



## **Model Development Phase Template**

| Date            | 08 August 2025                                                               |
|-----------------|------------------------------------------------------------------------------|
| Skill Wallet ID | SWUID20250188325                                                             |
| Project Title   | Predictive Pulse: Harnessing Machine<br>Learning for Blood Pressure Analysis |
| Maximum Marks   | 4 Marks                                                                      |

## **Initial Model Training Code, Model Validation and Evaluation Report**

The initial model training code will be showcased in the future through a screenshot. The model validation and evaluation report will include classification reports, accuracy, and confusion matrices for multiple models, presented through respective screenshots.

## **Initial Model Training Code:**

```
# 1. Logistic Regression
log_reg = LogisticRegression(max_iter=1000)
log_reg.fit(X_train, y_train)
y_pred_log = log_reg.predict(X_test)
model_results['Logistic Regression'] = {
    'accuracy': accuracy_score(y_test, y_pred_log),
    'report': classification_report(y_test, y_pred_log),
    'confusion': confusion_matrix(y_test, y_pred_log))
}
print(classification_report(y_test, y_pred_log))
print(confusion_matrix(y_test, y_pred_log))
```

```
# 2. Random Forest Classifier
rf = RandomForestClassifier(n_estimators=100, max_depth=10, min_samples_split=5, random_state=42)
rf.fit(X_train, y_train)
y_pred_rf = rf.predict(X_test)
model_results['Random Forest'] = {
    'accuracy': accuracy_score(y_test, y_pred_rf),
    'report': classification_report(y_test, y_pred_rf),
    'confusion': confusion_matrix(y_test, y_pred_rf)
}
print(classification_report(y_test, y_pred_rf))
print(confusion_matrix(y_test, y_pred_rf))
```





```
# 3. Decision Tree Classifier
 dt = DecisionTreeClassifier(max depth=5, min samples split=4, random state=42)
dt.fit(X_train, y_train)
y pred dt = dt.predict(X test)
model_results['Decision Tree'] = {
     'accuracy': accuracy_score(y_test, y_pred_dt),
    'report': classification report(y test, y pred dt),
     'confusion': confusion_matrix(y_test, y_pred_dt)
print(classification report(y test, y pred dt))
print(confusion_matrix(y_test, y_pred_dt))
 # 4. Gaussian Naive Bayes # This is the best in testing with 0.9989
 gnb = GaussianNB()
 gnb.fit(X train, y train)
y_pred_gnb = gnb.predict(X_test)
 model results['Gaussian NB'] = {
    'accuracy': accuracy_score(y_test, y_pred_gnb),
    'report': classification_report(y_test, y_pred_gnb),
    'confusion': confusion matrix(y test, y pred gnb)
 print(classification_report(y_test, y_pred_gnb))
 print(confusion_matrix(y_test, y_pred_gnb))
 # 5. Multinomial Naive Bayes (requires non-negative values)
 scaler = MinMaxScaler()
 X train mnb = scaler.fit transform(X train)
 X_test_mnb = scaler.transform(X_test)
 mnb = MultinomialNB()
 mnb.fit(X_train_mnb, y_train)
 y_pred_mnb = mnb.predict(X_test_mnb)
/model results['Multinomial NB'] = {
     'accuracy': accuracy_score(y_test, y_pred_mnb),
     'report': classification_report(y_test, y_pred_mnb),
    'confusion': confusion_matrix(y_test, y_pred_mnb)
 print(classification_report(y_test, y_pred_mnb))
 print(confusion_matrix(y_test, y_pred_mnb))
 # Display all accuracies
 print("Model Accuracies:")
 for name, result in model results.items():
    print(f"{name}: {result['accuracy']:.4f}")
```





## ${\bf Model\ Validation\ and\ Evaluation\ Report:}$

| Model Name                 | Classification Report Screenshot      |                              |                              |                              | shot                   | F1<br>Score | Confusion Matrix Screenshot  |
|----------------------------|---------------------------------------|------------------------------|------------------------------|------------------------------|------------------------|-------------|------------------------------|
|                            |                                       |                              |                              |                              |                        |             |                              |
| Logistic                   |                                       | precision                    | recall                       | f1-score                     | support                |             | [[124                        |
| Regression                 | 0<br>1<br>4<br>5                      | 0.99<br>1.00<br>0.87<br>0.92 | 0.96<br>0.94<br>1.00<br>0.98 | 0.98<br>0.97<br>0.93<br>0.95 | 139<br>120<br>46<br>60 | 96%         | [[134 0 0 5]<br>[ 0 113 7 0] |
|                            | accuracy<br>macro avg<br>weighted avg | 0.95<br>0.97                 | 0.97<br>0.96                 | 0.96<br>0.96<br>0.96         | 365<br>365<br>365      | 7070        | [ 0 0 46 0]<br>[ 1 0 0 59]]  |
| Random                     |                                       | precision                    |                              | f1-score                     | support                |             | [[139 0 0 0]                 |
| Forest                     | 0<br>1<br>4<br>5                      | 1.00<br>1.00<br>1.00<br>1.00 | 1.00<br>1.00<br>1.00<br>1.00 | 1.00<br>1.00<br>1.00<br>1.00 | 139<br>120<br>46<br>60 | 100%        | [ 0 120 0 0]                 |
|                            | accuracy<br>macro avg<br>weighted avg | 1.00<br>1.00                 | 1.00<br>1.00                 | 1.00<br>1.00<br>1.00         | 365<br>365<br>365      |             | [ 0 0 46 0]<br>[ 0 0 0 60]]  |
| Decision                   |                                       | precision                    |                              | f1-score                     | support                |             | [[139 0 0 0]                 |
| Tree                       | 0<br>1<br>4<br>5                      | 1.00<br>1.00<br>1.00<br>1.00 | 1.00<br>1.00<br>1.00<br>1.00 | 1.00<br>1.00<br>1.00<br>1.00 | 139<br>120<br>46<br>60 | 100%        | [ 0 120 0 0]<br>[ 0 0 46 0]  |
|                            | accuracy<br>macro avg<br>weighted avg | 1.00                         | 1.00                         | 1.00<br>1.00<br>1.00         | 365<br>365<br>365      |             | [ 0 0 0 60]]                 |
| Gaussian<br>Navie Bayes    | 0                                     | precision                    | recall                       | f1-score                     | support                |             | [[139 0 0 0]                 |
|                            | 1<br>4<br>5                           | 1.00<br>0.53<br>1.00         | 0.67<br>1.00<br>1.00         | 0.80<br>0.70<br>1.00         | 120<br>46<br>60        | 89%         | [ 0 80 40 0]<br>[ 0 0 46 0]  |
|                            | accuracy<br>macro avg<br>weighted avg | 0.88<br>0.94                 | 0.92<br>0.89                 | 0.89<br>0.87<br>0.90         | 365<br>365<br>365      |             | [ 0 0 0 60]]                 |
| Multinomial<br>Navie Bayes | 0                                     | precision                    | recall<br>0.84               | f1-score                     | support                |             | [[117 0 0 22]                |
| Travic Dayes               | 1 4 5                                 | 0.85<br>1.00<br>0.58         | 1.00<br>0.54<br>0.52         | 0.92<br>0.70<br>0.55         | 120<br>46<br>60        | 80%         | [ 0 120 0 0]<br>[ 0 21 25 0] |
|                            | accuracy<br>macro avg<br>weighted avg | 0.81<br>0.81                 | 0.73<br>0.80                 | 0.80<br>0.75<br>0.79         | 365<br>365<br>365      |             | [ 29 0 0 31]]                |