时间复杂度

Time complexity of Insertion Sort

Insertion-Sort (A)	cost	# of times
for j = 2 to A.length	c_1	n
key = A[j]	c_2	n-1
i = j - 1	c_3	n-1
while (i>0 and A[i]>key)	c_4	$\sum_{j=2}^{n} t_j$
A[i+1] = A[i]	c_5	$\sum_{i=2}^{n} (t_i - 1)$
i = i - 1	c ₆	$\sum_{i=2}^{h-2} (t_i - 1)$
A[i+1] = key	c ₇	n-1

Assume A. length = n, then total running time T(n) is:

$$c \cdot n + c' \cdot \left(\sum_{j=2}^{n} t_j\right) - c''$$

If $t_i = 1$, then $T(n) \approx cn + c'n - c''$

If $t_j = j$, then $T(n) \approx cn + (c'/2)n^2 - c''$ Worst case: A is reversely sorted

Best case: A is sorted

Average case???

$$T(n) = O(n^2)$$
 Runtime $T(n) = c \cdot n + c' \cdot \left(\sum_{j=2}^{n} t_j\right) - c''$

Best case: $T(n) = \Theta(n)$

 $t_j = 1$ and $T(n) \approx cn + c'n - c''$

Worst case: $T(n) = \Theta(n^2)$ $t_j = j$ and $T(n) \approx cn + (c'/2)n^2 - c''$

5记号

O: 与ω逻辑反, 渐进意义上的线性上界, 算法很好

Ω: 与O意义相反,与o逻辑反,代表算法时间下界,算法不太好

Θ: 区间

o: 任意系数c

ω: 任意系数c

• 有自反性, 对称性

渐进记号比较

• 洛必达

• 斯特勒公式: 估计阶乘