인공지능! 체험과 실습을 통한 이해

건양대학교 박 헌 규 교수 010-5084-8123 / ingenium@konyang.ac.kr 대학연계 참학력 공동교육과정 (23.7.25 ~ 8.1)

1일차

- 오리엔테이션
- 인공지능의 정의, 역사, 종류
- 인공지능 체험 1

1일차 1교시

오리엔테이션

서로 알아가기

- 박헌규 교수 소개 (010-5084-8123)
 - 육군사관학교 졸업
 - 미국에서 전산학 석사 졸업
 - 한국과학기술원(KAIST)에서 전산학 박사 졸업
 - 건양대 군사학과 교수 재직 중

- 학생 본인 소개 (소개서 양식 작성)
 - 학교, 학년, 성명, 관심 분야, 통학방법 등

수업 교재, 준비물 등 분배

- 수업교재 : 모두의 인공지능 with 파이썬
- 웹카메라, 파일철, 노트, 필기구 각 1개
- 수료하는 학생에게는 128GB USB 추가 증정

수업 일정

일차	날짜	차시	시간	수 업 내 용	비고
1	7. 25 (화)	1~3 (3H)	2:30 ~5:20	 오리엔테이션 인공지능의 정의, 역사, 종류 인공지능 체험 1 	구글 계정
2	7. 26 (宁)			• 수업 없음	
3	7. 27 (목)	4~7 (4H)	2:00 ~5:50	 인공지능, 머신러닝, 딥러닝 관계 이해 머신러닝의 종류 (지도학습, 비지도학습, 강화학습 사례) 인공지능 체험 2 인공지능 실습환경 구축 (구글 코랩 환경 설정) 	구글 계정
4	7. 28 (금)	8~10 (3H)	2:00 ~4:50	 인공지능으로 구현한 틱택토 게임 틱택토 게임으로 보는 인공지능 원리 학습 인공지능으로 구현한 오목 게임 인공지능 오목 게임의 원리 	구글 계정
5	7. 31 (월)	11~14 (4H)	2:00 ~5:50	 인공지능 바둑 "알파고" 구현 원리 이해 머신러닝 지도 학습의 종류 (분류, 회귀) 구글 코랩을 이용한 인공지능 지도학습 실습 학습한 모델을 통해 새로운 데이터의 예측 	구글 계정
6	8. 1 (화)	15~17 (3H)	2:00 ~4:50	 내가 쓴 손글씨 숫자 인식시키기 (이미지 인식) 구글 코랩을 이용한 MNIST 이미지 인식 실습 이미지를 인식하는 인공지능(CNN) 학습 	구글 계정

질문 있습니다.

• 인공지능이라는 것을 꼭 배워야하나요?

- 인공지능은 이미 우리 실생활에 깊숙이 들어와 있습니다.
- 여러분이 앞으로 근무하게될 사회도 인공지능을 활용하고자 많은 노력과 시도를 하고 있습니다.
- 인공지능이라는 것이 무엇인지, 어떻게 활용하면 될 것인지 아는 것은 앞으로 생활에 많은 도움이 될 것입니다.

질문 있습니다.

- 컴퓨터는 잘 못하는데 프로그램도 짜야하고, 소프트웨어 이런 거 막 돌려야하는 거 아닌가요?
 - 인공지능을 제대로 이해할려면 많은 프로그램을 짜야하고 돌려야 합니다.
 - 하지만, '인공지능의 이해' 과목에서는 인공지능을 체험하고 원리를 이해하는 것이 목표이기 때문에 이미 짜여진 프로그램을 실행해 보는 정도의 수준으로 강의합니다.
 - 프로그램을 실행하기 위한 방법도 많이 있지만, 가장 간단한 방법으로 실행해 볼 수 있는 방법을 활용합니다.

질문 있습니다.

• 개인용 노트북이 필요한가요?

- 가져오지 않아도 무방합니다.
- 인공지능 실습은 전산실에서 실습이 가능합니다.
- 인터넷이 연결된 상태라면 개인용 노트북에서 실습도 가능합니다.

