

About Training

Outline

- Hyperparameters & Parameters
- Setting up the data
- Gradient Descent
- Learning rate
- Batch Normalization
- Early stopping
- Regularization
- Dropout
- Hyperparameter tuning

Supervised Learning Task - Review

- ❖ Given: training data $\{(x_i, y_i), i = 1, ..., n\}$ i.i.d. from distribution D
- ❖ Find $y = f(x) \in \mathcal{H}$
- S.t. f works well on test data i.i.d. from distribution D
 - ♦ Find $y=f(x) \in \mathcal{H}$ that minimizes

$$\widehat{L}(f) = \frac{1}{n} \sum_{i=1}^{n} l(f, x_i, y_i)$$

Empirical loss

The whole process is a cycle

Underfitting & Overfitting

Diagnosis:

- If your model cannot even fit the training examples, then you have large bias Not train well
 Underfitting
- If you can fit the training data, but with large error on the testing data, then you probably have large variance

Overfitting

For large bias:

- Add more features as inputs
- Use a more complex model

For large variance:

- Use more data: Very effective, but not always practical
- Regularization: May increase bias

Bias v.s. Variance

Hyperparameters & Parameters

(Model Design + Hyperparameters) → Model Parameters

The building blocks:

- # Layers
- Activations
- Optimizers

The knobs that you can turn:

Learning Rate

Dropout

The variables learned from the data:

weights

...

Outline

- Hyperparameters & Parameters
- Setting up the data
- Gradient Descent
- Learning rate
- Batch Normalization
- Early stopping
- Regularization
- Dropout
- Hyperparameter tuning

Setting the dataset

Idea #1: Choose hyperparameters that work best on the data

dataset

BAD: Always works perfectly on the training data

Idea #2: Split data into train and test, choose hyperparameters that work best on the test data

train test

BAD: The test set is a proxy for the generalization performance! No idea how algorithm will perform on new data

Setting the dataset

Idea #3: Split data into train, validation, and test; choose hyperparameters on the validation data and evaluate on the test data.

|--|

❖ Better!

Setting the dataset

Idea #4: Cross-Validation: Split data into folds, try each fold as validation and average the results

fold 1	fold 2	fold 3	fold 4	fold 5	test
fold 1	fold 2	fold 3	fold 4	fold 5	test
fold 1	fold 2	fold 3	fold 4	fold 5	test

> Especially useful for small datasets

Hyperparameters Setting

- Choose hyperparameters using the validation set
- Only run on the test set once at the very end!
 - Measuring the generalization of the designed model

Outline

- Hyperparameters & Parameters
- Setting up the data
- Gradient descent
- Learning rate
- Batch normalization
- Early stopping
- Regularization
- Dropout
- Hyperparameter tuning

Gradient Descent

$$w^* = \arg\min_{w} L(w)$$

 \diamond Consider loss function L(w) with one parameter w:

Gradient Descent

$$abla L = \begin{bmatrix} rac{\partial L}{\partial w} \\ rac{\partial L}{\partial b} \end{bmatrix}$$
 gradient

How about two parameters?

$$w^*, b^* = arg \min_{w,b} L(w,b)$$

- ➤ (Randomly) Pick an initial value w⁰, b⁰
- ightharpoonup Compute $\frac{\partial L}{\partial w}|_{w=w^0,b=b^0}$, $\frac{\partial L}{\partial b}|_{w=w^0,b=b^0}$

$$w^{1} \leftarrow w^{0} - \frac{\partial L}{\partial w}|_{w=w^{0},b=b^{0}} \qquad b^{1} \leftarrow b^{0} - \frac{\partial L}{\partial b}|_{w=w^{0},b=b^{0}}$$

ightharpoonup Compute $\frac{\partial L}{\partial w}|_{w=w^1,b=b^1}$, $\frac{\partial L}{\partial b}|_{w=w^1,b=b^1}$

$$w^2 \leftarrow w^1 - \frac{\partial L}{\partial w}|_{w=w^1,b=b^1} \qquad b^2 \leftarrow b^1 - \frac{\partial L}{\partial b}|_{w=w^1,b=b^1}$$

Gradient Descent

Stochastic Gradient Descent

$$L = \sum_{n} \left(\hat{y}^n - \left(b + \sum_{i} w_i x_i^n \right) \right)^2$$

Loss is the summation over all training examples

Gradient Descent

$$\theta^i = \theta^{i-1} - \eta \nabla L(\theta^{i-1})$$

Stochastic Gradient Descent

Faster!

