

División y conquista: Contando inversiones

Teoría de Algoritmos I (75.29 / 95.06)

Ing. Víctor Daniel Podberezski

Problema

Sean

Un conjunto de n "elementos"

Dos listas ordenadas de los "n" elementos

Queremos

Tener una medida de semejanza / diferencia entre las dos listas.

Diferencias entre las preferencias

Llamaremos

A y B a las listas de preferencias.

Utilizaremos

El orden de aparición de los elementos de A para identificar a los diferencias.

Por otro lado

Tendremos la lista de B que posiblemente esté "fuera de orden"

(Si B esta en orden, entonces representa el mismo orden de preferencia que A)

Mensurar las diferencias

Buscaremos

Poder mensurar que nos diga que tan lejos esta B de estar ordenada en forma ascendente.

Si

b_i < b_{i+1} para todo i , entonces A y B son iguales

Queremos que el valor de "diferencia" sea igual a cero

A medida

Que B esté "más mezclado" el valor de diferencia debe aumentar

Inversiones

Utilizaremos

El concepto de "inversiones" para medir cuando desordenado esta la lista B

Dos elementos b_i, b_i con i < j están invertidos

 $Sib_i > b_j$

Podemos - mediante fuerza bruta - calcular la cantidad de inversiones

Comparando cada posición con todas las siguientes → O(n²)

¿Podemos hacerlo mejor?

Ejemplo

Podemos ver que

1 está "invertido" con 2 elementos: 2 y 4 → (2,1) (4,1)

4 está "invertido" con 1 elemento: 3 → (4,3)

En total hay 3 inversiones

1 está invertido con 4 elementos

2 está invertido con 3 elementos

3 está invertido con 2 elementos

4 está invertido con 1 elementos

En total hay 10 inversiones

Idea de la solución

Este proceso se puede realizar en O(n)

Idea de la solución (cont.)

El resultado del proceso de merge y conteo

Sera una lista ordenada

Lamentablemente no podemos suponer

Que las mitades estén ordeandas

Pero, podemos partir estas partes recursivamente para hacerlo.

La suma de todas las inversiones contadas en cada uno de los subproblemas corresponden a la cantidad total de inversiones en la lista

Ejemplo

Pseudocódigo

```
Ordenar-Contar(L)
Si |L|=1
    Retornar (0,L) // No hay inversiones
Sino
    Sea A los techo(n/2) primeros elementos de L
    Sea B los piso(n/2) restantes elementos de L
    (ra,A) = Ordenar-Contar(A)
    (rb,B) = Ordenar-Contar(B)
    (r,L) = Merge-Contar(A,B)
Retornar (r+ra+rb,L)
```


Pseudocódigo (cont.)

```
Merge-Contar(A,B)
Sea L lista
inv = 0
j=0, i=0 //punteros a la lista A y B
Repetir
    a = A[i], b = B[j]
    Si a>b
        L[i+j]=a , i++
    Sino
       L[i+j]=b , j++
        inv=+(|A|-i)
Mientras i<|A| y j<|B|
Desde i hasta |A|-1
    L[i+j]=A[i]
    inv+=|B|
Desde j hasta |B|-1
    L[i+j]=B[i]
Retornar (inv,L)
```


Complejidad

Cada problema con n elementos

Se divide en 2 subproblemas de n/2 elementos

La unión de los resultados

Se construye recorriendo unas vez los n elementos → O(n)

Podemos expresar la recurrencia como

$$T(n) = 2T(n/2) + O(n)$$

Utilizando el teorema maestro

Nos queda una complejidad temporal T(n) =O(n log n)

Presentación realizada en Septiembre de 2020