Obliczenia Naukowe

Prowadzący: dr hab. Paweł Zieliński, prof. PWr

Lista 1

Autor: Daniel Drapała 244939

Przybliżenie zagadnienia arytmetyki zmiennopozycyjnej (IEEE 754), częściowe zrozumienie, a także pułapki na które możemy trafić podczas korzystania z niej.

Zadanie 1 Epsilon Maszynowy

Epsilonem maszynowym macheps (ang. machine epsilon) nazywamy najmniejszą liczbę macheps > 0 taką, że $1.0 \oplus$ macheps > 1.0.

Polecenie

Iteracyjne wyznaczenie epsilonów maszynowych dla wszystkich typów zmiennopozycyjnych i porównanie ich z wartościami zwracanymi przez funkcję eps() z języka Julia oraz z danymi zawartymi w pliku nagłówkowym float.h języka C.

Rozwiązanie

Prosta pętla w której dzielę zmienną meps (początkowo równą 1) przez dwa aż do momentu w którym $1+meps\div 2=0$.

Wyniki

Tabela 1 przedstawia wyniki poszczególnych sposobów pokazania macheps.

Тур	macheps wyliczony	eps(typ)	float.h
Float16	0.0009765625	0.0009765625	Brak
Float32	1.192092895507813 10-7	1.192092895507813 10-7	$1.1920929 \cdot 10^{-7}$
Float64	$2.220446049250313 \cdot 10^{-16}$	$2.220446049250313 \cdot 10^{-16}$	2.220446049250313 · 10 ⁻¹⁶

Tabela 1: Zestawienie wyliczonych epsilonów maszynowych

Wnioski

Wyniki macheps wyliczonego iteracyjnie za pomocą prostej pętli pokrywają się z danymi zawartymi w pliku float.h i funkcją eps(). Epsilon maszynowy wiąże się z precyzją arytmetyki (zadaną wzorem 2^{-t-1}), gdzie t-dlugość mantysy, jego wartość jest wtedy dwa razy większa (2^{-t}).

Liczba Eta

<u>Polecenie</u>

Napisać program w języku Julia wyznaczający iteracyjnie liczbę eta taką, że eta > 0.0 dla wszystkich typów zmiennopozycyjnych.

Rozwiązanie

Prosta pętla, która kończy dzielenie jedynki przez dwa w momencie w którym otrzymamy zero i zwraca wynik ostatniego dzielenia przez 2.

Wyniki

	eta	nextfloat()	MIN _{nor} /floatmin()
Float16	5.96046447753906310 ⁻⁰⁸	5.96046447753906310 ⁻⁰⁸	6.104 10 ⁻⁵
Float32	1.401298464324817 10 ⁻⁴⁵	1.401298464324817 10 ⁻⁴⁵	1.1754944 10 ⁻³⁸
Float64	4.940656458412465 10 ⁻³²⁴	4.940656458412465 10 ⁻³²⁴	2.2250738585072014 10 ⁻³⁰⁸

Wnioski

Po wykonaniu funkcji bitstring na otrzymanym wyniku możemy zauważyć że jest najmniejsza liczba możliwa do zapisania **IEEE** Dodatkowo wszystkie bity cechy są wyzerowane ponieważ jest to liczba zdenormalizowana (stad nazwa od min subnormal). MIN_{sub} Za to MIN_{nor} jest minimalną znormalizowaną liczbą, czyli cecha nie jest wyzerowana:

Pytania i Odpowiedzi

- 1. Jaki związek ma liczba eta z liczbą MIN_{sub}?
- 2. Co zwracają funkcje floatmin(Float32) i floatmin(Float64) i jaki jest związek zwracanych wartości z liczbą MIN_{nor} ?

Ad.1 Liczba eta jest najmniejszą możliwą liczbą po zerze, więc razem z MIN_{sub} Tworzą granicę tzw. "zera maszynowego" $(-MIN_{sub}, MIN_{sub})$

Ad.2 Funkcje te zwracają najmniejszą wartość nieujemną postaci normalnej (MIN_{nor} jest większe od MIN_{sub}) to znaczy że jest to najmniejsza liczba do zapisania i będąca dalej liczbą normalną

Liczba Max

Polecenie

Napisać program w języku Julia wyznaczający iteracyjnie liczbę maksymalną możliwą do zapisania w danej arytmetyce dla 3 typów i porównanie jej z wartościami zwracanymi prez floatmax() i przechowywanymi w pliku float.h

Rozwiązanie

Prosta pętla, która mnoży zmienną 1.0 × 2.0 aż do momentu otrzymania nieskończoności. Wtedy wynikiem ostateczny będzie pomnożenie liczby z ostatniej iteracji razy (2.0-macheps())

