

Different Techniques to Represent Words as Vectors: Vectorizer

Word2Vec Vectorizer

- King Man + Women = Queen
- Prince + mom = Queen
- vec("king") vec("man") + vec("woman")
 =~ vec("queen")

- Supervised LearningClassification

- BinaryMulti-nominal

Neural Networks

Activation Functions

Linear Regression

Y = MX + C

M = Slope

C = Intercept

X = Data Point

Linear Regression

$$Y = MX + C$$

$$ext{MSE} = rac{1}{n} \sum_{i=1}^n (Y_i - \hat{Y}_i)^2$$

MSE = mean squared error

n = number of data points

 Y_i = observed value

 \hat{Y}_i = predicted value

$$\left(\log\left(\frac{\mathbf{y}}{\mathbf{1}-\mathbf{y}}\right) = m\mathbf{x} + c$$

1. Raising e to the power on both sides of the equation

$$\left(\frac{\mathbf{y}}{\mathbf{1}-\mathbf{y}}\right) = e^{mx+c}$$

2. One divided by both sides of the equation

$$\left(\frac{1-y}{y}\right) = e^{-mx+c}$$

$$3. \left(\frac{1}{y} - 1\right) = e^{-(mx+c)}$$

4.
$$\frac{1}{y} = 1 + e^{-(mx+c)}$$

5.
$$1 = y(1 + e^{-(mx+c)})$$

6.
$$y = \frac{1}{1 + e^{-(mx + c)}}$$

Logistic regression is a linear classifier, so you'll use a linear function $f(\mathbf{x}) = b_0 + bx$ or $f(\mathbf{x}) = b_0 + b_1x_1 + \cdots + b_rx_r$, also called the Logit. The variables b_0 , b_1 , ..., b_r are the estimators of the regression coefficients, which are also called the predicted weights or just coefficients.

$$Logit(x) = MX + C$$

$$sigmoid_x = \frac{1}{1+e^{-x}}$$

Linear vs Logistic Regression

