-	课题名	 称	§ 13	3.2 全反	射与光纤		受课教师	3	 隻健成		 学科	物理
	授课时	间	2015	5年10,	月 17 日	1	受课班级	启	5二 (8)		课型	新课
教材 分析		"全反射与光纤"是高中物理人教版选修 3-4 的必修内容,是本章学习的重点之一。 旧教材中这一节是在学生学习到了光的反射、折射后编写的是反射和折射的交汇点。而 在新教材中则是放在了本章最后一节激光之前,及讲述了光的反射、折射、色散、干涉、 衍射之后,因此更注重相关应用。因为全反射与光线和现实生产与科技进步有着密切的 关系,因此本节课是现实课堂知识走向课外、走向生产、走向科技的重要教学内容。										
学情	已 基 能	射等/步体/对一析问/	光学知 会到教 于授和	识之后 对象作 以决问题	这所接触的 想。 为高中二年 的基本能力	的新的. 年级的 力。但是	光学现象。 同学来说, 是大多数学	。这个 ,他们 学生的	时期的]已经有 抽象思组	学生学 一定发: 住和空 ^间	习了之前 现问题、]想象能 ²	散、干涉、谷的教材,已经思考问题、分为还是比较低
分	现状	性。	的全反	射在日	常生活中石	有着广:	泛的应用,	, 例如	口被学生	所熟知	的光纤就	表面性与片面 是最为直接的
析	生活经验	纤的/ 强课	原理是 堂知识	什么?	"的问题, 生活的联系	通过。	一节的学	习,让	上学生自	己思考	出这一问	课会引出"判题的答案,力
	发展需求	纳的角	能力。	同时让		主动	的参与到	教学探				学生分析、原学生在获得知 学生在获得知
	知识 与 技能	(2)	会用	公式计算	4光的全反 算出光从一 京理以及能	种介质	射入另一	种介)	质时的临	不角。	及全反射	的现实应用。
教学口	过程 与 精神和实践能力。 (2) 启发学生积极思索、分析推理能力,通过全反射的实验设计,培养学生科学 态度和方法,培养学生应用全反射知识解释简单实际问题的能力。											
目标	情感度值 观	理的: (2) 中发; (3)	兴趣。 通过 现问题	数学培养 [,思考 我国光纟	、学生爱科 用已知的知	学、学	·科学、用 否能解释-	科学的 其原理	勺习惯。 2。	再次提	醒同学多	识,提高对物去从现实生活
教学 方法		学为3引导	主,结 学生猜	合多媒 想,再	体演示。谓 通过多媒体	 関堂上, 本演示,	尽可能 3 ,让同学 1	多的留 自己发	给学生参 现归纳出	参与教学 出结论。	色的思维。 采用观察	节课以实验都 恰当的假设 尽法、归纳法 理性认识的 ^T
教学 重点		全反	射条件	-, 临界	角概念及反	 应用。□	临界角概	念、临	 ;界条件E	 时的光	各图及解	题。
难	学点	让同学了解知识的同时应提到他们对日常物理知识的兴趣。										
	教学 媒体		教具、	PPT 、≀	见频、板书	、水瓶	瓦、激光发	射器				

		教师活动	学生活动	设计意图
	导课	首先用光纤之父高锟的名言:"当今世界没有什么材料可以取缔光纤的地位,如果有也要等几百年之后。"作为课题的开始语,提出"光纤蕴含的物理知识是怎样?"的问题。然后回顾两个问题,分别是光疏、光密介质的定义以及性质和光的折射设率。然后用一段视频引发同学们对光发生反射与折射条件的疑问。视频为用可以改变入射角度的激光从水里射向空气,发现伴随着入射角的增大,渐渐的光线由既有反射现象又有折射现象变为了只有反射现象。	首 ppt 答的仔规,现象的老的是,我的老问细分出,此种,此种,此种,我们,我们,我们,我们,我们,我们,我们,我们,我就看视的出。	温可学了通引力家旧看知情视家提办出识况频注高。
教 学 过 程	实验演示	不交为了八份及初光水水。 同学们,你们想不想知道光在两种介质中发生反射的原因呢? 将半圆柱透镜的半圆一侧靠近激光光源一侧,使直平面垂直光源与半圆柱透镜中心的连线,点燃烟雾发生器中的烟雾源置于激光演示仪中,将接线板接通电源,打面光彩。一束激光垂直于半圆柱透镜射出的光彩,让学生观察。我们研究光从半圆柱透镜射出的光彩的偏折情况,此时入射角0°,折射角亦为零度,即沿直线线和较强的折射光线,同时可观察出反射角等于入射角,折射角大于入射角,随着入射角的逐渐增大,反射光线和较强,而折射光线越来越弱,与射光线和较强,而折射光线越来越弱,与射光线就越来越强,而折射光线越来越强,而折射光线之间,并射光线完全消失,只剩下反射光线。这种现象叫做全反射。帮助大家学习下面的知识点,通过让大家的猜想,引导同学作说出折射定律的特殊情况。 根据公式:n、sinα;=n₂sinα₂(n、)、n₂=1)。 伴随α₁的增加α₂增加到π/2,此时当α₁继续增加时α₂不会再增加。会发生的现象就是同学们在视频中和实验中看到的现象。	日 日 日 日 知 思 君 段 代 况 。	进 向折特从心 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一
	知识总结	1、定义最大临界角 伴随 α ₁ 的增加 α ₂ 增加到 π/2, α ₁ 不能增加, 规定此时 α ₁ 为最大临界角。 2、全反射定义 光由光密介质射向光疏介质, 并当入射角大于等于临界角时, 光只发生反射的现象叫全反射现象。 3、全反射条件 (1) 由光密介质射向光疏介质, 高中范围内一般射向真空或空气。 (2) 入射角大于等于临界角。	记录笔记。	让同学们把 全反射的知 识系统记录 下来。

教	趣味实验	大家想不想知道光的全反射在日常生活中有什么应用呢? 首先介绍光纤应用的物理知识是光的全反射,阐述用实验解释其原理。邀请一位同学上台帮助老师完成实验(左侧是实验的模拟图)。当水杯的水从小孔里流出时从孔的另一侧照射一束光线,发现光线会顺着水改变方向。 看到这个试验后请同学分组讨论光纤传递光信号的原	配成其子 经 分制	演以好的及理学三 在中思想示让的全光,会。 分缎考以实同理反纤让举 组炼,公验学解射的同一 计集汇立可更光以原学反 论体总法
过		理。并在纸上会之光路图。下去引导学生绘图,给予提示,辅导。 再举电脑网线的例子,发现和水流光纤的原理相同,所以可以用一个光路图作为例子,在黑板上细致的画出两个反射点的光路图。		想法的交流 沟通能力。
程	绘图推导	但是在绘图时遇到问题了,光线从外界射入光纤内部是,在横截面上还会发生一次折射,那么这次折射对之后发生全反射的条件有什么影响呢?引出问题。绘图进行推导。	跟随老师,发现问题。 从真问明题。	让老过了时题生的对握学师程自忽,思全细。生的,已略培考面节了绘发绘的养问性的解图现图问学题和把
	课后思考	请同学们在课后找一找其他的光纤的例子,并用玻璃棒实验或像演示的实验一样,制作水流光纤,观察现象,体会全反射的原理。	课后通过实验与思考自行探究问题。	同己践的知增探力学的可理识强究。过手更物并生的自实好理且自能

1.0	
板	
书	
14	
设	
汉	
计	
计	
•	
1,,	
教	
学	
•	
Б	
八	
学 反 思	
田	
心	