

Question 3	
Site de de	
Je*+1	
4= ex +1 => 1 = ex . 1	-41
4 = ex +1 => du = -ex -> du =	-e dy
e-rdx = -du	
le't de = f-du = - f du =	-Insulte
1 1 1 1 1 1 4	
-Inlextil +c	
in le ill is	
Questien 4	
y = x ² du = exdu	$\int x^{2} \circ dy = e^{x} x^{2} - 2(xe^{x})$ • e^{x}) + c
du=2ddx v=ex	
	g
Judr = ur-Sydy	= exx2 -2xex+2ex+C
$\int x^2 dx dy = y^2 dx - \int dx dx dx$	*
$\int x^2 e^{x} dx = x^2 e^{x} - \int e^{x} (2x) dx$	= e(x2-2x+2)+C
$= e^{x} x^{2} - 2 \int x e^{x} dx$	
744	
M=x dv=exdx dn=dx V=ex	
Skexdx = xex - (exdx = x ex - ex)	
Jxexdx = xex - fexdx =xex-extc	
*	

5	$\int a^2 \ln(x) dx$	1-1-35 = 116-11
		11-11-11-11-11-11-11-11-11-11-11-11-11-
	$u = \ln(x)$ $du = \frac{1}{x} dx$	8-142/4-12
	dy= 2 dr v= 23	
	00-2 00 1-3	المرودار
	$\int x^2 \ln (x) dx = \frac{13}{3} \ln (x) - \int \frac{x}{3} \cdot x dx$	93.
	$=\frac{\pi^{3}}{3}\ln(x)-\frac{1}{3}\int x^{2}dx$	
		5 1 Lucion 12
	- 3111 1 -316	
	$= \frac{x^3}{3} \ln(x) - \frac{1}{3} \cdot \frac{x^3}{3} + C$	10年10年10年1日
	3 3 3	
		3 4-303 = 1-11 - 8
	3 7	- 15-25 5-2000 -
		EARLS HE HAVE CONTINUED
1	(+ 1	AT. T- T
6.	Sez cos x dz	Am I = exsin x + excos x - I
	$I = \int e^{\alpha} \cos \alpha d\alpha$	$2J = e^{\alpha} \sin x + e^{\alpha} \cos \alpha$
	let 11-0x de la 1500 x	$I = e^{x} \left(\sin x + \cos x \right) + c$
	Let u=ex, dv=cosx dz, v=sinx du=exdx pozona	2
	du = erdz ynzana	
		TEN LO COLLEGE TO
	· †-	
	- 020 x - 1020 - 1x	
	$: I = e^{x} \sin x - \int e^{x} \sin x dx$	523 6
	$\Delta = e^{x} \sin x - \int e^{x} \sin x dx$	
	J= Se2 sin x dx	
	J= Sez sin x dx Let u=ex, dv=sin xdx, v=e=cosx	
	J= Se2 sin x dx	
	J= Sez sin x dx Let u=ex, dv=sin xdx, v=e=cosx	
	J= Sez sin x dx Let u=ex, dv=sin x dx, v=e-cosx du=ex dx	
	$J = \int e^{2} \sin x dx$ Let $u = e^{2}$, $dv = \sin x dx$, $v = a = \cos x$ $du = e^{2} dx$ $J = -e^{2} \cos x + \int e^{2} \cos x dx$	
	$J = \int e^{2} \sin x dx$ Let $u = e^{2}$, $dv = \sin x dx$, $v = a = \cos x$ $du = e^{2} dx$ $J = -e^{2} \cos x + \int e^{2} \cos x dx$	
	$J = \int e^{2} \sin x dx$ Let $u = e^{2}$, $dv = \sin x dx$, $v = e = \cos x$ $du = e^{2} dx$ $J = -e^{2} \cos x + \int e^{2} \cos x dx$ But $\int e \cos x dx = I$	
	$J = \int e^{2} \sin x dx$ Let $u = e^{2}$, $dv = \sin x dx$, $v = a = \cos x$ $du = e^{2} dx$ $J = -e^{2} \cos x + \int e^{2} \cos x dx$	
	$J = \int e^{2} \sin x dx$ Let $u = e^{2}$, $dv = \sin x dx$, $v = e = \cos x$ $du = e^{2} dx$ $J = -e^{2} \cos x + \int e^{2} \cos x dx$ But $\int e \cos x dx = I$	
	$J = \int e^{2} \sin x dx$ Let $u = e^{x}$, $dv = \sin x dx$, $v = e - \cos x$ $du = e^{x} dx$ $J = -e^{x} \cos x + \int e^{x} \cos x dx$ But $\int e \cos x dx = I$ $J = -e^{x} \cos x + I$	
	$J = \int e^{2} \sin x dx$ Let $u = e^{2}$, $dv = \sin x dx$, $v = e = \cos x$ $du = e^{2} dx$ $J = -e^{2} \cos x + \int e^{2} \cos x dx$ But $\int e \cos x dx = I$ $J = -e^{2} \cos x + I$ $T = e^{2} \sin x - J$	
	$J = \int e^{2} \sin x dx$ Let $u = e^{x}$, $dv = \sin x dx$, $v = e - \cos x$ $du = e^{x} dx$ $J = -e^{x} \cos x + \int e^{x} \cos x dx$ But $\int e \cos x dx = I$ $J = -e^{x} \cos x + I$	

