COMP3711: Design and Analysis of Algorithms DP Tutorial 1

COMP3711: Design and Analysis of Algorithms

Longest Monotonically Increasing Subsequence

Version of April 1, 2020

Question 1

Give an $O(n^2)$ time dynamic programming algorithm to find the longest monotonically increasing subsequence of a sequence of n numbers, i.e, each successive number in the subsequence is greater than or equal to its predecessor.

For example, if the input sequence is

$$\langle 5, 24, 8, 17, 12, 45 \rangle$$
,

the output should be either (5, 8, 12, 45) or (5, 8, 17, 45).

We first give an algorithm which finds the **length** of the longest increasing subsequence; will later modify it to report a subsequence with this length.

Let $X_i = \langle x_1, \dots, x_i \rangle$ denote the prefix of X consisting of its first i items.

Define

c[i] = the length of the longest increasing subsequence that **ends** at x_i .

The length of the longest increasing subsequence in X is then $\max_{1 \le i \le n} c[i]$.

c[i] = the length of the longest increasing subsequence that **ends** at x_i .

```
Initial Condition: c[1] = 1

If i > 1:

If all items to left of x_i are > than x_i, answer must be 1.

Otherwise, longest increasing subsequence that ends with x_i has form \langle Z, x_i \rangle,

where Z is the longest increasing subsequence that ends with x_r for some r < i and x_r \le x_i.
```

This yields the following recurrence relation:

$$c[i] = \begin{cases} 1 & \text{if } i = 1\\ 1 & \text{if } x_r > x_i \text{ for all } 1 \le r < i\\ \max_{1 \le r < i} c[r] + 1 & \text{other cases} \end{cases}$$

$$c[i] = \begin{cases} 1 & \text{if } i = 1\\ 1 & \text{if } x_r > x_i \text{ for all } 1 \le r < i\\ \max_{\substack{1 \le r < i\\ x_r \le x_i}} c[r] + 1 & \text{other cases} \end{cases}$$

We do not write the pseudocode, but just note that we store the c[i]'s in an array whose entries are computed in order of increasing i.

After computing the c array, we run through all the entries to find the maximum value.

This is the length of the longest increasing subsequence in X.

For every i it takes O(i) time to calculate c_i .

=> the running time is $O(\sum_{i=1}^{n} i) = O(n^2)$.

$$c[i] = \begin{cases} 1 & \text{if } i = 1\\ 1 & \text{if } x_r > x_i \text{ for all } 1 \le r < i\\ \max_{1 \le r < i} c[r] + 1 & \text{other cases} \end{cases}$$

Question:

The input sequence is $X = \{4, 5, 7, 1, 3, 9\}$; Find the longest monotonically increasing subsequence.

i	1	2	3	4	5	6
X	4	5	7	1	3	9
c[i]	1					

$$i = 1$$
: $c[1] = 1$

$$c[i] = \begin{cases} 1 & \text{if } i = 1\\ 1 & \text{if } x_r > x_i \text{ for all } 1 \le r < i\\ \max_{1 \le r < i} c[r] + 1 & \text{other cases} \end{cases}$$

Question:

The input sequence is $X = \{4, 5, 7, 1, 3, 9\}$; Find the longest monotonically increasing subsequence.

i	1	2	3	4	5	6
X	4	5	7	1	3	9
c[i]	1	2				

$$i = 1$$
: $c[1] = 1$

$$i = 2$$
: Since $x_1 \le x_2 \implies c[2] = \max\{c[1]\} + 1 = 2$

$$c[i] = \begin{cases} 1 & \text{if } i = 1\\ 1 & \text{if } x_r > x_i \text{ for all } 1 \le r < i\\ \max_{1 \le r < i} c[r] + 1 & \text{other cases} \end{cases}$$

Question:

The input sequence is $X = \{4, 5, 7, 1, 3, 9\}$; Find the longest monotonically increasing subsequence.

