### Learning Automata with Side-Effects

Gerco van Heerdt Matteo Sammartino Alexandra Silva

University College London

September 21, 2020

# The L\* algorithm (Angluin, 1987)

#### Finite alphabet A

System behaviour captured by a **regular language**  $\mathcal{L} \subseteq A^*$ 

 $\mathtt{L}^{\star}$  learns *minimal* DFA for  $\mathcal L$  assuming an *oracle* that answers

► Membership queries

$$w \in \mathcal{L}$$
?

Equivalence queries

$$\mathcal{L}(H) = \mathcal{L}$$
?

Negative result ⇒ counterexample

### Applications of L\*

Through learning, verification methods for automata become available for black box systems

- Network protocols
- Devices such as smartcard readers
- Legacy software



Source: Automated Reverse Engineering using Lego<sup>®</sup>
Chalupar et al., WOOT 2014

### L\* observation table

 $\mathtt{L}^{\star}$  maintains  $S, E \subseteq A^*$  inducing a table



### L\* observation table

L\* maintains  $S, E \subseteq A^*$  inducing a table

$$S \left\{ \begin{array}{c|cccc} & \varepsilon & a \\ \hline \varepsilon & 1 & 0 & \mathcal{L} = \{a^n \mid n \neq 1\} \\ \hline a & 0 & 1 \\ \hline aa & 1 & 1 & ---- \\ \hline aaa & 1 & 1 \end{array} \right.$$

Prepend row label to column label and pose membership query

$$(s,e)\mapsto egin{cases} 1 & ext{if } se \in \mathcal{L} \\ 0 & ext{if } se 
otin \mathcal{L} \end{cases}$$

### L\* hypothesis DFA

*Hypothesis* states are upper rows of the table; transitions append symbols to row labels

|               | $\varepsilon$ | а |
|---------------|---------------|---|
| $\varepsilon$ | 1             | 0 |
| a             | 0             | 1 |
| aa            | 1             | 1 |
| aaa           | 1             | 1 |

Requires properties closedness and consistency to be well-defined

### L\* hypothesis DFA

*Hypothesis* states are upper rows of the table; transitions append symbols to row labels

|                    | ε |   |                                                     |    |
|--------------------|---|---|-----------------------------------------------------|----|
| $\varepsilon$ a aa | 1 | 0 | •                                                   |    |
| a                  | 0 | 1 | $\rightarrow$ $\begin{pmatrix} 1 & 0 \end{pmatrix}$ | 01 |
| aa                 | 1 | 1 |                                                     |    |
| aaa                | 1 | 1 |                                                     |    |

Requires properties closedness and consistency to be well-defined

### L\* hypothesis DFA

*Hypothesis* states are upper rows of the table; transitions append symbols to row labels

|               | $\varepsilon$ | а |
|---------------|---------------|---|
| $\varepsilon$ | 1             | 0 |
| a             | 0             | 1 |
| aa            | 1             | 1 |
| aaa           | 1             | 1 |



Requires properties closedness and consistency to be well-defined

# L\* algorithm overview

table updated using membership queries

- 1. Initialise  $S = E = \{\varepsilon\}$
- 2. Satisfy closedness and consistency (by augmenting S and E)
- 3. Construct hypothesis
- 4. Pose equivalence query
- 5. On a counterexample, add its prefixes to S and repeat from 2



### Motivation

Deterministic automata are often too large for tools to handle

A **side-effect** like non-determinism can provide succinctness

Idea: use side-effects to optimise the algorithm

### Monads

We consider side-effects given by a monad

A monad T assigns to each set X a set

TX =combinations of X

It lifts functions to combinations and has

Unit:

 $X \to TX$ 

**Multiplication:** 

 $TTX \rightarrow TX$ 

### Side-effects as monads

| Side-effect     | Monad                                  |
|-----------------|----------------------------------------|
| Partiality      | (-)+1                                  |
| Non-determinism | $\mathcal{P}(-)$                       |
| Alternation     | $\mathcal{P}_{\uparrow}\mathcal{P}(-)$ |
| Monoid value    | $\mathbb{M} \times (-)$                |
| Weighted sum    | V(-)                                   |

