Отчет по лабораторной работе 7

Эффективность рекламы

Смирнова Мария Александровна

Цель работы

Рассмотреть модель эффективности рекламной кампании. Построить графики распространения рекламы для трех случаев.

Краткая теоретическая справка

Организуется рекламная кампания нового товара или услуги. Необходимо, чтобы прибыль будущих продаж с избытком покрывала издержки на рекламу. Вначале расходы могут превышать прибыль, поскольку лишь малая часть потенциальных покупателей будет информирована о новинке. Затем, при увеличении числа продаж, возрастает и прибыль, и, наконец, наступит момент, когда рынок насытится, и рекламировать товар станет бесполезным.

Предположим, что торговыми учреждениями реализуется некоторая продукция, о которой в момент времени t из числа потенциальных покупателей N знает лишь n покупателей. Для ускорения сбыта продукции запускается реклама по радио, телевидению и других средств массовой информации. После запуска рекламной кампании информация о продукции начнет распространяться среди потенциальных покупателей путем общения друг с другом. Таким образом, после запуска рекламных объявлений скорость изменения числа знающих о продукции людей пропорциональна как числу знающих о товаре покупателей, так и числу покупателей о нем не знающих

Модель рекламной кампании описывается следующими величинами. Считаем, $\frac{\partial n}{\partial t}$ скорость изменения со временем числа потребителей, узнавших о товаре и готовых его купить, t - время, прошедшее с начала рекламной кампании, n(t) - число уже информированных клиентов. Эта величина пропорциональна числу покупателей, еще не знающих о нем, это описывается следующим образом: $\alpha_1(t)(N-n(t))$, где N - общее число потенциальных платежеспособных покупателей, $\alpha_1(t)>0$ - характеризует интенсивность рекламной кампании (зависит от затрат на рекламу в данный момент времени). Помимо этого, узнавшие о товаре потребители также распространяют полученную информацию среди потенциальных покупателей, не знающих о нем (в этом случае работает т.н. сарафанное радио). Этот вклад в рекламу описывается величиной $\alpha_2(t)n(t)(N-n(t))$, эта величина увеличивается с

увеличением потребителей узнавших о товаре. Математическая модель распространения рекламы описывается уравнением:

$$\frac{\partial n}{\partial t} = (\alpha_1(t) + \alpha_2(t)n(t))(N - n(t)).$$

Задание

Вариант 27

Постройте график распространения рекламы, математическая модель которой описывается следующим уравнением:

$$\frac{\partial n}{\partial t} = (0.73 + 0.000013n(t))(N - n(t))$$

$$\frac{\partial n}{\partial t} = (0.000013 + 0.73n(t))(N - n(t))$$

$$\frac{\partial n}{\partial t} = (0.55sint + 0.33costn(t))(N - n(t))$$

При этом объем аудитории

$$N = 756$$

, в начальный момент о товаре знает 17 человек. Для случая 2 определите в какой момент времени скорость распространения рекламы будет иметь максимальное значение.

Выполнение лабораторной работы

1. Построим график распространения рекламы для первого случая $\alpha_1(t)>alpha_2(t)$. Код julia:

using Plots

using DifferentialEquations

pyplot()

N = 756:

x0 = 17;

step = 0.0001;

t = (0.0, 20.0);

a1(t) = 0.73;

```
a2(t) = 0.000013;
f(x, p, t) = (a1.(t) + a2.(t) * x)*(N - x);
prob = ODEProblem(f, x0, t);
sol = solve(prob, saveat = step);
plot(sol, xlabel = "t", ylabel = "n", labels = "n(t)")
title!("1й случай")
```

Получим следующий график (рис.1)

Рис.1 1 случай

2. Построим график распространения рекламы для второго случая $\alpha_1(t) < alpha_2(t)$. Код julia:

```
using Plots
```

using DifferentialEquations

pyplot();

N = 756;

x0 = 17;

step = 0.0001;

```
t = (0.0, 15.0); a1(t) = 0.000013; a2(t) = 0.73; f(x, p, t) = (a1.(t) + a2.(t) * x)*(N - x); prob = ODEProblem(f, x0, t); sol = solve(prob, saveat = step); plot(sol, xlabel = "t", ylabel = "n", labels = "n(t)", xaxis = (0.0:0.01:0.1)) title!("2й случай")
```

Получим следующий график (рис.2)

Рис.2 2 случай

3. Построим график распространения рекламы для третьего случая. Код julia: using Plots

using DifferentialEquations

pyplot();

N = 756;

x0 = 17;

```
step = 0.0001;
t = (0.0, 15.0);
a1(t) = 0.55*sin(t);
a2(t) = 0.33sin(5t);
f(x, p, t) = (a1.(t) + a2.(t) * x)*(N - x);
prob = ODEProblem(f, x0, t);
sol = solve(prob, saveat = step);
plot(sol, xlabel = "t", ylabel = "n", labels = "n(t)", xaxis = (0.0:0.01:0.1))
title!("3й случай")
```

Получим следующий график (рис.3)

Рис.З З случай

Выводы

В процессе выполнения лабораторной работы мы рассмотрели модель эффективности рекламной кампании, а также построили графики распространения рекламы для трех случаев.