Wyniki

	Max	floatmax()	float.h
Float16	$6.550400000000000010^{04}$	6.550400000000000 10 ⁰⁴	-
Float32	$3.402823466385289 \ 10^{38}$	3.402823466385289 10 ³⁸	3.402823466385289 10 ³⁸
Float64	1.797693134862316 10 ³⁰⁸	1.797693134862316 10 ³⁰⁸	1.797693134862316 10 ³⁰⁸

Tabela 2 wyniki liczby MAX

Wnioski

Wyniki pokrywają się, a więc metoda znajdywania max jest poprawna.

Zadanie 2 Epsilon maszynowy wg. Kahana

Kahan stwierdził że macheps można uzyskać za pomocą obliczenia wyrażenia $3\left(\frac{4}{3}-1\right)-1$ w arytmetyce zmiennopozycyjnej.

Polecenie

Eksperymentalnie obliczyć wyrażenie Kahana i porównać z wynikiem funkcji eps().

Porównanie wyników z eps(typ):

	Macheps by Kahan	Eps(t)
Float16	-9.765625000000000000000 10-4	9.76562500000000000000 10 ⁻⁰⁴
Float32	1.19209289550781250000 10 ⁻⁰⁷	1.19209289550781250000 10 ⁻⁰⁷
Float64	-2.22044604925031308085 10 ⁻¹⁶	2.22044604925031308085 10 ⁻¹⁶

Tabela 3 Wyniki obliczonego machepsa sposobem Kahana

Wnioski:

Możemy zauważyć, że wartości pokrywają się, zmieniony jest jedynie znak w typach Float16 i Float64. Wiązane jest to z zasadą "round to even", która to w zależności od parzystości mantysy zaokrągla liczbę z niedomiarem lub z nadmiarem (zero na ostatniej pozycji mantysy – zaokrąglenie z niedomiarem, jeden – z nadmiarem). Więc we Float16 i Float64 dostajemy zaokrąglenie z niedomiarem, a w Float32 z nadmiarem. A to dlatego że całe to równanie w reprezentacji dwójkowej jest liczbą okresową (nie istnieje skończona liczba bitów określająca daną liczbę).

Zadanie 3

Polecenie

W zadaniu należy eksperymentalnie sprawdzić w języku Julia, że w arytmetyce Float64 liczby zmiennopozycyjne są równomiernie rozmieszczone w przedziale [1,2], a także ich rozmieszczenie w przedziałach $[\frac{1}{2},1]$ i [2,4]. Opis zadania

Rozwiązanie

Prosta pętla for zaczynająca się od lewej strony przedziału, dodająca do przedziału liczbę 2⁻⁵². Wnioski budowane będą na podstawie reprezentacji bitowej poszczególnych iteracji.

Wyniki

Pierwsze cztery iteracje na granicach przedziału dla [1,2] i δ=2 ⁻⁵²
001111111111100000000000000000000000000
001111111111100000000000000000000000000
001111111111100000000000000000000000000
001111111111100000000000000000000000000
•••
001111111111111111111111111111111111111
001111111111111111111111111111111111111
001111111111111111111111111111111111111
001111111111111111111111111111111111111
Pierwsze cztery iteracje na granicach przedziału dla $[\frac{1}{2},1]$ i $\delta=2^{-53}$
001111111110000000000000000000000000000
001111111110000000000000000000000000000
001111111111000000000000000000000000000
001111111111000000000000000000000000000
001111111110111111111111111111111111111
001111111110111111111111111111111111111
001111111110111111111111111111111111111
001111111110111111111111111111111111111
Pierwsze cztery iteracje na granicach przedziału dla [2,4] i δ=2 ⁻⁵¹
001111111110000000000000000000000000000
001111111110000000000000000000000000000
001111111110000000000000000000000000000
001111111111000000000000000000000000000
•••
001111111110111111111111111111111111111
001111111111111111111111111111111111111
001111111110111111111111111111111111111

Wnioski

Te 3 przedziały nie są przypadkowe, są to przedziały między kolejnymi potęgami dwójki, które dzięki tabelkom wynikowym pozwalają zauważyć, że im większy przedział (im wyższe potęgi liczby 2) tym gęstość liczb maleje. W sprawdzanym bowiem przedziałach nie zmienia się cecha, tylko mantysa. Podsumowując widzimy kolejne iteracje zwiększają pierwszy najmniej znaczący bit o jeden, więc rozmieszczone są równomiernie, lecz im większe wartości, tym mniejsza gęstość ich rozmieszczenia.

