Events-Vis: Integrando Espaço e Tempo para a Visualização de Eventos em um gráfico 2D

Giovani de Almeida Valdrighi

Jorge Poco

Nivan Ferreira

- Introdução
 - 1. Dados espaço-temporais
 - 2. Visualização de dados espaço-temporais
 - 3. Objetivos
- Método
 - 1. Ordenamento dos eventos
 - 2. Posicionamento vertical
 - I. Definição do problema
 - II. Heurística Gulosa
 - III. Programação Quadrática Mista Inteira
 - 3. Representação interna
- Avaliação do método
- Estudo de caso
- Trabalhos futuros

Introdução

1. Dados espaço-temporais

Dados espaço-temporais

- Dados com informação espacial (2D) e temporal.
- Com o avanço tecnológico, grande quantidade de dados vem sendo coletada:
 - dados de GPS de celulares;
 - sensores remotos para medições meteorológicas;
 - sensores para medições do trânsito.
- São aplicados em diversas áreas como: mobilidade humana, assistência médica, sismologia e meteorologia.

Imagem por Dariusz Sankowski (Pixabay)

Imagem por Sebastiaan Stam (Unsplash)

Classificação de dados espaço-temporais

- Diversas classificações de dados espaço-temporais existem na literatura.
- Eventos: posição espacial fixa e um intervalo de tempo de existência. Exemplo: atividade sísmica.
- Séries temporais georreferenciadas: posição espacial fixa, e uma sequência de instantes de tempo em que uma medição ocorre. Exemplo: medição de umidade a cada 4 horas realizada por um sensor fixo.
- Trajetórias: posição espacial que se altera a cada instante de tempo, e um identificador para reconhecer o percurso de um mesmo objeto. Exemplo: registro do percurso de uma corrida de táxi.

Por que "eventos"?

Eventos

- A visualização proposta irá focar na visualização de eventos.
- Apresentam dinamismo espacial e temporal e são comumente obtidos em dados urbanos.
- Eventos podem ser gerados a partir de agrupamentos em dados pontuais espaço-temporais, obtendo uma região de ocorrência e um intervalo de tempo de existência.
- Em particular, iremos focar em eventos que ocorrem em uma região no espaço, apresentam área, e a técnica poderá ser generalizada para dados pontuais considerando um valor constante para a área.

• Slide explicando agrupamento e envoltório convexo

Quais técnicas para visualização espaço-temporal já existem?

2. Visualizações de dados espaçotemporais

2. Visualização de dados espaço-temporais

- Muitas técnicas para a visualização de dados espaciais foram herdadas da cartografia.
- Para lidar com a dimensão adicional (tempo), técnicas conectaram os métodos cartográficos com a dinamicidade permitida ao se utilizar computadores, utilizando de interatividade e animação.
- Técnicas mais comuns:
 - cubo de espaço-tempo;
 - animações;
 - "small multiples".

2. Visualização de dados espaço-temporais

Cubo de espaço-tempo

Projeções realizadas para exibir um objeto 3D em uma tela 2D pode gerar interpretações equivocadas.

Animações

Necessidade de memorizar os dados de diferentes momentos para realizar comparações.

"Small multiples"

Dificuldade em selecionar os intervalos temporais e número limitados de sub-gráficos.

Quais os objetivos de Events-Vis?

3. Objetivos

3. Objetivos

- Gerar uma visualização de dados espaço-temporais que:
- Seja capaz de gerar uma visão geral de todo o conjunto de dados;
- Permita a interpretabilidade para identificação de características temporais e espaciais dos dados originais;
- Evite os problemas apresentados pelas técnicas convencionais;

representam eventos

1. Ordenamento dos Eventos

1. Ordenamento dos Eventos

- Calculamos pontos centrais dos eventos, como a média entre os pontos de um evento ou o centro de massa.
- Aplicamos uma transformação de projeção de 2D para 1D nos pontos centrais e obtemos um ordenamento dos eventos.

Projeções

- Utilizadas para representar o espaço bidimensional no eixo vertical unidimensional preservando o máximo da informação.
- Métodos de projeção considerados:
 - Redução de dimensionalidade: PCA, MDS, t-SNE, UMAP.
 - Indexação espacial: curvas de preenchimento de espaço Hilbert e Morton.

2. Posicionamento Vertical

2. Posicionamento Vertical

- Espaço será representado verticalmente, dessa forma, a posição horizontal e largura dos retângulos não será considerada.
- Posicionar os eventos verticalmente de forma em que eventos seja representada:
 - suas áreas;
 - suas vizinhanças;
 - A área de intersecção entre eventos.

