Segurança em Computação Trabalho Individual II

Adriano Tosetto - 15104099 16 de abril de 2019

1 Introdução

O trabalho foi feito em Python com a única justificativa de ser tremendamente mais fácil lidar com números gigantes nesta linguagem. Os algoritmos de geração de números aleatórios implementados foram: Lagged Fibonacci Generator, Linear Congruential Generator e Multiply With Carry. Para a verificação de números aleatórios foram utilizados os algoritmos: Miller-Rabin e Fermat.

O fonte está aqui

2 Geração de números aleatórios

${\bf 2.1}\quad {\bf N\'umeros\ pseudorand\^omicos}$

Dados						
Algoritmo	Bits	Tempo para geração(em segundos)	Número (apenas dimensão do número gerado)			
Lagged Fibonacci Generator	40	5.7220458984375e-06	4.98E+11			
Lagged Fibonacci Generator	56	5.9604644775390625e-06	1.03E + 16			
Lagged Fibonacci Generator	80	4.0531158447265625e-06	4.77E + 23			
Lagged Fibonacci Generator	128	7.62939453125e-06	1.10E + 38			
Lagged Fibonacci Generator	168	6.9141387939453125e-06	2.39E + 50			
Lagged Fibonacci Generator	224	7.3909759521484375e-06	8.76E + 66			
Lagged Fibonacci Generator	256	1.0251998901367188e-05	6.82E + 76			
Lagged Fibonacci Generator	512	1.4543533325195312e-05	6.59E + 153			
Lagged Fibonacci Generator	1024	8.106231689453125e-06	1.51E + 308			
Lagged Fibonacci Generator	2048	9.059906005859375e-06	1.97E + 616			
Lagged Fibonacci Generator	4096	9.5367431640625e-06	3.84E + 1232			
Linear Congruential Generator	40	6.4373016357421875e-06	9.97E + 11			
Linear Congruential Generator	56	6.9141387939453125e-06	6.81E + 16			
Linear Congruential Generator	80	5.9604644775390625e-06	1.03E + 24			
Linear Congruential Generator	128	8.344650268554688e-06	9.33E + 37			
Linear Congruential Generator	168	1.049041748046875e-05	8.69E + 49			
Linear Congruential Generator	224	1.0013580322265625e-05	9.77E + 66			
Linear Congruential Generator	256	1.5497207641601562e-05	$1.12\mathrm{E}{+77}$			
Linear Congruential Generator	512	9.775161743164062e-06	3.27E + 153			
Linear Congruential Generator	1024	1.5735626220703125e-05	1.42E + 308			
Linear Congruential Generator	2048	1.430511474609375e-05	2.16E + 616			
Linear Congruential Generator	4096	1.2874603271484375e-05	3.61E + 1232			
Multiply With Carry	40	5.245208740234375e-06	5.81E + 11			
Multiply With Carry	56	5.4836273193359375e-06	3.81E + 16			
Multiply With Carry	80	4.76837158203125e-06	7.87E + 23			
Multiply With Carry	128	6.67572021484375e-06	2.34E + 38			
Multiply With Carry	224	6.198883056640625e-06	1.94E + 67			
Multiply With Carry	256	1.0251998901367188e-05	6.82E + 76			
Multiply With Carry	512	1.2636184692382812e-05	8.81E + 153			
Multiply With Carry	1024	7.867813110351562e-06	1.19E + 308			
Multiply With Carry	2048	9.059906005859375e-06	1.64E + 616			
Multiply With Carry	4096	3.600120544433594e-05	5.73E + 1232			

2.2 Complexidade dos Algoritmos RNG

2.3 Linear Congruential Generator

```
class LinearCongruentialGenerator:
    def __init__(self, seed=None, bits=40, a=1664525, c=1013904223):
        lower_bound = upper_bound = 0
        for i in range (0, bits):
            upper_bound = upper_bound + pow(2, i)
        if seed is None:
            self._seed = int(time.time())
        self._state = int(time.time()) if seed is None else seed
        self._a = randint(lower_bound, upper_bound)
        self._c = randint(lower_bound, upper_bound)
        self.m = 2**(bits+1)
        self._bits = bits
    def next(self):
        _next = (self._a*self._state + self._c) % self._m
        if (_next.bit_length() > self._bits):
            diff_bits = (\_next.bit_length() - self.\_bits)
            _next = _next >> diff_bits
        self._state = _next
        return self._state
```

Como mostrado no código, a complexidade para gerar um número aleatório é O(1), visto que é apenas realizar uma única vez cálculos de soma, multiplicação e módulo.