Zadanie 4 Nieodwracalność dzielenia

Polecenie

Znalezienie najmniejszej liczby x z przedziału (1,2) w Float64 takiej, że $x \cdot (1 \div x) \neq 1$.

Rozwiązanie

W celu rozwiązania zadania dla kolejnych liczb x w arytmetyce Float64, zaczynając od najmniejszej liczby większej od 1, zostało sprawdzone czy warunek $x \cdot (1 \div x) \neq 1$ zachodzi. W momencie znalezienia pierwszej takiej liczby program przerywał pracę i wyświetlał wynik na ekranie.

Wyniki

Przykładowa liczba znaleziona: 1.500000000000002 a najmniejsza jest pierwszą napotkaną od jedynki po nextfloat(): 1.000000057228997

Wnioski

Zadanie pokazuje, że działania arytmetyczne na liczbach zmiennopozycyjnych mogą generować błędy związane z zaokrąglaniem wyliczonych wartości. Przy używaniu typów zmiennopozycyjnych takie błędy często są nieuniknione, zwłaszcza przy dzieleniu, które nie jest w tej arytmetyce odwracalne.

Zadanie 5 Obliczanie iloczynu skalarnego

Obliczenie iloczynu skalarnego danych wektorów z wykorzystaniem czterech różnych algorytmów sumowania dla typów Float32 i Float64.

```
x = [2.718281828, -3.141592654, 1.414213562, 0.5772156649, 0.3010299957]

y = [1486.2497, 878366.9879, -22.37492, 4773714.647, 0.000185049]
```

Rozwiązanie

W programie zaimplementowano podane algorytmy:

```
1. "w przód": \sum_{i=1}^{n} x_i y_i;
```

2. "w tył":
$$\sum_{i=n}^{1} x_i y_i$$
;

3. dodanie dodatnich liczb w porządku od największej do najmniejszej oraz ujemnych w porządku od najmniejszej do największej, a następnie dodanie do siebie obliczonych sum częściowych; zostało to wykonane za pomocą sortowania i odpowiedniego dodania elementów tablicy sum częściowych;

4. metoda przeciwna do sposobu 3.

Wyniki

	1	2	3	4
Float32	-0.4999443	-0.4543457	-0,5	-0,5
Float64	1.0251881368296672 10 ⁻¹⁰	-1.5643308870494366 10 ⁻¹⁰	0.0	0.0

Tabela 5 Iloczyn skalarny wektorów 4 różne algorytmy

Prawidłowy iloczyn skalarny wektorów obliczony bez zaokrąglania danych to $-1.00657107000000 \cdot 10^{-11}$. Wszystkie otrzymane wyniki są od niego różne.

Wnioski

Zadanie pokazuje, że kolejność wykonywania działań nie jest bez znaczenia. Na przykład dodanie do bardzo dużej liczby w stosunku do niej bardzo małej generuje błędy, ponieważ mała liczba zostanie w jakimś stopniu zignorowana podczas zaokrąglania wyniku.

Jednym ze sposobów na uniknięcie dużych błędów, kiedy inne metody zawodzą, jest użycie arytmetyki o większej precyzji. Użycie Float64 zamiast Float32 w zadaniu w znaczący sposób przybliżyło uzyskane wyniki do poprawnego, jednak nawet to nie dało zadowalających rezultatów.

Zadanie 6

Polecenie

Zadanie polega na obliczeniu kolejnych wartości funkcji, które są tożsame, w arytmetyce Float64. Za argumenty wybieramy kolejną ujemną potęgę liczby osiem.

$$f(x) = \sqrt{x^2 + 1} - 1$$
 $g(x) = \frac{x^2}{\sqrt{x^2 + 1} + 1}$ $dla \ x = 8^{-1}, 8^{-2}, 8^{-3}, \dots$

Wyniki

- -Początkowo wartości są do siebie zbliżone
- -Funkcja f osiąga wartość zero dla $x=8^{-9}$, kiedy to g osiąga wartość dopiero dla $x=8^{-179}$.
- -Pokazane szczegółowo w Tabeli nr 7

8-1	0.0077822185373186414	0.0077822185373187065
8-2	0.00012206286282867573	0.00012206286282875901
8-3	1.9073468138230965 10 ⁻⁶	1.907346813826566 10 ⁻⁶
8-4	2.9802321943606103 10 ⁻⁸	2.9802321943606116 10 ⁻⁸
8-8	1.7763568394002505 10 ⁻¹⁵	1.7763568394002489 10 ⁻¹⁵
8-9	0.0	2.7755575615628914 10 ⁻¹⁷
8-10	0.0	4.336808689942018 10 ⁻¹⁹
8 ⁻¹⁷⁷	0.0	1.012 10 ⁻³²⁰
8-178	0.0	1.6 10 ⁻³²²
8-179	0.0	0.0

