Community detection in the asymmetric stochastic block model

YEP XIV, Eindhoven

September 7, 2017

Francesco Caltagirone, Marc Lelarge & Léo Miolane

Community detection

The Stochastic Block Model (SBM)

${f G}$ is generated as follows:

- ightharpoonup n vertices: $1, \ldots, n$.
- ▶ Each vertex i has a label $X_i \in \{1, 2\}$ where $(X_k)_k \stackrel{\text{i.i.d.}}{\sim} 1 + \text{Ber}(1 p)$.
- \blacktriangleright Two vertices i,j are then connected with probability $M_{X_i,X_j}.$

Community detection

The Stochastic Block Model (SBM)

${f G}$ is generated as follows:

- ightharpoonup n vertices: $1, \ldots, n$.
- ▶ Each vertex i has a label $X_i \in \{1, 2\}$ where $(X_k)_k \stackrel{\text{\tiny i.i.d.}}{\sim} 1 + \text{Ber}(1 p)$.
- lacktriangle Two vertices i,j are then connected with probability M_{X_i,X_j} .

- ► Goal: given the graph G we want to recover the labels X.
- ▶ Weak Reconstruction: Estimate X better than a "random guess".

Setting

► The connectivity matrix will be of the form:

$$\mathbf{M} = \frac{d}{n} \begin{pmatrix} a & b \\ b & c \end{pmatrix}$$

$$a, c > b$$
 and $pa + (1 - p)b = pb + (1 - p)c = 1$.

Setting

► The connectivity matrix will be of the form:

$$\mathbf{M} = \frac{d}{n} \begin{pmatrix} a & b \\ b & c \end{pmatrix}$$

$$a, c > b$$
 and $pa + (1 - p)b = pb + (1 - p)c = 1$.

▶ Important quantity: the signal-to-noise ratio

$$\lambda = d(1-b)^2$$

Setting

► The connectivity matrix will be of the form:

$$\mathbf{M} = \frac{d}{n} \begin{pmatrix} a & b \\ b & c \end{pmatrix}$$

$$a, c > b$$
 and $pa + (1 - p)b = pb + (1 - p)c = 1$.

▶ Important quantity: the signal-to-noise ratio

$$\lambda = d(1-b)^2$$

Mossel et al., 2015, Massoulié, 2014, Mossel et al., 2013

In the case of two symmetric communities (p=1/2), when d>1 is fixed and $n\to\infty$,

- if $\lambda \leq 1$ it is not possible to recover the partition $\mathbf X$ better that a "random guess".
- if $\lambda > 1$ it is possible to recover the labels better than chance.

Asymmetric communities

The main picture

- ▶ Does this phase transition at $\lambda = 1$ still hold when p < 1/2?
- ▶ The physicist's conjecture for the large degree limit $(d \to \infty)$:

Asymmetric communities

The main picture

- ▶ Does this phase transition at $\lambda = 1$ still hold when p < 1/2?
- ▶ The physicist's conjecture for the large degree limit $(d \to \infty)$:

Asymmetric communities

The main picture

- ▶ Does this phase transition at $\lambda = 1$ still hold when p < 1/2?
- ▶ The physicist's conjecture for the large degree limit $(d \to \infty)$:

Part 1.

Local weak convergence of the SBM

Local weak convergence of the SBM

The Stochastic Block Model converges locally weakly to a "Labeled Poison Galton-Watson tree".

- ▶ Offspring distribution: Pois(*d*).
- ▶ The labels "propagate" from the root according to the transition matrix $\begin{pmatrix} pa & (1-p)b \\ pb & (1-p)c \end{pmatrix}$

Reconstruction on trees

► An issue: the Galton-Watson tree, without the labels, does not give any information about the label of the root!

Reconstruction on trees

- ► An issue: the Galton-Watson tree, without the labels, does not give any information about the label of the root!
- ▶ We thus suppose that the labels at depth r are revealed. Can we infer the label of the root as $r \to \infty$?

Reconstruction on trees

- ➤ An issue: the Galton-Watson tree, without the labels, does not give any information about the label of the root!
- ▶ We thus suppose that the labels at depth r are revealed. Can we infer the label of the root as $r \to \infty$?

