Risk group turnover in STI/HIV epidemics

Jesse Knight¹, Linwei Wang¹, Huiting Ma¹, Sheree Schwartz², Stefan Baral², Sharmistha Mishra¹

 $^1{\rm MAP}$ Centre for Urban Health Solutions, Unity Health Toronto $^2{\rm Dept.}$ Epidemiology, Johns Hopkins Bloomberg School of Public Health

2019 July 17

STI & HIV 2019 World Congress Vancouver, BC, Canada

Disclosures

None.

Acknowledgements

Background Methods Results Conclusion References

 ${\bf Background}$

Methods

Results

Conclusion

- ► SIR Model:
 - \triangleright \mathcal{S} = susceptible, \mathcal{I} = infectious, \mathcal{R} = recovered
 - ► e.g. HIV
- 3 Risk Groups
 - e.g. female sex workers, multiple partners, monogamous
 - fundamentally changes epidemic dynamics [1, 2]
 - what about: "retirement" from sex work "recruitment" into sex work }

- ► SIR Model:
 - \triangleright \mathcal{S} = susceptible, \mathcal{I} = infectious, \mathcal{R} = recovered
 - e.g. HIV
- ▶ 3 Risk Groups:
 - e.g. female sex workers, multiple partners, monogamous
 - ► fundamentally changes epidemic dynamics [1, 2]
 - what about: "retirement" from sex work recruitment" into sex work

D: 1

Risk groups

- ► SIR Model:
 - \triangleright \mathcal{S} = susceptible, \mathcal{I} = infectious, \mathcal{R} = recovered
 - e.g. HIV
- ▶ 3 Risk Groups:
 - e.g. female sex workers, multiple partners, monogamous
 - ► fundamentally changes epidemic dynamics [1, 2]
 - what about: "retirement" from sex work "recruitment" into sex work Turnover

Risk groups

- ► SIR Model:
 - \triangleright \mathcal{S} = susceptible, \mathcal{I} = infectious, \mathcal{R} = recovered
 - ▶ e.g. HIV
- ▶ 3 Risk Groups:
 - e.g. female sex workers, multiple partners, monogamous
 - ► fundamentally changes epidemic dynamics [1, 2]
 - what about: "retirement" from sex work "recruitment" into sex work Turnover

Risk groups

- ► SIR Model:
 - \triangleright \mathcal{S} = susceptible, \mathcal{I} = infectious, \mathcal{R} = recovered
 - ► e.g. HIV
- ▶ 3 Risk Groups:
 - e.g. female sex workers, multiple partners, monogamous
 - ► fundamentally changes epidemic dynamics [1, 2]
 - what about: "retirement" from sex work "recruitment" into sex work

Turnover

Risk groups

- ► SIR Model:
 - \triangleright \mathcal{S} = susceptible, \mathcal{I} = infectious, \mathcal{R} = recovered
 - ▶ e.g. HIV
- ▶ 3 Risk Groups:
 - e.g. female sex workers, multiple partners, monogamous
 - ► fundamentally changes epidemic dynamics [1, 2]
 - what about: "retirement" from sex work "recruitment" into sex work Turnover

Risk groups

Research Questions:

Influence of turnover on

- ► Equilibrium incidence & prevalence by risk group
- ► TPAF * of high risk group

*TPAF: "Transmission Population Attributable Fraction" [3]

Proportion of cumulative new infections averted if transmission to / from that group is stopped.

Risk groups

Research Questions:

Influence of turnover on:

- Equilibrium incidence & prevalence by risk group
- ► TPAF* of high risk group

*TPAF: "Transmission Population Attributable Fraction" [3

Proportion of cumulative new infections averted if transmission to / from that group is stopped.

Risk groups

Research Questions:

Influence of turnover on:

- ▶ Equilibrium incidence & prevalence by risk group
- ► TPAF * of high risk group

*TPAF: "Transmission Population Attributable Fraction" [3]

Proportion of cumulative new infections averted if transmission to / from that group is stopped.

Risk groups

Research Questions:

Influence of turnover on:

- ► Equilibrium incidence & prevalence by risk group
- ► TPAF * of high risk group

*TPAF: "Transmission Population Attributable Fraction" [3

Proportion of cumulative new infections averted if transmission to / from that group is stopped.

