Kill-Bots: Surviving DDoS Attacks That Mimic Legitimate Browsing

Srikanth Kandula

Dina Katabi, Matthias Jacob, and Arthur Berger

CyberSlam = DDoS that Mimics Legitimate Browsing

CyberSlam

20,000+ zombies issue requests that mimic legitimate browsing

Requests Look Legitimate \Rightarrow Standard filters don't help

CyberSlam Attacks Happen!

- Instances of CyberSlam
 - First FBI DDoS Case Hired professionals hit competitor
 - Mafia extorts online gaming sites ...
 - Code RED Worm
- Why CyberSlam?
 - Avoid detection by NIDS & firewalls
 - High pay-off by targeting expensive resources
 - E.g., CPU, DB, Disk, processes, sockets
 - Large botnets are available

Threat Model

In scope

- Attacks on higher layer bottlenecks, e.g., CPU,
 Memory, Database, Disk, processes, ...
- Attacks that fool the server to congest its uplink bandwidth
- Mutating attacks
- Outside the scope
 - Flooding server's downlink (prior work)
 - Live-lock in the device driver

Tentative Solutions

- Filter big resource consumers?
- Passwords?
- Computational puzzles?

- → No big consumers; Commodity OS do not support fine-grained resource accounting
- → Might not exist, expensive to check
- → Computation is abundant in a botnet

Partial Solution:

Reverse Turing Test (e.g., CAPTCHAs) to distinguish humans from zombies

But...

3 Problems with CAPTCHA Authentication

- (1) DDoS the authentication mechanism (connect to server, force context-switches, hog sockets etc.)
- (2) Bias against users who can't or won't answer CAPTCHAs

 (3) How to divide resources between service and authentication as to maximize system goodput?

Kill-Bots' Contributions

- First to protect against CyberSlam
- Solves problems with CAPTCHAs:
 - Cheap stateless authentication
 - Serves legit. users who don't answer CAPTCHAs
 - Optimal balance between authentication & service
- Improves performance during Flash Crowds
- Order of magnitude improvement in goodput & response time

Kill-Bots is a kernel extension for web servers

No Overhead

New Clients are authenticated once and given HTTP Cookie

Solution: Modify network stack to issue CAPTCHAS without state

Solution: Modify network stack to issue CAPTCHAS without state

Problem 2: Legit. Users who don't answer CAPTCHA

Solution: Use reaction to CAPTCHA

<u>Humans</u>

- (1) Answer CAPTCHA
- (2) Reload; if doesn't work, give up

Zombies

Can't answer CAPTCHA, but have to bombard the server with requests

 Count the unanswered CAPTCHAs per IP, and drop if more than T; Cheap with a Bloom Filter

Stage 1:

- CAPTCHA
 Authentication
- Learn IP addresses of zombies using Bloom filter

Stage 2:

- Use only Bloom filter for Authentication
- No CAPTCHAs

Users who don't answer CAPTCHAs can access the server despite the attack in Stage 2

Problem 3: To Authenticate or To Serve?

Problem 3: To Authenticate or To Serve?

- Authenticate all new arrivals
 - → can't serve all authenticated clients
- Authenticate very few arrivals
 - → too few legitimate users are authenticated

Solution:

- Authenticate new clients with prob. α (drop others)
 - \rightarrow A form of admission control with 2 arrival types

But what α maximizes goodput?

Analysis

Modeled system using Queuing Theory Found Optimal α^* (proof in paper)

But α^* depends on many unknown parameters

- attack rate
- mean service time
- · mean session size
- · legitimate request rate, etc...

Kill-Bots adapts the authentication prob. by measuring fraction of time CPU is idle

Kill-Bots adapts the authentication prob. by measuring fraction of time CPU is idle

- Analysis says: if idle > 0, α is prop. to (1- idle)
- Say you want to keep server busy 90% of time:

$$\frac{\alpha_{90\%}}{\alpha_{current}} = \frac{0.9}{1 - idle_{current}}$$

Kill-Bots adapts the authentication prob. by measuring fraction of time CPU is idle

- Analysis says: if idle > 0, α is prop. to (1- idle)
- Say you want to keep server busy 90% of time:

$$\frac{\alpha_{90\%}}{\alpha_{current}} = \frac{0.9}{1 - idle_{current}}$$

Kill-Bots adapts in real time

$$\alpha_{90\%} - \alpha_{current} = \alpha_{current} \left(\frac{idle_{current} - 0.1}{1 - idle_{current}} \right)$$

Kill-Bots adapts the authentication prob. by measuring fraction of time CPU is idle

- Analysis says: if idle > 0, α is prop. to (1- idle)
- Say you want to keep server busy 90% of time:

$$\frac{\alpha_{90\%}}{\alpha_{current}} = \frac{0.9}{1 - idle_{current}}$$

Kill-Bots adapts in real time

$$\Delta \alpha = \frac{1}{8} \alpha_{current} \left(\frac{idle_{current} - 0.1}{1 - idle_{current}} \right)$$

Recap: Kill-Bots addresses CyberSlam

Problem

- DDoS the authentication
- Serve legitimate users who don't answer CAPTCHAs
- Divide resources between authentication & service

Solution

- Send CAPTCHAs cheaply without sockets
- Use reaction to CAPTCHA to identify zombies
- Adaptive authentication as admission control

Attacks & Defenses

- Replay Attacks?
 - Don't work. Limit #connections per cookie
- Spoof IP, cause Bloom filter to block
 - Doesn't happen. SYN cookie before updating
 Bloom
- Breaking the CAPTCHA?
 - Kill-bots can use any Reverse Turing Test

Performance

Wide-area Evaluation Using PlanetLab

- · Legit. users are driven from CSAIL Web traces
- · >25,000 attackers on PlanetLab request random pages
- · 60% of legitimate users answer CAPTCHAs

Metrics

- Goodput (of Legitimate Users)
- Response time (of Legitimate Users)
- Maximum survivable attack rate

Kill-Bots under DDoS

5-10 times better Goodput and Response Time

Why Adapt the Authentication Probability?

Adaptive α is much better than authenticating every new user

Kill-Bots under Flash Crowd

Orders of magnitude better Response Time

Adaptive α provides admission control

Kill-Bots under Flash Crowd

	Base Server	Kill-Bots
Number of dropped legitimate requests	360,000	80,000

Kill-Bots authenticates new clients only if it can

Kill-Bots' Contributions

- First to protect Web servers from DDoS attacks that mimic legitimate browsing
- First to deal with CAPTCHA's bias against legitimates users who don't solve them
- Sends CAPTCHA and checks answer without any server state
- Addresses both DDoS attacks and Flash Crowds
- Orders of magnitude better response time, goodput, and survivable attack rate