In [1]:

```
import pandas as pd
import os
```

In [2]:

```
from openpyxl import load_workbook
```

Select Data Source

In [3]:

```
files= os.listdir('./SalesAnalysis/Sales_Data')
```

Remove Unwanted Files

In [4]:

```
files=files[1:]
```

Merge Data from all files

In [5]:

```
all_data=pd.DataFrame()
for file in files:
    data=pd.read_csv('./SalesAnalysis/Sales_Data/'+file)
    all_data=pd.concat([all_data,data])
```

In [6]:

```
all_data.head()
```

Out[6]:

	Order ID	Product	Quantity Ordered	Price Each	Order Date	Purchase Address
0	176558	USB-C Charging Cable	2	11.95	04/19/19 08:46	917 1st St, Dallas, TX 75001
1	NaN	NaN	NaN	NaN	NaN	NaN
2	176559	Bose SoundSport Headphones	1	99.99	04/07/19 22:30	682 Chestnut St, Boston, MA 02215
3	176560	Google Phone	1	600	04/12/19 14:38	669 Spruce St, Los Angeles, CA 90001
4	176560	Wired Headphones	1	11.99	04/12/19 14:38	669 Spruce St, Los Angeles, CA 90001

Remove rows containing headings

```
In [7]:
```

```
all_data=all_data.loc[all_data['Quantity Ordered']!='Quantity Ordered']
```

Question 1: What month has maximum Sales?

Extract Day and Month from Datetime column

```
In [8]:
```

```
all_data['Order Day']=pd.DatetimeIndex(all_data['Order Date']).day
all_data['Order Month']=pd.DatetimeIndex(all_data['Order Date']).month
all_data.dropna(how='all',inplace=True)
```

Create a Calculated Column of Sales

```
In [9]:
```

```
all_data['Quantity Ordered']=pd.to_numeric(all_data['Quantity Ordered'])
all_data['Price Each']=pd.to_numeric(all_data['Price Each'])
all_data['Sales']=all_data['Quantity Ordered']*all_data['Price Each']
```

Best Sales Month

```
In [10]:
```

```
bsm=all_data.groupby('Order Month').sum()
bsm
```

Out[10]:

	Quantity Ordered	Price Each	Order Day	Sales
Order Month				
1.0	10903	1.811768e+06	155814.0	1.822257e+06
2.0	13449	2.188885e+06	174408.0	2.202022e+06
3.0	17005	2.791208e+06	241774.0	2.807100e+06
4.0	20558	3.367671e+06	282960.0	3.390670e+06
5.0	18667	3.135125e+06	264875.0	3.152607e+06
6.0	15253	2.562026e+06	209880.0	2.577802e+06
7.0	16072	2.632540e+06	227910.0	2.647776e+06
8.0	13448	2.230345e+06	192315.0	2.244468e+06
9.0	13109	2.084992e+06	180101.0	2.097560e+06
10.0	22703	3.715555e+06	326141.0	3.736727e+06
11.0	19798	3.180601e+06	272854.0	3.199603e+06
12.0	28114	4.588415e+06	401453.0	4.613443e+06

In [11]:

```
bsm['Sales'].plot.bar()
```

Out[11]:

<matplotlib.axes._subplots.AxesSubplot at 0xee9610>

Question 2: What City has maximum Sales?

Extract City from Address

Lets use apply function

In [12]:

```
all_data['City']=all_data['Purchase Address'].apply(lambda x: x.split(',')[1])
```

In [13]:

```
all_data['LPin']=all_data['Purchase Address'].apply(lambda x: x.split(',')[2]).str[-5:]
```

In [14]:

all_data.head()

Out[14]:

	Order ID	Product	Quantity Ordered	Price Each	Order Date	Purchase Address	Order Day	Order Month	Sales	City	
0	176558	USB-C Charging Cable	2	11.95	04/19/19 08:46	917 1st St, Dallas, TX 75001	19.0	4.0	23.90	Dallas	7
2	176559	Bose SoundSport Headphones	1	99.99	04/07/19 22:30	682 Chestnut St, Boston, MA 02215	7.0	4.0	99.99	Boston	C
3	176560	Google Phone	1	600.00	04/12/19 14:38	669 Spruce St, Los Angeles, CA 90001	12.0	4.0	600.00	Los Angeles	Ę
4	176560	Wired Headphones	1	11.99	04/12/19 14:38	669 Spruce St, Los Angeles, CA 90001	12.0	4.0	11.99	Los Angeles	ξ
5	176561	Wired Headphones	1	11.99	04/30/19 09:27	333 8th St, Los Angeles, CA 90001	30.0	4.0	11.99	Los Angeles	Ę
4											•

