Energy Efficient Reconfiguration Algorithm using Reinforcement Learning in Federated Edge Cloud

Esrat Maria

Distributed and Cloud Computing Lab (http://dcclab.sogang.ac.kr)

Background

- **→** Traditional cloud computing limitations
 - Physical distance between users and cloud servers
 - Service latency is increased

Background

- → Edge Computing may not be enough
 - Limited capacity
 - Edge server in each domain increases

Background

- **→** Solution : Federated Edge Cloud (FEC)
 - Offers collaboration of multiple edge servers
 - Nearby edge servers can share

- → Service functions are placed with their MAX requirement
 - More servers are required to be turned on
 - One Service Function Chain (SFC) in one server
 - Inefficient when dealing with varying number of traffic

- → Service functions are placed with their MAX requirement
 - More servers are required to be turned on
 - One Service Function Chain (SFC) in one server
 - Inefficient when dealing with varying number of traffic

- ♦ What happens when placed with MAX requirement
 - Under-utilized servers
 - Inefficient when traffic is fluctuating

Usually 50~60% utilized

With MIN requirement the same service function placement example is much more efficient

→ With MIN requirement the same service function placement example is much more efficient

→ With MIN requirement the same service function placement example is much more efficient

- **→** Cons in MIN approach
 - With high traffic MIN approach is not suitable
 - ✓ Resources are overloaded faster
 - ✓ More energy required

energy increased!

Migration

- Small server capacity in a FEC
 - Increased number of migration and migration overhead

How to settle to an optimal phase?

Previous Works

- **→** Few efforts made to minimize energy in FEC
 - *"Sla-aware and energy-efficient dynamic overbooking in sdn-based cloud data centers" proposed:
 - Dynamic overbooking algorithm to allocate host and network resources
 - Over/Under provisioning of resources
 - Workload variation not considered
 - Various threshold based approaches

Previous Works

→ Few efforts made to minimize energy in FEC

- Use of Reinforcement Learning / ML approaches
 - "Network aware approach for the scheduling of virtual machine migration during peak loads" – proposed:
 - ✓ Agent that learns optimal migration time
 - Overall migration minimization not involved
 - Service path reconfiguration not involved
 - "A reinforcement learning approach for dynamic selection of virtual machines in cloud data centres" – proposed:
 - ✓ Agent that chooses optimal VM to migrate
 - "Using reinforcement learning for autonomic resource allocation in clouds: Towards a fully automated workflow" – proposed:
 - ✓ RL controller that dynamically allocates and de-allocates resources based on workload variation.

FEC-RL(Reinforcement Learning)

This paper proposes a RL based service reconfiguration algorithm

- 1. Minimizes energy consumption along the service path
- 2. Guarantees service QoS

- Through trial and error FEC-RL founds an optimal solution that reduces energy
- **❖** A relatively low number of migration and migration overhead while dealing with traffic fluctuation
 - Reinforcement learning based reconfiguration algorithm that can reduce the service migration overhead

Proposed Approach – FEC-RL (Architecture)

Four Major components

- Service Placement Manager
 - ✓ Using MIN traffic requirement
- Migration Manager
 - ✓ Invokes migration when host over utilized
- Service Monitor
- Service Agent
 - ✓ Activated by Migration
 Manager to choose the optimal
 Migration strategy

Filtering Server List

It can't fulfil the service request

Or if latency requirement cant

be met

- → Before FEC-RL even starts, a filtering is done
 - Based on CPU and latency requirement by the service
 - Eligible servers make <u>Candidate Host List</u>
 - For example, a service requires 60% Host CPU and latency 12ms

Filtering Server List

- Before FEC-RL even starts, a filtering is done
 - Based on CPU and latency requirement by the service
 - Eligible servers make <u>Candidate Host List</u>
 - For example, a service requires 60% Host CPU and latency 12ms

State

- **→** Total state number = Total number of host in Candidate Host List
- **→** State represents → total physical energy consumption
 - Physical Energy = Server Energy + Link Energy

$$\begin{split} \checkmark E_{SP_i}^{physical} &= E_{SP_i}^{server} + E_{SP_i}^{link} \\ \checkmark E_i^{server} &= E_{server_i}^{static} + \left(E_{server_i}^{max} - E_{server_i}^{static} \right) \times \frac{CPU_i^{used}}{CPU_i^{total}} \\ \checkmark E_i^{link} &= E_{switch_i}^{static} + E_{switch_i}^{port} \times num_{port} \end{split}$$

- State represents total energy consumption of physical resources along the service path
- Server utilization = CPU utilization

Action

- Number of actions = Total number of host in Candidate Host List
- **→** Two ways choosing action by the agent
 - Exploration: random action by agent
 - ❖Works with <u>no idea</u> about the environment
 - ❖Initial learning stage
 - Exploitation: action taken by an experienced agent
 - ❖Able to choose optimal action
 - Has more experience during this phase
 - Decides from looking at the reward value

Usage of state aggregation → Mapping of 10 states into one

Service Path Construction

Service Path, SP

Service Path Construction

Service Path, SP

Path, **SP** = Host 10 -> SW-1 -> SW-2 -> Host 7 -> SW-3 -> Host 21

Service Path Construction

Service Path, SP

Path, **SP** = Host 10 -> SW-1 -> SW-2 -> Host 7 -> SW-3 -> Host 21

When a host is over utilized, migration is triggered and **FEC-RL** is invoked

Final Reward ($E_{SP_i}^{physical}$ calculation)

Service Path, SP

(1st choice) Path, **SP** = Host 10 -> SW-1 -> SW-2 -> Host 18 -> SW-3 -> Host 21

Optimal Path, **SP** = Host 10 -> SW-1 -> SW-2 -> Host 25 -> SW-3 -> Host 21

Server utilization with 1^{st} choice: (0.35 + 0.75 + 0.58) = 1.68

Server utilization with optimal choice: (0.35 + 0.6 + 0.58) = 1.53 (reduced)

The Lower the reward value the better the model (not considering link energy for this example)

Final Reward (Lat_{SP_i} calculation)

Service Path, SP

(1st choice) Path, SP = Host 10 -> SW-1 -> SW-2 -> Host 18 -> SW-3 -> Host 21 Optimal Path, SP = Host 10 -> SW-1 -> SW-2 -> Host 25 -> SW-3 -> Host 21 The higher the **BandWidth** the lower the latency value.

The Lower the reward value the better the model (not considering link energy for this example)

Evaluation

- Simulator: <u>CloudSimSDN</u>
- → FEC Topology
 - 800 host servers
 - ✓ Distributed among 8 domains
 - PlanetLab(for Traffic generation)
 - VM utilization of 2 months (March, April)
 - CPU data from 3rd April, 2011
 - Low, Medium, High traffic

Reinforcement Learning

- Iterations: Total 60, for all traffic
- learning rate: 0.05

Compared with

- Traditional MAX approach
 - Max Traffic requirement
 - Migration overhead not considered
- ESFEC-EF/MF

FEC-RL Convergence Model

→ The model converges starting from 50th iteration

FEC-RL Energy Efficiency

FEC-RL QoS Efficiency

FEC-RL Migration number & Migration Energy

Conclusion

- → A learning based algorithm called FEC-RL
 - In an unknown environment finding an optimal solution
 - Offered Energy efficiency
 - Offered QoS efficiency
 - Less migration energy consumed
 - Less migration overhead

Thank You