Dartmouth College

Mathematics 25

Assignment 1 due Wednesday, September 30

- 1. Use Euclid's algorithm to compute the gcd of 12345 and 67890.
- 2. Using your work above, write the gcd you found as in Bezout's identity for 12345 and 67890.
- 3. Suppose that there are integers m, n, x, y so that mx+ny=1. Show that gcd(m,n)=1.
- 4. Let n be a positive integer and E_n the set of integers which are relatively prime to n. Show that E_n is closed under multiplication, that is if $m, m' \in E_n$, so is their product mm'.
- 5. There is an alternate version of the definition of gcd than the one given in the text. Let a, b be integers, not both zero. We shall define a GCD of a, b, to be an integer D (not necessarily unique) such that
 - $D \mid a, D \mid b$, and
 - If $c \mid a$ and $c \mid b$, then $c \mid D$.

Show that if D, D' are two GCDs of a, b, then $D' = \pm D$. Thus there is a unique positive GCD which we call GCD(a, b).

6. Now let a, b be integers, not both zero. Show that gcd(a, b) = GCD(a, b). As a corollary, show that $c \mid a$ and $c \mid b$ if and only if $c \mid gcd(a, b)$.