Подборка экзаменов по математике для экономистов. Магистратура миэф

Коллектив авторов

7 января 2013 г.

Содержание

1	2009	1
	1.1 12.01.2009	1
	1.2 retake, ????.2009	
	2010	3
	2.1 14.01.2010	3
	2011	5
	3.1 12.01.2011	5
	3.2 retake, ??.01.2011	6
	2012	7
	4.1 retake, 03.02.2012	7

1 2009

$1.1 \quad 12.01.2009$

Final exam consists of the two parts: A and B. Part A lasts for 110 minutes. Upon completion of that part the papers will be collected and the students will have 10 minutes break. Part B lasts for 70 minutes. Students should answer eight of the following nine questions: six from Part A and two from Part B. Points will be deducted for the insufficient explanation within your answers.

Part A. Answer all SIX questions of this section. Each question is worth 10 points.

- 1. The joint distribution of vector (X,Y) is given by $\mathbb{P}(X=i,Y=j)=0.1$ for $1\leqslant i\leqslant j\leqslant 4$. Find $\mathbb{E}(Y\mid X)$.
- 2. The random variable X is exponentially distributed with parameter λ . The random variable Y is exponentially distributed with parameter X. Find $\mathbb{E}(Y|X)$, $\mathbb{E}(Y)$ and $\mathrm{Var}(Y)$.
- 3. Let $Y_t = W_t^3 3tW_t$.
 - (a) Using Ito's lemma find dY_t
 - (b) Using your previous result find $\mathbb{E}(Y_t)$ and $\text{Var}(Y_t)$
- 4. Using a current value Hamiltonian maximize the integral

$$\int_0^2 e^{-t} \left(x - \frac{5}{2} x^2 - 2y^2 \right) dt$$

subject to the conditions $\dot{x} = y - x/2$, x(0) = 0, x(2) is free. Find x, y, μ .

5. Solve the bounded control problem

$$\int_0^T e^{-rt} (1-u)x \, dt \to \max$$

, subject to $\dot{x} = xu$, x(0) = 1, $0 \le u \le 1$, where 0 < r < 1.

6. Consider the following optimization problem

$$\sum_{0}^{\infty} u(a_t) \to \max$$

, subject to $\sum_{0}^{\infty} a_t \leqslant s, s > 0, a_t \geqslant 0.$

- (a) Show that if u(a) is increasing and strictly concave this problem has no solution
- (b) What happens if the sum in the maximization problem is changed to $\sum_{0}^{\infty} \delta^{t} u(a_{t})$, where $0 < \delta < 1$?

Part B. Answer two questions out of the three from this section. Each question is worth 20 points. Part B lasts for 70 minutes.

- 1. In the framework of the Black and Scholes model find the price at t = 0 of an asset that pays $\max\{0, \ln S_T\}$ at time T, where S_T denotes the price of one share at time T.
- 2. Let's consider the following system of stochastic differential equations

$$\begin{cases} dX_t = aX_t dt - Y_t dW_t \\ dY_t = aY_t dt + X_t dW_t \end{cases}$$

with initial conditions $X_0 = x_0$ and $Y_0 = y_0$

- (a) Find the solution of the form $X_t = f(t) \cos W_t$ and $Y_t = g(t) \sin W_t$
- (b) Prove that for any solution $D_t = X_t^2 + Y_t^2$ is nonstochastic
- 3. Consider the profit-maximizing problem for a representative competitive firm

$$\int_0^\infty (p - wn(t))q(t)e^{-rt} dt \to \max$$

, subject to (*) $\dot{x} = x(1-x) - q$, where the state variable x(t) represents a renewable stock resource (fish) that evolves according to the equation (*) and $q(t) = 2\sqrt{x(t)n(t)}$ is the extraction rate. Here n(y) is a labor effort with a constant wage rate w. The price of fish is assumed to be constant and equal p. The optimization problem is to choose n(t) to maximize the discounted profits, 0 < r < 1.

- (a) Derive necessary conditions
- (b) Draw the phase diagram for this problem with the fish stock and the multiplier labeled on the axes
- (c) Show that if p/w is sufficiently large the fish stock will be driven to zero, while p/w is low there is a steady-state with a positive stock

1.2 retake, ??.??.2009

Final exam consists of the two parts: A and B. Part A lasts for 110 minutes. Upon completion of that part the papers will be collected and the students will have 10 minutes break. Part B lasts for 70 minutes. Students should answer eight of the following nine questions: six from Part A and two from Part B. Points will be deducted for the insufficient explanation within your answers.

