SWAT

Generated by Doxygen 1.8.16

1 SWAT	1
2 Modules Index	7
2.1 Modules List	7
3 Data Type Index	9
3.1 Data Types List	9
4 File Index	11
4.1 File List	11
5 Module Documentation	13
5.1 parm Module Reference	13
5.1.1 Detailed Description	67
5.1.2 Variable Documentation	68
5.1.2.1 igropt	68
6 Data Type Documentation	69
6.1 parm::ascrv Interface Reference	69
6.2 parm::atri Interface Reference	69
6.3 parm::aunif Interface Reference	69
6.4 parm::dstn1 Interface Reference	70
6.5 parm::ee Interface Reference	70
6.6 parm::expo Interface Reference	70
6.7 parm::fcgd Interface Reference	70
6.8 parm::HQDAV Interface Reference	71
6.9 parm::layersplit Interface Reference	71
6.10 parm::ndenit Interface Reference	71
6.11 parm::qman Interface Reference	71
6.12 parm::regres Interface Reference	72
6.13 parm::rsedaa Interface Reference	72
6.14 parm::tair Interface Reference	72
6.15 parm::theta Interface Reference	72
6.16 parm::vbl Interface Reference	72
7 File Documentation	73
7.1 allocate_parms.f90 File Reference	73
7.1.1 Detailed Description	73
7.2 ascrv.f90 File Reference	73
7.2.1 Detailed Description	73
7.3 aunif.f90 File Reference	74
7.3.1 Detailed Description	74
7.4 caps.f90 File Reference	74
7.4.1 Detailed Description	75

Index

7.5 gcycl.f90 File Reference	75
7.5.1 Detailed Description	75
7.6 getallo.f90 File Reference	75
7.6.1 Detailed Description	76
7.7 jdt.f90 File Reference	76
7.7.1 Detailed Description	76
7.7.2 Function/Subroutine Documentation	76
7.7.2.1 jdt()	76
7.8 main.f90 File Reference	77
7.8.1 Detailed Description	77
7.9 modparm.f90 File Reference	77
7.9.1 Detailed Description	132
7.10 readbsn.f90 File Reference	132
7.10.1 Detailed Description	132
7.11 readfcst.f90 File Reference	132
7.11.1 Detailed Description	133
7.12 readfert.f90 File Reference	133
7.12.1 Detailed Description	133
7.13 readfig.f90 File Reference	133
7.13.1 Detailed Description	133
7.14 readfile.f90 File Reference	133
7.14.1 Detailed Description	134
7.15 readlup.f90 File Reference	134
7.15.1 Detailed Description	134
7.16 readpest.f90 File Reference	134
7.16.1 Detailed Description	134
7.17 readplant.f90 File Reference	135
7.17.1 Detailed Description	135
7.18 readsepticbz.f90 File Reference	135
7.18.1 Detailed Description	135
7.19 readtill.f90 File Reference	135
7.19.1 Detailed Description	135
7.20 readurban.f90 File Reference	136
7.20.1 Detailed Description	136
7.21 readwwq.f90 File Reference	136
7.21.1 Detailed Description	136
7.22 simulate.f90 File Reference	136
7.22.1 Detailed Description	136
Bibliography	137

139

Chapter 1

SWAT

An updated SWAT 2012 revision 670 code

Objectives

- Standard indentation and translation to Fortran 90 by using findent. See the translate-fortran90.pl perl script file (:heavy_check_mark:)
- Exhaustive use of the "implicit none" directive to detect bad variable usage (:heavy_check_mark:)
- Generate a GNU Make makefile and compile with GNU GFortran. See the gernerate-makefile.pl perl script file (:heavy_check_mark:)
- Remove non-used variables and format labels (:heavy_check_mark:)
- Detect and solve all uninitialized variables (:heavy_check_mark: :construction:, some proposed solutions could be incorrect)
- Remove unneeded variable initializations (:heavy check mark:) as:

```
j=0 ! this line is not necessary j=ihru
```

- · Remove redundant code (:heavy_check_mark:)
- Exhaustive use of the "parameter" directive on constants (:heavy_check_mark:)
- Generate a detailed list of issues detected in the original code (:heavy_check_mark:, see at the end of this README)
- Remove obsolete commented code (:x:)
- Update variable descriptions in comments (:construction:, a lot of work)
- Standardize comments by using Doxygen style in order to generate documentation. See at latex/refman.pdf (:construction:, a lot of work)

2 SWAT

Required tools

- GFortran (to compile the source code)
- · Make (to build the executable file)
- Perl (optional: to execute the perl scripts to update the makefile or to translate original files to Fortran 90)
- Findent (optional: to translate original files to Fortran 90 with a standard indentation)
- Doxygen (optional: to generate a reference programming manual from source code)
- Tex Live or MikTex (optional: to generate a reference programming manual from source code)
- On Microsoft Windows systems you have to install MSYS2 and the required utilities (GFortran and Make). You can follow detailed instructions in install-unix

Instructions to generate Fortran 90 style code from original code

In order to generate Fortran 90 style code with standard indentation from original code you have to type on a UNIX type terminal (you need Perl and Findent):

\$ perl translate-fortran90.pl

Instructions to generate an initial GNU make Makefile

Type on the UNIX type terminal, when translated the original code to Fortran 90 style (you need Perl):

\$ perl generate-makefile.pl

Instructions to generate an executable to test

Type on the UNIX type terminal (you need GFortran and Make)

· In UNIX type operative systems:

\$ make

• In a MSYS2 terminal in Microsoft Windows:

\$ EXE=".exe" LDFLAGS="-static" make

• Cross-compiling a 32 bits Microsoft Windows executable in a UNIX type operative system:

\$ prefix="i686-w64-mingw32-" EXE=".exe" LDFLAGS="-static" make

· Cross-compiling a 64 bits Microsoft Windows executable in a UNIX type operative system:

\$ prefix="x86_64-w64-mingw32-" EXE=".exe" LDFLAGS="-static" make

Instructions to generate an optimized executable file

Type on the UNIX type terminal (you need GFortran and Make)

· In UNIX type operative systems:

```
$ CFLAGS="-march=native -flto" LDFLAGS="-flto" make strip
```

In a MSYS2 terminal in Microsoft Windows:

```
$ EXE=".exe" CFLAGS="-flto" LDFLAGS="-flto -static" make strip
```

· Cross-compiling a 32 bits Microsoft Windows executable in a UNIX type operative system:

```
$ prefix="i686-w64-mingw32-" EXE=".exe" CFLAGS="-flto" LDFLAGS="-flto -static" make strip
```

Cross-compiling a 64 bits Microsoft Windows executable in a UNIX type operative system:

```
$ prefix="x86\ 64-w64-mingw32-" EXE=".exe" CFLAGS="-flto" LDFLAGS="-flto -static" make strip
```

Instructions to generate a reference programming manual from source code

Type on the UNIX type terminal (you need Doxygen and TeX Live or MiKTeX):

- \$ doxygen
- \$ cd latex
- \$ make

The reference programming manual file latex/refman.pdf is generated from source code in PDF format

Issues in the original source code

This is a list of possible issues detected in the original source code. These issues have been mostly detected by the GFortran compiler warnings. Some of them could not arise because the logic of the variables is not possible.

- · In biofilm.f:
 - "dcoef" is used but not initialized. dcoef=3 as in watqual.f? Then, I propose at beginning: real*8, parameter :: dcoef = 3.
- · In bmp_ri_pond.f:
 - "qseep" and "qet" could be used not initialized at lines 133 and 134. However the problem only arises for nstep<1
- In bmp_sand_filter.f:
 - "sed\ removed" at line 342 could be used not initialized if sfsedstdev<=0
- In bpm_sed_pond.f:
 - bmp_sed _pond seems to be bmp_sed_pond at line 186

4 SWAT

- In bmp_wet_pond.f:
 - "hvol" could be used not initialized in "ext\ dpth" subroutine at line 267 in first bucle iteration
- · In clicon.f:
 - "tmxbsb", "tmnbsb", "rbsb", "rstpbsb", "rhdbsb", "rabsb", "rmxbsb", "daylbsb", "fradbsb" and "u10bsb" could be used not initialized at 186-207 lines
- · In conapply.f:
 - "k" and "kk" could be used not initialized at 121-122 lines if iday_pest(j) /=ipst_freq(j) and curyr>nyskip
- · In confert.f:
 - "ifrt" seems to be "it" at line 214
- · In curno.f:
 - "smxold" could be used not initialized if cn1 (h) <=1.e−6 and curyr/=0 at line 96
- · In drains.f:
 - "nlayer" could be used not initialized at line 23. However, the problem only arises if it is not set in the previous bucle (mlyr <= 1 or $sol_z(j1, j) <= 0$)
- · In etact.f:
 - "sev" could be used not initialized at line 286 if dep>=esd and ly==2
- · In filter.f:
 - "remove21" seems to be "remove2" at line 316
- · In grass wway.f:
 - "sf_depth" and "sf_sed" could be used not initialized at lines 133 and 137 if $sf_area>0$ and $sf_\leftrightarrow area<=1.e-6$
- · In hhnoqual.f:
 - "algon" seems to be "algcon" at line 190
- · In hhwatqual.f
 - "orgnpin" seems to be "orgpin" at line 278
 - thour=1.0 at line 377 overwrites previous "thour" calculation. It is wrong
- · In hmeas.f:
 - "rhdbsb" could be used not initialized at line 84
- In killop.f:
 - "ff1" and "ff2" are used but not initialized at lines 167 and 267. They are set in harvkillop.f file (lines 257-258). They have to be included in modparm.f to share harvkillop.f values? or they have to be redefined as in harvkillop.f?
- In NCsed leach.f90:
 - "perc\ clyr" could be used not initialized at line 221 if sol nly (j) <2
- In nrain.f:
 - "no2pcp" seems to be "no3pcp" at line 72
- In pmeas.f:

- "rbsb" could be used not initialized at line 143
- "flag" could be used not initialized if 'a==' 'at line 210
- "rainsb" could be used not initialized, however only ifnstep<=0`
- In pminrl2.f:
 - at line 95 a comma is necessary between "base" and "vara"
 - "ssp" could be used not initialized at line 196 if $xx \le 1.e-6$
- · In pothole.f:
 - "solp_tileo" could be used not initialized at line 593 if $pot_vol(j) \le 1.e-6$ or $potvol_{\leftarrow} tile \le 1.e-6$
- · In potholehr.f:
 - "potflow" seems to be "potflwo" at line 447
- · In readatmodep.f:
 - momax=12*nbyr is defined at line 65 but not used. It has to be "mo_max"? but then, it overwrites the file read
- In readops.f:
 - year = 0. seems to be iyear = 0 at line 98
 - "mg13" seems to be "mgt13" at line 206
- In readpnd.f:
 - "vselsetlpnd" seems to be "velsetlpnd" at line 279
- · In readru.f:
 - "tck" is used but not initialized at line 79
- · In readsepticbz.f:
 - **–** at line 135 4. e-8 seems to be 4.e-8
- In rewind_init.f:
 - "orig_tnylda" is used but not initialized at line 174
- · In routels.f:
 - "dstor" is used but not initialized at line 134. It has to be calculated as in watbal.f? or as in the commented line 109?
 - "latgout" and "gwgout" could be used not initialized at lines 142-143
- In rtbact.f:
 - "netwtr" could be used not initialized at line 124, however only if nstep<1
- In rthpest.f:
 - thour=1.0 at line 183 overwrites previous "thour" calculation. It is wrong
 - "frsol" and "frsrb" could be used not initialized at lines 289-290 if hrtwtr(ii) > 0.001 and hrtwtr(ii) / (idt*60) <= 0.01
- In rtpest.f:
 - tday=1.0 at line 180 overwrites previous "tday" calculation. It is wrong
- In sched_mgt.f:
 - < = seems to be <= at 202 line

6 SWAT

- "husc" and "igrow" at lines 264-265 are used but not initialized. "husc" has to be phu_op (iop, ihru) has in readmgt.f? "igrow" has to be igro (ihru) has in readmgt.f?

- · In smeas.f:
 - "rabsb" could be used not initialized at line 86
- · In sweep.f:
 - "fr_curb" is used but not initialized at line 56. It has to be added to modparm.f to share result with sched_mgt.f? or it has to be mgt5op (nop (ihru), ihru) as in sched_mgt.f?
- · In tmeas.f:
 - "tmxbsb" and "tmnbsb" could be used not initialized at lines 109-110
- · In transfer.f:
 - "ratio", "xx" and "ratio1" could be used not initialized at lines 236, 239 and 241 if ihout==2
- · In wmeas.f:
 - "u10bsb" could be used not initialized at line 85
- In zero0.f:
 - "sol_sumn03" seems to be "sol_sumno3" at line 508
- In zero_urbn.f:
 - "stp_stagdis" seems to be "dtp_stagdis" at line 84
 - "subdr_kg" seems to be "subdr_km" at line 149
 - "spl_eros" is not defined at line 21, it could be "eros_spl"?

Chapter 2

Modules Index

2.1 Modules List

Here is a lis	t of all documented modules with brief descript	ions:	
parm			
•	Main module containing the global variables		 13

8 Modules Index

Chapter 3

Data Type Index

3.1 Data Types List

Here are the data types with brief descriptions:

parm::ascrv	69
parm::atri	69
parm::aunif	69
parm::dstn1	70
parm::ee	70
parm::expo	70
parm::fcgd	70
parm::HQDAV	71
parm::layersplit	
parm::ndenit	71
parm::qman	71
parm::regres	72
parm::rsedaa	72
parm::tair	72
parm::theta	72
parminyhl	72

10 Data Type Index

Chapter 4

File Index

4.1 File List

Here is a list of all documented files with brief descriptions:

allocate_parms.f90	
This subroutine allocates array sizes	73
ascrv.f90	73
aunif.f90	
This function generates random numbers ranging from 0.0 to 1.0	74
caps.f90	
This subroutine reads the input and output names given in file.cio and converts all capital letters to lowercase letters	74
gcycl.f90	
This subroutine initializes the random number seeds. If the user desires a different set of random numbers for each simulation run, the random number generator is used to reset the values of the	
seeds	75
getallo.f90	
This subroutine calculates the number of HRUs, subbasins, etc. in the simulation. These values	
are used to allocate array sizes	75
jdt.f90	76
main.f90	77
modparm.f90	77
This subroutine reads data from the basin input file (.bsn). This file contains information related	
to processes modeled or defined at the watershed level	132
readfcst.f90	102
This subroutine reads the HRU forecast weather generator parameters from the .cst file	132
readfert.f90	133
readfig.f90	
readfile.f90	
This subroutine opens the main input and output files and reads watershed information from the	
file.cio	133
readlup.f90	134
readpest.f90	134
readplant.f90	135
readsepticbz.f90	135
readtill.f90	135
readurhan f90	136

12 File Index

readwwq.f90	
This subroutine reads the watershed stream water quality input data (.wwq file) and initializes	
the QUAL2E variables which apply to the entire watershed	136
simulate.f90	
This subroutine contains the loops governing the modeling of processes in the watershed	136

Chapter 5

Module Documentation

5.1 parm Module Reference

main module containing the global variables

Data Types

- · interface ascrv
- interface atri
- interface aunif
- interface dstn1
- interface ee
- interface expo
- interface fcgd
- interface HQDAV
- · interface layersplit
- interface ndenit
- interface qman
- interface regres
- · interface rsedaa
- interface tair
- · interface theta
- interface vbl

Variables

- integer, parameter mvaro = 33

 max number of variables routed through the reach
- integer, parameter mhruo = 79

max number of variables in output.hru

- integer, parameter mrcho = 62
 - max number of variables in reach file
- integer, parameter msubo = 24
 - max number of variables in output.sub
- integer, parameter mstdo = 113

max number of variables summarized in output.std

- integer, parameter **motot** = 600
- · integer icalen
- real *8 prf bsn

Basinwide peak rate adjustment factor for sediment routing in the channel. Allows impact of peak flow rate on sediment routing and channel reshaping to be taken into account.

- real *8 co2 x2
- real *8 co2 x
- real *8, dimension(:), allocatable alph_e
- real *8, dimension(:), allocatable cdn

denitrification exponential rate coefficient

real *8, dimension(:), allocatable nperco

nitrate percolation coefficient (0-1)

0:concentration of nitrate in surface runoff is zero

1:percolate has same concentration of nitrate as surface runoff

real *8, dimension(:), allocatable surlag

Surface runoff lag time. This parameter is needed in subbasins where the time of concentration is greater than 1 day. SURLAG is used to create a "storage" for surface runoff to allow the runoff to take longer than 1 day to reach the subbasin outlet (days)

- real *8, dimension(:), allocatable co_p
- real *8, dimension(:), allocatable cmn

rate factor for humus mineralization on active organic N

real *8, dimension(:), allocatable phoskd

Phosphorus soil partitioning coefficient. Ratio of soluble phosphorus in surface layer to soluble phosphorus in runoff.

real *8, dimension(:), allocatable psp

Phosphorus availibility index. The fraction of fertilizer P remaining in labile pool after initial rapid phase of P sorption.

real *8, dimension(:), allocatable sdnco

denitrification threshold: fraction of field capacity triggering denitrification

real *8 r2adj bsn

basinwide retention parameter adjustment factor (greater than 1)

- real *8 yield
- real *8 burn_frlb
- real *8 pst_kg
- real *8 vieldgrn
- real *8 yieldbms
- real *8 yieldtbr
- real *8 yieldn
- real *8 yieldp
- real *8 hi bms
- real *8 hi_rsd
- real *8 yieldrsd
- real *8, dimension(:), allocatable I_k1
- real *8, dimension(:), allocatable I_k2
- real *8, dimension(:), allocatable I_lambda
- real *8, dimension(:), allocatable I beta
- real *8, dimension(:), allocatable I gama
- real *8, dimension(:), allocatable I_harea
- real *8, dimension(:), allocatable I_vleng
- real *8, dimension(:), allocatable I_vslope
- real *8, dimension(:), allocatable I_ktc
- real *8, dimension(:), allocatable biofilm_mumax
- real *8, dimension(:), allocatable biofilm_kinv
- real *8, dimension(:), allocatable biofilm klw
- real *8, dimension(:), allocatable biofilm_kla

- real *8, dimension(:), allocatable biofilm_cdet
- real *8, dimension(:), allocatable biofilm_bm
- real *8, dimension(:,:), allocatable hru_rufr
- real *8, dimension(:,:), allocatable daru_km
- real *8, dimension(:,:), allocatable ru_k
- real *8, dimension(:,:), allocatable ru_c
- real *8, dimension(:,:), allocatable ru_eiq
- real *8, dimension(:,:), allocatable ru_ovsl
- real *8, dimension(:,:), allocatable ru_a
- real *8, dimension(:,:), allocatable ru_ovs
- real *8, dimension(:,:), allocatable ru_ktc
- real *8, dimension(:), allocatable gwq_ru
- real *8, dimension(:), allocatable qdayout
- integer, dimension(:), allocatable ils2
- integer, dimension(:), allocatable ils2flag
- · integer iru
- · integer mru
- · integer irch
- · integer isub
- · integer idum
- integer mhyd_bsn
- · integer ipest
- · integer ils_nofig
- · integer mhru1
- integer, dimension(:), allocatable mhyd1
- · integer, dimension(:), allocatable irtun
- real *8 wshd_sepno3
- real *8 wshd sepnh3
- real *8 wshd_seporgn
- real *8 wshd_sepfon
- real *8 wshd_seporgp
- real *8 wshd_sepfop
- real *8 wshd_sepsolp
- real *8 wshd_sepbod
- real *8 wshd_sepmm
- integer, dimension(:), allocatable isep_hru
- real *8 fixco

nitrogen fixation coefficient

real *8 nfixmx

maximum daily n-fixation (kg/ha)

real *8 res_stlr_co

reservoir sediment settling coefficient

real *8 rsd_covco

residue cover factor for computing frac of cover

real *8 vcrit

critical velocity

- real *8 wshd sw
- real *8 wshd_snob
- real *8 wshd_pndfr
- real *8 wshd pndv
- real *8 wshd_pndsed
- real *8 percop

pesticide percolation coefficient (0-1)

0: concentration of pesticide in surface runoff is zero

1: percolate has same concentration of pesticide as surface runoff

- real *8 wshd_wetfr
- real *8 wshd_resfr
- real *8 wshd_resha
- real *8 wshd pndha
- real *8 wshd_fminp
- real *8 wshd_ftotn
- real *8 wshd_fnh3
- real *8 wshd_fno3
- real *8 wshd_forgn
- real *8 wshd_forgp
- real *8 wshd_ftotp
- real *8 wshd_yldn
- real *8 wshd_yldp
- real *8 wshd fixn
- real *8 wshd_pup
- real *8 wshd wstrs
- real *8 wshd_nstrs
- real *8 wshd_pstrs
- real *8 wshd_tstrs
- real *8 wshd_astrs
- real *8 ffcb

initial soil water content expressed as a fraction of field capacity

- real *8 wshd hmn
- real *8 wshd rwn
- real *8 wshd_hmp
- real *8 wshd_rmn
- real *8 wshd_dnit
- real *8 wdpq

die-off factor for persistent bacteria in soil solution (1/day)

- real *8 wshd rmp
- real *8 wshd_voln
- real *8 wshd nitn
- real *8 wshd_pas
- real *8 wshd_pal
- real *8 wof_p

wash off fraction for persistent bacteria on foliage during a rainfall event

- real *8 wshd_plch
- real *8 wshd_raino3
- real *8 ressedc
- · real *8 basno3f
- · real *8 basorgnf
- real *8 wshd_pinlet
- real *8 wshd_ptile
- real *8 sftmp

Snowfall temperature (deg C)

real *8 smfmn

Minimum melt rate for snow during year (Dec. 21) where deg C refers to the air temperature. (mm/deg C/day)

real *8 smfmx

Maximum melt rate for snow during year (June 21) where deg C refers to the air temperature. SMFMX and SM FMN allow the rate of snow melt to vary through the year. These parameters are accounting for the impact of soil temperature on snow melt. (mm/deg C/day)

real *8 smtmp

Snow melt base temperature. Mean air temperature at which snow melt will occur. (deg C)

real *8 wgpq

growth factor for persistent bacteria in soil solution (1/day)

- real *8 basminpf
- real *8 basorgpf
- real *8 wdlpq

die-off factor for less persistent bacteria in soil solution (1/day)

- real *8 wshd_resv
- real *8 wshd_ressed
- · real *8 basno3i
- · real *8 basorgni
- real *8 basminpi
- real *8 wdps

die-off factor for persistent bacteria adsorbed to soil particles (1/day)

real *8 wglpq

growth factor for less persistent bacteria in soil solution (1/day)

- real *8 basorgpi
- · real *8 peakr
- real *8 pndsedin
- real *8 sw excess
- · real *8 albday
- real *8 timp

Snow pack temperature lag factor (0-1)

1 = no lag (snow pack temp=current day air temp) as the lag factor goes to zero, the snow pack's temperature will be less influenced by the current day's air temperature.

- real *8 wtabelo
- real *8 tilep
- real *8 wt_shall
- real *8 sq_rto
- real *8 tloss
- real *8 inflpcp
- real *8 snomlt
- real *8 snofall
- real *8 fixn
- · real *8 qtile
- real *8 crk
- real *8 latlyr
- real *8 pndloss
- real *8 wetloss
- real *8 potloss
- real *8 Ipndloss
- real *8 lwetloss
- real *8 sedrch
- real *8 fertn
- · real *8 sol rd
- real *8 cfertn
- real *8 cfertp
- real *8 sepday
- real *8 bioday
- real *8 sepcrk
- real *8 sepcrktot
- real *8 fertno3
- · real *8 fertnh3

- · real *8 fertorgn
- real *8 fertsolp
- real *8 fertorgp
- real *8 wgps

growth factor for persistent bacteria adsorbed to soil particles (1/day)

- real *8 fertp
- real *8 grazn
- real *8 grazp
- real *8 soxy
- real *8 qdfr
- real *8 sdti
- real *8 rtwtr
- real *8 ressa
- real *8 wdlps

die-off factor for less persistent bacteria absorbed to soil particles (1/day)

real *8 wglps

growth factor for less persistent bacteria adsorbed to soil particles (1/day)

real *8 da km

area of the watershed in square kilometers (km²)

- real *8 rttime
- real *8 rchdep
- real *8 rtevp
- real *8 rttlc
- real *8 resflwi
- real *8 wdprch

die-off factor for persistent bacteria in streams (1/day)

- real *8 resflwo
- real *8 respcp
- real *8 resev
- real *8 ressep
- real *8 ressedi
- · real *8 ressedo
- real *8 dtot
- real *8 pperco_bsn

phosphorus percolation coefficient. Ratio of soluble phosphorus in surface to soluble phosphorus in percolate

• real *8 nperco_bsn

basin nitrate percolation coefficient (0-1)

0:concentration of nitrate in surface runoff is zero

1:percolate has same concentration of nitrate as surface runoff

real *8 rsdco

residue decomposition coefficient. The fraction of residue which will decompose in a day assuming optimal moisture, temperature, C:N ratio, and C:P ratio

- real *8 phoskd_bsn
- real *8 voltot
- real *8 msk_x

weighting factor controling relative importance of inflow rate and outflow rate in determining storage on reach

- real *8 volcrmin
- real *8 bactkdq

bacteria soil partitioning coefficient. Ratio of solution bacteria in surface layer to solution bacteria in runoff soluble and sorbed phase in surface runoff.

real *8 wdpf

die-off factor for persistent bacteria on foliage (1/day)

real *8 uno3d

- real *8 canev
- real *8 usle
- real *8 rcn
- real *8 surlag_bsn
- real *8 precipday
- real *8 thbact

temperature adjustment factor for bacteria die-off/growth

real *8 wlpq20

overall rate change for less persistent bacteria in soil solution (1/day)

real *8 wlps20

overall rate change for less persistent bacteria adsorbed to soil particles (1/day)

real *8 wpq20

overall rate change for persistent bacteria in soil solution (1/day)

real *8 wps20

overall rate change for persistent bacteria adsorbed to soil particles (1/day)

- real *8 bactrop
- real *8 bactsedp
- real *8 wgpf

growth factor for persistent bacteria on foliage (1/day)

- real *8 bactlchp
- real *8 bactlchlp
- real *8 enratio
- real *8 wetpcp
- real *8 pndpcp
- real *8 wetsep
- real *8 pndsep
- real *8 wetev
- real *8 pndev
- real *8 pndsedo
- real *8 wetsedo
- real *8 pndflwi
- real *8 wetflwi
- real *8 pndflwo
- real *8 wetflwo
- real *8 wetsedi
- real *8 da_ha
- real *8 vpd
- real *8 evlai

leaf area index at which no evaporation occurs. This variable is used in ponded HRUs where evaporation from the water surface is restricted by the plant canopy cover. Evaporation from the water surface equals potential ET when LAI = 0 and decreased linearly to O when LAI = EVLAI

· real *8 evrch

Reach evaporation adjustment factor. Evaporation from the reach is multiplied by EVRCH. This variable was created to limit the evaporation predicted in arid regions.

real *8 wdlpf

die-off factor for less persistent bacteria on foliage (1/day)

- real *8 bactrolp
- real *8 bactsedlp
- real *8 pet_day
- real *8 ep_day
- real *8 adj pkr

peak rate adjustment factor in the subbasin. Used in the MUSLE equation to account for impact of peak flow on erosion.

real *8 n_updis

nitrogen uptake distribution parameter. This parameter controls the amount of nitrogen removed from the different soil layer layers by the plant. In particular, this parameter allows the amount of nitrogen removed from the surface layer via plant uptake to be controlled. While the relationship between UBN and N removed from the surface layer is affected by the depth of the soil profile, in general, as UBN increases the amount of N removed from the surface layer relative to the amount removed from the entire profile increases

real *8 nactfr

nitrogen active pool fraction. The fraction of organic nitrogen in the active pool.

real *8 p_updis

phosphorus uptake distribution parameter This parameter controls the amount of phosphorus removed from the different soil layers by the plant. In particular, this parameter allows the amount of phosphorus removed from the surface layer via plant uptake to be controlled. While the relationship between UBP and P uptake from the surface layer is affected by the depth of the soil profile, in general, as UBP increases the amount of P removed from the surface layer relative to the amount removed from the entire profile increases

- real *8 snoev
- real *8 sno3up
- real *8 reactw
- real *8 sdiegropq
- real *8 sdiegrolpq
- real *8 sdiegrops
- real *8 sdiegrolps
- real *8 es_day
- real *8 wof lp

wash off fraction for less persistent bacteria on foliage during a rainfall event

- real *8 sbactrop
- real *8 sbactrolp
- real *8 sbactsedp
- real *8 sbactsedlp
- real *8 ep_max
- real *8 sbactlchp
- real *8 sbactlchlp
- real *8 psp_bsn
- real *8 rchwtr
- real *8 resuspst
- real *8 setIpst
- real *8 bsprev
- real *8 bssprev
- real *8 spadyo
- real *8 spadyev
- real *8 spadysp
- real *8 spadyrfv
- real *8 spadyosp
- real *8 qday
- real *8 usle_ei
- real *8 al5
- real *8 pndsedc
- real *8 no3pcp
- real *8 rcharea
- real *8 volatpst
- real *8 ubw

water uptake distribution parameter. This parameter controls the amount of water removed from the different soil layers by the plant. In particular, this parameter allows the amount of water removed from the surface layer via plant uptake to be controlled. While the relationship between UBW and H2O removed from the surface layer is affected by the depth of the soil profile, in general, as UBW increases the amount of water removed from the surface layer relative to the amount removed from the entire profile increases

real *8 uobn

nitrogen uptake normalization parameter. This variable normalizes the nitrogen uptake so that the model can easily verify that upake from the different soil layers sums to 1.0

real *8 uobp

phosphorus uptake normalization parameter. This variable normalizes the phosphorus uptake so that the model can easily verify that uptake from the different soil layers sums to 1.0

real *8 uobw

water uptake normalization parameter. This variable normalizes the water uptake so that the model can easily verify that uptake from the different soil layers sums to 1.0

real *8 wglpf

growth factor for less persistent bacteria on foliage (1/day)

- real *8 wetsedc
- real *8 respesti
- real *8 rcor

correction coefficient for generated rainfall to ensure that the annual means for generated and observed values are comparable (needed only if IDIST=1)

real *8 rexp

value of exponent for mixed exponential rainfall distribution (needed only if IDIST=1)

real *8 snocov1

1st shape parameter for snow cover equation. This parameter is determined by solving the equation for 50% snow cover

real *8 snocov2

2nd shape parameter for snow cover equation. This parameter is determined by solving the equation for 95% snow cover

real *8 snocovmx

Minimum snow water content that corresponds to 100% snow cover. If the snow water content is less than SNOC← OVMX, then a certain percentage of the ground will be bare (mm H2O)

- real *8 lyrtile
- real *8 lyrtilex
- real *8 sno50cov

Fraction of SNOCOVMX that corresponds to 50% snow cover. SWAT assumes a nonlinear relationship between snow water and snow cover.

real *8 ai0

ratio of chlorophyll-a to algal biomass (ug chla/mg alg)

real *8 ai1

fraction of algal biomass that is nitrogen (mg N/mg alg)

real *8 ai2

fraction of algal biomass that is phosphorus (mg P/mg alg)

real *8 ai3

the rate of oxygen production per unit of algal photosynthesis (mg O2/mg alg)

real *8 ai4

the rate of oxygen uptake per unit of algae respiration (mg O2/mg alg)

real *8 ai5

the rate of oxygen uptake per unit of NH3 nitrogen oxidation (mg O2/mg N)

real *8 ai6

the rate of oxygen uptake per unit of NO2 nitrogen oxidation (mg O2/mg N)

real *8 rhoq

algal respiration rate (1/day or 1/hr)

real *8 tfact

fraction of solar radiation computed in the temperature heat balance that is photosynthetically active

real *8 k_l

half-saturation coefficient for light (MJ/(m2*hr))

real *8 k n

michaelis-menton half-saturation constant for nitrogen (mg N/L)

real *8 k_p

michaelis-menton half saturation constant for phosphorus (mg P/L)

real *8 lambda0

non-algal portion of the light extinction coefficient (1/m)

real *8 lambda1

linear algal self-shading coefficient (1/(m*ug chla/L))

· real *8 lambda2

nonlinear algal self-shading coefficient ((1/m)(ug chla/L)**(-2/3))

real *8 mumax

maximum specific algal growth rate (1/day or 1/hr)

real *8 p_n

algal preference factor for ammonia

- real *8 rnum1
- real *8 autop
- real *8 auton
- real *8 etday
- · real *8 hmntl
- real *8 rwntl
- real *8 hmptl
- real *8 rmn2tl
- real *8 rmptl
- real *8 wdntl
- real *8 cmn bsn
- real *8 rmp1tl
- real *8 roctl
- real *8 gwseep
- real *8 revapday
- real *8 reswtr
- real *8 wdlprch

die-off factor for less persistent bacteria in streams (1/day)

real *8 wdpres

die-off factor for persistent bacteria in reservoirs (1/day)

- real *8 bury
- real *8 difus
- real *8 reactb
- real *8 solpesto
- · real *8 petmeas
- real *8 wdlpres

die-off factor for less persistent bacteria in reservoirs (1/day)

- · real *8 sorpesto
- real *8 spcon_bsn
- real *8 spexp bsn
- · real *8 solpesti
- real *8 sorpesti
- real *8 msk co1

calibration coefficient to control impact of the storage time constant for the reach at bankfull depth (phi(10,:) upon the storage time constant for the reach used in the Muskingum flow method

real *8 msk_co2

calibration coefficient to control impact of the storage time constant for the reach at 0.1 bankfull depth (phi(13,:) upon the storage time constant for the reach used in the Muskingum flow method

- real *8 snoprev
- real *8 swprev
- real *8 shallstp

- · real *8 deepstp
- real *8 ressolpo
- · real *8 resorgno
- real *8 resorgpo
- real *8 resno3o
- real *8 reschlao
- real *8 resno2o
- real *8 resnh3o
- real *8 qdbank
- real *8 potpcpmm
- real *8 potevmm
- real *8 potsepmm
- real *8 potflwo
- · real *8 bactminlp

Threshold detection level for less persistent bacteria. When bacteria levels drop to this amount the model considers bacteria in the soil to be insignificant and sets the levels to zero (cfu/m^2 2)

real *8 bactminp

Threshold detection level for persistent bacteria. When bacteria levels drop to this amount the model considers bacteria in the soil to be insignificant and sets the levels to zero (cfu/m^2)

real *8 trnsrch

fraction of transmission losses from main channel that enter deep aquifer

real *8 wp20p_plt

overall rate change for persistent bacteria on foliage (1/day)

- real *8 potsedo
- real *8 pest_sol
- real *8 bact_swf

fraction of manure containing active colony forming units (cfu)

real *8 bactmx

bacteria percolation coefficient. Ratio of solution bacteria in surface layer to solution bacteria in percolate

· real *8 cncoef

plant ET curve number coefficient

real *8 wp20lp_plt

overall rate change for less persistent bacteria on foliage (1/day)

- real *8 cdn bsn
- real *8 sdnco_bsn
- · real *8 bactmin
- real *8 cn froz

drainge coefficient (mm day -1)

real *8 dorm_hr

time threshold used to define dormant (hours)

real *8 smxco

adjustment factor for max curve number s factor (0-1)

real *8 tb_adj

adjustment factor for subdaily unit hydrograph basetime

real *8 chla_subco

regional adjustment on sub chla_a loading (fraction)

real *8 depimp bsn

depth to impervious layer. Used to model perched water tables in all HRUs in watershed (mm)

real *8 ddrain_bsn

depth to the sub-surface drain (mm)

real *8 tdrain_bsn

time to drain soil to field capacity (hours)

```
    real *8 gdrain_bsn

real *8 rch_san
· real *8 rch_sil
• real *8 rch cla

    real *8 rch sag

 real *8 rch_lag

 real *8 rch_gra

real *8 hlife_ngw_bsn
     Half-life of nitrogen in groundwater? (days)

    real *8 ch opco bsn

• real *8 ch onco bsn

    real *8 decr_min

     Minimum daily residue decay.

 real *8 rcn sub bsn

     Concentration of nitrogen in the rainfall (mg/kg)
real *8 bc1_bsn
real *8 bc2_bsn

    real *8 bc3_bsn

 real *8 bc4 bsn

real *8 anion_excl_bsn
• real *8, dimension(:), allocatable wat_tbl

    real *8, dimension(:), allocatable sol_swpwt

• real *8, dimension(:,:), allocatable vwt
• real *8 re bsn
     Effective radius of drains (range 3.0 - 40.0) (mm)

    real *8 sdrain bsn

     Distance bewtween two drain or tile tubes (range 7600.0 - 30000.0) (mm)

    real *8 sstmaxd bsn

 real *8 drain co bsn
     Drainage coeffcient (range 10.0 - 51.0) (mm-day-1)

    real *8 latksatf bsn

     Multiplication factor to determine lateral ksat from SWAT ksat input value for HRU (range 0.01 - 4.0)
real *8 pc bsn
     Pump capacity (def val = 1.042 mm h-1 or 25 mm day-1) (mm h-1)
· integer i_subhw
· integer imgt
· integer idlast
· integer iwtr
· integer ifrttyp

    integer mo_atmo

· integer mo atmo1
· integer ifirstatmo
· integer iyr_atmo
integer iyr_atmo1
· integer matmo

    integer mch

     maximum number of channels
· integer mcr
     maximum number of crops grown per year
```

· integer mfcst

· integer mcrdb

maximum number of forecast stations

maximum number of crops/landcover in database file (crop.dat)

integer mfdb

max number of fertilizers in fert.dat

· integer mhru

maximum number of HRUs in watershed

integer mhyd

maximum number of hydrograph nodes

· integer mpdb

max number of pesticides in pest.dat

integer mrg

max number of rainfall/temp gages

· integer mcut

maximum number of cuttings per year

· integer mgr

maximum number of grazings per year

· integer mnr

max number of years of rotation

· integer myr

max number of years of simulation

integer isubwq

subbasin water quality code

0 do not calculate algae/CBOD 1 calculate algae/CBOD drainmod tile equations

- · integer ffcst
- · integer isproj

special project code: 1 test rewind (run simulation twice)

integer nbyr

number of calendar years simulated

· integer irte

water routing method: 0 variable storage method 1 Muskingum method

integer nrch

number of reaches in watershed (none)

· integer nres

number of reservoirs in watershed (none)

- integer nhru
- integer mo
- · integer immo
- · integer i_mo
- · integer wndsim

wind speed input code 1 measured data read for each subbasin

2 data simulated for each subbasin

· integer ihru

HRU number (none)

- integer icode
- · integer ihout
- integer inum1
- integer inum2
- integer inum3
- integer inum4
- integer icfac

icfac = 0 for C-factor calculation using Cmin (as described in manual) = 1 for new C-factor calculation from RUSLE (no minimum needed)

- · integer inum5
- · integer inum6
- · integer inum7
- · integer inum8
- · integer mrech

maximum number of rechour files

· integer nrgage

number of raingage files

· integer nrgfil

number of rain gages per file

· integer nrtot

total number of rain gages

· integer ntgage

number of temperature gage files

· integer ntgfil

number of temperature gages per file

integer nttot

total number of temperature gages

· integer tmpsim

temperature input code

1 measured data read for each subbasin

2 data simulated for each subbasin

· integer icrk

crack flow code

1: compute flow in cracks

integer irtpest

number of pesticide to be routed through the watershed

integer igropt

Qual2E option for calculating the local specific growth rate of algae

1: multiplicative.

