# Fundamentos de Análise Exploratória de Dados

Conceitos e Aplicações

Encontro 2 Resumos numéricos e análises bivariadas.

Prof. Me. Lineu Alberto Cavazani de Freitas



- Parte primordial de qualquer análise estatística é chamada análise descritiva ou exploratória.
- Consiste basicamente de tabelas, resumos numéricos e análises gráficas das variáveis disponíveis em um conjunto de dados.
- ► Trata-se de uma etapa de extrema importância e deve preceder qualquer análise mais sofisticada.
- As técnicas de análise exploratória visam resumir e apresentar as informações de um conjunto de dados brutos.

- A análise exploratória de dados é uma área relativamente nova.
- Nasceu do clássico livro Exploratory
   Data Analysis de John Tukey em 1977.
- Algo curioso é que Tukey tinha uma relação próxima com a Ciência da Computação e definiu os termos bit e software.



Figura 1. Capa do livro Exploratory Data Analysis de John Tukey.

- Como quase tudo em análise de dados, o avanço computacional permitiu com que a análise exploratória evoluísse substancialmente.
- ► Por exemplo: historicamente o processo de criação de um gráfico era reservado a pessoas qualificadas pois a produção de uma visualização era difícil.
- ▶ Hoje qualquer pessoa pode inserir dados em um aplicativo e gerar um gráfico.
- ► Este tipo de facilidade é importante para disseminação e democratização dos métodos, porém abre margem para certas práticas inadequadas.

- Tentar compreender um conjunto de dados sem algum método que permita resumir as informações é inviável.
- A análise exploratória é a primeira forma de tentarmos entender o que acontece nos nossos dados.
- Uma das tarefas é a etapa de consistência dos dados, isto é, verificar se os dados coletados são condizentes com a realidade.



Figura 2. Extraído de pixabay.com.

- O conjunto de técnicas aplicáveis está diretamente associado ao tipo das variáveis de interesse (quantitativas x qualitativas) e suas ramificações.
- Podemos conduzir análises focadas nas variáveis uma a uma (análises univariadas).
- Também podemos conduzir análises focadas em avaliar a relação entre as variáveis (análises multivariadas).



Figura 3. Extraído de pixabay.com.

#### Podemos fazer uso diversas técnicas, tais como

- ► Tabelas de frequência absolutas.
- ► Tabelas de frequência relativas.
- ► Tabelas de frequência acumuladas.
- Tabelas para múltiplas variáveis.
- ► Gráficos.

- Medidas de posição central.
- Medidas de posição relativa.
- Medidas de forma.
- Medidas de dispersão.
- Medidas de associação.



#### Resumos numéricos

- Uma forma de resumir a informação contida em um conjunto de dados é por meio dos resumos numéricos.
- Resumos numéricos são basicamente números que resumem números.
- Os dois principais grupos são as medidas de posição (central e relativa) e dispersão.
- Existem outros conjuntos de medidas, como as medidas de forma e também as de relação/associação.



## Medidas de posição central

- ▶ Um passo fundamental na exploração dos dados é definir um **valor típico** (uma estimativa onde a maior parte dos dados está localizada).
- ► Considerando um conjunto de valores qualquer, como definir um valor central? A resposta é: depende do critério.

- As medidas de posição central buscam expressar o centro de uma variável por meio de ideias como:
  - ► Centro de massa.
  - Valor que divide a amostra em partes iguais.
  - Valores de maior frequência ou densidade

- Algumas possiblidades são
  - Média.
  - ► Mediana.
  - ► Moda.
  - Média geométrica.
  - ► Média harmônica.
  - Média aparada.

### Média aritmética

- ► Soma de todos os valores dividida pela quantidade de elementos.
- Interpretação física de centro de gravidade.
- ► Medida influenciada por valores extremos.

#### Expressão

Sejam  $y_1, y_2,...,y_n$  os n valores de uma variável Y, a média é dada por:

$$\overline{y} = \frac{\sum_{i=1}^{n} y_i}{n} = \frac{y_1 + y_2 + \dots + y_n}{n}.$$

#### Média aritmética

#### **Exemplo**

- ► Considere que uma turma possui 10 alunos.
- ► Estes alunos realizaram uma avaliação.
- Considere que as notas obtidas foram:

Qual foi a nota média da turma?

Y: Notas obtidas.

$$\overline{y} = \frac{60 + 65 + 77 + 95 + 56 + 94 + 97 + 81 + 80 + 48}{10} = \frac{753}{10} = 75.3$$

- Indicada para dados agrupados em tabelas de frequência ou situações em que existe motivo para unidades receberem um peso maior.
- ► Obtêm-se os produtos entre frequências absolutas (ou pesos) e os valores que a variável assume.
- ► Somam-se os produtos e divide-se pela soma das frequências (quantidade de elementos).
- No caso de faixas de valores, usa-se o centro da faixa.

$$\overline{y} = \frac{\sum_{i=1}^{k} f_i \cdot y_i}{\sum_{i=1}^{k} f_i}.$$

- $ightharpoonup f_i$  representa a frequência da classe i.
- ▶ k representa o número de classes ( $k \le n$ ).

#### Exemplo 1

- ► Considere que uma prova com 10 questões de múltipla escolha foi aplicada em uma turma com 100 alunos.
- ► Só temos acesso à uma tabela de frequências do número de questões corretas.
- Qual é o número médio de questões corretas?

