Prof. Dr.-Ing. habil. Jadran Vrabec Fachgebiet Thermodynamik Fakultät III – Prozesswissenschaften

Reale Gase

- bisher: ideale Gase
 - keine Wechselwirkungen zwischen Teilchen
 - (therm.) Zustandsgleichung sehr einfach: pv = RT
- jetzt: reale Fluide:
 - Wechselwirkungen zwischen Teilchen
 - Phasenübergänge (verschiedene Aggregatzustände)
 - Zustandsgleichung nicht mehr einfach analytisch aufzuschreiben
 - ⇒ Stoffdaten, Tabellen und Diagramme werden wichtig!
 - neue Begriffe wie Siedelinie, Taulinie, Tripellinie, Nassdampfgebiet, ...

Aufgabe 10.1 - Lösung

a) p-V-Diagramm:

Es lohnt sich (sehr!), zu versuchen, das p-v-Diagramm selbstständig (ohne Lösung) zu reproduzieren. Nur so merkt man, ob man die vielen Begriffe und ihre Bedeutung tatsächlich verstanden hat.

b) p-T-Diagramm:

Prof. Dr.-Ing. habil. Jadran Vrabec Fachgebiet Thermodynamik Fakultät III – Prozesswissenschaften

c) Der Zustand eines Stoffes hängt immer von p,T und v ab. Ein solcher Zusammenhang ist aber sehr schwer zweidimensional darzustellen. Daher nutzen wir 2D-Diagramme, in denen eine der drei Größen nicht beachtet wird (Projektion auf die p-T, bzw. die p-v-Ebene).

Die Tripellinie erstreckt sich in die Richtung der v-Koordinate, sodass sie im p-T-Diagramm nur als Punkt auftaucht. Ebenso wird das Nassdampfgebiet bei der Projektion auf die p-T-Ebene zu einer Kurve ("Dampfdruckkurve") reduziert.

Vergleiche hierzu die Folien 2 bis 7 des 4. VL-Foliensatzes.

Prof. Dr.-Ing. habil. Jadran Vrabec Fachgebiet Thermodynamik Fakultät III – Prozesswissenschaften

Lineare Interpolation

 \bullet beruht auf der Annahme, dass die betreffende Funktion z zwischen zwei bekannten Punkten \hat{z} und \check{z} , die nah beieinander liegen, nährungsweise linear verläuft

$$\frac{\hat{z}_2 - \check{z}_2}{\hat{z}_1 - \check{z}_1} = \frac{z_2 - \hat{z}_2}{z_1 - \hat{z}_1} \iff z_2 = \frac{z_1 - \check{z}_1}{\hat{z}_1 - \check{z}_1} \cdot (\hat{z}_2 - \check{z}_2) + \check{z}_2$$

$$\implies \boxed{z_2 = \alpha \cdot (\hat{z}_2 - \check{z}_2) + \check{z}_2} \quad \text{mit} \quad \boxed{\alpha = \frac{z_1 - \check{z}_1}{\hat{z}_1 - \check{z}_1}}$$

 $\bullet\,$ mit beliebigen Zustandsgrößen z_1,z_2

Interpolation im Zweiphasengebiet

ullet beruht auf der Annahme, dass sich die massebezogenen Zustandsgrößen entlang der isothermen im Flüssig-Dampf-Gleichgewicht linear zum Dampfgehalt x verhalten.

$$z(T,x) = z'(T) + x(z''(T) - z'(T)) \iff x = \frac{z(T,x) - z'(T)}{z''(T) - z'(T)}$$

- $x := \frac{m''}{m_{\text{ges}}}$: Dampfmassegehalt (massebezogen!)
- z ist eine beliebige massebezogene ZG (d.h. z.B. $z \neq \rho!$)

Prof. Dr.-Ing. habil. Jadran Vrabec Fachgebiet Thermodynamik

Fakultät III – Prozesswissenschaften

Aufgabe 10.2 - Lösung

Stoffdaten für Wasser:

Tabelle 1: Zweiphasengebiet

	r							
	Τ	р	h'	h"	s'	s"	v'	v"
	$[^{\circ}C]$	[bar]	[kJ/kg]	[kJ/kg]	[kJ/(kg K)]	[kJ/(kg K)]	$[\mathrm{dm}^3/\mathrm{kg}]$	$[m^3/kg]$
	140	3.615	589.16	2733.4	1.7392	6.9293	1.0798	0.50845
	245	36.51	1061.5	2802.2	2.7478	6.1072	1.2403	0.054654
	250	39.76	1085.8	2800.9	2.7935	6.0721	1.2517	0.050083
ľ	255	43.23	1110.2	2799.1	2.8392	6.0369	1.2636	0.045938
	260	46.92	1135.0	2796.6	2.8849	6.0016	1.2761	0.042173

Zustand ① und ③

Zustand ② - zwischen den Zeilen

a) **gegeben:**
$$V = 1 \,\mathrm{m}^3$$

$$T_1 = 140 \,^{\circ}\text{C} = 413.15 \,\text{K}$$

 $x_1 = 0.1$

gesucht: v, h

Um v und h zu ermitteln, müssen wir mit der Tabelle arbeiten. Wenn die exakten gesuchten Werte nicht in der Tabelle aufgeführt werden, nutzen wir die Interpolation im Nassdampfgebiet. Das ist hier erlaubt, da sowohl v als auch h massebezogene Zustandsgrößen sind.

$$z(T,x) = z'(T) + x \cdot [z''(T) - z'(T)] \tag{1}$$

$$\implies v(T,x) = v'(T) + x_1 \cdot [v''(T) - v'(T)] \tag{2}$$

Prof. Dr.-Ing. habil. Jadran Vrabec Fachgebiet Thermodynamik Fakultät III – Prozesswissenschaften

$$\iff v(140 \,^{\circ}\text{C}, 0.1) = v'(140 \,^{\circ}\text{C}) + 0.1 \cdot [v''(140 \,^{\circ}\text{C}) - v'(140 \,^{\circ}\text{C})] = v_{1}$$

$$\iff \boxed{v_{1}} = 1.0798 \cdot 10^{-3} \, \frac{\text{m}^{3}}{\text{kg}} + 0.1 \cdot \left(0.50845 \, \frac{\text{m}^{3}}{\text{kg}} - 1.0798 \cdot 10^{-3} \, \frac{\text{m}^{3}}{\text{kg}}\right)$$

$$\tag{4}$$

$$= \boxed{0.0518 \, \frac{\mathrm{m}^3}{\mathrm{kg}}} \tag{5}$$

$$h(T,x) = h'(T) + x_1 \cdot [h''(T) - h'(T)] \tag{6}$$

$$\iff h(140 \,^{\circ}\text{C}, 0.1) = h'(140 \,^{\circ}\text{C}) + 0.1 \cdot [h''(140 \,^{\circ}\text{C}) - h'(140 \,^{\circ}\text{C})] = h_1$$
 (7)

$$\iff \boxed{h_1} = 589.16 \, \frac{\text{kJ}}{\text{kg}} + 0.1 \cdot (2733.4 \, \frac{\text{kJ}}{\text{kg}} - 589.16 \, \frac{\text{kJ}}{\text{kg}}) = \boxed{803.58 \, \frac{\text{kJ}}{\text{kg}}} \quad (8)$$

b) **gegeben:**
$$V = 1 \,\mathrm{m}^3$$
, isochor $T_1 = 140 \,\mathrm{^{\circ}C} = 413.15 \,\mathrm{K}$ $x_2 = 1$ **gesucht:** $Q_{12}, \ p_2, \ T_2$

$$v_2 = v(T_2, x = 1) = v_1 = 0.0518 \frac{\text{m}^3}{\text{kg}}$$

 \to T_2, p_2, h_2 müssen mit Hilfe der Stoffdatentabelle durch lineare Interpolation bestimmt werden. Das gesuchte spezifische Volumen $v_2=0.0518\,\mathrm{m}^3/\mathrm{kg}$ liegt zwischen $v''(T=245\,^\circ\mathrm{C})=0.054\,654\,\mathrm{m}^3/\mathrm{kg}$ und $v''(T=250\,^\circ\mathrm{C})=0.050\,083\,\mathrm{m}^3/\mathrm{kg}$. Wir nutzen also v, um α zwischen den beiden Zeilen $T=245\,^\circ\mathrm{C}$ und $T=250\,^\circ\mathrm{C}$ zu berechnen:

$$\alpha = \frac{v_2 - v_{250 \,^{\circ}\text{C}}''}{v_{245 \,^{\circ}\text{C}}'' - v_{250 \,^{\circ}\text{C}}''} = \frac{0.0518 - 0.0501}{0.0547 - 0.0501} = 0.3696$$
 (10)

