DCC-UFRJ-Números Inteiros e Criptografia-Primeira Prova-2022.2

Justifique cuidadosamente todas as suas respostas.

Questão 1 (2,5 pontos)

Uma empresa doou 2051 canetas e 3223 lápis ao professor de matemática de uma escola, que distribuiu todas as canetas e todos os lápis aos seus alunos sem que sobrasse nenhuma caneta ou lápis.

- (a) Quantos alunos o professor tem nesta escola? Euclides eskendido
- (b) Quantos lápis e quantas canetas cada aluno recebeu?

Questão 2 (2,5 pontos)

Sabe-se que n=437561 é o produto de dois primos p e q. Determine p e q usando o algoritmo de Fermat.

Questão 3 (2,5 pontos)

Ache um fator primo de a+b sabendo-se que a e b são inteiros maiores que 2^{100} que satisfazem 56a=65b.

Dica: aplique o teorema da fatoração única à equação dada.

Questão 4 (2,5 pontos)

Sejam a, b e c números inteiros maiores que 2^{100} e considere a equação diofantina ax + by = c. Sabe-se que mdc(a, b) = 1 e que α e β são os números obtidos como saída do algoritmo euclidiano estendido.

- (a) Escreva a solução geral desta equação a partir de α e β .
- (b) Mostre que se $\mathrm{mdc}(a,b)=1$ e $c\geq ab$ então a equação diofantina ax+by=c tem soluções não negativas.

Justifique cuidadosamente todas as suas respostas.

Questão 1 (3,0 points)

Seja p > 30 um número primo e r o resto da divisão de p por 30.

- (a) Mostre que se n > 30 é um inteiro, cujo resto da divisão por 30 é divisível por 2, 3 ou 5, então n é composto.
- (b) Mostre que se r não tem fator comum com 30, então r é primo.
- (c) Use (a) e (b) para mostrar que r também é um número primo.

Questão 2 (2,0 points)

Sabe-se que 953 e $1907 = 2 \cdot 953 + 1$ são primos.

- (a) Determine a ordem de 9 módulo 1907.
- (b) Calcule o resto da divisão de 9⁴⁷⁶⁷ por 1907.

Dica para (a): aplica o Teorema de Fermat à base 3.

Questão 3 (3,0 points) Seja $F = 2^{2^{10}} + 1$.

- (a) Explique porque a ordem de 2 módulo F não pode ser um divisor de 2^{10} .
- (b) Determine um inteiro m tal que $2^m \equiv 1 \pmod{F}$.
- (c) Use o Lema Chave para calcular a ordem de 2 módulo F a partir de (a) e (b).

Questão 4 (2,0 points)

Sabe-se que $11 \cdot 83$ é a a fatoração em primos de n = 913.

- (a) Use o Teorema de Fermat para calcular o resto da divisão de 5⁹⁷⁶³ por 11 e por 83.
- (b) Use (a) e o algoritmo chinês do resto para calcular o resto da divisão de 5^{9763} por n.

DCC-UFRJ-Números Inteiros e Criptografia-Terceira Prova-2022.2

Justifique cuidadosamente todas as suas respostas.

(3,0 points)Questão 1 Prove, por indução, que $2^{n+3} \geq 4n$. Sua solução deve indicar claramente os vários passos da indução, incluindo a conclusão.

Questão 2 (3,0 points) Sabe-se que $793 = 13 \cdot 61$.

- (a) Calcule a ordem de 11 módulo 61.
- (b) Calcule o resto de 11^{99} módulo 13 e módulo 61.
- (c) Use o algoritmo chinês do resto para calcular o resto da divisão de 1199 por 793.
- (d) Determine se 793 é um pseudoprimo forte para a base 11.
- (e) Determine se 793 é um pseudoprimo para a base 11.

bn-1 #1 composio

Pu-7 = 2 believes Questão 3 (2,0 points) Sabe-se que 1151 é primo e que $9209 = 8 \cdot 1151 + 1$. Use que $11^{1151} \equiv 8580 \pmod{9209}$

e o teorema de Lucas para provar que 9209 é um número primo.

Questão 4 (2,0 points) Considere a chave de RSA n = 12193 e e = 7979.

- (a) Fatore n usando o algoritmo de Fermat e ache o parâmetro de decodificação d.
- (b) Decodifique a mensagem 7213.

