$$= a * a^{-1} \qquad [\because a * c - d]$$

$$= e \qquad ... (1)$$

$$(b^{-1} * a^{-1}) * (a * b) = b^{-1} * (a^{-1} * a) * b$$

$$= b^{-1} * e * b$$

$$= b^{-1} * b \qquad [\because e * b - b]$$

$$= e \qquad ... (2)$$
(2), we get

By (1) and (2), we get

$$(a*b)*(b^{-1}*a^{-1}) = (b^{-1}*a^{-1})*(a*b) = e$$

 $\Rightarrow (a*b)^{-1} = b^{-1}*a^{-1}$

Example 7. Every group of order 4 is abelian.

Solution: Let (G, *) be a group of order 4 where $G = \{e, a, b, c\}$. Since G is of even order, there exists at least one element (say) a such that $a^{-1} = a$.

Then two cases arise

(i)
$$b^{-1} = b$$
, $c^{-1} \approx c$, (ii) $b^{-1} = c$, $c^{-1} = b$.

Case (i):
$$e^{-1} = e$$
, $a^{-1} = a$, $b^{-1} = b$, $c^{-1} = c$

Every element as its own inverse.

The (G, *) is abelian.

Case (ii):
$$a^{-1} = a$$
, $b^{-1} = c$, $c^{-1} = b$

$$a^2 = e, b * c = e, c * b = e$$

*	e	a	b	C
e	e	a	b	c
a	a	e .	· c	b
6	b	Ċ	a	e
C	c	b	e	a

DOWNLOADED FROM STUCOR APP

Since (G, *) is a group, its elements will appear in a row (column) once.

Since, a, e appears in the second row and b appears in the third minum, c will appear as (2, 3)th element.

 \therefore (2, 4)th element is b

(3, 3)th element is a

(3, 2)th element is c

(4, 2)th element is b

(4, 4)th element is a

sample 8. Show that $G=\left\{\begin{pmatrix} a&0\\0&0\end{pmatrix}:a\neq0\in R\right\}$ is an abelian group under matrix multiplication.

Molution :

(I) Closure law

Let
$$A = \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix}$$
, $B = \begin{pmatrix} b & 0 \\ 0 & 0 \end{pmatrix} \in G$.
Then $AB = \begin{pmatrix} ab & 0 \\ 0 & 0 \end{pmatrix} \in G$.

(ii) Commutative Law: AB = BA is true $\forall A, B \in G$, since

$$AB = BA = \begin{pmatrix} ab & 0 \\ 0 & 0 \end{pmatrix}$$
 [: $ab = ba$ is true in R]

(iii) Matrix multiplication is associative.

(iv) Identity:
$$I = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \in G$$
 is the identity in G , since
$$A I = \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix} = A \ \forall \ A \in G.$$

(iv) Inverse: If

$$A = \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix} \in G$$
. Then $A^{-1} = \begin{pmatrix} 1/a & 0 \\ 0 & 0 \end{pmatrix} \in G$.

is the inverse of A, since

$$AA^{-1} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = 1 \qquad (: a \neq 0 \in R \Rightarrow 1/a \neq 0 \in R)$$

Hence G is an abelian group under matrix multiplication.

Example 9. Show that the set $S = \{1, 5, 7, 11\}$ is a group will multiplication modulo 12.

Solution: The composition tables of S w.r.t O_{12} of as follows:

O_{12}	1	5	7	11
1	1	5	7	11
5	5	1	11	7
7	7	11	1	5
11	11	7	5	1

Here 5 O_{12} 7 = 35, which on division by 12 gives the remainder 11, 11 O_{12} 7 = 77, which on division by 12 gives the remainder 5 of

Hence S is a group, in which 1 is the identity and each element of S is its own inverse.

