Lekce 2: Taxonomie počítačových sítí

Jiří Peterka

co je "taxonomie"?

• taxonomie = klasifikace, "škatulkování", rozdělování

- původně: v biologii
- zde: pro počítačové sítě
 - chceme vědět
 - jaké existují druhy počítačových sítí
 - v čem se liší, co je pro ně charakteristické
 - **–**
 - pomůže nám to k pochopení toho, co počítačové sítě jsou

kritéria taxonomie

- nemusí být exaktně definována,
 - ani výsledné kategorie ("škatulky") nemusí být přesně vymezeny, hranice mezi nimi nemusí být ostré
 - s časem, s vývojem technologií, potřeb uživatelů atd. se mění
 - konkrétní klasifikace může mít i subjektivní složku
 - rozdělení záleží na tom, kdo ho dělá
- nemusí být vzájemně disjunktní!
 - výsledné "škatulky", představující dělení podle různých kritérií, se mohou vzájemně prolínat
 - jedna a tatáž síť může patřit do různých "škatulek" současně (při uvážení různých kritérií)

příklady kritérií

podle způsobu fungování:

- distribuční sítě vs. sítě s přepojováním
 - sítě s přepojováním okruhů
 - sítě s přepojováním paketů

• podle "původu" :

- telekomunikační sítě, počítačové sítě, terminálové sítě,
- podle účelu (sítě světa spojů):
 - transportní sítě (páteřní sítě),
 přístupové sítě
- podle dosahu (sítě světa počítačů):
 - sítě LAN, WAN, MAN, PAN
 - sítě WLAN, WWAN, WMAN, WPAN
- podle architektury sítě
 - TCP/IP sítě, sítě ISO/OSI, sítě SNA,

podle vlastnických vztahů k síti

- privátní sítě, veřejné sítě, virtuální privátní sítě (VPN)
- podle způsobu použití
 - intranet, extranet
- podle míry mobility
 - pevné sítě, mobilní sítě,
 - sítě s plnou podporou mobility,
 - sítě s podporou nomadicity
- podle použitého přenosového média
 - drátové sítě, optické sítě, bezdrátové sítě

podle topologie:

- sítě se systematickou topologií
 - strom, kruh, sběrnice, ...
- sítě s nesystematickou topologií,
- ad-hoc sítě

distribuční sítě

distribuční síť

- anglicky: broadcast network
- distribuuje stejný obsah (analogový signál, digitální data) všem příjemcům
 - · distribuce, angl. broadcasting
 - broadcast, všesměrové vysílání
 - přenos typu "1:všem" (ne 1:1)
- příklady:
 - sítě pro distribuci TV a R vysílání
 - satelitní, terestrické, kabelové
- technologie digitálních distribučních sítí:
 - DVB (Digital Video Broadcasting)
 - DVB-T (terestrické TV vysílání)
 - DVB-S (satelitní TV vysílání)
 - DVB-C (kabelové TV vysílání)
 - DVB-H (TV vysílání pro mobily/handheld)
 - DAB (Digital Audio Broadcasting, jen R vysílání)
 - S-DMB, T-DMB (Digital Media Broadcasting, TV a R)
 -

sítě s přepojováním

síť s přepojováním

- anglicky: switched network
- společné označení pro sítě s přepojováním okruhů i přepojováním paketů
 - provádí cílené "přepojování" (switching)
 - tak, aby se přenášený obsah dostal cíleně (právě a pouze) ke svému příjemci
 - důsledek: jde o přenos 1:1, unicast
 - od 1 odesilatele k 1 příjemci
 - forma přepojování:
 - přepojování okruhů
 - přepojování paketů

- · jde o alternativu k distribuční sítí
 - která zajišťuje distribuci (broadcasting)

sítě s přepojováním okruhů a paketů

připomenutí:

- sítě s přepojováním okruhů:
 - přepojují se přenosové okruhy
 - fungují pouze spojovaně
 - navazuje se spojení
 - výsledkem je souvislý přenosový okruh s vyhrazenou přenosovou kapacitou
 - hledání vhodné cesty probíhá právě jednou
 - na začátku, při navazování spojení
 - všechna data se přenáší stejnou cestou
 - po přenosovém okruhu
 - přenos může být proudový nebo blokový

- sítě s přepojováním paketů
 - přepojují se bloky dat (pakety)
 - mohou fungovat spojovaně
 - jako virtuální okruhy
 - spojení se navazuje a ukončuje
 - hledání vhodné cesty se provádí právě jednou, při navazování spojení
 - obdoba přepojování okruhů, ale jen virtuálně, bez vyhrazování kapacity
 - mohou fungovat nespojovaně
 - jako datagramová služba
 - spojení se nenavazuje
 - rozhodnutí o dalším směru (v rámci cesty k cíli) se provádí pokaždé znovu, pro každý blok dat a v každém přestupním uzlu

telekomunikační a datové sítě

paradigma: "chytrá síť, hloupé uzly"

