Peal III

$$S = \int_{0}^{\infty} f(x) dx = F(b) - F(a)$$

$$\sum_{k=1}^{\infty} \frac{1}{k} = +\infty$$

$$-1 + \frac{1}{2} - \frac{1}{3} + \frac{1}{4} - \frac{1}{5} + \frac{1}{6} - \frac{1}{7} + \dots = -\frac{3}{7} \ln 2$$

$$\sum_{x} 2^{x}(x) = 1 - x$$

$$\sum_{x} 2^{x}(x) = 1 - x$$

Зміст

1	Невизначений інтеграл					
	1.1	Первісна, основні означення невизначеного інтегралу				
	1.2	Заміна змінної				
	1.3	Інтегрування частинами				
	1.4	Інтегрування дробово-раціональних функцій				
	1.5	Інтегрування тригонометричних функцій				
	1.6	Інтегрування ірраціональних виразів				
	1.7	Диференціальний біном				
2	Виз	вначений інтеграл				
_	2.1	Підхід Рімана				
	2.2	Суми Дарбу				
	2.3	Існування інтеграла				
	2.4	Класи інтегрованих функцій				
	2.5	Властивості інтегралів				
	2.6	Інтеграл як функція верхньої границі				
	2.7	Обчислення визначених інтегралів				
		2.7.1 Заміна змінної				
		2.7.2 Інтегрування частинами				
	2.8	Застосування визначеного інтеграла				
		2.8.1 Площа криволінійної трапеції				
		2.8.2 Площа криволінійного сектора				
		2.8.3 Крива, яка спрямовується				
		2.8.4 Об'єм тіла обертання				
0	TT					
3	не в	Зласні інтеграли 26 Основні означення				
	$\frac{3.1}{3.2}$	Основні означення				
	ე.∠	3.2.1 Дослідження для додатних функції				
		3.2.2 Дослідження для знакодовільних функцій				
	3.3	Невласний інтеграл в сенсі головного значення				
	0.0	21024 Account Marcapowa & contra 10420201010 Old Collina 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
4	Ряд	Зара				
	4.1	Первинний аналіз збіжності та арифметика рядів				
	4.2	Знакододатні ряди				
	4.3	Знакозмінні ряди				
5	Фул	Функціональні ряди 42				
0	5.1	Функціональні послідовності				
	5.2	Функціональні ряди				
	5.3	Степеневі ряди				
	5.4	Зв'язок з Тейлором та єдиність степеневого ряду				
6		уп до \mathbb{R}^m				
	6.1	Топологія та принцип аналіза в \mathbb{R}^m				
	6.2	Границя послідовності				
	6.3	Функція від декількох змінних. Границя функції				
	6.4	Неперервність функції				
	6.5	Границя та неперервність векторнозначної функції				
	6.6	Крива в \mathbb{R}^m				
7	Лис	ференційованість 61				
•	7.1	Для функції із багатьма змінними				
	7.2	Для векторнозначних функцій				
	7.3	Похідна за напрямком. Градієнт				
	7.4	Неявно задані функції				
	7.5	Обернені функції				

	7.6	Геометричне та алгебраїчне застосування			
		7.6.1 Дотична площина, нормальна пряма поверхі			
		7.6.2 Дотична пряма, нормальна площина кривої			
		7.6.3 Приблизне обчислення			
	7.7	Диференціювання та похідні старших порядків			
	7.8	Формула Тейлора			
	7.9	Локальні екстремуми			
	7.10	Умовні локальні екстремуми			
8	1 1				
	8.1	Основні означення та властивості			
		Невласні інтеграли з параметром			
	8.3	Інтеграл Діріхле			
	8.4	Інтеграл Ейлера-Пуассона			
	8.5	Гамма-функція			
	8.6	Бета-функція			

Невизначений інтеграл 1

1.1 Первісна, основні означення невизначеного інтегралу

Definition 1.1.1 Первісною для функції $f:I\to\mathbb{R}$ називають функцію $F:I\to\mathbb{R}$, для якої

$$F'(x) = f(x)$$

Example 1.1.2 Зокрема $F(x) = x^2$ - первісна функції f(x) = 2x, тому що $F'(x) = (x^2)' = 2x = f(x)$. Проте це не єдина така первісна.

Proposition 1.1.3 Якщо $F(x), \Phi(x)$ - первісні для f(x), то $\Phi(x) = F(x) + C$. Випливає з наслідків теореми Лагранжа.

Definition 1.1.4 Множину всіх первісних для функції f(x) називають невизначеним інтегралом функції f(x).

Позначення:
$$\int f(x) dx = \{F(x) : F'(x) = f(x)\}.$$

Example 1.1.5
$$\int 2x \, dx = \{x^2 + C | C \in \mathbb{R}\}$$

Remark 1.1.6 Але надалі можна вважати, що $\int f(x) dx = F(x) + C$, у разі якщо F - первісна. Tобто $\int 2x \, dx = x^2 + C.$

 ${f Remark~1.1.7}$ Взагалі-то кажучи, символ $\int f(x)\,dx$ можна також використовувати, щоб позначити як первісну функції f, якщо не можна записати F як функцію.

Зокрема $\int e^{-x^2} dx$ - первісна функції e^{-x^2} , проте записати як функцію від змінної не можна.

Proposition 1.1.8 Властивості

1)
$$\int f'(x) dx = f(x) + C;$$

$$2) \left(\int f(x) \, dx \right)' = f(x);$$

Далі задамо функції
$$f,g,$$
 які мають відповідно первісні $F,G.$ Тоді: 3) αF - первісна для функції αf та $\int \alpha f(x) \, dx = \alpha \int f(x) \, dx;$

4)
$$F+G$$
 - первісна для функції $f+g$ та $\int f(x)+g(x)\,dx=\int f(x)\,dx+\int g(x)\,dx.$

Proof.

1), 2) випливають з означення.

3) Якщо F - первісна функції f, то тоді αF - первісна функції $\alpha f(x)$, тому що $(\alpha F(x))' = \alpha F'(x) = \alpha f(x).$

Отже,
$$\int \alpha f(x) dx = \alpha F(x) + C = \alpha (F(x) + C^*) = \alpha \int f(x) dx$$
.

4) Якщо F,G - первісні відповідно функції f,g, то F+G - первісна функції f+g, тому що (F(x) + G(x))' = F'(x) + G'(x) = f(x) + g(x).

Отже,
$$\int f(x) + g(x) dx = F(x) + G(x) + C = F(x) + C^* + G(x) + C^{**} = \int f(x) dx + \int g(x) dx$$
.

 ${f Remark~1.1.9}$ Підінтегральний вираз $f(x)\,dx$ варто розглядати як диференціал функції F(x), тобто $\int f(x) dx = F(x) + C \iff d(F(x) + C) = f(x) dx$

4

Таблиця первісних

$\frac{f(x)}{1}$	F(x)
1	x
x^{α}	$\frac{x^{\alpha+1}}{\alpha+1}, \alpha \neq -1$
$\frac{1}{x}$	$\ln x $
$\sin x$	$-\cos x$
$\cos x$	$\sin x$
$\frac{1}{\cos^2 x}$	$\operatorname{tg} x$
$\frac{1}{\sin^2 x}$	$-\operatorname{ctg} x$
$\frac{\frac{1}{\sqrt{1-x^2}}}{1}$	$\arcsin x$
$\overline{1+x^2}$	$\operatorname{arctg} x$
$\frac{1}{\sqrt{1+x^2}}$	$\ln(x + \sqrt{x^2 + 1})$
e^x	e^x
a^x	$\frac{a^x}{\ln a}$
$\sinh x$	$\operatorname{ch} x$
$-\cosh x$	$\operatorname{sh} x$
$\frac{1}{\operatorname{ch}^2 x}$	h x
$\frac{1}{\sinh^2 x}$	$-\coth x$

Example 1.1.10 Обчислимо
$$\int (x+2)^2 + \operatorname{tg}^2 x \, dx$$
. Робити будемо це, використовуючи таблицю первісних та властивості інтегралів.
$$\int (x+2)^2 + \operatorname{tg}^2 x \, dx = \int x^2 + 4x + 4 + \frac{1}{\cos^2 x} - 1 \, dx = \int x^2 \, dx + 4 \int x \, dx + 3 \int 1 \, dx + \frac{1}{\cos^2 x} \, dx = \frac{x^3}{3} + 2x^2 + 3x + \operatorname{tg} x + C.$$

1.2 Заміна змінної

Theorem 1.2.1 Задано функцію $f: I \to \mathbb{R}$, має первісну F; функцію $g: J \to I$ - диференційована. Тоді $(f \circ g)g'$ має первісу $F \circ g$, причому

$$\int (f \circ g)(x)g'(x) dx = \int f(t) dt.$$

Дійсно,
$$F \circ g$$
 - первісна для $(f \circ g)g'$, оскільки $(F \circ g)'(x) = F'(g(x))g'(x) = f(g(x))g'(x)$. Отже, $\int f(g(x))g'(x) \, dx = \int f(g(x)) \, dg(x) = \int f(t) \, dt = F(t) + C = F(g(x)) + C$.

Example 1.2.2 Обчислити
$$\int \frac{1}{x \ln x} dx$$

$$\int \frac{1}{x \ln x} dx$$
 Проведемо заміну: $\ln x = t$. Тоді $\frac{1}{x} dx = dt$ $\equiv \int \frac{1}{t} dt = \ln |t| + C = \ln |\ln x| + C$

Інтегрування частинами

Theorem 1.3.1 Задані функції $u, v: I \to \mathbb{R}$ - обида диференційовані. Відомо, що u'v має первісну. Тоді uv' також має первісну, причому

$$\int u(x)v'(x) dx = u(x)v(x) - \int v(x)u'(x) dx.$$

Функція u'(x)v(x) має первісну $H_1(x)$.

Тоді u(x)v'(x) має первісну $H_2(x)=u(x)v(x)-\int v(x)u'(x)\,dx,$ тому що

$$H_2'(x) = \left(u(x)v(x) - \int v(x)u'(x) \, dx\right)' = (u(x)v(x))' - v(x)u'(x) = u'(x)v(x) + u(x)v'(x) - v(x)u'(x) = u(x)v'(x).$$

Отже,
$$\int u(x)v'(x) dx = u(x)v(x) - \int v(x)u'(x) dx$$
.

Remark 1.3.2 Більш зручно записати таку формулу: $\int u \, dv = uv - \int v \, du$.

Example 1.3.3 Обчислити $\int x^2 e^x dx$.

$$\int x^{2}e^{x} dx = \int u = x^{2} \Rightarrow du = 2x dx$$

$$e^{x} dx = dv \Rightarrow v = e^{x}$$

$$= x^{2}e^{x} - \int 2xe^{x} dx = \int u = 2x dx$$

$$u = 2x \Rightarrow du = 2 dx$$

$$e^{x} dx = dv \Rightarrow v = e^{x}$$

$$= x^{2}e^{x} - (2xe^{x} - \int 2e^{x} dx) = x^{2}e^{x} - 2xe^{x} + 2e^{x} + C$$

1.4 Інтегрування дробово-раціональних функцій

Розглянемо $\int \frac{P(x)}{Q(x)} \, dx$, де P(x), Q(x) - многочлени з дійсний коефіцієнтами. Є два випадки:

I. $deg(P(x)) \ge deg(Q(x))$

Тоді можемо поділити їх з остачею: P(x) = S(x)Q(x) + R(x).

A tomy
$$\int \frac{P(x)}{Q(x)} dx = \int S(x) + \frac{R(x)}{Q(x)} dx$$

, де S(x) - деякий многочлен, який можна проінтегрувати таблицею, а також $\deg(R(x)) < \deg(Q(x))$. Зараз буде пункт, як такий випадок інтегрувати.

II. deg(R(x)) < deg(Q(x))

$$Q(x) = (x - a_1)^{k_1} \dots (x - a_m)^{k_m} (x^2 + p_1 x + q_1)^{l_1} (x^2 + p_s x + q_s)^{l_s}.$$

За наслідком основної теореми алгебри, розкладемо Q(x) таким чином: $Q(x) = (x-a_1)^{k_1}\dots(x-a_m)^{k_m}(x^2+p_1x+q_1)^{l_1}(x^2+p_sx+q_s)^{l_s}.$ Причому дискримінант квадратних трьохчленів - від'ємний. Тоді за теоремою десь із курсу ліналу,

ми можемо $\frac{R(x)}{Q(x)}$ записати як суму простих дробів:

$$\frac{R(x)}{Q(x)} = \frac{A_{11}}{x-a_1} + \dots + \frac{A_{1k_1}}{(x-a_1)^{k_1}} + \dots + \frac{A_{m1}}{x-a_m} + \dots + \frac{A_{mk_m}}{(x-a_m)^{k_m}} + \dots + \frac{B_{11}x+C_{11}}{x^2+p_1x+q_1} + \dots + \frac{B_{1l_1}x+C_{1l_1}}{(x^2+p_1x+q_1)^{l_1}} + \dots + \frac{B_{s1}x+C_{s1}}{x^2+p_sx+q_s} + \dots + \frac{B_{sl_s}x+C_{sl_s}}{(x^2+p_sx+q_s)^{l_s}}.$$
 Коротше, залищається розглянути 4 вигляди інтегралу:

$$1) \int \frac{1}{x-a} dx = \ln|x-a| + C$$

2)
$$\int \frac{1}{(x-a)^k} dx = \int (x-a)^{-k} dx = \frac{(x-a)^{-k+1}}{-k+1} + C = \frac{1}{(1-k)(x-a)^{k-1}} + C$$

3)
$$\int \frac{Bx+C}{x^2+px+q} dx =$$

Знаменник розпишу як $x^2 + px + q = \left(x + \frac{p}{2}\right)^2 + \frac{4q - p^2}{4}$.

Зробимо заміну: $x + \frac{p}{2} = t \Rightarrow dx = dt$

Також $Bx + C = Bt - B\frac{p}{2} + C$.

Перепозначення:
$$\frac{4q - p^2}{4} = a^2 > 0$$
 $C - B\frac{p}{2} = M$.

$$\int \frac{1}{t^2 + a^2} dt = \frac{1}{a^2} \int \frac{1}{1 + \left(\frac{t}{a}\right)^2} dt = \frac{1}{a} \int \frac{d\frac{t}{a}}{1 + \left(\frac{t}{a}\right)^2} = \frac{1}{a} \arctan \frac{t}{a}$$

$$\boxed{\equiv} \frac{B}{2} \ln|t^2 + a^2| + \frac{M}{a} \arctan \frac{t}{a} + C$$
 Ну а далі робимо зворотню заміну - інтеграл розв'язаний.

4)
$$\int \frac{Bx + C}{(x^2 + px + q)^l} dx =$$

Тут робимо ті самі заміни, що в 3)
$$= \int \frac{Bt+M}{(t^2+a^2)^l} dt = B \int \frac{t}{(t^2+a^2)^l} dt + M \int \frac{1}{(t^2+a^2)^l} dt$$
 Ну і тут я ланцюг рівностей зупиню, якщо перший інтеграл - ще ок, то другий - це дупа
$$\int \frac{t}{-t} dt - \int \frac{dt^2}{-t} dt - \frac{1}{t} \frac{1}{-t}$$

$$\int \frac{t}{(t^2 + a^2)^l} dt = \int \frac{dt^2}{2(t^2 + a^2)^l} dt = \frac{1}{2} \frac{1}{(1 - l)s^{l-1}}$$

$$\int \frac{1}{(t^2 + a^2)^l} dt = u = \frac{1}{(t^2 + a^2)^l} \qquad dv = dt$$

$$= \frac{t}{(t^2 + a^2)^l} + 2l \int \frac{t^2}{(t^2 + a^2)^{l+1}} dt + \frac{t}{(t^2 + a^2)^l} + 2l \left(\int \frac{dt}{(t^2 + a^2)^l} - a^2 \frac{dt}{(t^2 + a^2)^{l+1}} \right)$$

Позначимо за $I_l = \int \frac{t}{(t^2 + a^2)^l} dt$

Тоді маємо таке рівняння:
$$I_l = \frac{t}{(t^2 + a^2)^l} + 2l \cdot I_l - 2la^2 \cdot I_{l+1}$$

Залишилось виразити I_{l+1} та розв'язати рівняння рекурсивно, причому I_1 ми вже рахували.

Bce! Інтеграл $\int \frac{P(x)}{Q(x)} dx$ - розв'язаний.

Example 1.4.1 Обчислити $\int \frac{x^4}{1+x^3} \, dx$ Оскільки $\deg(x^4) > \deg(1+x^3)$, то ми поділимо многочлени. Отримаємо:

$$\int \frac{x^4}{1+x^3}\,dx = \int x - \frac{x}{x^3+1}\,dx = x^2 - \int \frac{x}{x^3+1}\,dx.$$
 Обчислимо другий інтеграл. Перед цим розкладемо дріб на суму простих дробів методом невизначених

коефіцієнтів:

Roediffication:
$$\frac{x}{x^3 + 1} = \frac{x}{(x+1)(x^2 - x + 1)} = \frac{A}{x+1} + \frac{Bx + C}{x^2 - x + 1} = A(x^2 - x + 1) + (Bx + C)(x+1) = x$$

$$\Rightarrow \begin{cases} A+B=0\\ -A+B+C=1 \Rightarrow A=-\frac{1}{3}, B=\frac{1}{3}, C=\frac{1}{3}\\ A+C=0 \end{cases}$$

$$= -\frac{1}{3(x+1)} + \frac{1}{3} \frac{x+1}{x^2 - x + 1}$$

Таким чином, треба порахувати такий інтеграл:

$$\int \frac{x}{x^3+1} \, dx = -\frac{1}{3} \int \frac{1}{x+1} \, dx + \frac{1}{3} \int \frac{x+1}{x^2-x+1} \, dx$$
 Прозглянемо другий інтеграл:
$$\int \frac{x+1}{x^2-x+1} \, dx = \int \frac{4x+4}{(2x-1)^2+3} \, dx = \int \frac{4x-2}{(2x-1)^2+3} \, dx + \int \frac{6}{(2x-1)^2+3} \, dx = \ln \left((2x-1)^2+3 \right) + 6 \frac{1}{2\sqrt{3}} \arctan \left(\frac{2x-1}{\sqrt{3}} \right) = \ln \left(4x^2-4x+4 \right) + \sqrt{3} \arctan \left(\frac{2x-1}{\sqrt{3}} \right)$$
 Празом отримаємо:
$$\int \frac{x^4}{1+x^3} \, dx = x^2 + \frac{1}{3} \ln |x+1| - \frac{1}{3} \ln \left(4x^2-4x+4 \right) - \frac{1}{\sqrt{3}} \arctan \left(\frac{2x-1}{\sqrt{3}} \right) + C$$

Example 1.4.2 Обчислити $\int \frac{1}{(x^2+1)^2} dx$

Можна скористатися отриманою рекурентною формулою, а можна зробити ті самі кроки.

$$\int \frac{1}{(x^2+1)^1} dx = \operatorname{arctg} x$$

$$\int \frac{1}{(x^2+1)^1} dx \stackrel{u=\text{дрi6}, dv=dx}{=} \frac{x}{x^2+1} + \int \frac{2x^2}{(x^2+1)^2} dx = \frac{x}{x^2+1} + 2 \int \frac{1}{x^2+1} - \frac{1}{(x^2+1)^2} dx$$

$$\implies \operatorname{arctg} x = \frac{x}{x^2+1} + 2 \operatorname{arctg} x - 2 \int \frac{1}{(x^2+1)^2} dx$$

$$\int \frac{1}{(x^2+1)^2} dx = \frac{1}{2} \operatorname{arctg} x + \frac{x}{2(x^2+1)} + C$$

1.5 Інтегрування тригонометричних функцій

I. Розглянемо $\int \sin^k x \cos^m x \, dx$, де $k, m \in \mathbb{Z}$. Маємо такі заміни:

1)
$$k$$
 - непарне, тобто $k=2l+1$, тоді заміна: $\cos x=t$. Тому $(-\sin x)\,dx=dt$ і $\sin^2 x=1-\cos^2 x=1-t^2$ $\int \sin^k x \cos^m x\,dx=\int \sin^{2l+1} xt^m \frac{dt}{-\sin x}=-\int t^m (1-t^2)^l\,dt$

2)
$$m$$
 - непарне, тобто $m=2l+1$, тоді заміна: $\sin x=t$. Тому $\cos x\,dx=dt$ і $\cos^2 x=1-\sin^2 x=1-t^2$
$$\int \sin^k x \cos^m x\,dx=\int t^k \cos^{2l+1} x \frac{dt}{\cos x}=\int t^k (1-t^2)^l\,dt$$

3)
$$k,m$$
 - парні, тобто $k=2l,m=2n$, тоді знижуємо степені: $\sin^2 x = \frac{1-\cos 2x}{2} \qquad \cos^2 x = \frac{1+\cos 2x}{2}$
$$\int \sin^k x \cos^m x \, dx = \int \left(\frac{1-\cos 2x}{2}\right)^l \left(\frac{1+\cos 2x}{2}\right)^n \, dx$$

Всі отримані інтеграли є випадком інтегрування дробово-раціональних виразів.

Example 1.5.1 Обчислити
$$\int \cos^3 x \, dx$$
 Заміна: $t = \sin x$, випадок 2), тоді $dt = \cos x \, dx$
$$\int \cos^3 x \, dx = \int (1 - t^2) \, dx = t - \frac{t^3}{3} + C = \sin x - \frac{\sin^3 x}{3} + C$$

II. Розглянемо $\int R(\sin x,\cos x)\,dx$, де R - дробово-раціональний вираз від $\sin x,\cos x$. Маємо таку заміну:

$$t = tg\frac{x}{2} \implies x = 2 \arctan t \implies dx = \frac{2}{1+t^2} dt$$

$$\sin x = \frac{2 tg\frac{x}{2}}{1+tg^2 \frac{x}{2}} = \frac{2t}{1+t^2}$$

$$\cos x = \frac{1-tg^2 \frac{x}{2}}{1+tg^2 \frac{x}{2}} = \frac{1-t^2}{1+t^2}$$

$$\int R(\sin x,\cos x)\,dx=\int R\left(\frac{2t}{1+t^2},\frac{1-t^2}{1+t^2}\right)\cdot\frac{2}{1+t^2}\,dt$$
 Отримуємо випадок інтегрування дробово-раціонали

Example 1.5.2 Обчислити $\int \frac{dx}{5-3\cos x}$

Заміна: $t=\operatorname{tg}\frac{x}{2}$, випадок II. Тоді беремо решта замін звідси, з нашого пункту.

$$\int \frac{dx}{5 - 3\cos x} = \int \frac{1}{5 - 3\frac{1 - t^2}{1 + t^2}} \frac{2}{1 + t^2} dt = \int \frac{2 dt}{5 + 5t^2 - 3 + 3t^2} = \int \frac{dt}{4t^2 + 1} = \frac{1}{2} \arctan 2t + C = \frac{1}{2} \arctan \left(2 \operatorname{tg} \frac{x}{2}\right) + C$$

Інтегрування ірраціональних виразів

I. Розглянемо $\int R\left(\sqrt[k_1]{\frac{ax+b}{cx+d}}, \dots, \sqrt[k_n]{\frac{ax+b}{cx+d}}\right) dx$, де R - дробово-раціональний вираз, причому $ad - cb \neq 0$.

Нехай $m = LCM(k_1, \ldots, k_n)$. Спрацює заміна: $\frac{ax+b}{cx+d} = t^m$

Виразимо x з цього рівняння

$$ax + b = t^m cx + t^m d \Rightarrow x = \frac{t^m d - b}{a - ct^m}$$

Тоді
$$dx = \frac{dmt^{m-1}(a-ct^m)+(t^md-b)cmt^{m-1}}{(a-ct^m)^2}dt = \frac{mt^{m-1}(ad-bc)}{(a-ct^m)^2}dt$$

Биразимо
$$x$$
 з цього рівняння: $ax + b = t^m cx + t^m d \Rightarrow x = \frac{t^m d - b}{a - ct^m}$
Тоді $dx = \frac{dmt^{m-1}(a - ct^m) + (t^m d - b)cmt^{m-1}}{(a - ct^m)^2} dt = \frac{mt^{m-1}(ad - bc)}{(a - ct^m)^2} dt$

$$\int R\left(\sqrt[k_1]{\frac{ax + b}{cx + d}}, \dots, \sqrt[k_n]{\frac{ax + b}{cx + d}}\right) dx = \int R(t^{m_1}, \dots, t^{m_n}) \frac{mt^{m-1}(ad - bc)}{(a - ct^m)^2} dt,$$

де $m_1=\frac{m}{k_1},\dots,m_n=\frac{m}{k_n}\in\mathbb{Z}$ Отримаємо інтеграл дробово-раціонального виразу.

Example 1.6.1 Обчислити
$$\int \frac{\sqrt{x+1}+2}{(x+1)^2-\sqrt{x+1}} dx$$

Example 1.6.1 Обчислити
$$\int \frac{\sqrt{x+1}+2}{(x+1)^2-\sqrt{x+1}}\,dx$$
 Заміна: $t^2=x+1$. Тоді $x=t^2-1\Rightarrow dx=2t\,dt$
$$\int \frac{\sqrt{x+1}+2}{(x+1)^2-\sqrt{x+1}}\,dx=\int \frac{t+2}{t^4-t}\cdot 2t\,dt=2\int \frac{t+2}{t^3-1}\,dt$$
 обчислення цього інтегралу проводиться як в п. 4, тому я пропускаю цей момент
$$\boxed{=}-\ln(t^2+t+1)-\frac{2}{\sqrt{3}}\arctan\frac{2t+1}{\sqrt{3}}+2\ln|t-1|+C=$$

$$= -\ln(t^2 + t + 1) - \frac{2}{\sqrt{3}} \arctan \frac{2t+1}{\sqrt{3}} + 2\ln|t-1| + C =$$

$$= -\ln(x+2+\sqrt{x+1}) - \frac{2}{\sqrt{3}}\arctan\frac{2\sqrt{x+1}+1}{\sqrt{3}} + 2\ln|\sqrt{x+1}-1| + C$$

1)
$$\int R(x, \sqrt{a^2 - x^2}) dx$$

$$2) \int R(x, \sqrt{a^2 + x^2}) \, dx =$$

Заміна:
$$x = a \operatorname{tg} t \Rightarrow dx = \frac{a}{\cos^2 t} dt$$

Заміна:
$$x = a \operatorname{tg} t \Rightarrow dx = \frac{a}{\cos^2 t} dt$$

$$= \int R\left(a \operatorname{tg} t, \frac{a}{\cos t}\right) \cdot \frac{a}{\cos^2 t} dt$$

3)
$$\int R(x, \sqrt{x^2 - a^2}) dx =$$

Усі отримані інтеграли II є інтегралами тригонометричних функцій.

Example 1.6.2 Обчислити
$$\int \sqrt{4-x^2} \, dx$$
 Заміна: $x=2\sin t$, випадок 1). Тоді $dx=2\cos t \, dt$
$$\int \sqrt{4-x^2} \, dx = \int 2\cos t \cdot 2\cos t \, dt = \int 2(1+\cos 2t) \, dt = 2t+\sin 2t + C = 2t+2\sin t \cos t + C = 2\arcsin\frac{x}{2} + 2\frac{x}{2}\sqrt{1-\frac{x^2}{4}} + C = 2\arcsin\frac{x}{2} + \frac{x\sqrt{4-x^2}}{2} + C$$

1.7 Диференціальний біном

Розглянемо
$$\int x^m (ax^n+b)^p\,dx$$
 , де $m,n,p\in\mathbb{Q}$. Маємо три випадки: 1) $p\in\mathbb{Z}$, тоді маємо: $m=\frac{p_1}{q_1}; n=\frac{p_2}{q_2}$. Нехай $q=\mathrm{LCM}(q_1,q_2)$. Тоді заміна: $x=t^q$.

$$2)\ p
ot\in\mathbb{Z},$$
 але $\dfrac{m+1}{n}\in\mathbb{Z},$ тоді маємо: $p=\dfrac{j}{l}.$ Тоді заміна: $ax^n+b=t^l.$

3)
$$p \not\in \mathbb{Z}, \, \frac{m+1}{n} \not\in \mathbb{Z},$$
 але $p+\frac{m+1}{n} \in \mathbb{Z},$ тоді маємо: $p=\frac{j}{l}.$

Тоді заміна: $a + bx^{-n} = t^l$.

Заміни в 1), 2), 3) називають **підстановками Чебишова**, що призводять до інтегралу дробово-раціональних виразів.

Якщо жодна з пунктів не спрацьовує, то інтеграл не може бути обчисленим через елементарні функції (залишаю поки це як факт).

Ехаmple 1.7.1 Обчислити
$$\int \sqrt[3]{x-x^3} \, dx = \int x^{\frac{1}{3}} (1-x^2)^{\frac{1}{3}} \, dx$$
 Тут у нас $m=\frac{1}{3}, \ n=2, \ p=\frac{1}{3}$ Спрацьовуе 3), тому що $p+\frac{m+1}{n}=\frac{1}{3}+\frac{1+\frac{1}{3}}{2}=1\in\mathbb{Z}$ Заміна: $-1+x^{-2}=t^3$ $-2x^{-3} \, dx=3t^2 \, dt$
$$\int \sqrt[3]{x-x^3} \, dx=\int x^{\frac{1}{3}} (1-x^2)^{\frac{1}{3}} \, dx=\int (x^{-2}-1)^{\frac{1}{3}} x^{\frac{2}{3}} x^{\frac{1}{3}} \, dx=\int t\cdot x\cdot \frac{3t^2x^3 \, dt}{-2}=\int \frac{3t^3 \, dt}{-2(t^3+1)^2}=$$
 $=\frac{3}{-2}\left(\int \frac{dt}{t^3+1}-\int \frac{dt}{(t^3+1)^2}\right)$ $=$ обчислення цього інтегралу проводиться як в п. 4, тому я пропускаю цей момент $=-\frac{\ln|t+1|}{2}+\frac{\ln(t^2-t+1)}{4}-\frac{\sqrt{3}}{2} \operatorname{arctg} \frac{2x-1}{\sqrt{3}}+\frac{\ln|t+1|}{3}-\frac{\ln(t^2-t+1)}{6}+\frac{\sqrt{3}}{3} \operatorname{arctg} \frac{2x-1}{\sqrt{3}}+\frac{t}{2t^3+2}+C=$ $=-\frac{1}{6}\ln|t+1|+\frac{1}{12}\ln(t^2-t+1)-\frac{\sqrt{3}}{6} \operatorname{arctg} \frac{2x-1}{\sqrt{3}}+\frac{t}{2t^3+2}+C$ I підставляємо $t=\sqrt[3]{x^{-2}+1}$.

2 Визначений інтеграл

2.1 Підхід Рімана

Definition 2.1.1 Розбиттям множини [a,b] називають множину точок $\tau = \{x_0, x_1, \dots, x_{n-1}, x_n\}$, для яких

$$a = x_0 < x_1 < \dots < x_{n-1} < x_n = b$$

Definition 2.1.2 Позначимо за $\Delta x_1 = x_1 - x_0, \dots, \Delta x_n = x_n - x_{n-1}$. Тоді числом

$$|\tau| = \max\{\Delta x_1, \dots, \Delta x_n\}$$

називають **діаметром** (або **дрібністю**) розбиття τ .

Definition 2.1.3 Задані розбиття τ, τ' відрізка [a, b]. Якщо $\tau \subset \tau'$, то τ' називають **підрозбиттям** розбиття τ .

Proposition 2.1.4 Задано τ' - підрозбиття для τ . Тоді $|\tau'| \leq |\tau|$.

Proof.

Дійсно, із розбиття ми можемо отримати підрозбиття шляхом додавання точок. Тоді деякі інтервали будуть ділитись на підінтервали через додавання точки. Відповідно діаметр зменшується.

Definition 2.1.5 Задано $\tau = \{x_0, x_1, \dots, x_n\}$ - розбиття відрізка [a, b] Елементи множини $\xi = \{\xi_1, \dots, \xi_n\}$ називають **відміченими точками**. Тут $\xi_1 \in [x_0, x_1), \xi_2 \in [x_1, x_2), \dots, \xi_n \in [x_{n-1}, x_n]$

Definition 2.1.6 Задано функцію $f:[a,b] \to \mathbb{R}$, розбиття $\tau = \{x_0, x_1, \dots, x_n\}$ та відмічені точки $\xi = \{\xi_1, \dots, \xi_n\}$.

Інтегральною сумою Рімана функції f для нашого розбиття τ та відмічених точок називають число:

$$\sigma(f, \tau, \xi) = \sum_{k=1}^{n} f(\xi_k) \Delta x_k$$

Definition 2.1.7 Задано функцію $f:[a,b] \to \mathbb{R}$.

Функція f називається **інтегрованою за Ріманом** на [a,b], якщо існує таке число $I \in \mathbb{R}$, для якого виконана умова:

$$\forall \varepsilon > 0 : \exists \delta(\varepsilon) > 0 : \forall (\tau, \xi) : |\tau| < \delta \implies |\sigma(\tau, \xi, f) - I| < \varepsilon$$

Число I називають **інтегралом Рімана**.

$$I = \int_{a}^{b} f(x) \, dx$$

Позначення: $I = \lim_{|\tau| \to 0} \sigma(f, \tau, \xi)$ (нелегально, тому що не знаю, що таке границя за базою).

Множина інтегрованих функцій за Ріманом: $\mathcal{R}([a,b])$.

Remark 2.1.8 Для кожного розбиття τ , ми можемо самі обирати точки ξ , просто головне, щоб $|\tau| < \delta$.

Example 2.1.9 Доведемо, що функція $f(x) = 1 \in \mathcal{R}([a,b])$, а також $\int_a^b 1 \, dx = b - a$.

Для початку зафіксуємо розбиття $\tau = \{x_0, x_1, \dots, x_n\}$ та відмітимо точки $\xi = \{\xi_1, \dots, \xi_n\}$. Це аби знайти інтегральну суму:

$$\sigma(f, \tau, \xi) = \sum_{k=1}^{n} f(\xi_k) \Delta x_k$$

$$\sigma(1, \tau, \xi) = \sum_{k=1}^{n} \Delta x_k = x_1 - x_0 + x_2 - x_1 + \dots + x_n - x_{n-1} = x_n - x_0 = b - a.$$

I ця інтегральна сума має це значенням при довільному розбитті. Якщо встановити I=b-a, то толі:

$$\forall \varepsilon > 0: \exists \delta(\varepsilon) > 0: \forall (\tau, \xi): |\tau| < \delta \implies |\sigma(\tau, \xi, f) - I| = |b - a - (b - a)| = 0 < \varepsilon.$$
 Отже, $f(x) = 1 \in \mathcal{R}([a, b])$, а інтеграл $\int_a^b 1 \, dx = b - a.$

Theorem 2.1.10 Задано функцію $f:[a,b] \to \mathbb{R}$.

Число I - інтеграл Рімана $\iff \forall (\tau_n, \xi_n) : |\tau_n| \stackrel{n \to \infty}{\longrightarrow} 0 \implies \sigma(f, \tau_n, \xi_n) \stackrel{n \to \infty}{\longrightarrow} I$.

Зрозуміло. Фактично, це можна вважати як означення 'за Гейне', але не зовсім. Проте схожі.

2.2 Суми Дарбу

Definition 2.2.1 Задано функцію $f:[a,b] \to \mathbb{R}$ - обмежена. Визначмо такі значення для розбиття $\tau = \{x_0, x_1, \dots, x_n\}$:

$$m_k = \inf_{x \in [x_{k-1}, x_k]} f(x)$$
 $M_k = \sup_{x \in [x_{k-1}, x_k]} f(x)$ $k = 1, ..., n$

Верхньою та нижньою сумою Дарбу називають такі суми:

$$U(f,\tau) = \sum_{k=1}^{n} M_k \Delta x_k \qquad L(f,\tau) = \sum_{k=1}^{n} m_k \Delta x_k$$

Remark 2.2.2 Із означення випливає, що $L(f,\tau) \le U(f,\tau)$, оскільки $m_k \le M_k$.

Lemma 2.2.3 Задано функцію $f:[a,b] \to \mathbb{R}$ - обмежена та будь-яке розбиття τ . Тоді маємо: $L(f,\tau) = \inf_{\xi} \sigma(f,\tau,\xi)$ $U(f,\tau) = \sup_{\xi} \sigma(f,\tau,\xi)$

Proof.

Зафіксуємо розбиття $\tau = \{x_0, x_1, \dots, x_n\}$, тоді f - обмежена на $[x_{k-1}, x_k], \forall k$.

А тепер візьмемо деякий набір точок ξ , тоді зрозуміло, що $f(\xi_k) \leq M_k, \forall k \implies f(\xi_k) \Delta x_k \leq M_k \Delta x_k$ Просумуємо всі рівняння, які тут в нас ε - тоді отримаємо:

$$\sum_{k=1}^{n} f(\xi_k) \Delta x_k \le \sum_{k=1}^{n} M_k \Delta x_k \implies \sigma(f, \tau, \xi) \le U(f, \tau)$$

А далі зафіксуємо $\varepsilon > 0$. Оскільки $M_k = \sup_{x \in [x_{k-1}, x_k]} f(x)$, то тоді $\exists x_\varepsilon : f(x_\varepsilon) > M_k - \frac{\varepsilon}{b-a}$.

$$f(\xi_k') > M_k - \frac{\varepsilon}{b-a} \implies f(\xi_k') \Delta x_k > M_k \Delta x_k - \frac{\varepsilon}{b-a} \Delta x_k$$

I ось ці точки
$$x_{\varepsilon}=\xi_k'$$
 - це буде мій набір точок, який існує. Тоді маємо $f(\xi_k')>M_k-\frac{\varepsilon}{b-a}\Longrightarrow f(\xi_k')\Delta x_k>M_k\Delta x_k-\frac{\varepsilon}{b-a}\Delta x_k$ Аналогічно просумуємо всі рівняння - отримаємо:
$$\sum_{k=1}^n f(\xi_k')\Delta x_k>\sum_{k=1}^n M_k\Delta x_k-\sum_{k=1}^n \frac{\varepsilon}{b-a}\Delta x_k\Longrightarrow S_{\tau,\xi'}(f)>U(f,\tau)-\varepsilon$$
 Остаточно, ми отримали $U(f,\tau)=\sup_{\xi}\sigma(f,\tau,\xi)$. Випадок $L(f,\tau)=\inf_{\xi}\sigma(f,\tau,\xi)$ аналогічний.

Lemma 2.2.4 Задано функцію $f:[a,b] \to \mathbb{R}$ - обмежена та розбиття au. Також задамо підрозбитя τ' . Тоді $U(f,\tau) \ge U(f,\tau')$, а також $L(f,\tau) \le L(f,\tau')$.

Proof.

Достатньо розглянути підрозбиття $\tau' = \tau \cup \{x^*\}$, припустимо $x^* \in [x_{i-1}, x_i], i = \overline{1, n}$. Тому що якщо в мене буде більше точок, то будемо поступово їх додавати.

$$U(f,\tau) = \sum_{k=1}^{n} M_k \Delta x_k = M_i \Delta x_i \sum_{k=1}^{n} M_k \Delta x_k \ge$$

 $U(f,\tau) = \sum_{k=1}^n M_k \Delta x_k = M_i \Delta x_i \sum_{k=1, k \neq i}^n M_k \Delta x_k \ge$ Зауважимо, що $M_i \Delta x_i = M_i (x_i - x_{i-1}) = M_i (x_i - x^* + x^* - x_{i-1}) = M_i (x_i - x^*) + M_i (x^* - x_{i-1}) \ge$

$$\tilde{M}(x_i - x^*) + \tilde{\tilde{M}}(x^* - x_{i-1})$$
, де $\tilde{M} = \sup_{x \in [x^*, x_i]} f(x)$ $\tilde{\tilde{M}} = \sup_{x \in [x_{i-1}, x^*]} f(x)$

Випадок $L(f,\tau) \leq L(f,\tau')$ аналогічний.

Lemma 2.2.5 Задано функцію $f:[a,b] \to \mathbb{R}$ - обмежена. Візьмемо будь-які два розбиття τ',τ'' . Тоді $L(f,\tau') \leq U(f,\tau'')$.

Зафіксую $\tau = \tau' \cup \tau''$ - це є підрозбиттям одночасно розбиття τ' та розбиття τ'' . Тоді за попередньою

лемою,

$$L(f,\tau') \leq L(f,\tau) \leq U(f,\tau) \leq U(f,\tau'').$$

Definition 2.2.6 Верхнім/нижнім інтегралом Дарбу будемо називати такі вирази:

$$I^*(f) = \inf_{\tau} U(f, \tau) \qquad I_*(f) = \sup_{\tau} L(f, \tau)$$

Remark 2.2.7 Справедлива така нерівність: $I_*(f) \leq I^*(f)$.

Випливає з щойно доведеної леми.

2.3 Існування інтеграла

Theorem 2.3.1 Необхідна умова інтегрованості

Задано функцію $f \in \mathcal{R}([a,b])$. Тоді f - обмежена на [a,b].

Оскільки $f \in \mathcal{R}([a,b])$, то звідси $\exists I \in \mathbb{R}$, для якого виконано:

для $\varepsilon=1:\exists \delta: \forall \tau: |\tau|<\delta \implies \forall \xi: |\sigma(f,\tau,\xi)-I|<1 \implies |\sigma(f,\tau,\xi)|<|I|+1.$

!Припустимо, що f - не обмежена зверху, тоді $\exists k_0 = \overline{1,n}: f$ - необмежена на $[x_{k_0-1},x_{k_0}]$. Тобто $\forall M>0:\exists x\in[x_{k_0-1},x_{k_0}]:f(x)>M.$ Якщо встановити M=j, то знайдеться послідовність $\{x_j, j \geq 1\} = \{\xi_{k_0}^{(j)}, j \geq 1\}$, для якої $f\left(\xi_{k_0}^{(j)}\right) o +\infty.$

Розглянемо послідовність відмічених точок $\{\xi_j, j \geq 1\}$, де $\xi_j = \{\xi_1, \dots, \xi_{k_0-1}, \xi_{k_0}^{(j)}, \xi_{k_0+1}, \dots, \xi_n\}$. А далі розглянемо послідовність інтегральних сум $\{S_j, j \geq 1\}$. Тоді

 $\sigma_{j} = \sigma(f, \tau, \xi_{j}) = f(\xi_{1}) \Delta x_{1} + \dots + f(\xi_{k_{0}-1}) \Delta x_{k_{0}-1} + f(\xi_{k_{0}}^{(j)}) \Delta x_{k_{0}} + f(\xi_{k_{0}+1}) \Delta x_{k_{0}+1} + \dots + f(\xi_{n}) \Delta x_{n} \rightarrow 0$

Проте ми ж мали, що $\forall \xi_j : |\sigma(f, \tau, \xi_j)| \le 1 + |I|$. Суперечність!

Remark 2.3.2 Взагалі-то кажучи, в іноземних підручниках під час введення означення інтегралу Рімана одразу вважають f - обмеженою на [a, b].

Theorem 2.3.3 Перший критерій інтегрованості

Задано функцію $f:[a,b] \to \mathbb{R}$.

 $f \in \mathcal{R}([a,b]) \iff f$ - обмежена на [a,b] та $I_*(f) = I^*(f) = I$.

 \Rightarrow Дано: $f \in \mathcal{R}([a,b])$. Тоді автоматично f - обмежена та

 $\forall \varepsilon > 0 : \exists \delta : \forall \tau : |\tau| < \delta \implies |\sigma(f, \tau, \xi) - I| < \varepsilon.$

Оскільки $\forall \xi : \sigma(f, \tau, \xi) < I + \varepsilon$, то зокрема $\sup \sigma(f, \tau, \xi) = U(f, \tau) \le I + \varepsilon$.

Оскільки $\forall \xi: \sigma(f,\tau,\xi)>I-\varepsilon$, то зокрема $\inf_{\xi}\sigma(f,\tau,\xi)=L(f,\tau)\geq I-\varepsilon$.

Додатково

 $I^*(f) = \inf_{\tau} U(f,\tau) \le U(f,\tau) \le I + \varepsilon$ $I_*(f) = \sup_{\tau} L(f,\tau) \ge L(f,\tau) \ge I - \varepsilon.$

Остаточно $0 \le I^*(f) - I_*(f) \le I + \varepsilon - I + \varepsilon = 2\varepsilon$, виконано $\forall \varepsilon > 0 \implies I^*(f) = I_*(f) = I$.

 \sqsubseteq Дано: f - обмежена на [a,b] та $I^*(f) = I_*(f)$.

 $\overline{\text{Hex}}$ ай $\varepsilon > 0$. Тоді існує δ , щоб $\forall \tau : |\tau| < \delta \implies \forall \xi : L(f,\tau) \le \sigma(f,\tau,\xi) \le U(f,\tau)$.

A оскільки $L(f,\tau)>I-\varepsilon$ та $U(f,\tau)< I+\varepsilon$ за критеріями супремума, інфімума, то звідси $I - \varepsilon < \sigma(f, \tau, \xi) < I + \varepsilon.$

Отже, $|\sigma(f,\tau,\xi)-I|<\varepsilon$. Таким чином, $f\in\mathcal{R}([a,b])$.

Corollary 2.3.4 Якщо функція $f \in \mathcal{R}([a,b])$ та $I = \int_{-b}^{b} f(x) \, dx$ - його відповідний інтеграл, то справедлива нерівність:

$$L(f,\tau) \le \int_a^b f(x) \, dx \le U(f,\tau).$$

Theorem 2.3.5 Другий критерій інтегрованості

Задано функцію $f:[a,b]\to \mathbb{R}$.

 $f \in \mathcal{R}([a,b]) \iff f$ - обмежена на [a,b] та $\forall \varepsilon > 0: \exists \tau: U(f,\tau) - L(f,\tau) < \varepsilon.$

Proof.

