Approximation of the Action-Value Function of a Markov Decision Process using Gaussian Processes

by Marco Sicklinger, Marco Sciorilli

26 September 2022

Markov Chain

A Markov Chain (or **Markov Process**) is a stochastic model that describes a sequence of possible events in which the probability of the single event depends only on the state characterizing the previous event (Markov Property):

$$P(X_n | X_{n-1}, X_{n-2}, ..., X_0) = P(X_n | X_{n-1})$$

Markov Decision Process

A Markov Decision Process is an extension of a Markov Chain.

An MDP can be defined as a tuple (S, A, P_a , R_a , γ), where:

- S is the set of states (state space)
- A is the set of possible actions (action space)
- P_a is the set of possible transitions $P_a(s, s') = \Pr(s_{t+1} = s' | s_t = s, a_t = a)$
- R_a is the reward distribution: $R_a(s, s')$ is the immediate reward for transitioning from state s to state s' with action a
- γ is the discount factor

Markov Decision Process (cont'd)

• A **policy** π is a family of distributions over actions given the states

$$\pi(a|s) = \Pr(a_t = a|s_t = s)$$

The return G_t is the total discounted reward from time-step t:

$$G_t = \sum_t \gamma R_{at}(s_t, s_{t+1})$$

• The value function V_{π} is the expected return starting from a state s and following the policy π

$$V_{\pi}(s) = \mathsf{E}_{\pi}[G_{t} | s_{t} = s]$$

• The action-value function $Q_{\pi}(s, a)$ is the expected return starting from state s, taking action a and following policy π

$$Q_{\pi}(s, a) = E_{\pi}[G_t | s_t = s, a_t = a]$$

Markov Decision Process (cont'd)

- The goal is to learn a policy π which maximizes the expected cumulative reward
- This is equivalent to find the optimal action value Q* for each state:

$$Q^*(s, a) = \max_{\pi} Q_{\pi}(s, a)$$

- In practice, a possible approach for the approximation of the action-value function is the Q-learning algorithm
- At each step, the action-value is updated according to the following rule

$$Q_{new}(s_t, a_t) = Q(s_t, a_t) + \alpha(R_t + \gamma \max_{a} Q(s_{t+1}, a) - Q(s_t, a_t))$$

Partially Observable Markov Decision Process

- In **partially observable Markov Decision Process** the one does not have complete knowledge of the state, that is, it does not observe directly the environment state
- A POMDP is represented by a tuple (S, A, T, R, Ω , O, γ), where:
 - T is the set of conditional probabilities between states
 - \circ Ω is the set of observations
 - O is the set of conditional probabilities between observations
- Example. Given a particular goal to reach on a two-dimensional plane, the observations may be the current position (x,y), while the MDP's states may be $(x,y,x_{G'},y_{G})$

Gaussian Processes in Model-Free MDPs

- Model-Free means that the algorithm does not use the transition probability distribution and the reward distribution associated with the MDP
- A Gaussian Process is a stochastic process, that is, a collection of random variables,
 any finite subset of which has a joint Gaussian distribution
- GPs can be used as function approximators in model-free reinforcement learning applications: GP regression can be exploited to approximate the action-value function and obtain the optimal action-value Q*

Gaussian Processes for Model-Free MDPs (cont'd)

Naive approach. A *single* GP is used to store the values of $Q_{approx} = Q_t$, for each action in A, and it is initialized optimistically. At each step an action a is chosen through the policy π and GP_a is updated with an input/output sample s_t , $R_t + \gamma \max_{a'} GP_{a'}$ predict(s_{t+1}).

Drawbacks of the naive approach. In the worst case scenario, this approach requires an exponential number of samples in order to learn the optimal Q^* , due to the variance reduction rate and the non-stationarity of the $Q_{\rm approx}$.

Initialization

```
Algorithm 1: Delayed GPQ (DGPQ)
Input: GP Kernel k(\cdot, \cdot), Environment Env, Actions A, initial state s_0,
            discount \gamma, threshold \sigma_{tol}^2, \epsilon_1
for a \in A do
  \hat{Q}_a = \emptyset
GP_a = GP.init(\mu = \frac{R_{max}}{1-\gamma}, k(\cdot, \cdot))
for each timestep t do
    a_t = \arg\max_a \hat{Q}_a(s_t)
    \langle r_t, s_{t+1} \rangle = Env.\text{takeAct}(a_t)
    q_t = r_t + \gamma \max_a \hat{Q}_a(s_{t+1})
    \sigma_1^2 = GP_{a_t}.variance(s_t)
    if \sigma_1^2 > \sigma_{tol}^2 then
         GP_{a_t}.update(s_t, q_t)
    end
    \sigma_2^2 = GP_{a_t}.variance(s_t)
    if \sigma_1^2 > \sigma_{tol}^2 \ge \sigma_2^2 and \hat{Q}_a(s_t) - GP_{a_t}.mean(s_t) > 2\epsilon_1 then
        \hat{Q}_a.\text{update}(s_t, GP_{a_t}.\text{mean}(s_t) + \epsilon_1)
       \forall a \in A, GP_a = GP.init(\mu = \hat{Q}_a, k(\cdot, \cdot))
    end
end
```

