컴퓨터과학기초

3<u>주차</u> 디지털 코드

인하공업전문대학 컴퓨터정보과

이수정 교수

차례

Ch.2 수의 체계

- 3. 2진수 정수 연산과 보수
- 4. 2진 부동소수점수의 표현

차례

Ch.2 수의 체계

- 3. 2진수정수 연산과 보수
- 4. 2진 부동소수점수의 표현

2) 2진수 음의 정수 표현과 보수

- 최상위비트(MSB)를 부호비트로 사용
 - 양수(+): 0음수(-): 1

- 2진수 음수를 표시하는 방법
 - 부호와 절대치(sign-magnitude)
 - 1의 보수(1's complement)
 - 2의 보수(2's complement)

- 부호와 절대치
 - 부호비트만 양수와 음수를 나타내고 나머지 비트들은 같다.

- 1의 보수로 변환하는 방법
 - 0 → 1, 1 → 0으로 변환
 - 00000011 → 1의 보수 = 11111100

- 2의 보수로 변환하는 방법
 - 1의 보수 + 1 = 2의 보수
 - 00000011 → 2의 보수 = 1의 보수 + 1 = 111111100 + 1 = 111111101
 - 01101100 → 2의 보수 = 1의 보수 + 1 = 10010011 + 1 = 10010100

- r진법 n자릿수 x의 r의 보수: rⁿ-x
- r진법 n자릿수 x의 r-1의 보수: rⁿ-1-x
 - 567의 10의 보수 : 10³-567=1000-567=433
 - 567의 9의 보수: 10³-1-567=999-567=432
 - 00000011의 2의 보수 : 2⁸-00000011=100000000-00000011=11111101
 - 00000011의 1의 보수 : 2⁸-1-00000011=111111111-00000011=111111100
- 양수를 보수로 바꾸면 음수

양수 보수 음수

- 음수를 보수로 바꾸면 양수
- 2진수와 그 수의 1의 보수와의 합은 모든 bit가 1이 된다.
- 2진수와 그 수의 2 보수와의 합은 모든 bit가 0이 된다.(자릿수를 벗어나는 비트는 제외)

■ 2진수의 표현 방법 3가지(8bit)

기지스	8비트 크	기이며, MSB가 부	호비트임
2진수	부호와 절대치	1의 보수	2의 보수
00000000	+0	+0	+0
0000001	+1	+1	+1
00000010	+2	+2	+2
00000011	+3	+3	+3
•••	•••	•••	•••
01111100	+124	+124	+124
01111101	+125	+125	+125
01111110	+126	+126	+126
01111111	+127	+127	+127
10000000	-0	-127	-128
10000001	-1	-126	-127
10000010	-2	-125	-126
10000011	-3	-124	-125
•••	•••	•••	•••
11111100	-124	-3	-4
11111101	-125	-2	-3
11111110	-126	-1	-2
11111111	-127	-0	-1

■ 부호와 절대치의 표현(4bit)

		/	무	호	비트
0	0	0	0	0	+0
	0	0	0	1	+1
	0	0	1	0	+2
	0	0	1	1	+3
+	0	1	0	0	+4
	0	1	0	1	+5
	0	1	1	0	+6
	0	1	1	1	+7
0	1	0	0	0	-0
	1	0	0	1	-1
	1	0	1	0	-2
	1	0	1	1	-3
-	1	1	0	0	-4
	1	1	0	1	-5
	1	1	1	0	-6
	1	1	1	1	-7

■ 1의 보수 표현(4bit)

✓ 부호 비트					
0	0	0	0	0	+0
	0	0	0	1	+1
	0	0	1	0	+2
	0	0	1	1	+3
+	0	1	0	0	+4
	0	1	0	1	+5
	0	1	1	0	+6
	0	1	1	1	+7
	1	0	0	0	-7
	1	0	0	1	-6
	1	0	1	0	-5
-	1	0	1	1	-4
	1	1	0	0	-3
	1	1	0	1	-2
	1	1	1	0	-1
0	1	1	1	1	-0