 \Longrightarrow Дано: $f \in \mathcal{R}([a,b])$. Тоді f - обмежена та $I_*(f) = I^*(f)$. За критеріями sup, inf, маємо: $\forall \varepsilon > 0 : \exists \tau : L(f,\tau) > I - \varepsilon$ $U(f,\tau) < I + \varepsilon$. Отже, $U(f,\tau) - L(f,\tau) < 2\varepsilon$.

$$\sqsubseteq$$
 Дано: $\forall \varepsilon > 0: \exists \tau: U(f,\tau) - L(f,\tau) < \varepsilon.$ Тоді $0 \le I^*(f) - I_*(f) \le U(f,\tau) - L(f,\tau) < \varepsilon.$ Отже, $I^*(f) = I_*(f) \implies f \in \mathcal{R}([a,b]).$

2.4 Класи інтегрованих функцій

Theorem 2.4.1 Задано функцію $f,g \in \mathcal{R}([a,b])$. Тоді $f+g \in \mathcal{R}([a,b])$

Proof.

Нехай $\varepsilon > 0$ задано.

$$\begin{split} f \in \mathcal{R}([a,b]) \implies \exists \tau_1 : U(f,\tau_1) - L(f,\tau_1) < \frac{\varepsilon}{2}. \\ g \in \mathcal{R}([a,b]) \implies \exists \tau_2 : U(g,\tau_2) - L(g,\tau_2) < \frac{\varepsilon}{2}. \\ \text{Тоді } \exists \tau = \tau_1 \cup \tau_2 : \\ U(g,\tau) - L(g,\tau) \leq U(f,\tau_1) - L(f,\tau_1) < \frac{\varepsilon}{2} \\ \implies U(f+g,\tau) - L(f+g,\tau) \leq U(g,\tau_2) - L(g,\tau_2) < \frac{\varepsilon}{2} \\ \implies U(f+g,\tau) - L(f+g,\tau) \leq U(f,\tau) + U(g,\tau) - L(f,\tau) - L(g,\tau) < \varepsilon. \\ \text{Таким чином, ми отримали, що } f \in \mathcal{R}([a,b]). \end{split}$$

Theorem 2.4.2 Задано функцію $f \in \mathcal{R}([a,b])$. Тоді $\alpha f \in \mathcal{R}([a,b]), \forall \alpha \in \mathbb{R}$.

Доведення ϵ аналогічним.

Вказівка: $\sup \alpha f(x) = \alpha \sup f(x), \alpha > 0$ $\sup \alpha f(x) = \alpha \inf f(x), \alpha \le 0.$

Theorem 2.4.3 Функція $f \in \mathcal{R}([a,b]) \iff \forall c \in (a,b) : f \in \mathcal{R}([a,c])$ та $f \in \mathcal{R}([c,b])$.

Proof.

 \Rightarrow Дано: $f \in \mathcal{R}([a,b])$, тобто $\forall \varepsilon : \exists \tau = \{x_0,x_1,\ldots,x_n\} : U(f,\tau) - L(f,\tau) < \varepsilon$. Зафіксуємо точку $c \in (a,b)$, у нас виникне два випадки: I. $c = x_k, k = \overline{1,n-1}$. Тоді маємо розбиття $\tau = \tau_1 \cup \tau_2$, де $\tau_1 = \{x_0,\ldots,c\}, \tau_2 = \{c,\ldots,x_n\}$. Таким чином, $U(f,\tau_1) - L(f,\tau_1) = U(f,\tau_1) + U(f,\tau_2) - L(f,\tau_1) - L(f,\tau_2) - U(f,\tau_2) + L(f,\tau_2) = U(f,\tau) - L(f,\tau) - (U(f,\tau_2) - L(f,\tau_2)) \le U(f,\tau) - L(f,\tau) < \varepsilon$. $U(f,\tau_2) - L(f,\tau_2) < \varepsilon$ аналогічними міркуваннями. Отже, $f \in \mathcal{R}([a,c])$ та $f \in \mathcal{R}([c,b])$.

II. $c \neq x_k, k = \overline{1, n-1}$.

Отримаємо підрозбиття $\tau' = \tau \cup \{c\}$. А для підрозбиття $U(f,\tau') - L(f,\tau') \le U(f,\tau) - L(f,\tau) < \varepsilon$. А ось тут ми повертаємось до пункту І.

Theorem 2.4.4 Задано функцію $f:[a,b]\to\mathbb{R}$ - монотонна. Тоді $f\in\mathcal{R}([a,b])$.

Proof.

Розглянемо випадок, коли f - нестрого зростає на [a,b].

Нехай $\varepsilon>0$. Тоді розглянемо таке розбиття τ , щоб $|\tau|<\frac{\varepsilon}{f(b)-f(a)}$. Тоді маємо:

$$U(f,\tau) - L(f,\tau) = \sum_{k=1}^{n} (M_k - m_k) \, \Delta x_k = \sum_{k=1}^{n} (f(x_{k+1}) - f(x_k)) \Delta x_k \le |\tau| \sum_{k=1}^{n} (f(x_{k+1}) - f(x_k)) = |\tau| (f(x_n) - f(x_0)) = |\tau| (f(b) - f(a)) < \varepsilon.$$
 Отже, $f \in \mathcal{R}([a,b])$.

Theorem 2.4.5 Задано функцію $f \in C([a, b])$. Тоді $f \in \mathcal{R}([a, b])$.

Proof.

 $f \in C([a,b]) \implies f \in C_{unif}([a,b]) \implies \forall \varepsilon > 0 : \exists \delta : \forall x_1, x_2 \in [a,b] : |x_1 - x_2| < \delta \implies |f(x_1) - f(x_2)| < \frac{\varepsilon}{b-a}.$

Оберемо таке розбиття τ , щоб $|\tau| < \delta$. Також $f \in C([a,b]) \implies f \in C([x_{k-1},x_k]) \implies \exists f(x_k') = \inf_{x \in [x_{k-1},x_k]} f(x), \exists f(x_k'') = \sup_{x \in [x_{k-1},x_k]} f(x)$. Позначмо $m_k = f(x_k'), M_k = f(x_k'')$. Оскільки $|\tau| < \delta$, то звідси $|x_k' - x_k''| \le |x_{k-1} - x_k| \le |\tau| < \delta \implies M$

Отже,
$$U(f,\tau) - L(f,\tau) = \sum_{k=1}^{n} (M_k - m_k) \Delta x_k < \frac{\varepsilon}{b-a} \sum_{k=1}^{n} \Delta x_k = \varepsilon$$
. А тому й $f \in \mathcal{R}([a,b])$.

Theorem 2.4.6 Задано функцію $f:[a,b] \to \mathbb{R}$ - обмежена та неперервна всюду, окрім в точках c_1, c_2, \ldots, c_m . Тоді $f \in \mathcal{R}([a, b])$.

Proof.

Поки що обмежимось випадком, що $f \in C([a,b] \setminus \{c_1\})$. Функція f - обмежена, тоді $\exists C > 0 : \forall x \in C$ $[a,b]:|f(x)|\leq C.$

Нехай $\varepsilon > 0$. Покладемо $\delta_1 = \frac{\varepsilon}{16C} > 0$. Розглянемо множину $D = [a,b] \setminus (c_1 - \delta_1, c_1 + \delta_1)$, яка або порожня, або має скінченну кількість відрізків (вважаємо другий випадок).

Оскільки $f \in C([a,b] \setminus \{c_1\})$, то $f \in C(D)$, тоді за Кантором,

$$\exists \delta_2 : \forall x', x'' : |x' - x''| < \delta_2 \implies |f(x') - f(x'')| < \frac{\varepsilon}{2(b-a)}.$$

Встановимо $\delta = \min\{\delta_1, \delta_2\}$, а далі візьмемо таке розбиття τ , щоб $|\tau| < \delta$.

$$U(f,\tau)-L(f,\tau)=\sum_{k=1}^n(M_k-m_k)\Delta x_k=\sum_{k:[x_{k-1},x_k]\cap D=\emptyset}(M_k-m_k)\Delta x_k+\sum_{k:[x_{k-1},x_k]\cap D\neq\emptyset}(M_k-m_k)\Delta x_k$$
 Перша сума - там, де відрізок не потрапив в окіл т. c_1 . В силу другої теореми Вейєрштрасса та теореми Кантора, $M_k-m_k<\frac{\varepsilon}{2(b-a)}$. Залишається $\sum_{k:[x_{k-1},x_k]\cap D\neq\emptyset}\Delta x_k\leq\sum_{k=1}^n\Delta x_k=b-a$. Друга сума - там, де відрізок потрапив в окіл т. c_1 . В силу обмеженності функції f маємо, що $M_k-m_k\leq 2C$. Також заукажимо, що $\sum_{k:[x_{k-1},x_k]\cap D\neq\emptyset}\Delta x_k\leq 2\delta_k+2\delta\leq 4\delta_k$

теореми Кантора,
$$M_k-m_k<rac{arepsilon}{2(b-a)}.$$
 Залишається $\sum_{k: [x_{k-1},x_k]\cap D
eq\emptyset} \Delta x_k \leq \sum_{k=1}^n \Delta x_k = b-a.$

$$\begin{split} M_k - m_k &\leq 2C. \text{ Також зауважимо, що } \sum_{k: [x_{k-1}, x_k] \cap D = \emptyset} \Delta x_k \leq 2\delta_1 + 2\delta \leq 4\delta_1. \\ & [\leq] \frac{\varepsilon}{b-a} (b-a) + 2C \cdot 4\delta_1 = \frac{\varepsilon}{2} + 8C \frac{\varepsilon}{16C} = \varepsilon. \end{split}$$

Ось далі крок MI: ми припускаємо, що коли $f \in C([a,b]) \setminus \{c_1,c_2,\ldots,c_n\}$), то тоді $f \in \mathcal{R}([a,b])$. Доведемо, що коли уже $f \in C([a,b]) \setminus \{c_1,c_2,\ldots,c_n,c_{n+1}\})$, то тоді $f \in \mathcal{R}([a,b])$.

Не втрачаючи загальності, розглянемо деяку точку $x^* \in (c_n, c_{n+1})$, а далі будемо дивитись на функцію f на $[a, x^*]$ та $[x^*, b]$.

На першому відрізку рівно n точок розриву. За припущенням МІ, $f \in \mathcal{R}([a, x^*])$.

На другому відрізку рівно 1 точка розриву. Уже доводили для неї, що $f \in \mathcal{R}([x^*,b])$.

А тоді за адитивністю, маємо $f \in \mathcal{R}([a,b])$. МІ доведено.

Example 2.4.7 Зокрема такі функції будуть інтегрованими в будь-якого відрізку: f(x) = sign x, $g(x) = \sin \frac{1}{x}$.

Theorem 2.4.8 Задано функцію $f, g \in \mathcal{R}([a, b])$. Тоді $f \cdot g \in \mathcal{R}([a, b])$.

Proof.

Оскільки $f, g \in \mathcal{R}([a, b])$, то по-перше, вони обмежені, тобто

 $\exists C_1, C_2 : \forall x : |f(x)| \le C_1, |g(x)| \le C_2.$

По друге, $\forall \varepsilon > 0 : \exists \tau_1, \tau_2 :$

$$U(f,\tau_1) - L(f,\tau_1) < \frac{\varepsilon}{2C_1} \qquad U(g,\tau_1) - L(g,\tau_1) < \frac{\varepsilon}{2C_2}.$$

Нам буде необіхдна ось така оцінка:

$$|f(x)g(x)-f(y)g(y)|=|f(x)g(x)-f(x)g(y)+f(x)g(y)-f(y)g(y)|\leq$$

$$\leq |f(x)||g(x) - g(y)| + |g(y)||f(x) - f(y)| \leq C_1 \sup |g(x) - g(y)| + C_2 \sup |f(x) - f(y)|.$$

Це виконано $\forall x,y \in [a,b]$. Тоді підберемо такі точки x,y, щоб ліворуч був отриманий sup:

 $\sup |f(x)g(x) - f(y)g(y)| \le C_1 \sup |g(x) - g(y)| + C_2 \sup |f(x) - f(y)|.$

Перепишемо цю рівність інакше:

 $\sup f(x)g(x) - \inf f(x)g(x) \le C_1(\sup g(x) - \inf g(x)) + C_2(\sup f(x) - \inf f(x))$. А далі встановимо $\tau = \tau_1 \cup \tau_2$, тоді маємо:

$$U(f \cdot g, \tau) - L(f \cdot g, \tau) = \sum_{k=1}^{n} \sup_{x \in [x_{k-1}, x_k]} f(x)g(x) \cdot \Delta x - \sum_{k=1}^{n} \inf_{x \in [x_{k-1}, x_k]} f(x)g(x) \cdot \Delta x = \\ = \sum_{k=1}^{n} \left(\sup_{x \in [x_{k-1}, x_k]} f(x)g(x) - \inf_{x \in [x_{k-1}, x_k]} f(x)g(x) \right) \Delta x_k \leq C_1(U(f, \tau) - L(f, \tau)) + C_2(U(g, \tau) - L(g, \tau)) < \\ \varepsilon.$$
 Таким чином, $f \cdot g \in \mathcal{R}([a, b])$.

Theorem 2.4.9 Задано функцію $f \in \mathcal{R}([a,b])$. Тоді $|f| \in \mathcal{R}([a,b])$. Вказівка: $|f(x)| = f(x) \cdot sign x$.

Властивості інтегралів

Theorem 2.5.1 Лінійність І

$$\int_{a}^{b} f(x) + g(x) \, dx = \int_{a}^{b} f(x) \, dx + \int_{a}^{b} g(x) \, dx.$$

Proof.

Це ϵ продовженням доведення **Th. 1.4.1.**

Оскільки
$$f+g\in\mathcal{R}$$
, то звідси маємо $I^*(f+g)=I_*(f+g)=\int_a^b f(x)+g(x)\,dx.$

$$L(f,\tau) + L(g,\tau) \leq L(f+g,\tau) \leq \int_a^b f(x) + g(x) \, dx \leq U(f+g,\tau) \leq U(f,\tau) + U(g,\tau) < L(f,\tau) + L(g,\tau) + \varepsilon.$$

$$L(f,\tau) \le \int_{-b}^{b} f(x) dx \le U(f,\tau)$$

Але ми також знаємо такі нерівності:

$$L(g,\tau) \le \int_a^b g(x) dx \le U(g,\tau)$$

$$L(f,\tau) + L9g,\tau) \le \int_a^b f(x) \, dx + \int_a^b g(x) \, dx \le U(f,\tau) + U(g,\tau) < L(f,\tau) + L(g,\tau) + \varepsilon.$$

$$-\varepsilon < \int_a^b f(x) + g(x) \, dx - \left(\int_a^b f(x) \, dx + \int_a^b g(x) \, dx \right) < \varepsilon, \text{ виконано } \forall \varepsilon > 0.$$

Отже,
$$\int_{a}^{b} f(x) + g(x) dx = \int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx$$
.

Theorem 2.5.2 Лінійність II
$$\int_a^b \alpha f(x)\,dx = \alpha \int_a^b f(x)\,dx.$$
 Зрозуміло.

Theorem 2.5.3 Адитивність

$$\int_{a}^{b} f(x) \, dx = \int_{a}^{c} f(x) \, dx + \int_{c}^{b} f(x) \, dx.$$

Proof.

Це ϵ продовженням доведення **Th. 1.4.3.**

$$L(f,\tau) \leq \int_a^b f(x) \, dx \leq U(f,\tau) < L(f,\tau) + \varepsilon$$

$$L(f,\tau_1) \leq \int_a^c f(x) \, dx \leq U(f,\tau_1) < L(f,\tau_1) + \varepsilon$$

$$L(f,\tau_2) \leq \int_a^c f(x) \, dx \leq U(f,\tau_2) < L(f,\tau_2) + \varepsilon$$

$$\Longrightarrow \left| \int_a^b f(x) \, dx - \left(\int_a^c f(x) \, dx + \int_c^b f(x) \, dx \right) \right| < 2\varepsilon, \text{ виконано } \forall \varepsilon > 0.$$
 Отже,
$$\int_a^b f(x) \, dx = \int_a^c f(x) \, dx + \int_c^b f(x) \, dx.$$

Theorem 2.5.4 Якщо $\forall x \in [a, b] : f(x) \ge 0$, то тоді $\int_a^b f(x) \, dx \ge 0$.

Proof.

Оскільки $f \in \mathcal{R}([a,b])$, то тоді $I_*(f) = I^*(f) = \int_a^b f(x) \, dx$.

Тоді
$$\int_a^b = I^*(f) \ge U(f,\tau) = \sum_{k=1}^n M_k \Delta x_k \ge 0.$$

Corollary 2.5.5 Якщо $\forall x \in [a,b]: f(x) \leq g(x),$ то тоді $\int_a^b f(x) \, dx \leq \int_a^b g(x) \, dx.$ Вказівка: розглянути функцію h(x) = g(x) - f(x).

Corollary 2.5.6
$$\left| \int_a^b f(x) dx \right| \le \int_a^b |f(x)| dx$$
.
 B казівка: $-|f(x)| \le f(x) \le |f(x)|$.

Theorem 2.5.7 I теорема про середнє

Задані функції $f,g\in\mathcal{R}([a,b])$, причому g має однаковий знак на [a,b]. Позначу $m=\inf_{x\in[a,b]}f(x)$, $M=\sup_{x\in[a,b]}f(x)$.

Тоді
$$\exists c \in [m,M]: \int_a^b f(x)g(x)\,dx = c\int_a^b g(x)\,dx.$$

Proof.

Розглянемо випадок $g(x) \geq 0, \forall x \in [a,b].$ Справедлива нерівність:

$$mg(x) \leq f(x)g(x) \leq Mg(x) \implies m \int_a^b g(x) \, dx \leq \int_a^b f(x)g(x) \, dx \leq M \int_a^b g(x) \, dx.$$
 Якщо $\int_a^b g(x) \, dx = 0$, то звідси $\int_a^b f(x)g(x) \, dx = 0$, а число $c \in [m,M]$ обираємо довільне.

Якщо $\int_a^b g(x)\,dx>0,$ то поділимо нерівність на цю штуку:

$$m \leq \frac{\int_a^b f(x)g(x)\,dx}{\int_a^b g(x)\,dx} \leq M.$$
 Тоді позначимо $c = \frac{\int_a^b f(x)g(x)\,dx}{\int_a^b g(x)\,dx}.$ Звідси $\int_a^b f(x)g(x)\,dx = c\int_a^b g(x)\,dx.$

Corollary 2.5.8 Якщо додатково вимагати функцію $f \in C([a,b])$, то тоді

$$\exists \xi \in (a,b) : \int_a^b f(x)g(x) \, dx = f(\xi) \int_a^b g(x) \, dx.$$

Proof.

 $f \in C([a,b])$, то за Больцано-Коші, $\exists \xi \in [a,b] : c = f(\xi)$. Ну а далі попередня теорема.

Theorem 2.5.9 II теорема про середнє

Задані функції $f \in \mathcal{R}([a,b])$ та g - монотонна.

Тоді
$$\exists c \in (a,b) : \int_a^b f(x)g(x) \, dx = g(a) \int_a^c f(x) \, dx + g(b) \int_c^b f(x) \, dx.$$

Перед початков доведемо декілька лем:

Lemma 2.5.10 Тотожність Абеля

Встановимо $A_k = \sum_{p=1}^{\infty} a_p$ та $A_0 = 0$. Тоді виконується рівність:

$$\sum_{k=m}^{n} a_k b_k = (A_n b_n - A_{m-1} b_m) - \sum_{k=m}^{n-1} A_k (b_{k+1} - b_k)$$

$$\sum_{k=m}^{n} a_k b_k = \sum_{k=m}^{n} a_k (B_k - B_{k-1}) = \sum_{k=m}^{n} a_k B_k - \sum_{k=m}^{n} a_k B_{k-1} = \sum_{k=m}^{n} a_k B_k - \sum_{k=m-1}^{n-1} a_{k+1} B_k =$$

$$= (A_n b_n - A_{m-1} b_m) - \sum_{k=m}^{n-1} A_k (b_{k+1} - b_k).$$

Remark 2.5.11 Тотожність Абеля дуже схожа на формулу інтегрування частинами, де в якосі $u \to b_k \implies u' \to (b_{k+1} - b_k)$, а також $v' \to a_k \implies v \to A_k$.

Lemma 2.5.12 Задані функції $f \in \mathcal{R}([a,b])$ та g - не зростає, невід'ємна.

Тоді
$$\exists \xi \in [a,b] : \int_a^b f(x)g(x) \, dx = g(a) \int_a^{\xi} f(x) \, dx.$$

Proof.
$$\int_a^b f(x)g(x)\,dx = \sum_{k=1}^n \int_{x_{k-1}}^{x_k} f(x)g(x)\,dx = \sum_{k=1}^n g(x_{k-1}) \int_{x_{k-1}}^{x_k} f(x)\,dx + \sum_{k=1}^n \int_{x_{k-1}}^{x_k} f(x)(g(x) - g(x_{k-1}))\,dx.$$
 Розберемося з другою сумою:

$$\left| \sum_{k=1}^{n} \int_{x_{k-1}}^{x_{k}} f(x) (g(x) - g(x_{k-1})) dx \right| \leq \sum_{k=1}^{n} \int_{x_{k-1}}^{x_{k}} |f(x)| |g(x) - g(x_{k-1})| dx \leq C \sum_{k=1}^{n} \int_{x_{k-1}}^{x_{k}} |g(x) - g(x_{k-1})| dx \leq C \sum_{k=1}^{n} \int_{x_{k-1}$$

Отже,
$$\sum_{k=1}^n g(x_{k-1}) \int_{x_{k-1}}^{x_k} f(x) dx \stackrel{|\tau| \to 0}{\longrightarrow} \int_a^b f(x) g(x) dx$$
.

Позначимо $F(t)=\int_a^t f(x)\,dx$. Враховуючи умову теореми, $F\in C([a,b])\Longrightarrow$ вона приймає найбільше, найменше значення. Тоді $\sum_{k=1}^n g(x_{k-1})\int_{x_{k-1}}^{x_k} f(x)\,dx = \sum_{k=1}^n g(x_{k-1})(F(x_k)-F(x_{k-1})) [\equiv]$ А далі застосуємо тотожість Абеля, якщо $a_k=F(x_k)-F(x_{k-1}),b_k=g(x_{k-1}).$

$$\sum_{k=1}^{n} g(x_{k-1}) \int_{x_{k-1}}^{x_k} f(x) \, dx = \sum_{k=1}^{n} g(x_{k-1}) (F(x_k) - F(x_{k-1})) \boxed{=}$$

$$= F(x_n)g(x_{n-1}) - \sum_{k=1}^{n-1} F(x_k)(g(x_k) - g(x_{k-1}))$$

Тоді
$$mg(a) \leq \sum_{k=1}^n g(x_{k-1}) \int_{x_{k-1}}^{x_k} f(x) dx \leq Mg(a)$$
, де $m = \min_{t \in [a,b]} F(t)$, $M = \max_{t \in [a,b]} F(t)$. Отже,

 $mg(a) \leq \int_{-a}^{a} f(x)g(x) dx \leq Mg(a)$. Поділимо тепер на g(a), маємо

$$m \leq rac{1}{g(a)} \int_a^b f(x) g(x) \, dx \leq M \implies rac{1}{g(a)} \int_a^b f(x) g(x) \, dx = F(\xi),$$
 де $\xi \in [a,b]$ із теореми Больцано-Коші.

Lemma 2.5.13 Задані функції $f \in \mathcal{R}([a,b])$ та g - не спадає, невід'ємна.

Тоді
$$\exists \xi \in [a,b]: \int_a^b f(x)g(x) \, dx = g(b) \int_{\xi}^b f(x) \, dx.$$

Або аналогічне доведення, або зведення до попередньої леми.

Використовуючи ці леми, ми доводимо нашу теорему.

Вказівка: розглянути функцію G(x) = g(b) - g(x), якщо g - не зростаюча. Для неспадної аналогічно.

2.6 Інтеграл як функція верхньої границі

Задано функцію $f \in \mathcal{R}([a,b])$. Будемо розглядати ось таку функцію $g:[a,b] \to \mathbb{R}$:

$$g(x) = \int_{a}^{x} f(t) dt$$

Remark 2.6.1 Додатково існує певна домовленність з інтегралами, щоб було жити простіше:

$$\int_{a}^{a} f(t) dt = 0$$

$$\int_{b}^{a} f(t) dt = -\int_{a}^{b} f(t) dt$$

Theorem 2.6.2 Задано функцію $f \in \mathcal{R}([a,b])$. Тоді $g \in C([a,b])$.

Proof.
$$|g(x_1) - g(x_2)| = \left| \int_a^{x_1} f(t) \, dt - \int_a^{x_2} f(t) \, dt \right| = \left| \int_{x_1}^{x_2} f(t) \, dt \right| \le \left| \int_{x_1}^{x_2} |f(t)| \, dt \right| \le$$
 Оскільки $f \in \mathcal{R}([a,b])$, то звідси f - обмежена на $[a,b]$, тобто $\exists M \ge 0 : \forall x \in [a,b] : |f(x)| \le M$.
$$|f(x)| \le M$$

Отже, нехай $\varepsilon > 0$. Тоді існує $\delta = \frac{\varepsilon}{M}$, для якого $\forall x_1, x_2 \in [a,b]: |x_1 - x_2| < \delta \implies |g(x_1) - g(x_2)| < \varepsilon$. Отже, $g \in C_{unif}([a,b]) \implies g \in C([a,b])$.

Theorem 2.6.3 Задано функцію $f \in C([a,b])$. Тоді $g \in C'([a,b])$, причому g'(x) = f(x).

Будемо доводити, що
$$\lim_{\Delta x \to 0} \frac{g(x + \Delta x) - g(x)}{\Delta x} = f(x)$$
.

Будемо доводити, що
$$\lim_{\Delta x \to 0} \frac{g(x + \Delta x) - g(x)}{\Delta x} = f(x).$$

$$\frac{g(x + \Delta x) - g(x)}{\Delta x} = \frac{1}{\Delta x} \left(\int_a^{x + \Delta x} f(t) \, dt - \int_a^x f(t) \, dt \right) = \frac{1}{\Delta x} \int_x^{x + \Delta x} f(t) \, dt.$$

$$f(x) = \frac{f(x)}{\Delta x} \Delta x = \frac{f(x)}{\Delta x} \int_{x}^{x + \Delta x} dt = \frac{1}{\Delta x} \int_{x}^{x + \Delta x} f(x) dt.$$

$$\left| \frac{g(x + \Delta x) - g(x)}{\Delta x} - f(x) \right| = \frac{1}{|\Delta x|} \left| \int_{x}^{x + \Delta x} f(t) \, dt - \int_{x}^{x + \Delta x} f(x) \, dt \right| = \frac{1}{|\Delta x|} \left| \int_{x}^{x + \Delta x} f(t) - f(x) \, dt \right| \le \frac{1}{|\Delta x|} \left| \int_{x}^{x + \Delta x} f(t) \, dt - \int_{x}^{x + \Delta x} f(t) \, dt \right| \le \frac{1}{|\Delta x|} \left| \int_{x}^{x + \Delta x} f(t) \, dt \right| \le \frac{1}{|\Delta x|} \left| \int_{x}^{x + \Delta x} f(t) \, dt \right| \le \frac{1}{|\Delta x|} \left| \int_{x}^{x + \Delta x} f(t) \, dt \right| \le \frac{1}{|\Delta x|} \left| \int_{x}^{x + \Delta x} f(t) \, dt \right| \le \frac{1}{|\Delta x|} \left| \int_{x}^{x + \Delta x} f(t) \, dt \right| \le \frac{1}{|\Delta x|} \left| \int_{x}^{x + \Delta x} f(t) \, dt \right| \le \frac{1}{|\Delta x|} \left| \int_{x}^{x + \Delta x} f(t) \, dt \right| \le \frac{1}{|\Delta x|} \left| \int_{x}^{x + \Delta x} f(t) \, dt \right| \le \frac{1}{|\Delta x|} \left| \int_{x}^{x + \Delta x} f(t) \, dt \right| \le \frac{1}{|\Delta x|} \left| \int_{x}^{x + \Delta x} f(t) \, dt \right| \le \frac{1}{|\Delta x|} \left| \int_{x}^{x + \Delta x} f(t) \, dt \right| \le \frac{1}{|\Delta x|} \left| \int_{x}^{x + \Delta x} f(t) \, dt \right| \le \frac{1}{|\Delta x|} \left| \int_{x}^{x + \Delta x} f(t) \, dt \right| \le \frac{1}{|\Delta x|} \left| \int_{x}^{x + \Delta x} f(t) \, dt \right| \le \frac{1}{|\Delta x|} \left| \int_{x}^{x + \Delta x} f(t) \, dt \right| \le \frac{1}{|\Delta x|} \left| \int_{x}^{x + \Delta x} f(t) \, dt \right| \le \frac{1}{|\Delta x|} \left| \int_{x}^{x + \Delta x} f(t) \, dt \right| \le \frac{1}{|\Delta x|} \left| \int_{x}^{x + \Delta x} f(t) \, dt \right| \le \frac{1}{|\Delta x|} \left| \int_{x}^{x + \Delta x} f(t) \, dt \right| \le \frac{1}{|\Delta x|} \left| \int_{x}^{x + \Delta x} f(t) \, dt \right| \le \frac{1}{|\Delta x|} \left| \int_{x}^{x + \Delta x} f(t) \, dt \right| \le \frac{1}{|\Delta x|} \left| \int_{x}^{x + \Delta x} f(t) \, dt \right| \le \frac{1}{|\Delta x|} \left| \int_{x}^{x + \Delta x} f(t) \, dt \right| \le \frac{1}{|\Delta x|} \left| \int_{x}^{x + \Delta x} f(t) \, dt \right| \le \frac{1}{|\Delta x|} \left| \int_{x}^{x + \Delta x} f(t) \, dt \right| \le \frac{1}{|\Delta x|} \left| \int_{x}^{x + \Delta x} f(t) \, dt \right| \le \frac{1}{|\Delta x|} \left| \int_{x}^{x + \Delta x} f(t) \, dt \right| \le \frac{1}{|\Delta x|} \left| \int_{x}^{x + \Delta x} f(t) \, dt \right| \le \frac{1}{|\Delta x|} \left| \int_{x}^{x + \Delta x} f(t) \, dt \right| \le \frac{1}{|\Delta x|} \left| \int_{x}^{x + \Delta x} f(t) \, dt \right| \le \frac{1}{|\Delta x|} \left| \int_{x}^{x + \Delta x} f(t) \, dt \right| \le \frac{1}{|\Delta x|} \left| \int_{x}^{x + \Delta x} f(t) \, dt \right| \le \frac{1}{|\Delta x|} \left| \int_{x}^{x + \Delta x} f(t) \, dt \right| \le \frac{1}{|\Delta x|} \left| \int_{x}^{x + \Delta x} f(t) \, dt \right| \le \frac{1}{|\Delta x|} \left| \int_{x}^{x + \Delta x} f(t) \, dt \right| \le \frac{1}{|\Delta x|} \left| \int_{x}^{x + \Delta x} f(t) \, dt \right| \le \frac{1}{|\Delta x|} \left| \int_{x}^{x + \Delta x} f(t) \, dt \right| \le \frac{1}{|\Delta x|} \left| \int_{x}^{x + \Delta x} f(t) \, dt \right| \le \frac{1}{|\Delta x|} \left| \int_{x}^{x + \Delta x} f(t) \, dt \right| \le \frac{1}{|\Delta$$

$$\leq \frac{1}{|\Delta x|} \left| \int_{x}^{x+\Delta x} |f(t) - f(x)| dt \right| < 1$$

Оскільки $f \in C([a,b])$, то звідси $f \in C_{unif}([a,b])$, а тому

 $\forall \varepsilon>0: \exists \delta: \forall x_1,x_2: |x_1-x_2|<\delta \implies |f(x_1)-f(x_2)|<\varepsilon. \text{ Фіксуємо таке } \delta, \text{ щоб } |\Delta x|<\delta.$ Тоді $\forall t\in [x,x+\Delta x]$ або $[x+\Delta x,x]: |t-x|<|\Delta x|<\delta \implies |f(t)-f(x)|<\varepsilon.$

Остаточно
$$\forall \varepsilon > 0 : \exists \delta : \forall \Delta x : |\Delta x| < \delta \implies \left| \frac{g(x + \Delta x) - g(x)}{\Delta x} - f(x) \right| < \varepsilon. \text{ Отже, } g'(x) = f(x).$$

Corollary 2.6.4 Функція g(x) = F(x). Тобто функція $g(x) = \int_{a}^{x} f(t) dt$ є первісною функції f(x), якщо $f \in C([a,b])$.

Theorem 2.6.5 Формула Ньютона-Лейбніца

Задано функцію $f \in \mathcal{R}([a,b])$, яка має первісну Φ .

Тоді
$$\int_a^b f(x) dx = \Phi(b) - \Phi(a)$$
.

Proof.

Якщо $f \in C([a,b])$, то це є прямим наслідком. Дійсно, за умовою, f має первісну Φ . Але водночас за наслідком, f має первісну F, причому $F(x) = \int_a^x f(t) \, dt$. Тоді $\Phi(x) = F(x) + C$

$$\begin{cases} \Phi(a) = C \\ \Phi(b) = \int_a^b f(t) dt + C \end{cases} \implies \int_a^b f(x) dx = \Phi(b) - \Phi(a).$$

У загальному вигляді доведення відрізняється.

 $f \in \mathcal{R}([a,b]) \implies \forall \varepsilon > 0 : \exists \delta : \forall \tau : |\tau| < \delta \implies |\sigma(f,\tau,\xi) - I| < \varepsilon.$

Встановимо будь-яке розбиття $\tau = \{x_0, x_1, \dots, x_n\}$, щоб $|\tau| < \delta$. Зауважимо, що

$$\Phi(b) - \Phi(a) = (\Phi(x_1) - \Phi(x_0)) + (\Phi(x_2) - \Phi(x_1)) + \dots + (\Phi(x_n) - \Phi(x_{n-1})).$$

Оскільки Φ - первісна, тобто вона диференційована, тоді неперервна як наслідок. Можемо застосувати до кожної дужки теорему Лагранжа:

$$\Phi(b) - \Phi(a) = \Phi'(\xi_1)\Delta x_1 + \Phi'(\xi_2)\Delta x_2 + \dots + \Phi'(\xi_n)\Delta x_n = f(\xi_1)\Delta x_1 + f(\xi_2)\Delta x_2 + \dots + f(\xi_n)\Delta x_n.$$
 Причому $\xi_k \in [x_k, x_{k-1}].$

Отже,
$$\Phi(b) - \Phi(a) = \sigma(f, \tau, \xi)$$
. Таким чином, $|\sigma(f, \tau, \xi) - I| < \varepsilon \implies I = \Phi(b) - \Phi(a)$.

Example 2.6.6 Функція $x^2 \in \mathcal{R}([0,1])$ в силу монотонності та має первсіну $\frac{x^3}{3}$.

Тоді
$$\int_0^1 x^2 dx = \frac{x^3}{3} \Big|_0^1 = \frac{1}{3}.$$

Example 2.6.7 Приклад функції, для якої формула Ньютона-Лейбніца не працює. Запишу для

Example 2.6.7 Приклад функції, для якої финкції, для якої финкції, для якої финкції, и початку первісну
$$F(x) = \begin{cases} \sqrt[3]{x^4} \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$
.

$$F'(0) = 0$$
, ihakine $F'(x) = f(x) = \frac{4}{3}\sqrt[3]{x} \sin \frac{1}{x} - \frac{1}{\sqrt[3]{x^2}} \cos \frac{1}{x}$.

Але, на жаль, функція f - необмежена в т. $x_0 = 0$, а тому $f \notin \mathcal{R}([a,b])$, якщо $0 \in [a,b]$. Тим не менш, вона має первісну. Проте формула Ньютона-Лейбніца не працює.

Example 2.6.8 Існують навіть функції f(x) = sign x, які є інтегрованими на [-1, 1], проте не мають первісної. Проте $\int_{-1}^{1} \text{sign } x \, dx = \int_{-1}^{0} (-1) \, dx + \int_{0}^{1} 1 \, dx = -x \Big|_{-1}^{0} + x \Big|_{0}^{1} = 0$.

2.7 Обчислення визначених інтегралів

2.7.1 Заміна змінної

Theorem 2.7.1 Задано функцію $f \in C((A,B))$. Також задана функція $\varphi \in C'([\alpha,\beta])$, причому $\varphi([\alpha,\beta]) \subset (A,B)$. Тоді $\int_{\alpha}^{\beta} f(\varphi(x))\varphi'(x)\,dx = \int_{\varphi(\alpha)}^{\varphi(\beta)} f(x)\,dx$.

Proof.

Оскільки $f \in C((A, B))$, то також $f \in C([\varphi(\alpha), \varphi(\beta)])$, тоді вона має первісну G. За формулою Ньютона-Лейбніца:

$$\int_{\varphi(\alpha)}^{\varphi(\beta)} f(x) \, dx = G(\varphi(\beta)) - G(\varphi(\alpha)).$$

За умовою, маємо $f\circ\varphi\cdot\varphi'\in C([\alpha,\beta])$. А також зауважимо, що G - первісна для функції $f\circ\varphi\cdot\varphi',$ тому що $G'(\varphi(x))=f(\varphi(x))\varphi'(x)$. За формулою Ньютона-Лейбніца:

$$\int_{\alpha}^{\beta} f(\varphi(x))\varphi'(x) dx = G(\varphi(b)) - G(\varphi(a)).$$

Отже,
$$\int_{\alpha}^{\beta} f(\varphi(x))\varphi'(x) dx = \int_{\alpha(a)}^{\varphi(\beta)} f(x) dx.$$

2.7.2 Інтегрування частинами

Theorem 2.7.2 Задано функцію $u, v, u', v' \in \mathcal{R}([a, b].$ Тоді $\int_a^b u(x)v'(x) \, dx = u(x)v(x)\Big|_a^b - \int_a^b v(x)u'(x) \, dx$.

Proof.

Розглянемо функцію $h(x)=u(x)v'(x)+v(x)u'(x)\in\mathcal{R}([a,b]).$ Вона має первісну H(x)=u(x)v(x).Тоді за формулою Ньютона-Лейбніца, маємо:

$$\int_{a}^{b}h(x)\,dx = H(b) - H(a) = u(b)v(b) - u(a)v(a) = u(x)v(x)\Big|_{a}^{b}$$
 3 іншого боку,
$$\int_{a}^{b}h(x)\,dx = \int_{a}^{b}u(x)v'(x)\,dx + v(x)u'(x)\,dx = \int_{a}^{b}u(x)v'(x)\,dx + \int_{a}^{b}v(x)u'(x)\,dx.$$
 Отже,
$$\int_{a}^{b}u(x)v'(x)\,dx = u(x)v(x)\Big|_{a}^{b} - \int_{a}^{b}v(x)u'(x)\,dx.$$

2.8 Застосування визначеного інтеграла

2.8.1 Площа криволінійної трапеції

Що таке взагалі площа, я буду вважати відомою штукою. Також відомо для мене буде площа прямокутника, що суттєво важливо.

Definition 2.8.1 Задано функцію $f:[a,b]\to\mathbb{R}$ так, щоб $f(x)\geq 0$ та обмежена. Криволінійною трапецією називають таку множину:

$$Tr(f, [a, b]) = \{(x, y) \in \mathbb{R}^2 | x \in [a, b], y \in [0, f(x)] \}$$

Задамо тепер деяке розбиття $\tau = \{x_0, x_1, \dots, x_n\}_n$. Через ці точки проведемо вертикальну пряму. Тоді наша криволінійна трапеція $Tr(f,[a,b])) = \sum_{k=1}^{n} Tr(f,[x_{k-1},x_k]).$

На кожному відрізку $[x_{k-1}, x_k]$ ми:

- впишемо прямокутник P_k' , висота якої дорівнює $\inf_{x \in [x_{k-1}, x_k]} f(x)$;
- опишемо прямокутник $P_k^{\prime\prime},$ висота якої дорівнює

Сума площ вписаних прямокутників дорівнює $\sum_{k=1}^n \Delta x_k \inf_{x \in [x_{k-1},x_k]} f(x) = S(P').$ Сума площ описаних прямокутників дорівнює $\sum_{k=1}^n \Delta x_k \sup_{x \in [x_{k-1},x_k]} f(x) = S(P'').$

Definition 2.8.2 Задано криволінійну трапецію Tr(f, [a, b]).

Внутрішньою площею криволінійної трапеції Tr(f, [a, b])) називають число:

$$S_*(Tr) = \sup_{\underline{}} S(P')$$

Зовнішньою площею криволінійної трапеції Tr(f, [a, b])) називають число:

$$S^*(Tr) = \sup_{\tau} S(P'')$$

Definition 2.8.3 Криволінійна трапеція називається квадрованою, якщо

$$S_*(Tr) = S^*(Tr) = S$$

Число S називається **площею** криволінійної трапеції.

Theorem 2.8.4 Задано функцію $f \in C([a,b])$ та $f(x) \ge 0$. Задамо криволінійну трапецію Tr(f,[a,b]). Тоді вона є квадрованю та $S(Tr) = \int_a^b f(x) \, dx$.

Proof.

Оскільки $f \in C([a,b]),$ то $f \in \mathcal{R}([a,b]).$ Звідси $S_*(Tr) = I_*(f) = I^*(f) = S^*(Tr).$ Тобто Tr - квадрована.

Автоматично звідси
$$S(Tr) = \int_a^b f(x) dx$$
.

Theorem 2.8.5 Задані функції $f,g\in C([a,b])$, причому $f(x)\geq g(x)$. Задамо фігуру $G=\{(x,y)\in\mathbb{R}^2:x\in[a,b],y\in[f(x),g(x)]\}.$ Тоді вона є квадрованою та $S(G)=\int_a^b f(x)-g(x)\,dx.$

Proof.

Оскільки $g \in C([a,b])$, то вона приймає найменше значення.

Якщо від'ємне, то перемістимо фігуру G на число $c=|\inf_{x\in[a,b]}g(x)|$ догори. Отримаємо фігуру $G'=\{(x,y)\in\mathbb{R}^2:x\in[a,b],y\in[f(x)+c,g(x)+c]\}.$ Якщо додатнє, то тоді G'=G (тут все зрозуміло).

Зауважимо, що
$$S(G')=S(Tr(f+c,[a,b]))-S(Tr(g+c,[a,b]))$$
 Отже, $S(G')=\int_a^b f(x)+c\,dx-\int_a^b g(x)+c\,dx=\int_a^b f(x)-g(x)\,dx.$

2.8.2 Площа криволінійного сектора

Definition 2.8.6 Задано функцію $\rho: [\alpha, \beta] \to \mathbb{R}$.

Криволінійним сектором називають таку множину:

$$Sec(\rho, [\alpha, \beta]) = \{(\theta, \rho) : \theta \in [\alpha, \beta] : \rho \in [0, \rho(\theta)]\}$$

Задамо тепер деяке розбиття $\tau = \{\alpha, \theta_1, \theta_2, \dots, \beta\}$. Через ці кути проведемо $\rho(\theta_k)$. Тоді наш криволінійний сектор $Sec(\rho, [\alpha, \beta]) = \sum_{i=1}^{n} Sec(\rho, [\theta_{k-1}, \theta_k]).$

На кожному відрізку $[\theta_{k-1},\theta_k]$ ми:
- впишемо сектор Q_k' , радіус якої дорівнює $\inf_{\theta\in[\theta_{k-1},\theta_k]} \rho(\theta);$ - опишемо сектор Q_k'' , радіус якої дорівнює $\sup_{\theta\in[\theta_{k-1},\theta_k]} \rho(\theta).$

Тут має бути рисунок, але не шарю, як це зробити

Сума площ вписаних секторів дорівнює
$$\sum_{k=1}^n \frac{1}{2} \Delta \theta_k \left(\inf_{\theta \in [\theta_{k-1}, \theta_k]} \rho(\theta) \right)^2 = \sum_{k=1}^n \frac{1}{2} \Delta \theta_k \inf_{\theta \in [\theta_{k-1}, \theta_k]} \frac{1}{2} \rho^2(\theta) = L\left(\frac{1}{2} \rho^2, \tau\right).$$

Сума площ описаних секторів дорівнює
$$\sum_{k=1}^n \frac{1}{2} \Delta \theta_k \left(\sup_{\theta \in [\theta_{k-1}, \theta_k]} \rho(\theta) \right)^2 = \sum_{k=1}^n \Delta \theta_k \sup_{\theta \in [\theta_{k-1}, \theta_k]} \frac{1}{2} \rho^2(\theta) = U\left(\frac{1}{2} \rho^2, \tau\right).$$

Theorem 2.8.7 Задано функцію $\rho \in C([\alpha, \beta])$. Задамо криволінійний сектор $Sec(\rho, [\alpha, \beta])$. Тоді він ϵ квадрованим та $S(Sec) = \frac{1}{2} \int_{0}^{\beta} \rho^{2}(\theta) d\theta.$

Proof.

Оскільки
$$\rho \in C([\alpha, \beta])$$
, то $\rho \in \mathcal{R}([\alpha, \beta])$, а тому $\frac{1}{2}\rho^2 \in \mathcal{R}([\alpha, \beta])$. Звідси $S_*(Sec) = I_*\left(\frac{1}{2}\rho^2\right) = I^*\left(\frac{1}{2}\rho^2\right) = S^*(Sec)$. Тобто Sec - квадрована.

Автоматично звідси
$$S(Sec) = \frac{1}{2} \int_{\alpha}^{\beta} \rho^2(\theta) \, d\theta.$$

2.8.3 Крива, яка спрямовується

Definition 2.8.8 Задано функції $x, y \in C([a, b])$.

Неперервною кривою в площині називають таку множину:

$$\Gamma = \{(x, y) \in \mathbb{R}^2 : x = x(t), y = y(t), t \in [a, b]\}$$

Нехай $\tau = \{t_0, t_1, \dots, t_n\}$ - деяке розбиття відрізка [a, b]. Встановимо Γ_{τ} - ломана, що отримана в результаті сполучення кожної пари сусідніх точок $(x(t_{k-1}), y(t_{k-1})) - -(x(t_k), y(t_k))$.

