Problem 1

利用反证法,假设 $\log_4 6 = \frac{m}{n}, m, n \in \mathbb{N}$ 且m, n互质,那么

$$n \log_4 6 = m$$

 $\log_4 6^n = m$
 $6^n = 4^m$
 $3^n = 2^{2m-n}$

最后一步显然不可能,所以log₄6是无理数

Problem 2

考虑如下集合:

$$N::=\{n|n\in\mathbb{N},n>3^{rac{n}{3}}\}$$

下面将证明N为空集。根据WOP,N中存在最小值 n_1 ,注意0,1,2,3,4满足 $n\leq 3^{\frac{n}{3}}$,所以 $n_1\geq 4$,由定义可知

$$n_1-1 \leq 3^{rac{n_1-1}{3}}$$

那么

$$n_1 < 3^{rac{n_1-1}{3}} + 1$$

注意到

$$3^{\frac{n_1-1}{3}}+1 < 3^{\frac{n_1}{3}} \Leftrightarrow 3^{-\frac{1}{3}}+3^{-\frac{n_1}{3}} < 1$$

由 $n_1 \geq 4$ 可得

$$3^{-\frac{1}{3}} + 3^{-\frac{n_1}{3}} \le 3^{-\frac{1}{3}} + 3^{-\frac{4}{3}} < 0.925 < 1$$

从而 $3^{\frac{n_1-1}{3}}+1\leq 3^{\frac{n_1}{3}}$ 成立,因此

$$n_1 \leq 3^{rac{n_1-1}{3}} + 1 \leq 3^{rac{n_1}{3}}$$

这就与 n_1 的定义相矛盾,从而N为空集

Problem 3

(a)

P	Q	P IMPLIES Q	Q IMPLIES P	(P IMPLIES Q) OR (Q IMPLIES P)
Т	Т	Т	Т	Т
Т	F	F	Т	Т
F	Т	Т	F	Т
F	F	Т	Т	Т

(b)直接取

$$P \Leftrightarrow Q$$

注意上式等价于

$$\begin{split} (P \Leftarrow Q) \text{ AND } (Q \Leftarrow P) \\ (\bar{P} \text{ OR } Q) \text{ AND } (\bar{Q} \text{ OR } P) \end{split}$$

(c)如果P is valid,那么没有一个环境可以使得NOT(P)成立,即NOT(P) is not satisfiable,反之也成立。

(d)

$$S = (\text{NOT } P_1) \text{ OR } (\text{NOT } P_2) \dots (\text{NOT } P_n)$$

如果S是valid,那么 P_i 不能全为T,所以 P_1, \ldots, P_k 不是consistent,反之,因为 P_i 不能全为T,所以S是valid

Problem 4

(a)

$$p_0 = a_0 \text{ XOR } 1$$

 $c = a_0 \text{ AND } 1$

(b)如果b=1,则 $o_i=p_i$,否则 $o_i=a_i$,从而

$$o_i = (p_i \text{ AND } b) \text{ OR } (a_i \text{ AND } (\text{ NOT } b))$$

(c)如果 $c_{(1)}=1$,那么 $c=c_{(2)}$,否则 $c=c_{(1)}=0$,从而

$$c = c_{(1)} \text{ AND } c_{(2)}$$

(d)如果 $c_{(1)}=1$,那么 $p_i=r_{i-(n+1)}$,否则 $p_i=a_i$,从而

$$p_i = (r_{i-(n+1)} \text{ AND } c_{(1)}) \text{ OR } (a_i \text{ AND } (\text{ NOT } c_{(1)}))$$

(e)假设 $n=2^k$ 位需要的操作次数为 $T(2^k)$,注意前一半和后一半的加法可以同时完成,完成之后我们只要计算根据 $c_{(1)}$ 的值判断输出结果即可,所以

$$T(1) = 2$$
 $T(2^k) = T(2^{k-1}) + 1$ $T(2^k) = O(k)$ $T(n) = O(\log n)$