CXA2570N

RF Matrix Amplifier

Description

The CXA2570N is an IC developed for the RF signal processing of compact disc players.

Features

- Wide band RF signal processing
- RF system VCA circuit
- RF system equalizer (supports CAV mode)
- Supports pickups with built-in RF summing amplifier
- Low power consumption mode (EQ Pass mode)
- RW/ROM switching mode

Functions

- RFAC summing amplifier, equalizer, VCA
- RFDC summing amplifier
- Focus error amplifier
- Tracking error amplifier
- · Automatic power control
- VC buffer amplifier

Applications

CD-ROM/RW compatible systems

Structure

Bipolar silicon monolithic IC

Absolute Maximum ratings

• Sı	upply voltage	Vcc	7	V
• O	perating temperature	Topr	-20 to +75	°C
• St	torage temperature	Tstg	-65 to +150	°C
• Al	lowable power dissipa	ation		
		Pp	620	mW

Operating Conditions

 Supply voltage 	Vcc – GND	3.0 to 5.5	V
• Operating temperature	Topr	-20 to +75	°C

Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.

Connected Circuit Diagram

Pin Description

Pin No.	Symbol	I/O	Description
1	LD	Out	APC amplifier output.
2	PD	In	APC amplifier input.
3	EQ_IN	In	RFAC system VCA block and EQ block input.
4	AC_SUM	Out	RFAC system RF SUM output.
5	GND	In	Ground.
6	А	In	A signal input.
7	В	In	B signal input.
8	С	In	C signal input.
9	D	In	D signal input.
10	Е	In	E signal input.
11	F	In	F signal input.
12	SW	In	Mode switching signal input.
13	RFAC	Out	RFAC signal output.
14	FE	Out	Focus error signal output.
15	FEI	_	FE amplifier virtual ground.
16	TE	Out	Tracking error signal output.
17	Vcc	In	Vcc.
18	RFG	In	RFAC system VCA block low-frequency gain adjustment.
19	BST	In	EQ boost amount adjustment range.
20	VFC	In	EQ cut-off frequency adjustment.
21	RFC	In	EQ cut-off frequency adjustment.
22	VC	Out	VC voltage output.
23	RFDCO	Out	RFDC signal output.
24	RFDCI	_	RFDC amplifier virtual ground.

Pin Description and Equivalent Circuit

Pin No.	Symbol	I/O	Equivalent circuit	Description
1	LD	0	10k \$	APC amplifier output.
2	PD	I	2	APC amplifier input.
3	EQ_IN	I	1.1k \$\frac{1}{8} \tag{1.1k} \\ \frac{1}{1.2k} \\ \frac{1}{8} \tag{5k} \\ \frac{1}{11} \\ \frac{1} \\ \frac{1}{11} \\ \frac{1}{11} \\ \frac{1}	Equalizer circuit input.
4	AC_SUM	0	1.6k 1.6k 4	RFAC summing amplifier output.
5	GND	_	_	Ground.

Pin No.	Symbol	I/O	Equivalent circuit	Description
6	А	I		
7	В	I	6 100μA 100μA 30k 7/7	RF summing amplifier and
8	С	I	8 100µA 100µA 47k	focus error amplifier input.
9	D	I	9 /// /// 100μA /// /// /// /// /// /// /// /// /// /	
10	Е	I	27k 27k W	Tracking error amplifier input.
11	F	I	124	
16	TE	0		Tracking error amplifier output.
12	SW	I	200k W 200k 200k W 200k W	CD-ROM/RW switching input. RW when connected to Vcc, ROM when connected to GND.
13	RFAC	0	2mA W 13	RFAC amplifier output.
14	FE	0	50k 124 14)	Focus error amplifier output.
15	FEI	I	124 777 15 15 15 177 15 15 15 177 15 15 177 15 15 177 15 15 177 15 15 177 15 15 177 15 15 177 15 177 15 177 15 177 15 177 15 177 177	Focus error amplifier gain adjustment. The gain is adjusted by the external resistance value connected between this pin and Pin 14.

Pin No.	Symbol	I/O	Equivalent circuit	Description
17	Vcc	_	-	Power supply.
18	RFG	I	18 → 20k → ∇ VC VC 100μA	Sets the RFAC low-frequency gain.
19	BST	I	19 20k × 50μΑ × VC	Input for adjusting the equalizer circuit boost amount.
20	VFC	ı	20k × VC γC 100μA	Input for adjusting the equalizer circuit boost frequency with the control voltage.
21	RFC	I	21 124 1.0V	Input for adjusting the equalizer circuit boost frequency with external resistance.
22	VC	0	150k A 22 150k A 22 150k A 22	(Vcc + GND)/2 voltage output.
23	RFDC	0	1mA A	RFDC amplifier output. This pin serves as the eye pattern check point.
24	RFDCI	I	1.5k VC WV 124 124 124 1777 1777 1777	RFDC amplifier gain adjustment. The gain is adjusted by the external resistance value connected between this pin and Pin 23.

