On the Parity of p(n), II

M. D. HIRSCHHORN

University of New South Wales, POB1, Kensington, New South Wales 2033, Australia Communicated by George Andrews Received November 1, 1991

1. Introduction

Not a great deal is known about the parity of p(n). Since Kolberg [3], we have known that p(n) is infinitely often even, infinitely often odd. Recently, together with M. V. Subbarao [2], I proved that for every r, p(16n+r) is infinitely often even, infinitely often odd. The main results of this note are that

for every r, p(12n+r) is infinitely often even, infinitely often odd and

for every r, p(40n+r) is infinitely often even, infinitely often odd.

In order to establish these results, we obtain congruences modulo 2 for the generating functions of p(3n+r), r=0, 1, 2, and of p(5n+r), r=0, 1, 2, 3, 4. These congruences appear in the important recent paper of Frank Garvan and Dennis Stanton [1], but our derivation of them is rather more straightforward, relying only on the triple product identity. We use these congruences to obtain recurrences modulo 2 for p(12n+r) and for p(40n+r) from which we deduce our results via standard "Kolberg-type" arguments.

Garvan and Stanton obtain congruences for the generating functions of p(7n+r), r=0, 2, 6. We derive these, and show how they, together with an identity of Ramanujan, yield the result

p(56n+r), $r \equiv 0, 2, 5$, or 6 mod 7, is infinitely often even, infinitely often odd.

I would like to put on record my thanks to D. W. Trenerry for his help with the computations and to F. G. Garvan for helpful discussions.

2. p(12n+r) Is Infinitely often Even, Infinitely often Odd

We have, modulo 2,

$$\sum p(n)q^{n} = \frac{1}{(q;q)_{\infty}} \equiv (q;q^{2})_{\infty}$$

$$= (q;q^{6})_{\infty} (q^{3};q^{6})_{\infty} (q^{5};q^{6})_{\infty}$$

$$\equiv \frac{(q;q^{6})_{\infty} (q^{5};q^{6})_{\infty}}{(q^{3};q^{3})_{\infty}}$$

$$\equiv \frac{(q;q^{6})_{\infty} (q^{5};q^{6})_{\infty} (q^{6};q^{6})_{\infty}}{(q^{3};q^{3})_{\infty}^{3}}$$

$$\equiv \frac{1}{(q^{3};q^{3})_{\infty}^{3}} \sum q^{3a^{2}-2a}$$

$$= \frac{1}{(q^{3};q^{3})_{\infty}^{3}} \left\{ \sum q^{3(3a)^{2}-2(3a)} + \sum q^{3(3a+1)^{2}-2(3a+1)} + \sum q^{3(3a-1)^{2}-2(3a-1)} \right\}.$$

$$= \frac{1}{(q^{3};q^{3})_{\infty}^{3}} \left\{ \sum q^{27a^{2}-6a} + q \sum q^{27a^{2}-12a} + q^{5} \sum q^{27a^{2}-24a} \right\}.$$

So

$$\sum p(3n)q^{n} \equiv \frac{1}{(q;q)_{\infty}^{3}} \sum q^{9a^{2}-2a},$$

$$\sum p(3n+1)q^{n} \equiv \frac{1}{(q;q)_{\infty}^{3}} \sum q^{9a^{2}-4a},$$

$$\sum p(3n+2)q^{n} \equiv \frac{q}{(q;q)_{\infty}^{3}} \sum q^{9a^{2}-8a}.$$

We now multiply by $(q;q)^4_{\infty}$. Since

$$(q;q)_{\infty} \equiv \sum q^{(3a^2-a)/2}$$

and

$$(q;q)^4_{\infty} \equiv (q^4;q^4)_{\infty},$$

we have

$$\sum q^{2(3a^2-a)} \sum p(3n) q^n \equiv \sum q^{(3a^2-a)/2+(9b^2-2b)} = \sum c_0(n) q^n,$$

$$\sum q^{2(3a^2-a)} \sum p(3n+1) q^n \equiv \sum q^{(3a^2-a)/2+(9b^2-4b)} = \sum c_1(n) q^n,$$

$$\sum q^{2(3a^2-a)} \sum p(3n+2) q^n \equiv \sum q^{(3a^2-a)/2+(9b^2-8b)+1} = \sum c_2(n) q^n.$$

If we now write $p_r(n) = p(12n + r)$, we have, modulo 2,

$$(*) \quad p_{r}(n) + p_{r}(n-1) + p_{r}(n-2) + p_{r}(n-5) + p_{r}(n-7) + \cdots$$

$$\begin{cases}
c_{0}(4n) & \text{if} \quad r = 0 \\
c_{1}(4n) & \text{if} \quad r = 1 \\
c_{2}(4n) & \text{if} \quad r = 2 \\
c_{0}(4n+1) & \text{if} \quad r = 3 \\
c_{1}(4n+1) & \text{if} \quad r = 4 \\
c_{2}(4n+1) & \text{if} \quad r = 6 \\
c_{1}(4n+2) & \text{if} \quad r = 6 \\
c_{1}(4n+2) & \text{if} \quad r = 7 \\
c_{2}(4n+2) & \text{if} \quad r = 8 \\
c_{0}(4n+3) & \text{if} \quad r = 9 \\
c_{1}(4n+3) & \text{if} \quad r = 10 \\
c_{2}(4n+3) & \text{if} \quad r = 11.
\end{cases}$$

Now, $(3a^2 - a)/2 + (9b^2 - 2b) \not\equiv 4$, 17, 30, 43, 56, 69, 95, 108, 121, 134, 147, 160 mod 169, so $c_0(n) = 0$ for $n \equiv 4$, 17, 30, 43, 56, 69, 95, 108, 121, 134, 147, 160 mod 169. Similarly

$$c_1(n) = 0$$
 for $n \equiv 8, 21, 34, 47, 60, 73, 86, 99, 112, 125, 151, 164 mod 169, $c_2(n) = 0$ for $n \equiv 12, 38, 51, 64, 77, 90, 103, 116, 129, 142, 155, 168 mod 169.$$

It follows that if $n \equiv m_r \mod 169$, where m_r is given by the table

then (*) becomes

(**)
$$p_r(n) + p_r(n-1) + p_r(n-2) + p_r(n-5) + p_r(n-7) + \cdots \equiv 0 \mod 2.$$

Next, let k_r be given by the table

Then $p_r(k_r)$ is odd.

Finally let l_r be given by the table

$$r$$
 0 1 2 3 4 5 6 7 8 9 10 11 l_r -1 1 1 -1 -2 3 2 -2 2 -2 -2

Then $(3l_r^2 + l_r)/2 + k_r \equiv m_r \mod 169$.

Suppose $p_r(n)$ is odd (alternatively even) for $n \ge n_0$. We can suppose $n_0 \equiv l_r \mod 169$, and that $2n_0 + 1 > k_r$.

Let
$$N = (3n_0^2 + n_0)/2 + k_r$$
.

Then $N \equiv (3l_r^2 + l_r)/2 + k_r \equiv m_r \mod 169$, and (**) becomes

(***)
$$p_r(N) + p_r(N-1) + p_r(N-2) + p_r(N-5) + p_r(N-7) + \cdots + p_r(n_0 + k_r) + p_r(k_r) \equiv 0 \mod 2.$$

(The condition $2n_0 + 1 > k$, ensures that $p_r(k_r)$ is the last term on the left.) But the left-hand-side of (***) is odd: there is an odd number, $2n_0 + 1$, of terms of which the last is odd while the others are all odd (alternatively even). So we have a contradiction, and our result is proved.

3. p(40n+r) Is Infinitely often Even, Infinitely often Odd

We have, modulo 2,

$$\sum p(n)q^{n} = \frac{1}{(q;q)_{\infty}}$$

$$\equiv (q;q^{2})_{\infty}$$

$$= (q;q^{10})_{\infty} (q^{3};q^{10})_{\infty} (q^{5};q^{10})_{\infty} (q^{7};q^{10})_{\infty} (q^{9};q^{10})_{\infty}$$

$$\equiv \frac{(q;q^{10})_{\infty} (q^{3};q^{10})_{\infty} (q^{7};q^{10})_{\infty} (q^{9};q^{10})_{\infty}}{(q^{5};q^{5})_{\infty}}$$

$$\equiv \frac{(q;q^{10})_{\infty} (q^{9};q^{10})_{\infty} (q^{10};q^{10})_{\infty} \times (q^{3};q^{10})_{\infty} (q^{7};q^{10})_{\infty} (q^{10};q^{10})_{\infty}}{(q^{5};q^{5})_{\infty}^{5}}$$

$$\equiv \frac{1}{(q^{5};q^{5})_{\infty}^{5}} \sum q^{5n^{2}-4n+5m^{2}-2m}$$

$$= \frac{1}{(q^5; q^5)_{\infty}^5} \sum q^{(m+2n)^2 + (2m-n)^2 - 2(m+2n)}$$

$$= \frac{1}{(q^5; q^5)_{\infty}^5} \sum_{b=2a \mod 5} q^{a^2 - 2a + b^2} \qquad a = m+2n$$

$$= \frac{1}{(q^5; q^5)_{\infty}^5} \left\{ \sum q^{25a^2 - 10a + 25b^2} + \sum q^{(5a+1)^2 - 2(5a+1) + (5b+2)^2} + \sum q^{(5a+2)^2 - 2(5a+2) + (5b-1)^2} + \sum q^{(5a+3)^2 - 2(5a+3) + (5b+1)^2} + \sum q^{(5a+3)^2 - 2(5a+3) + (5b+1)^2} + \sum q^{(5a-1)^2 - 2(5a-1) + (5b-2)^2} \right\}$$

$$= \frac{1}{(q^5; q^5)_{\infty}^5} \left\{ \sum q^{25a^2 - 10a + 25b^2} + q^3 \sum q^{25a^2 + 25b^2 - 20b} + q \sum q^{25a^2 - 10a + 25b^2 - 10b} + q^4 \sum q^{25a^2 - 20a + 25b^2 - 10b} + q^7 \sum q^{25a^2 - 20a + 25b^2 - 20b} \right\}.$$

$$\sum p(5n)q^n \equiv \frac{1}{(q; q)_{\infty}^5} \sum q^{5a^2 - 2a + 5b^2}$$

$$\equiv \frac{1}{(q; q)_{\infty}^5} \sum q^{5a^2 - 2a + 5b^2}$$

$$\equiv \frac{1}{(q; q)_{\infty}^5} \sum q^{5a^2 - 2a + 5b^2 - 2b}$$

$$\equiv \frac{1}{(q; q)_{\infty}^5} \sum q^{10a^2 - 4a} \qquad \text{(terms } (a, b) \text{ with } a \neq b \text{ cancel in pairs)}$$

$$\sum p(5n+2)q^n \equiv \frac{q}{(q; q)_{\infty}^5} \sum q^{5a^2 - 4a + 5b^2 - 4b}$$

$$\equiv \frac{q}{(q; q)_{\infty}^5} \sum q^{10a^2 - 8a}$$

$$\sum p(5n+3)q^n \equiv \frac{1}{(q; q)_{\infty}^5} \sum q^{5a^2 + 5b^2 - 4b}$$

$$\equiv \frac{1}{(q; q)_{\infty}^5} \sum q^{5a^2 + 5b^2 - 4b}$$

$$\equiv \frac{1}{(q; q)_{\infty}^5} \sum q^{5a^2 + 5b^2 - 4b}$$

$$\equiv \frac{1}{(q; q)_{\infty}^5} \sum q^{5b^2 - 4b}$$

So

$$\sum p(5n+4)q^{n} \equiv \frac{1}{(q;q)_{\infty}^{5}} \sum q^{5a^{2}-4a+5b^{2}-2b}$$

$$\equiv \frac{1}{(q;q)_{\infty}^{5}} (q;q^{10})_{\infty} (q^{9};q^{10})_{\infty} (q^{10};q^{10})_{\infty}$$

$$\times (q^{3};q^{10})_{\infty} (q^{7};q^{10})_{\infty} (q^{10};q^{10})_{\infty}$$

$$= \frac{1}{(q;q)_{\infty}^{5}} \cdot (q;q^{2})_{\infty} \cdot \frac{(q^{10};q^{10})_{\infty}^{2}}{(q^{5};q^{10})_{\infty}}$$

$$\equiv \frac{1}{(q;q)_{\infty}^{6}} \cdot (q^{5};q^{5})_{\infty} \cdot (q^{10};q^{10})_{\infty}^{2}$$

$$\equiv \frac{(q^{5};q^{5})_{\infty}^{5}}{(q;q)_{\infty}^{6}}.$$
 (This also follows from a result of Ramanujan.)

