

Al6101 Introduction to Al and Al Ethics

Reinforcement Learning

Assoc Prof Bo AN

www.ntu.edu.sg/home/boan

Email: boan@ntu.edu.sg

Office: N4-02b-55

- Reinforcement learning (RL)
- Model-free prediction and control
- Value-based methods
- Advanced materials:
 - Policy gradient methods
 - Exploitation vs exploration

Reinforcement Learning

What makes reinforcement learning different from other machine learning paradigms?

- There is no supervisor, only a reward signal
- Feedback is delayed, not instantaneous
- Time really matters (sequential, non i.i.d data)
- Agent's actions affect the subsequent data it receives

Many Faces of Reinforcement Learning

Examples of Reinforcement Learning

Robotic control

The Game of Go

Video games

Recommendation System

Agent and Environment

- The observation is the perception of the environment for agent
- The action will change the outside environment
- The reward is a scalar value indicates how well agent is doing at step t

The agent's job is to maximize the cumulative reward

Agent and Environment

- At each step t the agent:
 - Executes action At
 - Receives observation Ot
 - Receives scalar reward Rt
- The environment:
 - Receives action At
 - Emits observation Ot+1
 - Emits scalar reward Rt+1
- t increments at env. step

Major Components of an RL Agent

- Policy: agent's behavior function
- Value function: how good is each state and/or action
- Model: agent's representation of the environment

Categorizing RL agents

- Value Based
 - No Policy (Implicit)
 - Value Function
- Policy Based
 - Policy
 - No Value Function
- Actor Critic
 - Policy
 - Value Function

- Model Free
 - Policy and/or Value Function
 - No Model
- Model Based
 - Policy and/or Value Function
 - Model

Model-free Prediction and Control

Normally, we model RL problems as an Markov Decision Process (MDP)

- States s, beginning with initial state s₀
- Actions a
- Transition model P(s' | s, a)
- Reward function R(s)

What if the distributions and the transitions of MDP are unknown?

- Model-free RL
 - learn from samples

Model-free Prediction: Monte Carlo

- MC methods learn directly from episodes of experience
- MC is model-free: no knowledge of MDP transitions / rewards
- MC learns from complete episodes: no bootstrapping
- MC uses the simplest possible idea: value = mean return
- Caveat: can only apply MC to episodic MDPs
 - All episodes must terminate

Monte Carlo Policy Evaluation

Goal: learn v_π from episodes of experience under policy π

$$S_1$$
, A_1 , R_2 , ..., $S_k \sim \pi$

The return is the total discounted reward:

$$G_t = R_{t+1} + \gamma R_{t+1} + \dots + \gamma^{T-1} R_T$$

The value function is the expected return:

$$V_{\pi}(s) = E_{\pi}[G_t | S_t = s]$$

Model-free Control: TD Learning

Temporal Difference Learning

- TD methods learn directly from episodes of experience
- TD is model-free: no knowledge of MDP transitions / rewards
- TD learns from incomplete episodes, by bootstrapping
- TD updates a guess towards a guess

• Goal: learn v_{π} from episodes of experience under policy π

$$S_1$$
, A_1 , R_2 , ..., $S_k \sim \pi$

• Update value V(St) toward estimated return $R_{t+1} + \gamma V(S_{t+1})$

$$V(S_t) = V(S_t) + \alpha(R_{t+1} + \gamma V(S_{t+1}) - V(S_t))$$
Target

TD error

- TD can learn before knowing the final outcome
 - TD can learn online after every step
 - MC must wait until end of episode before return is known
- TD can learn without the final outcome
 - TD can learn from incomplete sequences
 - MC can only learn from complete sequences
 - TD works in continuing (non-terminating) environments
 - MC only works for episodic (terminating) environments

Value-based Methods

- Learning a Policy $\pi(a|s)$ via a Value function Q(s,a)
 - For example, Q-learning and SARSA
- Q-learning
 - Using a Q table to get the best action $argmax_{a^*} Q(s, a)$
 - Update Q

$$Q(s,a) \leftarrow (1-\alpha) \cdot Q(s_t,a_t) + \alpha \cdot (r_t + \gamma \cdot \max_{a} Q(s_{t+1},a))$$
Learning rate

Value-based Methods: Q-learning

Q-learning Introduction

- A model-free off-policy reinforcement learning
- Learns an optimal action-selection policy for any given MDP
 - The action-selection policy is a table storing Q-values given state and action
 - · The action with maximal Q value is chosen as the optimal action given a state input

Return action a_1 with maximal Q value

Value-based Methods: Q-learning

Q-learning training

- Learning from samples: (S, A, R, S')
- Via Bellman Equation to update the Q table
- Update Q table

Off-policy: updating the Q with different policy

Take actions with epsilon-greedy (for exploration)

$$\hat{\pi} = \arg \max_{a} \hat{Q}(s, a) \quad w.p \ 1 - \epsilon$$

Value-based Methods: Q-learning

Q-learning (off-policy TD control) for estimating $\pi \approx \pi_*$

```
Algorithm parameters: step size \alpha \in (0,1], small \varepsilon > 0

Initialize Q(s,a), for all s \in \mathbb{S}^+, a \in \mathcal{A}(s), arbitrarily except that Q(terminal, \cdot) = 0

Loop for each episode:

Initialize S

Loop for each step of episode:

Choose A from S using policy derived from Q (e.g., \varepsilon-greedy)

Take action A, observe R, S'

Q(S,A) \leftarrow Q(S,A) + \alpha \left[R + \gamma \max_a Q(S',a) - Q(S,A)\right]

S \leftarrow S'

until S is terminal
```

Value-based Methods: SARSA

SARSA Introduction

- on-policy: updating the Q with current policy
- Similar to Q-learning with some differences
 - On-policy: update the Q-table with the (s, a, r, s') sar iples generate by the current policy

$$Q(S, A) = Q(S, A) + \alpha \cdot [R + \gamma \cdot (Q(S', A')) - Q(S, A))]$$

The next state and next action in transition samples

Epsilon greedy can still be used to output actions like Q-learning

Value-based Methods: SARSA

Sarsa (on-policy TD control) for estimating $Q \approx q_*$

```
Algorithm parameters: step size \alpha \in (0,1], small \varepsilon > 0

Initialize Q(s,a), for all s \in \mathcal{S}^+, a \in \mathcal{A}(s), arbitrarily except that Q(terminal, \cdot) = 0

Loop for each episode:

Initialize S

Choose A from S using policy derived from Q (e.g., \varepsilon-greedy)

Loop for each step of episode:

Take action A, observe R, S'

Choose A' from S' using policy derived from Q (e.g., \varepsilon-greedy)

Q(S,A) \leftarrow Q(S,A) + \alpha \left[R + \gamma Q(S',A') - Q(S,A)\right]

S \leftarrow S'; A \leftarrow A';

until S is terminal
```

Training the smart cab

- Actions: stop, forward, left, right
- State: intersection info
- Environment: a grid world environment
- Rewards: proximity to the destination & penalty
- Transitions: unknown
- Using Q-learning

Previous State: ('right', 'green', None, 'left', None) Training Trial 1 56% of time remaining to reach destination. Destination

Available online

https://github.com/GoingMyWay/OpenCourse/tree/master/Udacity/MLND/smartcabhttps://www.ritchieng.com/machine-learning-proj-smart-cab/

The code of the agent

```
class LearningAgent(Agent):
   def init (self, env):
       if not isinstance(env, Environment):
            raise TypeError('invalid type %s' % type(env))
       self.env, self.state, self.next_waypoint = env, None, None
       super(LearningAgent, self).__init__(env)
       self.color = 'red' # override color
       self.planner = RoutePlanner(self.env, self) # simple route planner to get next_waypoint
       # TODO: Initialize any additional variables here
       self.q_matrix, self.alpha, self.gamma, self.epsilon = dict(), 0.9, 0.6, 0.1
       self.pre_state, self.pre_action, self.pre_reward = None, None, None
       selt.detault_q, selt.num_success, selt.env.acc = 1, 0, 0.0
```


Output actions

Interact with the environment (no code)

Updating Q table

```
# TODO: Learn policy based on state, action, reward
self.q_matrix[(self.pre_state, self.pre_action)] = \
    (1 - self.alpha) * self.q_matrix[(self.pre_state, self.pre_action)] + \
    self.alpha * (self.pre_reward + self.gamma * self.select_action_q(self.state).q_value)
```

Advanced Materials

Policy Gradient Methods: Background

- How do value function work as a policy?
 - Output actions with the best Q values
- Can we directly learn a policy mapping states to actions?
- Policy gradient methods
 - Learn a parameterized policy that can select actions without consulting a value function
 - Use $\pi(a|s, \theta) = \Pr\{A_t = a \mid S_t = s, \theta_t = \theta\}$ with parameters $\theta \in \mathbb{R}^{d'}$ for the probability that action a is taken at time t given that the environment is in state s at time t
 - The value functions can also be parameterized as $\hat{v}(s, \mathbf{w})$ with parameters $\mathbf{w} \in \mathbb{R}^d$ (optional)
 - Update the parameters by gradient ascent given some performance measures $J(m{ heta})$

$$\boldsymbol{\theta}_{t+1} = \boldsymbol{\theta}_t + \alpha \widehat{\nabla J(\boldsymbol{\theta}_t)}$$

Policy Gradient Methods: Linear Example

- A linear function approximation example of policy gradient methods
 - Parameters of policy function of a linear function, soft-max policy

$$\theta = \{\theta_0, \theta_1, \theta_2\}$$
 action = $\{a_0, a_1, a_2\}$ $s = \{s_0, s_1\}$

$$\pi(s, a_i) = \frac{e^{a_i \theta_0 + s_0 \theta_1 + s_1 \theta_2}}{\sum_{j=0}^{|A|} e^{a_j \theta_0 + s_0 \theta_1 + s_1 \theta_2}}$$

Sampling actions with these probability

- We introduce optimization rules in the following slides
- Deep Neural networks can also be used as the approximation function
 - Deep Reinforcement Learning (DRL)

Policy Gradient Methods

Policy gradient (PG) methods model and optimize the policy directly

$$\pi_{\theta}(s, a) = \mathbb{P}\left[a \mid s, \theta\right]$$

By maximizing performance measure w.r.t π_{θ}

$$J(\theta) = V^{\pi_{\theta}} = E[R]$$

Policy Gradient Methods

- Policy gradient (PG) methods model and optimize the policy directly
- The policy is modeled with a parameterized function respect to θ, π_θ(a|s)

Performance measure
$$J(\theta) = \sum_{s \in \mathcal{S}}^{\substack{\text{Transition} \\ \text{function}}} J(\theta) = \sum_{s \in \mathcal{S}}^{\substack{\text{Transition} \\ \text{Value} \\ \text{function}}} J(\theta) = \sum_{s \in \mathcal{S}}^{\substack{\text{Transition} \\ \text{Value} \\ \text{function}}} J(\theta) = \sum_{s \in \mathcal{S}}^{\substack{\text{Transition} \\ \text{Transition} \\ \text{function}}} J(\theta) = \sum_{s \in \mathcal{S}}^{\substack{\text{Transition} \\ \text{Transition} \\ \text{function}}} J(\theta) = \sum_{s \in \mathcal{S}}^{\substack{\text{Transition} \\ \text{function}}} J(\theta) = \sum_{s \in \mathcal{S}}^{\substack{\text{Transition} \\ \text{Transition}}} J(\theta) = \sum_{s \in \mathcal{S}}^{\substack{\text{Transition} \\ \text{Transition}}} J(\theta) = \sum_{s \in \mathcal{S}}^{\substack{\text{Transition} \\ \text{function}}}} J(\theta) = \sum_{s \in \mathcal{S}}^{\substack{\text{Transition} \\ \text{Transition}}}} J(\theta) = \sum_{s \in \mathcal{S}}^{\substack{\text{Transit$$

$$\begin{array}{ll} \text{Gradients} & \nabla_{\theta}J(\theta) = \nabla_{\theta}\sum_{s\in\mathcal{S}}d^{\pi}(s)\sum_{a\in\mathcal{A}}Q^{\pi}(s,a)\pi_{\theta}(a|s) \\ & \propto \sum_{s\in\mathcal{S}}d^{\pi}(s)\sum_{a\in\mathcal{A}}Q^{\pi}(s,a)\nabla_{\theta}\pi_{\theta}(a|s) \end{array}$$

Policy Gradient Methods: REINFORCE

 REINFORCE (Monte-Carlo policy gradient) relies on an estimated return by Monte-Carlo methods using episode samples to update the policy parameter θ

$$egin{aligned}
abla_{ heta} J(heta) &\propto \sum_{s \in \mathcal{S}} d^{\pi}(s) \sum_{a \in \mathcal{A}} Q^{\pi}(s,a)
abla_{ heta} \pi_{ heta}(a|s) \ &= \sum_{s \in \mathcal{S}} d^{\pi}(s) \sum_{a \in \mathcal{A}} \pi_{ heta}(a|s) Q^{\pi}(s,a) rac{
abla_{ heta} \pi_{ heta}(a|s)}{\pi_{ heta}(a|s)} \ &= \mathbb{E}_{\pi}[Q^{\pi}(s,a)
abla_{ heta} \ln \pi_{ heta}(a|s)] \end{aligned} \qquad ; ext{Because } (\ln x)' = 1/x \ &= \mathbb{E}_{\pi}[G_t
abla_{ heta} \ln \pi_{ heta}(A_t|S_t)] \qquad ; ext{Because } Q^{\pi}(S_t,A_t) = \mathbb{E}_{\pi}[G_t|S_t,A_t] \end{aligned}$$

$$G_t = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$$

Policy Gradient Methods: REINFORCE

- 1. Initialize the policy parameter θ at random.
- 2. Generate one trajectory on policy π_{θ} : $S_1, A_1, R_2, S_2, A_2, \ldots, S_T$.
- 3. For t=1, 2, ..., T:
 - 1. Estimate the the return G_t ;
 - 2. Update policy parameters: $\theta \leftarrow \theta + \alpha \gamma^t G_t \nabla_\theta \ln \pi_\theta(A_t | S_t)$

Policy Gradient Methods: Actor-Critic

- Actor-critic methods consist of two models
 - Critic updates the value function parameters w and depending on the algorithm it could be action-value Qw(a|s) or state-value Vw(s)
 - Actor updates the policy parameters θ for $\pi_{\theta}(a|s)$, in the direction suggested by the critic

- 1. Initialize s, θ, w at random; sample $a \sim \pi_{\theta}(a|s)$.
- 2. For $t=1\dots T$:
 - 1. Sample reward $r_t \sim R(s,a)$ and next state $s' \sim P(s'|s,a)$;
 - 2. Then sample the next action $a' \sim \pi_{\theta}(a'|s')$;
 - 3. Update the policy parameters: $\theta \leftarrow \theta + \alpha_{\theta} Q_w(s,a) \nabla_{\theta} \ln \pi_{\theta}(a|s)$;
 - 4. Compute the correction (TD error) for action-value at time t:

$$\delta_t = r_t + \gamma Q_w(s',a') - Q_w(s,a)$$

and use it to update the parameters of action-value function:

$$w \leftarrow w + \alpha_w \delta_t \nabla_w Q_w(s, a)$$

5. Update $a \leftarrow a'$ and $s \leftarrow s'$.

Exploitation vs Exploration

- Online decision-making involves a fundamental choice:
 - Exploitation Make the best decision given current information
 - Exploration Gather more information
- The best long-term strategy may involve short-term sacrifices
- Gather enough information to make the best overall decisions

Restaurant Selection

- Exploitation Go to your favorite restaurant
- Exploration Try a new restaurant

Online Banner Advertisements

- Exploitation Show the most successful advert
- Exploration Show a different advert

Oil Drilling

- Exploitation Drill at the best known location
- Exploration Drill at a new location

Game Playing

- Exploitation Play the move you believe is best
- Exploration Play an experimental move

Naive Exploration

Add noise to greedy policy (e.g. ∈-greedy)

Optimistic Initialization

Assume the best until proven otherwise

Optimism in the Face of Uncertainty

Prefer actions with uncertain values

Probability Matching

Select actions according to probability they are best

Information State Search

Lookahead search incorporating value of information