

UNISONIC TECHNOLOGIES CO., LTD

TA2003

Preliminary

LINEAR INTEGRATED CIRCUIT

AM/FM RADIO IC

DESCRIPTION

The UTC TA2003 is AM/FM Radio IC (FM F/E + AM/FM IF) which is designed for AM/FM Radios.

FEATURES

- * FM IFT, AM IFT and FM Detector Coil are unnecessary.
- * Operating Supply Voltage Range
- * $V_{CC(opr)}$ = 1.8 ~ 7V (Ta=25°C)

ORDERING INFORMATION

Ordering	Number	Dookogo	Dooking	
Lead Free Halogen Free		Package	Packing	
TA2003L-S16-R TA2003G-S16-R		SOP-16	Tape Reel	
TA2003L-D16-T TA2003G-D16-T		DIP-16	Tube	

www.unisonic.com.tw 1 of 7 QW-R110-011.Ba

■ EXPLANATION OF TERMINAL

Terminal Voltage: Typical DC voltage at Ta=25°C, V_{CC}=3V and no signal with Test Circuit

	rminal Voltage: Typical DC voltage at Ta=25°C, V _{CC} =3V and no signal with Test Circuit N RIN NAME TERMINAL							
PIN NO.	PIN NAME	DESCRIPTION	INTERNAL CIRCUIT	VOLT				
1	FM AF IN	Input of FM RF Amplifier	FM RF OUT (15) (15) (14) (15) (0	0.7			
2	GND1	GND for RF, DSC and MIX Stage	Ü	0	0			
3	FM MIX	Output of FM MIX	A SIGN OF SIGN	0.4	1.7			
4	AM MIX	Output of AM MIX	Vcc 6 4 4 GND2 9	0.6	0			
5	AGC	By pass of AM AGC	F AGC S RF AGC GND2 9	0	0			
6	V _{CC}			3.0	3.0			
7	AM IF IN	Input of AM IF Amplifier	Vcc 6 S Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	3.0	3.0			
8	FM IF IN	Input of FM IF Amplifier	V _{CC} 6 30 8 8 9 9	3.0	3.0			

EXPLANATION OF TERMINAL

PIN NO.	PIN NAME	DESCRIPTION	INTERNAL CIRCUIT	TERM VOLT	
9	GND2	GND for IF stage		0	0
10	QUAD	FM QUAD Detector Ceramic Discriminator is connected. Recommendation CDA 10.7MG31 (MURATA MFG. CO., LTD)	Vcc 6 10 10 GND2 9	2.5	2.2
11	DET OUT	Output of FM/AM Detector	GND2 9 a) LOW-FM, HIGH-AM b) LOW-AM, HIGH-FM	1.4	1.1
12	AM OSC	AM local Oscillator Terminal Oscillator Coil is connected.	Vcc 6 ALC ALC GND1 2	3.0	3.0
13	FM OSC	FM local Oscillator Terminal Oscillator Coil is connected	AM/FM SW 14 13 MIX GND1 2	0.9	3.0
14	AM/FM SW	AM/FM switch connected to Pin14 V _{CC} →FM mode Pin14 OPEN→AM mode	Vcc 6	0.9	3.0
15	FM RF OUT	FM RF Coil is connected	cf. PIN 1	3.0	3.0
16	AM RF IN	Input of AM RF Amplifier	Vcc 6 GND1 2	3.0	3.0

■ BLOCK DIAGRAM

■ ABSOLUTE MAXIMUM RATING (Ta=25°C)

PARAMETE	R	SYMBOL	RATINGS	UNIT
Supply Voltage		V_{CC}	8	V
Dawar Dissipation	DIP-16	Б	750	\/
Power Dissipation	SOP-16	P _D	350	mW
Operating Temperature		T _{OPR}	-25 ~ 75	°C
Storage Temperature		T _{STG}	-55 ~ 150	°C

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ ELECTRICAL CHARACTERISTICS

Unless otherwise specified, Ta=25 $^{\circ}$ C, V_{CC}=3V, FE: f = 98MHz, f_m = 1KHz,

FM IF: f = 10.7MHz, $\triangle f = \pm 22.5kHz$, $f_m = 1KHz$

AM: f = 1MHz. MOD = 30%. $f_m = 1 KHz$

AIVI. I = IIVITZ, IVIOD = 30%, I _m = 1 KTZ								
PARAMETER		SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT	TEST CIRCUIT
Supply Current		I _{CC} (FM)	FM Mode, Vin=0		10.5	16.5	m A	1
Suppl	y Current	I _{CC} (AM)	AM Mode, Vin=0		5.0	8.0	mA	1
	Input Limiting Voltage	Vin (lim)	-3dB limiting point		12		dBµV EMF	1
F/E	Quiescent Sensitivity	Qs	S/N=30dB		12		dBµV EMF	1
	Local OSC Voltage	Vosc	f _{OSC} =108MHz	160	240	320	mVrms	2
	Local OSC Stop Voltage	V _{stop} (FM)	Vin=0		1.2		V	2
	Input Limiting Voltage	Vin(lim)IF	-3dB limiting point	42	47	52	dBµV EMF	1
FM	Recovered Output Voltage	V_{OD}	Vin=80dBµV EMF	50	70	90	mVrms	1
IF	Signal To Noise Ratio	S/N	Vin=80dBµV EMF		62		dB	1
	Total Harmonic Distortion	THD	Vin=80dBµV EMF		0.4		%	1
	AM Rejection Ratio	AMR	Vin=80dBµV EMF		33		dB	1
	Voltage Gain	G_V	Vin=27dBµV EMF	15	32	50	mVrms	1
	Recovered Output Voltage	V_{OD}	Vin=60dBµV EMF	35	60	85	mVrms	1
AM	Signal To Noise Ratio	S/N	Vin=60dBµV EMF		43		dB	1
	Total Harmonic Distortion	THD	Vin=60dBµV EMF		1.0		%	1
	Local OSC Stop Voltage	V _{stop} (AM)	Vin=0		1.6		V	1

■ COIL DATA (TEST CIRCUIT)

COIL NO.	TEST FREQ	L	Co	0	TURNS					WIRE	
COIL NO.	(Hz)	(µH)	(pF)	Q_{O}	1-2	2-3	1-3	1-4	4-6	(mm Ø)	
L1 FM RF	100M			100				2.25		0.5 UEW	
L2 FM OSC	100M			100			1.75			0.5 UEW	
L3 AM OSC	796K	268		125	14	86				0.06 UEW	

■ TEST CIRCUIT1

■ TEST CIRCUIT2

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.