Independece

X and Y are independent iff

- f(x,y) = f(x)f(y)
- ightharpoonup F(x,y) = F(x)F(y)
- \triangleright E(XY) = E(X)E(Y)
- $m_{X,Y}(t_1,t_2) = m_X(t_1)m_Y(t_2)$
- If X and Y are independent then so are U = g(X) and V = h(Y). That is, functions of independent random variables are also independent.

1. **Normal Distribution** If $X_i's$ are i.i.d, $N(\mu, \sigma^2)$ random variable, then

$$\begin{array}{l}
\bar{X} \sim N(\mu, \frac{\sigma^2}{n}) \\
\bar{X} = \left(\frac{\bar{X} - \mu}{\sigma / \sqrt{n}}\right) \sim N(0, 1) \Rightarrow Z^2 = \left(\frac{\bar{X} - \mu}{\sigma / \sqrt{n}}\right)^2 \sim \chi_1
\end{array}$$

 $ightharpoonup \bar{X}$ and S^2 are independent

$$\begin{array}{c} \searrow \frac{\sqrt{n}(\bar{X}-\mu)}{S} \sim t_{(n-1)} \\ & \text{If } Z_i's \text{ are i.i.d, } N(0,1) \text{ random variable, then} \\ & \searrow Z_i^2 \sim \chi_1^2 \\ & \searrow \sum_{i=1}^n Z_i^2 \sim \chi_n^2 \end{array}$$

2. **t-Distribution** Given $Z \sim N(0,1)$, $W \sim \chi^2_{\nu}$, and $Z \perp \!\!\! \perp \!\!\! \perp \!\!\! \parallel W$, then

$$T = \frac{Z}{\sqrt{W/v}} \sim t_v$$

$$T^2 \sim F(1, n)$$

3. **F Distribution** If $W_1 \sim \chi^2_{v_1}$, $W_2 \sim \chi^2_{v_2}$, $W_1 \perp \!\!\! \perp W_2$, then

$$F = \frac{W_1/(v_1)}{W_2/(v_2)} \sim F(v_1, v_2)$$

4. **Gamma Distribution** If $X \sim Gam(\alpha_1, \beta)$, $Y \sim Gam(\alpha_2, \beta)$, $X \perp \!\!\! \perp Y$, then \bot If $c \in R^+$, then $cX \sim Gam(\alpha_1, c\beta)$

$$\triangleright$$
 $X + Y \sim Gam(\alpha_1 + \alpha_2, \beta)$

$$\triangleright \operatorname{Exp}(\beta) = \operatorname{Gam}(1, \beta)$$

$$\chi_n^2 = Gam(\frac{n}{2}, 2)$$

Unbiased Estimator

Let $\hat{\theta}$ be an estimator for a parameter θ . Then $\hat{\theta}$ is an unbiased estimator if

$$\mathbb{E}[\hat{\theta}] = \theta.$$

- ▶ If $\mathbb{E}[\hat{\theta}] \neq \theta$., then $\hat{\theta}$ is an biased estimator.
- ▶ Bias

$$\mathbb{B}(\hat{\theta}) = \mathbb{E}[\hat{\theta}] - \theta.$$

- ▶ If $\hat{\theta}$ is unbiased, then $\mathbb{B}(\hat{\theta}) = \mathbb{E}[\hat{\theta}] \theta = 0$.
- ► How do we choose the best estimator among unbiased estimators? ⇒ MSE

Mean Square Error (MSE)

▶ MSE of a point estimator $\hat{\theta}$ is

$$MSE_{\theta}(\hat{\theta}) = \mathbb{E}[(\hat{\theta} - \theta)^2].$$

► The MSE can be expressed in terms of the variance and the bias of a estimator as:

$$MSE_{\theta}(\hat{\theta}) = \mathbb{V}[\hat{\theta}] + [\mathbb{B}(\hat{\theta})]^{2}.$$

That is, for an unbiased estimator $\mathbb{B}(\hat{ heta}) = 0$

$$MSE_{\theta}(\hat{\theta}) = V[\hat{\theta}].$$

Example 1

- Let X_1, \ldots, X_n be i.i.d. $\mathcal{N}(\mu, \sigma^2)$ random variables, where $-\infty < \mu < \infty$ and $0 < \sigma^2 < \infty$ are unknown.
- - a) \bar{X} , X_1 and $\frac{X_1+X_2}{2}$ are unbiased estimators of μ .
 - b) S^2 and $\frac{(X_1-X_2)^2}{2}$ are unbiased estimators of σ^2 .
 - c) S_n^2 is a biased estimator of σ^2 .
 - 1. Find $\mathbb{B}(S_n^2)$.
 - 2. Find $MSE_{\sigma^2}(S_n^2)$.
 - 3. Find $\mathbb{B}(S^2)$.
 - 4. Find $MSE_{\sigma^2}(S^2)$
 - 5. Which estimator is better?