MuMeTech-CheatSheet

Definition

MuMeTech

ist rechnergeführt, unabhängig, diskret und kontinuierlich.

Kompression

Daten/Datenkanäle werden auf bestimmte Auflösung/Genauigkeit/Abtastrate reduziert (Bei unterschiedlicher Reduzierung je nach Kanal, nennt man es Subsampling).

Übertragungsmodi

- synchron Der Sender sendet direkt an den Empfänger, es kann erst weitergesendert werden, wenn die Daten empfangen werden. (Handy)
- asynchron Die Daten werden während der Übertragung zwischengepuffert, womit der Sender nicht auf den Empfänger warten muss. (Post,EMail)
- isochron Zeitraster ist fest, konstante Periode und Datenrate. (USB)

Medienarten

- Perzeptionsm. Wahrnehmung
- Repräsentationsm. Darstellung
- Präsentationsmedium Ausgabe
- Speichermedium Physikalischer Datenspeicher

Kompressionsarten

Huffmann

Häufige Zeichen \Rightarrow kurze Codewörter Weniger häufige Zeichen \Rightarrow lange Codewörter Zeichen werden nach ihrer Häufigkeit geordnet mit verschieden langen Codes repräsentiert.

Beispiel nach Sonny

Schritt 1

 $\begin{pmatrix} 3 \\ a \end{pmatrix}$

d: 00 e: 01

b: 100

a: 101 c: 11

Schritt 2

Schritt 3

Mittlere Codelänge (Kompressionsfaktor): 41/18

Lauflängenkodierung

Fasst direkt aufeinanderfolgende Zeichenketten zusammen. $(aaabbb \Rightarrow 3a3b)$

Erdnüsse

\mathbf{FFT}

Spaltet komplexes Signal in mehrere reine Sinusschwingungen auf, welche addiert das Orginalsignal ergeben.

DCT

Wichtige Elemente der darzustellenden Daten werden mit mehr Bandbreite versehen (Links-Oben-Bild)

Die DCT ist verlustfrei umkehrbar-Erst durch die Quantisierung findet die Reduktion statt.

Audio

Begriffe

- Phon Empfundene Lautstärke im Verhältnis zu 1000 Hz Sinus. Skaliert normal (nicht log.).
- Dezibel Logarithmisch ausgedrückte Lautstärke 6dB Unterschied bedeuten Verdoppelung der Lautstärke.
- Frequenzamplitude Amplitude wird angegeben in Dezibel und bestimmt die Lautstärke. Beschreibt maximale Auslenkung der Sinuswelle.
- Klang Schallwelle die vom menschlichen Ohr als bestimmter Ton wahrgenommen wird.

Analog2Digital

- Vorverarbeitung Filterung (Störgeräusche),
 Verstärkung (Dynamikausnutzung)
 Im zweiten Schritt erfolgt eine Frequenzbandbegrenzung (Tiefpassfilter) auf 1/2 der Abtastfrequenz (Shannon Abtasttherorem)
- Abtastung In konstanten Intervallen wird der Wert des Eingangssignals entnommen.
- 3. Quantisierung Diskretisierung des bei der Abtastung ermittelten Wertes
- 4. Kodierung Binärkodierung der Signalproben

Zusammenfassend

Aus einem zeitkontinuierlich ablaufendem VOrgang werden Signalproben genommen und in ihrer Amplitude quantisiert und in eine computergerechte Darstellung gebracht.

${\bf Kodierung smethoden}$

Verlustbehaftet

- PulseCodeModulation PCM 3 Schritte
 - Schritt 1 Abtastung mit zeitlich konst. Rate
 - Schritt 2 Quantisierung der Werte
 - Schritt 3 Kodierung in binärcode Die Kodierung erfolt linear.
- **DPCM** Differenzielle PCM

Die Quantisierung erfolgt anhand der Differenz zu einer Vorhersage.

Bei DPCM werden Differenzwerte aufeinanderfolgender Abtastwerte gebildet.

- **DeltaModulation** Eine DPCM mit nur einem Bit. Wertebereich -/+1. Die Schätzwerte nehmen dabei immer an, dass der neue Abtastwert gleich dem vorherigem ist.
- Adaptive differenzielle PCM Ähnlich DPCM, jedoch mit dyamischer Vorhersage. Angepasste Quantisierung, dadurch bessere Quali.