Довжина ломаної
$$L(\Gamma_{\tau}) \sum_{k=1}^{n} \sqrt{(x(t_k) - x(t_{k-1}))^2 + (y(t_k) - y(t_{k-1}))^2}.$$

Definition 2.8.9 Криву називають **такою, що спрямовується**, якщо існує таке число $L \in \mathbb{R}$, для якого виконана умова:

$$\forall \varepsilon > 0 : \exists \delta > 0 : \forall \tau : |\tau| < \delta \implies |L(\Gamma_{\tau}) - L| < \varepsilon$$

Число L називають **довжиною** кривої Γ . Позначення: $\lim_{|\tau|\to 0} L(\Gamma_{\tau}) = L$ (нелегальне).

Theorem 2.8.10 Задано функції $x, y \in C'([a, b])$. Тоді крива Γ буде такою, що спрямовується, а $L(\Gamma) = \int_{0}^{b} \sqrt{(x'(t))^{2} + (y'(t))^{2}} dt.$

Proof.

Задамо розбиття τ , маємо довжину ломаної $L(\Gamma_{\tau}) = \sum_{k=1}^{n} \sqrt{(x(t_k) - x(t_{k-1}))^2 + (y(t_k) - y(t_{k-1}))^2}$.

За умовою теореми, можемо застосувати теорему Лагранжа, тоді

$$\exists \xi_k \in (t_{k-1}, t_k) : x(t_k) - x(t_{k-1}) = x'(\xi_k)(t_k - t_{k-1}) = x'(\xi_k)\Delta t_k. \exists \eta_k \in (t_{k-1}, t_k) : y(t_k) - y(t_{k-1}) = y'(\eta_k)(t_k - t_{k-1}) = y'(\eta_k)\Delta t_k.$$

$$\exists \eta_k \in (t_{k-1}, t_k) : y(t_k) - y(t_{k-1}) = y'(\eta_k)(t_k - t_{k-1}) = y'(\eta_k) \Delta t_k$$

Тоді
$$L(\Gamma_{\tau}) = \sum_{k=1}^{n} \sqrt{(x'(\xi_k))^2 + (y'(\eta_k))^2} \Delta t_k.$$

Розпишемо цю формулу інакшим чином:

$$L(\Gamma_{\tau}) = \sum_{k=1}^{n} \sqrt{(x'(\xi_k))^2 + (y'(\xi_k))^2} \Delta t_k + \sum_{k=1}^{n} (\sqrt{(x'(\xi_k))^2 + (y'(\eta_k))^2} - \sqrt{(x'(\xi_k))^2 + (y'(\xi_k))^2}) \Delta t_k =$$

$$= \sigma \left(\sqrt{(x')^2 + (y')^2}, \tau, \xi \right) + r_{\tau}. \text{ Тоді:}$$

$$|L(\Gamma_{\tau}) - \sigma\left(\sqrt{(x')^2 + (y')^2}, \tau, \xi\right)| = |r_{\tau}| \le \sum_{k=1}^n |y'(\eta_k) - y'(\xi_k)| \Delta t_k < \varepsilon \sum_{k=1}^n \Delta t_k = \varepsilon(b-a).$$

Значить, крива Γ є такою, що спрямовується, а також довжина $L(\Gamma) = \int_{-\pi}^{\pi} \sqrt{(x'(t))^2 + (y'(t))^2} \, dt$.

Theorem 2.8.11 Задано функцію $f\in C'([a,b])$. Задамо криву $\Gamma=\{(x,y):x\in [a,b],y=f(x)\}$. Тоді вона буде спрямованою, а $L(\Gamma) = \int_a^b \sqrt{1 + (f'(x))^2} \, dx$.

Proof.

Функцію f можна параметризувати: x = x(t), y = y(t)Нехай в $x(t_1) = a, x(t_2) = b.$

$$L(\Gamma) = \int_{t_1}^{t_2} \sqrt{(x'(t))^2 + (y'(t))^2} \, dt = \int_{t_1}^{t_2} \sqrt{1 + \left(\frac{y'(t)}{x'(t)}\right)^2} x'(t) \, dt = \int_a^b \sqrt{1 + (f'(x))^2} \, dx.$$

Theorem 2.8.12 Задано функцію $\rho \in C'([\alpha, \beta])$. Задамо криву $\Gamma = \{(\theta, r) : \theta \in [\alpha, \beta], r = \rho(\theta)\}$. Тоді вона буде спрямованою, а $L(\Gamma) = \int_{0}^{\beta} \sqrt{(\rho(\theta))^2 + (\rho'(\theta))^2} \, d\theta$. Вказівка: $x = \rho \cos \theta, y = \rho \sin \theta$

2.8.4 Об'єм тіла обертання

Задано функцію $f:[a,b]\to\mathbb{R}$ так, щоб $f(x)\geq 0$ та обмежена. Розглянемо криволінійну трапецію Tr(f, [a, b]).

Ми отримаємо тіло G, що було отримано в результаті обертання трапеції Tr відносно осі OX.

Ми також вписували/описували прямокутники. Якщо їх обернути навколо OX, то кожна з них стане циліднром радіуса відповідно $\inf_{x \in [x_{k-1}, x_k]} f(x)$, $\sup_{x \in [x_{k-1}, x_k]} f(x)$.

Сума об'ємів вписаних циліндрів дорівнює $\sum_{k=1}^n \pi \left(\inf_{x \in [x_{k-1},x_k]} f(x)\right)^2 \Delta x_k = V(G').$ Сума об'ємів описаних циліндрів дорівнює $\sum_{k=1}^n \pi \left(\sup_{x \in [x_{k-1},x_k]} f(x)\right)^2 \Delta x_k = V(G'').$

Definition 2.8.13 Внутрішнім об'ємом тіла G називають число:

$$V_*(G) = \sup_{\tau} V(G')$$

Зовнішнім об'ємом тіла G називають число:

$$V^*(G) = \inf_\tau V(G'')$$

Definition 2.8.14 Тіло G називають **кубованою**, якщо

$$V_*(G) = V^*(G) = V$$

Число V називають **об'ємом** тіла G.

Theorem 2.8.15 Задано функцію $f \in C([a,b])$ така, що $f(x) \ge 0$. Тоді G є кубованою та $V = \pi \int_a^b f^2(x) \, dx$. Вказієка: $(\sup f(x))^2 = \sup f^2(x)$.

3 Невласні інтеграли

3.1 Основні означення

Розглянемо три випадки:

I. Задано таку функцію $f:[a,+\infty)\to\mathbb{R}$, що $\forall A\in[a,+\infty):f\in\mathcal{R}([a,A]).$

Definition 3.1.1 Невласним інтегралом І роду називають такий вираз:

$$\int_{a}^{+\infty} f(x) dx = \lim_{A \to +\infty} \int_{a}^{A} f(x) dx$$

Remark 3.1.2 Аналогічно визначається для $f:(-\infty,b]\to\mathbb{R}$.

II. Задано таку функцію $f:[a,b)\to\mathbb{R}$, що $\forall A\in[a,b):f\in\mathcal{R}([a,A])$, причому функція необмежена навколо точки b.

Definition 3.1.3 Невласним інтегралом II роду називають такий вираз:

$$\int_{a}^{b} f(x) dx = \lim_{A \to b-0} \int_{a}^{A} f(x) dx$$

Дане означення можна переписати інакше, якщо $A=b-\varepsilon$, причому тепер $\varepsilon \to 0+0$.

Remark 3.1.4 Аналогічно визначається для $f:(a,b] \to \mathbb{R}$.

Definition 3.1.5 Якщо границя існує, то невласний інтеграл називається збіжним. Інакше - розбіжним.

Надалі я буду позначати $\omega = \begin{bmatrix} b \\ +\infty \end{bmatrix}$. Також $A \to \omega$ позначає $A \to +\infty$ або $A \to b-0$.

Example 3.1.6
$$\int_{1}^{+\infty} \frac{dx}{x^{\alpha}} = \lim_{A \to +\infty} \int_{1}^{A} \frac{dx}{x^{\alpha}} = \lim_{A \to +\infty} \ln x \Big|_{1}^{A} = \lim_{A \to +\infty} \ln A = +\infty \text{ при } \alpha = 1$$

$$= \lim_{A \to +\infty} \frac{x^{-\alpha+1}}{-\alpha+1} \Big|_{1}^{A} = \lim_{A \to +\infty} \frac{1}{1-\alpha} (A^{1-\alpha} - 1) = +\infty \text{ при } \alpha < 1$$

$$= \lim_{A \to +\infty} \frac{1}{1-\alpha} (\frac{1}{A^{\alpha-1}} - 1) = \frac{1}{\alpha-1} \text{ при } \alpha > 1$$

$$= \lim_{A \to +\infty} \frac{1}{1-\alpha} (A^{1-\alpha} - 1) = \frac{1}{\alpha-1} \text{ при } \alpha > 1$$

Таким чином, $\int_{1}^{+\infty} \frac{dx}{x^{\alpha}}$ - збіжний при $\alpha > 1$ та розбіжний при $\alpha \le 1$.

$$\begin{aligned} &\mathbf{Example 3.1.7} \int_0^1 \frac{dx}{x^\alpha} = \lim_{\varepsilon \to 0+0} \int_\varepsilon^1 \frac{dx}{x^\alpha} \boxed{\equiv} \\ &= \lim_{\varepsilon \to 0+0} \ln x \Big|_\varepsilon^1 = -\infty \text{ при } \alpha = 1 \\ &\lim_{\varepsilon \to 0+0} \frac{x^{-\alpha+1}}{-\alpha+1} \Big|_\varepsilon^1 = \\ &= \lim_{\varepsilon \to 0+0} \frac{1}{1-\alpha} \left(1-\varepsilon^{1-\alpha}\right) = \frac{1}{1-\alpha} \text{ при } \alpha < 1 \\ &= \lim_{\varepsilon \to 0+0} \frac{1}{1-\alpha} \left(1-\frac{1}{\varepsilon^{\alpha-1}}\right) = +\infty \text{ при } \alpha > 1. \end{aligned}$$
 Таким чином,
$$\int_0^1 \frac{dx}{x^\alpha} - \text{збіжний при } \alpha < 1 \text{ та розбіжний при } \alpha \geq 1.$$

Lemma 3.1.8 Задано функцію $f \in \mathcal{R}([a,b])$. Тоді невласний інтеграл дорівнює визначеному інтегралу.

Proof. $\int_a^b f(x) \, dx = \lim_{A \to b^- 0} \int_a^A f(x) \, dx = \lim_{A \to b^- 0} (F(A) - f(a)) \stackrel{(*)}{=} F(b) - F(a) = \int_a^b f(x) \, dx.$ невласний (*) Оскільки $f \in \mathcal{R}([a,b])$, то тоді первісна $F \in C([a,b])$, а тому рівність справедлива.

Theorem 3.1.9 Лінійність

Задані функції $f,g\in\mathcal{R}([a,A]), \forall A\in[a,\omega)$ таким чином, що $\int_a^\omega f(x)\,dx,\int_a^\omega g(x)\,dx$ - збіжні. Тоді $\forall \alpha_1, \alpha_2 \in \mathbb{R}: \int^{\omega} \alpha_1 f(x) + \alpha_2 g(x) \, dx$ - збіжний та $\int_{0}^{\omega} \alpha_1 f(x) + \alpha_2 g(x) dx = \alpha_1 \int_{0}^{\omega} f(x) dx + \alpha_2 \int_{0}^{\omega} g(x) dx.$

$$\int_{a}^{\omega} \alpha_1 f(x) + \alpha_2 g(x) dx = \lim_{A \to \omega} \int_{a}^{A} \alpha_1 f(x) + \alpha_2 g(x) dx = \lim_{A \to \omega} \left(\alpha_1 \int_{a}^{A} f(x) dx + \alpha_2 \int_{a}^{A} g(x) dx \right) =$$

$$= \alpha_1 \int_{a}^{\omega} f(x) dx + \alpha_2 \int_{a}^{\omega} g(x) dx.$$

Example 3.1.10 Обчислити
$$\int_{0}^{+\infty} 2e^{-x} + \frac{1}{1+x^2} dx$$
.

Маємо
$$\int_0^{+\infty} e^{-x} dx = -e^{-x} \Big|_0^{+\infty} = 1$$
, тобто цей інтеграл - збіжний.

Маємо
$$\int_0^{+\infty} \frac{1}{1+x^2} \, dx = \arctan x \Big|_0^{+\infty} = \frac{\pi}{2}$$
, тобто цей інтеграл - збіжний.

Тоді
$$\int_0^{+\infty} 2e^{-x} + \frac{1}{1+x^2} dx = 2 \int_0^{+\infty} e^{-x} dx + \int_0^{+\infty} \frac{1}{1+x^2} dx = 2 + \frac{\pi}{2}$$
 - також збіжний.

Theorem 3.1.11 Адитивність

Задано функцію $f \in \mathcal{R}([a, A]), \forall A \in [a, \omega).$

$$\int_a^\omega f(x)\,dx$$
 - збіжний $\iff \forall c>a: \int_c^\omega f(x)\,dx$ - збіжний, причому
$$\int_a^\omega f(x)\,dx = \int_a^c f(x)\,dx + \int_c^\omega f(x)\,dx.$$

$$\Longrightarrow$$
 Дано: $\int_a^\omega f(x) dx$ - збіжний.

Розглянемо
$$\int_{a}^{A} f(x) \, dx = \int_{a}^{c} f(x) \, dx + \int_{c}^{A} f(x) \, dx \implies \int_{c}^{A} f(x) \, dx = \int_{a}^{A} f(x) \, dx - \int_{a}^{c} f(x) \, dx$$
. Тоді
$$\lim_{A \to \omega} \int_{c}^{A} f(x) \, dx = \lim_{A \to \omega} \left(\int_{a}^{A} f(x) \, dx - \int_{a}^{c} f(x) \, dx \right)$$

$$\int_{c}^{\omega} f(x) \, dx = \int_{a}^{\omega} f(x) \, dx - \int_{a}^{c} f(x) \, dx,$$
 тобто наш інтеграл - збіжний, причому
$$\int_{a}^{\omega} f(x) \, dx = \int_{a}^{c} f(x) \, dx + \int_{c}^{\omega} f(x) \, dx.$$

Заміна змінної та інтеграл частинами в невласних інтегралах теж працюють.

Example 3.1.12 Обчислимо декілька інтегралів:

$$\boxed{\equiv} \lim_{\varepsilon \to 0} \left(x \ln x \Big|_{0+\varepsilon}^{1} - x \Big|_{0+\varepsilon}^{1} \right) = \lim_{\varepsilon \to 0} \left(-\varepsilon \ln \varepsilon - 1 + \varepsilon \right) = \lim_{\varepsilon \to 0} \frac{\ln \varepsilon}{-\frac{1}{\varepsilon}} + \lim_{\varepsilon \to 0} (\varepsilon - 1) \stackrel{\text{I L'H}}{=} \lim_{\varepsilon \to 0} \frac{\frac{1}{\varepsilon}}{\frac{1}{\varepsilon^{2}}} - 1 = -1.$$

Інтеграл - збіжний.

Дослідження на збіжність/розбіжність

Theorem 3.2.1 Критерій Коші

Задано функцію $f \in \mathcal{R}([a, A]), \forall A \in [a, \omega).$

$$\int_a^\omega f(x)\,dx \text{ - збіжний } \iff \forall \varepsilon > 0 : \exists \begin{bmatrix} \delta, \text{якщо } \omega = b \\ \Delta, \text{якщо } \omega = +\infty \end{bmatrix} : \forall \begin{bmatrix} A_1, A_2 \in (b-\delta,b), \text{якщо } \omega = b \\ A_1, A_2 \in (\Delta, +\infty), \text{якщо } \omega = +\infty \end{bmatrix} \Longrightarrow \begin{bmatrix} \int_{A_1}^{A_2} f(x)\,dx \\ -1 + \int_{A_1}^{A_2} f(x)\,dx \\ -1 + \int_{A_2}^{A_2} f$$

Позначимо $\int_{0}^{t} f(x) dx = F(t)$.

$$\int_{a}^{\omega}f(x)\,dx=\lim_{A\to\omega}F(A)\text{ - 36іжний }\overset{\text{критерій Коші для ліміта}}{\Longleftrightarrow}\forall\varepsilon>0:\exists\begin{bmatrix}\delta,\text{якщо }\omega=b\\\Delta,\text{якщо }\omega=+\infty\end{bmatrix}:$$

$$\forall\begin{bmatrix}A_{1},A_{2}\in(b-\delta,b),\text{якщо }\omega=b\\A_{1},A_{2}\in(\Delta,+\infty),\text{якщо }\omega=+\infty\end{bmatrix}\Rightarrow|F(A_{1})-F(A_{2})|=\left|\int_{A_{1}}^{A_{2}}f(x)\,dx\right|<\varepsilon.$$

3.2.1 Дослідження для додатних функції

Тобто в цьому підпідрозділі розглядаються функції $f(x), g(x) \ge 0$ на всьому області визначення.

Theorem 3.2.2 Ознака порівняння в нерівностях

Задані функції $f,g\in\mathcal{R}([a,A]): \forall A\in[a,\omega)$ - додатні. Відомо, що $\forall x\in[a,\omega): f(x)\leq g(x)$. Тоді

1) Якщо
$$\int_a^\omega g(x)\,dx$$
 - збіжний, то $\int_a^\omega f(x)\,dx$ - збіжний;

2) Якщо
$$\int_a^{a} f(x) dx$$
 - розбіжний, то $\int_a^{\omega} g(x) dx$ - розбіжний.

Маємо функції
$$F(t)=\int_a^t f(x)\,dx$$
 $G(t)=\int_a^t g(x)\,dx.$ Зафіксуємо такі $t_1,t_2,$ що $a< t_1< t_2<\omega.$ Тоді
$$F(t_2)=\int_a^{t_2} f(x)\,dx=\int_a^{t_1} f(x)\,dx+\int_{t_1}^{t_2} f(x)\,dx\geq \int_a^{t_1} f(x)\,dx=F(t_1).$$
 Таким чином, F - неспадна функція. Аналогічно G - неспадна функція.

1) Нехай відомо, що $\int_{a}^{\omega}g(x)\,dx$ - збіжний, отже,

$$\int_{a}^{\omega} g(x) dx = \lim_{A \to \omega} G(A) \stackrel{G \text{ - неспадна}}{=} \sup_{t \in [a,\omega)} G(t).$$

 $\int_a^\omega g(x)\,dx = \lim_{A\to\omega} G(A) \stackrel{G\text{ - неспадна}}{=} \sup_{t\in[a,\omega)} G(t).$ Оскільки $\forall x\in[a,\omega): f(x)\leq g(x),$ то тоді $F(t)\leq G(t).$ А отже, $F(t)\leq \sup_{t\in[a,\omega)} G(t).$

Через те, що F(t) - обмежена та неспадна, то $\exists \lim_{A \to \omega} F(A) = \int_{a}^{\omega} f(x) dx$ - збіжний.

2) А тепер нехай відомо, що $\int^{\omega}f(x)\,dx$ - розбіжний.

!Якщо припустити, що інтеграл $\int_a^\omega g(x)\,dx$ - збіжний, то за п. 1), інтеграл з $\int_a^\omega f(x)\,dx$ - збіжний, що суперечність!

Таким чином, $\int_{-\infty}^{\infty} g(x) dx$ - розбіжний.

Example 3.2.3 Дослідити на збіжність $\int_0^1 \frac{\cos^2 x}{\sqrt{x}} dx$

Маємо $f(x) = \frac{\cos^2 x}{\sqrt{x}}$. Відомо, що $\cos^2 x \le 1$. Встановимо функцію $g(x) = \frac{1}{\sqrt{x}}$. Тоді $\forall x \in (0,1]: f(x) \le g(x)$.

 $\int_{0}^{1} \frac{1}{\sqrt{x}} dx$ - збіжний (еталон). Отже, за ознакою порівняння, п. 1), $\int_{0}^{1} \frac{\cos^{2} x}{\sqrt{x}} dx$ - збіжний.

Theorem 3.2.4 Ознака порівняння в границях

Задані функції $f,g\in\mathcal{R}([a,A]):\forall A\in[a,\omega)$ - строго додатні. Відомо, що $\exists\lim_{x\to\omega=0}\frac{f(x)}{a(x)}=L.$ Тоді

1) Якщо $L \neq 0, \neq \infty$, то обидва $\int_{-\pi}^{\omega} f(x) \, dx$, $\int_{-\pi}^{\omega} g(x) \, dx$ - збіжні або розбіжні;

2) Ящо
$$L=0$$
, то зі збіжності $\int_a^\omega g(x)\,dx$ випливає збіжність $\int_a^\omega f(x)\,dx$.

1) Розглянемо $L \neq 0$, але оскільки f,g>0, то L>0

$$\exists \lim_{x \to \omega} \frac{f(x)}{g(x)} = L \iff \forall \varepsilon > 0 : \exists c \in [a, \omega) : \forall x \ge c : \left| \frac{f(x)}{g(x)} - L \right| < \varepsilon.$$

Розглянемо
$$\varepsilon = \frac{L}{2}$$
, тоді $\frac{L}{2} < \frac{f(x)}{g(x)} < \frac{3L}{2} \Rightarrow \frac{L}{2}g(x) < f(x) < \frac{3L}{2}g(x)$.

Якщо $\int_{0}^{\omega} g(x) dx$ - збіжний, то $\int_{0}^{\omega} \frac{3L}{2} g(x) dx$ - збіжний, то $\int_{0}^{\omega} f(x) dx$ - збіжний. Отже, $\int_{0}^{\omega} f(x) dx$

- зоіжний.
Якщо
$$\int_c^\omega f(x)\,dx$$
 - збіжний, то $\int_c^\omega \frac{L}{2}g(x)\,dx$ - збіжний, то $\int_c^\omega g(x)\,dx$ - збіжний. Отже, $\int_a^\omega f(x)\,dx$ - збіжний.

Це все за арифметичними властивостями збіжності, попередньою ознакою порівняння, п.1). та теоремою про збіжність в адитивності.

Тож
$$\int_a^\omega f(x)\,dx,\,\int_a^\omega g(x)\,dx$$
 - одночасно збіжні.

Аналогічно можна довести однакову розбіжність, якщо починати нерівність зліва.

2) Розглянемо
$$L=0$$
, то $\exists \lim_{x \to \omega} \frac{f(x)}{g(x)} = 0 \iff \forall \varepsilon > 0 : \exists c \in [a,\omega) : \forall x \geq c : \left| \frac{f(x)}{g(x)} \right| < \varepsilon$. Розглянемо $\varepsilon=1$, то тоді $f(x) < g(x), \forall x \geq c$, а це вже посилання на попередню теорему.

Example 3.2.5 Дослідити на збіжність $\int_0^1 \frac{\arctan x}{x^{\frac{1}{5}}}$

Маємо функцію $f(x) = \frac{\arctan x}{x^{\frac{1}{5}}}$. Візьмемо функцію $g(x) = \frac{1}{x^{-\frac{4}{5}}}$. Тоді

$$\lim_{x \to 0} \frac{\frac{\arctan x}{x^{\frac{1}{5}}}}{\frac{1}{x^{-\frac{4}{5}}}} = \lim_{x \to 0} \frac{\arctan x}{x} = 1.$$

А тепер оскільки $\int_0^1 \frac{1}{x^{-\frac{4}{5}}}$ - розбіжний (еталон), то за ознакою порівняння в лімітах, п. 1), $\int_0^1 \frac{\arctan x}{x^{\frac{1}{5}}}$

3.2.2 Дослідження для знакодовільних функцій

Definition 3.2.6 Задано функцію $f \in \mathcal{R}([a;A]), \forall A \in [a,\omega).$

Беницов 6.2.6 оддаю функцю
$$f \in \mathcal{H}([a, H]), \forall H \in [a, \omega).$$
 $\int_a^\omega f(x) \, dx$ називається **абсолютно збіжним**, якщо $\int_a^\omega |f(x)| \, dx$ - збіжний. $\int_a^\omega f(x) \, dx$ називається **умовно збіжним**, якщо $\int_a^\omega |f(x)| \, dx$ - розбіжний, але при цьому $\int_a^\omega f(x) \, dx$ - збіжний.

Proposition 3.2.7 Задано функцію $f \in \mathcal{R}([a;A]), \forall A \in [a,\omega).$

Відомо, що
$$\int_a^\omega |f(x)| \, dx$$
 - збіжний. Тоді $\int_a^\omega f(x) \, dx$ - збіжний.

$$\int_{a}^{\omega} |f(x)| \, dx$$
 - збіжний. За критерієм Коші, $\forall \varepsilon > 0$: $\exists \begin{bmatrix} \delta, \mathsf{якщо} \ \omega = b \\ \Delta, \mathsf{якщо} \ \omega = +\infty \end{bmatrix}$: $\forall \begin{bmatrix} A_1, A_2 \in (b - \delta, b), \mathsf{якщо} \ \omega = b \\ A_1, A_2 \in (\Delta, +\infty), \mathsf{якщо} \ \omega = +\infty \end{bmatrix}$ $\Longrightarrow \left| \int_{A_1}^{A_2} |f(x)| \, dx \right| < \varepsilon \implies \left| \int_{A_1}^{A_2} |f(x)| \, dx \right| < \varepsilon$

Тоді за критерієм Коші, $\int_{-\pi}^{\omega} f(x) dx$ - збіжний.

Theorem 3.2.8 Ознака Діріхле

Задані функції $f,g\in\mathcal{R}([a,A]), \forall A\in[a,\omega).$ Відомо, що:

1)
$$F(x) = \int_{a}^{x} f(t) dt$$
 - обмежена на $[a, \omega)$;

$$(2) \ g(x)$$
 - монотонна та н.м. при $x o \omega$

Тоді
$$\int_{a}^{\omega} f(x)g(x) dx$$
 - збіжний.

Remark 3.2.9 Взагалі-то кажучи, можна не вимагати, щоб $g \in \mathcal{R}([a,A])$, тому що вона монотонна.

Proof.

Будемо доводити за критерієм Коші про збіжність. Нехай $\varepsilon > 0$.

Оскільки F(x) - обмежена, то звідси $\exists C > 0 : \forall x \in [a, \omega) : |F(x)| \leq C$.

Також
$$g$$
 - н.м. при $x \to \omega$, то звідси $\exists \begin{bmatrix} \delta \\ \Delta \end{bmatrix} : \forall x \in [a,\omega) : \begin{bmatrix} x \in (b-\delta,b) \\ x \in (\Delta,+\infty) \end{bmatrix} \Longrightarrow |g(x)| < \frac{\varepsilon}{4C}.$

Тоді в критерії Коші
$$\exists \begin{bmatrix} \delta \\ \Delta \end{bmatrix} : \forall A_1, A_2 \in [a, \omega) : \begin{bmatrix} A_1, A_2 \in (b - \delta, b) \\ A_1, A_2 \in (\Delta, +\infty) \end{bmatrix}$$

$$\implies \left| \int_{A_1}^{A_2} f(x)g(x) \, dx \right| = 1$$

Оскільки g - монотонна на $[A_1,A_2]$ та $f\in\mathcal{R}([A_1,A_2]),$ то тоді застосуємо другу теорему про середнє

$$\exists \xi \in (A_1.A_2) : \int_{A_1}^{A_2} f(x)g(x) \, dx = g(A_1) \int_{A_1}^{\xi} f(x) \, dx + g(A_2) \int_{\xi}^{A_2} f(x) \, dx.$$

$$| g(A_1) \int_{A_1}^{\xi} f(x) \, dx + g(A_2) \int_{\xi}^{A_2} f(x) \, dx | \leq | g(A_1) \int_{A_1}^{\xi} f(x) \, dx | + | g(A_2) \int_{\xi}^{A_2} f(x) \, dx | \leq | g(A_1) \int_{\xi}^{\xi} f(x) \, dx | g(A_1) \int_{\xi}^{\xi} f($$

Оскільки
$$\left|\int_a^{A_1} f(x)\,dx\right| \leq C$$
 та $\left|\int_a^\xi f(x)\,dx\right| \leq C$, то звідси

$$\left| \int_{A_1}^{\xi} f(x) \, dx \right| = \left| \int_{a}^{\xi} f(x) \, dx - \int_{a}^{A_1} f(x) \, dx \right| \le \left| \int_{a}^{\xi} f(x) \, dx \right| + \left| \int_{a}^{A_1} f(x) \, dx \right| \le 2C.$$

Аналогічними міркуваннями $\left| \int_{c}^{A_2} f(x) \, dx \right| \leq 2C.$

$$\leq 2Cg(A_1) + 2Cg(A_2) < 2C\frac{\varepsilon}{4C} + 2C\frac{\varepsilon}{4C} = \varepsilon.$$

Theorem 3.2.10 Ознака Абеля

Задані функції $f,g\in\mathcal{R}([a,A]), \forall A\in[a,\omega)$. Відомо, що:

1)
$$\int_{a}^{\omega} f(x) dx$$
 - збіжний;

 $2) \stackrel{Ja}{g(x)}$ - монотонна та обмежена на $[a,\omega)$.

Тоді
$$\int_{a}^{\omega} f(x)g(x) dx$$
 - збіжний.

Remark 3.2.11 Різниця між Діріхле полягає в тому, що вимоги до 1) ми посилюємо, а вимоги до 2) ми послаблюємо.

Ця теорема, насправді, є прямим наслідком, проте відокремити її можна як теорему.

$$\int_a^\omega f(x)\,dx = \lim_{x o\omega} \int_a^x f(t)\,dt$$
 , тоді вона обмежена. П. 1) уже маємо.

 $\int_{a}^{\omega} f(x) \, dx = \lim_{x \to \omega} \int_{a}^{x} f(t) \, dt$, тоді вона обмежена. П. 1) уже маємо. g - монотонна та обмежена, тому $\exists \lim_{x \to \omega} g(x) = L$. Далі розглянемо функцію h(x) = g(x) - L, яка також монотонна, але вже н.м. при $x \to \omega$. П. 2) уже маємо для h(x).

Тоді
$$\int_a^{\omega} f(x)h(x) dx$$
 - збіжний. Отже,

$$\int_{a}^{\omega} f(x)g(x) \, dx = \lim_{x \to \omega} \int_{a}^{x} f(t)g(t) \, dt = \lim_{x \to \omega} \int_{a}^{x} f(t)h(t) + Lf(t) \, dt = \int_{a}^{\omega} f(x)h(x) \, dx + L \int_{a}^{\omega} f(x) \, dx - Lf(t) \, dt$$

Example 3.2.12 Інтеграл Діріхле

Дослідимо на збіжність $\int_0^{+\infty} \frac{\sin x}{x} \, dx$.

Маємо $f(x) = \sin x$, g(x) =

До речі, $\lim_{x\to 0}\frac{\sin x}{x}=1$, тож x=0 - усувна точка, тобто вона не є особливою точкою. Тому $\forall A\in$ $[0,+\infty): \frac{\sin x}{x} \in \mathcal{R}([0,A]).$

$$\left|\int_0^A f(x)\,dx\right| = \left|\int_0^A \sin x\,dx\right| = \left|-\cos A + \cos 0\right| \le 2$$
, виконано $\forall A \ge 0$ - встановимо $M=2$. Тоді

обмежена. $g(x) = \frac{1}{x}$ - монотонна, $\lim_{x \to +\infty} \frac{1}{x} = 0$.

Таким чином, за ознакою Діріхле, $\int_0^{+\infty} \frac{\sin x}{x} \, dx$ - збіжний.

Дослідимо тепер на абсолютну збіжність.

!Припустимо, що це, дійсно, абсолютно збіжний інтеграл, тобто $\int_0^{+\infty} \left| \frac{\sin x}{x} \right| dx = \int_0^{+\infty} \frac{|\sin x|}{x} dx$ збіжний.

Зауважимо, що $|\sin x| \ge \sin^2 x$.

Тоді за ознакою порівняння в нерівностях, $\int_{2}^{+\infty} \frac{\sin^2 x}{x} dx$ - збіжний.

Тому збіжними будуть два інтеграли:
$$\int_0^{+\infty} \frac{\sin^2 x}{x} \, dx = \int_0^1 \frac{\sin^2 x}{x} \, dx + \int_1^{+\infty} \frac{\sin^2 x}{x} \, dx = \int_0^1 \frac{\sin^2 x}{x} \, dx + \int_1^{+\infty} \frac{1 - \cos^2 x}{x} \, dx = \int_0^1 \frac{\sin^2 x}{x} \, dx + \int_1^{+\infty} \frac{1}{2x} - \frac{\cos^2 x}{2x} \, dx = \int_0^1 \frac{\sin^2 x}{x} \, dx + \int_1^{+\infty} \frac{1}{2x} - \frac{\cos^2 x}{2x} \, dx$$

Звідси $\int_{1}^{+\infty} \frac{1}{2x} dx$ та $\int_{1}^{+\infty} \frac{1}{2x} - \frac{\cos 2x}{2x} dx$ - збіжні. Проте за еталоном, $\int_{1}^{+\infty} \frac{1}{2x} dx$ НЕ є збіжним.

Висновок: $\int_{-x}^{+\infty} \frac{\sin x}{x} dx$ - умовно збіжний.

Невласний інтеграл в сенсі головного значення

І. Розглянемо такий інтеграл

$$\int_{-\infty}^{+\infty} f(x) \, dx$$

У неї з обох сторін проблеми. В стандартному невласному інтегралі це можна записати так:
$$\int_{-\infty}^{+\infty} f(x) \, dx = \int_{-\infty}^{t} f(x) \, dx + \int_{t}^{+\infty} f(x) \, dx = \lim_{B \to -\infty} \int_{B}^{t} f(x) \, dx + \lim_{A \to +\infty} \int_{t}^{A} f(x) \, dx = \lim_{A \to +\infty} \int_{B \to -\infty}^{A} f(x) \, dx$$

$$= \lim_{A \to +\infty} \int_{B \to -\infty}^{A} f(x) \, dx$$

вичай незручно. Тому розглядають такий же інтеграл, але в сенсі головного значення:

$$v.p. \int_{-\infty}^{+\infty} f(x) dx = \lim_{A \to \infty} \int_{-A}^{A} f(x) dx$$

II. Розглянемо такий інтеграл

$$\int_a^b f(x)\,dx,$$
особлива т. $c\in(a,b)$

У неї з обох сторін проблеми. В стандартному невласному інтегралі це можна записати так:

$$\int_{a}^{b} f(x) \, dx = \int_{a}^{c} f(x) \, dx + \int_{c}^{b} f(x) \, dx = \lim_{\varepsilon_{1} \to 0^{+}} \int_{a}^{c-\varepsilon_{1}} f(x) \, dx + \lim_{\varepsilon_{2} \to 0^{-}} \int_{c+\varepsilon_{2}}^{b} f(x) \, dx = \lim_{\varepsilon_{1} \to 0^{+}} \left(\int_{a}^{c-\varepsilon_{1}} f(x) \, dx + \int_{c+\varepsilon_{2}}^{b} f(x) \, dx \right)$$

Ну якось теж незручно. Тому розглядають люди такий же інтеграл, але в сенсі головного значення:

$$v.p. \int_{a}^{b} f(x) dx = \lim_{\varepsilon \to 0} \left(\int_{a}^{c-\varepsilon} f(x) dx + \int_{c+\varepsilon}^{b} f(x) dx \right)$$

Remark 3.3.1 Якщо один із двох інтегралів збігається, то тоді й v.p. інтеграл теж буде збігатись. В зворотньому - невірно.

Example 3.3.2 Контрприклади

Маємо
$$\int_{-1}^{1} \frac{dx}{x}$$
 - розбіжний (там виникне еталон)

Але
$$v.p.\int_{-1}^{1}\frac{dx}{x}=\lim_{\varepsilon\to 0}\left(\int_{-1}^{\varepsilon}\frac{dx}{x}+\int_{\varepsilon}^{1}\frac{dx}{x}\right)=\lim_{\varepsilon\to 0}(\ln\varepsilon-\ln 1+\ln 1-\ln\varepsilon)=0$$
 - збіжний.

Маємо
$$\int_{-\infty}^{+\infty} x \, dx$$
 - розбіжний.

Але
$$v.p. \int_{-\infty}^{+\infty} x \, dx = \lim_{A \to \infty} \int_{-A}^{A} x \, dx = \lim_{A \to \infty} \left(\frac{A^2}{2} - \frac{A^2}{2} \right) = 0$$
 - збіжний.

Ряди 4

Definition 4.0.1 Рядами називають формальну нескінченну суму нескінченної послідовності чисел ${a_n, n \ge 1}$:

$$a_1 + a_2 + \dots + a_n + \dots + \sum_{n=1}^{\infty} a_n$$

Частковою сумою даного ряда називають суму перших k членів:

$$S_k = \sum_{n=1}^k a_n = a_1 + a_2 + \dots + a_k$$

В такому випадку в нас виникає послідовність часткових сум $\{S_k, k \geq 1\}$.

Якщо така послідовність часткових сум є збіжною, то ряд $\sum a_n$ називають збіжним та сумма цього ряду дорівнює

$$\sum_{n=1}^{\infty} a_n = \lim_{k \to \infty} \sum_{n=1}^{k} = \lim_{k \to \infty} S_k = S$$

Інакше - розбіжним.

Example 4.0.2 Знайдемо суму: $1 + q + q^2 + \dots$

Розглянемо часткову суму $S_k = 1 + q + \dots + q^k = \frac{1 - q^k}{1 - a}$ - сума геом. прогресії.

$$\lim_{k\to\infty}S_k=\lim_{k\to\infty}\frac{1-q^k}{1-q}=\begin{bmatrix}\frac{1}{1-q},|q|<1\\\infty,|q|>1\\\mathrm{При}\ q=1\ \mathrm{маємо:}\ 1+1+1+\dots \qquad,\mathrm{тобтo}\ S_k=k\Rightarrow\lim_{k\to\infty}S_k=\infty.$$

- сума є збіжною при |q| < 1 та $1 + q + q^2 + \dots = \frac{1}{1 q}$;
- сума є розбіжнрю при $|q| \ge 1$.

Первинний аналіз збіжності та арифметика рядів

Proposition 4.1.1 Необхідна ознака збіжності ряду

Задано
$$\sum_{n=1}^{\infty} a_n$$
 - збіжний. Тоді $\lim_{n \to \infty} a_n = 0$.

Proof.

Зафіксуємо часткові суми: $S_{k+1} = \sum_{n=1}^{k+1} a_n$ $S_k = \sum_{n=1}^k a_n$. Оскільки ряд є збіжним, то $\lim_{k \to \infty} S_{k+1} = \lim_{k \to \infty} S_k = S$. Тоді $\lim_{k \to \infty} a_{k+1} = \lim_{k \to \infty} (S_{k+1} - S_k) = S - S = 0$.

Remark 4.1.2 Якщо виникне, що $\lim_{n\to\infty}a_n\neq 0$, або її взагалі не існує, то $\sum_{n=0}^{\infty}a_n$ - розбіжний.

Remark 4.1.3 Це лише - необхідна ознака, в жодному випадку не достатня. Якщо границя буде нулевою, то це не означає, що ряд збігається, потрібну інші дослідження.

Example 4.1.4 Розглянемо ряд $\sum_{n=1}^{\infty} (-1)^n = -1 + 1 - 1 + \dots$ Оскільки $\not\exists \lim_{n \to \infty} (-1)^n$, то за **Rm. 3.1.3.**, маємо, що ряд - розбіжний.

Theorem 4.1.5 Критерій Кош

Ряд
$$\sum_{n=1}^{\infty} a_n$$
 - збіжний $\iff \forall \varepsilon > 0: \exists K: \forall k \geq K: \forall p \geq 1: \left| \sum_{n=k+1}^{k+p} a_n \right| < \varepsilon.$

$$\sum_{n=1}^{\infty}a_n$$
 - збіжний $\iff \exists \lim_{k \to \infty}S_k$ - збіжна границя $\stackrel{\text{критерій Koші}}{\iff}$

$$\iff \forall \varepsilon > 0: \exists K: \forall k \ge K: \forall p \ge 1: |S_{k+p} - S_k| = \left| \sum_{n=k+1}^{k+p} a_n \right| < \varepsilon$$

Розглянемо $\sum_{n=1}^{\infty} \frac{1}{n}$ - **гармонічний ряд**. Доведемо, що даний ряд - розбіжний, використовуючи критерій Коші, тобто

$$\exists \varepsilon>0: \forall K: \exists k_1,k_2\geq K: \left|\sum_{n=k_1}^{k_2}\frac{1}{n}\right|\geq \varepsilon$$
 Дійсно, якщо $\varepsilon=0.5,\ k_1=K,k_2=2K,$ то отримаємо:

$$\left| \sum_{n=K}^{2K} \frac{1}{n} \right| = \frac{1}{K} + \frac{1}{K+1} + \dots + \frac{1}{2K} > K \frac{1}{2K} = 0.5.$$

Proposition 4.1.7 Задані $\sum_{n=1}^{\infty} a_n$ $\sum_{n=1}^{\infty} b_n$ - збіжні. Тоді збіжними будуть й наступні ряди:

1)
$$\forall \alpha \in \mathbb{R} : \sum_{n=1}^{\infty} \alpha a_n = \alpha \sum_{n=1}^{\infty} a_n;$$

2)
$$\sum_{n=1}^{\infty} (a_n + b_n) = \sum_{n=1}^{\infty} a_n + \sum_{n=1}^{\infty} b_n$$
.

Proof.

Доведу друге. Перший пункт аналогічно. Зафіксуємо часткові суми:

2)
$$S_k(a) = \sum_{n=1}^k a_n$$
, $S_k(b) = \sum_{n=1}^k b_n$.

Тоді
$$S_k(a) + S_k(b) = \sum_{n=1}^k (a_n + b_n) = \sum_{n=1}^k a_n + \sum_{n=1}^k b_n.$$

Оскільки
$$\sum_{n=1}^{\infty} a_n \quad \sum_{n=1}^{\infty} b_n$$
 - збіжні, то $\lim_{k\to\infty} S_k(a) = S(a), \quad \lim_{k\to\infty} S_k(b) = S(b).$

$$\sum_{n=1}^{\infty} (a_n + b_n) = \lim_{k \to \infty} (S_k(a) + S_k(b)) = S(a) + S(b) = \sum_{n=1}^{\infty} a_n + \sum_{n=1}^{\infty} b_n.$$

Definition 4.1.8 Хвостом ряда $\sum_{n=1}^{\infty} a_n$ називають ряд $\sum_{n=m}^{\infty} a_n$, де $m \in \mathbb{N}$. Тобто ми відкидуємо перші m-1 доданків та сумуємо, починаючи з m.

Proposition 4.1.9 $\sum_{n=1}^{\infty} a_n$ - збіжний $\iff \sum_{n=1}^{\infty} a_n$ - збіжний.

Proof.

$$\sum_{n=1}^{\infty}a_n$$
 - збіжний $\stackrel{\text{критерій Коші}}{\Longleftrightarrow}$ $\forall \varepsilon>0:\exists K:\forall k\geq K:\forall p\geq 1:\left|\sum_{n=k+1}^{k+p}a_n\right|<\varepsilon\iff$

$$\iff \exists K' = \max\{K, m\} : \forall k \geq K' : \forall p \geq 1 : \left| \sum_{n=k+1}^{k+p} a_n \right| < \varepsilon \iff \sum_{n=m}^{\infty} a_n$$
 - збіжний.

Знакододатні ряди

Тобто розглядаємо зараз лише ряди $\sum_{i=1}^{\infty} a_n$, такі, що $\forall n \geq 1: a_n \geq 0$.

Proposition 4.2.1 $\{S_k, k \ge 1\}$ - мононтонно неспадна послідовність.

$$\forall k \ge 1 : S_{k-1} - S_k = a_{k+1} \ge 0 \Rightarrow S_k \le S_{k+1}.$$

Proposition 4.2.2 Якщо $\{S_k, k \geq 1\}$ - обмежена, то тоді $\sum_{n=1}^{\infty} a_n$ - збіжний.

Proof.

Щойно дізнались що послідовність часткових сум монотонна. До того ж, вона є обмеженою за умовою. Отже, $\exists \lim_{k \to \infty} S_k = S,$ тобто $\sum_{\cdot}^{\infty} a_n$ - збіжний.

Theorem 4.2.3 Ознака порівняння в нерівностях Задані $\sum_{n=1}^\infty a_n \quad \sum_{n=1}^\infty b_n$ таким чином, що $\forall n \geq 1 :\geq N: a_n \leq b_n.$ Тоді:

$$\sum_{n=1}^{\infty} b_n$$
 - збіжний, то $\sum_{n=1}^{\infty} a_n$ - збіжний теж.

$$2)$$
якщо $\sum_{n=1}^{\infty}a_n$ - розбіжний, то $\sum_{n=1}^{\infty}b_n$ - розбіжний теж.

Оскільки $a_n \leq b_n$, то тоді $\sum_{n=1}^k a_n \leq \sum_{n=1}^k b_n$.

1) Нехай
$$\sum_{n=1}^{\infty}b_n$$
 - збіжний ряд, тоді $\lim_{k\to\infty}\sum_{n=1}^kb_n=S.$

Отже, в нашій нерівності, якщо $k \to \infty$, то маємо $0 \le \sum_{n=1}^\infty a_n \le \sum_{n=1}^\infty b_n = S$. Отже, існує границя, а

тому
$$\sum_{n=1}^{\infty} a_n$$
 - збіжний.

Example 4.2.4 Важливий

Розглянемо далі $\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$ - ряд Діріхле. Дослідимо на збіжність.

Нехай
$$\alpha < 1$$
, тоді $\forall n \geq 1 : \frac{1}{n} < \frac{1}{n^{\alpha}}$

За ознакою порівняння та минулим прикладом, отримаємо, що $\sum_{i=1}^{\infty} \frac{1}{n^{\alpha}}$ - розбіжний.

Нехай $\alpha > 1$, тоді $\forall n > 1 : \frac{1}{n^{\alpha}} \le \frac{1}{2^{\alpha}}$. За ознакою порівняння та геом. прогресії, отримаємо, що $\sum_{n=0}^{\infty} \frac{1}{n^{\alpha}}$ - збіжний.

36

лет Підсумуємо:
$$\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$$
 - $\begin{bmatrix}$ розбіжний, $\alpha \leq 1$ збіжний, $\alpha > 1$.

