INSTITUTO TECNOLÓGICO Y DE ESTUDIOS SUPERIORES DE OCCIDENTE Departamento de Electrónica, Sistemas e Informática.

Creación de una base de datos basada en grafos

Victor Hugo Ortega Guzmán 5 de mayo del 2020

Alumno:

José Manuel Navarro Ramírez

Expediente: 703803

Carrera: Ingeniería en Sistemas Computacionales

Créditos aprobados: 54%

Motivación:

Me motive hacer la base de datos enfocada al mundo de Mario debido a que a lo largo de mi vida siempre he tenido un acercamiento con los videojuegos, sin embargo, la mayoría de los juegos que más disfruto no cuentan con muchos personajes principales los cuales pueda usar de referencia, por lo que decidí realizar el trabajo sobre el universo preferido de nintendo, además de que crecí con varios de los juegos desarrollados en este mundo ficticio, se me hizo un tópico fácil de implementar para la funcionalidad que estamos buscando.

Creación del grafo:

```
Create
(h0:hero{name:'Mario'}),
(h1:hero{name:'Luigi'}),
(h2:hero{name:'Princesa Peach'}),
(h3:hero{name: 'Toad'}),
(h4:hero{name: 'Yoshi'}),
(h5:hero{name:'Princesa Daysi'}),
(v0:villain{name:'Bowser'}),
(v1:villain{name:'Donkey Kong'}),
(v2:villain{name:'Koopaline'}),
(v3:villain{name:'Goomba'}),
(v4:villain{name:'Bowser Jr.'}),
(v5:villain{name:'Kamek'}),
(g0:game{name: Donkey Kong', designer: Shigeru Miyamoto'}),
(g1:game{name: 'Mario Bros', designer: 'Shigeru Miyamoto'}),
(g2:game{name:'Super Mario Galaxy', designer:'Shigeru Miyamoto'}),
(g3:game{name:'Super Mario Sunshine', designer:'Shigeru Miyamoto'}),
(g4:game{name:'Super Mario World', designer:'Shigeru Miyamoto'}),
(g5:game{name:'New Super Mario Bros Wii', designer:'Michiho Hayashi'}),
(g6:game{name: 'Super Smash Bros Ultimate', designer: 'Masahiro Sakurai'}),
(g7:game{name:'Mario Kart', designer:'Shigeru Miyamoto'}),
(h0)-[:FRIEND_OF {weight:10}]->(h1),
(h0)-[:FRIEND_OF {weight:10}]->(h2),
(h0)-[:FRIEND_OF {weight:7}]->(h3),
(h0)-[:FRIEND_OF {weight:8}]->(h4),
(h0)-[:FRIEND_OF {weight:7}]->(h5),
(h1)-[:FRIEND_OF {weight:10}]->(h0),
(h1)-[:FRIEND_OF {weight:8}]->(h2),
(h1)-[:FRIEND_OF {weight:7}]->(h3),
(h1)-[:FRIEND_OF {weight:8}]->(h4),
(h1)-[:FRIEND_OF {weight:10}]->(h5),
(h2)-[:FRIEND_OF {weight:10}]->(h0),
```

```
(h2)-[:FRIEND OF \{weight:8\}]->(h1),
(h2)-[:FRIEND_OF {weight:8}]->(h3),
(h2)-[:FRIEND_OF {weight:10}]->(h5),
(h3)-[:FRIEND_OF {weight:8}]->(h0),
(h3)-[:FRIEND_OF {weight:8}]->(h1),
(h3)-[:FRIEND_OF {weight:10}]->(h2),
(h3)-[:FRIEND_OF {weight:7}]->(h4),
(h3)-[:FRIEND_OF {weight:8}]->(h5),
(h4)-[:FRIEND_OF {weight:10}]->(h0),
(h4)-[:FRIEND_OF {weight:10}]->(h1),
(h4)-[:FRIEND_0F \{weight:8\}]->(h3),
(h5)-[:FRIEND_OF {weight:8}]->(h0),
(h5)-[:FRIEND_OF {weight:10}]->(h1),
(h5)-[:FRIEND_OF {weight:10}]->(h2),
