Lecture 6

Boolean Identities:

+ and \cdot are commutative, associative, and distributive

Any SOP circuit can be implimented as NAND NAND

• Example: $f = x_1x_2 + x_2x_3$ can be rewritten as $f = (x_1 \text{ NAND } x_2) \text{ NAND } (x_2 \text{ NAND } x_3)$

Any POS circuit can be implemented as NOR NOR

• Example: $f = (x_1 + x_2)(x_2 + x_3)$ can be rewritten as $f = (x_1 \text{ NOR } x_2) \text{ NOR } (x_2 \text{ NOR } x_3)$

Design Example

Gumball factory - s_2 normally gives 0, but $s_2 = 1$ if gumball is too large - s_1 normally gives 0, but $s_1 = 1$ if gumball is too small - s_0 normally gives 0, but $s_0 = 1$ if gumball is too light

Synthesise a logic function f=1 when a gumball is either too large, or both too small and too light - By inspection: $s_2+s_1s_0$ - From truth table:

$$f = \overline{s_2}s_1s_0 + s_2\overline{s_1s_0} + s_2\overline{s_1}s_0 + s_2s_1\overline{s_0} + s_2s_1s_0$$

$$= s_1s_0 + s_2\overline{s_1} + s_2\overline{s_0}$$

$$= s_1s_0 + s_2(\overline{s_1} + \overline{s_0})$$

$$= s_1s_0 + s_2(\overline{s_1s_0})$$

$$= s_1s_0 + s_2$$

Minimal POS Example

Derive a minimal POS for $f(x_1, x_2, x_3) = \prod M(0, 2, 4)$

$$f = (x_1 + x_2 + x_3)(x_1 + \overline{x_2} + x_3)(\overline{x_1} + x_2 + x_3)$$

= $(x_1 + x_3)(x_2 + x_3)$

Using the minterms of \overline{f}

$$\overline{f} = \overline{x_1 x_2 x_3} + \overline{x_1} x_2 \overline{x_3} + x_1 \overline{x_2 x_3}$$
$$= \overline{x_1 x_3} + \overline{x_2 x_3}$$

So

$$f=\overline{\overline{f}}=\overline{(\overline{x_1x_3}+\overline{x_2x_3})}=\overline{(\overline{x_1x_3})(\overline{x_2x_3})}=(\overline{\overline{x_1}}+\overline{\overline{x_3}})(\overline{\overline{x_2}}+\overline{\overline{x_3}})=(x_1+x_3)(x_2+x_3)$$