Correctness ("Hoare") Triples

Part 2: Sequencing, Assignment, Strengthening, and Weakening CS 536: Science of Programming, Fall 2022

A. Why

- To specify a program's correctness, we need to know its precondition and postcondition (what should be true before and after executing it).
- The semantics of a verified program combines its program semantics rule with the state-oriented semantics of its specification predicates.
- To connect correctness triples in sequence, we need to weaken and strengthen conditions.

B. Objectives

At the end of today you should be able to:

- Differentiate between different annotations for the same program.
- Determine whether two correctness triples can be joined and to give the result of joining.
- Reason "backwards" about assignment statements.
- · Connect correctness triples in sequence by weakening and strengthening intermediate conditions

C. Problems

- 1. Suppose $\{p\}$ S $\{q\}$ and $\{r\}$ S $\{t\}$ are both valid under some form of correctness (partial or total). Which of the following must also be valid?
 - a. $\{p \land r\} S \{q \land t\}$ b. $\{p \lor r\} S \{q \lor t\}$ c. $\{p \land r\} S \{q \lor t\}$

- d. $\{p \rightarrow r\} S \{q \rightarrow t\}$ e. $\{\neg p \rightarrow r\} S \{\neg q \rightarrow t\}$ f. $\{p \land r\} S \{q\}$

- g. $\{p\}S\{q \land t\}$ h. $\{p \lor r\}S\{q\}$
- i. $\{p\}S\{q \lor t\}$
- 2. Arrange the following predicates in decreasing order of strength: [2022-09-20]

$$x_1=c \wedge x_2 < d; \ x_1 \leq m \vee x_2 \leq m \wedge m = \max(c,d); \ x_1=c; \ (\exists \ k \in \mathbb{N}. x_k \leq m); \ x_1 \leq c \vee x_2 \leq d; \ F; \ x_1 \leq c \vee x_2 \leq d; \ F \leq c \vee$$

For the following problems, assume we're working over \mathbb{Z} . If there is more than one correct answer then any right answer is sufficient.

- 3. Consider the triple $\{x \ge 0\}$ $y := x*x*x \{y > 4*x\}$ [2022-09-20]
 - a. Show that this triple is invalid for partial correctness by giving a counterexample state σ that doesn't satisfy it.

- b. Let P(a, b) = b > 4*a. Using the backward assignment rule, what is the (weakest) precondition such that $\{...\} y := x*x*x \{y > 4*x\}$ is valid? State the condition in terms of P(...) and also applying the definition of P. (E.g., P(5, 1) = 5 > 4*1.)
- c. What are the values of *x* that don't meet the requirement in (b)?
- 4. Consider the statement if $y \ge 0$ then x := 3*y else x := y*y fi. Assume that all we know just before the if is T. (So basically, we know nothing.) What is the strongest (most precise) predicate that is correct
 - a. Just before *x* := 3**y* ?
- b. Just after x := 3*y?
- c. Just before x := 5*y?
- d. Just after x := 5*y?
- e. Just after the *fi* (the "end if")?(Hint: Combine your answers to parts (b) and (d).)
- 5. Find code to fill out $\{x \ge 0\}$ if ??? then y := x*x else y := ??? fi $\{y > 2*x\}$ to get a valid triple. There is more than one right answer. (Hint: If y = x*x, then when is y > 2*x?) [2022-09-20]

Recall that backward assignment tells us that $\{R(e)\}\ x := e\ \{R(x)\}\$ is valid; here R(x) is a predicate function over x and R(e) is the predicate R gives when x = e. E.g., $\{R(2*k)\}\ x := 2*k\ \{R(x)\}\$ is valid, and if, say, $R(x) = x\ \%\ 2 = 0$ (x is even), then the precondition is $R(2*k) = 2*k\ \%\ 2 = 0$,

- 6. Our goal is to use backward assignment to find p and q such that $\models \{p\} \ x := x*x \{x > 15\}$ and $\models \{q\} \ x := x+1 \{p\}$ so that we can join them to get $\{q\} \ y := 2*z; \ x := (y+1)*y \{x \ge y*y\}$.
 - a. Take $\{p\}$ x := x*x $\{Q(x)\}$ where Q(x) = the postcondition x > 15. Fill in the missing parts in p = Q(???) = ???, using backward assignment.
 - b. Now take $\{q\}$ x := x+1 $\{S(x)\}$ where S(x) = p (from part a). Fill in q = S(???) = ???, again using backward assignment.
- 7. Repeat the previous problem using $\{p\}$ x := (y+1)*y $\{x \ge y*y\}$ and $= \{q\}$ y := 2*z $\{p\}$

Solution to Practice 9 (Hoare Triples, pt. 2)

- 1. a, b, c, e, f, i
- 2. $F \mid x_1 = c \land x_2 < d \mid x_1 = c \mid x_1 \le c \mid x_1 \le c \mid x_1 \le c \lor x_2 \le d \mid x_1 \le m \lor x_2 \le m \land m = max(c, d) \mid (\exists k \in \mathbb{N}. x_k \le m)$
- 3. a. One example is $\sigma = \{x = 0\}$, another is $\{x = 1\}$.
 - b. P(4*x, x*x*x) = 4*x > x*x*x.
 - c. This does not hold if x is 0, 1, 2, or $x \le -2$.
- 4. (Strongest conditions and if $y \ge 0$ then x := 3*y else x := y*y fi)
 - a. $y \ge 0$
- b. $y \ge 0 \land x = 3*y$
- c. y < 0
- d. $y < 0 \land x = y*y$
- e. $(y \ge 0 \land x = 3*y) \lor (y < 0 \land x = y*y)$
- 5. If y = x*x, then y > 2*x for all $x \ge 0$ except x = 0, 1, and 2. So our test is x > 2. When x = 0, 1, or 2, we need to set y so that y > 2*x. The first two that come to mind are y := x*x + 1 and y := 5, but there are any number of more ways. Anyway, one answer is

$$\{x \ge 0\}$$
 if $x > 2$ then $y := x*x$ else $y := 5$ fi $\{y > 2*x\}$

- 6. (Set up joining of two statements using backward assignment)
 - a. $p = Q(x^*x) = x^*x > 15$ for $\{p\} x := x^*x \{x > 15\}$ where Q(x) = x > 15
 - b. q = S(x+1) = (x+1)*(x+1) > 15 for $\{q\}x := x*x \{p\}$, where S(x) = p = x*x > 15.
- 7. (Repeat #6)
 - a. $p = Q((y+1)^*y, y) = (y+1)^*y \ge y^*y$ for $\{p\} \ x := (y+1)^*y \ \{x \ge y^*y\}$, where $Q(x, y) = x \ge y^*y$.
 - b. $q = S(2*z) = (2*z+1)*(2*z) \ge (2*z)*(2*z)$ for $\{q\}y := 2*z\{p\}$, where $S(y) = p = (y+1)*y \ge y*y$.