# INTERACTION DESIGN AND EVALUATION. SESSION 2

**Professors IDI** 

Dept. Computer Science – UPC

#### **OUTLINE**

- Fitts Law in UI Design
  - Implications
  - Applications
  - Fitts' Law in Mobile Devices
- Accelerating Target Acquisition
- Law of Crossing
- Steering Law
- Pointing Devices





### FITTS' LAW IN UI DESIGN.

 Fitts Law provides a scientific foundation for studying and designing pointing-based user interfaces.

$$MT = a + bID$$

$$MT = a + b \log_2 \frac{\partial}{\partial W} + 1 + 0$$







- Fitts' Law accurately predicts pointing movement
- If improvement required, it can help us modify our UI
  - Change target width:
    - Increase size for faster reach
  - Change de "virtual distance" or pointer movement:
    - Increase speed, pop-up menus,....
- But visual stimuli must also be taking into account...







$$MT = a + b \log_{2}^{2} \frac{D}{W} + 1 = 0$$

























- Keep related things close
  - Mac OS scrolls are faster to navigate







- Keep related things close
  - Filters should be placed close to the search field







- Keep related things close and Opposite Elements Far
  - These buttons should be placed far away from each other







- Pop-up menus: Reduce travelling distance
- Improve two aspects:
  - Reduction of distance to travel (Fitts)
    - The option is close to the menu emerging place
  - Frequency-enabled may improve the time to pick an option:
    - Based on Hick-Hyman:
       Recall that users are able to point faster objects that are known
- Only used by experts!







• What about pie menus?











- What about pie menus
  - Sort of contextual menu
    - Needs to be created on demand
    - Needs some room!
  - Should not have occlusions
    - On mobile half-pie menus better than fully circular









- Pie menus difficult to design!
  - Second layer changes the size and distance
  - Organizing by frequency may be a problem (learning)









+ **Perception:** Grouping things may improve over distance







### **OUTLINE**

- Fitts Law in UI Design
- Accelerating Target Acquisition
  - Expanding Targets
  - Expanding Cursors
  - Target Moving
  - Control-Display Ratio
- Law of Crossing
- Steering Law
- Pointing Devices





# ACCELERATING TARGET ACQUISITION. EXPANDING TARGETS

#### Bubble targets:

- Increase selectable region around target
  - Only when the mouse is close
  - Improves selection times
- Issues:
  - Bubble appearing may distract users
  - Overlapping targets:

Close selection points may generate several bubbles







# ACCELERATING TARGET ACQUISITION. EXPANDING TARGETS

- Increase the size of targets close to the pointer Implemented in Mac OSX Dock:
  - Targets resize and move
    - Increase size when getting closer and decreasing size when passed
    - Move towards the pointer and far from it







### ACCELERATING TARGET ACQUISITION. EXPANDING TARGETS

Increase the size of targets close to the pointer









### ACCELERATING TARGET ACQUISITION. EXPANDING TARGETS

- Increase the size of targets close to the pointer:
- Issues:
  - Moving targets reduces selectable size
    - Some users get frustrated
    - Especially on vertical (vs horizontal moves of the targets)
       moves
    - Target scaling when close to the pointer is sometimes confusing
  - May reduce effects if overlapping is allowed





# ACCELERATING TARGET ACQUISITION. EXPANDING CURSORS

■ Bubble cursor [Grossman2005] →

#### Reduction of amplitude movement

- Cursor size increases when it is close to objectives
- It may even grow to absorb closer objectives if its size does not allow it to
  - Based on position, no speed
  - In experiments Control-Display ratio fixed to 1







# ACCELERATING TARGET ACQUISITION. EXPANDING CURSORS

- Bubble cursor: Implementation
  - Previous determination of the area of influence of each target
  - Voronoi map of the targets
    - Once we know in which area we are, we know the closer target and the distance







