Московский Государственный Университет им. М.В. Ломоносова Факультет Вычислительной Математики и Кибернетики Кафедра Суперкомпьютеров и Квантовой Информатики

Спецкурс: системы и средства параллельного программирования.

Отчёт № 6.

Параллельный программу с использованием технологии MPI, реализующую алгоритм умножения плотных матриц на C=AB.

Работу выполнил **Тони Кастильо Мартин**

Постановка задачи и формат данных.

Разработать параллельную программу с использованием технологии MPI, реализующую алгоритм умножения плотных матриц на C=A**B**. Тип данных — double. Провести исследование эффективности разработанной программы на системе Blue Gene/P.

Задача: Результатом работы является количество простых чисел выведенное в командную строку и файл с самими числами в текстовом виде (сортировать не обязательно).

Формат командной строки: <имя файла матрицы A > <имя файла матрицы B > <имя файла матрицы C >

Формат файла-матрицы: Матрица представляются в виде бинарного файла следующего формата:

Тип	Значение	Описание
Число типа size_t	N – натуральное число	Число строк матрицы
Число типа size_t	М – натуральное число	Число столбцов матрицы
Массив чисел типа Т	$N \times M$ элементов	Массив элементов матрицы

Элементы матрицы хранятся построчно.

Анализ времени выполнения: Для оценки времени выполнения программы использовалась функция:

MPI_Wtime()

Для повышения надёжности экспериментов опыты проводились несколько раз (10).

Верификация: Для проверки корректности работы программы использовались тестовые данные.

Результаты выполнениа

Зависимость времени выполнения рабочих циклов: для каждого из заданных значений размеров матрицы (1024x1024, 2048x2048, 4096x4096).

Время

N	M	Мэппинг	2^3	4^3	5^3
512	512	2.58125	2.43096	2.46734	2.59125
1024	1024	21.0420	19.3759	20.0141	20.9321
2048	2048	154.547	152.451	153.661	153.914
4096	4096	441.914	431.451	434.661	440.914

ускорения

N	M	Мэппинг	2^3	4^3	5^3
512	512	119.9245	7.96519	62.7702	120.7212
1024	1024	120.9124	7.98821	63.5202	121.7258
2048	2048	121.5441	7.98916	63.7121	122.0912
4096	4096	123.4123	7.99153	63.8755	123.7127

эффективности.

N	M	Мэппинг	2^3	4^3	5^3
512	512	0. 990526	0. 983523	0. 988526	0.991526
1024	1024	0.993023	0.984124	0. 990912	0.994019
2048	2048	0. 994526	0.987943	0.9925669	0.996415
4096	4096	0. 997526	0. 988526	0. 995531	0. 998712

512x512

1024x1024

2048x2048

4096x4096

