Hand Measurements:

```
E1 = [85 65 75 75 60 15 17 16 15];

E2 = [84 65 74 73 60 15 16 15 14];

E3 = [82 63 73 70 52 15 16 16 15];

E4 = [84 64 73 72 52 15 17 16 15];

E5 = [84 65 75 72 60 16 17 16 15];

E = [E1; E2; E3; E4; E5];

chosen_indices = [1, 2, 3, 4];

R_raw = mean(E(chosen_indices, :), 1);

R = round(R_raw, 1);

T = E5;
```

Create database matrix and the test matrix.

Create a database matrix "DB" of reference vectors, and a matrix "TEST" of test vectors. For this purpose, we will use your vectors, and the vectors attached as .mat files with this exercise.

Each column in the matrix DB consists of a reference vector of a different person, and the column index is the ID number of the person to whom the reference vector belongs.

Each column in the matrix TEST is a test vector. The column index is also the ID number of the person to whom the test vector belongs.

```
load DB11a.mat
load T11a.mat

DB11a;
T11a;

R = R(:);
T = T(:);

DB = [R, DB11a];
TEST = [T, T11a];
```

Identification Exercise

Carry out identification for the whole group, i.e. for all people in the test data matrix TEST. Then use the results to:

- 1) Calculate by hand the function P(k) for k = 1, 2, ...
- P(k) indicates the chance (probability) that the correct identity is output in position k of IdLista. Draw the function P(k) that you calculated in a graph.
- 2) Calculate by hand the function TPIR (M) and draw it in a graph (the CMC curve).

TPIR (M) indicates the chance (probability) that the correct identity is output in the first M positions of the output list. TPIR (M) is obtained by summing up P(k) up to k = M.

Put also the values of P (k) and TPIR (M) in a table.

- 3) From TPIR (M), calculate the length of the list M to have a 90% chance that the correct identity is obtained in IdLista among the first M identities.
- 4) Find the two ID numbers that are the most and the least similar to your own ID. Also write down the distances of the two cases (how similar the hands are).

1)

```
Ntests = size(TEST,2);
trueID = 1:Ntests;
rankPos = zeros(1,Ntests);
for j = 1:Ntests
    [IdLista, IdAvst] = MinDistClassID('eucl',DB,TEST,j);
    rankPos(j) = find(IdLista(:,1) == trueID(j), 1, 'first');
end
Kmax = max(rankPos);
                          % highest rank observed
P = zeros(1,Kmax);
for k = 1:Kmax
   P(k) = sum(rankPos == k) / Ntests;
                                        % fraction of tests at rank k
end
% 3. Plot P(k) as a bar chart
figure;
bar(1:Kmax, P);
xlabel('Rank position k');
ylabel('P(k)');
title('Probability that correct ID is exactly at rank k');
print('pk_bar','-depsc');
                            % Farbiges EPS
```


2)

```
Kmax = max(rankPos);
P = zeros(1,Kmax);
for k = 1:Kmax
    P(k) = sum(rankPos <= k) / Ntests;
end

plot(1:Kmax, P, '-o');
xlabel('k (rank position)');
ylabel('P(k)');
title('Cumulative match characteristic (CMC) curve');
ylim([0,1])
grid on;
print('cmc_curve','-depsc');  % Farbiges EPS</pre>
```


3) From TPIR (M), calculate the length of the list M to have a 90% chance that the correct identity is obtained in IdLista among the first M identities.

```
len_M = find(P >= 0.9, 1, 'first')
```

 $len_M = 2$

4) Find the two ID numbers that are the most and the least similar to your own ID. Also write down the distances of the two cases (how similar the hands are).

```
[IdLista, IdAvst] = MinDistClassID('eucl',DB,TEST,1);
most_sim = IdLista(1, :)
```

 $most_sim = 1$

 $most_sim_dist = 4.4215$

```
least_sim = IdLista(end, :)

least_sim = 4

least_sim_dist = IdAvst(end, :)

least_sim_dist = 33.1310
```

Verification Mode:

To perform an authentication (one-to-one comparison) it is necessary to determine a value of the distance between the test vector and the reference vector which can be accepted as "sufficiently similar". This value is often called *threshold*.