• integer lao

Qual2E light averaging option. Qual2E defines four light averaging options. The only option currently available in SWAT is #2

- · integer npmx
- integer curyr
- · integer iihru
- · integer itdrn

tile drainage equations flag/code

1 simulate tile flow using subroutine drains(wt_shall)

0 simulate tile flow using subroutine origtile(wt_shall,d)

· integer iwtdn

water table depth algorithms flag/code

1 simulate wt_shall using subroutine new water table depth routine

0 simulate wt_shall using subroutine original water table depth routine

· integer ismax

maximum depressional storage selection flag/code

0 = static depressional storage

1 = dynamic storage based on tillage and cumulative rainfall

· integer iroutunit

not being implemented in this version drainmod tile equations

- · integer ires nut
- integer iclb

auto-calibration flag

• integer mrecc

maximum number of reccnst files

· integer mrecd

maximum number of recday files

integer mrecm

maximum number of recmon files

integer mtil

max number of tillage types in till.dat

· integer mudb

maximum number of urban land types in urban.dat

· integer idist

rainfall distribution code

0 for skewed normal dist

1 for mixed exponential distribution

· integer mrecy

maximum number of recyear files

· integer nyskip

number of years to not print output

· integer slrsim

solar radiation input code

1 measured data read for each subbasin

2 data simulated for each subbasin

· integer ideg

channel degredation code

1: compute channel degredation (downcutting and widening)

· integer ievent

rainfall/runoff code

0 daily rainfall/curve number technique 1 sub-daily rainfall/Green&Ampt/hourly routing 3 sub-daily rainfall/ \leftarrow Green&Ampt/hourly routing

· integer ipet

code for potential ET method

0 Priestley-Taylor method

1 Penman/Monteith method

2 Hargreaves method

3 read in daily potential ET data

- · integer iopera
- integer idaf

beginning day of simulation (julian date)

· integer idal

ending day of simulation (julian date)

• integer rhsim

relative humidity input code

1 measured data read for each subbasin

2 data simulated for each subbasin

- integer id1
- integer leapyr
- integer mo_chk
- · integer nhtot

number of relative humidity records in file

integer nstot

number of solar radiation records in file

integer nwtot

number of wind speed records in file

- · integer ifirsts
- · integer ifirsth
- · integer ifirstw
- · integer icst
- · integer ilog

streamflow print code

· integer itotr

number of output variables printed (output.rch)

· integer iyr

beginning year of simulation (year)

· integer iwq

stream water quality code

0 do not model stream water quality

1 model stream water quality (QUAL2E & pesticide transformations)

integer i

forecast region number or subbasin number (none)

- · integer iskip
- · integer ifirstpet
- integer iprp

print code for output.pst file

0 do not print pesticide output

1 print pesticide output

integer itotb

number of output variables printed (output.sub)

· integer itots

number of output variables printed (output.hru)

· integer itoth

number of HRUs printed (output.hru/output.wtr)

· integer pcpsim

rainfall input code

1 measured data read for each subbasin

2 data simulated for each subbasin

- integer nd_30
- · integer iops
- · integer iphr
- · integer isto
- · integer isol
- integer fcstcycles

number of times forecast period is simulated (using different weather generator seeds each time)

· integer fcstday

beginning date of forecast period (julian date)

integer fcstyr

beginning year of forecast period

integer iscen

scenarios counter

• integer subtot

number of subbasins in watershed (none)

- integer ogen
- integer mapp

maximum number of applications

· integer mlyr

maximum number of soil layers

integer mpst

max number of pesticides used in wshed

· integer mres

maximum number of reservoirs

• integer msub

maximum number of subbasins

· integer igen

random number generator code:

0: use default numbers

1: generate new numbers in every simulation

integer iprint

print code: 0=monthly, 1=daily, 2=annual

- · integer iida
- · integer icn

CN method flag (for testing alternative method):

0 use traditional SWAT method which bases CN on soil moisture

1 use alternative method which bases CN on plant ET.

· integer ised_det

max half-hour rainfall fraction calc option:

0 generate max half-hour rainfall fraction from triangular distribution

1 use monthly mean max half-hour rainfall fraction

- · integer fcstcnt
- · integer mtran
- · integer idtill
- integer, dimension(100) ida_lup
- integer, dimension(100) iyr_lup
- · integer no lup
- integer no_up
- · integer nostep
- character(len=8) date

date simulation is performed where leftmost eight characters are set to a value of yyyymmdd, where yyyy is the year, mm is the month and dd is the day

• character(len=10) time

time simulation is performed where leftmost ten characters are set to a value of hhmmss.sss, where hh is the hour, mm is the minutes and ss.sss is the seconds and milliseconds

• character(len=5) zone

time difference with respect to Coordinated Universal Time (ie Greenwich Mean Time)

character(len=80) prog

SWAT program header string.

character(len=13) calfile

name of file containing calibration parameters

• character(len=13) rhfile

relative humidity file name (.hmd)

• character(len=13) slrfile

solar radiation file name (.slr)

character(len=13) wndfile

wind speed file name (.wnd)

• character(len=13) petfile

potential ET file name (.pet)

- character(len=13) atmofile
- character(len=13) lucfile
- character(len=13) septdb

name of septic tank database file (septwq1.dat)

• character(len=13) dpd_file

- character(len=13) wpd file
- character(len=13) rib_file
- · character(len=13) sfb file
- · character(len=13) lid file
- integer, dimension(9) idg

array location of random number seed used for a given process

- integer, dimension(:), allocatable ifirstr
- · integer, dimension(:), allocatable ifirsthr
- integer, dimension(8) values

values(1): year simulation is performed

values(2): month simulation is performed

values(3): day in month simulation is performed

values(4): time difference with respect to Coordinated Universal Time (ie Greenwich Mean Time)

values(5): hour simulation is performed

values(6): minute simulation is performed

values(7): second simulation is performed

values(8): millisecond simulation is performed

• integer, dimension(13) ndays

julian date for last day of preceding month (where the array location is the number of the month) The dates are for leap years (julian date)

- integer, dimension(13) ndays noleap
- integer, dimension(13) ndays leap
- integer mapex
- real *8, dimension(:), allocatable flodaya
- real *8, dimension(:), allocatable seddaya
- real *8, dimension(:), allocatable orgndaya
- real *8, dimension(:), allocatable orgpdaya
- real *8, dimension(:), allocatable no3daya
- real *8, dimension(:), allocatable minpdaya
- real *8, dimension(:), allocatable hi_targ

index target of cover defined at planting

- real *8, dimension(:), allocatable bio_targ
- real *8, dimension(:), allocatable tnyld
- integer, dimension(:), allocatable idapa
- integer, dimension(:), allocatable iypa
- integer, dimension(:), allocatable ifirsta
- integer, dimension(100) mo_transb
- integer, dimension(100) mo_transe
- integer, dimension(100) ih_tran
- integer msdb
- · integer iseptic
- real *8, dimension(:), allocatable sptqs
- real *8, dimension(:), allocatable percp
- real *8, dimension(:), allocatable sptbodconcs
- real *8, dimension(:), allocatable spttssconcs
- real *8, dimension(:), allocatable **spttnconcs**
- real *8, dimension(:), allocatable sptnh4concs
- real *8, dimension(:), allocatable sptno3concs
- real *8, dimension(:), allocatable sptno2concs
- real *8, dimension(:), allocatable sptorgnconcs
- real *8, dimension(:), allocatable spttpconcs
- real *8, dimension(:), allocatable sptminps
- real *8, dimension(:), allocatable sptorgps
- real *8, dimension(:), allocatable sptfcolis
- real *8, dimension(:), allocatable failyr

```
real *8, dimension(:), allocatable qstemm

    real *8, dimension(:), allocatable bio_amn

real *8, dimension(:), allocatable bio_bod

    real *8, dimension(:), allocatable biom

    real *8, dimension(:), allocatable rbiom

    real *8, dimension(:), allocatable fcoli

    real *8, dimension(:), allocatable bio_ntr

  real *8, dimension(:), allocatable bz_perc
  real *8, dimension(:), allocatable sep_cap
      number of permanent residents in the hourse (none)
• real *8, dimension(:), allocatable plqm
  real *8, dimension(:), allocatable bz area
  real *8, dimension(:), allocatable bz_z
      Depth of biozone layer(mm)

    real *8, dimension(:), allocatable bz_thk

      thickness of biozone (mm)
• real *8, dimension(:), allocatable bio_bd
      density of biomass (kg/m^{\wedge}3) carbon outputs for .hru file

    real *8, dimension(:), allocatable cmup kgh

  real *8, dimension(:), allocatable cmtot_kgh
  real *8, dimension(:), allocatable coeff_denitr
      denitrification rate coefficient (none)

    real *8, dimension(:), allocatable coeff bod dc

      BOD decay rate coefficient (m<sup>^</sup>3/day)

    real *8, dimension(:), allocatable coeff_bod_conv

      BOD to live bacteria biomass conversion factor (none)
  real *8, dimension(:), allocatable coeff fc1
      field capacity calibration parameter 1 (none)

    real *8, dimension(:), allocatable coeff_fc2

      field capacity calibration parameter 2 (none)
  real *8, dimension(:), allocatable coeff fecal
      fecal coliform bacteria decay rate coefficient (m<sup>\(\circ\)</sup> 3/day)
 real *8, dimension(:), allocatable coeff mrt
      mortality rate coefficient (none)
• real *8, dimension(:), allocatable coeff_nitr
      nitrification rate coefficient (none)

    real *8, dimension(:), allocatable coeff_plq

      conversion factor for plaque from TDS (none)

    real *8, dimension(:), allocatable coeff_rsp

     respiration rate coefficient (none)

    real *8, dimension(:), allocatable coeff_slg1

      slough-off calibration parameter (none)

    real *8, dimension(:), allocatable coeff_slg2

      slough-off calibration parameter (none)

    real *8, dimension(:), allocatable coeff_pdistrb

    real *8, dimension(:), allocatable coeff_solpslp

  real *8, dimension(:), allocatable coeff_solpintc
  real *8, dimension(:), allocatable coeff_psorpmax
integer, dimension(:), allocatable isep_typ
     septic system type (none)

    integer, dimension(:), allocatable i_sep
```

integer, dimension(:), allocatable isep_opt

septic system operation flag (1=active, 2=failing, 3=not operated) (none)

- integer, dimension(:), allocatable sep_tsincefail
- integer, dimension(:), allocatable isep_tfail
- · integer, dimension(:), allocatable isep_iyr
- integer, dimension(:), allocatable sep_strm_dist
- integer, dimension(:), allocatable sep den
- real *8, dimension(:), allocatable sol_sumno3
- real *8, dimension(:), allocatable sol sumsolp
- real *8, dimension(:), allocatable strsw_sum
- real *8, dimension(:), allocatable strstmp sum
- real *8, dimension(:), allocatable strsn_sum
- real *8, dimension(:), allocatable strsp_sum
- real *8, dimension(:), allocatable strsa_sum
- · real *8, dimension(:), allocatable spill_hru
- real *8, dimension(:), allocatable tile out
- real *8, dimension(:), allocatable hru in
- real *8, dimension(:), allocatable spill_precip
- real *8, dimension(:), allocatable pot_seep
- real *8, dimension(:), allocatable pot_evap
- real *8, dimension(:), allocatable pot sedin
- real *8, dimension(:), allocatable pot solp
- real *8, dimension(:), allocatable pot_solpi
- real *8, dimension(:), allocatable pot_orgp
- real *8, dimension(:), allocatable pot_orgpi
- real *8, dimension(:), allocatable pot_orgn
- real *8, dimension(:), allocatable pot_orgni
- real *8, dimension(:), allocatable pot mps
- real *8, dimension(:), allocatable pot mpsi
- real *8, dimension(:), allocatable pot_mpa
- real *8, dimension(:), allocatable pot_mpai
- real *8, dimension(:), allocatable pot_no3i
- real *8, dimension(:), allocatable **precip_in**
- real *8, dimension(:), allocatable **tile_sedo**
- real *8, dimension(:), allocatable tile_no3o
- real *8, dimension(:), allocatable tile_solpo
- real *8, dimension(:), allocatable tile_orgno
- real *8, dimension(:), allocatable tile_orgpo
- real *8, dimension(:), allocatable tile_minpso
- real *8, dimension(:), allocatable tile_minpao
- integer ia_b
- integer ihumus
- integer itemp
- integer isnow
- · integer, dimension(41) icolrsv
- integer, dimension(mhruo) icols
- · integer, dimension(mrcho) icolr
- integer, dimension(msubo) icolb
- integer, dimension(46) ipdvar
 - output variable codes for output.rch file
- integer, dimension(mhruo) ipdvas
 - output varaible codes for output.hru file
- integer, dimension(msubo) ipdvab
 - output variable codes for output.sub file
- integer, dimension(:), allocatable ipdhru

HRUs whose output information will be printed to the output.hru and output.wtr files.

- real *8, dimension(mstdo) wshddayo
- real *8, dimension(mstdo) wshdmono
- real *8, dimension(mstdo) wshdyro
- real *8, dimension(16) fcstaao
- real *8, dimension(mstdo) wshdaao
- real *8, dimension(:,:), allocatable wpstdayo
- real *8, dimension(:,:), allocatable wpstmono
- real *8, dimension(:,:), allocatable wpstyro
- real *8, dimension(:,:), allocatable yldkg
- real *8, dimension(:,:), allocatable bio_hv
- real *8, dimension(:,:), allocatable wpstaao
- real *8, dimension(:,:), allocatable rchmono
- real *8, dimension(:,:), allocatable rchyro
- real *8, dimension(:,:), allocatable rchaao
- real *8, dimension(:,:), allocatable rchdy
- real *8, dimension(:,:), allocatable hrumono
- real *8, dimension(:,:), allocatable hruyro
- real *8, dimension(:,:), allocatable hruaao
- real *8, dimension(:,:), allocatable submono
- real *8, dimension(:,:), allocatable subyro
- real *8, dimension(:,:), allocatable subaao
- real *8, dimension(:,:), allocatable resoutm
- real *8, dimension(:,:), allocatable resouty
- real *8, dimension(:,:), allocatable resouta
- real *8, dimension(12, 8) wshd aamon
- real *8, dimension(:,:), allocatable wtrmon
- real *8, dimension(:,:), allocatable wtryr
- real *8, dimension(:,:), allocatable wtraa
- real *8, dimension(:,:), allocatable sub smfmx

max melt rate for snow during year (June 21) for subbasin(:) where deg C refers to the air temperature. SUB_SMFMX and SMFMN allow the rate of snow melt to vary through the year. These parameters are accounting for the impact of soil temperature on snow melt (range: -5.0/5.0) (mm/deg C/day)

real *8, dimension(:,:), allocatable sub_smfmn

min melt rate for snow during year (Dec 21) for subbasin(:) (range: -5.0/5.0) where deg C refers to the air temperature (mm/deg C/day)

- real *8, dimension(:,:,:), allocatable hrupstd
- real *8, dimension(:,:,:), allocatable hrupsta
- real *8, dimension(:,:,:), allocatable hrupstm
- real *8, dimension(:,:,:), allocatable hrupsty
- integer, dimension(:), allocatable ifirstt
- integer, dimension(:), allocatable ifirstpcp
- integer, dimension(:), allocatable elevp
- integer, dimension(:), allocatable elevt
- real *8, dimension(:,:), allocatable ftmpmn

avg monthly minimum air temperature (deg C)

real *8, dimension(:,:), allocatable ftmpmx

avg monthly maximum air temperature (deg C)

real *8, dimension(:,:), allocatable ftmpstdmn

standard deviation for avg monthly minimum air temperature (deg C)

real *8, dimension(:,:), allocatable ftmpstdmx

standard deviation for avg monthly maximum air temperature (deg C)

real *8, dimension(:,:,:), allocatable fpcp_stat

```
fpcp_stat(:,1,:): average amount of precipitation falling in one day for the month (mm/day)
     fpcp_stat(:,2,:): standard deviation for the average daily precipitation (mm/day)
     fpcp_stat(:,3,:): skew coefficient for the average daily precipitationa (none)
 real *8, dimension(:,:), allocatable fpr w1
     probability of wet day after dry day in month (none)

    real *8, dimension(:,:), allocatable fpr w2

     probability of wet day after wet day in month (none)
  real *8, dimension(:,:), allocatable fpr w3
     proportion of wet days in the month (none)
  real *8, dimension(:), allocatable flwin
  real *8, dimension(:), allocatable flwout
  real *8, dimension(:), allocatable bankst
  real *8, dimension(:), allocatable ch_wi
  real *8, dimension(:), allocatable ch d
  real *8, dimension(:), allocatable ch onco
     channel organic n concentration (ppm)
  real *8, dimension(:), allocatable ch_opco
     channel organic p concentration (ppm)
  real *8, dimension(:), allocatable ch orgn
  real *8, dimension(:), allocatable ch orgp
  real *8, dimension(:), allocatable drift
  real *8, dimension(:), allocatable rch_dox
  real *8, dimension(:), allocatable rch bactp
  real *8, dimension(:), allocatable alpha bnk
  real *8, dimension(:), allocatable alpha bnke
  real *8, dimension(:), allocatable disolvp
  real *8, dimension(:), allocatable algae
  real *8, dimension(:), allocatable sedst
  real *8, dimension(:), allocatable rchstor
  real *8, dimension(:), allocatable organicn
  real *8, dimension(:), allocatable organicp
  real *8, dimension(:), allocatable chlora
  real *8, dimension(:), allocatable nitraten
  real *8, dimension(:), allocatable nitriten
  real *8, dimension(:), allocatable ch_li
  real *8, dimension(:), allocatable ch_si
  real *8, dimension(:), allocatable ch_bnk_san
  real *8, dimension(:), allocatable ch_bnk_sil
  real *8, dimension(:), allocatable ch_bnk_cla
  real *8, dimension(:), allocatable ch bnk gra
  real *8, dimension(:), allocatable ch bed san
  real *8, dimension(:), allocatable ch_bed_sil
  real *8, dimension(:), allocatable ch bed cla
  real *8, dimension(:), allocatable ch_bed_gra
  real *8, dimension(:), allocatable depfp
  real *8, dimension(:), allocatable depsanfp
  real *8, dimension(:), allocatable depsilfp
  real *8, dimension(:), allocatable depclafp
  real *8, dimension(:), allocatable depsagfp
  real *8, dimension(:), allocatable deplagfp
  real *8, dimension(:), allocatable depch
  real *8, dimension(:), allocatable depsanch
  real *8, dimension(:), allocatable depsilch
```

real *8, dimension(:), allocatable depclach

- real *8, dimension(:), allocatable depsagch
- real *8, dimension(:), allocatable deplagch
- real *8, dimension(:), allocatable depgrach
- real *8, dimension(:), allocatable depgrafp
- real *8, dimension(:), allocatable grast
- real *8, dimension(:), allocatable depprch
- real *8, dimension(:), allocatable depprfp
- real *8, dimension(:), allocatable prf
- real *8, dimension(:), allocatable r2adi
- real *8, dimension(:), allocatable spcon

linear parameter for calculating sediment reentrained in channel sediment routing

real *8, dimension(:), allocatable spexp

exponent parameter for calculating sediment reentrained in channel sediment routing

- real *8, dimension(:), allocatable sanst
- real *8, dimension(:), allocatable silst
- real *8, dimension(:), allocatable clast
- real *8, dimension(:), allocatable sagst
- real *8, dimension(:), allocatable lagst
- real *8, dimension(:), allocatable pot_san
- real *8, dimension(:), allocatable pot_sil
- real *8, dimension(:), allocatable pot_cla
- real *8, dimension(:), allocatable pot_sag
- real *8, dimension(:), allocatable pot_lag
- real *8, dimension(:), allocatable potsani
- real *8, dimension(:), allocatable potsali
- real *8, dimension(:), allocatable potclai
- real *8, dimension(:), allocatable potsagi
- real *8, dimension(:), allocatable **potlagi**
- real *8, dimension(:), allocatable sanyld
- real *8, dimension(:), allocatable silyld
- real *8, dimension(:), allocatable clayId
- real *8, dimension(:), allocatable sagyld
- real *8, dimension(:), allocatable lagyld
- real *8, dimension(:), allocatable grayId
- real *8, dimension(:), allocatable res_san
- real *8, dimension(:), allocatable res_sil
- real *8, dimension(:), allocatable res_cla
- real *8, dimension(:), allocatable res_sag
- real *8, dimension(:), allocatable res_lag
- real *8, dimension(:), allocatable res_gra
- real *8, dimension(:), allocatable pnd_san
- real *8, dimension(:), allocatable pnd_sil
- real *8, dimension(:), allocatable pnd_cla
- real *8, dimension(:), allocatable pnd_sag
- real *8, dimension(:), allocatable pnd_lag
- real *8, dimension(:), allocatable wet_san
- real *8, dimension(:), allocatable wet_sil
- real *8, dimension(:), allocatable wet_cla
- real *8, dimension(:), allocatable wet_lag
- real *8, dimension(:), allocatable wet_sag
- real *8 ressano
- real *8 ressilo
- real *8 resclao
- real *8 ressago

- · real *8 reslago
- real *8 resgrao
- real *8 ressani
- real *8 ressili
- · real *8 resclai
- real *8 ressagi
- real *8 reslagi
- real *8 resgrai
- real *8 potsano
- real *8 potsilo
- real *8 potclao
- real *8 potsago
- real *8 potlago
- real *8 pndsanin
- real *8 pndsilin
- real *8 pndclain
- real *8 pndsagin
- real *8 pndlagin
- real *8 pndsano
- real *8 pndsilo
- · real *8 pndclao
- real *8 pndsago
- real *8 pndlago
- real *8, dimension(:), allocatable ch_di
- real *8, dimension(:), allocatable ch_erod
- real *8, dimension(:), allocatable ch_l2
- real *8, dimension(:), allocatable ch_cov
- real *8, dimension(:), allocatable ch_cov1
- real *8, dimension(:), allocatable ch_cov2
- real *8, dimension(:), allocatable ch_bnk_bd
- real *8, dimension(:), allocatable ch bed bd
- real *8, dimension(:), allocatable ch_bnk_kd
- real *8, dimension(:), allocatable ch_bed_kd
- real *8, dimension(:), allocatable **ch_bnk_d50**
- real *8, dimension(:), allocatable ch_bed_d50
- real *8, dimension(:), allocatable tc_bed
- real *8, dimension(:), allocatable tc_bnk
- integer, dimension(:), allocatable ch_eqn
- real *8, dimension(:), allocatable chpst_conc
- real *8, dimension(:), allocatable chpst_rea
- real *8, dimension(:), allocatable chpst vol
- real *8, dimension(:), allocatable chpst_koc
- real *8, dimension(:), allocatable chpst_stl
- real *8, dimension(:), allocatable chpst_rsp
- real *8, dimension(:), allocatable chpst_mix
- real *8, dimension(:), allocatable sedpst_conc
- real *8, dimension(:), allocatable ch wdr
- real *8, dimension(:), allocatable sedpst_rea
- real *8, dimension(:), allocatable sedpst_bry
- real *8, dimension(:), allocatable sedpst_act
- real *8, dimension(:), allocatable rch_cbod
- real *8, dimension(:), allocatable rch_bactlp
- real *8, dimension(:), allocatable chside
- real *8, dimension(:), allocatable rs1
- real *8, dimension(:), allocatable rs2

```
    real *8, dimension(:), allocatable rs3

• real *8, dimension(:), allocatable rs4
• real *8, dimension(:), allocatable rs5
• real *8, dimension(:), allocatable rs6

    real *8, dimension(:), allocatable rs7

    real *8, dimension(:), allocatable rk1

    real *8, dimension(:), allocatable rk2

• real *8, dimension(:), allocatable rk3
• real *8, dimension(:), allocatable rk4
• real *8, dimension(:), allocatable rk5

    real *8, dimension(:), allocatable bc1

      rate constant for biological oxidation of NH3 to NO2 in reach at 20 deg C (1/hr)
• real *8, dimension(:), allocatable bc2
      rate constant for biological oxidation of NO2 to NO3 in reach at 20 deg C (1/hr)

    real *8, dimension(:), allocatable bc3

      rate constant for hydrolysis of organic N to ammonia in reach at 20 deg C (1/hr)

 real *8, dimension(:), allocatable bc4

      rate constant for the decay of organic P to dissolved P in reach at 20 deg C (1/hr)

    real *8, dimension(:), allocatable rk6

    real *8, dimension(:), allocatable ammonian

  real *8, dimension(:), allocatable orig_sedpstconc

    real *8, dimension(:,:), allocatable wurch

• integer, dimension(:), allocatable icanal

    integer, dimension(:), allocatable itb

    real *8, dimension(:), allocatable ch_revap

    real *8, dimension(:), allocatable dep_chan

    real *8, dimension(:), allocatable harg_petco

      coefficient related to radiation used in hargreaves eq (range: 0.0019 - 0.0032)

    real *8, dimension(:), allocatable subfr_nowtr

  real *8, dimension(:), allocatable cncoef sub
      soil water depletion coefficient used in the new (modified curve number method) same as soil index coeff used in
      APEX range: 0.5 - 2.0
real *8, dimension(:), allocatable dr_sub
• real *8, dimension(:), allocatable wcklsp

    real *8, dimension(:), allocatable sub_fr

    real *8, dimension(:), allocatable sub_minp

    real *8, dimension(:), allocatable sub sw

• real *8, dimension(:), allocatable sub_sumfc

    real *8, dimension(:), allocatable sub gwno3

    real *8, dimension(:), allocatable sub_gwsolp

• real *8, dimension(:), allocatable co2
      CO2 concentration (ppmv)

    real *8, dimension(:), allocatable sub km

      area of subbasin in square kilometers (km^{\wedge}2)

    real *8, dimension(:), allocatable sub_tc

• real *8, dimension(:), allocatable wlat
• real *8, dimension(:), allocatable sub_pet

    real *8, dimension(:), allocatable welev

    real *8, dimension(:), allocatable sub_orgn

    real *8, dimension(:), allocatable sub_orgp
```

real *8, dimension(:), allocatable sub_bd

```
    real *8, dimension(:), allocatable sub_wtmp

real *8, dimension(:), allocatable sub_sedpa
real *8, dimension(:), allocatable sub_sedps

    real *8, dimension(:), allocatable sub_minpa

    real *8, dimension(:), allocatable sub minps

    real *8, dimension(:), allocatable daylmn

    real *8, dimension(:), allocatable latcos

  real *8, dimension(:), allocatable latsin
• real *8, dimension(:), allocatable phutot

    real *8, dimension(:), allocatable plaps

     precipitation lapse rate: precipitation change due to change in elevation (mm H2O/km)

    real *8, dimension(:), allocatable tlaps

     temperature lapse rate: temperature change due to change in elevation (deg C/km)

    real *8, dimension(:), allocatable tmp_an

• real *8, dimension(:), allocatable sub_precip
  real *8, dimension(:), allocatable pcpdays
  real *8, dimension(:), allocatable rcn_sub

    real *8, dimension(:), allocatable rammo sub

    real *8, dimension(:), allocatable atmo day

    real *8, dimension(:), allocatable sub_snom

    real *8, dimension(:), allocatable sub_qd

    real *8, dimension(:), allocatable sub_sedy

• real *8, dimension(:), allocatable sub tran
real *8, dimension(:), allocatable sub_no3

    real *8, dimension(:), allocatable sub latno3

  real *8, dimension(:,:), allocatable sub_sftmp
     snowfall temperature for subbasin(:). Mean air temperature at which precip is equally likely to be rain as snow/freezing
     rain (range: -5.0/5.0) (deg C)
real *8, dimension(:,:), allocatable sub_smtmp
     snow melt base temperature for subbasin(:) mean air temperature at which snow melt will occur (range: -5.0/5.0)

    real *8, dimension(:,:), allocatable sub_timp

  real *8, dimension(:), allocatable sub_tileno3

    real *8, dimension(:), allocatable sub_solp

 real *8, dimension(:), allocatable sub subp

    real *8, dimension(:), allocatable sub etday

• real *8, dimension(:), allocatable sub_elev
     average elevation of subbasin (m)

    real *8, dimension(:), allocatable sub_wyld

  real *8, dimension(:), allocatable sub_surfq
• real *8, dimension(:), allocatable qird
  real *8, dimension(:), allocatable sub gwg
real *8, dimension(:), allocatable sub_sep

    real *8, dimension(:), allocatable sub chl

    real *8, dimension(:), allocatable sub_cbod

    real *8, dimension(:), allocatable sub dox

    real *8, dimension(:), allocatable sub_solpst

    real *8, dimension(:), allocatable sub_sorpst

    real *8, dimension(:), allocatable sub yorgn
```

real *8, dimension(:), allocatable sub_bactp

real *8, dimension(:), allocatable sub_yorgp • real *8, dimension(:), allocatable sub_lat latitude of subbasin (degrees)

real *8, dimension(:), allocatable sub_bactlp

- real *8, dimension(:), allocatable sub_latq
- real *8, dimension(:), allocatable sub_gwq_d
- real *8, dimension(:), allocatable sub_tileq
- real *8, dimension(:), allocatable sub vaptile
- real *8, dimension(:), allocatable sub dsan
- real *8, dimension(:), allocatable sub dsil
- real *8, dimension(:), allocatable sub_dcla
- real *8, dimension(:), allocatable sub_dsag
- real *8, dimension(:), allocatable sub_dlag
- real *8 vap tile
- real *8, dimension(:), allocatable wnan
- real *8, dimension(:,:), allocatable sol_stpwt
- real *8, dimension(:,:), allocatable sub_pst
- real *8, dimension(:,:), allocatable sub_hhqd
- real *8, dimension(:,:), allocatable sub_hhwtmp
- real *8, dimension(:,:), allocatable huminc

monthly humidity adjustment. Daily values for relative humidity within the month are rasied or lowered by the specified amount (used in climate change studies) (none)

real *8, dimension(:,:), allocatable radinc

monthly solar radiation adjustment. Daily radiation within the month is raised or lowered by the specified amount. (used in climate change studies) (MJ/m^2)

real *8, dimension(:,:), allocatable rfinc

monthly rainfall adjustment. Daily rainfall within the month is adjusted to the specified percentage of the original value (used in climate change studies)(%)

real *8, dimension(:,:), allocatable tmpinc

monthly temperature adjustment. Daily maximum and minimum temperatures within the month are raised or lowered by the specified amount (used in climate change studies) (deg C)

real *8, dimension(:), allocatable ch k1

effective hydraulic conductivity of tributary channel alluvium (mm/hr)

- real *8, dimension(:), allocatable ch k2
- real *8, dimension(:,:), allocatable elevb

elevation at the center of the band (m)

real *8, dimension(:,:), allocatable elevb_fr

fraction of subbasin area within elevation band (the same fractions should be listed for all HRUs within the subbasin) (none)

- real *8, dimension(:,:), allocatable wndav
- real *8, dimension(:), allocatable ch_n1

Manning's "n" value for the tributary channels (none)

- real *8, dimension(:), allocatable ch_n2
- real *8, dimension(:), allocatable ch_s1

average slope of tributary channels (m/m)

- real *8, dimension(:), allocatable ch_s2
- real *8, dimension(:), allocatable ch_w1

average width of tributary channels (m)

- real *8, dimension(:), allocatable ch w2
- real *8, dimension(:,:), allocatable dewpt
- real *8, dimension(:,:), allocatable amp_r
- real *8, dimension(:,:), allocatable solarav
- real *8, dimension(:,:), allocatable tmpstdmx
- real *8, dimension(:,:), allocatable tmpstdmn
- real *8, dimension(:,:), allocatable pcf
- real *8, dimension(:,:), allocatable tmpmn
- real *8, dimension(:,:), allocatable tmpmx
- real *8, dimension(:,:), allocatable otmpstdmn

- real *8, dimension(:,:), allocatable otmpmn
- real *8, dimension(:,:), allocatable otmpmx
- real *8, dimension(:,:), allocatable otmpstdmx
- real *8, dimension(:,:), allocatable ch_erodmo
- real *8, dimension(:,:), allocatable uh
- real *8, dimension(:,:), allocatable hqdsave
- real *8, dimension(:,:), allocatable hsdsave
- real *8, dimension(:,:), allocatable pr_w1
- real *8, dimension(:,:), allocatable pr_w2
- real *8, dimension(:,:), allocatable pr_w3
- real *8, dimension(:,:,:), allocatable pcp_stat
- real *8, dimension(:,:), allocatable opr_w1
- real *8, dimension(:,:), allocatable opr_w2
- real *8, dimension(:,:), allocatable opr_w3
- real *8, dimension(:,:,:), allocatable opcp_stat
- integer, dimension(:), allocatable hrutot
- integer, dimension(:), allocatable hru1
- integer, dimension(:), allocatable ireg
- integer, dimension(:), allocatable ihgage

subbasin relative humidity data code (none)

- integer, dimension(:), allocatable isgage
 - subbasin radiation gage data code (none)
- integer, dimension(:), allocatable iwgage
 - subbasin wind speed gage data code (none)
- integer, dimension(:), allocatable subgis
 - GIS code printed to output files (output.sub) (none.
- · integer, dimension(:), allocatable irgage
 - subbasin rain gage data code (none)
- integer, dimension(:), allocatable itgage
 - subbasin temp gage data code (none)
- integer, dimension(:), allocatable fcst_reg
- integer, dimension(:), allocatable irelh
- real *8, dimension(:,:), allocatable sol_aorgn
- real *8, dimension(:,:), allocatable sol_tmp
- real *8, dimension(:,:), allocatable sol_fon
- real *8, dimension(:,:), allocatable sol_awc
- real *8, dimension(:,:), allocatable sol prk
- real *8, dimension(:,:), allocatable volcr
- real *8, dimension(:,:), allocatable pperco sub

subbasin phosphorus percolation coefficient. Ratio of soluble phosphorus in surface to soluble phosphorus in percolate

- real *8, dimension(:,:), allocatable sol_actp
- real *8, dimension(:,:), allocatable sol_stap
- real *8, dimension(:,:), allocatable conv_wt
- real *8, dimension(:,:), allocatable sol_solp
- real *8, dimension(:,:), allocatable sol_ul
- real *8, dimension(:,:), allocatable **sol_fc**
- real *8, dimension(:,:), allocatable **crdep**
- real *8, dimension(:,:), allocatable sol_z
- real *8, dimension(:,:), allocatable sol_up
- real *8, dimension(:,:), allocatable sol_bd
- real *8, dimension(:,:), allocatable sol_st
- real *8, dimension(:,:), allocatable flat
- real *8, dimension(:,:), allocatable sol_nh3

- real *8, dimension(:,:), allocatable sol_hk
- real *8, dimension(:,:), allocatable sol_clay
- real *8, dimension(:,:), allocatable sol_ec
- real *8, dimension(:,:), allocatable sol_orgn
- real *8, dimension(:,:), allocatable sol por
- real *8, dimension(:,:), allocatable sol_wp
- real *8, dimension(:,:), allocatable sol_orgp
- real *8, dimension(:,:), allocatable sol_hum
- real *8, dimension(:,:), allocatable sol wpmm
- real *8, dimension(:,:), allocatable sol k
- real *8, dimension(:,:), allocatable sol_cbn
- real *8, dimension(:,:), allocatable sol_no3
- real *8, dimension(:,:), allocatable sol_rsd
- real *8, dimension(:,:), allocatable sol_fop
- real *8, dimension(:,:), allocatable sol_silt
- real *8, dimension(:,:), allocatable sol_sand
- real *8, dimension(:,:), allocatable sol_rock
- real *8, dimension(:,:), allocatable orig_solno3
- real *8, dimension(:,:), allocatable orig_solorgn
- real *8, dimension(:,:), allocatable orig_solsolp
- real *8, dimension(:,:), allocatable orig_solorgp
- real *8, dimension(:,:), allocatable orig soltmp
- real *8, dimension(:,:), allocatable orig solrsd
- real *8, dimension(:,:), allocatable orig_solfop
- real *8, dimension(:,:), allocatable orig solfon
- real *8, dimension(:,:), allocatable orig_solaorgn
- real *8, dimension(:,:), allocatable orig solst
- real *8, dimension(:,:), allocatable orig solactp
- real *8, dimension(:,:), allocatable orig solstap
- real *8, dimension(:,:), allocatable orig_volcr
- real *8, dimension(:,:), allocatable conk
- real *8, dimension(:,:,:), allocatable sol_pst
- real *8, dimension(:,:,:), allocatable sol_kp
- real *8, dimension(:,:,:), allocatable orig_solpst
- real *8, dimension(:), allocatable velsetlr
- real *8, dimension(:), allocatable velsetlp
- real *8, dimension(:), allocatable br1
- real *8, dimension(:), allocatable res k
- real *8, dimension(:), allocatable Ikpst_conc
- real *8, dimension(:), allocatable evrsv
- real *8, dimension(:), allocatable res evol
- real *8, dimension(:), allocatable res_pvol
- real *8, dimension(:), allocatable res_vol
- real *8, dimension(:), allocatable res_psa
- real *8, dimension(:), allocatable lkpst_rea
- real *8, dimension(:), allocatable lkpst_vol
- real *8, dimension(:), allocatable br2
- real *8, dimension(:), allocatable res_rr
 real *8, dimension(:), allocatable res_sed
- real *8, dimension(:), allocatable lkpst_koc
- real *8, dimension(:), allocatable lkpst_stl
- real *8, dimension(:), allocatable lkpst rsp
- real *8, dimension(:), allocatable Ikpst_mix
- real *8, dimension(:), allocatable lkspst_conc
- real *8, dimension(:), allocatable lkspst_rea