telekomunikační sítě

- jsou jednoúčelové, šité na míru konkrétnímu účelu
 - poskytování jedné konkrétní služby
 - např. telefonování, šíření TV a R vysílání
- tomu odpovídá i způsob fungování
 - obvykle: garantovaný
- mohou být analogové i digitální
- příklady:
 - telefonní síť (pevná i mobilní)
 - slouží potřebám telefonování
 - jde o síť s přepojováním (okruhů)
 - vysílací síť (pro TV nebo R)
 - slouží potřebám TV a R vysílání
 - jde o distribuční síť

datové sítě

- pouze přenáší data, neřeší účel dat
 - nezajímá je / nezkoumají, které službě data patří
- fungují "nezávisle"
 - na druhu / účelu přenášených dat
- obvykle:
 - na principu přepojování paketů
 - stylem Best Effort
 - negarantovaně
 - spojovaně i nespojovaně
 - záleží na síti
 - spolehlivě i nespolehlivě
 - záleží na síti
- příklady:
 - IP sítě, sítě ATM, Frame Relay,

paradigma: "hloupá síť, chytré uzly"

telekomunikační sítě

- jsou charakteristické svou typickou vnitřní strukturou
 - mají dvě hlavní části
- páteřní část (páteřní síť, backbone network)
 - někdy též: transportní síť
 - propojuje několik málo centrálních lokalit
 - obvykle na větší vzdálenost
 - obvykle pomocí optiky
- přístupovou část (přístupovou síť, access network)
 - "rozvádí" síť ke koncovým uživatelům
 - spojuje:
 - POP (Point of Presence), kde končí ("vyúsťuje") páteřní síť
 - CP (Customer Premises), kde se vyskytuje (potenciální) zákazník
 - CPE, Customer Premises Equipment: vybavení na straně zákazníka

páteřní sítě

- páteřní části (páteřní sítě) mají jak telekomunikační sítě, tak i datové sítě
 - svou páteřní síť (dnes: páteřní sítě) má i celosvětový Internet
 - zárodečná síť ARPANET byla jeho první páteřní sítí
 - v praxi: nebývá (až tak velký) problém s jejich kapacitou
 - připomenutí: propojují relativně malý počet lokalit, dá se realizovat optikou

paradigma: "chytrá síť, hloupé uzly"

- páteřní části telekomunikačních sítí:
 - jsou "chytré"
 - obsahují technologie, sloužící k poskytování konkrétních služeb
 - například: telefonní ústředny, brány do jiných telekomunikačních sítí
 - mohou fungovat na principu přepojování okruhů i na principu přepojování paketů, a to současně!
 - pevné části mobilních sítí 3G/UMTS, ale i GSM/GPRS

- páteřní části datových sítí:
 - jsou "hloupé"
 - jsou především transportní
 - neslouží k poskytování "uživatelsky orientovaných" služeb
 - pouze k transportu dat
 - fungují (obvykle) jen na principu přepojování paketů
 - například: Internet

paradigma: "hloupá síť, chytré uzly"

příklad: pevná telefonní síť

dnes: síť O2 Czech Republic

- budována postupně
 - SPT (Správa pošt a telekomunikací), SPT Telecom, Český Telecom, Telefónica, O2
- největší rozvoj po roce 1994

• po vstupu strategického partnera do SPT Telecomu

páteřní část telefonní sítě

- propojuje telefonní ústředny
 - 2 mezinárodní ústředny
 - 6 tranzitních ústředen
 - 138 řídících ústředen (HOST)
 - 2374 předsunutých ústředen
 - jednotek RSU
 - Remote Subscriber Unit

přístupová část telefonní sítě

- je celoplošná
 - pokrývá celé území ČR
- je tvořena místními smyčkami
 - metalické kabely (kroucená dvoulinka)

příklad: páteřní sítě Internetu

- i celosvětový Internet má svou páteřní část (páteřní síť)
 - původně: měl jen 1 páteřní síť
 - nejprve: zárodečný ARPANET, financovali vojáci (vojenská grantová agentura ARPA)
 - později: síť NSFNET, financovala civilní grantová agentura NSF (National Science Foundation)
 - později: více komerčních páteřních sítí
 - · které si vzájemně konkurují
 - dnes: soustava sítí tzv. Tier 1 providerů
 - propojených přes peeringové body IXP

- i pro Internet jsou zapotřebí přístupové sítě
 - aby se uživatelé mohli napojit na své providery

(pevné) přístupové sítě

musí být velmi "husté"

- musí vést do velkého počtu míst, kde se vyskytují (rezidenční) zákazníci
 - do bytů, kanceláří, učeben atd.

budují se "dopředu"

- nejprve se musí vybudovat tak, aby vedly ke všem (potenciálním) zákazníkům
- teprve pak je možné začít nabízet jejich prostřednictvím služby zákazníkům
 - někteří se rozhodnou služby využívat stávají se aktivními zákazníky

musí překonávat veřejné prostory

- při jejich budování se musí rozkopávat chodníky, ulice, silnice, ...
- je to drahé a komplikované
 - dnes cca 85% všech nákladů jde na "zemní práce" !!!

důsledek:

- když už se nějaká nová (pevná) přístupová síť buduje, je optická
 - protože optika má největší přenosový potenciál
- nová síť se předimenzovává
 - pokládá se více kabelů než je potřeba
 - pokládají se tzv. chráničky (kabelovody)

poskytovatel (operátor, provider)

poslední míle, první míle

poslední míle

- je úsek mezi body POP (na páteřní sítí) a místy CP (místem výskytu zákazníka)
- při pohledu poskytovatele!
 - při pohledu z páteřní sítě jde o poslední úsek na cestě k zákazníkovi
- jde o vzdálenosti v řádu jednotek kilometrů

první míle

- jde o stejný úsek, ale "z pohledu zákazníka"
 - pak jde o první úsek na cestě k poskytovateli

• možné řešení "překlenutí"

- vybudování nové (pevné) přístupové sítě
 - velmi ekonomicky (i jinak) náročné
 - hlavně kvůli "zemním" pracím, na které dnes jde až 85% všech nákladů
 - nejasné regulační aspekty
- bezdrátové řešení
- využití nějaké již existující infrastruktury
 - "překryvné" přístupové sítě

bude vlastník sítě povinen otevřít ji i své konkurenci?

přístupové sítě

- pokud se dnes buduje skutečně nová přístupová síť, je obvykle:
 - bezdrátová, nebo
 - optická
- bezdrátové přístupové sítě:
 - jsou výhodné v tom, že nevyžadují (velké) zemní práce
 - jsou nevýhodné v tom, že vyžadují vhodné frekvence
 - v licenčních pásmech
 - je jich nedostatek, jsou drahé
 - nebo bezlicenčních pásmech
 - většinou již zaplněné, možnost rušení
 - možnosti (co do mobility) :
 - s plnou podporou mobility
 - lze komunikovat i za pohybu
 - jen nomadicita
 - nelze komunikovat za pohybu
 - bez podpory mobility
 - jen bezdrátová náhrada pevné sítě

- možnosti (co do principu fungování)
 - na principu P-M (Point-to-MultiPoint)
 - na principu P-P (Point-to-Point)

příklady

- na principu P-M
 - mobilní sítě
 - GSM, CDMA, 3G/UMTS, LTE,
 - sítě FWA (Fixed Wireless Access)
 - různé technologie (vč. WiMAX)
 - v ČR též: Wi-Fi sítě
 - i když k tomu Wi-Fi není určeno
- na principu P-P
 - Point-to-Point
 - vlastně dvoubodový spoj
 - WLL (Wireless Local Loop)

příklad: mobilní síť GSM

páteřní síť (NSS, core)

- Network Switching Subsystem
 - subsystém sítě
 - funguje na principu přepojování okruhů
- prvky páteřní sítě
 - MSC, Mobile Switching Center
 - telefonní ústředna
 - GMSC, Gateway MSC
 - brána do jiných sítí

přístupová síť (BSS, RAN)

- Base Station Subsystem
 - subsystém základnových stanice
- též: GSM EDGE Radio Access Network (GERAN)
 - pro mobilní sítě 2. generace (GSM)
- prvky přístupové sítě:
 - BTS, Base Transceiver Station
 - základnová převodní stanice
 - BSC, Base Station Controller
 - řadič základnových stanic

- příklad (síť T-Mobile v ČR)
 - 13x MSC
 - 150x BSC, 4500x BTS
 - přes 13 100 sektorů (buněk)

příklad: (pevná) přístupová síť O2

vybudovaná ještě v době monopolu

- pro potřeby (pevné) telefonní sítě
- celkem obsahuje asi 8 milionů tzv.
 místních smyček
 - z toho méně než 2 miliony aktivní
 - skutečně využívané (2010)
 - maximální délka smyček: do 5 km

místní smyčky

- tzv. metalická účastnická vedení
 - fakticky: kroucená dvoulinka
- jsou tvořeny jednotlivými úseky vedení
 - mezi jednotlivými rozvaděči

struktura přístupové sítě:

- hlavní rozvaděče
 - u telefonních ústředen
- síťové rozvaděče
 - "po cestě"

"překryvné" přístupové sítě

záměr:

- využít takovou "drátovou" infrastrukturu, jaká již existuje
 - a která se dá využít i pro přenos dat
- a "nad ní" vybudovat novou přístupovou síť, uzpůsobenou pro přenos dat
 - jakoby ji "přeložit přes" již existující síť
 - optimálně se zachováním původní funkčnosti

možnosti (již existující přístupové sítě):