 $7253^3 = \times \pmod{52593}$

Justifique cuidadosamente todas as suas respostas.

Questão 1 (1,5 pontos)

Prove, por indução em n, que

$$1 \cdot 1! + 2 \cdot 2! + \dots + n \cdot n! = (n+1)! - 1.$$

Sua solução deve indicar claramente os vários passos da indução, incluindo a conclusão.

Questão 2 (2,0 pontos)

Calcule a ordem de 7 módulo 29 e use isto para determinar o resto da divisão de $7^{8^{1024}}$ por 29.

Questão 3 (2,5 pontos)

Considere o número $6601 = 7 \cdot 23 \cdot 41$.

- (a) Calcule o resto da divisão de 2825 por 6601 pelo algoritmo chinês do resto.
- (b) Determine se 6601 é um pseudoprimo forte para a base 2.
- (c) Determine se 6601 é um pseudoprimo para a base 2.

Questão 4 (4,0 pontos)

Considere a chave de RSA n = 1089307 e $e = 7^5$.

- (a) Fatore n usando o algoritmo de Fermat.
- (b) Determine a chave de decodificação desta versão do RSA, usando o algoritmo euclidiano estendido.
- (c) Calcule o resto da divisão de 2888107 por n sabendo-se que

$$288810^4 \equiv 288810 \pmod{n}.$$

(d) Codifique o número 288810 usando os valores de n e e dados.

Dica para o item (c): qual é o máximo divisor comum entre n e 288810?

DCC-UFRJ-Números Inteiros e Criptografia-Prova Final-2022.2

Justifique cuidadosamente todas as suas respostas.

Questão 1 (2,0 pontos)

Prove, por indução em n, que

 $n < 2^{n}$

para todo $n \geq 1$. Sua solução deve indicar claramente os vários passos da indução, incluindo a conclusão.

Questão 2 (3,0 pontos)

Seja $607 = 6 \cdot 101 + 1$. Sabendo-se que $3^{101} \equiv 211 \pmod{607}$:

- (a) mostre que 607 é primo usando o teorema de Lucas;
- (b) calcule a ordem de $3^6 = 729$ módulo 607;
- (c) calcule o resto da divisão de 5²⁷²⁷² por 607.

Questão 3 (3,0 pontos)

Considere o número $671 = 11 \cdot 61$.

- (a) Calcule o resto da divisão de 3⁶⁷⁰ por 671 pelo algoritmo chinês do resto.
- (b) Determine se 671 é um pseudoprimo forte para a base 3.
- (c) Determine se 671 é um pseudoprimo para a base 3.

Questão 4 (2,0 pontos)

Considere a chave de RSA n=24257 e e=31.

- (a) Fatore n usando o algoritmo de Fermat.
- (b) Determine a chave de decodificação desta versão do RSA, usando o algoritmo euclidiano estendido.

NÚMEROS INTEIROS E CRIPTOGRAFIA-IC-UFRJ

ATIVIDADE 1

- 1. Para criar sua versão do RSA você vai precisar das seguintes funções do MAXIMA:
 - next_prime(m) acha o menor primo maior que m;
 - gcd(a,b) calcula o máximo divisor comum entre a e b;
 - remainder(a,m) calcula o resto da divisão de a por m;
 - ullet b^m calcula a potência b^m .

Para atribuir à variável x o valor a escrevemos x:a. Finalmente, vamos precisar da função igcdex(e,f) que retorna uma lista com três números inteiros. Se 1:=igcdex(a,b) então, tomando α como sendo o valor de 1[1], β como sendo o valor de l[2] e d como sendo o valor de l[3], temos que δ é o máximo divisor comum de a e b e que $a\alpha+b\beta=\delta$.