We now multiply by $(q; q)_{\infty}^{8}$. Since

$$(q;q)_{\infty}^{8} \equiv (q^{8};q^{8})_{\infty},$$
$$(q;q)_{\infty}^{3} \equiv \sum q^{2a^{2}-a}$$

and

$$(q;q)_{\infty}^2 \equiv (q^2;q^2)_{\infty}$$

we have

$$\sum q^{4(3a^2-a)} \sum p(5n) q^n \equiv \sum q^{(2a^2-a)+(5b^2-2b)}$$

and so on, and

$$\sum q^{4(3a^2-a)} \sum p(5n+4) q^n \equiv (q^5; q^5)_{\infty}^5 \sum q^{(3a^2-a)}$$

Now,

$$(2a^2 - a) + (5b^2 - 2b)$$

 $\not\equiv 12, 29, 46, 63, 80, 97, 114, 131, 148, 165, 182, 199, 216, 233, 250, 284$
mod 289

$$(2a^2 - a) + (10b^2 - 4b)$$

 $\not\equiv 5, 22, 39, 56, 73, 90, 107, 124, 141, 158, 175, 192, 226, 243, 260, 277$
mod 289

$$(2a^2-a)+(10b^2-8b)+1$$

≢15, 32, 49, 66, 83, 100, 117, 134, 168, 185, 202, 219, 236, 253, 270, 287 mod 289

$$(2a^2-a)+(5b^2-4b)$$

≢ 8, 25, 42, 59, 76, 110, 127, 144, 161, 178, 195, 212, 229, 246, 263, 280 mod 289.

If we write $p_r(n) = p(40n + r)$, and r = 0, 1, 2 or 3 mod 5, we can establish the result

(**)
$$p_r(n) + p_r(n-1) + p_r(n-2) + p_r(n-5) + p_r(n-7) + \cdots \equiv 0 \mod 2$$

for n in certain residue classes modulo 289.

Indeed, if m_r , k_r , and l_r are given by the table

r	0	1	2	3	5	6	7	8	10	11	12
m_r	10	7	4	1	12	9	23	3	14	11	8
k_r	8	0	2	0	0	4	16	1	2	6	1
l_r	1	2	1	-1	-3	-3	2	1	-3	-2	2
r	13	15	16	17	18	20	21	22	23	25	26
m_r	5	16	13	10	7	1	15	12	9	3	17
k_r	0	14	1	9	0	0	10	5	4	2	5
l_r	-2	1	-3	-1	2	-1	-2	2	-2	-1	-3
r	27	28	30	31	32	33	35	36	37	38	
m_r	14	28	5	2	16	13	7	4	1	15	
k_r	2	16	3	1	1	1	0	3	0	0	
l_r	-3	-3	1	-1	3	-3	2	-1	— 1	3	

and we work modulo 289, then the proof proceeds as before, establishing our result for $r \equiv 0, 1, 2$ or 3 mod 5.

We have

$$\sum q^{4(3a^2-a)} \sum p(5n+4) q^n \equiv (q^5; q^5)_{\infty}^5 \sum q^{(3a^2-a)},$$

and $(3a^2 - a) \not\equiv 1$, 3 mod 5, so the right-hand-side has no powers congruent to 1 or 3 mod 5. So for $r \equiv 4 \mod 5$ we have

(**)
$$p_r(n) + p_r(n-1) + p_r(n-2) + p_r(n-5) + p_r(n-7) + \cdots \equiv 0 \mod 2$$

for n in certain residue classes modulo 5.

If m_r , k_r , and l_r are given by the table

and we work modulo 5, then the proof proceeds as before, establishing our result in these remaining cases.

4.
$$p(56n+r)$$
, $r \equiv 0, 2, 5$, or 6 mod 7, Is Infinitely often Even,
Infinitely often Odd

We have

$$\begin{split} &\sum p(n)q^{n} \\ &= \frac{1}{(q;q)_{\infty}} \equiv (q;q^{2}) \\ &\equiv \frac{1}{(q^{7};q^{7})_{\infty}^{7}} (q;q^{14})_{\infty} (q^{13};q^{14})_{\infty} (q^{14};q^{14})_{\infty} \\ &\times (q^{3};q^{14})_{\infty} (q^{11};q^{14})_{\infty} (q^{14};q^{14})_{\infty} \\ &\times (q^{5};q^{14})_{\infty} (q^{9};q^{14})_{\infty} (q^{14};q^{14})_{\infty} \\ &\equiv \frac{1}{(q^{7};q^{7})_{\infty}^{7}} \sum q^{7k^{2}+2k+7l^{2}+4l+7m^{2}+6m} \\ &= \frac{1}{(q^{7};q^{7})_{\infty}^{7}} \sum q^{(2k+l+m)^{2}+(-k+l+2m)^{2}+(k-2l+m)^{2}+(k+l-m)^{2}+2(2k+l+m)+2(-k+l+2m)} \\ &= \frac{1}{(q^{7};q^{7})_{\infty}^{7}} \sum q^{a^{2}+b^{2}+c^{2}+d^{2}+2a+2b}, \end{split}$$

where the sum is taken over all quadruples (a, b, c, d) with

$$2a - b + c + d \equiv 0 \mod 7,$$

 $a + b - 2c + d \equiv 0 \mod 7,$
 $a + 2b + c - d \equiv 0 \mod 7,$
 $-a + b + c + 2d \equiv 0 \mod 7.$

