PARSHWANATH CHARITABLE TRUST'S

A.P. SHAH INSTITUTE OF TECHNOLOGY

Department of Computer Science and Engineering
Data Science

Semester :	Subject :	Academic Year: 20 - 20
	Hidden Markov Ha	tal (HMM)
		O O Doo
y 18th ane	of the most popular	model for
_ Requestion	land temporal date	
no déscrete	time selles delta =	temporal data
-7 .		
	ed in many AI, ML Q	O .
by It's wid	to compute the probable that can be obse	aility & distribution
Of event	that can be obse	erved
- 0		
-> Marko	v Process	
	chain	
	Property	
* Harkey	Process:-	
3 H ig 0		which the diskibution
of events	is based on the per	esent state / present
	without knowing &	how the present
4.4	has arrived.	
Jardon	nly changing system	
	<u> </u>	t state
U		

Department of Computer Science and Engineering Data Science

x3 depends on x2 22 arrived from any other state/event which does not matter here.

tti dependi on t event

S = { x1, 22, 23 } State space / Set of States N distinct state, N=3

Frent/ System / state

Weather Survey S
Rainy R
Cloudy C

Today is surry, tomorrow it can be If it is rainy, then next is doudy then cloudy state depured only on rainy state, & not any other state.

Subject Incharge:

Department of CSE-Data Science | APSIT

Department of Computer Science and Engineering Data Science

Semester : Subject :	Academic Year: 20 - 20
B one wants to pudict	that customed will been
cided mobile product as	next one, then
Customed Nokia	
product Samong	
Iphone	
80,	
If amently the person is	having famoung
model, which he will I	buy as next one either
typhone, Notion of of Sa	ning only
Typione, Notro or of Sar They is an example of	Markov model.
Johanh playing	with foll events,
Infant Eating	I be baby is currently
Sleeping	eating, what will be
Cytrs.	the probability that next
aging.	helphe will be deeping /
	cryons (playing!
Tourt Acity of City visit Boily	
city visit	Probability of virit
Baty	to cities Aon 3 of
Caity	C

Subject Incharge:

Page No.

Department of CSE-Data Science | APSIT

Department of Computer Science and Engineering Data Science

Same mull Lose

3 Ponibiliti cities los / diaw/

If I have following states revents

Sequence of events that are independent from, not continuous, discrete.

P(94+11) depunds on P(x+)

Conditional plobability.

P(x+) depends on P(x+-1) P(x+) = -1

· Paj = P(x+=) | x+-1=9)

P(x++1)=

P(xttl xt)

This is called marker Property Any chain, following Markov property, that dais

is called Markov Chain .

Page No. Subject Incharge:

Department of CSE-Data Science | APSIT

Department of Computer Science and Engineering **Data Science**

Semester : Subject : Academic Year: 20 - 20
Let Exo, x, x2, y be a sequence of discrete surdomn variable, than Exo, x, x2, I is a Markov chain if it Suttifies the Markov property which is
Suttifies the Markov property which is $P(X_{tel} = S \mid xt = St_{(X_0 = S_0)})$
$= P(x_{t+1} = S \mid X_t = St)$
Thus is called First Older Markov Model
X++1 depends on Immediate X+
Second order MM.
the xx depends on xx 1 &xx - 2
P(Xt 2t-1, Xt-2) 2ndarder
P(x+1-,-,-)

Department of Computer Science and Engineering

Data Science

Example

Weather

3 event: - Sunny, Rainy, Cloudy.

824

0.8+0.15+-

1) This is called "It ale Transition Diagram"

(3 Initial State Distribution (Probability)

$$P(+_1,...+_n) = T_{p-1}^n P(+_p | +_{p-1}^n)$$

Department of Computer Science and Engineering Data Science

	subject :		Academic Year: 20 - 20
	-> Ferture	State	>
	S	R	C
S	0-8	0.18	0:05
R	0-38	0-6	0.02
C	0.75	0.05	0 2
State Each value	~ Transition → is called	Mateix " .	of Marko V chain probability.
	Pog = P(xf==		
Each rou) = 1		
N state	⇒ NXN	Makix Her	e 3 x 3 mateix fa
	ate.		

Department of Computer Science and Engineering

Given that today the weather is surry (5), corat is the probability that tonours is Surry (& day after is Rainy ().

+, - S (Today is Sunny), +2= S, +3=R

(Side Right - fature)

P(t3=R, t2=S | t1=S) = P(t3=R | t2=S) x P(t2=S | t1=S)

= 0.15 × 0.8

= 0.120

= 12% probability to fulfil the question.

PARSHWANATH CHARITABLE TRUST'S

A.P. SHAH INSTITUTE OF TECHNOLOGY Department of Computer Science and Engineering Data Science

Semester :	Subject:	Academic Year: 20 - 20
g. Giver & yester probabili Sun	that today the wooday was Painy (P) ity that tomorrow my (8) ?	
		43 = S
	t2=C, +1=R)	
	+3=S +2=C) × P	(t2=c t1=R)
= 0)-75 × 0-02	
= 0	0150	

Department of Computer Science and Engineering

what is probability of given societ

के बिहारी व (Riobability that this sequence would follow)

= P(s) x P(RIS) x P(RIR) x P(RIR) x P(CIR) x P(CIR)

= 0.7 × 0.15 × 0.6 × 0.6 × 0.02 × 0.2

= 0.0001512