Theorem 4.2.5 Ознака порівняння в границях

Задані $\sum_{n=1}^{\infty} a_n$ $\sum_{n=1}^{\infty} b_n$, тут члени строго додатні. Відомо, що $\exists \lim_{n \to \infty} \frac{a_n}{b_n} = l$. Тоді:

1) Якщо
$$l \neq 0$$
 та $l \neq \infty$, то $\sum_{n=1}^{\infty} a_n, \sum_{n=1}^{\infty} b_n$ збіжні або розбіжні одночасно;

2) Якщо
$$l=0,$$
 то із збіжності $\sum_{n=1}^{\infty}b_n$ випливає збіжність $\sum_{n=1}^{\infty}a_n.$

Remark 4.2.6 До речі, $l \ge 0$, оскільки всі члени - додатні.

1)
$$\exists \lim_{n \to \infty} \frac{a_n}{b_n} = l \neq 0$$
, тобто $\forall \varepsilon > 0 : \exists N : \forall n \geq N : \left| \frac{a_n}{b_n} - l \right| < \varepsilon$. Оберемо $\varepsilon = \frac{l}{2}$, тоді $\frac{l}{2} < \frac{a_n}{b} < \frac{3l}{2} \Rightarrow \frac{l}{2} b_n < a_n < \frac{3l}{2} b_n$, $\forall n \geq N$.

Припустимо, що $\sum_{n=N}^{\infty} b_n$ - збіжний, тоді збіжним буде $\sum_{n=N}^{\infty} \frac{3l}{2} b_n$, а отже, за попередньою теоремою,

$$\sum_{n=N}^{\infty}a_n$$
 - збіжний. Отже, $\sum_{n=1}^{\infty}a_n$ - збіжний.

Якщо $\sum_{n=N}^{\infty}a_n$ - збіжний, тоді збіжним буде $\sum_{n=N}^{\infty}rac{l}{2}b_n$, а отже $\sum_{n=N}^{\infty}b_n$ - збіжний. Тому $\sum_{n=1}^{\infty}b_n$ - збіжний.

2)
$$\exists \lim_{n \to \infty} \frac{a_n}{b_n} = l = 0$$
, тобто $\forall \varepsilon > 0: \exists N: \forall n \geq N: \left| \frac{a_n}{b_n} \right| < \varepsilon$ Оберемо $\varepsilon = 1$, тоді $\forall n \geq N: a_n < b_n$. Тоді виконується попередня теорема, один з двох пунктів

Theorem 4.2.7 Ознака Даламбера

Задано $\sum_{n = \infty}^{\infty} a_n$ - строго додатній. Нехай $\exists \lim_{n \to \infty} \frac{a_{n+1}}{a_n} = q$. Тоді:

- 1) Якщо q < 1, то ряд збіжний;
- 2) Якщо q > 1, то ряд розбіжний;
- 3) Якщо q = 1, то відповіді нема.

1)
$$\exists \lim_{n \to \infty} \frac{a_{n+1}}{a_n} = q < 1$$
, тобто $\forall \varepsilon > 0 : \exists N : \forall n \ge N : \left| \frac{a_{n+1}}{a_n} - q \right| < \varepsilon$.

Встановимо $\varepsilon = \frac{1-q}{2}$, тоді $\frac{a_{n+1}}{a} < q + \varepsilon = \frac{1+q}{2} \implies \forall n \ge N : a_{n+1} < \frac{1+q}{2} a_n$.

$$\Rightarrow a_{N+1} < \frac{1+q}{2}a_N$$

$$\Rightarrow a_{N+2} < \frac{1+q}{2} a_{N+1} < \left(\frac{1+q}{2}\right)^2 a_N$$

.
$$\Rightarrow \forall k \ge 1 : a_{N+k} < \left(\frac{1+q}{2}\right)^k a_N$$

Розглянемо ряд
$$\sum_{k=1}^{\infty} \left(\frac{1+q}{2}\right)^k a_N = a_N \sum_{k=1}^{\infty} \left(\frac{1+q}{2}\right)^k$$

Тоді
$$\sum_{k=1}^{\infty}a_{N+k}=\sum_{n=N+1}^{\infty}a_n$$
 - збіжний, отже, $\sum_{n=1}^{\infty}a_n$ - збіжний.

2) Якщо встановити
$$\varepsilon=\frac{q-1}{2}$$
, то отримаємо, що $\frac{a_{n+1}}{a_n}>q-\varepsilon=\frac{q+1}{2}\implies \forall n\geq N: a_{n+1}>\frac{q+1}{2}a_n.$

Аналогічними міркуваннями, отримаємо $\forall k \geq 1 : a_{N+k} > \left(\frac{q+1}{2}\right)^k a_N.$

Розглянемо ряд
$$\sum_{k=1}^{\infty} \left(\frac{q+1}{2}\right)^k a_N = a_N \sum_{k=1}^{\infty} \left(\frac{q+1}{2}\right)^k$$

А тут геом. прогресія при виразі, що більше одиниці - розбіжний.

Тоді
$$\sum_{k=1}^{\infty}a_{N+k}=\sum_{n=N+1}^{\infty}a_n$$
 - розбіжний, отже, $\sum_{n=1}^{\infty}a_n$ - розбіжний.

3) А тепер в чому проблема при q=1. Розглянемо обидва ряди: $\sum_{n=1}^{\infty} \frac{1}{n}$, $\sum_{n=1}^{\infty} \frac{1}{n^2}$. Використаємо

$$\lim_{n \to +\infty} \frac{1}{n+1} \cdot n = 1 \qquad \lim_{n \to +\infty} \frac{1}{(n+1)^2} \cdot n^2 = 1$$

для обох ознаку Даламбера: $\lim_{n\to\infty}\frac{1}{n+1}\cdot n=1 \qquad \lim_{n\to\infty}\frac{1}{(n+1)^2}\cdot n^2=1.$ Результат - однаковий, проте один ряд - розбіжний, а інший - збіжний. Тож q=1 не дає відповіді, шукаємо інші методи.

Example 4.2.8 Дослідити на збіжність
$$\sum_{n=1}^{\infty} \frac{3^n (n!)^2}{(2n)!}$$
.
$$a_n = \frac{3^n (n!)^2}{(2n)!} \qquad \lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{3(n+1)^2}{(2n+1)(2n+2)} = \frac{3}{4} < 1.$$

Theorem 4.2.9 Радикальна ознака Коші

Задано $\sum_{n=1}^{\infty} a_n$ - додатній. Нехай $\exists \overline{\lim}_{n \to \infty} \sqrt[n]{a_n} = q$. Тоді:

- 1) Якщо q < 1, то ряд збіжний;
- 2) Якщо q > 1, то ряд розбіжний;
- 3) Якщо q=1, то відповіді нема.

1)
$$\exists \lim_{\substack{n \to \infty \\ n \to \infty}} \sqrt[n]{a_n} = q < 1$$
, тобто $\forall \varepsilon > 0 : \exists N : \forall n \ge N : \sqrt[n]{a_n} < q + \varepsilon \implies a_n < (q + \varepsilon)^n$.

Оберемо
$$\varepsilon = \frac{1-q}{2}$$
. Тоді маємо: $a_n < \left(\frac{1+q}{2}\right)^n$.

Розглянемо ряд $\sum_{n=1}^{\infty} \left(\frac{1+q}{2}\right)^n$ - геом. прогресія, вираз в сумі менше за одиниці - збіжний.

Отже,
$$\sum_{n=1}^{\infty} \left(\frac{1+q}{2}\right)^n$$
 - збіжний, а тому $\sum_{n=1}^{\infty} a_n$ - збіжний.

2) $\exists \varlimsup_{n \to \infty} \sqrt[n]{a_n} = q > 1$, тобто $\exists \{ \sqrt[n]{a_{n(p)}}, p \ge 1 \} : \lim_{p \to \infty} \sqrt[n(p)]{a_{n(p)}} = q$ - така підпослідовність, що містить цю границю $\implies \forall \varepsilon > 0: \exists P: \forall p \geq P: \left| \sqrt[n(p)]{a_{n(p)}} - q \right| < \varepsilon.$

Оберемо
$$\varepsilon=\frac{q-1}{2}$$
, тоді $a_{n(p)}>\left(\frac{q+1}{2}\right)^{n(p)}$. Тоді $\lim_{p\to\infty}a_{n(p)}\geq\lim_{p\to\infty}\left(\frac{q+1}{2}\right)^{n(p)}=\infty$. Отже, $\lim_{n\to\infty}a_n\neq 0$. Це означає, що необхідна умова збіжності не виконується - розбіжний

3) Щоб з'ясувати випадок q=1, розгляньте такі самі ряди як при доведенні ознаки Даламбера.

Example 4.2.10 Дослідити на збіжність $\sum_{n=1}^{\infty} \frac{\left(\frac{n+1}{n}\right)^n}{3^n}$.

$$a_n = \frac{\left(\frac{n+1}{n}\right)^{n^2}}{3^n}$$
 $\sqrt[n]{a_n} = \frac{\left(\frac{n+1}{n}\right)^n}{3} = \frac{1}{3}\left(1 + \frac{1}{n}\right)^n$

$$\varlimsup_{n\to\infty}\sqrt[n]{a_n}=\lim_{n\to\infty}\frac{1}{3}\left(1+\frac{1}{n}\right)^n=\frac{e}{3}<1.$$
 Отже, наш ряд - збіжний за Коші.

Remark 4.2.11 Тепер питання, чому саме верхня границя

Якщо, насправді, порахувати просто границю, то автоматично існує й верхня границя

Але виникають такі ряди, де стандартно границю не порахуєш. Тому треба розбивати на підпослідовності та шукати верхню границю, що й дасть відповідь на збіжність

Theorem 4.2.12 Інтегральна ознака Коші

Задано $\sum_{n=1}^{\infty} a_n$ - додатній, такий, що: 1) $\exists f: [1,+\infty) \to \mathbb{R}: \forall n \geq 1: a_n = f(x);$ 2) f(x) спадає на $[1,+\infty)$.

1)
$$\exists f: [1, +\infty) \to \mathbb{R}: \forall n \ge 1: a_n = f(x)$$

Тоді
$$\sum_{n=1}^{\infty} a_n$$
 та $\int_1^{+\infty} f(x) dx$ збіжні або розбіжні одночасно.

Proof.

Оскільки f(x) спадає, то $\forall k \geq 1 : \forall x \in [k, k+1] :$

$$a_k \ge f(x) \ge a_{k+1}.$$
 $a_k = \int_k^{k+1} a_k \, dx \ge \int_k^{k+1} f(x) \, dx \ge \int_k^{k+1} a_{k+1} \, dx = a_{k+1}.$ Просумуемо ці нерівності від $k = 1$ до $k = M$, отримаємо:

Просумуємо ці нерівності від
$$\kappa=1$$
 до $\kappa=M$, отримаємо $\sum_{k=1}^{M}a_{k}\geq\int_{1}^{M}f(x)\,dx\geq\sum_{k=1}^{M}a_{k+1}.$ Якщо $M\to\infty$, то за теоремою про поліцаїв отримаємо:

$$\lim_{M \to \infty} \sum_{k=1}^{M} a_k = \sum_{k=1}^{\infty} a_k \text{ Ta } \lim_{M \to \infty} \int_1^M f(x) \, dx = \int_1^{\infty} f(x) \, dx.$$

Із збіжності ряду випливає збіжність інтегралу і навпаки

Example 4.2.13 Дослідити на збіжність $\sum_{n=2}^{\infty} \frac{1}{n \ln n}$.

Маємо функцію $f(x) = \frac{1}{x \ln x}$. Зрозуміло, що f спадає на $[2, +\infty)$, бо $x, \ln x$ там зростають.

$$\int_{2}^{+\infty} \frac{1}{x \ln x} dx = \ln \ln x \Big|_{2}^{+\infty} = +\infty$$
 - розбіжний. Отже, наш ряд - розбіжний за Коші інтеграль

же, наш ряд - розбіжний за Коші інтегральним.

4.3 Знакозмінні ряди

Definition 4.3.1 Ряд $\sum_{n=0}^{\infty} a_n$ називається **абсолютно збіжним**, якщо збігається ряд $\sum_{n=0}^{\infty} |a_n|$.

Definition 4.3.2 Ряд $\sum_{n=1}^{\infty} a_n$ називається **умовно збіжним**, якщо $\sum_{n=1}^{\infty} a_n$ - збіжний, але $\sum_{n=1}^{\infty} |a_n|$ не збіжний.

Proposition 4.3.3 $\sum_{n=1}^{\infty} a_n$ - абсолютно збіжний $\iff \sum_{n=1}^{\infty} a_n$ - збіжний.

$$\sum_{n=1}^{\infty}a_n$$
 - абсолютно збіжний $\iff \sum_{n=1}^{\infty}|a_n|$ - збіжний $\iff \forall \varepsilon>0: \exists K: \forall k\geq K: \forall p\geq 1:$

$$\left|\sum_{n=k}^{k+p}|a_n|\right|<\varepsilon\iff \left|\sum_{n=k}^{k+p}a_n\right|\leq \left|\sum_{n=k}^{k+p}|a_n|\right|<\varepsilon\iff \sum_{n=1}^\infty a_n$$
 - збіжний.

Theorem 4.3.4 Ознака Лейбніца

Задано ряд вигляду $\sum_{n=1}^{\infty} (-1)^{n+1} a_n$ - знакозмінний ряд. Відомо, що:

- 1) $\forall n \geq 1: a_n \geq 0;$ 2) $\{a_n, n \geq 1\}$ монотонно спадає;

3) $\lim_{n \to \infty} a_n = 0$. Тоді заданий ряд - збіжний.

Proof.

Розглянемо послідовність часткових сум $\{S_{2k}, k \geq 1\}$. Отримаємо наступне:

$$S_{2k} = (a_1 - a_2) + (a_3 - a_4) + \dots + (a_{2k-1} - a_{2k}) \ge 0.$$

$$S_{2k} = a_1 - (a_2 - a_3) - (a_4 - a_5) - \dots - (a_{2k-2} - a_{2k-1}) - a_{2k} \le a_1$$

г озглянемо послідовність часткових сум $\{S_{2k}, k \geq 1\}$. Отримаємо наступне: $S_{2k} = (a_1 - a_2) + (a_3 - a_4) + \dots + (a_{2k-1} - a_{2k}) \geq 0$. ≥ 0 ≥ 0

Остаточно, маємо, що послідовність
$$\{S_m, m \geq 1\}$$
 - збіжна, тоді $\sum_{n=1}^{\infty} (-1)^{n+1} a_n$ - збіжний.

Corollary 4.3.5 $\forall k \geq 1 : |S - S_k| \leq a_{k+1}$

Proof.

Розглянемо хвіст ряду $S - S_k = \sum_{n=k+1}^{\infty} (-1)^{n+1} a_n$. А також розглянемо $\tilde{S_m} = \sum_{n=k+1}^{m} (-1)^{n+1} a_n$. Тоді

$$\tilde{S_m} = S_m - S_k = (-1)^{k+1} \left(a_{k+1} - (a_{k+2} - a_{k+3}) - (a_{k+1} - a_{k+5}) - \dots - \left[(a_{m-1} - a_m), k \not 2 \right]$$

$$\Rightarrow |\tilde{S_m}| = \begin{vmatrix} a_{k+1} - (a_{k+2} - a_{k+3}) - (a_{k+1} - a_{k+5}) - \dots - \left[(a_{m-1} - a_m), k \not 2 \right] \\ a_m, k \not = 0 \end{vmatrix}$$

$$= a_{k+1} - (a_{k+2} - a_{k+3}) - (a_{k+1} - a_{k+5}) - \dots - \begin{bmatrix} (a_{m-1} - a_m), k \not 2 \\ a_m, k \not 2 \end{bmatrix} \le a_{k+1}$$

$$\Rightarrow |S - S_k| = \lim_{k \to \infty} |\tilde{S}| \le a_{k+1}$$

$$\implies |S - S_k| = \lim_{m \to \infty} |\tilde{S}_m| \le a_{k+1}.$$

Example 4.3.6 Обчислити суму $\sum_{i=1}^{\infty} \frac{(-1)^n}{n!}$ з точністю до $\varepsilon=10^{-5}$.

Зрозуміло, що $a_n=\frac{1}{n!}\geq 0$, монотонно спадає та н.м. Отже, виконуються ознаки Лейбніца, а тому й отриманий наслідок.

$$|S - S_k| \le a_{k+1} < \varepsilon \implies \frac{1}{(k+1)!} < \frac{1}{10^5} \implies (k+1)! > 100000.$$

$$|S-S_k| \le a_{k+1} < arepsilon \implies rac{1}{(k+1)!} < rac{1}{10^5} \implies (k+1)! > 100000.$$
 Достатньо взяти нам $k=8$. Тому ми отримаємо: $S pprox S_8 = -1 + rac{1}{2} - rac{1}{6} + rac{1}{24} - rac{1}{120} + rac{1}{720} - rac{1}{5040} + rac{1}{40320} = rac{-3641}{5760}.$

Theorem 4.3.7 Ознаки Діріхле та Абеля

Задано ряд вигляду $\sum_{n=1}^{\infty} a_n b_n$. Нехай виконано один з двох блок умов:

Тоді
$$\sum_{n=1}^{\infty} a_n b_n$$
 - збіжний.

Спочатку почнемо з ознаки Діріхле. Припустимо b_n спадає. Застосуємо критерій Коші для доведення.

$$\left| \sum_{n=k+1}^{k+p} a_n b_n \right| = \left| A_{k+p} b_{k+p} - A_k b_{k+1} - \sum_{n=k+1}^{k+p-1} A_n (b_{n+1} - b_n) \right| = \left| A_{k+p} b_{k+p} - A_k b_{k+1} + \sum_{n=k+1}^{k+p-1} A_n (b_n - b_{n+1}) \right| \le C_n \left(\sum_{n=k+1}^{k+p-1} A_n (b_n - b_n) \right) = \left| A_{k+p} b_{k+p} - A_k b_{k+1} + \sum_{n=k+1}^{k+p-1} A_n (b_n - b_{n+1}) \right| \le C_n \left(\sum_{n=k+1}^{k+p-1} A_n (b_n - b_n) \right) = C_n \left(\sum_{n=k+1}^{k+p-1} A_n (b_n - b_n) \right)$$

$$|A_{k+p}b_{k+p} - A_kb_{k+1}| + \sum_{n=k+1}^{k+p-1} |A_n||b_{n+1} - b_n|| \le$$

За умовою, $A_k = \sum_{n=1}^k a_n$ - обмежена, тобто $\exists C > 0 : \forall k \ge 1 : |A_k| \le C$.

Також b_n - н.м., тоді $\forall \varepsilon > 0: \exists K: \forall k \geq K: |b_k| < \varepsilon.$ Тоді $|A_{k+p}b_{k+p} - A_kb_{k+1}| \leq |A_{k+p}||b_{k+p}| + |A_k||b_{k+1}| < 2C\varepsilon.$ Також $\sum_{n=k+1}^{k+p-1} |A_n||b_{n+1} - b_n| \leq C\sum_{n=k+1}^{k+p-1} (b_n - b_{n+1}) = C(b_{k+1} - b_{k+p}) \leq Cb_{k+1} < C\varepsilon.$

 $\leq 3C\varepsilon$. Виконано $\forall \varepsilon>0$ та $\forall k\geq K: \forall p\geq 1$. Отже, $\sum_{n=0}^{\infty}a_nb_n$ - збіжний.

Далі доводимо ознаку Абеля. Оскільки $\sum_{i=1}^{\infty} a_n$ - збіжний, то тоді обмежений. Оскільки $\{b_n\}$ монотонна та обмежена, то $b_n \to B$. Якщо розглянути $c_n = b_n - B$, то маємо $\{c_n, n \ge 1\}$ - монотонна та н.м.

Отже, ряд $\sum_{n=1}^{\infty} a_n c_n$ - збіжний за Діріхле. А далі ясно, що $\sum_{n=1}^{\infty} a_n b_n$ - збіжний.

Example 4.3.8 Дослідити на збіжність ряд $\sum_{n=0}^{\infty} \frac{\sin n}{n}$.

Будемо для цього використовувати ознаку Діріхле, встановимо $a_n = \sin n, b_n = \frac{1}{n}$

$$\sum_{n=1}^{k} \sin n = \sum_{n=1}^{k} \frac{\sin(1 \cdot n) \sin \frac{1}{2}}{\sin \frac{1}{2}} = \frac{1}{2 \sin \frac{1}{2}} \sum_{n=1}^{k} \left(\cos \left(n - \frac{1}{2} \right) - \cos \left(n + \frac{1}{2} \right) \right) =$$

$$= \frac{1}{2 \sin \frac{1}{2}} \left(\cos \frac{1}{2} - \cos \frac{3}{2} + \cos \frac{3}{2} - \cos \frac{5}{2} + \dots + \cos \left(k - \frac{1}{2} \right) - \cos \left(k + \frac{1}{2} \right) \right) = \frac{1}{2 \sin \frac{1}{2}} \left(\cos \frac{1}{2} - \cos \left(k + \frac{1}{2} \right) \right) =$$

$$\frac{\sin \frac{k+1}{2} \sin \frac{k}{2}}{\sin \frac{1}{2}}.$$

Таким чином, $\left|\sum_{n=1}^k \sin n\right| = \left|\frac{\sin\frac{k+1}{2}\sin\frac{k}{2}}{\sin\frac{1}{2}}\right| \le \frac{1}{\sin\frac{1}{2}} \implies \sum_{n=1}^k \sin n$ - обмежена.

Зрозуміло, що $\frac{1}{n}$ монотонна та н.м.

Отже, $\sum_{n=1}^{\infty} \frac{\sin n}{n}$ - збіжний.

Example 4.3.9 Дослідити на збіжність ряд $\sum_{n=0}^{\infty} \frac{\sin n}{n} e^{-n}$.

Будемо для цього використовувати ознаку Абеля, встановимо $a_n = \frac{\sin n}{n}, b_n = e^{-n}$.

 $\sum_{n=1}^{\infty} \frac{\sin n}{n}$ - збіжний за попереднім прикладом.

 e^{-n} - монотонна, оскільки $e^{-n-1}-e^{-n}=e^{-n}(e^{-1}-1)<0.$ e^{-n} - обмежена, оскільки $0< e^{-n}< e.$

Отже, $\sum_{n=0}^{\infty} \frac{\sin n}{n} e^{-n}$ - збіжний.

Theorem 4.3.10 Теорема Рімана

Задано $\sum_{n=1}^{\infty} a_n$ - умовно збіжний.

Тоді для довільного $M \in \mathbb{R}$ буде існувати перестановка членів ряду, після якої новий ряд із переставленими членами буде збіжним до числа M. Поки без доведення

Theorem 4.3.11 Теорема Діріхле

Задано $\sum_{n=1}^{\infty} a_n$ - абсолютно збіжний. Тоді будь-яка перестановка членів ряду не змінить суму. Поки без доведення

Функціональні ряди 5

5.1Функціональні послідовності

Definition 5.1.1 Функціональною послідовністю назвемо послідовність $\{f_n(x), n \geq 1\}$, всі функції задані на одній множині A.

Definition 5.1.2 Функція f(x), що задана теж на множині A, називається **точковою границею** функціональної послідовності $\{f_n(x), n \geq 1\}$, якщо

$$\forall x \in A : \lim_{n \to \infty} f_n(x) = f(x)$$

Example 5.1.3 Розглянемо послідовність
$$\left\{ f_n(x) = \frac{nx}{1+n+x}, n \geq 1 \right\}$$
 на $[0,5]$. Тоді $f_n(x) = \frac{nx}{1+n+x} = \frac{x}{\frac{1}{n}+1+\frac{x}{n}} \xrightarrow{n \to \infty} x = f(x)$.

Remark 5.1.4 Поточкова збіжність дала змогу створити нову функцію f(x), збираючи всі точки $x \in A$. Додатково зазначу, що в кожній точці $x \in A$ виникає числова послідовність, яка має єдину границю при збіжності - тому наша функція f(x) є єдиною такою.

Definition 5.1.5 Функція f(x) називається **рівномірною границею** функціональної послідовності $\{f_n(x), n \geq 1\}$ на множині A, якщо

$$\forall \varepsilon > 0 : \exists N(\varepsilon) \in \mathbb{N} : \forall n \ge N : \forall x \in A : |f_n(x) - f(x)| < \varepsilon$$

Позначення: $f_n(x) \xrightarrow{\rightarrow} f(x)$, $n \to \infty$.

Corollary 5.1.6 f(x) - рівномірна границя послідовності $\{f_n(x), n \geq 1\}$ на $A \iff \sup_{x \in A} |f_n(x) - f(x)| \to 0, n \to \infty.$

Proposition 5.1.7 Задано $\{f_n(x), n \geq 1\}$ - послідовність на A. Відомо, що $f_n(x) \xrightarrow{} f(x), n \rightarrow \infty$ на множині A. Тоді $\forall x \in A : f_n(x) \to f(x), n \to \infty$.

Proof.

За умовою,
$$\forall \varepsilon > 0 : \exists N : \forall n \geq N : \forall x \in A : |f_n(x) - f(x)| < \varepsilon \implies f_n(x) \to f(x), n \to \infty.$$

Corollary 5.1.8 Рівномірно збіжна послідовність має єдину рівномірну границю.

Remark 5.1.9 Таким чином, єдиний кандидат на рівномірну збіжність послідовність $\{f_n, n \geq 1\}$ це сама функція f, що була отримана в результаті поточкової збіжності.

Example 5.1.10 Розглянемо послідовність
$$\left\{ f_n(x) = \frac{nx}{1+n+x}, n \ge 1 \right\}$$
 на $[0,5]$.

Маємо
$$f_n(x) = \frac{nx}{1+n+x} = \frac{x}{\frac{1}{n}+1+\frac{x}{n}} \xrightarrow{n\to\infty} x = f(x).$$

Також
$$\sup_{x \in [0,5]} |f_n(x) - f(x)| = \sup_{x \in [0,5]} \frac{n}{1 + n + x}$$

Розглянемо функцію
$$h(x)=\frac{x+x^2}{1+n+x}$$
 на $[0,5]$. Знайдемо похідну:
$$h'(x)=\frac{(1+2x)(1+n+x)-x-x^2}{(1+n+x)^2}=\frac{1+n+2x+2nx+x^2}{(1+n+x)^2}>0.$$
 Отже, h - строго монотонно зростає. Тому найбільше значення досягається при $x=5$.

$$\boxed{\equiv} \frac{5+25}{1+n+5} = \frac{30}{6+n} \stackrel{n \to \infty}{\longrightarrow} 0.$$
 Таким чином, $f_n(x) \stackrel{\rightarrow}{\to} f(x), n \to \infty$.

Ліворуч - рівномірна збіжність. Праворуч - поточкова збіжність.

Тепер найголовніше питання, а для чого власне нам потрібна рівномірна збіжність, чому не достатньо поточкової збіжності. Одну з відповідей на це питання дає такий приклад.

Example 5.1.11 Розглянемо послідовність $\{f_n(x) = x^n, n \ge 1\}$ на множині [0,1]. Тоді маємо:

$$f_n(x) = x^n \xrightarrow{n \to \infty} \begin{cases} 0, & x \in [0, 1) \\ 1, & x = 1 \end{cases} = f(x).$$

$$\sup_{x \in [0,1]} |f_n(x) - f(x)| = \begin{cases} 0, & x = 1\\ 1, & x \in [0,1) \end{cases}$$

 $f_n(x) = x^n \xrightarrow{n \to \infty} \begin{cases} 0, & x \in [0,1) \\ 1, & x = 1 \end{cases} = f(x).$ $\sup_{x \in [0,1]} |f_n(x) - f(x)| = \begin{cases} 0, & x = 1 \\ 1, & x \in [0,1] \end{cases}.$ В загальному випадку, $\sup_{x \in [0,1]} |f_n(x) - f(x)| \not\to 0$, а тому можемо сказати, що $f_n(x) \not \subset f(x)$, $n \to \infty$.

Найголовніше з цього прикладу, що $f_n \in C([0,1])$, проте $f \notin C([0,1])$, а хотілось би. Саме тому нам потрібні рівномірні збіжності.

Definition 5.1.12 Нормою функції f(x) на множині A назвемо таке число:

$$||f|| = \sup_{x \in A} |f(x)|$$

Proposition 5.1.13 Властивості

Задані функції f, g на множині A. Тоді справедливо наступне:

- 1) $||f|| \ge 0$;
- 2) $||f|| = 0 \iff f(x) = 0, \forall x \in A;$
- 3) $||\lambda f|| = |\lambda| \cdot ||f||, \forall \lambda \in \mathbb{R};$
- 4) $||f + g|| \le ||f|| + ||g||$;
- 5) $|||f|| ||g||| \le ||f g||$.

Proof.

- 1), 3) зрозуміло.
- 2) $||f|| = 0 \Rightarrow \sup |f(x)| = 0 \Rightarrow 0 \le |f(x)| \le 0 \Rightarrow f(x) \equiv 0.$

В зворотньому напрямку все зрозуміло.

- 4) $||f+g|| = \sup_{x \in A} |f(x)+g(x)| \le \sup_{x \in A} (|f(x)|+|g(x)|) \le \sup_{x \in A} |f(x)| + \sup_{x \in A} |g(x)| = ||f|| + ||g||.$ 5) Brasiera: $||f|| \le ||f-g||$ ta $||g|| \le ||g-f||.$

Remark 5.1.14
$$f_n(x) \xrightarrow{\rightarrow} f(x), n \to \infty \iff ||f_n - f|| \to 0, n \to \infty$$

Тепер буде нам набагато простіше розписувати, що таке рівномірна збіжність.

Theorem 5.1.15 Задано $\{f_n(x), n \geq 1\}$ - послідовність на множині A та $f_n(x) \stackrel{\rightarrow}{\to} f(x), n \to \infty$. Відомо, що $\forall n \geq 1: f_n(x) \in C(A)$. Тоді $f(x) \in C(A)$, а також $\lim_{n \to \infty} f_n(x_0) = \lim_{x \to x_0} f(x)$.

Зафіксуємо т.
$$x_0 \in A$$
. За умовою, $||f_n - f|| \to 0, n \to \infty$.
$$\implies \forall \varepsilon > 0: \exists N: \forall n \geq N: \forall x \in A: |f_n(x) - f(x)| < \frac{\varepsilon}{3} \implies |f_N(x) - f(x)| < \frac{\varepsilon}{3}.$$

$$f_N(x) \in C(A) \implies \exists \delta(\varepsilon) > 0: \forall x \in A: |x - x_0| < \delta \Rightarrow |f_N(x) - f_N(x_0)| < \frac{\varepsilon}{3}.$$

$$\implies |f(x) - f(x_0)| = |(f(x) - f_N(x)) + (f_N(x) - f_N(x_0)) + (f_N(x_0) - f(x_0))| \le |f(x) - f_N(x)| + |f_N(x) - f_N(x_0)| + |f_N(x_0) - f(x_0)| < \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon.$$

$$\Longrightarrow f(x)$$
 - неперервна в т. x_0 , яка є довільною. Отже, $f(x) \in C(A)$. $\lim_{n \to \infty} f_n(x_0) = f(x_0) = \lim_{x \to x_0} f(x)$.

Theorem 5.1.16 Задано $\{f_n(x), n \geq 1\}$ - послідовність на множині [a,b] та $f_n(x) \stackrel{\rightarrow}{\rightarrow} f(x), n \rightarrow \infty$. Відомо, що $\forall n \geq 1: f_n(x) \in \mathcal{R}([a,b]).$ Тоді $f(x) \in \mathcal{R}([a,b]),$ а також $\lim_{n \to \infty} \int_a^b f_n(x) \, dx = \int_a^b f(x) \, dx.$

Маємо
$$f_n(x) \xrightarrow{\rightarrow} f(x), n \to \infty \implies \forall \varepsilon > 0 : \exists N : \forall n \ge N : \forall x \in [a,b] : |f_n(x) - f(x)| < \frac{\varepsilon}{4(b-a)}.$$
 Зокрема $\forall x \in [a,b] : |f_N(x) - f(x)| < \frac{\varepsilon}{4(b-a)} \implies f_N(x) - \frac{\varepsilon}{4(b-a)} < f(x) < f_N(x) + \frac{\varepsilon}{4(b-a)}.$

Тоді
$$\forall k=1,\ldots,n$$
 виконуються нерівності: $m_k(f) \geq f_N(x) - \frac{\varepsilon}{4(b-a)} \geq m_k(f_N) - \frac{\varepsilon}{4(b-a)}.$

$$M_k(f) \le f_N(x) + \frac{\varepsilon}{4(b-a)} \le M_k(f_N) + \frac{\varepsilon}{4(b-a)}.$$

Оскільки
$$f_N \in \mathcal{R}([a,b]),$$
 то $\exists \tau: U(f_N,\tau) - L(f_N,\tau) = \sum_{k=1}^n (M_k(f_N) - m_k(f_N) < \frac{\varepsilon}{2}$

$$\implies \forall k = 1, \dots, n : M_k(f_N) - m_k(f_N) < \frac{\varepsilon}{2}.$$

$$U(f,\tau) - L(f,\tau) = \sum_{k=1}^{n} (M_k(f) - m_k(f)) \Delta x_k \le \sum_{k=1}^{n} \left(M_k(f_N) - m_k(f_N) + \frac{\varepsilon}{2(b-a)} \right) \Delta x_k = 0$$

$$= \sum_{k=1}^{n} (M_k(f_N) - m_k(f_N) \Delta x_k + \sum_{k=1}^{n} \frac{\varepsilon}{2(b-a)} \Delta x_k < \frac{\varepsilon}{2} + \frac{\varepsilon}{2(b-a)} (b-a) = \varepsilon \implies f \in \mathcal{R}([a,b]).$$

$$\left| \int_{a}^{b} f_{n}(x) dx - \int_{a}^{b} f(x) dx \right| = \left| \int_{a}^{b} f_{n}(x) - f(x) dx \right| \le \int_{a}^{b} |f_{n}(x) - f(x)| dx \le \int_{a}^{b} ||f - f_{n}|| dx =$$

$$= ||f - f_{n}|| (b - a) \xrightarrow{n \to \infty} 0.$$

Отже,
$$\lim_{n\to\infty} \int_a^b f_n(x) dx = \int_a^b f(x) dx$$
.

Theorem 5.1.17 Критерій Коші

 $f_n(x) \xrightarrow{\rightarrow} f(x), \ n \to \infty$ на $A \iff \forall \varepsilon > 0 : \exists N : \forall n, m \ge N : ||f_n - f_m|| < \varepsilon.$

Proof.

 \Rightarrow Дано: $f_n(x) \xrightarrow{\rightarrow} f(x)$, $n \to \infty$ на A

Тоді
$$||f_n - f|| \to 0, n \to \infty \implies \forall \varepsilon > 0 : \exists N : \forall n, m \ge N :$$
 $||f_n - f|| < \frac{\varepsilon}{2}$ $\implies ||f_n - f_m|| = ||f_n - f + f - f_m|| \le ||f_n - f|| + ||f_m - f|| < \varepsilon.$

 \sqsubseteq Дано: $\forall \varepsilon > 0 : \exists N : \forall n, m \geq N : ||f_n - f_m|| < \varepsilon \implies \forall x \in A : |f_n(x) - f_m(x)| < \varepsilon$.

 $\overline{\mathsf{Як}}$ що зафіксувати точку $x_0 \in A$, то отримаємо фундаментальну послідовність $\{f_n(x_0), n \geq 1\} \implies$ $\exists \lim_{n \to \infty} f_n(x_0) = f(x_0).$

Якщо $m \to \infty$, то маємо, що $|f_n(x_0) - f(x_0)| < \varepsilon$. Оскільки це може бути $\forall x_0 \in A$, то тоді $||f_n - f|| < \varepsilon \implies f_n(x) \xrightarrow{\rightarrow} f(x)$, $n \to \infty$ на A.

Функціональні ряди

Definition 5.2.1 Функціональним рядом називають суму членів функціональної послідовності $\{a_n(x), n \ge 1\}$:

$$a_1(x) + a_2(x) + \dots + a_n(x) + \dots = \sum_{n=1}^{\infty} a_n(x)$$

Частковою сумою даного ряда називають суму перших k функцій:

$$S_k(x) = \sum_{n=1}^k a_n(x) = a_1(x) + a_2(x) + \dots + a_k(x)$$

В такому випадку в нас виникає функціональна послідовність часткових сум $\{S_k(x), k \ge 1\}$. Якщо така послідовність збігається в т. x_0 , то ряд є **збіжним** в т. x_0 та **сума** цього ряду дорівнює

$$\sum_{n=1}^{\infty} a_n(x_0) = \lim_{k \to \infty} S_k(x_0) = S(x_0)$$

Інакше - розбіжним.

Якщо ряд збігається $\forall x \in B$, то B називають **областю збіжності**

Якщо ряд абсолютно збігається $\forall x \in B$, то B називають **областю абсолютної збіжності**

Якщо ряд умовно збігається $\forall x \in B$, то B називають областю умовної збіжності

Example 5.2.2 Дослідити на збіжність ряд
$$\sum_{n=1}^{\infty} \frac{x^n}{1+x^{2n}}$$
.

Для початку перевіримо на абсолютну збіжність, для цього ми досліджуємо $\sum_{n=1}^{\infty} \left| \frac{x^n}{1+x^{2n}} \right|$. Застосуємо

ознаку Даламоера:
$$\lim \frac{a_{n+1}}{x^{n+1}} = \lim \frac{|x^{n+1}|}{|x^{n+1}|}$$

ознаку Даламбера:
$$\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=\lim_{n\to\infty}\frac{|x^{n+1}(1+x^{2n})|}{|(1+x^{2n+2})x^n|}=\lim_{n\to\infty}\left|\frac{x+x^{2n+1}}{1+x^{2n+2}}\right|=\\=\lim_{n\to\infty}\left|\frac{\frac{1}{x^{2n+1}}+\frac{1}{x}}{\frac{1}{x^{2n+2}}+1}\right|=\frac{1}{|x|}$$
при $|x|>1$.

= 1 при |x| = 1.

= 1 при |x|=1. Отже, при $\lim_{n\to\infty}\frac{a_{n+1}}{a_n}<1$ в перших двох випадках, тобто при $|x|\neq 1$. Це означає збіжність. При |x|=1 $\Longrightarrow x=\pm 1$ треба додатково дослідити.

$$x=1 \implies \sum_{n=1}^{\infty} \frac{1}{1+1} = +\infty \implies$$
 розбіжний.

$$x=-1\implies \sum_{n=1}^{\infty} rac{(-1)^n}{1+1}$$
 - розбіжний, оскільки $ot\equiv\lim_{n o\infty} rac{(-1)^n}{2}.$

Таким чином, область абсолютної збіжності $B_{abs} = \mathbb{R} \setminus \{-1, 1\}$; область умовної збіжності $B_{cond} = \emptyset$.

Definition 5.2.3 Якщо послідовність часткових сум $\{S_k(x), k \geq 1\}$ збігається рівномірно на множині A, то ряд $\sum_{n=0}^{\infty} a_n(x)$ називають **рівномірно збіжним** на A.

Theorem 5.2.4 Критерій Коші

$$\sum_{n=1}^{\infty}a_n(x)$$
 - рівномірно збіжний на множині $A\iff \forall arepsilon>0:\exists N: \forall k\geq K: \forall p\geq 1: \left\|\sum_{n=k+1}^{k+p}a_n(x)\right\|$

Випливае з критерію Коші рівновірної збіжності функціональних послідовносте

Corollary 5.2.5 Необхідна умова рівномірної збіжності

Задано
$$\sum_{n=1}^{\infty} a_n(x)$$
 - рівномірно збіжний на A . Тоді $a_k(x) \stackrel{\rightarrow}{\to} 0, k \to \infty$ на A .

Вказівка: критерій Коші при p=1.

Theorem 5.2.6 Мажорантна ознака Вейєрштрасса

Задано
$$\sum_{n=1}^{\infty} a_n(x)$$
 - ряд на множині A . Відомо, що: 1) $\exists \{c_n, n \geq 1\}: \forall n \geq 1: \forall x \in A: |a_n(x)| \leq c_n;$

1)
$$\exists \{c_n, n \ge 1\} : \forall n \ge 1 : \forall x \in A : |a_n(x)| \le c_n$$

$$\sum_{n=1}^{\infty} c_n$$
 - збіжний. Його ще називають **мажорантним рядом**.

Тоді
$$\sum_{n=1} a_n(x)$$
 збігається рівномірно на множині A .

Proof.

За критерієм Коші,
$$\sum_{n=1}^{\infty} c_n$$
 - збіжний $\iff \forall \varepsilon > 0: \exists N: \forall k \geq K: \forall p \geq 1: \left|\sum_{n=k+1}^{k+p} c_n\right| < \varepsilon$. Тоді

$$\left\| \sum_{n=k+1}^{k+p} a_n(x) \right\| = \sup_{x \in A} \left| \sum_{n=k+1}^{k+p} a_n(x) \right| \le \left| \sup_{x \in A} \left| \sum_{n=k+1}^{k+p} a_n(x) \right| \right| \le \sum_{n=k+1}^{k+p} \sup_{x \in A} |a_n(x)| \le \sum_{n=k+1}^{k+p} c_n < \varepsilon.$$

Тому за критерієм Коші, $\sum_{i=1}^{n} a_n(x)$ - рівномірно збіжний на множині A.

Example 5.2.7 Розглянемо ряд $\sum_{n=1}^{\infty} \frac{\cos nx}{n^2}$.

Оскільки $\left|\frac{\cos nx}{n^2}\right| \leq \frac{1}{n^2}$, причому це виконано завжди, а мажорантний ряд $\sum_{n=1}^{\infty} \frac{1}{n^2}$ - збіжний, то за

ознакою Вейєрштрасса, $\sum_{n=0}^{\infty} \frac{\cos nx}{n^2}$ - збіжний рівномірно на $\mathbb R.$

Theorem 5.2.8 Ознаки Діріхле та Абеля

Задано
$$\sum_{n=1}^{\infty} a_n(x)b_n(x)$$
 - ряд на множині A . Нехай виконано один з двох блок умов:

Нехай виконано один з двох блок умов:
$$\sum_{n=1}^k a_n(x) \text{ - рівномірно обмежена на } A \\ \{b_n(x), n \geq 1\} \text{ - монотонна та } b_n(x) \xrightarrow{\to} 0 \text{ на } A \\ \text{ ознаки Діріхле} \begin{cases} \sum_{n=1}^\infty a_n(x) \text{ - збіжний рівномірно на } A \\ \{b_n(x), n \geq 1\} \text{ - монотонна та рівномірно обмежена на } A \\ \text{ ознаки Абеля} \end{cases}$$

Тоді $\sum_{n=1}^{\infty} a_n(x)b_n(x)$ - збіжний рівномірно на множині A.

п=1 Доводиться так само, як було в числових рядах.

Example 5.2.9 Дослідити на збіжність ряд $\sum_{n=1}^{\infty} \frac{\sin nx}{n^{\alpha}}$, якщо $0 < \alpha \le 1$. Аналогічними міркуваннями як в **Ex. ???** ми можемо отримати таку формулу:

$$\sum_{n=1}^k \sin nx = \frac{\sin\left(\frac{k+1}{2}x\right)}{\sin\frac{x}{2}} \sin\frac{kx}{2}$$
 за умовою, що $\sin\frac{x}{2} \neq 0 \implies x \neq 2\pi m, m \in \mathbb{Z}.$

Тоді
$$\left|\sum_{n=1}^k \sin nx\right| \leq \frac{1}{\left|\sin\frac{x}{2}\right|} \leq \frac{1}{C}$$
, за умовою, що розглядається область $[a,b] \subset (2\pi m, 2\pi(m+1))$

Ну й також $\frac{1}{n^{\alpha}}$ - монотонна та рівномірно н.м. (тому що від x не залежить) на [a,b].

Таким чином, $\sum_{n=1}^{\infty} \frac{\sin nx}{n^{\alpha}}$ збігається рівномірно в будь-якому відрізку $[a,b] \subset (2\pi m, 2\pi (m+1)).$

Theorem 5.2.10 Задано $S(x) = \sum_{n=1}^{\infty} a_n(x)$ - рівномірно збіжний на A. Відомо, що $\forall n \geq 1: a_n(x) \in C(A)$. Тоді $S(x) \in C(A)$.

Proof.

3 умови теореми випливає, що $\forall k \geq 1: S_k(x) = \sum_{n=1}^k a_n(x) \in C(A)$ як сума неперервних функцій Оскільки ряд - рівномірно збіжний, то тоді $\{S_k(x), k \geq 1\}$ - рівномірно збіжна. Тоді за **Th. 10.?**

Example 5.2.11 Довести, що
$$\lim_{x \to 1} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} x^n = \frac{(-1)^{n+1}}{n}$$
.

Спочатку треба довести рівномірну збіжність ряду $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} x^n$ в деякому лівому околі т. x=1.

Застосуємо ознаку Абеля при $a_n(x) = \frac{(-1)^{n+1}}{n}, b_n(x) = x^n$.

 $\sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{n}$ - збіжна за ознакою Лейбніца, а оскільки вона не залежить від x, то тому ще й рівномірно в околі т. x = 1.

 x^n - зрозуміло, монотонна та монотонно обмежена, оскільки $|x^n| \leq 1.$

Таким чином, $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} x^n$ - рівномірно обмежена в лівому околі т. x=1.

А далі
$$\frac{(-1)^{n+1}}{n}x^n\in C$$
, а отже, $\sum_{n=1}^{\infty}\frac{(-1)^{n+1}}{n}x^n\in C$, в тому числі в т. $x=1$.

Таким чином,
$$\lim_{x \to 1} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} x^n = \sum_{n=1}^{\infty} \lim_{x \to 1} \frac{(-1)^{n+1}}{n} x^n = \sum_{n=1}^{\infty} \frac{(-1)^n}{n}.$$

Theorem 5.2.12 Задано $S(x) = \sum_{n=1}^{\infty} a_n(x)$ - рівномірно збіжний на [a,b].

Відомо, що
$$\forall n \geq 1: a_n(x) \in \mathcal{R}([a,b])$$
. Тоді $S(x) \in \mathcal{R}([a,b])$, а також
$$\int_a^b \left(\sum_{n=1}^\infty a_n(x)\right) dx = \sum_{n=1}^\infty \left(\int_a^b a_n(x) \, dx\right).$$

3 умови теореми випливає, що $\forall k \geq 1: S_k(x) = \sum_{i=1}^k a_n(x) \in \mathcal{R}([a,b])$ як сума інтегрованих функцій.

