

Come for career, stay for passion

lobs for demanding talents

Wymarzona praca na pograniczu biznesu i informatyki

accenture

Audience Forecasting dla reklamy RTB

Przemysław Piotrowski

Adform Research

Jobs for demanding talents

Wymarzona praca na pograniczu biznesu i informatyki

Come for career, stay for passion

Dzisiaj

- kampanie RTB
- przewidywanie zasięgu
- rozwiązanie
- jakość

3 mln RPS

Kampania

Źródło ruchu

- aplikacje mobilne
- wydawcy
- konkretne domeny
- URL
- data, czas
- kategorie

Ciasteczko

- ustawione?
- remarketing
- segment ciasteczka

Powierzchnia

- przygotowane banery
- odtwarzacze wideo
- above/below the fold

Limity

- frequency capping
- brand safety

Grupa docelowa

- kraj, województwo, miasto
- GPS
- język
- system operacyjny
- przeglądarka
- ISP
- łącze internetowe

Hyperlocal

GPS

RTB Audience Forecasting

Przewidywanie liczby

- ciasteczek
- dostępnych odsłon
- wygranych odsłon [1]

dla zdefiniowanej kampanii

Wymagania

- odpowiedź do 1s podczas definiowania kampanii
- reprezentowanie
 - 3 mln RPS z EU, US, APAC
 - miliardów zdarzeń remargetingowych
 - ponad 100 000 segmentów
- dane wejściowe dla innych algorytmów

Rozwiązanie

SELECT

count(1), count(distinct cookie_id),
inventory, hour, country, region, city, ...
FROM bid_requests

obraz: biretail.com

Problemy

Zbyt wiele wymiarów

Problemy

Wspólne ciasteczka pomiędzy źródłami ruchu

Problemy

Złączenie ruchu z remarketingiem

"It will be challenging to have your forecast work on combinations of inventory and tracking points. Consider letting your users forecast either on inventory or on tracking."[1]

[1] https://www.quora.com/How-can-we-do-reach-forecasting-in-a-DSP-demand-side-platform-Is-it-even-possible

Rozwiązanie

odsłona	iOS	Polska	hobby ML	wynik
0	0	1	1	0
1	0	0	1	0
2	1	0	0	0
3	0	0	0	0
4	1	1	1	1
5	1	O	0	0
6	0	0	0	0
7	1	1	1	1
500mln	0	0	0	0

dostępne odsłony = cardinality(wynik)

Remarketing

odsłona	hobby ML		
0	1		
1	1		
2	0		
3	0		
4	1		
5	0		
6	0		
7	1		
500mln	1 0		

hobby | ML

=

zapytania o odsłony ciasteczek, które zostały sprofilowane jako zainteresowane Machine Learning

Indeksy bitmapowe

ang. bitmap index = bitmap = bitset = bitarray

Cecha (kraj, producent)

Wartość cechy (kraj | Polska, producent | samsung)

- jedna bitmapa dla każdej wartości cechy
- suma, iloczyn i różnica zbiorów
- wsparcie predykatu równości
- brak wsparcia dla operatorów porównania > <

Zastosowania

- pobranie konkretnych elementów z innego źródła danych
 - row_id w bazach danych
- zliczenie elementów spełniających kryteria wyszukiwania
- budowanie reguł asocjacyjnych na dużych zbiorach

java.util.BitSet anylang

private long[] words (64-bit)

java.util.BitSet

.set(int bitIndex)

.and(BitSet other)

.get(int bitIndex)

.andNot(BitSet other)

.cardinality()

.or(BitSet other)

.isEmpty()

.xor(Bitset other)

Tylko jeden element

```
BitSet tiny = new BitSet();
tiny.set(Interger.MAX_INT);
```

2 147 483 648 bits = 256 MiB

ACKCHYUALLY

???

