PNV 3321 – MÉTODOS DE OTIMIZAÇÃO APLICADOS A SISTEMAS DE ENGENHARIA

PROBLEMAS DE MODELAGEM - 2024

Questão 5 - Leasing de Contêineres

Uma empresa de "leasing" de contêineres tem contratos para fornecer $\mathbf{a_i}$ contêineres, $\mathbf{i}:\mathbf{1},\mathbf{2},...,\mathbf{n}$ durante os próximos \mathbf{n} períodos. Ela dispõe de um estoque de contêineres $\mathbf{e_0}$ e deve receber de clientes a devolução de $\mathbf{b_i}$ contêineres $\mathbf{i}:\mathbf{1},\mathbf{2},...,\mathbf{n}$ durante os próximos \mathbf{n} períodos; ela vai receber ainda de empresas de reparo $\mathbf{r_1}$ contêineres no período 1 e $\mathbf{r_2}$ contêineres no período 2. Uma fração α dos contêineres devolvidos pelos clientes precisa receber reparos. O preço médio do reparo varia com a urgência no retorno do contêiner, havendo duas tarifas básicas: $\mathbf{p_1}$ para entrega depois de um período e $\mathbf{p_2}$ ($\mathbf{p_2} < \mathbf{p_1}$) para retorno de depois de dois períodos. A empresa pode ainda adquirir contêineres a um preço $\mathbf{p_0}$ para atender os contratos já firmados. Formular um modelo para estabelecer a programação de reparo e aquisição de contêineres para os próximos \mathbf{n} períodos, sabendo que o objetivo da empresa é minimizar os gastos no período.

OBS: adotaremos um período = uma semana.

Variáveis de Decisão

 $y_i^{1s} \ge 0$ Quantidade de contêineres enviados para reparo rápido (1 semana) na semana i.

 $y_i^{2s} \ge 0$ Quantidade de contêineres enviados para reparo demorado (2 semanas) na semana i.

 $x_i \ge 0$ Quantidade de contêineres adquiridos na semana i.

 $e_i \ge 0$ Estoque de contêineres disponíveis **ao final** da semana i.

Restrições

Semana 1

$$e_1 = e_0 + b_1(1 - \alpha) + r_1 + x_1 - a_1$$

Semana 2

$$e_2 = e_1 + b_2(1 - \alpha) + r_2 + y_1^{1s} + x_2 - a_2$$

Semana 3

$$e_3 = e_2 + b_3(1-\alpha) + y_2^{1s} + y_1^{2s} + x_3 - a_3$$

Forma geral da restrição de estoque

$$e_i = e_{i-1} + b_i(1-\alpha) + y_{i-1}^{1s} + y_{i-2}^{2s} + x_i - a_i \quad \forall i: 3 \dots n$$

Retorno dos contêineres que passam por reparo $y_i^{1s} + y_i^{2s} = b_i \alpha \qquad \forall i : 1 \dots n$

$$y_i^{1s} + y_i^{2s} = b_i \alpha \qquad \forall i: 1 \dots r$$

Domínio das variáveis

$$y_i^{1s}, y_i^{2s}, x_i, e_i \ge 0 \quad \forall i: 1 ... n$$

Função Objetivo

$$\min C = \sum_{i=1}^{n} p_1 y_i^{1s} + p_2 y_i^{2s} + p_0 x_i$$