

### 修改历史



| 版本号  | 日期         | · <b>注释</b> |
|------|------------|-------------|
| V1.0 | 2020/05/09 | ·初稿For hial |

Unisoc Confidential

## 文档信息



| 适用产品信息                                   | 适用版本信息                 | 关键字   |  |
|------------------------------------------|------------------------|-------|--|
| SC9863A, SC9832E, SC7731E, UDS710+UDX710 | JMS312,<br>Android 9.0 | SMART |  |
| Unisoc Col                               |                        |       |  |



nfident 1 For hiar 原理介绍

2 调试流程

#### SMART智能控制模块。

lential For hiar 作用:根据当前的ae/awb的状态信息(bv/bv gain/CT等)来计算一些ISP相关模块的参数是否需要重 新设置,主要是通过插值方法。如果需要重新设置通过此模块设置,SMART模块控制的参数,增加调试的 灵活性。 SMART模块不涉及算法库,只是一个额外的辅助功能。

#### SMART使用参考示意图:





#### SMART基础调试:

- SMART 模块至少要在common 添加,其他mode,根据调试需要添加,其他mode 没有SMART,则会调用common下的SMART参数。
- 2. SMART 界面包含了部分模块的智能调节,还有部分在ISP直接设置参数,请勿修改,使用默认值。
- 3. 对应的模块下面,有对应的设置参数界面,可以灵活设置参数。



### 调试流程-ENVIRONMENT



#### ENVIRONMENT作用:

通过调整对应的BV值,可以划分环境分为lowlight、indoor、outdoor和highlight 部分,中间保留过渡。

#### **ENVIRONMENT调试:**

- 1. 勾选Smart Enable生效,设置必选,请勿修改
- 2. 根据环境,在室内,室外,暗环境,调整BV值,划分场景
- 3. 建议使用默认值

参数生效参考如下示意图





### 调试流程-CMC



#### CMC作用:

根据ENVIRONMRNT设置不同scene,在每个scene根据CT划分档位,使用对应index的参数,在CT之间参数插值

# CMC调试: INISOC

- 1. 勾选Enable生效,设置必选,请勿修改
- 2. CT值根据需要设置多档位,档位数可以调整Sample Num设置
- Use Flash Value 和Flash value 已不使用, flash CMC 固定使用index 7
  (冷色温)和index 8(暖色温)
- 4. Index 设置建议不要使用index 7/8 ,给flash使用

#### 参数生效参考如下示意图





### 调试流程-GAMMA



#### GAMMA作用:

根据BV值,使用对应的index下GAMMA参数,在相邻BV使用index下的GAMMA插值生效

#### GAMMA调试:

- 1. 勾选Enable生效,设置必选,请勿修改
- 2. BV值根据需要可设置多档位,档位数调整Sample Num设置
- 3. BV的设置,建议参考ENVRIONMENT,建议参考右图设置参数生效参考如下示意图





### 调试流程-HSV



#### HSV作用:

根据ENVIRONMRNT设置不同scene,在每个scene根据CT划分档位,使用对应index的参数,在CT之间参数插值

# HSV调试! niSO

- 1. 勾选Enable生效,AI场景识别会使用此开关
- 2. CT值根据需要设置多档位,档位数可以调整Sample Num设置参数生效参考如下示意图





# 调试流程-SATURATION\_DEPRESS



#### SATURATION\_DEPRESS作用:

可以用来降低在暗态下的饱和度,根据BV值,使用对应的level参数,255表示1倍,,在相邻BV使用level参数插值生效。

#### SATURATION\_DEPRESS调试:

- 1. 勾选Enable生效,根据需要设置,建议不使用
- 2. BV值根据需要可设置多档位,档位数调整Sample Num设置
- 3. BV的设置,建议参考ENVRIONMENT,建议参考右图设置参数生效参考如下示意图





# 调试流程-COLOR\_CAST



#### COLOR\_CAST作用:

可以用来调整图像的色调和饱和度,根据ENVIRONMRNT设置不同scene,在每个scene根据CT划分档位,使用对应的Hue和Saturation,64表示1倍,在CT之间使用插值生效

#### COLOR\_CAST调试:

- 1. 勾选Enable生效,不建议使用
- 2. CT值根据需要可设置多档位,档位数调整Sample Num设置参数生效参考如下示意图

#### **Hue&Saturation**





## 调试流程-GAIN\_OFFSET



#### GAIN\_OFFSET作用:

可以用来调整图像的白平衡,根据ENVIRONMRNT设置不同scene,在每个scene根据CT划分档位,使用对应的Gain\_R、Gain\_G、Gain\_B,256表示1倍,在CT之间使用插值生效

