과제 8 채적 기준

* 제출 전 모든 문제의 지시사항을 충분히 따랐는지 확인할 것

* 과정이 합당한 경우, 정답이 아니더라도 점수 인정

* 과제는 완성도 위주로 평가

* 코딩을 이용해서 계산한 경우에도 인정

* 이번 과제는 문제가 많은 관계로 0.5점 단위로 채점

문제 9.1. [0.5점]

- $\rho = LL' + \Psi$ 임을 계산을 통해 보일 것

문제 9.2. [1점]

- (a): 0.5점, (b): 0.5점
- (a)에서 $h_i^2(i=1,2,3)$ 을 구하고 결과를 해석할 것
- (b)에서 상관계수 3개와 후속 질문에 대한 답을 쓰고, 이유를 설명할 것

문제 9.3. [1점]

- (a): 0.5점, (b): 0.5점
- (a)에서 **L**과 ♥를 구하고 문제 9.1.의 결과와 비교할 것
- (b)에서 비율을 구할 것

문제 9.4. [1점]

- $-\tilde{\rho}$ 와 L을 구할 것 (0.5점)
- 문제 9.1.의 결과와 비교하고, 그 이유를 설명할 것 (0.5점)

문제 9.5. [0.5점]

- 힌트와 대각합의 성질을 이용해서 증명할 것

문제 9.7. [1점]

- σ_{11} , σ_{12} , σ_{22} 에 대한 식을 증명할 것 (0.5점)
- 주어진 $\sigma_{11}, \; \sigma_{12}, \; \sigma_{22}$ 에 대해 ${m L}$ 과 ${m \Psi}$ 를 무한히 선택할 수 있음을 증명할 것 $(0.5 {
 m A})$

문제 9.8. [1점]

- $\Sigma = LL' + \Psi$ 인 L과 Ψ 가 유일하게 선택됨을 증명할 것 (0.5점)
- Ψ_3 < 0임을 증명할 것 (0.5점)

문제 9.20. [1.5점]

- (a): 0.5점, (b): 0.5점, (c): 0.5점
- (a)에서 표본 공분산 행렬을 구하고, m=1과 m=2에 대한 주성분 모두 구할 것
- (b)에서 m=1과 m=2에 대해 \boldsymbol{L} 과 $\boldsymbol{\Psi}$ 의 최대가능도 추정량을 모두 구할 것
- (c)에서 (a), (b)의 결과를 바탕으로 설명할 것

문제 9.21. [1점]

- m = 2일 때 문제 9.20.의 (a), (b) 각각에 대해 varimax rotation을 구할 것 (0.5점)
- 두 결과의 일치성에 대해 설명할 것 (0.5점)

문제 9.22. [1.5점]

(a): 0.5점, (b): 0.5점, (c): 0.5점

- (a)에서 (9-50)과 (9-58)을 이용하여 답을 구할 것
- (b)에서 (9-51)을 이용하여 답을 구할 것
- (c)에서 (a), (b)의 결과를 바탕으로 설명할 것

9.1. Show that the covariance matrix

$$\boldsymbol{\rho} = \begin{bmatrix} 1.0 & .63 & .45 \\ .63 & 1.0 & .35 \\ .45 & .35 & 1.0 \end{bmatrix}$$

for the p=3 standardized random variables Z_1, Z_2 , and Z_3 can be generated by the m=1 factor model

$$Z_1 = .9F_1 + \varepsilon_1$$

$$Z_2 = .7F_1 + \varepsilon_2$$

$$Z_3 = .5F_1 + \varepsilon_3$$

where $Var(F_1) = 1$, $Cov(\varepsilon, F_1) = 0$, and

$$\Psi = \text{Cov}(\varepsilon) = \begin{bmatrix} .19 & 0 & 0 \\ 0 & .51 & 0 \\ 0 & 0 & .75 \end{bmatrix}$$

That is, write ρ in the form $\rho = LL' + \Psi$.

- 9.2. Use the information in Exercise 9.1.
 - (a) Calculate communalities h_i^2 , i = 1, 2, 3, and interpret these quantities.
 - (b) Calculate Corr (Z_i, F_1) for i = 1, 2, 3. Which variable might carry the greatest weight in "naming" the common factor? Why?
- 9.3. The eigenvalues and eigenvectors of the correlation matrix ρ in Exercise 9.1 are

$$\lambda_1 = 1.96,$$
 $e'_1 = [.625, .593, .507]$
 $\lambda_2 = .68,$ $e'_2 = [-.219, -.491, .843]$
 $\lambda_3 = .36,$ $e'_3 = [.749, -.638, -.177]$

- (a) Assuming an m=1 factor model, calculate the loading matrix L and matrix of specific variances Ψ using the principal component solution method. Compare the results with those in Exercise 9.1.
- (b) What proportion of the total population variance is explained by the first common factor?
- 9.4. Given ρ and Ψ in Exercise 9.1 and an m = 1 factor model, calculate the reduced correlation matrix ρ = ρ Ψ and the principal factor solution for the loading matrix L. Is the result consistent with the information in Exercise 9.1? Should it be?

