

信息安全数学基础

— 群 (2)

信数课题组

北京邮电大学

上次课回顾

目录

- 子群
 - 子群的定义及性质
 - 正规子群和商群

② 同态和同构

目录

- 子群
 - 子群的定义及性质
 - 正规子群和商群

② 同态和同构

设 H 是群 G 的一个子集合. 如果对于群 G 的运算, H 成为一个群, 那么 H 就叫做群 G 的子群, 记作 $H \leq G$.

设 H 是群 G 的一个子集合. 如果对于群 G 的运算, H 成为一个群, 那么 H 就叫做群 G 的子群, 记作 $H \leq G$.

注: $H = \{e\}$ 和 H = G 都是群 G 的子群, 叫做群 G 的**平凡子群**. 如果群 G 的子群 H 不是群 G 的平凡子群, 则 H 叫做群 G 的**真子群**.

设 H 是群 G 的一个子集合. 如果对于群 G 的运算, H 成为一个群, 那么 H 就叫做群 G 的子群, 记作 $H \leq G$.

注: $H = \{e\}$ 和 H = G 都是群 G 的子群, 叫做群 G 的**平凡子群**. 如果群 G 的子群 H 不是群 G 的平凡子群, 则 H 叫做群 G 的**真子群**.

例 6.2.1 设 n 是一个正整数, 运算为普通加法 +, 则 $n\mathbb{Z} = \{nk \mid k \in \mathbb{Z}\}$ 是 \mathbb{Z} 的子群.

设 H 是群 G 的一个子集合. 如果对于群 G 的运算, H 成为一个群, 那么 H 就叫做群 G 的子群, 记作 $H \leq G$.

注: $H = \{e\}$ 和 H = G 都是群 G 的子群, 叫做群 G 的**平凡子群**. 如果群 G 的子群 H 不是群 G 的平凡子群, 则 H 叫做群 G 的**真子群**.

例 6.2.1 设 n 是一个正整数, 运算为普通加法 +, 则 $n\mathbb{Z} = \{nk \mid k \in \mathbb{Z}\}$ 是 \mathbb{Z} 的子群.

证: (0) $n\mathbb{Z}$ 是 \mathbb{Z} 的一个子集合.

设 H 是群 G 的一个子集合. 如果对于群 G 的运算, H 成为一个群, 那么 H 就叫做群 G 的子群, 记作 $H \leq G$.

注: $H = \{e\}$ 和 H = G 都是群 G 的子群, 叫做群 G 的**平凡子群**. 如果群 G 的子群 H 不是群 G 的平凡子群, 则 H 叫做群 G 的**真子群**.

例 6.2.1 设 n 是一个正整数, 运算为普通加法 +, 则 $n\mathbb{Z} = \{nk \mid k \in \mathbb{Z}\}$ 是 \mathbb{Z} 的子群.

证: (0) $n\mathbb{Z}$ 是 \mathbb{Z} 的一个子集合.

(下证, 对 ℤ 的运算"+"满足"4 条".)

- (1) 封闭性. $\forall nk_1, nk_2 \in n\mathbb{Z}, nk_1 + nk_2 = n(k_1 + k_2) \in n\mathbb{Z}, k_1 + k_2 \in \mathbb{Z}.$
- (2) 结合律. 因为 \mathbb{Z} 是群, 所以运算"+"在 \mathbb{Z} 中满足结合律. $n\mathbb{Z}$ 是 \mathbb{Z} 的一个子集合, 所以在 $n\mathbb{Z}$ 集合中, 运算"+"仍然满足结合律.

(3) 单位元 (零元) 0. 因为 $0 \in n\mathbb{Z}$, 有 nk + 0 = 0 + nk = nk. 事实上, 群与子群的单位元是同一个. $\forall nk \in n\mathbb{Z}, nk + 0 = 0 + nk$. 则有 n(k+0) = n(0+k).

考虑到 n 的任意性, 取 $n \neq 0$, 所以, 0 是 \mathbb{Z} 中的单位元, 0+k=k+0=k

(4) 存在逆元. \forall nk ∈ $n\mathbb{Z}$,

 $:: k \in \mathbb{Z}, \mathbb{Z}$ 为群,

∴ $\exists -k \in \mathbb{Z}$, $\notin A + (-k) = (-k) + k = 0$.

对于 $nk \in n\mathbb{Z}$,

 $\exists n(-k) \in n\mathbb{Z}$, 使得

$$nk + n(-k) = n(-k) + nk = n[k + (-k)] = n \cdot 0 = 0.$$

综上, $n\mathbb{Z} = \{nk \mid k \in \mathbb{Z}\}$ 是 \mathbb{Z} 的子群.

设 H 是群 G 的一个非空子集合,则 H 是群 G 的子群的充要条件是对任意的 $a,b\in H$,有 $ab^{-1}\in H$.

设 H 是群 G 的一个非空子集合,则 H 是群 G 的子群的充要条件是对任意的 $a,b\in H$,有 $ab^{-1}\in H$.

证: 必要性是显然的. (对任意的 $a, b \in H$, 因为 H 是群, b^{-1} 存在且 $b^{-1} \in H$, 再由群的封闭性, $ab^{-1} \in H$ 成立)

下证充分性. (证明 H 是群 G 的子群, 下证满足"4条")

- (1) 结合律. 结合律在 G 中成立, 在 H 中自然成立.
- (2) 单位元. 因为 H 非空, 故 H 中有元素 a. 根据假设, 我们有 $e = aa^{-1} \in H$. 因此, H 中有单位元.
- (3) 逆元. 对于任意 $a \in H$, 由 $e \in H$, 再应用假设, 我们有 $a^{-1} = ea^{-1} \in H$, 即 H 中的每个元素 a 在 H 中有逆元.
- (4) 封闭性. 对任意的 $a, b \in H$, 由 (3) 可知 $b^{-1} \in H$, 再应用假设, 有 $a(b^{-1})^{-1} \in H$, 即 $ab \in H$.

因此, H 是群 G 的子群.

例 6.2.2 证明群 G 的两个子群的交集也是 G 的子群.

证: 设 G 的两个子群 H_1 与 H_2 .

要证 $H_1 \cap H_2$ 是 G 的子群, 只需证 $ab^{-1} \in H_1 \cap H_2$, $\forall a, b \in H_1 \cap H_2$. $\diamondsuit \forall a, b \in H_1 \cap H_2$.

 $\therefore a \in H_1, b \in H_1, a \in H_2, b \in H_2.$

又因为 H_1 是子群, H_2 是子群, 有 $ab^{-1} \in H_1$, $ab^{-1} \in H_2$.

所以 $ab^{-1} \in H_1 \cap H_2$,

所以 $H_1 \cap H_2$ 是 G 的子群.

例 6.2.2 证明群 G 的两个子群的交集也是 G 的子群.

证: 设 G 的两个子群 H_1 与 H_2 .

要证 $H_1 \cap H_2$ 是 G 的子群, 只需证 $ab^{-1} \in H_1 \cap H_2$, $\forall a, b \in H_1 \cap H_2$. 令 $\forall a, b \in H_1 \cap H_2$,

 $\therefore a \in H_1, b \in H_1, a \in H_2, b \in H_2.$

又因为 H_1 是子群, H_2 是子群, 有 $ab^{-1} \in H_1$, $ab^{-1} \in H_2$.

所以 $ab^{-1} \in H_1 \cap H_2$,

所以 $H_1 \cap H_2$ 是 G 的子群.

例 6.2.3 设 G 是一个群, $\{H_i\}_{i\in I}$ 是 G 的一族子群, 则 $\bigcap_{i\in I} H_i$ 是 G 的子群.

证:对任意的 $a,b \in \bigcap_{i \in I} H_i$,有 $a,b \in H_i$, $i \in I$.

因为 H_i 是 G 的子群, 根据定理 6.2.1, 我们有 $ab^{-1} \in H_i, i \in I$.

进而, $ab^{-1} \in \bigcap_{i \in I} H_i$. 根据定理 6.2.1, $\bigcap_{i \in I} H_i$ 是 G 的一个子群.

设 G 是一个群, X 是 G 的子集. 设 $\{H_i\}_{i\in I}$ 是 G 的包含 X 的所有子群, 则 $\bigcap H_i$ 叫做 G 的由 X 生成的子群, 记作 < X > .

X 的元素称为子群 < X > 的**生成元**. 如果 $X = \{a_1, \dots, a_n\}$, 则记 < X > 为 $< a_1, \dots, a_n >$.

如果 $G = \langle a_1, \dots, a_n \rangle$, 则称 G 为有限生成的. 特别地, 如果 $G = \langle a \rangle$, 则称 G 为 a 生成的循环群.

设 G 是一个群, X 是 G 的子集. 设 $\{H_i\}_{i\in I}$ 是 G 的包含 X 的所有子群, 则 $\bigcap H_i$ 叫做 G 的由 X 生成的子群, 记作 $\langle X \rangle$.

X 的元素称为子群 < X > 的生成元. 如果 $X = \{a_1, \dots, a_n\}$, 则记 < X > 为 $< a_1, \dots, a_n >$.

如果 $G = \langle a_1, \dots, a_n \rangle$, 则称 G 为有限生成的. 特别地, 如果 $G = \langle a \rangle$, 则称 G 为 a 生成的循环群.

定义 6.2.3

若群 G 的每一个元都能表示成一个元素 g 的方幂, 则 G 称为由 g 生成的循环群, 记作 $G=\langle g\rangle, g$ 称为循环群 G 的生成元.

设 G 是一个群, X 是 G 的子集. 设 $\{H_i\}_{i\in I}$ 是 G 的包含 X 的所有子群, 则 $\bigcap H_i$ 叫做 G 的由 X 生成的子群, 记作 $\langle X \rangle$.

X 的元素称为子群 < X > 的生成元. 如果 $X = \{a_1, \dots, a_n\}$, 则记 < X > 为 $< a_1, \dots, a_n >$.

如果 $G = \langle a_1, \dots, a_n \rangle$, 则称 G 为有限生成的. 特别地, 如果 $G = \langle a \rangle$, 则称 G 为 a 生成的循环群.

定义 6.2.3

若群 G 的每一个元都能表示成一个元素 g 的方幂, 则 G 称为由 g 生成的循环群, 记作 $G=\langle g\rangle, g$ 称为循环群 G 的生成元.

注:循环群 $G = \langle g \rangle$ 共有两种类型:

- (1) 无限阶循环群.
- (2) 由 g 所生成的 n 阶循环群.

设
$$G = \langle g \rangle = \{g^r \mid g^r \neq 1, 1 \leqslant r < n, g^n = 1\}$$

= $\{1, g, g^2, g^3, \dots, g^{n-1}\}.$

则 G 是 n 阶循环群. 其中, 单位元为 1, g^r 的逆元为 g^{n-r} , $g^{n-r} = g^n g^{-r} = 1g^{-r} = g^{-r}$.

