Argument Mining Summer 2023

Cross-lingual Argumentation Mining: Machine Translation(a bit of projection) is all you Need!

Steffen Eger, Johannes Daxenberger, Christian Stab, and Iryna Gurevych

Akshat Gupta

"Machine translation will only displace those humans who translate like a machine"

-Arle Richard Lommel

What is Argumentation Mining?

Automatic identification and extraction of the structure of inference and reasoning expressed as arguments.

Argumentation Mining Pipeline

Motivation

- Current argument mining methods work in a single language
- They are not adequate for cross-lingual argument mining
- Lack of complexity
- Lack of parallel datasets

Table of Contents

- Previous Research
- Datasets
- Approaches
- Experiments
- Results
- Conclusion

Previous Research

- Argument unit segmentation
- Identification of argument components
- Recognizing argumentation discourse relations
- Extracting argument components
- Most of the research is on English data

Previous Research

- Cross-lingual sequence tagging in POS and NER
- Two major approaches are:
 - Projection
 - Direct Transfer
- In POS and NER, the label depends on token + context
- In argument mining, token, and context is absent
- So, methods in POS and NER fail in argument mining

Dataset

- Microtexts(MTX) by Peldszus and Stede (2015)
- Chinese Review Corpus(CRC) by Li et al. (2017)
- A Large-Scale Parallel Dataset of Persuasive Essays(PE)

Dataset Statistics

Name	Docum.	Tokens	Sentences	Major Cl.	Cl.	Prem.	Genre	Lang.
MTX	112	8,865 (en)	449	-	112	464	short texts	en, de
CRC	315	21,858	957	135	1,415	684	reviews	zh [en]
PE	402	148,186 (en)	7,141	751	1,506	3,832	persuasive essays	en [de, fr, es, zh]

Table 1: Statistics for datasets used in this work. Languages in brackets added by the current work.

Dataset Sample

Orig-EN	In the end, I think [any great success need great work not great luck], even though [luck is one
	factor in reaching goal] but [its impact is extraneous and we must not reckon on luck in our plans].
HT-DE-HumanAnno	Schließlich denke ich , dass [jeder große Erfolg auf harter Arbeit statt Glück beruht] , obwohl
	[Glück ein Faktor in der Erreichung des Ziels ist], jedoch [ist dessen Auswirkung unwesentlich und
	wir sollten uns nicht in unseren Projekten auf unser Glück verlassen].
HT-DE-ProjAnno	Schließlich denke ich , dass [jeder große Erfolg auf harter Arbeit statt Glück beruht , obwohl
	Glück] [ein Faktor in der Erreichung des Ziels ist], jedoch [ist dessen Auswirkung unwesentlich und
	wir sollten uns nicht in unseren Projekten auf unser Glück verlassen].
MT-DE-ProjAnno	Am Ende denke ich, dass [jeder große Erfolg große Arbeit erfordert, nicht viel Glück], auch
	wenn [Glück ein Faktor beim Erreichen des Ziels] [ist , aber seine Auswirkungen sind irrelevant und
	wir dürfen nicht mit Glück in unseren Plänen rechnen].
MT-ES-ProjAnno	Al final, creo que [cualquier gran éxito requiere un gran trabajo y no mucha suerte], aunque la
	[suerte es un factor para alcanzar el objetivo], pero [su impacto es extraño y no debemos tener en
	cuenta la suerte en nuestros planes].
MT-FR-ProjAnno	En fin de compte, je pense que [tout grand succès a besoin d' un bon travail, pas de chance],
	même si la [chance est un facteur d' atteinte de l' objectif], mais [son impact est étranger et nous ne
	devons pas compter sur la chance dans nos plans].
MT-ZH-ProjAnno	最后,我认为[任何伟大的成功都需要伟大的工作,而不是运气好],即使
	[运气是达成目标的一个因素],[但其影响是无关紧要的,我们不能算计划中的运气]。

Table 2: Human-annotated English sentence in the PE dataset as well as translations with human-created and projected annotations. Major claims in bold, claims underlined, premises in italics. HT/MT =human/machine translation.

