

余舱市职成教中心学校 陈雅萍

电路组成

同相输入端和 反相输入端均 有信号输入

输出与输入之间的关系

当 u_{II} 单独作用时, $u_{I2}=0$

电路为反相输入方式

$$u_{01} = -\frac{R_{\rm f}}{R_{\rm 1}} u_{11}$$

利用叠加定理

-输出与输入之间的关系

当 u_{12} 单独作用时, $u_{11}=0$

电路为同相输入方式

理想运放虚断的概念, $i_{\rm I}=0$

$$u_{1+} = \frac{R_3}{R_2 + R_3} u_{12}$$

$$u_{02} = \left(1 + \frac{R_{\rm f}}{R_{\rm 1}}\right) \frac{R_{\rm 3}}{R_{\rm 2} + R_{\rm 3}} u_{\rm 12}$$

-输出与输入之间的关系

(a) 电路图

$$u_{01} = -\frac{R_{\rm f}}{R_{\rm l}}u_{\rm II}$$

当 u_{II} 单独作用时

$$u_{02} = \left(1 + \frac{R_{\rm f}}{R_{\rm 1}}\right) \frac{R_{\rm 3}}{R_{\rm 2} + R_{\rm 3}} u_{\rm 12}$$
 当 $u_{\rm 12}$ 单独作用时

减法

那么, u_{11} 和 u_{12} 共同作用时, 输出电压则为

$$u_{0} = -\frac{R_{f}}{R_{1}}u_{11} + \left(1 + \frac{R_{f}}{R_{1}}\right)\frac{R_{3}}{R_{2} + R_{3}}u_{12}$$

选择
$$R_1 = R_2$$
, $R_3 = R_f$

选择
$$R_1 = R_2 = R_3 = R_f$$
 $u_0 = u_{12} - u_{11}$

$$u_{\mathbf{O}} = u_{\mathbf{I2}} - u_{\mathbf{I1}}$$

减法运算电路

-用反相求和电路来实现

$$u_{\rm O} = \frac{R_{\rm f}}{R_{\rm 2}} u_{\rm I2} - \frac{R_{\rm f}}{R_{\rm 1}} u_{\rm I1}$$

1.电路组成

2.输出电压与输入电压之间的关系

$$u_0 = -\frac{R_f}{R_1}u_{11} + \left(1 + \frac{R_f}{R_1}\right)\frac{R_3}{R_2 + R_3}u_{12} \qquad u_0 = \frac{R_f}{R_1}(u_{12} - u_{11})$$

$$u_{\rm O} = \frac{R_{\rm f}}{R_{\rm 1}} (u_{\rm 12} - u_{\rm 11})$$

3.减法运算电路

$$u_{\rm O} = \frac{R_{\rm f}}{R_2} u_{12} - \frac{R_{\rm f}}{R_1} u_{11}$$

