El Movimiento de un Péndulo: Un Estudio Teórico y Experimental, con Comparación con el Movimiento Armónico Simple

Colegio San Jorge de Inglaterra

Undécimo B

María Alejandra Andrade Sánchez Juan Esteban Guzmán Garzón Jerónimo Rodríguez Garzón Belcar Santiago Cuentas-Zavala Infante María Juliana Medina Higuera Juliana Rubiano Cabrera

3 de febrero de 2025

Índice general

1	Rep	porte 2
	1.1	Introducción
	1.2	Marco teórico
	1.3	Formulación de hipótesis
	1.4	Diseño experimental
		1.4.1 Materiales necesarios
		1.4.2 Variables y constantes
	1.5	Procedimiento
		1.5.1 Variación de la longitud del cuerda
		1.5.2 Variación de la amplitud
		1.5.3 Variación de la masa
	1.6	Resultados
		1.6.1 Limitaciones
	1.7	Interpretación de los resultados
		1.7.1 Longitud y periodo
		1.7.2 Amplitud y periodo
		1.7.3 Masa y periodo
	1.8	Conclusiones
_	ъ.	
2	Dis	cusión de las preguntas orientadoras 12
3	Apé	éndice 16
	3.1	Introducción
	3.2	Marco teórico
		3.2.1 Periodo
		3.2.2 Frecuencia
		3.2.3 Velocidad
		3.2.4 Energía
		3.2.5 Funciones del tiempo
	3.3	Interpretación de los resultados
		3.3.1 Variación de la longitud
		3.3.2 Variación de la masa
		3.3.3 Variación de la amplitud
	3.4	Conclusiones

Capítulo 1

Reporte

Resumen The abstract has to have information about the mathematical modeling.

1.1 Introducción

En este informe de laboratorio, se buscó analizar el movimiento oscilatorio de un péndulo y las variables que influyen en su comportamiento. Esto se llevó a cabo midiendo el tiempo que tarda un péndulo en realizar diez oscilaciones, variando factores como la masa, la longitud de la cuerda y la amplitud del movimiento. Además, se pretende establecer relaciones matemáticas entre estas variables (masa, tiempo y longitud de la cuerda) y el periodo de oscilación del péndulo.

Algunas preguntas que guiaron la investigación son: ¿Cómo afecta la longitud de la cuerda al periodo de oscilación del péndulo? ¿Qué impacto tiene la masa colgante en el movimiento oscilatorio? ¿De qué manera influye la amplitud en la velocidad máxima del péndulo durante una oscilación?

1.2 Marco teórico

El objeto de nuestro estudio es un péndulo simple, compuesto por una masa suspendida al final de una cuerda. La cuerda se desplaza hasta una cierta amplitud o ángulo y luego se libera. La velocidad del objeto es un vector tangente a la trayectoria circular del péndulo y actúa en el eje x, definido paralelo a $mq \sin \alpha$ como es visible en la figura 1.1.

Figura 1.1: Diagrama de fuerzas del péndulo

Figura 1.2: Proyección del ángulo

La componente "tangencial" (u "horizontal" vista desde el marco de referencia establecido) del peso es la fuerza que genera el movimiento (velocidad tangencial) del péndulo, ya que es la única que actúa a lo largo de la trayectoria en la que se mueve. Si bien existe una componente vertical del peso, (denominada "componente radial") esta no influye en el movimiento del péndulo porque únicamente mantiene la tensión en la cuerda, pero no influencia la velocidad tangencial de la masa.

En un péndulo, la masa se encuentra en su punto más alto antes de ser liberada, donde tiene su máxima energía potencial gravitatoria. A medida que la masa comienza a descender, esa energía

potencial se convierte en energía cinética. Se asume que los efectos de la resistencia del aire y otras fuerzas externas son despreciables.

En el punto más bajo de la trayectoria, toda la energía potencial se ha transformado en cinética, lo que significa que la masa se mueve a su mayor velocidad.

La tensión de la cuerda debe equilibrar o contrarrestar la componente radial del peso para que la masa no caiga al suelo. Además, la tensión es la fuerza centrípeta que genera la trayectoria circular de la masa. Esta fuerza siempre va dirigida hacia el punto de suspensión: el punto desde donde se encuentra colgada la cuerda.

La velocidad angular ω se define como el ángulo recorrido por el objeto en un segundo, y se aproxima, cuando la amplitud α es pequeña, mediante la siguiente formula en términos de g, la aceleración gravitacional, y l, la longitud de la cuerda:

$$\omega \approx \sqrt{\frac{g}{l}}$$
 $\alpha < 15^{\circ}$ (1.1)

La frecuencia f es la cantidad de oscilaciones que ocurren por segundo, y se relaciona con la velocidad angular ω mediante la siguiente fórmula:

$$\omega = 2\pi f \tag{1.2}$$

El periodo T es el tiempo que tarda la masa en completar un ciclo, definido como un movimiento de ida y vuelta. Este se calcula mediante la siguiente ecuación:

$$T \approx 2\pi \sqrt{\frac{l}{g}}$$
 $\alpha \ll 15^{\circ}$ (1.3)

La demostración de la ecuación (1.3) se basa en una breve manipulación algebraica:

$$\omega = 2\pi f \approx \sqrt{\frac{g}{l}}$$
$$f \approx \frac{1}{2\pi} \sqrt{\frac{g}{l}}$$
$$T = \frac{1}{f} \approx 2\pi \sqrt{\frac{l}{g}}$$

Podemos concluir que el periodo es directamente proporcional a la raíz de la longitud de la cuerda, o, equivalentemente, que el cuadrado del periodo es proporcional a la longitud de la cuerda.

$$T \propto \sqrt{l}$$
 (1.4)

$$T^2 \propto l \tag{1.5}$$

Según esta ecuación, el periodo del péndulo no depende de la masa del objeto que cuelga: únicamente de la longitud de la cuerda y de la gravedad.

