Roll No: 09

DS LAB EXP: 07

AIM:To implement fuzzy set Properties

THEORY:

Fuzzy set theory extends classical set theory to handle the concept of partial membership. In classical set theory, an element either belongs to a set or it does not, which is a binary (0 or 1) membership function. In fuzzy set theory, membership is expressed in degrees ranging between 0 and 1.

1. Union of Fuzzy Sets:

$\mu A \cup B(x) = max(\mu A(x), \mu B(x))$

- Membership in the union is the highest membership value of an element in either set, reflecting that the element belongs to at least one of the sets.

2. Intersection of Fuzzy Sets:

$\mu A \cap B(x) = \min(\mu A(x), \mu B(x))$

- Membership in the intersection is the lowest membership value of the element in both sets, indicating that the element belongs to both sets to the least extent.

3. Complement of a Fuzzy Set:

$\mu A'(x)=1-\mu A(x)$

- Membership in the complement is the inverse of the membership in the original set, showing how much an element does not belong to the set.

4. Scalar Multiplication of a Fuzzy Set:

$\mu\alpha A(x) = \alpha \cdot \mu A(x)$

- Membership values are scaled by a factor, adjusting the degree of membership accordingly, where between 0 and 1 reduces membership.

5. Sum of Fuzzy Sets:

$\mu A+B(x)=min(1,\mu A(x)+\mu B(x))$

- Membership values are combined by summing the memberships of an element in both sets, with the result capped at 1 to ensure values remain within the valid range.

CODE:

```
import matplotlib.pyplot as plt
 # Elements
 x = [1, 2, 3, 4, 5]
 # Fuzzy Sets
 A = [0.1, 0.4, 0.7, 0.9, 0.2]
 B = [0.3, 0.6, 0.8, 0.5, 0.1]
 # Union and Intersection
 A_{union_B} = [max(a, b) \text{ for } a, b \text{ in } zip(A, B)]
 A_{intersection_B} = [min(a, b) for a, b in zip(A, B)]
 # Complement of A
 A_{complement} = [1 - a for a in A]
 # Scalar Multiplication (\alpha * A) with \alpha = 0.5
 alpha = 0.5
 A_scalar = [alpha * a for a in A]
 # Fuzzy Sum (A + B) \rightarrow min(1, A+B)
 A_{sum_B} = [min(1, a + b) \text{ for a, b in } zip(A, B)]
 # List of plots to generate
 plots = [
     ("Fuzzy Set A", A, 'blue'),
     ("Fuzzy Set B", B, 'red'),
     ("Union (A ∪ B)", A_union_B, 'green'),
     ("Intersection (A n B)", A_intersection_B, 'purple'),
     ("Complement of A (A')", A_complement, 'orange'),
     (f"Scalar Multiplication (\alpha A) with \alpha = \{alpha\}", A\_scalar, 'brown'),
     ("Fuzzy Sum (A + B)", A_sum_B, 'cyan')
```

```
# Generate each plot
for title, y_values, color in plots:
    plt.figure(figsize=(4, 2))
    plt.plot(x, y_values, 'o-', color=color)
    plt.title(title)
    plt.xlabel('Element')
    plt.ylabel('Membership Value')
    plt.ylim(0, 1.1) # keep values between 0 and 1
    plt.grid(True)
    plt.show()
```

OUTPUT-

CONCLUSION: Thus , we have implemented the properties of fuzzy sets.
