M 328K: Lecture 3

Katherine Ho

September 3, 2024

1 Problem

If a rooster is worth 5 coins, a hen 3 coins, and 3 chicks together 1 coin, how many roosters, hens, and chicks, totaling 100, can be bought for 100 coins?

$$x = \#roosters$$

$$y = \#hens$$

$$z=\#chicks$$

$$x + y + z = 100$$

$$5x + 3y + \frac{1}{3}z = 100$$

Diophantine Equations

$$x^n + y^n = z^n$$

$$x^2 + y^2 + z^2 + w^2 = n$$

2 Bezout's Theorem

Let $a, b \in \mathbb{Z}$ (not both zero). The gcd of a and b is the smallest positive integer d that can be written as $ax + by = d, x, y \in \mathbb{Z}$.

Proof. Let $S=\{ax+by>0|x,y\in\mathbb{Z}\}$. Note that S is nonempty since for x=a,y=b we have $ax+by=a^2+b^2>0$. By WOP, S has a smallest element, call it d. WTS:

- 1. d|a, d|b
- 2. if c|a, c|b, then $c \leq d$

To show d|a, apply the division algo to obtain $a = d \cdot q + r, 0 \le r < d$. Writing $d = ax_0 + by_0$ for $x_0, y_0 \in \mathbb{Z}$, we have

$$r = a - d \cdot u$$

$$r = a(ax_0 + by_0) \cdot q$$

$$r = a(1 - x_0 q) + b(-y_0 q)$$

Hence, if r > 0 then $r \in S$ which is smaller than d, contradicting d being the smallest element. Then, r = 0 and d|a. (Same argument for d|b).

Now suppose that $c \in \mathbb{Z}$ such that c|a and c|b. Recall that if x and y are integers, then c|(cx+by). Hence, $c|(ax_0+by_0) <=> c|d$. Then $c \leq |d| = d$. Therefore, $d = \gcd(a,b)$.

Corollary 2.1. Every common divisor of a and b divides gcd(a, b).

Corollary 2.2. The linear Diophantine equation ax + by = c has a solution iff d|c.

Proof. First assume that ax + by = c has a solution: $c = ax_0 + by_0$. Since d|a, and d|b, we have $d|(ax_0 + by_0)$. One the other hand, suppose d|c. By definition, c = d|k for some k. By Bezout's theorem, we can write

$$d = ax + by$$
 for some $x, y \in \mathbb{Z}$

Then,

$$d \cdot k = a(x \cdot k) + b(y \cdot k)$$
$$c = a(x \cdot k) + b(y \cdot k)$$

So c is an integer linear combo a < b as desired.

Definition 2.1. We say that integers a and b (not both zero) are relatively prime or coprime if

$$gcd(a, b) = 1$$

Corollary 2.3. Integers a and b are relatively prime iff there exist $x, y \in \mathbb{Z}$ such that ax + by = 1.

Corollary 2.4. If a, b are coprime, then ax + by = c has a solution for any $c \in \mathbb{Z}$.

3 Euclidean Algorithm

- 1. Start with (a,b) (assume $|a| \ge |b|$)
- 2. Apply DA: $a = bq + r, 0 \le r < |b|$
- 3. If r = 0, then b|a and gcd(a, b) = |b|.
- 4. Otherwise, replace (a, b) with (b, r).
- 5. Repeat.
- 6. The final nonzero r is gcd.

Example 3.0.1. gcd(12378, 3054)

$$12378 = 3054 \cdot 4 + 162$$

$$3054 = 162 \cdot 18 + 138$$

$$162 = 138 \cdot 1 + 24$$

$$138 = 24 \cdot 5 + 18$$

$$24 = 18 \cdot 1 + 6$$

$$18 = 6 \cdot 3 + 0$$

$$\gcd = 6$$

Note: if you allow for negative remainders, that can be more efficient.

$$3054 = 162 \cdot 19 - 24$$
$$162 = (-24)(-7) - 6$$
$$-24 = (-6)(4) + 0$$

Example 3.0.2. Solve 1237x + 3054y = 6 via "Extended Euclidean Algorithm".

$$6 = 24 - 18 \cdot 1$$

$$= 24 - (138 - 24 * 5)$$

$$= 24 \cdot 6 - 138$$

$$= (162 - 138) \cdot 6 - 138$$

$$= 162 \cdot 6 - 138 \cdot 7$$

$$= 162 \cdot 6 - (3054 - 162 \cdot 18) \cdot 7$$

$$= (12378 - 3054 \cdot 4) \cdot 6 - (3054 - (12378 - 3054)) \cdot 7$$

Example 3.0.3. Solve

$$x + y + z = 100$$
$$5x + 3y + \frac{1}{3}z = 100$$

Using z = 100 - x - y, we have 7x + 4y = 100. Note: 7(-1) + 4(2) = 1. So 7(-100) + 4(200) = 100

$$7 = 4 \cdot 1 + 3$$

$$4 = 3 \cdot 1 + 1$$

$$1 = 4 - 3$$

$$1 = 4 - (7 - 4)$$

$$1 = -7 + 4(2)$$

Theorem 3.1. If ax + by = c has a solution $x_0, y_0 \in \mathbb{Z}$. Then any other solution $x, y \in \mathbb{Z}$ is given by

$$x = x_0 + \frac{b}{d}k, y = y_0 - \frac{a}{d}k$$

where $k \in \mathbb{Z}$ and $d = \gcd(a, b)$. If x, y, z > 0, then k must satisfy

$$\frac{200}{7} > k > 25$$

So

k = 26, 27, 28, so the only solutions are

$$x = 4, y = 18, z = 78$$

 $x = 8, y = 11, z = 81$
 $x = 12, y = -1, z = 89$