Tabela 1. Tabela de frequências do número de questões acertadas.

| Acertos    | 0 | 1 2 | 3 4 | . 5 | 6  | 7  | 8 | 9 | 10 |
|------------|---|-----|-----|-----|----|----|---|---|----|
| Frequência | 1 | 0 0 | 5 2 | 30  | 21 | 29 | 8 | 3 | 1  |

#### Exemplo 1

Y : Número de acertos.

$$\overline{y} = \frac{(0 \times 1) + (1 \times 0) + (2 \times 0) + (3 \times 5) + \dots + (7 \times 29) + (8 \times 8) + (9 \times 3) + (10 \times 1)}{100}$$

$$\overline{y} = \frac{0+0+0+15+8+150+126+203+64+27+10}{100} = 6,03$$

#### Exemplo 2

- Considere a seguinte tabela de frequências da idade dos funcionários de uma empresa.
- Qual é a idade média dos funcionários?

Tabela 2. Tabela de frequências das notas obtidas pelos alunos.

| Faixas  | [20,25] | (25,30] | (30,35] | (35,40] | (40,45] | (45,50] | (50,55] | (55,60] | (60,65] | (65,70] |
|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| Frequên | cia 3   | 45      | 191     | 310     | 248     | 140     | 54      | 7       | 0       | 2       |

#### Exemplo 2

Y: Idade do funcionário.

$$\overline{y} = \frac{(22,5 \times 3) + (27,5 \times 45) + (32,5 \times 191)... + (57,5 \times 7) + (62,5 \times 0) + (67,5 \times 2)}{1000}$$

$$\overline{y} = \frac{67,5 + 1237,5 + 6207,5 + 11625 + \dots + 2835 + 402,5 + 0 + 135}{1000} = 39,7$$

## Outros tipos de média

- Média aritmética e ponderada são os tipos de média mais comuns.
- Contudo existem outras possibilidades como
  - Média geométrica.
  - Média harmônica.
  - Média aparada.

#### Mediana

- Valor que ocupa a posição intermediária dos valores ordenados.
- Divide o vetor de valores em 2 partes de mesmo tamanho.
- ▶ Metade dos valores é menor que a mediana e a outra metade maior que a mediana.
- Existem diferentes métodos para se obter a mediana, um deles é o chamado método de Tukey.
- No método de Tukey basta **ordenar o conjunto de valores** e verificar qual é o valor central.
- Se o número de observações for ímpar, a mediana é o valor central.
- ▶ Se o número de observações for par, a mediana é a média dos dois valores centrais.

## Mediana (pelo método de Tukey)

► Passo 1: ordenar.

$$y_{(1)} \leq y_{(2)} \leq \cdots \leq y_{(n-1)} \leq y_{(n)}$$

▶ Passo 2: obter a mediana de acordo com o número de elementos.

$$md = \begin{cases} y_{((n+1)/2)}, & \text{se } n \text{ for impar.} \\ (y_{(n/2)} + y_{(n/2+1)})/2, & \text{se } n \text{ for par.} \end{cases}$$

## Mediana (pelo método de Tukey)

#### **Exemplo**

- ▶ Uma concessionária está fazendo o levantamento anual de vendas.
- ► Considere que as vendas por mês do ano anterior estão dadas na tabela.
- Qual é o número mediano de vendas?

Tabela 3. Tabela de frequências das vendas mensais.

| Mês    | Jan | Fev | Mar | Abr | Mai | Jun | Jul | Ago | Set | Out | Nov | Dez |
|--------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Vendas | 93  | 113 | 112 | 104 | 84  | 104 | 107 | 105 | 96  | 92  | 93  | 97  |

## Mediana (pelo método de Tukey)

#### **Exemplo**

► Passo 1: ordenar os valores.

| Tabela 4. Vendas ordenada: |
|----------------------------|
|----------------------------|

| (i)    | 1  | 2  | 3  | 4  | 5  | 6  | 7   | 8   | 9   | 10  | 11  | 12  |
|--------|----|----|----|----|----|----|-----|-----|-----|-----|-----|-----|
| Vendas | 84 | 92 | 93 | 93 | 96 | 97 | 104 | 104 | 105 | 107 | 112 | 113 |

- ▶ Passo 2: obter a mediana de acordo com o número de elementos.
  - ▶ O número de elementos é par, portanto a mediana será a média dos dois valores centrais.
  - $\rightarrow$  Mediana: (97 + 104)/2 = 100,5

#### Moda

- Valor ou classe que apresenta maior frequência ou densidade.
- Valor mais típico, aquele que mais se repete.
- Quando todos os valores são distintos, não existe moda.
- Quando a maior frequência está associada a mais de um valor, existe mais de uma moda.

#### **Exemplo**

 Considere que os valores a seguir dizem respeito ao número de filhos por pessoa em um grupo.

- ▶ Qual é a moda?
  - O valor mais frequente é 1, que aparece 6 vezes.

### Média, mediana e moda

- ▶ Na prática, estas medidas possuem vantagens e desvantagens.
- Caso haja valores discrepantes a média é uma medida altamente influenciada, o que não acontece com a moda e a mediana.
- Já a mediana é difícil de ser obtida quando existem muitos dados, dado que o processo de ordenação é custoso.
- ▶ A dificuldade com a **moda** surge quando trabalha-se com **distribuições multimodais**, isto é diversos valores tem a mesma frequência de ocorrência.

