

Serviço Nacional de Aprendizado Industrial Senai DF

Brasília, 22 de outubro de 2024

Anderson de Matos Guimarães

Curso: Administrador de Banco de Dados

Professor: Ygor Rio Pardo Felix

Turma: QUA.070.105

PESQUISA

1 EVOLUÇÃO HISTÓRICA DOS BANCOS DE DADOS

1.1 Primeiros Sistemas de Armazenamento de Dados

Antes dos computadores: Informações eram armazenadas fisicamente em arquivos, como fichas de papel e registros manuais.

1.2 Década de 1960

Surgimento dos primeiros bancos de dados eletrônicos, como o IBM IMS (*Information Management System*) e o modelo de dados em rede (CODASYL).

1.2.1 Modelos Hierárquicos e em Rede

1.2.1.1 Modelo Hierárquico

Organiza os dados em uma estrutura de árvore, com um único caminho de acesso. Modelo de dados hierárquico:

- a) se utilizava de registros para representar os dados e links para os relacionamentos;
- b) são organizados na forma de uma árvore com raiz;
- c) como Exemplo: Clipper, Dbase 2, Fox Pro, COBOL.

O maior sucesso comercial foi o sistema SABRE, desenvolvido pela IBM e American Airlines.

1.2.1.2 Modelo em Rede

Usa links para conectar registros, permitindo relacionamentos mais complexos. Modelo de dados em rede:

- d) os primeiros trabalhos foram realizados em 1964 por Charles Bachman;
- e) dados são representados por uma coleção de registros e os relacionamentos por meio de links;
- f) é representado por um diagrama constituído por caixas e linhas;
- g) são usados apenas relacionamentos muitos-para-muitos.

1.3 Modelo Relacional

1.3.1 Anos 1970 - 1972

Edgar F. Codd propôs o modelo relacional no artigo "A Relational Model of Data for Large Shared Data Banks".

O modelo de dados relacional se tornou um marco em como pensar em banco de dados. Ele desconectou a estrutura lógica do banco de dados do método de armazenamento físico. Este sistema se tornou padrão desde então.

1.4 Década de 1970

Muitas discussões a respeito do valor da competição entre os sistemas enquanto a teoria de banco de dados conduz ao objetivo final de projeto de pesquisa. Dois principais protótipos de sistema relacional foram desenvolvidos entre 1974 e 1977 e demonstram um ótimo exemplo de como a teoria conduz a boas práticas.

1.4.1 Ingres

Desenvolvido pela UCB. Que no final das contas serviu como base para Ingres Corp., Sybase, MS SQL Server, Britton-Lee, Wang PACE. Este sistema utilizava QUEL como linguagem de consulta;

1.4.2 System R

Desenvolvido pela IBM San Jose e serviu de base para o IBM SQL/DS, IBM DB2, Oracle, todas os BD da HP, Tandem's Non-Stop SQL. Este sistema utilizava SEQUEL como linguagem de consulta.

O termo Sistema de Gerenciamento de Banco de Dados Relacional (SGBDR – RDBMS em inglês) foi definido durante este período.

1.5 Década de 1980

Desenvolvimento do SQL (Structured Query Language), que se tornou o padrão para bancos de dados relacionais.

1.6 Modelos Orientados a Objetos e Relacionais

1.6.1 Banco de dados no início dos anos 90

Tem início uma leve crise econômica nas indústrias e algumas empresas sobrevivem oferecendo alguns produtos a custos muito elevados. Muito desenvolvimento acontece em ferramentas de desenvolvimento para o desktop no desenvolvimento de

aplicações (client tolls), tais como: PowerBuilder (Sybase), Oracle Developer, Visual Basic (Microsoft), entre outros.

O modelo cliente-servidor (client-server) passa a ser uma regra para futuras decisões de negócio e vemos o desenvolvimento de ferramentas de produtividade como Excel/Access (Microsoft) e ODBC, também é marcado como o início dos protótipos de Object Database Management Systems (ODBMS).

1.6.2 Metade dos anos 90

É quando vemos a explosão da Internet. / WWW e uma louca corrida para prover acesso remoto a sistemas de computadores com dados legados. Percebe-se um crescimento exponencial na tecnologia Web/BD.

Aumentam o uso de soluções de código aberto (open source) através de gcc, cgi, Apache, MySQL, etc.

Processos de transação em tempo real (OLTP - On-Line Transaction Process) e processos analíticos em tempo real (OLAP – On-Line Analitical Process) atingem maturidade através de muitos negócios utilizando os PDVs (Ponto de Venda).

