Math 152 Syllabus: Spring 2015 (Stewart Early Transcendentals)

LSN	Section	Topic(s)	Lesson Objectives	Homework	Graded Event
1	5.1	Areas and Distances	Explain how to determine the area under a curve with rectangles. Explain how to increase accuracy using thinner rectangles Use sigma notation to express & calculate Riemann sums Understand whether the RHS or LHS is an over- or under-estimate Estimate distance travelled given velocity and time data	2, <mark>5</mark> , 8, 13, 14-18, 25	
2	5.2		State & understand the definition of the "DEFINITE INTEGRAL" Express the relationship between the definite integral and Riemann sums Estimate definite integral given various areas relative to curves Use the Midpoint Rule to estimate definite integrals Understand & apply the properties of definite integrals	5, 6, 7, 8, <mark>9</mark> , 11, 17, 18, 26, 34, 43, 47, <mark>49, 52</mark>	
3	7.7	Approximate Integration	Use SIMPSON'S RULE to estimate definite integrals Know whether RHS/LHS/Trap/MP will be an over or under estimate based on slope and concavity Use the Trapezoid Rule to estimate definite integrals	1, 2, 10, 11, 30, 31, 37, 40, 43	
4	4.9	Antiderivatives	Calculate antiderivatives of a function as a family of functions Calculate antiderivatives of functions given in first column of table on page 345 Use antiderivatives & initial conditions to calculate: from acceleration & b) position from velocity Given F'(x), graph the antiderivative, F(x) Given F'(x), identify the points of interest of F(x)	3, 5, 7, 8, 10, 11, 13, 14, 20, 23, 25, 29, 40, 41, 51, 52, 65, 75	
5	5.3		Explain the Fundamental Theorem of Calculus in the context of a real world scenario Apply the FTC to evaluate definite integrals	2, <mark>3</mark> ,12,20-26, 29, 36, 37, 40, 43, 45, 46, 53, 54, 67, 68	Derivative Review
6	5.4	Indefinite Integrals and the Net Change Theorem	Compute "F(b) - F(a)" by applying the NET CHANGE THEOREM to F'(x) Explain the difference between indefinite and definite integrals	20, 21, 24, <mark>28, 31</mark> , 49, 51-54, 58, 63, 64, 65, 66,70	FSPA-1 FSQ-1 HWQ-1
7	5.5		Show how the SUBSTITUTION RULE for integration is related to the CHAIN RULE Recognize when to use the substitution rule Evaluate integrals using the substitution rule Recognize & apply properties of symmetric functions	3, 5, 7, 8, 9, 13, 18, 19, 22, 28, 33, 53, 59, 80, 82, 85, 86	
8	6.1	Areas Between Curves	Use integration to calculate the area between curves Recognize when to define a region as either a function of x or of y	1, 2, 3, 7, 8, 13, 29, 30	
9	6.2	Volumes	Calculate volumes using the disk & washer methods	1, 2, 5, 7, 10, 21, 23, 40, <mark>41</mark> , 47, 69	FSPA-2 FSQ-2
10	6.3	Volumes	Calculate volumes using cylindrical shells Recognize whether the shell/disk/washer method is appropriate	2, 3, 5, 9, <mark>13</mark> , 20, 37-42	
11	GR #1		Demonstrate proficiency on material from sections 4.9, 5.1-5.5, 6.1-6.3,	7.7 & WeBWorK Set-1	