In [15]:

```
all_data['Location']=all_data[['City','LPin']].apply(lambda x: " ".join(x),axis=1)
```

In [16]:

result=all_data.groupby('Location').sum().sort_values('Sales',ascending=False)

In [17]:

result

Out[17]:

	Quantity Ordered	Price Each	Order Day	Order Month	Sales
Location					
San Francisco 94016	50239	8.211462e+06	702669.0	315520.0	8.262204e+06
Los Angeles 90001	33289	5.421435e+06	469607.0	208325.0	5.452571e+06
New York City 10001	27932	4.635371e+06	392706.0	175741.0	4.664317e+06
Boston 02215	22528	3.637410e+06	312376.0	141112.0	3.661642e+06
Atlanta 30301	16602	2.779908e+06	234837.0	104794.0	2.795499e+06
Dallas 75001	16730	2.752628e+06	234435.0	104620.0	2.767975e+06
Seattle 98101	16553	2.733296e+06	229552.0	104941.0	2.747755e+06
Portland 97035	11303	1.860558e+06	159233.0	70621.0	1.870732e+06
Austin 73301	11153	1.809874e+06	156782.0	69829.0	1.819582e+06
Portland 04101	2750	4.471893e+05	38288.0	17144.0	4.497583e+05

In [18]:

result['Sales'].plot.bar()

Out[18]:

<matplotlib.axes._subplots.AxesSubplot at 0xdcf8c30>

Question 3: What time advertisements should display

to maximize sales?

In [19]:

all_data.head()

Out[19]:

	Order ID	Product	Quantity Ordered	Price Each	Order Date	Purchase Address	Order Day	Order Month	Sales	City	
0	176558	USB-C Charging Cable	2	11.95	04/19/19 08:46	917 1st St, Dallas, TX 75001	19.0	4.0	23.90	Dallas	7
2	176559	Bose SoundSport Headphones	1	99.99	04/07/19 22:30	682 Chestnut St, Boston, MA 02215	7.0	4.0	99.99	Boston	C
3	176560	Google Phone	1	600.00	04/12/19 14:38	669 Spruce St, Los Angeles, CA 90001	12.0	4.0	600.00	Los Angeles	Ę
4	176560	Wired Headphones	1	11.99	04/12/19 14:38	669 Spruce St, Los Angeles, CA 90001	12.0	4.0	11.99	Los Angeles	ξ
5	176561	Wired Headphones	1	11.99	04/30/19 09:27	333 8th St, Los Angeles, CA 90001	30.0	4.0	11.99	Los Angeles	ξ
4											•

In [20]:

all_data['Order Date']=pd.to_datetime(all_data['Order Date'])

In [21]:

all_data['Order Time']=all_data['Order Date'].apply(lambda x: x.time().hour)

In [22]:

```
adtime=all_data.groupby('Order Time').sum()
adtime
```

Out[22]:

	Quantity Ordered	Price Each	Order Day	Order Month	Sales
Order Time					
0	4428	709296.70	62015.0	27554.0	713721.27
1	2619	458490.00	37333.0	16657.0	460866.88
2	1398	233833.64	19631.0	8507.0	234851.44
3	928	144726.42	13430.0	5904.0	145757.89
4	937	162058.18	13756.0	6148.0	162661.01
5	1493	229621.21	21347.0	9301.0	230679.82
6	2810	445000.11	39824.0	17539.0	448113.00
7	4556	740568.11	63111.0	28850.0	744854.12
8	7002	1185970.62	98078.0	43626.0	1192348.97
9	9816	1628498.49	137512.0	60981.0	1639030.58
10	12308	1932665.62	173128.0	76928.0	1944286.77
11	14005	2288855.18	195901.0	87654.0	2300610.24
12	14202	2299876.68	197231.0	89161.0	2316821.34
13	13685	2139743.86	190415.0	85808.0	2155389.80
14	12362	2072194.77	173264.0	77836.0	2083672.73
15	11391	1931174.99	161441.0	72060.0	1941549.60
16	11662	1892454.54	162579.0	72939.0	1904601.31
17	12229	2116777.02	169311.0	77454.0	2129361.61
18	13802	2207696.93	194087.0	86421.0	2219348.30
19	14470	2398588.31	205868.0	91389.0	2412938.54
20	13768	2268185.16	192147.0	86375.0	2281716.24
21	12244	2030763.83	171214.0	77103.0	2042000.86
22	9899	1599464.44	138981.0	62088.0	1607549.21
23	7065	1172625.87	98881.0	44364.0	1179304.44