2.1 Formulação do problema de posicionamento

- Temos n eventos denotados por e_i e respectivos segmentos S_i , ambos numerados pela ordem obtida na etapa de projeção.
- Cada evento possui uma área a_i (área do envoltório convexo) e para cada segmento um altura h_i .
- Para cada par de eventos (e_i, e_j) temos uma medida $w_{i,j}$ da área de intersecção entre suas regiões, para cada par de segmentos (S_i, S_j) podemos também calcular a intersecção geométrica entre eles $I_{i,j}$.
- Considere os segmentos posicionados no plano cartesiano sobre a reta x = 0, com o ponto médio de S_i em $(0, y_i)$.
- **Problema:** calcular $(y_i)|_{i=1}^n$ tais que a ordem vertical dos segmentos será a mesma dos reespectivos eventos, a altura representa a área $h_i = a_i$, e que a intersecção $I_{i,j}$ seja o mais próximo possível de $w_{i,j}$.

Intersecção entre segmentos

Seja $I_{i,j}$ uma função que recebe dois segmentos e retorna o valor da intersecção entre eles. Observamos:

Caso os retângulos não apresentem intersecção, o valor é 0.

Caso apresentem, temos:

$$I_{i,j} = \frac{h_i + h_j}{2} - |y_i - y_j|$$

Intersecção entre segmentos

Note que quando os eventos não se intersectam:

$$\frac{h_i + h_j}{2} - \left| y_i - y_j \right| < 0$$

Logo podemos definir a forma geral:

$$I_{i,j} = \max\left(0, \frac{h_i + h_j}{2} - |y_i - y_j|\right)$$

Quando sabemos a ordem dos segmentos, isto é, sabemos que $y_j \le y_i$ então:

$$I_{i,j} = \max\left(0, \frac{h_i + h_j}{2} - (y_i - y_j)\right)$$

Solução do problema de posicionamento

- Soluções propostas:
 - Heurística gulosa
 - Programação Quadrática Mista Inteira
- É vantajoso separar os eventos em subconjuntos que se intersectam.
- O problema pode ser resolvido em subproblemas menores.
- Para unir os resultados dos subconjuntos basta posiciona-los de forma sequencial.

Separação em subconjuntos

- Dois eventos (i,j) pertencem a um mesmo subconjunto se, e somente se:
 - eles se intersectam;
 - existe uma sequência $k_1, k_2, ..., k_n$ tal que $w_{ik_1} > 0, ..., w_{ik_n} > 0$ ("existe uma sequência de eventos que ligam (i, j) por meio de intersecções").

Separação em subconjuntos

- Dois eventos (i,j) pertencem a um mesmo subconjunto se, e somente se:
 - eles se intersectam;
 - existe uma sequência $k_1, k_2, ..., k_n$ tal que $w_{ik_1} > 0, ..., w_{ik_n} > 0$ ("existe uma sequência de eventos que ligam (i, j) por meio de intersecções").

Definição da função objetivo

- Para cada par de de segmentos (S_i, S_j) , desejamos aproximar $I_{i,j}$ do valor da área intersecção dos eventos $w_{i,j}$.
- Uma opção é com a distância quadrática:

$$\left(w_{i,j}-I_{i,j}\right)^2$$

• Considerando todos os pares possíveis, o problema é:

$$\min \sum_{i=1}^{n} \sum_{j=i+1}^{n} (w_{i,j} - I_{i,j})^{2}$$

2. Il Heurística Gulosa

- Heurística é um método simples, rápido e que encontre soluções próximas da solução ótima.
- Sem garantia de encontrar a solução ótima.
- Uma heurística gulosa em cada etapa de construção da solução, decide pela opção que dará o melhor resultado imediato.
- Iterando baseado na ordem dos eventos iremos posicionar os segmentos verticalmente verificando a intersecção os segmentos consecutivos.

Heurística Gulosa

- A posição do primeiro: $y_1 = \frac{h_1}{2}$ (isto é, o início do segmento está em y = 0).
- Iterando pelos segmentos ordenados, definimos as posições da seguinte forma:

$$y_i = y_{i-1} + \frac{(h_i + h_{i-1})}{2} - w_{i,j}$$

- A cada iteração $I_{i,i-1} = w_{i,i-1}$.
- No entanto, a intersecção de segmentos não consecutivos não é garantida.

Situação espacial a ser representada e a ordem dos eventos

Situação espacial a ser representada e a ordem dos eventos

Posiciona o primeiro evento no eixo y = 0

Situação espacial a ser representada e a ordem dos eventos

Posiciona o primeiro evento no eixo y = 0

Adiciona o segundo representando a intersecção espacial

Situação espacial a ser representada e a ordem dos eventos

Posiciona o primeiro evento no eixo y = 0

Adiciona o segundo representando a intersecção espacial

Continuando com as iterações...