Оскільки ряд - рівномірно збіжний, то тоді $\{S_k(x), k \geq 1\}$ - рівномірно збіжна. Тоді за **Th. 10.1.?.** $S(x) \in \mathcal{R}([a,b]).$

$$\int_{a}^{b} \left(\sum_{n=1}^{\infty} a_n(x)\right) dx = \int_{a}^{b} \left(\lim_{k \to \infty} \sum_{n=1}^{k} a_n(x)\right) dx = \lim_{k \to \infty} \int_{a}^{b} \left(\sum_{n=1}^{k} a_n(x)\right) dx = \lim_{k \to \infty} \sum_{n=1}^{k} \left(\int_{a}^{b} a_n(x) dx\right) = \sum_{n=1}^{\infty} \left(\int_{a}^{b} a_n(x) dx\right).$$

Example 5.2.13 Довести, що $\sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{n} x^n = \ln(1+x)$ для всіх $x \in (-1,1]$.

Розглянемо ряд $\sum_{n=0}^{\infty} (-1)^n x^n = \frac{1}{1+x}$. Аналогічними міркуваннями (як в попередньому прикладі)

ми можемо довести, що ряд збіжний рівномірно на (-1,1]. Покладемо деяке число x>0. Оскільки $(-1)^nt^n\in\mathcal{R}([0,x]),$ то звідси $\sum_{n=0}^\infty (-1)^nt^n\in\mathcal{R}([0,x]).$ Таким чином,

$$(-1)^n t^n \in \mathcal{R}([0,x])$$
, то звідси $\sum_{n=0}^{\infty} (-1)^n t^n \in \mathcal{R}([0,x])$. Таким чином з одного боку, $\int_0^x \sum_{n=0}^{\infty} (-1)^n t^n dt = \sum_{n=0}^{\infty} \int_0^x (-1)^n t^n = \sum_{n=1}^{\infty} \frac{(-1)^n}{n} x^n;$

$$J_0 = \int_0^x \int_{n=0}^{\infty} J_0 dt = \int_0^x \int_{n=1}^x \int_{n=1}^x dt = \ln(1+x).$$
 із іншого боку, $\int_0^x \sum_{n=0}^\infty (-1)^n t^n dt = \int_0^x \frac{1}{1+t} dt = \ln(1+x).$

Остаточно отримали, що $\sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{n} x^n = \ln(1+x)$ для всіх $x \in (-1,1]$.

Theorem 5.2.14 Задано $S(x) = \sum_{n=1}^{\infty} a_n(x)$. Відомо, що: 1) $\forall n \geq 1: a_n(x)$ - неперервно-диференційовані на [a,b];

2)
$$\exists x_0 \in [a,b] : \sum_{n=1}^{\infty} a_n(x_0)$$
 - збіжний;

3)
$$\sum_{n=1}^{\infty} a_n'(x)$$
 - рівномірно збіжний на $[a,b].$

Тоді
$$S(x)$$
 - збіжний рівномірно, $S(x)$ - диференційована на $[a,b]$, а також $\left(\sum_{n=1}^{\infty}a_n(x)\right)'=\sum_{n=1}^{\infty}a_n'(x)$.

Proof.

Розглянемо ряд $\tilde{S}(x) = \sum_{i=1}^{\infty} a'_n(x)$. Оскільки $a'_n \in C([a,b])$, то автоматично $a'_n \in \mathcal{R}([a,b])$, а тому

 $\tilde{S}(x) \in \mathcal{R}([a,b])$. Тоді за попередньою теоремою, можемо отримати, що

$$\forall x \in [a,b]: \int_{x_0}^x \left(\sum_{n=1}^\infty a_n'(t)\right) dt = \sum_{n=1}^\infty \left(\int_{x_0}^x a_n'(t) \, dt\right) = \sum_{n=1}^\infty \left(a_n(x) - a_n(x_0)\right) -$$
 збіжний рівномірно ряд.
$$\Longrightarrow \sum_{n=1}^\infty a_n(x) = \sum_{n=1}^\infty \left(a_n(x) - a_n(x_0) + a_n(x_0)\right) = \sum_{n=1}^\infty \left(a_n(x) - a_n(x_0)\right) + \sum_{n=1}^\infty a_n(x_0) -$$
 рівномірно

$$\left(\sum_{n=1}^{\infty} a_n(x)\right)' = \left(\sum_{n=1}^{\infty} (a_n(x) - a_n(x_0))\right)' + \left(\sum_{n=1}^{\infty} a_n(x_0)\right)' = \sum_{n=1}^{\infty} a'_n(x).$$

Example 5.2.15

5.3 Степеневі ряди

Definition 5.3.1 Степеневим рядом називаємо ми такий функціональний ряд

$$\sum_{n=0}^{\infty} a_n (x - x_0)^n$$

де $\{a_n, n \ge 1\}$ - числова послідовність.

Theorem 5.3.2 Теорема Коші-Адамара

Задано
$$\sum_{n=0}^{\infty}a_n(x-x_0)^n$$
 - степеневий ряд. Нехай $\frac{1}{\overline{\lim_{n\to\infty}\sqrt[n]{|a_n|}}}=R$ - радіус збіжності. Тоді ряд:

при $|x - x_0| < R$ - збіжний абсолютно;

при $|x - x_0| > R$ - розбіжний;

при $|x - x_0| = R$ - відповіді нема.

Скористаємось радикальною ознакою Коші для нашого ряду:

$$\lim_{\substack{n\to\infty\\\text{Тоді:}}}\sqrt[n]{|a_n(x-x_0)|^n}=|x-x_0|\lim_{\substack{n\to\infty\\n\to\infty}}\sqrt[n]{|a_n|}=q.$$

При
$$q<1$$
, тобто $|x-x_0|<\frac{1}{\frac{1}{\lim\limits_{n\to\infty}\sqrt[n]{|a_n|}}}=R$ - збіжний абсолютно; При $q>1$, тобто $|x-x_0|>\frac{1}{\frac{1}{\lim\limits_{n\to\infty}\sqrt[n]{|a_n|}}}=R$ - розбіжний;

При
$$q>1$$
, тобто $|x-x_0|>\dfrac{1}{\varlimsup \limits_{n\to\infty}\sqrt[n]{|a_n|}}=R$ - розбіжний

При q=1 - нема відповіді.

Corollary 5.3.3 Наслідок із ознаки Даламбера

Задано
$$\sum_{n=0}^{\infty} a_n (x-x_0)^n$$
 - степеневий ряд. Нехай $\lim_{n\to\infty} \left| \frac{a_n}{a_{n+1}} \right| = R$ - радіус збіжності. Тоді ряд:

при $|x - x_0| < R$ - збіжний абсолютно;

при $|x - x_0| > R$ - розбіжний;

при $|x - x_0| = R$ - відповіді нема.

Proof.

Скористаємось ознакою Даламбера для нашого ряду:

$$\lim_{n\to\infty} \left| \frac{a_{n+1}(x-x_0)^{n+1}}{a_n(x-x_0)^n} \right| = |x-x_0| \lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = q.$$
 Toni:

При q<1, тобто $|x-x_0|<\lim_{n\to\infty}\left|\frac{a_n}{a_{n+1}}\right|=R$ - збіжний абсолютно; При q>1, тобто $|x-x_0|>\lim_{n\to\infty}\left|\frac{a_n}{a_{n+1}}\right|=R$ - розбіжний;

При q = 1 - нема відповіді

Example 5.3.4 Знайдемо область збіжності ряду $\sum_{n=0}^{\infty} \frac{(x-7)^n}{2^n(n+1)}$.

Маємо $a_n=\frac{1}{2^n(n+1)},$ тоді $R=\lim_{n\to\infty}\left|\frac{a_n}{a_{n+1}}\right|=\lim_{n\to\infty}\frac{2(n+2)}{n+1}=2.$ Отже, при $|x-7|<2\implies x\in(5,9)$ ряд збіжний абсолютно. Також при $|x-7|>2\implies x\in$

 $(-\infty,5)\cup(9,+\infty)$ ряд розбіжний.

A ось в x = 5, x = 9 треба додатково обстежити.

При x=9 маємо $\sum_{n=0}^{\infty}\frac{1}{n+1}$ - розбіжний. При x=5 маємо $\sum_{n=0}^{\infty}\frac{(-1)^n}{n+1}$ - збіжний за Лейбніцем, але умовно.

Theorem 5.3.5 Теорема Абеля

 $\sum_{n=0}^{\infty} a_n (x-x_0)^n$ - рівномірно збіжний на будь-якому відрізку із області збіжності.

Proof.

Зафіксуємо довільний відрізок [a, b]. Будемо розглядати декілька випадків.

1. $[a,b] \subset (x_0 - R, x_0 + R)$.

Зафіксуємо число $M = \max\{|x_0-a|,|x_0-b|\}$. Звідси $\forall x \in [a,b]: |x-x_0| < M < R$, а тому $|a_n(x-x_0)^n| < |a_n|M^n.$

Розглянемо мажорантний ряд $\sum_{n=0}^{\infty} a_n M^n$. Застосуємо ознаку Коші:

 $\lim_{n\to\infty}\sqrt[n]{|a_n|M^n}=M\lim_{n\to\infty}\sqrt[n]{|a_n|}< R\lim_{n\to\infty}\sqrt[n]{|a_n|}=1.$ Отже, цей ряд - збіжний. Тоді за ознакою Вейерштраса, степеневий ряд - збіжний рівномірно на [a,b]

2.
$$[a,b] \subset [x_0,x_0+R]$$

Розпишемо ряд
$$\sum_{n=0}^{\infty} a_n (x-x_0)^n = \sum_{n=0}^{\infty} a_n R^n \left(\frac{x-x_0}{R}\right)^n$$
.

Розглянемо випадок, коли ряд $\sum_{n=0}^{\infty} a_n R^n$ - збіжний. Збіжність степеневого ряду проведемо за ознакою

Абеля:
$$g_n(x) = \left(\frac{x - x_0}{R}\right)^n$$

Домовились, що $\sum_{n=0}^{\infty} f_n(x)$ - збіжний, причому рівномірно, оскільки не залежить від x.

Послідовність $\left\{g_n(x)=\left(\frac{x-x_0}{R}\right)^n, n\geq 1\right\}$ - рівномірно обмежена, оскільки

$$\forall x \in [a,b] \subset [x_0,x_0+R]: |x-x_0| \le R \Rightarrow \forall n \ge 1: \left|\frac{x-x_0}{R}\right|^n \le 1.$$

А також послідовність є монотонною, тому що $\frac{x-x_0}{R} < 1$.

Отже, за Абелем, ряд - рівномірно збіжний на [a,

Аналогічно, коли $[a,b]\subset [x_0-R,x_0]$ за умовою, що $\sum_{n=0}^\infty a_n(-R)^n$ - збіжний.

3. $[a,b] \subset [x_0 - R, x_0 + R]$.

Тоді відрізок [a,b] розбивається на $[a,x_*] \cup [x_*,b]$. На цих відрізках ряд збіжний рівномірно за п. 2.

Example 5.3.6 Зокрема ряд $\sum_{n=0}^{\infty} \frac{(x-7)^n}{2^n(n+1)}$ збіжний рівномірно в будь-якому відрізку, в тому числі

Theorem 5.3.7 Позначимо степеневий ряд $S(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n$. Тоді $S \in C$ в області збіжності.

Proof.

Візьмемо якусь точку $x_* \in (x_0 - R, x_0 + R)$.

Зафіксуємо деякий відрізок $[a,b] \ni x_*$. Якщо $x_* \neq x_0 - R, x_* \neq x_0 + R$, то беремо інтервал $(a,b) \ni x_*$. На відрізку [a,b] ряд - збіжний рівномірно за теоремою Абеля, члени ряду - неперервні функції. Отже, за **Th. 10.2.?.**, $S(x) \in C([a,b]) \implies S(x) \in C(\{x_*\})$.

Оскільки т.
$$x_*$$
 була довільною, то одразу $S(x) \in C((x_0 - R, x_0 + R))$.

Theorem 5.3.8 Позначимо степеневий ряд $S(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n$. Тоді $S \in \mathcal{R}$ в області збіжності.

$$\int_{x_0}^{x} \sum_{n=0}^{\infty} a_n (t-x_0)^n dt = \sum_{n=0}^{\infty} \frac{a_n}{n+1} (x-x_0)^{n+1},$$
 причому радіує збіжності нового степеневого ряду також R .

Proof.

На відрізку $[x_0, x_*]$ або $[x_*, x_0]$ степеневий ряд збігається рівномірно за Абелем. Тому за Th., $S \in$ $\mathcal{R}([x_0, x_*] \text{ ado } [x_*, x_0]).$

Тотожність випливає з цього ж Тh. Тепер перевіримо, що радіус збіжності дійсно такий самий. За Коші-Адамара,

$$R_{new} = \frac{1}{\overline{\lim_{n \to \infty}} \sqrt[n]{\left|\frac{a_n}{n+1}\right|}} = \overline{\lim_{n \to \infty}} \sqrt[n]{\frac{n+1}{|a_n|}} = \overline{\lim_{n \to \infty}} \sqrt[n]{n+1} \cdot \frac{1}{\overline{\lim_{n \to \infty}} |a_n|} = 1 \cdot R = R.$$

Theorem 5.3.9 Позначимо степеневий ряд $S(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n$. Тоді він диференційований в

 $\left(\sum_{n=0}^{\infty}a_n(x-x_0)^n\right)'=\sum_{n=1}^{\infty}a_n\cdot n(x-x_0)^{n-1},$ причому радіує збіжності нового степеневого ряду також

Proof.

Розглянемо ряд $\sum_{n=1}^{\infty} a_n \cdot n(x-x_0)^{n-1}$. Радіус збіжності збігається, оскільки $R_{new} = \frac{1}{\varlimsup\limits_{n \to \infty} \sqrt[n]{n|a_n|}} = \frac{1}{\varlimsup\limits_{n \to \infty} \sqrt[n]{|a_n|}} = R.$

$$R_{new} = \frac{1}{\overline{\lim_{n \to \infty} \sqrt[n]{n|a_n|}}} = \frac{1}{\overline{\lim_{n \to \infty} \sqrt[n]{|a_n|}}} = R$$

Візьмемо якусь точку x_* з області збіжності. Нехай відрізок $[a,b] \ni x_*$. На відрізку [a,b] ряд збіжний рівномірно за теоремою Абеля. Використаємо далі Тh. 10.?:

- 1) $\sum\limits_{}^{\infty}a_{n}(x-x_{0})^{n}$ збіжний принаймні в одній точці;
- 2) Всі члени ряду диференційовані функції; 3) $\sum_{n=1}^{\infty} a_n \cdot n(x-x_0)^{n-1} = \sum_{n=0}^{\infty} a_n^* (x-x_0)^n$ рівномірно збіжний на [a,b].

Отже, S(x) - диференційований на [a,b], зокрема і в т. x_* . Оскільки т. x_* була довільною, то одразу S(x) - диференційований в $(x_0 - R, x_0 + R)$

Тому дійсно,
$$S'(x) = \sum_{n=1}^{\infty} n(x-x_0)^{n-1}$$
.

Зв'язок з Тейлором та єдиність степеневого ряду

Theorem 5.4.1 Теорема Тейлора

Задано функцію
$$f$$
 та точку $x_0 \in \mathbb{R}$. Відомо, що 1) $f \in C^{(\infty)}((x_0 - R, x_0 + R));$ 2) $\exists M \in \mathbb{R} : \forall n \geq 1 : \forall x \in (x_0 - R, x_0 + R) : \left| f^{(n)}(x) \right| \leq M^n.$

Тоді $\forall x \in (x_0 - R, x_0 + R)$ функція розкладується в ряд Тейлора $f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$.

Якщо
$$\begin{bmatrix} R < \infty \\ R = \infty \end{bmatrix}$$
 то ряд рівномірно збігається на $\begin{bmatrix} (x_0 - R, x_0 + R) \\ [x_0 - R_0, x_0 + R_0] \end{bmatrix}$, причому $\forall R_0 \in \mathbb{R}$.

Proof.

Розкладемо функцію в ряд Тейлора за остачею Лагранжа:

$$f(x) = \sum_{n=0}^{k} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n + \frac{f^{(k+1)}(c)}{(k+1)!} (x - x_0)^{k+1}.$$

$$\left| f(x) - \sum_{n=0}^{k} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n \right| = \left| \frac{f^{(k+1)}(c)}{(k+1)!} (x - x_0)^{k+1} \right| \le \frac{M^{k+1}}{(k+1)!} r^{k+1}.$$

Розглянемо тепер ряд $\sum_{k=0}^{\infty} \frac{M^{k+1}}{(k+1)!} r^{k+1}$. За ознакою Даламбера, $\lim_{k \to \infty} \frac{a_{k+1}}{a_k} = \lim_{k \to \infty} \frac{Mr}{k+2} = 0 < 1$.

Цей ряд є збіжним. Отже, за необхідною ознакою збіжності, $\lim_{k\to\infty}a_k=\lim_{k\to\infty}\frac{M^{k+1}}{(k+1)!}r^{k+1}=0.$

Звідси випливає, що

$$\sup_{x \in (x_0 - R, x_0 + R)} \left| f(x) - \sum_{n=0}^k \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n \right| \le \frac{M^{k+1}}{(k+1)!} r^{k+1} \to 0, \ k \to \infty.$$

Отримали
$$\sum_{n=0}^{k} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n \stackrel{\rightarrow}{\to} f, k \to \infty$$

Таким чином,
$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$$
 - збіжний рівномірно на $(x_0 - R, x_0 + R)$.

Theorem 5.4.2 Степеневий ряд задається єдиним чином.

Remark 5.4.3 Математично кажучи, якщо $\sum_{n=0}^{\infty} a_n (x-x_0)^n, \sum_{n=0}^{\infty} b_n (x-x_0)^n$ мають одне значення на $(x_0 - \varepsilon, x_0 + \varepsilon)$, to $\forall n \ge 0 : a_n = b_n$

Proof.

$$S(x_0) = a_0 = b_0$$

Proof.

$$S(x_0) = a_0 = b_0.$$

$$S'(x_0) = \sum_{n=1}^{\infty} a_n \cdot n(x - x_0)^{n-1} = \sum_{n=1}^{\infty} b_n \cdot n(x - x_0)^{n-1}.$$

$$\Rightarrow S'(x_0) = a_1 = b_1.$$

Таким чином, $\forall n \geq 0 : a_n = b_n$.

Corollary 5.4.4 Ряд Тейлора для суми степеневого ряду співпадають с самим степеневим рядом на області збіжності.

Example 5.4.5 Маємо функцію $\cos x$. Розглянемо деяку точку $x_0 = 0$, встановимо $R = +\infty$.

$$\exists M = 1 : \forall n \ge 1 : \forall x \in \mathbb{R} : |f^{(n)}(x)| = \left|\cos\left(x + \frac{\pi n}{2}\right)\right| \le 1$$

Example 3.4.5 Маємо функцію
$$\cos x$$
. Розглянемо деяку точку $x_0 \equiv 0$, встановимо R $\exists M = 1 : \forall n \geq 1 : \forall x \in \mathbb{R} : |f^{(n)}(x)| = \left|\cos\left(x + \frac{\pi n}{2}\right)\right| \leq 1$. Таким чином, ми можемо розкласти $\cos x$ в ряд Тейлора - отримаємо такий вигляд: $\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots + (-1)^k \frac{x^{2k}}{(2k)!} + \dots = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k)!} x^{2k}, x \in \mathbb{R}$.

Основні розклади

1.
$$e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!};$$

2.
$$\sin x = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k}}{(2k)!};$$

3.
$$\cos x = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k)!} x^{2k};$$

4.
$$\frac{1}{1-x} = \sum_{k=0}^{\infty} x^k, \qquad |x| < 1;$$

5.
$$\ln(1+x) = \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} x^k, \qquad x \in (-1,1];$$

6.
$$(1+x)^{\alpha} = 1 + \sum_{k=1}^{\infty} \frac{\alpha(\alpha-1)\dots(\alpha-(k-1))}{k!} x^k, \qquad |x| < 1$$

Example 5.4.6 Розкласти функцію $f(x) = \ln(1+2x-8x^2)$ в ряд Тейлора. Зауважимо, що $\ln(1+2x-8x^2) = \ln(1-2x)(1+4x) = \ln(1-2x) + \ln(1+4x)$.

$$\ln(1-2x) = \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} (-2x)^k = -\sum_{k=1}^{\infty} \frac{2^k}{k} x^k$$
за умовою $|2x| < 1$.

$$\ln(1+4x) = \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} (4x)^k = -\sum_{k=1}^{\infty} \frac{(-4)^k}{k} x^k$$
 за умовою $|4x| < 1$.

Остаточно
$$f(x) = -\sum_{k=1}^{\infty} \left(\frac{2^k + (-4)^k}{k} \right) x^k$$
 за умовою $|x| < \frac{1}{4}$.

6 Вступ до \mathbb{R}^m

Простір \mathbb{R}^m зберігає в собі **арифметичні вектори** $\vec{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{pmatrix}$, причому $\forall j = \overline{1,m} : x_j \in \mathbb{R}$.

Візьмемо довільні вектори

 $\vec{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{pmatrix}, \vec{y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{pmatrix}$. Ми можемо створити операції додавання та множення на скаляр таким

$$\vec{x} + \vec{y} = \begin{pmatrix} x_1 + y_1 \\ x_2 + y_2 \\ \vdots \\ x_m + y_n \end{pmatrix} \qquad \alpha \vec{x} = \begin{pmatrix} \alpha x_1 \\ \alpha x_2 \\ \vdots \\ \alpha x_m \end{pmatrix}, \alpha \in \mathbb{R}$$

Із таким означенням операцій легко доводиться, що \mathbb{R}^m утворює лінійний простір. Надалі ми ще будемо використовувати **скалярний добуток**, що визначається таким чином:

$$(\vec{x}, \vec{y}) = x_1 y_1 + x_2 y_2 + \dots + x_m y_m$$

6.1 Топологія та принцип аналіза в \mathbb{R}^m

Definition 6.1.1 Нормою на множині \mathbb{R}^m будемо називати тут таку величину:

$$\|\vec{x}\| = \sqrt{x_1^2 + x_2^2 + \dots + x_m^2}$$

Фактично кажучи, норма - це узагальнення довжини від початку. В нашому випадку початок грає роль $\vec{0}$.

А ось відстань між двома векторами описується таким чином:

$$\|\vec{x} - \vec{y}\| = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2 + \dots + (x_n - y_n)^2}$$

Решта означень будуть абсолютно аналогічними, просто тепер буде випадок з векторами.

Definition 6.1.2 ε **-околом** точки \vec{x} будемо називати таку множину:

$$U_{\varepsilon}(\vec{x}) = \{ \vec{a} \in \mathbb{R}^m : ||\vec{x} - \vec{a}|| < \varepsilon \}$$

Її ще також називають **відкритим шаром** з радіусом arepsilon в центрі т. $ec{x}$ та позначається як $B(ec{x},arepsilon)$.

Definition 6.1.3 Задамо множину $A \subset \mathbb{R}^m$ та елемент $\vec{a} \in A$. Точку \vec{a} називають **внутрішньою**, якщо

$$\exists \varepsilon > 0 : U_{\varepsilon}(\vec{a}) \subset A$$

А множина A називається **відкритою**, якщо кожна її точка - внутрішня.

Definition 6.1.4 Задамо множину $A \subset \mathbb{R}^m$ та елемент $\vec{a} \in \mathbb{R}^m$. Точку \vec{a} називають **граничною** множини A, якщо

$$\forall \varepsilon > 0 : \exists \vec{x} \in A : \vec{x} \neq \vec{a} : x \in U_{\varepsilon}(\vec{a})$$

A множина A називається **замкненою**, якщо вона містить всі граничні точки.

Definition 6.1.5 Задано множину $A \subset \mathbb{R}^m$ та т. $\vec{x} \in A$.

Точка \vec{x} називається **ізольованою**, якщо

$$\exists \varepsilon > 0 : U_{\varepsilon}(\vec{x}) \cap A = \{\vec{x}\}\$$

Також решта тверджень будуть схожі на ті твердження, що були при топології \mathbb{R} . Тому доводити я повторно не буду, просто залишу як нагадування.

Proposition 6.1.6 Якщо $\{A_{\lambda}\}$ - сім'я зліченних відкритих підмножин, то $\bigcup_{\lambda} A_{\lambda}$ - відкрита.

Proposition 6.1.7 \vec{a} - гранична точка $A \subset \mathbb{R}^m \iff \forall \varepsilon > 0 : A \cap U_{\varepsilon}(\vec{a})$ - нескінченна множина.

Proposition 6.1.8 A - відкрита множина $\iff A^c$ - замкнена множина.

Proposition 6.1.9 Якщо $\{A_{\lambda}\}$ - сім'я зліченних замкнених підмножин, то $\bigcap_{\lambda} A_{\lambda}$ - замкнена.

Proposition 6.1.10 Точка $\vec{x} \in A$ - ізольована $\iff \vec{x}$ - не гранична для A.

Proposition 6.1.11 \mathbb{R}^m , \emptyset - одночасно відкриті та замкнені множини.

Proposition 6.1.12 Відкритий шар $B(\vec{a},r) = \{\vec{x} \in \mathbb{R}^m : \|\vec{x} - \vec{a}\| < r\}$ є дійсно відкритим. Замкнений шар $B[\vec{a},r] = \{\vec{x} \in \mathbb{R}^m : \|\vec{x} - \vec{a}\| \le r\}$ є дійсно замкненим.

Proof.

Нехай $\vec{x} \in B(\vec{a},r) \implies \|\vec{x} - \vec{a}\| < r$. Встановимо $\varepsilon = r - \|\vec{x} - \vec{a}\|$. Тоді $\vec{y} \in U_{\varepsilon}(\vec{x}) \implies \|\vec{y} - \vec{x}\| < \varepsilon \implies \|\vec{y} - \vec{a}\| = \|\vec{y} - \vec{x} + \vec{x} - \vec{a}\| \le \|\vec{y} - \vec{x}\| + \|\vec{x} - \vec{a}\| < \varepsilon + \|\vec{x} - \vec{a}\| = \varepsilon \implies \vec{y} \in B(\vec{a},r)$.

Отже, $U_{\varepsilon}(\vec{x}) \subset B(\vec{a},r)$, так для кожної т. $\vec{x} \in B(\vec{a},r)$. А тому множина $B(\vec{a},r)$ - відкрита.

 $B[\vec{a},r]=\mathbb{R}^mackslash B(\vec{a},r)=\mathbb{R}^m\cap B^c(\vec{a},r)$ - обидві множини є замкненими. Тому їхній перетин - замкнена.

6.2 Границя послідовності

Definition 6.2.1 Вектор $\vec{a} \in \mathbb{R}^m$ називається **границею послідовності** векторів $\{\vec{a}^{(n)}, n \geq 1\}$, якщо

$$\forall \varepsilon > 0 : \exists N(\varepsilon) : \forall n \ge N : \|\vec{a}^{(n)} - \vec{a}\| < \varepsilon$$

Позначення: $\lim_{n\to\infty} \vec{a}^{(n)} = \vec{a}$.

Theorem 6.2.2 Для послідовності $\{\vec{a}^{(n)}, n \geq 1\}$ існує $\lim_{n \to \infty} \vec{a}^{(n)} = \vec{a} \iff$ \iff для всіх координат послідовності $\{a_j^{(n)}, n \geq 1\}$ існують $\lim_{n \to \infty} a_j^{(n)} = a_j, j = \overline{1, m}$.

Proof.

У нас границя визначається вектором $\vec{a} = \begin{pmatrix} a_1 \\ \vdots \\ a_m \end{pmatrix}$. Тоді $\|\vec{a}^{(n)} - \vec{a}\| = \sqrt{(a_1^{(n)} - a_1)^2 + \dots + (a_1^{(m)} - a_m)^2}$ $\Longrightarrow \forall j = \overline{1,m} : |a_j^{(n)} - a_j| = \sqrt{(a_j^{(n)} - a_j)^2} < \sqrt{(a_1^{(n)} - a_1)^2 + \dots + (a_1^{(m)} - a_m)^2} < \varepsilon$. Отже, $\exists \lim_{n \to \infty} a_j^{(n)} = a_j$.

Definition 6.2.3 Послідовність $\{\vec{a}^{(n)}, n \geq 1\}$ називається **фундаментальною**, якщо

$$\forall \varepsilon > 0 : \exists N(\varepsilon) : \forall n, k \ge N : ||\vec{a}^{(n)} - \vec{a}^{(k)}|| < \varepsilon$$

Theorem 6.2.4 Критерій Коші

 $\{\vec{a}^{(n)}, n \geq 1\}$ - збіжна $\iff \{\vec{a}^{(n)}, n \geq 1\}$ - фундаментальна.

$$\forall \varepsilon > 0 : \exists N_j : \forall n, k \ge N_j : |a_j^{(n)} - a_j^{(k)}| < \frac{\varepsilon}{\sqrt{m}}.$$

$$\implies \exists N = \max\{N_1, \dots, N_m\} : \forall n, k \ge N :$$

$$\|\vec{a}^{(n)} - \vec{a}^{(k)}\| = \sqrt{(a_1^{(n)} - a_1^{(k)})^2 + \dots + (a_m^{(n)} - a_m^{(k)})^2} < \sqrt{\frac{\varepsilon^2}{m} + \dots + \frac{\varepsilon^2}{m}} = \varepsilon.$$

Отже, наша послідовність - фундаментальна.

Тоді $\forall j=\overline{1,m}:|a_j^{(n)}-a_j^{(k)}|<\varepsilon$ (зрозуміло), тобто $\forall j=\overline{1,m}:\{a_j^{(n)},n\geq 1\}$ - фундаментальні. Отже, вони всі - збіжні, а тому $\{\vec{a}^{(n)}, n \geq 1\}$ - збіжна.

Definition 6.2.5 Послідовність $\{\vec{a}^{(n)}, n \geq 1\}$ називається **обмеженою**, якщо

$$\exists C > 0 : \forall n \ge 1 : \|\vec{a}^{(n)}\| \le C$$

Definition 6.2.6 Підпослідовність послідовності $\{\vec{a}^{(n)}, n \geq 1\}$ називається послідовність $\{\vec{a}^{(n_l)}, l \geq 1\}$, де $\{n_l, l \geq 1\}$ - строго зростаюча послідовність в \mathbb{N} .

Theorem 6.2.7 Теорема Больцано-Вейєрштрасса

Будь-яка обмежена послідовність векторів має збіжну підпослідовність векторів.

Маємо обмежену послідовність $\{\vec{a}^{(n)}, n \geq 1\}$, тобто $\exists C > 0 : \forall n \geq 1 : \|\vec{a}^{(n)}\|$

Тоді кожна координата є обмеженою, оскільки $\forall j=\overline{1,m}:|a_j^{(n)}|\leq V$ $\left|a_1^{(n)}\right|^2+\cdots+\left|a_m^{(n)}\right|^2\leq C.$

Тобто всі послідовності $\{a_i^{(n)}, n \ge 1\}$ - обмежені.

Розглянемо $\{a_1^{(n)}, n \geq 1\}$ - обмежена. Тоді існує збіжна підпослідовність $\{a_1^{(n_l)}, l \geq 1\}$. Розглянемо підпослідовність $\{\vec{a}^{(n_l)}, l \geq 1\}$. Вона також є обмеженою, тому всі координатні послідовності

Розглянемо $\{a_2^{(n_l)}, l \geq 1\}$ - обмежена. Тоді існує збіжна підпідпослідовність $\{a_2^{(n_{l_k})}, k \geq 1\}$.

Оскільки підпослідовність $\{a_1^{(n_l)}, l \geq 1\}$ - збіжна, то збіжною буде й підпідпослідовність

Розглянемо підпідпослідовність $\{\vec{a}^{(n_{l_k})}, k \geq 1\}$ - за аналогічними міркуваннями, теж обмежена.

Розглянемо підпідпослідовність $\{a_3^{(n_{l_k})}, k \geq 1\}$ - обмежена. Тоді існує збіжна підпідпідпослідовність

Оскільки підпідпослідовності $\{a_1^{(n_{l_k})}, k \geq 1\}, \{a_2^{(n_{l_k})}, k \geq 1\}$ - збіжні, то збіжними будуть підпідпідпослідовності $\{a_1^{(n_{l_{k_p}})}, p \ge 1\}, \{a_2^{(n_{l_{k_p}})}, p \ge 1\}.$

Після m кроків отримаємо підпослідовність $\{\vec{a}^{(n_q)}, l \geq 1\}$, у якій всі координатні послідовності є збіжними. Тоді $\{\vec{a}^{(n_q)}, l \geq 1\}$ - збіжна.

Theorem 6.2.8 Задано множину
$$A\subset \mathbb{R}^m$$
. $\vec{x}^0\in \mathbb{R}^m$ гранична точка для $A\iff \exists \{\vec{x}^{(n)}, n\geq 1\}\subset A: \lim_{n\to\infty}\vec{x}^{(n)}=\vec{x}^0$

 \Rightarrow Дано: \vec{x}^0 - гранична точка для A, тобто $\forall \varepsilon > 0 : U_{\varepsilon}(\vec{x}^0) \cap A$ - нескінченна.

Зафіксуємо
$$\varepsilon = \frac{1}{n} \implies \forall \vec{x}^{(n)} \in U_{\varepsilon}(\vec{x}^0) \cap A : \|\vec{x}^{(n)} - \vec{x}^0\| < \frac{1}{n}.$$
 Тоді $\forall j = \overline{1,m} : |x_j^{(n)} - x_j^0| < \frac{1}{n}.$

За теоремою про 2 поліцаїв, отримаємо: $\forall j=\overline{1,m}: x_j^{(n)} \stackrel{n\to\infty}{\longrightarrow} x_j^0.$ Із покоординатної збіжності випливає, що $\vec{x}^{(n)} \stackrel{n \to \infty}{\longrightarrow} \vec{x}^0$ для послідовності $\{\vec{x}^{(n)}, n \ge 1\}$.

$$\sqsubseteq$$
 Дано: $\exists \{\vec{x}^{(n)}, n \geq 1\} \subset A : \lim_{n \to \infty} \vec{x}^{(n)} = \vec{x}^0$. Тобто $\forall \varepsilon > 0 : \exists N : \forall n \geq N : \|\vec{x}^{(n)} - \vec{x}^0\| < \varepsilon$ $\implies \forall n \geq N : \vec{x}^{(n)} \in U_{\varepsilon}(\vec{x}^0) \cap A$ - тобто нескінченна $\implies \vec{x}^0$ - гранична точка.

Proposition 6.2.9 Задані дві послідовності $\{\vec{a}^{(n)}, n \geq 1\}, \{\vec{b}^{(n)}, n \geq 1\}$, такі, що $\lim_{n \to \infty} \vec{a}^{(n)} = \vec{a}, \lim_{n \to \infty} \vec{b}^{(n)} = \vec{b}$. Тоді:

$$1) \ \forall c \in \mathbb{R} : \lim_{n \to \infty} c\vec{a}^{(n)} = c \lim_{n \to \infty} \vec{a}^{(n)};$$

2)
$$\lim_{n \to \infty} (\vec{a}^{(n)} + \vec{b}^{(n)}) = \lim_{n \to \infty} \vec{a}^{(n)} + \lim_{n \to \infty} \vec{b}^{(n)}$$

2)
$$\lim_{n \to \infty} (\vec{a}^{(n)} + \vec{b}^{(n)}) = \lim_{n \to \infty} \vec{a}^{(n)} + \lim_{n \to \infty} \vec{b}^{(n)};$$
3)
$$\lim_{n \to \infty} (\vec{a}^{(n)}, \vec{b}^{(n)}) = \left(\lim_{n \to \infty} \vec{a}^{(n)}, \lim_{n \to \infty} \vec{b}^{(n)}\right).$$

Proof.

1),2) випливае з властивостей границь в \mathbb{R} , якщо розглянути покоординатну збіжність.

3)
$$\lim_{n\to\infty} (\vec{a}^{(n)}, \vec{b}^{(n)}) = \lim_{n\to\infty} (a_1^{(n)}b_1^{(n)} + \dots + a_m^{(n)}b_m^{(n)}) = a_1b_1 + \dots + a_mb_m = (\vec{a}, \vec{b}) = \left(\lim_{n\to\infty} \vec{a}^{(n)}, \lim_{n\to\infty} \vec{b}^{(n)}\right).$$

Example 6.2.10 Розглянемо $\vec{x}^{(n)} = \left(\sqrt{n+1} - \sqrt{n} \quad \frac{n-1}{n} \quad \frac{2n^2 - 1}{n^2} \quad \left(1 + \frac{1}{n}\right)^n\right)^T$ - послідовність

векторів в \mathbb{R}^4 . Обчислимо її границю

Ми можемо обчислити покоординатно, згідно з теоріями:

$$\lim_{n \to \infty} x_1^{(n)} = \lim_{n \to \infty} (\sqrt{n+1} - \sqrt{n}) = \lim_{n \to \infty} \frac{1}{\sqrt{n+1} + \sqrt{n}} = 0.$$

$$\lim_{n \to \infty} x_2^{(n)} = \lim_{n \to \infty} \frac{n-1}{n} = 1.$$

$$\lim_{n \to \infty} x_3^{(n)} = \lim_{n \to \infty} \frac{2n^2 - 1}{n^2} = 2.$$

$$\lim_{n \to \infty} x_4^{(n)} = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = e.$$

Таким чином,
$$\lim_{n \to \infty} \vec{x}^{(n)} = \lim_{n \to \infty} \left(\sqrt{n+1} - \sqrt{n} - \frac{n-1}{n} - \frac{2n^2 - 1}{n^2} - \left(1 + \frac{1}{n} \right)^n \right)^T = \begin{pmatrix} 0 & 1 & 2 & e \end{pmatrix}^T$$
.

Функція від декількох змінних. Границя функції

Ми будемо розглядати функції вигляду $f:A\to\mathbb{R}$, де $A\subset\mathbb{R}^m$. Тобто ця функція має m аргументів, а повертає деяке дійсне число.

Example 6.3.1 Розглянемо такі приклади:

1. Маємо функцію
$$f: \mathbb{R}^2 \setminus \{(0,0\} \to \mathbb{R}, \text{ що задана як } f(x,y) = \frac{xy}{x^2 + y^2};$$

2.
Маємо функцію
$$f:\mathbb{R}^m\to\mathbb{R}$$
, що задана як $f(\vec{x})=f(x_1,\ldots,x_m)=x_1x_2^2\ldots x_m^m.$

Definition 6.3.2 Задано функцію $f:A\to\mathbb{R}$ та $\vec{x}^0\in\mathbb{R}^m$ - гранична точка для A. Число a називається **границею функції** $f(\vec{x})=f(x_1,\ldots,x_m)$ **в т.** $\vec{x}^0,$ якщо

$$\forall \varepsilon > 0: \exists \delta(\varepsilon) > 0: \forall \vec{x} \in A: \vec{x} \neq \vec{x}^0: \|\vec{x} - \vec{x}^0\| < \delta \Rightarrow |f(\vec{x}) - a| < \varepsilon \text{ - def. Komi}$$

$$\forall \{\vec{x}^{(n)}, n \geq 1\} \subset A: \forall n \geq 1: \vec{x}^{(n)} \neq \vec{x}^0: \lim_{n \to \infty} \vec{x}^{(n)} = \vec{x}^0 \Rightarrow \lim_{n \to \infty} f(\vec{x}^{(n)}) = a \text{ - def. Гейне}$$

Позначення: $\lim_{\vec{x} \to \vec{x}_0} f(\vec{x}) = a$.

Theorem 6.3.3 Означення Коші ⇔ Означення Гейне. Доведення аналогічне як в матані \mathbb{R} .

Proposition 6.3.4 Арифметичні властивості

Задані функції $f,g:A\to\mathbb{R}$ та $\vec{x}^0\in\mathbb{R}^m$ - гранична точка для A. Відомо, що

$$\exists\lim_{ec{x}\toec{x}^0}f(ec{x})=a, \exists\lim_{ec{x}\toec{x}^0}g(ec{x})=b.$$
 Тоді: 1) $\lim_{ec{x}\toec{x}^0}cf(ec{x})=ca, \forall c\in\mathbb{R};$

1)
$$\lim_{\vec{x} \to \vec{x}_0} cf(\vec{x}) = ca, \forall c \in \mathbb{R}$$

2)
$$\lim_{\vec{x} \to 0} (f(\vec{x}) + g(\vec{x})) = a + b;$$

3)
$$\lim_{\vec{x} \to \vec{x}^0} f(\vec{x})g(\vec{x}) = ab;$$

4)
$$\lim_{\vec{x} \to \vec{x}^0} \frac{f(\vec{x})}{g(\vec{x})} = \frac{a}{b}$$
 при $b \neq 0$.

Всі вони випливають із арифметичних послідовностей та означення Гейне.

Theorem 6.3.5 Критерій Коші

Задано функцію
$$f:A\to\mathbb{R}$$
 та $\vec{x}^0\in\mathbb{R}^m$ - гранична точка для $A.$ $\exists\lim_{\vec{x}\to\vec{x}^0}f(\vec{x})\iff \forall \varepsilon>0:\exists \delta: \forall \vec{x_1},\vec{x_2}\in A: ||\vec{x_1}-\vec{x_2}||<\delta\Rightarrow |f(\vec{x_1})-f(\vec{x_2})|<\varepsilon.$

Доведення аналогічне як в матані \mathbb{R} .

Example 6.3.6 Обчислити $\lim_{(x,y)\to(1,\pi)} \left(\frac{y}{x} + \cos(xy)\right)$. Можна позначати це інакше: $\lim_{\substack{x\to 1 \ y\to \pi}} \left(\frac{y}{x} + \cos(xy)\right)$. $\lim_{(x,y)\to(1,\pi)} \left(\frac{y}{x} + \cos(xy)\right) = \lim_{(x,y)\to(1,\pi)} \frac{y}{x} + \lim_{(x,y)\to(1,\pi)} \cos(xy) = \frac{\pi}{1} + \cos\pi = \pi - 1$.

$$\lim_{(x,y)\to(1,\pi)} \left(\frac{y}{x} + \cos(xy)\right) = \lim_{(x,y)\to(1,\pi)} \frac{y}{x} + \lim_{(x,y)\to(1,\pi)} \cos(xy) = \frac{\pi}{1} + \cos\pi = \pi - 1.$$

Theorem 6.3.7 Границя в полярних координатах

Задано функцію $f:\mathbb{R}^2\to\mathbb{R}$. Припустимо, що $f(\rho\cos\varphi,\rho\sin\varphi)=F_1(\rho)F_2(\varphi)$, причому $\lim_{\rho\to 0}F_1(\rho)=0$

та
$$F_2(\varphi)$$
 - обмежена. Тоді $\lim_{(x,y)\to(0,0)}f(x,y)=0.$

Маємо $\lim_{\epsilon \to 0} F_1(\rho) = 0 \implies \forall \varepsilon > 0 : \exists \delta : \forall \rho : |\rho| < \delta \implies |F_1(\rho)| < \varepsilon.$

Також F_2 - обмежена, тобто $\exists M>0: \forall \varphi: |F_2(\varphi)| < M$.

Нехай $\varepsilon > 0$. Тоді існує таке $\delta > 0$, що $\forall (x,y)$, якщо $\|(x,y)\| = \sqrt{x^2 + y^2} = \sqrt{\rho^2} = |\rho| < \delta$, то звідси $|f(x,y)| = |f(\rho\cos\varphi, \rho\sin\varphi)| = |F_1(\rho)||F_2(\varphi)| < M\varepsilon.$

Таким чином, дійсно,
$$\lim_{(x,y)\to(0,0)} f(x,y) = 0.$$

Example 6.3.8 Обчислити $\lim_{(x,y)\to(0,0)} \frac{x^2y^2}{x^2+y^2}$.

Маємо $x=\rho\cos\varphi$ та $y=\rho\sin\varphi$. Тоді функція $\frac{x^2y^2}{x^2+y^2}=\frac{\rho^4\cos^2\varphi\sin^2\varphi}{\rho^2}=\rho^2\cos^2\varphi\sin^2\varphi.$

Ми змогли розбити на функції $F_1(\rho) = \rho^2 \stackrel{\rho \to 0}{\longrightarrow} 0$ та $F_2(\varphi) = \cos^2 \varphi \sin^2 \varphi$ - обмежена, бо $|F_2(\varphi)| \le 1$.

Таким чином,
$$\lim_{(x,y)\to(0,0)} \frac{x^2y^2}{x^2+y^2} = \lim_{\rho\to 0} \rho^2 \cos^2 \varphi \sin^2 \varphi = 0.$$

Remark 6.3.9 Якщо так станеться, що для двох різних кутів θ при ho o 0 ми отримаємо два різних ліміта, то тоді $\exists \lim_{(x,y)\to(0,0)} f(x,y).$

Definition 6.3.10 Число $L=\lim_{x\to x_0}\lim_{y\to y_0}f(x,y)$ називається **ітераційною границею**, якщо $\exists\lim_{y\to y_0}f(x,y)=0$

Аналогічно визначається $\lim_{y \to y_0} \lim_{x \to x_0} f(x, y)$.

Останне дається для загального знання, таке ми точно використовувати не будемо. Тут надто багато плутанини з ними.

Example 6.3.11 Маємо функцію $f(x, y) = x \sin \frac{1}{y} + y \sin \frac{1}{x}$.

Якщо шукати $\lim_{x\to 0} \lim_{x\to 0} f(x,y)$, то вона не існує, тому що при фіксованому x ми маємо порахувати

границю від $\sin\frac{1}{u}$, якого не існує. Також не існує $\lim_{y\to 0}\lim_{x\to 0}f(x,y)$ за аналогічними міркуваннями.