Tabela 6 wyniki z zadania 7

Wnioski

Bardziej wiarygodna jest funkcja g, ponieważ wartość funkcji powinna zbliżać się do 0, a funkcja g osiąga zero dopiero przy pierwiastku stopnia 179 z 8 (nie jest idealna, ponieważ jednak do tego zera dochodzi, ale jest to spowodowane niedokładnością używanej arytmetyki bardziej niż niedoskonałością funkcji). Funkcja f dochodzi bardzo szybko do zera. Jest to spowodowane odejmowaniem podobnych do siebie liczb. W wyniku takiego działania zawsze dochodzi do utraty cyfr znaczących przez co funkcja ta nie zwraca poprawnych wyników (nawet bliskich).

Zadanie 7

<u>Polecenie</u>

Korzystając ze wzoru $f'(x) \approx \widetilde{f}_h'(x_0) = \frac{f(x_0+h)-f(x_0)}{h}$ obliczyć przybliżoną wartość pochodnej funkcji $f(x) = \sin(x) + \cos(3x)$ w punkcie x₀=1 oraz błędów $\left|f'(x_0) - \widetilde{f}_h'(x_0)\right|$ dla $h \in \{2^n: n = 0,1,2,...,54\}$

Rozwiązanie

Obliczenie pochodnej ręcznie ($f'(x) = \cos(x) - 3\sin(x)$) i porównanie do przybliżenia otrzymanego z ww. wzoru. Dane przedstawione zostaną w tabelce wraz z 1+h

Wyniki

f'(x) = 0.11694228168853815

h ⁻ⁱ	$\widetilde{f}_h'(x_0)$	$\left f'(x_0) - \widetilde{f}_h'(x_0) \right $	1+h
2 ⁻⁰	2.0179892252685967	1.9010469435800585	2.0
2 ⁻¹	1.8704413979316472	1.753499116243109	1.5
2-2	1.1077870952342974	0.9908448135457593	1.25
2 ⁻³	0.6232412792975817	0.5062989976090435	1.125
2 ⁻⁴	0.3704000662035192	0.253457784514981	1.0625
2 ⁻²⁵	0.116942398250103	1.1656156484463054 10 ⁻⁷	1.0000000298023224
2 ⁻²⁶	0.11694233864545822	5.6956920069239914 10-8	1.0000000149011612
2 ⁻²⁷	0.11694231629371643	3.460517827846843 10-8	1.0000000074505806
2 ⁻²⁸	0.11694228649139404	4.802855890773117 10 ⁻⁹	1.0000000037252903
2 ⁻²⁹	0.11694222688674927	5.480178888461751 10 ⁻⁸	1.000000018626451
2 ⁻³⁰	0.11694216728210449	1.1440643366000813 10 ⁻⁷	1.0000000009313226
2 ⁻⁴⁸	0.09375	0.023192281688538152	1.0000000000000036
2 ⁻⁴⁹	0.125	0.008057718311461848	1.0000000000000018
2 ⁻⁵⁰	0.0	0.11694228168853815	1.0000000000000000
2 ⁻⁵¹	0.0	0.11694228168853815	1.00000000000000004
2 ⁻⁵²	-0.5	0.6169422816885382	1.0000000000000000000000000000000000000
2 ⁻⁵³	0.0	0.11694228168853815	1.0
2 ⁻⁵⁴	0.0	0.11694228168853815	1.0

Wnioski

Wyniki pokazują, że niektóre obliczenia dawały zbyt małe wyniki, w wyniku czego przybliżenie

zacierało informacje przekazywane przez niektóre zmienne. Na przykład 1+h dla ostatnich iteracji nie różniło się niczym od zwykłej jedynki, ponieważ precyzja float64 nie obejmuje liczby 1+2⁻⁵³. Widzimy że dla h= 2⁻²⁹ osiągamy najmniejszy błąd przybliżenia pochodnej, a coraz mniejsze wartości h sprawiają, że błąd znowu rośnie, spowodowane jest to tym że podczas przybliżania pochodnej dzielimy wynik dodawania który wraz z malejącym h praktycznie przestaje się zmieniać (funkcja rośnie wolno, a 1+h = 1 dla małego h), dlatego na końcowych iteracjach błąd jest równy pochodnej, ponieważ przybliżenie jest równe zeru.