Random Variables, Expectation, and Variance: Core Statistical Concepts

Random Variables

In statistics, a **random variable** is a numerical outcome of a random process or experiment. It <u>assigns a numerical</u> value to each <u>possible outcome</u> of a probabilistic event.

Types of Random Variables:

1. Discrete Random Variable

- Takes on a **finite or countable** number of distinct values.
- Example: The number of heads in 3 coin tosses (values: 0, 1, 2, 3).
- Common Distributions: Binomial, Poisson, Geometric.

2. Continuous Random Variable

- Can take an **infinite number of values** within a range.
- Example: The height of students in a class (values can be any real number within a range).
- Common Distributions: Normal, Exponential, Uniform.

Notation:

- A random variable is typically denoted by X, Y, or Z.
- A specific value of a random variable is written in lowercase, like x or y.
- Probability of a discrete random variable taking a value:

$$P(X=x)$$

 Probability for a continuous random variable is given by a probability density function (PDF), where probabilities are found using integration.

Expected Value (Mean of a Random Variable)

• Expected Value (E(X)): The long-run average of X.

$$E(X) = \sum x P(X = x)$$

- Interpretation: Theoretical mean over many trials.
- **Example**: Rolling a fair die, X={1,2,3,4,5,6},

$$E(X) = 1 \cdot \frac{1}{6} + 2 \cdot \frac{1}{6} + \dots + 6 \cdot \frac{1}{6} = 3.5$$

Key Point: Expected value is a weighted average of possible values.

Properties of Expected Values

- Constant Rule: E(c) = c (A constant's expected value is itself).
- · Linearity:

$$E(aX + b) = aE(X) + b$$

Sum Rule:

$$E(X+Y) = E(X) + E(Y)$$

(Valid even if X and Y are dependent).

Distribution Functions in Statistics

A **distribution function** describes the probabilities of a random variable taking certain values. There are two main types

Cumulative Distribution Function (CDF)

The **CDF** of a random variable X, denoted as F(x), gives the probability that X takes a value less than or equal to x:

$$F(x) = P(X \le x)$$

- For **discrete random variables**, it sums up probabilities up to x.
- For continuous random variables, it is found by integrating the probability density function (PDF).

Probability Density Function (PDF) [For Continuous Variables]

The **PDF**, denoted as f(x), represents the likelihood of a random variable taking a specific value.

$$P(a \le X \le b) = \int_a^b f(x) dx$$

- The area under the curve of the PDF over an interval gives probability.
- Example: The Normal Distribution has the famous bell-shaped PDF.

Probability Mass Function (PMF) [For Discrete Variables]

The **PMF**, denoted as P(X=x), gives the probability of a discrete random variable taking exact values.

$$P(X = x) =$$
some probability value

• Example: A fair die roll has

$$P(X = 1) = P(X = 2) = \cdots = P(X = 6) = \frac{1}{6}$$

Relation between PDF and CDF

- 1. Probability Density Function (PDF), denoted as f(x):
 - What it is: The PDF <u>describes</u> the relative <u>likelihood</u> of a continuous random variable taking on a given value. Think of it as the "shape" of the distribution.
 - **Key property:** The area under the PDF curve within a certain interval represents the probability that the random variable falls within that interval.
 - **Important note:** The PDF itself doesn't directly give you probabilities. You need to integrate it to find probabilities.
- 2. Cumulative Distribution Function (CDF), denoted as F(a):
 - What it is: The CDF gives the probability that a random variable X takes on a value less than or equal to a specific value 'a'.
 - In other words: It accumulates the probabilities up to a certain point.
 - Always increasing: As 'a' increases, the CDF will either stay the same or increase (it can't decrease).
 - Range: The CDF ranges from 0 to 1. $F(-\infty) = 0$ and $F(\infty) = 1$.

3. The Relationship: $F(a) = P\{X \in (-\infty, a]\} = \int (-\infty \text{ to } a) f(x) dx$

 $(-\infty, a]$: This notation means the interval that starts from negative infinity (meaning it includes all values below 'a') and goes up to and includes 'a'. The square bracket ']' indicates that 'a' is included in the interval.

This is the core of the explanation:

- F(a): This is the CDF evaluated at 'a'.
- $P\{X \in (-\infty, a]\}$: This reads "the probability that the random variable X is in the interval from negative infinity up to and including 'a'".
- $(-\infty \text{ to a})$ f(x) dx: This is the integral of the PDF f(x) from negative infinity up to 'a'.

In simple terms:

The CDF at a point 'a' is equal to the area under the PDF curve from negative infinity up to 'a'.

Why is this important?

