

Definiciones cambios medios e instantáneos:

Velocidad media:

La velocidad media de una partícula se define como la razón entre su desplazamiento Δr y el intervalo de tiempo Δt en que se produce dicho desplazamiento:

$$\overrightarrow{V}_{m} = \frac{\overrightarrow{\Delta r}}{\Delta t} = \frac{\overrightarrow{r} - \overrightarrow{r_o}}{t - t_o}$$

Rapidez media:

La rapidez media es la relación entre la distancia recorrida y el tiempo empleado en completarla.

$$v_m = d/\Delta t$$

Definiciones cambios medios e instantáneos:

Velocidad instantánea:

Es la velocidad de una partícula en cualquier instante de tiempo.

$$v = \lim_{\Delta t \to 0}$$

$$\overrightarrow{v}_{m} = \lim_{\Delta t \to 0} \frac{\overrightarrow{\Delta r}}{\Delta t} = \frac{\overrightarrow{dr}}{dt}$$

Rapidez instantánea:

La rapidez instantánea de una partícula se define como la magnitud del vector velocidad instantánea.

$$\overrightarrow{v}_{m} = \lim_{\Delta t \to 0} \frac{\Delta r}{\Delta t} = \frac{dr}{dt}$$

Definiciones cambios medios e instantáneos:

Aceleración media:

La aceleración describe el cambio de velocidad de la partícula; en magnitud o en dirección y sentido, o ambas.

$$\vec{a}_{m} = \frac{\vec{\Delta v}}{\Delta t} = \frac{\vec{v} - \vec{v}_{o}}{t - t_{o}}$$

Aceleración instantánea:

En el límite, cuando el intervalo de tiempo es infinitamente pequeño, definimos a la aceleración instantánea.

$$\overrightarrow{a} = \lim_{\Delta t \to 0} \frac{\overrightarrow{\Delta v}}{\Delta t} = \frac{\overrightarrow{dv}}{dt}$$

MOVIMIENTO CON ACELERACIÓN CONSTANTE

Ecuaciones vectoriales:

$$v_f = v_0 + a$$
. t

1ra Ecuación

$$r_f = r_0 + v_0 \cdot t + \frac{1}{2} \cdot a \cdot \Delta t^2$$
 2da Ecuación

$$V_f^2 = V_0^2 + 2 \cdot a \cdot (r_f - r_0)$$

3ra Ecuación

MOVIMIENTO EN UNA DIRECCIÓN

1) Componente de Desplazamiento: Δx

Para un movimiento rectilíneo, podemos representarlo por ejemplo en el eje x

2) Componente de la Velocidad media: Vx

Es la componente x del desplazamiento, Δx , dividida entre el intervalo de tiempo Δt en el que ocurre el desplazamiento.

$$v_{x} = \underline{\Delta x} = \underline{x_{2} - x_{1}}$$

$$\underline{\Delta t} \quad t_{2} - t_{1}$$

 $\Delta x = x_2 - x_1$

MOVIMIENTO EN UNA DIRECCIÓN

3) Componente de la aceleración media: ax

Es la componente x de la velocidad media, Vx, dividida entre el intervalo de tiempo Δt en el que ocurre el desplazamiento

$$a_{x} = \underline{\Delta v_{x}} = \underline{v_{x2} - v_{x1}}$$

$$\underline{\Delta t} = \underline{t_{2} - t_{1}}$$

MOVIMIENTO CON ACELERACIÓN CONSTANTE

Ecuaciones en una dirección: (por ej. eje x)

$$ax = cte$$
 Considerando $to = 0$

$$v_x = v_{0x} + a_x t$$
 1ra Ecuación

$$x=x_0+v_{0x}t+rac{1}{2}a_xt^2$$
 2da Ecuación

$$v_x^2 = v_{0x}^2 + 2a_x(x - x_0)$$
 3ra Ecuación

Revisión: gráficas de funciones que utilizaremos

a) Función constante: y = K

b) Función lineal:

b) Función lineal:

c) Función cuadrática:

$$y = a x^2 + b x + c$$

Revisión: tipos de graficas que utilizaremos

Ecuaciones en una dirección: (por ej. eje x)

$$a_x$$
 = cte Considerando t_0 = 0 $v_x = v_{0x} + a_x t$ 1ra Ecuación $x = x_0 + v_{0x} t + rac{1}{2} a_x t^2$ 2da Ecuación $v_x^2 = v_{0x}^2 + 2 a_x (x - x_0)$ 3ra Ecuación

A) Gráfica componente de la aceleración - tiempo:

ax = cte

B) Gráfica componente de la velocidad - tiempo:

B-1) Componente de la aceleración nula:

ECUACIÓN:
$$\Rightarrow v_x = v_{ox} + a_x \cdot t$$
 (1º ecuación)
$$v_x = v_{ox} + v_x \cdot t$$

$$v_x > 0$$

$$v_x = 0 \Rightarrow (reposo)$$

$$t$$

$$v_x < 0$$

B-2) Componente de la aceleración NO nula:

ECUACIÓN:
$$\rightarrow v_x = v_{ox} + a_x \cdot t$$
 (1º ecuación)

C) Gráfica posición - tiempo:

ECUACIÓN:
$$\rightarrow x = x_0 + v_{ox} \cdot t + \frac{1}{2} \cdot a_x \cdot t^2$$
 (2º ecuación)

C1) Componente de la aceleración nula: $[a_x = 0]$

Cálculo de la componente aceleración

Cálculo de la componente aceleración

$$v_x = v_{ox} + a_x \cdot t$$

$$a_x = \frac{v_x - v_{ox}}{t}$$

Entre **1** y **0**:

$$a_x = \frac{20 \text{ m/s} - 10 \text{ m/s}}{5,0 \text{ s} - 0} = 2,0 \text{ m/s}^2$$

Entre **3** y **0**:

$$a_x = \frac{-15 \text{ m/s} - 0}{10,0 \text{ s} - 0} = -1,5 \text{ m/s}^2$$

C2) Componente de la aceleración NO nula: [ax ≠ 0]

Calculo del módulo de la velocidad media:

Conclusión:

A) Gráfica componente de la aceleración - tiempo:

B) Gráfica componente de la velocidad - tiempo:

C) Gráfica posición - tiempo:

Ejercicio de la Guía:

Describe cualitativamente los movimientos representados en las gráficas de la Figura:

Ejercicio de la Guía:

Describe cualitativamente los movimientos representados en las gráficas de la Figura:

