Mediciones cuánticas libres de interacciones

Héctor Miguel Mejía Díaz

- Breve resumen del trabajo de Avshalom C. Elitzur y Lev Vaidman https://link.springer.com/article/10.1007/BF00736012
- ¿Es posible obtener conocimiento sobre la existencia de un objeto en un determinado lugar, usando mediciones libres de interacciones, sin tener información previa sobre el objeto?

Dispositivo experimental

Fig. 1. Mach-Zehnder type particle interferometer. Detector D_2 clicks only if one of the arms of the interferometer is blocked by an object.

Condiciones experimentales

- Una partícula incide en el divisor de haz. El coeficiente de transmisión es 1/2.
- Los haces transmitido y reflejado son a su vez reflejados tal que se juntan nuevamente en otro divisor de haz.
- Dos detectores, D_1 y D_2 colectan los haces finales.
- Es posible hacer un arreglo experimental tal que D_2 sólo detecte un haz si hay algo bloqueando la salida del divisor original.

• Los estados $|d\rangle$ y $|a\rangle$ designan a un fotón moviéndose a la derecha y hacia arriba, respectivamente.

- Los estados $|d\rangle$ y $|a\rangle$ designan a un fotón moviéndose a la derecha y hacia arriba, respectivamente.
- Cada reflexión cambia la fase del fotón en $\pi/2$.

- Los estados $|d\rangle$ y $|a\rangle$ designan a un fotón moviéndose a la derecha y hacia arriba, respectivamente.
- Cada reflexión cambia la fase del fotón en $\pi/2$.
- La operación de los divisores queda definida como

$$|d\rangle \longrightarrow \frac{1}{\sqrt{2}} (|d\rangle + i|a\rangle)$$
 $|a\rangle \longrightarrow \frac{1}{\sqrt{2}} (|a\rangle + i|d\rangle)$

- Los estados |d\rangle y |a\rangle designan a un fotón moviéndose a la derecha y hacia arriba, respectivamente.
- Cada reflexión cambia la fase del fotón en $\pi/2$.
- La operación de los divisores queda definida como

$$|d\rangle \longrightarrow \frac{1}{\sqrt{2}} (|d\rangle + i|a\rangle)$$

 $|a\rangle \longrightarrow \frac{1}{\sqrt{2}} (|a\rangle + i|d\rangle)$

• La operación de los espejos es

$$|d\rangle \longrightarrow i|a\rangle$$

 $|a\rangle \longrightarrow i|d\rangle$

$$|d\rangle \longrightarrow \frac{1}{\sqrt{2}} (|d\rangle + i|a\rangle)$$
 Divisor

$$|d
angle \longrightarrow rac{1}{\sqrt{2}}ig(|d
angle + i|a
angleig)$$
 Divisor $\longrightarrow rac{1}{\sqrt{2}}ig(i|a
angle - |d
angleig)$ Espejos

$$|d
angle \longrightarrow rac{1}{\sqrt{2}}ig(|d
angle + i|a
angleig)$$
 Divisor $\label{eq:delta} \longrightarrow rac{1}{\sqrt{2}}ig(i|a
angle - |d
angleig)$ Espejos $\label{eq:delta} \longrightarrow rac{1}{2}ig(i|a
angle - |d
angleig) - rac{1}{2}ig(|d
angle + i|a
angleig)$ Divisor

Héctor Mejía-Díaz Elitzur-Vaidman 6/10

$$|d
angle \longrightarrow rac{1}{\sqrt{2}}ig(|d
angle + i|a
angleig)$$
 Divisor $iggtharpoonup rac{1}{\sqrt{2}}ig(i|a
angle - |d
angleig)$ Espejos $iggtharpoonup rac{1}{2}ig(i|a
angle - |d
angleig) - rac{1}{2}ig(|d
angle + i|a
angleig)$ Divisor $iggtharpoonup - |d
angle$ Es detectado por D_1

Héctor Mejía-Díaz Elitzur-Vaidman 6/10

$$|d
angle \longrightarrow rac{1}{\sqrt{2}} ig(|d
angle + i |a
angle ig)$$
 Divisor

$$|d
angle \longrightarrow rac{1}{\sqrt{2}}ig(|d
angle + i|a
angleig)$$
 Divisor $\longrightarrow rac{1}{\sqrt{2}}ig(i|a
angle + i|dispersado
angleig)$ Espejo

Héctor Mejía-Díaz Elitzur-Vaidman 7/1

$$|d
angle \longrightarrow rac{1}{\sqrt{2}} ig(|d
angle + i |a
angle ig)$$
 Divisor $\longrightarrow rac{1}{\sqrt{2}} ig(i |a
angle + i | dispersado
angle ig)$ Espejo $\longrightarrow rac{1}{2} ig(i |a
angle - |d
angle ig) + rac{i}{\sqrt{2}} | dispersado
angle$ Divisor

Héctor Mejía-Díaz Elitzur-Vaidman 7/

$$|d
angle \longrightarrow rac{1}{\sqrt{2}} ig(|d
angle + i |a
angle ig)$$
 Divisor $\longrightarrow rac{1}{\sqrt{2}} ig(i |a
angle + i | dispersado
angle ig)$ Espejo $\longrightarrow rac{1}{2} ig(i |a
angle - |d
angle ig) + rac{i}{\sqrt{2}} | dispersado
angle$ Divisor

• Entonces, pueden ocurrir tres cosas

$$\frac{1}{2} \big(i | a \rangle - | d \rangle \big) + \frac{i}{\sqrt{2}} | \textit{dispersado} \rangle \longrightarrow \begin{cases} |a\rangle, & \textit{D}_2 \text{ detecta, con prob. } 1/4 \\ |d\rangle, & \textit{D}_1 \text{ detecta, con prob. } 1/4 \\ |\textit{dispersado}\rangle, & \emptyset, \text{ con prob. } 1/2 \end{cases}$$

Implementación del bomb tester

• En https://www.preprints.org/manuscript/201902.0232/v1 se propone la siguiente implementación:

- q_0 y q_1 representan el estado del fotón
- an₀ indica la presencia de la bomba

- Estado inicial del fotón es |10>
- ullet En presencia de la bomba, el estado es |101
 angle
- De acuerdo con los autores, el estado final del sistema es

$$-rac{\ket{00}+\ket{01}}{2}\ket{1}+rac{\ket{101}}{\sqrt{2}}$$

- Use Pennylane para simular el circuito. Interprete sus resultados de acuerdo con el trabajo de Elitzur-Vaidman.
- Hints:
 - La compuerta CCX se implementa como qml.CCX(wires=[0,1,2])
 - Se puede usar una compuerta controlada, U como qml.ControlledQubitUnitary(U.matrix(), control_wires=[0], wires=[1,2]) qml.ctrl(qml.Hadamard, control=0)(wires=1)

Las compuertas usadas

$$X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, Y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}, Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, U3 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & i \\ i & 1 \end{bmatrix}, H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix},$$

$$S^{\dagger} = \begin{bmatrix} 1 & 0 \\ 0 & -i \end{bmatrix}, T^{\dagger} = \begin{bmatrix} 1 & 0 \\ 0 & \frac{1-i}{\sqrt{2}} \end{bmatrix}, U3^{\dagger} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & -i \\ -i & 1 \end{bmatrix}, S = \begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix}, T = \begin{bmatrix} 1 & 0 \\ 0 & \frac{1+i}{\sqrt{2}} \end{bmatrix}.$$

Héctor Mejía-Díaz Elitzur-Vaidman 10 / 10