

Hoofdstuk 1 Computers en gegevens

Computersystemen (MBI26A)

- Verwijzingen naar de hardware
- Binaire voorstelling van integers
- Binaire voorstelling van tekst
- Binaire voorstelling van reals

Gegevens

Gegevensvoorstelling

Mensen slaan complexe data op als neuronverbindingen in

de hersenen

- Computers gebruiken bits om data op te slaan
 - 0 of 1

- <u>Binary Digit</u> (bit)
- Bijvoorbeeld:
 - Het licht is uit (0) of aan (1)
 - Een auto is rood (0) of geel (1)
 - Een boek in de bib is aanwezig (0) of uitgeleend (1)
 - ...

Meer mogelijkheden?

```
0+
000
001
     0-
010
    A+
011
     A-
100
     B+
101
      B-
110
     AB+
111
     AB-
```

Context van het bitpatroon is belangrijk!

Bits opslaan

Processor en geheugen: transistors

Harde schijf: magnetische lading

CD: een putje of geen putje

•

Instructies

- Commando's die een processor kan uitvoeren
 - Tel dit getal op bij dat getal
 - Kopieer dit getal naar daar
 - Vergelijk deze getallen
 - ...

Registers

- Stukjes geheugen in een processor
- Bepaalde lengte (8, 16, 32, 64, 128 bits...)
- Inhoud kan als invoer/uitvoer dienen voor een instructie

- Intel x86-processoren hebben registers (EAX, EBX, ECX, ...)
 van 32 bits.
 - Register EAX bevat 00011110011011101011101101101

Verbindingen

- Nodig om te kunnen kopiëren.
- Sommige registers zijn direct met mekaar verbonden

Kopieren via Directe Verbinding

Processor krijgt een kopieerbevel

Busverbindingen

Parallel t.o.v. Serieel

- Parallel: meerdere bits tezelfdertijd
- Serieel: bits na mekaar over dezelfde geleider

Laatste bit;

Voorlaatste bit;

H1: Computers en gegevens

- Verwijzingen naar de hardware
- Binaire voorstelling van integers
- Binaire voorstelling van tekst
- Binaire voorstelling van reals

Natuurlijke Getallen

- Decimaal: 10 cijfers
 - **0**, 1, 2, ... 9
 - Getallen groter dan 9, meerdere cijfers achter mekaar:
 - $-4506 = 4x10^3 + 5x10^2 + 0x10^1 + 6x10^0$
- Binair: 2 cijfers
 - **0**, 1
 - Getallen groter dan 1, meerdere bits achter mekaar:
 - 10011 = 1x2⁴ + 0x2³ + 0x2² + 1x2¹ + 1x2⁰ = (19)_d

Leidende Nullen

•
$$10011 = 1x2^4 + 0x2^3 + 0x2^2 + 1x2^1 + 1x2^0$$

= $0x2^5 + 1x2^4 + 0x2^3 + 0x2^2 + 1x2^1 + 1x2^0$
= $0x2^6 + 0x2^5 + 1x2^4 + 0x2^3 + 0x2^2 + 1x2^1 + 1x2^0$

- Dus: 10011 = 010011 = 0010011 = ...
 - Net zoals in decimaal!

Omzetten

- Van binair naar decimaal: OK
 - 10011 = 1x2⁴ + 0x2³ + 0x2² + 1x2¹ + 1x2⁰ = (19)_d
- Van decimaal naar binair?
 - Omgekeerde aanpak!

131 =

Binaire Optelling

Tafel:

0 0 1 1

<u>0</u> <u>1</u> <u>0</u> <u>1</u>

0 1 1 10

Met overdracht

(1) (1) (1) (1)

0 0 1 1

<u>0</u> <u>1</u> <u>0</u> <u>1</u>

1 10 10 11

Binaire Optelling

• Vb.

Wat is het dubbel van een getal?

```
• 10111 = 1x2^4 + 0x2^3 + 1x2^2 + 1x2^1 + 1x2^0
```

```
• 2x 10111 =
2x (1x2^{4}+0x2^{3}+1x2^{2}+1x2^{1}+1x2^{0}) =
1x2^{5}+0x2^{4}+1x2^{3}+1x2^{2}+1x2^{1}+0x2^{0}
= 101110
```

x2 : achteraan een 0 bijvoegen

Binair Rekenen

- Binair naar decimaal √
- Decimaal naar binair √
- Binaire optelling √
- Binaire vermenigvuldiging met 2 √
- Ook binaire aftrekking, vermenigvuldiging, deling, etc. bestaat
- Nadeel binair: lang!
 - \bullet (9999)_d = (10011100001111)_b

Hexadecimaal

16 cijfers:
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F

• Vb. :
$$(A5B)_h = Ax16^2 + 5x16^1 + Bx16^0$$

= $(2651)_d$

Hexadecimaal

Verband met binair stelsel.

d.	h.	b.	d.	h.	b.			
0	0	0000	8	8	1000			
1	1	0001	9	9	1001			
2	2	0010	10	A	1010			
3	3	0011	11	B	1011			
4	4	0100	12	C	1100			
5	5	0101	13	D	1101			
6	6	0110	14	E	1110			
7	7	0111	15	F	1111			

Hexadecimaal

Wat is de binaire voorstelling van A5B?

