1.	Here is a claim:	
	Claim 1 (Twin primes conjecture) — There are infinitely many primes that are two apart.	
	<i>Proof.</i> The proof is left as an exercise for the interested reader.	
2.	Here is a lemma:	
	Lemma 1 (Johnson-Lindenstrauss '84) — A set of n points in high dimensional Euclidean space can be mapped into an $O(\log n/\varepsilon^2)$ -dimensional Euclidean space such that the distance betwee any two points changes by only a factor of $(1 \pm \varepsilon)$.	
	<i>Proof.</i> The proof is left as an exercise for the interested reader.	
3.	Here is a remark:	
	Remark 1 (Sexy primes conjecture) — There are infinitely many primes that are six apart.	
	<i>Proof.</i> The proof is left as an exercise for the interested reader.	
4.	Here is a corollary:	
	Corollary 1 (Cousin primes conjecture) — There are infinitely many primes that are four apart.	
	<i>Proof.</i> The proof is left as an exercise for the interested reader.	
5.	Here is a theorem:	
	Theorem 1 (Pythagorean theorem) — For any right-triangle, the square of the hypotenuse is equato the sum of squares of the other two sides.	al
	<i>Proof.</i> The proof is left as an exercise for the interested reader.	
6.	Here is a proposition based off Theorem 1:	
	Proposition 1 (Fermat's Last Theorem) — $a^n + b^n \neq c^n$ for any choices of $n > 2$.	
	<i>Proof.</i> I have a truly marvelous demonstration of this proposition that this margin is too narrow contain.	v to □
7.	Here is a definition:	
	Definition 1 — Let $G = (V, E)$ be an undirected graph with edge-weights given by $w: E \to \mathbb{F}$	₹.

not contained in any cycle of *G*.

Assume that $w(e) \neq w(f)$ whenever e, f are distinct edges of G. We say that an edge is *treacherous* if it the maximum weight edge of some cycle of G. On the other hand, and edge is *reliable* if it is