SN74LVC138A-Q1 3-LINE TO 8-LINE DECODER/DEMULTIPLEXER

SCAS708B-SEPTEMBER 2003-REVISED FEBRUARY 2008

FEATURES

- Qualified for Automotive Applications
- ESD Protection Exceeds 2000 V Per MIL-STD-883, Method 3015; Exceeds 200 V Using Machine Model (C = 200 pF, R = 0)
- Operates From 2 V to 3.6 V
- Inputs Accept Voltages to 5.5 V
- Max t_{pd} of 5.8 ns at 3.3 V
- Typical V_{OLP} (Output Ground Bounce) < 0.8 V at V_{CC} = 3.3 V, T_A = 25°C
- Typical V_{OHV} (Output V_{OH} Undershoot) > 2 V at V_{CC} = 3.3 V, T_A = 25°C

DESCRIPTION/ORDERING INFORMATION

The SN74LVC138A 3-line to 8-line decoder/demultiplexer is designed for 2.7-V to 3.6-V V_{CC} operation.

The device is designed for high-performance memory-decoding or data-routing applications requiring very short propagation delay times. In high-performance memory systems, this decoder minimizes the effects of system decoding. When employed with high-speed memories utilizing a fast enable circuit, delay times of this decoder and the enable time of the memory usually are less than the typical access time of the memory. This means that the effective system delay introduced by the decoder is negligible.

The conditions at the binary-select inputs and the three enable inputs select one of eight output lines. Two active-low enable inputs and one active-high enable input reduce the need for external gates or inverters when expanding. A 24-line decoder can be implemented without external inverters, and a 32-line decoder requires only one inverter. An enable input can be used as a data input for demultiplexing applications.

Inputs can be driven from either 3.3-V or 5-V devices. This feature allows the use of this device as a translator in a mixed 3.3-V/5-V system environment.

ORDERING INFORMATION(1)

T _A	PACKAGE	(2)	ORDERABLE PART NUMBER	TOP-SIDE MARKING
40°C to 425°C	SOIC - D	Reel of 2500	SN74LVC138AQDRQ1	L138AQ1
–40°C to 125°C	TSSOP – PW	Reel of 2000	SN74LVC138AQPWRQ1	L138AQ1

⁽¹⁾ For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com.

(2) Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

FUNCTION TABLE

ENA	BLE IN	PUTS	SELI	ECT INF	PUTS				OUTI	PUTS			
G1	G2A	G2B	С	В	Α	Y0	Y1	Y2	Y3	Y4	Y5	Y6	Y7
X	Н	Χ	Χ	Χ	Χ	Н	Н	Н	Н	Н	Н	Н	Н
X	Χ	Н	Χ	Χ	Χ	Н	Н	Н	Н	Н	Н	Н	Н
L	Χ	Χ	Χ	Χ	Χ	Н	Н	Н	Н	Н	Н	Н	Н
Н	L	L	L	L	L	L	Н	Н	Н	Н	Н	Н	Н
Н	L	L	L	L	Н	Н	L	Н	Н	Н	Н	Н	Н
Н	L	L	L	Н	L	Н	Н	L	Н	Н	Н	Н	Н
Н	L	L	L	Н	Н	Н	Н	Н	L	Н	Н	Н	Н
Н	L	L	Н	L	L	Н	Н	Н	Н	L	Н	Н	Н
Н	L	L	Н	L	Н	Н	Н	Н	Н	Н	L	Н	Н
Н	L	L	Н	Н	L	Н	Н	Н	Н	Н	Н	L	Н
Н	L	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L

LOGIC DIAGRAM (POSITIVE LOGIC)

1.3 Common Anode 0.56 Inch (14.20mm)

PRODUCT DESCRIPTION
(1) 0.56 Inch (14.20mm) Digit Height
(2) Low current operation
(3) Excellent color and font characteristics
(4) Colors: White, blue, red, yellow and green
(5) Gray or black color background
(6) Common Anode
(7) RoHs Compliant Part

Absolute Maximum Rating (Ta = 25℃)

PARAMETER	RED	AMBER	GREEN	BLUE	WHITE	UNITS
DC Forward Current Per Segment	30	30	25	30	20	mA
Peak Current Per Segment (1)	70	50	50	25	25	mA
Avg. Forward Current (Pulse Operation) Per Segment	30	30	25	25	25	mA
Derating Linear From 25℃ Per Segment			0.3			mA/℃
Reverse Voltage (2)			3			V
Operating Temperature			-25 to +85			$^{\circ}$
Storage Temperature			-30 to +85			$^{\circ}$

