Ngoc Hoang Luong

University of Information Technology (UIT), VNU-HCM

May 9, 2023

- The target function f is unknown, and we can never really "discover" f. We can only find a good enough approximation to f by estimating \hat{f} .
- The idea of a good approximation $\hat{f} \approx f$ is also theoretical because we don't know f

- The dataset \mathcal{D} is influenced by the unknown target function.
- The hypothesis set H is the type of ML models that we want to try out (e.g., linear models, polynomial models, non-parametric models, etc.)

- The learning algorithm \mathcal{A} is the set of instructions to be carried out when learning from data with the individual error function err().
- The overall measure of error E() is used to determine which model h() is the best approximation $\hat{f}()$ to the target model f().

- In ML, the individual error function is known as the loss function:
 - Squared error: $err(\hat{f}, f) = (\hat{y}_i y_i)^2$
 - Absolute error: $err(\hat{f}, f) = |\hat{y}_i y_i|$
 - Misclassification error: $err(\hat{f}, f) = \mathbf{1}[\hat{y}_i \neq y_i]$
 - •
- The overall measure of error is the cost function or risk:
 - **1 In-sample Error** E_{in} : the average of individual errors from data points of the in-sample data \mathcal{D}_{in} :

$$E_{in}(\hat{f}, f) = \frac{1}{n} \sum_{i} err(\hat{f}(\mathbf{x}_i), f(\mathbf{x}_i))$$

Q Out-of-sample Error E_{out} : the theoretical mean, or expected value, of the individual errors over the entire input space:

$$E_{out}(\hat{f}, f) = \mathbb{E}_{\mathbf{x} \sim \mathcal{X}} \left[err(\hat{f}(\mathbf{x}), f(\mathbf{x})) \right]$$

The point x denotes a general data point in the input space \mathcal{X} .

- A good approximation $\hat{f} \approx f$ means that $E_{out}(\hat{f}, f) \approx 0$.
- However, we never have access to E_{out} because out-of-sample data is theoretical: taking expectation over the entire input space \mathcal{X} .
- We solve this problem via:

$$E_{out}(\hat{f}) \approx 0 \Rightarrow \begin{cases} E_{in}(\hat{f}) \approx 0 & \text{practical result} \\ E_{out}(\hat{f}) \approx E_{in}(\hat{f}) & \text{theoretical result} \end{cases}$$

- The first goal is achievable because we have access to our training data D_{in} .
- To achieve the second goal, we need to assume a probability distribution P over the input space \mathcal{X} : $\mathbf{x}_0 \sim P$. We need $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n$ are independent identically distributed (i.i.d.) samples from this distribution P.

e.g. polynomials of various degrees

$$E_{out}(\hat{f}) \approx 0 \Rightarrow \begin{cases} E_{in}(\hat{f}) \approx 0 & \text{practical result} \\ E_{out}(\hat{f}) \approx E_{in}(\hat{f}) & \text{theoretical result} \end{cases}$$

- e.g. polynomials of various degrees
- In practice, there will be some noise: $y = f(\mathbf{x}) + \varepsilon$. We want to learn a **target conditional distribution** $P(y|\mathbf{x})$.
- Our data follow a joint probability distribution:

$$P(\mathbf{x}, y) = P(\mathbf{x})P(y|\mathbf{x})$$

- We need to fit different models: i.e., working with different classes of hypothesis. For example: principal component regression \mathcal{H}_1 , ridge regression \mathcal{H}_2 , LASSO \mathcal{H}_3 .
- Each type of models has tuning parameters that need to be determined through trial-error steps.

- For each hypothesis class, we need to find the optimal tuning parameter, which involves choosing a finalist model: the best principal component regression, the best polynomial regression model, etc.
- ullet Among these finalist models, we need to select the best model \hat{f} .

• Finally, we need to measure the predicting performance of the final model \hat{f} : measuring how the model behaves with out-of-sample data points.