(h5)-[:FRIEND_OF {weight:8}]->(h3),
(v0)-[:ALLY OF \{weight:7\}]->(v2),
(v0)-[:ALLY_OF \{weight:7\}] \rightarrow (v3),
(v0)-[:ALLY_0F \{weight:10\}]->(v4),
(v0)-[:ALLY_OF {weight:8}]->(v5),
(v2)-[:ALLY_0F \{weight:10\}]->(v0),
(v2)-[:ALLY_0F \{weight:8\}]->(v3),
(v2)-[:ALLY_0F \{weight:10\}]->(v4),
(v3)-[:ALLY_OF \{weight:10\}]->(v0),
(v3)-[:ALLY_OF {weight:8}]->(v2),
(v3)-[:ALLY OF \{weight:10\}]->(v4),
(v4)-[:ALLY_OF \{weight:10\}]->(v0),
(v4)-[:ALLY_0F \{weight:8\}]->(v2),
(v4)-[:ALLY_0F \{weight:8\}]->(v3),
(v4)-[:ALLY_0F \{weight:8\}]->(v5),
(v5)-[:ALLY_0F \{weight:10\}]->(v0),
(v5)-[:ALLY_0F \{weight:10\}]->(v4),
(v0)-[:ENEMY_OF \{weight:10\}]->(h0),
(v0)-[:ENEMY_OF \{weight:10\}]->(h1),
(v0)-[:ENEMY_OF {weight:10}]->(h2),
(v0)-[:ENEMY_OF \{weight:10\}]->(h3),
(v0)-[:ENEMY_OF \{weight:10\}]->(h4),
(v0)-[:ENEMY_OF \{weight:6\}] \rightarrow (h5),
(v1)-[:ENEMY_OF \{weight:6\}]->(h0),
(v1)-[:ENEMY_OF \{weight:6\}]->(h1),
(v1)-[:ENEMY_OF \{weight:4\}]->(h5),
(v2)-[:ENEMY_OF \{weight:2\}]\rightarrow (h0),
(v2)-[:ENEMY_OF \{weight:2\}]->(h1),
(v2)-[:ENEMY OF {weight:6}]->(h3),
(v2)-[:ENEMY_OF \{weight:6\}]->(h4),
(v3)-[:ENEMY_OF \{weight:2\}]->(h0),
(v3)-[:ENEMY_OF \{weight:2\}]->(h1),
(v3)-[:ENEMY_OF \{weight:6\}]->(h3),
(v3)-[:ENEMY_OF \{weight:6\}]->(h4),
```

```
(v4)-[:ENEMY OF \{weight:8\}]->(h0),
(v4)-[:ENEMY_OF \{weight:8\}]\rightarrow (h1),
(v4)-[:ENEMY_OF \{weight:8\}]\rightarrow(h2),
(v4)-[:ENEMY_OF \{weight:4\}]\rightarrow(h3),
(v4)-[:ENEMY OF \{weight:6\}]->(h5),
(v5)-[:ENEMY_OF \{weight:8\}]->(h0),
(v5)-[:ENEMY_OF \{weight:8\}]->(h1),
(v5)-[:ENEMY OF {weight:7}]->(h4),
(h0)-[:APPEARS_IN {role: 'hero'}]->(g0),
(h0)-[:APPEARS IN {role:'hero'}]->(q1),
(h0)-[:APPEARS_IN {role: 'hero'}]->(g2),
(h0)-[:APPEARS IN {role: 'hero'}]->(q3),
(h0)-[:APPEARS_IN {role: 'hero'}]->(g4),
(h0)-[:APPEARS IN {role: 'hero'}]->(q5),
(h0)-[:APPEARS_IN {role: 'hero'}]->(g6),
(h0)-[:APPEARS IN {role: 'notApply'}]->(q7),
(h1)-[:APPEARS IN {role: 'hero'}]->(q1),
(h1)-[:APPEARS IN {role: 'hero'}]->(q2),
(h1)-[:APPEARS IN {role: 'hero'}]->(q4),
(h1)-[:APPEARS_IN {role: 'hero'}]->(g5),
(h1)-[:APPEARS_IN {role:'hero'}]->(g6),
(h1)-[:APPEARS_IN {role: 'notApply'}]->(g7),
(h2)-[:APPEARS IN {role:'victim'}]->(q2),
(h2)-[:APPEARS_IN {role:'victim'}]->(g4),
(h2)-[:APPEARS IN {role:'victim'}]->(q5),
(h2)-[:APPEARS IN {role: 'hero'}]->(q6),
(h2)-[:APPEARS IN {role: 'notApply'}]->(q7),
(h3)-[:APPEARS_IN {role: 'assistant'}]->(g2),
(h3)-[:APPEARS IN {role: 'assistant'}]->(g3),
(h3)-[:APPEARS IN {role:'hero'}]->(q5),
(h3)-[:APPEARS_IN {role: 'assistant'}]->(g6),
(h3)-[:APPEARS IN {role:'notApply'}]->(q7),
(h4)-[:APPEARS_IN {role: 'assistant'}]->(g3),
(h4)-[:APPEARS IN {role: 'assistant'}]->(q4),