Part A. Answer all SIX questions of this section. Each question is worth 10 points.

- 1. In the first bag there balls numbered from 0 to 9, in the second bag there are balls numbered from 1 to 10. Two balls were selected. You know that one ball was selected from the first bag and one from the second one. You will select at random one ball from these two and you will know only its number. Let's denote its number by X and the number of the other of the two balls by Y.
 - Find $\mathbb{E}(Y \mid X)$, optimal strategy for risk-neutral player.
- 2. The random variable X is uniformly distributed on [0; a]. The random variable Y is uniformly distributed on [0; X].

Find $\mathbb{E}(Y \mid X)$, $\mathbb{E}(Y)$ and Var(Y).

- 3. Let $Y_t = \exp\left(-aW_t \frac{a^2}{2}t\right)$.
 - (a) Using Ito's lemma find dY_t
 - (b) Using your previous result find $\mathbb{E}(Y_t)$ and $\text{Var}(Y_t)$
- 4. Find extremals for the integral $\int_0^1 \left(\frac{1}{2}\dot{x}^2 + x\dot{x} + x\right) dt$ when x(0) = 0 and x(1) is chosen freely. 5. Solve the bounded control problem $\int_0^2 (2x 3u) dt \to \max$, subject to $\dot{x} = x + u$, x(0) = 5,
- $0 \le u \le 2$, where x(2) is free.
- 6. Consider the following optimization problem: maximize $\sum_{t=0}^{\infty} \beta^{t} u(c_{t})$, subject to $c_{t} + k_{t+1} = f(k_{t})$, $0 < \beta < 1$, where both the utility function u(t) and the production function f(k) have the standard properties of monotonicity and strict concavity. Let the state variable be k and denote the next period value of k as k'. Substitute c = f(k) - k' into utility function and write down the Bellman equation.
 - Using the formal differentiation of the Bellman equation with respect to k under the sign of max, and drawing FOC from Bellman equation, exclude the value function and find the equation which combines the values of u' and f' at the adjacent time periods.

Part B. Answer two questions out of the three from this section. Each question is worth 20 points. Part B lasts for 70 minutes.

- 1. In the framework of the Black and Scholes model find the price at t=0 of an asset that pays $\min\{M, \ln S_t\}$ at time T, where S_T denotes the price of one share at time T, M — arbitrary constant, specified at the moment of the issue.
- 2. The price of a share in euros is driven by the equation $dS = \sigma S dW + \alpha S dt$, the dollar/euro exchange rate is driven by the equation dU = bUdW + cUdt. Find the current price in dollars of a European call option with maturity date T, strike price K.
- 3. Consider the profit-maximizing problem for a representative competitive firm $\int_0^\infty (p-1)^{-1} dt$ $c(x(t))q(t)e^{-rt}dt \to \max$, subject to (*) $\dot{x}=1-x-q$, where the state variable x(t)<1represents a nonrenewable stock resource (oil) that depletes according to the equation (*) and q(t) is the extraction rate. Here c(x) is a cost function of the extraction that is defined by $c(x) = e^{-x}$. The price of oil is assumed to be constant and equal p where 1/e . Theoptimization problem is to choose q(t) to maximize the discounted profits, 0 < r < 1.
 - (a) Derive necessary conditions.
 - (b) Prove that the steady-state exists and is unique.

2 2010

2.114.01.2010

Final exam consists of the two parts: A and B. Part A lasts for 120 minutes. Upon completion of that part the papers will be collected and the students will have 10 minutes break. Part B lasts for 60 minutes. Students should answer eight of the following eight questions: six from Part A and two from Part B. Points will be deducted for the insufficient explanation within your answers.

Part A. Answer all SIX questions of this section. Each question is worth 10 points.

1. The joint distribution of the random vector (X,Y) is given by its p.d.f

$$f(x,y) = \begin{cases} ce^{x-y}, & \text{for } 0 \leq x, y \leq 1\\ 0, & \text{otherwise} \end{cases}$$

where c is a normalization constant. Find $\mathbb{E}(X \mid Y)$.

