1 ^{er} apellido												N	Е		
2º apellido															
Nombre															

(Tiempo 60 minutos)

Un pequeño satélite de observación terrestre se encuentra en una órbita heliosíncrona circular con inclinación 98.5°. En un determinado momento de la misión se desea deorbitar el satélite en 300 kilómetros para obtener imágenes con más resolución, asegurando que la nueva órbita es también heliosíncrona circular.

a) Calcule la altitud, periodo y velocidad orbital de la órbita inicial.

En un satélite heliosíncrono la regresión de la línea de nodos $\dot{\Omega}$ debida a J2:

$$\dot{\Omega} = -\frac{3}{2} \frac{J_2 R_E^2}{p^2} n \cos i = -\frac{3}{2} \frac{J_2 R_E^2}{a^2 (1 - e^2)^2} \sqrt{\frac{\mu}{a^3}} \cos i$$

Es igual a la regresión nodal del sol (un giro de 2π radianes en un año):

$$\dot{\Omega}_{sun} = \frac{2\pi}{365.25636051 \text{ dias} \times 24 \text{ horas} \times 3600 \text{ segundos}} = 1.99 \times 10^{-7} \text{ rad/s}$$

De igualar las dos magnitudes:

$$a^{7/2} = -\frac{3}{2} J_2 R_E^2 \sqrt{\mu} \frac{\cos i}{\dot{\Omega}_{sun}}$$

Y despejando h = 775.76 km.

Por tanto, el periodo será:

$$T = 2\pi \sqrt{\frac{a^3}{\mu}} = 1.67 \text{ h}$$

Y la velocidad orbital:

$$V = \sqrt{2\varepsilon + \frac{\mu}{r}} = \sqrt{2\mu \left(\frac{1}{r} - \frac{1}{2a}\right)} = 7.46 \text{ km/s}$$

1 ^{er} apellido												ΝE			
2º apellido															
Nombre															

Si en la nueva órbita se mantiene la inclinación inicial el satélite dejará de ser perfectamente helio-síncrono.

b) Calcule a qué velocidad se desalineará la órbita del Sol si se mantiene la inclinación.

En la nueva órbita suponemos que el satélite baja 300 km pero se mantiene la inclinación.

$$a = 6853.76 \text{ km}; h = 475.76 \text{ km}$$

La nueva regresión de los nodos será:

$$\dot{\Omega} = -\frac{3}{2} \frac{J_2 R_E^2}{a^2 (1 - e^2)^2} \sqrt{\frac{\mu}{a^3}} \cos i = 2.31 \times 10^{-7} \text{rad/s}$$

Luego la órbita se desalineará:

$$\dot{\Omega} - \dot{\Omega}_{sun} = 2.31 \times 10^{-7} - 1.99 \times 10^{-7} = -3.22 \times 10^{-8} \text{rad/s}$$

O lo que es lo mismo: 0.16 grados/día, 58.2 grados/año.