

ORGANOMETALLICS

pubs.acs.org/Organometallics

Reduction of CO₂ to Trimethoxyboroxine with BH₃ in THF

Koji Fujiwara, Shogo Yasuda, and Tsutomu Mizuta*

Department of Chemistry, Graduate School of Science, Hiroshima University, Kagamiyama 1-3-1, Higashi-Hiroshima, 739-8526, Japan

Supporting Information

ABSTRACT: Commercially available THF solutions of BH3·THF, which contain 0.5 mol % of NaBH₄ as a stabilizing reagent for BH₃. THF, react with 1 atm of CO₂ at room temperature to form trimethoxyboroxine, (MeOBO)₃, in 87% yield after 12 h. Since no reaction took place in the absence of NaBH₄, NaBH₄ was found to work as a promoter or catalyst for the reduction of CO2 with BH3 to the

BH₂·THF CO_2 or 1 atm, r.t. BH₃·THF + 0.5 mol% NaBH₄

methoxy compound. A similar reaction using HCOONa in place of NaBH₄ also gave (MeOBO)₃ in comparable yield.

dramatic increase in global fuel consumption and the resulting emissions of enormous quantities of CO₂ are contemporary energy and environmental issues. Since the utilization of CO2 as the C1 building block for fuels and chemicals is one of the most promising strategies to solve both issues, reduction of CO₂ has been extensively investigated.¹ Most of these studies are on the formation of formic acid, which is obtained with excellent turnover numbers of up to 222 000 using half-sandwich iridium(III) complexes reported by Himeda et al. and 3 500 000 using an iridium(III) trihydride pincer complex by Nozaki et al.² On the other hand, a relatively limited number of studies have been reported for further reduction to give methoxy products. Recent examples employ nickel and ruthenium complexes as catalysts for hydroboration reactions.³ In addition to these transition-metal-catalyzed CO₂ reductions, transition-metal-free systems such as frustrated Lewis acid-base pair systems have also attracted recent interest.⁴ Another notable example using an organic catalyst is an ambiphilic phosphine-borane system reported by Fontaine.⁵ They demonstrated that not only catecholborane, which has been frequently used as the reducing reagent for CO2, but also BH3 are excellent reagents to afford methoxy derivatives.

In the course of our study on the transition-metal-catalyzed CO₂ reduction with BH₃, we discovered a simple and very effective method for CO₂ reduction to a methoxy group using only a commercially available BH3·THF solution or a purified BH3·THF solution in the presence of a catalytic amount of NaBH₄. The reactions do not require any sophisticated additives such as transition-metal catalysts or organocatalysts.⁶ Here, we report the reaction conditions and discuss the reaction mechanisms.

To the best of our knowledge, a reaction between CO2 and BH3·THF in THF without any additives has not been reported. We confirmed that CO₂ at ambient temperature and pressure did not react with a "purified" BH3·THF solution, which was prepared by the trap-to-trap technique from a commercially available THF solution of BH3·THF. The ¹¹B{¹H} NMR spectrum of the solution kept under a CO₂ atmosphere for 6 h

showed a major ¹¹B{¹H} NMR signal assigned to the starting BH_3 ·THF at -0.4 ppm.

On the other hand, in the presence of a catalyst, there are several reports in which BH₃·THF was used as the reducing reagent for CO₂. To our surprise, however, when the commercially available BH₃·THF solution (ca. 1 M in THF) was used as received without purification, the BH3·THF solution reacted with CO2 to give trimethoxyboroxine, (CH₃OBO)₃ (eq 1), which was characterized by a ¹¹B{¹H}

NMR signal at 19.3 ppm and a ¹³C{¹H} NMR signal at 51.6 ppm assigned to the methoxy carbon. 3i,5 Monitoring of the reaction mixture with ¹¹B{¹H} NMR spectroscopy showed a decrease of BH3·THF and the concomitant increase of (CH₃OBO)₃ as shown in Figure 1. After 12 h, the hydrolysis

Figure 1. Stack plot of ¹¹B{¹H} NMR spectra for the reaction of a commercially available BH3·THF solution with 1 atm of CO2 at rt.