-	
-	7 0 x 0 · x 3 · 3x 2 + 28
	0 - x (x2-3x+2) p-28-3
1	0 x(x 2)(x-4)
1	V 0 0 1
	pc 0, 2, 1
193	Area (2 x3-3x2-2xdx = (2x3-3x2+2x)
	1 10
	1 51 x4 -3x3 +2x2 = 6 x9 3x3 +2x2 = 1 x9 3x3 +2x2
	JO 4 3 2 JI 4 3 2
	1 24 - x3 +x2 = 5 2 x4 - x3+8x2
	104 114
	C 0 1 771 7 C 0 73 4 7 ± 1 2
	= \ \(\chi^4 + \chi^2 \]^2 \ \(\frac{\chi^4 - \chi^3 + \chi^2 \]^2 \ \(\frac{\chi^4 - \chi^3 + \chi^2 \]^2
	1 30 1
-	(A) = 1 +17 - 0 = 16 - 8 +47 - 17
-	4 - 1 +1 - 0 1 6 - 8 +4 - 1
H	= 04 à 41-14] · V4 · V4 · V2
1	
1	to units V2 units

1	
	2 2 1
	8 6 7 3
	who thou
	Ex = 1-x x 0 only point of intersection
	The only point of intersection is O here
	the area between the curves and their
8	Intersections is zero
	=0
ı	
1	
ı	
I	
ı	
+	

