

Ch. 11 - IoT Link Layer Sec 3 – Long Range

COMPSCI 147 Internet-of-Things; Software and Systems

POPULAR PROTOCOLS IN THE IOT LINK LAYER

Local Area Network

Short Range Communication

40%

Well established standards In building

Battery Live Provisioning Network cost & dependencies

Bluetooth 4.8

 \odot

8

Low Power Wide Area (LPWAN) Internet of Things

45%

Low power consumption Low cost Positioning

High data rate Emerging standards

Cellular Network

Traditional M2M

15%

Existing coverage High data rate

Autonomy Total cost of ownership

IEEE 802.1 - TIME SENSITIVE NETWORKING (TSN)

- For real-time control applications
 - Industrial automation and automotive networks
- Although TSN are considered short range networks, they can also be relatively large (one to several kilometers)
 - Up to 64 hops for a factory and up to 5 hops within a work cell (e.g., robot)
- Real-time control traffic + long-tailed traffic (e.g., video)
- Precise time synchronization
 - ± 500 ns within a work cell, and ± 100 µs factory wide
- Deterministic delay
 - <5 µs within a work cell</p>
 - <125 µs factory wide</p>
- Requirement for redundant paths

IEEE 802.1 – TSN STANDARDS

- IEEE 802 family of standards, which includes the popular Ethernet
 - Including L(ocal)A(area)N(etwork), M(etropolitan)AN and W(ide)AN protocols
 - IEEE 802.1AS defines a profile for the Precision Timing Protocol (PTP)
 - Provides time synchronization of end-systems with accuracy better than $\pm 1 \mu s$
 - IEEE 802.1Qav defines forwarding and queuing rules for time sensitive traffic in Ethernet.
 - Class-A traffic: maximum latency guarantees of 2 ms
 - Class-B traffic: maximum latency guarantees of 50 ms
 - Other traffics: Best Effort (BE)
 - IEEE 802.1Qat defines a signaling protocol for dynamic registration and resource reservation of new streams
 - Per-hop delays in the order of 130 μs on 1 Gbps Ethernet links
 - Other emerging standards: IEEE 802.1Qca, IEEE 802.1Qbv, IEEE 802.1CB

LPWAN - LORAWAN

Small amounts of data (low bandwidth)

High immunity to interference

Low power consumption

LPWAN - LORAWAN

LoRa®

LPWAN - LORAWAN

- Long Range Wide Area Network
- Originally developed by Cyclos in France
- Acquired by Semtech corporation, which formed LoRa Alliance.
- Now 160+ members
- V1.0 spec dated January 2015. Released to public July 2015.
- Rapid Adoption: Products already available in the market (e.g Amazon)

Arduino Radio Shield

Connectivity Kit for Arduino, Waspmote, Raspberry Pi

LPWAN - LORAWAN - KEY FEATURES

- Bidirectional communication
 - Allows firmware/software updates of end devices
- Low Rate: 0.3 kbps to 22 kbps in Europe, 0.9 kbps in US
- Star of Stars Topology: Gateways are transparent bridges. Server is the brain.
 Simple devices. Relays are optional.
- Secure: EUI128 Device Key, EUI64 Network Key, EUI64 Application Key

LPWAN - LORAWAN - LORA - RF

Characteristics	LoRa RF	
Modulation	LoRa (spread spectrum)	
Frequency	Sub-GHz ISM	
Channel bandwidth	125-500 KHz	
Data rate	300 bps - 50 kbps	
Gateway sensitivity	-142 dBm/300bps	
Range	10+ km deep indoor coverage	
Payload size	11 - 242 bytes (variable)	
Battery consumption	10mA RX / 32mA (14dBm) TX 10+ year	
Communication type	Bidirectional unicast, network multicast	
Interference immunity	Spread-spectrum w/ FEC	14
Scalability	Self scaling network capability through Adaptive Data Rate	
Mobility	Handover support geo-location	

