Разнобой

- 1. Число $\underbrace{11\dots 1}_{n} 2 \underbrace{1\dots 11}_{n}$ делится на 11. Докажите, что оно делится на 121.
- **2.** С квадратным трехчленом $ax^2 + bx + c$ разрешается производить такие операции:
 - Заменить в нем x на x-d, где d произвольное вещественное число.
 - Заменить его на трехчлен $cx^2 + (b+2c)x + (a+b+c)$.

Можно ли с помощью таких операций из трехчлена $x^2 - 3x - 4$ получить трехчлен $x^2 - 2x - 5$?

- **3.** Во вписанном четырехугольнике ABCD стороны BC и CD равны. Окружность Ω с центром C касается отрезка BD. Точка I центр вписанной окружности треугольника ABD. Докажите, что прямая, проходящая через I параллельно AB, касается Ω .
- **4.** На плоскости даны 2014 векторов. Докажите, что их можно разбить на некоторое число групп (возможно, одну) так, чтобы выполнялись два условия:
- (1) в каждой группе угол между любым её вектором и суммой векторов этой группы не более 90° ;
- (2) угол между суммами векторов в любых двух различных группах больше 90°.
- **5.** Имеется бесконечное количество карточек, на каждой из которых написано какое-то натуральное число. Известно, что для любого натурального числа n существуют ровно n карточек, на которых написаны делители этого числа. Докажите, что любое натуральное число встречается хотя бы на одной карточке.
- **6.** Даны натуральные m и n, причём n < m-1. Жители города, население которого составляет m человек, организовали несколько клубов так, что в каждом клубе не менее n членов, а каждый горожанин состоит хотя бы в n клубах. При этом нет двух клубов, состоящих из одних и тех же людей. При каком наименьшем k обязательно найдутся такие k (или менее) клубов, что каждый горожанин состоит хотя бы в одном из них?
- 7. (P.T. Bateman, P. Erdős) Пусть k натуральное число, и пусть p_1, \ldots, p_k первые k простых чисел. Обозначим через $f_k(n)$ количество представлений n в виде суммы чисел p_1, \ldots, p_k с повторениями (представления, отличающиеся порядком, считаются одинаковыми; например, $f_4(7) = 3$, ибо 7 = 2 + 2 + 3 = 2 + 5 = 7).
- а) Найдите явную формулу для $f_2(n)$.
- б) Докажите, что $f_3(n+1) \geqslant f_3(n)$ для любого натурального n.
- в) Докажите, что $f_3(n+1) > f_3(n)$ для всех натуральных n > 5 таких, что $n \equiv \pm 1$.
- г) Докажите, что $f_k(n+1) \geqslant f_k(n)$ для любого натурального n и $k \geqslant 3$.