i	1	2	3	4	5	6
X	4	5	7	1	3	9
c[i]	1	2	3			

$$i = 1$$
: $c[1] = 1$

$$i = 2$$
: Since $x_1 \le x_2 \implies c[2] = \max\{c[1]\} + 1 = 2$

$$i = 3$$
: Since $x_1, x_2 \le x_3 \Rightarrow c[3] = \max\{c[1], c[2]\} + 1 = 2 + 1 = 3$

$$c[i] = \begin{cases} 1 & \text{if } i = 1\\ 1 & \text{if } x_r > x_i \text{ for all } 1 \le r < i\\ \max_{1 \le r < i} c[r] + 1 & \text{other cases} \end{cases}$$

Question:

The input sequence is $X = \{4, 5, 7, 1, 3, 9\}$; Find the longest monotonically increasing subsequence.

i	1	2	3	4	5	6
X	4	5	7	1	3	9
c[i]	1	2	3	1		

$$i = 1$$
: $c[1] = 1$

$$i = 2$$
: Since $x_1 \le x_2 \implies c[2] = \max\{c[1]\} + 1 = 2$

$$i = 3$$
: Since $x_1, x_2 \le x_3 \Rightarrow c[3] = \max\{c[1], c[2]\} + 1 = 2 + 1 = 3$

$$i = 4$$
: Since $x_1, x_2, x_3 > x_4 \Rightarrow c[4] = 1$

$$c[i] = \begin{cases} 1 & \text{if } i = 1\\ 1 & \text{if } x_r > x_i \text{ for all } 1 \le r < i\\ \max_{1 \le r < i} c[r] + 1 & \text{other cases} \end{cases}$$

Question:

The input sequence is $X = \{4, 5, 7, 1, 3, 9\}$; Find the longest monotonically increasing subsequence.

i	1	2	3	4	5	6
X	4	5	7	1	3	9
c[i]	1	2	3	1	2	

$$i = 1$$
: $c[1] = 1$

$$i = 2$$
: Since $x_1 \le x_2 \implies c[2] = \max\{c[1]\} + 1 = 2$

$$i = 3$$
: Since $x_1, x_2 \le x_3 \Rightarrow c[3] = \max\{c[1], c[2]\} + 1 = 2 + 1 = 3$

$$i = 4$$
: Since $x_1, x_2, x_3 > x_4 \Rightarrow c[4] = 1$

$$i = 5$$
: Since $x_4 \le x_5$ and $x_1, x_2, x_3 > x_5 \Rightarrow c[5] = \max\{c[4]\} + 1 = 2$

$$c[i] = \begin{cases} 1 & \text{if } i = 1\\ 1 & \text{if } x_r > x_i \text{ for all } 1 \le r < i\\ \max_{1 \le r < i} c[r] + 1 & \text{other cases} \end{cases}$$

Question:

The input sequence is $X = \{4, 5, 7, 1, 3, 9\}$; Find the longest monotonically increasing subsequence.

i	1	2	3	4	5	6
X	4	5	7	1	3	9
c[i]	1	2	3	1	2	4

Return: max is c[6] = 4

$$i = 1$$
: $c[1] = 1$

$$i = 2$$
: Since $x_1 \le x_2 \implies c[2] = \max\{c[1]\} + 1 = 2$

$$i = 3$$
: Since $x_1, x_2 \le x_3 \Rightarrow c[3] = \max\{c[1], c[2]\} + 1 = 2 + 1 = 3$

$$i = 4$$
: Since $x_1, x_2, x_3 > x_4 \Rightarrow c[4] = 1$

$$i = 5$$
: Since $x_4 \le x_5$ and $x_1, x_2, x_3 > x_5 \Rightarrow c[5] = \max\{c[4]\} + 1 = 2$

$$i = 6$$
: Since $x_1, x_2, x_3, x_4, x_5 \le x_6 \Rightarrow c[6] = \max\{c[1], c[2], c[3], c[4], c[5]\} + 1 = 4$

$$c[i] = \begin{cases} 1 & \text{if } i = 1\\ 1 & \text{if } x_r > x_i \text{ for all } 1 \le r < i\\ \max_{1 \le r < i} c[r] + 1 & \text{other cases} \end{cases}$$

To report optimal subsequence, we need to store for each i, not only c[i], but also value of r which achieves the maximum in the recurrence relation.

