

Amendments to the Claims

Please amend the claims as follows:

1. (Currently amended) A compound of formula I:

wherein

R^2 is hydrogen or a saccharide group optionally substituted with $-R^a-Y-R^b-(Z)_x;$

R^3 is $-OR^c$, $-NRR^cR^c$, $-O-R^a-Y-R^b-(Z)_x$, $-NR^c-R^a-Y-R^b-(Z)_x$, $-NR^cR^c$, or

$$-\text{O}-\text{R}^c;$$

R⁴ is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, -R^a-Y-R^b-(Z)_x, -C(O)R^d and a saccharide group optionally substituted with -R^a-Y-R^b-(Z)_x;

R⁵ is selected from the group consisting of hydrogen, halo, -CH(R^c)-NR^cR^c, -CH(R^c)-NR^cR^c and -CH(R^c)-NR^c-R^a-Y-R^b-(Z)_x;

R⁶ is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, -R^a-Y-R^b-(Z)_x, -C(O)R^d and a saccharide group optionally substituted with -NR^c-R^a-Y-R^b-(Z)_x, or R⁵ and R⁶ can be joined, together with the atoms to which they are attached, form a heterocyclic ring optionally substituted with -NR^c-R^a-Y-R^b-(Z)_x;

R⁷ is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, -R^a-Y-R^b-(Z)_x, and -C(O)R^d;

A!
R⁸ is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, aryl, heteroaryl and heterocyclic;

R⁹ is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, aryl, heteroaryl and heterocyclic;

R¹⁰ is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, aryl, heteroaryl and heterocyclic; or R⁸ and R¹⁰ are joined to form -Ar¹-O-Ar²-, where Ar¹ and Ar² are independently arylene or heteroarylene;

R¹¹ is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, aryl, heteroaryl and heterocyclic, or R¹⁰ and R¹¹ are joined, together with the carbon and nitrogen atoms to which they are attached, to form a heterocyclic ring;

R¹² is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, aryl, heteroaryl, heterocyclic, -C(O)R^d, -C(NH)R^d,

$-C(O)NR^cR^e$, $-C(O)OR^d$, $-C(NH)NR^cR^e$ and $-R^a-Y-R^b-(Z)_x$, or R^{11} and R^{12} are joined, together with the nitrogen atom to which they are attached, to form a heterocyclic ring;

R^{13} is selected from the group consisting of hydrogen or $-OR^{14}$;

R^{14} is selected from hydrogen, $-C(O)R^d$ and a saccharide group;

R^{15} is hydrogen or $-R^a-Y-R^b-(Z)_x$;

R^{16} is hydrogen or methyl;

R^{17} is hydrogen, alkyl or substituted alkyl;

each R^a is independently selected from the group consisting of alkylene, substituted alkylene, alkenylene, substituted alkenylene, alkynylene and substituted alkynylene;

each R^b is independently selected from the group consisting of a covalent bond, alkylene, substituted alkylene, alkenylene, substituted alkenylene, alkynylene and substituted alkynylene, provided R^b is not a covalent bond when Z is hydrogen;

each R^c is independently selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, aryl, heteroaryl, heterocyclic and $-C(O)R^d$;

each R^d is independently selected from the group consisting of alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, aryl, heteroaryl and heterocyclic;

R^e is a saccharide group;

W is selected from the group consisting of $-OR^e$, $-SR^e$, $-S-S-R^d$, $-NR^cR^e$, $-S(O)R^d$, $-SO_2R^d$, $-NR^cC(O)R^d$, $-OSO_2R^d$, $-OC(O)R^d$, $-NR^cSO_2R^d$, $-C(O)NR^cR^e$, $-C(O)OR^e$, $-C(NR^e)OR^e$, $-SO_2NR^cR^e$, $-SO_2OR^e$, $-P(O)(OR^e)_2$, $-P(O)(OR^e)NR^cR^e$, $-OP(O)(OR^e)_2$, $-OP(O)(OR^e)NR^cR^e$, $-OC(O)OR^d$, $-NR^cC(O)OR^d$, $-NR^cC(O)NR^cR^e$, $-OC(O)NR^cR^e$, $-NR^cSO_2NR^cR^e$; $-N^+(R^e)=CR^cR^e$, $-N=P(R^d)_3$, $-N^+(R^d)_3$, $-P^+(R^d)_3$, $-C(S)OR^d$, and $-C(S)SR^d$;