수업 여정

수업을 어떻게 진행되나요?

- 수업방법
 - 이론과 실습 병행
 - 45분 수업, 15분 휴식
 - 1일 3~4H 수업
 - 질문과 토의 적극 권장합니다.
- 수업 강의자료 및 소스 코드 다운로드 사이트
 - https://github.com/ingenium11/chamhakryuk2307/
 - 접속해서 1일차 강의자료 다운받아보세요.

1일차 2교시

인공지능 정의, 역사, 종류

간단히 토의해봅시다

- 인공지능이란?
- 인공지능 사례에 대해 한 가지씩 말해보기
- 영화 속에 나오는 인공지능
 - [동영상] 터미네이터의 물체 인식 장면 (1분42초)

(탄탄한형)

(근육형) 13

(마른체형)

인공지능 관련 용어들

- 한번쯤 들어 봤을 단어들
 - 인공지능 (AI, Artificial Intelligent)
 - 머신러닝 (Machine Learning)
 - 딥러닝 (Deep Learning)
 - 인공신경망 (ANN, Artificial Neural Network)
 - 빅데이터 (Big Data)
- 앞으로 들어볼 단어들
 - 지도학습, 비지도학습, 강화학습, 이미지인식, 물체인식, 자연어 처리 등
- 인공지능 관련 프로그램들
 - 파이썬, 아나콘다, 텐서플로, 케라스, 파이토치, 넘파이, 판다스, 사이파이, 맷플롯립, 사이킷런 등

인공지능의 체스 정복

- IBM 슈퍼컴퓨터 '딥블루(Deep Blue)' vs 구 소련의 세계 체스 챔피언 가리 카스파로프(Gary Kasparov)
- 1996년 2월 10일 첫 승리를 거둔 후 1997년 5월에는 2승 3무 1패로 딥블루가 승리했다.

왓슨이 출전한 <제퍼디!> 방송퀴즈쇼

인공지능의 바둑 정복

- 구글 '딥마인드(Deep Mind)' vs 이세돌 9단
- 2016년 3월 9~15일 4승 1패로 딥마인드가 승리했다.
 - 이세돌 9단의 3월 13일 귀중한 1승

인공지능의 인간 영역 정복 역사

인간에게 승리한 인공지능

	딥블루 (IBM)	왓슨 (IBM)	알파고 (구글)	리브라투스 (카네기멜론대)
대결종목	체스	퀴즈	바둑	亚 커
알고리즘	게임트리	자연어 처리	심층신경망, 딥러닝	사후후회최소화(CRM)
특징	가능한모든수계산	단어사이의 연결관계계산	스스로학습가능	블러핑(속임수)을 구사
결과	1997년 체스세계챔피언에게 승리	2011년 퀴즈쇼 제퍼디에서 우승	2016년 이세돌9단에게 승리	2017년 프로 포커선수 4명 상대로승리

https://www.hankyung.com/it/article/2017052317921

예술 영역으로의 확장

• 고흐풍으로 그린 광화문

인공 지능 사례

- 바둑 : "알파고"의 완벽한 승리, 하지만 인간의 승리이기도 함
- 방송 퀴즈쇼 : "왓슨"
 - 질문 : "2차 세계대전 중 두 번째로 큰 전투에서 승리한 영웅의 이름을 딴 공항이 있는 도시는 어디인가요?"
- 자율 주행차 : 대부분 사고는 사람의 실수나 부주의로 발생
- 의료 영역 : 당뇨성 망막증 자동 진단
 - 20년 경력의 의사가 두 시간 동안 검사해야 진단할 수 있는 증상
- 주식 투자와 법률: 600명의 주식 트레이너를 2명으로 줄임
- 농업 : 잡초에는 제초제를, 작물에는 비료를!
- 예술 : 풍경사진에 고흐의 화풍을 입힘
 - 미술, 작곡, 연주, 시, 소설, 안무 등