- (metalická, telefonní) přístupová síť Telefóniky
 - "překryvná" síť se buduje pomocí technologií xDSL (ADSL, VDSL,)
 - skrze mechanismus zpřístupnění místních smyček (LLU, Local Loop Unbundling) mají možnost budovat "překryvnou" síť i alternativní operátoři
 - reálně využívá např. T-Mobile, GTS,
- napájecí síť (distribuční, 230 V)
 - "překryvná" síť se buduje pomocí technologií PLC (PowerLine Communications)
 - není to příliš úspěšné
- kabelová síť (CATV, Community Antenna TV)
 - původně jednosměrná distribuční síť pro šíření analogového TV signálu
 - musela se předělat na obousměrnou
 - "překryvná" síť se buduje pomocí technologií jako DOCSIS

již existující síť

příklad: nasazení xDSL technologií

princip:

data

- na oba konce místní smyčky se nasadí x DSL modemy
 - na straně ústředny v provedení tzv.
 DSLAMu
 - DSL Access Multiplexer
 - vlastně několik xDSL modemů v jednom konstrukčním celku
 - a společným výstupem
- xDSL funguje v nadhovorovém pásmu
 - na vyšších frekvencích než hlasové služby
 - oddělení pomocí tzv. splitterů

přenosový okruh

místní smyčka

splitter

- vytváří datový přenosový okruh
 - s rychlostí v řádu Mbit/s

příklad: technologie PLC

· elektrická rozvodná síť

- silové rozvody ~230 V
 - podobné jako místní smyčky: využito je jen nejnižší frekvenční pásmo
 - 50 Hz
 - vyšší frekvence jsou "volné"

technologie PLC

- PowerLine Communications
- existují, fungují, dají se nasadit
 - a) pro překlenutí poslední míle
 - v praxi neúspěšné, nepoužívá se
 - b) pro překlenutí "posledního metru" (rozvody v bytě)
 - v praxi úspěšné

• problém ad a):

- lze realizovat, ale:
 - v každé zemi je to trochu jiné
 - celková přenosová kapacita je nízká
 - je to drahé /nevyplatí se

využití ad b)

- v praxi běžně používané
- lze nasadit "v bytě", pro tvorbu sítě LAN
 - na rozvodech na stejné fázi
 - za bytovým elektroměrem
 - dosahované rychlosti až v řádu desítek či stovek Mbit/s

příklad: technologie DOCSIS

kabelové sítě (CATV)

- původně budovány jako jednosměrné a analogové
 - šířka 1 kanálu 8 MHz (systém PAL)
 - resp. 6 MHz (systém NTSC, v USA)
- také mají páteřní a přístupovou část
 - v přístupové části využívají kombinaci optiky a koaxiálních kabelů
 - HFC, Hybrid Fiber Coax

pro "překryvnou" síť je nutné:

- udělat (přístupovou) síť obousměrnou
 - zřídit zpětný kanál
 - nutný upgrade sítě
- přenášet data skrze analogové (TV) kanály
 - k tomu slouží např. technologie DOCSIS (resp. euroDOCSIS)
 - Data Over Cable Service Interface Specification

• prvky "překryvné" sítě:

- CM (Cable Modem)
 - kabelový modem
- CMTS (Cable Modem Termination System)
 - obdoba DSLAMu, "protikus" ke kabelovým modemům
 - nachází se v místě, kterému se říká
 Distribution Hub, nebo Headend

překlenutí posledního metru

překlenutí poslední míle:

- je o tom, jak překlenout vzdálenost v řádu jednotek kilometrů, až k nějakému objektu
 - velmi často je přenosová trasa vedena jednotně, jako dvoubodový spoj
 - a k rozvětvení dochází až v rámci samotného objektu

důsledek:

- poslední úsek (v řádu metrů, ne kilometrů, proto "poslední metr") lze řešit jinak, než samotnou poslední míli
 - jinou technologií / médiem

• poslední metr lze řešit:

- "drátově"
 - "drátový Ethernet" (kroucená dvoulinka), koaxiální rozvody, …
 - využitím napájecích rozvodů (technologie PLC, varianta b)
 - •
- "bezdrátově"
 - Wi-Fi, WiMAX

možné strategie:

- poslední míle optikou
 - poslední metr drátově (Ethernet) nebo bezdrátově (Wi-Fi)
- poslední míle bezdrátově
 - poslední metr drátově (Ethernet) nebo bezdrátově (Wi-Fi)
-

tzv. poslední metr

poslední metr si někdy řeší zákazníci sami a ve vlastní režii (agregují poptávku)

optické přístupové sítě

optické sítě lze budovat jako:

- aktivní
 - pro "rozvětvení" optických vláken se používají aktivní (napájené) prvky, fungující jako zesilovače
 - je to dražší, nutná péče/správa
 - lze dosahovat vyšších rychlostí
 - lze dosahovat na větší vzdálenosti
 - v přístupových sítích víceméně zbytečné
- pasivní
 - pro "rozvětvení" stačí pasivní prvky
 - není nutné je napájet a zajišťovat jejich správu
 - lze zakopat do země
 - lze dosahovat je nižších rychlostí, na kratší vzdálenosti
 - pro přístupové sítě to stačí !!

otázka:

- má optika vést až k uživateli?
 - umožňuje to dosahovat vyšších přenosových kapacit
 - je to složité a drahé
- nebo má optika končit "někde před" koncovým uživatelem?
 - a poslední úsek (poslední metr) má být řešen jinak?
 - je to levnější a snáze realizovatelné

