6.1/ Numerical Approximation: Euler's Method

Recall:

$$\frac{dy}{dx} = f(x,y) \iff Says the slope of the graph
$$y = y(x) \text{ of the point } (x,y) \text{ is } f(x,y).$$$$

$$|\gamma(x_0)=\gamma_0|$$

What is
$$x_1$$
? $X_1 = x_0 + h$

What is y,?

Slope of line is
$$M_0 = f(x_0, y_0)$$
.

Eg'n of line is
$$Y-Y_0=M_o(X-X_0)$$
.

$$= 7 \quad \gamma_1 - \gamma_0 = m_0(x_1 - x_0)$$

Similarly:

$$X_2 = X_1 + h$$
 $Y_2 = Y_1 + h \cdot f(X_1, Y_1)$
 $X_3 = X_2 + h$ $Y_3 = Y_2 + h \cdot f(X_2, Y_2)$

That is, for N=0,1,2,..., Euler's Method is

$$Y(x_0) = Y_0$$

$$Y_{n+1} = X_n + h$$

$$Y_{n+1} = Y_n + h \cdot f(X_n, Y_n)$$

Example: (#4)

$$Y' = X - Y$$
, $Y(0) = 1$; $Y(x) = 2e^{-x} + x - 1$
Use step size $h = 0.1$ to approx.
The solin $Y(x)$ at $x = 0.1, 0.2, 0.3, 0.4, 0.5$
using Euler's method.

Sol'n: Note:
$$f(x,y) = x - y$$

 $(x_0, y_0) = (0, 1)$

$$X_1 = X_0 + h = O + O.1 = O.1$$

 $m_0 = f(X_0, Y_0) = X_0 - Y_0 = O - 1 = -1$
 $Y_1 = Y_0 + h \cdot m_0 = 1 + (0.1) \cdot (-1) = 0.9$

$$X_2 = X_1 + h = 0.1 + 0.1 = 0.2$$

 $M_1 = f(X_1, Y_1) = 0.1 - 0.9 = -0.8$
 $Y_2 = Y_1 + h \cdot m_1 = 0.9 + (0.1) \cdot (-0.8) = 0.82$

$$X_3 = X_2 + h = 0.2 + 0.1 = 0.3$$

 $M_2 = f(X_2, Y_2) = 0.2 - 0.82 = -0.62$
 $Y_3 = Y_2 + h \cdot M_2 = 0.82 + (0.1) \cdot (-0.62) = 0.758$

$$X_4 = 0.4$$

 $M_3 = f(x_3, y_3) = 0.3 - 0.758 = -0.458$
 $Y_4 = y_3 + h \cdot m_3 = 0.758 + (0.1) \cdot (-0.458)$
 $= 0.7122$

$$x_5 = 0.5$$
; $m_4 = 0.4 - 0.7122 = -0.3122$
 $y_5 = 0.7122 + (0.1) \cdot (-0.3122) = 0.68098$

N	Xn	Yn	y(xn)	$y(x_n) - y_n$
0	0	0.9	0.90967	0.00967
2	0.1	0.87	0.83746	0.01746
3 4	0.3	0.758	0.78164 0.74064	0.02364
5	0.4	0.7122	0.71306	0.03208

[Julia code demo]