- real *8, dimension(:), allocatable theta_n
- real *8, dimension(:), allocatable theta_p
- real *8, dimension(:), allocatable con_nirr
- real *8, dimension(:), allocatable con pirr
- real *8, dimension(:), allocatable lkspst_bry
- real *8, dimension(:), allocatable lkspst_act
- real *8, dimension(:), allocatable sed stlr
- real *8, dimension(7) resdata
- real *8, dimension(:), allocatable wurtnf
- real *8, dimension(:), allocatable res nsed
- real *8, dimension(:), allocatable chlar
- real *8, dimension(:), allocatable res_orgn
- real *8, dimension(:), allocatable res_orgp
- real *8, dimension(:), allocatable res_no3
- real *8, dimension(:), allocatable res_solp
- real *8, dimension(:), allocatable res chla
- real *8, dimension(:), allocatable res_seci
- real *8, dimension(:), allocatable res esa
- real *8, dimension(:), allocatable seccir
- real *8, dimension(:), allocatable res no2
- real *8, dimension(:), allocatable res_nh3
- real *8, dimension(:), allocatable res bactp
- real *8, dimension(:), allocatable res bactlp
- real *8, dimension(:), allocatable oflowmn_fps
- real *8, dimension(:), allocatable starg fps
- real *0, dimension(.), anocatable starg_i
- real *8, dimension(:), allocatable weirc
- real *8, dimension(:), allocatable weirk
- real *8, dimension(:), allocatable weirw
- real *8, dimension(:), allocatable acoef
- real *8, dimension(:), allocatable bcoef
- real *8, dimension(:), allocatable ccoef
- real *8, dimension(:), allocatable orig_resvol
- real *8, dimension(:), allocatable orig_ressed
- real *8, dimension(:), allocatable orig_lkpstconc
- real *8, dimension(:), allocatable orig_lkspstconc
- real *8, dimension(:), allocatable orig_ressolp
- real *8, dimension(:), allocatable orig_resorgp
- real *8, dimension(:), allocatable orig_resno3
- real *8, dimension(:), allocatable orig_resno2
- real *8, dimension(:), allocatable orig_resnh3
- real *8, dimension(:), allocatable orig resorgn
- real *8, dimension(:,:), allocatable starg
- real *8, dimension(:,:), allocatable oflowmx
- real *8, dimension(:,:), allocatable oflowmn
- real *8, dimension(:,:), allocatable psetIr
- real *8, dimension(:,:), allocatable nsetIr
- real *8, dimension(:,:), allocatable wuresn
- real *8, dimension(:,:,:), allocatable res_out
- integer, dimension(:), allocatable ires1
- · integer, dimension(:), allocatable ires2
- · integer, dimension(:), allocatable res_sub
- integer, dimension(:), allocatable iresco
- integer, dimension(:), allocatable mores
- · integer, dimension(:), allocatable iyres
- integer, dimension(:), allocatable iflod1r

```
· integer, dimension(:), allocatable iflod2r
• integer, dimension(:), allocatable ndtargr

    real *8, dimension(:), allocatable ap_ef

      application efficiency (0-1) (none)

    real *8, dimension(:), allocatable decay_f

      exponential of the rate constant for degradation of the pesticide on foliage (none)
• real *8, dimension(:), allocatable skoc
      soil adsorption coefficient normalized for soil organic carbon content ((mg/kg)/(mg/L))

    real *8, dimension(:), allocatable decay_s

      exponential of the rate constant for degradation of the pesticide in soil (none)

    real *8, dimension(:), allocatable hlife f

      half-life of pesticide on foliage (days)

    real *8, dimension(:), allocatable hlife_s

      half-life of pesticide in soil (days)

    real *8, dimension(:), allocatable pst wof

      fraction of pesticide on foliage which is washed-off by a rainfall event (none)

    real *8, dimension(:), allocatable pst wsol

      solubility of chemical in water (mg/L (ppm))

    real *8, dimension(:), allocatable irramt

    real *8, dimension(:), allocatable phusw

    real *8, dimension(:), allocatable phusw nocrop

· integer, dimension(:), allocatable pstflg
      flag for types of pesticide used in watershed array location is pesticide ID number
      0: pesticide not used
      1: pesticide used
• integer, dimension(:), allocatable nope

    integer, dimension(:), allocatable nop

    integer, dimension(:), allocatable yr_skip

    integer, dimension(:), allocatable isweep

• integer, dimension(:), allocatable icrmx

    integer, dimension(:), allocatable nopmx

    integer, dimension(:,:), allocatable mgtop

• integer, dimension(:,:), allocatable idop

    integer, dimension(:,:), allocatable mgt1iop

    integer, dimension(:,:), allocatable mgt2iop

• integer, dimension(:,:), allocatable mgt3iop

    real *8, dimension(:,:), allocatable mgt4op

    real *8, dimension(:,:), allocatable mgt5op

    real *8, dimension(:,:), allocatable mgt6op

    real *8, dimension(:,:), allocatable mgt7op

• real *8, dimension(:,:), allocatable mgt8op
• real *8, dimension(:,:), allocatable mgt9op

    real *8, dimension(:,:), allocatable mgt10iop

real *8, dimension(:,:), allocatable phu_op
• real *8, dimension(:), allocatable cnyld
      fraction of nitrogen in yield (kg N/kg yield)

    real *8, dimension(:), allocatable rsdco pl

      plant residue decomposition coefficient. The fraction of residue which will decompose in a day assuming optimal
      moisture, temperature, C:N ratio, and C:P ratio (none)

    real *8, dimension(:), allocatable wac21

      1st shape parameter for radiation use efficiency equation (none)
  real *8, dimension(:), allocatable wac22
```

2nd shape parameter for radiation use efficiency equation (none)

```
    real *8, dimension(:), allocatable alai_min

      minimum LAI during winter dormant period (m^2/m^2)

    real *8, dimension(:), allocatable leaf1

      1st shape parameter for leaf area development equation (none)
 real *8, dimension(:), allocatable leaf2
     2nd shape parameter for leaf area development equation (none)

    real *8, dimension(:), allocatable wsyf

      Value of harvest index between 0 and HVSTI which represents the lowest value expected due to water stress
      ((kg/ha)/(kg/ha))

    real *8, dimension(:), allocatable bio_e

      biomass-energy ratio. The potential (unstressed) growth rate per unit of intercepted photosynthetically active
     radiation.((kg/ha)/(MJ/m**2))
• real *8, dimension(:), allocatable hvsti
      harvest index: crop yield/aboveground biomass ((kg/ha)/(kg/ha))
• real *8, dimension(:), allocatable t_base
      minimum temperature for plant growth (deg C)

    real *8, dimension(:), allocatable t_opt

      optimal temperature for plant growth (deg C)
• real *8, dimension(:), allocatable chtmx
     maximum canopy height (m)

    real *8, dimension(:), allocatable cvm

      natural log of USLE_C (none)

    real *8, dimension(:), allocatable gsi

      maximum stomatal conductance (m/s)

    real *8, dimension(:), allocatable vpd2

      rate of decline in stomatal conductance per unit increase in vapor pressure deficit ((m/s)*(1/kPa))

    real *8, dimension(:), allocatable wavp

     rate of decline in radiation use efficiency as a function of vapor pressure deficit (none)

    real *8, dimension(:), allocatable bio leaf

      fraction of leaf/needle biomass that drops during dormancy (for trees only) (none)

    real *8, dimension(:), allocatable blai

      maximum (potential) leaf area index (none)

    real *8, dimension(:), allocatable cpyld

      fraction of phosphorus in yield (kg P/kg yield)

    real *8, dimension(:), allocatable dlai

      fraction of growing season when leaf area declines (none)

    real *8, dimension(:), allocatable rdmx

     maximum root depth (m)

    real *8, dimension(:), allocatable bio_n1

      1st shape parameter for plant N uptake equation (none)

    real *8, dimension(:), allocatable bio n2

     2nd shape parameter for plant N uptake equation (none)

    real *8, dimension(:), allocatable bio_p1

      1st shape parameter for plant P uptake equation (none)

    real *8, dimension(:), allocatable bio p2

      2st shape parameter for plant P uptake equation (none)

    real *8, dimension(:), allocatable bm_dieoff

      fraction above ground biomass that dies off at dormancy (fraction)

    real *8, dimension(:), allocatable bmx_trees

    real *8, dimension(:), allocatable ext coef
```

real *8, dimension(:), allocatable rsr1

initial root to shoot ratio at the beg of growing season

• real *8, dimension(:), allocatable rsr2

root to shoot ratio at the end of the growing season

real *8, dimension(:,:), allocatable pltnfr

pltnfr(1,:) nitrogen uptake parameter #1: normal fraction of N in crop biomass at emergence (kg N/kg biomass) pltnfr(2,:) nitrogen uptake parameter #2: normal fraction of N in crop biomass at 0.5 maturity (kg N/kg biomass) pltnfr(3,:) nitrogen uptake parameter #3: normal fraction of N in crop biomass at maturity (kg N/kg biomass)

real *8, dimension(:,:), allocatable pltpfr

pltpfr(1,:) phosphorus uptake parameter #1: normal fraction of P in crop biomass at emergence (kg P/kg biomass) pltpfr(2,:) phosphorus uptake parameter #2: normal fraction of P in crop biomass at 0.5 maturity (kg P/kg biomass) pltpfr(3,:) phosphorus uptake parameter #3: normal fraction of P in crop biomass at maturity (kg P/kg biomass)

integer, dimension(:), allocatable idc

crop/landcover category:

1 warm season annual legume

2 cold season annual legume

3 perennial legume

4 warm season annual

5 cold season annual

6 perennial

7 trees

- · integer, dimension(:), allocatable mat yrs
- real *8, dimension(:), allocatable bactpdb

concentration of persistent bacteria in manure (fertilizer) (cfu/g manure)

real *8, dimension(:), allocatable fminn

fraction of mineral N (NO3 + NH3) (kg minN/kg fert)

real *8, dimension(:), allocatable forgn

fraction of organic N (kg orgN/kg fert)

real *8, dimension(:), allocatable forgp

fraction of organic P (kg orgP/kg fert)

real *8, dimension(:), allocatable bactkddb

bacteria partition coefficient (none):

1: all bacteria in solution

0: all bacteria sorbed to soil particles

real *8, dimension(:), allocatable bactlpdb

concentration of less persistent bacteria in manure (fertilizer) (cfu/g manure)

real *8, dimension(:), allocatable fminp

fraction of mineral P (kg minP/kg fert)

real *8, dimension(:), allocatable fnh3n

fraction of NH3-N in mineral N (kg NH3-N/kg minN)

• character(len=8), dimension(200) fertnm

name of fertilizer

real *8, dimension(:), allocatable curbden

curb length density in HRU (km/ha)

• real *8, dimension(:), allocatable dirtmx

maximum amount of solids allowed to build up on impervious surfaces (kg/curb km)

real *8, dimension(:), allocatable fimp

fraction of HRU area that is impervious (both directly and indirectly connected)(fraction)

• real *8, dimension(:), allocatable urbcoef

wash-off coefficient for removal of constituents from an impervious surface (1/mm)

real *8, dimension(:), allocatable thalf

time for the amount of solids on impervious areas to build up to 1/2 the maximum level (days)

real *8, dimension(:), allocatable tnconc

concentration of total nitrogen in suspended solid load from impervious areas (mg N/kg sed)

• real *8, dimension(:), allocatable tno3conc

concentration of NO3-N in suspended solid load from impervious areas (mg NO3-N/kg sed) • real *8, dimension(:), allocatable tpconc concentration of total phosphorus in suspended solid load from impervious areas (mg P/kg sed) real *8, dimension(:), allocatable fcimp fraction of HRU area that is classified as directly connected impervious (fraction) • real *8, dimension(:), allocatable urbcn2 SCS curve number for moisture condition II in impervious areas (none) real *8 sweepeff real *8 frt kg real *8 pst_dep real *8 fr_curb real *8, dimension(:), allocatable ranrns_hru · integer, dimension(:), allocatable itill real *8, dimension(:), allocatable deptil depth of mixing caused by operation (mm) • real *8, dimension(:), allocatable effmix mixing efficiency of operation (none) • real *8, dimension(:), allocatable ranrns random roughness of a given tillage operation (mm) · character(len=8), dimension(550) tillnm 8-character name for the tillage operation real *8, dimension(:), allocatable rnum1s For ICODES equal to (none) 0.1.3.5.9: not used 2: Fraction of flow in channel 4: amount of water transferred (as defined by INUM4S) 7,8,10,11: drainage area in square kilometers associated with the record file. real *8, dimension(:), allocatable hyd dakm • real *8, dimension(:,:), allocatable varoute real *8, dimension(:,:), allocatable shyd • real *8, dimension(:,:), allocatable vartran real *8, dimension(:,:,:), allocatable hhvaroute • integer, dimension(:), allocatable icodes routing command code (none): 0 = finish1 = subbasin 2 = route 3 = routres 4 = transfer 5 = add6 = rechour 7 = recmon 8 = recvear 9 = save10 = recdav 11 = reccnst 12 = structure 13 = apex14 = saveconc 15 = integer, dimension(:), allocatable ihouts For ICODES equal to (none) 0: not used 1,2,3,5,7,8,10,11: hydrograph storage location number 4: departure type (1=reach, 2=reservoir) 9: hydrograph storage location of data to be printed to event file 14:hydrograph storage location of data to be printed to saveconc file.

• integer, dimension(:), allocatable inum1s

For ICODES equal to (none)

- 0: not used
- 1: subbasin number
- 2: reach number
- 3: reservoir number
- 4: reach or res # flow is diverted from
- 5: hydrograph storage location of 1st dataset to be added
- 7,8,9,10,11,14: file number.
- integer, dimension(:), allocatable inum2s

For ICODES equal to (none)

- 0,1,7,8,10,11: not used
- 2,3: inflow hydrograph storage location
- 4: destination type (1=reach, 2=reservoir)
- 5: hydrograph storage location of 2nd dataset to be added
- 9,14:print frequency (0=daily, 1=hourly)
- integer, dimension(:), allocatable inum3s

For ICODES equal to (none)

- 0,1,2,3,5,7,8,10,11: not used
- 4: destination number. Reach or reservoir receiving water
- 9: print format (0=normal, fixed format; 1=txt format for AV interface, recday)
- integer, dimension(:), allocatable inum4s

For ICODES equal to (none)

0,2,3,5,7,8,9,10,11: not used

- 1: GIS code printed to output file (optional)
- 4: rule code governing transfer of water (1=fraction transferred out, 2=min volume or flow left, 3=exact amount transferred)
- integer, dimension(:), allocatable inum5s
- integer, dimension(:), allocatable inum6s
- integer, dimension(:), allocatable inum7s
- integer, dimension(:), allocatable inum8s
- integer, dimension(:), allocatable subed
- character(len=10), dimension(:), allocatable recmonps
- character(len=10), dimension(:), allocatable recenstps
- character(len=5), dimension(:), allocatable subnum
- character(len=4), dimension(:), allocatable hruno
- real *8, dimension(:), allocatable grwat_n
- real *8, dimension(:), allocatable grwat i
- real *8, dimension(:), allocatable grwat_l
- real *8, dimension(:), allocatable grwat_w
- real *8, dimension(:), allocatable grwat_d
- real *8, dimension(:), allocatable grwat_s
- real *0, dimension(:), anocatable grwat_s
- real *8, dimension(:), allocatable grwat_spcon
- real *8, dimension(:), allocatable tc_gwat
- real *8, dimension(:), allocatable pot_volmm
- real *8, dimension(:), allocatable pot_tilemm
- real *8, dimension(:), allocatable **pot_volxmm**
- real *8, dimension(:), allocatable pot_fr
- real *8, dimension(:), allocatable **pot_tile**
- real *8, dimension(:), allocatable pot_vol
- real *8, dimension(:), allocatable potsa
- real *8, dimension(:), allocatable pot_volx
- real *8, dimension(:), allocatable potflwi
- real *8, dimension(:), allocatable potsedi
- real *8, dimension(:), allocatable wfsh
- real *8, dimension(:), allocatable pot_nsed
- real *8, dimension(:), allocatable pot_no3l

- real *8, dimension(:), allocatable newrti
- real *8, dimension(:), allocatable gwno3
- real *8, dimension(:), allocatable pot_sed
- real *8, dimension(:), allocatable pot_no3
- real *8, dimension(:), allocatable fsred
- real *8, dimension(:), allocatable tmpavp
- real *8, dimension(:), allocatable evpot
- real *8, dimension(:), allocatable dis_stream
- real *8, dimension(:), allocatable pot solp!
- real *8, dimension(:), allocatable sed con
- real *8, dimension(:), allocatable orgn_con
- real *8, dimension(:), allocatable orgp_con
- real *8, dimension(:), allocatable soln_con
- real *8, dimension(:), allocatable solp_con
- real *8, dimension(:), allocatable pot_k
- real *8, dimension(:), allocatable n_reduc
- real *8, dimension(:), allocatable n_lag
- real *8, dimension(:), allocatable n_ln
- real *8, dimension(:), allocatable n_lnco
- · integer, dimension(:), allocatable ioper
- integer, dimension(:), allocatable ngrwat
- real *8, dimension(:), allocatable filterw
- · real *8, dimension(:), allocatable sumix
- real *8, dimension(:), allocatable usle_ls
- real *8, dimension(:), allocatable phuacc
- real *8, dimension(:), allocatable epco

plant water uptake compensation factor (0-1)

real *8, dimension(:), allocatable esco

soil evaporation compensation factor (0-1)

- real *8, dimension(:), allocatable slsubbsn
- real *8, dimension(:), allocatable hru_slp
- real *8, dimension(:), allocatable erorgn
- real *8, dimension(:), allocatable erorgp
- real *8, dimension(:), allocatable biomix
- real *8, dimension(:), allocatable pnd_seci
- real *8, dimension(:), allocatable flowmin
- real *8, dimension(:), allocatable divmax
- real *8, dimension(:), allocatable canmx
- real *8, dimension(:), allocatable usle_p
- real *8, dimension(:), allocatable lat_sed
- real *8, dimension(:), allocatable rch_dakm
- real *8, dimension(:), allocatable pnd_no3s
- real *8, dimension(:), allocatable cn1
- real *8, dimension(:), allocatable cn2
- real *8, dimension(:), allocatable lat_ttime
- real *8, dimension(:), allocatable flowfr
- real *8, dimension(:), allocatable sol_zmx
- real *8, dimension(:), allocatable tile_ttime
- real *8, dimension(:), allocatable slsoil
- real *8, dimension(:), allocatable sed_stl
- real *8, dimension(:), allocatable gwminp
- real *8, dimension(:), allocatable sol_cov
- real *8, dimension(:), allocatable yldanu
- real *8, dimension(:), allocatable pnd_solp

real *8, dimension(:), allocatable pnd_no3 real *8, dimension(:), allocatable ov_n real *8, dimension(:), allocatable driftco coefficient for pesticide drift directly onto stream (none) real *8, dimension(:), allocatable pnd_orgp real *8, dimension(:), allocatable pnd_orgn real *8, dimension(:), allocatable cn3 real *8, dimension(:), allocatable twlpnd real *8, dimension(:), allocatable twlwet real *8, dimension(:), allocatable sol sumul real *8, dimension(:), allocatable pnd_chla real *8, dimension(:), allocatable hru_fr real *8, dimension(:), allocatable hru_km area of HRU in square kilometers (km²) real *8, dimension(:), allocatable bio_ms real *8, dimension(:), allocatable sol_alb real *8, dimension(:), allocatable strsw real *8, dimension(:), allocatable pnd_fr real *8, dimension(:), allocatable pnd_psa real *8, dimension(:), allocatable pnd_pvol real *8, dimension(:), allocatable pnd_k real *8, dimension(:), allocatable pnd_esa real *8, dimension(:), allocatable pnd_evol real *8, dimension(:), allocatable pnd_vol real *8, dimension(:), allocatable yldaa real *8, dimension(:), allocatable pnd_sed real *8, dimension(:), allocatable pnd_nsed real *8, dimension(:), allocatable strsa real *8, dimension(:), allocatable dep_imp real *8, dimension(:), allocatable evpnd real *8, dimension(:), allocatable evwet real *8, dimension(:), allocatable wet_fr real *8, dimension(:), allocatable wet_nsa real *8, dimension(:), allocatable wet_nvol real *8, dimension(:), allocatable wet_k integer, dimension(:), allocatable iwetgw integer, dimension(:), allocatable iwetile real *8, dimension(:), allocatable wet_mxsa real *8, dimension(:), allocatable wet_mxvol real *8, dimension(:), allocatable wet_vol real *8, dimension(:), allocatable wet_sed real *8, dimension(:), allocatable wet_nsed real *8, dimension(:), allocatable smx real *8, dimension(:), allocatable sci real *8, dimension(:), allocatable bp1 real *8, dimension(:), allocatable bp2 real *8, dimension(:), allocatable bw1 real *8, dimension(:), allocatable bw2 real *8, dimension(:), allocatable bactpq real *8, dimension(:), allocatable bactp_plt real *8, dimension(:), allocatable bactlp_plt real *8, dimension(:), allocatable cnday

real *8, dimension(:), allocatable **bactlpq** real *8, dimension(:), allocatable **auto_eff**

- real *8, dimension(:), allocatable sol_sw
- real *8, dimension(:), allocatable secciw
- real *8, dimension(:), allocatable bactps
- real *8, dimension(:), allocatable bactlps
- real *8, dimension(:), allocatable tmpav
- real *8, dimension(:), allocatable chlaw
- real *8, dimension(:), allocatable sno_hru

amount of water stored as snow (mm H2O)

- real *8, dimension(:), allocatable subp
- real *8, dimension(:), allocatable hru ra
- real *8, dimension(:), allocatable wet_orgn
- real *8, dimension(:), allocatable tmx
- real *8, dimension(:), allocatable tmn
- real *8, dimension(:), allocatable rsdin
- real *8, dimension(:), allocatable tmp_hi
- real *8, dimension(:), allocatable tmp_lo
- real *8, dimension(:), allocatable rwt
- real *8, dimension(:), allocatable olai
- real *8, dimension(:), allocatable usle_k
- real *8, dimension(:), allocatable tconc
- real *8, dimension(:), allocatable hru rmx
- real *8, dimension(:), allocatable usle_cfac
- real *8, dimension(:), allocatable usle_eifac
- real *8, dimension(:), allocatable anano3
- real *8. dimension(:), allocatable aird
- real *8, dimension(:), allocatable t ov
- real *8, dimension(:), allocatable sol_sumfc
- real *8, dimension(:), allocatable sol_avpor
- real *8, dimension(:), allocatable usle_mult
- real *8, dimension(:), allocatable wet_orgp
- real *8, dimension(:), allocatable aairr
- real *8, dimension(:), allocatable cht
- real *8, dimension(:), allocatable u10
- real *8, dimension(:), allocatable rhd
- real *8, dimension(:), allocatable shallirr
- real *8, dimension(:), allocatable deepirr
- real *8, dimension(:), allocatable lai_aamx
- real *8, dimension(:), allocatable ch_l1

longest tributary channel length in subbasin (km)

- real *8, dimension(:), allocatable canstor
- real *8, dimension(:), allocatable ovrlnd
- real *8, dimension(:), allocatable wet_no3
- real *8, dimension(:), allocatable irr_mx
- real *8, dimension(:), allocatable auto_wstr
- real *8, dimension(:), allocatable cfrt_id
- real *8, dimension(:), allocatable cfrt kg
- · real *8, dimension(:), allocatable cpst_id
- real *8, dimension(:), allocatable cpst_kg
- real *8, dimension(:), allocatable irr_asq
- real *8, dimension(:), allocatable irr_eff
- real *8, dimension(:), allocatable irrsq
- real *8, dimension(:), allocatable irrefm
- real *8, dimension(:), allocatable irrsalt
- real *8, dimension(:), allocatable bio eat

- real *8, dimension(:), allocatable bio_trmp
- integer, dimension(:), allocatable ifrt_freq
- integer, dimension(:), allocatable ipst_freq
- integer, dimension(:), allocatable irr_noa
- integer, dimension(:), allocatable irr_sc
- integer, dimension(:), allocatable irr_no
- · integer, dimension(:), allocatable imp_trig
- integer, dimension(:), allocatable fert_days
- integer, dimension(:), allocatable irr_sca
- integer, dimension(:), allocatable pest_days
- · integer, dimension(:), allocatable idplt
- integer, dimension(:), allocatable wstrs_id
- real *8, dimension(:,:), allocatable bio_aahv
- · real *8, dimension(:), allocatable cumei
- real *8, dimension(:), allocatable cumeira
- real *8, dimension(:), allocatable cumrt
- · real *8, dimension(:), allocatable cumrai
- real *8, dimension(:), allocatable wet_solp
- real *8, dimension(:), allocatable wet_no3s
- real *8, dimension(:), allocatable wet chla
- real *8, dimension(:), allocatable wet_seci
- real *8, dimension(:), allocatable pnd_no3g
- roar ro, amonoron,,,, anocatable pria_rio
- real *8, dimension(:), allocatable pstsol
- real *8, dimension(:), allocatable gwht
- real *8, dimension(:), allocatable delay
- real *8, dimension(:), allocatable gw_q
- real *8, dimension(:), allocatable pnd_solpg
- real *8, dimension(:), allocatable alpha_bf
- real *8, dimension(:), allocatable alpha_bfe
- real *8, dimension(:), allocatable **gw_spyld**
- real *8, dimension(:), allocatable alpha_bf_d
 real *8, dimension(:), allocatable alpha bfe d
- real *8, dimension(:), allocatable gw_qdeep
- real *8, dimension(:), allocatable gw_delaye
- real *8, dimension(:), allocatable gw_revap
- real *8, dimension(:), allocatable rchrg_dp
- real *8, dimension(:), allocatable anion_excl

fraction of porosity from which anions are excluded

- real *8, dimension(:), allocatable revapmn
- real *8, dimension(:), allocatable rchrg
- real *8, dimension(:), allocatable ffc
- real *8, dimension(:), allocatable bio_min
- real *8, dimension(:), allocatable surgsolp
- real *8, dimension(:), allocatable cklsp
- real *8, dimension(:), allocatable deepst
- real *8, dimension(:), allocatable shallst
- real *8, dimension(:), allocatable wet_solpg
- real *8, dimension(:), allocatable rchrg_src
- real *8, dimension(:), allocatable wet_no3g
- real *8, dimension(:), allocatable sol_avbd
- real *8, dimension(:), allocatable trapeff
- real *8, dimension(:), allocatable **gwqmn**
- real *8, dimension(:), allocatable tdrain
- real *8, dimension(:), allocatable ppInt

- real *8, dimension(:), allocatable snotmp
- real *8, dimension(:), allocatable gdrain

drain tile lag time (hours)

- real *8, dimension(:), allocatable ddrain
- real *8, dimension(:), allocatable sol_crk
- · real *8, dimension(:), allocatable dayl
- real *8, dimension(:), allocatable brt
- real *8, dimension(:), allocatable sstmaxd

static maximum depressional storage; read from .sdr (mm)

- real *8, dimension(:), allocatable ddrain_hru
- real *8, dimension(:), allocatable re
- real *8, dimension(:), allocatable sdrain
- · real *8, dimension(:), allocatable stmaxd
- real *8, dimension(:), allocatable drain co
- real *8, dimension(:), allocatable pc
- real *8, dimension(:), allocatable latksatf
- real *8, dimension(:), allocatable twash
- real *8, dimension(:), allocatable rnd2
- real *8, dimension(:), allocatable rnd3
- real *8, dimension(:), allocatable sol_cnsw
- real *8, dimension(:), allocatable doxq
- real *8, dimension(:), allocatable rnd8
- · real *8, dimension(:), allocatable rnd9
- real *8, dimension(:), allocatable percn
- real *8, dimension(:), allocatable sol_sumwp
- real *8, dimension(:), allocatable tauton
- real *8, dimension(:), allocatable tautop
- real *8, dimension(:), allocatable cbodu
- real *8, dimension(:), allocatable chl_a
- real *8, dimension(:), allocatable qdr
- real *8, dimension(:), allocatable tfertn
- real *8, dimension(:), allocatable tfertp
- real *8, dimension(:), allocatable tgrazn
- real *8, dimension(:), allocatable tgrazp
- real *8, dimension(:), allocatable latno3
- real *8, dimension(:), allocatable latq
- real *8, dimension(:), allocatable minpgw
- real *8, dimension(:), allocatable no3gw
- real *8, dimension(:), allocatable **npInt**
- real *8, dimension(:), allocatable tileg
- real *8, dimension(:), allocatable tileno3
- real *8, dimension(:), allocatable sedminpa
- real *8, dimension(:), allocatable sedminps
- real *8, dimension(:), allocatable sedorgn
- real *8, dimension(:), allocatable sedorgp
- real *8, dimension(:), allocatable sedyld
- · real *8, dimension(:), allocatable sepbtm
- real *8, dimension(:), allocatable strsn
- real *8, dimension(:), allocatable strsp
- real *8, dimension(:), allocatable strstmp
- real *8, dimension(:), allocatable surfq
- real *8, dimension(:), allocatable surgno3
- real *8, dimension(:), allocatable tcfrtn
- real *8, dimension(:), allocatable tcfrtp

- real *8, dimension(:), allocatable hru_ha
- real *8, dimension(:), allocatable hru_dafr
- real *8, dimension(:), allocatable drydep_no3
- real *8, dimension(:), allocatable drydep_nh4
- real *8, dimension(:), allocatable phubase
- real *8, dimension(:), allocatable bio_yrms
- real *8, dimension(:), allocatable hvstiadi
- real *8, dimension(:), allocatable laimxfr
- real *8, dimension(:), allocatable laiday
- real *8, dimension(:), allocatable chlap
- real *8, dimension(:), allocatable pnd_psed
- real *8, dimension(:), allocatable wet_psed
- real *8, dimension(:), allocatable seccip
- real *8, dimension(:), allocatable plantn
- real *8, dimension(:), allocatable plt_et
- real *8, dimension(:), allocatable plt pet
- real *8, dimension(:), allocatable plantp
- real *8, dimension(:), allocatable bio aams
- real *8, dimension(:), allocatable bio_aamx
- real *8, dimension(:), allocatable lai_yrmx
- real *8, dimension(:), allocatable dormhr
- real *8, dimension(:), allocatable lat_pst
- real *8, dimension(:), allocatable orig snohru
- real *8, dimension(:), allocatable orig_potvol
- real *8, dimension(:), allocatable fld fr
- real *8, dimension(:), allocatable orig_alai
- real *8, dimension(:), allocatable orig_bioms
- real *8, dimension(:), allocatable pltfr_n
- real *8, dimension(:), allocatable orig_phuacc
- · real *8, dimension(:), allocatable orig_sumix
- real *8, dimension(:), allocatable pltfr_p
- real *8, dimension(:), allocatable orig phu
- real *8, dimension(:), allocatable phu_plt
- real *8, dimension(:), allocatable orig_shallst
- real *8, dimension(:), allocatable orig_deepst
- real *8, dimension(:), allocatable orig pndvol
- real *8, dimension(:), allocatable orig_pndsed
- real *8, dimension(:), allocatable rip_fr
- real *8, dimension(:), allocatable orig_pndno3
- real *8, dimension(:), allocatable orig_pndsolp
- real *8, dimension(:), allocatable orig pndorgn
- real *8, dimension(:), allocatable orig_pndorgp
- real *8, dimension(:), allocatable orig_wetvol
- real *8, dimension(:), allocatable orig_wetsed
- real *8, dimension(:), allocatable orig_wetno3
- real *8, dimension(:), allocatable orig_wetsolp
- real *8, dimension(:), allocatable orig_wetorgn
- real *8, dimension(:), allocatable orig_wetorgp
- real *8, dimension(:), allocatable orig_solcov
- real *8, dimension(:), allocatable orig_solsw
- real *8, dimension(:), allocatable orig_potno3
- real *8, dimension(:), allocatable orig_potsed
- real *8, dimension(:), allocatable wtab
- real *8, dimension(:), allocatable wtab_mn
- real *8, dimension(:), allocatable wtab_mx

- real *8, dimension(:), allocatable shallst n
- real *8, dimension(:), allocatable gw_nloss
- real *8, dimension(:), allocatable rchrg_n
- real *8, dimension(:), allocatable det san
- real *8, dimension(:), allocatable det sil
- real *8, dimension(:), allocatable det_cla
- real *8, dimension(:), allocatable det_sag
- real *8, dimension(:), allocatable det_lag
- real *8, dimension(:), allocatable tnylda
- real *8, dimension(:), allocatable afrt_surface
- real *8 frt surface
- real *8, dimension(:), allocatable auto_nyr
- real *8, dimension(:), allocatable auto_napp
- real *8, dimension(:), allocatable manure_kg
- real *8, dimension(:), allocatable auto nstrs
- real *8, dimension(:,:), allocatable rcn mo
- real *8, dimension(:,:), allocatable rammo_mo
- real *8, dimension(:,:), allocatable drydep_no3_mo
- real *8, dimension(:,:), allocatable drydep_nh4_mo
- real *8, dimension(:), allocatable rcn d
- real *8, dimension(:), allocatable rammo_d
- real *8, dimension(:), allocatable drydep no3 d
- real *8, dimension(:), allocatable drydep_nh4_d
- real *8, dimension(:,:), allocatable yldn
- real *8, dimension(:,:), allocatable gwati
- real *8, dimension(:,:), allocatable gwatn
- real *8, dimension(:,:), allocatable gwatl
- real *8, dimension(:,:), allocatable gwatw
- real *8, dimension(:,:), allocatable gwatd
- real *8, dimension(:,:), allocatable gwatveg
- real *8, dimension(:,:), allocatable gwata
- real *8, dimension(:,:), allocatable gwats
- real *8, dimension(:,:), allocatable gwatspcon
- real *8, dimension(:,:), allocatable rfqeo_30d
- real *8, dimension(:,:), allocatable eo_30d
- real *8, dimension(:,:), allocatable wgncur
- real *8, dimension(:,:), allocatable wgnold
- real *8, dimension(:,:), allocatable wrt
- real *8, dimension(:,:), allocatable **psetIp**
- real *8, dimension(:,:), allocatable zdb
- real *8, dimension(:,:), allocatable pst_surq
- real *8, dimension(:,:), allocatable pst_enr
- real *8, dimension(:,:), allocatable plt_pst
- real *8, dimension(:,:), allocatable pst_sed
- real *8, dimension(:,:), allocatable psetlw
- real *8, dimension(:,:), allocatable pcpband
- real *8, dimension(:,:), allocatable wupnd
- real *8, dimension(:,:), allocatable tavband
- real *8, dimension(:,:), allocatable phi
- real *8, dimension(:,:), allocatable wat_phi
- real *8, dimension(:,:), allocatable snoeb

initial snow water content in elevation band (mm H2O)

- real *8, dimension(:,:), allocatable wushal
- real *8, dimension(:,:), allocatable wudeep

- real *8, dimension(:,:), allocatable tmnband
- real *8, dimension(:,:), allocatable nsetlw
- real *8, dimension(:,:), allocatable snotmpeb
- real *8, dimension(:,:), allocatable bss
- real *8, dimension(:,:), allocatable surf_bs
- real *8, dimension(:,:), allocatable tmxband
- real *8, dimension(:,:), allocatable nsetlp
- real *8, dimension(:,:), allocatable rainsub
- real *8, dimension(:,:), allocatable frad
- real *8, dimension(:), allocatable rstpbsb
- real *8, dimension(:,:), allocatable orig_snoeb
- real *8, dimension(:,:), allocatable orig_pltpst
- real *8, dimension(:,:), allocatable terr_p
- real *8, dimension(:,:), allocatable terr_cn
- real *8, dimension(:,:), allocatable terr_sl
- real *8, dimension(:,:), allocatable drain d
- real *8, dimension(:,:), allocatable drain_t
- real *8, dimension(:,:), allocatable drain_g
- real *8, dimension(:,:), allocatable drain_idep
- real *8, dimension(:,:), allocatable cont_cn
- real *8, dimension(:,:), allocatable cont_p
- real *8, dimension(:,:), allocatable filt w
- real *8, dimension(:,:), allocatable strip_n
- real *8, dimension(:,:), allocatable strip_cn
- real *8, dimension(:,:), allocatable strip_c
- real *8, dimension(:,:), allocatable strip_p
- real *8, dimension(:,:), allocatable fire_cn
- real *8, dimension(:,:), allocatable cropno_upd
- real *8, dimension(:,:), allocatable hi_upd
- real *8, dimension(:,:), allocatable laimx_upd
- real *8, dimension(:,:,:), allocatable pst_lag
- real *8, dimension(:,:,:), allocatable phug
- integer, dimension(:), allocatable nrelease
- · integer, dimension(:), allocatable swtrg
- integer, dimension(:), allocatable hrupest
- integer, dimension(:), allocatable nro
- integer, dimension(:), allocatable nrot
- integer, dimension(:), allocatable nfert
- integer, dimension(:), allocatable igro
- · integer, dimension(:), allocatable nair
- integer, dimension(:), allocatable ipnd1
- integer, dimension(:), allocatable ipnd2
- · integer, dimension(:), allocatable nirr
- integer, dimension(:), allocatable iflod1
- integer, dimension(:), allocatable iflod2
- integer, dimension(:), allocatable ndtarg
- integer, dimension(:), allocatable iafrttyp
- integer, dimension(:), allocatable nstress
- integer, dimension(:), allocatable **igrotree**
- integer, dimension(:), allocatable grz_days
- integer, dimension(:), allocatable nmgt
 integer, dimension(:), allocatable icr
- integer, dimension(:), allocatable ncut
- integer, dimension(:), allocatable nsweep
- integer, dimension(:), allocatable nafert

- · integer, dimension(:), allocatable irn
- · integer, dimension(:), allocatable irrno
- · integer, dimension(:), allocatable sol_nly
- integer, dimension(:), allocatable npcp
- · integer, dimension(:), allocatable igrz
- integer, dimension(:), allocatable ndeat
- · integer, dimension(:), allocatable ngr
- integer, dimension(:), allocatable ncf
- integer, dimension(:), allocatable hru sub

subbasin in which HRU is located (none)

- integer, dimension(:), allocatable idorm
- integer, dimension(:), allocatable urblu
- integer, dimension(:), allocatable Idrain
- · integer, dimension(:), allocatable hru seq
- integer, dimension(:), allocatable iurban
- · integer, dimension(:), allocatable iday_fert
- · integer, dimension(:), allocatable icfrt
- · integer, dimension(:), allocatable ifld

number of HRU (in subbasin) that is a floodplain (none)

· integer, dimension(:), allocatable irip

number of HRU (in subbasin) that is a riparian zone (none)

