CS4248 Assignment 1

U096883L Shawn Tan

1.

$$p(k) = \frac{\binom{n}{k}}{\binom{N}{n}} = \frac{n!}{k!(n-k)!} \frac{N!(N-n)!}{N!}$$

2.

$$P_{WB}(w \mid c_i) = \begin{cases} \frac{C(c_i, w)}{C(c_i) + T(c_i)} & \text{if } C(c_i, w) > 0\\ \frac{T(c_i)}{Z(c_i) \left(C(c_i) + T(c_i) \right)} & \text{if } C(c_i, w) = 0 \end{cases}$$

$$C(c_1) = 7$$
 $C(c_2) = 6$
 $T(c_1) = 6$ $T(c_2) = 5$
 $Z(c_1) = 4$ $Z(c_2) = 5$
 $P_{WB}(w \mid c_1) = \frac{6}{4 \cdot (7+6)}$ $P_{WB}(w \mid c_2) = \frac{5}{5 \cdot (6+5)}$
 ≈ 0.1154 ≈ 0.0909

	$P_{WB}(w c_1)$		$P_{WB}(w c_2)$		
Total	7		6		
	$C(c_1, w)$	$P_{WB}(w \mid c_1)$	$C(c_2, w)$	$P_{WB}(w \mid c_2)$	
body	1	1/13	0	0.0909	
fun	0	0.1154	1	1/11	
is	0	0.1154	1	1/11	
jogging	0	0.1154	2	2/11	
John	1	1/13	0	0.0909	
loves	1	1/13	1	1/11	
Mary	0	0.1154	1	1/11	
our	1	1/13	0	0.0909	
strengthens	1	1/13	0	0.0909	
swimming	2	2/13	0	0.0909	

3. Table for edit distance.

р	5	4	3	4	3	4
а	4	3	2	3	4	5
е	3	2	1	2	3	4
h	2	1	2	3	4	5
С	1	2	3	4	5	6
	0	1	2	3	4	5
		h	е	I	р	s

4.

$$\begin{split} H(X,Y) &= -\sum_{x \in X} \sum_{y \in Y} \, p(x,y) \log \, p(x,y) \\ &= -\sum_{x \in X} \sum_{y \in Y} \, p(x,y) \left(\log \, p(y \, | \, x) \, p(x) \right) \\ &= -\sum_{x \in X} \sum_{y \in Y} \, p(x,y) \left(\log \, p(y \, | \, x) + \log \, p(x) \right) \\ &= -\left(\sum_{x \in X} \sum_{y \in Y} \, p(x,y) \log \, p(y \, | \, x) + \sum_{x \in X} \sum_{y \in Y} \, p(x,y) \log \, p(x) \right) \\ &= -\left(\sum_{x \in X} \sum_{y \in Y} \, p(x,y) \log \, p(y \, | \, x) + \sum_{x \in X} \log \, p(x) \sum_{y \in Y} \, p(x,y) \right) \end{split}$$

Marginalising out y,

$$\begin{split} &= -\left(\sum_{x \in X} \sum_{y \in Y} \, p(x,y) \log \, p(y \,|\, x) + \sum_{x \in X} \, p(x) \log \, p(x)\right) \\ &= \left(-\sum_{x \in X} \sum_{y \in Y} \, p(x,y) \log \, p(y \,|\, x)\right) + \left(-\sum_{x \in X} \, p(x) \log \, p(x)\right) \\ &= \, H(Y \,|\, X) + \, H(X) \end{split}$$