Nun nutzen wir α , um die anderen Zustandsgrößen zu berechnen:

$$\to z_2 = z(T = 250\,^{\circ}\text{C}) + \alpha(z(T = 245\,^{\circ}\text{C}) - z(T = 250\,^{\circ}\text{C}))$$
 (11)

$$z = T$$
: $T_2 = [250 + \alpha \cdot (245 - 250)]^{\circ} C = 248.15^{\circ} C$ (12)

$$z = p$$
: $p_2 = [39.76 + \alpha \cdot (36.51 - 39.76)]$ bar = 38.56 bar (13)

Um h zu berechnen, nutzen wir die Spalte h'' – schließlich befinden wir uns im Zustand 2 (x = 1) genau auf der Taulinie, auf der die (")-Werte gelten.

$$z = h:$$
 $h_2 = [2800.9 + \alpha \cdot (2802.2 - 2800.9)] \frac{\text{kJ}}{\text{kg}} = 2801.38 \frac{\text{kJ}}{\text{kg}}$ (14)

Bestimmung der notwendigen Wärmezufuhr Q:

(9)

Prof. Dr.-Ing. habil. Jadran Vrabec Fachgebiet Thermodynamik Fakultät III – Prozesswissenschaften

1. HS f. geschl. Syst.:

$$Q_{12} + W_{12} = m \cdot (u_2 - u_1) \tag{15}$$

$$\implies Q_{12} = m \cdot (u_2 - u_1) \tag{16}$$

Im 1. HS f. geschl. Syst. taucht die innere Energie auf, in der Tabelle haben wir jedoch nur Enthalpien gegeben. Also müssen wir von innerer Energie auf Enthalpie umrechnen:

$$h = u + pv \iff u = h - pv \tag{17}$$

$$\implies u_2 - u_1 = h_2 - p_2 \cdot v_2 - h_1 + p_1 \cdot v_1 = h_2 - h_1 - v_1 \cdot (p_2 - p_1) \tag{18}$$

Die Umstellung in (18) ist möglich, da die ZÄ isochor stattfindet, also $v_1 = v_2$. Nun brauchen wir nur noch die Masse, um die (extensive) Wärmezufuhr zu berechnen:

$$m = \frac{V}{v_1} = \frac{1000 \cdot 10^{-3} \,\mathrm{m}^3}{0.0518 \,\mathrm{m}^3/\mathrm{kg}} = 19.305 \,\mathrm{kg}$$
 (19)

$$\Rightarrow \boxed{Q_{12}} = m \cdot [h_2 - h_1 - v_1 \cdot (p_2 - p_1)]$$

$$= 19.305 \,\mathrm{kg} \cdot [2801.38 \cdot 10^3 \,\frac{\mathrm{J}}{\mathrm{kg}} - 803.58 \cdot 10^3 \,\frac{\mathrm{J}}{\mathrm{kg}}$$

$$- 0.0518 \,\frac{\mathrm{m}^3}{\mathrm{kg}} \cdot (38.56 - 3.615)10^5 \,\mathrm{Pa}] = \boxed{35.07 \,\mathrm{MJ}}$$
(21)

c) **gesucht:** Q_{13}

Innerhalb des Zweiphasengebietes gilt: isobar = isotherm. Daher können wir aus der Tabelle ablesen, dass $h_3 = h''$ für $T_3 = T_1 = 140$ °C

