

ITU-ML5G-PS-007 Lightning-Fast Modulation Classification With Hardware-Efficient Neural Networks

Aaronica Team

Mohammad Chegini [1] , Pouya Shiri [2] , Amirali Baniasadi [3]

International Telecommunication Union
Organized by **Xilinx**

Our Goal

- Develop a Deep Neural Network (DNN)
 - Target: Radio Frequency (RF) applications
 - Extreme **Throughput**
 - Ultra-Low Latency
 - High Energy Efficiency
- Example RF Application
 - 6G Communication Networks
 - Modulation Classification

Modulation classification (MC)

- Modulation Classification
 - A well-known problem in RF domain
 - Requires high throughput and low latency
- MC Applications
 - Spectrum interference monitoring
 - Radio fault detection
 - Dynamic spectrum access
 - Numerous regulatory and defense applications

DNN for Modulation Classification

- DNNs are promising tools for analyzing raw data
- Pros:
 - Higher accuracy w.r.t conventional methods
 - Automatic feature extraction
- Cons:
 - Design complications
 - Computationally expensive
 - Resource demanding (but we need high throughput and low-latency!)
- Our objective: design a DNN specialized for RF domain applications

Fig. Comparison of conventional and proposed method

Evaluation metrics

In RF-Domain, we generally require hardware implementation.

H/W performance indices:

- FLOPs
- MACs

Normalized score (lower is better)

$$score = 0.5 \cdot \frac{bit_ops}{baseline_bit_ops} + 0.5 \cdot \frac{bit_mem}{baseline_bit_mem}$$

Design Complications

- Domain-specific DNN Design
 - Choice of network architecture
 - Network modifications:
 - Type/Number of layers/filters
 - Network compression techniques (Quantization, etc.)

- Grid Search
- Evolutionary Algorithms (Genetic Algorithm, PSO, ...)
- Neural Architecture Search (Using Reinforcement Learning, ...)
- Time-Consuming and Resource Hungry for large Datasets (highly unpractical)

Problem statement

Minimize inference cost on the challenging and well known RadioML 2018 dataset

Minimum final accuracy: 56%

- Solutions of Aaronica Team
- Initial round: Pruning MobileNet
 - Got 3rd place
- Final round: **AaronNet** Network
 - Designed a specialized DNN after the initial round

Possible Architectures

- VGG, Inception, ResNet, MobileNet, ShuffleNet
 - Each networks has innovations to stand out

MobileNet

- Pointwise and depth-wise convolution
 - Reducing the number of multiplications
 - Higher throughput with lower computation cost

AaronNet

- Specialized for RF-domain
- Group-Wise convolutions
- Introducing Multi-Scale Convolutional (MSC) layer
- Adaptive Max Pooling
- Variations
 - AaronNet32: 32 filters
 - AaronNet48: 48 filters

Multi-Scale Convolutional Layer (MSC)

AaronNet Architecture

Optimizing AaronNet

- Significant results using the following methods:
 - Layer-wise quantization and pruning
 - Using Self-attention mechanism SE block
 - Unstructured pruning (More energy efficiency)
 - Structured pruning (More hardware friendly)
- The best results we had so far: Unstructured Pruning
 - AaronNet+: Slightly pruned version of AaronNet while having the same accuracy
 - AaronNet++: Pruned to it's limit, while meeting minimum accuracy of competitio

Finalizing our paper for submission

Results: Initial Round

- Baseline for inference cost: VGG network
 - Inference cost = 1
 - Accuracy = **59.46%**

- •Unstructured Pruning of MobileNet (initial round)
 - Using P100 GPU on Kaggle
 - Pruned 30% of the weights
 - Accuracy = **56.15%**
 - 21x inference cost improved (0.046)

MobileNet Architecture

Results: Final Round

Results: Final Round

- ■Using A6000 RTX GPU
 - ■Trained and pruned variations of AaronNet
- ■Highest Accuracy: AaronNet48+
 - Accuracy = 60.07%
 - **23x** inference cost (**0.04320**)
- ■Best Cost: AaronNet32++
 - Acceptable accuracy **56.07%**
 - **64x** inference cost (**0.01539**)

Results: Final Standing

Questions

