# N·O·I·I·V·I·A·V

# Design of Compact Heat Exchangers

## for Aero-Gas Turbines

Presented by:-

Stan Payne Engineering Manager

Steve Hughes Team Leader: Development

Alex Allen New Technology Engineer

| REPORT DOCUMENTATION PAGE                                                                                                                                                                                                                                 |                                                                 |                                                                                                   |                                                           |                                                               | 0704-0188                                                                                                      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| Public reporting burder for this collection of information is<br>and reviewing this collection of information. Send commer<br>Headquarters Services, Directorate for Information Operati<br>law, no person shall be subject to any penalty for failing to | nts regarding this burden esting<br>ons and Reports (0704-0188) | mate or any other aspect of this coll<br>), 1215 Jefferson Davis Highway, S                       | lection of information, incl<br>Suite 1204, Arlington, VA | luding suggestions for reducin<br>22202-4302. Respondents sho | g this burder to Department of Defense, Washington<br>uld be aware that notwithstanding any other provision of |
| 1. REPORT DATE (DD-MM-YYY)<br>30-05-2001                                                                                                                                                                                                                  |                                                                 | EPORT TYPE kshop Presentations                                                                    |                                                           | 3. DATES COVERED (FROM - TO)<br>30-05-2001 to 01-06-2001      |                                                                                                                |
| 4. TITLE AND SUBTITLE                                                                                                                                                                                                                                     |                                                                 |                                                                                                   |                                                           | 5a. CONTRACT NUMBER                                           |                                                                                                                |
| Design of Compact Heat Exchangers for Aero-Gas Turbines Unclassified                                                                                                                                                                                      |                                                                 |                                                                                                   | 5b. GRANT NUMBER                                          |                                                               |                                                                                                                |
|                                                                                                                                                                                                                                                           |                                                                 |                                                                                                   |                                                           | 5c. PROGRAM ELEMENT NUMBER                                    |                                                                                                                |
| 6. AUTHOR(S)                                                                                                                                                                                                                                              |                                                                 |                                                                                                   |                                                           | 5d. PROJECT N                                                 | UMBER                                                                                                          |
| Payne, Stan;                                                                                                                                                                                                                                              |                                                                 |                                                                                                   |                                                           | 5e. TASK NUMBER                                               |                                                                                                                |
| Hughes, Steve;                                                                                                                                                                                                                                            |                                                                 |                                                                                                   |                                                           | 5f. WORK UNIT NUMBER                                          |                                                                                                                |
| Allen, Alex;                                                                                                                                                                                                                                              |                                                                 |                                                                                                   |                                                           |                                                               |                                                                                                                |
| 7. PERFORMING ORGANIZATION NAME AND ADDRESS Serck Aviation xxxxx                                                                                                                                                                                          |                                                                 |                                                                                                   |                                                           | 8. PERFORMING ORGANIZATION REPORT<br>NUMBER                   |                                                                                                                |
| XXXXX, XXXXXXX                                                                                                                                                                                                                                            | ACENCY NAM                                                      | E AND ADDRESS                                                                                     |                                                           | 10 CDONGOD/N                                                  | CONTRODIC A CRONNAMCO                                                                                          |
| 9. SPONSORING/MONITORING AGENCY NAME AND ADDRESS Office of Naval Research International Field Office                                                                                                                                                      |                                                                 |                                                                                                   |                                                           | 10. SPONSOR/MONITOR'S ACRONYM(S)                              |                                                                                                                |
| Office of Naval Research Washington, DCxxxxx                                                                                                                                                                                                              |                                                                 |                                                                                                   |                                                           | 11. SPONSOR/MONITOR'S REPORT<br>NUMBER(S)                     |                                                                                                                |
| 12. DISTRIBUTION/AVAILABIL APUBLIC RELEASE , 13. SUPPLEMENTARY NOTES                                                                                                                                                                                      |                                                                 |                                                                                                   |                                                           |                                                               | N. A.I.P.C.                                                                                                    |
| See Also ADM001348, Thermal M downloaded from: http://www-mec                                                                                                                                                                                             | h eng com ac uk/                                                | p 2001, held in Camb                                                                              | oridge, UK on M                                           | 1ay 30-June 1, 200                                            | 11. Additional papers can be                                                                                   |
| 14. ABSTRACT                                                                                                                                                                                                                                              | ii.ciig.caiii.ac.uk/                                            | OIII/                                                                                             |                                                           |                                                               |                                                                                                                |
| compact heat exchangers                                                                                                                                                                                                                                   |                                                                 |                                                                                                   |                                                           |                                                               |                                                                                                                |
| 15. SUBJECT TERMS                                                                                                                                                                                                                                         |                                                                 |                                                                                                   |                                                           |                                                               |                                                                                                                |
| 16. SECURITY CLASSIFICATION                                                                                                                                                                                                                               |                                                                 | 17. LIMITATION<br>OF ABSTRACT<br>Public Release                                                   |                                                           | Fenster, Lynn<br>lfenster@dtic.m                              |                                                                                                                |
| a. REPORT  b. ABSTRACT  c. THIS  <br>Unclassified  Unclassified  Unclass                                                                                                                                                                                  |                                                                 | 19b. TELEPHONE NUMBER International Area Code Area Code Telephone Number 703767-9007 DSN 427-9007 |                                                           | ode                                                           |                                                                                                                |
|                                                                                                                                                                                                                                                           |                                                                 |                                                                                                   |                                                           |                                                               | Standard Form 298 (Rev. 8-98)<br>Prescribed by ANSI Std Z39.18                                                 |







