Public Key Crypto Using the RSA Algorithm

Asymmetric (Public Key)

Uses a different key for encryption and decryption

Need to generate key pairs

• One is private, the other is public

RSA Key Generation

- Pick two large distinct random primes (p and q)
- Calculate n= pq
- Calculate $\phi(n) = (p-1)(q-1)$
- Pick e= number less than $\phi(n)$, co-prime to $\phi(n)$
- Calculate d
 - $d*e \equiv 1 \mod \phi(n)$
- **Public** key is (e, n)
- **Private** key is (d,n)
- It is computationally infeasible to compute d from e and n alone

RSA Encryption and Decryption

Encryption

- Split message into blocks
- For each plaintext block B
 - $B^e \pmod{n}$

Decryption

- For each ciphertext block C
 - *C*^d(mod *n*)

RSA Toy Example- Key Generation

$$P = Q$$
 $N = P \cdot Q$
 $Q(n) = (P - 1)(q - 1)$
 $e < Q(n)$
 $e < M = e^{-1} \mod (Q(n))$
 $Ol = N$

$$P = 5$$
 $q = 11$
 $1 = 5 \cdot 11 = 5 \cdot 5$
 $1 = 5 \cdot 11 = 5 \cdot 5$
 $1 = 4 \cdot 10 = 40$
 $1 = 4$

RSA Toy Example- Encryption

$$C_1 = 18$$
 $18^{23} \mod 55 = 2$