Tavole di derivate e integrali

Alessio Mattia Leonardi¹

17 Marzo 2021

¹a.m.leonardi@hotmail.it

Indice

1	La d	lerivata	ı	4			
	1.1	Defini	zione	4			
		1.1.1	Esempio	4			
	1.2	Deriva	ite notevoli	4			
		1.2.1	Funzione costante $f(x) = a, a \in \mathbb{R} \dots \dots \dots \dots$	4			
		1.2.2	Funzione lineare $f(x) = x \dots \dots \dots \dots \dots$	5			
		1.2.3	Funzione quadratica $f(x) = x^2 \dots \dots \dots \dots \dots$	5			
		1.2.4	Funzione radicale $f(x) = \sqrt{x}$	5			
		1.2.5	Potenza generica $f(x) = x^n, n \in \mathbb{R} \dots \dots \dots$	5			
		1.2.6	Funzione esponenziale $f(x) = a^x, a \in \mathbb{R}^+ - \{0\}$	5			
		1.2.7	Funzione logaritmo $f(x) = \log_a x, a \in \mathbb{R}^+ - \{0\} \dots \dots$	6			
		1.2.8	Funzione seno $f(x) = \sin x$	6			
		1.2.9	Funzione coseno $f(x) = \cos x \dots \dots \dots \dots$	6			
	1.3	Regole	e di derivazione	6			
		1.3.1	Regola della somma	6			
		1.3.2	Regola del prodotto	7			
		1.3.3	Regola del quoziente	7			
		1.3.4	Regola della funzione composta o regola della catena	7			
2	L'in	tegrale	indefinito	9			
	2.1		Definizione				
	2.2		ali notevoli	9			
		2.2.1	Funzione costante $f(x) = a, a \in \mathbb{R} \dots \dots \dots \dots$	9			
		2.2.2		10			
		2.2.3		10			
		2.2.4		10			
		2.2.5	——————————————————————————————————————	10			
		2.2.6	* / · · · · · · · · · · · · · · · · · ·	10			
		2.2.7		10			
		2.2.8		11			
		2.2.9		11			
		2.2.10		11			
	2.3			11			
	3	2.3.1	D 1 1 11	11			

		2.3.2 Regola del prodotto per una costante	12						
		2.3.3 Regola dell'integrazione per parti	12						
		2.3.4 Regola dell'integrazione per sostituzione (1)	12						
		2.3.5 Regola dell'integrazione per sostituzione (2)	13						
	2.4	Integrale definito							
	2.5	Cambio di variabile negli integrali definiti (pt.1)	14						
	2.6	Cambio di variabile negli integrali definiti (pt.2)	14						
3	3 Tabella riepilogativa								
4	Derivate e integrali in fisica								
	4.1	Cinematica	17						
		4.1.1 Velocità	17						
		4.1.2 Accelerazione	10						

La derivata

1.1 Definizione

$\frac{df(x)}{dx} = f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$

(1.1)

1.1.1 Esempio

$$\frac{d(x^2)}{dx} = \lim_{\Delta x \to 0} \frac{(x + \Delta x)^2 - x^2}{\Delta x} =$$

$$= \lim_{\Delta x \to 0} \frac{x^2 + \Delta x^2 + 2x\Delta x - x^2}{\Delta x} =$$

$$= \lim_{\Delta x \to 0} \frac{\Delta x(\Delta x + 2x)}{\Delta x} =$$

$$= \lim_{\Delta x \to 0} (\Delta x + 2x) = 2x$$
(1.2)

1.2 Derivate notevoli

1.2.1 Funzione costante $f(x) = a, \quad a \in \mathbb{R}$

Costante:
$$f(x) = a$$

$$\frac{da}{dx} = 0$$
(1.3)

1.2.2 Funzione lineare f(x) = x

Lineare:
$$f(x) = x$$

$$\frac{dx}{dx} = 1$$
(1.4)

1.2.3 Funzione quadratica $f(x) = x^2$

Quadrato:
$$f(x) = x^2$$

$$\frac{dx^2}{dx} = 2x$$
(1.5)