인공 지능 사례

- 에세이 작성 : 주제를 주면 그와 연관있는 이야기 만들어 냄
 - OpenAI의 GPT-3, 현재 챗GPT
- 얼굴 변형 : 딥페이크로 만든 가짜 영상
- 상점 : 카운터 없는 점포, 고객의 행동 관찰함
- 음성대화 : 인공지능 스피커, 챗봇
 - 말동무, 인터넷 검색 후 대답, 일정표와 연계, 식당 예약
- 실물 모양 아바타 : 디지털 휴먼이 고객 응대
- 로봇 : 산업용 로봇, 강아지, 드론 등

인공지능 개요

목차

- 01. 인공지능의 이해
- 02. 머신러닝
- 03. 딥러닝

※ 세부적으로 들어가지 않습니다. 용어에 대한 이해정도로만 강의합니다.

(참고) 지능이란?

- 지능 스펙트럼([그림 1-1])
 - 돌멩이는 지능이 없음: 스스로 움직이지도 못하고 목적 의식도 없음
 - 바이메탈은 온도에 따라 움직이고 온도 조절이라는 뚜렷한 목적
 → 바이메탈은 지능이 있나? 바이메탈을 부착한 다리미는 지능형 다리미인가?
 - 생물의 지능
 - 꼬마선충 → 개미 → 사람 → 천재
- 그렇다면 지능이란 무엇인가?
 - 지적 능력 (그럼 무엇을 할 때 지적 능력이 있다고 하는가?)
 - 다양한 환경에서 복잡한 의사결정의 문제를 해결하는 능력

그림 1-1 지능 스펙트럼

01. 인공지능의 이해

■ 인공지능의 개념

- 인공지능
 - 1950년대에 등장한 개념으로, 인공적으로 만들어진 지능을 의미
 - 컴퓨터 과학에서는 인공지능 연구를 '지능적 에이전트'에 대한 연구로 정의
 - 지능적 에이전트: 주변 환경을 인식하고 주어진 목표를 이루기 위해 최적의 액션을 수행하는 기기

• 머신러닝

• 데이터를 기반으로 학습해 스스로 발전할 수 있는 방법으로 인공지능을 구현하기 위한 여러 방법 중 하나

• 딥러닝

• 머신러닝의 여러 알고리즘 중 하나로, 사람의 뇌를 모방한 **인공신경망**의 가장 발전된 알고리즘

그림 7-2 인공지능, 머신러닝, 딥러닝의 관계

인공지능, 머신러닝, 딥러닝 맛보기

그림 출처: https://blogsabo.ahnlab.com/2605

01. 인공지능의 이해

■ 인공지능의 역사

■인공신경망

- 시카고 대학교 신경정신과의 워렌 맥컬록과 논리학자 월터 피츠가 1943년에 발표한 연구에서 시작
- 인공 신경을 그물망 형태로 연결하면 뇌의 간단한 동작을 흉내 낼 수 있다는 것을 이론적으로 증명
- 1957년 코넬 항공연구소의 프랑크 로젠블라트는 인간의 뇌가 신호를 전달하는 체계를 모방한 퍼셉트론 인공신경망 공개
- 초기에는 가중치를 랜덤으로 정하고 데이터를 통한 학습을 거치면서 보정
- 퍼셉트론의 예측값과 정답이 같으면 가중치를 유지하고, 다르면 보정 작업을 통해 수정
- 이 과정을 반복하면서 퍼셉트론 의 가중치는 최적값을 향해 보정되며 모델의 성능이 향상

(a) 생물학적 뉴런

(b) 퍼셉트론의 구조

여기서 잠깐! 퍼셉트론의 동작 원리는 알고 가실게요

- 인공신경망 퍼셉트론의 동작원리
 - 각 노드들의 값에 가중치를 곱하고,
 - 모든 값을 합한 다음
 - 활성화함수를 통해 다음 노드에 전달할 값을 결정함.

■ 예) X1, X2 값이 다음과 같을 때 가중치 W0: 4, W1: -6, W2: 3이면?

