1

GATE 2022 BM 14 Q

ee23btech11223 - Soham Prabhakar More

Question: x(t) is a real continuous-time signal whose magnitude frequency response $|X(j\Omega)|$ is shown below. After sampling x(t) at $100 \ rad.s^{-1}$, the spectral point P is down-converted to _____ rad.s^{-1} in the spectrum of the sampled signal. (GATE 2022 BM 14 Q)

Fig. 1: Plot of $|X(j\omega)|$

Solution:

Parameter	Description
w(t)	Sampling Function
W(s)	Fourier Transform of $w(t)$
x(t)	Input Signal
X(s)	Input Signal Frequency Spectrum
x(t)	Sampled Input Signal
$X_{s}\left(s\right)$	Sampled Signal Frequency Spectrum

TABLE 1: Table of parameters

The sampling function is:

$$w(t) = \sum_{k=-\infty}^{\infty} \delta\left(t - \frac{2\pi k}{100}\right) \tag{1}$$

$$W(j\omega) = 100 \sum_{k=-\infty}^{\infty} \delta(j(\omega - 100k))$$
 (2)

then the sampled function:

$$x_s(t) = x(t)w(t) \tag{3}$$

$$X_{s}(j\omega) = X(j\omega) * W(j\omega)$$
(4)

$$X_{s}(j\omega) = \int_{-\infty}^{\infty} X(j\theta) W(j(\omega - \theta)) d\theta$$
 (5)

$$X_{s}(j\omega) = 100 \sum_{k=-\infty}^{\infty} \int_{-\infty}^{\infty} X(j\theta) \, \delta(j(\omega - 100k - \theta)) \, d\theta$$
(6)

 $X_s(j\omega) = 100 \sum_{i=1}^{\infty} X(j(\omega - 100k))$ (7)

Thus, The down sampled point is at:

$$\omega = |162.5 - 100k| \tag{8}$$

where k is the nearest integer to $\frac{162.5}{100}$, which is 2 Thus,

$$\omega = 37.5 \, rad \, s^{-1} \tag{9}$$

Fig. 2: Plot of $|X_s(j\omega)|$