Лабораторная работа №3

Интерполяционный многочлен Ньютона (ИМН)

Первый интерполяционный многочлен Ньютона

$$P(x) = y_0 + \frac{\Delta y_0}{h}(x - x_0) + \frac{\Delta^2 y_0}{2!h^2}(x - x_0)(x - x_1) + \frac{\Delta^3 y_0}{3!h^3}(x - x_0)(x - x_1)(x - x_2) + \dots$$

Второй интерполяционный многочлен Ньютона

Пример 1:

Построить первый и второй интерполяционный многочлен Ньютона, вычислить значение в точке X=1.7

X	1,2	1,4	1,6	1,8	2	2,2
F(x)	2,25	2,36	3,1	3,12	2,01	2,8

В таблице узлы равноотстоящие, поэтому для нее можно записать интерполяционный многочлен Ньютона. Шаг h=0.2

Составим таблицу конечных разностей

y	Δy	$\Delta^2 y$	Δ^3 y	$\Delta^4 y$	$\Delta^5 y$
2,25	0,11	0,63	-1,35	0,94	2,5
2,36	0,74	-0,72	-0,41	3,44	
3,1	0,02	-1,13	3,03		
3,12	-1,11	1,9			
2,01	0,79				
2,8					

Для вычисления значения по первой интерполяционной формуле Ньютона будем брать конечные разности из первой строки

$$P(x) = 2.25 + \frac{0.11}{0.2}(x - 1.2) + \frac{0.63}{2! \cdot 0.2^2}(x - 1.2)(x - 1.4) + \frac{-1.35}{3! \cdot 0.2^3}(x - 1.2)(x - 1.4)(x - 1.6) + \frac{0.63}{2! \cdot 0.2^2}(x - 1.2)(x - 1.4) + \frac{-1.35}{2! \cdot 0.2^3}(x - 1.2)(x - 1.4)(x - 1.6) + \frac{0.63}{2! \cdot 0.2^3}(x - 1.2)(x - 1.4) + \frac{-1.35}{2! \cdot 0.2^3}(x - 1.2)(x - 1.4)(x - 1.6) + \frac{0.63}{2! \cdot 0.2^3}(x - 1.2)(x - 1.4)(x - 1.4)(x - 1.6) + \frac{0.63}{2! \cdot 0.2^3}(x - 1.2)(x - 1.4)(x - 1.4)(x - 1.6)(x - 1.6)(x$$

$$+\frac{0.94}{4! \cdot 0.2^4}(x-1.2)(x-1.4)(x-1.6)(x-1.8) + \frac{2.5}{5! \cdot 0.2^5}(x-1.2)(x-1.4)(x-1.6)(x-1.8)(x-2)$$

$$P(1.7) = 2.25 + 0.275 + 1,18125 - 0,421875 - 0,03671875 + 0,0292969 = 3,276953$$

По второй интерполяционной формуле Ньютона получим

$$P(x) = 2.8 + \frac{0.79}{0.2}(x - 2.2) + \frac{1.9}{2! \cdot 0.2^2}(x - 2.2)(x - 2) + \frac{3.03}{3! \cdot 0.2^3}(x - 2.2)(x - 2)(x - 1.8) + \frac{1.9}{2! \cdot 0.2^2}(x - 2.2)(x - 2) + \frac{1.9}{2! \cdot 0.2^2}(x - 2.2)(x - 2)(x - 2$$

$$+\frac{3.44}{4!\,0.2^4}(x-2.2)(x-2)(x-1.8)(x-1.6)+\frac{2.5}{5!\,0.2^5}(x-2.2)(x-2)(x-1.8)(x-1.6)(x-1.4)$$

$$P(1.7) = 2.8 - 1.975 + 3.5625 - 0.946875 - 0.134375 - 0.029296875 = 3.276953$$

Приближенные значения функции, вычисленные по первой и второй интерполяционной формулам Ньютона, совпали.

Пример 2:

Для таблицы примера 1 определить, содержит ли таблица практически равные нулю конечные разности. Известно, что табличные значения y_i записаны только верными цифрами в строгом смысле.

Составим таблицу конечных разностей. Для каждой конечной разности определим ее

абсолютную погрешность

decomorny to not permitted by					
y	Δy	$\Delta^2 y$	$\Delta^3 y$	$\Delta^4 y$	$\Delta^5 y$
2,25	0,11	0,63	-1,35	0,94	2,5
2,36	0,74	-0,72	-0,41	3,44	
3,1	0,02	-1,13	3,03		
3,12	-1,11	1,9			
2,01	0,79				
2,8					
Абс. Погрешность Δ	0,005	0,01	0,02	0,04	0,08
Все ли Δіу </td <td>да</td> <td>да</td> <td>да</td> <td>да</td> <td>да</td>	да	да	да	да	да

Так как в каждом столбце все конечные разности ^іу по модулю меньше, чем их погрешности, то таблица не содержит практически равных нулю конечных разностей. Значит, для расчетов необходимо брать все узлы, т.е. степень интерполяционного многочлена будет меньше или равна 5.

Задание 1. Расчеты в электронных таблицах

- 1) Для функции задания №3 предыдущей лабораторной работы записать произвольную таблицу из 7 узлов с равноотстоящим шагом (значение h выбрать произвольно, значения функции округлить, оставив 3 знака после запятой).
- 2) Составить таблицу конечных разностей, используя электронные таблицы.
- 3) Проверить, есть ли в этой таблице практически равные нулю конечные разности. Определить степень интерполяционного многочлена.
- 4) Вычислите приближенно значение функции в точке х*, используя первый и второй интерполяционный многочлен Ньютона. Сравните полученные значения.

Задание 2. Программа

Составить программу для вычисления приближенного значения функции с помощью ИМН. Реализовать ее на одном из уровней (по Вашему выбору).

Уровень П (профи)

Программа должна предоставлять пользователю выбор — ввод данных с клавиатуры (вариант А) или ввод данных из файла (вариант В).

Вариант А: пользователь вводит N (N<20), затем заполняет таблицу из N+1 узла, вводит значение x^* . Программа выводит таблицу конечных разностей, приближенные значения функции в точке x^* , вычисленные по 1 и по 2 формулам Ньютона.

Вариант В: пользователь через диалоговое окно выбирает текстовый файл, в котором хранится размерность таблицы, ее значения и значение х*. Программа выводит таблицу

конечных разностей, приближенные значения функции в точке х*, вычисленные по 1 и по 2 формулам Ньютона.

Дополнительная опция: запрос у пользователя погрешности Е для у, вычисление погрешностей конечных разностей, выяснение, есть ли практически равные нулю конечные разности. Если есть, то реализовать определение степени интерполяционного многочлена, выбор нужной части таблицы для х* и расчет по этой части.

Уровень М (мастер)

См. уровень П без дополнительной опции

Уровень С (средний)

См. уровень Π – реализовать один из вариантов – А или В