Recognize Genre of a Song Using Spotify Web API

MLWR Project SoSe - 2022 Group: 07

Group Members:

Others and Rubaiya Kabir Pranti

Technology Arts Sciences TH Köln

Contents

- Introduction
- Methodology and steps
- Classification models
- Comparison of models
- Visualization results
- Additional Task:Clustering
- Result and conclusion

Introduction

- The aim of this project is to recognize genre of the song by applying different Machine Learning Models
- The dataset used for the project is retrieved from Spotify web API
- Data preprocessing and feature Engineering were performed on the data to get the final dataset, which was then split into training and testing dataset in the ratio of 8:2
- The Machine Learning Models used for our project are:
 - Logistic Regression
 - K-Nearest Neighbors
 - Random Forest Model
 - Decision Tree Model
 - Gradient Boosting Model

Technology Arts Sciences

Methodology

- Spotify Web API and Data Extraction
- Data Pre-processing
- Feature Engineering
- Splitting Dataset
- Classification-Training Models
- Evaluation through Cross Validation
- Hyperparameter Optimization
- Final Prediction

Spotify Web API and Data Extraction

- Utilized the Spotify music data set using Spotify's https://developer.spotify.com/documentation/web-api/ website
- achieved a total of **150,550 songs** after first audio feature extraction
- after combining the extracted metadata set and extracted feature dataset, the combined dataset was of total 366,684 data points or songs consisting of 126 genres and each has 26 features/columns
- for less complexity and because of high computation time, we decided to keep only **15 genres** in which each genre has equal or more than 850 songs.

Key audio dataset metadata and features

- Danceability
- Popularity
- Mode
- Speechiness
- Acousticness
- Instrumentalness
- Liveness
- Valence
- Tempo
- Duration
- Key
- Explicitness

	genre	popularity	explicit	danceability	energy	key	mode	speechiness	acousticness	instrumentalness	liveness	valence	tempo	duration_s
0	salsa	57	0	0.463	0.876	1	1	0.0468	0.32200	0.000001	0.4090	0.569	92.092	261.0
ĺ	detroit- techno	7	0	0.775	0.838	10	0	0.0616	0.00676	0.900000	0.0835	0.671	139.981	422.0
2	tango	12	0	0.534	0.274	11	1	0.0527	0.91800	0.594000	0.0798	0.687	126.114	185.0
3	detroit- techno	9	0	0.789	0.458	1	1	0.0783	0.00990	0.853000	0.1300	0.419	133.035	265.0
1	salsa	65	0	0.688	0.614	9	1	0.0378	0.58500	0.000000	0.0978	0.852	176.396	307.0

Preferred Genre List with 15 genres only

- 1. Study
- 2. Club
- 3. Comedy
- 4. Bluegrass
- 5. Black-metal
- 6. World-music
- 7. Iranian
- Grindcore
- 9. Heavy-metal
- 10. Turkish
- 11. Afrobeat
- 12. Forro
- 13. Country
- 14. Happy
- 15. Chicago-house

Data Pre-processing

- Deleted rows with missing values
- Erased rows with duplicate data
- Replaced boolean values with numericals
- Took desired genres from 126 to 15 genres

Feature Engineering

- Dropped non-numeric or insignificant columns
- highly correlated feature loudness was dropped using correlation matrix
- After feature analysis, 15 features were kept finally

Correlation Matrix

Technology Arts Sciences TH Köln

Splitting Dataset

- The dataset was splitted into training and testing dataset in the ratio of 8:2 respectively
- Training set is used to train the machine learning model to predict
- Testing set is used to measure the performance

Classification-Training Models

- Training is performed
- Data fitting is executed to fit the models

Evaluation through Cross Validation

- For better evaluation, Cross validation is performed to get the estimation of the performance of models through accuracy score function
- Specifically, K-fold cross validation on both training and test dataset is applied to get our initial and final predictions by shuffling the dataset randomly and by splitting into k number of folds

Hyperparameter optimization

- Manual search/investigation of the best possible hyperparameters
- Through Scikit-Learner's GridSearchCV and RandomizedSearchCV (only applied to Random Forest), models are optimized or retrained by applying optimal/best hyperparameters

Logistic Regression

Steps performed to get optimized LR model:

- used SMOTE() function
- "popularity" and "tempo" having large integer values were scaled StandardScaler() function
- included **PCA()** function
- incorporated grid search optimization also
- cross-validation parameter along with pipeline
 as estimators and after fine tuning model, the
 LR model was retrained by providing test set
 accuracy as 70.81% which was initially 33.87%.

