MARS PROJECT

WALL ART BOT

WE PRESENT HERE HOW OUR BOT WORKS

AN OVERVIEW OF SOFTWARES USED

Project's Outline

- Mechanical Design
- Image processing
- Arduino
- Simulation

Mechanical Design

Major Works in

- Pulley Movement.
- Pen Module.
- Reck & Pinion mechanism
 for pen lifting.

PULLEY MOMENT:

- Used <u>Stepper motors</u> to rotate pulleys
- Helps the pen to reach desired coordinate.

PEN MODULE

- The pen module which is a disc contains 3 pen holders.
- The disc rotates using a stepper motor and then there are ball bearings that ease the rotation of the disc.

Reck & Pinion mechanism for pen lifting.

• This particular mechanism helps us to lift the whole bot by providing perpendicular force on the wall while the pen module is in the process of rotation.

VIEW 2

VIEW 3

MULTIPLE VIEWS OF THE BOT

Components

- 2 x Nema 11 Stepper Motor + 1x MG90S Servo Motor
- 1x Arduino UNO R3
- 1x L293D Motor Drive Shield
- 2x L293D Motor Drive IC
- Jumper Wire
- 2 X Command Large Plastic Hooks for walls, 1 Hook and 2 Strips, Holds 2.2kg, Self Adhesive, Damage Free Walls
- · Rope DYNAMICA XBO
- Micro SD Card Reader Module

IMAGE PROCESSING

OPEN CV

- Used python in the open cv to get the coordinates of the respective image.
- Took the help of the serial transfer library to send the array of coordinates into aurdino

PYTHON

- By using serial Transfer library in python we send array of coordinates to arduino.
- We will send the array in data packets to arduino

we will also receive feedback from arduino in python for verification of data

```
SENT: [303.0, 304.0, 305.0, 306.0, 307.0, 308.0, 309.0, 310.0, 311.0, 312.0, 313.0, 314.0, 315.0, 316.0, 317.0, 318.0, 319.0, 320.0, 331.0, 332.0]

SENT: [30.0, 98.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 100.0, 100.0, 100.0, 100.0, 100.0, 305.0, 306.0, 307.0, 308.0, 309.0, 310.0, 311.0, 312.0, 313.0, 314.0, 315.0, 316.0, 317.0, 318.0, 319.0, 320.0, 331.0, 332.0]

RCVO: [98.0, 98.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0,
```

Arduino

- Using serial transfer library in Arduino we will extract the array from data packets.
- we will convert the coordinates to steps and give input to stepper motor
- we will also lift the pen using servo motor

SIMULATION

MATLAB

 used to predict our bot's performance and to compare alternative solutions for any arising
 problems

Future improvement

 we will use Raspberry Pi so we can directly send an image from a mobile app. Through this, we can also, solve the low memory problem of Arduino

TEAM MEMBERS

TRISHIT MONDAL (GEOPHYSICAL TECHNOLOGY)

BHUNESH GEPAL (GEOPHYSICAL TECHNOLOGY)

SHIKAR GUPTA (ELECTRICAL)

FIRDOSE KOUSER (ELECTRICAL)

ARADHYA SAXENA (PRODUCTION AND INDUSTRIAL)

MENTORS - PARUL CHAUDARY, NAMAN

Thank you for you time! - Team Wall Art