Tarea Numérica MA2601 Ecuaciones Diferenciales Ordinarias

Escuela de Ingeniería, FCFM, U. de Chile. Semestre 2022-1 Profesores: Alexander Frank, Álvaro Hernández, Axel Osses, Jorge Aguayo, Alexis Fuentes Ayudante coordinador: Diego Olguín

Modelo social de interacción humanidad-naturaleza-desigualdad.

Fecha de publicación: Lunes 25 de abril de 2022

Fecha de entrega: Lunes 30 de mayo de 2022 a la 23:59

Recursos computacionales: Python 3.0 o superior.

Planteamiento:

Considere el modelo de cuatro variables de relación de la humanidad con la naturaleza siguiente: x_C representa a la población de la 'gente común' o 'comunes', x_E representa la población de la 'élite', y representa la 'naturaleza' es decir todos los recursos naturales disponibles y la última variable a representa el 'alimento' que mantiene la población humana.

El modelo se compone de cuatro EDOs de evolución no lineales para $t \ge 0$:

$$x'_{C} = b_{1}x_{C} - a_{1}x_{C}$$
 $x'_{E} = b_{2}x_{E} - a_{2}x_{E}$
 $y' = ry(L - y) - Dx_{C}y$
 $a' = Dx_{C}y - C_{C} - C_{E}$

En el modelo, a_1 , a_2 son tasas de desaparición, b_1 , b_2 son tasas de nacimiento, r es un factor de regeneración de los recursos naturales, L es el límite de carga de la naturaleza, D es la tasa en que la gente común usa los recursos naturales para producir alimentos. Los valores C_C y C_E corresponden a tasas de consumo de alimento de la gente común y de la élite, respectivamente. Definiremos a_c como el valor de bienestar crítico por debajo del cual se comienza a racionar el alimento. Este es:

$$a_c = p \cdot (x_C + k \cdot x_E)$$

donde p es la cantidad de alimento mínima per capita y k es el factor de desigualdad entre la gente común y la élite, por ejemplo si k=10, entonces la élite consumiría 10 veces más per cápita que los comunes. Con esto, C_C y C_E son funciones que vienen representadas por:

$$C_C = s \cdot x_C \cdot min\left\{1, \frac{a}{a_c}\right\}$$

$$C_E = k \cdot s \cdot x_E \cdot min\left\{1, \frac{a}{a_c}\right\}$$

donde s es el salario de subsistencia per cápita.

Las cantidades a_1 y a_2 quedan definidas como:

$$a_{1} = a_{s} + max \left\{ 0, 1 - \frac{C_{C}}{sx_{C}} \right\} (a_{h} - a_{s})$$

$$a_{2} = a_{s} + max \left\{ 0, 1 - \frac{C_{E}}{sx_{E}} \right\} (a_{h} - a_{s})$$

Donda a_s es la tasa de mortalidad cuando los estratos se encuentran condiciones saludables y a_h la tasa de mortalidad en condiciones de hambruna.

Por último, definimos un colapso cuando alguna de las variables converge a 0 o logra el valor 0. Cuando los valores tienden a un valor constante distinto de 0, decimos que es un equilibrio.

Considere los siguientes valores para las constantes y valores iniciales del problema:

a_s	a_h	b_1	b_2	s	p	r	L	$x_C(0)$	y(0)	a(0)
10^{-2}	7×10^{-2}	3×10^{-2}	3×10^{-2}	5×10^{-4}	5×10^{-3}	10^{-2}	10^{2}	10^{2}	L	0

En cuanto a los valores de k, D y $x_E(0)$ estos irán variando en las distintas partes del análisis.

Parte 0: Preámbulos de programación (10 puntos)

Importe las librerías necesarias (Numpy, Matplotlib, Scipy) y primero defina todas las constantes mencionadas anteriormente, excepto k, D y $x_E(0)$. Luego programe 5 funciones que calculen los valores de a_c , C_C , C_E , a_1 y a_2 .

Parte 1: Modelo simplificado a una EDO (20 puntos)

Para esta parte trabajaremos con $x_e \equiv 0$, y = 50, a = 250 constantes. Escriba la EDO resultante y resulvala numéricamente utilizando los métodos de Euler progresivo (puede ver esta cápsula), Heun (puede ver esta cápsula) y Runge Kutta 4 (puede ver esta cápsula). Para esto siga los siguientes pasos:

- 1. Utilice D y k cualquiera. Además de h=1 medido en años. Programe una función que calcule el lado derecho de esta EDO.
- 2. Simule en el intervalo [0, 1000] medido en años y encuentre la solución numérica para x_C con cada método.
- 3. Grafique las soluciones obtenidas por cada método en un solo gráfico. Recuerde colocar título al gráfico y a los ejes, además de leyendas.
- 4. Vuelva a obtener soluciones ahora con pasos $h \cdot 2^{-1}$, $h \cdot 2^{-2}$. Compare el error de los 3 métodos. Para ello calcule error de los métodos con respecto a una solución numérica obtenida con Runge Kutta de orden 4 y paso temporal $h \cdot 2^{-8}$. Note que esto puede implicar restar 2 arreglos de largos distintos.

