Санкт-Петербургский политехнический университет Петра Великого Институт компьютерных наук и технологий Высшая школа программной инженерии

Отчёт по курсовой работе

«Разработка программы для моделирования стационарного двумерного распределения температуры»

по дисциплине

«Математические модели систем с распределёнными параметрами»

Выполнил студент гр. 3530904/90102

нинкеЦ неМ

Руководитель

Воскобойников С.П.

Оглавление

Постановка задачи	3
Анализ порядка аппроксимации уравнения и граничных условий, выраж	кение для
главного члена погрешности аппроксимации	9
Невязка и порядок погрешность аппроксимации уравнения	9
Невязка и порядок погрешности аппроксимации граничного условия	14
Решение системы методом сопряженных градиентов	19
Тесты	23
Константный тест	23
Линейный тест	23
Нелинейный тест	23
Результаты	24
Вывод	25
Приложение	26

Постановка задачи

Вариант N4.

Постановка задачи. Используя интегро-интерполяционный метод, разработать подпрограмму для моделирования распределения температуры в цилиндре, описываемого математической моделью

$$-\left[\frac{1}{r}\frac{\partial}{\partial r}\left(rk_{1}(r,z)\frac{\partial u}{\partial r}\right)+\frac{\partial}{\partial z}\left(k_{2}(r,z)\frac{\partial u}{\partial z}\right)\right]=f(r,z),$$

$$0 < c_{11} \le k_{1}(r,z) \le c_{12}, \quad 0 < c_{21} \le k_{2}(r,z) \le c_{22}$$

$$0 \le r \le R$$
, $0 \le z \le L$

с граничными условиями, определяемыми вариантом задания. Для решения системы алгебраических уравнений использовать метод сопряжённых градиентов с предобусловливанием. Матрица алгебраической системы должна храниться в упакованной форме

Форма (4)

Форма (4) отличается от формы (3) тем, что индексы главных диагональных элементов не хранятся и элементы главной диагонали располагаются в отдельном массиве Diag. В массиве А хранятся ненулевые элементы строго верхней треугольной части матрицы. Так как матрица хранится построчно, то в массиве IC хранятся номера столбцов ненулевых элементов верхнего треугольника матрицы. В массиве IR хранятся указатели на начало каждой строки в массивах А и IC. IR(N+1) содержит количество ненулевых элементов в строго верхнем треугольнике матрицы А плюс один.

	1	2	3	4	5	6	7	8	9
DIAG	13	14	15	16	17	18	19	20	21

	1	2	3	4	5	6	7	8	9	10	11	12
Α	7	1	8	2	3	9	4	10	5	6	11	12
IC	2	4	3	5	6	5	7	6	8	9	8	9

$$\begin{aligned} u\big|_{r=0} - \text{ограничено,} & -k_1(r)\frac{\partial u}{\partial r}\big|_{r=R} &= \chi_2 u\big|_{r=R} - \varphi_2(z), \ \chi_2 \geq 0 \\ u\big|_{z=0} &= \varphi_3(r) & -k_2\frac{\partial u}{\partial z}\big|_{z=L} &= \chi_4 u\big|_{z=L} - \varphi_4(r), \ \chi_4 \geq 0 \end{aligned}$$

Дискретная модель

Введем в прямоугольнике $[0, R] \times [0, L]$ равномерную основную сетку

$$r_{i} = ih_{r}$$

$$h_{r} = \frac{R}{N_{r}}$$

$$z_{j} = jh_{z}$$

$$h_{z} = \frac{L}{N_{z}}$$

и вспомогательную сетку

$$r_{i-\frac{1}{2}} = \frac{r_i + r_{i-1}}{2},$$
 $i = 1,2,...,N_r$

$$z_{j-\frac{1}{2}} = \frac{z_j + z_{j-1}}{2},$$
 $j = 1,2,...,N_z$

Так как используются равномерные сетки, то шаги вспомогательной сетки определяются как

$$\hbar_{i} = \begin{cases} h_{r}, & i = 1,..., N_{r} - 1 \\ \frac{h_{r}}{2}, & i = 0, N_{r} \end{cases}$$

$$\hbar_{j} = \begin{cases} h_{z}, & j = 1,..., N_{z} \\ \frac{h_{z}}{2}, & j = 0, N_{z} + 1 \end{cases}$$

Умножим исходное уравнение на г, проинтегрируем по вспомогательной сетке:

$$\begin{split} -\left[\int_{r_{i-\frac{1}{2}}}^{r_{i+\frac{1}{2}}} \int_{z_{j-\frac{1}{2}}}^{z_{j+\frac{1}{2}}} \frac{\partial}{\partial r} \Big(rk(r) \frac{\partial u}{\partial r} \Big) dr dz + \int_{r_{i-\frac{1}{2}}}^{r_{i+\frac{1}{2}}} \int_{z_{j-\frac{1}{2}}}^{z_{j+\frac{1}{2}}} r \frac{\partial^2 u}{\partial z^2} dr dz \right] &= \int_{r_{i-\frac{1}{2}}}^{r_{i+\frac{1}{2}}} \int_{z_{j-\frac{1}{2}}}^{z_{j+\frac{1}{2}}} rf \, dr dz \\ -\left[\int_{z_{j-\frac{1}{2}}}^{z_{j+\frac{1}{2}}} \left(r_{i+\frac{1}{2}} k \left(r_{i+\frac{1}{2}} \right) \frac{\partial u}{\partial r} |_{r_{i+\frac{1}{2}}} \right) dz - \int_{z_{j-\frac{1}{2}}}^{z_{j+\frac{1}{2}}} \left(r_{i-\frac{1}{2}} k \left(r_{i-\frac{1}{2}} \right) \frac{\partial u}{\partial r} |_{r_{i-\frac{1}{2}}} \right) dz \\ + \int_{r_{i-\frac{1}{2}}}^{r_{i+\frac{1}{2}}} \left(r \frac{\partial u}{\partial z} |_{z_{j+\frac{1}{2}}} \right) dr - \int_{r_{i-\frac{1}{2}}}^{r_{i+\frac{1}{2}}} \left(r \frac{\partial u}{\partial z} |_{z_{j-\frac{1}{2}}} \right) dr \right] = \int_{r_{i-\frac{1}{2}}}^{r_{i+\frac{1}{2}}} \int_{z_{j-\frac{1}{2}}}^{z_{j+\frac{1}{2}}} rf \, dr dz \end{split}$$

Воспользуемся формулой средних прямоугольников для вычисления значений интегралов:

$$\int_{r_{i-\frac{1}{2}}}^{r_{i+\frac{1}{2}}} \phi(r,z) dr \approx h_r \phi(r_i,z) = h_r \phi_i$$

$$\int_{z_{j-\frac{1}{2}}}^{z_{j+\frac{1}{2}}} \phi(r,z) dz \approx h_z \phi(r,z_j) = h_r \phi_j$$

$$\int_{r_{i-\frac{1}{2}}}^{r_{i+\frac{1}{2}}} \int_{z_{j-\frac{1}{2}}}^{z_{j+\frac{1}{2}}} r_i \phi \, dr dz \approx r_i h_r h_z \phi_{i,j}$$

Также аппроксимируем производные по формуле центральных разностей:

$$\begin{split} k \left(r_{i+\frac{1}{2}} \right) & \frac{\partial u}{\partial r} \Big|_{r=r_{i+\frac{1}{2},z=z_{j}}} = k \left(r_{i+\frac{1}{2}} \right) \frac{u_{i+1,j} - u_{i,j}}{h_{r}} \\ k \left(r_{i-\frac{1}{2}} \right) & \frac{\partial u}{\partial r} \Big|_{r=r_{i-\frac{1}{2},z=z_{j}}} = k \left(r_{i-\frac{1}{2}} \right) \frac{u_{i,j} - u_{i-1,j}}{h_{r}} \\ & \frac{\partial u}{\partial z} \Big|_{z=z_{j+\frac{1}{2},r=r_{j}}} = \frac{u_{i,j+1} - u_{i,j}}{h_{z}} \\ & \frac{\partial u}{\partial z} \Big|_{z=z_{j-\frac{1}{2},r=r_{j}}} = \frac{u_{i,j} - u_{i,j-1}}{h_{z}} \end{split}$$

Получим:

Аппроксимация граничных условий:

$$\begin{split} & [i=0, \qquad j=1,\dots,N_z-1, \qquad u|_{r=0}-\textit{ограниченно}] \\ & - \left[\frac{1}{r}\frac{\partial}{\partial r}\Big(rk_1(r,z)\frac{\partial u}{\partial r}\Big) + \frac{\partial}{\partial z}\Big(k_2(r,z)\frac{\partial u}{\partial z}\Big)\right] = f(r,z) \\ & - \left[\frac{\partial}{\partial r}\Big(k_1(r,z)\frac{\partial u}{\partial r}\Big) + \frac{1}{r}k_1(r,z)\frac{\partial u}{\partial r} + \frac{\partial}{\partial z}\Big(k_2(r,z)\frac{\partial u}{\partial z}\Big)\right]\Big|_{r=0} = f(r,z)|_{r=0} \\ & \lim_{r\to 0}\frac{1}{r}k_1(r,z)\frac{\partial u}{\partial r}, \quad \frac{\partial u}{\partial r}\Big|_{r=0} = 0, \\ & \lim_{r\to 0}\frac{1}{r}k_1(r,z)\frac{\partial u}{\partial r} = \frac{\partial}{\partial r}\Big(k_1(r,z)\frac{\partial u}{\partial r}\Big)\Big|_{r=0} \\ & - \Big[2\frac{\partial}{\partial r}\Big(k_1(r,z)\frac{\partial u}{\partial r}\Big) + \frac{\partial}{\partial z}\Big(k_2(r,z)\frac{\partial u}{\partial z}\Big)\Big]\Big|_{r=0} = f(r,z)|_{r=0} \\ & u|_{r=0} - ozpanuvenho \Rightarrow \frac{\partial u}{\partial r}\Big|_{r=0} = 0 \\ \int_{r_i}^{r_{i+1/2}}r\phi(r,z)dr \approx \phi(r_i,z)\int_{r_i}^{r_{i+1/2}}rdr = \phi(r_i,z)\frac{r_{i+1/2}^2}{2} = h_i\frac{r_{i+1/2}}{2}\phi(r_i,z), i = 0, r_i = 0, r_{i+1/2} = h_i \\ & - \Big[h_jr_{i+1/2}k_1(r_{i+1/2},z_j)\frac{v_{i+1,j}-v_{i,j}}{h_{i+1}} - 0 \\ & + h_i\frac{r_{i+1/2}}{2}f_{i,j} - \Big[h_zr_{i+1/2}k_1(r_{i+1/2},z_j)\frac{v_{i+1,j}-v_{i,j}}{h_r} - 0 \\ & + \frac{h_r}{2}\frac{r_{i+1/2}}{2}k_2(r_i,z_{j+1/2})\frac{v_{i,j+1}-v_{i,j}}{h_r} - 0 \\ & + \frac{h_r}{2}\frac{r_{i+1/2}}{2}k_2(r_{i,z_{j+1/2}})\frac{v_{i,j+1}-v_{i,j}}{h_r} - \frac{h_r}{2}\frac{r_{i+1/2}}{2}k_2(r_{i,z_{j-1/2}})\frac{v_{i,j}-v_{i,j-1}}{h_z} \Big] \\ & = \frac{h_r}{2}h_z\frac{r_{i+1/2}}{2}f_{i,j} \end{split}$$

