Теорема

Для всякой системы вложенных отрезков $[a_1,b_1] \supset [a_2,b_2] \supset [a_3,b_3] \supset ... \supset [a_n,b_n]$ такой, что длины отрезков стремятся к 0 ($\lim_{n \to \infty} b_n - a_n = 0$), существует *единственная* точка C, принадлежащая всем отрезкам.

Доказательство

1) Существование точки C

Множество левых концов отрезков $\{a_n\}$ на числовой прямой лежит левее множества правых концов $\{b_n\}$. $\forall n, m \ a_n \leq b_m$. В силу аксиомы непрерывности вещественных чисел, существует точка C, разделяющая эти два множества: $\forall n, m \ a_n \leq C \leq b_m$, в частности $\forall n \ a_n \leq C \leq b_n$. Это значит, что точка C — общая точка для всех отрезков.

2) Единственность точки C

Предположим противное: пусть есть две точки, принадлежащие всем отрезкам: $\forall n\ c,c'\in[a_n,b_n]\ c\neq c'$ Тогда для всех номеров n выполняется неравенство: $|c-c'|\leq b_n-a_n$. В силу существования предела $\lim_{n\to\infty}b_n-a_n=0$, для любого $\varepsilon>0$ начиная с некоторого номера N выполняется неравенство $b_n-a_n<\varepsilon$. Возьмем $\varepsilon=\frac{1}{2}|c-c'|$. Тогда, начиная с некоторого номера N выполняется неравенство $b_n-a_n<\frac{1}{2}|c-c'|$. Противоречие. Единственность доказана.