Синергетический синтез алгоритмов энергосберегающего управления движением электромобиля

К. А. Олейников

Институт компьютерных технологий и информационной безопасности Южный федеральный университет Таганрог, Российская Федерация koleynikov@sfedu.ru

Аннотация. докладе рассматривается энергосберегающих регуляторов управления движением электромобиля. За основу берется нелинейная модель тяговой силовой установки электромобиля на базе асинхронного электропривода. Энергосбережение достигается счет применения процедуры синергетического синтеза метолики построения и энергетических инвариантов систем при котором потери энергии в силовых каналах минимальны.

Ключевые слова: синергетическая теория управления; АКАР; нелинейная модель; асинхронный привод; электромобиль;энергосбережение

I. Введение

В настоящее время во всём мире ведутся активные работы, направленные на создание экологичных средств-электромобилей транспортных систем управления силовыми установками на их экономичность которых обусловлена также наличием рекуперации энергии с последующим ее использованием. Применение электроприводов в гибридных силовых установках, электромобилях, системах мотор-колесо позволит улучшить динамику транспортного средства, а повысит динамические характеристики транспортного средства на электрической тяге. Однако, несмотря на заинтересованность большую перспективу и разработчиков скорого внедрения и использования системы тяговый электропривод-автомобиль, на практике есть задачи по совершенствованию энергосистемы электромобиля, а также создание системы управления электромобилем, используя динамические характеристики формирования тяги в зависимости от сцепления с дорогой, задачи реализации энергосберегающего управления силовой установкой [1–3].

II. ОПИСАНИЕ МАТЕМАТИЧЕСКОЙ МОДЕЛИ СИЛОВОЙ УСТАНОВКИ

Рассмотрим электрическую машину (ЭМ) – подсистему электромобиля, у которого в качестве тягового двигателя

размещен асинхронный электропривод. Многофазная ЭМ асинхронного электропривода с фиксированным числом обмоточных фаз ротора и статора может быть представлена в виде ЭМ с двумя фазами, если выполняются равенства полных сопротивлений фаз ротора (статора).

Применительно к асинхронным приводам выделают 3 основных принципа управления: частотное (скалярное), векторное или ориентированное по полю типа Siemens Transvector и прямое управление моментом [4].

В качестве ЭМ рассмотрим часто используемый асинхронный электропривод с короткозамкнутым ротором (АДКЗР). На рис. 1 показана общая структура привода, где w_{rd} , w_{rq} — число витков обмотки ротора по осям d, q, $w_{s\alpha}$, $w_{s\beta}$ — число витков обмоток статора по осям α , β ; $u_{s\alpha}$, $u_{s\beta}$ — напряжения на обмотках статора фаз α , β ; u_{rd} , u_{rq} — напряжения обмоток ротора фаз d, q; w — угловая скорость вращения ротора. Используя общую математическую модель двигателя в системе координат (X, Y) получим в следующем виде: [5], [6].

Рис. 1. Структура обобщённой ЭМ

Работа выполнена при финансовой поддержке РФФИ, проект № 18-08-00924 А

$$\begin{split} \frac{di_{sx}}{dt} &= \frac{L_{m}r_{r}\psi_{r} - (r_{r}L_{m}^{2} + r_{s}L_{r}^{2})i_{sx} + L_{r}^{2}u_{sx}}{L_{r}L} + w_{r}i_{sy} + \frac{r_{r}L_{m}i_{sy}^{2}}{L_{r}\psi_{r}}; \\ \frac{di_{sy}}{dt} &= -\frac{L_{m}r_{r}w_{r}\psi_{r} - (r_{r}L_{m}^{2} + r_{s}L_{r}^{2})i_{sy} + L_{r}^{2}u_{sy}}{L_{r}L} - w_{r}i_{sx} - \frac{r_{r}L_{m}i_{sx}i_{sy}}{L_{r}\psi_{r}}; \\ \frac{d\psi_{r}}{dt} &= \frac{r_{r}L_{m}}{L_{r}}i_{sx} - \frac{r_{r}}{L_{r}}\psi_{r}; \\ \frac{dw_{r}}{dt} &= \frac{pmL_{m}}{2L_{r}J}\psi_{r}i_{sy} - \frac{M_{c}}{J}. \end{split}$$

$$(1)$$

где i_{sx} и i_{sy} — проекции тока статора на оси X и Y соответственно, u_{sx} и u_{sy} — проекции напряжения статора на оси X и Y, L_r и L_s — индуктивности ротора и статора, L_m — взаимная индуктивность, p — число пар полюсов, m — число фаз, M_c — момент сопротивления, J — приведенный момент инерции, ψ_r — потокосцепление ротора, w_r — частота вращения ротора, r_r и r_s — сопротивления ротора и статора.

III. Синтез и моделирование системы

А. Синтез регулятора стабилизации скорости вращения и стабилизации

При расчетах и дальнейшем моделировании тягового привода будем использовать среднее значение мощности, которое будет составлять 3.7 кВт, а параметры двигателя взяты из библиотеки элементов Matlab/Simulink.

