MTH 100, TD1

Exercice 1

- 1. E est un ensemble, $A, B \subset E$. Montrer que $A \subset B \Rightarrow C_E^B \subset C_E^A$.
- 2. Les E_i sont des ensembles. Prouver que $\prod_{i=1}^n E_i = \emptyset \Rightarrow \exists i \in \{1, \dots, n\}$ tel que $E_i = \emptyset$.
- 3. E est l'ensemble des applications de \mathbb{N} dans $\{1,2,3\}$. On pose $A_i = \{f \in E, f(0) = i\}$. Montrer que les A_i forment une partition de E

Exercice 2

- 1. Donner la liste des éléments de $\mathcal{P}(\mathcal{P}(\{1,2\}))$.
- 2. Est-il vrai que $\mathcal{P}(A \cap B) = \mathcal{P}(A) \cap \mathcal{P}(B)$? $\mathcal{P}(A \cup B) = \mathcal{P}(A) \cup \mathcal{P}(B)$?

Exercice 3

Soit la fonction

$$f: \mathbb{R} \to \mathbb{R}$$

$$x \mapsto f(x) = \frac{2x}{1+x^2}$$

- 1) f est-elle une application?
- 2) En discutant suivant la valeur de y, résoudre dans \mathbb{R} l'équation f(x) = y.
- 3) f est -elle injective, surjective, bijective?

Exercice 4

L'application $f: \mathbb{C} \setminus \{0\} \to \mathbb{C}, \ z \mapsto z + 1/z$ est-elle injective? surjective? bijective?

Donner l'image par f du cercle trigonométrique.

Donner l'image réciproque par f de $i\mathbb{R}$.

Exercice 5

Soient $f:E\to F$ et $g:F\to G$ deux applications. On pose $h=g\circ f$.

Démontrer que :

- 1) Si f et g sont injectives (resp. surjectives) alors h l'est aussi.
- 2) Si h est injective alors f l'est aussi.
- 3) Si h est surjective alors g l'est aussi.
- 4) Si h est injective et f surjective alors q est injective.

Exercice 6

Soit $f:X\to Y$ une application. Montrer que les trois propositions suivantes sont équivalentes :

- 1. f est injective.
- 2. $\forall A, B \subset X, \ f(A \cap B) = f(A) \cap f(B).$
- 3. $\forall A, B \subset X, \ A \cap B = \emptyset \Rightarrow f(A) \cap f(B) = \emptyset.$

Exercice 7 Soit X un ensemble. Si $A \subset X$, on note χ_A la fonction caractéristique de A. Montrer que l'application $\phi: \mathcal{P}(X) \to \mathcal{F}(X, \{0,1\}), \ A \mapsto \chi_A$ est bijective.

TD2 de MTH 100

1. On définit la relation binaire \leq sur \mathbb{N}^2 par

$$(x_1, x_2) \leq (y_1, y_2) \Leftrightarrow (x_1 < y_1) \text{ ou } (x_1 = y_1 \text{ et } x_2 \leq y_2).$$

- (a) Vérifier que c'est une relation d'ordre.
- (b) La partie $B = \{(2, 10^p) : p \in \mathbb{N}\}\ de \mathbb{N}^2$ est-elle majorée?
- 2. En utilisant la formule du binôme, déterminer $\sum_{0 \le k \le n} C_n^k$, $\sum_{0 \le k \le n} (-1)^k C_n^k$, $\sum_{0 \le k \le n} k C_n^k$.
- 3. Soit E un ensemble à n éléments. Combien de relations binaires (resp. relations binaires symétriques) peut-on définir sur E?
- 4. Soit A une partie à p éléments d'un ensemble E à n éléments. Déterminer le nombre de parties de E contenant exactement k éléments de A.
- 5. On considère l'ensemble $E = \{1 + \frac{1}{n}, n \in \mathbb{N}^*\}$. Cet ensemble est-il majoré? minoré? A-t-il un plus petit élément? un plus grand élément? une borne supérieure? une borne inférieure?
- 6. Soient x_1, x_2, \ldots, x_n des réels et soit $\varepsilon > 0$.
 - (a) Montrer que $||x_1| |x_2|| \le |x_1 x_2|$.
 - (b) Montrer par récurrence sur n que $|\sum_{k=1}^{n} x_k| \le \sum_{k=1}^{n} |x_k|$.
 - (c) Montrer que si pour tout $k \in \{1, 2, ..., n-1\}, |x_k x_{k+1}| < \varepsilon$, alors $|x_1 x_n| < (n-1)\varepsilon$.
- 7. Soit A une partie non vide majorée de \mathbb{R} . Montrer que si $a=\sup A$ alors il existe une suite d'éléments de A qui converge vers a. La réciproque est-elle vraie?
- 8. Etudier la convergence des suites (U_n) , (V_n) et (W_n) définies par

$$U_n = (-1)^n + \frac{1}{n}, \ V_n = (-1)^n \frac{n+1}{n}, \ W_n = \sqrt{n^2 + n + 1} - \sqrt{n}.$$

9. Soient a_0 et b_0 deux réels fixés tels que $a_0 < b_0$. On définit les suites (a_n) et (b_n) par

$$a_{n+1} = \frac{2a_n + b_n}{3}$$
 et $b_{n+1} = \frac{a_n + 2b_n}{3}$.

Montrer qu'elles sont adjacentes. Que peut-on conclure?

En calculant $a_{n+1} + b_{n+1}$, montrer que chacune d'elles converge vers $\frac{a_0 + b_0}{2}$.