פונקציות ממשיות - חורף תשס"א - פתרון חלקי לגליון תרגילים מס' 5

עם $A\in\mathcal{M}$ עם המרוכב. עבור המרוכב. עבור חופית, $D\in\mathbb{C}$ קבוצה במישור המרוכב. עבור μ , $f\in L^1(\mu)$. $M_A(f)=\frac{1}{\mu(A)}\int_A f\,d\mu$ נגדיר את הממוצע עובר $\mu(A)>0$

. $M_A(f)\in \overline{B}(z,r)$ אז אז $x\in A$ עבור כל $f(x)\in \overline{B}(z,r)$ און צ"ל שאם

$$|M_A(f)-z|=\left|rac{1}{\mu(A)}\int_A (f(x)-z)\,d\mu(x)
ight|\leq rac{1}{\mu(A)}\int_A |f(x)-z|\,d\mu(x)\leq r$$
 פתרון:

, $M_A(f)\in \overline{B}(z,r)$ כלומר

עבור כל A מדידה עם מידה חיובית, אז $M_A(f)\in D$ עבור מתקיים שאם סגורה מתקיים שאם $M_A(f)\in D$ עבור כל $X\in X$ עבור כמעט כל A

פתרון: תהי D^c - אז D^c אז $E\in\mathcal{M}$ אז $E=f^{-1}(D^c)$. כיוון ש- $\overline{B}_z\subset D^c$. ונניח בשלילה ש- $\overline{B}_z\subset D^c$. נעיין כעת בקבוצות פתוחה, לכל $z\in D^c$ יש כדור פתוח B_z שהסגור שלו - B_z מתקיים $B_z=f^{-1}(D_n)\nearrow f^{-1}(D^c)=E$ מתקיים יש היא קבוצה קומ- $D_n=\{z\in\mathbb{C}:\frac{1}{n}\leq d(z,D)\leq n\}\nearrow D^c$ ומכך נסיק (ע"פ סדרה מתרחבת) שקיים $D_n=\{z\in\mathbb{C}:\frac{1}{n}\leq d(z,D)\leq n\}\nearrow D^c$ עם ומכך נסיק (ע"פ סדרה מתרחבת) שקיים שלה, ולכן יש לו תת-כיסוי סופי: $\{B_{z_1},\ldots,B_{z_k}\}$ עם פקטית ש- $\{B_{z_1},\ldots,B_{z_k}\}$ מהווה כיסוי פתוח שלה, ולכן יש לו תת-כיסוי סופי: $\{B_z\}_{z\in E_n}$ מתקיים $A=f^{-1}(\overline{B}_{z_i})\in\mathcal{M}$ שעבור $A=f^{-1}(\overline{B}_{z_i})\in\mathcal{M}$ מתקיים , $A=f^{-1}(\overline{B}_{z_i})\in\mathcal{M}$ וע"פ אז נקבל שאז $A=f^{-1}(\overline{B}_{z_i})\in\mathcal{M}$. בסתירה לנתון.

 \mathbb{R}^n ב"ל: כל קבוצה פתוחה ב- \mathbb{R}^n היא איחוד בן-מנייה של קוביות דיאדיות חצי פתוחות זרות, $\mathbb{R}^n=\{\prod_{i=1}^n I_i: \forall i\ I_i\in\mathcal{I}_n\}$ -ו , $\mathcal{I}_n=\{\left[\frac{a}{2^n},\frac{a+1}{2^n}\right): a\in\mathbb{Z}\}$ נגדיר $n\in\mathbb{N}$ בוכחה: לכל $n\in\mathbb{N}$ הוא אוסף בן-מנייה של קוביות דיאדיות חצי פתוחות וזרות בזוגות, תהי כעת $\mathcal{G}\subset\mathbb{R}^n$ אז \mathcal{G} הוא אוסף בן-מנייה של קוביות דיאדיות חצי פתוחות וזרות בזוגות, תהי כעת $\mathcal{B}_n=\{Q\in\mathcal{A}_n: Q\subset(\cup\mathcal{A}_{n-1})^c\}$ -ו $\mathcal{A}_n=\{Q\in\mathcal{Q}_n: Q\subset G\}$ נגדיר $\mathcal{B}_n=\{Q\in\mathcal{A}_n: Q\subset(\cup\mathcal{A}_{n-1})^c\}$ הוא אוסף בן-מנייה של קוביות דיאדיות חצי פתוחות (כאשר $\mathcal{B}_n=\{Q\in\mathcal{A}_n: Q\subset(\mathcal{A}_n): \mathcal{A}_n=\{Q\in\mathcal{A}_n: \mathcal{B}_n\}$ (מדוע? איפה השתמשנו בנתון ש- \mathcal{B} פתוחה?).