1.6.3 Final dos anos 90

O grande investimento em empresas de Internet impulsiona as vendas de ferramentas para conexão Web/Internet/BD. Active Server Pages, Front Page, Java Servlets, JDBC, Enterprise Java Beans, ColdFusion, Dream Weaver, Oracle Developer 2000, são um exemplo dessas ferramentas.

1.7 Transição dos Bancos de Dados Hierárquicos para os Relacionais

1.7.1 Hierárquicos

Estrutura rígida, difícil de modificar e limitada em termos de relacionamentos entre dados.

1.7 2 Relacionais

Flexibilidade maior, permitindo consultas complexas e manipulação de dados de maneira mais eficiente.

1.8 Evolução para o Uso em Nuvem

1.8.1 Década de 2010

Popularização dos serviços de banco de dados em nuvem, como Amazon RDS e Google Cloud SQL.

Beneficios:

- a) escalabilidade,
- b) custo reduzido:
- c) alta disponibilidade;
- d) facilidade de acesso remoto.

.

ATIVIDADES

Benefícios: Escalabilidade, custo reduzido, alta disponibilidade e facilidade de acesso remoto.

1 O que é banco de dados relacional?

Um banco de dados relacional organiza dados em tabelas que podem ser relacionadas umas às outras por meio de chaves primárias e estrangeiras. Isso permite a execução de consultas complexas e a integridade referencial dos dados.

2 Cite um exemplo real de uso de banco de dados na nuvem e suas vantagens.

Amazon RDS (*Relational Database Service*) é um exemplo. Ele permite que empresas armazenem dados na nuvem, oferecendo vantagens como escalabilidade, alta disponibilidade, recuperação de desastres e menor custo operacional devido à ausência de infraestrutura física.

3 Como a evolução dos bancos de dados impactou o armazenamento e processamento de grandes volumes de dados?

A evolução dos bancos de dados permitiu o armazenamento eficiente e o processamento rápido de grandes volumes de dados. Tecnologias como NoSQL e big data processam dados distribuídos e não-estruturados, enquanto bancos de dados relacionais são usados para dados estruturados.

4 Quais são as primeiras formas de armazenamento de dados e como elas evoluíram para os bancos de dados modernos?

Inicialmente, dados eram armazenados em fichas e registros manuais. Com o avanço da tecnologia, surgiram os primeiros bancos de dados eletrônicos hierárquicos e em rede. Hoje, usamos bancos de dados relacionais e não relacionais (NoSQL) para diferentes tipos de aplicações.

5 O que caracteriza a transição dos bancos de dados hierárquicos para os bancos de dados relacionais?

A principal característica dessa transição é a flexibilidade e eficiência dos bancos de dados relacionais, que permitem manipulação de dados e consultas mais complexas em comparação com a rigidez dos modelos hierárquicos.

6 Quem foi Edgar F. Codd e qual foi a sua contribuição para a teoria dos bancos de dados relacionais?

Edgar F. Codd foi um cientista da computação que propôs o modelo relacional de dados em 1970. Sua teoria revolucionou a forma como os dados são armazenados e manipulados, introduzindo conceitos como integridade referencial e linguagem SQL.

7 Como os modelos de dados NoSQL surgiram e quais necessidades eles atendem em comparação aos bancos de dados relacionais?

Modelos NoSQL surgiram para atender a necessidades de escalabilidade horizontal e flexibilidade no armazenamento de dados não estruturados ou semiestruturados, como documentos JSON e grandes volumes de dados que variam em formato e tamanho.

- 8 Quais são os principais tipos de bancos de dados e como suas características se diferenciam?
- Relacionais (SQL): Usam tabelas e SQL para manipulação de dados.
- NoSQL: Incluem bancos de dados orientados a documentos, chave-valor, colunar e grafos, cada um com diferentes modos de armazenamento e consulta.
- Time-series: Otimizados para dados temporais, como métricas e eventos.
- NewSQL: Combina benefícios de bancos de dados relacionais e NoSQL, oferecendo escalabilidade e consistência.
- 9 Como o conceito de big data mudou a forma como os bancos de dados são projetados e gerenciados?

Big data introduziu a necessidade de sistemas que possam lidar com grandes volumes, variedade e velocidade de dados. Isso resultou na criação de tecnologias como *Hadoop* e *Spark*, que permitem o processamento distribuído e análise de dados massivos.