MA1301 Tallteori — Høsten 2014 — Løsninger til Eksamen

Richard Williamson

11. desember 2014

Innhold

Oppgave 1	2
a)	 2
b)	
c)	$\overline{2}$
d)	$\overline{4}$
Oppgave 2	4
a)	 4
b)	6
Oppgave 3	7
a)	 7
b)	
Oppgave 4	8
a)	 8
b)	9
Oppgave 5	12
Oppgave 6	12
a)	 12
b)	12
c)	14

Oppgave 1

a)

Først regner vi ut u_3 :

$$u_3 = u_2 + u_1 = 1 + 1 = 2.$$

Da er

$$u_4 = u_3 + u_2 = 2 + 1 = 3$$

og

$$u_5 = u_4 + u_3 = 3 + 2 = 5.$$

b)

Vi har:

$$u_4 - u_1 = 3 - 1 = 2$$

og $2 \mid 2$. Derfor er

$$u_4 \equiv u_1 \pmod{2}$$
.

Vi har

$$u_5 - u_2 = 5 - 1 = 4$$

og $2 \mid 4$. Derfor er

$$u_5 \equiv u_2 \pmod{2}$$
.

c)

Ut ifra b), er utsagnet sant når n = 1 og når n = 2.

Anta at utsagnet har blitt bevist når n=m og når n=m-1, hvor m er et gitt naturlig tall slik at $m\geq 2$. Således har det blitt bevist at

$$u_{m+3} \equiv u_m \pmod{2}$$

og at

$$u_{(m-1)+3} \equiv u_{m-1} \pmod{2},$$

altså at

$$u_{m+3} \equiv u_m \pmod{2}$$

og at

$$u_{m+2} \equiv u_{m-1} \pmod{2}.$$

Vi gjør følgende observasjoner.

(1) Ut ifra definisjonen til Fibonaccitallene, er

$$u_{m+4} = u_{m+3} + u_{m+2}$$
.

Derfor er

$$u_{(m+1)+3} = u_{m+4}$$
$$= u_{m+3} + u_{m+2}.$$

(2) Ut ifra antakelsen at

$$u_{m+3} \equiv u_m \pmod{2}$$

og at

$$u_{m+2} \equiv u_{m-1} \pmod{2},$$

er

$$u_{m+3} + u_{m+2} \equiv u_m + u_{m-1} \pmod{2}$$
.

(3) Ut ifra definisjonen til Fibonaccitallene, er

$$u_m + u_{m-1} = u_{m+1}$$

Det følger fra (1) - (3) at

$$u_{(m+1)+3} \equiv u_{m+1} \pmod{2}$$
.

Således har vi bevist at utsagnet er sant når n = m + 1.

Ved induksjon konkluderer vi at utsagnet er sant for et hvilket som helst naturlig tall n.

Utsagnet kan også bevises på følgende måte uten å benytte induksjon. Ut ifra definisjonen til Fibonaccitallene, er

$$u_{n+3} = u_{n+2} + u_{n+1}$$

og

$$u_{n+2} = u_{n+1} + u_n.$$

Derfor er

$$u_{n+3} = u_{n+2} + u_{n+1}$$

$$= (u_{n+1} + u_n) + u_{n+1}$$

$$= 2u_{n+1} + u_n$$

Vi har:

$$2u_{n+1} + u_n \equiv 0 \cdot u_{n+1} + u_n = u_n \pmod{2}$$
.

Vi konkluderer at

$$u_{n+3} \equiv u_n \pmod{2}$$
.

d)

Siden $u_{371} = u_{2+123\cdot 3}$, følger det fra c) ved induksjon at

$$u_{371} \equiv u_2 \pmod{2}$$
.

Siden $u_2 = 1$, følger det at

$$u_{371} \equiv 1 \pmod{2}$$
,

altså at u_{371} er et oddetall.

Alternativt kan vi argumentere som følger. Dersom u_{371} er et partall, har vi: $2 \mid u_{371}$. Siden $u_3 = 2$, har vi da: $u_3 \mid u_{371}$. Det følger da fra et resultat fra kurset at $3 \mid 371$. Siden dette ikke er sant, konkluderer vi at u_{371} ikke er et partall, altså at u_{371} er et oddetall.

Oppgave 2

a)

Vi gjør følgende observasjoner.

(1) Vi har: x = 1 er en løsning til kongruensen

$$17x \equiv 1 \pmod{4}$$
.

(2) Vi har: x = -4 er en løsning til kongruensen

$$4x \equiv 1 \pmod{17}$$
.

