{+}e^{-} \rightarrow}$	$\Upsilon(4S)$ $\Upsilon(4S)$ o $B^0\overline{B}^0$. We Γ_{434}/Γ $\Upsilon(4S)$ Γ_{435}/Γ
$VALUE$ (units 10^{-6}) 5.92 $^{+0.88}_{-0.84}$ ± 0.69 • • • We do not use the <200 ¹ Assumes equal produ ² ALBRECHT 88F reports rescale to 50%. Γ($\rho \overline{\Lambda} \rho^{0}$)/Γ _{total} $VALUE$ (units 10^{-6}) 4.78 $^{+0.67}_{-0.64}$ ± 0.60 ¹ Assumes equal produ	following 90 ction of B orts < 1.8	1 CHEN data for average 2 ALBRECHT $^+$ and B^0 at the 1 ASSUMING 1 CHEN $^+$ and B^0 at the 1 CHEN	$09C$ es, fits, $88F$ ee $\Upsilon(4.6)$ $09C$ $09C$ ee $\Upsilon(4.6)$	BELL limits, ARG S). $\Upsilon(4S)$ of $TECN$ BELL S).	$e^{+}e^{-} \rightarrow$ etc. • • • $e^{+}e^{-} \rightarrow$ decays 45% t $\frac{COMMENT}{e^{+}e^{-} \rightarrow}$	Υ (4 S) Υ (4 S) o $B^0\overline{B}^0$. We Γ_{434}/Γ Υ (4 S) Γ_{435}/Γ

-/- -						
$\Gamma(\Lambda\overline{\Lambda}\pi^+)/\Gamma_{total}$						Г ₄₃₆ /Г
VALUE (units 10^{-6})	CL%	DOCUMENT I	D	TECN	COMMENT	
<0.94	90	^{1,2} CHANG	09		Repl. by C	HANG 09
• • • We do not use t	he followi	_				
<2.8	90	² LEE	04	BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$
¹ For $m_{\Lambda \overline{\Lambda}} < 2.85$ G	eV/c^2 .					
² Assumes equal pro	duction o	f B^+ and B^0 at t	the $\Upsilon(4.$	S).		
$\Gamma(\Lambda \overline{\Lambda} K^+)/\Gamma_{\text{total}}$						Γ ₄₃₇ /Γ
VALUE (units 10^{-6})		DOCUMENT I	D	TECN	COMMENT	4317
$3.38^{+0.41}_{-0.36}\pm0.41$		^{1,2} CHANG				Υ(4S)
• • • We do not use t	he followi	ng data for avera	ges, fits,	limits,	etc. • • •	
$2.91^{+0.9}_{-0.70}\pm0.38$		² LEE	04	BELL	Repl. by C	HANG 09
$^{ m 1}$ Excluding charmon	ium even	ts in 2.85< m	. < 3.1	28 GeV	$/c^2$ and 3.3	15< m , , <
3.735 GeV/c ² . Me		, , ,	•			$\Lambda\Lambda$
² Assumes equal prod	duction o	$A \in \mathbb{R}^+$ and B^0 at t	he $\Upsilon(4)$	s)	- P 0. 10u.	
				<i>-</i>).		
$\Gamma(\Lambda \overline{\Lambda} K^{*+})/\Gamma_{\text{total}}$						Г ₄₃₈ /Г
VALUE (units 10 ⁻⁶)		DOCUMENT I	D	TECN	COMMENT	
$2.19^{f +1.13}_{f -0.88} \pm 0.33$		^{1,2} CHANG	09	BELL	e^+e^-	$\Upsilon(4S)$
¹ For $m_{\Lambda} \overline{\Lambda} < 2.85$ G	eV/c^2 .					
2 Assumes equal pro		f B^+ and B^0 at t	the $\Upsilon(4.$	S).		
				- /		- /-
$\Gamma(\overline{\Delta^0}p)/\Gamma_{\text{total}}$						Γ ₄₃₉ /Γ
VALUE (units 10^{-6})						
< 1.38	90 6-11	¹ WEI			$e^+e^- \rightarrow$	$\Upsilon(4S)$
• • • We do not use t			-			00(16)
<380	90	² BORTOLET			e ' e →	1 (45)
¹ Assumes equal proc ² BORTOLETTO 89	duction o	$f B^+$ and B^0 at t	the $\Upsilon(4)$	S). .h. ~(1	C) de eeu a 40	0.0/ += P0 <u>P</u> 0
We rescale to 50%		< 3.5 × 10 · ass	suming t	ne 1 (4.	3) decays 43	5% to B B
Γ(Λ++=)/Γ						Γ/Γ
$\Gamma(\Delta^{++}\overline{p})/\Gamma_{\text{total}}$	GL 0/	DOGUMENT.	5	TE 611	COLUMENT	Γ ₄₄₀ /Γ
<i>VALUE</i> (units 10 ^{−6}) < 0.14	<u>CL%</u>	DOCUMENT I	00	<u>TECN</u>	<u>COMMENT</u>	20(4.0)
• • • We do not use t						1 (43)
<150	90	² BORTOLET	_			$\Upsilon(AS)$
					e · e →	1 (43)
¹ Assumes equal proc ² BORTOLETTO 89					S) decays 43	8% to R0 R0
We rescale to 50%		1.5 / 10 ass	anning (/ (o, accays to	,,,

 $\Gamma(D^+ p \overline{p})/\Gamma_{\text{total}}$ $<1.5 \times 10^{-5}$ 90 02W BELL ¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$. $\Gamma(D^*(2010)^+ \rho \overline{\rho})/\Gamma_{\text{total}}$ Γ_{442}/Γ TECN COMMENT $< 1.5 \times 10^{-5}$ ¹ ABE 02W BELL $e^+e^- \rightarrow \Upsilon(4S)$ ¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$. $\Gamma(\overline{D}^0 p \overline{p} \pi^+)/\Gamma_{\text{total}}$ Γ_{443}/Γ VALUE (units 10^{-4}) TECN COMMENT 1,2 DEL-AMO-SA...12 BABR $e^+e^- \rightarrow \Upsilon(4S)$ $3.72 \pm 0.11 \pm 0.25$ 1 Uses the values of D and D^{*} branching fractions from PDG 08. ² Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$. $\Gamma(\overline{D}^{*0} p \overline{p} \pi^+) / \Gamma_{\text{total}}$ $\Gamma_{\Delta\Delta\Delta}/\Gamma$ VALUE (units 10^{-4}) ^{1,2} DEL-AMO-SA..12 $3.73 \pm 0.17 \pm 0.27$ 1 Uses the values of D and D^{*} branching fractions from PDG 08. ² Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$. $\Gamma(D^-p\overline{p}\pi^+\pi^-)/\Gamma_{\text{total}}$ Γ_{445}/Γ VALUE (units 10^{-4}) $1.66 \pm 0.13 \pm 0.27$ ¹Uses the values of D and D^* branching fractions from PDG 08. ² Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$. $\Gamma(D^{*-}p\overline{p}\pi^{+}\pi^{-})/\Gamma_{\text{total}}$ Γ_{446}/Γ VALUE (units 10^{-4}) TECN COMMENT 1,2 DEL-AMO-SA..12 BABR $e^+e^- \rightarrow \Upsilon(4S)$ $1.86 \pm 0.16 \pm 0.19$ ¹Uses the values of D and D^* branching fractions from PDG 08. ² Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$. $\Gamma(p\overline{\Lambda}^0\overline{D}^0)/\Gamma_{\text{total}}$ Γ_{447}/Γ VALUE (units 10^{-5}) TECN COMMENT $1.43^{+0.28}_{-0.25}\pm0.18$ 1,2 CHEN 11F BELL $e^+e^- \rightarrow \Upsilon(4S)$ 1 Uses B($\Lambda \to p\pi^{-}$) = 63.9 \pm 0.5%, B($D^{0} \to K^{-}\pi^{+}$) = 3.89 \pm 0.05%, and B($D^{0} \to K^{-}\pi^{+}$) $K^-\pi^+\pi^0$) = 13.9 ± 0.5%. ² Assumes equal production of B^0 and B^+ from Upsilon(4S) decays.

$\Gamma(p\overline{\Lambda}^0\overline{D}^*(2007)^0)/\Gamma_{\text{total}}$

 Γ_{448}/Γ

$VALUE$ (units 10^{-5})	CL%	DOCUMENT ID		TECN	COMMENT
<5	90	1,2,3 CHEN	11F	BELL	$e^+e^- ightarrow \ \varUpsilon(4S)$

¹ CHEN 11F reports $< 4.8 \times 10^{-5}$ from a measurement of $[\Gamma(B^+ \to p \overline{\Lambda}^0 \overline{D}^* (2007)^0) / \Gamma_{\text{total}}] / [B(D^*(2007)^0 \to D^0 \pi^0)]$ assuming $B(D^*(2007)^0 \to D^0 \pi^0) = (61.9 \pm 2.9) \times 10^{-2}$.

TECN COMMENT

²Uses B($\Lambda \to p\pi^-$) = 63.9 \pm 0.5% and B($D^0 \to K^-\pi^+$) = 3.89 \pm 0.05%.

$\Gamma(\overline{\Lambda}_c^- p \pi^+)/\Gamma_{\text{total}}$

 Γ_{449}/Γ

2.8±0.8 OUR AVERAGE				
$3.4 \pm 0.1 \pm 0.9$	1,2 AUBERT			$e^+e^- ightarrow ~ \varUpsilon(4S)$
$2.0 \pm 0.3 \pm 0.5$				$e^+e^- \rightarrow \gamma(4S)$
$2.4 \pm 0.6 \pm 0.6$	1,4 DYTMAN	02	CLE2	$e^+e^- ightarrow ~ \varUpsilon(4S)$
• • • We do not use the following	owing data for avera	ages, f	its, limit	s, etc. • • •
$1.9\!\pm\!0.5\!\pm\!0.5$	1,5 GABYSHEV	02	BELL	Repl. by GABYSHEV 06A
$6.2^{+2.3}_{-2.0}\pm1.6$	1,6 _{FU}	97	CLE2	Repl. by DYTMAN 02

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

⁴ DYTMAN 02 reports $(2.4^{+0.63}_{-0.62}) \times 10^{-4}$ from a measurement of $[\Gamma(B^+ \to \overline{\Lambda}_c^- p \pi^+)/\Gamma_{\text{total}}] \times [B(\Lambda_c^+ \to p K^- \pi^+)]$ assuming $B(\Lambda_c^+ \to p K^- \pi^+) = 0.05$, which we rescale to our best value $B(\Lambda_c^+ \to p K^- \pi^+) = (5.0 \pm 1.3) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. ⁵ GABYSHEV 02 reports $(1.87^{+0.51}_{-0.49}) \times 10^{-4}$ from a measurement of $[\Gamma(B^+ \to p K^- \pi^+)]$

 $\overline{\Lambda}_c^- p \pi^+)/\Gamma_{\text{total}}] \times [B(\Lambda_c^+ \to p K^- \pi^+)]$ assuming $B(\Lambda_c^+ \to p K^- \pi^+) = 0.05$, which we rescale to our best value $B(\Lambda_c^+ \to p K^- \pi^+) = (5.0 \pm 1.3) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

 6 FU 97 uses PDG 96 values of Λ_c branching fraction.

$\Gamma(\overline{\Lambda}_c^- \Delta(1232)^{++})/\Gamma_{\text{total}}$

 Γ_{450}/Γ

<i>VALUE</i> (units 10 ⁻⁵)	CL%	DOCUMENT ID	TECN	COMMENT
<1.9	90	GABYSHEV 06A	BELL	$e^+e^- \rightarrow \gamma(4S)$

³ Assumes equal production of B^0 and B^+ from Upsilon(4S) decays.

² AUBERT 08BN reports $(3.4 \pm 0.1 \pm 0.9) \times 10^{-4}$ from a measurement of $[\Gamma(B^+ \to \overline{\Lambda}_c^- p \pi^+)/\Gamma_{\text{total}}] \times [B(\Lambda_c^+ \to p K^- \pi^+)]$ assuming $B(\Lambda_c^+ \to p K^- \pi^+) = (5.0 \pm 1.3) \times 10^{-2}$.

³ GABYSHEV 06A reports $(2.01\pm0.15\pm0.20)\times10^{-4}$ from a measurement of $[\Gamma(B^+\to \overline{\Lambda}_c^-\,p\pi^+)/\Gamma_{\rm total}]\times[B(\Lambda_c^+\to pK^-\pi^+)]$ assuming $B(\Lambda_c^+\to pK^-\pi^+)=0.05$, which we rescale to our best value $B(\Lambda_c^+\to pK^-\pi^+)=(5.0\pm1.3)\times10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(\overline{\Lambda}_c^- \Delta_X(1600)^{++})/\Gamma_{\text{total}}$

 Γ_{451}/Γ

VALUE (units 10^{-5})

100 DOCUMENT ID TECN COMMENT 10 GABYSHEV 06A BELL $e^+e^-
ightarrow \Upsilon(4S)$

 $5.9 \pm 1.2 \pm 1.5$

GABYSHEV 06A BELL $e^+e^- o au(4S)$

 1 GABYSHEV 06A reports (5.9 \pm 1.0 \pm 0.6) \times 10 $^{-5}$ from a measurement of [$\Gamma(B^+ \to \overline{\Lambda}_c^- \Delta_X(1600)^{++})/\Gamma_{total}$] \times [B($\Lambda_c^+ \to pK^-\pi^+$)] assuming B($\Lambda_c^+ \to pK^-\pi^+$) = 0.05, which we rescale to our best value B($\Lambda_c^+ \to pK^-\pi^+$) = (5.0 \pm 1.3) \times 10 $^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(\overline{\Lambda}_c^-\Delta_X(2420)^{++})/\Gamma_{\text{total}}$

 Γ_{452}/Γ

VALUE (units 10^{-5})

DOCUMENT ID TECN COMMENT

 $4.7^{+1.1}_{-1.0}\pm 1.2$

 1 GABYSHEV 06A BELL $e^{+}\,e^{-}
ightarrow~ \varUpsilon(4S)$

¹ GABYSHEV 06A reports $(4.7^{+1.0}_{-0.9}\pm0.4)\times10^{-5}$ from a measurement of $[\Gamma(B^+\to \overline{\Lambda}_c^-\Delta_X(2420)^{++})/\Gamma_{\rm total}]\times[B(\Lambda_c^+\to pK^-\pi^+)]$ assuming $B(\Lambda_c^+\to pK^-\pi^+)=0.05$, which we rescale to our best value $B(\Lambda_c^+\to pK^-\pi^+)=(5.0\pm1.3)\times10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma((\overline{\Lambda}_c^- p)_s \pi^+)/\Gamma_{\text{total}}$

 Γ_{453}/Γ

 $(\overline{\Lambda}_c^- p)_s$ denotes a low-mass enhancement near 3.35 GeV/c².

VALUE (units 10^{-5})

DOCUMENT ID TECN COMMENT

 $3.9^{+0.9}_{-0.8}\pm1.0$

 1 GABYSHEV 06A BELL $e^{+}e^{-}
ightarrow \varUpsilon(4S)$

 1 GABYSHEV 06A reports $(3.9^{+0.8}_{-0.7}\pm0.4)\times10^{-5}$ from a measurement of $[\Gamma(B^+\to (\overline{\Lambda}_c^-p)_s\pi^+)/\Gamma_{\text{total}}]\times[B(\Lambda_c^+\to pK^-\pi^+)]$ assuming $B(\Lambda_c^+\to pK^-\pi^+)=0.05$, which we rescale to our best value $B(\Lambda_c^+\to pK^-\pi^+)=(5.0\pm1.3)\times10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value

$\Gamma(\overline{\Sigma}_c(2520)^0 p)/\Gamma_{\text{total}}$

 Γ_{454}/Γ

VALUE (units 10^{-5})	CL%	DOCUMENT ID	TECN	COMMENT	
<0.3	90	1,2 AUBERT	08BN BABR	$e^+e^- \rightarrow$	$\gamma(4S)$

• • • We do not use the following data for averages, fits, limits, etc. • • •

<2.7 90 1,2 GABYSHEV 06A BELL $e^+e^- \rightarrow \Upsilon(4S)$

< 4.6 90 1,2 GABYSHEV 02 BELL Repl. by GABYSHEV 06A

$\Gamma(\overline{\Sigma}_c(2520)^0 p)/\Gamma(\overline{\Lambda}_c^- p \pi^+)$

 $\Gamma_{ABA}/\Gamma_{AAO}$

Created: 8/21/2014 12:56

VALUE (units 10^{-3})CL%DOCUMENT IDTECNCOMMENT<9</td>90AUBERT08BN BABR $e^+e^- \rightarrow \Upsilon(4S)$

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

 $^{^2}$ Uses the value for $\varLambda_{\it C} \rightarrow ~p\,{\it K}^-\pi^+$ branching ratio (5.0 \pm 1.3)%.

$\Gamma(\overline{\Sigma}_c(2800)^0 p)/\Gamma_{\text{total}}$ $1 = \frac{DOCUMENT\ ID}{1} = \frac{TECN}{1} = \frac{COMMENT}{e^+e^-} \rightarrow \Upsilon(4S)$ VALUE (units 10^{-5}) $3.3\pm0.9\pm0.9$ ¹ AUBERT 08BN reports $[\Gamma(B^+ \to \overline{\Sigma}_c(2800)^0 p)/\Gamma_{total}] / [B(B^+ \to \overline{\Lambda}_c^- p \pi^+)] =$ $0.117 \pm 0.023 \pm 0.024$ which we multiply by our best value B($B^+ \rightarrow \overline{\Lambda}_c^- p \pi^+$) = $(2.8\pm0.8) imes10^{-4}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. $\Gamma(\overline{\Lambda}_{c}^{-} p \pi^{+} \pi^{0}) / \Gamma_{\text{total}}$ Γ_{456}/Γ VALUE (units 10^{-3}) DOCUMENT ID $1.81\pm0.29^{+0.52}_{-0.50}$ 1,2 DYTMAN 02 CLE2 • • We do not use the following data for averages, fits, limits, etc. • • 3 FU 97 CLE2 $e^+e^- \rightarrow \Upsilon(4S)$ < 3.12 ¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$. ² DYTMAN 02 measurement uses B($\Lambda_c^- \to \overline{p}K^+\pi^-$) = 5.0 \pm 1.3%. The second error includes the systematic and the uncertainty of the branching ratio. $^3\,\mathrm{FU}$ 97 uses PDG 96 values of $\Lambda_{\mathcal{C}}$ branching ratio. $\Gamma(\Lambda_c^- p \pi^+ \pi^+ \pi^-)/\Gamma_{\text{total}}$ Γ_{457}/Γ VALUE (units 10^{-3}) CL%DOCUMENT ID TECN COMMENT 02 CLE2 $e^+e^- \rightarrow \Upsilon(4S)$ 1,2 DYTMAN • • • We do not use the following data for averages, fits, limits, etc. • • 3 FU 97 CLE2 $e^+e^- \rightarrow \Upsilon(4S)$ <1.46 ¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$. ² DYTMAN 02 measurement uses B($\Lambda_c^- \to \overline{p}K^+\pi^-$) = 5.0 ± 1.3%. The second error includes the systematic and the uncertainty of the branching ratio. $^3\,\mathrm{FU}$ 97 uses PDG 96 values of $\Lambda_{\mathcal{C}}$ branching ratio. $\Gamma(\Lambda_c^- p \pi^+ \pi^+ \pi^- \pi^0) / \Gamma_{\text{total}}$ $<1.34 \times 10^{-2}$ ¹ FU 97 uses PDG 96 values of Λ_c branching ratio. $\Gamma(\Lambda_c^+\Lambda_c^-K^+)/\Gamma_{\text{total}}$ Γ_{459}/Γ VALUE (units 10⁻⁴) 8.7±3.5 OUR AVERAGE ^{1,2} AUBERT 08H BABR $e^+e^- \rightarrow \Upsilon(4S)$ $11 \pm 1 \pm 6$ 2,3 GABYSHEV 06 BELL $e^+e^- \rightarrow \Upsilon(4S)$ 1 AUBERT 08H reports (1.14 \pm 0.15 \pm 0.62) \times 10^{-3} from a measurement of [$\Gamma(B^+$ \rightarrow $\Lambda_c^+ \Lambda_c^- K^+)/\Gamma_{\mathsf{total}}] \times [\mathsf{B}(\Lambda_c^+ \to p K^- \pi^+)] \text{ assuming } \mathsf{B}(\Lambda_c^+ \to p K^- \pi^+) = (5.0 \pm 1.0 \pm$ ² Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$. ³ GABYSHEV 06 reports $(7.9^{+1.0}_{-0.9} \pm 3.6) \times 10^{-4}$ from a measurement of $[\Gamma(B^+ \rightarrow 1.0)]$ $\Lambda_c^+ \Lambda_c^- K^+) / \Gamma_{\mathsf{total}}] \times [\mathsf{B}(\Lambda_c^+ \to p K^- \pi^+)] \text{ assuming } \mathsf{B}(\Lambda_c^+ \to p K^- \pi^+) = (5.0 \pm 1.0 \pm 1.0$ $1.3) \times 10^{-2}$.

HTTP://PDG.LBL.GOV

$\Gamma(\overline{\Sigma}_c(2455)^0 p)/\Gamma_{\text{total}}$

 Γ_{460}/Γ

<u>VALUE (units 10^{-5})</u> <u>CL%</u> <u>DOCUMENT ID</u> <u>TECN</u> <u>COMMENT</u> **3.7±0.8±1.0** 1,2 GABYSHEV 06A BELL $e^+e^- \rightarrow \Upsilon(4S)$

• • • We do not use the following data for averages, fits, limits, etc. • • •

<8 90 1,3 DYTMAN 02 CLE2 $e^+e^- \rightarrow \Upsilon(4S)$ <9.3 90 1,4 GABYSHEV 02 BELL Repl. by GABYSHEV 06A

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(\overline{\Sigma}_c(2455)^0 p)/\Gamma(\overline{\Lambda}_c^- p \pi^+)$

 $\Gamma_{460}/\Gamma_{449}$

VALUEDOCUMENT IDTECNCOMMENT0.123 \pm 0.012 \pm 0.0081 AUBERT08BN BABR $e^+e^- \rightarrow \Upsilon(4S)$

$\Gamma(\overline{\Sigma}_c(2455)^0 p \pi^0) / \Gamma_{\text{total}}$

 Γ_{461}/Γ

$\Gamma(\overline{\Sigma}_c(2455)^0 p \pi^- \pi^+)/\Gamma_{\text{total}}$

 Γ_{462}/Γ

VALUE (units 10^{-4})DOCUMENT IDTECNCOMMENT4.4 \pm 1.3 \pm 1.11,2 DYTMAN02 CLE2 $e^+e^- \rightarrow \Upsilon(4S)$

$\Gamma(\overline{\Sigma}_c(2455)^{--}p\pi^+\pi^+)/\Gamma_{\text{total}}$

 Γ_{463}/Γ

VALUE (units 10^{-4})	DOCUMENT ID		TECN	COMMENT
3.0±0.8 OUR AVERAGE				
$3.0\pm0.2\pm0.8$	^{1,2} LEES	12Z	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$2.8 \pm 0.9 \pm 0.9$	1,3 DYTMAN	02	CLE2	$e^+e^- ightarrow ~ \varUpsilon(4S)$

HTTP://PDG.LBL.GOV

Page 127

² GABYSHEV 06A reports $(3.7 \pm 0.7 \pm 0.4) \times 10^{-5}$ from a measurement of $[\Gamma(B^+ \to \overline{\Sigma}_c(2455)^0 p)/\Gamma_{\text{total}}] \times [B(\Lambda_c^+ \to pK^-\pi^+)]$ assuming $B(\Lambda_c^+ \to pK^-\pi^+) = 0.05$, which we rescale to our best value $B(\Lambda_c^+ \to pK^-\pi^+) = (5.0 \pm 1.3) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

³ DYTMAN 02 measurement uses B($\Lambda_c^- \to \overline{p}K^+\pi^-$) = 5.0 \pm 1.3%. The second error includes the systematic and the uncertainty of the branching ratio.

⁴ Uses the value for $\Lambda_C \rightarrow pK^-\pi^+$ branching ratio (5.0 \pm 1.3)%.

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

¹ DYTMAN 02 reports (4.4 \pm 1.4) \times 10⁻⁴ from a measurement of $[\Gamma(B^+ \to \overline{\Sigma}_c(2455)^0 \, p \, \pi^0)/\Gamma_{\text{total}}] \times [B(\Lambda_c^+ \to p \, K^- \, \pi^+)]$ assuming $B(\Lambda_c^+ \to p \, K^- \, \pi^+) = 0.05$, which we rescale to our best value $B(\Lambda_c^+ \to p \, K^- \, \pi^+) = (5.0 \pm 1.3) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

² Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

¹ DYTMAN 02 reports (4.4 \pm 1.3) \times 10⁻⁴ from a measurement of $[\Gamma(B^+ \to \overline{\Sigma}_c(2455)^0 \, p \, \pi^- \, \pi^+) / \Gamma_{\text{total}}] \times [B(\Lambda_c^+ \to p \, K^- \, \pi^+)]$ assuming $B(\Lambda_c^+ \to p \, K^- \, \pi^+) = 0.05$, which we rescale to our best value $B(\Lambda_c^+ \to p \, K^- \, \pi^+) = (5.0 \pm 1.3) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

² Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

³ DYTMAN 02 reports $(2.8 \pm 0.9 \pm 0.5 \pm 0.7) \times 10^{-4}$ from a measurement of $[\Gamma(B^+ \rightarrow \overline{\Sigma}_c(2455)^{--}p\pi^+\pi^+)/\Gamma_{\text{total}}] \times [B(\Lambda_c^+ \rightarrow pK^-\pi^+)]$ assuming $B(\Lambda_c^+ \rightarrow pK^-\pi^+) = (5.0 \pm 1.3) \times 10^{-2}$.

$\Gamma(\overline{\Lambda}_c(2593)^-/\overline{\Lambda}_c(2625)^-p\pi^+)/\Gamma_{\text{total}}$

 Γ_{464}/Γ

VALUE	CL%	DOCUMENT ID		TECN	COMMENT
<1.9 × 10 ⁻⁴	90	1,2 DYTMAN	02	CLE2	$e^+e^- \rightarrow \Upsilon(4S)$

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(\overline{\Xi}_c^0 \Lambda_c^+, \overline{\Xi}_c^0 \to \overline{\Xi}^+ \pi^-)/\Gamma_{\text{total}}$

 Γ_{465}/Γ

VALUE (units 10 ⁻⁵)	DOCUMENT ID		TECN	COMMENT
3.0±1.1 OUR AVERAGE	·		·	
$2.5 \pm 0.9 \pm 0.6$	1,2 AUBERT	08н	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$5.6^{+1.9}_{-1.5}\pm 1.9$	^{2,3} CHISTOV	06A	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$

 $^{^1}$ AUBERT 08H reports (2.51 \pm 0.89 \pm 0.61) \times 10^{-5} from a measurement of [$\Gamma(B^+ \to \overline{\Xi}_c^0 \Lambda_c^+, \ \overline{\Xi}_c^0 \to \overline{\Xi}^+ \pi^-)/\Gamma_{\text{total}}] \times [B(\Lambda_c^+ \to p \, K^- \pi^+)]$ assuming $B(\Lambda_c^+ \to p \, K^- \pi^+) = (5.0 \pm 1.3) \times 10^{-2}$.

$\Gamma\big(\overline{\Xi}{}^0_c \Lambda_c^+, \ \overline{\Xi}{}^0_c \to \Lambda K^+ \pi^-\big)/\Gamma_{\rm total}$

 Γ_{466}/Γ

Created: 8/21/2014 12:56

VALUE (units 10^{-5})DOCUMENT IDTECNCOMMENT2.6 \pm 1.1 OUR AVERAGEError includes scale factor of 1.1. $1.7 \pm 0.9 \pm 0.5$ 1.2 AUBERT08H BABR $e^+e^- \rightarrow \Upsilon(4S)$ $4.0^{+1.1}_{-0.9} \pm 1.3$ 2.3 CHISTOV06A BELL $e^+e^- \rightarrow \Upsilon(4S)$

² LEES 12Z reports $(2.98 \pm 0.16 \pm 0.15 \pm 0.77) \times 10^{-4}$ from a measurement of $[\Gamma(B^+ \rightarrow \overline{\Sigma}_c(2455)^{--}p\pi^+\pi^+)/\Gamma_{\text{total}}] \times [B(\Lambda_c^+ \rightarrow pK^-\pi^+)]$ assuming $B(\Lambda_c^+ \rightarrow pK^-\pi^+)$ = $(5.0 \pm 1.3) \times 10^{-2}$

 $^{^2}$ DYTMAN 02 measurement uses B($\Lambda_c^- \to \overline{p} \, K^+ \, \pi^-) = 5.0 \pm 1.3\%$. The second error includes the systematic and the uncertainty of the branching ratio.

² Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

³ CHISTOV 06A reports $(5.6^{+1.9}_{-1.5}\pm1.9)\times10^{-5}$ from a measurement of $[\Gamma(B^+\to\overline{\Xi}^0_c\Lambda^+_c,\overline{\Xi}^0_c\to\overline{\Xi}^+\pi^-)/\Gamma_{\rm total}]\times[B(\Lambda^+_c\to pK^-\pi^+)]$ assuming $B(\Lambda^+_c\to pK^-\pi^+)=(5.0\pm1.3)\times10^{-2}$.

 $^{^{1}}$ AUBERT 08H reports (1.70 \pm 0.93 \pm 0.53) \times 10^{-5} from a measurement of [$\Gamma(B^{+} \rightarrow \overline{\Xi}_{c}^{0} \Lambda_{c}^{+}, \ \overline{\Xi}_{c}^{0} \rightarrow \Lambda K^{+} \pi^{-})/\Gamma_{\text{total}}$] \times [B($\Lambda_{c}^{+} \rightarrow p K^{-} \pi^{+}$)] assuming B($\Lambda_{c}^{+} \rightarrow p K^{-} \pi^{+}$) = (5.0 \pm 1.3) \times 10 $^{-2}$.

² Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

³ CHISTOV 06A reports $(4.0^{+1.1}_{-0.9}\pm1.3)\times10^{-5}$ from a measurement of $[\Gamma(B^+\to\overline{\Xi}^0_c\Lambda^+_c,\overline{\Xi}^0_c\to\Lambda K^+\pi^-)/\Gamma_{\rm total}]\times[B(\Lambda^+_c\to pK^-\pi^+)]$ assuming $B(\Lambda^+_c\to pK^-\pi^+)=(5.0\pm1.3)\times10^{-2}$.

$\Gamma(\pi^+\ell^+\ell^-)/\Gamma_{total}$						Γ ₄₆₇ /Γ
VALUE	CL%	DOCUMENT ID		TECN	COMMENT	
$<4.9 \times 10^{-8}$	90	^{1}WEI	A80	BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$
• • • We do not use the	following	data for averages	s, fits,	limits, e	etc. • • •	
$< 6.6 \times 10^{-8}$	90	¹ LEES			$e^+e^- \rightarrow$	
$< 1.2 \times 10^{-7}$	90	¹ AUBERT	07A	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
¹ Assumes equal produ	ction of B	$^{ m H}$ and $B^{ m 0}$ at the	Υ(4S	S).		

 $\Gamma(\pi^+e^+e^-)/\Gamma_{\text{total}}$ Γ_{468}/Γ

Test for ΔB =1 weak neutral current. Allowed by higher-order electroweak interactions.

VALUE	<u>CL%</u>	<u>DOCUMENT ID</u>		TECN	COMMENT	
$< 8.0 \times 10^{-8}$	90	¹ WEI	08A	BELL	$e^+e^- ightarrow \gamma(4S)$	
• • • We do not use the	following	data for averages	s, fits,	limits, e	tc. • • •	
$<12.5 \times 10^{-8}$ $<18 \times 10^{-8}$ $<3.9 \times 10^{-3}$	90 90 90	¹ LEES ¹ AUBERT ² WEIR	07AG	BABR	$e^+e^- \rightarrow \Upsilon(4S)$ $e^+e^- \rightarrow \Upsilon(4S)$ $e^+e^- 29 \text{ GeV}$	

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

 $\Gamma \big(\pi^+ \, \mu^+ \, \mu^- \big) / \Gamma_{\rm total}$ Γ_{469}/Γ

Test for $\Delta B=1$ weak neutral current. Allowed by higher-order electroweak interactions.

VALUE	CL%	DOCUMENT ID		TECN	COMMENT
$< 5.5 \times 10^{-8}$	90	¹ LEES	13M	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
• • • We do not use the	e following	data for averages,	fits,	limits, e	tc. • • •
$< 6.9 \times 10^{-8}$	90				$e^+e^- ightarrow ~ \varUpsilon(4S)$
$< 2.8 \times 10^{-7}$	90	¹ AUBERT	07 AG	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$< 9.1 \times 10^{-3}$	90	² WEIR	90 B	MRK2	e^+e^- 29 GeV

 $^{^1}$ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

 $\Gamma(\pi^+\mu^+\mu^-)/\Gamma(K^+\mu^+\mu^-)$ $\Gamma_{469}/\Gamma_{473}$ $0.053 \pm 0.014 \pm 0.001$ **AAIJ** 12AY LHCB pp at 7 TeV

 Γ_{470}/Γ $\Gamma(\pi^+\nu\overline{\nu})/\Gamma_{\rm total}$

Test for $\Delta B=1$ weak neutral current. Allowed by higher-order electroweak interactions.

V	ALUE	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT	
<	(9.8×10^{-5})	90	$^{ m 1}$ LUTZ	13	BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$
•	• • We do not use the	following	data for averages	, fits,	limits, e	etc. • • •	
	(1.7×10^{-4})	90				$e^+e^- \rightarrow$	` '
<	(1.0×10^{-4})	90	¹ AUBERT	05н	BABR	$e^+e^- ightarrow$	$\Upsilon(4S)$

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

 $^{^2\}mathrm{WEIR}$ 90B assumes B^+ production cross section from LUND.

 $^{^2}$ WEIR 90B assumes B^+ production cross section from LUND.

$\Gamma(K^+\ell^+\ell^-)/\Gamma_{\text{total}}$

Γ_{471}/Γ

Test for $\Delta B=1$ weak neutral current. Allowed by higher-order electroweak interactions.

