Schulische Projektarbeit Sommer 2022

Fachinformatiker für Anwendungsentwicklung Dokumentation zur schulischen Projektarbeit

Projekt "Kraftfahrzeugkennzeichen"

Webapplikation zur Informationsausgabe anhand des Unterscheidungszeichen des KFZ-Kennzeichens

Abgabetermin: Darmstadt, den 20.05.2022

Projektbeteiligte:

Piotr Dziekoński Aldi Wijaya Hutani Viet Duy Peter Pham

Ausbildungsbetrieb:

Heinrich-Emanuel-Merck-Schule Alsfelder Straße 23 64289 Darmstadt

In halts verzeichnis

Inhaltsverzeichnis

Abbil	ldungsverzeichnis	11
Tabe	llenverzeichnis	III
Listir	ngs	IV
Abkü	irzungsverzeichnis	V
1	Ausgangssituation	1
1.1	Projektziel und Teilaufgaben	1
1.2	Projektumfeld, Prozessschnittstellen	1
2	Ressourcen- und Ablaufplanung	1
2.1	Personal-, Sachmittel-, Termin- und Kostenplanung	1
2.2	Ablaufplanung	2
3	Durchführung und Auftragsbearbeitung	2
3.1	Prozessschritte und Vorgehensweise	2
3.2	Qualitätssicherung	3
3.3	Abweichungen & Anpassungen	3
4	Projektergebnisse	4
4.1	Soll-/Ist-Vergleich	4
4.2	Lesson Learned	4
\mathbf{A}	Anhang	i
A.1	Use-Case-Diagramm	j
A.2	Anwendungsfall-Beschreibung	j
A.3	GANTT-Diagramm	iv
A.4	Einpflegen der Datenbank-Tabelle	V
A.5	Skript	viii
A.6	Datenbank Anbindung mit Express-Back-End	ix
A.7	Abrufen der SQL-Abfrage in Back-End Anwendung	ix
A.8	Benutzerdokumentation	xiv

Abbildungs verzeichnis

Abbildungsverzeichnis

1	Use-Case Diagramm für die Anwendung KFZ-Kennzeichnung	i
2	GANTT-Diagramm zur Visualisierung der Schritte zum Projektziel	iv
3	Das Laden der JSON Datei in die neue Tabelle	v
4	Konfigurierung der Tabelle	v
5	Beginn des Importierens	vi
6	Beginn des Importierens	vi
7	Ansicht der Tabelle KFZ Kennzeichung	vi
8	Ansicht der Datenbank-Inhalt in Back-End-Anwendung	vii
9	Skript zum Extrahieren der KFZ-Kennzeichen Daten	viii
10	Die Ansicht der Anwendung des KFZ-Verwaltungsystems	xiv

Webapplikation zur Informationsausgabe anhand des Unterscheidungszeichen des KFZ-Kennzeichens

Tabel lenverzeichnis

Tabellenverzeichnis

1	User Flow's	3
2	Soll-/Ist-Vergleich	4

Webapplikation zur Informationsausgabe anhand des Unterscheidungszeichen des KFZ-Kennzeichens

Listings

Listings

1	Javascript Code für die Herstellung der Verbindung mit Datenbank	ix
2	Javascript Code für bestimmten Datensatz aus der Tabelle abzufragen	ix

PROJEKT "KRAFTFAHRZEUGKENNZEICHEN"

Webapplikation zur Informationsausgabe anhand des Unterscheidungszeichen des KFZ-Kennzeichens $\stackrel{\text{||I||}}{\mathsf{HEMS}}$

 $Abk\"{u}rzungsverzeichnis$

Abkürzungsverzeichnis

 \mathbf{CSS} Cascading Style Sheets \mathbf{CSV} Comma Separated Value Structured Query Language \mathbf{SQL} HEMS Heinrich Emanuel Merck Schule

