

The Most Comprehensive Preparation App For All Exams

QUADRILATERAL

Part-I

Agenda -> Quadrilateral 1

* We are left with 2 serious
on Triangles
in Triangle Part 334 which
will be covered in this week

fri Francisy - Ouadulateral 1 en January - somaduintered 2 Cover up Triangles Port 3 3 Triangles Port 4 Quadricateral 3 Tue Quadriotered 4

BYJU'S EXAM PREP

Agenda - souradir lateral

QUADRILATERAL Side

Def: Any four sided closed figure is called as Quadrilateral.

PROPERTIES

1. Sum of all interior angles of a quadrilateral = 360°

$$\angle A + \angle B + \angle C + \angle D = 360^{\circ}$$

2. Sum of all exterior angles of a quadrilateral = 360°

3. Area of quadrilateral ABCD:

$$=\frac{1}{2}\times One\ of\ the\ diagonals \times Sum\ of\ \bot\ dropped\ on\ it$$

$$= \frac{1}{2}AC(BE + DF)$$

AC = 20 cm

BM - 4 cm

DN= 18cm

Area of grad ABCD = ??

(ii) Area of quadrilateral =
$$\frac{1}{2}D_1D_2\sin\theta$$

where, D_1 , D_2 are diagonals of quadrilateral and θ is the angle between the diagonal.

area of oread ABCD

4. In a quadrilateral, if AC and BD are the diagonals and they intersect at O, then

(area of $\triangle AOB$) · (area of $\triangle COD$) = (area of $\triangle BOC$) · (area of $\triangle AOD$)

Eg1. In a quadrilateral diagonals AC and BD intersect each other at O.

If area of : $\triangle AOB = 20 \text{ cm}^2$, $\triangle BOC = 30 \text{cm}^2$ and

$$\Delta$$
COD = 15 cm²

Find area of quadrilateral ABCD.

Ans. 75 cm²

5. If diagonals of a quadrilateral intersect each other at

90°, then:

$$AB^2 + CD^2 = BC^2 + AD^2$$

eg

27. C33

6. If bisectors of $\angle B$ and $\angle C$ of a quadrilateral intersect

each other at P, then $\angle BPC = \frac{1}{2} (\angle A + \angle D)$

Eg2. In a quadrilateral PQRS, bisectors of \angle S and \angle P meet at K. If \angle R = 70° & \angle Q = 130°. Find \angle SKP.

7. If a circle is inscribed in quadrilateral:

V.an

$$a + c = b + d$$

Region : will be discussed in circles

Eg3. If PQ = 12 cm

QR = 15 cm

RS = 11 cm

Find PS = ??

BYJU'S

8. Figure formed by joining the mid-points of all sides of a quadrilateral is a parallelogram and its area is half of the quadrilateral.

SUFFICIENT CONDITIONS FOR A QUADRILATERAL TO BE A PARALLELOGRAM

1. If opposite sides of a quadrilateral are equal, then that is a parallelogram.

2. If opposite angles of a quadrilateral are equal, then that is a parallelogram.

3. If diagonals of a quadrilateral bisect each other, then that is a parallelogram.

4. If one pair of sides of a quadrilateral is equal and parallel, then that is a parallelogram.

PARALLELOGRAM

Def: A quadrilateral in which opposite sides are parallel.

(A+(D - 180) (B+(C=180° (A+(B=180) CC+C0 = 180 -, opp angles are equal -> Sum of adjacent angles is 180

PROPERTIES OF PARALLELOGRAM

1. Opposite sides and opposite angles of parallelogram are equal.

2. Sum of adjacent angles of a parallelogram is 180°.

$$\angle A + \angle B = 180^{\circ}$$

Eg4. In a parallelogram ABCD, $\angle A : \angle B = 5 : 4$ Find the value of $\angle D$.

3. (i) Angle bisectors of adjacent angles of a parallelogram intersect each other at 90°.

3. (ii) Angle bisector of a parallelogram forms a rectangle.

ABCD is a parallelogram.

AP, BP, CR and DR are bisectors of $\angle A$, $\angle B$,

 \angle C& \angle D.

Then, PQRS is a rectangle.

LA = 80

LDAC

- s cont be determed

Diagonals q a Parallelagram

Bisect each other

.

4. (i) Diagonals of a parallelogram bisect each other, but not necessarily at 90°.

Toplow AO = OC
BO = OD

DAOB D D COD (ASA)

4. (ii) Diagonals of a parallelogram need not be angle bisector.