Аналогично воспользуемся интегро-интерполяционным методом, получим:

$$-\left[h_{z}r_{i+\frac{1}{2}}k_{1}\left(r_{i+\frac{1}{2}},z_{j}\right)\frac{u_{i+1,j}-u_{i,j}}{h_{r}}-h_{z}r_{i-\frac{1}{2}}k_{1}\left(r_{i-\frac{1}{2}},z_{j}\right)\frac{u_{i,j}-u_{i-1,j}}{h_{r}}\right.\\ \left.+h_{r}r_{i}k_{2}\left(r_{i},z_{j+\frac{1}{2}}\right)\frac{u_{i,j+1}-u_{i,j}}{h_{z}}-h_{r}r_{i}k_{2}\left(r_{i},z_{j-\frac{1}{2}}\right)\frac{u_{i,j}-u_{i,j-1}}{h_{z}}\right]\\ =r_{i}h_{r}h_{z}f_{i,j} \quad \text{при i} = 1,2,...,N_{r}-1 \; ; \; j=1,2,...,N_{z}-1 \quad \cdots (1)$$

$$\begin{split} -\left[-h_{z}R\left(\chi_{2}u_{N,j}-\varphi_{2}(z_{j})\right)-h_{z}r_{N-\frac{1}{2}}k_{1}\left(r_{N-\frac{1}{2}},z_{j}\right)\frac{u_{N,j}-u_{N-1,j}}{h_{r}}\right.\\ &\left.+\frac{h_{r}}{2}Rk_{2}\left(R,z_{j+\frac{1}{2}}\right)\frac{u_{N,j+1}-u_{N,j}}{h_{z}}-\frac{h_{r}}{2}Rk_{2}\left(R,z_{j-\frac{1}{2}}\right)\frac{u_{N,j}-u_{N,j-1}}{h_{z}}\right]\\ &=\frac{h_{r}}{2}Rh_{z}f_{N,j}\quad\text{при i}=N_{r}\;;\;j\;=\;1,2,\ldots,N_{z}-1\quad\cdots(2) \end{split}$$

$$u_{i,0} = \varphi_3(0)$$
 при $i = 0, ..., N_r$; $j = 0 \cdots (3)$

$$\begin{split} -\left[\frac{h_{z}}{2}r_{i+\frac{1}{2}}k_{1}\left(r_{i+\frac{1}{2}},L\right)\frac{u_{i+1,N}-u_{i,N}}{h_{r}}-\frac{h_{z}}{2}r_{i-\frac{1}{2}}k_{1}\left(r_{i-\frac{1}{2}},L\right)\frac{u_{i,N}-u_{i-1,N}}{h_{r}} \right. \\ \left. -h_{r}r_{i}\left(\chi_{4}u_{i,N}-\varphi_{4}(r_{i})\right)-h_{r}r_{i}k_{2}\left(r_{i},z_{j-\frac{1}{2}}\right)\frac{u_{i,N}-u_{i,N-1}}{h_{z}}\right] \\ =\frac{r_{i}h_{r}h_{z}f_{i,N}}{2} \quad \text{при i} = 1,2,...,N_{r}; \ \mathbf{j} \ = \ \mathbf{N_{z}} \quad \cdots \ (4) \end{split}$$

$$\begin{split} -\left[\hbar_{z}r_{i+\frac{1}{2}}k_{1}\left(r_{i+\frac{1}{2}},z_{j}\right)\frac{u_{i+1,j}-u_{i,j}}{h_{r}}-0+\hbar_{r}\frac{r_{i+\frac{1}{2}}}{4}k_{2}\left(r_{i},z_{j+\frac{1}{2}}\right)\frac{u_{i,j+1}-u_{i,j}}{h_{z}}-\hbar_{r}\frac{r_{i+\frac{1}{2}}}{4}k_{2}\left(r_{i},z_{j-\frac{1}{2}}\right)\frac{u_{i,j}-u_{i,j-1}}{h_{z}}\right] \\ = \hbar_{r}\hbar_{z}\frac{r_{i+\frac{1}{2}}}{4}f_{i,j} \text{ при } \mathbf{i} = \mathbf{0} \; ; \; j \; = \; 1,2,\ldots,N_{z}-1 \quad \cdots \; (5) \end{split}$$

В результате получается система линейных алгебраических уравнений вида A**u**=**b** размерности N= $(N_z$ - $1)(N_r$ +1)Рассмотрим более подробно структуру этой системы. Для дальнейшей работы необходимо перенумеровать компоненты векторов u u b. Для этого используем приведенный индекс. Сперва для фиксированного r движемся по оси z, потом переходим k следующему значению r.

$$u_{i,j} = v_k$$

$$u_{i,j-1} = v_{k-1}$$

$$u_{i,j+1} = v_{k+1}$$

$$u_{i+1,j} = v_{k+N_z+1}$$

$$u_{i-1,j} = v_{k-N_z+1}$$

При таком обозначении новый индекс k можно рассчитать так: $k=i*(N_z-1)+j$ Матрица A квадратная, симметричная, пятидиагональная.

Хранить будем только 3 диагонали.

Анализ порядка аппроксимации уравнения и граничных условий, выражение для главного члена погрешности аппроксимации

Невязка и порядок погрешность аппроксимации уравнения

Преобразование:

$$-\left[\frac{1}{r}\frac{\partial}{\partial r}\left(rk_{1}(r,z)\frac{\partial u}{\partial r}\right) + \frac{\partial}{\partial z}\left(k_{2}(r,z)\frac{\partial u}{\partial z}\right)\right] = f(r,z)$$

$$-\left[\frac{\partial}{\partial r}\left(rk_{1}(r,z)\frac{\partial u}{\partial r}\right) + \frac{\partial}{\partial z}\left(rk_{2}(r,z)\frac{\partial u}{\partial z}\right)\right] = rf(r,z)$$

$$\widetilde{k}_{1}(r,z) = rk_{1}(r,z), \quad \widetilde{k}_{2}(r,z) = rk_{2}(r,z), \quad \widetilde{q}(r,z) = rq(r,z)$$

$$\widetilde{f}(r,z) = rf(r,z)$$

$$-\left[\frac{\partial}{\partial r}\left(\widetilde{k}_{1}(r,z)\frac{\partial u}{\partial r}\right) + \frac{\partial}{\partial z}\left(\widetilde{k}_{2}(r,z)\frac{\partial u}{\partial z}\right)\right] = \widetilde{f}(r,z)$$

При анализе порядка аппроксимации, для простого, будем писать просто k_1, k_2, f вместо $\tilde{k}_1, \tilde{k}_2, \tilde{f}$

Невязка определяется как разность между правой и левой частью уравнения при условии, что вместо приближенного решения мы подставляем туда точное:

$$\begin{split} \xi_{i,j} &= h_r h_z f_{i,j} + h_z k_1 \big(x_{i+1/2}, y_j \big) \frac{u_{i+1,j} - u_{i,j}}{h_r} - h_z k_1 \big(x_{i-1/2}, y_j \big) \frac{u_{i,j} - u_{i-1,j}}{h_r} \\ &+ h_r k_2 \big(x_i, y_{j+1/2} \big) \frac{u_{i,j+1} - u_{i,j}}{h_z} - h_r k_2 \big(x_i, y_{j-1/2} \big) \frac{u_{i,j} - u_{i,j-1}}{h_z} \end{split}$$

Раскладываем по степениям h точное решение в узлах и коэффициент k

$$\begin{split} u_{i+1,j} &= u \left(x_i + h_r, y_j \right) \\ &= u_{i,j} + h_r \frac{\partial u_{i,j}}{\partial r} + \frac{h_r^2}{2} \frac{\partial^2 u_{i,j}}{\partial r^2} + \frac{h_r^2}{6} \frac{\partial^3 u_{i,j}}{\partial r^3} + \frac{h_r^4}{24} \frac{\partial^4 u_{i,j}}{\partial r^4} + O(h_r^5) \\ &\frac{u_{i+1,j} - u_{i,j}}{h_r} = \frac{\partial u_{i,j}}{\partial r} + \frac{h_r}{2} \frac{\partial^2 u_{i,j}}{\partial r^2} + \frac{h_r^2}{6} \frac{\partial^3 u_{i,j}}{\partial r^3} + \frac{h_r^3}{24} \frac{\partial^4 u_{i,j}}{\partial r^4} + O(h_r^4) \\ k_{1,i+\frac{1}{2},j} &= k_1 \left(r_i + \frac{h_r}{2}, z_j \right) \\ &= k_{1,i,j} + \frac{h_r}{2} \frac{\partial k_{1,i,j}}{\partial r} + \frac{h_r^2}{8} \frac{\partial^2 k_{1,i,j}}{\partial r^2} + \frac{h_r^3}{48} \frac{\partial^3 k_{1,i,j}}{\partial r^3} + O(h_r^4) \\ k_{1,i+\frac{1}{2},j} &= k_1 \left(r_i + \frac{h_r}{2}, z_j \right) \\ &= k_{1,i,j} + h_r \left[\frac{\partial u}{\partial r} \right]_{i,j} + h_r \left[\frac{1}{2} k_1 \frac{\partial^2 u}{\partial r^2} + \frac{1}{2} \frac{\partial k_1}{\partial r} \frac{\partial u}{\partial r} \right]_{i,j} + h_r^2 \left[\frac{1}{6} k_1 \frac{\partial^3 u}{\partial r^3} + \frac{1}{12} \frac{\partial^2 k_1}{\partial r} \frac{\partial^2 u}{\partial r^3} \right]_{i,j} + h_r^2 \left[\frac{1}{24} k_1 \frac{\partial^2 u}{\partial r^4} + \frac{1}{12} \frac{\partial k_1}{\partial r} \frac{\partial^3 u}{\partial r^3} + \frac{1}{16} \frac{\partial^2 k_1}{\partial r^2} \frac{\partial^2 u}{\partial r^2} + \frac{1}{24} \frac{\partial^3 k_1}{\partial r^3} \frac{\partial u}{\partial r^3} \right]_{i,j} + O(h_r^4) \\ u_{i-1,j} &= u \left(r_i - h_r, z_j \right) = u_{i,j} - h_r \frac{\partial u_{i,j}}{\partial r^2} + \frac{h_r^2}{2} \frac{\partial^2 u_{i,j}}{\partial r^2} - \frac{h_r^3}{6} \frac{\partial^3 u_{i,j}}{\partial r^3} + \frac{h_r^4}{24} \frac{\partial^4 u_{i,j}}{\partial r^4} + O(h_r^5) \\ k_{1,i-\frac{1}{2},j} &= k_1 \left(r_i - \frac{h_r}{2}, z_j \right) = k_{1,i,j} - \frac{h_r}{2} \frac{\partial^3 u_{i,j}}{\partial r^3} + \frac{h_r^2}{8} \frac{\partial^2 k_{1,i,j}}{\partial r^2} - \frac{h_r^3}{48} \frac{\partial^3 k_{1,i,j}}{\partial r^3} + O(h_r^4) \\ k_{1,i-\frac{1}{2},j} &= u_{i,j} - h_r \left[\frac{1}{2} k_1 \frac{\partial^2 u}{\partial r^2} + \frac{1}{2} \frac{\partial k_1}{\partial r} \frac{\partial u}{\partial r} \right]_{i,j} + h_r^2 \left[\frac{1}{6} k_1 \frac{\partial^3 u}{\partial r^3} + O(h_r^4) \right] \\ k_{1,i-\frac{1}{2},j} &= u_{i,j} - \frac{h_r}{2} \frac{\partial^2 u_{i,j}}{\partial r^2} - \frac{h_r^3}{2} \frac{\partial^3 u_{i,j}}{\partial r^3} + \frac{h_r^3}{2} \frac{\partial^3 k_{1,i,j}}{\partial r^3} + O(h_r^4) \\ k_{1,i-\frac{1}{2},j} &= \frac{h_r}{h_r} \frac{\partial^2 u_{i,j}}{\partial r^2} - \frac{h_r^3}{2} \frac{\partial^3 u_{i,j}}{\partial r^3} + \frac{h_r^3}{2} \frac{\partial^3 u_{$$

