Computer Vision

Neural Networks

Dr. Mrinmoy Ghorai

Indian Institute of Information Technology
Sri City, Chittoor

We have learned so for in this module

Image features and categorization

Choosing right features
Object, Scene, Action, etc.

Bag-of-visual-words

Extract local features
Learn "visual vocabulary"
Quantize features using visual vocabulary
Represent by frequencies of "visual words"

Classifiers

Nearest neighbor, KNN, Linear classifier, SVM, Non-linear SVM, Multi-class SVM, Softmax classifier

Two key components in context of the image classification

1. A (parameterized) score function:

Mapping the raw image pixels/features to class scores

(e.g. a linear function)

Two key components in context of the image classification

1. A (parameterized) score function:

Mapping the raw image pixels/features to class scores

(e.g. a linear function)

2. A loss function:

Measures the goodness of parameter values in terms of how well it performs over the training data (e.g. Softmax/SVM)

A linear function: $f(x_i, W) = Wx_i$

A linear function: $f(x_i, W) = Wx_i$

Loss:
$$L = \frac{1}{N} \sum_{i} L_{i} + \underbrace{\lambda R(W)}_{\text{regularization loss}}$$
 $R(W) = \sum_{k} \sum_{l} W_{k,l}^{2}$

A linear function: $f(x_i, W) = Wx_i$

Loss:
$$L = \frac{1}{N} \sum_{i} L_{i} + \underbrace{\lambda R(W)}_{\text{regularization loss}} \qquad R(W) = \sum_{k} \sum_{l} W_{k,l}^{2}$$

SVM Loss:
Hinge Loss
Max-margin loss

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + \Delta)$$

A linear function: $f(x_i, W) = Wx_i$

Loss:
$$L = \frac{1}{N} \sum_{i} L_{i} + \underbrace{\lambda R(W)}_{\text{regularization loss}} \qquad R(W) = \sum_{k} \sum_{l} W_{k,l}^{2}$$

SVM Loss:
Hinge Loss
Max-margin loss

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + \Delta)$$

Softmax Loss: Cross-entropy loss

$$L_i = -log\left(\frac{e^{sy_i}}{\sum_j e^{s_j}}\right)$$

Today's class

Optimization

Gradient Descent & Back propagation

Perceptron

Update rule

Neural networks

Optimization is the process of finding the set of parameters **W** that minimize the loss function.

Optimization is the process of finding the set of parameters **W** that minimize the loss function.

Strategy #1:First very bad idea solution: Random search: Simply try out many different random weights and keep track of what works best.

Optimization is the process of finding the set of parameters **W** that minimize the loss function.

Strategy #1:First very bad idea solution: Random search:

Simply try out many different random weights and keep track of what works best.

Strategy #2: Random local search:

Start out with a random W, generate random changes δW to it and if the loss at the changed $W+\delta W$ is lower, we will perform an update.

Optimization is the process of finding the set of parameters **W** that minimize the loss function.

Strategy #1:First very bad idea solution: Random search:

Simply try out many different random weights and keep track of what works best.

Strategy #2: Random local search:

Start out with a random W, generate random changes δW to it and if the loss at the changed $W+\delta W$ is lower, we will perform an update.

Strategy #3: Following the gradients:

There is no need to randomly search for a good direction: this direction is related to the **gradient** of the loss function.

The procedure of repeatedly evaluating the gradient of loss function and then performing a parameter update.

The procedure of repeatedly evaluating the gradient of loss function and then performing a parameter update.

Vanilla (Original) Gradient Descent:

```
while True:
    weights_grad = evaluate_gradient(loss_fun, data, weights)
    weights += - step_size * weights_grad # perform parameter update
```

The procedure of repeatedly evaluating the gradient of loss function and then performing a parameter update.