1.3 Formulación de hipótesis

- Se espera que exista una correlación positiva entre la longitud de la cuerda y el periodo.
- Se espera que la variación de la amplitud del péndulo no tenga un efecto significativo sobre el periodo.
- Se espera que la variación de la masa sea irrelevante al periodo de oscilación del péndulo.

1.4 Diseño experimental

Una varilla se fijó perpendicularmente a un soporte. Se ató un cuerda a la varilla, que a la vez se ató a una masa. El aparato se ilustra en la figura 1.3.

Figura 1.3: Diseño experimental

1.4.1 Materiales necesarios

Se necesitan:

- cuerda;
- un cronómetro;
- un soporte para el péndulo;
- pesas de $0.05\,\mathrm{kg},\,0.10\,\mathrm{kg},\,0.20\,\mathrm{kg},\,\mathrm{y}\,\,0.25\,\mathrm{kg};$
- una regla;
- un transportador;
- una balanza;
- y varillas.

1.4.2 Variables y constantes

Robby quiere tablas para cada uno de los tres experimentos.

Variación de la longitud de la cuerda

Se mantuvieron constantes algunas variables, como se indica en el cuadro 1.4.1. También se midieron y ajustaron sistemáticamente las variables como se indica en el cuadro 1.4.2.

Constante	Medición	Naturaleza	Unidad
Masa de la pesa	Directa	Cuantitativa	kg
Amplitud	Directa	Cuantitativa	0
Aceleración gravitacional	_	Cuantitativa	$\mathrm{m/s^2}$
Material de la cuerda		Cualitativa	_

Cuadro 1.4.1: Constantes experimentales

Variable	Medición	Dependencia	Naturaleza	Unidad
Longitud de la cuerda Masa Tiempo	Directa Directa	Independiente Dependiente Dependiente	Cuantitativa Cuantitativa Cuantitativa	m kg s

Cuadro 1.4.2: Caracterización de las variables

Variación de la amplitud

Se mantuvieron constantes algunas variables, como se indica en el cuadro 1.4.3. También se midieron y ajustaron sistemáticamente las variables como se indica en el cuadro 1.4.4.

Constante	Medición	Naturaleza	Unidad
Masa de la pesa	Directa	Cuantitativa	kg
Longitud de la cuerda	Directa	Cuantitativa	\mathbf{m}
Aceleración gravitacional	_	Cuantitativa	$\mathrm{m/s^2}$
Material de la cuerda		Cualitativa	_

Cuadro 1.4.3: Constantes experimentales

Variable	Medición	Dependencia	Naturaleza	Unidad
Amplitud	Directa	Independiente	Cuantitativa	0
Periodo	Directa	Dependiente	Cuantitativa	\mathbf{S}
Tiempo	Directa	Dependiente	Cuantitativa	\mathbf{S}

Cuadro 1.4.4: Caracterización de las variables

Variación de la masa

Se mantuvieron constantes algunas variables, como se indica en el cuadro 1.4.5. También se midieron y ajustaron sistemáticamente las variables como se indica en el cuadro 1.4.6.

Constante	Medición	Naturaleza	Unidad
Longitud de la cuerda	Directa	Cuantitativa	m
Amplitud	Directa	Cuantitativa	0
Aceleración gravitacional	_	Cuantitativa	$\rm m/s^2$
Material de la cuerda		Cualitativa	_

Cuadro 1.4.5: Constantes experimentales

Variable	Medición	Dependencia	Naturaleza	Unidad
Masa de la pesa	Directa	Independiente	Cuantitativa	kg
Periodo	Directa	Dependiente	Cuantitativa	S
Tiempo	Directa	Dependiente	Cuantitativa	\mathbf{s}

Cuadro 1.4.6: Caracterización de las variables

1.5 Procedimiento

En todos los casos, se calcularon promedios de los datos que se midieron más de una vez. El periodo de oscilación se aproximó dividiendo entre diez el tiempo promedio transcurrido en cada configuración experimental.

1.5.1 Variación de la longitud del cuerda

- 1. Se midió 1 m de cuerda con una regla.
- 2. Se ató una masa de 0.05 kg a la cuerda.
- 3. Se liberó la masa a una amplitud de 15 grados, medida con el transportador, y simultáneamente se inició el cronómetro.
- 4. Después de diez oscilaciones, se pausó el cronómetro y se registró el tiempo transcurrido.
- 5. Se repitieron los pasos 3 y 4 tres veces.
- 6. Se repitieron los pasos 1 a 5, utilizando longitudes de cuerda de $50\,\mathrm{cm}$, $30\,\mathrm{cm}$ y $15\,\mathrm{cm}$.

1.5.2 Variación de la amplitud

- 1. Se midieron 60 cm de cuerda con una regla.
- 2. Se ató una masa de $0.10\,\mathrm{kg}$ a la cuerda.
- 3. Se liberó la masa a una amplitud de 6 grados, medida con el transportador, y simultáneamente se inició el cronómetro.
- 4. Después de diez oscilaciones, se pausó el cronómetro y se registró el tiempo transcurrido.
- 5. Se repitieron los pasos 3 y 4 tres veces.
- 6. Se repitieron los pasos 1 a 5, utilizando amplitudes de 9, 12, 15 y 18 grados.

1.5.3 Variación de la masa

- 1. Se midieron 60 cm de cuerda con una regla.
- 2. Se ató una masa de $0.05\,\mathrm{kg}$ a la cuerda.
- 3. Se liberó la masa a una amplitud de 10 grados, medida con el transportador, y simultáneamente se inició el cronómetro.
- 4. Después de diez oscilaciones, se pausó el cronómetro y se registró el tiempo transcurrido.
- 5. Se repitieron los pasos 3 y 4 tres veces.
- 6. Se repitieron los pasos 1 a 5, utilizando masas de 0.10 kg, 0.15 kg, 0.20 kg y 0.25 kg.

