Elliptic curve cryptography

Outline

- Elliptic curves.
 - -Over the reals.
 - Elliptic curve addition.
 - –Geometric and algebraic.
 - -Over finite fields, GF(p).

Elliptic curves

- We have seen some problems, DLP, CDHP, DDHP which are considered hard.
- Some of these problems are over Abelian fields or groups.
- We have looked at fields GF(p) where the elements of the field are simply integers, and the operations are modular.
- But these are not the only domains we can use.
- Miller and Koblitz, independently, suggested the use of elliptic curves for constructing public-key cryptosystems.

- We can take an Elliptic curve over a field, GF(p), or GF(p^m).
 - We are effectively restricting solutions to an equation to elements of a particular field.
- The problems like DLP are not necessarily hard in those fields, so we need to be a little careful.

Relative key sizes: For similar security

Symmetric	ECC-based	RSA/DSA
(key size)	(group order)	(modulus size)
56	112	512
80	160	1024
112	224	2048
128	256	3072
192	384	7680
256	512	15360

We will see later why this is the case.

Elliptic curves over the reals

- Constant $a,b \in \Re$ (reals) satisfying the discriminant $\Delta=-4a^3-27b^2\neq 0$.
- A non-singular elliptic curve is the set E of solutions $(x,y) \in \Re \times \Re$ to the equation

$$y^2=x^3+ax+b$$

along with a point *O*, referred to as the *point at infinity*.

This is the form we are interested in.

$$y^2 = x^3 - 16x$$

$y^2 = x^3 - 16x + 25$

Elliptic curve "addition"

- To get to an Abelian group we need a commutative binary operation.
 - This addition can be defined geometrically, making use of intersections and mirror images.
 - The addition can, alternately, be represented algebraically.
- The point at infinity acts as the identity.

- Let P_1 and P_2 be elements of E.
- We can calculate P₁+P₂ geometrically by drawing a line through P₁ and P₂ and recording the point on interception of the curve.
- The reflection across the x axis and onto the elliptic curve E is the solution P₁+P₂.

- How does infinity act as the identity?
- "A vertical line" hits the opposite side and reflects back.

What about algebraically?

- Consider the P_1 is at (x_1,y_1) and that P_2 is at (x_2,y_2) .
- Then $P_1+P_2=P_3$ at (x_3,y_3) where $x_3=s^2-x_1-x_2$ and $y_3=-y_1+s(x_1-x_3)$ with $s=(y_1-y_2)/(x_1-x_2)$ being the slope.
- In the case of $x_1=x_2$ we have either
- ... y₁=-y₂, so the points are inverses and we get a vertical line which intercepts the point set at infinity (i.e. at the identity...)
- Or ... we have y₁=y₂, so we are "point doubling" or adding the point to itself.
 - In this case we take the tangent at the curve at the point to be the line through it (corresponding to $s=(3x_1^2+a)/(2y_1)$.

From Chang et.al.

Elliptic curves over GF(p)

- The reals are an infinite field.
- In cryptography the finite fields are more frequently used.
- We can consider elliptic curves where the operations are all carried out with the elements being elements of some field, and operations being "modular".
- E is the set of solutions (x,y) to $y^2=x^3+ax+b$ (mod p), where $4a^3+27b^2\neq0$ (mod p), along with the point at infinity.

$$y^2 = x^3 + x + 6$$
 over $GF(11)$

Х	x ³ +x+6 mod 11	QR?	у
0	6		
1	8		
2	5		
3	3		
4	8		
5	4		
6	8		
7	4		
8	9		
9	7		
10	4		

$y^2 = x^3 + x + 6$ over GF(11)

X	x ³ +x+6 mod 11	QR?	у
0	6	No	
1	8	No	
2	5	Yes	4,7
3	3	Yes	5,6
4	8	No	
5	4	Yes	2,9
6	8	No	
7	4	Yes	2,9
8	9	Yes	3,8
9	7	No	
10	4	yes	2,9

The set is the point at infinity and (2,4),(2,7),(3,5),(3,6) (5,2),(5,9),(7,2),(7,9), (8,3), (8,8),(10,2),(10,9).

13 elements. Since the order is prime, every element other than the point at infinity is a generator.

The elliptic curve specifies how elements are added.

