Gate specifications

- Gate current to trigger (I_{GT}): Minimum value of the gate current below which reliable turn on of the thyristor can not be guaranteed
- Gate voltage to trigger (V_{GT}): Minimum value of the gate cathode forward voltage below which reliable turn on of the thyristor can not be guaranteed
- Non triggering gate voltage (V_{GNT}): Maximum value of the gate-cathode voltage below which the thyristor can be guaranteed to remain OFF.

Gate Specifications

- Peak reverse gate voltage (V_{GRM}): Maximum reverse voltage that can appear between the gate and the cathode terminals without damaging the junction.
- Average Gate Power dissipation (P_{GAR}): Average power dissipated in the gate-cathode junction should not exceed this value for gate current pulses wider than 100 µs.
- Peak forward gate current (I_{GRM}): The forward gate current should not exceed this limit even on instantaneous basis.

Gate Characteristics

Gate Characteristics

- For the same rating of device the Vg- Ig characteristics are not the same.
- Each devices has maximum gate voltage and gate current and power dissipation.
- Minimum value of Vg and Ig for reliable turn on
- Vng is non gate trigger voltage. Noise should be less than Vng
- Vg = E- IgRg
- Cf represents optimum load line based on E and Rg is selected

Gate trigger

- IG should be present till IA > I latching
- Control circuit should be isolated from power circuit
- Use of pulse transformer

Pulse transformer

Pulse transformer

- Pulse transformer is designed for 10 kHz
- E= $4.44 \phi_m f T_{ph} => E/T_{ph} = 4.44 \phi_m f$
- As f increases voltage /turn increase
- Transformer becomes compact
- Size of transformer reduces.

Syn. UJT trigger circuit

waveforms

Syn. UJT trigger circuit

Waveforms

Thyristor losses

- Forward conduction loss
- Forward and reverse voltage blocking loss
- Switching loss
- Gate power loss
- PD = Total power dissipation in the thyristor

Thermal and Electrical circuit

Electrical Circuit	Thermal circuit
Current	Power dissipation
Voltage difference	Temp. difference
Resistance	Thermal resistance

Thermal equivalent circuit- Parameters

- P_{DC} = Total power loss in the device (W)
- $\theta_{SA} =$ Thermal resistance between sink and air (${}^{0}C/W$)
- θ_{CS} => Thermal resistance between sink and case (${}^{0}C/W$)
- θ_{JC} => Thermal resistance between case and junction (°C/W)
- Ta => Ambient temp. (°C)
- Ts => Heat sink temp (°C)
- Tc => Case temp (°C)
- Tj => Junction temp (°C)

Junction Temp Calculations

Temp calculations

$$T_{j} = T_{a} + P_{DC}(\theta_{SA} + \theta_{CS} + \theta_{JC})$$

$$T_c = T_a + P_{DC}(\theta_{SA} + \theta_{CS})$$

$$T_s = T_a + P_{DC}(\theta_{SA})$$

Temp distribution in heat sink

Temp rise

Thermal Resistance

- Data sheet
- Ruttonshaha international rectifiers
- IRK 800 series power module

THERMAL AND MECHANICAL SPECIFICATION

	Parameter	800	Units	Conditions
T _J	Max. operating temperature range	-40 to 125		
T _{sig}	Max. storage temperature range	-40 to 125	°C	
R _{fish G}	Max. thermal resistance, junction	0.0250/0.0500	°C/W	Per module / per arm.
R _{mch}	Max. thermal resistance, case to heatsink	0.0080/0.0160	°C/W	Per module / per arm.
Т	Mounting tourque, ±15%	9 (18)	Nm	To heatsink & to (terminal)
W	Weight	3500	gm.	