1.6 Resultados

Longitud L (m)	Tiempo para 10 oscilaciones (s)			Tiempo promedio (s)	Periodo T (s)
	Medición 1 Medición 2 Medición 3				
0.15	9.56	9.68	9.71	9.65	0.965
0.30	12.39	12.69	12.98	12.68	1.269
0.50	15.32	15.65	15.66	15.54	1.554
1.00	20.78	20.76	20.91	20.82	2.082

Cuadro 1.6.1: Efecto de la longitud en el periodo

Amplitud θ (°)	Tiempo para 10 oscilaciones (s)			Tiempo promedio (s)	Periodo T (s)
	Medición 1	Medición 2	Medición 3		
6	16.39	16.56	16.76	16.57	1.657
9	16.41	16.95	16.69	16.68	1.668
12	17.01	16.80	17.09	16.97	1.697
15	16.57	16.72	17.00	16.76	1.676
18	16.41	16.53	16.72	16.55	1.655

Cuadro 1.6.2: Efecto de la amplitud en el periodo

Masa (kg)	Tiempo para 10 oscilaciones (s)			Tiempo promedio (s)	Periodo T (s)
	Medición 1	Medición 2	Medición 3		
0.05	16.52	16.5	16.78	16.60	1.660
0.10	16.53	16.68	17.09	16.76	1.677
0.15	16.68	16.70	17.00	16.79	1.679
0.20	16.68	16.71	16.95	16.78	1.678
0.25	16.91	16.77	16.74	16.81	1.681

Cuadro 1.6.3: Efecto de la masa en el periodo

1.6.1 Limitaciones

Durante el experimento, se tomaron múltiples mediciones bajo las mismas condiciones. Si el experimento hubiera estado libre de errores, estas mediciones serían iguales. Sin embargo, los errores humanos e inexactitudes inevitables resultan en una ligera variación. Algunas fuentes de error posibles incluyen:

- el efecto de rozamientos mínimos e imperceptibles sobre las oscilaciones del péndulo,
- longitudes mal medidas o inexactas,
- mediciones de tiempo inexactas¹
- y mediciones de ángulo inexactas o ángulos mal medidos.

¹Algunos cronómetros empiezan a contar unas décimas de segundo después o antes.

Se elaboraron los cuadros 1.6.4 a 1.6.6 para mostrar esta variación, que establece la existencia de errores e inexactitudes.

El porcentaje de error está dado por la fórmula:

$${\rm Error} = \frac{|T_{\rm prom} - T_{\rm medido}|}{T_{\rm prom}} \times 100$$
 Donde $T_{\rm prom}$ es el periodo promedio y $T_{\rm medido}$ es el periodo medido. (1.6)

Longitud L (m)	% de error para 10 oscilaciones			
	Med. 1	Med. 2	Med. 3	
0.15	0.93	0.31	0.62	
0.30	2.63	0.06	2.28	
0.50	1.42	0.71	0.77	
1.00	0.19	0.29	0.43	

Cuadro 1.6.4: Errores en la medición durante la variación de la longitud del cuerda

Masa m (kg)	% de err	% de error para 10 oscilaciones			
	Med. 1	Med. 2	Med. 3		
0.05	0.48	0.60	1.08		
0.10	1.43	0.54	1.91		
0.15	0.68	0.56	1.23		
0.20	0.60	0.42	1.01		
0.25	0.59	0.24	0.42		

Cuadro 1.6.5: Errores en la medición durante la variación de la masa de la pesa

Amplitud θ (°)	% de error para 10 oscilaciones			
	Med. 1	Med. 2	Med. 3	
6	1.09	0.06	1.15	
9	1.64	1.60	0.04	
12	1.79	0.31	1.73	
15	1.13	0.24	1.43	
18	0.85	0.12	1.03	

Cuadro 1.6.6: Errores en la medición durante la variación de la amplitud de liberación

Interpretación de los resultados

1.7.1Longitud y periodo

La gráfica 1.4 es consistente con una correlación positiva entre la longitud de la cuerda y el periodo del péndulo: a medida que la longitud aumenta, el periodo también lo hace. Sin embargo, los puntos no se ajustan exactamente a una relación lineal.

Figura 1.4: Longitud L (metros) contra periodo T (segundos)

Figura 1.5: Comparación entre el cuadrado del periodo T^2 (segundos cuadrados) y la longitud L (metros)

Según la teoría,² esto ocurre porque el periodo es proporcional a la raíz cuadrada de la longitud, no a la longitud directamente: la relación no es lineal. Por eso, en la gráfica 1.5, se representó el cuadrado del periodo frente a la longitud. En este caso, los puntos se ajustaron a una línea recta, demostrando la relación lineal entre el cuadrado del periodo y la longitud de la cuerda.

Se cree que lo anterior se debe a que, al aumentar la longitud de la cuerda, la trayectoria que el objeto recorre también aumenta. El objeto toma más tiempo en recorrer una distancia mayor, lo que provoca que el periodo (el tiempo para una oscilación completa) se alargue.

Modelado matemático

La relación que se observa en la gráfica 1.5 puede ser modelada mediante una regresión lineal. La ecuación resultante está dada dentro de la gráfica, y es la siguiente:

$$T^2 = 3.9696l + 0.3873 \tag{1.7}$$

 $^{^2}$ Vea la ecuación (1.5) en la página 2.

Esto permite predecir el periodo de un péndulo simple a partir de la longitud de su cuerda, de una forma consistente con la teoría.

