

BIOMATERIAIS

Química Orgânica: Revisão

Licenciatura em Engenharia Biomédica Mestrado em Engenharia Química e Biológica

Ano letivo 2022/2023

Maria José Moura (mjmoura@isec.pt)

- A designação de composto orgânico deriva do facto de muitas destas substâncias serem sintetizadas por organismos vivos (plantas e animais);
- Um composto orgânico tem fundamentalmente carbono e hidrogénio na sua composição, mas também átomos como oxigénio, enxofre, azoto, halogénios (CI, Br, I, F) e outros;
- A existência de milhões de compostos orgânicos corresponde à possibilidade de múltiplas formas de associação dos átomos de C (em cadeias e anéis) e da sua ligação aos outros átomos;
- Cada arranjo atómico diferente origina uma molécula com propriedades distintas;
- A **fórmula de estrutura** permite identificar como os diversos átomos estão ligados numa molécula, enquanto a **fórmula molecular** nos dá o número de átomos (de cada espécie) presentes na molécula.

o composto C₃H₆O tem dois isómeros

- Quase sempre a uma determinada fórmula molecular corresponde mais do que uma fórmula de estrutura, ou seja, mais do que um composto – isómeros.
- À **fórmula molecular** C₃H₆O correspondem duas fórmulas de estrutura diferentes.

• Número atómico (Z) – número de protões encontrados no núcleo de um átomo; num átomo de carga neutra o número de protões é igual ao número de eletrões. A convenção determina que Z deve ser escrito em baixo, do lado esquerdo:

$$_{20}$$
Ca $_{6}$ C $_{1}$ H

• Eletrões de valência – eletrões contidos no nível eletrónico mais exterior de um átomo; quanto mais completa a camada de valência mais inerte é o átomo.

Por vezes, é difícil representar no plano uma geometria tridimensional; em alternativa, opta-se por representações mais simples:

Para um composto de cadeia longa:

Hidrocarbonetos – compostos formados apenas por C e H

 Hidrocarbonetos saturados – compostos que contêm apenas ligações simples (família dos alcanos).

metano	CH ₄	pentano C
etano	C_2H_6	hexano C
propano	C_3H_8	heptano C
butano	C_4H_{10}	octano C

■ Semelhantemente ao **grupo metilo** (–CH₃) temos:

CH ₃ CH ₂ –	grupo etilo
CH ₃ CH ₂ CH ₂ -	grupo propilo
$\mathrm{CH_{3}CH_{2}CH_{2}CH_{2}}$ –	grupo butilo

Grupos alquilo

(o nome de cada um deles deriva do nome do alcano respetivo por substituição da terminação *ano* por *ilo*)

hidrocarboneto linear

(nenhum átomo de C se liga a mais de dois átomos de C)

hidrocarboneto ramificado

(um átomo de C está ligado a três átomos de C)

isobutano

Os hidrocarbonetos ramificados consideram-se derivados da cadeia linear mais longa pela substituição de átomos de H por grupos alquilo.

• A numeração dos átomos de C da cadeia deve ser feita de modo a que aos grupos substituintes correspondam os mais baixos índices de posição, sendo os nomes dos substituintes indicados por ordem alfabética.

Fórmulas de estrutura de alcanos de cadeia cíclica designados por cicloalcanos:

Fórmula molecular geral: C_nH_{2n}

$$H_2$$
 C
 H_2C
 $CHCH_3$

Nome: metil-ciclopropano

$$HCH_3$$
 C
 $CHCH_3$
 H_2C
 $CHCH_2$

1,2-dimetil-ciclopentano

- Hidrocarbonetos insaturados compostos que contêm ligações duplas ou triplas entre os átomos de C (família dos alcenos e dos alcinos, respetivamente).
- Para designar o **alceno** linear a terminação *ano* do alcano correspondente é substituída por *eno* (1 ligação dupla) ou *dieno*, *trieno*, ... (2, 3, ... ligações duplas).
- Para designar o alcino a terminação ano do alcano correspondente é substituída por ino.

