Amendments to the Claims

This listing of claims will replace all prior versions, and listings, of claims in the application:

1. (Currently amended) A compound of formula I:

or a pharmaceutically acceptable salt thereof, wherein:

E' is
$$-SO_2$$
-;

A is selected from -R¹-C₁-C₆ alkyl, which is optionally substituted with one or more groups independently selected from hydroxy, C_1 -C₄ alkoxy, Ht, -O-Ht, -NR²-CO-N(R²)₂, -SO₂-R² or -CO-N(R²)₂; or -R¹-C₂-C₆ alkenyl, which is optionally substituted with one or more groups independently selected from hydroxy, C_1 -C₄ alkoxy, Ht, -O-Ht, -NR²-CO-N(R²)₂ or -CO-N(R²)₂; or R⁷;

$$R^1$$
 is -O-C(O)-;

each Ht is independently selected from C_3 - C_7 cycloalkyl; C_5 - C_7 cycloalkenyl; C_6 - C_{14} aryl; or a 5-7 membered saturated or unsaturated heterocycle, containing one or more heteroatoms selected from N, O, or S; wherein said aryl or said heterocycle is optionally fused to Q; and wherein any member of said Ht is optionally substituted with one or more substituents independently selected from oxo, $-OR^2$, SR^2 , $-R^2$, $-N(R^2)(R^2)$, $-R^2$ -OH, -CN, $-CO_2R^2$, -C(O)- $N(R^2)_2$, $-S(O)_2$ - $N(R^2)_2$, $-N(R^2)$ --C(O)- $-R^2$, $-N(R^2)$ --C(O)- $-R^2$, -C(O)- $-R^2$, -S(O)- $-R^2$ - $-R^2$ --R

 R^2 , $-OCF_3$, $-S(O)_n-Q$, methylenedioxy, $-N(R^2)-S(O)_2(R^2)$, halo, $-CF_3$, $-NO_2$, Q, -OQ, $-OR^7$, $-SR^7$, $-R^7$, $-N(R^2)(R^7)$ or $-N(R^7)_2$;

each Q is independently selected from a 3-7 membered saturated, partially saturated or unsaturated carbocyclic ring system; or a 5-7 membered saturated, partially saturated or unsaturated heterocyclic ring containing one or more heteroatoms selected from O, N, or S; wherein Q is optionally substituted with one or more groups selected from oxo, $-OR^2$, $-R^2$, $-SO_2R^2$, $-SO_2-N(R^2)_2$, $-N(R^2)_2$, $-N(R^2)-C(O)-R^2$, $-R^2-OH$, -CN, $-CO_2R^2$, $-C(O)-N(R^2)_2$, halo, $-CF_3$;

each R^2 is independently selected from H, or C_1 - C_4 alkyl,; and wherein said alkyl, when not a substituent of Q, is optionally substituted with Q or -OR³; wherein when said R^2 is an -OR³ substituted moiety, said R^3 in -OR³ may not be -OR² substituted;

B is absent;

each x is independently 0 or 1;

each R^3 is independently selected from H, Ht, C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_3 - C_6 cycloalkyl or C_5 - C_6 cycloalkenyl; wherein any member of said R^3 , except H, is optionally substituted with one or more substituents selected from -OR 2 , -C(O)-NH- R^2 , -S(O)_n-N(R^2), -N(R^2)₂, -N(R^2)-C(O)-O(R^2), -N(R^2)-C(O)-N(R^2), -N(R^2)-C(O)-R 2 , or NR 2 -C(O)-R 2 ;

each n is independently 1 or 2;

G is H;

D is benzyl C_1 - C_6 -alkyl-optionally substituted with Q;

D' is selected from $C_1.C_{15}$ alkyl, $C_2.C_{15}$ alkenyl or $C_2.C_{15}$ alkynyl, each of which contains one or more substituents selected from oxo, $-CF_3$, $-OCF_3$, $-NO_2$, azido, -SH, $-N(R^3)-$