$$\begin{split} h_z k_1 \left(r_{i+\frac{1}{2}}, z_j\right) & \frac{u_{i+1,j} - u_{i,j}}{h_r} - h_z k_1 \left(r_{i-\frac{1}{2}}, z_j\right) \frac{u_{i,j} - u_{i-1,j}}{h_r} \\ & = h_z \\ & \left[\left[k_1 \frac{\partial u}{\partial r}\right]_{i,j} + h_r \left[\frac{1}{2} k_1 \frac{\partial^2 u}{\partial r^2} + \frac{1}{2} \frac{\partial k_1}{\partial r} \frac{\partial u}{\partial r}\right]_{i,j} + h_r^2 \left[\frac{1}{6} k_1 \frac{\partial^3 u}{\partial r^3} + \frac{1}{4} \frac{\partial k_1}{\partial r} \frac{\partial^2 u}{\partial r^2} + \frac{1}{8} \frac{\partial^2 k_1}{\partial r^2} \frac{\partial u}{\partial r}\right]_{i,j} + h_r^2 \left[\frac{1}{24} k_1 \frac{\partial^4 u}{\partial r^4} + \frac{1}{12} \frac{\partial k_1}{\partial r} \frac{\partial^3 u}{\partial r^3} + \frac{1}{16} \frac{\partial^2 k_1}{\partial r^2} \frac{\partial^2 u}{\partial r^2} + \frac{1}{48} \frac{\partial^3 k_1}{\partial r^3} \frac{\partial u}{\partial r}\right]_{i,j} - \\ & - \left[k_1 \frac{\partial u}{\partial r}\right]_{i,j} + h_r \left[\frac{1}{2} k_1 \frac{\partial^2 u}{\partial r^2} + \frac{1}{2} \frac{\partial k_1}{\partial r} \frac{\partial u}{\partial r}\right]_{i,j} - h_r^2 \left[\frac{1}{6} k_1 \frac{\partial^3 u}{\partial r^3} + \frac{1}{4} \frac{\partial k_1}{\partial r} \frac{\partial^2 u}{\partial r^2} + \frac{1}{8} \frac{\partial^2 k_1}{\partial r^2} \frac{\partial u}{\partial r}\right]_{i,j} \\ & + h_r^3 \left[\frac{1}{24} k_1 \frac{\partial^4 u}{\partial r^4} + \frac{1}{12} \frac{\partial k_1}{\partial r} \frac{\partial^3 u}{\partial r^3} + \frac{1}{16} \frac{\partial^2 k_1}{\partial r^2} \frac{\partial^2 u}{\partial r^2} + \frac{1}{48} \frac{\partial^3 k_1}{\partial r^3} \frac{\partial u}{\partial r}\right]_{i,j} + O(h_r^4) \end{split}$$

Сокращаются четные степени

$$\begin{split} & h_z k_1 \left(r_{i+\frac{1}{2}}, z_j \right) \frac{u_{i+1,j} - u_{i,j}}{h_r} - h_z k_1 \left(r_{i-\frac{1}{2}}, z_j \right) \frac{u_{i,j} - u_{i-1,j}}{h_r} = h_z \left[h_r \left(k_1 \frac{\partial^2 u}{\partial r^2} + \frac{\partial^2 k_1}{\partial r} \frac{\partial^2 u}{\partial r} \right) + h_r^3 \left(\frac{1}{12} k_1 \frac{\partial^4 u}{\partial r^4} + \frac{1}{6} \frac{\partial k_1}{\partial r} \frac{\partial^3 u}{\partial r^3} + \frac{1}{8} \frac{\partial^2 k_1}{\partial r^2} \frac{\partial^2 u}{\partial r^2} + \frac{1}{24} \frac{\partial^3 k_1}{\partial r^3} \frac{\partial u}{\partial r} \right)_{i,j} + O(h_r^4) \right] \\ & \text{T.K. } k_1 \frac{\partial^2 u}{\partial r^2} + \frac{\partial k_1}{\partial r} \frac{\partial u}{\partial r} = \frac{\partial}{\partial r} \left(k_1 \frac{\partial u}{\partial r} \right) \text{ , findy usem, uto} \\ & h_z k_1 \left(r_{i+\frac{1}{2}}, z_j \right) \frac{u_{i+1,j} - u_{i,j}}{h_r} - h_z k_1 \left(r_{i-\frac{1}{2}}, z_j \right) \frac{u_{i,j} - u_{i-1,j}}{h_r} = h_z \left[h_r \left(\frac{\partial}{\partial r} \left(k_1 \frac{\partial u}{\partial r} \right) \right)_{i,j} + h_r^3 \left(\frac{1}{12} k_1 \frac{\partial^4 u}{\partial r^4} + \frac{1}{6} \frac{\partial k_1}{\partial r} \frac{\partial^3 u}{\partial r^3} + \frac{1}{8} \frac{\partial^2 k_1}{\partial r^2} \frac{\partial^2 u}{\partial r^2} + \frac{1}{24} \frac{\partial^3 k_1}{\partial r^3} \frac{\partial u}{\partial r} \right)_{i,j} + O(h_r^4) \right] \\ & u_{i,j+1} = u(r_i, z_j + h_z) = u_{i,j} + h_z \frac{\partial u_{i,j}}{\partial z^2} + \frac{h_z^2}{2} \frac{\partial^2 u_{i,j}}{\partial z^2} + \frac{h_z^3}{6} \frac{\partial^3 u_{i,j}}{\partial z^3} + \frac{h_z^4}{6} \frac{\partial^4 u_{i,j}}{\partial z^4} + O(h_z^4) \\ & k_{2,i,j+\frac{1}{2}} = k_2 \left(r_i, z_j + \frac{h_z}{2} \right) = k_{2,i,j} + \frac{h_z}{2} \frac{\partial^3 k_{2,i,j}}{\partial z} + \frac{h_z^2}{2} \frac{\partial^2 k_{2,i,j}}{\partial z} + \frac{h_z^3}{2} \frac{\partial^3 k_{2,i,j}}{\partial z^3} + O(h_z^4) \\ & k_{2,i,j+\frac{1}{2}} \frac{u_{i+1,j} - u_{i,j}}{h_z} = \left[k_2 \frac{\partial u}{\partial z} \right]_{i,j} + h_z \left[\frac{1}{2} k_2 \frac{\partial^2 u}{\partial z^2} + \frac{1}{2} \frac{\partial k_2}{\partial z} \frac{\partial u}{\partial z} \right]_{i,j} + h_z^2 \left[\frac{1}{6} k_2 \frac{\partial^3 u}{\partial z^3} + \frac{1}{16} \frac{\partial^2 k_2}{\partial z^2} \frac{\partial^2 u}{\partial z} \right]_{i,j} \\ & + h_z^2 \left[\frac{1}{24} k_2 \frac{\partial^4 u}{\partial z^4} + \frac{1}{12} \frac{\partial k_2}{\partial z} \frac{\partial^3 u}{\partial z} \right]_{i,j} + h_z^2 \left[\frac{1}{6} k_2 \frac{\partial^3 u}{\partial z^3} + \frac{1}{16} \frac{\partial^2 k_2}{\partial z^2} \frac{\partial^2 u}{\partial z} \right]_{i,j} \\ & + h_z^2 \left[\frac{1}{24} k_2 \frac{\partial^4 u}{\partial z^4} + \frac{1}{12} \frac{\partial k_2}{\partial z} \frac{\partial^3 u}{\partial z} \right]_{i,j} + \frac{1}{16} \frac{\partial^2 k_2}{\partial z^2} \frac{\partial^2 u}{\partial z} + \frac{1}{16} \frac{\partial^2 k_2}{\partial z^2} \frac{\partial^2 u}{\partial z} \right]_{i,j} \\ & + O(h_z^4) \end{aligned}$$

$$u_{i,j-1} = u(r_i, z_j - h_z) = u_{i,j} - h_z \frac{\partial u_{i,j}}{\partial z} + \frac{h_z^2}{2} \frac{\partial^2 u_{i,j}}{\partial z^2} - \frac{h_z^3}{6} \frac{\partial^3 u_{i,j}}{\partial z^3} + \frac{h_z^4}{24} \frac{\partial^4 u_{i,j}}{\partial z^4} + O(h_z^5)$$

$$\begin{split} &\frac{u_{i,j} - u_{i,j-1}}{h_z} = \frac{\partial u_{i,j}}{\partial z} - \frac{h_z}{2} \frac{\partial^2 u_{i,j}}{\partial z^2} + \frac{h_z^2}{6} \frac{\partial^3 u_{i,j}}{\partial z^3} - \frac{h_z^3}{24} \frac{\partial^4 u_{i,j}}{\partial z^4} + O(h_z^4) \\ &k_{2,i,j-\frac{1}{2}} = k_2 \left(r_i, z_j - \frac{h_z}{2} \right) = k_{2,i,j} - \frac{h_z}{2} \frac{\partial k_{2,i,j}}{\partial z} + \frac{h_z^2}{8} \frac{\partial^2 k_{2,i,j}}{\partial z^2} - \frac{h_z^3}{48} \frac{\partial^3 k_{2,i,j}}{\partial z^3} + O(h_z^4) \\ &k_{2,i,j-\frac{1}{2}} \frac{u_{i,j} - u_{i,j-1}}{h_z} = \left[k_2 \frac{\partial u}{\partial z} \right]_{i,j} - h_z \left[\frac{1}{2} k_2 \frac{\partial^2 u}{\partial z^2} + \frac{1}{2} \frac{\partial k_2}{\partial z} \frac{\partial u}{\partial z} \right]_{i,j} + h_z^2 \left[\frac{1}{6} k_2 \frac{\partial^3 u}{\partial z^3} + \frac{1}{16} \frac{\partial^2 k_2}{\partial z^2} \frac{\partial^2 u}{\partial z^2} + \frac{1}{8} \frac{\partial^2 k_2}{\partial z^2} \frac{\partial u}{\partial z} \right]_{i,j} - h_z^3 \left[\frac{1}{24} k_2 \frac{\partial^4 u}{\partial z^4} + \frac{1}{12} \frac{\partial k_2}{\partial z} \frac{\partial^3 u}{\partial z^3} + \frac{1}{16} \frac{\partial^2 k_2}{\partial z^2} \frac{\partial^2 u}{\partial z^2} + \frac{1}{16} \frac{\partial^3 k_2}{\partial z^2} \frac{\partial u}{\partial z} \right]_{i,j} + O(h_z^4) \end{split}$$

