Физика формулы

1 Механика

1.
$$V = \frac{S}{t}$$
 - скорость

$$2. \;\; x = x_0 + V_{0x}t$$
 - уравнение движения

3.
$$\vec{V_a} = \vec{V_r} + \vec{V_e}$$
 - закон сложения скоростей

4.
$$V_{
m cp.} = rac{S_{
m \scriptscriptstyle BCS}}{t_{
m \scriptscriptstyle BECB}}$$
 - средняя скорость

5.
$$\vec{a} = rac{\vec{V} - \vec{V_0}}{t}$$
 - ускорение

6.
$$\vec{V} = \vec{V_0} + \vec{a}t$$
 - скорость при равноускоренном движении

7.
$$\vec{S} = \vec{V_0}t + \frac{\vec{a}t^2}{2}$$
 - путь

8.
$$x = x_0 + V_{0x}t + \frac{a_x t^2}{2}$$

9.
$$S_x = \frac{V_x^2 - V_{0x}^2}{2a_x}$$

10.
$$V_y = V_{0y} + g_y t$$

11.
$$S_y = V_{0y}t + \frac{g_y t^2}{2}$$

12.
$$y = y_0 + V_{0y}t + \frac{g_y t^2}{2}$$

13.
$$S_y = \frac{V_y^2 - V_{0y}^2}{2}$$

14.
$$V = \frac{V_0 + V}{2}$$
 - при равноускоренном движении

15.
$$a = \frac{V^2}{R} = \omega^2 R = \omega V$$
 - центростремительное ускорение

16.
$$V = \frac{2\pi R}{T} = 2\pi R \nu$$
 - линейная скорость при движении по окружности

17.
$$\nu = n = \frac{1}{T}$$
 - частота

18.
$$T = \frac{t}{T}$$
 - период

19.
$$\nu = \frac{N}{T}$$

20.
$$\frac{V_1}{V_2} = \frac{R_1}{R_2}$$
, $\omega_1 = \omega_2$ - отношение линейных скоростей двух тел к их расстоянию от оси вращения

21.
$$T = \frac{t}{N}; \ \nu = \frac{N}{t}; \ T = \frac{1}{\nu}$$
 - колебания

22.
$$\omega=2\pi \nu=rac{2\pi}{T}$$
 - угловая скорость

$$23.\ V=\omega R$$
 - линейная скорость

24.
$$a_{x_{max}} = \omega^2 x_{max}$$
 - максимальное линейное ускорение

25.
$$V_{x_{max}} = \omega x_{max}$$
 - максимальная линейная скорость

$$26. \ F = mg$$
 - сила тяжести

27.
$$F = kx$$
 - сила упругости

28.
$$F = \mu N$$
 - сила реакции опоры

29.
$$F = \rho g V$$
 - сила Архимеда для погруженной части тела

$$30.~~P=|ec{N}|;~P=|ec{T}|$$
 - вес тела

31. если
$$\vec{R}=0$$
, то $V=const$ - I закон Ньютона

32.
$$\vec{F}=m\vec{a}$$
 - II закон Ньютона

33.
$$\vec{F}_{12} = -\vec{F}_{21}$$
 - III закон Ньютона

$$34. \ F = G rac{m_1 m_2}{R^2}$$
 - закон всемирного тяготения

35.
$$g = G \frac{M}{(R+h)^2}$$
 - ускорение свободного падения

36.
$$V = \sqrt{gR}$$
 - 1 космическая скорость

$$37.$$
 $\vec{p}=m\vec{V}$ - импульс тела

38.
$$\vec{F}t = \Delta \vec{p}$$
 - изменение импульса

39.
$$\Delta \vec{p} = m\vec{V} - m\vec{V_0}$$

40.
$$m_1\vec{V_1} + m_2\vec{V_2} = m_1\vec{V_1}' + m_2\vec{V_2}'$$

41.
$$A = FS \cos \alpha$$
 - работа силы

42.
$$E_{\rm k} = \frac{mV^2}{2}$$
 - кинетическая энергия

43.
$$E_{\pi} = mgh$$
 - потенциальная энергия

44.
$$E_{\text{п}} = \frac{kx^2}{2}$$
 - потенциальная энергия упругого тела

45.
$$E_{\mathbf{k}_1} + E_{\mathbf{n}_1} = E_{\mathbf{k}_2} + E_{\mathbf{n}_2}$$
 - закон сохранения энергии