Vanilla (Original) Gradient Descent:

```
while True:
    weights_grad = evaluate_gradient(loss_fun, data, weights)
    weights += - step_size * weights_grad # perform parameter update
```

Mini-batch Gradient Descent (MGD):

```
while True:
    data_batch = sample_training_data(data, 256) # sample 256 examples
    weights_grad = evaluate_gradient(loss_fun, data_batch, weights)
    weights += - step_size * weights_grad # perform parameter update
```

The procedure of repeatedly evaluating the gradient of loss function and then performing a parameter update.

Vanilla (Original) Gradient Descent:

```
while True:
    weights_grad = evaluate_gradient(loss_fun, data, weights)
    weights += - step_size * weights_grad # perform parameter update
```

Mini-batch Gradient Descent (MGD):

```
while True:
    data_batch = sample_training_data(data, 256) # sample 256 examples
    weights_grad = evaluate_gradient(loss_fun, data_batch, weights)
    weights += - step_size * weights_grad # perform parameter update
```

Stochastic Gradient Descent (SGD):

Special case of MGD when mini-batch contains only a single example

Interpretation. Derivatives indicate the rate of change of a function with respect to that variable surrounding an infinitesimally small region near a particular point:

$$rac{df(x)}{dx} = \lim_{h o 0} rac{f(x+h) - f(x)}{h}$$

Interpretation. Derivatives indicate the rate of change of a function with respect to that variable surrounding an infinitesimally small region near a particular point:

$$rac{df(x)}{dx} = \lim_{h o 0} rac{f(x+h) - f(x)}{h}$$

$$f(x,y) = x + y \qquad \qquad o \qquad rac{\partial f}{\partial x} = \qquad \qquad rac{\partial f}{\partial y} =$$

Interpretation. Derivatives indicate the rate of change of a function with respect to that variable surrounding an infinitesimally small region near a particular point:

$$rac{df(x)}{dx} = \lim_{h o 0} rac{f(x+h) - f(x)}{h}$$

$$f(x,y) = x + y \qquad \qquad o \qquad rac{\partial f}{\partial x} = 1 \qquad \qquad rac{\partial f}{\partial y} = 1$$

Interpretation. Derivatives indicate the rate of change of a function with respect to that variable surrounding an infinitesimally small region near a particular point:

$$rac{df(x)}{dx} = \lim_{h o 0} rac{f(x+h) - f(x)}{h}$$

$$f(x,y) = x + y \qquad \qquad o \qquad rac{\partial f}{\partial x} = 1 \qquad \qquad rac{\partial f}{\partial y} = 1 \, .$$

$$f(x,y)=xy \qquad o \qquad rac{\partial f}{\partial x}= \qquad \qquad rac{\partial f}{\partial y}=$$

Interpretation. Derivatives indicate the rate of change of a function with respect to that variable surrounding an infinitesimally small region near a particular point:

$$rac{df(x)}{dx} = \lim_{h o 0} rac{f(x+h) - f(x)}{h}$$

$$f(x,y) = x + y \qquad \qquad o \qquad rac{\partial f}{\partial x} = 1 \qquad \qquad rac{\partial f}{\partial y} = 1$$

$$f(x,y)=xy \qquad o \qquad rac{\partial f}{\partial x}=y \qquad rac{\partial f}{\partial y}=x$$

Interpretation. Derivatives indicate the rate of change of a function with respect to that variable surrounding an infinitesimally small region near a particular point:

$$rac{df(x)}{dx} = \lim_{h o 0} rac{f(x+h) - f(x)}{h}$$

$$egin{aligned} f(x,y) &= x + y &
ightarrow & rac{\partial f}{\partial x} = 1 & rac{\partial f}{\partial y} = 1 \ & f(x,y) &= xy &
ightarrow & rac{\partial f}{\partial x} = y & rac{\partial f}{\partial y} = x \end{aligned}$$

$$f(x,y) = \max(x,y) \qquad o \qquad rac{\partial f}{\partial x} = \qquad \qquad rac{\partial f}{\partial y} =$$

