Computational Photography

• Study the basics of computation and its impact on the entire workflow of photography, from capturing, manipulating and collaborating on, and sharing photographs.

Image Processing and Filtering: Smoothing

Point-process and Neighboring Pixels
 Computations on an Image for
 Image Smoothing

Smooth an image over a reighborhood of pixels 2. Median filtering as a special non-linear filtering and smoothing approach

Recaus Digital Image is a Function

			\rightarrow	i		
	100	120	121	122	30	40
10.00	120	120	121	122	70	40
V	60	50	40	41	7	8
j	100	120	121	122	1	0
	200	120	200	122	12	14
	200	220	225	250	30	40

From Pixel/Point Operations to Groups of Pixels

- How to Smooth a Signal?
- Determine the Average of Neighboring Values
 - moving Average [1 1 1 1 1] X 1/5
 - 2. Weighted Moving Average [14641] X 1/16

Smoothing Process over an Image using Averages input (i,j) output (i,j)

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	90	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

Smoothing Process over an Image using Averages

input (i,j)

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	90	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

output (i,j)

0	10	20	30	30	30	20	10	
0	20	30	50					

Smoothing Process over an Image using Averages

input (i,i)

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	90	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

output (i,i)

0	10	20	30	30	30	20	10	
0	20	30	50	50	60	40	20	
0	30	50	80	80	90	60	30	
0	30	80	80	80	90	60	30	
10	30	60	90	90	90	60	30	
10	30	40	60	60	50	40	20	
10	20	20	30	30	30	20	10	
10	10	0	0	0	0	0	0	

Smoothing Process over an Image using Averages

input (i,i)

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	90	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

output (i,i)

0	10	20	30	30	30	20	10	
0	20	30	50	50	60	40	20	
0	30	50	80	80	90	60	30	
0	30	80	80	80	90	60	30	
10	30	60	90	90	90	60	30	
10	30	40	60	60	50	40	20	
10	20	20	30	30	30	20	10	
10	10	0	0	0	0	0	0	

Results in Shades of Gray

Smoothing Process for the Edges of an Image

20	20	0	20	10	20	10	20	10	0	10	10	
20	20	0	20	10	20	10	20	10	0	10	10	
30	30	0	0	0	0	0	0	0	0	10	10	Some
20	20	0	0	90	90	90	90	90	0	20	20	Options
20	20	0	0	90	0	90	90	90	0	10	10	1. wrap
10	10	0	0	90	90	90	90	90	0	20	20	around
10	10	0	0	90	90	90	90	90	0	10	10	2.copy edge
10	10	0	0	90	90	90	90	90	0	10	10	3. reflect
20	20	90	0	0	0	0	0	0	0	10	10	across
20	20	0	0	0	0	0	0	0	0	10	10	edge
20	20	0	20	10	20	10	20	10	0	10	10	
20	20	0	20	10	20	10	20	10	0	10	10	

0	10	20	30	30	30	20	10	
0	20	30	50	50	60	40	20	
0	30	50	80	80	90	60	30	
0	30	80	80	80	90	60	30	
10	30	60	90	90	90	60	30	
10	30	40	60	60	50	40	20	
10	20	20	30	30	30	20	10	
10	10	0	0	0	0	0	0	

Gray values are for demonstration only, not accurate

Smoothing Process for the Edges of an Image

20	20	0	20	10	20	10	20	10	0	10	10
20	20	0	20	10	20	10	20	10	0	10	10
30	30	0	0	0	0	0	0	0	0	10	10
20	20	0	0	90	90	90	90	90	0	20	20
20	20	0	0	90	0	90	90	90	0	10	10
10	10	0	0	90	90	90	90	90	0	20	20
10	10	0	0	90	90	90	90	90	0	10	10
10	10	0	0	90	90	90	90	90	0	10	10
20	20	90	0	0	0	0	0	0	0	10	10
20	20	0	0	0	0	0	0	0	0	10	10
20	20	0	20	10	20	10	20	10	0	10	10
20	20	0	20	10	20	10	20	10	0	10	10

Some Options

1. wrap around

2. copy edge

3. reflect across ed,9e

Gray values are for demonstration only, not accurate

Some observations...