De b.v. v. Bx16° is:

De b.v. v. 5x16¹ is : 0101 0000

De b.v. v. Ax16² is : **1010 0000 0000**

De b.v. v. A5B is: **1010 0101 1011**

Hexadecimaal: afkorting voor binair.

Hexadecimale Optelling

Vb.

A + 9 =
$$(19)_d$$
 = $(13)_h$
1+3+B = $(15)_d$ = F
C+D = $(25)_d$ = $(19)_h$

Negatieve Getallen

- In decimaal: + en -
- In binair: enkel 0 en 1!
 - voorstellen door 1
 - + voorstellen door 0
 - Waar? 1^e bit

Eis: we moeten werken met een vast aantal bits (bijv. een register)

Decimaal	Binair
-1	1 001
6	+ 0110
-7	1 111

Besluit: poging 1 werkt niet voor negatieve getallen

- Welke getallen stellen we voor?
 - **...,** -2, -1, 0, 1, 2, ...
 - Waar stoppen we? Hangt af van het aantal bits!
- Voor 4 bits: 2⁴ unieke binaire combinaties
 - 0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111, 1000, 1001, 1010, 1011, 1100, 1101, 1110
 - Plaats voor 8 negatieve en 8 niet-negatieve getallen (-8 tot 7 dus)

- Niet-negatieve getallen?
- Doe gewoon:

Merk op: elk niet-negatief getal begint met een 0-bit!

- Negatieve getallen?
- Hoe stellen we -1 voor? Door 1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111?

 Lumineus idee: bij welk getal moeten we 1 optellen om 0 te bekomen?

- $(-1)_d = (1111)_b$
- (-2)d = (????)b
 - Zelfde truc:

1110 +0001 1111

Decimaal	Binair
-1	1 111
6	+ 0110
5	0101

Besluit: poging 2 werkt voor alle gehele getallen

Negatieve Getallen

- Hoe vinden we de voorstelling van een negatief getal?
- Experiment:

a)	Neem een willekeurige bitrij	010110
b)	Neem het complement ervan	101001
c)	Tel beide op	111111
ď)	Wat is het resultaat?	$(-1)_{d}$

• 010110 + 101001 = 111111

Negatieve Getallen

- Vb.: wat is de binaire voorstelling van -9 (in 6 bits)
 - 1. Wat is de binaire voorstelling van +9? 001001
 - 2. Wat is het complement hiervan? 110110
 - 3. Wat is het complement+1? $110111 = (-9)_d$
- Vb. 2: welk getal is 101110?
 - Negatief getal, dus eerst de complementsregel toepassen!
 - 1. Wat is het complement hiervan? 010001
 - 2. Wat is het complement+1? 010010
 - 3. Welk getal is dit? (18)_d
 - Dus: originele getal was (-18)_d

Context

- Welk getal is (1100 0011)_b?
 - **195**
 - **-61**
 - **.**..?

Opgelet: aan een bitrij kan je niet zien wat ze betekent; de context is belangrijk!

Hogere Programmeertaal

 Een hogere programmeertaal laat je toe om de context van een bitrij te definiëren:

```
    uint i = 3000000000;
    int j = -587489;
    101100101101000001011111000000000
    1111111111111111110000100111111
```

2-complementsnotatie

H1: Computers en gegevens

- Verwijzingen naar de hardware
- Binaire voorstelling van integers
- Binaire voorstelling van tekst
- Binaire voorstelling van reals

Binaire Voorstelling van Tekst

- Computergeheugen: enkel bits
 - Hoe stellen we tekst voor?
- ASCII (<u>a</u>merican <u>s</u>tandard <u>c</u>ode for <u>i</u>nformation <u>i</u>nterchange)
 - (oude) standaard die letters en andere tekens mapt op getallen
 - Per karakter worden 8 bits (= byte) gebruikt
 - A 01000001
 - a 01100001
 - 1 00110001
 - ...