La ecuación teórica (1.3) puede manipularse para obtener una forma similar a la ecuación de regresión:

$$T \approx 2\pi \sqrt{\frac{l}{g}}$$

$$T^2 \approx 4\pi^2 \frac{l}{g}$$

$$T^2 \approx \frac{4\pi^2}{9.81 \text{ m/s}^2} l$$

$$T^2 \approx 4.03 \text{ s}^2/\text{m} \cdot l$$

El coeficiente 4.03 de la ecuación teórica es muy cercano al 3.97 obtenido mediante la regresión lineal de los datos experimentales. Esta similitud entre la teoría y los resultados experimentales fortalece la validez de nuestras conclusiones.

La pequeña diferencia entre ambos valores puede atribuirse a varios factores experimentales, como la resistencia del aire, pequeñas imperfecciones en la medición del tiempo y la longitud, o ligeras desviaciones de la verticalidad en el montaje del péndulo. Lo mismo aplica para la presencia de un término independiente (0.3873) en la ecuación experimental, que también sugiere la existencia de errores sistemáticos en las mediciones.

1.7.2 Amplitud y periodo

Figura 1.6: Amplitud α (grados) contra periodo T (segundos)

La gráfica 1.6 muestra la relación entre la amplitud y el periodo. La variación entre los puntos es mínima. Al añadir una línea de tendencia, la ecuación resultante muestra una pendiente de 0.0002 s, lo que indica una variación insignificante en los datos. De manera similar, la gráfica refleja que el cambio en el periodo al aumentar la amplitud es muy pequeño.

La ausencia de una relación clara es consistente con la ecuación (1.3), la cual asocia el periodo únicamente con la aceleración gravitacional y la longitud de la cuerda.

Los resultados experimentales sugieren que el periodo de un péndulo simple es independiente de la amplitud de la oscilación. En la regresión lineal, se cree que el término independiente es consecuencia de los factores que se mantuvieron constantes durante el experimento, como la longitud de la cuerda y la aceleración gravitacional.

Energía potencial

Un análisis energético ofrece una posible explicación para los resultados observados. La diferencia de la energía potencial del objeto entre pequeñas amplitudes es mínima, lo que puede ayudar a explicar que la amplitud no afecte de manera significativa el tiempo que el objeto tarda en completar una oscilación.

Se asume que los efectos de la resistencia del aire y otras fuerzas externas son despreciables, por lo que se realiza el análisis basándose en la suposición de que toda la energía potencial gravitatoria se convierte en energía cinética.

Debido a que una mayor energía cinética implica una mayor velocidad máxima en la oscilación, podría esperarse un menor periodo oscilatorio, incluso a pesar de la mayor longitud del arco a través del que el movimiento ocurre cuando se aumenta la amplitud. Sin embargo, las diferencias en energía potencial gravitatoria durante el experimento son mínimas.

Se puede calcular la altura inicial h de una pesa que se ata a un hilo de longitud l y se libera con la amplitud α según la siguiente fórmula:

$$h = l(\sin (270^{\circ} + \alpha) - \sin 270^{\circ})$$

$$= l(\sin (270^{\circ} + \alpha) + 1)$$

$$= l(-\cos \alpha + 1)$$

$$= l(1 - \cos \alpha)$$
(1.8)

También se puede calcular la energía potencial gravitatoria de la pesa a partir de su masa m y su altura inicial h:

$$U = mgh (1.9)$$

Combinando ambas fórmulas, se puede estimar la energía potencial gravitatoria de la pesa al liberarse a las distintas amplitudes, como se ve en la figura 1.7.

Figura 1.7: Energía potencial (julios) de una masa de $0.5\,\mathrm{kg}$ liberada a un radio de $0.3\,\mathrm{m}$ contra amplitud de liberación α (grados)

Los cálculos muestran que la diferencia entre las energías cinéticas para variaciones en pequeños valores de amplitud es pequeña.

1.7.3 Masa y periodo

La gráfica 1.8 muestra la relación entre la masa y el periodo. En la gráfica, se observa que la variación entre los puntos es mínima. La línea de tendencia tiene la ecuación T=0.0043m+1.6621, donde el coeficiente $0.0043\,\mathrm{s/kg}$ representa el cambio en el periodo por cada kilogramo adicional de

Figura 1.8: Masa m (kilogramos) contra periodo T (segundos)

masa. Este valor es extremadamente pequeño, lo que indica que la masa tiene un efecto insignificante en el periodo.

El término independiente 1.6621 s representa el periodo base del péndulo, determinado principalmente por la longitud de la cuerda que se mantuvo constante durante esta parte del experimento. Las pequeñas desviaciones de los puntos respecto a la línea de tendencia podrían atribuirse a errores experimentales.

Según el análisis teórico, y como es discutido en la sección 2, el periodo es independiente de la masa. Esto también es consistente con la fórmula (1.3).

1.8 Conclusiones

Maybe we should redo this idk

El experimento permitió evaluar la validez de las hipótesis. En primer lugar, se planteó que existía una correlación positiva entre la longitud de la cuerda y la duración de las oscilaciones, lo cual fue confirmado. Esto se evidenció tanto en la gráfica de resultados, que mostró una pendiente que reflejaba dicha relación, como en la tendencia observada en los datos obtenidos. En segundo lugar, se planteó la hipótesis de que la variación de la masa es irrelevante para el período de oscilación del péndulo. Esta hipótesis fue comprobada mediante la gráfica de resultados, que mostró una pendiente muy mínima y cercana a 0, posiblemente debida a errores de medición y la influencia de factores como la resistencia al aire, lo que sugiere que no existe una relación significativa entre las dos variables. En tercer lugar, se hipotetizó que existe una correlación positiva entre la amplitud y la velocidad máxima del péndulo durante una oscilación. Sin embargo, dado a las pequeñas amplitudes que se tomaron para el experimento, y los resultados muy cercanos los unos a los otros, no se pudo establecer experimentalmente una relación directa entre ambas variables.

Capítulo 2

Discusión de las preguntas orientadoras

¿Qué sucede con la velocidad tangencial cuando aumenta la fuerza centrípeta?