LPWAN – LORAWAN - LORA – HOW TO USE WITH ESP32

LORA RECEIVER
Received packet:
helio 72
RSSI-59

LURA SENDER
Lora packet sent.
Counter: 72
Counter: 72

Example 1: RFM95 – LoRa Transceiver Module

Example 2: TTGO Lora 32 + OLED board

CS 147

LPWAN – LORAWAN - LORA – HOW TO USE WITH ESP32

initializing LoRa module and sending a "Hello, world!" message every second. You can modify the code to receive data as well using LoRa.parsePacket()

```
#include <SPI.h>
#include <LoRa.h>
#define BAND 433E6
void setup() {
 Serial.begin(9600);
 while (!Serial);
 LoRa.setPins(SS, RST, DIO);
 if (!LoRa.begin(BAND)) {
   Serial.println("LoRa init failed");
   while (1);
 Serial.println("LoRa init OK!");
void loop() {
 LoRa.beginPacket();
 LoRa.print("Hello, world!");
 LoRa.endPacket();
 delay(1000);
```


Example 2: TTGO Lora 32 + OLED board

LPWAN - LORAWAN - LORA - DEVICE CLASSES AND APP STACK

Class name	Intended usage				
(« all »)	Battery powered sensors, or actuators with no latency constraint. Most energy efficient communication class. Downlink TX can only happen after uplink.				
B (« beacon »)	Battery powered actuators Device opens receive window at scheduled slots.				
C (« continuous »)	Mains powered actuators Devices which can afford to listen continuously. No latency for downlink communication.				

LPWAN - COMPARING TECHNOLOGY OPTIONS

Feature	LoRaWAN	Narrow-Band	LTE Cat-1 2016 (Rel12)	LTE Cat-M 2018 (Rel13)	NB-LTE 2019(Rel13+)
Modulation	SS Chirp	UNB / GFSK/BPSK	OFDMA	OFDMA	OFDMA
Rx bandwidth	500 - 125 KHz	100 Hz	20 MHz	20 - 1.4 MHz	200 KHz
Data Rate	290bps - 50Kbps	100 bit/sec 12 / 8 bytes Max	10 Mbit/sec	200kbps – 1Mbps	~20K bit/sec
Max. # Msgs/day	Unlimited	UL: 140 msgs/day	Unlimited	Unlimited	Unlimited
Max Output Power	20 dBm	20 dBm	23 - 46 dBm	23/30 dBm	20 dBm
Link Budget	154 dB	151 dB	130 dB+	146 dB	150 dB
Batery lifetime - 2000mAh	105 months	90 months		18 months	
Power Efficiency	Very High	Very High	Low	Medium	Med high
Interference immunity	Very high	Low	Medium	Medium	Low
Coexistence	Yes	No	Yes	Yes	No
Security	Yes	No	Yes	Yes	Yes
Mobility / localization	Yes	Limited mobility, No loc	Mobility	Mobility	Limited Mobility No Loc

OTHER LPWANS

- SIGFOX, http://www.sigfox.com/
- Weightless-N (Narrowband), http://www.weightless.org/
- Weightless-P (High Performance), http://www.weightless.org/
- NWAVE, http://www.nwave.io/nwave-network/
- OnRamp Wireless, http://www.onrampwireless.com/
- ATANUS, http://www.m2comm-semi.com/our-protocol/#
- Telensa, http://www.telensa.com/unb-wireless/
- M-Bus by Amber Wireless, https://www.amber-wireless.com/en/products/wireless-m-bus.html
- M2M Spectrum, http://m2mspectrum.com

Summing things up

CS 147

C11_03_21

© IEEE "When Scavengers meet Industrial Wireless" by B. Martinez et al.

LPWA

Sigfox, LoRa, Weightless, OnRamp

Low Power is the key

- New restrictions
 - Memory
 - CPU process
 - % duty cycling
- Every single bit is valuable

Mote's battery duration depending the bytes sent

© "Balancing power consumption in IoT devices by using variable packet size" by M. Domingo-Prieto et al. (2014)

What technology to use?

6Lowpan vs. Low-power Wi-Fi at 54Mbps

	6Lo	WPAN	Low-power Wi-Fi		
Packet size	8 Bytes	1024 Bytes	8 Bytes	1024 Bytes	
Time (ms)	6	23.61	11.3	16.58	
Energy (mJ)	2.5	9.17	0.55	1.28	

Wakeup Interval Impact on Energy Consumption

© IEEE, from "Feasibility of Wi-Fi Enabled Sensors for Internet of Things," by Serbulent Tozlu (2011)

