Biometric Performance Biometric Systems (DTU 02238)

Christoph Busch

Session 7 and 8

Overview Biometric Performance

Structure of this session

- Issues in Performance Tests
- Fundamental Metrics
- Reporting
- Standards

Categorization of Biometric Systems

Costs

Installation- and maintenance costs

Operating expense

- Duration (transaction time) and complexity of operation
- Adaptation time

Biometric performance

- How precise does the system recognize individuals?
- What are the error rates?

Presentation Attack Detection (PAD)

 Does the system detect artefacts of biometric characteristics (a.k.a fakes)

Performance Test and Errors

Why measure failures?

- Murphy' Law teaches us:
 "Whatever can go wrong, will go wrong."
 - It is just a matter of the point in time ...
 - ... and the likelihood that a failure happens
 - ▶ There are small failures ...
 - ... and larger disasters

Failure-to-Capture Rate (FTCR)

aligned to ISO-HBV: proportion of failures of the biometric capture process to produce a captured biometric sample of the biometric characteristic of interest

$$FTCR = \frac{N_{tca} + N_{nsq}}{N_{tot}}$$

where

 N_{tca} is the number of terminated capture attempts

 N_{nsq} is the number of images created with insufficient sample quality

 N_{tot} is the total number of capture attempts

Definition of FTC: https://www.iso.org/obp/ui/#iso:std:iso-iec:2382:-37:ed-2:v1:en:term:3.9.5

Failure-to-eXtract Rate (FTXR)

Def: proportion of failures of the feature extraction process to generate a template from the captured biometric sample

$$FTXR = \frac{N_{ngt}}{N_{sub}}$$

where

 N_{ngt} is the number of cases where no template was generated N_{sub} is the total number of biometric samples being submitted to the feature extraction

Failure-to-Enrol Rate (FTER)

aligned to ISO-HBV: proportion of a specified set of biometric enrolment transactions that resulted in a failure to create and store a biometric enrolment data record

$$FTER = \frac{N_{nec}}{N}$$

where

 N_{nec} is the number of cases where the biometric characteristic of the subject cannot be captured at all

N is the total number of subjects intended to be enrolled in the biometric application

Definition of FTER https://www.iso.org/obp/ui/#iso:std:iso-iec:2382:-37:ed-2:v1:en:term:3.9.7

Failure-to-Acquire Rate (FTAR)

aligned to ISO-HBV: proportion of a specified set of biometric acquisition processes that were failure to accept for subsequent comparison the output of a data capture process

Note: This is caused by either a FTCR or a FTXR in the in the verification process. No probe feature vector.

$$FTAR = FTCR + FTXR * (1 - FTCR)$$

Definition of FTAR https://www.iso.org/obp/ui/#iso:std:iso-iec:2382:-37:ed-2:v1:en:term:3.9.4

Biometric performance for a failure to occur

- specified in proportions (error rates)
- assumes random nature. Correct?

What else can cause failures?

- Failures / errors caused by:
 - Violation of persistence property
 - variations of the observed biometric characteristic
 - ageing, spontaneous variations
 - Environmental factors
 - illumination, background noise, ...
 - Quality of the samples

Validate the test data - before you fix the corpus

- Control the quality of the corpus
 - "Ground truth" could be error prone

- empty chair
- Examples of typical testing mistakes
 - Fingerprint images assigned to the wrong subject ID
 - Volunteers using multiple identities

Scientific approach

- Separation of training/development data versus test data
- Avoid to use artificially generated data (synthetic data)
- Size of data base must be sufficient for the claimed error rates
 - rule of 3

