Activités Mentales

24 Août 2023

$$-2(6x+4)(-13x-6) \ge 0$$

$$5(-13x+12)(2x-5) \ge 0$$

$$-3(13x-2)(-2x-15) \le 0$$

$$2(-6x-5)(-2x-14) \le 0$$

$$-3(15x-13)(2x+10) > 0$$

On pose $A(x) = -2(6x+4)(-13x-6) = -2 \times f(x) \times g(x)$ avec f(x) = 6x+4 et g(x) = -13x-6.

- f est une fonction affine avec m=6>0. f est donc croissante sur \mathbb{R} . De plus $f(x)=0 \Leftrightarrow x=\frac{-2}{3}$.
- g est une fonction affine avec m = -13 < 0. g est donc décroissante sur \mathbb{R} .

De plus
$$g(x) = 0 \Leftrightarrow x = \frac{-6}{13}$$
.

On rappelle que f(x) = 6x + 4 et g(x) = -13x - 6 et A(x) = -2(6x + 4)(-13x - 6). Son tableau de signe est alors

x	$-\infty$		$\frac{-2}{3}$		$\frac{-6}{13}$		+∞
-2		_		_		_	
f(x)		_	0	+		+	
g(x)		+		+	0	-	
A(x)		+	0	-	0	+	

Finalement l'ensemble de solutions de $-2(6x+4)(-13x-6) \ge 0$ est

$$S = \left[-\infty; \frac{-2}{3} \right] \cup \left[\frac{-6}{13}; +\infty \right[$$

On pose
$$A(x) = 5(-13x + 12)(2x - 5) = 5 \times f(x) \times g(x)$$
 avec $f(x) = -13x + 12$ et $g(x) = 2x - 5$.

• f est une fonction affine avec m = -13 < 0. f est donc décroissante sur \mathbb{R} .

De plus
$$f(x) = 0 \Leftrightarrow x = \frac{12}{13}$$
.

• g est une fonction affine avec m=2>0. g est donc croissante sur \mathbb{R} . De plus $g(x)=0 \Leftrightarrow x=\frac{5}{2}$.

On rappelle que f(x) = -13x + 12 et g(x) = 2x - 5 et A(x) = 5(-13x + 12)(2x - 5). Son tableau de signe est alors

x	$-\infty$		$\frac{12}{13}$		$\frac{5}{2}$		+∞
5		+		+		+	
f(x)		+	0	_		_	
g(x)		_		_	0	+	
A(x)		_	0	+	0	_	

Finalement l'ensemble de solutions de $5(-13x+12)(2x-5) \ge 0$ est

$$S = \left[\frac{12}{13}; \frac{5}{2}\right]$$

On pose
$$A(x) = -3(13x-2)(-2x-15) = -3 \times f(x) \times g(x)$$
 avec $f(x) = 13x-2$ et $g(x) = -2x-15$.

- f est une fonction affine avec m=13>0. f est donc croissante sur \mathbb{R} . De plus $f(x)=0 \Leftrightarrow x=\frac{2}{13}$.
- g est une fonction affine avec m=-2<0. g est donc décroissante sur \mathbb{R} .

De plus
$$g(x) = 0 \Leftrightarrow x = \frac{-15}{2}$$
.

On rappelle que f(x) = 13x - 2 et g(x) = -2x - 15 et A(x) = -3(13x - 2)(-2x - 15). Son tableau de signe est alors

x	$-\infty$		$\frac{-15}{2}$		$\frac{2}{13}$		+∞
-3		_		_		_	
f(x)		_		_	0	+	
g(x)		+	0	-		_	
A(x)		+	0	-	0	+	

Finalement l'ensemble de solutions de $-3(13x-2)(-2x-15) \le 0$ est

$$S = \left[\frac{-15}{2}; \frac{2}{13} \right]$$

On pose $A(x) = 2(-6x-5)(-2x-14) = 2 \times f(x) \times g(x)$ avec f(x) = -6x-5 et g(x) = -2x-14.

• f est une fonction affine avec m = -6 < 0. f est donc décroissante sur \mathbb{R} .

De plus
$$f(x) = 0 \Leftrightarrow x = \frac{-5}{6}$$
.

• g est une fonction affine avec m = -2 < 0. g est donc décroissante sur \mathbb{R} .

De plus
$$g(x) = 0 \Leftrightarrow x = -7$$
.

On rappelle que f(x) = -6x - 5 et g(x) = -2x - 14 et A(x) = 2(-6x - 5)(-2x - 14). Son tableau de signe est alors

x	$-\infty$		-7		$\frac{-5}{6}$		+∞
2		+		+		+	
f(x)		+		+	0	_	
g(x)		+	0	-		-	
A(x)		+	0	-	0	+	

Finalement l'ensemble de solutions de $2(-6x-5)(-2x-14) \le 0$ est

$$S = \left[-7; \frac{-5}{6} \right]$$

On pose
$$A(x) = -3(15x - 13)(2x + 10) = -3 \times f(x) \times g(x)$$
 avec $f(x) = 15x - 13$ et $g(x) = 2x + 10$.

- f est une fonction affine avec m=15>0. f est donc croissante sur \mathbb{R} . De plus $f(x)=0 \Leftrightarrow x=\frac{13}{15}$.
- g est une fonction affine avec m=2>0. g est donc croissante sur \mathbb{R} . De plus $g(x)=0 \Leftrightarrow x=-5$.

On rappelle que f(x) = 15x - 13 et g(x) = 2x + 10 et A(x) = -3(15x - 13)(2x + 10). Son tableau de signe est alors

x	$-\infty$		-5		$\frac{13}{15}$		+∞
-3		_		_		_	
f(x)		_		_	0	+	
g(x)		_	0	+		+	
A(x)		_	0	+	0	_	

Finalement l'ensemble de solutions de -3(15x-13)(2x+10) > 0 est

$$S = \left] -5; \frac{13}{15} \right[$$