1의	보수

✓부호 비트				
1	1	1	1	-0
1	1	1	0	-1
1	1	0	1	-2
1	1	0	0	-3
1	0	1	1	-4
1	0	1	0	-5
1	0	0	1	-6
1	0	0	0	-7
0	1	1	1	+7
0	1	1	0	+6
0	1	0	1	+5
0	1	0	0	+4
0	0	1	1	+3
0	0	1	0	+2
0	0	0	1	+1
0	0	0	0	+0

■ 뺄셈: 보수를 취하여 더하면 뺄셈을 수행(Carry가 있으면 버림)

자릿수 맞춤

$$7928-879 = 7928+(-879) = 7928+(-0879)$$

$$\rightarrow$$
 7928+(10⁴-0879) = 7928+9121 = 17049

→ 7049

bit 수	2의 보수를 사용한 2진 정수의 표현 범위
<i>n</i> bit	$-2^{n-1} \sim +2^{n-1} -1$
4 bit	$-2^{4-1} \sim +2^{4-1} -1 (-8 \sim +7)$
8 bit	$-2^{8-1} \sim +2^{8-1} -1 (-128 \sim +127)$
16 bit	$-2^{16-1} \sim +2^{16-1} -1 (-32,768 \sim +32,767)$
32 bit	$-2^{32-1} \sim +2^{32-1} -1 (-2,147,483,648 \sim +2,147,483,647)$
64 bit	$-2^{64-1} \sim +\ 2^{64-1} -1\ (-9,223,372,036,854,775,808 \sim 9,223,372,036,854,775,807)$

n비트 2의 보수에 대한 10진수의 표현 범위

3) 부호 확장

• 늘어난 비트 수만큼 부호를 늘려주는 방법

2진수	부호 확장 방법			예
표현 방식	구조 릭이 이번	구분	8bit	16bit 확장
ㅁ둥이 그기	부호만 MSB에 복사하고,	양수	0 0101010	00000000 00101010
부호와 크기	나머지는 0으로 채움	음수	1 0010111	10000000 00010111
101日人	늘어난 길이만큼 부호와 같은 값으로 모두 채움	양수	0 0101010	00000000 00101010
1의 보수		음수	1 0010111	11111111 10010111
201 버스	2의 보수 늘어난 길이만큼 부호와 같은 값으로 모두 채움	양수	0 0101010	00000000 00101010
2의 모두 		음수	1 0010111	11111111 10010111

4) 2의 보수로 표현된 음수를 10진수로 변환

• 2의 보수 10101100을 10진수로 변환하는 경우

첫번째방법

MSB가 1이므로 음수이다. 이 위치의 실제크기는 128(=2⁷)이고, 부호가 1(음수)이므로 실제값은 -128이다.

$$10101100_{(2)} = -1 \times 2^{7} + 0 \times 2^{6} + 1 \times 2^{5} + 0 \times 2^{4} + 1 \times 2^{3} + 1 \times 2^{2} + 0 \times 2^{1} + 0 \times 2^{0}$$
$$= -128 + 0 + 32 + 0 + 8 + 4 + 0 + 0 = -128 + 44$$
$$= -84$$

두번째방법

2의 보수로 바꾸어 10진수로 바꾼 다음 -부호를 붙인다.

$$=0 \times 2^7 + 1 \times 2^6 + 0 \times 2^5 + 1 \times 2^4 + 0 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 0 \times 2^0$$