$$\begin{split} h_{r}k_{2}\left(r_{i},z_{j+\frac{1}{2}}\right) &\frac{u_{i,j+1}-u_{i,j}}{h_{z}} - h_{r}k_{2}\left(r_{i},z_{j-\frac{1}{2}}\right) \frac{u_{i,j}-u_{i,j-1}}{h_{z}} = \\ & \left[\left[k_{2}\frac{\partial u}{\partial r}\right]_{i,j} + h_{z}\left[\frac{1}{2}k_{2}\frac{\partial^{2}u}{\partial z^{2}} + \frac{1}{2}\frac{\partial k_{2}}{\partial z}\frac{\partial u}{\partial z}\right]_{i,j} + h_{z}^{2}\left[\frac{1}{6}k_{2}\frac{\partial^{3}u}{\partial z^{3}} + \frac{1}{4}\frac{\partial k_{2}}{\partial z}\frac{\partial^{2}u}{\partial z^{2}} + \frac{1}{8}\frac{\partial^{2}k_{2}}{\partial z^{2}}\frac{\partial u}{\partial z}\right]_{i,j} + \\ & + h_{z}^{3}\left[\frac{1}{24}k_{2}\frac{\partial^{4}u}{\partial z^{4}} + \frac{1}{12}\frac{\partial k_{2}}{\partial z}\frac{\partial^{3}u}{\partial z^{3}} + \frac{1}{16}\frac{\partial^{2}k_{2}}{\partial z^{2}}\frac{\partial^{2}u}{\partial z^{2}} + \frac{1}{48}\frac{\partial^{3}k_{2}}{\partial z^{3}}\frac{\partial u}{\partial z}\right]_{i,j} - \\ & - \left[k_{2}\frac{\partial u}{\partial z}\right]_{i,j} + h_{z}\left[\frac{1}{2}k_{2}\frac{\partial^{2}u}{\partial z^{2}} + \frac{1}{2}\frac{\partial k_{2}}{\partial z}\frac{\partial u}{\partial z}\right]_{i,j} - h_{z}^{2}\left[\frac{1}{6}k_{2}\frac{\partial^{3}u}{\partial z^{3}} + \frac{1}{4}\frac{\partial k_{2}}{\partial z}\frac{\partial^{2}u}{\partial z^{2}} + \frac{1}{8}\frac{\partial^{2}k_{2}}{\partial z^{2}}\frac{\partial u}{\partial z}\right]_{i,j} + \\ & + h_{z}^{3}\left[\frac{1}{24}k_{2}\frac{\partial^{4}u}{\partial z^{4}} + \frac{1}{12}\frac{\partial k_{2}}{\partial z}\frac{\partial^{3}u}{\partial z^{3}} + \frac{1}{16}\frac{\partial^{2}k_{2}}{\partial z^{2}}\frac{\partial^{2}u}{\partial z^{2}} + \frac{1}{48}\frac{\partial^{3}k_{2}}{\partial z^{3}}\frac{\partial u}{\partial z}\right]_{i,j} + O(h_{z}^{4}) \end{split}$$

Четные степени сокращаются

$$\begin{split} &h_{r}k_{2}\left(r_{i},z_{j+\frac{1}{2}}\right)\frac{u_{i,j+1}-u_{i,j}}{h_{z}}-h_{r}k_{2}\left(r_{i},z_{j-\frac{1}{2}}\right)\frac{u_{i,j}-u_{i,j-1}}{h_{z}}&=h_{r}\left[h_{z}\left(k_{2}\frac{\partial^{2}u}{\partial z^{2}}+\frac{\partial^{2}u}{\partial z^{2}}+\frac{\partial^{2}u}{\partial z}\frac{\partial^{2}u}{\partial z^{2}}+\frac{1}{6}\frac{\partial^{2}u}{\partial z^{2}}+\frac{1}{6}\frac{\partial^{2}u}{\partial z}\frac{\partial^{3}u}{\partial z^{3}}+\frac{1}{8}\frac{\partial^{2}k_{2}}{\partial z^{2}}\frac{\partial^{2}u}{\partial z^{2}}+\frac{1}{24}\frac{\partial^{3}k_{2}}{\partial z^{3}}\frac{\partial u}{\partial z}\right)_{i,j}+O(h_{z}^{4})\right]\\ &\text{ Так как}k_{2}\frac{\partial^{2}u}{\partial z^{2}}+\frac{\partial k_{2}}{\partial z}\frac{\partial u}{\partial z}&=\frac{\partial}{\partial z}\left(k_{2}\frac{\partial u}{\partial z}\right),\text{ получаем, что}\\ &h_{r}k_{2}\left(r_{i},z_{j+\frac{1}{2}}\right)\frac{u_{i,j+1}-u_{i,j}}{h_{z}}-h_{r}k_{2}\left(r_{i},z_{j-\frac{1}{2}}\right)\frac{u_{i,j}-u_{i,j-1}}{h_{z}}&=h_{r}\left[h_{z}\left(\frac{\partial}{\partial z}\left(k_{2}\frac{\partial u}{\partial z}\right)\right)_{i,j}+h_{z}^{2}\left(\frac{1}{12}k_{2}\frac{\partial^{4}u}{\partial z^{4}}+\frac{1}{6}\frac{\partial k_{2}}{\partial z}\frac{\partial^{3}u}{\partial z^{3}}+\frac{1}{8}\frac{\partial^{2}k_{2}}{\partial z^{2}}\frac{\partial^{2}u}{\partial z^{2}}+\frac{1}{24}\frac{\partial^{3}k_{2}}{\partial z^{3}}\frac{\partial u}{\partial z}\right)_{i,j}+O(h_{z}^{4})\right] \end{split}$$

Подставляем в невязку получившиеся разложения

$$\begin{split} \xi_{i,j} &= h_r h_z f_{i,j} + h_z k_1 \left(r_{i+\frac{1}{2}}, z_j \right) \frac{u_{i+1,j} - u_{i,j}}{h_r} - h_z k_1 \left(r_{i-\frac{1}{2}}, z_j \right) \frac{u_{i,j} - u_{i-1,j}}{h_r} + \\ h_r k_2 \left(r_i, z_{j+\frac{1}{2}} \right) \frac{u_{i,j+1} - u_{i,j}}{h_z} - h_r k_2 \left(r_i, z_{j-\frac{1}{2}} \right) \frac{u_{i,j} - u_{i,j-1}}{h_z} = h_r h_z f_{i,j} + \end{split}$$

$$\begin{split} h_{Z} \left[h_{r} \left(\frac{\partial}{\partial r} \left(k_{1} \frac{\partial u}{\partial r} \right) \right)_{i,j} + h_{r}^{3} \left(\frac{1}{12} k_{1} \frac{\partial^{4} u}{\partial r^{4}} + \frac{1}{6} \frac{\partial k_{1}}{\partial r} \frac{\partial^{3} u}{\partial r^{3}} + \frac{1}{8} \frac{\partial^{2} k_{1}}{\partial r^{2}} \frac{\partial^{2} u}{\partial r^{2}} + \frac{1}{24} \frac{\partial^{3} k_{1}}{\partial r^{3}} \frac{\partial u}{\partial r} \right)_{i,j} + \\ O(h_{r}^{4}) \right] + h_{r} \left[h_{Z} \left(\frac{\partial}{\partial z} \left(k_{2} \frac{\partial u}{\partial z} \right) \right)_{i,j} + h_{Z}^{3} \left(\frac{1}{12} k_{2} \frac{\partial^{4} u}{\partial z^{4}} + \frac{1}{6} \frac{\partial k_{2}}{\partial z} \frac{\partial^{3} u}{\partial z^{3}} + \frac{1}{8} \frac{\partial^{2} k_{2}}{\partial z^{2}} \frac{\partial^{2} u}{\partial z^{2}} + \frac{1}{8} \frac{\partial^{2} k_{2}}{\partial z^{2}} \frac{\partial^{2} u}{\partial z^{2}} + \frac{1}{8} \frac{\partial^{2} k_{2}}{\partial z^{2}} \frac{\partial^{2} u}{\partial z^{2}} \right)_{i,j} + O(h_{Z}^{4}) \right] \end{split}$$

Группируем по степени hr и hz

$$\begin{split} \xi_{i,j} &= h_r h_z f_{i,j} + h_z k_1 \left(r_{i+\frac{1}{2}}, z_j \right) \frac{u_{i+1,j} - u_{i,j}}{h_r} - h_z k_1 \left(r_{i-\frac{1}{2}}, z_j \right) \frac{u_{i,j} - u_{i-1,j}}{h_r} + \\ h_r k_2 \left(r_i, z_{j+\frac{1}{2}} \right) \frac{u_{i,j+1} - u_{i,j}}{h_z} - h_r k_2 \left(r_i, z_{j-\frac{1}{2}} \right) \frac{u_{i,j} - u_{i,j-1}}{h_z} = h_r h_z \left[f + \frac{\partial}{\partial r} \left(k_1 \frac{\partial u}{\partial r} \right) + \frac{\partial}{\partial z} \left(k_2 \frac{\partial u}{\partial z} \right) \right]_{i,j} + h_z \left[h_r^3 \left(\frac{1}{12} k_1 \frac{\partial^4 u}{\partial r^4} + \frac{1}{6} \frac{\partial k_1}{\partial r} \frac{\partial^3 u}{\partial r^3} + \frac{1}{8} \frac{\partial^2 k_1}{\partial r^2} \frac{\partial^2 u}{\partial r^2} + \frac{1}{24} \frac{\partial^3 k_1}{\partial r^3} \frac{\partial u}{\partial r} \right)_{i,j} + \\ O(h_r^4) \right] + h_r \left[h_z^3 \left(\frac{1}{12} k_2 \frac{\partial^4 u}{\partial z^4} + \frac{1}{6} \frac{\partial k_2}{\partial z} \frac{\partial^3 u}{\partial z^3} + \frac{1}{8} \frac{\partial^2 k_2}{\partial z^2} \frac{\partial^2 u}{\partial z^2} + \frac{1}{24} \frac{\partial^3 k_2}{\partial z^3} \frac{\partial u}{\partial z} \right)_{i,j} + O(h_z^4) \right] \end{split}$$

Чтобы вычислить порядок аппроксимации, нормируем невязку

$$\tilde{\xi}_{i,j} = \frac{\xi_{i,j}}{h_r h_z}$$

$$\begin{split} \tilde{\xi}_{i,j} &= f_{i,j} + k_1 \left(r_{i+\frac{1}{2}}, z_j \right) \frac{u_{i+1,j} - u_{i,j}}{h_r^2} - k_1 \left(r_{i-\frac{1}{2}}, z_j \right) \frac{u_{i,j} - u_{i-1,j}}{h_r^2} + \\ k_2 \left(r_i, z_{j+\frac{1}{2}} \right) \frac{u_{i,j+1} - u_{i,j}}{h_z^2} - k_2 \left(r_i, z_{j-\frac{1}{2}} \right) \frac{u_{i,j} - u_{i,j-1}}{h_z^2} = \left[f + \frac{\partial}{\partial r} \left(k_1 \frac{\partial u}{\partial r} \right) + \right. \\ \left. \frac{\partial}{\partial z} \left(k_2 \frac{\partial u}{\partial z} \right) \right]_{i,j} + h_r^2 \left(\frac{1}{12} k_1 \frac{\partial^4 u}{\partial r^4} + \frac{1}{6} \frac{\partial k_1}{\partial r} \frac{\partial^3 u}{\partial r^3} + \frac{1}{8} \frac{\partial^2 k_1}{\partial r^2} \frac{\partial^2 u}{\partial r^2} + \frac{1}{24} \frac{\partial^3 k_1}{\partial r^3} \frac{\partial u}{\partial r} \right)_{i,j} + O(h_r^3) + \\ h_Z^2 \left(\frac{1}{12} k_2 \frac{\partial^4 u}{\partial z^4} + \frac{1}{6} \frac{\partial k_2}{\partial z} \frac{\partial^3 u}{\partial z^3} + \frac{1}{8} \frac{\partial^2 k_2}{\partial z^2} \frac{\partial^2 u}{\partial z^2} + \frac{1}{24} \frac{\partial^3 k_2}{\partial z^3} \frac{\partial u}{\partial z} \right)_{i,j} + O(h_Z^3) \end{split}$$

$$\left[f + \frac{\partial}{\partial r} \left(k_1 \frac{\partial u}{\partial r}\right) + \frac{\partial}{\partial z} \left(k_2 \frac{\partial u}{\partial z}\right)\right]_{i,j} = 0$$

