高中物理

马祥芸

May 25, 2024

Contents

1	匀变速直线运动问题 1.1 中间时刻/平均速度
2	机械振动 2.1 简谐振动
3	光学 3.1 折射率
4	分子动理论4.1 物体是由大量分子构成的4.2 微观量的估算4.3 布朗运动和扩散现象4.4 分子之间的作用力4.5 分子之间的能量4.6 分子动能4.7 温度和温标4.8 内能4.9 晶体与非晶体4.10 液体
5	原子核物理 5.1 黑体辐射 5.1.1 物理大厦上的"两朵乌云" 5.1.2 为什么要研究辐射 5.1.3 黑体模型 5.1.4 能量子-普朗克 5.1.5 光的一些描述 5.2 光电效应 5.2.1 理想模型 5.2.2 实验雏形 5.2.3 电学实验
	5.2.5 电子头验 5.3 原子结构 5.3.1 物理学史 5.3.2 α散射实验 5.3.3 玻尔模型 5.4 天然放射性现象 5.5 放射性元素的衰变 5.6 质能方程 5.7 社会能量地社会能

1 匀变速直线运动问题

1.1 中间时刻/平均速度

中间时刻速度 $v_{\frac{t}{2}}$ 与平均速度 \overline{v} 是同一个值

$$v_{\frac{t}{2}} = v_0 + \frac{at}{2} = \frac{v_0}{2} + (\frac{v_0}{2} + \frac{at}{2}) = \frac{v_0 + v_t}{2} = \overline{v}$$

中间位置速度

$$\begin{cases}
2a\frac{x}{2} = v_{\frac{x}{2}}^2 - v_0^2 \\
2a\frac{x}{2} = v_t^2 - v_{\frac{x}{2}}^2
\end{cases} \tag{1}$$

由方程 (1) -(2) 得到 $v_{\frac{x}{2}} = \sqrt{\frac{v_0^2 + v_t^2}{2}}$

1.2 纸带加速度问题

纸带的特点,每个计时点的时间间隔相同均为 T, 且 x_n 规定的是第 n 个时间间隔内的位移,并非到起点的距离

推论. 相邻位移之间的差为 aT^2 , 等时位移比例式为 $x_1:x_2:x_3:\dots:x_n=1:3:5:\dots:2n-1$ 证明.

$$x_n = \frac{1}{2}a(nT)^2 - \frac{1}{2}a[(n-1)T]^2 = aT^2(\frac{2n-1}{2})$$
$$x_{n-1} = aT^2(\frac{2n-3}{2})$$
$$x_n - x_{n-1} = aT^2$$

推论. 等位移比例式子 (1m,2m,3m...)

前 $1m, 2m, 3m \dots nm$ 所用时间比为 $1:\sqrt{2}:\sqrt{3}:\dots:\sqrt{n}$,若是第 im 内则向前减一个就行证明.

$$1 = \frac{1}{2}at_1^2 \Longrightarrow t_1 = \sqrt{\frac{2}{a}} \cdot \sqrt{1}$$

$$2 = \frac{1}{2}at_2^2 \Longrightarrow t_2 = \sqrt{\frac{2}{a}} \cdot \sqrt{2}$$

$$3 = \frac{1}{2}at_3^2 \Longrightarrow t_3 = \sqrt{\frac{2}{a}} \cdot \sqrt{3}$$

$$n = \frac{1}{2}at_n^2 \Longrightarrow t_n = \sqrt{\frac{2}{a}} \cdot \sqrt{n}$$

2 机械振动

2.1 简谐振动

- 定义: 具有平衡位置, 回复力形如 $F_{\square} = -kx($ 来自合外力或其分力)
- 振子方程: $\sin(\omega t + \varphi)$
- 同侧法: 质点振动速度方向 v_f 与波传播方向 u 在正弦函数线的同一侧
- 摆周期: $T = 2\pi\sqrt{\frac{L}{g}}$
- 受迫振动: 在周期性外力的持续作用下而进行的振动称为**受迫振动**, 振动稳定后其**频率**等于外力驱动频率
- 等效绳长与等效加速度问题:
 - 等效绳长: 确定为简谐振动, 通过几何关系确定摆心
 - 等效加速度: 主要区别电场摆和电梯摆, 后者需要变换参考系(非惯性力)
- 造成波的多解性的三大原因:

 $\left(\begin{array}{c} -i\lambda \, \text{Diag}(x) \\ -i\lambda \, \text{Diag}(x) \end{array} \right)$ 空间周期性: 波传播距离 $\triangle x$ 与波长 λ 的关系不明确

- 波形隐含性: { 在波动问题中,有时只给出几个特殊点 (大多是两个特殊的点)的运动状态,其余信息均处于隐含状态

2.2 数学准备

• 展开

$$\sin(\theta \pm \beta) = \sin\theta \cos\theta \pm \cos\theta \sin\theta$$
$$\cos(\theta \pm \beta) = \cos\theta \cos\beta \mp \sin\theta \sin\beta$$
$$\tan(\theta \pm \beta) = \frac{\tan\theta \pm \tan\beta}{1 \mp \tan\theta \tan\beta}$$

• 互($\theta + \beta = \frac{\pi}{2}$)

$$\sin\theta = \cos\beta \quad \tan\theta = \frac{1}{\tan\beta}$$

• $\Xi \nmid \uparrow (\theta + \beta = \pi)$

$$\sin\theta = \sin\beta \quad \cos\theta = -\cos\beta \quad \tan\theta = -\tan\beta$$

• 半周期与奇偶性

$$\sin(\theta \pm \pi) = -\sin\theta \quad \sin(\theta - \beta) = -\sin(\beta - \theta)$$

$$\cos(\theta \pm \pi) = -\cos\theta \quad \cos(\theta - \beta) = \cos(\beta - \theta)$$

3

• 和关系

$$\sin^2\theta + \cos^2\theta = 1$$

• 正弦定理

$$\frac{a}{\sin \alpha} = \frac{b}{\sin \beta} = \frac{c}{\sin \gamma}$$

• 余弦定理

$$\cos \gamma = \frac{a^2 + b^2 - c^2}{2ab}$$

• 二倍角

$$\sin 2\theta = 2\sin \theta \cos \theta \quad \cos 2\theta = \cos^2 \theta - \sin^2 \theta \quad \tan 2\theta = \frac{2\tan \theta}{1 - \tan^2 \theta}$$

降次

$$\sin^2\theta = \frac{1 - \cos 2\theta}{2} \quad \cos^2\theta = \frac{1 + \cos 2\theta}{2} \quad \tan^2\theta = \frac{1 - \cos 2\theta}{1 + \cos 2\theta}$$

3 光学

3.1 折射率

• 定义式:

$$n = \frac{\sin \pm \pi}{\sin \pm \pi}$$

• 决定式:

$$n = \frac{c}{v}$$

• 全反射:

光密介质
$$\rightarrow$$
 光疏介质 \sin 大角 $=$ 1 (大角 $=$ $\frac{\pi}{2}$) 临界角 $\sin C = \frac{1}{\sin \sqrt{\hbar}}$

• 视深与视高:

H 为物点距离界面的高度; h 为像点距离界面的高度

- 视深: 从介质外看向介质内 $h = \frac{1}{n}H$
- 视高: 从介质内看向介质外 h=nH

• 实验误差分析:

- 非平行玻璃砖 $n_{\parallel} = n_{\bar{1}}$
- -整体平移 $d_{ij} = d_{ij}$ $n_{ij} = n_{ij}$
- 其他情况 n_{ij} 和 n_{ij} 的大小关系与 d_{ij} 和 d_{ij} 的大小关系相反

3.2 干涉实验

- (1) 薄膜干涉: $\delta = 2d$
 - 明暗条纹位置由波长和此处厚度共同决定
 - 相邻明 (暗)条纹对应的薄膜厚度差为 $\frac{\lambda}{2}$ λ 应为光在介质中传播时的波长
- (2) 劈尖干涉: 样板下表面和被检查平面的上表面的反射光发生干涉 (标准板的厚度太厚大于相干长度)

I 验平问题:

若待测板平整,干涉条纹等距 若条纹**偏头**,则条纹提前出现,此处光程差偏大,因此待测样板此处凹 若条纹**偏尾**,则条纹延后,此处光程差偏小,因此待测样板此处凸

II 条纹间距问题:

薄片 (支撑两个板) 的移动改变
$$\theta$$
 角 $\triangle l = \frac{\triangle d}{\tan \theta}$ $\triangle d = f(\lambda) = \frac{\lambda}{2}$

III 增反膜; 增透膜: 入射光能量 = 折射光能量 + 反射光能量

(注: 光疏到光密反射光产生半波损失, η 原 介于空气和另一介质之间)

增透膜: 反射光相消 $2d = \frac{\lambda}{2}(2n+1)$ 增反膜: 反射光相长 $2d = \frac{\lambda}{2}(2n)$

(3) 双缝干涉: $\triangle d = \lambda \frac{L}{d}$ (条纹间距 $\triangle d$, 双缝间距 d, 缝板距离 L)

3.3 总结

符号说明

频率	折射率	速度	临界角	波长	动量	干涉	能量	逸出功	逃逸光子动能
f	n	v	C	λ	p	$\triangle x$	ε	w_0	E_k

• 同一介质中不同频率的光

• 同一频率的光在不同介质 (下标表示不同介质中) 中

4 分子动理论

4.1 物体是由大量分子构成的

1. 分子的大小

(1) 分子直径数量级: 10⁻¹⁰ m

(2) 分子质量数量级: 10⁻²⁶ kg

(3) 测量分子的方法: 油膜法

2. 两种分子模型

- (1) 球体模型: 认为分子是一个个紧挨着的球体 (适用对象: 固体, 液体; 体积: $V = \frac{4\pi}{3}R^3$)
- (2) 立方体模型: 认为分子是一个个紧挨着的立方体 (适用对象: 气体; 体积: $V = d^3$)

3. 油墨法测量分子的直径

- 思路: 第一滴油酸摊开在水面上, 近似看成单分子层
- 模型: 认为油酸分子为球体模型
- 要点:
 - 1ml 油酸溶液配制成 500ml 油酸酒精溶液
 - 取 100 滴油酸酒精溶液 8 测得体积为 1ml
 - 先对水撒痱子粉, 后滴液解决油膜的透明问题
 - 往水面上注射一滴油酸酒精溶液
 - 稳定后使用玻璃板盖进行描边
 - 使用格子法来计算不规则面积 (不足半格取 0, 超过半个取 1)

4.2 微观量的估算

- (1) 分子层面: 单个分子质量 m_0 , 单个分子所占空间体积 V_0
- (2) 化学层面: 摩尔质量 M_{mol} (g/mol), 摩尔体积 V_{mol} (L/mol)
- (3) 实际层面: 质量 M, 体积 V

物理量之间的关系: $n = \frac{N}{N_A} = mol(N_A = 6.02 \times 10^{23})$

$$M_{mol} = \frac{M}{n} \quad m_0 N_A = M_{mol}$$

$$V_{mol} = \frac{V}{n}$$
 $V_0 N_A = V_{mol}$

摩尔体积适用于固液相,但是计算出来的并不能视作单分子体积,而是单分子占用空间摩尔体积不适用于气体,因为标况下气体为22.4L,那么除以 N_A 会导致每个分子一样大标况: $0^{\circ}C$, -0° 标准大气压(约 101kPa)

密度: 区分 分子密度 与 气体密度, 利用气体密度所求体积为 分子所占空间体积

4.3 布朗运动和扩散现象

一切物质的分子都在不停地做无规则的(热)运动

1. 扩散现象

- (1) 定义: 相互接触的不同物质能够彼此进入对方, 此现象并不是宏观受力的作用下发生的, 且各个状态下都会存在扩散现象
- (2) 前提: 浓度差 (梯度)
- (3) 直接反映了分子的无规则运动
- (4) 扩散现象的快慢: 与物质的状态与温度有关, 气体 > 液体 > 固体