Let's talk about data

Microtexts(MTX)

- By Peldszus and Stede in 2015
- 112 German shorts texts
- Written in response to a questions
- Phrased like "Should one do X"
- Annotated according to Freemans' theory of argumentation macro-structure
- Each text has one claim and several premises
- No "O" token and no major claims
- English translation of German sentences

Chinese Review Corpus (CRC)

- By Li et al. in 2017
- Large-scale argument dataset in Chinese
- Annotations are on the component level according to the claim-premise scheme
- Consist of hotel reviews from tripadvisor.com
- Four component types: major claim, claim, premise, and,
- Premise supporting an implicit claim
- But using only the top 3 components in research
- Used only Easy Review Corpus from CRC.

Persuasive Essays(PE)

- By Stab and Gurevych in 2017
- Essays are written on essayforum.com on conversational topics
- Human-translated german data for 402 essays with annotations
- Google Translate in German, French, Spanish, and Chinese
- Main focus is on EN <> DE and EN<>ZH

Approaches

- Two main approaches:
 - Direct Transfer
 - Projection

Direct Transfer

- A system trained on bilingual embeddings from scratch
- For EN <_> DE, BIVCD Embeddings were used with the BISKP model on 2 million aligned sentences, from europarl corpus
- BIVCD concatenates bilingual aligned sentences
- Used word2vec skip-gram model
- For EN <_> ZA, we trained the same model on the UN corpus with 11 million parallel sentences
- 100 and 200-dimensional embeddings were trained

Projection

- The problem of token-level argument mining
- Input is humans label L1 data and align it with parallel L2 data using fast-align
- Each argument in L1 of type a consists of MajorClaim, Claim, Premise
- Label all words in L2 sentences between scope with type a, using the BIO structure
- Projections of the words which do not align are ignored.

Experiments

- Token-level sequence tagging is performed with BIO labels
- Claim, Premise, and MajorClaim are the main classes
- Used 2 bi-directional LSTM layer with CRF layer of 100 units to get word embedding
- Another bi-directional LSTM model with 50 units is used to learn the character level representation

Experiments

- Concatenate both word embedding and character representation and call this BLCRF + char
- Training is done for 50 epochs
- The F1 score is used for evaluation

Baseline

- Choose majority label in test data and performance is poor on token-level
- Split the dataset by sentences and compute the probability distribution of how likely each argument appears in the sentence
- Label all the tokens in the sentence with the argument component type with BIO structure
- Label the last token with an "O" label in PE and CRC

Train/Dev/Test Split

- For the PE corpus, 286 essays were in the train and 80 in test data with 106k and 29k tokens respectively.
- 36 essays with 12k tokens which is 10% of training is used as a dev set
- Average score of 5 random initialization is reported in results

Train/Dev/Test Split

- For CRC, we perform 5-fold cross-validation
- Training has 15k tokens, dev has 2k and test has 4k
- For MTX, 5-fold cross-validation
- The train has 6k tokens, dev has 500, and the test has 1500 tokens

Results

Model	Embedding Type	EN→EN	EN→DE	DE→DE	DE→EN
BLCRF+Char	BIVCD-100	68.87	41.89	65.22	49.91
	BIVCD-200	70.51	39.87	65.92	49.52
BLCRF	BISKIP-100	69.27	37.01	63.33	48.23
	BIVCD-100	69.27	49.70	65.90	50.14
	BISKIP-100	69.15	49.76	64.92	50.28
Baseline		20.	20.	20.	20.

Table 4: Direct transfer results for $PE_{EN} \leftrightarrow PE_{DE}$. Scores are macro-F1.

