

012604

(19)日本国特許庁 (JP)

(12) 公開特許公報 (A)

(11)特許出願公開番号

特開2001-275933
(P2001-275933A)

(43)公開日 平成13年10月9日 (2001.10.9)

17548 U.S.PTO
10/764893

(51) Int.Cl. ¹	識別記号	F I	テマコト ² (参考)
A 6 1 B	1/00	A 6 1 B	3 0 0 P 4 C 0 6 0
	3 0 0		3 3 4 Z 4 C 0 6 1
	3 3 4		
17/22	3 2 0	17/22	3 2 0
18/12		17/39	3 1 0

審査請求 未請求 請求項の数1 O L (全 7 頁)

(21)出願番号 特願2000-98480(P2000-98480)

(22)出願日 平成12年3月31日 (2000.3.31)

(71)出願人 000000376
オリンパス光学工業株式会社
東京都渋谷区幡ヶ谷2丁目43番2号

(72)発明者 井上 義光
東京都渋谷区幡ヶ谷2丁目43番2号 オリ
ンパス光学工業株式会社内

(72)発明者 中田 守
東京都渋谷区幡ヶ谷2丁目43番2号 オリ
ンパス光学工業株式会社内

(74)代理人 100058479
弁理士 鈴江 武彦 (外4名)
Fターム(参考) 4C060 EE28 KK03 KK17
4C061 AA01 AA02 BB00 CC00 DD03
FF37 FF43 HH21 JJ11

(54)【発明の名称】 内視鏡用フード

(57)【要約】

【課題】本発明は、内視鏡的粘膜切除術を行なう際に、食道咽頭部の挿通が容易で、かつ、より多くの粘膜切除が可能である内視鏡用フードを提供することを目的とする。

【解決手段】本発明は、軟質透明な樹脂から成形された略円筒形状を有し、かつその先端部に内側に突出した爪部4を具備するキャップ部2と前記キャップ部2を内視鏡の先端に固定する内視鏡装着部3とを備え、かつ前記キャップ部2の外径が16mm以上である内視鏡用フード1である。

【特許請求の範囲】

【請求項1】略円筒形状を有し、かつ先端部の内側に突出した爪部を具備するキャップ部と前記キャップ部を内視鏡の先端に固定する内視鏡装着部とを備えた内視鏡用フードにおいて、前記キャップ部の外径が16mm以上である軟質透明な樹脂から構成されていることを特徴とする内視鏡用フード。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】本発明は、内視鏡検査や内視鏡的手術において内視鏡の挿入部先端に装着される内視鏡用フードに係り、略円筒状のフードの中に粘膜を吸引してポリープ状にし、その粘膜の基部を高周波スネアを用いて切断する内視鏡的粘膜切除術などに用いる内視鏡用フードに関する。

【0002】

【従来の技術】近年、腹壁を切開せずに内視鏡を用いて行う内視鏡的手術が広く行われており、食道や胃の早期癌に対しては、病変部の粘膜を高周波スネアを用いて切断する内視鏡的粘膜切除術が適応されている。

【0003】一般に、このような粘膜切除術では内視鏡用フード内に引き込んだポリープ状の粘膜の基部に高周波スネアのワイヤーを確実に位置させることが大切である。

【0004】ところで、特開平8-131397号公報に記載されている内視鏡用フードは、透明で硬質なキャップ部材と、このキャップ部材を内視鏡の先端部に装着するための樹脂から形成された内視鏡装着部材とから構成されている。

【0005】

【発明が解決しようとする課題】（従来技術の問題点）一般に内視鏡的粘膜切除術で適応とされている早期癌での病変部の大きさは直径10~20mm以内といわれており、粘膜切除術を施す際には、穿孔及び出血の偶発症を軽減するために病変部の粘膜下層に生理食塩水などを注射して病変部を十分に隆起させることが必要とされている。しかるに、病変部粘膜を完全に切除するには少なくとも直径が約20mmから30mm程度の粘膜切除が必要である。

【0006】さて、特開平8-121397号公報の内視鏡用フードにおいては粘膜を取り込む部分（キャップ部材）の外径を小さくせざるを得ない状況にあった。つまり、前記公報にて開示されているような硬質のキャップ部材を用いている内視鏡用フードは食道咽頭部の管腔径及び患者への挿入時の苦痛などを考慮すると、大きくても外径が16mm未満内に規制する必要があった。また、このような内視鏡用フードのキャップ部の内径は成形性や加工性などを考慮すると内径が13乃至14mm程度になる。

