Question	Answer	Marks	Guidance	
10(a)	-18	B1	SOI	
	$\frac{1}{18}$	М1	Use of $m_1m_2 = -1$ from $f'(x)$ with $x = 1$.	
	$\frac{y\left[-0\right]}{x-1} = \frac{1}{18}$	A1	OE ISW	

Question	Answer	Marks	Guidance
10(b)	$\begin{bmatrix} \mathbf{f}(x) = \end{bmatrix} \left\{ 8(2x - 3)^{\frac{4}{3}} \cdot \frac{1}{2} \cdot \frac{1}{\frac{4}{3}} \right\} \left\{ -10x^{\frac{5}{3}} \cdot \frac{1}{\frac{5}{3}} \right\} \left[+c \right]$	B1B1	B1 for each unsimplified {}. Can be implied by equivalent simplified or partly simplified versions.
	$\left[3(2x-3)^{\frac{4}{3}}-6x^{\frac{5}{3}}+c\right]$		
	$0 = 3(2(1)-3)^{\frac{4}{3}} - 6(1)^{\frac{5}{3}} + c \qquad [0 = 3 - 6 + c]$	М1	Use of $x = 1$ and $y = 0$ in <i>their</i> integrated $f'(x)$, defined as an expression with at least one correct power, which must contain $+ c$.
	$[f(x) \text{ or } y =]3(2x-3)^{\frac{4}{3}} - 6x^{\frac{5}{3}} + 3$.A1	Only condone $c = 3$ as their final answer if all coefficients have previously been simplified in a correct statement.
		4	
10(c)	$b^2 - 4ac = 128^2 - 4 \times 125 \times 192$ and stating "< 0" OR use of the quadratic formula and stating "No solutions" OR completing the square for the given quadratic and stating positive or > 0. OR sketch of the given quadratic and stating positive.	M1*	$b^2 - 4ac = -79616$ can be accepted in place of working.
	No turning points [in the original function.]	DM1	
	Decreasing because $f'(\text{any positive } x \text{value}) < 0$	A1	WWW e.g. $f'(1) = -18$.
		3	

LOBEISHED