(h4)-[:APPEARS_IN {role: 'assistant'}]->(g5),
(h4)-[:APPEARS IN {role:'hero'}]->(g6),
(h4)-[:APPEARS_IN {role:'notApply'}]->(g7),
(h5)-[:APPEARS IN {role: 'hero'}]->(g6),
(h5)-[:APPEARS_IN {role: 'notApply'}]->(g7),
(v0)-[:APPEARS_IN {role:'Villain'}]->(g2),
(v0)-[:APPEARS IN {role:'Villain'}]->(q3),
(v0)-[:APPEARS_IN {role:'Villain'}]->(g4),
(v0)-[:APPEARS IN {role:'Villain'}]->(g5),
(v0)-[:APPEARS IN {role:'Villain'}]->(q6),
(v0)-[:APPEARS IN {role:'notApply'}]->(q7),
(v1)-[:APPEARS_IN {role:'Villain'}]->(g0),
(v1)-[:APPEARS IN {role: 'hero'}]->(q6),
(v1)-[:APPEARS IN {role: 'notApply'}]->(q7),
```

```
(v2)-[:APPEARS IN {role: 'Villain'}]->(q4).
(v2)-[:APPEARS IN {role:'Villain'}]->(g5),
(v2)-[:APPEARS IN {role: 'notApply'}]->(q7),
(v3)-[:APPEARS IN {role:'Villain'}]->(q2),
(v3)-[:APPEARS IN {role:'Villain'}]->(q4),
(v3)-[:APPEARS IN {role:'Villain'}]->(g5),
(v4)-[:APPEARS_IN {role:'Villain'}]->(g2),
(v4)-[:APPEARS IN {role:'Villain'}]->(q3),
(v4)-[:APPEARS IN {role:'Villain'}]->(g5),
(v4)-[:APPEARS IN {role:'Villain'}]->(g6),
(v4)-[:APPEARS IN {role: 'notApply'}]->(q7),
(v5)-[:APPEARS IN {role:'Villain'}]->(q4),
(v5)-[:APPEARS_IN {role:'Villain'}]->(g5),
(v5)-[:APPEARS IN {role: 'notApply'}]->(q7),
(q0)-[:DESIGNED BY DESIGNER OF {year:1981}]->(q1),
(q0)-[:DESIGNED BY DESIGNER OF {year:1981}]->(q2),
(g0)-[:DESIGNED_BY_DESIGNER_OF {year:1981}]->(g3),
(g0)-[:DESIGNED_BY_DESIGNER_OF {year:1981}]->(g4),
(q0)-[:DESIGNED BY DESIGNER OF {year:1981}]->(q7),
(g1)-[:DESIGNED_BY_DESIGNER_OF {year:1983}]->(g0),
(g1)-[:DESIGNED_BY_DESIGNER_OF {year:1983}]->(g2),
(g1)-[:DESIGNED_BY_DESIGNER_OF {year:1983}]->(g3),
(q1)-[:DESIGNED BY DESIGNER OF {year:1983}]->(q4),
(g1)-[:DESIGNED_BY_DESIGNER_OF {year:1983}]->(g7),
(q2)-[:DESIGNED BY DESIGNER OF {year:2007}]->(q0),
(q2)-[:DESIGNED BY DESIGNER OF {year:2007}]->(q1),
(q2)-[:DESIGNED BY DESIGNER OF {year:2007}]->(q3),
(g2)-[:DESIGNED_BY_DESIGNER_OF {year:2007}]->(g4),
(q2)-[:DESIGNED BY DESIGNER OF {year:2007}]->(q7),
(g3)-[:DESIGNED_BY_DESIGNER_OF {year:2002}]->(g0),
(g3)-[:DESIGNED_BY_DESIGNER_OF {year:2002}]->(g1),
(q3)-[:DESIGNED BY DESIGNER OF {year:2002}]->(q2),
(g3)-[:DESIGNED_BY_DESIGNER_OF {year:2002}]->(g4),
(q3)-[:DESIGNED BY DESIGNER OF {year:2002}]->(q7),
(g4)-[:DESIGNED_BY_DESIGNER_OF {year:1985}]->(g0),
(q4)-[:DESIGNED BY DESIGNER OF {year:1985}]->(q1),
(g4)-[:DESIGNED_BY_DESIGNER_OF {year:1985}]->(g2),
(q4)-[:DESIGNED BY DESIGNER OF {year:1985}]->(q3),
(q4)-[:DESIGNED_BY_DESIGNER_OF {year:1985}]->(g7),
(g7)-[:DESIGNED_BY_DESIGNER_OF {year:1992}]->(g0),
(g7)-[:DESIGNED_BY_DESIGNER_OF {year:1992}]->(g1),
(g7)-[:DESIGNED_BY_DESIGNER_OF {year:1992}]->(g2),
(q7)-[:DESIGNED BY DESIGNER OF {year:1992}]->(q3),
(g7)-[:DESIGNED_BY_DESIGNER_OF {year:1992}]->(g4)
```