Received: August 21, 2014 Published: October 21, 2014 Organometallics Note

of the reaction mixture gave MeOH in 87% yield against the starting BH₃·THF. The reaction was further examined using ¹³CO₂, which enabled more direct observation of the reaction products using ¹³C{¹H} NMR spectroscopy. The spectrum recorded after the reaction showed only two signals, at 125.8 and 51.6 ppm, in addition to those of THF. These signals were assigned to starting ¹³CO₂ and (¹³CH₃OBO)₃ produced, respectively. Without proton decoupling, the latter signal was split into a quartet due to the coupling with three hydrogens, proving it was a methoxy carbon.

Commercially available BH3·THF contains <0.5 mol % of NaBH₄ as a stabilizing reagent. It is known that BH₃·THF in THF gradually decomposes through a ring-opening reaction of a THF molecule to form "BuOBH2 when the solution is stored above 0 °C.7 The "BuOBH2 thus formed undergoes a redistribution reaction to give a mixture of ("BuO)2BH, ("BuO)₃B, and BH₃.8 A small amount of NaBH₄ is used to prevent the formation of "BuOBH2." The remarkably different reactivity against CO₂ between the purified and commercially available BH₃·THF suggests that NaBH₄ in the latter solution plays an important role in promoting the reduction of CO₂. To confirm the role of NaBH₄, a catalytic amount (1.0 mol %) of NaBH₄ was added to the purified BH₃·THF solution, and under the same reaction conditions, the mixture gave (CH₃OBO)₃ in 83% yield, which is comparable to that of the commercially available BH₃·THF.

To examine the hydroborate species in the $BH_3 \cdot THF$ solution, both the commercial $BH_3 \cdot THF$ solution and the $BH_3 \cdot THF$ solution mixed with 1.0 mol % of $NaBH_4$ after trapto-trap purification were checked using ^{11}B NMR spectroscopy. The former solution was found to contain $B_3H_8^-$ having a signal at -30.1 ppm that splits into a septet when the spectrum was recorded in nondecoupled mode, as shown in Figure S6. Similarly, $NaBH_4$ added to the purified $BH_3 \cdot THF$ solution was not observed. Instead, a broad signal at -26 ppm was observed, which could be assigned to $B_2H_7^{-10}$ Since both $B_3H_8^-$ and $B_2H_7^-$ are reported to be in an equilibrium with BH_4^- , the reaction of BH_4^- with CO_2 is of interest. 9,10

There are several relevant reactions of a BH₄⁻ anion with CO₂ in the literature. The first one appeared in the 1950s. Heller et al. examined the reaction of radioactive ¹⁴CO₂ with LiBH4 in ether and found the formation of HCOOLi and $^{1}/_{2}B_{2}H_{6}$ as well as a small amount of MeOH. 11 Pearson et al. reported the formation of methoxy and formate compounds from the reaction of CO2 with NaBH4, but they did not spectroscopically characterize the products. Thirty years later, La Monica et al. carried out the reduction of CO2 with free BH₄-, which was dissociated from tetrahydroborate-metal complexes formulated as (diimine)(Ph₃P)Cu(BH₄) (diimine = 1,10-phenanthroline and 3,4,7,8-tetramethyl-1,10-phenanthroline). 13 The reaction gave (HCOO)₂BH₂ and (HCOO)₃BH, which were spectroscopically identified. The latter species was thermodynamically unstable and obtained only when the reaction was carried out at −50 °C. Otherwise, it decomposed to (HCOO)₂BH₂⁻ and CO₂.

On the other hand, the formation of trimethoxyboroxine was reported by Brown, who obtained it by the reaction of formic acid (HCOOH) with BH₃·THF at 0 °C in THF.¹⁴ The reaction gave HCOOBH₂ as an intermediate with the evolution of dihydrogen. HCOOBH₂ thus formed reacted further and eventually formed trimethoxyboroxine in good yield (eq 2). Brown also reported the reaction of carbon monoxide (CO) with BH₃·THF. Interestingly, the reaction gave a simple