Test Size versus Uncertainty

Rule of 3

- The Rule of 3 addresses the question "What is the lowest error rate that can be statistically established with a given number N of independent identically distributed comparisons?"
- This value is the error rate *p* for which the probability of zero errors in *N* trials, purely by chance, is (for example) 5%.
- This gives:

$$p \approx \frac{3}{N}$$

for a 95% confidence level

Fundamental Metrics in Technology Testing

Basic Metrics

Comparison scores

- comparison score c(Q,R):
 - numerical value (or set of values) resulting from a comparison NOTE: the term "matching score" is deprecated by ISO
- similarity score s(Q,R):
 - comparison score that increases with similarity
- distance score / dissimilarity score d(Q,R):
 - comparison score that decreases with similarity
 - Some distance measure
 - Often $d(Q,R) \geq 0$ and d(R,R) = 0
- Conversion
 - $oldsymbol{s} = f(d)$ where f is a monotonically decreasing function
 - Examples

$$s = -d$$
 $s = -log(d)$ $s = \frac{1}{d}$

Basic Metrics

Graphical representation of results

- Probability Density Function (PDF) for similarity scores s(Q,R)
 - t threshold = 45

Comparison Score

- m mated samples (genuine)
- nm non-mated samples (impostor)

Reference Images R

s_m=70 True positive

s_{nm}=40 True negative

s_{nm}=55 False positive

s_m=42 False negative

20

Performance Metrics - Security

Probability density Distribution Function (PDF)

 $\phi_m(s)$: PDF of mated similarity score s(Q,R)

 $\phi_{nm}(s)$: PDF of non-mated similarity score s(Q,R)

False-Match-Rate (FMR)

• **Def in ISO-HBV**: proportion of the completed biometric non-mated comparison trials that result in a false match

Note: non-mated comparison trials are

also referred to as impostor trials

$$FMR(t) = \int_{t}^{1} \phi_{nm}(s) ds$$

Performance Metrics - Convenience

Probability density Distribution Function (PDF)

 $\phi_m(s)$: PDF of mated similarity score s(Q,R)

 $\phi_{nm}(s)$: PDF of non-mated similarity score s(Q,R)

False-Non-Match-Rate (FNMR)

- Def in ISO-HBV: proportion of the completed biometric mated comparison trials that result in a false non-match
- Note: mated comparison trials are also referred to as genuine trials

$$FNMR(t) = \int_0^t \phi_m(s)ds$$

Performance Metrics - Convenience

Probability density Distribution Function (PDF)

 $\phi_m(d)$: PDF of mated dissimilarity score d(Q,R) $\phi_{nm}(d)$: PDF of non-mated dissimilarity score d(Q,R)

$$FNMR(t) = \int_0^t \phi_{nm}(d)dd$$

$$FNMR(t) = \int_{t}^{max_d} \phi_m(d)dd$$

Algorithm error rates

- False-Match-Rate (FMR) often confused with FAR
- False-Non-Match-Rate (FNMR) often confused with FRR
- Equal-Error-Rate (EER)

Constraints:

FMR(0) = 1, FMR(1) = 0FNMR(0) = 0, FNMR(1) = 1

More Metrics

Verification rates

- Genuine-Match-Rate (GMR)
 - true positives

$$GMR = 1 - FNMR$$

Performance Evaluation

Mated reference comparison trial reference id (taken from the mated **IUT** same biometric instance) score probe

claim

Non-mated comparison trial (taken NOT from the same instance)

References and probes are taken from a labeled test set

26

Similarity Matrix (closed set)

Similarity scores - comparator

- 3 subjects (3 instances) captured in 2 sessions
 - 3 mated comparison scores
 - ▶ (3-1) * 3 non-mated comparison scores

Christoph Busch Biometric Performance 2022 27

Similarity Matrix (closed set)

Computation of FMR, FNMR and GMR

Computing algorithm error on a given corpus

- $\Omega_{\rm g}$ set of all mated comparison scores (genuine)
- Ω_i set of all non-mated comparison scores (impostor)
- $\Omega_{\rm g}(t)$ set of all mated scores s > t
- $\Omega_{\rm i}(t)$ set of all non-mated scores s > t
- $\|\Omega\|$ number of elements in Ω

$$FMR(t) = \frac{\left\|\Omega_{i}(t)\right\|}{\left\|\Omega_{i}\right\|}$$

$$GMR(t) = \frac{\left\|\Omega_{g}(t)\right\|}{\left\|\Omega_{g}\right\|}$$

$$FNMR(t) = 1 - GMR(t)$$

Computing FNMR and FMR

From similarity scores to algorithm errors

- for a defined threshold t = 0.66
- False-Match-Rate ?