Example: Given $E: y^2 = x^3 + 2x + 2 \mod 17$ and point P = (5, 1)

Goal: Compute $2P = P + P = (5,1) + (5,1) = (x_3, y_3)$

Example: Given *E*: $y^2 = x^3 + 2x + 2 \mod 17$ and point P = (5, 1)

Goal: Compute $2P = P + P = (5, 1) + (5, 1) = (x_3, y_3)$

$$s = \frac{3x_1^2 + a}{2y_1} = (2 \cdot 1)^{-1}(3 \cdot 5^2 + 2) = 2^{-1} \cdot 9 \equiv 9 \cdot 9 \equiv 13 \mod 17$$

$$x_3 = s^2 - x_1 - x_2 = 13^2 - 5 - 5 = 159 \equiv 6 \mod 17$$

 $y_3 = s(x_1 - x_3) - y_1 = 13(5 - 6) - 1 = -14 \equiv 3 \mod 17$

Finally
$$2P = (5,1) + (5,1) = (6,3)$$

■ 椭圆曲线上的点构加上无穷远点成一个循环子群

$$2P = (5,1)+(5,1) = (6,3)$$

 $3P = 2P+P = (10,6)$
 $4P = (3,1)$
 $5P = (9,16)$
 $6P = (16,13)$
 $7P = (0,6)$
 $8P = (13,7)$
 $9P = (7,6)$
 $10P = (7,11)$

$$11P = (13,10)$$

$$12P = (0,11)$$

$$13P = (16,4)$$

$$14P = (9,1)$$

$$15P = (3,16)$$

$$16P = (10,11)$$

$$17P = (6,14)$$

$$18P = (5,16)$$

$$19P = \theta$$

这个椭圆曲线的位数为19, 因为其包含19个点

ECC based crypto version

Outline

- The ECDLP Problem:
 - Getting a group.
 - Order.
- Diffie-Hellman Key Exchange.
- Elliptic Curve Diffie-Hellman Key Exchange
- Elliptic Curve El-Gamal.

The ECDLP Problem

- The most common hard problem that underlies the use of public key elliptic curve cryptosystems is the Elliptic Curve Discrete Logarithm Problem.
- Let E be the set of points of our elliptic curve defined over the field GF(p).
 - The collection of points and the operation of addition, as defined earlier, form a group which we could denote E(GF(p)).
 - In this group the common operation is "scalar multiplication".

- Notice that we have a group not a field.
- Scalar multiplication is not an additional binary operation, rather is an extension of the addition rule.
- We write scalar multiplication, of a point P, by an integer k as kP, and define it as P+P+...+P with k copies of P in the sum.

- We can now define the Elliptic Curve Discrete Logarithm Problem:
 - Given two points in E, P_1 and P_2 , find k: P_1 =k P_2 .

Order ... group and element ...

- We denote by #E the number of points on the curve, that is, the number of elements in our group E(GF(p)).
 - -#E(GF(p^m)) = p^m+1 t
 t is called the trace of Frobenius at p^m and satisfies (Hasse's theorem):

$$-2\sqrt{p^m} \le t \le 2\sqrt{p^m}$$

- Each element (point) P also has an order, the smallest element x: xP = O (the identity or point at infinity).
- If the group order is prime, the group is cyclic, all elements, except the point at infinity, are generators and all have an order equal to the group order.
 - We want such an Abelian group.
 - We don't always get one directly!

Diffie-Hellman Key Exchange

- The first public key system.
- Security is based on the difficulty of computing discrete logarithm.
 - Actually security it is based on the computational Diffie-Hellman problem.
- System Setup
 - A finite field Z_p , where p is prime.
 - A primitive element $g \in Z_p$.
 - p and g are public.

Diffie-Hellman Key Exchange

The Protocol

- Alice selects a secret X_A , for $X_A \in \mathbb{Z}_p$, and computes her public key $Y_A = g^{X_A} \mod p$.
- Bob selects a secret X_B , for $X_B \in Z_p$, and computes his public key $Y_B = g^{X_B} \mod p$.
- Alice sends Y_A to Bob.
- Bob sends Y_B to Alice.
- Alice computes the shared secret key $K = Y_B^{X_A} \mod p$.
- Bob computes the shared secret key $K = Y_A^{X_B} \mod p$.