Belief-Propagation gives the marginal distribution of the root given G and the labels at depth r.

An impossibility result

▶ Studying the "BP recursion" one see that when $\lambda < \lambda_{sp}$, the marginal does not contain any information about the true label.

An impossibility result

▶ Studying the "BP recursion" one see that when $\lambda < \lambda_{sp}$, the marginal does not contain any information about the true label.

We thus obtain the "impossibility curve" $\lambda_{sp}(p)$ below:

Part 2.

Low-rank matrix estimation

From Bernoulli to Gaussian noise

$$A_{i,j} \sim \text{Ber}\left(\frac{d}{n} + \frac{\sqrt{d}\sqrt{\lambda}}{n}\tilde{X}_i\tilde{X}_j\right)$$
 (1)

where

$$\tilde{X}_k = \begin{cases} \sqrt{(1-p)/p} & \text{if } X_k = 1\\ -\sqrt{p/(1-p)} & \text{if } X_k = 2 \end{cases}.$$

¹Yash Deshpande and Emmanuel Abbe (2016). "Asymptotic mutual information for the balanced binary stochastic block model". In: *Information and Inference*, iaw017.

From Bernoulli to Gaussian noise

$$A_{i,j} \sim \text{Ber}\left(\frac{d}{n} + \frac{\sqrt{d}\sqrt{\lambda}}{n}\tilde{X}_i\tilde{X}_j\right)$$
 (1)

where

$$\tilde{X}_k = \begin{cases} \sqrt{(1-p)/p} & \text{if } X_k = 1\\ -\sqrt{p/(1-p)} & \text{if } X_k = 2 \end{cases}.$$

The Bernoulli noise model (1) is "equivalent" to the Gaussian noise model (when $n, d \to \infty$)¹:

$$A'_{i,j} = \frac{d}{n} + \frac{\sqrt{d}\sqrt{\lambda}}{n}\tilde{X}_i\tilde{X}_j + \sqrt{\frac{d}{n}}Z_{i,j}$$
 (2)

where $Z_{i,j} \overset{ ext{\tiny i.i.d.}}{\sim} \mathcal{N}(0,1)$,

¹Yash Deshpande and Emmanuel Abbe (2016). "Asymptotic mutual information for the balanced binary stochastic block model". In: *Information and Inference*, iaw017.

From Bernoulli to Gaussian noise

$$A_{i,j} \sim \text{Ber}\left(\frac{d}{n} + \frac{\sqrt{d}\sqrt{\lambda}}{n}\tilde{X}_i\tilde{X}_j\right)$$
 (1)

where

$$\tilde{X}_k = \begin{cases} \sqrt{(1-p)/p} & \text{if } X_k = 1\\ -\sqrt{p/(1-p)} & \text{if } X_k = 2 \end{cases}.$$

The Bernoulli noise model (1) is "equivalent" to the Gaussian noise model (when $n, d \to \infty$)¹:

$$A'_{i,j} = \frac{d}{n} + \frac{\sqrt{d}\sqrt{\lambda}}{n}\tilde{X}_i\tilde{X}_j + \sqrt{\frac{d}{n}Z_{i,j}}$$
 (2)

where $Z_{i,j} \stackrel{\text{\tiny i.i.d.}}{\sim} \mathcal{N}(0,1)$, and thus to

$$Y_{i,j} = \sqrt{\frac{\lambda}{n}} \tilde{X}_i \tilde{X}_j + Z_{i,j}$$

¹Yash Deshpande and Emmanuel Abbe (2016). "Asymptotic mutual information for the balanced binary stochastic block model". In: *Information and Inference*, iaw017.