- integer, dimension(:), allocatable **ndcfrt**
- integer, dimension(:), allocatable hrugis
- integer, dimension(:), allocatable orig_igro
- integer, dimension(:), allocatable ntil
- integer, dimension(:), allocatable irrsc
- integer, dimension(:), allocatable iwatable
- integer, dimension(:), allocatable curyr_mat
- integer, dimension(:), allocatable ncpest
- integer, dimension(:), allocatable icpst
- integer, dimension(:), allocatable ndcpst
- integer, dimension(:), allocatable iday pest
- integer, dimension(:), allocatable irr_flag
- integer, dimension(:), allocatable irra_flag
- · integer, dimension(:,:), allocatable rndseed

random number generator seed. The seeds in the array are used to generate random numbers for the following purposes:

- (1) wet/dry day probability
- (2) solar radiation
- (3) precipitation
- (4) USLE rainfall erosion index
- (5) wind speed
- (6) 0.5 hr rainfall fraction
- (7) relative humidity
- (8) maximum temperature
- (9) minimum temperature
- (10) generate new random numbers
- integer, dimension(:,:), allocatable iterr
- integer, dimension(:,:), allocatable iyterr
- integer, dimension(:,:), allocatable itdrain
- integer, dimension(:,:), allocatable iydrain
 integer, dimension(:,:), allocatable ncrops
- integer, dimension(.,.), anocatable ncrops
- integer, dimension(:), allocatable **manure_id**
- integer, dimension(:,:), allocatable mgt_sdr
- integer, dimension(:,:), allocatable idplrot

- integer, dimension(:,:), allocatable **icont**
- integer, dimension(:,:), allocatable iycont
- integer, dimension(:,:), allocatable ifilt
- integer, dimension(:,:), allocatable iyfilt
- integer, dimension(:,:), allocatable istrip
- integer, dimension(:,:), allocatable iystrip
- integer, dimension(:,:), allocatable iopday
- integer, dimension(:,:), allocatable iopyr
- integer, dimension(:,:), allocatable mgt_ops
- real *8, dimension(:), allocatable wshd_pstap
- real *8, dimension(:), allocatable wshd_pstdg
- integer, dimension(12) ndmo
- integer, dimension(:), allocatable npno
- integer, dimension(:), allocatable mcrhru
- character(len=13), dimension(18) rfile

rainfall file names (.pcp)

character(len=13), dimension(18) tfile

temperature file names (.tmp)

• character(len=4), dimension(1000) urbname

name of urban land use

- character(len=1), dimension(:), allocatable hydgrp
- character(len=1), dimension(:), allocatable kirr
- character(len=16), dimension(:), allocatable snam
- character(len=17), dimension(300) pname

name of pesticide/toxin adding qtile to output.hru write 3/2/2010 gsm increased heds(70) to heds(71)

- character(len=13), dimension(79) heds
- character(len=13), dimension(24) hedb
- character(len=13), dimension(46) hedr
- · character(len=13), dimension(41) hedrsv
- character(len=13), dimension(40) hedwtr
- character(len=4), dimension(60) title

description lines in file.cio (1st 3 lines)

• character(len=4), dimension(5000) cpnm

four character code to represent crop name

- character(len=17), dimension(50) fname
- real *8, dimension(:,:,:), allocatable flomon
- real *8, dimension(:,:,:), allocatable solpstmon
- real *8, dimension(:,:,:), allocatable **srbpstmon**
- real *8, dimension(:,:,:), allocatable **sedmon**
- real *8, dimension(:,:,:), allocatable orgnmon
- real *8, dimension(:,:,:), allocatable orgpmon
- real *8, dimension(:,:,:), allocatable no3mon
- real *8, dimension(:,:,:), allocatable minpmon
- real *8, dimension(:,:,:), allocatable **nh3mon**
- real *8, dimension(:,:,:), allocatable **no2mon**
- real *8, dimension(:,:,:), allocatable **bactpmon**
- real *8, dimension(:,:,:), allocatable bactlpmon
- real *8, dimension(:,:,:), allocatable cmtl1mon
- real *8, dimension(:,:,:), allocatable **cmtl2mon**
- real *8, dimension(:,:,:), allocatable cmtl3mon
 real *8, dimension(:,:,:), allocatable chlamon
- real *8, dimension(:,:,:), allocatable disoxmon
- real *8, dimension(:,:,:), allocatable cbodmon
- real *8, dimension(:,:), allocatable floyr

- real *8, dimension(:,:), allocatable sedyr
- real *8, dimension(:,:), allocatable orgnyr
- real *8, dimension(:,:), allocatable orgpyr
- real *8, dimension(:,:), allocatable no3yr
- real *8, dimension(:,:), allocatable minpyr
- real *8, dimension(:,:), allocatable nh3yr
- real *8, dimension(:,:), allocatable no2yr
- real *8, dimension(:,:), allocatable bactpyr
- real *8, dimension(:,:), allocatable bactlpyr
- real *8, dimension(:,:), allocatable cmtl1yr
- real *8, dimension(:,:), allocatable cmtl2yr
- real *8, dimension(:,:), allocatable cmtl3yr
- real *8, dimension(:,:), allocatable chlayr
- real *8, dimension(:,:), allocatable disoxyr
- real *8, dimension(:,:), allocatable cbodyr
- real *8, dimension(:,:), allocatable solpstyr
- real *8, dimension(:,:), allocatable srbpstyr
- real *8, dimension(:,:), allocatable sol_mc
- real *8, dimension(:,:), allocatable sol_mn
- real *8, dimension(:,:), allocatable sol mp
- real *0, differision(.,.), allocatable **soi_m**
- real *8, dimension(:), allocatable flocnst
- real *8, dimension(:), allocatable sedcnst
- real *8, dimension(:), allocatable orgncnst
- real *8, dimension(:), allocatable orgpcnst
- real *8, dimension(:), allocatable no3cnst
- real *8, dimension(:), allocatable minpcnst
- real *8, dimension(:), allocatable nh3cnst
- real *8, dimension(:), allocatable **no2cnst**
- real *8, dimension(:), allocatable bactpcnst
- real *8, dimension(:), allocatable cmtl1cnst
- real *8, dimension(:), allocatable **cmtl2cnst**
- real *8, dimension(:), allocatable bactlpcnst
 real *8, dimension(:), allocatable cmtl3cnst
- real *8, dimension(:), allocatable chlacnst
- real *8, dimension(:), allocatable disoxcnst
- real *8, dimension(:), allocatable cbodcnst
- real *8, dimension(:), allocatable solpstcnst
- real *8, dimension(:), allocatable **srbpstcnst**
- integer nstep

max number of time steps per day

integer idt

length of time step used to report precipitation data for sub-daily modeling (minutes)

- real *8, dimension(:), allocatable hrtwtr
- real *8, dimension(:), allocatable hhstor
- · real *8, dimension(:), allocatable hdepth
- real *8, dimension(:), allocatable hsdti
- real *8, dimension(:), allocatable hrchwtr
- · real *8, dimension(:), allocatable halgae
- real *8, dimension(:), allocatable horgn
- real *8, dimension(:), allocatable hnh4
- real *8, dimension(:), allocatable hno2
- real *8, dimension(:), allocatable hno3
- real *8, dimension(:), allocatable horgp
- real *8, dimension(:), allocatable hsolp

- real *8, dimension(:), allocatable hbod
- real *8, dimension(:), allocatable hdisox
- real *8, dimension(:), allocatable hchla
- · real *8, dimension(:), allocatable hsedyld
- real *8, dimension(:), allocatable hsedst
- real *8, dimension(:), allocatable hharea
- real *8, dimension(:), allocatable hsolpst
- real *8, dimension(:), allocatable hsorpst
- real *8, dimension(:), allocatable hhqday
- real *8, dimension(:), allocatable precipdt
- real *8, dimension(:), allocatable hhtime
- real *8, dimension(:), allocatable hbactp
- real *8, dimension(:), allocatable hbactlp
- integer, dimension(10) ivar_orig
- real *8, dimension(10) rvar orig
- integer nsave

number of save commands in .fig file

- · integer nauto
- · integer iatmodep
- real *8, dimension(:), allocatable wattemp
- real *8, dimension(:), allocatable Ikpst_mass
- real *8, dimension(:), allocatable lkspst mass
- real *8, dimension(:), allocatable vel_chan
- real *8, dimension(:), allocatable vfscon
- real *8, dimension(:), allocatable vfsratio
- real *8, dimension(:), allocatable vfsch
- real *8, dimension(:), allocatable vfsi
- real *8, dimension(:,:), allocatable filter_i
- real *8, dimension(:,:), allocatable filter_ratio
- real *8, dimension(:,:), allocatable filter_con
- real *8, dimension(:,:), allocatable filter_ch
- real *8, dimension(:,:), allocatable sol_n
- integer cswat
 - = 0 Static soil carbon (old mineralization routines)
 - = 1 C-FARM one carbon pool model
 - = 2 Century model
- real *8, dimension(:,:), allocatable sol_bdp
- real *8, dimension(:,:), allocatable tillagef
- real *8, dimension(:), allocatable rtfr
- real *8, dimension(:), allocatable stsol_rd
- integer urban_flag
- integer dorm_flag
- real *8 bf_flg
- real *8 iabstr
- real *8, dimension(:), allocatable ubnrunoff
- real *8, dimension(:), allocatable ubntss
- real *8, dimension(:,:), allocatable **sub_ubnrunoff**
- real *8, dimension(:,:), allocatable sub ubntss
- real *8, dimension(:,:), allocatable ovrlnd dt
- real *8, dimension(:,:,:), allocatable hhsurf_bs
- integer iuh

unit hydrograph method: 1=triangular UH; 2=gamma funtion UH;

· integer sed ch

channel routing for HOURLY; 0=Bagnold; 2=Brownlie; 3=Yang;

real *8 eros_expo

an exponent in the overland flow erosion equation ranges 1.5-3.0

real *8 eros spl

coefficient of splash erosion varing 0.9-3.1

real *8 rill mult

Multiplier to USLE_K for soil susceptible to rill erosion, range 0.5-2.0.

- real *8 sedprev
- real *8 c_factor
- real *8 ch d50

median particle diameter of channel bed (mm)

real *8 sig g

geometric standard deviation of particle sizes for the main channel. Mean air temperature at which precipitation is equally likely to be rain as snow/freezing rain.

real *8 uhalpha

alpha coefficient for estimating unit hydrograph using a gamma function (*.bsn)

- real *8 abstinit
- real *8 abstmax
- real *8, dimension(:,:), allocatable hhsedy
- real *8, dimension(:,:), allocatable sub_subp_dt
- real *8, dimension(:,:), allocatable sub_hhsedy
- real *8, dimension(:,:), allocatable sub_atmp
- real *8, dimension(:), allocatable rhy
- real *8, dimension(:), allocatable init abstrc
- real *8, dimension(:), allocatable dratio
- real *8, dimension(:), allocatable hrtevp
- real *8, dimension(:), allocatable hrttlc
- real *8, dimension(:,:,:), allocatable rchhr
- real *8, dimension(:), allocatable hhresflwi
- · real *8, dimension(:), allocatable hhresflwo
- real *8, dimension(:), allocatable hhressedi
- real *8, dimension(:), allocatable hhressedo
- character(len=4), dimension(:), allocatable lu_nodrain
- integer, dimension(:), allocatable bmpdrain
- real *8, dimension(:), allocatable sub cn2
- real *8, dimension(:), allocatable sub_ha_urb
- real *8, dimension(:), allocatable bmp_recharge
- real *8, dimension(:), allocatable sub ha imp
- real *8, dimension(:), allocatable subdr_km
- real *8, dimension(:), allocatable subdr_ickm
- real *8, dimension(:,:), allocatable sf_im
- real *8, dimension(:,:), allocatable sf_iy
- real *8, dimension(:,:), allocatable sp_sa
- real *8, dimension(:,:), allocatable sp_pvol
- real *8, dimension(:,:), allocatable sp_pd
- real *8, dimension(:,:), allocatable sp sedi
- real *8, dimension(:,:), allocatable sp sede
- real *8, dimension(:,:), allocatable ft_sa
- real *8, dimension(:,:), allocatable ft_fsa
- real *8, dimension(:,:), allocatable ft_dep
- real *8, dimension(:,:), allocatable ft_h
- real *8, dimension(:,:), allocatable ft_pd
- real *8, dimension(:,:), allocatable ft_k
- real *8, dimension(:,:), allocatable ft dp
- real *8, dimension(:,:), allocatable ft_dc

- real *8, dimension(:,:), allocatable ft_por
- real *8, dimension(:,:), allocatable tss_den
- real *8, dimension(:,:), allocatable ft_alp
- real *8, dimension(:,:), allocatable sf_fr
- real *8, dimension(:,:), allocatable sp_qi
- real *8, dimension(:,:), allocatable sp_k
- real *8, dimension(:,:), allocatable ft_qpnd
- real *8, dimension(:,:), allocatable sp_dp
- real *8, dimension(:,:), allocatable ft_qsw
- real *8, dimension(:,:), allocatable ft_qin
- real *8, dimension(:,:), allocatable ft_qout
- real *8, dimension(:,:), allocatable ft_sedpnd
- real *8, dimension(:,:), allocatable sp_bpw
- real *8, dimension(:,:), allocatable ft_bpw
- real *8, dimension(:,:), allocatable ft_sed_cumul
- real *8, dimension(:,:), allocatable sp sed cumul
- · integer, dimension(:), allocatable num_sf
- integer, dimension(:,:), allocatable sf_typ
- integer, dimension(:,:), allocatable sf_dim
- integer, dimension(:,:), allocatable ft_qfg
- integer, dimension(:,:), allocatable sp_qfg
- integer, dimension(:,:), allocatable sf_ptp
- integer, dimension(:,:), allocatable ft fc
- real *8 sfsedmean
- real *8 sfsedstdev
- integer, dimension(:), allocatable dtp_subnum
- integer, dimension(:), allocatable dtp_imo
- integer, dimension(:), allocatable dtp_iyr
- integer, dimension(:), allocatable dtp_numweir
- integer, dimension(:), allocatable dtp_numstage
- integer, dimension(:), allocatable dtp_stagdis
- integer, dimension(:), allocatable dtp_reltype
- integer, dimension(:), allocatable dtp_onoff
 real *8, dimension(:), allocatable cf
- real *8, dimension(:), allocatable cfh
- real *8, dimension(:), allocatable cfdec
- real *8, dimension(:), allocatable lat_orgn
- real *8, dimension(:), allocatable lat_orgp
- integer, dimension(:,:), allocatable dtp_weirtype
- integer, dimension(:,:), allocatable dtp_weirdim
- real *8, dimension(:), allocatable dtp evrsv
- real *8, dimension(:), allocatable dtp_inflvol
- real *8, dimension(:), allocatable dtp_totwrwid
- real *8, dimension(:), allocatable dtp_lwratio
- real *8, dimension(:), allocatable dtp_wdep
- real *8, dimension(:), allocatable dtp totdep
- real *8, dimension(:), allocatable dtp watdepact
- real *8, dimension(:), allocatable dtp_outflow
- real *8, dimension(:), allocatable dtp_totrel
- real *8, dimension(:), allocatable dtp_backoff
- real *8, dimension(:), allocatable dtp_seep_sa
- real *8, dimension(:), allocatable dtp_evap_sa
- real *8, dimension(:), allocatable dtp_pet_day
- real *8, dimension(:), allocatable dtp_pcpvol
- real *8, dimension(:), allocatable dtp_seepvol

- real *8, dimension(:), allocatable dtp evapvol
- real *8, dimension(:), allocatable dtp flowin
- real *8, dimension(:), allocatable dtp_backup_length
- real *8, dimension(:), allocatable dtp intcept
- real *8, dimension(:), allocatable dtp expont
- real *8, dimension(:), allocatable dtp_coef1
- real *8, dimension(:), allocatable dtp coef2
- real *8, dimension(:), allocatable dtp_coef3
- real *8, dimension(:), allocatable dtp dummy1
- real *8, dimension(:), allocatable dtp dummy2
- real *8, dimension(:), allocatable dtp dummy3
- real *8, dimension(:), allocatable dtp_ivol
- real *8, dimension(:), allocatable dtp_ised
- integer, dimension(:,:), allocatable so res flag
- integer, dimension(:,:), allocatable ro_bmp_flag
- real *8, dimension(:,:), allocatable sol watp
- real *8, dimension(:,:), allocatable sol solp pre
- real *8, dimension(:,:), allocatable psp store
- real *8, dimension(:,:), allocatable ssp_store
- real *8, dimension(:,:), allocatable so res
- real *8, dimension(:,:), allocatable sol_cal
- real *8, dimension(:,:), allocatable sol ph
- integer sol p model
- integer, dimension(:,:), allocatable a_days
- integer, dimension(:,:), allocatable b days
- real *8, dimension(:), allocatable harv_min
- real *8, dimension(:), allocatable fstap
- real *8, dimension(:), allocatable min res
- real *8, dimension(:,:), allocatable ro bmp flo
- real *8, dimension(:,:), allocatable ro bmp sed
- real *8, dimension(:,:), allocatable ro bmp bac
- real *8, dimension(:,:), allocatable ro bmp pp
- real *8, dimension(:,:), allocatable ro_bmp_sp
- real *8, dimension(:.:), allocatable ro bmp pn
- real *8, dimension(:,:), allocatable ro bmp sn
- real *8, dimension(:,:), allocatable ro bmp flos
- real *8, dimension(:,:), allocatable ro bmp seds real *8, dimension(:,:), allocatable ro bmp bacs
- real *8, dimension(:,:), allocatable ro bmp pps
- real *8, dimension(:,:), allocatable ro bmp sps real *8, dimension(:,:), allocatable ro bmp pns
- real *8, dimension(:,:), allocatable ro_bmp_sns
- real *8, dimension(:,:), allocatable ro bmp flot
- real *8, dimension(:,:), allocatable ro_bmp_sedt
- real *8, dimension(:,:), allocatable ro bmp bact
- real *8, dimension(:,:), allocatable ro bmp ppt
- real *8, dimension(:,:), allocatable ro bmp spt
- real *8, dimension(:,:), allocatable ro bmp pnt
- real *8, dimension(:,:), allocatable ro_bmp_snt
- real *8, dimension(:), allocatable bmp_flo
- real *8, dimension(:), allocatable bmp_sed
- real *8, dimension(:), allocatable bmp bac
- real *8, dimension(:), allocatable bmp_pp
- real *8, dimension(:), allocatable bmp sp
- real *8, dimension(:), allocatable bmp_pn

- real *8, dimension(:), allocatable bmp_sn
- real *8, dimension(:), allocatable bmp_flag
- real *8, dimension(:), allocatable bmp_flos
- real *8, dimension(:), allocatable bmp_seds
- real *8, dimension(:), allocatable bmp_bacs
- real *8, dimension(:), allocatable bmp_pps
- real *8, dimension(:), allocatable bmp_sps
- real *8, dimension(:), allocatable bmp_pns
- real *8, dimension(:), allocatable bmp_sns
- real *8, dimension(:), allocatable bmp_flot
- real *8, dimension(:), allocatable bmp_sedt
- real *8, dimension(:), allocatable bmp_bact
- real *8, dimension(:), allocatable bmp_ppt
- real *8, dimension(:), allocatable bmp_spt
- real *8, dimension(:), allocatable bmp_pnt
- real *8, dimension(:), allocatable bmp snt
- real *8, dimension(:,:), allocatable dtp_wdratio
- real *8, dimension(:,:), allocatable dtp_depweir
- real *8, dimension(:,:), allocatable dtp_diaweir
- real *8, dimension(:,:), allocatable dtp_retperd
- real *8, dimension(:,:), allocatable dtp_pcpret
- real *8, dimension(:,:), allocatable dtp_cdis
- real *8, dimension(:,:), allocatable dtp_flowrate
- real *8, dimension(:,:), allocatable dtp_wrwid
- real *8, dimension(:,:), allocatable dtp_addon
- real *8, dimension(:), allocatable ri_subkm
- real *8, dimension(:), allocatable ri_totpvol
- real *8, dimension(:), allocatable irmmdt
- real *8, dimension(:,:), allocatable ri_sed
- real *8, dimension(:,:), allocatable ri_fr
- real *8, dimension(:,:), allocatable ri_dim
- real *8, dimension(:,:), allocatable ri_im
- real *8, dimension(:,:), allocatable ri_iy
- real *8, dimension(:,:), allocatable ri_sa
- real *8, dimension(:,:), allocatable ri_vol
- real *8, dimension(:,:), allocatable ri_qi
- real *8, dimension(:,:), allocatable ri_k
- real *8, dimension(:,:), allocatable ri_dd
- real *8, dimension(:,:), allocatable ri_evrsv
- real *8, dimension(:,:), allocatable ri_dep
- real *8, dimension(:,:), allocatable ri ndt
- real *8, dimension(:,:), allocatable ri_pmpvol
- real *8, dimension(:,:), allocatable ri_sed_cumul
- real *8, dimension(:,:), allocatable hrnopcp
- real *8, dimension(:,:), allocatable ri_qloss
- real *8, dimension(:,:), allocatable ri_pumpv
- real *8, dimension(:,:), allocatable ri_sedi
- character(len=4), dimension(:,:), allocatable ri_nirr
- integer, dimension(:), allocatable num_ri
- integer, dimension(:), allocatable ri_luflg
- · integer, dimension(:), allocatable num_noirr
- integer, dimension(:), allocatable wtp_subnum
- integer, dimension(:), allocatable wtp_onoff
- integer, dimension(:), allocatable wtp_imo
- integer, dimension(:), allocatable wtp_iyr

- · integer, dimension(:), allocatable wtp dim
- · integer, dimension(:), allocatable wtp stagdis
- integer, dimension(:), allocatable wtp_sdtype
- real *8, dimension(:), allocatable wtp pvol
- real *8, dimension(:), allocatable wtp_pdepth
- real *8, dimension(:), allocatable wtp_sdslope
- real *8, dimension(:), allocatable wtp lenwdth
- real *8, dimension(:), allocatable wtp_extdepth
- real *8, dimension(:), allocatable wtp hydeff
- real *8, dimension(:), allocatable wtp evrsv
- real *8, dimension(:), allocatable wtp sdintc
- real *8, dimension(:), allocatable wtp_sdexp
- real *8, dimension(:), allocatable wtp_sdc1
- real *8, dimension(:), allocatable wtp_sdc2
- real *8, dimension(:), allocatable wtp_sdc3
- real *8, dimension(:), allocatable wtp pdia
- real *8, dimension(:), allocatable wtp_plen
- real *8, dimension(:), allocatable wtp pmann
- real *8, dimension(:), allocatable wtp_ploss
- real *8, dimension(:), allocatable wtp k
- real *8, dimension(:), allocatable wtp_dp
- real *8, dimension(:), allocatable wtp sedi
- real *8, dimension(:), allocatable wtp sede
- real *8, dimension(:), allocatable wtp_qi
- real *8 bio init
- · real *8 lai_init
- real *8 cnop
- real *8 hi_ovr
- real *8 harveff
- real *8 frac harvk
- real *8 lid_vgcl
- real *8 lid_vgcm
- real *8 lid_qsurf_total
- real *8 lid_farea_sum
- real *8, dimension(:,:), allocatable lid_cuminf_last
- real *8, dimension(:,:), allocatable lid_sw_last
- real *8, dimension(:,:), allocatable interval_last
- real *8, dimension(:,:), allocatable lid_f_last
- real *8, dimension(:,:), allocatable lid_cumr_last
- real *8, dimension(:,:), allocatable lid str last
- real *8, dimension(:,:), allocatable lid farea
- real *8, dimension(:,:), allocatable lid_qsurf
- real *8, dimension(:,:), allocatable lid_sw_add
- real *8, dimension(:,:), allocatable lid_cumqperc_last
- real *8, dimension(:,:), allocatable lid cumirr last
- real *8, dimension(:,:), allocatable lid excum last
- integer, dimension(:,:), allocatable gr onoff
- integer, dimension(:,:), allocatable gr_imo
- integer, dimension(:,:), allocatable gr_iyr
- real *8, dimension(:,:), allocatable gr_farea
- real *8, dimension(:,:), allocatable gr_solop
- real *8, dimension(:,:), allocatable gr_etcoef
- real *8, dimension(:,:), allocatable gr_fc
- real *8, dimension(:,:), allocatable gr_wp
- real *8, dimension(:,:), allocatable gr_ksat

- real *8, dimension(:,:), allocatable gr_por
- real *8, dimension(:,:), allocatable gr_hydeff
- real *8, dimension(:,:), allocatable gr_soldpt
- real *8, dimension(:,:), allocatable gr_dummy1
- real *8, dimension(:,:), allocatable gr_dummy2
- real *8, dimension(:,:), allocatable gr_dummy3
- real *8, dimension(:,:), allocatable gr_dummy4
- real *8, dimension(:,:), allocatable gr_dummy5
- integer, dimension(:,:), allocatable rg_onoff
- integer, dimension(:,:), allocatable rg_imo
- integer, dimension(:,:), allocatable rg_iyr
- real *8, dimension(:,:), allocatable rg_farea
- real *8, dimension(:,:), allocatable rg_solop
- real *8, dimension(:,:), allocatable rg_etcoef
- real *8, dimension(:,:), allocatable rg_fc
- real *8, dimension(:,:), allocatable rg_wp
- real *8, dimension(:,:), allocatable rg_ksat
- real *8, dimension(:,:), allocatable rg_por
- real *8, dimension(:,:), allocatable rg_hydeff
- real *8, dimension(:,:), allocatable rg_soldpt
- real *8, dimension(:,:), allocatable rg_dimop
- real *8, dimension(:,:), allocatable rg sarea
- real *8, dimension(:,:), allocatable rg vol
- real *8, dimension(:,:), allocatable rg_sth
- real *8, dimension(:,:), allocatable rg sdia
- real *8, dimension(:,:), allocatable rg_bdia
- real *8, dimension(:,:), allocatable rg sts
- real *8, dimension(:,:), allocatable rg_orifice
- real *8, dimension(:,:), allocatable rg_oheight
- real *8, dimension(:,:), allocatable rg_odia
- real *8, dimension(:,:), allocatable rg dummy1
- real *8, dimension(:,:), allocatable rg_dummy2
- real *8, dimension(:,:), allocatable rg_dummy3
- real *8, dimension(:,:), allocatable rg_dummy4
- real *8, dimension(:,:), allocatable rg_dummy5
- integer, dimension(:,:), allocatable cs_onoff
- integer, dimension(:,:), allocatable cs_imo
- integer, dimension(:,:), allocatable cs_iyr
- integer, dimension(:,:), allocatable cs_grcon
- real *8, dimension(:,:), allocatable cs_farea
- real *8, dimension(:,:), allocatable cs vol
- real *8, dimension(:,:), allocatable cs_rdepth
- real *8, dimension(:,:), allocatable cs_dummy1
- real *8, dimension(:,:), allocatable cs_dummy2
- real *8, dimension(:,:), allocatable cs_dummy3
- real *8, dimension(:,:), allocatable cs dummy4
- real *8, dimension(:,:), allocatable cs dummy5
- · integer, dimension(:,:), allocatable pv_onoff
- integer, dimension(:,:), allocatable pv_imo
- integer, dimension(:,:), allocatable pv_iyr
- integer, dimension(:,:), allocatable pv_solop
- real *8, dimension(:,:), allocatable pv_grvdep
- real *8, dimension(:,:), allocatable pv_grvpor
- real *8, dimension(:,:), allocatable pv_farea
- real *8, dimension(:,:), allocatable pv_drcoef

- real *8, dimension(:,:), allocatable pv_fc
- real *8, dimension(:,:), allocatable pv wp
- real *8, dimension(:,:), allocatable pv_ksat
- real *8, dimension(:,:), allocatable pv_por
- real *8, dimension(:,:), allocatable pv_hydeff
- real *8, dimension(:,:), allocatable pv_soldpt
- real *8, dimension(:,:), allocatable pv_dummy1
- real *8, dimension(:,:), allocatable pv_dummy2
- real *8, dimension(:,:), allocatable pv_dummy3
- real *8, dimension(:,:), allocatable pv_dummy4
- real *8, dimension(:,:), allocatable pv_dummy5
- integer, dimension(:,:), allocatable lid_onoff
- real *8, dimension(:,:), allocatable sol_bmc
- real *8, dimension(:,:), allocatable sol_bmn
- real *8, dimension(:,:), allocatable sol_hsc
- real *8, dimension(:,:), allocatable sol_hsn
- real *8, dimension(:,:), allocatable sol_hpc
- real *8, dimension(:,:), allocatable sol_hpn
- real *8, dimension(:,:), allocatable sol_lm
- real *8, dimension(:,:), allocatable sol Imc
- real *8, dimension(:,:), allocatable sol_lmn
- real *8, dimension(:,:), allocatable sol Is
- real *8, dimension(:,:), allocatable sol Isl
- real *8, dimension(:,:), allocatable sol_lsc
- real *8, dimension(:,:), allocatable sol_lsn
- real *8, dimension(:,:), allocatable sol_rnmn
- real *8, dimension(:,:), allocatable sol_lslc
- real *8, dimension(:,:), allocatable sol Islnc
- real *8, dimension(:,:), allocatable sol_rspc
- real *8, dimension(:,:), allocatable sol_woc
- real *8, dimension(:,:), allocatable sol won
- real *8, dimension(:,:), allocatable sol_hp
- real *8, dimension(:,:), allocatable **sol_hs**
- real *8, dimension(:,:), allocatable sol_bm
- real *8, dimension(:,:), allocatable sol_cac
 real *8, dimension(:,:), allocatable sol_cec
- real *8, dimension(:,:), allocatable sol_percc
- real *8, dimension(:,:), allocatable sol_latc
- real *8, dimension(:), allocatable sedc_d
- real *8, dimension(:), allocatable surfqc d
- real *8, dimension(:), allocatable latc d
- real *8, dimension(:), allocatable percc_d
- real *8, dimension(:), allocatable foc_d
- real *8, dimension(:), allocatable nppc_d
- real *8, dimension(:), allocatable rsdc_d
- real *8, dimension(:), allocatable grainc d
- real *8, dimension(:), allocatable stoverc d
- real *8, dimension(:), allocatable soc d
- real *8, dimension(:), allocatable rspc_d
- real *8, dimension(:), allocatable emitc_d
- real *8, dimension(:), allocatable sub_sedc_d
- real *8, dimension(:), allocatable sub_surfqc_d
- real *8, dimension(:), allocatable sub_latc_d
- real *8, dimension(:), allocatable sub_percc_d
- real *8, dimension(:), allocatable sub_foc_d

- real *8, dimension(:), allocatable sub_nppc_d
- real *8, dimension(:), allocatable sub_rsdc_d
- real *8, dimension(:), allocatable sub_grainc_d
- real *8, dimension(:), allocatable sub stoverc d
- real *8, dimension(:), allocatable sub_emitc_d
- real *8, dimension(:), allocatable sub_soc_d
- real *8, dimension(:), allocatable sub_rspc_d
- real *8, dimension(:), allocatable sedc_m
- real *8, dimension(:), allocatable surfqc_m
- real *8, dimension(:), allocatable latc_m
- real *8, dimension(:), allocatable percc m
- real *8, dimension(:), allocatable foc_m
- real *8, dimension(:), allocatable nppc_m
- real *8, dimension(:), allocatable rsdc m
- real *8, dimension(:), allocatable grainc_m
- real *8, dimension(:), allocatable stoverc_m
- real *8, dimension(:), allocatable emitc_m
- real *8, dimension(:), allocatable soc m
- real *8, dimension(:), allocatable rspc_m
- real *8, dimension(:), allocatable sedc_a
- real *8, dimension(:), allocatable surfqc_a
- real *8, dimension(:), allocatable latc_a
- real *8, dimension(:), allocatable percc_a
- real *8, dimension(:), allocatable foc_a
- real *8, dimension(:), allocatable nppc_a
- real *8, dimension(:), allocatable rsdc_a
- real *8, dimension(:), allocatable grainc_a
- real *8, dimension(:), allocatable stoverc_a
- real *8, dimension(:), allocatable emitc_a
- real *8, dimension(:), allocatable soc_a
- real *8, dimension(:), allocatable rspc_a
- integer, dimension(:), allocatable tillage_switch
- real *8, dimension(:), allocatable tillage_depth
- integer, dimension(:), allocatable tillage_days
- real *8, dimension(:), allocatable tillage_factor
- real *8 dthy

time interval for subdaily routing

- integer, dimension(4) ihx
- integer, dimension(:), allocatable nhy
- real *8, dimension(:), allocatable rchx
- real *8, dimension(:), allocatable rcss
- real *8, dimension(:), allocatable qcap
- real *8, dimension(:), allocatable chxa
- real *8, dimension(:), allocatable chxp
- real *8, dimension(:,:,:), allocatable qhy
- real *8 ff1
- real *8 ff2

5.1.1 Detailed Description

main module containing the global variables

5.1.2 Variable Documentation

5.1.2.1 igropt

integer parm::igropt

Qual2E option for calculating the local specific growth rate of algae 1: multiplicative.

u = mumax fll fnn fpp

2: limiting nutrient

 $u = mumax fll \min(fnn, fpp)$

3: harmonic mean

$$u = mumax \, fll \, \frac{2}{\frac{1}{fnn} + \frac{1}{fpp}}$$

Chapter 6

Data Type Documentation

6.1 parm::ascrv Interface Reference

Public Member Functions

• subroutine **ascrv** (x1, x2, x3, x4, x5, x6)

The documentation for this interface was generated from the following file:

• modparm.f90

6.2 parm::atri Interface Reference

Public Member Functions

• real *8 function atri (at1, at2, at3, at4i)

The documentation for this interface was generated from the following file:

· modparm.f90

6.3 parm::aunif Interface Reference

Public Member Functions

• real *8 function aunif (x1)

The documentation for this interface was generated from the following file:

modparm.f90

6.4 parm::dstn1 Interface Reference

Public Member Functions

• real *8 function dstn1 (rn1, rn2)

The documentation for this interface was generated from the following file:

· modparm.f90

6.5 parm::ee Interface Reference

Public Member Functions

• real *8 function ee (tk)

The documentation for this interface was generated from the following file:

• modparm.f90

6.6 parm::expo Interface Reference

Public Member Functions

• real *8 function expo (xx)

The documentation for this interface was generated from the following file:

• modparm.f90

6.7 parm::fcgd Interface Reference

Public Member Functions

• real *8 function fcgd (xx)

The documentation for this interface was generated from the following file:

modparm.f90

6.8 parm::HQDAV Interface Reference

Public Member Functions

• subroutine hqdav (A, CBW, QQ, SSS, ZCH, ZX, CHW, FPW, jrch)

The documentation for this interface was generated from the following file:

· modparm.f90

6.9 parm::layersplit Interface Reference

Public Member Functions

subroutine layersplit (dep_new)

The documentation for this interface was generated from the following file:

• modparm.f90

6.10 parm::ndenit Interface Reference

Public Member Functions

• subroutine **ndenit** (k, j, cdg, wdn, void)

The documentation for this interface was generated from the following file:

· modparm.f90

6.11 parm::qman Interface Reference

Public Member Functions

real *8 function qman (x1, x2, x3, x4)

The documentation for this interface was generated from the following file:

modparm.f90

6.12 parm::regres Interface Reference

Public Member Functions

• real *8 function regres (k)

The documentation for this interface was generated from the following file:

· modparm.f90

6.13 parm::rsedaa Interface Reference

Public Member Functions

· subroutine rsedaa (years)

The documentation for this interface was generated from the following file:

· modparm.f90

6.14 parm::tair Interface Reference

Public Member Functions

• real *8 function tair (hr, jj)

The documentation for this interface was generated from the following file:

· modparm.f90

6.15 parm::theta Interface Reference

Public Member Functions

• real *8 function theta (r20, thk, tmp)

The documentation for this interface was generated from the following file:

• modparm.f90

6.16 parm::vbl Interface Reference

Public Member Functions

• subroutine vbl (evx, spx, pp, qin, ox, vx1, vy, yi, yo, ysx, vf, vyf, aha)

The documentation for this interface was generated from the following file:

• modparm.f90

Chapter 7

File Documentation

7.1 allocate parms.f90 File Reference

this subroutine allocates array sizes

Functions/Subroutines

· subroutine allocate_parms

7.1.1 Detailed Description

this subroutine allocates array sizes

Author

modified by Javier Burguete

7.2 ascrv.f90 File Reference

Functions/Subroutines

• subroutine **ascrv** (x1, x2, x3, x4, x5, x6)

7.2.1 Detailed Description

file containing the subroutine ascrv

Author

modified by Javier Burguete

this subroutine computes shape parameters x5 and x6 for the S curve equation

$$x = \frac{y}{y + \exp(x5 + x6y)}$$

given 2 (x,y) points along the curve. x5 is determined by solving the equation with x and y values measured around the midpoint of the curve (approx. 50% of the maximum value for x) and x6 is determined by solving the equation with x and y values measured close to one of the endpoints of the curve (100% of the maximum value for x). This subroutine is called from readbsn.f90 and readplant.f90

Parameters

in	x1	value for x in the above equation for first datapoint, x1 should be close to 0.5 (the midpoint of the curve)	
in	x2	value for x in the above equation for second datapoint, x2 should be close to 0.0 or 1.0	
in	хЗ	value for y in the above equation corresponding to x1	
in	x4	value for y in the above equation corresponding to x2	
out	x5	st shape parameter for S curve equation characterizing the midpoint of the curve	
out	х6	2nd shape parameter for S curve equation characterizing the regions close to the endpoints of	
		the curve	

7.3 aunif.f90 File Reference

This function generates random numbers ranging from 0.0 to 1.0.

Functions/Subroutines

• real *8 function aunif (x1)

7.3.1 Detailed Description

This function generates random numbers ranging from 0.0 to 1.0.

Author

modified by Javier Burguete

Parameters

 \mid x1 \mid random number generator seed (integer) where 0 < x1 < 2147483647

Returns

random number ranging from 0.0 to 1.0

In the process of calculating the random number, the seed (x1) is set to a new value. This function implements the prime-modulus generator

$$xi = 16807 xi \mod (2^{31} - 1)$$

using code which ensures that no intermediate result uses more than 31 bits. The theory behind the code is summarized in [1]

7.4 caps.f90 File Reference

this subroutine reads the input and output names given in file.cio and converts all capital letters to lowercase letters.

Functions/Subroutines

• subroutine caps (file_name)

7.4.1 Detailed Description

this subroutine reads the input and output names given in file.cio and converts all capital letters to lowercase letters.

