EXAMEN STATISTIQUE - 1MF2E

Lundi 4 Avril 2022 - 8h00-9h45

Partiel sans document (Une feuille A4 recto-verso autorisée)

Exercice 1 : Estimation (11 points)

Un ensemble de n votants s'exprime pour 3 candidats dont deux d'entre eux ont la même probabilité θ d'être élus. La vraisemblance associée à ce modèle statistique est définie par une loi multinomiale d'expression $L(n_1,n_2,n_3;\theta)=P[N_1=n_1,N_2=n_2,N_3=n_3]=\frac{n!}{n_1!n_2!n_3!}p_1^{n_1}p_2^{n_2}p_3^{n_3}$ où N_i est la variable aléatoire associée au nombre de voix obtenues pour le ième candidat (avec $n_1+n_2+n_3=n$) et $\boldsymbol{p}=(p_1,p_2,p_3)=(\theta,\theta,1-2\theta)$ regroupe les probabilités que chaque candidat reçoive une voix, qui dépend d'un unique paramètre inconnu $\theta\in]0,1/2[$. On admettra que pour un tel modèle statistique, la loi marginale de N_i est une loi binomiale $B(n,p_i)$ de moyenne $E[N_i]=np_i$ et de variance $\operatorname{var}(N_i)=np_i(1-p_i)$.

- 1. (2pts) Déterminer l'estimateur du maximum de vraisemblance du paramètre θ noté $\widehat{\theta}_{\text{MV}}$ en utilisant la vraisemblance $L(n_1,n_2,n_3;\theta)$ et montrer qu'il ne dépend que de n et de N_3 (on prendra soin de vérifier que cette vraisemblance admet un unique maximum global).
- 2. (2pts) Déterminer la moyenne et la variance de l'estimateur $\widehat{\theta}_{MV}$. Est-il un estimateur sans biais et convergent du paramètre θ ?
- 3. (2pts) L'estimateur $\hat{\theta}_{MV}$ est-il l'estimateur efficace du paramètre θ ?
- 4. (5pts) On suppose maintenant qu'on dispose d'une information a priori sur le paramètre θ résumée dans la loi a priori $p(\theta)$ définie par une loi Beta à trois paramètres notée $\mathcal{B}(\alpha, \beta, \gamma)$ de densité

$$\pi(\theta) = \frac{\theta^{\alpha - 1} (\gamma - \theta)^{\beta - 1}}{\gamma^{\alpha + \beta - 1} \mathbf{B}(\alpha, \beta)} \mathcal{I}_{]0, \gamma[}(\theta)$$

avec $\gamma=\frac{1}{2}$, $\mathbf{B}(\alpha,\beta)=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}$ et où $\mathcal{I}_{]0,\gamma[}$ est la fonction indicatrice sur $]0,\gamma[$ ($\mathcal{I}_{]0,\gamma[}(x)=1$ si $x\in]0,\gamma[$ et $\mathcal{I}_{]0,\gamma[}(x)=0$ sinon). On admettra qu'une telle loi est de moyenne $\frac{\alpha\gamma}{\alpha+\beta}$ et de variance $\frac{\gamma^2\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta-1)}$.

- La loi a priori de θ est de support]0, 1/2[. Pourquoi ne peut-on pas avoir $\theta > 1/2$?
- Déterminer l'estimateur MAP de θ obtenu à l'aide de la vraisemblance $L(n_1,n_2,n_3;\theta)$ et de la loi a priori $\pi(\theta)$ noté $\widehat{\theta}_{MAP}$.
- Expliquer le comportement de $\widehat{\theta}_{MAP}$ lorsque n_1, n_2 et n_3 tendent vers $+\infty$.
- Montrer que la loi a posteriori de $\theta|n_1, n_2, n_3$ est une loi beta à trois paramètres (on déterminera ces trois paramètres). En déduire l'estimateur de la moyenne a posteriori du paramètre θ noté $\widehat{\theta}_{\text{MMSE}}$.