The new statistical model

"Spiked Wigner" model

$$\underbrace{\mathbf{Y}}_{\text{observations}} = \sqrt{\frac{\lambda}{n}} \underbrace{\mathbf{X} \mathbf{X}^{\mathsf{T}}}_{\text{signal}} + \underbrace{\mathbf{Z}}_{\text{noise}}$$

- ▶ **X**: vector of dimension n with entries $X_i \stackrel{\text{i.i.d.}}{\sim} P_0$. $\mathbb{E}X_1 = 0$, $\mathbb{E}X_1^2 = 1$.
- $Z_{i,j} = Z_{j,i} \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0,1).$
- \triangleright λ : signal-to-noise ratio.
- \blacktriangleright λ and P_0 are known by the statistician.

Goal: recover the low-rank matrix XX^{T} from Y.

Principal component analysis (PCA)

B.B.P. phase transition

Spectral estimator:

Estimate X using the eigenvector $\hat{\mathbf{x}}_n$ associated with the largest eigenvalue μ_n of \mathbf{Y}/\sqrt{n} .

Principal component analysis (PCA)

B.B.P. phase transition

Spectral estimator:

Estimate X using the eigenvector $\hat{\mathbf{x}}_n$ associated with the largest eigenvalue μ_n of \mathbf{Y}/\sqrt{n} .

B.B.P. phase transition

$$\begin{split} \bullet & \text{ if } \lambda \leq 1 \begin{cases} \mu_n & \xrightarrow{\text{a.s.}} 2 \\ \mathbf{X} \cdot \hat{\mathbf{x}}_n & \xrightarrow{\text{a.s.}} 0 \end{cases} \\ \bullet & \text{ if } \lambda > 1 \begin{cases} \mu_n & \xrightarrow{\text{a.s.}} \sqrt{\lambda} + \frac{1}{\sqrt{\lambda}} > 2 \\ |\mathbf{X} \cdot \hat{\mathbf{x}}_n| & \xrightarrow{\text{a.s.}} \sqrt{1 - 1/\lambda} > 0 \end{cases} \end{aligned}$$

Baik et al., 2005; Benaych-Georges and Nadakuditi, 2011

Minimal Mean Square Error (MMSE)

Definition

$$MMSE_n = \min_{\hat{\theta}} \frac{1}{n^2} \mathbb{E} \left\| \mathbf{X} \mathbf{X}^{\mathsf{T}} - \hat{\theta}(\mathbf{Y}) \right\|^2$$
$$= \frac{1}{n^2} \sum_{1 \le i, j \le n} (X_i X_j - \mathbb{E}[X_i X_j | \mathbf{Y}])^2$$

Minimal Mean Square Error (MMSE)

Definition

$$MMSE_n = \min_{\hat{\theta}} \frac{1}{n^2} \mathbb{E} \left\| \mathbf{X} \mathbf{X}^{\mathsf{T}} - \hat{\theta}(\mathbf{Y}) \right\|^2$$
$$= \frac{1}{n^2} \sum_{1 \le i, j \le n} (X_i X_j - \mathbb{E}[X_i X_j | \mathbf{Y}])^2$$

We have to study the posterior distribution of the signal X given Y!

A planted spin glass model

▶ Posterior distribution: $\mathbb{P}(\mathbf{X} = \mathbf{x} \mid \mathbf{Y}) = \frac{1}{Z_n} P_0(\mathbf{x}) e^{H_n(\mathbf{x})}$ where

A planted spin glass model

▶ Posterior distribution: $\mathbb{P}(\mathbf{X} = \mathbf{x} \mid \mathbf{Y}) = \frac{1}{Z_n} P_0(\mathbf{x}) e^{H_n(\mathbf{x})}$ where

$$H_n(\mathbf{x}) = \sum_{i < j} \sqrt{\frac{\lambda}{n}} Y_{i,j} x_i x_j - \frac{\lambda}{2n} x_i^2 x_j^2$$

A planted spin glass model

Posterior distribution: $\mathbb{P}(\mathbf{X} = \mathbf{x} \mid \mathbf{Y}) = \frac{1}{Z_n} P_0(\mathbf{x}) e^{H_n(\mathbf{x})}$ where

$$H_n(\mathbf{x}) = \sum_{i < j} \sqrt{\frac{\lambda}{n}} Y_{i,j} x_i x_j - \frac{\lambda}{2n} x_i^2 x_j^2$$