La fuerza centrípeta en un movimiento circular se define por la siguiente formula:

$$F_c = \frac{mv^2}{r} \tag{2.1}$$

Podemos concluir que la fuerza centrípeta F_c y el cuadrado de la velocidad del objeto en movimiento v^2 son proporcionales. Una mayor fuerza centrípeta, entonces, implica una mayor velocidad, siempre y cuando otros factores como la masa y la longitud (radio) se mantengan iguales.

En el péndulo, la fuerza centrípeta asociada al movimiento circular proviene de la tensión de la cuerda. Sin embargo, la tensión en sí misma varía a lo largo de la trayectoria. En el punto más bajo del recorrido, la tensión es mayor porque no solo proporciona la fuerza necesaria para producir el movimiento circular, sino que también debe compensar totalmente el peso del péndulo, que en ese momento actúa en la dirección opuesta. Dado que la tensión es variable, la velocidad del péndulo también cambia. En el punto más bajo, tanto la tensión como la velocidad alcanzan sus máximos.

¿Cómo se puede aumentar la velocidad tangencial?

La velocidad máxima del péndulo ocurre cuando está en su punto más bajo y su energía gravitacional potencial se ha convertido totalmente en energía cinética.

La altura del péndulo relativa a su punto más bajo es descrita por la fórmula:

$$h = l(\cos(0) - \cos(\alpha))$$

= $l(1 - \cos(\alpha))$ (2.2)

Donde l se refiere a la longitud de la cuerda.

Por eso, sabemos que:

$$h \propto l$$
 (2.3)

Por otro lado, la velocidad del péndulo en su punto más bajo es dada por:

$$\frac{1}{2}mv^2 = mgh$$

$$v^2 = 2gh$$
(2.4)

$$v^2 = 2gh (2.5)$$

Sustituyendo h,

$$v^2 = 2gl(1 - \cos(\alpha)) \tag{2.6}$$

Podemos concluir que:

$$v^2 \propto l \tag{2.7}$$

También,

$$v^2 \propto 1 - \cos(\alpha) \tag{2.8}$$

En otras palabras, aumentar el ángulo $(0 \le \alpha \le 180^{\circ})$ o aumentar la longitud de la cuerda resulta en una mayor velocidad tangencial.

La masa no tiene ningún efecto. Durante la manipulación algebraica, la masa m se presenta como un factor en ambos lados de la ecuación, así que se obtienen fórmulas en términos de otras variables independientes.

¿Qué sucede con el periodo del péndulo si la cuerda encuentra un obstáculo?

En el sistema, la pesa se desplaza a lo largo de un arco cuyo origen se llama pivote. Cuando no hay un obstáculo que interrumpa la oscilación, el pivote no cambia y es el punto desde el que está fijada la cuerda.

Sin embargo, cuando la cuerda se encuentra con un obstáculo, el pivote se convierte en el punto donde ocurre el contacto. Eso significa que por una parte de la oscilación, la pesa sigue la trayectoria de un arco cuyo radio es menor. Una vez que el péndulo supera el obstáculo, se mueve otra vez desde su pivote original.

Figura 2.1: El sistema cuando la cuerda se encuentra con un objeto

Se asume que los efectos de la resistencia del aire y otras fuerzas externas son despreciables, por lo que no existe fuerza que disminuya la velocidad tangencial de la pesa además de la gravedad. Sin embargo, el recorrido total disminuye porque una parte del arco original es reemplazada por un arco más pequeño. De por sí, este hecho ofrece un fundamento fuerte para creer que un obstáculo disminuiría el periodo.

Por otro lado, la fórmula (1.3) de la página 2 indica que el periodo de un péndulo depende de la longitud de la cuerda y la gravedad. En particular, el periodo y la longitud de la cuerda tienen una correlación positiva.

La fórmula es válida para un cuerpo que se libera sin una velocidad inicial, pero es útil para nuestro análisis porque se cree que la velocidad otorgada a la pesa por su caída parcial hasta este punto tiene un efecto mínimo comparable al de la amplitud α .

Podemos afirmar con suficiente confianza que al reducirse la longitud efectiva de la cuerda, el periodo de la oscilación pequeña será mucho menor en comparación con el periodo que habría de no haber ningún obstáculo.

En otras palabras, durante el tiempo en el que la pesa oscila con una longitud de cuerda menor, recorrería una parte de la trayectoria más rápido. Al final, todo el movimiento es más rápido de lo que sería si no hubiera encontrado el obstáculo.

Por todo lo anterior, se concluye que el periodo disminuiría si la cuerda se encontrara con un obstáculo.

Suponga que el péndulo roza un líquido en cada oscilación. ¿Cómo se vería la gráfica del espacio contra el tiempo?

Figura 2.2: El comportamiento general esperado del movimiento

Descenso inicial: Al inicio, el péndulo parte de una altura determinada. Mientras baja hacia el punto más bajo de su trayectoria, donde x=0, su velocidad aumenta, lo que se refleja en una línea cada vez más empinada (una mayor pendiente) en la gráfica. La pendiente de la gráfica posición-tiempo equivale a la velocidad del péndulo.

En el punto más bajo x = 0 y al entrar en el líquido: Al llegar al punto más bajo y entrar en contacto con el líquido, la fricción comienza a actuar, reduciendo la velocidad. Esto genera una disminución de la pendiente en la gráfica, ya que la velocidad se reduce debido a la resistencia del líquido.

Ascenso posterior: Al subir después de pasar por el líquido, el péndulo pierde velocidad, ya que su energía cinética se convierte en energía potencial y, además, cabe mencionar que la fricción del líquido

ha reducido parte de su energía. La pendiente sigue disminuyendo hasta que, en el punto más alto de su trayectoria, la velocidad es cero, por lo que la pendiente también será cero. Sin embargo, debido a la pérdida de energía, la altura alcanzada en este punto es menor que la altura inicial, lo que se refleja en la gráfica con un valor menor que el de partida.

