

■ 정규분포(Normal Distribution)

[가우스 지폐: 유로화로 통합되기 전까지 통용됐던 독일 10마르크 지폐 앞면] 이미지 출처: http://www.econonews.co.kr/news/articleView.html?idxno=9589

$$f(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, \quad -\infty < x < \infty$$

Guassian distribution

• C. F. Guass

- 1809: 최소제곱법(method of least squares)의 개념 소개
- 위치모수의 추정값으로 산출평균이 적절함(오차의 정규법칙)을 보이는 과정에서 정규분포의 밀도함수 형태를 유도

• M. Laplace

○ 1774: 자료를 병합하는 문제 ⇒ Laplacian(이중지수) dist

$$\circ$$
 1782: $\int e^{-t^2} dt = \sqrt{\pi}$

○ 1810: 중심극한정리

 \bullet K. Pearson: normal 본격적으로 사용(표준편차 σ)

ullet μ 와 σ^2 에 따른 정규분포의 확률밀도 함수 \Rightarrow $X \sim N(\mu, \sigma^2)$

 \circ μ : 분포의 중심 ($-\infty < \mu < \infty$) \Rightarrow 평균 (=중앙값 = 최빈값)

 $\circ \sigma^2$: 퍼져있는 정도 ($\sigma^2 > 0$) \Rightarrow 분산

● 확률계산: P(a < X < b) =?

$$P(a < X < b) = \int_{a}^{b} f(x) dx = \int_{a}^{b} \frac{1}{\sqrt{2\pi} \sigma} e^{-\frac{1}{2\sigma^{2}}(x-\mu)^{2}} dx = ?$$

■ 표준정규분포(standard normal distribution)

• $\mu=0$ 이고 $\sigma^2=1$ 인 경우 \Rightarrow 0을 중심으로 대칭

$$f(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}, -\infty < x < \infty$$

- \circ 일반적으로 Z로 표시: $Z \sim N(0,1)$
- 확률계산:

$$P(a < X < b) = \int_{a}^{b} f(x) dx = \int_{a}^{b} \frac{1}{\sqrt{2\pi}} e^{-x^{2}/2} dx$$
 =?

- 수치해석학적으로계산
- ○표로 제시

\circ 표준정규분포표 $P(Z \le z)$: $P(Z \le 1.32)$

	0.00	0.01	0.02	0.03	0.04	0.05	0.06	
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	***
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	
÷	:	:	:	:	:	:	÷	:
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	
1.3 -	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	• • •
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	
÷		:	:	:	÷	÷	:	:

- 표준정규분포의 확률계산 문제
 - ○그림과 0을 중심으로 대칭이라는 사실을 이용

$$P(Z \le a)$$
, $P(Z > a)$, $P(a < Z \le b)$,

- \circ 주요형태: $P(|Z| \le a)$, $P(|Z| \ge a)$
- Z~ N(0,1) 이 면

o $P(Z \le 1.37) = 0.9147$

$$P(0.5 < Z \le 1.2)$$

 $P(Z \le 0.5) = 0.6915$, $P(Z \le 1.2) = 0.8849$

 $P(Z \le 1.96) = 0.9750$

ullet α 가 주어지고 $P(Z>z)=\alpha$ 를 만족하는 z(분위수)를 계산

- \circ P(Z < z) = 0.975를 만족시키는 z는?
- $_{\circ}$ P(-z < Z < z) = 0.90를 만족시키는 z는?