Interpretation. Derivatives indicate the rate of change of a function with respect to that variable surrounding an infinitesimally small region near a particular point:

$$rac{df(x)}{dx} = \lim_{h o 0} rac{f(x+h) - f(x)}{h}$$

$$f(x,y) = x + y \qquad \qquad o \qquad rac{\partial f}{\partial x} = 1 \qquad \qquad rac{\partial f}{\partial y} = 1$$

$$f(x,y)=xy \qquad \qquad o \qquad rac{\partial f}{\partial x}=y \qquad rac{\partial f}{\partial y}=x$$

$$f(x,y) = \max(x,y) \qquad \qquad o \qquad rac{\partial f}{\partial x} = \mathbb{1}(x>=y) \qquad \qquad rac{\partial f}{\partial y} = \mathbb{1}(y>=x)$$

$$f(x,y,z) = (x+y)z$$

$$f(x,y,z)=(x+y)z$$
 $q=x+y$ and $f=qz$ $rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$ $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

Chain rule:
$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial q} \frac{\partial q}{\partial x}$$

$$f(x,y,z)=(x+y)z$$
 $\dfrac{\partial f}{\partial q}=z, \dfrac{\partial f}{\partial z}=q$ $q=x+y$ and $f=qz$ $\dfrac{\partial q}{\partial x}=1, \dfrac{\partial q}{\partial y}=1$ $\dfrac{\partial f}{\partial x}=\dfrac{\partial f}{\partial x}\dfrac{\partial q}{\partial x}$

Compound expressions with chain rule

Compound expressions with chain rule

Sigmoid example

0.20

$$f(w,x) = \frac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}} \qquad f(x) = \frac{1}{x} \qquad \rightarrow \qquad \frac{df}{dx} = -1/x^2$$

$$f_c(x) = c + x \qquad \rightarrow \qquad \frac{df}{dx} = 1$$

$$f(x) = e^x \qquad \rightarrow \qquad \frac{df}{dx} = e^x$$

$$f_a(x) = ax \qquad \rightarrow \qquad \frac{df}{dx} = a$$

$$f(x) = e^x \qquad \rightarrow \qquad \frac{df}{dx} = a$$

SVM loss function for a single datapoint (without regularization): $L_i = \sum_{j \neq y_i} \left[\max(0, w_j^T x_i - w_{y_i}^T x_i + \Delta) \right]$

SVM loss function for a single datapoint (without regularization): $L_i = \sum_{j \neq y_i} \left[\max(0, w_j^T x_i - w_{y_i}^T x_i + \Delta) \right]$ $L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + \Delta)$

SVM loss function for a single datapoint (without

regularization):
$$L_i = \sum_{j \neq y_i} \left[\max(0, w_j^T x_i - w_{y_i}^T x_i + \Delta) \right]$$
 $L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + \Delta)$

Gradient w.r.t. w_{y_i} :

$$abla_{w_{y_i}}L_i = -\left(\sum_{j
eq y_i} 1(w_j^T x_i - w_{y_i}^T x_i + \Delta > 0)
ight)x_i$$

SVM loss function for a single datapoint (without regularization): $L = \sum_{max(0, w^Tx) = w^Tx}$

$$L_i = \sum_{j
eq y_i} \left[\max(0, w_j^T x_i - w_{y_i}^T x_i + \Delta)
ight] \ L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + \Delta)$$

Gradient w.r.t. w_{y_i} :

$$egin{aligned}
abla_{w_{y_i}} L_i &= -\left(\sum_{j
eq y_i} 1(w_j^T x_i - w_{y_i}^T x_i + \Delta > 0)
ight) x_i \end{aligned}$$

Count of the number of classes that didn't meet the desired margin

SVM loss function for a single datapoint (without

regularization):
$$L_i = \sum_{j \neq y_i} \left[\max(0, w_j^T x_i - w_{y_i}^T x_i + \Delta) \right]$$
 $L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + \Delta)$

