ここでは, Banach 空間について述べよう. まず, 距離空間の Cauchy 列に関して, 次のように定める.

定義 3.1 (X,d) を距離空間, $\{a_n\}_{n=1}^{\infty}$ を X の点列とする. 任意の $\varepsilon > 0$ に対して, ある $N \in \mathbb{N}$ が存在し, $m, n \in \mathbb{N}, m, n \geq N$ ならば, $d(a_m, a_n) < \varepsilon$ となるとき, $\{a_n\}_{n=1}^{\infty}$ を Cauchy 列という.

距離空間の収束する点列は Cauchy 列であることが分かる. しかし, Cauchy 列は必ずしも収束するとは限らない. そこで, 次のように定める.

定義 3.2 任意の Cauchy 列が収束する距離空間は完備であるという. また, 完備なノルム空間を Banach 空間という.

注意 3.1 V を内積空間とする. 例 2.1 で述べたように, V はノルム空間となる. V が完備となるとき, V を Hilbert 空間という.

例 3.1 (Euclid 空間) Euclid 空間 (\mathbf{R}^n , \langle , \rangle) を考える. ただし, \langle , \rangle は \mathbf{R}^n の標準内積である. このとき, 例 2.1 より, \mathbf{R}^n はノルム空間となる. 更に, このノルムは Euclid 距離 d を定める. 微分積分でも学ぶように, \mathbf{R}^n は d に関して完備である. よって, \mathbf{R}^n は Hilbert 空間である.

次に示すように、例 2.2 のノルム空間 C[0,1] は Banach 空間となる.

定理 3.1 C[0,1] は完備である.

証明 次の(1)~(3)の手順により示す.

- (1) $\{f_n\}_{n=1}^{\infty}$ を C[0,1] の Cauchy 列とし, $t \in [0,1]$ とする. このとき, 実数列 $\{f_n(t)\}_{n=1}^{\infty}$ は収束する.
- (2) (1) より, $f(t) = \lim_{n \to \infty} f_n(t)$ とおき, 関数 $f: [0,1] \to \mathbf{R}$ を定めることができる. このとき, $f \in C[0,1]$ である.
- (3) $\{f_n\}_{n=1}^{\infty}$ は f に収束する.

(1): $\varepsilon > 0$ とする. $\{f_n\}_{n=1}^{\infty}$ は C[0,1] の Cauchy 列だから, ある $N \in \mathbb{N}$ が存在し, $m, n \in \mathbb{N}$, $m, n \geq N$ ならば,

$$d(f_m, f_n) < \frac{\varepsilon}{3}$$

となる. よって, $t \in [0,1]$ とすると, $m, n \in \mathbb{N}$, $m, n \ge N$ ならば,

$$|f_m(t) - f_n(t)| \le d(f_m, f_n)$$

 $< \frac{\varepsilon}{3},$

すなわち,

$$|f_m(t) - f_n(t)| < \frac{\varepsilon}{3} \tag{*}$$

となる. したがって, $\{f_n(t)\}_{n=1}^\infty$ は ${\bf R}$ の Cauchy 列である. ${\bf R}$ は完備だから, $\{f_n(t)\}_{n=1}^\infty$ は収束する.

(2): (*) において, n = N, $m \to \infty$ とすると,

$$|f(t) - f_N(t)| \le \frac{\varepsilon}{3}$$

である. $t_0 \in [0,1]$ とすると, f_N は連続だから, ある $\delta > 0$ が存在し, $t \in [0,1]$, $|t - t_0| < \delta$ ならば,

$$|f_N(t) - f_N(t_0)| < \frac{\varepsilon}{3}$$

となる. よって, $t \in [0,1]$ とすると, $|t-t_0| < \delta$ ならば,

$$|f(t) - f(t_0)| \le |f(t) - f_N(t)| + |f_N(t) - f_N(t_0)| + |f_N(t_0) - f(t_0)|$$

$$< \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3}$$

$$= \varepsilon,$$

すなわち,

$$|f(t) - f(t_0)| < \varepsilon$$

となる. したがって, f は $t=t_0$ で連続である. t_0 は任意だから, $f \in C[0,1]$ である. (3): $t \in [0,1]$, $n \in \mathbb{N}$, $n \ge N$ とすると,

$$|f_n(t) - f(t)| \le |f_n(t) - f_N(t)| + |f_N(t) - f(t)|$$

$$< \frac{\varepsilon}{3} + \frac{\varepsilon}{3}$$

$$= \frac{2}{3}\varepsilon,$$

すなわち,

$$|f_n(t) - f(t)| < \frac{2}{3}\varepsilon$$

である. よって, $n \in \mathbb{N}$, n > N ならば,

$$d(f_n, f) \le \frac{2}{3}\varepsilon$$

$$< \varepsilon$$

すなわち,

$$d(f_n, f) < \varepsilon$$

である. したがって, $\{f_n\}_{n=1}^{\infty}$ は f に収束する.