X1	X2	W0	W1	W2	ΣW	f(x)	output
		4	-6	3			
0	0	4	0	0	4	1	1
0	1	4	0	3	7	1	1
1	0	4	-6	0	-2	0	0
1	1	4	-6	3	1	1	1

01. 인공지능의 이해

■ 인공지능의 역사

- ■다층 퍼셉트론
 - 문제를 해결하기 위해 인공신경망 연구자들이 고안
 - 은닉층을 여러 층으로 쌓은 다층신경망 구조로, 하나의 입력층과 출력층, 그리고 다수의 은닉층으로 구성
 - 입력층에서 출력층까지 한 방향으로만 활성화되기 때문에 완전연결 순방향망이라고도 부름
 - 다층 퍼셉트론 각 층의 모든 뉴런은 인접한 층의 모든 뉴런과 연결
 - XOR 문제에 대한 해결책을 찾았고, 이는 더 복잡한 문제를 풀 수 있는 실마리가 됨

• 문제점

- 은닉층이 많아질수록 계산해야 하는 값도 많아지므로 학습이 점점 어려워짐
- 은닉층의 출력값에 대한 기준을 정의할 수 없음
- 더 많은 가중치를 업데이트하려면 훨씬 많은 데이터가 필요함

01. 인공지능의 이해

■ 인공지능의 역사

■딥러닝의 등장

- 기존의 머신러닝 알고리즘은 인간이 수동으로 유용한 특징값을 추출
- 딥러닝은 기존 머신러닝 알고리즘의 단점을 극복하면서 더 우수한 성능으로 머신러닝 알고리즘의 자리를 대체
- 딥러닝은 다층 퍼셉트론의 은닉층을 하나가 아닌 여러 개의 층으로 확장시킨 모델
- 토론토 대학교 제프리 힌튼 교수 팀의 딥러닝 기반 모델 알렉스넷이 국제이미지학술대회에서 우승 후 학계에서 주목

■다층 퍼셉트론에서 딥러닝에 이르기까지

- 다층 퍼셉트론은 가중치 학습의 어려움과 많은 계산량으로 인해 다른 머신러닝 기법에 비해 널리 쓰이지 못함
- 딥러닝은 **알고리즘의 개선, 컴퓨터 하드웨어의 발전, 빅데이터의 등장**으로 다층 퍼셉트론의 한계를 뛰어넘고 나날이 발전
- 딥러닝의 학습과 연산을 GPU로 처리하면 계산에 걸리는 시간을 획기적으로 줄일 수 있음

딥러닝의 예시

- 입력층, 은닉층, 출력층으로 구성
- 은닉층이 많이 있으면 딥러닝
- 은닉층이 많이 있다고 반드시 좋은 결과를 내는 것은 아님

http://cloudinsight.net/ai/%EB%94%A5%EB%9F%AC%EB%8B%9D%EC%9D%98-%EA%B0%9C%EB%85%90%EA%B3%BC-%EC%82%AC%EB%A1%80/

인공지능의 역사

표 1-1 인공자능의 역사

1843	• 에이다가 「… 해석 엔진은 꽤 복잡한 곡을 작곡할 수도 있다」라는 논문 발표					
1946	• 세계 최초의 범용 디지털 컴퓨터 에니악 탄생					
1950	• 인공지능 여부를 판별하는 튜링 테스트 제안					
	• 최초의 인공지능 학술대회인 다트 지능' 용어 탄생	머스 컨퍼런스 개최. '인공				
1956						
		▲ 다트머스 컨퍼런스 참석자				
1958	• 로젠블랫이 퍼셉트론 제안 • 인공지능 언어 Lisp 탄생					
		▲ 퍼셉트론 시연				

핵심 단어

튜링 테스트

인공지능 용어

퍼셉트론

1959	• 사무엘이 기계 학습을 이용한 체커 게임 프로그램 개발					
1965	• 자데가 퍼지 이론 발표					
1966	• 세계 최초의 챗봇 엘리자 공개					
1968	• 공간 탐색 알고리즘 A* 발표					
1969	• 민스키가 "Perceptrons』에서 퍼셉트론의 과대포장 지적. 신경망 퇴조 시작 • 1회 IJCAI(International Joint Conference on Artificial Intelligence) 학술대회 개최					
1972	• 인공지능 언어 Prolog 탄생 • 스탠퍼드 대학교에서 마이신 전문가 시스템 개발 시작					
1973	• 라이트힐 보고서를 계기로 인공지능 내리막길. 1차 인공지능 겨울 시작					
1974	• 웨어보스가 오류 역전파 알고리즘으로 논문 발표					
1979	• 학술지『IEEE Transactions on Pattern Analysis and Machine Intelligence』 발간					

