In Exercises 38 – 49, determine the intervals on which each function is a. concave upward and b. concave downward; then c. locate all points of inflection. Use the information gathered to sketch the function. Confirm the details with a graphing calculator.

38.
$$f(x) = 2x^2 + 5x - 9$$

40.
$$f(x) = x^3 - 3x^2 + 7$$

42.
$$f(x) = x^3 + 11x - 4$$

44.
$$f(x) = \frac{1}{3}x^3 - 2x^2 + x - 3$$

46.
$$f(x) = \sqrt[3]{2x+3}$$

48.
$$f(x) = \frac{x}{x^2 - 4}$$

39.
$$f(x) = 5x^2 + 8x - 1$$

41.
$$f(x) = x^3 + 6x^2 - 10$$

43.
$$f(x) = 5x^3 + 7x + 2$$

45.
$$f(x) = \frac{1}{3}x^3 + 3x^2 + 2x - 5$$

47. $f(x) = \sqrt[3]{5x - 3}$

51. $f(x) = 8 + 7x - 2x^2$

53. $f(x) = x^3 + 6x^2 - 10$

55. $f(x) = x^3 - 3x + 4$

57. $f(x) = \frac{1}{3}x^3 + x^2 - 3x - 1$

49.
$$f(x) = \frac{4x}{x^2 - 5}$$

In Exercises 50 - 63, use the Second Derivative Test to find all local extrema, if the test applies. Otherwise, use the First Derivative Test.

50.
$$f(x) = x^2 - 3x + 5$$

52. $f(x) = x^3 - 3x^2 + 8$

54.
$$f(x) = x^3 - 12x + 3$$

56.
$$f(x) = \frac{2}{3}x^3 - x^2 - 4x - 2$$

58.
$$f(x) = x^4 - 8x^2 + 7$$

60. $f(x) = x^4 + 2x^3 - 4$

$$+2x^{2}-4$$

62.
$$f(x) = 2x + \frac{8}{x}$$

59.
$$f(x) = x^4 - 2x^2 + 3$$

61. $f(x) = x^4 - 6x^3 + 8$

61.
$$f(x) = x^4 - 6x^3 + 8$$

63.
$$f(x) = \frac{x^2 + 9}{x}$$