The attached Matlab function MinDistClassVER('eucl',DB,TEST,id,Th) carries out the verification of the persons specified in the input parameter "id" using the threshold "Th".

```
[VerId, VerAvst] = MinDistClassVER('eucl',DB,TEST,1,5) % test

VerId = 0
VerAvst = 4.4215
```

In order to estimate the error of the system, we should compute statistics of the output distances when hands from the same person and from different persons are compared. This can be done with the provided function: [ShDist,OhDist]=DistNew('eucl',DB,TEST).

Input parameters DB and TEST are the database data and test data.

Output parameter ShDist contains the distances when hands from the same person are compared (ID=1 of DB with ID=1 of TEST, then ID=2 of DB with ID=2 of TEST, and so on)

Output parameter OhDist contains the distances when hands from different persons are compared (ID=1 of DB with ID=2,3,4... of TEST, then ID=2 of DB with ID=1,3,4... of TEST, etc.)

```
[ShDist,OhDist] = DistNew('eucl',DB,TEST);

figure;
hold on;

% Histogram for same-person distances
histogram(ShDist, 20, 'Normalization', 'probability', ...
    'FaceColor', 'b', 'FaceAlpha', 0.5, 'EdgeColor', 'b');

% Histogram for different-person distances
histogram(OhDist, 50, 'Normalization', 'probability', ...
    'FaceColor', 'r', 'FaceAlpha', 0.5, 'EdgeColor', 'r');

xlabel('Distance');
ylabel('Probability');
title('Distance distributions: Same vs Different persons');
```

```
legend('Same Person','Different Persons');
grid on;
hold off;
print('histograms','-depsc');
```


With the help of the histograms you created earlier and shown in Figure = 100 (Genuine class) and figure = 101 (Impostor class), calculate and plot the probability of the FA error (= FAR) and FR error (= FRR) for various thresholds. You can also work directly with the distances in the vectors ShDist (Genuine) and OhDist (Impostor). Create a table with different thresholds and the number of errors of each type.

A Matlab command that you can use to calculate the number of FR errors at a specific threshold Th is: sum (ShDist> Th). Vary the value of Th and annotate both Th and the number of FR errors in a table.

```
[ShDist,OhDist] = DistNew('eucl',DB,TEST);
th = linspace(0, 15, 200);

N_th = length(th);
FRR = zeros(1, N_th);
FAR = zeros(1, N_th);
FR_count = zeros(1, N_th);
FA_count = zeros(1, N_th);
for i = 1:length(th)
```

```
% False Rejections (genuine > threshold)
FR_count(i) = sum(ShDist > th(i));
FRR(i) = FR_count(i) / numel(ShDist);

% False Acceptances (impostor <= threshold)
FA_count(i) = sum(OhDist <= th(i));
FAR(i) = FA_count(i) / numel(OhDist);
end

% Create table for first few thresholds as an example
ErrorTable = table(th', FR_count', FA_count', FRR', FAR', ...
    'VariableNames', {'Threshold', 'FR_Errors', 'FA_Errors', 'FRR', 'FAR'});
disp(ErrorTable(1:200,:)); % show first 100 rows</pre>
```

Threshold	FR_Errors	FA_Errors	FRR	FAR
0	40	0	0.95238	0
0.075377	40	0	0.95238	0
0.15075	40	0	0.95238	0
0.22613	40	0	0.95238	0
0.30151	40	0	0.95238	0
0.37688	40	0	0.95238	0
0.45226	40	0	0.95238	0
0.52764	40	0	0.95238	0
0.60302	39	0	0.92857	0
0.67839	39	0	0.92857	0
0.75377	38	0	0.90476	0
0.82915	38	0	0.90476	0
0.90452	38	0	0.90476	0
0.9799	37	0	0.88095	0
1.0553	36	0	0.85714	0
1.1307	36	0	0.85714	0
1.206	36	0	0.85714	0
1.2814	34	0	0.80952	0
1.3568	33	0	0.78571	0
1.4322	32	0	0.7619	0
1.5075	30	0	0.71429	0
1.5829	27	0	0.64286	0
1.6583	26	0	0.61905	0
1.7337	24	0	0.57143	0
1.809	24	0	0.57143	0
1.8844	23	0	0.54762	0
1.9598	23	0	0.54762	0
2.0352	21	0	0.5	0
2.1106	21	2	0.5	0.0011614
2.1859	19	4	0.45238	0.0023229
2.2613	17	4	0.40476	0.0023229
2.3367	17	4	0.40476	0.0023229
2.4121	15	4	0.35714	0.0023229
2.4874	13	4	0.30952	0.0023229
2.5628	12	4	0.28571	0.0023229
2.6382	11	5	0.2619	0.0029036
2.7136	11	5	0.2619	0.0029036

