

Exercício 04: Monte Carlo - Integração

Francisco Cerdeira*

Através do Método de Monte Carlo (MMC) foi calculado o valor de π , apresentando-se os resultados para a dependência funcional e, o integral da distância média entre partículas numa caixa de tamanho L, onde se espera mostrar tanto a convergência deste como a da dimensão.

Cálculo do valor de π

• O MMC é um algoritmo que se baseia numa amostragem de números aleatórios de modo a obter resultados numéricos. De acordo com o Teorema do Limite Central temos que à medida que o número de amostras geradas aumenta a distribuição aproximar-se-á da normal e o valor estimado tenderá para o real com um erro de $\frac{1}{\sqrt{N_p}}$ em que N_p representa a dimensão da amostra. O valor de π será calculado através do rácio entre as áreas do quadrado e circunferência unitário cujos centros são coincidentes

$$p = \frac{A_{circulo}}{A_{quadrado}} = \frac{\pi \left(\frac{l}{2}\right)^2}{l^2} = \frac{\pi}{4}$$
 (1)

• O código a criar terá assim que ser capaz de gerar aleatoriamente N_p pontos uniformemente distribuídos num quadrado, com recurso à função drand48(), verificando-se, de seguida, se este se encontras no interior do circulo como descrito na equação 2

$$d = \sqrt{x^2 + y^2} \quad , \quad d \le 1 \tag{2}$$

em que x e y são as coordenadas do ponto.

Será então feita a contagem do numero de pontos que respeitam esta condição, N_{dentro} , sendo depois aplicada a equação 1 de modo a estimar-se um valor para p e consequentemente um valor para π , calculando depois o desvio

$$p^{estimado} = \frac{N_{dentro}}{N_p} \tag{3}$$

$$\pi^{estimado} = 4 \times \frac{N_{dentro}}{N_p} = \pi(N_p)$$
 (4)

$$\Delta = |\pi - \pi(N_p)| \tag{5}$$

Fazendo variar N_p obtém-se o gráfico da figura 1 que apresenta uma convergência para π à medida

que $N_p \to \infty$. Na figura 2 observa-se como $log_{10}(\Delta)$ varia com $log_{10}(N_p)$ sendo que o declive da reta que melhor se ajusta a estes pontos e que indica a dependência funcional, deveria ser próximo de $-\frac{1}{2}$ como indica a equação 6, algo que não aconteceu $(d_f^{estimado} \approx -0.36)$, o que pode ser explicado pelos outliers presentes, resultado do uso de apenas uma amostra para cada N_p .

$$\Delta \approx \frac{1}{\sqrt{N_p}} \Leftrightarrow log_{10}(\Delta) \approx -\frac{1}{2}log_{10}(N_p)$$
 (6)

- Nas figuras 1 e 2 encontram-se os gráficos obtidos tendo sido usada a função drand48() para gerar as coordenadas dos N_p pontos.
 - $$\begin{split} \ N_p &= \{500, 1000, 2500, 5000, 10000, 25000, \\ 50000, 100000, 250000, 500000, 750000, \\ 1000000, 2000000, 3000000, \\ 10000000, 50000000, 1000000000\} \end{split}$$

Figura 1. É apresentado o valor que π em função do número de pontos usados (N_p) . Foi usado o $log_{10}(N_p)$ e apresentada uma reta a tracejado do valor real de π para claridade

Pontos numa caixa

• Nesta secção pretende-se determinar a média $\langle d_{media} \rangle$ sobre todas as configurações possíveis da distância média, d_{media} entre N_p pontos distribuídos uniformemente numa caixa cúbica de lado L.

^{*} francisco.cerdeira@gmail.com

Figura 2. Desvio de $\pi_{estimado}$ em relação a π conforme o numero de pontos usados (N_p) . Foi usado o logaritmo de modo a que o declive da reta que melhor se ajusta ao pontos represente a dependência funcional

$$\langle d_{media} \rangle = \frac{1}{Z} \int d_{media} d^3 r_1 \quad \dots \quad d^3 r_{N_p}$$
 (7)

$$\begin{array}{lll} \text{com} & d_{ij} &= \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2 + (z_i - z_j)^2}, \\ Z &= & \int d^3 r_1 \ \dots \ d^3 r_{N_p} & \text{e} \ d_{media} &= \\ \frac{2}{N_p(N_p - 1)} \sum_i \sum_{j > i} d_{ij}. \end{array}$$

• De modo a estudar a convergência do integral e da dimensão foi necessário variar o número de configurações, M, e o número de pontos, N_p , usados para calcular o integral tendo sido calculada a média de d_{media} para cada M usado (equação 8). Os pontos foram gerados atrvés da função drand48() à semelhança do que foi feito anteriormente na secção 1 tendo apenas sido adicionada uma coordenada z

$$-L = 1$$

- $-M = \{100, 200, 500, 750, 1000, 1250, 1500, 2000, 2500, 5000\}$
- $-N_p = \{250, 500, 750, 1000, 1250, 1500\}$

$$\langle d_{media} \rangle \approx \frac{1}{M} \sum_{k=1}^{M} d_{media}^{k}$$
 (8)

• Na figura 3 é apresentado o gráfico de $< d_{media} >$ em função de M para os vários N_p em que é possível observar a convergência do integral em que, à medida que o número de configurações, M, aumenta, $< d_{media} >$ tende para um valor especifico. É também possível retirar ilações sobre a convergência da dimensão pois à medida que N_p aumenta, os valores de $< d_{media} >$ encontram-se cada vez mais próximos (para $N_p = 1250$ e $N_p = 1500$ ocorre sobreposição). Recorrendo à literatura temos que para um cubo unitário, a distância média

entre 2 pontos é dada pela constante de Robbin, $< d_{media}^{Teorico} > \approx 0.66170718$, e deste modo é possível calcular o desvio tendo em conta que o número de médias realizadas é proporcional a N_p^2 temos que

$$\Delta = |\langle d_{media}^{Teorico} \rangle - \langle d_{media}^{estimado} \rangle| \approx \frac{1}{\sqrt{N_p^2}} = N^{-1} \qquad (9)$$

e o declive da reta apresentada no gráfico da figura 4 que relaciona $log_{10}(\Delta)$ com $log_{10}(N_p)$ deve tender para -1 o que não é o caso $(d_f^{estimado} \approx -0.57)$.

Figura 3. Aqui é mostrada a convergência da distância média em função do número de configurações geradas. É possível observar que a partir de M=1500 o valor de $\langle d_{media} \rangle$ estabiliza. É também possivel concluir sobre a convergência da dimensão ao observar a sobreposição das linhas para $N_p=1250$ e $N_p=1500$

Figura 4. Cálculo do declive da reta que fornece o melhor ajuste aos pontos dados pelo $log_{10}(\Delta)$ em função de $log_{10}(N_p)$ com o intuito de concluir sobre a convergencia da dimensão.