GRID SEARCH RESULTS

Linear SVC trained with: C = [1, 1.5, 2, 2.5, 3]

<pre>print("Mejores parametros: "+str(model.best_params_)) print("Mejor Score: "+str(model.best_score_)+'\n') scores = pd.DataFrame(model.cv_results_) scores Mejores parametros: {'C': 1} Mejor Score: 0.4943129251700681</pre>												
	mean_fit_t	ime	std_fit_time	mean_score_time	std_score_time	param_C	params	split0_test_score	split1_test_score	split2_test_sc		
0	9.059	723	0.624642	0.192437	0.142013	1	{'C': 1}	0.495034	0.495374	0.493		
1	11.224	115	0.223814	0.092886	0.007992	1.5	{'C': 1.5}	0.495204	0.495340	0.492		
2	14.356	893	0.491114	0.100254	0.004118	2	{'C': 2}	0.495000	0.495238	0.492		
3	16.536	136	0.438183	0.102634	0.007650	2.5	{'C': 2.5}	0.494898	0.495068	0.492		
4	20.136	198	1.249134	0.100601	0.012904	3	{'C': 3}	0.494898	0.495102	0.492		
4										+		
m_C	params	split	t0_test_score	split1_test_score	split2_test_score	split3_te	est_score	split4_test_score	mean_test_score	std_test_score		
1	{'C': 1}		0.495034	0.495374	0.493027		0.492619	0.495510	0.494313	0.001233		
1.5	{'C': 1.5}		0.495204	0.495340	0.492857		0.492585	0.495510	0.494299	0.001295		
2	{'C': 2}		0.495000	0.495238	0.492721		0.492551	0.495374	0.494177	0.001265		
2.5	{'C': 2.5}		0.494898	0.495068	0.492823		0.492619	0.495374	0.494156	0.001184		
3	{'C': 3}		0.494898	0.495102	0.492925		0.492619	0.495306	0.494170	0.001153		
4										- ·		

Como el mejor resultado fue el menor valor, investigamos valores aún más pequeños de C.

Linear SVC trained with: C = [0.01, 0.1, 1, 1.1]

```
print("Mejores parametros: "+str(model.best_params_))
print("Mejor Score: "+str(model.best_score_)+'\n')
scores = pd.DataFrame(model.cv_results_)
scores
Mejores parametros: {'C': 0.01}
Mejor Score: 0.49779591836734693
n_C params split0_test_score split1_test_score split2_test_score split3_test_score split4_test_score
                                                                                                  mean_test_score
                                                                                                                   std_test_score
        {'C':
0.01
                     0.499660
                                      0.498367
                                                       0.497347
                                                                        0.494082
                                                                                        0.499524
                                                                                                         0.497796
                                                                                                                        0.002039
        0.01}
0.10 {'C': 0.1}
                     0.497279
                                      0.498265
                                                       0.496293
                                                                        0.493980
                                                                                        0.498095
                                                                                                                        0.001566
                                                                                                         0.496782
  1
     {'C': 1}
                     0.494966
                                      0.496429
                                                       0.493776
                                                                        0.493061
                                                                                        0.496259
                                                                                                         0.494898
                                                                                                                        0.001329
1.10 {'C': 1.1}
                     0.495034
                                      0.496497
                                                       0.493776
                                                                        0.493061
                                                                                        0.496259
                                                                                                         0.494925
                                                                                                                        0.001346
```

GRTD SEARCH RESULTS

Evaluación del modelo optimizado

Los datos se vectorizan con el tfidf con un $min_df = 0.001$ y $max_features = 15000$. Luego se entrena un modelo LinearSVC con C = 0.1.

```
svcop = LinearSVC(C=0.01)
svcop.fit(xtrain,ytrain)

y_pred = svcop.predict(xtest)
print(color.BOLD + 'Accuracy : ' + color.END + color.YELLOW, accuracy_score(ytest)
Accuracy : 0.4996507936507936

print(color.BOLD + 'Reporte de clasificación : '+ color.END + '\n \n' ,classification
```

Reporte de clasificación :

	precision	recall	f1-score	support
1	0.57	0.74	0.64	12600
2	0.42	0.38	0.40	12600
3	0.41	0.32	0.36	12600
4	0.45	0.36	0.40	12600
5	0.57	0.70	0.63	12600
accuracy			0.50	63000
macro avg	0.48	0.50	0.49	63000
weighted avg	0.48	0.50	0.49	63000

print(color.BOLD + 'Matriz de confusión : '+ color.END)
confusion(ytest,y_pred)

Observaciones

Lo mejor que se pudo obtener con los hiperparámetros óptimos establecidos es una precisión del 50%.

Si bien este valor es relativamente bajo, está al límite del rendimiento aceptable, ya que acertará en la mitad de las predicciones de cada clase.

Como vemos en el informe y en la matriz de confusión, los más fáciles de identificar son las clases extremos y los más conflictivos son el 2 y el 4, ya que se los confunde en gran cantidad de casos con el 1 y el 5, respectivamente.

En cuanto a la clase 3, tiene el accuracy más bajo pero es el mejor rendimiento comparado con los otros modelos en esa clase.