Automatex

Arnaud Meistermann

14 février 2021

Table des matières

1	$\mathbf{A}\lg\grave{\epsilon}$	èbre	2
	1.1	Équation et inéquation du 1er degré	2
		Ensemble solution d'une inéquation	
		Tableau de signe du produit de 2 fonctions affines	
	1.4	Tableau de signe du quotient de 2 fonctions affines	
	1.5	Inéquation produit de 2 fonctions affines	3
	1.6	Inéquation quotient de 2 fonctions affines	4
	1.7	Tableau de signe d'une fonction	4
		Résolution d'un système par substitution	
		Résolution d'un système par combinaison linéaire	
	1.10	Résolution d'équation du second degré	Ę
2	auto	omatex ana	6

Chapitre 1

Algèbre

Pour pouvoir utiliser ces fonctions, il faut avoir écrire \include{automatex_formate} et \include{automatex_alg} après \begin{document}

1.1 Équation et inéquation du 1er degré

equation_degre1(gauche,droite,symbole) permet de résoudre des équations et inéquations du premier degré. La fonction renvoie une liste. Le premier élément correspond à la résolution et le deuxième à l'ensemble solution.

1.2 Ensemble solution d'une inéquation

sol_ineq(ineq) renvoie une liste dont la première valeur est la phrase "l'ensemble solution de l'inéquation...est" et la deuxième valeur est l'ensemble solution.

```
Exemple 1 :sol_ineq("5x+1>x+2") [0] et [1]
L'ensemble solution de 5x + 1 > x + 2 est \left] \frac{1}{4}, +\infty \right[
Exemple 2 :sol_ineq("x^2+3x+1>x-2") [0] et [1]
L'ensemble solution de x^2 + 3x + 1 > x + 2 est \left] -\infty, -\sqrt{2} - 1 \right[ \cup \left] -1 + \sqrt{2}, +\infty \right[
```

CHAPITRE 1. ALGÈBRE 3

1.3 Tableau de signe du produit de 2 fonctions affines

tableau_signe_produit(f1,f2) permet de tracer le tableau de signe du produit de deux fonctions affines f1 et f2

Exemple: tableau_signe_produit("5x-2","-2x+3")							
x	$-\infty$		$\frac{2}{5}$		$\frac{3}{2}$		$+\infty$
5x-2		-	Ö	+		+	
-2x + 3		+		+	0	_	
$(5x-2)\left(-2x+3\right)$		-	0	+	0	-	

1.4 Tableau de signe du quotient de 2 fonctions affines

tableau_signe_quotient(f1,f2) permet de tracer le tableau de signe du quotient de deux fonctions affines f1 et f2

Exemple: tableau_signe_quotient("5x-2","-2x+3")							
x	$-\infty$	$\frac{2}{5}$		$\frac{3}{2}$		+∞	
5x-2	_	0	+		+		
-2x + 3	+		+	0	-		
$\frac{5x-2}{-2x+3}$	_	Ō	+		_		

1.5 Inéquation produit de 2 fonctions affines

ineq_produit(f1,f2,symbole) permet de résoudre les inéquation produit nul de deux fonctions affines à l'aide d'un tableau de signe.

Exemple: ineq_produit("5x-2", "-2x+3", ">")
$$5x - 2 > 0 \Leftrightarrow 5x > 0 + 2 \Leftrightarrow 5x > 2 \Leftrightarrow x > \frac{2}{5}$$

$$3 - 2x > 0 \Leftrightarrow -2x > 0 - 3 \Leftrightarrow -2x > -3 \Leftrightarrow x < \frac{-3}{-2} \Leftrightarrow x < \frac{3}{2}$$
On obtient ainsi le tableau suivant:
$$x \qquad -\infty \qquad \frac{2}{5} \qquad \frac{3}{2} \qquad +\infty$$

$$5x - 2 \qquad - \qquad 0 \qquad + \qquad +$$

$$-2x + 3 \qquad + \qquad + \qquad 0 \qquad -$$

$$(5x - 2)(-2x + 3) \qquad - \qquad 0 \qquad + \qquad 0 \qquad -$$
L'ensemble solution de $(3 - 2x)(5x - 2) > 0$ est $\left|\frac{2}{5}, \frac{3}{2}\right|$

CHAPITRE 1. ALGÈBRE

1.6 Inéquation quotient de 2 fonctions affines

ineq_quotient(f1,f2,symbole) permet de résoudre les inéquation quotient nul de deux fonctions affines à l'aide d'un tableau de signe.

