PMSLT is a simulation model that estimates the effect of changes in the population distribution of risk factor/s in terms of health benefits/disbenefits.

Health simulation modelling tool

What for?

- Quantify the health impact of changes in exposure to health
- risk factors
 Comparative risk assessment tool: what if?
 Comparison of a policy scenario/intervention with baseline

Applications

- Chronic disease modelling studies
 Assessing Cost Effectiveness in Prevention (Australia)
 Burden of Disease Epidemiology, Equity & Cost-Effectiveness Programme (BODE³) (New Zealand)

Outputs

By age-cohort and sex

- Health-adjusted life years: like QALYs
- Life years
- Disease mortality and incidence
- Life expectancy
- Health adjusted life expectancy

- Per simulation year
- Accumulated over the life course

TANK TANBOUT ANT I

Proportional multi-state life table model

Scientific development

Mathematical Population Studies 1998, Vol. 7(1), pp. 29-49 Reprints available directly from the publisher Photocopying permitted by hoense only © 1998 OPA (Overseas Publishers Association)

Amsterdam B V Published under license
under the Gordon and Breach Publishers imprint

Printed in India

COPING WITH MULTIPLE MORBIDITY IN A LIFE TABLE

JAN J. BARENDREGT^{a,*}, GERRIT J. VAN OORTMARSSEN^a, BEN A. VAN HOUT^b, JACQUELINE M. VAN DEN BOSCH^a and LUC BONNEUX^a

^aDepartment of Public Health, ^b Institute of Medical Technology Assessment, Erasmus University, P.O. Box 1738, 3000 DR, Rotterdam, The Netherlands

April 3, 1996

Population Health Metrics

Research

Open Access

A generic model for the assessment of disease epidemiology: the computational basis of DisMod II

Jan J Barendregt*¹, Gerrit J van Oortmarssen¹, Theo Vos² and Christopher JL Murray³

Address: ¹Department of Public Health, Erasmus MC, Rotterdam, Netherlands, ²Victorian Government Department of Human Services, and Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Australia and ³Global Programme on Evidence for Health Policy, World Health Oreanization, Geneva, Switzerland

 $Email: Jan \ J \ Barendregt * - j. barendregt @erasmusc.nl; \ Gerrit \ J \ van \ Oortmarssen - g. vanoortmarssen @erasmusc.nl; \ Theo \ Vos - theo. vos @dhs. vic. gov.au; \ Christopher \ JL \ Murray - murrayc @who.int$

* Corresponding author

Contribution to ITHIMR

Main differences with ITHIM

- Include diseases' trends (incidence/case fatality)
- Time lags exposure to incidence/case fatality (via the PIF)
- Population growth

- Adds disability adjustment to life years lived prevalent years lived with disability rate (pYLDs)
- Health adjusted life years
 Life years lived*pYLDsrate
- Mechanism of change for scenario analysis: mortality rate and pYLDrate

R development

- Long script (documented in R Markdown)
- Functions
- Inputs

Long script (documented in R Markdown)

Proportional multi-state multiple-cohort life table model

Belen Zapata-Diomedi and Ali Abbas

26 March 2018

Contents

1	Intr	Introduction				
	1.1	Contribution to ITHIMR	3			
		1.1.1 Difference between ITHIM and PMSLT	3			
2	R d	levelopment	4			
	2.1	Inputs	6			
		2.1.1 Life table	6			
		2.1.2 Disease life tables	7			
	2.2	Code	7			
		2.2.1 Set up	8			
		2.2.2 Inputs	9			

Functions

- 1. Life table (baseline and scenario)
- 2. Disease life table (baseline and scenario)
- 3. Potential impact fraction
- 4. Output: (1) plots (Age and sex) and (2) Aggregate outcomes (total population over the years)

Function: life table

Inputs

Calculations

Cohort

Function: disease life table

sex	age	incidence	remission	case fatality	mortality(other)			nedia		Healthy	Diseased	Dead	Check, should be 1000	(No. alive)	Person-years lived at risk (between x and x+1)	prevalence rate	mortality rate
	x	i _x	r _x	f _x	m _x	l _x	$\mathbf{q}_{\mathbf{x}}$	W _x	V _x	S_{x}	$\mathbf{C}_{\mathbf{x}}$	$\mathbf{D}_{\mathbf{x}}$			PY _x	c _x	b _x
															$=0.5(S_{x}+C_{x+}S_{x+1}+C_{x+1})$	$c_{x}=0.5$	
		Data	0	Data	0								$=S_x+C_x+D_x$	$=S_x+C_x$		$(\overset{\circ}{C}_x + \overset{\circ}{C}_{x+1})/PY_x$	$b_x = (D_x - D_{x+1})/PY_x$

Calculations

Inputs

Function: disease life table

• The PIF is used to calculate a parallel population for which incidence of disease changes, therefore, prevalence

∆incid	Δprev	Δmort	ΔpYLD Δprev*DWdisease
-0.003129074	-0.00118042	-0.00063541	-0.00016169
-0.003385678	-0.00315244	-0.00162243	-0.00043182

Calculations

Age and sex

Function: output (plots)

Function + script: output (aggregate outcomes)

PMSLT: Summary

PMSLT: Summary inputs

Table 1: PMSLT inputs

Input	Source	Comments
Life table	Synthetic population per sex and age group	Age grouping in life table to match synthetic population
Life table	Synthetic population per sex and one-year age group	If one year age group is not avabilable it can be derive using interpolation from age groups data
Life table	Global Burden of Disease (GBD) study per one-year age group and sex	GBD data is in five-year age groups, interpolation to derive one-year age groups
Disease life table	GBD data for prevalence, incidence and mortality and DISMOD II	Two step process. First obtain disease and population data from GBD. Second, use Dismod II to derive internally consistent estimates for incidence and case fatality (PMSLT disease life table iputs)
Disease life table	Derive from disease prevalence and years lived with disability from GBD	Adjustments for comorbidities in later years of life to be applied

Model assumptions:

- The incidence of a disease should be independent from all causes of death, except its own disease specific mortality
- Disease incidences are independent
- All causes of death are independent
- Markov type model: markovian assumption, current state occupancy is not related to occupancy in an earlier state.

Challenges

- Data inputs for disease life table: requires processing with Dismod II (or think of alternatives)
- Data intensity?
- More realistic more data needs (e.g. trends)

Discussion

- GBD data at the national level for most case studies. Use rates adjustments based on mortality rates.
- Dismod II, what can we do about it?