 \mathbf{KFZ} Kraftfahrzeug

 \mathbf{XML} Extensible Markup Language **JSON** Javascript Object Notation

1 Ausgangssituation

1.1 Projektziel und Teilaufgaben

Das Ziel dieses Projektes ist die erfolgreiche Entwicklung einer webbasierten Anwendungen, zur einfachen Informationsausgabe eines Autokennzeichens. Anhand des Anfangsbuchstaben des Kennzeichens sollen Kreis und Bundesland ausgegeben werden. Zusätzlich sollen Kennzeichen nach Bundesländern, Kreisen und Kreisstädten ermittelt werden können. Durch die Einbindung von Wikipedia und Google Maps soll der Benutzer die Möglichkeit haben, weitere Informationen bei Bedarf zu erhalten. Des Weiteren sollen für den Datenaustausch die Möglichkeit zum Import und Export bestehen. Zu diesen Anforderungen wurde ein Use-Case-Diagramm erstellt, welches unter A.1 - Use-Case-Diagramm zu finden ist. Zusätzlich zu dem Use-Case-Diagramm ist eine genauere Beschreibung der Anwendungsfälle in tabelarischer Form im Anhang unter A.2 - Anwendungsfall-Beschreibung zu finden.

Der Auftraggeber wünscht sich eine beliebige Funktion, welche die Autoren frei wählen dürfen. Auf diesen Wunsch wird im Abschnitt 3.3 - Abweichungen, Anpassungen, Entscheidung näher eingegangen.

1.2 Projektumfeld, Prozessschnittstellen

Die Heinrich-Emanuel-Merck-Schule Darmstadt ist eine selbstständige berufliche Schule für Elektround Informationstechnik. Im Bereich IT bietet die Heinrich Emanuel Merck Schule (HEMS) Vertiefung
im Bereich Anwendungsentwicklung, System-Integration und kaufmänischen Unterricht an. Unsere
Gruppe mit der Vertiefung in der Anwendungsentwicklung besteht aus den im Deckblatt genannten
Autoren Aldi Hutani, Piotr Dziekonski, Peter Pham, hat sich mit dem Projekt KraftfahrzeugkennzeichenVerwaltung befasst. Das Projekt mit dem Namen "Kraftfahrzeugkennzeichen"wird in den Räumlichkeiten der HEMS durchgeführt. Hauptansprechpartner ist Herr Norbert Grothe, der dieses Projekt
genehmigt hat und den Autoren alle Mittel für die Umsetzung des Projektes zur Verfügung stellt.

2 Ressourcen- und Ablaufplanung

2.1 Personal-, Sachmittel-, Termin- und Kostenplanung

Zur Entwicklung dieses Projektes waren drei Auszubildende mit der Vertiefung Anwendungsentwicklung eingesetzt. Durch den Projektstart am 09.02. und der Abgabe am 20.05.2022 haben die Autoren einen Zeitraum von 5 Schulwochen für die erfolgreiche Bearbeitung des Projektes. Jeden Mittwoch eines Schulblockes wird den Autoren von 08:00 bis 13:00 Uhr die Möglichkeit gegeben, an dem Projekt zu arbeiten. Dadurch ergibt sich ein theoretischer Arbeitsaufwand von 25 Stunden. Dieser Arbeitsaufwand wird nicht durch den Auftraggeber bezahlt sondern durch die auszubildenden Firmen. Dadurch enstehen Projektkosten in Höhe von null Euro für den Auftraggeber.

2.2 Ablaufplanung

Zur Erreichung des Projektziels wurden Teilaufgaben erstellt und diese innerhalb der Projektgruppe aufgeteilt. Diese zu bearbeiteten Teilaufgaben wurden zur besseren Übersicht in einem GANTT Diagramm festgehalten. Dieses Diagramm ist im Anhang A.3: GANTT-Diagramm auf Seite iv einzusehen.

3 Durchführung und Auftragsbearbeitung

3.1 Prozessschritte und Vorgehensweise

Zu aller erst wurde eine Datenbank benötigt. Um die Datenbank abzurufen, wird die Programmiersprache Structured Query Language (SQL) angewendet. Wobei MySQL zum Einsatz kommt, um die Daten-Speicherung, -Verwaltung, und -Änderung in die Datenbank vorzunehmen.

Hierfür wurde Folgendes durchgeführt. Im Anhang unter Anhang A.4 sind Ausschnitte dazu zu finden.

- Installation sowie Einrichtung der Datenbank auf lokalem Rechner (z.B. MySQL Workbench 8.0)
- einen Benutzernamen und ein Passwort wurden festgelegt
- Neue Datenbank-Schema wurde in MySQL Workbench erstellt.
- Neue Tabelle wurde im neuen Schema erstellt.

