Theoretische Informatik

Übungsblatt 2 (für die 43. Kalenderwoche)

zur Vorlesung von Prof. Dr. Till Mossakowski im Wintersemester 2016/2017

Magdeburg, 17. Oktober 2016

1. Es seien die Menge $M = \{a, b, c, d, e\}$ sowie die Relation $R \subseteq M^2$, definiert durch

$$R = \{(a,b), (a,c), (a,d), (d,c), (d,e)\},\$$

gegeben.

- a) Bestimmen Sie die reflexive und transitive Hülle R^* der Relation R.
- b) Zeichnen Sie die gerichteten Graphen G = (M, R) und $G^* = (M, R^*)$.
- 2. a) Beweisen Sie, dass die Menge der Wörter über einem Alphabet abzählbar unendlich ist.
 - b) Beweisen Sie, dass die Menge der Sprachen über einem Alphabet überabzählbar unendlich ist.
- 3. Beweisen Sie durch vollständige Induktion, dass die Ungleichung

$$n^2 > 2n + 1$$

für alle natürlichen Zahlen $n \geq 3$ gilt.

- 4. Es sei $\Sigma = \{a, b\}$. Wir definieren eine Sprache L über Σ induktiv wie folgt.
 - (1) ε gehört zu L.
 - (2) Falls $x \in L$ ist, dann gehört auch abxb zu L.
 - (3) Falls $x \in L$ ist, dann gehört auch bxba zu L.
 - (4) Falls $x \in L$ und $y \in L$, dann gehört auch xy zu L.

Beweisen Sie durch strukturelle Induktion, dass alle Wörter in L doppelt so viele b wie a enthalten.

- 5. In der Vorlesung sitzen n Studenten, $n \ge 2$, die sich teilweise gegenseitig kennen. Zeigen Sie, dass es zwei verschiedene Studenten gibt, die mit gleich vielen anderen Studenten bekannt sind.
- 6. Es seien die folgenden Zustandsdiagramme deterministischer endlicher Automaten M_1 und M_2 gegeben.

Abbildung 1: Automat M_1

Abbildung 2: Automat M_2

- a) Geben Sie formale Beschreibungen der Automaten M_1 und M_2 an.
- b) Geben Sie für beide Automaten die Folge der Konfigurationen bei der Verarbeitung der Eingabe *aabb* an.
- c) Wird jeweils das Wort aabb akzeptiert? Begründen Sie ihre Antwort.
- d) Wird jeweils das leere Wort ε akzeptiert? Begründen Sie ihre Antwort.