Best Hyperparameters	Values
С	100
Penalty	12
multiclass	ovr
solver	newton-cg
pipeline	pca,standard scalar

K-Nearest Neighbor

Steps performed to get optimized KNN model:

- If the number of nearest neighbors=k is too small, then it results in the decrease of accuracy rate
- the experimental results show that initial value of k is 21, where accuracy rate reached up to 44.68%.
- after applying smote function, respective
 pipeline same as LR classification model and
- applying tuning of model through grid search; the
 K-NN model gave accuracy of about 70.6%.

Best Hyperparameters	Values
Leaf size	30
N neighbors	16
weights	distance
metric	minkowski
pipeline	pca,standard scalar

Technology Arts Sciences

TH Köln

Decision Tree

- Observation of DTs performance on our case.
- Initial Tree accuracy: 67%
- For optimization: Hyperparameter tuning (manually)
 - Maximum depth
 - Ccp_alpha (pruning)
 - Minimum samples per split
 - Criterion (Entropy vs. Gini-impurity)
 - Splitter ("Best" vs. Random)
- GridSearch

DT Hyperparameter tuning

Technology Arts Sciences

TH Köln

Optimal values for observed hyperparameters

Hyperparameter	Value (tuning)	Value (gridSearch)	
Max. depth	13	13	
Ccp_alpha	0 (no pruning)	0	
Min. samples / split	18	33	
splitter	best	best	
criterion	gini	gini	

Tuning accuracy: 70.81%

Gridsearch accuracy: 70.03%

Manual tuning

GridSearch

Technology Arts Sciences TH Köln

DT Visualization

Random Forest

- final parameters used are named as number of estimators, maximum depth, maximum features, minimum samples per split, minimum samples per leaf etc.
- grid search optimization always comes up with the best possible combination of hyperparameters
- delivers an accuracy of about 79.59% without hyperparameter tuning. Later accuracy increases up to 79.67% after tuning.

Best Hyperparameters	Values
maximum depth	19
maximum features	3
n estimators	1000
criterion	entropy
min. samples leaf	2
min. samples split	3
class weight	balanced_subsample

Technology Arts Sciences

Random Forest Hyperparameter Tuning(individual)

50

150

100 min_samp_split 200

0.80

0.75

Train Accuracy Test Accuracy

0.5

0.4

2.5

5.0

Max depth

Technology Arts Sciences TH Köln 23

Technology Arts Sciences

TH Köln

Gradient Boosting

- GB approach uses multi-classifiers, which create hundreds of trees.
- Therefore, the design of each classifier is simple and speed up the progress of our training.
- To find the optimal parameters for GB we implemented following parameters are as mentioned for which we get an accuracy score of 80.46% on the test set which was initially 78.67% without hyperparameter tuning.

Best Hyperparameters	Values
Maximum depth	8
Maximum features	2
Learning rate	0.1
N estimators	500
subsample	1.0
Min. samples split	7
Min. samples leaf	15
criterion	friedman_msc Technolog

Arts Sciences

Gradient Boosting Hyperparameter Tuning(individual)

max depth

14

minimum samples split

Technology Arts Sciences TH Köln

Model Comparison

- In the plot, it is visible that both highest performing classifiers are respectively GB with an accuracy of 80.46% and RF with 79.67%.
- The lowest accuracy was achieved by the K-NN classifier with 70.6%.
 Besides, DT and LR had the same accuracy about 70.81% which is only a small amount of higher than K-NN.

Additional Task: K-Means Clustering

- Used numerical parameters, which give informations about specific character of a song.
 - Popularity
 - Danceability
 - Energy
 - Speechiness
 - Acousticness
 - Instrumentalness
 - Liveness
 - Tempo
 - valence

Technology Arts Sciences

Amount of clusters

Both say: take 4

Pairplots

Heatmap

The Clusters

- Cluster 0: Acoustic Instruments
- Cluster 1: energetic fast instrumentals
- Cluster 2: speech live acoustic
- Cluster 3: Pop-Dance

Technology Arts Sciences TH Köln

Acoustic Instruments:

- Bluegrass 50%
- o Iranian 50%
- Study
- World-music 33%

• Speech live acoustic:

Comedy

Energetic fast Instrumentals:

- Black-metal
- Club 50%
- Grindcore
- Happy
- Heavy-metal
- Iranian 50%
- World-music

Pop-Dance:

- Afrobeat
- Bluegrass 50%
- o chicago-House
- Club 50%
- Country
- > Forro
- Turkish
- World-music 33%

Technology Arts Sciences

TH Köln

Result and Conclusion

- Self explaining: Hyperparameter leads to accuracy improvement.
- GB and RF are performing way better, than the rest.
- KNN and GB are overfitting.

Thank you!

Technology Arts Sciences

TH Köln