 $-NR^3-C(S)R^3, = N-OH, = N-OR^3, = N-N(R^3)_2, = NR^3, = NNR^3C(O)N(R^3)_2, = NNR^3C(O)OR^3, \\ = NNR^3S(O)_n-N(R^3)_2, -NR^3-C(S)OR^3, -NR^3-C(S)N(R^3)_2, -NR^3-C[=N(R^3)]-N(R^3)_2, -N(R^3)-C[=N-NO_2]-N(R^3)_2, -N(R^3)-C[=N-NO_2]-OR^3, -N(R^3)-C[=N-CN]-OR^3, -N(R^3)-C[=N-CN]-OR^3, -OC(O)R^3, -OC(O)N(R^3)_2, -C(O)N(R^3)-N(R^3)_2, -O-C(O)N(R^3)-N(R^3)_2, -O-C(O)N(R^3)-N(R^3)_2, -O-C(O)R^3, N(R^3)-OC(O)R^3, N(R^3)-OC(O)R^3, N(R^3)-OC(O)R^3, N(R^3)-OC(O)R^3, -OC(O)R^3, N(R^3)-OC(O)R^3, -OC(O)R^3, -OC(O)$

E is selected from Ht; O-Ht; Ht-Ht; Ht fused with Ht; -O-R³; -N(R²)(R³); C_1 -C₆ alkyl optionally substituted with one or more groups selected from R⁴ or Ht; C_2 -C₆ alkenyl optionally substituted with one or more groups selected from R⁴ or Ht; C_3 -C₆ saturated carbocycle optionally substituted with one or more groups selected from R⁴ or Ht; or C₅-C₆ unsaturated carbocycle optionally substituted with one or more groups selected from R⁴ or Ht;

each R^4 is independently selected from -OR², -OR³, -SR², -SOR², -SO₂R², -CO₂R², -C(O)-NHR², -C(O)-NR²(OR²), -S(O)₂-NHR², halo, -NR²-C(O)-R², -N(R²)₂ or -CN; and

each R⁷ is hydrogen.

2. (Previously presented) The compound according to claim 1, having the formula IA:

A
$$\longrightarrow$$
 (B) \xrightarrow{N} \xrightarrow{C} \xrightarrow{H} \xrightarrow{C} $\xrightarrow{H_2}$ $\xrightarrow{D'}$ $\xrightarrow{E'}$ \xrightarrow{E} E

(IA)

wherein:

D' is selected from C_{1-15} alkyl, C_{2-15} alkenyl or C_2 . C_{15} alkynyl; each of which is substituted with one to two -CN groups and is optionally substituted with C_3 . C_8 cycloalkyl.

3. (Previously presented) The compound according to claim 2 wherein:

D' is selected from C_{1-15} alkyl or C_{2-15} alkenyl; each of which is substituted with one to two -CN groups and is optionally substituted with C_3 . C_8 cycloalkyl.

4. (Previously presented) The compound according to claim 2 wherein:

D' is C_2 - C_{15} alkynyl which is substituted with one to two -CN groups and is optionally substituted with C_3 - C_8 cycloalkyl.

5. (Previously presented) The compound according to claim 1 having the formula IB:

$$A \longrightarrow (B)_{X} \longrightarrow N \longrightarrow C \longrightarrow C \longrightarrow C \longrightarrow H_{2} \longrightarrow N \longrightarrow SO_{2} \longrightarrow E$$

$$(G)_{X} \longrightarrow OR^{7} \longrightarrow D'$$

$$(IB)$$

wherein:

D' is selected from $C_1.C_{15}$ alkyl, $C_2.C_{15}$ alkenyl or $C_2.C_{15}$ alkynyl, each of which contains one or more substituents selected from oxo, -CF₃, -OCF₃, -NO₂, azido, -SH, -N(R³)-N(R³)₂, -O-N(R³)₂, -(R³)N-O-(R³), -CO₂R³, -C(O)-N(R³)₂, -S(O)_n-N(R³)₂, -N(R³)-C(O)-R³, -N(R³)-C(O)-N(R³)₂, -N(R³)-S(O)_n(R³), -N(R³)-S(O)_n-N(R³)₂, -SNR³-C(O)R³, -C(S)N(R³)₂, -C(S)R³, -NR³-C(O)OR³, -O-C(O)OR³, -O-C(O)N(R³)₂, -NR³-C(O)N(R³)₂, -NR³-C(O)OR³, -O-C(O)N(R³)₂, -NR³-C(O)OR³, -O-C(O)N(R³)₂, -NR³-C(O)OR³, -O-C(O)N(R³)₂, -NR³-C(O)OR³, -O-C(O)N(R³)₂, -NR³-C(O)OR³, -O-C(O)OR³, -O-C(O)N(R³)₂, -NR³-C(O)OR³, -O-C(O)OR³, -O-C(O)N(R³)₂, -NR³-C(O)OR³, -O-C(O)OR³, -O

$$\begin{split} &C(S)R^3, = N-OH, = N-OR^3, = N-N(R^3)_2, = NR^3, = NNR^3C(O)N(R^3)_2, = NNR^3C(O)OR^3, \\ &= NNR^3S(O)_n - N(R^3)_2, -NR^3 - C(S)OR^3, -NR^3 - C(S)N(R^3)_2, -NR^3 - C[=N(R^3)] - N(R^3)_2, -N(R^3) - C[=N-NO_2] - N(R^3)_2, -N(R^3) - C[=N-NO_2] - OR^3, -N(R^3) - C[=N-NO_2] - OR^3, -N(R^3) - C[=N-NO_2] - OR^3, -N(R^3) - OR^3, -N(R^3$$