Example 10. Show that the set of matrices

$$G = \left\{ \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}, a \in R \right\} \text{ forms a group under matrix multiplication.}$$

Solution: (i) Closure law

Let
$$A_{\alpha} = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} \in G$$
 and $A_{\beta} = \begin{pmatrix} \cos \beta & -\sin \beta \\ \sin \beta & \cos \beta \end{pmatrix} \in G$.
Then $A_{\alpha}A_{\beta} = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} \cos \beta & -\sin \beta \\ \sin \beta & \cos \beta \end{pmatrix}$.
 $A_{\alpha}A_{\beta} = \begin{bmatrix} \cos \alpha \cos \beta - \sin \alpha \sin \beta & -(\cos \alpha \sin \beta + \sin \alpha \cos \beta) \\ \sin \alpha \cos \beta + \cos \alpha \sin \beta & \cos \alpha \cos \beta - \sin \alpha \sin \beta \end{bmatrix}$.
 $= \begin{bmatrix} \cos (\alpha + \beta) & -\sin (\alpha + \beta) \\ \sin (\alpha + \beta) & \cos (\alpha + \beta) \end{bmatrix} = A_{\alpha + \beta} \in G$.
Note that $A_{\alpha}A_{\beta} = A_{\alpha + \beta}$... (1)

- (ii) We know that the matrix multiplication is associative.
- (iii) Identity: $I_0 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ is the identity in G. Since $A_{\alpha}I_0 = I_0A_{\alpha} = A_{\alpha}$ for $A_{\alpha} \in G$.
- (iv) Inverse: $A_{-\alpha}$ is the inverse of A_{α} for each $A_{\alpha} \in G$, since $A_{\alpha}A_{-\alpha} = A_{\alpha+(-\alpha)} = A_0 = I_0$, using (1)

Example 11. Find the left cosets of $\{[0], [3]\}$ in the addition modular group $(\mathbb{Z}_6, +_6)$. [MCA, N/D. 2002] [A.U N/D 2010]

Solution: Let $Z_6 = \{[0], [1], [2], [3], [4], [5], [6]\}$ be a group and $H = \{[0], [3]\}$ be a sub-group of Z_6 under $+_6$ (addition mod 6)

The left cosets of H are

$$[0] + H = \{[0], [3]\} = H$$

$$[1] + H = {[1], [4]}$$

$$[2] + H = \{[2], [5]\}$$

$$[3] + H = \{[3], [6]\} = \{[3], [0]\} = \{[0], [3]\} = H$$

[1] + H = [4] + H, [2] + H = [5] + H

$$[4] + H = \{[4], [7]\} = \{[4], [1]\} = [1] + H$$

$$[5] + H = \{[5], [8]\} = \{[5], [2]\} = [2] + H$$

$$\therefore$$
 [0] + H = [3] + H = H

are the distinct left cosets of H in Z₆

Example 12. If $f: G \to G'$ is a group homomorphism from $\{G, *\}$ to $\{G', \Delta\}$ then prove that for any $a \in G$, $f(a^{-1}) = [f(a)]^{-1}$

[A.U N/D 2012]

Solution: $\forall a \in G \text{ and } \forall a^{-1} \in G$

$$\therefore f(a*a^{-1}) = f(a) \Delta f(a^{-1})$$

i.e.,
$$f(e) = f(a) \Delta f(a^{-1})$$

and

i.e.,
$$e' = f(a) \Delta f(a^{-1})$$
 ... (1) $|\cdot|^{ly}$, $f(a^{-1}*a) = f(a^{-1}) \Delta f(a)$ i.e., $f(e) = f(a^{-1}) \Delta f(a)$... (2)

From (1) & (2), we get

$$f(a) \Delta f(a^{-1}) = f(a^{-1}) \Delta f(a)$$

$$\Rightarrow f(a^{-1}) \text{ is the inverse of } f(a)$$
i.e.,
$$f(a^{-1}) = [f(a)]^{-1}$$

Example 13. Let G be a group and $a \in G$. Let $f : G \to G$ be given by $f(x) = a \times a^{-1}$ for all $x \in G$. Prove that f is an isomorphism of G on to G.

[A.U. A/M. 2005, N/D 2010]

Solution: The map f is a homomorphism if $x, y \in G$, then

$$f(x) f(y) = (axa^{-1}) (aya^{-1})$$

= $ax (a^{-1}a) ya^{-1}$
= $axya^{-1}$
= $a(xy) a^{-1} = f(xy)$.