(3) Det følger fra (1), (2), og det kinesiske restteoremet at

$$x = 17 \cdot 1 \cdot 3 + 4 \cdot (-4) \cdot 2 = 19$$

er en løsning både til kongruensen

$$x \equiv 3 \pmod{4}$$

og til kongruensen

$$x \equiv 2 \pmod{17}$$
.

I tillegg fastslår det kinesiske restteoremet at

$$x \equiv 3 \pmod{4}$$

og

$$x \equiv 2 \pmod{17}$$

for et hvilket som helst heltall x slik at

$$x \equiv 19 \pmod{4 \cdot 17}$$

altså

$$x \equiv 19 \pmod{68}$$
.

(4) For å løse kongruensene

$$19x \equiv 1 \pmod{68}$$

og

$$68x \equiv 1 \pmod{19}$$
,

benytter vi Euklids algoritme.

$$68 = 3 \cdot 19 + 11$$

$$19 = 1 \cdot 11 + 8$$

$$11 = 1 \cdot 8 + 3$$

$$8 = 2 \cdot 3 + 2$$

$$3 = 1 \cdot 2 + 1$$

$$2 = 2 \cdot 1$$

Da får vi:

$$11 = 68 - 3 \cdot 19$$

$$8 = 19 - 1 \cdot 11$$

$$= 19 - 1 \cdot (68 - 3 \cdot 19)$$

$$= (-1) \cdot 68 + 4 \cdot 19$$

$$3 = 11 - 1 \cdot 8$$

$$= (68 - 3 \cdot 19) - 1 \cdot (4 \cdot 19 - 1 \cdot 68)$$

$$= 2 \cdot 68 - 7 \cdot 19$$

$$2 = 8 - 2 \cdot 3$$

$$= ((-1) \cdot 68 + 4 \cdot 19) - 2 \cdot (2 \cdot 68 - 7 \cdot 19)$$

$$= (-5) \cdot 68 + 18 \cdot 19$$

$$1 = 3 - 1 \cdot 2$$

$$= (2 \cdot 68 - 7 \cdot 19) - 1 \cdot ((-5) \cdot 68 + 18 \cdot 19)$$

$$= 7 \cdot 68 + (-25) \cdot 19.$$

Dermed er x=-25 en løsning til kongruensen

$$19x \equiv 1 \pmod{68},$$

og x=7 er en løsning til kongruensen

$$68x \equiv 1 \pmod{19}$$
.

(5) Det følger fra (4) og det kinesiske restteoremet at

$$x = 19 \cdot (-25) \cdot 19 + 68 \cdot 7 \cdot 3$$

altså x = -7597, er en løsning både til

$$x \equiv 19 \pmod{68}$$

og til

$$x \equiv 3 \pmod{19}$$
.

I tillegg fastslår det kinesiske restteoremet at

$$x \equiv 19 \pmod{68}$$

og

$$x \equiv 3 \pmod{19}$$

for et hvilket som helst heltall x slik at

$$x \equiv -7597 \pmod{68 \cdot 19}$$

altså

$$x \equiv -7597 \pmod{1292}.$$

Siden

$$-7597 \equiv 155 \pmod{1292},$$

følger det at x = 155 er en løsning både til

$$x \equiv 19 \pmod{68}$$

og til

$$x \equiv 3 \pmod{19}$$
.

(6) Det følger fra (3) og (5) at x=155 er en løsning til alle de tre kongruensene i oppgaven. I tillegg oppfyller x kravet

$$0 \le x < 1292$$
.

b)

Anta at det finnes et heltall x slik at disse to kongruensene er sanne. Siden

 $x \equiv 4 \pmod{6}$,

er

 $x \equiv 4 \pmod{3}$.

Siden

 $4 \equiv 1 \pmod{3}$,

følger det at

 $x \equiv 1 \pmod{3}$.

 Siden

$$x \equiv 11 \pmod{15}$$
,

er

$$x \equiv 11 \pmod{3}$$
.

Siden

$$11 \equiv 2 \pmod{3}$$
,

følger det at

$$x \equiv 2 \pmod{3}$$
.

Det følger at

$$2 \equiv 1 \pmod{3}$$
.

Dette er ikke sant! Vi konkluderer at det ikke finnes et heltall x slik at de to kongruense i oppgaven er sanne.