- (1) Pulse conditions of 1/10 duty and 0.1msec width, for long operating life, max. of 20mA recommended
- (2) Reverse biasing of the dot matrix is not recommend, will cause damage to the leds

Electro-optical Characteristics (Ta = 25℃)

PART NUMBER	DICE	PEAK	MAX. REVERSE	VF	VF (V)	LUMINOUS
	MATERIAL	WAVELENGTH	CURRENT /	(V)	MAX.	INTENSITY /
	(COLOR)	(nm)	SEGMENT (uA)	TYP		SEGMENT
						AVERAGE (IF =
						10mA)
LEDS5612AUR11	AlGaAs Red	660	10	1.8	2.3	10,000 ucd
LEDS5612TB11	InGaN Blue	468	10	3.3	4.0	28,000 ucd
LEDS5612YG11	GaP Green	568	10	1.9	2.3	12,000 ucd
LEDS5612UY11	AllnGaP	590	10	1.8	2.3	12,000 ucd
	Amber					
LEDS5612TW11	InGaN White	5,500K	10	3.3	4.0	28,000 ucd

DM7446A, DM5447A/DM7447A BCD to 7-Segment Decoders/Drivers

General Description

The 46A and 47A feature active-low outputs designed for driving common-anode LEDs or incandescent indicators directly. All of the circuits have full ripple-blanking input/output controls and a lamp test input. Segment identification and resultant displays are shown on a following page. Display patterns for BCD input counts above nine are unique symbols to authenticate input conditions.

All of the circuits incorporate automatic leading and/or trailing-edge, zero-blanking control (RBI and RBO). Lamp test (LT) of these devices may be performed at any time when the BI/RBO node is at a high logic level. All types contain

an overriding blanking input (BI) which can be used to control the lamp intensity (by pulsing) or to inhibit the outputs.

Features

- All circuit types feature lamp intensity modulation capability
- Open-collector outputs drive indicators directly
- Lamp-test provision
- Leading/trailing zero suppression

Connection Diagram

TL/F/6518-1

Order Number DM5447AJ, DM7446AN or DM7447AN See NS Package Number J16A or N16E

Absolute Maximum Ratings (Note)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage 7V
Input Voltage 5.5V
Operating Free Air Temperature Range

 Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter		DM7446A		Units
Cymbol	T drameter	Min	Nom	Max	Oilles
V _{CC}	Supply Voltage	4.75	5	5.25	V
V_{IH}	High Level Input Voltage	2			V
V _{IL}	Low Level Input Voltage			0.8	V
V _{OH}	High Level Output Voltage (a thru g)			30	V
ГОН	High Level Output Current (BI/RBO)			-0.2	μΑ
l _{OL}	Low Level Output Current (a thru g)			40	mA
l _{OL}	Low Level Output Current (BI/RBO)			8	mA
T _A	Free Air Operating Temperature	0		70	°C

'46A Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Cone	ditions	Min	Typ (Note 1)	Max	Units
VI	Input Clamp Voltage	V _{CC} = Min, I _I =	= -12 mA			-1.5	V
V _{OH}	High Level Output Voltage (BI/RBO)	$V_{CC} = Min$ $I_{OH} = Max$		2.4	3.7		V
I _{CEX}	High Level Output Current (a thru g)	$V_{CC} = Max, V_{C}$ $V_{IL} = Max, V_{IH}$	•			250	μΑ
V _{OL}	Low Level Output Voltage	$V_{CC} = Min, I_{OL}$ $V_{IH} = Min, V_{IL}$			0.3	0.4	V
II	Input Current @ Max Input Voltage	V _{CC} = Max, V _I (Except BI/RBC				1	mA
l _{IH}	High Level Input Current	V _{CC} = Max, V _I (Except BI/RBC				40	μΑ
	Low Level Input	V _{CC} = Max	BI/RBO			-4	mA
	Current	$V_I = 0.4V$	Others			-1.6	1 111/2
los	Short Circuit Output Current	V _{CC} = Max (BI	/RBO)			-4	mA
Icc	Supply Current	V _{CC} = Max (Note 2)			60	103	mA

Note 1: All typicals are at $V_{CC} = 5V$, $T_A = 25$ °C.