2.4 Multiply With Carry

```
class MultiplyWithCarry:
   def __init__(self, bits):
        self._r = 0xFFFFFFE
        self.CMWCCYCLE = 4096
        self.\_CMWC\_C\_MAX = 809430660
        self._i = self._CMWC_CYCLE
        self._Q = [0]*4096
        self._c = randint(2, 809430660)
        self._bits = bits
        for i in range (self._CMWC_CYCLE):
            self.Q[i] = randint(2, int(2**(bits -1)))
   def next(self):
       a = 18782
        self._i = (self._i+1) \& 4095
        t = a * (self._Q[self._i]) + self._c
        self._c = t >> 32
       x = t + self._c
        if self._c > x:
            x = x+1
            self._c = self._c+1
        aux = (x - self._r)
        if (aux.bit_length() > self._bits):
            diff_bits = (aux.bit_length() - self._bits)
            aux = aux >> diff_bits
        self.Q[self.i] = aux
```

```
return self._Q[self._i]
```

Como o outro algoritmo, o "gargalo do algoritmo" está no preenchimento do vetor $_{-}Q$ que é usado para calcular o próximo número. Para o cálculo do próximo número não há cálculos depedendo de alguma entrada. Se a variável **self._CMWC_CYCLE** fosse uma entrada do algoritmo, a complexidade seria $O(self._CMWC_CYCLE)$, pois ela é que determina o tamanho do vetor a ser preenchido e a responsável pelo único for do algoritmo.

2.5 LaggedFibonacciGenerator

```
class LaggedFibonacciGenerator:
    def_{-init_{-}}(self, seed = None, j = 3, k = 7, bits = 32):
        self.\_seed = [0] * k
        if seed is None:
            upper_bound = 0
            lower_bound = 2**(bits -1)
            for i in range (0, bits):
                 upper\_bound = upper\_bound + pow(2, i)
            for i in range (0, k):
                 self._seed[i] = randint(lower_bound, upper_bound)
        else:
            self.\_seed = seed
        self._m = 2**bits
        self._j = j - 1
        self._k = k - 1
        self._bits = bits
        if (len(self.\_seed) < k):
            print ("error, len _seed shoud be, at least, the value of k")
    def next(self):
        _{next} = (self.\_seed[self.\_j] + self.\_seed[self.\_k]) \% self.\_m
        if (_next.bit_length() > self._bits):
            diff_bits = (\_next.bit_length() - self.\_bits)
            _next = _next >> diff_bits
        self.\_seed = self.\_seed[1:7] + [\_next]
        return _next
```

O Lagged Fibonacci Generator é O(k), onde k é o tamanho da lista usada para fazer a soma dos elementos que gerarão o próximo número. Como visto no código, é necessário recopiar essa lista a cada número gerado.

Complexidade				
Algoritmo	Complexidade			
Lagged Fibonacci Generator	(k)			
Linear Congruential Generator	(1)			
Multiply With Carry	(1)			

2.6 Comparação entre os algoritmos

O algoritmo Linear Congruential Generator é o único dos três que não possui uma "memória", ou seja, um vetor para calcular o próximo número. Ele possui apenas um estado. O Linear Congruential Generator e o Lagged Fibonacci Generator confiam em operações de multiplicação, adição e módulo para gerar o próximo número randômico. Além disso, eles têm uma "memória" em que se beseiam para calcular o próximo número. Comparando a velocidade de geração de números, o Multiply With Carry ganha, isso pode se dever ao fato que ele faz menos operações e boa parte dessas operações são de bitwise, que são muito mais rápidas que adição/multiplicação/módulo.

3 Números primos

3.1 Justificativa da escolha

O teste de fermat foi o segundo algoritmo escolhido pois era o primeiro da lista de sugestões e funcionou bem.

3.2 Números primos gerados

Foram gerados números primos para o algoritmo Multiply With Carry, agged Fibonacci Generator e inear Congruential Generator. O output dos três métodos está no arquivo **primos_gerados.txt** junto com os outputs gerados pelos outros dois algoritmos. Não inclui na tabela os números primos gerados pelo Multiply With Carry, no entanto, como já dito, eles se encontram no txt do repositório. A tabela no final mostra os primos gerados.