例 3.2 多項式として表される C[0,1] の元全体の集合を X とする. このとき, X は C[0,1] の部分空間となる. 更に, C[0,1] のノルム $\| \|$ の X への制限は X のノルムを定める. しかし, X は完備ではない. 実際, 例えば, [0,1] で定義された C^∞ 級関数は Taylor の定理より, 多項式で近似することができるからである.

また, 問題 2-1 のノルム空間 *l^p* は Banach 空間となる.

定理 3.2 *l^p* は完備である.

証明 次の(1)~(3)の手順により示す.

- (1) $\{x_n\}_{n=1}^{\infty}$ を l^p の Cauchy 列とし, $i \in \mathbf{N}$ とする. $x_n = \{\xi_i^{(n)}\}_{i=1}^{\infty}$ と表しておくと, 実数列 $\{\xi_i^{(n)}\}_{n=1}^{\infty}$ は収束する.
- (2) (1) より, $\xi_i = \lim_{n \to \infty} \xi_i^{(n)}$ とおき, 実数列 $x = \{\xi_i\}_{i=1}^\infty$ を定めることができる. このとき, $x \in l^p$ である.
- $(3) \{x_n\}_{n=1}^{\infty}$ はxに収束する.

(1): $\varepsilon > 0$ とする. $\{x_n\}_{n=1}^{\infty}$ は l^p の Cauchy 列だから, ある $N \in \mathbb{N}$ が存在し, $m, n \in \mathbb{N}, m, n \geq N$ ならば,

$$||x_m - x_n||_p < \varepsilon$$

となる. よって, $i \in \mathbb{N}$ とすると, $m, n \in \mathbb{N}$, $m, n \ge N$ ならば,

$$|\xi_{i}^{(m)} - \xi_{i}^{(n)}| \le \left(\sum_{j=1}^{\infty} |\xi_{j}^{(m)} - \xi_{j}^{(n)}|^{p}\right)^{\frac{1}{p}}$$

$$= ||x_{m} - x_{n}||_{p}$$

$$< \varepsilon,$$

すなわち,

$$|\xi_i^{(m)} - \xi_i^{(n)}| < \varepsilon$$

となる. したがって, $\{\xi_i^{(n)}\}_{n=1}^{\infty}$ は \mathbf{R} の Cauchy 列である. \mathbf{R} は完備だから, $\{\xi_i^{(n)}\}_{n=1}^{\infty}$ は収束する. (2): $k \in \mathbf{N}$ とすると, $m, n \in \mathbf{N}, m, n \geq N$ ならば,

$$\left(\sum_{j=1}^k |\xi_j^{(m)} - \xi_j^{(n)}|^p\right)^{\frac{1}{p}} \le ||x_m - x_n||_p$$

$$< \varepsilon,$$

すなわち,

$$\left(\sum_{j=1}^k |\xi_j^{(m)} - \xi_j^{(n)}|^p\right)^{\frac{1}{p}} < \varepsilon$$

となる. よって, n = N, $m \to \infty$ とすると,

$$\left(\sum_{j=1}^{k} |\xi_j - \xi_j^{(N)}|^p\right)^{\frac{1}{p}} \le \varepsilon \tag{**}$$

である. 更に, Minkowski の不等式より,

$$\left(\sum_{j=1}^{k} |\xi_{j}|^{p}\right)^{\frac{1}{p}} \leq \left(\sum_{j=1}^{k} |\xi_{j} - \xi_{j}^{(N)}|^{p}\right)^{\frac{1}{p}} + \left(\sum_{j=1}^{k} |\xi_{j}^{(N)}|^{p}\right)^{\frac{1}{p}}$$
$$\leq \varepsilon + ||x_{N}||_{p},$$

すなわち,

$$\left(\sum_{j=1}^{k} |\xi_j|^p\right)^{\frac{1}{p}} \le \varepsilon + ||x_N||_p$$

である. したがって, $k \to \infty$ とすると, $\|x\|_p < +\infty$ となり, $x \in l^p$ である. (3): (**) において, $k \to \infty$ とすればよい.

