

<u>Help</u>

<u>Course</u> <u>Progress</u> <u>Dates</u> <u>Discussion</u> <u>Course Notes</u>

★ Course / 4. Combinational Logic / Tutorial Problems

()

Next >

Tutorial: CMOS Continued

☐ Bookmark this page

■ Calculator

CMOS

1/1 point (ungraded)

Given the following cmos gate, determine the function computed by this gate.

- \bigcirc A) $Z = B \cdot (A + C)$
- \bigcirc B) $Z=B+A\cdot C$
- \bigcirc C) $Z = \overline{B} \cdot (\overline{A} + \overline{C})$
- \bigcirc D) $Z=\overline{B}+\overline{A}\cdot\overline{C}$
- (E) None of the above

Explanation

Looking at the pulldown circuitry for this gate, we see that $Z=\overline{B+A\cdot C}$. To simplify this, we use DeMorgan's Law to find that $Z=\overline{B}\cdot\overline{A\cdot C}=\overline{B}\cdot(\overline{A}+\overline{C})$.

Submit

• Answers are displayed within the problem

CMOS

1/1 point (ungraded)

What is the minimum number of NFETs required to build a CMOS circuit (perhaps involving more than one CMOS gate) that has the following truth table?

$oldsymbol{A}$	B	C	G
0	0	0	1
0	0	1	0
0	1	0	1

⊞ Calculator

				Tutorial Problems 4. Combinational Logic Computation Structures 1: Digital Circuits edX	
0	1	1	U		
1	0	0	1		
1	0	1	1		
1	1	0	0		
1	1	1	0		
(A) 3					
○ B) 4					
O C) 5					
D) 6					
E) None of the above					
✓					
Submit					
✓ Correct (1/1 point)					
CMOS					
2 points possible (ungraded) Consider the following circuit that implements the 3-input function Z(A,B,C):					
A Do-To-To-To-To-To-To-To-To-To-To-To-To-To					

Which of the proposals below is the best way to shorten the rise time of the signal at Z?

P1: Add two additional series-connected inverters to the output.

P2: Double the width of the NFET in the output inverter.

P3: Double the width of the PFET in the output inverter.

P4: Halve the width of the NFET in the output inverter.

P5: Halve the width of the PFET in the output inverter.

Best proposal: Select an option ➤

Can the function Z(A, B, C) be implemented as a single 3-input CMOS gate having complementary pullup/pulldown circuits?

Implement as a single CMOS gate? Select an option ➤

Submit

Discussion

Show all posts

 $\textbf{Topic:} \ 4. \ Combinational \ Logic \ / \ Tutorial: CMOS \ Continued$

Hide Discussion

by recent activi

Add a Post

•

Why more current causes faster rise time?

⊞ Calculator

2

Previous

Next >

© All Rights Reserved

edX

About

Affiliates

edX for Business

Open edX

Careers

News

Legal

Terms of Service & Honor Code

Privacy Policy

<u>Accessibility Policy</u>

Trademark Policy

<u>Sitemap</u>

Cookie Policy

Your Privacy Choices

Connect

<u>Idea Hub</u>

Contact Us

Help Center

Security

Media Kit

© 2024 edX LLC. All rights reserved.

深圳市恒宇博科技有限公司 <u>粤ICP备17044299号-2</u>