1 Лекция 9 (30.10.2018)

1.1 Ранг типа, Типовая система

Def. Ранг типа

R(x) — все типа ранга x.

- R(0) все типы без кванторов
- $R(x+1) = R(x) \mid R(x) \rightarrow R(x+1) \mid \forall \alpha . R(x+1)$

Enddef.

Например:

- $\alpha \in R(0)$
- $\forall \alpha. \alpha \in R(1)$
- $(\forall \alpha.\alpha) \to (\forall b.b) \in R(2)$
- $((\forall \alpha.\alpha) \to (\forall b.b)) \to b \in R(3)$

Тут видно, если если выражение слева от знака имликации имеет ранг n, то все выражение будет иметь ранг $\geq (n+1)$.

Утверждение: Пусть x — выражение только с поверхностными кванторами, тогда $x \in R(1)$.

Def. Типовая система

$$\sigma ::= \forall \alpha_1. \forall \alpha_2.... \forall \alpha_n. \tau$$
, где $\tau \in R(0)$ и, следовательно, $\sigma \in R(1)$.

Enddef.

Def. Частный случай (спциализация) типовой схемы

 $\sigma_1 \sqsubseteq \sigma_2$ — типовая схема

 σ_2 — частный случай (специализация) σ_1 , если

1. $\sigma_1 = \forall \alpha_1. \forall \alpha_2.... \forall \alpha_n. \tau_1$

2.
$$\sigma_2 = \forall \beta_1. \forall \beta_2.... \forall \beta_n. \tau_1 [\alpha_i := S(\alpha_i)]$$

3. $\forall i.\beta_i \in FV(\tau_1)$

Enddef.

$$M_1: \forall \alpha.\alpha \to \alpha$$

$$M: \forall \beta_1. \forall \beta_2: (\beta_1 \to \beta_2) \to (\beta_1 \to \beta_2)$$

Вполне возможно, что в ходе замены, все типы будут уточнены (α уточниться как $\beta_1 \to \beta_2$.

Соглашение:

- σ типовая схема
- τ простой тип

1.2 Алгоритм W

На вход подаются Γ , M, на выходе наиболее общая пара (S, τ)

- 1. $M = x, x \notin \Gamma$
- 2. $(\emptyset, \Gamma(x))$, если $x \in \Gamma$
- 3. $M = \lambda n.e$
 - τ новая типовая переменная
 - $\Gamma' = \Gamma \setminus \{n : \}$ (т.е. Γ без переменной n)
 - $\Gamma'' = \Gamma' \cup n : \tau$
- 4. M = P Q
 - \bullet au новая типовая переменная
 - $(S_1, \tau_1) = W(\Gamma, P)$
 - $(S_2, \tau_2) = W(S_1(\Gamma), Q)$
 - S_3 Унификация $(S_2(\tau_1), \tau_2 \to \tau)$ $(S_3 \circ S_2 \circ S_3, S_3(\tau))$
- 5. let x = P in Q
 - $(S, \tau) = W(\Gamma, P)$
 - $\Gamma' = \Gamma$ без x
 - $\Gamma'' = \Gamma' \cup \{x : \forall \alpha_1 \dots \alpha_k.\tau_1\}$, где $\alpha_1 \dots \alpha_k$ свободные переменные в τ_1
 - $(S_2, \tau_2) = W(S_1(\Gamma''), Q)$
 - $(S_1 \circ S_2), \tau_2)$
- 6. $M = x : \tau$
 - ullet Выбросить все кванторы из au
 - Переименовать все свободные переменные в свежие Например: $\forall \alpha_1. \phi \Rightarrow \phi[\alpha_1 := \beta_1]$, где β_1 — свежая переменная

2 Лекция 10 (06.11.2019)

2.1 Обобщенные типовые системы

- Copta: $\{*, \square\}$
 - Выражение "A : *"означает, что A тип. И тогда, если на метаязыке мы хотим сказать "Если A тип, то и $A \to A$ тоже тип то формально это выглядит как A : * \vdash $(A \to A)$: *
 - $-\Box$ это абстракция над сортом для типов.
- $T ::= x \mid c \mid T \mid \lambda x : T \cdot T \mid \Pi x : T \cdot T$
- Аксиома:

- Правила вывода:
 - 1. $\frac{\Gamma \vdash A : S}{\Gamma \ x \cdot A \vdash x : A} \ x \not\in \Gamma$
 - 2. $\frac{\Gamma \vdash A:B}{\Gamma.\,x:C \vdash A:B}$ правило ослабление (примерно как $\alpha \to \beta \to \alpha$ в И.В.)

 - 3. $\frac{\Gamma \vdash A : B \qquad \Gamma \vdash B' : S \qquad B =_{\beta} B'}{\Gamma \vdash A : B'} \text{правило конверсии}$ 4. $\frac{\Gamma \vdash F : (\Pi x : A.B) \qquad \Gamma \vdash a : A}{\Gamma \vdash (F \ a) : B[x := a]} \text{правило применения}$
- Семейства правила (generic-правила)

Пусть $(s_1, s_2) \in S \subseteq \{*, \square\}^2$.

- 1. П-правило: $\frac{\Gamma \vdash A:s_1 \qquad \Gamma, x:A \vdash B:s_2}{\Gamma \vdash (\Pi x:A.B):s_2}$
- 2. λ -правило: $\frac{\Gamma \vdash A: s_1 \qquad \Gamma, x: A \vdash b: B \qquad \Gamma, x: A \vdash B: s_2}{\Gamma \vdash (\lambda x: A.b): (\Pi x: A.B)}$

Например:

- $5:int:*:\Box$
- $[]:*\rightarrow *: \Box$
- $\Lambda M.List < M >: * \rightarrow * \square$

2.2 λ -куб

ThОбобщенная типовая система сильно нормализуема

Примеры:

• $\lambda \omega$:

$$\vdash (\lambda \alpha : *.\alpha \to \alpha)(* \to *) : \Box$$

Notes:

- $I_A = \lambda x : A.x$ explicit typing (Church style)