

2N6897

-12A, -100V, P-Channel Enhancement Mode Power MOS Field Effect Transistor

December 2001

Features

- -12A, -100V
- r_{DS(ON)} = 0.3Ω
- SOA is Power Dissipation Limited
- · Nanosecond Switching Speeds
- Linear Transfer Characteristics
- High Input Impedance
- Majority Carrier Device

Ordering Information

PART NUMBER	PACKAGE	BRAND
2N6897	TO-204AA	2N6897

NOTE: When ordering, include the entire part number.

Description

The 2N6897 is an P-Channel enhancement mode silicon gate power MOS field effect transistor designed for applications such as switching regulators, switching converters, motor drivers, relay drivers, and drivers for high power bipolar switching transistors requiring high speed and low gate drive power. This device can be operated directly from an integrated circuit.

Symbol

Packaging

JEDEC TO-204AA

2N6897

2016007

LIMITO

Absolute Maximum Ratings $T_C = 25^{\circ}C$, Unless Otherwise Specified

2N6897	UNITS
-100	V
-100	V
-12	Α
-30	Α
±20	V
100	W
0.8	W/oC
-55 to 150	οС
260	οС
	-100 -100 -12 -30 ±20 100 0.8 -55 to 150

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Electrical Specifications $T_C = 25^{\circ}C$, Unless Otherwise Specified

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Drian to Source Breakdown Voltage	BV _{DSS}	$I_D = 1$ mA, $V_{GS} = 0$ V	-100	-	-	V
Gate to Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D = 0.25 \text{mA}$	-2	-	-4	V
Zero-Gate Voltage Drain Current	I _{DSS}	V _{DS} = -80V	-	-	1	μΑ
Zero-Gate Voltage Drain Current T _C = 125°C		V _{DS} = -80V	-	-	50	μА
Gate to Source Leakage Current	I _{GSS}	$V_{GS} = \pm 20V, V_{DS} = 0V$	-	-	100	nA
Drian to Source On-Voltage (Note 1)	V _{DS(ON)}	I _D = 7.6A, V _{GS} = -10V	-	-	2.28	V
		I _D =12A, V _{GS} = -10V	-	-	-4.8	V
Static Drian to Source On Resistance (Note 1)	r _{DS(ON)}	I _D = 7.6A, V _{GS} = -10V	-	-	0.3	Ω
Static Drian to Source On Resistance T _C = 125 ^o C (Note 1)		I _D = 7.6A, V _{GS} = 10V	-	-	0.465	Ω
Forward Transconductance (Note 1)	9fs	I _D = 7.6A, V _{DS} = -10V	2	-	8	S
Input Capacitance	C _{ISS}	V _{GS} = 0V, V _{DS} = -25V	400	-	1500	pF
Output Capacitance	C _{OSS}	f = 0.1MHz	200	-	700	pF
Reverse-Transfer Capacitance	C _{RSS}		60	-	240	pF
Turn-On Delay Time	t _{d(ON)}	$I_D = 7.6A$, $V_{DS} = -50V$ $R_{GEN} = R_{GS} = 15\Omega$, $V_{GS} = -10V$	-	-	60	ns
Rise Time	t _r		-	-	175	ns
Turn-Off Delay Time	t _{d(OFF)}	7 (65 - 104	-	-	275	ns
Fall Time	t _f		-	-	175	ns
Thermal Resistance Junction-to-Case	R _{θJC}		-	-	1.25	°C/W

Source to Drain Diode Specifications

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Diode Forward Voltage (Note 1)	V _{SD}	I _{SD} = 12A	0.8	-	1.6	V
Diode Reverse Recovery Time	t _{rr}	$I_F = 4A$, $d_{IF}/dt = 100A/\mu s$	-	-	500	ns

NOTE:

4. Pulsed: pulse duration = 300μs, max, duty cycle = 2%.

Typical Performance Curves Unless Otherwise Specified

FIGURE 15. NORMALIZED POWER DISSIPATION vs TEMPERATURE DERATING CURVE

FIGURE 16. MAXIMUM OPERATING AREAS CURVE

FIGURE 17. TRANSFER CHARACTERISTICS

FIGURE 18. DRAIN TO SOURCE ON RESISTANCE AS A FUNC-TION OF DRAIN CURRENT

FIGURE 19. NORMALIZED $r_{DS(ON)}$ vs JUNCTION TEMPERATURE

FIGURE 20. NORMALIZED GATE THRESHOLD VOLTAGE vs JUNCTION TEMPERATURE

Typical Performance Curves Unless Otherwise Specified (Continued)

FIGURE 21. CAPACITANCE vs VOLTAGE

FIGURE 22. FORWARD TRANSCONDUCTANCE AS A FUNCTION OF DRAIN CURRENT

Test Circuit and Waveforms

FIGURE 23. RESISTIVE SWITCHING TEST CIRCUIT

FIGURE 24. RESISTIVE SWITCHING WAVEFORMS

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

SMART START™ VCX^{TM} FAST ® OPTOLOGIC™ STAR*POWER™ FASTr™ Bottomless™ OPTOPLANAR™ Stealth™ CoolFET™ FRFET™ PACMAN™ SuperSOT™-3 CROSSVOLT™ GlobalOptoisolator™ POP™ SuperSOT™-6 DenseTrench™ GTO™ Power247™ $HiSeC^{TM}$ SuperSOT™-8 $Power Trench^{\, @}$ DOME™ SyncFET™ EcoSPARK™ ISOPLANAR™ QFET™ TinyLogic™ E²CMOSTM LittleFET™ OS^{TM} TruTranslation™

STAR*POWER is used under license

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

Rev. H4