演示实验完成情况统计表

			ı					
姓名	唐嘉良		学号	2020K8009907032				
组号	04 班 04 组		选课单序	08				
			号					
电话	15062956077		常用邮箱	tangjialiang20@mails.ucas.ac.cn				
实验开展情况统计								
序号	实验名称	日期地点	值班员	同组人员及其他事项				
1	超声光栅实验	2021.11.18 教 721	王佳怡	李昭辉、李蕊				
2	磁致伸缩实验	2021.12.16 教 717	张兵兵	李昭辉、王品傲				
3	单摆实验	2021.11.04 教 716	刘泽	李昭辉、何兆典				
4	冷却法测量金属比热容实验	2021.11.11 教 427	刘波	李昭辉、王品傲				
5								
6								

- 1、选课单序号见正式实验分组表的姓名前的序号。
- 2、本表附演示实验总结(作业)1份、演示实验记录表(照片或扫描件)1套,文件命名为本人姓名,请在系统关闭前上传于课程网站。
- 3、《统计表》纸版和演示实验记录表原件钉好后,请自助投到到教学楼 701 前的投递箱。

演示实验总结

一.单摆实验

【实验原理】

单摆小球模型:

$$ml\frac{d^2\theta}{dt^2} = -mgsin\theta$$

作小角近似,得到单摆周期公式:

$$T = 2\pi \sqrt{\frac{l}{g}}$$
 , $g = 4\pi^2 \frac{l}{T^2}$

实验采用**累计测量法**减小误差,或者**画出T^2 - L图**,其斜率 k = g 有关,且不难得到:

$$g = 4\pi^2 \frac{l_2 - l_1}{T_2^2 - T_1^2}$$

由于系统误差的存在,后者更有意义。

【实验过程】

1. 固定摆长测重力加速度

首先我们利用卷尺测量出了细线长度,然后又用游标卡尺测出小球沿摆长方向直径,最后利用仪 器测量出了单摆小角摆动周期。

2. 改变摆长测重力加速度

改变摆长为60、70、80、90、110,多次测量得到周期均值。

3. 复杂的单摆周期公式

$$T = 2\pi \sqrt{\frac{l}{g}} \left[1 + \frac{d^2}{20l^2} + \frac{m_0}{12m} \left(1 + \frac{d}{2l} + \frac{m_0}{m} \right) + \frac{\rho_0}{2\rho} + \frac{\theta^2}{16} \right]$$

从上面公式可以看出,实验结果受到小球质量、小球密度、空气密度、摆角等因素的影响。

【实验结果】

实验求出重力加速度均值为

$$g = 9.87m/s^2$$

理论值为 $g = 9.807 \text{ m/s}^2$,可见实验结果与理论值符合得很好,相对误差在 3%以内。

在实验过程中,我们遇到了意外情况,系住小球的细绳发生了断裂,而临时又没有寻找到替代的细绳,经过大家的不懈努力,终于通过穿引利用这根断裂的细绳完成了实验。

【思考题】

1. 用单摆测定重力加速度必须满足的条件是什么?

平面摆动、小角摆动、细线夹紧等。

2. 摆球从平衡位置移开的距离为摆长的几分之一时,摆角约为 5°?

计算得约是摆长的 0.087, 即约十二分之一。

【**附录**】 实验数据记录和处理如下:

料果何 g.	16 shmm					
小姑龙行	10.00			g-us-		
tet/cm	les om	1 loom	9a an	80 cm	1 70 cm	160 cm.
10 T/us	10,130,736	21,264 536	19,324	17, 857,19	\$ 16,861,	15,700,984
Tarefus	2,013,673	2,126,453	1,932,	1,785,719	1,680,	1,570,098
8/m/s2	9.898	9.748	9.688	10.099	8 <u>#</u>	9.866.
		130 2342			9.944	

图 1 单摆实验数据表

二.超声光栅实验

【实验原理】

压电陶瓷片在高频信号源产生交变电场下产生周期性的压缩和伸长,在液体中传播就形成超声波; 超声波传播时声压使得液体中形成疏密波,当平行光垂直超声波传播方向时会产生衍射,产生超声致 光衍射的现象。

由光栅方程:

$$d\sin\phi_k = k\lambda$$
 ($k=0$, 1, 2,)

可以确定主极大位置。

【实验过程】

放置好仪器,打开钠灯电源,调整仪器(包括液槽、透镜等),让小组其它人在另一侧观察是否产生超声光栅现象,并用手机记录下+-3级谱线照片。

本实验在仪器调整方面比较困难,需要多次反复调节。

【思考题】

1. 为什么声光器件可相当于相位光栅?