ע"י: B. נגדיר את המידה הפנימית של A (ביחט ל-B) ב- R^n ב- A (ביחט ל-B) ע"י: היבה $m_i(A)=v(B)-m_e(B\setminus A)$

, $m_i(A)=m_e(A)$ צ"ל: A מדידה לבג אם"ם

 $v(B)-m_e(B \backslash A)=v(B)-m(B \backslash A)=m(A)$ הוכחה: הכיוון \Leftrightarrow פשוט, כי אם A קב' לבג אז $E \subset \mathbb{R}^n$ מתקיים $E \subset \mathbb{R}^n$ סדי להוכיח את הכיוון השני, נשים לב שלכל \mathbb{R}^n . על-כן, \mathbb{R}^n היא ה- σ -אלגברה של בורל ב- \mathbb{R}^n . על-כן,

$$m_i(A) = v(B) - m_e(B \setminus A) = v(B) - \inf\{v(D) : D \in \mathcal{B}_n , B \setminus A \subset D\}$$

$$= v(B) - \inf\{v(D) : D \in \mathcal{B}_n , B \setminus A \subset D \subset B\} = \left(D' = B \setminus D \cap D\right)$$

$$= v(B) - \inf\{v(B) - v(D') : D' \in \mathcal{B}_n , D' \subset A\}$$

$$= \sup\{v(D') : \mathcal{B}_n \ni D' \subset A\} .$$

פיים חסומה חסומה $B\subset \mathbb{R}^n$ אם"ם לכל היא מדידה $A\subset \mathbb{R}^n$ חסומה מתקיים .6 . $m_e(B)=m_e(B\cap A)+m_e(B\setminus A)$

 $A\cap B(0,n)$ ניתן להניח ש- A חסומה כי A מדידה לבג אם מונה, בה"כ ניתן להניח ש- A חסומה מתקיים $A\subset \mathbb{R}^n$ מדידה לבג לכל $A\subset \mathbb{R}^n$ אם לכל $A\subset \mathbb{R}^n$ חסומה מתקיים $A\subset \mathbb{R}^n$ עם $A\subset \mathbb{R}^n$ אם לכל $A\subset \mathbb{R}^n$ ונקבל אז בהנתן $B\subset \mathbb{R}^n$ קבוצה פתוחה וחסומה $A\subset B$ עם $A\subset B$ עם $B\subset \mathbb{R}^n$ ונקבל $B\subset B$ אז בהנתן $B\subset B$ קבוצה פתוחה $B\subset B$ חסומה $B\subset B$ חסומה, ניקח לכל $B\subset B$ קבוצה פתוחה $B\subset B$ עם $B\subset B$ עם $B\subset B$ חסומה, ניקח לכל $B\subset B$ מדידה לבג, לבג): $B\subset B$ מתקיים (כיוון ש- $B\subset B$ מדידות לבג):

$$m_e(B) \ge m(G) - \varepsilon = m(G \cap A) + m(G \setminus A) - \varepsilon \ge m_e(B \cap A) + m_e(B \setminus A) - \varepsilon$$
.

קיבלנו ש- $m_e(B) \geq m_e(B \cap A) + m_e(B \setminus A)$ ההפוך מתקיים באופן טריויאלי בגלל $m_e(B) \geq m_e(B \cap A) + m_e(B \setminus A)$ התת-אדיטיביות של m_e