2. 布朗运动

- (1) 定义: 悬浮在液体或 (气体) 中的微粒 (宏观层面) 的无规则运动
- (2) 实验背景: 布朗看水中的花粉 (显微镜)
- (3) 观察结论: 微粒越小或温度越高, 布朗运动越强烈
- (4) 原因: 水分子对布朗微粒撞击的不平衡 (不均匀)
- (5) 布朗运动不是分子运动, 间接反映了分子的无规则运动
- 3. 扩散与布朗运动的混淆点
 - (1) 扩散现象: 微观力作用, 宏观现象肉眼可见
 - (2) 布朗运动: 宏观力作用, 宏观现象光学显微镜观察可见 (10-6)
 - (3) 两者都是微观层面的分子无规则运动所形成的宏观现象

4.4 分子之间的作用力

- 现象
 - (1) 分子虽然有空隙, 大量分子聚集形成固体或液体说明了分子之间存在引力
 - (2) 用力压缩物体, 物体内会产生反抗压缩的弹力, 说明了分子之间存在斥力
- 研究表明
 - (1) 分子之间引力和斥力同时存在
 - (2) 引力与斥力都随着分子间距离增大而减小
 - (3) 斥力的变化比引力的变化更加明显
- 结论
 - (1) 分子距离较近时 $< r_0$ 体现为斥力
 - (2) 分子距离较远时 $> r_0$ 体现为引力
 - (3) 分子距离为 = r_0 合力为 0
 - (4) 当分子间距离 $> 10r_0$,引力、斥力均忽略不计

4.5 分子之间的能量

• 分离两个很近的分子

(1) 做功情况: 先斥力做正功, 后续引力做负功

(2) 能量变化: 分子势能先减小, 后增大

(3) 默认规定: 取无穷远处地方的势能为 0

(4) 特殊点: $d = r_0$ 时, 合力最小, 势能最小 (且为负)

• 分子势能的体现

(1) 微观上: 分子势能与分子间位置有关

(2) 宏观上: 分子势能与宏观体积有关

4.6 分子动能

• 分子动能

(1) 定义: 分子热运动所具有的能量

(2) 分子平均动能: 所有分子动能的平均值

(3) 研究单个分子的动能没有意义, 所以我们研究的动能是分子的平均动能

(4) 影响因素: 有且只有一个温度

(5) 易错点: 平均分子动能与分子种类无关, 与实际速度无关, 单个分子的动能与温度并非严格正相关

• 分子势能的体现

(1) 微观上: 分子势能与分子间位置有关

(2) 宏观上: 分子势能与宏观体积有关

• 图像中分子动能的规律

$$f(v) = \frac{dN}{Ndv} = \sqrt{\frac{2}{\pi} \left(\frac{m}{kT}\right)^3} v^2 \exp\left(\frac{-mv^2}{2kT}\right) \quad \int_0^{+\infty} f(v)dv = \int_0^N \frac{dN}{N} = 1$$

$$[v_1, v_2] \, \text{区间分子数} N_0 = \int_{v_1}^{v_2} Nf(v)dv \quad [v_1, v_2] \, \text{区间的概率} \frac{dN}{N} = \int_{v_1}^{v_2} f(v)dv$$

9

(1) 中间高, 两头低

(2) 温度越高, 峰值点横移

(3) 任何温度下,图像围成的面积为1

4.7 温度和温标

- 1. 气体的状态参量
 - 几何性质: 体积
 - 力学性质: 压强
 - 热学性质: 温度
 - $\frac{PV}{T} = C(C 常数, 与质量和气体种类相关)$

2. 温度

- 意义: 宏观上表示物体的冷热程度, 微观上表示的是分子热运动的剧烈程度
- 温标: 摄氏温度 t° , 热力学温标 T, 单位 $K(\mathcal{H})$
- 转化: T = t + 273.15 (绝对零度: $T = 0 \Longrightarrow t = -273.15^{\circ}$)
- 3. 热平衡: 两个热力学系统之间无温度差 (温度相同)