In [23]:

```
z=all_data['Order Time'].unique()
z
```

Out[23]:

```
array([ 8, 22, 14, 9, 13, 7, 10, 17, 12, 19, 15, 20, 18, 0, 11, 23, 21, 4, 16, 5, 2, 1, 6, 3], dtype=int64)
```

In [24]:

adtime['Quantity Ordered'].plot(xticks=z,color='r',title='Sales Quantity over the Day',gric

Out[24]:

<matplotlib.axes._subplots.AxesSubplot at 0xb2de690>

In [25]:

adtime['Quantity Ordered'].plot.bar(xticks=z,color='c',title='Sales Quantity over the Day',

Out[25]:

<matplotlib.axes._subplots.AxesSubplot at 0xdcc6610>

Question 4: Which are the most sold together items?

In [26]:

all_data.head()

Out[26]:

	Order ID	Product	Quantity Ordered	Price Each	Order Date	Purchase Address	Order Day	Order Month	Sales	City	
0	176558	USB-C Charging Cable	2	11.95	2019- 04-19 08:46:00	917 1st St, Dallas, TX 75001	19.0	4.0	23.90	Dallas	7
2	176559	Bose SoundSport Headphones	1	99.99	2019- 04-07 22:30:00	682 Chestnut St, Boston, MA 02215	7.0	4.0	99.99	Boston	C
3	176560	Google Phone	1	600.00	2019- 04-12 14:38:00	669 Spruce St, Los Angeles, CA 90001	12.0	4.0	600.00	Los Angeles	Ę
4	176560	Wired Headphones	1	11.99	2019- 04-12 14:38:00	669 Spruce St, Los Angeles, CA 90001	12.0	4.0	11.99	Los Angeles	ξ
5	176561	Wired Headphones	1	11.99	2019- 04-30 09:27:00	333 8th St, Los Angeles, CA 90001	30.0	4.0	11.99	Los Angeles	Ę
4											•

In [27]:

dup=all_data[all_data.duplicated(subset=['Order ID'],keep=False)]

In [28]:

all_data.head()

Out[28]:

	Order ID	Product	Quantity Ordered	Price Each	Order Date	Purchase Address	Order Day	Order Month	Sales	City	
0	176558	USB-C Charging Cable	2	11.95	2019- 04-19 08:46:00	917 1st St, Dallas, TX 75001	19.0	4.0	23.90	Dallas	7
2	176559	Bose SoundSport Headphones	1	99.99	2019- 04-07 22:30:00	682 Chestnut St, Boston, MA 02215	7.0	4.0	99.99	Boston	C
3	176560	Google Phone	1	600.00	2019- 04-12 14:38:00	669 Spruce St, Los Angeles, CA 90001	12.0	4.0	600.00	Los Angeles	Ę
4	176560	Wired Headphones	1	11.99	2019- 04-12 14:38:00	669 Spruce St, Los Angeles, CA 90001	12.0	4.0	11.99	Los Angeles	Ę
5	176561	Wired Headphones	1	11.99	2019- 04-30 09:27:00	333 8th St, Los Angeles, CA 90001	30.0	4.0	11.99	Los Angeles	ξ

In [29]:

dup.head(3)

Out[29]:

	Order ID	Product	Quantity Ordered	Price Each	Order Date	Purchase Address	Order Day	Order Month	Sales	City
3	176560	Google Phone	1	600.00	2019- 04-12 14:38:00	669 Spruce St, Los Angeles, CA 90001	12.0	4.0	600.00	Los Angeles
4	176560	Wired Headphones	1	11.99	2019- 04-12 14:38:00	669 Spruce St, Los Angeles, CA 90001	12.0	4.0	11.99	Los Angeles
18	176574	Google Phone	1	600.00	2019- 04-03 19:42:00	20 Hill St, Los Angeles, CA 90001	3.0	4.0	600.00	Los Angeles
4										+