Results: For Direct Transfer

- English language results are above 69% macro F1
- German in-language results are 4-5% below English
- Reason: German is more complex than English
- Drop > 40% for the direction of EN→DE and less for DE→EN
- Reason: Due to a discrepancy between train and test distribution
- EN→ DE performance increases from 40% to 50% when disabling character information

Results

		$CRC \leftrightarrow PE_{EN}$				$MTX_{EN} \leftrightarrow MTX_{DE}$				
Model	ZH→ZH	$ZH\rightarrow EN$	EN→EN	EN→ZH	EN→EN	EN→DE	$DE \rightarrow DE$	$DE \rightarrow EN$		
BLCRF+Char	46.31	14.01	69.27	9.50	73.12	67.03	73.41	66.62		
BLCRF	44.95	16.52	69.15	12.60	72.15	69.46	72.52	63.71		
Baseline	18.	17.	20.	17.	45.	46.	50.	50.		

Table 5: Direct transfer results for CRC and MTX. Scores are macro-F1. Embeddings are BISKIP-100.

Results: For Direct Transfer

- Reason: Diverging German character sequences
- Language CRC results are lower than language PE(46% vs 69% for PE)
- Reason: Due to the domain gap between student essays and reviews
- For MTX, the smallest dataset yields the highest F1 scores
- Language drop is small
- Reason: Arguments are separated by punctuation symbols which is easy to learn

Error Analysis and Discussion

- A major source of incorrect classification of tokens labeled as "B"
- The "blurring effect" at test time makes the detection of exact arguments difficult
- German and English have more than 97% cosine similarity in BISKIP-100d
- Apart from the semantic shift, direct transfer also faces syntactic shift
- Language adaption between CRC and PE corpus is difficult because argumentation units are very different

Projection

		$EN\rightarrow D$	E	DE→EN			
	HT	MT	In-Lang.	HT	MT	In-Lang.	
BLCRF+Char	63.67	64.00	63.33	67.57	66.39	69.27	
BLCRF	61.18	63.34	64.92	64.87	64.68	69.15	

Table 6: Projection on HT/MT translations, evaluated on human-created test data. Scores are macro-F1. Embeddings are BISKIP-100.

HT Projection

- For PE English and parallel German HT data, sores improved from 49.76% to 63.67% which is a 30% increase for English to German.
- In German to English also, improvement is 30% compared to direct transfer

Projection

		$EN\rightarrow D$	E	DE→EN			
	HT	MT	In-Lang.	HT	MT	In-Lang.	
BLCRF+Char	63.67	64.00	63.33	67.57	66.39	69.27	
BLCRF	61.18	63.34	64.92	64.87	64.68	69.15	

Table 6: Projection on HT/MT translations, evaluated on human-created test data. Scores are macro-F1. Embeddings are BISKIP-100.

MT Projection

- For the PE dataset, English-to-German, results are better than German to English
- Overall, machine translations are as good as human translations
- For CRC, using MT, the f1 score improves from 16.52% to 23.15%

Other Languages

- MT translation of PE in French, Spanish, and Chinese
- No human test data so evaluation is done on machine translations and projected annotations.
- For BLCRF + char model, performance scores were 62.45%, 65.92%, and 59.20% for French, Spanish, and Chinese
- For German and English, scores were 63.20% and 61.45%
- For CRC, with BLCRF + char obtains 47.92%

Error Analysis

Figure 1: Individual F1-scores for four indicated systems and seven labels. All transfer systems are from PE_{DE} to PE_{EN} ; EN is in-language. DT stands for Direct Transfer. HT/MT are projection-based approaches. Embeddings are BISKIP-100. Systems are BLCRF+Char.

Error Analysis

- The main bottleneck is the quality of cross-lingual projections
- Algorithm projections match is 97.24% for en→de
- The most mismatch is between "B" and "I" with the "O" category

Conclusion

- Currently, available datasets for AM are not adequate for cross-lingual AM
- Created human and machine translations of AM dataset
- Machine Translation and projection work better than direct transfer
- Translation and projected labels can create data in multiple languages, eliminating OOV and ordering problems.
- Machine translation in combination with projection performs on the level of inlanguage upper-bound results.

Thankyou Ouestions?