VALUE (units 10^{-7})	DOCUMENT ID		TECN	COMMENT
4.51 ± 0.23 OUR AVERAGE				
$4.36 \pm 0.15 \pm 0.18$	¹ AAIJ	13H	LHCB	pp at 7 TeV
$4.8 \pm 0.9 \pm 0.2$	² AUBERT	09T	BABR	$e^+e^- ightarrow \gamma(4S)$
$5.3 \ ^{+0.6}_{-0.5} \ \pm 0.3$	² WEI	09A	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$
• • • We do not use the following	owing data for average	s, fits,	limits, e	etc. • • •
$3.8 \ ^{+0.9}_{-0.8} \ \pm 0.2$	² AUBERT,B	06J	BABR	Repl. by AUBERT 09T
$5.3 \ ^{+1.1}_{-1.0} \ \pm 0.3$	² ISHIKAWA	03	BELL	Repl. by WEI 09A
¹ Uses B($B^+ \to J/\psi K^+ \to \mu^+ \mu^- K^+$) = (6.01 ± 0.21) × 10 ⁻⁵ .				

² Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(K^+e^+e^-)/\Gamma_{\text{total}}$

 Γ_{472}/Γ

Test for $\Delta B=1$ weak neutral current. Allowed by higher-order electroweak interactions.

			,	0		
VALUE (units 10^{-7})	CL%	DOCUMENT ID		TECN	COMMENT	
5.5±0.7 OUR A	WERAGE					
$5.1^{+1.2}_{-1.1}\pm0.2$	1	AUBERT	09т	BABR	$e^+e^- ightarrow \gamma(4S)$	
$5.7^{igoplus 0.9}_{-0.8}\!\pm\!0.3$	1	WEI	09A	BELL	$e^+e^- ightarrow \Upsilon(4S)$	

• • We do not use the following data for averages, fits, limits, etc.

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

² Assumes equal production of B^0 and B^+ at $\Upsilon(4S)$. The second error is a total of systematic uncertainties including model dependence.

 $^{^3}$ The result is for di-lepton masses above 0.5 GeV.

⁴ ALBRECHT 91E reports $< 9.0 \times 10^{-5}$ assuming the $\Upsilon(4S)$ decays 45% to $B^0 \overline{B}{}^0$. We rescale to 50%. 5 WEIR 90B assumes B^{+} production cross section from LUND.

 $^{^6}$ AVERY 89B reports < 5 \times 10 $^{-5}$ assuming the \varUpsilon (4S) decays 43% to $B^0\overline{B}{}^0$. We rescale

 $^{^{7}}$ AVERY 87 reports $< 2.1 \times 10^{-4}$ assuming the $\Upsilon(4S)$ decays 40% to $B^0 \overline{B}{}^0$. We rescale to 50%.

 $\Gamma(K^+\mu^+\mu^-)/\Gamma_{\text{total}}$ Test for $\Delta B=1$ weak neutral current. Allowed by higher-order electroweak interactions. VALUE (units 10^{-7}) DOCUMENT ID TECN COMMENT CL% **4.49** \pm **0.23 OUR FIT** Error includes scale factor of 1.1. **4.43 ± 0.26 OUR AVERAGE** Error includes scale factor of 1.2. ¹ AAIJ $4.36 \pm 0.15 \pm 0.18$ 13H LHCB pp at 7 TeV $4.1 \ \, ^{+1.6}_{-1.5} \ \pm 0.2$ 09T BABR $e^+e^- \rightarrow \Upsilon(4S)$ ² AUBERT $5.3 \ ^{+0.8}_{-0.7} \ \pm 0.3$ ² WEI 09A BELL $e^+e^- \rightarrow \Upsilon(4S)$ We do not use the following data for averages, fits, limits, etc. $3.1 \, {}^{+1.5}_{-1.2} \, \pm 0.3$ ² AUBERT,B 06J BABR Repl. by AUBERT 09T $0.7 \begin{array}{c} +1.9 \\ -1.1 \end{array} \pm 0.2$ ² AUBERT 03U BABR Repl. by AUBERT, B 06J $4.5 \begin{array}{c} +1.4 \\ -1.2 \end{array} \pm 0.3$ ³ ISHIKAWA BELL Repl. by WEI 09A $9.8 \begin{array}{c} +4.6 \\ -3.6 \end{array} \pm 1.6$ ² ABE 02 BELL Repl. by ISHIKAWA 03 ² AUBERT 02L BABR $e^+e^- \rightarrow \Upsilon(4S)$ < 12 ⁴ ANDERSON 01B CLE2 $e^+e^- \rightarrow \Upsilon(4S)$ 36.8 90 < ⁵ AFFOLDER 99B CDF 90 $p\overline{p}$ at 1.8 TeV 52 ⁶ ABE 90 96L CDF Repl. by AFFOLDER 99B 100 ⁷ ALBRECHT 90 91E ARG $e^+e^- \rightarrow \Upsilon(4S)$ < 2400 90B MRK2 e^+e^- 29 GeV ⁸ WEIR 90 <64000 ⁹ AVERY < 1700 90 89B CLEO $e^+e^- \rightarrow \Upsilon(4S)$ ¹⁰ AVERY CLEO $e^+e^- \rightarrow \Upsilon(4S)$ 90 < 3800 87 ¹ Uses B($B^+ \to J/\psi K^+ \to \mu^+ \mu^- K^+$) = (6.01 ± 0.21) × 10⁻⁵. ² Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$. ³ Assumes equal production of B^0 and B^+ at $\Upsilon(4S)$. The second error is a total of systematic uncertainties including model dependence. ⁴ The result is for di-lepton masses above 0.5 GeV. ⁵ AFFOLDER 99B measured relative to $B^+ \to J/\psi(1S) K^+$. ⁶ ABE 96L measured relative to $B^+ \to J/\psi(1S) K^+$ using PDG 94 branching ratios. ⁷ ALBRECHT 91E reports $< 2.2 \times 10^{-4}$ assuming the $\Upsilon(4S)$ decays 45% to $B^0 \overline{B}{}^0$. We rescale to 50%. 8 WEIR 90B assumes B^{+} production cross section from LUND. 9 AVERY 89B reports $< 1.5 \times 10^{-4}$ assuming the $\Upsilon(4S)$ decays 43% to $B^0 \, \overline{B}{}^0$. We 10 AVERY 87 reports $< 3.2 \times 10^{-4}$ assuming the $\Upsilon(4S)$ decays 40% to $B^0 \overline{B}{}^0$. We rescale to 50%. $\Gamma(a/(A\cap A\cap)K^+)/\Gamma$ Γ_{474}/Γ

$\psi(4040) \Lambda^{+} / 1 tot$	al			I 474/	ı
VALUE	CL%	DOCUMENT ID	TECN	COMMENT	_
$<1.3 \times 10^{-4}$	90	AAIJ	13BC LHCB	<i>pp</i> at 7, 8 TeV	
$\Gamma(\psi(4160)K^+)/\Gamma_{\rm tot}$	al			Γ ₄₇₅ /	Γ
VALUE (units 10^{-4})		DOCUMENT ID	TECN	COMMENT	_
$5.1^{+1.3}_{-1.2}^{+2.5}_{-2.4}$		¹ AAIJ	13BC LHCB	<i>pp</i> at 7, 8 TeV	

¹ AAIJ 13BC reports $[\Gamma(B^+ \to \psi(4160)K^+)]/\Gamma_{\text{total}}] \times B(\psi(4160) \to \mu^+\mu^-) = (3.5^{+0.9}_{-0.8}) \times 10^{-9}$ which we devide by our best value $B(\psi(4160) \to e^+e^-) = 0$ $(6.9\pm3.3)\times10^{-6}$ assuming lepton universality. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(K^+\mu^+\mu^-)/\Gamma(J/\psi(1S)K^+)$

 $\Gamma_{473}/\Gamma_{218}$

<i>VALUE</i> (units 10^{-3})	DOCUMENT ID	TECN	COMMENT
0.437±0.024 OUR FIT	Error includes scale fac	tor of 1.1.	
$0.46 \pm 0.04 \pm 0.02$	AALTONEN	11AI CDF	<i>p</i> p at 1.96 TeV
• • • We do not use the	following data for avera	iges, fits, limi	ts, etc. • • •
$0.38 \pm 0.05 \pm 0.02$	AALTONEN	11L CDF	Repl. by AALTONEN 11AI
$0.59\ \pm0.15\ \pm0.03$	AALTONEN	09B CDF	Repl. by AALTONEN 11L

$\Gamma(K^+\overline{\nu}\nu)/\Gamma_{\text{total}}$

 Γ_{476}/Γ

Test for $\Delta B=1$ weak neutral current. Allowed by higher-order electroweak interactions. DOCUMENT ID

$< 1.6 \times 10^{-5}$	90	1,2 LEES	131	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
● ● We do not	use t	he following data	for av	/erages,	fits, limits, etc. • • •
					$e^+e^- \rightarrow \Upsilon(4S)$
	90	¹ DEL-AMO-S	A1.0 Q	BABR	Repl. by LEES 131
	90				$e^+e^- ightarrow ~ \varUpsilon(4S)$
$< 5.2 \times 10^{-5}$	90				$e^+e^- ightarrow ~ \varUpsilon(4S)$
$< 2.4 \times 10^{-4}$	90	¹ BROWDER	01	CLE2	$e^+e^- ightarrow \ \varUpsilon(4S)$

 $\Gamma(\rho^+ \nu \overline{\nu})/\Gamma_{\text{total}}$

 Γ_{477}/Γ

Test for $\Delta B = 1$ weak neutral current. Allowed by higher-order electroweak interaction.

VALUE	CL%	DOCUMENT ID	- 7	<u>TECN</u>	COMMENT
$< 2.13 \times 10^{-4}$	90	¹ LUTZ	13	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$
• • • We do not use the	following	data for averages	s, fits,	limits, e	etc. • • •
$< 1.5 \times 10^{-4}$	90	¹ CHEN	07 D	BELL	Repl. by LUTZ 13

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

 $\Gamma(K^*(892)^+\ell^+\ell^-)/\Gamma_{total}$ Test for $\Delta B=1$ weak neutral current. Allowed by higher-order electroweak interactions.

VALUE (units 10^{-7})	CL%	DOCUMENT ID		TECN	COMMENT	
12.9±2.1 OUR AVERA	IGE					
$14.0^{m{+4.0}}_{-3.7}\!\pm\!0.9$		¹ AUBERT	09т	BABR	$e^+e^- ightarrow \gamma(4S)$	
$12.4^{+2.3}_{-2.1}\pm1.3$		¹ WEI	09A	BELL	$e^+e^- ightarrow \Upsilon(4S)$	

• • • We do not use the following data for averages, fits, limits, etc. • • •

$$7.3^{+5.0}_{-4.2}\pm2.1$$
 1 AUBERT,B 06J BABR Repl. by AUBERT 09T $<$ 22 90 1 ISHIKAWA 03 BELL $e^+e^-
ightarrow \varUpsilon(4S)$

 $^{^1}$ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$. 2 Also reported a limit $< 3.7 \times 10^{-5}$ at 90% CL obtained using a fully reconstructed

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

 $\Gamma(K^*(892)^+e^+e^-)/\Gamma_{\text{total}}$

VALUE (units 10^{-7})

Test for $\Delta B=1$ weak neutral current. Allowed by higher-order electroweak interactions.

TECN COMMENT

15.5 ⁺ 4.0 - 3.1	OUR AVERAGE
--------------------------------	-------------

$13.8^{+}_{-}{}^{4.7}_{4.2}\!\pm\!0.8$	¹ AUBERT	09т BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
--	---------------------	----------	----------------------	----------------

DOCUMENT ID

$$17.3 + 5.0 \pm 2.0$$
 1 WEI 09A BELL $e^+e^- \rightarrow \Upsilon(4S)$

• • We do not use the following data for averages, fits, limits, etc.

$\Gamma(K^*(892)^+\mu^+\mu^-)/\Gamma_{\text{total}}$

Created: 8/21/2014 12:56

Test for $\Delta B=1$ weak neutral current. Allowed by higher-order electroweak interactions.

		-,	
CL%	DOCUMENT ID	TECN	COMMENT
OUR FIT			
OUR AVERAGE			
	AAIJ	12AH LHCB	pp at 7 TeV
	OUR FIT	OUR FIT OUR AVERAGE	DUR FIT DUR AVERAGE

$$11.0\pm 1.9$$
 Add $12AT$ ETCB pp at 7 TeV $14.6^{+}_{-7.5}\pm 1.2$ 1 AUBERT 09T BABR $e^{+}e^{-} \rightarrow \Upsilon(4S)$ $11.1^{+}_{-2.7}\pm 1.0$ 1 WEI 09A BELL $e^{+}e^{-} \rightarrow \Upsilon(4S)$

• • • We do not use the following data for averages, fits, limits, etc. • • •

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

² Assumes equal production of B^0 and B^+ at $\Upsilon(4S)$. The second error is a total of systematic uncertainties including model dependence. ³ ALBRECHT 91E reports $< 6.3 \times 10^{-4}$ assuming the $\Upsilon(4S)$ decays 45% to $B^0 \, \overline{B}{}^0$. We

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

 $^{^2}$ Assumes equal production of B^0 and B^+ at $\Upsilon(4S)$. The second error is a total of systematic uncertainties including model dependence. The 90% C.L. upper limit is $2.2 \times$

 $^{^3}$ ALBRECHT 91E reports $< 1.1 \times 10^{-3}$ assuming the $\varUpsilon(4S)$ decays 45% to $B^0\overline{B}{}^0$. We rescale to 50%.

$\Gamma(K^*(892)^+\mu^+\mu^-)$	$^{\prime}\Gammaig(J/\psi(1$.S) K*(892) ⁺)				$\Gamma_{480}/\Gamma_{222}$
VALUE (units 10^{-3})		DOCUMENT ID		TECN	COMMENT	
0.78±0.11 OUR FIT 0.67±0.22±0.04		AALTONEN	11 AI	CDF	<i>p</i> p at 1.96	TeV
$\Gamma(K^*(892)^+ \nu \overline{\nu})/\Gamma_{to}$ Test for $\Delta B = 1$ we		current. Allowed	by hig	gher-orde	er electrowea	Γ_{481}/Γ ak interaction.
VALUE _		DOCUMENT ID				
$<4.0 \times 10^{-5}$		¹ LUTZ				$\Upsilon(4S)$
• • • We do not use the	_	_		limits, e	etc. • • •	
$< 6.4 \times 10^{-5}$	90 1	^{,2} LEES	131		$e^+e^- \rightarrow$	
$< 8 \times 10^{-5}$	90	AUBERT	08BC	BABR	Repl. by L	EES 13I
$< 1.4 \times 10^{-4}$	90	¹ CHEN	07 D	BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$
¹ Assumes equal produ	ction of B	$^+$ and B^0 at the	Y(45	S).		
² Also reported a limit hadronic <i>B</i> -tag evnet	< 11.6 $ imes$ ss.	10 ⁻⁵ at 90% C	L obt	ained us	sing a fully	reconstructed
$\Gamma(\pi^+e^+\mu^-)/\Gamma_{\text{total}}$ Test of lepton fam	ily number	conservation.				Γ ₄₈₂ /Γ
VALUE	CL%	DOCUMENT ID		TECN	COMMENT	
<0.0064	90	¹ WEIR	90 B	MRK2	$e^{+}e^{-}$ 29	GeV
¹ WEIR 90B assumes E	3^+ produc	tion cross section	from	LUND.		
$\Gamma(\pi^+e^-\mu^+)/\Gamma_{ ext{total}}$ Test of lepton fam	ily number	conservation.				Γ ₄₈₃ /Γ
<u>VALUE</u>		DOCUMENT ID		TECN	COMMENT	
< 0.0064	90	¹ WEIR	90 B	MRK2	$e^{+}e^{-}$ 29	GeV
$^{ m 1}$ WEIR 90B assumes $^{ m \it E}$	3 ⁺ produc	tion cross section	from	LUND.		
$\Gamma(\pi^+ e^{\pm} \mu^{\mp})/\Gamma_{total}$						Γ ₄₈₄ /Γ
VALUE	CL%	DOCUMENT ID		TECN	COMMENT	
$<1.7 \times 10^{-7}$	90	¹ AUBERT	07 AG	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
¹ Assumes equal produ	ction of B	$^+$ and $B^{ m 0}$ at the	Υ(4S	S).		
$\Gamma(\pi^+e^+\tau^-)/\Gamma_{ ext{total}}$ Test of lepton fam	ily number	conservation.				Γ ₄₈₅ /Γ
VALUE (units 10^{-6})	CL%	DOCUMENT ID		TECN	COMMENT	
<74	90	¹ LEES	12 P	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
¹ Uses a fully reconstru						()
$\Gamma(\pi^+e^-\tau^+)/\Gamma_{\text{total}}$ Test of lepton fam	ily number	conservation.				Γ ₄₈₆ /Γ
VALUE (units 10^{-6})	•			TECN	COMMENT	
<20	90	¹ LEES	12 P	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
¹ Uses a fully reconstru						` '

Citation: K.A. Olive et al. (Particle Data Group), Chin. Phys. C38, 090001 (2014) (URL: http://pdg.lbl.gov) $\Gamma(\pi^+ e^{\pm} \tau^{\mp})/\Gamma_{\text{total}}$ Γ_{487}/Γ Test of lepton family number conservation. TECN COMMENT VALUE (units 10^{-6}) DOCUMENT ID CL% 1,2 LEES 12P BABR $e^+e^- \rightarrow \Upsilon(4S)$ <75 90 ¹ Assumes B($B^+ \to h^+ \ell^+ \tau^-$) = B($B^+ \to h^+ \ell^- \tau^+$). 2 Uses a fully reconstructed hadronic B decay as a tag on the recoil side. $\Gamma(\pi^+\mu^+\tau^-)/\Gamma_{\text{total}}$ Γ_{488}/Γ Test of lepton family number conservation. *VALUE* (units 10^{-6}) TECN COMMENT CL% DOCUMENT ID ¹ LFFS 12P BABR $e^+e^- \rightarrow \Upsilon(4S)$ <62 ¹Uses a fully reconstructed hadronic B decay as a tag on the recoil side. $\Gamma(\pi^+\mu^-\tau^+)/\Gamma_{\text{total}}$ Γ_{489}/Γ Test of lepton family number conservation. VALUE (units 10^{-6}) CL%DOCUMENT ID TECN COMMENT ¹ LEES 12P BABR $e^+e^- \rightarrow \Upsilon(4S)$ <45 1 Uses a fully reconstructed hadronic B decay as a tag on the recoil side. $\Gamma(\pi^{+}\mu^{\pm}\tau^{\mp})/\Gamma_{\text{total}}$ Γ_{490}/Γ Test of lepton family number conservation. VALUE (units 10^{-6}) CL%DOCUMENT ID TECN COMMENT 1,2 LEES 12P BABR $e^+e^- \rightarrow \Upsilon(4.5)$ <72 ¹ Assumes B($B^+ \to h^+ \ell^+ \tau^-$) = B($B^+ \to h^+ \ell^- \tau^+$). 2 Uses a fully reconstructed hadronic B decay as a tag on the recoil side. $\Gamma(K^+e^+\mu^-)/\Gamma_{\text{total}}$ Γ_{491}/Γ Test of lepton family number conservation. \underline{VALUE} (units 10^{-7}) DOCUMENT ID TECN COMMENT CL% ¹ AUBERT,B 06J BABR $e^+e^- \rightarrow \Upsilon(4S)$ < 0.91 90 • • • We do not use the following data for averages, fits, limits, etc. • • • ¹ AUBERT 02L BABR Repl. by <8 90 AUBERT, B 06J $< 6.4 \times 10^4$ 90 ² WEIR 90B MRK2 e⁺e⁻ 29 GeV ¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$. 2 WEIR 90B assumes B^+ production cross section from LUND. $\Gamma(K^+e^-\mu^+)/\Gamma_{\text{total}}$ Γ_{492}/Γ Test of lepton family number conservation. TECN COMMENT VALUE (units 10^{-7}) CL% DOCUMENT ID ¹ AUBERT,B 06J BABR $e^+e^- \rightarrow \Upsilon(4S)$ <1.3 • • • We do not use the following data for averages, fits, limits, etc. • • •

90 ² WFIR 90B MRK2 e^+e^- 29 GeV

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

 $^{^{2}}$ WEIR 90B assumes B^{+} production cross section from LUND.

$\Gamma(K^+e^{\pm}\mu^{\mp})/\Gamma_{ m total}$	I					Γ ₄₉₃ /Γ
VALUE (units 10^{-7})		DOCUMENT ID		TECN	COMMENT	
		¹ AUBERT,B				
¹ Assumes equal proc	luction of	${\it B}^{+}$ and ${\it B}^{0}$ at the	· γ(4	5).		,
$\Gamma(K^+e^+\tau^-)/\Gamma_{\text{total}}$ Test of lepton fai		per conservation.				Γ ₄₉₄ /Γ
	-			TECN	COMMENT	
<i>VALUE</i> (units 10 ^{−6}) <43	90	¹ LEES	12 P	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$^{ m 1}$ Uses a fully reconst	ructed ha	dronic <i>B</i> decay as a	a tag o	on the re	ecoil side.	
$\Gamma(K^+e^- au^+)/\Gamma_{ ext{total}}$	l mily numb	per conservation.				Γ_{495}/Γ
VALUE (units 10^{-6})	CL%	DOCUMENT ID		TECN	COMMENT	
<15	90	¹ LEES	12 P	BABR	e^+e^-	$\Upsilon(4S)$
$^{ m 1}$ Uses a fully reconst	ructed ha	dronic <i>B</i> decay as a	a tag (on the re	ecoil side.	
$\Gamma(K^+e^\pm au^\mp)/\Gamma_{ ext{total}}$ Test of lepton fai	mily numb	per conservation.				Γ_{496}/Γ
VALUE (units 10^{-6})	CL%	DOCUMENT ID		TECN	COMMENT	
VALUE (units 10 ⁻⁶)	90	1,2 LEES	12 P	BABR	$e^+e^- \to$	$\Upsilon(4S)$
1 Assumes B($B^+ ightarrow ^2$ Uses a fully reconst					ecoil side.	
$\Gamma(K^+\mu^+\tau^-)/\Gamma_{ ext{tota}}$		per conservation.				Γ ₄₉₇ /Γ
VALUE (units 10^{-6})	CL%	DOCUMENT ID		TECN	COMMENT	
<45	90	¹ LEES	12 P	BABR	$e^+e^- \to$	$\Upsilon(4S)$
$^{ m 1}$ Uses a fully reconst	ructed ha	dronic <i>B</i> decay as a	a tag o	on the re	ecoil side.	
$\Gamma(K^+\mu^- au^+)/\Gamma_{ ext{tota}}$		per conservation.				Γ ₄₉₈ /Γ
VALUE (units 10^{-6})	CL%	DOCUMENT ID				
<28	90	¹ LEES	12 P	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$^{ m 1}$ Uses a fully reconst	ructed ha	dronic B decay as a	a tag o	on the re	ecoil side.	
$\Gamma(K^+\mu^\pm au^\mp)/\Gamma_{ ext{tota}}$ Test of lepton fai		per conservation.				Γ ₄₉₉ /Γ
$VALUE$ (units 10^{-6})	CL%	DOCUMENT ID		TECN	COMMENT	
<48	90	1,2 LEES	12 P	BABR	$e^+e^- \to$	$\Upsilon(4S)$
\bullet \bullet We do not use the	ne followir					
<77	90	¹ AUBERT	07AZ	BABR	Repl. by L	EES 12P
1 Uses a fully reconst 2 Assumes B(B^{+} $ ightarrow$	ructed had $h^+\ell^+\tau^-$	dronic B decay as a^{-}) = B($B^{+} \rightarrow h^{+}$	a tag $^{\circ}$	on the re $^+$).	ecoil side.	

 $\Gamma(K^*(892)^+e^+\mu^-)/\Gamma_{\text{total}}$

 Γ_{500}/Γ

VALUE (units 10^{-7})	CL%	DOCUMENT ID		TECN	COMMENT
<13	90	¹ AUBERT,B	06J	BABR	$e^+e^- ightarrow \gamma(4S)$

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

 $\Gamma(K^*(892)^+e^-\mu^+)/\Gamma_{\text{total}}$

 Γ_{501}/Γ

VALUE (units 10^{-7})	CL%	DOCUMENT ID		TECN	COMMENT
<9.9	90	¹ AUBERT,B	06J	BABR	$e^+e^- \rightarrow \Upsilon(4S)$

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(K^*(892)^+ e^{\pm} \mu^{\mp})/\Gamma_{\text{total}}$

 Γ_{502}/Γ

Test of lepton family number conservation.

VALUE CL% DOCUMENT ID TECN COMMENT

<1.4 × 10⁻⁶
90 1 AUBERT,B 06J BABR $e^+e^- \rightarrow \Upsilon(4S)$ • • • We do not use the following data for averages, fits, limits, etc. • • • <7.9 × 10⁻⁶
90 1 AUBERT 02L BABR Repl. by

$\Gamma(\pi^-e^+e^+)/\Gamma_{\text{total}}$

 Γ_{503}/Γ

AUBERT, B 06J

Created: 8/21/2014 12:56

Test of total lepton number conservation.

<u>VALUE</u>	<u>CL%_</u>	DOCUMENT ID	TECN	COMMENT
<2.3 × 10 ⁻⁸	90	1 LEES 12	2J BABR	$e^+e^- ightarrow \gamma(4S)$

 ^{• •} We do not use the following data for averages, fits, limits, etc.

$$<$$
1.6 \times 10⁻⁶ 90 1 EDWARDS 02B CLE2 $e^+e^- \rightarrow \Upsilon(4S)$ $<$ 0.0039 90 2 WEIR 90B MRK2 e^+e^- 29 GeV

$\Gamma \big(\pi^- \mu^+ \mu^+\big)/\Gamma_{\rm total}$

 Γ_{504}/Γ

Test of total lepton number conservation.

<u>VALUE</u>	<u>CL%</u>	<u>DOCUMENT ID</u>	<u>TECN COMMENT</u>
$< 1.3 \times 10^{-8}$	95	¹ AAIJ	12AD LHCB pp at 7 TeV
147 1 .			e. e

• • • We do not use the following data for averages, fits, limits, etc. • •

$< 4.4 \times 10^{-8}$	90	AAIJ	12C LHCB <i>pp</i> at 7 TeV
$< 10.7 \times 10^{-8}$	90	² LEES	12J BABR $e^+e^- ightarrow~ \varUpsilon(4S)$
$< 1.4 \times 10^{-6}$	90	² EDWARDS	02B CLE2 $e^+e^- ightarrow \varUpsilon(4S)$
$< 9.1 \times 10^{-3}$	90	³ WEIR	90B MRK2 e ⁺ e ⁻ 29 GeV

¹ Uses $B^+ \to J/\psi K^+$, $J/\psi \to \mu^+ \mu^-$ mode for normalization. Obtains neutrino-mass-dependent upper limits in the range 0.4–1.0 \times 10⁻⁸.

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

 $^{^2}$ WEIR 90B assumes B^+ production cross section from LUND.

² Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

 $^{^3}$ WEIR 90B assumes B^+ production cross section from LUND.

 $\Gamma(\pi^- e^+ \mu^+)/\Gamma_{\text{total}}$ Γ_{505}/Γ Test of total lepton number conservation. DOCUMENT ID TECN COMMENT CL% ¹ LFFS 14A BABR $e^+e^- \rightarrow \Upsilon(4S)$ $\times 10^{-7}$ <1.5 90 • • • We do not use the following data for averages, fits, limits, etc. • • • ¹ EDWARDS 02B CLE2 $e^+e^- \rightarrow \Upsilon(4S)$ <1.3 90 ² WEIR 90B MRK2 e^+e^- 29 GeV 90 < 0.0064 ¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$. 2 WEIR 90B assumes B^+ production cross section from LUND. $\Gamma(\rho^-e^+e^+)/\Gamma_{\text{total}}$ Γ_{506}/Γ Test of total lepton number conservation. VALUE (units 10^{-6}) ____ <u>CL%</u> DOCUMENT ID TECN COMMENT ¹LEES 14A BABR $e^+e^- \rightarrow \Upsilon(4S)$ 90 • • • We do not use the following data for averages, fits, limits, etc. • • 90 ¹ EDWARDS 02B CLE2 $e^+e^- \rightarrow \Upsilon(4S)$ ¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$. $\Gamma(\rho^-\mu^+\mu^+)/\Gamma_{\text{total}}$ Γ_{507}/Γ Test of total lepton number conservation. CL% DOCUMENT ID TECN COMMENT 14A BABR $e^+e^- \rightarrow \Upsilon(4S)$ < 0.42 90 **LEES** ullet ullet We do not use the following data for averages, fits, limits, etc. ullet ullet90 ¹ EDWARDS 02B CLE2 $e^+e^- \rightarrow \Upsilon(4S)$ ¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$. $\Gamma(\rho^- e^+ \mu^+)/\Gamma_{\text{total}}$ Γ_{508}/Γ Test of total lepton number conservation. VALUE (units 10^{-6}) DOCUMENT ID TECN COMMENT CL% 14A BABR $e^+e^- \rightarrow \Upsilon(4S)$ ¹LFFS 90 • • • We do not use the following data for averages, fits, limits, etc. • • ¹ EDWARDS < 3.3 90 02B CLE2 $e^+e^- \rightarrow \Upsilon(4S)$ ¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(K^-e^+e^+)/\Gamma_{\text{total}}$

 Γ_{509}/Γ

Created: 8/21/2014 12:56

Test of total lepton number conservation.

<u>VALUE</u>	<u>CL%</u>	<u>DOCUMENT ID</u>		<u>TECN COMMENT</u>
$< 3.0 \times 10^{-8}$	90	¹ LEES	12 J	BABR $e^+e^- ightarrow \Upsilon(4S)$
• • • We do not use the	following	data for averages	s, fits,	limits, etc. • • •
$< 1.0 \times 10^{-6}$	90			CLE2 $e^+e^- \rightarrow \Upsilon(4S)$
< 0.0039	90	² WEIR	90 B	MRK2 e ⁺ e ⁻ 29 GeV

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

 $^{^{2}}$ WEIR 90B assumes B^{+} production cross section from LUND.

Citation: K.A. Olive et al. (Particle Data Group), Chin. Phys. C38, 090001 (2014) (URL: http://pdg.lbl.gov) $\Gamma(K^-\mu^+\mu^+)/\Gamma_{\text{total}}$ Γ_{510}/Γ Test of total lepton number conservation. CL% DOCUMENT ID TECN COMMENT $<4.1 \times 10^{-8}$ 90 AAIJ 12C LHCB pp at 7 TeV • • • We do not use the following data for averages, fits, limits, etc. • • • $< 6.7 \times 10^{-8}$ ¹ LEES 12J BABR $e^+e^- \rightarrow \Upsilon(4S)$ 90 $< 1.8 \times 10^{-6}$ ¹ EDWARDS 02B CLE2 $e^+e^- \rightarrow \Upsilon(4S)$ 90 ² WEIR $< 9.1 \times 10^{-3}$ 90 90B MRK2 $e^{+}e^{-}$ 29 GeV ¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$. 2 WEIR 90B assumes B^+ production cross section from LUND. $\Gamma(K^-e^+\mu^+)/\Gamma_{\text{total}}$ Γ_{511}/Γ Test of total lepton number conservation. TECN COMMENT CL% $\times 10^{-7}$ <1.6 ¹LEES 14A BABR $e^+e^- \rightarrow \Upsilon(4S)$ 90 • • • We do not use the following data for averages, fits, limits, etc. • • $\times 10^{-6}$ ¹ EDWARDS < 2.0 90 02B CLE2 $e^+e^- \rightarrow \Upsilon(4S)$ 90 ² WEIR 90B MRK2 e^+e^- 29 GeV < 0.0064 ¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$. 2 WEIR 90B assumes B^{+} production cross section from LUND. $\Gamma(K^*(892)^-e^+e^+)/\Gamma_{\text{total}}$ Γ_{512}/Γ Test of total lepton number conservation. *VALUE* (units 10^{-6}) CL% DOCUMENT ID TECN COMMENT ¹ LEES 14A BABR $e^+e^- \rightarrow \Upsilon(4S)$ < 0.40 90 • • We do not use the following data for averages, fits, limits, etc. • 02B CLE2 $e^+e^- \rightarrow \Upsilon(4S)$ 90 ¹ EDWARDS < 2.8

 $^{-1}$ Assumes equal production of B^{+} and B^{0} at the $\Upsilon(4S)$.

 $\Gamma(K^*(892)^-\mu^+\mu^+)/\Gamma_{\text{total}}$

Γ₅₁₃/Γ

Test of total lepton number conservation.

VALUE (units 10^{-6})	CL%	DOCUMENT ID		TECN	COMMENT
<0.59	90	¹ LEES	14A	BABR	$e^+e^- ightarrow \gamma(4S)$
• • • We do not use the	following	data for averages,	fits,	limits, e	tc. • • •

<8.3 90 ¹ EDWARDS 02B CLE2 $e^+e^- \rightarrow \Upsilon(4S)$

$\Gamma(K^*(892)^-e^+\mu^+)/\Gamma_{\text{total}}$

 Γ_{514}/Γ

Created: 8/21/2014 12:56

Test of total lepton number conservation.

<i>VALUE</i> (units 10^{-6})	CL%	DOCUMENT ID		TECN	COMMENT		i
<0.30	90	¹ LEES	14A	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$	
• • • We do not use the	following	data for averages	, fits,	limits, e	tc. • • •		
<4.4	90	¹ EDWARDS	02 B	CLE2	$e^+e^- \rightarrow$	$\Upsilon(4S)$	

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

 $^{^1}$ Assumes equal production of B^+ and B^0 at the arGamma(4S).

 $\Gamma(D^-e^+\mu^+)/\Gamma_{\text{total}}$ VALUE CL% OCCUMENT ID OC

²Uses $D^- \to K^+ \pi^- \pi^-$ mode and 3-body phase-space hypothesis for the signal decays.

$\Gamma(D^-\mu^+\mu^+)/\Gamma_{\text{total}}$						Γ ₅₁₇ /Γ
VALUE	CL%	DOCUMENT ID		TECN	COMMENT	
$< 6.9 \times 10^{-7}$	95	¹ AAIJ	12 AD	LHCB	pp at 7 TeV	
• • • We do not use the	following	data for averages	fite	limits 4	etc • • •	

 $<17 imes 10^{-7}$ 90 2 LEES 14A BABR $e^+e^- \rightarrow \Upsilon(4S)$ $<1.1 imes 10^{-6}$ 90 2,3 SEON 11 BELL $e^+e^- \rightarrow \Upsilon(4S)$

³Uses $D^- \to K^+ \pi^- \pi^-$ mode and 3-body phase-space hypothesis for the signal decays.

$\Gamma(D^{*-}\mu^+\mu^+)$	$/\Gamma_{ ext{total}}$				Γ ₅₁₈ /Γ
VALUE	CL%	DOCUMENT ID	TECN	COMMENT	
$< 2.4 \times 10^{-6}$	95	¹ AAIJ	12AD LHCB	pp at 7 TeV	
1 Uses B^{+} \rightarrow	$\psi(2S)K^{+}, \ \psi(2S)K^{+}$	$S) \rightarrow J/\psi \pi^+ \pi^-$	mode for no	rmalization.	

$\Gamma(D_s^-\mu^+\mu^+)/\Gamma_{\text{total}}$					Γ_{519}/Γ
VALUE	CL%	DOCUMENT ID	TECN	COMMENT	
<5.8 × 10 ⁻⁷	95	¹ AAIJ	12AD LHCB	pp at 7 TeV	

¹ Uses $B^+ \to \psi(2S) K^+$, $\psi(2S) \to J/\psi \pi^+ \pi^-$ mode for normalization. Obtains neutrino-mass-dependent upper limits in the range 1.5–8.0 \times 10⁻⁷.

¹ Assumes equal production of B^0 and B^+ from Upsilon(4S) decays.

 $^{^{1}}$ Uses $B^{+} \rightarrow ~\psi(2S)\,K^{+}$, $~\psi(2S) \rightarrow ~J/\psi\,\pi^{+}\,\pi^{-}$ mode for normalization.

² Assumes equal production of B^0 and B^+ from Upsilon(4S) decays.

¹ Uses $B^+ \to \psi(2S) K^+$, $\psi(2S) \to J/\psi \pi^+ \pi^-$ mode for normalization. Obtains neutrino-mass-dependent upper limits in the range 0.3– 1.5×10^{-6} .

POLARIZATION IN B+ DECAY

In decays involving two vector mesons, one can distinguish among the states in which meson polarizations are both longitudinal (L) or both are transverse and parallel (\parallel) or perpendicular (\perp) to each other with the parameters Γ_L/Γ , Γ_\perp/Γ , and the relative phases ϕ_{\parallel} and ϕ_\perp . See the definitions in the note on "Polarization in B Decays" review in the B^0 Particle Listings.

$$\Gamma_L/\Gamma$$
 in $B^+ o \overline{D}^{*0} \rho^+$
 $VALUE$
 $0.892 \pm 0.018 \pm 0.016$
 $CSORNA$
 $OSORNA$
 $OSORN$

Γ_{\perp}/Γ in $B^+ \rightarrow J/\psi K^{*+}$					
VALUE	DOCUMENT ID		TECN	COMMENT	
$0.180\pm0.014\pm0.010$	ITOH	05	BELL	$e^+e^- \rightarrow \Upsilon(4S)$	
Γ_L/Γ in $B^+ \rightarrow \omega K^{*+}$	DOCUMENT ID		TECN	<u>COMMENT</u>	
$0.41 \pm 0.18 \pm 0.05$	AUBERT	09н	BABR	$e^+e^- ightarrow \ \varUpsilon(4S)$	
Γ_L/Γ in $B^+ \rightarrow \omega K_2^*(1430)^+$ VALUE			TECN	<u>COMMENT</u>	
$0.56 \pm 0.10 \pm 0.04$				$e^+e^- ightarrow \gamma(4S)$	
Γ_L/Γ in $B^+ \to K^{*+} \overline{K}^{*0}$ VALUE	DOCUMENT ID		<u>TECN</u>	<u>COMMENT</u>	
$0.75^{+0.16}_{-0.26}\pm0.03$	¹ AUBERT	09F	BABR	$e^+e^- ightarrow \Upsilon(4S)$	
1 Assumes equal production of B	$^+$ and B^0 at the	· γ(45	5).		
Γ_L/Γ in $B^+ \rightarrow \phi K^*(892)^+$					
VALUE	DOCUMENT ID		TECN	COMMENT	
0.50±0.05 OUR AVERAGE				1	
$0.49 \pm 0.05 \pm 0.03$				$e^+e^- \rightarrow \Upsilon(4S)$	
$0.52 \pm 0.08 \pm 0.03$				$e^+e^- o au(4S)$	
• • • We do not use the following	data for averages	s, fits,	limits, e	etc. ● ● ●	
$0.46 \pm 0.12 \pm 0.03$	AUBERT	03V E		Repl. by AUBERT 0	7 BA
$0.46\pm0.12\pm0.03$ Γ_{\perp}/Γ in $B^+ \rightarrow \phi K^{*+}$ VALUE			BABR		7 BA
Γ_{\perp}/Γ in $B^+ o \phi K^{*+}$	AUBERT DOCUMENT ID		BABR		7 BA
Γ_{\perp}/Γ in $B^+ \to \phi K^{*+}$		07ва	BABR <u>TECN</u> BABR	$\frac{\textit{COMMENT}}{e^+ e^- \rightarrow \Upsilon(4S)}$	7 BA
Γ_{\perp}/Γ in $B^+ \rightarrow \phi K^{*+}$ $VALUE$ 0.20 ± 0.05 OUR AVERAGE	DOCUMENT ID	07ва	BABR <u>TECN</u> BABR	COMMENT	7 BA
Γ_{\perp}/Γ in $B^+ \rightarrow \phi K^{*+}$ $VALUE$ 0.20±0.05 OUR AVERAGE 0.21±0.05±0.02	DOCUMENT ID AUBERT	07ва	BABR <u>TECN</u> BABR	$\frac{\textit{COMMENT}}{e^+ e^- \rightarrow \Upsilon(4S)}$	7 BA
Γ_{\perp}/Γ in $B^+ \rightarrow \phi K^{*+}$ $VALUE$ 0.20±0.05 OUR AVERAGE 0.21±0.05±0.02 0.19±0.08±0.02 ϕ_{\parallel} in $B^+ \rightarrow \phi K^{*+}$ $VALUE$ (°)	DOCUMENT ID AUBERT	07ва 05а	BABR TECN BABR BELL	$\begin{array}{c} \underline{COMMENT} \\ e^{+} e^{-} \rightarrow & \varUpsilon(4S) \\ e^{+} e^{-} \rightarrow & \varUpsilon(4S) \end{array}$	7 BA
Γ_{\perp}/Γ in $B^+ \rightarrow \phi K^{*+}$ $VALUE$ 0.20±0.05 OUR AVERAGE 0.21±0.05±0.02 0.19±0.08±0.02 ϕ_{\parallel} in $B^+ \rightarrow \phi K^{*+}$	DOCUMENT ID AUBERT CHEN DOCUMENT ID	07BA 05A	TECN BABR BELL TECN	$e^+e^- ightarrow \varUpsilon(4S)$ $e^+e^- ightarrow \varUpsilon(4S)$ $COMMENT$	7 BA
Γ_{\perp}/Γ in $B^+ \rightarrow \phi K^{*+}$ $VALUE$ 0.20±0.05 OUR AVERAGE 0.21±0.05±0.02 0.19±0.08±0.02 ϕ_{\parallel} in $B^+ \rightarrow \phi K^{*+}$ $VALUE$ (°)	DOCUMENT ID AUBERT CHEN DOCUMENT ID AUBERT	07BA 05A	TECN BABR BELL TECN BABR	$COMMENT$ $e^+e^- ightarrow \Upsilon(4S)$ $e^+e^- ightarrow \Upsilon(4S)$ $COMMENT$ $e^+e^- ightarrow \Upsilon(4S)$	7BA
	DOCUMENT ID AUBERT CHEN DOCUMENT ID	07BA 05A	TECN BABR BELL TECN BABR	$e^+e^- ightarrow \varUpsilon(4S)$ $e^+e^- ightarrow \varUpsilon(4S)$ $COMMENT$	7ва
	DOCUMENT ID AUBERT CHEN DOCUMENT ID AUBERT	07BA 05A	TECN BABR BELL TECN BABR	$COMMENT$ $e^+e^- ightarrow \Upsilon(4S)$ $e^+e^- ightarrow \Upsilon(4S)$ $COMMENT$ $e^+e^- ightarrow \Upsilon(4S)$	7ва
	DOCUMENT ID AUBERT CHEN DOCUMENT ID AUBERT	07BA 05A 07BA 05A	BABR BABR BELL TECN BABR BELL	$\begin{array}{c} \underline{\textit{COMMENT}} \\ e^{+}e^{-} \rightarrow & \varUpsilon(4S) \\ e^{+}e^{-} \rightarrow & \varUpsilon(4S) \\ \\ \underline{\textit{COMMENT}} \\ e^{+}e^{-} \rightarrow & \varUpsilon(4S) \\ e^{+}e^{-} \rightarrow & \varUpsilon(4S) \\ \end{array}$	7ва
	DOCUMENT ID AUBERT CHEN DOCUMENT ID AUBERT CHEN	07BA 05A 07BA 05A	BABR BELL TECN BABR BELL TECN TECN	$\begin{array}{c} \hline \textit{COMMENT} \\ e^{+}e^{-} \to & \varUpsilon(4S) \\ e^{+}e^{-} \to & \varUpsilon(4S) \\ \hline \\ \hline \textit{COMMENT} \\ e^{+}e^{-} \to & \varUpsilon(4S) \\ e^{+}e^{-} \to & \varUpsilon(4S) \\ \hline \\ \hline \textit{COMMENT} \\ \hline \\ $	7ва
	DOCUMENT ID AUBERT CHEN DOCUMENT ID AUBERT CHEN DOCUMENT ID AUBERT	07BA 05A 07BA 05A	BABR BELL TECN BABR BELL TECN BABR BELL	$\begin{array}{c} \underline{\textit{COMMENT}} \\ e^{+}e^{-} \to & \varUpsilon(4S) \\ e^{+}e^{-} \to & \varUpsilon(4S) \\ \\ \underline{\textit{COMMENT}} \\ e^{+}e^{-} \to & \varUpsilon(4S) \\ e^{+}e^{-} \to & \varUpsilon(4S) \\ \\ \underline{\textit{COMMENT}} \\ e^{+}e^{-} \to & \varUpsilon(4S) \\ \end{array}$	7BA
	DOCUMENT ID AUBERT CHEN DOCUMENT ID AUBERT CHEN DOCUMENT ID	07BA 05A 07BA 05A	BABR BELL TECN BABR BELL TECN BABR BELL	$\begin{array}{c} \hline \textit{COMMENT} \\ e^{+}e^{-} \to & \varUpsilon(4S) \\ e^{+}e^{-} \to & \varUpsilon(4S) \\ \hline \\ \hline \textit{COMMENT} \\ e^{+}e^{-} \to & \varUpsilon(4S) \\ e^{+}e^{-} \to & \varUpsilon(4S) \\ \hline \\ \hline \textit{COMMENT} \\ \hline \\ $	7ва
	DOCUMENT ID AUBERT CHEN DOCUMENT ID AUBERT CHEN DOCUMENT ID AUBERT CHEN	07BA 05A 07BA 05A	BABR BELL TECN BABR BELL TECN BABR BELL	$\begin{array}{c} \underline{\textit{COMMENT}} \\ e^{+} e^{-} \rightarrow \Upsilon(4S) \\ e^{+} e^{-} \rightarrow \Upsilon(4S) \\ \\ \underline{\textit{COMMENT}} \\ e^{+} e^{-} \rightarrow \Upsilon(4S) \\ e^{+} e^{-} \rightarrow \Upsilon(4S) \\ \\ \underline{\textit{COMMENT}} \\ e^{+} e^{-} \rightarrow \Upsilon(4S) \\ e^{+} e^{-} \rightarrow \Upsilon(4S) \\ e^{+} e^{-} \rightarrow \Upsilon(4S) \\ \end{array}$	7ва
Γ _⊥ /Γ in $B^+ \to \phi K^{*+}$ VALUE 0.20±0.05 OUR AVERAGE 0.21±0.05±0.02 0.19±0.08±0.02 ϕ_{\parallel} in $B^+ \to \phi K^{*+}$ VALUE (°) 2.34±0.18 OUR AVERAGE 2.47±0.20±0.07 2.10±0.28±0.04 ϕ_{\perp} in $B^+ \to \phi K^{*+}$ VALUE (°) 2.58±0.17 OUR AVERAGE 2.69±0.20±0.03 2.31±0.30±0.07	DOCUMENT ID AUBERT CHEN DOCUMENT ID AUBERT CHEN DOCUMENT ID AUBERT CHEN	07BA 05A 07BA 05A	BABR BELL TECN BABR BELL TECN BABR BELL TECN TECN TECN	$\begin{array}{c} \underline{\textit{COMMENT}} \\ e^{+}e^{-} \to & \varUpsilon(4S) \\ e^{+}e^{-} \to & \varUpsilon(4S) \\ \\ \underline{\textit{COMMENT}} \\ e^{+}e^{-} \to & \varUpsilon(4S) \\ e^{+}e^{-} \to & \varUpsilon(4S) \\ \\ \underline{\textit{COMMENT}} \\ e^{+}e^{-} \to & \varUpsilon(4S) \\ \end{array}$	7ва

$A_{CP}^{0}(B^{+} \rightarrow \phi K^{*+})$					
VALUE	DOCUMENT ID		TECN	COMMENT	
$0.17 \pm 0.11 \pm 0.02$	AUBERT	07 BA	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$A_{CP}^{\perp}(B^+ \rightarrow \phi K^{*+})$					
<u>VALUE</u>	DOCUMENT ID				
$0.22 \pm 0.24 \pm 0.08$	AUBERT	07 BA	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$\Delta \phi_{\parallel}(B^+ \to \phi K^{*+})$					
VALUE (rad)	DOCUMENT ID				
$0.07 \pm 0.20 \pm 0.05$	AUBERT	07 BA	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$\Delta \phi_{\perp}(B^+ \rightarrow \phi K^{*+})$ VALUE (rad)	DOCUMENT ID		TFCN	COMMENT	
0.19±0.20±0.07	AUBERT				
	AUDLICT	UIBA	DADIN	e · e	7 (43)
$\Delta\delta_0(B^+ \to \phi K^{*+})$					
VALUE (rad)	DOCUMENT ID		TECN	COMMENT	
$0.20\pm0.18\pm0.03$	AUBERT	07 BA	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
Γ_L/Γ in $B^+ \rightarrow \phi K_1(1270)^+$					
<u>VALUE</u>	DOCUMENT ID		<u>TECN</u>	COMMENT	
$0.46^{+0.12}_{-0.13}^{+0.06}_{-0.07}$	AUBERT	08 BI	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
Γ_L/Γ in $B^+ \rightarrow \phi K_2^*(1430)^+$					
VALUE	DOCUMENT ID		TECN	COMMENT	
$0.80^{+0.09}_{-0.10}\pm0.03$	AUBERT	08 BI	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$\delta_0(B^+ \to \phi K_2^*(1430)^+)$					
VALUE (rad)	DOCUMENT ID		TECN	COMMENT	
3.59±0.19±0.12	AUBERT	08BI	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$\Delta\delta_0(B^+\to~\phiK_2^*(1430)^+)$					
VALUE (rad)	DOCUMENT ID		TECN	COMMENT	
$-0.05\pm0.19\pm0.06$	AUBERT	08 BI	BABR	e^+e^-	$\Upsilon(4S)$
Γ_L/Γ in $B^+ \rightarrow \rho^0 K^*(892)^+$ VALUE DOCUMENT	ID <u>TECN</u>	CON	<i>MENT</i>		
	SA11D BABF				
				` ,	
$0.96^{+0.04}_{-0.15} \pm 0.04$ AUBERT	03V BABR	Rep	ol. by D	EL-AMO-SA	NCHEZ 11D
$\Gamma_L/\Gamma(B^+ \to K^*(892)^0 \rho^+)$					
$\frac{1}{VALUE} \longrightarrow K (692) p^{+}$	DOCUMENT ID		<u>TECN</u>	<u>COMMENT</u>	
0.48±0.08 OUR AVERAGE					
$0.52 \pm 0.10 \pm 0.04$	AUBERT,B	06 G	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$0.43 \pm 0.11 {+0.05 \atop -0.02}$	ZHANG	05 D	BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$
HTTP://PDG.LBL.GOV	Page 143		Creat	ed: 8/21/	2014 12:56

Γ_L/Γ in $B^+ \to \rho^+ \rho^0$

VALUE	DOCUMENT ID	TE	CN	COMMENT		
0.950±0.016 OUR AVERAGE						
$0.950\pm0.015\pm0.006$	AUBERT	09G BA	ABR	$e^+e^- ightarrow~\gamma(4S)$		
$0.948 \pm 0.106 \pm 0.021$	ZHANG	03B BE	ELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$		
• • • We do not use the fol	lowing data for a	verages,	fits,	limits, etc. • • •		
$0.905\!\pm\!0.042 \!+\!0.023 \\ -0.027$	AUBERT,BE	06G BA	ABR	Repl. by AUBERT 09G		
$0.97 \ ^{+0.03}_{-0.07} \ \pm 0.04$	AUBERT	03V BA	ABR	Repl. by AUBERT,BE 06G		
Γ_L/Γ in $B^+ o\omega ho^+$						
VALUE	DOCUMENT ID		TECN	COMMENT		
$0.90 \pm 0.05 \pm 0.03$	AUBERT	09н Е	BABR	R $e^+e^- o arGamma(4S)$		
• • • We do not use the fol	lowing data for a	verages,	fits,	limits, etc. • • •		
$0.82 \pm 0.11 \pm 0.02$	AUBERT,B	06T E	BABR	Repl. by AUBERT 09H		
$0.88^{+0.12}_{-0.15}\pm0.03$	AUBERT	050 E	BABR	R Repl. by AUBERT,B 06T		
Γ_L/Γ in $B^+ \to p \overline{p} K^*(892)^+$						
VALUE	<u>DOCUME</u>	ENT ID		TECN COMMENT		
$0.32 \pm 0.17 \pm 0.09$	CHEN	(08C	BELL $e^+e^- \rightarrow \Upsilon(4S)$		

CP VIOLATION

 ${\it A}_{CP}$ is defined as

$$\frac{B(B^- \to \overline{f}) - B(B^+ \to f)}{B(B^- \to \overline{f}) + B(B^+ \to f)},$$

the *CP*-violation charge asymmetry of exclusive B^- and B^+ decay.

$A_{CR}(R^+ \rightarrow I/\psi(1S)K^+)$

$ACP(B' \rightarrow J/\psi(15)N')$)		
VALUE	DOCUMENT ID	TECN	COMMENT
0.003 ± 0.006 OUR AVERA	GE Error include	es scale factor	of 1.8. See the ideogram
below.			
$0.0059 \pm 0.0036 \pm 0.0007$	ABAZOV	13M D0	$p\overline{p}$ at 1.96 TeV
$-0.0076\pm0.0050\pm0.0022$	SAKAI	10 BELL	$e^+e^- ightarrow~ \varUpsilon(4S)$
$0.09 \pm 0.07 \pm 0.02$	1 WEI	08 BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$0.030\ \pm0.014\ \pm0.010$	² AUBERT	05J BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$0.018 \pm 0.043 \pm 0.004$	³ BONVICINI	00 CLE2	$e^+e^- ightarrow ~ \varUpsilon(4S)$
• • • We do not use the follow	ing data for avera	iges, fits, limit	s, etc. • • •
$0.0075 \pm 0.0061 \pm 0.0030$	⁴ ABAZOV	080 D0	Repl. by ABAZOV 13M
$0.03 \pm 0.015 \pm 0.006$	AUBERT	04P BABR	Repl. by AUBERT 05J
$-0.026 \pm 0.022 \pm 0.017$	ABE	03B BELL	Repl. by SAKAI 10
$0.003 \pm 0.030 \pm 0.004$	AUBERT	02F BABR	Repl. by AUBERT 04P

 $^{4 \}text{ Uses } J/\psi \rightarrow \mu^+\mu^- \text{ decay.}$

$$A_{CP}(B^+ \rightarrow J/\psi(1S)K^+)$$

$A_{CP}(B^+ \rightarrow J/\psi(1S)\pi^+)$

	=		
$VALUE$ (units 10^{-2})	DOCUMENT ID	TECN	COMMENT
0.1± 2.8 OUR AVERAGE	Error includes scale factor	or of 1.2.	
$-4.2\pm4.4\pm0.9$	ABAZOV 13N	л D0	$p\overline{p}$ at 1.96 TeV
$0.5 \pm \ 2.7 \pm 1.1$	¹ AAIJ 12A	C LHCB	pp at 7 TeV
$12.3 \pm 8.5 \pm 0.4$	AUBERT 04F	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$-2.3\pm16.4\pm1.5$	ABE 03E	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$

• • • We do not use the following data for averages, fits, limits, etc. • • •

$$-$$
 9 \pm 8 \pm 3 $$ 2 ABAZOV 080 D0 Repl. by ABAZOV 13M 1 \pm 22 \pm 1 AUBERT 02F BABR Repl. by AUBERT 04P

 1 Uses $A_{CP}(B^+\to J/\psi K^+)=0.001\pm 0.007$ to extract production asymmetry. 2 Uses $J/\psi\to ~\mu^+\mu^-$ decay.

$A_{CP}(B^+ \rightarrow J/\psi \rho^+)$

VALUE	DOCUMENT ID	TECN	COMMENT
$-0.11\pm0.12\pm0.08$	AUBERT	07AC BABR	$e^+e^- ightarrow \gamma(4S)$

 $^{^{1}}$ Uses $B^{+} \rightarrow J/\psi K^{+}$, where $J/\psi \rightarrow p \overline{p}$.

 $^{^2}$ The result reported corresponds to $-A_{CP}$.

 $^{^3}$ A +0.3% correction is applied due to a slightly higher reconstruction efficiency for the positive kaons.

$A_{CP}(B^+ o J/\psi K^*(892))$ VALUE	DOCUMENT ID		<u>TE</u> CN	<u>COMMENT</u>
$-0.048\pm0.029\pm0.016$				$e^+e^- ightarrow \gamma(4S)$
¹ The result reported correspo	onds to $-A_{CP}$.			,
$A_{CP}(B^+ \rightarrow \eta_c K^+)$				
/ALUE	DOCUMENT ID		TECN	COMMENT
-0.02 ± 0.10 OUR AVERAGE		ale fact	tor of 2.	0.
$0.046 \pm 0.057 \pm 0.007$				pp at 7 TeV
$-0.16 \pm 0.08 \pm 0.02$	¹ WEI	80	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$
1 Uses $B^{+} ightarrow \eta_{c} K^{+}$, where	$ \theta : \eta_{C} \to p\overline{p}. $			
$A_{CP}(B^+ \rightarrow \psi(2S)\pi^+)$				
/ALUE	DOCUMENT ID		TECN	COMMENT
0.03 ± 0.06 OUR AVERAGE	1			
$0.048 \pm 0.090 \pm 0.011$				pp at 7 TeV
$0.022 \pm 0.085 \pm 0.016$				$e^+e^- o ag{7}(4S)$
¹ Uses $A_{CP}(B^+ \to J/\psi K^+)$	$^{-}) = 0.001 \pm 0.007$	to ext	ract pro	duction asymmetry.
$A_{CP}(B^+ \rightarrow \psi(2S)K^+)$				
ALUE	DOCUMENT ID		TECN	COMMENT
-0.024±0.023 OUR AVERAGE		10	LUCD	. 7 . 7 . 7
$-0.002 \pm 0.123 \pm 0.012$	¹ AAIJ	13AU		pp at 7 TeV
$0.052 \pm 0.059 \pm 0.020$	AUBERT			$e^+e^- \rightarrow \Upsilon(4S)$
$-0.042 \pm 0.020 \pm 0.017$	ABE			$e^+e^- \rightarrow \Upsilon(4S)$
$0.02 \pm 0.091 \pm 0.01$				$e^+e^- ightarrow \gamma(4S)$
• We do not use the follow				
$0.024\pm0.014\pm0.008$	¹ AAIJ	12AC	LHCB	Repl. by AAIJ 13AU
¹ Uses $A_{CP}(B^+ \rightarrow J/\psi K^+)$ ² A +0.3% correction is apple positive kaons.				
$A_{CP}(B^+ \rightarrow \psi(2S)K^*(89))$	(2) ⁺)			
/ALUE	DOCUMENT ID			
$0.077 \pm 0.207 \pm 0.051$	¹ AUBERT	05 J	BABR	$e^+e^- ightarrow \ \varUpsilon(4S)$
¹ The result reported correspo	onds to $-A_{CP}$.			
$A_{CP}(B^+ \rightarrow \chi_{c1}(1P)\pi^+)$				
/ALUE	<u>DOCUMENT ID</u>			
$0.07 \pm 0.18 \pm 0.02$	KUMAR	06	BELL	$e^+e^- \rightarrow \Upsilon(4S)$
$A_{CP}(B^+ \rightarrow \chi_{c0} K^+)$ VALUE	<u>DOCUMENT ID</u>		TECN	COMMENT
-0.20 ±0.18 OUR AVERAGE				. See the ideogram
مامير		11:	BABR	$e^+e^- ightarrow ~ \gamma(4S)$
pelow. -0.96 ±0.37±0.04	LEES	111		, ,
	LEES AUBERT		BABR	$e^+e^- ightarrow \gamma(45)$
$-0.96 \pm 0.37 \pm 0.04$		08AI		$e^+e^- \rightarrow \Upsilon(4S)$ $e^+e^- \rightarrow \Upsilon(4S)$

$A_{CP}(B^+ \rightarrow \chi_{c1}K^+)$

VALUE	DOCUMENT ID		TECN	COMMENT
-0.009 ± 0.033 OUR AVERAGE				
$-0.01\ \pm0.03\ \pm0.02$	KUMAR	06	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$-0.003\pm0.076\pm0.017$	$^{ m 1}$ AUBERT	05 J	BABR	$e^+e^- ightarrow \gamma(4S)$
1-, , , ,	1 . 4			

 $^{^{1}}$ The result reported corresponds to $-A_{CP}$.

$A_{CP}(B^+ \to \chi_{c1} K^*(892)^+)$

<u>VALUE</u>	<u>DOCUMENT ID</u>		TECN	COMMENT
0.471±0.378±0.268	¹ AUBERT	05J	BABR	$e^+e^- \rightarrow \Upsilon(4S)$

 $^{^{1}\,\}mathrm{The}$ result reported corresponds to $-\mathrm{A}_{CP}.$

$A_{CP}(B^+ \rightarrow \overline{D}{}^0\pi^+)$

<u>VALUE</u>	DOCUMENT ID		TECN	COMMENT
-0.007±0.007 OUR AVERAGE				
$-0.006\pm0.005\pm0.010$	¹ AAIJ	13AE	LHCB	pp at 7 TeV
-0.008 ± 0.008	ABE	06	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$
1 Uses $B^\pm o [K^\pm \pi^\mp \pi^+ \pi^-]$	$\int_D h^{\pm}$ mode.			

$A_{CP}(B^+\to~D_{CP(+1)}\pi^+)$

VALUE	DOCUMENT ID		TECN	COMMENT
0.035 ± 0.024	ABE	06	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$

$A_{CP}(B^+ \rightarrow D_{CP(-1)}\pi^+)$

VALUE	DOCUMENT ID		TECN	COMMENT
0.017 ± 0.026	ABE	06	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$

HTTP://PDG.LBL.GOV Page 147 Created: 8/21/2014 12:56

A _{CP} ([<i>K</i> Ŧ	π^{\pm}	π^+	π^{-}	$ D\pi^+\rangle$
$\neg CP$	[, 1	71	·/("	π	$D^{\mathcal{H}^{-1}}$

 VALUE
 DOCUMENT ID
 TECN
 COMMENT

 0.13±0.10
 AAIJ
 13AE LHCB
 p p at 7 TeV

$A_{CP}(B^+ \rightarrow \overline{D}{}^0K^+)$

VALUEDOCUMENT IDTECNCOMMENT 0.01 ± 0.05 OUR AVERAGEError includes scale factor of 2.1. $-0.029 \pm 0.020 \pm 0.018$ 1 AAIJ13AE LHCBpp at 7 TeV 0.066 ± 0.036 ABE06 BELL $e^+e^- \rightarrow \Upsilon(4S)$

• • We do not use the following data for averages, fits, limits, etc.

¹Uses $B^{\pm} \rightarrow [K^{\pm}\pi^{\mp}\pi^{+}\pi^{-}]_{D}h^{\pm}$ mode.

$A_{CP}([K^{\mp}\pi^{\pm}\pi^{+}\pi^{-}]_{D}K^{+})$

VALUEDOCUMENT IDTECNCOMMENT−0.42±0.22AAIJ13AE LHCBp p at 7 TeV

$r_B(B^+ \rightarrow D^0 K^+)$

 r_B and δ_B are the amplitude ratio and relative strong phase between the amplitudes of $A(B^+ \to D^0 K^+)$ and $A(B^+ \to \overline{D}^0 K^+)$,

TECN

VALUE CL% 0.096±0.008 OUR AVERAGE 0.007±0.011

DOCUMENT ID

• • • We do not use the following data for averages, fits, limits, etc. • •

4,6 AIHARA 0.145 + 0.030 + 0.01512 BELL ⁷ LEES < 0.13 11D BABR $e^+e^- \rightarrow \Upsilon(4S)$ ⁸ DEL-AMO-SA...10F BABR Repl. by LEES 13B $0.096 \pm 0.029 \pm 0.006$ $0.095 ^{\,+\, 0.051}_{\,-\, 0.041}$ ⁹ DEL-AMO-SA...10H BABR Repl. by LEES 13B ¹⁰ AUBERT $0.086 \pm 0.032 \pm 0.015$ 08AL BABR Repl. by DEL-AMO-SANCHEZ 10F $e^+e^- \rightarrow \Upsilon(4S)$ < 0.1990 **HORII** BELL $0.159 ^{\,+\, 0.054}_{\,-\, 0.050} \pm 0.050$ ¹¹ POLUEKTOV 06 BELL Repl. by POLUEKTOV 10 ¹² AUBERT,B 05Y BABR Repl. by AUBERT 08AL $0.12 \pm 0.08 \pm 0.05$

 $^{^2}$ Corresponds to 90% confidence range $-0.15 < A_{CP} < 0.16$.

 $^{^3}$ Corresponds to 90% confidence range $-0.07 < A_{CP} < 0.15$.

¹Uses $B^{\pm} \rightarrow [K^{\pm}\pi^{\mp}\pi^{+}\pi^{-}]_{D}h^{\pm}$ mode.

²Reports combination of published measurements using GGSZ, GLW, and ADS methods.

³Reports combined statistical and systematic uncertainties.

⁴ Uses binned Dalitz plot of $\overline{D}{}^0 \to K_S^0 \pi^+ \pi^-$ decays from $B^+ \to \overline{D}{}^0 K^+$. Measurement of strong phases in $\overline{D}{}^0 \to K_S^0 \pi^+ \pi^-$ Dalitz plot from LIBBY 10 is used as input.

⁵ Uses Dalitz plot analysis of $\overline{D^0} \to K_S^0 \pi^+ \pi^-$ decays from $B^+ \to D^0 K^+$ modes. The corresponding two standard deviation interval is 0.084 $< r_B <$ 0.239.

 $^{
m 6}$ We combined the systematics in quadrature. The authors report separately the contribution to the systematic uncertainty due to the uncertainty on the bin-averaged strong phase difference between D^0 and \overline{D}^0 amplitudes.

phase difference between D and D and D are D uses decays of neutral D to $K^-\pi^+\pi^0$.

8 Uses Dalitz plot analysis of $\overline{D}{}^0 \to K^0_S \pi^+\pi^-$, $K^0_S K^+K^-$ decays from $B^+ \to 0.037$ $D^{(*)}K^{(*)+}$ modes. The corresponding two standard deviation interval is 0.037 < $r_B < 0.155$.

 9 Uses the Cabibbo suppressed decay of $B^+ \to \overline{D}\, K^+$ followed by $\overline{D} \to K^- \pi^+$. 10 Uses Dalitz plot analysis of $\overline{D}{}^0 \to K^0_S \pi^+ \pi^-$ and $\overline{D}{}^0 \to K^0_S K^+ K^-$ decays coming

from $B^\pm \to D^{(*)} K^{(*)\pm}$ modes. 11 Uses a Dalitz plot analysis of the $\overline{D}{}^0 \to K^0_S \pi^+ \pi^-$ decays; Combines the DK^+ , D^*K^+

and DK^{*+} modes. 12 Uses a Dalitz analysis of neutral D decays to $K^0_S\pi^+\pi^-$ in the processes B^\pm \to $D^{(*)}K^{\pm}$, $D^* \rightarrow D\pi^0$, $D\gamma$.

$\delta_B(B^+ \to D^0 K^+)$

104 $\pm 45 \begin{array}{c} +23 \\ -32 \end{array}$

VALU	E (°)		DOCUMENT ID		TECN	COMMENT	
115	±13	OUR A	/ERAGE				
				13 B	BABR	$e^+e^- ightarrow \ \varUpsilon(4S)$	
137	$+35 \\ -46$		2,3 AAIJ	12AG	LHCB	pp at 7 TeV	
136.7	$+13.0 \\ -15.8$	±23.2	⁴ POLUEKTOV	10	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$	
• • •	• We d	o not use	e the following data	for a	verages,	fits, limits, etc. • • •	
129.9	± 15.0	± 6.0	^{3,5} AIHARA	12	BELL	$e^+e^- ightarrow \gamma(4S)$	
119	$^{+19}_{-20}$	± 4	⁶ DEL-AMO-SA.	.10F	BABR	Repl. by LEES 13B	
109	$+27 \\ -30$	± 8	⁷ AUBERT	08AL	BABR	Repl. by DEL-AMO-SANCHEZ 10F	
145.7	+19.0	± 23.1	⁸ POLUEKTOV	06	BELL	Repl. by POLUEKTOV 10	

¹ Reports combination of published measurements using GGSZ, GLW, and ADS methods.

05Y BABR Repl. by AUBERT 08AL

Created: 8/21/2014 12:56

²Reports combined statistical and systematic uncertainties.

⁹ AUBERT,B

of strong phases in $\overline{D}{}^0 \to K_S^0 \pi^+ \pi^-$ Dalitz plot from LIBBY 10 is used as input. ⁴ Uses Dalitz plot analysis of $\overline{D}{}^0 \to K_S^0 \pi^+ \pi^-$ decays from $B^+ \to \overline{D}{}^0 K^+$ modes. The corresponding two standard deviation interval is $102.2^{\circ} < \delta_B < 162.3^{\circ}$.

⁵We combined the systematics in quadrature. The authors report separately the contribution to the systematic uncertainty due to the uncertainty on the bin-averaged strong

phase difference between D^0 and $\overline{D}{}^0$ amplitudes. 6 Uses Dalitz plot analysis of $\overline{D}{}^0 \to \kappa_S^0 \pi^+ \pi^-$, $\kappa_S^0 \kappa^+ \kappa^-$ decays from $B^+ \to 0$ $D^{(*)}K^{(*)+}$ modes. The corresponding two standard deviation interval is 75 $^\circ$ < $\delta_B < 157^{\circ}$.

 7 Uses Dalitz plot analysis of $\overline{D}{}^0 o \ K_{\ \ S}^0 \, \pi^+ \, \pi^-$ and $\overline{D}{}^0 o \ K_{\ \ S}^0 \, K^+ \, K^-$ decays coming

8 from $B^{\pm} \to D^{(*)} K^{(*)\pm}$ modes. Uses a Dalitz plot analysis of the $\overline{D}{}^0 \to K^0_S \pi^+ \pi^-$ decays; Combines the DK^+ , D^*K^+

9 and DK^{*+} modes. Uses a Dalitz analysis of neutral D decays to $K_S^0\pi^+\pi^-$ in the processes B^\pm \to $D^{(*)}K^{\pm}$, $D^* \rightarrow D\pi^0$, $D\gamma$.

 $^{^3}$ Uses binned Dalitz plot of $\overline{D}{}^0 o \ \overset{\circ}{\mathcal{K}_S^0} \, \pi^+ \, \pi^-$ decays from $B^+ o \ \overline{D}{}^0 \, \mathcal{K}^+$. Measurement

$r_R(B^+ \to \overline{D}{}^0K^{*+})$

 ${\bf r}_B$ and δ_B are the amplitude ratio and relative strong phase between the amplitudes of $A_{CP}(B^+ o D^0K^{*+})$ and $A_{CP}(B^+ o \overline D^0K^{*+})$,

VALUE	DOCUMENT ID		COMMENT
0.17 ± 0.11 OUR AVERAGE	Error includes scale factor	or of 2.3.	
$0.143^{igoplus 0.048}_{-0.049}$	¹ LEES 13B	BABR	$\mathrm{e^+e^-} ightarrow ~ \varUpsilon(4S)$
$0.564 ^{+ 0.216}_{- 0.155} \pm 0.093$	² POLUEKTOV 06	BELL	$e^+e^- ightarrow \ \varUpsilon(4S)$
• • • We do not use the following	ng data for averages, fits	, limits, e	etc. • • •
$0.166^{+0.073}_{-0.069}$	³ DEL-AMO-SA10F	BABR	Repl. by LEES 13B
0.31 ± 0.07	⁴ AUBERT 09A	J BABR	Repl. by LEES 13B
$0.181 ^{+ 0.088}_{- 0.108} \pm 0.042$	⁵ AUBERT 08A	L BABR	Repl. by AUBERT 09AJ

 $^{^1}$ Reports combination of published measurements using GGSZ, GLW, and ADS methods. 2 Uses a Dalitz plot analysis of the $\overline{D}{}^0 \to \kappa_S^0 \pi^+ \pi^-$ decays; Combines the $D \kappa^+$, $D^* \kappa^+$ and DK*+ modes. 3 DEL-AMO-SANCHEZ 10F reports ${\bf r}_B\cdot{\bf k}=0.149^{+0.066}_{-0.062}$ for ${\bf k}=0.9.$

$\delta_B(B^+ \rightarrow D^0 K^{*+})$

VALUE (°)	DOCUMENT ID		COMMENT
155 ±70 OUR AVERAGE			
101 ±43	¹ LEES 13B	BABR	$e^+e^- ightarrow \gamma(4S)$
$242.6^{+20.2}_{-23.2}\pm49.4$	² POLUEKTOV 06	BELL	$e^+e^- ightarrow \Upsilon(4S)$
• • • We do not use the follow	ving data for averages, fits,	limits, e	tc. • • •
111 ±32	DEL-AMO-SA10F	BABR	Repl. by LEES 13B
$104 \begin{array}{c} +39 \\ -37 \end{array} \pm 18$	³ AUBERT 08AL	BABR	Repl. by LEES 13B

 $^{^1}$ Reports combination of published measurements using GGSZ, GLW, and ADS methods. 2 Uses a Dalitz plot analysis of the $\overline D{}^0\to \ \kappa_S^0 \pi^+\pi^-$ decays; Combines the $D\,\kappa^+$, $D^*\,\kappa^+$

$A_{CP}(B^+ \rightarrow [K^-\pi^+]_D K^+)$

VALUE	DOCUMENT ID		TECN	COMMENT
-0.58 ± 0.21 OUR AVERAGE				
$-0.82 \pm 0.44 \pm 0.09$	AALTONEN	11 AJ	CDF	$p\overline{p}$ at 1.96 TeV
$-0.39 {}^{+0.26}_{-0.28} {}^{+0.04}_{-0.03}$	HORII	11	BELL	$e^+e^- ightarrow \Upsilon(4S)$
$-0.86\!\pm\!0.47 {+0.12\atop -0.16}$	DEL-AMO-SA.	.10н	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
• • • We do not use the following d	ata for averages	, fits,	limits, e	tc. • • •
$-0.1 \ ^{+0.8}_{-1.0} \ \pm 0.4$	HORII	80	BELL	Repl. by HORII 11
$+0.88^{\color{red}+0.77}_{\color{red}-0.62}\!\pm\!0.06$	SAIGO	05	BELL	Repl. by HORII 08

HTTP://PDG.LBL.GOV

Page 150

⁴ Obtained by combining the GLW and ADS methods. The 2-sigma range corresponds to

 $^{\ \, \}stackrel{[0.17,\ 0.43]}{\text{5 Uses Dalitz plot analysis of }} \, \overline{D}{}^0 \rightarrow \ \, \mathcal{K}^0_S \, \pi^+ \pi^- \text{ and }} \, \overline{D}{}^0 \rightarrow \ \, \mathcal{K}^0_S \, \mathcal{K}^+ \, \mathcal{K}^- \text{ decays coming}$ from $B^{\pm} \rightarrow D^{(*)} K^{(*)\pm}$ modes.

and DK^{*+} modes. Uses Dalitz plot analysis of $\overline{D}{}^0 \to K^0_S \pi^+ \pi^-$ and $\overline{D}{}^0 \to K^0_S K^+ K^-$ decays coming from $B^{\pm} \rightarrow D^{(*)} K^{(*)\pm}$ modes.

$A_{CP}(B^+ \to [K^-\pi^+\pi^0]_D K$	•		TECH	COMMENT	
<u>VALUE</u> 0.41±0.30±0.05	<u>DOCUMENT ID</u> NAYAK				Υ(4S)
		10			(10)
$A_{CP}(B^+ \rightarrow [K^-\pi^+]_{\overline{D}}K^*(8)$	DOCUMENT ID		TECN	COMMENT	
-0.34±0.43±0.16	AUBERT				$\Upsilon(4S)$
• • • We do not use the following					(-)
$-0.22\pm0.61\pm0.17$	AUBERT,B	05∨	BABR	Repl. by A	UBERT 09AJ
$A_{CP}(B^+ \rightarrow [K^-\pi^+]_D\pi^+)$					
<u>VALUE</u> 0.00±0.09 OUR AVERAGE	DOCUMENT ID		<u>TECN</u>	COMMENT	
$0.13 \pm 0.25 \pm 0.02$	AALTONEN	11 AJ	CDF	p p at 1.96	TeV
$-0.04\pm0.11^{+0.02}_{-0.01}$	HORII			$e^+e^- \rightarrow$	
-0.01 $0.03 \pm 0.17 \pm 0.04$	DEL-AMO-SA				` ,
 • • We do not use the following 					(10)
$-0.02^{+0.15}_{-0.16}{\pm}0.04$	HORII	80	BELL	Repl. by H	IORII 11
$+0.30^{\displaystyle +0.29}_{\displaystyle -0.25}\!\pm\!0.06$	SAIGO	05	BELL	Repl. by H	IORII 08
$A_{CP}(B^+ \to [K^-\pi^+\pi^0]_D\pi^-$	+ }				
VALUE	DOCUMENT ID		TECN	COMMENT	
$0.16 \pm 0.27 {+0.03 \atop -0.04}$	NAYAK	13	BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$A_{CP}(B^+ \rightarrow [K^-\pi^+]_{(D\pi)}\pi^-$	+)				
VALUE	DOCUMENT ID		TECN	COMMENT	
$-0.09\pm0.27\pm0.05$	DEL-AMO-SA				$\Upsilon(4S)$
$A_{CP}(B^+ \rightarrow [K^-\pi^+]_{(D\gamma)}\pi^-$	+1				
$VALUE \longrightarrow [K $	DOCUMENT ID		TECN	COMMENT	
-0.65±0.55±0.22	DEL-AMO-SA				$\Upsilon(4S)$
					,
$A_{CP}(B^+ \rightarrow [K^-\pi^+]_{(D\pi)}K)$ VALUE	DOCUMENT ID		TECN	COMMENT	
0.77±0.35±0.12	DEL-AMO-SA				$\Upsilon(4S)$
A (P+ . [V+1 V					,
$A_{CP}(B^+ \rightarrow [K^-\pi^+]_{(D\gamma)}K)$	DOCUMENT ID		TECN	COMMENT	
					20(4.0)
$0.36 \pm 0.94 ^{+0.25}_{-0.41}$	DEL-AMO-SA	10H	BABK	e ' e →	7 (43)
$A_{CP}(B^+ \to [\pi^+\pi^-\pi^0]_D K^-$	=				
VALUE	1 AUDEDT				
-0.02±0.15±0.03 • • • We do not use the following	¹ AUBERT data for average				1 (45)
$-0.02\pm0.16\pm0.03$	AUBERT,B				UBERT 07BJ
1 Uses a Dalitz plot analysis of $0.06 < r_{B} < 0.78, -30^{\circ} < \gamma < 0.78$	$D^0 ightarrow \pi^+\pi^-\pi^ < 76^\circ$, and -27°	0 . Also $< \delta < \delta$	so repor < 78°.	ts the one-s	igma regions:
HTTP://PDG.LBL.GOV	Page 151			ed: 8/21/	2014 12:56
	<u> </u>			, ,	

$A_{CP}(B^+ \rightarrow D_{CP(+1)}K^+)$

VALUE	DOCUMENT ID		TECN	COMMENT
0.170±0.033 OUR AVERAGE	Error includes sca	le fact	or of 1.2	2.
$0.145 \pm 0.032 \pm 0.010$	$^{ m 1}$ AAIJ	12M	LHCB	pp at 7 TeV
$0.39\ \pm0.17\ \pm0.04$	AALTONEN	10A	CDF	$p\overline{p}$ at 1.96 TeV
$0.25\ \pm0.06\ \pm0.02$	² DEL-AMO-SA	10 G	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$0.06\ \pm0.14\ \pm0.05$	ABE	06	BELL	$e^+e^- ightarrow \gamma(4S)$
• • • We do not use the follow	ing data for averag	ges, fit	s, limits,	etc. • • •
$0.27 \pm 0.09 \pm 0.04$	AUBERT	08AA	BABR	Repl. by DEL-AMO- SANCHEZ 10G
$0.35\ \pm0.13\ \pm0.04$	AUBERT	06 J	BABR	Repl. by AUBERT 08AA
$0.07 \pm 0.17 \pm 0.06$	AUBERT	04N	BABR	Repl. by AUBERT 06J
$0.29\ \pm0.26\ \pm0.05$	³ ABE	03 D	BELL	Repl. by SWAIN 03
$0.06 \pm 0.19 \pm 0.04$	⁴ SWAIN	03	BELL	Repl. by ABE 06
$^{ m 1}$ AAIJ 12M reports an evide	nce of direct <i>CP</i> v	iolatio	n in \mathcal{B}^\pm	$^{\pm} ightarrow ~D {\it K}^{\pm}$ decays with a

total significance of 5.8 σ .

$A_{ADS}(B^+ \rightarrow DK^+)$

$$\begin{split} &A_{ADS}(B^+ \to DK^+) = \frac{(R_K^- - R_K^+)}{(R_K^- + R_K^+)} \text{ where} \\ &R_K^- = \Gamma(B^- \to [K^+ \pi^-]_D K^-) \ / \ \Gamma(B^- \to [K^- \pi^+]_D K^-) \text{ and} \\ &R_K^+ = \Gamma(B^+ \to [K^- \pi^+]_D K^+) \ / \ \Gamma(B^+ \to [K^+ \pi^-]_D K^+) \end{split}$$

 $-0.52\pm0.15\pm0.02$

DOCUMENT IDTECNCOMMENTAAIJ12MLHCBp p at 7 TeV

$A_{ADS}(B^+ \rightarrow D\pi^+)$

$$A_{ADS}(B^{+} \to D\pi^{+}) = \frac{(R_{\pi}^{-} - R_{\pi}^{+})}{(R_{\pi}^{-} + R_{\pi}^{+})} \text{ where}$$

$$R_{\pi}^{-} = \Gamma(B^{-} \to [K^{+}\pi^{-}]_{D}\pi^{-}) / \Gamma(B^{-} \to [K^{-}\pi^{+}]_{D}\pi^{-}) \text{ and}$$

$$R_{\pi}^{+} = \Gamma(B^{+} \to [K^{-}\pi^{+}]_{D}\pi^{+}) / \Gamma(B^{+} \to [K^{+}\pi^{-}]_{D}\pi^{+})$$

 $0.143 \pm 0.062 \pm 0.011$

12M LHCB pp at 7 TeV

$A_{CP}(B^+ \rightarrow D_{CP(-1)}K^+)$

VALUE	<u>DOCUMENT ID</u>		<u>TECN</u>	<u>COMMENT</u>
-0.10 ± 0.07 OUR AVERAGE				
$-0.09\!\pm\!0.07\!\pm\!0.02$	DEL-AMO-SA.	.10G	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$-0.12\!\pm\!0.14\!\pm\!0.05$	ABE	06	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$
ullet $ullet$ We do not use the following	data for averag	es, fit	s, limits,	etc. • • •
$-0.09\!\pm\!0.09\!\pm\!0.02$	AUBERT	08AA	BABR	Repl. by DEL-AMO- SANCHEZ 10G
$-0.06\pm0.13\pm0.04$	AUBERT	06J	BABR	Repl. by AUBERT 08AA
	ABE	03 D	BELL	Repl. by SWAIN 03
$-0.19\pm0.17\pm0.05$	SWAIN	03	BELL	Repl. by ABE 06

HTTP://PDG.LBL.GOV

Page 152

² Reports the first evidence for direct *CP* violation in $B \rightarrow DK$ decays with 3.6 standard

 $^{^{3}}$ Corresponds to 90% confidence range $-0.14 < A_{CP} < 0.73$.

 $^{^4}$ Corresponds to 90% confidence range $-0.26 < A_{CP} < 0.38$.

 $A_{CP}(B^+ \rightarrow \overline{D}^{*0}\pi^+)$

VALUE -0.014 ± 0.015 ABE

 $A_{CP}(B^+ \to (D^*_{CP(+1)})^0 \pi^+)$

DOCUMENT ID BELL $e^+e^- \rightarrow \Upsilon(4S)$ -0.021 ± 0.045 ABE

 $A_{CP}(B^+ \to (D_{CP(-1)}^*)^0 \pi^+)$

DOCUMENT ID BELL $e^+e^- \rightarrow \gamma(4S)$ -0.090 ± 0.051 ABE 06

 $A_{CP}(B^+ \rightarrow D^{*0}K^+)$

DOCUMENT ID TECN COMMENT -0.07 ± 0.04 OUR AVERAGE 08BF BABR $e^+e^- \rightarrow \Upsilon(4S)$ $-0.06 \pm 0.04 \pm 0.01$ **AUBERT** BELL $e^+e^- \rightarrow \Upsilon(4S)$ -0.089 ± 0.086 ABE

 $r_{R}^{*}(B^{+} \rightarrow D^{*0}K^{+})$

 ${
m r}_{B}^{*}$ and ${
m \delta}_{B}^{*}$ are the amplitude ratio and relative strong phase between the amplitudes of $A(B^+ \to D^{*0}K^+)$ and $A(B^+ \to \overline{D}^{*0}K^+)$,

VALUE DOCUMENT ID TECN COMMENT

 $0.114^{+0.023}_{-0.040}$ OUR AVERAGE Error includes scale factor of 1.2

 $0.106 ^{\,+\, 0.019}_{\,-\, 0.036}$ 13B BABR $e^+e^- \rightarrow \Upsilon(4S)$ ¹ LEES

 $0.196 {}^{+\, 0.072\, +\, 0.064}_{-\, 0.069\, -\, 0.017}$ BELL $e^+e^- \rightarrow \Upsilon(4S)$ ² POLUEKTOV 10

• We do not use the following data for averages, fits, limits, etc.

 $0.133^{\,+\,0.042}_{\,-\,0.039}\,{\pm}\,0.013$ ³ DEL-AMO-SA..10F BABR Repl. by LEES 13B

 $0.096 ^{\,+\, 0.035}_{\,-\, 0.051}$ ⁴ DEL-AMO-SA..10H BABR Repl. by LEES 13B

⁵ AUBERT $0.135 \pm 0.050 \pm 0.012$ 08AL BABR Repl. by DEL-AMO-SANCHEZ 10F

 $0.175 ^{\,+\, 0.108}_{\,-\, 0.099} \pm 0.050$ ⁶ POLUEKTOV 06 Repl. by POLUEKTOV 10 BELL ⁷ AUBERT,B 05Y BABR Repl. by AUBERT 08AL $0.17 \pm 0.10 \pm 0.04$

The corresponding two standard deviation interval is 0.061 $< r_B^* <$ 0.271.

 $^{^{1}}$ Corresponds to 90% confidence range $-0.62 < A_{CP} < 0.18$.

 $^{^2}$ Corresponds to 90% confidence range $-0.47 < A_{CP} < 0.11$.

 $^{^{}m 1}$ Reports combination of published measurements using GGSZ, GLW, and ADS methods.

² Uses Dalitz plot analysis of $\overline{D}{}^0 \to K^0_S \pi^+ \pi^-$ decays from $B^+ \to D^{*0} K^+$ modes.

³Uses Dalitz plot analysis of $\overline{D}{}^0 \to K_S^0 \pi^+ \pi^-$, $K_S^0 K^+ K^-$ decays from $B^+ \to K_S^0 \pi^+ \pi^ D^{(*)}K^{(*)+}$ modes. The corresponding two standard deviation interval is 0.049 <

⁴ Uses the Cabibbo suppressed decay of $B^+ \to \overline{D}^* K^+$ followed by $\overline{D}^* \to \overline{D} \pi^0$ or $\overline{D} \gamma$, and $\overline{D} \rightarrow K^- \pi^+$.

⁵ Uses Dalitz plot analysis of $\overline{D}^0 \to K_S^0 \pi^+ \pi^-$ and $\overline{D}^0 \to K_S^0 K^+ K^-$ decays coming from $B^\pm \to D^{(*)} K^{(*)} \pm \text{ modes}$

6 from $B^{\pm} \to D^{(*)} K^{(*)\pm}$ modes. Ouses a Dalitz plot analysis of the $\overline{D}{}^0 \to K_S^0 \pi^+ \pi^-$ decays; Combines the DK^+ , D^*K^+ and DK^{*+} modes.

7 Uses a Dalitz analysis of neutral D decays to $K_S^0 \pi^+ \pi^-$ in the processes $B^\pm \to D^{(*)} K^\pm$, $D^* \to D \pi^0$, $D \gamma$.

$\delta_B^*(B^+\to~D^{*0}K^+)$

VALUE (°) DOCUMENT ID TECN COMMENT

310 $^{+22}_{-28}$ OUR AVERAGE Error includes scale factor of 1.3.

294
 $^{+21}_{-31}$ 1 LEES 13 BABR e $^{+}$ $^{-}$ \rightarrow $^{-}$ $^{-}$ $^{-}$ $^{-}$ $^{-}$ $^{-}$

$$341.9^{+18.0}_{-19.6}\pm23.1$$
 ² POLUEKTOV 10 BELL $e^+e^-\to \Upsilon(4S)$

ullet ullet We do not use the following data for averages, fits, limits, etc. ullet ullet

278
$$\pm$$
21 \pm 6 3 DEL-AMO-SA..10F BABR Repl. by LEES 13B

297
$$^{+27}_{-29}$$
 \pm 6.4 4 AUBERT 08AL BABR Repl. by DEL-AMO-SANCHEZ 10F

$$302.0^{+33.8}_{-35.1}\pm23.7$$
 ⁵ POLUEKTOV 06 BELL Repl. by POLUEKTOV 10

296
$$\pm$$
41 $^{+20}_{-19}$ 6 AUBERT,B 0 5Y BABR Repl. by AUBERT 08AL

⁴ Uses Dalitz plot analysis of $\overline{D}{}^0 \to K_S^0 \pi^+ \pi^-$ and $\overline{D}{}^0 \to K_S^0 K^+ K^-$ decays coming from $B^{\pm} \to D^{(*)} K^{(*)\pm}$ modes.

from $B^+ \to D^{(*)}K^{(*)}$ modes. ⁵ Uses a Dalitz plot analysis of the $\overline{D}{}^0 \to K^0_S \pi^+ \pi^-$ decays; Combines the DK^+ , D^*K^+ and DK^{*+} modes.

6 Uses a Dalitz analysis of neutral D decays to $K_S^0 \pi^+ \pi^-$ in the processes $B^\pm \to D^{(*)} K^\pm$, $D^* \to D\pi^0$, $D\gamma$.

$A_{CP}(B^+ \to D_{CP(+1)}^{*0}K^+)$

VALUE DOCUMENT ID TECN COMMENT -0.12 \pm 0.08 OUR AVERAGE -0.11 \pm 0.09 \pm 0.01 AUBERT 08BF BABR $e^+e^- \rightarrow \Upsilon(4S)$ -0.20 \pm 0.22 \pm 0.04 ABE 06 BELL $e^+e^- \rightarrow \Upsilon(4S)$ • • • We do not use the following data for averages, fits, limits, etc. • • •

$$-0.10\pm0.23 {+0.03 \atop -0.04}$$
 AUBERT 05N BABR Repl. by AUBERT 08BF

 $^{^{1}}$ Reports combination of published measurements using GGSZ, GLW, and ADS methods. We added 360° to the value of $(-66 ^{+21}_{-31})^{\circ}$ quoted by LEES 13B.

² Uses Dalitz plot analysis of $\overline{D}{}^0 \to K_S^0 \pi^+ \pi^-$ decays from $B^+ \to D^* K^+$ modes. The corresponding two standard deviation interval is 296.5° $< \delta_R^* < 382.7^\circ$.

³ Uses Dalitz plot analysis of $\overline{D}{}^0 \to K_S^0 \pi^+ \pi^-$, $K_S^0 K^+ K^-$ decays from $B^+ \to D^{(*)} K^{(*)+}$ modes. The corresponding two standard deviation interval is 236° < $\delta_R^* <$ 322°.

$A_{CP}(B^+ \rightarrow D_{CP(-1)}^*K^+)$	DOCUMENT ID		<u>COMMENT</u>
0.07±0.10 OUR AVERAGE			
$+0.06\pm0.10\pm0.02$	AUBERT		$R e^+e^- ightarrow \gamma(4S)$
$+0.13\pm0.30\pm0.08$	ABE	06 BELL	$e^+e^- o ag{7}(4S)$
$A_{CP}(B^+ \rightarrow D_{CP(+1)}K^*($			
VALUE	DOCUMENT ID		
+0.09±0.13±0.06 • • • We do not use the followi			$e^+e^- o ag{7}(4S)$
$-0.08\pm0.19\pm0.08$	AUBERT,B	050 BABI	R Repl. by AUBERT 09AJ
$A_{CP}(B^+ \rightarrow D_{CP(-1)}K^*($			
VALUE	DOCUMENT ID		
$-0.23\pm0.21\pm0.07$			$R e^+e^- ightarrow \gamma(4S)$
• • • We do not use the followi			
$-0.26 \pm 0.40 \pm 0.12$	AUBERT,B	05U BABI	R Repl. by AUBERT 09AJ
$A_{CP}(B^+ \rightarrow D_s^+ \phi)$			
VALUE	DOCUMENT ID		
$-0.01\pm0.41\pm0.03$	AAIJ	13R LHCE	3 pp at 7 TeV
$A_{CP}(B^+ \rightarrow D^{*+} \overline{D}^{*0})$	DOCUMENT ID	TECN	COLUMENT
VALUE	DOCUMENT ID		
$-0.15\pm0.11\pm0.02$	AUBERT,B	06A BABI	$e^+e^- ightarrow \gamma(4S)$
$A_{CP}(B^+ \rightarrow D^{*+} \overline{D}{}^0)$	DOCUMENT ID	TECN	<u>COMMENT</u>
$-0.06\pm0.13\pm0.02$			$e^+e^- ightarrow \gamma(4S)$
$A_{CP}(B^+ \to D^+ \overline{D}^{*0})$	AUDERT, D	OUA DADI	(43)
VALUE	DOCUMENT ID	TECN	COMMENT
$0.13 \pm 0.18 \pm 0.04$	AUBERT,B	06A BABI	R $e^+e^- ightarrow \gamma(4S)$
$A_{CP}(B^+ \rightarrow D^+ \overline{D}{}^0)$			
<u>VALUE</u> −0.03±0.07 OUR AVERAGE	DOCUMENT ID	<u>TECN</u>	COMMENT
$0.00\pm0.08\pm0.02$	ADACHI		$e^+e^- o ag{7}(4S)$
$-0.13\pm0.14\pm0.02$	AUBERT,B	06A BABI	$R e^+e^- ightarrow \gamma(4S)$
$A_{CP}(B^+ \rightarrow K_S^0 \pi^+)$	DOCUMENT ID	TECN	COMMENT
-0.017±0.016 OUR AVERAGE	DOCOMENT ID	, LCIV	COMMENT
$-0.022\pm0.025\pm0.010$	AAIJ 13	s LHCB	pp at 7 TeV
$-0.011\!\pm\!0.021\!\pm\!0.006$			$e^+e^- ightarrow \gamma(4S)$
	¹ AUBERT,BE 06	BABR	$e^+e^- \rightarrow \Upsilon(4S)$
0.18 ± 0.24	² CHEN 00	CLE2	$e^+e^- ightarrow ~ \varUpsilon(4S)$

• • • We do not use the following data for averages, fits, limits, etc. • • •

```
0.03 \pm 0.03 \pm 0.01
                                       LIN
                                                                BELL
                                                                          Repl. by DUH 13
                                     <sup>3</sup> AUBERT,BE
                                                          05E BABR Repl. by AUBERT, BE 06C
-0.09 \pm 0.05 \pm 0.01
                                     <sup>4</sup> CHAO
                                                          05A BELL
                                                                          Repl. by LIN 07
  0.05 \pm 0.05 \pm 0.01
                                     <sup>5</sup> AUBERT
-0.05 \pm 0.08 \pm 0.01
                                                          04M BABR Repl. by AUBERT, BE 05E
  0.07 \begin{array}{l} +0.09 \\ -0.08 \end{array} \begin{array}{l} +0.01 \\ -0.03 \end{array}
                                     <sup>6</sup> UNNO
                                                                BELL
                                                          03
                                                                          Repl. by CHAO 05A
                                     <sup>7</sup> CASEY
  0.46 \pm 0.15 \pm 0.02
                                                                BELL
                                                                          Repl. by UNNO 03
  0.098 \,{}^{+\, 0.430 \,+\, 0.020}_{-\, 0.343 \,-\, 0.063}
                                     8 ABF
                                                          01k BELL
                                                                          Repl. by CASEY 02
                                     9 AUBERT
                                                          01E BABR Repl. by AUBERT 04M
-0.21 \pm 0.18 \pm 0.03
  <sup>1</sup>Corresponds to 90% confidence range -0.092 < A_{CP} < 0.036.
  <sup>2</sup>Corresponds to 90% confidence range -0.22 < A_{CP} < 0.56.
  ^3 Corresponds to 90% confidence range -0.16 < A_{CP} < -0.02.
```

$A_{CP}(B^+ \rightarrow K^+\pi^0)$

0.037 ± 0.021 OUR AVERAGE			
$0.043 \pm 0.024 \pm 0.002$	DUH	13 BELL	$e^+e^- o ~ \varUpsilon(4S)$
$0.030\!\pm\!0.039\!\pm\!0.010$	AUBERT	07BC BABR	$e^+e^- ightarrow~ \varUpsilon(4S)$
-0.29 ± 0.23	¹ CHEN	00 CLE2	$e^+e^- o ~ \varUpsilon(4S)$
ullet $ullet$ We do not use the following	ng data for averag	ges, fits, limit	cs, etc. • • •
$0.07\ \pm0.03\ \pm0.01$	LIN	08 BELL	Repl. by DUH 13
	² AUBERT	05L BABR	Repl. by AUBERT 07BC
	² CHAO	05A BELL	Repl. by CHAO 04B
$0.04 \pm 0.05 \pm 0.02$	³ CHAO	04B BELL	Repl. by LIN 08
$-0.09 \pm 0.09 \pm 0.01$	⁴ AUBERT	03L BABR	Repl. by AUBERT 05L
$-0.02 \pm 0.19 \pm 0.02$	⁵ CASEY	02 BELL	Repl. by CHAO 04B
$-0.059 {}^{+0.222}_{-0.196} {}^{+0.055}_{-0.017}$	⁶ ABE	01K BELL	Repl. by CASEY 02
$0.00\ \pm0.18\ \pm0.04$	⁷ AUBERT	01E BABR	Repl. by AUBERT 03L

DOCUMENT ID TECN COMMENT

 $^{^4\,\}mathrm{Corresponds}$ to 90% confidence range $-0.04~<~A_{CP}~<0.13.$

 $^{^{5}}$ Corresponds to 90% confidence range $-0.18\ <\ A_{CP}\ < 0.08.$

 $^{^6}$ Corresponds to 90% confidence range -0.10~< A $_{CP}~<+0.22.$

 $^{^{7}}$ Corresponds to 90% confidence range $+0.19 < A_{CP}^{-1} < +0.72$.

 $^{^{8}}$ Corresponds to 90% confidence range $-0.53 < A_{CP}^{-} < 0.82$.

 $^{^{9}}$ Corresponds to 90% confidence range $-0.51 < A_{CP} < 0.09$.

¹ Corresponds to 90% confidence range $-0.67 < A_{CP} < 0.09$.

 $^{^2}$ Corresponds to a 90% CL interval of $-0.06\ <\ A_{CP}\ < 0.18.$

 $^{^3}$ Corresponds to 90% CL interval of $-0.05 < A_{CP} < 0.13$.

 $^{^4}$ Corresponds to 90% confidence range $-0.24 < \stackrel{\frown}{A_{CP}} < 0.06.$

 $^{^{5}}$ Corresponds to 90% confidence range $-0.35 < A_{CP} < +0.30$.

 $^{^6}$ Corresponds to 90% confidence range $-0.40 < A_{CP} < 0.36$.

⁷ Corresponds to 90% confidence range $-0.30 < A_{CP} < +0.30$.

$A_{CR}(R^+ \rightarrow n'K^+)$

$A_{CP}(B^+ \rightarrow \eta' K^+)$					
<u>VALUE</u> 0.013±0.017 OUR AVERAG	DOCUMENT ID	<u>TE</u>	CN CO	MMENT	
		00 a) / D A	\DD .+	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	
$0.008 {+0.017 \atop -0.018} \pm 0.009$	AUBERT			$e^- ightarrow ~ \varUpsilon(4S)$	
$0.028 \pm 0.028 \pm 0.021$				$e^- \rightarrow \Upsilon(4S)$	
	1 CHEN			$e^- \rightarrow \Upsilon(4S)$	
• • We do not use the follow	ving data for ave				
$0.010 \pm 0.022 \pm 0.006$	AUBERT			pl. by AUBERT 09AV	
$0.033 \pm 0.028 \pm 0.005$ $0.037 \pm 0.045 \pm 0.011$	² AUBERT ³ AUBERT			pl. by AUBERT 07AE	
	⁴ AUBERT			pl. by AUBERT 05M pl. by AUBERT 05M	
	5 CHEN	02B BE		pl. by SCHUEMANN 06	
	⁶ ABE	01M BE		pl. by CHEN 02B	
1 Corresponds to 90% confid	ence range -0.1	7 < A c p	< 0.23.		
² Corresponds to 90% confid	ence range -0.0	12 < A	n < 0.07	78.	
³ Corresponds to 90% confid	ence range -0.0	4 < A c D	< 0.11.	•	
⁴ Corresponds to 90% confid	ence range -0.2	8 < A c p	< 0.07.		
⁵ Corresponds to 90% confid	ence range -0.1	3 < A c p	< 0.10.		
⁶ Corresponds to 90% confid					
2011 22 20 10 10 10 10 10 10 10 10 10 10 10 10 10	go .ugo u. <u>-</u>	· ··CP	₹ 0.02.		
$A_{CP}(B^+ \to \eta' K^*(892)^+$)				
VALUE	·			COMMENT	
$-0.26\pm0.27\pm0.02$				$e^+e^- ightarrow \gamma(4S)$	
• • • We do not use the follow	ving data for ave	rages, fits	s, limits,	etc. • • •	
$-0.30^{+0.33}_{-0.37}{\pm}0.02$	¹ AUBERT	07E	BABF	R Repl. by DEL-AMO- SANCHEZ 10A	
1 Reports A_{CP} with the opposite sign convention.					
	_				
$A_{CP}(B^+ \to \eta' K_0^*(1430))$					
VALUE				COMMENT	
$0.06\pm0.20\pm0.02$	DEL-AMC)-SA10 <i>A</i>	A BABF	$e^+e^- o \Upsilon(4S)$	
$A_{CP}(B^+ \to \eta' K_2^*(1430))$	+1				
$\frac{ACP(D^{-} \rightarrow \eta \ K_{2}(1430))}{VALUE}$	•	T ID	TECN	<u>COMMENT</u>	
0.15±0.13±0.02	<u>-</u>			$e^+e^- ightarrow \gamma(4S)$	
0.13 ± 0.13 ± 0.02	DEL-AIVIC	/-3A10 <i>F</i>	A DADI	$(e^+e^- \rightarrow I(45)$	
$A_{CP}(B^+ \rightarrow \eta K^+)$					
VALUE	DOCUMENT ID	TEC	CN CON	MENT	
-0.37±0.08 OUR AVERAGE					
$-0.38 \pm 0.11 \pm 0.01$				$e^- \rightarrow \Upsilon(4S)$	
$-0.36\pm0.11\pm0.03$				$e^- ightarrow ~ \varUpsilon(4S)$	
• • We do not use the follow		_			
$-0.22 \pm 0.11 \pm 0.01$			_	ol. by AUBERT 09AV	
$-0.39\pm0.16\pm0.03$			-	ol. by HOI 12	
$-0.20\pm0.15\pm0.01 \\ -0.49\pm0.31\pm0.07$			_	ol. by AUBERT 07AE ol. by CHANG 07B	
$-0.49\pm0.31\pm0.07$ $-0.52\pm0.24\pm0.01$			-	ol. by AUBERT,B 05K	
		· D/ (1			

$A_{CP}(B^+ \to \eta K^*(892)^+)$	DOCUMENT ID	TECH COMMENT
<u>VALUE</u> 0.02±0.06 OUR AVERAGE	DOCUMENT ID	TECN COMMENT
$0.03 \pm 0.10 \pm 0.01$	WANG 0	7B BELL $e^+e^- ightarrow~ \varUpsilon(4S)$
$0.01\!\pm\!0.08\!\pm\!0.02$		6H BABR $e^+e^- ightarrow \varUpsilon(4S)$
ullet $ullet$ We do not use the following	data for averages	, fits, limits, etc. • • •
$0.13 \pm 0.14 \pm 0.02$	AUBERT,B 0	4D BABR Repl. by AUBERT,B 06H
$A_{CP}(B^+ \to \eta K_0^*(1430)^+)$		
VALUE		TECN COMMENT
$0.05 \pm 0.13 \pm 0.02$	AUBERT,B	06н BABR $e^+e^- ightarrow \varUpsilon(4S)$
$A_{CP}(B^+ \to \eta K_2^*(1430)^+)$		
VALUE		TECN COMMENT
$-0.45\pm0.30\pm0.02$	AUBERT,B	06H BABR $e^+e^- ightarrow \gamma(4S)$
$A_{CP}(B^+ \rightarrow \omega K^+)$		
0.02 ± 0.05 OUR AVERAGE	CUMENT ID	TECN COMMENT
	BERT 07AE	BABR $e^+e^- \rightarrow \Upsilon(4S)$
$0.05^{+0.08}_{-0.07}\pm0.01$ JE		BELL $e^+e^- \rightarrow \Upsilon(4S)$
 ● • We do not use the following 		` ,
_	_	BABR Repl. by AUBERT 07AE
		BABR Repl. by AUBERT, B 06E
$0.06^{+0.21}_{-0.18} \pm 0.01$ ¹ WA		BELL Repl. by JEN 06
-0.18 $-0.21 \pm 0.28 \pm 0.03$ ² LU	02	BELL Repl. by WANG 04A
¹ Corresponds to 90% CL interv	al 0.15< Acr <0	· · · · · · · · · · · · · · · · · · ·
² Corresponds to 90% confidenc	e range $-0.70 < A$	$A_{CP} < +0.38$.
		C.
$A_{CP}(B^+ \rightarrow \omega K^{*+})$	DOCUMENT ID	TECN COMMENT
<u>VALUE</u> +0.29±0.35±0.02	AUBERT	O9H BABR $e^+e^- ightarrow \varUpsilon(4S)$
+0.29±0.33±0.02	AUDENT	USH DADK $e^+e^- \rightarrow I(43)$
$A_{CP}(B^+ \rightarrow \omega(K\pi)_0^{*+})$		
VALUE	DOCUMENT ID	TECN COMMENT
$-0.10\pm0.09\pm0.02$	AUBERT	09H BABR $e^+e^- ightarrow \varUpsilon(4S)$
$A_{CP}(B^+ \to \omega K_2^*(1430)^+)$		
VALUE	DOCUMENT ID	TECN COMMENT
+0.14±0.15±0.02	AUBERT	1
$A_{CP}(B^+ \rightarrow K^{*0}\pi^+)$		
$\frac{VALUE}{-0.04 \pm 0.09}$ OUR AVERAGE	DOCUMENT ID	TECN COMMENT
	Error includes sca	
$0.032\!\pm\!0.052\!+\!0.016\atop-0.013$	AUBERT	08AI BABR $e^+e^- o au(4S)$
$-0.149\pm0.064\pm0.022$	GARMASH	` ,
• • We do not use the following	data for averages	, tits, limits, etc. • • •
$0.068 \pm 0.078 {+0.070 \atop -0.067}$	AUBERT,B	05N BABR Repl. by AUBERT 08AI
HTTP://PDG.LBL.GOV	Page 158	Created: 8/21/2014 12:56

$A_{CP}(B^+ \to K^*(892)^+\pi^0)$				
VALUE	DOCUMENT ID			
-0.06±0.24±0.04 • • • We do not use the following				$e^+e^- ightarrow ~ \Upsilon(4S)$
$0.04\pm0.29\pm0.05$				Repl. by LEES 111
	AUDERT	03/	DADIN	Repl. by LLLS III
$A_{CP}(B^+ o K^+\pi^-\pi^+)$				
0.033±0.010 OUR AVERAGE	DOCUMENT ID		<u>TECN</u>	COMMENT
$0.032\pm0.008\pm0.008$	AAIJ	13AZ	LHCB	pp at 7 TeV
$0.028\!\pm\!0.020\!\pm\!0.023$	AUBERT	08AI	BABR	$e^+e^- \rightarrow \Upsilon(4S)$
$0.049\pm0.026\pm0.020$	GARMASH			$e^+e^- \rightarrow \Upsilon(4S)$
• • • We do not use the following				
	AUBERT,B			Repl. by AUBERT 08AI
$0.01 \pm 0.07 \pm 0.03$	AUBERT	U3M I	BABK	Repl. by AUBERT,B 05N
$A_{CP}(B^+ \rightarrow K^+K^-K^+ \text{ non})$	resonant)			
VALUE	DOCUMENT ID			
$0.060 \pm 0.044 \pm 0.019$	LEES	120	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$A_{CP}(B^+ \to f(980)^0 K^+)$				
VALUE	DOCUMENT ID		TECN	COMMENT
$-0.08\pm0.08\pm0.04$	¹ LEES	120	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
1 Measured in the ${\it B}^+ ightarrow {\it K}^+ {\it K}$	$\kappa^- K^+$ decay.			
$A_{CP}(B^+ \rightarrow f_2(1270)K^+)$ VALUE	DOCUMENT ID		TECN	COMMENT
-0.68 ^{+0.19} _{-0.17} OUR AVERAGE				
-0.00 -0.17 OUR AVERAGE				
$-0.85\!\pm\!0.22\!+\!0.26 \ -0.13$	AUBERT	08AI	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$-0.59\pm0.22\pm0.036$	GARMASH	06	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$A_{CP}(B^+ \rightarrow f_0(1500)K^+)$	DOCUMENT ID		TECN	COMMENT
$0.28 \pm 0.26 ^{+0.15}_{-0.14}$	AUBERT			$e^+e^- \rightarrow \Upsilon(4S)$
-0.14	AUDLICI	JUAI	אטוע	C E - 1 (43)
$A_{CP}(B^+ \rightarrow f_2'(1525)^0 K^+)$				
VALUE	DOCUMENT ID		TECN	COMMENT
$-0.08 \begin{array}{l} +0.05 \\ -0.04 \end{array}$ OUR AVERAGE				
$0.18 \pm 0.18 \pm 0.04$	¹ LEES	111	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$-0.106\pm0.050 {}^{+0.036}_{-0.015}$	AUBERT			$e^+e^- ightarrow ~ \Upsilon(4S)$
-0.015 $-0.077 \pm 0.065 + 0.046$ -0.026	GARMASH			$e^+e^- \rightarrow \Upsilon(4S)$
0.020				` ,
• • • We do not use the following	g data for average ² LEES			
$0.14 \pm 0.10 \pm 0.04$ $-0.31 \pm 0.25 \pm 0.08$	² LEES ³ AUBERT			$e^+e^- ightarrow~\varUpsilon(4S)$ Repl. by LEES 120
$0.088 \pm 0.095 + 0.097$ $0.088 \pm 0.095 + 0.056$				•
$0.000\pm0.095-0.056$	AUBERT,B	NGU	DABK	Repl. by AUBERT 08AI
HTTP://PDG.LBL.GOV	Page 159		Creat	ted: 8/21/2014 12:56

```
<sup>1</sup> Measured in B^+ \rightarrow f_0 K^+ with f_0 \rightarrow \pi^0 \pi^0 decay.
  <sup>2</sup> Measured in the B^+ \rightarrow K^+K^-K^+ decay assuming A_{CP}(B^+ \rightarrow f_2'(1525)^0K^+) =
    A_{CP}(B^+ \to f_0(1500)^0 K^+) = A_{CP}(B^+ \to f_0(1710)^0 K^+)
  <sup>3</sup> Measured in the B^+ \rightarrow K^+ K^- K^+ decay.
A_{CP}(B^+ \rightarrow \rho^0 K^+)
                                                              <u>TECN</u> <u>COMMENT</u>
0.37±0.10 OUR AVERAGE
0.44\!\pm\!0.10\!+\!0.06\\-0.14
                                                            08AI BABR e^+e^- \rightarrow \Upsilon(4S)
                                          AUBERT
0.30\!\pm\!0.11\! \begin{array}{l} +0.11 \\ -0.04 \end{array}
                                                                  BELL e^+e^- \rightarrow \Upsilon(4S)
                                          GARMASH

    • • We do not use the following data for averages, fits, limits, etc.

0.32 \pm 0.13 ^{+0.10}_{-0.08}
                                          AUBERT,B
                                                            05N BABR Repl. by AUBERT 08AI
A_{CP}(B^+ \to K_0^*(1430)^0\pi^+)
                                          DOCUMENT ID TECN COMMENT
  0.055\pm0.033 OUR AVERAGE
  0.032\!\pm\!0.035\!+\!0.034\atop-\,0.028
                                                            08AI BABR e^+e^- \rightarrow \Upsilon(4S)
                                          AUBERT
  0.076\!\pm\!0.038\!+\!0.028\\-0.022
                                          GARMASH
                                                                BELL e^+e^- \rightarrow \Upsilon(4S)
• • • We do not use the following data for averages, fits, limits, etc. • • •
-0.064\pm0.032^{+0.023}_{-0.026}
                                          AUBERT,B
                                                            05N BABR Repl. by AUBERT 08AI
A_{CP}(B^+ \to K_2^*(1430)^0\pi^+)
                                          DOCUMENT ID
                                                                  TECN COMMENT
0.05\pm0.23^{+0.18}_{-0.08}
                                                            08AI BABR e^+e^- \rightarrow \Upsilon(4S)
                                          AUBERT
A_{CP}(B^+ \rightarrow K^+\pi^0\pi^0)
                                                                  <u>TECN</u> <u>COMMENT</u>
VALUE
                                          DOCUMENT ID
                                                            111 BABR e^+e^- \rightarrow \Upsilon(4S)
-0.06\pm0.06\pm0.04
                                          LEES
A_{CP}(B^+ \rightarrow K^0 \rho^+)
                                          DOCUMENT ID
                                                            07z BABR e^+e^- \rightarrow \Upsilon(4S)
-0.12\pm0.17\pm0.02
                                          AUBERT
A_{CP}(B^+ \rightarrow K^{*+}\pi^+\pi^-)
                                          DOCUMENT ID TECN COMMENT
                                                           06U BABR e^+e^- \rightarrow \Upsilon(4S)
0.07\pm0.07\pm0.04
                                          AUBERT,B
A_{CP}(B^+ \to \rho^0 K^*(892)^+)
                            DOCUMENT ID TECN COMMENT
0.31\pm0.13\pm0.03
                            DEL-AMO-SA...11D BABR e^+e^- \rightarrow \Upsilon(4S)
```

VALUE

• • • We do not use the following data for averages, fits, limits, etc. • • •

 $0.20^{\,+\,0.32}_{\,-\,0.29}\,{\pm}\,0.04$ **AUBERT** 03V BABR Repl. by DEL-AMO-SANCHEZ 11D

```
A_{CP}(B^+ \to K^*(892)^+ f_0(980))
                        DOCUMENT ID
                                        TECN COMMENT
-0.15\pm0.12\pm0.03
                        DEL-AMO-SA...11D BABR e^+e^- \rightarrow \Upsilon(4S)

    • • We do not use the following data for averages, fits, limits, etc.

                        AUBERT,B 06G BABR Repl. by DEL-AMO-SANCHEZ 11D
-0.34\pm0.21\pm0.03
A_{CP}(B^+ \rightarrow a_1^+ K^0)
                                    DOCUMENT ID TECN COMMENT
VALUE
                                                    08F BABR e^+e^- \rightarrow \Upsilon(4S)
+0.12\pm0.11\pm0.02
                                    AUBERT
A_{CP}(B^+ \rightarrow b_1^+ K^0)
                                    DOCUMENT ID TECN COMMENT
                                                    08AG BABR e^+e^- \rightarrow \gamma(4S)
-0.03\pm0.15\pm0.02
                                    AUBERT
A_{CP}(B^+ \to K^*(892)^0 \rho^+)
                                    DOCUMENT ID TECN COMMENT
                                                    06G BABR e^+e^- \rightarrow \Upsilon(4S)
-0.01\pm0.16\pm0.02
                                    AUBERT,B
A_{CP}(B^+ \rightarrow b_1^0 K^+)
                                    DOCUMENT ID TECN COMMENT
                                                    07BI BABR e^+e^- \rightarrow \Upsilon(4S)
-0.46\pm0.20\pm0.02
                                    AUBERT
A_{CP}(B^+ \rightarrow K^0K^+)
                               DOCUMENT ID TECN COMMENT
0.04 \pm 0.14 OUR AVERAGE
                              DUH
                                              13 BELL e^+e^- \rightarrow \Upsilon(4S)
0.014 \pm 0.168 \pm 0.002
                            <sup>1</sup> AUBERT,BE 06C BABR e^+e^- \rightarrow \Upsilon(4S)
0.10 \pm 0.26 \pm 0.03
• • • We do not use the following data for averages, fits, limits, etc. • • •
0.13 \ ^{+0.23}_{-0.24} \ \pm 0.02
                              LIN
                                              07 BELL Repl. by DUH 13
0.15 \pm 0.33 \pm 0.03
                             <sup>2</sup> AUBERT,BE 05E BABR Repl. by AUBERT,BE 06C
  ^{1} Corresponds to 90% confidence range -0.31 < A_{CP} < 0.54.
  ^2 Corresponds to 90% confidence range -0.43 < A_{CP} < 0.68.
A_{CP}(B^+ \rightarrow K_5^0 K^+)
VALUE
                                    DOCUMENT ID TECN COMMENT
-0.21\pm0.14\pm0.01
                                    AAIJ
                                                   13BS LHCB pp at 7 TeV
A_{CP}(B^+ \rightarrow K^+ K^0_5 K^0_5)
VALUE
                                    DOCUMENT ID TECN COMMENT
 0.04^{+0.04}_{-0.05}\pm0.02
                                                   120 BABR e^+e^- \rightarrow \Upsilon(4S)
                                    LEES
• • • We do not use the following data for averages, fits, limits, etc. • • •
                                  <sup>1</sup> AUBERT,B 04v BABR Repl. by LEES 120
-0.04\pm0.11\pm0.02
  ^{1} Corresponds to 90% confidence range -0.23~<~A_{CP}~<0.15.
```

$A_{CP}(B^+ \rightarrow K^+K^-\pi^+)$

<u>VALUE</u> <u>DOCUMENT ID</u> <u>TECN</u> <u>COMMENT</u> — **0.12 ±0.05 OUR AVERAGE** Error includes scale factor of 1.2.

 1 AAIJ 14 reports $A_{CP}(B^+\to K^+K^-\pi^+)=-0.648\pm0.070\pm0.013\pm0.007$ in the Dalitz plot region of $m_{K^+K^-}^2<1.5~{\rm GeV}^2/{\rm c}^4$. The third uncertainty is due to the CP asymmetry of the $B^\pm\to J/\psi\,K^\pm$ reference mode uncertainty.

$A_{CP}(B^+ \rightarrow K^+K^-K^+)$

VALUE	DOCUMENT ID	TECN	COMMENT
-0.036 ± 0.012 OUR AVERAGE	Error includes sc	ale factor of 1.	1.
$-0.043\!\pm\!0.009\!\pm\!0.008$	AAIJ	13AZ LHCB	pp at 7 TeV
$-0.017 {+0.019\atop -0.014} \!\pm\! 0.014$	¹ LEES	120 BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
147 1		C	

• • • We do not use the following data for averages, fits, limits, etc. • • •

$A_{CP}(B^+ \rightarrow \phi K^+)$

7.0P(= ' \very				
VALUE	DOCUMENT ID		TECN	COMMENT
0.04 ± 0.04 OUR AVERAGE	Error includes sca	le fac	tor of 2.	1.
$0.022\!\pm\!0.021\!\pm\!0.009$	AAIJ			pp at 7 TeV
$0.128\pm0.044\pm0.013$	LEES	120	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$-0.07\ \pm0.17\ \begin{array}{l} +0.03 \\ -0.02 \end{array}$	ACOSTA	05 J	CDF	$p\overline{p}$ at 1.96 TeV
$0.01\ \pm0.12\ \pm0.05$	$^{ m 1}$ CHEN	03 B	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$
ullet $ullet$ We do not use the followin	g data for averages	s, fits,	limits, e	etc. • • •
$0.00~\pm 0.08~\pm 0.02$	AUBERT	060	BABR	Repl. by LEES 120
$0.04\ \pm0.09\ \pm0.01$	² AUBERT	04A	BABR	Repl. by AUBERT 060
$-0.05 \pm 0.20 \pm 0.03$	³ AUBERT	02E	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
1.0 1	0.00			

 $^{^{1}}$ Corresponds to 90% confidence range $-0.20 < A_{CP} < 0.22$.

$A_{CP}(B^+ \to X_0(1550)K^+)$

VALUE	DOCUMENT ID	TECN COMMENT
$-0.04\pm0.07\pm0.02$	¹ AUBERT 060	BABR $e^+e^- \rightarrow \Upsilon(4S)$

¹ Measured in the $B^+ \rightarrow K^+ K^- K^+$ decay.

$A_{CP}(B^+ \rightarrow K^{*+}K^+K^-)$

VALUEDOCUMENT IDTECNCOMMENT $0.11 \pm 0.08 \pm 0.03$ AUBERT,B06UBABR $e^+e^- \rightarrow \Upsilon(4S)$

 $^{^1}$ All intermediate charmonium and charm resonances are removed, except of χ_{c0} .

 $^{^2}$ Corresponds to 90% confidence range $-0.10 < A_{CP} < 0.18$.

 $^{^3}$ Corresponds to 90% confidence range $-0.37 < A_{CP} < 0.28$.

$A_{CP}(B^+ \rightarrow \phi K^*(892)^+)$ VALUE	DOCUMENT ID		TECN	COMMENT
-0.01 ± 0.08 OUR AVERAGE				
$0.00\pm0.09\pm0.04$	AUBERT			$e^+e^- \rightarrow \Upsilon(4S)$
$-0.02\pm0.14\pm0.03$	¹ CHEN			$e^+e^- \rightarrow \Upsilon(4S)$
• • • We do not use the followin				
$0.16 \pm 0.17 \pm 0.03$	AUBERT	03V I	BABR	Repl. by AUBERT 07BA
$-0.13\!\pm\!0.29^{+0.08}_{-0.11}$	² CHEN	03 B	BELL	Repl. by CHEN 05A
$-0.43^{\begin{subarray}{c} +0.36\\ -0.30\end{subarray}}\!\pm\!0.06$	³ AUBERT			Repl. by AUBERT 03V
¹ Corresponds to 90% confidence ² Corresponds to 90% confidence ³ Corresponds to 90% confidence	ce range $-0.64 <$	ACP <	< 0.36.	
$A_{CP}(B^+ \rightarrow \phi(K\pi)_0^{*+})$				
VALUE	DOCUMENT ID)	TECN	COMMENT
$0.04 \pm 0.15 \pm 0.04$	AUBERT	08 BI	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$A_{CP}(B^+ \to \phi K_1(1270)^+)$				
$ACP(B^* \rightarrow \psi K_1(1270)^*)$ VALUE	DOCUMENT ID)	TECN	COMMENT
0.15±0.19±0.05	AUBERT			$e^+e^- \rightarrow \gamma(4S)$
	-			(-)
$A_{CP}(B^+ \to \phi K_2^*(1430)^+)$				
VALUE	DOCUMENT ID			
$-0.23\pm0.19\pm0.06$	AUBERT	08BI	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$A_{CP}(B^+ \rightarrow K^+ \phi \phi)$				
VALUE	DOCUMENT ID			COMMENT
$-0.10\pm0.08\pm0.02$	¹ LEES	11A	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
1 $m_{\phi\phi}$ $<$ 2.85 GeV/c 2 .				
$A_{CP}(B^+ \rightarrow K^+[\phi\phi]_{\eta_c})$				
VALUE VALUE	DOCUMENT ID		TECN	COMMENT
0.09±0.10±0.02	¹ LEES			$e^+e^- \rightarrow \Upsilon(4S)$
$^1m_{\phi\phi}$ is consistent with η_c ma			D/ (DI	(13)
$m_{\phi\phi}$ is consistent with η_c in	ass [2.94, 3.02] G	ev/c.		
$A_{CP}(B^+ \rightarrow K^*(892)^+ \gamma)$				
VALUE	DOCUMENT ID			
$+0.018\pm0.028\pm0.007$	AUBERT	09 AC	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$A_{CP}(B^+ \rightarrow \eta K^+ \gamma)$				
VALUE	DOCUMENT ID	·	TECN	COMMENT
-0.12±0.07 OUR AVERAGE	1			1 20(10)
$-0.09\pm0.10\pm0.01$	AUBERT			$e^+e^- \rightarrow \Upsilon(4S)$
$-0.16\pm0.09\pm0.06$ • • • We do not use the followin	² NISHIDA			$e^+e^- ightarrow \ \varUpsilon(4S)$
				Repl. by AUBERT 09
$-0.09\pm0.12\pm0.01$	AUDEK I ,B	MON	DARK	Nepi. by AUDEKT U9
$\frac{1}{2}m_{\eta K} < 3.25 \text{ GeV/c}^2.$				
$^2 m_{\eta K}^{\prime} < 2.4 \; \mathrm{GeV/c^2}$				
HTTP://PDG.LBL.GOV	Page 163		Crea	ted: 8/21/2014 12:56

$A_{CP}(B^+ \rightarrow \phi K^+ \gamma)$

VALUE	DOCUMENT ID	TECN	COMMENT
-0.13 ± 0.11 OUR AVERAGE	Error includes scale factor	of 1.1.	
$-0.03\!\pm\!0.11\!\pm\!0.08$	SAHOO 11A	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$-0.26\pm0.14\pm0.05$	AUBERT 07Q	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$

$A_{CP}(B^+ \rightarrow \rho^+ \gamma)$

BELL $e^+e^- \rightarrow \Upsilon(4S)$ $-0.11\pm0.32\pm0.09$ **TANIGUCHI**

$A_{CP}(B^+ \rightarrow \pi^+\pi^0)$

VALUE	DOCUMENT ID)	TECN	COMMENT
0.03 ± 0.04 OUR AVERAG	E			
$0.025 \pm 0.043 \pm 0.007$	DUH	13	BELL	$e^+e^- ightarrow \Upsilon(4S)$
$0.03\ \pm0.08\ \pm0.01$	AUBERT	07 BC	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
• • • We do not use the follow	wing data for aver	ages, fits	s, limits	, etc. • • •
$0.07\ \pm0.06\ \pm0.01$	LIN	08	BELL	Repl. by DUH 13
$-0.01\ \pm0.10\ \pm0.02$	¹ AUBERT	05L	BABR	Repl. by AUBERT 07BC
$0.00 \pm 0.10 \pm 0.02$	2 CHAO	OΕΛ	RELL	Popl by CHAO MP

$-0.01\ \pm0.10\ \pm0.02$	¹ AUBERT	05L BABR Repl. by AUBERT 07BC
$0.00\ \pm0.10\ \pm0.02$	² CHAO	05A BELL Repl. by CHAO 04B
$-0.02\ \pm0.10\ \pm0.01$	³ CHAO	04B BELL Repl. by LIN 08
$-0.03 \ ^{+0.18}_{-0.17} \ \pm 0.02$	⁴ AUBERT	03L BABR Repl. by AUBERT 05L
$0.30 \pm 0.30 ^{+0.06}$	⁵ CASEY	02 BELL Repl. by CHAO 04B

 $^{^{1}}$ Corresponds to a 90% CL interval of $-0.19 \, < \, A_{CP} \, < 0.21$.

$A_{CP}(B^+ \rightarrow \pi^+\pi^-\pi^+)$

VALUE	DOCUMENT II	D	TECN	COMMENT
0.105±0.029 OUR AVERAGE	Error includes s	cale fac	tor of 1.	3.
$0.117 \pm 0.021 \pm 0.011$	¹ AAIJ	14	LHCB	pp at 7 TeV
$0.032\!\pm\!0.044\!+\!0.040\ -0.037$	AUBERT	09L	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$

• • • We do not use the following data for averages, fits, limits, etc. • • •

 $-0.007\pm0.077\pm0.025$ AUBERT,B 05G BABR Repl. by AUBERT 09L $-0.39 \pm 0.33 \pm 0.12$ 03M BABR Repl. by AUBERT 05G

¹ AAIJ 14 reports $A_{CP}(B^+ \to \pi^+ \pi^- \pi^+) = 0.584 \pm 0.082 \pm 0.027 \pm 0.007$ in the Dalitz plot region of $m_{\pi^+\pi^-}^2 > 15~{\rm GeV^2/c^4}$ or $m_{\pi^+\pi^-}^2 < 0.4~{\rm GeV^2/c^4}$. The third uncertainty is due to the CP asymmetry of the $B^{\pm} \rightarrow J/\psi K^{\pm}$ reference mode uncertainty.

$A_{CP}(B^+ \rightarrow \rho^0 \pi^+)$

TECN COMMENT $0.18 \pm 0.07 \ ^{+0.05}_{-0.15}$ 09L BABR $e^+e^- \rightarrow \Upsilon(4S)$ **AUBERT**

• • We do not use the following data for averages, fits, limits, etc.

 $-0.074 \!\pm\! 0.120 \!+\! 0.035 \\ -0.055$ AUBERT, B 05G BABR Repl. by AUBERT 09L $-0.19 \pm 0.11 \pm 0.02$ **AUBERT** 04Z BABR Repl. by AUBERT, B 05G

HTTP://PDG.LBL.GOV Page 164 Created: 8/21/2014 12:56

 $^{^2}$ Corresponds to a 90% CL interval of $-0.17\ <\ A_{CP}\ < 0.16.$

 $^{^3}$ This corresponds to 90% CL interval of $-0.18 < A_{CP} < 0.14$.

 $^{^4}$ Corresponds to 90% confidence range $-0.32 <\!\!A_{\mbox{\it CP}} < 0.27.$

⁵ Corresponds to 90% confidence range $-0.23 < A_{CP} < +0.86$.

$A_{CP}(B^+ \to f_2(1270)\pi^+$	-)					
VALUE	-	T ID		TECN	COMMENT	
$0.41 \pm 0.25 \ ^{+0.18}_{-0.15}$	AUBERT		09L	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$	
• • • We do not use the following data for averages, fits, limits, etc. • •						
$-0.004\!\pm\!0.247 \!+\!0.028 \\ -0.032$	AUBERT	,В	05 G	BABR	Repl. by AUBERT 09L	
$A_{CP}(B^+ \to \rho^0(1450)\pi^-$	•					
<u>VALUE</u>					COMMENT	
$-0.06\pm0.28^{f +0.23}_{f -0.40}$	AUBERT		09L	BABR	$e^+e^- ightarrow \gamma(4S)$	
$A_{CP}(B^+ \rightarrow f_0(1370)\pi^+)$ VALUE	-	T ID		TECN	<u>COMMENT</u>	
$0.72 \pm 0.15 \pm 0.16$					$e^+e^- \rightarrow \Upsilon(4S)$	
$A_{CP}(B^+ \rightarrow \pi^+\pi^-\pi^+)$	nonresonant)					
VALUE		T ID		TECN	COMMENT	
$-0.14\!\pm\!0.14 {}^{\displaystyle +0.18}_{\displaystyle -0.08}$	AUBERT		09L	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$	
$A_{CP}(B^+ \rightarrow \rho^+ \pi^0)$	0.000450	T 15		TECN	COLUMNIT	
0.02±0.11 OUR AVERAGE	<i>DOCUMEN</i>	<u>I ID</u>		<u>TECN</u>	COMMENT	
$-0.01\!\pm\!0.13\!\pm\!0.02$			07X	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$	
$0.06 \pm 0.17 {+0.04 \atop -0.05}$	ZHANG		05A	BELL	$e^+e^- ightarrow \gamma(4S)$	
• • • We do not use the follo	owing data for ave	erages	, fits,	limits, e	etc. • • •	
$0.24\!\pm\!0.16\!\pm\!0.06$	AUBERT		04Z	BABR	Repl. by AUBERT 07X	
$A_{CP}(B^+ \rightarrow \rho^+ \rho^0)$						
VALUE	DOCUMENT ID		TECN	СОМ	MENT	
-0.05 ± 0.05 OUR AVERAGE						
	AUBERT					
	ZHANG				· ·	
• • We do not use the follo						
$-0.12 \pm 0.13 \pm 0.10$ $-0.19 \pm 0.23 \pm 0.03$	AUBERT,BE AUBERT			-	by AUBERT 09G by AUBERT,BE 06G	
	7.002		<i>D,</i> (<i>D</i>)	т тері.	טי אוסטבוווי,טב פפי	
$A_{CP}(B^+ \rightarrow \omega \pi^+)$	DOCUMENT ID		TE 611	6014	45AJT	
<u>VALUE</u> -0.04±0.06 OUR AVERAGE	DOCUMENT ID		IECN	COMI	MEN I	
$-0.02\pm0.08\pm0.01$		07AE	BABF	$R e^+e^-$	$^- ightarrow ~ \gamma(4S)$	
$-0.02\pm0.09\pm0.01$	JEN	06	BELL	. e ⁺ e	$- \rightarrow \Upsilon(4S)$	
-0.34 ± 0.25	$^{ m 1}$ CHEN				$- \rightarrow \hat{\Upsilon(4S)}$	
• • • We do not use the follo	owing data for ave	erages	, fits,	limits, e	etc. • • •	
$-0.01\pm0.10\pm0.01$	AUBERT,B	06E	BABF	Repl.	by AUBERT 07AE	
$0.03 \pm 0.16 \pm 0.01$	AUBERT			=	by AUBERT,B 06E	
	² WANG			-	by JEN 06	
0.20				-	-	
$-0.01^{+0.29}_{-0.31}\pm0.03$	³ AUBERT	02E	BABI	R Repl.	by AUBERT 04H	
LITTO //DDC.LDL CO.	Б			_	1 0/04/0044 35 = 5	

 $^{^3}$ Corresponds to 90% confidence range $-0.50 < A_{CP} < 0.46$.

A_{CP}	(B^+)	\rightarrow	$\omega \rho^+$)
----------	---------	---------------	-----------------	---

VALUE	DOCUMENT ID	TECN	COMMENT
$-0.20\pm0.09\pm0.02$	AUBERT (09н BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
• • • We do not use the following	owing data for aver	rages, fits, li	mits, etc. • • •
$0.04 \pm 0.18 \pm 0.02$	AUBERT,B (06⊤ BABR	Repl. by AUBERT 09H
$0.05 \pm 0.26 \pm 0.02$	AUBERT (050 BABR	Repl. by AUBERT,B 06T

$A_{CP}(B^+ \rightarrow \eta \pi^+)$

-0.14±0.07 OUR AVERAGE	Error includes	scale factor o	of 1.4.
$-0.19\!\pm\!0.06\!\pm\!0.01$	HOI	12 BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$-0.03\pm0.09\pm0.03$	AUBERT	09AV BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
• • • We do not use the follow	wing data for av	erages, fits, li	mits, etc. • • •
$-0.08\!\pm\!0.10\!\pm\!0.01$	AUBERT	07AE BABR	Repl. by AUBERT 09AV
$-0.23\!\pm\!0.09\!\pm\!0.02$	CHANG	07в BELL	Repl. by HOI 12
$-0.13\!\pm\!0.12\!\pm\!0.01$	AUBERT,B	05K BABR	Repl. by AUBERT 07AE
$0.07 \pm 0.15 \pm 0.03$	CHANG	05A BELL	Repl. by CHANG 07B
$-0.44 \pm 0.18 \pm 0.01$	AUBERT	04H BABR	Repl. by AUBERT.B 05K

DOCUMENT ID TECN COMMENT

$A_{CP}(B^+ \rightarrow \eta \rho^+)$

VALUE	DOCUMENT ID	<u> IECN</u>	COMMENT
0.11 ± 0.11 OUR AVERAGE			
$0.13\!\pm\!0.11\!\pm\!0.02$	AUBERT	08AH BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$-0.04 {+0.34\atop -0.32} \pm 0.01$	WANG	07в BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$
ullet $ullet$ We do not use the following	ng data for avera	ages, fits, limit	ts, etc. • • •

05K BABR Repl. by AUBERT 08AH

Created: 8/21/2014 12:56

AUBERT,B

$A_{CP}(B^+ \rightarrow \eta' \pi^+)$

 $0.02\!\pm\!0.18\!\pm\!0.02$

VALUE	DOCUMENT ID	<u>T</u>	ECN	COMMENT
0.06±0.16 OUR AVERAGE				
$0.03\!\pm\!0.17\!\pm\!0.02$	AUBERT	09AV B	BABR	$e^+e^- \rightarrow \Upsilon(4S)$
$0.20^{+0.37}_{-0.36}{\pm}0.04$	SCHUEMANN	06 B	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$
ullet $ullet$ We do not use the following	ng data for avera	iges, fits	s, limits	s, etc. • • •
$0.21 \pm 0.17 \pm 0.01$	AUBERT	07AE B	BABR	Repl. by AUBERT 09AV
$0.14 \pm 0.16 \pm 0.01$	AUBERT,B	05K B	BABR	Repl. by AUBERT 07AE

$A_{CP}(B^+ \rightarrow \eta' \rho^+)$

VALUE	DOCUMENT ID	<u>TECN COMMENT</u>
0.26±0.17±0.02	DEL-AMO-SA10A	$\overline{BABR} \ \overline{e^+e^-} o \ \varUpsilon(4S)$
\bullet \bullet We do not use the following	data for averages, fits	, limits, etc. • • •
$0.04 \pm 0.28 \pm 0.02$	¹ AUBERT 07E	BABR Repl. by DEL-AMO- SANCHEZ 10A

 $^{^{1}}$ Reports ${\it A}_{CP}$ with the opposite sign convention.

 $^{^{1}\,\}mathrm{Corresponds}$ to 90% confidence range $-0.75 <\!\!A_{CP}<0.07.$

 $^{^2}$ Corresponds to 90% CL interval -0.25< \textit{A}_{CP} <0.41

A (P+					
$A_{CP}(B^+ \rightarrow b_1^0 \pi^+)$	DOCUMENT ID		TECN	COMMENT	
<u>VALUE</u> +0.05±0.16±0.02	DOCUMENT ID			$e^+e^- \rightarrow$	Υ(ΛC)
+0.03±0.10±0.02	AUBERT	0761	DADK	e · e →	1 (43)
$A_{CP}(B^+ \rightarrow p\overline{p}\pi^+)$					
VALUE	DOCUMENT ID		TECN	COMMENT	
0.00±0.04 OUR AVERAGE	¹ WEI	00	DELL	$e^+e^ \rightarrow$	20(4.6)
$-0.02\pm0.05\pm0.02$ $+0.04\pm0.07\pm0.04$	AUBERT			$e^+e^- \rightarrow e^+e^- \rightarrow$	` ,
• • • We do not use the followin					7 (43)
$-0.16\pm0.22\pm0.01$	WANG	04		Repl. by W	/FI 08
¹ Requires $m_{p\overline{p}} < 2.85 \text{ GeV/c}$	_	0.		rtepii by t	
$m_{pp} < 2.03 \text{ GeV/C}$	•				
$A_{CP}(B^+ \rightarrow p\overline{p}K^+)$					
VALUE	DOCUMENT ID				
-0.08 ±0.04 OUR AVERAGE	Error includes sca ¹ AAIJ				
$-0.047 \pm 0.036 \pm 0.007$ $-0.17 \pm 0.10 \pm 0.02$	¹ WEI			pp at 7 Te $e^+e^- ightarrow$	
					` ,
$-0.16 {}^{+0.07}_{-0.08} \pm 0.04$	¹ AUBERT,B				1 (45)
• • We do not use the followin					
$-0.05 \pm 0.11 \pm 0.01$	WANG	04	BELL	Repl. by V	√EI 08
1 Requires $m_{p\overline{p}}~<$ 2.85 GeV/c	,2.				
$A_{CP}(B^+ \rightarrow p\overline{p}K^*(892)^+)$					
VALUE	DOCUMENT ID		TECN	COMMENT	
0.21±0.16 OUR AVERAGE	rror includes scale	factor	of 1.4.		
$-0.01\!\pm\!0.19\!\pm\!0.02$	CHEN			$e^+e^- \rightarrow$	` '
$+0.32\pm0.13\pm0.05$	AUBERT	07AV	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$A_{CP}(B^+ \rightarrow p\overline{\Lambda}\gamma)$					
VALUE	DOCUMENT ID		TECN	COMMENT	
+0.17±0.16±0.05	WANG			$e^+e^- \rightarrow$	$\Upsilon(4S)$
· · · · · · · · · · · · · · · · · · ·					,
$A_{CP}(B^+ \to p\overline{\Lambda}\pi^0)$	DOCUMENT ID		TECN	COLUMENT	
<u>VALUE</u>	DOCUMENT ID				20(4.6)
$+0.01\pm0.17\pm0.04$	WANG	070	BELL	$e^+e^- \rightarrow$	1 (45)
$A_{CP}(B^+ \rightarrow K^+ \ell^+ \ell^-)$					
VALUE -0.02±0.08 OUR AVERAGE	DOCUMENT ID		TECN	<u>COMMENT</u>	
	1, 550	10-	D.4.D.D.		00(10)
$-0.03\pm0.14\pm0.01$	¹ LEES AUBERT			$e^+e^- \rightarrow e^+e^- \rightarrow$	
$-0.18\pm0.18\pm0.01$ $+0.04\pm0.10\pm0.02$	WEI	091	RELI	$e^+e^- \rightarrow e^+e^-$	7 (45) Y(45)
• • • We do not use the followin		s, fits,	limits, e	etc. • • •	7 (43)
$-0.07\pm0.22\pm0.02$	AUBERT,B				UBERT 09T
1 Measured in the union of 0.					
LEES 12S reports also individ					
0.18 ± 0.01 for $0.10 < q^2$					
$-0.06^{+0.22}_{-0.21} \pm 0.01$ for q ²	$> 10.11 \text{ GeV}^2/c^4$.	. and	P(· •	- · · · / —

$A_{CP}(B^+ \rightarrow K^+ e^+ e^-)$	DOCUME	NT ID		TECN	COMMENT	
<u>VALUE</u> +0.14±0.14±0.03	WEI				$\frac{\textit{COMMENT}}{e^+ e^- \rightarrow \Upsilon(4S)}$	
$A_{CP}(B^+ \rightarrow K^+ \mu^+ \mu^-)$, ,	
<u>VALUE</u> -0.003±0.033 OUR AVERAGE	<u>DOCUME</u>	NT ID		TECN	COMMENT	
$0.000\pm0.033\pm0.009$	AAIJ		13 BN	LHCB	pp at 7 TeV	
$-0.05\ \pm0.13\ \pm0.03$	WEI		09A	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$	
$A_{CP}(B^+ \rightarrow K^{*+}\ell^+\ell^-)$	DOCUMFI	NT ID		TECN	COMMENT	
-0.09±0.14 OUR AVERAGE	<u> </u>				<u> </u>	
$0.01^{+0.26}_{-0.24}\!\pm\!0.02$	AUBER	Γ	09T	BABR	$e^+e^- \rightarrow \Upsilon(4S)$	
$-0.13^{igoplus 0.17}_{igoplus 0.16} \pm 0.01$	WEI		09A	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$	
• • • We do not use the following	data for av	/erage	s, fits,	limits, e	etc. • • •	
$0.03 \pm 0.23 \pm 0.03$	AUBER	Г,В	06J	BABR	Repl. by AUBERT 09T	
$A_{CP}(B^+ \rightarrow K^*e^+e^-)$	DOCUME	NT ID		TECN	COMMENT	
$-0.14^{+0.23}_{-0.22}\pm0.02$	WEI				$e^+e^- \rightarrow \Upsilon(4S)$	
$-0.14_{-0.22}$	VVLI		09A	DLLL	$e \cdot e \rightarrow I(43)$	
$A_{CP}(B^+ \rightarrow K^* \mu^+ \mu^-)$	DOCUME	NT ID		TECN	COMMENT	
$-0.12\pm0.24\pm0.02$	WEI				$e^+e^- ightarrow \gamma(4S)$	
$\gamma(B^+ \to D^{(*)0} K^{(*)+})$ For angle $\gamma(\phi_3)$ of the CKM unitarity triangle, see the review on "CP Violation" in						
For angle $\gamma(\phi_3)$ of the CKN	/ unitarity	triang	le, see	the revi	ew on "CP Violation" in	
For angle $\gamma(\phi_3)$ of the CKN the Reviews section.						
For angle $\gamma(\phi_3)$ of the CKN the Reviews section. <u>VALUE (°)</u> <u>CL%</u> <u>DOC</u>	M unitarity					
For angle $\gamma(\phi_3)$ of the CKN the Reviews section. VALUE (°) 73 + 7 OUR AVERAGE	UMENT ID					
For angle $\gamma(\phi_3)$ of the CKN the Reviews section. <u>VALUE (°)</u> <u>CL%</u> <u>DOC</u>	UMENT ID		<u>TECN</u>		ENT	
For angle $\gamma(\phi_3)$ of the CKN the Reviews section. VALUE (°) 73 + 7 OUR AVERAGE	<i>UMENT ID</i>	13AK	TECN LHCB	COMM	ENT	
For angle $\gamma(\phi_3)$ of the CKN the Reviews section. VALUE (°) 73 + 7 OUR AVERAGE 72.6+9.7 71.2 69 +17 -16 $^{+17}$ $^{-16}$ 1,2 AAI 3 LEE	UMENT ID	13AK 13B	TECN LHCB BABR	$\frac{COMM}{pp}$ at e^+e^-	7 TeV	
For angle $\gamma(\phi_3)$ of the CKN the Reviews section. VALUE (°) 73 + 7 OUR AVERAGE 72.6+9.7 71.2 69 +17 69 -16 For angle $\gamma(\phi_3)$ of the CKN the Reviews section. 1,2 AAI	J S LUEKTOV	13AK 13B 10	TECN LHCB BABR BELL	pp at $e^+e^ e^+e^-$	7 TeV	
For angle $\gamma(\phi_3)$ of the CKN the Reviews section. VALUE (°) 73 + 7 OUR AVERAGE 72.6+9.7 71.2 69 +17 71.6 78.4+10.8 ± 9.6 78.4+10.8 ± 9.6 79.6 CKN DOC 1,2 AAI 4 POL	J S -UEKTOV data for av	13AK 13B 10 verage	LHCB BABR BELL s, fits,	pp at $e^+e^ e^+e^-$ limits, e^+	7 TeV	
For angle $\gamma(\phi_3)$ of the CKN the Reviews section. VALUE (°) 73 + 7 9 OUR AVERAGE 72.6+9.7 1,2 AAI 69 +17 3 LEE 78.4+10.8 ± 9.6 4 POL • • • We do not use the following 44 +43 5,6 AAI 77.3+15.1 ± 5.9 6,7 AIH	J S LUEKTOV data for av J ARA	13AK 13B 10 /erage 12AQ	LHCB BABR BELL s, fits, LHCB BELL	pp at $e^+e^ e^+e^-$ Repl. e^+e^-	7 TeV $T \to \Upsilon(4S)$	
For angle $\gamma(\phi_3)$ of the CKN the Reviews section. VALUE (°) 73 + 7 9 OUR AVERAGE 72.6+9.7 1,2 AAI 69 +17 3 LEE 78.4+10.8 ± 9.6 4 POL • • • We do not use the following 44 +43 5,6 AAI 77.3+15.1 ± 5.9 6,7 AIH	J S LUEKTOV data for av J ARA	13AK 13B 10 /erage 12AQ	LHCB BABR BELL s, fits, LHCB BELL	pp at $e^+e^ e^+e^-$ Repl. e^+e^-	7 TeV $T \to \Upsilon(4S)$	
For angle $\gamma(\phi_3)$ of the CKN the Reviews section. VALUE (°) 73 + 7 9 OUR AVERAGE 72.6+9.7 1,2 AAI 69 +17 3 LEE 78.4+10.8 ± 9.6 4 POL • • • We do not use the following 44 +43 5,6 AAI 77.3+15.1 ± 5.9 6,7 AIH	J S LUEKTOV data for av J ARA L-AMO-SA.	13AK 13B 10 /erage 12AQ 12 .10F	LHCB BABR BELL s, fits, LHCB BELL BABR BABR	$COMM$ pp at $e^+e^ e^+e^ e^+e^-$ Repl. e^+e^- Repl. e^+e^-	7 TeV $T \to \Upsilon(4S)$	
For angle $\gamma(\phi_3)$ of the CKN the Reviews section. VALUE (°) 73 + 7 OUR AVERAGE 72.6+9.7 1,2 AAI 69 +17 3 LEE 78.4+10.8 ± 9.6 4 POL • • • We do not use the following 44 +43 5,6 AAI 77.3+15.1 ± 5.9 6,7 AIH 68 ±14 ± 5 8 DEL 7 to 173 95 9 DEL 76 +22 ± 7.1 10 AUE	J S UEKTOV data for av J ARA -AMO-SA. BERT	13AK 13B 10 verage 12AQ 12 .10F .10G	LHCB BABR BELL s, fits, LHCB BELL BABR BABR BABR	$COMM$ pp at $e^+e^ e^+e^-$ Repl. e^+e^- Repl. e^+e^-	7 TeV $T o au(4S)$	
For angle $\gamma(\phi_3)$ of the CKN the Reviews section. VALUE (°) 73 + 7 OUR AVERAGE 72.6+9.7 1,2 AAI 69 +17 3 LEE 78.4+10.8 ± 9.6 4 POL • • • We do not use the following 44 +43 5,6 AAI 77.3+15.1 ± 5.9 6,7 AIH 68 ±14 ± 5 8 DEL 7 to 173 95 9 DEL 76 +22 ± 7.1 10 AUE 53 +15 ±10 11 POL 10 AUE	J S LUEKTOV data for av J ARA -AMO-SA. BERT LUEKTOV	13AK 13B 10 //erage 12AQ 12 .10F .10G 08AL	LHCB BABR BELL s, fits, LHCB BELL BABR BABR BABR BABR	$COMM$ pp at $e^+e^ e^+e^-$ Repl. e^+e^- Repl. e^+e^- Repl. SA	7 TeV $T \to \Upsilon(4S)$	
For angle $\gamma(\phi_3)$ of the CKN the Reviews section. VALUE (°) 73 + 7 OUR AVERAGE 72.6+9.7 1,2 AAI 69 +17 3 LEE 78.4+10.8 ± 9.6 4 POI • • • We do not use the following 44 +43 5,6 AAI 77.3+15.1 ± 5.9 6,7 AIH 68 ±14 ± 5 8 DEL 7 to 173 95 9 DEL 76 +22 ± 7.1 10 AUE 53 +15 ±10 11 POI 70 ±31 +18 12 AUE	J S LUEKTOV data for av J ARA -AMO-SA. BERT LUEKTOV BERT,B	13AK 13B 10 Verage 12AQ 12 .10F .10G 08AL 06	LHCB BABR BELL s, fits, LHCB BELL BABR BABR BABR BABR	$COMM$ pp at $e^+e^ e^+e^-$ Repl. e^+e^- Repl. SA Repl. Repl.	7 TeV $T \to \Upsilon(4S)$ $T \to $	

- ¹ The value is determined from combination of measuremets using D meson decaying to K^+K^- , $\pi^+\pi^-$, $K^\pm\pi^\mp$, $K^0_5\pi^+\pi^-$, $K^0_5K^+K^-$, and $K^\pm\pi^\mp\pi^\pm\pi^\mp$.
- 2 Presents a confidence region $55.4^\circ < \gamma < 82.3^\circ$ at 68% CL with best fit value 72.6° and includes both statistical and systematic uncertainties. The corresponding 95% CL is $40.2~^\circ < \gamma < 92.7^\circ$.
- ³ Reports combination of published measurements using GGSZ, GLW, and ADS methods. Reports also 2σ range of 41–102° and a 5.9σ significance for $\gamma(B^+ \to D^{(*)0}K^{(*)+}) \neq 0$ hypothesis.
- ⁴ Uses Dalitz plot analysis of $\overline{D}{}^0 \to K_S^0 \pi^+ \pi^-$ decays from $B^+ \to D^{(*)} K^+$ modes. The corresponding two standard deviation interval for γ is $54.2^\circ < \gamma < 100.5^\circ$. CP conservation in the combined result is ruled out with a significance of 3.5 standard deviations.
- ⁵ Reports combined statistical and systematic uncertainties.
- ⁶ Uses binned Dalitz plot of $\overline{D}{}^0 \to \mathcal{K}_S^0 \pi^+ \pi^-$ decays from $B^+ \to \overline{D}{}^0 \mathcal{K}^+$. Measurement of strong phases in $\overline{D}{}^0 \to \mathcal{K}_S^0 \pi^+ \pi^-$ Dalitz plot from LIBBY 10 is used as input.
- ⁷ We combined the systematics in quadrature. The authors report separately the contribution to the systematic uncertainty due to the uncertainty on the bin-averaged strong phase difference between D^0 and \overline{D}^0 amplitudes.
- phase difference between D^0 and $\overline{D}{}^0$ amplitudes. 8 Uses Dalitz plot analysis of $\overline{D}{}^0 \to K_S^0 \pi^+ \pi^-$, $K_S^0 K^+ K^-$ decays from $B^+ \to D^{(*)} K^+$, DK^{*+} modes. The corresponding two standard deviation interval for γ is $39^\circ < \gamma < 98^\circ$. CP conservation in the combined result is ruled out with a significance of 3.5 standard deviations.
- ⁹Reports confidence intervals for the CKM angle γ from the measured values of the GLW parameters using $B^{\pm} \to DK^{\pm}$ decays with D mesons decaying to non- $CP(K\pi)$, CP-even $(K^+K^-, \pi^+\pi^-)$, and CP-odd $(K^0_S\pi^0, K^0_S\omega)$ states.
- ¹⁰ Uses Dalitz plot analysis of $\overline{D}{}^0 \to K_S^0 \pi^+ \pi^-$ and $\overline{D}{}^0 \to K_S^0 K^+ K^-$ decays coming from $B^\pm \to D^{(*)} K^{(*)\pm}$ modes. The corresponding two standard deviation interval is $29^\circ < \gamma < 122^\circ$.
- ¹¹ Uses a Dalitz plot analysis of the $\overline{D}{}^0 \to K_S^0 \pi^+ \pi^-$ decays; Combines the DK^+ , D^*K^+ and DK^{*+} modes. The corresponding two standard deviations interval for gamma is $8^\circ < \gamma < 111^\circ$.
- 12 Uses a Dalitz plot analysis of neutral $D\to K_5^0\pi^+\pi^-$ decays coming from $B^\pm\to DK^\pm$ and $B^\pm\to D^{*0}K^\pm$ followed by $D^{*0}\to D\pi^0$, $D\gamma$. The corresponding two standard deviations interval for gamma is $12^\circ<\gamma<137^\circ$. AUBERT,B 05Y also reports the amplitude ratios and the strong phases.
- 13 Uses a Dalitz plot analysis of the 3-body $D \to K_S^0 \pi^+ \pi^-$ decays coming from $B^\pm \to D K^\pm$ and $B^\pm \to D^* K^\pm$ followed by $D^* \to D \pi^0$; here we use D to denote that the neutral D meson produced in the decay is an admixture of D^0 and \overline{D}^0 . The corresponding two standard deviations interval for γ is $26^\circ < \gamma < 126^\circ$. POLUEKTOV 04 also reports the amplitude ratios and the strong phases.

PARTIAL BRANCHING FRACTIONS IN $B^+ \rightarrow \kappa^{(*)+} \ell^+ \ell^-$

$B(B^+ \to K^{*+}\ell^+\ell^-)$ (q² < 2.0 GeV²/c⁴)

VALUE (units 10 ⁻⁷)	DOCUMENT ID	TECN	COMMENT
1.4 ±0.5 OUR AVERAGE	_		
$1.37 ^{igoplus 0.60}_{-0.58}$	AAIJ	12AH LHCB	pp at 7 TeV
$1.30 \pm 0.98 \pm 0.14$	AALTONEN	11AI CDF	$p\overline{p}$ at 1.96 TeV

$B(B^+ \to K^{*+}\ell^+\ell^-)$ (2.0 < σ	$q^2 < 4.3 \text{ GeV}^2$	² /c ⁴)		
VALUE (units 10^{-7})	DOCUMENT ID		TECN	COMMENT
1.1 ±0.5 OUR AVERAGE				
$1.24^{+0.60}_{-0.55}$	AAIJ	12AH	LHCB	pp at 7 TeV
$0.71 \pm 1.00 \pm 0.15$	AALTONEN	11 AI	CDF	$p\overline{p}$ at 1.96 TeV
$B(B^+ \to K^{*+}\ell^+\ell^-)$ (4.3 < 6)	$q^2 < 8.68 \text{ Ge}$	l^{2}/c^{4}	·)	
VALUE (units 10^{-7})	DOCUMENT ID		TECN	COMMENT
$2.4 \begin{array}{l} +0.8 \\ -0.7 \end{array}$ OUR AVERAGE				
$2.50^{+0.88}_{-0.74}$	AAIJ	12AH	LHCB	pp at 7 TeV
$1.71\!\pm\!1.58\!\pm\!0.49$	AALTONEN	11 AI	CDF	$p\overline{p}$ at 1.96 TeV
$B(B^+ \to K^{*+}\ell^+\ell^-)$ (10.09 <	$< q^2 < 12.86$	GeV ²	² /c ⁴)	
VALUE (units 10^{-7})	DOCUMENT ID		TECN	COMMENT
2.1 ±0.6 OUR AVERAGE				
$2.13^{+0.72}_{-0.66}$	AAIJ	12AH	LHCB	pp at 7 TeV
$1.97\!\pm\!0.99\!\pm\!0.22$	AALTONEN	11AI	CDF	$p\overline{p}$ at 1.96 TeV
$B(B^+ \to K^{*+}\ell^+\ell^-)$ (14.18 <	$< q^2 < 16.0 G$	ieV ² /	′c ⁴)	
·	DOCUMENT ID		TECN	COMMENT
$0.86^{+0.40}_{-0.32}$ Our Average				
$1.00^{+0.47}_{-0.38}$	AAIJ	12AH	LHCB	pp at 7 TeV
$0.52 \pm 0.61 \pm 0.09$	AALTONEN	11 AI	CDF	$p\overline{p}$ at 1.96 TeV
$B(B^+ \to K^{*+}\ell^+\ell^-) (q^2 > 1)$	16.0 GeV ² /c ⁴))		
$VALUE$ (units 10^{-7})	DOCUMENT ID		TECN	COMMENT
1.3 ±0.4 OUR AVERAGE				
1.25 ± 0.46 $1.57\pm0.96\pm0.17$	AAIJ			pp at 7 TeV $p\overline{p}$ at 1.96 TeV
				ρρ at 1.90 TeV
$B(B^+ \to K^{*+}\ell^+\ell^-)$ (1.0 < 0	$q^2 < 6.0 \text{ GeV}^2$	² /c ⁴)		
<u>VALUE (units 10⁻⁷)</u> 2.8 ±0.8 OUR AVERAGE	DOCUMENT ID		TECN	COMMENT
2.90 + 0.90 - 0.85	AAIJ	12ан	I HCB	nn at 7 TeV
$2.57 \pm 1.61 \pm 0.40$				p p at 1.96 TeV
$B(B^+ \to K^{*+}\ell^+\ell^-)$ (0.0 < 0				
7		-	TECN	COMMENT
<u>VALUE (units 10⁻¹)</u> 2.01±1.39±0.27	AALTONEN			$p\overline{p}$ at 1.96 TeV
_				
$B(B^+ \to K^+ \ell^+ \ell^-) (q^2 < 2.0)$, ,			
<u>VALUE (units 10⁻⁷)</u> 0.51 ±0.08 OUR AVERAGE Error	or includes scale	factor	of 1.5	COMMENT
$0.556 \pm 0.053 \pm 0.027$	AAIJ			pp at 7 TeV
$0.36 \pm 0.11 \pm 0.03$				$p\overline{p}$ at 1.96 TeV
HTTP://PDG.LBL.GOV	Page 170		Create	ed: 8/21/2014 12:56

$B(B^+ \to K^+ \ell^+ \ell^-)$ (2.0 < q ² VALUE (units 10 ⁻⁷)	-		TECN	COMMENT	
0.60 ±0.07 OUR AVERAGE Erro	or includes scale	facto	of 1 3	COMMENT	
$0.573 \pm 0.053 \pm 0.023$ $0.80 \pm 0.15 \pm 0.05$	AALTONEN	11Δι	CDF	nn at 1 96 TeV	
0.00 ±0.13 ±0.03	70 (ET ONE)	IIA	CDI	pp at 1.50 TeV	
$B(B^+ \to K^+ \ell^+ \ell^-)$ (4.3 < q ²	$^{2} < 8.68 \text{ GeV}^{2}$	$^{2}/c^{4}$)		
VALUE (units 10^{-7})	DOCUMENT ID	-		COMMENT	
1.03 ±0.07 OUR AVERAGE	DOCOMENT ID		1201	COMMENT	
	AAIJ	13⊢	LHCB	nn at 7 TeV	
				$p\overline{p}$ at 1.96 TeV	
				pp at 1.50 TeV	
$B(B^+ \to K^+ \ell^+ \ell^-)$ (10.09 <	$q^2 < 12.86$ (GeV ²	/c ⁴)		
VALUE (units 10^{-7})	DOCUMENT ID		TECN	COMMENT	
0.58 ±0.05 OUR AVERAGE					
$0.565 \pm 0.050 \pm 0.022$	AAIJ	13H	LHCB	pp at 7 TeV	
$0.68 \pm 0.12 \pm 0.05$	AALTONEN	11AI	CDF	pp at 7 TeV p p at 1.96 TeV	
$B(B^+ \to K^+ \ell^+ \ell^-)$ (14.18 <	•		•		
VALUE (units 10^{-7})	DOCUMENT ID		TECN	COMMENT	
0.40 ±0.05 OUR AVERAGE Erro	r includes scale	facto	r of 1.4.		
$0.377 \pm 0.036 \pm 0.015$ $0.53 \pm 0.10 \pm 0.03$	AAIJ	13H	LHCB	pp at 7 TeV	
$0.53 \pm 0.10 \pm 0.03$	AALTONEN	11 AI	CDF	$p\overline{p}$ at 1.96 TeV	
$B(B^+ \to K^+ \ell^+ \ell^-)$ (16.0 < 6)	$q^2 < 18.0 \text{ Ge}$	√2/c	⁴)		
VALUE (units 10^{-7})	DOCUMENT ID		TECN	COMMENT	
$0.354 \pm 0.036 \pm 0.018$	AAIJ	13H	LHCB	pp at 7 TeV	
$B(B^+ \to K^+ \ell^+ \ell^-)$ (18.0 < 6)					
VALUE (units 10^{-7})	DOCUMENT ID		TECN	COMMENT	
$0.312 \pm 0.040 \pm 0.016$	AAIJ	13H	LHCB	pp at 7 TeV	
$B(B^+ \to K^+ \ell^+ \ell^-)$ (16.0 < 6)					
VALUE (units 10^{-7})	DOCUMENT ID		TECN	COMMENT	
$0.48 \pm 0.11 \pm 0.03$	AALTONEN	11AI	CDF	$p\overline{p}$ at 1.96 TeV	
$B(B^+ \to K^+ \ell^+ \ell^-) (1.0 < q^2)$	2 < 6.0 GeV 2	/c ⁴)			
VALUE (units 10^{-7})	DOCUMENT ID		TECN	COMMENT	
1.25 ±0.10 OUR AVERAGE					
$1.205 \pm 0.085 \pm 0.070$	AAIJ				
$1.41 \pm 0.20 \pm 0.10$	AALTONEN	11AI	CDF	$p\overline{p}$ at 1.96 TeV	
$B(B^+ \to K^+ \ell^+ \ell^-) (0.0 < q^2)$	2 < 4.3 GeV 2	/c ⁴)			
VALUE (units 10^{-7})	DOCUMENT ID		TECN	COMMENT	
1.13±0.19±0.08	AALTONEN	11AI	CDF	$p\overline{p}$ at 1.96 TeV	

B[±] REFERENCES

AAIJ	14	PRL 112 011801	R. Aaij <i>et al.</i>	(LHCb Collab.)
			•	`
AAIJ	14A	PL B728 85	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ	14E	JHEP 1404 114	R. Aaij <i>et al.</i>	(LHCb Collab.)
ABAZOV	14A	PR D89 012004	V.M. Abazov <i>et al.</i>	(D0 Collab.)
LEES	14A	PR D89 011102	J.P. Lees et al.	(BABAR Collab.)
TIEN	14	PR D89 011101	KJ. Tien <i>et al.</i>	(BELLE Collab.)
				`
AAIJ		PL B723 44	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ	13AK	PL B726 151	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ	13AP	PR D87 092007	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ	13AU	PR D88 052015	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ		PRL 111 101801	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ		PRL 111 112003	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ	13BN	PRL 111 151801	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ	13BS	PL B726 646	R. Aaij et al.	(LHCb Collab.)
AAIJ	13H	JHEP 1302 105	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ	13R		•	
		JHEP 1302 043	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ	13S	EPJ C73 2462	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ	13Z	JHEP 1309 006	R. Aaij <i>et al.</i>	(LHCb Collab.)
ABAZOV	13M	PRL 110 241801	V.M. Abazov <i>et al.</i>	` (D0 Collab.)
DUH	13	PR D87 031103	Y. T. Duh et al.	
				(BELLE Collab.)
HARA	13	PRL 110 131801	K. Hara <i>et al.</i>	(BELLE Collab.)
LEES	13A	PR D87 032004	J.P. Lees <i>et al.</i>	(BABAR Collab.)
LEES	13B	PR D87 052015	J.P. Lees <i>et al.</i>	(BABAR Collab.)
LEES	131	PR D87 112005	J.P. Lees <i>et al.</i>	(BABAR Collab.)
			J.P. Lees et al.	
LEES	13K	PR D88 031102		(BABAR Collab.)
LEES	13M	PR D88 032012	J.P. Lees <i>et al.</i>	(BABAR Collab.)
LEES	13T	PR D88 072006	J.P. Lees <i>et al.</i>	(BABAR Collab.)
LUTZ	13	PR D87 111103	O. Lutz et al.	`(BELLE Collab.)
NAYAK	13	PR D88 091104	M. Nayak <i>et al.</i>	(BELLE Collab.)
			•	,
SIBIDANOV	13	PR D88 032005	A. Sibidanov et al.	(BELLE Collab.)
AAIJ	12AA	PR D85 091103	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ	12AC	PR D85 091105	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ	12AD	PR D85 112004	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ		JHEP 1207 133	R. Aaij <i>et al.</i>	
			•	(LHCb Collab.)
AAIJ		PL B718 43	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ	12AY	JHEP 1212 125	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ	12C	PRL 108 101601	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ	12E	PL B708 241	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ	12L	EPJ C72 2118	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ	12M	PL B712 203	R. Aaij <i>et al.</i>	(LHCb Collab.)
Also		PL B713 351 (errat)	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ	12T	PRL 108 161801	R. Aaij <i>et al.</i>	(LHCb Collab.)
AIHARA	12	PR D85 112014	H. Aihara <i>et al.</i>	(BELLE Collab.)
DEL-AMO-SA		PR D85 092017	P. del Amo Sanchez et al.	(BABAR Collab.)
HOI	12	PRL 108 031801	CT. Hoi et al.	(BELLE Collab.)
				` '
KIM	12A	PR D86 031101	J.H. Kim <i>et al.</i>	(BELLE Collab.)
LEES	12AA	PR D86 092004	J.P. Lees <i>et al.</i>	(BABAR Collab.)
LEES	12B	PR D85 052003	J.P. Lees et al.	(BABAR Collab.)
LEES	12D	PRL 109 101802	J.P. Lees et al.	(BABAR Collab.)
Also		PR D88 072012	J.P. Lees <i>et al.</i>	(BABAR Collab.)
	101			
LEES	12J	PR D85 071103	J.P. Lees <i>et al.</i>	(BABAR Collab.)
LEES	120	PR D85 112010	J.P. Lees <i>et al.</i>	(BABAR Collab.)
LEES	12P	PR D86 012004	J.P. Lees <i>et al.</i>	(BABAR Collab.)
LEES	12S	PR D86 032012	J.P. Lees et al.	(BABAR Collab.)
LEES	12Z	PR D86 091102	J.P. Lees <i>et al.</i>	(BABAR Collab.)
STYPULA	12	PR D86 072007	J. Stypula et al.	(BELLE Collab.)
AAIJ	11E	PR D84 092001	R. Aaij <i>et al.</i>	(LHCb Collab.)
Also		PR D85 039904 (errat)	R. Aaij <i>et al.</i>	(LHCb Collab.)
AALTONEN	11	PRL 106 121804 `	T. Aaltonen et al.	`(CDF Collab.)
AALTONEN	11AI	PRL 107 201802	T. Aaltonen et al.	(CDF Collab.)
AALTONEN	11AJ	PR D84 091504	T. Aaltonen <i>et al.</i>	(CDF Collab.)
AALTONEN	11B	PR D83 032008	T. Aaltonen <i>et al.</i>	(CDF Collab.)
AALTONEN	11L	PRL 106 161801	T. Aaltonen <i>et al.</i>	(CDF Collab.)
AUSHEV	11	PR D83 051102	T. Aushev et al.	(BÈLLE Collab.)
BHARDWAJ	11	PRL 107 091803	V. Bhardwaj <i>et al.</i>	(BELLE Collab.)
	11F		3	
CHEN		PR D84 071501	P. Chen et al.	(BELLE Collab.)
CHOI	11	PR D84 052004	SK. Choi et al.	(BELLE Collab.)
DEL-AMO-SA		PR D83 032004	P. del Amo Sanchez <i>et al.</i>	(BABAR Collab.)
DEL-AMO-SA	. 11C	PR D83 032007	P. del Amo Sanchez et al.	(BABAR Collab.)
				. ,

DEL-AMO-SA	. 11D	PR D83 051101	P. del Amo Sanchez <i>et al.</i>	(BABAR Collab.)
DEL-AMO-SA		PR D83 052011	P. del Amo Sanchez <i>et al.</i>	(
				(BABAR Collab.)
DEL-AMO-SA	. 11K	PR D83 091101	P. del Amo Sanchez <i>et al.</i>	(BABAR Collab.)
DEL-AMO-SA	11I	PRL 107 041804	P. del Amo Sanchez et al.	(BABAR Collab.)
				`
GULER	11	PR D83 032005	H. Guler <i>et al.</i>	(BELLE Collab.)
HORII	11	PRL 106 231803	Y. Horii <i>et al.</i>	(BELLE Collab.)
LEES	11A	PR D84 012001	J.P. Lees <i>et al.</i>	(BABAR Collab.)
				,
LEES	11D	PR D84 012002	J.P. Lees <i>et al.</i>	(BABAR Collab.)
LEES	111	PR D84 092007	J.P. Lees <i>et al.</i>	(BABAR Collab.)
				`
SAHOO	11A	PR D84 071101	H. Sahoo <i>et al.</i>	(BELLE Collab.)
SEON	11	PR D84 071106	O. Seon <i>et al.</i>	(BELLE Collab.)
VINOKUROVA	11	PL B706 139	A. Vinokurova et al.	(BELLE Collab.)
				`
AALTONEN	10A	PR D81 031105	T. Aaltonen <i>et al.</i>	(CDF Collab.)
AUBERT	10	PRL 104 011802	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT	10D	PR D81 052009	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT	10E	PR D81 051101	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUSHEV	10	PR D81 031103	T. Aushev <i>et al.</i>	(BELLE Collab.)
BOZEK	10	PR D82 072005	A. BOZEK et al.	(BELLE Collab.)
	-			
DEL-AMO-SA	. 10A	PR D82 011502	P. del Amo Sanchez <i>et al.</i>	(BABAR Collab.)
DEL-AMO-SA	. 10B	PR D82 011101	P. del Amo Sanchez et al.	(BABAR Collab.)
DEL-AMO-SA		PRL 105 121801	P. del Amo Sanchez <i>et al.</i>	(BABAR Collab.)
DEL-AMO-SA	. 10G	PR D82 072004	P. del Amo Sanchez et al.	(BABAR Collab.)
DEL-AMO-SA	10H	PR D82 072006	P. del Amo Sanchez et al.	(BABAR Collab.)
DEL-AMO-SA		PR D82 091101	P. del Amo Sanchez et al.	(BABAR Collab.)
DEL-AMO-SA	. 10K	PR D82 092006	P. del Amo Sanchez <i>et al.</i>	(BABAR Collab.)
DEL-AMO-SA		PR D82 112002	P. del Amo Sanchez et al.	(BABAR Collab.)
	-			\.
HARA	10	PR D82 071101	K. Hara <i>et al.</i>	(BELLE Collab.)
LIBBY	10	PR D82 112006	J. Libby <i>et al.</i>	(CLEO Collab.)
POLUEKTOV	10	PR D81 112002	A. Poluektov <i>et al.</i>	(BELLE Collab.)
SAKAI	10	PR D82 091104	K. Sakai <i>et al.</i>	(BELLE Collab.)
WEDD	10	PR D81 111104	R. Wedd <i>et al.</i>	(BELLE Collab.)
AALTONEN	09B	PR D79 011104	T. Aaltonen <i>et al.</i>	(CDF Collab.)
				`
ABAZOV	09Y	PR D79 111102	V.M. Abazov <i>et al.</i>	(D0 Collab.)
ABULENCIA	09	PR D79 112003	A. Abulencia <i>et al.</i>	(CDF Collab.)
AUBERT		PR D79 011102	B. Aubert <i>et al.</i>	. `
	09			(BABAR Collab.)
AUBERT	09A	PR D79 012002	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT	09AA	PR D79 112001	B. Aubert <i>et al.</i>	(BABAR Collab.)
		PR D79 112004	B. Aubert <i>et al.</i>	
AUBERT				(BABAR Collab.)
AUBERT	09AF	PR D80 051101	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT	09A I	PR D80 092001	B. Aubert <i>et al.</i>	(BABAR Collab.)
		PRL 103 211802	B. Aubert <i>et al.</i>	
AUBERT				(BABAR Collab.)
AUBERT	09AT	PR D80 111105	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT	09AV	PR D80 112002	B. Aubert <i>et al.</i>	(BABAR Collab.)
				(BABAR Collab.)
AUBERT	09B	PRL 102 132001	B. Aubert <i>et al.</i>	
AUBERT	09F	PR D79 051102		
AUBERT		1 1 019 031102	B. Aubert <i>et al.</i>	
	09G			(BABAR Collab.)
	09G	PRL 102 141802	B. Aubert et al.	(BABAR Collab.) (BABAR Collab.)
AUBERT	09H	PRL 102 141802 PR D79 052005	B. Aubert <i>et al.</i> B. Aubert <i>et al.</i>	(BABAR Collab.) (BABAR Collab.) (BABAR Collab.)
		PRL 102 141802	B. Aubert et al.	(BABAR Collab.) (BABAR Collab.)
AUBERT AUBERT	09H 09J	PRL 102 141802 PR D79 052005 PR D79 051101	B. Aubert <i>et al.</i> B. Aubert <i>et al.</i> B. Aubert <i>et al.</i>	(BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.)
AUBERT AUBERT AUBERT	09H 09J 09L	PRL 102 141802 PR D79 052005 PR D79 051101 PR D79 072006	B. Aubert <i>et al</i>.B. Aubert <i>et al</i>.B. Aubert <i>et al</i>.B. Aubert <i>et al</i>.	(BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.)
AUBERT AUBERT AUBERT AUBERT	09H 09J 09L 09Q	PRL 102 141802 PR D79 052005 PR D79 051101 PR D79 072006 PR D79 052011	 B. Aubert et al. 	(BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.)
AUBERT AUBERT AUBERT AUBERT	09H 09J 09L	PRL 102 141802 PR D79 052005 PR D79 051101 PR D79 072006	B. Aubert <i>et al</i>.B. Aubert <i>et al</i>.B. Aubert <i>et al</i>.B. Aubert <i>et al</i>.	(BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.)
AUBERT AUBERT AUBERT AUBERT AUBERT	09H 09J 09L 09Q 09S	PRL 102 141802 PR D79 052005 PR D79 051101 PR D79 072006 PR D79 052011 PR D79 092002	 B. Aubert et al. 	(BABAR Collab.)
AUBERT AUBERT AUBERT AUBERT AUBERT AUBERT	09H 09J 09L 09Q	PRL 102 141802 PR D79 052005 PR D79 051101 PR D79 072006 PR D79 052011 PR D79 092002 PRL 102 091803	 B. Aubert et al. 	(BABAR Collab.)
AUBERT AUBERT AUBERT AUBERT AUBERT AUBERT Also	09H 09J 09L 09Q 09S 09T	PRL 102 141802 PR D79 052005 PR D79 051101 PR D79 072006 PR D79 052011 PR D79 092002 PRL 102 091803 EPAPS Document N	B. Aubert et al. No. E-PRLTAO-102-060910	(BABAR Collab.)
AUBERT AUBERT AUBERT AUBERT AUBERT AUBERT	09H 09J 09L 09Q 09S	PRL 102 141802 PR D79 052005 PR D79 051101 PR D79 072006 PR D79 052011 PR D79 092002 PRL 102 091803	 B. Aubert et al. 	(BABAR Collab.)
AUBERT AUBERT AUBERT AUBERT AUBERT AUBERT Also AUBERT	09H 09J 09L 09Q 09S 09T	PRL 102 141802 PR D79 052005 PR D79 051101 PR D79 072006 PR D79 052011 PR D79 092002 PRL 102 091803 EPAPS Document PR D79 091101	B. Aubert et al. Aubert et al. No. E-PRLTAO-102-060910 B. Aubert et al.	(BABAR Collab.)
AUBERT AUBERT AUBERT AUBERT AUBERT AUBERT Also AUBERT AUBERT	09H 09J 09L 09Q 09S 09T	PRL 102 141802 PR D79 052005 PR D79 051101 PR D79 072006 PR D79 052011 PR D79 092002 PRL 102 091803 EPAPS Document N PR D79 091101 PRL 103 051803	B. Aubert et al. No. E-PRLTAO-102-060910 B. Aubert et al. B. Aubert et al.	(BABAR Collab.)
AUBERT AUBERT AUBERT AUBERT AUBERT AUSERT AUSERT AUBERT AUBERT CHANG	09H 09J 09L 09Q 09S 09T 09V 09Y 09	PRL 102 141802 PR D79 052005 PR D79 051101 PR D79 072006 PR D79 052011 PR D79 092002 PRL 102 091803 EPAPS Document N PR D79 091101 PRL 103 051803 PR D79 052006	B. Aubert et al. No. E-PRLTAO-102-060910 B. Aubert et al. B. Aubert et al. YW. Chang et al.	(BABAR Collab.)
AUBERT AUBERT AUBERT AUBERT AUBERT AUBERT Also AUBERT AUBERT	09H 09J 09L 09Q 09S 09T	PRL 102 141802 PR D79 052005 PR D79 051101 PR D79 072006 PR D79 052011 PR D79 092002 PRL 102 091803 EPAPS Document N PR D79 091101 PRL 103 051803 PR D79 052006	B. Aubert et al. No. E-PRLTAO-102-060910 B. Aubert et al. B. Aubert et al.	(BABAR Collab.)
AUBERT AUBERT AUBERT AUBERT AUBERT AISO AUBERT AUBERT CHANG CHEN	09H 09J 09L 09Q 09S 09T 09V 09Y 09 09C	PRL 102 141802 PR D79 052005 PR D79 051101 PR D79 072006 PR D79 052011 PR D79 092002 PRL 102 091803 EPAPS Document N PR D79 091101 PRL 103 051803 PR D79 052006 PR D80 111103	B. Aubert et al. No. E-PRLTAO-102-060910 B. Aubert et al. B. Aubert et al. P. Chen et al.	(BABAR Collab.) (BELLE Collab.)
AUBERT AUBERT AUBERT AUBERT AUBERT AISO AUBERT AUBERT CHANG CHEN LIU	09H 09J 09L 09Q 09S 09T 09V 09Y 09 09C	PRL 102 141802 PR D79 052005 PR D79 051101 PR D79 072006 PR D79 052011 PR D79 092002 PRL 102 091803 EPAPS Document N PR D79 091101 PRL 103 051803 PR D79 052006 PR D80 111103 PR D79 071102	B. Aubert et al. No. E-PRLTAO-102-060910 B. Aubert et al. B. Aubert et al. P. Chen et al. C. Liu et al.	(BABAR Collab.) (BELLE Collab.) (BELLE Collab.) (BELLE Collab.)
AUBERT AUBERT AUBERT AUBERT AUBERT AISO AUBERT AUBERT AUBERT CHANG CHEN LIU WEI	09H 09J 09L 09Q 09S 09T 09V 09Y 09 09C	PRL 102 141802 PR D79 052005 PR D79 051101 PR D79 072006 PR D79 052011 PR D79 092002 PRL 102 091803 EPAPS Document N PR D79 091101 PRL 103 051803 PR D79 052006 PR D80 111103 PR D79 071102 PRL 103 171801	B. Aubert et al. V-PRLTAO-102-060910 B. Aubert et al. B. Aubert et al. C. Liu et al. JT. Wei et al.	(BABAR Collab.) (BELLE Collab.) (BELLE Collab.) (BELLE Collab.) (BELLE Collab.)
AUBERT AUBERT AUBERT AUBERT AUBERT AISO AUBERT AUBERT CHANG CHEN LIU	09H 09J 09L 09Q 09S 09T 09V 09Y 09 09C	PRL 102 141802 PR D79 052005 PR D79 051101 PR D79 072006 PR D79 052011 PR D79 092002 PRL 102 091803 EPAPS Document N PR D79 091101 PRL 103 051803 PR D79 052006 PR D80 111103 PR D79 071102 PRL 103 171801	B. Aubert et al. No. E-PRLTAO-102-060910 B. Aubert et al. B. Aubert et al. P. Chen et al. C. Liu et al.	(BABAR Collab.) (BELLE Collab.) (BELLE Collab.) (BELLE Collab.)
AUBERT AUBERT AUBERT AUBERT AUBERT AISO AUBERT AUBERT AUBERT AUBERT AUBERT AUBERT CHANG CHEN LIU WEI Also	09H 09J 09L 09Q 09S 09T 09V 09Y 09 09C 09 09A	PRL 102 141802 PR D79 052005 PR D79 052005 PR D79 051101 PR D79 072006 PR D79 052011 PR D79 092002 PRL 102 091803 EPAPS Document NP D79 091101 PRL 103 051803 PR D79 052006 PR D80 111103 PR D79 071102 PRL 103 171801 EPAPS Supplement	B. Aubert et al. VW. Chang et al. C. Liu et al. JT. Wei et al. EPAPS_appendix.pdf	(BABAR Collab.) (BELLE Collab.) (BELLE Collab.) (BELLE Collab.) (BELLE Collab.) (BELLE Collab.) (BELLE Collab.)
AUBERT AUBERT AUBERT AUBERT AUBERT AISO AUBERT AUBERT CHANG CHEN LIU WEI AISO WIECHCZYN	09H 09J 09L 09Q 09S 09T 09V 09Y 09 09C 09 09A	PRL 102 141802 PR D79 052005 PR D79 052005 PR D79 051101 PR D79 072006 PR D79 052011 PR D79 092002 PRL 102 091803 EPAPS Document IPR D79 091101 PRL 103 051803 PR D79 052006 PR D80 111103 PR D79 071102 PRL 103 171801 EPAPS Supplement PR D80 052005	B. Aubert et al. No. E-PRLTAO-102-060910 B. Aubert et al. B. Aubert et al. C. Liu et al. JT. Wei et al. EPAPS_appendix.pdf J. Wiechczynski et al.	(BABAR Collab.) (BELLE Collab.)
AUBERT AUBERT AUBERT AUBERT AUBERT AUSERT AUSERT AUBERT CHANG CHEN LIU WEI Also WIECHCZYN	09H 09J 09L 09Q 09S 09T 09V 09Y 09 09C 09 09A	PRL 102 141802 PR D79 052005 PR D79 051101 PR D79 072006 PR D79 072011 PR D79 092002 PRL 102 091803 EPAPS Document N PR D79 091101 PRL 103 051803 PR D79 052006 PR D80 111103 PR D79 071102 PRL 103 171801 EPAPS Supplement PR D80 052005 PRL 100 211802	B. Aubert et al. No. E-PRLTAO-102-060910 B. Aubert et al. B. Aubert et al. C. Liu et al. JT. Wei et al. EPAPS_appendix.pdf J. Wiechczynski et al. V.M. Abazov et al.	(BABAR Collab.) (BELLE Collab.) (COLLAB.)
AUBERT AUBERT AUBERT AUBERT AUBERT AISO AUBERT AUBERT CHANG CHEN LIU WEI AISO WIECHCZYN	09H 09J 09L 09Q 09S 09T 09V 09Y 09 09C 09 09A	PRL 102 141802 PR D79 052005 PR D79 052005 PR D79 051101 PR D79 072006 PR D79 052011 PR D79 092002 PRL 102 091803 EPAPS Document IPR D79 091101 PRL 103 051803 PR D79 052006 PR D80 111103 PR D79 071102 PRL 103 171801 EPAPS Supplement PR D80 052005	B. Aubert et al. No. E-PRLTAO-102-060910 B. Aubert et al. B. Aubert et al. C. Liu et al. JT. Wei et al. EPAPS_appendix.pdf J. Wiechczynski et al.	(BABAR Collab.) (BELLE Collab.) (COLLAB.)
AUBERT AUBERT AUBERT AUBERT AUBERT AUBERT AUSERT AUBERT CHANG CHEN LIU WEI Also WIECHCZYN ABAZOV ADACHI	09H 09J 09L 09Q 09S 09T 09V 09Y 09 09C 09 09A 09 08O 08	PRL 102 141802 PR D79 052005 PR D79 052005 PR D79 051101 PR D79 072006 PR D79 052011 PR D79 092002 PRL 102 091803 EPAPS Document N PR D79 091101 PRL 103 051803 PR D79 052006 PR D80 111103 PR D79 071102 PRL 103 171801 EPAPS Supplement PR D80 052005 PRL 100 211802 PR D77 091101	B. Aubert et al. No. E-PRLTAO-102-060910 B. Aubert et al. B. Aubert et al. C. Liu et al. JT. Wei et al. EPAPS_appendix.pdf J. Wiechczynski et al. V.M. Abazov et al. I. Adachi et al.	(BABAR Collab.) (BELLE Collab.)
AUBERT AUBERT AUBERT AUBERT AUBERT AUSERT AUSERT AUBERT CHANG CHEN LIU WEI Also WIECHCZYN ABAZOV ADACHI AUBERT	09H 09J 09L 09Q 09S 09T 09V 09Y 09 09C 09 09A 09 08O 08	PRL 102 141802 PR D79 052005 PR D79 052005 PR D79 051101 PR D79 072006 PR D79 052011 PR D79 092002 PRL 102 091803 EPAPS Document N PR D79 091101 PRL 103 051803 PR D79 052006 PR D80 111103 PR D79 071102 PRL 103 171801 EPAPS Supplement PR D80 052005 PRL 100 211802 PR D77 091101 PR D77 011101	B. Aubert et al. No. E-PRLTAO-102-060910 B. Aubert et al. B. Aubert et al. C. Liu et al. JT. Wei et al. EPAPS_appendix.pdf J. Wiechczynski et al. V.M. Abazov et al. I. Adachi et al. B. Aubert et al.	(BABAR Collab.) (BELLE Collab.)
AUBERT AUBERT AUBERT AUBERT AUBERT AISO AUBERT AUBERT CHANG CHEN LIU WEI Also WIECHCZYN ABAZOV ADACHI AUBERT AUBERT AUBERT	09H 09J 09L 09Q 09S 09T 09V 09Y 09 09C 09 09A 09 08O 08 08A 08AA	PRL 102 141802 PR D79 052005 PR D79 052005 PR D79 051101 PR D79 072006 PR D79 052011 PR D79 092002 PRL 102 091803 EPAPS Document N PR D79 091101 PRL 103 051803 PR D79 052006 PR D80 111103 PR D79 071102 PRL 103 171801 EPAPS Supplement PR D80 052005 PRL 100 211802 PR D77 091101 PR D77 011101 PR D77 111102	B. Aubert et al. No. E-PRLTAO-102-060910 B. Aubert et al. B. Aubert et al. C. Liu et al. JT. Wei et al. EPAPS_appendix.pdf J. Wiechczynski et al. V.M. Abazov et al. I. Adachi et al. B. Aubert et al. B. Aubert et al.	(BABAR Collab.) (BELLE Collab.) (BABAR Collab.)
AUBERT AUBERT AUBERT AUBERT AUBERT AUSERT AUSERT AUBERT CHANG CHEN LIU WEI Also WIECHCZYN ABAZOV ADACHI AUBERT	09H 09J 09L 09Q 09S 09T 09V 09Y 09 09C 09 09A 09 08O 08 08A 08AA	PRL 102 141802 PR D79 052005 PR D79 052005 PR D79 051101 PR D79 072006 PR D79 052011 PR D79 092002 PRL 102 091803 EPAPS Document N PR D79 091101 PRL 103 051803 PR D79 052006 PR D80 111103 PR D79 071102 PRL 103 171801 EPAPS Supplement PR D80 052005 PRL 100 211802 PR D77 091101 PR D77 011101	B. Aubert et al. No. E-PRLTAO-102-060910 B. Aubert et al. B. Aubert et al. C. Liu et al. JT. Wei et al. EPAPS_appendix.pdf J. Wiechczynski et al. V.M. Abazov et al. I. Adachi et al. B. Aubert et al.	(BABAR Collab.) (BELLE Collab.)
AUBERT AUBERT AUBERT AUBERT AUBERT AISO AUBERT AUBERT CHANG CHEN LIU WEI Also WIECHCZYN ABAZOV ADACHI AUBERT	09H 09J 09L 09Q 09S 09T 09V 09Y 09 09C 09 09A 09 08A 08AA 08AB	PRL 102 141802 PR D79 052005 PR D79 052005 PR D79 051101 PR D79 072006 PR D79 052011 PR D79 092002 PRL 102 091803 EPAPS Document N PR D79 091101 PRL 103 051803 PR D79 052006 PR D80 111103 PR D79 071102 PRL 103 171801 EPAPS Supplement PR D80 052005 PRL 100 211802 PR D77 091101 PR D77 011101 PR D77 011101 PR D77 111102 PR D78 012006	B. Aubert et al. No. E-PRLTAO-102-060910 B. Aubert et al. B. Aubert et al. C. Liu et al. JT. Wei et al. EPAPS_appendix.pdf J. Wiechczynski et al. V.M. Abazov et al. I. Adachi et al. B. Aubert et al. B. Aubert et al. B. Aubert et al.	(BABAR Collab.) (BELLE Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.)
AUBERT AUBERT AUBERT AUBERT AUBERT AUSERT AISO AUBERT AUBERT CHANG CHEN LIU WEI AISO WIECHCZYN ABAZOV ADACHI AUBERT	09H 09J 09L 09Q 09S 09T 09V 09Y 09 09C 09 09A 09 08A 08AA 08AB 08AD	PRL 102 141802 PR D79 052005 PR D79 052005 PR D79 051101 PR D79 072006 PR D79 052011 PR D79 092002 PRL 102 091803 EPAPS Document N PR D79 091101 PRL 103 051803 PR D79 052006 PR D80 111103 PR D79 071102 PRL 103 171801 EPAPS Supplement PR D80 052005 PRL 100 211802 PR D77 091101 PR D77 011101 PR D77 011101 PR D77 011101 PR D78 012006 PR D78 012006 PR D79 091104	B. Aubert et al. No. E-PRLTAO-102-060910 B. Aubert et al. B. Aubert et al. YW. Chang et al. C. Liu et al. JT. Wei et al. EPAPS_appendix.pdf J. Wiechczynski et al. V.M. Abazov et al. I. Adachi et al. B. Aubert et al.	(BABAR Collab.) (BELLE Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.)
AUBERT AUBERT AUBERT AUBERT AUBERT AUSERT AUSERT AUBERT AUBERT CHANG CHEN LIU WEI Also WIECHCZYN ABAZOV ADACHI AUBERT AUBERT AUBERT AUBERT AUBERT AUBERT AUBERT AUBERT AUBERT	09H 09J 09L 09Q 09S 09T 09V 09Y 09 09C 09 09A 08A 08AA 08AB 08AB 08AG	PRL 102 141802 PR D79 052005 PR D79 052005 PR D79 051101 PR D79 072006 PR D79 052011 PR D79 092002 PRL 102 091803 EPAPS Document N PR D79 091101 PRL 103 051803 PR D79 052006 PR D80 111103 PR D79 071102 PRL 103 171801 EPAPS Supplement PR D80 052005 PRL 100 211802 PR D77 091101 PR D77 091101 PR D77 111102 PR D78 012006 PR D78 012006 PR D77 091104 PR D78 011104	B. Aubert et al. No. E-PRLTAO-102-060910 B. Aubert et al. B. Aubert et al. C. Liu et al. JT. Wei et al. EPAPS_appendix.pdf J. Wiechczynski et al. V.M. Abazov et al. I. Adachi et al. B. Aubert et al.	(BABAR Collab.) (BELLE Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.)
AUBERT AUBERT AUBERT AUBERT AUBERT AUSERT AISO AUBERT AUBERT CHANG CHEN LIU WEI AISO WIECHCZYN ABAZOV ADACHI AUBERT	09H 09J 09L 09Q 09S 09T 09V 09Y 09 09C 09 09A 08A 08AA 08AB 08AB 08AG	PRL 102 141802 PR D79 052005 PR D79 052005 PR D79 051101 PR D79 072006 PR D79 052011 PR D79 092002 PRL 102 091803 EPAPS Document N PR D79 091101 PRL 103 051803 PR D79 052006 PR D80 111103 PR D79 071102 PRL 103 171801 EPAPS Supplement PR D80 052005 PRL 100 211802 PR D77 091101 PR D77 011101 PR D77 011101 PR D77 011101 PR D78 012006 PR D78 012006 PR D79 091104	B. Aubert et al. No. E-PRLTAO-102-060910 B. Aubert et al. B. Aubert et al. YW. Chang et al. C. Liu et al. JT. Wei et al. EPAPS_appendix.pdf J. Wiechczynski et al. V.M. Abazov et al. I. Adachi et al. B. Aubert et al.	(BABAR Collab.) (BELLE Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.)
AUBERT AUBERT AUBERT AUBERT AUBERT AUSERT AUSERT AUSERT AUBERT CHANG CHEN LIU WEI Also WIECHCZYN ABAZOV ADACHI AUBERT	09H 09J 09L 09Q 09S 09T 09V 09Y 09 09C 09 09A 08A 08AA 08AA 08AB 08AD 08AG	PRL 102 141802 PR D79 052005 PR D79 052005 PR D79 051101 PR D79 072006 PR D79 052011 PR D79 092002 PRL 102 091803 EPAPS Document PR D79 091101 PRL 103 051803 PR D79 052006 PR D80 111103 PR D79 071102 PRL 103 171801 EPAPS Supplement PR D80 052005 PRL 100 211802 PR D77 091101 PR D77 011101 PR D77 011101 PR D77 011101 PR D77 01101 PR D77 01104 PR D78 012006 PR D78 011104 PR D78 011104	B. Aubert et al. No. E-PRLTAO-102-060910 B. Aubert et al. B. Aubert et al. C. Liu et al. JT. Wei et al. EPAPS_appendix.pdf J. Wiechczynski et al. V.M. Abazov et al. I. Adachi et al. B. Aubert et al.	(BABAR Collab.) (BELLE Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.)
AUBERT AUBERT AUBERT AUBERT AUBERT AUBERT AUSERT AUSERT AUBERT CHANG CHEN LIU WEI Also WIECHCZYN ABAZOV ADACHI AUBERT	09H 09J 09L 09Q 09S 09T 09V 099 09C 09 09A 08AO 08AA 08AB 08AB 08AB 08AB 08AB	PRL 102 141802 PR D79 052005 PR D79 052005 PR D79 051101 PR D79 072006 PR D79 052011 PR D79 092002 PRL 102 091803 EPAPS Document N PR D79 091101 PRL 103 051803 PR D79 052006 PR D80 111103 PR D79 071102 PRL 103 171801 EPAPS Supplement PR D80 052005 PRL 100 211802 PR D77 091101 PR D77 011101 PR D77 011101 PR D77 011101 PR D77 011101 PR D77 091104 PR D78 012006 PR D78 011104 PR D78 011107 PR D78 011107 PR D78 012004	B. Aubert et al. No. E-PRLTAO-102-060910 B. Aubert et al. B. Aubert et al. C. Liu et al. JT. Wei et al. EPAPS_appendix.pdf J. Wiechczynski et al. V.M. Abazov et al. I. Adachi et al. B. Aubert et al.	(BABAR Collab.) (BELLE Collab.) (BABAR Collab.)
AUBERT AUBERT AUBERT AUBERT AUBERT AUSERT AUSERT AUSERT AUBERT CHANG CHEN LIU WEI Also WIECHCZYN ABAZOV ADACHI AUBERT	09H 09J 09L 09Q 09S 09T 09V 099 09C 09 09A 08AO 08AA 08AB 08AB 08AB 08AB 08AB	PRL 102 141802 PR D79 052005 PR D79 052005 PR D79 051101 PR D79 072006 PR D79 052011 PR D79 092002 PRL 102 091803 EPAPS Document PR D79 091101 PRL 103 051803 PR D79 052006 PR D80 111103 PR D79 071102 PRL 103 171801 EPAPS Supplement PR D80 052005 PRL 100 211802 PR D77 091101 PR D77 011101 PR D77 011101 PR D77 011101 PR D77 01101 PR D77 01104 PR D78 012006 PR D78 011104 PR D78 011104	B. Aubert et al. No. E-PRLTAO-102-060910 B. Aubert et al. B. Aubert et al. C. Liu et al. JT. Wei et al. EPAPS_appendix.pdf J. Wiechczynski et al. V.M. Abazov et al. I. Adachi et al. B. Aubert et al.	(BABAR Collab.) (BELLE Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.)

AUBERT	TA80	PRL 100 231803	B. Aubert <i>et al.</i>	(BABAR	Collab.)
AUBERT	N8Δ\/	PRL 101 081801	B. Aubert et al.	(BABAR	Collah Ì
				`	,
AUBERT	08B	PR D77 011102	B. Aubert <i>et al.</i>	(BABAR	,
AUBERT	08BC	PR D78 072007	B. Aubert et al.	(BABAR	Collab.)
AUBERT		PR D78 091101	B. Aubert et al.	(BABAR	
				1	
AUBERT	08RF	PR D78 091102	B. Aubert <i>et al.</i>	(BABAR	Collab.)
AUBERT	08BF	PR D78 092002	B. Aubert et al.	(BABAR	Collab)
				`	- :
AUBERT		PR D78 112001	B. Aubert <i>et al.</i>	(BABAR	
AUBERT	08BI	PRL 101 161801	B. Aubert <i>et al.</i>	(BABAR	Collab.)
AUBERT	Nabk	PRL 101 201801	B. Aubert et al.	(BABAR	
				`	- :
AUBERT	08RF	PRL 101 261802	B. Aubert <i>et al.</i>	(BABAR	Collab.)
AUBERT	08BN	PR D78 112003	B. Aubert <i>et al.</i>	(BABAR	Collab.)
			B. Aubert <i>et al.</i>	`	- :
AUBERT	08D	PR D77 011107		(BABAR	,
AUBERT	08F	PRL 100 051803	B. Aubert et al.	(BABAR	Collab.)
AUBERT	08G	PRL 100 171803	B. Aubert et al.	(BABAR	Collab \
AUBERT	H80	PR D77 031101	B. Aubert <i>et al.</i>	(BABAR	Collab.)
AUBERT	08N	PRL 100 021801	B. Aubert et al.	(BABAR	Collab)
	0014			`	,
Also		PR D79 092002	B. Aubert <i>et al.</i>	(BABAR	Collab.)
AUBERT	08Q	PRL 100 151802	B. Aubert et al.	(BABAR	Collab.)
	08W	PRL 101 082001	B. Aubert <i>et al.</i>	•	
AUBERT				(BABAR	
AUBERT	08X	PRL 101 091801	B. Aubert <i>et al.</i>	(BABAR	Collab.)
AUBERT	08Y	PR D77 111101	B. Aubert et al.	(BABAR	
BHARDWAJ	80	PR D78 051104	V. Bhardwaj <i>et al.</i>	(RELLE	Collab.)
BRODZICKA	80	PRL 100 092001	J. Brodzicka et al.	(BELLE	Collab.)
				,	
CHEN	08C	PRL 100 251801	JH. Chen <i>et al.</i>	(RELLE	Collab.)
HORII	80	PR D78 071901	Y. Horii et al.	(BELLE	Collab.)
			M. Iwabuchi <i>et al.</i>		Collab.)
IWABUCHI	80	PRL 101 041601		`	,
LIN	80	NAT 452 332	SW. Lin et al.	(BELLE	Collab.)
LIVENTSEV	80	PR D77 091503	D. Liventsev et al.		Collab.)
				(DLLLL	Collab.)
PDG	80	PL B667 1	C. Amsler <i>et al.</i>	(PDG	Collab.)
TANIGUCHI	80	PRL 101 111801	N. Taniguchi et al.		Collab.)
			9	`	,
WEI	80	PL B659 80	JT. Wei <i>et al.</i>	(RELLE	Collab.)
WEI	08A	PR D78 011101	JT. Wei <i>et al.</i>	(BELLE	Collab.)
WICHT	08	PL B662 323	J. Wicht et al.	,	Collab.)
ADAM	07	PRL 99 041802	N.E. Adam <i>et al.</i>	(CLEO	Collab.)
Also		PR D76 012007	D.M. Asner et al.	(CLEO	Collab.)
	0746				
AUBERT		PR D76 031101	B. Aubert <i>et al.</i>	(BABAR	
AUBERT	07AE	PR D76 031103	B. Aubert <i>et al.</i>	(BABAR	Collab.)
AUBERT		PRL 99 051801	B. Aubert et al.	(BABAR	
				`	,
AUBERT	07AL	PR D76 052002	B. Aubert <i>et al.</i>	(BABAR	Collab.)
AUBERT	$07\Delta N$	PR D76 051101	B. Aubert et al.	(BABAR	Collab)
				`	,
AUBERT		PR D76 071103	B. Aubert <i>et al.</i>	(BABAR	Collab.)
AUBERT	07AV	PR D76 092004	B. Aubert <i>et al.</i>	(BABAR	Collab.)
AUBERT		PRL 99 201801	B. Aubert et al.	(BABAR	
				`	
AUBERT	07BA	PRL 99 201802	B. Aubert <i>et al.</i>	(BABAR	Collab.)
AUBERT	07BB	PRL 99 221801	B. Aubert et al.	(BABAR	Collab)
				`	- :
AUBERT	UIBC	PR D76 091102	B. Aubert <i>et al.</i>	(BABAR	
AUBERT	07BI	PRL 99 241803	B. Aubert <i>et al.</i>	(BABAR	Collab.)
AUBERT	07R I	PRL 99 251801	B. Aubert et al.	(BABAR	- :
AUBERT	0/BL	PRL 99 261801	B. Aubert et al.	(BABAR	Collab.)
AUBERT	07BN	PR D76 111101	B. Aubert et al.	(BABAR	Collab)
AUBERT	07E	PRL 98 051802	B. Aubert <i>et al.</i>	(BABAR	,
AUBERT	07H	PR D75 031101	B. Aubert <i>et al.</i>	(BABAR	Collab.)
AUBERT	07L	PRL 98 151802	B. Aubert et al.	ÌΒΔΒΔΒ	Collab.)
AUBERT	07M	PRL 98 171801	B. Aubert <i>et al.</i>	(RARAK	Collab.)
AUBERT	07N	PR D75 072002	B. Aubert et al.	(BABAR	Collab.)
AUBERT	07Q	PR D75 051102	B. Aubert et al.	•	Collab.)
AUBERT	07R	PRL 98 211804	B. Aubert <i>et al.</i>	(BABAR	Collab.)
Also		PRL 100 189903E	B. Aubert et al.	(BABAR	
				1	
Also		PRL 100 199905E	B. Aubert et al.	(BABAR	
AUBERT	07X	PR D75 091103	B. Aubert et al.	(BABAR	Collab.)
		PR D76 011103	B. Aubert et al.		
AUBERT	07Z			(BABAR	
CHANG	07B	PR D75 071104	P. Chang <i>et al.</i>	(RELLE	Collab.)
CHEN	07D	PRL 99 221802	KF. Chen et al.		Collab.)
				•	- :
HOKUUE	07	PL B648 139	T. Hokuue <i>et al.</i>		Collab.)
LIN	07	PRL 98 181804	SW. Lin et al.	(BELLF	Collab.)
LIN	07A	PRL 99 121601	SW. Lin et al.		Collab.)
SATOYAMA	07	PL B647 67	N. Satoyama et al.	(BELLE	Collab.)
SCHUEMANN	07	PR D75 092002	J. Schuemann et al.		Collab.)
TSAI	07	PR D75 111101	YT. Tsai et al.		Collab.)
LIDOLLIO		DD D7F 020001	D. Hamaille, et al.	/DELLE	C II I \
URQUIJO	07	PR D75 032001	P. Urquijo <i>et al.</i>	(DELLE	Collab.)
Осторяо	07	PR D75 032001	P. Orquijo <i>et al.</i>	(DELLE	Collab.)

WANG	07B	PR D75 092005		C.H. Wang et al.	(BELLE	Collab.)
WANG	07C	PR D76 052004		MZ. Wang et al.		Collab.)
XIE	07	PR D75 017101		Q.L. Xie et al.	(BELLE	Collab.)
ABE	06	PR D73 051106		K. Abe et al.	(BELLE	Collab.)
ABULENCIA	06J	PRL 96 191801		A. Abulencia et al.		Collab.)
ACOSTA	06	PRL 96 202001		D. Acosta et al.	. `	Collab.)
AUBERT AUBERT	06 06E	PR D73 011101 PRL 96 052002		B. Aubert <i>et al.</i> B. Aubert <i>et al.</i>	(BABAR (BABAR	
AUBERT	06F	PR D73 011103		B. Aubert et al.		Collab.)
AUBERT	06J	PR D73 051105		B. Aubert <i>et al.</i>	(BABAR	
AUBERT	06K	PR D73 057101		B. Aubert et al.	(BABAR	- :
AUBERT	06N	PR D74 031103		B. Aubert et al.	(BABAR	Collab.)
AUBERT	060	PR D74 032003		B. Aubert et al.	(BABAR	
AUBERT	06Z	PR D73 111104		B. Aubert et al.		Collab.)
AUBERT,B AUBERT,B	06A 06C	PR D73 112004 PR D74 011102		B. Aubert <i>et al.</i> B. Aubert <i>et al.</i>		Collab.) Collab.)
AUBERT,B	06E	PR D74 011102		B. Aubert et al.	`	Collab.)
AUBERT,B	06G	PRL 97 201801		B. Aubert <i>et al.</i>		Collab.)
AUBERT,B	06H	PRL 97 201802		B. Aubert et al.		Collab.)
AUBERT,B	06J	PR D73 092001		B. Aubert et al.		Collab.)
AUBERT,B	06M	PR D74 031102		B. Aubert et al.	(BABAR	
AUBERT,B	06P	PR D74 031105		B. Aubert <i>et al.</i>	(BABAR	,
AUBERT,B AUBERT,B	06T 06U	PR D74 051102 PR D74 051104		B. Aubert <i>et al.</i> B. Aubert <i>et al.</i>	(BABAR	Collab.)
AUBERT,B	06Y	PR D74 091105		B. Aubert et al.	(BABAR	
AUBERT,BE	06A	PR D74 099903 (e	errat.)		(BABAR	- :
AUBERT, BE	06C	PRL 97 171805	,	B. Aubert et al.	(BABAR	- :
AUBERT,BE	06G	PRL 97 261801		B. Aubert et al.	(BABAR	
AUBERT,BE	06H	PRL 97 261803		B. Aubert et al.		Collab.)
AUBERT,BE	06J	PR D74 111102		B. Aubert et al.	(BABAR	
AUBERT,BE	06M 06A	PR D74 071101		B. Aubert <i>et al.</i> R. Chistov <i>et al.</i>	(BABAR	,
CHISTOV FANG	06A	PR D74 111105 PR D74 012007		F. Fang <i>et al.</i>	`	Collab.) Collab.)
GABYSHEV	06	PRL 97 202003		N. Gabyshev <i>et al.</i>		Collab.)
GABYSHEV	06A	PRL 97 242001		N. Gabyshev et al.		Collab.)
GARMASH	06	PRL 96 251803		A. Garmash et al.		Collab.)
GOKHROO	06	PRL 97 162002		G. Gokhroo et al.	`	Collab.)
IKADO	06	PRL 97 251802		K. Ikado <i>et al.</i>		Collab.)
JEN	06 06	PR D74 111101		CM. Jen et al.		Collab.)
KUMAR MOHAPATRA	06	PR D74 051103 PRL 96 221601		R. Kumar <i>et al.</i> D. Mohapatra <i>et al.</i>		Collab.) Collab.)
POLUEKTOV	06	PR D73 112009		A. Poluektov <i>et al.</i>		Collab.)
SCHUEMANN	06	PRL 97 061802		J. Schuemann et al.		Collab.)
SONI	06	PL B634 155		N. Soni et al.	(BELLE	Collab.)
ABE	05A	PRL 94 221805		K. Abe et al.		Collab.)
ABE	05B	PR D71 072003		K. Abe <i>et al.</i>		Collab.)
Also ABE	05G	PR D71 079903 (ePRL 95 231802	errat.)	K. Abe <i>et al.</i> K. Abe <i>et al.</i>		Collab.) Collab.)
ACOSTA	05J	PRL 95 231802 PRL 95 031801		D. Acosta <i>et al.</i>	`	Collab.)
AUBERT	05	PRL 94 011801		B. Aubert <i>et al.</i>	(BABAR	
AUBERT	05B	PR D71 031501		B. Aubert et al.	(BABAR	
AUBERT	05G	PR D72 032004		B. Aubert et al.	(BABAR	Collab.)
AUBERT	05H	PRL 94 101801		B. Aubert et al.		Collab.)
AUBERT	05J	PRL 94 141801		B. Aubert <i>et al.</i>		Collab.)
AUBERT AUBERT	05K 05L	PRL 94 171801 PRL 94 181802		B. Aubert <i>et al.</i> B. Aubert <i>et al.</i>	`	Collab.) Collab.)
AUBERT	05L	PRL 94 191802		B. Aubert et al.	`	Collab.)
AUBERT	05N	PR D71 031102		B. Aubert et al.		Collab.)
AUBERT	05O	PR D71 031103		B. Aubert et al.	`	Collab.)
AUBERT	05R	PR D71 071103		B. Aubert et al.	`	Collab.)
AUBERT	05U	PR D71 091103		B. Aubert et al.	`	Collab.)
AUBERT	05X	PR D71 111101		B. Aubert et al.		Collab.)
AUBERT,B	05B 05E	PRL 95 041804		B. Aubert <i>et al.</i> B. Aubert <i>et al.</i>	`	Collab.)
AUBERT,B AUBERT,B	05G	PR D72 011102 PR D72 052002		B. Aubert <i>et al.</i>		Collab.) Collab.)
AUBERT,B	05K	PRL 95 131803		B. Aubert et al.	(BABAR	
AUBERT,B	05L	PR D72 051101		B. Aubert <i>et al.</i>		Collab.)
AUBERT,B	05N	PR D72 072003		B. Aubert et al.		Collab.)
Also	050	PR D74 099903 (e	errat.)	B. Aubert et al.		Collab.)
AUBERT,B	05O	PR D72 051102		B. Aubert <i>et al.</i> B. Aubert <i>et al.</i>		Collab.)
AUBERT,B	05T	PR D72 071102		D. Aubert et al.	(BABAR	Collab.)

AUBERT,B	05U	PR D72 071103	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT,B	05V	PR D72 071104	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT,B	05Y	PRL 95 121802	B. Aubert et al.	(BABAR Collab.)
AUBERT,BE	05E	PRL 95 221801	B. Aubert <i>et al.</i>	(BABAR Collab.)
CHANG	05	PR D71 072007	MC. Chang <i>et al.</i>	(BELLE Collab.)
CHANG	05A	PR D71 091106	P. Chang <i>et al.</i>	(BELLE Collab.)
CHAO	05A	PR D71 031502	Y. Chao et al.	(BELLE Collab.)
CHEN	05A	PRL 94 221804	KF. Chen <i>et al.</i>	(BELLE Collab.)
GARMASH	05	PR D71 092003	A. Garmash <i>et al.</i>	(BELLE Collab.)
ITOH	05	PRL 95 091601	R. Itoh et al.	(BELLE Collab.)
LEE	05	PRL 95 061802	YJ. Lee <i>et al.</i>	(BELLE Collab.)
LIVENTSEV	05	PR D72 051109	D. Liventsev et al.	(BELLE Collab.)
MAJUMDER	05	PRL 95 041803	G. Majumder <i>et al.</i>	(BELLE Collab.)
MOHAPATRA	05	PR D72 011101	D. Mohapatra et al.	(BELLE Collab.)
NISHIDA	05	PL B610 23	S. Nishida <i>et al.</i>	(BELLE Collab.)
OKABE	05	PL B614 27	T. Okabe <i>et al.</i>	(BELLE Collab.)
-				1 1
SAIGO	05	PRL 94 091601	M. Saigo <i>et al.</i>	(BELLE Collab.)
WANG	05A	PL B617 141	MZ. Wang <i>et al.</i>	(BELLE Collab.)
XIE	05	PR D72 051105	Q.L. Xie <i>et al.</i>	(BELLE Collab.)
YANG	05	PRL 94 111802	H. Yang et al.	(BELLE Collab.)
ZHANG	05A	PRL 94 031801	J. Zhang et al.	(BELLE Collab.)
ZHANG	05B	PR D71 091107	L.M. Zhang <i>et al.</i>	(BELLE Collab.)
ZHANG	05D	PRL 95 141801	J. Zhang <i>et al.</i>	(BELLE Collab.)
ABDALLAH	04E	EPJ C33 307	J. Abdallah <i>et al.</i>	(DELPHI Collab.)
ABE	04D	PR D69 112002	K. Abe <i>et al.</i>	(BELLE Collab.)
AUBERT	04A	PR D69 011102	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT	04C	PRL 92 111801	B. Aubert <i>et al.</i>	(BaBar Collab.)
AUBERT	04H	PRL 92 061801	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT	04K	PRL 92 141801	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT	04M	PRL 92 201802	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT	04N	PRL 92 202002	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT	040	PRL 92 221803	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT	04P	PRL 92 241802	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT	04Q	PR D69 051101	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT	04T	PR D69 071103	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT	04Y	PRL 93 041801	B. Aubert <i>et al.</i>	(BaBar Collab.)
AUBERT	04Z	PRL 93 051802	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT,B	04B	PR D70 011101	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT,B	04D	PR D70 032006	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT,B	04L	PRL 93 131804	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT,B	04P	PR D70 092001	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT,B	04S	PRL 93 181801	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT,B	04U	PR D70 091105	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT,B	04V	PRL 93 181805	B. Aubert <i>et al.</i>	
				(BABAR Collab.)
AUBERT,BE	04	PR D70 111102	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT,BE	04A	PR D70 112006	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT,BE	04B	PR D70 091106	B. Aubert <i>et al.</i>	(BABAR Collab.)
CHAO	04	PR D69 111102	Y. Chao <i>et al.</i>	`(BELLE Collab.)
CHAO	04B	PRL 93 191802	Y. Chao <i>et al.</i>	1
				(BELLE Collab.)
CHISTOV	04	PRL 93 051803	R. Chistov <i>et al.</i>	(BELLE Collab.)
DRUTSKOY	04	PRL 92 051801	A. Drutskoy <i>et al.</i>	(BELLE Collab.)
GARMASH	04	PR D69 012001	A. Garmash <i>et al.</i>	(BELLE Collab.)
LEE	04	PRL 93 211801	YJ. Lee <i>et al.</i>	(BELLE Collab.)
MAJUMDER	04	PR D70 111103	G. Majumder <i>et al.</i>	(BELLE Collab.)
NAKAO	04	PR D69 112001	M. Nakao <i>et al.</i>	(BELLE Collab.)
POLUEKTOV	04	PR D70 072003	A. Poluektov <i>et al.</i>	(BELLE Collab.)
SCHWANDA	04	PRL 93 131803	C. Schwanda et al.	(BELLE Collab.)
WANG	04	PRL 92 131801	M.Z. Wang et al.	(BELLE Collab.)
WANG		1 IXE 32 131001	C.H. Wang et al.	1
WANG		DD D70 010001		
7 4 4 1 0	04A	PR D70 012001	C.H. Wallg et al.	(BELLE Collab.)
ZANG	04A 04	PR D70 012001 PR D69 017101	S.L. Zang <i>et al.</i>	(BELLE Collab.)
ZANG ABE	04A		S.L. Zang <i>et al.</i> K. Abe <i>et al.</i>	(BELLE Collab.)
ABE	04A 04	PR D69 017101 PR D67 032003	S.L. Zang <i>et al.</i>	(BELLE Collab.) (BELLE Collab.)
ABE ABE	04A 04 03B 03D	PR D69 017101 PR D67 032003 PRL 90 131803	S.L. Zang <i>et al.</i> K. Abe <i>et al.</i> K. Abe <i>et al</i> .	(BELLE Collab.) (BELLE Collab.) (BELLE Collab.)
ABE ABE ADAM	04A 04 03B 03D 03	PR D69 017101 PR D67 032003 PRL 90 131803 PR D67 032001	S.L. Zang <i>et al.</i> K. Abe <i>et al.</i> K. Abe <i>et al.</i> N.E. Adam <i>et al.</i>	(BELLE Collab.) (BELLE Collab.) (BELLE Collab.) (CLEO Collab.)
ABE ABE ADAM ADAM	04A 04 03B 03D 03 03B	PR D69 017101 PR D67 032003 PRL 90 131803 PR D67 032001 PR D68 012004	S.L. Zang <i>et al.</i> K. Abe <i>et al.</i> K. Abe <i>et al.</i> N.E. Adam <i>et al.</i> N.E. Adam <i>et al.</i>	(BELLE Collab.) (BELLE Collab.) (BELLE Collab.) (CLEO Collab.) (CLEO Collab.)
ABE ABE ADAM ADAM ATHAR	04A 04 03B 03D 03 03B 03B	PR D69 017101 PR D67 032003 PRL 90 131803 PR D67 032001 PR D68 012004 PR D68 072003	S.L. Zang <i>et al.</i> K. Abe <i>et al.</i> K. Abe <i>et al.</i> N.E. Adam <i>et al.</i> N.E. Adam <i>et al.</i> S.B. Athar <i>et al.</i>	(BELLE Collab.) (BELLE Collab.) (BELLE Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.)
ABE ABE ADAM ADAM	04A 04 03B 03D 03 03B	PR D69 017101 PR D67 032003 PRL 90 131803 PR D67 032001 PR D68 012004	S.L. Zang <i>et al.</i> K. Abe <i>et al.</i> K. Abe <i>et al.</i> N.E. Adam <i>et al.</i> N.E. Adam <i>et al.</i>	(BELLE Collab.) (BELLE Collab.) (BELLE Collab.) (CLEO Collab.) (CLEO Collab.)
ABE ABE ADAM ADAM ATHAR	04A 04 03B 03D 03 03B 03B	PR D69 017101 PR D67 032003 PRL 90 131803 PR D67 032001 PR D68 012004 PR D68 072003	S.L. Zang <i>et al.</i> K. Abe <i>et al.</i> K. Abe <i>et al.</i> N.E. Adam <i>et al.</i> N.E. Adam <i>et al.</i> S.B. Athar <i>et al.</i>	(BELLE Collab.) (BELLE Collab.) (BELLE Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.)
ABE ABE ADAM ADAM ATHAR AUBERT AUBERT	04A 04 03B 03D 03 03B 03 03K 03L	PR D69 017101 PR D67 032003 PRL 90 131803 PR D67 032001 PR D68 012004 PR D68 072003 PRL 90 231801 PRL 91 021801	S.L. Zang et al. K. Abe et al. K. Abe et al. N.E. Adam et al. N.E. Adam et al. S.B. Athar et al. B. Aubert et al. B. Aubert et al.	(BELLE Collab.) (BELLE Collab.) (BELLE Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (BaBar Collab.) (BaBar Collab.)
ABE ABE ADAM ADAM ATHAR AUBERT AUBERT AUBERT	04A 04 03B 03D 03 03B 03 03K 03L 03M	PR D69 017101 PR D67 032003 PRL 90 131803 PR D67 032001 PR D68 012004 PR D68 072003 PRL 90 231801 PRL 91 021801 PRL 91 051801	S.L. Zang et al. K. Abe et al. K. Abe et al. N.E. Adam et al. N.E. Adam et al. S.B. Athar et al. B. Aubert et al. B. Aubert et al. B. Aubert et al.	(BELLE Collab.) (BELLE Collab.) (BELLE Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (BaBar Collab.) (BaBar Collab.) (BaBar Collab.)
ABE ABE ADAM ADAM ATHAR AUBERT AUBERT AUBERT AUBERT AUBERT	04A 04 03B 03D 03 03B 03 03K 03L 03M 03O	PR D69 017101 PR D67 032003 PRL 90 131803 PR D67 032001 PR D68 012004 PR D68 072003 PRL 90 231801 PRL 91 021801 PRL 91 051801 PRL 91 071801	S.L. Zang et al. K. Abe et al. K. Abe et al. N.E. Adam et al. N.E. Adam et al. S.B. Athar et al. B. Aubert et al. B. Aubert et al. B. Aubert et al. B. Aubert et al.	(BELLE Collab.) (BELLE Collab.) (BELLE Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (BaBar Collab.) (BaBar Collab.) (BaBar Collab.) (BaBar Collab.)
ABE ABE ADAM ADAM ATHAR AUBERT AUBERT AUBERT AUBERT AUBERT AUBERT AUBERT	04A 04 03B 03D 03 03B 03 03K 03L 03M 03O 03U	PR D69 017101 PR D67 032003 PRL 90 131803 PR D67 032001 PR D68 012004 PR D68 072003 PRL 90 231801 PRL 91 021801 PRL 91 051801 PRL 91 071801 PRL 91 221802	S.L. Zang et al. K. Abe et al. K. Abe et al. N.E. Adam et al. N.E. Adam et al. S.B. Athar et al. B. Aubert et al.	(BELLE Collab.) (BELLE Collab.) (BELLE Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (BaBar Collab.) (BaBar Collab.) (BaBar Collab.) (BaBar Collab.) (BaBar Collab.) (BaBar Collab.)
ABE ABE ADAM ADAM ATHAR AUBERT AUBERT AUBERT AUBERT AUBERT	04A 04 03B 03D 03 03B 03 03K 03L 03M 03O	PR D69 017101 PR D67 032003 PRL 90 131803 PR D67 032001 PR D68 012004 PR D68 072003 PRL 90 231801 PRL 91 021801 PRL 91 051801 PRL 91 071801	S.L. Zang et al. K. Abe et al. K. Abe et al. N.E. Adam et al. N.E. Adam et al. S.B. Athar et al. B. Aubert et al. B. Aubert et al. B. Aubert et al. B. Aubert et al.	(BELLE Collab.) (BELLE Collab.) (BELLE Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (BaBar Collab.) (BaBar Collab.) (BaBar Collab.) (BaBar Collab.)

				_	
AUBERT	03W	PRL 91 161801	B. Aubert <i>et al.</i>	(BaBar	Collab.)
	03X	PR D68 092001	B. Aubert et al.		Collab.)
AUBERT				(Dabai	Collab.
BORNHEIM	03	PR D68 052002	A. Bornheim <i>et al.</i>	(CLEO	Collab.)
CHEN	03B	PRL 91 201801	KF. Chen et al.	(ŘELLE	Collab.)
CHOI	03	PRL 91 262001	SK. Choi <i>et al.</i>	(RFLLE	Collab.)
CSORNA	03	PR D67 112002	S.E. Csorna et al.	(CLFO	Collab.)
				(CLEO	Collab.)
EDWARDS	03	PR D68 011102	K.W. Edwards et al.	(CLEO	Collab.)
FANG	03	PRL 90 071801	F. Fang et al.		Collab.)
				`	
HUANG	03	PRL 91 241802	HC. Huang <i>et al.</i>	(BELLE	Collab.)
ISHIKAWA	03	PRL 91 261601	A. Ishikawa <i>et al.</i>	(BELLE	Collab.)
KROKOVNY	03B	PRL 91 262002	P. Krokovny <i>et al.</i>		Collab.)
SWAIN	03	PR D68 051101	S.K. Swain et al.	(BELLE	Collab.)
UNNO	03	PR D68 011103	Y. Unno et al.		Collab.)
ZHANG	03B	PRL 91 221801	J. Zhang <i>et al.</i>	(BELLE	Collab.)
ABE	02	PRL 88 021801	K. Abe <i>et al.</i>	(RELLE	Collab.)
ABE	02B	PRL 88 031802	K. Abe <i>et al.</i>	(RFLLE	Collab.)
ABE	02H	PRL 88 171801	K. Abe <i>et al.</i>	(BELLE	Collab.)
ABE	02K	PRL 88 181803	K. Abe <i>et al.</i>	(RELLE	Collab.)
ABE	02N	PL B538 11	K. Abe <i>et al.</i>	(BELLE	Collab.)
ABE	020	PR D65 091103	K. Abe <i>et al.</i>		Collab.)
ABE	02W	PRL 89 151802	K. Abe <i>et al.</i>	(BELLE	Collab.)
ACOSTA	02C	PR D65 092009	D. Acosta et al.	`	Collab.)
ACOSTA	02F	PR D66 052005	D. Acosta <i>et al.</i>	(CDF	Collab.)
AHMED	02B	PR D66 031101	S. Ahmed et al.	(ĈLEO	Collab.)
	-			,	
AUBERT	02	PR D65 032001	B. Aubert <i>et al.</i>	(BaBar	Collab.)
AUBERT	02C	PRL 88 101805	B. Aubert et al.	(BaBar	Collab.)
				`	
AUBERT	02E	PR D65 051101	B. Aubert <i>et al.</i>	(BaBar	Collab.)
AUBERT	02F	PR D65 091101	B. Aubert <i>et al.</i>	(BaBar	Collab.)
	02L	PRL 88 241801	B. Aubert et al.		Collab.)
AUBERT				`	
BRIERE	02	PRL 89 081803	R. Briere et al.	(CLEO	Collab.)
CASEY	02	PR D66 092002	B.C.K. Casey et al.		Collab.)
			•	`	,
CHEN	02B	PL B546 196	KF. Chen <i>et al.</i>	(RELLE	Collab.)
DRUTSKOY	02	PL B542 171	A. Drutskoy et al.	(BELLE	Collab.)
				`	
DYTMAN	02	PR D66 091101	S.A. Dytman <i>et al</i> .	(CLEO	Collab.)
ECKHART	02	PRL 89 251801	E. Eckhart <i>et al.</i>	(CLEO	Collab.)
	02B	PR D65 111102			Collab.)
EDWARDS	-		K.W. Edwards <i>et al.</i>	CLEO	Collab.)
GABYSHEV	02	PR D66 091102	N. Gabyshev <i>et al.</i>	(BELLE	Collab.)
GARMASH	02	PR D65 092005	A. Garmash <i>et al.</i>		Collab.)
				`	
GODANG	02	PRL 88 021802	R. Godang <i>et al.</i>	(CLEO	Collab.)
GORDON	02	PL B542 183	A. Gordon <i>et al.</i>	(BELLE	Collab.)
LU	02	PRL 89 191801	RS. Lu <i>et al.</i>	(BELLE	Collab.)
MAHAPATRA	02	PRL 88 101803	R. Mahapatra <i>et al.</i>	(CLEO	Collab.)
NISHIDA	02	PRL 89 231801	S. Nishida <i>et al.</i>		Collab.)
				•	
ABE	01H	PRL 87 101801	K. Abe <i>et al.</i>	(RELLE	Collab.)
ABE	011	PRL 87 111801	K. Abe <i>et al.</i>	(BELLE	Collab.)
				•	
ABE	01K	PR D64 071101	K. Abe <i>et al.</i>		Collab.)
ABE	01L	PRL 87 161601	K. Abe <i>et al.</i>	(BELLE	Collab.)
ABE	01M	PL B517 309	K. Abe et al.		Collab.)
				`	
ALEXANDER	01B	PR D64 092001	J.P. Alexander et al.	(CLEO	Collab.)
AMMAR	01B	PRL 87 271801	R. Ammar et al.	(CLFO	Collab.)
ANDERSON	01B	PRL 87 181803	S. Anderson <i>et al.</i>	(CLEO	Collab.)
AUBERT	01D	PRL 87 151801	B. Aubert et al.	(BaBar	Collab.)
AUBERT	01E		B. Aubert et al.	`	Collab.)
		PRL 87 151802		`	
AUBERT	01F	PRL 87 201803	B. Aubert <i>et al.</i>	(BaBar	Collab.)
AUBERT	01G	PRL 87 221802	B. Aubert et al.	(RaBar	Collab.)
BARATE	01E	EPJ C19 213	R. Barate <i>et al.</i>	(ALEPH	Collab.)
BRIERE	01	PRL 86 3718	R.A. Biere et al.	(CLEO	Collab.)
			T.E. Browder <i>et al.</i>		Collab.)
BROWDER	01	PRL 86 2950			
EDWARDS	01	PRL 86 30	K.W. Edwards <i>et al.</i>	(CLEO	Collab.)
GRITSAN	01	PR D64 077501	A. Gritsan et al.	(CLFO	Collab.)
RICHICHI	01	PR D63 031103	S.J. Richichi <i>et al.</i>		Collab.)
ABBIENDI	00B	PL B476 233	G. Abbiendi <i>et al.</i>	(OPAL	Collab.)
ABE	00C		K. Abe <i>et al.</i>		Collab.)
		PR D62 071101			
AHMED	00B	PR D62 112003	S. Ahmed <i>et al.</i>	(CLEO	Collab.)
ANASTASSOV	00	PRL 84 1393	A. Anastassov et al.		Collab.)
				. `	
BARATE	00R	PL B492 275	R. Barate <i>et al</i> .	(ALEPH	
BEHRENS	00	PR D61 052001	B.H. Behrens et al.	(CLEO	Collab.)
BONVICINI	00	PRL 84 5940	G. Bonvicini <i>et al.</i>		Collab.)
CHEN		PRL 85 525	S. Chen <i>et al.</i>	(CLEO	Collab.)
C	00	1 IVE 03 323			COab.,
COAN	00	PRL 84 5283	T.E. Coan et al.	(CLEO	Collab.)
	00			(CLEO	

CSORNA	00	PR D61 111101	S.E. Csorna et al.	(CLEO Collab.)
JESSOP	00	PRL 85 2881	C.P. Jessop <i>et al.</i>	(CLEO Collab.)
RICHICHI	00	PRL 85 520	S.J. Richichi et al.	(CLEO Collab.)
		EPJ C12 609		
ABBIENDI	99 J		G. Abbiendi <i>et al.</i>	(OPAL Collab.)
AFFOLDER	99B	PRL 83 3378	T. Affolder et al.	(CDF Collab.)
BARTELT	99	PRL 82 3746	J. Bartelt <i>et al.</i>	(ČLEO Collab.)
				(CLEO CONAD.)
COAN	99	PR D59 111101	T.E. Coan <i>et al.</i>	(CLEO Collab.)
ABE	98B	PR D57 5382	F. Abe <i>et al.</i>	(CDF Collab.)
ABE	98O	PR D58 072001	F. Abe <i>et al.</i>	(CDF Collab.)
ABE	98Q	PR D58 092002	F. Abe <i>et al.</i>	(CDF Collab.)
ACCIARRI	98S	PL B438 417	M. Acciarri et al.	`
				(L3 Collab.)
ANASTASSOV	98	PRL 80 4127	A. Anastassov <i>et al.</i>	(CLEO Collab.)
ATHANAS	98	PRL 80 5493	M. Athanas et al.	(CLEO Collab.)
BARATE	98Q	EPJ C4 387	R. Barate <i>et al.</i>	(ALEPH Collab.)
BEHRENS	98	PRL 80 3710	B.H. Behrens et al.	(CLEO Collab.)
				,
BERGFELD	98	PRL 81 272	T. Bergfeld et al.	(CLEO Collab.)
BRANDENB	98	PRL 80 2762	G. Brandenbrug <i>et al.</i>	(CLEO Collab.)
CAPRINI	98	NP B530 153	_	
			I. Caprini, L. Lellouch, M	
GODANG	98	PRL 80 3456	R. Godang <i>et al.</i>	(CLEO Collab.)
ABE	97 J	PRL 79 590	K. Abe <i>et al.</i>	(SLD Collab.)
ACCIARRI	97F	PL B396 327	M. Acciarri <i>et al.</i>	(L3 Collab.)
ARTUSO	97	PL B399 321	M. Artuso <i>et al.</i>	(CLEO Collab.)
ATHANAS	97	PRL 79 2208	M. Athanas et al.	(CLEO Collab.)
BROWDER	97	PR D56 11	T. Browder et al.	(CLEO Collab.)
FU	97	PRL 79 3125	X. Fu et al.	(CLEO Collab.)
				`
JESSOP	97	PRL 79 4533	C.P. Jessop <i>et al.</i>	(CLEO Collab.)
ABE	96B	PR D53 3496	F. Abe <i>et al.</i>	(CDF Collab.)
	96C		F. Abe <i>et al.</i>	
ABE		PRL 76 4462		(CDF Collab.)
ABE	96H	PRL 76 2015	F. Abe <i>et al.</i>	(CDF Collab.)
ABE	96L	PRL 76 4675	F. Abe <i>et al.</i>	(CDF Collab.)
				` - · · · · · · · · · · · · · · · · · ·
ABE	96Q	PR D54 6596	F. Abe <i>et al.</i>	(CDF Collab.)
ABE	96R	PRL 77 5176	F. Abe <i>et al.</i>	(CDF Collab.)
ADAM	96D	ZPHY C72 207	W. Adam et al.	(DELPHI Collab.)
ALEXANDER	96T	PRL 77 5000	J.P. Alexander et al.	(CLEO Collab.)
ASNER	96	PR D53 1039	D.M. Asner et al.	(CLEO Collab.)
BARISH	96B	PRL 76 1570	B.C. Barish et al.	(CLEO Collab.)
				`
BERGFELD	96B	PRL 77 4503	T. Bergfeld <i>et al.</i>	(CLEO Collab.)
BISHAI	96	PL B369 186	M. Bishai <i>et al.</i>	(CLEO Collab.)
	96J	ZPHY C71 31	D. Buskulic <i>et al.</i>	. `
BUSKULIC				(ALEPH Collab.)
GIBAUT	96	PR D53 4734	D. Gibaut <i>et al.</i>	(CLEO Collab.)
PDG	96	PR D54 1	R. M. Barnett et al.	(PDG Collab.)
				(DELDIN C.II.)
ABREU	95N	PL B357 255	P. Abreu <i>et al.</i>	(DELPHI Collab.)
ABREU	95Q	ZPHY C68 13	P. Abreu <i>et al.</i>	(DELPHI Collab.)
ADAM	95	ZPHY C68 363	W. Adam et al.	(DELPHI Collab.)
				`
AKERS	95T	ZPHY C67 379	R. Akers <i>et al.</i>	(OPAL Collab.)
ALBRECHT	95D	PL B353 554	H. Albrecht <i>et al.</i>	(ARGUS Collab.)
ALEXANDER	95	PL B341 435	J. Alexander <i>et al.</i>	`
	95			(CLEO Collab.)
Also		PL B347 469 (erratum)	J. Alexander <i>et al.</i>	(CLEO Collab.)
ARTUSO	95	PRL 75 785	M. Artuso et al.	(CLEO Collab.)
				`
BARISH	95	PR D51 1014	B.C. Barish <i>et al.</i>	(CLEO Collab.)
BUSKULIC	95	PL B343 444	D. Buskulic <i>et al.</i>	(ALEPH Collab.)
ABE	94D	PRL 72 3456	F. Abe <i>et al.</i>	` (CDF Collab.)
ALAM	94	PR D50 43	M.S. Alam et al.	(CLEO Collab.)
ALBRECHT	94D	PL B335 526	H. Albrecht et al.	(ARGUS Collab.)
ATHANAS	94	PRL 73 3503	M. Athanas <i>et al.</i>	`
	94			(CLEO Collab.)
Also		PRL 74 3090 (erratum)	M. Athanas <i>et al.</i>	(CLEO Collab.)
PDG	94	PR D50 1173	L. Montanet et al.	(CERN, LBL, BOST+)
STONE			S. Stone	(62.111, 232, 3661.1)
	94	HEPSY 93-11		
Published i	n B D	ecays, 2nd Edition, World	Scientific, Singapore	
ABREU	93D	ZPHY C57 181	P. Abreu <i>et al.</i>	(DELPHI Collab.)
ABREU	93G	PL B312 253	P. Abreu <i>et al.</i>	(DELPHI Collab.)
ACTON	93C	PL B307 247	P.D. Acton <i>et al.</i>	(OPAL Collab.)
ALBRECHT	93E	ZPHY C60 11	H. Albrecht et al.	(ÀRGUS Collab.)
				`
ALEXANDER	93B	PL B319 365	J. Alexander <i>et al.</i>	(CLEO Collab.)
AMMAR	93	PRL 71 674	R. Ammar <i>et al.</i>	(CLEO Collab.)
BEAN	93B	PRL 70 2681	A. Bean et al.	(CLEO Collab.)
BUSKULIC	93D	PL B307 194	D. Buskulic et al.	(ALEPH Collab.)
Also		PL B325 537 (erratum)	D. Buskulic et al.	(ALEPH Collab.)
SANGHERA	93	PR D47 791	S. Sanghera et al.	(CLEO Collab.)
			_	
ALBRECHT	92C	PL B275 195	H. Albrecht <i>et al.</i>	(ARGUS Collab.)
ALBRECHT	92E	PL B277 209	H. Albrecht et al.	(ARGUS Collab.)
				(

ALBRECHT BORTOLETTO BUSKULIC ALBRECHT ALBRECHT	92G 91B 91C	ZPHY C54 1 PR D45 21 PL B295 396 PL B254 288 PL B255 297	H. Albrecht <i>et al.</i> D. Bortoletto <i>et al.</i> D. Buskulic <i>et al.</i> H. Albrecht <i>et al.</i> H. Albrecht <i>et al.</i>	(ARGUS Collab.) (CLEO Collab.) (ALEPH Collab.) (ARGUS Collab.) (ARGUS Collab.)
ALBRECHT BERKELMAN	91E 91	PL B262 148	H. Albrecht <i>et al.</i>	(ARGUS Collab.)
"Decays of		ARNPS 41 1	K. Berkelman, S. Stone	(CORN, SYRA)
FULTON	91	PR D43 651	R. Fulton et al.	(CLEO Collab.)
ALBRECHT	90B	PL B241 278	H. Albrecht <i>et al.</i>	(ARGUS Collab.)
ALBRECHT	90.J	ZPHY C48 543	H. Albrecht <i>et al.</i>	(ARGUS Collab.)
ANTREASYAN		ZPHY C48 553	D. Antreasyan <i>et al.</i>	(Crystal Ball Collab.)
BORTOLETTO	90	PRL 64 2117	D. Bortoletto <i>et al.</i>	(CLEO Collab.)
Also		PR D45 21	D. Bortoletto et al.	(CLEO Collab.)
WEIR	90B	PR D41 1384	A.J. Weir et al.	(Mark II Collab.)
ALBRECHT	89G	PL B229 304	H. Albrecht <i>et al.</i>	(ARGUS Collab.)
AVERY	89B	PL B223 470	P. Avery et al.	` (CLEO Collab.)
BEBEK	89	PRL 62 8	C. Bebek <i>et al.</i>	(CLEO Collab.)
BORTOLETTO		PRL 62 2436	D. Bortoletto et al.	(CLEO Collab.)
ALBRECHT	88F	PL B209 119	H. Albrecht <i>et al.</i>	(ARGUS Collab.)
ALBRECHT	88K	PL B215 424	H. Albrecht <i>et al.</i>	(ARGUS Collab.)
ALBRECHT	87C	PL B185 218	H. Albrecht <i>et al.</i>	(ARGUS Collab.)
ALBRECHT	87D	PL B199 451	H. Albrecht <i>et al.</i>	(ARGUS Collab.)
AVERY	87	PL B183 429	P. Avery <i>et al.</i>	(CLEO Collab.)
BEBEK	87	PR D36 1289	C. Bebek <i>et al.</i>	(CLEO Collab.)
ALAM	86	PR D34 3279	M.S. Alam <i>et al.</i>	(CLEO Collab.)
PDG	86	PL 170B 1	M. Aguilar-Benitez et al.	(CERN, CIT+)
GILES	84	PR D30 2279	R. Giles <i>et al.</i>	(CLEO Collab.)