Проте! Подвійна границя $\lim_{(x,y)\to(0,0)} \left(x\sin\frac{1}{y} + y\sin\frac{1}{x}\right) = 0$. Дійсно,

$$\left|x\sin\frac{1}{y}+y\sin\frac{1}{x}\right| \leq \left|x\sin\frac{1}{y}\right| + \left|y\sin\frac{1}{x}\right| \leq |x|+|y| < 2\delta = \varepsilon.$$

Остання оцінка отримана в силу $\|(x,y)\|<\delta$, кладемо $\delta=\frac{\varepsilon}{2}$ - границя доведена.

$$\lim_{x \to 0} \lim_{y \to 0} \frac{xy}{x^2 + y^2} = \lim_{x \to 0} 0 = 0 \qquad \qquad \lim_{y \to 0} \lim_{x \to 0} \frac{xy}{x^2 + y^2} = \lim_{y \to 0} 0 = 0$$

Example 6.3.12 Маємо функцію $f(x,y)=\frac{xy}{x^2+y^2}$. $\lim_{x\to 0}\lim_{y\to 0}\frac{xy}{x^2+y^2}=\lim_{x\to 0}0=0\qquad \lim_{y\to 0}\lim_{x\to 0}\frac{xy}{x^2+y^2}=\lim_{y\to 0}0=0.$ Проте! Подвійної границі $\lim_{(x,y)\to (0,0)}\frac{xy}{x^+y^2}$ не існує. Дійсно, якщо $x=\rho\cos\varphi,y=\rho\sin\varphi$, то тоді

$$f(x,y) = \frac{\rho^2 \cos \varphi \sin \varphi}{\rho^2} = \frac{1}{2} \sin 2\varphi.$$

Неперервність функції 6.4

Definition 6.4.1 Задано функцію $f:A\to\mathbb{R}$ та $\vec{x}^0\in A$ - гранична точка. Функція f називається **неперервною в т.** \vec{x}^0 , якщо $\exists\lim_{\vec{x}\to\vec{x}^0}f(\vec{x})=f(\vec{x}^0)$. В будь-якій ізольованій точці \vec{x}^0 функція f також неперервна, тому я сразу даю таке означення через ліміт.

Функція f називається **неперервною на множині** A, якщо в $\forall \vec{x} \in A : f$ - неперервна.

Proposition 6.4.2 Задані функції $f,g:A\to\mathbb{R}$ та $\vec{x}^0\in A$ - гранична точка. Відомо, що f,g неперервні в т. \vec{x}^0 . Тоді:

- 1) cf неперервна в т. $\vec{x}^0, \forall c \in \mathbb{R};$
- (2) f+g неперервна в т. \vec{x}^0
- 3) fg неперервна в т. $\vec{x}^0;$
- 4) $\frac{f}{g}$ неперервна в т. \vec{x}^0 , якщо $g(\vec{x}^0) \neq 0$.

Випливають з властивостей границь функцій та неперервності.

Theorem 6.4.3 Теорема Вейєрштраса 1, 2

Задано множину A - замкнена, обмежена та функція $f:A\to\mathbb{R}$ - неперервна на A. Тоді:

2.
$$\exists \begin{bmatrix} \vec{x}^* \in A \\ \vec{x}_* \in A \end{bmatrix} \begin{bmatrix} f(\vec{x}^*) = \max_{\vec{x} \in A} f(\vec{x}) \\ f(\vec{x}_*) = \min_{\vec{x} \in A} f(\vec{x}) \end{bmatrix}$$

Theorem 6.4.4 Наступні функції є неперервними на своїй множині A:

- 1) $f(\vec{x}) = const$ константа, $A = \mathbb{R}^m$;
- 2) $f(\vec{x}) = x_j, j = \overline{1,m}$ координата, $A = \mathbb{R}^m$; 3) $P(x_1, x_2, \dots, x_m) = \sum_{\substack{0 \leq k_1 \leq n_1 \\ 0 \leq k_1 \leq n_1}} a_{k_1 k_2 \dots k_m} \cdot x_1^{k_1} x_2^{k_2} \dots x_m^{k_m}$ многочлен від m змінних, $A = \mathbb{R}^m$;
- 4) $R(x_1,\ldots,x_m)=\frac{P(x_1,\ldots,x_m)}{Q(x_1,\ldots,x_m)}$ раціональна функція від m змінних, $A=\mathbb{R}^m\setminus\{\vec{x}:Q(\vec{x})=0\}.$

Proof.

- 1) Все зрозуміло.
- 2) $|f(\vec{x}) f(\vec{x}^0)| = |x_i x_i^0| < \varepsilon$, тому встановлюється $\delta = \varepsilon$.
- 3) Безпосередньо випливає з **Prp. ?.4.2.** як сума та добуток функцій 1),2).
- 4) Безпосередньо випливає з **Prp** ?.4.2. як частка двох функцій 3).

Definition 6.4.5 Задано функцію $f: A \to \mathbb{R}$.

Функція f називається **рівномірно неперервною** на множині A, якщо

$$\forall \varepsilon > 0: \exists \delta(\varepsilon) > 0: \forall \vec{x_1}, \vec{x_2} \in A: ||\vec{x_1} - \vec{x_2}|| < \delta \Rightarrow |f(\vec{x_1}) - f(\vec{x_2})| < \varepsilon$$

Theorem 6.4.6 Задано функцію $f:A\to \mathbb{R}$ - рівномірно неперервна на A - обмежена, замкнена. Тоді вона є неперервною на A. Доведення аналогічне як e \mathbb{R} .

Theorem 6.4.7 Теорема Кантора

Задано функцію $f:A\to\mathbb{R}$ та A - замкнена, обмежена. Відомо, що f - неперевна на A. Тоді вона є рівномірно неперервною на A. Доведення аналогічне як в матані \mathbb{R} .

Границя та неперервність векторнозначної функції

Ми будемо розглядати вектор-функції вигляду $\vec{a}:A\to\mathbb{R}^k$, де $A\subset\mathbb{R}$. Тобто маємо таку ситуацію:

$$\vec{a}(t) = \begin{pmatrix} a_1(t) \\ a_2(t) \\ \vdots \\ a_k(t) \end{pmatrix}.$$

Definition 6.5.1 Задано функцію $\vec{a}: A \to \mathbb{R}^k$ та $t_0 \in \mathbb{R}$ - гранична точка для A. Вектор \vec{u} називається границею вектор-функції $\vec{a}(t)$ в т. t_0 , якщо

$$\forall \varepsilon > 0: \exists \delta(\varepsilon) > 0: \forall t \in A: t \neq t_0: |t - t_0| < \delta \Rightarrow ||\vec{a}(t) - \vec{u}|| < \varepsilon$$
 - def. Komi $\forall \{t_n, n \geq 1\} \subset A: \forall n \geq 1: t_n \neq t_0: \lim_{n \to \infty} t_n = t_0 \Rightarrow \lim_{n \to \infty} \vec{a}(t_n) = \vec{u}$ - def. Гейне

Позначення: $\lim_{t \to t_0} \vec{a}(t) = \vec{u}$.

Theorem 6.5.2 Означення Коші \iff Означення Гейне Все аболютно аналогічно.

Remark 6.5.3 Оскільки прямування йде за дійсною множиною, то ми можемо визначти границю зліва та справа. Тут все зрозуміло, як виглядатиме означення.

Proposition 6.5.4 Задано функцію $\vec{a}:A\to\mathbb{R}^k$ та $t_0\in\mathbb{R}$ - гранична точка для A. $\exists\lim_{t\to t_0}\vec{a}(t)=\vec{u}\iff \forall j=\overline{1,k}:\exists\lim_{t\to t_0}a_j(t)=u_j.$ Випливає із означення Гейне та покоординатної збіжності.

$$\exists \lim_{t \to t_0} \vec{a}(t) = \vec{u} \iff \forall j = \overline{1, k} : \exists \lim_{t \to t_0} a_j(t) = u_j$$

Proposition 6.5.5 Арифметичні властивості

Задані функції $\vec{a}, \vec{b}: A \to \mathbb{R}^k$ та $t_0 \in \mathbb{R}$ - гранична точка для A. Відомо, що

$$\exists\lim_{t\to t_0} \vec{a}(t) = \vec{u}, \exists\lim_{t\to t_0} \vec{b}(t) = \vec{v}.$$
 Тоді: $\lim_{t\to t_0} c\vec{a}(t) = c\vec{u}, \forall c \in \mathbb{R};$

1)
$$\lim_{t \to 0} c\vec{a}(t) = c\vec{u}, \forall c \in \mathbb{R}$$

2)
$$\lim_{t \to t_0} (\vec{a}(t) + \vec{b}(t)) = \vec{u} + \vec{v};$$

3)
$$\lim_{t \to t_0} (\vec{a}, \vec{b}) = (\vec{u}, \vec{v}).$$

Всі вони випливають із векторних послідовностей та означення Гейне.

Example 6.5.6 Знайти границю
$$\lim_{t\to 0+0} \left(\frac{\sin 2t}{t} - t^t\right)^T$$
.

За одним твердженням, ми можемо покоординатно шукати границі:

$$\lim_{t \to 0+0} \frac{\sin 2t}{t} = 2 \qquad \lim_{t \to 0+0} t^t = 1.$$
 Отже,
$$\lim_{t \to 0+0} \left(\frac{\sin 2t}{t} - t^t\right)^T = \begin{pmatrix} 2 & 1 \end{pmatrix}^T.$$

Definition 6.5.7 Задано функцію $\vec{a}:A \to \mathbb{R}^k$ та $t_0 \in A$ - гранична точка.

Вектор-функція \vec{a} називається **неперервною в т.** t_0 , якщо $\exists \lim_{t \to t_0} \vec{a}(t) = \vec{a}(t_0)$. В будь-якій ізольованій точці t_0 вектор-функція \vec{a} також неперервна, тому я сразу даю таке означення через ліміт. Вектор-функція \vec{a} називається **неперервною на множині** A, якщо $\forall t \in A : \vec{a}$ - неперервна.

\mathbf{K} рива в \mathbb{R}^m 6.6

Definition 6.6.1 Кривою в \mathbb{R}^m називають множину значень вектор-функції: $\vec{r}:[a,b] \to \mathbb{R}^m$, причому \vec{r} - неперервна на [a, b]:

$$\Gamma = \{\vec{r}(t) : t \in [a, b]\}$$

Definition 6.6.2 Крива Г називається **простою**, якщо

$$\vec{r}(t_1) = \vec{r}(t_2) \implies t_1 = t_2 \text{ alo } \{t_1, t_2\} = \{a, b\}$$

Крива Γ називається **замкненою**, якщо $\vec{r}(a) = \vec{r}(b)$.

Просту та замкнену криву називають жордановою.

Диференційованість 7

Для функції із багатьма змінними 7.1

Definition 7.1.1 Задано функцію $f:A\to\mathbb{R}$ та $\vec{x}^0\in A$ - внутрішня точка. Функція f називається диференційованою в т. \vec{x}^0 , якщо

$$\exists L_1, \dots, L_m \in \mathbb{R} : f(\vec{x}^0 + \Delta \vec{x}) - f(\vec{x}^0) = L_1 \Delta x_1 + \dots + L_m \Delta x_m + o(||\Delta \vec{x}||)$$

Тобто диференційованість означає, що поверхня навколо т. \vec{x} дуже схожа на площину, що проходить через т. \vec{x} .

Proposition 7.1.2 Задано функцію $f:A\to\mathbb{R}$ та $\vec{x}^0\in A$ - внутрішня точка. Функція f - диференційована в т. \vec{x}^0 . Тоді вона неперервна в т. \vec{x}^0

Proof.

Proof.
$$f$$
 - диференційована в т. \vec{x}^0 , тобто $f(\vec{x}^0 + \Delta \vec{x}) - f(\vec{x}^0) = L_1 \Delta x_1 + \dots + L_m \Delta x_m + o(||\Delta \vec{x}||)$.

Або можна це записати інакше:
$$f(\vec{x}) - f(\vec{x}^0) = L_1(x_1 - x_1^0) + \dots + L_m(x_m - x_m^0) + o(||\vec{x} - \vec{x}^0||) \implies \lim_{\vec{x} \to \vec{x}^0} (f(\vec{x}) - f(\vec{x}^0)) \equiv$$
 Всі дужки прямують покоординатно до нуля, *о*-маленьке також, в силу н.м.

 $= 0 \implies f$ - неперервна в т. \vec{x}^0 .

Definition 7.1.3 Задано функцію $f:A\to\mathbb{R}$ та $\vec{x}^0\in A$ - внутрішня точка. **Частковою похідною функції** f за змінною x_j в т. \vec{x}^0 називають величину:

$$\frac{\partial f}{\partial x_j}(x_1^0,\ldots,x_j^0,\ldots,x_m^0) = \lim_{\Delta x_j \to 0} \frac{f(x_1^0,\ldots,x_j^0+\Delta x_j,\ldots,x_m^0) - f(x_1^0,\ldots,x_j^0,\ldots,x_m^0)}{\Delta x_j}$$

Якщо уважно придивитись на означення, то, насправді, ми просто підставили $x_1^0,\dots,x_{j-1}^0,x_{j+1}^0,\dots,x_m^0$ та отримали функцію $g(x_j)=f(x_1^0,\dots,x_{j-1}^0,x_j,x_{j+1}^0,\dots,x_m^0)$ - функція від одного агрументу x_j - та обчислили похідну цієї функції в т. x_j^0 . Отже,

$$\frac{\partial f}{\partial x_j}(x_1^0, \dots, x_j^0, \dots, x_m^0) = g'(x_j^0)$$

Example 7.1.4 Маємо функцію $f(x,y) = 1 - x^2 - y$. Знайдемо всі її часткові похідні.

$$\frac{\partial f}{\partial x} = -2x \qquad \qquad \frac{\partial f}{\partial y} = -1$$

Сенс $\frac{\partial f}{\partial x}$ - знайти дотичну прямої в певній точці, але ця дотична напрямлена туди саме, де й вісь

Аналогічно $\frac{\partial f}{\partial u}$ - знайти дотичну прямої в певній точці, але ця дотична напрямлена туди саме, де й вісь OY.

Таких дотичних прямих існують безліч, але про це згодом.

Proposition 7.1.5 Необхнідна умова диференційованості

Задано функцію $f:A \to \mathbb{R}$ - диференційована в т. $\vec{x}^0 \in A$ - внутрішня точка. Тоді вона має часткові похідні в т. \vec{x}^0 , причому $\frac{\partial f}{\partial x_i}(x_1^0,\ldots,x_j^0,\ldots,x_m^0)=L_j.$

f - диференційована в т. \vec{x}^0 , тоді $\exists L_1,\ldots,L_m \in \mathbb{R}$: $f(\vec{x}^0 + \Delta \vec{x}) - f(\vec{x}^0) = L_1 \Delta x_1 + \dots + L_m \Delta x_m + o(\|\Delta \vec{x}\|), \Delta \vec{x} \to \vec{0}.$ У частному випадку, встановити можна $\Delta \vec{x} = \begin{pmatrix} 0 & \dots & \Delta x_j & \dots & 0 \end{pmatrix}^T$. Тоді $\frac{\partial f}{\partial x_j}(x_1^0,\dots,x_j^0,\dots,x_m^0) = \lim_{\Delta x_j \to 0} \frac{f(x_1^0,\dots,x_j^0+\Delta x_j,\dots,x_m^0) - f(x_1^0,\dots,x_j^0,\dots,x_m^0)}{\Delta x_j} \stackrel{f}{=} \frac{\partial f}{\partial x_j} = \lim_{\Delta x_j \to 0} \frac{L_1 \cdot 0 + \dots + L_j \Delta x_j + \dots + L_m \cdot 0 + o(|\Delta x_j|)}{\Delta x_j} = \lim_{\Delta x_j \to 0} \frac{L_j \Delta x_j + o(\Delta x_j)}{\Delta x_j} = L_j$.

Remark 7.1.6 У зворотньому напрямку це не завжди вірно.

Example 7.1.7 Маємо функцію $f(x,y) = \sqrt{|xy|}$. Розглянемо цю функції в околі т. $(x_0,y_0) = (0,0)$. $\frac{\partial f}{\partial x}(0,0) = \lim_{\Delta x \to 0} \frac{f(\Delta x,0) - f(0,0)}{\Delta x} = \lim_{\Delta x \to 0} \frac{\sqrt{|\Delta x \cdot 0| - 0}}{\frac{\Delta x}{\Delta y}} = 0.$ $\frac{\partial f}{\partial y}(0,0) = \lim_{\Delta y \to 0} \frac{f(0,\Delta y) - f(0,0)}{\Delta y} = \lim_{\Delta y \to 0} \frac{\sqrt{|0 \cdot \Delta y| - 0}}{\Delta y} = 0.$ Тобто в т. (x_0,y_0) функція має часткові похідні. Проте виявляється, що в (x_0,y_0) вона - не диференційована.

 $f(\Delta x, \Delta y) = 0\Delta x + 0\Delta y + o(\sqrt{\Delta x^2 + \Delta y^2}) = o(\sqrt{\Delta x^2 + \Delta y^2})$, тобто $\lim_{\substack{\Delta x \to 0 \\ \Delta y \to 0}} \frac{f(\Delta x, \Delta y)}{\sqrt{\Delta x^2 + \Delta y^2}} = \lim_{\substack{\Delta x \to 0 \\ \Delta y \to 0}} \frac{\sqrt{|\Delta x \Delta y|}}{\sqrt{\Delta x^2 + \Delta y^2}} \stackrel{\text{полярна заміна}}{=} \lim_{\rho \to 0} \sqrt{|\cos \varphi \sin \varphi|} \text{ - не існує, тому рівність}$

Можливо виникне питання, а чи існують інші числа $(L_1, L_2) \neq (0, 0)$. Ні. Це випливає з необхідної умови диференційованості.

Виникає тоді інше питання, а коли ми можемо гарантувати диференційованість через існування похідних.

Theorem 7.1.8 Достатня умова диференційованості

Задано функцію $f:A\to\mathbb{R}$ та $\vec{x}^0\in A$ - внутрішня точка.

Відомо, що в деякому околі т. \vec{x}^0 існують всі часткові похідні в околі т. \vec{x}^0 , які неперервні в т. \vec{x}^0 . Тоді f - диференційована в т. \vec{x}^0 .

Mu будемо доводити, коли m=2. Для більших аргументів - аналогічно, але більш технічна cnpaea

Отже, дано f(x,y) та в околі т. (x_0,y_0) існують часткові похідні $\frac{\partial f}{\partial x}$ та $\frac{\partial f}{\partial y}$, які неперервні в (x_0,y_0) . $f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0) = f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0 + \Delta x, y_0) + f(x_0 + \Delta x, y_0) - f(x_0, y_0) = f(x_0 + \Delta x, y_0)$ Позначу $h(t) = f(x_0 + \Delta x, y_0 + t), t \in [0, \Delta y].$ Тоді $f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0 + \Delta x, y_0) = h(\Delta y) - h(0).$ h - диференційована на $[0, \Delta y]$, оскільки існує $\frac{\partial f}{\partial y}$, яка неперервна. А тому $h \in C([0, \Delta y])$. Тоді за Лагранжом:

$$h(\Delta y) - h(0) = h'(c_1)\Delta y, c_1 \in (0, y)$$

$$h'(t) = f'_t(x_0 + \Delta x, y_0 + t) = \frac{\partial f}{\partial y}(x_0 + \Delta x, y_0 + t)$$

$$\implies h(\Delta y) - h(0) = \frac{\partial f}{\partial y}(x_0 + \Delta x, y_0 + c_1)\Delta y.$$

Аналогічно $g(s)=f(x_0+s,y_0), s\in [0,\Delta x]$. Тоді $f(x_0+\Delta x,y_0)-f(x_0,y_0)=g(\Delta x)-g(0)\stackrel{\Pi \text{агранжа}}{=} g'(c_2)\Delta x=\frac{\partial f}{\partial x}(x_0+c_2,y_0)\Delta x, c_2\in (0,\Delta x).$ Повертаємось до нашої рівності.

$$\boxed{\equiv} \frac{\partial f}{\partial y}(x_0 + \Delta x, y_0 + c_1)\Delta y + \frac{\partial f}{\partial x}(x_0 + c_2, y_0)\Delta x$$

$$(f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0)) - \left(\frac{\partial f}{\partial x}(x_0, y_0)\Delta x + \frac{\partial f}{\partial y}(x_0, y_0)\Delta y\right) = o(||(\Delta x, \Delta y)||)$$

$$\begin{split} &(f(x_0+\Delta x,y_0+\Delta y)-f(x_0,y_0))-\left(\frac{\partial f}{\partial x}(x_0,y_0)\Delta x+\frac{\partial f}{\partial y}(x_0,y_0)\Delta y\right)=\\ &=\left(\frac{\partial f}{\partial y}(x_0+\Delta x,y_0+c_1)\Delta y+\frac{\partial f}{\partial x}(x_0+c_2,y_0)\Delta x\right)-\left(\frac{\partial f}{\partial x}(x_0,y_0)\Delta x+\frac{\partial f}{\partial y}(x_0,y_0)\Delta y\right)=\\ &=\left(\frac{\partial f}{\partial x}(x_0+c_2,y_0)-\frac{\partial f}{\partial x}(x_0,y_0)\right)\Delta x+\left(\frac{\partial f}{\partial y}(x_0+\Delta x,y_0+c_1)-\frac{\partial f}{\partial y}(x_0,y_0)\right)\Delta y\\ \text{Якщо }\Delta x\to 0, \Delta y\to 0, \text{ то звідси }c_1\to 0, c_2\to 0 \text{ та за умовою того, що часткові похідні }\varepsilon \end{split}$$

$$\left(\frac{\partial f}{\partial x}(x_0 + c_2, y_0) - \frac{\partial f}{\partial x}(x_0, y_0)\right) \stackrel{\text{позн}}{=} \alpha \to 0$$

$$\left(\frac{\partial f}{\partial y}(x_0 + \Delta x, y_0 + c_1) - \frac{\partial f}{\partial y}(x_0, y_0)\right) \stackrel{\text{позн}}{=} \beta \to 0$$

$$\left| \frac{\alpha \Delta x + \beta \Delta y}{\sqrt{\Delta x^2 + \Delta y^2}} \right| \stackrel{\text{K-E}}{\leq} \left| \frac{\sqrt{\alpha^2 + \beta^2} \sqrt{\Delta x^2 + \Delta y^2}}{\Delta x^2 + \Delta y^2} \right| \to 0 \implies \frac{\alpha \Delta x + \beta \Delta y}{\sqrt{\Delta x^2 + \Delta y^2}} \to 0, \Delta x \to 0, \Delta y \to 0.$$

$$(f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0)) - \left(\frac{\partial f}{\partial x}(x_0, y_0)\Delta x + \frac{\partial f}{\partial y}(x_0, y_0)\Delta y\right) = o(||(\Delta x, \Delta y)||).$$

Definition 7.1.9 Задано функцію $f: A \to \mathbb{R}$ та $\vec{x}^0 \in A$ - внутрішня точка.

Похідною функції f в т. \vec{x}^0 називається ковектор

$$f'(\vec{x}^0) = \left(\frac{\partial f}{\partial x_1} \quad \dots \quad \frac{\partial f}{\partial x_m}\right)(\vec{x}^0)$$

Використовуючи нове означення, умова диференційованості перепишеться тоді абсолютно звичним

$$f(\vec{x}^0 + \Delta \vec{x}) - f(\vec{x}^0) = f'(\vec{x}^0) \cdot \Delta \vec{x} + o(\|\Delta \vec{x}\|), \Delta \vec{x} \to \vec{0}.$$

Proposition 7.1.10 Задані функції $f,g:A\to\mathbb{R}$ та $\vec{x}^0\in A$ - внутрішня точка. Відомо, що f,g диференційовані в т. \vec{x}^0 . Тоді:

- 1) αf диференційована в т. $\vec{x}^0, \forall \alpha \in \mathbb{R},$ похідна $(\alpha f)'(\vec{x}^0) = \alpha f'(\vec{x}^0);$
- 2) f+g диференційована в т. \vec{x}^0 , похідна $(f+g)'(\vec{x}^0)=f'(\vec{x}^0)+g'(\vec{x}^0);$ 3) fg диференційована в т. \vec{x}^0 , похідна $(fg)'(\vec{x}^0)=f'(\vec{x}^0)g(\vec{x}^0)+f(\vec{x}^0)g'(\vec{x}^0)$

Proof.

Зрозуміло.

$$2) \; (f(\vec{x}^0 + \Delta \vec{x}) + g(\vec{x}^0 + \Delta \vec{x})) - (f(\vec{x}^0) + g(\vec{x}^0)) = (f(\vec{x}^0 + \Delta \vec{x}) - f(\vec{x}^0)) + (g(\vec{x}^0 + \Delta \vec{x}) - g(\vec{x}^0)) = \\ = f'(\vec{x}^0) \cdot \Delta \vec{x} + o(\|\Delta \vec{x}\|) + g'(\vec{x}^0) \cdot \Delta \vec{x} + o(\|\Delta \vec{x}\|) = (f'(\vec{x}^0) + g'(\vec{x}^0)) \cdot \Delta \vec{x} + o(\|\Delta \vec{x}\|), \Delta \vec{x} \to \vec{0}.$$

3)
$$f(\vec{x}^0 + \Delta \vec{x})g(\vec{x}^0 + \Delta \vec{x}) - f(\vec{x}^0)g(\vec{x}^0) =$$

 $= (f(\vec{x}^0) + f'(\vec{x}^0) \cdot \Delta \vec{x} + o(\|\Delta \vec{x}\|)) \cdot (g(\vec{x}^0) + g'(\vec{x}^0) \cdot \Delta \vec{x} + o(\|\Delta \vec{x}\|)) - f(\vec{x}^0)g(\vec{x}^0) = 0$ Після розкриття дужок ми залишимо лише доданки $(f(\vec{x}^0)g'(\vec{x}^0)) \cdot \Delta \vec{x}$ та $(g(\vec{x}^{0})f'(\vec{x}^0)) \cdot \Delta \vec{x}$. Ось чому:

 $g(\vec{x}^0)o(\|\Delta \vec{x}\|) = o(\|\Delta \vec{x}\|)$ $f(\vec{x}^0)o(\|\Delta \vec{x}\|) = o(\|\Delta \vec{x}\|)$

 $(f'(\vec{x}^0) \cdot \Delta \vec{x}) \cdot (g'(\vec{x}^0) \cdot \Delta \vec{x}) = o(\|\Delta \vec{x}\|)$, тому що, розписавши, побачимо, що $\Delta x_i \Delta x_j = o(\|\Delta \vec{x}\|)$ (зрозуміло)

 $(q'(\vec{x}^0) \cdot \Delta \vec{x}) o(\|\Delta \vec{x}\|) = o(\|\Delta \vec{x}\|)$ $(f'(\vec{x}^0) \cdot \Delta \vec{x}) o(\|\Delta \vec{x}\|) = o(\|\Delta \vec{x}\|)$, тому що, розписавши, побачимо $\Delta x_j o(\|\Delta \vec{x}\|) = o(\|\Delta \vec{x}\|)$ $(o(\|\Delta \vec{x}\|))^2 = o(\|\Delta \vec{x}\|)$

Повертаємось до рівності:

$$= |(f(\vec{x}^0)g'(\vec{x}^0)) \cdot \Delta \vec{x} + (g(\vec{x}^0)f'(\vec{x}^0)) \cdot \Delta \vec{x} + o(||\Delta \vec{x}||).$$

Definition 7.1.11 Задано функцію $f: A \to \mathbb{R}$ та $\vec{x}^0 \in A$ - внутрішня точка. Диференціалом функції f(x) в т. \vec{x}^0 називається такий вираз:

$$df(\vec{x}^0, \Delta \vec{x}) = f'(\vec{x}^0) \cdot \Delta \vec{x}$$

Як й раніше, аргумент $\Delta \vec{x}$ опускають, а також позначають $\Delta \vec{x} = d\vec{x}$, тобто $\Delta x_1 = dx_1, \ldots, \Delta x_m = dx_m$. Тоді маємо інший вигляд:

$$df(\vec{x}^0) = f'(\vec{x}^0) \cdot d\vec{x} = \frac{\partial f}{\partial x_1}(\vec{x}^0) dx_1 + \dots + \frac{\partial f}{\partial x_m}(\vec{x}^0) dx_m$$

Example 7.1.12 Маємо функцію $f(x,y) = 1 - x^2 - y$. Ми вже знайшли $\frac{\partial f}{\partial x} = -2x, \frac{\partial f}{\partial y} = -1$, вони є неперервними в будь-якій точці.

Отже, f - диференційована будь-де. Знадемо тепер диференціал функції. Це дуже просто:

$$df(x,y) = \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy = (-2x) dx - dy \stackrel{\text{a6o}}{=} (-2x - 1) \vec{dr}.$$

Для векторнозначних функцій 7.2

Definition 7.2.1 Задано функцію $\vec{f}: A \to \mathbb{R}^k$ та $\vec{x}^0 \in A$ - внутрішня точка. Вектор-функція \vec{f} називається диференційованою в т. \vec{x}^0 , якщо

$$\exists M \in Mat(m \times k) : \vec{f}(\vec{x}^0 + \Delta \vec{x}) - \vec{f}(\vec{x}^0) = M\Delta \vec{x} + \vec{o}(||\Delta \vec{x}||)$$

Зараз дізнаємось, що це за матриця $M = \begin{pmatrix} M_{11} & \dots & M_{1m} \\ \vdots & \ddots & \vdots \\ M_{l-1} & \dots & M_{l-m} \end{pmatrix}$ під час доведення твердження.

Proposition 7.2.2 Задано функцію $\vec{f}:A\to\mathbb{R}^k$ та $\vec{x}^0\in A$ - внутрішня точка. \vec{f} - диференційована в т. $\vec{x}^0\iff f_1,\ldots,f_k$ - диференційовані в т. \vec{x}^0 .

Proof.

 \Rightarrow Дано: \vec{f} - диференційована в т. \vec{x}^0 , тобто $\exists M \in Mat(m \times k) : \vec{f}(\vec{x}^0 + \Delta \vec{x}) - \vec{f}(\vec{x}^0) = M\Delta \vec{x} + \vec{o}(||\Delta \vec{x}||)$.

$$\begin{pmatrix} f_1(\vec{x}^0 + \Delta \vec{x}) \\ \vdots \\ f_k(\vec{x}^0 + \Delta \vec{x}) \end{pmatrix} - \begin{pmatrix} f_1(\vec{x}^0) \\ \vdots \\ f_k(\vec{x}^0) \end{pmatrix} = \begin{pmatrix} M_{11} & \dots & M_{1m} \\ \vdots & \ddots & \vdots \\ M_{k1} & \dots & M_{km} \end{pmatrix} \begin{pmatrix} \Delta x_1 \\ \vdots \\ \Delta x_m \end{pmatrix} + \begin{pmatrix} o(||\Delta \vec{x}||) \\ \vdots \\ o(||\Delta \vec{x}||) \end{pmatrix}$$

$$(f_k(\vec{x}^0 + \Delta \vec{x}))$$
 $(f_k(\vec{x}^0))$ $(M_{k1} \dots M_{km})$ $(\Delta \vec{x}_m)$ Із цієї рівності випливає, що $\forall j = \overline{1, k}$: $f_j(\vec{x}^0 + \Delta \vec{x}) - f_j(\vec{x}^0) = M_{j1}\Delta x_1 + \dots + M_{jm}\Delta x_m + o(||\Delta \vec{x}||)$.

Це означає, що f_j - диференційована в т. \vec{x}^0 . Тоді звідси випливає, що:

$$M_{j1}=rac{\partial f_j}{\partial x_1}(\vec{x}^0),\ldots,M_{jm}=rac{\partial f_j}{\partial x_m}(\vec{x}^0).$$
В результаті отримаємо ось такий вигляд матриці:

$$M=egin{pmatrix} rac{\partial f_1}{\partial x_1} & \cdots & rac{\partial f_1}{\partial x_m} \\ dots & \ddots & dots \\ rac{\partial f_k}{\partial x_1} & \cdots & rac{\partial f_k}{\partial x_m} \end{pmatrix} (ec{x}^0)=egin{pmatrix} f_1' \\ dots \\ f_k' \end{pmatrix} (ec{x}^0)=J(x)=ec{f'}(ec{x}^0)$$
 - матриця Якобі

Матриця Якобі описує **похідну** вектор-функції \vec{f} в т. \vec{x}^0 . А якщо матриця буде квадратною, то ми можемо обчислити det $\vec{f'}(\vec{x}^0)$ - **якобіан**.

 \sqsubseteq Дано: f_1,\ldots,f_k - диференційовані в т. \vec{x}^0 . Хочемо довести, що $\vec{f}(\vec{x}^0+\Delta\vec{x}^0)-\vec{f}(\vec{x}^0)-M\Delta\vec{x}=\vec{o}(\|\Delta\vec{x}\|), \Delta\vec{x}\to \vec{0},$ але це є правда, тому що: $\forall j=\overline{1,k}: f_j$ - диференційована $\Longrightarrow f_j(\vec{x}^0+\Delta\vec{x}^0)-f_j(\vec{x}^0)-f_j'(\vec{x}^0)\cdot\Delta\vec{x}=o(\|\Delta\vec{x}\|), \Delta\vec{x}\to \vec{0}$ - виконана покоординатна рівність.

Proposition 7.2.3 Задано функцію $\vec{f}: A \to \mathbb{R}^k$ та $\vec{x}^0 \in A$ - внутрішня точка. Відомо, що вектор-функція \vec{f} - диференційована в т. \vec{x}^0 . Тоді вона неперервна в т. \vec{x}^0 .

Proof.

Дійсно, $\lim_{\vec{x} \to \vec{x}^0} \left(M(\vec{x} - \vec{x}^0) + \vec{o}(||\vec{x} - \vec{x}^0||) \right) = 0$, оскільки виконується покоординатна границя.

Proposition 7.2.4 Задані функції $\vec{f}, \vec{g}: A \to \mathbb{R}^k$ та $\vec{x}^0 \in A$ - внутрішня точка. Відомо, що \vec{f}, \vec{g} - диференційовані в т. \vec{x}^0 .

Тоді $\alpha \vec{f} + \beta \vec{g}$ - диференційована в т. \vec{x}^0 , похідна $(\alpha \vec{f} + \beta \vec{g})'(\vec{x}^0) = \alpha \vec{f}'(\vec{x}^0) + \beta \vec{g}'(\vec{x}^0)$. Випливає з арифметики матриці. Ну тут зрозуміло.

Example 7.2.5 Важливий

Маємо вектор-функцію $\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \rho \cos \varphi \\ \rho \sin \varphi \end{pmatrix}$. Знайдемо її похідну та якобіан.

$$\vec{f'}(\vec{x}^0) = \begin{pmatrix} \frac{\partial x}{\partial \rho} & \frac{\partial x}{\partial \varphi} \\ \frac{\partial y}{\partial \rho} & \frac{\partial y}{\partial \varphi} \end{pmatrix} = \begin{pmatrix} \cos \varphi & -\rho \sin \varphi \\ \sin \varphi & \rho \cos \varphi \end{pmatrix} \qquad \det \vec{f'}(\vec{x}^0) = \cos \varphi \rho \cos \varphi + \sin \varphi \rho \sin \varphi = \rho.$$

Ще знадобиться, коли будемо шукати подвійні інтеграли.

Proposition 7.2.6 Задані функції $\vec{f}: A \to B$ та $\vec{g}: B \to \mathbb{R}^k$, де $A \subset \mathbb{R}^m, B \subset \mathbb{R}^n$. Відомо, що \vec{f} - диференційована в т. \vec{x}^0 та \vec{g} - диференційована в т. \vec{y}^0 . Тоді $\vec{g} \circ \vec{f}$ - диференційована в т. \vec{x}^0 , похідна $(\vec{g} \circ \vec{f})'(\vec{x}^0) = \vec{g}''(\vec{y}^0)\vec{f}'(\vec{x}^0)$.

Proof.

$$\vec{g} \circ \vec{f}(\vec{x}^0 + \Delta \vec{x}) - \vec{g} \circ \vec{f}(\vec{x}^0) = \vec{g}(\vec{f}(\vec{x}^0 + \Delta \vec{x})) - \vec{g}(\vec{f}(\vec{x}^0)) = \vec{g}(\vec{f}(\vec{x}^0) + \vec{f}'(\vec{x}^0)\Delta \vec{x} + \vec{o}(\|\Delta \vec{x}\|)) - \vec{g}(\vec{f}(\vec{x}^0)) = \vec{g}(\vec{y}^0 + \Delta \vec{y}) - \vec{g}(\vec{y}^0) = \vec{g}'(\vec{y}^0)\Delta \vec{y} + o(\|\Delta \vec{y}\|) = \vec{g}'(\vec{y}^0)\vec{f}'(\vec{x}^0)\Delta \vec{x} + \vec{g}'(\vec{y}^0)\vec{o}(\|\Delta \vec{x}\|) + \vec{o}(\|\Delta \vec{y}\|) = \vec{g}'(\|\Delta \vec{x}\|)$$
 Лишилось довести, що
$$\vec{g}'(\vec{y}^0)\vec{o}(\|\Delta \vec{x}\|) + \vec{o}(\|\Delta \vec{y}\|) = \vec{o}(\|\Delta \vec{x}\|),$$
 якщо $\Delta \vec{x} \to \vec{0}$, але тут зрозуміло.
$$\vec{f} = \vec{g}'(\vec{y}^0)\vec{f}'(\vec{x}^0)\Delta \vec{x} + \vec{o}(\|\Delta \vec{x}\|).$$

Corollary 7.2.7 Задано функцію $\vec{f}:A\to B$ та $g:B\to\mathbb{R}$, де $A\subset\mathbb{R}^m,B\subset\mathbb{R}^n$. Відомо, що \vec{f} - диференційована в т. \vec{x}^0 та g - диференційована в т. \vec{y}^0 . Тоді $\frac{\partial h}{\partial x_j}(\vec{x}^0)=\frac{\partial g}{\partial y_1}(\vec{y}^0)\frac{\partial f_1}{\partial x_j}(\vec{x}^0)+\frac{\partial g}{\partial y_2}(\vec{y}^0)\frac{\partial f_2}{\partial x_j}(\vec{x}^0)+\cdots+\frac{\partial g}{\partial y_n}(\vec{y}^0)\frac{\partial f_n}{\partial x_j}(\vec{x}^0)$, виконано $\forall j=\overline{1,m}$.

Example 7.2.8 Маємо функцію $f\left(xy, \frac{x}{y}\right)$. Знайдемо часткові похідні за x, y.

Позначимо $u(x,y)=xy,\,v(x,y)=\frac{x}{y}$. Тоді маємо:

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial u}\frac{\partial u}{\partial x} + \frac{\partial f}{\partial v}\frac{\partial v}{\partial x} = \frac{\partial f}{\partial u}\cdot y + \frac{\partial f}{\partial v}\cdot \frac{1}{y}$$
$$\frac{\partial f}{\partial y} = \frac{\partial f}{\partial u}\frac{\partial u}{\partial y} + \frac{\partial f}{\partial v}\frac{\partial v}{\partial y} = \frac{\partial f}{\partial u}\cdot x + \frac{\partial f}{\partial v}\cdot \frac{-x}{y^2}$$

7.3 Похідна за напрямком. Градієнт

Definition 7.3.1 Задано функцію $f: A \to \mathbb{R}$ та $\vec{x}^0 \in A$ - внутрішня точка. А також задано вектор \vec{l} , такий, що $||\vec{l}|| = 1$. Її ще називають **напрямком**.

Похідною функції f за напрямком \vec{l} в т. \vec{x}^0 називають величину

$$\frac{\partial f}{\partial \vec{l}}(\vec{x}^0) = \lim_{t \to 0} \frac{f(\vec{x}^0 + t\vec{l}) - f(\vec{x}^0)}{t}$$

Як вже було зазначено, дотичних прямих буває дуже багато, тому ми й задаємо напрямок.

Remark 7.3.2 Якщо всі координати вектора \vec{l} будуть нулевими, окрім $l_j = 1$, то $\frac{\partial f}{\partial \vec{l}}(\vec{x}^0) = \frac{\partial f}{\partial x_i}(\vec{x}^0)$.

Theorem 7.3.3 Задано функцію f - диференційована в т. $\vec{x}^0 \in A$ - внутрішня точка. Тоді $\frac{\partial f}{\partial \vec{l}}(\vec{x}^0) = f'(\vec{x}^0) \cdot \vec{l} = \frac{\partial f}{\partial x_1} l_1 + \dots + \frac{\partial f}{\partial x_m} l_m$.

Ргоог.
$$f - \text{диференційована в т. } \vec{x}^0, \text{ тобто } f(\vec{x}^0 + t\vec{l}) - f(\vec{x}^0) = \frac{\partial f}{\partial x_1} t l_1 + \dots + \frac{\partial f}{\partial x_m} t l_m + o(\|t\vec{l}\|).$$

$$\text{Тому } \frac{\partial f}{\partial \vec{l}}(\vec{x}^0) = \lim_{t \to 0} \frac{f(\vec{x}^0 + t\vec{l}) - f(\vec{x}^0)}{t} = \lim_{t \to 0} \frac{\frac{\partial f}{\partial x_1} t l_1 + \dots + \frac{\partial f}{\partial x_m} t l_m + o(\|t\vec{l}\|)}{t} = \frac{\partial f}{\partial x_1} l_1 + \dots + \frac{\partial f}{\partial x_m} l_m.$$

Example 7.3.4 Маємо функцію
$$f(x,y) = 1 - x^2 - y$$
. Знайти похідну за напрямком $\vec{l} = (0.6, 0.8)$.
$$\frac{\partial f}{\partial x} = -2x \qquad \frac{\partial f}{\partial y} = -1.$$

$$\Longrightarrow \frac{\partial f}{\partial \vec{l}} = -0.6 \cdot 2x - 0.8 \cdot 1 = -1.2x - 0.8.$$

Definition 7.3.5 Задано функцію $f:A\to\mathbb{R}$ та $\vec{x}^0\in A$ - внутрішня точка. **Градієнтом функції** f в т. \vec{x}^0 називають такий вектор

$$\operatorname{grad} f(\vec{x}^0) \stackrel{\text{afo}}{=} \nabla f(\vec{x}^0) = \begin{pmatrix} \frac{\partial f}{\partial x_1} \\ \vdots \\ \frac{\partial f}{\partial x_m} \end{pmatrix} (\vec{x}^0)$$

Похідну функції \vec{f} за напрямком \vec{l} в т. \vec{x}^0 можна записати інакше: $\frac{\partial f}{\partial \vec{l}} = \left(\operatorname{grad} f(\vec{x}^0), \vec{l} \right).$

Proposition 7.3.6 $\frac{\partial f}{\partial \vec{l}}(\vec{x}^0)$ приймає:

- тах значення $\iff \vec{l} \uparrow \uparrow \operatorname{grad} \vec{f}(\vec{x}^0);$ тіп значення, $\iff \vec{l} \uparrow \downarrow \operatorname{grad} \vec{f}(\vec{x}^0).$

Дійсно, $\frac{\partial f}{\partial \vec{l}}(\vec{x}^0) = \left(\operatorname{grad} f(\vec{x}^0), \vec{l}\right) = \left\|\operatorname{grad} f(\vec{x}^0)\right\| \|\vec{l}\| \cos \alpha = \left\|\operatorname{grad} f(\vec{x}^0)\right\| \cos \alpha$

- $-\max \iff \alpha = 0;$ $-\min \iff \alpha = \pi.$

Неявно задані функції 7.4

Remark 7.4.1 Приклад для розуміння

Задано рівняння кола на площині \mathbb{R}^2 - один з прикладів неявної функції: $x^2 + y^2 - 1 = 0.$

Зрозуміло, що це - не графік функції однієї змінної. Просто тому що кожному значенню x тут ставиться у відповідність два значення y.

Проте якщо розглядати деякий малий окіл т. (x_0, y_0) , то ми отримаємо деякий шматок малюнку, що й буде графіком функції. Зокрема в нашому випадку або $y = \sqrt{1-x^2}$, або $y = -\sqrt{1-x^2}$.

Проте існують певні точки, де цього зробити не можна - точки (1,0), (-1,0). Як би ми не зменшували окіл цієї точки, там завжди кожного іксу два ігрика були б. Я цю точку позначил червоним кольором.

Саме тому з'явилась мотивацію створити теорему, де через рівняння F(x,y)=0 ми можемо отримати y = f(x) в деякому околі т. (x_0, y_0) під деякими важливими умовами.

Важливо розуміти, що функція існує, проте явну формулу отримати не завжди вийде. Зокрема маємо неявну функцію $y^5 + y^3 + y + x = 0$. Щоб знати y = f(x), треба розв'язати рівняння п'ятої степені, проте корені цього многочлена не можна виразити через формулу. І тим не менш, під деякими умовами, ми можемо знати функцію y = f(x), просто без формули.

Theorem 7.4.2 Задано неявну функцію F - неперервно-диференційована в околі т. (x_0, y_0) . Відомо, що виконуються такі умови:

1)
$$F(x_0, y_0) = 0$$
;

1)
$$F(x_0, y_0) = 0;$$

2) $\frac{\partial F}{\partial y}(x_0, y_0) \neq 0.$

Тоді існує єдина функція
$$f$$
 - неперервно-диференційована в меншому околі т. x_0 , причому $F(x,y)=0\iff y=f(x),$ а також $f'(x)=-\frac{\partial F}{\partial x}(x,y)\Big|_{(x,f(x))}$.

Додатково, якщо $F \in C^{(m)}$, то $f \in C^{(m)}$.

Example 7.4.3 Зокрема для
$$F(x,y) = x^2 + y^2 - 1$$
 маємо, що вона - неперервна, $\frac{\partial F}{\partial x} = 2x$ $\frac{\partial F}{\partial y} = 2y$ - диференційована.

Причому
$$\frac{\partial F}{\partial y} \neq 0 \iff y \neq 0.$$

Тому за попередньою теоремою, дійсно, існує функція y = f(x), але найголовніше: $f'(x) = -\frac{x}{y}$.

Theorem 7.4.4 Задано неявну вектор-функцію \vec{F} - неперервно-диференційована в околі т. $(\vec{x}^0, \vec{y}^0) \in$ \mathbb{R}^{m+k} . Відомо, що виконуються такі умови:

- 1) $\vec{F}(\vec{x}^0, \vec{y}^0) = \vec{0};$
- 2) $\det \vec{F}_{y}'(\vec{x}^{0}, \vec{y}^{0}) \neq 0$. Інакше кажучи, існує оборотна матриця.