HCOOH + BH₃
$$\longrightarrow$$
 HCOOBH₂ + H₂ (2)
 \longrightarrow 1/3 (CH₃OBO)₃

donor—acceptor adduct of $BH_3 \cdot CO$, but in the presence of a catalytic amount of $NaBH_4$, the reaction gave tri*methyl*boroxine, $(CH_3BO)_3$, which is the methyl version of the present CO_2 reduction forming trimethoxyboroxine, $(CH_3OBO)_3$.¹⁵

More recent transition-metal-free systems for the activation of CO_2 commonly use strong Lewis bases, such as N-heterocyclic carbenes and P^tBu_3 . These bases attack the carbon center of CO_2 to make the oxygen atoms more nucleophilic, leading to a stronger interaction with a Lewis acid such as BAr_3 and hydrosilane. In the present case, BH_4^- works as a Lewis base to activate CO_2 . Thus, the activated CO_2 is reduced by BH_3 to give the initial reduction product of $HCOOBH_2$, which transforms to the final product of trimethoxyboroxine as reported by Brown.

In the present reaction, since the BH₄⁻ itself can directly reduce CO₂ to form HCOOBH₃⁻, another catalytic mechanism is also possible as shown in eqs 3 and 4. The initial step is the formation of HCOOBH₃, which further reacts with CO₂ to give (HCOO)₂BH₂⁻ as in eq 3. La Monica et al. observed that HCOO dissociates from (HCOO)₂BH₂. Since further reaction with CO₂ does not proceed at ambient temperature, (HCOO)₂BH₂⁻ reacts with BH₃, which can then abstract a HCOO group from (HCOO)₂BH₂ to form HCOOBH₃ and HCOOBH₂ as in eq 4. The former HCOOBH₃⁻ returns to the catalytic cycle, while the latter turns into the final product. In this mechanism, it is considered that a catalytic amount of HCOO- can also initiate the catalytic cycle. In fact, addition of 1.0 mol % of HCOONa in place of NaBH₄ to the BH₃·THF solution led to the similar efficient transformation of CO₂ into trimethoxyboroxine in 78% yield. The sodium cation commonly contained in both NaBH4 and HCOONa did not contribute to the CO2 reduction, since the reduction did not proceed at all in the presence of sodium tetrakis [(3,5trifluoromethyl)phenyl]borate.

$$\text{HCOOBH}_3^- + \text{CO}_2 \rightarrow (\text{HCOO})_2 \text{BH}_2^-$$
 (3)

$$(HCOO)_2BH_2^- + BH_3$$

$$\xrightarrow{HCOO^- \text{ transfer}} HCOOBH_2 + HCOOBH_3^-$$
(4)

In summary, $BH_3 \cdot THF$ with a catalytic amount of $NaBH_4$ or HCOONa efficiently reduces CO_2 to trimethoxyboroxine under ambient conditions. This reaction is simple and very effective for the synthesis of trimethoxyboroxine, which is a useful material as an electrolyte of lithium-ion batteries and a flame retardant.

■ EXPERIMENTAL SECTION

General Comments. All manipulations of the reactions were carried out under an atmosphere of dry nitrogen using Schlenk tube techniques. BH₃·THF solutions were obtained from Aldrich Inc. or Tokyo Kasei Co. and purified by trap-to-trap transfer in vacuo. The concentration of BH₃·THF was determined by a titration of boric acid after hydrolysis of BH₃· CO₂ (99.995%) and ¹³CO₂ were purchased from NIPPON EKITAN Co. and Taiyo Nippon Sanso, respectively. Other reagents were used as received. NMR spectra were recorded on a Jeol LA-300 spectrometer. ¹³C NMR chemical shifts were reported relative to Me₄Si and were determined by reference to the solvent peaks. ¹¹B NMR chemical shifts were reported relative to BF₃·OEt₂.

Reaction of Commercial BH₃·THF. Under an atmosphere of dry CO₂, a Schlenk tube was charged with commercial BH₃·THF (Tokyo

Organometallics Note

Chemical Industry, 0.911 M in THF, 4.0 mL) that contained NaBH₄ (0.5 mol %) as a stabilizing reagent. After the THF solution was stirred 12 h, $^{13}\text{C}\{^{1}\text{H}\}$ and $^{11}\text{B}\{^{1}\text{H}\}$ NMR spectra of the solution were recorded. The yield of (MeOBO)₃ was 87%, which was determined with the GC analysis of MeOH formed by hydrolysis of (MeOBO)₃. $^{13}\text{C}\{^{1}\text{H}\}$ NMR (75.6 MHz, 297 K, THF): δ 51.6 (s). $^{11}\text{B}\{^{1}\text{H}\}$ NMR (96.4 MHz, 297 K, THF): δ 19.2 (s).

