

CNN Architectures

CNN Architectures

- VGG
- GoogLeNet
- ResNet

Review: LeNet-5

[LeCun et al., 1998]

Conv filters were 5x5, applied at stride 1 Subsampling (Pooling) layers were 2x2 applied at stride 2 i.e. architecture is [CONV-POOL-CONV-POOL-FC-FC]

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

Figure copyright Kaiming He, 2016. Reproduced with permission.

Small filters, Deeper networks

8 layers (AlexNet) -> 16 - 19 layers (VGG16Net)

Only 3x3 CONV stride 1, pad 1 and 2x2 MAX POOL stride 2

Softmax	
FC 1000	
FC 4096	
FC 4096	
Pool	
3x3 conv, 256	
3x3 conv, 384	
Pool	
3x3 conv, 384	
Pool	
5x5 conv, 256	
11x11 conv, 96	
Input	

AlexNet

Softmax	
FC 1000	
FC 4096	
FC 4096	
Pool	
3x3 conv, 512	
3x3 conv, 512	
3x3 conv, 512	
Pool	
3x3 conv, 512	
3x3 conv, 512	
3x3 conv, 512	
Pool	
3x3 conv, 256	
3x3 conv, 256	
3x3 conv, 256	
Pool	
3x3 conv, 128	
3x3 conv, 128	
Pool	
3x3 conv, 64	
3x3 conv, 64	
Input	

Softmax FC 1000 FC 4096 FC 4096 Pool Pool Pool 3x3 conv, 256 Pool Pool 3x3 conv, 64 3x3 conv, 64 Input

VGG16

VGG19

Large Filters vs Small Filters

Large Filters vs Small Filters

Q: Why use smaller filters? (3x3 conv)

Stack of three 3x3 conv (stride 1) layers has same effective receptive field as one 7x7 conv layer

And fewer parameters: 3 * (3²C²) vs. 7²C² for C channels per layer

But deeper, more non-linearities

Softmax	
FC 1000	
FC 4096	
FC 4096	
Pool	
3x3 conv, 256	
3x3 conv, 384	
Pool	
3x3 conv, 384	
Pool	
5x5 conv, 256	
11x11 conv, 96	
Input	

Softmax	
FC 1000	
FC 4096	
FC 4096	
Pool	
3x3 conv, 512	
3x3 conv, 512	
3x3 conv, 512	
Pool	
3x3 conv, 512	
3x3 conv, 512	
3x3 conv, 512	
Pool	
3x3 conv, 256	
3x3 conv, 256	
3x3 conv, 256	
Pool	
3x3 conv, 128	
3x3 conv, 128	
Pool	
3x3 conv, 64	
3x3 conv, 64	
Input	

Softmax FC 1000 FC 4096 FC 4096 Pool Pool Pool Pool 3x3 conv, 64 3x3 conv, 64 Input

VGG16

VGG19


```
INPUT: [224x224x3] memory: 224*224*3=150K params: 0
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*3)*64 = 1,728
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*64)*64 = 36,864
POOL2: [112x112x64] memory: 112*112*64=800K params: 0
                                                                                                     Softmax
CONV3-128: [112x112x128] memory: 112*112*128=1.6M
                                                       params: (3*3*64)*128 = 73,728
                                                                                                    FC 1000
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*128)*128 = 147,456
                                                                                                    FC 4096
POOL2: [56x56x128] memory: 56*56*128=400K params: 0
                                                                                                    FC 4096
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*128)*256 = 294,912 C
                                                                                                     Pool
ONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824 CO
                                                                                                   3x3 conv, 512
NV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824
POOL2: [28x28x256] memory: 28*28*256=200K params: 0
                                                                                                     Pool
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*256)*512 = 1,179,648 C
ONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296 CO
                                                                                                   3x3 conv, 512
NV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296
                                                                                                   3x3 conv. 512
POOL2: [14x14x512] memory: 14*14*512=100K params: 0
                                                                                                     Pool
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296 C
                                                                                                   3x3 conv, 256
ONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512=2,359,296 CO
NV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
                                                                                                     Pool
POOL2: [7x7x512] memory: 7*7*512=25K params: 0
                                                                                                   3x3 conv, 128
FC: [1x1x4096] memory: 4096 params: 7*7*512*4096 = 102,760,448 F
                                                                                                   3x3 conv, 128
C: [1x1x4096] memory: 4096 params: 4096*4096 = 16,777,216
                                                                                                     Pool
FC: [1x1x1000] memory: 1000 params: 4096*1000 = 4,096,000
                                                                                                   3x3 conv, 64
                                                                                                   3x3 conv, 64
TOTAL memory: 24M * 4 bytes ~= 96MB / image (only forward! ~*2 for bwd)
                                                                                                     Input
TOTAL params: 138M parameters
                                                                                                   VGG16
```