4.8 内能

- 1. 内能的概念: 物体**所有分子**的热运动的动能与分子势能的总和
- 2. 内能的决定因素:
 - (1) 微观上: 分子个数, 分子平均动能, 分子势能
 - (2) 宏观上: 质量, 温度, 体积
- 3. 分子势能: 由分子的位置决定, 在微观上与分子间距相关, 宏观上与体积相关
- 4. 分子平均动能: 温度
- 5. 理想气体: 有质量, 分子无体积, 分子之间没有作用力的气体
- 6. 两个意义: 分子无体积 (仍有占有体积) 意味着气体可以无限被压缩, 分子间屋作用力 (气体内能不包含势能)
- 7. 结论: 理想气体内能只有动能项, 其内能大小仅和温度有关

4.9 晶体与非晶体

- 1. 固体
 - 根据有无固定熔点分为: 晶体(有) 非晶体(无)
 - 根据有无规则的外形分为: 单晶体(有) 多晶体(无)

单晶体: 其内部微粒有规律地排列在一个空间格子内的晶体.

其晶体结构是连续的,或者可以说,在宏观尺度范围内单晶不包含晶界.

多晶体: 仅存在于固体, 由多颗大小及方向各异的晶粒所构成

而这些晶粒一般都由大量微小的单晶或微晶(微结晶、结晶粒、结晶子)组成.

在材料不同位置生长的结晶粒相遇时形成晶界

- 常见晶体: 石英 食盐 明矾 云母 天然水晶
- 常见非晶体: 蜂蜡 橡浆 玻璃

• 互相转换:

糖块是多晶体,组成糖块的颗粒是单晶体 天然水晶是单晶体,融化后再凝固的玻璃是非晶体

2. 各向同性与各向异性:

- 定义: 各个方向上的物理性质的同异 (主要指导电性, 导热性, 透光性等)
- 单晶体: 其具有规则外形, 因此不同方向上物理性质具有差异, 各向异性
- 多晶体与非晶体: 其具有不规则外形, 因此不同方向上物理性质一致, 各向同性

3. 总结:

	单晶体	多晶体	非晶体
外形	规则	无规则	无规则
固定熔点	有	有	无
物理性质	各向异性	各向同性	各向同性

4.10 液体

1. 表面张力

- (1) 生活中的现象: 球形露珠, 水面上的水蜘蛛
- (2) 作用: 表面张力是的液体具有收缩的趋势
- (3) 效果: 使得表面积趋于最小, 而在体积 V 相同的情况下, 球体表面积最小
- (4) 成因: 表面层蒸发使得分子较为稀疏, 间距较大, 表现为分子间的引力
- (5) 方向: 与液体表面相切, 与液体的分界线垂直
- (6) 大小: 温度越高张力越小 (例如蒸发现象), 有杂质的时候张力更小 (类似隔断)

5 原子核物理

5.1 黑体辐射

5.1.1 物理大厦上的"两朵乌云"

迈克尔逊-莫雷实验: 测量假想介质以太(绝对参考系)⇒ 否定以太得到狭义相对论

• 热辐射实验-紫外灾难: 紫外波段辐射能量在当时理论下应为 ∞ , 实际辐射能量为 0

5.1.2 为什么要研究辐射

- 各个国家都在大炼钢铁 (大炼钢时代), 资本家为了提高炼钢技术请物理学家进行研究
- 热辐射: 任何物体都在进行热辐射 (电磁波), 且与温度 (非唯一) 有关
- 物理学家尝试测量最好炼钢温度所产生的热辐射(电磁波波谱)

- (1) 在特定温度下,辐射的电磁波波段范围较广,强度不一
- (2) 随着温度的升高,辐射出的各个波段的电磁的辐射强度均升高
- (3) 随着温度升高,辐射强度最强的波长向 **左**移动 (频率上升)
- (a) 维恩公式 (短波接近)
- (b) 瑞利公式 (长波接近) ⇒ 紫外灾难 (短波接近无穷)