Exercice 2 : Test Statistique (10 points)

On considère un triplet de variables aléatoires (N_1,N_2,N_3) de loi multinomiale définie par $P[N_1=n_1,N_2=n_2,N_3=n_3]=\frac{n!}{n_1!n_2!n_3!}p_1^{n_1}p_2^{n_2}p_3^{n_3}$ avec $n_1+n_2+n_3=n$ et ${\bf p}=(p_1,p_2,p_3)=(\theta,\theta,1-2\theta)$. On admettra que pour un tel modèle statistique, la loi marginale de N_i est une loi binomiale $B(n,p_i)$ de moyenne $E[N_i]=np_i$ et de variance ${\rm var}(N_i)=np_i(1-p_i)$. On veut à l'aide de l'observation de (N_1,N_2,N_3) tester les deux hypothèses suivantes

$$H_0: \theta = \theta_0$$
 contre $H_1: \theta = \theta_1$ avec $\theta_1 > \theta_0$.

- 1. (2pts) À l'aide du théorème de Neyman-Pearson, montrer que la statistique du test le plus puissant est $T_n = N_3$ (on n'oubliera pas que $N_1 + N_2 + N_3 = n$)) et indiquer la région critique de ce test.
- 2. (1pt) En utilisant le théorème central limite, déterminer la loi asymptotique de T_n sous les deux hypothèses.
- 3. (2pts) En utilisant la loi asymptotique de la question précédente, déterminer les risques de première et seconde espèce α et β du test en fonction des paramètres θ_0 et θ_1 et de la fonction de répartition d'une loi normale $\mathcal{N}(0,1)$ notée F.
- 4. (2pts) Déterminer les courbes COR associées à ce test et tracer l'allure de ces courbes pour différentes valeurs de n.
- 5. (3pts) On désire à partir d'un ensemble de K=10 observations de N_1 notées $(n_{11},...,n_{1K})$ et données dans le tableau ci-dessous déterminer s'il est raisonnable de supposer que N_1 suit une loi binomiale $B(K,\theta)$.

- Expliquer pourquoi on est amené à choisir $\theta = 0.2$ pour effectuer ce test.
- Les probabilités associées à une loi binomiale $B(K,\theta)$ avec $\theta=0.2$ et K=10 sont données dans le tableau ci-dessous

p_0	p_1	p_2	p_3	p_4	$\sum_{k=5}^{10} p_k$
0.11	0.27	0.30	0.20	0.09	0.03

On décide de faire un test du χ^2 avec 3 classes notées C_1 , C_2 et C_3 . Justifier le choix suivant pour ces trois classes : $C_1 = \{0,1\}$, $C_2 = \{2\}$ et $C_1 = \{3,...,10\}$.

- Exprimer la statistique de ce test notée ϕ en fonction des données du problème (sans chercher à la calculer) et préciser la région critique.
- Quelle est la loi asymptotique de ϕ ?
- Les seuils obtenus pour $\alpha = 0.05$ et $\alpha = 0.01$ sont $S_{0.05} = 5.99$ et $S_{0.01} = 9.21$. Expliquer pourquoi $S_{0.05} < S_{0.01}$.

LOIS DE PROBABILITÉ CONTINUES \mathbf{m} : moyenne σ^2 : variance F. C. : fonction caractéristique

LOI	Densité de probabilité	m	σ^2	F. C.
Uniforme	$f(x) = \frac{1}{b-a}$ $x \in]a, b[$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	$\frac{e^{itb} - e^{ita}}{it(b-a)}$
Gamma $\mathcal{G}\left(u, heta ight)$	$f\left(x\right) = \frac{\theta^{\nu}}{\Gamma(\nu)} e^{-\theta x} x^{\nu - 1}$ $\theta > 0, \ \nu > 0$ $x \ge 0$ $\operatorname{avec} \Gamma(n + 1) = n! \ \forall n \in \mathbb{N}$	$\frac{ u}{ heta}$	$\frac{ u}{ heta^2}$	$\frac{1}{\left(1-i\frac{t}{\theta}\right)^{\nu}}$
Inverse gamma $\mathcal{IG}(u, heta)$	$f(x) = \frac{\theta^{\nu}}{\Gamma(\nu)} e^{-\frac{\theta}{x}} \frac{1}{x^{\nu+1}}$ $\theta > 0, \ \nu > 0$ $x \ge 0$ $\operatorname{avec} \Gamma(n+1) = n! \ \forall n \in \mathbb{N}$	$\frac{\theta}{\nu - 1} \text{ si } \nu > 1$	$\frac{\theta^2}{(\nu-1)^2(\nu-2)} \text{ si } \nu > 2$	(*)
Première loi de Laplace	$f(x) = \frac{1}{2}e^{- x }, x \in \mathbb{R}$	0	2	$\frac{1}{1+t^2}$
Normale univariée $\mathcal{N}\left(m,\sigma^2 ight)$	$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-m)^2}{2\sigma^2}}, x \in \mathbb{R}$	m	σ^2	$e^{imt-rac{\sigma^2t^2}{2}}$
Normale multivariée $\mathcal{N}_p\left(oldsymbol{m},oldsymbol{\Sigma} ight)$	$f(x) = Ke^{-\frac{1}{2}(x-m)^T \Sigma^{-1}(x-m)}$ $K = \frac{1}{\sqrt{(2\pi)^p \det(\Sigma)}}$ $x \in \mathbb{R}^p$	m	Σ	$e^{ioldsymbol{u}^Toldsymbol{m}-rac{1}{2}oldsymbol{u}^Toldsymbol{\Sigma}oldsymbol{u}}$
Khi $_2$ χ^2_{ν} $\Gamma\left(\frac{1}{2},\frac{\nu}{2}\right)$	$f(x) = ke^{-\frac{x}{2}}x^{\frac{\nu}{2}-1}$ $k = \frac{1}{2^{\frac{\nu}{2}}\Gamma(\frac{\nu}{2})}$ $\nu \in \mathbb{N}^*, \ x \ge 0$	ν	2ν	$\frac{1}{(1-2it)^{\frac{\nu}{2}}}$
Cauchy $c_{\lambda,lpha}$	$f(x) = \frac{1}{\pi \lambda \left(1 + \left(\frac{x - \alpha}{\lambda}\right)^2\right)}$ $\lambda > 0, \ \alpha \in \mathbb{R}$	(-)	(-)	$e^{i lpha t - \lambda t }$
Beta $B(a,b)$	$f(x) = kx^{a-1} (1-x)^{b-1}$ $k = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)}$ $a > 0, \ b > 0$ $x \in]0,1[$ $\operatorname{avec} \Gamma(n+1) = n! \ \forall n \in \mathbb{N}$	$\frac{a}{a+b}$	$\frac{ab}{\left(a+b\right)^2\left(a+b+1\right)}$	(*)

LOIS DE PROBABILITÉ DISCRÈTES

m: moyenne σ^2 : variance **F. C.:** fonction caractéristique $p_k = P[X = k]$ $p_{1,...,m} = P[X_1 = k_1,...,X_m = k_m]$

LOI	Probabilités	m	σ^2	F. C.
Uniforme	$p_k = \frac{1}{n}$ $k \in \{1,, n\}$	$\frac{n+1}{2}$	$\frac{n^2-1}{12}$	$\frac{e^{it}\left(1 - e^{itn}\right)}{n\left(1 - e^{it}\right)}$
Bernoulli	$p_1 = P[X = 1] = p$ $p_0 = P[X = 0] = q$ $p \in [0, 1]$ $q = 1 - p$	p	pq	$pe^{it} + q$
Binomiale $B(n,p)$	$p_{k} = C_{n}^{k} p^{k} q^{n-k}$ $p \in [0, 1] q = 1 - p$ $k \in \{0, 1,, n\}$	np	npq	$(pe^{it}+q)^n$
Binomiale négative	$p_k = C_{n+k-1}^{n-1} p^n q^k$ $p \in [0,1] q = 1 - p$ $k \in \mathbb{N}$	$n\frac{q}{p}$	$nrac{q}{p^2}$	$\left(\frac{p}{1 - qe^{it}}\right)^n$
Multinomiale	$p_{1,,m} = \frac{n!}{k_1!k_m!} p_1^{k_1} p_m^{k_m}$ $p_j \in [0,1] q_j = 1 - p_j$ $k_j \in \{0,1,,n\}$ $\sum_{j=1}^m k_j = n \sum_{j=1}^m p_j = 1$	np_j	Variance : np_jq_j Covariance : $-np_jp_k$	$\left(\sum_{j=1}^{m} p_j e^{it}\right)^n$
Poisson $P\left(\lambda\right)$	$\sum_{j=1}^{m} k_j = n \sum_{j=1}^{m} p_j = 1$ $p_k = e^{-\lambda} \frac{\lambda^k}{k!}$ $\lambda > 0 k \in \mathbb{N}$	λ	λ	$\exp\left[\lambda\left(e^{it}-1\right)\right]$
Géométrique	$p_k = pq^{k-1}$ $p \in [0,1] q = 1 - p$ $k \in \mathbb{N}^*$	$\frac{1}{p}$	$rac{q}{p^2}$	$\frac{pe^{it}}{1 - qe^{it}}$