1. HS f. geschl. Syst (differentielle Form):

$$dU = \delta Q + \delta W = \delta Q - pdV \tag{22}$$

$$\iff \delta Q = dU + pdV = dH \tag{23}$$

$$mit: \quad H = U + pV \tag{24}$$

$$\implies dH = dU + dp - V + p \cdot dV = dU + p \cdot dV \quad \text{(isobar)}$$
 (25)

$$\implies Q_{13} = m \cdot (h_3 - h_1) \tag{26}$$

mit:
$$h_3 = h_{T=140 \, ^{\circ}\text{C}}^{"} = 2733.4 \, \frac{\text{kJ}}{\text{kg}}, \quad h_1 = 803.58 \, \frac{\text{kJ}}{\text{kg}}$$
 (27)

$$\Longrightarrow Q_{13} = 19.305 \,\mathrm{kg} \cdot (2733.4 - 803.58) \frac{\mathrm{kJ}}{\mathrm{kg}} = \boxed{37.26 \,\mathrm{MJ}}$$
 (28)

Das selbe Ergebnis könnte auch mit dem 1. HS f. geschl. Syst. (extensive, nichtdifferentielle Form) erreicht werden.

d) Eine von Hand gezeichnete Darstellung könnte zum Beispiel so aussehen:

Prof. Dr.-Ing. habil. Jadran Vrabec Fachgebiet Thermodynamik Fakultät III – Prozesswissenschaften

Dabei bezeichnet $\textcircled{1}\to \textcircled{2}$ den Prozess aus (b) und $\textcircled{1}\to \textcircled{3}$ den Prozess aus (c)

Aufgabe 10.3 – Lösung

Tabelle 2: Zweiphasengebiet:

T	p	ho'	ho''	h'	h''	s'	s''
[°C]	[MPa]	$[kg/m^3]$	$[\mathrm{kg/m^3}]$	[kJ/kg]	[kJ/kg]	[kJ/(kg K)]	[kJ/(kg K)]
257	4.4679	788.3	22.528	1120.1	2798.2	2.858	6.023
257.1	4.4752	788.14	22.567	1120.6	2798.1	2.858	6.022
257.2	4.4826	787.99	22.605	1121.1	2798.1	2.859	6.021
257.3	4.4899	787.83	22.644	1121.6	2798	2.860	6.021
257.4	4.4973	787.68	22.683	1122.1	2798	2.861	6.020
257.5	4.5047	787.52	22.722	1122.6	2797.9	2.862	6.019
257.6	4.5121	787.37	22.76	1123.1	2797.9	2.863	6.019
257.7	4.5195	787.21	22.799	1123.6	2797.8	2.864	6.018
257.8	4.5269	787.06	22.838	1124	2797.8	2.865	6.017
257.9	4.5343	786.9	22.877	1124.5	2797.7	2.866	6.016
258	4.5417	786.75	22.917	1125	2797.7	2.867	6.016

Prof. Dr.-Ing. habil. Jadran Vrabec Fachgebiet Thermodynamik Fakultät III – Prozesswissenschaften

Tabelle 3: Einphasengebiet:

T	p	ρ	h	s
[°C]	[MPa]	$[kg/m^3]$	[kJ/kg]	[kJ/(kg K)]
574.3	2.5	6.4774	3628.9	7.531
574.35	2.5	6.477	3629	7.531
574.4	2.5	6.4766	3629.1	7.531
574.45	2.5	6.4762	3629.2	7.531
574.5	2.5	6.4758	3629.3	7.531
574.55	2.5	6.4754	3629.4	7.531
574.6	2.5	6.475	3629.5	7.531
574.65	2.5	6.4746	3629.7	7.532
574.7	2.5	6.4742	3629.8	7.532
600	40	123.62	3350.4	6.017
250	2.5	11.487	2880.9	6.411
80	0.04	0.24737	2644.3	7.693

Zustand ①
Zustand ②
Zustand ②
Zustand ③
Zustand ④

a) **gesucht:** P_{12s}

①: $T_1 = 600 \,^{\circ}\text{C}$; $p_1 = 40 \,\text{MPa} \stackrel{\text{Tabelle}}{\Longrightarrow} \rho_1 = 123.62 \,\text{kg/m}^3$; $h_1 = 3350.4 \,\text{kJ/kg}$; $s_1 = 6.017 \,\text{kJ/(kg K)}$

②s:
$$s_{2s} = s_1 = 6.017 \,\text{kJ/(kg K)} \stackrel{\text{Tabelle}}{\Longrightarrow} T_{2s} = 257.8 \,^{\circ}\text{C}; \ p_{2s} = 4.527 \,\text{MPa}; \ h_{2s} = h''(T_{2s}) = 2797.8 \,\text{kJ/kg}$$

