ADPRES V.1.1 USER MANUAL

1. Introduction

Abu Dhabi Polytechnic Reactor Simulator (ADPRES) solves static and transient diffusion equation in two or three dimensional rectangular geometry. ADPRES uses 4-th order Nodal Expansion Method (NEM) where the transverse leakage moments are approximated using quadratic leakage fit to solve the diffusion equation. ADPRES can solve either forward or adjoint problems as well as fixed source problems. Problems with Assembly Discontinuity Factors (ADF) can be handled by ADPRES.

2. Theory

Users who are interested in the theoretical background of NEM used in ADPRES can refer to MOSRA Manual [1].

3. Program Compilation and Execution

In UNIX environment such as GNU-LINUX or CYGWIN where the gfortran is already installed, the source codes can be compiled using command

```
gfortran mod_data.f90 mod_InpOutp.f90 mod_nodal.f90 mod_trans.f90 ADPRES.f90
-04 -o adpres
```

This command will produce executable file called "adpres". This executable file can be run by

```
./adpres
```

Then the program will ask input file name. Type the input file name, then the program the runs and produce output file. The output file name will be similar to input file name but with "out" extension.

4. Input Description

The input is designed to be problem-descriptive for the convenient of users. The input is grouped into several cards which depend on the nature of the problems.

4.1 General Rules

Some general rules for the ADPRES inputs:

1. Comments are marked by !. Example:

```
! COMPOSITION 1
0.20574  0.00654  0.00415  0.00415  1.0  0.0  0.01462  !Group 1
0.68866  0.04850  0.06099  0.06099  0.0  0.0  0.00000  !Group 2
```

2. Currently ADPRES has several input cards. Cards' name shall be uppercase and marked by %. Example:

```
%MODE
FORWARD
%XSEC
2 4   ! Number of groups and number of materials
...
%GEOM
12 12 2 !nx, ny, nz
...
...
```

3. Numbers can be repeated using * mark. For example

4.2 Cards Description

ADPRES has 12 input cards. Each card can be placed arbitrarily in the input deck. Some cards are obligatory for any problems, while some cards are conditional depend on the problem being solved and some cards are optional. The description of input for each card is explained in this subsection. The input cards as well as their description are listed in Table 4-1.

Cards Description Remark No. %MODE 1. Calculation mode Mandatory %XSEC 2. **Cross Sections** Mandatory %GEOM 3. Geometry of the problem Mandatory %CASE 4. Problem case Optional 5. %ESRC Extra source Conditional %WRST 6. Write restart file Optional %RRST 7. Read restart file Optional %ITER **Iteration Control** 8. Optional %PRNT 9. Output print control Optional %ADF **Assembly Discontinuity Factor** 10. Optional %CROD Conditional 11. Control rods present 12. %EJCT Control rods ejection and/or insertion Conditional

Table 4-1. Input Card Description

The input for each card is described in the followings subsections

4.2.1 Calculation Mode

This card tells ADPRES the calculation mode. The calculation mode can be either forward, adjoint or fixed source.

Table 4-2. Calculation mode card

%MODE	%MODE				
LINE 1	MODE	Calculation mode	FORWARD: Forward Calculation		
			ADJOINT : Adjoint Calculation		
			FIXEDSRC : Fixed Source		
			Calculation		
			RODEJECT: Rod ejection		
			and/or insertion mode		
			(transient problems)		

4.2.2 Cross Section Data

This card describes to ADPRES the few-group cross section data as well as number of group and materials used in the problem.

Table 4-3. Cross section data card

%XSEC			
LINE 1	NG	Number of groups	2 4 ! Number of
	NMAT	Number materials	groups and number of materials
LINE 2	SIGTR(g)	Transport macroscopic XS for group g	Repeat LINE 2 NG times. And
	SIGA(g)	Absorption macroscopic XS for group g	again repeat this input
	NUF(g)	Nu * Fission macroscopic XS for group g	segment NMAT times.
	SIGF(g)	Fission macroscopic XS for group g	(See example in the
	CHI(g)	Fission neutron spectrum for group g	provided sample inputs)
	SIGS(g,1:NG)	Scattering macroscopic XS from group g to other groups	

4.2.3 Geometry

Geometry of the reactor core is described in this card. The coordinate system used in ADPRES is shown in Figure 4-1. The point of origin is located between west, bottom and south sides. Figure 4-2 shows the coordinate system seen from top which typically used for two-dimensional problems.

