Stat 5100 Handout #15 – SAS: Alternative Predictor Variable Types

<u>Example 1</u>: (Table 8.1) Study looks at the effects of the charge rate and temperature on the life of a new type of power cell. A small-scale preliminary study was conducted using 11 power cells. Variables reported are the charge rate (X1, in amperes), the ambient temperature (X2, in degrees Celsius), and the life of the power cell (Y, in the number of discharge-charge cycles before failure).

```
/* Input data -- see Table 8.1 in text */
data powercells;
    input cycles charge rate temperature; cards;
         0.6
    86
         1.0
                10
                                                   Power Cells Data
    49
         1.4
                10
                                               0.6
                                                   0.8
                                                       1.0
         0.6
  288
                20
                                                                                    300
                                                :
  157
         1.0
                20
                                                                                    250
         1.0
  131
                20
                                                                                    200
         1.0
                20
  184
                                    cycles
                                                                                    150
  109
         1.4
                20
  279
         0.6
                30
                                                                                    100
  235
         1.0
                30
                                                                                    50
  224
         1.4
                30
                          12
run;
                          1.0
                                                    charge_rate
                          0.8
                          0.6
                                                                                    30
                                                                                    25
                                                                      temperature
                                                                                    20
                                                                                    15
                                                                                    10
                                100 150 200 250 300
                                                                 10
                                                                     15
                                                                         20
                                                                             25
                                                                                 30
```

```
/* Look at shape of relationships with Y */
proc sgscatter data=powercells;
  matrix cycles charge_rate temperature /
    markerattrs=(symbol=CIRCLEFILLED size=2pt);
  title1 'Power Cells Data';
run;
```

```
/* Define higher-order predictors */
data powercells; set powercells;
   cr_temp = charge_rate*temperature;
   cr2 = charge_rate**2;
   temp2 = temperature**2;
run;

proc reg data=powercells;
   model cycles = charge_rate temperature cr_temp / vif;
   title1 'Check for interaction';
run;
```

Check for interaction

		Analysis of V	ariance					
Source	DF Sum of Square Mean Square Pr>							
Model	3	53435	17812	17.39	0.0013			
Error	7	7171.33333	1024.47619					
Corrected Total	10	60606						

		Param	neter Estima	ites		
Variable	DF	Pr > t	Variance Inflation			
Intercept	1	218.08333	90.80890	2.40	0.0474	0
charge_rate	1	-197.08333	86.42997	-2.28	0.0566	7.00000
temperature	1	4.67500	4.20891	1.11	0.3034	10.37500
cr_temp	1	2.87500	4.00093	0.72	0.4957	16.37500

```
proc reg data=powercells;
  model cycles = charge_rate temperature cr_temp cr2 temp2
    / vif;
  highercheck: test cr_temp=cr2=temp2=0;
  title1 'Check for higher-order predictors';
run;
```

Check for higher-order predictors

Analysis of Variance					
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	5	55366	11073	10.57	0.0109
Error	5	5240.43860	1048.08772		
Corrected Total	10	60606			

		Paran	neter Estima	tes		
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t	Variance Inflation
Intercept	1	337.72149	149.96163	2.25	0.0741	0
charge_rate	1	-539.51754	268.86033	-2.01	0.1011	66.21053
temperature	1	8.91711	9.18249	0.97	0.3761	48.26974
cr_temp	1	2.87500	4.04677	0.71	0.5092	16.37500
cr2	1	171.21711	127.12550	1.35	0.2359	60.28708
temp2	1	-0.10605	0.20340	-0.52	0.6244	38.97129

Test higherched	k Resi	ults for Depend	lent Variab	le cycles
Source	DF	Mean Square	F Value	Pr > F
Numerator	3	819.96491	0.78	0.5527
Denominator	5	1048.08772		

```
proc reg data=powercells;
  model cycles = charge_rate temperature;
  title1 'Lower-order model';
run;
```

Lower-order model

	Analysis of Variance					
Source	DF	Sum of Squares	Mean Square	F Value		
Model	2	52906	26453	27.48	0.0003	
Error	8	7700.33333	962.54167			
Corrected Total	10	60606				

		Param	eter Estima	ites		
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t	Variance Inflation
Intercept	1	160.58333	41.61545	3.86	0.0048	0
charge_rate	1	-139.58333	31.66461	-4.41	0.0023	1.00000
temperature	1	7.55000	1.26658	5.96	0.0003	1.00000

```
/* Now look at higher-order variables with standardized
data */
proc stdize data=powercells out=std_powercells
    method=std mult=.3162;
run; /* Note that mult = 1/sqrt(n-1) */

data std_powercells; set std_powercells;
    cr_temp = charge_rate*temperature;
    cr2 = charge_rate**2;
    temp2 = temperature**2;
run;

proc reg data=std_powercells;
    model cycles = charge_rate temperature cr_temp / vif;
    title1 'Check for interaction (standardized scale)';
run;
```

Check for interaction (standardized scale)

		Paran	neter Estima	tes		
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t	Variance Inflation
Intercept	1	-1.431E-17	0.03920	-0.00	1.0000	0
charge_rate	1	-0.55553	0.13001	-4.27	0.0037	1.00000
temperature	1	0.75122	0.13001	5.78	0.0007	1.00000
cr_temp	1	0.28030	0.39008	0.72	0.4957	1.00000

```
proc reg data=std_powercells;
  model cycles = charge_rate temperature cr_temp cr2 temp2
  / vif;
  highercheck: test cr_temp=cr2=temp2=0;
  title1 'Check for higher-order predictors (standardized scale)';
run;
```