5) 2의 보수 연산

양수 + 양수 = 양수	큰 수 - 작은 수 = 양수	작은 수 - 큰 수 = 음수
(49+58=107)	(58-49=9)	(49-58=-9)
Carry $\rightarrow 0110000$ 00110001 $+ 00111010$ $0 01101011$	Carry → <u>1</u> 1111110 00111010 - <u>00110001</u> 같음 <u>+ 11001111</u> <u>1</u> 00001001	Carry \rightarrow 0000000 00110001 $- 00111010$ 00110001 $+ 11000110$ $0 11110111$
음수 + 음수 = 음수	큰 양수 + 큰 양수 = 음수	큰 음수 + 큰 음수 = 양수
(-49-58=-107)	(98+74=-84)	(-98-74=+84)
Carry $\rightarrow 1001110$ - 00110001 - 00111010 11001111 + 11000110 1 10010101	Carry → <u>1</u> 000010 01100010 + <u>01001010</u> 付로 → <u>0</u> 10101100 다름	Carry \rightarrow 0111110 - 01100010 - 01001010 10011110 + 10110110 1 01010100

■ 2진 정수의 2의 보수 개념도

5에서 +방향으로 5칸을 이동하면 -6이 된다.

98+74는 98에 +방향으로 74칸 을 이동하면 -84가 된다.

- 컴퓨터의 부동소수점수는 IEEE 754표준을 따른다.
- 부호(sign), 지수(exponent), 가수(mantissa)의 세 영역으로 표시
- 단정도(single precision) 부동소수점수와 배정도(double precision) 부동소수점수의 두 가지 표현 방법이 있다.

단정도 및 배정도 부동소수점수의 비트 할당

구분	IEEE 754 표준 부동소수점수의 비트 할당	바이어스
단정도 부동소수 점수	8 bit 23 bit	127
배정도 부동소수 점수	11 bit 52 bit 63 62 61 53 52 51 50 1 0 S Exponent Mantissa	1023

- 정규화(normalization): 과학적 표기 방법
 - 2진수의 정규화

$$75.6875 = 1001011.1011_{(2)}$$
$$= 1.0010111011_{(2)} \times 2^{6}$$
$$= 1.0010111011_{(2)} \times 2^{110_{(2)}}$$

- 바이어스(bias): 지수의 양수, 음수를 나타내기 위한 방법
 - IEEE 754 표준에서는 바이어스 127(단정도) 또는 1023(배정도)을 사용
 - 표현 지수 = 바이어스 + 2진 지수 값

부호 : 1비트	지수(bias 127) : 8비트	가수(1.xxx):23비트
양수		1.을 생략한 가수 (1. <mark>0001011011</mark>)
0	10000101	001011101100000000000000

여기에 "1."이 숨어 있다.

- 10진수 -0.2를 단정도 부동소수점으로 표현
 - 2진수로 변환하고 정규화한다.

```
-0.2 = -0.00110011001100110011001..._{(2)}= -1.10011001100110011001..._{(2)} \times 2^{-3}= -1.10011001100110011001... \times 2^{-11(2)}
```

부호 : 1비트	지수(bias 127) : 8비트	가수(1.xxx) : 23비트
음수	127 - 3 (01111111 - 00000011)	1.을 생략한 가수 (1.1001100110011001100)
1	01111100	1001100110011001100

여기에 "1."이 숨어 있다.

■ 컴퓨터에서의 부동소수점수의 표현 범위

	단정도 부동소수점수	배정도부동소수점수
비정규화된 2진수	~ $\pm 2^{-149}$ to $\pm (1-2^{-23})$ x 2^{126}	~ $\pm 2^{-1074}$ to $\pm (1-2^{-52})x2^{1022}$
정규화된 2진수	~ $\pm 2^{-126}$ to $\pm (2-2^{-23})x2^{127}$	~ $\pm 2^{-1022}$ to $\pm (2-2^{-52})x2^{1023}$
10진 수	$\sim \pm 1.40 \text{x} 10^{45} \text{ to } \pm 3.40 \text{x} 10^{38}$	$\sim \pm 4.94 \times 10^{-324}$ to $\pm 1.798 \times 10^{308}$

