DAT158 – Machine learning and advanced algorithms – Høgskulen på Vestlandet

Compulsory exercise, Algorithms number 2

Due date: November 15th 2023

(At most three students per group. Does **not** count in the final grade)

Problem 1 (Number 5, Problems 2)

Given 7 jobs with corresponding processing times.

Job	1	2	3	4	5	6	7
number							
Processing	4	7	2	9	12	5	3
time							

The jobs will be processes on 3 identical machines without interruption. All jobs are available at time 0. (Model on slide 13, Chapter 2)

- a) Use the local search algorithm where we have all jobs on machine 1 in the beginning (in the same order as they are given). When you move a job, move it to the machine it can start earliest. I there is a tie, use the machine with the lowest number. What is the result, both time when the last job finish and the actual schedule?
- b) Use the Greedy algorithm on the same data. When have all jobs finished?
- c) Use the Longest processing time rule. When have all jobs finished?
- d) Give a lower bound on the best solution (Give a short explanation)?
- e) Is it possible to achieve the answer in d) (Explain)?

Problem 2 (Number 6, Problems 2)

The adjacency matrix of a graph with 6 vertices is given below. The triangle inequality holds for the whole graph.

0	4	5	10	11	7
4	0	9	6	7	9
5	9	0	9	6	2
10	6	9	0	3	9
11	7	6	3	0	6
7	9	2	9	6	0

- a) Verify that the triangle inequality holds when going from vertex 1 to vertex 5.
- b) Run the nearest addition algorithm on the graph. If there are more than one candidate to add in a step, use the vertex with the smallest number. It is sufficient to have fours nodes in the tour (skipping the last two iteration through the loop).
- c) Run the Double tree algorithm on the graph. If there are more than one minimum spanning tree, you should run it on every tree.
- d) Run Christofides' algorithm on the graph. If there are more than one minimum spanning tree, you should run it on every tree.

Problem 3 (Number 2, Problem 3)

a) Run the dynamic programming algorithm (page 58 or Chapter 3, slide 6) on the following knapsack instance with B = 10. Show A(i) twice (before and after removing dominating pairs) for each iteration through the loop.

Item	Size	Value
1	3	5
2	2	3
3	2	2
4	4	5
5	3	4
6	1	2

- b) What is the maximum number of elements in A(i) expressed in terms of B?
- c) Let n be the number of items in the knapsack problem and let v_i be the value of item i. Furthermore let $V=\sum_{i=1}^n v_i$. What is the maximum of elements in A(i) expressed in terms of V?

Problem 4 (Number 6, Problem 3)

Consider the problem of minimizing the sum of completion times on a single machine given the data below (start of Chapter 4):

Job number	Release time	Processing time		
1	0	6		
2	0	5		
3	1	3		
4	2	1		
5	3	4		
6	4	2		
7	19	2		

Use the approximation algorithm based on the Shortest Remaining Processing Time for preemptive scheduling (Chapter 4, slide 7) to find an approximate solution to the nonpreemptive problem.

Problem 5 (Number 3, Problems 4)

- a) Implement the randomized algorithm for MAX SAT where we set each x_i to true independently with probability $\frac{1}{2}$ (it is very simple).
- b) Assign values to $x_1, ..., x_5$ by the derandomized version of the algorithm based on methods of conditional expectations (page 103 104) to the following clauses

$$\begin{split} &C_1 = 3(x_1 \vee \overline{x_2} \vee x_3) \\ &C_2 = 4(x_1 \vee \overline{x_3}) \\ &C_3 = 1(\overline{x_1} \vee x_2 \vee \overline{x_5}) \\ &C_4 = 3(\overline{x_1} \vee x_3) \\ &C_5 = 2(x_2 \vee \overline{x_4}) \\ &C_6 = 7(\overline{x_2} \vee x_5 \vee x_9) \\ &C_7 = 2(x_3 \vee \overline{x_4}) \\ &C_8 = 3(\overline{x_4} \vee \overline{x_5} \vee x_{21}) \\ &C_9 = 5(x_5 \vee \overline{x_{12}}) \\ &\cdots \end{split}$$

The clauses $C_1, ..., C_9$ are the only clauses containing the variables $x_1, ..., x_5$.

Problem 6 (Number 4, Problems 4)

We have the following MAX SAT problem

$$C_1 = 4(x_1 \vee \overline{x_3}), C_2 = 3(\overline{x_1} \vee x_4), C_3 = 2(\overline{x_2} \vee x_4), C_4 = 1(\overline{x_2} \vee \overline{x_3} \vee x_4)$$

- a) Find the ILP (IP) formulation of the problem above.
- b) Find the LP formulation of the problem.

Problem 7

The graph below is 3-colorable. Use the algorithm that colors a 3-colorable graph with $O(\sqrt{n})$ colors, Chapter 6 to color the graph. Every time you have a choice between nodes, choose the lowered number one. Notice, it is important to understand the algorithm, not find the best coloring.

	1	2	3	4	5	6	7	8	9
1			1	1		1		1	
2							1		1
3	1			1		1			
4	1		1						
5						1			1
6	1		1		1			1	
7		1						1	1
8	1					1	1		
9		1			1		1		

Problem 8

A vertex cover of a graph is a subset of the vertices, $C \subseteq V$ such that every edge has at least one endpoint in C, that is $\forall (i.j) \in E$, either $i \in C$ or $j \in C$. We want to find a minimum vertex cover.

- a) Formulate the problem above as an integer linear program (ILP).
- b) Formulate the LP relaxation of the ILP above.
- c) Formulate the Dual version of the LP problem above.
- d) We have a large graph with 10.000 vertices. We solve the LP-problem and get the solution 500 (number of vertices in the vertex cover). What can we say about the solution of the original problem in a)?