Pick an example xⁿ

$$L^{n} = \left(\hat{y}^{n} - \left(b + \sum w_{i} x_{i}^{n}\right)\right)^{2} \theta^{i} = \theta^{i-1} - \eta \nabla L^{n}(\theta^{i-1})$$

Loss for only one example

$$\theta^i = \theta^{i-1} - \eta \nabla L^n (\theta^{i-1})$$

Stochastic Gradient Descent

Gradient Descent

Update after seeing all examples

Stochastic Gradient Descent

Update for each example If there are 20 examples, 20 times faster.

Mini-batch SGD

- Iterate over epochs
 - Iterate over dataset mini-batches $(x_1, y_1), ..., (x_b, y_b)$
 - Compute gradient of the mini-batch loss:

$$\nabla \hat{L} = \frac{1}{b} \sum_{i=1}^{b} \nabla l(w, x_i, y_i)$$

Update parameters:

$$w \leftarrow w - \eta \nabla \hat{L}$$

- Check for convergence, decide whether to decay learning rate
- What are the hyperparameters?
 - Mini-batch size, learning rate decay schedule, deciding when to stop

- Randomly initialize network parameters
- Pick the 1st batch $L' = l^1 + l^{31} + \cdots$ Update parameters once
- Pick the 2^{nd} batch $L'' = l^2 + l^{16} + \cdots$ Update parameters once :
- Until all mini-batches have been picked

one epoch

Repeat the above process

Mini-batch

Batch size influences both *speed* and *performance*. You have to tune it.

model.fit(x_train, y_train, batch size=100, nb epoch=20)

100 examples in a mini-batch Batch size = 1

Stochastic gradient descent

Pick the 1st batch

$$L' = l^1 + l^{31} + \cdots$$

Update parameters once

➢ Pick the 2nd batch

$$L'' = l^2 + l^{16} + \cdots$$

Update parameters once

:

Until all mini-batches have been picked

Repeat 20 times

one epoch

Hard to find optimal network parameters

The value of a network parameter w

In physical world

Momentum

Still not guarantee reaching global minima, but give some hope

Movement: movement of the last step minus the gradient at present

Start at point θ^0

Movement v⁰=0

Compute gradient at θ^0

Movement $v^1 = \lambda v^0 - \eta \nabla L(\theta^0)$

Move to $\theta^1 = \theta^0 + v^1$

Compute gradient at θ^1

Movement $v^2 = \lambda v^1 - \eta \nabla L(\theta^1)$

Move to $\theta^2 = \theta^1 + v^2$

Movement not just based on the gradient, but also on the previous

innov/almaamit

Movement: movement of last step minus the gradient at present

vⁱ is actually the weighted sum of all the previous gradient:

$$\nabla L(\theta^0), \nabla L(\theta^1), \dots \nabla L(\theta^{i-1})$$

$$v^0 = 0$$

$$v^1 = - \eta \nabla L(\theta^0)$$

$$v^2 = -\lambda \eta \nabla L(\theta^0) - \eta \nabla L(\theta^1)$$

Start at point θ^0

Movement $v^0=0$

Compute gradient at θ^0

Movement $v^1 = \lambda v^0 - \eta \nabla L(\theta^0)$

Move to $\theta^1 = \theta^0 + v^1$

Compute gradient at θ^1

Movement $v^2 = \lambda v^1 - \eta \nabla L(\theta^1)$

Move to $\theta^2 = \theta^1 + v^2$

$$egin{aligned} v_{dw} &= eta v_{dw} + (1-eta)dW \ v_{db} &= eta v_{db} + (1-eta)db \end{aligned}$$

$$W=W-lpha v_{dw}$$
 $b=b-lpha v_{db}$

A certain problem to be solved Make some changes No Works well on Design **Training** the Training the Model a Model Data? Yes Make some changes Works well on No the Testing Data? Different approaches Yes for different problems

Not Work Well on the Training Data

Deeper usually does not imply better

Vanishing Gradient Problem

Vanishing Gradient Problem

An intuitive way to compute the derivatives ...

$$\frac{\partial l}{\partial w} = ? \frac{\Delta l}{\Delta w}$$

Some Activation Functions

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

tanh

tanh(x)

Maxout

$$\max(w_1^T x + b_1, w_2^T x + b_2)$$

ReLU

 $\max(0,x)$

ELU

$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$

.

