

#### FIRST SEMESTER 2020-2021

Course Handout Part II

Date: 12-08-2020

In addition to part-I (General Handout for all courses appended to the time table) this portion gives further specific details regarding the course.

Course No. : EEE G591

Course Title : Optical Communication

Instructor-in-charge: Prasant Kumar Pattnaik

Optical communication systems and components; optical sources and transmitters (basic concept, design and applications); modulators (electro-optic, acousto-optic and laser modulation techniques); beam forming; focussing and coupling schemes to optical repeators; optical amlifiers; optical field reception; coherent and non-coherent lightwave systems; fibre optic communication system design and performance; multichannel lightwave systems; long haul communications; fibre optic networks.

#### **Course Description:**

Basic concepts of optical Communication systems, linear and non-linear optical fibre characteristics, optical sources and transmitters (design, performance), modulator (direct/indirect), optical coupling/distribution, optical amplifiers, coherent light wave system, long-haul and distribution optical communication systems, WDM & TDM light wave system, soliton based communication system and new advances in optical communication.

#### Scope and objective of the course:

This course is intended for a specialized degree of communication engineering/Science students at senior levels. This course covers a detailed discussion on optical communication concepts, components, system and applications. The goal of this course is to enhance the basics and concepts of optical communication system design

#### 1. Text Book:

Govind P. Agrawal, "Fiber-optic Communication Systems" Third Edition, John Wiley 2002.

#### 2. Reference Books:

i) RB1: Harold Kolimbris, "Fiber Optic Communications", Pearson Education, 2008.

- ii) RB2: Gerd Keiser, "Optical Fiber Communications", McGraw Hill Education (India) Pvt. Ltd., Fifth Ed., 2013
- iii) RB3: Rajiv Ramaswami, Kumar N. Sivarajan, "Optical Networks-A Practical Perspective", Morgan Kaufmann Pub. Second Ed., 2004

# 3. Course Plan:

| L<br>No. | Learning Objective                                           | Topic to be Covered                                                   | Ref*.Chap/ Sec./<br>(Book)  |
|----------|--------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------|
| 1.       | Introduction; Concept of field propagation in optical fibres | Optical Confinement, cutoff condition, single mode/multimode concept. | 1,2(T)                      |
| 2.       | Concept of field absorption, scattering, loss                | Fiber loss, linear scattering                                         | 2(T)                        |
| 3.       | Concept of pulse broadening and bandwidth limitation         | Dispersion in fibers                                                  | 2(T)                        |
| 4.       | Concept of dispersion reduction and B.L optimization.        | Zero dispersion concepts, DSF, DFF                                    | Class discussions Ch.3 (R2) |
| 5.       | Nonlinear effects in optical fibers                          | SRS,SBS,SPM,XPM,FWM                                                   | Class, 12 (R2)              |
| 6.       | Concepts of dispersion compensation                          | Dispersion management, FWM Tech.                                      | 3.3 (R2)                    |
| 7.       | Concept of semiconductors sources                            | LED & ILD                                                             | 5.3 (R1), 3 (T)             |
| 8.       | Concepts of optical gain                                     | Laser modes, laser action, mode selection                             | Class, 3(T)                 |
| 9.       | Concept of high speed S.C lasers                             | Chirping control, mode selection                                      | Class, 6.6 (R2)             |
| 10.      | Concept of Electo-Optic effect                               | Pockel effect & Kerr effect based devices                             | 17 (R3)                     |
| 11.      | Concept of Acousto-Optic effect                              | Raman & Bragg modulators, deflectors                                  | 17 (R3)                     |
| 12.      | Concepts of Transmitter design.                              | nsmitter design. Coherent light wave Transmitters                     |                             |
| 13.      | Concept of performance issues of transmitters                | Reliability, Testing, chirping and performance study                  | Class notes                 |
| 14.      | Concept of photo detection                                   | PIN,APD, MSM.                                                         | 6(R1),4(T)                  |
| 15.      | Concept of optical receiver                                  | Receiver design, S/N Estimation, Digital optical receivers            | 10(T) Class                 |
| 16.      | Do                                                           | Digital receiver sensitivity (Coherent receivers)                     | 6.3-6.4(R1) 10(T)           |
| 17.      | Concept of receivers performance                             | of receivers performance Design issues, S/N and BER optimization.     |                             |
| 18.      | Concept of receivers overview                                | Practical receiver discussion                                         | Class,10(T)                 |
| 19.      | Concept of Semiconductor laser amplifier                     | SLA                                                                   | 6(T)                        |
| 20.      | Concept of active fiber amplifiers                           | SRA, SBS                                                              | 6(T)                        |

