Graph Analytics

Jay Pujara

DSCI558 Spring 2021 3/31/21

Illustrations from A Comprehensive Guide to Graph Algorithms in Neo4J

The most useful graph algorithms

- Pathfinding and Search
- Matching and coloring
- Centrality
- Clustering and Community Detection
- Partitioning

The most useful graph algorithms

- Pathfinding and Search
 - Djikstra's algorithm
- Matching and coloring
 - B-matching, k-coloring, graph equivalence
- Centrality
- Clustering and Community Detection
- Partitioning
 - Minimum weighted edge cut (METIS)

Basic Concepts

- Eccentricity: Maximum distance of a node to other nodes in the graph
- Central point: node with lowest eccentricity
- Radius: distance: central point's eccentricity (lowest max-distance)
- **Diameter**: largest eccentricity (highest max-distance)

Centrality

- Degree centrality
- Eigenvector Centrality / PageRank / Personalized PageRank
- Betweenness centrality
- Closeness (Harmonic) centrality
- HITS (hyperlink-induced topic search / hubs & authorities)
- GENI

Degree Centrality

- Nodes with maximum in-degree or out-degree
- Normalized my maximum degree.

PageRank

Probability a random walk (with restart) will reach a node

 Iterative algorithm, each iteration distributes node's PageRank to neighbors

• $PR(A) = 1-d + d sum(PR(V_1)/OD_1, PR(V_2)/OD_2, PR(V_n)/OD_n)$

PageRank illustrated

Betweenness Centrality

• Number of all-pairs shortest paths a node participates in

Closeness (Harmonic) Centrality

 Inverse average of distance (or average inverse distance) to all other nodes В

HITS (hubs & authorities)

- Initialize hub / authority to 1 for all nodes
- Update authority score to sum of in-edges associated hub scores
- Update hub score to sum of in-edges associated authority scores
- Normalize*

GENI

Estimating Node Importance in Knowledge Graphs Using Graph Neural Networks

Symbol	Definition
V_s	set of nodes with known importance scores
\vec{z}_i	real-valued feature vector of node i
$\mathcal{N}(i)$	neighbors of node i
L	total number of score aggregation (SA) layers
€	index for an SA layer
H^{ℓ}	number of SA heads in ℓ -th layer
p_{ij}^m	predicate of m -th edge between nodes i and j
$\phi(e)$	learnable embedding of predicate e
σ_a , σ_s	non-linearities for attention computation and score estimation
$s_h^{\ell}(i)$	estimated score of node i by h -th SA head in ℓ -th layer
$s^*(i)$	centrality-adjusted score estimation of node i
II	concatenation operator
d(i)	in-degree of node i
c(i)	centrality score of node i
$c_h^*(i)$	centrality score of node i scaled and shifted by h -th SA head
γ_h, β_h	learnable scale and shift parameters used by h -th SA head
$\vec{a}_{h,\ell}$	learnable parameter vector to compute $lpha_{ij}^{h,\ell}$ by h -th SA head in ℓ -th layer
$\alpha_{ij}^{h,\ell}$	node i 's attention on node j computed with h -th SA head in ℓ -th layer
g(i)	known importance score of node i

$$\alpha_{ij}^{\ell} = \frac{\exp\left(\sigma_a \left(\sum_m \vec{a}_{\ell}^{\top}[s^{\ell}(i)||\phi(p_{ij}^m)||s^{\ell}(j)]\right)\right)}{\sum_{k \in \mathcal{N}(i) \cup \{i\}} \exp\left(\sigma_a \left(\sum_m \vec{a}_{\ell}^{\top}[s^{\ell}(i)||\phi(p_{ik}^m)||s^{\ell}(k)]\right)\right)}$$

attention depends on predicates

Use local node importance features and node / neighbor embeddings

Community Detection

- Connected components
- Modularity
- Clustering coefficient

Connected components

• Set of nodes where each node is reachable from all other nodes

Modularity

- Number of within-cluster edges minus expected edges in random graph
- Basic random graph: cut each edge in half, rewire to other half-edge

Modularity

- Number of within-cluster edges minus expected edges in random graph
- Basic random graph: cut each edge in half, rewire to other half-edge

Clustering Coefficient

- Fraction of neighbors who are connected to each other
- Computed via number of closed triangles over all possible triangles

Additional Resources

- David Kempe's "Structure and Dynamics of Information in Networks"
- Course on <u>Structured Analysis and Visualization of Networks</u>
- Neo4J manual on <u>Graph Algorithms</u>
- NetworkX and SNAP
- Slides on <u>Social Network Analysis</u>