Izmir Institute of Technology

CENG 461 - Artificial Intelligence

Constraint Satisfaction Problems

Introduction

- Previously we saw solving problems by searching in a space of states.
- Today, we will use a factored representation for each state: a set of variables, each of which has a value.
- A problem is solved when each variable has a value that satisfies all the constraints on the variable.
- A problem described in this way is called a Constraint Satisfaction Problem (CSP).

Defining CSPs

- A constraint satisfaction problem consists of three components, X, D, and C:
 - ightharpoonup X is a set of variables, $\{X_1, \ldots, X_n\}$
 - D is a set of domains, {D₁, . . . ,D_n} one for each variable
 - C is a set of constraints that specify allowable combinations of values.

Example problem: Map coloring

Coloring Australia map as a constraint satisfaction problem (CSP). The goal is to assign color to each region so that no neighbor ' ' color.

Defining Map Coloring Problem

- X = {WA, NT, Q, NSW, V, SA, T}
- \triangleright D_i = {red, green, blue}
- Since there are nine places where regions border, there are nine constraints:
 - $C=\{SA\neq WA, SA\neq NT, SA\neq Q, SA\neq NSW, SA\neq NSW, NSW\neq V\}$
- It is helpful to visualize CSP as a graph, where nodes correspond to variables and links correspond to constraints.

Why we define the problem as a CSP?

In regular state-space search we can only ask: is this specific state a goal? No? What about this one? With CSPs, once we find out that a partial assignment can not be a part of a solution, we can discard further refinements of it.

| Is not a part of a solution? Prune the rest!

E.g. Once we have chosen SA={blue} we can conclude that none of the five neighboring variables can take the value blue. Regular state-space search procedure would consider 3₅=243 assignments for the five neighbors.

With the techniques we will see, we never consider blue as a value, so we have only $2^5 = 32$ assignments to look at.

Another example: A cryptarithmetic puzzle

- Each letter in cryptarithmetic puzzle represents a different digit: Alldiff (F,T,U,W,R,O).
- Additional constraints

$$O + O = R + 10 \cdot C_{10}$$

 $C_{10} + W + W = U + 10 \cdot C_{100}$
 $C_{100} + T + T = O + 10 \cdot C_{1000}$
 $C_{1000} = F$,

where C_{10} , C_{100} , and C_{1000} are auxiliary variables representing the digit carried over.

Another example: A cryptarithmetic puzzle

- These constraints can be represented in a constraint hypergraph.
- A hypergraph consists of ordinary nodes (the circles in the figure) and hypernodes (the squares), which represent n-ary constraints.
- Graph shows the Alldiff constraint (square box at the top) as well as the row addition constraints (four square boxes in the middle).

$$\begin{aligned} O + O &= R + 10 \cdot C_{10} \\ C_{10} + W + W &= U + 10 \cdot C_{100} \\ C_{100} + T + T &= O + 10 \cdot C_{1000} \\ C_{1000} &= F \end{aligned},$$

Note: C_1 is C_{10} , $C_2 = C_{100}$, $C_3 = C_{1000}$

Backtracking Search for CSPs

- Backtracking search uses a depth-first search that
 - chooses values for one variable at a time
 - checks constraints as you go (backtracks when a variable has no legal values left to assign).
- Initial part of the search tree for the Australia problem is shown below where we assigned variables in the order WA,NT,Q, ...

- ▶ We have 9 variables, $D_i = \{\text{red, green, blue}\}$,
- Constraint: Any two linked variables have different colors.

The second variable to color is the bottom-center one.

Let's say we color it Red, since it is one of the proper

values.

- The third variable to color is the bottom-right one.
- Let's say we color it Blue, since it is one of the proper values.

The fourth variable to color is the middle-left one.

Let's say we color it Red, since it is one of the proper

- The fifth variable to color is the middle-center one.
- We have to color it in Green, since it is the only proper value.

Change the value in the third variable.

- Now, we can try Red for the fourth variable again.
- It did not work before, but now the third variable is changed.

► The only proper value for fifth variable is Green.

► The only proper value for sixth variable is Blue.

- For the next one we can pick Green or Blue.
- Let's pick Green, if it does not work, we will backtrack.

► The only proper value for the next variable is Blue.

- The only proper value for the next variable is Red.
- We reached a solution!

Improving Backtracking

- Can we detect failure early? Can we filter remaining nodes in the lower parts of the tree?
 - Filtering: Forward checking When an assignment is made, for other variables cross-off (eliminate) values that violate a constraint.
 - Filtering: Arc consistency
 At each step, check consistency between all the variables.

- Consider the Australia coloring problem.
- At each time step, all the remaining unassigned variables have their domains showed. When we make an assignment, we check remaining variables and cross-off violating values.
- Initial state looks like this:

- Assume we assign WA in Red.
- All adjacent variables are checked, violating values are eliminated.
- NT and SA are not assigned, but their domains shrunk.

- Now, assume we color Q in Green (one of the proper values).
- Violating values are eliminated only from the adjacent variables. We don't look further at this moment.

- Now, assume we color V in Blue (one of the proper values).
- We end up with that SA has no legal values.
- Sooner or later we will come to that variable, where we will backtrack. So, why not backtrack now? This saves time.

Filtering: Arc Consistency

- Forward Checking is good, but we can do better than that.
- In the following situation, we actually know NT and SA can not be Blue at the same time, which Forward Checking does not check!
- We can backtrack earlier!

Consistency of an arc

- ightharpoonup An arc is between two variables and it has a direction $(X \rightarrow Y)$.
- An arc X→Y is consistent iff for every x in the tail (X) there is some y in the head (Y) which can be assigned without violating constraints.
- See the arc below, is it consistent?
- Red in NT domain violates! Remove it to get consistency.

ightharpoonup What about QightharpoonupWA? NSWightharpoonupWA?

Arc Consistency of a CSP

- Remember, where Forward Checking left us (below figure).
- We will visit every arc, and check its consistency.

Remember: Delete

from tail!

Arc Consistency of a CSP

Remember: Delete from tail!

Filtering: Arc Consistency

- Checking over and over again makes arc consistency slower, but hopefully we will need less backtracking.
- Also, it detects failure earlier. Remember where we left:

- Arc consistency checks the arc above, detects inconsistency.
- Since no values remained in the domain, it reports failure. Algorithm backtracks!