器件中的液体分子呈周期性分布,满足光栅产生条件,易衍射及干涉,可以相当于相位光栅。

2. 怎样判断平行光束垂直入射到超生光栅面? 怎样判断压电陶瓷片处于共振状态?

屏幕条纹间距相当; 衍射条纹的数量增多、亮度提高。

3. 从实验数据去检验声光衍射条件是否满足。

观察条纹间距是否基本相同, 若是, 则可以认为满足声光衍射条件。

【实验结果及附录】

实验数据记录和处理如下:

实 演 示

纸 记录 验

室温:263℃

地点 教》21 实验日期 2021年11月18日

姓名 唐嘉良 学号 2020 K800 990 又0 务班分组及座号 4班-04组 (例:1-04-5号) 王佳宁

此纸用于笔记、记录数据和现场处理分析。实验完成后需找教师签字。

1、超声致光衍射的原理(1-2句话总结)

2、单色光源波长 $\lambda = (589.3 \pm 0.3)$ nm

被测液体

透镜 L2 焦距 f= (157.0±0.4) mm

普通水

t= 12 149x+25(12-26.3)

 $V_t = 1461. \ \text{V} \ \text{m/s}$

信号频率

液体温度

v = 11.798 MHz

表 1. 衍射级次 k 和衍射谱线位置

k	L_k	$L_{ k }-L_{ k -1}\;(\mathrm{mm})$	$(L_{ k } - L_{ k -2})/2$ (mm)	$(L_{ k } - L_{ k -3})/3$ (mm)
-3	0.576	0.679	0.677	0.750
-2	1.255	0.675	0.785	
-1	1.930	0.895		
0	2-825		_	_
1	3.454	0.629		
2	4.170	0.7/6	0.073	
3	4.859	0.689	0.703	0.678

 $\Delta I_{k} = \frac{1}{12} \sum_{k} \left[L_{|k|} - L_{|k|-1} + \left(L_{|k|} - L_{|k|-2} \right) / 2 + \left(L_{|k|} - L_{|k|-3} \right) / 3 \right] = 0.712 \, (\text{mm})$

$$V = \frac{\lambda f v}{\Delta I_k} = 1531 \cdot 9$$

3、手机拍摄一张条纹照片

图 3 超声光栅衍射图

三.冷却法测量金属比热容实验

【实验原理】

高温物体在低温介质中冷却,有冷却定律:

$$\frac{\Delta Q}{\Delta t} = as(\theta_1 - \theta_0)^m$$

另一方面,

$$\frac{\Delta Q}{\Delta t} = CM \frac{\Delta \theta}{\Delta t}$$

若两样品尺寸相同,表面状况相同,周围空气性质不变,处于相同温度时,可以推导出:

$$C_2 = C_1 \frac{M_1(\Delta t)_2}{M_2(\Delta t)_1}$$

【实验过程】

连接好仪器,对铁、铝、铜三种样品作同样实验:将样品套在铂电阻杆上,伸入仪器内部进行加 热,待到欧姆表示数超过 140Ω 一些以后,停止加热,用风扇散热,欧姆表示数为 140.4Ω 时开始计 时,136.60时停止计时,得到降温时间,多次测量取平均值。