### Média, mediana e moda

- ► A **média** tende a ser uma boa alternativa quando a distribuição é **unimodal, simétrica** e sem valores extremos.
- ► A mediana tende a ser uma boa alternativa para distribuições assimétricas ou com presença de valores extremos.
- ► A moda tende a ser uma boa alternativa quando valores se repetem, estão agrupados em classes ou trata-se de uma variável qualitativa.
- Média, moda e mediana aproximam-se em distribuições unimodais simétricas.

### Média, mediana, moda e assimetria

- ▶ Vimos anteriormente como avaliar assimetria por meio de recursos gráficos.
- Podemos utilizar as medidas de posição central
  - ► Assimetria à direita: moda < mediana < média.
  - ► **Assimetria à esquerda**: média < mediana < moda.
  - ► Simetria: média = mediana = moda.



Figura 4. Relação medidas descritivas e assimetria



## Medidas de posição relativa

- As medidas de posição relativa ou separatrizes buscam representar pontos do domínio em que a variável apresenta porções com frequências conhecidas.
- Visam encontrar valores que representam alguma parcela dos dados.

- Algumas possiblidades são
  - Quartis.
  - Decis.
  - Percentis.
  - Máximo.
  - Mínimo.

- Dividem a amostra em 4 partes de mesmo tamanho.
- ▶ A ideia para obtenção é similar à da **mediana**.
- ▶ Na verdade, a mediana é um dos quartis: o segundo.
- O primeiro e terceiro quartil s\u00e3o as medianas das duas partes divididas pela mediana (m\u00e9todo de Tukey).

- ▶ O **primeiro quartil**  $(Q_1)$  é o valor que marca 1/4 das observações, isto é, 25%.
- ▶ O **segundo quartil** ( $Q_2$ ) é o valor que marca 2/4 = 1/2 das observações, isto é, 50% (a mediana).
- ▶ O **terceiro quartil**  $(Q_3)$  é o valor que marca 3/4 das observações, isto é, 75%.
- A diferença entre primeiro e terceiro quartil é chamada de **amplitude interquartílica**  $(A/Q = Q_3 Q_1)$ .
- ► Estas quantidades são usadas para criação de um poderoso gráfico: o **box-plot**.

#### **Exemplo**

Considere os seguintes valores:

- ► Obtenha os quartis e a amplitude interquartílica.
- Passo 1: ordenar.

Tabela 5. Valores ordenados.

| Posição | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
|---------|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|
| Valor   |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |

#### **Exemplo**

- Passo 2: obter o segundo quartil (mediana).
  - Número de elementos: 15.
  - Posição do segundo quartil: 8.
  - ► Valor do segundo quartil: 6.
- Passo 3: obter a mediana dos valores da primeira parcela.
  - Número de elementos: 8 (da posição 1 até 8).
  - Posição da mediana da primeira parcela: 4,5.
  - ▶ Valor do segundo quartil: (4 + 4)/2 = 4.

- ► Passo 4: **obter a mediana dos valores da segunda parcela.** 
  - Número de elementos: 8 (da posição 8 até 15).
  - ► Posição da mediana da segunda parcela: 4,5.
  - ► Valor do segundo quartil: (11 + 11)/2 = 11.
- $Q_1 = 4$ ,  $Q_2 = 6$ ,  $Q_3 = 11$ .
- Amplitude interquartílica.

$$AIQ = Q_3 - Q_1 = 11 - 4 = 7$$

### Quartis e o Box-plot

- O box-plot faz uso dos quartis para obtenção de um gráfico.
- ► Com ele é possível analisar a distribuição dos dados: **posição**, **variabilidade**, **assimetria**, **valores atípicos** (outliers).



Figura 5. Ilustração box-plot completo.

### Quartis e o Box-plot

- ▶ O Box-plot é construído a partir de 5 pontos que resumem a distribuição dos dados observados: o limite inferior, o 1º quartil, a mediana, o 3º quartil e o limite superior.
- ▶ Os **limites inferior** e **superior** são utilizados para detectar observações que estão longe da massa central localizada entre o primeiro e o terceiro quartis.
- ► Entre o primeiro e terceiro quartil está a **mediana**. Não necessariamente a mediana estará no centro da caixa.



Figura 6. Ilustração box-plot completo.

### Quartis e o Box-plot

► A construção de um box-plot inicia-se com um retângulo em que a aresta inferior coincide com o **primeiro quartil** e a superior com o **terceiro quartil**.



Figura 7. Arestas de um box-plot.

- ▶ A **mediana** é representada por um traço entre as duas arestas.
- ▶ De  $Q_1$  até  $Q_3$  estão 50% das observações centrais, o que dá uma ideia a respeito de quão dispersos são os valores.



Figura 8. Arestas e mediana emum box-plot.

- ▶ Para obtenção da amplitude do box-plot além do retângulo faz-se [Q1 1,5AIQ; Q3 + 1,5AIQ].
- Desenha-se então uma linha até estes valores.
  - Se estes valores excedem o mínimo e o máximo da variável, então a linha para no mínimo e no máximo da variável.



Figura 9. Inclusão dos limites de um box-plot.

Valores além destes extremos são marcados como um ponto ou asterisco e são os candidatos a valores atípicos.



Figura 10. Box-plot completo.