- Initialization
- Choose actions greedily based on Q

```
Algorithm 1: Delayed GPQ (DGPQ)
Input: GP Kernel k(\cdot, \cdot), Environment Env, Actions A, initial state s_0,
             discount \gamma, threshold \sigma_{tol}^2, \epsilon_1
for a \in A do
   GP_a = GP.init(\mu = \frac{R_{max}}{1-\gamma}, k(\cdot, \cdot))
end
for each timestep t do
     a_t = \arg\max_a \hat{Q}_a(s_t)
     \langle r_t, s_{t+1} \rangle = Env.\text{takeAct}(a_t)
   q_t = r_t + \gamma \max_a \hat{Q}_a(s_{t+1})

\sigma_1^2 = GP_{a_t}, variance(s_t)

if \sigma_1^2 > \sigma_{tot}^2 then
          GP_{a_t}.update(s_t, q_t)
     end
     \sigma_2^2 = GP_{a_t}.variance(s_t)
     if \sigma_1^2 > \sigma_{tol}^2 \ge \sigma_2^2 and \hat{Q}_a(s_t) - GP_{a_t}.mean(s_t) > 2\epsilon_1 then
          \hat{Q}_a.\text{update}(s_t, GP_{a_t}.\text{mean}(s_t) + \epsilon_1)
         \forall a \in A, GP_a = GP.init(\mu = \hat{Q}_a, k(\cdot, \cdot))
     end
end
```

Q

- For efficient sample complexity: $\hat{Q} \geq Q^* \epsilon$ (optimism of \hat{Q})
- Difficult to do with GP, so instead we use:

$$\hat{Q}(s,a) = \min\{\min_{\langle s_i,a\rangle \in BV} \hat{\mu}_i + L_Q d((s,a),(s_i,a)), V_{MAX}\}$$

- Basis Vectors (BV) stores values from previously learned GPs.
- To predict at points not in BV, we search over BV for the point with the lowest prediction including the weighted distance bonus.
- If no point in BV is sufficiently close, we choose V_{MAX} instead.

- Initialization
- Choose actions greedily based on Q
- Update GP based on observed reward at next state

```
Algorithm 1: Delayed GPQ (DGPQ)
Input: GP Kernel k(\cdot, \cdot), Environment Env, Actions A, initial state s_0,
            discount \gamma, threshold \sigma_{tol}^2, \epsilon_1
for a \in A do
    \widehat{GP}_a = GP.init(\mu = \frac{R_{max}}{1-\gamma}, k(\cdot, \cdot))
end
for each timestep t do
    a_t = \arg\max_a \hat{Q}_a(s_t)
    \langle r_t, s_{t+1} \rangle = Env.\text{takeAct}(a_t)
    q_t = r_t + \gamma \max_a \hat{Q}_a(s_{t+1})
    \sigma_1^2 = GP_{a_t}.variance(s_t)
    if \sigma_1^2 > \sigma_{tol}^2 then
         GP_{a_t}.update(s_t, q_t)
     end
    \sigma_2^2 = GP_{a_t}.variance(s_t)
    if \sigma_1^2 > \sigma_{tol}^2 \ge \sigma_2^2 and \hat{Q}_a(s_t) - GP_{a_t}.mean(s_t) > 2\epsilon_1 then
         \hat{Q}_a.update(s_t, GP_{a_t}.mean(s_t) + \epsilon_1)
         \forall a \in A, GP_a = GP.init(\mu = \hat{Q}_a, k(\cdot, \cdot))
    end
end
```

How it is done

- Initialize \hat{Q} , use it as a prior.
- Update GP using points $z_t = q_t \hat{Q}(s_t)$ to center it on \hat{Q} .
- ullet When updating \hat{Q} , remember to add $\hat{Q}(s_t)$ back in.

