Graph Theory

Lecture content summary, WS17/18

Jens Ochsenmeier

Contents

1	Einstieg — Metrische Räume				
	1.1	Vorbemerkungen			
	1.2	Definitionen zu metrischen Räumen			
	1.3	Beispiele zu metrischen Räumen	(
2	Län	genmetriken	•		
	2.1	Graphen — Definitionen	9		

Einstieg — Metrische Räume

1.1 Vorbemerkungen

Inhalt dieser Vorlesung wird sowohl *Stetigkeitsgeometrie* (Topologie) als auch *metrische Geometrie* sein. Die unten abgebildeten Objekte sind im Sinne der Stetigkeitsgeometrie "topologisch äquivalent", im Sinne der metrischen Geometrie sind diese allerdings verschieden.

1.1.1 Kartographieproblem.

Ein zentrales Problem der Kartographie ist die *längentreue* Abbildung einer Fläche auf der Weltkugel auf eine Fläche auf Papier. Mithilfe der Differentialgeometrie und der Gauß-Krümmung lässt sich zeigen, dass das nicht möglich ist.

1.2 Definitionen zu metrischen Räumen

1.2.1 Definition — Metrik.

Sei X eine Menge. Eine Funktion $d: X \times X \to \mathbb{R}_{>0}$ ist eine *Metrik* (Abstandsfunktion), falls $\forall x, y, z \in X$ gilt:

- 1. **Positivität**: $d(x, y) = 0 \Leftrightarrow x = y$
- 2. **Symmetrie**: d(x,y) = d(y,x)
- 3. **Dreiecksungleichung**: $d(x,z) \le d(x,y) + d(y,z)$

1.2.2 Definition — Metrischer Raum.

Ein metrischer Raum ist ein Paar (X, d) aus einer Menge und einer Metrik auf dieser.

1.2.3 Definition — Pseudometrik.

Eine *Pseudometrik* erfüllt die gleichen Bedingungen wie eine Metrik, außer $d(x, y) = 0 \Rightarrow x = y$ — die Umkehrung gilt.

1.2.4 Definition — Abgeschlossener k-Ball von x.

Eine Teilmenge $\overline{B_r(x)} := \{ y \in X : d(x,y) \le r \}$ heißt *abgeschlossener* r-Ball $um \ x$.

1.2.5 Definition — Abstandserhaltende Abbildung.

Sind (X, d_X) und (Y, d_Y) metrische Räume, so heißt eine Abbildung $f: X \to Y$ abstandserhaltend, falls

$$\forall x,y \in X : d_Y(f(x),f(y)) = d_X(x,y).$$

1.2.6 Definition — Isometrie.

Eine *Isometrie* ist eine bijektive, abstandserhaltende Abbildung. Falls eine Isometrie $f:(X,d_X) \to (Y,d_Y)$ existiert, so heißen X und Y isometrisch.

1.3 Beispiele zu metrischen Räumen

1.3.1 Beispiel — Triviale Metrik.

Menge $X, d(x,y) := \begin{cases} 0, & x = y \\ 1, & x \neq y \end{cases}$ \rightarrow jede Menge lässt sich zu einer Metrik verwursten.

1.3.2 Beispiel — Simple Metriken.

Sei $X = \mathbb{R}$.

- $d_1(s,t) := |s-t| \text{ ist Metrik.}$
- $d_2(s,t) := \log(|s-t|+1)$ ist Metrik.

1.3.3 Beispiel — Standardmetrik.

 $X = \mathbb{R}^n$, $d_e(x,y) := \sqrt{\sum_{i=1}^n (x_i - y_i)^2} = ||x - y||$ ist die (euklidische) Standardmetrik auf dem \mathbb{R}^n . Die Dreiecksungleichung folgt aus der Cauchy-Schwarz-Ungleichung¹.

Bemerkung (aus LA II): Isometrien von (\mathbb{R}^n, d_e) sind Translationen, Rotationen und Spiegelungen.

1.3.4 Beispiel — Maximumsmetrik.

$$X = \mathbb{R}, d(x,y) := \max_{1 \le i \le n} |x_i - y_i|$$
 ist Metrik.

1.3.5 Beispiel — 1.3.3 und 1.3.4 allgemein: Norm.

Anmerkung: Wenn d(x,y) eine Metrik ist, so ist auch $\tilde{d}(x,y) \coloneqq \lambda d(x,y)$ mit $\lambda \in \mathbb{R}_{>0}$ eine Metrik.

¹ Cauchy-Schwarz-Ungleichung: $\langle x, y \rangle \le ||x|| \cdot ||y|| \quad (x, y \in \mathbb{R})$

V sei \mathbb{R} -Vektorraum. Eine *Norm* auf V ist eine Abbildung $||\cdot||$: $V \to \mathbb{R}_{>0}$, so dass $\forall v, w \in V, \lambda \in \mathbb{R}$:

- 1. **Definitheit**: $||v|| = 0 \Leftrightarrow v = 0$
- 2. absolute Homogenität: $||\lambda v|| = |\lambda| \cdot ||v||$
- 3. **Dreiecksungleichung**: $||v + w|| \le ||v|| + ||w||$

Eine Norm definiert eine Metrik durch d(v, w) := ||v - w||.

1.3.6 Beispiel — Einheitssphären.

 $S_1^n := \{x \in \mathbb{R}^{n+1} : ||x|| = 1\}$ ist die *n*-te Einheitssphäre. Auf dieser ist mit $d_W(x,y) := \arccos(\langle x,y \rangle)$ die Winkel-Metrik definiert.

1.3.7 Beispiel — Hamming-Metrik.

Es ist \mathbb{F}_2 der Körper mit zwei Elementen $\{0,1\}$,

$$X := \mathbb{F}_2^n = \{ (f_1, \dots, f_n) : f_i = 0 \lor f_i = 1 \ (i \in 1, \dots, n) \}$$

die Menge der binären Zahlenfolgen der Länge n. Die Hamming-Metrik ist definiert als

$$d_H: X \times X \to \mathbb{R}_{>0}, \quad d_H(u, v) = |\{i : u_i \neq v_i\}|.$$

Längenmetriken

2.1 Graphen — Definitionen

2.1.1 Definition — Graph.

Ein *Graph* G = (E, K) besteht aus einer *Ecken*-Menge E und einer Menge von Paaren $\{u, v\}$ $(u, v \in E)$, genannt *Kanten*.

2.1.2 Definition — Erreichbarkeit.

Seien $p,q \in E$ von G = (E,K). q ist erreichbar von p aus, falls ein Kantenzug von p nach q existiert.

2.1.3 Definition — Zusammenhängend.

G = (E, K) heißt zusammenhängend, falls alle Ecken von einer beliebigen, festen Ecke aus erreichbar sind.

Ist G ein zusammenhängender Graph, so ist d(p,q) = minimale Kantenzahl eines Kantenzuges von p nach q eine Metrik.