5.1.3 黑体模型

- 理想黑体概念: 反射率与透射率为 0, 吸收率 100%, 全靠自身发射辐射
- 常见近似黑体: 太阳 发光灯泡 钻孔箱

5.1.4 能量子-普朗克

- 能量子: 认为带电微粒的能量只能是某一最小能量值的整数倍, 最小能量值称之为一能量子
- 光子: 爱因斯坦在**光电效应**现象中认为光本身由一个个不可分割的能量子组成, 频率为 ν 的光其能量为 $h\nu$, 后被称为光子

 $E = h\nu$ 普朗克常数 $h = 6.63 \times 10^{-34}$

5.1.5 光的一些描述

• 光速 (传播): 真空中传播速度 $3 \times 10^8 m/s$

• 频率 (颜色): 单位时间内完成的周期次数 ν

• 强度 (亮度): 单位时间内的光子数 (粗浅定义) $I = nh\nu$ (单一光的强度改变仅改变 n)

5.2 光电效应

5.2.1 理想模型

- 核外电子处于某能级上, 吸收特定能量将会 跃迁或逃离 (电离)
- 单个光子的能量被吸收后仍有**余量**,则作为电子的初动能
- 电子逃离在化学中 ↔ 被氧化,这也是有些材料需要避光存储的原因

5.2.2 实验雏形

- 电子吸收能量逃离
- Zn 板处于正电
- 验电器处于正电(工作原理:接触式起电)

5.2.3 电学实验

- 逸出功: 电子逃逸出金属表面所需要的最小能量 W_0
- 最大初动能: 一定频率光照下刚逃逸的电子所具有最大初动能 $E_{kmax} = h\nu W_0$
- 饱和光电流: 所有逃逸电子均打到极板 (忽略速度对电流的影响) I_s

增大光频率 × 增加光照强度 (调整 n) $\sqrt{}$

- 遏止电压: 恰好使得没有任何电子打到极 板 $V_{stop}q = E_{kmax}$ (抵消电子最大初动能)
- 截止频率 (极限频率): 恰好发生光电效应 时的频率 $E_{kmax} \Longrightarrow \nu_0 = \frac{W_0}{h}$

5.3 原子结构

5.3.1 物理学史

- 1. J.J 汤姆孙发现了电子: 阴极射线的粒子称为电子
- 2. J.J 汤姆孙提出"枣糕模型": 认为原子是一个球体, 其中正电荷分布均匀, 电子镶嵌其中
- 3. 卢瑟福通过 α 粒子散射实验 提出"核式结构模型": 所有带正电部分体积很小但几乎有全部质量, 电子在外运动

5.3.2 α 散射实验

• α 粒子: He 原子核

Figure 1: 枣糕结构

Figure 2: 核式结构

- 实验原理: 使用 α 粒子轰击金箔 (原子间缝隙), 边旋转荧光屏边接收粒子发光
- 实验中: 电子间的相互作用, 质量, 空气阻力等 (极小); 为何使用金箔 (重, 不易被碰撞影响; 延展性好, 可以做很薄)
- 实验结果

当时理论: 几乎所有粒子均可以穿过金箔

真实结果: 大部分穿过, 少部分偏角较大, 极少部分反弹 (不符合枣糕结构模型)

结论: 原子内部极度空旷, 极少反弹现象是由集中的大量正电荷带来的库伦力造成

α 粒子:He 原子核

实验原理

5.3.3 玻尔模型

- 经典理论的困难:
 - 卢瑟福的核式结构正确指出了原子核的存在, 很好的解释了 α 散射实验, 但是经典物理学既无法解释原子的**稳定性**, 又无法解释原子**光谱的分立特性**.
 - 绕核转动的电子在做周期性运动, 其电磁场周期性的变化 (波的传播) 因而会激发电磁波, 其绕核转动的能量将以电磁波的形式辐射出去. 所以电子绕核转动这个系统是不稳定的. 然而事实是, 原子是个很稳定的系统.
 - 经典电磁理论, 电子辐射的电磁波的频率就是其绕核转动频率. 电子越转能量越小, 那么离原子核就越来越近, 转的也就越来越快, 这个变化应当是连续的, 即应当是原子辐射各个频率的光都有(光谱应当是连续的). 事实是分立的线状谱.

