

이진우 강소영 김용우 박현지 염정운

CONTENTS

키워드 뿐 아니라 문맥에 맞는 이모티콘을 출력하는 모델

* Between 메신저에 일부 구현된 기능 (키워드 단위)

인공지능

인간의 지적 활동을 기계를 통해 구현

전문가 시스템

로봇 공학

HI

한민사 시끄럼

SVM

선형회귀

의사결정나무

Machine Learning 과거의 데이터에 숨어있는 규칙, 패턴을 찾아 예측 / 분류 / 회귀

인공신경망(Artificial Neural Network)

Deep Learning 여러 층의 인공 신경망을 이용한 학습

학습

Machine Learning

※ Machine Learning 특징

- 기본 모델의 형태가 비교적 직관적이고 해석이 용이함
- 인간이 데이터를 모델 형태에 맞게 가공해서 제공해야 함 (정규분포 등의 통계적 가정)

" ध्रेग रीमा खंडांभई साप जार्थमा खंडांभभ गम्लक्ष्म!"

Deep Learning

※ Deep Learning 특징

- 신경망이 복잡하게 얽혀 있어 해석이 어려움 (블랙박스)
- 데이터에 대한 통계적 가정이 크게 필요 없음
- 대신, 많은 데이터와 높은 연산량을 요구함
- 비정형 데이터(이미지, 텍스트 등)를 다루기에 용이함

"叶妮奶姐理时世生"

텍스트 데이터를 다루기에 용이한 인공신경망 모델 RNN을 개선한 것으로, 총 4가지 층을 통해 데이터를 가공한다.

텍스트 데이터를 다루기에 용이한 인공신경망 모델 RNN을 개선한 것으로, 총 4가지 층을 통해 데이터를 가공한다.

텍스트 데이터를 다루기에 용이한 인공신경망 모델 RNN을 개선한 것으로, 총 4가지 층을 통해 데이터를 가공한다.

사용자가 설정한 학습 규칙에 따라 데이터를 학습

* Bi-Directional: 단방향이 아닌 양방향으로 학습을 한다는 의미로, 전후 문맥의 의미를 파악하는데 적합한 형태

텍스트 데이터를 다루기에 용이한 인공신경망 모델 RNN을 개선한 것으로, 총 4가지 층을 통해 데이터를 가공한다.

문장 내에서 중요한 단어에 주목해서 해당 단어에 가중치를 부여함

텍스트 데이터를 다루기에 용이한 인공신경망 모델 RNN을 개선한 것으로, 총 4가지 층을 통해 데이터를 가공한다.

- 1. 사용할 이모티콘 선정
- 2. Data Set 수집
- 3. Tokenizing
- 4. 모델 튜닝 및 학습
- 5. 웹 데모 구현

Back-End

Front-End

1. 사용할 이모티콘 선정

범용성이 높고 어느 플랫폼에서도 검색 가능한 Unicode Emoji 64개

2. Data Set 수집

웹크롤링을 통해 해당되는 이모티콘이 담긴 트윗을 유니코드 별로 수집

총 Data Set 16,944,430개

3. Tokenizing

4. 모델 튜닝 및 학습

5. 웹 데모 구현

웹 서버 프레임워크 Flask를 이용해, 학습 완료한 모델을 활용하기 편한 웹 형태로 구현

