Recolouring Digraphs of bounded cycle-degeneracy Lucas Picasarri-Arrieta

Université Côte d'Azur, France

Workshop Complexity and Algorithms - Paris - 2023

Joint works: N. Bousquet, F. Havet, N. Nisse, A. Reinald, I. Sau

• k-dicolouring of D: partition of V(D) in k parts inducing an acyclic subdigraph.

- k-dicolouring of D: partition of V(D) in k parts inducing an acyclic subdigraph.
- Dichromatic number $\overrightarrow{\chi}(D)$: minimum k s.t. D admits a k-dicolouring.

- k-dicolouring of D: partition of V(D) in k parts inducing an acyclic subdigraph.
- Dichromatic number $\overrightarrow{\chi}(D)$: minimum k s.t. D admits a k-dicolouring.
- Generalizing graph colouring and the chromatic number $\chi(G)$.

- k-dicolouring of D: partition of V(D) in k parts inducing an acyclic subdigraph.
- Dichromatic number $\overrightarrow{\chi}(D)$: minimum k s.t. D admits a k-dicolouring.
- Generalizing graph colouring and the chromatic number $\chi(G)$.

- Max-degree: $d_{max}(v) = max(d^+(v), d^-(v))$.
- Min-degree: $d_{\min}(v) = \min(d^+(v), d^-(v))$.
- Cycle-degree: $d_c(v) = \min \text{ transversal of the dicycles containing } v$.

- Max-degree: $d_{\max}(v) = \max(d^+(v), d^-(v))$.
- Min-degree: $d_{\min}(v) = \min(d^+(v), d^-(v))$.
- Cycle-degree: $d_c(v) = \min \text{ transversal of the dicycles containing } v$. For each $\Gamma \in \{\min, \max, \text{cycle}\}$,
- Γ -Degeneracy: $\delta_c^*(D) = \max_{H \subseteq D} \min_{v \in V(H)} d_c^H(v)$.
- Γ -Max-Degree: $\Delta_{\Gamma}(D) = \max_{v \in V(D)} d_{\Gamma}(v)$.

- Max-degree: $d_{\max}(v) = \max(d^+(v), d^-(v))$.
- Min-degree: $d_{\min}(v) = \min(d^+(v), d^-(v))$.
- Cycle-degree: $d_c(v) = \min \text{ transversal of the dicycles containing } v$. For each $\Gamma \in \{\min, \max, \text{cycle}\}$,
- Γ -Degeneracy: $\delta_c^*(D) = \max_{H \subseteq D} \min_{v \in V(H)} d_c^H(v)$.
- Γ -Max-Degree: $\Delta_{\Gamma}(D) = \max_{v \in V(D)} d_{\Gamma}(v)$.
- Remarks: $\Delta(G) = \Delta_{\Gamma}(\overleftarrow{G})$, $\delta^*(G) = \delta^*_{\Gamma}(\overleftarrow{G})$ and $\vec{\chi}(D) \leq \delta^*_{c}(D) + 1$.

- Max-degree: $d_{\max}(v) = \max(d^+(v), d^-(v))$.
- Min-degree: $d_{\min}(v) = \min(d^+(v), d^-(v))$.
- Cycle-degree: $d_c(v) = \min \text{ transversal of the dicycles containing } v$. For each $\Gamma \in \{\min, \max, \text{cycle}\}$,
- Γ -Degeneracy: $\delta_c^*(D) = \max_{H \subseteq D} \min_{v \in V(H)} d_c^H(v)$.
- Γ -Max-Degree: $\Delta_{\Gamma}(D) = \max_{v \in V(D)} d_{\Gamma}(v)$.
- Remarks: $\Delta(G) = \Delta_{\Gamma}(\overleftarrow{G})$, $\delta^*(G) = \delta^*_{\Gamma}(\overleftarrow{G})$ and $\vec{\chi}(D) \leq \delta^*_{c}(D) + 1$.

- Max-degree: $d_{\max}(v) = \max(d^+(v), d^-(v))$.
- Min-degree: $d_{\min}(v) = \min(d^+(v), d^-(v))$.
- Cycle-degree: $d_c(v) = \min \text{ transversal of the dicycles containing } v$. For each $\Gamma \in \{\min, \max, \text{cycle}\}$,
- Γ -Degeneracy: $\delta_c^*(D) = \max_{H \subseteq D} \min_{v \in V(H)} d_c^H(v)$.
- Γ -Max-Degree: $\Delta_{\Gamma}(D) = \max_{v \in V(D)} d_{\Gamma}(v)$.
- Remarks: $\Delta(G) = \Delta_{\Gamma}(\overleftarrow{G})$, $\delta^*(G) = \delta^*_{\Gamma}(\overleftarrow{G})$ and $\vec{\chi}(D) \leq \delta^*_{c}(D) + 1$.