			Understand that Integration by Parts (IBP) is derived from reversing product rule derivatives		
			onderstand that integration by Parts (IBP) is derived from reversing product rule derivatives		
12	7.1	Integration by Parts	December Upp is an appropriate for evaluating an integral	3, 4-6, 12, 26, 66, 67	
			Recognize when IBP is an appropriate for evaluating an integral Evaluate a given integral using IBP	1	
			Divide a proper rational function into a sum of partial fractions. Use Calc-Tool to show equality of	1, 2, 7, 8, 12, 17 , 19 , 66	
		lata anation of Dational	the two functions		
13	7.4	Integration of Rational Functions by Partial Fractions	Using long division, reduce an improper rational function into the sum of a polynomial and a proper		
13	7.4		rational function		
		FIACTIONS	Evaluate integrals by using partial fractions	 	
		Improper Integrals	Determine if an integral is improper (Type I or II)	1, 2, 5, <mark>7</mark> , 13, 18, 28, 42, 68	
14	7.8		Evaluate an improper integral as a limit of proper integrals		
	7.0	improper integrals	Determine convergence of an improper integral	1, 2, 3, 7, 13, 16, 26, 42, 06	
			Compute work done by a constant force		
15			Identify when an integral is required to calculate work		
	6.4	Work	Develop & evaluate an integral to determine the work done by lifting an object	3-5, 7, 9, 15, 17, 20, 30	
			Develop & evaluate an integral to determine the work done by pumping liquids		FSPA-3
16		Average Value of a	Use integration to calculate the average value of a function		FSQ-3
	6.5	Function		2, 16-19, 21	HWQ-2
			Compute hydrostatic pressure & force at a specific depth		
17		Applications to Physics	Develop & evaluate a definite integrals to detremine hydrostatic forces	1 2 4 7 14 15 26	
	and Engineering	Develop & evaluate a definite integrals to detremine hydrostatic forces	1, 3, 4, 7, 14, 15, 26		
18				9.1) 3-5, 9, 10, 14 9.2) 1, 2	
			Recognize what makes an equation a "differential equation"		
		Ditterential Faulations /	Develop the general solution and find particular solution to a differential equation by applying		FSPA-4
19	9.1		initial condition(s)		FSQ-4
13	9.2		Determine if a function is a solution to a differential equation		HWQ-3
			Calculate & describe equilibrium solutions for differential equations		
		Separable Equations	Determine the nature of the solution using a slope field	2, 3, 5, 10 , 11, 19, 21, 43, 45,	
20			Determine if a differential equation is separable		
	9.3		Solve separable differential equations & apply initial conditions		
21			Model and solve mixing problems using differential equations	46	
\vdash			Translate statements involving rates into differential equation models and solve model applying		
			given conditions	3, 9, 10	
22	9.4		Formulate & solve population models using differential equations		
	11.1				
			Explain what it means for a sequence to converge or diverge	1 2 5 0 11 15 17 25 20	
23			Explain & compute the limit of a convergent sequence	1, 3, 5, 9, 11, 15, 17, 25, 28,	
			List terms of a sequence (including recursive sequences)	65, 67	
24	GR#2 Demonstrate proficiency on material from sections 7.1, 7.4, 7.8, 6.4, 6.5, 8.3, 9.1, 9.3, 9.4 & WeBWorK Set-2				