1.2.4 Funzione radicale $f(x) = \sqrt{x}$

Radice
quadrata:
$$f(x) = \sqrt{x}$$

$$\frac{d\sqrt{x}}{dx} = \frac{1}{2\sqrt{x}}$$
(1.6)

1.2.5 Potenza generica $f(x) = x^n, \quad n \in \mathbb{R}$

Potenza:
$$f(x) = x^n$$

$$\frac{dx^n}{dx} = n \cdot x^{n-1}$$
(1.7)

1.2.6 Funzione esponenziale $f(x)=a^x, \quad a\in \mathbb{R}^+-\{0\}$

Esponenziale:
$$f(x) = a^x$$

$$\frac{da^x}{dx} = \ln a \cdot a^x$$
(1.8)

Caso specifico se a = e:

$$\frac{de^x}{dx} = \ln e \cdot e^x = e^x \tag{1.9}$$

1.2.7 Funzione logaritmo $f(x) = \log_a x, \quad a \in \mathbb{R}^+ - \{0\}$

Logaritmo:

$$f(x) = \log_a x$$

$$\frac{d \log_a x}{dx} = \frac{1}{\ln a} \cdot \frac{1}{x}$$
(1.10)

Caso specifico se a = e:

$$\frac{d\log_e x}{dx} = \frac{d\ln x}{dx} = \frac{1}{\ln e} \cdot \frac{1}{x} = \frac{1}{x} \tag{1.11}$$

1.2.8 Funzione seno $f(x) = \sin x$

Seno:
$$f(x) = \sin x$$

$$\frac{d \sin x}{dx} = \cos x$$
(1.12)

1.2.9 Funzione coseno $f(x) = \cos x$

Coseno:

$$f(x) = \cos x$$

$$\frac{d\cos x}{dx} = -\sin x$$
(1.13)

1.3 Regole di derivazione

1.3.1 Regola della somma

Somma:
$$h(x) = f(x) \pm g(x)$$

$$\frac{dh(x)}{dx} = \frac{d(f(x) \pm g(x))}{dx} = f'(x) \pm g'(x)$$
(1.14)

Esempio $h(x) = x^2 + x^3$:

$$\frac{d(x^2+x^3)}{dx} = \frac{dx^2}{dx} + \frac{dx^3}{dx} = 2x + 3x^2 \tag{1.15}$$

1.3.2 Regola del prodotto

Prodotto:
$$h(x) = f(x) \cdot g(x)$$

$$\frac{dh(x)}{dx} = \frac{d(f(x) \cdot g(x))}{dx} = f'(x) \cdot g(x) + f(x) \cdot g'(x)$$
(1.16)

Caso particolare: se g(x) = a cioè è una costante, allora g'(x) = 0 e quindi:

$$\frac{d(a \cdot f(x))}{dx} = a \cdot \frac{df(x)}{dx} \tag{1.17}$$

Esempio $h(x) = x^2 \cdot \sin x$:

$$\frac{d(x^2 \sin x)}{dx} = \frac{dx^2}{dx} \cdot \sin x + x^2 \cdot \frac{d \sin x}{dx} =$$

$$= 2x \cdot \sin x + x^2 \cdot \cos x$$
(1.18)

1.3.3 Regola del quoziente

Quoziente:
$$h(x) = f(x)/g(x)$$

$$\frac{dh(x)}{dx} = \frac{df(x)/g(x)}{dx} = \frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{g(x)^2}$$
(1.19)

Caso particolare: se f(x) = 1 ho la derivata della reciproco di una funzione:

$$\frac{d}{dx}\frac{1}{g(x)} = -\frac{g'(x)}{g(x)^2} \tag{1.20}$$

Esempio $h(x) = \sin x/x$:

$$\frac{d(\sin x/x)}{dx} = \frac{1}{x^2} \cdot \left(\frac{\sin x}{dx} \cdot x - \sin x \cdot \frac{dx}{dx}\right)$$

$$= \frac{1}{x^2} \cdot (\cos x \cdot x - \sin x \cdot 1)$$
(1.21)

1.3.4 Regola della funzione composta o regola della catena

Funzione composta:
$$h(x) = f(g(x))$$

$$\frac{dh(x)}{dx} = \frac{d(f(g(x)))}{dx} = \underbrace{\frac{df(u)}{du}}_{u=g(x)} \cdot \underbrace{\frac{dg(x)}{dx}}_{dx}$$
(1.22)

Sostanzialmente si tratta di effettuare il cambio di variabile u = g(x), derivare rispetto a questa variabile u e moltiplicare per la derivata di questa nuova variabile (u) rispetto a quella di partenza (x).