- Max-degree: $d_{\max}(v) = \max(d^+(v), d^-(v))$.
- Min-degree: $d_{\min}(v) = \min(d^+(v), d^-(v))$.
- Cycle-degree: $d_c(v) = \min \text{ transversal of the dicycles containing } v$. For each $\Gamma \in \{\min, \max, \text{cycle}\}$,
- Γ -Degeneracy: $\delta_c^*(D) = \max_{H \subseteq D} \min_{v \in V(H)} d_c^H(v)$.
- Γ -Max-Degree: $\Delta_{\Gamma}(D) = \max_{v \in V(D)} d_{\Gamma}(v)$.
- Remarks: $\Delta(G) = \Delta_{\Gamma}(\overleftarrow{G})$, $\delta^*(G) = \delta^*_{\Gamma}(\overleftarrow{G})$ and $\vec{\chi}(D) \leq \delta^*_{c}(D) + 1$.

- Max-degree: $d_{\max}(v) = \max(d^+(v), d^-(v))$.
- Min-degree: $d_{\min}(v) = \min(d^+(v), d^-(v))$.
- Cycle-degree: $d_c(v) = \min \text{ transversal of the dicycles containing } v$. For each $\Gamma \in \{\min, \max, \text{cycle}\}$,
- Γ -Degeneracy: $\delta_c^*(D) = \max_{H \subseteq D} \min_{v \in V(H)} d_c^H(v)$.
- Γ -Max-Degree: $\Delta_{\Gamma}(D) = \max_{v \in V(D)} d_{\Gamma}(v)$.
- Remarks: $\Delta(G) = \Delta_{\Gamma}(\overleftarrow{G})$, $\delta^*(G) = \delta^*_{\Gamma}(\overleftarrow{G})$ and $\vec{\chi}(D) \leq \delta^*_{c}(D) + 1$.

- Max-degree: $d_{\max}(v) = \max(d^+(v), d^-(v))$.
- Min-degree: $d_{\min}(v) = \min(d^+(v), d^-(v))$.
- Cycle-degree: $d_c(v) = \min \text{ transversal of the dicycles containing } v$. For each $\Gamma \in \{\min, \max, \text{cycle}\}$,
- Γ -Degeneracy: $\delta_c^*(D) = \max_{H \subseteq D} \min_{v \in V(H)} d_c^H(v)$.
- Γ -Max-Degree: $\Delta_{\Gamma}(D) = \max_{v \in V(D)} d_{\Gamma}(v)$.
- Remarks: $\Delta(G) = \Delta_{\Gamma}(\overleftarrow{G})$, $\delta^*(G) = \delta^*_{\Gamma}(\overleftarrow{G})$ and $\vec{\chi}(D) \leq \delta^*_{c}(D) + 1$.

- Max-degree: $d_{\max}(v) = \max(d^+(v), d^-(v))$.
- Min-degree: $d_{\min}(v) = \min(d^+(v), d^-(v))$.
- Cycle-degree: $d_c(v) = \min \text{ transversal of the dicycles containing } v$. For each $\Gamma \in \{\min, \max, \text{cycle}\}$,
- Γ -Degeneracy: $\delta_c^*(D) = \max_{H \subseteq D} \min_{v \in V(H)} d_c^H(v)$.
- Γ -Max-Degree: $\Delta_{\Gamma}(D) = \max_{v \in V(D)} d_{\Gamma}(v)$.
- Remarks: $\Delta(G) = \Delta_{\Gamma}(\overleftarrow{G})$, $\delta^*(G) = \delta^*_{\Gamma}(\overleftarrow{G})$ and $\vec{\chi}(D) \leq \delta^*_{c}(D) + 1$.