So f is a homomorphism.

f is one-to-one: If f(x) = f(y), then $axa^{-1} = aya^{-1}$, so by left cancellation, we have $xa^{-1} = ya^{-1}$, again by right cancellation we get x = y.

f is onto: Let
$$y \in G$$
, then $a^{-1} ya \in G$ and $f(a^{-1}ya)$

$$= a(a^{-1}ya)a^{-1}$$

$$= (aa^{-1})y(aa^{-1})$$

$$= y. ext{So } f(x) = y ext{ for some } x \in G.$$

Thus f is an isomorphism.

PERMUTATION FUNCTIONS

Definition:

A bijection from a set A to itself is called a permutation of A.

Example 14: Let A=R and let $f:A \rightarrow A$ be defined by f(a)=2a+1. Since f is one to one and onto, it follows that f is a permutation of A.

Example 15: Let $A = \{1, 2, 3\}$. Then all the permutations of A are

$$1_{A} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \qquad p_{1} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}, \qquad p_{2} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}.$$

$$p_{3} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, \qquad p_{4} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}, \qquad p_{5} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$$

Using the permutations of compute

(a)
$$p_4^{-1}$$
; (b) $p_3 \circ p_2$

Solution: (a) Viewing p_4 as a function, we have

$$p_4 = \{(1, 3), (2, 1), (3, 2)\}$$

Then

$$p_4^{-1} = \{(3, 1), (1, 2), (2, 3)\}$$

or, when written in increasing order of the first component of each ordered pair, we have

$$p_4^{-1} = \{(1, 2), (2, 3), (3, 1)\}$$

Thus

$$p_4^{-1} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} = p_3$$

(b) The function p_2 takes 1 to 2 and p_3 takes 2 to 3, so $p_3 \circ p_2$ takes 1 to 3. Also, p_2 takes 2 to 1 and p_3 takes 1 to 2, so $p_3 \circ p_2$ takes 2 to 2. Finally, p_2 takes 3 to 3 and p_3 takes 3 to 1, so $p_3 \circ p_2$ takes 3 to 1. Thus

$$p_3 \circ p_2 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$$

We may view the process of forming $p_3 \circ p_2$ as shown in fig. Observe that $p_3 \circ p_2 = p_5$.

$$p_{3} \circ p_{2} = \begin{pmatrix} 1 & 2 & 3 \\ & \downarrow & \\ 2 & 3 & 1 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 \\ \downarrow & & \\ 2 & 1 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} = p_{5}$$

Theorem: If $A = \{a_1, a_2, \dots a_n\}$ is a set containing n elements, then there are

$$n! = n \cdot (n-1) \dots 2.1$$
 permutations of A

Definition: Cyclic permutation

Let $b_1, b_2, ... b_r$ be r distinct elements of the set $A = \{a_1, a_2, ... a_n\}$. The permutation $p : A \rightarrow A$ defined by

$$p(b_1) = b_2$$
 $p(b_2) = b_3$
 \vdots
 $p(b_{r-1}) = b_r$
 $p(b_r) = b_1$

p(x) = x, if $x \in A$, $x \notin \{b_1, b_2, \dots b_r\}$ is called a cyclic **permutation** of length r, or simply a cycle of length r, and will be denoted by $(b_1, b_2, \dots b_r)$.

Example 16: Let $A = \{1, 2, 3, 4, 5\}$. The cycle (1, 3, 5) denotes the permutation

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 5 & 4 & 1 \end{pmatrix}$$

Example 17: Let $A = \{1, 2, 3, 4, 5, 6\}$. Compute (4, 1, 3, 5) o (5, 6, 3) and (5, 6, 3) o (4, 1, 3, 5).