- Connecting concepts: It shows how the PDF and CDF are intrinsically linked.
- Calculating probabilities: It provides a way to calculate probabilities using the PDF, which is often easier to derive or know.
- Understanding distributions: It helps in understanding the overall behavior and characteristics of a probability distribution.

Example:

Imagine you have a normal distribution (bell curve). The PDF would show the shape of the bell, with the peak representing the most likely value. The CDF at a point 'a' would show the area under the bell curve to the left of 'a', representing the probability of getting a value less than or equal to 'a'.

In essence, the CDF "accumulates" the probability information provided by the PDF.

Jointly Distributed Random Variables

When **two or more random variables** are considered together, and their probabilities depend on each other, they are called **jointly distributed random variables**.

1. Understanding Joint Distribution

- Suppose we have two random variables, X and Y, that represent two different measurements from the same experiment.
- Their joint distribution describes the probability of different combinations of X and Y occurring together.

For example:

- Let X = number of heads in two coin tosses.
- Let Y = number of tails in two coin tosses.
- Since they come from the same experiment, X and Y are jointly distributed.

2. Types of Joint Distributions

(a) Joint Probability Mass Function (PMF) - Discrete Case

 If X and Y are discrete random variables, their joint probability mass function is:

$$P(X = x, Y = y) = P(X, Y)$$

- · Example: Rolling a die twice
 - \circ X = result of first roll, Y = result of second roll.
 - $\circ P(X=2,Y=5)$ = probability of rolling a **2 first, then a 5**.

(b) Joint Probability Density Function (PDF) - Continuous Case

If X and Y are continuous, their joint probability density function is:

$$f(x,y) \geq 0, \quad ext{and} \quad \iint f(x,y) \, dx \, dy = 1$$

The probability of X and Y being in a certain region is:

$$P(a \leq X \leq b, c \leq Y \leq d) = \int_a^b \int_c^d f(x,y) \, dx \, dy$$

• Example: Heights of people (X) and weights of people (Y).

Independent Random Variables

Two random variables X and Y are independent if knowing the value of one does not provide any information about the other. In other words, their probabilities are completely separate.

Definition of Independence

(a) Discrete Random Variables

For discrete random variables, X and Y are independent if their **joint probability** mass function (PMF) satisfies:

$$P(X=x,Y=y) = P(X=x) \cdot P(Y=y)$$
 for all x,y .

This means that the probability of two events happening together is just the product of their individual probabilities.

(b) Continuous Random Variables

For continuous random variables, X and Y are independent if their **joint** probability density function (PDF) satisfies:

$$f(x,y) = f_X(x) \cdot f_Y(y)$$
 for all x, y .

This means that the joint PDF is simply the product of the individual (marginal) PDFs.

Intuition Behind Independence

If two random variables are independent:

- \bigvee Knowing X tells us **nothing** about Y.
- ▼ Their probabilities behave as if they come from separate experiments.

🖈 Example (Discrete Case):

- Let X = result of rolling a fair 6-sided die.
- Let Y = result of flipping a fair coin (1 = heads, 0 = tails).
- Since rolling a die has no effect on flipping a coin, the probabilities remain separate:

$$P(X=3,Y=1) = P(X=3) \cdot P(Y=1) = (\frac{1}{6} \times \frac{1}{2}) = \frac{1}{12}$$

So X and Y are independent.

Example (Continuous Case):

• Suppose X and Y are independent normal variables:

$$X \sim N(0,1), \quad Y \sim N(5,2)$$

• Then their joint PDF is simply:

$$f(x,y) = f_X(x) \cdot f_Y(y)$$

 This confirms independence because their probabilities do not influence each other.

Expectation in Statistics (Expected Value, E[X])

The **expectation (expected value)** of a random variable is a measure of its **long-run average** or **mean** when an experiment is repeated many times. It represents the **center of the probability distribution**.

Definition of Expectation

The expectation (denoted as E[X] or $\mathbb{E}[X]$) is the weighted average of all possible values of X, where the weights are their probabilities.