Sum of squared entries of
$$(\mathbf{S} - (\widetilde{\mathbf{LL}}' + \widetilde{\mathbf{\Psi}})) \le \hat{\lambda}_{m+1}^2 + \dots + \hat{\lambda}_p^2$$
 (9-19)

9.5. Establish the inequality (9-19).

Hint: Since $S - \widetilde{L}\widetilde{L}' - \widetilde{\Psi}$ has zeros on the diagonal,

(sum of squared entries of $S - \widetilde{L}\widetilde{L}' - \widetilde{\Psi}$) \leq (sum of squared entries of $S - \widetilde{L}\widetilde{L}'$)

Now, $\mathbf{S} - \widetilde{\mathbf{L}}\widetilde{\mathbf{L}}' = \hat{\lambda}_{m+1}\hat{\mathbf{e}}_{m+1}\hat{\mathbf{e}}'_{m+1} + \dots + \hat{\lambda}_p\hat{\mathbf{e}}_p\hat{\mathbf{e}}'_p = \hat{\mathbf{P}}_{(2)}\hat{\Lambda}_{(2)}\hat{\mathbf{P}}'_{(2)}$, where $\hat{\mathbf{P}}_{(2)} = [\hat{\mathbf{e}}_{m+1}|\dots|\hat{\mathbf{e}}_p]$ and $\hat{\Lambda}_{(2)}$ is the diagonal matrix with elements $\hat{\lambda}_{m+1},\dots,\hat{\lambda}_p$.

Use (sum of squared entries of \mathbf{A}) = tr $\mathbf{A}\mathbf{A}'$ and tr $[\hat{\mathbf{P}}_{(2)}\hat{\boldsymbol{\Lambda}}_{(2)}\hat{\boldsymbol{\Lambda}}_{(2)}\hat{\mathbf{P}}_{(2)}'] = \text{tr} [\hat{\boldsymbol{\Lambda}}_{(2)}\hat{\boldsymbol{\Lambda}}_{(2)}]$.

9.7. (The factor model parameterization need not be unique.) Let the factor model with p=2 and m=1 prevail. Show that

$$\begin{split} \sigma_{11} &= \ell_{11}^2 + \psi_1, \qquad \sigma_{12} = \sigma_{21} = \ell_{11} \ell_{21} \\ \sigma_{22} &= \ell_{21}^2 + \psi_2 \end{split}$$

and, for given σ_{11} , σ_{22} , and σ_{12} , there is an infinity of choices for L and Ψ .

9.8. (Unique but improper solution: Heywood case.)

Consider an m = 1 factor model for the population with covariance matrix

$$\mathbf{\Sigma} = \begin{bmatrix} 1 & .4 & .9 \\ .4 & 1 & .7 \\ .9 & .7 & 1 \end{bmatrix}$$

Show that there is a unique choice of **L** and Ψ with $\Sigma = \mathbf{L}\mathbf{L}' + \Psi$, but that $\psi_3 < 0$, so the choice is not admissible.

Wind (x_1)	Solar radiation (x_2)	$CO(x_3)$	$NO(x_4)$	$NO_2(x_5)$	$O_3(x_6)$	$HC(x_7)$
8 7 7	98	7	2	12 9 5	8 5 6	2
_	107	4	3	9	3	3
	103	4 5 4 5 7	2 3 3 2 2 2 4	5		3
10 6 8 9 5 7 8 6 6 7	88	5	2	8	15	4
6	91	4	2	8	10	3
8	90	5	2	12	12	4
9	84	7		12	15	5
5	72	6 5 5 5 4	4	21	14	4
7	82	5	1	11	11	3
8	64	5	2 4	13	9	4
6	71	5	4	10	3	3
6	91	4	2 4 2	12	7	3
7	72	7	4	18	10	3
10	70	4	2	11	7	3
10	72	4	1	8	10	3
9	77	4	1	9	10	3
8	76				7	3
8	71	4 5 4	3	7 16	4	4
9	67	4	2	13		3
10 9 8 8 9	69	3	1 3 2 3 3 2 2 2 3 1 2 2	9	2 5	3
10	62	3 5 4	3	14	4	1
10	88	1	3	14	6	4
9	80	4	2	7 13	11	2
10 9 8 5 6 8 6			2	15	11	4
2	30	3 5 3 4	3	5 10	2 23	3
6	83	5	1	10	23	4
8	84	3	2	7 11	.6	3
6	78		2	11	11	3
8	79	2	1	7	10	3
6	62	4	3	9	8	3
10	37	3	1	7	8 2 7 8	3
8	71	4	1	10	7	3
7	52	4	1	12		4
5	48	6	5	8 10	4 24	3
6	75	4	1	10	24	3
10 8 7 5 6 10 8 5 7 7	35	4	1	6	9	2334345434333333343343434343333333433222232232
8	85	4	1	9	10	2
5	86		1	6	12	2
5	86	7	2	13	18	2
7	79	7	4	9	25	3
7	79	3 7 7 5		8	6	2
6	68	6	2 2 3	11	14	3
6	40	4	3	6	5	2