- Max-degree: $d_{\max}(v) = \max(d^+(v), d^-(v))$.
- Min-degree: $d_{\min}(v) = \min(d^+(v), d^-(v))$.
- Cycle-degree: $d_c(v) = \min \text{ transversal of the dicycles containing } v$. For each $\Gamma \in \{\min, \max, \text{cycle}\}$,
- Γ -Degeneracy: $\delta_c^*(D) = \max_{H \subseteq D} \min_{v \in V(H)} d_c^H(v)$.
- Γ -Max-Degree: $\Delta_{\Gamma}(D) = \max_{v \in V(D)} d_{\Gamma}(v)$.
- Remarks: $\Delta(G) = \Delta_{\Gamma}(\overleftarrow{G})$, $\delta^*(G) = \delta^*_{\Gamma}(\overleftarrow{G})$ and $\vec{\chi}(D) \leq \delta^*_{c}(D) + 1$.

Digraph recolouring

 $\mathcal{D}_k(D)$: the k-dicolouring graph of D:

- $V(\mathcal{D}_k(D))$ are the k-dicolourings of D,
- $\{\alpha, \beta\} \in E(\mathcal{D}_k(D))$ iff $\alpha = \beta$ except on exactly one vertex.

Digraph recolouring

 $\mathcal{D}_k(D)$: the k-dicolouring graph of D:

- $V(\mathcal{D}_k(D))$ are the k-dicolourings of D,
- $\{\alpha, \beta\} \in E(\mathcal{D}_k(D))$ iff $\alpha = \beta$ except on exactly one vertex.

 $C_k(G)$: the k-colouring graph of G is the same for proper colourings.

• recolouring sequence: a path (or a walk) in $\mathcal{D}_k(D)$.

- recolouring sequence: a path (or a walk) in $\mathcal{D}_k(D)$.
- a frozen k-dicolouring: an isolated vertex in $\mathcal{D}_k(D)$.

- recolouring sequence: a path (or a walk) in $\mathcal{D}_k(D)$.
- a frozen k-dicolouring: an isolated vertex in $\mathcal{D}_k(D)$.
- D is k-mixing: $\mathcal{D}_k(D)$ is connected.

- recolouring sequence: a path (or a walk) in $\mathcal{D}_k(D)$.
- a frozen k-dicolouring: an isolated vertex in $\mathcal{D}_k(D)$.
- *D* is *k*-mixing: $\mathcal{D}_k(D)$ is connected.

 \longrightarrow Is D k-mixing?

 \longrightarrow Can we bound the diameter of $\mathcal{D}_k(D)$?

Undirected graphs

Let
$$\delta^*(G) = \delta$$
,

• If $k \ge \delta + 2$, then G is k-mixing.

(Bonsma and Cereceda '07; Dyer et al. '06)

Undirected graphs

Let $\delta^*(G) = \delta$,

• If $k \ge \delta + 2$, then G is k-mixing.

(Bonsma and Cereceda '07; Dyer et al. '06)

• Conjecture: $diam(C_k(G)) = O(n^2)$

(Cereceda '07)

Undirected graphs

Let
$$\delta^*(G) = \delta$$
,

• If $k \ge \delta + 2$, then G is k-mixing.

(Bonsma and Cereceda '07; Dyer et al. '06)

- Conjecture: $diam(C_k(G)) = O(n^2)$ (Cereceda '07)
- If $k \geq \delta + 2$, $diam(\mathcal{C}_k(G)) = O_{\delta}(n^{\delta+1})$.

 (Bousquet and Heinrich '19)

Undirected graphs

Let
$$\delta^*(G) = \delta$$
,

- If $k \ge \delta + 2$, then G is k-mixing.
 - (Bonsma and Cereceda '07; Dyer et al. '06)
- Conjecture: $diam(C_k(G)) = O(n^2)$ (Cereceda '07)
- If $k \geq \delta + 2$, $diam(C_k(G)) = O_{\delta}(n^{\delta+1})$.
 - (Bousquet and Heinrich '19)
- If $k \geq \frac{3}{2}(\delta + 1)$, $diam(C_k(G)) = O(n^2)$.
 - (Bousquet and Heinrich '19)

Undirected graphs

Let
$$\delta^*(G) = \delta$$
,

• If $k > \delta + 2$, then G is k-mixing.

(Bonsma and Cereceda '07; Dyer et al. '06)

- Conjecture: $diam(C_k(G)) = O(n^2)$ (Cereceda '07)
- If $k > \delta + 2$, $diam(C_k(G)) = O_{\delta}(n^{\delta+1})$.

