

Examples of Financial Sector Network requirements

Low-latency links / Monitoring / PTPv2 clocksync / BGP as IGP

Pedro V. Estrela, PhD Sr. Performance Engineer 30-May-2018

About the presenter

Imc financial markets

- PhD in mobile networks (2007)
 - NS2 simulations
 - Transparent mobility
 - Fast mobile-IP handovers
- Performance engineer (2008 ->)
 - Think of the engineer that tunes Formula1 cars
 - Latency optimization and analysis
 - Prototypes and reverse engineering

About IMC financial markets

IIII IMC

- Think of the currency house at the airport, but for:
 - Many products: Options / Futures / Bonds / ETFs
 - Fully automated operations
 - Fast worldwide network

- Everybody technical
 - Trading team = Determine <u>Prices</u>
 - Technology team = Adjust orders Quickly

WHAT WE DO IN LESS THAN 2 MIN.

http://www.imc.com/eu/about-us#what-we-do
https://www.youtube.com/watch?v=WFsvY_YRhvg

Exchange price-time priority

Source: http://www.tbo.com/news/business/tampa-area-shopppers-get-jump-on-black-friday-deals-20141127/

Relative latency -> Innovation

Source: https://www.slideshare.net/CloudCamp/evolution-of-business-activities
Source: https://mapthefuture.mikemace.com/2013/02/excerpts-from-map-future.html

Low-Latency Links

Latency components

Trend is clearly: Faster / Raw Hardware / More expensive

Wide Area

Local Area

Historical fact: Every new wide area technology was first used for trading

Year	Technology	Who	
1815	Pigeons	Rothchild knew that Napoleon lost the war first	
1836	Telescopes	Shore agents knew if cargo was spoilt on Boats	- Hours / Days
1897	Telegraph	Bookies sent Horse race results to outside the tracks	
2010	Fiber	Spread networks drills mountains on NY-Chicago	
2012	Microwave	McKay jumps the very same mountains using Radio	Milli Seconds
2015	Fiber	Hibernia builds new straighter Atlantic cable	
•••	•••	•••	_

Source: http://www.forbes.com/forbes/2010/0927/outfront-netscape-jim-barksdale-daniel-spivey-wall-street-speed-war.html

Source: https://www.moaf.org/publications-collections/financial-history-magazine/111/ res/id=Attachments/index=0/Plundered by Harpies.pdf

Year	Device	Latency		
2008	Cisco 4900	2600ns OWD	Micro Seconds	
2011	Cisco 3064	1000ns OWD	<u>iviicio</u> Secolius	
2011	Arista 7124	500ns OWD	Name Constant	
2013	Cisco 3548	200ns OWD	Nano Seconds	
•••	•••	•••	→	

(Circa 2012)

Source: https://www.cisco.com/c/dam/en/us/products/collateral/switches/catalyst-4900-series-switches/press_coverage.pdf

Source: https://www.arista.com/en/company/news/press-release/352-pr-20110314-01

Source: https://newsroom.cisco.com/press-release-content?type=webcontent&articleId=1028561

Source: https://newsroom.cisco.com/press-release-content?articleId=362594

Source: https://www.theregister.co.uk/2012/02/08/solarflare_application_onload_engine/

Network Monitoring

NTP clocksync

SW timestamps

Network convergence impact

Increasing robustness of PTPv2 Financial networks

25 September ISPCS 2014 Austin, Texas

(2014 paper)

Using a multi-source NTP watchdog to increase the robustness of PTPv2 in Financial Industry networks

Pedro V. Estrela IMC Financial Market Amsterdam, Netherlan Sebastian Neusiß Deutsche Börse AG Frankfurt, Germany Sebastian Neusuess & de

Wojciech Owczarek
NYSE Euronext
Belfast, UK
wowczarek@myx.com

in the PTPv2 protocol that affects its robustness to failure in specificarior scenarios. The architecture design of electing a single unaquitime source to a PTP domain – the PTP GrandMaster – makes the protocol vulnerable to by partine failures.

citical point of view- and in particular how this affects the industry. This paper advances the discussion by contributing ginton of the latest high-accuracy regulatory requirements on contin industry, and by documenting new examples of failures—world customer-facing operations. It then describes an of office of possible ways to increase PIP industries white of one of possible ways to increase PIP industries with might accuracy (using a multi-outure NIP watchdog), and a

pushing higher accuracy obligations to the fin industry ([1]/[13]/[15])

 a description of new examples of failures in real-works customer-facing operations [10]

 an example of one of the possible ways to increase PTP nobustness while preserving its accuracy (using a multicourse NTP particles to request failure assertion). (best paper award)

Network time synchronization

IETF NTPv4:

- Mature
- milli-seconds accuracy
- Multiple time sources

https://en.wikipedia.org/wiki/Network Time Protocol

IEEE PTPv2:

- Fresh
- nano-seconds accuracy
- Single time source

https://en.wikipedia.org/wiki/Precision Time Protocol

PTPv2 byzantine failures

- Deutche Borse, August 2013
 - Active GM sent bad time (leap seconds = 0)
 - Backup GMs remained passive
 - Slaves jumped 35s => Trading halted
- IMC, July 2011
 - Same issue: <u>Single source</u>
- ESMA, Jan 2018
 - Regulator requires traceable 100us error

Run PTP + an NTP watchdog

- 3x NTP servers queried in parallel to PTP
- Median overrides PTP offset
 - -0.02 ms
 - +0.01 ms

- +35000 ms
- PTP only touches the clock if allowed

Testbed

Clock error results

Using BGP as an IGP

Issue description

L3 IGP routing limitations

- Traffic engineering is hardly possible
- Valuable bandwidth not used
- Multiples protocols cause complexity and risk
 - OSPF, BGP, EIGRP, static routing

L2 switching limitations

- Spanning-tree blocked ports
- MLAG / TRILL = no control on flows, proprietary, special HW requirements
- The risk of using ancient layer-2 technology is a risk by itself

Solution: BGP mimicked as an IGP

IMC financial markets

- Inspired by RFC 7938 (facebook / microsoft / arista)
 - Main difference: no symmetrical infrastructures, especially WAN
 - 1x switch = 1x confederation-AS BGP (best of iBGP+eBGP worlds)
- Per-hop routing decisions
 - Using additive latency-based metrics (MED), instead of AS-PATH
- Advanced traffic engineering
 - Based on prefix communities. Flexible from whole DCs to /32 hosts
 - Separate high/low-latencies; Separate elephants/mice
- Fast Failover (<100ms)
 - Timer tuning
 - Bidirectional forwarding detection

Thanks!

Network requirements

- LAN + WAN Low-latency
- Scalability & Automation
- Visibility & Clock Sync

More questions?

- IMC: https://www.imc.com/eu/careers
- Scientific papers: https://www.researchgate.net/project/PTP-Clock-Synchronization