Class 08: Machine Learning Mini Project

Nicholas Yousefi

Importing the Data:

```
fna.data <- "WisconsinCancer.csv"
wisc.df <- read.csv(fna.data, row.names=1)
head(wisc.df)</pre>
```

	diagnosis	radius mean	texture mean	perimeter_mean	area mea	n
842302	М		10.38	122.80	1001.	
842517	M		17.77	132.90		
84300903	M		21.25	130.00		
84348301	M		20.38	77.58		_
84358402	M		14.34	135.10		
843786	M		15.70	82.57		-
010700				oncavity_mean co		_
842302		.11840	0.27760	0.3001	oncave.po	0.14710
842517		.08474	0.07864	0.0869		0.07017
84300903		.10960	0.15990	0.1974		0.12790
84348301		.14250	0.13330	0.2414		0.10520
84358402		.10030		0.1980		0.10430
			0.13280			
843786		.12780	0.17000	0.1578		0.08089
	symmetry_	mean fractal ₋	_dimension_mea	an radius_se te	xture_se	perimeter_se
842302	0.3	2419	0.0787	71 1.0950	0.9053	8.589
842517	0.	1812	0.0566	0.5435	0.7339	3.398
84300903	0.:	2069	0.0599	99 0.7456	0.7869	4.585
84348301	0.:	2597	0.0974	14 0.4956	1.1560	3.445
84358402	0.	1809	0.0588	33 0.7572	0.7813	5.438
843786	0.:	2087	0.076	13 0.3345	0.8902	2.217
	area se si	moothness se	compactness s	se concavity_se	concave.	points se
842302	153.40	0.006399	0.0490	•	•	0.01587

040547	74.00 0	005005	0.01300	0.01000	0 01010
842517		.005225	0.01308		0.01340
84300903		.006150	0.04006		0.02058
84348301		.009110	0.07458		0.01867
84358402		.011490	0.02461		0.01885
843786		.007510	0.03345		0.01137
	symmetry_se fr	actal_dimensi	ion_se radi	ius_worst textur	re_worst
842302	0.03003	0.0	006193	25.38	17.33
842517	0.01389	0.0	003532	24.99	23.41
84300903	0.02250	0.0	004571	23.57	25.53
84348301	0.05963	0.0	009208	14.91	26.50
84358402	0.01756	0.0	005115	22.54	16.67
843786	0.02165	0.0	005082	15.47	23.75
	perimeter_wors	t area_worst	smoothness	s_worst compactr	ness_worst
842302	184.6	0 2019.0		0.1622	0.6656
842517	158.8	0 1956.0		0.1238	0.1866
84300903	152.5	0 1709.0		0.1444	0.4245
84348301	98.8	7 567.7		0.2098	0.8663
84358402	152.2	0 1575.0		0.1374	0.2050
843786	103.4	0 741.6		0.1791	0.5249
	concavity_wors	t concave.poi	ints_worst	symmetry_worst	
842302	0.711	9	0.2654	0.4601	
842517	0.241	6	0.1860	0.2750	
84300903	0.450	4	0.2430	0.3613	
84348301	0.686	9	0.2575	0.6638	
84358402	0.400	0	0.1625	0.2364	
843786	0.535	5	0.1741	0.3985	
	<pre>fractal_dimens</pre>	ion_worst			
842302		0.11890			
842517		0.08902			
84300903		0.08758			
84348301		0.17300			
84358402		0.07678			
843786		0.12440			

The diagnosis column is our "answer" to the problem. To make sure we do not use it by accident, we will delete this column.

```
wisc.data <- wisc.df[,-1]
head(wisc.data)</pre>
```

radius_mean texture_mean perimeter_mean area_mean smoothness_mean 842302 17.99 10.38 122.80 1001.0 0.11840