Um die neu erstellte Tabelle mit den Daten einzupflegen, benötigen wir zuerst die Liste von allen Kraftfahrzeug (KFZ) Deutschlands. Die Daten für die Liste haben wir aus unserer Recherche unter https://www.kennzeichenking.de/kfz-kennzeichen-liste entnommen. Des Weiteren wurden anhand der in der URL abgebildete Liste folgendes durchgeführt:

- Erstellen eines Skripts, um die KFZ-Daten aus der Tabelle zu extrahieren. (Dieses Skript ist im Anhang unter Anhang A.5 Skript zu finden.)
- Speichern der KFZ-Daten in Form einer JSON Datei.
- Importieren der JSON Datei in die MySQL Workbench, um die neu erstellte Tabelle mit Daten versorgen zu können.

Somit wurden unsere Datenbank mit der benötigten Daten eingepflegt und konnte dann in MySQL Workbench mit SQL-Abfragen getestet werden. Die nächste Vorgehensweise ist die Herstellung einer Verbindung zwischen Datenbank und Express-Back-End Anwendung. (Siehe Anhang A.6). An dieser Stelle wurden Folgendes durchgeführt:

- Installation Node.JS Module für MySQL Datenbank
- Verbindung mit localhost mit einem bestimmten Port wurde bestimmt
- Nachdem die Verbindung mit der Express-Back-End Anwendung erfolgreich hergestellt wurde, wurden SQL-Abfragen in Express-Back-End Anwendung abgerufen und getestet, ob die Inhalt der KFZ-Tabelle angezeigt werden kann. Ein Auschnitt dazu ist im Anhang (A.7) zu finden.

Abschließend ist noch die Anbindung mit der React-Front-End Anwendung, um die Anwendung in tabellarisch darzustellen. Folglich mit etwas Cascading Style Sheets (CSS)-Anpassung sollte die Anwendung optisch besser und angenehm anzusehen sein.

3.2 Qualitätssicherung

Um die Qualität der abzuliefernden Webapplikation zu garantieren, werden User-Flow's definiert. Anhand diesen User-Flows's werden Regressiontests durchgeführt. Eine Auflistung der User-Flows's ist in der folgenden Tabelle einsehbar.

Nr.	User Flow			
1	Laden der Seite			
2	Einsehen der Übersicht mit allen Informationen			
3	Ausgabe Kreis und Bundesland der eingegebenen Anfangsbuchstaben			
	des Kraftfahrzeugkennzeichen			
4	Ermittlung der Kennzeichen nach Bundesland			
5	Ermittlung der Kennzeichen nach Kreis			
6	Ermittlung der Kennzeichen nach Kreisstadt			
7	Weiterleitung auf Wikipedia bei Klick auf den Wikipedia Button			
7	Weiterleitung auf Google Maps bei Klick auf den Google-Maps Button			
8	Export der Daten in XML			
9	Export der Daten in CSV			
10	Export der Daten in JSON			
1 1	Import der Daten in XML			
12	Import der Daten in CSV			
13	Import der Daten in JSON			
14	Hinzufügen von Datensätze			

Tabelle 1: User Flow's

Zusätzlich zu der Tabelle ist unter A.1 ein Use-Case-Diagramm und unter A.2 die Beschreibung zu den einzelnen Anwendungsfällen hinterlegt.

3.3 Abweichungen & Anpassungen

Die vom Auftraggeber gestellten Forderungen wurden alle eingehalten. Somit gibt es keine besonderen Abweichungen und Anpassungen. Lediglich die gewünschte Zusatzfunktion des Auftraggebers wurde

4 Projektergebnisse

zusätzlich implementiert. Nach einer gemeinsamen Besprechung der Projektbeteiligten wurde eine Funktion implementiert, welche den Benutzer erlaubt, Datensätze hinzuzufügen. Dadurch wird eine Anpassung der Datensätze vereinfacht. Weitere Informationen sind in der Benutzerdokumentation unter A.8 zu finden.

4 Projektergebnisse

4.1 Soll-/Ist-Vergleich

Die für das Projekt geplannte Bearbeitungszeit, Personal und Sachmittel konnten eingehalten werden. Dabei ergaben sich kleinere Verschiebungen zwischen den Teil-Aufgaben, die im Abschnitt 3.1 Prozessschritte und Vorgehensweise aufgezählt werden. Der zeitliche Ablauf des Projektes ist aus der folgenden Tabelle ersichtlich.