X^1 , X^2 and X^3 are independently selected from hydrogen or chloro;

each Y is independently selected from the group consisting of oxygen, sulfur, $-S-S-$, $-NR^e-$, $-S(O)-$, $-SO_2-$, $-NR^cC(O)-$, $-OSO_2-$, $-OC(O)-$, $-NR^cSO_2-$, $-C(O)NR^e-$, $-C(O)O-$, $-SO_2NR^e-$, $-SO_2O-$, $-P(O)(OR^e)O-$, $-P(O)(OR^e)NR^e-$, $-OP(O)(OR^e)O-$,

-OP(O)(OR^c)NR^{c-}, -OC(O)O-, -NR^cC(O)O-, -NR^cC(O)NR^{c-}, -OC(O)NR^{c-} and -NR^cSO₂NR^{c-};

each Z is independently selected from hydrogen, aryl, cycloalkyl, cycloalkenyl, heteroaryl and heterocyclic;

n is 0, 1 or 2;

x is 1 or 2;

and pharmaceutically acceptable salts, stereoisomers and prodrugs thereof;

provided that at least one of R¹⁵, R², R³, R⁴, R⁵, R⁶, R⁷ or R¹² has a substituent substituent of the formula -R^a-Y-R^b-(Z)_x;

and further provided that:

(i) when Y is -NR^{c-}, R^c is alkyl of 1 to 4 carbon atoms, Z is hydrogen and R^b is alkylene, then R^b contains at least 5 carbon atoms;

(ii) when Y is -C(O)NR^{c-}, Z is hydrogen and R^b is alkylene, then R^b contains at least 5 carbon atoms;

(iii) when Y is sulfur, Z is hydrogen and R^b is alkylene, then R^b contains at least 7 carbon atoms; and

(iv) when Y is oxygen, Z is hydrogen and R^b is alkylene, then R^b contains at least 11 carbon atoms.

2. (Original) The compound of Claim 1, wherein R² is hydrogen and R¹³ is -OH.

3. (Original) The compound of Claim 2, wherein R⁴, R⁶ and R⁷ are each hydrogen.

4. (Original) The compound of Claim 3, wherein R⁸ is -CH₂C(O)NH₂.

5. (Original) The compound of Claim 4, wherein R⁹ is hydrogen; R¹⁰ is isobutyl; R¹¹ is methyl; and R¹² is hydrogen.

6. (Original) The compound of Claim 5, wherein R⁵ is hydrogen, -CH₂-NHR^c, -CH₂-NR^cR^c and -CH₂-NH-R^a-Y-R^b-(Z)_x.

7. (Original) The compound of Claim 6, wherein R³ is -OR^c or -NR^cR^c.

8. (Original) The compound of Claim 7, wherein R³ is -OH and R⁵ is hydrogen.

9. (Original) The compound of Claim 8, wherein R¹⁵ is -R^a-Y-R^b-(Z)_x.

10. (Currently amended) A compound of formula II:

wherein

R^{15} is hydrogen or $-R^a-Y-R^b-(Z)_x$;

R^{16} is hydrogen or methyl;

R^{22} is $-OR^c$, $-NR^cR^c$, $-O-R^a-Y-R^b-(Z)_x$ or $-NR^c-R^a-Y-R^b-(Z)_x$;

R^{23} is selected from the group consisting of hydrogen, halo, $-CH(R^c)-NR^cR^c$, $-CH(R^c)-R^c$ and $-CH(R^c)-NR^c-R^a-Y-R^b-(Z)_x$;

R^{24} is selected from the group consisting of hydrogen and lower alkyl;

R^{25} is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, aryl, heteroaryl and heterocyclic;

R^{26} is selected from the group consisting of hydrogen and lower alkyl; or R^{25} and R^{26} are joined, together with the carbon and nitrogen atoms to which they are attached, to form a heterocyclic ring;

A_1
 R^{27} is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, aryl, heteroaryl, heterocyclic, $-C(O)R^d$, $-C(NH)R^d$, $-C(O)NR^cR^c$, $-C(O)OR^d$, $-C(NH)NR^cR^c$ and $-R^a-Y-R^b-(Z)_x$, or R^{26} and R^{27} are joined, together with the nitrogen atom to which they are attached, to form a heterocyclic ring;

each R^a is independently selected from the group consisting of alkylene, substituted alkylene, alkenylene, substituted alkenylene, alkynylene and substituted alkynylene;

each R^b is independently selected from the group consisting of a covalent bond, alkylene, substituted alkylene, alkenylene, substituted alkenylene, alkynylene and substituted alkynylene, provided R^b is not a covalent bond when Z is hydrogen;

each R^c is independently selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, aryl, heteroaryl, heterocyclic and $-C(O)R^d$;

each R^d is independently selected from the group consisting of alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, aryl, heteroaryl and heterocyclic;