25	FSE		Demonstrate Proficiency on Fundamental Integration Skills		FSE
			Understand the difference between a SERIES and a SEQUENCE	- - 1, 3, 4, 17, 27, 18, 28, 57, 69, 71	
			Explain what it means for a series to converge or diverge		
			Calculate the partial sum of a series		
26	11.2	Series	Recognize a geometric series and compute the sums of both finite and infinite geometric series		
			Model real world scenario using series	1	
		1	Unerstand & apply the "Divergence Test"	1	
	14.7	Sarias: The	Identify appropriate convergence test for a given series	11.3) 1, 7, 15, 16, 27	
27	11.7 11.3		Recognize when to use the INTEGRAL TEST to show convergence or divergence		
	11.3	Integral Test & Estimates	Know the definition of a P-SERIES and determine convergence	11.7) 1-6	
			Understand difference between COMPARISON TEST & LIMIT COMPARISON TEST	11.4) 1, 5, 7, 17, 28, 37 11.5) 1, 3, 9, 11, 23	
28	11.4	The Comparison	Use Comparison, Limit Comparison, & Alternating Series Tests to prove convergence		HWQ-4
28	11.5	5 Tests/Alternating Series	Understand convergence/divergence of a series as it relates to the behavior of the series "in the		HWQ-4
			long run"		
		Alexalista Caussiana	Explain ABSOLUTE CONVERGENCE of a series	1, 7, 8, 12, <mark>19, 35</mark>	
29	11.6	Absolute Convergence, Ratio and Root Tests	Recognize how and when to apply the Ratio & Root Tests		
			Use Ratio and Root Tests to show convergence/divergence		
		· ·	Identify what makes a series a "power series"	11.8) 2, 5, <mark>7</mark> , 10, 15, 33 11.9) 3, 5, 6, 7, 11, 13	
	11.8 11.9		Calculate interval and radius of convergence for given series		
30			Develop POWER SERIES expansion for applicable functions		
			Use differentiation, integration, and known power series to calculate power series expansions of		
			given functions		
		Taylor and Maclaurin	Calculate the coefficients for a power series expansion	3, 7, 9, 13, 15, 17, 39, 44	
			Understand that a Maclaurin series is a Taylor series centered at zero		
31	11.10	Series	Develop a Taylor series expansion for a given function		
		Series	Describe the relationship between a Taylor Series expansion , and an nth-degree Taylor poynon		
			of a function		
32	11.11	Applications of Taylor	Develop polynomials to approximate difficult functions	5, 8, 13a, 23, <mark>25,</mark> 31	
		Polynomials	Use Taylor polynomials to estimate functions		
	10.1	Curves Defined by	Sketch a curve identified by parametric equations	2, 7, 9, 11, 14, 19, 20, 46a	
			Find parametric equations for given Cartesian curves		
33		Parametric Equations	Find a Cartesian equation of a curve from parametric equations 2, 7, 9,		
		Tarametric Equations	Describe the motion of a particle, given $x = x(t) & y = y(t)$		
			Apply parametric equations to real world situations		
34		GR #3	Demonstrate proficiency on material from sections 11.1-11.11 & We	BWorK Set-3	

35	8.1 10.2	Arc Length/Calculus with	Calculate curve length from parametric or cartesian functions Determine tangent lines to parametric curves	8.1:) 3, 6, 7, 11, 19, 39 10.2) 1, 3, 5 , 13, 41, 45	
36	10.3		Describe points in two space using polar coordinates Convert between polar and cartesian coordinates Sketch curves or regions in a plane given in polar coordinates Recognize when polar coordinates are more useful than Cartesian coordinates	3, 4, 6, 11, 12, 28, 33, 40	
37	10.4	_	Calculate areas enclosed by polar curves using polar coordinates Calculate arc length of curves defined in polar coordinates	1,2,5,9,10,45,47	HWQ-5
38	12.1 12.2	Three-Dimensional Coordinate Systems/Vectors	Explain how to locate points in three dimensions Describe and sketch 3-D surfaces/regions from their equations Determine distances in three dimensions Describe a sphere based on its equation Understand & apply vector addition, and scalar multiplication Understand the difference between a vector and segment Calculate vector magnitude & segment length Explain the concept of basis vectors (I,j,k) and unit vectors; calculate a unit vector in same direction of given vector Determine component forces using vectors	12.1) 4,6,10,27,33,35,37 12.2) 3,5,17,19,24,25,30,31	All projects due NLT 1 May @ 1530
39 40	12.3	The Dot Product The Cross Product /	Calculate the dot (scalar) product of two vectors Use the dot product to calculate the angle between two vectors Use the dot product to determine if two vectors are orthogonal Calculate scalar projections and vector projections Use dot product properties to solve work problems when the applied force is not in direction of distance travelled Calculate the cross product of two vectors. Understand that the cross-product is a vector Use a x b to calculate an orthogonal vector to both a and b	3,5,7,17,18,23,24,39,49,50 3,5,14,15,17,18,19,35,39	BLOCK QUIZ
Use the Cross Product to calculate torque FINAL					

^{*} WeBWorK (WW) sets are not graded; indicated WeBWork material will be covered on the HWQ