차례

Ch.3 디지털 코드

- 1. BCD 코드와 3초과 코드
- 2. 다양한 2진 코드들
- 3. 그레이코드
- 4. 에러 검출 코드
- 5. 영숫자코드

1. BCD 코드와 3초과 코드

- BCD 코드(Binary Coded Decimal Code: 2진화 10진 코드, 8421코드)
 - 10진수 0(0000)부터 9(1001)까지를 2진화한 코드
 - 표기는 2진수이지만 의미는 10진수
 - 1010부터 1111까지 6개는 사용하지 않음

10진수	BCD 코드	10진수	BCD 코드	10진수	BCD 코드
0	0000	10	0001 0000	20	0010 0000
1	0001	11	0001 0001	31	0011 0001
2	0010	12	0001 0010	42	0100 0010
3	0011	13	0001 0011	53	0101 0011
4	0100	14	0001 0100	64	0110 0100
5	0101	15	0001 0101	75	0111 0101
6	0110	16	0001 0110	86	1000 0110
7	0111	17	0001 0111	97	1001 0111
8	1000	18	0001 1000	196	0001 1001 0110
9	1001	19	0001 1001	237	0010 0011 0111

1. BCD 코드와 3초과 코드

■ BCD 코드의 연산

10진 덧셈 (6+3=9) 0110 + 0011 1001

계산 결과가 BCD코드를 벗어나는 즉, 9(1001)를 초과하는 경우에는 계산 결과에 6(0110)을 더해준다.

(8+7=15)

1. BCD 코드와 3초과 코드

- 3초과 코드(excess-3 code)
 - BCD코드(8421코드)로 표현된 값에 3을 더해 준 값으로 나타내는 코드
 - 자기 보수의 성질

10진수	BCD 코드	3-초과 코드		
0	0000 +3(0	011) > 0011		7
1	0001	0100	_	ı
2	0010	0101		Ш
3	0011	0110		Ш
4	0100	0111	<u> </u>	보수
5	0101	1000	_	관계
6	0110	1001	_	Ш
7	0111	1010		
8	1000	1011		J
9	1001	1100		_

- 가중치 코드(Weighted Code)
 - 그 위치에 따라 정해진 값을 갖는 코드

10진수	8421코드 (BCD)	2421 코드	5 <u>42</u> 1	84-2-1 코드	5 <u>111</u> 1	바이퀴너리코드 (Biquinary Code) 5043210	링 카운터 (ring counter) 9876543210
0	0000	0000	0000	0000	00000	0100001	0000000001
1	0001	0001	0001	0111	00001	0100010	000000010
2	0010	0010	0010	0110	00011	0100100	000000100
3	0011	0011	0011	0101	00111	0101000	0000001000
4	0100	0100	0100	0100	01111	0110000	0000010000
5	0101	1011	1000	1011	10000	1000001	0000100000
6	0110	1100	1001	1010	11000	1000010	0001000000
7	0111	1101	1010	1001	11100	1000100	0010000000
8	1000	1110	1011	1000	11110	1001000	0100000000
9	1001	1111	1100	1111	11111	1010000	1000000000

■ 8421 코드(BCD 코드)

10진수	8421코드	10진수 계산
0	0000	$8 \times 0 + 4 \times 0 + 2 \times 0 + 1 \times 0 = 0$
1	0001	$8 \times 0 + 4 \times 0 + 2 \times 0 + 1 \times 1 = 1$
2	0010	$8 \times 0 + 4 \times 0 + 2 \times 1 + 1 \times 0 = 2$
3	0011	$8 \times 0 + 4 \times 0 + 2 \times 1 + 1 \times 1 = 3$
4	0100	$8 \times 0 + 4 \times 1 + 2 \times 0 + 1 \times 0 = 4$
5	0101	$8 \times 0 + 4 \times 1 + 2 \times 0 + 1 \times 1 = 5$
6	0110	$8 \times 0 + 4 \times 1 + 2 \times 1 + 1 \times 0 = 6$
7	0111	$8 \times 0 + 4 \times 1 + 2 \times 1 + 1 \times 1 = 7$
8	1000	$8 \times 1 + 4 \times 0 + 2 \times 0 + 1 \times 0 = 8$
9	1001	$8 \times 1 + 4 \times 0 + 2 \times 0 + 1 \times 1 = 9$

