	<u> </u>
Name:	
Roll No.:	
Invigilator's Signature :	

CS/B.Tech (EE)/SEM-3/CS-312/2009-10 2009

NUMERICAL METHODS AND PROGRAMMING

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A (Multiple Choice Type Questions)

- 1. Choose the correct alternatives for any ten of the following: $10 \times 1 = 10$
 - i) The value of x that satisfies f(x) = 0 is called the
 - a) root of an equation f(x) = 0
 - b) root of a function f(x)
 - c) zero of equation f(x) = 0
 - d) none of these.

matrix.

- a) diagonal
- b) identity
- c) lower triangular
- d) upper triangular.

33505 Turn over

differential To solve the ordinary iii) $3\frac{dy}{dx} + 5y^2 = \sin x, y(0) = 5$ by Euler's method, you need to rewrite the equation as

a)
$$\frac{dy}{dx} = \sin x - 5y^2, y(0) = 5$$

b)
$$\frac{dy}{dx} = \frac{1}{3} (\sin x - 5y^2), y(0) = 5$$

c)
$$\frac{dy}{dx} = \frac{1}{3} \left(-\cos x - \frac{5y^2}{3} \right), y(0) = 5$$

d)
$$\frac{dy}{dx} = \frac{1}{3}\sin x, y(0) = 5.$$

f(x) is a polynomial of degree 3 if iv)

a)
$$\Delta^3 f(x) = 0$$

b)
$$\Delta^3 f(x) = \text{constant}$$

c)
$$\Delta f(x) = \text{constant}$$

d)
$$F^3 f(x) = \text{constant}$$
.

The equation AX = B has unique solution if v)

a) Rank
$$(A) \neq \text{Rank}(A, B)$$

b) Rank
$$(A)$$
 < Rank (A, B)

- Rank (A) = Rank (AB) = Number of unknowns c)
- d) Rank (A) = Rank (AB) \neq Number of unknowns.
- An approximate polynomial passes through (n + 1) vi) data points, the degree of the polynomial is

a)
$$n+1$$

c)
$$n$$
 or less

d)
$$n+1$$
 or less.

If the interval of differencing is unity and $f(x) = ax^2$ (a is a constant), which one of the following choices is wrong?

a)
$$\Delta f(x) = a(2x+1)$$

$$\Delta f(x) = a(2x+1)$$
 b) $\Delta^2 f(x) = 2a$

c)
$$\Delta^3 f(x) = 2$$

d)
$$\Delta^4 f(x) = 0$$
.

viii) Output of the following programme code:

```
main ( )
{
    int i;
    for (i=1;1<=2;i++)
    {
        printf ("%d\n",i);
        if (i==1)
        continue;
        printf("ELECTRICAL \n");
    }
    printf("ENGINEERING");</pre>
```

- a) 2 1 ELECTRICAL ENGINEERING
- b) 1 2 ELECTRICAL ENGINEERING
- c) ELECTRICAL ENGINEERING
- d) none of these.
- ix) The condition of convergence of Newton-Raphson method when applied to an equation $f\left(x\right)=0$ in an interval is
 - a) $f'(x) \neq 0$

}

- b) $\left| f'(x) \right| < 1$
- c) $|f(x)f''(x)| < [f'(x)]^2$
- d) $[f''(x)]^2 > |f(x).f'(x)|$.

CS/B.Tech (EE)/SEM-3/CS-312/2009-10

- a) $O(h^2)$
- b) $O(h^3)$
- c) $O(h^4)$
- d) $O(h^5)$.

xi) DDL stands for

- a) Data Defined Language
- b) Data Dictionary Language
- c) Data Definition Language
- d) Dictionary Defined Lanuage.

xii) For n = 1, Lagrange's interpolation formula becomes

- a) an equation of a straight line
- b) an equation of a parabola
- c) an equation of a hyperbola
- d) none of these.

xiii) The polynomial function f (x) constructed from the data f (3) = -1, f (4) = 5, f (5) = 15 is

4

- a) $2x^2 + 8x + 5$
- b) $x^2 8x 5$
- c) $x^2 + 8x + 5$
- d) $2x^2 8x + 5$.

33505

GROUP – B (Short Answer Type Questions)

- 2. Define absolute error and relative error. Prove that the relative error of a product of several approximate non-zero numbers does not exceed the sum of the relative errors of the numbers.
- 3. Explain secant method briefly with a diagram and arrive at the secant formula.
- 4. Solve the equation $x^3 2x 5 = 0$ with $2 \le x \le 3$ using Regula-Falsi (false position) method. Continue up to 3 successive approximations.
- 5. Construct Lagrange's interpolation polynomial for the function $y = \sin(\pi x)$, choosing the points $X_0 = 0$, $x_1 = \frac{1}{6}$, $x_2 = \frac{1}{2}$.
- 6. Solve the following equations using Gauss-Seidel Method:

$$2x_1 + 2x_2 = 1$$

$$x_1 + 2x_2 + x_3 = 2$$

$$x_2 + x_3 = 4$$

Start with the initial approximated values of $x_1 = 1$, $x_2 = 2$ and $x_3 = 1$ and continue up to 3 successive approximations.

CS/B.Tech (EE)/SEM-3/CS-312/2009-10

7. a) Explain LU decomposition method for solving linear equation. Calculate L and U for the given set of equations:

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1$$

$$a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = b_2$$

$$a_{31}x_1 + a_{32}x_2 + a_{33}x_3 = b_3$$

b) Solve the following equation using LU decomposition method:

$$3x_1 + 2x_2 + x_3 = 10$$

$$2x_1 + 3x_2 + 2x_3 = 14$$

$$x_1 + 2x_2 + 3x_3 = 14$$

3 + 3 + 9

- 8. a) Explain bisection method (halving method). What is the convergence criterion for bisection method ?
 - b) Solve $x^2 4x 10 = 0$ using bisection method in the range [-1, -2] continued up to 6th approximation.

6

3 + 3 + 9

33505

- 9. a) Arrive at Newton's forward interpolation formula
 - b) Consider the table below:

										10
у	2	6	12	20	30	42	56	72	90	110

Evaluate y, when x = 8.4 using Newton's forward interpolation formula.

- c) Define dividend difference expression with two and three arguments. 5+6+4
- 10. a) Arrive at the formula for basic Trapezoidal rule.
 - b) Using basic Trapezoidal rule, arrive at Composite Trapezoidal rule.
 - c) Calculate the integral $\int_{-1}^{+1} e^x dx$ using composite trapezoidal rule for
 - i) n = 2 and

ii)
$$n = 4$$
. $5 + 4 + 6$

- 11. a) Using Taylor's series, solve the differential equation $dy/dx = x^2 + y^2$ for x = 0.25 and x = 0.5.
 - b) Arrive at Euler's formula as numerical solution of ordinary differential equation.
 - c) Using Euler's formula, solve dy/dx = 2x + 3, subject to the initial condition y = 1 at x = 1 for value of x changing from 1 to 1.5 in an interval of 0.1. Calculate y_1, y_2, y_3 and y_4 .

33505 7 [Turn over