(not counting biases)

Too many parameters. Especially in FC layers FC 1000 FC 4096 FC 4096 Pool 3x3 conv, 512 Pool 3x3 conv, 512 3x3 conv, 512 Pool Flatten 3x3 conv, 256 3x3 conv, 256 3x3 conv, 256 Pool 3x3 conv, 128 3x3 conv, 128 Pool 3x3 conv, 64 3x3 conv, 64 Input

VGG16

Summary:

- Only 3x3 filters
- **Deeper Structure**
- Huge # of parameters

Softmax FC 1000 FC 4096 FC 4096 Pool 3x3 conv, 256 3x3 conv, 384 Pool Pool 11x11 conv, 96 Input

AlexNet

FC 1000 FC 4096 FC 4096 Pool Pool Pool 3x3 conv, 256 3x3 conv, 256 Pool Pool 3x3 conv. 64 Input

Softmax

Softmax FC 1000 FC 4096 FC 4096 Pool 3x3 conv, 512 3x3 conv, 512 3x3 conv, 512 Pool 3x3 conv, 512 3x3 conv, 512 Pool 3x3 conv, 256 3x3 conv, 256 3x3 conv, 256 3x3 conv, 256 Pool 3x3 conv, 128 3x3 conv, 128 Pool 3x3 conv, 64 3x3 conv, 64 Input

VGG16

VGG19

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

Figure copyright Kaiming He, 2016. Reproduced with permission.

GoogLeNet

GoogLeNet

Naive Inception module

Inception module with dimension reduction

Naive Inception module

GoogLeNet: Convolution with 1x1 Convolution

GoogLeNet: Convolution with 1x1 Convolution

3x3 max pooling, stride=1

Inception module with dimension reduction

Feature map

Enhanced feature map

1x1 Convolution

Example:

Naive Inception module

Q: What is the problem with this? [Hint: Computational complexity]

Conv Ops:

[1x1 conv, 128] 28x28x128x1x1x256 [3x3 conv, 192] 28x28x192x3x3x256 [5x5 conv, 96] 28x28x96x5x5x256

Total: 854M ops

Very expensive compute

Conv Ops:

[1x1 conv, 64] 28x28x64x1x1x256 [1x1 conv, 64] 28x28x64x1x1x256 [1x1 conv, 128] 28x28x128x1x1x256 [3x3 conv, 192] 28x28x192x3x3x64 [5x5 conv, 96] 28x28x96x5x5x64 [1x1 conv, 64] 28x28x64x1x1x256

Total: 358M ops

Inception module with dimension reduction

GoogLeNet: FC Layers

GoogLeNet: FC Layers

GoogLeNet

Deeper networks, with computational efficiency

- 22 layers
- Efficient "Inception" module
- No FC layers
- Only 5 million parameters!12x less than AlexNet
- ILSVRC'14 classification winner (6.7% top 5 error)

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

Figure copyright Kaiming He, 2016. Reproduced with permission.

What happens with deeper networks?

56-layer model performs worse on both training and test error -> The deeper model performs worse, but it's not caused by overfitting!

X	Y
1	0.9
2	2.1
3	3.0
4	4.2

Х	Υ	Y-X
1	0.9	-0.1
2	2.1	0.1
3		0.0
4	4.2	0.2

Х	Y	
1	0.9	-0.1
2	2.1	0.1
3	3.0	
4	4.2	0.2

X	Υ
1	0.9
2	2.1
3	3.0
4	4.2

Very deep networks using residual connections

- Stack residual blocks
- Every residual block has two 3x3 conv layers
- Periodically, double # of filters and downsample spatially using stride 2
- Additional conv layer at the beginning
- Global average pooling layer after last conv. layer

Case Study: ResNet

[He et al., 2015]

Training ResNet in practice:

- Batch Normalization after every CONV layer
- Xavier/2 initialization from He et al.
- SGD + Momentum (0.9)
- Learning rate: 0.1, divided by 10 when validation error plateaus
- Mini-batch size 256
- Weight decay of 1e-5
- No dropout used

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

Figure copyright Kaiming He, 2016. Reproduced with permission.

Comparing complexity...

An Analysis of Deep Neural Network Models for Practical Applications, 2017.