- 2. Let $Y_t = W_t^3 tW_t^4$. Find $\mathbb{E}(Y_t)$ and $\mathrm{Var}(Y_t)$. You don't have to use Ito Lemma here.
- 3. Let X_n be a discrete time stochastic process that converges in probability to a random number X as $n \to \infty$. Does this condition imply that X_n converges to X in mean? Almost surely? In distribution? Support at least one of your answers with a proof or counterexample. Give a definition for each type of convergence.
- 4. Seek to optimize the integral $\int_0^{\frac{\ln 2}{2}} (4u u^2 x 3x^2) dt$ subject to the conditions $\dot{x} = u + x$, x(0) = 5/8, $x\left(\frac{\ln 2}{2}\right)$ is free. Find x, u, λ . What kind of optimum did you find?
- 5. Solve the bounded control problem $\int_0^1 (2-5t)u \, dt$, subject to $\dot{x}=2x+4te^{2t}u$, x(0)=0, $x(1)=e^2$, $-1 \le u \le 1$.
- 6. Consider the following optimization problem: maximize $\sum_{0}^{\infty} \left(\frac{3}{4}\right)^{t} \ln c_{t}$, subject to $c_{t} + k_{t+1} = \sqrt{k_{t}}$, $k_{0} > 0$. Let the state variable be k and denote the next period value of k as k'.
 - (a) Write down the Bellman equation for the value function V(k)
 - (b) Using method of undetermined coefficients find V(k)
 - (c) Find the optimal policy function k' = h(k)

Part B. Answer both questions from this section. Each question is worth 20 points. Part B lasts for 60 minutes.

- 1. Let X_t be a stochastic process such that $dX_t = \frac{X_\infty X_t}{\tau} dt + \sigma dW_t$, where X_∞ and τ are non-random constants, W_t is a Wiener process, and let $Y_t = X_t e^{1/\tau}$.
 - (a) Use Ito Lemma to find both differential and integral expressions for Y_t and use them to express X_t (a.s.) in terms of X_{∞} , X_0 , τ , σ and t. Here X_0 is the value of X_t at time t = 0.
 - (b) Find $\mathbb{E}(X_t)$ and $\mathrm{Var}(X_t)$. Sketch the graph of $\mathbb{E}(X_t)$ as a function of t for $X_\infty = 1$, $\tau = 1$, and $X_0 = 0$, 1, and 2. Plot a possible trajectory of X_t in each case. Is there any name or names associated with X_t ?
- 2. Utility $U(C, P) = U_1(C) + U_2(P)$ increases with the consumption C and decreases with the level of pollution P. For C > 0, P > 0 it is known that $U_1' > 0$, $U_1'' < 0$, $U_2' < 0$ and $U_2'' < 0$. It is known that $\lim_{C\to 0} U_1'(C) = \infty$ and $\lim_{P\to 0} U_2'(C) = 0$. Consumption lies within the range $0 \le C \le \overline{C}$. Consumption contributes to pollution, while

Consumption lies within the range $0 \le C \le C$. Consumption contributes to pollution, while pollution control reduces it; moreover environment absorbs pollution at a constant rate b > 0. Pollution dynamics is governed by equation $\dot{P} = C^2 - (C^*)^2 - bP$ in which the first two terms represent the net contribution to the pollution flow, where $0 < C^* < \bar{C}$.

Consider the problem of maximizing the discounted (r > 0) utility stream $\int_0^\infty e^{-rt} U(C, P) dt \to \max$ subject to $\dot{P} = C^2 - (C^*)^2 - bP$, $P(0) = P_0 > 0$, $P \ge 0$, $0 \le C \le \bar{C}$.

- (a) Derive necessary conditions, using the current value Hamiltonian.
- (b) Sketch the phase diagram for this problem with the pollution and the consumption labeled on the axes.
- (c) Find the condition under which the steady state solution (P_s, C_s) exists and $0 < C_s < \bar{C}$.
- (d) Explore the stability of the steady state. Hint. You may find the return to the variables (P, m) easier for solving that part.

3 2011

3.112.01.2011

Notation: W_t is the standard Wiener process.

Part A (10 points each problem). Time allowed: 120 minutes.