- Os limitantes inferior e superior de um box-plot também são conhecidos como valores adjacentes ou também como mínimo e máximo típicos.
- ► Existem outras formas de obtenção de um box-plot, como por exemplo o box-plot em que não são calculados o mínimo e máximo típicos.
- Podem-se usar também outros quantis e outros pontos de corte, ou seja, existem outras formas para detectar pontos distantes da massa de dados.
- A interpretação do gráfico vai depender de como ele foi construído.
- Quanto mais observações, mais confiável será o box-plot.
- ► Contudo, quanto mais observações é natural que surjam mais pontos além dos limites do gráfico.

- Os pontos fora dos limites do box-plot costumam ser chamados de valores atípicos ou outliers.
- ► A definição exata de outlier é bastante **subjetiva** e vai além dos box-plots.
- Qualquer valor que seja muito distante dos outros valores em um conjunto de dados pode ser considerado outlier. Podemos usar o z-escore para verificar quais são os candidatos a outliers.
- Ser um outlier não torna um valor inválido ou errado, mas é um indicativo de um comportamento atípico (que pode ser causado por um erro de medida por exemplo).

# Quartis para dados agrupados

Para calcular os quartis quando os dados estão agrupados, considere:

- ▶ n é o número total de observações;
- ▶  $Q_i(i = 1,2,3)$  é o quartil que desejamos obter;
- $(i \cdot n/4)$  é a posição na qual se encontra o quartil  $Q_i$ ;
- ightharpoonup l é o limite inferior da classe que contem  $Q_i$ ;
- f é a frequência na classe que contem  $Q_i$ ;
- $\blacktriangleright$  h é a amplitude na classe que contem  $Q_i$ ;
- $ightharpoonup F_{ant}$  é a frequência acumulada até a classe anterior à que contem  $Q_i$ .

O quartil  $Q_i$  é obtido aplicando-se a seguinte formula:

$$Q_i = l + \frac{(i \cdot n/4 - F_{ant})}{f} \cdot h$$

#### Outras medidas

- ▶ O **mínimo** e o **máximo** também são medidas de posição relativa e fornecem informação quanto ao domínio da variável.
- Quartis são a forma mais famosa de particionamento dos dados, porém qualquer outro percentual pode ser obtido.
- ▶ Se temos um conjunto de n valores, organizados de forma crescente, o P-ésimo percentil é um número tal que P% dos valores estejam à sua esquerda e (100 P)% à sua direita.
- ▶ Por exemplo, se obtivermos os valores que separam a amostra em 10 partes com frequência 1/10, temos os decis.
- Estas separatrizes podem ser obtidas por meio do gráfico de frequências acumuladas.



- ► Em geral usamos uma **medida de posição central**, que nos dá uma ideia de centro dos dados.
- Mas conjuntos de dados com diferentes valores podem gerar as mesmas medidas de posição.
- ▶ E mesmo com medidas de posição idênticas, um pode ser **mais disperso** que o outro.
- Portanto complementamos a informação a respeito do centro com uma medida de dispersão, que nos dá uma noção de quão dispersos são os dados.

#### Considere os seguintes conjuntos de valores:

| 5 | 5 | 5   | 5     | 5       | 5         | 5           | 5             | 5               | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|---|---|-----|-------|---------|-----------|-------------|---------------|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |   |     |       |         | -         | 9           |               |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 5 | 4 | 4   | 5     | 6       | 5         | 4           | 6             | 5               | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|   | 1 |     |       |         |           | 100         |               |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0 | 5 | 9   | 0     | 5       | 11        | 10          | 5             | 5               | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|   | 5 | 5 4 | 5 4 4 | 5 4 4 5 | 5 4 4 5 6 | 5 4 4 5 6 5 | 5 4 4 5 6 5 4 | 5 4 4 5 6 5 4 6 | 5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5 |

- Os conjuntos apresentam valores distintos, mas as medidas de posição central (média, moda e mediana), são idênticas.
- Precisamos de formas de mensurar o quanto os valores variam.

- As medidas de dispersão são utilizadas para expressar informações como o domínio da variável, grau de dispersão ao redor do centro (variabilidade), e também distanciamento dos valores com relação ao centro.
- Estas medidas buscam mensurar o quanto os dados estão "compactados" ou "espalhados".
- Uma medida de dispersão não pode ser negativa: ela será zero, indicando que todos os dados são iguais, ou ela é positiva, indicando algum grau de variabilidade nos dados.

- As medidas de dispersão mais usadas são baseadas nas diferenças entre cada observação e uma medida de posição central, esta diferença é chamada de desvio.
- Um jeito de medir a variabilidade como um todo é encontrar um valor típico para os desvios, como uma média.
- Fazer isso com os desvios simples não é muito inteligente. Desvios negativos se anulam com os positivos e a soma dos desvios com relação a média sempre será o.
- Uma alternativa é calcular a média dos desvios absolutos ou quadráticos com relação a alguma medida de posição central.

- Algumas medidas possíveis são
  - ► Amplitude.
  - ▶ Desvio absluto médio ou mediano.
  - ► Variância.
  - Desvio padrão.
  - ► Coeficiente de variação.

# Amplitude

- ▶ Diferença entre o **maior** e o **menor** valor da variável.
- ► Sensível a valores extremos.
- ► Usa apenas duas medidas.

$$Amp = max(y) - min(y) = y(n) - y(1)$$

# Amplitude

#### **Exemplo**

▶ Retomando o problema das notas de 10 alunos, em que as notas obtidas foram:

60; 65; 77; 95; 56; 94; 97; 81; 80; 48

Y: Notas obtidas.

