CSWAP: A Self-Tuning Compression Framework for Accelerating Tensor Swapping in GPUs

Ping Chen*, Shuibing He*, Xuechen Zhang#, Shuaiben Chen* Peiyi Hong*, Yanlong Yin\$, Xian-He Sun+, Gang Chen*

Deep Neural Network is Popular

The Shortage of GPU Memory

Current GPU cannot support DNN training because of GPU memory shortage

The Background of Deep Neural Network

During Layer-N training procedure, GPU can only visit the tensors which have dependency with Layer-N

The GPU-CPU Swapping Solution

The Swapping with Compression Solution

ReLU Layers => Tensor Sparsity

Compressing all sparse tensors (after-ReLU layers) before swapping out and **decompress** them after swapping in.

Not Optimal

Related Works (Swapping and Compression)

Technique	Compression	Compression unit/location	Portability	Compression Optimization
vDNN[MICRO'16]	×	N/A	~	N/A
cDMA [HPCA'18]	✓	GPU	×	×
vDNN++ [IPDPS'19]	✓	CPU	✓	×
CSwap [CLUSTER'21]	✓	GPU	✓	~

Compression Optimization (Tensor Selection): X means compressing all sparse tensors without optimization or not.

Observation 1: Changing Sparsity of Tensors

THE SIZE AND SPARISTY OF DNN TENSORS

Some DNN tensors sparsity changes constantly during training the tensor size changes across layers.

^{*}Figure: We evaluate ReLU output tensors in VGG16 on ImagNet. 50 epochs.

Observation 2: Ineffectiveness of Compressing all Tensors

Some DNN tensors are unworthy being compressed.

Observation 2: Ineffectiveness of Compressing all Tensors

Objectives of CSWAP

Software-level framework (Portability)

Self-tuning

+

Selective compression

Policy

With compression:

• ReLU[1-6]

Without compression:

MAX[1-4], ReLU[7-8]

Challenges of CSWAP

Challenges 1: How to determine the compression policy for a sparse tensor?

- ➤ Different sparsity ①②;
- ➤ Different sizes ①②;

These metrics influence the overall training time.

- ➤ Different overlap time ③;
- > Different forward and backward time 4).

Challenges of CSWAP

Challenges 2: How to predict the (de)compression time?

> Without (de)compression time, we cannot make decisions.

Challenges of CSWAP

Challenges 3: the compression/decompression algorithm performance varies severely with different GPU settings.

- > Super parameters : GPU has Grid size and Block size.
- > Bruce force search (Grid search) needs hours.

Overview of CSWAP

- 1 The tensor profiler: Collecting tensor sparsity, size, and execution time of layers.
- (2) Execution Advisor: Making policy, includes compression decision and GPU settings for (de)compression operations.
- ③ **Swapping Executor:** DNN training.

1. Determining Cost-Effectiveness of Tensor Compression

- \triangleright We compare the swapping cost with compression T with the swapping cost without compression T'
 - \succ T' > T => compression
 - > T'< T => no compression

$$T' = \max(\frac{Size^t}{BW_{d2h}} - Hidden_f^t, 0) + \max(\frac{Size^t}{BW_{h2d}} - Hidden_b^t, 0)$$
(1)

$$T = Time_c^t + Time_{dc}^t + O_f + O_b \tag{2}$$

$$O_f = \max(\frac{Size^t \times (1 - Sparsity^t)}{BW_{d2h}} - Hidden_f^t, 0)$$
 (3)

$$O_b = \max(\frac{Size^t \times (1 - Sparsity^t)}{BW_{h2d}} - Hidden_b^t, 0)$$
 (4)

$$O_b = \max(\frac{Size^t \times (1 - Sparsity^t)}{BW_{h2d}} - Hidden_b^t, 0)$$
 (4)

Symbol	Meaning	Profiling
$Size^t$	size of tensor t	one time
BW_{h2d}	effective PCIe bandwidth from CPU to GPU	one time
BW_{d2h}	effective PCIe bandwidth from GPU to CPU	one time
$Hidden_f^t$	overlapped swapping latency in forward propagation of tensor t	one time
$Hidden_b^t$	overlapped swapping latency in back- ward propagation of tensor t	one time
$Sparsity^t$	sparsity of tensor t	epoch
$Time_c^t$	compression time of tensor t	offline
$Time_{dc}^{\overline{t}}$	decompression time of tensor t	offline