【0007】従来の内視鏡用フードを用いて内視鏡的粘

膜切除術を実施すると、粘膜切除量は多くても直径約20mm程度が限界であり、一般的には直径が約10~15mm程度であるといわれている。

【0008】当然のことながら、前記切除量を考慮すれば病変部が大きい場合には1回で切除しきることが不可能であることは明確であり、大きい病変部を切除する場合には病変部を幾つかに分割して数回に分けて粘膜切除を行なう方法がとられる。

【0009】よって、従来の内視鏡用フードを用いる場合には、粘膜切除量に限界があるために2回乃至3回の分割的粘膜切除術を施さなければならない。そのため、手術時間の長さから患者の負担が多いことが指摘されていた。

【0010】また、病変部を分割して切除するために分割辺縁部は高周波通電の焼焦痕となるためにその部分の病理診断が困難になり、強いては完全に病変部全体が切除されているのかどうかを見極めることができないとされていた。

【0011】よって、病変部を分割せずに一括でより多くの粘膜を切除できる内視鏡用フードの開発が要望されていた。

【0012】さらに、従来の内視鏡用フードはキャップ部と内視鏡装着部の材料が異なっているために組立時に接着工程が必要であり、製造コストが高価になる原因となっていた。

【0013】（発明の目的）本発明は前記事情に鑑みてなされたものであり、内視鏡的粘膜切除術を行なう際ににおいて、例えば食道咽頭部等の体腔への挿通が容易であり、かつ、より多くの粘膜切除が可能であると共に透明性も有する内視鏡用フードを提供することを目的とする。

【0014】

【課題を解決するための手段】本発明は軟質透明な樹脂から成形された略円筒形状を有し、かつその先端部に内側に突出した爪部を具備するキャップ部と前記キャップ部を内視鏡の先端に固定する内視鏡装着部とを備えた内視鏡用フードにおいて、前記キャップ部の外径が16mm以上であることを特徴とする内視鏡用フードである。

【0015】

【発明の実施の形態】【第1実施形態】以下、幾つかの実施形態を挙げて、本発明を具体的に説明するが、本発明はこれらの実施形態に限定されるものではない。

【0016】図1乃至図6は本発明の第1実施形態に係り、図1は内視鏡の先端部10に取付けられた内視鏡用フード1の構成を示す断面図、図2は第1実施形態の内視鏡用フード1の斜視図、図3乃至図6は高周波スネア13を用いて粘膜12を切除する手順を示しており、図3は内視鏡用フード1のキャップ部2で粘膜を吸引した状態を示す断面図、図4は粘膜12に高周波スネア13の高周波スネアワイヤー13bを被せようとしている状

態を示す断面図、図5は粘膜12に高周波スネア13を被せた状態を示す断面図、図6は粘膜12を高周波スネア13にて緊縛した状態を示す断面図である。

【0017】図1に示す内視鏡用フード1は外径18mm、内径16mm、長さ14mmの略円筒形状のキャップ部2と、内視鏡用フード1を内視鏡における挿入部の先端部10に固定する外径13mm、内径12mm、長さ10mmの略円筒形状の内視鏡装着部3によって構成されている。キャップ部2と内視鏡装着部3は一体に成形することができる。

【0018】さらに、キャップ部2の先端には高周波スネア13の高周波スネアワイヤー13bを保留するための高さ0.8mm程度の爪部4が内方へ突き出して設けられている。また、内視鏡装着部3の遠位端には内視鏡装着部3の内部に具備された内視鏡の先端部10がキャップ部2側に入り込まないように内方へ突き出して設けられた高さ0.5mmの内視鏡係止部(部材)5が設けられており、この内視鏡装着部3に内視鏡の先端部10を差しこみ、内視鏡係止部5のところまで押し込むことにより、内視鏡用フード1が内視鏡の先端部10に固定される構造になっている。

【0019】図1に示す内視鏡用フード1はスチレン系樹脂である透過率90%以上でショアーハード82のSBポリマー(クラレ社製)にて前記形状のものを製作したが、内視鏡用フード1の材料に関しても必ずしもこれに限定されるものではなく、ビニル芳香族化合物を主体とする重合体ブロック(a)と共にジエン化合物を主体とする重合体ブロック(b)からなるブロック共重合物(A)と、メタクリル酸メチルを主成分としたアクリル系樹脂(B)と、少なくとも1種の熱可塑性樹脂を主成分とする組成物(C)とから構成されるものでもよく、少なくとも軟質透明樹脂であればよい。より具体的には(a)成分としてはスチレン、(b)成分としてはイソブレン、(B)の樹脂としてはメタクリル酸メチルーアクリル酸の共重合物であるアクリル系樹脂、(C)の熱可塑性樹脂としてはスチレンーアクリロニトリル樹脂である構成が好ましい。前記軟質透明な樹脂はショアーハードが50~100である。