Three phases in supervised learning:

- Model training
- 2 Model selection
- Model assessment

- **1** Training: Given some data, and a hypothesis class \mathcal{H}_m , we fit a model h_m .
- Selection: We choose a model from a set of candidate models.
 - Pre-Selection: Choose a finalist model from a set of models belonging to a certain class of hypothesis.
 - Final-Selection: Choose a final model among a set of finalist models.
- **3** Assessment: Given a final model \hat{f} , how can we estimate the out-of-sample error $E_{out}(\hat{f})$?

e.g. various types of regression

What data should we use to perform each task?

Model Assessment

- Given a final model h, how to measure its prediction quality?
- In-sample error E_{in} measures the resubstitution power of the model h (i.e., how well the model fits the learning data).

$$E_{in}(h) = \frac{1}{|\mathcal{D}_{in}|} \sum_{\mathbf{x}_i \in \mathcal{D}_{in}} err(h(\mathbf{x}_i) = \hat{y}_i, y_i)$$

• Out-of-sample error E_{out} measures the generalization power of the model h:

$$E_{out}(h) = \mathbb{E}[err(h(\mathbf{x}_0) = \hat{y}_0, y_0)]$$

• Because we don't have access to out-of-sample dataset \mathcal{D}_{out} , we need to find a proxy set $\mathcal{D}_{proxy} \subset \mathcal{D}_{out}$ to compute E_{proxy} and use it to approximate E_{out} :

$$\underbrace{\hat{E}_{out}(h)}_{\mathcal{D}_{proxy}} \approx \underbrace{E_{out}(h)}_{\mathcal{D}_{out}}$$

- How can we estimate E_{out} ?
- Our dataset $D = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\}$. If we use all n data points to train/fit a model, then we have a good measure for E_{in} , but we don't have any out-of-sample data points to get an **honest** approximation \hat{E}_{out} of E_{out} .
- Why not use E_{in} as an estimate \hat{E}_{out} of E_{out} ?
- We may have a model that produces very small in-sample error $E_{in} \approx 0$ but does not perform well on out-of-sample data points.
- Given that the only available dataset is \mathcal{D} , the Holdout Method splits \mathcal{D} into two subsets:
 - **1** The training set \mathcal{D}_{train} for training/fitting the model.
 - **2** The test set \mathcal{D}_{test} to be used a proxy for \mathcal{D}_{out} for the assessment purpose.

Taking random sample of size a without replacement from \mathcal{D} :

$$\mathcal{D} \to \begin{cases} \mathcal{D}_{train} & \text{size } n - a \\ \mathcal{D}_{test} & \text{size } a \end{cases}$$

We fit a model using \mathcal{D}_{train} to obtain a model $h^-(\mathbf{x})$

Taking random sample of size a without replacement from \mathcal{D} :

$$\mathcal{D} \to \begin{cases} \mathcal{D}_{train} & \text{size } n - a \\ \mathcal{D}_{test} & \text{size } a \end{cases}$$

With the remainder points in \mathcal{D}_{test} , we can measure the performance of $h^{-}(\mathbf{x})$ as:

$$E_{test}(h^{-}) = \frac{1}{a} \sum_{l=1}^{a} err(h^{-}(\mathbf{x}_{l}), y_{l}); \quad (\mathbf{x}_{l}, y_{l}) \in \mathcal{D}_{test}$$

- If \mathcal{D}_{test} is a representative sample of \mathcal{D}_{out} , E_{test} gives an unbiased estimate of E_{out} . Why?
- Consider an out-of-sample point $(\mathbf{x}_0, y_0) \in \mathcal{D}_{test}$, given an error function, we can measure:

$$err(h(\mathbf{x}_0), y_0)$$

• Let's determine its expectation over the input space \mathcal{X} :

$$\mathbb{E}_{\mathcal{X}}[err(h(\mathbf{x}_0), y_0)]$$

• This is the definition of out-of-sample error E_{out} . Therefore $err(h(\mathbf{x}_0), y_0)$ is an **unbiased estimate** of the out-of-sample error.