5. Diagonal of a parallelogram divides it into 2 congruent triangles.

6. If diagonals AC and BD of a parallelogram intersect each other at O.

Area of $(\Delta AOB = \Delta BOC = \Delta COD = \Delta DOA)$

A ABD

7.
$$AC^2 + BD^2 = 2(AB^2 + BC^2)$$

$$D_1 + D_2 = 2(x+y)$$

$$\frac{x^{2}+y^{2}-AC}{2xy} + \frac{x^{2}+y^{2}-BD}{2xy} = 0$$

$$\frac{x^{2}+y^{2}-AC}{2xy} + \frac{x^{2}+y^{2}-BD}{2xy} = 0$$

$$\frac{2}{x^{2} + y^{2} - AC}$$
 $\frac{2}{x^{2} + y^{2} - BO^{2}}$
 $\frac{2}{x^{2} + y^{2} - BO^{2}}$

Eg2. If the 2 sides of a parallelogram are 12 cm and 15 cm and one of its diagonal is of length 17 cm. Find length of 2nd diagonal.

$$|\vec{A} + D\vec{\lambda}| = 2(|\vec{A}| + |\vec{A}|)$$

$$289 + D\vec{\lambda}| = 2(|\vec{A}| + |\vec{A}|)$$

$$289 + D\vec{\lambda}| = -738$$

$$D\vec{\lambda}| = 449$$

$$D\vec{\lambda}| = \sqrt{449}$$

Ans.
$$x = \sqrt{449}$$

8. Area of parallelogram:

(i) Base × Height

(ii) Area of parallelogram = $AB \cdot BC \cdot \sin \theta$

where, AB and BC are adjacent sides of a $| \cdot |$ gm and θ is the angle between them.

Eg6. If 2 sides of a parallelogram are 6 cm and 8 cm and angle between them is 60°. Find area of parallelogram.

9. Figure formed by joining the mid-point of all sides of a parallelogram, is a PARALLELOGRAM and its area is half of the parallelogram.

ABCD is a 118m P, Q, R&S are mid pts AB, BC, CDS DA pars is a 11gm area of PORS = 1 area of ABCD

10. Parallelogram drawn on the same base and between same parallels have equal areas.

Area of | | gm ABCD = Area of | | gm BCEF

B/c Bases treight are some

11. In a parallelogram ABCD, P, Q are mid points of BC and CD respectively.

Area of
$$\triangle APQ = \frac{3}{8}$$
 Area of ABCD

12. If P is any point in the interior of | gm ABCD, then

Area of (\triangle APB + \triangle CPD) = Area of (\triangle BPC + \triangle APD) = $\frac{1}{2}$ | gm ABCD

Reason:

PARALLELOGRAM CIRCUM SCRIBING A CIRCLE IS A RHOM BUS

$$AB = BC = CD = DA$$

Given: ABCD be a parallelogram circumscribing a circle with centre O.

To prove: ABCD is a rhombus.

We know that the tangents drawn to a circle from an exterior point are equal in length.

Therefore, AP = AS, BP = BQ, CR = CQ and DR = DS.

Adding the above equations,

$$AP + BP + CR + DR = AS + BQ + CQ + DS$$

$$(AP + BP) + (CR + DR) = (AS + DS) + (BQ + CQ)$$

$$AB + CD = AD + BC$$

$$2AB = 2BC$$

(Since, ABCD is a parallelogram so AB = DC and AD = BC)

$$AB = BC$$

Therefore, AB = BC = DC = AD.

Hence, ABCD is a rhombus.

Parallelogram inscribe in a circle is rectangle.

If PQRS is | | gm, then PQRS is rectangle.

Parallelogian

x+y= 180

Anea - X. Y

nty = 9+5

Given: PQRS is a parallelogram inscribed in a circle.

To prove: PQRS is a rectangle.

Proof: Since PQRS is a cyclic quadrilateral.

$$\therefore \angle P + \angle R = 180^{\circ}$$

.:. (Sum of opposite angles in a cyclic quadrilateral is 180°) ...(i)

But $\angle 9 = \angle R$ (In a II gm opposite angles are equal) ...(ii)

From Eqs. (i) and (ii), we get

$$\angle P = \angle R = 90^{\circ}$$

Similarly, $\angle Q = \angle S = 90$

∴ Each angle of PQRS is 90°.
Hence, PQRS is a rectangle.

DOWNLOAD NOW