Denote this by r[i]. (\emptyset means no predecessor)

Suppose $c[k] = \max_{1 \le i \le n} c[i]$. Let S be optimal subsequence

 x_k is the last item in *S*. the optimal subsequence.

 2^{nd} to last item in S is $x_{r[k]}$,

 3^{rd} to last item in S is $x_{r[r[k]]}$, etc.

until we have found all the items in S

i	1	2	3	4	5	6
X	4	5	7	1	3	9
c[i]	1	2	3	1	2	4
r[i]	Ø	1	2	Ø	4	3

Running time of this step is O(n), so entire algorithm is still $O(n^2)$.

$$c[i] = \begin{cases} 1 & \text{if } i = 1\\ 1 & \text{if } x_r > x_i \text{ for all } 1 \le r < i\\ \max_{1 \le r < i} c[r] + 1 & \text{other cases} \end{cases}$$

To report optimal subsequence, we need to store for each i, not only c[i], but also value of r which achieves the maximum in the recurrence relation.

Denote this by r[i]. (\emptyset means no predecessor)

Return: max is c[6] = 4, so k = 6

Solution is

$$x_{r[r[r[6]]]} \leftarrow x_{r[r[6]]} \leftarrow x_{r[6]} \leftarrow x_{6}$$

i.e. $x_{1} \leftarrow x_{2} \leftarrow x_{3} \leftarrow x_{6}$
i.e. $\{4, 5, 7, 9\}$

$$r[6] = 3$$

 $r[r[6]] = r[3] = 2$
 $r[r[r[6]]] = r[2] = 1$
 $r[r[r[6]]] = r[1] = \emptyset$

Alternative Solution

This problem can also be solved using the Longest Common Subsequence (LCS) Algorithm

```
Let X = \langle x_1, \dots, x_n \rangle be the original input.
Set Y = \langle y, \dots, y_m \rangle be the items from X sorted.
```

Example: $X = \langle 5, 24, 8, 17, 12, 45, 12 \rangle$, $Y = \langle 5, 8, 12, 12, 17, 24, 45 \rangle$

Then LCS(X, Y) is exactly the Longest Increasing Subsequence of X (why?)

Alternative Solution

This problem can also be solved using the Longest Common Subsequence (LCS) Algorithm

Let $X = \langle x_1, \dots, x_n \rangle$ be the original input. Set $Y = \langle y, \dots, y_m \rangle$ be the items from X sorted.

Example: $X = \langle 5, 24, 8, 17, 12, 45, 12 \rangle$, $Y = \langle 5, 8, 12, 12, 17, 24, 45 \rangle$

Then LCS(X, Y) is exactly the Longest Increasing Subsequence of X (why?)

Since LCS(X, Y) uses $O(n^2)$ time, this new algorithm also uses $O(n^2)$ time.

Surprisingly, there is also an $O(n \log n)$ algorithm for solving the problem. See https://www.cs.princeton.edu/courses/archive/spring13/cos423/lectures/LongestIncreasingSubsequence.pdf

COMP3711: Design and Analysis of Algorithms

The Subset Sum Problem

Question

The subset sum problem is: Given a set of n positive integers, $S = \{x_1, x_2, \dots, x_n\}$ and an integer W, determine whether there is a subset $S' \subseteq S$, such that the sum of the elements in S' is equal to W.

```
For example, let S = \{4,2,8,9\}.

If W = 11, then the answer is "yes" because the elements of S' = \{2,9\} sum to 11.

If W = 7, the answer is "no".
```

Give a dynamic programming solution to the subset sum problem that runs in O(nW) time.

Justify the correctness and running time of your algorithm.

Define a Boolean array A[i,j], $0 \le i \le n$ and $0 \le j \le W$ as follows:

```
A[i,j] = True, if there is a subset of \{x_1, x_2, \dots, x_i\} that sums to j, A[i,j] = False, otherwise
```

Easy Cases:

- For all i, A[i, 0] = True (choosing no items equals 0)
- For all j > 0, A[0, j] = False.
- If $x_i > j$ A[i,j] = A[i-1,j], because item i is too large to use

Otherwise,
$$A[i,j] = (A[i-1,j-x_i] \text{ OR } A[i-1,j])$$

(i) because either solution uses x_i .