These congruences admit 49 solutions, which fall into seven sets of seven according to the residue of $a^2 + b^2 + c^2 + d^2 + 2a + 2b$ modulo 7.

Thus, for example, the seven quadruples for which $a^2 + b^2 + c^2 + d^2 + 2a + 2b \equiv 0 \mod 7$ are $(a, b, c, d) \equiv (-3, 3, 3, -1), (-2, 2, 2, -3), (-1, 1, 1, 2), (0, 0, 0, 0), (1, -1, -1, -2), (2, -2, -2, 3), (3, -3, -3, 1).$ It follows that

$$\begin{split} & \sum p(7n)q^{7n} \\ & \equiv \frac{1}{(q^7;q^7)_{\infty}^7} \left\{ \sum q^{(7a-3)^2 + (7b-4)^2 + (7c+3)^2 + (7d-1)^2 + 2(7a-3) + 2(7b-4)} \right. \\ & \quad + \sum q^{(7a-2)^2 + (7b+2)^2 + (7c+2)^2 + (7d-3)^2 + 2(7a-2) + 2(7b+2)} \\ & \quad + \sum q^{(7a-1)^2 + (7b+1)^2 + (7c+1)^2 + (7d+2)^2 + 2(7a-1) + 2(7b+1)} \\ & \quad + \sum q^{(7a)^2 + (7b)^2 + (7c)^2 + (7d)^2 + 2(7a) + 2(7b)} \\ & \quad + \sum q^{(7a+1)^2 + (7b-1)^2 + (7c-1)^2 + (7d-2)^2 + 2(7a+1) + 2(7b-1)} \\ & \quad + \sum q^{(7a+1)^2 + (7b-1)^2 + (7c-2)^2 + (7d-3)^2 + 2(7a+2) + 2(7b-2)} \\ & \quad + \sum q^{(7a-4)^2 + (7b-3)^2 + (7c-3)^2 + (7d+1)^2 + 2(7a-4) + 2(7b-3)} \right\}. \end{split}$$

$$& = \frac{1}{(q^7;q^7)_{\infty}^7} \left\{ q^{21} \sum q^{49a^2 + 49b^2 + 49c^2 + 49a^2 - 28a - 42b + 42c - 14d} \right. \\ & \quad + q^{21} \sum q^{49a^2 + 49b^2 + 49c^2 + 49d^2 - 14a + 42b + 28c - 42d} \right. \\ & \quad + q^7 \sum q^{49a^2 + 49b^2 + 49c^2 + 49d^2 + 14a + 14b} \\ & \quad + q^7 \sum q^{49a^2 + 49b^2 + 49c^2 + 49d^2 + 28a - 14c - 28d} \\ & \quad + q^{21} \sum q^{49a^2 + 49b^2 + 49c^2 + 49d^2 + 28a - 14c - 28d} \\ & \quad + q^{21} \sum q^{49a^2 + 49b^2 + 49c^2 + 49d^2 + 2a - 14b - 28c - 42d} \\ & \quad + q^{21} \sum q^{49a^2 + 49b^2 + 49c^2 + 49d^2 - 42a - 28b - 42c + 14d} \right\} \\ & \equiv \frac{1}{(q^7;q^7)_{\infty}^7} \sum q^{49a^2 + 49b^2 + 49c^2 + 49d^2 + 14a + 14b} \\ & \equiv \frac{1}{(q^7;q^7)_{\infty}^7} \sum q^{49a^2 + 49b^2 + 14a + 14b} \\ & \equiv \frac{1}{(q^7;q^7)_{\infty}^7} \sum q^{49a^2 + 49b^2 + 14a + 14b} \\ & \equiv \frac{1}{(q^7;q^7)_{\infty}^7} \sum q^{49a^2 + 49b^2 + 14a + 14b} \\ & \equiv \frac{1}{(q^7;q^7)_{\infty}^7} \sum q^{49a^2 + 49b^2 + 14a + 14b} \\ & \equiv \frac{1}{(q^7;q^7)_{\infty}^7} \sum q^{49a^2 + 49b^2 + 14a + 14b} \end{aligned}$$