Heat sink thermal resistance

Heat sink thermal resistance is provided by heat sink manufacture
Extrusion Data:

17

Numerical Problem

- Calculate the power loss in the device with following data
- Junction temp= 125°C
- $\Theta_{ic} = 0.16^{\circ}$ C/W and $\Theta_{cs} = 0.06^{\circ}$ C/W
- Sink temp = 65° C
- Solution
- $T_{j} = T_{a} + P_{DC}(\theta_{SA} + \theta_{CS} + \theta_{JC})$

$$T_{j}=(T_{a}+P_{DC}\theta_{SA})+P_{DC}(\theta_{CS}+\theta_{JC})$$
$$T_{j}=T_{S}+P_{DC}(\theta_{CS}+\theta_{JC})$$

Power dissipation =272.72 W

BT152 Series

THYRISTORS

FEATURE

Glass passivated thyristors in a plastic TO220 package. They are intended for use in applications requiring high bidirectional blocking voltage capability and high thermal cycling performance.

Typical applications include motor control, industrial and domestic lighting, heating and static switching. Compliance to RoHS.

ABSOLUTE MAXIMUM RATINGS

Symbol	Ratings	Value			Unit
		BT152-400R	BT152-600R	BT152-800R	
V _{DRM}	Repetitive peak off-state voltage	450	650	800	V
V _{RRM}	Repetitive peak reverse voltage	450	650	800	v
I _{T(RMS)}	RMS on-state current	20			Α
I _{T(AV)}	Average on-state current	13			Α
I _{TSM}	Non-repetitive peak on- state current	200			Α
Р _{GМ}	Peak gate power	20			w
PG _(AV)	Average gate power	0.5			W
T _{stg}	Storage temperature range	-40 to +150			°C
Tj	Operating junction temperature	125			°C

THERMAL CHARACTERISTICS

Symbol	Ratings	Value	Unit
R _{él-mb}	Thermal resistance junction to mounting base	≤ 1.1	°C/W
R _{eJA}	Thermal resistance junction to ambient	≤ 60	C/VV

BT152 Series

ELECTRICAL CHARACTERISTICS

TC=25°C unless otherwise noted

Symbol	Ratings	Test Condition(s)	Min	Тур	Max	Unit
	Repetitive peak	BT152-400R	450	-	-	
V _{DRM}	off-state voltage	BT152-600R	650	-	-	
	on-state voltage	BT152-800R	800	-	-	V
	Repetitive peak reverse	BT152-400R	450	-	-	•
V _{RRM}		BT152-600R	650	-	-	
	voltage	BT152-800R	800	-	-	
I _{GT}	Gate trigger current	$V_D = 12 \text{ V}; I_T = 100 \text{ mA}$	-	-	32	mΑ
V _{GT}	Gate trigger voltage	$V_D = 12 \text{ V}; I_T = 100 \text{ mA}$	-	-	1.5	V
IL.	Latching current	$V_D = 12 \text{ V}; I_{GT} = 100 \text{ mA}$	-	-	80	mΑ
I _H	Holding current	$V_D = 12 \text{ V}; I_{GT} = 100 \text{ mA}$	-	-	60	mΑ
I _D	Off-state current	$V_D = V_{DRM max}$; $T_J = 125$ °C	-	-	1	mA
I _R	Reverse current	$V_R = V_{RRM max}$; $T_J = 125$ °C	-	-	1	mA
V _T	On-state voltage	I _T = 40 A	-	-	1.75	V

DYNAMIC CHARACTERISTICS

TC=25°C unless otherwise noted

Symbol	Ratings	Test Condition(s)	Min	Тур	Max	Unit
dV₀/dt	Critical rate of rise of off-state voltage	V _{DM} = 67% V _{DRMmax} T _J = 125°C Exponential waveform; gate open circuit	200	300	-	V/µs
t _{gt}	Gate controlled turn-on time	$I_{TM} = 40 \text{ A}; V_D = V_{DRMmax}$ $I_G = 0.1 \text{ A}; dI_G/dt = 5 \text{ A}/\mu s$	-	2	-	μs
tq	Circuit commutated Turn-off time	$V_{DM} = 67\% V_{DRMmax}$ $T_{J} = 125^{\circ}C$ $I_{TM} = 50 A; V_{R} = 25 V$ $R_{GK} = 100 \Omega$ $dI_{TM}/dt = 30 A/\mu s$ $dV_{D}/dt = 50 V/\mu S$	•	70	-	μs

MECHANICAL DATA CASE TO-220

Pin 1 :	Main Terminal 1
Pin 2 :	Main Terminal 2
Pin 3:	Gate
Case:	Main Terminal 2

Any Questions?