842517	20.57	17.77		326.0	0.08474
84300903	19.69	21.25		203.0	0.10960
84348301	11.42	20.38		386.1	0.14250
84358402	20.29	14.34		297.0	0.10030
843786	12.45	15.70	82.57	477.1	0.12780
	compactness_mean	concavity_mean	concave.poin	ts_mean symme	etry_mean
842302	0.27760	0.3001		0.14710	0.2419
842517	0.07864	0.0869		0.07017	0.1812
84300903	0.15990	0.1974		0.12790	0.2069
84348301	0.28390	0.2414		0.10520	0.2597
84358402	0.13280	0.1980		0.10430	0.1809
843786	0.17000	0.1578		0.08089	0.2087
	fractal_dimensio	n_mean radius_se	texture_se	perimeter_se	area_se
842302	0	.07871 1.0950	0.9053	8.589	153.40
842517	0	.05667 0.5435	0.7339	3.398	74.08
84300903	0	.05999 0.7456	0.7869	4.585	94.03
84348301	0	.09744 0.4956	1.1560	3.445	27.23
84358402	0	.05883 0.7572	0.7813	5.438	94.44
843786	0	.07613 0.3345	0.8902	2.217	27.19
	smoothness_se co	mpactness_se con	cavity_se co	ncave.points_	_se
842302	0.006399	0.04904	0.05373	0.015	587
842517	0.005225	0.01308	0.01860	0.013	340
84300903	0.006150	0.04006	0.03832	0.020)58
84348301	0.009110	0.07458	0.05661	0.018	367
84358402	0.011490	0.02461	0.05688	0.018	385
843786	0.007510	0.03345	0.03672	0.011	137
	symmetry_se frac	tal_dimension_se	radius_wors	t texture_wor	rst
842302	0.03003	0.006193	25.3	8 17.	. 33
842517	0.01389	0.003532	24.9	9 23.	.41
84300903	0.02250	0.004571	23.5	7 25.	. 53
84348301	0.05963	0.009208	14.9	1 26.	. 50
84358402	0.01756	0.005115	22.5	4 16.	. 67
843786	0.02165	0.005082	15.4	7 23.	.75
	perimeter_worst	area_worst smoot	hness_worst	compactness_v	vorst
842302	184.60	2019.0	0.1622	0.	6656
842517	158.80	1956.0	0.1238	0.	1866
84300903	152.50	1709.0	0.1444	0.	4245
84348301	98.87	567.7	0.2098	0.	.8663
84358402	152.20	1575.0	0.1374	0.	2050
843786	103.40	741.6	0.1791	0.	5249
	concavity_worst	concave.points_w	orst symmetr	y_worst	
842302	0.7119	0.	2654	0.4601	
842517	0.2416	0.	1860	0.2750	

84300903	0.4504	0.2430	0.3613
84348301	0.6869	0.2575	0.6638
84358402	0.4000	0.1625	0.2364
843786	0.5355	0.1741	0.3985
	<pre>fractal_dimension_worst</pre>		
842302	0.11890		
842517	0.08902		
84300903	0.08758		
84348301	0.17300		
84358402	0.07678		
843786	0.12440		

We will store the diagnosis data in a separate vector to check our work later.

```
diagnosis <- as.factor(wisc.df[,1])</pre>
```

Exploring the Data

We will now explore the data to get a general idea of it.

Q1. How many observations are in this dataset?

```
nrow(wisc.data)
```

[1] 569

Q2. How many of the observations have a malignant diagnosis?

```
table(wisc.df$diagnosis)
```

```
B M
357 212
```

Q3. How many variables/features in the data are suffixed with _mean?

```
length(grep("_mean", colnames(wisc.data)))
```

[1] 10

Principal Component Analysis

Before we perform PCA, we must check if the data must be scaled. They may need to be scaled if the input variables use different units of measurement, or if the input variables have significantly different variances.

Each column of the data is in different units. Therefore, some of the numbers are in the hundreds and some are single digits. If you look at the means of each column, they are pretty different. Same with the standard deviation. The PCA will find the data to be most spread in the variables with the most variance. Therefore, if we do not scale our data, it will screw up our PCA.

