COSTANTI FISICHE

Massa elettrone $m_e=9x10^{-31}$ kg; carica elettrone $-e=-1.6x10^{-19}$ C; $\epsilon_0=8.85x10^{-12}$ (SI); $1/4\pi\epsilon_0=9x10^9$ (SI); $\mu_0=4\pi$ 10^{-7} (SI)

COMPITO

ESERCIZIO DI ELETTROSTATICA

Un cilindro conduttore cavo di lunghezza indefinita, raggio interno R_2 =9cm e raggio esterno R_3 =10cm, contiene, in modo coassiale, una barretta conduttrice cilindrica di raggio R_1 =1cm. Sul conduttore interno viene depositata una densità di carica lineare λ = 10⁻¹⁰ Cm⁻¹. Il sistema è isolato.

- 1- Calcolare la distribuzione di carica indotta
- 2- Calcolare, <u>utilizzando il teorema di Gauss</u>, il campo elettrico **E** generato in tutto lo spazio e disegnare in un grafico l'andamento di **E(r)**
- 3- Calcolare il potenziale elettrostatico V nella regione esterna del sistema

A distanza **R**_P**=10cm** dalla superficie esterna viene posizionato, libero e inizialmente in quiete, un elettrone.

- 4- Calcolare la forza agente sull'elettrone
- 5- Calcolare il lavoro del campo elettrico per far compiere alla carica il suo percorso.

La superficie esterna del sistema è collegata a terra (vedi fig).

6- Calcolare la densità di energia elettrostatica del campo elettrostatico nella nuova situazione.

Lo spazio interno ed esterno è ora riempito di materiale dielettrico lineare di costante dielettrica K=3

7- Descrivere la situazione all'equilibrio e calcolare il campo D.

ESERCIZIO DI MAGNETOSTATICA

Un cavo conduttore cilindrico di raggio R_1 =0.5cm è percorso da una corrente elettrica stazionaria distribuita uniformemente su tutta la <u>sezione</u> con densità di corrente j_{vol} =2Am⁻² parallela all'asse.

- 1- * Enunciare il teorema di Ampere
- 2- Calcolare, usando il teorema di Ampere, il campo magnetico generato nello spazio e disegnare in un grafico B(r).
- 3- Calcolare la densità di energia del campo magnetico.

A distanza d=2cm dall'asse del conduttore si trova un cavo conduttore identico al precedente.

- 4- Calcolare l'azione meccanica agente tra i fili
- 5- Calcolare il campo magnetico nella regione esterna ai cavi e disegnare le linee di campo.

In una diversa situazione, pratica, i fili conduttori sono ricoperti da una guaina di spessore e nello spazio esterno il campo magnetico misurato è nullo.

6- Calcolare la corrente che scorre nella guaina.

ESERCIZIO DI INDUZIONE ELETTROMAGNETICA

Un circuito a U vincolato nel piano XY e formato da due binari paralleli ad X distanti **a=2cm**, ha una parte mobile libera di scorrere senza attrito, in direzione x. Nello spazio è presente un campo magnetico stazionario e uniforme **B=+0.5T** in direzione normale al circuito (fig.). Il tratto mobile viene tenuto in moto con velocità **v₀=0.5ms**⁻¹ lungo x costante.

- 1- *Enunciare la legge del flusso di Faraday
- 2- Determinare il flusso del campo magnetico concatenato al circuito
- 3- Calcolare il valore della forza elettromotrice indotta nel circuito

Il circuito viene chiuso con un condensatore C=2mF e una resistenza $R=5\Omega$ posti in serie - si trascuri ogni fenomeno di autoinduzione.

4- Scrivere la legge di Ohm del circuito **RC** e dare la legge oraria della corrente indotta **i(t)** riportando anche un grafico.

Discutere il bilancio energetico calcolando:

- 5- la potenza elettrica erogata nel circuito.
- 6- la potenza dissipata nel circuito per effetto joule.
- 7- la potenza immagazzinata nel circuito
- 8- *Si spieghi cosa significa, dal punto di vista fisico, "trascurare ogni fenomeno di autoinduzione"

QUESITI DI TEORIA

- A. Dare l'espressione della Forza di Lorentz e discutere la situazione fisica di un elettrone in moto con velocità iniziale V in una regione in cui sono presenti un campo elettrico e magnetico, entrambi uniformi, tra di loro paralleli, e ortogonali a V. Esempio V₀=V_{0X} E=E_Z, B=B_Z
- B. Enunciare le 4 leggi di Maxwell nel vuoto per il caso non stazionario
- C. Dare l'espressione dell'energia e del momento meccanico del dipolo magnetico immerso in un campo B