46.
$$A = E_{\kappa_2} - E_{\kappa_1}$$
 - теорема о кинетической энергии

47.
$$A = -(E_{\pi_2} - E_{\pi_1})$$
 - теорема о потенциальной энергии

48.
$$N = \frac{A}{t}$$
 - мощность

49.
$$N = FV \cos \alpha$$

$$50.\,\,M=Fl$$
 - момент силы

51.
$$\sum_{i=1}^{N} M_i = 0$$
 - условие равновесия через математическую сумму моментов

52.
$$\sum_{i=1}^{N} \vec{F}_{i} = 0$$
 - условие равновесия через геометрическую сумму сил

$$53. \ p = rac{F}{S}$$
 - давление

54.
$$p = \rho g h$$
 - давление столба жидкости

$$55. \ \frac{F_1}{F_2} = \frac{l_2}{l_1}$$
 - рычаг

$$56. \ rac{F_1}{F_2} = rac{S_1}{S_2}$$
 - гидравлический пресс

57.
$$x=x_m\cos\omega t$$
 - гармонические колебания

58.
$$V = x' = -x_m \omega \sin \omega t$$

59.
$$a = V' = x'' = -x_m \omega^2 \cos \omega t$$

$$60. \ m=
ho V$$
 - масса тела

$$61. \ \sum_{i=1}^{N} ec{F}_i = ec{R}$$
 - равнодействующая сила

62.
$$T=2\pi\sqrt{rac{l}{g}}$$
 - математический маятник

63.
$$T=2\pi\sqrt{\frac{m}{k}}$$
 - пружинный маятник

64.
$$\omega_{\scriptscriptstyle \mathrm{M.M.}} = \sqrt{\frac{g}{l}}$$

65.
$$\omega_{\text{\tiny \Pi.M.}} = \sqrt{\frac{k}{m}}$$

2 Молекулярная физика, Термодинамика

1.
$$m = \rho V$$
 - масса тела

2.
$$m = m_0 N$$

$$3. \ m_0 = rac{M}{N_A} = rac{
ho}{n}$$
 - масса молекулы вещества

4.
$$\nu=rac{m}{M}=rac{N}{N_A}$$
 - количество вещества

$$5.~p=rac{1}{3}m_0nar{V}^2$$
 - давление

6.
$$p = \frac{1}{3}\rho \bar{V}^2$$

7.
$$p = \frac{2}{3}n\bar{E}$$

8.
$$p = nkT$$

9.
$$ar{E} = rac{m_0 ar{V}^2}{2}$$
 - средняя кинетическая энергия молекулы

$$10. \ \bar{E} = \frac{3}{2}kT$$

11.
$$N_A = 6,022 \cdot 10^{23} \ [\mathrm{моль}^{-1}]$$
 - число Авогадро

12.
$$k=1,38\cdot 10^{-23}~[\mbox{Дж}\cdot\mbox{K}^{-1}]$$
 - постоянная Больцмана

13.
$$R=N_A k=8,31$$
 - универсальная газовая постоянная

14.
$$T = t_0 + 243 \ [K]$$
 - связь между градусной шкалой
 Цельсия и абсолютной шкалой