FTTx: FTTH vs. FTTC

- optické přístupové sítě se dnes budují převážně jako pasivní (PON)
 - označují se jako FTTx (Fiber to the X)
 - kde za x se doplňuje další písmeno podle toho, o jakou variantu "zakončení" jde

FTTH (Fiber to the Home)

- optika je "až do domova/bytu"
 - tedy až ke koncovému uživateli
 - někdy označováno též jako:
 - FTTA (... Apartment)
 - FTTS (... Subscriber)

FTTC (Fiber to the Curb)

- optika je pouze "někam před"
 - Curb = obrubník, okraj chodníku
- poslední úsek ("poslední metr") je řešen jinak

technologií VDSL

tím, co je k dispozici

datové sítě, privátní datová síť

připomenutí:

- telekomunikační sítě slouží k poskytování konkrétních telekomunikačních služeb
 - a jsou tomu také plně uzpůsobeny
 - např. telefonní síť a telefonování,
 - distribuční sítě pro šíření TV a R vysílání
- datové sítě slouží k přenosu dat
 - data mohou "patřit" různým aplikacím a službám
 - datové sítě to (obvykle) nezkoumají
 - nejčastěji fungují stylem Best Effort
 - ale mohou nabízet i podporu QoS
 - na principu prioritizace
 - na principu rezervace (garance)

privátní datová síť

- je taková, u které vlastník = uživatel
 - vlastník ji sám používá
- vlastník může být i provozovatelem
 - ale také nemusí
 - provozovatelem může být externí subjekt, na principu outsourcingu
 - příklad: datovou síť MV ČR provozuje Česká pošta

– výhody:

- vlastník rozhoduje o všem
 - fungování sítě, protokoly, adresy, zabezpečení,
 - uživatelé a jejich práva
 - **–**

– nevýhody:

- je to nákladné
 - vyplatí se to jen "větším" subjektům s větší potřebou datových přenosů

veřejná datová síť (VDS)

veřejná síť = jejím uživatelem může být kdokoli (kdo zaplatí)

- vlastník svou síť nepoužívá její služby nabízí jiným subjektům za úplatu
 - otázka licencí: někdy (dříve i v ČR) je zapotřebí mít licenci k poskytování "veřejných datových služeb"
- poskytovaná služba: přenos dat zákazníka skrz datovou síť provozovatele
 - obvyklé zpoplatnění:
 - za objem přenesených dat, za navázání spojení, za dobu existence spojení,
 - musí být standardizováno:
 - jak se k datové síti připojit, jak jí předávat data, jak je adresovat,

z pohledu zákazníka

- při (relativně) malých objemech dat je to výhodnější, než skutečná privátní síť
- nevýhoda:
 - jde o sdílenou službu
 - "jsou vidět" i ostatní zákazníci
- výhoda:
 - je to služba
 - žádné investice ani odpisy
 - platí se podle využití

z pohledu vlastníka sítě

- obvykle jde o telekomunikačního operátora
- je to pro něj výhodnější, než když "prodává" pouze přenosové okruhy
 - u privátní sítě si "přidanou hodnotu" (schopnost přenášet data) přidává zákazník
 - a operátorovi unikají výnosy
 - zde "přidanou hodnotu" přidává operátor a vydělává na tom

virtuální privátní síť (VPN)

dříve (v kontextu datových sítí)

- taková datová síť, která se chová jako privátní
 - typicky: pro firmy, firemní uživatele
 - ve smyslu: uživatel si může myslet, že má celou síť jen pro sebe
 - "nevidí" ostatní uživatele, má vlastní adresový prostor, celá kapacita sítě je "jen jeho", rozhoduje o všech právech, jeho data "nevidí" nikdo jiný
- ale ve skutečnosti je to jen uměle navozená iluze
 - ve skutečnosti jde o síť, která využívá (sdílí) stejnou infrastrukturu jako jiné sítě
 - ať již privátní či nikoli
 - a je pouze "logicky vyčleněna"
 - takovým způsobem, že navozuje iluzi vlastní samostatné sítě
 - důležitý je "množstevní efekt"
 - je to levnější než vlastní infrastruktura
 - protože stejnou infrastrukturu využívají i další zákazníci, v rámci svých sítí VPN
- VPN2

 VPN2

 VPN3

 "skutečná" síť
 (sdílená infrastruktura)

VPN

(Virtual Private Network)

- cíle nejsou ani tak "logické", jako spíše ekonomické a praktické
 - nejde ani tak o bezpečnost a její zavedení či zvýšení
 - jde hlavně o ekonomický efekt že je to levnější než skutečná privátní síť
- je to řešení "od poskytovatele", nikoli realizované "vlastními silami"

virtuální privátní sítě (VPN)

dnes (v kontextu počítačových sítí)