2.7889	11	5	0.2619	0.0029036
2.8643	10	5	0.2381	0.0029036
2.9397	10	6	0.2381	0.0034843
3.0151	9	6	0.21429	0.0034843
3.0905	7	6	0.16667	0.0034843
3.1658	7	6	0.16667	0.0034843
3.2412	7	7	0.16667	0.004065
3.3166	6	8	0.14286	0.0046458
3.392	6	11	0.14286	0.0063879
3.4673	6	15	0.14286	0.0003879
3.5427	6	16	0.14286	0.0092915
3.6181	6	17	0.14286	0.0098722
3.6935	6	18	0.14286	0.010453
3.7688	6	19	0.14286	0.011034
3.8442	5	21	0.11905	0.012195
3.9196	5	24	0.11905	0.013937
3.995	5	27	0.11905	0.015679
4.0704	5	29	0.11905	0.016841
4.1457	5	30	0.11905	0.017422
4.2211	5	31	0.11905	0.018002
4.2965	5	33	0.11905	0.019164
4.3719	5	36	0.11905	0.020906
4.4472	4	41	0.095238	0.02381
4.5226	4	42	0.095238	0.02331
4.5220	4	44	0.095238	0.02439
4.6734	4	46	0.095238	0.026713
4.7487	4	50	0.095238	0.029036
4.8241	4	56	0.095238	0.03252
4.8995	4	59	0.095238	0.034262
4.9749	4	63	0.095238	0.036585
5.0503	4	65	0.095238	0.037747
5.1256	4	70	0.095238	0.04065
5.201	4	78	0.095238	0.045296
5.2764	3	86	0.071429	0.049942
5.3518	3	90	0.071429	0.052265
5.4271	3	92	0.071429	0.053426
5.5025	3	97	0.071429	0.05633
5.5779	3	103	0.071429	0.059814
5.6533	3	107	0.071429	0.062137
5.7286	3	113	0.071429	0.065621
5.804	1	120	0.02381	0.069686
5.8794	1		0.02381	0.003030
		126		
5.9548	1	129	0.02381	0.074913
6.0302	1	132	0.02381	0.076655
6.1055	1	140	0.02381	0.081301
6.1809	1	143	0.02381	0.083043
6.2563	1	152	0.02381	0.088269
6.3317	1	155	0.02381	0.090012
6.407	1	165	0.02381	0.095819
6.4824	1	172	0.02381	0.099884
6.5578	1	177	0.02381	0.10279
6.6332	0	186	0	0.10801
6.7085	0	196	0	0.11382
6.7839	0	207	0	0.12021
	-		-	

