МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Факультет обшей и прикладной физики

Отчет о выполнении работы 2.4.1. Определение теплоты испарения жидкости

Выполнил: Студент гр. Б02-304 Головинов. Г.А.

Аннотация

Цель работы: 1) измерить давление насыщенного пара жидкости при разной температуре; 2) вычислить по полученным данным теплоты испарения с помощью уравнения Клапейрона— Клаузиуса.

В работе используются: термостат, герметичный сосуд, исследуемая жидкости, отсчетный микроскоп.

Основные теоретические сведения

Получим условие равновесия двух фаз:

Пусть N_1, N_2 — количество частиц в фазах 1 и 2, а V_1, V_2 — объемы, тогда

$$dN_1 = -dN_2, \quad dV_1 = -dV_2 \tag{1}$$

Запишем для обеих фаз изменение внутренней энергии:

$$dU_1 = TdS_1 - pdV_1 + \mu_1 dN_1 dU_2 = TdS_2 - pdV_2 + \mu_1 dN_2$$

сложим предыдущие равенства и получим слева ноль в силу изолированности системы.

$$T(dS_1 + dS_2) - p(dV_1 + dV_2) + \mu_1 dN_1 + \mu_2 dV_2 = 0$$

в силу (1) получим

$$T(dS_1 + dS_2) = (\mu_1 - \mu_2)dV_2$$

в равновесии энтропия максимальна, значит $dS_1+dS_2=0$, отсюда получим условие равновесия двух фаз:

$$\mu_1(p,T) = \mu_2(p_T) \tag{2}$$

Теперь можно расписать изменение химических потенциалов:

$$d\mu_1 = -s_1 dT + v_1 dp d\mu_2 = -s_2 dT + v_2 dp$$

Вследствие равенства самих потенциалов равны и их изменения:

$$(s_2 - s_1)dT = (v_2 - v_1)dp$$

Отсюда получается соотношение Клапейрона— Клаузиуса:

$$\frac{dp}{dT} = \frac{s_2 - s_1}{v_2 - v_1} \cdot \frac{T}{T} = \frac{q}{T(v_2 - v_1)}$$
(3)

где q — удельная теплота фазового перехода при переходе из состояния 1 в состояние 2 (при испарении положительна, при конденсации отрицательна), v_1, v_2 — удельные объемы в соответствующих состояниях.

Для нашей работы актуальна следующая версия этого соотношения:

$$\frac{dp}{dT} = \frac{L}{T(V_2 - V_1)}\tag{4}$$

где p — давление насыщенного пара при температуре T — абсолютная температура жидкости и пара, L — теплота испарения жидкости, V_2 — объем пара, V_1 — объем жидкости. Все величины относятся к одному молю вещества.

Объем жидкости V_1 намного меньше чем объем пара V_2 (менее 0.5% от V_2). Поэтому V_1 можно пренебречь.

Объем V_2 теперь будем просто обозначать V. Его можно связать с давлением и температурой уравнением Ван-дер-Ваальса:

$$\left(p + \frac{a}{V^2}\right)(V - b) = RT$$
(5)

табличная величина b тоже достаточно мала (соизмерима с V_1 , которым мы пренебрегли), поэтому и ее мы учитывать не будем.

Пренебрежение a/V^2 дает ошибку менее 3%, Подставляя (6) в (4) получим: при давлении ниже атмосферного ошибка становится еще меньше. Таким образом, будем считать насыщенный пар идеальным газом:

$$pV = RT \tag{6}$$

$$L = \frac{RT^2}{p} \cdot \frac{dp}{dT} = -R \frac{d(\ln p)}{d(1/T)} \tag{7}$$

Экспериментальная установка

Рис. 1: Схема установки для определения теплоты испарения

Температура выставляется с помощью термостата А, давление измеряется при помощи экспериментального прибора В и микроскопа С: оно определяется с помощью ртутного манометра 15. Высоту столба (разницы столбов) мы измеряем с помощью микроскопа 16 и шкалы 17.