6. (Previously presented) The compound according to claim 5 wherein:

D' is selected from C₁.C₁₅ alkyl or C₂.C₁₅ alkenyl, each of which contains one or more substituents selected from oxo, -CF₃, -OCF₃, -NO₂, azido, -N(\mathbb{R}^3)-N(\mathbb{R}^3)₂, -O-N(\mathbb{R}^3)₂, -(\mathbb{R}^3)N- $O-(R^3)$, $-N(R^3)-C(O)-N(R^3)_2$, $-N(R^3)-C(O)-S(R^3)$, $-C(O)-R^3$, $-N(R^3)-S(O)_n(R^3)$, $-N(R^3)-S(O)_n$ $N(R^3)_2$, -S-NR³-C(O)R³, -C(S)N(R³)₂, -C(S)R³, -NR³-C(O)OR³, -O-C(O)OR³, -O-C(O)N(R³)₂, $-NR^3-C(S)R^3$, =N-OH, $=N-OR^3$, $=N-N(R^3)_2$, $=NR^3$, $=NNR^3C(O)N(R^3)_2$, $=NNR^3C(O)OR^3$, $=NNR^3S(O)_n-N(R^3)_2,-NR^3-C(S)OR^3,-NR^3-C(S)N(R^3)_2,-NR^3-C[=N(R^3)]-N(R^3)_2,-N(R^3)-N(R^3)_2$ $C[=N-NO_2]-N(R^3)_2$, $-N(R^3)-C[=N-NO_2]-OR^3$, $-N(R^3)-C[=N-CN]-OR^3$, $-N(R^3)-C[=N-CN]-OR^3$ $(R^3)_2$, $-OC(O)R^3$, $-OC(S)R^3$, $-OC(O)N(R^3)_2$, $-C(O)N(R^3)-N(R^3)_2$, $-O-C(O)N(R^3)-N(R^3)_2$, $-O-C(O)N(R^3)-N(R^3)-N(R^3)_2$, $-O-C(O)N(R^3)-N(R^3)-N(R^3)_2$, $-O-C(O)N(R^3)-N$ $C(O)N(OR^3)(R^3), N(R^3)-N(R^3)C(O)R^3, N(R^3)-OC(O)R^3, N(R^3)-OC(O)R^3$ -OC(S)N(R³)₂, -OC(S)N(R³)(R³), or PO₃-R³; C₂-C₁₅ alkynyl which contains one or more substituents selected from oxo, -CF₃, -OCF₃, -NO₂, azido, -SH, -N(R³)-N(R³)₂, -O-N(R³)₂, $-(R^3)N - O - (R^3), -CO_2R^3, -C(O) - N(R^3)_2, -S(O)_n - N(R^3)_2, -N(R^3) - C(O) - R^3, -N(R^3) - C(O) - N(R^3)_2, -N(R^3)_2 - N(R^3)_2 -$ $-N(R^3)-C(O)-S(R^3), -C(O)-R^3, -N(R^3)-S(O)_n(R^3), -N(R^3)-S(O)_n-N(R^3)_2, -S-NR^3-C(O)R^3, -N(R^3)-S(O)_n(R^3)_2, -N(R^3)_2, -N(R^$ $-C(S)N(R^3)_2$, $-C(S)R^3$, $-NR^3-C(O)OR^3$, $-O-C(O)OR^3$, $-O-C(O)N(R^3)_2$, $-NR^3-C(S)R^3$, =N-OH, $=N-OR^3$, $=N-N(R^3)_2$, $=NR^3$, $=NNR^3C(O)N(R^3)_2$, $=NNR^3C(O)OR^3$, $=NNR^3S(O)_n-N(R^3)_2$, $-NR^3-NR^3$ $C(S)OR^3$, $-NR^3-C(S)N(R^3)_2$, $-NR^3-C[=N(R^3)]-N(R^3)_2$, $-N(R^3)-C[=N-NO_2]-N(R^3)_2$, $-N(R^3)-C[=N-NO_2]-N(R^3)_2$ $C[=N-NO_2]-OR^3$, $-N(R^3)-C[=N-CN]-OR^3$, $-N(R^3)-C[=N-CN]-(R^3)_2$, $-OC(O)R^3$, $-OC(S)R^3$, $-OC(S)R^3$ $OC(O)N(R^3)_2$, $-C(O)N(R^3)-N(R^3)_2$, $-O-C(O)N(R^3)-N(R^3)_2$, $O-C(O)N(OR^3)(R^3)$, $N(R^3)-N(R^3)$ $N(R^3)C(O)R^3$, $N(R^3)-OC(O)R^3$, $N(R^3)-OC(O)R^3$, $N(R^3)-OC(O)R^3$, $-OC(S)N(R^3)_2$, $-OC(S)N(R^3)(R^3)$, or PO_3-R^3 .

