DM549/DS(K)820/MM537/DM547

Lecture 6: Some More Induction and Sets

Kevin Schewior Email: kevs@sdu.dk

University of Southern Denmark

September 18, 2024

Last Time: Induction

Recipe 1 for Proofs by (Simple) Induction

To show that P(n) holds for all $n \ge m$, prove:

- Basis step: Prove that P(m) holds.
- Inductive step: Prove that

$$\underbrace{P(k)}_{\text{inductive hypothesis}} \Rightarrow P(k+1)$$

for all $k \geq m$.

Recipe 2 for Proofs by (Simple) Induction

To show that P(n) holds for all $n \ge m$, prove:

- Basis step: Prove that P(m) holds.
- Inductive step: Prove that

$$P(k-1) \Rightarrow P(k)$$

for all k > m + 1.

inductive hypothesis

What a Proof by Induction is *NOT* (at SDU)

What a Proof by Induction is NOT (at SDU)

Professor Schmidt demonstrates the concept of proof by induction.

(This joke is all Zach Weinersmith's fault, but I also apologize.)

"Theorem" (Example 5.1.15)

All apples have the same color.

"Theorem" (Example 5.1.15)

All apples have the same color.

Remark:

■ This statement is obviously false.

"Theorem" (Example 5.1.15)

All apples have the same color.

Remark:

- This statement is obviously false.
- It was still possible to overlook the mistake in the proof.

"Theorem" (Example 5.1.15)

All apples have the same color.

Remark:

- This statement is obviously false.
- It was still possible to overlook the mistake in the proof.
- In general, one may find a (not necessarily correct) proof for a statement that is neither obviously true nor obviously false.

"Theorem" (Example 5.1.15)

All apples have the same color.

Remark:

- This statement is obviously false.
- It was still possible to overlook the mistake in the proof.
- In general, one may find a (not necessarily correct) proof for a statement that is neither obviously true nor obviously false.
- One needs to carefully check whether the proof is correct.

Today: Sets

Today: Sets

NOT this game:

Today: Sets

NOT this game:

See also:

Fábio Botler, Andrés Cristi, Ruben Hoeksma, Kevin Schewior, Andreas Tönnis: SUPERSET: A (Super)Natural Variant of the Card Game SET. FUN 2018: 12:1–12:17

Definition (Definition 2.1.1)

A $\mathit{set}\ (\mathsf{mængde})$ is an unordered collection of different objects, called $\mathit{elements}.$

Definition (Definition 2.1.1)

A set (mængde) is an unordered collection of different objects, called *elements*. If object x is an element of set A, we write $x \in A$; otherwise we write $x \notin A$.

Definition (Definition 2.1.1)

A set (mængde) is an unordered collection of different objects, called *elements*. If object x is an element of set A, we write $x \in A$; otherwise we write $x \notin A$.

Different notations for sets:

```
\{\mathsf{element}_1, \mathsf{element}_2, \dots, \mathsf{element}_k\}.
```

Definition (Definition 2.1.1)

A set (mængde) is an unordered collection of different objects, called *elements*. If object x is an element of set A, we write $x \in A$; otherwise we write $x \notin A$.

Different notations for sets:

Explicit enumeration of finitely many elements: List all elements as

```
\{element_1, element_2, \dots, element_k\}.
```

Enumeration of infinitely many elements: Use ...; what the dots mean should be clear from the context.

Definition (Definition 2.1.1)

A set (mængde) is an unordered collection of different objects, called *elements*. If object x is an element of set A, we write $x \in A$; otherwise we write $x \notin A$.

Different notations for sets:

```
\{element_1, element_2, \dots, element_k\}.
```

- Enumeration of infinitely many elements: Use ...; what the dots mean should be clear from the context.
 - Only use this if it is unambiguous what you mean!

Definition (Definition 2.1.1)

A set (mængde) is an unordered collection of different objects, called *elements*. If object x is an element of set A, we write $x \in A$; otherwise we write $x \notin A$.

Different notations for sets:

```
\{element_1, element_2, \dots, element_k\}.
```

- Enumeration of infinitely many elements: Use ...; what the dots mean should be clear from the context.
 - ▶ Only use this if it is unambiguous what you mean!
- Set-builder notation: For a propositional function proposition P(x) and domain D (also a set!), the set $\{x \in D \mid P(x)\}$ is the set of all elements x of D such that P(x) is true.

Definition (Definition 2.1.1)

A set (mængde) is an unordered collection of different objects, called *elements*. If object x is an element of set A, we write $x \in A$; otherwise we write $x \notin A$.