問題3

1. 集合 *l*[∞] を

$$l^{\infty} = \{\{\xi_n\}_{n=1}^{\infty} \mid \{\xi_n\}_{n=1}^{\infty} \text{ id } \sup\{|\xi_n| \mid n \in \mathbf{N}\} < +\infty \text{ となる実数列}\}$$

により定める.

(1) $x=\{\xi_n\}_{n=1}^\infty,\ y=\{\eta_n\}_{n=1}^\infty\in l^\infty$ とする. 実数列 x+y を

$$x + y = \{\xi_n + \eta_n\}_{n=1}^{\infty}$$

により定めると, $x+y \in l^{\infty}$ であることを示せ.

(2) $c \in \mathbf{R}, x = \{\xi_n\}_{n=1}^{\infty} \in l^{\infty}$ とする. 実数列 cx を

$$cx = \{c\xi_n\}_{n=1}^{\infty}$$

により定めると, $cx \in l^{\infty}$ であることを示せ.

更に、 l^{∞} はR上のベクトル空間となることが分かる.

(3) $x = \{\xi_n\}_{n=1}^{\infty} \in l^{\infty}$ に対して,

$$||x||_{\infty} = \sup\{|\xi_n| \mid n \in \mathbf{N}\}$$

とおく. $\| \|_{\infty}$ は l^{∞} のノルムとなることを示せ.

- (4) ノルム空間 $(l^{\infty}, || ||_{\infty})$ は完備であることを示せ.
- **2.** V, W を R 上のベクトル空間とする. $(x_1, y_1), (x_2, y_2) \in V \times W, c \in \mathbf{R}$ に対して,

$$(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2), \quad c(x_1, y_1) = (cx_1, cy_1)$$

とおくと, $V \times W$ はベクトル空間となることが分かる. 更に, $\| \|_{V}$, $\| \|_{W}$ をそれぞれ V, W のノルムとする. $(x,y) \in V \times W$ に対して,

$$||(x,y)||_{V\times W} = ||x||_V + ||y||_W$$

とおくと、 $\| \|_{V\times W}$ は $V\times W$ のノルムとなることが分かる.

 $(V, || ||_V), (W, || ||_W)$ が完備ならば, $(V \times W, || ||_{V \times W})$ は完備であることを示せ.

問題3の解答

1. (1) $x, y \in l^{\infty}$ および絶対値に対する三角不等式より,

$$\sup\{|\xi_n + \eta_n| \mid n \in \mathbf{N}\} \le \sup\{|\xi_n| + |\eta_n| \mid n \in \mathbf{N}\}$$

$$\le \sup\{|\xi_n| \mid n \in \mathbf{N}\} + \sup\{|\eta_n| \mid n \in \mathbf{N}\}$$

$$< +\infty$$

である. よって, $x+y \in l^{\infty}$ である.

$$\sup\{|c\xi_n| \mid n \in \mathbf{N}\} = \sup\{|c||\xi_n| \mid n \in \mathbf{N}\}$$
$$= |c|\sup\{|\xi_n| \mid n \in \mathbf{N}\}$$
$$< +\infty$$

である. よって, $cx \in l^{\infty}$ である.

(3) まず, $x = \{\xi_n\}_{n=1}^{\infty} \in l^{\infty}$ とする. $\| \|_{\infty}$ の定義より, $\|x\|_{\infty} \ge 0$ である. また, $\|x\|_{\infty} = 0$ となるのは x のすべての項が 0 となるとき, すなわち, x が l^{∞} の零ベクトルのときである. 次に, $c \in \mathbb{R}$, $x = \{\xi_n\}_{n=1}^{\infty} \in l^{\infty}$ とする. このとき, (2) の計算より,

$$||cx||_{\infty} = |c|||x||_{\infty}$$

である.

更に, $x=\{\xi_n\}_{n=1}^\infty,\,y=\{\eta_n\}_{n=1}^\infty\in l^\infty$ とする. このとき, (1) の計算より,

$$||x+y||_{\infty} \le ||x||_{\infty} + ||y||_{\infty}$$

である.

よって, $\| \|_{\infty}$ は l^{∞} のノルムとなる.