Risk groups

Research Questions:

Influence of turnover on:

- ► Equilibrium incidence & prevalence by risk group
- ► TPAF * of high risk group

*TPAF: "Transmission Population Attributable Fraction" [3]

Proportion of cumulative new infections averted if transmission to / from that group is stopped.

Risk groups

Illustrative Model of STI Transmission

- ► SIR model:
 - ▶ 1-sex
 - proportional mixing
 - same mortality across risk groups
- Risk group turnover:
 - Rates ensure group sizes don't change: 5% High Risk, 20% Medium Risk, 75% Low Risk
 - \triangleright All rates equal among: \mathcal{S} , \mathcal{I} , \mathcal{R}
 - ► All rates scaled proportionally when varied

Risk groups

Illustrative Model of STI Transmission

- ► SIR model:
 - ► 1-sex
 - proportional mixing
 - same mortality across risk groups
- ► Risk group turnover:
 - Rates ensure group sizes don't change: 5% High Risk, 20% Medium Risk, 75% Low Risk
 - ightharpoonup All rates equal among: S, I, R
 - ► All rates scaled proportionally when varied

Risk groups

Experiments: Influence of Turnover on Model Outputs

1. Equilibrium outputs:

► Vary: Turnover magnitude

► Compare: a) prevalence, b) incidence (by risk group, at equilibrium)

TPAF after model fitting

► Fit: Contact rates: High Risk; and Low Risk

► Targets: Prevalence: 25% in High Risk; and 5% in Low Risk

► Vary: No-turnover vs Turnover

► Compare: a) Fitted contact rates, b) TPAF of high risk group

Experiments: Influence of Turnover on Model Outputs

1. Equilibrium outputs:

► Vary: Turnover magnitude

► Compare: a) prevalence, b) incidence (by risk group, at equilibrium)

2. TPAF after model fitting:

► Fit: Contact rates: High Risk; and Low Risk

► Targets: Prevalence: 25% in High Risk; and 5% in Low Risk

► Vary: No-turnover vs Turnover

► Compare: a) Fitted contact rates, b) TPAF of high risk group

Experiments: Influence of Turnover on Model Outputs

1. Equilibrium outputs:

► Vary: Turnover magnitude

► Compare: a) prevalence, b) incidence (by risk group, at equilibrium)

2. TPAF after model fitting

▶ **Fit:** Contact rates: High Risk; and Low Risk

► Targets: Prevalence: 25% in High Risk; and 5% in Low Risk

Vary: No-turnover vs Turnover

Compare: a) Fitted contact rates, b) TPAF of high risk group

High risk prevalence vs turnover

High risk prevalence vs turnover

High risk prevalence vs turnover

High risk prevalence vs turnover

High risk prevalence vs turnover

High risk prevalence vs turnover

Turnover increases low-risk equilibrium prevalence and first

High

Low

Low risk prevalence vs turnover

Turnover increases low-risk equilibrium prevalence and first

Low risk prevalence vs turnover

Turnover increases low-risk equilibrium prevalence ...at first

Low risk prevalence vs turnover

Turnover increases low-risk equilibrium prevalence ...at first

Low risk prevalence vs turnover

Turnover increases low-risk equilibrium prevalence ...at first

Low risk prevalence vs turnover

► Turnover ↑ proportion who are infectious

- ► Turnover L contact rate among infectious
 - Dominates at high turnover (B)

explains low risk prevalence decline with high turnover

Overall incidence vs turnover

► Turnover L contact rate among

Dominates at high turnover (B)

► Turnover ↑ proportion who are infectious

explains low risk prevalence decline with high turnover

Overall incidence vs turnover

https://github.com/c-uhs/turnover

► Turnover ↑ proportion who are infectious

- Dominates at low turnover (A)
- ▶ Incidence ↑

► Turnover ↓ contact rate among infectious

- Dominates at high turnover (B)
- ► Incidence ↓

explains low risk prevalence decline with high turnover)

Overall incidence vs turnover

Overall incidence vs turnover

- ► Turnover ↑ proportion who are infectious
 - Dominates at low turnover (A)
 - ▶ Incidence ↑
- ► Turnover ↓ contact rate among infectious
 - Dominates at high turnover (B)
 - ► Incidence ↓

explains low risk prevalence decline with high turnover)