6.8593	0	210	0	0.12195
6.9347	0	215	0	0.12485
7.0101	0	222	0	0.12892
7.0854	0	227	0	0.13182
7.1608	0	231	0	0.13415
7.2362	0	240	0	0.13937
7.3116	0	245	0	0.14228
7.3869	0	255	0	0.14808
7.4623	0	261	0	0.15157
7.5377	0	268	0	0.15563
7.6131	0	276	0	0.16028
7.6884	0	284	0	0.16492
7.7638	0	289	0	0.16783
	0		0	0.10783
7.8392	0	295	0	
7.9146		302		0.17538
7.9899	0	312	0	0.18118
8.0653	0	320	0	0.18583
8.1407	0	324	0	0.18815
8.2161	0	330	0	0.19164
8.2915	0	338	0	0.19628
8.3668	0	345	0	0.20035
8.4422	0	350	0	0.20325
8.5176	0	356	0	0.20674
8.593	0	363	0	0.2108
8.6683	0	368	0	0.2137
8.7437	0	377	0	0.21893
8.8191	0	390	0	0.22648
8.8945	0	396	0	0.22997
8.9698	0	404	0	0.23461
9.0452	0	411	0	0.23868
9.1206	0	423	0	0.24564
9.196	0	432	0	0.25087
9.2714	0	443	0	0.25726
9.3467	0	448	0	0.26016
9.4221	0	459	0	0.26655
9.4975	0	469	0	0.27236
9.5729	0	475	0	0.27584
9.6482	0	483	0	0.28049
9.7236	0	494	0	0.28688
9.799	0	506	0	0.29384
9.8744	0	510	0	0.29617
9.9497	0	520	0	0.30197
10.025	0	529	0	0.3072
10.101	0	534	0	0.3101
10.176	0	542	0	0.31475
10.251	0	550	0	0.3194
10.327	0	555	0	0.3223
10.402	0	564	0	0.32753
10.477	0	568	0	0.32785
10.553	0	579	0	0.33624
10.628	0	584	0	0.33914
10.028	0	591	0	0.34321
10.704	0	596	0	0.34521
10.779	0	605	0	0.35134
10.004	U	000	U	0.00104

10.93	0	615	0	0.35714
11.005	0	626	0	0.36353
11.08	0	635	0	0.36876
11.156	0	642	0	0.37282
11.231	0	650	0	0.37747
11.307	0	654	0	0.37979
11.382	0	660	0	0.38328
11.457	0	665	0	0.38618
11.533	0	671	0	0.38966
11.608	0	680	0	0.39489
11.683	0	683	0	0.39663
11.759	0	687	0	0.39895
11.834	0	692	0	0.40186
11.91	0	697	0	0.40476
11.985	0	701	0	0.40708
12.06	0	707	0	0.41057
12.136	0	715	0	0.41521
12.211	0	720	0	0.41812
12.286	0	724	0	0.42044
12.362	0	734	0	0.42625
12.437	0	742	0	0.43089
12.513	0	758	0	0.44019
12.588	0	764	0	0.44367
12.663	0	771	0	0.44774
12.739	0	780	0	0.45296
12.814	0	787	0	0.45703
12.889	0	800	0	0.46458
12.965	0	808	0	0.46922
13.04	0	812	0	0.47154
13.116	0	817	0	0.47445
13.191	0	821	0	0.47677
13.266	0	832	0	0.48316
13.342	0	841	0	0.48839
13.417	0	847	0	0.49187
13.492	0	855	0	0.49652
13.568	0	862	0	0.50058
13.643	0	871	0	0.50581
13.719	0	881	0	0.51161
				0.51101
13.794	0	889	0	
13.869	0	892	0	0.518
13.945	0	899	0	0.52207
14.02	0	907	0	0.52671
14.095	0	913	0	0.5302
14.171	0	917	0	0.53252
14.246	0	929	0	0.53949
14.322	0	934	0	0.54239
14.397	0	942	0	0.54704
14.472	0	947	0	0.54994
14.548	0	950	0	0.55168
14.623	0	955	0	0.55459
14.698	0	963	0	0.55923
14.774	0	973	0	0.56504
14.849	0	982	0	0.57027
14.925	0	986	0	0.57259

15 0 991 0 0.57549

Seperate Tables:

```
FRRTable = table(th', FR_count', FRR', ...
    'VariableNames', {'Threshold', 'FR_Errors', 'FRR'});
disp(FRRTable);
```

Threshold	FR_Errors	FRR
0	40	0.95238
0.075377	40	0.95238
0.15075	40	0.95238
0.22613	40	0.95238
0.30151	40	0.95238
0.37688	40	0.95238
0.45226	40	0.95238
0.52764	40	0.95238
0.60302	39	0.92857
0.67839	39	0.92857
0.75377	38	0.90476
0.82915	38	0.90476
0.90452	38	0.90476
0.9799	37	0.88095
1.0553	36	0.85714
1.1307	36	0.85714
1.206	36	0.85714
1.2814	34	0.80952
1.3568	33	0.78571
1.4322	32	0.7619
1.5075	30	0.71429
1.5829	27	0.64286
1.6583	26	0.61905
1.7337	24	0.57143
1.809	24	0.57143
1.8844	23	0.54762
1.9598	23	0.54762
2.0352	21	0.5
2.1106	21	0.5
2.1859	19	0.45238
2.2613	17	0.40476
2.3367	17	0.40476
2.4121	15	0.35714
2.4874	13	0.30952
2.5628	12	0.28571
2.6382	11	0.2619
2.7136	11	0.2619
2.7889	11	0.2619
2.8643	10	0.2381
2.9397	10	0.2381
3.0151	9	0.21429