• 基本假设:

Figure 1: 黑体辐射光谱

Figure 2: 汞灯光谱

轨道量子化

- * 电子**跃迁**辐射电磁波, 电子在不同轨道运动 ⇔ 原子处于不同状态 (原子跃迁)
- *原子在不同的状态中具有不同的能量,因此原子的能量是**量子化**,这些量子化的能量叫做**能级**
- * 原子中具有确定能量的稳定状态称为定态
- * 能量最低的态叫做基态n = 1; **激发态** n > 1(第一激发态 n = 2)

状态标识 $n = 1, 2, 3 \cdots$ 能量标识 E_1, E_2, E_3, \cdots

氢原子能级(以能级差示意跃迁难度)

 $* E_1 = -13.6eV E_2 = -3.6eV E_3 = -1.51eV$

$$E_n = \frac{E_1}{n^2}$$

* 电子吸收能量的方式:

恰好拥有某两能级差的光子 (区别于光 电效应中对光能量吸收的要求)

大于某两能级差的实物粒子撞击

* 电离: 电子吸收能量完全逃离 (最远处能级为 0) 原子核的束缚

- 电子跃迁 (从高 → 低)
 - 处于激发态的电子是不稳定的,将会自发从高能级向低能级跃迁
 - 向低能级跃迁过程中会发射**特定频率**的电磁波(光)
 - 有多种向低能级跃迁的方法时, 跃迁结果不定, 直至跃迁到基态
 - 大量处于同一激发态的电子, 所能发射电磁波的频率的种类最多 $C_n^2 = \frac{n(n-1)}{2}$

5.4 天然放射性现象

- 定义: 放射性元素原子核内部自发放出射线的现象
- 三种射线:

 α 射线: ${}_{4}^{2}He$ 原子核 速度 0.1c

β 射线: $_{0}^{-1}e$ 速度 0.99c

 γ 射线: ${}^{0}_{0}n$ 电磁波 速度 c

电离能力: 使得被射线辐射的物质发生电离的能力 $\alpha > \beta > \gamma$

距离足够近,放射性同位素释放出的 α 粒子就足以穿透皮肤从而杀死皮下的重要组织的细胞. 相比 γ 射线和 x 光对细胞造成毁伤的能力, α 射线对细胞所造成的损坏程度超过其二十倍以上

穿透能力: 穿透物质能力 $\gamma > \beta > \alpha$ (甚至不能穿透一张纸)

磁场半径:
$$r = \frac{mv}{qB}$$
 $q_{\alpha} = 2q_{\beta}$ $m_{\alpha} \gg m_{\beta} \Longrightarrow r_{\alpha} > r_{\beta}$

电场偏转: $a = \frac{Eq}{m}$ $q_{\alpha} = 2q_{\beta}$ $m_{\alpha} \gg m_{\beta} \Longrightarrow a_{\alpha} < a_{\beta}$

β 粒子相比 α 粒子在电磁场中更易发生偏转

5.5 放射性元素的衰变

1. 原子核的表示: ${}_{Z}^{A}X$ (A 表质量数,Z 为原子核的电荷数 eg. ${}_{4}^{2}He$) 同位素: 质子数一样,质量数不一样

2. 衰变形式:

• α 衰变: 放射性元素原子核放出 α 粒子

$$^{238}_{~92}\mathrm{U} \longrightarrow ^{234}_{~90}\mathrm{Th} + {}^{4}_{2}\mathrm{He}$$

• β 衰变: 放射性元素原子核放出 β 粒子 (非核外电子, 中子 \rightarrow 电子 + 质子) β 衰变不改变质量数 (未知衰变的计算方法)

$$^{234}_{90}$$
Th $\longrightarrow ^{234}_{91}$ Pa $+ ^{0}_{-1}$ e

- γ 衰变: α 衰变, β 衰变过程中会伴随着 γ 射线
- 衰变的轨迹分析: eg. 进行 α 衰变并处在 X 磁场下

$$r = rac{mv}{qb}$$
 由动量守恒 $|m_{lpha}v_{lpha}| = |m_{ar{k}}v_{ar{k}}|$ $q_{ar{k}} > q_{lpha}$ $r_{ar{k}} < r_{lpha}$