### ACCELERATING TARGET ACQUISITION. EXPANDING CURSORS

- Dynamic Bubble cursor [Chapuis2009]:
  - Reduction of amplitude by area cursor increase
    - Area increases according to speed and position
    - Visual cues to indicate the captured target







- May reduce selection time
  - Reducing distance to the pointer
- Two different strategies:
  - Move targets closer to the user
  - Generate targets next to the user





#### • Move targets to the user:

- Mac OSX Dock
  - Though movement is relatively small
  - Studies have demonstrated no effective gain
- Issues:
  - Difficult to correctly determine the appropriate target
  - Moving elements on screen cause spatial disorganization
    - May eliminate other benefits







- Generate targets next to the user:
  - Pop-up menus
    - Very useful, though for power users
    - Reduce pointer movement
    - Many techniques: Classical menus, pie menus, semicircular menus







#### Sticky targets:

- Attract pointer
  - When the pointer is close to a selectable area
  - May reduce selection time
    - Precision not required
  - Users adapt easily







## ACCELERATING TARGET ACQUISITION. CONTROL-DISPLAY RATIO

- Relation between the amplitude of movements of the user's real hand and the amplitude of movements of the virtual cursor
- Moves in real world (physical move) mapped to moves in virtual desktop (cursor move)
- Different strategies:
  - Constant
  - Dependent on mouse speed
  - Dependent on cursor position
- Interpretation according to Fitts Law:
   Dynamic C-D ratio adaptation can be interpreted as dynamic change of physical motor space





### ACCELERATING TARGET ACQUISITION. CONTROL-DISPLAY RATIO

- Mac OSX and Windows both use mouse acceleration
  - When mouse moves fast, it is accelerated
    - Reducing the amplitude of movement to cover large distances
  - When mouse moves slow, it is decelerated
    - Magnifying amplitude of movement to improve precision
- No clear how the mapping affects perception and productivity
  - Some studies say it is not intuitive
  - Some studies say it improves some pointing tasks





### **OUTLINE**

- Fitts Law in UI Design
- Accelerating Target Acquisition
- Law of Crossing
- Steering Law
- Pointing Devices





Crossing movement as compared to pointing







- Stylus or fingers naturally lead to crossing gestures
  - Especially useful in tactile devices
    - Drag & drop, sketch...
- It may be investigated in the same way that pointing
  - So that we can predict both time and error rates
  - So that we can improve UI design
    - Or detect problems

|      | onumm zna        | 0770072001 02.04 MIVI | 4,40  |
|------|------------------|-----------------------|-------|
|      | Shumin Zhai      | 07/06/2001 05:44 AM   | 3,95  |
| ~    | Bryan Striemer   | 07/03/2001 11:01 AM   | 27,90 |
| ✓ FY | 1 Shumin Zhai    | 07/02/2001 12:30 AM   | 11,94 |
| ~    | Shumin Zhai      | 07/02/2001 12:30 AM   | 1,43  |
| ~    | Thomas Zimmerman | 06/27/2001 03:48 PM   | 4,81  |
| 1 ~  | Barton A Smith   | 06/26/2001 04:55 PM   | 37,11 |
| ĸ    | Rarton & Smith   | 08/28/2001 04:54 PM   | 118   |















**ViRVIG** 

- Crossing performance across two goals [Accot99, Zhai2002]:
  - Follows the same characterization than the Fitts' Law:

$$T = a + b \log_2 \frac{\partial}{\partial} \frac{D}{\partial} + 1 + 1 + \frac{\partial}{\partial}$$

- T is the average moving time between passing the two goals.
- D is the distance between the two goals
- W is the width of each goal
- a and b are constants to be determined





- Crossing configurations:
  - Discreteness vs continuity of the movement:
    - Landing [and lifting off the stylus]









# LAW OF CROSSING

- Crossing configurations:
  - Direction of the targets vs direction of the movement:
    - Targets can be orthogonal to the direction of the movement, or parallel
    - If parallel, the trace will be larger



Collinear crossing







# LAW OF CROSSING

- Results of the experiments:
  - Crossing-based interfaces achieve similar (or faster) times than pointing.
  - The error rate in crossing is smaller than in pointing.
  - Discrete crossing becomes more difficult if the distance between the targets is small.
  - Crossing (especially continuous) seems superior than pointing for *ID* values > 5.