(Bousquet and Heinrich '19)

- If $k > \frac{3}{2}(\delta + 1)$, $diam(C_k(G)) = O(n^2)$.
 - (Bousquet and Heinrich '19)
- If $k > 2(\delta + 1)$, $diam(C_k(G)) < \delta \cdot n$. (Bousquet and Perarnau '16)

Undirected graphs

Let $\delta^*(G) = \delta$,

- If $k \ge \delta + 2$, then G is k-mixing. (Bonsma and Cereceda '07; Dyer et al. '06)
- ullet Conjecture: $diam(\mathcal{C}_k(G)) = O(n^2)$ (Cereceda '07)
- If $k \geq \delta + 2$, $diam(\mathcal{C}_k(G)) = O_{\delta}(n^{\delta+1})$.

 (Bousquet and Heinrich '19)
- If $k \geq \frac{3}{2}(\delta+1)$, $diam(\mathcal{C}_k(G)) = O(n^2)$.

 (Bousguet and Heinrich '19)
- If $k \geq 2(\delta+1)$, $diam(\mathcal{C}_k(G)) \leq \delta \cdot n$.

 (Bousquet and Perarnau '16)

Directed graphs

(Nisse, P., Sau '23)

Let
$$\delta_c^*(D) = \delta$$
,

• If $k \ge \delta + 2$, then *D* is *k*-mixing.

Undirected graphs

Let $\delta^*(G) = \delta$,

- If $k \geq \delta + 2$, then G is k-mixing. (Bonsma and Cereceda '07 ; Dyer et al. '06)
- Conjecture: $diam(\mathcal{C}_k(G)) = O(n^2)$ (Cereceda '07)
- If $k \geq \delta + 2$, $diam(\mathcal{C}_k(G)) = O_\delta(n^{\delta+1})$.

 (Bousquet and Heinrich '19)
- If $k \geq \frac{3}{2}(\delta+1)$, $diam(\mathcal{C}_k(G)) = O(n^2)$.

 (Bousquet and Heinrich '19)
- If $k \geq 2(\delta+1)$, $diam(\mathcal{C}_k(G)) \leq \delta \cdot n$.

 (Bousquet and Perarnau '16)

Directed graphs

(Nisse, P., Sau '23)

Let
$$\delta_c^*(D) = \delta$$
,

- If $k \ge \delta + 2$, then *D* is *k*-mixing.
- If $k \geq \delta + 2$, $diam(\mathcal{D}_k(D)) = O_{\delta}(n^{\delta+1})$.

Undirected graphs

Let $\delta^*(G) = \delta$,

- If $k \geq \delta + 2$, then G is k-mixing. (Bonsma and Cereceda '07 ; Dyer et al. '06)
- Conjecture: $diam(\mathcal{C}_k(G)) = O(n^2)$ (Cereceda '07)
- If $k \geq \delta + 2$, $diam(\mathcal{C}_k(G)) = O_{\delta}(n^{\delta+1})$.

 (Bousquet and Heinrich '19)
- If $k \geq \frac{3}{2}(\delta+1)$, $diam(\mathcal{C}_k(G)) = O(n^2)$. (Bousquet and Heinrich '19)
- If $k \geq 2(\delta+1)$, $diam(\mathcal{C}_k(G)) \leq \delta \cdot n$. (Bousquet and Perarnau '16)

Directed graphs

(Nisse, P., Sau '23)

Let
$$\delta_c^*(D) = \delta$$
,

- If $k \ge \delta + 2$, then *D* is *k*-mixing.
- If $k \geq \delta + 2$, $diam(\mathcal{D}_k(D)) = O_{\delta}(n^{\delta+1})$.
- If $k \geq \frac{3}{2}(\delta+1)$, $diam(\mathcal{D}_k(D)) = O(n^2)$.

Undirected graphs

Let $\delta^*(G) = \delta$,

- If $k \geq \delta + 2$, then G is k-mixing. (Bonsma and Cereceda '07 ; Dyer et al. '06)
- Conjecture: $diam(\mathcal{C}_k(G)) = O(n^2)$ (Cereceda '07)
- If $k \geq \delta + 2$, $diam(\mathcal{C}_k(G)) = O_{\delta}(n^{\delta+1})$.