Oppgave 3

a)

Vi har: 53 er et primtall. Da fastslår Fermats lille teorem at

$$3^{52} \equiv 1 \pmod{53}.$$

Dermed er

$$3^{472} = 3^{9 \cdot 52 + 4} = (3^{52})^9 \cdot 3^4 \equiv 1^9 \cdot 3^4 = 81 \equiv 28 \pmod{53}.$$

Det følger at

$$2 \cdot 3^{472} \equiv 2 \cdot 28 = 56 \equiv 3 \pmod{53}$$
.

b)

Vi har:

$$36 \cdot (49!) = (-6) \cdot (-3) \cdot (-2) \cdot (-1) \cdot (49!)$$

$$\equiv (-6) \cdot 50 \cdot 51 \cdot 52 \cdot (49!)$$

$$= (-6) \cdot (49!) \cdot 50 \cdot 51 \cdot 52 \pmod{53}.$$

Dermed er

$$36 \cdot (49!) \equiv (-6) \cdot (52!) \pmod{53}$$
.

Siden 53 er et primtall, fastslår Wilsons teorem at

$$52! \equiv -1 \pmod{53}$$
.

Derfor er

$$(-6) \cdot (52!) \equiv (-6) \cdot (-1) = 6 \pmod{53}.$$

Dermed er

$$36 \cdot (49!) \equiv 6 \pmod{53}.$$

Da er

$$36 \cdot (49!) - 4 \cdot 3^{472} = 36 \cdot (49!) - 2 \cdot (2 \cdot 3^{472}) \equiv 6 - 2 \cdot 3 = 6 - 6 \equiv 0 \pmod{53}.$$

Vi konkluderer at

$$36 \cdot (49!) - 4 \cdot 3^{472}$$

er delelig med 53.

Oppgave 4

a)

Vi har:

$$(-21)^2 - 4 \cdot 12 \cdot 8 = 57.$$

Siden

$$39^2 \equiv 57 \pmod{61},$$

følger det fra teorien for kvadratiske kongruenser fra kurset at en løsning til kongruensen

$$(2 \cdot 12)x \equiv 39 - (-21) \pmod{61}$$
,

altså til kongruensen

$$24x \equiv 60 \pmod{61}$$
,

er en løsning til den kvadratiske kongruensen i oppgaven. For å løse kongruensen

$$24x \equiv 60 \pmod{61},$$

benytter vi Euklids algoritme.

$$61 = 2 \cdot 24 + 13$$

$$24 = 1 \cdot 13 + 11$$

$$13 = 1 \cdot 11 + 2$$

$$11 = 5 \cdot 2 + 1$$

$$2=2\cdot 1$$

Da får vi:

$$13 = 61 - 2 \cdot 24$$

$$11 = 24 - 1 \cdot 13$$

$$= 24 - 1 \cdot (61 - 2 \cdot 24)$$

$$= (-1) \cdot 61 + 3 \cdot 24$$

$$2 = 13 - 1 \cdot 11$$

$$= (61 - 2 \cdot 24) - 1 \cdot ((-1) \cdot 61 + 3 \cdot 24)$$

$$= 2 \cdot 61 + (-5) \cdot 24$$

$$1 = 11 - 5 \cdot 2$$

$$= ((-1) \cdot 61 + 3 \cdot 24) - 5 \cdot (2 \cdot 61 + (-5) \cdot 24)$$

$$= (-11) \cdot 61 + 28 \cdot 24.$$

Dermed er $x=28\cdot 60$, altså x=1680, en løsning til kongruensen

$$24x \equiv 60 \pmod{61}$$
.

Vi konkluderer at x = 1680 er en løsning til den kvadratiske kongruensen i oppgaven.

b)

Vi gjør følgende observasjoner.

(1) Vi har:

$$238^2 - 4 \cdot 13 \cdot 269 = 42656$$
.

Da er

$$\mathbb{L}^{42656}_{43789} = \mathbb{L}^{2^5 \cdot 31 \cdot 43}_{43789} = \mathbb{L}^{2^5}_{43789} \cdot \mathbb{L}^{31}_{43789} \cdot \mathbb{L}^{43}_{43789}.$$

(2) Vi har:

$$\mathbb{L}^{2^{5}}_{43789} = \mathbb{L}^{\left(2^{2}\right)^{2} \cdot 2}_{43789} = \mathbb{L}^{\left(2^{2}\right)^{2}}_{43789} \cdot \mathbb{L}^{2}_{43789} = 1 \cdot \mathbb{L}^{2}_{43789} = \mathbb{L}^{2}_{43789}.$$

Siden

$$43789 \equiv 5 \pmod{8},$$

er
$$\mathbb{L}^2_{43789} = -1$$
. Dermed er $\mathbb{L}^{2^5}_{43789} = -1$.