【0020】前記記載の樹脂は、生体適合性に優れ、かつ内視鏡の視野を妨げることのない透過率及び無着色であり、さらには粘膜に押し付けたり吸引したときに大きな変形が生じない程度の硬度を有している。

【0021】ここで、内視鏡用フード1のキャップ部2の外径は患者への苦痛軽減および挿入性を考慮すれば、16mm~20mm程度である。また、キャップ部2の内径は粘膜切除量の増大化と径大化を考慮すれば、14mm~18mm程度である。さらに、キャップ部2の肉厚は粘膜からの押圧力及び吸引時の吸引圧力による変形に耐え得る厚さが必要であるため、0.5mm~2mm程度である。よって、内視鏡用フード1のキャップ部2

は前記各寸法を考慮すると、外径が18mm程度、内径が16mm程度、肉厚は1mm程度が好ましい。

【0022】また、内視鏡用フード1の内視鏡装着部3の内径は、内視鏡10の外径に適応する大きさが必要であるため、6mm~16mm程度であり、内視鏡装着部3の肉厚は内視鏡への装着性と成形性の兼ね合いから0.5mm~1mm程度である。また、内視鏡装着部3の長さについては内視鏡用フード1を装着した内視鏡の挿入部における先端部10を体腔内に挿通する時における脱落の危険性と内視鏡の挿入部の弯曲性能の妨げにならないという観点から3mm~10mm程度である。よって、内視鏡用フード1の内視鏡装着部3は前記寸法を考慮すると、肉厚が0.7mm、長さは10mm程度が好ましい。

【0023】キャップ部2の先端に設けられた爪部4は高周波スネアワイヤー13bのワイヤー径よりも大きいことが必要であるため、少なくとも0.3mm以上であるが、爪部4が大きくなればなるほど粘膜吸引量が制限されて、強いては粘膜切除量も減少することから多くても2mm未満であり、好ましくは0.8mm程度である。

【0024】また、内視鏡用フード1の内視鏡装着部3の遠位端に具備されている内視鏡係止部5は内視鏡装着部3にて装着された内視鏡の先端部10の先端が体内挿入時及び体外抜去時の管腔壁からの押圧に対しても係止可能な寸法が必要である。しかし、一方では、内視鏡係止部5が大きすぎると、内視鏡の視野内に内視鏡係止部5が映ることを考慮すると、内視鏡係止部5の高さは0.3mm~1mmの範囲であり、好ましくは0.5mm程度である。

【0025】次に、本実施形態の内視鏡用フード1を装着した内視鏡を用いて、粘膜12を切除する際の手順について説明する。

【0026】まず、内視鏡の図示しない操作部を操作して内視鏡用フード1のキャップ部2の遠位開口部に目的の粘膜切除部分が来るよう内視鏡の先端部10を移動させる。そして、キャップ部2のその遠位端開口部を粘膜12に押し付けて内視鏡のチャンネル11を経由して、図示しない吸引装置から吸引することにより、図3に示すように粘膜12は負圧によりキャップ部2の内部に引き込まれて粘膜12の切除部分が隆起される。

【0027】続いて内視鏡のチャンネル11に高周波スネア13を挿入して、さらにスネアシース13aからスネアワイヤー13bを前方に繰り出す。この繰り出しは、図4に示すようにスネアワイヤー13bの先端が爪部4に当たるまで続けた後にスネアワイヤー13bを開いてスネアシース13aを押し出す。これによりスネアワイヤー13bは図5に示すように粘膜12の盛上がった切除部分の根元に配置されることになる。その後、さらに吸引することにより、キャップ部2の内部全体に粘

膜が引き込まれる。

【0028】次に、スネアワイヤー13bをスネアサークル13aに引き込み、切除部分の粘膜12の根元を縛縛してスネアワイヤー13bに高周波を通電することで粘膜12が切除される。その後、高周波スネア13を抜去して図示しない吸引装置により内視鏡のチャンネル11を経由して吸引することにより、切除された粘膜12は内視鏡用フード1のキャップ部2の内部に保持された状態で内視鏡の先端部10と一緒に体腔外へ取り出されて回収される。