3.3 Dificuldades encontradas

Não foram encontradas dificuldades muito grandes, além da espera para encontrar números primos com muitos bits. Algumas tentativas geravam números primos até uma certa quantidade de bits, depois disso havia uma demora muito grande. Executei diversas vezes, em algumas delas, os algoritmos pareciam acertar o passo para gerar primos mais rapidamento. Quase todas as dificuldades que poderiam acontecer foram sanadas pelo próprio Python, que possui um suporte para BigInt poderoso, além de funções como pow(a, b, c) (exponenciação modular) que rodam muito rapidamente.

3.4 Complexidade dos Algoritmos

3.4.1 Implementação

```
def miller_rabbin(n, k):
    if (n \% 2 = 0):
        return False
    t = n - 1
    e = 0
    while (t \% 2 = 0):
        e = e + 1
        t = t // 2
   m = (n-1) // (2**e)
   \#print("t == " + str(t))
   \#print("m == " + str(m))
   \#print("e == " + str(e))
    for _ in range(k):
        lgc = LinearCongruentialGenerator(bits=n.bit_length()-1)
        a = 0
        if PYTHON_RAND:
            a = randint(2, n-1)
        else:
            a = lgc.next()
        if a >= n:
            raise ("a nao pode ser igual ou maior que o suposto primo N")
        x = pow(a, m, n)
        if x = 1 or x = n - 1:
            continue
        for _{-} in range (e-1):
            x = pow(x, 2, n)
```

```
if x == 1:
                 return False
            if x = n - 1:
                break
        else:
            return False
    return True
def fermat_primality_test(p, k):
    lgc = LinearCongruentialGenerator(bits=p.bit_length()-1)
    if p == 2:
        return True
    if p \% 2 == 0:
        return False
    for _ in range(k):
        a = 0
        if PYTHON_RAND:
            a = randint(2, p - 1)
        else:
            a = lgc.next()
        if a >= p:
            raise ("a nao pode ser igual ou maior que o suposto primo P")
        if pow(a, p - 1, p) != 1:
            return False
    return True
```

3.4.2 Miller Rabbin & Fermat Primality Test

Ambos dependem da entrada k do usuário (número de testemunhas para verificar se um número P é primo) para gerar as testemunhas. O miller-rabin tem duas partes dentro do for que gera as testemunhas: a parte de fazer exponenciação: pow(a, d, n), logo a complexidade dessa parte k * O(pow). Logo abaixo existe um loop até e - 1 vezes onde e é da seguinte fórmula:

$$n - 1 = m * 2^e \tag{1}$$

assim, esse loop vai executar e-1 vezes e e. O log de n-1 é:

$$log((2^e) * m) = log(2^e) + log(m)$$
(2)

desconsiderando o log(m), e - 1 pode ser aproximado por log(n). Assim, a complexidade para Miller-Rabin fica:

$$k * (O(pow) + log(n) * O(pow))$$
(3)

Onde O(pow) é a complexidade da função pow(a,b,c) do Python. Não consegui achar nenhuma fonte que falasse de fato qual era a complexidade de pow(a,b,c) do python. O código de pow() do Python é complexo e não consegui calcular o Big-O dele.

Para o test de fermat, a análise é semelhante: São k testemunhas geradas onde é preciso chamar a função **pow** k vezes. Assim, a complexidade para Fermat é:

$$k * (O(pow) + log(n) * O(pow))$$

$$\tag{4}$$

Onde pow é a função pow(a,b,c) do Python. Em ambos os algoritmos, a complexidade para a geração de forma aleatória das testemunhas foi desconsiderada visto que para o **randint** do Python e **LaggedFibonacciGenerator** que eu fiz são O(1)

Complexidade		
Algoritmo	Complexidade	
Miller Rabin		
	k*(O(pow) + log(n)*O(pow)) (5)	
Fermat Primality Test	k * (O(pow) + log(n) * O(pow))	

3.5 Tempo necessário para gerar os números primos para cada método Está presente na tabela apresentada no fim do PDF.

3.6 Números pseudorandômicos

 $\begin{array}{l} {\rm LFG} = {\rm Lagged~Fibonacci~Generator} \\ {\rm LCG} = {\rm Linear~Congruential~Generator} \end{array}$

