EDC Lesson 12: Transistor and FET Characteristics

Lesson-12: MOSFET (enhancement and depletion mode) Characteristics and Symbols

1. Metal Oxide Semiconductor Field Effect Transistor (MOSFET)

Types of FETs

The family of FETs may be divided into:

- Junction FET
- Depletion Mode MOSFET
- Enhancement Mode MOSFET

Remember JFET Definition

•JFET is a unipolar-transistor, which acts as a voltage controlled current device and is a device in which current at two electrodes is controlled by the action of an electric field at a reversed biased p-n junction.

MOSFET Definition

• MOSFET Field effect transistor is a unipolartransistor, which acts as a voltage-controlled current device and is a device in which current at two electrodes drain and source is controlled by the action of an electric field at another electrode gate having in-between semiconductor and metal very a thin metal oxide layer.

n-channel depletion Metal-Oxide-Semiconductor FET (MOSFET)

The gate-channel insulator is made out of dielectric (SiO₂), $\varepsilon = 3.9$

p-channel depletion Metal-Oxide-Semiconductor FET (MOSFET)

The gate-channel insulator is made out of dielectric (SiO₂), $\varepsilon = 3.9$

Effect of Insulating SiO₂ (metal-oxide) layer

• MOSFET Very high input impedance due to SiO₂ layer compared to even reverse biased p-n junction depletion region input impedance in JFET

n-channel depletion region

n-channel depletion region (normally ON)

Transfer Characteristics of n-channel depletion region MOSFET

- There is a convenient relationship between I_{DS} and V_{GS} .
- Beyond pinch-off

$$I_{DS} = I_{DSS} \left[1 - \left(\frac{V_{GS}}{V_{GS(off)}} \right) \right]^{2}$$

- Where I_{DSS} is drain current when $V_{GS} = 0$ and $V_{GS(off)}$ is defined as $-V_P$, that is gate-source voltage that just pinches off the channel.
- The pinch off voltage V_P here is a +ve quantity because it was introduced through $V_{DS(sat)}$.
- V_{GS(off)} however is negative, -V_P.

p-channel depletion MOSFET

p-channel depletion MOSFET (Normally ON at VGS = 0)

2. Enhancement Mode MOSFETS

n-channel enhancement mode MOSFET

n-channel enhancement mode Normally Off

• Note that with a n-channel device we apply a +ve gate voltage to allow source-drain current, with a p-channel device we apply a -ve gate voltage.

p-channel enhancement MOSFET

p-channel enhancement MOSFET (normally OFF)

3. Enhancement Mode MOSFETS in detail

Basic MOSFET (n-channel) Enhancement mode

When VGS = 0, the nchannel is very thin and channel width enhances with $+V_{GS}$

Channel width enhancement with +V_{GS}

- The gate electrode is placed on top of a very thin insulating layer.
- There are a pair of small n-type regions just under the drain & source electrodes.
- If apply a +ve voltage to gate, will push away the 'holes' inside the p-type substrate and attracts the moveable electrons in the n-type regions under the source & drain electrodes.

Enhancement mode MOSFET

- Increasing the +ve gate voltage pushes the p-type holes further away and enlarges the thickness of the created channel.
- As a result increases the amount of current which can go from source to drain this is why this kind of transistor is called an *enhancement mode* MOSFET.

Subthreshold region in n-chennel enhancement mode

Subthreshold region in n-chennel enhancement mode

Ideal case: $I_D = 0$ when $V_G < V_T$ Real device – subthreshold current:

Origin?

Diffusion current !:

$$I_D(sub) \propto \exp(\frac{qV_G}{kT})$$

Important parameter – subthreshold swing S:

$$S = \left[\frac{\partial (\log I_D)}{\partial V_G} \right]^{-1}$$

S should be as small as possible: 70 -100 mV/decade

Small $V_T \rightarrow$ High subthreshold (leakage) current, high power losses High $V_T \rightarrow$ Low drive current Historically - $V_T \approx 0.7 \text{ V}$

Above Threshold – ON state

Above Threshold – ON state

$$V_T = 2 V$$

$$I_D = k (V_{GS} - V_T)^2$$

If I_D (on) = 10 mA and

$$V_{GS} = 8$$
 V, then $k = 10$ mA/ $(8V - 2V)^2 = 0.278$ mA/ V^2

$$I_D = k (V_{GS} - V_T)^2 = 0.278 \times (V_{GS} - V_T)^2 \text{ mA}$$

Ideal Output Characteristics of MOSFET

Ideal Output linear region before saturation Characteristics of MOSFET

$$I_D = f(V_D), V_G = const$$
:

Small V_D – linear region

$$\begin{split} I_D &= \frac{Z\mu_n C_i}{L} (V_G - V_T) V_D \\ g &= \frac{\partial I_D}{\partial V_D} = \frac{Z\mu_n C_i}{L} (V_G - V_T) \end{split}$$

Channel conductance g is determined by V_G

Ideal Output Saturation formula of enhancement mode MOSFET

2) Saturation:

 $V_D(\text{sat}) \rightarrow Q_n(L)=0$ - pinch-off near the drain

V_D(sat)≈V_G-V_T

$$I_D(sat) = \frac{z\mu_n C_i}{2L} (V_G - V_T)^2$$

$$g = 0$$

 I_D is determined by V_G, does not depend on V_D

changing z -> Change in the current capacity

Transfer Characteristics in above threshold region and saturation region in n-channel enhancement mode

Transfer Characteristics in Subthreshold region and saturation region in n-channel enhancement mode

4. Symbols of depletion and Enhancement Mode MOSFETS

Symbol of depletion mode MOSFET

p-channel Depletion Mode MOSFET

Symbol of enhancement mode of MOSFET

n-channel Enhancement Mode MOSFET

p=channel Enhancement Mode MOSFET

Summary

We learnt

- Definitions of MOSFET
- n-channel and p-channel Depletion
 MOSFET normally ON, Pinch off on –
 VGS in n-MOSFET and + VGS in p-MOSFET
- n-channel and p-channel enhancement
 MOSFET normally OFF, below Threshold and above VT on + VGS in n-MOSFET and VGS in p-MOSFET

End of Lesson 12