Тоді існує єдина вектор-функція \vec{f} - неперервно-диференційована в меншому околі т. \vec{x}^0 , причому $\vec{F}(\vec{x}, \vec{y}) = 0 \iff \vec{y} = \vec{f}(\vec{x})$, а також $\vec{f}'(\vec{x}) = -(F_y'(\vec{x}, \vec{y}))^{-1} \cdot F_x'(\vec{x}, \vec{y})\Big|_{(\vec{x}, \vec{f}(\vec{x}))}$.

Без доведення.

Example 7.4.5 Задано вектор-функцію \vec{F} таким чином: $\begin{cases} x^2+y_1^2-\frac{1}{2}y_2^2=F_1(x,y_1,y_2)=0\\ x+y_1+y_2-2=F_2(x,y_1,y_2)=0 \end{cases}$

Маємо
$$\det \vec{F}_y'(x, y_1, y_2) = \det \begin{pmatrix} \frac{\partial F_1}{\partial y_1} & \frac{\partial F_1}{\partial y_2} \\ \frac{\partial F_2}{\partial y_1} & \frac{\partial F_2}{\partial y_2} \end{pmatrix} = \det \begin{pmatrix} 2y_1 & -y_2 \\ 1 & 1 \end{pmatrix} = 2y_1 + y_2 \neq 0 \iff y_2 \neq -2y_1, a$$

тому й $x \neq 2 + y_2$.

Тоді враховуючи обмеження, існує вектор-функція
$$\vec{f}(\vec{x}) = \vec{y}$$
, але тепер знайдемо похідну. Маємо:
$$\vec{F}_y' = \begin{pmatrix} 2y_1 & -y_2 \\ 1 & 1 \end{pmatrix} \implies (\vec{F}_y')^{-1} = \frac{1}{2y_1 + y_2} \begin{pmatrix} 1 & y_2 \\ -1 & 2y_1 \end{pmatrix}$$

$$\vec{F}_x' = \begin{pmatrix} 2x \\ 1 \end{pmatrix}$$

$$\vec{f'} = -(\vec{F'_y})^{-1}\vec{F'_x} = \frac{1}{2y_1 + y_2} \begin{pmatrix} 1 & y_2 \\ -1 & 2y_1 \end{pmatrix} \begin{pmatrix} 2x \\ 1 \end{pmatrix} = \frac{1}{2y_1 + y_2} \begin{pmatrix} 2x + y_2 \\ -2x + 2y_1 \end{pmatrix} = \begin{pmatrix} \frac{2x + y_2}{2y_1 + y_2} \\ \frac{-2x + 2y_1}{2y_1 + y_2} \end{pmatrix}.$$

Обернені функції 7.5

Theorem 7.5.1 Задано вектор-функцію $\vec{g}: U(\vec{y}^0) \to U(\vec{x}^0)$, де $\vec{x}^0 = \vec{g}(\vec{y}^0)$. Відомо, що виконуються такі умови:

- 1) \vec{g} неперервно диференційована;
- 2) $\det \vec{g}'(\vec{y}^0) \neq 0$.

Тоді існує вектор-функція $\vec{f}: U(\vec{x}^0) \to U(\vec{y}^0)$, причому:

- 1) \vec{f} неперервно диференційована;
- 2) $\vec{f}'(\vec{x}) = \vec{g}'(\vec{f}(\vec{x}))^{-1}$.

Вказівка: розглянути функцію $\vec{F}(\vec{x}, \vec{y}) = \vec{x} - \vec{g}(\vec{y}) = \vec{0}$ та застосувати теорему про неявну вектор-функцію.

7.6 Геометричне та алгебраїчне застосування

Дотична площина, нормальна пряма поверхі

Задамо функцію $f:A \to \mathbb{R}$ та $\vec{x}^0 \in A \subset \mathbb{R}^2$ - внутрішня точка. Встановимо таку поверхню:

$$\Pi = \{(x, y, z) : z = f(x, y)\}\$$

Площина в \mathbb{R}^3 , що проходить через т. $(x_0, y_0, z_0), z_0 = f(x_0, y_0),$ задається таким рівнянням:

$$z = z_0 + K_1(x - x_0) + K_2(y - y_0)$$
 $K_1, K_2 \in \mathbb{R}$

Definition 7.6.1 Дотичною площиною до поверхні Π в т. (x_0, y_0) називається площина в \mathbb{R}^3 , що проходить через т. (x_0, y_0, z_0) , для якої виконана рівність

$$z - f(x, y) = o(||(x - x_0, y - y_0)||), (x, y) \to (x_0, y_0)$$

Theorem 7.6.2 Поверхня П має дотичну площину в т. $(x_0, y_0) \iff f$ - диференційована в т. (x_0, y_0) . Причому $K_1 = \frac{\partial f}{\partial x}(x_0, y_0), K_2 = \frac{\partial f}{\partial y}(x_0, y_0).$ Ловедення аналогічне, як в матані \mathbb{R} .

Тоді дотична площина задається таким рівнянням:

$$z - f(x_0, y_0) = \frac{\partial f}{\partial x}(x_0, y_0)(x - x_0) + \frac{\partial f}{\partial y}(x_0, y_0)(y - y_0)$$

Definition 7.6.3 Нормальною прямою до поверхні Π в т. (x_0, y_0) називається пряма в просторі, що проходить через т. $(x_0, y_0, z_0), z_0 = f(x_0, y_0)$ та перпендикулярна до дотичної площини.

Вектор нормалі дотичної площини $\vec{N} = \left(\frac{\partial f}{\partial x}(x_0, y_0), \frac{\partial f}{\partial y}(x_0, y_0), -1\right)$. Це буде напрямним вектором для нормалі прямої. Тоді нормальна пряма задається таким рівнянням:

$$\frac{x - x_0}{\frac{\partial f}{\partial x}(x_0, y_0)} = \frac{y - y_0}{\frac{\partial f}{\partial y}(x_0, y_0)} = \frac{z - z_0}{-1}$$

Example 7.6.4 Задамо функцію $f(x) = x^2 + y^2$. Знайдемо дотичну площину та нормальну пряму

$$f(1,-1) = 2.$$

$$\frac{\partial f}{\partial x}(1,-1) = 2x\Big|_{(1,-1)} = 2 \qquad \qquad \frac{\partial f}{\partial x}(1,-1) = 2y\Big|_{(1,-1)} = -2$$

f(1,-1)=2. $\frac{\partial f}{\partial x}(1,-1)=2x\Big|_{(1,-1)}=2 \qquad \qquad \frac{\partial f}{\partial x}(1,-1)=2y\Big|_{(1,-1)}=-2$. Всі часткові похідні в околі т. (1,-1) неперервні, а тому диференційовані. Отже, можемо отримати

$$z-2=2(x-1)-2(y+1) \implies 2x-2y-z=2;$$

та нормаль:
$$\frac{x-1}{2} = \frac{y+1}{-2} = \frac{z-2}{-1}$$
.

Дотична пряма, нормальна площина кривої

Definition 7.6.5 Крива в просторі \mathbb{R}^3 задається таким рівнянням

$$\begin{cases} x = x(t) \\ y = y(t) & t \in (a, b) \\ z = z(t) \end{cases}$$

Прямою в просторі \mathbb{R}^3 задається таким рівнянням

$$\begin{cases} x = sl_1 + x_0, l_1 \in \mathbb{R} \\ y = sl_2 + y_0, l_2 \in \mathbb{R} \\ z = sl_3 + z_0, l_3 \in \mathbb{R} \end{cases}$$

Definition 7.6.6 Дотичною прямою до кривої $\vec{x} = \vec{x}(t)$ називається пряма в просторі, що проходить через т. (x_0, y_0, z_0) , для якої виконана рівність

$$\begin{cases} x(t) - (x_0 + l_1(t - t_0)) = o(t - t_0) \\ y(t) - (y_0 + l_2(t - t_0)) = o(t - t_0) \\ z(t) - (z_0 + l_3(t - t_0)) = o(t - t_0) \end{cases}$$

Theorem 7.6.7 Пряма $\begin{cases} x = sl_1 + x_0 \\ y = sl_2 + y_0 \\ z = sl_3 + z_0 \end{cases}$ - дотична до кривої $\begin{cases} x = x(t) \\ y = y(t) \\ z = z(t) \end{cases}$ крива - диференційована z = z(t)

Вправа: довести

Тоді дотична пряма задається рівнянням:

$$\begin{cases} x = sx'(t_0) + x_0 \\ y = sy'(t_0) + y_0 \\ z = sz'(t_0) + z_0 \end{cases}, s \in \mathbb{R}$$

Напрямний вектор прямої $\vec{l} = (x'(t_0), y'(t_0), z'(t_0))$. Тоді це буде нормальним вектором для нормальної площини. Нормальна площина задається таким рівнянням:

$$x'(t_0)(x - x_0) + y'(t_0)(y - y_0) + z'(t_0)(z - z_0) = 0$$

Example 7.6.8 Маємо криву $\begin{cases} x=2\sin t\\ y=2\cos t\\ z=-\sin 2t \end{cases}$, де параметр $t\in[0,2\pi]$. Знайдемо дотичну пряму та

нормальну площину в $t_0 = \frac{5\pi}{6}$. Тобто в т. $\left(-1, \sqrt{3}, \frac{\sqrt{3}}{2}\right)$.

$$\begin{cases} x'(t_0) = 2\cos t \Big|_{t=t_0} = \sqrt{3} \\ y'(t_0) = -2\sin t \Big|_{t=t_0} = 1 \\ z'(t_0) = -2\cos 2t \Big|_{t=t_0} = -1 \end{cases}$$

Таким чином, маємо дотичну пряму:

$$\frac{x+1}{\sqrt{3}} = \frac{y-\sqrt{3}}{1} = \frac{z-\frac{\sqrt{3}}{2}}{-1};$$
та нормальну площину:

 $\sqrt{3}(x+1) + (y-\sqrt{3}) - \left(z - \frac{\sqrt{3}}{2}\right) = 0.$

7.6.3 Приблизне обчислення

$$\begin{split} z - f(\vec{x}) &= o(||\vec{x} - \vec{x}^0||) \\ \text{Якщо } \vec{x}_0 \text{ близлький до } \vec{x}, \text{ тобто } ||\vec{x} - \vec{x}^0|| << 1, \text{ то тоді} \\ f(\vec{x}) - z &\approx 0 \\ \Rightarrow f(\vec{x}) \approx z^0 + \frac{\partial f}{\partial x_1} (\vec{x}^0) (x_1 - x_1^0) + \dots + \frac{\partial f}{\partial x_n} (\vec{x}^0) (x_n - x_n^0) \end{split}$$

7.7 Диференціювання та похідні старших порядків

Definition 7.7.1 Задано функцію $f:A\to\mathbb{R}$ та $\vec{x}^0\in A$ - внутрішня точка. Також f - диференційована в т. \vec{x}^0 .

Частковими похідними другого роду від функції f в т. \vec{x}^0 називається вираз:

$$\frac{\partial}{\partial x_j} \left(\frac{\partial f}{\partial x_k} (\vec{x}^0) \right) = \frac{\partial^2 f}{\partial x_j \partial x_k} (\vec{x}^0)$$

Example 7.7.2 Знайдемо всі часткові похідні другого порядку функції $f(x,y) = x^4 + y^4 - 4x^2y^2$.

$$\frac{\partial f}{\partial x} = 4x^3 - 8xy^2 \implies \begin{cases} \frac{\partial^2 f}{\partial x^2} = 12x^2 - 8y^2 \\ \frac{\partial^2 f}{\partial y \partial x} = -16xy \end{cases} \qquad \frac{\partial f}{\partial y} = 4y^3 - 8x^2y \implies \begin{cases} \frac{\partial^2 f}{\partial x \partial y} = -16xy \\ \frac{\partial^2 f}{\partial y \partial x} = 12y^2 - 8x^2 \end{cases}.$$

Можемо зауважити, що $\frac{\partial^2 f}{\partial u \partial x} = \frac{\partial^2 f}{\partial x \partial u}$. Проте в загальному випадку це не так.

Example 7.7.3 Розглянемо функцію $f(x,y) = \begin{cases} xy \frac{x^2 - y^2}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$. Зосередимось лише на

знаходженні $\frac{\partial^2 f}{\partial y \partial x}(0,0), \frac{\partial^2 f}{\partial x \partial y}(0,0).$

$$\frac{\partial f}{\partial x} = \begin{cases} y \frac{x^4 - y^4 + 4x^2y^2}{(x^2 + y^2)^2} & (x, y) \neq (0, 0) \\ 0 & (x, y) = (0, 0) \end{cases} \qquad \frac{\partial f}{\partial y} = \begin{cases} -x \frac{y^4 - x^4 + 4x^2y^2}{(x^2 + y^2)^2} & (x, y) \neq (0, 0) \\ 0 & (x, y) = (0, 0) \end{cases}$$

$$\frac{\partial f}{\partial x} = \begin{cases} y \frac{x^4 - y^4 + 4x^2y^2}{(x^2 + y^2)^2} & (x, y) \neq (0, 0) \\ 0 & (x, y) = (0, 0) \end{cases} \qquad \frac{\partial f}{\partial y} = \begin{cases} -x \frac{y^4 - x^4 + 4x^2y^2}{(x^2 + y^2)^2} & (x, y) \neq (0, 0) \\ 0 & (x, y) = (0, 0) \end{cases}$$

$$\frac{\partial^2 f}{\partial x \partial y}(0, 0) = \lim_{\Delta x \to 0} \frac{\frac{\partial f}{\partial y}(\Delta x, 0) - \frac{\partial f}{\partial y}(0, 0)}{\Delta x} = 1 \qquad \frac{\partial^2 f}{\partial y \partial x}(0, 0) = \lim_{\Delta y \to 0} \frac{\frac{\partial f}{\partial x}(0, \Delta y) - \frac{\partial f}{\partial x}(0, 0)}{\Delta y} = -1$$

Таким чином, $\frac{\partial^2 f}{\partial u \partial x} \neq \frac{\partial^2 f}{\partial x \partial y}$

Theorem 7.7.4 Задано функцію $f: A \to \mathbb{R}$ та $\vec{x}^0 \in A$ - внутрішня точка. Відомо, що $\exists \frac{\partial^2 f}{\partial x_i \partial x_k}(\vec{x}), \frac{\partial^2 f}{\partial x_k \partial x_k}(\vec{x})$

в околі т.
$$\vec{x}^0$$
 та є неперервними в т. \vec{x}^0 . Тоді $\frac{\partial^2 f}{\partial x_j \partial x_k} = \frac{\partial^2 f}{\partial x_k \partial x_j}$.

Mu будемо доводити, коли m=2. Для більших аргументів - аналогічно, але більш технічна cnpaea

Отже, дано f(x,y) та в околі т. (x_0,y_0) існують часткові похідні другого порядку $\exists \frac{\partial^2 f}{\partial x \partial u}, \frac{\partial^2 f}{\partial u \partial x}$ які неперервні в (x_0, y_0) .

Розглянемо вираз $\Delta = f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0 + \Delta x, y_0) - f(x_0, y_0 + \Delta y) + f(x_0, y_0).$ Покладемо функцію $k(s) = f(s, y_0 + \Delta y) - f(s, y_0), s \in [x_0, x_0 + \Delta x].$ Тоді $\Delta = k(x_0 + \Delta x) - k(x_0).$ $k'(s) = (f(s, y_0 + \Delta y) - f(s, y_0))'_s = \frac{\partial f}{\partial s}(s, y_0 + \Delta y) - \frac{\partial f}{\partial s}(s, y_0).$

Оскільки нам відомі другі часткові похідні, то зрозуміло, що в нас існує $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}$, причому в тому самому околі т. (x_0,y_0) . Тобто звідси k - диференційована на $[x_0,x_0+\Delta x]$, тоді за теоремою Лагранжа, $\exists \xi_1 \in (x_0,x_0+\Delta x): \Delta = k(x_0+\Delta x)-k(x_0)=k'(\xi_1)\Delta x=\left(\frac{\partial f}{\partial s}(\xi_1,y_0+\Delta y)-\frac{\partial f}{\partial s}(\xi_1,y_0)\right)\Delta x.$

Покладемо функцію $m(t) = \frac{\partial f}{\partial s}(\xi_1, t), t \in [y_0, y_0 + \Delta y].$ Тоді $\Delta = (m(y_0 + \Delta y) - m(y_0))\Delta x.$

$$m'(t) = \left(\frac{\partial f}{\partial s}(\xi_1, t)\right)'_1 = \frac{\partial}{\partial t}\left(\frac{\partial f}{\partial s}(\xi_1, t)\right) = \frac{\partial^2 f}{\partial t \partial s}(\xi_1, t).$$

Похідна дійсно існує за умовою теореми, тобто m - диференційована на $[y_0,y_0+\Delta y]$, тоді за теоремою Лагранжа, $\exists \eta_1 \in (y_0, y_0 + \Delta y) : \Delta = (m(y_0 + \Delta y) - m(y_0))\Delta x = m'(\eta_1)\Delta y \Delta x = \frac{\partial^2 f}{\partial t \partial s}(\xi_1, \eta_1)\Delta y \Delta x.$

Повернімось до виразу $\Delta = f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0 + \Delta x, y_0) - f(x_0, y_0 + \Delta y) + f(x_0, y_0)$, ми розглянемо її з іншої сторони.

Покладемо функцію $p(t) = f(x_0 + \Delta x, t) - f(x_0, t), t \in [y_0, y_0 + \Delta y]$. Тоді $\Delta = p(y_0 + \Delta y) - p(y_0)$.

А далі я буду просто продовжувати рівність, міркування аналогічні, що пов'язані зі застосуванням теореми Лагранжа двічі:

$$\Delta = p(y_0 + \Delta y) - p(y_0) = p'(\eta_2) \Delta y = (f(x_0 + \Delta x, t) - f(x_0, t))_t'(\eta_2) \Delta y = \left(\frac{\partial f}{\partial t}(x_0 + \Delta x, \eta_2) - \frac{\partial f}{\partial t}(x_0, \eta_2)\right) \Delta y = q(s) = \frac{\partial f}{\partial t}(s, \eta_2)$$

$$\boxed{\equiv} (q(x_0+\Delta x)-q(x_0))\Delta y=q'(\xi_2)\Delta x\Delta y=\left(\frac{\partial f}{\partial t}(s,\eta_2)\right)_s'(\xi_2)\Delta x\Delta y=\frac{\partial^2 f}{\partial s\partial t}(\xi_2,\eta_2)\Delta x\Delta y.}$$
 Зауважу, що $\eta_2\in (y_0,y_0+\Delta y), \xi_2\in (x_0,x_0+\Delta x).$

Отримали таку рівність: $\frac{\partial^2 f}{\partial t \partial s}(\xi_1,\eta_1) \Delta y \Delta x = \frac{\partial^2 f}{\partial s \partial t}(\xi_2,\eta_2) \Delta x \Delta y \implies \frac{\partial^2 f}{\partial t \partial s}(\xi_1,\eta_1) = \frac{\partial^2 f}{\partial s \partial t}(\xi_2,\eta_2).$ Нарешті, за умовою задачі, другі часткові похідні є неперервними в т. (x_0,y_0) , тому далі одночасно прямуємо $x \to x_0, y \to y_0 \implies \Delta x \to 0, \Delta y \to 0$. Оскільки $\xi_1, \xi_2 \in (x_0, x_0 + \Delta x)$ $\eta_1, \eta_2 \in (y_0, y_0 + \Delta y)$,

то звідси $\xi_1, \xi_2 \to x_0$ та $\eta_1, \eta_2 \to y_0$. Остаточно отримаємо $\frac{\partial^2 f}{\partial u \partial x}(x_0, y_0) = \frac{\partial^2 f}{\partial x \partial y}(x_0, y_0)$ (літери s, t я замінив на x, y, результат не зміниться).

Definition 7.7.5 Задано функцію $f:A\to\mathbb{R}$ та $\vec{x}^0\in A$ - внутрішня точка.

Функція f називається двічі диференційованою в т. \vec{x}^0 , якщо всі часткові похідні існують в околі т. \vec{x}^0 та диференційовані в т. \vec{x}^0 .

Example 7.7.6 Маємо функцію $z = x^2 + 2y^2 - 5xy$. З'ясуємо, чи буде ця функція двічі диференційованою.

$$\frac{\partial z}{\partial x} = 2x - 5y \qquad \qquad \frac{\partial z}{\partial y} = 4y - 5x$$

$$\frac{\partial^2 z}{\partial x^2} = 2 \qquad \qquad \frac{\partial^2 z}{\partial y \partial x} = -5$$

функція
$$\frac{\partial z}{\partial x}$$
 - диференційована. $\frac{\partial^2 z}{\partial x \partial y} = -5$ $\qquad \qquad \frac{\partial^2 z}{\partial y^2} = 4$

Example 7.7.6 Маємо функцію $z=x^-+zy^--5xy$. З ясуємо, чи оуде цл функціл дві ї двіформації від полідні існують в будь-якому околі деякої точки. $\frac{\partial^2 z}{\partial x^2} = 2 \qquad \frac{\partial^2 z}{\partial y \partial x} = -5$ Отримані часткові похідні визначені та неперервні в будь-якій точці. Таким чином, за **Th.4.1.8.**, функція $\frac{\partial z}{\partial x}$ - диференційована. $\frac{\partial^2 z}{\partial x \partial y} = -5 \qquad \frac{\partial^2 z}{\partial y^2} = 4$ Отримані часткові похідні визначені та неперервні в будь-якій точці. Таким чином, за **Th.4.1.8.**, ∂z функція $\frac{\partial z}{\partial y}$ - диференційована.

Отже, за означенням, z - двічі диференційована функція.

Proposition 7.7.7 Функція f двічі диференційована в т. $\vec{x}^0 \iff \operatorname{grad} f$ - диференційована в т. \vec{x}^0 .

Proof.

Дійсно, f - двічі диференційована в т. $\vec{x}^0 \iff \forall j = \overline{1,m} : \exists \frac{\partial f}{\partial x_i}$ - диференційована в т. $\vec{x}^0 \iff$

$$\operatorname{grad} f = egin{pmatrix} \frac{\partial f}{\partial x_1} \\ \vdots \\ \frac{\partial f}{\partial x_m} \end{pmatrix}$$
 - як вектор-функція - диференційована в т. \vec{x}^0 .

Розпишемо диференційованість вектор-функції grad f в т. \vec{x}^0 за означенням: $\operatorname{grad} f(\vec{x}^0 + \Delta \vec{x}) - \operatorname{grad} f(\vec{x}^0) = M\Delta \vec{x} + \vec{o}(\|\Delta \vec{x}\|), \Delta \vec{x} \to \vec{0}.$

Звідси ми маємо, що
$$M=\begin{pmatrix} \frac{\partial}{\partial x_1} \left(\frac{\partial f}{\partial x_1}\right) & \cdots & \frac{\partial}{\partial x_m} \left(\frac{\partial f}{\partial x_1}\right) \\ \vdots & \ddots & \vdots \\ \frac{\partial}{\partial x_n} \left(\frac{\partial f}{\partial x_m}\right) & \cdots & \frac{\partial}{\partial x_m} \left(\frac{\partial f}{\partial x_m}\right) \end{pmatrix}= \\ =\begin{pmatrix} \frac{\partial^2 f}{\partial x_1^2} & \cdots & \frac{\partial^2 f}{\partial x_m \partial x_1} \\ \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n^2} & \cdots & \frac{\partial^2 f}{\partial x_n^2} \end{pmatrix} (\vec{x}^0) = H(\vec{x}^0) = f''(\vec{x}^0)$$
 - матриця Гесе

 Матриця Гесе описує **другу похідну** функції f в т. \vec{x}^0 та одночасно **похідну** вектор-функції grad fв т. \vec{x}^0 . Якщо матриця буде квадратною, то ми можемо обчислити $\det f''(\vec{x}^0)$ - **recia**н.

Definition 7.7.8 Задано функцію $f:A \to \mathbb{R}$ та $\vec{x}^0 \in A$ - внутрішня точка. Також f - диференційована

Другим диференціалом функції f називають вираз:

$$d^2 f(\vec{x}^0) = d(df(\vec{x}^0))$$

З'ясуємо, як цей вираз можна по-інакшому записати. Маємо:
$$d^2f = d\left(df\right) = d\left(\frac{\partial f}{\partial x_1}\,dx_1 + \dots + \frac{\partial f}{\partial x_m}\,dx_m\right) = d\left(\frac{\partial f}{\partial x_1}\,dx_1\right) + \dots + d\left(\frac{\partial f}{\partial x_m}\,dx_m\right) = \\ = d\left(\frac{\partial f}{\partial x_1}\right)\,dx_1 + \dots + d\left(\frac{\partial f}{\partial x_m}\right)\,dx_m = \left(\frac{\partial}{\partial x_1}\left(\frac{\partial f}{\partial x_1}\right)\,dx_1 + \dots + \frac{\partial}{\partial x_m}\left(\frac{\partial f}{\partial x_1}\right)\,dx_m\right)\,dx_1 + \dots + \\ \left(\frac{\partial}{\partial x_1}\left(\frac{\partial f}{\partial x_m}\right)\,dx_1 + \dots + \frac{\partial}{\partial x_m}\left(\frac{\partial f}{\partial x_m}\right)\,dx_m\right)\,dx_m = \\ = \left(\frac{\partial^2 f}{\partial x_1^2}\,dx_1^2 + \dots + \frac{\partial^2 f}{\partial x_m\partial x_1}\,dx_m\,dx_1\right) + \dots + \left(\frac{\partial^2 f}{\partial x_1\partial x_m}\,dx_1\,dx_m + \dots + \frac{\partial^2 f}{\partial x_m^2}\,dx_m^2\right) = \sum_{i,j=1}^m \frac{\partial^2 f}{\partial x_i\partial x_j}\,dx_i\,dx_j.$$

Отже, маємо іншу формулу для другого диференціалу в т. \vec{x}^0 :

$$d^2 f(\vec{x}^0) = \sum_{i,j=1}^m \frac{\partial^2 f}{\partial x_i \partial x_j}(\vec{x}^0) \, dx_i \, dx_j$$

Або це можна записати в "лінійно-алгебраїчному" вигляді:

$$d^{2}f(\vec{x}^{0}) = \left(\frac{\partial}{\partial x_{1}} dx_{1} + \dots + \frac{\partial}{\partial x_{m}} dx_{m}\right)^{2} f(\vec{x}^{0})$$

Example 7.7.9 Знайдемо другий диференціал функції $z = x^3 + 2y^2 - 5xy$. Ми вже шукали другі часткові похідні $\frac{\partial^2 f}{\partial x^2} = 6x \quad \frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x} = -5 \quad \frac{\partial^2 f}{\partial y^2} = 4$. Таким чином, $d^2z = \frac{\partial^2 f}{\partial x^2} dx^2 + 2 \frac{\partial^2 f}{\partial x \partial y} dx dy + \frac{\partial^2 f}{\partial y^2} dy^2 = 6x dx^2 - 10 dx dy + 4 dy^2.$

Definition 7.7.10 Задано функцію $f:A \to \mathbb{R}$ та $\vec{x}^0 \in A$ - внутрішня точка. Також f - m разів диференційована в т. \vec{x}^0 .

Частковим похідним m+1-го порядку в т. \vec{x}^0 називають похідну:

$$\frac{\partial}{\partial x_{j_{m+1}}} \left(\frac{\partial^m f}{\partial x_{j_1} \partial x_{j_2} \dots \partial x_{j_m}} \right) (\vec{x}^0) = \frac{\partial^{m+1} f}{\partial x_{j_{m+1}} \partial x_{j_1} \partial x_{j_2} \dots \partial x_{j_m}} (\vec{x}^0)$$

$$j_1 + j_2 + \dots + j_m + j_{m+1} = m + 1$$

Remark 7.7.11 Що таке **похідна** m-го порядку, визначати не буду, бо ще рано.

7.8 Формула Тейлора

Зробимо певні позначення:

$$[\vec{x}^0, \vec{x}] = \{(1-t)\vec{x}^0 + t\vec{x} : t \in [0,1]\}$$
$$(\vec{x}^0, \vec{x}) = \{(1-t)\vec{x}^0 + t\vec{x} : t \in (0,1)\}$$

Theorem 7.8.1 Теорема Тейлора (у формі Лагранжа)

Задано функцію $f:A \to \mathbb{R}$ та $\vec{x}^0 \in A$ - внутрішня точка. Відомо, що f - диференційована n+1разів в околі т. \vec{x}^0 . Тоді $\exists \vec{\xi} \in (\vec{x}^0, \vec{x})$ або (\vec{x}, \vec{x}^0) , для якого

$$f(\vec{x}) = f(\vec{x}^0) + \frac{f'(\vec{x}^0)}{1!}(\vec{x} - \vec{x}^0) + \frac{f''(\vec{x}^0)}{2!}(\vec{x} - \vec{x}^0)^2 + \dots + \frac{f^{(n)}(\vec{x}^0)}{m!}(\vec{x} - \vec{x}^0)^n + \frac{f^{(n+1)}(\vec{\xi})}{(n+1)!}(\vec{x} - \vec{x}^0)^{n+1}$$

$$f^{(k)}$$
 $f^{(k)}$ $f^{(k)}$ $f^{(k)}$ $f^{(k)}$ $f^{(k)}$ я розумію як диференціал $d^k f(\vec{x}^0)$, що має свою формулу:
$$d^k f(\vec{x}^0) = \sum_{j_1, \dots, j_k = 1}^m \frac{\partial^k f}{\partial x_{j_1} \dots \partial x_{j_k}} (\vec{x}^0) \cdot dx_{j_1} \dots dx_{j_k}$$

Замість $dx_{j_1} \dots dx_{j_k}$ можна писати $(x_{j_1} - x_{j_1}^0) \dots (x_{j_k} - x_{j_k}^0)$.

Proof.

Розглянемо функцію $p(t) = f(\vec{x}^0 + t(\vec{x} - \vec{x}^0))$, тут $|t| \le 1$ - функція від однієї змінної.

Знайдемо похідні від цієї функції:

$$p''(t) = [f'(\vec{x}^0 + t(\vec{x} - \vec{x}^0)) \cdot (\vec{x} - \vec{x}^0)]_t' \stackrel{\text{аналогічно}}{=} f''(\vec{x}^0 + t(\vec{x} - \vec{x}^0))(\vec{x} - \vec{x}^0)^2$$

$$p^{(k)}(t) = f^{(k)}(\vec{x}^0 + t(\vec{x} - \vec{x}^0))^k.$$

Коротше, наша функція n+1 разів диференційована на [0,1]. Тому ми можемо розкласти формулу Тейлора як функцію з однією змінною. $\exists \xi \in (0,1)$:

$$p(t) = p(0) + \frac{p'(0)}{1!}(1-0) + \frac{p''(0)}{2!}(1-0)^2 + \dots + \frac{p^{(n)}(0)}{n!}(1-0)^n + \frac{p^{(n+1)}(\xi)}{(n+1)!}(1-0)^{n+1}.$$

 $p(0) = f(\vec{x}^0)$

$$p'(0) = f'(\vec{x}^0)(\vec{x} - \vec{x}^0)$$

$$p'(0) = f'(\vec{x}^0)(\vec{x} - \vec{x}^0) p''(0) = f''(\vec{x}^0)(\vec{x} - \vec{x}^0)^2$$

$$p^{(n+1)}(\xi) = f^{(n+1)}(\vec{x}^0 + \xi(\vec{x} - \vec{x}^0)(\vec{x} - \vec{x}^0)^{n+1})$$

Отже,
$$f(\vec{x}) = f(\vec{x}^0) + \frac{f'(\vec{x}^0)}{1!}(\vec{x} - \vec{x}^0) + \frac{f''(\vec{x}^0)}{2!}(\vec{x} - \vec{x}^0)^2 + \dots + \frac{f^{(n)}(\vec{x}^0)}{n!}(\vec{x} - \vec{x}^0)^n + \frac{f^{(n+1)}(\vec{\xi})}{(n+1)!}(\vec{x} - \vec{x}^0)^{n+1},$$
 де $\vec{\xi} = \vec{x}^0 + \xi(\vec{x} - \vec{x}^0) \in (\vec{x}^0, \vec{x}).$

Можна обережно довести, що $\frac{f^{(n+1)}(\vec{\xi})}{(n+1)!}(\vec{x}-\vec{x}^0)^{n+1} = o(\|\vec{x}-\vec{x}^0\|^n), \vec{x} \to \vec{x}^0$. Тоді матимемо формулу Тейлора в формі Пеано:

$$f(\vec{x}) = f(\vec{x}^0) + \frac{f'(\vec{x}^0)}{1!}(\vec{x} - \vec{x}^0) + \frac{f''(\vec{x}^0)}{2!}(\vec{x} - \vec{x}^0)^2 + \dots + \frac{f^{(n)}(\vec{x}^0)}{n!}(\vec{x} - \vec{x}^0)^n + o(\|\vec{x} - \vec{x}^0\|^n), \vec{x} \to \vec{x}^0.$$

Example 7.8.2 Розкласти функцію $f(x,y) = e^{x+y}$ відносно т. $(x_0,y_0) = (1,-1)$.

Заздалегідь зауважимо, що $\frac{\partial^s f}{\partial x^{s_1} \partial u^{s_2}}(1,-1) = e^{x+y}|_{(1,-1)} = 1$, де $s_1+s_2=s$.

$$f(1,-1) = 1$$

$$f'(1,-1)(\vec{x} - \vec{x}^0) = (x-1) + (y+1)$$

$$f''(1,-1)(\vec{x} - \vec{x}^0)^2 = (x-1)^2 + 2(x-1)(y+1) + (y+1)^2$$

$$f'''(1,-1)(\vec{x} - \vec{x}^0)^3 = (x-1)^3 + 3(x-1)^2(y+1) + 3(x-1)(y+1)^2 + (y+1)^3$$
.

$$f(x,y) = 1 + \left[\frac{(x-1)}{1!} + \frac{(y+1)}{1!} \right] + \left[\frac{(x-1)^2}{2!} + \frac{2(x-1)(y+1)}{2!} + \frac{(y+1)^2}{2!} \right] + \dots + \left[\frac{(x-1)^n}{n!} + \frac{C_2^n(x-1)^{n-1}(y+1)}{n!} + \dots + \frac{(y+1)^n}{n!} \right] + o\left(\sqrt{(x-1)^2 + (y+1)^2}\right) = \sum_{k=1}^n \sum_{p=0}^k \frac{C_k^p}{k!} (x-1)^{k-p} (y+1)^p + o\left(\sqrt{(x-1)^2 + (y+1)^2}\right), (x,y) \to (1,-1).$$

Remark 7.8.3 Можна формулу Тейлора записати в якості ряда Тейлора за певними умовами, але я цього робити не буду.

7.9Локальні екстремуми

Definition 7.9.1 Задано функцію $f:A \to \mathbb{R}$ та $\vec{x}^0 \in A$ - внутрішня точка. Точка \vec{x}^0 називається точкою:

- локального максимуму, якщо $\exists U_{\varepsilon}(\vec{x}^0): \forall \vec{x} \in U_{\varepsilon}(\vec{x}^0): f(\vec{x}^0) \geq f(\vec{x});$

- локального мінімуму, якщо $\exists U_{\varepsilon}(\vec{x}^0): \forall \vec{x} \in U_{\varepsilon}(\vec{x}^0): f(\vec{x}^0) \leq f(\vec{x})$ для строгих екстремумів нерівність строга та існують околи $U_{\varepsilon}(\vec{x}^0) \setminus \{\vec{x}^0\}$.

Theorem 7.9.2 Необхідна умова локального екстремуму

Задано функцію $f:A \to \mathbb{R}$ така, що має всі часткові похідні в т. $\vec{x}^0 \in A$ - внутрішня.

Відомо, що \vec{x}^0 - локальний екстремум. Тоді $\frac{\partial f}{\partial x_i}(\vec{x}^0) = 0, \forall j = \overline{1, m}$.

Proof.

Розглянемо функцію $h(x_1)=f(x_1,x_2^0,\dots,x_m^0)$ - функція від однієї змінної, така, що x_1^0 - локальний екстремум. Для інших змінних аналогічно. Більш того, $h'(x_1) = \frac{\partial f}{\partial x_1}(x_1, x_2^0, \dots, x_m^0)$. Таким чином, за необхідною умовою локального екстремуму матана 1 семестру,

$$h'(x_1) = 0 \implies \frac{\partial f}{\partial x_1}(x_1^0, x_2^0, \dots, x_m^0) = 0.$$

Definition 7.9.3 Точка \vec{x}^0 називається **критичною** для функції f, якщо всі часткові похідні в заданній точці нулеві.

Надалі вважається, що ви ознайомлені з означенням додатньо/від'ємно визначеними матрицями та з критерієм Сільвестра.

Lemma 7.9.4 Задано симетричну матрицю
$$B(\vec{x}) = \begin{pmatrix} b_{11}(\vec{x}) & \dots & b_{1m}(\vec{x}) \\ \vdots & \ddots & \vdots \\ b_{1m}(\vec{x}) & \dots & b_{mm}(\vec{x}) \end{pmatrix}$$
 - неперервна на множині

A та т. $\vec{x}^0 \in A$ - внутрішня точка. Відомо, що $B(\vec{x}^0)$ - строго додатньо/від'ємно визначена. Тоді в деякому околі т. \vec{x}^0 матриця $B(\vec{x})$ - строго додатня/від'ємно визначена.

Proof.

Будемо доводити для випадку строго додатньої визначеності.

За умовою, $B(\vec{x}) \in C(A)$, тобто всі функції в матриці неперервні. Обчислюючи кутові мінори $\Delta_k, k = \overline{1, n}$, отримаємо, що $\Delta_k \in C(A)$ за властивостями неперервності.

За критерієм Сільвества, маємо $\forall k=\overline{1,m}:\Delta_k(\vec{x}^0)>0.$ Оскільки \vec{x}^0 - внутрішня та $\Delta_k\in C(A)$, то $\exists U_{\delta_k}(\vec{x}^0), \text{ де } \forall \vec{x} \in U_{\delta_k}(\vec{x}^0) : \Delta_k(\vec{x}) > 0.$

Оберемо $\varepsilon = \min\{\delta_1, \dots, \delta_m\}$, тоді $\forall \vec{x} \in U_\delta(\vec{x}^0) : \forall k = \overline{1, n} : \Delta_k(\vec{x}) > 0$. Тоді за критерієм Сильвестра, $B(\vec{x})$ - строго додатньо визначена в околі $U_\delta(\vec{x}^0)$.

Corollary 7.9.5 Якщо матриця $B(\vec{x}^0)$ - знако невизначена, то в деякому околі т. \vec{x}^0 матриця $B(\vec{x})$ - знако не визначена.

Proof.

!Припустимо, що в будь-якому околі $U_{\delta}(\vec{x}^0)$ знайдеться \vec{x}_{δ} , для якої $B(\vec{x}_{\delta})$ - строго додатно визначена.

Покладемо $\delta = \frac{1}{n}$, тоді $\exists \vec{x}^{(n)} : \|\vec{x}^0 - \vec{x}^{(n)}\| < \frac{1}{n}$, але $B(\vec{x}^{(n)})$ - строго додатно визначена. Якщо $\vec{x}^{(n)} \to \vec{x}^0$, то за неперервністю, $B(\vec{x}^{(n)}) \to B(\vec{x}^0)$, звідси оскільки $(B(\vec{x}^{(n)})\vec{t}, \vec{t}) > 0, \forall \vec{t}$, то тоді

 $(B(\vec{x}^0)\vec{t},\vec{t}) \geq 0, \forall \vec{t}$. Тобто матриця $\vec{B}(\vec{x}^0)$ - невід'ємно визначена. Суперечність!

Якщо припускати строго від'ємну визначеність, то міркування аналогічні.

Theorem 7.9.6 Достатня умова локального екстремуму

Задано функцію $f:A \to \mathbb{R}$, таку, що f - двічі неперервно-диференційована в околі т. $\vec{x}^0 \in A$ критична точка.

- 1) Нехай $f''(\vec{x}^0)$ строго додатньо визначена. Тоді \vec{x}^0 строгий локальний мінімум;
- 2) Нехай $f''(\vec{x}^0)$ строго від'ємно визначена. Тоді \vec{x}^0 строгий локальний максимум;
- 3) Нехай $f''(\vec{x}^0)$ знако-невизначена. Тоді \vec{x}^0 не локальний екстремум.

Proof.

1) $f''(\vec{x}^0)$ - строго додатньо визначена. Тоді за лемою, $\exists U_\delta(\vec{x}^0): \forall \vec{x} \in U_\delta(\vec{x}^0): f''(\vec{x})$ - строго додатньо визначена. Ми т. \vec{x} зафіксуємо.

За умовою, \vec{x}^0 - критична точка $\implies f'(\vec{x}^0) = \vec{0}$. Запишемо функцію у вигляді формули Тейлора до другої похідної:

$$f(\vec{x}) = f(\vec{x}^0) + \frac{f'(\vec{x}^0)}{1!}(\vec{x} - \vec{x}^0) + \frac{f''(\vec{\xi})}{2!}(\vec{x} - \vec{x}^0)^2, \text{ де } \vec{\xi} \in (\vec{x}^0, \vec{x}) \text{ або } (\vec{x}, \vec{x}^0).$$

$$\implies f(\vec{x}) - f(\vec{x}^0) = \frac{1}{2} \left(f''(\vec{\xi})(\vec{x} - \vec{x}^0), (\vec{x} - \vec{x}^0) \right)$$
. Зокрема $f''(\vec{\xi})$ - також додатньо визначена, а тому за означенням, $\left(f''(\vec{\xi})(\vec{x} - \vec{x}^0), (\vec{x} - \vec{x}^0) \right) > 0$. Звідси $f(\vec{x}) - f(\vec{x}^0) > 0$ $\implies \forall \vec{x} \in U_{\varepsilon}(\vec{x}^0) : f(\vec{x}) > f(\vec{x}^0) \implies \vec{x}^0$ - локальний мінімум.

- 2) Аналогічно до 1).
- 3) Дороговцев пише ось що: зауважимо, що якщо $f''(\vec{x}^0)$ знако невизначена, то для будь-якого окілу $U_{\delta}(\vec{0})$ будуть існувати вектори \vec{a}, \vec{b} , щоб $f''(\vec{x}^0)\vec{a}^2 > 0$ та $f''(\vec{x}^0)\vec{b} < 0$. (це єдине, шо я не розумію).

7.10 Умовні локальні екстремуми

Definition 7.10.1 Задано функцію $f:A \to \mathbb{R}$ та A - відкрита множина. Задано систему функцій $\phi_i: A \to \mathbb{R}$, де $j = \overline{1,s}, s < m$. Покладемо множину $M = \{\vec{x} \in A: \phi_i(\vec{x}) = 0, j = \overline{1,s}\}.$

Тоді рівняння $\phi_i(\vec{x}) = 0, j = \overline{1,s}$ називають **рівняннями зв'язку**.

Точка $\vec{x}^0 \in M$ називається **умовним локальним**:

- максимумом, якщо $\exists U_{\varepsilon}(\vec{x}^0): \forall \vec{x} \in M \cap U_{\varepsilon}(\vec{x}^0): f(\vec{x}^0) \geq f(\vec{x})$
- мінімумом, якщо $\exists U_{\varepsilon}(\vec{x}^0): \forall \vec{x} \in M \cap U_{\varepsilon}(\vec{x}^0): f(\vec{x}^0) \leq f(\vec{x})$

Для строгих екстремумів нерівність строга та існують околи $U_{\varepsilon}(\vec{x}^0)\setminus\{\vec{x}^0\}$.

Example 7.10.2 Маємо функцію $z = x^2 + y^2$ та рівняння зв'язку $\phi_1(x,y) = x^2 + y^2 - 25 = 0$. Вона має умовні екстремуми в т. (3,4),(-3,-4) на множині M. Як їх шукати, дізнаємось потім.