注:循环群 $G = \langle g \rangle$ 共有两种类型:

- (1) 无限阶循环群.
- (2) 由 g 所生成的 n 阶循环群.

读
$$G = \langle g \rangle = \{g^r \mid g^r \neq 1, 1 \leqslant r < n, g^n = 1\}$$

= $\{1, g, g^2, g^3, \cdots, g^{n-1}\}.$

则 G 是 n 阶循环群. 其中, 单位元为 1, g' 的逆元为 g^{n-r} ,

$$g^{n-r} = g^n g^{-r} = 1g^{-r} = g^{-r}.$$

例 6.2.4 设 $G = \langle g \rangle = \{g^r \mid g^r \neq 1, 1 \leqslant r < n, g^n = 1\}, G 是 n 阶循环群, 则 <math>\langle g^d \rangle = \{g^{dk} \mid k \in \mathbb{Z}\}$ 是 G 的子群.

证: (i) 非空. $k = 0, 1 \in \langle g^d \rangle$.

(ii)
$$\forall a = g^{dk_1}, b = g^{dk_2} \in \langle g^d \rangle$$
, 则
$$ab^{-1} = g^{dk_1}g^{-dk_2} = g^{d(k_1-k_2)} \in \langle g^d \rangle.$$
所以, $\langle g^d \rangle = \{g^{dk} \mid k \in \mathbb{Z}\}$ 是 G 的子群.

目录

- 子群
 - 子群的定义及性质
 - 正规子群和商群

② 同态和同构

群的正规子群是一种重要的子群,它在群论中起着很重要的作用,从群的正规子群还可以构造出新的群,即商群:在讨论正规子群、商群之前,先给出陪集的概念.

定义 6.2.4

设 H 是群 G 的子群, a 是 G 中任意元, 那么集合 $aH = \{ah \mid h \in H\}$ (对应地, $Ha = \{ha \mid h \in H\}$) 分别叫做 G 中 H 的左 (对应地, 右) 陪集. 其中,

- 共 丁,
- (1) aH (对应地, Ha) 中的元素叫做 aH (对应地, Ha) 的代表元.
- (2) 若 aH = Ha, 则 aH 叫做 G 中 H 的陪集.

群的正规子群是一种重要的子群,它在群论中起着很重要的作用,从群的正规子群还可以构造出新的群,即商群:在讨论正规子群、商群之前,先给出陪集的概念.

定义 6.2.4

设 H 是群 G 的子群, a 是 G 中任意元, 那么集合 $aH = \{ah \mid h \in H\}$ (对应地, $Ha = \{ha \mid h \in H\}$) 分别叫做 G 中 H 的左 (对应地, 右) 陪集.

- 其中,
- (1) aH (对应地, Ha) 中的元素叫做 aH (对应地, Ha) 的代表元.
- (2) 若 aH = Ha, 则 aH 叫做 G 中 H 的陪集.
- 例 6.2.5 设 n>1 是整数, 则 $H=n\mathbb{Z}$ 是 \mathbb{Z} 的子群, 子集 $a+n\mathbb{Z}=\{a+k\cdot n\mid k\in\mathbb{Z}\}$

就是 $n\mathbb{Z}$ 的陪集. 这个陪集就是模 n 的剩余类.

设H是群G的子群,则

- (i) 对任意 $a \in G$, 有 $aH = \{c \mid c \in G, a^{-1}c \in H\}$ (对应地, $Ha = \{c \mid c \in G, ca^{-1} \in H\}$).
- (ii) 对任意 $a,b \in G$, aH = bH 的充要条件是 $b^{-1}a \in H$ (对应地, Ha = Hb 的充要条件是 $ab^{-1} \in H$).
- (iii) 对任意 $a,b \in G$, $aH \cap bH = \emptyset$ 的充要条件是 $b^{-1}a \notin H$ (对应地, $Ha \cap Hb = \emptyset$ 的充要条件是 $ab^{-1} \notin H$).
 - (iv) 对任意 $a \in H$, 有 aH = H = Ha.

设H是群G的子群,则

- (i) 对任意 $a \in G$, 有 $aH = \{c \mid c \in G, a^{-1}c \in H\}$ (对应地, $Ha = \{c \mid c \in G, ca^{-1} \in H\}$).
- (ii) 对任意 $a,b \in G$, aH = bH 的充要条件是 $b^{-1}a \in H$ (对应地, Ha = Hb 的充要条件是 $ab^{-1} \in H$).
- (iii) 对任意 $a,b \in G$, $aH \cap bH = \emptyset$ 的充要条件是 $b^{-1}a \notin H$ (对应地, $Ha \cap Hb = \emptyset$ 的充要条件是 $ab^{-1} \notin H$).
 - (iv) 对任意 $a \in H$, 有 aH = H = Ha.

证: (i) 令 $H_{al} = \{c \mid c \in G, a^{-1}c \in H\}$. 对任意的 $c \in aH$, 存在 $h \in H$ 使得 c = ah. 从而, $a^{-1}c = h \in H$, 即 $c \in H_{al}$. 因此, $aH \subset H_{al}$.

设H是群G的子群,则

- (i) 对任意 $a \in G$, 有 $aH = \{c \mid c \in G, a^{-1}c \in H\}$ (对应地, $Ha = \{c \mid c \in G, ca^{-1} \in H\}$).
- (ii) 对任意 $a, b \in G$, aH = bH 的充要条件是 $b^{-1}a \in H$ (对应地, Ha = Hb 的充要条件是 $ab^{-1} \in H$).
- (iii) 对任意 $a,b \in G$, $aH \cap bH = \emptyset$ 的充要条件是 $b^{-1}a \notin H$ (对应地, $Ha \cap Hb = \emptyset$ 的充要条件是 $ab^{-1} \notin H$).
 - (iv) 对任意 $a \in H$, 有 aH = H = Ha.
- 证: (i) 令 $H_{al} = \{c \mid c \in G, a^{-1}c \in H\}$. 对任意的 $c \in aH$, 存在 $h \in H$ 使得 c = ah. 从而, $a^{-1}c = h \in H$, 即 $c \in H_{al}$. 因此, $aH \subset H_{al}$.

反过来, 对任意的 $c \in H_{al}$, 有 $a^{-1}c \in H$, 从而存在 $h \in H$ 使得 $a^{-1}c = h$. 由此, $c = ah \in aH$. 因此, $H_{al} \subset aH$.

设H是群G的子群,则

- (i) 对任意 $a \in G$, 有 $aH = \{c \mid c \in G, a^{-1}c \in H\}$ (对应地, $Ha = \{c \mid c \in G, ca^{-1} \in H\}$).
- (ii) 对任意 $a, b \in G$, aH = bH 的充要条件是 $b^{-1}a \in H$ (对应地, Ha = Hb 的充要条件是 $ab^{-1} \in H$).
- (iii) 对任意 $a,b \in G$, $aH \cap bH = \emptyset$ 的充要条件是 $b^{-1}a \notin H$ (对应地, $Ha \cap Hb = \emptyset$ 的充要条件是 $ab^{-1} \notin H$).
- (iv) 对任意 $a \in H$, 有 aH = H = Ha.
- 证: (i) 令 $H_{al} = \{c \mid c \in G, a^{-1}c \in H\}$. 对任意的 $c \in aH$, 存在 $h \in H$ 使得 c = ah. 从而, $a^{-1}c = h \in H$, 即 $c \in H_{al}$. 因此, $aH \subset H_{al}$.

反过来, 对任意的 $c \in H_{al}$, 有 $a^{-1}c \in H$, 从而存在 $h \in H$ 使得 $a^{-1}c = h$. 由此, $c = ah \in aH$. 因此, $H_{al} \subset aH$.

故 $aH = \{c \mid c \in G, a^{-1}c \in H\}.$

设H是群G的子群,则

- (i) 对任意 $a \in G$, 有 $aH = \{c \mid c \in G, a^{-1}c \in H\}$ (对应地, $Ha = \{c \mid c \in G, ca^{-1} \in H\}$).
- (ii) 对任意 $a, b \in G$, aH = bH 的充要条件是 $b^{-1}a \in H$ (对应地, Ha = Hb 的充要条件是 $ab^{-1} \in H$).
- (iii) 对任意 $a,b \in G$, $aH \cap bH = \emptyset$ 的充要条件是 $b^{-1}a \notin H$ (对应地, $Ha \cap Hb = \emptyset$ 的充要条件是 $ab^{-1} \notin H$).
- (iv) 对任意 $a \in H$, 有 aH = H = Ha.
- 证: (i) 令 $H_{al} = \{c \mid c \in G, a^{-1}c \in H\}$. 对任意的 $c \in aH$, 存在 $h \in H$ 使得 c = ah. 从而, $a^{-1}c = h \in H$, 即 $c \in H_{al}$. 因此, $aH \subset H_{al}$.

反过来, 对任意的 $c \in H_{al}$, 有 $a^{-1}c \in H$, 从而存在 $h \in H$ 使得 $a^{-1}c = h$. 由此, $c = ah \in aH$. 因此, $H_{al} \subset aH$.

故 $aH = \{c \mid c \in G, a^{-1}c \in H\}$. 同理得, $Ha = \{c \mid c \in G, ca^{-1} \in H\}$.

反过来, 设 $b^{-1}a = h_1 \in H$.

对任意 $c \in aH$, 存在 $h_2 \in H$ 使得 $c = ah_2$. 进而, $c = b(b^{-1}a)h_2 = b(h_1h_2) \in bH$.

因此, $aH \subset bH$.

同样, 对任意 $c \in bH$, 存在 $h_3 \in H$ 使得 $c = bh_3$. 进而, $c = a(b^{-1}a)^{-1}h_3 = a(h_1^{-1}h_3) \in aH$.

因此, $bH \subset aH$.

故 aH = bH.

反过来, 设 $b^{-1}a = h_1 \in H$.

对任意 $c \in aH$, 存在 $h_2 \in H$ 使得 $c = ah_2$. 进而, $c = b(b^{-1}a)h_2 = b(h_1h_2) \in bH$.

因此, $aH \subset bH$.

同样, 对任意 $c \in bH$, 存在 $h_3 \in H$ 使得 $c = bh_3$. 进而, $c = a(b^{-1}a)^{-1}h_3 = a(h_1^{-1}h_3) \in aH$.

因此, $bH \subset aH$.

故 aH = bH. 同理可得, Ha = Hb 的充要条件是 $ab^{-1} \in H$.

反过来, 设 $b^{-1}a = h_1 \in H$.