Kompressionsverfahren für Audio

Datenreduktion

Filterung der Daten (z.B. nach psychoakustik).

Datenkompression

Verlustfreie Komprimierung der Daten.

mp3

- 1. PCM (768Kbit/s)
- 2. Filterbank für 32 Subbänder / FastFourierTrans für 1024 Abtastwerte
- 3. FFT \Rightarrow PsychAkModel nun wird anhand derer und der Subbänder quantisiert.
- 4. Audiodatenkodierung mit Huffmann, Nebeninfos codiert
- 5. BitstromFormatierung und Fehlerkorrektur

MIDI

Datenübertragungsprotokoll für Musikdaten. Übertragen werden Steuerinformationen zwischen elektronischen Instrumenten, welche von Programm interpretiert werden können. Inhalt zum Beispiel: Anschlagstärke, Lautstärke, MidiKanalnummer (4Bit), Spurname

- Format 0 Alle Midikanäle sind in einer Spur zusammengefasst, somit keine gleichzeitigen Anschläge verschiedener Instrumente (Klingelton)
- Format 1 Jeder Kanal hat eigene Spur, somit können auch gleichzeitige Anschläge realisiert werden.
- Format 2 Im Format 2 besteht jede Spur (Track) aus unabhängigen Einheiten. Im Gegensatz zu SMF 1 können also mehrere Spuren dieselbe MIDI-Kanal-Nummer haben.

THRU-Port gibt parallel zum Outport eines Gerätes (z.B. Filter) das unbehandelte Inputsignal aus (z.B. für Aufnahmen).

Beispielrechnungen

Einheiten:

 $1MB \Rightarrow 10^6 Byte || 1MiB \Rightarrow 1024 \times 1024 Byte$ $1GB \Rightarrow 10^9 Byte || 1GiB \Rightarrow 1024 \times 1024 \times 1024 Byte$

PCM: 44.1KHz,16Bit,stereo,20min

 $44.100 \times 16 \times 2 \times 20 \times 60 \Rightarrow Bit$

 $44.100 \times 2 \times 2 \times 20 \times 60 \Rightarrow 211680000 Byte \approx 211.7 MB$

MP3: 128kbit/s

Grafiken/Bilder

Farbmodi

- RGB RotGrünBlau.
 - Additive Farbmischung mit drei Farbkanäle a 8Bit (default).
 - Anwendungen Monitordarstellung, Kamera
 - Vorteile

Gut auf Geräten anzuwenden, die Lichtquellen aussenden.

Direkt mit Algo bearbeitbar Darstellungskapazität vieler Farbnuancen

- Nachteil

Probleme mit Darstellung von Schwarz Geräteabhängig.

8~%des Farbraums sind nicht wahrnehmbare Farben

Helligkeitskorrektur schwer

Eignet sich nicht für Druck (Additiv/Substraktiv)

- YUV Darstellung durch Luminanz (Y) und Chrominanz (UV).
 - Anwendungen Analoges
 NTSC/PAL-Farbfernsehen
 - Vorteile

Halbe Bandbreite von RGB Durch Subsampling optimierung möglich (siehe Subsampling) Vollständiger Farbraum abgedeckt Abwärtskompatibel zu Schwarz (Weiss

Vollständiger Farbraum abgedeckt Abwärtskompatibel zu Schwarz/Weiss Ausnutzung Wahrnehmungspsychologie Helligkeit separat im Gegensatz zu RGB (jeder Kanal muss angepasst werden) Progressive Vollbilder möglich

- Nachteil

Verteilung der Farbanteile der Cyan/Orange und Megenta/Grün ist ungleichmässig auf U und V, daher keine Bandbreitenreduktion möglich

- YIQ Darstellung durch Luminanz (Y), sowie den Farbdifferenzen I (Cyan/Orange) und Q (Magenta/Grün) Irgendwie zu YUV verdreht! WHY? How much?
 - Anwendungen Altes analoges NTSC-Farbfernsehen

- Vorteile

Ähnlich YUV

Kommt wahrscheinlich nicht in der Klausur dran (Jonas)

- Nachteil

Nur überm Teich im Gebrauch

JPEG

JPEG-Kodierung

Siehe Anhang

Subsampling (verlustbehaftet und verlustfrei, z.B. ist 4:4:4 verlustfrei), DCT auch verlustfrei, Quantisierung bringt Datenreduktion (nicht verlustfrei umkehrbar)

- Bildvorverarbeitung (verlustfrei)
 - Grauwerttransformation (Kontrasterhöhung und Helligkeitsverbesserung)
 - Bildfilterung (Rauschunterdrückung, Kantenverstärkung, Glättung,...)
- Bildverarbeitung (theo. verlustfrei)
 - Abtastung und Digitaliserung der Bildinformationen.
 - Umwandlung des Farbraums in YCbCr
 - Einteilung in 8x8-Pixel-Blöcke, wobei jeder Pixel mit 8bit kodiert wird (optimaler Kompromis zwischen Laufzeit und Quali; Zahl für DCT).
 - DCT Der 8Bit-Farbwert wird vom Ortsbereich- in den Frequenzbereich transformiert. Das Ergebnis ist eine 8x8-Frequenzraummatrix S, S_{00} entspricht dem Anteil der Freuqenz 0 (Grundfarbton), dieser ist der DC-Koeffizient. Alle anderen S_{ij} heissen AC-Koeffizienten und geben Auskunft über die Frequenzveränderungen (Farbver.) innerhalb des Blockes. Der letzte Eintrag S_{77} gibt dabei die höchste in beiden Richtungen auftretene Frequenz an.
- Quantisierung (verlustbehaftet) Erstellen einer ZickZack-Sequenz (Diagonaler Schnitt von links-oben an). Ausnutzung des PsychoVisuellenModels (PVM). Die Anwendung stellt eine Liste mit 64 Faktoren zur Verfügung. Anhand dieser werden die DCT-Koeffizienten gewichtet (und gerundet), wodurch die Freuqenzwechsel an die Qualitätsanforderung angepasst werden. Wird die Qualität reduziert, so ist die rechte untere Dreiecksmatrix mit Nullen versehen. Dies kommt der Entropiekodierung zu Gute.
- Entropiekodierung (verlustfrei) Die resultierdende Liste wird mit Huffmann oder aritmetisch kodiert.

JPEG-Modi

- Sequenzielle mode Das Bild wir din einem einzigen Durchlauf kodiert.
- progressive mode Das Bild wird in mehreren Durchläufen immer genauer kodiert. Vorteil: Schnelle (grobpixelige) Vorschau des Bildes
- Hirachischer Modus Das Bild wird in verschiedenen Auflösungen kodiert.
 Vorteil: Jede Anwendung greift sich ihre geeignete Auflösung heraus und muss nicht rekodieren.
- lossless mode Verlustfreie Kodierung des Bildes

Netzwerk/Internet

IP-Adresse/Subnetzmaske

IP-Adresse wird zur genauen Identifikation eines Host genutzt und besteht aus $32\mathrm{Bit}.$

Sie wird in ClassA-D eingeteilt. Hierzu wird die IP mit der Subnetzmaske AND-Verknüpft, das Ergebnis ist die NetzID. Eine ClassX-Subnetzmaske besteht aus führenden Einsen, gefolgt von Nullen. Abkürzend wird nur die Anzahl der Einsen angegeben:

192.168.1.23/24 (SM: 255.255.255.0)

 $\begin{array}{lll} 11000000.10101000.00000001.00010111 & (\text{IP-Adresse}) \\ 1111111.11111111.11111111.00000000 & (\text{Subnetzmaske}) \\ 11000000.10101000.00000001.00000000 \Rightarrow & (\text{NetzwerkID}) \\ 00000000.00000000.00000000.00010111 \Rightarrow & (\text{HostID}) \\ \end{array}$

Subnetting

Um die z.T. riesigen Netze logisch zu unterteilen, kann von der ClassA-D Begrenzung abgewichen werden, daraus ergeben sich dann kleine Teilnetze.

• Vorteil

- Durch kleine Subnetze wirken sich z.B. Broadcasts nicht auf das Riesennetz aus.
- Hostgruppen können getrennt werden.
- Nachteil Kompromiss:

'grosses Netz mit Broadcast-Probleme' vs 'kleine Netze die mit Router verbunden werden müssen'

		Adressen
123.45.64.0/18	- Provider	16384
123.45.64.0/20	- Kunde A	4096
123.45.64.0/28	- A1	16
123.45.64.16/28	- A2	16
123.45.80.0/20	- Kunde B	4096
123.45.96.0/19	- Kunde C	8192

Übertragungsarten

- unicast (1:1) Normale Netzwerkverbindung z.B. Client/Server (Mail, http)
- broadcast (1:n) Ein Host kommuniziert mit allen Knoten im Netzwerk (Subnetz), zB. um einen DHCP-Server zu finden

- multicast (1:m) Ein Host sendet Daten an mehrere Empfänger (z.B. Videostream), die Bandbreite erhöht sich nicht mit der Anzahl der Empfänger.
- multipeer (m:m) Mehrere Hosts senden und empfangen gleichberechtigt in einer Hostgruppe. (z.B. Videokonferenz)

AJAX

Dient dem Asynchronen Datenaustausch um Inhalte dynamisch nachzuladen. Dabei muss stets nur das Frame der Webseite nachgeladen werden, welches verändert wird.

- Voraussetzungen JavaScript, XML-HTTP-Request. Zur Darstellung wird HTML, JavaScript und DOM genutzt.
- Vorteile
- Daten kø"nnen verändert werden, ohne die Seite komplett laden zu müssen.
- Webanwendungen können schneller auf Benutzereingaben reagieren.
- Kein unnötiges Nachladen von statischen Inhalten
- AJAX schafft ein desktopähnliches Verhalten einer Web-App

• Nachteil

- Abhängigkeit von JavaScript (5% der User haben es nicht aktiviert)
- Vor-/Zurückbutton des Browsers nicht mehr funktionstüchtig, da Browser i.d.R. nur die statischen Daten speichern
- Lesezeichen setzen, etc. nicht mehr möglich
- Testing der Anwendung aufwendig
- Die Latenzzeit des Server kann nachteilig wirken (hohe Serverlast→Unzufriedenheit des Users)

HTML5

Liste von neuen Tags:

- audio Definiert Audioinhalte
- video Definiert Videoinhalte
- time Datumsdefinitions
- article Artikel
- canvas 2D-Bitmap-Zeichenfläche
- details Detailinformationen zu einem Element
- section Erleichtert das Abgrenzen von unterschiedlichen Inhalten, soll das div-Tag ersetzen

Weiter wurde der DOCTYPE in HTML5 auf einen HTML-Typen zusammengestrichen, HTML4 kennt noch drei Doctypes.

Die Sprache befindet sich z.Zt. noch in der Entwicklung (MARCO).

HTTP

Übermittlungsprotokoll für das WWW, erfunden 1995 von Tim Berners Lee am CERN in Genf.

TCP-Verbindungsaufbau (Handshake)

- -> GET http://URL (Client fordert Inhalt an)
- <- HTTP/1.X 200 OK (Response von Server)

MPEG₁

Subsection

Dient zur Speicherreduktion indem Chrominanz im Vergleich zur Luminanz mit veringerter Abtastrate gespeichert wird (PAVM), da Helligkeit- besser als Farbunterschiede wahrgenommen werden.

Subsampling

- 4:4:4 (MPEG1 verwendet)
 Unkomprimiert, Farb und Helligkeitsinformationen
 werden gleich haeufig abgetastet.
- 4:2:2 Abtastrate der Farbkanaele in horizontaler Richtung halb so gross wie in vertikalter Richtung. Anwendung beim Analog-Farbsehen wegen dem Zeilensprungverfahren.
- 4:2:0 Wird bei digitalen Bildern wie JPEG und MPEG angewedet. Abtastung in beide Richtungen identisch.

Kodierung

- 1. Schritt: Bildaufbereitung: Konversion der Farbraums (von 24 Bit RGB in Y,Cr,Cb), Anwendung der Kodierung
- 2. Schritt: 4.2.2 Subsampling
- 3. Schritt: Einteilung in Makro-Bloecke
- 4. Schritt: Bewegungsvorhersagealgorithmus: Vgl des aktuellen Makro-Blocks mit den umgebenden und den Makro-Bloecken des vor- und nachfolgenden Einzelbilds. Aehnlich wie bei der DPCM wird nur die Differenzinformation gespeichert und der Vektor kodiert.
- 5.Schritt: DCT
- 6. Schritt: Bildverarbeitung: Kodierung (des Videostroms)
- 6.1. verschieden Arten von Einzelbildern (Frames):
 - 6.1.1. I-Frame (Intracoded Picture):
 Standbild JPEG-aehnlich ohne zusaetzliche Infos.
 (Kompression gering, wie bei JPEG, jedoch in Echtzeit)
 - 6.1.2. P-Frame (Predictive Coded Picture):
 Bezieht sich auf das vorhergehende I- oder
 P-Frame, enthaelt Vektoren und
 Bilddifferenzinformationen. (Groessere Kompr. als bei I)

- 6.1.3. B-Frame (Bidirectional Coded Picture): Vergleicht folgendes (I- oder P-Frame) mit vorangehendem (I- oder P-)Frame und stellt Durchschnittswert dar. (Groesste Kompression)
- 6.1.4. D-Frame (Direct Coded Picture): Bei geeigneter Speicherung der I-Frame ueberflusssig. Nur DC-Koeffizienten werden kodiert, daher schlechte Qualitaet.

Nur ein Farbwert pro 8x8 Block wird gespeichert, Verwendung fuer schnellen Vorlauf.

7.Schritt: Quantisierung: verlustbehaftet
 Fuer I-Frame gleich wie bei JPEG, bei P- und
 B-Frames werden nur die DCT-kodierten Anteile quantisiert.

Bewegunsvektoren fuer P- und B-Frames werden hier allesdings verlustfrei gespeichert.

8. Schritt: Entropiekodierung,
 Lauflaengenkodierung, anschliessend Huffmann.

Vergleich MPEP1 - MPEG2

Verbesserungen bei MPEG2: Hoehere Aufloesung und Bitraten, Interlaced Videosequenzen, niedrigere Audioabtastraten moeglich, Unterstuetzung verschiedener Qualitaetsprofile, versch. Subsamplingformate.

Unterschiede MPEG2 zu H.261

Vorteile MPEG2:

Breitere Unterstuetzung, hohe Qualitaet bei guter Kompression, keine Echtzeit/Latenzanforderungen

Vorteile H.261:

Kontinierliche Bitraten, daher fuer Videokonferenz oder aehnliche Entzeitanwendungen geeignet, geringe Latenz.

MPEG4

Ein grosser Unterschied zu MPEG1/2 ist, dass MPEG4 keine einheitlichen Kompressionsverfahren vorgegeben sind, sondern vielmehr ein vordefinierter Katalog an möglichen Kompremierungen für Audio und Video geschaffen wurde. Es können beispielsweise interaktive Elemente, audiovisuelle Object und Animationen wesentlich leichter eingebaut werden.

VRML

Ermöglicht einzelne Elemente und Objekte interaktiv zu verändern und neu zusammenzufügen.

MPEG4-Parts

MPEG4 kann aus mehreren Ojekten bestehen. Ein Video kann aus diesen Parts beliebig zusammengestellt sein. Der wichtigste Part ist der Part2 'visual part'.

Verbesserungen

- Focus auf Echtzeit (z.B. MP4-Konferenz)
- Sonja denkt laut: 'Eigentlich wäre HD in MPEG3 gewesen, da es als AddOn jedoch schon in MPEG2 möglich war, sind sie gleich auf MPEG4 gegangen.'
- Marco hat noch was: Dateigrösse ist bei MPEG4 wesentlich geringer als bei den Vorgänger
- MPEG2 hat 4-9MB/s, MPEG4 nur wenige KB/s

Beispielrechnung

MPEG

Bei 800×600 , 24Bit, 25fps, 60s sind es pro Minute: $800\times600\times24\times25\times60\Rightarrow4320\times10^6$ Byte

CD/DVD

Unterschiede

4:2:0 (DV-PAL, MPEG2-ATSC)

