Intégrale multiple

F. Kany. ISEN-Brest & La Croix-Rouge

Position du problème

Si l'on veut calculer certaines propriétés de l'atome de magnesium (12 électrons), on est amené à intégrer des fonctions par rapport aux 3 coordonnées de chaque électron. On doit donc réaliser des intégrales à $3 \times 12 = 36$ dimensions. Si l'on utilise 64 points pour calculer numériquement chaque intégrale, il faudra réaliser $64^{36} \simeq 10^{65}$ évaluations de la fonction à intégrer. Même avec un ordinateur rapide (10^6 opérations.s⁻¹), il faudrait 10⁵⁹ s pour faire cette intégrale (c'est-à-dire beaucoup plus que l'age de l'Univers $\simeq 10^{17}$ s).

Une méthode plus rapide (et plus précise!) consiste à tirer au sort N valeurs de la fonction f à intégrer pour calculer sa valeur moyenne $\langle f \rangle$ et à calculer : $I = \int_{x_1_{min}}^{x_1_{max}} \int_{x_2_{min}}^{x_2_{max}} \dots f(x_1, x_2, \dots).\dot{\mathbf{x}}_1.\dot{\mathbf{x}}_2\dots$ sous la forme approchée : $I_{approx} = (x_{1_{max}} - x_{1_{min}}).(x_{2_{max}} - x_{2_{min}}).\dots.\langle f \rangle.$ Appliquer cette méthode pour calculer l'intégrale à 10 dimensions suivante : $I = \int_{x_1=0}^1 \int_{x_2=0}^1 \dots \int_{x_{10}=0}^1 (x_1 + x_2 + \dots + x_{10})^2.\dot{\mathbf{x}}_1.\dot{\mathbf{x}}_2.\dots.\dot{\mathbf{x}}_{10}$

$$I = \int_{x_1=0}^{1} \int_{x_2=0}^{1} \dots \int_{x_{10}=0}^{1} (x_1 + x_2 + \dots + x_{10})^2 . \dot{x}_1 . \dot{x}_2 . \dots . \dot{x}_{10}$$

Pour cela:

- 1. tirer au sort les valeurs de x_1 à x_{10} (dans l'intervalle d'intégration),
- 2. calculer $f(x_1, x_2, \dots, x_{10})$ et en déduire I_{approx} ,
- 3. réiterer N fois $(N=2,4,8,\ldots,8192)$ les étapes 1 et 2 calculer $\langle I_{approx_N} \rangle$: la moyenne des N évaluations de I_{approx} .
- 4. tracer $\langle I_{approx_N} \rangle = f(N)$ et montrer que la précision du calcul est proportionnelle à $\frac{1}{\sqrt{N}}$ en traçant $|I - \langle I_{approx_N} \rangle| = f(\frac{1}{\sqrt{N}}).$