Source: Data courtesy of Professor G. C. Tiao.

$$\begin{aligned} \hat{\mathbf{f}}_j &= (\hat{\mathbf{L}}' \hat{\mathbf{\Psi}}^{-1} \hat{\mathbf{L}})^{-1} \hat{\mathbf{L}}' \hat{\mathbf{\Psi}}^{-1} (\mathbf{x}_j - \hat{\boldsymbol{\mu}}) \\ &= \hat{\Delta}^{-1} \hat{\mathbf{L}}' \hat{\mathbf{\Psi}}^{-1} (\mathbf{x}_j - \bar{\mathbf{x}}), \qquad j = 1, 2, \dots, n \end{aligned}$$

or, if the correlation matrix is factored

$$\begin{split} \hat{\mathbf{f}}_j &= (\hat{\mathbf{L}}_z' \hat{\boldsymbol{\Psi}}_z^{-1} \hat{\mathbf{L}}_z)^{-1} \hat{\mathbf{L}}_z' \hat{\boldsymbol{\Psi}}_z^{-1} \mathbf{z}_j \\ &= \hat{\boldsymbol{\Delta}}_z^{-1} \hat{\mathbf{L}}_z' \hat{\boldsymbol{\Psi}}_z^{-1} \mathbf{z}_j, \qquad j = 1, 2, \dots, n \end{split}$$

where $\mathbf{z}_i = \mathbf{D}^{-1/2}(\mathbf{x}_i - \bar{\mathbf{x}})$, as in (8-25), and $\hat{\boldsymbol{\rho}} = \hat{\mathbf{L}}_z \hat{\mathbf{L}}_z' + \hat{\boldsymbol{\Psi}}_z$.

$$\hat{\mathbf{f}}_{j} = \begin{bmatrix} \frac{1}{\sqrt{\hat{\lambda}_{1}}} \hat{\mathbf{e}}'_{1}(\mathbf{x}_{j} - \bar{\mathbf{x}}) \\ \frac{1}{\sqrt{\hat{\lambda}_{2}}} \hat{\mathbf{e}}'_{2}(\mathbf{x}_{j} - \bar{\mathbf{x}}) \\ \vdots \\ \frac{1}{\sqrt{\hat{\lambda}_{m}}} \hat{\mathbf{e}}'_{m}(\mathbf{x}_{j} - \bar{\mathbf{x}}) \end{bmatrix}$$
(9-51)

(9-50)

$$\hat{\mathbf{f}}_j = \hat{\mathbf{L}}' \mathbf{S}^{-1} (\mathbf{x}_j - \overline{\mathbf{x}}), \qquad j = 1, 2, \dots, n$$

or, if a correlation matrix is factored,

rix is factored, (9-58)

$$\hat{\mathbf{f}} = \hat{\mathbf{L}}_{\mathbf{z}}^{T} \mathbf{R}^{-1} \mathbf{z}_{j}, \quad j = 1, 2, ..., n$$

where, see (8-25),

$$\mathbf{z}_i = \mathbf{D}^{-1/2}(\mathbf{x}_i - \bar{\mathbf{x}})$$
 and $\hat{\boldsymbol{\rho}} = \hat{\mathbf{L}}_z \hat{\mathbf{L}}_z' + \hat{\boldsymbol{\Psi}}_z$

- 9.20. Using the air-pollution variables X₁, X₂, X₅, and X₆ given in Table 1.5, generate the sample covariance matrix.
 - (a) Obtain the principal component solution to a factor model with m = 1 and m = 2.
 - (b) Find the maximum likelihood estimates of L and Ψ for m = 1 and m = 2.
 - (c) Compare the factorization obtained by the principal component and maximum likelihood methods.
- 9.21. Perform a varimax rotation of both m = 2 solutions in Exercise 9.20. Interpret the results. Are the principal component and maximum likelihood solutions consistent with each other?
- 9.22. Refer to Exercise 9.20.
 - (a) Calculate the factor scores from the m=2 maximum likelihood estimates by (i) weighted least squares in (9-50) and (ii) the regression approach of (9-58).
 - (b) Find the factor scores from the principal component solution, using (9-51).
 - (c) Compare the three sets of factor scores.