

AMENDMENTS TO THE CLAIMS

1. (currently amended) A process for preparing silicon-bridged metallocene compounds of formula (I):

wherein (SiR^1_2) is a divalent group bridging the two Cp rings, the R^1 groups, equal to or different from each other, are hydrogen atoms, or linear or branched, saturated or unsaturated C_1-C_{20} alkyl, C_3-C_{20} cycloalkyl, C_6-C_{20} aryl, C_7-C_{20} alkylaryl or C_7-C_{20} arylalkyl groups, two R^1 can optionally join to form a 3-7 membered ring;

Cp , equal to or different from each other, is a substituted or unsubstituted cyclopentadienyl group, optionally condensed to one or more substituted or unsubstituted, saturated, unsaturated or aromatic rings, containing from 4 to 6 carbon atoms, optionally containing one or more heteroatoms;

M is a transition metal belonging to group 3, 4, 5, 6 or to the lanthanide or actinide groups of the Periodic Table of the Elements (IUPAC version);

the substituents L , equal to or different from each other, are monoanionic sigma ligands selected from the group consisting of linear or branched, saturated or unsaturated C_1-C_{20} alkyl, C_3-C_{20} cycloalkyl, C_6-C_{20} aryl, C_7-C_{20} alkylaryl and C_7-C_{20} arylalkyl groups, optionally containing one or more Si or Ge atoms;

q is an integer ranging from 0 to 2, being equal to the oxidation state of the metal M minus 2; said process comprises the following steps:

- a) reacting, at a temperature of between $-10^\circ C$ and $70^\circ C$, a ligand of formula $(Y-Cp)(SiR^1_2)(Cp-Y)$ with about 2 molar equivalents of an alkylating agent of formula TH_w , L_jB or $LMgL'$, wherein ~~Cp, R¹, and L have the meaning reported above;~~ T is lithium, sodium or potassium, H is an hydrogen atom, w is 0 or 1, when w is 0 the compound TH_w is metallic lithium, sodium or potassium, when w is 1 the compound of formula TH_w is an hydride of lithium, sodium or potassium; L' is an halogen atom selected from chlorine, bromine and iodine; B is an alkali or alkali-earth metal; and j is 1 or 2, j being equal to 1 when B is an alkali metal, and j being equal to 2 when B is an

alkali-earth metal; the groups Y, the same or different from each other, are suitable leaving groups;

- b) after the reaction has been completed, adding at least q molar equivalents of an alkylating agent of formula L_jB or $LMgL'$; and
- c) reacting, at a temperature of between $-10^{\circ}C$ and $70^{\circ}C$, the product obtained from step b) with at least 1 molar equivalent of a compound of formula ML'_s , wherein ~~M have the meaning reported above~~; s is an integer corresponding to the oxidation state of the metal and ranges from 3 to 6; and L' is an halogen atom selected from chlorine, bromine and iodine.

2. (currently amended) The process according to claim 1, for preparing a silicon-bridged metallocene compound of formula (II):

(II)

wherein:

~~M, L, q and R⁺ have the meaning reported in claim 1;~~

R^2 , equal to or different from each other, are hydrogen atoms or linear or branched, saturated or unsaturated C₁-C₂₀-alkyl, C₃-C₂₀-cycloalkyl, C₆-C₂₀-aryl, C₇-C₂₀-alkylaryl or C₇-C₂₀-arylalkyl radicals, optionally containing heteroatoms belonging to groups 13-17 of the Periodic Table of the Elements;

R^3 , R^4 , R^5 , R^6 and R^7 , equal to or different from each other, are hydrogen atoms or linear or branched, saturated or unsaturated C₁-C₂₀-alkyl, C₃-C₂₀-cycloalkyl, C₆-C₂₀-aryl, C₇-C₂₀-alkylaryl or C₇-C₂₀-arylalkyl radicals, optionally containing heteroatoms belonging to

groups 13-17 of the Periodic Table of the Elements; two vicinal R³, R⁴, R⁵, R⁶ and R⁷ can also form one or more condensed 5 or 6 membered saturated or unsaturated rings optionally containing heteroatoms belonging to groups 13-16 of the Periodic Table of the Elements, said rings can bear alkyl substituents;

said process comprises the following steps:

- a) reacting, at a temperature of between -10°C and 70°C, a ligand of formula (III)

(III)

or one of its double bond isomers;

~~wherein R¹, R², R³, R⁴, R⁵, R⁶ and R⁷ have the meaning described above;~~ with about 2 molar equivalents of an alkylating agent of formula TH_w, L_jB or LMgL', wherein L has the meaning reported above; T is lithium, sodium or potassium, H is an hydrogen atom, w is 0 or 1, when w is 0 the compound TH_w is metallic lithium, sodium or potassium, when w is 1 the compound of formula TH_w is an hydride of lithium, sodium or potassium, L' is an halogen atom selected from chlorine, bromine and iodine; B is an alkali or alkali-earth metal; and j is 1 or 2, j being equal to 1 when B is an alkali metal, and j being equal to 2 when B is an alkali-earth metal; the groups Y, the same or different are suitable leaving groups;

- b) after the reaction has been completed, adding at least q molar equivalents, of a compound of formula L_jB or LMgL'; and
- c) reacting, at a temperature of between -10°C and 70°C, the product obtained from step b) with at least 1 molar equivalent of a compound of formula ML'_s, wherein M have the meaning reported above; s is an integer corresponding to the oxidation state of the metal

and ranges from 3 to 6; and L' is an halogen atom selected from chlorine, bromine and iodine.