Beispiel (verkürzt) Wie in Tabelle 2 zu erkennen ist, konnte die Zeitplanung bis auf wenige Ausnahmen bei der Dokumentation sowie das Erstellen der Datenbank eingehalten werden. Die benötigte Zeit für die Dokumentation, das Erstellen, sowie auch beim Einpflegen der Datenbank ist länger als vorher geschätzt wurde.

Phase	Beschreibung der Aufgaben	Soll-Stunden	Ist-Stunden	Differenz
Analyse	Anwendungsfallbeschreibung	1 h	1 h	
	Architekturauswahl	1 h	1 h	
\mathbf{Design}	Datenbankdesign und Einrichtung	2 h	1 h	-1 h
	Erstellen des Use-Case- & Klassendiagramms	2 h	1 h	-1 h
Implementierungssphase	Erstellen der Datenbank	2 h	3 h	+1 h
	Erstellen der Back-Ends Anwendung	3 h	3 h	
	Erstellen der Front-End Anwendung	5 h	5 h	
Test	Testen der Anwendung	2 h	2 h	
Dokumentation	Schreiben der Projektdokumentation	5 h	6 h	+1 h
	Schreiben Benutzerdokumentation	1 h	1 h	
Rollout	Abnahme und Einführung	1 h	1 h	
Gesamt		25 h	25 h	0 h

Tabelle 2: Soll-/Ist-Vergleich

4.2 Lesson Learned

Im Projektverlauf konnten die Autoren, wertvolle Erfahrungen in der Projektplanung und -durchführung sammeln. Insbesondere die Bedeutung der kontinuierlichen Kommunikation untereinander, um für eine erfolgreiche Umsetzung des Projektes zu garantieren, wird deutlich. Zudem wurden neue Erkenntnisse zur Integration und Nutzung der angewandten Technologien gewonnen. Beispielsweise erwies sich das React-Framework als sehr nützlich, da man die Möglichkeit hat Komponenten einfach wiederzuverwenden. Zudem ist die Möglichkeit geboten, den Status einer Komponente in jedem einzelnen Moment zu

Webapplikation zur Informationsausgabe anhand des Unterscheidungszeichen des KFZ-Kennzeichens

4 Projektergebnisse

überprüfen. Zusammenfassend lässt sich sagen, dass die Realisierung dieses Projekts einen deutlichen Mehrwert für alle beteiligten Autoren hat.

A.1 Use-Case-Diagramm

Abbildung 1: Use-Case Diagramm für die Anwendung KFZ-Kennzeichnung

A.2 Anwendungsfall-Beschreibung

Anwendungsfall-Beschreibungen

Beschreibung der Geschäftsprozesse

GP Eingabe: Unterscheidungszeichen

Ziel:	Durch die Eingabe des Unterscheidungsszeichen wird der Geschäftsprozess "Ortsinformationen ablesen" eingeleitet		
Vorbedingung	keine		
Nachbedingung	Geschäftsprozesses "Ortsinformationen ablesen" wird eingeleitet,		
Erfolg:	Eingabefeld wird geleert, Eingabe kann erneut getätigt werden		
Akteur	Benutzer		
Auslösendes	Anzeigen der Ortsinformationen durch klicken des "Search-Buttons"		
Ereignis			
Beschreibung	Unterscheidungsszeichen in das Texteingabefeld eingeben		
	2. Mausklick auf "Search-Button"		
	3. Ortsinformationen werden angezeigt		

GP Ortsinformationen ablesen

Ziel:	Anzeigen der Ortsinformationen		
Vorbedingung	GP Eingabe: Unterscheidungszeichen		
Nachbedingung	Anzeigen der Ortsinformationen,		
Erfolg:	Weiterleitungslink werden angezeigt für:		
	1. Google Maps		
	2. Wikipedia		
Akteur	Benutzer		
Auslösendes Ereignis	Eingabe: Unterscheidungszeichen		
Addioserides Ereignis	Eingabe: Onterscheidungszeichen		
Beschreibung	GP Eingabe: Unterscheidungszeichen		
	· ·		
	GP Eingabe: Unterscheidungszeichen		

