ÁLGEBRA MATRICIAL Y GEOMETRÍA ANALÍTICA

Segunda Práctica Dirigida Semestre Académico 2021-2

Horario: Todos.

Indicaciones:

Los estudiantes deberán subir a PAIDEIA un archivo(**en formato PDF**) donde se muestre la solución detallada de los ejercicios 6 y 7. Dicho archivo se podrá subir desde las 00:00 horas del día sábado 18 de setiembre hasta las 23:59 horas del día lunes 20 de setiembre.

- 1. La parábola \mathcal{P} pasa por los puntos A(-10;16) y B(-10;-8), y tiene como directriz a la recta $\ell: x=10$.
 - a) Halle la ecuación de la parábola \mathcal{P} (dos soluciones).
 - b) Grafique una de las parábolas halladas en el item a), mostrando las coordenadas del vértice, foco, extremos del lado recto y la recta directriz.
- 2. El triángulo ABC tiene vértices A(-5;-1) y B(1;-3). El vértice C se encuentra sobre la elipse $\mathscr E$ de ecuación $4x^2-32x+y^2-8y+64=0$.
 - a) Halle la ecuación del lugar geométrico descrito por el punto medio de la mediana del triángulo ABC trazada desde el vértice C.
 - b) Grafique, en un mismo sistema de coordenadas, la elipse $\mathscr E$ y el lugar geométrico hallado en a).
- 3. Sea ℓ una recta que pasa por el punto P(-2;-3) y contiene a un diámetro de la circunferencia $\mathscr C$. Además, la ecuación de la recta tangente a $\mathscr C$, en uno de los extremos de dicho diámetro, es $\ell_1: 3x+4y-57=0$, y la recta tangente en el otro extremo intercepta al eje X en el punto de abscisa $\frac{7}{3}$. Halle la ecuación de dicha circunferencia $\mathscr C$.
- 4. En la siguiente figura se muestran dos rectas ℓ_1 y ℓ_2 , una parábola \mathcal{P} y una elipse \mathscr{E} .

Se sabe que:

- ℓ_1 es la recta directriz de \mathcal{P} y contiene al eje menor de \mathcal{E} ,
- B es el foco de \mathcal{P}
- $\mathscr E$ es tangente a $\mathscr P$ en su vértice y el lado recto de $\mathscr E$ mide 2 u.

Describa la región sombreada mediante un sistema de inecuaciones.

- 5. Halle la ecuación de la parábola \mathcal{P} , cuyo vértice se encuentra en el primer cuadrante y está contenido en la recta $\ell: x+3y=6$. Además, se sabe que la longitud del lado recto de \mathcal{P} es $8\sqrt{5}$ y su directríz es la recta $\ell_D: y=-2x-3$.
- 6. Halle la ecuación de la elipse cuyos focos son las intersecciones de la circunferencia $\mathcal{C}x^2 + y^2 4x 2y 20 = 0$ con la recta $\ell : x 5 = 0$, y uno de los extremos de su eje menor está sobre la recta $\ell_1 : 2x 3y 13 = 0$.
- 7. Considere las siguientes cónicas, $\mathscr C$ una circunferencia, $\mathscr P$ una parábola y $\mathscr C$ una elipse. Dichas cónicas satisfacen las siguientes condiciones:
 - $\mathscr C$ es tangente a los ejes de coordenadas y tangente a las rectas $\ell_1: y=8$ y $\ell_2: x=8$.
 - \mathcal{P} tiene foco F(0;4) y eje focal paralelo al eje X.
 - \mathscr{E} está inscrita en \mathscr{C} , el eje mayor de \mathscr{E} es un diámetro de \mathscr{C} , \mathscr{E} es tangente a \mathscr{P} en su vértice y también es tangente a la directriz de \mathscr{P} .

Halle las ecuaciones de la circunferencia, parábola y elipse. Luego grafique las tres curvas en un mismo sistema de coordenadas.

San Miguel, 18 de setiembre de 2021.