Model Assessment - Holdout Test Set - Expectation

• Let's consider a set $\mathcal{D}_{test} = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_a, y_a)\}$ containing a > 1 points. We can get E_{test} by

$$E_{test}(h) = \frac{1}{a} \sum_{l=1}^{a} err(h(\mathbf{x}_l), y_l)$$

• Is $E_{test}(h)$ an unbiased estimate of $E_{out}(h)$?

$$\mathbb{E}_{\mathcal{X}}[E_{test}(h)] = \mathbb{E}_{\mathcal{X}}\left[\frac{1}{a}\sum_{l=1}^{a}err(h(\mathbf{x}_{l}), y_{l})\right]$$
$$= \frac{1}{a}\sum_{l=1}^{a}\mathbb{E}_{\mathcal{X}}[err(h(\mathbf{x}_{l}), y_{l})]$$
$$= \frac{1}{a}\sum_{l=1}^{a}E_{out}(h) = E_{out}(h)$$

• $E_{test}(h)$ is an **unbiased estimate** of $E_{out}(h)$. What about its **variance**?

Model Assessment - Holdout Test Set - Variance

• The variance of $E_{test}(h)$ is given by:

$$Var[E_{test}(h)] = Var\left[\frac{1}{a}\sum_{l=1}^{a}err(h(\mathbf{x}_{l}), y_{l})\right]$$
$$= \frac{1}{a^{2}}\sum_{l=1}^{a}Var[err(h(\mathbf{x}_{l}), y_{l})] = \frac{s^{2}}{a}$$

Assume that the variance $Var[err(h(\mathbf{x}_0), y_0)] = s^2$ is constant.

- As we increase the number a of test data points, the variance of the estimator $E_{test}(h)$ decreases. The more test points we use, the more reliably $E_{test}(h)$ estimates $E_{out}(h)$.
- But the larger a is, the smaller the training dataset will be.

 $^{^{1} \}texttt{https://eli.thegreenplace.net/2009/01/07/variance-of-the-sum-of-independent-variables}$

Model Assessment - Holdout Algorithm

- **1** Compile the available data into $\mathcal{D} = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\}.$
- 2 Choose $a \in \mathbb{N}$ points from \mathcal{D} to get a test set \mathcal{D}_{test} , and place the remaining n-a points into the training set \mathcal{D}_{train} .
- 3 Use \mathcal{D}_{train} to fit a particular model $h^-(\mathbf{x})$.
- **4** Measure the performance of h^- using \mathcal{D}_{test} :

$$E_{test}(h^{-}) = \frac{1}{a} \sum_{l=1}^{a} err(h^{-}(\mathbf{x}_l), y_l)$$

where $(\mathbf{x}_l, y_l) \in \mathcal{D}_{test}$.

6 Generate the final model \hat{h} by refitting h^- to the entire dataset \mathcal{D} .

Model Selection - Three-Way Holdout Method

- The test set \mathcal{D}_{test} can only be used at the end of the learning process to quantify the generalization error of the final model. We don't use this set to make any **learning decisions**.
- Thus, we create a validation set \mathcal{D}_{val} for selecting the final model from a set of finalist models.

- \mathcal{H}_m represents the m-th hypothesis class. h_m^- is the finalist model from class \mathcal{H}_m .
- After a finalist model h_m^- has been pre-selected for each hypothesis class, we use \mathcal{D}_{val} to compute validation error E_{val}^m .

• After selecting the best model h_m^- with the smallest E_{val}^m , a model h_m^* is fitted using $\mathcal{D}_{train} \cap \mathcal{D}_{val}$

- The performance of h_m^* is assessed by using \mathcal{D}_{test} to obtain $E_{test}^m = E_{test}(h_m^*)$.
- Finally, the "official" model is the model fitted on the entire dataset D.