- jsou VPN sítě spíše "bezpečnostním" řešením
 - aneb "jak udělat bezpečnou a důvěryhodnou síť" nad zcela veřejnou infrastrukturou
 - nejčastěji nad veřejným Internetem
- iluze vlastní sítě slouží hlavně k zabezpečení a ochraně v "nechráněném prostředí"
 - jde hlavně o:
 - zajištění integrity (celistvosti) a důvěrnosti (utajení) přenášených dat
 - spolehlivou identifikaci a autentizaci uživatelů při přístupu k VPN
 - případně o vlastní adresaci, vyhrazenou kapacitu, podporu specifických protokolů,
 - už tolik nejde o ekonomický efekt
- může jít o čistě SW řešení, které si nasadí uživatel ve vlastní režii

site-to-site VPN

- slouží k propojení dvou či více lokalit
 - obvykle přes veřejný Internet
- SW podpora (VPN klient) je zabudován ve směrovačích

remote access VPN

- slouží ke vzdálenému připojení k (firemní) síti
- SW podpora (VPN klient) běží přímo u vzdáleného uživatele

datové a počítačové sítě

· datové sítě a počítačové sítě mají mnoho společného

- přenáší data
 - a tato data mohou patřit různým službám a aplikacím
- jsou hloupé, ale měly by být rychlé
 - pouze přenáší data, ale nezpracovávají je, negenerují atd.
- na okraje sítě se připojují "chytrá" zařízení
 - počítače, terminály, periferie, čidla, senzory

datové sítě

- termín "datová síť" se používá hlavně v telekomunikacích
- existují téměř výlučně v "rozlehlém" provedení
 - jako geograficky rozlehlé sítě
- jsou spíše "fyzické"
 - mají vlastní infrastrukturu
 - na kterou jsou pevně vázány
 - jsou homogenní
 - tvořené stejnou infrastrukturou

počítačové sítě

- termín "počítačová síť" se používá spíše mimo telekomunikace
 - ve světě počítačů
- existují v široké škále "rozlehlosti"
 - od lokálních až po rozlehlé
- jsou spíše "logické"
 - v různých svých částech mohou využívat různou infrastrukturu
 - která se může i měnit
 - "chtějí být" vnímány nezávisle na použité infrastruktuře

jiný pohled na počítačové sítě

- počítačové sítě potřebují ke svému fungování vhodnou přenosovou infrastrukturu
 - "dráty" (přenosová média, přenosové okruhy, telekomunikační/datové sítě,)
 - bezdrátová řešení (bezdrátové technologie, bezdrátové sítě,)

- přitom:
 - v různých svých částech mohou počítačové sítě využívat různou přenosovou infrastrukturu
- ale:
 - snaží se být nezávislé na této přenosové infrastruktuře
 - fungovat "všude stejně", nezávisle na tom, jakou infrastrukturu kde využívají
 - odstínit svého uživatele od konkrétní přenosové infrastruktury
 - aby ho nemuselo zajímat, jaká infrastruktura je kde použita
 - aby se nemusel zabývat specifickými vlastnostmi konkrétní infrastruktury

v tomto smyslu jsou "spíše logické"

klasifikace počítačových sítí

používají jinou klasifikaci než sítě telekomunikační

- WAN, Wide Area Network
 - rozlehlá síť
- MAN, Metropolitan Area Network
 - metropolitní síť
- LAN, Local Area Network
 - lokální síť
- PAN, Personal Area Network
 - "osobní" síť

případně:

- WWAN, WMAN, WLAN, WPAN
 - Wireless WAN, Wireless MAN
- NAN
 - Neighbourhood Area Network
- CAN
 - Community Area Networks
-

- kritériem pro rozlišení je tradičně dosah sítě (velikost)
 - geografická vzdálenost
- ale:
 - s postupem času se rozdíly stírají
 - sítě LAN se stávají většími
 - sítě WAN naopak menšími
 - různé druhy sítí začínají splývat
 - rozdíl mezi LAN a WAN není zřetelný
- existují ale i jiná rozlišující kritéria, jako např.:
 - druh/vlastnictví přenosové infrastruktury
 - způsob a účel využití
 - postavení a role uzlů
 - **–**

rozlehlé vs. lokální sítě

vzdálenost	pokrývá	síť
1 – 10 m	POS (Personal Operating Space)	PAN
10 - 1000 m	místnost, budova, areál	LAN
1 - 100 km	kampus, město, aglomerace	MAN
100 km a více	stát, kontinent, planeta	WAN

obvyklá klasifikace, podle "rozlehlosti"

další charakteristické rozdíly mezi LAN a WAN

hranice nejsou ostré

	LAN	WAN
proč vznikly, proč se zřizují	pro potřeby sdílení zdrojů	pro komunikaci a vzdálený přístup
přenosová rychlost	spíše vyšší	spíše nižší
přenosové zpoždění	malé	velké
spolehlivost přenosových cest	vyšší	nižší
topologie	systematická (sběrnice, strom,)	nesystematická (ad-hoc)
vlastnictví infrastruktury ("drátů")	vlastní provozovatel	provozovatel si pronajímá
charakter uzlů	pracovní stanice	servery
dostupnost uzlů	jen někdy (podle potřeb uživatelů)	trvale

představa vztahu WAN/MAN/LAN

- síť WAN slouží (nejčastěji) k propojení sítí LAN nebo MAN
 - výjimečně i k připojení jednotlivých koncových uzlů
- síť MAN: k propojení sítí LAN
 - případně k připojení jednotlivých koncových uzlů
- síť LAN: propojuje koncové uzly