| 21.  | Concepts of Doped fiber amplifiers                             | EDFA                         | 6(T), Class notes      |
|------|----------------------------------------------------------------|------------------------------|------------------------|
| 22.  | Concept of light wave amplifier                                | Design and application of    | 6 (T)                  |
|      | systems.                                                       | amplifiers                   |                        |
| 23.  | Concept of light wave communication                            | Design issues of             | Class                  |
|      | systems                                                        | communication systems        |                        |
| 24.  | Concept of design Power penalty                                | Power penalty estimation     | 5.4 (T)                |
|      |                                                                | and reduction approaches.    |                        |
| 25.  | Concept and design guide-lines for Power penalty consideration |                              | 5.4 (T)                |
|      | optical link                                                   | and link budget.             |                        |
| 26.  | Concept of optical network and system                          | Different topologies used in | 8 (R1),6(R3)           |
|      | architectures                                                  | optical network              |                        |
|      | Concept of Optical Networks                                    | Optical LAN, WANS,           | 8 (R1),6(R3)           |
| 27   |                                                                | SONET/SDH                    |                        |
| 28.  | Concept WDM light wave system                                  | Channel spacing decision,    | 8(T)                   |
|      |                                                                | multipliers, design issues   |                        |
| 29.  | Concept of WDM system components                               | couplers/routers/switches    | 8(T)                   |
| 30.  | Do                                                             | Optical filters              | Class, 10 (R2)         |
| 31.  | Concepts of WDM                                                | Practical Transmitters       | Class,11 (R1)          |
|      | Transmitters/Receivers                                         | /Receivers                   |                        |
| 32.  | Concept of WDM system performance                              | Linear and Nonlinear effects | 8(T)                   |
| 3335 | Concepts of WDM Networking                                     | WDM Network                  | 8(R3)                  |
|      |                                                                | routing/management           |                        |
| 36   | Concept of time division multiplexing                          | Optical TDM techniques.      | 7.4 (R1)               |
| 37   | Concept of soliton communication                               | Soliton Generation           | 19 (R2), 9(T) 7.10 (T) |
| 38   | Do                                                             | Soliton Interaction          | 9(T)                   |
| 39   | Do                                                             | High capacity soliton        | 9(T)                   |
|      |                                                                | systems and jitter reduction |                        |
| 40   | Concept of WDM soliton system                                  | Soliton Multiplexing         | Class notes            |
|      |                                                                | techniques                   |                        |
| 41   | To learn new development in optical                            | New trends in optical        | R3,Class notes         |
|      | communication                                                  | communication                |                        |
| 42   | Do                                                             | Networking, communication    | R3,Class notes         |

# 3. List of Experiments

| S. No | Experiment/ Activity Name               | Schedule                    |
|-------|-----------------------------------------|-----------------------------|
| 1.    | Modes in Multimode fiber                | August 24 – August 29       |
| 2.    | Single Mode Fiber - Dispersion Effects  | August 31- September 5      |
| 3.    | Non-linear effects in Single Mode fiber | September 7 – September 12  |
| 4.    | LASER Characteristics                   | September 14 – September 19 |
| 5.    | PIN and Avalanche Photodiode            | September 21 – September 26 |
|       | Characteristics                         |                             |
| 6.    | Power Budget of Fiber Optic Link        | September 28 – October 3    |
| 7.    | PROJECT WORK                            | October 5 – October 17      |
| 8.    | Rise Time / Dispersion Budget of Fiber  | October 19 – October 24     |

|     | Optic Link                           |                           |  |
|-----|--------------------------------------|---------------------------|--|
| 9.  | Optical Amplifiers - EDFA -          | October 26 – October 31   |  |
|     | Characteristics                      |                           |  |
| 10. | Design of Fully compensated OOK link | November 2 – November 7   |  |
| 11. | WDM and OTDM Link Design and         | November 9 – November 14  |  |
|     | Demultiplexing                       |                           |  |
| 12. | Design of QAM Transmitter and        | November 16 – November 21 |  |
|     | Receiver                             |                           |  |
| 13. | PROJECT WORK                         | November 23 – November 28 |  |

### 4. Evaluation Scheme:

| Component     | Duration | Percentage | Marks | Date & Time     | Evaluation type |
|---------------|----------|------------|-------|-----------------|-----------------|
| Test-1        | 30 min   | 10%        | 30    | To be announced | Open Book       |
| Test-2        | 30 min   | 15 %       | 45    | To be announced | Open Book       |
| Test-3        | 30 min   | 15 %       | 45    | To be announced | Open Book       |
| Regular Labs  |          | 10%        | 30    |                 | Open Book       |
| Project       |          | 20%        | 60    |                 | Open Book       |
| Compre. Exam. | 2 hours  | 30%        | 90    | 07/12 FN        | Closed Book     |
| Total         |          |            | 300   |                 |                 |

**5. Chamber Consultation Hour:** To be announced in the class email: pkpattnaik@hyderabad.bits-pilani.ac.in

**6. Notices:** All course related notice will be displayed in **CMS** 

## 7. Make-up Examination:

No make-up will be given for project work. However, for Tests and Comprehensive Examination, make-up examination will be given only in **extremely genuine cases** for which prior permission of the instructor-in-charge is required.

**Academic Honesty and Integrity Policy:** Academic honesty and integrity are to be maintained by all the students throughout the semester and any mode of academic dishonesty will not be acceptable.