Dingwen Qian

♀ 2145 Sheridan Rd., Cook Hall 4013 - Evanston, IL, 60208

SUMMARY

A theoretical physicist with primary interests in non-equilibrium and transport phenomena in soft matter systems. Works closely with experimentalists on water-purification, charge transport in confined systems and self-assembly processes. The primary computational tools involved in the research are Molecular Dynamics and Monte Carlo simulations. Builds simple phenomenological models to bridge simulations and experiments.

EDUCATION BACKGROUND

Northwestern University

Evanston, IL

Ph.D. in Applied Physics

Candidate, Jun. 2024

Dissertation: "Self-assembly and transport in chemical and physical networks"

Advisor: Prof. Monica Olvera de la Cruz

Fudan University *B.S. in Physics*

Shanghai, China

Jun. 2018

RESEARCH EXPERIENCE

Northwestern University

Evanston, IL

Doctoral Researcher, Prof. Monica Olvera de la Cruz's Laboratory

Sep. 2018-Present

- Elucidated the nucleation mechanisms of hydrogen-bonded organic nanotubes using graph theory and kinetic Monte Carlo simulations.
- Found soliton-like excitations in the transport of size- and charge-asymmetric colloidal mixtures using Brownian Dynamics simulations.
- Unravalled the entropic origin of the size-selective adsorption of dye molecules to covalent organic framework membranes using all-atomistic molecular dynamics.
- Constructed a coarse-grained model for ionic transport in polyelectrolyte gel, decoupling the effect of charge fraction and porosity.

Fudan University

Shanghai, China

Undergraduate Research Assistant, Prof. Donglai Feng Laboratory

Sep. 2016-June. 2018

- Constructed an in-situ mutual inductance measurement apparatus that were integrated into a scanning probe microscopic system.
- Utilized scanning transmission microscopy (STM) for characterization of the surface properties of two-dimensional superconducting films.

University of California, Berkeley

Berkeley, China

Undergraduate Research Assistant, Prof. Feng Wang Laboratory

Sep. 2017-Dec. 2017

• Utilized atomic force microscopy to characterize morphology of carbon nanotubes for building magnetic sensors based on the Aharonov–Bohm effect.

PUBLICATIONS

- Sayantan Mahapatra*, Dingwen Qian*, Ruihua Zhang, Shuliang Yang, Penghao Li, Yuanning Feng, Long Zhang, Huang Wu, James S. W. Seale, Partha Jyoti Das, Prateek K. Jha, Kevin Lee Kohlstedt, Monica Olvera de la Cruz & Fraser Stoddart. Realization of hydrogen-bonded fibers assembled from trigonal prismatic building blocks (under review, * These authors contributed equally)
 - o Constructed a phenomenological model of the self-assembly process of hydrogen-bonded organic nanotubes using graph representations. Used Kinetic Monte Carlo model to unravel the competition between different pathways of nucleation and growth.
- **Dingwen Qian** & Monica Olvera de la Cruz (2023). Field-driven cluster formation in two-dimensional colloidal binary mixtures. Phys. Rev. E 107, 044605
 - o Discovered active clustering of colloidal particles along with soliton-like vibrational motion of the lattice in field-driven superionic colloidal crystals through Brownian Dynamics simulations.
- Julie L. Fenton*, David Burke*, **Dingwen Qian**, Monica Olvera de la Cruz, & William R. Dichtel (2021). Polycrystalline Covalent Organic Framework Films Act as Adsorbents, Not Membranes. J. Am. Chem. Soc. 2021, 143, 3, 1466–1473 (* These authors contributed equally)
 - Revealed the entropic origin of the size-dependent adsorption of dye molecules to Covalent Organic Framework membranes using umbrella sampling in all-atom Molecular Dynamics simulations.

CONFERENCE PRESENTATIONS

- Dingwen Qian, Sayantan Mahapatra, Fraser Stoddart, & Monica Olvera de la Cruz (2024). Hydrogenbonded organic nanotube: origin of anisotropy in the growth kinetics. Poster at Gordon Research Conference 2024, Molecular and Ionic Clusters
- **Dingwen Qian** & Monica Olvera de la Cruz (2022). Field driven pattern formation in 2D colloidal systems. March meeting 2022-American Physical Society

Service

• Discussion leader. Gordon Research Seminar 2024, Molecular and Ionic Clusters

AWARDS & ACHIEVEMENTS

• Center for Computation and Theory of Soft Materials fellow, Northwestern University	2020-2023
Walter P. Murphy Graduate Fellowship, Northwestern University	2018
First Tier Student Scholarship, Fudan University	2016
Second Tier Student Scholarship, Fudan University	2015

TEACHING EXPERIENCE

Northwestern University

Evanston, IL

Teaching assistant, Quantum Mechanics

Jan. 2023-Apr. 2023

- Led discussion sessions every week for improving students' problem solving skills. Constructed illustrative questions and provided detailed solutions for students using LaTeX.
- Had effective interactions with students on course contents and homework problems during office hours.

SKILLS

- Analytic and numerical calculations using Mathematica and Matlab.
- Customizing Monte Carlo simulations using C++ and python.
- Multi-scale molecular dynamics. Experienced on GROMACS package for all-atomistic molecular dynamics simulations and LAMMPS package for coarse-grained molecular dynamics simulations.
- Data processing using python.