☞ 자기보수 성질 없음

■ 2421 코드

10진수	<u> 2</u> 421	10진수 계산	2421 코드	10진수 계산
0	0000	2×0+4×0+2×0+1×0=0	0000	2×0+4×0+2×0+1×0=0
1	0001	$2 \times 0 + 4 \times 0 + 2 \times 0 + 1 \times 1 = 1$	0001	$2 \times 0 + 4 \times 0 + 2 \times 0 + 1 \times 1 = 1$
2	0010	$2 \times 0 + 4 \times 0 + 2 \times 1 + 1 \times 0 = 2$	1000	$2 \times 1 + 4 \times 0 + 2 \times 0 + 1 \times 0 = 2$
3	0011	$2 \times 0 + 4 \times 0 + 2 \times 1 + 1 \times 1 = 3$	1001	$2 \times 1 + 4 \times 0 + 2 \times 0 + 1 \times 1 = 3$
4	0100	2×0+4×1+2×0+1×0=4	1010	2×1+4×0+2×1+1×0=4
5	1011	$2 \times 1 + 4 \times 0 + 2 \times 1 + 1 \times 1 = 5$	0101	$2 \times 0 + 4 \times 1 + 2 \times 0 + 1 \times 1 = 5$
6	1100	2×1+4×1+2×0+1×0=6	0110	2×0+4×1+2×1+1×0=6
7	1101	$2 \times 1 + 4 \times 1 + 2 \times 0 + 1 \times 1 = 7$	0111	$2 \times 0 + 4 \times 1 + 2 \times 1 + 1 \times 1 = 7$
8	1110	$2 \times 1 + 4 \times 1 + 2 \times 1 + 1 \times 0 = 8$	1110	$2 \times 1 + 4 \times 1 + 2 \times 1 + 1 \times 0 = 8$
9	1111	$2 \times 1 + 4 \times 1 + 2 \times 1 + 1 \times 1 = 9$	1111	$2 \times 1 + 4 \times 1 + 2 \times 1 + 1 \times 1 = 9$

☞ 자기보수 성질을 가짐

■ 5421 코드

10진수	5421 코드	10진수 계산	5421 코드	10진수 계산
0	0000	5×0+4×0+2×0+1×0=0	0000	5×0+4×0+2×0+1×0=0
1	0001	$5 \times 0 + 4 \times 0 + 2 \times 0 + 1 \times 1 = 1$	0001	$5 \times 0 + 4 \times 0 + 2 \times 0 + 1 \times 1 = 1$
2	0010	$5 \times 0 + 4 \times 0 + 2 \times 1 + 1 \times 0 = 2$	0010	$5 \times 0 + 4 \times 0 + 2 \times 1 + 1 \times 0 = 2$
3	0011	$5 \times 0 + 4 \times 0 + 2 \times 1 + 1 \times 1 = 3$	0011	$5 \times 0 + 4 \times 0 + 2 \times 1 + 1 \times 1 = 3$
4	0100	5×0+4×1+2×0+1×0=4	0100	$5 \times 0 + 4 \times 1 + 2 \times 0 + 1 \times 0 = 4$
5	1000	5×1+4×0+2×0+1×0=5	0101	$5 \times 0 + 4 \times 1 + 2 \times 0 + 1 \times 1 = 5$
6	1001	5×1+4×0+2×0+1×1=6	0110	$5 \times 0 + 4 \times 1 + 2 \times 1 + 1 \times 0 = 6$
7	1010	$5 \times 1 + 4 \times 0 + 2 \times 1 + 1 \times 0 = 7$	0111	$5 \times 0 + 4 \times 1 + 2 \times 1 + 1 \times 1 = 7$
8	1011	$5 \times 1 + 4 \times 0 + 2 \times 1 + 1 \times 1 = 8$	1011	$5 \times 1 + 4 \times 0 + 2 \times 1 + 1 \times 1 = 8$
9	1100	5×1+4×1+2×0+1×0=9	1100	$5 \times 1 + 4 \times 1 + 2 \times 0 + 1 \times 0 = 9$