Exemplos:

$$H_2C = CH_2$$
 $H = C = CH_3$ $H_3C = CH_3$ $H_3C = CH_3$ eteno (etileno) etino (acetileno) 1,3- butadieno 2- butino

 Sendo necessário numerar os átomos de C, adota-se a regra dos números mais baixos.

$$H_3C$$
 H_2C H_2C H_2C H_2C H_3C H_3C

 Os nomes dos hidrocarbonetos insaturados ramificados podem ser derivados dos de cadeia linear, indicando por números as posições dos grupos laterais.

■ Hidrocarbonetos aromáticos – compostos orgânicos cuja estrutura se pode considerar derivada da do benzeno (C₆H₆):

Alguns derivados do benzeno:

(note-se que ao numerar os grupos substituintes se respeita a regra dos números mais baixos)

- Outros compostos orgânicos. Grupos Funcionais
- Derivados halogenados: átomos de Cl, Br, I, F podem substituir um ou mais átomos de H dos hidrocarbonetos.

Exemplos:

Com base na regra do octeto, indicar as fórmulas de estrutura para o clorofórmio e para o tetraclorometano, verificando que todas as ligações são simples.

- 2. <u>Alcóois e fenóis</u>: obtêm-se por substituição de um átomo de H, na estrutura de um hidrocarboneto, por um **grupo hidroxilo (–OH)**.
- O nome do álcool é obtido acrescentando o sufixo *ol* ao nome do hidrocarboneto correspondente; no caso de hidrocarbonetos com mais de dois átomos de C a numeração faz-se tal como anteriormente; no caso de mais que um **grupo** –**OH** utiliza-se o sufixo *diol*, *triol*, etc.

1,2-etanodiol

Se o **grupo funcional** –**OH** se encontrar diretamente ligado a um anel aromático, os compostos têm a designação de **fenóis**.

• Indicar o nome ou a fórmula de estrutura dos seguintes álcoois:

$$\begin{array}{c|cccc} H & CH_3 \\ \hline & & \\ & & \\ \\ H & C & C & CH_3 \\ \hline & & \\ OH & OH \end{array}$$

2-metil-1,2-propanodiol

2-metil-2-pentanol

2-metil-fenol

4-metil-fenol

- Éteres: estes compostos possuem um átomo de O ligado a dois átomos de C, ou seja, o grupo funcional C-O-C.
- Estes compostos designam-se pela palavra éter seguida dos nomes dos grupos ligados ao oxigénio.

Assim:

- 4. Aldeídos, cetonas e ácidos carboxílicos: estes compostos têm em comum o grupo funcional –C=O (grupo carbonilo).
- Os sufixos *al, ona e óico* substituem a terminação *o* do hidrocarboneto progenitor, respetivamente nos **aldeídos**, **cetonas** e **ácidos carboxílicos**.

Ácidos carboxílicos

Os ácidos carboxílicos são caracterizados pela presença do grupo funcional:

Indicar o nome dos seguintes compostos orgânicos:

CH₃COCH₂CH₃ CH₃CH₂CHO C₆H₅CHO HOOCCH₂CH₂COOH fenilmetanal ácido butanodióico butanona propanal 19

5. <u>Aminas e amidas:</u> as aminas são compostos que podem ser considerados derivados do amoníaco, NH₃, pela substituição de um ou mais átomos de H, designadamente por grupos alquilo e fenilo.
NH₂

 As amidas podem ser derivadas dos ácidos carboxílicos pela substituição do grupo –OH do grupo carboxílico por –NH₂.

6. <u>Ésteres:</u> são compostos que podem ser considerados derivados dos ácidos carboxílicos pela substituição do grupo –OH por um grupo –OR, em que R é normalmente um grupo alquilo.

etanoato de metilo

• Muitos frutos devem o seu sabor, em parte, à presença de ésteres:

CH₃CH₂CH₂COOC₂H₅ butanoato de etilo (aroma de ananás)

CH₃CH₂CH₂COO(CH₂)₄CH₃ butanoato de pentilo (aroma de alperce)

CH₃COOCH₂CH₂CH(CH₃)₂ etanoato de 3-metil-butilo (aroma de banana)

Bibliografia

 Morrison, R.; Boyd, R. Química Orgânica. 15^a Edição, Fundação Calouste Gulbenkian (2009). (livro em português)