1. The joint probability density function of X and Y is given by

$$f(x,y) = \begin{cases} x + y, & x \in [0;1], y \in [0;1] \\ 0, & \text{otherwise} \end{cases}$$

Find $\mathbb{E}(Y|X)$ in terms of X, find the probability density function of $\mathbb{E}(Y|X)$

- 2. Consider the process $X_t = \int_0^t sW_s dW_s$. Find $\mathbb{E}(X_t)$, $\mathrm{Var}(X_t)$, $\mathrm{Cov}(X_t, W_t)$ 3. The process Y_t is given by $Y_t = 2W_t + 5t$. The stopping time τ is given by $\tau = \min\{t | Y_t^2 = 100\}$. Find the distribution of the random variable Y_{τ} and the expected value $\mathbb{E}(\tau)$. Hint: you may find the martingales a^{Y_t} and $Y_t - f(t)$ useful
- 4. Find $\mathbb{P}(W_2 W_1 > 2)$
- 5. In the framework of Black and Scholes model find the price of an asset which gives you the payoff of 1 rubble only if the final price S_t is at least two times bigger than the initial price S_0 of the asset.
- 6. Consider the free end problem, where T > 0 is not given

$$\int_0^T (\dot{x}^2 - x + 1)dt \to extr$$

At the left end x(0) = 0 Find the optimal T value and the extremal. Check that you solved the optimality problem or show the opposite.

Part B (20 points each prolem). Time allowed: 60 minutes.

1. Consider the stochastic differential equation

$$dX_t = (\sqrt{1 + X_t^2} + 0.5X_t)dt + \sqrt{1 + X_t^2}dW_t, \quad X_0 = 0$$

- (a) Suppose that Y_t is another process that depens only on X_t , i.e. $Y_t = f(X_t)$. Find dY using the Ito's lemma.
- (b) Find such function f that the term before dW in dY is constant.
- (c) Find X_t
- (d) Sketch $\mathbb{P}(X_t > 0)$ as the function of t.
- 2. Consider the neoclassical optimal growth model

$$\int_0^\infty e^{-rt} \left(\bar{U} - \frac{1}{c(t)} \right) dt \to \max$$

subject to $\dot{k} = A \ln(1+k) - c - \delta k$, where $A > r > \delta > 0$, $k(0) = k_0$, $\bar{U} > 0$.

- (a) Derive necessary conditions, using the current value Hamiltonian
- (b) Sketch the phase diagram for this problem with the capital intensity and consumption labeled on the horizontal and vertival axes, respectively
- (c) Check that the steady state solution exists. Provide explanation.

- (d) Explore the stability of the steady state, using the Jacobian
- (e) Why are you sure the found growth path maximizes the discounted stream of utility?

3.2 retake, ??.01.2011

Answer all SIX questions of this section. Each question is worth 10 points.

1. The joint distribution of the random vector (X,Y) is given by its p.d.f

$$f(x,y) = \begin{cases} ce^{x-y}, & \text{for } 0 \leq x, y \leq 1\\ 0, & \text{otherwise} \end{cases}$$

where c is a normalization constant. Find $\mathbb{E}(X \mid Y)$.

- 2. Let $Y_t = W_t^3 tW_t^4$. Find $\mathbb{E}(Y_t)$ and $\mathrm{Var}(Y_t)$. You don't have to use Ito Lemma here.
- 3. Let X_n be a discrete time stochastic process that converges in probability to a random number X as $n \to \infty$. Does this condition imply that X_n converges to X in mean? Almost surely? In distribution? Support at least one of your answers with a proof or counterexample. Give a definition for each type of convergence.
- 4. Solve the calculus of variations problem to optimize the integral $\int_{1/2}^{1} \sqrt{1 + \dot{x}^2} / x \, dt \to \max$ subject to the conditions $x(1/2) = \sqrt{3}/2$, x(1) = 1. Justify your answer referring to the sufficiency conditions. What kind of extremum did you find?
- 5. Let x(t) represent the revenue of a firm. The fraction of it, namely xu(t), where $0 \le u \le 1$, is spent on investments allowing the revenue to grow according to the rule $\dot{x} = \alpha xu$ with $\alpha = const > 0$.

Another fraction of the revenue βx , $\beta = const > 0$ serves to reimburse the costs. Maximize the profit of the firm over the finite time horizon

$$\int_0^T (1 - \beta - u)x \, dt \to \max$$

subject to $\dot{x} = \alpha x u$, $x(0) = x_0$, $0 \le u \le 1$.

6. Consider the following «cake-eating» problem: maximize

$$\sum_{0}^{\infty} \beta^{t} \ln c_{t}$$

subject to $W_{t+1} = W_t - c_t$, $W_t \leq W$, W > 0, $0 < \beta < 1$. Let the state variable be W and denote the next period value of W as W'.

- (a) Write down the Bellman equation for the value function V(W)
- (b) Using method of undetermined coefficients find V(W)
- (c) Find the optimal policy function c = h(W)

Part B. Answer both questions from this section. Each question is worth 20 points. Part B lasts for 60 minutes.

