CLAIMS

What is claimed is:

4

- A scanning probe microscope tip coated with a layer of chemically-synthesized 1 1. nanoparticles. 2
- The tip of claim 1, wherein said scanning probe microscope tip is one of an atomic force 2. microscope tip, a near-field scanning optical microscope tip, and a scanning tunneling microscope tip.
 - The tip of claim 1, wherein said nanoparticles comprise at least one of an amorphous, 3. crystalline, ferromagnetic, paramagnetic, superparamagnetic, antiferromagnetic, ferrimagnetic, magneto optic, ferroelectric, piezoelectric, superconducting, semiconducting, magnetically-doped semiconducting, insulating, fluorescent, and chemically catalytic nanoparticles.
 - The tip of claim 1, wherein said nanoparticles are coated with an organic layer; wherein 4. 1 said nanoparticles having a diameter ranging from 2 nm to 20 nm, and said organic layer having a 2 thickness ranging from 0.5 nm to 5 nm. 3
 - The tip of claim 1, wherein said nanoparticles are coated with an organic coat comprising 1 5. a head-group and a tail-group; 2

- wherein said head group comprises one of an amine, carboxylic acid, isocyanide, nitrile,

 phosphene, phosphonic acid, sulfonic acid, thiol, and trichlorosilane; and
- wherein said tail-group comprises one of an alkyl chain, aryl chain, fluorocarbon, siloxane, fluorophore, DNA, carbohydrate, and protein.
 - 6. The tip of claim 1, wherein said tip is coated with an adhesion layer comprising of one of n-(2-aminoethyl) 3-aminopropyl-trimethoxysilane, polyethylineimine, polymethylmethacrylate, epoxy, cyanoacrylate adhesive, and an α,ω alkyl chain.
 - 7. The tip of claim 1, wherein said layer of chemically-synthesized nanoparticles is at least one nanoparticle thick.
 - 8. The tip of claim 1, wherein said layer of chemically-synthesized nanoparticles is a single layer of nanoparticles thick and covers only the apex of said tip.
 - 1 9. The tip of claim 1, wherein said layer of chemically-synthesized nanoparticles comprises a single nanoparticle affixed to an apex of said tip.
 - A method of forming a scanning probe microscope tip, said method comprising:

 dipping said scanning probe microscope tip into a solution of nanoparticles; and
 withdrawing said scanning probe microscope tip from said solution;

 wherein said step of dipping causes said nanoparticles to attach to said scanning probe

- 1 11. The method of claim 10, wherein said step of dipping said scanning probe microscope tip
- 2 into a solution of nanoparticles comprises dipping said scanning probe microscope tip into a
- 3 monolayer of nanoparticles floating on a liquid subphase.
 - 12. The method of claim 10, wherein said step of dipping said scanning probe microscope tip into a solution of nanoparticles comprises inking an elastomer with a plurality of nanoparticles; and dipping said scanning probe microscope tip into said elastomer.
 - 13. The method of claim 10, further comprising washing off said solution after said step of withdrawing said scanning probe microscope tip from said solution, wherein said solution is a nonvolatile solution.
- 1 14. The method of claim 10, further comprising applying an electric potential to said scanning probe microscope tip prior to said step of dipping said scanning probe microscope tip into a solution of nanoparticles.
- 1 15. The method of claim 14, wherein said solution further comprises an electrochemical solution, a supporting electrolyte, and an electrode held at a neutral potential.

- The method of claim 10, wherein said nanoparticles form a layer around said scanning 16. 1
- probe microscope tip, wherein said layer is one nanoparticle thick. 2
- The method of claim 10, wherein said nanoparticles from a layer around said scanning 17. 1
- probe microscope tip, wherein said layer comprises a single layer of nanoparticles and covers only 2
- said tip apex. 3
 - The method of claim 10, wherein only a single nanoparticle is affixed to said tip apex. 18.
 - The method of claim 10, further comprising coating said scanning probe microscope tip 19. with an adhesion promoter prior to said step of dipping said scanning probe microscope tip into a solution of nanoparticles.
- The method of claim 10, wherein said step of dipping said scanning probe microscope tip 20. into a solution of nanoparticles comprises submerging said tip into said liquid solution. 2
 - The method of claim 10, wherein said nanoparticles form a layer around said tip, said 21. 1
 - method further comprising exposing said layer of nanoparticles to one of a laser light, a beam of 2
 - electrons, ultraviolet light, and heat. 3

- The method of claim 10, wherein said nanoparticles form a layer around said tip, said method further comprising orienting uniformly the magnetic axis of said nanoparticles by annealing in the presence of a magnetic field.
 - 24. A method of forming a scanning probe microscope tip, said method comprising:

 coating said scanning probe microscope tip, with the exception of an apex of said tip, with
 a sacrificial layer;

depositing nanoparticles over said tip; and removing said sacrificial layer.

- 1 25. A method of forming a scanning probe microscope tip, said method comprising:
- dipping said scanning probe microscope tip into a monolayer of nanoparticles floating on a
- 3 liquid subphase; and
- withdrawing said scanning probe microscope tip from said liquid subphase;
- wherein said step of dipping causes said nanoparticles to attach to said scanning probe
- 6 microscope tip,
- wherein said scanning probe microscope tip comprises a tip apex.

1	26.	A method of forming a scanning probe microscope tip, said method comprising:
2		inking an elastomer with a plurality of nanoparticles;
3		dipping said scanning probe microscope tip into said elastomer; and
4		withdrawing said scanning probe microscope tip from said elastomer;
5		wherein said step of dipping causes said nanoparticles to attach to said scanning probe
6	micro	oscope tip,
7 		wherein said scanning probe microscope tip comprises a tip apex.
	27.	A method of forming a scanning probe microscope tip, said method comprising:
- J		dipping said scanning probe microscope tip into a liquid solution, wherein said liquid
- <u>-</u> 3	solu	tion is nonvolatile and further comprises a plurality of nanoparticles dispersed therein;
⊑ 		withdrawing said scanning probe microscope tip from said liquid solution; and
		washing off said liquid solution, whereby said nanoparticles remain on said scanning probe
-¶ 6	mic:	roscope tip,
7	,	wherein said step of dipping causes said nanoparticles to attach to said scanning probe
8	s mic	roscope tip,
9)	wherein said scanning probe microscope tip comprises a tip apex.
]	1 28.	A method of forming a scanning probe microscope tip, said method comprising:
2	2	dipping said scanning probe microscope tip into an electrochemical solution, wherein said
3	3 elec	ctrochemical solution comprises nanoparticles, a solvent, and an electrode held at a neutral
4	4 pot	ential;

applying an electric potential to said scanning probe microscope tip; and		
withdrawing said scanning probe microscope tip from said electrochemical solution;	ı	
wherein said step of dipping causes said nanoparticles to attach to said scanning pro	be	
microscope tip,		
wherein said scanning probe microscope tip comprises a tip apex.		

29. The method of claim 28, wherein said electrochemical solution further comprises a supporting electrolyte and a reference electrode.