Check for higher-order predictors (standardized scale)

	Parameter Estimates					
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t	Variance Inflation
Intercept	1	-0.03720	0.06745	-0.55	0.6051	0
charge_rate	1	-0.55553	0.13150	-4.22	0.0083	1.00000
temperature	1	0.75122	0.13150	5.71	0.0023	1.00000
cr_temp	1	0.28030	0.39455	0.71	0.5092	1.00000
cr2	1	0.66773	0.49577	1.35	0.2359	1.07656
temp2	1	-0.25850	0.49577	-0.52	0.6244	1.07656

Test highercheck Results for Dependent Variable cycles									
Source DF Mean F Value Pr > F									
Numerator	3	0.01353	0.78	0.5527					
Denominator	Denominator 5 0.01729								

/* NOTE: You don't need to standardize predictors to look at higher-order predictors like this. Instead, you can include a higher-order predictor and test it; if not significant, drop it; if significant, don't worry about significance of lower-order term. If higher-order term is significant and you really need to look at significance of lower-order term, or if the context of the data would allow the lower-order and higher-order terms to be 'stand-alone' interpretable, then standardize.

Tests for higher-order terms are the same whether data are standardized or not.

*/

<u>Example 2</u>: An economist wishes to relate the speed with which a particular insurance innovation is adopted (Y, in months) to the size of the insurance firm (X1, in millions of dollars) and the type of firm (X2, either mutual (0) or stock firms (1)).

```
/* Input data -- see Table 8.2 of text */
data insurance; input months size type @@; cards;
  17
      151
                   26
                        92
                             0
                                    21
                                        175
                                                          31
                                                              0
  22
      104
                       277
                                   12
                                        210
                                                         120
            0
                    0
                             0
                                              0
                                                    19
                                                              0
   4
      290
            0
                   16
                       238
                             0
                                    28
                                        164
                                              1
                                                    15
                                                         272
                                                              1
  11
      295
            1
                   38
                        68
                             1
                                   31
                                         85
                                              1
                                                    21
                                                         224
                                                              1
  20
      166
            1
                             1
                                    30
                                        124
                                              1
                                                         246
                                                              1
                   13
                       305
                                                    14
  ;
/* Model with only quantitative predictor */
proc reg data=insurance;
  model months = size;
  title1 'Single quantitative predictor';
  output out=out1 p=pred;
run;
```

Single quantitative predictor

		Parameter	Estimates					
Variable	DF	DF Parameter Estimate Standard t Value Pr >						
Intercept	1	36.48211	2.84425	12.83	<.0001			
size	1	-0.09394	0.01426	-6.59	<.0001			


```
/* Model with only qualitative predictor */
proc reg data=insurance;
  model months = type;
  title1 'Single qualitative predictor';
run;
```

	Single qualitative predictor							
	Parameter Estimates							
Variable	Variable DF Parameter Standard t Value Pr > t Estimate Error							
Intercept	1	16.70000	2.92024	5.72	<.0001			
type	type 1 5.40000 4.12984 1.31 0.2075							

```
proc sort data=insurance out=sort_ins; by type;
proc boxplot data=sort_ins;
plot months*type /
   boxstyle=schematic boxwidth=30 haxis=axis1
   cboxfill=yellow cboxes=blue;
axis1 order=(.5 to 1.5 by .5);
run;
```



```
/* Additive model */
proc reg data=insurance;
  model months = size type;
  title1 'Additive model';
run;
```

Additive model								
Parameter Estimates								
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t			
Intercept	1	33.87407	1.81386	18.68	<.0001			
size	1	-0.10174	0.00889	-11.44	<.0001			
type	1	8.05547	1.45911	5.52	<.0001			

```
/* Define predicted values for each type level, by hand,
    and look at fitted lines */
data insurance; set insurance;
    pred0 = 33.87407 - .10174*size;
    pred1 = 33.87407 - .10174*size + 8.05547;
proc sort data=insurance;
    by size type;
proc sgplot data=insurance;
    scatter x=size y=months /
        markerchar=type markercharattrs=(size=12pt);
    series x=size y=pred0 / lineattrs=(pattern=solid);
    series x=size y=pred1 / lineattrs=(pattern=dash);
run;
```



```
/* Interaction model */
data insurance; set insurance;
   size_type = size*type;
proc reg data=insurance;
   model months = size type size_type;
   title1 'Interaction model';
run;
```

Interaction model

Parameter Estimates							
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t		
Intercept	1	33.83837	2.44065	13.86	<.0001		
size	1	-0.10153	0.01305	-7.78	<.0001		
type	1	8.13125	3.65405	2.23	0.0408		
size_type	1	-0.00041714	0.01833	-0.02	0.9821		

```
data insurance; set insurance;
  pred0 = 33.83837 - .10153*size;
  pred1 = 33.83837 - .10153*size + 8.13125 - .0041714*size;
proc sort data=insurance; by size type;
proc sgplot data=insurance;
  scatter x=size y=months /
    markerchar=type markercharattrs=(size=12pt);
  series x=size y=pred0 / lineattrs=(pattern=solid);
  series x=size y=pred1 / lineattrs=(pattern=dash);
run;
```

