Домашнее задание 1

Дедлайн 19 сентября 23:59

Матричные вычисления

В дальнейшем мы регулярно будем пользоваться различными матричновекторными скалярными произведениями и нормами. В связи с этим, кратко напомним основные понятия и факты из этой области. Всюду в дальнейшем будут использоваться следующие стандартные обозначения:

- \mathbb{R} обозначает множество вещественных чисел;
- \mathbb{R}^n обозначает множество всех n-мерных вещественных векторстолбцов;
- $\mathbb{R}^{m \times n}$ обозначает множество всех вещественных матриц с m строками и n столбцами;
- \mathbb{S}^n обозначает множество всех $n \times n$ вещественных симметричных матриц;
- \mathbb{S}^n_+ и \mathbb{S}^n_{++} обозначают множество всех $n \times n$ вещественных симметричных положительно полуопределенных и положительно определенных матриц соответственно;
- \bullet I_n обозначает единичную матрицу размера n.

Заметим, что под векторами из \mathbb{R}^n всюду будут подразумеваться именно вектор-столбцы (а не, например, вектор-строки); таким образом, $\mathbb{R}^n = \mathbb{R}^{n \times 1}$, но $\mathbb{R}^n \neq \mathbb{R}^{1 \times n}$. Напомним, что \mathbb{R} , \mathbb{R}^n , $\mathbb{R}^{m \times n}$ и \mathbb{S}^n являются вещественными векторными пространствами (со стандартными операциями сложения и умножения на число).

Для матрицы $A \in \mathbb{R}^{n \times n}$ символ $Tr(A) := \sum_{i=1}^n a_{ii}$ обозначает ее след.

Задача 1. (1 балл) Покажите, что для любых матриц $A \in R^{m \times n}$, $B \in R^{n \times m}$ выполнено

$$Tr(AB) = Tr(BA)$$

.

Определение 0.1. (Скалярное произведение)

Пусть V- вещественное векторное пространство. Функция $\langle \cdot, \cdot \rangle$: $V \times V \to \mathbb{R}$, которая каждой паре x, y векторов в V ставит в соответствие вещественное число $\langle x, y \rangle$, называется вещественным скалярным произведением, если она удовлетворяет следующим аксиомам:

- (Положительность) Для любого $x \in V$ выполнено $\langle x, x \rangle \geq 0$. Более того, $\langle x, x \rangle = 0$ тогда и только тогда, когда x = 0.
- ullet (Симметричность) Для любых $x,y\in V$ выполнено $\langle x,y\rangle=\langle y,x\rangle.$
- (Линейность) Для любых $x,y,z \in V$ выполнено $\langle x+y,z \rangle = \langle x,z \rangle + \langle y,z \rangle$. Для любых $x,y \in V$ и любого $\alpha \in \mathbb{R}$ выполнено $\langle \alpha x,y \rangle = \alpha \langle x,y \rangle$.

Векторное пространство с заданным на нем скалярным произведением называется пространством со скалярным произведением или предгильбертовым пространством. Конечномерное вещественное пространство со скалярным произведением также называют евклидовым пространством.

Определение 0.2. (Стандартное скалярное произведение в \mathbb{R}^n) В пространстве \mathbb{R}^n вещественных n-мерных вектор-столбцов стандартное скалярное произведение задается формулой

$$\langle x, y \rangle := x^T y = \sum_{i=1}^n x_i y_i$$

.

Определение 0.3. (Стандартное скалярное произведение в $\mathbb{R}^{m \times n}$). В пространстве $\mathbb{R}^{m \times n}$ матриц можно ввести фробениусово скалярное произведение

$$\langle A, B \rangle := Tr(ATB) = \sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij}b_{ij}$$

. Это скалярное произведение называется стандартным скалярным произведением в $\mathbb{R}^{m \times n}$.

Определение 0.4. (Стандартное скалярное произведение в Sn) Наследуя фробениусово скалярное произведение из пространства $\mathbb{R}^{n \times n}$ на подпространство симметричных матриц \mathbb{S}^n , получаем фробениусово скалярное произведение в \mathbb{S}^n :

$$\langle A, B \rangle := Tr(AB)$$

. Это скалярное произведение называется стандартным скалярным произведением в \mathbb{S}^n .

Задача 2. (1 балл) Докажите, что для любых матриц $A \in \mathbb{R}^{m \times k}$, $B \in \mathbb{R}^{k \times n}$, $C \in \mathbb{R}^{m \times n}$ имеет место

$$\langle AB, C \rangle = \langle B, A^TC \rangle = \langle A, CB^T \rangle$$

.

