CAPITOLOIV

TONSENSE DI STOSTALE CLI AVIOVALORI PEL REMELE SIBBILE SH JISTEMA INSTABILE

DISTEMA VIRTUAL CHE FA

RETROAZIONI ED OSSERVATORI

- Introduzione elle retroccione lineve
- Teoreme dell'onegude l'ité degli.
- Metadi di ossegnorione degli antovalori.
 - · metasto di retto
 - us solelle forme commice obicontielles 1- cose scolore (m=1), formbe obic Ackermane
 - 2 coso multivou'obile (m×1)
- l'onewatare on utation alelle state
- Osservatore attions della stato (filtra di Kalman)
- Osservarione della statofu sistem. tempe ou screti
- Controllori d'inem à beset sull'ossetolère
 - Teoreme di Seporatione

RETROAZIONE LIMEARE DALLOSTATO

$$\sum_{i=1}^{\infty} \dot{x} = Ax + Bu$$

I potimono de la steto di Z' sia ACCESSI-BICE.

lar legge ob retroorione $\bar{e}: U(t) = F \times (t) + R(t)$ olave $F \in \mathbb{R}^{M \times N}$. D' con segue la :

$$\begin{cases}
\dot{x} = (A + BF)x + BR \\
Y = (C + DF)x + DR
\end{cases}$$
SISTEMA

AFTRO AZIONATO

TEOREMA

Date le motrici. A ER^{uxu} e B EIR uxu me motrice F EIR uxu tole de lo ofettro olegli autovolori oli (A + BF) e

Me continté: s'efficie une Trasformanion MANA di condinate de porte de forme (A) = (AMA) standard du ragging bilité e si osser de sulle parete non ragging bile con à passible intervenire opportunamente. • Sufficienze: obis male delle salusioni olgonitaire proposte nol signito.

LEMMA

Gli outoble i ucontrolletsili el (A,B)
une parame enne medificati de
une retrooriene linere stato-ingrene,
visci: $\nabla (A|_{R^n/R}) \subseteq \nabla (A+BF) \ \forall F \in R^{mxn}$

Dimestrovance:

Dol sisteme Z(A,B) pamiano alce fore stendered diregg. te no (An, Bn)

TV-2

$$A_{R} = T^{-1}AT = \begin{bmatrix} A_{1} & A_{12} \\ O & A_{2} \end{bmatrix}$$

$$A_{R} = T^{-1}AT = \begin{bmatrix} A_{1} & A_{12} \\ O & A_{2} \end{bmatrix}$$

$$A_{R} = T^{-1}AT = \begin{bmatrix} A_{1} & A_{12} \\ O & A_{2} \end{bmatrix}$$

$$X = TX_{R}$$

$$E \text{ impage:}$$

$$T_{R} = T^{-1}$$

e fferrando la cou il his teme i'm f. otwoland, 2 Ce: 7(1 (1006)1)

$$A_{R} + B_{R} = \begin{bmatrix} A_{1} & A_{12} \\ O & A_{2} \end{bmatrix} + \begin{bmatrix} B_{1} \\ O \end{bmatrix} \begin{bmatrix} \overline{r}_{1} & \overline{r}_{2} \end{bmatrix} = \begin{bmatrix} A_{1} & A_{12} \\ O & A_{2} \end{bmatrix} + \begin{bmatrix} B_{1} & A_{12} \\ O & A_{2} \end{bmatrix} + \begin{bmatrix} B_{1} & A_{12} \\ O & A_{2} \end{bmatrix} = \begin{bmatrix} A_{1} & A_{12} \\ O & A_{2} \end{bmatrix} + \begin{bmatrix} A_{12} & A_{12} + B_{1} & A_{2} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} + B_{1} & A_{2} \end{bmatrix}$$

$$\nabla \left(A_{R} + B_{R} \overline{F}_{R} \right) = \nabla \left(A_{1} + B_{1} \overline{F}_{1} \right) \cup \nabla \left(A_{2} \right)$$

-> } contavalor <u>nou</u>

con le retroorie

7(P+BF) = 7(Ar +Brfc) con For FT

TV-3

DEFINIZIONE DI COPPIA (A,B) STABILIZZABILE Le copopie (A,B) è dette stabilizzabile se esiste une unotrice F ER MXN tole de V(A+BF) C C Piene compleme e porte reole experire

PROPOSIZIONE

La coppia (A,B) é stobilisable se e solo se tutii pli antovoloni incom: trollobili di (A,B) som a porta redle negotiva, avveno se e solo se $\nabla(A|R^nR) \subseteq C$

Dimostroriane.

Attres en so la ret worione n'es co a med fi come solo pli en l'anola delle parte controllabile de Di Z (...)

PROPOSIZIONE

Il section sporio d' regging la lista roletino ad (A,B) con acide con l'e sectionsporio d' reggins la stat relatino a (A+BF,B) VFERMAN

Dimostroiene

Se $\widetilde{A} = A + B \overline{F}$ e $\widetilde{B} = B$ ollone $Z'(\widetilde{A}, \widetilde{B})$ et le sisteme not romando, con F fuerice.

Cose é quindi

in $[\widetilde{B}, \widetilde{A}\widetilde{B}, \widetilde{A}^2\widetilde{B}, ..., \widetilde{A}^{N-2}\widetilde{B}]$?