Note 2: $I_{\mbox{\footnotesize CC}}$ is measured with all outputs open and all inputs at 4.5V.

MOC3020 THRU MOC3023 OPTOCOUPLERS/OPTOISOLATORS

SOES025 - OCTOBER 1986 - REVISED OCTOBER 1995

- 250 V Phototriac Driver Output
- Gallium-Arsenide-Diode Infrared Source and Optically-Coupled Silicon Traic Driver (Bilateral Switch)
- UL Recognized ... File Number E65085
- High Isolation ... 7500 V Peak
- Output Driver Designed for 220 V ac
- Standard 6-Terminal Plastic DIP
- Directly Interchangeable with Motorola MOC3020, MOC3021, MOC3022, and MOC3023
- Direct Replacements for:
 - TRW Optron OPI3020, OPI3021, OPI3022, and OPI3023;
 - General Instrument MCP3020, MCP3021, and MCP3022;
 - General Electric GE3020, GE3021, GE3022, and GE3023

† Do not connect this terminal NC – No internal connection

logic diagram

absolute maximum ratings at 25°C free-air temperature (unless otherwise noted)†

Input-to-output peak voltage, 5 s maximum duration, 60 Hz (see Note 1)	7.5 kV
Input diode reverse voltage	3 V
Input diode forward current, continuous	50 mA
Output repetitive peak off-state voltage	400 V
Output on-state current, total rms value (50-60 Hz, full sine wave): T _A = 25°C	100 mA
$T_A = 70^{\circ}C$	50 mA
Output driver nonrepetitive peak on-state current ($t_w = 10 \text{ ms}$, duty cycle = 10%, see Figure 7).	1.2 A
Continuous power dissipation at (or below) 25°C free-air temperature:	
Infrared-emitting diode (see Note 2)	100 mW
Phototriac (see Note 3)	300 mW
Total device (see Note 4)	330 mW
Operating junction temperature range, T _J –40	°C to 100°C
Storage temperature range, T _{stq} 40	°C to 150°C
Lead temperature 1.6 (1/16 inch) from case for 10 seconds	260°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. Input-to-output peak voltage is the internal device dielectric breakdown rating.
 - 2. Derate linearly to 100°C free-air temperature at the rate of 1.33 mW/°C.
 - 3. Derate linearly to 100°C free-air temperature at the rate of 4 mW/°C.
 - 4. Derate linearly to 100°C free-air temperature at the rate of 4.4 mW/°C.

SOES025 - OCTOBER 1986 - REVISED OCTOBER 1995

electrical characteristics at 25°C free-air temperature (unless otherwise noted)

	PARAMETER		TEST (CONDITIONS	MIN	TYP	MAX	UNIT
I _R	Static reverse current		V _R = 3 V			0.05	100	μΑ
٧F	Static forward voltage		I _F = 10 mA			1.2	1.5	٧
I(DRM)	Repetitive off-state current	, either direction	$V_{(DRM)} = 400 V,$	See Note 5		10	100	nA
dv/dt	Critical rate of rise of off-sta	ate voltage	See Figure 1			100		V/μs
dv/dt(c)	Critical rate of rise of comm	nutating voltage	I _O = 15 mA,	See Figure 1		0.15		V/μs
		MOC3020				15	30	
l	Input trigger current,	MOC3021	Output aupply valta	an - 3 \/		8	15	mA
'FT	either direction	MOC3022	Output supply volta	ge = 3 v		5	10	mA
		MOC3023				3	5	
V _{TM}	Peak on-state voltage, eith	er direction	I _{TM} = 100 mA			1.4	3	٧
lΗ	Holding current, either dire	ction				100		μΑ

NOTE 5: Test voltage must be applied at a rate no higher than 12 $V/\mu s$.

PARAMETER MEASUREMENT INFORMATION

NOTE A. The critical rate of rise of off-state voltage, dv/dt, is measured with the input at 0 V. The frequency of Vin is increased until the phototriac turns on. This frequency is then used to calculate the dv/dt according to the formula:

$$dv/dt = 2 \sqrt{2\pi f V_{in}}$$

The critical rate of rise of commutating voltage, dv/dt(c), is measured by applying occasional 5-V pulses to the input and increasing the frequency of Vin until the phototriac stays on (latches) after the input pulse has ceased. With no further input pulses, the $frequency of V_{in} is then gradually decreased until the phototriac turns off. The frequency at which turn-off occurs may then be used the frequency of V_{in} is then gradually decreased until the phototriac turns off. The frequency at which turn-off occurs may then be used the frequency of V_{in} is then gradually decreased until the phototriac turns off. The frequency at which turn-off occurs may then be used to be used$ to calculate the dv/dt(c) according to the formula shown above.