Electrical Characteristics

-	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1-1:	1	0	1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3	3					'			١									
Measurement item Symbol S1 S2 S3 S4 S5	Symbol S1 S2 S3 S4	S1 S2 S3 S4	S2 S3 S4	S3 S4	84	_	_	stch co	S7		S9 S1	S10 S11	S12 V1 amplitude	V1 frequen	Bias conditions	onditio	ons E3	3 E4	4 E5		Measure- ment pin	Measurement conditions	Min.	Тур.	Мах.	Unit
Current consumption (Active, EQ On) 1cc_Aeqon		lcc_Aeqon						1							0	8	8	0 /	/0		17	Pin current	25	45	65	шA
Current consumption (Active, EQ Off) 1cc_Aeqoff		lcc_Aeqoff																1.9V	>		17	Pin current	10	25	40	mA
Current consumption (Sleep) Icc_Slp		lcc_Slp										Hi-Z						00	/	l	17	Pin current	3.0	2	7.5	mA
SUM offset voltage ACSUM_Ofst		ACSUM_Ofst																			4	Pin voltage	-1.2	9.0-	0	>
SUM frequency gain Gsum O O	Gsum		0	0	0	0	0	, ,	0	0	$\vdash \vdash$		0.1Vp-p	100kHz							4	20 log (Vout/Vin)	14.0	16.0	18.0	쁑
SUM frequency response Fsum O O O	Fsum	0	_	_	_	_	_		0	0			0.1Vp-p	зниоє	A						4	20 log (Vout/Vin) – Gsum	-3.0	-1.5	0.3	фB
SUM maximum output voltage H Vsum_H O O O	Vsum_H	0							0	0					0.3V						4	Pin voltage	0.9	1.25		>
SUM maximum output voltage L Vsum_L O O O	Vsum_L O	0							0	0					-0.3V						4	Pin voltage		-0.5	-0.3	>
Offset voltage ROM AC_OfstROM		AC_OfstROM													Λ0					-	13	Pin voltage	-0.3	0	0.3	>
Offset voltage RW AC_OfstRW		AC_OfstRW										0									13	Pin voltage	-0.3	0	0.3	>
Low-frequency gain ROM_min Gac_ROM1 O	Gac_ROM1		0	0									1.6Vp-p	100kHz			-1.0V	١٨			13	20 log (Vout/Vin) – Gac_ROM2	-11.0	0.8-	-5.0	ф
Low-frequency gain ROM_cnt Gac_ROM2 O	Gac_ROM2		0	0									0.8Vp-p	0.8Vp-p 100kHz			8			,	13	20 log (Vout/Vin)	-1.0	2.0	2.0	B
Low-frequency gain ROM_max Gac_ROM3 O	Gac_ROM3		0	0									0.3Vp-p	100kHz			1.0V				13	20 log (Vout/Vin) – Gac_ROM2	5.0	8.0	11.0	ф
Low-frequency gain RW_min Gac_RW1 O	Gac_RW1		0	0								0	0.4Vp-p	100kHz			-1.0V	١٨			13	20 log (Vout/Vin) – Gac_RW2	-11.0	0-8-0	-5.0	В