Solution: We have

$$(4, 1, 3, 5) = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 2 & 5 & 1 & 4 & 6 \end{pmatrix}$$

$$(5, 6, 3) = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 2 & 5 & 4 & 6 & 3 \end{pmatrix}$$

$$\begin{array}{c}
\text{Him } (4, 1, 3, 5) \circ (5, 6, 3) \\
= \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 2 & 5 & 1 & 4 & 6 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 2 & 5 & 4 & 6 & 3 \end{pmatrix} \\
= \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 2 & 4 & 1 & 6 & 5 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 2 & 5 & 4 & 6 & 3 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 2 & 5 & 1 & 4 & 6 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 2 & 6 & 1 & 4 & 3 \end{pmatrix}$$

Observe that

$$(4, 1, 3, 5) \circ (5, 6, 3) \neq (5, 6, 3) \circ (4, 1, 3, 5)$$

that neither product is a cycle.

Definition:

Two cycles of a set A are said to be disjoint if no element of A appears in both cycles.

Example 18: Let $A = \{1, 2, 3, 4, 5, 6\}$. Then the cycles (1, 2, 5) and (3, 4, 6) are disjoint, whereas the cycles (1, 2, 5) and (2, 4, 6) not.

Theorem: A permutation of a finite set that is not the identity a cycle can be written as a product of disjoint cycles of length ≥ 2 .

Example 19: Write the permutation $p = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 4 & 6 & 5 & 2 & 1 & 8 & 7 \end{pmatrix}$ of the set A = {1, 2, 3, 4, 5, 6, 7, 8} as a product of disjoint cycles.

Solution: We start with 1 and find that p(1) = 3, p(3) and p(6) = 1, so we have the cycle (1, 3, 6). Next we choose the first element of A that has not appeared in a previous cycle. We choose 2, and we have p(2)=4, p(4)=5 and p(5)=2, so we obtain the cycle (2, 4, 5). We now choose 7, the first element of A that has appeared in a previous cycle. Since p(7)=8 and p(8)=7, we obtain the cycle (7, 8). We can then write p as product of disjoint cycles as

$$p = (7, 8) \circ (2, 4, 5) \circ (1, 3, 6).$$

Definition: Even and Odd Permutations

A cycle of length 2 is called a transposition. That is, a transposition is a cycle $p = (a_i, a_j)$, where $p(a_i) = a_j$ and $p(a_j) = a_i$.

Observe that if $p = (a_i, a_j)$ is a transposition of A, then $p \circ p = 1_A$ the identity permutation of A.

Every cycle can be written as a product of transpositions. In fact,

$$(b_1, b_2, \dots b_r) = (b_1, b_r) \circ (b_1, b_{r-1}) \circ \dots \circ (b_1, b_3) \circ (b_1, b_2)$$

This case can be verified by induction on r, as follows:

Basis Step

If r=2, then the cycle is just (b_1, b_2) , which already has the proper form.

Induction Step

We use P (k) to show P (k+1). Let $(b_1, b_2, \dots b_k, b_{k+1})$ be a cycle of length k+1. Then $(b_1, b_2, \dots b_k, b_{k+1})$ $(b_1, b_{k+1}) \circ (b_1, b_2, \dots b_k)$ as may be verified by computing the composition. Using P(k), $(b_1, b_2, \dots b_k) = (b_1, b_k) \circ (b_1, b_{k-1}) \circ \dots \circ (b_1, b_2)$. Thus, by substitution,

$$(b_1, b_2, \dots b_{k+1}) = (b_1, b_{k+1}) \circ (b_1, b_k) \circ \dots \circ (b_1, b_3) (b_1, b_2).$$

This completes the induction step. Thus, by the principle of mathematical induction, the result holds for every cycle. For example,

$$(1, 2, 3, 4, 5) = (1, 5) \circ (1, 4) \circ (1, 3) \circ (1, 2)$$

Corollary 1: Every permutation of a finite set with atleast two elements can be written as a product of transpositions.

Theorem: If a permutation of a finite set can be written as a product of an even number of transpositions, then it can never be written as a product of an odd number of transpositions, and conversely.

A permutation of a finite set is called even if it can be written as a product of an even number of transpositions, and it is called odd if it can be written as a product of an odd number of transpositions.

Example 20: Is the permutation

$$p = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 4 & 5 & 7 & 6 & 3 & 1 \end{pmatrix}$$

even or odd?

Solution: We first write p as a product of disjoint cycles, obtaining $p = (3, 5, 6) \circ (1, 2, 4, 7)$.