Figure 4-1. Coordinate system used in APDRES

Figure 4-2. Coordinate system seen form top (typically used for two-dimensional problems)

Table 4-4. Geometry card

%GEOM			
LINE 1	NX	Number of assemblies along X-	Example:
		direction	9 9 19 !NX,NY,NZ
	NY	Number of assemblies along Y-direction	
	NZ	Number of assemblies along Z-direction	
LINE 2	XSIZE(1:NX)	Assembly size along X-direction	Example:
		(from west to east)	10.0 8*20.0 !X-
		,	direction assembly
			size

LINE 3	XDIV(1:NX)	Assembly division along X-direction (from west to east)	Example: 1 8*2 !Last 8 assemblies divided into 2 along Y- direction
LINE 4	YSIZE(1:NY)	Assembly size along Y-direction (from south to north)	Example: 10.0 8*20.0 !Y- direction assembly size
LINE 5	YDIV(1:NY)	Assembly division along Y-direction (from south to north)	Example: 1 8*2 !Last 8 assemblies divided into 2 along Y- direction
LINE 6	ZSIZE(1:NZ)	Assembly size along Z-direction (from bottom to top)	Example: 19*20.0 !Uniform assembly size along Z-direction
LINE 7	ZDIV(1:NZ)	Assembly division along Z-direction (from bottom to top)	Example: 19*1 !Assembly along Z-direction is not divided
LINE 8	NP	Number of different core planar with different material composition	Example: 4 !There are four different planar
LINE 9	ZPLN(1:NZ)	Planar assignment along Z-direction from bottom to top	Example: 1 13*2 4*3 4 !planar assignment (from bottom to top)
LINE 10	DO j = NY, 1, -1 ASM(1:NX) END DO	Planar material map	Repeat this LINE NP times in order, from planar number 1 to NP. (See example in the provided sample inputs)
LINE 11	XEAST	East boundary conditions	0 = Zero flux
	XWEST	West boundary conditions	1 = Zero incoming current
	YNORTH	North boundary conditions	2 = Reflective
	YSOUTH	South boundary conditions	- Fyample:
	ZBOTT	Bottom boundary conditions	Example: 0 2 0 2 2 2 !BC
	ZTOP	Top boundary conditions	0 2 0 2 2 2 :DC

4.2.4 Problem Case

This card describes the problem case if necessary.

Table 4-5. Problem case card

%CASE				
LINE 1	CASE_ID	Case name	Example:	
	_		DVP	
LINE 2	CASE_EXP	Case Description	Example: DVP Problem Test	

4.2.5 Extra Source

This card shall be present only if the calculation mode is fixed source.

Table 4-6. Extra source card

%ESRC			
LINE 1	NSRC	Number of sources	Example: 2 ! Number of extra sources
LINE 2	SDEN	Source density	Repeat LINE 2 through LINE 7 NSRC times
LINE 3	SPEC(1:NG)	Source energy spectrum (normalized to 1.0)	Example LINE 2 through LINE 3: Example: 1.0 !Source density 1 1.0 0.0 ! Spectrum 1 2.0 !Source density 2 0.9 0.1 ! Spectrum 2
LINE 4	ZPOS	Axial position of the source (between 1 to NZ)	This line must be followed by XPOS and YPOS. And then this input segment can be repeated as many as desired until 0 (LINE 7) is entered
LINE 5	XPOS	Radial position of the source (along X axis) for current axial position	Repeat this line as many as desired until 0 (LINE 6) is
	YPOS	Radial position of the source (along Y axis) for current axial position	entered
LINE 6	0	Zero numbers are entered to end XPOS and YPOS	

LINE 7	0	Zero number to end ZPOS	Example for LINE 4 through
			LINE 7 together:
			10 !zpos of source
			2 9 !xpos-ypos of
			source
			2 8 !xpos-ypos of
			source
			0 0 !x-y position
			ends
			11 !zpos of the
			source
			2 9 !xpos-ypos of
			source
			2 8 !xpos-ypos of
			source
			0 0 !x-y position
			ends
			0 !z-position ends

4.2.6 Writing Restart File

It is often useful to write restart file, which stores flux, flux moments and other parameters, to solve large problem repetitively with minor changes in the cross section data.

Table 4-7. Restart file card (writing)

%WRST			
LINE 1	FNAME	Restart file name (max. 20 characters)	Example:
		to be produced	IAEA3D.res

4.2.7 Reading Restart File

In order to read the restart file this card must be present. Note that the problem being solved shall have identical geometry as the restart file.

Table 4-8. Restart file card (reading)

%RRST	%RRST				
LINE 1	FNAME	Restart file name (max. 20 characters)	Example:		
		to be read	IAEA3D.res		

4.2.8 Iteration Control

If the users wish, they can alter the iteration parameters.

Table 4-9. Iteration control card

%ITER				
LINE 1	NOUT	Maximum number of outer iteration	Default: 300	
	NIN	Maximum number of inner iteration	Default: 2	
	SERC	Fission source error criteria	Default: 1.0e-5	

F	FERC	Flux error criteria	Default: 1.0e-5
I	IERC	Inner iteration error criteria	Default: 1.0e-5
1	NAC	Fission source extrapolation interval	Default: 5
			Example: 500 5 1.0e-6 1.0e- 6 1.0e-6 3 !Iteration control

4.2.9 Print Option

This card can be used to choose the specific output that the users want.

