DISZKRÉT MATEMATIKA I.

3. előadás

Relációk, leképezések

 \clubsuit **Definíció.** Az X és Y halmazok <u>Descartes-féle szorzatán</u> azt a halmazt értjük, amely tartalmazza az összes olyan *rendezett párt*, amelynek első tagja az X halmazból, a második tagja pedig az Y halmazból való.

Jelölés: $X \times Y = \{(x, y) \mid x \in X, y \in Y\}.$

PI.
$$K = \{\oplus, \sqcup\}$$
, $L = \{0.1, \sqrt{2}, \pi/3\}$ esetén
$$K \times L = \{(\oplus, 0.1), (\oplus, \sqrt{2}), (\oplus, \pi/3), (\sqcup, 0.1), (\sqcup, \sqrt{2}), (\sqcup, \pi/3)\},$$

$$L \times K = \{(0.1, \oplus), (0.1, \sqcup), (\sqrt{2}, \oplus), (\sqrt{2}, \sqcup), (\pi/3, \oplus), (\pi/3, \sqcup)\}.$$

Megjegyzések: • $X \times Y \neq Y \times X$ általában.

• $|X \times Y| = |Y| \cdot |X|$ teljesül véges halmazokra.

 $A = \{a, b, c\}, B = \{1, 2\} \implies A \times B$ szemléltetése:

 \clubsuit **Definíció.** Az X_1, X_2, \ldots, X_n halmazok <u>Descartes-féle szorzata</u>

$$X_1 \times X_2 \times \cdots \times X_n = \{(x_1, x_2, \dots, x_n) \mid x_1 \in X_1, x_2 \in X_2, \dots, x_n \in X_n\}.$$

Az $X \times X \times \cdots \times X$ Descartes-féle szorzat praktikus jelölése X^n , pl. $\mathbb{R}^n = \mathbb{R} \times \mathbb{R} \times \cdots \times \mathbb{R}$.

PI.
$$\{1,2\}^3 = \{(1,1,1), (1,1,2), (1,2,1), (1,2,2), (2,1,1), (2,1,2), (2,2,1), (2,2,2)\}.$$

Megjegyzés: $|X^n| = |X|^n$ teljesül véges X halmazra.

♣ **Definíció.** A $\varrho \subset X \times Y$ rendezett párokból álló halmazt (binér) relációnak nevezzük.

PI.

$$X \times Y = \{(2,1), (2,3), (2,5), (3,1), (3,3), (3,5), (4,1), (4,3), (4,5), (5,1), (5,3), (5,5)\},$$

$$\varrho = \{(2,3),(2,5),(3,5),(4,5)\} \stackrel{jel.}{\iff} 2\varrho 3, 2\varrho 5, 3\varrho 5, 4\varrho 5.$$

\$\ Speciális eset: X = Y, ekkor $\varrho \subset X^2$.

Pl. Legyen F a valaha élt vagy élő férfiak halmaza, $x \in F$ és $y \in F$ álljon relációban egymással, ha x apja y-nak.

PI. $\mathbb{N}^2 \supset \varrho = \{(0,1), (0,2), (1,2), (5,5), (2017,23)\}.$

Pl. $H=\{\text{síkbeli háromszögek}\}$, és egy $h_1\triangle$ relációban áll a $h_2\triangle$ -gel ha $h_1\triangle$ hasonló $h_2\triangle$ -höz.

 \blacksquare Pl. $H=\{$ síkbeli háromszögek $\}$, és egy $h_1\triangle$ relációban áll a $h_2\triangle$ -gel ha $h_1\triangle$ hasonló $h_2\triangle$ -höz. Geometriai jelöléssel élve: $h_1\triangle\sim h_2\triangle$.

Igazak-e az alábbi tulajdonságok?

- $\forall h_1 \triangle \in H$ esetén $h_1 \triangle \sim h_1 \triangle$;
- ha $h_1 \triangle \sim h_2 \triangle$ és $h_2 \triangle \sim h_3 \triangle$, akkor $h_1 \triangle \sim h_3 \triangle$;
- ha $h_1 \triangle \sim h_2 \triangle$, akkor $h_2 \triangle \sim h_1 \triangle$;
- ha $h_1 \triangle \sim h_2 \triangle$ és $h_2 \triangle \sim h_1 \triangle$, akkor $h_1 \triangle = h_2 \triangle$?

 \blacksquare Pl. $H=\{$ síkbeli háromszögek $\}$, és egy $h_1\triangle$ relációban áll a $h_2\triangle$ -gel ha $h_1\triangle$ hasonló $h_2\triangle$ -höz. Geometriai jelöléssel élve: $h_1\triangle\sim h_2\triangle$.

Igazak-e az alábbi tulajdonságok?