Next we write each of the cycles as a product of transpositions:

$$(1, 2, 4, 7) = (1, 7) \circ (1, 4) \circ (1, 2)$$

 $(3, 5, 6) = (3, 6) \circ (3, 5)$

Then $p = (3, 6) \circ (3, 5) \circ (1, 7) \circ (1, 4) \circ (1, 2)$. Since p is a product of an odd number of transpositions, it is an odd permutation.

Note: From the definition of even and odd permutations, it follows.

- (a) The product of two even permutation is even.
- (b) The product of two odd permutations is even.

(c) The product of an even and an odd permutation is odd.

Example 21: Show that the permutation

Show that the permutation
$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 6 & 2 & 4 & 1 & 3 \end{pmatrix}$$
 is odd, while the permutation $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 3 & 4 & 5 & 2 & 1 \end{pmatrix}$ is even.

Solution:

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 6 & 2 & 4 & 1 & 3 \end{pmatrix} = (1 5) (2 6 3)$$
$$= (1 5) (2 6) (2 3)$$

The given permutation can be expressed as the product of an odd number of transpositions and hence the permutation is odd. Again

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 3 & 4 & 5 & 2 & 1 \end{pmatrix} = (1 6) (2 3 4 5)$$
$$= (1 6) (2 3) (2 4) (2 5)$$

Since it is a product of even number of transposition, the permutation is an even permutation.

Example 22: Express the permutation

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 5 & 2 & 4 & 3 & 1 \end{pmatrix}$$
 as a product of transposition.

Solution:

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 5 & 2 & 4 & 3 & 1 \end{pmatrix} = (1 6) (2 5 3) = (1 6) (2 5) (2 3)$$

Example 23: Find the inverse of the permutation.

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 1 & 5 & 4 \end{pmatrix}$$

 $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 1 & 5 & 4 \end{pmatrix}$ Solution: Given $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 1 & 5 & 4 \end{pmatrix}$

Let the inverse of the permutation be $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ x & y & z & u & y \end{pmatrix}$

Hence the inverse permutation is $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 1 & 2 & 5 & 4 \end{pmatrix}$.

The sample 24: If $A = (1 \ 2 \ 3 \ 4 \ 5)$, $B = (2 \ 3) \ (4 \ 5)$. Find AB.

The sample 24: If $A = (1 \ 2 \ 3 \ 4 \ 5)$, $B = (2 \ 3) \ (4 \ 5)$.

AB =
$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 4 & 5 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 3 & 2 & 5 & 4 \end{pmatrix}$$

= $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 5 & 4 & 1 \end{pmatrix}$
= $\begin{pmatrix} 1 & 3 & 5 \end{pmatrix}$

Nample 25: If $A = \{1, 2, 3, 4, 5, 6, 7, 8\}$ then express the following permutations as a product of disjoint cycles.

(a)
$$\mathbf{p} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 6 & 5 & 7 & 8 & 4 & 3 & 2 & 1 \end{pmatrix}$$

(b) $\mathbf{p} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 3 & 1 & 4 & 6 & 7 & 8 & 5 \end{pmatrix}$

holution :

$$p(1) = 6, \ p(6) = 3, \ p(3) = 7, \ p(7) = 2, \ p(2) = 5, \ p(5) = 4, \ p(4) = 8,$$

$$p(8) = 1.$$

$$\therefore p = \{1, 6, 3, 7, 2, 5, 4, 8\}$$

(b)
$$p(1) = 2, p(2) = 3, p(3) = 1 \Rightarrow (1, 2, 3)$$

 $p(5) = 6, p(6) = 7, p(7) = 8, p(8) = 5 \Rightarrow (5, 6, 7, 8)$
 $p = (5, 6, 7, 8) \circ (1, 2, 3)$

DOWNLOADED FROM STUCOR APP

Example 26: Let
$$A = \{1, 2, 3, 4, 5, 6\}$$
 and $p = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 4 & 3 & 1 & 5 & 6 \end{pmatrix}$ be a

permutation of A.

