Learned index structures

Outline

Goal: Use machine learning to augment

- 1. Range index structures (B-trees)
- 2. Existence index structures (Bloom filters)

B-trees

If data is all integers from 0 to 1 million?

If data is all integers from 0 to 1 million?

No need for B-tree

- O(1) look-up
- O(1) memory

B-trees

First attempt

Replace B-tree with **neural network**?

Model: $f(key) \rightarrow pos$

Then searches from [pos - err, pos + err]

First attempt

200M serve logs timestamp sorted

2-layer NN, 32-width fully-connected, ReLU *Tensorflow*

B-trees lookup time: 300ns

Model lookup time: 80,000ns

First attempt: key issues

1 Tensorflow designed for big models
Big overhead on small models

2 B-Trees "overfit" the data...
but NNs designed for generalization

3 B-trees are cache- and operation-efficient

Revised approach: Hierarchy of experts

- Up to 70% speed optimization
- Order-of-magnitude memory savings

Outline

Goal: Use machine learning to augment

- 1. Range index structures (B-trees)
- 2. Existence index structures (Bloom filters)

- Database is a set $K \subseteq U$
- Goal: DS allowing us to quickly determine if any $x \in U$ is in K
 - Use hash functions $h_1, h_2, \dots, h_k: U \to [m]; \mathbb{P}[h_i(x) = j] = \frac{1}{m}$

m

- Database is a set $K \subseteq U$
- Goal: DS allowing us to quickly determine if any $x \in U$ is in K
 - Use hash functions $h_1, h_2, \dots, h_k: U \to [m]; \mathbb{P}[h_i(x) = j] = \frac{1}{m}$

- Database is a set $K \subseteq U$
- Goal: DS allowing us to quickly determine if any $x \in U$ is in K
 - Use hash functions $h_1, h_2, \dots, h_k: U \to [m]; \mathbb{P}[h_i(x) = j] = \frac{1}{m}$

- Database is a set $K \subseteq U$
- Goal: DS allowing us to quickly determine if any $x \in U$ is in K
 - Use hash functions $h_1, h_2, \dots, h_k: U \to [m]; \mathbb{P}[h_i(x) = j] = \frac{1}{m}$

- Database is a set $K \subseteq U$
- Goal: DS allowing us to quickly determine if any $x \in U$ is in K
 - Use hash functions $h_1, h_2, \dots, h_k: U \to [m]; \mathbb{P}[h_i(x) = j] = \frac{1}{m}$

- Database is a set $K \subseteq U$
- Goal: DS allowing us to quickly determine if any $x \in U$ is in K
 - Use hash functions $h_1, h_2, \dots, h_k: U \to [m]; \mathbb{P}[h_i(x) = j] = \frac{1}{m}$

Learned Bloom filters

Idea 1: Replace Bloom filter with a classifier?

- Train ML model $f: U \to [0,1]$ with threshold τ so (hopefully) $f(x) \ge \tau \iff x \in K$
- Training set: (x, 1) for some $x \in K$, (x, 0) for some $x \notin K$

Key issue: May be false negatives $(f(x) < \tau \text{ for some } x \in K)$

Learned Bloom filters

Idea 2:

- Train ML model $f: U \to [0,1]$ with threshold τ so (hopefully) $f(x) \ge \tau \quad \Leftrightarrow \quad x \in K$
- Training set: (x, 1) for some $x \in K$, (x, 0) for some $x \notin K$
- Construct backup Bloom filter:
 - Bloom filter for set $K_{\tau}^- = \{x \in K : f(x) < \tau\}$

Ideally *much smaller* than Bloom filter for *K*

Learned Bloom filters

Setting au

- D is a distribution over $U \setminus K$
- FPR_B = false positive rate of backup Bloom filter Next class: how to set Bloom filter size to control FPR_B
- False positive rate of learned Bloom filter:

$$\operatorname{FPR}_O = \mathbb{P}_{x \sim D} [f(x) > \tau] + \mathbb{P}_{x \sim D} [f(x) \leq \tau] \cdot \operatorname{FPR}_B$$
Return **yes** Send to backup Bloom filter