- příklad: akademické sítě v ČR
 - WAN: síť CESNET
 - celorepubliková síť, "rozvádí" Internet do všech měst s vysokými školami
 - MAN: metropolitní akademické sítě v jednotlivých městech
 - Praha: PASNET (Prague Academic Network)
 - Plzeň: Pilsnet
 - Liberec: Liane
 - LAN: lokální sítě na jednotlivých školách
 - např. LAN v objektech MFF UK

sítě PAN (Personal Area Networks)

sítě, které vznikají propojením osobních zařízení

- mobilů, tabletů, přenosných a nepřenosných počítačů, periferií
- na krátkou vzdálenost
 - POS, Personal Operating Space
 - obvykle: do 10 metrů
- slouží potřebám jednoho uživatele
 - proto "personální"

příklady:

- propojení "stacionárních" zařízení
 - typu počítačů, klávesnic, myší, tiskáren
- propojení "mobilních" zařízení
 - např. mobilních telefonů, bezdrátových telefonů, PDA, tabletů, hands-free sad, ...
- někdy se hovoří také o:
 - piconets, scatternets
 - propojení 2/více zařízení přes Bluetooth, IrDA apod.

mohou být:

- drátové (spíše výjimečně)
 - využívají USB, FireWire,
- bezdrátové (častěji)
 - využívají Wi-Fi, Bluetooth, IrDA,

sítě LAN (Local Area Networks)

- síť LAN je vymezena hlavně svým dosahem (řádově 10 1000 metrů)
 - "drátové" sítě LAN dnes nejčastěji využívají technologii Ethernet
 - "bezdrátové" sítě LAN nejčastěji využívají Wi-Fi

je "geograficky soustředěná"

- v praxi má pojem LAN dva poněkud odlišné významy
 - LAN v širším slova smyslu
 - jakákoli síť "menšího" dosahu
 - bez ohledu na své uspořádání, topologii, použité aktivní prvky ...
 - může obsahovat směrovače (router)
 - může jít o několik sítí LAN (v užším slova smyslu), které jsou vzájemně propojeny
 - směrovač síť LAN

- LAN v užším slova smyslu
 - pouze taková síť "menšího" dosahu, ve které jsou jednotlivé uzly propojeny na fyzické a linkové vrstvě
 - nesmí obsahovat žádné směrovače (router)
 - může obsahovat pouze přepínače (switch) a mosty (bridge)

sítě MAN (Metropolitan Area Network)

metropolitní sítě jsou:

- větší než sítě lokální (LAN)
- menší než sítě rozhlehlé (WAN)

slouží především:

k propojování sítí LAN

rozdíl oproti LAN:

- LAN patří jednomu subjektu
 - firmě, škole, úřadu, domácnosti, ...
- vlastník je současně i uživatelem
 - vlastní i přenosovou infrastrukturu
- LAN (obvykle) neprochází přes veřejné prostory
 - ale rozkládá se uvnitř prostor, které patří jejímu vlastníkovi
 - byt, kancelář, budova, areál ...
- využívá "lokální" přenosové technologie
 - Ethernet, Wi-Fi,

kde konkrétně leží hranice?

LAN ? MAN ? WAN

síť MAN:

- může patřit "městu"
 - či celé skupině vlastníků (konsorcium)
- nebo některému operátorovi
 - telekomunikačnímu či jinému
- vlastník sítě MAN nemusí být jejím uživatelem
 - může poskytovat její služby svým zákazníkům
- využívá "metropolitní" technologie
 - vhodné pro "větší vzdálenosti"
 - např. WiMAX, ATM, FDDI,
 - dnes gigabitový Ethernet

příklady: akademický PASNET, městská síť MEPNET (hl.m. Praha).

sítě WAN (Wide Area Network)

jsou největší

- pokrývají regiony/kraje, státy, kontinenty, celou planetu
 - překonávají velké vzdálenosti, veřejné prostory a (často) i hranice států

slouží hlavně:

- k přenosu dat na větší vzdálenosti
- k propojování menších sítí
 - sítí LAN, MAN,

sítě WAN budují:

- organizace a velké firmy
 - pro svou vlastní potřebu
- poskytovatelé (telekomunikační operátoři)
 - pro poskytování jejich služeb na komerční bázi
 - na stejném principu jako veřejné datové sítě, formou VPN apod.