Author

modified by Javier Burguete

Parameters

	file_name	dummy argument, file name character string	
--	-----------	--	--

7.5 gcycl.f90 File Reference

This subroutine initializes the random number seeds. If the user desires a different set of random numbers for each simulation run, the random number generator is used to reset the values of the seeds.

Functions/Subroutines

subroutine gcycl

7.5.1 Detailed Description

This subroutine initializes the random number seeds. If the user desires a different set of random numbers for each simulation run, the random number generator is used to reset the values of the seeds.

Author

modified by Javier Burguete

7.6 getallo.f90 File Reference

This subroutine calculates the number of HRUs, subbasins, etc. in the simulation. These values are used to allocate array sizes.

Functions/Subroutines

subroutine getallo

7.6.1 Detailed Description

This subroutine calculates the number of HRUs, subbasins, etc. in the simulation. These values are used to allocate array sizes.

Author

modified by Javier Burguete

7.7 jdt.f90 File Reference

Functions/Subroutines

• integer function jdt (numdays, i, m)

this function computes the julian date given the month and the day of the month

7.7.1 Detailed Description

file containing the function jdt

Author

modified by Javier Burguete

7.7.2 Function/Subroutine Documentation

7.7.2.1 jdt()

```
integer function jdt (
                integer, dimension (13), intent(in) numdays,
                integer, intent(in) i,
                 integer, intent(in) m )
```

this function computes the julian date given the month and the day of the month

Parameters

in	numdays	julian date for last day of preceding month (where the array location is the number of the month). The dates are for leap years (numdays=ndays) (julian date)
in	i	day
in	m	month

7.8 main.f90 File Reference 77

7.8 main.f90 File Reference

Functions/Subroutines

· program main

this is the main program that reads input, calls the main simulation model, and writes output.

7.8.1 Detailed Description

file containing the main program that reads input, calls the main simulation model, and writes output.

Author

modified by Javier Burguete Tolosa

7.9 modparm.f90 File Reference

Data Types

- interface parm::atri
- · interface parm::aunif
- interface parm::dstn1
- interface parm::ee
- interface parm::expo
- interface parm::fcgd
- interface parm::qman
- interface parm::regres
- interface parm::tair
- interface parm::theta
- interface parm::ascrv
- interface parm::HQDAV
- interface parm::layersplit
- interface parm::ndenit
- interface parm::rsedaa
- · interface parm::vbl

Modules

module parm

main module containing the global variables

Variables

• integer, parameter parm::mvaro = 33

max number of variables routed through the reach

• integer, parameter parm::mhruo = 79

max number of variables in output.hru

• integer, parameter parm::mrcho = 62

max number of variables in reach file

• integer, parameter parm::msubo = 24

max number of variables in output.sub

• integer, parameter parm::mstdo = 113

max number of variables summarized in output.std

- integer, parameter parm::motot = 600
- · integer parm::icalen
- real *8 parm::prf_bsn

Basinwide peak rate adjustment factor for sediment routing in the channel. Allows impact of peak flow rate on sediment routing and channel reshaping to be taken into account.

- real *8 parm::co2 x2
- real *8 parm::co2 x
- real *8, dimension(:), allocatable parm::alph_e
- real *8, dimension(:), allocatable parm::cdn

denitrification exponential rate coefficient

real *8, dimension(:), allocatable parm::nperco

nitrate percolation coefficient (0-1)

0:concentration of nitrate in surface runoff is zero

1:percolate has same concentration of nitrate as surface runoff

real *8, dimension(:), allocatable parm::surlag

Surface runoff lag time. This parameter is needed in subbasins where the time of concentration is greater than 1 day. SURLAG is used to create a "storage" for surface runoff to allow the runoff to take longer than 1 day to reach the subbasin outlet (days)

- real *8, dimension(:), allocatable parm::co_p
- real *8, dimension(:), allocatable parm::cmn

rate factor for humus mineralization on active organic N

real *8, dimension(:), allocatable parm::phoskd

Phosphorus soil partitioning coefficient. Ratio of soluble phosphorus in surface layer to soluble phosphorus in runoff.

real *8, dimension(:), allocatable parm::psp

Phosphorus availibility index. The fraction of fertilizer P remaining in labile pool after initial rapid phase of P sorption.

• real *8, dimension(:), allocatable parm::sdnco

denitrification threshold: fraction of field capacity triggering denitrification

real *8 parm::r2adj_bsn

basinwide retention parameter adjustment factor (greater than 1)

- real *8 parm::yield
- real *8 parm::burn_frlb
- real *8 parm::pst_kg
- real *8 parm::yieldgrn
- real *8 parm::yieldbms
- real *8 parm::yieldtbr
- real *8 parm::yieldn
- real *8 parm::yieldp
- real *8 parm::hi_bms
- real *8 parm::hi_rsd
- real *8 parm::yieldrsd
- real *8, dimension(:), allocatable parm::l_k1

 real *8, dimension(:), allocatable parm::1 k2 • real *8, dimension(:), allocatable parm::l_lambda • real *8, dimension(:), allocatable parm::l_beta • real *8, dimension(:), allocatable parm:: gama real *8, dimension(:), allocatable parm::l harea real *8, dimension(:), allocatable parm::l_vleng real *8, dimension(:), allocatable parm:: vslope • real *8, dimension(:), allocatable parm::l_ktc • real *8, dimension(:), allocatable parm::biofilm_mumax real *8, dimension(:), allocatable parm::biofilm kinv real *8, dimension(:), allocatable parm::biofilm_klw real *8, dimension(:), allocatable parm::biofilm_kla real *8, dimension(:), allocatable parm::biofilm_cdet • real *8, dimension(:), allocatable parm::biofilm_bm real *8, dimension(:,:), allocatable parm::hru_rufr • real *8, dimension(:,:), allocatable parm::daru_km real *8, dimension(:,:), allocatable parm::ru k real *8, dimension(:,:), allocatable parm::ru_c real *8, dimension(:,:), allocatable parm::ru_eiq real *8, dimension(:,:), allocatable parm::ru_ovsl real *8, dimension(:,:), allocatable parm::ru_a real *8, dimension(:,:), allocatable parm::ru ovs real *8, dimension(:,:), allocatable parm::ru_ktc real *8, dimension(:), allocatable parm::gwg ru • real *8, dimension(:), allocatable parm::qdayout • integer, dimension(:), allocatable parm::ils2 • integer, dimension(:), allocatable parm::ils2flag • integer parm::iru · integer parm::mru integer parm::irch · integer parm::isub · integer parm::idum integer parm::mhyd_bsn integer parm::ipest • integer parm::ils_nofig integer parm::mhru1 • integer, dimension(:), allocatable parm::mhyd1 • integer, dimension(:), allocatable parm::irtun real *8 parm::wshd sepno3 real *8 parm::wshd_sepnh3 real *8 parm::wshd seporgn real *8 parm::wshd_sepfon real *8 parm::wshd_seporgp real *8 parm::wshd sepfop real *8 parm::wshd_sepsolp real *8 parm::wshd_sepbod real *8 parm::wshd_sepmm • integer, dimension(:), allocatable parm::isep_hru real *8 parm::fixco nitrogen fixation coefficient real *8 parm::nfixmx

Generated by Doxygen

maximum daily n-fixation (kg/ha)

reservoir sediment settling coefficient

real *8 parm::res stlr co

real *8 parm::rsd_covco residue cover factor for computing frac of cover real *8 parm::vcrit critical velocity real *8 parm::wshd_sw real *8 parm::wshd snob real *8 parm::wshd_pndfr real *8 parm::wshd pndv real *8 parm::wshd_pndsed • real *8 parm::percop pesticide percolation coefficient (0-1) 0: concentration of pesticide in surface runoff is zero 1: percolate has same concentration of pesticide as surface runoff real *8 parm::wshd wetfr real *8 parm::wshd_resfr real *8 parm::wshd_resha real *8 parm::wshd_pndha real *8 parm::wshd_fminp real *8 parm::wshd_ftotn real *8 parm::wshd fnh3 real *8 parm::wshd fno3 real *8 parm::wshd_forgn real *8 parm::wshd_forgp real *8 parm::wshd_ftotp real *8 parm::wshd_yldn real *8 parm::wshd yldp real *8 parm::wshd_fixn real *8 parm::wshd_pup real *8 parm::wshd wstrs real *8 parm::wshd_nstrs real *8 parm::wshd_pstrs real *8 parm::wshd_tstrs real *8 parm::wshd astrs real *8 parm::ffcb initial soil water content expressed as a fraction of field capacity real *8 parm::wshd hmn real *8 parm::wshd rwn real *8 parm::wshd_hmp real *8 parm::wshd_rmn real *8 parm::wshd_dnit real *8 parm::wdpq die-off factor for persistent bacteria in soil solution (1/day) real *8 parm::wshd_rmp real *8 parm::wshd voln real *8 parm::wshd_nitn real *8 parm::wshd_pas real *8 parm::wshd_pal real *8 parm::wof_p wash off fraction for persistent bacteria on foliage during a rainfall event real *8 parm::wshd_plch real *8 parm::wshd raino3 • real *8 parm::ressedc · real *8 parm::basno3f

real *8 parm::basorgnf

- real *8 parm::wshd_pinlet
- real *8 parm::wshd_ptile
- real *8 parm::sftmp

Snowfall temperature (deg C)

real *8 parm::smfmn

Minimum melt rate for snow during year (Dec. 21) where deg C refers to the air temperature. (mm/deg C/day)

real *8 parm::smfmx

Maximum melt rate for snow during year (June 21) where deg C refers to the air temperature. SMFMX and SM← FMN allow the rate of snow melt to vary through the year. These parameters are accounting for the impact of soil temperature on snow melt. (mm/deg C/day)

real *8 parm::smtmp

Snow melt base temperature. Mean air temperature at which snow melt will occur. (deg C)

real *8 parm::wgpq

growth factor for persistent bacteria in soil solution (1/day)

- real *8 parm::basminpf
- real *8 parm::basorgpf
- real *8 parm::wdlpq

die-off factor for less persistent bacteria in soil solution (1/day)

- real *8 parm::wshd_resv
- real *8 parm::wshd_ressed
- real *8 parm::basno3i
- real *8 parm::basorgni
- real *8 parm::basminpi
- real *8 parm::wdps

die-off factor for persistent bacteria adsorbed to soil particles (1/day)

real *8 parm::wglpq

growth factor for less persistent bacteria in soil solution (1/day)

- real *8 parm::basorgpi
- real *8 parm::peakr
- real *8 parm::pndsedin
- real *8 parm::sw_excess
- real *8 parm::albday
- real *8 parm::timp

Snow pack temperature lag factor (0-1)

1 = no lag (snow pack temp=current day air temp) as the lag factor goes to zero, the snow pack's temperature will be less influenced by the current day's air temperature.

- real *8 parm::wtabelo
- real *8 parm::tilep
- real *8 parm::wt shall
- real *8 parm::sq_rto
- real *8 parm::tloss
- real *8 parm::inflpcp
- real *8 parm::snomlt
- real *8 parm::snofall
- real *8 parm::fixn
- real *8 parm::qtile
- real *8 parm::crk
- real *8 parm::latlyr
- real *8 parm::pndloss
- real *8 parm::wetloss
- real *8 parm::potloss
- real *8 parm::lpndloss
- real *8 parm::lwetloss
- real *8 parm::sedrch

```
• real *8 parm::fertn
real *8 parm::sol_rd
• real *8 parm::cfertn
real *8 parm::cfertp
real *8 parm::sepday

    real *8 parm::bioday

real *8 parm::sepcrk

    real *8 parm::sepcrktot

• real *8 parm::fertno3
real *8 parm::fertnh3
• real *8 parm::fertorgn

    real *8 parm::fertsolp

    real *8 parm::fertorgp

real *8 parm::wgps
     growth factor for persistent bacteria adsorbed to soil particles (1/day)

    real *8 parm::fertp

• real *8 parm::grazn
real *8 parm::grazp
real *8 parm::soxy
real *8 parm::qdfr
real *8 parm::sdti
real *8 parm::rtwtr
• real *8 parm::ressa
· real *8 parm::wdlps
     die-off factor for less persistent bacteria absorbed to soil particles (1/day)
real *8 parm::wglps
     growth factor for less persistent bacteria adsorbed to soil particles (1/day)
real *8 parm::da_km
     area of the watershed in square kilometers (km^{\wedge}2)
real *8 parm::rttime
real *8 parm::rchdep
real *8 parm::rtevp
real *8 parm::rttlc
• real *8 parm::resflwi

    real *8 parm::wdprch

     die-off factor for persistent bacteria in streams (1/day)

    real *8 parm::resflwo

real *8 parm::respcp
real *8 parm::resev
real *8 parm::ressep
• real *8 parm::ressedi
real *8 parm::ressedo
real *8 parm::dtot
  real *8 parm::pperco_bsn
     phosphorus percolation coefficient. Ratio of soluble phosphorus in surface to soluble phosphorus in percolate
real *8 parm::nperco_bsn
     basin nitrate percolation coefficient (0-1)
     0:concentration of nitrate in surface runoff is zero
     1:percolate has same concentration of nitrate as surface runoff
real *8 parm::rsdco
```

residue decomposition coefficient. The fraction of residue which will decompose in a day assuming optimal moisture, temperature, C:N ratio, and C:P ratio

- real *8 parm::phoskd_bsn
- real *8 parm::voltot

real *8 parm::msk_x

weighting factor controling relative importance of inflow rate and outflow rate in determining storage on reach

- real *8 parm::volcrmin
- · real *8 parm::bactkdq

bacteria soil partitioning coefficient. Ratio of solution bacteria in surface layer to solution bacteria in runoff soluble and sorbed phase in surface runoff.

real *8 parm::wdpf

die-off factor for persistent bacteria on foliage (1/day)

- real *8 parm::uno3d
- real *8 parm::canev
- real *8 parm::usle
- real *8 parm::rcn
- real *8 parm::surlag bsn
- real *8 parm::precipday
- real *8 parm::thbact

temperature adjustment factor for bacteria die-off/growth

real *8 parm::wlpq20

overall rate change for less persistent bacteria in soil solution (1/day)

real *8 parm::wlps20

overall rate change for less persistent bacteria adsorbed to soil particles (1/day)

real *8 parm::wpg20

overall rate change for persistent bacteria in soil solution (1/day)

real *8 parm::wps20

overall rate change for persistent bacteria adsorbed to soil particles (1/day)

- real *8 parm::bactrop
- real *8 parm::bactsedp
- real *8 parm::wgpf

growth factor for persistent bacteria on foliage (1/day)

- real *8 parm::bactlchp
- real *8 parm::bactlchlp
- real *8 parm::enratio
- real *8 parm::wetpcp
- real *8 parm::pndpcp
- real *8 parm::wetsep
- real *8 parm::pndsep
- real *8 parm::wetev
- real *8 parm::pndev
- real *8 parm::pndsedo
- real *8 parm::wetsedo
- real *8 parm::pndflwi
- real *8 parm::wetflwireal *8 parm::pndflwo
- Teal we parminipriative
- real *8 parm::wetflworeal *8 parm::wetsedi
- real *8 parm::da_ha
- real *8 parm::vpd
- real *8 parm::evlai

leaf area index at which no evaporation occurs. This variable is used in ponded HRUs where evaporation from the water surface is restricted by the plant canopy cover. Evaporation from the water surface equals potential ET when LAI = 0 and decreased linearly to O when LAI = EVLAI

· real *8 parm::evrch

Reach evaporation adjustment factor. Evaporation from the reach is multiplied by EVRCH. This variable was created to limit the evaporation predicted in arid regions.

real *8 parm::wdlpf

die-off factor for less persistent bacteria on foliage (1/day)

- real *8 parm::bactrolp
- real *8 parm::bactsedlp
- real *8 parm::pet_day
- real *8 parm::ep_day
- real *8 parm::adj pkr

peak rate adjustment factor in the subbasin. Used in the MUSLE equation to account for impact of peak flow on erosion.

real *8 parm::n updis

nitrogen uptake distribution parameter. This parameter controls the amount of nitrogen removed from the different soil layer layers by the plant. In particular, this parameter allows the amount of nitrogen removed from the surface layer via plant uptake to be controlled. While the relationship between UBN and N removed from the surface layer is affected by the depth of the soil profile, in general, as UBN increases the amount of N removed from the surface layer relative to the amount removed from the entire profile increases

· real *8 parm::nactfr

nitrogen active pool fraction. The fraction of organic nitrogen in the active pool.

real *8 parm::p updis

phosphorus uptake distribution parameter This parameter controls the amount of phosphorus removed from the different soil layers by the plant. In particular, this parameter allows the amount of phosphorus removed from the surface layer via plant uptake to be controlled. While the relationship between UBP and P uptake from the surface layer is affected by the depth of the soil profile, in general, as UBP increases the amount of P removed from the surface layer relative to the amount removed from the entire profile increases

- real *8 parm::snoev
- real *8 parm::sno3up
- real *8 parm::reactw
- real *8 parm::sdiegropq
- real *8 parm::sdiegrolpq
- real *8 parm::sdiegrops
- real *8 parm::sdiegrolps
- real *8 parm::es_day
- real *8 parm::wof_lp

wash off fraction for less persistent bacteria on foliage during a rainfall event

- real *8 parm::sbactrop
- real *8 parm::sbactrolp
- real *8 parm::sbactsedp
- real *8 parm::sbactsedlp
- real *8 parm::ep_max
- real *8 parm::sbactlchp
- real *8 parm::sbactlchlp
- real *8 parm::psp_bsn
- real *8 parm::rchwtr
- real *8 parm::resuspst
- real *8 parm::setlpst
- real *8 parm::bsprev
- real *8 parm::bssprev
- real *8 parm::spadyo
- real *8 parm::spadyev
- real *8 parm::spadysp
- real *8 parm::spadyrfv
- real *8 parm::spadyosp
- real *8 parm::qday
- real *8 parm::usle_ei
- real *8 parm::al5
- real *8 parm::pndsedc

- real *8 parm::no3pcp
- real *8 parm::rcharea
- real *8 parm::volatpst
- real *8 parm::ubw

water uptake distribution parameter. This parameter controls the amount of water removed from the different soil layers by the plant. In particular, this parameter allows the amount of water removed from the surface layer via plant uptake to be controlled. While the relationship between UBW and H2O removed from the surface layer is affected by the depth of the soil profile, in general, as UBW increases the amount of water removed from the surface layer relative to the amount removed from the entire profile increases

real *8 parm::uobn

nitrogen uptake normalization parameter. This variable normalizes the nitrogen uptake so that the model can easily verify that upake from the different soil layers sums to 1.0

real *8 parm::uobp

phosphorus uptake normalization parameter. This variable normalizes the phosphorus uptake so that the model can easily verify that uptake from the different soil layers sums to 1.0

real *8 parm::uobw

water uptake normalization parameter. This variable normalizes the water uptake so that the model can easily verify that uptake from the different soil layers sums to 1.0

real *8 parm::wqlpf

growth factor for less persistent bacteria on foliage (1/day)

- real *8 parm::wetsedc
- real *8 parm::respesti
- real *8 parm::rcor

correction coefficient for generated rainfall to ensure that the annual means for generated and observed values are comparable (needed only if IDIST=1)

real *8 parm::rexp

value of exponent for mixed exponential rainfall distribution (needed only if IDIST=1)

real *8 parm::snocov1

1st shape parameter for snow cover equation. This parameter is determined by solving the equation for 50% snow

real *8 parm::snocov2

2nd shape parameter for snow cover equation. This parameter is determined by solving the equation for 95% snow cover

real *8 parm::snocovmx

Minimum snow water content that corresponds to 100% snow cover. If the snow water content is less than SNOC← OVMX, then a certain percentage of the ground will be bare (mm H2O)

- real *8 parm::lyrtile
- real *8 parm::lyrtilex
- real *8 parm::sno50cov

Fraction of SNOCOVMX that corresponds to 50% snow cover. SWAT assumes a nonlinear relationship between snow water and snow cover.

real *8 parm::ai0

ratio of chlorophyll-a to algal biomass (ug chla/mg alg)

real *8 parm::ai1

fraction of algal biomass that is nitrogen (mg N/mg alg)

real *8 parm::ai2

fraction of algal biomass that is phosphorus (mg P/mg alg)

real *8 parm::ai3

the rate of oxygen production per unit of algal photosynthesis (mg O2/mg alg)

real *8 parm::ai4

the rate of oxygen uptake per unit of algae respiration (mg O2/mg alg)

real *8 parm::ai5

the rate of oxygen uptake per unit of NH3 nitrogen oxidation (mg O2/mg N)

real *8 parm::ai6

```
the rate of oxygen uptake per unit of NO2 nitrogen oxidation (mg O2/mg N)
· real *8 parm::rhoq
     algal respiration rate (1/day or 1/hr)

    real *8 parm::tfact

     fraction of solar radiation computed in the temperature heat balance that is photosynthetically active
real *8 parm::k_l
     half-saturation coefficient for light (MJ/(m2*hr))
real *8 parm::k_n
     michaelis-menton half-saturation constant for nitrogen (mg N/L)
real *8 parm::k_p
     michaelis-menton half saturation constant for phosphorus (mg P/L)
• real *8 parm::lambda0
     non-algal portion of the light extinction coefficient (1/m)

    real *8 parm::lambda1

     linear algal self-shading coefficient (1/(m*ug chla/L))
real *8 parm::lambda2
     nonlinear algal self-shading coefficient ((1/m)(ug chla/L)**(-2/3))
real *8 parm::mumax
     maximum specific algal growth rate (1/day or 1/hr)
real *8 parm::p_n
     algal preference factor for ammonia
real *8 parm::rnum1
real *8 parm::autop
• real *8 parm::auton
real *8 parm::etday
real *8 parm::hmntl
real *8 parm::rwntl
real *8 parm::hmptl
real *8 parm::rmn2tl
real *8 parm::rmptl
real *8 parm::wdntl
real *8 parm::cmn_bsn
real *8 parm::rmp1tl
• real *8 parm::roctl
real *8 parm::gwseep
real *8 parm::revapday
real *8 parm::reswtr
real *8 parm::wdlprch
     die-off factor for less persistent bacteria in streams (1/day)

    real *8 parm::wdpres

     die-off factor for persistent bacteria in reservoirs (1/day)
real *8 parm::bury
real *8 parm::difus
  real *8 parm::reactb
• real *8 parm::solpesto
• real *8 parm::petmeas
real *8 parm::wdlpres
     die-off factor for less persistent bacteria in reservoirs (1/day)

    real *8 parm::sorpesto

• real *8 parm::spcon_bsn
real *8 parm::spexp_bsn

    real *8 parm::solpesti
```

- real *8 parm::sorpesti
- real *8 parm::msk_co1

calibration coefficient to control impact of the storage time constant for the reach at bankfull depth (phi(10,:) upon the storage time constant for the reach used in the Muskingum flow method

real *8 parm::msk co2

calibration coefficient to control impact of the storage time constant for the reach at 0.1 bankfull depth (phi(13,:) upon the storage time constant for the reach used in the Muskingum flow method

- real *8 parm::snoprev
- real *8 parm::swprev
- real *8 parm::shallstp
- real *8 parm::deepstp
- real *8 parm::ressolpo
- real *8 parm::resorgno
- real *8 parm::resorgpo
- real *8 parm::resno3o
- real *8 parm::reschlao
- real *8 parm::resno2o
- real *8 parm::resnh3o
- real *8 parm::qdbank
- real *8 parm::potpcpmm
- real *8 parm::potevmm
- real *8 parm::potsepmm
- real *8 parm::potflwo
- real *8 parm::bactminlp

Threshold detection level for less persistent bacteria. When bacteria levels drop to this amount the model considers bacteria in the soil to be insignificant and sets the levels to zero (cfu/m^2)

real *8 parm::bactminp

Threshold detection level for persistent bacteria. When bacteria levels drop to this amount the model considers bacteria in the soil to be insignificant and sets the levels to zero (cfu/m^2)

real *8 parm::trnsrch

fraction of transmission losses from main channel that enter deep aquifer

real *8 parm::wp20p_plt

overall rate change for persistent bacteria on foliage (1/day)

- real *8 parm::potsedo
- real *8 parm::pest_sol
- real *8 parm::bact_swf

fraction of manure containing active colony forming units (cfu)

real *8 parm::bactmx

bacteria percolation coefficient. Ratio of solution bacteria in surface layer to solution bacteria in percolate

real *8 parm::cncoef

plant ET curve number coefficient

real *8 parm::wp20lp_plt

overall rate change for less persistent bacteria on foliage (1/day)

- real *8 parm::cdn_bsn
- real *8 parm::sdnco_bsn
- real *8 parm::bactmin
- real *8 parm::cn froz

drainge coefficient (mm day -1)

real *8 parm::dorm_hr

time threshold used to define dormant (hours)

real *8 parm::smxco

adjustment factor for max curve number s factor (0-1)

real *8 parm::tb_adj

adjustment factor for subdaily unit hydrograph basetime real *8 parm::chla_subco regional adjustment on sub chla_a loading (fraction) • real *8 parm::depimp bsn depth to impervious layer. Used to model perched water tables in all HRUs in watershed (mm) real *8 parm::ddrain bsn depth to the sub-surface drain (mm) real *8 parm::tdrain bsn time to drain soil to field capacity (hours) real *8 parm::gdrain_bsn real *8 parm::rch_san real *8 parm::rch_sil real *8 parm::rch_cla real *8 parm::rch_sag real *8 parm::rch_lag • real *8 parm::rch_gra real *8 parm::hlife_ngw_bsn Half-life of nitrogen in groundwater? (days) real *8 parm::ch_opco_bsn real *8 parm::ch_onco_bsn real *8 parm::decr_min Minimum daily residue decay. real *8 parm::rcn_sub_bsn Concentration of nitrogen in the rainfall (mg/kg) real *8 parm::bc1_bsn real *8 parm::bc2 bsn real *8 parm::bc3_bsn real *8 parm::bc4 bsn real *8 parm::anion_excl_bsn real *8, dimension(:), allocatable parm::wat_tbl real *8, dimension(:), allocatable parm::sol_swpwt real *8, dimension(:,:), allocatable parm::vwt real *8 parm::re bsn Effective radius of drains (range 3.0 - 40.0) (mm) real *8 parm::sdrain_bsn Distance bewtween two drain or tile tubes (range 7600.0 - 30000.0) (mm) real *8 parm::sstmaxd_bsn real *8 parm::drain_co_bsn Drainage coeffcient (range 10.0 - 51.0) (mm-day-1) real *8 parm::latksatf bsn Multiplication factor to determine lateral ksat from SWAT ksat input value for HRU (range 0.01 - 4.0) real *8 parm::pc bsn Pump capacity (def val = 1.042 mm h-1 or 25 mm day-1) (mm h-1) · integer parm::i_subhw · integer parm::imgt · integer parm::idlast · integer parm::iwtr · integer parm::ifrttyp • integer parm::mo_atmo · integer parm::mo atmo1 · integer parm::ifirstatmo integer parm::iyr_atmo

integer parm::iyr_atmo1

```
· integer parm::matmo
 integer parm::mch
     maximum number of channels
· integer parm::mcr

    integer parm::mcrdb
```

maximum number of crops grown per year

maximum number of crops/landcover in database file (crop.dat)

· integer parm::mfcst

maximum number of forecast stations

· integer parm::mfdb

max number of fertilizers in fert.dat

integer parm::mhru

maximum number of HRUs in watershed

integer parm::mhyd

maximum number of hydrograph nodes

integer parm::mpdb

max number of pesticides in pest.dat

· integer parm::mrg

max number of rainfall/temp gages

· integer parm::mcut

maximum number of cuttings per year

integer parm::mgr

maximum number of grazings per year

· integer parm::mnr

max number of years of rotation

· integer parm::myr

max number of years of simulation

· integer parm::isubwq

subbasin water quality code

0 do not calculate algae/CBOD 1 calculate algae/CBOD drainmod tile equations

- integer parm::ffcst
- integer parm::isproj

special project code: 1 test rewind (run simulation twice)

integer parm::nbyr

number of calendar years simulated

• integer parm::irte

water routing method: 0 variable storage method 1 Muskingum method

integer parm::nrch

number of reaches in watershed (none)

integer parm::nres

number of reservoirs in watershed (none)

- integer parm::nhru
- integer parm::mo
- · integer parm::immo
- integer parm::i mo
- · integer parm::wndsim

wind speed input code

1 measured data read for each subbasin

2 data simulated for each subbasin

• integer parm::ihru

HRU number (none)

- · integer parm::icode
- · integer parm::ihout
- integer parm::inum1
- integer parm::inum2
- integer parm::inum3
- integer parm::inum4
- · integer parm::icfac

icfac = 0 for C-factor calculation using Cmin (as described in manual) = 1 for new C-factor calculation from RUSLE (no minimum needed)

- integer parm::inum5
- integer parm::inum6
- integer parm::inum7
- integer parm::inum8
- integer parm::mrech

maximum number of rechour files

· integer parm::nrgage

number of raingage files

· integer parm::nrgfil

number of rain gages per file

· integer parm::nrtot

total number of rain gages

• integer parm::ntgage

number of temperature gage files

integer parm::ntgfil

number of temperature gages per file

· integer parm::nttot

total number of temperature gages

integer parm::tmpsim

temperature input code

1 measured data read for each subbasin

2 data simulated for each subbasin

· integer parm::icrk

crack flow code

1: compute flow in cracks

· integer parm::irtpest

number of pesticide to be routed through the watershed

· integer parm::igropt

Qual2E option for calculating the local specific growth rate of algae

1: multiplicative.

· integer parm::lao

Qual2E light averaging option. Qual2E defines four light averaging options. The only option currently available in SWAT is #2.

- · integer parm::npmx
- · integer parm::curyr
- · integer parm::iihru
- · integer parm::itdrn

tile drainage equations flag/code

1 simulate tile flow using subroutine drains(wt shall)

0 simulate tile flow using subroutine origtile(wt_shall,d)

· integer parm::iwtdn

water table depth algorithms flag/code
1 simulate wt_shall using subroutine new water table depth routine
0 simulate wt_shall using subroutine original water table depth routine

• integer parm::ismax

maximum depressional storage selection flag/code

0 = static depressional storage

1 = dynamic storage based on tillage and cumulative rainfall

· integer parm::iroutunit

not being implemented in this version drainmod tile equations

- · integer parm::ires_nut
- · integer parm::iclb

auto-calibration flag

· integer parm::mrecc

maximum number of recenst files

· integer parm::mrecd

maximum number of recday files

integer parm::mrecm

maximum number of recmon files

integer parm::mtil

max number of tillage types in till.dat

· integer parm::mudb

maximum number of urban land types in urban.dat

· integer parm::idist

rainfall distribution code

0 for skewed normal dist

1 for mixed exponential distribution

· integer parm::mrecy

maximum number of recyear files

integer parm::nyskip

number of years to not print output

• integer parm::slrsim

solar radiation input code

1 measured data read for each subbasin

2 data simulated for each subbasin

· integer parm::ideg

channel degredation code

1: compute channel degredation (downcutting and widening)

integer parm::ievent

rainfall/runoff code

0 daily rainfall/curve number technique 1 sub-daily rainfall/Green&Ampt/hourly routing 3 sub-daily rainfall/ \leftarrow Green&Ampt/hourly routing

· integer parm::ipet

code for potential ET method

0 Priestley-Taylor method

1 Penman/Monteith method

2 Hargreaves method

3 read in daily potential ET data

- · integer parm::iopera
- integer parm::idaf

beginning day of simulation (julian date)

· integer parm::idal

ending day of simulation (julian date)

integer parm::rhsim

relative humidity input code

1 measured data read for each subbasin
2 data simulated for each subbasin

integer parm::id1

integer parm::leapyr

integer parm::mo_chk

number of relative humidity records in file

integer parm::nstot

· integer parm::nhtot

number of solar radiation records in file

integer parm::nwtot

number of wind speed records in file

integer parm::ifirstsinteger parm::ifirsthinteger parm::ifirstw

integer parm::icstinteger parm::ilog

streamflow print code

• integer parm::itotr

number of output variables printed (output.rch)

· integer parm::iyr

beginning year of simulation (year)

· integer parm::iwq

stream water quality code 0 do not model stream water quality 1 model stream water quality (QUAL2E & pesticide transformations)

· integer parm::i

forecast region number or subbasin number (none)

integer parm::iskipinteger parm::ifirstpet

• integer parm::iprp

print code for output.pst file 0 do not print pesticide output 1 print pesticide output

integer parm::itotb

number of output variables printed (output.sub)

· integer parm::itots

number of output variables printed (output.hru)

integer parm::itoth

number of HRUs printed (output.hru/output.wtr)

· integer parm::pcpsim

rainfall input code 1 measured data read for each subbasin 2 data simulated for each subbasin

integer parm::nd_30integer parm::iopsinteger parm::iphr

integer parm::istointeger parm::isol

· integer parm::fcstcycles

number of times forecast period is simulated (using different weather generator seeds each time)

· integer parm::fcstday

beginning date of forecast period (julian date)

· integer parm::fcstyr

beginning year of forecast period

• integer parm::iscen

scenarios counter

integer parm::subtot

number of subbasins in watershed (none)

- integer parm::ogen
- integer parm::mapp

maximum number of applications

· integer parm::mlyr

maximum number of soil layers

· integer parm::mpst

max number of pesticides used in wshed

• integer parm::mres

maximum number of reservoirs

· integer parm::msub

maximum number of subbasins

· integer parm::igen

random number generator code:

0: use default numbers

1: generate new numbers in every simulation

integer parm::iprint

print code: 0=monthly, 1=daily, 2=annual

- · integer parm::iida
- · integer parm::icn

CN method flag (for testing alternative method):

0 use traditional SWAT method which bases CN on soil moisture

1 use alternative method which bases CN on plant ET.

• integer parm::ised_det

max half-hour rainfall fraction calc option:

0 generate max half-hour rainfall fraction from triangular distribution

1 use monthly mean max half-hour rainfall fraction

- · integer parm::fcstcnt
- · integer parm::mtran
- integer parm::idtill
- integer, dimension(100) parm::ida_lup
- integer, dimension(100) parm::iyr_lup
- integer parm::no_lup
- integer parm::no_up
- integer parm::nostep
- character(len=8) parm::date

date simulation is performed where leftmost eight characters are set to a value of yyyymmdd, where yyyy is the year, mm is the month and dd is the day

character(len=10) parm::time

time simulation is performed where leftmost ten characters are set to a value of hhmmss.sss, where hh is the hour, mm is the minutes and ss.sss is the seconds and milliseconds

character(len=5) parm::zone

time difference with respect to Coordinated Universal Time (ie Greenwich Mean Time)

character(len=80) parm::prog

SWAT program header string.

character(len=13) parm::calfile

name of file containing calibration parameters

character(len=13) parm::rhfile

relative humidity file name (.hmd)

```
    character(len=13) parm::slrfile

     solar radiation file name (.slr)

    character(len=13) parm::wndfile

      wind speed file name (.wnd)
• character(len=13) parm::petfile
     potential ET file name (.pet)

    character(len=13) parm::atmofile

    character(len=13) parm::lucfile

  character(len=13) parm::septdb
     name of septic tank database file (septwq1.dat)

    character(len=13) parm::dpd_file

character(len=13) parm::wpd_file

    character(len=13) parm::rib_file

· character(len=13) parm::sfb_file

    character(len=13) parm::lid_file

    integer, dimension(9) parm::idg

     array location of random number seed used for a given process
· integer, dimension(:), allocatable parm::ifirstr
• integer, dimension(:), allocatable parm::ifirsthr

    integer, dimension(8) parm::values

      values(1): year simulation is performed
     values(2): month simulation is performed
     values(3): day in month simulation is performed
     values(4): time difference with respect to Coordinated Universal Time (ie Greenwich Mean Time)
     values(5): hour simulation is performed
     values(6): minute simulation is performed
     values(7): second simulation is performed
     values(8): millisecond simulation is performed
• integer, dimension(13) parm::ndays
     julian date for last day of preceding month (where the array location is the number of the month) The dates are for
     leap years (julian date)
integer, dimension(13) parm::ndays_noleap

    integer, dimension(13) parm::ndays leap

integer parm::mapex
• real *8, dimension(:), allocatable parm::flodaya

    real *8, dimension(:), allocatable parm::seddaya

    real *8, dimension(:), allocatable parm::orgndaya

    real *8, dimension(:), allocatable parm::orgpdaya

  real *8, dimension(:), allocatable parm::no3daya
• real *8, dimension(:), allocatable parm::minpdaya

    real *8, dimension(:), allocatable parm::hi targ

     index target of cover defined at planting

    real *8, dimension(:), allocatable parm::bio_targ

  real *8, dimension(:), allocatable parm::tnyld
• integer, dimension(:), allocatable parm::idapa
• integer, dimension(:), allocatable parm::iypa

    integer, dimension(:), allocatable parm::ifirsta

integer, dimension(100) parm::mo_transb
• integer, dimension(100) parm::mo_transe

    integer, dimension(100) parm::ih_tran

· integer parm::msdb
· integer parm::iseptic

    real *8, dimension(:), allocatable parm::sptqs
```

- real *8, dimension(:), allocatable parm::percp
- real *8, dimension(:), allocatable parm::sptbodconcs
- real *8, dimension(:), allocatable parm::spttssconcs
- real *8, dimension(:), allocatable parm::spttnconcs
- real *8, dimension(:), allocatable parm::sptnh4concs
- real *8, dimension(:), allocatable parm::sptno3concs
- real *8, dimension(:), allocatable parm::sptno2concs
- real *8, dimension(:), allocatable parm::sptorgnconcs
- real *8, dimension(:), allocatable parm::spttpconcs
- real *8, dimension(:), allocatable parm::sptminps
- real *8, dimension(:), allocatable parm::sptorgps
- real *8, dimension(:), allocatable parm::sptfcolis
- real *8, dimension(:), allocatable parm::failyr
- real *8, dimension(:), allocatable parm::qstemm
- real *8, dimension(:), allocatable parm::bio amn
- real *8, dimension(:), allocatable parm::bio bod
- real *8, dimension(:), allocatable parm::biom
- real *8, dimension(:), allocatable parm::rbiom
- real *8, dimension(:), allocatable parm::fcoli
- real *8, dimension(:), allocatable parm::bio_ntr
- real *8, dimension(:), allocatable parm::bz_perc
- real *8, dimension(:), allocatable parm::sep_cap number of permanent residents in the hourse (none)
- real *8, dimension(:), allocatable parm::plgm
- real *8, dimension(:), allocatable parm::bz_area
- real *8, dimension(:), allocatable parm::bz_z
 Depth of biozone layer(mm)
- real *8, dimension(:), allocatable parm::bz_thk thickness of biozone (mm)
- real *8, dimension(:), allocatable parm::bio_bd
 density of biomass (kg/m^3) carbon outputs for .hru file
- real *8, dimension(:), allocatable parm::cmup_kgh
- real *8, dimension(:), allocatable parm::cmtot_kgh
- real *8, dimension(:), allocatable parm::coeff_denitr denitrification rate coefficient (none)
- real *8, dimension(:), allocatable parm::coeff_bod_dc
 BOD decay rate coefficient (m^{^3}/3/day)
- real *8, dimension(:), allocatable parm::coeff_bod_conv
 BOD to live bacteria biomass conversion factor (none)
- real *8, dimension(:), allocatable parm::coeff_fc1
 field capacity calibration parameter 1 (none)
- real *8, dimension(:), allocatable parm::coeff_fc2
 field capacity calibration parameter 2 (none)
- real *8, dimension(:), allocatable parm::coeff_fecal fecal coliform bacteria decay rate coefficient (m[^]3/day)
- real *8, dimension(:), allocatable parm::coeff_mrt
 mortality rate coefficient (none)
- real *8, dimension(:), allocatable parm::coeff_nitr
 nitrification rate coefficient (none)
- real *8, dimension(:), allocatable parm::coeff_plq conversion factor for plaque from TDS (none)
- real *8, dimension(:), allocatable parm::coeff_rsp

```
respiration rate coefficient (none)

    real *8, dimension(:), allocatable parm::coeff_slg1

     slough-off calibration parameter (none)

    real *8, dimension(:), allocatable parm::coeff_slg2

     slough-off calibration parameter (none)
  real *8, dimension(:), allocatable parm::coeff pdistrb
  real *8, dimension(:), allocatable parm::coeff_solpslp
  real *8, dimension(:), allocatable parm::coeff solpintc
  real *8, dimension(:), allocatable parm::coeff_psorpmax
  integer, dimension(:), allocatable parm::isep typ
     septic system type (none)
  integer, dimension(:), allocatable parm::i_sep
  integer, dimension(:), allocatable parm::isep_opt
     septic system operation flag (1=active, 2=failing, 3=not operated) (none)
  integer, dimension(:), allocatable parm::sep tsincefail
  integer, dimension(:), allocatable parm::isep tfail
  integer, dimension(:), allocatable parm::isep iyr
  integer, dimension(:), allocatable parm::sep_strm_dist
  integer, dimension(:), allocatable parm::sep den
  real *8, dimension(:), allocatable parm::sol_sumno3
  real *8, dimension(:), allocatable parm::sol sumsolp
  real *8, dimension(:), allocatable parm::strsw_sum
  real *8, dimension(:), allocatable parm::strstmp sum
  real *8, dimension(:), allocatable parm::strsn sum
  real *8, dimension(:), allocatable parm::strsp_sum
  real *8, dimension(:), allocatable parm::strsa sum
  real *8, dimension(:), allocatable parm::spill_hru
  real *8, dimension(:), allocatable parm::tile out
  real *8, dimension(:), allocatable parm::hru in
  real *8, dimension(:), allocatable parm::spill_precip
  real *8, dimension(:), allocatable parm::pot seep
  real *8, dimension(:), allocatable parm::pot_evap
 real *8, dimension(:), allocatable parm::pot sedin
  real *8, dimension(:), allocatable parm::pot solp
  real *8, dimension(:), allocatable parm::pot solpi
  real *8, dimension(:), allocatable parm::pot orgp
  real *8, dimension(:), allocatable parm::pot_orgpi
  real *8, dimension(:), allocatable parm::pot_orgn
  real *8, dimension(:), allocatable parm::pot orgni
  real *8, dimension(:), allocatable parm::pot mps
  real *8, dimension(:), allocatable parm::pot mpsi
  real *8, dimension(:), allocatable parm::pot_mpa
  real *8, dimension(:), allocatable parm::pot mpai
  real *8, dimension(:), allocatable parm::pot_no3i
  real *8, dimension(:), allocatable parm::precip in
  real *8, dimension(:), allocatable parm::tile sedo
  real *8, dimension(:), allocatable parm::tile_no3o
  real *8, dimension(:), allocatable parm::tile solpo
  real *8, dimension(:), allocatable parm::tile_orgno
• real *8, dimension(:), allocatable parm::tile_orgpo
  real *8, dimension(:), allocatable parm::tile minpso
  real *8, dimension(:), allocatable parm::tile minpao
  integer parm::ia b
```

· integer parm::ihumus

- integer parm::itemp
- integer parm::isnow
- · integer, dimension(41) parm::icolrsv
- integer, dimension(mhruo) parm::icols
- integer, dimension(mrcho) parm::icolr
- integer, dimension(msubo) parm::icolb
- integer, dimension(46) parm::ipdvar

output variable codes for output.rch file

• integer, dimension(mhruo) parm::ipdvas

output varaible codes for output.hru file

integer, dimension(msubo) parm::ipdvab

output variable codes for output.sub file

integer, dimension(:), allocatable parm::ipdhru

HRUs whose output information will be printed to the output.hru and output.wtr files.