Каналы управления представляю собой проекции напряжений u_{sx} и u_{sy} . Основными задачами построения регулятора являются стабилизация значений потокосцепления ψ_r ($\psi_r = \psi_r^0$) и частоты вращения ротора w_r ($w_r = w_r^0$), где w_r^0 и ψ_r^0 – желаемые значения.

Согласно процедуре метода аналитического конструирования агрегированных регуляторов (АКАР) синергетической теории управления, необходимо ввести первую пару макропеременных [7–9]:

$$\psi_1 = i_{xx} - \varphi_1; \tag{2}$$

$$\psi_2 = i_{sv} - \varphi_2,\tag{3}$$

которая должна удовлетворять основным функциональным уравнениям (ОФУ).

$$T_1 \frac{d\psi_1}{dt} + \psi_1 = 0; (4)$$

$$T_2 \frac{d\psi_2}{dt} + \psi_2 = 0. ag{5}$$

Решая совместно уравнения (1)–(5), находим выражения для «внутренних» законы управления φ_1 и φ_2 :

$$\varphi_{1} = \frac{T_{3}r_{r}\psi_{r} - L_{r}\psi_{r} + \psi_{r}^{0}L_{r}}{T_{3}r_{r}L_{m}};$$

$$\varphi_{2} = -2\frac{L_{r}J(w_{r} - w_{r}^{0})}{T_{4}pmL_{m}\psi_{r}}.$$
(6)

Для упрощения рассмотрения будем рассматривать равномерное движение, показанное на рис. 2.

Рис. 2. Силы и моменты, действующие на ведущее колесо при его равномерном движении

Движение колеса начинается в результате приложения момента M_k или продольной силы P_x . Распределённую нагрузку можно заменить ее равнодействующей, то точка приложения силы R_z будет смещена по ходу движения колеса на расстояние c. В результате смещения точки приложения нормальной реакции R_z возникает момент сопротивления вращению колеса $R_z \cdot c$, который будет направлен в сторону, противоположную направлению вращения [10–12].

Для определения коэффициента сопротивления качению k_r в зависимости от скорости V электромобиля можно использовать следующую формулу:

$$k_r = k_{r0} \cdot (1 + \frac{V^2}{1500}),\tag{7}$$

где k_{r0} — коэффициент сопротивления качению движения электромобиля с относительно небольшой скоростью. Таблица значений данных сопротивления качению представлены в таблице.

ТАБЛИЦА I ЗНАЧЕНИЯ УСРЕДНЕННЫХ КОЭФФИЦИЕНТОВ СОПРОТИВЛЕНИЯ КАЧЕНИЮ

Тип дорожного покрытия	Коэффициент
	сопротивления качению
Асфальт	0.007 0.015
Гравий	0.020 0.025
Булыжная дорога	0.025 0.030
Грунт	0.100 0.250
Песок	0.060 0.150
Снег	0.030 0.050
Лёд, обледенелая дорога	0.150 0.030

Для моделирования системы, а также для дальнейшего решения задач были использованы параметры асинхронного электродвигателя:

$$\begin{split} J &= 0,2 \text{ кг·м}^2, \quad L \!\!=\!\! 0,\!0024694 \Gamma \text{H}; \; p = 2; \; m = 3; \quad r_r = 1,083 \; O \text{M}; \\ r_s &= 1,\!115 \; O \text{M}; \qquad \qquad L_r = 0,\!2096 \; \Gamma \text{H}; \qquad \qquad L_g = 0,\!2096 \; \Gamma \text{H}; \\ L_m &= 0,\!2037 \; \Gamma \text{H}. \end{split}$$

Промоделируем систему с параметрами дороги: лед ($k_r = 0.15$)

Параметры регулятора были заданы следующим образом: $T_1=0,05,\ T_2=0,1,\ T_3=0,1,\ T_4=0,1.$

Инварианты системы $\psi_{x} = 1; w_{x} = 100.$

На рис. 3, 4 представлены результаты компьютерного моделирования с синтезированным регуляторам. Из графиков можно сделать вывод, что угловая скорость ротора w_r приобретает отрицательные значения в первые секунды, что говорит о влиянии негативном влиянии возмущений, а также состоянии покрытия дорожного покрытия.

Рис. 3. Проекции напряжений на Рис. 4. Угловая скорость ротора оси X и Y

В. Синтез энергосберегающего регулятора

Основная задача методов синергетической теории управления — это создание законов управления, обеспечивающих совокупность обратных связей, обеспечивающий выполнение тех или иных задач

управления - инвариантов. Для режимов связанных с оптимизацией энергетических режимов вводятся обеспечивающие инварианты, минимизацию потерь энергии в силовых каналах управления. Под потерями в силовом канале учитываются В первую электрические потери, обусловленные сопротивление электрической цепи, магнитные потери или потери в стали - потери на гистерезис, вихревые токи и механические, обусловленные трением подшипников, щеток [13]. В большинстве случаем для оценки магнитных потерь используется усредненная формула:

$$\Delta P = \Delta P_{nom} \cdot \left(\frac{f}{f_{nom}} \right)^{\beta} \cdot \left(\frac{\Phi}{\Phi_{nom}} \right)^{\beta}, \tag{8}$$

где ΔP_{nom} — номинальные потери в стали, Φ — полный магнитный поток, f — частота перемагничивания. Φ_{nom} и f_{nom} — номинальные значения потока и частоты.