In [30]:

```
dup['Grouped']=dup.groupby('Order ID')['Product'].transform(lambda x: ",".join(x))
```

c:\users\bipin\appdata\local\programs\python\python37-32\lib\site-packages\i pykernel_launcher.py:1: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/s table/user guide/indexing.html#returning-a-view-versus-a-copy (http://panda s.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-ve rsus-a-copy)

"""Entry point for launching an IPython kernel.

In [31]:

dup[['Grouped','Order ID']].drop_duplicates()

Out[31]:

Order ID	Grouped	
176560	Google Phone,Wired Headphones	3
176574	Google Phone, USB-C Charging Cable	18
176585	Bose SoundSport Headphones,Bose SoundSport Hea	30
176586	AAA Batteries (4-pack),Google Phone	32
176672	Lightning Charging Cable, USB-C Charging Cable	119
259296	Apple Airpods Headphones, Apple Airpods Headphones	11617
259297	iPhone,Lightning Charging Cable,Lightning Char	11619
259303	34in Ultrawide Monitor,AA Batteries (4-pack)	11627
259314	Wired Headphones,AAA Batteries (4-pack)	11639
259350	Google Phone, USB-C Charging Cable	11677

7136 rows × 2 columns

In [32]:

from itertools import combinations from collections import Counter

```
In [33]:
```

```
count=Counter()
for items in dup['Grouped']:
    items_list = items.split(',')
    count.update(Counter(combinations(items_list,2)))
print(count)
Counter({('iPhone', 'Lightning Charging Cable'): 2140, ('Google Phone', 'U
SB-C Charging Cable'): 2116, ('iPhone', 'Wired Headphones'): 987, ('Google
Phone', 'Wired Headphones'): 949, ('iPhone', 'Apple Airpods Headphones'):
799, ('Vareebadd Phone', 'USB-C Charging Cable'): 773, ('Google Phone', 'B
ose SoundSport Headphones'): 503, ('USB-C Charging Cable', 'Wired Headphon
es'): 452, ('Vareebadd Phone', 'Wired Headphones'): 327, ('Lightning Charg
ing Cable', 'Wired Headphones'): 253, ('Lightning Charging Cable', 'Apple
Airpods Headphones'): 214, ('USB-C Charging Cable', 'Bose SoundSport Headp
hones'): 211, ('Vareebadd Phone', 'Bose SoundSport Headphones'): 182, ('Ap
ple Airpods Headphones', 'Wired Headphones'): 170, ('Bose SoundSport Headp
hones', 'Wired Headphones'): 140, ('Lightning Charging Cable', 'USB-C Char
ging Cable'): 120, ('Lightning Charging Cable', 'AA Batteries (4-pack)'):
114, ('Lightning Charging Cable', 'Lightning Charging Cable'): 111, ('AA B
atteries (4-pack)', 'Lightning Charging Cable'): 102, ('AAA Batteries (4-p
ack)', 'USB-C Charging Cable'): 100, ('Apple Airpods Headphones', 'AAA Bat
teries (4-pack)'): 99, ('USB-C Charging Cable', 'USB-C Charging Cable'): 9
9, ('AA Batteries (4-pack)', 'AAA Batteries (4-pack)'): 96, ('AAA Batterie
s (4-pack)', 'AAA Batteries (4-pack)'): 96, ('Wired Headphones', 'USB-C Ch
arging Cable'): 95, ('USB-C Charging Cable', 'AAA Batteries (4-pack)'): 9
In [34]:
for x,y in count.most_common():
    print(x,'----',y)
    print('____
('iPhone', 'Lightning Charging Cable') ---- 2140
('Google Phone', 'USB-C Charging Cable') ---- 2116
('iPhone', 'Wired Headphones') ---- 987
('Google Phone', 'Wired Headphones') ---- 949
('iPhone', 'Apple Airpods Headphones') ---- 799
('Vareebadd Phone', 'USB-C Charging Cable') ---- 773
('Google Phone', 'Bose SoundSport Headphones') ---- 503
('USB-C Charging Cable', 'Wired Headphones') ---- 452
('Vareebadd Phone', 'Wired Headphones') ---- 327
```

Question 5: What product sold the most? And Why do you think it sold the most?