9) $\begin{cases} \alpha t = 0 \\ \alpha^2 + 2\alpha t = 0 \end{cases}$ $\begin{cases} x^2 + 2\alpha t = 0 \end{cases}$ $\begin{cases} x + 5 \\ (\alpha - 1)(\alpha t = 0 \end{cases}$ $\begin{cases} x + 5 \\ (\alpha - 1)(\alpha t = 0 \end{cases}$ $\begin{cases} x + 5 \\ (\alpha - 1)(\alpha t = 0 \end{cases}$ $\begin{cases} x + 5 \\ (\alpha - 1)(\alpha t = 0 \end{cases}$ $\begin{cases} x + 5 \\ (\alpha - 1)(\alpha t = 0 \end{cases}$ $\begin{cases} x + 5 \\ (\alpha - 1)(\alpha t = 0 \end{cases}$ $\begin{cases} x + 5 \\ (\alpha - 1)(\alpha t = 0 \end{cases}$ $\begin{cases} x + 5 \\ (\alpha - 1)(\alpha t = 0 \end{cases}$ $\begin{cases} x + 5 \\ (\alpha - 1)(\alpha t = 0 \end{cases}$ $\begin{cases} x + 5 \\ (\alpha - 1)(\alpha t = 0 \end{cases}$ $\begin{cases} x + 5 \\ (\alpha - 1)(\alpha t = 0 \end{cases}$ $\begin{cases} x + 5 \\ (\alpha - 1)(\alpha t = 0 \end{cases}$ $\begin{cases} x + 5 \\ (\alpha - 1)(\alpha t = 0 \end{cases}$ $\begin{cases} x + 5 \\ (\alpha - 1)(\alpha t = 0 \end{cases}$ $\begin{cases} x + 5 \\ (\alpha - 1)(\alpha t = 0 \end{cases}$ $\begin{cases} x + 5 \\ (\alpha - 1)(\alpha t = 0 \end{cases}$ $\begin{cases} x + 5 \\ (\alpha - 1)(\alpha t = 0 \end{cases}$ $\begin{cases} x + 5 \\ (\alpha - 1)(\alpha t = 0 \end{cases}$ $\begin{cases} x + 5 \\ (\alpha - 1)(\alpha t = 0 \end{cases}$ $\begin{cases} x + 5 \\ (\alpha - 1)(\alpha t = 0 \end{cases}$ $\begin{cases} x + 5 \\ (\alpha - 1)(\alpha t = 0 \end{cases}$ $\begin{cases} x + 5 \\ (\alpha - 1)(\alpha t = 0 \end{cases}$ $\begin{cases} x + 5 \\ (\alpha - 1)(\alpha t = 0 \end{cases}$ $\begin{cases} x + 5 \\ (\alpha - 1)(\alpha t = 0 \end{cases}$ $\begin{cases} x + 5 \\ (\alpha - 1)(\alpha t = 0 \end{cases}$ $\begin{cases} x + 5 \\ (\alpha - 1)(\alpha t = 0 \end{cases}$ $\begin{cases} x + 5 \\ (\alpha - 1)(\alpha t = 0 \end{cases}$ $\begin{cases} x + 5 \\ (\alpha - 1)(\alpha t = 0 \end{cases}$ $\begin{cases} x + 5 \\ (\alpha - 1)(\alpha t = 0 \end{cases}$ $\begin{cases} x + 5 \\ (\alpha - 1)(\alpha t = 0 \end{cases}$ $\begin{cases} x + 5 \\ (\alpha - 1)(\alpha t = 0 \end{cases}$ $\begin{cases} x + 5 \\ (\alpha - 1)(\alpha t = 0 \end{cases}$ $\begin{cases} x + 5 \\ (\alpha - 1)(\alpha t = 0 \end{cases}$ $\begin{cases} x + 5 \\ (\alpha - 1)(\alpha t = 0 \end{cases}$ $\begin{cases} x + 5 \\ (\alpha - 1)(\alpha t = 0 \end{cases}$ $\begin{cases} x + 5 \\ (\alpha - 1)(\alpha t = 0 \end{cases}$ $\begin{cases} x + 5 \\ (\alpha - 1)(\alpha t = 0 \end{cases}$ $\begin{cases} x + 5 \\ (\alpha - 1)(\alpha t = 0 \end{cases}$ $\begin{cases} x + 5 \\ (\alpha - 1)(\alpha t = 0 \end{cases}$ $\begin{cases} x + 5 \\ (\alpha - 1)(\alpha t = 0 \end{cases}$ $\begin{cases} x + 5 \\ (\alpha - 1)(\alpha t = 0 \end{cases}$ $\begin{cases} x + 5 \\ (\alpha - 1)(\alpha t = 0 \end{cases}$ $\begin{cases} x + 5 \\ (\alpha - 1)(\alpha t = 0 \end{cases}$ $\begin{cases} x + 5 \\ (\alpha - 1)(\alpha t = 0 \end{cases}$ $\begin{cases} x + 5 \\ (\alpha - 1)(\alpha t = 0 \end{cases}$ $\begin{cases} x + 5 \\ (\alpha - 1)(\alpha t = 0 \end{cases}$ $\begin{cases} x + 5 \\ (\alpha - 1)(\alpha t = 0 \end{cases}$ $\begin{cases} x + 5 \\ (\alpha - 1)(\alpha t = 0 \end{cases}$ $\begin{cases} x + 5 \\ (\alpha - 1)(\alpha t = 0 \end{cases}$ $\begin{cases} x + 5 \\ (\alpha - 1)(\alpha t = 0 \end{cases}$ $\begin{cases} x + 5 \\ (\alpha - 1)(\alpha t = 0 \end{cases}$ $\begin{cases} x + 5 \\ (\alpha - 1)(\alpha t = 0 \end{cases}$ $\begin{cases} x + 5 \\ (\alpha - 1)(\alpha t = 0 \end{cases}$ $\begin{cases} x + 5 \\ (\alpha - 1)(\alpha t = 0 \end{cases}$ $\begin{cases} x + 5 \\ (\alpha - 1)(\alpha t = 0 \end{cases}$ $\begin{cases} x + 5 \\ (\alpha - 1)(\alpha t = 0 \end{cases}$ $\begin{cases} x + 5 \\ (\alpha - 1)(\alpha t = 0 \end{cases}$ $\begin{cases} x + 5 \\ (\alpha - 1)(\alpha t = 0 \end{cases}$ $\begin{cases} x + 5 \\ (\alpha - 1)(\alpha t = 0 \end{cases}$ $\begin{cases} x + 5 \\ (\alpha - 1)(\alpha t = 0 \end{cases}$ $\begin{cases} x + 5 \\ (\alpha - 1)(\alpha t = 0 \end{cases}$ $\begin{cases} x + 5 \\ (\alpha - 1)(\alpha t = 0 \end{cases}$ $\begin{cases} x + 5 \\ (\alpha - 1)(\alpha t =$

	$10. \int x^2 + 3x + 2 dx$ $x^3 + 2x^2$	9)	$\int \frac{xt5}{x^2+1}$
	$x^{3} + 2x^{2} = x^{2}(\alpha + 2)$		x2+2a
	$\frac{x^2 + 3x + 2}{x^2(\alpha + 2)} = \frac{A}{x} + \frac{B}{x^2} + \frac{C}{x + 2}$		(x-1) x+5
	$x^{2} + 3\alpha + 2 = A\alpha (\alpha + 2) + B(\alpha + 2) + C\alpha^{2}$ $A + C = 1 \qquad A = 1$ $2A + B = 3 = 7 B = 1$ $2B = 2 \qquad C = 0$		3A
	$\int \frac{\alpha^2 + 3\alpha + 2}{\alpha^2 + 2\alpha^2} = \int \frac{1}{\alpha} d\alpha + \int \frac{1}{\alpha^2} d\alpha$		1
	$= \frac{3m \alpha + 1}{x} + C$		
- Maria			101

Elvis Moses Tangasaiti-188761 Mark Mwasha-220909 Marie-Ange Mumbu-220033 Ryan Musau Kioko-220501 Rex Scott -221719