Not Work Well on the Training Data

Learning Rate

$$\theta^i = \theta^{i-1} - \eta \nabla L(\theta^{i-1})$$

Set the learning rate η carefully

We can always visualize this.

- The loss function looks reasonable
- Might indicate a slightly too small learning rate based on its speed of decay
- The batch size might be a little too low (since the loss is a little too noisy)

The effects of different learning rates

Adaptive Learning Rates

- Popular & Simple Idea: Reduce the learning rate by some factor every few epochs.
 - At the beginning, we are far from the destination, so we use larger learning rate
 - After several epochs, we are close to the destination, so we reduce the learning rate
 - E.g. 1/t decay: $\eta^t = \eta/\sqrt{t+1}$
- Learning rate cannot be one-size-fits-all
 - Giving different parameters different learning rates

$$\eta^t = \frac{\eta}{\sqrt{t+1}}$$
 $g^t = \frac{\partial L(\theta^t)}{\partial w}$

Divide the learning rate of each parameter by the root mean square of its previous deviation

Vanilla Gradient descent

$$w^{t+1} \leftarrow w^t - \eta^t g^t$$

Adagrad

$$w^{t+1} \leftarrow w^t - \frac{\eta^t}{\sigma^t} g^t$$

Parameter dependent

Adagrad

Divide the learning rate of each parameter by the root mean square of its previous derivatives

where
$$t$$
 is t in t

RMSProp

Error Surface can be very complex when training NN.

RMSProp

$$w^{1} \leftarrow w^{0} - \frac{\eta}{\sigma^{0}} g^{0} \qquad \sigma^{0} = g^{0}$$

$$w^{2} \leftarrow w^{1} - \frac{\eta}{\sigma^{1}} g^{1} \qquad \sigma^{1} = \sqrt{\alpha(\sigma^{0})^{2} + (1 - \alpha)(g^{1})^{2}}$$

$$w^{3} \leftarrow w^{2} - \frac{\eta}{\sigma^{2}} g^{2} \qquad \sigma^{2} = \sqrt{\alpha(\sigma^{1})^{2} + (1 - \alpha)(g^{2})^{2}}$$

$$\vdots$$

$$w^{t+1} \leftarrow w^{t} - \frac{\eta}{\sigma^{t}} g^{t} \qquad \sigma^{t} = \sqrt{\alpha(\sigma^{t-1})^{2} + (1 - \alpha)(g^{t})^{2}}$$

Root Mean Square of the gradients with previous gradients being decayed

RMSProp

$$egin{align} s_{dw} &= eta s_{dw} + (1-eta) dW^2 \ s_{db} &= eta s_{db} + (1-eta) db^2 \ \end{align}$$

$$W=W-lpharac{dW}{\sqrt{s_{dw}}+arepsilon} \ b=b-lpharac{db}{\sqrt{s_{db}}+arepsilon}$$