When we set the scale=T, it will scale the data to account for these issues.

colMeans(wisc.data)

perimeter_mean	texture_mean	radius_mean
9.196903e+01	1.928965e+01	1.412729e+01
compactness_mean	${\tt smoothness_mean}$	area_mean
1.043410e-01	9.636028e-02	6.548891e+02
symmetry_mean	concave.points_mean	concavity_mean
1.811619e-01	4.891915e-02	8.879932e-02
texture_se	radius_se	fractal_dimension_mean
1.216853e+00	4.051721e-01	6.279761e-02
smoothness_se	area_se	perimeter_se
7.040979e-03	4.033708e+01	2.866059e+00
concave.points_se	concavity_se	compactness_se
1.179614e-02	3.189372e-02	2.547814e-02
radius_worst	fractal_dimension_se	symmetry_se
1.626919e+01	3.794904e-03	2.054230e-02
area_worst	perimeter_worst	texture_worst
8.805831e+02	1.072612e+02	2.567722e+01
concavity_worst	compactness_worst	smoothness_worst
2.721885e-01	2.542650e-01	1.323686e-01
${\tt fractal_dimension_worst}$	symmetry_worst	concave.points_worst
8.394582e-02	2.900756e-01	1.146062e-01

apply(wisc.data, 2, sd)

perimeter_mean	texture_mean	radius_mean
2.429898e+01	4.301036e+00	3.524049e+00
compactness_mean	${\tt smoothness_mean}$	area_mean

```
3.519141e+02
                                    1.406413e-02
                                                             5.281276e-02
        concavity_mean
                            concave.points_mean
                                                            symmetry_mean
          7.971981e-02
                                   3.880284e-02
                                                             2.741428e-02
{\tt fractal\_dimension\_mean}
                                       radius_se
                                                               texture_se
          7.060363e-03
                                   2.773127e-01
                                                             5.516484e-01
          perimeter_se
                                         area se
                                                            smoothness se
          2.021855e+00
                                    4.549101e+01
                                                             3.002518e-03
        compactness_se
                                    concavity_se
                                                       concave.points_se
          1.790818e-02
                                    3.018606e-02
                                                             6.170285e-03
           symmetry_se
                           fractal_dimension_se
                                                             radius_worst
          8.266372e-03
                                    2.646071e-03
                                                             4.833242e+00
         texture_worst
                                perimeter_worst
                                                               area_worst
          6.146258e+00
                                    3.360254e+01
                                                             5.693570e+02
      smoothness_worst
                              compactness_worst
                                                          concavity_worst
          2.283243e-02
                                    1.573365e-01
                                                             2.086243e-01
  concave.points_worst
                                 symmetry_worst fractal_dimension_worst
          6.573234e-02
                                    6.186747e-02
                                                             1.806127e-02
```

Now, let's run PCA. Some of these means and standard deviations are pretty different, so we need to scale.

```
wisc.pr <- prcomp(wisc.data, scale=T)
y <- summary(wisc.pr)
y</pre>
```

Importance of components:

```
PC1
                                 PC2
                                         PC3
                                                  PC4
                                                          PC5
                                                                  PC6
                                                                          PC7
                       3.6444 2.3857 1.67867 1.40735 1.28403 1.09880 0.82172
Standard deviation
Proportion of Variance 0.4427 0.1897 0.09393 0.06602 0.05496 0.04025 0.02251
Cumulative Proportion
                       0.4427 0.6324 0.72636 0.79239 0.84734 0.88759 0.91010
                           PC8
                                  PC9
                                         PC10
                                                 PC11
                                                         PC12
                                                                 PC13
Standard deviation
                       0.69037 0.6457 0.59219 0.5421 0.51104 0.49128 0.39624
Proportion of Variance 0.01589 0.0139 0.01169 0.0098 0.00871 0.00805 0.00523
Cumulative Proportion 0.92598 0.9399 0.95157 0.9614 0.97007 0.97812 0.98335
                                                                   PC20
                          PC15
                                  PC16
                                          PC17
                                                   PC18
                                                           PC19
                                                                          PC21
Standard deviation
                       0.30681 0.28260 0.24372 0.22939 0.22244 0.17652 0.1731
Proportion of Variance 0.00314 0.00266 0.00198 0.00175 0.00165 0.00104 0.0010
Cumulative Proportion 0.98649 0.98915 0.99113 0.99288 0.99453 0.99557 0.9966
                                         PC24
                                                          PC26
                          PC22
                                  PC23
                                                 PC25
                                                                  PC27
                                                                          PC28
Standard deviation
                       0.16565 0.15602 0.1344 0.12442 0.09043 0.08307 0.03987
Proportion of Variance 0.00091 0.00081 0.0006 0.00052 0.00027 0.00023 0.00005
Cumulative Proportion 0.99749 0.99830 0.9989 0.99942 0.99969 0.99992 0.99997
```