【0029】本発明の内視鏡用フード1を用いた内視鏡的粘膜切除術を施した場合における粘膜切除量測定、患者の苦痛度検査及び高周波スネア操作性について検討した。

【0030】前記試験を行うにあたり、比較例として外径15mm、内径13mm、長さ12mmの略円筒形状のポリカーボネイト製のキャップ部材と、外径13mm、内径12mm、長さ9mmの略円筒形状で塩化ビニル製の内視鏡装着部材を具備した内視鏡用フードを製作して同様の試験を行った。

【0031】粘膜切除量測定では、比較例の内視鏡用フードを用いたものは直径が約15mm程度の切除片しか得られなかつたが、本実施形態の内視鏡用フード1を用いた場合には切除片の直径が約25mm程度の大きさであった。

【0032】また、患者の苦痛度を調べる官能試験においては、本実施形態の内視鏡用フード1の方が比較例のそれよりも苦痛度は小さく、かつ内視鏡の挿通性が良好であった。本実施形態で用いた内視鏡用フード1は軟質樹脂を用いたことにより、患者の管腔形状に弹性変形して管腔を通過するために比較例よりも外径が大きかつたにも関わらず、苦痛が小さかったということが判明した。

【0033】さらに、術者のスネア操作性を調べる官能試験においては本実施形態のそれは吸引して隆起された粘膜を縛縛するときの操作（ルーピング）が容易ということが判明した。これは、粘膜吸引時にキャップ部2の爪部4が吸引圧により僅かではあるが粘膜と一緒に引き込まれて変形することにより、爪部4とキャップ部2の内壁の間隔がV字状の溝となり、粘膜吸引時にもスネアワイヤー13bが固定されるためである。

【0034】本実施形態の形態によれば、内視鏡用フード1の外径を18mm、内径を16mmにしたことにより、より多くの粘膜切除が可能になった。これにより、通常であれば2回に分けて粘膜切除術を施さなければならない術者に対しても、一括で粘膜切除ができることが可能になり、手術の所用時間の短縮につながる。

【0035】また、内視鏡用フード1の全体が透明な軟質樹脂で作られているために、患者の食道咽頭部において内視鏡用フード1が管腔形状に呈して弹性変形しなが

ら挿通できる。従って、患者への挿通性の向上が図れ、強いては患者の苦痛軽減がなされるだけでなく、術者の操作性の向上による手術時間の短縮にもつながる。

【0036】また、キャップ部2に具備している爪部4が軟質樹脂で作られているために吸引された粘膜をルーピングする作業が容易となり、手術時間の短縮化及び術者の精神的苦痛軽減につながる。

【0037】【第2実施形態】本発明の第2実施形態の内視鏡用フード21を以下に示す。図7乃至図8は本発明の第2実施形態に係り、図7は内視鏡の先端部10の先端に取り付けられた内視鏡用フード21の構成を示す断面図、図8は第2実施形態の内視鏡用フード21の斜視図である。

【0038】図7に示す内視鏡用フード21は外径18mm、内径16mm、長さ14mmの略円筒形状のキャップ部22と、内視鏡用フード21を内視鏡10の先端に固定する外径13mm、内径12mm、長さ9mmの略円筒形状の内視鏡装着部23及びキャップ部22と、内視鏡装着部23を滑らかに接続する長さが5mm程度の移行部26によって構成されている。移行部26に関してはテープ状の直線でもよいし、丸みを帯びた形状でもかまわない。

【0039】さらに、キャップ部22の先端には高周波スネアワイヤー13bを保留するための高さ0.8mm程度の爪部24が設けられている。このため、キャップ部22の遠位端開口部はそれよりも基端側に位置する内径よりも細くなっていることがわかる。

【0040】また、内視鏡装着部23の遠位端には、内視鏡装着部23の内部に具備された内視鏡10の先端がキャップ部22の内部に入り込まないように設けられた高さ0.5mmの内視鏡係止部25が設けられており、この内視鏡装着部23に内視鏡の先端部10の先端を内視鏡係止部25のところまで押し込むことにより、内視鏡用フード21が内視鏡の先端部10に固定される構造になっている。