								De	C I	Hex	Char	Dec	Hex	Char	Dec	Hex	Char	Dec	Hex	Char
								128		30	Ç	160	AD	á	192	CO	L	224	E0	α
Dec	Hex	Char	Dec	Hex	Char	Dec	Hex	Char		Hex	Char	161	A1	ĺ	193	C1	-	225	E1	ß
)	0	NUL	32	20	Space	64	40	0	96	60	·	162 163	A2 A3	Ó Ú	194 195	C2 C3	Ţ	226 227	E2 E3	п
	1	SOH	33	21	I	65	41	A	97	61	a	164	A4	ñ	196	C4	- 5	228	E4	Σ
	2	STX	34	22	70	66	42	В	98	62	b	165	A5	Ñ	197	C5	+	229	E5	σ
	3	ETX	35	23	#	67	43	C	99	63	č	166	A6		198	C6	Ė	230	E6	μ
	4	EOT	36	24	\$	68	44	D	100	64	ď	167	A7	0	199	C7	ŀ	231	E7	1
	5	ENQ	37	25	%	69	45	E	101	65	6	168	A8	6	200	C8	Ŀ	232	E8	Φ
	6	ACK	38	26	8.	70	46	F	102	66	f	169	A9	-	201	C9	F	233	E9	Θ
	7	BEL	39	27		71	47	G	103	67	0	170	AA	7	202	CA	¥	234	EA	Ω
	8	BS	40	28	V.	72	48	н	104	68	ĥ	171	AB	V2	203	CB	Ŧ	235	EB	ō
	9	HT	41	29	3	73	49	1	105	69	ï	172	AC AD	1/4	204 205	CC	F	236	EC	00
0	DA.	LF	42	2A		74	44	3		6A	i	173 174	AE	1	206	CD	÷	237 238	ED EE	φ 3
1	OB	VT	43	2B	+	75	4B	K	107	6B	k	175	AF	>	207	CF	Ī	239	EF	ñ
2	OC.	FF	44	2C		76	4C	L	108	6C	î	176	B0		208	DO	1	240	FO	=
3	OD	CR	45	2D	<u></u>	77	4D	M	2000000	6D	m	177	B1		209	D1	7	241	F1	±
4	Œ	so	46	2E		78	4E	N	110	6E	n	178	B2		210	D2	T	242	F2	≥
5	OF	SI	47	2F	1	79	4F	0	111	6F	0	179	B3		211	D3	L	243	F3	≤
6	10	DLE	48	30	0	80	50	P	112	70	р	180	B4	4	212	D4	Ö	244	F4	ı
7	11	DC1	49	31	1	81	51	Q	E304.9000	71	q	181	85	4	213	D5	F	245	F5	1
8	12	DC2	50	32	2	82	52	R	114	72	r	182	B6	1	214	D6	r	246	F6	+
9	13	DC3	51	33	3	83	53	S	115	73	s	183	B7	7	215	D7	†	247	F7	~
0	14	DC4	52	34	4	84	54	T	116	74	t	184 185	B8 B9	7	216 217	D8 D9	+	248 249	F8 F9	**
1	15	NAK	53	35	5	85	55	U	117	75	u	186	BA	1	218	DA	-	250	FA	0.0
2	16	SYN	54	36	6	86	56	V	118	76	٧	187	BB	3	219	DB	i i	251	FB	4
3	17	ETB	55	37	7	87	57	W	119	77	w	188	BC	j	220	DC	12	252	FC	
4	18	CAN	56	38	8	88	58	×	120	78	×	189	BD	1	221	DD	ī	253	FD	2
5	19	EM	57	39	9	89	59	Y	121	79	у	190	BE	4	222	DE	ì	254	FE	
6	1A	SUB	58	ЗА	9	90	5A	Z	122	7A	z	191	BF	1	223	DF	•	255	FF	
7	1B	ESC	59	38		91	5B	1	123	78	{									
8	1C	FS	60	3C	<	92	5C	1	124	7C	1									
9	1D	GS	61	3D	=	93	5D	1	35 ENG 543	70	}									
0	1E	RS	62	3E	>	94	5E	^	126	7E	24									
1	1F	US	63	3F	?	95	5F	-	127	7F	DEL									

Unicode

- Hoeveel ascii-tekens?
 - Oorspronkelijk eerste bit = 0: Latin
 - Ook â, é, è, ü, ...: eerste bit 1, Latin-1
 - Veel te weinig
- Unicode: ondersteuning voor meer karakters
 - UTF-16: 2 bytes per karakter
 - UTF-32: 4 bytes per karakter
 - UTF-8: variabel aantal bytes per karakter

Characters, Symbols and the Unicode Miracle

- Opeenvolging van karakters: string
- Vb.: "Het Spaanse graan heeft de orkaan ..." staat in het geheugen als: 48 65 74 20 53 70 61 61 6E 73 65 20 ... in opeenvolgende bytes

Opgelet: als een gebruiker een getal intypt, komt dit getal in het geheugen in ASCII-vorm; met deze bytes kan je niet rekenen!

ASCII en Binaire Getallen

- Stel, de gebruiker typt het getal 1811 in
 - In het geheugen komen de bytes 31 38 31 31
 - In binair: 00110001 00111000 00110001 00110001
 - Dit is *niet* de binaire voorstelling van 1811!
- Eerst omzetten naar de binaire voorstelling
 - $(31\ 38\ 31\ 31)_{ascii} = (1811)_d = (11100010011)_b$
- Dan rekenen...

H1: Computers en gegevens

- Verwijzingen naar de hardware
- Binaire voorstelling van integers
- Binaire voorstelling van tekst
- Binaire voorstelling van reals
 - Behoort niet tot de leerstof