Chamblandes 2010 — Problème 1

$$\lim_{x\to -4} \frac{9\,x^2}{x^2+2\,x-8} = \frac{144}{0} = \infty \,:\, x=-4 \text{ asymptote verticale}$$

$$\lim_{x\to 2} \frac{9x^2}{x^2+2x-8} = \frac{36}{0} = \infty : x=2 \text{ asymptote verticale}$$

y = 9 asymptote horizontale

$$\delta(x) = \frac{-18x + 72}{x^2 + 2x - 8} = \frac{-18(x - 4)}{(x + 4)(x - 2)}$$

	-4	4 2	4	
-18	_	_	_	_
x-4	-	_	- () +
x+4	1	+	+	+
x-2	-	_	+	+
δ	+	_	+ () –

$$f'(x) = \frac{(9x^2)'(x^2 + 2x - 8) - 9x^2(x^2 + 2x - 8)'}{(x^2 + 2x - 8)^2} = \frac{18x(x^2 + 2x - 8) - 9x^2(2x + 2)}{(x^2 + 2x - 8)^2}$$
$$= \frac{18x^3 + 36x^2 - 144x - 18x^3 - 18x^2}{(x^2 + 2x - 8)^2} = \frac{18x^2 - 144x}{(x^2 + 2x - 8)^2} = \frac{18x(x - 8)}{(x + 4)^2(x - 2)^2}$$

	-4 0		2 8		
18 x	_	_	+	+ (+
x-8		- (<u> </u>	ı	+
$(x+4)^2$	+	+	+	+	+
$(x-2)^2$	+	+	+	+	+
f'	+	+ (<u> </u>	_ (b +
f	7	→ m	ax 🗸	\ m	in 7

$$f(0) = \frac{9 \cdot 0^2}{0^2 + 2 \cdot 0 - 8} = 0$$

le point (0;0) est un maximum local.

$$f(8) = \frac{9 \cdot 8^2}{8^2 + 2 \cdot 8 - 8} = 8$$

le point (8;8) est un minimum local.