 (Bousquet and Heinrich '19)
- If $k \geq \frac{3}{2}(\delta+1)$, $diam(\mathcal{C}_k(G)) = O(n^2)$. (Bousquet and Heinrich '19)
- ullet If $k\geq 2(\delta+1)$, $\mathit{diam}(\mathcal{C}_k(\mathcal{G}))\leq \delta\cdot n$. (Bousquet and Perarnau '16)

Directed graphs

(Nisse, P., Sau '23)

Let $\delta_c^*(D) = \delta$,

- If $k \ge \delta + 2$, then *D* is *k*-mixing.
- If $k \geq \delta + 2$, $diam(\mathcal{D}_k(D)) = O_{\delta}(n^{\delta+1})$.
- If $k \geq \frac{3}{2}(\delta+1)$, $diam(\mathcal{D}_k(D)) = O(n^2)$.
- If $k \geq 2(\delta + 1)$, $diam(\mathcal{D}_k(D)) \leq \delta \cdot n$.

Undirected graphs

Let $\delta^*(G) = \delta$,

- • If $k \geq \delta + 2$, then G is k-mixing. (Bonsma and Cereceda '07 ; Dyer et al. '06)
- Conjecture: $diam(\mathcal{C}_k(G)) = O(n^2)$ (Cereceda '07)
- If $k \geq \delta + 2$, $diam(\mathcal{C}_k(G)) = O_\delta(n^{\delta+1})$.

 (Bousquet and Heinrich '19)
- If $k \geq \frac{3}{2}(\delta+1)$, $diam(\mathcal{C}_k(G)) = O(n^2)$. (Bousquet and Heinrich '19)
- If $k \geq 2(\delta+1)$, $diam(\mathcal{C}_k(G)) \leq \delta \cdot n$.

 (Bousquet and Perarnau '16)

Directed graphs

(Nisse, P., Sau '23)

Let $\delta_c^*(D) = \delta$,

- If $k \ge \delta + 2$, then *D* is *k*-mixing.
- If $k \geq \delta + 2$, $diam(\mathcal{D}_k(D)) = O_{\delta}(n^{\delta+1})$.
- If $k \geq \frac{3}{2}(\delta+1)$, $diam(\mathcal{D}_k(D)) = O(n^2)$.
- If $k \geq 2(\delta + 1)$, $diam(\mathcal{D}_k(D)) \leq \delta \cdot n$.

Let $\delta^*_{\sf max}(\vec{G}) = \delta$,

ullet If $k \geq \delta + 1$, then $ec{G}$ is k-mixing. (Bousquet, Havet, Nisse, P., Reinald '23)

Recolouring digraphs of bounded maximum degree

Theorem (Feghali et al. '16)

G connected graph, $k \ge \Delta(G) + 1 \ge 4$, α, β proper k-colourings of *G*, then:

- \bullet α or β is frozen, or
- $\alpha \xrightarrow{c_{\Delta} \cdot n^2} \beta$ where $c_{\Delta} = O(\Delta)$.

Recolouring digraphs of bounded maximum degree

Theorem (Feghali et al. '16)

G connected graph, $k \ge \Delta(G) + 1 \ge 4$, α, β proper k-colourings of *G*, then:

- \bullet α or β is frozen, or
- $\alpha \xrightarrow{c_{\Delta} \cdot n^2} \beta$ where $c_{\Delta} = O(\Delta)$.

Theorem

D connected digraph, $k \ge \Delta_{\max}(D) + 1 \ge 4$, α, β k-dicolourings of *D*, then:

- α or β is frozen, or
- $\bullet \ \alpha \stackrel{c_{\Delta} \cdot n^2}{\longrightarrow} \beta \ where \ c_{\Delta} = O(\Delta_{\max}^2).$

Recolouring digraphs of bounded maximum degree

Theorem (Feghali et al. '16)

G connected graph, $k \ge \Delta(G) + 1 \ge 4$, α, β proper k-colourings of *G*, then:

- \bullet α or β is frozen, or
- $\alpha \xrightarrow{c_{\Delta} \cdot n^2} \beta$ where $c_{\Delta} = O(\Delta)$.

Theorem

D connected digraph, $k \ge \Delta_{\sf max}(D) + 1 \ge 4$, α, β k-dicolourings of D, then:

- \bullet α or β is frozen, or
- $\bullet \ \alpha \stackrel{c_{\Delta} \cdot n^2}{\longrightarrow} \beta \ where \ c_{\Delta} = O(\Delta_{\max}^2).$

Corollary

If a digraph D is not bidirected, and $k \geq \Delta_{\mathsf{max}}(D) + 1 \geq 4$, then $\mathsf{diam}(\mathcal{D}_k(D)) \leq c_\Delta \cdot n^2$.