R^e is an aminosaccharide group;

W is selected from the group consisting of $=OR^e$, $-SR^e$, $-S-S-R^d$, $-NR^eR^c$, $-S(O)R^d$, $-SO_2R^d$, $-NR^eC(O)R^d$, $-OSO_2R^d$, $-OC(O)R^d$, $-NR^eSO_2R^d$, $-C(O)NR^eR^c$, $-C(O)OR^e$, $-C(NR^e)OR^e$, $-SO_2NR^eR^c$, $-SO_2OR^e$, $-P(O)(OR^e)_2$, $-P(O)(OR^e)NR^eR^c$, $-OP(O)(OR^e)_2$, $-OP(O)(OR^e)NR^eR^c$, $-OC(O)OR^d$, $-NR^eC(O)OR^d$, $-NR^eC(O)NR^eR^c$, $-OC(O)NR^eR^c$, $-NR^eSO_2NR^eR^c$; $-N^+(R^e)=CR^eR^c$, $-N=P(R^d)_3$, $-N^+(R^d)_3$, $-P^+(R^d)_3$, $-C(S)OR^d$, and $-C(S)SR^d$;

each *Y* is independently selected from the group consisting of oxygen, sulfur, $-S-S-$, $-NR^e-$, $-S(O)-$, $-SO_2-$, $-NR^eC(O)-$, $-OSO_2-$, $-OC(O)-$, $-NR^eSO_2-$, $-C(O)NR^e-$, $-C(O)O-$, $-SO_2NR^e-$, $-SO_2O-$, $-P(O)(OR^e)O-$, $-P(O)(OR^e)NR^e-$, $-OP(O)(OR^e)O-$, $-OP(O)(OR^e)NR^e-$, $-OC(O)O-$, $-NR^eC(O)O-$, $-NR^eC(O)NR^e-$, $-OC(O)NR^e-$ and $-NR^eSO_2NR^e-$;

each *Z* is independently selected from hydrogen, aryl, cycloalkyl, cycloalkenyl, heteroaryl and heterocyclic;

n is 0, 1 or 2;

x is 1 or 2;

and pharmaceutically acceptable salts, stereoisomers and prodrugs thereof;

provided that at least one of R^{15} , R^{22} , R^{23} or R^{27} has a substituent substituent of the formula $-R^a-Y-R^b-(Z)_x$;

and further provided that:

(i) when *Y* is $-NR^e-$, *R^e* is alkyl of 1 to 4 carbon atoms, *Z* is hydrogen and *R^b* is alkylene, then *R^b* contains at least 5 carbon atoms;

(ii) when *Y* is $-C(O)NR^e-$, *Z* is hydrogen and *R^b* is alkylene, then *R^b* contains at least 5 carbon atoms;

(iii) when *Y* is sulfur, *Z* is hydrogen and *R^b* is alkylene, then *R^b* contains at least 7 carbon atoms; and

(iv) when *Y* is oxygen, *Z* is hydrogen and *R^b* is alkylene, then *R^b* contains at least 11 carbon atoms.

11. (Original) The compound of Claim 10, wherein R^{24} is hydrogen; R^{25} is isobutyl; R^{26} is methyl; and R^{27} is hydrogen.

