1

Matrix theory - Assignment 16

Shreeprasad Bhat AI20MTECH14011

Abstract—This document proves properties on transpose of linear transformation.

Download latex-tikz from

https://github.com/shreeprasadbhat/matrix-theory/blob/master/assignment16/

1 Problem

Let m, n, r be natural numbers. Let A be an $m \times n$ matrix with real entries such that $(AA^t)^r = I$, where I is the $m \times m$ is identity matrix and A^t is the transpose of the matrix A. We can conclude that

- 1) m = n
- 2) AA^t is invertible
- 3) A^tA is invertible
- 4) if m = n, then A is invertible

2 SOLUTION

Options 2) and 4) are correct.

Option	Answer
1) <i>m</i> = <i>n</i>	Let $\mathbf{A} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$ and $r = 1$ $(\mathbf{A}\mathbf{A}^{\mathrm{T}})^r = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I$ Since $m \neq n$ Option 1 is False.
2) AA^t is invertible	w.k.t $det(A^n) = (det(A))^n$ Since $(AA^t)^r = I$ So $det((AA^T)^r) = det(I)$ $(det(AA^T))^r = 1$ $\implies det(AA^T) \neq 0$ Hence AA^T is invertible Option 2 is True.
3) A ^t A is invertible	Let $\mathbf{A} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$ and $r = 1$ $(\mathbf{A}^T \mathbf{A})^r = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ But $\det(AA^T) = 0$. $\implies AA^T \text{ is not invertible.}$ Hence Option 3 is False
4) if $m = n$ then A is invertible	Since $det(AA^T) \neq 0$ $det(A).det(A^T) \neq 0$ $det(A).det(A) \neq 0$ $\implies A$ is invertible. Hence Option 4 is True