(a) Expectation for a Discrete Random Variable

If X is a **discrete** random variable with values x_1, x_2, \ldots, x_n and probabilities $P(X = x_i)$, then:

$$E[X] = \sum_{i} x_i P(X = x_i)$$

Example:

Suppose a dice roll gives X values **1, 2, 3, 4, 5, and 6**, each with probability $\frac{1}{6}$. The expectation is:

$$E[X] = (1 imes rac{1}{6}) + (2 imes rac{1}{6}) + (3 imes rac{1}{6}) + (4 imes rac{1}{6}) + (5 imes rac{1}{6}) + (6 imes rac{1}{6}) = 3.5$$

7

(b) Expectation for a Continuous Random Variable

If X is **continuous** with probability density function (PDF) f(x), then the expectation is given by:

$$E[X] = \int_{-\infty}^{\infty} x f(x) dx$$

***** Example:

For a uniform distribution $X \sim U(0,1)$, where f(x) = 1 for $0 \leq x \leq 1$, we compute:

$$E[X] = \int_0^1 x \cdot 1 \, dx = \frac{1}{2}$$

Properties of Expectation

- 1. Linearity of Expectation:
 - · For any two random variables X and Y,

$$E[aX+bY]=aE[X]+bE[Y]$$
 (where a,b are constants).

• Example: If E[X] = 3, E[Y] = 5, then:

$$E[2X + 3Y] = 2(3) + 3(5) = 6 + 15 = 21$$

2. Expectation of a Constant:E[c]=c

(The expectation of a constant is just the constant itself.)

- 3. Expectation of a Sum:
 - If $X_1, X_2, ..., X_n$ are random variables:

$$E\left[\sum_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} E[X_i]$$

4. If X and Y are Independent: E[XY] = E[X]E[Y]

But if X and Y are $\operatorname{\bf not}$ independent, this does $\operatorname{\bf not}$ necessarily hold.

Variance

Variance is a measure of how much a set of numbers (or a random variable) deviates from its **mean (expected value)**. It tells us how **spread out** or **dispersed** the data is.

Definition of Variance

The variance of a random variable X, denoted as Var(X) or σ^2 , is the **expected** squared deviation from the mean:

$$Var(X) = E[(X - E[X])^2]$$

$$Var(X) = E[(X - \mu)^{2}]$$

$$= E[X^{2} - 2\mu X + \mu^{2}]$$

$$= E[X^{2}] - E[2\mu X] + E[\mu^{2}]$$

$$= E[X^{2}] - 2\mu E[X] + \mu^{2}$$

$$= E[X^{2}] - \mu^{2}$$

$$E[X^2] = Var(X) + \mu^2 \qquad \mu = E[X] ext{ (Since E[X] is the mean)} \ E[X^2] = Var(X) + (E[X])^2$$

This means we:

- 1. Find the mean E[X] (expected value).
- 2. Calculate each value's deviation from the mean (X E[X]).
- 3. Square each deviation (to make all values positive).
- 4. Take the expected value (average) of the squared deviations

Variance Formula

Depending on whether X is **discrete** or **continuous**, we compute variance differently.

(a) Variance for Discrete Random Variables

For a discrete random variable X with values x_1, x_2, \ldots, x_n and probabilities $P(X = x_i)$, the variance is:

$$Var(X) = \sum_i P(X = x_i)(x_i - E[X])^2$$

🖈 Example (Rolling a Fair Die):

- X = outcome of rolling a fair 6-sided die.
- Possible values: 1, 2, 3, 4, 5, 6.
- Each value has equal probability $\frac{1}{6}$.

- The mean (expected value) is: $E[X] = \sum x_i P(X=x_i) = rac{1+2+3+4+5+6}{6} = 3.5$
- Now, compute variance:

$$Var(X) = \sum_{i=1}^{6} P(X = x_i)(x_i - 3.5)^2$$

• After solving, we get:

$$Var(X) = rac{35}{12} pprox 2.92$$

(b) Variance for Continuous Random Variables

For a **continuous** random variable with probability density function (PDF) f(x), variance is:

$$Var(X) = \int_{-\infty}^{\infty} (x - E[X])^2 f(x) \, dx$$

★ Example (Uniform Distribution U(0,1))

For $X \sim U(0,1)$, where f(x) = 1 for $0 \le x \le 1$:

1. Compute E[X]:

$$E[X] = \int_0^1 x \cdot 1 \, dx = \frac{1}{2}$$

2. Compute variance:

$$Var(X) = \int_0^1 (x - \frac{1}{2})^2 \cdot 1 \, dx = \frac{1}{12}$$

Properties of Variance

1. Variance of a Constant:

$$Var(c) = 0$$

(A constant does not vary.)

2. Scaling Property:

$$Var(aX) = a^2 Var(X)$$

(Multiplying by a constant a scales the variance by a^2 .)

3. Sum of Independent Random Variables:

$$Var(X + Y) = Var(X) + Var(Y)$$

If X and Y are independent.

4. Variance and Standard Deviation Relationship:

$$\sigma = \sqrt{Var(X)}$$

Standard deviation (SD) is the **square root of variance**, giving a measure of spread in the same units as the data.