Adam

RMSProp + Momentum

Algorithm 1: Adam, our proposed algorithm for stochastic optimization. See section 2 for details, and for a slightly more efficient (but less clear) order of computation. g_t^2 indicates the elementwise square $g_t \odot g_t$. Good default settings for the tested machine learning problems are $\alpha = 0.001$, $\beta_1 = 0.9$, $\beta_2 = 0.999$ and $\epsilon = 10^{-8}$. All operations on vectors are element-wise. With β_1^t and β_2^t we denote β_1 and β_2 to the power t.

```
Require: \alpha: Stepsize
Require: \beta_1, \beta_2 \in [0, 1): Exponential decay rates for the moment estimates
Require: f(\theta): Stochastic objective function with parameters \theta
Require: \theta_0: Initial parameter vector
                                                              for momentum
   m_0 \leftarrow 0 (Initialize 1<sup>st</sup> moment vector)
   v_0 \leftarrow 0 (Initialize 2<sup>nd</sup> moment vector)
   t \leftarrow 0 (Initialize timestep)
                                                                 for RMSProp
   while \theta_t not converged do
      t \leftarrow t + 1
      g_t \leftarrow \nabla_{\theta} f_t(\theta_{t-1}) (Get gradients w.r.t. stochastic objective at timestep t)
      m_t \leftarrow \beta_1 \cdot m_{t-1} + (1 - \beta_1) \cdot g_t (Update biased first moment estimate)
      v_t \leftarrow \beta_2 \cdot v_{t-1} + (1 - \beta_2) \cdot g_t^2 (Update biased second raw moment estimate)
      \widehat{m}_t \leftarrow m_t/(1-\beta_1^t) (Compute bias-corrected first moment estimate)
      \hat{v}_t \leftarrow v_t/(1-\beta_2^t) (Compute bias-corrected second raw moment estimate)
      \theta_t \leftarrow \theta_{t-1} - \alpha \cdot \widehat{m}_t / (\sqrt{\widehat{v}_t} + \epsilon) (Update parameters)
   end while
   return \theta_t (Resulting parameters)
```

Not Work Well on the Training Data

Feature Scaling

$$y = w_1 x_1 + w_2 x_2 + b$$

Make different features have the same scaling.

Feature Scaling

$$y = w_1 x_1 + w_2 x_2 + b$$

Feature Scaling

In general, gradient descent converges

much faster with feature scaling.

How about Hidden Layer?

Feature Scaling

Internal Covariate Shift

Smaller learning rate can be helpful, but the training would be slower.

Batch normalization

Sergey Ioffe, Christian Szegedy. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. 2015

Batch

$$\tilde{z}^i = \frac{z^i - \mu}{\sigma}$$

$$\tilde{z}^i = \frac{z^i - \mu}{\sigma}$$

$$\hat{z}^i = \gamma \odot \tilde{z}^i + \beta$$


```
Input: Values of x over a mini-batch: \mathcal{B} = \{x_{1...m}\};
             Parameters to be learned: \gamma, \beta
Output: \{y_i = BN_{\gamma,\beta}(x_i)\}
  \mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i
                                                                  // mini-batch mean
   \sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2
                                                            // mini-batch variance
                                                                             // normalize
    y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv BN_{\gamma,\beta}(x_i)
                                                                      // scale and shift
```


Acc μ_{100} μ_{300} Updates

At testing stage:

We do not have **batch** at testing stage.

Ideal solution:

Computing μ and σ using the whole training dataset.

Practical solution:

Computing the moving average of μ and σ of the batches during training.

Batch normalization - Benefit

- BN reduces training times, and make very deep net trainable.
 - Because of less Covariate Shift, we can use larger learning rates.
 - Less exploding/vanishing gradients
 - Especially effective for sigmoid, tanh, etc.
- Learning is less affected by initialization.

BN reduces the demand for regularization.

A certain problem to be solved Make some changes No Works well on Design **Training** the Training the Model a Model Data? Yes Make some changes Works well on No the Testing Data? Different approaches for different problems Yes

Not Work Well on the Testing Data

Early Stopping

Keras: http://keras.io/getting-started/faq/#how-can-i-interrupt-training-when-the-validation-loss-isnt-decreasing-anymore

Not Work Well on the Testing Data

Regularization

- New loss function to be minimized
 - Find a set of weight not only minimizing original cost but also close to zero

$$L'(\theta) = L(\theta) + \lambda \frac{1}{2} ||\theta||_2 \longrightarrow \text{Regularization term}$$

$$\theta = \{w_1, w_2, \dots\}$$

Original loss (e.g. minimize square error, cross entropy ...)