Nuevo descenso hacia el punto más bajo nuevamente: Al descender desde el nuevo punto más alto, que es menor al inicial, la velocidad del péndulo aumenta nuevamente. Esto se refleja en la gráfica como una pendiente creciente, ya que al moverse hacia el punto más bajo, la velocidad aumenta. Sin embargo, al pasar por el líquido nuevamente, la fricción hace que la velocidad disminuya, lo cual disminuye la pendiente de la gráfica. Al subir hacia el nuevo punto más alto, la energía cinética se vuelve a convertir en energía potencial, y la velocidad disminuye.

Debido a la fricción, el péndulo pierde energía en cada oscilación, por lo que la altura que alcanza es cada vez menor. Esto se refleja en la gráfica con una amplitud decreciente, ya que el péndulo no regresa al punto de partida original. Cada nuevo punto mínimo o máximo en la gráfica de posición-tiempo es más bajo que el anterior.

Capítulo 3

Apéndice

Adaptar al nuevo enfoque.

3.1 Introducción

Adaptar al nuevo enfoque.

3.2 Marco teórico

$$A = L\theta_{\text{max}} \tag{3.1}$$

El movimiento armónico simple es una oscilación en la que la fuerza restauradora es proporcional al desplazamiento. En el caso del péndulo, la fuerza restauradora es dada por:

$$F_r = -mg\sin\theta \tag{3.2}$$

Donde m es la masa del objeto, g es la aceleración gravitacional y θ es el ángulo de desplazamiento. Aunque la ecuación (3.2) no es lineal, es muy cercana a una para pequeñas amplitudes.

$$\sin \theta \approx \theta$$
 $\theta < 15^{\circ}$

Esto permite obtener una fórmula lineal que aproxima la fuerza restauradora:

$$F_r \approx -mg\theta \qquad \qquad \theta < 15^{\circ}$$
 (3.3)

Por eso, se espera que el péndulo se comporte como un movimiento armónico simple para pequeñas amplitudes, como las utilizadas aquí.

Comparando la ecuación (3.3) con la ecuación general de la fuerza restauradora en un movimiento armónico simple, la fuerza restauradora es aproximadamente:

$$F_r \approx -ks$$
 (3.4)

Donde:

- $k = \frac{mg}{l}$ y l es la longitud de la cuerda.
- $s = l\theta$, el desplazamiento a lo largo del arco. θ se mide en radianes.

El experimento se puede analizar a partir de esta simplificación porque se utilizaron únicamente ángulos menores a 15°, a excepción de la medida de 18°, durante la variación de la amplitud.

3.2.1 Periodo

El periodo de un objeto en movimiento armónico simple puede ser analizado a través de una comparación con el movimiento circular uniforme. En particular, se observa la proyección de un movimiento circular uniforme sobre el eje x.

En la figura 3.1, tanto la velocidad como la posición de la partícula en movimiento se describen con triángulos. Debido a que estos triángulos comparten, invariablemente, tanto el ángulo theta como un ángulo recto, ambos son similares. Este hecho se expresa en la ecuación (3.5).

$$\frac{v}{v_{\text{max}}} = \frac{\sqrt{A^2 - x^2}}{A}
v = v_{\text{max}} \sqrt{1 - \frac{x^2}{A^2}}$$
(3.5)

Figura 3.1: Vista de un movimiento circular uniforme desde arriba

Esta misma ecuación puede obtenerse a través de un análisis energético del movimiento armónico simple:

$$\frac{1}{2}mv^{2} + \frac{1}{2}kx^{2} = \frac{1}{2}kA^{2}$$

$$v^{2} = \frac{k}{m}(A^{2} - x^{2})$$

$$v^{2} = \frac{k}{m}A^{2}\left(1 - \frac{x^{2}}{A^{2}}\right)$$
(3.6)

La velocidad máxima se obtiene cuando x=0; es decir, en el punto de equilibrio. Por lo tanto,

$$\frac{1}{2}mv_{\text{max}}^2 + \frac{1}{2}k(0^2) = \frac{1}{2}kA^2$$

$$v_{\text{max}}^2 = \frac{k}{m}A^2$$
(3.7)

Se pueden combinar las ecuaciones (3.6) y (3.7), dando como resultado:

$$v^{2} = v_{\text{max}}^{2} \left(1 - \frac{x^{2}}{A^{2}} \right)$$

$$v = \pm v_{\text{max}} \sqrt{1 - \frac{x^{2}}{A^{2}}}$$
(3.8)

Debido a que la velocidad es igual en cada punto, la proyección en el eje x de un movimiento circular uniforme es idéntica a un movimiento armónico simple. Aquello permite obtener el periodo de un movimiento armónico simple, porque es igual al tiempo que tardaría en dar un ciclo una partícula en el movimiento circular uniforme correspondiente.

$$T = \frac{2\pi}{v_{\text{max}}}$$

$$T = 2\pi \sqrt{\frac{m}{k}} \quad \text{Ya que } v_{\text{max}} = \sqrt{\frac{k}{m}} A$$

$$T = 2\pi \sqrt{\frac{l}{g}} \quad \text{Ya que } k = \frac{mg}{l}$$

$$(3.9)$$

3.2.2 Frecuencia

En el péndulo simple, la frecuencia se refiere al número de veces que el péndulo completa un ciclo en un segundo. Es igual a $\frac{1}{T}$.

Combinando la fórmula del periodo según la aproximación basada en el movimiento armónico simple (3.9) en la ecuación de la frecuencia, se obtiene:

$$f = \frac{1}{2\pi} \sqrt{\frac{g}{l}} \tag{3.10}$$

3.2.3 Velocidad

Velocidad angular

La velocidad angular es el ángulo recorrido por un objeto por unidad de tiempo, y se mide en radianes por segundo.

$$\omega = \frac{\theta}{t} \tag{3.11}$$

También,

$$\omega = \frac{2\pi}{T} \tag{3.12}$$

Donde T es el periodo.