对任意 $c \in aH$, 存在 $h_2 \in H$ 使得 $c = ah_2$. 进而,

$$c = b(b^{-1}a)h_2 = b(h_1h_2) \in bH.$$

因此, $aH \subset bH$.

同样, 对任意 $c \in bH$, 存在 $h_3 \in H$ 使得 $c = bh_3$. 进而,

$$c = a(b^{-1}a)^{-1}h_3 = a(h_1^{-1}h_3) \in aH.$$

因此, $bH \subset aH$.

故 aH = bH. 同理可得, Ha = Hb 的充要条件是 $ab^{-1} \in H$.

(iii) 由 (ii) 知必要性成立. 再证充分性.

若不然, $aH \cap bH \neq \emptyset$, 则存在 $c \in aH \cap bH$. 根据 (i), 有 $ac^{-1} \in H$ 及 $b^{-1}c \in H$. 进而, $b^{-1}a = (b^{-1}c)(a^{-1}c)^{-1} \in H$. 这与假设条件矛盾.

反过来, 设 $b^{-1}a = h_1 \in H$.

对任意 $c \in aH$, 存在 $h_2 \in H$ 使得 $c = ah_2$. 进而, $c = b(b^{-1}a)h_2 = b(h_1h_2) \in bH$.

因此, $aH \subset bH$.

同样, 对任意 $c \in bH$, 存在 $h_3 \in H$ 使得 $c = bh_3$. 进而,

$$c = a(b^{-1}a)^{-1}h_3 = a(h_1^{-1}h_3) \in aH.$$

因此, $bH \subset aH$.

故 aH = bH. 同理可得, Ha = Hb 的充要条件是 $ab^{-1} \in H$.

(iii) 由 (ii) 知必要性成立. 再证充分性.

若不然, $aH \cap bH \neq \emptyset$, 则存在 $c \in aH \cap bH$. 根据 (i), 有 $ac^{-1} \in H$ 及 $b^{-1}c \in H$. 进而, $b^{-1}a = (b^{-1}c)(a^{-1}c)^{-1} \in H$. 这与假设条件矛盾.

同理可得, $Ha \cap Hb = \emptyset$ 的充要条件是 $ab^{-1} \notin H$.

反过来, 设 $b^{-1}a = h_1 \in H$.

对任意 $c \in aH$, 存在 $h_2 \in H$ 使得 $c = ah_2$. 进而,

$$c = b(b^{-1}a)h_2 = b(h_1h_2) \in bH.$$

因此, $aH \subset bH$.

同样, 对任意 $c \in bH$, 存在 $h_3 \in H$ 使得 $c = bh_3$. 进而,

$$c = a(b^{-1}a)^{-1}h_3 = a(h_1^{-1}h_3) \in aH.$$

因此, $bH \subset aH$.

故 aH = bH. 同理可得, Ha = Hb 的充要条件是 $ab^{-1} \in H$.

(iii) 由 (ii) 知必要性成立. 再证充分性.

若不然, $aH \cap bH \neq \emptyset$, 则存在 $c \in aH \cap bH$. 根据 (i), 有 $ac^{-1} \in H$

及 $b^{-1}c \in H$. 进而, $b^{-1}a = (b^{-1}c)(a^{-1}c)^{-1} \in H$. 这与假设条件矛盾.

同理可得, $Ha \cap Hb = \emptyset$ 的充要条件是 $ab^{-1} \notin H$.

(iv) 因为 $e, a^{-1} \in H$, 所以由 (ii) 可以得到结论成立.

根据定理 6.2.2 可以进一步得到:

定理 6.2.3

设 H 是群 G 的子群, 则群 G 可以表示为不相交的左 (对应地, 右) 陪集的并集. $G = \bigcup_{i \in I} a_i H. \quad (\text{对应地, } G = \bigcup_{i \in I} Ha_i.)$

- 例 6.2.6 令 n = 3, 则 $H = 3\mathbb{Z} = \{\cdots, -6, -3, 0, 3, 6, 9, \cdots\}$, 已经证明, $H \neq \mathbb{Z}$ 的子群. $\forall a \in \mathbb{Z}$,
- (1) 若 a=0, 则 $0+H=\{\cdots,-3,0,3,6,9,12,\cdots\}=H$. 若 a=3, 则 $3+H=\{\cdots,-3,0,3,6,9,12,\cdots\}=H$. 也就是说, 若 $a\in H$, 则 aH=H.
- (2) 若 a=1, 则 $1+H=\{\cdots,-2,1,4,7,10,13,\cdots\}$. 即此集合是模 3 余 1 的集合,记作 [1] (模 3 余 1 剩余类). 当然, H 记作 [0].
- (3) 若 a=2, 则得到 [2]=2+H. 因此, $\mathbb Z$ 被分为 3 个互不相交的集合 [0], [1], [2], 即剩余类集合 $\{[0]$, [1], [2] $\}$. 或者说, $\mathbb Z$ 被子群 H 分为了 3 个互不相交的左陪集的集合 H, 1+H, 2+H. 同时, $\mathbb Z$ 也可以被子群 H 分为了 3 个互不相交的右陪 集的集合 H, H+1, H+2.

另外, 左陪集 = 右陪集, H = H, 1 + H = H + 1, 2 + H = H + 2.

设 H 是群 G 的子群,则 H 在 G 中不同左 (对应地,右) 陪集组成的新集合 $\{aH\mid a\in G\}$ (对应地, $\{Ha\mid a\in G\}$) 叫做 H 在 G 中的商集,记作 G/H.

G/H 中不同左 (对应地, 右) 陪集的个数叫做 H 在 G 中的 指数, 记作 [G:H].

定义 6.2.5

设 H 是群 G 的子群, 则 H 在 G 中不同左 (对应地, 右) 陪集组成的新集合 $\{aH\mid a\in G\}$ (对应地, $\{Ha\mid a\in G\}$) 叫做 H 在 G 中的商集,记作 G/H.

G/H 中不同左 (对应地, 右) 陪集的个数叫做 H 在 G 中的 指数, 记作 [G:H].

定理 6.2.4

(i) 设H是群G的子群,则

$$|G| = [G:H]|H|.$$

(ii) 更进一步地, 如果 K, H 是群 G 的子群, 且 K 是 H 的子群, 则 [G:K] = [G:H][H:K].

如果其中两个指数是有限的,则第三个指数也是有限的.

证: (i) 根据定理 6.2.2, 我们有 $G = \bigcup_{i \in I} a_i H$ 和 $|G| = \sum_{i \in I} |a_i H|$. 对 H 到 $a_i H$ 的映射 $f \colon h \to a_i h$ 是一一对应的双射, 所以有 $|a_i H| = |H|$. 进而, $|G| = \sum_{i \in I} |a_i H| = \sum_{i \in I} |H| = [G \colon H]|H|$.

证: (i) 根据定理 6.2.2, 我们有 $G = \bigcup_{i \in I} a_i H$ 和 $|G| = \sum_{i \in I} |a_i H|$. 对 H 到 a_iH 的映射 $f: h \to a_ih$ 是一一对应的双射、 所以有 $|a_iH| = |H|$. 进而, $|G| = \sum_{i \in I} |a_i H| = \sum_{i \in I} |H| = [G : H]|H|$. (ii) 若 K,H 是群 G 的子群, 且 K 是 H 的子群, 根据定理 6.2.2, 我们有 $G = \bigcup a_i H$ 和 $H = \bigcup b_i K$, 其中 |I| = [G:H], |J| = [H:K].从而, $G = \bigcup \bigcup (a_i b_i) K$.

证: (i) 根据定理 6.2.2, 我们有 $G = \bigcup_{i \in I} a_i H$ 和 $|G| = \sum_{i \in I} |a_i H|$. 对 H 到 $a_i H$ 的映射 $f \colon h \to a_i h$ 是一一对应的双射, 所以有 $|a_i H| = |H|$.

进而,
$$|G| = \sum_{i \in I} |a_i H| = \sum_{i \in I} |H| = [G:H]|H|$$
.

(ii) 若 K,H 是群 G 的子群, 且 K 是 H 的子群,

根据定理 6.2.2, 我们有 $G = \bigcup_{i \in I} a_i H$ 和 $H = \bigcup_{j \in J} b_j K$,

其中 |I| = [G:H], |J| = [H:K].

从而, $G = \bigcup_{i \in I} \bigcup_{j \in I} (a_i b_j) K$.

下证 $\{(a_ib_j)K\}, i \in I, j \in J$ 是不同的陪集.

假设

$$(a_ib_j)K = (a_{i'}b_{j'})K.$$

由于 K 是群 G 的子群, 根据定理 6.2.2 (ii), 得到

$$(a_{i'}b_{j'})^{-1}(a_ib_j) \in K \subset H$$
,即 $b_{j'}^{-1}a_{i'}^{-1}a_ib_j \in K \subset H$.
而 $b_j, b_{j'} \in H$,故 $a_{i'}^{-1}a_i \in H$,即 $a_iH = a_{i'}H$.
进而, $b_jK = a_i^{-1}a_ib_jK = a_i^{-1}a_{i'}(b_{j'}K) \subset b_{j'}K$.
同理, $b_{j'}K \subset b_jK$.从而 $b_jK = b_{j'}K$.

$$(a_{i'}b_{j'})^{-1}(a_ib_j) \in K \subset H$$
,即 $b_{j'}^{-1}a_{i'}^{-1}a_ib_j \in K \subset H$. 而 $b_j, b_{j'} \in H$,故 $a_{i'}^{-1}a_i \in H$,即 $a_iH = a_{i'}H$. 进而, $b_jK = a_i^{-1}a_ib_jK = a_i^{-1}a_{i'}(b_{j'}K) \subset b_{j'}K$. 同理, $b_{j'}K \subset b_jK$. 从而 $b_jK = b_{j'}K$.

因此,有

$$|G| = \sum_{i \in I} \sum_{j \in J} |(a_i b_j) K| = \sum_{i \in I} \sum_{j \in J} |K| = [G : H][H : K]|K|.$$

 $\overrightarrow{m} |G| = [G:K]|K|,$

故
$$[G:K] = [G:H][H:K].$$

$$(a_{i'}b_{j'})^{-1}(a_{i}b_{j}) \in K \subset H$$
,即 $b_{j'}^{-1}a_{i'}^{-1}a_{i}b_{j} \in K \subset H$.

而 $b_{j}, b_{j'} \in H$,故 $a_{i'}^{-1}a_{i} \in H$,即 $a_{i}H = a_{i'}H$.

进而, $b_{j}K = a_{i}^{-1}a_{i}b_{j}K = a_{i}^{-1}a_{i'}(b_{j'}K) \subset b_{j'}K$.

