

Interpretação de circuitos elétricos

Eletricidade - ELE Maio / 2020

José W. R. Pereira

josewrpereira.github.io/ddp/

Habilidades e Competências

- análise e interpretação de diagramas e esquemas;
- montagem de circuitos elétricos em matriz de contatos ou em conjuntos didáticos;
- realizar cálculos e medições de grandezas elétricas.

2 Desafio

Dado o circuito da **Figura 1**, identificar:

- Os componentes presentes;
- As funções de cada componente;
- A configuração de ligação dos componentes: série ou paralelo.

Figura 1: Circuito elétrico R_D R_L

3 Componentes em um diagrama

Todo componente eletrônico possui uma **função**, ou seja, um **comportamento** que produz uma ação que atende a sua necessidade. Para que seu comportamento ocorra de modo esperado, todo componente possui **condições de operação**, sendo a principal dessas condições a alimentação.

A alimentação de um componente é a entrada de energia, que será processada e produzirá, através do comportamento do componente, uma nova forma de energia.

Utilizando a Figura 2 como exemplo, temos as seguintes conversões de energia:

Componentes:

- V_{CC} : Fonte Converte energia química, no caso de pilhas ou baterias, em energia elétrica;
- R_D: Resistor Converte energia elétrica em calor ao limitar a intensidade de corrente no seu ramo;
- D: LED Converte energia elétrica em luz, permitindo que seja feita a sinalização luminosa, indicando que o circuito está ligado;
- *R_L*: **Resistor de carga** Converte energia elétrica em calor, produzindo aquecimento do elemento.

Figura 2: Circuito elétrico R_D R_L

O circuito pode ser dividido em elemntos ativos e passivos, como mostrado na Figura 3.

Assim temos:

- Fonte: A fonte é o elemento ativo, ou seja, é o que fornece energia ao restante dos componenentes deste circuito.
- Carga: São os elementos passivos do circuito, ou seja, aqueles que consomem energia da fonte.

Figura 3: Circuito elétrico

4 Configuração do circuito

A análise de um circuito basicamente é o processo de segmentá-lo em partes menores, sem que haja alteração das suas características de funcionamento, de forma a simplificar seu manuseio.

Alguns conceitos são de fundamental importância para facilitar essa tarefa de análise do circuito, e um destes conceitos é o **nó**.

O **nó** é uma **conexão entre pelo menos três elementos do circuito** ou entre elementos ativos e passivos e é representada por uma circunferência preenchida unindo os terminais dos componentes.

A Figura 4 mostra em destaque os nós denominados como **A** e **B**. As setas nas linhas indicam o sentido da corrente, chegando ou saindo de cada nó.

Figura 4: Nós A e B.

4.1 Ligação em série

O trecho do circuito entre nós é chamado de ramo. Em um ramo, todos os seus componentes são ligados em série. A Figura 5 mostra os três ramos ligados aos pontos A e B, sendo o ramo central o único que possui mais do que um componente, ou seja, é o único que possui componentes em série. Assim pode-se afirmar que **o resistor** R_D **está em série com o LED** D.

Figura 5: Ramos entre os nós A e B.

4.2 Ligação em paralelo

O circuito da Figura 6 apresenta três nós $(A, B \in C)$ e cinco ramos, cada um contendo apenas um elemento cada $(V_{CC}, R_1, R_2, R_3 \in R_4)$.

Note que **o nó C aparece duas vezes, mas** não quer dizer que sejam pontos distintos, pelo contrário, **é o mesmo ponto**, representado em dois lugares. É o ponto de conexão entre os quatro resistores.

Figura 6: Nós do circuito.

Como existem dois ramos ligados aos **mesmos nós**, isso significa que seus elementos **estão em paralelo**. Como em cada ramo só existe um resistor, então:

- R₁ é paralelo ao R₂
- R₃ é paralelo ao R₄

Nesse circuito, nenhum ramo apresenta mais do que um elemento, assim não há componentes em série.

5 Resolução do Desafio

Dado o circuito da Figura 7, identificar:

- Os componentes presentes;
- As funções de cada componente;
- A configuração de ligação dos componentes: série ou paralelo.

Figura 7: Circuito elétrico R_D R_L

5.1 Resolução

- Componente: função;
 - *V_{CC}*: Fonte de Alimentação do circuito;
 - R_D : Resistor limitador de corrente para o LED D;
 - *D*: Dispositivo de sinalização luminosa, LED;

- R_L : Dispositivo de aquecimento, resistor de carga.
- A configuração de ligação dos componentes: série ou paralelo.
 - Fonte(gerador) está em paralelo com o restante do circuito, consumidor.
 - $-R_D$ está em série com o LED D.
 - R_L está em paralelo com o ramo inteiro do R_D e D e também em paralelo com a fonte. Note que R_L não está em paralelo individualmente com R_D e nem com o D, mas sim com os dois componentes associados.

6 Atividades

Identificar Associações de Resistores em Paralelo e em Série.

Figura 10: Circuito 3 R_1 R_2 R_3 V_{cc} R_4 R_5 R_4 R_7