Amp = 97 - 48 = 49

- ► Tomamos todos os **desvios absolutos** com relação a alguma medida de posição central (média ou mediana).
- Calculamos a média destes desvios.
- Uma medida alternativa é o desvio absoluto mediano em que em vez de calcular a média dos desvios absolutos calculamos a mediana.

$$DAM_{M \in DIA} = \frac{1}{n} \sum_{i=1}^{n} |(y_i - \overline{y})|$$

$$DAM_{MEDIANA} = \frac{1}{n} \sum_{i=1}^{n} |(y_i - md)|$$

#### **Exemplo**

▶ Retomando o problema das notas de 10 alunos, em que as notas obtidas foram:

- A média é  $\overline{y} = 75,3$  e a mediana é md = 78,5.
- Obtenha o desvio absoluto médio com relação à média e à mediana.

#### Exemplo - desvio absoluto médio com relação à média

$$DAM = \frac{1}{10} \left( \left| (60 - 75,3) \right| + \left| (65 - 75,3) \right| \dots + \left| (80 - 75,3) \right| + \left| (48 - 75,3) \right| \right)$$

$$DAM = \frac{1}{10} \left( 15,3 + 10,3 \dots + 4,7 + 27,3 \right) = 14,44$$

#### Exemplo - desvio absoluto médio com relação à mediana

$$DAM = \frac{1}{10} \left( \left| (60 - 78,5) \right| + \left| (65 - 78,5) \right| \dots + \left| (80 - 78,5) \right| + \left| (48 - 78,5) \right| \right)$$

$$DAM = \frac{1}{10} \left( 18,5 + 13,5 \dots + 1,5 + 30,5 \right) = 14,1$$

#### Variância

► Em vez dos desvios, usa a **soma dos quadrados dos desvios** em relação à média.

$$s^{2} = Var(y) = \frac{1}{n-1} \sum_{i=1}^{n} (y_{i} - \overline{y})^{2} = \frac{1}{n-1} \left( \sum_{i=1}^{n} y_{i}^{2} - \frac{(\sum_{i=1}^{n} y_{i})^{2}}{n} \right)$$

- A variância populacional ( $\sigma^2$ ): usa apenas n no demominador e é usada quando temos todos os elementos da população. Caso contrário, calculamos sempre a estimativa amostral ( $s^2$ ).
- A justificativa teórica para isso está relacionada com **estimadores não viciados** e com a **distribuição amostral da média**, tópicos discutidos em inferência estatística.

# Desvio padrão

Para ter uma medida de dispersão com a mesma unidade de medida dos dados originais definiu-se o desvio padrão como a raiz quadrada da variância.

$$s = \sqrt{s^2}$$

A variância e o desvio padrão são invariantes com respeito a localização dos dados. Isso significa que, se somarmos ou subtrairmos uma constante em todos os valores, não alteramos a dispersão.

#### Lei de Chebyshev

- Independente da forma da distribuição dos dados e de sua variabilidade, conhecemos a proporção mínima dos valores contidos em intervalos simétricos em relação à média:
  - ▶ Pelo menos 3/4 (75%) dos valores estão no intervalo  $(\bar{y} 2s, \bar{y} + 2s)$ .
  - ▶ Pelo menos 8/9 (89%) dos valores estão no intervalo  $(\bar{y} 3s, \bar{y} + 3s)$ .
  - ▶ Pelos menos  $(1 1/k^2)$  dos dados estará no intervalo  $(\bar{y} ks, \bar{y} + ks)$ .

# Variância e desvio padrão

#### **Exemplo**

▶ Retomando o problema das notas de 10 alunos, em que as notas obtidas foram:

60; 65; 77; 95; 56; 94; 97; 81; 80; 48

- ► A média é  $\overline{y} = 75,3$ .
- ▶ Obtenha o variância e desvio padrão.

# Variância e desvio padrão

#### Exemplo

▶ Primeira maneira:

$$s^{2} = Var(y) = \frac{1}{10 - 1} \left( (60 - 75,3)^{2} + (65 - 75,3)^{2} + \dots + (80 - 75,3)^{2} + (48 - 75,3)^{2} \right)$$

$$s^{2} = Var(y) = \frac{1}{9} \left( (-15,3)^{2} + (-10,3)^{2} + \dots + (4,7)^{2} + (-27,3)^{2} \right)$$

$$s^{2} = Var(y) = \frac{1}{9} \left( 234,09 + 106,09 + \dots + 22,09 + 745,29 \right) = 302,68$$

 $s = \sqrt{s^2} = \sqrt{302,68} = 17,4$ 

# Variância e desvio padrão

#### **Exemplo**

► Segunda maneira:

$$s^{2} = \text{Var}(y) = \frac{1}{n-1} \left( \sum_{i=1}^{n} y_{i}^{2} - \frac{(\sum_{i=1}^{n} y_{i})^{2}}{n} \right)$$

$$s^{2} = \text{Var}(y) = \frac{1}{9} \left( 59425 - \frac{753^{2}}{10} \right) = \frac{1}{9} \left( 59425 - 56700.9 \right) = 302,68$$

$$s = \sqrt{s^{2}} = \sqrt{302,68} = 17.4$$

# Coeficiente de variação

- ► Medida de variabilidade relativa à média.
- Quociente do desvio-padrão pela média.
- ▶ **Medida adimensional**, geralmente apresentada na forma de porcentagem.
- ▶ Permite comparar a variabilidade de variáveis de diferentes naturezas

$$CV = 100 \cdot \frac{s}{y}$$

# Coeficiente de variação

#### **Exemplo**

▶ Retomando o problema das notas de 10 alunos, em que as notas obtidas foram:

- ▶ A média é  $\overline{y} = 75,3$  e o desvio padrão é s = 17,4.
- Obtenha o coeficiente de variação.

$$CV = 100 \cdot \frac{17,4}{75,3} = 23,11$$

#### z-escore

- O z-escore pode ser visto como uma medida de variabilidade individual que nos diz quantos desvios padrões determinada observação está distante da média dos dados.
- ► O z-escore é dado por:

$$z = \frac{y_i - \bar{y}}{s}$$

#### z-escore

#### **Exemplo**

▶ No problema das notas de 10 alunos, em que as notas obtidas foram:

60; 65; 77; 95; 56; 94; 97; 81; 80; 48

os z-escores para cada nota seriam:

-0.8794; -0.5920; 0.0977; 1.1323; -1.1093; 1.0749; 1.2473; 0.3276; 0.2702; -1.5692

# Dispersão para variáveis qualitativas

- ▶ Para variáveis qualitativas a **moda** é a única medida de posição que faz sentido.
- ▶ Como medida de dispersão, a ideia de **entropia** pode ser usada.
- ▶ Uma proposta, chamada de **índice de Shannon**, é dada por:

$$H = -\sum_{i=1}^{S} f_r ln(f_r)$$

- ▶ Em que S representa o número de categorias da variável e  $f_r$  representa a frequência relativa associada à categoria i.
- ▶ Quanto mais distante de 0 for o valor de *H*, mais heterogênea é a variável.

# Dispersão para variáveis qualitativas

Qual é o mais homogêneo? Qual é o mais heterogêneo?



|   | $f_{r1}$ | $f_{r2}$ | $f_{r3}$ | $f_{r4}$ | $f_{r5}$ |
|---|----------|----------|----------|----------|----------|
| Α | 0.96     | 0.01     | 0.01     | 0.01     | 0.01     |
| В | 0.10     | 0.10     | 0.60     | 0.10     | 0.10     |
| C | 0.10     | 0.30     | 0.10     | 0.20     | 0.30     |
| D | 0.20     | 0.20     | 0.20     | 0.20     | 0.20     |

# Dispersão para variáveis qualitativas

Qual é o mais homogêneo? Qual é o mais heterogêneo?



|   | $f_{r1}$ | $f_{r2}$ | $f_{r3}$ | $f_{r4}$ | $f_{r5}$ | Н     |
|---|----------|----------|----------|----------|----------|-------|
| A | 0.96     | 0.01     | 0.01     | 0.01     | 0.01     | 0.223 |
| В | 0.10     | 0.10     | 0.60     | 0.10     | 0.10     | 1.228 |
| C | 0.10     | 0.30     | 0.10     | 0.20     | 0.30     | 1.505 |
| D | 0.20     | 0.20     | 0.20     | 0.20     | 0.20     | 1.609 |

# Desvio, variância, desvio padrão, coeficiente de variação, entropia

- Amplitude, desvio absoluto médio, variância e desvio padrão são sensíveis a valores extremos. Variância e desvio padrão ainda mais por serem baseados nos desvios quadráticos.
- Variância e desvio padrão tem propriedades favoráveis.
- O desvio absoluto mediano da mediana é uma medida que não é influenciada, assim como variâncias e desvios padrões aparados.
- Quando a distribuição dos dados é simétrica estas medidas tendem a convergir.
- O coeficiente de variação permite comparar a variabilidade de variáveis em diferentes escalas.
- ▶ O **z-escore** pode ser usado como uma medida de **variabilidade individual**.
- Para variáveis qualitativas existem medidas específicas, como o índice de Shannon.

# Análise exploratória bivariada

# Análise exploratória bivariada

- Em alguns casos podemos estar interessados na análise de duas variáveis simultaneamente.
- O objetivo é investigar a relação de associação entre as variáveis.
- Tabelas, gráficos e coeficientes específicos para relação entre variáveis podem ser usados.

- ► Tal como nas análises univariadas, as escolhas dependem dos tipos das variáveis.
- Considerando variáveis aos pares, as combinações podem ser:
  - Qualitativa x qualitativa.
  - Quantitativa x quantitativa.
  - Quantitativa x qualitativa.

# Análise bivariada para variáveis qualitativas

#### Análise bivariada para variáveis qualitativas

- ► Neste tipo de situação avaliamos a **frequência** de observações para cada **combinação** de níveis das duas variáveis.
- Podem ser usadas tabelas de frequências cruzadas, também chamadas de tabelas de dupla entrada.
- ► Também é possível representar as frequências por meio de **recursos gráficos**.

- ► As **linhas** dizem respeito aos **níveis** de uma variável.
- ► As **colunas** aos **níveis** da outra variável.
- As células mostram as frequências (absolutas ou relativas).
- As tabelas de dupla entrada também são chamadas de distribuição conjunta.
- As margens mostram as frequências marginais (de apenas uma das duas variáveis), também chamada de distribuição marginal.
- No caso de frequências relativas podem ser usados o total geral ou os totais linha e coluna.