Different notations for sets:

```
\{element_1, element_2, \dots, element_k\}.
```

- Enumeration of infinitely many elements: Use ...; what the dots mean should be clear from the context.
 - Only use this if it is unambiguous what you mean!
- Set-builder notation: For a propositional function proposition P(x) and domain D (also a set!), the set $\{x \in D \mid P(x)\}$ is the set of all elements x of D such that P(x) is true.
 - Always unambiguous!

Definition (Definition 2.1.1)

A set (mængde) is an unordered collection of different objects, called *elements*. If object x is an element of set A, we write $x \in A$; otherwise we write $x \notin A$.

Different notations for sets:

```
\{element_1, element_2, \dots, element_k\}.
```

- Enumeration of infinitely many elements: Use ...; what the dots mean should be clear from the context.
 - Only use this if it is unambiguous what you mean!
- Set-builder notation: For a propositional function proposition P(x) and domain D (also a set!), the set $\{x \in D \mid P(x)\}$ is the set of all elements x of D such that P(x) is true.
 - Always unambiguous!
 - The domain D can be left out when clear from the context.

Definition (Definition 2.1.1)

A set (mængde) is an unordered collection of different objects, called *elements*. If object x is an element of set A, we write $x \in A$; otherwise we write $x \notin A$.

Different notations for sets:

```
\{element_1, element_2, \dots, element_k\}.
```

- Enumeration of infinitely many elements: Use ...; what the dots mean should be clear from the context.
 - Only use this if it is unambiguous what you mean!
- Set-builder notation: For a propositional function proposition P(x) and domain D (also a set!), the set $\{x \in D \mid P(x)\}$ is the set of all elements x of D such that P(x) is true.
 - Always unambiguous!
 - The domain D can be left out when clear from the context.
 - sometimes ":" is used instead of "|"

Definition (Definition 2.1.1)

A set (mængde) is an unordered collection of different objects, called *elements*. If object x is an element of set A, we write $x \in A$; otherwise we write $x \notin A$.

Different notations for sets:

Explicit enumeration of finitely many elements: List all elements as

```
\{element_1, element_2, \dots, element_k\}.
```

- Enumeration of infinitely many elements: Use ...; what the dots mean should be clear from the context.
 - Only use this if it is unambiguous what you mean!
- Set-builder notation: For a propositional function proposition P(x) and domain D (also a set!), the set $\{x \in D \mid P(x)\}$ is the set of all elements x of D such that P(x) is true.
 - Always unambiguous!
 - ▶ The domain *D* can be left out when clear from the context.
 - sometimes ":" is used instead of "|"

A special set: \emptyset (also $\{\}$) is the empty set, i.e., the one containing no elements.

Visual representation of sets and their relationships:

 A rectangle for the universal set U containing all objects under consideration.

- A rectangle for the universal set U containing all objects under consideration.
- Inside the rectangle, circles for the different sets.

- A rectangle for the universal set U containing all objects under consideration.
- Inside the rectangle, circles for the different sets.
- Inside the respective circles, points for elements.

- A rectangle for the universal set U containing all objects under consideration.
- Inside the rectangle, circles for the different sets.
- Inside the respective circles, points for elements.
- Can usually be clearly arranged for up to 3 sets.

Two types of sets:

• finite sets, i.e., sets that have finitely many elements.

Two types of sets:

- finite sets, i.e., sets that have finitely many elements.
- infinite sets, i.e., sets that are not finite.

Two types of sets:

- finite sets, i.e., sets that have finitely many elements.
- infinite sets, i.e., sets that are not finite.

Definition

For a finite set A, the *cardinality* of A is the number of elements in A, denoted |A|.

Two types of sets:

- finite sets, i.e., sets that have finitely many elements.
- infinite sets, i.e., sets that are not finite.

Definition

For a finite set A, the *cardinality* of A is the number of elements in A, denoted |A|.

Note: The definition of the cardinality of infinite sets is more complicated; we will talk about this in a later lecture!

A special type of sets: For $a, b \in \mathbb{R}$:

■ $[a,b] = \{x \in \mathbb{R} \mid a \le x \le b\}$ is called the *closed interval from a to b*,

A special type of sets: For $a, b \in \mathbb{R}$:

- $[a,b] = \{x \in \mathbb{R} \mid a \le x \le b\}$ is called the *closed interval from a to b*,
- $(a,b) = \{x \in \mathbb{R} \mid a < x < b\}$ is called the *open interval from a to b*,

A special type of sets: For $a, b \in \mathbb{R}$:

- $[a,b] = \{x \in \mathbb{R} \mid a \le x \le b\}$ is called the *closed interval from a to b*,
- $(a,b) = \{x \in \mathbb{R} \mid a < x < b\}$ is called the *open interval from a to b*,
- $(a, b] = \{x \in \mathbb{R} \mid a < x \le b\},$