Genuine-Match-Rate?

False-Non-Match-Rate? face1

face₂

face₃

Computing FNMR and FMR

From similarity scores to algorithm errors

- for a defined threshold t = 0.73
- False-Match-Rate ?

	•	R 4	4 1		1	۸
Genu	IIDD	N/I	toh	レっ	ナヘ ・ノ	,
\ ¬E:::::	// IC-	1V/I	11(.1 1	- 17 / 1		
\sim	$a \cap i \cup$					

False-Non-Match-Rate? face1

face₂

face₃

face₁	face ₂	face ₃	
0.98	0.59	0.36	
0.71	0.65	0.43	
0.23	0.69	0.72	

Christoph Busch Biometric Performance 2022

Open Set Identification Error Rates

Confusion: (non-enrolled) subject *i* is identified as subject *j*

- False positives there is always a closest enrolled subject!
- Countermeasure: include threshold.

False Positive Identification Rate (FPIR):

proportion of identification transactions by capture subjects not enrolled in the system for which a reference identifier is returned

Open Set Identification Error Rates

False-Positive-Identification-Rate (FPIR)

$$FPIR = (1 - FTAR) * (1 - (1 - FMR)^{N})$$

for small FMR we can substitute

$$(1 - FMR)^N \approx 1 - N * FMR$$

and thus the FPIR can be approximated with

$$FPIR = (1 - 0) * (1 - (1 - N * FMR))$$
$$FPIR = N * FMR$$

Take care, when implementing identification systems, as the error will increase about linearly with the size *N*!

Overview Metrics

From algorithm testing to system level testing

- Consider different types of test
 - Technology testing
 - offline evaluation of one or more algorithms
 - Scenario testing
 - evaluation of simulated application
 - Operational testing
 - evaluation in which the performance of a complete biometric system is determined

Overview Metrics

From algorithm testing to system level testing

- Technology testing
 - Algorithmic level verification error
 - False-Match-Rate (FMR) algorithm accepts "zero-effort" impostor
 - False-Non-Match-Rate (FNMR) algorithm rejects true identity
- Scenario testing and operational testing
 - System level verification error
 - False-Accept-Rate (FAR)
 - False-Reject-Rate (FRR)
- System level error requires observation of:
 - Sample generation: Failure-to-Capture-Rate (FTCR)
 - Enrolment: Failure-to-Enrol-Rate (FTER) no reference for this subject
 - Verification: Failure-to-Acquire-Rate (FTAR) no probe feature vector

System Error Metrics

False-Accept-Rate (FAR)

$$FAR = FMR * (1 - FTAR)$$

False-Reject-Rate (FRR)

$$FRR = FTAR + FNMR * (1 - FTAR)$$

System Error Metrics

Generalized False-Accept-Rate:

$$GFAR = FMR * (1 - FTAR) * (1 - FTER)$$

Generalized False-Reject-Rate:

$$GFRR = FTER + (1 - FTER) * FTAR + (1 - FTER) * (1 - FTAR) * FNMR$$

Summary of Performance Metrics

Potential failures in a biometric processing pipeline

False acceptance rate (FAR) False rejection rate (FRR)

Christoph Busch Biometric Performance 2022 38

Reporting

Receiver Operating Characteristic (ROC)

Detection Error Trade-off (DET) curve

DET curve (detection error trade-off curve)

- plots error rates on both axes
 - false positives on the x-axis
 - false negatives on the y-axis

Source: ISO/IEC 19795-1:2006

DET curve

plots are impacted by the scale

Source: ISO/IEC 19795-1:2021

Visualising score distribution

- boxplots and whisker plot
 - the boxes represent the interquartile range of each set of scores
 - the whisker extend from the box to the highest and lowest score

Source: ISO/IEC 19795-1:2021

Applications and DET

Applications and appropriate operational points

- Nuclear power plant:
 - ▶ FRR > FAR (FAR \approx 0)
- Studio membership card:
 - FAR > FRR

Christoph Busch Biometric Performance 2022

Test Standards

Variations in Presentation of Results

5 US Government Tests

Figure 22 in the FRVT 2002: Evaluation Report.