This can only happen if $j - x_i$ can be solved with first i - 1 items

(ii) or solution does not use x_i

in which case j can be solved with first i-1 items

$$A[i,j] = \begin{cases} \text{True} & \text{if } j = 0 \\ \text{False} & \text{if } i = 0 \text{ and } j > 0 \\ A[i-1,j] & \text{if } x_i > j \\ A[i-1,j-x_i] \text{ OR } A[i-1,j] & \text{Otherwise} \end{cases}$$

$$A[i,j] = \begin{cases} \text{True} & \text{if } j = 0 \\ \text{False} & \text{if } i = 0 \text{ and } j > 0 \\ A[i-1,j] & \text{if } x_i > j \\ A[i-1,j-x_i] \text{ OR } A[i-1,j] & \text{Otherwise} \end{cases}$$

```
Dynamic-SubsetSum(x,n,W)
A[0,0] = True
for j=1 to W do
A[0,j] = False
for i=1 to n do
A[i,0] = True
for j=1 to M do
A[i,0] = True
for j=1 to M do
A[i,j] = A[i-1,j]
else A[i,j] = A[i-1,j]
or A[i,j] = A[i-1,j]
```

$$A[i,j] = \begin{cases} \text{True} & \text{if } j = 0 \\ \text{False} & \text{if } i = 0 \text{ and } j > 0 \\ A[i-1,j] & \text{if } x_i > j \\ A[i-1,j-x_i] \text{ OR } A[i-1,j] & \text{Otherwise} \end{cases}$$

Question:

Given a set $S = \{7, 4, 8, 2, 5, 3\}$, and W=6, determine whether there is a subset, $S' \subseteq S$, such that the sum of the elements in S' is equal to W.

i∖j	0	1	2	3	4	5	6
0	Т	F	F	F	F	F	F
1	T						
2	Т						
3	T		+j=0				
4	Т						
5	Т						
6	Т						

$$A[i,j] = \begin{cases} \text{True} & \text{if } j = 0 \\ \text{False} & \text{if } i = 0 \text{ and } j > 0 \\ A[i-1,j] & \text{if } x_i > j \\ A[i-1,j-x_i] \text{ OR } A[i-1,j] & \text{Otherwise} \end{cases}$$

Question:

Given a set $S = \{7, 4, 8, 2, 5, 3\}$, and W=6, determine whether there is a subset, $S' \subseteq S$, such that the sum of the elements in S' is equal to W.

i∖j	0	1	2	3	4	5	6
0	T	F	F	F	F	F	F
1	T	F	F	F	F	F	F
2	T						
3	T						
4	T						
5	T						
6	T						

$$x_1 = 7 > j = 1,...6$$

so, for all j
 $A[1,j] = A[0,j]$

$$A[i,j] = \begin{cases} \text{True} & \text{if } j = 0 \\ \text{False} & \text{if } i = 0 \text{ and } j > 0 \\ A[i-1,j] & \text{if } x_i > j \\ A[i-1,j-x_i] \text{ OR } A[i-1,j] & \text{Otherwise} \end{cases}$$

Question:

Given a set $S = \{7, 4, 8, 2, 5, 3\}$, and W=6, determine whether there is a subset, $S' \subseteq S$, such that the sum of the elements in S' is equal to W.

i \ j	0	1	2	3	4	5	6	
0	T	F	F	F	F	F	F	
1	Т	F	F	F	F	F	F	
2	Т	F	F	F	T	F	F	1
3	T							J
4	Т							
5	T							
6	Т							

$$x_2 = 4 \le j = 4, 5, 6$$

so, when $j = 4,5,6$
 $A[2,j] = (A[1,j-4] \ OR \ A[1,j])$
e.g. $A[2,4] = (A[1,0] \ OR \ A[1,4])$
 $= T \ OR \ F = T$

$$x_2 = 4 > j = 1, 2, 3$$

so, when $j = 1, 2, 3$
 $A[2,j] = A[1,j]$

$$A[i,j] = \begin{cases} \text{True} & \text{if } j = 0 \\ \text{False} & \text{if } i = 0 \text{ and } j > 0 \\ A[i-1,j] & \text{if } x_i > j \\ A[i-1,j-x_i] \text{ OR } A[i-1,j] & \text{Otherwise} \end{cases}$$