Sus gráficos deberían ser algo como esto:

Parte 2: Sociedad sin élites (10 puntos)

Para esta parte solo consideraremos $x_E \equiv 0$, por lo que quedan solamente 3 ecuaciones y 3 incógnitas en el sistema.

- a) Escriba el sistema simplificado, imponiendo que $x_E \equiv 0$. Programe una función que calcule la función del lado derecho del sistema, si llamamos $X(t) = (x_C(t), y(t), a(t))^T$, esta debe ser de la forma F(t, X, args), en donde por args entendemos todas las constantes y parámetros del problema.
- b) Si definimos $e = \frac{a_h b_1}{a_h a_s}$, y definimos el límite de carga de la naturaleza como:

$$\chi = \frac{r}{D} \left(L - e \frac{s}{D} \right)$$

demuestre que existe un \widehat{D} para el cual se maximiza χ y este es:

$$\widehat{D} = \frac{2e \cdot s}{L}$$

Y que la carga límite óptima es:

$$\chi_M = \frac{rL}{2\widehat{D}}$$

Ahora buscaremos una solución para el modelo, siga los siguientes pasos:

- 1. Utilice $D = \widehat{D}$ y un valor de k cualquiera.
- 2. Simule en el intervalo [0, 1000] medido en años y encuentre soluciones para x_C , y, a con el método que usted prefiera.
- 3. Grafique las soluciones para x_C , y y a en un mismo gráfico junto al valor de χ correspondiente. Amplifique y por 8L y a por 2L. Recuerde colocar título al gráfico y a los ejes, además de leyendas.

4. Describa qué es lo que ocurre.

 \mathcal{L} Que puede observar si cambia el valor de k? Explique por qué ocurre esto. Esta pregunta no la responda para las partes posteriores.

c) Utilice ahora $D=5.5\widehat{D}$. Resuelva con un solver o función preprogramada en Python de su preferencia (se le recomienda visitar esta cápsula). Para obtener una solución óptima, agregue un parámetro a esta solución llamado rtol, comience con un valor de 10^{-3} y vaya disminuyendo este hasta 10^{-12} . Describa que es lo que ocurre cuando disminuye el valor. Grafique en mismo gráfico, amplificando y y a por L.

Parte 3: Sociedad igualitaria (10 puntos)

Aquí consideraremos que $x_E \neq 0$, en donde x_C y x_E consumen la misma tasa de alimento, pero el estrato x_E no trabaja y por tanto no participa directamente en la depredación de la naturaleza. Entonces llamaremos a x_C como los trabajadores y a x_E como los no trabajadores. Por tanto tomaremos k = 1 y además elegiremos $x_E(0) = 25$.

- a) Programe una función que calcule la función del lado derecho del sistema, si llamamos $X(t) = (x_C(t), x_E(t), y(t), a(t))^T$, esta debe ser de la forma F(t, X, args), en donde por args entendemos todas las constantes y parámetros del problema.
- b) Si ahora definimos $\varphi = \frac{x_E(0)}{x_C(0)}$, la carga límite queda definida por:

$$\chi = \frac{r}{D} \left(L - e \frac{s}{D} (1 + \varphi) \right) (1 + \varphi)$$

demuestre que el \widetilde{D} que maximiza χ es:

$$\widetilde{D} = \frac{2e \cdot s}{L} (1 + \varphi)$$

Y su valor óptimo es:

$$\chi_M = (\varphi + 1) \frac{rL}{2\tilde{D}}$$

Utilice $D = \widetilde{D}$ y encuentre las soluciones con el método que usted prefiera para x_C , x_E , y, a entre 0 y 1000 años y grafíquelas en un mismo gráfico, amplifique y por 8L y a por 2L. Describa qué es lo que ocurre.

c) Repita lo mismo de la parte anterior, pero con $D = 5\widetilde{D}$. Resuelva con un solver y siga pasos similares a P2.c). Grafique amplificando y por 8L y a por L/2. Describa qué es lo que ocurre.

Parte 4: Sociedad desigual (10 puntos)

En esta parte consideraremos que $k \gg 1$, es decir un escenario en que la élite consume muchos más alimentos que los comunes.

- a) Utilice $D = 6.35 \times 10^{-6}$ y k = 10, encuentre las soluciones con el método numérico que usted prefiera para x_C , x_E , y, a entre 0 y 1000 años y grafíquelas amplificando y por 8L y a por 2L. Describa qué es lo que ocurre.
- b) Repita lo mismo de la parte anterior con $D=10^{-4}$. Comente.