- real *8, dimension(mstdo) parm::wshddayo
- real *8, dimension(mstdo) parm::wshdmono
- real *8, dimension(mstdo) parm::wshdyro
- real *8, dimension(16) parm::fcstaao
- real *8, dimension(mstdo) parm::wshdaao
- real *8, dimension(:,:), allocatable parm::wpstdayo
- real *8, dimension(:,:), allocatable parm::wpstmono
- real *8, dimension(:,:), allocatable parm::wpstyro
- real *8, dimension(:,:), allocatable parm::yldkg
- real *8, dimension(:,:), allocatable parm::bio hv
- real *8, dimension(:,:), allocatable parm::wpstaao
- real *8, dimension(:,:), allocatable parm::rchmono
- real *8, dimension(:,:), allocatable parm::rchyro
- real *8, dimension(:,:), allocatable parm::rchaao
- real *8, dimension(:,:), allocatable parm::rchdy
- real *8, dimension(:,:), allocatable parm::hrumono
- real *8, dimension(:,:), allocatable parm::hruyro
- real *8, dimension(:,:), allocatable parm::hruaao
- real *8, dimension(:,:), allocatable parm::submono
- real *8, dimension(:,:), allocatable parm::subyro
- real *8, dimension(:,:), allocatable parm::subaao
- real *8, dimension(:,:), allocatable parm::resoutm
- real *8, dimension(:,:), allocatable parm::resouty
- real *8, dimension(:,:), allocatable parm::resouta
- real *8, dimension(12, 8) parm::wshd_aamon
- real *8, dimension(:,:), allocatable parm::wtrmon
- real *8, dimension(:,:), allocatable parm::wtryr
- real *8, dimension(:,:), allocatable parm::wtraa
- real *8, dimension(:,:), allocatable parm::sub_smfmx

max melt rate for snow during year (June 21) for subbasin(:) where deg C refers to the air temperature. SUB_SMFMX and SMFMN allow the rate of snow melt to vary through the year. These parameters are accounting for the impact of soil temperature on snow melt (range: -5.0/5.0) (mm/deg C/day)

real *8, dimension(:,:), allocatable parm::sub_smfmn

min melt rate for snow during year (Dec 21) for subbasin(:) (range: -5.0/5.0) where deg C refers to the air temperature (mm/deg C/day)

- real *8, dimension(:,:,:), allocatable parm::hrupstd
- real *8, dimension(:,:,:), allocatable parm::hrupsta
- real *8, dimension(:,:,:), allocatable parm::hrupstm
- real *8, dimension(:,:,:), allocatable parm::hrupsty
- integer, dimension(:), allocatable parm::ifirstt

integer, dimension(:), allocatable parm::ifirstpcp

```
integer, dimension(:), allocatable parm::elevp
  integer, dimension(:), allocatable parm::elevt
  real *8, dimension(:,:), allocatable parm::ftmpmn
     avg monthly minimum air temperature (deg C)

    real *8, dimension(:,:), allocatable parm::ftmpmx

     avg monthly maximum air temperature (deg C)
• real *8, dimension(:,:), allocatable parm::ftmpstdmn
     standard deviation for avg monthly minimum air temperature (deg C)
 real *8, dimension(:,:), allocatable parm::ftmpstdmx
     standard deviation for avg monthly maximum air temperature (deg C)

    real *8, dimension(:,:,:), allocatable parm::fpcp_stat

     fpcp_stat(:,1,:): average amount of precipitation falling in one day for the month (mm/day)
     fpcp_stat(:,2,:): standard deviation for the average daily precipitation (mm/day)
     fpcp_stat(:,3,:): skew coefficient for the average daily precipitationa (none)

    real *8, dimension(:,:), allocatable parm::fpr w1

     probability of wet day after dry day in month (none)

    real *8, dimension(:.:), allocatable parm::fpr w2

     probability of wet day after wet day in month (none)

    real *8, dimension(:,:), allocatable parm::fpr w3

     proportion of wet days in the month (none)
  real *8, dimension(:), allocatable parm::flwin
  real *8, dimension(:), allocatable parm::flwout
  real *8, dimension(:), allocatable parm::bankst
  real *8, dimension(:), allocatable parm::ch wi
  real *8, dimension(:), allocatable parm::ch d
  real *8, dimension(:), allocatable parm::ch_onco
     channel organic n concentration (ppm)

    real *8, dimension(:), allocatable parm::ch opco

     channel organic p concentration (ppm)
  real *8, dimension(:), allocatable parm::ch orgn
  real *8, dimension(:), allocatable parm::ch_orgp
  real *8, dimension(:), allocatable parm::drift
  real *8, dimension(:), allocatable parm::rch dox
  real *8, dimension(:), allocatable parm::rch_bactp
  real *8, dimension(:), allocatable parm::alpha bnk
  real *8, dimension(:), allocatable parm::alpha bnke
  real *8, dimension(:), allocatable parm::disolvp
  real *8, dimension(:), allocatable parm::algae
  real *8, dimension(:), allocatable parm::sedst
  real *8, dimension(:), allocatable parm::rchstor
  real *8, dimension(:), allocatable parm::organicn
  real *8, dimension(:), allocatable parm::organicp
  real *8, dimension(:), allocatable parm::chlora
  real *8, dimension(:), allocatable parm::nitraten
  real *8, dimension(:), allocatable parm::nitriten
  real *8, dimension(:), allocatable parm::ch_li
  real *8, dimension(:), allocatable parm::ch_si
  real *8, dimension(:), allocatable parm::ch bnk san
  real *8, dimension(:), allocatable parm::ch bnk sil
  real *8, dimension(:), allocatable parm::ch bnk cla
 real *8, dimension(:), allocatable parm::ch bnk gra

    real *8, dimension(:), allocatable parm::ch bed san
```

```
real *8, dimension(:), allocatable parm::ch_bed_sil
real *8, dimension(:), allocatable parm::ch_bed_cla
real *8, dimension(:), allocatable parm::ch_bed_gra
real *8, dimension(:), allocatable parm::depfp
real *8, dimension(:), allocatable parm::depsanfp
real *8, dimension(:), allocatable parm::depsilfp
real *8, dimension(:), allocatable parm::depclafp
real *8, dimension(:), allocatable parm::depsagfp
real *8, dimension(:), allocatable parm::deplagfp
real *8, dimension(:), allocatable parm::depch
real *8, dimension(:), allocatable parm::depsanch
real *8, dimension(:), allocatable parm::depsilch
real *8, dimension(:), allocatable parm::depclach
real *8, dimension(:), allocatable parm::depsagch
real *8, dimension(:), allocatable parm::deplagch
real *8, dimension(:), allocatable parm::depgrach
real *8, dimension(:), allocatable parm::depgrafp
real *8, dimension(:), allocatable parm::grast
real *8, dimension(:), allocatable parm::depprch
real *8, dimension(:), allocatable parm::depprfp
real *8, dimension(:), allocatable parm::prf
real *8, dimension(:), allocatable parm::r2adj
real *8, dimension(:), allocatable parm::spcon
   linear parameter for calculating sediment reentrained in channel sediment routing
real *8, dimension(:), allocatable parm::spexp
   exponent parameter for calculating sediment reentrained in channel sediment routing
real *8, dimension(:), allocatable parm::sanst
real *8, dimension(:), allocatable parm::silst
real *8, dimension(:), allocatable parm::clast
real *8, dimension(:), allocatable parm::sagst
real *8, dimension(:), allocatable parm::lagst
real *8, dimension(:), allocatable parm::pot_san
real *8, dimension(:), allocatable parm::pot_sil
real *8, dimension(:), allocatable parm::pot_cla
real *8, dimension(:), allocatable parm::pot_sag
real *8, dimension(:), allocatable parm::pot_lag
real *8, dimension(:), allocatable parm::potsani
real *8, dimension(:), allocatable parm::potsili
real *8, dimension(:), allocatable parm::potclai
real *8, dimension(:), allocatable parm::potsagi
real *8, dimension(:), allocatable parm::potlagi
real *8, dimension(:), allocatable parm::sanyld
real *8, dimension(:), allocatable parm::silyld
real *8, dimension(:), allocatable parm::clayId
real *8, dimension(:), allocatable parm::sagyld
real *8, dimension(:), allocatable parm::lagyld
real *8, dimension(:), allocatable parm::grayId
real *8, dimension(:), allocatable parm::res_san
real *8, dimension(:), allocatable parm::res_sil
real *8, dimension(:), allocatable parm::res_cla
real *8, dimension(:), allocatable parm::res_sag
real *8, dimension(:), allocatable parm::res_lag
real *8, dimension(:), allocatable parm::res_gra
```

real *8, dimension(:), allocatable parm::pnd_san

- real *8, dimension(:), allocatable parm::pnd sil
- real *8, dimension(:), allocatable parm::pnd cla
- real *8, dimension(:), allocatable parm::pnd_sag
- real *8, dimension(:), allocatable parm::pnd_lag
- real *8, dimension(:), allocatable parm::wet san
- real *8, dimension(:), allocatable parm::wet_sil
- real *8, dimension(:), allocatable parm::wet cla
- real *8, dimension(:), allocatable parm::wet_lag
- real *8, dimension(:), allocatable parm::wet_sag
- real *8 parm::ressano
- real *8 parm::ressilo
- real *8 parm::resclao
- real *8 parm::ressago
- real *8 parm::reslago
- real *8 parm::resgrao
- real *8 parm::ressani
- real *8 parm::ressili
- real *8 parm::resclai
- real *8 parm::ressagi
- real *8 parm::reslagi
- real *8 parm::resgrai
- real *8 parm::potsano
- real *8 parm::potsilo
- real *8 parm::potclao
- real *8 parm::potsago
- real *8 parm::potlago
- real *8 parm::pndsanin
- real *8 parm::pndsilin
- real *8 parm::pndclain
- real *8 parm::pndsagin
- real *8 parm::pndlagin
- real *8 parm::pndsano
- real *8 parm::pndsilo
- real *8 parm::pndclaoreal *8 parm::pndsago
- real *8 parm::pndlago
- real *8, dimension(:), allocatable parm::ch di
- real *8, dimension(:), allocatable parm::ch_erod
- real *8, dimension(:), allocatable parm::ch_I2
- real *8, dimension(:), allocatable parm::ch cov
- real *8, dimension(:), allocatable parm::ch cov1
- real *8, dimension(:), allocatable parm::ch_cov2
- real *8, dimension(:), allocatable parm::ch_bnk_bd
- real *8, dimension(:), allocatable parm::ch_bed_bd
- real *8, dimension(:), allocatable parm::ch bnk kd
- real *8, dimension(:), allocatable parm::ch bed kd
- real *8, dimension(:), allocatable parm::ch bnk d50
- real *8, dimension(:), allocatable parm::ch bed d50
- real *8, dimension(:), allocatable parm::tc_bed
- real *8, dimension(:), allocatable parm::tc_bnk
- integer, dimension(:), allocatable parm::ch_eqn
- real *8, dimension(:), allocatable parm::chpst_conc
- real *8, dimension(:), allocatable parm::chpst_rea
- real *8, dimension(:), allocatable parm::chpst_vol
 real *8, dimension(:), allocatable parm::chpst_koc

```
    real *8, dimension(:), allocatable parm::chpst_stl

real *8, dimension(:), allocatable parm::chpst_rsp
 real *8, dimension(:), allocatable parm::chpst_mix

    real *8, dimension(:), allocatable parm::sedpst_conc

    real *8, dimension(:), allocatable parm::ch wdr

    real *8, dimension(:), allocatable parm::sedpst_rea

    real *8, dimension(:), allocatable parm::sedpst_bry

  real *8, dimension(:), allocatable parm::sedpst_act

    real *8, dimension(:), allocatable parm::rch cbod

    real *8, dimension(:), allocatable parm::rch bactlp

  real *8, dimension(:), allocatable parm::chside
• real *8, dimension(:), allocatable parm::rs1

    real *8, dimension(:), allocatable parm::rs2

    real *8, dimension(:), allocatable parm::rs3

real *8, dimension(:), allocatable parm::rs4
 real *8, dimension(:), allocatable parm::rs5
• real *8, dimension(:), allocatable parm::rs6

    real *8, dimension(:), allocatable parm::rs7

real *8, dimension(:), allocatable parm::rk1

    real *8, dimension(:), allocatable parm::rk2

    real *8, dimension(:), allocatable parm::rk3

    real *8, dimension(:), allocatable parm::rk4

    real *8, dimension(:), allocatable parm::rk5

    real *8, dimension(:), allocatable parm::bc1

     rate constant for biological oxidation of NH3 to NO2 in reach at 20 deg C (1/hr)

    real *8, dimension(:), allocatable parm::bc2

     rate constant for biological oxidation of NO2 to NO3 in reach at 20 deg C (1/hr)

    real *8, dimension(:), allocatable parm::bc3

     rate constant for hydrolysis of organic N to ammonia in reach at 20 deg C (1/hr)

    real *8, dimension(:), allocatable parm::bc4

     rate constant for the decay of organic P to dissolved P in reach at 20 deg C (1/hr)

    real *8, dimension(:), allocatable parm::rk6

 real *8, dimension(:), allocatable parm::ammonian

    real *8, dimension(:), allocatable parm::orig_sedpstconc

    real *8, dimension(:,:), allocatable parm::wurch

  integer, dimension(:), allocatable parm::icanal
• integer, dimension(:), allocatable parm::itb

    real *8, dimension(:), allocatable parm::ch revap

    real *8, dimension(:), allocatable parm::dep_chan

• real *8, dimension(:), allocatable parm::harg_petco
     coefficient related to radiation used in hargreaves eq (range: 0.0019 - 0.0032)

    real *8, dimension(:), allocatable parm::subfr_nowtr

    real *8, dimension(:), allocatable parm::cncoef sub

     soil water depletion coefficient used in the new (modified curve number method) same as soil index coeff used in
     APEX range: 0.5 - 2.0

    real *8, dimension(:), allocatable parm::dr_sub

    real *8, dimension(:), allocatable parm::wcklsp

  real *8, dimension(:), allocatable parm::sub_fr

    real *8, dimension(:), allocatable parm::sub_minp
```

real *8, dimension(:), allocatable parm::sub_sw
 real *8, dimension(:), allocatable parm::sub_sumfc

real *8, dimension(:), allocatable parm::sub_gwno3

```
    real *8, dimension(:), allocatable parm::sub gwsolp

  real *8, dimension(:), allocatable parm::co2
      CO2 concentration (ppmv)

    real *8, dimension(:), allocatable parm::sub_km

     area of subbasin in square kilometers (km<sup>2</sup>)
real *8, dimension(:), allocatable parm::sub_tc

    real *8. dimension(:), allocatable parm::wlat

  real *8, dimension(:), allocatable parm::sub pet

    real *8, dimension(:), allocatable parm::welev

    real *8, dimension(:), allocatable parm::sub_orgn

    real *8, dimension(:), allocatable parm::sub_orgp

  real *8, dimension(:), allocatable parm::sub bd
• real *8, dimension(:), allocatable parm::sub_wtmp

    real *8, dimension(:), allocatable parm::sub sedpa

    real *8, dimension(:), allocatable parm::sub sedps

    real *8, dimension(:), allocatable parm::sub minpa

    real *8, dimension(:), allocatable parm::sub_minps

    real *8, dimension(:), allocatable parm::daylmn

    real *8, dimension(:), allocatable parm::latcos

    real *8, dimension(:), allocatable parm::latsin

    real *8, dimension(:), allocatable parm::phutot

 real *8, dimension(:), allocatable parm::plaps
     precipitation lapse rate: precipitation change due to change in elevation (mm H2O/km)

    real *8, dimension(:), allocatable parm::tlaps

     temperature lapse rate: temperature change due to change in elevation (deg C/km)

    real *8, dimension(:), allocatable parm::tmp_an

  real *8, dimension(:), allocatable parm::sub_precip
  real *8, dimension(:), allocatable parm::pcpdays

    real *8, dimension(:), allocatable parm::rcn sub

    real *8, dimension(:), allocatable parm::rammo sub

    real *8, dimension(:), allocatable parm::atmo day

real *8, dimension(:), allocatable parm::sub_snom
• real *8, dimension(:), allocatable parm::sub_qd

    real *8, dimension(:), allocatable parm::sub sedv

    real *8, dimension(:), allocatable parm::sub_tran

    real *8, dimension(:), allocatable parm::sub no3

 real *8, dimension(:), allocatable parm::sub_latno3
• real *8, dimension(:,:), allocatable parm::sub_sftmp
     snowfall temperature for subbasin(:). Mean air temperature at which precip is equally likely to be rain as snow/freezing
     rain (range: -5.0/5.0) (deg C)

    real *8, dimension(:,:), allocatable parm::sub_smtmp

     snow melt base temperature for subbasin(:) mean air temperature at which snow melt will occur (range: -5.0/5.0)

    real *8, dimension(:,:), allocatable parm::sub_timp

    real *8, dimension(:), allocatable parm::sub tileno3

    real *8, dimension(:), allocatable parm::sub solp

real *8, dimension(:), allocatable parm::sub_subp

    real *8, dimension(:), allocatable parm::sub etday

    real *8, dimension(:), allocatable parm::sub_elev

     average elevation of subbasin (m)

    real *8, dimension(:), allocatable parm::sub_wyld

    real *8, dimension(:), allocatable parm::sub surfq

    real *8, dimension(:), allocatable parm::qird
```

103 real *8, dimension(:), allocatable parm::sub_gwq • real *8, dimension(:), allocatable parm::sub_sep real *8, dimension(:), allocatable parm::sub_chl • real *8, dimension(:), allocatable parm::sub cbod real *8, dimension(:), allocatable parm::sub dox real *8, dimension(:), allocatable parm::sub_solpst real *8, dimension(:), allocatable parm::sub sorpst real *8, dimension(:), allocatable parm::sub_yorgn real *8, dimension(:), allocatable parm::sub_yorgp real *8, dimension(:), allocatable parm::sub_lat latitude of subbasin (degrees) real *8, dimension(:), allocatable parm::sub_bactp real *8, dimension(:), allocatable parm::sub bactlp real *8, dimension(:), allocatable parm::sub_latq real *8, dimension(:), allocatable parm::sub gwg d real *8, dimension(:), allocatable parm::sub_tileq • real *8, dimension(:), allocatable parm::sub_vaptile real *8, dimension(:), allocatable parm::sub dsan • real *8, dimension(:), allocatable parm::sub_dsil real *8, dimension(:), allocatable parm::sub_dcla real *8, dimension(:), allocatable parm::sub dsag real *8, dimension(:), allocatable parm::sub_dlag real *8 parm::vap_tile real *8, dimension(:), allocatable parm::wnan real *8, dimension(:,:), allocatable parm::sol_stpwt real *8, dimension(:,:), allocatable parm::sub_pst real *8, dimension(:,:), allocatable parm::sub hhqd real *8, dimension(:,:), allocatable parm::sub_hhwtmp real *8, dimension(:,:), allocatable parm::huminc monthly humidity adjustment. Daily values for relative humidity within the month are rasied or lowered by the specified amount (used in climate change studies) (none) real *8, dimension(:,:), allocatable parm::radinc monthly solar radiation adjustment. Daily radiation within the month is raised or lowered by the specified amount. (used in climate change studies) (MJ/m $^{\wedge}$ 2) real *8, dimension(:,:), allocatable parm::rfinc monthly rainfall adjustment. Daily rainfall within the month is adjusted to the specified percentage of the original value (used in climate change studies)(%) real *8, dimension(:,:), allocatable parm::tmpinc monthly temperature adjustment. Daily maximum and minimum temperatures within the month are raised or lowered by the specified amount (used in climate change studies) (deg C) real *8, dimension(:), allocatable parm::ch k1 effective hydraulic conductivity of tributary channel alluvium (mm/hr) real *8, dimension(:), allocatable parm::ch_k2 real *8, dimension(:,:), allocatable parm::elevb elevation at the center of the band (m) real *8, dimension(:,:), allocatable parm::elevb_fr fraction of subbasin area within elevation band (the same fractions should be listed for all HRUs within the subbasin)

Generated by Doxygen

 real *8, dimension(:,:), allocatable parm::wndav real *8, dimension(:), allocatable parm::ch n1

 real *8, dimension(:), allocatable parm::ch_n2 real *8, dimension(:), allocatable parm::ch s1 average slope of tributary channels (m/m)

Manning's "n" value for the tributary channels (none)

- real *8, dimension(:), allocatable parm::ch s2
- real *8, dimension(:), allocatable parm::ch_w1

average width of tributary channels (m)

- real *8, dimension(:), allocatable parm::ch_w2
- real *8, dimension(:,:), allocatable parm::dewpt
- real *8, dimension(:,:), allocatable parm::amp_r
- real *8, dimension(:,:), allocatable parm::solarav
- real *8, dimension(:,:), allocatable parm::tmpstdmx
- real *8, dimension(:,:), allocatable parm::tmpstdmn
- real *8, dimension(:,:), allocatable parm::pcf
- real *8, dimension(:,:), allocatable parm::tmpmn
- real *8, dimension(:,:), allocatable parm::tmpmx
- real *8, dimension(:,:), allocatable parm::otmpstdmn
- real *8, dimension(:,:), allocatable parm::otmpmn
- real *8, dimension(:,:), allocatable parm::otmpmx
- real *8, dimension(:,:), allocatable parm::otmpstdmx
- real *8, dimension(:,:), allocatable parm::ch_erodmo
- real *8, dimension(:,:), allocatable parm::uh
- real *8, dimension(:,:), allocatable parm::hqdsave
- real *8, dimension(:,:), allocatable parm::hsdsave
- real *8, dimension(:,:), allocatable parm::pr_w1
- real *8, dimension(:,:), allocatable parm::pr_w2
- real *8, dimension(:,:), allocatable parm::pr_w3
- real *8, dimension(:,:,:), allocatable parm::pcp_stat
- real *8, dimension(:,:), allocatable parm::opr_w1
- real *8, dimension(:,:), allocatable parm::opr_w2
- real *8, dimension(:,:), allocatable parm::opr_w3
- real *8, dimension(:,:,:), allocatable parm::opcp stat
- integer, dimension(:), allocatable parm::hrutot
- integer, dimension(:), allocatable parm::hru1
- integer, dimension(:), allocatable parm::ireg
- integer, dimension(:), allocatable parm::ihgage subbasin relative humidity data code (none)
- integer, dimension(:), allocatable parm::isgage subbasin radiation gage data code (none)
- integer, dimension(:), allocatable parm::iwgage subbasin wind speed gage data code (none)
- integer, dimension(:), allocatable parm::subgis

 GIS code printed to output files (output.sub) (none.
- integer, dimension(:), allocatable parm::irgage subbasin rain gage data code (none)
- integer, dimension(:), allocatable parm::itgage subbasin temp gage data code (none)
- · integer, dimension(:), allocatable parm::fcst_reg
- integer, dimension(:), allocatable parm::irelh
- real *8, dimension(:,:), allocatable parm::sol_aorgn
- real *8, dimension(:,:), allocatable parm::sol tmp
- real *8, dimension(:,:), allocatable parm::sol_fon
- real *8, dimension(:,:), allocatable parm::sol_awc
- real *8, dimension(:,:), allocatable parm::sol prk
- real *8, dimension(:,:), allocatable parm::volcr
- real *8, dimension(:,:), allocatable parm::pperco_sub

subbasin phosphorus percolation coefficient. Ratio of soluble phosphorus in surface to soluble phosphorus in percolate

- real *8, dimension(:,:), allocatable parm::sol_actp
- real *8, dimension(:,:), allocatable parm::sol_stap
- real *8, dimension(:,:), allocatable parm::conv_wt
- real *8, dimension(:,:), allocatable parm::sol solp
- real *8, dimension(:,:), allocatable parm::sol_ul
- real *8, dimension(:,:), allocatable parm::sol_fc
- real *8, dimension(:,:), allocatable parm::crdep
- real *8, dimension(:,:), allocatable parm::sol z
- real *8, dimension(:,:), allocatable parm::sol up
- real *8, dimension(:,:), allocatable parm::sol bd
- real *8, dimension(:,:), allocatable parm::sol_st
- real *8, dimension(:,:), allocatable parm::flat
- real *8, dimension(:,:), allocatable parm::sol_nh3
- real *8, dimension(:,:), allocatable parm::sol_hk
- real *8, dimension(:,:), allocatable parm::sol_clay
- real *8, dimension(:,:), allocatable parm::sol_ec
- real *8, dimension(:,:), allocatable parm::sol orgn
- real *8, dimension(:,:), allocatable parm::sol_por
- real *8, dimension(:,:), allocatable parm::sol_wp
- real *8, dimension(:,:), allocatable parm::sol_orgp
- real *8, dimension(:,:), allocatable parm::sol_hum
- real *8, dimension(:,:), allocatable parm::sol wpmm
- real *8, dimension(:,:), allocatable parm::sol_k
- real *8, dimension(:,:), allocatable parm::sol_cbn
- real *8, dimension(:,:), allocatable parm::sol_no3
- real *8, dimension(:,:), allocatable parm::sol_rsd
- real *8, dimension(:,:), allocatable parm::sol_fop
- real *8, dimension(:,:), allocatable parm::sol_silt
- real *8, dimension(:,:), allocatable parm::sol_sand
 real *8, dimension(:,:), allocatable parm::sol_rock
- real *8, dimension(:,:), allocatable parm::orig_solno3
- real *8, dimension(:,:), allocatable parm::orig_solorgn
- real *8, dimension(:,:), allocatable parm::orig_solsolp
- real *8, dimension(:,:), allocatable parm::orig_solorgp
- real *8, dimension(:,:), allocatable parm::orig_soltmp
- real *8, dimension(:,:), allocatable parm::orig solrsd
- real *8, dimension(:,:), allocatable parm::orig_solfop
- real *8. dimension(:.:), allocatable parm::orig solfon
- real *8, dimension(:,:), allocatable parm::orig_solaorgn
- real *8, dimension(:,:), allocatable parm::orig_solst
- real *8, dimension(:,:), allocatable parm::orig_solactp
- real *8, dimension(:,:), allocatable parm::orig_solstap
- real *8, dimension(:,:), allocatable parm::orig_volcr
- real *8, dimension(:,:), allocatable parm::conk
- real *8, dimension(:,:,:), allocatable parm::sol_pst
- real *8, dimension(:,:,:), allocatable parm::sol_kp
- real *8, dimension(:,:,:), allocatable parm::orig_solpst
- real *8, dimension(:), allocatable parm::velsetlr
- real *8, dimension(:), allocatable parm::velsetlp
- real *8, dimension(:), allocatable parm::br1
- real *8, dimension(:), allocatable parm::res_k
- real *8, dimension(:), allocatable parm::lkpst_conc
- real *8, dimension(:), allocatable parm::evrsv

- real *8, dimension(:), allocatable parm::res evol
- real *8, dimension(:), allocatable parm::res pvol
- real *8, dimension(:), allocatable parm::res_vol
- real *8, dimension(:), allocatable parm::res_psa
- real *8, dimension(:), allocatable parm::lkpst_rea
- real *8, dimension(:), allocatable parm::lkpst_vol
- real *8, dimension(:), allocatable parm::br2
- real *8, dimension(:), allocatable parm::res_rr
- real *8, dimension(:), allocatable parm::res_sed
- real *8, dimension(:), allocatable parm::lkpst koc
- real *8, dimension(:), allocatable parm::lkpst stl
- real *8, dimension(:), allocatable parm::lkpst_rsp
- real *8, dimension(:), allocatable parm::lkpst_mix
- real *8, dimension(:), allocatable parm::lkspst_conc
- real *8, dimension(:), allocatable parm::lkspst_rea
- real *8, dimension(:), allocatable parm::theta n
- real *8, dimension(:), allocatable parm::theta_p
- real *8, dimension(:), allocatable parm::con nirr
- real *8, dimension(:), allocatable parm::con_pirr
- real *8, dimension(:), allocatable parm::lkspst bry
- real *8, dimension(:), allocatable parm::lkspst_act
- real *8, dimension(:), allocatable parm::sed stlr
- real *8, dimension(7) parm::resdata
- real *8, dimension(:), allocatable parm::wurtnf
- real *8, dimension(:), allocatable parm::res nsed
- real *8, dimension(:), allocatable parm::chlar
- real *8, dimension(:), allocatable parm::res orgn
- real *8, dimension(:), allocatable parm::res_orgp
- real *8, dimension(:), allocatable parm::res_no3
- real *8, dimension(:), allocatable parm::res_solp
- real *8, dimension(:), allocatable parm::res_chla
- real *8, dimension(:), allocatable parm::res_seci
- real *8, dimension(:), allocatable parm::res_esa
- real *8, dimension(:), allocatable parm::seccir
- real *8, dimension(:), allocatable parm::res_no2
 real *8, dimension(:), allocatable parm::res_nh3
- real *8, dimension(:), allocatable parm::res_bactp
- real *8, dimension(:), allocatable parm::res_bactlp
- real *8, dimension(:), allocatable parm::oflowmn fps
- real *8, dimension(:), allocatable parm::starg fps
- real *8, dimension(:), allocatable parm::weirc
- real *8, dimension(:), allocatable parm::weirk
- real *8, dimension(:), allocatable parm::weirw
- real *8, dimension(:), allocatable parm::acoef
- real *8, dimension(:), allocatable parm::bcoef
- real *8, dimension(:), allocatable parm::ccoef
- real *8, dimension(:), allocatable parm::orig resvol
- real *8, dimension(:), allocatable parm::orig ressed
- real *8, dimension(:), allocatable parm::orig_lkpstconc
- real *8, dimension(:), allocatable parm::orig_lkspstconc
- real *8, dimension(:), allocatable parm::orig_ressolp
- real *8, dimension(:), allocatable parm::orig_resorgp
- real *8, dimension(:), allocatable parm::orig_resno3
- real *8, dimension(:), allocatable parm::orig resno2
- real *8, dimension(:), allocatable parm::orig_resnh3

```
    real *8, dimension(:), allocatable parm::orig_resorgn

    real *8, dimension(:,:), allocatable parm::starg

    real *8, dimension(:,:), allocatable parm::oflowmx

    real *8, dimension(:,:), allocatable parm::oflowmn

    real *8, dimension(:,:), allocatable parm::psetIr

    real *8, dimension(:,:), allocatable parm::nsetlr

    real *8, dimension(:,:), allocatable parm::wuresn

• real *8, dimension(:,:,:), allocatable parm::res out

    integer, dimension(:), allocatable parm::ires1

• integer, dimension(:), allocatable parm::ires2

    integer, dimension(:), allocatable parm::res_sub

    integer, dimension(:), allocatable parm::iresco

• integer, dimension(:), allocatable parm::mores
• integer, dimension(:), allocatable parm::iyres

    integer, dimension(:), allocatable parm::iflod1r

    integer, dimension(:), allocatable parm::iflod2r

    integer, dimension(:), allocatable parm::ndtargr

    real *8, dimension(:), allocatable parm::ap_ef

      application efficiency (0-1) (none)
real *8, dimension(:), allocatable parm::decay_f
      exponential of the rate constant for degradation of the pesticide on foliage (none)

    real *8, dimension(:), allocatable parm::skoc

      soil adsorption coefficient normalized for soil organic carbon content ((mg/kg)/(mg/L))

    real *8, dimension(:), allocatable parm::decay_s

      exponential of the rate constant for degradation of the pesticide in soil (none)

    real *8, dimension(:), allocatable parm::hlife_f

      half-life of pesticide on foliage (days)

    real *8, dimension(:), allocatable parm::hlife s

      half-life of pesticide in soil (days)

    real *8, dimension(:), allocatable parm::pst_wof

      fraction of pesticide on foliage which is washed-off by a rainfall event (none)

    real *8, dimension(:), allocatable parm::pst_wsol

      solubility of chemical in water (mg/L (ppm))

    real *8, dimension(:), allocatable parm::irramt

  real *8, dimension(:), allocatable parm::phusw
  real *8, dimension(:), allocatable parm::phusw_nocrop
• integer, dimension(:), allocatable parm::pstflg
      flag for types of pesticide used in watershed array location is pesticide ID number
     0: pesticide not used
      1: pesticide used

    integer, dimension(:), allocatable parm::nope

    integer, dimension(:), allocatable parm::nop

integer, dimension(:), allocatable parm::yr_skip
• integer, dimension(:), allocatable parm::isweep

    integer, dimension(:), allocatable parm::icrmx

• integer, dimension(:), allocatable parm::nopmx

    integer, dimension(:,:), allocatable parm::mgtop

    integer, dimension(:,:), allocatable parm::idop

• integer, dimension(:,:), allocatable parm::mgt1iop

    integer, dimension(:,:), allocatable parm::mgt2iop

integer, dimension(:,:), allocatable parm::mgt3iop
 real *8, dimension(:,:), allocatable parm::mgt4op
 real *8, dimension(:,:), allocatable parm::mgt5op
```

```
    real *8, dimension(:,:), allocatable parm::mgt6op

    real *8, dimension(:,:), allocatable parm::mgt7op

    real *8, dimension(:,:), allocatable parm::mgt8op

    real *8, dimension(:,:), allocatable parm::mgt9op

    real *8, dimension(:,:), allocatable parm::mgt10iop

    real *8, dimension(:,:), allocatable parm::phu_op

    real *8, dimension(:), allocatable parm::cnyld

      fraction of nitrogen in yield (kg N/kg yield)

    real *8, dimension(:), allocatable parm::rsdco_pl

     plant residue decomposition coefficient. The fraction of residue which will decompose in a day assuming optimal
     moisture, temperature, C:N ratio, and C:P ratio (none)

    real *8, dimension(:), allocatable parm::wac21

      1st shape parameter for radiation use efficiency equation (none)

    real *8, dimension(:), allocatable parm::wac22

      2nd shape parameter for radiation use efficiency equation (none)

    real *8, dimension(:), allocatable parm::alai_min

      minimum LAI during winter dormant period (m^2/m^2)

    real *8, dimension(:), allocatable parm::leaf1

      1st shape parameter for leaf area development equation (none)

    real *8, dimension(:), allocatable parm::leaf2

      2nd shape parameter for leaf area development equation (none)

    real *8, dimension(:), allocatable parm::wsyf

      Value of harvest index between 0 and HVSTI which represents the lowest value expected due to water stress
      ((kg/ha)/(kg/ha))

    real *8, dimension(:), allocatable parm::bio_e

      biomass-energy ratio. The potential (unstressed) growth rate per unit of intercepted photosynthetically active
      radiation.((kg/ha)/(MJ/m**2))

    real *8, dimension(:), allocatable parm::hvsti

      harvest index: crop yield/aboveground biomass ((kg/ha)/(kg/ha))

    real *8, dimension(:), allocatable parm::t_base

      minimum temperature for plant growth (deg C)

    real *8, dimension(:), allocatable parm::t_opt

      optimal temperature for plant growth (deg C)

    real *8, dimension(:), allocatable parm::chtmx

      maximum canopy height (m)

    real *8, dimension(:), allocatable parm::cvm

      natural log of USLE_C (none)

    real *8, dimension(:), allocatable parm::gsi

      maximum stomatal conductance (m/s)

    real *8, dimension(:), allocatable parm::vpd2

      rate of decline in stomatal conductance per unit increase in vapor pressure deficit ((m/s)*(1/kPa))

    real *8, dimension(:), allocatable parm::wavp

      rate of decline in radiation use efficiency as a function of vapor pressure deficit (none)

    real *8, dimension(:), allocatable parm::bio leaf

      fraction of leaf/needle biomass that drops during dormancy (for trees only) (none)

    real *8, dimension(:), allocatable parm::blai

      maximum (potential) leaf area index (none)
 real *8, dimension(:), allocatable parm::cpyld
      fraction of phosphorus in yield (kg P/kg yield)

    real *8, dimension(:), allocatable parm::dlai

      fraction of growing season when leaf area declines (none)

    real *8, dimension(:), allocatable parm::rdmx
```

maximum root depth (m) real *8, dimension(:), allocatable parm::bio_n1 1st shape parameter for plant N uptake equation (none) real *8, dimension(:), allocatable parm::bio n2 2nd shape parameter for plant N uptake equation (none) real *8, dimension(:), allocatable parm::bio p1 1st shape parameter for plant P uptake equation (none) real *8, dimension(:), allocatable parm::bio p2 2st shape parameter for plant P uptake equation (none) • real *8, dimension(:), allocatable parm::bm_dieoff fraction above ground biomass that dies off at dormancy (fraction) real *8, dimension(:), allocatable parm::bmx_trees real *8, dimension(:), allocatable parm::ext coef real *8, dimension(:), allocatable parm::rsr1 initial root to shoot ratio at the beg of growing season real *8, dimension(:), allocatable parm::rsr2 root to shoot ratio at the end of the growing season real *8, dimension(:,:), allocatable parm::pltnfr pltnfr(1,:) nitrogen uptake parameter #1: normal fraction of N in crop biomass at emergence (kg N/kg biomass) pltnfr(2,:) nitrogen uptake parameter #2: normal fraction of N in crop biomass at 0.5 maturity (kg N/kg biomass) pltnfr(3,:) nitrogen uptake parameter #3: normal fraction of N in crop biomass at maturity (kg N/kg biomass) real *8, dimension(:,:), allocatable parm::pltpfr pltpfr(1,:) phosphorus uptake parameter #1: normal fraction of P in crop biomass at emergence (kg P/kg biomass) pltpfr(2,:) phosphorus uptake parameter #2: normal fraction of P in crop biomass at 0.5 maturity (kg P/kg biomass) pltpfr(3,:) phosphorus uptake parameter #3: normal fraction of P in crop biomass at maturity (kg P/kg biomass) • integer, dimension(:), allocatable parm::idc crop/landcover category: 1 warm season annual legume 2 cold season annual legume 3 perennial legume 4 warm season annual 5 cold season annual 6 perennial 7 trees integer, dimension(:), allocatable parm::mat yrs real *8, dimension(:), allocatable parm::bactpdb concentration of persistent bacteria in manure (fertilizer) (cfu/g manure) real *8, dimension(:), allocatable parm::fminn fraction of mineral N (NO3 + NH3) (kg minN/kg fert) real *8, dimension(:), allocatable parm::forgn fraction of organic N (kg orgN/kg fert) real *8, dimension(:), allocatable parm::forgp fraction of organic P (kg orgP/kg fert) real *8, dimension(:), allocatable parm::bactkddb bacteria partition coefficient (none): 1: all bacteria in solution 0: all bacteria sorbed to soil particles

 real *8, dimension(:), allocatable parm::bactlpdb concentration of less persistent bacteria in manure (fertilizer) (cfu/g manure) real *8, dimension(:), allocatable parm::fminp

fraction of mineral P (kg minP/kg fert)

real *8, dimension(:), allocatable parm::fnh3n

fraction of NH3-N in mineral N (kg NH3-N/kg minN)

character(len=8), dimension(200) parm::fertnm

name of fertilizer
 real *8, dimension(:), allocatable parm::curbden curb length density in HRU (km/ha)
 real *8, dimension(:), allocatable parm::dirtmx

maximum amount of solids allowed to build up on impervious surfaces (kg/curb km)