Задача 3. (1 балл) Пусть $x, y \in \mathbb{R}^n$. Покажите, что $\langle xx^T, yy^T \rangle = \langle x, y \rangle^2$.

Задача 4. (2 балла) (Неравенство Коши-Буняковского). Пусть V — вещественное векторное пространство со скалярным произведением $\langle \cdot, \cdot \rangle$. Тогда для любых $x, y \in V$ справедливо

$$|\langle x, y \rangle| \le \langle x, x \rangle^{1/2} \langle y, y \rangle^{1/2}$$

причем неравенство переходит в равенство тогда и только тогда, когда либо y = 0, либо $x = \alpha y$ для некоторого $\alpha \in \mathbb{R}$.

Докажите это утверждение.

Определение 0.5. (Стандартная евклидова норма в \mathbb{R}^n).

$$||x||_2 := \langle x, x \rangle^{1/2} = \left(\sum_{i=1}^n x_i^2\right)^{1/2}$$

Эта норма также известна как l_2 -норма.

Определение 0.6. $(l_1$ -норма). Помимо евклидовой нормы в пространстве \mathbb{R}^n также можно задать и неевклидову норму. Например, функция $\|\cdot\|_1 : \mathbb{R}^n \to R$, определенная по формуле

$$\|\cdot\|_1 = \sum_{i=1}^n |x_i|,$$

задает норму, которая называется l_1 -нормой.

Определение 0.7. $(l_{\infty}$ -норма). Еще одной популярной нормой в пространстве Rn является l_{∞} -норма

$$||x||_{\infty} := \max_{1 \le i \le n} |x_i|$$

Эта норма также известна как равномерная норма или норма Чебышева.

Задача 5. (2 балла) Пусть $x \in \mathbb{R}^n$. Докажите следующие неравенства:

$$||x||_{\infty} \le ||x||_{2} \le \sqrt{n} ||x||_{\infty}$$
$$\frac{1}{\sqrt{n}} ||x||_{1} \le ||x||_{2} \le ||x||_{1}$$

. (Подсказка: для первой части второго неравенства используйте неравенство Коши-Буняковского.)

Определение 0.8. (Фробениусова норма в $\mathbb{R}^{m \times n}$). Рассмотрим теперь в качестве V пространство матриц $\mathbb{R}^{m \times n}$ со стандартным скалярным произведением. Соответствующая евклидова норма в

данном случае называется фробениусовой нормой и задается формулой

$$||A||_F := \langle A, A \rangle^{1/2} = [Tr(A^T A)]^{1/2} = \left(\sum_{i=1}^m \sum_{j=1}^n a_{ij}^2\right)^{1/2}.$$

Эта норма также известна как норма Гильберта-Шмидта.

Определение 0.9. (Операторная норма в $\mathbb{R}^{m \times n}$). Помимо фробениусовой нормы важным примером матричной нормы в пространстве $\mathbb{R}^{m \times n}$ является операторная норма:

$$\|A\|_{op}:=\max_{x\in\mathbb{R}^n:|x|=1}|Ax|$$

. Эта норма также известна как спектральная норма.

Задача 6. (4 ,балла) Упростите каждое из следующих выражений:

- $Det(AXB(C^{-T}X^TC)^{-T})$, $\epsilon \partial e \ A, B, C, X \in \mathbb{R}^{n \times n}$, $Det(C) \neq 0$, $Det(C^{-T}X^TC) \neq 0$.
- $||uvT A||_F^2 ||A||_F^2$, $\epsilon \partial e \ u \in \mathbb{R}^m$, $v \in \mathbb{R}^n$, $A \in \mathbb{R}^{m \times n}$.
- $Tr((2I_n + aa^T)^{-1}(uv^T + vu^T))$, $r\partial e \ a, u, v \in \mathbb{R}^n$.
- $\sum_{i=1}^{n} \langle S^{-1}a_i, a_i \rangle$, $i \partial e \ a_1, \dots, a_n \in \mathbb{R}^n$, $S := \sum_{i=1}^{n} a_i a_i^T$, $Det(S) \neq 0$.