Velocidad máxima

Como se mencionó anteriormente, la velocidad máxima según la aproximación con el movimiento armónico simple está dada por:

$$v_{\text{max}} = \sqrt{\frac{k}{m}}A\tag{3.7}$$

La velocidad varía a lo largo de la oscilación. Es máxima en el punto de equilibrio, donde toda la energía potencial se convierte en energía cinética, y es cero en los extremos, donde la energía cinética se transforma en energía potencial. Dado que la velocidad es un vector, se asigna un signo positivo al movimiento hacia un lado (en este caso, hacia la derecha) y negativo hacia el lado opuesto (hacia la izquierda), considerando el punto de equilibrio como el origen.

3.2.4 Energía

Energía potencial

La energía potencial gravitacional del péndulo es máxima en los extremos de su movimiento, cuando alcanza su punto más alto, y mínima cuando se encuentra en el punto de equilibrio. Se define por la ecuación (3.13).

$$E_p = mgh (3.13)$$

Energía cinética

La energía cinética del péndulo es máxima en el punto de equilibrio, cuando el péndulo pasa por la vertical, y mínima en los extremos de su movimiento. Se define por la ecuación (3.14).

$$E_c = \frac{1}{2}mv^2 \tag{3.14}$$

Energía mecánica

La energía mecánica es la suma de la energía cinética y la energía potencial de un sistema. En el caso del péndulo, la energía mecánica se mantiene constante durante el movimiento, ya que la fricción es negligible y no hay pérdidas significativas de energía debido a fuerzas externas y no conservativas.

$$E_m = E_c + E_p$$

$$E_m = \frac{1}{2}mv^2 \tag{3.15}$$

3.2.5 Funciones del tiempo

Desplazamiento en función del tiempo

En la figura 3.1, se observa que:

$$x = A\cos\theta \tag{3.16}$$

Reescribiendo la ecuación (3.11), obtenemos que:

$$\theta = \omega t$$

Sustituyendo este valor en la ecuación (3.16), se obtiene:

$$s(t) = A\cos\left(\omega t\right) \tag{3.17}$$

Aquí, s(t) representa el desplazamiento del objeto en un movimiento armónico simple después de un tiempo t y donde A es la amplitud; es decir, el máximo desplazamiento del objeto.

Para obtener el ángulo recorrido por el objeto en un tiempo t, se puede escribir una nueva ecuación:

$$\theta(t) = \theta_{\text{max}}\cos(\omega t) \tag{3.18}$$

Velocidad en función del tiempo

Dado que la variación de s con respecto al tiempo t es la velocidad, la derivada de la ecuación de desplazamiento con respecto al tiempo (3.17) da la velocidad en función del tiempo. Esto se expresa como:

$$v(t) = \frac{d}{dt} [s(t)]$$

$$v(t) = \frac{d}{dt} [A\cos(\omega t)]$$

$$v(t) = -A\omega\sin(\omega t)$$
(3.19)

Aceleración en función del tiempo

Dado que la variación de la velocidad v con respecto al tiempo t es la aceleración, la derivada de la velocidad con respecto al tiempo da la aceleración en función del tiempo. Esto se expresa como:

$$a(t) = \frac{d^2}{dt^2} [s(t)]$$

$$a(t) = \frac{d}{dt} [v(t)]$$

$$a(t) = \frac{d}{dt} [-A\omega \sin(\omega t)]$$

$$a(t) = -A\omega^2 \cos(\omega t)$$
(3.20)

3.3 Interpretación de los resultados

3.3.1 Variación de la longitud

Véase la figura 3.2 en la página 6. En primer lugar, es importante señalar que cuando t=0, el valor de y (desplazamiento angular) para la curva roja $(0.30\,\mathrm{m})$ es mayor que el de la curva negra $(0.15\,\mathrm{m})$. Esto se debe a que, para la cuerda de mayor longitud, fue necesario desplazar la masa a una mayor distancia del punto de equilibrio para alcanzar el mismo ángulo inicial.

El periodo de oscilación de un péndulo depende de la longitud de su cuerda, lo que se refleja en la distancia entre crestas en la gráfica de distancia-tiempo. La curva negra, correspondiente a una cuerda de $0.15\,\mathrm{m}$, tiene un periodo más corto, evidenciado por una menor separación entre crestas sucesivas, lo que indica una oscilación más rápida. Esto ocurre porque la masa recorre una distancia horizontal más pequeña para alcanzar el mismo ángulo, permitiendo completar más oscilaciones en menos tiempo.

En contraste, la curva roja, asociada a una cuerda de 0.30 m, presenta una mayor separación entre crestas, lo que indica un periodo más largo y una oscilación más lenta. Esto se debe a que una cuerda más extensa requiere un mayor desplazamiento horizontal para alcanzar el mismo ángulo, aumentando el tiempo necesario para completar cada oscilación.

Para ilustrar esta tendencia, en la figura 3.3 se comparó la curva roja, correspondiente a una cuerda de $0.30\,\mathrm{m}$, con la curva de un péndulo de $0.50\,\mathrm{m}$. Posteriormente, en la figura 3.4, la curva de $0.50\,\mathrm{m}$ se graficó junto con la de un péndulo de $1.00\,\mathrm{m}$.