Esempio $h(x) = \sin x^3$:

$$\frac{d(\sin x^3)}{dx} \underbrace{=}_{u=x^3} \frac{d\sin u}{du} \cdot \frac{dx^3}{dx} =
= \cos u \cdot 3x^2 =
= \cos x^3 \cdot 3x^2$$
(1.23)

Esempio $h(x) = \ln \cos e^{2x}$:

$$\frac{d(\ln \cos e^{2x})}{dx} = \frac{d \ln u}{du} \cdot \frac{d(\cos e^{2x})}{dx} = \frac{1}{u} \cdot \frac{d(\cos e^{2x})}{dx} = \frac{1}{u} \cdot \frac{d(\cos e^{2x})}{dx} = \frac{1}{\cos e^{2x}} \cdot \frac{d(\cos y)}{dy} \cdot \frac{d(e^{2x})}{dx} = \frac{1}{\cos e^{2x}} \cdot \sin y \cdot \frac{d(e^{2x})}{dx} = \frac{1}{\cos e^{2x}} \cdot \sin y \cdot \frac{d(e^{2x})}{dx} = \frac{1}{\cos e^{2x}} \cdot \sin e^{2x} \cdot \frac{d(e^{x})}{dx} \cdot \frac{d(2x)}{dx} = \frac{1}{\cos e^{2x}} \cdot \sin e^{2x} \cdot e^{x} \cdot \frac{d(2x)}{dx} = \frac{1}{\cos e^{2x}} \cdot \sin e^{2x} \cdot e^{2x} \cdot \frac{d(2x)}{dx} = \frac{1}{\cos e^{2x}} \cdot \sin e^{2x} \cdot e^{2x} \cdot \frac{d(2x)}{dx} = \frac{1}{\cos e^{2x}} \cdot \sin e^{2x} \cdot e^{2x} \cdot \frac{d(2x)}{dx} = \frac{1}{\cos e^{2x}} \cdot \sin e^{2x} \cdot e^{2x} \cdot 2$$

L'integrale indefinito

2.1 Definizione

 $\int f(x)dx = F(x) + c \implies \frac{dF(x)}{dx} = f(x)$ (2.1)

L'integrazione definisce un insieme di funzioni che differiscono tutte per una costante arbitraria c in quanto la derivata di una costante è 0. Di conseguenza se F(x) è una funzione che soddisfa alla definizione di integrale (che viene detta *primitiva* di f(x)),

Esempio:

$$F(x) = \int x^3 dx = \frac{1}{4}x^4 + c \tag{2.2}$$

in quanto:

$$\frac{d(x^4/4+c)}{dx} = \frac{d(x^4/4)}{dx} + \frac{dc}{dx} = \frac{1}{4} \cdot 4 \cdot x^3 + 0 = x^3$$
 (2.3)

Quindi ad esempio $x^4/4+2$, $x^4/4+\sqrt{34}$, $x^4/4+\pi$, $x^4/4-15/4$ etc. sono tutti integrali della funzione x^3 .

2.2 Integrali notevoli

allora lo è anche F(x) + c con $c \in R$.

2.2.1 Funzione costante $f(x) = a, \quad a \in \mathbb{R}$

Costante:
$$f(x) = a$$

$$\int a \, dx = a \cdot x + c$$
(2.4)

2.2.2 Funzione lineare f(x) = x

Lineare:
$$f(x) = x$$

$$\int x \, dx = \frac{x^2}{2} + c \tag{2.5}$$

2.2.3 Funzione reciproca f(x) = 1/x

Reciproca:
$$f(x) = 1/x$$

$$\int \frac{1}{x} dx = \ln|x| + c$$
(2.6)