GP Datenbank importieren

Ziel:	Datenbank wird mit der zu importierenden
	Datenbank ersetzt
Vorbedingung	Zu importierende Datei wurde ausgewählt,
	Datei muss das Format XML, CSV oder JSON
	haben
Nachbedingung	Alte Datenbank wird gelöscht, Neue Datenbank
Erfolg:	wird importiert, Meldung das Importieren
	erfolgreich oder fehlgeschlagen ist
Akteur	Benutzer
Auslösendes Ereignis	Importierung durch Auswählen der Datei und
	Mausklick auf den "Import-Button"
Beschreibung	1. Datei auswählen
	2. Mausklick auf "Import-Button"
	Alte Datenbank wird mit der neuen
	Datenbank ersetzt.
	4. Meldung erfolgreich/fehlgeschlagen

GP Datenbank exportieren

Ziel:	Datenbank wird als XML, CSV oder JSON Datei		
	exportiert		
Vorbedingung	Dateiformat wurde ausgewählt		
Nachbedingung	Datei wird heruntergeladen		
Erfolg:			
Akteur	Benutzer		
Auslösendes Ereignis	Exportierung durch Mausklick auf den "Export-		
	Button"		
Beschreibung	 Auswahl des gewünschten Formates 		
	2. Mausklick auf "Export-Button"		
	3. Datei wird heruntergeladen		

A.3 GANTT-Diagramm

	Tag 1	Tag 2	Tag 3	Tag 4	Tag 5
Anwendungsfallbeschreibung					
Architekturauswahl					
Einrichten der Datenbank					
Einrichten des Backends					
Einrichten des Frontends					
Erstellen des Klassendiagramms					
Erstellen des Use Case Diagramms					
Implementierung Datenbank					
Implementierung Frontend					
Implementierung Backend					
Schreiben der Benutzerdokumentation					
Schreiben der Dokumentation					
Testen der Anwendung					
Projekt Abnahme					
Erstellung des Ablaiufplans					
Legend:	Piotr	Peter	Aldi	Team	

Abbildung 2: GANTT-Diagramm zur Visualisierung der Schritte zum Projektziel

A.4 Einpflegen der Datenbank-Tabelle

Abbildung 3: Das Laden der JSON Datei in die neue Tabelle

Abbildung 4: Konfigurierung der Tabelle

Abbildung 5: Beginn des Importierens

Abbildung 6: Beginn des Importierens

Abbildung 7: Ansicht der Tabelle KFZ Kennzeichung

Abbildung 8: Ansicht der Datenbank-Inhalt in Back-End-Anwendung

A.5 Skript

```
let rows = document.querySelectorAll("table tbody tr");
let output = [];
rows.forEach(element \Rightarrow {
    let cells = element.querySelectorAll("td");
    let entity = {
        Ortskuerzel: cells[0].textContent,
        Ursprung: cells[1].textContent,
        "Region": cells[2].textContent,
        Bundesland: cells[3].textContent
    output.push(entity);
});
console.log(output)
```

Abbildung 9: Skript zum Extrahieren der KFZ-Kennzeichen Daten

A.6 Datenbank Anbindung mit Express-Back-End

Folgendes ist der Ausschnitt der Verbindung zwischen MySQL und ExpressJS

```
var mysql = require('mysql2');

var connection = mysql.createConnection({
    host: 'localhost',
    user:'root',
    password:'root',
    database: 'kfz'
});

module.exports = connection;
```

