# Introduction to Computer Graphics

Concepts

Scenes



## **Computer Graphics**

Concerned with generating images with a computer

- Small field until the 1980's
- Mostly hacks & cheats

Processing power increased tremendously

• More and more advanced techniques

Nowadays its own field of applied mathematics



Utah teapot by Newell and Blinn 1975

[wikipedia]





## **Application Areas**



Data visualization







Video games



Advertising

Design / CAD

EXPERIENCE IT IN IMAX

INTERSTELLAR

Movies

## **Computer Graphics Pipeline (conceptually)**







#### Scenes can be large and complex

• Requires careful design to be efficient and useful



#### Camera

Projection from 3D (scene) to 2D (image) Central perspective projection

- "Pinhole camera" with no lenses
- Others possible (orthographic, stereo, fish-eye, ...)

#### **No** imperfections like in real cameras

- Out of focus, lens distortions, color aberrations
- Depth of field, bokeh, motion blur, glare
- •

Additional efforts needed to simulate those



Macro photography with depth of field



Artificial lens flare



Computer-generated scene



## How quickly should we render (or show) images?





#### **Frame Rate**

Number of shown images per time period

- Typically given in frames per second (fps)
- Sometimes in **Hertz** (Hz)

Also used when recording & capturing images

| Format          | Frame rate                      |
|-----------------|---------------------------------|
| Cinema / movies | 24 fps                          |
| Computer games  | ≥30 fps                         |
| Animated Gifs   | 12-15 fps                       |
| Videos          | 30 fps, 60 fps, 120 fps         |
| TV              | 50 Hz (PAL)<br>59.999 Hz (NTSC) |





# **Comparing Frame Rates**

## Real-time Graphics vs. Offline Rendering











**←** more fps

Real Time Rendering

15-20 frames per second

Offline Rendering

less fps → (minutes, hours, ...)

more realistic ->

Humans perceive up to 10-12 individual images per second Higher *frame rate* perceived as motion

- Determines time available for generating each image (25 fps  $\cong$  40 ms per image)
- Transition between real-time and offline rendering is blurry (depending on context)



## Real-time Graphics vs. Offline Rendering (cont.)

Needs to be fast & interactive

• 16ms per image at 60 fps

Everything computed on-the-fly

- Rendering, simulations, interactions
- Often on a single computer

**Local** illumination (approximation)
Less detailed geometry and textures

Very high visual quality
Physically-based rendering

• Global illumination

#### Takes time

- Minutes or hours per image
- Computed on single machine or compute clusters



Cornell Box by Henrik Wann Jensen graphics.Stanford.edt









### **Summary**

Introduction to Computer Graphics –

Computer graphics is ubiquitous

Animation, images, advertising, movies, games

Scenes hold the necessary information

• Objects, materials, lights, camera, animation, simulation...

Images are generated by rendering virtual scenes

Difference between real-time graphics and offline rendering



# **Coming up next**

Hierarchical transformations Scene graphs

