

we cant use omega that alreayd represents the real line givemn that L2(Omega) is useds...

Correct—you have a notation conflict. If Ω already denotes the frequency domain (the real line) in your spectral representation, you cannot use the same symbol for the probability sample space.

Recommended Alternative Notations

Option 1: Use a Different Sample Space Symbol

Replace the probability space $(\Omega, \mathcal{F}, \mathbb{P})$ with one of these standard alternatives:

1a. Using S (common in statistics):

- Probability space: $(S, \mathcal{F}, \mathbb{P})$
- ullet Sample points: $s\in S$
- Notation: Z(t,s) and $\Phi(\lambda,s)$

1b. Using Ξ (xi—very common in probability when Ω is taken):

- Probability space: $(\Xi, \mathcal{F}, \mathbb{P})$
- Sample points: $\xi \in \Xi$
- Notation: $Z(t,\xi)$ and $\Phi(\lambda,\xi)$

1c. Using P (for "path space"):

- Probability space: $(P,\mathcal{F},\mathbb{P})$
- Sample points: $p \in P$
- Notation: Z(t,p) and $\Phi(\lambda,p)$

Option 2: Use Subscripts to Distinguish

Keep Ω for both but distinguish via subscripts:

- Sample space: $\Omega_{
 m prob}$ with elements $\omega \in \Omega_{
 m prob}$
- Frequency domain: Ω_{freq} (but if this is just $\mathbb R$, write $\mathbb R$ explicitly)

Recommended Choice

Use Ξ for the sample space (Option 1b). This is standard in advanced probability theory when Ω is unavailable. Your notation statement would be:

Notation: Throughout this section, Z(t) and $\Phi(\lambda)$ denote the stochastic process $Z(t,\xi)$ and the random measure $\Phi(\lambda,\xi)$, respectively, where $\xi\in\Xi$ indexes sample paths in the underlying probability space $(\Xi,\mathcal{F},\mathbb{P})$. For each fixed $\xi\in\Xi$, the mapping $t\mapsto Z(t,\xi)$ is a sample path, and $\lambda\mapsto\Phi(\lambda,\xi)$ is a realization of the random measure. Different sample paths may share the same covariance structure, while each ξ determines a unique measure realization.

This avoids confusion since Ω remains free for your spectral/frequency domain, and Ξ is recognized notation for sample spaces in probability theory.

- 1. https://xlinux.nist.gov/dads/HTML/omegaCapital.html
- 2. https://www.tandfonline.com/doi/full/10.1080/10511970.2022.2048930
- 3. https://journals.eanso.org/index.php/ijar/article/view/774
- 4. https://link.springer.com/10.1007/978-3-642-45182-9
- 5. https://www.jstage.jst.go.jp/article/ipsjtcva/6/0/6_132/_article
- 6. https://www.semanticscholar.org/paper/e513d14d9128d4f4b51a074333c954d03312cd2c
- 7. http://www.tandfonline.com/doi/abs/10.1207/S1532690XCI2003_3
- 8. https://www.semanticscholar.org/paper/1fc53f43404c325bb1b0d9eb9cfd12d85ebbcd04
- 9. https://www.semanticscholar.org/paper/52353198cd2486e39242a53c5f7220e67462dc1f
- 10. https://arxiv.org/pdf/1509.04547.pdf
- 11. https://arxiv.org/pdf/1909.11618.pdf
- 12. https://www.khanacademy.org/computing/computer-science/algorithms/asymptotic-notation/a/big-big-omega-notation
- 13. http://arxiv.org/pdf/2311.00006.pdf
- 14. https://arxiv.org/abs/2404.17250
- 15. https://arxiv.org/pdf/2501.08762.pdf
- 16. http://arxiv.org/pdf/2305.07658.pdf
- 17. https://arxiv.org/pdf/2312.15488.pdf
- 18. http://arxiv.org/pdf/2110.05191.pdf
- 19. https://www.reddit.com/r/algorithms/comments/13rcitf/confused_about_bigoh_theta_and_omega_notations/
- 20. https://en.wikipedia.org/wiki/Big_O_notation
- 21. https://www.geeksforgeeks.org/dsa/analysis-of-algorithms-big-omega-notation/
- 22. https://www.youtube.com/watch?v=A03ol0znAoc
- 23. https://mathvault.ca/hub/higher-math/math-symbols/calculus-analysis-symbols/
- 24. https://link.springer.com/10.1007/978-3-031-64892-2_5

25. https://ems.press/doi/10.4171/owr/2024/24