☞ 자기보수 성질 없음

■ 84-2-1 코드

10진수	84-2-1코드	10진수 계산
0	0000	8×0+4×0-2×0-1×0=0
1	0111	$8 \times 0 + 4 \times 1 - 2 \times 1 - 1 \times 1 = 1$
2	0110	$8 \times 0 + 4 \times 1 - 2 \times 1 - 1 \times 0 = 2$
3	0101	$8 \times 0 + 4 \times 1 - 2 \times 0 - 1 \times 1 = 3$
4	0100	$8 \times 0 + 4 \times 1 - 2 \times 0 - 1 \times 0 = 4$
5	1011	$8 \times 1 + 4 \times 0 - 2 \times 1 - 1 \times 1 = 5$
6	1010	$8 \times 1 + 4 \times 0 - 2 \times 1 - 1 \times 0 = 6$
7	1001	$8 \times 1 + 4 \times 0 - 2 \times 0 - 1 \times 1 = 7$
8	1000	$8 \times 1 + 4 \times 0 - 2 \times 0 - 1 \times 0 = 8$
9	1111	$8 \times 1 + 4 \times 1 - 2 \times 1 - 1 \times 1 = 9$

☞ 자기보수 성질을 가짐

■ 비가중치코드(non-weighted code)

- 각각의 위치에 해당하는 값이 없는 코드
- 데이터 변환과 같은 특수한 용도로 사용되기 위한 코드 (2-out-of-5)

10진수	3-초과 코드	5중 2코드 (2-out-of-5)	shift counter	그레이코드
0	0011	11000	00000	0000
1	0100	00011	00001	0001
2	0101	00101	00011	0011
3	0110	00110	00111	0010
4	0111	01001	01111	0110
5	1000	01010	11111	0111
6	1001	01100	11110	0101
7	1010	10001	11100	0100
8	1011	10010	11000	1100
9	1100	10100	10000	1101

3. 그레이 코드

그레이 코드(Gray Code)

- 가중치가 없는 코드이기 때문에 연산에는 부적당하지만, 아날로그-디지털 변환기나 입출력 장치 코드로 주로 쓰인다.
- 연속되는 코드들 간에 하나의 비트만 변화하여 새로운 코드가 된다.

10진수	2진 코드	그레이 코드	10진수	2진 코드	그레이 코드	
0	0000	0000	8	1000	1100	- -
1	0001	0001	9	1001	1101	4
2	0010	0011	10	1010	1111	•
3	0011	0010	11	1011	1110	4
4	0100	0110	12	1100	1010	4
5	0101	0111	13	1101	1011	4
6	0110	0101	14	1110	1001	4
7	0111	0100	15	1111	1000	_

이웃하는 코드간에 한 비트만 다르다.

3. 그레이 코드

2진 코드를 그레이 코드로 변환하는 방법

그레이 코드를 2진 코드로 변환하는 방법

<XOR 진리표>

입력	출력
A B	F
0 0	0
0 1	1
1 0	1
1 1	0

 $F=A \oplus B$

3. 그레이 코드

■ 그레이 코드 입력장치 적용 예

ユ

레

0|

코

드

13/

12

2 진 코 11 10 9 8 7 6

그레이 코드는

오차가 적음

0

001000100010

31