Listing 1: Javascript Code für die Herstellung der Verbindung mit Datenbank

A.7 Abrufen der SQL-Abfrage in Back-End Anwendung

Folgendes ist der Ausschnitt vom Abrufen der SQL Abfragen

```
const express = require("express");
  const bodyParser = require("body-parser")
  const app = express();
  const connection = require('./database');
   const cors = require('cors');
  const fs = require("fs");
  const path = require("path");
  const multer = require('multer')
  const convert = require('xml-js');
  const { parse } = require('json2csv');
  const csv = require('csvtojson');
11
  const upload = multer({
12
     dest: 'uploads/'
13
14
  const parser = require('xml2json')
15
16
   var corsOptions = {
17
18
     allowedHeaders: 'Content-Type, requested-type'
19
20
  app.use(cors(corsOptions));
  app.use(bodyParser.json());
23
24
  app.get('/', function (req, res) {
      let sql = "SELECT * FROM kennzeichnung ORDER BY Ortskuerzel ASC";
25
     connection.query(sql, function (err, results, fields) {
26
         if (err) throw err;
27
         res.send(results);
```



```
});
   });
30
31
  app.post('/importFromFile', upload.single('uploadedFile'), async function (req, res, next) {
32
33
      const absolutePath = path.join(___dirname, req.file.path);
      let jsonObject;
34
35
      if(req. file .mimetype == "application/json"){
36
         const jsonString = fs.readFileSync(absolutePath, "utf-8");
37
        jsonObject = JSON.parse(jsonString);
38
      } else if (req. file .mimetype == "text/csv" || req.file.mimetype == "application/vnd.ms-excel") {
39
         await csv().fromFile(absolutePath).then((jsonObj) => {
40
            jsonObject = jsonObj;
41
42
         })
      } else if (req. file .mimetype == "text/xml"){
43
44
         const xmlString = fs.readFileSync(absolutePath, "utf-8");
        jsonObject = parser.toJson(xmlString)
45
        jsonObject = JSON.parse(jsonObject).elements
46
         console.log(jsonObject)
47
48
     await importLicensePlates(jsonObject, res);
49
50
   })
51
   app.post('/addLicensePlate/:Ortskuerzel/:Ursprung/:Landkreis/:Bundesland', function (req, res) {
52
      const values = [req.params.Ortskuerzel, req.params.Ursprung, req.params.Landkreis, req.params.Bundesland]
53
      let query = 'INSERT INTO kennzeichnung (ortskuerzel, ursprung, landkreis, bundesland) VALUES (?,?,?,?)'
54
      connection.query(query, values, function(err, result) {
55
         if (err) {
56
            console.log(err)
57
         }else{
58
            res.send("SUCCESS")
59
60
61
      })
  })
62
63
  async function importLicensePlates(requestBody, res) {
      let values = []
65
      Object.keys(requestBody).forEach((val, i) => {
66
         values.push([requestBody[val].Ortskuerzel, requestBody[val].Ursprung, requestBody[val]["Region"],
67
              requestBody[val].Bundesland]);
      })
68
     connection.query('TRUNCATE TABLE kennzeichnung', function (err, result) {
69
70
         if (err) {
            res.send('Error Truncate table');
71
72
         } else {
            connection.query('INSERT INTO kennzeichnung (ortskuerzel, ursprung, landkreis, bundesland)
73
                VALUES ?', [values], function (err, result) {
               if (err) {
74
                  res.send(err);
75
               } else {
76
```



```
res.send('Success');
                }
78
             })
79
80
81
      })
82
83
    async function exportLicensePlates(req, res) {
84
       let query = 'SELECT Ortskuerzel as Ortskuerzel, Ursprung as Ursprung, Landkreis AS 'Region', Bundesland AS
85
           Bundesland FROM kennzeichnung ORDER BY Ortskuerzel ASC'
      connection.query(query, function (err, result) {
86
          if (err) {
87
             console.log(err)
 88
89
             res.send('Error while exporting JSON file from the database');
          } else {
90
91
             if (req.get("Requested-Type") === "application/json") {
                res.writeHead(200, { 'Content-Type': 'application/json' })
92
                res.write(JSON.stringify(result))
93
                res.end()
94
             } else if (req.get("Requested-Type") === "text/xml") {
95
                let formattedResult = []
96
                formattedResult["elements"] = {}
97
                result.forEach((value, index) => {
98
                   formattedResult["elements"]["elem"+index] = value
99
100
                });
                res.send(convert.json2xml(formattedResult, {
101
                   compact: true,
102
                   ignoreComment: true,
103
                   spaces: 4
104
                }))
105
             } else if (req.get("Requested-Type") === "text/csv") {
106
                res.send(parse(result))
107
108
109
       })
110
111
112
    app.post("/import", function (req, res) {
113
       importLicensePlates(req.body, res)
114
115
    })
116
   app.get("/export", async function (req, res) {
117
      await exportLicensePlates(req, res)
118
119
    })
120
   app.get('/ursprung/:ursprungName', function (req, res) {
121
       {\it let~ursprungName} = {\it decodeURI}({\it req.params.ursprungName})
122
       var sql = "SELECT * FROM kennzeichnung WHERE ursprung LIKE concat('%', ?, '%')";
123
      connection.query(sql, ursprungName, function (err, results, fields) {
124
          if (err) throw err;
125
```



```
res.send(results);
       });
127
   });
128
129
130
   app.get('/deletedb', function (req, res) {
       console.log("Deleting DB...")
131
      connection.query('TRUNCATE TABLE kennzeichnung', function (err, result) {
132
          if (err) {
133
             res.send('Error Truncate table');
134
         } else {
135
             res.send("SUCCESS")
136
137
138
       })
139
   });
140
   app.get('/ortskuerzel/:kuerzel', function (req, res) {
141
       let kuerzel = req.params.kuerzel
142
       var sql = "SELECT * FROM kennzeichnung WHERE ortskuerzel LIKE concat('%', ?, '%') ORDER BY
143
           Ortskuerzel ASC";
      connection.query(sql, kuerzel, function (err, results, fields) {
144
         if (err) throw err;
145
         res.send(results);
146
147
      });
   });
148
149
   app.get('/landkreis/:landkreis', function (req, res) {
150
       let landkreis = decodeURI(req.params.landkreis)
151
       var sql = "SELECT * FROM kennzeichnung WHERE landkreis LIKE concat('%', ?, '%') ORDER BY Ortskuerzel
152
            ASC";
      connection.query(sql, landkreis, function (err, results, fields) {
153
         if (err) throw err;
154
         res.send(results);
155
      });
156
   });
157
158
   app.get('/landkreis', function (req, res) {
159
      var sql = "SELECT * FROM kennzeichnung ORDER BY landkreis ASC ";
160
      connection.query(sql, function (err, results, fields) {
161
         if (err) throw err;
162
         res.send(results);
163
164
      });
   });
165
166
   app.get('/bundesland':bundesland', function (req, res) {
167
       let bundesland = decodeURI(req.params.bundesland)
168
       var sql = "SELECT * FROM kennzeichnung WHERE bundesland LIKE concat('%', ?, '%') ORDER BY
169
           Ortskuerzel ASC";
      connection.query(sql, bundesland, function (err, results, fields) {
170
171
          if (err) throw err;
         console.log(results)
172
```



```
173
          res.send(results);
174
       });
175
176
177
    var server = app.listen(8081, function () {
178
       var host = server.address().address
179
       var port = server.address().port
180
181
       console. log(\verb"Example app listening at http://%s:%s", host, port)
182
183
```