15.
$$pV = \frac{m}{M}RT$$
 - уравнение Менделеева-Клапейрона

16.
$$\frac{p_1 V_1}{T_1} = \frac{p_2 V_2}{T_2}$$
 - уравнение Клапейрона

17.
$$\frac{p_1}{p_2} = \frac{V_2}{V_1}, \ T = cosnt$$
 - закон Бойля-Мариотта

18.
$$\frac{p_1}{p_2} = \frac{T_1}{T_2}, \ V = cosnt$$
 - закон Шарля

19.
$$\frac{T_1}{T_2}=\frac{V_1}{V_2},\;p=cosnt$$
 - закон Гей-Люссака

20.
$$\sum_{i=1}^{N} p_i = p$$
 - закон Дальтона

21.
$$A=p\Delta V$$
 - работа

$$\Delta U = \frac{3}{2} \nu R \Delta T$$
 - одноатомный газ

23.
$$\Delta U = \frac{5}{2} \nu R \Delta T$$
 -двухатомный газ

24.
$$Q = \Delta U + A$$
 - первое начало термодинамики

$$25.$$
 $A=-A'$ - равенство работ

26.
$$\Delta U = Q + A'$$
 - изменение внутренней энергии газа

27.
$$C = cm$$
 - теплоемкость

28.
$$Q=cm\Delta t$$
 - количество теплоты при нагревании

29.
$$Q = \lambda m$$
 - количество теплоты при плавлении

30.
$$Q = qm$$
 - количество теплоты при сжигании топлива

31.
$$Q = Lm$$
 - количество теплоты при испарении/кристаллизации

32.
$$\sum_{i=1}^{N} Q_{i} = 0$$
 - уравнение теплового баланса

33.
$$Q_{\text{отд}} = Q_{\text{пол}}$$

34.
$$\eta = \frac{Q_{\text{полученное}}}{Q_{\text{полученное}}} \cdot 100\% = \frac{A}{Q_{\text{полученное}}} \cdot 100\%$$
 - КПД

35.
$$\eta = \frac{T_{\rm H}-T_{\rm X}}{T_{\rm H}}\cdot 100\% = \frac{Q_{\rm H}-Q_{\rm X}}{Q_{\rm H}}\cdot 100\%$$
 - КПД тепловой машины

36.
$$V = \sqrt{\frac{3kT}{m_0}}$$
 - средняя квадратичная скорость молекулы

37.
$$\varphi = \frac{p}{p_{\text{н.п.}}} \cdot 100\% = \frac{\rho}{\rho_{\text{н.п.}}} \cdot 100\%$$
 - относительная влажность

3 Электричество

1.
$$q = Ne$$
 - заряд

$$2.~F=krac{q_1q_2}{arepsilon R^2}$$
 - сила Кулона

3.
$$k = \frac{1}{4\pi\varepsilon_0}$$

$$4.~ec{E}=rac{ec{F}}{q}$$
 - напряженность

5.
$$E = k \frac{q}{\varepsilon r}$$

6.
$$W=krac{q_1q_2}{arepsilon r}$$
 - электрическая энергия

7.
$$\varphi = \frac{W}{a}$$
 - потенциал

8.
$$\varphi = Er$$

9.
$$\varphi = k \frac{q}{\varepsilon r}$$

10.
$$U=arphi_2-arphi_1=\Delta U$$
 - разность потенциалов

11.
$$U = \frac{A}{a}$$
 - напряжение

12.
$$A = q(\varphi_2 - \varphi_1) = qU$$

13.
$$E = \frac{U}{d}$$

14.
$$\sum_{i=1}^{N} \vec{E}_i = \vec{E}$$

15.
$$\sum_{i=1}^{N} \varphi_i = \varphi$$

16.
$$\varepsilon = \frac{E_{\text{вакуум}}}{E}$$

17.
$$C = \frac{q}{\varphi}; \, C = \frac{q}{U}$$
 - ёмкость конденсатора

18.
$$C = \frac{\varepsilon_0 \varepsilon S}{d}$$

19.
$$W = \frac{qU}{2} = \frac{CU^2}{2} = \frac{q^2}{2C}$$

$$20.\,\,\,I=rac{q}{t}$$
 - сила тока

21.
$$I = neVS$$

22.
$$j = \frac{I}{S}$$
 - плотность тока

23.
$$I=\frac{U}{R}$$
 - Закон Ома

24.
$$R = \rho \frac{l}{S}$$

25. последовательное соединение

•
$$I_1 = I_2 = \ldots = I_n$$

$$\bullet \ U = U_1 + U_2 + \ldots + U_n$$

$$\bullet \ R = R_1 + R_2 + \ldots + R_n$$

•
$$L = L_1 + L_2 + \ldots + L_n$$

•
$$\frac{1}{C} = \frac{1}{C_1} + \frac{1}{C_2} + \dots + \frac{1}{C_n}$$

26. параллельное соединение

$$\bullet \ U_1 = U_2 = \ldots = U_n$$

•
$$I = I_1 + I_2 + \ldots + I_n$$

•
$$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \ldots + \frac{1}{R_n}$$