Gradient w.r.t. w_{y_i} :

$$egin{aligned}
abla_{w_{y_i}} L_i &= -\left(\sum_{j
eq y_i} 1(w_j^T x_i - w_{y_i}^T x_i + \Delta > 0)
ight) x_i \end{aligned}$$

Count of the number of classes that didn't meet the desired margin

Gradient for the other rows where $j \neq y_i$:

$$abla_{w_j}L_i=1(w_i^Tx_i-w_{y_i}^Tx_i+\Delta>0)x_i$$

Perceptron

Supervised learning of binary classifier

Perceptron

Supervised learning of binary classifier

- Initialize weights randomly
- Cycle through training examples in multiple passes (epochs)

- Initialize weights randomly
- Cycle through training examples in multiple passes (epochs)
- For each training instance x with label y:
 - Classify with current weights: y' = sign(w.x)

- Initialize weights randomly
- Cycle through training examples in multiple passes (epochs)
- For each training instance x with label y:
 - Classify with current weights: y' = sign(w.x)
 - Update weights: w ← w + α(y-y')x

- Initialize weights randomly
- Cycle through training examples in multiple passes (epochs)
- For each training instance x with label y:
 - Classify with current weights: y' = sign(w.x)
 - Update weights: w ← w + α(y-y')x
 - What happens if y' is correct?

- Initialize weights randomly
- Cycle through training examples in multiple passes (epochs)
- For each training instance x with label y:
 - Classify with current weights: y' = sign(w.x)
 - Update weights: w ← w + α(y-y')x
 - What happens if y' is correct?
 - Otherwise, if y' is wrong -

- Initialize weights randomly
- Cycle through training examples in multiple passes (epochs)
- For each training instance x with label y:
 - Classify with current weights: y' = sign(w.x)
 - Update weights: $\mathbf{w} \leftarrow \mathbf{w} + \alpha(\mathbf{y} \mathbf{y}')\mathbf{x}$
 - What happens if y' is correct?
 - Otherwise, if y' is wrong -

$$w_i \leftarrow w_i + \alpha(y-y')x_i$$

- If y = 1 and y' = -1, w_i will be increased if x_i is positive or decreased if x_i is negative $\rightarrow \mathbf{w} \cdot \mathbf{x}$ will get bigger

- Initialize weights randomly
- Cycle through training examples in multiple passes (epochs)
- For each training instance x with label y:
 - Classify with current weights: y' = sign(w.x)
 - Update weights: w ← w + α(y-y')x
 - What happens if y' is correct?
 - Otherwise, if y' is wrong -

```
W_i \leftarrow W_i + \alpha(y-y')x_i
```

- If y = 1 and y' = -1, w_i will be increased if x_i is positive or decreased if x_i is negative $\rightarrow \mathbf{w} \cdot \mathbf{x}$ will get bigger
- If y = -1 and y' = 1, w_i will be decreased if x_i is positive or increased if x_i is negative $\rightarrow \mathbf{w} \cdot \mathbf{x}$ will get smaller

Binary Softmax classifier (Logistic Regression)

$$\sigma(\sum_i w_i x_i + b)$$

Binary Softmax classifier (Logistic Regression)

$$\sigma(\sum_i w_i x_i + b)$$

Probability of one of the classes: $P(y_i = 1 \mid x_i; w)$

Binary Softmax classifier (Logistic Regression)

$$\sigma(\sum_i w_i x_i + b)$$

Probability of one of the classes: $P(y_i = 1 \mid x_i; w)$

Probability of the other class would be:

$$P(y_i = 0 \mid x_i; w) = 1 - P(y_i = 1 \mid x_i; w)$$

Binary Softmax classifier (Logistic Regression)

$$\sigma(\sum_i w_i x_i + b)$$

Probability of one of the classes: $P(y_i = 1 \mid x_i; w)$

Probability of the other class would be:

$$P(y_i = 0 \mid x_i; w) = 1 - P(y_i = 1 \mid x_i; w)$$

Binary SVM classifier.