Figure 1. Critical Rate of Rise Test Circuit

TYPICAL CHARACTERISTICS

EMITTING-DIODE TRIGGER CURRENT (NORMALIZED)

ON-STATE CHARACTERISTICS 800 Output $t_W = 800 \mu s$ I_F = 20 mA 600 f = 60 Hz ITM - Peak On-State Current - mA $T_A = 25^{\circ}C$ 400 200 0 -200-400-600 -800 -2 0 2 -3 -1 3

Figure 2

Figure 3

V_{TM} - Peak On-State Voltage - V

NONREPETITIVE PEAK ON-STATE CURRENT

APPLICATIONS INFORMATION

Figure 5. Resistive Load

Figure 6. Inductive Load With Sensitive-Gate Triac

Figure 7. Inductive Load With Nonsensitive-Gate Triac

2M240 Series

ABSOLUTE MAXIMUM RATING

	Minimum	Maximum	
Filament voltage (Note 1)	2.85	3.75	V
Cathode preheating time	0	-	S
Peak anode voltage	-	4.5	kV
Average anode current	-	350	mAdc
Peak anode current	-	1.2	Α
Anode input power	-	1.4	kW
Load VSWR (Note 2)	-	4	
Anode temperature (Note 3)	-	300	°C
Antenna seal temperature (Note 4)	-	320	°C
Capacitor temperature (Note 5)	-	120	°C
Storage temperature	-30	60	°C

The maximum ratings in this table which are interrelated should not be exceeded either individually or in combination under any worst case.

Even if the maximum ratings are not exceeded, reduced life can occur as the operating conditions approach to the maximum ratings.

TYPICAL OPERATION

Power supply: Single phase full wave rectified v	vithout filter	
Frequency	2460	MHz
Filament voltage	3.3	V
Peak anode voltage (Note 6)	4.0	kV
Average anode current	300	mAdc
Output power (matched load, Note 6)	850	W
Cooling air flow	800	?/min
Pressure drop (Approx.)	70	Pa

RIEKE DIAGRAM

Power supply: Single phase full wave rectified without filter

Filament voltage : 3.3 V

Average anode current : 300 mA (constant)

Peak anode voltage (Matched load) : 4.0 kV
Oscillating frequency (matched load) : 2460 MHz

Reference Plane (Antenna)

ABI-007-RC PIEZO INDICATOR

Specifications	ABI-007-RC
Rated voltage	12VDC
Operating voltage	3~16VDC
Rated current*	≥8mA
Sound output at 30cm*	S90dB
Resonant frequency	3700±500Hz
Tone	Continuous
Operating temperature	-30~+70°C
Storage temperature	-40~+85°C
Weight	5g
*Value applying at rated voltage (DC)	

Dimensions Unit: mm Tolerance: ±0.5mm

Features

ROHS compliant

PCB Thro hole mounted

Sealed base

- Black in colour
- With internal drive circuit Wave solderable and washable
- Housing material: Noryl

All data at 25°C unless otherwise specified

Alan Butcher Components Ltd

Unit 1 Beechwood Clump Farm Industrial Estate Tin Pot Lane Blandford Dorset DT11 7TD Telephone 01258 456360 Email sales@abcomponents.co.uk

www.abcomponents.co.uk

Alan Butcher Components

LG Turntable Motor: SP ELEMECH SSM-16HR 6549W1S011N

• Type: SSM16HR

• 3 watts

• 220-240 volts

• 50/60 Hz

Magnetic Locks

ML600DS

Dimensions:	L- 9.8in (250mm) W- 1.7in (42mm) D- 1.0in (26mm)
Armature Plate:	L- 7.3in (185mm) W- 1.5in (38mm) T- 0.5in (12.5mm)
Voltage:	12 / 24V DC
Current:	500mA/12V DC 250mA/24V DC
Holding Force:	600lbs. (272 kg)
Built-in Voltage Spike Suppressor	
CE Approved	

UL Approved