Table 4-10. Output print option card

%PRNT			
LINE 1	CAPRAD	Radial assembly power distribution	1 = YES
		print option	0 = NO
	CAPAXI	Axial assembly power distribution print	
		option	Default for all = YES
	CAFRAD	Radial Flux Power Distribution	
			Example:
			1 1 0 !Print
			output

4.2.10 Assembly Discontinuity Factor

ADF card can be incorporated into ADPRES input, if any, to make the solution more accurate.

Table 4-11. Assembly Discontinuity Factor card

%ADF			
LINE 1	DC(1)	East side discontinuity factor	Repeat LINE 2 NG times. And again repeat this input segment NMAT times. (See example in the provided sample inputs)
	DC(2)	West side discontinuity factor	
	DC(3)	North side discontinuity factor	
	DC(4)	South side discontinuity factor	
	DC(5)	Bottom side discontinuity factor	
	DC(6)	Top side discontinuity factor	
LINE 2	ROT	Direction for ADF rotation	This line is optional. Necessary if the value of discontinuity factor is not fully symmetric. Repeat this line followed by LINE 3 as many as desired until zero number (LINE 5) is entered. 1 = 90 degree counter clockwise 2 = 180 degree counter clock wise

LINE 3			clockwise
1 11111 5	X1	Start assembly position in X-direction	This line follows LINE 2
22	X2	End assembly position in X-direction	which tells the position of
	Y1	Start assembly position in Y-direction	assembly being rotated.
	Y2	End assembly position in Y-direction	Repeat this line as many as
	Z1	Start assembly position in Z-direction	desired until zero numbers
	Z2 Z2	End assembly position in Z-direction	(LINE 4). Followings are
		End assembly position in 2 direction	value limits for these line
			1 <= X1 <= NX;
			1 <= X2 <= NX;
			1 <= Y1 <= NY;
			1 <= Y2 <= NY;
			1 <= Z1 <= NZ;
			1 <= Z2 <= NZ;
			X1 <= X2; Y1 <= Y2; Z1 <= Z2
LINE 4	0	Zero numbers entered to end X1	Example LINE 2 through LINE
	0	through Z2	6:
	0		1 ! 90 degree
	0		counter clock-wise
	0		2 2 1 1 1 2 2 2 3 3 1 2
	0		
LINE 5	0	Zero number to end ROT	0 0 0 0 0 0 0 0 2 ! 180 degree counter clock-wise 2 2 2 2 1 2 2 2 4 4 1 2 0 0 0 0 0 0 0 0 3 ! 270 degree counter clock-wise
LINE 6	ZP	ADF print option	1 1 2 2 1 2 1 1 4 4 1 2 0 0 0 0 0 0 0 ! ADF INPUTS END ! ADF PRINT (OPTIONAL) 1 This line is optional.

4.2.11 Control Rod (CR)

If the problems have control rods inserted, users can use this card. This card is mandatory of RODEJECT calculation mode.

Table 4-12 Control Rods Card

%CROD			
LINE 1	NB	Number of CR banks	! Number of CR bank and Max steps 2 180.
	NSTEP	Maximum number of steps	
LINE 2	POS0	Zero step pos. (cm from bottom)	! Zero Step pos.
	SSIZE	step size (cm/step)	and step size 10. 0.15463
LINE 3	BPOS(1:NB)	Control Rod Bank position (step)	! Bank pos.
		0 step means full inserted	0. 180.
LINE 4	DO j = NY, 1, -1 BMAP(1:NX) END DO	Control Rod Bank Map	See example in the inputs
LINE 5	DISGTR(g)	Macroscopic Cross Section changes due	Repeat LINE 2 NG times. And
	DSIGA(g)	to control rods insertion	again repeat this input
	DNUF(g)		segment NMAT times.
	DSIGF(g)		(See example in the
	DSIGS(g,1:NG)		provided sample inputs)

4.2.12 Control Rod Ejection and/or Insertion

For transient problems due to control rods insertion or withdrawal, users can use this card. This card is mandatory if calculation mode is RODEJECT.

Table 4-13 Rod Ejection Card

%EJCT			
LINE 1	FBPOS(n)	Final bank n position after ejection and/or insertion (step)	Repeat this line NB times. Example:
	TMOVE(n)	When bank n starts move (second)	60. 7.5 3.0 !Bank
	BSPEED(n)	Bank n speed (steps/second)	1 180. 0.0 3.0! Bank 2
LINE 2	TTOT	Total simulation time (seconds)	Example:
	TSTEP1	First time step (seconds)	60. 0.1 40.0 1.0
	TDIV	When to start second time step (seconds)	
	TSTEP2	Second time step (seconds)	
LINE 3	IBETA(1:6)	6-groups delayed neutron fraction	See example
LINE 4	LAMB(1:6)	6-groups precursor decay constant	See example
LINE 5	VELO(1:NG)	Neutron velocity	See example

5. References

1. Okumura K (1998) MOSRA-light: high speed three-dimensional nodal diffusion code for vector computers, JAERI-Data/Code 98-025. Japan Atomic Energy Research Institute, Tokaimura (in Japanese)