Last name_		-
First name		_

LARSON—MATH 550—CLASSROOM WORKSHEET 02 Towers of Hanoi. Lines in the Plane.

Concepts & Notation

• (Chapter 1) T_n , recurrence (recurrence relation), mathematical induction, basis, solving recurrences

Towers of Hanoi

- 1. Let T_n be the minimum number of moves to solve the n disk Towers of Hanoi problem. Find T_1 .
- 2. Explain why $T_n \leq 2T_{n-1} + 1$.
- 3. Explain why $T_n \geq 2T_{n-1} + 1$.
- 4. Explain why $T_n = 2T_{n-1} + 1$.
- 5. What is the recurrence for T_n ?
- 6. Use the recurrence for T_n to find T_4 , T_5 and T_6 .

7. Solve the recurrence for T_n .

8. Prove the closed formula for T_n .

Lines in the Plane

- 9. What is the maximum number of regions defined by n lines in the plane? Try the methodology developed in the Towers of Hanoi problem
 - (a) Name the quantity you want to count/investigate.
 - (b) Find some values of that quantity.
 - (c) Find a recurrence relation for that quantity.
 - (d) Use the recurrence to find more values of that quantity.
 - (e) Use these values to guess a (non-recurrence closed-form) formula for that quantity.
 - (f) Prove your formula.