MAT-266: Análisis Estadístico Multivariado

Certamen 1. Abril 20, 2022

Tiempo: 70 minutos Profesor: Felipe Osorio

1. Considere x_1, \ldots, x_n una muestra de datos p-dimensionales. Sea

$$oldsymbol{Q}(oldsymbol{a}) = \sum_{i=1}^n (oldsymbol{x}_i - oldsymbol{a}) (oldsymbol{x}_i - oldsymbol{a})^ op.$$

Nombre:

 $\mathbf{a.} (15 \text{ pts}) \text{ Muestre que } \mathbf{Q}(\mathbf{a}) = \mathbf{Q} + n(\overline{\mathbf{x}} - \mathbf{a})(\overline{\mathbf{x}} - \mathbf{a})^{\top}, \text{ donde}$

$$oldsymbol{Q} = \sum_{i=1}^n (oldsymbol{x}_i - \overline{oldsymbol{x}}) (oldsymbol{x}_i - \overline{oldsymbol{x}})^ op.$$

b. (10 pts) Demuestre que $|Q(a)| = |Q|\{1 + n(\overline{x} - a)^{\top}Q^{-1}(\overline{x} - a)\}$, y de ahí muestre que

$$\min_{a} |Q(a)| = |Q|.$$

c. (15 pts) Sea

$$g_{ij} = (\boldsymbol{x}_i - \overline{\boldsymbol{x}})^{\top} \boldsymbol{S}_*^{-1} (\boldsymbol{x}_j - \overline{\boldsymbol{x}}), \quad i, j = 1, \dots, n,$$

donde $S_* = Q/n$. Muestre que

$$\sum_{i=1}^{n} g_{ij} = 0,$$
 y $\sum_{i=1}^{n} g_{ii} = np.$

- **2.** (30 pts) Sea $Z \in \mathbb{R}^{n \times k}$ con rango k. Determine $G \in \mathbb{R}^{k \times n}$ que minimice $\operatorname{tr}(GG^{\top})$ sujeto a $GZ = I_k$.
- **3.** (30 pts) Sea \boldsymbol{X} una matriz aleatoria $n \times p$ y sea \boldsymbol{P} matriz simétrica e idempotente $n \times n$ de rango $k \geq n$. Si $\boldsymbol{X} \sim \mathsf{N}_{n,p}(\mathbf{0}, \boldsymbol{P} \otimes \boldsymbol{\Sigma})$, muestre que $\boldsymbol{X}^{\top} \boldsymbol{X} \sim \mathsf{W}_p(k, \boldsymbol{\Sigma})$.