핵심 단어

인공 지능 겨울

오류역전파 알고리즘

• 존 설이 중국인의 방 논문 발표 • 1회 ICML(International Conference on Machine Learning) 학술대회 개최 1980 • 후쿠시마가 네오코그니트론 제안 핵심 단어 • 인간의 전투력을 뛰어넘는 인조인간이 등장하는 영화 〈터미네이터〉 개봉 1984 다층 퍼셉트론 • "Parallel Distributed Processing," 출간. 다층 퍼셉트론 PARALLEL DISTRIBUTED 으로 신경망 부활 • 학술지 "Machine Learning," 발간 1986 DWID'S RUNFLYORE, LANGUE AND THE POP RESEARCH CHECKER Parallel Distributed Processing. • Lisp 머신의 시장 붕괴로 2차 인공지능 겨울 시작 2차 인공지능 겨울 1987 • 1회 NIPS(Neural Information Processing Systems) 학술대회 개최 • UCI 리퍼지토리가 데이터 공개 서비스 시작 1987 • 학술지 「Neural Computation」 발간 1989

• 파이썬 언어 탄생 1991 • R 언어 탄생 1993 • IBM 딥블루가 세계 체스 챔피언 카스파로프를 이김 • 순환 신경망의 일종인 LSTM 발표 1997 ▲ 딥블루 • 르쿤이 컨볼루션 신경망의 실용적인 학습 알고리즘 제안 1998 • 매시가 '빅데이터'라는 용어 사용 • 엔비디아에서 GPU 공개 1999 • 소니에서 애완 로봇 AIBO 시판 시작 • 컴퓨터 비전 패키지 OpenCV 최초 공개 2000 • 학술지 「Journal of Machine Learning Research」 발간 • 감정을 지닌 인조인간이 등장하는 영화 〈AI〉 개봉 2001 • 1회 그랜드 챌린지(고속도로 지율주행) 2004

핵심 단어

파이썬

체스 이김

GPU

1.3 인공지능의 역사

2007	• GPU 프로그래밍 라이브러리인 CUDA 공개 • 어번 챌린지(도심 자율주행) • 파이썬의 기계 학습 라이브러리 사이킷 런(Scikit-learn) 최 초 공개		
	▲ 어번 챌린지		
2009	• 딥러닝 패키지 씨아노(Theano) 서비스 시작		
2010	 대규모 자연 영상 데이터베이스인 ImageNet 탄생 ImageNet으로 인식 성능을 겨루는 1회 ILSVRC(ImageNet Large Scale Visual Recognition Challenge) 대회 개최 마이크로소프트에서 동작 인식 카메라 키넥트(Kinect) 시판 시작 앱인벤터 언어 발표, 음성 합성, 음성 인식, 언어 번역 컴포넌트 제공 		
2011	• IBM 왓슨이 제퍼디 우승자 꺾음 • 아이폰에서 인공지능 비서 앱 Siri 서비스 시작		
2012	• 딥러닝으로 필기 숫자 데이터베이스 MNIST에 대해 0,23% 오류율 달성 • AlexNet 발표(3회 ILSVRC 우승하여 컨볼루션 신경망의 가능성을 보여줌) • 자율주행차가 시각장애인을 태우고 세계 최초로 시범 운행 성공 (관련 영상: https://www.youtube.com/watch?v=peDy2st2XpQ)		