► Turnover ↑ proportion who are infectious

- Dominates at low turnover (A)
- ► Incidence ↑

► Turnover ↓ contact rate among infectious

- Dominates at high turnover (B)
- ► Incidence ↓

explains low risk prevalence decline with high turnover)

Overall incidence vs turnover

► Turnover ↑ proportion who are infectious

- ▶ Dominates at low turnover (A)
- ► Incidence ↑

► Turnover ↓ contact rate among infectious

- Dominates at high turnover (B)
- ► Incidence ↓

explains low risk prevalence decline with high turnover)

Overall incidence vs turnover

► Turnover ↑ proportion who are infectious

- ▶ Dominates at low turnover (A)
- ► Incidence ↑

► Turnover ↓ contact rate among infectious

- Dominates at high turnover (B)
- ► Incidence ↓

explains low risk prevalence decline with high turnover)

Overall incidence vs turnover

Overall incidence vs turnover

- ► Turnover ↑ proportion who are infectious
 - Dominates at low turnover (A)
 - ► Incidence ↑
- ► Turnover ↓ contact rate among infectious
 - Dominates at high turnover (B)
 - ► Incidence ↓

(explains low risk prevalence decline with high turnover)

https://github.com/c-uhs/turnover

Overall incidence vs turnover

► Turnover ↑ proportion who are infectious

- ▶ Dominates at low turnover (A)
- ► Incidence ↑

► Turnover ↓ contact rate among infectious

- Dominates at high turnover (B)
- ► Incidence ↓

(explains low risk prevalence decline with high turnover)

Overall incidence vs turnover

Low turnover: \(\frac{1}{2}\) incidence

- ► Turnover ↑ proportion who are infectious
 - Dominates at low turnover (A)
 - Incidence ↑
- ► Turnover ↓ contact rate among infectious
 - Dominates at high turnover (B)
 - Incidence 1

(explains low risk prevalence decline with high turnover)

Experiments: Influence of Turnover on Model Outputs

1. Equilibrium outputs

Vary: Turnover magnitude

Compare: a) prevalence, b) incidence (by risk group, at equilibrium)

2. TPAF after model fitting:

► Fit: Contact rates: High Risk; and Low Risk

► Targets: Prevalence: 25% in High Risk; and 5% in Low Risk

► Vary: No-turnover vs Turnover

► Compare: a) Fitted contact rates, b) TPAF of high risk group

		No turnover	Turnover
Prevalence	High risk	25%	25%
	Low risk		
	Ratio		
Contact rate	High risk	15.8	16.9
	Low risk		
	Ratio		

To observe the same prevalence ratio:

Risk heterogeneity must be higher with turnover than without (overcome "homogenizing" effect of turnover)

		No turnover	Turnover
Prevalence	High risk	25%	25%
	Low risk	5%	5%
	Ratio	5.0	5.0
Contact rate	High risk	15.8	16.9
	Low risk		
	Ratio		

To observe the same prevalence ratio:

Risk heterogeneity must be higher with turnover than without (overcome "homogenizing" effect of turnover)

		No turnover	Turnover
Prevalence	High risk	25%	25%
	Low risk	5%	5%
	Ratio	5.0	5.0
Contact rate	High risk	15.8	16.9
	Low risk	2.49	
	Ratio	6.3	

To observe the same prevalence ratio:

Risk heterogeneity must be higher with turnover than without (overcome "homogenizing" effect of turnover)

		No turnover	Turnover
Prevalence	High risk Low risk Ratio	$25\% \ 5\% \ 5.0$	$25\% \ 5\% \ 5.0$
Contact rate	High risk Low risk Ratio	15.8 2.49 6.3	16.9 0.28 60

To observe the same prevalence ratio:

Risk heterogeneity must be higher with turnover than without
(overcome "homogenizing" effect of turnover)

		No turnover	Turnover
Prevalence	High risk Low risk Ratio	$25\% \ 5\% \ 5.0$	$25\% \ 5\% \ 5.0$
Contact rate	High risk Low risk Ratio	15.8 2.49 6.3	16.9 0.28 60