3.0905	7	0.16667
3.1658	7	0.16667
3.2412	7	0.16667
3.3166	6	0.14286
3.392	6	0.14286
3.4673	6	0.14286
3.5427	6	0.14286
3.6181	6	0.14286
3.6935	6	0.14286
3.7688	6	0.14286
3.8442	5	0.11905
3.9196	5	0.11905
3.995	5	0.11905
4.0704	5	0.11905
4.1457	5	0.11905
4.2211	5	0.11905
4.2965	5	0.11905
4.3719	5	0.11905
4.4472	4	0.095238
4.5226	4	0.095238
4.598	4	0.095238
4.6734	4	0.095238
4.7487	4	0.095238
4.8241	4	0.095238
4.8995	4	0.095238
4.9749	4	0.095238
5.0503	4	0.095238
5.1256	4	0.095238
5.201	4	0.095238
5.2764	3	0.071429
5.3518	3	0.071429
5.4271	3	0.071429
5.5025	3	0.071429
5.5779	3	0.071429
5.6533	3	0.071429
5.7286	3	0.071429
5.804	1	0.02381
5.8794	1	0.02381
5.9548	1	0.02381
6.0302	1	0.02381
6.1055	1	0.02381
6.1809	1	0.02381
6.2563	1	0.02381
6.3317	1	0.02381
6.407		
	1	0.02381
6.4824	1	0.02381
6.5578	1	0.02381
6.6332	0	0
6.7085	0	0
6.7839	0	0
6.8593	0	0
6.9347	0	0
7.0101	0	0
7.0854	0	0
	9	O

	_	
7.1608	0	C
7.2362	0	C
7.3116	0	(
7.3869	0	(
7.4623	0	(
7.5377	0	(
7.6131	0	(
7.6884	0	(
7.7638	0	(
7.8392	0	(
7.9146	0	(
7.9899	0	(
8.0653	0	(
8.1407	0	(
8.2161	0	(
8.2915	0	C
8.3668	0	(
8.4422	0	(
8.5176	0	(
8.593	0	(
8.6683	0	(
8.7437	0	(
8.8191	0	(
8.8945	0	(
8.9698	0	(
9.0452	0	(
9.1206	0	(
9.196	0	(
9.2714	0	(
9.3467	0	(
9.4221	0	(
9.4975	0	(
9.5729	0	(
9.6482	0	(
9.7236	0	(
9.799	0	(
9.8744	0	(
9.9497	0	(
10.025	0	(
10.101	0	(
	0	(
10.176		
10.251	0	(
10.327	0	(
10.402	0	(
10.477	0	(
10.553	0	(
10.628	0	(
10.704	0	(
10.779	0	(
10.854	0	(
10.93	0	(
11.005	0	(
11.08	0	(
11.156	0	(
	-	

11.231	0	(
11.307	0	C
11.382	0	C
11.457	0	C
11.533	0	(
11.608	0	(
11.683	0	C
11.759	0	C
11.834	0	C
11.91	0	C
11.985	0	C
12.06	0	C
12.136	0	C
12.211	0	C
12.286	0	C
12.362	0	C
12.437	0	C
12.513	0	C
12.588	0	C
12.663	0	C
12.739	0	C
12.739	0	(
12.889	0	(
12.965	0	C
13.04	0	C
13.116	0	C
13.191	0	C
13.266	0	C
13.342	0	C
13.417	0	C
13.492	0	C
13.568	0	C
13.643	0	C
13.719	0	C
13.794	0	C
13.869	0	C
13.945	0	C
14.02	0	C
14.095	0	C
14.171	0	C
14.246	0	C
14.322	0	C
14.397	0	C
14.472	0	C
14.548	0	C
14.623	0	C
14.698	0	C
14.774	0	C
14.849	0	C
14.925	0	C
15	0	C
-0	· ·	

