# **Introduction to Machine Learning**

## **Notation and Definitions**

compstat-lmu.github.io/lecture i2ml

- $\mathcal{X}$  : p-dim. **input space**, usually we assume  $\mathcal{X} = \mathbb{R}^p$ , but categorical **features** can occur as well.
- $\mathcal{Y}$ : target space, e. g.  $\mathcal{Y} = \mathbb{R}$ ,  $\mathcal{Y} = \{0, 1\}$ ,  $\mathcal{Y} = \{-1, 1\}$ ,  $\mathcal{Y} = \{1, \dots, g\}$  or  $\mathcal{Y} = \{\text{label}_1 \dots \text{label}_g\}$
- x: feature vector,  $x = (x_1, \dots, x_p)^T \in \mathcal{X}$
- y: target / label / output.  $y \in \mathcal{Y}$
- ullet  $\mathbb{P}_{xv}$  : joint probability distribution on  $\mathcal{X} \times \mathcal{Y}$
- $p(\mathbf{x}, y)$  or  $p(\mathbf{x}, y \mid \theta)$ : joint pdf for x and y

#### Remark:

This lecture is mainly developed from a frequentist perspective. If parameters appear behind the |, this is for better reading, and does not imply that we condition on them in a Bayesian sense (but this notation would actually make a Bayesian treatment simple). So formally,  $p(x|\theta)$  should be read as  $p_{\theta}(x)$  or  $p(x,\theta)$  or  $p(x;\theta)$ .

- $(\mathbf{x}^{(i)}, \mathbf{y}^{(i)})$  : *i*-th observation or instance
- $\mathcal{D} = \{ (\mathbf{x}^{(1)}, y^{(1)}), \dots, (\mathbf{x}^{(n)}, y^{(n)}) \}$ : data set with n observations
- ullet  $\mathcal{D}_{train}$ ,  $\mathcal{D}_{test}$ : data for training and testing, often  $\mathcal{D} = \mathcal{D}_{train}\dot{\cup}~\mathcal{D}_{test}$
- $f(\mathbf{x})$  or  $f(\mathbf{x} \mid \theta) \in \mathbb{R}$  or  $\mathbb{R}^g$ : prediction function (**model**) learned from data, we might suppress  $\theta$  in notation
- $h(\mathbf{x})$  or  $h(\mathbf{x}|\boldsymbol{\theta}) \in \mathcal{Y}$  : discrete prediction for classification (see later)
- $\theta \in \Theta$ : model **parameters** (some models may traditionally use different symbols)
- ullet  ${\cal H}$  : hypothesis space. f lives here, restricts the functional form of f
- $\epsilon = y f(\mathbf{x})$  or  $\epsilon^{(i)} = y^{(i)} f(\mathbf{x}^{(i)})$ : **residual** in regression
- $yf(\mathbf{x})$  or  $y^{(i)}f(\mathbf{x}^{(i)})$ : **margin** for binary classification with  $\mathcal{Y} = \{-1, 1\}$  (see later)

- $\pi_k(\mathbf{x}) = \mathbb{P}(y = k \mid \mathbf{x})$ : posterior probability for class k, given x, in case of binary labels we might abbreviate  $\pi(\mathbf{x}) = \mathbb{P}(y = 1 \mid \mathbf{x})$
- $\pi_k = \mathbb{P}(y = k)$ : prior probability for class k, in case of binary labels we might abbreviate  $\pi = \mathbb{P}(y = 1)$
- $\mathcal{L}(\theta)$  and  $\ell(\theta)$ : Likelihood and log-Likelihood for a parameter  $\theta$ , based on a statistical model
- $\hat{f}$ ,  $\hat{h}$ ,  $\hat{\pi}_k(\mathbf{x})$ ,  $\hat{\pi}(\mathbf{x})$  and  $\hat{\theta}$ : learned functions and parameters

**Remark:** With a slight abuse of notation we write random variables, e.g., x and y, in lowercase, as normal variables or function arguments. The context will make clear what is meant.

In the simplest case we have i.i.d. data  $\mathcal{D},$  where the input and output space are both real-valued and one-dimensional.



Design matrix (with or w/o intercept term):

$$X = \begin{pmatrix} x_1^{(1)} & \cdots & x_p^{(1)} \\ \vdots & \vdots & \vdots \\ x_1^{(n)} & \cdots & x_p^{(n)} \end{pmatrix} \qquad X = \begin{pmatrix} 1 & x_1^{(1)} & \cdots & x_p^{(1)} \\ \vdots & \vdots & \vdots & \vdots \\ 1 & x_1^{(n)} & \cdots & x_p^{(n)} \end{pmatrix}$$

- ullet  $\mathbf{x}_j = \left(x_j^{(1)}, \dots, x_j^{(n)} 
  ight)^T$  : j-th observed feature vector.
- $\mathbf{y} = (y^{(1)}, \dots, y^{(n)})^T$ : vector of target values.
- The right design matrix demonstrates the trick to encode the intercept via an additional constant-1 feature, so the feature space will be (p+1)-dimensional. This allows to simplify notation, e.g., to write  $f(\mathbf{x}) = \theta^T x$ , instead of  $f(\mathbf{x}) = \theta^T x + \theta_0$ .

#### **BINARY LABEL CODING**

**Remark:** Notation in binary classification can be sometimes confusing because of different coding styles, and as we have to talk about predicted scores, classes and probabilities.

A binary variable can take only two possible values. For probability / likelihood-based model derivations a 0-1-coding, for geometric / loss-based models the -1/+1-coding is often preferred:

- $\mathcal{Y} = \{0, 1\}$ . Here, the approach often models  $\pi(\mathbf{x})$ , the posterior probability for class 1 given x. Usually, we then define  $h(\mathbf{x}) = [\pi(\mathbf{x}) \geq 0.5] \in \mathcal{Y}$ .
- $\mathcal{Y} = \{-1, 1\}$ . Here, the approach often models  $f(\mathbf{x})$ , a real-valued score from  $\mathbb{R}$  given x. Usually, we define  $h(\mathbf{x}) = \text{sign}(f(\mathbf{x})) \in \mathcal{Y}$ , and we interpret  $|f(\mathbf{x})|$  as "confidence" for the predicted class  $h(\mathbf{x})$ .