Question:

Given a set $S = \{7, 4, 8, 2, 5, 3\}$, and W=6, determine whether there is a subset, $S' \subseteq S$, such that the sum of the elements in S' is equal to W.

i∖j	0	1	2	3	4	5	6
0	T	F	F	F	F	F	F
1	T	F	F	F	F	F	F
2	T	F	F	F	T	F	F
3	T	F	F	F	T	F	F
4	T						
5	T						
6	T						

$$x_3 = 8 > j = 1,...6$$

So, for all j
 $A[3,j] = A[2,j]$

$$A[i,j] = \begin{cases} \text{True} & \text{if } j = 0 \\ \text{False} & \text{if } i = 0 \text{ and } j > 0 \\ A[i-1,j] & \text{if } x_i > j \\ A[i-1,j-x_i] \text{ OR } A[i-1,j] & \text{Otherwise} \end{cases}$$

Question:

Given a set $S = \{7, 4, 8, 2, 5, 3\}$, and W=6, determine whether there is a subset, $S' \subseteq S$, such that the sum of the elements in S' is equal to W.

	3, 4, 5, 6
0 T F F F F F So, when $j = 2$,	, 6
1 T F F F F F $A[4,j] = (A[3,j])$	-2] OR A[3,j])
2 T F F T F F e.g. $A[4,2] = (A$	[3,0] <i>OR A</i> [3,2])
	OR F = T
4 T F T F T	
5 T $x_4 = 2 > j = 1$	
6 T so $A[4,1] = A[3]$	11 — <i>E</i>

$$A[i,j] = \begin{cases} \text{True} & \text{if } j = 0 \\ \text{False} & \text{if } i = 0 \text{ and } j > 0 \\ A[i-1,j] & \text{if } x_i > j \\ A[i-1,j-x_i] \text{ OR } A[i-1,j] & \text{Otherwise} \end{cases}$$

Question:

Given a set $S = \{7, 4, 8, 2, 5, 3\}$, and W=6, determine whether there is a subset, $S' \subseteq S$, such that the sum of the elements in S' is equal to W.

Solution: we use a table to store A

i∖j	0	1	2	3	4	5	6
0	T	F	F	F	F	F	F
1	Т	F	F	F	F	F	F
2	T	F	F	F	T	F	F
3	T	F	F	F	T	F	F
4	T	F	T	F	T	F	T
5	T	F	T	F	T	Т_	T
6	Т	F	Т	T	Т	Т	T

Fill the table

Return: A[6,6] = True

COMP3711: Design and Analysis of Algorithms

DP Maximum Contiguous Subarray

The Maximum Subarray Problem: A DP solution

Input: Profit history of a company. Money earned/lost each year.

Year	1	2	3	4	5	6	7	8	9
Profit (M\$)	3	2	1	-7	5	2	-1	3	-1

Problem: Find the span of years in which the company earned the most

Answer: Year 5-8, 9 M\$

Formal definition:

Input: An array of numbers A[1 ... n], both positive and negative

Output: Find the maximum value V(k,i), where $V(k,i) = \sum_{t=k}^{i} A[t]$

Recall

Previously learnt 4 different algorithms for solving this problem

- Now: design a $\Theta(n)$ Dynamic Programming Algorithm

Note: previous algorithms solved a slightly different problem than the one defined on the previous page. The problems differ (ONLY) in the case that $for all \ i$, A[i] < 0.

In that case, the old algorithms returned the value 0. The problem as defined on the previous page returns $\max_{i} A[i]$.

Easy to transform the solution of one problem to that of the other in $\Theta(n)$ time.