FARTable = table(th', FA_count', FAR', ...
 'VariableNames', {'Threshold', 'FA_Errors', 'FAR'});
disp(FARTable); % preview

Threshold	FA_Errors	FAR
	0	
0	0	0
0.075377		0
0.15075	0	0
0.22613	0	
0.30151	0	0
0.37688	0	0
0.45226	0	0
0.52764	0	0
0.60302	0	0
0.67839	0	0
0.75377	0	0
0.82915	0	0
0.90452	0	0
0.9799	0	0
1.0553	0	0
1.1307	0	0
1.206	0	0
1.2814	0	0
1.3568	0	0
1.4322	0	0
1.5075	0	0
1.5829	0	0
1.6583	0	0
1.7337	0	0
1.809	0	0
1.8844	0	0
1.9598	0	0
2.0352	0	0
2.1106	2	0.0011614
2.1859	4	0.0023229
2.2613	4	0.0023229
2.3367	4	0.0023229
2.4121	4	0.0023229
2.4874	4	0.0023229
2.5628	4	0.0023229
2.6382	5	0.0029036
2.7136	5	0.0029036
2.7889	5 5	0.0029036
2.8643		0.0029036
2.9397	6	0.0034843
3.0151	6	0.0034843
3.0905	6	0.0034843
3.1658	6	0.0034843
3.2412	7	0.004065
3.3166	8	0.0046458
3.392	11	0.0063879

0 4670	4.5	0 0007400
3.4673	15	0.0087108
3.5427	16	0.0092915
3.6181	17	0.0098722
3.6935	18	0.010453
3.7688	19	0.011034
3.8442	21	0.012195
3.9196	24	0.013937
3.995	27	0.015679
4.0704	29	0.016841
4.1457	30	0.017422
4.2211	31	0.018002
4.2965	33	0.019164
4.3719	36	0.020906
4.4472	41	0.02381
4.5226	42	0.02439
4.598	44	0.025552
4.6734	46	0.026713
4.7487	50	0.029036
4.8241	56	0.03252
4.8995	59	0.034262
4.9749	63	0.036585
5.0503	65	0.037747
5.1256	70	0.04065
5.201	78	0.045296
5.2764	86	0.049942
5.3518	90	0.052265
5.4271	92	0.053426
5.5025	97	0.05633
5.5779	103	0.059814
5.6533	107	0.062137
5.7286	113	0.065621
5.804	120	0.069686
5.8794	126	0.073171
5.9548	129	0.074913
6.0302	132	0.076655
6.1055	140	0.081301
6.1809	143	0.083043
6.2563	152	0.088269
6.3317	155	0.090012
6.407	165	0.095819
6.4824	172	0.099884
6.5578	177	0.10279
6.6332	186	0.10801
6.7085	196	0.11382
6.7839	207	0.12021
6.8593	210	0.12195
6.9347	215	0.12485
7.0101	222	0.12892
7.0854	227	0.13182
7.1608	231	0.13415
7.2362	240	0.13937
7.3116	245	0.14228
7.3869	255	0.14808
7.4623	261	0.15157

