Assignment 2

1. Derive the following Equations:

$$\mathsf{R}_{\,\mathsf{x},\theta} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta \\ 0 & \sin\theta & \cos\theta \end{bmatrix} \quad \text{and} \quad \mathsf{R}_{\,\mathsf{y},\theta} = \begin{bmatrix} \cos\theta & 0 & \sin\theta \\ 0 & 1 & 0 \\ -\sin\theta & 0 & \cos\theta \end{bmatrix}$$

- 2. Consider the following Sequence of rotations:
 - 1. Rotate by ϕ about the world x-axis
 - 2. Rotate by θ about the current z-axis
 - 3. Rotate by ψ about the world y-axis

Write the matrix product that will give the resulting rotation matrix (Do not perform the matrix multiplication)

- <u>3.</u> Consider the following Sequence of rotations:
 - 1. Rotate by ϕ about the world x-axis
 - 2. Rotate by θ about the world z-axis
 - 3. Rotate by ψ about the current x-axis

Write the matrix product that will give the resulting rotation matrix (Do not perform the matrix multiplication)

- <u>4.</u> Consider the following Sequence of rotations:
 - 1. Rotate by ϕ about the world x-axis
 - 2. Rotate by θ about the current z-axis
 - 3. Rotate by ψ about the current x-axis
 - 4. Rotate by α about the world z-axis

Write the matrix product that will give the resulting rotation matrix (Do not perform the matrix multiplication)

- **5.** Consider the following Sequence of rotations:
 - 1. Rotate by ϕ about the world x-axis
 - 2. Rotate by θ about the world z-axis
 - 3. Rotate by ψ about the current x-axis
 - 4. Rotate by α about the world z-axis

Write the matrix product that will give the resulting rotation matrix (Do not perform the matrix multiplication)

Assignment 2

<u>6.</u> If the Coordinate frame $o_1x_1y_1z_1$ is obtained from the coordinate frame $o_0x_0y_0z_0$ by a rotation of $\frac{\pi}{2}$ about the x-axis followed by a rotation of $\frac{\pi}{2}$ about the fixed y-axis, find the rotation matrix R representing the composite transformation. Sketch the initial and final frames.

<u>7.</u> Suppose that three coordinate frames $o_1x_1y_1z_1$, $o_2x_2y_2z_2$ and $o_3x_3y_3z_3$ are given, and suppose:

$${}^{1}R_{2} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ 0 & \frac{\sqrt{3}}{2} & \frac{1}{2} \end{bmatrix}, \qquad {}^{1}R_{3} = \begin{bmatrix} 0 & 0 & -1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \quad \text{Find the matrix $^{2}R_{3}$}$$

Use Robotics Toolbox for Matlab to solve the following problems unless otherwise is stated.

- 1- Consider the following sequence of rotations:
 - a. Rotate by ø about the world x-axis.
 - Rotate by θ about the current z-axis.
 - Rotate by ψ about the current x-axis.
 - Rotate by α about the world z-axis.

Write the matrix product that will give the resulting rotation matrix.

- 2- Find the rotation matrix representing a roll of $\pi/4$ followed by a yaw of $\pi/2$ followed by a pitch of $\pi/2$.
- 3- Suppose that three coordinate frames o₁x₁y₁z₁, o₂x₂y₂z₂ and o₃x₃y₃z₃ are given, and suppose

Find the matrix R²₃.