Exemple: ineq_quotient("5x-2","-2x+3,"<=") $5x-2>0 \Leftrightarrow 5x>0+2 \Leftrightarrow 5x>2 \Leftrightarrow x>\frac{2}{5}$ $3-2x>0 \Leftrightarrow -2x>0-3 \Leftrightarrow -2x>-3 \Leftrightarrow x<\frac{-3}{-2} \Leftrightarrow x<\frac{3}{2}$ On obtient ainsi le tableau suivant: $x \qquad -\infty \qquad \frac{2}{5} \qquad \frac{3}{2} \qquad +\infty$ $5x-2 \qquad -\qquad 0 \qquad +\qquad +$ $-2x+3 \qquad +\qquad +\qquad 0 \qquad -$

L'ensemble solution de $\frac{5x-2}{3-2x} \le 0$ est $\left|-\infty, \frac{2}{5}\right| \cup \left|\frac{3}{2}, +\infty\right|$

1.7 Tableau de signe d'une fonction

tabsigne(f,a,b) permet de tracer le tableau de signe de la fonction f sur l'intervalle [a;b]

Exemple 1 : tabsigne("e^x-2",-10,10)

 $\frac{5x-2}{-2x+3}$

x	-10		ln (2)			
f(x)		_	0	+		

Exemple 2: tabsigne("x^3",-oo,+oo)

x	$-\infty$		0		$+\infty$
f(x)		-	0	+	

1.8 Résolution d'un système par substitution

systeme_substi(x,y,a1,b1,c1,a2,b2,c2) permet de résoudre le système $\begin{cases} a1.x + b1.y = c1 \\ a2.x + b2.y = c2 \end{cases}$ en utilisant la méthode par substitution.

CHAPITRE 1. ALGÈBRE

5

Exemple : systeme_substi("a","b",2,3,4,-4,1,5) $\begin{cases} 2a + 3b = 4 \\ -4a + b = 5 \\ \Leftrightarrow \begin{cases} 2a + 3 (4a + 5) = 4 \\ b = 4a + 5 \end{cases} \Leftrightarrow \begin{cases} a = -\frac{11}{14} \\ b = 4a + 5 \end{cases} \\ \Leftrightarrow \begin{cases} a = -\frac{11}{14} \\ b = 4a + 5 \end{cases} \end{cases}$

1.9 Résolution d'un système par combinaison linéaire

système_combi(x,y,a1,b1,c1,a2,b2,c2) permet de résoudre le système en utilisant la méthode par combinaison linéaire. $\begin{cases} a1.x + b1.y = c1 \\ a2.x + b2.y = c2 \end{cases}$

Exemple : systeme_combi ("x", "y", 2, 3, 4, -4, 1, 5) $\begin{cases} 2x + 3y = 4 \\ -4x + y = 5 \end{cases} \Leftrightarrow \begin{cases} 2x + 3y = 4 \\ x = -\frac{11}{14} \end{cases} \Leftrightarrow \begin{cases} y = \frac{13}{7} \\ x = -\frac{11}{14} \end{cases} \Leftrightarrow \begin{cases} 3y - \frac{11}{7} = 4 \\ x = -\frac{11}{14} \end{cases} \Leftrightarrow \begin{cases} 3y - \frac{11}{7} = 4 \\ x = -\frac{11}{14} \end{cases} \end{cases}$

1.10 Résolution d'équation du second degré

eq_trinome(p,ensemble) permet de résoudre une équation du second degré en calculant le discriminant. Si ensemble='R', on travaille dans \mathbb{R} et si ensemble='C', on travaille dans \mathbb{C}

Exemple 1: eq_trinome("2*x^2+3x+1", "R") $\Delta = b^2 - 4ac = 3^2 - 4 \times 2 \times 1 = 1$ $\Delta > 0 \text{ donc l'équation } 2x^2 + 3x + 1 = 0 \text{ admet deux solutions réelles :}$ $x_1 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{-3 - \sqrt{1}}{2 \times 2} = \frac{-4}{4} = -1$ $x_2 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{-3 + \sqrt{1}}{2 \times 2} = \frac{-2}{4} = -\frac{1}{2}$ $\text{Exemple 2: eq_trinome}("x^2+x+1", "C")$ $\Delta = b^2 - 4ac = 1^2 - 4 \times 1 \times 1 = -3$ $\Delta < 0 \text{ donc l'équation } z^2 + z + 1 = 0 \text{ admet deux solutions complexes conjuguées :}$ $z_1 = \frac{-b - i\sqrt{\Delta}}{2a} = \frac{-1 - i\sqrt{3}}{2 \times 1} = -\frac{1}{2} - \frac{\sqrt{3}i}{2}$ $\text{et } z_2 = \overline{z_1} = -\frac{1}{2} + \frac{\sqrt{3}i}{2}$

Chapitre 2
automatex_ana