(3) Siden

$$43789 \equiv 1 \pmod{4},$$

er
$$\mathbb{L}^{31}_{43789} = \mathbb{L}^{43789}_{31}$$
. Siden

$$43789 \equiv 17 \pmod{31}$$
,

er
$$\mathbb{L}_{31}^{43789} = \mathbb{L}_{31}^{17}$$
.

$$17 \equiv 1 \pmod{4}$$
,

er
$$\mathbb{L}_{31}^{17} = \mathbb{L}_{17}^{31}$$
. Siden

$$31 \equiv 14 \pmod{17}$$
,

er

$$\mathbb{L}_{17}^{31} = \mathbb{L}_{17}^{14} = \mathbb{L}_{17}^{2 \cdot 7} = \mathbb{L}_{17}^{2} \cdot \mathbb{L}_{17}^{7}.$$

$$17 \equiv 1 \pmod{8}$$
,

er
$$\mathbb{L}_{17}^2 = 1$$
.

(6) Siden

$$17 \equiv 1 \pmod{4}$$
,

er
$$\mathbb{L}^7_{17} = \mathbb{L}^{17}_7$$
. Siden

$$17 \equiv 3 \pmod{7},$$

er
$$\mathbb{L}_7^{17} = \mathbb{L}_7^3$$
.

(7) Siden både

$$3 \equiv 3 \pmod{4}$$

og

$$7 \equiv 3 \pmod{4}$$
,

 er

$$\mathbb{L}_7^3 = -\mathbb{L}_3^7.$$

Siden

$$7 \equiv 1 \pmod{3}$$
,

er

$$\mathbb{L}_3^7 = \mathbb{L}_3^1 = 1.$$

- (8) Det følger fra (6) og (7) at $\mathbb{L}_{17}^7 = -1$.
- (9) Det følger fra (3) (5) og (8) at

$$\mathbb{L}^{31}_{43789} = \mathbb{L}^{2}_{17} \cdot \mathbb{L}^{7}_{17} = 1 \cdot (-1) = -1.$$

(10) Siden

$$43789 \equiv 1 \pmod{4},$$

er
$$\mathbb{L}^{43}_{43789} = \mathbb{L}^{43789}_{43}$$
. Siden

$$43789 \equiv 15 \pmod{43},$$

er

$$\mathbb{L}_{43}^{43789} = \mathbb{L}_{43}^{15} = \mathbb{L}_{43}^3 \cdot \mathbb{L}_{43}^5.$$

(11) Siden både

$$3 \equiv 3 \pmod{4}$$

og

$$43 \equiv 3 \pmod{4}$$
,

er

$$\mathbb{L}_{43}^3 = -\mathbb{L}_3^{43}$$
.

Siden

$$43 \equiv 1 \pmod{3}$$
,

er
$$\mathbb{L}_3^{43} = \mathbb{L}_3^1 = 1$$
. Dermed er $\mathbb{L}_{43}^3 = -1$.

(12) Siden

$$5 \equiv 1 \pmod{4}$$
,

er
$$\mathbb{L}_{43}^5 = \mathbb{L}_5^{43}$$
. Siden

$$43 \equiv 3 \pmod{5}$$
,

er
$$\mathbb{L}_{5}^{43} = \mathbb{L}_{5}^{3}$$
.

(13) Siden

$$5 \equiv 1 \pmod{4}$$
,

er
$$\mathbb{L}_5^3 = \mathbb{L}_3^5$$
. Siden

$$5 \equiv 2 \pmod{3}$$
,

er
$$\mathbb{L}_3^5 = \mathbb{L}_3^2$$
. Siden

$$3 \equiv 3 \pmod{8}$$
,

er
$$\mathbb{L}_3^2 = -1$$
.

- (14) Det følger fra (12) og (13) at $\mathbb{L}_{43}^5 = -1$.
- (15) Det følger fra (10), (11), og (14) at

$$\mathbb{L}^{43}_{43789} = \mathbb{L}^{3}_{43789} \cdot \mathbb{L}^{5}_{43789} = (-1) \cdot (-1) = 1.$$

(16) Det følger fra (1), (2), (9), og (15) at

$$\mathbb{L}_{43789}^{42656} = \mathbb{L}_{43789}^{2^5 \cdot 31 \cdot 43} = \mathbb{L}_{43789}^{2^5} \cdot \mathbb{L}_{43789}^{31} \cdot \mathbb{L}_{43789}^{43} = (-1) \cdot (-1) \cdot 1 = 1.$$

Dermed er 42656 er en kvadratisk rest modulo 43789. Vi konkluderer at det finnes to heltall x slik at $0 \le x < 43789$ og x er en løsning til den kvadratiske kongruensen i oppgaven.

Oppgave 5

Vi gjør følgende observasjoner.