Consultas:

1. Esquema de la base de datos.

Existen 3 tipos de nodo:

- Hero
- Villain
- Game

Existen 6 nodos de tipo Hero, su único atributo es name

Existen 6 nodos de tipo Villain, su único atributo es name

Existen 8 nodos de tipo Game, sus atributos son name y designer

Existen 26 relaciones tipo FRIEND_OF, su único atributo es weight

Existen 25 relaciones tipo ENEMY_OF, su único atributo es weight

Existen 16 relaciones tipo ALLY_OF, su único atributo es weight

Existen 54 relaciones tipo APPEARS_IN, su único atributo es role

Existen 30 relaciones tipo DESIGNED_BY_DESIGNER_OF, su único atributo es year

2. Nodos aislados del grafo(Weakly Connected Components)

• Héroes:

Se muestra que ningún nodo tipo "hero" esta aislado.

Villanos:

Código Cypher	Resu	ltado
CALL gds.graph.create("MyGraphWCC", "villain",	name	componentId
"ALLY_OF", {relationshipProperties:'weight'}	"Bowser"	0
)	"Koopaline"	0
CALL gds.wcc.stream('MyGraphWCC') YIELD nodeld, componentld	"Goomba"	0
RETURN gds.util.asNode(nodeId).name AS name, componentId ORDER BY componentId	"Bowser Jr." "Kamek"	0
	"Donkey Kong"	1

Se muestra que el nodo tipo "villain" con el parametro "name" equivalente a "Donkey Kong" es considerado un nodo aislado según la relación "ALLY OF".

Juegos:

Código Cypher	Resultado	
CALL gds.graph.create("MyGraphWCC",	name	componentId
"game",	"Donkey Kong"	0
"DESIGNED_BY_DESIGNER_OF", {relationshipProperties:'year'}	"Mario Bros"	0
,	"Super Mario Galaxy"	0
CALL gds.wcc.stream('MyGraphWCC') YIELD nodeld, componentId	"Super Mario Sunshine"	0
RETURN gds.util.asNode(nodeld).name	"Super Mario World"	0
AS name, componentld ORDER BY componentld	"Mario Kart"	0
Componentia	"New Super Mario Bros Wii" 	5
	"Super Smash Bros Ultimate"	6

Se puede observar como los juegos "New Super Mario Broos Wii" y "Super Smash Bros Ultimate" son juegos que se consideran aislados según la relación "DESIGNED_BY_DESIGNER_OF".

3. Nodos con mayor importancia(Page Rank)

• Héroes:

Código Cypher	Re	sultado
CALL gds.graph.create(
"MyGraphPageRank",		
"hero",	name	score
"FRIEND_OF",		
{relationshipProperties:'weight'}	"Luigi"	1.1365659488830715
)		
	"Mario"	1.1341693137772382
CALL	"Toad"	0.9801096827024597
gds.pageRank.stream('MyGraphPageRank',		0.9001090021024391
{maxIterations: 20,	"Princesa Peach"	0.9754721229895951
dampingFactor: 0.85,		
relationshipWeightProperty: 'weight'	"Princesa Daysi"	0.9234867435880009
})		
YIELD nodeld, score	"Yoshi"	0.6525225535035132
RETURN gds.util.asNode(nodeId).name AS		
name, score		
ORDER BY score DESC, name ASC		

En la tabla anterior se muestra en orden descendente los nodos de tipo "hero" según su importancia en la relación "FRIEND_OF".