Обработка полученных результатов

C помощью метода χ^2 получены две прямые:

Вычисляем по формуле (7) значения теплоты испарения спирта:

$$\ln p = -5160.3 \cdot \frac{1}{T} + 26.2$$
$$\ln p = -5239.1 \cdot \frac{1}{T} + 26.2$$

$$L_{
m harpebahug}=-5239.1\cdotrac{1}{T}+26.2$$
 $L_{
m harpebahug}=42.9\pm2.1\ {
m кДж/моль}$ ся нагревания, вторая — для охла-

брежения a и b.

Переведем в СИ и получим:

первая — для нагревания, вторая — для охлаждения. (Погрешности получились около 3-го знака после запятой, поэтому ими можно пренебречь).

Видно, что прямые несколько отличаются, однако относительная разница коэффициентов k наклона прямых около 1.5%.

Погрешности оцениваем следующим образом:

$$L_{ ext{harpebahum}} = 932.6 \pm 46.6 \; ext{кДж/кг}$$

Погрешность L взята за 5%, берется из прене-

$$\sigma(1/T) = 1/T \cdot \varepsilon_T$$
$$\sigma(\ln p) = \varepsilon_p$$

Полученные значения попадают в интервал $\pm 2\sigma$, что говорит о недооценке погрешности и несовершенстве используемой модели.

 $L_{
m ox, naж, dehus} = 945.6 \pm 47.3 \ {
m k} {
m Дж/k} {
m K}$

ВЫВОДЫ 4

Выводы

В результате работы были получены значения ся от табличных, однако попадают в интервал удельной теплоты парообразования спирта в двух случаях: при нагревании и при охлаждении. Полученные значения немного отличают-

 $\pm 2\sigma$, что говорит о недооценке погрешности и несовершенстве модели.

Приложение

$1/T, K^{-1}$	$\ln p$	$\sigma_{1/T}, \mathrm{K}^{-1}$	$\sigma_{\ln p}$
0.0034	8.697	2.85E-06	0.022
0.0034	8.769	2.83E-06	0.021
0.0034	8.836	2.81E-06	0.019
0.0033	8.897	2.79E-06	0.018
0.0033	8.959	2.78E-06	0.017
0.0033	9.013	2.76E-06	0.016
0.0033	9.074	2.74E-06	0.015
0.0033	9.131	2.72E-06	0.014
0.0033	9.191	2.70E-06	0.014
0.0033	9.241	2.68E-06	0.013
0.0033	9.304	2.67E-06	0.012
0.0033	9.357	2.65E-06	0.012
0.0032	9.464	2.62E-06	0.010
0.0032	9.569	2.58E-06	0.009
0.0032	9.632	2.56E-06	0.009

Таблица 1: Результаты измерений для нагревания

$1/T, K^{-1}$	$\ln p$	$\sigma_{1/T}, \ { m K}^{-1}$	σı
	-		$\sigma_{\ln p}$
0.0032	9.567	2.59E-06	0.009
0.0032	9.530	2.60E-06	0.010
0.0032	9.476	2.62E-06	0.010
0.0032	9.423	2.64E-06	0.011
0.0033	9.368	2.65E-06	0.011
0.0033	9.302	2.67E-06	0.012
0.0033	9.250	2.69E-06	0.013
0.0033	9.192	2.70E-06	0.014
0.0033	9.139	2.72E-06	0.014
0.0033	9.096	2.74E-06	0.015
0.0033	9.030	2.76E-06	0.016
0.0033	8.984	2.78E-06	0.017
0.0033	8.904	2.79E-06	0.018
0.0034	8.853	2.81E-06	0.019
0.0034	8.769	2.83E-06	0.021
0.0034	8.721	2.85E-06	0.022

Таблица 2: Результаты измерений для охлаждения