핵심 단어 퀴즈쇼 이김

1.3 인공지능의 역사

2013	• 1회 ICLR(International Conference on Learning Representations) 학술대회 개최	
2014	• 딥러닝 패키지 카페(Caffe) 서비스 시작	핵심 단어
2015	• 딥러닝 패키지 텐서플로(TensorFlow) 서비스 시작 • OpenAl 창립 • 클라우스 슈밥이 4차 산업혁명을 언급	텐서플로
2016	 · 딥러닝 패키지 파이토치(PyTorch) 서비스 시작 • 딥러닝 패키지 케라스(Keras) 서비스 시작 • 알파고와 이세돌의 바둑 대국에서 알파고 승리 • 벤지오 교수의 「Deep Learning」 출간(무료 버전 http://www.deeplearningbook.org) 	바둑 이김
2017	• 알파고 제로가 알파고를 100:0으로 이김 • 구글에서 티처블 머신(Teachable machine) 공개	알파고 제로
2018	• 인공지능이 그린 초상화 '에드몽 벨라미'가 경매 시장에서 432,500달러에 팔림	
2019	• 알파 스타가 스타크래프트에서 그랜드마스터 수준 달성	알파스타
2020	OpenAl 재단이 3세대 언어 모델인 GPT-3를 발표 제약회사 엑센시아가 인공지능이 개발한 후보 신약물질의 1상 시험 시작	GPT-3
		38

1일차 3교시

인공지능 체험 1

체험 및 실습 준비

- 구글 아이디 및 패스워드 준비
- 웹카메라 PC에 연결하기

인공지능 챗봇 - ChatGPT

- OpenAI가 개발한 대화형 인공지능 챗봇
 - GPT: Generative Pre-trained Transformer
 - GPT-3.5 기반 (매개변수 1,750억개)
 - 지도학습과 강화학습을 모두 사용
 - 2022. 11월 프로토타입 출시
- 다른 챗봇과 차이점
 - 주고 받은 대화와 대화의 문맥을 기억함
 - 파이썬 코드나 상세하고 논리적인 글을 만들어 낼 수 있음
 - 위험하고 부정직한 답변을 가능한 회피함

챗GPT 사용하기

• 인공지능 챗봇 : https://chat.openai.com

- 구글 아이디로 로그인 가능
 - 구글 코랩 사용해야하므로 구글 아이디가 없는 사람은 생성.

인공지능 챗봇 - ChatGPT

- OpenAI가 개발한 대화형 인공지능 챗봇
 - https://chat.openai.com/auth/login

Al Experiments

- 구글에서 제작한 AI 실험실
 - Al Experiments Experiments with Google

Experiments with Google

- 체험해 볼 사이트 (Search로 찾기)
 - AI + DRAWING : Quick, Draw!
 - AUTODRAW (화면 맨 아래)
 - SEMI-CONDUCTOR (카메라 필요)
 - 구글 쉐도우 아트
- 다른 사이트
 - Which face is real?
 - 크롬 뮤직랩
 - AI + LEARNING : Teachable Machine (3일차)
 - Deep Dream (3일차)

Which face is real?

- 실제 얼굴 사진 맞추기
 - https://www.whichfaceisreal.com/

Al Experiments

- Quick Draw : 낙서한 그림을 맞추는 인공지능
 - Quick, Draw! (quickdraw.withgoogle.com)

Al Experiments

- AutoDraw : 딥러닝 기반의 인공지능 그리기 프로그램
 - AutoDraw https://www.autodraw.com/

각자 해보기

- 세미컨덕터 : 자신만의 오케스트라 지휘하기 (카메라 필요)
 - <u>Semi-Conductor (semiconductor.withgoogle.com)</u>

각자 해보기

- 구글 쉐도우 아트 : 손으로 십이지간 동물 표현하기 (카메라 필요)
 - https://shadowart.withgoogle.com

크롬 뮤직랩

- 14개의 인공지능 기반 음악 프로그램
 - Chrome Music Lab (chromeexperiments.com)
 - 송메이커, 칸딘스키, 피아노 롤 추천

다음 시간

- 2일차 (7.26, 수) : 수업 없어요
- 3일차 (7.27, 목)
 - 수업 오후 2시에 시작해서 4시간 수업 (2:00~5:50)
- 구글 코랩에 접속하여 로그인해보기
 - 구글에서 '구글코랩 ' 이라고 검색
 - https://colab.research.google.com/