PC29 PC30
Standard deviation 0.02736 0.01153
Proportion of Variance 0.00002 0.00000
Cumulative Proportion 1.00000 1.00000

Q4. From your results, what proportion of the original variance is captured by the first principal components (PC1)?

```
y$importance["Proportion of Variance", "PC1"]
```

[1] 0.44272

Q5. How many principal components (PCs) are required to describe at least 70% of the original variance in the data?

```
sum(y$importance["Cumulative Proportion",] <= 0.7) + 1</pre>
```

[1] 3

Q6. How many principal components (PCs) are required to describe at least 90% of the original variance in the data?

```
sum(y$importance["Cumulative Proportion",] <= 0.9) + 1</pre>
```

[1] 7

Interpreting PCA Results

This is the output of calling the plot() function on our PCA object:

```
plot(wisc.pr)
```


Let's try a new function, that we haven't used before, to make the PC plot.

biplot(wisc.pr)

Q7. What stands out to you about this plot? Is it easy or difficult to understand? Why?

This plot is very messy and difficult to read. It is difficult to understand since all the text overlaps and you can't really read it.

Let's make a better PC plot (aka "score plot" or "PC1 vs. PC2", etc. plot).

```
plot(wisc.pr$x[,1], wisc.pr$x[,2], col=diagnosis, xlab="PC1", ylab="PC2")
```


Q8. Generate a similar plot for principal components 1 and 3. What do you notice about these plots?

```
plot(wisc.pr$x[,1], wisc.pr$x[,3], col=diagnosis, xlab="PC1", ylab="PC3")
```


I notice that in the plot of PC3 vs. PC1, there is a lot more overlap of black and red dots, whereas in the plot of PC2 vs. PC1, there is a more fine line between the black and the red dots. This is likely due to the fact that PC3 captures less variance in the data than PC2.

Let's make a nicer figure using ggplot2.

```
# first, we must convert the matrix, wisc.pr$x, into a data frame
df <- as.data.frame(wisc.pr$x)
df$diagnosis <- diagnosis # create a column called diagnosis

# load the ggplot2 package
library(ggplot2)

# create the graph
ggplot(df) +
   aes(PC1, PC2, col=diagnosis) +
   geom_point()</pre>
```


Variance Explained

Let's create a scree plot to show the proportion of variance explained as we increase the number of principal components.

First, we must find the variance of each principle component. We do this by squaring the standard deviation of each PC.

```
pr.var <- (wisc.pr$sdev)^2
head(pr.var)</pre>
```

```
[1] 13.281608 5.691355 2.817949 1.980640 1.648731 1.207357
```

Lets calculate the proportion of variance explained by each principle component. Then we will plot these proportions of variance for each principle component.

```
# find proportion of variance explained by each PC
pve <- pr.var / sum(pr.var)

# create the plot
plot(pve, xlab="Principle Component", ylab="Proportion of Variance Explained", ylim=c(0, 1)</pre>
```


Alternatively, we could make a bar plot of the same data:

```
barplot(pve, ylab="Percent of Variance Explained", names.arg=paste0("PC", 1:length(pve)),
axis(2, at=pve, labels=round(pve, 2)*100)
```