A dynamic programming $(\Theta(n))$ algorithm

Define: V_i to be max value subarray ending at A[i]

$$V_i = \max_{1 \le k \le i} V(k, i)$$

The main observation is that if $V_i \neq A[i] = V(i, i)$ then

$$V_i = A[i] + \max_{1 \le k < i} V(k, i - 1) = A[i] + V_{i-1}$$

This immediately implies DP Recurrence

$$V_i = \begin{cases} A[1] & \text{if } i = 1\\ \max\{A[i], A[i] + V_{i-1}\} & \text{if } i > 1 \end{cases}$$

The DP recurrence

Set
$$V_i = \max_{1 \le k \le i} V(k, i)$$
. We just saw

$$V_i = \begin{cases} A[1] & \text{if } i = 1\\ \max\{A[i], A[i] + V_{i-1}\} & \text{if } i > 1 \end{cases}$$

Original problem then becomes finding i' such that

$$V_{i'} = \max_{1 \le i \le n} V_i$$

The DP recurrence permits constructing V_i in O(1) time from V_{i-1} .

- \Rightarrow We can construct $V_1, V_2, ..., V_n$ in order in O(n) total time while keeping track of the largest V_i found so far
- \Rightarrow This finds $V_{i'}$ in O(n) total time, solving the problem.

Note: This algorithm is very similar to the linear scan algorithm we developed in class, but found using DP reasoning

Implementation

Derived recurrence that

$$V_i = \begin{cases} A[1] & \text{if } i = 1 \\ \max\{A[i], A[i] + V_{i-1}\} & \text{if } i > 1 \end{cases} \quad \text{where} \quad V_i = \max_{1 \le k \le i} V(k, i)$$

and need to find i' such that

$$V_{i'} = \max_{1 \le i \le n} V_i$$

This is very straightforward.

Next slides give actual code, and a worked example

Store V_i in a table V[1, 2, ..., n], at each step calculating V[i] from V[i-1]

Base condition: $V[1] \leftarrow A[1]$ Recurrence: $V[i] \leftarrow \max(A[i], A[i] +$

```
let V[1,2,...,n] be an array storing V_i
V[1] \leftarrow A[1]
V_{max} \leftarrow A[1]
for i \leftarrow 2 to n do
V[i] \leftarrow \max(A[i],A[i]+V[i-1])
if V_{max} < V[i]
then V_{max} \leftarrow V[i]
end if
return V_{max}
```

Running time: $\Theta(n)$

i	1	2	3	4	5	6	7	8	9
A[i]	3	2	1	-7	5	2	-1	3	-1
V[i]	3	5	6	-1	5	7	6	9	8
\overline{V}_{max}	3	5	6	6	6	7	7	9	9

Solution is V[8]

Simplified: We only need to remember the last \boldsymbol{V}_i (call it \boldsymbol{V}) and \boldsymbol{V}_{max}

Base condition: $V \leftarrow A[1]$

Recurrence: $V \leftarrow \max(A[i], A[i] + V)$

```
\begin{aligned} V &\leftarrow A[1] \\ V_{max} &\leftarrow A[1] \\ \text{for } i \leftarrow 2 \text{ to } n \text{ do} \\ V &\leftarrow \max(A[i], A[i] + V) \\ &\text{if } V_{max} < V \\ &\text{then } V_{max} \leftarrow V \\ &\text{end if} \\ \text{return } V_{max} \end{aligned}
```

Running time: $\Theta(n)$

This gets same result as Version 1, but is simpler!

Next pages provide a detailed walk-through of how Version 1 fills in the DP table.

Store V_i in a table V[1, 2, ..., n], at each step calculating V[i] from V[i-1]

Base condition: $V[1] \leftarrow A[1]$ Recurrence: $V[i] \leftarrow \max(A[i], A[i] +$

```
let V[1,2,...,n] be an array storing V_i
V[1] \leftarrow A[1]
V_{max} \leftarrow A[1]
for i \leftarrow 2 to n do
V[i] \leftarrow \max(A[i],A[i]+V[i-1])
if V_{max} < V[i]
then V_{max} \leftarrow V[i]
end if
return V_{max}
```

i	1	2	3	4	5	6	7	8	9
A[i]	3	2	1	-7	5	2	-1	3	-1
$\overline{V[i]}$	3								
V_{max}	3								

$$V_{max} = V[1] = A[1] = 3$$

Store V_i in a table V[1, 2, ..., n], at each step calculating V[i] from V[i-1]

