

Prof. Dr. Peter Thiemann Manuel Geffken 22.01.2016 Abgabe bis spätestens Freitag 29.01.2016, 10 Uhr in die Briefkästen in Gebäude 51

10. Übungsblatt zur Vorlesung Theoretische Informatik

Aufgabe 1: Abschlusseigenschaften von Typ-1-Sprachen

3 Punkte

Seien L_1 und L_2 zwei Typ-1-Sprachen über dem Alphabet Σ . Zeigen Sie, dass auch der Schnitt $L_1 \cap L_2$ eine Typ-1-Sprache ist. Beschreiben Sie dazu präzise eine nichtdeterministische Turingmaschine M, die $L_1 \cap L_2$ mit Platz O(n) erkennt. Sie müssen keine formale Definition von M angeben.

Hinweis: M kann eine Mehrband-Turingmaschine mit Bändern $1, \ldots, k$ sein. In diesem Fall ist für ein Wort w und eine Berechnung γ von w $S_M(\gamma, i)$ der Platz, der auf Band i während der Berechnung γ benötigt wird. Der gesamte Platzbedarf von γ ist $S_M(\gamma) := \sum_{i=1}^k S_M(\gamma, i)$. Der Platzbedarf von M für Eingabe w ist $S_M(w) := \min\{S_M(\gamma) \mid \gamma \text{ berechnet } w\}$.

Aufgabe 2: Abschlusseigenschaften von Typ-0-Sprachen

2 Punkte

Zeigen Sie, dass die Klasse der Typ-0-Sprachen über einem Alphabet Σ unter Vereinigung abgeschlossen ist.

Aufgabe 3: Abschlusseigenschaften deterministischer CFL

2+2 Punkte

- (a) Sei K ein deterministischer Kellerautomat. Zeigen Sie, dass man im Allgemeinen keinen deterministischen Kellerautomaten K' mit $L(K)^R = L(K')$ konstruieren kann, indem man (analog zur Konstruktion auf NFAs)
 - alle Transitionen umdreht;
 - den Startzustand von K zum einzigen Finalzustand macht;
 - einen neuen Startzustand mit ε -Transitionen zu den Finalzuständen von K einführt.
- (b) Zeigen Sie, dass die deterministischen kontextfreien Sprachen nicht unter dem Rückwärtsoperator abgeschlossen sind. Geben Sie dazu eine deterministische kontextfreie Sprache L an und erklären Sie intuitiv, dass L^R nicht deterministisch kontextfrei ist.

Aufgabe 4: Length-lexicographic Order

4+1 Punkte

Betrachten Sie die in der Vorlesung definierte length-lexicographic order $\preceq \subseteq (\{0,1\}^*)^2$.

- (a) Zeigen Sie, dass die Relation \preceq tatsächliche eine $totale\ Ordnung$ ist.
- (b) Geben Sie eine bijektive Funktion $w \colon \mathbb{N} \to \{0,1\}^*$ an, sodass gilt:

$$\forall n, m \in \mathbb{N}. \ n \le m \iff w(n) \le w(m).$$

Sie müssen nicht zeigen, dass Ihre Lösung die gewünschten Eigenschaften hat.