or,

$$\sum p(7n)q^{n} \equiv \frac{1}{(q;q)_{\infty}^{7}} \sum q^{14a^{2}-4a}.$$

In the same way we find

$$\sum p(7n+2)q^n \equiv \frac{1}{(q;q)_{\infty}^7} q^2 \sum q^{14a^2-12a}$$

(the seven quadruples for which $a^2 + b^2 + c^2 + d^2 + 2a + 2b \equiv 2 \mod 7$ are $(a, b, c, d) \equiv (-3, -3, -1, -3), (-2, 3, -2, 2), (-1, 2, -3, 0), (0, 1, 3, -2), (1, 0, 2, 3), (2, -1, 1, 1), (3, -2, 0, -1))$ and

$$\sum p(7n+6)q^{n} \equiv \frac{1}{(q;q)^{\frac{7}{100}}} \sum q^{14a^{2}-8a}$$

(the seven quadruples for which $a^2 + b^2 + c^2 + d^2 + 2a + 2b \equiv 6 \mod 7$ are $(a, b, c, d) \equiv (-3, -1, -2, 0), (-2, -2, -3, -2), (-1, -3, 3, 3), (0, 3, 2, 1), (1, 2, 1, -1), (2, 1, 0, -3), (3, 0, -1, 2)).$

In the case of $\sum p(7n+r)q^n$, r=1, 3, 4, 5, we do not find the same sort of simplification.

If we multiply by $(q;q)_{\infty}^{8}$, we have

$$\sum q^{4(3a^2-a)} \sum p(7n) q^n \equiv \sum q^{(3a^2-a)/2 + (14b^2-4b)}$$

and so on.

Now,

$$(3a^2 - a)/2 + (14b^2 - 4b)$$

 $\not\equiv 3, 16, 29, 42, 68, 81, 94, 107, 120, 133, 146, 159 \mod 169$
 $(3a^2 - a)/2 + (14b^2 - 12b) + 2$
 $\not\equiv 12, 25, 38, 51, 64, 77, 90, 116, 129, 142, 155, 168 \mod 169$
 $(3a^2 - a)/2 + (14b^2 - 8b)$
 $\not\equiv 4, 17, 43, 56, 69, 82, 95, 108, 121, 134, 147, 160 \mod 169.$

If we define m_r , k_r , l_r by the table

r	0	2	6	7	9	13	14	16	20	21	23	27
m_r	2	8	7	10	3	2	5	11	10	13	19	5
k_r	0	6	0	5	2	0	0	4	3	1	12	3
l_r	1	1	2	-2	-1	1	-2	2	2	-3	2	1
r	28	30	34	35	37	41	42	44	48	49	51	55
m_r							42 11					55 11
	8	14	13	3	9	8	11	4	16	19		11

and we work modulo 169, then the proof proceeds as before, and the result is established for $r \equiv 0$, 2, or 6 mod 7.

Ramanujan gave the identity

$$\sum p(7n+5)q^n = \frac{7(q^7;q^7)_{\infty}^3}{(q;q)_{\infty}^4} + 49q \frac{(q^7;q^7)_{\infty}^7}{(q;q)_{\infty}^8}.$$

It follows that, modulo 2,

$$\sum q^{4(3a^2-a)} \sum p(7n+5) q^n \equiv (q^7; q^7)_{\infty}^3 \sum q^{2(3a^2-a)} + q(q^7; q^7)_{\infty}^7$$

The right-hand-side has no powers congruent to 2, 3, or 5 mod 7. If m_r , k_r , and l_r are given by the table

r	5	12	19	26	33	40	47	54
m_r	2	1	0	6	5	4	3	2
k_r	0	0	5	1	0	2	2	0
l_r	1	-1	1	-2	-2	1	-1	1

and we work modulo 7, then the proof proceeds as before, establishing our result for $r \equiv 5 \mod 7$.

REFERENCES

- F. GARVAN AND D. STANTON, Sieved partition functions and q-binomial coefficients, Math. Comp., to appear.
- 2. M. D. Hirschhorn and M. V. Subbarao, On the parity of p(n), Acta Arith. L (1988), 355–356.
- 3. O. Kolberg, Note on the parity of the partition function, Math. Scand. 7 (1959), 377-378.