【0041】本実施形態の作用は前述した第1実施形態と同じである。従って、同様の効果が得られる。その上で、キャップ部22と内視鏡装着部23の外径の差による段差を無くした構造にしているため、内視鏡用フード21を先端部10に装着した内視鏡を体腔内から抜去する際の抵抗が少なくなり、挿通性が向上することから患者の苦痛が軽減されるだけでなく、術者の作業性も向上する。

【0042】【第3実施形態】本発明の第3実施形態の内視鏡用フード31を以下に示す。図9乃至図10は本発明の第3実施形態に係り、図9は内視鏡の先端部10の先端に取り付けられた内視鏡用フード31の構成を示す断面図、図10は第3実施形態の内視鏡用フード31の斜視図である。

【0043】図9に示す内視鏡用フード31は外径18

mm、内径16mm、長辺長さ19mm、短辺長さ12mmで遠位端開口部が斜め形状を呈したキャップ部32と、内視鏡用フード31を内視鏡の先端部10の先端部分に固定する外径13mm、内径12mm、長さ9mmの略円筒形状の内視鏡装着部33によって構成されている。

【0044】さらに、キャップ部32の先端には高周波スネアワイヤー13bを保留するための高さ0.8mm程度の爪部34が設けられている。このため、キャップ部32の遠位端開口径はそれよりも基礎側に位置する内径よりも細くなっていることがわかる。また、内視鏡装着部33の遠位端には内視鏡装着部33の内部に具備された内視鏡の先端部10の先端がキャップ部32の内部に入り込まないように設けられた高さ0.5mmの内視鏡係止部35が設けられており、この内視鏡装着部33に内視鏡の先端部10の先端部分を内視鏡係止部35のところまで押し込むことにより、内視鏡用フード31が内視鏡の先端部10に固定される構造になっている。

【0045】本実施形態の作用は前述した第1実施形態と同じである。従って同様の効果が得られる。その上に、キャップ部32の遠位端開口部面積がキャップ部32の基礎部面積（内視鏡の先端に取付ける部分）よりも大きくなるような構造にしているため、より大きな粘膜切除が可能になるだけでなく、内視鏡用フード31の先端が傾斜することにより体腔内への挿入性も向上される。

【0046】前述した説明によれば、以下の付記項のものが得られる。各付記項のものを組み合わせることも可能である。

【0047】[付記項1] 略円筒形状を有し、かつ先端部の内側に突出した爪部を具備するキャップ部と前記キャップ部材を内視鏡の先端に固定する内視鏡装着部とを備えた内視鏡用フードにおいて、前記キャップ部の外径が16mm以上ある軟質透明な樹脂から構成されていることを特徴とする内視鏡用フード。

【0048】[付記項2] 前記軟質透明な樹脂は透過率が70%以上でかつショア硬度が50~100であることを特徴とする付記項1に記載の内視鏡用フード。

【0049】[付記項3] 前記軟質透明樹脂が(A)ビニル芳香族化合物を主体とする重合体ブロック(a)と共にジエン化合物を主体とする重合体ブロック(b)とからなるブロック共重合体を水素添加してなるブロック共重合体と、(B)メタクリル酸メチルを主成分とした重合物からなるアクリル系樹脂と、(C)少なくとも1種の熱可塑性樹脂を主成分とする組成物により形成されていることを特徴とする付記項1に記載の内視鏡用フード。

【0050】[付記項4] 前記キャップ部先端に設けられた爪部が軟質樹脂からなることを特徴とする付記項1に記載の内視鏡用フード。

【0051】[付記項5] 前記キャップ部及び内視鏡装着部が一体成形なされていることを特徴とする付記項1に記載の内視鏡用フード。

【0052】[付記項6] 前記内視鏡装着部の長さが10mm以下であることを特徴とする付記項1に記載の内視鏡用フード。

【0053】[付記項7] 前記キャップ部の外径と内視鏡装着部の外径が滑らかに変化する移行部を設けたことを特徴とする付記項1に記載の内視鏡用フード。

【0054】[付記項8] 前記キャップ部の先端開口部が傾斜していることを特徴とする付記項1に記載の内視鏡用フード。

【0055】このように軟質透明な内視鏡用フードのキャップ部外径を16mm以上にすることにより、内視鏡用フードを取付けた内視鏡を体内に挿入するときには、内視鏡用フードが管腔形状に変形して管腔内を押し進めることができる。さらにキャップ部外径が16mm以上と大きいことにより、より多くの粘膜をポリープ状に隆起した状態で高周波スネアワイヤーを隆起した粘膜の根元に配置することが可能になる。