Recolouring oriented graphs (no $\overleftrightarrow{K_2}$) of bounded maximum degree

Theorem

D connected digraph, $k \ge \Delta_{\max}(D) + 1 \ge 4$, α, β k-dicolourings of D, then:

- \bullet α or β is frozen, or
- $\alpha \xrightarrow{c_{\Delta} \cdot n^2} \beta$ where $c_{\Delta} = O(\Delta_{\max}^2)$.

Theorem

 $ec{G}$ an oriented graph, and $k \geq \Delta_{\min}(ec{G}) + 1$, then $diam(\mathcal{D}_k(ec{G})) \leq 2 \cdot \Delta_{\min}(ec{G}) \cdot n$.

Recolouring oriented graphs (no $\overleftrightarrow{K_2}$) of bounded maximum degree

Theorem

D connected digraph, $k \ge \Delta_{\max}(D) + 1 \ge 4$, α, β k-dicolourings of *D*, then:

- α or β is frozen, or
- $\bullet \ \alpha \xrightarrow{c_{\Delta} \cdot n^2} \beta \ where \ c_{\Delta} = O(\Delta_{\max}^2).$

Theorem

 $ec{G}$ an oriented graph, and $k \geq \Delta_{\min}(ec{G}) + 1$, then $diam(\mathcal{D}_k(ec{G})) \leq 2 \cdot \Delta_{\min}(ec{G}) \cdot n$.

Proof mostly based on:

Theorem

Every oriented graph \vec{G} with $\Delta_{\min}(\vec{G}) \geq 2$ satisfies $\vec{\chi}(\vec{G}) \leq \Delta_{\min}(\vec{G})$.

A linear bound for graphs of bounded maximum degree

Theorem (Bousquet et al. '22)

G connected graph, $k \ge \Delta(G) + 1 \ge 4$, α, β proper k-colourings of *G*, then:

- \bullet α or β is frozen, or
- $\alpha \xrightarrow{f(\Delta) \cdot n} \beta$ for some computable function f.

A linear bound for graphs of bounded maximum degree

Theorem (Bousquet et al. '22)

G connected graph, $k \ge \Delta(G) + 1 \ge 4$, α, β proper k-colourings of *G*, then:

- \bullet α or β is frozen, or
- $\alpha \xrightarrow{f(\Delta) \cdot n} \beta$ for some computable function f.

Question: Analogue for digraphs?

For every graph G, $\mathsf{tw}(G) \geq \delta^*(G)$.

Theorem (Bonamy and Bousquet '18)

G a graph, $k \ge tw(G) + 2$, then $diam(C_k(G)) \le 2(n^2 + n)$.

For every graph G, $\mathsf{tw}(G) \geq \delta^*(G)$.

Theorem (Bonamy and Bousquet '18)

G a graph, $k \ge tw(G) + 2$, then $diam(C_k(G)) \le 2(n^2 + n)$.

For every digraph D, \mathscr{D} -width $(D) \geq \delta_c^*(D)$.

For every graph G, $\mathsf{tw}(G) \geq \delta^*(G)$.

Theorem (Bonamy and Bousquet '18)

G a graph, $k \ge tw(G) + 2$, then $diam(C_k(G)) \le 2(n^2 + n)$.

For every digraph D, \mathscr{D} -width $(D) \geq \delta_c^*(D)$.

Theorem (Nisse, P., Sau 23)

D a digraph, $k \ge \mathscr{D}w(D) + 2$, then $diam(\mathcal{D}_k(D)) \le 2(n^2 + n)$.

For every graph G, $\mathsf{tw}(G) \geq \delta^*(G)$.

Theorem (Bonamy and Bousquet '18)

G a graph, $k \ge tw(G) + 2$, then $diam(C_k(G)) \le 2(n^2 + n)$.

For every digraph D, \mathscr{D} -width $(D) \geq \delta_c^*(D)$.

Theorem (Nisse, P., Sau 23)

D a digraph, $k \ge \mathscr{D}w(D) + 2$, then $diam(\mathcal{D}_k(D)) \le 2(n^2 + n)$.

Question: Analogues for directed-Treewidth, Kelly-width or DAG-width?