 $\begin{bmatrix} \overline{B}, \overline{A} \, \overline{B}, \overline{A} \, \overline{B}, \dots, \overline{A}^{m-1} \, \overline{B} \end{bmatrix} = \begin{bmatrix} B, (A+BF)B, (A+BF)B, \dots \end{bmatrix} =$ $= \begin{bmatrix} B, AB+BFB, A^2B+ABFB+BF(A+BF)B, \overline{A}B+A^2BFB+ABF(A+BF)B+BF(A$

$$= \begin{bmatrix} B, AB, A^2B, ..., A^{n-4}B \end{bmatrix} \cdot \begin{bmatrix} I & FB & F(A+BF)B & ... & F(A+BF)B$$

S'avoure 1/4=Ax 1xeAm non rupolore! dut=1

ine(AT) = ine A fu Tuon simpolare e Amotorice fuence, nitre le Teni. []

imR= mRT imR

COROLLARIO

Per agui FERMAN,

- · (A,B) è completement e soutrollabile se e salo se (A+BF,B) à completement e controllabile
- (A,B) € stebilizadile se e solo se (A+BF,B) € stebile mobile

METODI DI ASSEGNAZIONE DEGLIAUTOVALORI

· METODO DIRETTO

Sie
$$T = [fij]$$
 $i = 1,...,m$ $j = 1,...,m$

olet $(SI - (A+BF)) = S^n + g_{n-1}(fij)S^{m-1} + g_n(fij)S^{m-2} + g_n(fij)S^{m-2} + g_n(fij)S^{m-3} + ... + g_n(fij)$

cos Trisco a sec i e polimenio coesti enitri co, imponendo lo spectro f_{11} , f_{2} ,..., f_{n} , il polimenio coesti enisti co olerio decero f_{11} il polimenio coesti enisti co olerio decero f_{11} il f_{12} desiol. f_{11} f_{12} $f_{$

quinde si attiene il sistema di mequalioni

$$\begin{cases}
 q_{0}(f_{ij}) = d_{0} \\
 q_{1}(f_{ij}) = d_{1} \\
 \vdots \\
 q_{m-1}(f_{ij}) = d_{m-1}
 \end{cases}$$

(uguspliendo; coefficientiolei olue policus.)

questo sisteme travato è LIMEANE se m = 1 de l'estre se m > 1 , infatti se m = 1

BER^{MX1} e F = R^{1XM} quindi:

$$A + BF = A + \begin{bmatrix} b_1 \\ \vdots \\ b_n \end{bmatrix} \begin{bmatrix} f_1 & f_2 & \dots & f_m \end{bmatrix} =$$

$$= \begin{bmatrix} a_{11} + b_{1} & \dots & a_{1m} + b_{1} & f_{m} \\ \vdots & & & \\ a_{m1} + b_{m} & f_{m} & \dots & a_{mm} + b_{m} & f_{m} \end{bmatrix}$$

e le g (fij) sans f. m. li masi ohi fa, fz, ... fm

Questo et mon offeromio minerio, il motodo di jula se non de indicorioni sulla risolubilità del sistema di equariani ettemto.

· METODO CON LAFORM CAMONICADI CONTROLLO

Dota la coffia (A,B) complet amente controllato le , eniste una trasformariame di equitalenze T' tole de $A_c = T'AT^{-1}$ $B_c = T'B$ c

(Ac, Bc) et in forme conomice oli controllo.

Si omme immentituée de :

 $\nabla(A+BF) = \nabla(T(A+BF)T^{-2}) = \nabla(A_c+B_cFT^{-2})$

MOTA: V(A) => olet (SI-A) = 0

V(TAT-1)? det (SI-TAT-1) =

= det (5 TIT-1-TAT-4) =

= slet (T(SI-A)T-1)=

= $\operatorname{olet}(T)$. $\operatorname{olet}(SI-A)$. $\operatorname{olet}(T'-1) =$

= olet (SI-A)

a guesto funto passiamo olefiniza

Fc := FT-4

F-F-T

$$\nabla (A+BF) = \nabla (A_c+B_cF_a)$$

e une volte de n'é déterminato Fe s' n'solitée à F con:

Sudinian separatemante il cano Sudore de quelle uneltivacidoile:

CASO SOLARE W=1

$$T_c = [f_0, f_1, ..., f_{m-1}]$$

gli fi toliche gli autordon' vergens allocati...