Одразу формулювати теорему буде складно, тому ми будемо спочатку будувати наші роздуми, як зрозуміти, що \vec{x}^0 - умовний локальний екстремум

Маємо множину $M=\{\vec{x}:\phi_j(\vec{x})=0,j=\overline{1,s}\}$ та \vec{x}^0 - локальний екстремум

Розглянемо диференційовану криву $\gamma = \{\vec{x}(t), t \in (-\delta, \delta)\} \subset M \cap U_{\varepsilon}(\vec{x}^0)$, причому нехай $\vec{x}(0) = \vec{x}^0$ Функцію $f(\vec{x})$ звузимо на криву γ - отримаємо функцію $h(t) = f(\vec{x}(t))$, де має локальний екстремум в т. $t_0 = 0$. Тоді за необхідною умовою, h'(0) = 0

3 іншого боку, $h'(0) = f'(\vec{x}(0)) \cdot \vec{x}'(0)$

Tyr
$$f'(\vec{x}(0)) = \left(\frac{\partial f}{\partial x_1}(\vec{x}(0)) \dots \frac{\partial f}{\partial x_n}(\vec{x}(0))\right)$$

А також $\vec{x}'(0) = (x_1'(0) \dots x_n'(0))$ Множимо два вектори скалярно

$$\boxed{\equiv} \frac{\partial f}{\partial x_1}(\vec{x}^0)x_1'(0) + \dots + \frac{\partial f}{\partial x_n}(\vec{x}^0)x_n'(0) = (\operatorname{grad} f(\vec{x}^0), \vec{x}'(0))$$

$$\Longrightarrow (\operatorname{grad} f(\vec{x}^0), \vec{x}'(0)) = 0 \Longrightarrow \operatorname{grad} f(\vec{x}^0) \perp \vec{x}'(0)$$

$$\implies (\operatorname{grad} f(\vec{x}^0), \vec{x}'(0)) = 0 \implies \operatorname{grad} f(\vec{x}^0) \perp \vec{x}'(0)$$

Маємо зв'язок: $h'(0) = 0 \iff \operatorname{grad} f(\vec{x}^0) \perp \vec{x}'(0)$

З'ясуємо, які властивості має $\vec{x}'(0)$, якщо $\gamma = \{\vec{x}(t), t \in (-\delta, \delta)\} \subset M$

Отже,
$$\vec{x}(t) \subset M \iff \phi_j(\vec{x}(t)) = 0 \iff \phi'_j(\vec{x}(0)) \cdot \vec{x}'(0) = 0 \iff \operatorname{grad} \phi_j(\vec{x}^0) \perp \vec{x}'(0)$$
 Маємо зв'язок 2: $\forall j = \overline{1,s} : \operatorname{grad} \phi_j(\vec{x}^0) \perp \vec{x}'(0) \iff \vec{x}(t) \subset M$

(*) Чому в зворотній бік працює: $\phi_i'(\vec{x}(0)) \cdot \vec{x}'(0) = 0$. Тоді $\vec{x}'(0)$ перпендикулярна всім дотичним площинам до поверхонь $\phi_i(\vec{x}(t)) = 0$, тож $\vec{x}'(0)$ - дотичний вектор кривої $\gamma \Rightarrow \gamma \subset M$

Підсумуємо:

$$\forall j = \overline{1,s} : \operatorname{grad} \phi_j(\vec{x}^0) \perp \vec{x}'(0) \iff \vec{x}(t) \subset M \iff h(t) = f(\vec{x}(t))$$
 має екстремум в т. $\vec{x}^0 \iff h'(0) = 0 \iff \operatorname{grad} f(\vec{x}^0) \perp \vec{x}'(0)$

Крива γ - довільно обрана, тоді $\vec{x}'(0)$ - довільний, що під умовами зв'язку

Тоді наша еквівалентність каже про те, що

 $\operatorname{grad} f(\vec{x}^0) \in \operatorname{span}\{\operatorname{grad}\phi_i(\vec{x}^0): j=\overline{1,s}\}$ - ця лінійна оболонка в силу рангу є лінійно незалежною. Тому кожний елемент, який туди потрапляє, розкладається лінійною комбінацією елементів, власне

$$\exists \lambda_j, j = \overline{1, s} : \operatorname{grad} \vec{f}(\vec{x}^0) = \lambda_1 \operatorname{grad} \phi_1(\vec{x}^0) + \dots + \lambda_s \operatorname{grad} \phi_s(\vec{x}^0)$$

Отримали теорему

Theorem 7.10.3 Необхідна умова умовного локального екстремуму

Задана множина $M=\{\vec{x}:\phi_i(\vec{x})=0,j=\overline{1,s}\}$ та функція $f:A\to\mathbb{R}$ така, що $f\in C'(A)$

Відомо, що \vec{x}^0 - точка умовного локального екстремуму. Тоді

$$\exists \lambda_1, \dots, \lambda_s : \operatorname{grad} \vec{f}(\vec{x}^0) - (\lambda_1 \operatorname{grad} \phi_1(\vec{x}^0) + \dots + \lambda_s \operatorname{grad} \phi_s(\vec{x}^0)) = 0$$

 $\exists \lambda_1, \dots, \lambda_s : \operatorname{grad} \vec{f}(\vec{x}^0) - (\lambda_1 \operatorname{grad} \phi_1(\vec{x}^0) + \dots + \lambda_s \operatorname{grad} \phi_s(\vec{x}^0)) = 0$

До речі, останню умову можна переписати таким чином

Ми створимо лагранжіан $L(\vec{x}, \lambda_1, \dots, \lambda_s) = f(\vec{x}) - \sum_{i=1}^s \lambda_i \phi_k(\vec{x})$

Тоді в т. \vec{x}^0 - екстремум, отже, $L'_{\vec{x}}(\vec{x}^0, \lambda_1, \dots, \lambda_s) = 0$

Theorem 7.10.4 Достатня умова умовного локального екстремуму

Задана множина $M=\{\vec{x}:\phi_j(\vec{x})=0,j=\overline{1,s}\}$ та функція $f:A\to\mathbb{R}$ така, що $f\in C''(A)$ Відомо, що

- $1) \ \vec{x}^0$ критична точка для лагранжіана
- 2) $\forall \vec{h} \in \mathbb{R}^n$, для яких $\operatorname{grad} \phi_i(\vec{x}^0) \perp \vec{h}$, визначається квадратична форма

$$L''_{ec{x},ec{x}}(ec{x}^0,\lambda_1,\ldots,\lambda_s)ec{h}^2 = \sum_{j,k=1}^n rac{\partial^2 L(ec{x}^0,\lambda_1,\ldots,\lambda_s)}{\partial x_j \partial x_k} h_j h_k$$
. Якщо права частина виразу

- більше нуля, то \vec{x}^0 точка строго умного локального мінімуму
- менше нуля, то \vec{x}^0 точка строго умного локального мінімуму
- для знако-невизначених квадратичних форм \vec{x}^0 не умовний екстремум

Якщо брати т. $\vec{x} \in M$, то тоді лагранжіан $L(\vec{x}, \lambda_1, \dots, \lambda_s) = f(\vec{x})$ Для неї застосуємо формулу Тейлора

$$L(\vec{x}, \lambda_1, \dots, \lambda_s) = L(\vec{x}^0, \lambda_1, \dots, \lambda_s) + \frac{L'_{\vec{x}}(\vec{x}^0, \lambda_1, \dots, \lambda_s)}{1!} (\vec{x} - \vec{x}^0) + \frac{L''_{\vec{x}, \vec{x}}(\vec{x}^0 - \theta(\vec{x} - \vec{x}^0), \lambda_1, \dots, \lambda_s)}{2!} (\vec{x} - \vec{x}^0)^2$$

Тоді отримаємо, що
$$f(\vec{x}) - f(\vec{x}^0) = \frac{L''_{\vec{x},\vec{x}}(\vec{x}^0 - \theta(\vec{x} - \vec{x}^0), \lambda_1, \dots, \lambda_s)}{2!} (\vec{x} - \vec{x}^0)^2$$
 Томор део за ножити різ правої настиці різмості

Тепер все залежить від правої частині рівності

Ми розглянемо диференційовану криву

$$\gamma = \{ \vec{x}(t), t \in (-\delta, \delta) \} \subset M \cap U_{\varepsilon}(\vec{x}^0)$$
, причому $\vec{x}(0) = \vec{x}^0$

Тоді
$$\vec{x}(t) - \vec{x}^0 = \vec{x}'(0)t + \vec{o}(t)$$

Для нашої кривої також відомо факт $\operatorname{grad} \phi_j(\vec{x}^0) \perp \vec{x}'(0)$

$$f(\vec{x}(t)) - f(\vec{x}^0) = \frac{L''_{\vec{x},\vec{x}}(\vec{x}^0 - \theta(\vec{x}(t) - \vec{x}^0), \lambda_1, \dots, \lambda_s)}{2!} \vec{h}^2 t^2 + \vec{o}(t^2)$$

Підставимо це все в нашу формулу $f(\vec{x}(t)) - f(\vec{x}^0) = \frac{L''_{\vec{x},\vec{x}}(\vec{x}^0 - \theta(\vec{x}(t) - \vec{x}^0), \lambda_1, \ldots, \lambda_s)}{2!} \vec{h}^2 t^2 + \vec{o}(t^2)$ Оскільки $L''_{\vec{x},\vec{x}}(\vec{x}^0, \ldots)$ - знаковизначена, то тоді за лемою, $\exists U_{\varepsilon}(\vec{x}^0) : \forall \vec{x} \in U_{\varepsilon}(\vec{x}^0) \cap M : L''_{\vec{x},\vec{x}}(\vec{x}, \ldots)$ - ... так само знако визначений

Якщо визначимо квадратичну форму із п. 2), то звідси й буде випливати, що $f(\vec{x}^0) < f(\vec{x})$ - тобто умовний локальний мінімум

Аналогічно для інших випадків

Example 7.10.5 Задана функція u = f(x, y, z) = x - 2y + 2z. Знайдемо точки локального екстремуму за умовою, що

$$\phi_1(x, y, z) = x^2 + y^2 + z^2 - 1 = 0$$

Спочатку розглянемо лагранжіан $L(x, y, z, \lambda_1) = f(x, y, z) - \lambda_1 \phi_1(x, y, z)$

Знайдемо всі критичні точки, тобто $L'(x, y, z, \lambda_1) = 0$

Або інакше кажучи

$$\begin{cases} \frac{\partial f}{\partial x}(x,y,z) - \lambda_1 \frac{\partial \phi_1}{\partial x}(x,y,z) = 0 \\ \frac{\partial f}{\partial y}(x,y,z) - \lambda_1 \frac{\partial \phi_1}{\partial y}(x,y,z) = 0 \\ \frac{\partial f}{\partial z}(x,y,z) - \lambda_1 \frac{\partial \phi_1}{\partial z}(x,y,z) = 0 \\ \phi_1(x,y,z) = 0 \end{cases} \Rightarrow \begin{cases} 1 - \lambda_1 \cdot 2x = 0 \\ -2 - \lambda_1 \cdot 2y = 0 \\ 2 - \lambda_1 \cdot 2z = 0 \\ x^2 + y^2 + z^2 = 1 \end{cases}$$
 Або $\lambda_1 = \frac{3}{2}, x = \frac{1}{3}, y = -\frac{2}{3}, z = \frac{2}{3}$ Всі можливі критичні точки

Тепер будуємо квадратичну форму лагранжіана

$$L(x, y, z, \lambda_1) = x - 2y + 2z - \lambda_1(x^2 + y^2 + z^2 - 1)$$

$$L''(x_0, y_0, z_0, \lambda_1)\vec{h}^2 = \frac{\partial^2 L}{\partial x^2}h_1^2 + \frac{\partial^2 L}{\partial y^2}h_2^2 + \frac{\partial^2 L}{\partial z^2}h_3^2 + 2\frac{\partial^2 L}{\partial x \partial y}h_1h_2 + 2\frac{\partial^2 L}{\partial y \partial z}h_2h_3 + 2\frac{\partial^2 L}{\partial x \partial z}h_1h_3 = -2\lambda_1h_1^2 - 2\lambda_1h_2^2 - 2\lambda_1h_3^2$$

Обираємо такі
$$\vec{h} = \begin{pmatrix} h_1 \\ h_2 \\ h_3 \end{pmatrix}$$
, щоб $(\operatorname{grad} \phi_1(x_0,y_0,z_0),\vec{h}) = 0$

В нашому випадку grad $\phi_1 = \begin{pmatrix} 2x \\ 2y \\ 2z \end{pmatrix}$, тоді

$$2x \cdot h_1 + 2y \cdot h_2 + 2z \cdot h_3 = 0$$

Розглянемо кожну точку
1)
$$\lambda_1 = \frac{3}{2}, x = \frac{1}{3}, y = -\frac{2}{3}, z = \frac{2}{3}$$

$$\frac{2}{3}(h_1 - 2h_2 + 2h_3) = 0 \Rightarrow h_1 = 2h_2 - 2h_3$$

оцінюємо знак квадратичної форми:

$$L''(x, y, z, \lambda_1)\vec{h}^2 = -6(h_1^2 + h_2^2 + h_3^2) < 0$$

Отже, 1) - локальний максимум та u = 3

2)
$$\lambda_1 = -\frac{3}{2}, x = -\frac{1}{3}, y = \frac{2}{3}, z = -\frac{2}{3}$$

 $-\frac{2}{3}(h_1 - 2h_2 + 2h_3) = 0 \Rightarrow h_1 = 2h_2 - 2h_3$

Оцінюємо знак квадратичної форми:
$$L''(x,y,z,\lambda_1)\vec{h}^2=6(h_1^2+h_2^2+h_3^2)>0$$

Отже, 1) - локальний мінімум та u = -3

8 Інтеграли з параметром

8.1 Основні означення та властивості

Definition 8.1.1 Задано функцію $f:[a,b]\times[c,d]\to\mathbb{R}$, таку, що $\forall y\in[c,d]:f\in\mathcal{R}([a,b]).$ Інтегралом з параметром називають таку функцію $J:[c,d] \to \mathbb{R}$:

$$J(y) = \int_{a}^{b} f(x, y) \, dx$$

Proposition 8.1.2 Неперервність

Задано функцію $f:[a,b]\times[c,d]\to\mathbb{R}$, таку що $f\in C([a,b]\times[c,d])$. Тоді $J\in C([c,d])$.

Зауважимо, що $f \in C([a,b] \times [c,d]).$ то звідси $\forall y \in [c,d]: f \in C([a,b]) \implies f \in \mathcal{R}([a,b]).$ Тобто функція $J(y) = \int_{-\infty}^{\infty} f(x,y) \, dx$ коректно визначена.

$$\begin{split} f(x,y) &\in C([a,b] \times [c,d]) \implies f(x,y) \in C_{unif}([a,b] \times [c,d]) \implies \\ \forall \varepsilon &> 0 : \exists \delta(\varepsilon) > 0 : \forall (x_1,y_1), (x_2,y_2) \in [a,b] \times [c,d] : \|(x_1,y_1) - (x_2,y_2)\| = \sqrt{(x_1-x_2)^2 + (y_1-y_2)^2} < \delta \Rightarrow |f(x_1,y_1) - f(x_2,y_2)| < \frac{\varepsilon}{b-a} \end{split}$$

Тоді
$$|J(y_1) - J(y_2)| = \left| \int_a^b f(x, y_1) \, dx - \int_a^b f(x, y_2) \, dx \right| \le \int_a^b |f(x, y_1) - f(x, y_2)| < 1$$

Якщо я оберу (x,y_1) , (x,y_2) так, що $\|(x,y_1)-(x,y_2)\|=\sqrt{(y_1-y_2)^2}=|y_1-y_2|<\delta$, то тоді $|f(x, y_1) - f(x, y_2)| < \frac{\varepsilon}{b - a}$

$$\boxed{\leq} \int_a^b \frac{\varepsilon}{b-a} = \varepsilon.$$

Збираючи пазл, отримаємо $J \in C_{unif}([c,d]) \implies J \in C([c,d]).$

Proposition 8.1.3 Диференційованість

Задано функцію $f:[a,b]\times[c,d]\to\mathbb{R}$, таку, що $f\in C([a,b]\times[c,d])$. Відомо, що $\exists \frac{\partial f}{\partial u}\in C([a,b]\times[c,d])$.

Тоді J - диференційована на [c,d], при цьому $J'(y)=\int^b \frac{\partial f}{\partial u}(x,y)\,dx$

Proof.

Диференційованість означає існування похідної, тобто необхідно довести її існування.

$$f(x,y+\Delta y) - f(x,y) = \int_{y}^{y+\Delta y} f'_{y}(x,t) dt = \int_{y}^{y+\Delta y} \frac{\partial f}{\partial y}(x,t) dt$$

$$\boxed{=} \frac{1}{\Delta y} \int_a^b \left(\int_y^{y+\Delta y} \frac{\partial f}{\partial y}(x,t) \, dt \right) dx$$

$$\int_{a}^{b} \frac{\partial f}{\partial y}(x, y_0) dx = \int_{a}^{b} \frac{1}{\Delta y} \left(\int_{y_0}^{y_0 + \Delta y} \frac{\partial f}{\partial y}(x, y_0) dt \right) dx = \frac{1}{\Delta y} \int_{a}^{b} \left(\int_{y_0}^{y_0 + \Delta y} \frac{\partial f}{\partial y}(x, y_0) dt \right) dx$$

$$\left| \frac{J(y_0 + \Delta y) - J(y_0)}{\Delta y} - \int_a^b \frac{\partial f}{\partial y}(x, y_0) \, dx \right| = \left| \frac{1}{\Delta y} \int_a^b \left(\int_{y_0}^{y_0 + \Delta y} \frac{\partial f}{\partial y}(x, t) \, dt \right) dx - \frac{1}{\Delta y} \int_a^b \left(\int_{y_0}^{y_0 + \Delta y} \frac{\partial f}{\partial y}(x, y_0) \, dt \right) dx \right| = \left| \frac{1}{\Delta y} \int_a^b \left(\int_{y_0}^{y_0 + \Delta y} \frac{\partial f}{\partial y}(x, t) - \frac{\partial f}{\partial y}(x, y_0) \, dt \right) dx \right| \le 1$$

$$\frac{\partial f}{\partial y}(x,y) \in C([a,b] \times [c,d]) \implies \frac{\partial f}{\partial y}(x,y) \in C_{unif}([a,b] \times [c,d]) \implies$$

$$\forall \varepsilon > 0 : \exists \delta(\varepsilon) > 0 : \forall (x,t), (x,y_0) \in [a,b] \times [c,d] : \|(x,t) - (x,y_0)\| < \delta \Rightarrow \left| \frac{\partial f}{\partial y}(x,t) - \frac{\partial f}{\partial y}(x,y_0) \right| < \frac{\varepsilon}{b-a}$$

$$\leq \int_a^b \int_{y_0}^{y_0 + \Delta y} \frac{1}{\Delta y} \frac{\varepsilon}{b-a} dt dx = \varepsilon$$

Знову збираємо пазл - отримуємо, що:
$$\forall y_0 \in [c,d]$$
:
$$\exists \lim_{\Delta y \to 0} \frac{J(y_0 + \Delta y) - J(y_0)}{\Delta y} = \int_a^b \frac{\partial f}{\partial y}(x,y_0) \, dx = J'(y_0). \text{ Отже, } J \text{ - диференційована на } [c,d].$$

Proposition 8.1.4 Інтегрованість

Задано функцію
$$f:[a,b] \times [c,d] \to \mathbb{R}$$
, таку, що $f \in C([a,b] \times [c,d])$. Тоді $J \in \mathcal{R}([c,d])$, а також $\int_c^d \underbrace{\int_a^b f(x,y) \, dx}_{=J(y)} \, dy = \int_a^b \int_c^d f(x,y) \, dy \, dx$.

Розглянемо дві функції: $h(t) = \int_c^t \int_a^b f(x,y) \, dx \, dy \qquad g(t) = \int_a^b \int_c^t f(x,y) \, dy \, dx$. В нашому випадку $t \in [c,d]$. Якщо t=c, то маємо, що h(c)=g(c)=0.

Необхідно знайти, чому дорівнює h'(t), g'(t). Зробимо позначення: $h(t) = \int_c^t J(y) \, dy$ $g(t) = \int_a^b F(x,t) \, dx$. Маємо два інтеграли з параметром t. Другий інтеграл задовільняють умові з **Prp 3.1.?**, тоді можемо знайти похідну.

Перший - це інтеграл від верхньої межі, тому автоматично h'(t) = J(t).

Другий рахується за попереднім твердженням, всі умови виконані для цього.

другий рахуеться за попереднім твердженням, всі умови ви
$$g'(t) = \int_a^b \frac{\partial F}{\partial t}(x,t) \, dt = \int_a^b f(x,t) \, dx = J(t).$$
 Таким чином, $\forall t \in [c,d]: h'(t) = g'(t) \implies h(t) = g(t) + C.$ Але оскільки $h(c) = g(c) = 0$, то одразу $C = 0 \Rightarrow h(t) = g(t)$.

Hy а тоді
$$h(d) = g(d) \implies \int_c^b \int_a^b f(x,y) \, dx \, dy = \int_a^b \int_c^d f(x,y) \, dy \, dx.$$

Example 8.1.5 Обчислити $\lim_{\alpha \to 0} \int_{0}^{2} x^{2} \cos \alpha x \, dx$.

Маємо $I(\alpha) = \int_0^2 x^2 \cos \alpha x \, dx$. Розглянемо функцію $f(x,\alpha) = x^2 \cos \alpha x$ на $[0,2] \times [-1,1]$ (можна й менше взяти другу сторону, головне щоб навколо т. 0). Ця функція ϵ неперервною, тоді $I(\alpha)$

$$\lim_{\alpha \to 0} \int_{0}^{2} x^{2} \cos \alpha x \, dx = \lim_{\alpha \to 0} I(\alpha) = I(0) = \int_{0}^{2} x^{2} \, dx = \frac{x^{3}}{3} = \frac{8}{3}.$$

Example 8.1.6 Знайти похідну функції $I(\alpha) = \int_{\cdot}^{2} e^{\alpha x^{2}} \frac{dx}{r}$.

Позначу $f(x,\alpha)=\frac{e^{\alpha x^2}}{x}$. Знайдемо часткову похідну за другим аргументом: $\frac{\partial f}{\partial \alpha}=\frac{x^2e^{\alpha x^2}}{x}=xe^{\alpha x^2}$. Зауважимо, що f та $\frac{\partial f}{\partial \alpha}$ неперервні на прямокутнику $[1,2]\times[-1,1]$, тому ми можемо диференціювати

функцію
$$I$$
, а також $I'(\alpha) = \int_1^2 x e^{\alpha x^2} dx$.

$$I'(\alpha) = \frac{1}{2} \int_{1}^{2} e^{\alpha x^{2}} dx^{2} = \frac{1}{2\alpha} e^{\alpha x^{2}} \Big|_{1}^{2} = \frac{e^{4\alpha} - e^{\alpha}}{2\alpha}.$$

Example 8.1.7 Обчислити $\int_0^1 \frac{x^b - x^\alpha}{\ln x} \, dx$, якщо a,b>0.

Зауважимо, що $\frac{x^b-x^a}{\ln x}=\int_a^b x^y\,dy$. Тоді взагалі маємо обчислити $\int_0^1 \int_a^b x^y\,dy\,dx$. Оскільки функція $f(x,y)=x^y$ є неперервною на прямокутнику $[0,1]\times [a,b]$, то звідси ми можемо

$$\int_{0}^{1} \int_{a}^{b} x^{y} \, dy \, dx = \int_{a}^{b} \int_{0}^{1} x^{y} \, dx \, dy = \int_{a}^{b} \frac{x^{y+1}}{y+1} \Big|_{0}^{1} \, dy = \int_{a}^{b} \frac{1}{y+1} \, dy = \ln(y+1) \Big|_{a}^{b} = \ln \frac{b+1}{a+1}.$$

Remark 8.1.8 Для диференціювання існує більш загальна формула, якщо досліджувати функцію $J(y)=\int_{c(x)}^{\psi(y)}f(x,y)\,dx$. Вимагаємо $f,\frac{\partial f}{\partial y}\in C([a,b]\times[c,d]),\, arphi,\psi\in C([c,d]).$ Тоді маємо:

$$J'(y) = f(\psi(y), y)\psi'(y) - f(\varphi(y), y)\varphi'(y) + \int_{\varphi(y)}^{\psi(y)} \frac{\partial f}{\partial y}(x, y) dx.$$

Для її доведення можна скористатися формулою Ньютона-Лейбніца.

8.2 Невласні інтеграли з параметром

Definition 8.2.1 Задано функцію $f: A \times B \to \mathbb{R}$, де $A, B \subset \mathbb{R}$, та $y_0 \in \mathbb{R}$ - гранична точка для B. Функція f поточково збігається до функції φ при $y \to y_0$, якщо

$$\forall x \in A : \lim_{y \to y_0} f(x, y) = \varphi(x)$$

Функція f збігається рівномірно до функції φ при $y \to y_0$ на множині A, якщо

$$\sup_{x \in A} |f(x,y) - \varphi(x)| \to 0, y \to y_0$$

Позначення: $f(x,y) \xrightarrow{\rightarrow} \varphi(x), y \rightarrow y_0$

Новий вигляд збіжності можна призвести до збіжності функціональних послідовностей таким твердженням.

Proposition 8.2.2 $f(x,y) \xrightarrow{\rightarrow} \varphi(x), y \to y_0$ на множині $A \iff \forall \{y_n, n \geq 1\} \subset B : \forall n \geq 1 : y_n \neq y_0 : x \neq y_0 = y$ $f(x,y_n) \xrightarrow{\rightarrow} \varphi(x), n \to \infty$ на множині A. Випливає з означення рівномірної збіжності.

Theorem 8.2.3 Критерій Коші

$$f(x,y) \xrightarrow{\rightarrow} \varphi(x), y \to y_0 \text{ на } A \iff \forall \varepsilon > 0 : \exists \delta(\varepsilon) > 0 : \forall y_1, y_2 \in B, y_1, y_2 \neq y_0 : \begin{cases} |y_1 - y_0| < \delta \\ |y_2 - y_0| < \delta \end{cases} \implies \sup_{x \in A} |f(x,y_1) - f(x,y_2)| < \varepsilon.$$

⇒ Вказівка: означення рівномірної границі та нерівність трикутника.

Дано:
$$\forall \varepsilon > 0$$
 : $\exists \delta : \forall y_1, y_2 \in B, y_1, y_2 \neq y_0 : \begin{cases} |y_1 - y_0| < \delta \\ |y_2 - y_0| < \delta \end{cases} \implies \sup_{x \in A} |f(x, y_1) - f(x, y_2)| < \varepsilon.$ Візьмемо деяку послідовність $\{y_n, n \geq 1\}$, де $y_n \neq y_0, y_n \rightarrow y_0$. Тоді $\exists N : \forall n, m \geq N : |y_n - y_0| < \delta, |y_m - y_0| < \delta$. За умовою, звідси $\sup_{x \in A} |f(x, y_n) - f(x, y_m)| < \varepsilon$. За

критерієм Коші рівномірної збіжності функціональної послідовності, $f(x,y_n)$ є рівномірно збіжною на A. Отже, f(x,y) - рівномірно збіжний на A за **Prp. 5.2.2.**

Definition 8.2.4 Задано функцію $f:[a,\omega)\times A$, таку, що $\forall y\in A: \forall c\in [a,\omega): f\in \mathcal{R}([a,c]).$ Також маємо збіжний невласний інтеграл із параметром $J(y)=\int_{a}^{\omega}f(x,y)\,dx,\,\forall y\in A.$

Невласний інтеграл збігається рівномірно на множині \tilde{A} , якщо

$$\sup_{y \in A} \left| \int_{a}^{\omega} f(x, y) \, dx - \int_{a}^{c} f(x, y) \, dx \right| \stackrel{c \to \omega}{\to} 0$$

Remark 8.2.5 Воно якось схоже за рівномірну збіжність функції, але трошки не так. Тут розглядається взагалі-то рівномірна збіжність функції g(x,y) до функції g(y) ТА при цьому аргумент $x \to x_0$. Проте поки додаткові знання додавати не буду.

Theorem 8.2.6 Критерій Коші

Гисогені 6.2.6 Критерій Коші
$$\int_a^\omega f(x,y)\,dx$$
 - збіжний рівномірно на $A\iff \forall \varepsilon>0: \exists C: \forall c_1,c_2\in [C,\omega): \sup_{y\in A}\left|\int_{c_1}^{c_2}f(x,y)\,dx\right|<\varepsilon.$ Випливає з критерію Коші рівномірної збіжності функцій.

Theorem 8.2.7 Ознака Вейєрштрасса

Задані функції $f:[a,\omega) \times A \to \mathbb{R},\, g:[a,\omega) \to \mathbb{R}$ такі, що

1)
$$\forall x \in [a, \omega) : \forall y \in A : |f(x, y)| \le g(x);$$

$$(2)$$
 $\int_a^\omega g(x) dx$ - збіжний.

Тоді
$$\int_a^\omega f(x,y)\,dx$$
 - збіжний рівномірно на $A.$

$$\sup_{y \in A} \left| \int_{c}^{\omega} f(x, y) \, dx \right| \le \left| \int_{c}^{\omega} g(x) \, dx \right| \stackrel{c \to \omega}{\to} 0.$$

Example 8.2.8 Довести, що $\int_{1}^{+\infty} \frac{dx}{x^{\alpha}}$ рівномірно збіжний на множині $[1+\gamma,+\infty)$, якщо $\gamma>0$.

Маємо функцію $f(x,\alpha)=\frac{1}{x^{\alpha}}.$ Також відома оцінка $x^{\alpha}>x^{1+\gamma}\implies \frac{1}{x^{\alpha}}<\frac{1}{x^{1+\gamma}},$ виконано $\forall x\geq 1.$

Також $\int_{1}^{+\infty} \frac{dx}{x^{1+\gamma}}$ - збіжний невласний інтеграл (еталон). Тому за ознакою Вейєрштрасса, $\int_{1}^{+\infty} \frac{dx}{x^{\alpha}}$ рівномірно збіжний на множині $[1 + \gamma, +\infty)$.

Theorem 8.2.9 Ознака Абеля-Діріхле

Задані функції $f:[a,\omega) imes A o \mathbb{R},\,g:[a,\omega) imes A o \mathbb{R}$ такі, що виконана одна з двох пар умов

$$a1)\int_{a}^{\omega}f(x,y)\,dx$$
 - збіжний рівномірно на A

$$(a2)$$
 $\forall y \in A: g$ - монотонна від $x \in [a,\omega)$

$$a3)\exists D > 0: \sup_{y \in A} \sup_{c \in [a,\omega)} |g(x,y)| \le D$$

$$d1) \exists D>0: \sup_{y\in A}\sup_{c\in[a,\omega)}\left|\int_a^c f(x,y)\,dx\right|\leq D$$

$$d2) \forall y\in A: g\text{ - монотонна від }x\in[a,\omega)$$

$$(d2) \forall y \in A : g$$
 - монотонна від $x \in [a, \omega)$

$$d3) \sup_{y \in A} |g(x,y)| \stackrel{x \to \omega}{\to} 0$$

Тоді
$$\int_a^\omega f(x,y)g(x,y)\,dx$$
 - рівномірно збіжний на A

Proposition 8.2.10 Неперервність

Задано функцію $f:[a,\omega) imes[c,d] o\mathbb{R}$, таку, що $f\in C([a,\omega) imes[c,d]).$ Також J - рівномірно збіжний. Тоді $J \in C([c,d])$.

Proof.

За означенням рівномірної збіжності, маємо, що $\sup_{y \in [c,d]} \left| \int_c^\omega f(x,y) \, dx \right| \to 0, c \to \omega$

Тобто
$$\forall \varepsilon>0:\exists c>a:\sup_{y\in[c,d]}\left|\int_c^\omega f(x,y)\,dx\right|<rac{\varepsilon}{3}$$

Оцінимо J

$$\begin{split} &|J(y_1)-J(y_2)| = \left| \int_a^\omega f(x,y_1) \, dx - \int_a^\omega f(x,y_2) \, dx \right| = \\ &= \left| \int_a^c f(x,y_1) \, dx - \int_a^c f(x,y_2) \, dx + \int_c^\omega f(x,y_1) \, dx - \int_c^\omega f(x,y_2) \, dx \right| \leq \\ &\leq \left| \int_a^c f(x,y_1) - f(x,y_2) \, dx \right| + \left| \int_c^\omega f(x,y_1) \, dx \right| + \left| \int_c^\omega f(x,y_2) \, dx \right| \leq \\ &\text{Перший модуль: } f \in C_{unif}([a,\omega) \times [c,d]) \end{split}$$

Перший модуль:
$$f \in C_{unif}([a,\omega) \times [c,d])$$

$$\Rightarrow \exists \delta: \forall y_1, y_2: |y_1 - y_2| < \delta \Rightarrow |f(x, y_1) - f(x, y_2)| < \frac{\varepsilon}{c - a}$$

Другий модуль:
$$\sup_{\substack{y \in [c,d] \\ c\omega}} \left| \int_c^\omega f(x,y) \, dx \right| < \frac{\varepsilon}{3}$$

$$\Rightarrow \forall y \in [c,d]: \left| \int_{c}^{\omega} f(x,y) \, dx \right| < \frac{\varepsilon}{3}$$

$$\left[\leq \right] \int_{a}^{c} \frac{\varepsilon}{c-a} \, dx + \frac{2\varepsilon}{3} = \varepsilon$$

иазл та маємо, що $J \in C_{unif}([c,d]) \Rightarrow J \in C([c,d])$

Proposition 8.2.11 Інтегрованість

Задана функція $f:[a,\omega)\times[c,d]\to\mathbb{R}$, така, що $f\in C([a,\omega)\times[c,d])$

Також J - рівномірно збіжний. Тоді $J \in D([c,d])$ та

$$\int_{c}^{d} \int_{a}^{\omega} f(x, y) dx dy = \int_{a}^{\omega} \int_{c}^{d} f(x, y) dy dx$$

$$= J(y)$$

Розглянемо
$$\int_{c}^{d} J(y) \, dy = \int_{c}^{d} \int_{a}^{b} f(x,y) \, dx \, dy + \int_{c}^{d} \int_{b}^{\omega} f(x,y) \, dx \, dy$$
 Перший доданок - це визначений інтеграл, тому там виконується **Prp 3.1.4.**, тобто

$$\int_{c}^{d} \int_{a}^{b} f(x,y) \, dx \, dy = \int_{a}^{b} \int_{c}^{d} f(x,y) \, dy \, dx$$
 Другий доданок - цікавіше

$$\left| \int_{c}^{d} \int_{b}^{\omega} f(x,y) \, dx \, dy \right| \leq \int_{c}^{d} \left| \int_{b}^{\omega} f(x,y) \, dx \right| dy \leq \int_{c}^{d} \sup_{y \in [c,d]} \left| \int_{b}^{\omega} f(x,y) \, dx \right| dy = \sup_{y \in [c,d]} \left| \int_{b}^{\omega} f(x,y) \, dx \right| (d-c) = 0, \quad 0, \quad 0 \leq 1, \quad 0 \leq$$

Якщо
$$b \to \omega$$
, то тоді отримаємо
$$\int_c^d J(y) \, dy = \int_a^\omega \int_c^d f(x,y) \, dx \, dy + 0 = \int_a^\omega \int_c^d f(x,y) \, dx \, dy$$

Proposition 8.2.12 Диференційованість

Задана функція $f:[a,\omega)\times[c,d]\to\mathbb{R}$, така, що:

1)
$$\frac{\partial f}{\partial y} \in C([a,\omega) \times [c,d])$$

$$(2) \; \exists y_0 \in [c,d] : J(y_0)$$
 - збіжний

$$(2)$$
 $\exists y_0 \in [c,d]: J(y_0)$ - збіжний (3) $\int_a^\omega \frac{\partial f}{\partial y}(x,y)\,dx$ - рівномірно збіжний Тоді (3) - збіжний, диференційована в (3) , при цьому (3) (4) (4) (5) (5) (5) (5) (5) (7) $($

Розглянемо функцію $I(y)=\int_a^\omega \frac{\partial f}{\partial y}(x,y)\,dx$ - неперервна за умовною рівномірна. Часткові похідні є неперервними також за умовою. Тоді за $\mathbf{Prp.}$ **3.2.6.**, $I\in D([y,y_0])$ $\int_{y_0}^y I(t)\,dt=\int_a^\omega \int_{y_0}^y \frac{\partial f}{\partial y}(x,t)\,dt\,dx=\int_a^\omega f(x,y)-f(x,y_0)\,dx=\int_a^\omega f(x,y)-f(x,y_0)\,dx=\int_a^\omega f(x,y)-f(x,y_0)\,dx$

$$\int_{y_0}^{y} I(t) dt = \int_{a}^{\omega} \int_{y_0}^{y} \frac{\partial f}{\partial y}(x,t) dt dx = \int_{a}^{\omega} f(x,y) - f(x,y_0) dx = \int_{a}^{y_0} I(y) \int_{y_0}^{y_0} I(y) dx$$

$$\Rightarrow J(y) = \int_{y_0}^y I(t) \, dt - J(y_0)$$
 - обидва збіжні. Тому сума - збіжна

Отже, J - збіжний $\forall y \in [c,d]$

$$\Rightarrow J'(y) = I(y) - 0 = \int_{a}^{\omega} \frac{\partial f}{\partial y}(x, y) \, dx$$

Proposition 8.2.13 Невласне інтегрування невласного інтеграла

Задана функція $f:[a,+\infty)\times[c,+\infty)\to\mathbb{R}$ така, що $f\in C([a,+\infty)\times[c,+\infty))$, а також виконані

$$1) \forall b>a: \int_{c}^{+\infty} f(x,y)\,dy$$
 - збіжний рівномірно в $[a,b]$

$$(2)$$
 $\forall d>c:\int_a^{+\infty}f(x,y)\,dx$ - збіжний рівномірно в $[c,d]$

$$3)\int_{c}^{+\infty}|f(x,y)|\,dy,\int_{a}^{+\infty}|f(x,y)|\,dx$$
 - збігаються $\forall x\geq a, \forall y\geq c$

4)
$$\int_a^{+\infty} \int_c^{+\infty} |f(x,y)| \, dy \, dx$$
 або $\int_c^{+\infty} \int_a^{+\infty} |f(x,y)| \, dx \, dy$ - збіжний

Тоді обидва інтеграли - збіжні та

$$\int_{a}^{+\infty} \int_{c}^{+\infty} |f(x,y)| \, dy \, dx = \int_{c}^{+\infty} \int_{a}^{+\infty} |f(x,y)| \, dx \, dy$$
Покул без доведення

Інтеграл Діріхле 8.3

Інтегралом Діріхле називають таку рівність, яку зараз доведу (про збіжність вже говорили)

$$\int_0^{+\infty} \frac{\sin x}{x} \, dx = \frac{\pi}{2}$$

Розглянемо функцію $F(a) = \int_0^{+\infty} \frac{\sin ax}{x} dx$

Зауважимо, що якщо зробити заміну ax = t, то отримаємо, що

F(a) = F(1). А також F(-a) = -F(a), F(0) = 0

Із цих умою випливає, що F(a) - розривна, тож F(a) - не збіжна рівномірно на $\mathbb R$

Розглянемо функцію $J(a) = \int_0^{+\infty} \frac{\sin ax}{x} e^{-bx} dx, \ b \ge 0$

Підінтегральна функція - неперервна, має неперервну часткову похідну $\frac{\partial f}{\partial a} = \cos ax \cdot e^{-bx}$, а також

$$\int_0^{+\infty} \cos ax \cdot e^{-bx} \, dx$$
 - рівномірно збіжний (додати приклад) Остаточно отримаємо

$$F(a) = \int_0^{+\infty} \frac{\sin ax}{x} \, dx = \lim_{b \to 0^+} \int_0^{+\infty} \frac{\sin ax}{x} e^{-bx} \, dx = \lim_{b \to 0^+} J(a) = \frac{\pi}{2}$$

Інтеграл Ейлера-Пуассона

Інтегралом Діріхле називають таку рівність, яку зараз доведу

$$\int_0^{+\infty} e^{-x^2} dx = \frac{\sqrt{\pi}}{2}$$

Позначимо
$$J=\int_0^{+\infty}e^{-x^2}\,dx$$

Зробимо заміну
$$x=at$$
. Тоді
$$J=\int_0^{+\infty}e^{-a^2t^2}a\,dt$$

$$J^2=J\int_0^{+\infty}e^{-a^2}\,da=\int_0^{+\infty}\left(\int_0^{+\infty}e^{-a^2t^2}a\,dt\right)e^{-a^2}\,da=\int_0^{+\infty}\int_0^{+\infty}ae^{-a^2t^2-a^2}\,dt\,da$$

$$=\int_0^{+\infty}\int_0^{+\infty}e^{-a^2(t^2+1)}a\,da\,dt=$$
 Заміна: $s=-a^2(t^2+1)$
$$=\int_0^{+\infty}\frac{1}{2(t^2+1)}\int_{-\infty}^0e^s\,ds\,dt=\int_0^{+\infty}\frac{1}{2(t^2+1)}\,dt=\frac{\pi}{4}$$

$$\Rightarrow J=\frac{\sqrt{\pi}}{2}$$

Гамма-функція

Definition 8.5.1 Гамма-функцією називають таку функцію

$$\Gamma(\alpha) = \int_0^{+\infty} x^{\alpha - 1} e^{-x} \, dx, \alpha > 0$$

Lemma 8.5.2 $\alpha > 0$ - область збіжності гамми-функції

Proof.
$$\int_0^{+\infty} x^{\alpha - 1} e^{-x} \, dx = \int_0^1 x^{\alpha - 1} e^{-x} \, dx + \int_1^{+\infty} x^{\alpha - 1} e^{-x} \, dx$$

Розглянемо перший інтеграл. Особлива точка - x=0

Порівняємо з інтегралом $\int_0^1 x^{\alpha-1} dx$ - збіжний для $\alpha > 0$

$$\lim_{x \to 0} \frac{x^{\alpha - 1} e^{-x}}{x^{\alpha - 1}} = 1$$

Отже, обидва збіжні, тому перший доданок - збіжний

Розглянемо другий інтеграл. Особлива точка - $x=\infty$

Порівняємо з інтегралом $\int_1^{+\infty} e^{-\frac{x}{2}}\,dx$ - збіжний для $\alpha>0$

$$\lim_{x\to\infty}\frac{x^{\alpha-1}e^{-x}}{e^{-\frac{x}{2}}}=\begin{bmatrix}0\text{ за правилом Лопіталя, }\alpha\geq1\\ \lim_{x\to\infty}\frac{1}{x^{1-\alpha}e^{\frac{x}{2}}}=0,\alpha<1\\ \text{Отже, обидва збіжні, тому другий доданок - збіжний}$$

Остаточно, $\Gamma(\alpha)$ - збіжний

Lemma 8.5.3 $\Gamma \in C^{\infty}((0,+\infty))$

Proof.

Поки без доведення

Theorem 8.5.4 $\forall \alpha > 0 : \Gamma(\alpha + 1) = \alpha \Gamma(\alpha)$

Вказівка: ліву частину інтегруємо частинами, $u=x^{\alpha}, dv=e^{-x} dx$

$$\Gamma(n+1) = n\Gamma(n) = n(n-1)\Gamma(n-1) = \dots = n(n-1)(n-2)\dots 2 \cdot 1\Gamma(1)$$

$$\Gamma(1) = \int_0^{+\infty} e^{-x} dx = -e^{-x} \Big|_0^{+\infty} = 1$$
Отже.

Corollary 8.5.5 $\Gamma(n+1) = n!$

А далі перевіримо, чому дорівнює гамма-функція в т. $\alpha =$

$$\Gamma\left(\frac{1}{2}\right) = \int_{0}^{+\infty} x^{-\frac{1}{2}} e^{-x} dx \stackrel{\text{3amina:}}{=} t = \sqrt{x} 2 \int_{0}^{+\infty} e^{-t^{2}} dt = 2 \frac{\sqrt{\pi}}{2} = \sqrt{\pi}$$

Далі скористаємось тотожністю $\Gamma(\alpha+1) = \Gamma(\alpha)$, щоб знайти $\Gamma\left(\frac{1}{2}+n\right)$. Отримаємо:

Corollary 8.5.6
$$\Gamma\left(\frac{1}{2} + n\right) = \frac{(2n-1)!!}{2^n} \sqrt{\pi}$$

Theorem 8.5.7 Функціональне рівняння Ейлера

$$\Gamma(\alpha) \cdot \Gamma(1 - \alpha) = \frac{\pi}{\sin \pi \alpha}$$

$$\Gamma\left(\frac{1}{2} + \alpha\right) \cdot \Gamma\left(\frac{1}{2} - \alpha\right) = \frac{\pi}{\cos \pi \alpha}$$

Без доведення. Тут треба знати щось про функціональне рівняння

8.6 Бета-функція

Definition 8.6.1 Бета-функцією називають таку функцію

$$B(\alpha, \beta) = \int_0^1 x^{\alpha - 1} (1 - x)^{\beta - 1} dx, \alpha, \beta > 0$$

Lemma 8.6.2 $\alpha, \beta > 0$ - область збіжності бети-функції

Ргоот.
$$\int_0^1 x^{\alpha-1} (1-x)^{\beta-1} \, dx = \int_0^{\frac{1}{2}} x^{\alpha-1} (1-x)^{\beta-1} \, dx + \int_{\frac{1}{2}}^1 x^{\alpha-1} (1-x)^{\beta-1} \, dx$$
 Розглянемо перший інтеграл. Особлива точка - $x=0$

Порівняємо з інтегралом
$$\int_0^{\frac{1}{2}} x^{\alpha-1} \, dx$$
 - збіжний для $\alpha > 0$

$$\lim_{x\to 0}\frac{x^{\alpha-1}(1-x)^{\beta-1}}{x^{\alpha-1}}=1$$
Отже, обидва збіжні, то

идва збіжні, тому перший доданок - збіжний

Розглянемо другий інтеграл. Проводимо заміну 1-x=t, тоді маємо

$$-\int_0^{\frac{1}{2}} (1-t)^{\alpha-1} t^{\beta-1} dt$$
 - це той самий перший доданок. І він вже буде збіжним, якщо $\beta>0$

Остаточно, $B(\alpha, \beta)$ - збіжний

Proposition 8.6.3
$$B(\alpha,\beta)=\int_0^{+\infty}\frac{y^{\alpha-1}}{(1+y)^{\alpha+\beta}}\,dy$$
 Вказівка: зробити заміну $x=\frac{y}{1+y}$

Theorem 8.6.4 Зв'язок між Γ та B $B(\alpha,\beta)=\dfrac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)}$

$$B(\alpha, \beta) = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha + \beta)}$$

Розглянемо
$$\Gamma(\alpha+\beta)$$
 та проведемо заміну $x=y(t+1), dx=(t+1)\,dy$
$$\Gamma(\alpha+\beta)=\int_0^{+\infty}x^{\alpha+\beta-1}e^{-x}\,dx=(t+1)^{\alpha+\beta}\int_0^{+\infty}y^{\alpha+\beta-1}e^{-y(t+1)}\,dy$$
 Отримаємо

$$\frac{\Gamma(\alpha+\beta)}{(1+t)^{\alpha+\beta}} = \int_0^{+\infty} y^{\alpha+\beta-1} e^{-y(t+1)} dy$$

Помножимо обидві частини на
$$t^{\alpha-1}$$
 та проінтегруємо від 0 до $+\infty$
$$\int_0^{+\infty} \frac{t^{\alpha-1}}{(1+t)^{\alpha+\beta}} \Gamma(\alpha+\beta) = \int_0^{+\infty} \int_0^{+\infty} y^{\alpha+\beta-1} t^{\alpha-1} e^{-y} e^{-yt} \, dy \, dt$$

$$\Gamma(\alpha+\beta) \cdot B(\alpha,\beta) = \int_0^{+\infty} y^{\beta-1} e^{-y} \int_0^{+\infty} y^{\alpha} t^{\alpha-1} e^{-yt} \, dt \, dy$$

Внутрішній інтеграл при заміні yt=x стане рівним $\Gamma(\alpha)$. Його виносимо з-під зовнішнього інтегралу, а сам інтеграв вже є $\Gamma(\beta)$. Тоді

$$\Gamma(\alpha + \beta)B(\alpha, \beta) = \Gamma(\alpha)\Gamma(\beta)$$