Monitoring the Reaction of Commercial BH₃·THF. Under an atmosphere of CO₂, an NMR tube was charged with commercial BH₃·THF (Tokyo Chemical Industry, 0.911 M in THF, 0.5 mL), and then a sealed capillary containing BCl₃ was placed in the NMR tube to calibrate the chemical shifts of the spectra for 2 days.

Reaction of Purified BH₃·THF. Under an atmosphere of dry CO₂, a Schlenk tube was charged with BH₃·THF (0.993 M in THF, 2.8 mL), which was purified by trap-to-trap transfer. After the THF solution was stirred 12 h, an ¹¹B{¹H} NMR spectrum of the solution was recorded, showing a signal at -0.5 ppm assigned to BH₃·THF.

Reaction of Purified BH₃·THF in the Presence of NaBH₄. Under an atmosphere of dry CO₂, a Schlenk tube was charged with NaBH₄ (1.52 mg) and BH₃·THF (0.893 M in THF, 4.5 mL), which was purified by trap-to-trap transfer. After the THF solution was stirred 12 h, (MeOBO)₃ was obtained in 83% yield.

Reaction of Purified BH₃·THF in the Presence of HCOONa. Under an atmosphere of dry CO₂, a Schlenk tube was charged with HCOONa (3.24 mg) and BH₃·THF (0.893 M in THF, 5.34 mL), which was purified by trap-to-trap transfer. After the THF solution was stirred 12 h, (MeOBO)₃ was obtained in 79% yield.

Reaction of Commercial BH₃·THF with $^{13}\text{CO}_2$. Under an atmosphere of N₂, an NMR tube with a J Young valve was charged with commercial BH₃·THF (Tokyo Chemical Industry, 0.911 M in THF, 0.5 mL), and then the headspace gas was replaced with $^{13}\text{CO}_2$. After 2.5 h, a ^{13}C NMR spectrum of the solution was recorded. ^{13}C NMR (75.6 MHz, 297 K, THF): δ 26.3 (t, THF), 51.6 (q, (MeOBO)₃), 68.3 (t, THF), 125.8 (s, CO₂).

ASSOCIATED CONTENT

S Supporting Information

Additional experimental data details including NMR data. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*E-mail: mizuta@sci.hiroshima-u.ac.jp.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported by Grants-in-Aid for Scientific Research No. 25105741 from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

REFERENCES

- (1) (a) Federsel, C.; Jackstell, R.; Beller, M. Angew. Chem., Int. Ed. 2010, 49, 6254. (b) Cokoja, M.; Bruckmeier, C.; Rieger, B.; Herrmann, W.; Kuhn, F. Angew. Chem., Int. Ed. 2011, 50, 8510. (c) Wang, W.; Wang, S.; Ma, X.; Gong, J. Chem. Soc. Rev. 2011, 40, 3703. (d) Fan, T.; Chen, X. H.; Lin, Z. Y. Chem. Commun. 2012, 48, 10808. (e) Finn, C.; Schnittger, S.; Yellowlees, L. J.; Love, J. B. Chem. Commun. 2012, 48, 1392.
- (2) (a) Wang, W. H.; Hull, J. F.; Muckerman, J. T.; Fujita, E.; Himeda, Y. Energy Environ. Sci. 2012, 5, 7923. (b) Tanaka, R.; Yamashita, M.; Nozaki, K. J. Am. Chem. Soc. 2009, 131, 14168. (c) Sanz, S.; Benítez, M.; Peris, E. Organometallics 2010, 29, 275. (d) Langer, R.; Diskin-Posner, Y.; Leitus, G.; Shimon, L. J.; Ben-David, Y.; Milstein, D. Angew. Chem, Int. Ed. 2011, 50, 9948. (e) Chakraborty, S.; Patel, Y. J.; Krause, J. A.; Guan, H. R. Polyhedron 2012, 32, 30.