- (1) Vi har: $187 = 11 \cdot 17$. Både 11 og 17 er primtall.
- (2) Vi har: $(11-1) \cdot (17-1) = 10 \cdot 16 = 160$.
- (3) Vi har: x = -3 er en løsning til kongruensen

$$53x \equiv 1 \pmod{160}$$
,

altså x=157 er en løsning til denne kongruensen.

(4) Vi har:

$$25^{157} = (25^7)^{22} \cdot 25^3 \equiv (-2)^{22} \cdot 25^3 \equiv 81 \cdot 104 = 8424 \equiv 9 \pmod{187}.$$

(5) Når vi oversetter 9 til et symbol, får vi: I.

Oppgave 6

a)

Vi har: 2, 5, 11, 17, 23.

b)

La q være produktet av alle de primtallene som er mindre enn eller like n, og som er kongruent til 2 modulo 3. Ut ifra aritmetikkens fundamentalteorem, finnes det et naturlig tall t og primtall p_1, \ldots, p_t slik at

$$3q-1=p_1\cdots p_t$$
.

For hvert naturlig tall i slik at $i \leq t$, er ett av følgende er sant:

- (1) $p_i \equiv 0 \pmod{3}$;
- (2) $p_i \equiv 1 \pmod{3}$;
- (3) $p_i \equiv 2 \pmod{3}$.

Anta at det finnes et naturlig tall i slik at (1) er sant. Da har vi: $3 \mid p_i$. Siden

$$3q-1=(p_1\cdots p_{i-1}p_{i+1}\cdots p_t)\cdot p_i,$$

har vi i tillegg: $p_i \mid 3q-1$. Derfor har vi: $3 \mid 3q-1$, altså

$$3q \equiv 1 \pmod{3}$$
.

Imidlertid er

$$3q - 1 \equiv -1 \equiv 2 \pmod{3}.$$

Siden det ikke er sant at

$$1 \equiv 2 \pmod{3}$$
,

kan det ikke være sant at både

$$3q - 1 \equiv 1 \pmod{3}$$

og

$$3q - 1 \equiv 2 \pmod{3}$$
.

Siden antakelsen at det finnes et naturlig tall i slik at (1) er sant fører til at begge kongruesene er sanne, konkluderer vi at det ikke finnes et naturlig tall i slik at (1) er sant.

Dermed er enten (2) eller (3) sant for hvert naturlig tall i slik at $i \leq t$. Derfor er ett av følgende sant.

(A) For alle de naturlige tallene i slik at $i \leq t$, er

$$p_i \equiv 1 \pmod{3}$$
.

(B) Det minnes minst ett naturlig tall i slik at $i \leq t$ og

$$p_i \equiv 2 \pmod{3}$$
.

Anta at (A) er sant. Da er

$$3q - 1 = p_1 \cdots p_t \equiv \underbrace{1 \cdot 1 \cdots 1}_{t \text{ ganger}} = 1 \pmod{3},$$

altså

$$3q - 1 \equiv 1 \pmod{3}$$
.

Som ovenfor, kan dette ikke være sant. Siden antakelsen at (A) er sant fører til at denne kongruensen er sanne, konkluderer vi at det ikke finnes et naturlig tall i slik at (A) er sant.

Derfor er (B) sant, altså finnes det et naturlig tall i slik at $i \leq t$ og

$$p_i \equiv 2 \pmod{3}$$
.

Anta at $p_i \leq n$. Vi gjør følgende observasjoner.

- (1) Siden $p_i \equiv 2 \pmod{3}$, følger det fra definisjonen til q og antakelsen at $p_i \leq n$ at $p_i \mid q$. Da har vi: $p_i \mid 3q$.
- (2) Siden

$$3q - 1 = (p_1 \cdots p_{i-1} p_{i+1} \cdots p_t) \cdot p_i$$

har vi: $p_i \mid 3q - 1$. Da har vi: $p_i \mid -(3q - 1)$, altså $p_i \mid -3q + 1$.

(3) Det følger fra (1) og (2) at $p_i \mid 3q - (3q - 1)$, altså at $p_i \mid 1$.

Siden p_i er et primtall, er $p_i \geq 2$. Det kan ikke være sant at både $p_i \mid 1$ og $p_i \geq 2$. Siden antakelsen at $p_i \leq n$ fører til denne motsigelsen, konkluderer vi at det ikke er sant at $p_i \leq n$. Derfor er $p_i > n$.

c)

De primtallene som er mindre enn eller like 14 og som er kongruent til 2 modulo 3 er 2, 5, og 11. En primtallsfaktorisering til $3 \cdot (2 \cdot 5 \cdot 11) - 1$, altså til 329, er

 $7 \cdot 47$.

Dermed får vi at p = 47.