- If want $FPR_O \leq \epsilon$:
 - Choose τ s.t. $\mathbb{P}_{x \sim D}[f(x) > \tau] \leq \frac{\epsilon}{2}$
 - $FPR_B \leq \frac{\epsilon}{2}$

Experiments

Keys: 1.7M URLs from a Google dataset

Non-keys: Random URLs and phishing URLs

Goal: 1% FPR

- Normal Bloom filter: 2.04MB
- Learned Bloom filter:
 - ML model (RNN) requires 0.0259MB
 - Backup Bloom filter requires 1.31MB

36% improvement

Outline

- Goal: Use machine learning to augment
 - 1. Range index structures (B-trees)
 - 2. Existence index structures (Bloom filters)
 - i. Approach
 - ii. Theoretical guarantees/insights

- Database is a set $K \subseteq U$
- Hash functions $h_1, h_2, ..., h_k: U \to [m]; \mathbb{P}[h_i(x) = j] = \frac{1}{m}$

- Database is a set $K \subseteq U$
- Hash functions $h_1, h_2, ..., h_k: U \rightarrow [m]$
 - Map $x \in U$ to a random number in [m], independently and uniformly
- Bloom filter: array $A \in \{0,1\}^m$
- ρ = fraction of bits set to 1
- For any $y \notin K$, $\mathbb{P}[y \text{ yields a false positive } | \rho = q]$ $= \mathbb{P}[A[h_i(y)] = 1, \forall i \in [m] | \rho = q]$ $= \mathbb{P}[A[h_1(y)] = 1 | \rho = q] \cdots \mathbb{P}[A[h_k(y)] = 1 | \rho = q]$ $= q^k$

- Database is a set $K \subseteq U$
- Hash functions $h_1, h_2, ..., h_k: U \to [m]; \mathbb{P}[h_i(x) = j] = \frac{1}{m}$
- ρ = fraction of bits set to 1

$$\mathbb{E}[\rho] = \mathbb{E}\left[\frac{1}{m}\sum_{i=1}^{m}\mathbf{1}_{\{i^{\text{th}}\text{ bit set to 1}\}}\right] = \frac{1}{m}\sum_{i=1}^{m}\mathbb{P}[i^{\text{th}}\text{ bit set to 1}]$$

- Database is a set $K \subseteq U$
- Hash functions $h_1, h_2, ..., h_k: U \to [m]; \mathbb{P}[h_i(x) = j] = \frac{1}{m}$
- ρ = fraction of bits set to 1

$$\mathbb{E}[\rho] = \mathbb{E}\left[\frac{1}{m}\sum_{i=1}^{m}\mathbf{1}_{\{i^{\text{th}}\text{ bit set to 1}\}}\right] = \frac{1}{m}\sum_{i=1}^{m}\mathbb{P}[i^{\text{th}}\text{ bit set to 1}]$$
$$= \frac{1}{m}\sum_{i=1}^{m}(1 - \mathbb{P}[i^{\text{th}}\text{ bit set to 0}])$$

- Database is a set $K \subseteq U$
- Hash functions $h_1, h_2, ..., h_k: U \to [m]; \mathbb{P}[h_i(x) = j] = \frac{1}{m}$
- ρ = fraction of bits set to 1

$$\mathbb{E}[\rho] = \frac{1}{m} \sum_{i=1}^{m} \left(1 - \mathbb{P}[i^{\text{th}} \text{ bit set to 0}] \right)$$

$$\mathbb{P}[i^{\text{th}} \text{ bit set to } 0] = \mathbb{P}[h_j(x) \neq i, \forall x \in K, \forall j \in [k]]$$