- (a) Write p as a product of disjoint cycles.
- (b) Compute p⁻¹
- (c) Compute p²
- (d) Find the period of p, that is, the smallest positive integer k such that $p^k = 1_A$.

Solution:

(a) Given
$$p = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 4 & 3 & 1 & 5 & 6 \end{pmatrix}$$

Since p(1) = 2, p(2) = 4 and p(4) = 1, we write p = (1, 2, 4) as the other elements are fixed.

(b)
$$p^{-1} = \begin{pmatrix} 2 & 4 & 3 & 1 & 5 & 6 \\ 1 & 2 & 3 & 4 & 5 & 6 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 1 & 3 & 2 & 5 & 6 \end{pmatrix}$$

(c)
$$p^2 = p \circ p = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 1 & 3 & 2 & 5 & 6 \end{pmatrix}$$

(d)
$$p^3 = p^2 \circ p = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 2 & 3 & 4 & 5 & 6 \end{pmatrix} = 1_A.$$

$$p^4 = p, p^5 = p^2 \text{ etc.}$$

$$\therefore$$
 The period of $p = 3$.

$$(p_2 \circ p_1)^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 6 & 2 & 1 & 4 & 3 \end{pmatrix}$$

$$\therefore (p_2 \circ p_1)^{-1} = p_1^{-1} \circ p_2^{-1}$$

Frample 27: If
$$f = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 1 & 4 \end{pmatrix}$$
 and
$$g = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix} \text{ are permutations,}$$

$$\text{prove that } (g \circ f)^{-1} = f^{-1} \circ g^{-1}.$$
Nolution: $f^{-1} = \begin{pmatrix} 3 & 2 & 1 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix} \text{ and}$

$$g^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 2 & 3 \end{pmatrix}$$

$$f^{-1} \circ g^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{pmatrix}$$

$$g \circ f = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 1 & 4 \end{pmatrix}$$

$$(g \circ f)^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 1 & 4 \end{pmatrix}$$

Hence
$$(g \circ f)^{-1} = f^{-1} \circ g^{-1}$$
.

Example 28: Let
$$p_1 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 7 & 3 & 2 & 1 & 4 & 5 & 6 \end{pmatrix}$$
 and $p_2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 6 & 3 & 2 & 1 & 5 & 4 & 7 \end{pmatrix}$

- (a) Compute p₁ o p₂
- (b) Compute p_1^{-1}
- (c) Is p₁ an even or odd permutation? Explain.

Solution:

(a)
$$p_1 \circ p_2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 7 & 3 & 2 & 1 & 4 & 5 & 6 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 6 & 3 & 2 & 1 & 5 & 4 & 7 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 5 & 2 & 3 & 7 & 4 & 1 & 6 \end{pmatrix}$$
(b) $p_1^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 4 & 3 & 2 & 5 & 6 & 7 & 1 \end{pmatrix}$
(c) $p_1 = (1, 7, 6, 5, 4) \circ (2, 3)$

(i) Closure: Let
$$b \in H \Rightarrow b^{-1} \in H$$

$$\therefore \text{ For } a, b \in H \qquad \Rightarrow a, b^{-1} \in H$$
$$\Rightarrow a * (b^{-1})^{-1} \in H$$
$$\Rightarrow a * b \in H$$

- :. H is closed under the operation "*"
- (ii) Associative: Since $H \subseteq G$, the elements of H are also the elements of G.

Since * is associative in G, it must also be associative in H.

(iii) Identity: Let
$$a \in H$$
, $\Rightarrow a * a^{-1} \in H$
 $\Rightarrow e \in H$

- \therefore e is the identity element of H.
- (iv) Existence of inverse: Let $e \in H$, $a \in H$

$$\Rightarrow e * a^{-1} \in H$$
$$\Rightarrow a^{-1} \in H$$

- \therefore Every element of H has an inverse in H.
- \therefore H itself is a group under the operation * in G.

Theorem 2:

Let (G, *) be a finite group, and H is non-empty subset of G and H is closed under *. Then H is a subgroup of G.

Proof: (G, *) is a finite group and H is a subset of G which is closed under *.

i.e.,
$$a, b \in H \Rightarrow a * b \in H$$
.