- (4) 次の(a)~(c) の手順により示せばよい.
 - (a) $\{x_n\}_{n=1}^{\infty}$ を l^{∞} の Cauchy 列とし, $i \in \mathbf{N}$ とする. $x_n = \{\xi_i^{(n)}\}_{i=1}^{\infty}$ と表しておくと, 実数列 $\{\xi_i^{(n)}\}_{n=1}^{\infty}$ は収束する.
 - (b) (a) より, $\xi_i = \lim_{n \to \infty} \xi_i^{(n)}$ とおき, 実数列 $x = \{\xi_i\}_{i=1}^{\infty}$ を定めることができる. このとき, $x \in l^{\infty}$ である.
 - (c) $\{x_n\}_{n=1}^{\infty}$ は x に収束する.
 - (a): $\varepsilon > 0$ とする. $\{x_n\}_{n=1}^{\infty}$ は l^{∞} の Cauchy 列だから, ある $N \in \mathbb{N}$ が存在し, $m, n \in \mathbb{N}$, m, n > N ならば,

$$||x_m - x_n||_{\infty} < \varepsilon$$

となる. よって, $i \in \mathbb{N}$ とすると, $m, n \in \mathbb{N}$, m, n > N ならば,

$$|\xi_i^{(m)} - \xi_i^{(n)}| \le \sup\{|\xi_j^{(m)} - \xi_j^{(n)}| \mid j \in \mathbf{N}\}$$

$$= ||x_m - x_n||_{\infty}$$

$$< \varepsilon,$$

すなわち,

$$|\xi_i^{(m)} - \xi_i^{(n)}| < \varepsilon \tag{i}$$

となる. したがって, $\{\xi_i^{(n)}\}_{n=1}^\infty$ は \mathbf{R} の Cauchy 列である. \mathbf{R} は完備だから, $\{\xi_i^{(n)}\}_{n=1}^\infty$ は収束する.

(b): (i) \mathbb{C} \mathbb{C}

$$|\xi_i - \xi_i^{(N)}| \le \varepsilon \tag{ii}$$

である.よって,絶対値に対する三角不等式より,

$$|\xi_i| \le |\xi_i - \xi_i^{(N)}| + |\xi_i^{(N)}|$$

$$\le \varepsilon + ||x_N||_{\infty},$$

すなわち.

$$|\xi_i| < \varepsilon + ||x_N||_{\infty}$$

である. したがって,

$$\sup\{|\xi_i| \mid i \in \mathbf{N}\} \le \varepsilon + ||x_N||_{\infty}$$

となり, $x \in l^{\infty}$ である.

- (c): (ii) より, 明らかである.
- **2.** $\{z_n\}_{n=1}^{\infty} = \{(x_n, y_n)\}_{n=1}^{\infty}$ を $V \times W$ の Cauchy 列とし, $\varepsilon > 0$ とする. このとき, ある $N \in \mathbb{N}$ $m, n \in \mathbb{N}$, が存在し, $m, n \geq N$ ならば,

$$||z_m - z_n||_{V \times W} < \frac{1}{3}\varepsilon$$

となる. ここで,

$$||z_m - z_n||_{V \times W} = ||(x_m - x_n, y_m - y_n)||_{V \times W}$$
$$= ||x_m - x_n||_V + ||y_m - y_n||_W$$

だから, $m, n \in \mathbb{N}$, $m, n \ge N$ ならば,

$$||x_m - x_n||_V, ||y_m - y_n||_W < \frac{1}{3}\varepsilon$$

である. よって, $\{x_n\}_{n=1}^{\infty}$, $\{y_n\}_{n=1}^{\infty}$ はそれぞれ V, W の Cauchy 列である. 更に, V, W は完備 だから, ある $x \in V$, $y \in W$ が存在し, $\{x_n\}_{n=1}^{\infty}$, $\{y_n\}_{n=1}^{\infty}$ はそれぞれ x, y に収束する. した がって, z = (x,y) とおくと, $n \in \mathbb{N}$, $n \geq N$ ならば,

$$||z_n - z||_{V \times W} = ||x_n - x||_V + ||y_n - y||_W$$

$$\leq \frac{1}{3}\varepsilon + \frac{1}{3}\varepsilon$$

$$= \frac{2}{3}\varepsilon$$

$$< \varepsilon,$$

すなわち,

$$||z_n - z||_{V \times W} < \varepsilon$$

となり、 $\{z_n\}_{n=1}^{\infty}$ は z に収束する. 以上より、 $V \times W$ は完備である.