* Small image "rubbed" over bigger image

kernel h(i,j)

- * 3x3 area around each original pixel used (i.e., neighborhood size k=1)
- * Window size is 2k+1, therefore our window is 3x3

Observations (continued)

Let's refer to F[i,j] as input and G[i,j] as output, h[i,j] as the kernel

$$G[3,3] = a * A + b * B + c * C + d * D$$
$$+ e * E + f * F + h * H + i * I$$

$$G[3,3] = \frac{1}{9}(A+B+C+D+E+F+G+H+I)$$

1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9

20	20	10	20	10	20	10	10	13
30	0	0	0	0	0	0	0	30
20	0	А	В	С	90	90	0	20
20	0	D	Е	F	90	90	0	20
10	0	G	Н	1	90	90	0	10
10	0	90	90	90	90	90	0	10
10	0	90	90	90	90	90	0	10
20	0	0	0	0	0	0	0	20
20	20	10	20	10	20	10	10	13

A Mathematical Representation for Smoothing

$$G[3,3] = \frac{1}{9}(A+B+C+D+E+F+G+H+I)$$

$$G[i,j] = \underbrace{\frac{1}{(2k+1)^2} \sum_{u=-k}^{k} \sum_{v=-k}^{k} F[i+u,j+v]}_{}$$

20	20	10	20	10	20	10	10	13
30	0	0	0	0	0	0	0	30
20	0	А	В	С	90	90	0	20
20	0	D	Е	F	90	90	0	20
10	0	G	Н	1	90	90	0	10
10	0	90	90	90	90	90	0	10
10	0	90	90	90	90	90	0	10
20	0	0	0	0	0	0	0	20
20	20	10	20	10	20	10	10	13

Attribute uniform weight to each pixel

Loop over all pixels in neighborhood around image pixel F[i,j]

A Mathematical Representation for Smoothing

$$G[i,j] = \frac{1}{(2k+1)^2} \sum_{u=-k}^{k} \sum_{v=-k}^{k} F[i+u,j+v]$$

а	b	С
d	е	f
9	h	i

20 20 10 20 10 10 13 30 0 0 0 0 0 0 30 20 0 A B C 90 90 0 20 20 0 D E F 90 90 0 20 10 0 G H I 90 90 0 10 10 0 90 90 90 90 90 0 10 10 0 90 90 90 90 90 0 10 20 0 0 0 0 0 0 20 20 20 10 20 10 20 10 10 13

$$G[3,3] = a * A + b * B + c * C + d * D + e * E + f * F + g * G + h * H + i * I$$

$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} h[u,v] F[i+u,j+v]$$

Attribute non-uniform weights

Referred to as Cross-correlation, which we will cover later

Example: Box Filter (Averaging!) for Smoothing

Box/Average Filter - 21 x 21

Special Case: Median Filtering

Apply median filter to all 3x3 regions over the whole image (as we would for averaging)

Special Case: Median Filtering

median filtering! Nonlinear operation often used in image processing

* reduces noise, but,

area, instead of mean

* preserves edges (sharp lines!)

Main idea! Use median of all pixels in kernel

Example: Median Filtering for Smoothing Images

Assertinge Filther (III XX III))

Example: Median Filtering for Noise Removal

'Salt & Pepper' Noise

ANCediage Filther (33 XX 33)

Summary

- 1. Image smoothing
- 2. Applying a kernel to smooth an image
- 3. Averaging and median filtering

Next Class

Image Analysis! Crosscorrelation and Convolution

Credits

- Matlab software by mathworks Inc.
- Some Slides adapted from Aaron Bobick, Steve Seitz,
 Steve Marschner.
- Images used from <u>USC's</u>

 Signal and Image Processing

 Institute's Image Database

Computational Photography

Study the basics of computation and its impact on the entire workflow of photography, from capturing, manipulating and collaborating on, and sharing photographs.