【0056】また、透明樹脂の透過率を70%以上にすることによって、内視鏡の視野を妨げることなく、また樹脂のショア硬度を50~100にすることにより、粘膜吸引時においても内視鏡用フードが変形することなくかつ粘膜への押圧による損傷も生じることがない。

【0057】また、透明樹脂にステレンを用いることで透明性、生体適合性及び耐薬品性を付与することができる。またゴム成分であるイソプレンを用いることにより柔軟質を付加させて内視鏡用フードに適度な硬度及び柔軟質に調整することができる。さらには、アクリル樹脂を添加させることによってさらに透明性に優れた内視鏡用フードを製作することが可能になる。

【0058】また、前記爪部に軟質樹脂を用いたことにより、粘膜吸引時に生じていた高周波スネアワイヤの動きを抑制することができる。

【0059】また、軟質樹脂を用いることにより射出成形時の無理抜きが可能になったために内視鏡用フードのキャップ部と内視鏡装着部が同一材料で一体成形することができる。

【0060】さらには、前記キャップ部と内視鏡装着部を滑らかに接続する移行部を設けたことにより、体腔内での挿通性を向上させることができる。

【0061】

【発明の効果】本発明の内視鏡用フードによれば、キャップ部の外径を大きくしたことにより、より多くの粘膜切除量が得られることから手術時間の短縮化が図れる。また、軟質透明樹脂を用いたことにより体腔内への挿入性があると共に、体内挿入時の粘膜にかかる負担が軽減されることから患者に与える苦痛を軽減できる。さらに、軟質樹脂を用いたことにより一体成形が可能になつ

内視鏡用フード

特開2001-275933

したことから一体成形を採用すれば生産性の向上が図れる。

【図面の簡単な説明】

【図1】本発明の第1実施形態の内視鏡用フードの構成を示す断面図。

【図2】本発明の第1実施形態の内視鏡用フードの斜視図。

【図3】本発明の第1実施形態の内視鏡用フードのキャップ部で粘膜を吸引した状態を示す断面図。

【図4】本発明の第1実施形態の内視鏡用フードを用いて粘膜に高周波スネアを被せようとしている状態を示す断面図。

【図5】本発明の第1実施形態の内視鏡用フードを用いて粘膜に高周波スネアを被せた状態を示す断面図。

【図6】本発明の第1実施形態の内視鏡用フードを用いて粘膜に高周波スネアを被せて切除する状態を示す断面

図。

【図7】本発明の第2実施形態の内視鏡用フードの構成を示す断面図。

【図8】本発明の第2実施形態の内視鏡用フードの斜視図。

【図9】本発明の第3実施形態の内視鏡用フードの構成を示す断面図。

【図10】本発明の第3実施形態の内視鏡用フードの斜視図。

10 【符号の説明】

- 1, 21, 31…内視鏡用フード、2, 22, 32…キャップ部、3, 23, 33…内視鏡装着部、4, 24, 34…爪部、5, 25, 35…内視鏡係止部、26…移行部、10…内視鏡の先端部、11…チャンネル、12…粘膜、13…高周波スネア、13a…スネアシース、13b…スネアワイヤー。

【図1】

【図2】

【図3】

【図4】

【図5】

【図6】

【図7】

【図8】

【図9】

【図10】

K136PA-133

2001-275933

HOOD FOR ENDOSCOPE

[Embodiments of the Present Invention] In the following description, the present invention will be set forth with reference to some embodiments thereof. However, it is to be understood that the present invention is not limited to such specific embodiments.

[0016] [First embodiment] FIG. 1 through FIG. 6 relate to a first embodiment of the present invention: FIG. 1 is a section view showing a construction of an endoscopic hood 1 fit over a distal end portion 10 of an endoscope; FIG. 2 is a perspective view of the hood 1 of the first embodiment; and FIG. 3 through FIG. 6 show procedures for resection of the mucosa 12 using an RF snare 13b of an RF snare wire 13: FIG. 3 is a section view showing a portion of the mucosa 12 drawn in by a cap portion 2 of the hood 1; FIG. 4 is a section view showing the RF snare 13b of the RF snare wire 13 to be placed over the portion of the mucosa 12; FIG. 5 is a section view showing the RF snare 13b positioned over the portion of the mucosa 12; and FIG. 6 is a section view showing the portion of the mucosa 12 tied with the RF snare 13b.

