Lecture 6

Discrete Time Series

2/06/2018

Discrete Time Series

Stationary Processes

A stocastic process (i.e. a time series) is considered to be *strictly stationary* if the properties of the process are not changed by a shift in origin.

Stationary Processes

A stocastic process (i.e. a time series) is considered to be *strictly stationary* if the properties of the process are not changed by a shift in origin.

In the time series context this means that the joint distribution of $\{y_{t_1},\dots,y_{t_n}\}$ must be identical to the distribution of $\{y_{t_1+k},\dots,y_{t_n+k}\}$ for any value of n and k.

3

Stationary Processes

A stocastic process (i.e. a time series) is considered to be *strictly stationary* if the properties of the process are not changed by a shift in origin.

In the time series context this means that the joint distribution of $\{y_{t_1},\dots,y_{t_n}\}$ must be identical to the distribution of $\{y_{t_1+k},\dots,y_{t_n+k}\}$ for any value of n and k.

3

Weak Stationary

Strict stationary is unnecessarily strong / restrictive for many applications, so instead we often opt for weak stationary which requires the following,

1. The process has finite variance

$$E(y_t^2) < \infty \text{ for all } t$$

2. The mean of the process is constant

$$E(y_t) = \mu \text{ for all } t$$

3. The second moment only depends on the lag

$$Cov(y_t,y_s) = Cov(y_{t+k},y_{s+k})$$
 for all t,s,k

4

Weak Stationary

Strict stationary is unnecessarily strong / restrictive for many applications, so instead we often opt for weak stationary which requires the following,

1. The process has finite variance

$$E(y_t^2) < \infty$$
 for all t

2. The mean of the process is constant

$$E(y_t) = \mu$$
 for all t

3. The second moment only depends on the lag

$$Cov(y_t, y_s) = Cov(y_{t+k}, y_{s+k})$$
 for all t, s, k

When we say stationary in class we will almost always mean weakly stationary.

Autocorrelation

For a stationary time series, where $E(y_t)=\mu$ and ${\rm Var}(y_t)=\sigma^2$ for all t, we define the autocorrelation at lag k as

$$\begin{split} \rho_k &= Cor(y_t, \, y_{t+k}) \\ &= \frac{Cov(y_t, y_{t+k})}{\sqrt{Var(y_t)Var(y_{t+k})}} \\ &= \frac{E\left((y_t - \mu)(y_{t+k} - \mu)\right)}{\sigma^2} \end{split}$$

Г,

Autocorrelation

For a stationary time series, where $E(y_t)=\mu$ and ${\rm Var}(y_t)=\sigma^2$ for all t, we define the autocorrelation at lag k as

$$\begin{split} \rho_k &= Cor(y_t, \, y_{t+k}) \\ &= \frac{Cov(y_t, y_{t+k})}{\sqrt{Var(y_t)Var(y_{t+k})}} \\ &= \frac{E\left((y_t - \mu)(y_{t+k} - \mu)\right)}{\sigma^2} \end{split}$$

this is also sometimes written in terms of the autocovariance function (γ_k) as

$$\begin{split} \gamma_k &= \gamma(t,t+k) = Cov(y_t,y_{t+k}) \\ \rho_k &= \frac{\gamma(t,t+k)}{\sqrt{\gamma(t,t)\gamma(t+k,t+k)}} = \frac{\gamma(k)}{\gamma(0)} \end{split}$$

Covariance Structure

Based on our definition of a (weakly) stationary process, it implies a covariance of the following structure,

$$\Sigma = \begin{pmatrix} \gamma(0) & \gamma(1) & \gamma(2) & \gamma(3) & \cdots & \gamma(n) \\ \gamma(1) & \gamma(0) & \gamma(1) & \gamma(2) & \cdots & \gamma(n-1) \\ \gamma(2) & \gamma(1) & \gamma(0) & \gamma(1) & \cdots & \gamma(n-2) \\ \gamma(3) & \gamma(2) & \gamma(1) & \gamma(0) & \cdots & \gamma(n-3) \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ \gamma(n) & \gamma(n-1) & \gamma(n-2) & \gamma(n-3) & \cdots & \gamma(0) \end{pmatrix}$$

Example - Random walk

Let
$$y_t = y_{t-1} + w_t$$
 with $y_0 = 0$ and $w_t \sim \mathcal{N}(0,1).$

ACF + PACF

Stationary?

Is y_t stationary?

Example - Random walk with drift

Let
$$y_t = \delta + y_{t-1} + w_t$$
 with $y_0 = 0$ and $w_t \sim \mathcal{N}(0,1).$

ACF + PACF

Stationary?

Is y_t stationary?

Example - Moving Average

Let $w_t \sim \mathcal{N}(0,1)$ and $y_t = w_{t-1} + w_t.$

Stationary?

Is y_t stationary?

Autoregressive

Let $w_t \sim \mathcal{N}(0,1)$ and $y_t = y_{t-1} - 0.9 y_{t-2} + w_t$ with $y_t = 0$ for t < 1.

Example - Australian Wine Sales

Australian total wine sales by wine makers in bottles <= 1 litre. Jan 1980 – Aug 1994.

```
aus wine = readRDS("../data/aus wine.rds")
aus wine
## # A tibble: 176 x 2
      date sales
##
## <dbl> <dbl>
##
   1 1980 15136
##
   2 1980 16733
##
   3 1980 20016
##
   4 1980 17708
    5 1980 18019
##
    6 1980 19227
##
##
   7 1980 22893
##
   8 1981 23739
##
      1981 21133
## 10 1981 22591
## # ... with 166 more rows
```

Time series

Basic Model Fit

Residuals

Autocorrelation Plot

Auto regressive errors

```
##
## Call:
## lm(formula = quad resid ~ lag 12, data = d ar)
##
## Residuals:
##
       Min
                10 Median
                                 30
                                         Max
## -12286.5 -1380.5 73.4 1505.2 7188.1
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 83.65080 201.58416 0.415 0.679
## lag 12 0.89024 0.04045 22.006 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2581 on 162 degrees of freedom
##
    (12 observations deleted due to missingness)
## Multiple R-squared: 0.7493, Adjusted R-squared: 0.7478
## F-statistic: 484.3 on 1 and 162 DF, p-value: < 2.2e-16
```

Residual residuals

Residual residuals - acf

Writing down the model?

So, is our EDA suggesting that we fit the following model?

$$\mathrm{sales}(t) = \beta_0 + \beta_1\,t + \beta_2\,t^2 + \beta_3\,\mathrm{sales}(t-12) + \epsilon_t$$

. .

the model we actually fit is,

$$\mathrm{sales}(t) = \beta_0 + \beta_1 \, t + \beta_2 \, t^2 + w_t$$

where

$$w_t = \delta \, w_{t-12} + \epsilon_t$$