... ale mnie nie obchodzi zużycie pamięci

```
BitSet b1 = new BitSet();
BitSet b2 = new BitSet();
b1.set(9_000_000);
b2.set(7_000_000);
b1.or(b2);
```

109k zbędnych alternatyw

Compressed Bitmaps

ROARING BITMAPS

Roaring Bitmap

Otwarta, efektywna implementacja indeksów bitmapowych roaringbitmap.org

"Use Roaring for bitmap compression whenever possible. Do not use other bitmap compression methods" [1]

^[1] Wang, Jianguo, et al.

[&]quot;An experimental study of bitmap compression vs. inverted list compression." 2017.

Implementacja

STATE THE STATE OF THE STATE OF

Optymalizacje

	array	bitset	run
array	?	?	?
bitset	?	?	?
run	?	?	?

dla każdej operacji

- sumy
- iloczynu
- różnicy specjalizowana implementacja

- bit level parallelism
- dedykowane instrukcje CPU

Kod

Implementacje

- C (SIMD[1])
- Java
- Go
- Python (C wrapper)
- •

DB

- Pilosa
- Roaring Redis

Użytkownicy

- Adform
- Apache
- Netflix
- Druid
- Linkedin
- Microsoft

[1] Lemire, Daniel, et al. "Roaring bitmaps: Implementation of an optimized software library." Software: Practice and Experience (2017).

Usprawnienia

Sorting improves word-aligned bitmap indexes

Daniel Lemire^{a,*}, Owen Kaser^b, Kamel Aouiche^a

^aLICEF, Université du Québec à Montréal (UQAM), 100 Sherbrooke West, Montreal, QC, H2X 3P2 Canada ^bDept. of CSAS, University of New Brunswick, 100 Tucker Park Road, Saint John, NB, Canada

Przykład:

40 000 kontenerów typu **array** może nieść tę samą informację co 1 kontener typu **run**.

https://arxiv.org/pdf/0901.3751.pdf

Sortowanie

ORDER BY country_id, device_id

odsłona	Polska	Niemcy	samsung	apple
0	1	0	1	0
2	1	0	0	1
3 4	0	1	0 1	1 0
5 6	0	1	0	1 1
7	0	1	0	1
500mln	0	0	0	0

Architektura

Zapytania

```
And(
  Or("inventory|1", "inventory|2", "inventory|3"),
  AndNot(
    Universe,
    Or("kategoria|motoryzacja", "kategoria|wedkarstwo")
  ),
  0r(
    "godzina_tygodnia|41",
    "godzina_tygodnia|42",
    "godzina_tygodnia|43",
    "godzina_tygodnia|44"
  Or("domena|com", "domena|testowo.org"),
  And (
    "kraj|polska",
    AndNot(
        Universe,
        "miasto|warszawa"
```

Liczby

- 10 GB rozmiar bitmap dla 7 dni
- 200 TB podejście naiwne
- **6h** czas budowy bitmap dla 7 dni
- 3 mln cech
- 500 mln * próbkowanie zapytań
- 5 mln * próbkowanie ciasteczek

Zasięg kampanii

czy niepusty segment? (US - .com)

liczba ciasteczek

```
iOS
odsłona
                 Polska hobby|ML
                                    wynik
   5
   6
500mln
```

dostępne odsłony = cardinality(wynik)

Zliczanie ciasteczek

Uczenie maszynowe

• czas trwania kampanii

limit odsłon dla ciasteczka

Jakość

- eksperymenty vs. produkcyjnie działająca kampania
- kampanie są ciągle modyfikowane
- logowanie na Kafce pełnego zapytania wraz z wynikami pośrednimi i parametrami użytymi do estymacji
- monitorowanie impresji następnego dnia
- powtórzenie na bitmapach z kolejnych dni
- trend

Podsumowanie

- Roaring to zalecana implementacja indeksów bitmapowych
- obecna w wielu znanych aplikacjach
- zastosowana z sukcesem do zliczania ruchu w RTB
- 5 różnych wdrożeń w Adform

Forecasting

How is this calculated? Read help

Avail. Imps 45M Avail. Cookies 768K

>>>Pytania?

Zadawaj je, ocenia j prelekcję, komentuj lub polub poprzez sli.do:

Warszawskie DniInformatyki.pl/slido