• Villanos:

Código Cypher	Resultado		
CALL gds.graph.create(
"MyGraphPageRank",			
"villain",	name	score	
"ALLY_OF",	"Bowser Jr."	1.2615812086965887	
{relationshipProperties:'weight'}		1.201361200030367	
)	"Bowser"	1.2460794211830946	
CALL gds.pageRank.stream('MyGraphPageRank',	"Goomba"	0.831847282196395	
{maxIterations: 20,			
dampingFactor: 0.85,	"Koopaline"	0.831847282196395	
relationshipWeightProperty: 'weight' })	"Kamek"	0.6639169672504068	
YIELD nodeld, score			
RETURN gds.util.asNode(nodeId).name AS name,	"Donkey Kong"	0.15000000000000002	
score	-		
ORDER BY score DESC, name ASC			

En la consulta anterior se muestra en orden descendente los nodos de tipo "villain" según su importancia en la relación "ALLY_OF".

• Juegos:

En esta tabla se puede apreciar de man dera descendente todoos los juegos según su importancia en la relación "DESIGNED_BY_DESIGNER_OF".

4. Recomendar más nodos en base a otro nodo

• Héroes:

Código Cypher	Resultado			
MATCH (v:villain{name:'Bowser Jr.'})				
-[:ENEMY_OF]->(h:hero)	Villain	Hero	VillainRelated	
<-[:ENEMY_OF]-(v2:villain) WITH v, h, v2	"Bowser Jr."	"Luigi"	["Kamek", "Koopaline", "Donkey Kong", "Goomba", "Bowser"]	
RETURN v.name AS Villain, h.name AS	"Bowser Jr."	"Toad"	["Bowser", "Goomba", "Koopaline"]	
Hero, collect(v2.name) AS VillainRelated	"Bowser Jr."	"Princesa Peach"	["Bowser"]	
	"Bowser Jr."	"Mario"	["Koopaline", "Kamek", "Bowser", "Goomba", "Donkey Kong"]	
	"Bowser Jr."	"Princesa Daysi"	["Donkey Kong", "Bowser"]	

En la anterior consulta se pueden observar a los enemigos de "Bowser Jr.", así como al resto de villanos a los que se enfrenta cada uno de ellos.

• Villanos:

Código Cypher		Re	esultado
MATCH (h:hero{name:'Luigi'})			
-[:APPEARS_IN]->(g:game) <-[:APPEARS_IN]-(h2:hero)	Hero	Game	RelatedHero
WITH h, g, h2	"Luigi"	"New Super Mario Bros Wii"	["Princesa Peach", "Yoshi", "Mario", "Toad"]
RETURN h.name AS Hero, g.name AS	"Luigi"	"Mario Kart"	["Princesa Peach", "Toad", "Mario", "Princesa Daysi", "Yoshi"]
Game, collect(h2.name) AS RelatedHero	"Luigi"	"Super Mario World"	["Mario", "Yoshi", "Princesa Peach"]
Relateditero	"Luigi"	"Mario Bros"	["Mario"]
	"Luigi"	"Super Mario Galaxy"	["Mario", "Princesa Peach", "Toad"]
	"Luigi"	"Super Smash Bros Ultimate"	["Princesa Peach", "Mario", "Yoshi", "Toad", "Princesa Daysi"]

En la anterior tabla se muestran los juegos en los que aparece "Luigi", así como el resto de héroes que aparecen en cada uno de ellos.

• Juegos:

Código Cypher			Resultado
MATCH (g:game{name:'Super Mario Galaxy'})<- [:APPEARS IN]-(h:hero)-[:APPEARS IN]-	Game	Heroes	RelatedGames
>(g2:game) RETURN g.name AS Game, h.name AS Heroes, collect(g2.name) AS RelatedGames	"Super Mario Galaxy"	"Mario"	['Super Smash Bros Ultimate", "Super Mario Sunshine", "Mario Kart", "Mario Bros", "New Super Mario Bros Wiil", "Donkey Kong", "Super Mario World"]
	"Super Mario Galaxy"	"Princesa Peach"	["Mario Kart*, "Super Smash Bros Ultimate", "New Super Mario Bros Wii", "Super Mario World"]
	"Super Mario Galaxy"	"Toad"	["Mario Kart", "Super Smash Bros Ultimate", "New Super Mario Bros Wii", "Super Mario Sunshine"]
	"Super Mario Galaxy"	"Luigi"	["New Super Mario Bros Wiil", "Mario Kart", "Super Mario World", "Mario Bros", "Super Smash Bros Ultimate"]

En esta consulta se pueden observar a los héroes que aparecen en "Super Mario Galaxy", así como el resto de juegos donde hacen aparición.