(f) Hull, J. F.; Himeda, Y.; Wang, W. H.; Hashiguchi, B.; Periana, R.; Szalda, D. J.; Muckerman, J. T.; Fujita, E. *Nat. Chem.* **2012**, *4*, 383. (g) Kang, P.; Cheng, C.; Chen, Z. F.; Schauer, C. K.; Meyer, T. J.; Brookhart, M. *J. Am. Chem. Soc.* **2012**, *134*, 5500. (h) Motokura, K.; Kashiwame, D.; Miyaji, A.; Baba, T. *Org. Lett.* **2012**, *14*, 2642.

- (3) (a) Huang, F.; Zhang, C. G.; Jiang, J. L.; Wang, Z. X.; Guan, H. R. Inorg. Chem. 2011, 50, 3816. (b) Huff, C. A.; Sanford, M. S. J. Am. Chem. Soc. 2011, 133, 18122. (c) Bontemps, S.; Vendier, L.; Sabo-Etienne, S. Angew. Chem., Int. Ed. 2012, 51, 1671. (d) Mitton, S. J.; Turculet, L. Chem.—Eur. J. 2012, 18, 15258. (e) Park, S.; Bezier, D.; Brookhart, M. J. Am. Chem. Soc. 2012, 134, 11404. (f) Sgro, M. J.; Stephan, D. W. Angew. Chem., Int. Ed. 2012, 51, 11343. (g) Wesselbaum, S.; vom Stein, T.; Klankermayer, J.; Leitner, W. Angew. Chem., Int. Ed. 2012, 51, 7499. (h) Berkefeld, A.; Piers, W. E.; Parvez, M.; Castro, L.; Maron, L.; Eisenstein, O. Chem. Sci. 2013, 4, 2152. (i) Chakraborty, S.; Zhang, J.; Patel, Y. J.; Krause, J. A.; Guan, H. R. Inorg. Chem. 2013, 52, 37. (j) Bontemps, S.; Vendier, L.; Sabo-Etienne, S. J. Am. Chem. Soc. 2014, 136, 4419.
- (4) (a) Ashley, A. E.; Thompson, A. L.; O'Hare, D. Angew. Chem., Int. Ed. 2009, 48, 9839. (b) Riduan, S. N.; Zhang, Y.; Ying, J. Y. Angew. Chem, Int. Ed. 2009, 48, 3322. (c) Huang, F.; Lu, G.; Zhao, L. L.; Li, H. X.; Wang, Z. X. J. Am. Chem. Soc. 2010, 132, 12388. (d) Roy, L.; Zimmerman, P. M.; Paul, A. Chem.—Eur. J. 2011, 17, 435. (e) Courtemanche, M.-A.; Larouche, J.; Legare, M.-A.; Bi, W.; Maron, L.; Fontaine, F.-G. Organometallics 2013, 32, 6804. (f) Menard, G.; Stephan, D. W. Dalton Trans. 2013, 42, 5447. (g) LeBlanc, F. A.; Piers, W. E.; Parvez, M. Angew. Chem., Int. Ed. 2014, 53, 789. (h) Kwon, H. J.; Kim, H. W.; Rhee, Y. M. Chem.—Eur. J. 2011, 17, 6501. (i) Binding, S. C.; Zaher, H.; Chadwick, F. M.; O'Hare, D. Dalton Trans. 2012, 41, 9061. (j) Barry, B. M.; Dickie, D. A.; Murphy, L. J.; Clyburne, J. A. C.; Kemp, R. A. Inorg. Chem. 2013, 52, 8312. (k) Lu, Z.; Wang, Y.; Liu, J.; Lin, Y.-J.; Li, Z. H.; Wang, H. Organometallics 2013, 32, 6753. (1) Das Neves Gomes, C.; Blondiaux, E.; Thuery, P.; Cantat, T. Chem.—Eur. J. 2014, 20, 7098.
- (5) Courtemanche, M.-A.; Legare, M.-A.; Maron, L.; Fontaine, F.-G. *J. Am. Chem. Soc.* **2013**, *135*, 9326.