同理, $b_{j'}K \subset b_{j}K$.从而 $b_{j}K = b_{j'}K$.

因此,有
$$|G| = \sum_{i \in I} \sum_{j \in J} |(a_{i}b_{j})K| = \sum_{i \in I} \sum_{j \in J} |K| = [G:H][H:K]|K|$$
.

 $\overrightarrow{m} |G| = [G:K]|K|,$

故 [G:K] = [G:H][H:K].

推论 6.2.1 (Lagrange)

设H是有限群G的子群,则子群H的阶是|G|的因数.

◆ロト ◆個ト ◆重ト ◆重ト ■ 釣りで

下面考虑群 G 的两个子群组成的集合.

设 G 是一个群, H, K 是 G 的子集. 用 HK 表示集合

$$HK = \{hk \mid h \in H, k \in K\}.$$

如果写成加法, 用 H+K 表示集合

$$H + K = \{h + k \mid h \in H, k \in K\}.$$

下面考虑群 G 的两个子群组成的集合.

设 G 是一个群, H, K 是 G 的子集. 用 HK 表示集合

$$HK = \{hk \mid h \in H, k \in K\}.$$

如果写成加法, 用 H+K 表示集合

$$H + K = \{h + k \mid h \in H, k \in K\}.$$

例 6.2.7 设 H, K 是交换群 G 的两个子群, 则 HK 是 G 的子群.

下面考虑群 G 的两个子群组成的集合.

设 G 是一个群, H, K 是 G 的子集. 用 HK 表示集合

$$HK = \{hk \mid h \in H, k \in K\}.$$

如果写成加法, 用 H+K 表示集合

$$H + K = \{h + k \mid h \in H, k \in K\}.$$

例 6.2.7 设 H, K 是交换群 G 的两个子群, 则 HK 是 G 的子群.

证: (i) HK 是群 G 的非空子集, $e \in HK$.

(ii) \forall $a = h_1k_1, b = h_2k_2 \in HK$, 其中 $h_1, h_2 \in H, k_1, k_2 \in K$.

$$ab^{-1} = h_1k_1 \cdot k_2^{-1}h_2^{-1}.$$

因为 G 是交换群, 所以 $ab^{-1} = h_1h_2^{-1} \cdot k_1k_2^{-1}$.

又因为 H 是 G 的子群, 所以 $h_1h_2^{-1} = h \in H$.

而 K 也是 G 的子群, 所以 $k_1k_2^{-1} = k \in K$.

则 $ab^{-1} = hk \in HK$. 因此, HK 是 G 的子群.

设 H,K 是有限群 G 的子群, 则 $|HK| = \frac{|H||K|}{|H \cap K|}$.

设 H, K 是有限群 G 的子群, 则 $|HK| = \frac{|H||K|}{|H \cap K|}$.

证: 因为 $H \cap K$ 是 H 的子群, 所以 $|H \cap K| \mid |H|$. 令 $n = \frac{|H|}{|H \cap K|}$, H 关于 $H \cap K$ 的左陪集分解式为

$$H = h_1(H \cap K) \cup \cdots \cup h_n(H \cap K), \ h_i \in H, h_i^{-1}h_j \notin K.$$

由于 $(H \cap K)K = K$,得到
 $HK = (h_1(H \cap K) \cup \cdots \cup h_n(H \cap K))K$
 $= h_1(H \cap K)K \cup \cdots \cup h_n(H \cap K)K$

 $=h_1K\cup\cdots\cup h_nK.$

再证 $h_iK \cap h_jK = \emptyset$.

若不然, 则有 $k_i, k_j \in K$ 使得 $h_i k_i = h_j k_j$, 故 $h_i^{-1} h_j = k_i k_j^{-1} \in K$, 矛盾. 所以, $|HK| = n|K| = \frac{|H||K|}{|H \cap K|}$.

设 H, K 是群 G 的子群, 则 $[H: H \cap K] \leq [G: K]$. 如果 [G: K] 是有限的, 则 $[H: H \cap K] = [G: K]$ 当且仅当 G = HK.

设 H, K 是群 G 的子群, 则 $[H: H \cap K] \leq [G: K]$. 如果 [G: K] 是有限的, 则 $[H: H \cap K] = [G: K]$ 当且仅当 G = HK.

证:考虑H关于 $H \cap K$ 的左陪集

$$H/H \cap K = \{h_i(H \cap K) \mid h_i \in H, h_i^{-1}h_j \notin H \cap K\}$$

以及 G 关于 K 的左陪集

$$G/K = \{a_i K \mid a_i \in G, a_i^{-1} a_j \notin K\}.$$

作 $H/H \cap K$ 到 G/K 的映射 $\varphi : h(H \cap K) \to hK$, 则 φ 是单射.

设 H,K 是群 G 的子群, 则 $[H:H\cap K]\leqslant [G:K]$. 如果 [G:K] 是有限的, 则 $[H:H\cap K]=[G:K]$ 当且仅当 G=HK.

证:考虑H关于 $H\cap K$ 的左陪集

$$H/H \cap K = \{h_i(H \cap K) \mid h_i \in H, h_i^{-1}h_j \notin H \cap K\}$$

以及 G 关于 K 的左陪集

$$G/K = \{a_i K \mid a_i \in G, a_i^{-1} a_j \notin K\}.$$

作 $H/H \cap K$ 到 G/K 的映射 $\varphi : h(H \cap K) \to hK$, 则 φ 是单射.

(事实上, 若有 $h_i K = h_j K$, 则有 $h_i^{-1} h_j \in K$. 进而, $h_i^{-1} h_j \in H \cap K$, 矛盾.)

设 H, K 是群 G 的子群, 则 $[H: H \cap K] \leq [G: K]$. 如果 [G: K] 是有限的, 则 $[H: H \cap K] = [G: K]$ 当且仅当 G = HK.

证:考虑H关于 $H\cap K$ 的左陪集

$$H/H \cap K = \{h_i(H \cap K) \mid h_i \in H, h_i^{-1}h_j \notin H \cap K\}$$

以及 G 关于 K 的左陪集

$$G/K = \{a_iK \mid a_i \in G, a_i^{-1}a_j \notin K\}.$$

作 $H/H \cap K$ 到 G/K 的映射 $\varphi : h(H \cap K) \to hK$, 则 φ 是单射.

(事实上, 若有 $h_i K = h_j K$, 则有 $h_i^{-1} h_j \in K$. 进而, $h_i^{-1} h_j \in H \cap K$, 矛盾.)

从而, $[H:H\cap K] \leqslant [G:K]$.

设 H, K 是群 G 的子群, 则 $[H: H \cap K] \leq [G: K]$. 如果 [G: K] 是有限的, 则 $[H: H \cap K] = [G: K]$ 当且仅当 G = HK.

证:考虑H关于 $H \cap K$ 的左陪集

$$H/H \cap K = \{h_i(H \cap K) \mid h_i \in H, h_i^{-1}h_j \notin H \cap K\}$$

以及 G 关于 K 的左陪集

$$G/K = \{a_i K \mid a_i \in G, a_i^{-1} a_j \notin K\}.$$

作 $H/H \cap K$ 到 G/K 的映射 $\varphi : h(H \cap K) \to hK$, 则 φ 是单射.

(事实上, 若有 $h_i K = h_j K$, 则有 $h_i^{-1} h_j \in K$. 进而, $h_i^{-1} h_j \in H \cap K$, 矛盾.)

从而, $[H:H\cap K] \leq [G:K]$.

假设 [G:K] 有限. 若 $[H:H\cap K]=[G:K]$, 则单射 φ 也是满射, 即有 $\{h_iK\mid h_i\in H, h_i^{-1}h_j\not\in K\}=\{a_iK\mid a_i\in G, a_i^{-1}a_j\not\in K\}$. 因此, 对任意的 $x\in G$, 有 $a_i\in G$ 以及 $h_j\in H$ 使得 $x\in xK=a_iK=h_jK\subseteq HK$, 从而

 $G \subseteq HK$, & G = HK.

反之, 若 G = HK, 则对任意左陪集 $a_iK(a_i \in G)$, 有 $a_i = h_jk$ $(h_j \in H, k \in K)$. 从而 $\varphi(h_j(H \cap K)) = h_jK = h_jkK = a_iK$. φ 是满射, 故 $[H: H \cap K] = [G: K]$.

反之, 若 G = HK, 则对任意左陪集 $a_iK(a_i \in G)$, 有 $a_i = h_jk \ (h_j \in H, k \in K)$. 从而 $\varphi(h_j(H \cap K)) = h_jK = h_jkK = a_iK$. φ 是满射, 故 $[H: H \cap K] = [G: K]$.

定理 6.2.7

设 H, K 是群 G 的有限子群, 则 $[G: H \cap K]$ 是有限的, 且 $[G: H \cap K] \leq [G: H][G: K].$

进一步, $[G:H\cap K] = [G:H][G:K]$ 当且仅当 G = HK.

反之, 若 G=HK, 则对任意左陪集 $a_iK(a_i\in G)$, 有 $a_i=h_jk$ $(h_j\in H, k\in K)$. 从而 $\varphi(h_j(H\cap K))=h_jK=h_jkK=a_iK$. φ 是满射, 故 $[H:H\cap K]=[G:K]$.

定理 6.2.7

设 H, K 是群 G 的有限子群, 则 $[G: H \cap K]$ 是有限的, 且 $[G: H \cap K] \leqslant [G: H][G: K].$

进一步, $[G:H\cap K]=[G:H][G:K]$ 当且仅当 G=HK.

证: 因为 $H \cap K \leq H \leq G$, 所以 $[G: H \cap K] = [G: H][H: H \cap K]$. 又因为 [G: H] 与 [G: K] 都有限, 故由定理 6.2.6 知, $[H: H \cap K] \leq [G: K]$. 于是 $[G: H \cap K] \leq [G: H][G: K]$.

反之, 若 G = HK, 则对任意左陪集 $a_iK(a_i \in G)$, 有 $a_i = h_jk$ $(h_j \in H, k \in K)$. 从而 $\varphi(h_j(H \cap K)) = h_jK = h_jkK = a_iK$. φ 是满射, 故 $[H: H \cap K] = [G: K]$.

定理 6.2.7

设 H,K 是群 G 的有限子群,则 $[G:H\cap K]$ 是有限的,且 $[G:H\cap K]\leqslant [G:H][G:K].$

进一步, $[G:H\cap K]=[G:H][G:K]$ 当且仅当 G=HK.

证: 因为 $H \cap K \leq H \leq G$, 所以 $[G:H \cap K] = [G:H][H:H \cap K]$. 又因为 [G:H] 与 [G:K] 都有限, 故由定理 6.2.6 知, $[H:H \cap K] \leq [G:K]$. 于是 $[G:H \cap K] \leq [G:H][G:K]$.

