Langage machine

Année académique 2021-2022

Cadre de l'activité d'apprentissage

BINV1070-B: Langage machine

Langage Machine

- AcA orientée « Pratique »
 - ✓ Langage machine
- Examen de LM sur machine en janvier
 - ✓ LM vaut pour 100% de la note de l'UE
- En cas d'échec en janvier, représentable en juin et en septembre
- Il est obligatoire pour tous les étudiants de signer tous les examens de janvier

Cadre du cours

- Escaliers de 2h x 12 semaines
 - ✓ La plupart des notions seront approfondies au fil des séances
 - ✓ Régularité
- Supports de cours
 - ✓ Présentations PowerPoint
 - √ Fiches d'exercices
 - ✓ Prendre des notes manuscrites

Atouts et sens du cours

- Pourquoi s'intéresser à ce langage ?
 - ✓ Compréhension
 - d'un langage dit de bas niveau
 - du fonctionnement proche du processeur
 - ✓ Abstraction
 - ✓ Précision

Plan global du cours

 Des concepts essentiels pour l'informaticien

- √ Bases binaire et hexadécimal
- ✓ Fonctionnement orienté programmation dans et autour du processeur
- ✓ Adressage de valeurs en mémoire
- ✓ Langage assembleur NASM 32 bits
- ✓ Algorithmique fondamentale
 - Affectations, tests, boucles, pile
- ✓ Hacking éthique

Trois bases pour un informaticien

Hexadécimal, binaire et décimal

Systèmes de numération

8 représentations différentes du nombre 5 8 systèmes différents de numération Systèmes de numération

positionnels ex.: décimal non positionnels

ex.: romain

Un système de numération positionnel est caractérisé par sa base et par le nombre de symboles

Une base est la valeur attribuée au symbole 10

Les bases...

Décimale

Binaire

$$\checkmark 10_2 = 2_{10}$$

Hexadécimale

$$\checkmark 10_{16} = 16_{10}$$

Une base est la valeur attribuée au symbole 10

Compter...

- Selon la base décimale
 - √ 0,1,2,3,4,5,6,7,8,9,10,11,12,13,...
- Selon la base binaire
 - ✓ 0,1,10,11,100,101,110,111,1000,1001,1010, 1011,1100,1111,10000,...
- Selon la base hexadécimale
 - ✓ 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F,10,11,12,13, 14,15,16,17,18,19,1A,1B,1C,1D,1E, 1F,20,21,22,23,24,25,26,27,28,29,2A,2B,...

Dans la base hexadécimale

• . . .

•
$$A_{16}=10_{10}$$

$$\cdot B_{16} = 11_{10}$$

$$\cdot C_{16} = 12_{10}$$

•
$$D_{16}=13_{10}$$

$$\cdot E_{16} = 14_{10}$$

•
$$F_{16}=15_{10}$$

$$\cdot 10_{16} = 16_{10}$$

• . . .

Système décimal

base : 10₁₀

symboles: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

$$4693 = 4*10^3 + 6*10^2 + 9*10^1 + 3*10^0$$

Système hexadécimal

base: 10_{16} (= 16_{10})

symboles: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,

A, B, C, D, E, F

$$A3C_{16} = A_{16}*10_{16}^{2} + 3*10_{16}^{1} + C*10_{16}^{0}$$
$$= 10*16^{2} + 3*16^{1} + 12*16^{0} = 2620$$

Système binaire

base: 10_2 (= 2_{10})

symboles: 0, 1

$$101_2 = 1_2 * 10_2^2 + 0_2 * 10_2^1 + 1_2 * 10_2^0$$
$$= 1 * 2^2 + 0 * 2^1 + 1 * 2^0 = 5$$

A méditer...

 There are 10 kinds of people: those who understand binary, and those who don't.

Introduction à l'IDE SASM

Environnement de développement « intégré »

L'IDE SASM

- Simple Open Source IDE
 - ✓ pour NASM, MASM, GAS, FASM
 - √ x86 (32 bits) ou x64 (64 bits)
- https://dman95.github.io/SASM/english.html
- Windows ou Linux
- Pour Mac

https://sites.google.com/a/brianrhall.net/www/rss/installingsasmonamac

✓ Ne fonctionne pas sur MacOS High Sierra

L'IDE SASM

- Démonstration de l'IDE...
 - ✓ Semaine.1.Théorie.1.asm
 - ✓ Semaine.1.Théorie.1.exe
- exe exécutable en fenêtre de commandes sous Windows...
 - ✓ Dans l'explorateur Windows, sélectionner l'URL et ajouter CMD devant l'URL pour appuyer sur la touche *Enter* pour ouvrir une fenêtre de commandes dans ce répertoire

18

Librairie SASM d'entrées/sorties

- Les lectures (au clavier) et écritures (à l'écran) sont des opérations complexes
- Une librairie permet de simplifier cela
- "io.inc" macro library for NASM
 - ✓ Documentation dans l'aide (touche F1)
- PRINT_STRING data
 - ✓ Print null-terminated text string
 - ✓ data: string constant or name of variable
 - ✓ Ex. de variable initialisée : message db 'Institut Paul Lambin',0

Introduction au processeur

Architecture x86 32 bits

Théorie d'un processeur 32 bits

- La plupart des notions abordées ci-après seront approfondies plus tard
- Nous reviendrons donc sur ce sujet au fil des séances selon nos besoins pour les exercices

Composants principaux

- Le Processeur (CPU) contient
 - ✓ Des registres
 - ✓ Une UAL : Unité Arithmétique et Logique (ALU)
 - ✓ Une UC : Unité de Commande (CU)
 - ✓ Une horloge qui donne le rythme par seconde
- La Mémoire
 - ✓ RAM (Random Access Memory)
- Le Bus de données (Databus)

permet le transfert des données entre le processeur, la mémoire, et les composants externes.

Les bus...

- Le bus de données, permet la circulation des données
- Le bus d'adresse, permet de pointer la valeur à aller chercher en mémoire
- Le bus de contrôle, permet de contrôler le type de l'opération sur le bus, par ex. Read ou Write

Représentation des informations

- Toute information est dans l'ordinateur une suite de 0 et de 1
- 0 ou 1
 - √ 1 chiffre binaire = 1 binary digit = 1 bit
- 1 octet contient 8 bits
 - ✓ L'octet est la plus petite entité adressable
 - ✓ Schématisé | 1010,0101 | ou | A,5 |
- Toute information est représentée sur un nombre limité et fixé d'octets

Les registres de 32 bits

- EAX (Accumulateur)
- EBX (Base)
- ECX (Compteur)
- EDX (Donnée)

31	15	7	0
EAX	AX (AH)	AX (AL)	
EBX	BX (BH)	BX (BL)	
ECX	CX (CH)	CX (CL)	
EDX	DX (DH)	DX (DL)	
ESI	SI		
EDI	DI		
EBP	ВР		
ESP	SP		
EFLAGS	FLAGS		

15	0
CS	
DS	
SS	
ES	
FS	
GS	

- Affectation d'une valeur dans le registre EAX :
 - ✓ MOV EAX, 0x423B098C
 - ✓ Schématisé comme suit

- Page à étudier (de manière progressive) sur Wikipédia : https://fr.wikibooks.org/wiki/
 Programmation Assembleur/x86/Registres
 - ✓ Y revenir souvent!