

JAH-1653 Seat No._____

Second Year B. C. A. (Sem. III) Examination November / December - 2012

303 - Statistics & Optimization Technique

Time: 3 Hours] [Total Marks: 70

- 1 (a) Answer the following questions: 7
 (1) is an ideal average.
 - (2) Find mean of $1, \frac{1}{2}, \frac{1}{4}, 2, 1\frac{1}{4}, \frac{1}{6}$.
 - (3) State the empirical relationship between mean, median and mode.
 - (4) 50% of the observation of a series are more than 82. Its median is _____.
 - (5) List out the measure of dispersion.
 - (6) Which measure of dispersion is ideal.
 - (7) Quartiles divide a series into _____equal part.
 - (8) Define mean Deviation.
 - (b) Attempt: (any two)

(1) Find the missing frequency from the following frequency distribution n = 120. $\overline{x} = 60$.

10

Class:	10-30	30-50	50-70	70-90	90-110
Freq.:	17	f_1	32	f_2	19

(2) Find mode:

Observation:	1	4	7	8-10	10-15	15-25	25-40	40-50
Frequency:	1	3	7	10	15	8	4	2

JAH-1653] 1 [Contd...

(3) Find standard deviation:

Clas	SS:	0-10	10-20	20-30	30-40	40-50	50-60	60-70
Free	q. :	2	6	12	16	22	18	14

2 (a) Do as directed:

8

- (1) What is regression?
- (2) What is correlation coefficient?
- (3) The value of r lies between ____ and
- (4) Explain the difference between correlation 2 and regression.
- (5) Explain probable error.

 $\mathbf{2}$

- $(6) \qquad \sqrt{byx} \cdot \sqrt{bxy} = \underline{\hspace{1cm}}$
- (b) Attempt: (any **two**)

10

(1) Find r using rank correlation method.

									58	
<i>y</i> :	20	33	15	60	44	65	36	56	42	15

(2) For the following set of data find y for x=15

						17					
y	:	6.2	8.6	7.2	4.5	9.0	3.5	6.5	9.3	9.5	5.7

(3) Find Karl Pearson coefficient between *x* and *y*.

<i>x</i> :	3	4	6	7	10
<i>y</i> :	9	11	14	15	16

- 3 (a) Answer the following:
 - (1) Write mathematical model of linear programming problem.
 - (2) Write the full form of PERT and CPM. 1

3

(3) Explain slack variable and surplus variable.

3

OR.

Explain Event and Activity.

(b) Attempt: (any two)

10

(1) Use the Simplex method to solve the following LPP problem.

Max.
$$Z = 3x_1 + 2x_2$$

subject to constraints:

$$x_1 + x_2 \le 4$$

$$x_1 - x_2 \le 2$$

and
$$x_1, x_2 \ge 0$$

(2) Draw the network diagram for the following activities:

Activity	A	В	C	D	E	F	G
Predecessor	_	-	_	A, B	C	D	E, F
Activity							

(3) Solve the following LPP and find the optimum solution.

Maximize
$$Z = 100x_1 + 150x_2$$

S to C:
$$5x + 2y \le 180$$

$$3x + 3y \le 135$$

$$y \le 2x$$

and
$$x, y \ge 0$$
.

- 4 (a) Answer the following:
 - (1) Write down the mathematical model of transportation problem.
 - (2) What is unbalanced transportation 4 problem? How can it be balanced?
 - (3) What is degeneracy?
 - (b) Attempt the following:

10

(1) Find optimum basic feasible solution of the following transportation problem.

	Γ	estir			
	D_1	D_2	D_3	D_4	Supply
O_1	19	30	50	10	7
O_2	70	30	40	60	9
O_3	40	8	70	20	18
Demand	5	8	7	14	34

(2) Determine the optimum assignment schedule for the following:

	${ m Jobs}$								
	A	В	C	D					
P_1	41	72	39	52					
P_2	22	29	49	65					
P_3	27	39	60	51					
P_4	47	50	48	52					