2.2.4 Funzione quadratica $f(x) = x^2$

Quadratica:
$$f(x) = x^2$$

$$\int x^2 dx = \frac{x^3}{3} + c$$
(2.7)

2.2.5 Funzione radicale $f(x) = \sqrt{x}$

Radice quadrata:
$$f(x) = \sqrt{x}$$

$$\int \sqrt{x} \, dx = \frac{2}{3} \cdot \sqrt{x^3} + c$$
 (2.8)

2.2.6 Potenza generica $f(x) = x^n, \quad n \in \mathbb{R}$

Potenza:
$$f(x) = x^n$$

$$\int x^n dx = \frac{1}{n+1} \cdot x^{n+1} + c$$
(2.9)

2.2.7 Funzione esponenziale $f(x) = a^x, \quad a \in \mathbb{R}^+ - \{0\}$

Esponenziale:
$$f(x) = a^x$$

$$\int a^x dx = \frac{1}{\ln a} \cdot a^x + c$$
(2.10)

Caso specifico se a = e:

$$\int a^x dx = \int e^x dx = e^x + c \tag{2.11}$$

2.2.8 Funzione logaritmo $f(x) = \log_a x, \quad a \in \mathbb{R}^+ - \{0\}$

Logaritmo:
$$f(x) = \log_a x$$

$$\int \log_a x \, dx = \frac{1}{\ln a} (x \ln x - x) + c \tag{2.12}$$

Caso specifico se a = e:

$$\int \log_a x \, dx = \int \ln x \, dx = (x \ln x - x) + c \tag{2.13}$$

2.2.9 Funzione seno $f(x) = \sin x$

Seno:
$$f(x) = \sin x$$

$$\int \sin x \, dx = -\cos x + c$$
(2.14)

2.2.10 Funzione coseno $f(x) = \cos x$

Coseno:
$$f(x) = \sin x$$

$$\int \cos x \, dx = \sin x + c$$
(2.15)

2.3 Regole di integrazione

2.3.1 Regola della somma

Somma:
$$h(x) = f(x) \pm g(x)$$

$$\int h(x) dx = \int f(x) \pm g(x) dx = \int f(x) dx \pm \int g(x) dx$$
(2.16)

Esempio $h(x) = x^2 + x^3$:

$$\int x^2 + x^3 dx = \int x^2 dx + \int x^3 dx = \frac{x^3}{3} + \frac{x^4}{4} + c$$
 (2.17)

2.3.2 Regola del prodotto per una costante

Prodotto per una costante: $h(x) = a \cdot f(x)$

$$\int h(x) dx = \int a \cdot f(x) dx = a \int f(x) dx$$
 (2.18)

Esempio $h(x) = 7 \sin x$:

$$\int 7\sin x \, dx = 7 \int \sin x \, dx = -7\cos x + c \tag{2.19}$$

2.3.3 Regola dell'integrazione per parti

Integrazione per parti

$$\int f'(x) \cdot g(x) \, dx = f(x) \cdot g(x) - \int f(x) \cdot g'(x) \, dx \tag{2.20}$$

Esempio $h(x) = \sin x \cdot x$:

Considero $\sin x$ come la derivata di $\cos x$. Quindi $f'(x) = \sin x \rightarrow f(x) = -\cos x$ mentre $g(x) = x \rightarrow g'(x) = 1$

$$\int \sin x \cdot x \, dx = -\cos x \cdot x - \int -\cos x \cdot 1 \, dx =$$

$$= -\cos x \cdot x + \int \cos x \, dx =$$

$$= -\cos x \cdot x + \sin x + c$$
(2.21)

2.3.4 Regola dell'integrazione per sostituzione (1)

Si utilizza quando la funzione integranda è una funzione composta, effettuando il cambio di variabile x=g(t) e il cambio di differenziale dx=g'(t)dt.