#### GAIN\_OFFSET调试:

- 1. 勾选Enable生效,不建议使用
- 2. CT值根据需要可设置多档位,档位数调整Sample Num设置参数生效参考如下示意图





# 调试流程-RAWGTM&RGBLTM&YUVLTM(QUMS512(T)支持)



#### RAWGTM作用:

提高全局亮度和整个图像的对比度,同时最佳地保留图像内容

#### **RGBLTM&YUVLTM作用**:

改善局部对比度,同时兼顾整图增强效果

#### RAWGTM&RGBLTM&YUVLTM调试:

- 1. 实现根据BV和Abl\_Weight 划分场景。
- 2. 根据BV划分场景, scene num控制划分的场景个数, 一般建议值为3, 划分为BV0, BV1, BV2
- 3. 选中scene 场景,可对应修改此场景下的BV Range 建议BV Range设置连续,不要留过渡区间
- 4. 对当前场景,根据Abl\_Weight 再进行区分(sample num表示分组组数)。实现不同Abl\_Weight可调用不同index 的RAWGTM参数。



# 调试流程-RAWGTM&RGBLTM&YUVLTM(QUMS512(T)支持)



#### 注意:

abl\_weight小于30调用第0组; abl\_weight大于70调用祭1公介fidential For hiar abl\_weight大于70调用第1组;

当smart中Y\_type = 0 时:

abl\_weight处于30和70之间调用第0组;

当smart中Y\_type = 1 时:

abl\_weight处于30和70之进行index0和1参数插值;

参数生效参考如下示意图





### 调试流程-ISP-SMART



设置SMART ID, 0:最大支持32个block, 1:最大支持64个block

对应的block,每个block下都有对应的SMART参数,下面是以CMC为例介绍参数

1. Enable: 当前block是否需要开启SMART功能,0为不开启,1为开启

2. component\_num: Block的组成结构

3. ID、type、Offset、size:不使用

4. x\_type:设置分档所用的条件类型,0:BV,1:GAIN,2:CT,3:BV+CT,4:BV+ABL\_weight

5. y\_type:是否进行插值,0:不插值,1:插值

注意:此部分设置值请保持默认值不修改

界面参数,请在Smart 下对应的block 界面修改,不建议在此处修改

- 1. Lowlight/indoor/oudoor/highlight.sample\_num:根据场景分档,设置每一档使用参数组数
- 2. lowlight/indoor/oudoor/highlight.samples[0-15].x:每组中对应的x\_type类型的值,如CT。
- 3. lowlight/indoor/oudoor/highlight.samples[0-15].y:每组中对应的index值

| BLOCK ISP EXIF            |        |       |
|---------------------------|--------|-------|
| NAME                      | HEX    | DEC   |
| - SMART                   |        |       |
| param_id                  | 0x01   | 1     |
| + Inc                     |        |       |
| + color_cast              |        |       |
| - € cmc                   |        |       |
| - ≡ enable                | 0x01   | 1     |
| −≣ component_num          | 0x01   | 1     |
| –⊞ id                     | 0x00   | 0     |
| –≝ type                   | 0x00   | 0     |
| _ ■ offset                | 0x00   | 0     |
| -≣ size                   | 0x00   | 0     |
| –≣ x_type                 | 0x03   | 3     |
| -∭ v tvpe                 | 0x01   | 1     |
| – ≝i default_va           | 0x00   | 0     |
| ─■ use_flash_val 不使目      | 0x01   | 1     |
| -⊞ flash_val              | 0×08   | 8     |
| _≝ section_num            | 0x04   | 4     |
| -≣ bv_range[0].min        | 0xFC18 | -1000 |
| -≣ bv_range[0].max        | 0x0168 | 360   |
| -≣ bv_range[1].min        | 0x01CC | 460   |
| -∭ bv_range[1].max        | 0x0424 | 1060  |
| -∭ bv_range[2].min        | 0x04CE | 1230  |
| -∭ bv_range[2].max        | 0x0550 | 1360  |
| -≣ bv_range[3].min        | 0x05B4 | 1460  |
| -≣ bv_range[3].max        | 0x0BB8 | 3000  |
| -≣ bv_range[4].min        | 0x00   | 0     |
| -∭ bv_range[4].max        | 0x00   | 0     |
| −≌ bv_range[5].min        | 0x00   | 0     |
| − bv_range[5].max         | 0x00   | 0     |
| −≌ bv_range[6].min        | 0x00   | 0     |
| −≣ bv_range[6].max        | 0x00   | 0     |
| −≌ bv_range[7].min        | 0x00   | 0     |
| ⊢≌ by range[7].max        | 0x00   | 0     |
| - □ lowlight.sample_num   | 0x03   | 3     |
| - □ lowlight.samples[0].x | 0x0AF0 | 2800  |
| −≌ lowlight.samples[0].y  | 0x00   | 0     |
| - □ lowlight.samples[1].x | 0x0FA0 | 4000  |
| - □ lowlight.samples[1].y | 0x01   | 1     |
| – 🖺 lowlight.samples[2].x | 0x1388 | 5000  |
| - □ lowlight.samples[2].y | 0x02   | 2     |
| A                         |        |       |