3. (currently amended) The process according to ~~claims~~^{claim} 1-~~or~~², for preparing a silicon-bridged metallocene compound of formula (IV):

(IV)

wherein:

M, L, q, R¹, R², R³, R⁵, R⁶ and R⁷ have the meaning described in claims 1 or 2; R², equal to or different from each other, are hydrogen atoms or linear or branched, saturated or unsaturated C₁-C₂₀-alkyl, C₃-C₂₀-cycloalkyl, C₆-C₂₀-aryl, C₇-C₂₀-alkylaryl or C₇-C₂₀-arylalkyl radicals, optionally containing heteroatoms belonging to groups 13-17 of the Periodic Table of the Elements;

R³, R⁴, R⁵, R⁶ and R⁷, equal to or different from each other, are hydrogen atoms or linear or branched, saturated or unsaturated C₁-C₂₀-alkyl, C₃-C₂₀-cycloalkyl, C₆-C₂₀-aryl, C₇-C₂₀-alkylaryl or C₇-C₂₀-arylalkyl radicals, optionally containing heteroatoms belonging to groups 13-17 of the Periodic Table of the Elements; two vicinal R³, R⁴, R⁵, R⁶ and R⁷ can also form one or more condensed 5 or 6 membered saturated or unsaturated rings optionally containing heteroatoms belonging to groups 13-16 of the Periodic Table of the Elements, said rings can bear alkyl substituents;

and R⁸ is a hydrogen atom, or a linear or branched, saturated or unsaturated C₁-C₂₀-alkyl, C₃-C₂₀-cycloalkyl, C₆-C₂₀-aryl, C₇-C₂₀-alkylaryl or C₇-C₂₀-arylalkyl radical, optionally containing heteroatoms belonging to groups 13-17 of the Periodic Table of the Elements; said process comprises the following steps;

a) reacting, at a temperature of between -10°C and 70°C, a ligand of formula (V)

(V)

or one of its double bond isomers;

wherein R¹, R², R³, R⁴, R⁵, R⁶, R⁷ and R⁸ have the meaning described above;

with about 2 molar equivalents of an alkylating agent of formula TH_w, L_jB or LMgL', wherein L has the meaning reported above; T is lithium, sodium or potassium, H is an hydrogen atom, w is 0 or 1, when w is 0 the compound TH_w is metallic lithium, sodium or potassium, when w is 1 the compound of formula TH_w is an hydride of lithium, sodium or potassium, L' is an halogen atom selected from chlorine, bromine and iodine; B is an alkali or alkali-earth metal; and j is 1 or 2, j being equal to 1 when B is an alkali metal, and j being equal to 2 when B is an alkali-earth metal; the groups Y, the same or different from each other, are suitable leaving groups;

- b) after the reaction has been completed, adding at least q molar equivalents of a compound of formula L_jB or $LMgL'$; and
- c) reacting, at a temperature of between $-10^{\circ}C$ and $70^{\circ}C$, the product obtained from step b) with at least 1 molar equivalent of a compound of formula ML_s , wherein M have the meaning reported above; s is an integer corresponding to the oxidation state of the metal and ranges from 3 to 6; and L' is an halogen atom selected from chlorine, bromine and iodine.

4. (currently amended) The process according to anyone of claimsclaim 1 to 3 wherein step b) is carried out in a time ranging from 1 minute to 6 hours after step a).
5. (currently amended) The process according to anyone of claimsclaim 1 to 4 wherein Y is a hydrogen atom or a $-SiR_3$ or $-SnR_3$ group, wherein the groups R are linear or branched saturated or unsaturated C_1-C_{20} -alkyl, C_3-C_{20} -cycloalkyl, C_6-C_{20} -aryl, C_7-C_{20} -alkylaryl or C_7-C_{20} -arylalkyl radicals.
6. (currently amended) The process according to anyone of claimsclaim 1 to 5 wherein the metal M is Ti, Zr or Hf.
7. (currently amended) The process according to anyone of claimsclaim 1 to 6 wherein the compounds ML_s are $ZrCl_4$, $ZrBr_4$, ZrF_4 , $HfCl_4$, $HfBr_4$, HfF_4 , $TiCl_4$, $TiBr_4$ and TiF_4 [;].
8. (currently amended) The process according to anyone of claimsclaim 1 to 7 wherein in step b) at least $1+q$ molar equivalents of a compound of formula L_jB or $LMgL'$ wherein L, L' and B have the meaning as described in claim 1 is added.
9. (currently amended) The process according to anyone of claimsclaim 1 to 8 wherein step a) and b) are carried out at a temperature ranging from $-5^{\circ}C$ and $+55^{\circ}C$.
10. (currently amended) The process according to anyone of claimsclaim 1 to 9 wherein step c) is carried out at a temperature ranging from $0^{\circ}C$ and $60^{\circ}C$.