A special type of sets: For $a, b \in \mathbb{R}$:

- $[a,b] = \{x \in \mathbb{R} \mid a \le x \le b\}$ is called the *closed interval from a to b*,
- $(a,b) = \{x \in \mathbb{R} \mid a < x < b\}$ is called the *open interval from a to b*,
- $(a, b] = \{x \in \mathbb{R} \mid a < x \le b\},$
- $[a,b) = \{x \in \mathbb{R} \mid a \le x < b\}.$

A special type of sets: For $a, b \in \mathbb{R}$:

- $[a,b] = \{x \in \mathbb{R} \mid a \le x \le b\}$ is called the *closed interval from a to b*,
- $lacksquare (a,b) = \{x \in \mathbb{R} \mid a < x < b\}$ is called the *open interval from a to b*,
- $(a, b] = \{x \in \mathbb{R} \mid a < x \le b\},$
- **■** $[a,b) = \{x \in \mathbb{R} \mid a \le x < b\}.$

Note: These sets are infinite if and only if a < b!

A Quiz

Go to pollev.com/kevs

Definition (Definition 2.1.3)

A set A is a *subset* (delmængde) of another set B if, for all $x \in A$, it holds that $x \in B$. In that case, we write $A \subseteq B$. We also say that B is a *superset* of A. If that is not the case, we write $A \not\subseteq B$.

Definition (Definition 2.1.3)

A set A is a *subset* (delmængde) of another set B if, for all $x \in A$, it holds that $x \in B$. In that case, we write $A \subseteq B$. We also say that B is a *superset* of A. If that is not the case, we write $A \nsubseteq B$.

If $A \subseteq B$ and $A \neq B$, we say that A is a *proper subset* (ægte delmængde) of B and write $A \subset B$. If that is not the case, we write $A \not\subset B$.

Definition (Definition 2.1.3)

A set A is a *subset* (delmængde) of another set B if, for all $x \in A$, it holds that $x \in B$. In that case, we write $A \subseteq B$. We also say that B is a *superset* of A. If that is not the case, we write $A \not\subseteq B$.

If $A \subseteq B$ and $A \neq B$, we say that A is a *proper subset* (ægte delmængde) of B and write $A \subset B$. If that is not the case, we write $A \not\subset B$.

Observe:

- For all sets A, it holds (by the above definition) that:
 - $ightharpoonup A \subseteq A \text{ (but } A \not\subset A),$

Definition (Definition 2.1.3)

A set A is a *subset* (delmængde) of another set B if, for all $x \in A$, it holds that $x \in B$. In that case, we write $A \subseteq B$. We also say that B is a *superset* of A. If that is not the case, we write $A \nsubseteq B$.

If $A \subseteq B$ and $A \neq B$, we say that A is a *proper subset* (ægte delmængde) of B and write $A \subset B$. If that is not the case, we write $A \not\subset B$.

Observe:

- For all sets A, it holds (by the above definition) that:
 - ▶ $A \subseteq A$ (but $A \not\subset A$),
 - \triangleright $\emptyset \subseteq A$.

Power Sets

Definition (Definition 2.1.6)

For a set A, its power set (potensmængde) is

$$\mathcal{P}(A) = \{ S \mid S \subseteq A \},\$$

the set of all subsets of A.

Power Sets

Definition (Definition 2.1.6)

For a set A, its power set (potensmængde) is

$$\mathcal{P}(A) = \{ S \mid S \subseteq A \},\$$

the set of all subsets of A.

Note: We will see later that $|\mathcal{P}(A)| = 2^{|A|}$.

Definition (Definition 2.1.2)

For two sets A, B, their intersection (fællesmængde/snitmængde) is

$$A \cap B = \{x \mid x \in A \land x \in B\},\$$

the set containing all objects that are elements of A and of B.

Definition (Definition 2.1.2)

For two sets A, B, their intersection (fællesmængde/snitmængde) is

$$A \cap B = \{x \mid x \in A \land x \in B\},\$$

the set containing all objects that are elements of A and of B.

Definition (Definition 2.1.3)

Two sets A, B are called *disjoint* (disjunkte) if $A \cap B = \emptyset$.

Definition (Definition 2.1.2)

For two sets A, B, their intersection (fællesmængde/snitmængde) is

$$A \cap B = \{x \mid x \in A \land x \in B\},\$$

the set containing all objects that are elements of A and of B.

Definition (Definition 2.1.3)

Two sets A, B are called *disjoint* (disjunkte) if $A \cap B = \emptyset$.