- Choosing the best model (smallest E_{val}^m) is a **learning decision**.
- Thus, E_{val}^m is a biased estimate of E_{out} .
- The larger the test and validation sets are, the more reliable the estimates of the out-of-sample performance. But the smaller the training set will be.

UNIVERSITY OF INFORMATION TECHN

VMUHEN - UIT

Model Training

- For each hypothesis class, we need to train all candidate models and pre-select the finalist models using the training set \mathcal{D}_{train} .
- For example, \mathcal{H}_m is principal component regression (PCR), we need to train several models

$$h_{1,m},h_{2,m},\ldots,h_{q,m}$$

with $1, 2, \ldots, q$ are the number of principal components (i.e., **the tuning parameter** - hyperparameter).

- Using \mathcal{D}_{train} to fit all possible PCR models, and also to choose the one with the smallest error E_{train} can cause overfitting.
- We could use \mathcal{D}_{val} to pre-select the finalist model for \mathcal{H}_m , but then we don't have **fresh** data points for the final-selection phase.
- Resampling methods.

e.g. various types of regression

Resampling Approaches - General Sampling Blueprint

- We have a limited dataset.
- We want to generate multiple training sets, multiple evaluation sets to be used for both training phase and the pre-selection phase.
- The training set is the one we usually apply resampling.
- For example, we want to fit a k-Nearest Neighbor (kNN) model with k=3 neighbors.
- We randomly split the training set into two subsets:
 - ① $\mathcal{D}_{train-b}$ to train a model $h_{1,b}$.
 - 2 $\mathcal{D}_{eval-b} = \mathcal{D}_{train} \setminus \mathcal{D}_{train-b}$ to evaluate $h_{1,b}$.
- The procedure is repeated B times. We average all the evaluation errors to get a single measure indicating the performance of the particular type of trained models:

$$E_{eval} = \frac{1}{B} \sum_{b=1}^{B} E_{eval-b}$$

• The average measure E_{eval} would be the typical performance of 3-NN models.

Resampling Approaches

Monte Carlo Cross Validation

Monte Carlo Cross Validation - Repeated Holdout

- **1** Compile training dataset $\mathcal{D}_{train} = (\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)$
- 2 Repeat the Holdout method B times (B is very large, e.g., 500).
 - Generate $\mathcal{D}_{train-b}$ by sampling n-r elements without replacement from \mathcal{D}_{train} .
 - Generate h_b^- by fitting a model to $\mathcal{D}_{train-b}$.
 - Compute $E_{eval-b} = \frac{1}{r} \sum_{i} err(h_b^-(\mathbf{x}_i), y_i)$; where $(\mathbf{x}_i, y_i) \in \mathcal{D}_{eval-b}$.
- **3** Obtain an overall value for E_{eval} by averaging the E_{eval-b} values:

$$E_{eval} = \frac{1}{B} \sum_{b=1}^{B} E_{eval-b}$$

Bootstrap Method

- A bootstrap sample is a random sample of the data taken with replacement.
- The bootstrap sample has the same size as \mathcal{D}_{train} .
- Some individuals are reprensented multiple times in the bootstrap while others are not selected at all. The unselected individuals are out-of-bag elements.

Bootstrap Algorithm

- **1** Compile training dataset $\mathcal{D}_{train} = (\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)$
- **2** Repeat the following steps for b = 1, 2, ..., B where B is very large (e.g., 500):
 - Generate $\mathcal{D}_{train-b}$ by sampling n times with replacement from \mathcal{D}_{train} .
 - Generate \mathcal{D}_{eval-b} by compiling out-of-bag elements (\mathcal{D}_{eval-b} should not contain repeated elements).
 - Compute $E_{eval-b} = \frac{1}{r_b} \sum_i err(h_b^-(\mathbf{x}_i), y_i)$; where $(\mathbf{x}_i, y_i) \in \mathcal{D}_{eval-b}$ and r_b is the size of \mathcal{D}_{eval-b} .
- 3 Obtain an overall value for bootstrap E_{eval} by averaging the E_{eval-b} values:

$$E_{eval}^{bootstrap} = \frac{1}{B} \sum_{b=1}^{B} E_{eval-b}$$

K-Fold Cross Validation

- Split \mathcal{D}_{train} into K sets of equal size. Each subset is called a **fold**.
- At each iteration b, a fold is held out for the evaluation purpose \mathcal{D}_{eval-b} , and the remaining folds are merged into $\mathcal{D}_{train-b}$ for the training purpose.
- At the end b = K, the cross-validation error E_{cv} is defined as the average E_{eval} , which is computed from all evaluation errors E_{eval-b} .

Leave-One-Out Cross Validation (LOOCV)

A special case of K-Fold cross validation is when each fold contains one single data point, i.e., K = n.

- **1** Compile training dataset $\mathcal{D}_{train} = (\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)$
- **2** For i = 1, 2, ..., n:
 - Generate the *i*-th training dataset by removing the *i*-th element from \mathcal{D}_{train} : $\mathcal{D}_{train-i} = \mathcal{D}_{train} \setminus \{(\mathbf{x}_i, y_i)\}$
 - Fit the model to $\mathcal{D}_{train-i}$ to obtain h_i^- .
 - Use the point (\mathbf{x}_i, y_i) to compute $E_{eval-i} = err(h_i^-(\mathbf{x}_i), y_i)$
- 3 Obtain cross-validation error E_{cv} by averaging the individual errors:

$$E_{cv} = \frac{1}{n} \sum_{i}^{n} E_{eval-i}$$

Example - Tuning the parameter λ of Ridge Regression

The ridge regression coefficients:

$$\mathbf{w} = (\mathbf{X}^{\mathsf{T}}\mathbf{X} + \lambda \mathbf{I})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}$$

 λ is a tuning parameter (i.e., a hyperparameter). How to find the finalist model of the hypothesis class of ridge regression models?

Example - Tuning the parameter λ of Ridge Regression

① Split $\mathcal{D}_{train} = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\}$ into K folds:

$$\mathcal{D}_{train} = \mathcal{D}_{fold-1} \cup \mathcal{D}_{fold-2} \cup \ldots \cup \mathcal{D}_{fold-K}$$

 $\mathbf{2}$ Create K training sets:

$$\mathcal{D}_{train-1} = \mathcal{D}_{train} \setminus \mathcal{D}_{fold-1}; \mathcal{D}_{eval-1} = \mathcal{D}_{fold-1}$$

$$\mathcal{D}_{train-2} = \mathcal{D}_{train} \setminus \mathcal{D}_{fold-2}; \mathcal{D}_{eval-2} = \mathcal{D}_{fold-2}$$

$$\mathcal{D}_{train-K} = \mathcal{D}_{train} \setminus \mathcal{D}_{fold-K}; \mathcal{D}_{eval-K} = \mathcal{D}_{fold-K}$$

- **3** For $\lambda_l = 0.001, 0.002, \dots, \lambda_L$:
 - **1** For $b = 1, 2, \dots, K$:
 - Fit ridge regression model $h_{l,b}$ with λ_l on $\mathcal{D}_{train-b}$
 - Compute $E_{eval-b}(h_{l,b})$ on \mathcal{D}_{eval-b}
 - 2 Compute cross-validation error $E_{cv-l} = \frac{1}{K} \sum_{b=1}^{K} E_{eval_b}(h_{l,b})$
- 4 Compare all L cross-validation errors $E_{cv-1}, E_{cv-2}, \ldots, E_{cv-L}$ and choose the λ^* that yields the smallest E_{cv}^* .
- 5 Use λ^* to fit the finalist model $\mathbf{w} = (\mathbf{X}^{\mathsf{T}}\mathbf{X} + \lambda^*\mathbf{I})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}$.