Recolouring digraphs of bounded maximum average degree

$$\operatorname{\mathsf{Mad}}(G) = \max_{H \subseteq G} \left(\frac{1}{|V(H)|} \sum_{v \in V(H)} d^H(v) \right) \geq \delta^*(G)$$

Recolouring digraphs of bounded maximum average degree

$$\operatorname{\mathsf{Mad}}(G) = \max_{H \subseteq G} \left(\frac{1}{|V(H)|} \sum_{v \in V(H)} d^H(v) \right) \geq \delta^*(G)$$

Theorem (Feghali '21)

Let G be a graph and $\varepsilon > 0$ such that $Mad(G) = d - \varepsilon$. For every $k \ge d + 1$, $diam(C_k) \le c_{d,\varepsilon} \cdot n \cdot \log^{d-1}(n)$.

Recolouring digraphs of bounded maximum average degree

$$\operatorname{\mathsf{Mad}}(G) = \max_{H \subseteq G} \left(\frac{1}{|V(H)|} \sum_{v \in V(H)} d^H(v) \right) \geq \delta^*(G)$$

Theorem (Feghali '21)

Let G be a graph and $\varepsilon > 0$ such that $Mad(G) = d - \varepsilon$. For every $k \ge d + 1$, $diam(C_k) \le c_{d,\varepsilon} \cdot n \cdot \log^{d-1}(n)$.

$$\mathsf{Mad}_c(D) = \max_{H \subseteq D} \left(\frac{1}{|V(H)|} \sum_{v \in V(H)} d_c^H(v) \right) \geq \delta_c^*(D)$$

Theorem (Nisse, P., Sau)

Let D be a graph and $\varepsilon > 0$ such that $Mad_c(D) = d - \varepsilon$. For every $k \ge d + 1$, $diam(\mathcal{D}_k) \le c_{d,\varepsilon} \cdot n \cdot \log^{d-1}(n)$.

Conjecture (Bousquet, Havet, Nisse, P., Reinald)

Let \vec{G} be an oriented graph that is not k-mixing, $Mad(G) \ge 2k$.

Open for every $k \ge 2$.

Conjecture (Bousquet, Havet, Nisse, P., Reinald)

Let \vec{G} be an oriented graph that is not k-mixing, $Mad(G) \ge 2k$.

Open for every $k \ge 2$.

Theorem (Bousquet, Havet, Nisse, P. and Reinald)

Every oriented graph \vec{G} with Mad $(\vec{G}) < \frac{7}{2}$ is 2-mixing.

Conjecture (Bousquet, Havet, Nisse, P., Reinald)

Let \vec{G} be an oriented graph that is not k-mixing, $Mad(G) \ge 2k$.

Open for every $k \ge 2$.

Theorem (Bousquet, Havet, Nisse, P. and Reinald)

Every oriented graph \vec{G} with Mad $(\vec{G}) < \frac{7}{2}$ is 2-mixing.

Theorem

Every k-freezable oriented graph \vec{G} has at least kn + k(k-2) arcs.

Conjecture (Bousquet, Havet, Nisse, P., Reinald)

Let \vec{G} be an oriented graph that is not k-mixing, $Mad(G) \ge 2k$.

Open for every $k \ge 2$.

Theorem (Bousquet, Havet, Nisse, P. and Reinald)

Every oriented graph \vec{G} with Mad $(\vec{G}) < \frac{7}{2}$ is 2-mixing.

Theorem

Every k-freezable oriented graph \vec{G} has at least kn + k(k-2) arcs.

Question: Is every oriented planar graph 3-mixing?

Complexity

Theorem (Bousquet, Havet, Nisse, P., Reinald)

Given D a digraph, α, β k-dicolourings of D, deciding if there is a recolouring sequence between α and β is PSPACE-complete for every fixed $k \geq 2$.

Complexity

Theorem (Bousquet, Havet, Nisse, P., Reinald)

Given D a digraph, α, β k-dicolourings of D, deciding if there is a recolouring sequence between α and β is PSPACE-complete for every fixed $k \geq 2$.

Question

What is the complexity of deciding whether a digraph is k-mixing (for any fixed $k \ge 2$)?

Open for every fixed $k \ge 4$ in the undirected case.

Complexity

Theorem (Bousquet, Havet, Nisse, P., Reinald)

Given D a digraph, α, β k-dicolourings of D, deciding if there is a recolouring sequence between α and β is PSPACE-complete for every fixed $k \geq 2$.

Question

What is the complexity of deciding whether a digraph is k-mixing (for any fixed $k \ge 2$)?

Open for every fixed $k \ge 4$ in the undirected case.

Thank you!