【实验结果】

以铜样品为标准: $C_{Cu} = 0.39J/(g \cdot {}^{\circ}C)$,

计算得铁样品的比热容: $C_{Fe} = C_{Cu} \frac{M_{Cu}(\Delta t)_{Fe}}{M_{Fe}(\Delta t)_{Cu}} = 0.39 \times \frac{18.34*19.08}{18.07*16.83} = 0.44 J/(g \cdot C)$ 计算得铝样品的比热容: $C_{Al} = C_{Cu} \frac{M_{Cu}(\Delta t)_{Al}}{M_{Al}(\Delta t)_{Cu}} = 0.39 \times \frac{18.34*14.60}{6.50*16.83} = 0.95 J/(g \cdot C)$

【本实验无思考题】

【附录】

实验数据记录和处理如下: (小组成员共用一份数据记录表)

孩童	
MFe	= 18.349.
- MAL	- = 6.50 g. 140.40.0 136.61.0
100	我到对流度却下由10°c→95°可谓
Cu	16 H 21 16 50 41 16 97 16 12 2 15 Ave oi
Fe	8.75 19.04 19.72 19.00 18.90 19.08
M	14.75 14.94 14.75 14.25 14.5 14.60.
130	wel.11.11.
14	何此典,参观战斗、传教自
30	
100	
	110
	de/18 2021.11.1

图 4 比热容实验实验数据表

四.磁致伸缩实验

【实验原理】

外加磁场下,磁畴的旋转以及重新定位会改变样品长度,并可以利用迈克尔逊干涉仪测出。如若形变 Δ L,干涉环条纹变化 n 级,则

$$H = \frac{NI}{L}$$

【实验过程】

连接仪器,移开扩束镜,调节反射镜,使得两个两点重合,再安装扩束镜,微调反射镜,便观察 到干涉条纹。接通电源并逐渐调高电流,记录改变整数个圆环时电流数值。

实验中的主要问题在于衍射花纹对微小位移非常敏感,在调节过程中经常产生失误,不过在我们小组细心与细致之下最终顺利地完成了实验。

【思考题】

1、 请指出微波布拉格迈克尔逊干涉仪与本实验的干涉仪的异同。

异:精度不同,本实验干涉仪对微小位移十分敏感,精度很高,而微博布拉格迈克尔逊干涉仪精度不高,且容易产生误差。因此二者适用场景也不一样。

同:均是基于光程差以及反射定律设计的迈克尔逊器件,所用原理相同。

【实验结果与附录】

图 5 磁致伸缩衍射图样

磁致伸縮实验 地点 发717 实验日期2021,12、16分组 4 班-04组

此纸用于笔记、记录数据和现场处理分析。实验完成后需找教师签字。

注意事项:禁止给螺线管长时间通入大电流,测试过程要迅速,测试完毕后请将恒流源断开或将电

一、原理了解:

- 1、(不需要回答)什么是磁致伸缩效之.
- 2、 (简要回答) 1-3 句话回答迈克尔逊法测微小变化量

答: 微小位移导致光移差, 进南产生不同的干涉条

二、实验数据

130

行干	前:	_, 1寸则件口	田区人工1111	1
电流 I (A)	磁场 H(A/m)	圆环数 (n)	伸缩量ΔL ₁ (m)	$\Delta L_1/L_1$
0. 1	1834.5	1	3.16×10-1	2.43×10-6
0.00 29	3163.6	2	632×10-7	487×10-6
0. 生死	4145.5	3	9.49 × 10-7	7.30×10-6
0.57	5563.6	4	1.27 × 10-6	9.74×10-6
0.58	6327.3	5	1.58×10-6	1.22×105

x=632.8 nm

三、计算与绘图

$$\Delta L_1 = n \times \frac{\lambda}{2}$$

四、思考题(写出你的思考即可)

引力波实验装置 LIGO 的两臂光程差的变化是怎么发生的? LIGO 臂长约 4km,它能测量短波 长的引力波吗?对引力波源所在的方向有无要求? (LIGO 照片和光路图见讲义)

引力波引起两臂处了幽致应不同时,光纸光彩第不同,产生涉条章较的变化,由自义使可问 接探测到到为波。这要求到为被引起的光彩差及弯曲到这相对波长额并不足够小,所以它可以测量 强波长3/为波。对方向无要求。

V1.0