Definition (Definition 2.1.1)

For two sets A, B, their union (foreningsmængde) is

$$A \cup B = \{x \mid x \in A \lor x \in B\},\$$

the set containing all objects that are elements of A or of B.

Set Operators: Set Difference and Complement

Definition (Definition 2.1.4)

For two sets A, B, the (set) difference of A and B is

$$A \setminus B = \{ x \mid x \in A \land x \notin B \},\$$

the set containing all objects that are elements of A but not of B.

Set Operators: Set Difference and Complement

Definition (Definition 2.1.4)

For two sets A, B, the (set) difference of A and B is

$$A \setminus B = \{ x \mid x \in A \land x \notin B \},\$$

the set containing all objects that are elements of A but not of B.

Note: The book uses "-" instead of "\".

Definition (Definition 2.1.2)

For a set A and a universal set U, the *complement* (komplement) of A is

$$\overline{A} = U \setminus A$$
.

A Quiz

Go to pollev.com/kevs

De Morgan's Law for Sets

De Morgan's Law for Sets

Theorem (Example 2.2.10)

For any two sets A, B, it holds that

$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$
 and $\overline{A \cap B} = \overline{A} \cup \overline{B}$.

De Morgan's Law for Sets

Theorem (Example 2.2.10)

For any two sets A, B, it holds that

$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$
 and $\overline{A \cap B} = \overline{A} \cup \overline{B}$.

Remark: Notice the correspondence between

- \blacksquare \cup and \vee .
- \blacksquare \cap and \wedge ,
- \blacksquare and \neg .

Definition (Definition 2.1.7)

An n-tuple (n-tuple) is an ordered collection of not necessarily different objects, denoted as (a_1, a_2, \ldots, a_n) where a_i is the object at the i-th position of the tuple, for $i \in \{1, \ldots, n\}$.

Definition (Definition 2.1.7)

An n-tuple (n-tuple) is an ordered collection of not necessarily different objects, denoted as (a_1, a_2, \ldots, a_n) where a_i is the object at the i-th position of the tuple, for $i \in \{1, \ldots, n\}$.

Sets:

■ the order does not matter,

Tuples:

the order matters,

Definition (Definition 2.1.7)

An n-tuple (n-tupel) is an ordered collection of not necessarily different objects, denoted as (a_1, a_2, \ldots, a_n) where a_i is the object at the i-th position of the tuple, for $i \in \{1, \ldots, n\}$.

Sets:

- the order does not matter,
- objects are all different,

Tuples:

- the order matters,
- objects can be identical,

Definition (Definition 2.1.7)

An n-tuple (n-tupel) is an ordered collection of not necessarily different objects, denoted as (a_1, a_2, \ldots, a_n) where a_i is the object at the i-th position of the tuple, for $i \in \{1, \ldots, n\}$.

Sets:

- the order does not matter,
- objects are all different,
- \blacksquare we use \in .

Tuples:

- the order matters,
- objects can be identical,
- we do not use ∈ (there is no proper notation).

Definition (Definition 2.1.7)

An n-tuple (n-tupel) is an ordered collection of not necessarily different objects, denoted as (a_1, a_2, \ldots, a_n) where a_i is the object at the i-th position of the tuple, for $i \in \{1, \ldots, n\}$.

Sets:

- the order does not matter,
- objects are all different,
- \blacksquare we use \in .

Naming:

- 2-tuples are called pairs,
- 3-tuples are called triples,
- 4-tuples are called *quadruples*,
- etc.

Tuples:

- the order matters,
- objects can be identical,
- we do not use \in (there is no proper notation).

The Cartesian Product

Definition (Definitions 2.1.8 and 2.1.9)

For two sets A, B, their Cartesian product (Kartesisk produkt) is

$$A \times B = \{(a,b) \mid a \in A \land b \in B\},\$$

the set containing all pairs where an element of A is at the first position and an element of B is at the second position.

The Cartesian Product

Definition (Definitions 2.1.8 and 2.1.9)

For two sets A, B, their Cartesian product (Kartesisk produkt) is

$$A \times B = \{(a,b) \mid a \in A \land b \in B\},\$$

the set containing all pairs where an element of A is at the first position and an element of B is at the second position.

Likewise, for sets A_1, A_2, \ldots, A_n

$$A_1 \times A_2 \times \cdots \times A_n = \{(a_1, a_2, \dots, a_n) \mid a_1 \in A_1 \wedge a_2 \in A_2 \wedge \cdots \wedge a_n \in A_n\}.$$

Further,

$$\underbrace{A \times A \times \cdots \times A}_{n \text{ times}}$$

for $n \in \mathbb{Z}^+$ is denoted A^n .

A Quiz

Go to pollev.com/kevs

