计算方法 Lab3

王嵘晟 PB1711614

1 实验结果:

对于
$$f(x) = 2x^4 + 24x^3 + 61x^2 - 16x + 1 = 0$$

(1). 牛顿迭代法:

当取初值 $x_0 = 0$ 时:

表 1: Newton 迭代结果 1

迭代步数 k	x_k	$f(x_k)$	
0	0.0000000000E + 000	1.0000000000E + 000	
1	6.2500000000E - 002	2.4417114258E - 001	
2	9.2675144823E - 002	6.0357821710E - 002	
3	1.0750916023E - 001	1.4994760152E - 002	
4	1.1485323376E - 001	3.7248898748E - 003	
5	1.1848368152E - 001	9.1626064336E - 004	
6	1.2024260677E - 001	2.1577268802E - 004	
7	1.2102581790E - 001	4.2847681852E - 005	
8	1.2128383271E - 001	4.6530959359E - 006	
9	1.2131962667E - 001	8.9569062833E - 008	
10	1.2132034327E - 001	3.5900726836E - 011	

当取初值 $x_0 = 3$ 时:

表 2: Newton 迭代结果 2

迭代步数 k	x_k	$f(x_k)$	
0	3.0000000000E + 000	1.3120000000E + 003	
1	1.9192751236E + 000	3.9180729077E + 002	
2	1.1936133228E + 000	1.1368262566E + 002	
3	7.3112145458E - 001	3.1859876182E + 001	
4	4.5362080609E - 001	8.6190504416E + 000	
5	2.9663693142E - 001	2.2633471161E + 000	
6	2.1197535112E - 001	5.8197426653E - 001	
7	1.6779403531E - 001	1.4770709460E - 001	
8	1.4519438879E - 001	3.7206334228E - 002	
9	1.3376760731E - 001	9.3253679860E - 003	
10	1.2803649704E - 001	2.3222638207E - 003	
11	1.2519603327E - 001	5.6755417123E - 004	
12	1.2383872242E - 001	1.2927049695E - 004	
13	1.2327102895E - 001	2.2587102744E - 005	
14	1.2311856261E - 001	1.6284754711E - 006	
15	1.2310571808E - 001	1.1556329893E - 008	
16	1.2310562562E - 001	5.9885429948E - 013	

(2). 弦截法:

取初值 $x_0 = 0, x_1 = 0.5$ 时:

表 3: 弦截法迭代结果 1

迭代步数 k	x_k	$f(x_k)$	
0	0.0000000000E + 000	1.0000000000E + 000	
1	5.0000000000E - 001	1.1375000000E + 001	
2	-4.8192771084E - 002	1.9100839450E + 000	
3	-1.5882177241E - 001	4.9849583298E + 000	
4	2.0528956326E - 002	6.9745241532E - 001	
5	4.9704099508E - 002	3.5839401507E - 001	
6	8.0543024888E - 002	1.1965360731E - 001	
7	9.5999095782E - 002	4.7582804260E - 002	
8	1.0620354980E - 001	1.7777847602E - 002	
9	1.1229022963E - 001	6.8102183582E - 003	
10	1.1606968076E - 001	2.5795784215E - 003	
11	1.1837415259E - 001	9.7415265691E - 004	
12	1.1977247782E - 001	3.6072356011E - 004	
13	1.2059475518E - 001	1.2741741436E - 004	
14	1.2104383231E - 001	3.9878767168E - 005	
15	1.2124841215E - 001	9.3453570276E - 006	
16	1.2131102788E - 001	1.1695181286E - 006	
17	1.2131998479E - 001	4.4816937383E - 008	
18	1.2132034170E - 001	2.3240176450E - 010	

取初值 $x_0 = 0.1, x_1 = 1.5$ 时:

表 4: 弦截法迭代结果 2

迭代步数 k	x_k	$f(x_k)$
0	1.0000000000E - 001	3.4200000000E - 002
1	1.5000000000E + 000	2.0537500000E + 002
2	9.9766826661E - 002	3.4920022729E - 002
3	9.9528703766E - 002	3.5662994682E - 002
4	1.1095871197E - 001	8.7722830757E - 003
5	1.1468740718E - 001	3.8969392942E - 003
6	1.1766781216E - 001	1.3876451955E - 003
7	1.1931598272E - 001	5.3099453171E - 004
8	1.2033760050E - 001	1.9023231922E - 004
9	1.2090792407E - 001	6.3397280115E - 005
10	1.2119299484E - 001	1.7038550552E - 005
11	1.2129776891E - 001	2.8550135170E - 006
12	1.2131885895E - 001	1.8556909953E - 007
13	1.2132032505E - 001	2.3119210990E - 009
14	1.2132034354E - 001	1.9196866319E - 012

2 算法分析:

使用 C 语言编写程序,分别实现了对于多项式方程的 Newton 迭代法和弦截法通用求解。

对于牛顿迭代,使用公式为:

$$x_{k+1} = x_k - \frac{f(x)}{f'(x)}$$

对于弦截法,使用公式:

$$x_{k+1} = x_k - f(x_k) \frac{x_k - x_{k-1}}{f(x_k) - f(x_{k-1})}$$

经过多次迭代之后,直到误差小于 ϵ 为止,即 $|f(x_k)| < 1e-9$

3 结果分析:

四种求解方式的最终结果如下表:

表 5: 迭代计算结果

迭代方法	初值	迭代次数 k	x_k	$f(x_k)$
Newton	0	10	1.2132034327E - 001	3.5900726836E - 011
Newton	3	16	1.2310562562E - 001	5.9885429948E - 013
弦截法	0,0.5	18	1.2132034170E - 001	2.3240176450E - 010
弦截法	0.1,1.5	14	1.2132034354E - 001	1.9196866319E - 012

所以根据迭代计算结果可得: f(x)=0 有两个根,分别在 0.121 附近和 0.123 附近

4 实验小结:

本次实验由于需要编写通用程序,相较以往的实验在代码编写上复杂度有所提升。使用 Newton 迭代和弦截法迭代时,使用不同的初值迭代到同一个误差范围下的 迭代次数是不同的。相对来说 Newton 法迭代次数更少。选择好的初值可以减少 迭代次数。