- $\forall h_1 \triangle \in H$ esetén $h_1 \triangle \sim h_1 \triangle$; I
- ha $h_1 \triangle \sim h_2 \triangle$ és $h_2 \triangle \sim h_3 \triangle$, akkor $h_1 \triangle \sim h_3 \triangle$; I
- ha $h_1 \triangle \sim h_2 \triangle$, akkor $h_2 \triangle \sim h_1 \triangle$; I
- ha $h_1 \triangle \sim h_2 \triangle$ és $h_2 \triangle \sim h_1 \triangle$, akkor $h_1 \triangle = h_2 \triangle$? N

 \clubsuit PI. Alaphalmaz \mathbb{R} , és $x \in \mathbb{R}$ relációban áll $y \in \mathbb{R}$ ha $x \leq y$.

Igazak-e az alábbi tulajdonságok?

• $\forall x \in \mathbb{R}$ esetén $x \leq x$;

• ha $x \le y$ és $y \le z$, akkor $x \le z$;

• ha $x \leq y$, akkor $y \leq x$;

• ha $x \le y$ és $y \le x$, akkor x = y?

 \clubsuit PI. Alaphalmaz \mathbb{R} , és $x \in \mathbb{R}$ relációban áll $y \in \mathbb{R}$ ha $x \leq y$.

Igazak-e az alábbi tulajdonságok?

• $\forall x \in \mathbb{R}$ esetén $x \leq x$; I

• ha $x \le y$ és $y \le z$, akkor $x \le z$; I

• ha $x \le y$, akkor $y \le x$; N

• ha $x \le y$ és $y \le x$, akkor x = y? I

- reflexiv, ha barmely $x \in X$ esetén $x \varrho x$;
- tranzitív, ha $x\varrho y$ és $y\varrho z$ teljesülése esetén $x\varrho z$ következik;
- szimmetrikus, ha $x\varrho y$ teljesülése esetén $y\varrho x$ következik;
- antiszimmetrikus, ha $x\varrho y$ és $y\varrho x$ teljesülése esetén x=y következik.

 \clubsuit **Definíció.** A ϱ reláció

• ekvivalenciareláció, ha reflexív, tranzitív és szimmetrikus;

• rendezési reláció, ha reflexív, tranzitív és antiszimmetrikus.

Pl. $H=\{\text{síkbeli háromszögek}\}, \text{ és egy } h_1\triangle \text{ relációban áll a} h_2\triangle-\text{gel ha } h_1\triangle \sim h_2\triangle. \text{ EKVIVALENCIARELÁCIÓ!}$

Pl. Alaphalmaz \mathbb{R} , és $x \in \mathbb{R}$ relációban áll $y \in \mathbb{R}$ ha $x \leq y$. RENDEZÉSI RELÁCIÓ!

Pl. Legyen F a valaha élt vagy élő férfiak halmaza, $x \in F$ és $y \in F$ álljon relációban egymással, ha x apja y-nak. Jelölés: $x \alpha y$.

- Senki sem apja önmagának. $\Longrightarrow \alpha$ nem reflexív.
- Ha x apja y-nak, és y apja z-nek, akkor x nem apja z-nek. $\Longrightarrow \alpha$ nem tranzitív.
- Ha x apja y-nak, akkor y nem apja x-nek. $\Longrightarrow \alpha$ nem szimmetrikus.
- Ha x apja y-nak és y apja x-nek, akkor x és y ugyanaz a személy. $\Longrightarrow \alpha$ antiszimmetrikus!

Megjegyzés: α nem ekvivalencia- és nem rendezési reláció.

♣ **Definíció.** A $\varrho \subset X \times Y$ reláció <u>leképezés</u>, ha bármely $x \in X$ esetén létezik pontosan egy olyan $y \in Y$, melyre $x\varrho y$.

Jelölés: $\varrho: X \longrightarrow Y$, illetve $\varrho(x) = y$.

- **♣ Definíció.** A $\varrho: X \longrightarrow Y$ leképezés <u>injektív</u>, ha bármely $x_1, x_2 \in X$ esetén teljesül, hogy ha $\varrho(x_1) = y$ és $\varrho(x_2) = y$, akkor $x_1 = x_2$. (Különböző elemek képe különböző.)
- ♣ **Definíció.** A $\varrho: X \longrightarrow Y$ leképezés <u>szürjektív</u>, ha bármely $y \in Y$ esetén létezik olyan $x \in X$, hogy $\varrho(x) = y$ (Minden Y-beli elemnek van őse X-ben.)
- \blacksquare **Definíció.** A $\varrho: X \longrightarrow Y$ leképezés <u>bijektív</u>, ha injektív és szürjektív is.

PI. $\varrho: \mathbb{N} \longrightarrow \mathbb{N}$, $\varrho(n) = n^2$.

PI. $\varrho: \mathbb{Z} \longrightarrow \mathbb{Z}$, $\varrho(z) = z^2$.

PI. $\varrho: \mathbb{N}^+ \longrightarrow \mathbb{N}$, $\varrho(n) = n - 1$.