•
$$\frac{1}{L} = \frac{1}{L_1} + \frac{1}{L_2} + \ldots + \frac{1}{L_n}$$

•
$$C = C_1 + C_2 + \ldots + C_n$$

27.
$$I = \frac{\varepsilon}{R+r}$$

28.
$$\varepsilon = U_B + U_r$$
 - ЭДС

29.
$$I=rac{arepsilon}{r}$$
 - ток короткого замыкания

30.
$$\varepsilon = \frac{Ac}{a}$$

31.
$$A=UIt=\dfrac{U^2t}{R}=I^2Rt$$
 - работа силы тока

32.
$$Q = I^2 Rt$$
 - закон Джоуля-Ленца

33.
$$\eta = \frac{U}{\varepsilon} \cdot 100\%$$
 - КПД источника

34.
$$P = UI = I^2R = \frac{U^2}{R}$$
 - мощность

35.
$$m = kIt$$

36.
$$\varepsilon = IR + I_2$$

4 Магнетизм

- 1. $B = \frac{F_{max}}{Il}$ магнитная индукция
- 2. $F_A = BIl \sin \alpha$
- 3. $F_A = qVB\sin\alpha$
- 4. $\Phi = BS \cos \alpha$
- 5. $\varepsilon_i = -\frac{\Delta\Phi}{\Delta t}N$
- 6. $\varepsilon_i = BVl\sin\alpha$
- 7. $\varepsilon_{iS} = -L \frac{\Delta I}{\Delta t}$
- 8. $\Phi = LI$
- 9. $W = \frac{LI^2}{2}$

5 Электромагнитные колебания и волны

- $1. \ \lambda = \frac{V}{\nu} = VT$
- $2. \ T = 2\pi \sqrt{LC}$
- $3. \ X_C = \frac{1}{\omega C}$
- 4. $X_L = \omega L$
- 5. $U = \frac{U_m}{\sqrt{2}}; I = \frac{U_m}{\sqrt{2}}$
- 6. $\omega = \frac{1}{\sqrt{LC}}$
- 7. $k = \frac{U_1}{U_2} = \frac{N_1}{N_2} = \frac{I_2}{I_1}$

6 Оптика

- 1. $n = \frac{V_1}{V_2} = \frac{n_2}{n_1}$ коэффициент преломления
- 2. $\angle \alpha = \angle \beta$ угол падения равен углу отражения
- $3. \ \frac{\sin \alpha}{\sin \beta} = \frac{n_2}{n_1} = n$
- 4. $n_1 = \frac{c}{V_1}$; $n_2 = \frac{c}{V_2}$
- 5. $\pm \frac{1}{F} = \pm \frac{1}{d} \pm \frac{1}{f}$ формула тонкой линзы
- 6. $D = \frac{1}{F}$ диоптрийная сила
- 7. $\Gamma = \frac{H}{h} = \frac{f}{d}$ линейное увеличение
- 8. $D = D_1 + D_2$
- 9. $\Gamma = \Gamma_1 \cdot \Gamma_2$

10.
$$n = \frac{V_1}{V_2} = \frac{\lambda_1}{\lambda_2}$$

- 11. $k\lambda = \Delta d$ условие максимума
- 12. $(2k+1)\lambda = \Delta d$ условие минимума
- 13. $k\lambda = d\sin\varphi$
- 14. $d = \frac{l}{N}$

7 Квантовая и ядерная физика

- 1. $E = h\nu = \frac{hc}{\lambda}$
- 2. $h\nu = A_{\text{вых.}} + E_k$ уравнение Эйнштейна для фотоэффекта
- 3. $A = h\nu_{\text{kp.}} = \frac{hc}{\lambda_{\text{kp.}}}$
- 4. $E\left({}_{Z}^{A}X\right) = 931(Z\cdot m_{p} + (A-Z)\cdot m_{n} + M)$ энергия связи
- 5. $\varepsilon = \frac{E}{A}$
- 6. $N=N_0\cdot 2^{-\frac{t}{T}}$ закон распада
- 7. $m = m_0 \cdot 2^{-\frac{t}{T}}$
- 8. $_Z^{A}X
 ightarrow _{Z-2}^{A-4}Y + _2^4He$ lpha-распад
- 9. $_{Z}^{A}X$ ightarrow $_{Z+1}^{A}Y+$ $_{-1}^{0}e$ eta-распад
- 10. $E = mc^2$

8 CTO

- 1. $E = mc^2$
- 2. $V = \frac{V_0 + V_1}{1 + \frac{V_0 V_1}{c^2}}$
- 3. $t = \frac{t_0}{\sqrt{1 \frac{V^2}{c^2}}}$
- 4. $l = l_0 \sqrt{1 \frac{V^2}{c^2}}$
- $5. \ p = \frac{EV}{c^2}$