Example 2.10: Simplicial Homology examples

We give a few examples for Δ -complexes and the resulting simplicial homology.

(a) Let $X = S^1$. For the first Δ -complex structure, we use a 0-simplex and a 1-simplex. This is indicated in the picture

The map σ_x is obvious, while for σ_a we just indicate by the arrow how the standard 1-simplex $[v_0, v_1]$ gets mapped onto a. The exact definition of σ_a is not important, the key features are that it maps the faces of the standard 1-simplex Δ^1 to x and σ_a is injective on the interior of Δ^1 . The only non-trivial chain groups are

$$\Delta_0(X) = \mathbb{Z}\sigma_x$$
 and $\Delta_1(X) = \mathbb{Z}\sigma_a$.

and the only (potentially) non-trivial map $\partial_1: \Delta_1(X) \to \Delta_0(X)$ is given by $\partial_1(\sigma_a) = \sigma_x - \sigma_x = 0$, hence is also trivial. Thus we see that for the simplicial homology we obtain

$$H_0^{\Delta}(X) = \mathbb{Z}, \quad H_1^{\Delta}(X) = \mathbb{Z}, \text{ and } H_n^{\Delta}(X) = \{0\} \text{ for } n \geq 2.$$

We want to see in this trivial example what happens if we change the Δ -complex structure of X. For this we choose a structure as indicated in the picture

Now $\Delta_0(X) = \mathbb{Z}\sigma_x \oplus \mathbb{Z}\sigma_y$ and $\Delta_1(X) = \mathbb{Z}\sigma_a \oplus \mathbb{Z}\sigma_b$ and the map ∂_1 is defined via $\partial_1(\sigma_a) = \sigma_y - \sigma_x$ and $\partial_1(\sigma_b) = \sigma_x - \sigma_y$. In this case $\operatorname{Ker}(\partial_1) = \langle \sigma_a + \sigma_b \rangle$ and $\operatorname{Im}(\partial_1) = \langle \sigma_x - \sigma_y \rangle$. Hence we obtain

$$H_0^{\Delta}(X) = \Delta_0(X) / \langle \sigma_x - \sigma_y \rangle \cong \mathbb{Z},$$

 $H_1^{\Delta}(X) = \operatorname{Ker}(\partial_1) = \langle \sigma_a + \sigma_b \rangle \cong \mathbb{Z}, \text{ and }$
 $H_n^{\Delta}(X) = \{0\} \text{ for } n \geq 2.$

We see in this example that, up to isomorphism, the simplicial homology groups do not change if we change the Δ -complex structure, this is something that we want to prove in general.

拓扑学 (模块2)

BIT, FALL 2021

(b) As for the fundamental group, the next space that had an interesting structure was $X = S^1 \vee S^1$, we embed this space into \mathbb{R}^2 as a figure 8 and use the Δ -complex structure as indicated in the picture:

Then we see that the map ∂_1 is again trivial as for the circle and we obtain

$$H_0^{\Delta}(X) = \mathbb{Z}, \quad H_1^{\Delta}(X) = \mathbb{Z}^2, \text{ and } H_n^{\Delta}(X) = \{0\} \text{ for } n \geq 2.$$

This is in line with what happens for the fundamental group. But we want to look at a covering space of X, the space \widetilde{X} as given in the following picture:

The covering space map $p: \widetilde{X} \to X$ is given by sending a point x_i to x and an edge a_i , respectively b_i , to a, respectively b, according to the orientation. Using the Δ -complex structure indicated in the picture above we see that there is one non-trivial chain map, given by

$$\partial_1(\sigma_{a_1}) = \partial_1(\sigma_{b_1}) = \sigma_{x_3} - \sigma_{x_2}, \quad \partial_1(\sigma_{a_2}) = \partial_1(\sigma_{b_2}) = \sigma_{x_2} - \sigma_{x_1},$$
$$\partial_1(\sigma_{a_3}) = \partial_1(\sigma_{b_3}) = \sigma_{x_1} - \sigma_{x_3}.$$

The image of ∂_1 has rank 2 inside $\Delta_0(\widetilde{X}) \cong \mathbb{Z}^3$ and we see that $H_0^{\Delta}(\widetilde{X}) \cong \mathbb{Z}$ as expected. While the kernel of ∂_1 is equal to

$$\operatorname{Ker}(\partial_1) = \left\langle \sigma_{a_1} - \sigma_{b_1}, \sigma_{a_2} - \sigma_{b_2}, \sigma_{a_3} - \sigma_{b_3}, \sigma_{a_1} + \sigma_{a_2} - \sigma_{a_3} \right\rangle,\,$$

hence $H_1^{\Delta}(\widetilde{X}) \cong \mathbb{Z}^4$.

