David Kirby

Course Home > Module 4 >

Review Test Submission: Quiz 4.9

User	David Kirby
Course	Intro to Control Systems - Fall 2020 Section Group I67
Test	Quiz 4.9
Started	9/15/20 11:33 AM
Submitted	9/15/20 11:34 AM
Status	Completed
Attempt Score	3 out of 3 points
Time Elapsed	0 minute
	d Submitted Answers, Incorrectly Answered Questions

Question 1

1 out of 1 points

Consider a spring-mass-damper system with mass, damping, and spring parameters m=1, c=2, k=10. The transfer function with output that is the position x(t) of the mass, and input that is the applied force f(t), is

$$G(s) = \frac{10}{s^2 + 2s + 10}.$$

Which of the following represents the settling time of the system's step response?

Selected Answer:

$$T_s = 4 \text{ sec.}$$

Question 2

1 out of 1 points

Consider the same spring-mass-damper system with transfer function $G(s) = \frac{10}{s^2 + 2s + 10}$.

Which of the following represents the peak time?

Selected Answer:

$$T_p = \pi/3 \text{ sec.}$$

Question 3

1 out of 1 points

Consider the same spring-mass-damper system with transfer function $G(s) = \frac{10}{s^2 + 2s + 10}$.

Which of the following represents the damping ratio and natural frequency?

Selected Answer:

$$\zeta = 1/\sqrt{10}, \omega_n = \sqrt{10}$$

Wednesday, September 30, 2020 11:04:03 AM MDT