Let
$$O(G) = n$$

Now
$$a, a \in H$$

Then
$$a*a = a^2 \in H$$

 $a^2, a \in H$. Then $a^2*a = a^3 \in H$ and so on.

Since G is finite there exists a 'm' with $1 \le m \le n$ such that

$$a^{\rm m} = e \in H$$

That is $e \in H$

Hence identity exists.

Let $a \in H$, then $a^{m-1} \in H$.

i.e.,
$$a^{m-1} = a^m * a^{-1} \in H$$

i.e.,
$$e * a^{-1} \in H$$

i.e.,
$$a^{-1} \in H$$
.

⇒ inverse exists.

Since every element of H is G, associative property is true in H. Hence (H, *) is a group and so H is a subgroup of G.

Theorem 3.

The kernal of a homomorphism g from a group $\langle G, * \rangle$ is a subgroup of $\langle G, * \rangle$.

Proof: Since $g(e_G) = e_H, e_G \in ker(g)$

Also, if $a, b \in ker(g)$,

i.e.,
$$g(a) = g(b) = e_H$$
, then

$$g(a*b) = g(a) \Delta g(b) = e_{H} \Delta e_{H} = e_{H}$$

so that $a * b \in ker(g)$.

Finally, if $a \in ker(g)$, then $g(a^{-1}) = [g(a)]^{-1} = e_H^{-1} = e_H$.

Hence $a^{-1} \in ker(g)$ and ker(g) is a subgroup of $\langle G, * \rangle$.

Theorem 4.

Every cyclic group is abelian. [A.U. M/J

[A.U. M/J 2013, N/D 2013]

Solution:Let (G, *) be a cyclic group generated by an element $a \in G$. (i.e.,) G = (a) Then for any two elements $x, y \in G$

We have $x = a^n$, $y = a^m$, where m, n are integer.

Therefore
$$x * y = a^n * a^m = a^{n+m}$$

= $a^{m+n} = a^m * a^n$
= $y * x$

Thus, (G, *) is abelian.

Problems based on sub group

Example 1. Is the union of two subgroups of a group, a subgroup of G? Justify your answer.

Solution: The union of two subgroups of a group need not be a subgroup of G.

Let the group (Z, +)

Let
$$H = 3Z = \{0, \pm 3, \pm 6, ...\}$$

Let
$$K = 2Z = \{0, \pm 2, \pm 4, ...\}$$

 \Rightarrow H and K are subgroups of (Z, +).

$$\Rightarrow 3 \in 3Z \in 3Z \cup 2Z = H \cup K$$

$$\Rightarrow \qquad 2 \in 2Z \in 2Z \cup 3Z = H \cup K$$

But
$$3+2=5 \notin 2Z \cup 3Z$$

 $\therefore H \cup K$ is not a subgroup of (Z, +)

Example 2. The identity element of a subgroup is same as that of the group.

[A.U N/D 2012]

Solution: Let H be the subgroup of the group G and e and e' be the identity elements of G and H respectively.

Now if $a \in H$, then $a \in G$ and ae = a, because e is the identity element of G.

Again $a \in H$, then $ae^{i} = a$ since e' is the identity element of H.

Thus ae = ae' which gives e = e'

Example 3. If H and K are subgroup of G, prove that $H \cup K$ is a subgroup of G if and only if either, $H \subseteq K$ or $K \subseteq H$.

[A.U N/D 2014]

Solution: Given H and K are two subgroups of G and $H \subseteq K$ or $K \subseteq H$.

If $H \subseteq K$ then $H \cup K = K$ which is a subgroup of G.

If $K \subseteq H$ then $H \cup K = H$ which is a subgroup of G.

Conversely suppose $K \not\subset H$ and $H \not\subset K$.

Then there exists $a \in H$ and $a \notin K$ and there exists a $b \in K$ and $b \notin H$.

Now $a, b \in H \cup K$. Because $H \cup K$ is a subgroup, it follows that $a * b \in H \cup K$. Hence $a * b \in H$ or $a * b \in K$.

Case (i): If $a * v \in H$

Then $a^{-1} * (a * b) \in H$

That is $b \in H$ which is a contradiction.