因为 $[G:H\cap K]=[G:H][G:K]\Leftrightarrow [H:H\cap K]=[G:K],$

而由定理 6.2.6 知, $[H:H\cap K]=[G:K]\Leftrightarrow G=HK$,

故 $[G: H \cap K] = [G: H][G: K] \Leftrightarrow G = HK$.

设 N 是群 G 的子群, 则如下条件是等价的:

- (i) 对任意的 $a \in G$, 有 aN = Na.
- (ii) 对任意的 $a \in G$, 有 $aNa^{-1} = N$.
- (iii) 对任意的 $a \in G$, 有 $aNa^{-1} \subset N$, 其中 $aNa^{-1} = \{ana^{-1} \mid n \in N\}$.

设 N 是群 G 的子群, 则如下条件是等价的:

- (i) 对任意的 $a \in G$, 有 aN = Na.
- (ii) 对任意的 $a \in G$, 有 $aNa^{-1} = N$.
- (iii) 对任意的 $a \in G$, 有 $aNa^{-1} \subset N$, 其中 $aNa^{-1} = \{ana^{-1} \mid n \in N\}$.

证: 易知, (i) 蕴含 (ii) 及 (ii) 蕴含 (iii) 是显然的.

设 N 是群 G 的子群, 则如下条件是等价的:

- (i) 对任意的 $a \in G$, 有 aN = Na.
- (ii) 对任意的 $a \in G$, 有 $aNa^{-1} = N$.
- (iii) 对任意的 $a \in G$, 有 $aNa^{-1} \subset N$, 其中 $aNa^{-1} = \{ana^{-1} \mid n \in N\}$.

证: 易知, (i) 蕴含 (ii) 及 (ii) 蕴含 (iii) 是显然的. 现在从 (iii) 推出 (i). 对任意的 $a \in G, n \in N$, 因 $ana^{-1} \in aNa^{-1} \subset N$, 故 $ana^{-1} = n', n' \in N$. 进而, $an = n'a \in Na$ 及 $aN \subset Na$. 特别地, 也有 $a^{-1}N \subset Na^{-1}$. 从而可得, $Na \subset aN$. 故 aN = Na.

设 N 是群 G 的子群, 则如下条件是等价的:

- (i) 对任意的 $a \in G$, 有 aN = Na.
- (ii) 对任意的 $a \in G$, 有 $aNa^{-1} = N$.
- (iii) 对任意的 $a \in G$, 有 $aNa^{-1} \subset N$, 其中 $aNa^{-1} = \{ana^{-1} \mid n \in N\}$.

证: 易知, (i) 蕴含 (ii) 及 (ii) 蕴含 (iii) 是显然的. 现在从 (iii) 推出 (i). 对任意的 $a \in G, n \in N$, 因 $ana^{-1} \in aNa^{-1} \subset N$, 故 $ana^{-1} = n', n' \in N$. 进而, $an = n'a \in Na$ 及 $aN \subset Na$. 特别地, 也有 $a^{-1}N \subset Na^{-1}$. 从而可得, $Na \subset aN$. 故 aN = Na.

定义 6.2.6

设 N 是群 G 的子群, 如果 N 满足定理 6.2.8 的任一条件, 则称 N 为 群 G 的正规子群, 记为 $N \triangleleft G$.

设N是群G的子群,则如下条件是等价的:

- (i) 对任意的 $a \in G$, 有 aN = Na.
- (ii) 对任意的 $a \in G$, 有 $aNa^{-1} = N$.
- (iii) 对任意的 $a \in G$, 有 $aNa^{-1} \subset N$, 其中 $aNa^{-1} = \{ana^{-1} \mid n \in N\}$.

证: 易知, (i) 蕴含 (ii) 及 (ii) 蕴含 (iii) 是显然的. 现在从 (iii) 推出 (i). 对任意的 $a \in G, n \in N$, 因 $ana^{-1} \in aNa^{-1} \subset N$, 故 $ana^{-1} = n', n' \in N$. 进而, $an = n'a \in Na$ 及 $aN \subset Na$. 特别地, 也有 $a^{-1}N \subset Na^{-1}$. 从而可得, $Na \subset aN$. 故 aN = Na.

定义 6.2.6

设 N 是群 G 的子群, 如果 N 满足定理 6.2.8 的任一条件, 则称 N 为 群 G 的正规子群, 记为 $N \triangleleft G$.

注:若群 G 没有非平凡的正规子群,则称 G 为**单**群.

例 6.2.8 可以证明 $(n\mathbb{Z},+)$ 是 $(\mathbb{Z},+)$ 的正规子群 $a(n\mathbb{Z})a^{-1}\subset n\mathbb{Z}$ (因为满足交换律).

例 6.2.8 可以证明 $(n\mathbb{Z},+)$ 是 $(\mathbb{Z},+)$ 的正规子群 $a(n\mathbb{Z})a^{-1}\subset n\mathbb{Z}$ (因为满足交换律).

例 6.2.9 两个正规子群的交集是正规子群.

证: 设群 G 的两个正规子群 H_1 与 H_2 , 可知, $H_1 \cap H_2$ 是 G 的子群.

设 $\forall h \in H_1 \cap H_2, \forall g \in G, 有 h \in H_1, h \in H_2.$

- $\therefore H_1$ 是正规子群, $\therefore g^{-1}hg \in H_1$.
- $\therefore H_2$ 是正规子群, $\therefore g^{-1}hg \in H_2$.
- $\therefore g^{-1}hg \in H_1 \cap H_2.$
- $\therefore H_1 \cap H_2$ 是正规子群.

设 N 是群 G 的正规子群, G/N 是由 N 中的所有 (左) 陪集组成的集合, 则对于运算 $(aN) \otimes (bN) = (abN)$, G/N 构成一个群.

设 N 是群 G 的正规子群, G/N 是由 N 中的所有 (左) 陪集组成的集合,则对于运算 $(aN) \otimes (bN) = (abN)$, G/N 构成一个群.

证: 首先, 要证明运算 \otimes 的定义不依赖于陪集的代表元选择, 即要证明: aN=a'N, bN=b'N 时, (ab)N=(a'b')N. 事实上.

$$(ab)N = a(bN) = a(b'N) = a(Nb') = (aN)b' = (a'N)b' = (a'b')N.$$

设 N 是群 G 的正规子群, G/N 是由 N 中的所有 (左) 陪集组成的集合, 则对于运算 $(aN) \otimes (bN) = (abN)$, G/N 构成一个群.

证: 首先, 要证明运算 \otimes 的定义不依赖于陪集的代表元选择, 即要证明: aN=a'N, bN=b'N 时, (ab)N=(a'b')N. 事实上.

(ab)N = a(bN) = a(b'N) = a(Nb') = (aN)b' = (a'N)b' = (a'b')N. 其次, 运用群的定义, 证明是一个群.

- (0) 满足封闭性. $\forall aN, bN \in G/N, (aN) \otimes (bN) = (ab)N \in G/N.$
- (1) 满足结合律.

$$\forall \ aN,bN,cN \in G/N, [(aN) \otimes (bN)] \otimes (cN) = (abc)N = (aN) \otimes [(bN) \otimes (cN)].$$

事实上, 对任意 $a \in G$, 有

$$(aN) \otimes (eN) = (ae)N = aN, (eN) \otimes (aN) = (ea)N = aN.$$

事实上, 对任意 $a \in G$, 有

$$(aN) \otimes (eN) = (ae)N = aN, (eN) \otimes (aN) = (ea)N = aN.$$

(3) aN 的逆元是 $a^{-1}N$.

事实上,

$$(aN) \otimes (a^{-1}N) = (aa^{-1})N = eN, \ (a^{-1}N) \otimes (aN) = (a^{-1}a)N = eN.$$

事实上, 对任意 $a \in G$, 有

$$(aN) \otimes (eN) = (ae)N = aN, (eN) \otimes (aN) = (ea)N = aN.$$

(3) aN 的逆元是 $a^{-1}N$.

事实上,

$$(aN) \otimes (a^{-1}N) = (aa^{-1})N = eN, \ (a^{-1}N) \otimes (aN) = (a^{-1}a)N = eN.$$
 综上, G/N 对于运算 \otimes 构成一个群.

事实上, 对任意 $a \in G$, 有

$$(aN) \otimes (eN) = (ae)N = aN, (eN) \otimes (aN) = (ea)N = aN.$$

(3) aN 的逆元是 $a^{-1}N$.

事实上,

$$(aN) \otimes (a^{-1}N) = (aa^{-1})N = eN, \ (a^{-1}N) \otimes (aN) = (a^{-1}a)N = eN.$$
 综上, G/N 对于运算 \otimes 构成一个群.

注: 定理 6.2.9 中的群 G/N 叫做群 G 对于正规子群 N 的**商群**.

事实上, 对任意 $a \in G$, 有

$$(aN) \otimes (eN) = (ae)N = aN, (eN) \otimes (aN) = (ea)N = aN.$$

(3) aN 的逆元是 $a^{-1}N$.

事实上,

$$(aN) \otimes (a^{-1}N) = (aa^{-1})N = eN, \ (a^{-1}N) \otimes (aN) = (a^{-1}a)N = eN.$$
 综上, G/N 对于运算 \otimes 构成一个群.

注: 定理 6.2.9 中的群 G/N 叫做群 G 对于正规子群 N 的**商群**.

注: 如果群 G 的运算写作加法 +,则 G/N 中的运算可写作 \oplus :

$$(a+N)\oplus(b+N)=(a+b)+N.$$

(2) eN = N 是单位元.

事实上, 对任意 $a \in G$, 有

$$(aN) \otimes (eN) = (ae)N = aN, (eN) \otimes (aN) = (ea)N = aN.$$

(3) aN 的逆元是 $a^{-1}N$.

事实上,

$$(aN) \otimes (a^{-1}N) = (aa^{-1})N = eN, \ (a^{-1}N) \otimes (aN) = (a^{-1}a)N = eN.$$
 综上, G/N 对于运算 \otimes 构成一个群.

注: 定理 6.2.9 中的群 G/N 叫做群 G 对于正规子群 N 的**商群**.

注: 如果群 G 的运算写作加法 +,则 G/N 中的运算可写作 \oplus :

$$(a+N)\oplus(b+N)=(a+b)+N.$$

例 6.2.10 可以证明 $G/N = \{H, aH, bH, \dots\}$ 构成商群, 其中 $G = \mathbb{Z}, H = n\mathbb{Z}$. 例如, $\mathbb{Z}/3\mathbb{Z} = \{3\mathbb{Z}, 1 + 3\mathbb{Z}, 2 + 3\mathbb{Z}\}$ 构成商群, 因为 $3\mathbb{Z}$ 是 \mathbb{Z} 的一个正规子群.

