Calculus

Sub Code: SC107, Tutorial 4

- 1. For the following function find a formula for the Riemann sum obtained by dividing the interval [a,b] into n equal subintervals and using the right-hand end point for each c_k (or x_k^*). Then take a limit of this sum as $n \to \infty$ to calculate the area $\int_a^b f(x) dx$ under the curve over [a,b].
 - (a) $f(x) = x^2 x^3$ over the interval [-1, 0].
- 2. Show that the value of $\int_0^1 \sqrt{x+8} \ dx$ lies between $2\sqrt{2}$ and 3.
- 3. Use Fundamental theorem to find $\frac{dy}{dx}$ if $y = x \int_2^{x^2} \sin(t^3) dt$.
- 4. Find the areas of the regions enclosed by lines and curves:
 - (a) $y = x^2 2x$ and y = x
 - (b) $x y^2 = 0$ and $x + 2y^2 = 3$
- 5. Use Disk method to find the volume of the solid generated by revolving the region in the first quadrant bounded above by the line y=2, below by the curve $y=2\sin x,\, 0\leq x\leq \frac{\pi}{2}$, and on the left by the y-axis about the line y=2.
- 6. Use Washer method to find the volume of the solid generated by revolving the region bounded by the line y=x+3 and the curve $y=x^2+1$ about the x-axis.
- 7. Use the shell method to find the volume of the solid generated by revolving the region bounded by the curves $y = 2 x^2$ and $y = x^2$ and by the line x = 0 about the y-axis.