Math 131A Homework 2

Jiaping Zeng

8/12/2020

8.1 Prove the following:

- (a) $\lim \frac{(-1)^n}{n} = 0$
- (c) $\lim \frac{2n-1}{3n+2} = \frac{2}{3}$
- 8.4 Let (t_n) be a bounded sequence, i.e., there exists M such that $|t_n| \leq M$ for all n, and let (s_n) be a sequence such that $\lim s_n = 0$. Prove $\lim (s_n t_n) = 0$.
- 8.5 (a) Consider three sequences (a_n) , (b_n) and (s_n) such that $a_n \leq s_n \leq b_n$ for all n and $\lim a_n = \lim b_n = s$. Prove $\lim s_n = s$. This is called the "squeeze lemma."
 - (b) Suppose (s_n) and (t_n) are sequences such that $|s_n| \le t_n$ for all n and $\lim_{n \to \infty} t_n = 0$. Prove $\lim_{n \to \infty} s_n = 0$.
- 8.6 Let (s_n) be a sequence in \mathbb{R} .
 - (a) Prove $\lim s_n = 0$ if and only if $\lim |s_n| = 0$.
 - (b) Observe that if $s_n = (-1)^n$, then $\lim |s_n|$ exists, but $\lim s_n$ does not exist.
- 8.9 Let (s_n) be a sequence that converges.
 - (a) Show that if $s_n \geq a$ for all but finitely many n, then $\lim s_n \geq a$.
 - (b) Show that if $s_n \leq b$ for all but finitely many n, then $\lim s_n \leq b$.
 - (c) Conclude that if all but finitely many s_n belong to [a, b], then $\lim s_n$ belongs to [a, b].
- 8.10 Let (s_n) be a convergent sequence, and suppose $\lim s_n > a$. Prove there exists a number N such that n > N implies $s_n > a$.
- 9.1 (a)
 - (b)
- 9.3
- 9.9
- 9.10 (a)

(b)

9.11

9.12

10.5

10.6

10.7

P1