设 (G,\cdot) 和 (G',*) 是两个代数系统. 如果存在 G 到 G' 的映射 f, 并且保持运算, 即

$$f(a \cdot b) = f(a) * f(b), \forall a, b \in G,$$

则称 f 是 (G, \cdot) 到 (G', *) 的 同态 (同态映射).

设 (G,\cdot) 和 (G',*) 是两个代数系统. 如果存在 G 到 G' 的映射 f, 并且保持运算. 即

$$f(a \cdot b) = f(a) * f(b), \forall a, b \in G,$$

则称 f 是 (G, \cdot) 到 (G', *) 的 同态 (同态映射).

例 6.3.1 例如整数集合上加法 $(\mathbb{Z},+)$ 和正实数集合上乘法 (\mathbb{R}^+,\cdot) . 令映射 $f: \mathbb{Z} \to \mathbb{R}^+, x \mapsto e^x$ (即 $f(x) = e^x$).

由于

- 1) f 是映射 (每一个元素都有唯一的像存在).
- 2) 保持运算: $\forall x, y \in \mathbb{Z}, f(x + y) = e^{x + y} = e^{x} \cdot e^{y} = f(x) \cdot f(y)$. 所以, $f \in (\mathbb{Z}, +)$ 到 (\mathbb{R}^{+} , ·) 的同态映射.

- (1) 如果 G 到 G' 的同态映射 f 是单射, 则称 f 为 G 到 G' 的单同态.
- (2) 如果 G 到 G' 的同态映射 f 是满射, 则称 f 为 G 到 G' 的满同态. 此时, 称 G 与 G' 是同态的.
- (3) 如果 G 到 G' 的同态映射 f 是双射 (--对应的), 则称 f 为 G 到 G' 的同构映射. 此时, 称 G 与 G' 是同构的, 记作 $G \cong G'$.
- (4) 如果 $G = G', f \neq G$ 到 G' 的同 (态) 构映射, 则称 f 为自同态 (构) 映射.

- (1) 如果 G 到 G' 的同态映射 f 是单射, 则称 f 为 G 到 G' 的单同态.
- (2) 如果 G 到 G' 的同态映射 f 是满射, 则称 f 为 G 到 G' 的满同态. 此时, 称 G 与 G' 是同态的.
- (3) 如果 G 到 G' 的同态映射 f 是双射 (--对应的), 则称 f 为 G 到 G' 的同构映射. 此时, 称 G 与 G' 是同构的, 记作 $G \cong G'$.
- (4) 如果 $G = G', f \not\in G$ 到 G' 的同 (态) 构映射, 则称 f 为自同态 (构) 映射.
- **例** 6.3.2 对于 $(\mathbb{Z},+)$ 与 (\mathbb{R}^+,\cdot) , $f(x)=e^x$, 则 f 是 \mathbb{Z} 到 \mathbb{R}^+ 的单同态.

例
$$6.3.3$$
 设 $(\mathbb{Z},+)$ 与 (A,\cdot) , 这里 $A=\{1,-1\}$, · 为乘法, 映射 $f:\mathbb{Z}\to A$,

$$f(x) = \begin{cases} 1, & \exists x \text{ 为偶数 (包括负偶数) 时;} \\ -1, & \exists x \text{ 为奇数 (包括负奇数) 时.} \end{cases}$$

证明: $f \in \mathbb{Z} \to A$ 的同态 (同态映射).

例 6.3.3 设
$$(\mathbb{Z},+)$$
 与 (A,\cdot) , 这里 $A=\{1,-1\}$, · 为乘法, 映射 $f\colon \mathbb{Z}\to A,$

$$f(x) = \begin{cases} 1, & \exists x \text{ 为偶数 (包括负偶数) 时;} \\ -1, & \exists x \text{ 为奇数 (包括负奇数) 时.} \end{cases}$$

证明: $f \in \mathbb{Z} \to A$ 的同态 (同态映射).

证: 对 $\forall x, y \in \mathbb{Z}$,

- (1) $\exists x,y$ 都是偶数时, $f(x+y) = 1 = 1 \cdot 1 = f(x) \cdot f(y)$.
- (2) 当 x,y 都是奇数时, $f(x+y) = 1 = (-1) \cdot (-1) = f(x) \cdot f(y)$.
- (3) 当 x 是奇数, y 是偶数时, $f(x+y) = -1 = (-1) \cdot 1 = f(x) \cdot f(y)$.
- (4) 当 x 是偶数, y 是奇数时, $f(x+y) = -1 = 1 \cdot (-1) = f(x) \cdot f(y)$.

即对 $\forall x, y \in \mathbb{Z}$, 都有 $f(x+y) = f(x) \cdot f(y)$ 成立.

所以, $f \in \mathbb{Z} \to A$ 的同态, 且 f 是满射 (A 中元素都有原像), 是满同态.

- 例 6.3.4 设 $M(m \times n, \mathbb{R}) = \{$ 实数上的全体 $m \times n$ 阶矩阵 $\}$, 规定映射 $f: M(m \times n, \mathbb{R}) \to M(m \times n, \mathbb{R}),$
 - $f(A) = A^T (A^T 为 A 的转置矩阵), \forall A \in M(m \times n, \mathbb{R}).$
- 问: (1) 关于矩阵的加法, 即 $(M(m \times n, \mathbb{R}), +)$, f 是否是 $M(m \times n, \mathbb{R})$ 的自同构?
 - (2) 关于矩阵的乘法, f 是否是 $M(m \times n, \mathbb{R})$ 的自同构?

- 例 6.3.4 设 $M(m \times n, \mathbb{R}) = \{$ 实数上的全体 $m \times n$ 阶矩阵 $\}$, 规定映射 $f: M(m \times n, \mathbb{R}) \to M(m \times n, \mathbb{R}),$
 - $f(A) = A^T (A^T) A$ 的转置矩阵 $), \forall A \in M(m \times n, \mathbb{R}).$
- 问: (1) 关于矩阵的加法, 即 ($M(m \times n, \mathbb{R})$, +), f 是否是 $M(m \times n, \mathbb{R})$ 的自同构?
- (2) 关于矩阵的乘法, f 是否是 $M(m \times n, \mathbb{R})$ 的自同构?
- 解: (1) 不难证明: f 是 $M(m \times n, \mathbb{R}) \to M(m \times n, \mathbb{R})$ 的双射.

对 $\forall A, B \in M(m \times n, \mathbb{R}),$

$$(A + B)^T = A^T + B^T$$
, $\text{EV} f(A + B) = f(A) + f(B)$.

所以, f 是 $M(m \times n, \mathbb{R})$ 的自同构.

(2) 当 n > 1 时, $(AB)^T = B^T A^T \neq A^T B^T$,即 $f(AB) \neq f(A)f(B)$. 所以,f 不是 $M(m \times n, \mathbb{R})$ 的自同构.

イロト イ団ト イミト イミト ミークへ()

在有了群的定义之后,可知群的几个最基本的性质.将同态应用到群上,可以随时把一个集合来同一个群比较,或把两个群来比较.同态(构)用处在于比较两个集合之间的性质.

定理 6.3.1

若 (G,\cdot) 与 (G,*) 是同态的, 那么

- 1) 若·适合结合律,*也适合结合律.
- 2) 若·适合交换律,*也适合交换律.

在有了群的定义之后,可知群的几个最基本的性质.将同态应用到群上,可以随时把一个集合来同一个群比较,或把两个群来比较.同态(构)用处在于比较两个集合之间的性质.

定理 6.3.1

若 (G,\cdot) 与 (G,*) 是同态的, 那么

- 1) 若·适合结合律,*也适合结合律.
- 2) 若·适合交换律,*也适合交换律.

定理 6.3.2

若 G 是一个群, \overline{G} 是一个不空集合, 则若 G 与 \overline{G} 对于它们各自的运算来说同态, 那么 \overline{G} 也是一个群.

事实上, 若 G 与 \overline{G} 同态, 说明存在一个同态满射 f. 进而根据同态和群的条件, 易得.

例 6.3.5 (\mathbb{R} , +) 是群, $T = \{z \mid z \in \mathbb{C}, |z| = 1\}$, $f \in \mathbb{R} \to T$ 的一个映射, 其中 $f: x \mapsto e^{ix}$, 可以证明 $f \in \mathbb{R} \to T$ 的同态满射, 所以 (T, \cdot) 是群. 事实上.

- 1) $f \in \mathbb{R} \to T$ 的映射, $\forall x \in \mathbb{R}$, \exists 唯一的像 $f(x) = e^{ix} \in T$.
- 2) $f \in \mathbb{R} \to T$ 的满射, $\forall z \in T$, $\exists \theta \in \mathbb{R}$, 使得 $f(\theta) = z$.
- 3) f 是同态映射, 对 $\forall x,y \in \mathbb{R}$,

$$f(x+y) = e^{i(x+y)} = e^{ix} \cdot e^{iy} = f(x) \cdot f(y).$$

所以 $f \in \mathbb{R} \to T$ 的同态满射, 又因为 $(\mathbb{R}, +)$ 是群, 所以 (T, \cdot) 是群.

- (i) f(e) = e', 即同态将单位元映射到单位元.
- (ii) 对任意 $a \in G, f(a^{-1}) = f(a)^{-1}$, 即将 a 的逆元映射到 f(a) 的逆元.
- (iii) $\ker f = \{a \in G \mid f(a) = e'\}$ 是 G 的子群, 且 f 是单同态的充要条件是 $\ker f = \{e\}.$
- (iv) $f(G) = \{f(a) \mid a \in G\}$ 是 G' 的子群, 且 f 是满同态的充要条件是 f(G) = G'.
 - (v) 设 H' 是 G' 的子群, 则 $f^{-1}(H') = \{a \in G \mid f(a) \in H'\}$ 是 G 的子群.

- (i) f(e) = e', 即同态将单位元映射到单位元.
- (ii) 对任意 $a \in G, f(a^{-1}) = f(a)^{-1}$, 即将 a 的逆元映射到 f(a) 的逆元.
- (iii) $\ker f = \{a \in G \mid f(a) = e'\}$ 是 G 的子群, 且 f 是单同态的充要条件是 $\ker f = \{e\}.$
- (iv) $f(G) = \{f(a) \mid a \in G\}$ 是 G' 的子群, 且 f 是满同态的充要条件是 f(G) = G'.
 - (v) 设 H' 是 G' 的子群, 则 $f^{-1}(H') = \{a \in G \mid f(a) \in H'\}$ 是 G 的子群.
- 证: (i) 因为 $f(e)f(e) = f(e^2) = f(e)$, 两端同乘以 $f(e)^{-1}$ 得, f(e) = e'.