We want to compare this to the fundamental group of \widetilde{X} . We know that $\pi_1(\widetilde{X}, x_1)$ is a subgroup of $\pi_1(X, x)$, since \widetilde{X} is a covering space of X. Since \widetilde{X} is a graph, applying the van Kampen theorem is quite easy and one obtains $\pi_1(\widetilde{X}, x_1) = \mathbb{Z} * \mathbb{Z} * \mathbb{Z} * \mathbb{Z}$. Applying the map p_* one gets that

$$p_*(\pi_1(\widetilde{X}, x_1)) = \langle [a^3], [a^2b], [a^2\overline{b}\overline{a}], [a\overline{b}] \rangle.$$

For the calculation of the fundamental group, we use here the maximal tree consisting of the set of edges $\{a_1, a_3\}$.

拓扑学 (模块2)

BIT, Fall 2021

(c) We now want to look at surfaces. The most basic one being the torus $X = T^2$. We use the Δ -complex structure of I × I as given in the picture below:

The edges with grey edge labels are identified with their opposite edges in the quotient, hence they do not give any additional 1-simplices in X. Similarly all vertices get identified in the quotient, hence there is only a single 0-simplex. In this case there are three chain groups that are non-trivial

$$\Delta_0(X) = \mathbb{Z}\sigma_x$$
, $\Delta_1(X) = \mathbb{Z}\sigma_a \oplus \mathbb{Z}\sigma_b \oplus \mathbb{Z}\sigma_c$, and $\Delta_2(X) = \mathbb{Z}\sigma_A \oplus \mathbb{Z}\sigma_B$.

Since x is start and end point of every 1-simplices, it is obvious that ∂_1 is the trivial map, while for ∂_2 we have $\partial_2(\sigma_A) = \sigma_b - \sigma_c + \sigma_a$ and $\partial_2(\sigma_B) = \sigma_a - \sigma_c + \sigma_b$ by Definition 2.6. We see that $\text{Ker}(\partial_2) = \langle \sigma_A - \sigma_B \rangle$ and $\text{Im}(\partial_2) = \langle \sigma_a - \sigma_c + \sigma_b \rangle$. This gives us

$$H_0^{\Delta}(X) = \langle \sigma_x \rangle \cong \mathbb{Z},$$

$$H_1^{\Delta}(X) = \Delta_1(X)/\text{Im}(\partial_2) \cong (\langle \sigma_a, \sigma_b \rangle \oplus \text{Im}(\partial_2))/\text{Im}(\partial_2) \cong \mathbb{Z}^2,$$

$$H_2^{\Delta}(X) = \langle \sigma_A - \sigma_B \rangle \cong \mathbb{Z}, \text{ and } H_n^{\Delta}(X) = \{0\} \text{ for } n \geq 3.$$

This procedure generalizes to the surface M_g of genus g we defined in Chapter 0. We illustrate the Δ -complex for M_2 in the picture below:

As indicated in the picture, we label, from left to right, the edges in the interior of the octagon by u_1, \ldots, u_5 and the enclosed triangular areas by A_1, \ldots, A_6 . The simplicial homology is then given by

$$H_0^{\Delta}(M_2) = \langle \sigma_x \rangle \cong \mathbb{Z},$$

$$H_1^{\Delta}(M_2) = \Delta_1(X)/\operatorname{Im}(\partial_2) \cong (\langle \sigma_{u_1}, \sigma_{u_2}, \sigma_{u_3}, \sigma_{u_4} \rangle \oplus \operatorname{Im}(\partial_2))/\operatorname{Im}(\partial_2) \cong \mathbb{Z}^4,$$

$$H_2^{\Delta}(M_2) = \langle \sigma_{A_1} - \sigma_{A_2} - \sigma_{A_3} + \sigma_{A_4} + \sigma_{A_5} - \sigma_{A_6} \rangle \cong \mathbb{Z}, \text{ and } H_n^{\Delta}(M_2) = \{0\} \text{ for } n \geq 3.$$

In general $H_1^{\Delta}(M_g) \cong \mathbb{Z}^{2g}$ and $H_0^{\Delta}(M_g) \cong \mathbb{Z} \cong H_2^{\Delta}(M_g)$. This can be done by just generalizing the Δ -complex structure we defined here for M_2 and $M_1 = \mathbb{T}^2$ to M_g .