Порядок аппроксимации уравнения по г и z:

$$p_r = 2 - 0 = 2$$

$$p_z = 2 - 0 = 2$$

Главный член погрешности по г

$$\Phi_r = \frac{1}{12} \widetilde{k_1} \frac{\partial^4 u}{\partial r^4} + \frac{1}{6} \frac{\partial \widetilde{k_1}}{\partial r} \frac{\partial^3 u}{\partial r^3} + \frac{1}{8} \frac{\partial^2 \widetilde{k_1}}{\partial r^2} \frac{\partial^2 u}{\partial r^2} + \frac{1}{24} \frac{\partial^3 \widetilde{k_1}}{\partial r^3} \frac{\partial u}{\partial r}$$

Главный член погрешности по z

$$\Phi_{z} = \frac{1}{12} \widetilde{k_{2}} \frac{\partial^{4} u}{\partial z^{4}} + \frac{1}{6} \frac{\partial \widetilde{k_{2}}}{\partial z} \frac{\partial^{3} u}{\partial z^{3}} + \frac{1}{8} \frac{\partial^{2} \widetilde{k_{2}}}{\partial z^{2}} \frac{\partial^{2} u}{\partial z^{2}} + \frac{1}{24} \frac{\partial^{3} \widetilde{k_{2}}}{\partial z^{3}} \frac{\partial u}{\partial z}$$

где

$$\widetilde{k}_1(r,z) = rk_1(r,z), \quad \widetilde{k}_2(r,z) = rk_2(r,z), \quad \widetilde{q}(r,z) = rq(r,z)$$

$$\widetilde{f}(r,z) = rf(r,z)$$

Невязка и порядок погрешности аппроксимации граничного условия

$$\begin{aligned} 1) \quad u|_{r=0} - \textit{ограниченно} &\Rightarrow \frac{\partial u}{\partial r}\Big|_{r=0} = 0, \; i=0, j=1,2,\dots,N_Z-1 \; \text{ (Лекция10. p27)} \\ \xi_{i,j} &= \frac{h_r}{2} h_z f_{i,j} + \left[2h_z k_1 \big(r_{i+1/2}, z_j \big) \frac{u_{i+1,j} - u_{i,j}}{h_r} - 0 \right. + \\ &\quad + \frac{h_r}{2} k_2 \big(r_i, z_{j+1/2} \big) \frac{u_{i,j+1} - u_{i,j}}{h_z} - \frac{h_r}{2} k_2 \big(r_i, z_{j-1/2} \big) \frac{u_{i,j} - u_{i,j-1}}{h_z} \right] \end{aligned}$$

Подставляем полученные ранее произведения:

$$\begin{split} \xi_{i,j} &= \frac{h_r}{2} h_z f_{i,j} + \left[2 h_z \left(\left[k_1 \frac{\partial u}{\partial r} \right]_{i,j} + \frac{h_r}{2} \left[\frac{\partial}{\partial r} \left(k_1 \frac{\partial u}{\partial r} \right) \right]_{i,j} \right. \\ &+ \left. h_r^2 \left[\frac{1}{6} k_1 \frac{\partial^3 u}{\partial r^3} + \frac{1}{4} \frac{\partial k_1}{\partial r} \frac{\partial^2 u}{\partial r^2} + \frac{1}{8} \frac{\partial^2 k_1}{\partial r^2} \frac{\partial u}{\partial r} \right]_{i,j} + O\left(h_r^3 \right) \right) - 0 \\ &+ \frac{h_r}{2} \left[h_z \left(\frac{\partial}{\partial z} \left(k_2 \frac{\partial u}{\partial z} \right) \right)_{i,j} \right. \\ &+ \left. h_z^3 \left(\frac{1}{12} k_2 \frac{\partial^4 u}{\partial z^4} + \frac{1}{6} \frac{\partial k_2}{\partial z} \frac{\partial^3 u}{\partial z^3} + \frac{1}{8} \frac{\partial^2 k_2}{\partial z^2} \frac{\partial^2 u}{\partial z^2} + \frac{1}{24} \frac{\partial^3 k_2}{\partial z^3} \frac{\partial u}{\partial z} \right)_{i,j} + O\left(h_z^4 \right) \right] \end{split}$$

Группируем по степениям hr и hz

$$\begin{split} \xi_{i,j} &= \frac{h_r}{2} h_z \left[f + 2 \frac{\partial}{\partial r} \left(k_1 \frac{\partial u}{\partial r} \right) + \frac{\partial}{\partial z} \left(k_2 \frac{\partial u}{\partial z} \right) + q u \right]_{i,j} + h_z 2 \left[k_1 \frac{\partial u}{\partial r} \right]_{i,j} \\ &+ 2 h_z \left(h_r^2 \left[\frac{1}{6} k_1 \frac{\partial^3 u}{\partial r^3} + \frac{1}{4} \frac{\partial k_1}{\partial r} \frac{\partial^2 u}{\partial r^2} + \frac{1}{8} \frac{\partial^2 k_1}{\partial r^2} \frac{\partial u}{\partial r} \right]_{i,j} + O \left(h_r^3 \right) \right) \\ &+ \frac{h_r}{2} \left[h_z^3 \left(\frac{1}{12} k_2 \frac{\partial^4 u}{\partial z^4} + \frac{1}{6} \frac{\partial k_2}{\partial z} \frac{\partial^3 u}{\partial z^3} + \frac{1}{8} \frac{\partial^2 k_2}{\partial z^2} \frac{\partial^2 u}{\partial z^2} + \frac{1}{24} \frac{\partial^3 k_2}{\partial z^3} \frac{\partial u}{\partial z} \right)_{i,j} + O \left(h_z^4 \right) \right] \end{split}$$

Для вычисления порядка аппроксимации нормируем невязку

$$\begin{split} \tilde{\xi}_{i,j} &= \frac{\tilde{\xi}_{i,j}}{2h_z} \\ \tilde{\xi}_{i,j} &= \frac{h_r}{4} \bigg[f + 2 \frac{\partial}{\partial r} \bigg(k_1 \frac{\partial u}{\partial r} \bigg) + \frac{\partial}{\partial z} \bigg(k_2 \frac{\partial u}{\partial z} \bigg) + qu \bigg]_{i,j} + \bigg[k_1 \frac{\partial u}{\partial r} \bigg]_{i,j} \\ &+ h_r^2 \bigg[\frac{1}{6} k_1 \frac{\partial^3 u}{\partial r^3} + \frac{1}{4} \frac{\partial k_1}{\partial r} \frac{\partial^2 u}{\partial r^2} + \frac{1}{8} \frac{\partial^2 k_1}{\partial r^2} \frac{\partial u}{\partial r} \bigg]_{i,j} + O(h_r^3) \\ &+ \frac{h_r}{4} \bigg[h_z^2 \bigg(\frac{1}{12} k_2 \frac{\partial^4 u}{\partial z^4} + \frac{1}{6} \frac{\partial k_2}{\partial z} \frac{\partial^3 u}{\partial z^3} + \frac{1}{8} \frac{\partial^2 k_2}{\partial z^2} \frac{\partial^2 u}{\partial z^2} + \frac{1}{24} \frac{\partial^3 k_2}{\partial z^3} \frac{\partial u}{\partial z} \bigg)_{i,j} + O(h_z^3) \bigg] \\ &\qquad \qquad \frac{\partial u}{\partial r} \bigg|_{r=0} = 0, \\ &- \bigg[2 \frac{\partial}{\partial r} \bigg(k_1(r,z) \frac{\partial u}{\partial r} \bigg) + \frac{\partial}{\partial z} \bigg(k_2(r,z) \frac{\partial u}{\partial z} \bigg) + q(r,z) u \bigg] \bigg|_{r=0} = f(r,z) |_{r=0} \end{split}$$

Порядок аппроксимации уравнения по г и z:

$$p_r = 2$$
$$p_z = 2$$

Главный член погрешности по х

$$\Omega_r = \left[\frac{1}{6} \widetilde{k_1} \frac{\partial^3 u}{\partial r^3} + \frac{1}{4} \frac{\partial \widetilde{k_1}}{\partial r} \frac{\partial^2 u}{\partial r^2} + \frac{1}{8} \frac{\partial^2 \widetilde{k_1}}{\partial r^2} \frac{\partial u}{\partial r} \right]$$

Главный член погрешности по у

$$\Omega_z = r \left[\frac{1}{48} \widetilde{k_2} \frac{\partial^4 u}{\partial z^4} + \frac{1}{24} \frac{\partial \widetilde{k_2}}{\partial z} \frac{\partial^3 u}{\partial z^3} + \frac{1}{32} \frac{\partial^2 \widetilde{k_2}}{\partial z^2} \frac{\partial^2 u}{\partial z^2} + \frac{1}{96} \frac{\partial^3 \widetilde{k_2}}{\partial z^3} \frac{\partial u}{\partial z} \right]$$

где

$$\widetilde{k}_1(r,z) = rk_1(r,z), \quad \widetilde{k}_2(r,z) = rk_2(r,z), \quad \widetilde{q}(r,z) = rq(r,z)$$

$$\widetilde{f}(r,z) = rf(r,z)$$

2)
$$-k_1(r) \frac{\partial u}{\partial r}\Big|_{r=R} = \chi_2 u\Big|_{r=R} - \phi_2(z)$$
, (Лекция 10. р 19)

$$\begin{split} \xi_{i,j} &= \frac{h_r}{2} h_z f_{i,j} - h_z \left(\chi_2 u_{i,j} - \phi_2 (z_j) \right) - h_z k_1 \left(r_{i-\frac{1}{2}}, z_j \right) \frac{u_{i,j} - u_{i-1,j}}{h_r} \\ &\quad + \frac{h_r}{2} k_2 \left(r_i, z_{j+\frac{1}{2}} \right) \frac{u_{i,j+1} - u_{i,j}}{h_z} - \frac{h_r}{2} k_2 \left(r_i, z_{j-\frac{1}{2}} \right) \frac{u_{i,j} - u_{i,j-1}}{h_z} \end{split}$$

Подставляем полученные ранее произведения:

$$\begin{split} & \xi_{i,j} \\ & = \frac{h_r}{2} h_z f_{i,j} - h_z \left(\chi_2 u_{i,j} - \phi_2(z_j) \right) \\ & - h_z \left[\left[k_1 \frac{\partial u}{\partial r} \right]_{i,j} - \frac{h_r}{2} \left[\frac{\partial}{\partial r} \left(k_1 \frac{\partial u}{\partial r} \right) \right]_{i,j} + h_r^2 \left[\frac{1}{6} k_1 \frac{\partial^3 u}{\partial r^3} + \frac{1}{4} \frac{\partial k_1}{\partial r} \frac{\partial^2 u}{\partial r^2} + \frac{1}{8} \frac{\partial^2 k_1}{\partial r^2} \frac{\partial u}{\partial r} \right]_{i,j} - \right] \\ & - h_z \left[-h_r^3 \left[\frac{1}{24} k_1 \frac{\partial^4 u}{\partial r^4} + \frac{1}{12} \frac{\partial k_1}{\partial r} \frac{\partial^3 u}{\partial r^3} + \frac{1}{16} \frac{\partial^2 k_1}{\partial r^2} \frac{\partial^2 u}{\partial r^2} + \frac{1}{48} \frac{\partial^3 k_1}{\partial r^3} \frac{\partial u}{\partial r} \right]_{i,j} + O(h_r^4) \right] \\ & + \frac{h_r}{2} \left[h_z \left(\frac{\partial}{\partial z} \left(k_2 \frac{\partial u}{\partial z} \right) \right)_{i,j} + h_z^3 \left(\frac{1}{12} k_2 \frac{\partial^4 u}{\partial z^4} + \frac{1}{6} \frac{\partial k_2}{\partial z} \frac{\partial^3 u}{\partial z^3} + \frac{1}{8} \frac{\partial^2 k_2}{\partial z^2} \frac{\partial^2 u}{\partial z^2} + \frac{1}{24} \frac{\partial^3 k_2}{\partial z^3} \frac{\partial u}{\partial z} \right)_{i,j} \right] \\ & + O(h_z^4) \end{split}$$