- (6) Recently, the reaction of BH₃·SMe₂ with CO₂ in the presence of strong bases was reported. Legare, M.-A.; Courtemanche, M.-A.; Fontaine, F.-G. *Chem. Commun.* **2014**, *50*, 11362.
- (7) (a) Kollonitsch, J. J. Am. Chem. Soc. 1961, 83, 1515. (b) Lane, C. F. Chem. Rev. 1976, 76, 773. (c) Krishnamurthy, S.; Brown, H. C. J. Org. Chem. 1979, 44, 3678. (d) Potyen, M.; Josyula, K. V. B.; Schuck, M.; Lu, S.; Gao, P.; Hewitt, C. Org. Process Res. Dev. 2007, 11, 210. (8) (a) Pasto, D. J.; Balasubramaniyan, V.; Wojtkowski, P. W. Inorg. Chem. 1969, 8, 594. (b) Masuda, Y.; Nunokawa, Y.; Hoshi, M.; Arase, A. Chem. Lett. 1992, 349.
- (9) (a) Buerchner, M.; Erle, A. M. T.; Scherer, H.; Krossing, I. Chem.—Eur. J. 2012, 18, 2254. (b) Godfroid, R. A.; Hill, T. G.; Onak, T. P.; Shore, S. G. J. Am. Chem. Soc. 1994, 116, 12107. (c) Hill, T. G.; Godfroid, R. A.; White, J. P., III; Shore, S. G. Inorg. Chem. 1991, 30, 2952.
- (10) (a) Harder, S.; Spielmann, J. J. Organomet. Chem. 2012, 698, 7. (b) Wrackmeyer, B. Z. Naturforsch., B: Chem. Sci. 2004, 59, 1192. (c) Khan, S. I.; Chiang, M. Y.; Bau, R.; Koetzle, T. F.; Shore, S. G.; Lawrence, S. H. J. Chem. Soc., Dalton Trans. 1986, 1753. (d) Shore, S. G.; Lawrence, S. H.; Watkins, M. I.; Bau, R. J. Am. Chem. Soc. 1982, 104, 7669. (e) Hertz, R. K.; Johnson, H. D., II; Shore, S. G. Inorg. Chem. 1973, 12, 1875.
- (11) Burr, J. G., Jr.; Brown, W. G.; Heller, H. E. J. Am. Chem. Soc. 1950, 72, 2560.
- (12) Wartik, T.; Pearson, R. K. J. Inorg. Nucl. Chem. 1958, 7, 404.
- (13) (a) La Monica, G.; Ardizzoia, G. A.; Cariati, F.; Cenini, S.; Pizzotti, M. *Inorg. Chem.* **1985**, 24, 3920. (b) La Monica, G.; Angaroni, M. A.; Cariati, F.; Cenini, S. *Inorg. Chim. Acta* **1988**, 143, 239.
- (14) (a) Yoon, N. M.; Pak, C. S.; Brown, H. C.; Krishnamurthy, S.; Stocky, T. P. J. Org. Chem. 1973, 38, 2786. (b) Brown, H. C.; Stocky, T. P. J. Am. Chem. Soc. 1977, 99, 8218.
- (15) Rathke, M. W.; Brown, H. C. J. Am. Chem. Soc. 1966, 88, 2606.

Organometallics Note

(16) (a) Moemming, C. M.; Otten, E.; Kehr, G.; Froehlich, R.; Grimme, S.; Stephan, D. W.; Erker, G. Angew. Chem., Int. Ed. 2009, 48, 6643. (b) Peuser, I.; Neu, R. C.; Zhao, X.; Ulrich, M.; Schirmer, B.; Tannert, J. A.; Kehr, G.; Froehlich, R.; Grimme, S.; Erker, G.; Stephan, D. W. Chem.—Eur. J. 2011, 17, 9640. (c) Neu, R. C.; Menard, G.; Stephan, D. W. Dalton Trans. 2012, 41, 9016. (d) Reissmann, M.; Schaefer, A.; Jung, S.; Mueller, T. Organometallics 2013, 32, 6736. (e) Pu, M.; Privalov, T. Inorg. Chem. 2014, 53, 4598.