Free energy: $F_n = \frac{1}{n} \mathbb{E} \log Z_n$

A planted spin glass model

Posterior distribution: $\mathbb{P}(\mathbf{X} = \mathbf{x} \mid \mathbf{Y}) = \frac{1}{Z_n} P_0(\mathbf{x}) e^{H_n(\mathbf{x})}$ where

$$H_n(\mathbf{x}) = \sum_{i < j} \sqrt{\frac{\lambda}{n}} Y_{i,j} x_i x_j - \frac{\lambda}{2n} x_i^2 x_j^2$$

- Free energy: $F_n = \frac{1}{n} \mathbb{E} \log Z_n$
- ▶ In physics $\frac{\partial}{\partial \lambda} F_n = \mathbb{E} \langle U(\mathbf{x}) \rangle$.

A planted spin glass model

Posterior distribution: $\mathbb{P}(\mathbf{X} = \mathbf{x} \mid \mathbf{Y}) = \frac{1}{Z_n} P_0(\mathbf{x}) e^{H_n(\mathbf{x})}$ where

$$H_n(\mathbf{x}) = \sum_{i < j} \sqrt{\frac{\lambda}{n}} Y_{i,j} x_i x_j - \frac{\lambda}{2n} x_i^2 x_j^2$$

- Free energy: $F_n = \frac{1}{n} \mathbb{E} \log Z_n$
- In physics $\frac{\partial}{\partial \lambda} F_n = \mathbb{E} \langle U(\mathbf{x}) \rangle$.
- lacktriangle Here in statistics $F_n \simeq rac{1}{n} I(\mathbf{X};\mathbf{Y})$ and

$$\frac{\partial}{\partial \lambda} F_n = \text{MMSE}_n$$

Main result

Limiting formula for the MMSE

Theorem²

$$F_n \xrightarrow[n\to\infty]{} \max_{q\in[0,\mathbb{E}X^2]} \mathcal{F}(q)$$

$$\text{MMSE}_n \xrightarrow[n \to \infty]{} \mathbb{E}_{P_0}[X^2]^2 - q^*(\lambda)^2$$

where

$$\mathcal{F}: q \ge 0 \mapsto \mathbb{E}_{\substack{X_0 \sim P_0 \\ Z_0 \sim \mathcal{N}}} \left[\log \int_{x_0} dP_0(x_0) e^{\sqrt{\lambda q} Z_0 x_0 + \lambda q X_0 x_0 - \frac{\lambda q}{2} x_0^2} \right] - \frac{\lambda}{4} q^2$$

²Barbier et al., 2016, Lelarge and Miolane, 2016

Thank you for your attention.

Any questions?

References I

- Baik, Jinho, Gérard Ben Arous, and Sandrine Péché (2005). "Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices". In: Annals of Probability, pp. 1643–1697.
- ▶ Barbier, Jean et al. (2016). "Mutual information for symmetric rank-one matrix estimation: A proof of the replica formula". In: Advances in Neural Information Processing Systems, pp. 424–432.
- ▶ Benaych-Georges, Florent and Raj Rao Nadakuditi (2011). "The eigenvalues and eigenvectors of finite, low rank perturbations of large random matrices". In: Advances in Mathematics 227.1, pp. 494–521.
- ▶ Deshpande, Yash and Emmanuel Abbe (2016). "Asymptotic mutual information for the balanced binary stochastic block model". In: *Information and Inference*, iaw017.
- ▶ Lelarge, Marc and Léo Miolane (2016). "Fundamental limits of symmetric low-rank matrix estimation". In: arXiv preprint arXiv:1611.03888.
- ► Massoulié, Laurent (2014). "Community detection thresholds and the weak Ramanujan property". In: Proceedings of the 46th Annual ACM Symposium on Theory of Computing. ACM, pp. 694–703.

References II

- ▶ Mossel, Elchanan, Joe Neeman, and Allan Sly (2013). "A proof of the block model threshold conjecture". In: arXiv preprint arXiv:1311.4115.
- ▶ (2015). "Reconstruction and estimation in the planted partition model". In: *Probability Theory and Related Fields* 162.3-4, pp. 431–461.