U Low-frequency gain RW_cnt Gac_RW2 O	Gac_RW2		0	0								0	0.2Vp-p	100kHz			8			,-	13	20 log (Vout/Vin) – Gac_ROM2	9.0	12.0	15.0	쁑
Low-frequency gain RW_max Gac_RW3 O	Gac_RW3		0	0								0	75mVp-p	75mVp-p 100kHz			1.0V	>		,-	13	20 log (Vout/Vin) - Gac_RW2	5.0	8.0	11.0	용
Low-frequency gain EQ_off Gac_EQoff O	Gac_EQoff		0	0									0.8Vp-p	100kHz			8				13	20 log (Vout/Vin)	-1.0	2.0	5.0	용
Frequency response Min_L Fac_MinL O	Fac_MinL		0	0									0.2Vp-p	10MHz					V6.1-		13	20 log (Vout/Vin) - Gac_ROM2	3.5	0.9	8.5	쁑
Frequency response Min_H Fac_MinH O	Fac_MinH		0	0									0.2Vp-p	30MHz					1.9V		13	20 log (Vout/Vin) - Gac_ROM2	3.5	0.9	8.5	ф
Frequency response EQ_OFF	Fac_ECoff		0	0									0.8Vp-p	30MHz	-			1.9V	\ \ \ \ \		13	20 log (Vout/Vin) – Gac_EQoff	-2.0	-1.0	-0.5	쁑
Maximum output voltage H Vac_H O O	Vac_H O	0													2V			8	_	,-	13	Pin voltage – AC_OfstROM	9.0	0.8		>
Maximum output voltage L Vac_L O O	Vac_L O	0													-2v					,-	13	Pin voltage – AC_OfstROM		-0.8	9.0-	>
Offset voltage ROM DC_OfstROM		DC_OfstROM													0					.,	23	Pin voltage	-150	0	150	m \
Offset voltage RW DC_OfstRW		DC_OfstRW										0								.,	23	Pin voltage	-100	0	400	E >
Low-frequency gain ROM Gdc_ROM O O	Gdc_ROM O	0							0	0			0.1Vp-p	0.1Vp-p 100kHz						.,	23	20 log (Vout/Vin)	16.5	19.5	22.5	쁑
C Low-frequency gain RW Gdc_RW 0 0	Gdc_RW O	0							0	0		0	25mVp-p	25mVp-p 100kHz						,,	23	20 log (Vout/Vin)	29.0	32.0	35.0	ф
Frequency response ROM Fdc_ROM O O	Fdc_ROM 0	0							0	0			0.1Vp-p	10MHz						.,	23	20 log (Vout/Vin) – Gdc_ROM	-3.5	-1.5	-0.5	ф
Frequency response RW Fdc_RW O	Fdc_RW O	0							0	0		0	25mVp-p	10MHz	-					. 4	23	20 log (Vout/Vin) – Gdc_RW	-6.0	-3.0	-0.5	дB
Maximum output voltage H Vdc_H O O	Vdc_H O	0							0	0					0.25V					. 1	23	Pin voltage	1.3	1.6		>
Maximum output voltage L Vdc_L O O	Vdc_L 0 0	0 0	0	0	0	0	0		0	0					-0.25V	-				.,1	23	Pin voltage	I	-1.0	9.0-	>