('Lightning Charging Cable', 'Wired Headphones') ---- 253

In [89]:

```
plt.figure(figsize=(5,9))
plt.barh(x,y,alpha=0.5,label=Psales.index,edgecolor='r',linewidth=2)
plt.title('Product Sold',fontdict={'family':'calibri','fontsize':20,'color':'darkred'})
plt.show()
```



```
In [110]:
```

plt.figure(figsize=(9,5))

```
ValueError
                                          Traceback (most recent call last)
c:\users\bipin\appdata\local\programs\python\python37-32\lib\site-packages\m
atplotlib\markers.py in set marker(self, marker)
    308
                    try:
--> 309
                        Path(marker)
    310
                        self._marker_function = self._set_vertices
c:\users\bipin\appdata\local\programs\python\python37-32\lib\site-packages\m
atplotlib\path.py in init (self, vertices, codes, interpolation steps, c
losed, readonly)
    126
--> 127
                vertices = _to_unmasked_float_array(vertices)
    128
                if vertices.ndim != 2 or vertices.shape[1] != 2:
c:\users\bipin\appdata\local\programs\python\python37-32\lib\site-packages\m
atplotlib\cbook\__init__.py in _to_unmasked_float_array(x)
   1389
            else:
-> 1390
                return np.asarray(x, float)
   1391
c:\users\bipin\appdata\local\programs\python\python37-32\lib\site-packages\n
umpy\core\_asarray.py in asarray(a, dtype, order)
     84
---> 85
            return array(a, dtype, copy=False, order=order)
     86
ValueError: could not convert string to float: '*'
During handling of the above exception, another exception occurred:
ValueError
                                          Traceback (most recent call last)
<ipython-input-110-291d89f88eb0> in <module>
      1 plt.figure(figsize=(9,5))
---> 2 plt.scatter([all data['Order Day'],all data['Order Day']],[all data[
'Quantity Ordered'],all data['Price Each']],marker=['*','o'])
c:\users\bipin\appdata\local\programs\python\python37-32\lib\site-packages\m
atplotlib\pyplot.py in scatter(x, y, s, c, marker, cmap, norm, vmin, vmax, a
lpha, linewidths, verts, edgecolors, plotnonfinite, data, **kwargs)
   2846
                verts=verts, edgecolors=edgecolors,
   2847
                plotnonfinite=plotnonfinite, **({"data": data} if data is no
-> 2848
                None else {}), **kwargs)
   2849
            sci(__ret)
   2850
            return __ret
c:\users\bipin\appdata\local\programs\python\python37-32\lib\site-packages\m
atplotlib\__init__.py in inner(ax, data, *args, **kwargs)
            def inner(ax, *args, data=None, **kwargs):
   1597
   1598
                if data is None:
-> 1599
                    return func(ax, *map(sanitize sequence, args), **kwargs)
   1600
   1601
                bound = new sig.bind(ax, *args, **kwargs)
c:\users\bipin\appdata\local\programs\python\python37-32\lib\site-packages\m
atplotlib\axes\_axes.py in scatter(self, x, y, s, c, marker, cmap, norm, vmi
```

```
n, vmax, alpha, linewidths, verts, edgecolors, plotnonfinite, **kwargs)
   4478
                    marker_obj = marker
   4479
                else:
-> 4480
                    marker obj = mmarkers.MarkerStyle(marker)
   4481
   4482
                path = marker_obj.get_path().transformed(
c:\users\bipin\appdata\local\programs\python\python37-32\lib\site-packages\m
atplotlib\markers.py in __init__(self, marker, fillstyle)
    241
                self._marker_function = None
    242
                self.set_fillstyle(fillstyle)
--> 243
                self.set_marker(marker)
    244
    245
            def _recache(self):
c:\users\bipin\appdata\local\programs\python\python37-32\lib\site-packages\m
atplotlib\markers.py in set_marker(self, marker)
                    except ValueError:
    311
    312
                        raise ValueError('Unrecognized marker style {!r}'
--> 313
                                          .format(marker))
    314
    315
                self. marker = marker
```

ValueError: Unrecognized marker style ['*', 'o']

In []: