Teoria da Decisão Projeto Prático Assistido Por Otimização Multiobjetivo e Métodos de Auxílio à Tomada de Decisão

Rafael Carneiro de Castro

Vinícius Felicíssimo Campos

Davi Pinheiro Viana

Eng. de Sistemas - UFMG Matrícula: 2013030210 Eng. de Controle e Automação - UFMG Matrícula: 2015035235 Eng. de Sistemas - UFMG Matrícula: 2013029912

Email: rafaelcarneiroget@hotmail.com

Email: viniciusfc95@gmail.com

Email: daviviana22@gmail.com

Resumo—Abordagem de forma conjunta de grande parte dos conceitos vistos na disciplina "ELE088 - Teoria da Decisão", através de um problema relacionado ao gerenciamento ótimo da política de manutenção de um conjunto de equipamentos de uma empresa. O problema foi resolvido através de modelagem e implementação multiobjetivo e, para verificar a resolução do problema, é apresentado um indicador de qualidade. Além disso, foram utilizados alguns métodos de auxílio à tomada de decisão.

I. INTRODUÇÃO

O presente trabalho tem o objetivo de resolver um problema de otimização multiobjetivo e, utilizando técnicas escalares de decisão assistida estudadas em sala de aula, encontrar a melhor solução para este problema, colocando em prática grande parte dos conceitos da matéria.

O problema a ser resolvido é o seguinte: *Deseja-se* determinar a política de manutenção ótima para cada um dos 500 equipamentos de uma empresa, considerando-se a minimização do custo de manutenção e a minimização do custo de falha esperado.

No problema, o custo de manutenção total é a soma dos custos dos planos de manutenção adotados para todos os equipamentos. Sendo que, o valor do custo de cada plano de manutenção é dado. O custo esperado de falha de cada equipamento i, sob o plano de manutenção j, é o produto da probabilidade de falha $(p_{i,j})$ e o custo de falha do equipamento (este último é dado). O custo esperado de falha total é a soma dos custos esperados de falha de todos os equipamentos.

Deve ser feita a formulação e resolução do problema multiobjetivo e o resultado encontrado deve ser avaliado baseado no indicador de qualidade hipervolume (s-metric). Esse indicador é utilizado para mensurar as propriedades de convergência e diversidade da fronteira Pareto "aproximada" obtida.

Além disso, deve ser aplicada também a utilização de técnicas de análise de decisão ELECTRE II, PRO-METHEE II *fuzzy* e AHP para decidir qual a melhor solução dentre as encontradas para o problema.

II. DESENVOLVIMENTO

A. Formulação do Problema:

A formulação do problema foi dividida em duas partes, como é discutido a seguir:

B. Algoritmo de Solução:

Nesta seção serão discutidos e exibidos os algoritmos para solução dos problemas mono e multiobjetivo.

C. Resultados:

Nesta sessão serão apresentados os resultados dos algoritmos.

D. Análise baseada no Hipervolume

III. TOMADA DE DECISÃO ASSISTIDA

IV. CONCLUSÃO

Os métodos de otimização desenvolvidos neste trabalho foram sobretudo baseados no Simulated Annealing, que é um método de otimização não exato, contudo de fácil implementação e de desempenho satisfatório. É notável no decorrer do presente relatório que existem variações nas soluções encontradas. O Simulated Annealing é um ótimo método de estimação de bons ótimos locais, no entanto ele não garante o ótimo global. Levando tudo isto em consideração, conclui-se que os resultados obtidos foram satisfatórios, considerando-se o desempenho e a qualidade das soluções encontradas.

REFERÊNCIAS

- Notas de aula do professor Lucas Batista da disciplina ELE088 Teoria da Decisão. 2017.
 ARENALES, Marcos et al. Pesquisa operacional: para cursos de engenharia. Rio de Janeiro: Elsevier, 2007