[0017] The endoscopic hood 1 includes the cap portion 2 shaped to be substantially cylindrical and sized to be 18 mm in outer diameter, 16 mm in inside diameter, and 14 mm in length; and a fitting-over-endoscope portion 3 shaped to be substantially cylindrical and sized to be 13 mm outside diameter, 12 mm in inside diameter and 10 mm in length, for securely attaching the endoscopic hood 1 to the distal end portion 10 of an insertion section of the endoscope. The cap portion 2 and the fitting portion 3 may be integrally formed.

[0018] The cap portion 2 is provided at its distal end with a pawl 4 of 0.8 mm or so in height inwardly projected for captively holding the RF snare 13b of the RF snare wire 13. The fitting-over-endoscope portion 3 is provided at its distal end with an endoscope stopper portion (member) 5 having a height of 0.5 mm. The stopper 5 inwardly projects to prevent the endoscope distal end portion 10 held in the interior of the fitting portion 3 from entering the cap portion 2. Accordingly, once the endoscope distal end portion 10 is inserted into the fitting portion 3 and pushed until it engages with the endoscope stopper portion 5, the endoscopic hood 1 is fit over the endoscope distal end portion 10.

[0019] The endoscopic hood 1 shown in FIG. 1 is made of SB polymer (manufactured by CURARY CO., LTD.), which is a styrene resin with a permeability of 90 % or more and a durometer of Shore 82 and shaped as described above. The hood 1 is not necessarily made of the above material only, but it may be made of (A) a block copolymer comprising (a) a block of polymers mainly composed of a vinyl aromatic compound and (b) a block of polymers mainly composed of a conjugated dien compound, (B) an acrylic resin mainly composed of methyl methacrylate, and (C) a component mainly composed of at least one type of thermoplastic resin. The hood 1 may be made of at least a flexible transparent resin. To be more specific, it is preferably made of (A) a block copolymer having styrene as composition (a) and isoprene as composition (b), (B) an acrylic resin formed by block copolymerization of methyl methacrylate - acrylic acid, and (C) styrene - acrylonitrile resin as a thermoplastic resin. It should be noted that the aforementioned flexible transparent resin has a durometer of Shore 50 to 100.

[0020] The aforementioned resin is good in biocompatibility, sufficiently permeable and colorless so as not to block the field of view of the endoscope, as well

as hard enough so as not to be deformed when pressed against the mucosa and during aspiration.

[0021] For the cap portion 2 of the endoscopic hood 1, the outside diameter may be 16 mm to 20 mm or so, when alleviation of the patient's pain and its insertability are taken into considerations. The inside diameter of the cap portion 2 may be 14 mm to 18 mm or so, when considering that the more the mucosa is to be excised, the larger diameter will be required. Furthermore, the cap portion 2 may have 0.5 mm to 2 mm or so in thickness, because it requires a thickness sufficient to withstand deformation due to pressing force by the mucosa and suction pressure. With each of the dimensions described above taken into considerations, the cap portion 2 preferably has an outside diameter of approximately 18 mm, an inside diameter of approximately 16 mm, and a thickness of approximately 1 mm.

[0022] For the fitting-over-endoscope portion 3 of the endoscopic hood 1, the inside diameter may be 6 mm to 16 mm or so since it should correspond to the outside diameter of the endoscope distal end portion 10. The thickness of the fitting portion 3 may be 0.5 mm to 1 mm or so with considerations of its ability to fit over the endoscope and mouldability. The length of the fitting portion 3 may be

3 mm to 10 mm or so, in order to evade such risks that the distal end portion 10 of the endoscope insertion section may be disengaged during insertion into the patient's body cavity and that the endoscope insertion section may be precluded from bending. Therefore, the fitting portion 3 of the endoscopic hood 1 is preferably 0.7 mm or so in thickness and 10 mm or so in length, with the aforementioned dimensions taken into considerations.

[0023] The pawl 4, which is disposed at the distal end of the cap portion 2, may be at least 0.3 mm or more since it is required to be larger than the diameter of an RF snare wire 13b. The larger the pawl 4, however, the less the mucosa is aspirated, thereby the less the mucosa removed, so that the pawl may be less than 2 mm, preferably 0.8 mm or so.

[0024] The endoscope stopper portion 5, which is disposed at the distal end of the fitting portion 3 of the hood 1, needs to be sized to allow the stopper 5 to engage with and prevent the distal end portion 10 of the endoscope fit into the fitting portion 3 from displacement against the pressure from the patient's lumen wall upon insertion into and removal from the body. When this portion 5 is too large, however, it comes into the field of view of the

endoscope. Therefore, the height of the stopper 5 is in the range of 0.3 mm to 1 mm, preferably 0.5 mm or so.