- (i) f(e) = e', 即同态将单位元映射到单位元.
- (ii) 对任意 $a \in G, f(a^{-1}) = f(a)^{-1}$, 即将 a 的逆元映射到 f(a) 的逆元.
- (iii) $\ker f = \{a \in G \mid f(a) = e'\}$ 是 G 的子群, 且 f 是单同态的充要条件是 $\ker f = \{e\}.$
- (iv) $f(G) = \{f(a) \mid a \in G\}$ 是 G' 的子群, 且 f 是满同态的充要条件是 f(G) = G'.
 - (v) $\[\mathcal{U} \] H' \not\in G' \] \text{ of } \mathcal{F}^{-1}(H') = \{ a \in G \mid f(a) \in H' \} \not\in G \] \text{ of } \mathcal{F}^{\mathbb{F}}.$
- 证: (i) 因为 $f(e)f(e) = f(e^2) = f(e)$, 两端同乘以 $f(e)^{-1}$ 得, f(e) = e'.
- (ii) 因为 $f(a^{-1})f(a) = f(a^{-1}a) = f(e) = e', f(a)f(a^{-1}) = f(aa^{-1}) = e',$ 所以 $f(a^{-1}) = f(a)^{-1}$.

- (i) f(e) = e', 即同态将单位元映射到单位元.
- (ii) 对任意 $a \in G, f(a^{-1}) = f(a)^{-1}$, 即将 a 的逆元映射到 f(a) 的逆元.
- (iii) $\ker f = \{a \in G \mid f(a) = e'\}$ 是 G 的子群, 且 f 是单同态的充要条件是 $\ker f = \{e\}.$
- (iv) $f(G) = \{f(a) \mid a \in G\}$ 是 G' 的子群, 且 f 是满同态的充要条件是 f(G) = G'.
- (v) $\[\mathcal{U} \] H' \not\in G' \] \text{ of } f^{-1}(H') = \{ a \in G \mid f(a) \in H' \} \not\in G \] \text{ of } f \not= f(a) \in H' \}$
- 证: (i) 因为 $f(e)f(e) = f(e^2) = f(e)$, 两端同乘以 $f(e)^{-1}$ 得, f(e) = e'.
- (ii) 因为 $f(a^{-1})f(a) = f(a^{-1}a) = f(e) = e'$, $f(a)f(a^{-1}) = f(aa^{-1}) = e'$, 所以 $f(a^{-1}) = f(a)^{-1}$.
 - (iii) 对任意 $a,b \in \ker f$, 有 f(a) = e', f(b) = e'. 从而,

$$f(ab^{-1}) = f(a)f(b^{-1}) = f(a)f(b)^{-1} = e'.$$

因此, $ab^{-1} \in \ker f$. 所以, $\ker f \in G$ 的子群.

若 f 是单同态, 则满足 f(a)=e'=f(e) 的元素只有 a=e. 因此, ker $f=\{e\}$.

反过来, 设 ker $f = \{e\}$, 则对任意的 $a, b \in G$ 使得 f(a) = f(b), 有 $f(ab^{-1}) = f(a)f(b^{-1}) = f(a)f(b)^{-1} = e'.$

这说明, $ab^{-1} \in \ker f = \{e\}$, 故 a = b. 因此, f 是单同态.

$$f(ab^{-1}) = f(a)f(b^{-1}) = f(a)f(b)^{-1} = e'.$$

因此, $ab^{-1} \in \ker f$. 所以, $\ker f \notin G$ 的子群.

若 f 是单同态, 则满足 f(a)=e'=f(e) 的元素只有 a=e. 因此, ker $f=\{e\}$.

反过来, 设 ker $f = \{e\}$, 则对任意的 $a, b \in G$ 使得 f(a) = f(b), 有 $f(ab^{-1}) = f(a)f(b^{-1}) = f(a)f(b)^{-1} = e'.$

这说明, $ab^{-1} \in \ker f = \{e\}$, 故 a = b. 因此, f 是单同态.

(iv) 对任意 $x, y \in f(G)$, 存在 $a, b \in G$ 使得 f(a) = x, f(b) = y. 从而, $xy^{-1} = f(a)f(b)^{-1} = f(ab^{-1}) \in f(G)$.

所以, f(G) 是 G' 的子群, 且 f 是满同态的充要条件是 f(G) = G'.

$$f(ab^{-1}) = f(a)f(b^{-1}) = f(a)f(b)^{-1} = e'.$$

因此, $ab^{-1} \in \ker f$. 所以, $\ker f \notin G$ 的子群.

若 f 是单同态, 则满足 f(a) = e' = f(e) 的元素只有 a = e. 因此, ker $f = \{e\}$.

反过来, 设 ker $f = \{e\}$, 则对任意的 $a, b \in G$ 使得 f(a) = f(b), 有 $f(ab^{-1}) = f(a)f(b^{-1}) = f(a)f(b)^{-1} = e'.$

- 这说明, $ab^{-1} \in \ker f = \{e\}$, 故 a = b. 因此, f 是单同态.
 - (iv) 对任意 $x, y \in f(G)$, 存在 $a, b \in G$ 使得 f(a) = x, f(b) = y. 从而, $xy^{-1} = f(a)f(b)^{-1} = f(ab^{-1}) \in f(G)$.
- 所以, f(G) 是 G' 的子群, 且 f 是满同态的充要条件是 f(G) = G'.
 - (v) 对任意 $a, b \in f^{-1}(H)$, 根据 (ii) 及 H' 为子群, 我们有 $f(ab^{-1}) = f(a)f(b^{-1}) = f(a)f(b)^{-1} \in H'$ (因为 H' 是子群).
- 因此, $ab^{-1} \in f^{-1}(H')$. 所以, $f^{-1}(H')$ 是 G 的子群.

$$f(ab^{-1}) = f(a)f(b^{-1}) = f(a)f(b)^{-1} = e'.$$

因此, $ab^{-1} \in \ker f$. 所以, $\ker f \notin G$ 的子群.

若 f 是单同态, 则满足 f(a)=e'=f(e) 的元素只有 a=e. 因此, ker $f=\{e\}$.

反过来, 设 ker $f = \{e\}$, 则对任意的 $a, b \in G$ 使得 f(a) = f(b), 有 $f(ab^{-1}) = f(a)f(b^{-1}) = f(a)f(b)^{-1} = e'.$

这说明, $ab^{-1} \in \ker f = \{e\}$, 故 a = b. 因此, f 是单同态.

(iv) 对任意 $x, y \in f(G)$, 存在 $a, b \in G$ 使得 f(a) = x, f(b) = y. 从而, $xy^{-1} = f(a)f(b)^{-1} = f(ab^{-1}) \in f(G)$.

所以, f(G) 是 G' 的子群, 且 f 是满同态的充要条件是 f(G) = G'.

(v) 对任意 $a, b \in f^{-1}(H)$, 根据 (ii) 及 H' 为子群, 我们有 $f(ab^{-1}) = f(a)f(b^{-1}) = f(a)f(b)^{-1} \in H'$ (因为 H' 是子群).

因此, $ab^{-1} \in f^{-1}(H')$. 所以, $f^{-1}(H')$ 是 G 的子群.

注: $\ker f$ 叫作同态 f 的核子群, f(G) 叫作像子群.

例 6.3.6 加群 $(\mathbb{Z}/n\mathbb{Z}, \oplus_n)$ 到乘群 $G = \{\theta^k \mid \theta = e^{\frac{2\pi i}{n}}, k = 0, 1, 2, \cdots, n-1\}$ 的映射 $f: k \mapsto \theta^k$, 证明 f 是一个同构.

例 6.3.6 加群 $(\mathbb{Z}/n\mathbb{Z}, \oplus_n)$ 到乘群 $G = \{\theta^k \mid \theta = e^{\frac{2\pi i}{n}}, k = 0, 1, 2, \cdots, \}$

n-1} 的映射 $f: k \mapsto \theta^k$, 证明 f 是一个同构.

证: (1) f 是一一映射.

- (a) 映射. $\forall x \in \mathbb{Z}/n\mathbb{Z}$, 有唯一的像 f(x) 存在.
- (*b*) 单射. 若 $x \neq y, f(x) \neq f(y)$.
- (c) 满射. $\forall z \in G, \exists x \in \mathbb{Z}/n\mathbb{Z}$, 使得 f(x) = z, 至少有一个 x 存在.
- (2) $\forall x, y \in \mathbb{Z}/n\mathbb{Z}, f(x+y) = \theta^{x+y} = \theta^x \cdot \theta^y = f(x) \cdot f(y).$ 所以, 综上可知 f 是一个同构.

例 6.3.6 加群 $(\mathbb{Z}/n\mathbb{Z}, \oplus_n)$ 到乘群 $G = \{\theta^k \mid \theta = e^{\frac{2\pi i}{n}}, k = 0, 1, 2, \cdots, n-1\}$ 的映射 $f: k \mapsto \theta^k$, 证明 f 是一个同构.

证: (1) *f* 是一一映射.

- (a) 映射. $\forall x \in \mathbb{Z}/n\mathbb{Z}$, 有唯一的像 f(x) 存在.
- (b) 单射. 若 $x \neq y, f(x) \neq f(y)$.
- (c) 满射. $\forall z \in G, \exists x \in \mathbb{Z}/n\mathbb{Z}$, 使得 f(x) = z, 至少有一个 x 存在.
- (2) $\forall x, y \in \mathbb{Z}/n\mathbb{Z}, f(x+y) = \theta^{x+y} = \theta^x \cdot \theta^y = f(x) \cdot f(y).$ 所以, 综上可知 f 是一个同构.
- **例** 6.3.7 设 a 是群 G 的一个元, 那么映射 $f: b \mapsto aba^{-1}$ 是 G 自同态.

例 6.3.6 加群 $(\mathbb{Z}/n\mathbb{Z}, \oplus_n)$ 到乘群 $G = \{\theta^k \mid \theta = e^{\frac{2\pi i}{n}}, k = 0, 1, 2, \cdots, \}$

n-1} 的映射 $f: k \mapsto \theta^k$, 证明 f 是一个同构.

证: (1) f 是一一映射.

