Week 6

Enhancing Collision Theory

6.1 Threshold Energy and Line-Of-Centers Model

- 5/2: Picking up from the previous lecture...
 - It follows by plugging in the energy substitutions from last time that

$$u_r f(u_r) du_r = \left(\frac{2}{k_B T}\right)^{3/2} \left(\frac{1}{\mu \pi}\right)^{1/2} E_r e^{-E_r/k_B T} dE_r$$

- Thus,

$$k = \int_0^\infty du_r f(u_r) k(u_r)$$
$$= \left(\frac{2}{k_B T}\right)^{3/2} \left(\frac{1}{\mu \pi}\right)^{1/2} \int_0^\infty dE_r E_r e^{-E_r/k_B T} \sigma_r(E_r)$$

- Now assume that only those collisions for which the relative kinetic energy exceeds a threshold energy E_0 result in a collision. Thus, define

$$\sigma_r(E_r) = \begin{cases} 0 & E_r < E_0 \\ \pi d_{AB}^2 & E_r \ge E_0 \end{cases}$$

- Consequently,

$$k = \left(\frac{2}{k_{\rm B}T}\right)^{3/2} \left(\frac{1}{\mu\pi}\right)^{1/2} \int_{E_0}^{\infty} dE_r E_r e^{-E_r/k_{\rm B}T} \pi d_{\rm AB}^2$$

$$= \left(\frac{8k_{\rm B}T}{\mu\pi}\right)^{1/2} \pi d_{\rm AB}^2 e^{-E_0/k_{\rm B}T} \left(1 + \frac{E_0}{k_{\rm B}T}\right)$$

$$= \langle u_r \rangle \, \sigma_{\rm AB} e^{-E_0/k_{\rm B}T} \left(1 + \frac{E_0}{k_{\rm B}T}\right)$$

- We can use

$$E_a = k_{\rm B} T^2 \frac{\mathrm{d} \ln k}{\mathrm{d} T}$$

to relate the above to the activation energy.

• Another simplification we've made is that the reaction cross section is not constant, but actually depends on relative speed.

- Accounting for the collision geometry between the two hard spheres gives rise to the line-of-centers model.
- Line-of-centers model: A model for $\sigma_r(E_r)$ in which the cross section depends on the component of the relative kinetic energy that lies along the line that joins the centers of the colliding molecules.

Figure 6.1: Line-of-centers model.

- If we denote the relative kinetic energy along the line of centers by E_{loc} , then we are assuming that a reaction occurs when $E_{loc} > 0$.
- The main thrust of this model is that we are redefining E_r instead of $\sigma_r(E_r)$ overall.
- The line-of-centers model asserts that two molecules will collide only if the **impact parameter** is less than the sum of the radii of the colliding molecules.
 - In particular, we (re)define

$$\sigma_r(E_r) = \begin{cases} 0 & E_r < E_0 \\ \pi d_{AB}^2 \left(1 - \frac{E_0}{E_r}\right) \end{cases}$$

- It follows from math similar to the above that

$$k = \left(\frac{2}{k_{\rm B}T}\right)^{3/2} \left(\frac{1}{\mu\pi}\right)^{1/2} \int_0^{\infty} dE_r E_r e^{-E_r/k_{\rm B}T} \sigma_r(E_r)$$
$$= \left(\frac{8k_{\rm B}T}{\mu\pi}\right)^{1/2} \pi d_{\rm AB}^2 e^{-E_0/k_{\rm B}T}$$
$$= \langle u_r \rangle \sigma_{\rm AB} e^{-E_0/k_{\rm B}T}$$

- Impact parameter: The perpendicular distance between the two dashed lines in Figure 6.1. Denoted by **b**.
- The cross section exhibits a threshold energy.
 - The dependence of the reaction cross section on the relative kinetic energy of the collision is consistent with the line-of-centers model.
- Relating E_0 to the Arrhenius equation parameters.
 - For the activation energy E_a , we have

$$E_a = k_{\rm B} T^2 \frac{\mathrm{d} \ln k}{\mathrm{d}T}$$
$$= k_{\rm B} T^2 \frac{\mathrm{d}}{\mathrm{d}T} \left\{ \ln \left[\left(\frac{8k_{\rm B}T}{\pi \mu} \right)^{1/2} \pi d_{\rm AB}^2 \right] - \frac{E_0}{k_{\rm B}T} \right\}$$

$$= k_{\rm B} T^2 \frac{\mathrm{d}}{\mathrm{d}T} \left\{ \ln T^{1/2} - \frac{E_0}{k_{\rm B}T} + \text{terms not involving } T \right\}$$
$$= E_0 + \frac{1}{2} k_{\rm B} T$$

- Tian wants us to memorize the last line above.
- Considering the line-of-centers collision model and the Arrhenius equation yields

$$A = \langle u_r \rangle \, \sigma_{AB} e^{1/2}$$

• Tian goes through a practice problem.