3. As chaves do RSA são pares de números inteiros positivos. Denotaremos sua chave pública por [n, e] e sua chave secreta por [n, d]. Para construir n, precisamos de dois números primos distintos p e q. Siga a seguinte receita para construir suas chaves públicas no MAXIMA:

Escolha dos primos: use next_prime para obter dois primos distintos p e q com entre 10 e 12 algarismos cada;

Cálculo de $n \in f$: $n : p * q \in f : (p-1) * (q-1)$;

Escolha de e: escolha um número inteiro positivo qualquer $e > 10^{10}$ cujo mdc com $f \in 1$;

Cálculo de d: use igcdex(e,f) para calcular inteiros α e β tais que $e\alpha + f\beta = 1$ e tome

$$d = \begin{cases} \alpha & \text{se} & \alpha > 0 \\ f + \alpha & \text{se} & \alpha < 0. \end{cases}$$

Sua chave pública será o par [n,e] e sua chave secreta será o par [n,d]. As receitas para encriptar e decriptar com estas chaves são as seguintes:

Encriptação: se $0 \le b < n$ for um bloco da mensagem que você quer encriptar, então remainder (b^e,n) será o resultado da encriptação RSA do bloco b;

60° ×°×°×°×°°

Decriptação: se $0 \le a < n$ for um bloco da mensagem que você quer decriptar, então remainder (a^d,n) será o resultado da decriptação RSA do bloco a.

Usando as chaves que você construiu:

- (a) envie os números n e e de sua chave pública para o(a) colega cujo email você recebeu, por sua vez ele(a) vai lhe mandar a chave pública dele(a);
- (b) converta uma mensagem de sua escolha em um número inteiro usando a tabela de conversão entre letras e números ao final do laboratório;
- (c) subdivida o número obtido em (b) em blocos menores que n;
- (d) encripte cada bloco usando a chave pública do seu(sua) colega e envie a lista de blocos encriptados para ele(a);
- (e) em troca, ele(a) vai lhe mandar uma mensagem, encriptada com sua chave pública, para você decriptar usando sua chave secreta.

A	В	C	D	E	F	G	Н	I.	J	K	T,	M
10	11	12	D 13	14	15	16	17	18	19	20	21	22
	O 24											

Checklist

\square Qual o papel de $f = (p-1)(q-1)$ no	RSA?		
\square Por que e tem que ser escolhido sem fa	tor comum com	f?	
\square Por que d tem que ser positivo?		<i>y</i> .	
\square Por que d tem que satisfazer $ed + fm$	= 1?		
\square Por que $D(C(b)) = b$?			
☐ Por que os blocos da mensagem a ser co	odificada têm que	ser menores que n?	
☐ Como achar primos grandes para usar	no RSA?	monores que n:	
Como funcionam as seguintes funções do MAX			
□ gcd	□ power_mod		
□ igcdex	□ primep	Tatakae	
\square next_prime	□ eulerPhi		
		90709070507076	
	1		

INSTITUTO DE COMPUTAÇÃO-UFRJ

NÚMEROS INTEIROS E CRIPTOGRAFIA - ESTUDO DIRIGIDO 1

Estudo dirigido 1

Sejam b um número real e $n \geq 0$ um número inteiro. Definimos

$$b^n = \begin{cases} 1 & \text{se } n = 0 \\ \underbrace{b \cdot b \cdots b}_{n \text{ vezes}} & \text{se } n \ge 1. \end{cases}$$

- 1. Sejam b um número real e m e n inteiros:
 - (a) use a definição de potência para provar que

$$b^n \cdot b^m = b^{n+m}$$

(b) use (a) e a definição de potência para provar que

$$(b^m)^n = b^{mn}.$$

- 2. Sejam b um número real e k, m e n inteiros. Escreva $(b^{k^m})^{k^n}$ como uma potência na base b.
- 3. Usando as fórmulas dos exercícios anteriores simplifique os números abaixo o mais possível, escrevendo-os como potências de uma mesma base:
 - (a) $2^5 \cdot 3^5$;
 - (b) $(2^5)^6 \cdot 2^7$;
 - (c) $(2^{3^4})^{3^9}$;
- (d) $(2^{3^4})^3$.
- 4. Determine o inteiro n tal que $(3^{2^8})^{2^5} \cdot (3^{2^6})^{2^7}$ é igual a 3^{2^n} .