7. (Previously presented) The compound according to claim 5 wherein:

D' is selected from C₁.C₁₅ alkyl or C₂.C₁₅ alkenyl, each of which contains one or more substituents selected from -SH, -CO₂R³, -C(O)-N(R³)₂, -S(O)_n-N(R³)₂ or -N(R³)-C(O)-R³.

- 8. (Canceled)
- 9. (Withdrawn - Currently amended) The compound according to any one $-H_2C-O \xrightarrow{O} O \xrightarrow{CH_3} N \xrightarrow{CH_3}$

-(L)-(L)-3-pyridylalanine, -(L)-histidine, -CHO, CF₃

PO₃-spermine, PO₃-(spermidine)₂ or PO₃-(meglamine)₂.

10-11. (Canceled)

12. (Original) The compound according to claim 10, wherein:

D' is -CH₂-R''; and

R" is selected from

wherein m is 0 to 3.

13. (Original) The compound according to claim 10, wherein E is selected

from

- 14. (Withdrawn) The compound according to claim 10, wherein R⁷ is -PO₃²-
- 15. (Currently amended) The compound according to claim 1, having the formula III:

Ht—
$$(CH_2)x$$
 O
 N
 R^7
 O
 SO_2
 E
 R^3
(III),

wherein x = 1; and

R³ is phenyl.

16. (Withdrawn) The compound according to claim 1, having the formula IV:

(IV);

wherein $R^{3'}$ is selected from H, Ht, C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_3 - C_6 cycloalkyl or C_5 - C_6 cycloalkenyl; wherein any member of said R^3 , except H, is optionally substituted with one or more substituents selected from -OR 2 , -C(O)-NH- R^2 , -S(O)_n-N(R^2)(R^2), -N(R^2)-C(O)-O(R^2), -N(R^2)-C(O)-N(R^2), -N(R^2)-C(O)-Ht, Ht, -CN, -SR 2 , -CO₂ R^2 , or NR 2 -C(O)- R^2 .

17. (Currently amended) The compound according to claim 1, wherein said compound is selected from any one of compound numbers: 1, 2, 3, 4, 5, 6, 22, 127, 203, 234, 277, 278, and 279, 363, and 364:

wherein R⁷ is H; and

Compound	R'	R''	E
1	<u></u> →0	CN	OMe
2	> -o	CN	OMe
3	→ -o	CN	OMe

Compound	R'	R"	Е
4	\ 0	× ✓ CN	OMe
5	0	CN	NH ₂
6) o	CN	
22		CN	OMe
127	0	CN	NH ₂
203	\ 0	N_3	OMe
234		O H_2N	OMe
277	0	, H	OMe
278		× H	

Compound	R'	R.''	Е
279	\ 0	×	OMe

Compound	R'	E	n	R
363	Meo H	100	3	OMe
364	MeO H		3	SO ₂ Me

18-22. (Canceled)

23. (Currently amended) A composition comprising a compound according to any one of claims 1-7, [[10,]] 12, 13, 15, and 17 or a pharmaceutically acceptable salt thereof in a therapeutically effective amount, and a pharmaceutically acceptable carrier.

24. (Canceled)

- 25. (Original) The composition according to claim 23, wherein said composition is formulated as a pharmaceutically acceptable, orally available tablet or capsule.
- 26. (Previously presented) A method of treating an HIV virus infection in a human comprising the step of administering to said human a composition according to claim 23.

27-29. (Canceled)

- 30. (Previously presented) A method of treating an HIV virus infection in a human comprising the step of administering to said human a composition according to claim 25.
 - 31. (Canceled)