17.05.2024

Homologische Algebra Blatt 6

1 | Stegreiffragen: (Ko)Produkte und (Ko)Kerne

Alle Fragen sollten lediglich eine kurze Antwort benötigen:

- (a) Seien \mathcal{C} , \mathcal{D} Kategorien mit Produkten und $F: \mathcal{C} \to \mathcal{D}$ ein Funktor. Wie ist die kanonische Abbildung $F(X \times Y) \to F(X) \times F(Y)$ definiert?
- (b) Wahr oder falsch: Jeder Funktor $\mathbf{Set} \to \mathbf{Set}$ erhält Produkte.
- (c) Was sind Produkte und Koprodukte in partiell geordneten Mengen?
- (d) Was sind Produkte und Koprodukte in der Kategorie der natürlichen Zahlen und Morphismen $k \to n$ genau dann, wenn $k \mid n$ ("k teilt n")?
- (e) Wie sehen Kerne und Kokerne in der Kategorie Ring aus?
- (f) Was bedeutet es für eine Kategorie mit einem Objekt, Produkte zu besitzen? Können Sie ein nicht-triviales Beispiel finden?

2 | (Ko)Produkte von Funktoren

Seien \mathcal{C} und \mathcal{D} zwei Kategorien.

- (a) Zeigen Sie: \mathcal{D} hat binäre Produkte \Rightarrow Fun(\mathcal{C}, \mathcal{D}) hat binäre Produkte.
- (b) Zeigen Sie: \mathcal{D} hat binäre Koprodukte \Rightarrow Fun $(\mathcal{C}, \mathcal{D})$ hat binäre Koprodukte.

3 | Produkterhaltend oder nicht produkterhaltend

Sei $F \colon \mathcal{C} \to \mathcal{D}$ ein Funktor zwischen Kategorien mit Produkten.

- (a) Finden Sie einen Funktor F mit $F(A \times B) \cong F(A) \times F(B)$ für alle Objekte A und B, der nicht produkterhaltend ist.
- (b) Formulieren Sie genau, was der Unterschied ist.

4 | Binäre Produkte + terminale Objekt ⇒ alle endlichen Produkte

Sei \mathcal{C} eine Kategorie mit binären Produkten und einem terminalen Objekt.

- (a) Zeigen Sie, dass \mathcal{C} alle endlichen Produkte hat.
- (b) Formulieren Sie die duale Aussage.

(Hinweis: Es gibt mehrere Wege endliche Produkte aus binären zu bauen. Warum sind die äquivalent?)

5 | In Mod_R : Kern = Mono = monisch

Sei $f: A \to B$ ein Morphismus in \mathbf{Mod}_R .

- (a) Zeigen Sie die Äquivalenz der folgenden Aussagen:
 - (i) f ist ein Kern, d.h. es gibt einen Morphismus $g: B \to C$ mit $f = \ker(g)$.
 - (ii) f ist ein Monomorphismus, d.h. für $h_1, h_2: T \to A$ mit $f \circ h_1 = f \circ h_2$ folgt $h_1 = h_2$.
 - (iii) f ist monisch, d.h. für $h: T \to A$ mit $f \circ h = 0$ folgt h = 0.
- (b) Formulieren Sie die duale Aussage.