# Abreviações que irei usar.

Entrada 1 = E1.

Entrada 2 = E2.

LEDs = L1, L2, L3, n, ..., L8. (L1 = LED do segmento 1, L2 = LED segmento 2 e assim successivamente).

A= L1, B=L2, C=L3, D=L4, E=L5, F=L6, G=L7, H=L8.

#### Seguindo as abreviações começo então a resolução da questão.

De acordo com os dados a seguir, cada letra representa um segmento em um display de 7 segmentos. (ou seja, os números: 0, 1, 2, 3 como mostra a seguir).

- 0 (Zero) A, B, C, D, E, F
- 1 (Um) B, C
- 2 (dois) A, B, C, D, E, G
- 3 (três) A, B, C, D, G

Para melhor especificar para se formar o número zero (0) preciso dos segmentos como mostrado acesos. Para melhorar mais a especificação toda vez que eu usar o termo **Segmento** estarei me referindo aos LEDs. Então se eu acender os segmentos de valores **A, B, C, D, E, F** eu irei ter o valor zero (0) aceso no display como mostro no exemplo a seguir.



Lembrando que toda vez que eu tenho representando binários, *Ligado!* eu tenho a representação = 1 e, *Desligado!* eu tenho a representação = 0. Então se eu usar essa informação para representar os valores dos LEDs acesos = 1 e desligados = 0 eu consigo uma saída ou uma possibilidade de LEDs acessos e apagados que ficarão assim formando os numeros:

| Números a<br>serem<br>mostrados<br>no display | L1(A) | L2(B) | L3(C) | L4(D) | L5(E) | L6(F) | L7(G) | L8(H) |
|-----------------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|
| 0                                             | 1     | 1     | 1     | 1     | 1     | 0     | 0     | 1     |
| 1                                             | 0     | 1     | 1     | 0     | 0     | 0     | 0     | 1     |
| 2                                             | 1     | 1     | 1     | 1     | 1     | 1     | 0     | 1     |
| 3                                             | 1     | 1     | 1     | 1     | 0     | 0     | 1     | 1     |

Sabendo dessa informação eu consigo usar uma formula onde  $Células = 2^n$  onde n é o numero de entradas e células o número de possibilidades combinadas entre os bits. Se eu irei formar os numero 0, 1, 2, e 3 eu tenho 4 possibilidades onde então

Células = 2<sup>n</sup> ← 4 = 2<sup>n</sup> eu terei 2 ou seja Raiz quadrada de 4 = 2; Se o 2 representa n e n representa o número de entradas então eu tenho a tabela a seguir com duas entradas e 4 possibilidades.

| Números a<br>serem<br>mostrados<br>no display | E1 | E2 | L1(A) | L2(B) | L3(C) | L4(D) | L5(E) | L6(F) | L7(G) | L8(H) |
|-----------------------------------------------|----|----|-------|-------|-------|-------|-------|-------|-------|-------|
| 0                                             | 0  | 0  | 1     | 1     | 1     | 1     | 1     | 1     | 0     | 1     |
| 1                                             | 0  | 1  | 0     | 1     | 1     | 0     | 0     | 0     | 0     | 1     |
| 2                                             | 1  | 0  | 1     | 1     | 1     | 1     | 1     | 0     | 1     | 1     |
| 3                                             | 1  | 1  | 1     | 1     | 1     | 1     | 0     | 0     | 1     | 1     |

# Tabela verdade completa Abaixo também temos as tabelas verdades de cada segmento separado

Abaixo a simbologia A' significa A barrado que é referente a E1 e B' significa B barrado que é referente a E2.

Segundo o mapa de Karnaugh quando uma saída for igual a (1) um, as entradas serão barradas e nas outras posições onde não há 1 no mapa eu represento com (0) zero.