EC Diffie-Hellman key exchange

- We can carry out a similar exchange using an Abelian group over an Elliptic curve.
- The two users agree upon a curve over a field, E(GF(q)), of known order n, and on a generator P, a base point.
- Each user selects a secret key k_{si}<n, and calculates their public key K_{pi}=k_{si}P.

- So, with Alice and Bob, we have temporary pairs (k_{sA},K_{pA}) and (k_{sB},K_{pB}).
- Alice gets the public key of Bob and calculates K=k_{sA}K_{pB}.
- Bob gets the public key of Alice and calculates K=k_{sB}K_{pA}.

Both have the secret key K.

EC El-Gamal

- The parameters are, as in Diffie-Hellman Key Exchange over an Elliptic Curve, E(GF(p)), GF(p), P and n.
- Alice wants to encrypt a message for Bob.
- Alice knows the public component of Bob's key pair (k_{sB},K_{pB}).
- Alice chooses a random r < n, and determines U=rP.
- She also calculates $(x_q, y_q) = Q = rK_{pB}$.

- Finally Alice calculates c = M XOR x_q.
- The encrypted message is <U,c>.
- To decrypt, Bob calculates

$$(x_q, y_q) = Q = k_{sB}U$$

then

$$M=c XOR x_q$$
.

This works since $Q = rK_{pB} = rk_{sB}P = k_{sB}(rP) = k_{sB}U$.

Bilinear Pairing

Outline

- Motivating the use of bilinear pairings.
- Bilinear pairing
- Security problems

Motivating the use of bilinear pairings

- Specifically, consider that we have two cyclic groups G₁ and G₂.
- Furthermore assume that there exists an isomorphism $\varphi: G_1 \rightarrow G_2$, and that this isomorphism can be carried out efficiently.
- Then, the difficulty of a problem, say the discrete log problem, in G₁, cannot be significantly greater than the difficulty of the problem in G₂.

For example...

- Consider that in G_1 we have the DLP: Given P_1 and Q_1 determine k where P_1 =k Q_1 .
- We can calculate $P_2 = \varphi(P_1)$.
- Now it follows from the definition of an isomorphism that $P_2=\varphi(kQ_1)=k\varphi(Q_1)$.
- Thus we have the DLP in G_2 : Given P_2 and Q_2 determine k where P_2 =k Q_2 .

Bilinear pairings

- Let G₁,G₂ be additive groups of prime order p
- Let G₃ be multiplicative group of prime order p
- There is a mapping (the bilinear pairing)

$$e:G_1\times G_2\to G_3$$
.

- The mapping is required to have several properties:
 - Bilinearity:
 - e(P+Q,R)=e(P,R).e(Q,R)
 - e(P,R+S)=e(P,R).e(P,S)

This implies $e(aP,bR)=e(P,R)^{ab}=e(bP,aR)=e(R,P)^{ab}$.

- Non-degeneracy: ∃(P,R)∈G₁×G₂: e(P,R)≠1
- Efficiency: e(P,R) can be efficiently calculated.

Bilinear pairings

- Weil Pairing
- Tate Pairing

Security for pairing over EC

- Security depends on the hardness of one of a number of computational or decisional problems.
 - We have already seen the Elliptic Curve Discrete Log Problem (ECDLP).
 - We will now briefly look at the Bilinear Diffie-Hellman problem (BDHP).

BDHP

The Bilinear Diffie-Hellman Problem:

For P a generator, given the collection $\langle P,aP,bP,cP \rangle$, for $a,b,c \in_R Z_r$, compute $e(P,P)^{abc}$.

And, in the standard relationship manner, the corresponding BDH assumption is that there is no efficient algorithm to solve the BDHP with non-negligible probability.

CDH and DDH

- There are also the CDH and DDH problems.
 - For elliptic curves these are expressed for additive groups.
- Computational Diffie-Hellman problem
 - Given P in G, xP, and yP, compute xyP
- Decisional Diffie-Hellman problem
 - Given P in G, xP, yP, and Q = zP, decide whether z = xy.

DDH in pairing

DDH problem in pairing is easy

Given P in G, xP, yP, and Q = zP, decide whether z = xy

$$e(xP,yP) = e(P,P)^{xy}$$

$$e(P,zP) = e(P,P)^z$$