S. 6.

INSTITUTO DE COMPUTAÇÃO - UFRJ - 2022.2

NÚMEROS INTEIROS E CRIPTOGRAFIA-ESTUDO DIRIGIDO 2

Neste estudo dirigido investigaremos como resolver equações diofantinas lineares

- (1) ax + by = c em que a, b e c são números inteiros e x e y são variáveis, usando o algoritmo euclidiano estendido. Isto é buscaremos inteiros x_0 e y_0 tais que $ax_0 + by_0 = c$.
- 1. Comece aplicando o algoritmo euclidiano estendido para calcular $d=\mathrm{mdc}(a,b)$ e inteiros α e β tais que $\alpha \cdot a + \beta \cdot b = d$, quando a=99918 e b=5471 e quando a=17652 e b=12672.
- 2. Seja d = mdc(a, b) e digamos que $x = x_0$ e $y = y_0$ são soluções de (1).
 - (a) Explique porque existem inteiros a' e b' tais que a=da' e b=db'.
 - (b) Substitua a=da' e b=db' em $ax_0+by_0=c$ e mostre que d tem que dividir c.
 - (c) Use (b) para inventar dois exemplos de equações diofantinas lineares que $n\tilde{a}o$ têm solução.
- 3. Considere a equação diofantina 99918x + 5471y = 7. No exercício 1 calculamos inteiros α e β tais que $99918\alpha + 5471\beta = 1$.
 - (a) Por que número 99918 $\alpha + 5471\beta = 1$ deve ser multiplicada para que o lado direito seja 7?
 - (b) Compare 99918x+5471y=7 com a expressão obtida em (a) e determine uma solução desta equação, usando os valores de α e β calculados no exercício 1.
 - (c) Faça o mesmo para 17652x + 12672y = 36 e 17652x + 12672y = 28.
- 4. Nesta questão analisaremos, em detalhe, o método utilizado para resolver as equações dos exercícios acima. Seja d = mdc(a, b) e digamos que a = da', b = db' e c = dc', em que $a', b', c' \in \mathbb{Z}$.
 - (a) Por que número devemos multiplicar $\alpha \cdot a + \beta \cdot b = d$ para que o lado direito passe a ser c, quando α e β foram calculados pelo algoritmo euclidiano estendido?
 - (b) Comparando a equação diofantina (1) com a expressão obtida em (a) determine uma fórmula para a solução de (1) em função de α , β e c'.
- 5. Suponhamos que você encontrou uma solução $x=x_0$ e $y=y_0$ para a equação diofantina (1). Mostre que se a' e b' são inteiros tais que a=da' e b=db', então $x=x_0+kb'$ e $y=y_0-ka'$ também nos dão uma solução da mesma equação, qualquer que seja o número inteiro k. Use as fórmulas desta questão e da anterior para encontrar as soluções gerais das equações do exercício 3. Veremos mais adiante neste curso que estas fórmulas nos dão a solução geral da equação (1).

INSTITUTO DE COMPUTAÇÃO - UFRJ - 2022.2

NÚMEROS INTEIROS E CRIPTOGRAFIA-ESTUDO DIRIGIDO 3

Sejam n>1 e b números inteiros. A ordem de b módulo n é o menor inteiro positivo k tal que $b^k\equiv 1\pmod n$. Os principais resultados que você precisar saber para resolver os exercícios deste estudo dirigido são os seguintes:

Existência da ordem: b só tem ordem módulo n se mdc(b, n) = 1; Lema chave: $b^m \equiv 1 \pmod{n}$ se, e somente se, a ordem de b módulo n divide m;

- 1. Calcule as ordens de todos os inteiros módulo 10 e módulo 11.
- 2. Calcule a ordem de 2 módulo p, quando p = 11 e p = 17.
- 3. Use o exercício anterior para calcular o resto de 2⁹⁹⁸⁷⁶ na divisão por 11 e na divisão por 17.
- 4. Sabendo-se que $3^{82} \equiv 1 \pmod{83}$, determine:
 - (a) a ordem de 3 módulo 83, usando o lema chave;
 - (b) o resto da divisão de 399876 por 83.
- 5. Seja $n = 2^{61} 1$. Determine:
 - (a) a ordem de 2 módulo n, usando o lema chave;
 - (b) o resto da divisão de 2^{868221} por n.
- 6. Considere o primo $p = 10^9 + 21$ e seja n = 16p + 1. Sabe-se que $3^{8p} \equiv -1 \pmod{n}$.
 - (a) Use o lema chave para mostrar que a ordem 3 módulo n não pode dividir 8p.
 - (b) Ache uma potência de 3 que seja congruente a 1 módulo n.
 - (c) Use (a), (b) e o lema chave para calcular a ordem 3 módulo n.