2. Prediction of (De)compression Time

Final Result

3. Setting GPU Parameters for Compression Kernels

Algorithm 1 BO search algorithm for choosing GPU parameters for (de)compression kernels

```
Require: s_1: the number of initial samples; s_2: the times of
    attempts to find the optimal solution;
 1: bayes\_opt \leftarrow new\ bayes\_opt() \triangleright Create\ a\ CSWAP\ BO
    search engine
 2: D ← Ø

    Dataset of previously observed samples

 3: for i = 1, 2, ..., s_1 do
         q \leftarrow random(0..4096)
                                              \triangleright q denotes grid size
        b \leftarrow random(64,128)  > Set block size as 64 or 128
        p \leftarrow (q,b)
        y \leftarrow bayes\_opt.exec(p) \triangleright obtain sum of Time_c^t and
    Time_{dc}^{t}
        D.append(p,y)
                                      \triangleright Add the new sample to D
 9: end for

    ▶ estimate posterior distribution

10: bayes_opt.update(D)
    and acquisition function
11: for i = 1, 2, ..., s_2 do
        p \leftarrow bayes\_opt.select()
                                          ⊳ select the next point to
    search
        y \leftarrow bayes\_opt.exec(p)
        D.append(p,y)
        bayes\_opt.update(\mathbf{D})
16: end for
17: return bayes\_opt.optimize(\mathbf{D}) \triangleright return an optimal point
```


Explore & Exploit => Fast and jump minimum point
Hours to near 1 minutes

Bayesian Optimization

Experimental Setting

➤ Platform1:

- 2.60 GHz Intel(R) Xeon(R) Gold 6126 CPU
- NVIDIA Tesla V100 GPU with 32 GB GPU memory

➤ Platform 2:

- 2.10 GHz Intel(R) Xeon(R) Gold 5218R CPUs
- RTX 2080Ti GPU, and 11 GB GPU memory

- ➤ Workloads and datasets
 - NN: AlexNet , Plain20 , VGG16 , MobileNet, ResNet and SqueezeNet (6)
 - Dataset: CIFAR10, ImageNet (2)

- ➤ Baselines
 - vDNN[1], vDNN++[2], and cDMA[3]

^{[1]&}quot;VDNN: Virtualized Deep Neural Networks for Scalable, Memory Efficient Neural Network Design," in *Proceedings of the Annual International Symposium on Microarchitecture (MICRO)*

^{[2] &}quot;Dynamic memory management for GPU-based training of deep neural networks," in Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS)

^{[3] &}quot;Compressing DMA Engine: Leveraging Activation Sparsity for Training Deep Neural Networks," in Proceedings of the International Symposium on High-Performance Computer Architecture (HPCA)

Eval 1: Overall Performance

CSWAP outperforms vDNN and vDNN++ by 25% and 190% on average

Eval 2: Effectiveness of Dynamic Tensor Compression

Performance improvement of CSwap over the static compression (SC) scheme.

CSWAP can improve the performance by 5.5% and 5.1% on average compared to cDMA.

Eval 3: Effectiveness of Dynamic Tensor Compression

DNN training details using CSWAP

Thanks for your attention!

Appendix

Model	ReLu layers	All layers	Ratio
AlexNet	7	21	33%
VGG19	16	38	42%
SqueezeNet	26	57	46%
MobileNet	27	83	33%
GoogleNet	64	205	31%

Appendix-1: ReLU layers

Figure 12: The compression decision accuracy based on the LR model.

Appendix

Figure 13: The average training time of VGG16 for one iteration. RD: random search, EP: expert knowledge, BO: CSWAP BO search, and GS: grid search.

Appendix

Figure 11: (a) Computation time of the compression algorithms with the tensor sparsity of 60%. (b) The compression ratio with the tensor size of 50 MB. (c) Tensor swapping time. X_CT and X_ST denote the computation time and data swaping time using the compression algorithm X.