Mlog-SMART:

JNISOC Confider BV、CT、bv\_gain 表示当前环境的参数值

**cmc、gamma等**:表示block项

,其后面的值表示对于的参数

[0]:Val=(2,3):0是 component\_num的值,调用 2(ourdoor)和3(highlight)的参数

2(6,6):(256,0): 2对应的CMC的

index=6的参数,权重是256



w=(99,157):2对应权重是99,

3对应权重是157

3(6,6):(256,0): 3对应的CMC的

index=6的参数,权重是256

bpc: [0]:Val=0:BPC 模块的component\_num=0下的level num=0的参数



| SMART-ENVIRONMENT参<br>数 | dential For 参数含义       | 取值范围         | default值 |
|-------------------------|------------------------|--------------|----------|
| Smart Enable OC         | SMART-ENVIRONMENT 使能开关 | [0,1]        | 1        |
| Lowlight Max BV         | BV小于此值,表示在lowlight环境   | [-1000,3000] | 360      |
| Indoor Min BV           | BV大于此值,表示在indoor环境     | [-1000,3000] | 460      |
| Indoor Max BV           | BV小于此值,表示在indoor环境     | [-1000,3000] | 1060     |
| Outdoor Min BV          | BV大于此值,表示在outdoor 环境   | [-1000,3000] | 1160     |
| Outdoor Max BV          | BV小于此值,表示在outdoor环境    | [-1000,3000] | 1360     |
| Highlight Min BV        | BV大于此值,表示在highlight环境  | [-1000,3000] | 1460     |

| SMART-CMC参数   | 参数含义                         | 取值范围      | default值 |
|---------------|------------------------------|-----------|----------|
| Enable        | SMART CMC使能开关                | [0,1]     | 1 ( 勾选 ) |
| Use flash val | 闪光灯固定CMC,当前平台已经不适用           | [0,1]     | 0 (不勾选)  |
| Flash value   | 闪光灯使用的CMC index, 当前不适用       | [0,8]     | 7(不生效)   |
| scene         | 对应的场景lowlight indoor outdoor | \         |          |
| Sample Number | 配置对于场景下的节点数                  | [0,16]    | 0        |
| CT[0-x]       | 配置对应场景下的CT值                  | [0,20000] | 根据情况配置   |
| Index[0-x]    | 配置对应场景下的CT对应的index           | [0,32]    | 根据情况配置   |



| SMART-GAMMA参数 | 参数含义               | 取值范围         | default值 |
|---------------|--------------------|--------------|----------|
| Enable        | SMART GAMMA 使能开关   | [0,1]        | 1 ( 勾选 ) |
| Sample Num OC | 配置对于场景下的节点数        | [0,16]       | 0        |
| BV[0-x]       | 配置对应场景下的BV值        | [-1600,1600] | 根据情况配置   |
| Index[0-x]    | 配置对应场景下的BV对应的index | [0,8]        | 根据情况配置   |

| SMART-HSV参数 | 参数含义               | 取值范围      | default值 |
|-------------|--------------------|-----------|----------|
| Enable      | SMART HSV 使能开关     | [0,1]     | 1(勾选)    |
| Sample Num  | 配置对于场景下的节点数        | [0,16]    | 0        |
| CT[0-x]     | 配置对应场景下的CT值        | [0,20000] | 根据情况配置   |
| Index[0-x]  | 配置对应场景下的CT对应的index | [0,8]     | 根据情况配置   |

| SMART-<br>SATURATION_DEPRESS参数 | 参数含义                          | 取值范围         | default值 |
|--------------------------------|-------------------------------|--------------|----------|
| Enable                         | SMART SATURATION_DEPRESS 使能开关 | [0,1]        | 1 ( 勾选 ) |
| Sample Num                     | 配置对于场景下的节点数                   | [0,16]       | 0        |
| BV[0-x]                        | 配置对应场景下的BV值                   | [-1600,1600] | 根据情况配置   |
| Level[0-x]                     | 配置对应场景下的BV对应Level, 255位1倍     | [0,1024]     | 根据情况配置   |