– nebo:

- nemají jednoho vlastníka, jde o soustavu sítí s individuálními vlastníky
 - příklad: celosvětový Internet

technologické řešení:

- používají přenosové cesty, vhodné pro překlenutí větších vzdáleností
 - dnes: nejčastěji optika
- používají řešení, využitelná pro poskytování telekomunikačních i datových služeb
 - dříve: ATM, Frame Relay, X.25
 - dnes: MPLS, Packet over SONET/SDH
- využívají protokoly, použitelné i na větší vzdálenosti
 - například TCP/IP

topologie:

- buď nesystematická
- nebo: kruhová
 - lze "přežít " i přerušení kruhu

sítě NAN a CAN

- existují ještě další kategorie počítačových sítí
 - vymezené podle jiných kritérií, než je jejich dosah

- NAN, Neighbourhood Area Network
 - "sousedská" síť
 - propojuje uživatele, soustředěné v nějaké lokalitě
 - "sousedy"
 - obvykle: budují si ji a spravují sami její uživatelé, vlastními silami
 - sousedi
- důvod vzniku:
 - dříve:
 - sdílení zdrojů, vzájemná komunikace,
 - dnes:
 - spíše sdílení poptávky po přístupu k Internetu
 - sousedé/komunita se domluví, propojí se mezi sebou a pak si společně najdou dodavatele internetové konektivity

- CAN, Community Area Network
 - komunitní síť
 - propojuje uživatele, kteří tvoří nějakou komunitu
 - nemusí být sousedy, nemusí se nacházet ve stejné lokalitě
 - ale mají stejné zájmy
 - je náročnější na budování a správu
 - neřeší se "vlastními silami", ale má nějakého správce
 - příklad: síť CZFree.Net

internet a Internet

- co vznikne, když vzájemně propojíme dvě či více sítí (LAN, MAN atd.)?
 - odpověď: vznikne soustava vzájemně propojených sítí
 - které se v angličtině říká internetwork, zkráceně internet, případně Internet
 - je třeba rozlišovat:
- internet (a malým počátečním "i")
 - jde o obecné označení (generický název) pro jakoukoli soustavu vzájemně propojených sítí
 - jakých je na světě velké množství
 - kdokoli si může pořídit vlastní internet
 - třeba i "u sebe doma"
 - stačí k tomu jeden směrovač, který propojí dvě sítě LAN

- Internet (s velkým počátečním "I")
 - jde o vlastní jméno jedné konkrétní soustavy vzájemně propojených sítí
 - "toho" celosvětového Internetu
 - který je pouze jeden
 - který nemá žádného jednotlivého vlastníka
 - své vlastníky mají pouze jednotlivé dílčí sítě, propojené do Internetu
 - nelze jej od nikoho koupit či jinak získat

- dnešní (obvyklá) terminologie
 - již nerozlišuje mezi internetem a Internetem
 - a i pro celosvětový Internet (který je jen jeden) se zcela běžně používá termín internet
 - zejména v médiích a masovějších sdělovacích prostředcích
 - poslední dobou bohužel i v odbornější literatuře

intranet vs. extranet

počítačové sítě lze dělit i podle účelu, ke kterému slouží

intranet

- slouží "interním" potřebám svého vlastníka
 - · nejčastěji jde o firemní síť LAN
 - ale může to být i MAN či WAN
 - důležité je využití jen pro vlastní potřeby
 - přístup jen pro vlastní uživatele
- typické využití:
 - provozování "interních" aplikací
 - firemní IS (účetnictví, CRM, HR, ..)
 - sdílení "interních" zdrojů
 - firemní dokumenty

prostřednictvím vlastní sítě

extranet

- slouží "vnějším" potřebám vlastníka
 - pro komunikaci se zákazníky
- přístup mají i "cizí" uživatelé
 - potenciální i aktuální zákazníci
 - vlastní uživatelé spíše jako správci
- typické využití
 - marketing, e-commerce, e-business
 - nabízení, objednávání, nakupování, dodávání, reklamace
 - podpora
 - helpdesk, download aktualizací, ...

dnes: prostřednictvím Internetu

technologicky

- mezi intranetem a extranetem může, ale nemusí být rozdíl
 - mohou se používat stejné protokoly (TCP/IP), stejné aplikace a služby (mail, WWW, FTP, Instant Messaging,)

sítě serverového typu a P2P

- další možné dělení počítačových sítí je založeno na tom, kde se nachází různé zdroje
 - "obsahového charakteru": datové soubory, aplikace,
 - periferie: tiskárny, plottery, modemy,
- síť serverového typu:
 - všechny zdroje jsou na jednom centrálním místě
 - na serveru
 - který nabízí své zdroje těm, kteří o ně mají zájem
 - ostatní uzly zdroje nemají
 - jsou v roli klientů
 - pokud nějaké zdroje potřebují, požádají o ně servery
 - role klientů a serveru se nestřídají ani jinak nemění

síť peer-to-peer

- jednotlivé zdroje jsou "roztroušeny"
 - zůstávají tam, kde vznikají
 - zůstávají u toho, kdo je vytváří, komu patří, kdo se o ně stará,
- každý uzel sítě se chová současně jako server i jako klient
 - jako server: nabízí ostatním ty zdroje, které má u sebe
 - jako klient: získává požadované zdroje od těch uzlů (serverů), které je mají
- v praxi:
 - síť peer-to-peer může být realizována pomocí specializovaných SW nástrojů
 - dříve existovaly operační systémy pro takovýto druh sítí
 - Lantastic, Novell Personal Netware