Base condition: $V[1] \leftarrow A[1]$ Recurrence: $V[i] \leftarrow \max(A[i], A[i] +$

```
let V[1,2,...,n] be an array storing V_i
V[1] \leftarrow A[1]
V_{max} \leftarrow A[1]
for i \leftarrow 2 to n do
V[i] \leftarrow \max(A[i],A[i]+V[i-1])
if V_{max} < V[i]
then V_{max} \leftarrow V[i]
end if
return V_{max}
```

i	1	2	3	4	5	6	7	8	9
A[i]	3	2	1	-7	5	2	-1	3	-1
$\overline{V[i]}$	3	5							
V_{max}	3	5							

$$V_{max} = \max(A[2], A[2] + V[1]) = \max(2, 2 + 3) = 5$$

Store V_i in a table V[1, 2, ..., n], at each step calculating V[i] from V[i-1]

Base condition: $V[1] \leftarrow A[1]$ Recurrence: $V[i] \leftarrow \max(A[i], A[i] +$

```
let V[1,2,...,n] be an array storing V_i
V[1] \leftarrow A[1]
V_{max} \leftarrow A[1]
for i \leftarrow 2 to n do
V[i] \leftarrow \max(A[i],A[i]+V[i-1])
if V_{max} < V[i]
then V_{max} \leftarrow V[i]
end if
return V_{max}
```

i	1	2	3	4	5	6	7	8	9
A[i]	3	2	1	-7	5	2	-1	3	-1
$\overline{V[i]}$	3	5	6						
V_{max}	3	5	6						

$$V_{max} = \max(A[3], A[3] + V[2]) = \max(1, 1 + 5) = 6$$

Store V_i in a table V[1, 2, ..., n], at each step calculating V[i] from V[i-1]

Base condition: $V[1] \leftarrow A[1]$ Recurrence: $V[i] \leftarrow \max(A[i], A[i] +$

```
let V[1,2,...,n] be an array storing V_i
V[1] \leftarrow A[1]
V_{max} \leftarrow A[1]
for i \leftarrow 2 to n do
V[i] \leftarrow \max(A[i],A[i]+V[i-1])
if V_{max} < V[i]
then V_{max} \leftarrow V[i]
end if
return V_{max}
```

i	1	2	3	4	5	6	7	8	9
A[i]	3	2	1	-7	5	2	-1	3	-1
$\overline{V[i]}$	3	5	6	-1					
V_{max}	3	5	6	6					

$$V_{max} = 6 > \max(A[4], A[4] + V[3]) = \max(-7, -7 + 6) = -1$$

Store V_i in a table V[1, 2, ..., n], at each step calculating V[i] from V[i-1]

Base condition: $V[1] \leftarrow A[1]$ Recurrence: $V[i] \leftarrow \max(A[i], A[i] +$

```
let V[1,2,...,n] be an array storing V_i
V[1] \leftarrow A[1]
V_{max} \leftarrow A[1]
for i \leftarrow 2 to n do
V[i] \leftarrow \max(A[i],A[i]+V[i-1])
if V_{max} < V[i]
then V_{max} \leftarrow V[i]
end if
return V_{max}
```

i	1	2	3	4	5	6	7	8	9
A[i]	3	2	1	-7	5	2	-1	3	-1
$\overline{V[i]}$	3	5	6	-1	5				
V_{max}	3	5	6	6	6				

$$V_{max} = 6 > \max(A[5], A[5] + V[4]) = \max(5, 5 - 1) = 5$$

Store V_i in a table V[1, 2, ..., n], at each step calculating V[i] from V[i-1]

Base condition: $V[1] \leftarrow A[1]$ Recurrence: $V[i] \leftarrow \max(A[i], A[i] +$

```
let V[1,2,...,n] be an array storing V_i
V[1] \leftarrow A[1]
V_{max} \leftarrow A[1]
for i \leftarrow 2 to n do
V[i] \leftarrow \max(A[i],A[i]+V[i-1])
if V_{max} < V[i]
then V_{max} \leftarrow V[i]
end if
return V_{max}
```

i	1	2	3	4	5	6	7	8	9
A[i]	3	2	1	-7	5	2	-1	3	-1
$\overline{V[i]}$	3	5	6	-1	5	7			
V_{max}	3	5	6	6	6	7			

$$V_{max} = \max(A[6], A[6] + V[5]) = \max(2, 2 + 5) = 7$$

Store V_i in a table V[1, 2, ..., n], at each step calculating V[i] from V[i-1]