Для минимизации потерь в силовых каналах в исходную формулу (1) для асинхронного двигателя введем энергетический инвариант:

$$\psi_3 = M_c^{\frac{1}{2}} (\frac{k_1}{k_2 + k_2 \omega^{\beta}}), \tag{9}$$

где k_1, k_2, k_3 — данные двигателя и характеристик его электромагнитных цепей.

$$k_1 = \frac{R_s}{c^2}; k_2 = R_s k_{\phi}^2; k_3 = \frac{\Delta P}{314^{\beta} \Phi_u^2}$$
 (10)

Выполнение данного энергетического инварианта обеспечивает оптимальное с точки зрения минимума потерь значение магнитного потока.

Выполняя уже описанную процедуру синтеза уравнений (1)—(5) с новым инвариантом и с теми же ранее заданными параметрами объекта для моделирования и типа покрытия: асфальтированная дорога: $k_r = 0.015$. Результаты моделирования представлены на рис. 5–10. По результирующему графику, полученному по магнитным потерям к результирующей мощности на рис. 10 можно сделать вывод о том, что достигается больший КПД при тех же параметрах объекта, особенно в области низких скоростей вращения ротора, тем самым решая задачу плавного пуска двигателя Значения параметров проекций и напряжений по токам также показали более реальные значения и меньший разброс параметров для оптимального магнитного потока.

Рис. 5. Угловая скорость ротора

Рис. 6. Потокосцепление ротора

Рис. 7. Проекции токов на оси $\, X \,$ и $\, Y \,$

Рис. 8. Напряжение на статоре

Рис. 9. Наблюдаемые моменты

Рис. 10. КПД двигателя

ЗАКЛЮЧЕНИЕ

рассмотрены статье были непинейная математическая модель силовой установки электромобиля. рассмотрено взаимодействие системы мотордорожное покрытие. Решены задачи потокосцепления и угловой частоты вращения ротора с применением методов синергетической управления. Энергосбережение достигалось с помощью построения оптимального энергетического инварианта номинального контроля оптимального и потока Полученные результаты показали перспективность построения управления иерархических систем электромобилями с помощью методов синергетической энергоэффективность управления, рассматриваемому двигателю и дорожному покрытию, что говорит об увеличении дорожного пробега и как следствие большего ресурса эксплуатации электромобиля.

СПИСОК ЛИТЕРАТУРЫ

- [1] Kwang Hee Nam. AC Motor Control and Electrical Vehicle Applications. CRC Press. 2019.
- [2] Jazar R.N. Vehicle dynamics: Theory and Applications. Springer. 2008.
- [3] Ehsani M., Gao Y., Emadi A. Modern Electric, Hybrid Electric, and Fuel cell Vehicles (2nd edn), CRC press, USA. 2010.

- [4] F. Blaschke. The principle of field-orientation as applied to the transvector closed loop control system for rotating-field machines: Siemens Rev., 1972. vol. 34, no. 1, pp. 217–220.
- [5] Виноградов А.Б. Векторное управление электроприводами переменного тока. Иваново ГОУ ВПО «Ивановский государственный энергетический университет имени В.И. Ленина», 2008. 297 с.
- [6] Копылов И. П. Математическое моделирование электрических машин. М.: Высшая школа, 1994. 327 с.
- [7] Колесников А.А. Синергетическая теория управления. М.: Энергоатомиздат, 1994. 344 с.
- [8] Колесников А.А. Синергетические методы управления сложными системами: теория системного синтеза. 2-е изд. М.: Либроком, 2012. 240 с
- [9] Современная прикладная теория управления: Синергетический подход в теории управления. / Под ред. А. А. Колесникова. Таганрог: Изд-во ТРТУ. Ч. II. 2000. 559 с.
- [10] Современная прикладная теория управления: Новые классы регуляторов технических систем. / Под ред. А. А. Колесникова. Таганрог: Изд-во ТРТУ. Ч. III. 2000. 656 с.
- [11] Смирнов Г. А. Теория движения колесных машин: Учебн. для студентов машиностроит. спец. вузов. М.: Машиностроение, 1990. $352~{\rm c}$.
- [12] Карасев А.В. Новые разработки от производителей колесных машин // Технология колесных и гусеничных машин. 2013. № 4(8). С 6-15
- [13] Попов А.Н. Синергетический синтез законов энергосберегающего управления электромеханическими системами. Таганрог: Изд-во ТРТУ, 2003. 67 с.