总结: 在磁场下 α 衰变为蝴蝶圆, β 衰变为内切圆 给定元素或给定半径均需要用到**动量守恒**

- 3. 半衰期: 放射性元素的原子核有半数发生衰变所需要的时间
 - 通过将放射性元素加速到接近光速,由狭义相对论的时间膨胀效应可以延长半衰期
 - 有些放射性元素的原子核和核外电子的波函数更多的重叠,来发生衰变. 因此使得电子和原子核的波函数重叠更少或者直接剥离所有核外电子能够使得半衰期延长

- (1) 不同放射性元素的半衰期不同
- (2) 半衰期的大小仅与原子核内部结构有关
- (3) 是对同一元素的大量原子核的统计规律

4. 人工核反应:

(1) 卢瑟福 α 粒子轰击氮原子核发现质子

$$^{14}_{7}N + ^{4}_{2}He \longrightarrow ^{17}_{8}O + ^{1}_{1}H$$

(2) 查德威克 α 粒子轰击铍原子核发现中子

$${}_{4}^{9}\mathrm{Be} + {}_{2}^{4}\mathrm{He} \longrightarrow {}_{6}^{12}\mathrm{C} + {}_{0}^{1}\mathrm{n}$$

(3) 居里夫人 α 粒子轰击铝原子核发现人工放射性同位素

$$^{27}_{13}\text{Al} + ^{4}_{2}\text{He} \longrightarrow ^{30}_{15}\text{P} + ^{1}_{0}\text{n}$$

(4) 居里夫人同时发现正电子

$$^{30}_{15}P \longrightarrow ^{30}_{15}Si + ^{0}_{1}e$$

5. 核裂变 (链式反应)

- (1) $^{235}_{92}U + ^{1}_{0}n \longrightarrow ^{141}_{56}Ba + ^{92}_{36}Kr + 3^{1}_{0}n$
- (2) 利用重核裂变的链式反应创造原子弹与可控核电站
- (3) 慢化剂以控制快中子 常见慢化剂有石墨, 重水, 普通水 (轻水)
- (4) 氢的同位素: 氕 (轻水) $_{1}^{1}H$, 氘 (重水) $_{1}^{2}$, 氚 (超重水) $_{1}^{3}H$

6. 核聚变反应 (热核反应)

- 将轻核加热使其获得动能以融合,释放出大量能量,以支持其他轻核聚变反应
- 氢弹是裂变与聚变反应的结合, 通过裂变反应释放的初始热量触发聚变反应
- 太阳无时无刻不在发生可控核聚变反应
- 核聚变反应的发生过程又可被称为热核反应

$$_{1}^{2}H + _{1}^{3}H \longrightarrow _{2}^{4}He + _{0}^{1}n$$

5.6 质能方程

- 在核反应方程中质量数与质子数是守恒的, 但是并不代表质量守恒
- 质子和中子的质量数均为 1, 但实际质量略有差异
- 质能方程: $E = mc^2$ (m : kg E : J)
- 质量单位: 1u (原子质量单位, 定义为碳原子质量的 1/12)
- 能量单位: 1MeV (兆电子伏特) 1u 相当于 931.5MeV 1MeV 相当于 $10^6 \times 1.6 \times 10^{-19}J$

5.7 结合能与比结合能

- 1. 原子核的核子间有一种强大的相互作用力: 核力
 - (a) 在原子核的尺度内, 核力比库伦力要大的多
 - (b) 核力是短程力,作用范围在 1.5 × 10⁻¹⁵ 之内 (大于此距离表现为吸引力,小于此距离表现为排斥力,因此不会完全融合) 自然界中较轻原子核,质子数与中子数大致相等,对于较重原子核,中子数大于质子数,越重元素相差越多
- 2. 结合能: 原子核是核子结合构成的, 要把它们分开所需要的能量称之为原子核的结合能原子核越大, 它的结合能就越大, 所以有意义的应该是结合能与核子数的比值
- 3. 比结合能: 比结合能越大, 表示原子核中核子结合越牢, 原子核越稳定 (具备更低的能量状态)