• real *8, dimension(:), allocatable parm::fimp

fraction of HRU area that is impervious (both directly and indirectly connected)(fraction)

real *8, dimension(:), allocatable parm::urbcoef

wash-off coefficient for removal of constituents from an impervious surface (1/mm)

• real *8, dimension(:), allocatable parm::thalf

time for the amount of solids on impervious areas to build up to 1/2 the maximum level (days)

real *8, dimension(:), allocatable parm::tnconc

concentration of total nitrogen in suspended solid load from impervious areas (mg N/kg sed)

• real *8, dimension(:), allocatable parm::tno3conc

concentration of NO3-N in suspended solid load from impervious areas (mg NO3-N/kg sed)

real *8, dimension(:), allocatable parm::tpconc

concentration of total phosphorus in suspended solid load from impervious areas (mg P/kg sed)

real *8, dimension(:), allocatable parm::fcimp

fraction of HRU area that is classified as directly connected impervious (fraction)

real *8, dimension(:), allocatable parm::urbcn2

SCS curve number for moisture condition II in impervious areas (none)

- real *8 parm::sweepeff
- real *8 parm::frt kg
- real *8 parm::pst_dep
- real *8 parm::fr_curb
- real *8, dimension(:), allocatable parm::ranrns_hru
- integer, dimension(:), allocatable parm::itill
- real *8, dimension(:), allocatable parm::deptil

depth of mixing caused by operation (mm)

• real *8, dimension(:), allocatable parm::effmix

mixing efficiency of operation (none)

• real *8, dimension(:), allocatable parm::ranrns

random roughness of a given tillage operation (mm)

• character(len=8), dimension(550) parm::tillnm

8-character name for the tillage operation

real *8, dimension(:), allocatable parm::rnum1s

For ICODES equal to (none)

0,1,3,5,9: not used

2: Fraction of flow in channel

4: amount of water transferred (as defined by INUM4S)

7,8,10,11: drainage area in square kilometers associated with the record file.

- real *8, dimension(:), allocatable parm::hyd_dakm
- real *8, dimension(:,:), allocatable parm::varoute
- real *8, dimension(:,:), allocatable parm::shyd
- real *8, dimension(:,:), allocatable parm::vartran
- real *8, dimension(:,:,:), allocatable parm::hhvaroute
- integer, dimension(:), allocatable parm::icodes

routing command code (none):

0 = finish

1 = subbasin

2 = route

3 = routres

4 = transfer

```
5 = add
     6 = rechour
      7 = recmon
     8 = recyear
     9 = save
      10 = recday
      11 = reccnst
      12 = structure
      13 = apex
      14 = saveconc
      15 =
• integer, dimension(:), allocatable parm::ihouts
     For ICODES equal to (none)
     0: not used
      1,2,3,5,7,8,10,11: hydrograph storage location number
      4: departure type (1=reach, 2=reservoir)
     9: hydrograph storage location of data to be printed to event file
      14:hydrograph storage location of data to be printed to saveconc file.
• integer, dimension(:), allocatable parm::inum1s
     For ICODES equal to (none)
     0: not used
      1: subbasin number
     2: reach number
     3: reservoir number
      4: reach or res # flow is diverted from
     5: hydrograph storage location of 1st dataset to be added
      7,8,9,10,11,14: file number.
• integer, dimension(:), allocatable parm::inum2s
     For ICODES equal to (none)
     0.1.7.8.10.11: not used
     2,3: inflow hydrograph storage location
      4: destination type (1=reach, 2=reservoir)
     5: hydrograph storage location of 2nd dataset to be added
     9,14:print frequency (0=daily, 1=hourly)
• integer, dimension(:), allocatable parm::inum3s
      For ICODES equal to (none)
     0,1,2,3,5,7,8,10,11: not used
      4: destination number. Reach or reservoir receiving water
      9: print format (0=normal, fixed format; 1=txt format for AV interface, recday)
• integer, dimension(:), allocatable parm::inum4s
      For ICODES equal to (none)
      0,2,3,5,7,8,9,10,11: not used
      1: GIS code printed to output file (optional)
      4: rule code governing transfer of water (1=fraction transferred out, 2=min volume or flow left, 3=exact amount trans-
      ferred)
• integer, dimension(:), allocatable parm::inum5s

    integer, dimension(:), allocatable parm::inum6s

    integer, dimension(:), allocatable parm::inum7s

• integer, dimension(:), allocatable parm::inum8s
integer, dimension(:), allocatable parm::subed

    character(len=10), dimension(:), allocatable parm::recmonps

• character(len=10), dimension(:), allocatable parm::reccnstps
· character(len=5), dimension(:), allocatable parm::subnum
· character(len=4), dimension(:), allocatable parm::hruno
• real *8, dimension(:), allocatable parm::grwat_n

    real *8, dimension(:), allocatable parm::grwat i

    real *8, dimension(:), allocatable parm::grwat_I

    real *8, dimension(:), allocatable parm::grwat_w
```

real *8, dimension(:), allocatable parm::grwat_d

```
real *8, dimension(:), allocatable parm::grwat s
real *8, dimension(:), allocatable parm::grwat spcon
real *8, dimension(:), allocatable parm::tc_gwat
real *8, dimension(:), allocatable parm::pot_volmm
real *8, dimension(:), allocatable parm::pot tilemm
real *8, dimension(:), allocatable parm::pot_volxmm
real *8, dimension(:), allocatable parm::pot_fr
real *8, dimension(:), allocatable parm::pot_tile
real *8, dimension(:), allocatable parm::pot vol
real *8, dimension(:), allocatable parm::potsa
real *8, dimension(:), allocatable parm::pot_volx
real *8, dimension(:), allocatable parm::potflwi
real *8, dimension(:), allocatable parm::potsedi
real *8, dimension(:), allocatable parm::wfsh
real *8, dimension(:), allocatable parm::pot nsed
real *8, dimension(:), allocatable parm::pot no3l
real *8, dimension(:), allocatable parm::newrti
real *8, dimension(:), allocatable parm::gwno3
real *8, dimension(:), allocatable parm::pot_sed
real *8, dimension(:), allocatable parm::pot no3
real *8, dimension(:), allocatable parm::fsred
real *8, dimension(:), allocatable parm::tmpavp
real *8, dimension(:), allocatable parm::evpot
real *8, dimension(:), allocatable parm::dis_stream
real *8, dimension(:), allocatable parm::pot_solpl
real *8, dimension(:), allocatable parm::sed con
real *8, dimension(:), allocatable parm::orgn con
real *8, dimension(:), allocatable parm::orgp con
real *8, dimension(:), allocatable parm::soln_con
real *8, dimension(:), allocatable parm::solp_con
real *8, dimension(:), allocatable parm::pot k
real *8, dimension(:), allocatable parm::n reduc
real *8, dimension(:), allocatable parm::n_lag
real *8, dimension(:), allocatable parm::n_In
real *8, dimension(:), allocatable parm::n_Inco
integer, dimension(:), allocatable parm::ioper
integer, dimension(:), allocatable parm::ngrwat
real *8, dimension(:), allocatable parm::filterw
real *8, dimension(:), allocatable parm::sumix
real *8, dimension(:), allocatable parm::usle_ls
real *8, dimension(:), allocatable parm::phuacc
real *8, dimension(:), allocatable parm::epco
   plant water uptake compensation factor (0-1)
real *8, dimension(:), allocatable parm::esco
   soil evaporation compensation factor (0-1)
real *8, dimension(:), allocatable parm::slsubbsn
real *8, dimension(:), allocatable parm::hru_slp
real *8, dimension(:), allocatable parm::erorgn
real *8, dimension(:), allocatable parm::erorgp
real *8, dimension(:), allocatable parm::biomix
real *8, dimension(:), allocatable parm::pnd_seci
real *8, dimension(:), allocatable parm::flowmin
```

real *8, dimension(:), allocatable **parm::divmax** real *8, dimension(:), allocatable **parm::canmx**

real *8, dimension(:), allocatable parm::usle_p real *8, dimension(:), allocatable parm::lat_sed real *8, dimension(:), allocatable parm::rch_dakm real *8, dimension(:), allocatable parm::pnd_no3s real *8, dimension(:), allocatable parm::cn1 real *8, dimension(:), allocatable parm::cn2 real *8, dimension(:), allocatable parm::lat_ttime real *8, dimension(:), allocatable parm::flowfr real *8, dimension(:), allocatable parm::sol_zmx real *8, dimension(:), allocatable parm::tile_ttime real *8, dimension(:), allocatable parm::slsoil real *8, dimension(:), allocatable parm::sed_stl real *8, dimension(:), allocatable parm::gwminp real *8, dimension(:), allocatable parm::sol_cov real *8, dimension(:), allocatable parm::yldanu real *8, dimension(:), allocatable parm::pnd solp real *8, dimension(:), allocatable parm::pnd_no3 real *8, dimension(:), allocatable parm::ov_n real *8, dimension(:), allocatable parm::driftco coefficient for pesticide drift directly onto stream (none) real *8, dimension(:), allocatable parm::pnd_orgp real *8, dimension(:), allocatable parm::pnd_orgn real *8, dimension(:), allocatable parm::cn3 real *8, dimension(:), allocatable parm::twlpnd real *8, dimension(:), allocatable parm::twlwet real *8, dimension(:), allocatable parm::sol_sumul real *8, dimension(:), allocatable parm::pnd_chla real *8, dimension(:), allocatable parm::hru_fr real *8, dimension(:), allocatable parm::hru_km area of HRU in square kilometers (km $^{\wedge}$ 2) real *8, dimension(:), allocatable parm::bio_ms real *8, dimension(:), allocatable parm::sol_alb real *8, dimension(:), allocatable parm::strsw real *8, dimension(:), allocatable parm::pnd_fr real *8, dimension(:), allocatable parm::pnd_psa real *8, dimension(:), allocatable parm::pnd_pvol real *8, dimension(:), allocatable parm::pnd_k real *8, dimension(:), allocatable parm::pnd_esa real *8, dimension(:), allocatable parm::pnd_evol real *8, dimension(:), allocatable parm::pnd_vol real *8, dimension(:), allocatable parm::yldaa real *8, dimension(:), allocatable parm::pnd_sed real *8, dimension(:), allocatable parm::pnd_nsed real *8, dimension(:), allocatable parm::strsa real *8, dimension(:), allocatable parm::dep_imp real *8, dimension(:), allocatable parm::evpnd real *8, dimension(:), allocatable parm::evwet real *8, dimension(:), allocatable parm::wet_fr real *8, dimension(:), allocatable parm::wet_nsa real *8, dimension(:), allocatable parm::wet_nvol real *8, dimension(:), allocatable parm::wet_k integer, dimension(:), allocatable parm::iwetgw integer, dimension(:), allocatable parm::iwetile real *8, dimension(:), allocatable parm::wet_mxsa

- real *8, dimension(:), allocatable parm::wet_mxvol
 real *8, dimension(:), allocatable parm::wet_vol
 real *8, dimension(:), allocatable parm::wet_sed
 real *8, dimension(:), allocatable parm::wet_nsed
 real *8, dimension(:), allocatable parm::smx
 real *8, dimension(:), allocatable parm::sci
- real *8, dimension(:), allocatable parm::bp1
- real *8, dimension(:), allocatable parm::bp2
- real *8, dimension(:), allocatable parm::bw1
- real *8, dimension(:), allocatable parm::bw2
- real *8, dimension(:), allocatable parm::bactpq
- real *8, dimension(:), allocatable parm::bactp_plt
- real *8, dimension(:), allocatable parm::bactlp_plt
- real *8, dimension(:), allocatable parm::cnday
- real *8, dimension(:), allocatable parm::bactlpq
- real *8, dimension(:), allocatable parm::auto eff
- real *8, dimension(:), allocatable parm::sol_sw
- real *8, dimension(:), allocatable parm::secciw
- real *8, dimension(:), allocatable parm::bactps
- real *8, dimension(:), allocatable parm::bactlps
- real *8, dimension(:), allocatable parm::tmpav
- real *8, dimension(:), allocatable parm::chlaw
- real *8, dimension(:), allocatable parm::sno_hru

amount of water stored as snow (mm H2O)

- real *8, dimension(:), allocatable parm::subp
- real *8, dimension(:), allocatable parm::hru_ra
- real *8, dimension(:), allocatable parm::wet_orgn
- real *8, dimension(:), allocatable parm::tmx
- real *8, dimension(:), allocatable parm::tmn
- real *8, dimension(:), allocatable parm::rsdin
- real *8, dimension(:), allocatable parm::tmp_hi
- real *8, dimension(:), allocatable parm::tmp_lo
- real *8, dimension(:), allocatable parm::rwt
- real *8, dimension(:), allocatable parm::olai
- real *8, dimension(:), allocatable parm::usle_k
- real *8, dimension(:), allocatable parm::tconc
- real *8, dimension(:), allocatable parm::hru_rmx
- real *8, dimension(:), allocatable parm::usle_cfac
- real *8, dimension(:), allocatable parm::usle_eifac
- real *8, dimension(:), allocatable parm::anano3
- real *8, dimension(:), allocatable parm::aird
- real *8, dimension(:), allocatable parm::t ov
- real *8, dimension(:), allocatable parm::sol_sumfc
- real *8, dimension(:), allocatable parm::sol_avpor
- real *8, dimension(:), allocatable parm::usle_mult
- real *8, dimension(:), allocatable parm::wet_orgp
- real *8, dimension(:), allocatable parm::aairr
- real *8, dimension(:), allocatable parm::cht
- real *8, dimension(:), allocatable parm::u10
- real *8, dimension(:), allocatable parm::rhd
- real *8, dimension(:), allocatable parm::shallirr
- real *8, dimension(:), allocatable parm::deepirr
- real *8, dimension(:), allocatable parm::lai aamx
- real *8, dimension(:), allocatable parm::ch | 11

longest tributary channel length in subbasin (km) real *8, dimension(:), allocatable parm::canstor real *8, dimension(:), allocatable parm::ovrInd real *8, dimension(:), allocatable parm::wet_no3 real *8, dimension(:), allocatable parm::irr mx real *8, dimension(:), allocatable parm::auto_wstr real *8, dimension(:), allocatable parm::cfrt_id real *8, dimension(:), allocatable parm::cfrt kg real *8, dimension(:), allocatable parm::cpst id real *8, dimension(:), allocatable parm::cpst_kg real *8, dimension(:), allocatable parm::irr_asq real *8, dimension(:), allocatable parm::irr_eff real *8, dimension(:), allocatable parm::irrsq real *8, dimension(:), allocatable parm::irrefm real *8, dimension(:), allocatable parm::irrsalt real *8, dimension(:), allocatable parm::bio eat

real *8, dimension(:), allocatable parm::bio_trmp
 integer, dimension(:), allocatable parm::ifrt_freq

• integer, dimension(:), allocatable parm::ipst_freq

integer, dimension(:), allocatable parm::irr_noa

integer, dimension(:), allocatable parm::irr_sc
 integer, dimension(:), allocatable parm::irr_no

• integer, dimension(:), allocatable parm::imp_trig

integer, dimension(:), allocatable parm::fert_days

integer, dimension(:), allocatable parm::irr_sca

integer, dimension(:), allocatable parm::pest_days

integer, dimension(:), allocatable parm::idplt

integer, dimension(:), allocatable parm::wstrs_id

real *8, dimension(:,:), allocatable parm::bio_aahv

real *8, dimension(:), allocatable parm::cumei

• real *8, dimension(:), allocatable parm::cumeira

real *8, dimension(:), allocatable parm::cumrt

real *8, dimension(:), allocatable parm::cumrai

real *8, dimension(:), allocatable parm::wet_solp

real *8, dimension(:), allocatable parm::wet_no3s

• real *8, dimension(:), allocatable parm::wet_chla

real *8, dimension(:), allocatable parm::wet_seci

real *8, dimension(:), allocatable parm::pnd_no3g

real *8, dimension(:), allocatable parm::pstsol

real *8, dimension(:), allocatable parm::gwht

real *8, dimension(:), allocatable parm::delay

real *8, dimension(:), allocatable parm::gw_q

real *8, dimension(:), allocatable parm::pnd_solpg

real *8, dimension(:), allocatable parm::alpha_bf

real *8, dimension(:), allocatable parm::alpha_bfe

real *8, dimension(:), allocatable parm::gw_spyld

real *8, dimension(:), allocatable parm::alpha_bf_d

real *8, dimension(:), allocatable parm::alpha_bfe_d

real *8, dimension(:), allocatable parm::gw_qdeep

real *8, dimension(:), allocatable parm::gw_delaye

real *8, dimension(:), allocatable parm::gw_revap

real *8, dimension(:), allocatable parm::rchrg_dp

real *8, dimension(:), allocatable parm::anion excl

fraction of porosity from which anions are excluded

```
real *8, dimension(:), allocatable parm::revapmn
real *8, dimension(:), allocatable parm::rchrg
real *8, dimension(:), allocatable parm::ffc
real *8, dimension(:), allocatable parm::bio_min
real *8, dimension(:), allocatable parm::surgsolp
real *8, dimension(:), allocatable parm::cklsp
real *8, dimension(:), allocatable parm::deepst
real *8, dimension(:), allocatable parm::shallst
real *8, dimension(:), allocatable parm::wet solpg
real *8, dimension(:), allocatable parm::rchrq src
real *8, dimension(:), allocatable parm::wet_no3g
real *8, dimension(:), allocatable parm::sol_avbd
real *8, dimension(:), allocatable parm::trapeff
real *8, dimension(:), allocatable parm::gwqmn
real *8, dimension(:), allocatable parm::tdrain
real *8, dimension(:), allocatable parm::ppInt
real *8, dimension(:), allocatable parm::snotmp
real *8, dimension(:), allocatable parm::gdrain
   drain tile lag time (hours)
real *8, dimension(:), allocatable parm::ddrain
real *8, dimension(:), allocatable parm::sol crk
real *8, dimension(:), allocatable parm::dayl
real *8, dimension(:), allocatable parm::brt
real *8, dimension(:), allocatable parm::sstmaxd
   static maximum depressional storage; read from .sdr (mm)
real *8, dimension(:), allocatable parm::ddrain_hru
real *8, dimension(:), allocatable parm::re
real *8, dimension(:), allocatable parm::sdrain
real *8, dimension(:), allocatable parm::stmaxd
real *8, dimension(:), allocatable parm::drain co
real *8, dimension(:), allocatable parm::pc
real *8, dimension(:), allocatable parm::latksatf
real *8, dimension(:), allocatable parm::twash
real *8, dimension(:), allocatable parm::rnd2
real *8, dimension(:), allocatable parm::rnd3
real *8, dimension(:), allocatable parm::sol_cnsw
real *8, dimension(:), allocatable parm::doxq
real *8, dimension(:), allocatable parm::rnd8
real *8, dimension(:), allocatable parm::rnd9
real *8, dimension(:), allocatable parm::percn
real *8, dimension(:), allocatable parm::sol sumwp
```

real *8, dimension(:), allocatable parm::tauton real *8, dimension(:), allocatable parm::tautop real *8, dimension(:), allocatable parm::cbodu real *8, dimension(:), allocatable parm::chl_a

real *8, dimension(:), allocatable parm::qdr

real *8, dimension(:), allocatable parm::tfertn

real *8, dimension(:), allocatable parm::tfertp real *8, dimension(:), allocatable parm::tgrazn

real *8, dimension(:), allocatable parm::tgrazp

real *8, dimension(:), allocatable parm::latno3

real *8, dimension(:), allocatable parm::latq

real *8, dimension(:), allocatable parm::minpgw

- real *8, dimension(:), allocatable parm::npInt
- real *8, dimension(:), allocatable parm::tileq
- real *8, dimension(:), allocatable parm::tileno3
- real *8, dimension(:), allocatable parm::sedminpa
- real *8, dimension(:), allocatable parm::sedminps
- real *8, dimension(:), allocatable parm::sedorgn
- real *8, dimension(:), allocatable parm::sedorgp
- real *8, dimension(:), allocatable parm::sedyld
- real *8, dimension(:), allocatable parm::sepbtm
- real *8, dimension(:), allocatable parm::strsn
- real *8, dimension(:), allocatable parm::strsp
- real *8, dimension(:), allocatable parm::strstmp
- real *8, dimension(:), allocatable parm::surfq
- real *8, dimension(:), allocatable parm::surqno3
- real *8, dimension(:), allocatable parm::tcfrtn
- Total 10, dimonological, and action partition and
- real *8, dimension(:), allocatable parm::tcfrtp
- real *8, dimension(:), allocatable parm::hru_ha
- real *8, dimension(:), allocatable parm::hru_dafr
- real *8, dimension(:), allocatable parm::drydep_no3
 real *8, dimension(:), allocatable parm::drydep_nh4
- real *8, dimension(:), allocatable parm::phubase
- real *8, dimension(:), allocatable parm::bio_yrms
- real *8, dimension(:), allocatable parm::hvstiadj
- real *8, dimension(:), allocatable parm::laimxfr
- real *8, dimension(:), allocatable parm::laiday
- real *8, dimension(:), allocatable parm::chlap
- real *8, dimension(:), allocatable parm::pnd_psed
- real *8, dimension(:), allocatable parm::wet_psed
- real *8, dimension(:), allocatable parm::seccip
- real *8, dimension(:), allocatable parm::plantn
- real *8, dimension(:), allocatable parm::plt_et
- real *8, dimension(:), allocatable parm::plt_pet
- real *8, dimension(:), allocatable parm::plantp
- real *8, dimension(:), allocatable parm::bio_aams
- real *8, dimension(:), allocatable parm::bio_aamx
- real *8, dimension(:), allocatable parm::lai_yrmx
- real *8, dimension(:), allocatable parm::dormhr
- real *8, dimension(:), allocatable parm::lat_pst
- real *8, dimension(:), allocatable parm::orig_snohru
- real *8, dimension(:), allocatable parm::orig_potvol
- real *8, dimension(:), allocatable parm::fld fr
- real *8, dimension(:), allocatable parm::orig_alai
- real *8, dimension(:), allocatable parm::orig_bioms
- real *8, dimension(:), allocatable parm::pltfr_n
- real *8, dimension(:), allocatable parm::orig_phuacc
- real *8, dimension(:), allocatable parm::orig_sumix
- real *8, dimension(:), allocatable parm::pltfr_p
- real *8, dimension(:), allocatable parm::orig_phu
- real *8, dimension(:), allocatable parm::phu_plt
- real *8, dimension(:), allocatable parm::orig_shallst
- real *8, dimension(:), allocatable parm::orig_deepst
- real *8, dimension(:), allocatable parm::orig_pndvol
- real *8, dimension(:), allocatable parm::orig_pndsed
- real *8, dimension(:), allocatable parm::rip_fr
- real *8, dimension(:), allocatable parm::orig_pndno3

- real *8, dimension(:), allocatable parm::orig pndsolp
- real *8, dimension(:), allocatable parm::orig pndorgn
- real *8, dimension(:), allocatable parm::orig_pndorgp
- real *8, dimension(:), allocatable parm::orig wetvol
- real *8, dimension(:), allocatable parm::orig_wetsed
- real *8, dimension(:), allocatable parm::orig_wetno3
- real *8, dimension(:), allocatable parm::orig_wetsolp
- real *8, dimension(:), allocatable parm::orig_wetorgn
- real *8, dimension(:), allocatable parm::orig_wetorgp
- real *8, dimension(:), allocatable parm::orig_solcov
- real *8, dimension(:), allocatable parm::orig_solsw
- real *8, dimension(:), allocatable parm::orig_potno3
- real *8, dimension(:), allocatable parm::orig_potsed
- real *8, dimension(:), allocatable parm::wtab
- real *8, dimension(:), allocatable parm::wtab_mn
- real *8, dimension(:), allocatable parm::wtab_mx
- real *8, dimension(:), allocatable parm::shallst_n
- real *8, dimension(:), allocatable parm::gw nloss
- real *8, dimension(:), allocatable parm::rchrg_n
- real *8, dimension(:), allocatable parm::det san
- real *8, dimension(:), allocatable parm::det_sil
- real *8, dimension(:), allocatable parm::det_cla
- real *8, dimension(:), allocatable parm::det sag
- real *8, dimension(:), allocatable parm::det lag
- real *8, dimension(:), allocatable parm::tnylda
- real *8, dimension(:), allocatable parm::afrt_surface
- real *8 parm::frt surface
- real *8, dimension(:), allocatable parm::auto nyr
- real *8. dimension(:), allocatable parm::auto napp
- real *8, dimension(:), allocatable parm::manure kg
- real *8, dimension(:), allocatable parm::auto_nstrs
- real *8, dimension(:,:), allocatable parm::rcn_mo
- real *8, dimension(:,:), allocatable parm::rammo_mo
- real *8, dimension(:,:), allocatable parm::drydep_no3_mo
- real *8, dimension(:,:), allocatable parm::drydep_nh4_mo
- real *8, dimension(:), allocatable parm::rcn_d
- real *8, dimension(:), allocatable parm::rammo_d
- real *8, dimension(:), allocatable parm::drydep_no3_d
- real *8, dimension(:), allocatable parm::drydep_nh4_d
- real *8, dimension(:,:), allocatable parm::yldn
- real *8, dimension(:,:), allocatable parm::gwati
- real *8, dimension(:,:), allocatable parm::gwatn
- real *8, dimension(:,:), allocatable parm::gwatl
- real *8, dimension(:,:), allocatable parm::gwatw
- real *8, dimension(:,:), allocatable parm::gwatd
- real *8, dimension(:,:), allocatable parm::gwatveg
- real *8, dimension(:,:), allocatable parm::gwata
- real *8, dimension(:,:), allocatable parm::gwats
- real *8, dimension(:,:), allocatable parm::gwatspcon
- real *8, dimension(:,:), allocatable parm::rfqeo_30d
- real *8, dimension(:,:), allocatable parm::eo 30d
- real *8, dimension(:,:), allocatable parm::wgncur
- real *8, dimension(:,:), allocatable parm::wgnold
- real *8, dimension(:,:), allocatable parm::wrt
- real *8, dimension(:,:), allocatable parm::psetlp

real *8, dimension(:,:), allocatable parm::zdb real *8, dimension(:,:), allocatable parm::pst_surq real *8, dimension(:,:), allocatable parm::pst_enr real *8, dimension(:,:), allocatable parm::plt pst real *8, dimension(:,:), allocatable parm::pst sed real *8, dimension(:,:), allocatable parm::psetlw real *8, dimension(:,:), allocatable parm::pcpband real *8, dimension(:,:), allocatable parm::wupnd real *8, dimension(:.:), allocatable parm::tavband real *8, dimension(:,:), allocatable parm::phi real *8, dimension(:,:), allocatable parm::wat phi real *8, dimension(:,:), allocatable parm::snoeb initial snow water content in elevation band (mm H2O) real *8, dimension(:,:), allocatable parm::wushal real *8, dimension(:,:), allocatable parm::wudeep real *8, dimension(:,:), allocatable parm::tmnband real *8, dimension(:,:), allocatable parm::nsetlw real *8, dimension(:,:), allocatable parm::snotmpeb real *8, dimension(:,:), allocatable parm::bss real *8, dimension(:,:), allocatable parm::surf_bs real *8, dimension(:,:), allocatable parm::tmxband real *8, dimension(:,:), allocatable parm::nsetlp real *8, dimension(:,:), allocatable parm::rainsub real *8, dimension(:,:), allocatable parm::frad real *8, dimension(:), allocatable parm::rstpbsb real *8, dimension(:,:), allocatable parm::orig snoeb real *8, dimension(:,:), allocatable parm::orig pltpst real *8, dimension(:,:), allocatable parm::terr_p real *8, dimension(:,:), allocatable parm::terr_cn real *8, dimension(:,:), allocatable parm::terr sl real *8, dimension(:,:), allocatable parm::drain d real *8, dimension(:,:), allocatable parm::drain_t real *8, dimension(:,:), allocatable parm::drain_g real *8, dimension(:,:), allocatable parm::drain idep real *8, dimension(:.:), allocatable parm::cont cn real *8, dimension(:,:), allocatable parm::cont_p real *8, dimension(:,:), allocatable parm::filt w real *8, dimension(:,:), allocatable parm::strip_n real *8, dimension(:,:), allocatable parm::strip_cn real *8, dimension(:,:), allocatable parm::strip c real *8, dimension(:,:), allocatable parm::strip_p real *8, dimension(:,:), allocatable parm::fire_cn real *8, dimension(:,:), allocatable parm::cropno_upd real *8, dimension(:,:), allocatable parm::hi_upd real *8, dimension(:,:), allocatable parm::laimx_upd real *8, dimension(:,:,:), allocatable parm::pst lag real *8, dimension(:,::), allocatable parm::phug integer, dimension(:), allocatable parm::nrelease integer, dimension(:), allocatable parm::swtrg integer, dimension(:), allocatable parm::hrupest integer, dimension(:), allocatable parm::nro integer, dimension(:), allocatable parm::nrot

integer, dimension(:), allocatable parm::nfert
integer, dimension(:), allocatable parm::igro

- integer, dimension(:), allocatable parm::nair
- integer, dimension(:), allocatable parm::ipnd1
- integer, dimension(:), allocatable parm::ipnd2
- · integer, dimension(:), allocatable parm::nirr
- integer, dimension(:), allocatable parm::iflod1
- integer, dimension(:), allocatable parm::iflod2
- · integer, dimension(:), allocatable parm::ndtarg
- integer, dimension(:), allocatable parm::iafrttyp
- integer, dimension(:), allocatable parm::nstress
- integer, dimension(:), allocatable parm::igrotree
- integer, dimension(:), allocatable parm::grz_days
- integer, dimension(:), allocatable parm::nmgt
- integer, dimension(:), allocatable parm::icr
- integer, dimension(:), allocatable parm::ncut
- integer, dimension(:), allocatable parm::nsweep
- integer, dimension(:), allocatable parm::nafert
- integer, dimension(:), allocatable parm::irn
- integer, dimension(:), allocatable parm::irrno
- integer, dimension(:), allocatable parm::sol_nly
- integer, dimension(:), allocatable parm::npcp
- · integer, dimension(:), allocatable parm::igrz
- integer, dimension(:), allocatable parm::ndeat
- integer, dimension(:), allocatable parm::ngr
- · integer, dimension(:), allocatable parm::ncf
- integer, dimension(:), allocatable parm::hru_sub

subbasin in which HRU is located (none)

- integer, dimension(:), allocatable parm::idorm
- integer, dimension(:), allocatable parm::urblu
- integer, dimension(:), allocatable parm::ldrain
- integer, dimension(:), allocatable parm::hru_seq
- integer, dimension(:), allocatable parm::iurban
- integer, dimension(:), allocatable parm::iday_fert
- integer, dimension(:), allocatable parm::icfrt
- integer, dimension(:), allocatable parm::ifld

number of HRU (in subbasin) that is a floodplain (none)

integer, dimension(:), allocatable parm::irip

number of HRU (in subbasin) that is a riparian zone (none)

