Theories of arithmetic

Rock bottom

Definition 1 (Robinson's Q). Let $L_Q = \{0, S, +, \cdot\}$ and let Q be an L_Q -theory with the following axioms:

$$\neg S(x) = 0 \tag{1}$$

$$S(x) = S(y) \to x = y \tag{2}$$

$$x \neq 0 \to (\exists y)(S(y) = x) \tag{3}$$

$$x + 0 = x \tag{4}$$

$$x + S(y) = S(x+y) \tag{5}$$

$$x \cdot 0 = 0 \tag{6}$$

$$x \cdot S(y) = x \cdot y + x \tag{7}$$

Exercise 2. Show that $Q \vdash S(0) + S(0) = S(S(0))$.

Exercise 3. Show that \mathbb{N} as an L_Q -structure can be embedded into every model of Q.

Exercise 4. Let Q_{\leq} be the $L_Q \cup \{\leq\}$ -theory extending Q by

$$x \le y \leftrightarrow (\exists z)x + z = y,$$

show that for every L_Q -sentence φ we have

$$Q \vdash \varphi \iff Q < \vdash \varphi,$$

this property is called *conservativity* of $Q \leq$ over Q.

Exercise 5. Show that $Q \nvdash x + y = y + x$.

Overshooting

Definition 6. Let $L_{PA} = \{0, 1, +, \cdot, \leq\}$ and PA be an L_{PA} -theory axiomatized by Q_{\leq} and the scheme of *induction*. That is, for every L_{PA} -formula $\varphi(x)$ the following is an axiom:

$$(\varphi(0) \land (\forall x)(\varphi(x) \rightarrow \varphi(x+1))) \rightarrow (\forall x)(\varphi(x))$$

Exercise 7. Show that $PA \vdash x + y = y + x$.

Fact 8. Let ZF_{fin} be the theory of ZF with the axiom of infinity replaced by its negation.

Then ZF_{fin} and PA are bi-interpretable, meaning that they prove the same statement if we translate the non-logical symbols using their definition in the other language.

Opinion 9 (Harvey Friedman's grand conjecture). Every theorem published in the Annals of Mathematics whose statement involves only finitary mathematical objects (i.e., what logicians call an arithmetical statement) can be proved in a subsystem of PA.

Homing in

Definition 10. The set of bounded L_{PA} -formulas, denoted Δ_0 , is the least set closed under propositional connectives, which contains open formulas, and for each $\varphi(x) \in \Delta_0$ and an L_{PA} -term t which does not contain the variable x, we have

$$(\exists x)(x \le t \land \varphi(x)) \in \Delta_0,$$

$$(\forall x)(x \le t \to \varphi(x)) \in \Delta_0.$$

These formulas are usually denoted using bounded quantifiers

$$(\exists x \le t)(\varphi(x))$$
$$(\forall x \le t)(\varphi(x)).$$

Exercise 11. Let $\psi \in \Delta_0$ and $\mathbb{N} \models (\forall x)(\exists y)\psi(x,y)$, show that there is an algorithm which given x computes y such that $\psi(x,y)$. Can you say anything about the complexity of such an algorithm?

Definition 12. $I\Delta_0$ is an L_{PA} -theory extending Q_{\leq} by the scheme of bounded induction. That is for each $\varphi(x) \in \Delta_0$ there is an axiom:

$$(\varphi(0) \land (\forall x)(\varphi(x) \to \varphi(x+1))) \to (\forall x)(\varphi(x)).$$

Fact 13. $I\Delta_0$ proves the (fifteen) axioms of positive parts of discretely ordered rings: \leq is a linear order, commutativity of + and \cdot , neutrality of 0 and 1, distributivity, $0 \leq x \leq 1 \rightarrow (x = 0 \lor x = 1)$, etc., which are collectively known as PA⁻.

Definition 14. We say a theory $I\Delta_0$ proves the totality of a function f(-) iff there is a formula $\varphi(\overline{x}, y)$ such that it holds $\mathbb{N} \models \varphi(\overline{x}, y) \leftrightarrow f(\overline{x}) = y$ and

$$I\Delta_0 \vdash (\forall x)(\exists y)\varphi(x,y).$$

Exercise 15. Prove that $I\Delta_0$ proves the totality of

$$\dot{x-y} = \begin{cases} x-y & x > y \\ 0 & x \le y, \end{cases}$$

and

$$\lfloor x/2 \rfloor = \begin{cases} x/2 & x \text{ is even} \\ (x-1)/2 & x \text{ is odd.} \end{cases}$$

Theorem 16. Every model of $I\Delta_0$ has order type $\mathbb{N} + \mathbb{Q} \cdot \mathbb{Z}$.

Fact 17 (Tennenbaum, 'No nonstandard calculator theorem'). Let

$$M = (\{0,1\}^*, \oplus, \otimes, 0, 1, \leq^M)$$

be a model of $I\Delta_0$, then both $x, y \mapsto x \oplus y$ and $x, y \mapsto x \otimes y$ are not recursive, there is no algorithm that computes them.

Parikh's Theorem

Definition 18. Let $M, N \models PA^-$, we say M is an *initial segment* of N, and that N is an *end extension* of M, denoted $M \subseteq_e N$, if $M \subseteq N$ and for every $a \in M, b \in N$ we have $N \models b < a$ implies $b \in M$.

Exercise 19. Let $M, N \models PA^-, M \subseteq_e N$, then for every $\varphi(\overline{x}, \overline{y}) \in \Delta_0$ and $\overline{m} \in M$ we have

$$M \models \varphi(\overline{m}) \iff N \models \varphi(\overline{m}).$$

Exercise 20. Let $M, N \models PA^-, M \subseteq_e N$. If $N \models I\Delta_0$ then $M \models I\Delta_0$.

Theorem 21 (Parikh). Let $\varphi(x,y) \in \Delta_0$. If

$$I\Delta_0 \vdash (\forall x)(\exists y)\varphi(x,y),$$

then there is an L_{PA} -term t not containing y such that

$$I\Delta_0 \vdash (\forall x)(\exists y \le t)\varphi(x,y).$$

Exercise 22. Assume that $I\Delta_0 \vdash (\forall x)(\exists y)\varphi(x,y)$, can you find an algorithm which given x finds a y such that $\mathbb{N} \models \varphi(x,y)$, can we bound the complexity of this algorithm?

Fact 23 (Bennet, Pudlák). There is an Δ_0 formula $\exp(x, y, z)$ which has the property

$$\mathbb{N} \models x^y = z \leftrightarrow \exp(x, y, z)$$

and $I\Delta_0$ proves its recursive properties, such as

$$(\exp(x, y, z) \land \exp(x, y + 1, z')) \rightarrow (z \cdot x = z').$$

Exercise 24. Show, that $I\Delta_0$ cannot prove that the exponential function is total.