Integrali per sostituzione pt.1

$$\int f(x) dx = \int f(g(t)) \cdot g'(t) dt$$
 (2.22)

Esempio $h(x) = \sin 3x$:

Effettuando la sostituzione $x \to g(t) = t/3$ e dx = dt/3:

$$\int \sin 3x \, dx = \int \sin t \frac{dt}{3} =$$

$$= \frac{1}{3} \int \sin t \, dt =$$

$$= -\frac{1}{3} \cos t + c = -\frac{1}{3} \cos 3x + c$$
(2.23)

2.3.5 Regola dell'integrazione per sostituzione (2)

Si usa quando la funzione integranda è una funzione composta del tipo $f(g(x)) \cdot g'(x)$. Allora si pone t = g(x) e dt = g'(x)dx.

Integrali per sostituzione pt.2

$$\int f(g(x)) \cdot g'(x) \, dx = \int_{t=g(x)} \int f(t) \, dt$$
 (2.24)

Esempio $h(x) = \tan x$:

$$\int \tan x \, dx = \int \frac{\sin x}{\cos x} dx \tag{2.25}$$

Effettuando la sostituzione $t \to g(x) = \cos x$, allora $dt = -\sin x \, dx$:

$$\int \tan x \, dx = \int \frac{\sin x}{\cos x} dx =$$

$$= \int \frac{-d(\cos x)}{\cos x} =$$

$$= -\int \frac{dt}{t} =$$

$$= -\ln|t| + c =$$

$$= -\ln|\cos x| + c$$
(2.26)

2.4 Integrale definito

Teorema fondamentale del calcolo integrale

$$\int_{a}^{b} f(x) dx = F(x) \Big|_{a}^{b} = F(b) - F(a)$$
 (2.27)

dove

$$F(x) = \int f(x) \, dx \tag{2.28}$$

Esempio $h(x) = x^2, x \in [4, 8]$:

$$\int_{4}^{8} x^{2} dx = \frac{x^{3}}{3} \Big|_{4}^{8} = \frac{8^{3}}{3} - \frac{4^{3}}{3} = \frac{448}{3}$$
 (2.29)

2.5 Cambio di variabile negli integrali definiti (pt.1)

Quando si effettua un cambio di variabile, anche gli estremi di integrazione vengono modificati dal cambio stesso di variabile:

Cambio di variabile
$$\int_{a}^{b} f(x) dx = \int_{g^{-1}(a)}^{g^{-1}(b)} f(g(t)) \cdot g'(t) dt = F(t) \Big|_{g^{-1}(a)}^{g^{-1}(b)} = F(g^{-1}(b)) - F(g^{-1}(a))$$
(2.30)

Esempio $h(x) = \sin x/2, \ x \in [4, 8]$:

$$\int_{4}^{8} \sin(x/2) \, dx \tag{2.31}$$

Effettuando la sostituzione $x \to g(t) = 2t$ e dx = 2dt, allora:

- $x = 4 \rightarrow t = 4/2 = 2$ (che corrisponde a calcolare $g^{-1}(4)$)
- $x = 8 \rightarrow t = 8/2 = 4$ (che corrisponde a calcolare $g^{-1}(8)$)

Allora:

$$\int_{4}^{8} \sin(x/2) dx = \int_{2}^{4} \sin t \, 2dt =$$

$$= 2 \int_{2}^{4} \sin t \, dt \qquad (2.32)$$

$$= -2 \cdot \cos t \Big|_{2}^{4} = 2 \cdot (-\cos 4 - (-\cos 2)) = 2 \cdot (\cos 2 - \cos 4)$$

2.6 Cambio di variabile negli integrali definiti (pt.2)

Analogamente quando si effettua l'altro cambio di variabile (Eq. 2.24), gli estremi di integrazione vengono modificati dal cambio stesso di variabile:

Cambio di variabile
$$\int_{a}^{b} f(g(x)) \cdot g'(x) \, dx = \int_{g(a)}^{g(b)} f(t) \, dt = F(t) \Big|_{g(a)}^{g(b)} = F(g(b)) - F(g(a))$$
(2.33)

Esempio $h(x) = 2x e^{x^2}, x \in [1, 5]$:

$$\int_{1}^{5} 2x \, e^{x^2} \, dx \tag{2.34}$$

Effettuando la sostituzione $t \to g(x) = x^2$ e dt = 2x dx, allora:

- $x=1 \rightarrow t=1^2=1$ (che corrisponde a calcolare g(1))
- $x = 5 \rightarrow t = 5^2 = 25$ (che corrisponde a calcolare g(5))