- 1. Let X_t be a stochastic process such that $dX_t = \frac{X_\infty X_t}{\tau} dt + \sigma dW_t$, where X_∞ and τ are non-random constants, W_t is a Wiener process, and let $Y_t = X_t e^{1/\tau}$.
 - (a) Use Ito Lemma to find both differential and integral expressions for Y_t and use them to express X_t (a.s.) in terms of X_{∞} , X_0 , τ , σ and t. Here X_0 is the value of X_t at time t = 0.
 - (b) Find $\mathbb{E}(X_t)$ and $\mathrm{Var}(X_t)$. Sketch the graph of $\mathbb{E}(X_t)$ as a function of t for $X_\infty = 1$, $\tau = 1$, and $X_0 = 0$, 1, and 2. Plot a possible trajectory of X_t in each case. Is there any name or names associated with X_t ?

2. Consider the profit maximizing problem over the infinite time horizon

$$\int_0^\infty e^{-rt} (2\sqrt{K} - cI) \, dt \to \max$$

where K is capital, I is investment, c = const is the unit cost of investment, r is discount rate. Let $K(0) = K_0 > 0$. The capital changes under the investment equation $\dot{K} = I - bK$, where b > 0 is the depreciation rate. Investment is bounded $0 \le I \le \bar{I}$. Suppose the parameters of the problem satisfy conditions

$$K_0 < \frac{1}{c^2(r+b)^2} < \frac{\bar{I}}{b}$$

- (a) Derive necessary conditions, using the current value Hamiltonian
- (b) Does the steady-state solution(s) (K_s, I_s) exist? Explain. If you answer is positive explore its stability.

$4 \quad 2012$

4.1 retake, 03.02.2012

Section A. 10 points for each problem.

1. Solve the bounded control problem with the free end value where T > 1 is specified in advance but x(T) is not.

$$\int_0^T (x-u) dt \to \max, x(0) = 1$$

x' = u, $0 \le u \le x$. What guarantees that a maximizer would be found?

2. Two stochastic processes are defined by the system of SDE with the Brownian motions W_{1t} , W_{2t} independent of each other

$$\begin{cases} dX_t = (2 + 5t + X_t)dt + 3dW_{1t} \\ dY_t = 4Y_t dt + 8Y_t dW_{1t} + 6dW_{2t} \end{cases}$$

Calculate $d(X_tY_t)$

- 3. Find the value of the constant a such that the process $X_t = W_t^3 a \int_0^t W_s ds$ is a martingale.
- 4. The process Y_t is given by $Y_t = 2W_t + 5t$. The stopping time τ is given by $\tau = \min\{t | Y_t^2 = 100\}$. Find the distribution of the random variable Y_τ and the expected value $\mathbb{E}(\tau)$.

Hint: you may find the martingales a^{Y_t} and $Y_t - f(t)$ useful

- 5. What is the expected value and variance of W_t^2 for t > s given that $W_s = x$?
- 6. In the framework of Black and Scholes model find the price at the time 0 of an asset which gives you the payoff $\max\{\ln(S_t), 0\}$ at the time t. Here S_t is the price of the underlying asset. Section B. 20 points for each problem.
 - 1. The goal of this exercise is to solve the SDE

$$dX_t = \frac{1}{X_t}dt + X_t dW_t$$

with initial condition $X_0 = 1$.

- (a) Apply the Ito's lemma to the process $Y_t = \exp(f(t) + g(W_t))X_t^2$
- (b) Find non-constant functions f and g such that the coefficient before dW_t in the expression for dY_t is zero.

- (c) Find X_t . The final expression may contain a Riemann integral of some stochastic process.
- 2. A typical firm with the production function x = f(l) in an economy employs 1 unit of the capital paying for it \bar{r} . There are n identical firms in this economy where n(t) is a function of time. Let the output of a firm be x(t). Then the aggregate supply equals nx. Assuming that the market is in the equilibrium we use the inverse demand function p(nx), where p'(y) < 0. Equation defining the dynamics of labor is given by $\frac{dl}{dt} = a(w \bar{w})$, where a > 0 and \bar{w} is some equilibrium wage rate. The growth (or fall) in number of firms is governed by the equation $\frac{dn}{dt} = b(px \bar{w}l \bar{r})$, where b > 0. Write down the system of ODE for the unknowns l(t), n(t), using the first-order condition for the profit-maximizing firm, find and classify the steady-state solutions (if any exist). Production function is twice differentiable and concave everywhere.