Tarea 4 – DSP

Estudiante: Steven Jimenez Bustamante

Empresa: Boston Scientific

Correo: steven.jimenezbustamante@bsci.com

Github: https://github.com/stevenjimbus/DSP-curso-TEC

Ejercicio 1

1. Diseñe e implemente un filtro FIR de mínimo orden 64 que le permita obtener de la señal de entrada $x(t) = \sin(2\pi f_1 t) + 2\sin(2\pi f_2 t) + \sin(2\pi f_3 t)$ una salida donde se filtre las frecuencias f_1 y f_3 . De esta forma el filtro debe atenuar lo más posible las frecuencias f_1 y f_3 ; y dejar pasar la frecuencia f_2 . Considere $f_1 = 3 \,\text{kHz}$, $f_2 = 6 \,\text{kHz}$ y $f_3 = 9 \,\text{kHz}$.

Utilizando la herramienta **fdatool** se diseñó el filtro con los siguientes parámetros de entrada:

Observaciones del filtro diseñado:

Para f2 = 6000 hz y frecuencias cercanas, la respuesta de fase es lineal.

El filtro es estable:

Discrete-Time FIR Filter (real) Filter Structure : Direct-Form FIR : 65 Filter Length Stable : Yes Linear Phase : Yes (Type 1) Implementation Cost Number of Multipliers : 63 Number of Adders : 62 Number of States : 64 Multiplications per Input Sample : 63 Additions per Input Sample : 62

Atenuación $Hdb(f1=3000hz) \approx -70.27856$. Lo cual implica una ganancia de 0.000306247. **(0.031%).** Se concluye que este atenúa de manera correcta f1.

Atenuación $Hdb(f3 = 9000 Hz) \approx -68.93849$. Lo cual implica una ganancia de 0.000357334. (0.035%). Se concluye que este atenúa de manera correcta f3.

Por último se muestra un gráfico con 3 señales:

- 1. Señal filtrada
- 2. Tono con frecuencia de f2 = 6000 Hz. 2 $\sin(2\pi f2t)$
- 3. Señal de entrada \rightarrow Suma de señales con frecuencias de x(t) = $\sin(2\pi f1t) + 2\sin(2\pi f2t) + \sin(2\pi f3t)$