Allora:

$$\int_{1}^{5} 2x \, e^{x^{2}} \, dx = \int_{1}^{5} e^{x^{2}} 2x \, dx =$$

$$= \int_{1}^{5} e^{x^{2}} \, d(x^{2}) =$$

$$= \int_{1}^{25} e^{t} \, dt = e^{t} \Big|_{1}^{25} = e^{25} - e^{1}$$
(2.35)

Tabella riepilogativa

Funzione $f(x)$	Derivata $f'(x)$	Integrale $F(x)$
Costante $f(x) = a$	0	ax + c
Reciproca $f(x) = 1/x$	$-\frac{1}{x^2}$	
Lineare $f(x) = x$	1	$\frac{x^2}{2} + c$
Quadratica $f(x) = x^2$	2x	$\frac{x^3}{3} + c$
Radice quadrata $f(x) = \sqrt{x}$	$\frac{1}{2\sqrt{x}}$	$\frac{2}{3}\sqrt{x^3} + c$
Potenza generica $f(x) = x^n$	$n x^{n-1}$	$\frac{x^{n+1}}{n+1} + c$
Esponenziale $f(x) = a^x$		$\frac{1}{\ln a} \cdot a^x + c$
$\begin{aligned} & \text{Logaritmo} \\ & f(x) = \log_a x \end{aligned}$	$\frac{1}{\ln a} \cdot \frac{1}{x}$	$\frac{x \cdot \ln x - x}{\ln a} + c$
Seno $f(x) = \sin x$	$\cos x$	$-\cos x + c$
Coseno $f(x) = \cos x$	$-\sin x$	$\sin x + c$

Tabella 3.1: Riepilogo delle principali derivate e integrali

Derivate e integrali in fisica

4.1 Cinematica

4.1.1 Velocità

Se x(t) è la legge che descrive l'evoluzione della posizione x rispetto a un sistema di riferimento che un corpo assume al scorrere del tempo t, allora la sua velocità v è definita da:

Velocita' istantanea di un corpo:
$$v = \frac{d \, x(t)}{dt} \tag{4.1}$$

Nel caso bi- o tri-dimensionale, la posizione sarà descritta da un vettore $\vec{r}(t)$ e la velocità sarà similmente definita da:

Velocita' istantanea di un corpo:
$$\vec{v} = \frac{d\,\vec{r}(t)}{dt} \tag{4.2} \label{eq:4.2}$$

che corrisponde ad un set di tre equazioni:

$$\begin{cases} v_x = \frac{d x(t)}{dt} \\ v_y = \frac{d y(t)}{dt} \\ v_z = \frac{d z(t)}{dt} \end{cases}$$
(4.3)

Si può procedere anche nella direzione: supponiamo di avere un moto unidimensionale del quale conosciamo già la velocità v(t) e ci si domanda quale sia la legge oraria.

Allora occorre integrare la velocità:

Posizione di un corpo:
$$x(t) = \int v(u)du + c \tag{4.4}$$

L'integrazione è sempre definita a meno di una costante di integrazione c: questa costante viene fissata di volta in volta richiedendo delle particolari condizioni imposte dal problema, come ad esempio dire che all'istante t_0 , il corpo si trova nella posizione x_0 . Di conseguenza:

$$x(t_0) + c \equiv x_0 \Longrightarrow c = x_0 - x(t_0) \tag{4.5}$$

Quindi c è definito dalla differenza tra x_0 (che generalmente è un valore dato) e $x(t_0)$ che è il valore che la funzione x(t) assume all'istante di tempo t_0 .

$$x(t) = \int v(u)du + x_0 - x(t_0)$$
 (4.6)

La condizione su c può anche essere imposta da altri vincoli e perciò quest'ultimo esempio non deve esser considerato come "regola" sempre valida.