Base condition: $V[1] \leftarrow A[1]$ Recurrence: $V[i] \leftarrow \max(A[i], A[i] +$

```
let V[1,2,...,n] be an array storing V_i
V[1] \leftarrow A[1]
V_{max} \leftarrow A[1]
for i \leftarrow 2 to n do
V[i] \leftarrow \max(A[i],A[i]+V[i-1])
if V_{max} < V[i]
then V_{max} \leftarrow V[i]
end if
return V_{max}
```

i	1	2	3	4	5	6	7	8	9
A[i]	3	2	1	-7	5	2	-1	3	-1
$\overline{V[i]}$	3	5	6	-1	5	7	6		
$\overline{V_{max}}$	3	5	6	6	6	7	7		

$$V_{max} = 7 > \max(A[7], A[7] + V[6]) = \max(-1, -1 + 7) = 6$$

Store V_i in a table V[1, 2, ..., n], at each step calculating V[i] from V[i-1]

Base condition: $V[1] \leftarrow A[1]$ Recurrence: $V[i] \leftarrow \max(A[i], A[i] +$

```
let V[1,2,...,n] be an array storing V_i
V[1] \leftarrow A[1]
V_{max} \leftarrow A[1]
for i \leftarrow 2 to n do
V[i] \leftarrow \max(A[i],A[i]+V[i-1])
if V_{max} < V[i]
then V_{max} \leftarrow V[i]
end if
return V_{max}
```

i	1	2	3	4	5	6	7	8	9
A[i]	3	2	1	-7	5	2	-1	3	-1
$\overline{V[i]}$	3	5	6	-1	5	7	6	9	
V_{max}	3	5	6	6	6	7	7	9	

$$V_{max} = \max(A[8], A[8] + V[7]) = \max(3, 3 + 6) = 9$$

Store V_i in a table V[1, 2, ..., n], at each step calculating V[i] from V[i-1]

Base condition: $V[1] \leftarrow A[1]$ Recurrence: $V[i] \leftarrow \max(A[i], A[i] +$

```
let V[1,2,...,n] be an array storing V_i
V[1] \leftarrow A[1]
V_{max} \leftarrow A[1]
for i \leftarrow 2 to n do
V[i] \leftarrow \max(A[i],A[i]+V[i-1])
if V_{max} < V[i]
then V_{max} \leftarrow V[i]
end if
return V_{max}
```

i	1	2	3	4	5	6	7	8	9
A[i]	3	2	1	-7	5	2	-1	3	-1
V[i]	3	5	6	-1	5	7	6	9	8
V_{max}	3	5	6	6	6	7	7	9	9

$$V_{max} = 9 > \max(A[9], A[9] + V[8]) = \max(-1, -1 + 9) = 8$$

Store V_i in a table V[1, 2, ..., n], at each step calculating V[i] from V[i-1]

Base condition: $V[1] \leftarrow A[1]$ Recurrence: $V[i] \leftarrow \max(A[i], A[i] + V[i-1])$

```
let V[1,2,...,n] be an array storing V_i V[1] \leftarrow A[1] V_{max} \leftarrow A[1] for i \leftarrow 2 to n do V[i] \leftarrow \max(A[i],A[i]+V[i-1]) if V_{max} < V[i] then V_{max} \leftarrow V[i] end if return V_{max}
```

Running time: $\Theta(n)$

i	1	2	3	4	5	6	7	8	9
A[i]	3	2	1	-7	5	2	-1	3	-1
$\overline{V[i]}$	3	5	6	-1	5	7	6	9	8
V_{max}	3	5	6	6	6	7	7	9	9

Solution is V[8]

$$V_{max} = 9 > \max(A[9], A[9] + V[8]) = \max(-1, -1 + 9) = 8$$