L (m)	T (s)	A (m)	$\omega \text{ (rad/s)}$	$V_{\rm max}$ (s)	s(t) (m)	v(t) (m/s)	$a(t) \text{ (m/s}^2)$
0.15	0.965	0.039	6.512	0.256	$0.039\cos(6.512t)$	$-0.256\sin(6.512t)$	$-1.665\cos(6.512t)$
0.30	1.269	0.079	4.953	0.389	$0.079\cos(4.953t)$	$-0.389\sin(4.953t)$	$-1.914\cos(4.953t)$
0.50	1.554	0.131	4.043	0.529	$0.131\cos(4.043t)$	$-0.529\sin(4.043t)$	$-2.140\cos(4.043t)$
1.00	2.082	0.262	3.019	0.790	$0.262\cos(3.019t)$	$-0.790\sin(3.019t)$	$-2.386\cos(3.019t)$

Cuadro 3.3.1: Valores esperados para varios parámetros del péndulo según el movimiento armónico simple y en función de la longitud y periodo (medidos)

Figura 3.2: Gráfica de distancia-tiempo para una longitud de cuerda de $0.15\,\mathrm{m}$ y $0.30\,\mathrm{m}$

Figura 3.3: Gráfica de distancia-tiempo para una longitud de cuerda de $0.30\,\mathrm{m}$ y $0.50\,\mathrm{m}$

Figura 3.4: Gráfica de distancia-tiempo para una longitud de cuerda de $0.30\,\mathrm{m}$ y $0.50\,\mathrm{m}$

Los resultados muestran que, a medida que la longitud de la cuerda aumenta, el periodo de oscilación también se incrementa, mientras que la frecuencia disminuye. Esto confirma la relación entre la longitud de la cuerda y el periodo: cuanto más larga es la cuerda, más tiempo requiere el péndulo para completar una oscilación.

Los periodos medidos y calculados coinciden

L (m)	$T_{\rm medido}$ (s)	T_{esperado} (s)	% de variación
0.15	0.965	0.965	24.18
0.30	1.269	1.269	15.44
0.50	1.554	1.554	9.56
1.00	2.082	2.082	3.75

Cuadro 3.3.2: Comparación entre los valores medidos y esperados para T según el movimiento armónico simple, con porcentajes de variación

Otra comparación relevante es entre el periodo medido en el experimento y el calculado mediante la fórmula del periodo para el movimiento armónico simple (fórmula TODO). En la tabla 3.3.2, así como la figura 3.5 se representan ambos valores en función de la longitud de la cuerda.

Se han incluido porcentajes de variación. Estos se calcular con la fórmula:

$$Variación = \frac{|T_{\rm m} - T_{\rm e}|}{T_{\rm o}} \times 100 \tag{3.21}$$

Donde T_e es el periodo esperado y T_m es el periodo medido.

Como se observa, los resultados experimentales y teóricos son muy similares, lo que se refleja en las pendientes de las curvas TODO y TODO, las cuales prácticamente coinciden. Esta correspondencia indica que la relación entre el periodo y la longitud de la cuerda siguen cercanamente al modelo teórico, lo cual demuestra el movimiento armónico del péndulo.

Comparación de la velocidad máxima

Habíamos establecido que la velocidad máxima de un objeto con movimiento armónico simple estaba dada por $v_{\rm max}=\frac{2\pi A}{T}$. Ahora, existe una fórmula separada de la velocidad máxima de un péndulo la cual se obtiene de la siguiente manera:

Figura 3.5: Periodo T medido y esperado para un movimiento armónico simple de las mismas características $\left(2\pi\sqrt{\frac{L}{g}}\right)$ en función de la longitud de la cuerda L

$$h_{\text{max}} = L(1 - \cos \theta_{\text{max}}) \tag{3.22}$$

$$E_{inicial} = E_{final} \tag{3.23}$$

$$mgL(1-\cos\theta_{\rm max}) = \frac{1}{2}mv_{\rm max}^2$$
(3.24)

Reemplazando h_{max} según la ecuación (3.22) en la ecuación de energía inicial, se obtiene:

$$mgL(1 - \cos\theta_{\text{max}}) = \frac{1}{2}mv_{\text{max}}^2$$
(3.25)

Despejando v_{max} , se obtiene:

$$v_{\text{max}} = \sqrt{2gL(1 - \cos\theta_{\text{max}})} \tag{3.26}$$

Se calcularon las velocidades máximas esperadas para cada longitud de cuerda utilizando la ecuación (3.26), y estas se compararon con las velocidades máximas obtenidas a partir del análisis de movimiento armónico simple, utilizando el periodo experimentalmente determinado. Como es evidente, el porcentaje de variación es mínimo, lo que demuestra que las mediciones experimentales coinciden de manera bastante precisa con los valores teóricos obtenidos, confirmando la validez del modelo de movimiento armónico simple para este sistema.

TODO: Hacer gráfica con 2 líneas de tendencia, una para cada columna, luego comparar las pendientes.

m (kg)	T (s)	A (m)	$\omega \text{ (rad/s)}$	$V_{\rm max}$ (s)	s(t) (m)	v(t) (m/s)	$a(t) \text{ (m/s}^2)$
0.05	1.66	0.10	3.78	0.39	$0.10\cos(3.78t)$	$-0.39\sin(3.78t)$	$-1.50\cos(3.78t)$
0.10	1.68	0.10	3.75	0.39	$0.10\cos(3.75t)$	$-0.39\sin(3.75t)$	$-1.50\cos(3.75t)$
0.15	1.68	0.10	3.74	0.39	$0.10\cos(3.74t)$	$-0.39\sin(3.74t)$	$-1.50\cos(3.74t)$
0.20	1.68	0.10	3.75	0.39	$0.10\cos(3.75t)$	$-0.39\sin(3.75t)$	$-1.50\cos(3.75t)$
0.25	1.68	0.10	3.74	0.39	$0.10\cos(3.74t)$	$-0.39\sin(3.74t)$	$-1.50\cos(3.74t)$

Cuadro 3.3.3: Valores esperados para varios parámetros del péndulo según el movimiento armónico simple y en función de la masa y periodo (medidos)

3.3.2 Variación de la masa

3.3.3 Variación de la amplitud

3.4 Conclusiones

Adaptar al nuevo enfoque.

Bibliografía

[1] Giancoli, D. C. (2014) Physics: Principles and Applications. Pearson Education, Inc.