12. (Original) The compound of Claim 11, wherein R²² is -OH.
13. (Original) The compound of Claim 12, wherein R²³ is hydrogen.
14. (Original) The compound of Claim 13, wherein R¹⁵ is -R^a-Y-R^b-(Z)_x.
15. (Original) The compound of Claim 9 or 14, wherein W is -NH₂.
16. (Original) The compound of Claim 15, wherein the -R^a-Y-R^b-(Z)_x group is selected from the group consisting of:
- A 1
-CH₂CH₂-NH-(CH₂)₉CH₃;
-CH₂CH₂CH₂-NH-(CH₂)₈CH₃;
-CH₂CH₂CH₂CH₂-NH-(CH₂)₇CH₃;
-CH₂CH₂-NHSO₂-(CH₂)₉CH₃;
-CH₂CH₂-NHSO₂-(CH₂)₁₁CH₃;
-CH₂CH₂-S-(CH₂)₈CH₃;
-CH₂CH₂-S-(CH₂)₉CH₃;
-CH₂CH₂-S-(CH₂)₁₀CH₃;
-CH₂CH₂CH₂-S-(CH₂)₈CH₃;
-CH₂CH₂CH₂-S-(CH₂)₉CH₃;
-CH₂CH₂CH₂-S-(CH₂)₃-CH=CH-(CH₂)₄CH₃ (*trans*);
-CH₂CH₂CH₂CH₂-S-(CH₂)₉CH₃;
-CH₂CH₂-S(O)-(CH₂)₉CH₃;
-CH₂CH₂-S-(CH₂)₆Ph;
-CH₂CH₂-S-(CH₂)₈Ph;
-CH₂CH₂CH₂-S-(CH₂)₈Ph;
-CH₂CH₂-NH-CH₂-4-(4-Cl-Ph)-Ph;
-CH₂CH₂-NH-CH₂-4-[4-CH₃)₂CHCH₂-]-Ph;
-CH₂CH₂-NH-CH₂-4-(4-CF₃-Ph)-Ph;

A1

- CH₂CH₂-S-CH₂-4-(4-Cl-Ph)-Ph;
- CH₂CH₂-S(O)-CH₂-4-(4-Cl-Ph)-Ph;
- CH₂CH₂CH₂-S-CH₂-4-(4-Cl-Ph)-Ph;
- CH₂CH₂CH₂-S(O)-CH₂-4-(4-Cl-Ph)-Ph;
- CH₂CH₂CH₂-S-CH₂-4-[3,4-di-Cl-PhCH₂O-]-Ph;
- CH₂CH₂-NHSO₂-CH₂-4-[4-(4-Ph)-Ph]-Ph;
- CH₂CH₂CH₂-NHSO₂-CH₂-4-(4-Cl-Ph)-Ph;
- CH₂CH₂CH₂-NHSO₂-CH₂-4-(Ph-C≡C-)-Ph;
- CH₂CH₂CH₂-NHSO₂-4-(4-Cl-Ph)-Ph; and
- CH₂CH₂CH₂-NHSO₂-4-(naphth-2-yl)-Ph.

17. (Original) A pharmaceutical composition comprising a pharmaceutically-acceptable carrier and a therapeutically effective amount of a compound of Claim 1 or 10.

18. (Original) The pharmaceutical composition of Claim 17, wherein the composition further comprises a cyclodextrin.

19. (Currently Amended) A method of treating a mammal having a bacterial disease, the method comprising administering to the mammal a pharmaceutical pharmaceutical composition comprising a pharmaceutically-acceptable carrier and a therapeutically effective amount of a compound of Claim 1 or 10.

20. (Original) A compound as shown in any of Tables I, II, III or IV, or a pharmaceutically-acceptable salts thereof.

21. (Currently amended) A compound of the formula:

wherein

R^a is independently selected from the group consisting of alkylene, substituted alkylene, alkenylene, substituted alkenylene, alkynylene and substituted alkynylene;

each R^c is independently selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, aryl, heteroaryl, heterocyclic and $-C(O)R^d$;

each R^d is independently selected from the group consisting of alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, aryl, heteroaryl and heterocyclic;

W is selected from the group consisting of $=OR^c$, $-SR^c$, $-S-S-R^d$, $-NR^cR^c$, $-S(O)R^d$, $-SO_2R^d$, $-NR^cC(O)R^d$, $-OSO_2R^d$, $-OC(O)R^d$, $-NR^cSO_2R^d$, $-C(O)NR^cR^c$, $-C(O)OR^c$,

A
-C(NR^c)OR^c, -SO₂NR^cR^c, -SO₂OR^c, -P(O)(OR^c)₂, -P(O)(OR^c)NR^cR^c, -OP(O)(OR^c)₂,
-OP(O)(OR^c)NR^cR^c, -OC(O)OR^d, -NR^cC(O)OR^d, -NR^cC(O)NR^cR^c, -OC(O)NR^cR^c,
-NR^cSO₂NR^cR^c; -N⁺(R^c)=CR^cR^c, -N=P(R^d)₃, -N⁺(R^d)₃, -P⁺(R^d)₃, -C(S)OR^d, and
-C(S)SR^d;

P is hydrogen or a protecting group;

and salts thereof.