7.5377	268	0.15563
7.6131	276	0.16028
7.6884	284	0.16492
7.7638	289	0.16783
7.8392	295	0.17131
7.9146	302	0.17538
7.9899	312	0.18118
8.0653	320	0.18583
8.1407	324	0.18815
8.2161	330	0.19164
8.2915	338	0.19628
8.3668	345	0.20035
8.4422	350	0.20325
8.5176	356	0.20674
8.593	363	0.2108
8.6683	368	0.2137
8.7437	377	0.21893
8.8191	390	0.22648
8.8945	396	0.22997
8.9698	404	0.23461
9.0452	411	0.23868
9.1206	423	0.24564
9.196	432	0.25087
9.2714	443	0.25726
9.3467	448	0.26016
9.4221	459	0.26655
9.4975	469	0.27236
9.5729	475	0.27584
9.6482	483	0.28049
9.7236	494	0.28688
9.799	506	0.29384
9.8744	510	0.29617
9.9497	520	0.30197
10.025	529	0.3072
10.101	534	0.3101
10.176	542	0.31475
10.251	550	0.3194
10.327	555	0.3223
10.402	564	0.32753
10.477	568	0.32985
10.553	579	0.33624
10.628	584	0.33914
10.704	591	0.34321
10.779	596	0.34611
10.854	605	0.35134
10.93	615	0.35714
11.005	626	0.36353
11.005		0.36876
	635	
11.156	642	0.37282
11.231	650	0.37747
11.307	654	0.37979
11.382	660	0.38328
11.457	665	0.38618
11.533	671	0.38966

```
11.608
               680
                            0.39489
11.683
               683
                            0.39663
11.759
               687
                            0.39895
11.834
               692
                            0.40186
 11.91
               697
                            0.40476
11.985
               701
                            0.40708
12.06
               707
                            0.41057
12.136
               715
                            0.41521
12.211
               720
                            0.41812
12.286
               724
                            0.42044
12.362
               734
                            0.42625
12.437
               742
                            0.43089
12.513
               758
                            0.44019
12.588
                            0.44367
               764
                            0.44774
12.663
               771
12.739
               780
                            0.45296
12.814
               787
                            0.45703
12.889
               800
                            0.46458
12.965
               808
                            0.46922
13.04
               812
                            0.47154
13.116
               817
                            0.47445
13.191
               821
                            0.47677
               832
                            0.48316
13.266
13.342
               841
                            0.48839
               847
                            0.49187
13.417
13.492
               855
                            0.49652
                            0.50058
13.568
               862
13.643
               871
                            0.50581
13.719
               881
                            0.51161
13.794
               889
                            0.51626
13.869
               892
                              0.518
13.945
               899
                            0.52207
 14.02
               907
                            0.52671
14.095
               913
                            0.5302
                            0.53252
14.171
               917
14.246
               929
                            0.53949
14.322
               934
                            0.54239
14.397
               942
                            0.54704
14.472
               947
                            0.54994
14.548
               950
                            0.55168
14.623
               955
                            0.55459
14.698
               963
                            0.55923
14.774
               973
                            0.56504
14.849
                            0.57027
               982
14.925
               986
                            0.57259
                            0.57549
    15
               991
```

```
% Plot FRR and FAR
figure;
plot(th, FRR, 'r-', 'LineWidth', 2); hold on;
plot(th, FAR, 'b-', 'LineWidth', 2);
xlabel('Threshold');
```

```
ylabel('Error rate');

% Add EER to the plot
plot(eer_threshold, eer_value, 'ko', 'MarkerSize', 8, 'LineWidth', 2);
text(eer_threshold, eer_value, sprintf(' EER = %.2f%% at Th = %.2f', eer_value*100, eer_threshold));
title('FRR and FAR vs Threshold');
legend('FRR (False Rejection Rate)', 'FAR (False Acceptance Rate)', 'EER (Equal Error Rate)');
grid on;
print('eer_plot','-depsc');
```


Choosing Threshholds: High Security vs. High Convenience

```
% High Security (FAR <= 1%)
sec_candidates = find(FAR <= 0.01);
[~, sec_best] = min(FRR(sec_candidates));
sec_idx = sec_candidates(sec_best);
fprintf('High Security → Th = %.4f, FAR = %.2f%%, FRR = %.2f%%\n', ...
    th(sec_idx), FAR(sec_idx)*100, FRR(sec_idx)*100);</pre>
```

High Security \rightarrow Th = 3.3166, FAR = 0.46%, FRR = 14.29%

```
% High Convenience (FRR <= 1%)
conv_candidates = find(FRR <= 0.01);
[~, conv_best] = min(FAR(conv_candidates));
conv_idx = conv_candidates(conv_best);
fprintf('High Convenience → Th = %.4f, FAR = %.2f%%, FRR = %.2f%%\n', ...
th(conv_idx), FAR(conv_idx)*100, FRR(conv_idx)*100);</pre>
```

High Convenience \rightarrow Th = 6.6332, FAR = 10.80%, FRR = 0.00%

```
save('DB_final.mat', 'DB');
save('TEST_final.mat', 'TEST');
```