- Initialization
- Choose actions greedily based on Q
- Update GP based on observed reward
- Update Q if above convergence threshold

```
Algorithm 1: Delayed GPQ (DGPQ)
```

end

```
Input: GP Kernel k(\cdot, \cdot), Environment Env, Actions A, initial state s_0,
            discount \gamma, threshold \sigma_{tol}^2, \epsilon_1
for a \in A do
    GP_a = GP.init(\mu = \frac{R_{max}}{1-\gamma}, k(\cdot, \cdot))
end
for each timestep t do
    a_t = \arg\max_a \hat{Q}_a(s_t)
     \langle r_t, s_{t+1} \rangle = Env.\text{takeAct}(a_t)
    q_t = r_t + \gamma \max_a \hat{Q}_a(s_{t+1})
    \sigma_1^2 = GP_{a_t}.variance(s_t)
    if \sigma_1^2 > \sigma_{tol}^2 then
         GP_{a_t}.update(s_t, q_t)
     end
    \sigma_2^2 = GP_{a_t}.variance(s_t)
    if \sigma_1^2 > \sigma_{tol}^2 \ge \sigma_2^2 and \hat{Q}_a(s_t) - GP_{a_t}.mean(s_t) > 2\epsilon_1 then
         \hat{Q}_a.update(s_t, GP_{a_t}.mean(s_t) + \epsilon_1)
         \forall a \in A, GP_a = GP.init(\mu = \hat{Q}_a, k(\cdot, \cdot))
     end
```

\hat{Q} update

- ullet An update of \hat{Q} corresponds to adding a new element to the set BV.
- Redundant constraints are eliminated by checking if the new constraint results in a lower prediction value at other basis vector locations.
- In practice:
 - \circ Add point $\langle (s_i, a_i), \hat{\mu}_i \rangle$ to basis vector set
 - Check if for any j: $\mu_i + L_Q d((s_i, a), (s_j, a)) \leq \mu_i$
 - Take all j out of the set.

- Initialization
- Choose actions greedily based on Q
- Update GP based on observed reward
- Update Q if above convergence threshold
- Reset GPs

```
Algorithm 1: Delayed GPQ (DGPQ)
```

end

```
Input: GP Kernel k(\cdot, \cdot), Environment Env, Actions A, initial state s_0,
            discount \gamma, threshold \sigma_{tol}^2, \epsilon_1
for a \in A do
    GP_a = GP.init(\mu = \frac{R_{max}}{1-\gamma}, k(\cdot, \cdot))
end
for each timestep t do
     a_t = \arg\max_a \hat{Q}_a(s_t)
     \langle r_t, s_{t+1} \rangle = Env.\text{takeAct}(a_t)
    q_t = r_t + \gamma \max_a \hat{Q}_a(s_{t+1})
     \sigma_1^2 = GP_{a_t}.variance(s_t)
    if \sigma_1^2 > \sigma_{tol}^2 then
         GP_{a_t}.update(s_t, q_t)
    end
     \sigma_2^2 = GP_{a_t}.variance(s_t)
    if \sigma_1^2 > \sigma_{tol}^2 \ge \sigma_2^2 and \hat{Q}_a(s_t) - GP_{a_t}.mean(s_t) > 2\epsilon_1 then
         \hat{Q}_a.update(s_t, GP_{a_t}.mean(s_t) + \epsilon_1)
         \forall a \in A, GP_a = GP.init(\mu = \hat{Q}_a, k(\cdot, \cdot))
    end
```

Experiment

Setting.

- Goal search in a 1×1 two-dimensional box: the goal G is positioned in the top right corner, while the agent starts from the bottom left corner and has to get closer than 0.15 to the goal
- MDP is defined as:
 - $\Omega = \{(x,y) | (x,y) \in [0,1]^2\} \Rightarrow \text{ observations are the positions}$
 - $A = \{(-0.1,0), (0.1,0), (0,-0.1), (0, 0.1)\} \Rightarrow$ actions are additive movements in the four compass directions
 - \circ R = 1 if (x,y) = G else 0
- Noise: movements are affected by additive Gaussian noise with μ = 0, σ^2 = 0.01

Experiment (cont'd)

• Greedy policy for GP models:

$$a_t = \operatorname{argmax}_a Q_t(s_t, a)$$

- γ = 0.9 for all the models
- In this simple setting, tabular
 Q-learning may be the most
 convenient choice

Experiment (cont'd)

- The final Q_{approx} shows higher values in the vicinity of the goal (violet)
- The arrows represent the actions corresponding to the policy extracted from Q_{approx}
- Far away from the goal, a strange behavior occurs (actions are opposite to expected ones): the value of γ may be too low

Experiment (cont'd)

References

1. Grande, Robert C., Thomas J. Walsh and Jonathan P. How. "Sample Efficient Reinforcement Learning with Gaussian Processes." *ICML* (2014).