Dados						
Algoritmo de	Algoritmo	Bits	Tempo para	Tempo para testar		
geração	de		geração (em	primalidade (em		
	Verificação		segundos)	segundos)		
LFG	Miller-Rabin	40	0.0003616809844	0.0002799034118		
LFG	Fermat	40	0.00019049644470	0.00012612342834		
LFG	Miller-Rabin	56	0.0033750534057	0.0003781318664		
LFG	Fermat	56	0.0005850791931	0.00015306472778		
LFG	Miller-Rabin	80	0.0009388923645	.0005881786346		
LFG	Fermat	80	0.0021889209747	0.0003237724304		
LFG	Miller-Rabin	128	0.006439208	0.0012166500091		
LFG	Fermat	128	0.013254404067	0.00110101699829		
LFG	Miler-Rabin	168	0.01657557487	0.0.0018815994262		
LFG	Fermat	168	0.004686832427	0.001121520996		
LFG	Miller-Rabin	224	0.05834627151	0.0027666091918		
LFG	Fermat	224	0.006192922592	0.0019910335540		
LFG	Miller-Rabin	256	0.025435924530	0.003098726272		
LFG	Fermat	256	0.012595176696	0.002302885055		
LFG	Miller-Rabin	512	0.232330322	0.011030912399		
LFG	Fermat	512	0.15907716751	0.010582685470		
LFG	Miller-Rabin	1024	0.5817663669	0.05894970893		
LFG	Fermat	1024	0.45347094535	0.053189992904		
LFG	Miller-Rabin	2048	20.75140690803528	0.6315298080444336		
LFG	Fermat	2048	21.9278724	0.5591094493		
LFG	Miller-Rabin	4096	488.83546471	4.116994142		
LFG	Fermat	4096	274.5899832248688	4.159802436828613		
LCG	Miller-Rabin	40	0.00143337249755	0.0003037452697		
LCG	Fermat	40	0.00017309188842	0.0001323223114		
LCG	Miller-Rabin	56	0.00087332725524	0.0004069805145		
LCG	Fermat	56	0.00022006034851	0.0001630783081		
LCG	Miller-Rabin	80	0.001957416534	0.0006330013275		
LCG	Fermat	80	0.0006330013275	0.00029659271240		
LCG	Miller-Rabin	128	0.011278629302	0.001222848892		
LCG	Fermat	128	0.018824338912	0.0006694793701		
LCG	Miler-Rabin	168	0.0043039321899	0.0019781589508		
LCG	Fermat	168	0.001088857650	0.0009996891021		
LCG	Miller-Rabin	224	0.045264244079	0.0036072731018		
LCG	Fermat	224	0.0519692897796	0.0019066333770		
LCG	Miller-Rabin	256	0.0639791488	0.0033431053161		
LCG	Fermat	256	0.02133464813	0.002092123031		
LCG	Miller-Rabin	512	0.16827654838	0.013980388641		
LCG	Fermat	512	0.1833810806	0.010114431381		
LCG	Miller-Rabin	1024	3.3544223308	0.06139492988		
LCG	Fermat	1024	2.102313756942749	0.0670781135559082		
LCG	Miller-Rabin	2048	3.907580852	0.386580228805542		
LCG	Fermat	2048	8.401597261428833	0.3506994247436		
LCG	Miller-Rabin	4096	845.8991656303406	2.64555692672		
LCG	Fermat	4096	51.649994134	2.5893337726		

Dados					
Algoritmo de Verificação	Primo de Mersenne	Tempo para testar primalidade (em segundos)			
Miller-Rabin	$2^{89}) - 1$	0.0008168220520019531			
Teste de fer- mat	$(2^{89}-1)$	0.00045561790466308594			
Teste miller- rabin	$2^{107} - 1$	0.0011477470397949219			
Teste de fer- mat	$2^{107} - 1$	0.0006520748138427734			
Teste miller- rabin	$2^{127} - 1$	0.0014646053314208984			
Teste de fer- mat	$2^{127} - 1$	0.0009024143218994141			
Teste miller- rabin	$2^{521} - 1$	0.012618064880371094			
Teste de fer- mat	$2^{521} - 1$	0.01132345199584961			
Teste miller- rabin	$2^{607} - 1$	0.01987743377685547			
Teste de fer- mat	$2^{607} - 1$	0.014545917510986328			
Teste miller- rabin	$2^{1279} - 1$	0.10896921157836914			
Teste de fer- mat	$2^{1279} - 1$	0.09621596336364746			
Teste miller- rabin	$2^{9941} - 1$	32.62743091583252			
Teste de fer- mat	$2^{9941} - 1$	31.419555187225342			
Teste miller- rabin	$2^{21701} - 1$	309.1169214248657			
Teste de fer- mat	$2^{21701} - 1$	301.7051751613617			
Teste miller- rabin	$2^{110503} - 1$	Só Deus sabe			
Teste de fer- mat	$2^{110503} - 1$	Só Deus sabe			