Communicating PCA results

Q9. For the first principal component, what is the component of the loading vector (i.e. wisc.pr\$rotation[,1]) for the feature concave.points_mean?

```
wisc.pr$rotation["concave.points_mean",1]
```

[1] -0.2608538

Q10. What is the minimum number of principal components required to explain 80% of the variance of the data?

```
sum(y$importance["Cumulative Proportion",] <= 0.8) + 1</pre>
```

[1] 5

Hierarchical Clustering

Let's try doing Hierarchical Clustering on the original data.

First, we must scale the wisc.data:

```
data.scaled <- scale(wisc.data)</pre>
```

Next, we calculate the Euclidean distances between all pairs of observations:

```
data.dist <- dist(data.scaled)</pre>
```

Finally, we perform the hierarchical clustering. We will use complete linkage.

```
wisc.hclust <- hclust(data.dist, method="complete")</pre>
```

Now, let's try to determine at what height there are 4 clusters:

Q11. Using the plot() and abline() functions, what is the height at which the clustering model has 4 clusters?

```
plot(wisc.hclust)
abline(h=19, col="red", lty=2)
```

Cluster Dendrogram

data.dist hclust (*, "complete")

Let's compare our hierarchical clustering model to the actual diagnosis.

First, we will cut the tree where there are 4 columns:

```
wisc.hclust.clusters <- cutree(wisc.hclust, k=4)
table(wisc.hclust.clusters, diagnosis)

diagnosis</pre>
```

```
wisc.hclust.clusters B M
1 12 165
2 2 5
3 343 40
4 0 2
```

Looking at the comparison of clusters to diagnoses, cluster 1 seems to have a lot of malignant cells and cluster 3 has a lot of benign cells.

Q12 Can you find a better cluster vs diagnoses match by cutting into a different number of clusters between 2 and 10?

```
wisc.hclust.clusters.altk <- cutree(wisc.hclust, k=5)
table(wisc.hclust.clusters.altk, diagnosis)</pre>
```

```
diagnosis
wisc.hclust.clusters.altk B M
1 12 165
2 0 5
3 343 40
4 2 0
5 0 2
```

I can't find a cluster vs. diagnosis match that is significantly better than 4. However, cutting into 5 clusters is slightly better because it appears to make it more obvious that cluster 2 holds malignant tumors. However, if more data points were added, I am sure clusters 2, 4, and 5 would become kind of ambiguous again. There is not much that can be done about the false diagnoses in clusters 1 and 3, though. They seem to stay about the same no matter how many clusters there are.

Q13. Which method gives your favorite results for the same data.dist dataset? Explain your reasoning.

```
wisc.hclust.altmethod <- hclust(data.dist, method="ward.D2")
plot(wisc.hclust.altmethod)</pre>
```

Cluster Dendrogram

data.dist hclust (*, "ward.D2")

Of the 3 methods, I the results given by "ward.D2" the best since the tree generated by it has two branches coming from its root, and all the other branches stem from either of those. These two groups may correspond to whether a sample is benign or malignant.

Combining Methods

Let's run hierarchical clustering on the PCA results. We will use the number of PCs needed to describe at least 90% of the variability in the data.

```
# find number of PCs needed to describe at least 90% of the variability in the data
numPCs90Pct <- sum(y$importance["Cumulative Proportion",] <= 0.9) + 1
# put all these PCs that we need together in a data frame
pcs90Pct <- as.data.frame(wisc.pr$x[,1:numPCs90Pct])
# make the plot by running hclust()
wisc.pr.hclust <- hclust(dist(pcs90Pct), method="ward.D2")
plot(wisc.pr.hclust)</pre>
```

Cluster Dendrogram

dist(pcs90Pct) hclust (*, "ward.D2")

It looks like there are two big main clusters. Perhaps these clusters are our malignant and benign groups. Let's cut the tree into two groups:

Let's see how accurate the clustering was at predicting cancerous and non-cancerous patients.

```
diagnosis
grps B M
1 28 188
2 329 24
```

As can be seen, the majority of patients were diagnosed correctly. We have miss classified 28 benign patients as needing extra follow-up. We would like to minimize this number.