- integer, dimension(:), allocatable parm::ndcfrt
- integer, dimension(:), allocatable parm::hrugis
- integer, dimension(:), allocatable parm::orig_igro
- · integer, dimension(:), allocatable parm::ntil
- integer, dimension(:), allocatable parm::irrsc
- integer, dimension(:), allocatable parm::iwatable
- integer, dimension(:), allocatable parm::curyr_mat
- integer, dimension(:), allocatable parm::ncpest
- integer, dimension(:), allocatable parm::icpst
- integer, dimension(:), allocatable parm::ndcpst
- integer, dimension(:), allocatable parm::iday_pest
- integer, dimension(:), allocatable parm::irr flag
- integer, dimension(:), allocatable parm::irra flag
- integer, dimension(:,:), allocatable parm::rndseed

random number generator seed. The seeds in the array are used to generate random numbers for the following (1) wet/dry day probability (2) solar radiation (3) precipitation (4) USLE rainfall erosion index (5) wind speed (6) 0.5 hr rainfall fraction (7) relative humidity (8) maximum temperature (9) minimum temperature (10) generate new random numbers • integer, dimension(:,:), allocatable parm::iterr • integer, dimension(:,:), allocatable parm::iyterr • integer, dimension(:,:), allocatable parm::itdrain • integer, dimension(:,:), allocatable parm::iydrain • integer, dimension(:,:), allocatable parm::ncrops integer, dimension(:), allocatable parm::manure_id • integer, dimension(:,:), allocatable parm::mgt_sdr integer, dimension(:,:), allocatable parm::idplrot • integer, dimension(:,:), allocatable parm::icont integer, dimension(:,:), allocatable parm::iycont • integer, dimension(:,:), allocatable parm::ifilt • integer, dimension(:,:), allocatable parm::iyfilt integer, dimension(:,:), allocatable parm::istrip • integer, dimension(:,:), allocatable parm::iystrip integer, dimension(:,:), allocatable parm::iopday integer, dimension(:,:), allocatable parm::iopyr integer, dimension(:,:), allocatable parm::mgt_ops real *8, dimension(:), allocatable parm::wshd_pstap real *8, dimension(:), allocatable parm::wshd_pstdg integer, dimension(12) parm::ndmo • integer, dimension(:), allocatable parm::npno • integer, dimension(:), allocatable parm::mcrhru • character(len=13), dimension(18) parm::rfile rainfall file names (.pcp) character(len=13), dimension(18) parm::tfile temperature file names (.tmp) • character(len=4), dimension(1000) parm::urbname name of urban land use character(len=1), dimension(:), allocatable parm::hydgrp character(len=1), dimension(:), allocatable parm::kirr character(len=16), dimension(:), allocatable parm::snam character(len=17), dimension(300) parm::pname name of pesticide/toxin adding gtile to output.hru write 3/2/2010 gsm increased heds(70) to heds(71) character(len=13), dimension(79) parm::heds character(len=13), dimension(24) parm::hedb

character(len=13), dimension(46) parm::hedr

character(len=13), dimension(41) parm::hedrsv

character(len=13), dimension(40) parm::hedwtr

character(len=4), dimension(60) parm::title

description lines in file.cio (1st 3 lines)

character(len=4), dimension(5000) parm::cpnm

four character code to represent crop name

character(len=17), dimension(50) parm::fname

```
real *8, dimension(:,:,:), allocatable parm::flomon
real *8, dimension(:,::), allocatable parm::solpstmon
real *8, dimension(:,:,:), allocatable parm::srbpstmon
real *8, dimension(:,:,:), allocatable parm::sedmon
real *8, dimension(:,:,:), allocatable parm::orgnmon
real *8, dimension(:,:,:), allocatable parm::orgpmon
real *8, dimension(:,:,:), allocatable parm::no3mon
real *8, dimension(:,:,:), allocatable parm::minpmon
real *8, dimension(:,:::), allocatable parm::nh3mon
real *8, dimension(:,:::), allocatable parm::no2mon
real *8, dimension(:,::), allocatable parm::bactpmon
real *8, dimension(:,:,:), allocatable parm::bactlpmon
real *8, dimension(:,:,:), allocatable parm::cmtl1mon
real *8, dimension(:,:,:), allocatable parm::cmtl2mon
real *8, dimension(:,:,:), allocatable parm::cmtl3mon
real *8, dimension(:,::), allocatable parm::chlamon
real *8, dimension(:,:,:), allocatable parm::disoxmon
real *8, dimension(:,:::), allocatable parm::cbodmon
real *8, dimension(:,:), allocatable parm::floyr
real *8, dimension(:,:), allocatable parm::sedyr
real *8, dimension(:,:), allocatable parm::orgnyr
real *8. dimension(:::), allocatable parm::orgpvr
real *8, dimension(:,:), allocatable parm::no3yr
real *8, dimension(:,:), allocatable parm::minpyr
real *8, dimension(:,:), allocatable parm::nh3yr
real *8, dimension(:,:), allocatable parm::no2yr
real *8, dimension(:,:), allocatable parm::bactpyr
real *8, dimension(:,:), allocatable parm::bactlpyr
real *8. dimension(:.:), allocatable parm::cmtl1vr
real *8, dimension(:,:), allocatable parm::cmtl2yr
real *8, dimension(:,:), allocatable parm::cmtl3yr
real *8, dimension(:,:), allocatable parm::chlayr
real *8, dimension(:,:), allocatable parm::disoxyr
real *8, dimension(:,:), allocatable parm::cbodyr
real *8, dimension(:,:), allocatable parm::solpstyr
real *8, dimension(:.:), allocatable parm::srbpstvr
real *8, dimension(:,:), allocatable parm::sol_mc
real *8, dimension(:,:), allocatable parm::sol_mn
real *8, dimension(:,:), allocatable parm::sol_mp
real *8, dimension(:), allocatable parm::flocnst
real *8, dimension(:), allocatable parm::sedcnst
real *8, dimension(:), allocatable parm::orgncnst
real *8, dimension(:), allocatable parm::orgpcnst
real *8, dimension(:), allocatable parm::no3cnst
real *8, dimension(:), allocatable parm::minpcnst
real *8, dimension(:), allocatable parm::nh3cnst
real *8. dimension(:), allocatable parm::no2cnst
real *8, dimension(:), allocatable parm::bactpcnst
real *8, dimension(:), allocatable parm::cmtl1cnst
real *8, dimension(:), allocatable parm::cmtl2cnst
real *8, dimension(:), allocatable parm::bactlpcnst
real *8, dimension(:), allocatable parm::cmtl3cnst
real *8, dimension(:), allocatable parm::chlacnst
real *8, dimension(:), allocatable parm::disoxcnst
real *8, dimension(:), allocatable parm::cbodcnst
```

- real *8, dimension(:), allocatable parm::solpstcnst real *8, dimension(:), allocatable parm::srbpstcnst integer parm::nstep max number of time steps per day integer parm::idt length of time step used to report precipitation data for sub-daily modeling (minutes) real *8, dimension(:), allocatable parm::hrtwtr • real *8, dimension(:), allocatable parm::hhstor real *8, dimension(:), allocatable parm::hdepth real *8, dimension(:), allocatable parm::hsdti real *8, dimension(:), allocatable parm::hrchwtr real *8, dimension(:), allocatable parm::halgae real *8, dimension(:), allocatable parm::horgn real *8, dimension(:), allocatable parm::hnh4 real *8, dimension(:), allocatable parm::hno2 real *8, dimension(:), allocatable parm::hno3 real *8, dimension(:), allocatable parm::horgp • real *8, dimension(:), allocatable parm::hsolp real *8, dimension(:), allocatable parm::hbod real *8, dimension(:), allocatable parm::hdisox real *8, dimension(:), allocatable parm::hchla real *8, dimension(:), allocatable parm::hsedyld real *8, dimension(:), allocatable parm::hsedst real *8, dimension(:), allocatable parm::hharea real *8, dimension(:), allocatable parm::hsolpst real *8, dimension(:), allocatable parm::hsorpst real *8, dimension(:), allocatable parm::hhqday real *8, dimension(:), allocatable parm::precipdt real *8, dimension(:), allocatable parm::hhtime real *8, dimension(:), allocatable parm::hbactp real *8, dimension(:), allocatable parm::hbactlp integer, dimension(10) parm::ivar_orig real *8, dimension(10) parm::rvar_orig integer parm::nsave number of save commands in .fig file integer parm::nauto integer parm::iatmodep real *8, dimension(:), allocatable parm::wattemp real *8, dimension(:), allocatable parm::lkpst_mass real *8, dimension(:), allocatable parm::lkspst_mass real *8, dimension(:), allocatable parm::vel chan real *8, dimension(:), allocatable parm::vfscon real *8, dimension(:), allocatable parm::vfsratio real *8, dimension(:), allocatable parm::vfsch real *8, dimension(:), allocatable parm::vfsi real *8, dimension(:,:), allocatable parm::filter i • real *8, dimension(:,:), allocatable parm::filter_ratio real *8, dimension(:,:), allocatable parm::filter_con real *8, dimension(:,:), allocatable parm::filter_ch real *8, dimension(:,:), allocatable parm::sol_n integer parm::cswat
 - = 0 Static soil carbon (old mineralization routines) = 1 C-FARM one carbon pool model
 - = 2 Century model

- real *8, dimension(:,:), allocatable parm::sol_bdp
- real *8, dimension(:,:), allocatable parm::tillagef
- real *8, dimension(:), allocatable parm::rtfr
- real *8, dimension(:), allocatable parm::stsol_rd
- · integer parm::urban_flag
- integer parm::dorm_flag
- real *8 parm::bf_flg
- real *8 parm::iabstr
- real *8, dimension(:), allocatable parm::ubnrunoff
- real *8, dimension(:), allocatable parm::ubntss
- real *8, dimension(:,:), allocatable parm::sub_ubnrunoff
- real *8, dimension(:,:), allocatable parm::sub ubntss
- real *8, dimension(:,:), allocatable parm::ovrlnd_dt
- real *8, dimension(:,:,:), allocatable parm::hhsurf_bs
- integer parm::iuh

unit hydrograph method: 1=triangular UH; 2=gamma funtion UH;

integer parm::sed_ch

channel routing for HOURLY; 0=Bagnold; 2=Brownlie; 3=Yang;

real *8 parm::eros expo

an exponent in the overland flow erosion equation ranges 1.5-3.0

real *8 parm::eros_spl

coefficient of splash erosion varing 0.9-3.1

real *8 parm::rill_mult

Multiplier to USLE_K for soil susceptible to rill erosion, range 0.5-2.0.

- real *8 parm::sedprev
- real *8 parm::c factor
- real *8 parm::ch_d50

median particle diameter of channel bed (mm)

real *8 parm::sig g

geometric standard deviation of particle sizes for the main channel. Mean air temperature at which precipitation is equally likely to be rain as snow/freezing rain.

real *8 parm::uhalpha

alpha coefficient for estimating unit hydrograph using a gamma function (*.bsn)

- real *8 parm::abstinit
- real *8 parm::abstmax
- real *8, dimension(:,:), allocatable parm::hhsedy
- real *8, dimension(:,:), allocatable parm::sub_subp_dt
- real *8, dimension(:,:), allocatable parm::sub hhsedy
- real *8, dimension(:,:), allocatable parm::sub_atmp
- real *8, dimension(:), allocatable parm::rhy
- real *8, dimension(:), allocatable parm::init abstrc
- real *8, dimension(:), allocatable parm::dratio
- real *8, dimension(:), allocatable parm::hrtevp
- real *8, dimension(:), allocatable parm::hrttlc
- real *8, dimension(:,:,:), allocatable parm::rchhr
- real *8, dimension(:), allocatable **parm::hhresflwi**
- real *8, dimension(:), allocatable parm::hhresflwo
- real *8, dimension(:), allocatable parm::hhressedi
 real *8, dimension(:), allocatable parm::hhressedo
- character(len=4), dimension(:), allocatable parm::lu_nodrain
- integer, dimension(:), allocatable parm::bmpdrain
- real *8, dimension(:), allocatable parm::sub cn2
- real *8, dimension(:), allocatable parm::sub_ha_urb

- real *8, dimension(:), allocatable parm::bmp_recharge
 real *8, dimension(:), allocatable parm::sub_ha_imp
 real *8, dimension(:), allocatable parm::subdr_km
- real *8, dimension(:), allocatable parm::subdr_ickm
- real *8, dimension(:,:), allocatable parm::sf_im
- real *8, dimension(:,:), allocatable parm::sf_iy
- real *8, dimension(:,:), allocatable parm::sp_sa
- real *8, dimension(:,:), allocatable parm::sp_pvol
- real *8, dimension(:,:), allocatable parm::sp pd
- real *8, dimension(:,:), allocatable parm::sp_sedi
- real *8, dimension(:,:), allocatable parm::sp_sede
- real *8, dimension(:,:), allocatable parm::ft_sa
- real *8, dimension(:,:), allocatable parm::ft_fsa
- real *8, dimension(:,:), allocatable parm::ft_dep
- real *8, dimension(:,:), allocatable parm::ft_h
- real *8, dimension(:,:), allocatable parm::ft_pd
- real *8, dimension(:,:), allocatable parm::ft_k
- real *8, dimension(:,:), allocatable parm::ft dp
- real *8, dimension(:,:), allocatable parm::ft_dc
- real *8, dimension(:,:), allocatable parm::ft por
- real *8, dimension(:,:), allocatable parm::tss_den
- real *8, dimension(:,:), allocatable parm::ft alp
- real *8, dimension(:,:), allocatable parm::sf fr
- real *8, dimension(:,:), allocatable parm::sp_qi
- real *8, dimension(:,:), allocatable parm::sp_k
- real *8, dimension(:,:), allocatable parm::ft_qpnd
- real *8, dimension(:,:), allocatable parm::sp_dp
- real *8, dimension(:,:), allocatable parm::ft_qsw
- real *8, dimension(:,:), allocatable parm::ft_qin
- real *8, dimension(:,:), allocatable parm::ft_qout
- real *8, dimension(:,:), allocatable parm::ft_sedpnd
- real *8, dimension(:,:), allocatable parm::sp_bpw
- real *8, dimension(:,:), allocatable parm::ft_bpw
- real *8, dimension(:,:), allocatable parm::ft_sed_cumul
- real *8, dimension(:,:), allocatable parm::sp_sed_cumul
- integer, dimension(:), allocatable parm::num_sf
- integer, dimension(:,:), allocatable parm::sf_typ
- integer, dimension(:,:), allocatable parm::sf_dim
- integer, dimension(:,:), allocatable parm::ft_qfg
- integer, dimension(:,:), allocatable parm::sp_qfg
- integer, dimension(:,:), allocatable parm::sf ptp
- integer, dimension(:,:), allocatable parm::ft_fc
- real *8 parm::sfsedmean
- real *8 parm::sfsedstdev
- integer, dimension(:), allocatable parm::dtp subnum
- integer, dimension(:), allocatable parm::dtp imo
- integer, dimension(:), allocatable parm::dtp iyr
- integer, dimension(:), allocatable parm::dtp numweir
- integer, dimension(:), allocatable parm::dtp_numstage
- integer, dimension(:), allocatable parm::dtp_stagdis
- integer, dimension(:), allocatable parm::dtp_reltype
- integer, dimension(:), allocatable parm::dtp onoff
- real *8, dimension(:), allocatable parm::cf
- real *8, dimension(:), allocatable parm::cfh
- real *8, dimension(:), allocatable parm::cfdec

- real *8, dimension(:), allocatable parm::lat orgn
- real *8, dimension(:), allocatable parm::lat_orgp
- integer, dimension(:,:), allocatable parm::dtp_weirtype
- integer, dimension(:,:), allocatable parm::dtp_weirdim
- real *8, dimension(:), allocatable parm::dtp_evrsv
- real *8, dimension(:), allocatable parm::dtp_inflvol
- real *8, dimension(:), allocatable parm::dtp totwrwid
- real *8, dimension(:), allocatable parm::dtp_lwratio
- real *8, dimension(:), allocatable parm::dtp_wdep
- real *8, dimension(:), allocatable parm::dtp_totdep
- real *8, dimension(:), allocatable parm::dtp_watdepact
- real *8, dimension(:), allocatable parm::dtp_outflow
- real *8, dimension(:), allocatable parm::dtp_totrel
- real *8, dimension(:), allocatable parm::dtp_backoff
- real *8, dimension(:), allocatable parm::dtp_seep_sa
- real *8, dimension(:), allocatable parm::dtp evap sa
- real *8, dimension(:), allocatable parm::dtp_pet_day
- real *8, dimension(:), allocatable parm::dtp pcpvol
- real *8, dimension(:), allocatable parm::dtp_seepvol
- real *8, dimension(:), allocatable parm::dtp evapvol
- real *8, dimension(:), allocatable parm::dtp_flowin
- real *8, dimension(:), allocatable parm::dtp_backup_length
- real *8, dimension(:), allocatable parm::dtp intcept
- real *8, dimension(:), allocatable parm::dtp_expont
- real *8, dimension(:), allocatable parm::dtp coef1
- real *8, dimension(:), allocatable parm::dtp_coef2
- real *8, dimension(:), allocatable parm::dtp coef3
- real *8, dimension(:), allocatable parm::dtp dummy1
- real *8. dimension(:), allocatable parm::dtp_dummv2
- real *8, dimension(:), allocatable parm::dtp dummy3
- real *8, dimension(:), allocatable parm::dtp ivol
- real *8, dimension(:), allocatable parm::dtp_ised
- integer, dimension(:,:), allocatable parm::so_res_flag
- integer, dimension(:,:), allocatable parm::ro_bmp_flag
- real *8, dimension(:,:), allocatable parm::sol_watp
- real *8, dimension(:,:), allocatable parm::sol_solp_pre
- real *8, dimension(:,:), allocatable parm::psp_store
- real *8, dimension(:,:), allocatable parm::ssp_store
- real *8, dimension(:,:), allocatable parm::so_res
 real *8, dimension(:,:), allocatable parm::sol cal
- real *8, dimension(:,:), allocatable parm::sol ph
- integer parm::sol p model
- integer, dimension(:,:), allocatable parm::a_days
- integer, dimension(:,:), allocatable parm::b_days
- real *8, dimension(:), allocatable parm::harv min
- real *8, dimension(:), allocatable parm::fstap
- real *8, dimension(:), allocatable parm::min res
- real *8, dimension(:,:), allocatable parm::ro bmp flo
- real *8, dimension(:,:), allocatable parm::ro bmp sed
- real *8, dimension(:,:), allocatable parm::ro_bmp_bac
- real *8, dimension(:,:), allocatable parm::ro bmp pp
- real *8, dimension(:,:), allocatable parm::ro_bmp_sp
- real *8, dimension(:,:), allocatable parm::ro bmp pn
- real *8, dimension(:,:), allocatable parm::ro bmp sn
- real *8, dimension(:,:), allocatable parm::ro bmp flos

- real *8, dimension(:,:), allocatable parm::ro_bmp_seds
- real *8, dimension(:,:), allocatable parm::ro bmp bacs
- real *8, dimension(:,:), allocatable parm::ro_bmp_pps
- real *8, dimension(:,:), allocatable parm::ro bmp sps
- real *8, dimension(:,:), allocatable parm::ro_bmp_pns
- real *8, dimension(:,:), allocatable parm::ro_bmp_sns
- real *8, dimension(:,:), allocatable parm::ro_bmp_flot
- real *8, dimension(:,:), allocatable parm::ro_bmp_sedt
- real *8, dimension(:,:), allocatable parm::ro bmp bact
- real *8, dimension(:,:), allocatable parm::ro bmp ppt
- real *8, dimension(:,:), allocatable parm::ro_bmp_spt
- real *8, dimension(:,:), allocatable parm::ro_bmp_pnt
- real *8, dimension(:,:), allocatable parm::ro bmp snt
- real *8, dimension(:), allocatable parm::bmp_flo
- real *8, dimension(:), allocatable parm::bmp_sed
- real *8, dimension(:), allocatable parm::bmp bac
- real *8, dimension(:), allocatable parm::bmp pp
- real *8, dimension(:), allocatable parm::bmp sp
- real *8, dimension(:), allocatable parm::bmp_pn
- real *8, dimension(:), allocatable parm::bmp sn
- real *8, dimension(:), allocatable parm::bmp_flag
- real *8, dimension(:), allocatable parm::bmp flos
- real *8, dimension(:), allocatable parm::bmp seds
- real *8, dimension(:), allocatable parm::bmp_bacs
- real *8, dimension(:), allocatable parm::bmp pps
- real *8, dimension(:), allocatable parm::bmp_sps
- real *8, dimension(:), allocatable parm::bmp pns
- real *8, dimension(:), allocatable parm::bmp sns
- real *8, dimension(:), allocatable parm::bmp flot
- real *8, dimension(:), allocatable parm::bmp sedt
- real *8, dimension(:), allocatable parm::bmp_bact
- real *8, dimension(:), allocatable parm::bmp ppt
- real *8, dimension(:), allocatable parm::bmp_spt
- real *8, dimension(:), allocatable parm::bmp_pnt
- real *8, dimension(:), allocatable parm::bmp_snt
- real *8, dimension(:,:), allocatable parm::dtp_wdratio
- real *8, dimension(:,:), allocatable parm::dtp_depweir
- real *8, dimension(:,:), allocatable parm::dtp_diaweir
- real *8, dimension(:,:), allocatable parm::dtp_retperd
- real *8, dimension(:,:), allocatable parm::dtp pcpret
- real *8, dimension(:,:), allocatable parm::dtp cdis
- real *8, dimension(:,:), allocatable parm::dtp_flowrate
- real *8, dimension(:,:), allocatable parm::dtp_wrwid
- real *8, dimension(:,:), allocatable parm::dtp_addon
- real *8, dimension(:), allocatable parm::ri subkm
- real *8, dimension(:), allocatable parm::ri_totpvol
- real *8, dimension(:), allocatable parm::irmmdt
- real *8, dimension(:,:), allocatable parm::ri sed
- real *8, dimension(:,:), allocatable parm::ri_fr
- real *8, dimension(:,:), allocatable parm::ri_dim
 real *8, dimension(:,:), allocatable parm::ri_im
- real *8, dimension(:,:), allocatable parm::ri iv
- real *8, dimension(:,:), allocatable parm::ri_sa
- real *8, dimension(:,:), allocatable parm::ri vol
- real *8, dimension(:,:), allocatable parm::ri_qi

- real *8, dimension(:,:), allocatable parm::ri_k
- real *8, dimension(:,:), allocatable parm::ri_dd
- real *8, dimension(:,:), allocatable parm::ri_evrsv
- real *8, dimension(:,:), allocatable parm::ri dep
- real *8, dimension(:,:), allocatable parm::ri_ndt
- real *8, dimension(:,:), allocatable parm::ri_pmpvol
- real *8, dimension(:,:), allocatable parm::ri_sed_cumul
- real *8, dimension(:,:), allocatable parm::hrnopcp
- real *8, dimension(:,:), allocatable parm::ri_qloss
- real *8, dimension(:,:), allocatable parm::ri_pumpv
- real *8, dimension(:,:), allocatable parm::ri_sedi
- character(len=4), dimension(:,:), allocatable parm::ri_nirr
- integer, dimension(:), allocatable parm::num_ri
- integer, dimension(:), allocatable parm::ri_luflg
- integer, dimension(:), allocatable parm::num_noirr
- integer, dimension(:), allocatable parm::wtp_subnum
- integer, dimension(:), allocatable parm::wtp_onoff
- integer, dimension(:), allocatable parm::wtp imo
- integer, dimension(:), allocatable parm::wtp_iyr
- integer, dimension(:), allocatable parm::wtp_dim
- integer, dimension(:), allocatable parm::wtp_stagdis
- integer, dimension(:), allocatable parm::wtp sdtype
- real *8, dimension(:), allocatable parm::wtp pvol
- real *8, dimension(:), allocatable parm::wtp_pdepth
- real *8, dimension(:), allocatable parm::wtp_sdslope
- real *8, dimension(:), allocatable parm::wtp_lenwdth
- real *8, dimension(:), allocatable parm::wtp_extdepth
- real *8, dimension(:), allocatable parm::wtp_hydeff
- real *8, dimension(:), allocatable parm::wtp_evrsv
- real *8, dimension(:), allocatable parm::wtp_sdintc
- real *8, dimension(:), allocatable parm::wtp_sdexp
- real *8, dimension(:), allocatable parm::wtp_sdc1
- real *8, dimension(:), allocatable parm::wtp_sdc2
- real *8, dimension(:), allocatable parm::wtp_sdc3
 real *8, dimension(:), allocatable parm::wtp_pdia
- real *8, dimension(:), allocatable parm::wtp_plen
- real *8, dimension(:), allocatable parm::wtp_pmann
- real *8, dimension(:), allocatable parm::wtp_ploss
- real *8, dimension(:), allocatable parm::wtp_k
- real *8, dimension(:), allocatable parm::wtp dp
- real *8, dimension(:), allocatable parm::wtp sedi
- real *8, dimension(:), allocatable parm::wtp_sede
- real *8, dimension(:), allocatable parm::wtp_qi
- real *8 parm::bio_init
- real *8 parm::lai_init
- real *8 parm::cnop
- real *8 parm::hi_ovr
- real *8 parm::harveff
- real *8 parm::frac harvk
- real *8 parm::lid_vgcl
- real *8 parm::lid_vgcm
- real *8 parm::lid_qsurf_total
- real *8 parm::lid farea sum
- real *8, dimension(:,:), allocatable parm::lid cuminf last
- real *8, dimension(:,:), allocatable parm::lid sw last

real *8, dimension(:,:), allocatable parm::interval last real *8, dimension(:,:), allocatable parm::lid f last real *8, dimension(:,:), allocatable parm::lid_cumr_last • real *8, dimension(:,:), allocatable parm::lid str last real *8, dimension(:,:), allocatable parm::lid farea real *8, dimension(:,:), allocatable parm::lid qsurf real *8, dimension(:,:), allocatable parm::lid sw add real *8, dimension(:,:), allocatable parm::lid_cumqperc_last real *8, dimension(:,:), allocatable parm::lid cumirr last real *8, dimension(:,:), allocatable parm::lid excum last integer, dimension(:,:), allocatable parm::gr onoff integer, dimension(:,:), allocatable parm::gr_imo integer, dimension(:,:), allocatable parm::gr_iyr real *8, dimension(:,:), allocatable parm::gr_farea real *8, dimension(:,:), allocatable parm::gr_solop real *8, dimension(:.:), allocatable parm::gr etcoef real *8, dimension(:,:), allocatable parm::gr_fc real *8, dimension(:.:), allocatable parm::gr wp real *8, dimension(:,:), allocatable parm::gr_ksat real *8, dimension(:,:), allocatable parm::gr por real *8, dimension(:,:), allocatable parm::gr_hydeff real *8, dimension(:,:), allocatable parm::gr soldpt real *8, dimension(:,:), allocatable parm::gr dummy1 real *8, dimension(:,:), allocatable parm::gr_dummy2 real *8, dimension(:,:), allocatable parm::gr dummy3 real *8, dimension(:,:), allocatable parm::gr_dummy4 real *8, dimension(:,:), allocatable parm::gr dummy5 integer, dimension(:,:), allocatable parm::rg onoff integer, dimension(:,:), allocatable parm::rg imo integer, dimension(:,:), allocatable parm::rg iyr real *8, dimension(:,:), allocatable parm::rg_farea real *8, dimension(:,:), allocatable parm::rg_solop real *8, dimension(:,:), allocatable parm::rg_etcoef real *8, dimension(:,:), allocatable parm::rg fc real *8, dimension(:,:), allocatable parm::rg_wp real *8, dimension(:,:), allocatable parm::rg ksat real *8, dimension(:,:), allocatable parm::rg por real *8, dimension(:,:), allocatable parm::rg_hydeff real *8, dimension(:,:), allocatable parm::rg_soldpt real *8, dimension(:,:), allocatable parm::rg_dimop real *8, dimension(:,:), allocatable parm::rg sarea real *8, dimension(:,:), allocatable parm::rg_vol real *8, dimension(:,:), allocatable parm::rg sth real *8, dimension(:,:), allocatable parm::rg_sdia real *8, dimension(:,:), allocatable parm::rg bdia real *8, dimension(:,:), allocatable parm::rg sts real *8, dimension(:,:), allocatable parm::rg orifice real *8, dimension(:,:), allocatable parm::rg oheight real *8, dimension(:,:), allocatable parm::rg odia real *8, dimension(:,:), allocatable parm::rg_dummy1 real *8, dimension(:,:), allocatable parm::rg_dummy2 real *8, dimension(:.:), allocatable parm::rg dummy3 real *8, dimension(:,:), allocatable parm::rg dummy4 real *8, dimension(:.:), allocatable parm::rg dummy5

integer, dimension(:,:), allocatable parm::cs onoff

- integer, dimension(:,:), allocatable parm::cs_imo
- integer, dimension(:,:), allocatable parm::cs iyr
- integer, dimension(:,:), allocatable parm::cs_grcon
- real *8, dimension(:,:), allocatable parm::cs_farea
- real *8, dimension(:,:), allocatable parm::cs_vol
- real *8, dimension(:,:), allocatable parm::cs_rdepth
- real *8, dimension(:,:), allocatable parm::cs_dummy1
- real *8, dimension(:,:), allocatable parm::cs_dummy2
- real *8, dimension(:,:), allocatable parm::cs_dummy3
- real *8, dimension(:,:), allocatable parm::cs_dummy4
- real *8, dimension(:.:), allocatable parm::cs dummy5
- integer, dimension(:,:), allocatable parm::pv_onoff
- integer, dimension(:,:), allocatable parm::pv_imo
- integer, dimension(:,:), allocatable parm::pv_iyr
- integer, dimension(:,:), allocatable parm::pv_solop
- real *8, dimension(:,:), allocatable parm::pv grvdep
- real *8, dimension(:,:), allocatable parm::pv_grvpor
- real *8, dimension(:.:), allocatable parm::pv farea
- real *8, dimension(:,:), allocatable parm::pv_drcoef
- real *8, dimension(:,:), allocatable parm::pv fc
- real *8, dimension(:,:), allocatable parm::pv_wp
- real *8, dimension(:,:), allocatable parm::pv_ksat
- real *8, dimension(:,:), allocatable parm::pv por
- real *8, dimension(:,:), allocatable parm::pv hydeff
- real *8, dimension(:,:), allocatable parm::pv soldpt
- real *8, dimension(:,:), allocatable parm::pv_dummy1
- real *8, dimension(:,:), allocatable parm::pv dummy2
- real *8, dimension(:,:), allocatable parm::pv_dummy3
- real *8. dimension(:.:), allocatable parm::pv dummv4
- real *8, dimension(:,:), allocatable parm::pv dummy5
- integer, dimension(:,:), allocatable parm::lid_onoff
- real *8, dimension(:,:), allocatable parm::sol_bmc
- real *8, dimension(:,:), allocatable parm::sol_bmn
- real *8, dimension(:,:), allocatable parm::sol_hsc
- real *8, dimension(:,:), allocatable parm::sol_hsn
- real *8, dimension(:,:), allocatable parm::sol_hpc
- real *8, dimension(:,:), allocatable parm::sol_hpn
- real *8, dimension(:,:), allocatable parm::sol_lm
- real *8, dimension(:,:), allocatable parm::sol_lmc
- real *8, dimension(:,:), allocatable parm::sol Imn
- real *8, dimension(:,:), allocatable parm::sol Is
- real *8, dimension(:,:), allocatable parm::sol_lsl
- real *8, dimension(:,:), allocatable parm::sol_lsc
- real *8, dimension(:,:), allocatable parm::sol_lsn
- real *8, dimension(:,:), allocatable parm::sol rnmn
- real *8, dimension(:,:), allocatable parm::sol Islc
- real *8, dimension(:,:), allocatable parm::sol_lslnc
- real *8, dimension(:,:), allocatable parm::sol_rspc
- real *8, dimension(:,:), allocatable parm::sol woc
- real *8, dimension(:,:), allocatable parm::sol_won
- real *8, dimension(:,:), allocatable parm::sol_hp
- real *8, dimension(:,:), allocatable parm::sol_hs
- real *8, dimension(:,:), allocatable parm::sol_bm
- real *8, dimension(:,:), allocatable parm::sol_cac
- real *8, dimension(:,:), allocatable parm::sol_cec

real *8, dimension(:,:), allocatable parm::sol_percc real *8, dimension(:,:), allocatable parm::sol_latc real *8, dimension(:), allocatable parm::sedc_d real *8, dimension(:), allocatable parm::surfqc d real *8, dimension(:), allocatable parm::latc d real *8, dimension(:), allocatable parm::percc_d real *8, dimension(:), allocatable parm::foc d real *8, dimension(:), allocatable parm::nppc_d real *8, dimension(:), allocatable parm::rsdc d real *8, dimension(:), allocatable parm::grainc_d real *8, dimension(:), allocatable parm::stoverc_d real *8, dimension(:), allocatable parm::soc d real *8, dimension(:), allocatable parm::rspc_d real *8, dimension(:), allocatable parm::emitc d real *8, dimension(:), allocatable parm::sub_sedc_d real *8, dimension(:), allocatable parm::sub surfgc d real *8, dimension(:), allocatable parm::sub_latc_d real *8, dimension(:), allocatable parm::sub percc d real *8, dimension(:), allocatable parm::sub_foc_d real *8, dimension(:), allocatable parm::sub_nppc_d real *8, dimension(:), allocatable parm::sub_rsdc_d real *8, dimension(:), allocatable parm::sub_grainc_d real *8, dimension(:), allocatable parm::sub stoverc d real *8, dimension(:), allocatable parm::sub_emitc_d real *8, dimension(:), allocatable parm::sub soc d real *8, dimension(:), allocatable parm::sub_rspc_d real *8, dimension(:), allocatable parm::sedc_m real *8, dimension(:), allocatable parm::surfqc m real *8, dimension(:), allocatable parm::latc m real *8, dimension(:), allocatable parm::percc_m real *8, dimension(:), allocatable parm::foc_m real *8, dimension(:), allocatable parm::nppc_m real *8, dimension(:), allocatable parm::rsdc_m real *8, dimension(:), allocatable parm::grainc m real *8, dimension(:), allocatable parm::stoverc_m real *8, dimension(:), allocatable parm::emitc_m real *8, dimension(:), allocatable parm::soc_m real *8, dimension(:), allocatable parm::rspc_m real *8, dimension(:), allocatable parm::sedc_a real *8, dimension(:), allocatable parm::surfqc_a real *8, dimension(:), allocatable parm::latc a real *8, dimension(:), allocatable parm::percc_a real *8, dimension(:), allocatable parm::foc a real *8, dimension(:), allocatable parm::nppc_a real *8, dimension(:), allocatable parm::rsdc a real *8, dimension(:), allocatable parm::grainc a real *8, dimension(:), allocatable parm::stoverc a real *8, dimension(:), allocatable parm::emitc_a real *8, dimension(:), allocatable parm::soc_a real *8, dimension(:), allocatable parm::rspc_a integer, dimension(:), allocatable parm::tillage_switch

real *8, dimension(:), allocatable parm::tillage_depth integer, dimension(:), allocatable parm::tillage_days real *8, dimension(:), allocatable parm::tillage_factor

real *8 parm::dthy

time interval for subdaily routing

- integer, dimension(4) parm::ihx
- · integer, dimension(:), allocatable parm::nhy
- real *8, dimension(:), allocatable parm::rchx
- real *8, dimension(:), allocatable parm::rcss
- real *8, dimension(:), allocatable parm::qcap
- real *8, dimension(:), allocatable parm::chxa
- real *8, dimension(:), allocatable parm::chxp
- real *8, dimension(:,:,:), allocatable parm::qhy
- real *8 parm::ff1
- real *8 parm::ff2

7.9.1 Detailed Description

file containing the module parm

Author

modified by Javier Burguete Tolosa

7.10 readbsn.f90 File Reference

this subroutine reads data from the basin input file (.bsn). This file contains information related to processes modeled or defined at the watershed level

Functions/Subroutines

• subroutine readbsn

7.10.1 Detailed Description

this subroutine reads data from the basin input file (.bsn). This file contains information related to processes modeled or defined at the watershed level

Author

modified by Javier Burguete

7.11 readfcst.f90 File Reference

this subroutine reads the HRU forecast weather generator parameters from the .cst file

Functions/Subroutines

· subroutine readfcst

7.11.1 Detailed Description

this subroutine reads the HRU forecast weather generator parameters from the .cst file

Author

modified by Javier Burguete

7.12 readfert.f90 File Reference

Functions/Subroutines

· subroutine readfert

this subroutine reads input parameters from the fertilizer/manure (i.e. nutrient) database (fert.dat)

7.12.1 Detailed Description

file containing the subroutine readfert

Author

modified by Javier Burguete

7.13 readfig.f90 File Reference

Functions/Subroutines

· subroutine readfig

reads in the routing information from the watershed configuration input file (.fig) and calculates the number of sub-basins, reaches, and reservoirs

7.13.1 Detailed Description

file containing the subroutine readfig

Author

modified by Javier Burguete

7.14 readfile.f90 File Reference

this subroutine opens the main input and output files and reads watershed information from the file.cio

Functions/Subroutines

· subroutine readfile

7.14.1 Detailed Description

this subroutine opens the main input and output files and reads watershed information from the file.cio

Author

modified by Javier Burguete

7.15 readlup.f90 File Reference

Functions/Subroutines

· subroutine readlup

this subroutine reads data from the HRU/subbasin management input file (.mgt). This file contains data related to management practices used in the HRU/subbasin.

7.15.1 Detailed Description

file containing the subroutine readlup

Author

modified by Javier Burguete

7.16 readpest.f90 File Reference

Functions/Subroutines

· subroutine readpest

this subroutine reads parameters from the toxin/pesticide database (pest.dat)

7.16.1 Detailed Description

file containing the subroutine readpest

Author

modified by Javier Burguete

7.17 readplant.f90 File Reference

Functions/Subroutines

· subroutine readplant

this subroutine reads input parameters from the landuse/landcover database (plant.dat)

7.17.1 Detailed Description

file containing the subroutine readplant

Author

modified by Javier Burguete

7.18 readsepticbz.f90 File Reference

Functions/Subroutines

• subroutine readsepticbz

this subroutine reads data from the septic input file (.sep). This file contains information related to septic tanks modeled or defined at the watershed level

7.18.1 Detailed Description

file containing the subroutine readsepticbz

Author

modified by Javier Burguete

7.19 readtill.f90 File Reference

Functions/Subroutines

· subroutine readtill

this subroutine reads input data from tillage database (till.dat)

7.19.1 Detailed Description

file containing the subroutine readtill

Author

modified by Javier Burguete

7.20 readurban.f90 File Reference

Functions/Subroutines

· subroutine readurban

this subroutine reads input parameters from the urban database (urban.dat). Information from this database is used only if the urban buildup/washoff routines are selected for the modeling of urban areas.

7.20.1 Detailed Description

file containing the subroutine readurban

Author

modified by Javier Burguete

7.21 readwwq.f90 File Reference

this subroutine reads the watershed stream water quality input data (.wwq file) and initializes the QUAL2E variables which apply to the entire watershed

Functions/Subroutines

· subroutine readwwq

7.21.1 Detailed Description

this subroutine reads the watershed stream water quality input data (.wwq file) and initializes the QUAL2E variables which apply to the entire watershed

Author

modified by Javier Burguete

7.22 simulate.f90 File Reference

this subroutine contains the loops governing the modeling of processes in the watershed

Functions/Subroutines

• subroutine simulate

7.22.1 Detailed Description

this subroutine contains the loops governing the modeling of processes in the watershed

Author

modified by Javier Burguete

Bibliography

[1] P Bratley, B L Fox, and L E Schrage. A Guide to Simulation. Springer-Verlag, New York, USA, 1983. 74

138 BIBLIOGRAPHY

Index

```
allocate_parms.f90, 73
ascrv.f90, 73
aunif.f90, 74
caps.f90, 74
gcycl.f90, 75
getallo.f90, 75
igropt
     parm, 68
jdt
     jdt.f90, 76
jdt.f90, 76
    jdt, 76
main.f90, 77
modparm.f90, 77
parm, 13
     igropt, 68
parm::ascrv, 69
parm::atri, 69
parm::aunif, 69
parm::dstn1, 70
parm::ee, 70
parm::expo, 70
parm::fcgd, 70
parm::HQDAV, 71
parm::layersplit, 71
parm::ndenit, 71
parm::qman, 71
parm::regres, 72
parm::rsedaa, 72
parm::tair, 72
parm::theta, 72
parm::vbl, 72
readbsn.f90, 132
readfcst.f90, 132
readfert.f90, 133
readfig.f90, 133
readfile.f90, 133
readlup.f90, 134
readpest.f90, 134
readplant.f90, 135
readsepticbz.f90, 135
readtill.f90, 135
readurban.f90, 136
readwwq.f90, 136
simulate.f90, 136
```