Case (ii): If $a * b \in K$

Then $a * b * b^{-1} \in K$

i.e., $a \in K$ which is a contradiction.

Thus either $H \subseteq K$ or $K \subseteq H$

Example 4. Prove that the intersection of two subgroups of a group is a subgroup of G.

[A.U M/J 2013, N/D 2013, N/D 2014]

Solution: Given H and K are subgroups of G.

Let $a, b \in H \cap K \Rightarrow a, b \in H$ and $a, b \in K$

 $\Rightarrow a * b^{-1} \in H$ and $a * b^{-1} \in K$ (as H and K are subgroups)

 $\Rightarrow a * b^{-1} \in H \cap K$.

Thus $H \cap K$ is a subgroup of G.

Example 5. Show that the set of all elements a of a group (G, *) such that a * x = x * a for every $x \in G$ is a subgroup of G.

[A.U N/D 2010]

Solution: Let
$$H = \{a \in G \mid ax = x a, \forall x \in G\}$$

As ey = ye = y, $\forall y \in G$, $e \in G$, H is non empty.

Let x and z in H

Then xy = yx and zy = yz for all $y \in G$

$$(xz) y = x (yz) \Rightarrow (yx) z = y (xz), \forall y \in G$$

$$\therefore xz \in H, \quad \forall x,z \in H$$

$$x \in H \Leftrightarrow xy = yx, \qquad \forall y \in G$$

$$\Leftrightarrow x^{-1}(xy)x^{-1} = x^{-1}(yx)x^{-1}, \quad \forall y \in G$$

$$\Leftrightarrow$$
 $(x^{-1}x)(yx^{-1}) = (x^{-1}y)(xx^{-1})$

$$\Leftrightarrow yx^{-1} = x^{-1}y$$

$$\Leftrightarrow x^{-1} \in H$$

 \therefore H is a subgroup.

Example 6. If 'a' is a generator of a cyclic group G, then show that 'a⁻¹, is also a generator of G. [A.U M/J 2012]

Solution: Let G = (a) be a cyclic generated by 'a'

If $x \in G$, then $x = a^n$ for some $n \in Z$

$$x = a^n = (a^{-1})^{-n}, (-n \in \mathbb{Z})$$

 \therefore 'a⁻¹, is also a generator of G.

Example 7. Find all the subgroups of $(z_9, +_9)$ [A.U M/J 2014]

Solution: $Z_9 = \{0, 1, 2, 3, 4, 5, 6, 7, 8\}$

The operation is addition modulo 9.

Consider the subsets

$$H_1 = \{0, 2, 4, 6, 8\}$$

$$H_2 = \{0, 3, 6\}$$
 $H_3 = \{0, 4, 8\}$
 $H_4 = \{0, 5\}$

The improper subgroups of $(Z_9, +_9)$ are $[\{0\}, +_9]$ and $[Z_9, +_9]$

+9	0	5	+9	0	
0	0	5	0	0	
5	5	1	4	4	
			8	8	

 $[H_4 \text{ is closed}]$

TTT	•	1 17
1112	18	closedl

3

•		1/223			25				
+9	0	3	6	+9	0	2	4	6	8
0	0	3	6	0	0	2	4	6	0
3	3	6	0	2	2	4	6	8	1
6	6	0	3	4	4	6	8	1	3
				6	6	8	1	3	5
$[H_2 \text{ is closed}]$			8	8	1	3	5	7	
					$[H_1]$	is clos	sed]		leanne.

The operation tables shows that

 H_1 , H_2 , H_3 and H_4 are closed for +9

The possible proper subgroups of
$$(Z_9, +_9)$$
 are $(H_1, +_9)$, $(H_2, +_9)$, $(H_3, +_9)$ and $(H_4, +_9)$

Example 8. Any cyclic group of order n is isomorphic to the additive group of residue classes of integers modulo n.

Proof:

Let $G = \{a, a^2, ..., a^n = e\}$ be a cyclic group of order n generated by a.

We know that $(Z_n, +_n)$ is the additive group of residue classes modulo n.