CS578 – Interactive and Transparent Machine Learning

TOPIC: EVALUATION

http://www.cs.iit.edu/~mbilgic

https://twitter.com/bilgicm

HOW DO WE KNOW IF OUR MODEL IS ANY GOOD?

- What is the performance metric that is relevant for the task at hand?
- How do we use (limited) amount of data to make claims about future performance of the model?
- Given a model and its performance, how do we know if it's any good?

Types of Errors – Classification

- Assume a target/positive class
 - Spam, HasHeartDisease, etc.
- False positive
 - Falsely classifying an object as positive
 - E.g., classifying a legitimate email as spam, diagnosing a healthy patient as having heart disease, and so on
 - Also called *Type I* error
- False negative
 - Falsely classifying an object as negative
 - E.g., classifying a spam email as not-spam, claiming that a heart-disease patient is healthy, and so on
 - Also called *Type II* error

A FEW PERFORMANCE MEASURES

- 0/1 loss; error or accuracy
- Precision
- Recall
- F1
- Log-loss
- MSE
- MAE
- RSE

CONFUSION MATRIX

		Predicted Class	
		Positive	Negative
A street Class	Positive	True Positive	False Negative
Actual Class	Negative	False Positive	True Negative

ACCURACY

		Predicted Class	
		Positive	Negative
Actual Class	Positive	True Positive	False Negative
	Negative	False Positive	True Negative

$$Accuracy = \frac{Num\ Correct}{Data\ Size} = \frac{TP + TN}{TP + TN + FP + FN}$$

PRECISION

		Predicted Class	
		Positive	Negative
Actual Class	Positive	True Positive	False Negative
	Negative	False Positive	True Negative

$$Precision = \frac{True\ Positive}{Predicted\ Positive} = \frac{TP}{TP + FP}$$

True Positive Rate – Recall – Sensitivity

		Predicted Class	
		Positive	Negative
A street Class	Positive	True Positive	False Negative
Actual Class	Negative	False Positive	True Negative

$$TPR = Recall = \frac{True\ Positive}{Actual\ Positive} = \frac{TP}{TP + FN}$$

True Negative Rate – Specificity

		Predicted Class	
		Positive	Negative
A street Class	Positive	True Positive	False Negative
Actual Class	Negative	False Positive	True Negative

$$TNR = Specificity = \frac{True\ Negative}{Actual\ Negative} = \frac{TN}{TN + FP}$$

FALSE POSITIVE RATE — FALL-OUT

		Predicted Class	
		Positive	Negative
Actual Class	Positive	True Positive	False Negative
	Negative	False Positive	True Negative

$$FPR = FallOut = \frac{False\ Positive}{Actual\ Negative} = \frac{FP}{TN + FP}$$

False Negative Rate – Miss Rate

		Predicted Class	
		Positive	Negative
A star of Closes	Positive	True Positive	False Negative
Actual Class	Negative	False Positive	True Negative

$$FNR = Miss\ Rate = rac{False\ Negative}{Actual\ Positive} = rac{FN}{TP + FN}$$

F1

		Predicted Class	
		Positive	Negative
Actual Class	Positive	True Positive	False Negative
	Negative	False Positive	True Negative

$$F1 = \frac{2 * Precision * Recall}{Precision + Recall}$$

FROM WIKIPEDIA

		Predicted	condition		
	Total population	Predicted Condition positive	Predicted Condition negative	$= \frac{\Sigma \text{ Condition positive}}{\Sigma \text{ Total population}}$	
True	condition positive	True positive	False Negative (Type II error)	True positive rate (TPR), Sensitivity, Recall $= \frac{\Sigma \text{ True positive}}{\Sigma \text{ Condition positive}}$	False negative rate (FNR), Miss rate $= \frac{\sum False\ negative}{\sum Condition\ positive}$
condition	condition negative	False Positive (Type I error)	True negative	False positive rate (FPR), $Fall-out$ $= \frac{\sum False\ positive}{\sum Condition\ negative}$	True negative rate (TNR), Specificity (SPC) = $\frac{\sum \text{True negative}}{\sum \text{Condition negative}}$
	Accuracy (ACC) =	Positive predictive value (PPV), Precision $= \frac{\Sigma \text{ True positive}}{\Sigma \text{ Test outcome positive}}$	False omission rate (FOR) $= \frac{\Sigma \text{ False negative}}{\Sigma \text{ Test outcome negative}}$	Positive likelihood ratio $(LR+) = \frac{TPR}{FPR}$	Diagnostic odds ratio
	$\frac{\Sigma \text{ True positive} + \Sigma \text{ True negative}}{\Sigma \text{ Total population}}$	False discovery rate (FDR) $= \frac{\Sigma \text{ False positive}}{\Sigma \text{ Test outcome positive}}$	Negative predictive value (NPV) $= \frac{\Sigma \text{ True negative}}{\Sigma \text{ Test outcome negative}}$	Negative likelihood ratio $(LR-) = \frac{FNR}{TNR}$	$(DOR) = \frac{LR+}{LR-}$

https://en.wikipedia.org/wiki/Sensitivity_and_specificity

Making a Classification Decision

- Given a probabilistic output for an object, say $\langle p, 1-p \rangle$, how do we decide which class to assign to this object?
- The simplest approach is check whether p > 0.5 and make a decision accordingly
- This assumes each mistakes (False Positives and False Negatives) are equally costly

EQUAL MISCLASSIFICATION COSTS?

- Which one is worse for you:
 - Delivering a spam email into your Inbox (False Negative), or
 - Delivering a legitimate email into your Spam folder (False Positive)?
- If one is worse than the other, then, should we use 0.5 as the decision threshold or should we adjust it to your preference?

COST MATRIX

		Predicted Class	
		Positive	Negative
A star of Closes	Positive	0	a
Actual Class	Negative	b	0

Given a probability distribution of $\langle p, 1-p \rangle$ for $\langle Positive, Negative \rangle$ respectively, and given the above cost matrix, under what conditions (in terms of a, b, and p) would you classify an object as *Positive*?

AREA UNDER THE CURVE (AUC)

- Area Under the Curve
- What curve? ROC Curve
 - Receiving Operating Characteristic
 - The X axis is False Positive Rate
 - The Y axis is True Positive Rate
 - The curve is plotted by varying the "decision" threshold

AUC EXAMPLE

- Assume 10 actual positives and 20 actual negatives
- Plot the ROC curve and compute the area under it for the following cases:
 - P, P, ..., P, N, N, ..., N
 - P, N, N, P, N, N, ..., P, N, N

MAE, MSE, RSE, AND R²

- r: true value, g: predicted value, D: dataset, M: the size of the dataset
- MAE

•
$$\frac{1}{M}\sum_{d\in D}|r[d]-g[d]|$$

MSE

•
$$\frac{1}{M}\sum_{d\in D}(r[d]-g[d])^2$$

• RSE

$$\sum_{d \in D} (r[d] - g[d])^2$$

$$\sum_{d \in D} (r[d] - \bar{r})^2$$

- \circ \mathbb{R}^2
 - 1 − RSE

SPLITTING THE DATASET

- 1. Train-test splits
- 2. Train-validation-test splits
- 3. Cross-validation

TRAIN-TEST SPLIT

- Randomly split the data into two disjoint sets
- A typical approach: 2/3 for train and 1/3 for test
- Train your model on training data and evaluate it on the test data
 - Use your favorite performance metric
- Report your performance as the expected performance on unseen data
- Caveats:
 - You need a large dataset for this to work
 - You cannot tune your parameters on the test data

TRAIN-VALIDATION-TEST SPLIT

- Split your data into three disjoint sets
 - Train, validation, test
- Train your model(s) on the training data
- Evaluate your model(s) on the validation data
- Pick the model that performs best on the validation data
- Test the model on the test data, and report its performance
- Caveat:
 - You need a really big dataset for this to work

CROSS-VALIDATION

- Split your data into k disjoint sets
- Each time, one set is the test set and the rest is the training set

REAL LIFE MEASURES

- Not as clean as the ones we discussed
- Imagine self-driving cars, medical diagnosis,
 crime prediction, fraud detection, and so on
- Usually, there is not a single performance measure
- Performance is handled on a case-by-case basis;
 not on an aggregate level