Let's make plots of the patients in each group and the diagnoses given by PCA and hierarchical clustering.

```
plot(wisc.pr$x[,1:2], col=grps)
```


plot(wisc.pr\$x[,1:2], col=diagnosis)

Let's run hierarchical clustering with the first 7 PCs and cut it into 2 clusters.

```
wisc.pr.hclust <- hclust(dist(wisc.pr$x[,1:7]), method="ward.D2")
wisc.pr.hclust.clusters <- cutree(wisc.pr.hclust, k=2)
table.pr.hclust <- table(wisc.pr.hclust.clusters, diagnosis)
table.pr.hclust</pre>
```

```
diagnosis
wisc.pr.hclust.clusters B M
1 28 188
2 329 24
```

Q15. How well does the newly created model with four clusters separate out the two diagnoses?

This model seems to be pretty good at clustering patients based on their diagnosis. It has about the same number of false positives as false negatives, but it correctly diagnoses most of the patients.

Q16. How well do the k-means and hierarchical clustering models you created in previous sections (i.e. before PCA) do in terms of separating the diagnoses? Again, use the table() function to compare the output of each model (wisc.km\$cluster and wisc.hclust.clusters) with the vector containing the actual diagnoses.

```
wisc.km <- kmeans(scale(wisc.data), centers=2, nstart=20)</pre>
  table.km <- table(wisc.km$cluster, diagnosis)</pre>
  table.km
   diagnosis
      В
          Μ
  1 14 175
  2 343 37
  table.hclust <- table(wisc.hclust.clusters, diagnosis)</pre>
  table.hclust
                     diagnosis
wisc.hclust.clusters
                        В
                    1 12 165
                    2 2
                            5
                    3 343 40
                        0
                            2
```

K-means seems to classify a lot of patients as benign when they are in fact malignant (37 in this dataset). So does hierarchical clustering (40 patients in this dataset). They correctly diagnose most of the patients, but have a lot of false negatives.

Sensitivity/Specificity

Q17. Which of your analysis procedures resulted in a clustering model with the best specificity? How about sensitivity?

```
calc.sen <- function(tp, fn) {
   return(tp / (tp + fn))
}
calc.sp <- function(tn, fn) {
   return(tn / (tn + fn))
}
tp.pr.hclust <- table.pr.hclust[1, "M"]
tn.pr.hclust <- table.pr.hclust[2, "B"]
fp.pr.hclust <- table.pr.hclust[1, "B"]
fn.pr.hclust <- table.pr.hclust[2, "M"]
tp.km <- table.km[2, "M"]</pre>
```

```
tn.km <- table.km[1, "B"]</pre>
  fp.km <- table.km[2, "B"]</pre>
  fn.km <- table.km[1, "M"]</pre>
  tp.hclust <- table.hclust[1, "M"]</pre>
  tn.hclust <- table.hclust[3, "B"]</pre>
  fp.hclust <- table.hclust[1, "B"]</pre>
  fn.hclust <- table.hclust[3, "M"]</pre>
  "Sensitivity"
[1] "Sensitivity"
  calc.sen(tp.pr.hclust, fn.pr.hclust)
[1] 0.8867925
  calc.sen(tp.km, fn.km)
[1] 0.1745283
  calc.sen(tp.hclust, fn.hclust)
[1] 0.804878
  "Specificity"
[1] "Specificity"
  calc.sp(tn.pr.hclust, fn.pr.hclust)
[1] 0.9320113
  calc.sp(tn.km, fn.km)
[1] 0.07407407
```

```
calc.sp(tn.hclust, fn.hclust)
```

[1] 0.8955614

Doing PCA and Hierarchical Clustering has both the best specificity and sensitivity.