Computational Methods in Economics (WiSe 2018/19) - Syllabus

Alex Schmitt*

Last updated: December 3, 2018

Mailing list: if you want to receive emails about the course, send an email to schmitt@ifo.de

Tentative Schedule

Week	Wednesday 16-18 c.t., M 1010	Friday 10-12 c.t., A 015
W 01 (17/10)	L1: Introduction (AS)	T1: Version Control (AS, CL)
W 02 (24/10)	T2a: Python Basics I (AS)	T2b: Python Basics II (CL)
W 03 (31/10)	T2c: NumPy (AS)	NO LECTURE
W 04 (07/11)	T2d ⁺ : Pandas (CL)	L2: Computer Basics (AS)
W 05 (14/11)	L3: Systems of Linear Equations (AS)	L4a: Root Finding (AS)
W 06 (21/11)	T3: Problem Set (CL)	NO LECTURE
W 07 (28/11)	L4b: Root Finding (AS)	L5a: Numerical Optimization (AS)
W 08 (05/12)	L5b: Numerical Optimization (AS)	T4: Problem Set (CL)
W 09 (12/12)	L5c: Numerical Optimization (AS)	T5: Problem Set (CL)
W 10 (19/12)	L6a: Function Approximation (AS)	T2e ⁺ : Object-Oriented Programming (AS)
W 11 (09/01)	L6b: Function Approximation (AS)	L7: Numerical Integration (AS)
W 12 (16/01)	L8: Dynamic Programming (AS)	T6: Problem Set (CL)
W 13 (23/01)	L9: Applied Example 1 (AS)	T8: Problem Set (CL)
W 14 (30/01)	L10: Applied Example 2 (AS)	Review Session I (AS)
W 15 (05/02)	-	Review Session II (AS)
W 16 (12/02)	EXAM	_

Note: Sessions marked with a $^+$ are not mandatory for the exam, and their contents are subject to change!

^{*}Ifo Institute, Munich, Germany.

1 Introduction

- About the course: Logistics and Objectives
- What is "Computational Economics"?
- Python: Overview

Literature

- Miranda and Fackler (2004), Ch. 1*
- Judd (1997)
- Judd (1998), Ch. 1

2 Introduction to Version Control and Git

- Using Git for Version Control
- Using Git and Github for Sharing Files

Literature

• Udacity: "Hot Use Git and Github", https://classroom.udacity.com/courses/ud775 - you need a (free) Udacity account to have access to the course

3 Introduction to Python

- Basics I: Objects and Variables, Types, Loops, Conditional Statements
- Basics II: Functions and Modules
- Scientific Computing: Numpy and Maplotlib
- Data Analysis: Pandas⁺
- Object-Oriented Programming⁺

Literature

There are countless online resources for learning Python. One that I can recommend is the material on quantecon.org: https://lectures.quantecon.org/py/

4 Computer Arithmetic

- Representation of numbers
- Numerical errors

Literature

• M&F, Appendix Ch. 2*

5 Solving Systems of Linear Equations

- Review: Linear Algebra
- Systems of Linear Equations
- Solving SLEs: Triangular Substitution
- Gaussian Elimination
- Iterative Methods

Literature

• M&F, Ch. 2*

6 Root Finding

- Bisection Method
- Newton and Quasi-Newton Methods
- Numerical Differentiation
- The Scipy Package

Literature

• M&F, Ch. 3.1 - 3.6*, Ch. 5.6

7 Numerical Optimization

- Golden Section Search
- Line Search
- Newton and Quasi-Newton Methods
- Application: Solving the deterministic neoclassical growth model
- Least-Squares Problems
- Gradient Descent

•

• The Scikit-Learn Package

Literature

• M&F, Ch. 4*

8 Function Approximation

- Interpolation vs. regression
- Polynomial basis functions
- Approximating multivariate functions
- tentative: B-Splines, Neural Networks

Literature

• M&F, Ch. 6*

9 Numerical Integration

- Newton-Coates methods
- Gaussian Quadrature
- Monte-Carlo integration

Literature

• M&F, Ch. 5*

10 Dynamic Programming

- Finite-horizon DP: backward induction
- Infinite-horizon DP: the Contraction Mapping Theorem
- Numerical implementation
- Application: Solving the stochastic RBC model

Literature

• M&F, Ch. 8*

11 Application 1 (tentative): Climate-Economy Modelling

- A deterministic climate-economy model: DICE
- Climate-economy modelling with uncertainty

Literature

- Nordhaus (2011)*
- Jensen and Traeger (2014)

Application 2 (tentative): Heterogeneous Agents

• Solving the Aiyagari Model

Literature

• Krusell and Smith (2006), sections 1-3*

References

- Jensen, S. and C. P. Traeger (2014). Optimal climate change mitigation under long-term growth uncertainty: Stochastic integrated assessment and analytic findings. <u>European Economic Review 69</u>, 104–125.
- Judd, K. L. (1997). Computational economics and economic theory: Substitutes or complements? Journal of Economic Dynamics and Control 21(6), 907–942.
- Krusell, P. and A. A. Smith (2006). Quantitative macroeconomic models with heterogeneous agents. Econometric Society Monographs 41, 298.
- Miranda, M. J. and P. L. Fackler (2004). <u>Applied computational economics and finance</u>. MIT press.
- Nordhaus, W. (2011). Integrated economic and climate modeling. <u>Cowles Foundation</u> Discussion Paper 1839.