From data to RDMs Practical demonstration

Dr Ian Charest University of Birmingham

Do it yourself: 5 steps

Step 1: preprocess data

Step 2: estimate single-subject activity patterns

Step 3: select voxels

Step 4: compute the distance Matrix

Step 5: statistical inference

Do it yourself: 5 steps

Step 1: preprocess data

Step 2: estimate single-subject activity patterns

Step 3: select voxels

Step 4: compute the distance Matrix

Step 5: statistical inference

Step 1: preprocess

For each run:

- slice-scan-time correction
- motion-correction

Optional:

- normalisation to template (if random-effects searchlight analysis across subjects)
- spatial smoothing (to increase signal, sensitive to larger-scale spatial patterns)

Do it yourself: six steps

Step 1: preprocess

Step 2: estimate single-subject activity patterns

Step 3: select voxels

Step 4: train the classifier

Step 5: test the classifier

Step 6: statistical inference

Step 2: estimate single-subject activity patterns

data

BOLD signal

mountained My My many may many My Man Money

BOLD signal

3

- 12

Do it yourself: six steps

Step 1: preprocess and split data

Step 2: estimate single-subject activity patterns

Step 3: select voxels

Step 4: compute the distance Matrix

Step 5: statistical inference

Most common ways of voxel selection:

- structural selection (anatomy)
- functional selection (activity)
 - O univariate (activation differences)
 - o multivariate (pattern differences)
- geometrical selection
 - O multivoxel searchlight

Make sure that voxel selection is based on data independent from test data set.

Step 3: select voxels anatomy

For example: hippocampus

subject n

function (activation differences)

FFA PPA

Step 3: select voxels multivoxel searchlight

multivoxel searchlight

multivoxel searchlight

How many voxels?

Depends on the expected spatial extent of effects.

Find the right balance: too few \rightarrow risk of missing signal too many \rightarrow risk of overfitting (too noisy)

Common practice: select the same number of voxels in each subject.

single-subject activity patterns (whole-brain)

unmasked mean t-pattern

Do it yourself: six steps

Step 1: preprocess and split data

Step 2: estimate single-subject activity patterns

Step 3: select voxels

Step 4: compute distance Matrix

Step 5: statistical inference

Extract a condition pattern vector

Extract a pair of condition pattern vectors

Extract a pair of condition pattern vectors

Compute their distance

Extract a pair of condition pattern vectors

Compute their distance

Representational Dissimilarity Matrix (RDM)

100

[percentile of distance]

dissimilarity

Charest et al. 2014 PNAS

subject 1

(hIT)

Do it yourself: six steps

- Step 1: preprocess and split data
- Step 2: estimate single-subject activity patterns
- Step 3: select voxels
- Step 4: compute distance Matrix

Step 5: statistical inference

- Model comparison
- RDM replicability (across folds or days)

Representational Dissimilarity Matrix (RDM)

100

[percentile of distance]

dissimilarity

subject 1 (hIT)

Step 5: statistical inference

Dominant in the literature:

Random-effects analysis across subjects using a standard one-sample right-sided t test.

$$H_0$$
: r = 0

$$H_a: r > 0$$

Step 5: statistical inference

null distribution of RDM relatedness

Step 5: statistical inference

null distribution of RDM relatedness

If the actual RDM correlation falls within the top 5% (blue) of the null distribution \rightarrow reject H₀.