Abstract algebra I

Homework 5

Due: 15th October 2025

1) Let G be a finite group that acts on a finite set S. We (again) define the *orbit* of $s \in S$ to be

$$O(s) = \{g \cdot s : g \in G\},\$$

and the stabilizer of s in G to be

$$G_s = \{ g \in G : g \cdot s = s \}.$$

- (a) Check that for any two distinct elements $s, t \in S$, we either have O(s) = O(t) or $O(s) \cap O(t) = \emptyset$.
- (b) Verify that G_s is a subgroup of G, and that the map given by

{cosets of
$$G_s$$
 in G } $\rightarrow O(s)$, $gG_s \mapsto g \cdot s$

is a well-defined bijection.

- (c) Conclude that $|G_s| \cdot |O(s)| = |G|$. (This is called the orbit-stabilizer theorem.)
- 2) Consider the action of G on itself given by $(g,h) \mapsto g^{-1}hg$, this action is called *conjugation*. In this case the orbit of $h \in G$ is called the *conjugacy class* of h and we shall denote it by

$$class(h) = \{g^{-1}hg : g \in G\},\$$

and the stabilizer is called the centralizer of h and is denoted by

$$C_G(h) = \{g \in G : g^{-1}hg = h\}.$$

Elements in the same conjugacy class are called *conjugates* (of one another).

(a) Let class $(h_1), ..., \text{class}(h_n)$ be the distinct conjugacy classes of G, i.e., $\bigcup_{i=1}^n \text{class}(h_i) = G$. Derive the class equation

$$|G| = \sum_{i=1}^{n} \frac{|G|}{|C_G(h_i)|}.$$

(b) Furthermore, suppose for each i = m + 1, ..., n, we have $|\operatorname{class}(h_i)| = 1$, while for i = 1, ..., m, we have $|\operatorname{class}(h_i)| > 1$. Show that

$$|G| = |Z(G)| + \sum_{i=1}^{m} \frac{|G|}{|C_G(h_i)|},$$

where Z(G) denotes the center of G. (Usually the class equation is written in this second form.)

1

(c) Let p be a prime, and $n \ge 1$. If $|G| = p^n$, deduce that $Z(G) \ne \{e\}$.

The rest of the homework has nothing to do with group actions.

- 3) Let G be a finite group and H a subgroup. The *index* of H in G, denoted [G:H], is the quantity |G|/|H| (indeed I could have introduced this at the start of the assignment). We usually say H is a subgroup of index [G:H]. For another subgroup $K \leq G$, we are interested in questions about $HK = \{hk : h \in H, k \in K\}$, or KH.
 - (a) Prove that $|HK| = \frac{|H||K|}{|H \cap K|}$.
 - (b) Prove that $[G: H \cap K] \leq [G: H][G: K]$, with equality if and only if G = HK.
 - (c) Prove that HK is a subgroup of G if and only if HK = KH.
 - (d) Prove that if [G:H] and [G:K] are relatively prime, then G=HK.

(In general, [G:H] is defined to be the number of distinct left cosets of H in G, since our current definition does not make sense if G is an infinite group. And then the problem of interest would be when would H be a subgroup of finite index, but we do not go into that here...)

4) Let G be an abelian group of order 2n. If n is odd, prove that there is only one element of order 2.