Tabela 11. Tabela de dupla entrada usando frequências absolutas.

|          | capital | interior | outro | Total |
|----------|---------|----------|-------|-------|
| casado   | 7       | 8        | 5     | 20    |
| solteiro | 4       | 4        | 8     | 16    |
| Total    | 11      | 12       | 13    | 36    |

Tabela 12. Tabela de dupla entrada usando frequências relativas.

|          | capital | interior | outro | Total |
|----------|---------|----------|-------|-------|
| casado   | 0.19    | 0.22     | 0.14  | 0.56  |
| solteiro | 0.11    | 0.11     | 0.22  | 0.44  |
| Total    | 0.31    | 0.33     | 0.36  | 1.00  |

Tabela 13. Tabela de dupla entrada usando frequências relativas aos totais linha.

|          | capital | interior | outro | Total |
|----------|---------|----------|-------|-------|
| casado   | 0.35    | 0.40     | 0.25  | 1     |
| solteiro | 0.25    | 0.25     | 0.50  | 1     |
| Total    | 0.31    | 0.33     | 0.36  | 1     |

Tabela 14. Tabela de dupla entrada usando frequências relativas aos totais coluna.

|          | capital | interior | outro | Total |
|----------|---------|----------|-------|-------|
| casado   | 0.64    | 0.67     | 0.38  | 0.56  |
| solteiro | 0.36    | 0.33     | 0.62  | 0.44  |
| Total    | 1.00    | 1.00     | 1.00  | 1.00  |

#### Análise bivariada para variáveis qualitativas

- As frequências cruzadas podem ser representadas por meio de gráficos.
- Variações de gráficos de barras são as opções mais comuns.
- As possibilidades podem usar as frequências absolutas, relativas e permitem comparar a composição das variáveis.

- Gráficos para frequência para duas variáveis qualitativas:
  - Gráficos de barras lado a lado.
  - Gráfico de barras empilhadas.
  - Gráficos de barras empilhadas relativo.

#### Gráficos de barras lado a lado



Figura 11. Gráfico de barras lado a lado.

#### Gráficos de barras lado a lado



Figura 12. Gráfico de barras lado a lado.

#### Gráficos de barras empilhadas



Figura 13. Gráfico de barras empilhadas.

#### Gráficos de barras empilhadas



Figura 14. Gráfico de barras empilhadas.

#### Gráficos de barras empilhadas relativo



Figura 15. Gráfico de barras empilhadas relativo.

#### Gráficos de barras empilhadas relativo



Figura 16. Gráfico de barras empilhadas relativo.

- ► Existem **medidas** que visam quantificar o **grau de associação** entre variáveis qualitativas.
- ▶ Uma dessas medidas é chamada de **Qui-quadrado**.
- ► Esta medida compara as **frequências observadas** em uma tabela de dupla entrada com as **frequências esperadas** caso não houvesse associação.
- ▶ Para obter a tabela de valores esperados basta, para cada casela, obter o produto entre o total da respectiva linha pelo total da respectiva coluna e dividir pelo total geral.

► O qui-quadrado é dado por:

$$Q = \sum_{i=1}^{r} \sum_{j=1}^{s} \frac{(o_{ij} - e_{ij})^{2}}{e_{ij}}$$

- Quanto mais próximo de o, menor a evidência de associação.
- ► Como o valor é irrestrito, existem variações desta quantidade que visam ter os limites definidos.

Tabela 15. Valores observados.

|          | capital | interior | outro | Total |
|----------|---------|----------|-------|-------|
| casado   | 7       | 8        | 5     | 20    |
| solteiro | 4       | 4        | 8     | 16    |
| Total    | 11      | 12       | 13    | 36    |

Tabela 16. Valores esperados.

|          | capital       | interior | outro | Total |
|----------|---------------|----------|-------|-------|
| casado   | 6.11          | 6.67     | 7.22  | 20    |
| solteiro | 4.89          | 5.33     | 5.78  | 16    |
| Total    | 11.00         | 12.00    | 13.00 | 36    |
|          | MATERIAL INC. | 199      |       |       |

#### Tabela 17. $\frac{(o-e)^2}{e}$ .

| 111111111111111111111111111111111111111 | capital | interior | outro |
|-----------------------------------------|---------|----------|-------|
| casado                                  | 0.13    | 0.27     | 0.68  |
| solteiro                                | 0.16    | 0.33     | 0.85  |
|                                         |         |          |       |

$$Q = \sum_{i=1}^{r} \sum_{j=1}^{s} \frac{(o_{ij} - e_{ij})^2}{e_{ij}} = 2,42$$

# Análise bivariada para variáveis quantitativas

#### Análise bivariada para variáveis quantitativas

- Buscamos identificar padrões e tendências na análise das duas variáveis.
  - ➤ A medida que os valores de uma variável aumentam, a outra reduz?
  - A medida que os valores de uma variável aumentam, a outra aumenta?
  - A medida que os valores de uma variável aumentam, a outra se mantém estável?

- As principais técnicas são o coeficiente de correlação e o diagrama de dispersão.
  - O coeficiente é uma métrica que avalia a associação linear entre um par de variáveis numéricas.
  - O diagrama é um gráfico de pares ordenados.

#### Coeficiente de correlação linear de Pearson

- Usado para determinar se existe relação linear entre variáveis quantitativas.
  - ► Assume valores entre -1 e 1.
  - Se o valor é maior o, então existe uma associação linear **positiva**.
  - Se o valor é menor que o, então existe uma associação linear negativa.
  - Se o valor é igual a o, então não existe uma associação linear.