# **OUTLINE**

- Fitts Law in UI Design
- Accelerating Target Acquisition
- Law of Crossing
- Steering Law
- Pointing Devices





- Navigating through a constrained path is an useful operation in modern UIs
  - Navigating through nested menus
  - 3D navigation
  - Dragging elements
  - Free-hand Sketching/Drawing







- Navigating through a generalized path can be expressed as [Accot97]
- Movement time across the path T<sub>s</sub>:

$$T_{s} = a + b \stackrel{\circ}{0} \frac{ds}{W(s)}$$

- C is the length of the path
- W(s) is the path width at point s





- Navigating through a **generalized path** can be expressed as [Accot97]:
  - Movement time across the path T<sub>s</sub> follows Fitts' expression:

$$T_s = a + bID_s$$

Where  $ID_s$  is:

$$ID_{s} = \oint_{C} \frac{ds}{W(s)}$$





• Steering through a straight path:







• Time to navigate through a **straight path** (tunnel)  $T_p[Accot97]$ :

$$T_s = a + b \stackrel{\circ}{O} \frac{ds}{W(s)}$$
  $T_P = a + b \frac{D}{W}$ 

- D is the length of the path/tunnel
- W is the width of the path/tunnel
- Applying Fitts' formatting:

$$T_P = a + bID_P$$
  $ID_P = \frac{D}{W}$ 

Which also applies to circular paths of constant width





- Results [Accot97, Zhai2004] show that the steering law is applicable to different configurations:
  - Different path shapes: cone, spiral, straight
  - Works with different devices
  - Can be used to analyse navigation through nested menus, compare menu designs...







- Results [Accot97, Zhai2004] show that the steering law is applicable to different configurations:
  - Works for more complex interactions such as locomotion in a VR setup
    - Straight paths, circular paths...







# **OUTLINE**

- Fitts Law in UI Design
- Accelerating Target Acquisition
- Law of Crossing
- Steering Law
- Pointing Devices





Direct-control devices:

Work directly on the surface of the screen

• Indirect-control devices:

Work away from the surface





- Direct-control devices:
  - Old
    - Lightpen worked back in 1976



- May produce fatigue:
  - Moving the lightpen on the screen required much effort
  - Should have a surface to rest the arm





- Direct-control devices. Issues:
  - Imprecision in pointing. Many factors:
    - Quality of the screen:
       Capacitive screens less precise than resistive
    - Size of the pointer
       Fat and not-so-fat fingers





- Direct-control devices. Issues:
  - Land-on strategy:
    - Select on clicking point
    - Faster feedback
    - Prone to errors
  - Lift-off strategy:
    - Initial click creates cursor, dragging used for precision pointing, lift-off selects
    - More time consuming





- Direct-control devices. Advantages:
  - Touch screens can be designed with no moving parts
    - Durable
    - Only device that has survived Walt Disney's theme parks
  - Multi-touch allows for complex data entry or manipulation
    - Pinch-to-zoom gestures





- Direct-control devices. Other issues:
  - Pens may be more suitable for some tasks
    - Reduce occlusion
    - Familiar to users
    - But require to be picked up and put down
  - Fingers are less precise than wrist-based movement





- Indirect-control devices.
  - Examples:
    - Mouse, trackball, joystick, touchpad, graphics tablets...

#### Issues:

- Alleviate hand fatigue
- Eliminate screen occlusion
- Mouse is the clear king
  - Cost-effective
  - Precise
  - Hand has a surface to rest on
  - Buttons easy to press
  - Long movements require to pick up mouse and replace
    - May be improved using accelerated moves





# INTERACTION DESIGN AND MEASURES

Dept. Computer Science - UPC