Группируем по степениям hr и hz

$$\xi_{i,j} = \frac{h_r}{2} h_z \left[f + \frac{\partial}{\partial r} \left(k_1 \frac{\partial u}{\partial r} \right) + \left(\frac{\partial}{\partial z} \left(k_2 \frac{\partial u}{\partial z} \right) \right) \right]_{i,j} - h_z \left[k_1 \frac{\partial u}{\partial r} + \left(\chi_2 u - \phi_2(z) \right) \right]_{i,j}$$

$$- h_z \left[h_r^2 \left[\frac{1}{6} k_1 \frac{\partial^3 u}{\partial r^3} + \frac{1}{4} \frac{\partial k_1}{\partial r} \frac{\partial^2 u}{\partial r^2} + \frac{1}{8} \frac{\partial^2 k_1}{\partial r^2} \frac{\partial u}{\partial r} \right]_{i,j} + O(h_r^3) \right]$$

$$+ \frac{h_r}{2} \left[h_z^3 \left(\frac{1}{12} k_2 \frac{\partial^4 u}{\partial z^4} + \frac{1}{6} \frac{\partial k_2}{\partial z} \frac{\partial^3 u}{\partial z^3} + \frac{1}{8} \frac{\partial^2 k_2}{\partial z^2} \frac{\partial^2 u}{\partial z^2} + \frac{1}{24} \frac{\partial^3 k_2}{\partial z^3} \frac{\partial u}{\partial z} \right)_{i,j} + O(h_z^4) \right]$$

Для вычисления порядка аппроксимации нормируем невязку

$$\tilde{\xi}_{i,j} = \frac{\xi_{i,j}}{2h_z}$$

$$\begin{split} \tilde{\xi}_{i,j} &= \frac{h_r}{2} \Bigg[f + \frac{\partial}{\partial r} \bigg(k_1 \frac{\partial u}{\partial r} \bigg) + \bigg(\frac{\partial}{\partial z} \bigg(k_2 \frac{\partial u}{\partial z} \bigg) \bigg) \Bigg]_{i,j} - \bigg[k_1 \frac{\partial u}{\partial r} + \bigg(\chi_2 u - \phi_2(z) \bigg) \bigg]_{i,j} \\ &- h_r^2 \left[\frac{1}{6} k_1 \frac{\partial^3 u}{\partial r^3} + \frac{1}{4} \frac{\partial k_1}{\partial r} \frac{\partial^2 u}{\partial r^2} + \frac{1}{8} \frac{\partial^2 k_1}{\partial r^2} \frac{\partial u}{\partial r} \right]_{i,j} \\ &+ O \bigg(h_r^3 \bigg) \frac{h_r}{2} \Bigg[h_z^2 \bigg(\frac{1}{12} k_2 \frac{\partial^4 u}{\partial z^4} + \frac{1}{6} \frac{\partial k_2}{\partial z} \frac{\partial^3 u}{\partial z^3} + \frac{1}{8} \frac{\partial^2 k_2}{\partial z^2} \frac{\partial^2 u}{\partial z^2} + \frac{1}{24} \frac{\partial^3 k_2}{\partial z^3} \frac{\partial u}{\partial z} \bigg)_{i,j} \\ &+ O \bigg(h_z^3 \bigg) \Bigg] \end{split}$$

$$\left[k_1 \frac{\partial u}{\partial r} + \chi_2 u - \phi_2(z)\right]_{r=b} = 0$$

$$f + \frac{\partial}{\partial r} \left(k_1 \frac{\partial u}{\partial r}\right) + \frac{\partial}{\partial z} \left(k_2 \frac{\partial u}{\partial z}\right) = 0$$

Порядок аппроксимации уравнения по г и z:

$$p_r = 2 - 0 = 2,$$

 $p_z = 2 - 0 = 2$

Главные члены погрешности

$$\Omega_r = -\left[\frac{1}{6}\widetilde{k_1}\frac{\partial^3 u}{\partial r^3} + \frac{1}{4}\frac{\partial\widetilde{k_1}}{\partial r}\frac{\partial^2 u}{\partial r^2} + \frac{1}{8}\frac{\partial^2\widetilde{k_1}}{\partial r^2}\frac{\partial u}{\partial r}\right]$$

$$\Omega_z = \frac{1}{24}\widetilde{k_2}\frac{\partial^4 u}{\partial z^4} + \frac{1}{12}\frac{\partial\widetilde{k_2}}{\partial z}\frac{\partial^3 u}{\partial z^3} + \frac{1}{16}\frac{\partial^2\widetilde{k_2}}{\partial z^2}\frac{\partial^2 u}{\partial z^2} + \frac{1}{48}\frac{\partial^3\widetilde{k_2}}{\partial z^3}\frac{\partial u}{\partial z}$$

где

$$\widetilde{k}_1(r,z) = rk_1(r,z), \quad \widetilde{k}_2(r,z) = rk_2(r,z), \quad \widetilde{q}(r,z) = rq(r,z)$$

$$\widetilde{f}(r,z) = rf(r,z)$$

3)
$$-k_2 \frac{\partial u}{\partial z}\Big|_{z=L} = \chi_4 u|_{z=L} - \phi_4(r), \chi_4 \ge 0$$
 $i=1,2,...,N_r-1, j=N_z$ (Лекция10, стр. 24)

$$\begin{split} \tilde{\xi}_{i,j} &= \left[k_2 \frac{\partial u}{\partial z} + \chi_4 u - \phi_4(r) \right]_{i,j} + \frac{h_z}{2} \left[f + \frac{\partial}{\partial r} \left(k_1 \frac{\partial u}{\partial r} \right) + \frac{\partial}{\partial z} \left(k_2 \frac{\partial u}{\partial z} \right) \right]_{i,j} \\ &- h_z^2 \left[\frac{1}{6} k_2 \frac{\partial^3 u}{\partial z^3} + \frac{1}{4} \frac{\partial k_2}{\partial z} \frac{\partial^2 u}{\partial z^2} + \frac{1}{8} \frac{\partial^2 k_2}{\partial z^2} \frac{\partial u}{\partial z} \right]_{i,j} + O\left(h_z^3 \right) \\ &+ \frac{h_z}{2} \left[h_r^2 \left(\frac{1}{12} k_1 \frac{\partial^4 u}{\partial r^4} + \frac{1}{6} \frac{\partial k_1}{\partial r} \frac{\partial^3 u}{\partial r^3} + \frac{1}{8} \frac{\partial^2 k_1}{\partial r^2} \frac{\partial^2 u}{\partial r^2} + \frac{1}{24} \frac{\partial^3 k_1}{\partial r^3} \frac{\partial u}{\partial r} \right)_{i,j} + O\left(h_r^3 \right) \right] \end{split}$$

$$\left[k_2 \frac{\partial u}{\partial z} + \chi_4 u - \phi_4(r)\right]_{z=d} = 0$$

$$f + \frac{\partial}{\partial r} \left(k_1 \frac{\partial u}{\partial r}\right) + \frac{\partial}{\partial z} \left(k_2 \frac{\partial u}{\partial z}\right) = 0$$

Порядок аппроксимации уравнения по г и z:

$$p_r = 2 - 0 = 2$$
,
 $p_z = 2 - 0 = 2$

Главные члены погрешности

$$\begin{split} \Omega_r &= \frac{1}{24} \widetilde{k_1} \frac{\partial^4 u}{\partial r^4} + \frac{1}{12} \frac{\partial \widetilde{k_1}}{\partial r} \frac{\partial^3 u}{\partial r^3} + \frac{1}{16} \frac{\partial^2 \widetilde{k_1}}{\partial r^2} \frac{\partial^2 u}{\partial r^2} + \frac{1}{48} \frac{\partial^3 \widetilde{k_1}}{\partial r^3} \frac{\partial u}{\partial r} \\ \Omega_z &= - \left[\frac{1}{6} \widetilde{k_2} \frac{\partial^3 u}{\partial z^3} + \frac{1}{4} \frac{\partial \widetilde{k_2}}{\partial z} \frac{\partial^2 u}{\partial z^2} + \frac{1}{8} \frac{\partial^2 \widetilde{k_2}}{\partial z^2} \frac{\partial u}{\partial z} \right] \end{split}$$

где

$$\widetilde{k}_1(r,z) = rk_1(r,z), \quad \widetilde{k}_2(r,z) = rk_2(r,z), \quad \widetilde{q}(r,z) = rq(r,z)$$

$$\widetilde{f}(r,z) = rf(r,z)$$

Решение системы методом сопряженных градиентов

Пусть $w^{(0)}$ - произвольное начальное приближение, тогда $Aw-Aw^{(0)}=g-Aw^{(0)}$, что даст нам невязку $r^{(0)}=A(w-w^{(0)})$, предполагается, что у нас есть система из $s^{(i)}$, где i=1,2,...,n, линейно-независимых векторов, тогда можем разложит по базису этих векторов с соответствующими коэффициентами $w-w^{(0)}=\sum_{i=1}^n a_i s^{(i)}$, найти коэффициенты можем с помощью СЛАУ $\sum_{i=1}^n a_i A s^{(i)}=r^{(0)}$, решение системы сильно упростится, если $\left(As^{(i)},s^{(i)}\right)=0$ при $i\neq j$, а при i=j, скалярное произведение равнялось не 0 значению, в таком случае мы говорим об артогональности. Из этого мы можем выразить коэффициенты $a_i=\frac{(r^{(0)},s^{(i)})}{(As^{(i)},s^{(i)})}$, и выразить решение $w=w^{(0)}+\sum_{i=1}^n a_i s^{(i)}$.

Рассмотрим частичную сумму $w^{(n)}=w$, $w^{(n)}=w^{(0)}+\sum_{i=1}^n a_i s^{(i)}$, $w^{(k)}=w^{(0)}+\sum_{i=1}^k a_i s^{(i)}$, $w^{(k)}=w^{(k-1)}+a_k A s^{(k)}$, для невязки получим рекуррентное соотношение $r^{(k)}=r^{(k-1)}-a_k A s^{(k)}$.

$$w^{(0)}, r^{(0)} = g - Aw^{(0)}, s^{(1)} = ?$$

$$k = 1, 2, ..., n, a_k = \frac{\left(r^{(0)}, s^{(k)}\right)}{\left(As^{(k)}, s^{(k)}\right)}$$

$$w^{(k)} = w^{(k-1)} + a_k s^{(k)}, r^{(k)} = r^{(k-1)} - a_k As^{(k)}$$

$$s^{(k+1)} = ?$$

При явном методе сопряженных градиентов $s^{(1)}$ берут равным $r^{(0)}$, $s^{(k+1)} = r^{(k)} + \beta_k s^{(k)}$, с вводом дополнительного коэффициента $\beta_k = \frac{(r^{(k)}, r^{(k)})}{(r^{(k-1)}, r^{(k-1)})}$ при $\sqrt{(r^{(k)}, r^{(k)})} < \gamma \varepsilon$, явный метод обладает тем свойством что при отсутствии ошибок округления мы можем получить точное решение не позднее чем на n-ом шаге, но возникает двойственность, из-за ошибок округления происходит разрушение артогональности последовательности s и в результате к неточности, и метод становится итерационным.