L2 regularization:

$$\|\theta\|_2 = (w_1)^2 + (w_2)^2 + \cdots$$

(usually not consider biases)

Regularization

L2 regularization:

$$\|\theta\|_2 = (w_1)^2 + (w_2)^2 + \cdots$$

New loss function to be minimized

$$L'(\theta) = L(\theta) + \lambda \frac{1}{2} \|\theta\|_2 \quad \text{Gradient: } \frac{\partial L'}{\partial w} = \frac{\partial L}{\partial w} + \lambda w$$

Update:
$$w^{t+1} \leftarrow w^t - \eta \frac{\partial L'}{\partial w} = w^t - \eta \left(\frac{\partial L}{\partial w} + \lambda w^t \right)$$
$$= \underbrace{(1 - \eta \lambda)w^t}_{} - \eta \frac{\partial L}{\partial w}$$
 Weight Decay

Close to zero

Regularization

L1 regularization:

$$\|\theta\|_1 = |w_1| + |w_2| + \cdots$$

New loss function to be minimized

$$L'(\theta) = L(\theta) + \lambda \|\theta\|_1 \qquad \frac{\partial L'}{\partial w} = \frac{\partial L}{\partial w} + \lambda \operatorname{sgn}(w)$$

Update:

$$w^{t+1} \leftarrow w^t - \eta \frac{\partial L'}{\partial w} = w^t - \eta \left(\frac{\partial L}{\partial w} + \lambda \operatorname{sgn}(w^t) \right)$$
$$= w^t - \eta \lambda \operatorname{sgn}(w^t) - \eta \frac{\partial L}{\partial w}$$

Not Work Well on the Testing Data

Dropout

Training:

- > Each time before updating the parameters
 - Each neuron has a probability of p to be dropouted

Dropout

Training:

- > Each time before updating the parameters
 - Each neuron has a probability of p to be dropouted
 - The structure of the network is changed.
 - Using the new network for training

For each mini-batch, we resample the dropout neurons.

Dropout

Testing:

No dropout

- If the dropout rate at training is p, all the weights times 1-p
- Assume that the dropout rate is 0.5 If a weight w = 1 by training, set w = 0.5 for testing.

Dropout is a kind of ensemble.

Train a bunch of networks with different structures

Dropout is a kind of ensemble.

Ensemble

Dropout is a kind of ensemble.

- > Using one mini-batch to train one network
- >Some parameters in the network are shared

Dropout is a kind of ensemble.

Outline

- Hyperparameters & Parameters
- Setting up the data
- Gradient Descent
- Learning rate
- Batch Normalization
- Early stopping
- Regularization
- Dropout
- Hyperparameter tuning

Hyperparameter Tuning

- ☐ Choices about the algorithm that we set rather than learn
- Come up very often in the design of many Machine Learning algorithms that learn from data.
- ☐ Often not obvious & Very problem-dependent : (
- Just try and try and try and see what works best (e.g. the predicted class scores are consistent with the ground truth labels)

Four main strategies for searching for the best configuration

- Babysitting
- Grid Search
- Random Search
- Automatic Hyperparameter Tuning

Babysitting: Manually

Data

Act/Grad/Filter

Metric

Space

Grid Search

Workflow:

- ◆ Define a grid on n dimensions, where each of these maps is for an hyperparameter.
 - e.g. n = (learning_rate, dropout_rate, batch_size)
- For each dimension, define the range of possible values:
 - e.g. batch_size = [4, 8, 16, 32, 64, 128, 256]
- Search for all the possible configurations and wait for the results to establish the best one:
 - e.g. C1 = (0.1, 0.3, 4) -> acc = 92%, C2 = (0.1, 0.35, 4) -> acc = 92.3%, etc...

A simple grid search on two dimensions for the Dropout and Learning rate

- This strategy is embarrassingly parallel because it doesn't take into account the computation history.
- Pain point: the curse of dimensionality
 - It's common to use this approach when the dimensions are less than or equal to 4

Grid Search vs Random Search

Grid Layout

Important parameter

Bad on high spaces

Random Layout

Important parameter

It doesn't guarantee to find the best hyperparameters

Good on high spaces

Give better results in less iterations

Bayesian Optimization

-Automatic Hyperparameter Tuning

课程部分材料来自他人和网络, 仅限教学使用, 请勿传播, 谢谢!