Задача 1

Столбцы матриц F и G – это координатные столбцы векторов базисов $\{f\}$ и $\{g\}$ относительно некоторого базиса $\{e\}$. Требуется найти матрицы S_1 и S_2 – матрицы переходов от базиса $\{\mathbf{f}\}$ к базису $\{\mathbf{g}\}$ и от базиса $\{\mathbf{g}\}$ к базису $\{\mathbf{f}\}$ соответственно, если

$$\mathbf{F} = \begin{bmatrix} -1 & 1 & 0 \\ -1 & -1 & 1 \\ 1 & -2 & 1 \end{bmatrix} \quad \mathbf{u} \quad \mathbf{G} = \begin{bmatrix} -1 & -1 & -2 \\ -2 & -1 & -2 \\ 0 & 1 & 1 \end{bmatrix}.$$

Ответ:

$$\mathbf{S}_1 = \begin{vmatrix} 1 & 1 & 1 \\ 0 & 0 & -1 \\ -1 & 0 & -2 \end{vmatrix} \quad \mathbf{M} \quad \mathbf{S}_2 = \begin{vmatrix} 0 & 2 & -1 \\ 1 & -1 & 1 \\ 0 & -1 & 0 \end{vmatrix}.$$

Задача 2

Найти координатный столбец ξ вектора \mathbf{x} в базисе $\{\mathbf{e}\}$ по его координатному столбцу ξ' в базисе $\{e'\}$ и координатный столбец ζ' вектора z в базисе $\{e'\}$ по его координатному столбцу ζ в базисе $\{e\}$, если

1) матрица перехода от базиса $\{\mathbf{e}\}$ к базису $\{\mathbf{e}'\}$ имеет вид $\mathbf{S} = \begin{bmatrix} 3 & -2 & 1 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$,

координатные вектор-столбцы
$$\xi' = \begin{bmatrix} -1 \\ 0 \\ -2 \end{bmatrix}$$
 и $\zeta = \begin{bmatrix} -1 \\ -2 \\ -2 \end{bmatrix}$;

2) матрица перехода от базиса $\{\mathbf{e}\}$ к базису $\{\mathbf{e}'\}$ имеет вид $\mathbf{S} = \begin{bmatrix} 0 & -1 & 1 \\ 5 & 3 & -1 \\ -3 & -2 & 1 \end{bmatrix}$,

координатные вектор-столбцы
$$\xi' = \begin{bmatrix} -1 \\ 2 \\ -3 \end{bmatrix}$$
 и $\zeta = \begin{bmatrix} 2 \\ 2 \\ -2 \end{bmatrix}$.

Ответы:

1)
$$\xi = \begin{bmatrix} -5\\1\\-2 \end{bmatrix}$$
 μ $\zeta' = \begin{bmatrix} -3\\-5\\-2 \end{bmatrix}$;

1)
$$\xi = \begin{bmatrix} -5\\1\\-2 \end{bmatrix}$$
 π $\zeta' = \begin{bmatrix} -3\\-5\\-2 \end{bmatrix}$;
2) $\xi = \begin{bmatrix} -5\\4\\-4 \end{bmatrix}$ π $\zeta' = \begin{bmatrix} 4\\-8\\-6 \end{bmatrix}$.

24.02.2018 11:33:54 стр. 1 из 2

Задача 3

В столбцах матрицы \mathbf{X} записаны координаты векторов \mathbf{x}_1 , \mathbf{x}_2 ,..., \mathbf{x}_5 относительного некоторого базиса. Требуется определить размерность линейной оболочки $L(\mathbf{x}_1,\mathbf{x}_2,...,\mathbf{x}_5)$, её базис и координаты остальных векторов в этом базисе.

1)
$$\mathbf{X} = \begin{bmatrix} 1 & -1 & 1 & -5 & -4 \\ -3 & 1 & 0 & 7 & 4 \\ -1 & -1 & 1 & -1 & -2 \\ -1 & 0 & 0 & 2 & 1 \end{bmatrix};$$
2)
$$\mathbf{X} = \begin{bmatrix} 4 & 3 & -1 & 0 & 1 \\ 2 & 0 & -1 & -1 & 0 \\ 0 & -4 & -1 & -2 & -2 \\ -1 & 1 & 1 & 1 & 0 \end{bmatrix}.$$

Ответы:

- 1) $\dim(L(\mathbf{x}_1,\mathbf{x}_2,...,\mathbf{x}_5))=2$, в качестве базиса можно взять векторы $\{\mathbf{x}_1,\mathbf{x}_2,\mathbf{x}_3\}$, остальные векторы в данном базисе имеют координаты: $\mathbf{x}_4=\{-2,1,-2\}$, $\mathbf{x}_5=\{-1,1,-2\}$;
- 2) $\dim(L(\mathbf{x}_1,\mathbf{x}_2,...,\mathbf{x}_5))=4$, в качестве базиса можно взять векторы $\{\mathbf{x}_1,\mathbf{x}_2,\mathbf{x}_3,\mathbf{x}_4\}$, остальные векторы в данном базисе имеют координаты: $\mathbf{x}_5=\{-1,1,-2,0\}$.

24.02.2018 11:33:54