### The Company







#### Headline Figures



Product Applications include

- JT8, JT9, PW2000, PW4000, Pratt and Whitney PW6000, F100
- Tay, Adour, RB211 524 & 535, Pegasus, Trent, RTM322
- General Electric F404, CF34
- CFM56 All Marks
- Boeing 777
- BAe Harrier, Hawk





### The Products

- Compact aluminium tubular construction offers the advantage of low weight
- Modular design for repair and overhaul provides low cost of ownership
- Well proven design and robust construction meets High Mean Time Between Failure requirements



#### Shell & Tube





- Compact aluminium construction offers the advantage of low weight and cost.
- Brazing technology used provides high joint integrity



• Compact inconel tubular construction offers exceptionally long service life



High Temperature



## Existing Products

Type

Applications

Heat transfer area/volume

Fuel/Oil Air/Oil Air/Air

(Compactness) 650 m<sup>2</sup>/m<sup>3</sup>

\*

Plate - Fin

Tubular

 $800 - 1500 \, \text{m}^2/\text{m}^3$ 

\* Low Pressure & Temperature applications



# Metal Foam Heat Exchanger

#### Construction

Use of Metal foam, (nickel or aluminium) to increase heat transfer.

Several designs under consideration.

Rapid development of product expected.

#### Benefits

⇒Cost Reduction

⇒ Weight Reduction

⇒ Performance Improvement





## Design Option - 1

⇔ The heat exchanger built up of

alternate plates.

⇔ Note: the foam can be

brazed to the plates.

Plate Fin/Foam Heat Exchanger

Hot fluid flows through the metal foam
foam

Fig.1

Cooler fluid flows

around the fins

#### Metal Foam



## Design Option - 2

⇔Contact between tubes and foam is

fixed by brazing.

Tube - Foam Heat Exchanger

⇒Extended secondary surface for heat transfer.

⇒Increased turbulence of the shell-side

fluid.

Cooler fluid flows

Hot fluid counterflows

through the metal

through the narrow

tubes

Fig.2

the same thermal expansion.

#### Metal Foam



## Design Option - 3

Rotating Air/Oil Heat Exchanger & Separator:



to force the denser oil to separate from the less dense air. ⇒Rotational energy required is available within the gearing system.

such a configuration.





## Key points for consideration

Using metal foam:

⇒ Fouling is likely to occur with a small-celled metal foam. Therefore, can we make larger cells without losing performance, or should it have a filter added?

⇒ Will Foam break/fragment under operation?





## Compactness of the Metal Foam HE

Estimated (a)  $\approx 2500 \text{ m}^2/\text{m}^3$ 

Compare with current tubular of 650 m<sup>2</sup>/m<sup>3</sup>



## Design considerations

- ➤ Heat Transfer Performance & pressure loss
- > Economic manufacturing cost
- >Size, installation and removal for overhaul
- Dynamic loading induced from engine including vibration, blade out, manoeuvre
- >Static loading from internal fluid pressures
- ➤ Thermal structural loading
- >Material properties
- >Fluid Properties
- >Contamination / Fouling
- Repair and overhaul
- >Life



### Structural loading

parts over the engine frequency range (typically from 5 to 3000 Hz with resonant frequencies and displacement of the assembly and component ⇒Design is evaluated by Finite Element Analysis (FEA) to determine 20G load applied above 100Hz).

⇒Static FEA for pressure loads

⇔Dynamic FEA for blade out (120G) and manoeuvre loads



exchangers, a transient thermal FEA is completed using a validated model. This evaluates the induced metal temperatures and strain range throughout strain range, material properties and the number of defined engine cycles an entire flight cycle. A fatigue life analysis can be completed using the ⇒Thermal loading: particularly in the case of high temperature heat

→ Computation Fluid Dynamics (CFD) is used to identify flow patterns (hot spots, reduced flow zones) within the unit which enables us to refine our heat transfer models. It also provides a good indicator of whether flow induced vibration will be a problem, and if so, how effective different design solutions will be.



#### Testing

Component Certification for flight worthiness testing will include:

Vibration

Pressure - including Proof/Burst/cycling

May include PTF - pressure/temperature/flow cycling (although this may be avoided with the use of validated

FEA)

Impact

Fire

Icing

Bird Strike/FOD.

Pass by analysis for sand, dust & fungus.