Lo spazio che invece percorre il corpo tra due istanti di tempo successivi t_1 e t_2 sarà definito da $x(t_2)-x(t_1)$ e poiché x(t) è una primitiva di v(t), allora ricordando la definizione data nell'Eq. 2.27 si ha:

$$\Delta x = x(t_2) - x(t_1) = \int_{t_1}^{t_2} v(u) du$$
 (4.7)

In modo analogo esisterà una generalizzazione al caso bi- e tri-dimensionale:

Posizione di un corpo:
$$\vec{r}(t) = \int \vec{v}(u)du + \vec{c} \tag{4.8}$$

dove la quantità \vec{c} indica che si stanno considerando una costante che ha tre componenti c_x, c_y e c_z , una per ogni dimensione del moto:

$$x(t) = \int v_x(u)du + c_x \tag{4.9}$$

$$y(t) = \int v_y(u)du + c_y \tag{4.10}$$

.

$$z(t) = \int v_z(u)du + c_z \tag{4.11}$$

In modo del tutto analogo lo spazio totale percorso da un corpo in movimento nel caso bi e tri-dimensionale

Spazio percorso da un corpo

$$\Delta \vec{r} = \vec{r}(t_2) - \vec{r}(t_1) = \int_{t_1}^{t_2} \vec{v}(u) du$$
(4.12)

che corrisponderà a tre equazioni distinte:

•

$$\Delta x = x(t_2) - x(t_1) = \int_{t_1}^{t_2} v_x(u) du$$
 (4.13)

•

$$\Delta y = y(t_2) - y(t_1) = \int_{t_1}^{t_2} v_y(u) du$$
 (4.14)

•

$$\Delta z = z(t_2) - z(t_1) = \int_{t_1}^{t_2} v_z(u) du$$
 (4.15)

4.1.2 Accelerazione

Se ora v(t) è la legge che descrive l'evoluzione della velocità v rispetto a un sistema di riferimento che un corpo assume al scorrere del tempo t, allora la sua accelerazione a è definita da:

Accelerazione istantanea di un corpo:

$$a = \frac{dv(t)}{dt} = \frac{d^2x(t)}{dt^2} \tag{4.16}$$

Nel caso bi- o tri-dimensionale, la velocità sarà descritta da un vettore $\vec{v}\left(t\right)$ e l'accelerazione sarà similmente definita da:

Accelerazione istantanea di un corpo:

$$\vec{a} = \frac{d\vec{v}(t)}{dt} = \frac{d^2\vec{r}(t)}{dt^2} \tag{4.17}$$

che corrisponde ad un set di tre equazioni:

$$\begin{cases} a_x = \frac{d v_x(t)}{dt} \\ a_y = \frac{d v_y(t)}{dt} \\ a_z = \frac{d v_z(t)}{dt} \end{cases}$$
(4.18)

Anche in questo caso, si può procedere nella direzione: supponiamo di avere un moto unidimensionale, dove conosciamo già l'accelerazione a(t) e ci si domanda quale sia la velocità del corpo.

Allora occorre integrare l'accelerazione:

Velocita' di un corpo:
$$v(t) = \int a(u)du + c \tag{4.19}$$

Anche in questo caso avremo la costante di integrazione c da fissare che dipenderanno dal tipo di problema. Spesso si fissa supponendo che al tempo t_0 la velocità $v(t_0)$ sia pari a v_0 .

Di conseguenza:

$$v(t_0) + c \equiv v_0 \Longrightarrow c = v_0 - v(t_0) \tag{4.20}$$

Quindi c è definito dalla differenza tra v_0 (che generalmente è un valore dato) e $v(t_0)$ che è il valore che la funzione v(t) assume all'istante di tempo t_0 .

$$v(t) = \int a(u)du + v_0 - v(t_0)$$
(4.21)

In modo analogo esisterà una generalizzazione al caso bi- e tri-dimensionale:

Velocita' di un corpo:
$$\vec{v}(t) = \int \vec{a}(u) du + \vec{c} \eqno(4.22)$$

dove la quantità \vec{c} indica che si stanno considerando una costante che ha tre componenti c_x, c_y e c_z , una per ogni dimensione del moto:

$$v_x(t) = \int a_x(u)du + c_x \tag{4.23}$$

$$v_y(t) = \int a_y(u)du + c_y \tag{4.24}$$

•

$$v_z(t) = \int a_z(u)du + c_z \tag{4.25}$$