2. III Programação Quadrática Mista Inteira (MIQP)

- Programação quadrática é a classe de problemas que minimizam funções quadráticas.
- Desejamos minimizar a diferença quadrática entre $I_{i,j}$ e $w_{i,j}$:

$$\min \sum_{i=1}^{n} \sum_{j=i+1}^{n} (w_{i,j} - I_{i,j})^2$$

• Utilizamos programação mista inteira pois com variáveis binárias é possível utilizar de um truque para representar a função max presente na definição da intersecção.

$$I_{i,j} = \max\left(0, \frac{h_i + h_j}{2} - (y_i - y_j)\right)$$

Programação Quadrática Mista Inteira (MIQP)

• O problema final MIQP com função objetivo e restrições será:

$$\min \sum_{i=1}^{n} \sum_{j=i+1}^{n} (w_{i,j} - I_{i,j})^{2}$$

$$\sup_{i=1}^{n} \sum_{j=i+1}^{n} (w_{i,j} - I_{i,j})^{2}$$

$$\sup_{i=1}^{n} \sum_{j=i+1}^{n} (w_{i,j} - I_{i,j})^{2}$$

$$y_{i} \leq y_{j}$$

$$0 \leq I_{i,j}$$

$$\frac{h_{i} + h_{j}}{2} - (y_{i} - y_{j}) \leq I_{i,j}$$

$$I_{i,j} \leq b_{i,j}M$$

$$I_{i,j} \leq \frac{h_{i} + h_{j}}{2} - (y_{i} - y_{j}) + (1 - b_{i,j})M$$

$$b_{i,j} \in \{0, 1\}$$

3. Representação Interna

Events-Vis: Método

- Representação dos pontos internos de um evento (opcional caso essa estrutura interna exista).
- Para cada evento, pontos são projetados e ordenados.
- Representados dentro do retângulo do respectivo evento, posicionados horizontalmente de acordo com o tempo e verticalmente de acordo com a ordenação.

Avaliação do método

Avaliação quantitativa do método

- Desejamos avaliar quão boa é a representação espacial dos dados obtida no algoritmo de posicionamento vertical.
- Preservação de distâncias: a distância euclidiana entre os centros dos eventos (e_i, e_j) é próxima a distância vertical entre os retângulos (R_i, R_j) ?
- Preservação de vizinhanças: os k eventos mais próximos do centro do evento e_i e os k retângulos mais próximos do retângulo R_i são os mesmos?
- Preservação de intersecções: as intersecções são bem representadas?

Resultados parciais

- Ambos métodos (guloso e MIQP) apresentam bons resultados.
- Seria esperado que o método MIQP superasse o guloso, porém isso não ocorre, em poucas situações o guloso apresenta resultados piores.
- Devido a demora para solução do método MIQP, guloso se torna a melhor opção.
- Entre as projeções, as que preservaram melhor o espaço foram a PCA e de Hilbert.

Estudo de caso

Conjunto de dados

- Dados de tráfego urbano:
 - Alertas criado por usuários do aplicativo Waze para relatar mudanças no tráfego, trânsito, acidentes na cidade do Rio de Janeiro.
 - Cada ponto apresenta posição espacial (latitude, longitude), tempo (com informação até minutos), uma categoria e um comentário descrevendo.

Trabalhos futuros

- Desenvolvimento de método de otimização que obtenha solução mais rapidamente e supere os resultados do método guloso.
- Produção de estudos de casos com outros conjuntos de dados.
- Adaptação do método para outros tipos de dados espaço-temporais.

Muito obrigado! Dúvidas? Sugestões?

Métodos de agrupamento

- Agrupamento são métodos comuns para a mineração de dados, isto é, extrair informações e características importantes de grande quantidade de dados.
- Diversos métodos adaptados para dados espaço-temporais já foram propostos, como: ST-GRID, ST-DBSCAN, SNN.
- O método ST-DBSCAN será utilizado nos estudos de caso.

Métodos de agrupamento

• Um método adaptado deve considerar a proximidade espacial e temporal para determinar grupos, e além disso, considerar a diferença existente entre distâncias espaciais e distâncias temporais.

Curva de Hilbert

Programação Quadrática Mista Inteira (MIQP)

Utilizamos um truque que em um cenário de otimização com restrições, desejamos resolver:

$$\max f(c)$$

$$c = \max(a_1, a_2)$$

Com (a_1, a_2) variáveis de decisão, podemos definir uma variável binária b e as restrições:

$$\begin{cases} c \ge a_1 \\ c \ge a_2 \\ c \le a_1 + bM \\ c \le a_2 + (1 - b)M \end{cases}$$

Com M um valor alto o suficiente para não ser ultrapassado por a_1, a_2 , temse que $c = \max(a_1, a_2)$.