README

Andrea Pierré

December 12, 2018

Contents

1	Design decisions	1
	1.1 Data	1
	1.2 Database	1
	1.3 Front-end	2
2	Setup the app	2
3	Time spent	2
4	FDA 21 CFR 820.30	2

1 Design decisions

1.1 Data

For consistency reasons since Node.js was an imposed choice for the backend, and to not impose to my reviewer to install another language, I would have chosen to load the data in Javascript. But since I was allowed to use Docker this was not a problem anymore. So since time was limited, I choose Python to get the data in the database as it was the language I was more confident with.

1.2 Database

Since the MySQL official Docker image was more than 100MB, I thought it was overkill for a simple application like this one, so I eliminated MySQL. I surprisingly found a lean alpine version of PostgreSQL which was less than 30MB, so I hesitated between PostgreSQL and SQLite. At the end I chose

to go with PostgreSQL because it was simpler to use with Docker. Without Docker I would have chosen to go with SQLite. I also chose to go with the SQLA1chemy ORM in case I had some problem down the road so that it would be easy to switch to another database in case (and also because I wanted to learn it).

Figure 1: Entity relationship diagram of the database

1.3 Front-end

Since I have a really small experience with front-end frameworks, and since time was limited, I choose the one I read it had the more gentle learning curve, e.g. Vue.js. Without the time limiting constraint, I would have chosen React.

2 Setup the app

Just run docker-compose up.

3 Time spent

4 FDA 21 CFR 820.30

Table 1: Time spent on assignment
Design decisions 2h
Pulling data from PubMed 2h
Database design 6h
Docker containerization 4h