CS 511 Formal Methods for High-Assurance Software Engineering Homework Assignment 05 - Selected Solution

Jiawen Liu

Problem 1. Given model $\mathcal{M} = \{\mathbb{N}, +, \times\}$, the wff are defined over \mathcal{M} as:

- 1. $\phi_1(x) = \forall y$. $(x + y \approx y)$
- 2. $\phi_2(x) = \forall y. (x \times y \approx y)$
- 3. $\phi_3(x, y) = \exists z. (\phi_2(z) \land (x + z \approx y))$
- 4. $\phi_4(x, y) = \exists z. (\neg \phi_1(z)) \land (x + z \approx y)$

Problem 2.

1. $\forall x. \phi(x, f(x)) \vdash \forall x \exists y. \phi(x, y)$

1 $\forall x. \, \phi(x, f(x))$ premise
2 fresh

x_0	2		iresii
	3	$\phi(x_0, f(x_0))$	(e∀ <i>x</i> .)1
	4	$\exists y. \ \phi(x_0, y)$	(i∃ <i>y</i> .)3
		V. 7. 4()	(:V)4

5
$$\forall x. \exists y. \ \phi(x, y)$$
 (i $\forall x.$)4

- 2. Let $\mathcal{M} = \{\mathbb{N}, 0, <, +\}$, $\phi(x, y) = x < y$ and f(x) = 0, then we have:
 - (1) $\forall x \exists y. \ \phi(x, y)$ is true. Since for any $x \in \mathbb{N}$, we can always find a value $y \in \mathbb{N}$ greater than x.
 - (2) $\forall x. \ \phi(x, f(x))$ is false. Since for any $x \in \mathbb{N}$, x < 0 is never ture.

From (1) and (2), we can derive that:

$$\forall x \exists y. \ \phi(x, y) \not\models \forall x. \ \phi(x, f(x))$$

3. By the soundness, we have if $\Gamma \vdash \phi$, then $\Gamma \models \phi$, where Γ be a set of WFF's and ϕ a WFF. By the result from 2, we have $\forall x \exists y. \ \phi(x, y) \not\models \forall x. \ \phi(x, f(x))$. Then we can know:

$$\forall x \exists y. \ \phi(x,y) \not\vdash \forall x. \ \phi(x,f(x))$$

Problem 3.

1. $\mathcal{M} \not\models \phi$

By the definition of R, we have R(b,c). While we cannot find any $z \in A$, s.t. $(c,z) \in R$.

Then we can derive, $\forall x \forall y \text{ s.t. } R(x, y)$, there not always $\exists z, \text{ s.t. } R(y, z)$.

Then we can know: $\mathcal{M} \not\models \forall x \forall y \exists z. R(x, y) \rightarrow R(y, z)$, i.e. $\mathcal{M} \not\models \phi$.

2. $\mathcal{M} \models \phi$

Proof. By induction on the R(x, y) in $\forall x \forall y \exists z. R(x, y) \rightarrow R(y, z)$, we have following cases:

case R(a,b)

In this case, we have x = a and y = b. Then we can easily find z = c s.t. R(b, c). So we have $R(a, b) \to R(b, c)$, i.e. $\exists z$. $R(x, y) \to R(y, z)$ proved for this case.

case R(b,c)

In this case, we have x = b and y = c. Then we can easily find z = b s.t. R(c, b). So we have $R(b, c) \to R(c, b)$, i.e. $\exists z. \ R(x, y) \to R(y, z)$ proved for this case.

case R(c,b)

In this case, we have x = c and y = b. Then we can easily find z = c s.t. R(b, c). So we have $R(c, b) \to R(b, c)$, i.e. $\exists z. \ R(x, y) \to R(y, z)$ proved for this case.

Since in all of the cases, the $\exists z.\ R(x,y) \rightarrow R(y,z)$ can be proved, then we have:

$$\forall x \forall y \exists z. R(x, y) \rightarrow R(y, z),$$

i.e.
$$\mathcal{M} \models \phi$$

Problem 4.

(a) Let $A = \{a, b, c\}$.

Let $P = \{(a, a), (b, b), (c, c), (a, b), (b, a), (b, c), (c, b)\}.$

Then we have ϕ_1 and ϕ_2 is true in this model, while the transitivity (i.e., ϕ_3) is false.

(b) Let $A = \{a, b, c\}$.

Let $P = \{(a, a), (b, b), (c, c), (a, b), (a, c), (b, c)\}.$

Then we have ϕ_1 and ϕ_3 is true in this model, while the symmtric (i.e., ϕ_2) is false.

(c) Let $A = \{a, b, c\}$.

Let $P = \{(a, a), (b, b), (a, b), (b, a)\}.$

Then we have ϕ_2 and ϕ_3 is true in this model, while the reflexivity (i.e., ϕ_1) is false.

Problem 5. https://github.com/jiawenliu/CS511/blob/master/homework/hw5/hw5-p5.in

	0	1	2	3	4	5
0	0	1	2	3	4	5
1	1	0	3	2	5	4
2	2	4	0	5	1	3
3	3	5	1	4	0	2
4	4	2	5	0	3	1
5	5	3	4	1	2	0

Problem 6. https://github.com/jiawenliu/CS511/blob/master/homework/hw5/hw5-p6-a.in https://github.com/jiawenliu/CS511/blob/master/homework/hw5/hw5-p6-b.in