

VAMOS POR UN CAFÉ?...

Mónica Ramírez Bernal

MÓNICA RAMÍREZ BERNAL

- Ingeniera de Sistemas. Bogotá, Colombia
- Data Scientist en Everis Colombia

Certificada Data Scientist - Metis Data Science Academy

Me gusta leer, ir a cine, viajar, ir a Meetups y el café!

VAMOS POR UN CAFÉ?...

Mónica Ramírez Bernal

AGENDA

- Introducción
- Contexto
- Buscar los Datos
- Buscar el Mejor Modelo
- Buscar las Mejores Variables
- Conclusiones

CONTEXTO

- Segundo Productor de Café en el Mundo
- 3% del área total = 10% Café
 Mundial!
- El café solo crece con un clima y en una época en particular (May-Oct)
- Tasa de intercambio entre Peso Colombiano y Dólar: TRM

BUSCAR LOS DATOS

- Producción de Café (Histórica)
- Producción de Café en países competidores
- Datos Económicos
- Clima Quindío, Colombia

BUSCAR LOS DATOS

- Producción de Café (Histórica)
- Producción de Café en países competidores
- Datos Económicos
- Clima Quindío, Colombia

DATA SCRAPING

- Beautiful Soup
- Selenium
- Scrapy


```
# Average Temperature: position 2 from each row of _ngcontent-c8 in _ngcontent-c8 table
avg_tmp = response.xpath(
   '//table[@id="_ngcontent-c8"]/tbody/tr/td/[@id="_ngcontent-c8"]/text()'
).extract()[c+2]
```

ENTONCES, QUÉ HACE CRECER EL CAFÉ?

BUSCAR EL MEJOR MODELO

- Separar los datos entre set de Entrenamiento (70%) y Pruebas (30%)
- Ejecutar un primer Modelo (OLS)

	coef	std err	t	P> t	[0.025	0.975]
avg_precip	862.3188	559.620	1.541	0.128	-256.345	1980.983
avg_tmp	-35.7624	52.471	-0.682	0.498	-140.651	69.126
avg_wind	112.2885	54.855	2.047	0.045	2.634	221.943
dew_point	52.1720	63.235	0.825	0.413	-74.232	178.576
avg_humidity	-12.1280	17.816	-0.681	0.499	-47.741	23.485
Intercept	859.7245	3086.128	0.279	0.781	-5309.357	7028.805

$$Y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + ... + \beta_n x_n$$

PRIMER ANALISIS

VARIABLES:

Precipitaciones

Temperatura

Velocidad del viento

Humedad

Rocío

RESULTADOS:

R2 = 0.27

Adj R2 = 0.20

Skew = 0.72

P-Values [0.039 - 0.745]

R2-test = 0.148

VARIABLES CATEGORICAS

Fecha Producción	Producción	Temperatura	Mes
2015-02-01	515	73	Febrero
2001-11-01	629	76	Septiembre
2010-11-01	603	74	Noviembre

Fecha Producción	Producción	Mes[Enero]	Mes[Febrero]	Mes[Noviem bre]
2015-02-01	515	0	1	0
2001-11-01	629	0	0	0
	***		***	
2010-12-01	603	0	0	0

ANALISIS CLIMA + MES

	coef	std err	t	P> t	[0.025	0.975]
avg_precip	1338.7589	550.696	2.431	0.019	233.190	2444.327
avg_tmp	-38.1641	53.153	-0.718	0.476	-144.873	68.545
avg_wind	114.3527	55.903	2.046	0.046	2.123	226.583
dew_point	147.8855	65.828	2.247	0.029	15.729	280.042
avg_humidity	-21.2452	19.217	-1.106	0.274	-59.825	17.335
month[T.August]	313.2312	155.334	2.017	0.049	1.386	625.077
month[T.December]	641.7043	145.625	4.407	0.000	349.349	934.059
month[T.February]	232.2729	135.291	1.717	0.092	-39.336	503.882
month[T.January]	308.6742	170.989	1.805	0.077	-34.600	651.949
month[T.Julv]	450.3257	151.367	2.975	0.004	146.443	754.208

R2 = 0.50Adj R2 = 0.33

Skew = 0.49

P-Values [0.002 - 0.759]

R2-test = 0.634

QUIERES OTRA TAZA?

ANALISIS POR PAÍSES

Producción R2 = 0.94 Adj R2 = 0.93 Skew = -0.79P-Values [0.011 - 0.553]

R2-test

= 0.71

Precio del café

R2 = 0.824 Adj R2 = 0.810 Skew = -0.018 P-Values [0.001 - 0.749] R2-test = 0.703

ES TIEMPO PARA UN CAFÉ

ES TIEMPO PARA UN CAFÉ

	month_dt	Produccion	prev_month
1	2010-02-01	648.0	515.0
2	2010-03-01	629.0	648.0
3	2010-04-01	647.0	629.0
4	2010-05-01	822.0	647.0
5	2010-06-01	780.0	822.0

Incluyendo solo un mes atrás: R2-test = 0.679

SERIES DE TIEMPO

Valor Estimado Abr-2018: 1.176 Valor Real Abr-2018: 1.037

SERIES DE TIEMPO

BUSCAR LAS MEJORES VARIABLES

REGULARIZACIÓN:

Mejor Ajuste, Penalizar Complejidad

BUSCAR LAS MEJORES VARIABLES

$$\lambda \sum_{j=1}^{k} \beta_{j}^{2}$$

$$\lambda \sum_{j=1}^{k} \left| eta_{j} \right|$$

VAMOS TODOS POR UN CAFÉ

VAMOS TODOS POR UN CAFÉ

MODELO FINAL

R2 = Adj R2 = Skew = R2-test =

= 0.885= 0.864= -0.15

std err coef t P>|t| = 0.783-378.4855 258.340 -1.465 0.148 avg precip -0.033 0.974 month[T.August] -1.4343 43.652 45.625 0.596 0.553 month[T.December] 27.2085 month[T.July] 179.7751 61.335 2.931 0.005 month[T.June] 111.0806 43.326 2.564 0.013 month[T.March] -112.6883 54.096 -2.083 0.042 2.493 0.016 month[T.May] 107.0420 42.930 month[T.November] 96.2914 49.520 1.944 0.057 month[T.October] 113.2358 45.682 2.479 0.016 vol_export 1.1348 0.061 18.673 0.000 Intercept -52.4104 54.933 -0.954 0.344

CONCLUSIONES

- La única variable climática que afecta la Producción del Café es la lluvia
- La Producción puede verse afectada por mayor o menor producción en el mes anterior
- Siguientes pasos: Añadir más variables
- Siguientes pasos: Análisis de Tiempo en otras variables

FUENTES

- Weather Underground (<u>www.wunderground.com</u>)
 Weather Data from Quindio, Caldas and Risaralda,
 Colombia (Retrieved 18-04-2018)
- Colombian Coffee Growers Organization
 (<u>www.federaciondecafeteros.org</u>) Coffee Information
 and Photos (Retrieved 19-04-2018 26-06-2018)
- International Coffee Organization (<u>www.ico.org</u>)
 Coffee Information (Retrieved 19-04-2018)

DATA SCIENCE BOOTCAMP

- 12 semanas inmersivas
- Proceso de Selección
- Prework
- Metodología: Clases + Proyectos
- Vida Profesional

