# DEVELOPMENT OF A MACHINE LEARNING ALGORITHM TO CLASSIFY DEMENTIA STAGE BASED ON REPORTED DEMENTIA SYMPTOMS



Rockwood K<sup>1,2</sup>, Shehzad A<sup>2</sup>, Stanley J<sup>2</sup>, Dunn T<sup>2</sup>, Howlett SE<sup>1,2</sup>, Mitnitski AB<sup>1,2</sup>, Chapman CAT<sup>2</sup> (1) Dalhousie University, (2) DGI Clinical Inc.

DALHOUSIE UNIVERSITY

# **BACKGROUND**

- Dementia symptom menus provide a library from which the general public can identify and track symptoms that are important to them.
- The value of these data from a research standpoint would be enhanced if dementia stage could be identified.

# **OBJECTIVE**

To apply supervised machine learning methods that can identify dementia stage by classifying symptoms reported by users.

# **METHODS**

## Sample

- We obtained data on 717 people in whom dementia had been staged in: a memory clinic in Halifax, NS; A long term care (LTC) study<sup>1</sup>; and the VASPECT<sup>2</sup> clinical trial.
- Symptom information was captured with either SymptomGuide® (memory clinic, VASPECT) or with Goal Attainment Scaling.
- Clinical stage was classified using either the Functional Assessment Staging Test or Global Deterioration Scale.

### **Machine Learning Algorithm**

- We required prediction of four levels of cognitive impairment: Mild Cognitive Impairment (MCI), or mild, moderate, or severe dementia.
- Data were split into training (80%) and testing (20%) datasets.
- The algorithm was optimized for balanced accuracy taking into account varying proportions of stages in the data.
- Accuracy was adjudicated and iterated using measures of precision (Cohen's Kappa), sensitivity (recall) and Positive Predicted Value and tested using Area Under the Receiver Operating Characteristic Curve (AUC-ROC).

# RESULTS

- Our sample was mostly female (59%) older adults (77.3±10.6 years, range 40-100) with mild-moderate dementia (**Table 1**).
- Patient age and 36 of 55 unique dementia symptoms most accurately distinguished stage.
- A Support Vector Machine (SVM) showed the best performance. The Algorithm successfully identified the correct dementia stage with 81% accuracy (range 70-90%, Figure 3).
- Best performance was seen when classifying severe dementia (Figure 4).
- Most misclassifications were within one stage of the clinical stage (Figure 5).

Table 1. Baseline subject characteristics

| Characteristic    | Clinic      | LTC study <sup>1</sup> | VASPECT <sup>2</sup> | Total       |
|-------------------|-------------|------------------------|----------------------|-------------|
| Sample size       | 420         | 169                    | 128                  | 717         |
| Age (Mean, SD)    | 74.6 (12.5) | 81.0 (19.1)            | 75.4 (9.2)           | 77.3 (10.6) |
| Sex (% Women)     | 54.3        | 76.3                   | 52.3                 | 59.1        |
| FAST (Mean, SD)   | 4.0 (0.9)   | 5.3 (1.1)              | 4.3 (0.5)            | 4.1 (0.9)   |
| GDS (Mean, SD)    | 4.8 (1.9)   | 5.2 (1.0)              | -                    | 5.2 (1.1)   |
| Mean, SD Symptoms | 4.7 (2.1)   | 4.6 (2.1)              | 7.6 (5.0)            | 5.2 (3.1)   |
|                   |             |                        |                      |             |

Abbreviations: FAST, Functional Assessment Staging Test; GDS, Global Deterioration Scale; SD, Standard Deviation.

**Figure 1**. Sample distribution by Clinical Stage



**Figure 3**. Balanced accuracy over 1000 iterations



Figure 5. Clinical stage versus predicted stage (testing dataset)



All misclassifications in this example were classified within one stage of the clinical stage. Overall, 97% of misclassifications were within one stage.

Figure 2. Visualization of two-component Principal Component Analysis



**Figure 4**. Algorithm performance (AUC-ROC) by classification



# CONCLUSIONS

- A supervised machine learning algorithm exhibited excellent performance in identifying dementia stage based on reported dementia symptoms.
- This novel dementia staging algorithm can be used in SymptomGuide® or other similar databases to identify dementia stage based on users' symptom profiles.