Assignment 2

- Generate 20 real number for the variable X from the uniform distribution U [0,1]
- Construct the training set T = { $(x_1,y_1),(x_2,y_2),.....,(x_{20},y_{20})$ } using the relation Yi = sin $(2 \pi x_i) + \epsilon_i$ where $\epsilon_i \sim N(0,0.25)$
- In the similar way construct a testing set of size 50 i.e. Test = $\{(x'_1,y'_1),(x'_2,y'_2),...,(x'_{50},y'_{50})\}$
- Estimate the Least Square polynomial regression model of order M= 1,2, 3, 9, using the training set T.
 - For example, for M=1, we need to estimate
 - $F(x) = \beta_1 x + \beta_0$
 - For M = 2
 - $F(x) = \beta_2 x^2 + \beta_1 x + \beta_0.$
- List the value of coefficients of estimated polynomial regression models for each case.
- Obtain the prediction on testing set and compute the RMSE for polynomial regression models for order M =1,2,3 and 9.
- Plot the estimate obtained by polynomial regression models for order M =1,2,3 and 9 for training set along with y_1, y_2 , y_{50} . Also plot our actual mean estimate $E(Y/X) = \sin(2 \pi x_i)$.
- Plot the estimate obtained by polynomial regression models for order M =1,2,3 and 9 for testing set along with y'_{1}, y'_{2} , y'_{50} . Also plot the $\sin(2 \pi x'_{i})$.
- What happens when we increase the value of M. Note down your observations.
- Also, try to find the statistical reasons behind your observation.

Note: - Do not use any inbuilt functions of Python.