Неявный метод

$$Aw=b, \qquad A=A^T, \qquad (Ay,y)>0, \qquad y\neq 0$$

$$x^{(0)}-\text{произвольное начальное приблидение}$$

$$r^{(0)}=b-Ax^{(0)}, \qquad Bw^{(0)}=r^{(0)}, \qquad s^{(1)}=w^{(0)}, \qquad Bg=b, \qquad \gamma=\sqrt{(g,b)}$$

$$k=1,2,\dots,K_{max}$$

$$\begin{split} a_k &= \frac{\left(w^{(k-1)}, r^{(k-1)}\right)}{\left(As^{(k-1)}, s^{(k-1)}\right)} \\ x^{(k)} &= x^{(k-1)} + a_k s^{(k)}, \qquad r^{(k)} = r^{(k-1)} + a_k A s^{(k-1)} \\ Bw^{(k)} &= r^{(k)}, \sqrt{\left(w^{(k)}, r^{(k)}\right)} < \gamma \varepsilon \\ \beta_k &= \frac{\left(w^{(k)}, r^{(k)}\right)}{\left(w^{(k-1)}, r^{(k-1)}\right)}, \qquad s^{(k+1)} = w^{(k)} + \beta_k s^{(k)} \end{split}$$

О выборе матрицы предобусловливания

$$Aw = b,$$
 $A = A^{T},$ $(Ay, y) > 0,$ $y \neq 0$

$$B = B^{T},$$
 $(By, y) > 0,$ $y \neq 0$

$$B = D,$$
 $D = \begin{bmatrix} a_{11} & - & - \\ - & \cdots & - \\ - & - & a_{nn} \end{bmatrix},$ $B = \tilde{L} \tilde{L}^{T}$

$$\widetilde{l}_{ij} = 0, \quad i < j$$

$$Bw^{(0)} = r^{(0)},$$
 $\tilde{L}y_0 = r_0,$ $\tilde{L}^Tw_0 = y_0,$ $Bw^{(k)} = r^{(k)},$ $\tilde{L}y_k = r_k,$ $\tilde{L}^Tw_k = y_k$

Неполное разложение Холевского

$$a_i = \widetilde{a}_i^2 + \widetilde{b}_{i-1}^2 + \widetilde{c}_{i-m}^2, \qquad b_i = \widetilde{a}_i \widetilde{b}_i, \qquad c_i = \widetilde{a}_i \widetilde{c}_i,$$

$$\widetilde{a}_i = \sqrt{a_i - \widetilde{b}_{i-1}^2 - \widetilde{c}_{i-m}^2}, \qquad i = 1, 2, \dots, n, \qquad \widetilde{b}_0 = 0, \quad \widetilde{c}_{i-m} = 0, \quad i = 1, 2, \dots, m$$

$$\widetilde{b}_i = \frac{b_i}{\widetilde{a}_i}, \qquad \widetilde{c}_i = \frac{c_i}{\widetilde{a}_i},$$

Схема применения метода выглядит следующим образом:

Здесь я использовал параметр $\varepsilon = 10^{-6}$.

Тесты

Для всех тектов:

$$R = 1, \qquad L = 1$$
 $\chi_2 = 1, \qquad \chi_3 = 1, \qquad \chi_4 = 1$

Константный тест

$$k_1=k_2=1$$

$$u=1$$

$$f=0$$

$$\varphi_2(z)=1, \qquad \varphi_3(r)=1, \qquad \varphi_4(r)=1$$

Линейный тест

$$k_1=r+1, \qquad k_2=z+1$$

$$u=r^2$$

$$f=-6r-4$$

$$\varphi_2(z)=5, \qquad \varphi_3(r)=r^2, \qquad \varphi_4(r)=r^2$$

Нелинейный тест

$$\begin{aligned} k_1 &= r^2 + 1, & k_2 &= z^2 + 1 \\ u &= r^4 + r^2 z^2 \\ f &= -24r^4 - 14r^2 z^2 - 18r^2 - 4z^2 \\ \varphi_2(z) &= 5z^2 + 9, & \varphi_3(r) &= r^4, & \varphi_4(r) &= r^4 + 5r^2 \end{aligned}$$

Результаты

Константный случай

Число разбиений Nr, Nz	Максимальная погрешность	Отношение погрешностей	Число итераций метода
4	8.88178419700E-16	0	11
8	3.82518982489E-07	2.32E-09	27
16	6.30674762192E-07	0.60652337056	16
32	2.62734831580E-06	0.24004231125	107
64	5.99528580780E-06	0.43823570719	208
128	6.36365821094E-06	0.94211310681	413

Линейный случай

Число	Максимальная	Отношение	Число	
разбиений	погрешность	погрешностей	итераций	
Nr, Nz			метода	
4	1.95399252334E-14	0	16	
8	1.14468746837E-06	1.71E-08	32	
16	2.26973880935E-06	0.504325636	65	
32	5.50640104335E-06	0.412200054	130	
64	1.24175795404E-05	0.443435939	252	
128	2.36257855251E-05	0.525594357	486	

Нелинейный случай

Число	Максимальная	Отношение	Число	
разбиений	погрешность	погрешностей	итераций	
Nr, Nz			метода	
4	3.38167202120E-02	0	16	
8	8.92482305903E-03	3.789063378	42	
16	2.25182768122E-03	3.963368571	87	
32	5.80594786091E-04	3.87848416	179	
64	1.70294493403E-04	3.40935737	359	
128	4.16449411629E-05	4.0892	717	

Вывод

Погрешность решения дифференциального уравнения складывается из двух: погрешности аппроксимации (появляется при переходе от непрерывного уравнения к системе разностных) и погрешности решения алгебраической системы.

В линейном и константном случаях погрешность аппроксимации отсутствует, ее небольшой рост с увеличением количества разбиений связано с накоплением ошибки округления.

А в нелинейном случае наблюдается уменьшение ошибки в 4 раза при увеличении в 2 раза разбиений по оси r и z. Погрешность решения алгебраической системы мала по сравнению с погрешностью аппроксимации, она возрастает незаметно. Погрешность аппроксимации, в свою очередь, уменьшается, т.к. мы увеличиваем количество разбиений. Причем, согласно теории, при одновременном удвоении числа разбиений погрешность аппроксимации должна уменьшаться в 4 раза, т.к. порядок аппроксимации метода равен 2. Как видим, наблюдаемые результаты очень близок к теоретическому.

