project title:

Quantum computering-The future of computing education

Team Name:

Smart Coockies

Team Members:

- M.Hansika
- M.Varnika
- M.Keerthi
- R.Sreeja
- R.Rushitha

Phase-1:

objective:

introduce quantum computing, its key principle, and why it's different from classical computing

key points: problem statement:

Classical computers struggle to efficiently solve complex computational problems .Particularly in the areas like cryptograhy,optimization and large-scale simulations.As data and compulational this feild progress in critical field such as artificial intelligence,cybersecurity

Purposed solution:

 Quantum computing offers a revolutionary shift by leveraging the principles of quantum mechanics, such as superposition and entanglement, to perform complex calculations exponentially faster than classical systems.

Targeted users:

- Students and Educators
- Industry Professionals and Developers
- Pharmaceutical Researchers
- Oncologists and Cancer Researchers
- Neuroscientists and Brain Researchers

PHASE 2: REQUIREMENT ANALYSIS

Objective:

 It evaluates the unlocking computational dimensions, beyond, binary thinking, optimization of hospital operations, quantum machine learning for health care

1. Technical requirements:

Programming language: Python

Backened: Visual studio

Fronttened:

 Database: Not required initially (APIbasred queries)

2.Functional requirements:

- Quantum stimulation tools: Provides virtual quantum computing environments for students and researchers
- Medical & Health care: Quantum chemistry stimulations, Protien folding analysis, Optimization in treatment plans.
- Future innovations: Quantum cryptography, Quantum internet, Spce exploration.
- Software development: Quantum software frameworks, Hybrid quantum classical computing, error mitigation correction, debugging and stimulation tools.

Manufacturing & Logistics:

Quantum Optimization Algorithms, Route Optimization, Portfolio Optimization, Fraud detection, Market Forecasting, Secure Transactions.t

Phase-3: Project Design

Objective:

Develop the architecture and user flow of the quantum computing application.

Key points:

1. System Architecture:

- Quantum Machine learning (QML): Uses hybrid quantum classical models to enhance predictive analytics.
 - Quantum Cryptography: Implements Quantum key
- distribution(QKD) for secure communications.
- Quantum Optimization: Leverages quantum annealing or variational quantum algorithms (VQAS) for solving complex optimization problems.
- Backend powered by IBM Qiskit / Google Cirq / D-Wave Ocean SDK.
- Frontend integrayes with quantum cloud services for real time processing.

2. User Flow:

Quantum Cryptography:

Quantum optimization:

3. UI/UX Considerations:

- Intuitive dashboard for quantum results visualization.
 Real time Graphs and charts for QML predictioms and
- optimization outcomes.
- Security alerts for cryptography key changes.
- Dark & Light mode for better user experiences.

Phase-4: Project planning

(Agile methodologies)

Objective:

Breakdown development tasks for efficient completion.

Sprint	TASK	Priority	Duration	Dead line	Assigned to	Dependencies	Expected outcomes
Sprint 1	Quantum environment setup	High	6 hours	Day 1	Develo per	Qiskit /Cirq setup	Quantum environment ready
Sprint 1	API integration	High	4 hours	Day 2	Develo per	Cloud quantum API	Backend connected to quantum services
Sprint 2	QML model developments	High	1 week	Day 7	Data scientist	Classical preprocessed data	Quantum classical model trained
Sprint 2	Quantum optimization algorithm	High	1 week	Day 14	Optimizati on engineer	QAOA / VQE framework	Optimization solution generated
Sprint 3	Frontend UI/UX design	Medium	5 days	Day 14	UI/UX developer	Backend API	Interactive interface completed
Sprint 4	Testing & Deployment	High	1 week	Day 21	Testing team	Complete system	Functional and deployed application

Phase-5: Aplications of Quantum computering

1. Cryptography:

- Enabling unbreakable encryption via **Quantum key** distribution (QKD).
- Breaking traditional cryptography systems (eg:RSA) using shors Algorithm.
- Enchancing secure communication protocols.

2. Artificial Inteligence:

- Quantum machine learning (QML) accelerates AI training and optimization.
- Example: Google AI Quantum works on hybrid quantum classical machine learning models,

3. Drug discovery:

- Simulating molecular interactions to design new drugs faster
- Reducing the time and cost of clinical trails through quantum powered simulations.
- Identifying new drug formulations for diseases like cancer and Alzheimers.
 - Analyzing a persons DNA and medical history
- to predict the best treatments.

4. Weather prediction:

- Faster weather simulations: Quantum computing can solve complex atmospheric equations faster improving weather prediction accuracy..
- Optimized climate models: Quantum optimization algorithms can enhance long term climate forecasting by handling vast datasets efficiently.
- Enhanced Mchine learning for forecasting:

 Quantum machine learning can improve pattern recognition in meterological data, leading to better storm and disaster predictions.
 - Real time extreme weather prediction: Quantum
- enhanced monte carlo simulations can provide faster and more precise forecasts for hurricanes, tornadoes, and climate anomalies.

5.Medical imaging & Deganotics:

- Enhancing MRI and CRT scans using quantum algorithms for better image processing.
- Early detection of diseases like cancer through quantum enhanced pattern recognition.
- Improving patient scheduling, drug supply chain, and resource management.
- Enhancing the efficiency of emergency response systems.
- Analyzing massive medical datasets to identify
- patterns in diseases.
 - Predicting disease outbreaks and patients
- outcomes with higher accuracy.

6.Financial Modeling:

- Companies like IBM, Google, Microsoft, Intel, and Amazon are developing quantum hardware and cloud based quantum computing platforms.
- Startups like Rigetti, IonQ, and D-Wave focus on specialized quantum computing solutions.
- Banks and hedge funds use quantum computing for risk analysis, portfolio optimization, and fraud detection.

6.Financial Modeling:

- Companies like IBM, Google, Microsoft, Intel, and Amazon are developing quantum hardware and cloud based quantum computing platforms.
- Startups like Rigetti, IonQ, and D-Wave focus on specialized quantum computing solutions.
- Banks and hedge funds use quantum computing for risk analysis, portfolio optimization, and fraud detection.

Phase-6: Future scope

Objective:

Explore the future advancements.

Key Points:

- Exponential Speedup: solving problems beyond classical computing capabilities.
- Revolutionary Cryptography: Enhancing security with quantum encryption.
- AI and Machine learning: Accelerating complex compulations.
- Future prospects: Scalable quantum systems, error correction, and integration with cloud computing.
 Accelerated Drug Discovery: Quantum computers
- can simulate molecular interactions with high precision, leading to faster drug development and reduced R&D costs

Enhanced Medical Imaging &

- Diagnostics: Quantum -enchanced MRI and CT scans provide higher accuracy in decting diseases like cancer and neurological disorders.
 Advanced Genomics and Bioinformatics: Ensuring ultra-secure encryption for patient records and
- telemedicene communications.