(d) We have already seen that different Δ -complex structure gave the same homology in an example, we want to quickly illustrate how this can also affect calculation efficiency. For this we take $X = S^2$, then we can choose 4 distinct points on X, denoted by v_0 , v_1 , v_2 , and v_3 and form the corresponding tetrahedron in \mathbb{R}^3 such that the origin of \mathbb{R}^3 is contained in the interior of the tetrahedron. Using the retraction from $D^3 \setminus \{(0,0,0)\}$ onto S^2 we obtain a homeomorphism between the tetrahedron and X. Hence, up to this homeomorphism, we use the Δ -complex structure of the tetrahedron for X:

Thus we have a 3-simplex $[v_0, v_1, v_2, v_3]$, its faces as 2-simplices, their faces as 1-simplices and so on, thus

$$\Delta_0(X) \cong \mathbb{Z}^4$$
, $\Delta_1(X) \cong \mathbb{Z}^6$, $\Delta_2(X) \cong \mathbb{Z}^4$, and $\Delta_n(X) = \{0\}$ for $n \geq 3$.

Defining the differentials according to Definition 2.6 one sees

$$H_0^\Delta(X)\cong \mathbb{Z},\quad H_1^\Delta(X)=\{0\},\quad H_2^\Delta(X)\cong \mathbb{Z}, \text{ and } H_n^\Delta(X)=\{0\} \text{ for } n\geq 3.$$

But calculation-wise we made our life difficult, since we could have also use:

Hence we use only two 2-simplices, A and B, being the upper and lower half-spheres. They have the same boundary, namely the equator, which is divided into three 1-simplices, with the labelling of the vertices indicating how the map from the standard 2-simplex onto A respectively B is defined. In this case

$$\Delta_0(X) \cong \mathbb{Z}^3$$
, $\Delta_1(X) \cong \mathbb{Z}^3$, $\Delta_2(X) \cong \mathbb{Z}^2$, and $\Delta_n(X) = \{0\}$ for $n \geq 3$,

which are a lot lower ranks for such a small example. Of course the calculation gives, up to isomorphism, the same homology groups.

拓扑学 (模块2)

BIT, Fall 2021

(e) We now look at a modification of the torus example, by using a different quotient of $I \times I$. We indicate the different orientations in the picture below:

The resulting space is the real projective plane $\mathbb{R}P^2$. It is an example of a non-orientable real manifold and we want to see if we can see a difference in the corresponding homology groups. Note that there are two 0-simplices in X. With the notations as in the picture, one deduces that the simplicial homology groups are

$$H_0^{\Delta}(X) = \Delta_0(X) / \langle \sigma_x - \sigma_y \rangle \cong \mathbb{Z},$$

$$H_1^{\Delta}(X) = \operatorname{Ker}(\partial_1) / \operatorname{Im}(\partial_2) = \langle \sigma_a - \sigma_b + \sigma_c, \sigma_c \rangle / \langle \sigma_a - \sigma_b + \sigma_c, \sigma_b - \sigma_a + \sigma_c \rangle$$

$$= \langle \sigma_a - \sigma_b + \sigma_c, \sigma_c \rangle / \langle \sigma_a - \sigma_b + \sigma_c, 2\sigma_c \rangle \cong \mathbb{Z}/2\mathbb{Z},$$

$$H_2^{\Delta}(X) = \{0\} \text{ since } \partial_2 \text{ is injective, and } H_n^{\Delta}(X) = \{0\} \text{ for } n \geq 3.$$

We see here a first example where a group with finite order shows up.

(f) Very similar to the previous example is the Klein bottle, with the quotient construction and Δ -complex structure for X shown in the picture below:

In this case the resulting homology groups are

$$H_0^{\Delta}(X) = \Delta_0(X)/\{0\} \cong \mathbb{Z},$$

$$H_1^{\Delta}(X) = \operatorname{Ker}(\partial_1)/\operatorname{Im}(\partial_2) = \Delta_1(X)/\langle \sigma_b - \sigma_c + \sigma_a, \sigma_a - \sigma_b + \sigma_c \rangle$$

$$= \Delta_1(X)/\langle \sigma_a - \sigma_b + \sigma_c, 2\sigma_a \rangle \cong \mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z},$$

$$H_2^{\Delta}(X) = \{0\} \text{ since } \partial_2 \text{ is injective, and } H_n^{\Delta}(X) = \{0\} \text{ for } n \geq 3.$$

Note that there is only one edge with a different orientation compared to the torus case. The homology group $H_1^{\Delta}(X)$ is in a sense in between the one for the torus and the real projective plane.