#### CORRELAÇÃO NÃO IMPLICA EM CAUSALIDADE.

- O fato de existir uma correlação linear, seja positiva ou negativa, não implica que uma variável possui real influência nos desfechos da outra.
- Causalidade causa correlação, mas correlação não implica em causalidade.

## Covariância e correlação

▶ A covariância entre duas variáveis  $Y_1$  e  $Y_2$  é dada por:

$$Cov(y_1, y_2) = \frac{1}{n-1} \sum_{i=1}^{n} (y_{1i} - \overline{y}_1) \cdot (y_{2i} - \overline{y}_2).$$

► A partir da covariância podemos obter a correlação, que padroniza a medida pelas variâncias, fazendo com que, independente das variáveis, sempre seja um valor entre -1 e 1.

$$r = \frac{\sum_{i=1}^{n} (y_{1i} - \overline{y}_1) \cdot (y_{2i} - \overline{y}_2)}{\sqrt{\sum_{i=1}^{n} (y_{1i} - \overline{y}_1)^2} \cdot \sqrt{\sum_{i=1}^{n} (y_{2i} - \overline{y}_2)^2}} = \frac{\text{Cov}(y_1, y_2)}{\sqrt{V(y_1) \cdot V(y_2)}}.$$

## Outros tipos de correlação

- A correlação de Pearson não serve para descrever associações que não sejam lineares.
- Existem outros tipos de correlação que servem inclusive para variáveis de outros tipos.
- Alguns exemplos são:
  - Correlação de Spearman.
  - ► Correlação de Kendall.
  - ► Ponto-bisserial.

#### Diagrama de dispersão

- ▶ O diagrama de dispersão é a principal ferramenta para visualizar duas variáveis quantitativas.
- ► Em um eixo são representados os valores de uma variável.
- ▶ No outro eixo os valores de uma segunda variável.
- Os pares ordenados são representados por pontos.



Figura 17. Diagrama de dispersão para o salário em função da idade.

Idade

#### Interpretação gráfica



Figura 18. Avaliação de correlação usando diagramas de dispersão.

# Covariância, correlação e diagrama de dispersão

#### **Exemplo**

► Considere as variáveis peso  $(Y_1)$  e altura  $(Y_2)$  de um conjunto de 10 indivíduos.

$$Y_1: 60,09; 57,97; 54,12; 70,76; 59,74; 50,41; 58,19; 65,35; 71,18; 54,76$$

- $\overline{Y_1} = 60,26; \overline{Y_2} = 1,61.$
- $Var(Y_1) = 47.8$ ;  $Var(Y_2) = 0.006$ .
- ▶ Obtenha a covariância, coeficiente de correlação e o diagrama de dispersão.

# Covariância, correlação e diagrama de dispersão

#### **Exemplo**

$$Cov(y_1, y_2) = \frac{1}{10 - 1} \left\{ \left[ (60,09 - 60,26) \cdot (1,54 - 1,61) \right] + \dots + \left[ (57,76 - 60,26) \cdot (1,57 - 1,61) \right] \right\}$$

$$Cov(y_1, y_2) = 0.44$$

$$r = \frac{0,44}{\sqrt{47,8 \cdot 0,006}} = 0,82$$

# Covariância, correlação e diagrama de dispersão **Exemplo - digrama de dispersão**



Figura 19. Diagrama de dispersão para peso e altura.

# Covariância, correlação e diagrama de dispersão **Exemplo - digrama de dispersão**



Figura 20. Diagrama de dispersão para peso e altura com linha de tendência linear.



#### Análise bivariada para uma variável qualitativa e uma quantitativa

- ► Neste caso estamos interessados em avaliar se os valores da variável numérica estão associados com os níveis da variável categórica.
- ► Podemos usar **medidas descritivas** para os valores dentro de cada um dos níveis da variável categórica.
- Para representar graficamente esta situação podemos criar um **box-plot** da variável numérica para cada nível do fator de interesse.

#### Tabela de medidas descritivas para níveis de um fator

Tabela 18. Medidas descritivas do salário em função da região.

| Região   | Média | Mediana | Desvio padrão |
|----------|-------|---------|---------------|
| capital  | 11.46 | 9.77    | 5.48          |
| interior | 11.55 | 10.64   | 5.30          |
| outro    | 10.45 | 9.80    | 3.15          |

#### Box-plot para níveis de um fator



Figura 21. box-plots para o salário em função da região.



## Outros tipos de gráficos e análises

- Vimos as alternativas usuais para representação e análise de variáveis quantitativas e qualitativas.
- Contudo existem diversas situações particulares que exigem análises específicas.

- Algumas casos são: mapas, séries temporais, gráficos de perfil, nuvens de palavras.
- ► Também é possível trabalhar com gráficos que representam mais de duas variáveis ao mesmo tempo.
- Outra possibilidade é combinar gráficos.

#### O que foi visto:

- Resumos numéricos.
- Medidas de posição central.
- Medidas de posição relativa.
- Medidas de dispersão.
- Análises bivariadas.
  - Qualitativa x qualitativa.
  - Quantitativa x quantitativa.
  - Quantitativa x qualitativa.

#### **Próximos assuntos:**

- Revisando conceitos e extraindo informações de um conjunto de dados real com R.
- Considerações finais.