Приложение

```
import java.util.Arrays;
import java.util.HashMap;
import java.util.function.Function;
public class N4 {
    private final static double EPS = 1e-6;
    private static int N = 5;
    private static final double R0 = 0;
    private static final double R1 = 1;
    private static final double L = 1;
    private static final double Chi2 = 1;
    private static final double Chi4 = 1;
    private enum SystemParameters {
        DIAGONAL_A, DIAGONAL_B, DIAGONAL_C, VECTOR_G
    }
    @FunctionalInterface
    public interface FunctionTwoArgs<A, B, R> {
        R apply(A a, B b);
    }
    public static void main(String[] args) {
        System.out.println("N4");
        System.out.println("--->>> Константый случай");
        test(
                (r, z) \rightarrow 1.0,
                (r, z) \rightarrow 1.0,
                (r, z) \rightarrow 0.0,
                (z) \rightarrow 1.0,
                (r) \rightarrow 1.0,
                (r) \rightarrow 1.0,
                (r, z) \rightarrow 1.0);
        System.out.println("\n\n--->>> Линейный случай");
        test( (r, z) \rightarrow r + 1.0,
                (r, z) \rightarrow z + 1.0,
```

```
(r, z) \rightarrow -6 * r - 4,
           (z) \rightarrow 5.0,
            (r) -> r * r,
            (r) -> r * r,
            (r, z) -> r * r);
    System.out.println("\n\n--->>> Нелинейный случай");
            (r, z) \rightarrow r * r + 1,
            (r, z) \rightarrow 1 + z * z,
            (r, z) \rightarrow -24 * r*r*r*r - 14 * r*r * z*z - 18*r*r - 4*z*z,
            (z) \rightarrow 5*z*z + 9,
            (r) -> r * r * r * r,
            (r) -> r * r * r * r + 5 * r * r,
            (r, z) \rightarrow r * r * r * r + z * z * r * r);
}
private static void test(FunctionTwoArgs<Double, Double, Double> k1,
                        FunctionTwoArgs<Double, Double, Double> k2,
                        FunctionTwoArgs<Double, Double, Double> f,
                        Function<Double, Double> phi2,
                        Function<Double, Double> phi3,
                        Function<Double, Double> phi4,
                        FunctionTwoArgs<Double, Double, Double> u)
{
   HashMap<SystemParameters, double[]> system;
    N = 5;
    double hR = (R1 - R0) / (N - 1);
    double hZ = L / (N - 1);
    double r;
    double z = 0;
    double[] result = new double[N * N];
    system = getSystem(k1, k2, f, phi2, phi3, phi4);
    for (int i = 0; i < N; ++i) {
        r = R0;
       for (int j = 0; j < N; ++j) {
           result[i * N + j] = u.apply(r, z);
           r += hR;
        }
        z += hZ;
    System.out.println("Отклонения от точного решения\n"
           + Arrays.toString( sub(multiply(system, result),
```

```
system.get(SystemParameters.VECTOR_G))));
       System.out.println("Ошибка");
       double prevError = 0;
       double nowError;
       N = 5;
       System.out.println("\t\tN\tError\tRatio\t");
       for (int i = 2; i <= 8; ++i) {
           N = (int) Math.round(Math.pow(2, i)) + 1;
           system = getSystem(k1, k2, f, phi2, phi3, phi4);
                                            ConjugateGradientMethod(system,
system.get(SystemParameters.VECTOR G), getEMatrix());
           nowError = getMaxError(result, u);
           System.out.println("\t" + (N - 1) + "\t" + nowError + " \t"
+ prevError / nowError);
           prevError = nowError;
       }
    }
                                    static
                                                                    double[]
    private
ConjugateGradientMethod(HashMap<SystemParameters, double[]> system,
                                            double[] first,
                                            HashMap<SystemParameters,</pre>
double[]> bMatrix) {
       double[] result = Arrays.copyOf(first, first.length);
       double[]
                         =
                                 sub(system.get(SystemParameters.VECTOR_G),
                    r
multiply(system, first));
       double[] p = solveB(bMatrix, r);
       double[] b = solveB(bMatrix, system.get(SystemParameters.VECTOR_G));
       double[] s = Arrays.copyOf(p, p.length);
       double alpha; double beta; double[] newR; double[] newP; int k;
       for (k = 1; k <= 10000; k++) {
           alpha = multiply(p, r) / multiply(multiply(system, s), s);
           result = addition(result, multiply(alpha, s));
           newR = sub(r, multiply(alpha, multiply(system, s)));
           newP = solveB(bMatrix, newR);
           double check = Math.sqrt(multiply(newP, newR) / multiply(b,
system.get(SystemParameters.VECTOR G)));
           if (check < EPS) {</pre>
               ++k;
               break;
```

```
}
           beta = multiply(newP, newR) / multiply(p, r);
           s = addition(newP, multiply(beta, s));
           r = newR; p = newP;
       }
       System.out.println("(Число итераций:\t" + k +")");
       return result;
   }
   private static double[] getADiag(FunctionTwoArgs<Double, Double, Double>
k2) {
       double hR = (R1 - R0) / (N - 1);
       double hZ = L / (N - 1);
       double scale = hR / hZ;
       double[] result = new double[N * N];
       double z = hZ;
       double r;
       for (int j = 1; j < N - 1; j++) {
           r = R0;
           result[j * N] = -(scale / 4) * r * k2.apply(r, z - hZ / 2); //
#(2)
           r += hR;
           for (int i = 1; i < N - 1; i++) {
               result[j * N + i] = -(scale) * r * k2.apply(r, z - hZ / 2);
// #(1)
              r += hR;
           result[j * N + N - 1] = -(scale / 2) * r * k2.apply(r, z - hZ /
2); // #(3)
           z += hZ;
       }
       r = R0;
       for (int i = 0; i < N; i++) {
           result[N * (N - 1) + i] = -scale * r * k2.apply(r, z - hZ / 2);
// # (5)
           r += hR;
       return result;
```

```
}
   private static double[] getCDiag(FunctionTwoArgs<Double, Double, Double)</pre>
k1,
                                  FunctionTwoArgs<Double, Double, Double>
k2) {
       double hR = (R1 - R0) / (N - 1); double hZ = L / (N - 1);
       double scale = hZ / hR; double z = hZ;
       double r;
       double[] result = new double[N * N];
       for (int i = 0; i < N; i++) { // #(4)
           result[i] = 1;
       }
       for (int j = 1; j < N - 1; j++) {
           result[j * N] = scale * (r + hR / 2) * k1.apply(r + hR / 2, z) //
#(2)
                  + (1 / scale) * r * k2.apply(r, z + hZ / 2)
                  + (1 / scale) * r * k2.apply(r, z - hZ / 2);
           r += hR;
           for (int i = 1; i < N - 1; i++) {
               result[j * N + i] = scale * (r + hR / 2) * k1.apply(r + hR
/2, z) // #(1)
                      + scale * (r - hR / 2) * k1.apply(r - hR / 2, z)
                      + (1 / scale) * r * k2.apply(r, z + hZ / 2)
                      + (1 / scale) * r * k2.apply(r, z - hZ / 2);
              r += hR;
           }
           result[j * N + N - 1] = hZ * r * Chi2 // #(3)
                  + scale * (r - hR / 2) * k1.apply(r - hR / 2, z)
                  + (1 / scale / 2) * r * k2.apply(r, z + hZ / 2)
                  + (1 / scale / 2) * r * k2.apply(r, z - hZ / 2);
           z += hZ;
       }
```

```
r = R0;
       for (int i = 0; i < N; i++) { // \#(5)
           result[N * (N - 1) + i] = scale * (r + hR / 2) * k1.apply(r + hR)
/2, z)
                  + scale * (r - hR / 2) * k1.apply(r - hR / 2, z)
                  + hR * r * Chi4
                  + (1 / scale) * r * k2.apply(r, z - hZ / 2);
           r += hR;
       return result;
   }
   private static double[] getDDiag(FunctionTwoArgs<Double, Double, Double>
k1) {
       double hR = (R1 - R0) / (N - 1);
       double hZ = L / (N - 1);
       double scale = hZ / hR;
       double z = hZ;
       double r;
       double[] result = new double[N * N];
       for (int j = 1; j < N - 1; j++) {
           r = R0;
           for (int i = 0; i < N - 1; i++) {
               result[j * N + i] = -scale * (r + hR / 2) * k1.apply(r + hR
/2, z); // #(2) & (1)
               r += hR;
           }
           z += hZ;
       }
       return result;
   }
   private static double[] getEDiag(FunctionTwoArgs<Double, Double, Double>
k2) {
       double hR = (R1 - R0) / (N - 1); double hZ = L / (N - 1);
       double scale = hR / hZ;
       double[] result = new double[N * N]; double z = hZ;
       for (int j = 1; j < N - 1; j++) {
           r = R0;
```

```
result[j * N] = -scale * r * k2.apply(r, z + hZ / 2) / 2; r +=
hR; // #(2)
           for (int i = 1; i < N - 1; i++) {
               result[j * N + i] = -scale * r * k2.apply(r, z + hZ / 2); r
+= hR; // #(1)
           }
           result[j * N + N - 1] = -scale * r * k2.apply(r, z + hZ / 2) / 2;
z += hZ; // #(3)
       }
       return result;
   }
    private static double[] getVectorG(FunctionTwoArgs<Double,</pre>
                                                                    Double,
Double> f,
                                    Function<Double, Double> phi2,
                                    Function < Double > Double > phi3,
                                    Function<Double, Double> phi4) {
       double hR = (R1 - R0) / (N - 1); double hZ = L / (N - 1);
       double[] result = new double[N * N]; double z = hZ;
       double r = R0;
       for (int i = 0; i < N; i++) { // # (4)
           result[i] = phi3.apply(r);
           r += hR;
       }
       for (int j = 1; j < N - 1; j++) {
           result[j * N] = hR * hZ * r * f.apply(r, z) / 4; // # (2)
           r += hR;
           for (int i = 1; i < N - 1; i++) {
               result[j * N + i] = hR * hZ * r * f.apply(r, z); // # (1)
               r += hR;
           result[j * N + N - 1] = hR * hZ * r * f.apply(r, z) / 2 + hZ * r
* phi2.apply(z); // # (3)
           z += hZ;
       }
       r = R0;
       for (int i = 0; i < N; i++) {
```

```
result[N * (N - 1) + i] = hR * r * phi4.apply(r) + hR * hZ * r *
f.apply(r, z) / 2; // # (5)
           r += hR;
       return result;
   }
                   static
                                 HashMap<SystemParameters,</pre>
                                                                   double[]>
   private
getSystem(FunctionTwoArgs<Double, Double, Double> k1,
FunctionTwoArgs<Double, Double, Double> k2,
FunctionTwoArgs<Double, Double, Double> f,
Function<Double, Double> phi2,
Function<Double, Double> phi3,
Function<Double, Double> phi4)
   {
       double[] a = getADiag(k2);
       double[] c = getCDiag(k1, k2);
       double[] d = getDDiag(k1);
       double[] e = getEDiag(k2);
       double[] g = getVectorG(f, phi2, phi3, phi4);
       for (int i = 0; i < N; i++) {
           g[N + i] -= g[i] * a[N + i];
           a[N + i] = 0;
           g[N * (N - 2) + i] -= g[N * (N - 1) + i] * e[N * (N - 2) + i];
           e[N * (N - 2) + i] = 0;
       }
       HashMap<SystemParameters, double[]> system = new HashMap<>();
       system.put(SystemParameters.DIAGONAL_A, c);
       system.put(SystemParameters.DIAGONAL_B, d);
       system.put(SystemParameters.DIAGONAL_C, e);
       system.put(SystemParameters.VECTOR_G, g);
       return system;
    }
```

```
static
                             double
   private
                                        getMaxError(double[]
                                                                     solve,
FunctionTwoArgs<Double, Double, Double> u) {
       double hR = (R1 - R0) / (N - 1); double hZ = L / (N - 1);
       double z = 0; double r;
       double maxError = 0; double nowError;
       for (int j = 0; j < N; j++) { r = R0;
           for (int i = 0; i < N; i++) {
              nowError = Math.abs(u.apply(r, z) - solve[j * N + i]); if
(nowError > maxError) {
                  maxError = nowError;
              }
              r += hR;
           }
           z += hZ;
       return maxError;
   }
   private
                  static
                                HashMap<SystemParameters,
                                                                 double[]>
getBMatrix(HashMap<SystemParameters, double[]> system)
   {
       HashMap<SystemParameters, double[]> result = new HashMap<>(); int
squareN = N * N;
       double[] a = new double[squareN];
       double[] b = new double[squareN];
       double[] c = new double[squareN];
       result.put(SystemParameters.DIAGONAL_A, a);
       result.put(SystemParameters.DIAGONAL_B, b);
       result.put(SystemParameters.DIAGONAL_C, c);
       a[0] = Math.sqrt(system.get(SystemParameters.DIAGONAL_A)[0]);
       for (int i = 1; i < N; i++) {
           b[i - 1] = system.get(SystemParameters.DIAGONAL_B)[i - 1] / a[i
- 1];
          a[i] = Math.sqrt(system.get(SystemParameters.DIAGONAL_A)[i]
Math.pow(b[i - 1], 2));
       for (int i = N; i < squareN; i++) {
           c[i - N] = system.get(SystemParameters.DIAGONAL_C)[i - N];
           b[i - 1] = system.get(SystemParameters.DIAGONAL B)[i - 1] / a[i
- 1];
           a[i] = Math.sqrt(system.get(SystemParameters.DIAGONAL_A)[i]
Math.pow(b[i-1], 2) - Math.pow(c[i-N], 2));
```

```
}
       return result;
    }
    private static double[] solveB(HashMap<SystemParameters, double[]>
bMatrix, double[] g) {
       int squareN = N * N;
       double[] y = new double[squareN];
       double[] a = bMatrix.get(SystemParameters.DIAGONAL_A);
       double[] b = bMatrix.get(SystemParameters.DIAGONAL_B);
       double[] c = bMatrix.get(SystemParameters.DIAGONAL_C);
       y[0] = g[0] / a[0];
       for (int i = 1; i < N; i++) {
           y[i] = (g[i] - b[i - 1] * y[i - 1]) / a[i];
       }
       for (int i = N; i < squareN; i++) {
           y[i] = (g[i] - b[i - 1] * y[i - 1] - c[i - N] * y[i - N]) / a[i];
       }
       double[] result = new double[squareN];
       result[squareN - 1] = y[squareN - 1] / a[squareN - 1];
       for (int i = squareN - 2; i >= N * (N - 1); i--) {
           result[i] = (y[i] - b[i] * result[i + 1]) / a[i];
       }
       for (int i = N * (N - 1) - 1; i >= 0; i--) {
           result[i] = (y[i] - b[i] * result[i + 1] - c[i] * result[i + N])/
a[i];
       return result;
   }
    private static HashMap<SystemParameters, double[]> getEMatrix() {
       HashMap<SystemParameters, double[]> e = new HashMap<>();
       int squareN = N * N;
       double[] a = new double[squareN];
       for (int j = 0; j < squareN; j++) {
           a[j] = 1;
       }
```

```
e.put(SystemParameters.DIAGONAL_A,
                                                                          a);
e.put(SystemParameters.DIAGONAL_B,
                                                           double[squareN]);
                                             new
e.put(SystemParameters.DIAGONAL_C, new double[squareN]); return e;
                                 multiply(double[] leftVector,
   private
              static
                       double
                                                                    double[]
rightVector)
   {
       double result = 0;
       for (int i = 0; i < leftVector.length; i++) {</pre>
           result += leftVector[i] * rightVector[i];
       }
       return result;
   }
    private static double[] multiply(HashMap<SystemParameters, double[]>
system, double[] vector) {
       double[] result = new double[vector.length];
       double[] diagA = system.get(SystemParameters.DIAGONAL_A); double[]
            system.get(SystemParameters.DIAGONAL B);
                                                       double[]
system.get(SystemParameters.DIAGONAL_C); for (int i = 0; i < vector.length;</pre>
i++) {
           result[i] = diagA[i] * vector[i];
       for (int i = 0; i < vector.length - 1; i++) { result[i] += diagB[i]</pre>
* vector[i + 1];
       }
       for (int i = 0; i < vector.length - N; i++) { result[i] += diagC[i]</pre>
* vector[i + N];
       for (int i = 1; i < vector.length; i++) { result[i] += diagB[i - 1]</pre>
* vector[i - 1];
       for (int i = N; i < vector.length; i++) { result[i] += diagC[i - N]</pre>
* vector[i - N];
       return result;
    }
    private static double[] multiply(double number, double[] vector)
{ double[] result = new double[vector.length];
```

```
for (int i = 0; i < vector.length; i++)</pre>
       {
           result[i] = vector[i] * number;
       return result;
   }
                       double[] addition(double[] leftVector,
            static
                                                                     double[]
rightVector) {
       double[] result = new double[leftVector.length];
       for (int i = 0; i < leftVector.length; i++) {</pre>
           result[i] = leftVector[i] + rightVector[i];
       }
       return result;
   }
   private static double[] sub(double[] leftVector, double[] rightVector)
{ double[] result = new double[leftVector.length];
       for (int i = 0; i < leftVector.length; i++) {</pre>
           result[i] = leftVector[i] - rightVector[i];
       }
       return result;
   }
}
```