5. Analizar las comunidades de cada tipo de nodo(Louvain)

Héroes:

Código Cypher	Resultado			
CALL gds.graph.create("MyGraphLouvain",				
"hero", {FRIEND OF:{orientation:'UNDIRECTED'}},	name	communityId	intermediateCommunityIds	
{relationshipProperties: 'weight'}	"Luigi"		null	
)	"Mario"		null	
CALL gds.louvain.stream("MyGraphLouvain")	"Princesa Daysi"	5	null	
YIELD nodeld, communityld,	"Princesa Peach"		null	
intermediateCommunityIds RETURN gds.util.asNode(nodeId).name as	"Toad"		null	
name, communityld,	"Yoshi"	4	null	
intermediateCommunityIds ORDER BY name ASC				

En la anterior tabla se muestra la existencia de 2 comunidades en los nodos de tipo "hero".

Villanos:

Código Cypher		Resultac	do
CALL gds.graph.create("MyGraphLouvain", "villain",	name	communityId	intermediateCommunityIds
{ALLY_OF:{orientation:'UNDIRECTED'}}, {relationshipProperties: 'weight'})	"Bowser" "Bowser Jr."		null
CALL gds.louvain.stream("MyGraphLouvain") YIELD nodeld, communityld,	"Donkey Kong"		null
intermediateCommunityIds RETURN gds.util.asNode(nodeId).name as	"Goomba" 	3	null
name, communityId, intermediateCommunityIds ORDER BY name ASC	"Koopaline" 	3	null

En la anterior table se muestra la existencia de 2 comunidades en los nodos de tipo villain.

• Juegos:

Código Cypher	F	Resultado	
CALL gds.graph.create(
"MyGraphLouvain",			
"game",	name	communityId	intermediateCommunityIds
{DESIGNED_BY_DESIGNER_OF:	"Donkey Kong"		null
{orientation:'UNDIRECTED'}},	——————————————————————————————————————		Hull
{relationshipProperties: 'year'}	"Mario Bros"		null
	"Mario Kart"	1	null
	"New Super Mario Bros Wii"		null
CALL	"Super Mario Galaxy"	1	null
gds.louvain.stream("MyGraphLouvain")	"Super Mario Sunshine		null
YIELD nodeld, communityId,	"Super Mario World"		null
intermediateCommunityIds	"Super Smash Bros Ultimate"		null
RETURN gds.util.asNode(nodeId).name			
as name, communityId,			
intermediateCommunityIds			
ORDER BY name ASC			

En la anterior consulta se muestra la existencia de 3 comunidades en los nodos de tipo "game".

6. Analizar la similaridad (Node Similarity)

Código Cypher		Resultado	0
CALL gds.graph.create("MyGraphSimilarity",	Person1	Person2	similarity
['hero', 'game'], 'APPEARS_IN');	"Luigi"	"Princesa Peach"	0.833333333333334
CALL	"Princesa Peach"		0.833333333333334
gds.nodeSimilarity.stream('MyGraphSimilarity')	"Luigi"	"Mario"	0.75
YIELD node1, node2, similarity	"Mario"		0.75
RETURN gds.util.asNode(node1).name AS	"Princesa Peach"		0.66666666666666
Person1, gds.util.asNode(node2).name AS	"Princesa Peach"		0.666666666666666
Person2, similarity	"Toad"	"Princesa Peach"	0.66666666666666
ORDER BY similarity DESCENDING, Person1,	"Toad"		0.66666666666666
Person2	"Yoshi"	"Princesa Peach"	0.66666666666666
	"Yoshi"		0.6666666666666666666666666666666666666
	"Mario"	"Princesa Peach"	0.625
	"Mario"		0.625
	"Mario"	"Yoshi"	0.625
	"Princesa Peach"	"Mario"	0.625

En la anterior tabla se muestra la similaridad que tienen los nodos de tipo "hero", si el parametro "similarity" es 1, quiere decir que los nodos comparados son totalmente similares.

Conclusiones y recomendaciones

Esta práctica me parecio bastante útil para prácticar la creación de nodos y relaciones en el lenguaje Cypher, así cómo la comprensión y utilidad de algoritmos como Weakly Connected Components y Page Rank.

Referencias

Robinson, I., Webbe, J., & Eifrem, E.. (2015). Graph Databases. United States of America: O'Reilly.

Needham, M. & Hodler, A. (2019). Graph algorithms. United States of America: O'Reilly.

Chapter 5 Algorithms. Abril 28, 2020, de NEO4J Sitio web: https://neo4j.com/docs/graph-data-science/current/algorithms/