Alternatively, we could attach a max-margin hinge loss to the output of the neuron and train it to become a binary Support Vector Machine.

Source: http://cs231n.github.io

Loose inspiration: Human neurons

Multi-Layer Neural Networks

Network with a hidden layer:

Multi-Layer Neural Networks

Network with a hidden layer:

 Can represent nonlinear functions (provided each perceptron has a nonlinearity)

Multi-Layer Neural Networks

Beyond a single hidden layer:

Source: http://cs231n.github.io

First network (left):

No. of neurons (not counting the inputs):

No. of learnable parameters:

First network (left):

No. of neurons (not counting the inputs): 4 + 2 = 6

No. of learnable parameters:

First network (left):

No. of neurons (not counting the inputs): 4 + 2 = 6No. of learnable parameters: $[3 \times 4] + [4 \times 2] = 20$ weights +

4 + 2 = 6 biases = 26.

First network (left):

No. of neurons (not counting the inputs): 4 + 2 = 6

No. of learnable parameters: $[3 \times 4] + [4 \times 2] = 20$ weights + 4 + 2 = 6 biases = 26.

Second network (right):

No. of neurons (not counting the inputs):

No. of learnable parameters:

First network (left):

No. of neurons (not counting the inputs): 4 + 2 = 6

No. of learnable parameters: $[3 \times 4] + [4 \times 2] = 20$ weights + 4 + 2 = 6 biases = 26.

Second network (right):

No. of neurons (not counting the inputs): 4 + 4 + 1 = 9

No. of learnable parameters: [3x4]+[4x4]+[4x1] = 32 weights + 4 + 4 + 1 = 9 biases = 41.

Source: http://cs231n.github.io

Multi-Layer Neural Networks

Training of multi-layer networks

 Find network weights to minimize the error between true and estimated outputs of training examples:

$$E(\mathbf{w}) = \sum_{j=1}^{N} (y_j - f_{\mathbf{w}}(\mathbf{x}_j))^2$$

Training of multi-layer networks

 Find network weights to minimize the error between true and estimated outputs of training examples:

$$E(\mathbf{w}) = \sum_{j=1}^{N} (y_j - f_{\mathbf{w}}(\mathbf{x}_j))^2$$

• Update weights by **gradient descent**: $\mathbf{w} \leftarrow \mathbf{w} - \alpha \frac{\partial E}{\partial \mathbf{w}}$

Training of multi-layer networks

 Find network weights to minimize the error between true and estimated outputs of training examples:

$$E(\mathbf{w}) = \sum_{j=1}^{N} (y_j - f_{\mathbf{w}}(\mathbf{x}_j))^2$$

- Update weights by **gradient descent**: $\mathbf{w} \leftarrow \mathbf{w} \alpha \frac{\partial E}{\partial \mathbf{w}}$
- Back-propagation: gradients are computed in the direction from output to input layers and combined using chain rule

Neural networks: Pros and cons

Pros

- Flexible and general function approximation framework
- Can build extremely powerful models by adding more layers

Neural networks: Pros and cons

Pros

- Flexible and general function approximation framework
- Can build extremely powerful models by adding more layers

Cons

- Hard to analyze theoretically (e.g., training is prone to local optima)
- Huge amount of training data, computing power may be required to get good performance
- The space of implementation choices are huge (network architectures, parameters)

Acknowledgements

Thanks to the following researchers for making their teaching/research material online

- Forsyth
- Steve Seitz
- Noah Snavely
- J.B. Huang
- Derek Hoiem
- D. Lowe
- A. Bobick
- S. Lazebnik
- K. Grauman
- R. Zaleski
- Antonio Torralba
- Rob Fergus
- Leibe
- And many more

Next Lecture

Convolutional Neural Networks