Biometric Performance Testing Standard

ISO/IEC 19795-x, Information technology - Biometric performance testing and reporting

- ▶ Part 1: Principles & Framework (revised in 2021)
 - Guidance applicable to the broad range of tests
- Part 2: Testing Methodologies for Technology and Scenario Evaluation
- ▶ Part 3: Modality-Specific Testing
- ▶ Part 4: Interoperability Performance Testing
- Part 5: Framework for biometric device performance evaluation for access control
- ▶ Part 6: Testing methodologies for operational evaluation
- ▶ Part 7: Testing of on-card biometric comparison algorithms
- ▶ Part 9: Testing on mobile devices
- Part 10: Quantifying biometric system performance variation across demographic groups

Part 1: Principles & Framework

Content

- Definitions
 - Describe biometric system
 - Performance metrics
- Planning an evaluation
- Data collection
 - Enrolments
 - One-to-one comparison trails
 - Identification Trias
- Analyses
- Graphical presentation of results
- Record keeping
- Reporting performance results

Required Metrics

Fundamental (always reported)

- Failure-to-Enrol Rate
- Failure-to-Acquire Rate
- False-Match-Rate vs. False-Non-Match-Rate

Verification As above plus ...

False-Accept-Rate vs.
 False-Reject-Rate

And perhaps ...

- Generalised error rates incl. enrolment failures
- Distribution of errors in test population ...

Identification (open-set) As above plus ...

- False-Positive-Identification-Rate vs.
 False-Negative-Identification-Rate
 - (dependence on database size)

If binning used ...

- Binning-Error-Rate
- Penetration-Rate
 - FMR & FNMR are within-bin error rates

Binning

Partitioning based on soft-biometrics

skin and hair color

eye color

weight

Image Source: A. Jain 2013

Binning

Partitioning based on soft-biometrics

 is done by classification algorithms that estimate membership in pre-defined soft-biometric classes

- Binning error / pre-selection error: error that occurs when the corresponding subject identifier is not in the preselected subs of candidates
- Penetration rate: average proportion of the total number of references that are pre-selected

Biometric Performance and Interoperability

Minutiae Interoperability Exchange Test - MINEX

- National Institute of Standards and Technology (NIST)
- Biometric Performance based on Images vs. Minutia-Templates
- Large test
 - ▶ Fingerprint images from 250.000 individuals
 - Live-Scan data
- DET-curves
 - False-Match-Rate
 - ▶ False-Non-Match-Rate
- Performance @ FMR 0,01
 - Image-1F: 0,0047
 - Minutia-1F: 0,0129
 - ▶ Image-2F: 0,0002

References

A script computing DET curves will be provided

- This script shall be used for term paper reports on biometric performance or on presentation attack detection performance
- Python-code
- Matlab-code

References

Web

- National Institute for Standards and Technology http://fingerprint.nist.gov/
- BEAT testing platform https://www.beat-eu.org/news/the-beat-platform-goes-open-source

Complementary reading

- ISO/IEC 19795-1, "Biometric performance testing and reporting Part 1: Principles and framework", 2021
- B.D. Jovanovic, P. Levy, "A look at the rule of three", The American Statistican, pp. 137-139, 1997
- G. R. Doddington, M. A. Przybocki, A.F. Martin and D.A. Reynolds, "The NIST speaker recognition evaluation: Overview methodology, systems, results, perspective", Speech Communication, 2000