In the claims:

⁻ 2

Please amend the claims as follows:

1. (currently amended) A seismometer comprising:

a hydrodynamically efficient shaped body containing a seismic device; a propulsion unit located on said body , said propulsion unit comprising a plurality of fins for propelling said body through an ocean to a designated location on an ocean bottom and digging into said ocean bottom to improve coupling and vector fidelity of said seismic device to the ocean bottom; and a control unit for directional control of said propulsion unit.

2. (currently amended) The apparatus of claim 1 further comprising:

a navigation unit for directing the control unit to a desired location on the ocean bottom and utilize said plurality of fins to fine tune an attitude of the body and seismic device with respect to a horizontal reference plane.

- 3. (currently amended) The apparatus of claim 1 wherein said seismic device comprises

 a seismic sensor fins a located on the body so that they oppose each other and each

 fins lowers a different side of the body when digging into the ocean bottom.
- 4. (currently amended) The apparatus of claim 3, wherein said apparatus further comprises a storage device for storing seismic data sensed by said seismic sensor. a predetermined coupling and orientation maneuver with said fins.

- 5. (currently amended) The apparatus of claim 1, wherein said control unit receives
 navigation commands and a predetermined coupling and orientation maneuver from
 a navigation system.
- 6. (original) The apparatus of claim 5 wherein the control unit communicates an identifier code to the navigation system enabling the navigation system to determine location of the apparatus.
 - 7. (original) The apparatus of claim 6 wherein the navigation system sends a responsive directional command to the apparatus based on the current location and the desired location.
 - 8. (original) The apparatus of claim 1 wherein the propulsion system acts to couple the apparatus to the ocean floor.
 - 9. (currently amended) The apparatus of claim <u>1</u> wherein the navigation system comprises a flight control system for managing a plurality of said apparatuses during navigation.
 - 1 10. (original) The apparatus of claim 9 wherein the flight control system is located on a surface support vessel.

1

11. (currently amended) A method for deploying a seismometer comprising the steps for:

2		placing a hydrodynamically efficient shaped body containing a seismic device
3 -		into water above an ocean bottom;
4		energizing a propulsion unit located on said body to propel the seismometer
5		through the fluid;
6		digging into said ocean bottom to improve coupling and vector fidelity of said
7		seismic device to the ocean bottom; and
8		receiving a command in propulsion unit from a control unit for directional
9		control of said propulsion unit.
1	12.	(currently amended) The method of claim 11 further comprising the step for:
2		receiving a command from a navigation system for directing the control unit
3,		to control the propulsion unit to move a desired location on the ocean bottom;
4		<u>and</u>
5		fine tuning an attitude of said body and seismic device with respect to a
6		horizontal reference plane.
1	13.	(currently amended) The method of claim 1 wherein said seismic device comprises a
2		seismic sensor.
3		further comprising moving fins located on the body so that they oppose each other
4		and so that each fin lowers a different side of the body when digging into the ocean
5		bottom.

1	14.	(currently amended) The method of claim 3, wherein said method further comprises
2		the step for:
3		storing seismic data sensed by said seismic sensor in a storage device on said
4		body. performing a predetermined coupling and orientation maneuver with
5		said fins.
1	15.	(currently amended) The method of claim 11, further comprising the step for:
2		receiving navigation commands and a predetermined coupling and orientation
3		maneuver from a navigation system.
1	16.	(original) The method of claim 15 further comprising the step for:
2		communicating an identifier code from the control unit to the navigation
3	·	system enabling the navigation system to determine the location of the body.
1	17.	(previously amended) The method of claim 16 further comprising the step for:
2		sending a responsive directional command from the navigation system to the
3		control unit based on the current location of the body and the desired location.
1	18.	(original) The method of claim 11 further comprising the step for:
2		coupling the body to the ocean floor via said propulsion system.
1	19.	(original) The method of claim 11 further comprising the step for:
2		controlling the flight path for a plurality of bodies.

20. (original) The method of claim 19 wherein the flight control system is located on a surface support vessel.

1

2