### *T*-algebras

A T-algebra on a set X interprets combinations within X

$$TX \rightarrow X$$

## *T*-algebras

A T-algebra on a set X interprets combinations within X

$$TX \rightarrow X$$

TX itself is the **free** T-algebra on X, with

$$TTX \rightarrow TX$$

being the monad's multiplication

### Non-deterministic automaton

A non-deterministic automaton is a set Q with  $q_0 \in \mathcal{P}Q$  and functions



#### Non-deterministic automaton

A non-deterministic automaton is a set Q with  $q_0 \in \mathcal{P}Q$  and functions



### Automaton with side-effects

An **automaton with side-effects in** T is a set Q with  $q_0 \in TQ$  and functions



These do not minimise in general; no target for the learner

### Target automaton

No unique (up to iso) minimal NFA

### Target automaton

No unique (up to iso) minimal NFA

NFA semantics defined in terms of its  $\mbox{\bf determinisation}$  automaton with free  ${\cal P}\mbox{-algebra}$ 

state space  $\mathcal{P}Q$ 

Automata with T-algebra structure minimise uniquely

### T-automaton

A T-automaton is a T-algebra Q with T-algebra homomorphisms



#### Contributions

 $\widehat{1}$ 

General adaptation of  $L^*$  for T-automata

↓ method to find generators

General adaptation of  $L^*$  for automata with T-side-effects

(2)

Adaptation of optimised counterexample handling

#### Contributions

 $\overline{1}$ 

General adaptation of  $L^*$  for T-automata

↓ method to find generators

General adaptation of  $L^*$  for automata with T-side-effects

(2)

Adaptation of optimised counterexample handling

### Structure on the table

T-algebra on output set  $\implies$  pointwise T-algebra on table rows

Implicit row for each combination of row labels

|               | ε | а |
|---------------|---|---|
| $\varepsilon$ | 1 | 0 |
| а             | 0 | 1 |
| aa            | 1 | 1 |

|                               | ε | а |
|-------------------------------|---|---|
| Ø                             | 0 | 0 |
| $\{arepsilon, oldsymbol{a}\}$ | 1 | 1 |
| $\{a,aa\}$                    | 1 | 1 |

#### Structure on the table

T-algebra on output set  $\implies$  pointwise T-algebra on table rows

Implicit row for each combination of row labels

|               | $\varepsilon$ | а |
|---------------|---------------|---|
| $\varepsilon$ | 1             | 0 |
| a             | 0             | 1 |
| aa            | 1             | 1 |

|                               | ε | а |
|-------------------------------|---|---|
| Ø                             | 0 | 0 |
| $\{arepsilon, oldsymbol{a}\}$ | 1 | 1 |
| $\{a,aa\}$                    | 1 | 1 |

Hypothesis given by all (upper) rows



#### Generators

Hypothesis is generated by the explicit rows

Every generating set of rows induces a T-succinct hypothesis

#### Minimising generators:

While there is a row that is a combination of other rows, remove it

# Generators example

|               | ε | а |
|---------------|---|---|
| $\varepsilon$ | 1 | 0 |
| a             | 0 | 1 |
| aa            | 1 | 1 |





# Generators example

|    | $\varepsilon$ | а |
|----|---------------|---|
| ε  | 1             | 0 |
| a  | 0             | 1 |
| aa | 1             | 1 |

|                          | $\varepsilon$ | а |
|--------------------------|---------------|---|
| Ø                        | 0             | 0 |
| $\{arepsilon, {\it a}\}$ | 1             | 1 |



# Generators example

|               | $\varepsilon$ | а |
|---------------|---------------|---|
| $\varepsilon$ | 1             | 0 |
| a             | 0             | 1 |
| aa            | 1             | 1 |





### Future work

### Monads not preserving finite sets

- ▶ Weighted automata over infinite PIDs
- Subsequential transducers
- Nominal automata

Conformance testing

# CALF: Categorical Automata Learning Framework



Project: calf-project.org

