Deep Learning - Final Project

Names: Lidor Erez and Dvir Rehavi

Lecturer: Dr. Ari Pakman

Department: IEM

CapDec: Text-Only Training for Image Captioning using Noise-Injected CLIP

What is CapDec?

- Novel method for image captioning using text only.
- Relies on pre-trained CLIP model.
- Uses noise injection to bridge the gap between image and text embeddings (Liang, et al 2022).

CLIP Model

What is CLIP?

- Multimodal model created by OpenAl
- Trained on (image, text) pairs
- Uses contrastive learning to align visual and textual representations

CapDec Training

First Phase:

 Creating text-embeddings from image captions using frozen-CLIP.

Second Phase:

- Training decoder-only to decode the embedded text to the original text
- Gaussian noise injection to the text embedding

CapDec Inference

First Phase:

Creating image-embeddings from COCO-dataset using frozen-CLIP.
(c) CapDec Inference

Second Phase:

 Decoding the image-embeddings to their captions

Project Ideas

Different Type of Noise:

- ullet T-Distribution noise $noise \sim t_{df}$
- Normalized Gradient noise $noise = \epsilon * \frac{grad}{||grad||_2}$

Hyperparameter Tuning:

- Number of Attention Heads
- Number of Decoder Transformer Layers

Project Ideas - Cosine Similarity Directed Gaussian Noise

- 1. Sample N noise vectors $noise \sim N(0,1)$
- 2. Create N candidates $x^* = x + \beta * noise$
- 3. Filter candidates $\frac{x \cdot x^*}{\|x\| \|x^*\|} > ext{threshold}$
- 4. Compute weighted distance $\bar{d} = w_i * (x_i' x)$ where $w_i = \frac{sim_i}{\sum_{i=j}^n sim_j}$
- 5. Move x in the desired direction $x_{new} = x + \bar{d}$

Model Comparison

- Generated Captions: 5 captions per image
- Ground Truth: 3-5 real captions
- Evaluation:
 - Cosine similarity between each real caption and the 5 generated ones
 - Average the similarity scores across all real captions.
- Tool: all-MiniLM-L6-V2 for semantic comparison.
- Focused on the 15 images where the original CapDec model performed best.

Type of Noise

Training:

- ullet T-Distribution noise $t_3, t_5, t_7, t_{10}, t_{15}, t_{20}$
- ullet Normalized Gradient noise $\epsilon \in \{0.1, 0.05, 0.01\}$

Pre-Trained CapDec:

ullet Gaussian Noise - $noise \sim N(0,0.05)$

Type of Noise - Evaluation

Type of Noise - Evaluation

True: A small white bird standing on top of a pond of water

CapDec: a black and white bird standing in shallow water.

Grad Noise: a bird that is sitting on a branch.

T Noise: a very colorful photo of the bay of biscay, with the caption, \spaniel st.\

HyperParameter Tuning

Training:

- ullet Number of Attention Heads $heads \in \{2,4,16\}$
- ullet Number of Decoder Transformer Layers $l \in \{4,6,10,16,24\}$

Pre-Trained CapDec:

- Number of Attention Heads 8
- Number of Decoder Transformer Layers 8

Hyperparameter Tuning

Hyperparameter Tuning

True: A bear is sitting in the grass in front of a rusty chain-link fence

CapDec: A brown bear sits in the grass near a fence.

10 Layers: a bear that is standing in the grass.

16 Heads: a bear that is standing in the grass.

Cosine Similarity Directed Gaussian Noise

Training:

- ullet N $N \in \{30, 50, 100, 200, 300, 400, 500\}$
- ullet Beta $eta \in \{0.01, 0.05, 0.1, 0.2, 0.5\}$
- ullet Threshold $h = \{0.7, 0.75, 0.8, 0.85, 0.9\}$

Pre-Trained CapDec:

ullet Noise Injected text embeddings - $e^*_{text} = e_{text} + N(0, 0.05)$

Reminder:

- 1. Sample N noise vectors $noise \sim N(0,1)$
- 2. Create N candidates $x^* = x + \beta * noise$
- 3. Filter candidates $\frac{x \cdot x^*}{\|x\| \|x^*\|} > ext{threshold}$
- 4. Compute weighted distance $ar{d} = w_i * (x_i' x)$ where $w_i = \frac{sim_i}{\sum_{i=j}^n sim_j}$
- 5. Move x in the desired direction $~x_{new}=x+ar{d}$

Cosine Similarity Directed Gaussian Noise

Cosine Similarity Directed Gaussian Noise

True: Two horses are standing in a snowy pasture

CapDec: a couple of horses standing in the snow near a fence

Cosine Similarity Directed Noise

- this is a very cute siamese pony, which has taken a nosed around the snowy hills.
- here is a picture of a very cute siamese llama, shetland, on her way to the hospital.
- this is a very unusual picture of mare winnie the pooh, herding her two lambs down the road.

Conclusion & Discussion

- Pre-trained CapDec: Delivered the best overall performance.
- Noise Injection: Gradient noise injection was the most effective.
- Attention Heads: Had minimal impact on similarity.
- Transformer Layers: Results were mixed, with no clear trend.
- Consine Noise Directed: Results were poor, but further tuning could potentially enhance their effectiveness.
- CapDec is strong, but there's room to explore better ways to bridge the modality gap.

Bibliography

- Liang, V. W., Zhang, Y., Kwon, Y., Yeung, S., & Zou, J. Y. (2022). Mind the gap: Understanding the modality gap in multi-modal contrastive representation learning. Advances in Neural Information Processing Systems, 35, 17612-17625.
- Nukrai, D., Mokady, R., & Globerson, A. (2022). Text-only training for image captioning using noise-injected clip. arXiv preprint arXiv:2211.00575.
- Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., ... & Sutskever, I. (2021, July). Learning transferable visual models from natural language supervision. In International conference on machine learning (pp. 8748-8763). PMLR.

THANK YOU