Package 'damr'

March 20, 2018

1,141011 20, 2010
Title Read Drosophila Activity Monitor Data
Date 2017-07-26
Version 0.0.0.9000
Description Retreive behavioural data from the widely used Drosophila Activity Monitor System (DAMS).
Depends R (>= 3.00), behavr, data.table
Imports readr
Suggests testthat, covr, knitr
Remotes rethomics/behavr
License GPL-3
Encoding UTF-8
LazyData true
<pre>URL https://github.com/rethomics/damr</pre>
<pre>BugReports https://github.com/rethomics/damr/issues</pre>
RoxygenNote 6.0.1
Roxygen list(markdown = TRUE)
R topics documented:
damr_example
Index

2 link_dam_metadata

damr_example

Get path to damr example

Description

damr comes with a sample DAM2 files in its inst/extdata directory. damr_example allow make them easy to access.

Usage

```
damr_example(path = NULL)
damr_example_dir()
```

Arguments

path

Name of file. If NULL, the example files will be listed.

Author(s)

Hadley Wickham (modified from readr)

Examples

```
# list all files
damr_example()
# get path to one file
damr_example("M014.txt")
# get the directory wih all the files
damr_example_dir()
```

link_dam_metadata

Link DAM2 or DAM5 metadata to result files

Description

This function checks and add columns to DAMS metadata. This way, if can subsequently be loaded (via load_dam).

Usage

```
link_dam_metadata(x, result_dir)
```

Arguments

```
x object such as a data.frame, or the name of a file (see detail) result_dir the root directory where all daily data are saved
```

load_dam 3

Details

These function will augment metadata from two different types of inputs:

1. A data.frame (recomended) In this case, the function will try to match requested data with data available on result_dir. The provided data.frame or data.table has typically one row per requested individial and the columns (not necessarily in this order):

- file the name of a data file (e.g. "Monitor3.txt"), it has to exists in result_dir.
- start_datetime the first day and time of the requested experiment (e.g. "2014-12-28 18:00:00").
- stop_datetime the last day and time of the requested experiment (e.g. "2014-12-30 19:00:00" or simply "2014-12-30").
- region_id the channel (between 1 and 32) in which the animal was in (e.g. 20). region_id is optional. If not provided, all 32 channels are loaded *with the same conditions*.
- ??? any number of arbitrary columns to associate conditions/treatments/genotypes/... to the previous columns.
- 2. The name of a CSV file that contains a table as described in 1.

The time in data is expressed relatively to start_date. In other words, if you do circadian analysis, and your D->L transitions are at 09:00:00, you want to set start_datetime = "YYY-MM-DD 09:00:00".

The result_directory is the folder where your files live. For instance, result_dir = "C:/where/I/Store/my/txt/files/"

Value

a data.table::data.table with the same rows as x, and extra columns for further data loading

References

• metadata tutorial – how to work with metadata

See Also

• load_dam – to subsequently load the actual data

load_dam

Load DAM data from one or several continuous files

Description

Uses "linked metadata" to load data from single beam DAM2 or multibeam DAM5 arrays.

Usage

```
load_dam(metadata, FUN = NULL, ...)
```

4 load_dam

Arguments

metadata data.table::data.table used to load data (see detail)

FUN function (optional) to transform the data from each animal immediately after is has been loaded.

... extra arguments to be passed to FUN

Details

the linked metadata should be generated using link_dam_metadata.

Value

A behavr::behavr table. In addition to the metadata, it contains the data, whith the columns:

- id autogenerated unique identifier, one per animal
- t time
- activity number of beam crosses

References

• damr tutorial – how to use this function in practice

See Also

- behavr::behavr the class of the resulting object
- read_dam_file to load data from a single file (without metadata)

Examples

```
# This is where our data lives
root_dir <- damr_example_dir()

# Metadata already made for us.
# It defines condition and genotype of each animal
data(single_file_metadata)
print(single_file_metadata)

metadata <- link_dam_metadata(single_file_metadata, root_dir)

# we find and load the matching data
dt <- load_dam(metadata)
print(dt)

# genotype and condition to our metadata:
print(dt[meta=TRUE])

# Just the first few reads, we run `head()` on each animal
dt <- load_dam(metadata, FUN=head)
print(dt)</pre>
```

read_dam_file 5

read_dam_file

Reads data from a single DAM2 single beam or DAM5 multibeam file

Description

This function retreives activity data in a DAM file. It allows selection of a date range and channels (i.e. regions).

Usage

```
read_dam_file(path, region_id = 1:32, start_datetime = -Inf,
  stop_datetime = +Inf, tz = "UTC")
```

Arguments

```
path location of the file to read (character)

region_id vector of unique regions to read

start_datetime, stop_datetime

the start and the end of an the experiment (see details)

tz the timezone (see OlsonNames for a list)
```

Details

start_datetime and stop_datetime are formated as "YYYY-MM-DD HH:MM:SS". start_datetime is used as the reference time (ZT0). Therefore, if you are interested in circadian analysis and D->L transitions are at 10:00:00, you probably want to set start_datetime = "YYYY-MM-DD 10:00:00".

Value

A behavr table. The metadata contains an autogenerated id per animal. The data has the columns:

- id autogenerated unique identifier, one per animal
- t time
- activity number of beam crosses

See Also

load_dam – to load data from many files and biological conditions using metadata (recommended)

Examples

```
path <- damr_example("M064.txt")
dt <- read_dam_file(path, region_id = c(1:3), start_datetime = "2017-06-30 15:00:00")
print(dt)</pre>
```

6 two_files_metadata

single_file_metadata

A simple toy metadata defining the experimental conditions of 32 animals monitored at the same time in a single DAM2 monitor. Each animal has its own channel (region_id), as well as a condition and genotype. It serves as an example for link_dam_metadata.

Description

A simple toy metadata defining the experimental conditions of 32 animals monitored at the same time in a single DAM2 monitor. Each animal has its own channel (region_id), as well as a condition and genotype. It serves as an example for link_dam_metadata.

Usage

```
single_file_metadata
```

Format

An object of class data. frame with 32 rows and 6 columns.

Author(s)

Quentin Geissmann

two_files_metadata

A toy metadata defining the experimental conditions of 64 animals monitored at the same time in two separate DAM2 monitors. Each animal has its own channel (region_id), as well as a condition and genotype. It serves as an example for link_dam_metadata.

Description

A toy metadata defining the experimental conditions of 64 animals monitored at the same time in two separate DAM2 monitors. Each animal has its own channel (region_id), as well as a condition and genotype. It serves as an example for link_dam_metadata.

Usage

two_files_metadata

Format

An object of class data. frame with 64 rows and 6 columns.

Author(s)

Quentin Geissmann

Index

```
*Topic datasets
    \verb|single_file_metadata|, 6
    two_files_metadata, 6
behavr, 5
behavr::behavr, 4
damr_example, 2
damr_example_dir(damr_example), 2
data.frame, 2, 3
data.table, 3
data.table::data.table, 3, 4
link_dam2_metadata(link_dam_metadata),
link_dam_metadata, 2, 4, 6
load_dam, 2, 3, 3, 5
load_dam2 (load_dam), 3
OlsonNames, 5
read_dam2_file (read_dam_file), 5
read_dam_file, 4, 5
single\_file\_metadata, 6
two_files_metadata, 6
```