Sendo então L1 igual a:

| E1 | E2 | L1(A) |
|----|----|-------|
| 0  | 0  | 1     |
| 0  | 1  | 0     |
| 1  | 0  | 1     |
| 1  | 1  | 1     |

No mapa de Karnaugh eu

represento como:

|    |    | - |
|----|----|---|
|    | B' | В |
| A' | 1  | 0 |
| A  | 1  | 1 |

Sendo que formando os pares com uns eu terei a representação como: S = A+B'

Sendo então L2 igual a:

| E1 | E2 | L2(B) |
|----|----|-------|
| 0  | 0  | 1     |
| 0  | 1  | 1     |
| 1  | 0  | 1     |
| 1  | 1  | 1     |

No mapa de Karnaugh eu represento como:

|    | B' | В |
|----|----|---|
| A' | 1  | 1 |
| Α  | 1  | 1 |

Sendo que formando os pares com uns eu terei a representação como: S = 1

Sendo então L3 igual a:

| E1 | E2 | L3(C) |
|----|----|-------|

| 0 | 0 | 1 |
|---|---|---|
| 0 | 1 | 1 |
| 1 | 0 | 1 |
| 1 | 1 | 1 |

| A' | 1 | 1 |
|----|---|---|
| Α  | 1 | 1 |

No mapa de Karnaugh eu represento como:

Sendo que formando os pares com uns eu terei a representação como: S = 1

### Sendo então L4 igual a:

| E1 | E2 | L4(D) |
|----|----|-------|
| 0  | 0  | 1     |
| 0  | 1  | 0     |
| 1  | 0  | 1     |
| 1  | 1  | 1     |

No mapa de Karnaugh eu represento como:

|    | B' | В |
|----|----|---|
| A' | 1  | 0 |
| Α  | 1  | 1 |

Sendo que formando os pares com uns eu terei a representação como: S = A+B'

# Sendo então L5 igual a:

| E1 | E2 | L5(E) |
|----|----|-------|
| 0  | 0  | 1     |
| 0  | 1  | 0     |
| 1  | 0  | 1     |
| 1  | 1  | 0     |

No mapa de Karnaugh eu represento como:

|    | B' | В |
|----|----|---|
| A' | 1  | 0 |
| Α  | 1  | 0 |

Sendo que formando os pares com uns eu terei a representação como: S = B'

## Sendo então L6 igual a:

| E1 | E2 | L6(F) |
|----|----|-------|
| 0  | 0  | 1     |
| 0  | 1  | 0     |
| 1  | 0  | 0     |
| 1  | 1  | 0     |

No mapa de Karnaugh eu represento como:

|    | B' | В |
|----|----|---|
| A' | 1  | 0 |
| Α  | 0  | 0 |

Sendo que formando os pares com uns eu terei a representação como: S = A'B'

#### Sendo então L7 igual a:

| E1 | E2 | L7(G) |
|----|----|-------|
| 0  | 0  | 0     |
| 0  | 1  | 0     |
| 1  | 0  | 1     |
| 1  | 1  | 1     |

No mapa de Karnaugh eu represento como:

|    | B' | В |
|----|----|---|
| A' | 0  | 0 |
| Α  | 1  | 1 |

Sendo que formando os pares com uns eu terei a representação como: S = A

Sendo então L8 igual a:

| E1 | E2 | L8(H) |
|----|----|-------|
| 0  | 0  | 1     |
| 0  | 1  | 1     |
| 1  | 0  | 1     |
| 1  | 1  | 1     |

No mapa de Karnaugh eu represento como:

|    | B' | В |
|----|----|---|
| A' | 1  | 1 |
| Α  | 1  | 1 |

Sendo que formando os pares com uns eu terei a representação como: S = 1

Partindo do mapa de Karnaugh chegamos as **expressões logicas** simplificadas a seguir.

S= A+B'

S= 1

S= 1

S= A+B'

S= B'

S= A'B'

S= A

S= 1

Com essas expressões eu monto o seguinte **Circuito logico** separadamente.





S= 1

LIGADO

S= 1

**LIGADO** 

S= A+B'



S= B'

**B' OU B BARRADO** 

S= A'B'



S = A

# **A NORMAL**

S= 1

LIGADO

# Abaixo segue as combinações do Circuito logico em 0 1 2 3