; -		٦ ک	٦ کس	В	дB	ВВ	ВВ	ВВ	ВВ	дB	dВ	>	>	/m	/u	dВ	ВВ	ВВ	ВВ	дB	ВВ	дB	дB	>	>	/u	>	>	>	>	Jm /
70	Max.	150 r	150 r	19.0	19.0	31.0	31.0	0.3	0.3	0.3	0.3		-1.1	150 r	150 r	23.0	23.0	35.0	35.0	1.5	1.5	-0.2	-0.2	1	-1.1	185 r	0.95	-0.45	1	9.0	100
٩	- الم	0	0	16.0	16.0	28.0	28.0	-0.5	-0.5	-0.5	-0.5	1.7	-1.5	0	0	20.0	20.0	32.0	32.0	0	0	-2.0 -	-2.0 -	1.7	-1.5	135	0.7	-0.7	1.6	0	0
		-150	-150	13.0	13.0	25.0 2	25.0 2	-3.5	-3.5	-3.5	-3.5	1.2	Ė	-150	-150	17.0	17.0	29.0	29.0	-1.5	-1.5	-4.5	-4.5	1.2		82	0.45	-0.95	4.1	-0.2	-100
Measurement	conditions	Pin voltage	Pin voltage	20 log (Vout/Vin)	20 log (Vout/Vin)	20 log (Vout/Vin)	20 log (Vout/Vin)	20 log (Vout/Vin) – Gfe_ROM1 –	20 log (Vout/Vin) – Gfe_ROM2	20 log (Vout/Vin) – Gfe_RW1	20 log (Vout/Vin) – Gfe_RW2	Pin voltage	Pin voltage	Pin voltage	Pin voltage	20 log (Vout/Vin)	20 log (Vout/Vin)	20 log (Vout/Vin)	20 log (Vout/Vin)	20 log (Vout/Vin) – Gte_ROM1	20 log (Vout/Vin) – Gte_ROM2	20 log (Vout/Vin) – Gte_RW1	20 log (Vout/Vin) – Gte_RW2	Pin voltage	Pin voltage	Input where output voltage = 0V	Pin voltage	Pin voltage	Pin voltage	Pin voltage	Pin voltage
Measure-	ment pin	14	14	14	14	14	14	14	14	14	14	14	14	16	16	16	16	16	16	16	16	16	16	16	16	-	-	1	-	1	22
	E5	8																													-
	E4	8																													-
	E3	8																													-
litions	E2	8																									-30mV	30mV	0		—
Bias conditions	E1	8									—	0.3V	−0.3V	70									-	0.3V	−0.3V	70	<u>T</u>	3			-
Bias				10kHz	10kHz	10kHz	10kHz	00kHz	100kHz	50kHz	50kHz	0	!			10kHz	10kHz	10kHz	10kHz	200kHz	00kHz	00kHz	00kHz	0	!						
	S12 V1 amplitude V1 frequency			0.1Vp-p 10	0.1Vp-p	25mVp-p 10	25mVp-p 10	0.1Vp-p 100kHz	0.1Vp-p 10	25mVp-p 50	25mVp-p 50					0.1Vp-p 10	0.1Vp-p 10	25mVp-p 10	25mVp-p 10	0.1Vp-p 20	0.1Vp-p 200kHz	25mVp-p 200kHz	25mVp-p 200kHz								
	12 V1 aı			0.1	0.1	25n	25n	0.1	0.1	25n	25n					0.1	0.1	25n	25n	0.1	0.1	25n	25n								
			0			0	0			0	0				0			0	0			0	0						Hi-Z		0
	S10 S11									_							0		0		0		0	0					I		\vdash
	68															0		0		0		0			0						
tions	88				0		0		0		0	0																			
Switch conditions	S S7			0	_	0		0		0			0																		
witch	S5 S6			0	0	0	0	0	0	0	0	0	0																		
Ó	S4 S																														
	S3 8																														
	S2																									0	0	0	0	0	
	S																													0	
0	Syllibol	FE_OfstROM	FE_OfstRW	Gfe_ROM1	Gfe_ROM2	Gfe_RW1	Gfe_RW2	Ffe_ROM1	Ffe_ROM2	Ffe_RW1	Ffe_RW2	Vfe_H	Vfe_L	TE_OfstROM	TE_OfstRW	Gte_ROM1	Gte_ROM2	Gte_RW1	Gte_RW2	Fte_ROM1	Fte_ROM2	Fte_RW1	Fte_RW2	Vte_H	Vte_L	Vapc1	Vapc2	Vapc3	Vapc_off	lapc_max	Vvc
Month of the second of the sec	Medsurement rem	Offset voltage ROM	Offset voltage RW	Low-frequency gain ROM1	Low-frequency gain ROM2	Low-frequency gain RW1	Low-frequency gain RW2	Frequency response ROM1	Frequency response ROM2	Frequency response RW1	Frequency response RW2	Maximum output voltage H	Maximum output voltage L	Offset voltage ROM	Offset voltage RW	Low-frequency gain ROM1	Low-frequency gain ROM2	Low-frequency gain RW1	Low-frequency gain RW2	Frequency response ROM1	Frequency response ROM2	Frequency response RW1	Frequency response RW2	Maximum output voltage H	Maximum output voltage L	Output voltage 1	Output voltage 2	Output voltage 3	APC OFF voltage	Maximum output current	Output voltage
<u> </u>	un-			I	I	1		 	I										3	Τ								УЬС			ОΛ
	Meas	31	32	33	8	35	36	37	38	33	40	4	42	43	4	45	46	47	48	49	20	51	52	53	54	22	26	22	28	29	09

