

Autonomous UAV Capstone Status Presentation I

1/c Domenico Bulone 1/c Cody Meyers

1/c Matthew Kim 1/c Jacob Schellman

1/c Gavin McGahey 1/c Ryan Von Brock

September 30th, 2021

Needs of the Service

- Mission Needs:
 - Conduct USCG Operations in innovative way
 - Only operational aerial vehicles are manned aircraft and ScanEagle Drone
 - No dedicated pilot
 - Extremely low cost
 - ScanEagle cost: \$3.2 Million
 - Our projected cost: less than \$1000
 - Cooperative solution
 - No entity of the Coast Guard is doing what we are.
 - Deployable from any CG Asset
- Concept of Operations:
 - Autonomous takeoff, flight, and landing
 - Image processing/target recognition
 - Capability for transporting small payload.
 - Communication between other drones/assets

The RoboBoat Competition

- RoboBoat is an international competition where an autonomous surface vessel performs navigating and docking tasks.
- Each ASV is allowed to cooperate with a UAV.
- Our role as the UAV:
 - Takeoff from and land on the ASV.
 - Locate and deliver a payload.
 - Fly desired search patterns.
 - Communicate findings with the ASV.

Initial Project Planning

- Create a fully-autonomous quadrotor
 - Build hardware
 - Simulate flight plan
 - Upload flight plan to hardware
 - Utilize computer vision for object detection
- Separation of tasks
- Adherence to Roboboat Competition Guidelines
- Satisfaction of stakeholders

Spring 2021 Debrief

- A simulated testing environment would optimize testing efficiency and mitigate risk.
 - Breaking hardware during testing causes substantial setbacks.
 - Real-world testing is a time intensive task.
 - Provides a seamless transition to real-world testing.
- Previous limitations:
 - The 10-meter accuracy of standard GPS is insufficient.
 - Software limited a simulated testing environment.
- Recommendations for future development:
 - Efficiency comparison of automated search patterns.
 - Computer vision-controlled flight.

Frameworks & Hardware We Plan to Use

- Hardware
 - Commercial
 - Real-time Kinematic Positioning
 - A subset of GPS Positioning
 - Proprietary
 - "Gripper" to facilitate transportation of "small" objects
- Frameworks
 - Gazebo Robot Simulation Made Easy
 - High-performance physics engine
 - · Allows for deterministic simulation and analysis of changes in a low-cost environment
 - Software-in-the-Loop (SIL) simulation platform
 - Interfaces with PX4 flight controller and simulates closely a world
 - GitHub Repositories
 - Allows for succinct documentation and an exact replica of timelines
 - OpenCV
 - Open-sourced computer vision and machine learning library.
 - Enables identification, modeling, and tracking of a variety of objects

Current Progress

- Flight Development Environment:
 - New software stack identified.
 - Chosen to facilite SITL simulation.
 - All software has been installed and is functioning.
- Computer Vision:
 - Live video
 - Color detection
 - Edge detection in stills
- Physical Drone Build
 - Accurate SolidWorks model

Projected Progress

- Drone to Software Interface
 - Configure autopilot parameters unique to the drone.
 - Gazebo and SolidWorks Implementation
 - Organization
 - Parts/3D Printing
 - Gripper Mechanism
- Computer vision
 - Edge detection in video
 - Shape detection
 - Run scripts on Raspberry Pi

Questions?

- Validate sufficient analysis and planning have been conducted to begin project and ensure resources, activities, schedules, and tools are allocated.
- Schedule and scope feasible?
- Project management plan with schedule, cost estimate
- Have you reviewed lessons learned from previous groups?
- Mission needs statement and conops
- Background research and technologies planned to leverage?
- Initial project plan
- Processes, rules, workflows using to deliver final project
- Clear vision of mission need and conops
- Stakeholders
- Plan to communicate with stakeholders
- Awareness of risks