Barcode data preparation

This document summarizes the data stored in Data_store_barcode and how they were processed. Consensus sequences were previously called for isolates considered monoclonal (isolates with 1-5 heteroallelic genotyping calls - Fig 1), replacing any het calls with 'N' (Fig 2), akin to a sequencing error (Nkhoma et al. 2013). Hereafter minor/major SNPs are encoded 0 and 1, respectively, where minority/majority was based on proportions discarding mixed and ignoring missing.

Nkhoma et al. (2013) report

- 1731 infections overall and here we have: 1731
- 629 from Wang Pha and here: 629 from WPA
- 396 from Maela and here: 396 from MLA
- 146 from Mae Kon Ken and here: 146 from PLU
- 560 from Mawker-Thai and here: 560 from MKT

To conclude: MLA (Maela); WPA (Wang Pha); PLU (Mae Kon Ken); MKT (Mawker Thai)

Of the data imported from TableS3 Nkhoma et al.txt

- Percentage declared multiclonal: 32.24
- Percentage with missing: 16.18
- Number with missing: 280
- Number with missing excluding the samples with ≤ 5 het calls: 71

In the analyses reported in the main manuscript, which are all based on either Data_store_barcode.RData, Barcode93.txt or Barcode24.txt (generated in S4Appendix.Rmd), we use single-genotype isolates only.

Sample sizes

Table 1: Isolate counts over sites and years, excluding those with missing data

	01	02	03	04	05	06	07	08	09	10	Total
MKT	10	104	88	28	21	11	4	95	79	40	480
MLA	49	67	54	38	2	0	2	47	32	26	317
MKK	0	0	0	0	0	0	2	53	45	17	117
WPA	0	1	0	13	0	0	26	275	151	71	537
Total	59	172	142	79	23	11	34	470	307	154	1451

Table 2: Single-genotype isolate counts over sites and years

	01	02	03	04	05	06	07	08	09	10	Total
MKT	12	58	67	22	19	12	3	88	70	37	388
MLA	17	39	35	28	2	0	5	37	26	23	212
MKK	0	0	0	0	0	0	4	57	40	15	116
WPA	0	0	0	12	0	0	20	228	120	77	457
Total	29	97	102	62	21	12	32	410	256	152	1173

Declared monoclonal

No. of declared het calls

Declared multiclonal

No. of declared het calls

Figure 1: Number of heteroallelic calls for isolates considered mono and multi-genotype.

No. missing calls per sample

Figure 2: Number of 'N' calls for isolates considered monoclonal but with 1 or more het calls versus all other isolates.

Table 3: Single-genotype isolate counts over sites and years, excluding those with missing data

	01	02	03	04	05	06	07	08	09	10	Total
MKT	8	49	51	19	14	9	2	71	57	34	314
MLA	11	29	21	18	0	0	1	31	23	22	156
MKK	0	0	0	0	0	0	2	42	30	14	88
WPA	0	0	0	6	0	0	17	189	103	59	374
Total	19	78	72	43	14	9	22	333	213	129	932

Table 4: Multi and single-genotype isolate counts over sites and years

	01	02	03	04	05	06	07	08	09	10	Total
MKT	15	115	107	31	26	14	5	112	92	43	560
MLA	63	81	76	51	4	0	6	53	35	27	396
MKK	0	0	1	0	0	0	4	68	55	18	146
WPA	0	1	0	19	0	0	30	316	174	89	629
Total	78	197	184	101	30	14	45	549	356	177	1731

Nkhoma, Standwell C., Shalini Nair, Salma Al-Saai, Elizabeth Ashley, Rose McGready, Aung P. Phyo, Francois Nosten, and Tim J C Anderson. 2013. "Population genetic correlates of declining transmission in a human pathogen." *Molecular Ecology* 22 (2): 273–85. doi:10.1111/mec.12099.