Química

Formulario

Contents

Conversiones	2
Peso	. 2
Longitud	. 2
Gases	. 2
Termodinámica	. 2
Propiedades intensivas	2
Estequiometría	2
Unidades de cantidad	. 2
Isótopo	
Composición porcentual	
Fórmulas químicas	
	_
Reacciones	2
Rendimiento	. 2
Soluciones	2
Molaridad (M)	. 2
Molalidad (n)	
Fracción molar (X)	
Porcentaje en volumen ($V_{\%}$)	
Porcentaje en masa $(m_{\%})$	
Partes por millón (ppm)	
Const	2
Gases	_
Ley de los gases ideales	
Ecuación de estado	
Densidad de un gas	
Ley de Dalton	
Volumen molar de un gas	. 3
Termodinámica	3
Trabajo y energía	. 3
Entalpía	
Calor	
Cálculos de un sistema	
Entalpía de una solución	
Propiedades coligativas	
Cambio de fases	

Conversiones

Peso

1 lb = 453,6 g

1 kg = 2.2 lb

1 oz = 28,35 g

Longitud

1 mi = 1,61 km

1 m = 3.28 ft

 $1 \text{ m} = 39.4^{\circ}$

1'' = 2,54 cm

Gases

1 atm = 760 mmHg

1 atm = 101,33 kPa

1 atm = 14,696 psi

1 torr = 1 mmHg

1 torr = 133,32 Pa

 $1 \text{ bar} = 10^5 \text{ Pa}$

Termodinámica

1 cal = 4.18 J

1 atmL = 101,3 J

Propiedades intensivas

m = dv

(s), (l) =
$$g/cm^3$$
; (g) = g/m^3

 $^{\circ}$ C = $(F - 32)\frac{5}{9}$

 $F = \frac{9}{5}$ °C + 32

 $K = ^{\circ}C + 273,15$

Estequiometría

Unidades de cantidad

 $1uma = \frac{g}{mol}$

El peso atómico se mide en uma's.

 $1g = 6,022 \cdot 10^{23} uma$

 $N_A/L = 6,022 \cdot 10^{23}$ partículas

Isótopo

 $\bar{m} = m_1 A b_1 + \dots + m_n A b_n$

Composición porcentual

 $Mr = \Sigma Ar$

 $\%X = \frac{nAr}{Mr}100\%$

Fórmulas químicas

FM = nFE

m = nMr

Reacciones

Rendimiento

$$%r = \frac{\text{real}}{\text{teórico}} 100\%$$

Soluciones

 $C_1V_1 = C_2V_2$

 $m_{\text{solución}} = m_{soluto} + m_{solvente}$

 $V_{\text{solución}} = V_{soluto} + V_{solvente}$

Molaridad (M)

 $M = \frac{n_{soluto}}{V_{\text{solución}}}$

volumen = dm^3

Molalidad (η)

 $\eta = \frac{n_{soluto}}{m_{solvente}}$

masa = kg

Fracción molar (X)

 $X_A = \frac{n_A}{n_{\text{solución}}}$

 $X_B = \frac{n_B}{n_{\text{solución}}}$

 $X_A + X_B = 1$

Porcentaje en volumen $(V_{\%})$

 $V_{\%} = \frac{V_{soluto}}{V_{solución}} \cdot 100\%$

volumen = cm^3

Porcentaje en masa $(m_{\%})$

 $m_{\%} = \frac{m_{soluto}}{m_{solución}} \cdot 100\%$

masa = g

Partes por millón (ppm)

 $m_{\%} = \frac{m_{solutio}}{m_{solution}} \cdot 10^6$

masa = g

Gases

 $R = 8,314 \frac{J}{K \cdot mol} R = 0,0821 \frac{atm \cdot L}{K \cdot mol}$

Ley de los gases ideales

PV = nRT

Ecuación de estado

$$\frac{P_1 V_1}{n_1 T_1} = \frac{P_2 V_2}{n_2 T_2}$$

Densidad de un gas

$$\rho = \frac{MrP}{RT}$$

Ley de Dalton

$$P_A = X_A P_T$$

$$P_A = \frac{n_A RT}{V}$$

Volumen molar de un gas

$$1mol = 22,7dm^3$$

Posible a a 273K y 1 atmósfera. Esto se conoce como condiciones normales de temperatura y presión (CNTP).

Termodinámica

Trabajo y energía

$$W = \pm P\Delta V$$

$$\Delta E = \pm Q + W$$

$$\Delta E = \Delta H + W$$

 ΔH = +endotérmico, -exotérmico

W,Q = +compresión, -expansión

Entalpía

$$\Delta H = H_{productos} - H_{reactivos}$$

Entalpía estándar de formación

 ΔH_f°

Entalpía estándar de reacción

$$\Delta H_{rxn}^{\circ} = \left[c\Delta H_f^{\circ}(C) + d\Delta H_f^{\circ}(D) \right] - \left[a\Delta H_f^{\circ}(A) + b\Delta H_f^{\circ}(B) \right]$$

Calor

$$-Q_1 = Q_2$$

$$Q = mc\Delta T$$

$$C = mc$$

$$c_{H_2O} = 4,184 \frac{J}{\text{g}^{\circ}\text{C}}$$

Cálculos de un sistema

$$Q_{sis} = \Sigma Q_{\text{Componentes}}$$

Componentes

$$Q_{sis} = 0$$

$$Q_{H_2O} = mc\Delta T$$

$$Q_{\rm aparato} = C_{\rm aparato} \Delta T$$

 Q_{sis} ningún calor entra o sale

Q_{rxn} se despeja

Reacción a P constante

$$\Delta H = Q_{\rm rxn}$$

Reacción a V constante

Entalpía de una solución

$$\Delta H_{\text{soln}} = E + \Delta H_{\text{hidratación}}$$

$$\Delta H_{\text{soln}} = H_{\text{solución}} - H_{\text{componentes}}$$

$$\Delta H_{\text{soln}} = \Sigma \Delta H$$

$$\Delta H > \Delta E \rightarrow \text{compresión}$$

$$\Delta H < \Delta E \rightarrow \text{expansión}$$

$$\Delta H = \Delta E \rightarrow \text{rxn}$$
 que no produce cambio en moles

$$\Delta H_{\rm soln} = 0 \rightarrow {
m solución}$$
 ideal

Propiedades coligativas

$$^{\circ}$$
 = puro

$$_1$$
 = solvente

$$_2$$
 = soluto

Factor de Van't Hoff (i) = $\frac{\text{\# partículas productos}}{\text{\# partículas reactivos}}$

Presente únicamente en electrolitos.

Disminución de presión de vapor

$$P_1 = X_1 P_1^{\circ}$$

$$\Delta P = X_2 P_1^{\circ}$$

$$\Delta P = P_1^{\circ} - P_1$$

Elevación del punto de ebullición

$$\Delta T_b = i k_{b_1} \eta$$

$$\Delta T_b = T_b - T_b^{\circ}$$

$$T_b > T_b^{\circ} \rightarrow \Delta T_b > 0$$

Disminución del punto de ebullición

$$\Delta T_f = i k_{f_1} \eta$$

$$\Delta T_f = T_f^{\circ} - T_f$$

$$T_f^\circ > T_f \to \Delta T_f > 0$$

Presión osmótica

$$\pi = iMRT$$

Cambio de fases

$$\Delta H_{sub} = \Delta H_{fus} + \Delta H_{vap}$$