Ansatz: 1. HS f. sationäre Fließprozesse:

$$\dot{Q}_{12s} + P_{12s} = \Delta H_{12} = \dot{m}(h_{2s} - h_1) \tag{29}$$

Prof. Dr.-Ing. habil. Jadran Vrabec Fachgebiet Thermodynamik Fakultät III – Prozesswissenschaften

Den Massestrom \dot{m} berechnen wir aus dem Volumenstrom \dot{V} und der Dichte:

$$\dot{V} = \dot{m} \cdot v_1 = \frac{\dot{m}}{\rho_1} \qquad \text{mit} \quad v_1 = \frac{1}{\rho} \tag{30}$$

$$\implies \dot{m} = \rho_1 \cdot \dot{V}_1 = 123.62 \,\frac{\text{kg}}{\text{m}^3} \cdot 2 \,\frac{\text{m}^3}{\text{s}} = \boxed{247.24 \,\frac{\text{kg}}{\text{s}}}$$
 (31)

$$\implies \boxed{P_{12s}} = \dot{m} \cdot (h_{2s} - h_1) = 247.24 \frac{\text{kg}}{\text{s}} \cdot (2797.8 - 3350.4) \frac{\text{kJ}}{\text{kg}} = \boxed{-136.62 \,\text{MW}}$$
(32)

b) gesucht: P_{12} , $\dot{E}_{\rm v}$

②:
$$T_2 = 250 \,^{\circ}\text{C}$$
; $p_2 = 2.5 \,\text{MPa} \stackrel{\text{Tabelle}}{\Longrightarrow} h_2 = 2880.9 \,\text{kJ/kg}$; $s_2 = 6.411 \,\text{kJ/(kg K)}$

1. HS: $\dot{Q}_{12} + P_{12} = \dot{m} \cdot (h_2 - h_1)$

$$\implies \boxed{P_{12}} = \dot{m} \cdot (h_2 - h_1) = 247.24 \, \frac{\text{kg}}{\text{s}} \cdot \left(2880.9 \, \frac{\text{kJ}}{\text{kg}} - 3350.4 \, \frac{\text{kJ}}{\text{kg}}\right) \tag{33}$$

$$= \boxed{-116.08\,\mathrm{MW}}\tag{34}$$

$$= 28.18 \,\mathrm{MW} \tag{36}$$

Prof. Dr.-Ing. habil. Jadran Vrabec Fachgebiet Thermodynamik Fakultät III – Prozesswissenschaften

c) gesucht: T_3

Zustand ③: $p_3 = p_2 = 2.5 \,\text{MPa}$

1. HS: $\dot{Q}_{23} + \mathcal{P}_{23} = \dot{m} \cdot (h_3 - h_2)$

$$\implies h_3 = \frac{\dot{Q}_{23}}{\dot{m}} + h_2 = \frac{185 \,\text{MW}}{247.24 \,\text{kg/s}} + 2880.9 \,\frac{\text{kJ}}{\text{kg}} = 3629.2 \,\frac{\text{kJ}}{\text{kg K}}$$
(37)

$$\boxed{T_3} = T(p_3, h_3) = \boxed{574.45\,^{\circ}\text{C}} \text{ (Tabelle)}$$
(38)

d) gesucht: P_{34}

$$\textcircled{4}: T_4 = 80\,^\circ\text{C}; \ p_4 = 0.04\,\text{MPa} \stackrel{\text{Tabelle}}{\Longrightarrow} h_4 = 2644.3\,\text{kJ/kg}; \ s_4 = 7.69\,\text{kJ/(kg\,K)}$$

1. HS:
$$Q_{34} + P_{34} = \dot{m} \cdot (h_4 - h_3)$$

$$\Longrightarrow \boxed{P_{34}} = \dot{m} \cdot (h_4 - h_3) \tag{39}$$

$$= 247.24 \,\frac{\text{kg}}{\text{s}} \cdot \left(2644.3 \,\frac{\text{kJ}}{\text{kg}} - 3629.16 \,\frac{\text{kJ}}{\text{kg}}\right) = \boxed{-243.5 \,\text{MW}} \tag{40}$$