

IT-Security in smart grids

Defence strategies for Remote Terminal Units in SCADA networks with limited communication

Westfälische Wilhelms-Universität

Münster

► The Scenario

Table of contents

- The Scenario
- Implementation in mosaik
 - Topology Loader
 - RTU Simulation
 - Intrusion Detection System
 - WebVis
 - Hacker Tools
 - Operator Tools

Table of contents

- The Scenario
- Implementation in mosaik
 - Topology Loader
 - RTU Simulation
 - Intrusion Detection System
 - WebVis
 - Hacker Tools
 - Operator Tools
- Attack Scenarios
 - Deterministic attacks
 - Random attacks
 - Defence mechanism specialized attacks
 - Attack to kill the IDS

Table of contents

- Discussion
 - Evaluation
 - Conclusion
 - Future work

Topologie 1 and 1a

Topologie 3 and 3a

Topologie 4

Topologie 5

- Topology Loader
 - provides a GUI
 - image of topology selected
 - some simulation configuration

- Topology Loader
 - provides a GUI
 - image of topology selected
 - some simulation configuration
- RTU Simulation
 - one main MonitoringRTU
 - handles the individual RTU simulations running in separate threads
 - passes data between mosaik and the RTUs
 - RTUs can communicate via server object

- ► Intrusion Detection System
 - behaviour specification based

- ► Intrusion Detection System
 - behaviour specification based
 - regulation
 - turn of branch when max current is exceeded
 - cut-off values to turn secondary branches on/off

- ▶ Intrusion Detection System
 - behaviour specification based
 - regulation
 - turn of branch when max current is exceeded
 - cut-off values to turn secondary branches on/off
 - validation
 - general system
 - trusted and untrusted sensors
 - warning value
 - warnings and great warnings
 - specific checks
 - Kirchhoff's Law
 - voltage within 10% of expected voltage
 - realistic physical value change

- Intrusion Detection System
 - validation
 - specific checks
 - voltage angle difference between two nodes not too big
 - check if all sensor values at a node are the same for voltage angle and voltage magnitude
 - + majority rule
 - + mistrust every sensor

- WebVis
 - switched from executable to Python script
 - added visualisation of attacks and RTU interventions

- WebVis
 - switched from executable to Python script
 - added visualisation of attacks and RTU interventions
- Hacker Tools
 - Hacker Tools CMD
 - simple command line shell
 - manipulate sensor data or change switch states
 - ► TCP communication with RTUs' servers and WebVis

- WebVis
 - switched from executable to Python script
 - added visualisation of attacks and RTU interventions
- Hacker Tools
 - Hacker Tools CMD
 - simple command line shell
 - manipulate sensor data or change switch states
 - TCP communication with RTUs' servers and WebVis
 - Hacker Tools Script Interpreter
 - automating attacks through scripts
 - self-developed script language

- Hacker Tools Script Interpreter
 - set and get for variables
 - ▶ if then else
 - for-loop
 - over a range of values
 - over an array
 - random-function
 - number in range
 - element from array
 - array length function
 - wait function (waits a given amount of seconds)

Westfälische Wilhelms-Universität

```
for i in 0 to 1000
for server in get listservers
connect server
for branch in get listbranches
set v get sensordata of getstate branch False
setsensor branch, v*1.01
wait 0.5
forEnd
forEnd
```



```
for i in 0 to 1000
     # choose random RTU
     connect random get listservers False
     # iterate through all branches
     for branch in get listbranches
       # per cent to modify sensordata
       set a random 25 300
       # get sensor value of current branch
       set v get sensordata of getstate branch False
       if random 0 1 > 0
10
         setsensor branch, v*(1+a/100)
11
  else
12
         setsensor branch, v*(a/100)
13
      i f End
14
15 wait 0.5
16 for End
   forEnd
17
```

- Operator Tools
 - simple GUI showing RTU attack warning messages
 - button to reset RTUs' trust-label

Attack Scenarios

- Deterministic attacks
 - easy to implement
 - predetermined sequence of commands

Attack Scenarios

- Deterministic attacks
 - easy to implement
 - predetermined sequence of commands
- Random attacks
 - no pattern
 - tries to circumvent pattern recognition

Attack Scenarios

- Deterministic attacks
 - easy to implement
 - predetermined sequence of commands
- Random attacks
 - no pattern
 - tries to circumvent pattern recognition
- ► Defence mechanism specialized attacks
 - Kirchhoff's Law
 - mimic natural gradients
 - and more

Attack to kill the IDS

Wilhelms-Universität

- lacktriangleright heavy attack ightarrow IDS declares all sensors as unsafe
- grid is not controlled any more
- can reach unsafe states on its own without the IDS noticing

- Evaluation
 - sensor value logging
 - specific and random attack
 - executed on topology 1

Specific attack

- Conclusion
 - Kirchhoff's Law is hard to trick
 - many false positives if a sensor on a node is attacked
 - consider majority rule for improvement
 - overall very accurate attack detection
 - low number of false positives

- Future Work
 - consider that current decreases in in the grid
 - more extensive command validation
 - take current readings of PVs and houses into account
 - testing if supplementary pattern based attack recognition would be useful
 - maybe add rules to restore the trust of a sensor
 - syntax error checks for script interpreter

Demonstration

Thank you for your attention! Any questions?