To observe the same prevalence ratio:

Risk heterogeneity must be higher with turnover than without

(overcome "homogenizing" effect of turnover)

		No turnover	Turnover
Prevalence	High risk Low risk Ratio	$25\% \\ 5\% \\ 5.0$	$25\% \ 5\% \ 5.0$
Contact rate	High risk Low risk Ratio	15.8 2.49 6.3	16.9 0.28 60

To observe the same prevalence ratio:

Risk heterogeneity must be higher with turnover than without (overcome "homogenizing" effect of turnover)

 $TPAF \approx impact of perfect TasP in one group$

- Risk heterogeneity (contact rate ratio) is higher with turnover
- ► Impact of reaching high risk group is higher with turnover

TPAF \approx impact of perfect TasP in one group

- Risk heterogeneity (contact rate ratio) is higher with turnover
- ► Impact of reaching high risk group is higher with turnover

TPAF \approx impact of perfect TasP in one group

- Risk heterogeneity (contact rate ratio) is higher with turnover
- ► Impact of reaching high risk group is higher with turnover

 $TPAF \approx impact of perfect TasP in one group$

- Risk heterogeneity (contact rate ratio) is higher with turnover
- ► Impact of reaching high risk group is higher with turnover

Limitations

- Results shown here conditional on model structure, assumptions, and parameters
- (1) Turnover influences equilibrium prevalence & incidence
 - Core prevalence always decreases (before fitting
 - Overall effect varies with context
- (2) TPAF of high risk group may be underestimated if turnover is not modelled
 - Prevalence ratios we observe are likely in spite of homogenizing effect of turnoveneral

Limitations:

- Results shown here conditional on model structure, assumptions, and parameters
- 1) Turnover influences equilibrium prevalence & incidence
 - Core prevalence always decreases (before fitting
 - Overall effect varies with context
- (2) TPAF of high risk group may be underestimated if turnover is not modelled
 - Prevalence ratios we observe are likely in spite of homogenizing effect of turnover

Limitations:

- ▶ Results shown here conditional on model structure, assumptions, and parameters
- 1 Turnover influences equilibrium prevalence & incidence
 - ► Core prevalence always decreases (before fitting)
 - ▶ Overall effect varies with context
- (2) TPAF of high risk group may be underestimated if turnover is not modelled
 - Prevalence ratios we observe are likely in spite of homogenizing effect of turnover

Limitations:

- ▶ Results shown here conditional on model structure, assumptions, and parameters
- 1 Turnover influences equilibrium prevalence & incidence
 - ► Core prevalence always decreases (before fitting)
 - ▶ Overall effect varies with context
- (2) TPAF of high risk group may be underestimated if turnover is not modelled
 - Prevalence ratios we observe are likely in spite of homogenizing effect of turnover

Thank you

References

- [1] Hein Stigum, W. Falck, and P. Magnus. "The core group revisited: The effect of partner mixing and migration on the spread of gonorrhea, chlamydia, and HIV". In: Mathematical Biosciences 120.1 (1994), pp. 1-23.
- [2] Marie Claude Boily and Benoît Mâsse. "Mathematical models of disease transmission: A precious tool for the study of sexually transmitted diseases". In: Canadian Journal of Public Health 88.4 (1997), pp. 255–265.
- [3] Sharmistha Mishra et al. "Data and methods to characterize the role of sex work and to inform sex work programs in generalized HIV epidemics: evidence to challenge assumptions". In: Annals of Epidemiology 26.8 (2016), pp. 557–569.
- [4] Xinyu Zhang et al. "Episodic HIV Risk Behavior Can Greatly Amplify HIV Prevalence and the Fraction of Transmissions from Acute HIV Infection". In: Statistical Communications in Infectious Diseases 4.1 (2012).
- [5] Shah Jamal Alam et al. "Detectable signals of episodic risk effects on acute HIV transmission: Strategies for analyzing transmission systems using genetic data". In: **Epidemics** 5.1 (2013), pp. 44-55.
- [6] Christopher J. Henry and James S. Koopman. "Strong influence of behavioral dynamics on the ability of testing and treating HIV to stop transmission". In: Scientific Reports 5.1 (2015), p. 9467.