# **DISEÑO DE CIRCUITOS ELECTRONICOS (EL233)**

## Segunda Práctica Ciclo 2020-2

**Profesor** : Manuel Márquez Marrou

Sección : EL71

**Indicaciones**: Con apuntes de clases o textos. Justifique sus respuestas.

La prueba es sobre 20 puntos.

Fecha: 30/10/2020 Duración: 70 minutos

### Nombre y código del alumno:

#### Problema 1.

## Cálculo del valor de la tensión de Early.

Para este problema la tensión de Early serán calculados de la siguiente manera: Si se tiene un código de alumno como este 201113244, entonces la tensión de Early, será entonces: 44 + 60. Es decir el estudiante escogerá las dos últimas cifras de su código, procederá con la suma indicada y usará este valor en la resolución de este problema.

#### Selección del tema de diseño

- 1. El problema 1 **Diseño A** será resuelto por los alumnos cuyo código termine en los números: 0. 2. 4. 6 ó 8.
- 2. El problema 1 **Diseño B** será resuelto por los alumnos cuyo código termine en los números: 1, 3, 5, 7 ó 9.

# Llenar en la primera cara de la solución del examen lo siguiente:

| Cumplimiento de instrucciones |  |
|-------------------------------|--|
| Código de                     |  |
| estudiante                    |  |
| V <sub>A</sub> (Early)=       |  |
| Diseño: A ó B=                |  |

Problema 1. Diseñar un amplificador lineal en base de MOSFETs (solo MOSFETs como dispositivos activos), que cumpla con las siguientes especificaciones:

**Diseño A:** Ganancia de 250v/v y con un MESSD de 8V.  $R_L$ = 200 ohmios como carga desbalanceada a  $0V_{DC}$  (sin condensador) y se tendrá las siguientes restricciones: Rango de CMMR mayor a +/- 8V.  $F_H$ = 10 MHz y las capacidades parásitas de los MOSFETs son de 2pF. K= 2mA/V² y  $V_t$ =1V.

**Diseño B:** Ganancia de 230v/v y con un MESSD de 9V.  $R_L$ = 225 ohmios como carga desbalanceada a  $0V_{DC}$  (sin condensador) y se tendrá las siguientes restricciones: Rango de CMMR mayor a +/- 8V.  $F_H$ = 10 MHz y las capacidades parásitas de los MOSFETs son de 2pF. K= 4mA/V² y  $V_t$ =1V.

Fuentes de alimentación duales disponibles para ambos diseños: 15V, 18V y 24V. Dual significa (+/-). Toda fuente de corriente será diseñada en base de MOSFETS. **Puntaje (10p)** 





**Problema 2. a)** Calcule la Vin máxima (Vin 2-Vin1) para una amplificación lineal **(3p). b)** Calcule la  $f_H$  si las capacidades parásitas valen 4pF **(5p). c)** ¿Calcule el Rango del CMRR? **(2p).** K=6mA/V² para los MOSFETs de las fuentes de corriente (Fuente Wilson simple no mejorado con Mosfets)  $\sqrt{K=3mA/V}^2$  para el resto  $|V_t|=1V$ .



Aquí pegar la solución que desarrolló en la práctica





