Utilizzo e sperimentazione di una rete neurale convoluzionale per analizzare le serie temporali maggiormente anticorrelate dell'elettroencefalogramma e riconoscere l'attività cardiaca

Tesi di Laurea in Ingegneria Informatica

Candidato

Tommaso Falaschi

Relatori

Ing. Antonio Luca Alfeo Prof. Mario G.C.A. Cimino

Introduzione e Problema

- Le EEG sono molto utili per le analisi comportamentali e neurologiche basate su segnali fisiologici.
- Le EEG sono anche una fonte di informazione particolarmente rumorosa, per questo spesso si accoppia l'analisi delle EEG a quella delle HRV.

E' possibile usare modelli di **Machine Learning** per **riconoscere** e **ricostruire** efficacemente l'**attività cardiaca** dalle sole **EEG**? Con che parametri? Con quali sensori EEG?

Tommaso Falaschi 2

Soluzioni

■ Selezione dei canali tramite media a finestra mobile e anticorrelazione al 90° percentile.

 Ottimizzazione degli iperparametri esplorando diverse possibili combinazioni che potessero aumentare le prestazioni del modello.

 Utilizzo della metrica accuracy per l'analisi e il confronto prestazionale delle varie configurazioni esaminate.

 $\begin{array}{l} {\bf Accuracy} = & \frac{{\bf Numero\ di\ previsioni\ corrette}}{{\bf Numero\ totale\ di\ previsioni}} \end{array}$

Tommaso Falaschi 3

- Migliori prestazioni con l'utilizzo di una Convolution Neural Network Unidimensionale (CNN1D).
- Incremento dell'accuratezza del modello nella classificazione binaria per l'identificazione picchi relativi a battiti cardiaci.

	CNN1D	CNN2D
Batch_Size	8 ; 1 6	8
Kernel_Size	5 ; 1 0; 1 5; 2 0	5x5
Pool_Size	2 ;3;4;5	2x2
Filters	32 ; 64 ; 128	128
Epochs	50 ; 150 ; 250	250
Learning_rate	10 ⁻¹ ; 10 ⁻² ; 10 ⁻³ ; 10 ⁻⁴ ; 10 ⁻⁵	10-2
Momentum	0;0,2;0,4; 0,6;0,8	0,6
Ottimizzatore	SGD; Adam	SGD
Metodo di pooling	Max ; Average	Max

Tommaso Falaschi 4