$$A_{CF} := A_{C} + B_{C} F_{C} = \begin{bmatrix} 0 & 1 \\ & & \end{bmatrix}$$

$$A_{CF} := A_{C} + B_{C} F_{C} = \begin{bmatrix} 0 & 1 \\ & & \end{bmatrix}$$

$$A_{CF} := A_{C} + B_{C} F_{C} = \begin{bmatrix} 0 & 1 \\ & & \end{bmatrix}$$

$$A_{CF} := A_{C} + B_{C} F_{C} = \begin{bmatrix} 0 & 1 \\ & & \end{bmatrix}$$

$$A_{CF} := A_{C} + B_{C} F_{C} = \begin{bmatrix} 0 & 1 \\ & & \end{bmatrix}$$

$$A_{CF} := A_{C} + B_{C} F_{C} = \begin{bmatrix} 0 & 1 \\ & & \end{bmatrix}$$

$$A_{CF} := A_{C} + B_{C} F_{C} = \begin{bmatrix} 0 & 1 \\ & & \end{bmatrix}$$

$$A_{CF} := A_{C} + B_{C} F_{C} = \begin{bmatrix} 0 & 1 \\ & & \end{bmatrix}$$

$$A_{CF} := A_{C} + B_{C} F_{C} = \begin{bmatrix} 0 & 1 \\ & & \end{bmatrix}$$

$$A_{CF} := A_{C} + B_{C} F_{C} = \begin{bmatrix} 0 & 1 \\ & & \end{bmatrix}$$

$$A_{CF} := A_{C} + B_{C} F_{C} = \begin{bmatrix} 0 & 1 \\ & & \end{bmatrix}$$

$$A_{CF} := A_{C} + B_{C} F_{C} = \begin{bmatrix} 0 & 1 \\ & & \end{bmatrix}$$

$$A_{CF} := A_{C} + B_{C} F_{C} = \begin{bmatrix} 0 & 1 \\ & & \end{bmatrix}$$

$$A_{CF} := A_{C} + B_{C} F_{C} = \begin{bmatrix} 0 & 1 \\ & & \end{bmatrix}$$

$$A_{CF} := A_{C} + B_{C} F_{C} = \begin{bmatrix} 0 & 1 \\ & & \end{bmatrix}$$

$$A_{CF} := A_{C} + B_{C} F_{C} = \begin{bmatrix} 0 & 1 \\ & & \end{bmatrix}$$

$$A_{CF} := A_{C} + B_{C} F_{C} = \begin{bmatrix} 0 & 1 \\ & & \end{bmatrix}$$

$$A_{CF} := A_{C} + B_{C} F_{C} = \begin{bmatrix} 0 & 1 \\ & & \end{bmatrix}$$

$$A_{CF} := A_{C} + B_{C} F_{C} = \begin{bmatrix} 0 & 1 \\ & & \end{bmatrix}$$

$$A_{CF} := A_{C} + B_{C} F_{C} = \begin{bmatrix} 0 & 1 \\ & & \end{bmatrix}$$

$$A_{CF} := A_{C} + B_{C} F_{C} = \begin{bmatrix} 0 & 1 \\ & & \end{bmatrix}$$

$$A_{CF} := A_{C} + B_{C} F_{C} = \begin{bmatrix} 0 & 1 \\ & & \end{bmatrix}$$

$$A_{CF} := A_{C} + B_{C} F_{C} = \begin{bmatrix} 0 & 1 \\ & & \end{bmatrix}$$

$$A_{CF} := A_{C} + B_{C} F_{C} = \begin{bmatrix} 0 & 1 \\ & & \end{bmatrix}$$

$$A_{CF} := A_{C} + B_{C} F_{C} = \begin{bmatrix} 0 & 1 \\ & & \end{bmatrix}$$

$$A_{CF} := A_{C} + B_{C} F_{C} = \begin{bmatrix} 0 & 1 \\ & & \end{bmatrix}$$

$$A_{CF} := A_{C} + B_{C} F_{C} = \begin{bmatrix} 0 & 1 \\ & & \end{bmatrix}$$

$$A_{CF} := A_{C} + B_{C} F_{C} = \begin{bmatrix} 0 & 1 \\ & & \end{bmatrix}$$

$$A_{CF} := A_{C} + B_{C} F_{C} = \begin{bmatrix} 0 & 1 \\ & & \end{bmatrix}$$

$$A_{CF} := A_{C} + B_{C} F_{C} = \begin{bmatrix} 0 & 1 \\ & & \end{bmatrix}$$

$$A_{CF} := A_{C} + B_{C} F_{C} = \begin{bmatrix} 0 & 1 \\ & & \end{bmatrix}$$

$$A_{CF} := A_{C} + B_{C} F_{C} = \begin{bmatrix} 0 & 1 \\ & & \end{bmatrix}$$

$$A_{CF} := A_{C} + B_{C} F_{C} = \begin{bmatrix} 0 & 1 \\ & & \end{bmatrix}$$

$$A_{CF} := A_{C} + B_{C} F_{C} = \begin{bmatrix} 0 & 1 \\ & & \end{bmatrix}$$

$$A_{CF} := A_{C} + B_{C} F_{C} = \begin{bmatrix} 0 & 1 \\ & & \end{bmatrix}$$

$$A_{CF} := A_{C} + B_{C} F_{C} = \begin{bmatrix} 0 & 1 \\ & & \end{bmatrix}$$

$$A_{CF} := A_{C} + B_{C} F_{C} = \begin{bmatrix} 0 & 1 \\ & & \end{bmatrix}$$

$$A_{CF} := A_{C} + B_{C} + B_{C} + B_{C} = \begin{bmatrix} 0 & 1 \\ & & \end{bmatrix}$$

$$A_{CF} := A_{C} + B_{C} + B_{C} = \begin{bmatrix} 0 & 1 \\ & & \end{bmatrix}$$

$$A_{CF} := A_{C} + A_{C} + B_{C} = \begin{bmatrix} 0 & 1 \\ & & \end{bmatrix}$$

$$A_{CF} := A_{C} + A_{C} + A_{C$$

$$+\begin{bmatrix}0\\i\\0\\4\end{bmatrix}\begin{bmatrix}f_0,\ldots,f_{m-4}\end{bmatrix}$$

dare gui di som i coefficients du prolimento constituritico diA(otc) inferii:

olet (SI-A) = det (SI-Ac) = 5m+dm-15m-1+d15+d0

wentre

det (SI-AcF) = S" + (Lm-1-fm-2) 5"-1 + (Lm-2-fm-2) 5 +

Se la spetito desident à télis,..., ton), il polineme construistico de

impone je ACF E:

 $d_{des.}(s) = \prod_{i=1}^{m} (s-\lambda_i) = s^{m} + d_{m-1}s^{m-1} + ... + d_o$

gu udi dere voleke;

$$d_i = d_i - f_i$$
 $i = 0, 1, ..., m-1$

de un le sole siene fu fli fi corcoti.

$$f_{i} = d_{i} - d_{i}$$
 $i = 0, 1, ..., m-1$

E paribile (soldHEL CASO SCALARE) dere mul espressione directe fu la motrice F corcote, Tramite le:

FORMULA DI ACKERITANY

SOLO SCALARE!

FORMA (AMONICA DI CONTROLLO (P. E.)

$$F = -e_m R^{-\frac{1}{2}} d_{ds}(A)$$

$$con e_m := \begin{bmatrix} 0 \\ 1 \end{bmatrix} \text{ response to selection in } R = \begin{bmatrix} B, AB, ..., A^{m-1}B \end{bmatrix}$$

Dimost zorione

Dimestriampina de Fa = - en Ro des (Ac)

$$2 des (Ac) = A_c^m + d_{m-1} A_c^{m-1} + ... + do I$$
 (1)

- CETTELENTI DE DI DEANTI

TV-11

$$\mathcal{L}(Ac) = Ac^{n} + \mathcal{L}_{n-1}Ac^{n-1} + \dots + \mathcal{L}_{o}I = 0 \quad (2)$$

$$d_d(Ac) = \sum_{i=0}^{M-1} (d_i - d_i) A_c^{i}$$

ottem To rote racudo le (2) alle (1) IANTO (2)=0

$$\begin{aligned}
& = -e_{1}^{t} \left[(d_{0} - d_{0}) I + (d_{1} - d_{1}) A_{c} + ... + (d_{m-1} - d_{m-1}) A_{c} \right] \\
& = -e_{1}^{t} \left[(d_{0} - d_{0}) I + (d_{1} - d_{1}) A_{c} + ... + (d_{m-1} - d_{m-1}) A_{c} \right] \\
& = \left[(d_{0} - d_{0}) e_{1}^{t} + (d_{1} - d_{1}) e_{1}^{t} A_{c} + ... \right] = e_{2}^{t} \\
& = \left[(d_{0} - d_{0}) e_{1}^{t} + (d_{1} - d_{1}) e_{2}^{t} + (d_{2} - d_{2}) e_{3}^{t} + ... \right] = e_{3}^{t} e_{3}^{t} + ... \end{aligned}$$

dove e: = [00...010...0]

l'espremiere Trovote delle Te è esocianaix quelle j'e-viste, qu'udi vole: Fc = - em Rc ddes (Ac) a questo junto basta considende TR=Rc=[Bc AcBc...Ac Bc] guine. $R_c^{-1} = R^{-1}T^{-1}$ F=FcT = - en Red Ldes (Ac)T' = = - em R-17-1 des (Ac) T = = -en R-1 T-1. T dos (A) T-1.T = = -en R-1 ddes (A)

CASO HULTIVARIABILE MI>1

AcF = Ac + Bc Fc

Si enserva iman zi Truto de, pu aqui scelta di Fc, AcF è ancore in forme commince di controllo con strutture identica de strutture di tc.

Ad empis: leme di Brunouski Bre Be Br

Acr=Ac+BcFc = Ac+BcAm+ BcBmFc =

= Ac + Bc (Am + Bm Fc) = Ac + Bc Km

oliversie

Quindi sie des (s) = 5 m + dm-15 m-2 + ... + d15 + d0

il polinario oretteristico desidereto e

se le z'aniamo une motrice tod in forme

commice d'i controllo avente le stare

strutture di te (e quindi sterra stutture di tet), officete:

olet(SI-Ad) = daes(S)

Ad é niscriubile grazie el lemma di.
Brunovski con:

D'altronde

$$A_{CF} = A_{C} + B_{C} F_{C} = (\overline{A_{C}} + \overline{B_{C}} A_{M}) + (\overline{B_{C}} B_{M}) F_{C} =$$

$$= \overline{A_{C}} + \overline{B_{C}} (A_{M} + B_{M} F_{C})$$

ju mi, imponendo

Quindi d' condude de

Richard aperto il probleme di come selezionate Ad.

SELEZIONE DI Ad

Ghi unici n'u coli du Ad sous de:

- oleve avere come polinamis constre

n'M'co des (S) con i do, de, ..., dn-a

voluti.

deve ence in forme conomice oli' controllo con sterre structure ali'ta

HOTA:

Homo le storre strutture! Boste mettre velle posizioni opporture depli "o, o dogli", nelle "x, della prime e si otti une le seconde

Dungre une scelte passibile ali

Ad é quelle composibile con qualuque
i uni une di indiai di contrellabilità,
i di :

$$Ad = \begin{bmatrix} 0 & 1 & 1 \\ -do - d1 & \dots & -d_{M-1} \end{bmatrix}$$

con queste

scotte si he:

Un'altre scalte possibile é

$$Ad = [Aij] i, j = 1, ..., m$$

i u questo coso vole:

Mu pombile stantegy of a quest'ultime
scolte è cle esse può impone restricion'
non necononie sul uman olegli ontorda
reoli ossepuoti. Per escupsio se

n=4, m=2 e 11=3 e 11=1, ollore

è nocessario che olumno olue onterolori

de ossepuore si uno reoli.

Altre scelte semo poesibili, compreso

le possibilite oli sceptiere in modo

etti uno le legge oli retroviene.

LEMMA

Sia (A,B) completemente controllobile.

Doto une spectro orbitrorio $\nabla_d = \int_{A} L_1,...,L_n J_n$ eniste une motrice $T \in \mathbb{R}^{m \times n}$ tole

de $\nabla (A+BF) = \nabla_d$

Lou unice ju m 71

OSSERVATORI DELLO STATO

 $\sum_{i} \begin{cases} \dot{x} = Ax + Bu \\ y = Cx + Du \end{cases}$

& the STIMA DE UD STATO X di 5

OSSERVATORE ASINTOTICO DELLO STATO DIZ

TEMPO SONIE

O OSSERVATORE DI LUENBERGER

$$\sum_{n=1}^{\infty} \int \hat{x} = A\hat{x} + Bu + K(y - \hat{y})^{\frac{1}{2}} \int \hat{x} = A\hat{x} + Bu + K(y - \hat{y})^{\frac{1}{2}} \int \hat{x} = C\hat{x} + Du + K(y - \hat{x} - Du)$$
ABCD SUP! ACTURE!

2: stime dello deto (sistème Zo)

7: evoluriene dell'usuite (del 2:11eure originale Z')

J: evoluzione dell'usu'se omento F come

<u>IV-19</u>

l'eg. ne eli steto dell'onewatere e-

$$\hat{x} = (A - KC)\hat{x} + [B - KD, K]. [u]$$

l'atrone di stime è

$$\left[e(t):=X(t)-\widehat{x}(t)\right]$$

de un' d' deduce de :

$$\dot{e}(t) = \dot{x}(t) - \hat{x}(t) = Ax(t) + Bu(t) +$$

$$-A\hat{x}(t) - Bu(t) - E(Cx(t) + Du(t) +$$

$$-C\hat{x} - Du(t)) = (A - EC) e(t)$$

$$e(t) = (A - RC) e(t)$$

SOLO EVOLUZIONE LIBERA

E(i) HA UII MUAMPHITO COME

ESPONENZIALE DI PATRICE

le un' " du'unu vez e :

SE K HA ESPONENZIALI MOLTO NICHTINI, CERRORE INIZIALI.

VIEWE SMORZALD

IV-20

Ovariamente se
$$V(A-KC) \subseteq C'$$

ollore $V(A-KC) = 0$
 $V(A-KC) = 0$

TEOREMA

Esis le une motrice $K \in \mathbb{R}^{m \times p}$ offinde la spettre $\nabla (A-KC)$ orie
emphosile orbitrorionnente, se e solo
se (C,A) = OSSERVABICE.

Dimostrorione:

Per obedita dirette:

lo spectro di (At+Ct(-Kt)) è originabile och reciemente se e salo se (At, Ct) è complétomente controllabile, ovrais

15-1

Se e solo se (C,A) E oservoto de

SCHEMA DI OSSERVATORE ASINTOTICO

LEMMA

Gli antavalori i conserabile di A fan parte della spectro di (A-RC) AUTOVATORI ASSOCIATI D'inostrovere (com)

Con le fame stendard di onendrili se:

$$\Lambda_0 = \begin{pmatrix} \Lambda_1 & 0 \\ \Lambda_{21} \Lambda_2 \end{pmatrix} \qquad \nabla(A) \equiv \nabla(A_0)$$

inoure
$$\nabla(A|Q) = \nabla(A_2)$$

$$\nabla (A - KC) = \nabla (T^{-1} (A - KC)T) = \nabla (A_{\circ} - K_{\circ} C_{\circ})$$

con Ko=TIK

OSSERVABILITE

亚-22

$$A_{0} - K_{0}C_{0} = \begin{bmatrix} A_{1} & 0 \\ A_{12} & A_{2} \end{bmatrix} - \begin{bmatrix} K_{01} \\ K_{02} \end{bmatrix} \begin{bmatrix} C_{1} & 0 \end{bmatrix} = \begin{bmatrix} A_{1} - K_{01}C_{1} & 0 \\ A_{12} - K_{02}C_{1} & A_{2} \end{bmatrix}$$

$$\nabla (A - RC) = \nabla (A_1 - K_{01}C_1)U\nabla (A_2)$$
RECE

THE PROPERTY AS LET UP

TO SEE THE PROPERTY AS LET UP

TO SE THE PROPERTY AS LET UP

TO SEE THE PROPERTY

DEFINIZIONEDI COPPIA (C, A) RIVELABILE:

Le roppie (C, A) e détre nilevoloile se essiste une mostrice RERMAP tole de $V(A-KC) \subseteq C$ SONO A PARTE REALE NEGATIVE MICH MITTON MAIN MAINTE PASTICIONE

PROPOSIZIONE

Il sottosperio di inomenubilità reletivo or (C,A) comende con il settosporio oci inomerobilità reletivo a (C,A-RC) VKERUXP.

Dinostronare (como)

O come provone le

DIV LEADLE SOTTESPASIO INVERIANTE IN A CONTENUED HI KER C

mor J(A, buc) = mass J(A-RC, buc) VRER Ju la copprie (C,A) i'ufacti':

1 & ⊆ bu C A & C &

allere posses anche

scrivere (relativemente ad (C, A-RC)) de:

Oc buc

(A-Ec) a = AQ - ECQ = AQ = Q

QEBUC S'hokca={0}

 (\cdots)

COROLLARIO NO

Per ogni KERMEP

- a) (C,A) è onevoloile see solose (C, A-KC) & onewsbile
- (C,A) i vilevabile se solose (C, A-KC) è vilevabile

Pariamocione il quento de come allocore gli outobolon dell'onervatore Per strenere une stime che converge réprodomante (le(t) -> 0) si von ebben gli outovolori di A-RC ollocoti il prici pombile a simille uelpien compless. Um guedegu K, jænde consentinebbe di allo core gli autebbloni loutens dell'one i'unog'usis, ma ol'ettre porte, n'schienebbe di amplificare il nume i meritabilemente presente valle un'sure di infrasse e usu'le, praducado une stime inscurate. Europe qu'ude un problème di OSSERVAZIONE OTTITA: LIHEAR QUADRATIC GAUSSIAM (LQG) ESTIMATOR PROBLEM. La solusieure OTTITA é il condoletto FILTRODI KALMAM_

Dé il Z'é n'levobile me non complétemente onewobile e se plion Tatolon i nonsemboile seno "vicini, alli onse innegimento sorome lors a dominore le dimennice dell'onsendore IV-25

OSSERVATORE OTTIMO DELLO STATO (FILTRO

DI KALMAN)

$$\sum_{k} \dot{x}(t) = Ax(t) + Bu(t) + \Gamma w(t)$$

$$y(t) = Cx(t) + y(t)$$

W(t) rappresente l'emon sul processo (disturbo interno)

d'(t) repposente il more di un sura (sull'usuite)

stocastici bianchi e gonssiani oli intensite nispettive WeV:

$$E\{\mathcal{W}(t)\}=0$$
 $E\{\mathcal{V}(t)\}=0$ (uneque)

$$E\{w(t)w^{t}(\tau)\} = W\delta(t-\tau) \qquad \text{(volon-quod.}$$

$$E\{y(t)y^{t}(\tau)\} = V\delta(t-\tau) \qquad \text{(usoc.)}$$

inoltre d'sufficie:

$$W=W^T$$
 $V>0$
 $V=V^T$
 $V>0$

Inoltre i due mon d'ans i'ucorroloti's tre lors:

la stato i'ui ziole x(0) sia une vou doi le alestonie goussione ou medie e covarioure:

Xo:= E { X(0) }

Peo := E { (x(0) - x0) (x(0) - x0) }.

Infine X(0) tie incorrolate e W e V.

Il probleme de voglime risollere e: considerato l'osservatore osintatico

 $\dot{\hat{\chi}}(t) = A\hat{\chi}(t) + Bu(t) + K(\gamma(t) - C\hat{\chi}(t))$ $= (A - KC)\hat{\chi}(t) + Bu(t) + K\gamma(t)$

determina KERUXP e la condizione iniziale X(0) offinche ne minimizzato l'arrore di coparianza orintatica:

lim $E \left\{ (x(t) - \hat{x}(t)) \cdot (x(t) - \hat{x}(t)) \right\}$

Sia (C,A) orsenstoille (A,I') controllatoille. la matrice de prodegro attimo de minimizza l'errore de Mime (covariante) assintation e

$$K^* = P_e^* \subset^T V^{-1}$$

dere Pé indice l'unice solutione definite paritive dell'equazione destrice di Riccati:

PeAT+APe-PeCTV-CPe+I'WIT=0

OSSERVAZIONI

la solurione et indifundente de leo, xo e ende $\hat{X}(0)$;

l'errore un'unissato delle covariance osilutatice et tre.

determinare le motrice F ottime ju le retroonine dello steto. (non svolto)

ATEMPO DISCRETO

$$Zd \begin{cases} x(\kappa+1) = Ax(\kappa) + Bu(\kappa) \\ y(\kappa) = cx(\kappa) + Du(\kappa) \end{cases}$$

Per anologie el coso a Tempo contino si costruisce l'asservatore come

sique:

$$\sum_{k=0}^{\infty} \hat{x}(\kappa+1) = A\hat{x}(\kappa) + Bu(\kappa) + K[y(\kappa) - \hat{y}(\kappa)]$$

$$\hat{y}(\kappa) = C\hat{x}(\kappa) + Du(\kappa)$$

$$\Rightarrow \hat{\chi}(\kappa+1) = (A-KC)\hat{\chi}(\kappa) + [B-KD, K] \cdot [u(\kappa)]$$
EQUAZIONE ALLE

LELL'OSSERVATORE

E' fe ci le mostrone le

l'enore $e(\kappa) := \chi(\kappa) - \chi(\kappa)$ ob.

alle equarine:

(infetti e(k) =
$$(A-RC)^{k}$$
 e(0) enewere
e(k+1) = $(A-RC)^{k+1}$ e(0) ...)

MODULO MUICH

Se $\nabla (A-KC) \subseteq C^{1-}$ ellere e(k) $\rightarrow 0$ fu $k \rightarrow +\infty$

PROBLEMA: Como sugli ene lo spettro $\nabla (A - FCC) ?$

DEADBEAT OBSERVER, : DISTRUTTO (P(K)=0), MENTRE I TIMPO CONTINUO SE (C,A) E orservatorile, e para bile selezione K, officele Tuttiglianto.

velou di (A-RC) sians posti

nell'arjue del prous complem.

Me consigne:

e(K) = (A-KC)^K e(0) = 0 + K≥ K con K ≤ M

ai de l'enone di stime ve a rens ad mento funto (fun te=FE) e ci' nimene fu surpre

SPIEGAZIOME: (A-KC) presente un un'as

unterplicità quale vous del

policiamio un'una oli (A-FCC).

Allore i unodi oli (A-FCC) K some

pu K > 1:

OK, KOK-1, 2! (K) OK-2, ..., (l-1)! (K) OK-l+1

yu K = l-1 (A-FCC) K una et unlle

pu K > l-1 tuti i unodi somo unelli

P(A-FCC) K = 0 fu K > l-1

Judijudentemente de ceme abbienante scalto la spetito V (A-KC), l'amente e tore Zio cle abbienno descuitto pur i sistemi Tempo di scretti, e i malicato quele OSSERVATORE DI PREDIZIONE (predictor estimator) puede le stime x(K) e bosoto su unisure fino ad includene y (K-1).

Di prende interese per le applicament perticle e le centrarieme di une

stime $\bar{x}(k)$ della stato x(k) basendan! sulle misure de includeus ancle y(k):

> OSSERVATORE DI STATO CORRENTE (current estimator)

Inner' Tutto cons'oleiene, ja semplicité; D=0. Come oservotore di stato comente considerano;

 $\sum_{OC} \int \overline{X}(\kappa) = \hat{X}(\kappa) + K_{c}(Y(\kappa) - C\hat{X}(\kappa))$ (1) $\hat{X}(\kappa) = A\overline{X}(\kappa - 1) + Bu(\kappa - 1)$ (2) $\sum_{C} \text{predictions}$

prediriene dete del modello Zo prediriene dete del modello Zo portire delle stime precedente di stato-corrente X(K-4)

Sostituendo la (2) mella (1) ol fine di alimina \$(K), pormiamo ottenare:

$$\overline{X}(K) = (I - K_c C) A \overline{X}(K-1) + [(I - K_c C)B, K_c] \cdot [Y(K-1)]$$

de É L'OSSERV. DI STATO CORRENTE

mente

 $\hat{\chi}(\kappa+1) = A\hat{\chi}(\kappa) + Bu(\kappa) + Akc(\gamma(\kappa) - C\hat{\chi}(\kappa))$

di E l'OSSERVATORE DI PREDIZIONE

mandando le stime de si era Prancto con l'asservatore de predimen, si vete cle se

K=AKe

eller le stime $\hat{X}(\kappa)$ élete de \sum_{i} oc e le meder une stime $\hat{X}(\kappa)$ élete de \sum_{i} . In particolore se $\hat{e}(\kappa):=X(\kappa)-\hat{X}(\kappa)$,

si oure: ê(K+1)=(A-AKc)ê(K)

mentre se definiens:

 $\overline{e}(\kappa) := \chi(\kappa) - \overline{\chi}(\kappa)$

sin he:

111

$$\overline{e}(\kappa) = x(\kappa) + \hat{\chi}(\kappa) - \hat{\chi}(\kappa) - \overline{\chi}(\kappa) = \hat{e}(\kappa) - (\overline{\chi}(\kappa) - \hat{\chi}(\kappa))$$
 e deto de

$$\overline{\chi}(\kappa) - \hat{\chi}(\kappa) = K_c (\gamma(\kappa) - C\hat{\chi}(\kappa)) = K_c C\hat{e}(\kappa)$$

8. Ca:

$$\overline{e}(\kappa) = (I - K_c C) \hat{e}(\kappa)$$
 = questo fue to,

Considerando de

$$\overline{e}(\kappa) = (I - R_c C) \hat{e}(\kappa) e de$$

$$\overline{X}(\kappa+1) = (I-K_cC)A\overline{X}(\kappa) + (I-K_cC)Bu(\kappa) + + K_cY(\kappa+1)$$

si ottime:

$$\overline{e}(\kappa+1) = \chi(\kappa+1) - \overline{\chi}(\kappa+1) = A\chi(\kappa) + B\chi(\kappa) + C(\kappa+1) = \chi(\kappa) + C(\kappa) + C(\kappa + 1)) = C(\kappa) + C(\kappa) +$$

$$= A \overline{e} (\kappa) + K_c CA \overline{x}(\kappa) + K_c CB u(\kappa) +$$

$$- K_c CA x(\kappa) - K_c CB u(\kappa) =$$

$$= A \overline{e} (\kappa) - K_c CA \overline{e} (\kappa) =$$

$$= (A - K_c CA) \overline{e}(\kappa)$$
Si = qui usu ou mostroso de

$$\overline{e}(\kappa+1) = (A-R_cCA)\overline{e}(\kappa)$$

il judages Rc oleve enne scalts opportunamente offiche-V(A-KcCA) C C1-

Le coffie (CA, A) dere enue onewobile fu ottenere l'angrobilité orbitrone di V(A-KcCA).

L' pur di mostrore facilemente de, se A € invertible, vole (CC,A) € OSSERVABILE Se e solo se (CA, A) & OSSERVABILE.

OSSERVAZIONE OTTIRA DELLO STATO PER SISTEMI TEMPO DISCRETI (FILTRO DI KALMAN TERPO DISCRETO

$$\sum_{d} \begin{cases} x(\kappa+1) = Ax(\kappa) + Bu(\kappa) + \Gamma w(\kappa) \\ y(\kappa) = Cx(\kappa) + y(\kappa) \end{cases}$$

$$\sum_{d} \begin{cases} x(\kappa+1) = Ax(\kappa) + Bu(\kappa) + \Gamma w(\kappa) \\ y(\kappa) = Cx(\kappa) + y(\kappa) \end{cases}$$

$$\sum_{d} \begin{cases} x(\kappa+1) = Ax(\kappa) + Bu(\kappa) + \Gamma w(\kappa) \\ y(\kappa) = Cx(\kappa) + y(\kappa) \end{cases}$$

$$\sum_{d} \begin{cases} x(\kappa+1) = Ax(\kappa) + Bu(\kappa) + \Gamma w(\kappa) \\ y(\kappa) = Cx(\kappa) + y(\kappa) \end{cases}$$

$$\sum_{d} \begin{cases} x(\kappa+1) = Ax(\kappa) + Bu(\kappa) + \Gamma w(\kappa) \\ y(\kappa) = Cx(\kappa) + y(\kappa) \end{cases}$$

$$\sum_{d} \begin{cases} x(\kappa) = Cx(\kappa) + y(\kappa) \\ y(\kappa) = Cx(\kappa) + y(\kappa) \end{cases}$$

$$\sum_{d} \begin{cases} x(\kappa) = Cx(\kappa) + y(\kappa) \\ y(\kappa) = Cx(\kappa) + y(\kappa) \end{cases}$$

$$\sum_{d} \begin{cases} x(\kappa) = Cx(\kappa) + y(\kappa) \\ y(\kappa) = Cx(\kappa) \end{cases}$$

W(K) e D(K) siano processi stocastici (a Tempo discreto) bionchi e joussiani di intensité nispertive WeV:

$$\begin{split} & = \{w(\kappa)\} = E\{v(\kappa)\} = o \\ & = \{w(\kappa), w(i)\} = W\{(\kappa-i)\} \quad W = W, w_{>0} \\ & = \{v(\kappa), v(i)\} = V\{(\kappa-i)\} \quad V = V, v_{>0} \end{split}$$

dere d(K-i)=1 sc K=1 e zero office I mon w(k) e 12(k) sous inconstati tra loro e la stato x(0) sie une variabile aleatorie goussieur olimadie:

$$E_{\chi}^{2}(0) = \chi_{0} = \omega_{0} = \omega_{0} = \omega_{0}$$

$$P_{eo} = E_2(X(o) - X_o)(X(o) - X_o)^t i u condote$$
a $W \in Y$.

PROBLEMA:

Con sidero l'OSSERVATOREDISTATO CORRENTE

$$\sum_{c} \left(\overline{X}(K) = \hat{X} + K_c \left(Y(K) - C \hat{X}(K) \right) \right)$$

$$= \sum_{c} \left(\hat{X}(K) = A \overline{X} (K-1) + B u (K-1) \right)$$

e reglis determinare la motrice du presegno Kc E Ruxp offincte sia mi mi mota la covenionza osintotica olell'errore oli stima:

SOLUZIONE:

Se (C,A) & orservabile e (A, I'W'E)
reggingibile, oi pur dinastrere le
le motrice di prodegno ottime de
minimisse le covorionre orintetica
olell'errore é:

$$K_{c}^{*} = P_{e}^{*} C^{T} (CP_{e}^{*} C^{T} + V)^{-1}$$

olare le é l'unice soluzione de finite positiva dell'eque algebrica di Riccoti e Tempo discreto:

CONTROLLORI DIMAMICI BASATI SULLI OSSERVATORE

$$\sum_{x=Cx+Du} \begin{cases} \dot{x} = Ax + Bu \\ \dot{y} = Cx + Du \end{cases}$$

Quendo la steto ou Z' man e o comibile, non PROBLEMA: vaglio
ollocore pli outovolori
in modo offortus
con me retroonique
stato-inprens, me
la stato nem e
accomibile.

te response passible implementare le legge di retronzione:

$$u(t) = \mp x(t) + z(t)$$

me e possibile invece con

$$u(t) = F \hat{x}(t) + r(t)$$

oleve x(t) è le stime ou x(t) fouite de un osservotore:

Il s'sterne retroczioneto complessino con ottento, obbedusce alle signati $\dot{x} = Ax + B(F\hat{x} + R) = Ax + BF\hat{x} + BR$ (4) $\hat{X} = (A - KC)\hat{X} + [B - KD, K]. [u]$ $\begin{cases} A - KC \hat{X} + [B - KD, K]. [u] \\ A = (A - KC)\hat{X} + [B - KD, K]. [u] \end{cases}$ x= (A-Kc)x+ (B-HD)u+K(Cx+Dh) $\hat{x} = (A - EC)\hat{x} + BF\hat{x} + BR + ECX$ $\hat{X} = KCX + (A - KC + BF)\hat{X} + BR$ Inserve y=CX+DFX+DR quindi de (1), (2) e (3) si he: $\begin{bmatrix} \dot{x} \\ \dot{\hat{x}} \end{bmatrix} = \begin{bmatrix} A & BF \\ \dot{x} \\ + B \end{bmatrix} \mathcal{R}$ $KC \quad A-KC+BF \quad \begin{vmatrix} \dot{x} \\ \dot{x} \\ \end{vmatrix} + B$ DF J. [x | + D /2

TEOREMA DI SEPARAZIONE

E' possibile projettore indifurdentemente le RETROAZIONE STATO-INGRESSO dell'OSSERVATORE ASIMTOTICO.

Infatti il sisteme retrovieneto con l'assemblan anintation è:

$$\begin{bmatrix} \dot{x} \\ \dot{\hat{x}} \end{bmatrix} = \begin{bmatrix} A & BF \\ \kappa c & A - \kappa c + BF \end{bmatrix} \begin{bmatrix} x \\ \hat{x} \end{bmatrix} + \begin{bmatrix} B \\ B \end{bmatrix} R$$

$$Y = \begin{bmatrix} c \\ DF \end{bmatrix} \begin{bmatrix} x \\ \hat{x} \end{bmatrix} + DR$$

effurmendo le Trosfermeriere di coordinate

$$\begin{bmatrix} x \\ e \end{bmatrix} = \begin{bmatrix} I & O \\ I & -I \end{bmatrix} \begin{bmatrix} x \\ \hat{x} \end{bmatrix} \qquad (e := x - \hat{x})$$

e not ando de

$$\begin{bmatrix} \mathbf{I} & 0 \\ \mathbf{I} & -\mathbf{I} \end{bmatrix}^{-1} = \begin{bmatrix} \mathbf{I} & 0 \\ \mathbf{I} & -\mathbf{I} \end{bmatrix}$$

& ottiene:

$$\begin{bmatrix} \dot{x} \\ \dot{e} \end{bmatrix} = \begin{bmatrix} A + BF & -BF \\ O & A - KC \end{bmatrix} \cdot \begin{bmatrix} x \\ e \end{bmatrix} + \begin{bmatrix} B \\ O \end{bmatrix} R$$

$$Y = \begin{bmatrix} C + DF \\ -DF \end{bmatrix} \cdot \begin{bmatrix} x \\ e \end{bmatrix} + DR$$

de au segue de

$$\nabla \left(\begin{bmatrix} A+BF & -BF \\ O & A-KC \end{bmatrix} \right) = \nabla (A+BF)U\nabla (A-KC)$$

le progetione de la Fe K avvieur i'u istanti ouvern'

Il sisteme complement, cont desanto MOM è completemente reggingibile e/o controllabile i'u quanto, attraverso"?, passo "influire, solo su x.