Electrical Characteristics Measurement Circuit

Application Circuits

Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same.

Description of Functions

• RFAC

The RF signal input by connecting capacitance to the EQ_IN pin is equalized, arithmetically amplified and then output from the RFAC pin.

The EQ can be bypassed by connecting the BST control pin (Pin 19) to Vcc. In this case only the EQ block enters sleep mode and the low power consumption mode (slim mode) is activated. The low-frequency gain is the same value as for EQ ON mode.

The RF SUM input dynamic range is VC ± 300mV (typ.).

If RF (summing signal) is present at the pickup output pin, input the addition output signal to the EQ_IN pin (Pin 3) coupled by capacitance.

When using a pickup without a summing output function, perform addition with the AC SUM block and then input the signal to the EQ_IN pin coupled by capacitance.

RW/ROM switching is done by the VCA block, so either input method can be used without problem.

The RW gain is 12dB higher than the ROM gain.

The VCA low-frequency gain can be adjusted by the RFG pin (Pin 18) voltage.

The control voltage vs. low-frequency gain characteristics are shown in the graph to the right.

The RFAC pin (Pin 13) is an NPN transistor emitter follower output.

The maximum drive current is approximately 2mA.

If the load capacitance distorts the output waveform, increase the drive current.

Connect resistance between Pin 13 and GND.

SONY CXA2570N

• EQ

The diagram to the left shows the EQ internal block diagram.

The EQ consists of a combination of HPF and LPF. The HPF and LPF transmittance is the Bessel function. The boost gain can be adjusted by adjusting the HPF gain.

The boost frequency is adjusted by the RFC external resistance value and the VFC control voltage value.

RFC resistance value: The cut-off frequency fo of each

filter is adjusted by the Pin 21 external resistance value. The VFC voltage can be varied using this fo as the reference.

VFC voltage: fo can be changed by the voltage

applied to Pin 20.

The boost gain can be adjusted by the BST pin control voltage.

The control characteristics are shown in the graph below.

The cut-off frequency control characteristics are shown in the graph below.

• APC (Automatic Power Control)

When the laser diode is driven by a constant current, the optical power output has extremely large negative temperature characteristics. Therefore, the current must be controlled to maintain the monitor photodiode output at a constant level. This control is performed by the APC function

Focus Error

The signals input to the A and C pins and the B and D pins are arithmetically amplified and the focus error signal is output.

This circuit has RW/ROM switching, low-frequency gain adjustment and offset adjustment (external resistance) functions.

$$FE = Gain \{(B + D) - (A + C)\}$$

Low-frequency gain ROM: 16dB

RW: 28dB

Cut-off frequency fc (typ.) ROM: 400kHz

RW: 300kHz

• Tracking Error

The signals input to the E and F pins are arithmetically amplified and the tracking error signal is output. This circuit has RW/ROM switching, low-frequency gain adjustment and offset adjustment (external resistance) functions.

VC Buffer

This outputs the VC ((1/2) Vcc) voltage.

The maximum output current is approximately ±3mA.

CXA2570N

• RFDC

The signals input via the A, B, C and D pins are added, amplified and the RFDC signal is output. RW/ROM switching, low-frequency gain adjustment and offset adjustment are possible.

RFDC = Gain (A + B + C + D)

Low-frequency gain ROM: 20dB

RW: 32dB

fc (Typ.) ROM: 12MHz

RW: 5MHz

The gain can be adjusted by the external resistance connected between Pins 23 and 24.

• SW

This controls the laser (APC) on/off, active/sleep mode, and RW/ROM mode switching. Switching is controlled by the voltage applied to the SW pin (Pin 12).

The VC buffer is kept active even in sleep mode.

In the function block, BGR and MODE_SW are always set to active mode.

Item Control voltage	APC	Active/Sleep	RW/ROM
Vcc	ON	Active	RW
VC or Hi-Z	OFF	Sleep	_
GND	ON	Active	ROM

Notes on Operation

Stabilizing the RFAC signal

The RFAC system (RFSUM + EQ) is comprised entirely of non-inverted function blocks.

This is in order to support pickups with built-in RFSUM.

Therefore, if the voltage gain of each block is increased, a feedback loop is formed over the entire RFAC system causing the RFAC signal to become unstable (oscillate).

In these cases, it is recommended to lower the EQ frequency response and the boost gain. This has a large effect on the board (power supply, I/O signal cross talk, etc.) loop. The RFAC signal easily becomes unstable if the VCA gain is increased, the EQ boost frequency is set to a high frequency, the EQ boost amount is increased, etc.

The VCA gain is low in ROM mode, so the RFAC signal is stable. Also, when not using RFSUM, the RFAC signal is stabilized because the overall gain is low.

The area where the RFAC signal becomes unstable is thought to vary for each set, as this is greatly affected by the board loop as noted above.

Proposed stabilization measures

The board and other loop characteristics can be changed by adding external capacitance as noted below.

This has a particularly large effect on the stabilization when using RFSUM.

Add capacitance of 10pF to 20pF.

0 0.1

Example of Representative Characteristics

10

[MHz]

100

Package Outline

Unit: mm

24PIN SSOP(PLASTIC)

DETAIL A

PACKAGE STRUCTURE

SONY CODE	SSOP-24P-L01
EIAJ CODE	SSOP024-P-0056
JEDEC CODE	

PACKAGE MATERIAL	EPOXY RESIN
LEAD TREATMENT	SOLDER/PALLADIUM PLATING
LEAD MATERIAL	42/COPPER ALLOY
PACKAGE MASS	0.1g

NOTE: PALLADIUM PLATING

This product uses S-PdPPF (Sony Spec.-Palladium Pre-Plated Lead Frame).