|                   | - biar                        |           |          |
|-------------------|-------------------------------|-----------|----------|
| SMART-COLOR_CAS参数 | a ontial FOI 参数含义             | 取值范围      | default值 |
| Enable CON        | SMART COLOR_CAS 使能开关          | [0,1]     | 1 ( 勾选 ) |
| Sample Num        | 配置对于场景下的节点数                   | [0,16]    | 0        |
| CT[0-x]           | 配置对应场景下的CT值                   | [0,20000] | 根据情况配置   |
| Hue[0-x]          | 配置对应场景下的CT对应hue值,64为1倍        | [0,255]   | 64       |
| Saturation        | 配置对应场景下的CT对应saturation值,64为1倍 | [0,255]   | 64       |

| SMART-GAIN_OFFSET参数 | 参数含义                        | 取值范围      | default值 |
|---------------------|-----------------------------|-----------|----------|
| Enable              | SMART GAIN_OFFSET 使能开关      | [0,1]     | 1 ( 勾选 ) |
| Sample Num          | 配置对于场景下的节点数                 | [0,16]    | 0        |
| CT[0-x]             | 配置对应场景下的CT值                 | [0,20000] | 根据情况配置   |
| Gain_R[0-x]         | 配置对应场景下的CT对应的Gain_R值,256为1倍 | [0,1024]  | 256      |
| Gain_G[0-x]         | 配置对应场景下的CT对应的Gain_G值,256为1倍 | [0,1024]  | 256      |
| Gain_B[0-x]         | 配置对应场景下的CT对应的Gain_B值,256为1倍 | [0,1024]  | 256      |



| SMART ISP参数     | For 参数含义                                                     | 取值范围   | default值 |
|-----------------|--------------------------------------------------------------|--------|----------|
| paramidnisoc GO | Smart 模块版本, 0:最大32个block, 1:最大64个block                       | [0,1]  | 根据需要设置   |
| enable          | 模块使能smart功能                                                  | [0,1]  | 根据需要设置   |
| component_num   | tunning参数配置,最大值为4                                            | [0,4]  | 根据需要设置   |
| id              | 未使用。                                                         | \      | \        |
| type            | 未使用。                                                         | \      | \        |
| offset          | 未使用。                                                         | \      | \        |
| size            | 未使用。                                                         | \      | \        |
| x_type          | 确认模块分档的方式 ,<br>0 : BV ,                                      | [0,4]  | 根据需要设置   |
| y_type          | 是否进行插值,0:不插值,1:插值                                            | [0,1]  | 根据需要设置   |
| default_val     | 在GTM下使用,作为默认index                                            | [0,16] | 根据需要设置   |
| use_flash_val   | 在GTM下使用,作为3个参数控制开关                                           | [0,1]  | 根据需要设置   |
| flash_val       | 在GTM下使用,在use_flash_val=1时,帧率小于该值,<br>调用default_val对应index 参数 | [0,30] | 根据需要设置   |



| SMART ISP参数                                              | antial For new september 1 | 取值范围         | default值 |
|----------------------------------------------------------|----------------------------|--------------|----------|
| section_numsoc Confid                                    | 用BV对环境分段数                  | [0,8]        | 根据需要设置   |
| bv_range[0-7].min                                        | 每组BV分段的最小值                 | [-1600,1600] | 根据需要设置   |
| bv_range[0-7].max                                        | 每组BV分段的最大值                 | [-1600,1600] | 根据需要设置   |
| Lowlight/indoor/<br>oudoor/highlight.sample_num          | 对应场景下的分组数                  | [0,16]       | 根据需要设置   |
| lowlight/indoor/<br>oudoor/highlight.samples[0-<br>15].x | 每组中对应的x_type类型的值,如CT,GAIN  | \            | 根据需要设置   |
| lowlight/indoor/<br>oudoor/highlight.samples[0-<br>15].y | 每组中对应的index值               | [0,32]       | 根据需要设置   |



### **THANKS**







本文件所含数据和信息都属于紫光展锐所有的机密信息,紫光展锐保留所有相关权利。本文件仅为信息参考之目的提供,不包含任何明示或默示的知识产权许可,也不表示有任何明示或默示的保证,包括但不限于满足任何特殊目的、不侵权或性能。当您接受这份文件时,即表示您同意本文件中内容和信息属于紫光展锐机密信息,且同意在未获得紫光展锐书面同意前,不使用或复制本文件的整体或部分,也不向任何其他方披露本文件内容。紫光展锐有权在未经事先通知的情况下,在任何时候对本文件做任何修改。紫光展锐对本文件所含数据和信息不做任何保证,在任何情况下,紫光展锐均不负责任何与本文件相关的直接或间接的、任何伤害或损失。

WWW.UNISOC.COM 紫光展锐科技