Матрично-векторное дифференцирование

Для вычисления большинства производных, которые возникают на практике, достаточно лишь небольшой таблицы стандартных производных и правил преобразования. Удобнее всего оказывается работать в терминах «дифференциала» — с ним можно не задумываться о промежуточных размерностях, а просто применять стандартные правила. Здесь A, B — фиксированные матрицы; α — фиксирован-

Правила преобразования

$$dA = 0$$

$$d(\alpha X) = \alpha(dX)$$

$$d(AXB) = A(dX)B$$

$$d(X + Y) = dX + dY$$

$$d(X^{T}) = (dX)^{T}$$

$$d(XY) = (dX)Y + X(dY)$$

$$d\langle X, Y \rangle = \langle dX, Y \rangle + \langle X, dY \rangle$$

$$d\left(\frac{X}{\phi}\right) = \frac{\phi dX - (d\phi)X}{\phi^{2}}$$

Таблица стандартных производных

$$\begin{split} d\langle A, X \rangle &= \langle A, dX \rangle \\ d\langle Ax, x \rangle &= \langle (A + A^T)x, dx \rangle \\ d\langle Ax, x \rangle &= 2\langle Ax, dx \rangle \quad \text{(если } A = A^T) \\ d(\text{Det}(X)) &= \text{Det}(X)\langle X^{-T}, dX \rangle \\ d(X^{-1}) &= -X^{-1}(dX)X^{-1} \end{split}$$

ный скаляр; X,Y — произвольные дифферен- цируемые матричные функции (согласованные по размерностям, чтобы все операции имели смысл); ϕ — произвольная дифференцируемая скалярная функция.

Одним из самых важных является правило производной композиции. Пусть g(Y) и f(X) — две дифференцирумые функции, и мы знаем выражения для их дифференциалов: dg(Y) и df(X). Чтобы посчитать производную композиции $\phi(X) := g(f(X))$, как и в скалярном случае, нужно взять выражение посчитанного дифференциала dg(Y), подставить в него вместо Y значение f(X), а вместо dY значение df(X).

Обычно, все возникающие на практике матрично-векторные функции составлены с помощью табличных функций и стандартных операций над ними. Благодаря универсальности приведенных правил, дифференцировать сколь угодно сложные функции такого типа ста-

новится настолько же просто, как и дифференцировать одномерные функции.

Объект $\nabla f(x)$ (вектор для функции векторного аргумента и матрица для функции матричного аргумента) называется градиентом. Матрица $J_f(x) = \begin{pmatrix} \frac{\partial^2 f}{\partial x_i \partial x_j} \end{pmatrix}$ называется матрицей Якоби. Найти вторую производную функции f(X) можно по следующему «алгоритму»: посчитать первую производную функции; зафиксировать в выражениии для df(X) приращение dX — обозначить его как dX_1 ; посчитать производную для функции g(X) = df(X), считая dX_1 фиксированным (константа). Новое приращение обозначать dX_2 .

Для второй производной каноническая форма для скалярной функции векторного аргумента $d^2f(x)=\left\langle \nabla^2f(x)dx_1,dx_2\right\rangle$. Матрица $\nabla^2f(x)$ называется гессианом. Для дважды непрерывно дифференцируемых функций гессиан является симметричной матрицей.

Задача 7. (2 балла) Пусть $f - o\partial$ на из следующих функций:

- $f: E \to R$ функция $f(t) := Det(A tI_n)$, где $A \in \mathbb{R}^{n \times n}$, $E := \{t \in \mathbb{R} : Det(A tI_n) \neq 0\}$.
- $f: \mathbb{R}_{++} \to R \text{функция } f(t) := |(A + tI_n)^{-1}b|^2$, где $A \in \mathbb{S}^n_+$, $b \in R^n$.

Для каждого из указанных вариантов вычислите первую и вторую производные f' и f''.

Задача 8. (3 балла) Пусть f - oдна из следующих функций:

- $f: \mathbb{R}^n \to \mathbb{R} \phi$ ункция $f(x) := \frac{1}{2} \|xx^T A\|_F^2$, где $A \in \mathbb{S}^n$.
- $f: R^n \setminus \{0\} \to \mathbb{R}$ функция $f(x) := \frac{\langle Ax, x \rangle}{|x|^2}$, где $A \in \mathbb{S}^n$.
- $f: R^n \setminus \{0\} \to \mathbb{R} \phi$ ункция $f(x) := \langle x, x \rangle^{\langle x, x \rangle}$

Для каждого из указанных вариантов вычислите вектор градиент ∇f и матрицу Γ ecce $\nabla^2 f$ (относительно стандартного скалярного произведения в пространстве \mathbb{R}^n).

Задача 9. (3 балла) Пусть $f: \mathbb{S}^n_{++} \to \mathbb{R} - o \partial H a$ из следующих функций:

- $f(X) := Tr(X^{-1}).$
- $f(X) := \langle X^{-1}v, v \rangle$, $i \partial e \ v \in \mathbb{R}^n$.
- $f(X) := (Det(X))^{1/n}$.

Для каждого из указанных вариантов покажите, что вторая производная $D^2f(X)[H,H]$ имеет постоянный знак для всех $X \in \mathbb{S}^n_{++}$ и всех $H \in \mathbb{S}^n$.