- Database is a set $K \subseteq U$
- Hash functions $h_1, h_2, ..., h_k: U \to [m]; \mathbb{P}[h_i(x) = j] = \frac{1}{m}$
- ρ = fraction of bits set to 1

$$\mathbb{E}[\rho] = \frac{1}{m} \sum_{i=1}^{m} \left(1 - \mathbb{P}[i^{\text{th}} \text{ bit set to 0}] \right)$$

$$\mathbb{P}[i^{\text{th}} \text{ bit set to } 0] = \mathbb{P}\left[h_j(x) \neq i, \forall x \in K, \forall j \in [k]\right]$$
$$\mathbb{P}[h_j(x) \neq i] = 1 - \mathbb{P}[h_j(x) = i] = 1 - \frac{1}{m}$$

- Database is a set $K \subseteq U$
- Hash functions $h_1, h_2, ..., h_k: U \to [m]; \mathbb{P}[h_i(x) = j] = \frac{1}{m}$
- ρ = fraction of bits set to 1

$$\mathbb{E}[\rho] = \frac{1}{m} \sum_{i=1}^{m} \left(1 - \mathbb{P}[i^{\text{th}} \text{ bit set to 0}] \right)$$

$$\mathbb{P}[i^{\text{th}} \text{ bit set to } 0] = \mathbb{P}\left[h_j(x) \neq i, \forall x \in K, \forall j \in [k]\right]$$
$$= \left(1 - \frac{1}{m}\right)^{|K|k}$$

- Database is a set $K \subseteq U$
- Hash functions $h_1, h_2, \dots, h_k: U \to [m]; \mathbb{P}[h_i(x) = j] = \frac{1}{m}$
- ρ = fraction of bits set to 1

$$\mathbb{E}[\rho] = \frac{1}{m} \sum_{i=1}^{m} \left(1 - \mathbb{P}[i^{\text{th}} \text{ bit set to } 0] \right) = \frac{1}{m} \sum_{i=1}^{m} \left(1 - \left(1 - \frac{1}{m} \right)^{|K|k} \right)$$

$$\approx 1 - \exp\left(-\frac{|K|k}{m} \right)$$

• With high probability, $\rho \approx \mathbb{E}[\rho]$ (Chernoff bound)

- Database is a set $K \subseteq U$
- Hash functions $h_1, h_2, ..., h_k: U \to [m]; \mathbb{P}[h_i(x) = j] = \frac{1}{m}$
- ρ = fraction of bits set to 1
- For any $y \notin K$,

$$\mathbb{P}[y \text{ yields a false positive}] \approx \mathbb{E}[\rho]^k \approx \left(1 - \exp\left(-\frac{|K|k}{m}\right)\right)^k$$

• If $m \approx |K| \log \frac{1}{\epsilon}$ and $k = \log \frac{1}{\epsilon'}$. $\mathbb{P}[y \text{ yields a false positive}] \approx \epsilon$

Differences between FPRs

Bloom filter: for any $y \notin K$, $\mathbb{P}[y \text{ yields a false positive}] \leq \epsilon$

Learned Bloom filter:

- D is a distribution over $U \setminus K$
- FPR_B = false positive rate of backup Bloom filter
- False positive rate of learned Bloom filter:

$$FPR_{O} = \mathbb{P}_{y \sim D}[f(y) > \tau] + \mathbb{P}_{y \sim D}[f(y) \leq \tau] \cdot FPR_{B}$$
Return **yes** Send to backup Bloom filter

• FPR_O is with respect to a random draw of $y \sim D$

Differences between FPRs

Bloom filter: for any y

Robust to distribution shift

tive $\leq \epsilon$

Learned Bloom filter: ← Not robust to distribution shift

- D is a distribution over $U \setminus K$
- FPR_B = false positive rate of backup Bloom filter
- False positive rate of learned Bloom filter:

$$\operatorname{FPR}_{O} = \mathbb{P}_{y \sim D} [f(y) > \tau] + \mathbb{P}_{y \sim D} [f(y) \leq \tau] \cdot \operatorname{FPR}_{B}$$
Return **yes** Send to backup Bloom filter

• FPR₀ is with respect to a **random draw** of $y \sim D$