- (a) 映射. $\forall x \in \mathbb{Z}/n\mathbb{Z}$, 有唯一的像 f(x) 存在.
- (b) 单射. 若 $x \neq y, f(x) \neq f(y)$.
- (c) 满射. $\forall z \in G, \exists x \in \mathbb{Z}/n\mathbb{Z}$, 使得 f(x) = z, 至少有一个 x 存在.
- (2) $\forall x, y \in \mathbb{Z}/n\mathbb{Z}, f(x+y) = \theta^{x+y} = \theta^x \cdot \theta^y = f(x) \cdot f(y).$ 所以, 综上可知 f 是一个同构.
- **例** 6.3.7 设 a 是群 G 的一个元, 那么映射 $f: b \mapsto aba^{-1}$ 是 G 自同态.
- 证: (1) 因为 G 是群, 由封闭性可知 $\forall b \in G, f(b) = aba^{-1} \in G$, 所以映射 f 是 G 到 G 的映射.
 - (2) 下证 f 是同态映射. 因为 $\forall b, c \in G$, 有 $f(bc) = a(bc)a^{-1} = (aba^{-1})(aca^{-1}) = f(b)f(c)$. 综上, 映射 $f: b \mapsto aba^{-1}$ 是 G 自同态.

信数课题组 (北京邮电大学)

直接构造同构并不容易. 通常先构造同态, 再借助于以下同态基本定理来诱导出同构映射.

定理 6.3.4

设 f 是群 G 到群 G' 的同态,则 f 的核 $\ker f$ 是 G 的正规子群. 反过来,如果 N 是 G 的正规子群,则映射 $s:G\to G/N;a\mapsto aN$ 是核为 N 的 (自然) 同态.

直接构造同构并不容易. 通常先构造同态, 再借助于以下同态基本定理来诱导出同构映射.

定理 6.3.4

设 f 是群 G 到群 G' 的同态,则 f 的核 $\ker f$ 是 G 的正规子群. 反过来,如果 N 是 G 的正规子群,则映射 $s:G\to G/N; a\mapsto aN$ 是核为 N 的 (自然) 同态.

证:由前面的定理 6.3.3 知, ker $f \leq G$.

对任意的 $a \in G, b \in \ker f$, 我们有

$$f(aba^{-1}) = f(a)f(b)f(a^{-1}) = f(a)e'f(a)^{-1} = e'.$$

所以 $aba^{-1} \in \ker f$. 故 $\ker f \not\equiv G$ 的正规子群.

直接构造同构并不容易. 通常先构造同态, 再借助于以下同态基本定理来诱导出同构映射.

定理 6.3.4

设 f 是群 G 到群 G' 的同态,则 f 的核 $\ker f$ 是 G 的正规子群. 反过来,如果 N 是 G 的正规子群,则映射 $s:G\to G/N; a\mapsto aN$ 是核为 N 的 (自然) 同态.

证:由前面的定理 6.3.3 知, ker $f \leq G$.

对任意的 $a \in G, b \in \ker f$, 我们有

$$f(aba^{-1}) = f(a)f(b)f(a^{-1}) = f(a)e'f(a)^{-1} = e'.$$

所以 $aba^{-1} \in \ker f$. 故 $\ker f \neq G$ 的正规子群.

反过来, 设 N 是 G 的正规子群, 则 G 到 G/N 的映射 s 满足

$$s(ab) = (ab)N = (aN)(bN) = s(a)s(b).$$

同时, s(a) = N 的充要条件是 $a \in N$. 因此, s 是核为 N 的同态.

37 / 41

设 f 是群 G 到群 G' 的同态,则存在唯一的 $G/\ker f$ 到像子群 f(G) 的同构 $\bar{f}: a\ker f \mapsto f(a)$ 使得 $f=i\circ \bar{f}\circ s$,其中 s 是群 G 到群 $G/\ker f$ 的自然同态, $i: c\mapsto c$ 是 f(G) 到 G' 的恒等同态,即有以下的交换图:

$$\begin{array}{ccc}
G & \xrightarrow{f} & G' \\
s \downarrow & \uparrow i \\
G/\ker f & \xrightarrow{\bar{f}} & f(G)
\end{array}$$

设 f 是群 G 到群 G' 的同态,则存在唯一的 $G/\ker f$ 到像子群 f(G) 的同构 $\bar{f}: a\ker f \mapsto f(a)$ 使得 $f=i\circ \bar{f}\circ s$,其中 s 是群 G 到群 $G/\ker f$ 的自然同态, $i: c\mapsto c$ 是 f(G) 到 G' 的恒等同态,即有以下的交换图:

$$\begin{array}{ccc}
G & \xrightarrow{f} & G' \\
s \downarrow & \uparrow i \\
G/\ker f & \xrightarrow{\tilde{f}} & f(G)
\end{array}$$

证: 首先,证明存在性.

设 f 是群 G 到群 G' 的同态,则存在唯一的 $G/\ker f$ 到像子群 f(G) 的同构 $\bar{f}: a\ker f \mapsto f(a)$ 使得 $f=i\circ \bar{f}\circ s$,其中 s 是群 G 到群 $G/\ker f$ 的自然同态, $i: c\mapsto c$ 是 f(G) 到 G' 的恒等同态,即有以下的交换图:

$$\begin{array}{ccc}
G & \xrightarrow{f} & G' \\
s \downarrow & \uparrow i \\
G/\ker f & \xrightarrow{\tilde{f}} & f(G)
\end{array}$$

证: 首先,证明存在性.

根据定理 6.3.4, ker f 是 G 的正规子群, 所以存在商群 $G/\ker f$.

设 f 是群 G 到群 G' 的同态,则存在唯一的 $G/\ker f$ 到像子群 f(G) 的同构 $\bar{f}: a\ker f \mapsto f(a)$ 使得 $f=i\circ \bar{f}\circ s$,其中 s 是群 G 到群 $G/\ker f$ 的自然同态, $i: c\mapsto c$ 是 f(G) 到 G' 的恒等同态,即有以下的交换图:

$$\begin{array}{ccc}
G & \xrightarrow{f} & G' \\
s \downarrow & \uparrow i \\
G/\ker f & \xrightarrow{\bar{f}} & f(G)
\end{array}$$

证: 首先,证明存在性.

根据定理 6.3.4, $\ker f \in G$ 的正规子群, 所以存在商群 $G/\ker f$.

现在要证明: \bar{f} : $a \ker f \mapsto f(a)$ 是 $G/\ker f$ 到像子群 f(G) 的同构.

(1) f 是映射, 即"任一元素有唯一的像".

若 $a \ker f = b \ker f \Rightarrow b^{-1}a \in \ker f \Rightarrow f(b^{-1}a) = f(b^{-1})f(a) = e$,

所以 f(a) = f(b), 所以像唯一.

(2) f 是单射, 即"不同的原像, 有不同的像".

若 $a \ker f \neq b \ker f \Rightarrow b^{-1}a \notin \ker f \Rightarrow f(b^{-1}a) = f(b^{-1})f(a) \neq e$, 所以 $f(a) \neq f(b)$.

(3) f 是满射. 对任意的 $c \in f(G)$, 存在 $a \in G$ 使得 f(a) = c.

从而, $\bar{f}(a \ker f) = f(a) = c$. 即 $a \ker f \in C$ 的原像.

(4) 保持同态, 即 \bar{f} 是 $G/\ker f$ 到 f(G) 的同态映射.

对任意的 $a \ker f$, $b \ker f \in G/\ker f$, 有

$$\bar{f}((a \ker f)(b \ker f)) = \bar{f}((ab) \ker f) = f(ab) = f(a)f(b) = \bar{f}(a \ker f)\bar{f}(b \ker f).$$
 综上, \bar{f} 是同构. 并且, 有 $f = i \circ \bar{f} \circ s$. 因为

$$i \circ \overline{f} \circ s(a) = i(\overline{f}(s(a))) = i(\overline{f}(a \ker f)) = i(f(a)) = f(a), a \in G.$$

(2) f 是单射, 即"不同的原像, 有不同的像".

若 $a \ker f \neq b \ker f \Rightarrow b^{-1}a \notin \ker f \Rightarrow f(b^{-1}a) = f(b^{-1})f(a) \neq e$, 所以 $f(a) \neq f(b)$.

(3) f 是满射. 对任意的 $c \in f(G)$, 存在 $a \in G$ 使得 f(a) = c.

从而, $\bar{f}(a \ker f) = f(a) = c$. 即 $a \ker f \in C$ 的原像.

(4) 保持同态, 即 \bar{f} 是 $G/\ker f$ 到 f(G) 的同态映射.

对任意的 $a \ker f$, $b \ker f \in G/\ker f$, 有

$$\bar{f}((a \ker f)(b \ker f)) = \bar{f}((ab) \ker f) = f(ab) = f(a)f(b) = \bar{f}(a \ker f)\bar{f}(b \ker f).$$
 经上 有是同构 并且 有 $f = i \circ \bar{f} \circ s$ 因为

综上, \bar{f} 是同构. 并且, 有 $f = i \circ \bar{f} \circ s$. 因为

$$i \circ \overline{f} \circ s(a) = i(\overline{f}(s(a))) = i(\overline{f}(a \ker f)) = i(f(a)) = f(a), a \in G.$$

最后证明唯一性.

假如还有同构 $g: G/\ker f \to f(G)$ 使得 $f = i \circ g \circ s$,

则对任意 $a \ker f \in G/\ker f$, 我们有

$$g(a \ker f) = i(g(s(a))) = (i \circ g \circ s)(a) = f(a) = \overline{f}(a \ker f), \exists \exists g = \overline{f}.$$

例 6.3.8 设f是群 \mathbb{Z} 到群

$$G = \langle a \rangle = \{a^n \mid 0 \le n < 3, a^3 = 1\} = \{1, a, a^2\}$$

的同态, $f: n \mapsto a^n$. 我们有 $\mathbb{Z}/\ker f \cong \langle a \rangle$.

具体来说, f 是群 ℤ 到群

$$G = \langle a \rangle = \{a^n \mid 0 \le n < 3, a^3 = 1\} = \{1, a, a^2\}$$

的同态, 有 ker $f = 3\mathbb{Z}$,

则
$$\mathbb{Z}/\ker f = \mathbb{Z}/3\mathbb{Z} = \{[0], [1], [2]\},\$$

等价于
$$G = \langle a \rangle = \{a^n \mid 0 \le n < 3, a^3 = 1\} = \{1, a, a^2\}.$$

本课作业

- 1. 群 $U_4 = \{1, -1, i, -i\}$ 的下列子集是否构成群 U_4 的子群?
- $(1) \{1,-1\};$
- $(2) \{i, -i\};$
- $(3) \{1, i\};$
- $(4) \{1, -i\}.$
- 2. 证明 $SL_n(\mathbb{R})$ 是 $GL_n(\mathbb{R})$ 的正规子群.
- 3. 整数加群 ℤ 与偶数加群 2ℤ 同构.

交流与讨论

电子邮箱:

陈秀波: xb_chen@bupt.edu.cn

徐国胜: guoshengxu@bupt.edu.cn

金正平: zhpjin@bupt.edu.cn