Listing 2: Javascript Code für bestimmten Datensatz aus der Tabelle abzufragen

A.8 Benutzerdokumentation

Ausschnitte aus der Benutzerdokumentation:

Ansicht der Anwendung:

Abbildung 10: Die Ansicht der Anwendung des KFZ-Verwaltungsystems

Funktion der vorhandenen Buttons:

Symbol	Bedeutung	Funktion
Export ▼	Dropdown Export	Die Dropdown enthält die Auswahl zur verschiedenen Datenformate, z. B.: CSV, JSON, XML.
Import	Import	Hier können verschiedene Datenformatte wie z.B. : CSV, JSON, XML aus lokalem PC importiert werden.
Hinzufügen	Hinzufügen	Benutzer kann neuen Datensatz in die Tabelle einfügen.
Suchen	Such-Button	Sie gibt dem Benutzer den gesuchten Datensatz zurück.
Reset	Reset-Button	Sie setzt alle gefüllten bzw. vorgewählten Felder, wie Suchfeld, Dropdown Spalte, wieder zurück.
·	Dropdown-Filter	Der Benutzer kann das Suchergebnis in die engere Auswahl treffen, ob sie nach Ortskuerzel, Ursprung, oder Bun-
<u>MapsWiki</u>	WikiLink	desland gefiltert werden soll. Ein externer Link, der den Benutzer zum Wikipedia leitet.

Anleitung:

Der folgende Link führt Sie zum Quellcode in GitHub:

https://github.com/Piotr-Dziekonski/autokennzeichen-tool.git

 $\verb|https://github.com/Piotr-Dziekonski/autokennzeichen-tool-backend.git|$

In den einzelnen Readme-Dateien der Repositories finden Sie die genaue Anleitung um das Projekt erfolgreich zu starten.