[0025] Description will be now made on procedures for resection of the mucosa 12 using the endoscope with the hood 1 of the present embodiment.

[0026] At the outset, an operation section (not shown) of the endoscope is manipulated to move the endoscope distal end portion 10 so that a distal opening of the cap portion 2 of the endoscopic hood 1 reaches to a target area of the mucosa 12 to be excised. Then, the distal opening of the cap portion 2 is pressed against the target area of the mucosa 12 and aspirated through a channel 11 of the endoscope by an aspiration device (not shown). This area of the mucosa 12 to be excised is drawn into the interior of the cap portion 2 to be raised by the negative pressure as shown in FIG. 3.

[0027] Subsequently, the RF snare wire 13 is inserted into the endoscope channel 11 and the snare 13b is extended forwardly from a snare sheath 13a. The snare 13b is advanced until it abuts on the pawl 4. The snare 13b is opened, and then the snare sheath 13a is pushed out. In this manner, the snare 13b is positioned over and around the raised area of the mucosa 12 to be excised as shown in FIG. 5. Thereafter,

further application of suction causes the mucosa to be drawn into the entire interior of the cap portion 2.

[0028] Then, the snare 13b is retracted into the snare sheath 13a to tie the area of the mucosa 12 to be excised. Application of RF energy to the snare 13b causes resection of the mucosa 12. Thereafter, suction is applied through the endoscope channel 11 from the aspiration device (not shown) after removal of the RF snare wire 13. Being held in the interior of the cap portion 2 of the hood 1, the excised portion of the mucosa 12 is thus removed from the body cavity together with the endoscope distal end portion 10 and collected.

[0029] Examinations were made on the resection amount of the mucosa, the degree of pain, and the maneuverability of RF snare when the endoscopic mucosal resection is performed using the endoscopic hood 1 of the present invention.

[0030] Prior to the examinations, an example endoscopic hood was manufactured and subjected to the same examinations for comparison in which the hood includes a substantially cylindrical cap member of polycarbonate with an outside diameter of 15 mm, an inside diameter of 13 mm, and a length of 12 mm; and a substantially cylindrical fitting-over-

endoscope member of vinyl chloride with an outside diameter of 13 mm, an inside diameter of 12 mm, and a length of 9 mm.

[0031] In measurement of the resection amount of mucosa, fragments as small as 15 mm or so in diameter were obtained by the example hood, whereas using the hood 1 of the present embodiment, fragments as large as 25 mm or so in diameter were collected.

[0032] In an organic function test for examining the degree of pain, the patient less complained of pain and the endoscope insertability was better when the hood 1 of the present embodiment was used. It reveals that the use of a flexible resin contributes to alleviation of pain, despite of the fact that the hood 1 of the present embodiment has a larger outside diameter than the example hood. This is because the hood 1 made of a flexible resin is elastically deformed to the shape of the lumen of the patient while it passes therethrough.

[0033] In another organic function test for examining the maneuverability of snare by the surgeon, it has been found that the present embodiment facilitates the maneuverability (for looping) upon tying the portion of the mucosa drawn in and raised. This is because the pawl 4 of

the cap 2 is slightly drawn in together with the mucosa by suction pressure; this causes a V-shaped groove to be defined between the pawl 4 and the inner wall of the cap 2, the snare 13b thereby being securely held even during mucosa aspiration.

[0034] According to the present embodiment, increase in the resection amount of mucosa is attained since the endoscopic hood 1 is sized to be 18mm in outside diameter and 16 mm in inside diameter. Thus, the surgeon, who normally repeats the mucosa resection procedure twice to completely remove the target area, needs to conduct it only once. This in return leads to reduction in time required for the surgical operation.

[0035] In addition, since the entire endoscopic hood 1 is made of a transparent flexible resin, it is elastically deformed according to the shape of the lumen from the pharynx to the esophagus of the patient while inserted therethrough. In this manner, the insertability through the patient's body cavity is improved, leading to alleviation of pain from the patient, as well as reduction in time required for surgical operation due to improvement of the maneuverability by the surgeon.

[0036] Furthermore, since the pawl 4 carried by the cap

portion 2 is made of a flexible resin, the procedure to loop
the portion of the mucosa drawn in is facilitated, resulting
in reduction in time required for surgical operation and
alleviation of the surgeon's mental pain.