

MULTIPLEXOR

FUNDAMENTOS DE DISEÑO DIGITAL OPTATIVA I. ISISA

Es un circuito digital que acepta varias entradas de datos y permite sólo a una de ellas alcanzar la salida. El dato de entrada que se verá en la salida es seleccionado a través de las entradas de "selección".

Diseñe un circuito lógico que tenga tres entradas I_0,I_1 y S y una salida Z que funcione de acuerdo con la siguiente tabla.

S	Z
0	I ₀
1	l ₁

Si bien, con experiencia en el diseño de circuitos lógicos se podría obtener directamente la función Booleana y con esto el circuito lógico de la tabla de verdad anterior, es conveniente reescribir la tabla considerando todos los posibles valores lógicos de las entras l₀, l₁ y S con el fin de encontrar la función Booleana a través del método de minimización de Mapas de Karnaugh.

S	l ₁	l ₀	z
<u>s</u> 0	0	0	0
0	0	1	1
0	1	0	0
	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

De la tabla de verdad anterior se tiene la siguiente función:

$$Z = \sum m(1,3,6,7)$$

Minimizando la función por Mapas de Karnaugh se tiene:

Multiplexor 2x1
2 - entradas (I₁ I₀)
1- salida (Z)
1- selector (S)

Tipos de Multiplexores

Multiplexor 2x1
2 - entradas (I₁ I₀)
1- salida (Z)
1- selector (S)

S_1S_0	Z
00	I ₀
01	l ₁
10	l ₂
11	l ₃

Multiplexor 4x1
4 - entradas (I₃ I₂ I₁ I₀)
1- salida (Z)
2- selector (S₁ S₀)

Tipos de Multiplexores

$S_2S_1S_0$	Z
000	I_0
001	I ₁
010	l ₂
011	l ₃
100	I 4
101	I ₅
110	I 6
111	I ₇

Multiplexor 8x1 8 - entradas (I₇ I₆ I₅ I₄ I₃ I₂ I₁ I₀) 1- salida (Z) 3- selector (S₂ S₁ S₀)

Multiplexor 16x1	
16 - entradas (I ₁₅ I ₁₄ I ₁₃ I ₁₂ I ₁ I ₆	0
1- salida (Z)	
4- selector (S ₃ S ₂ S ₁ S ₀)	

$S_3S_2S_1S_0$	Z
0000	l ₀
0001	l ₁
0010	l ₂
0011	l ₃
0100	I ₄
0101	l ₅
0110	l ₆
0111	l ₇
1000	l ₈
1001	l ₉
1010	I ₁₀
1011	I ₁₁
1100	I ₁₂
1101	I ₁₃
1110	I ₁₄
1111	I ₁₅

Descripción en VHDL de un multiplexor 4x1

Al describir en VHDL cualquier multiplexor lo que se utiliza es la tabla de verdad. A continuación se tiene la descripción de un MUX 4x1 usando primero la instrucción *With-Select* y después la instrucción *When-case*.

```
LIBRARY IEEE:
USE IEEE.STD_LOGIC_1164.ALL;
ENTITY MUX IS
PORT
    (S: IN STD LOGIC VECTOR (1 DOWNTO 0);
    10,11,12,13: IN STD_LOGIC;
    Z: OUT STD LOGIC:
END ENTITY;
ARCHITECTURE A MUX OF MUX IS
BEGIN
    WITH S SELECT
    Z<=10 WUEN "00".
        11 WUEN "01".
        12 WUEN "10"
        13 WHEN OTHERS:
END A MUX;
```

Instrucción With-Select

Instrucción When-case

```
LIBRARY IEEE:
USE IEEE.STD_LOGIC_1164.ALL;
ENTITY MUX IS
PORT
    (S: IN STD_LOGIC_VECTOR (1 DOWNTO 0);
    10,11,12,13: IN STD LOGIC;
    Z: OUT STD_LOGIC;
END ENTITY;
ARCHITECTURE A_MUX OF MUX IS
BEGIN
    PROCESS (S)
    BEGIN
    CASE S IS
    WHEN "00" => Z <= 10;
    WHEN "01" => Z<=I1:
    WHEN "10" => Z<="I2";
    WHEN OTHERS=> Z<=I3;
    END CASE;
END PROCESS;
END A MUX:
```


Práctica: describir en VDHL un MUX 8x1 en cuyas entradas estén conectadas una de las compuestas lógicas básicas. En este caso las entradas serán A y B, necesarias para comprobar la tabla de verdad de cada una de las compuertas.

SEL	Z
000	A OR B
001	A NOR B
010	A AND B
011	A NAND B
100	A XOR B
101	A XNOR B
110	NOT A
111	NOT B

DEMULTIPLEXOR

FUNDAMENTOS DE DISEÑO DIGITAL OPTATIVA I. ISISA

DEMULTIPLEXOR

- Un demultiplexor efectúa la operación contraria al MUX.
- Toma toma una fuente de datos de entrada y la distribuye selectivamente a uno de los N canales de salida.
- El código de las entradas de selección determina hacia que salida se transmitirá la entrada de datos.

