CS2223 D Term 2020 Quiz 25

(1 point) Question 1: "My brain is open...."

I pledge that I am taking this quiz on my own, with help from no one else and no notes:

(3 points) Question 2: Given $n \times n$ adjacency matrix A for a (di)graph, the (i,j) entries in $A^k, k \ge 1$ represent¹:

- The number of distinct walks from i to j with fewer than k steps.
- The number of distinct walks from i to j with exactly k steps. b.)
- The number of distinct walks from i to j with k or fewer steps. c.)
- d.) The number of distinct walks from i to j with k or more steps.
- The number of distinct walks from i to j with more than k steps.

(3 points) Question 3: Given $n \times n$ adjacency matrix A, a (di)graph representing the Transitive Closure of its modeled relation consists of:

- At least as many edges as non-zero entries in A
- At least $\frac{n^2}{2}$ edges Weighted edges that count the number of paths between vertices c.)
- Binary (0 or 1) entries representing edges connecting vertices in arbitrarily-many steps
- Non-negative (0,1,2,...) entries representing edges counting arbitrarily-many steps

(3 points) Question 4: Given $n \times n$ adjacency matrix A, an adjacency matrix representing the Transitive Closure of its modeled relation consists of:

- At least as many edges as non-zero entries in A
- At least $\frac{n^2}{2}$ edges b.)
- Weighted edges that count the number of paths between vertices c.)
- Binary (0 or 1) entries representing edges connecting vertices in arbitrarily-many steps
- Non-negative (0,1,2,...) entries representing edges counting arbitrarily-many steps e.)

(1 point) Bonus Question: Our method of raising $n \times n$ adjacency matrix A to powers and 'or'-ing them (taking unions) for finding the Connectivity Relation has time complexity:

- Dominated by the 'or'-ing operation: $O(n^2)$.
- The same as Matrix Multiplication: $O(n^3)$. b.)
- *n* Matrix Multiplications and *n* 'or's: $O(n \cdot n^3 + n \cdot n^2) = O(n^4)$ c.)
- Dominated by n^2 Matrix Multiplications: $O(n^2 \cdot n^3) = O(n^5)$. d.)
- n Matrix Multiplications times n 'or's: $O(n \cdot n^3 \times n \cdot n^2) = O(n^7)$

¹In a walk, vertices and edges can both be repeated. Technically, in a path, neither can.