Série 12

Here and throughout, by reflection we mean symmetry.

Exercice 1. 1. Calculer les parametres complexes des symetries axiales, R_1 et R_2 par rapport aux droites d'equation

$$3x + 4y = 2$$
, $-2x + 5y = 3$.

2. A quoi est egale la composee

$$R_1 \circ R_2$$
?

quels sont ses parametres complexes?

3. Meme question pour les droites

$$3x + 4y = 2$$
, $6x + 8y = 6$.

Solutions:

I. Find reflection matrices: Suppose l is a line defined by ax + by = d with $b \neq 0$ (if b = 0 and $a \neq 0$, one can proceed in the same way). Assume that R is the reflection through the line l. This implies that R can be written as

$$R(\mathbf{x}) = A \cdot \mathbf{x} + v, \ \mathbf{x} = (x, y).$$

We now present two **correct** ways to find the matrix A.

1. Since l is defined by ax + by = d, we have the direction vector u of l is $\lambda(P_2 - P_1)$ for some $\lambda \in \mathbb{R}$ and P_1, P_2 are distinct points on l. Here we can choose λ such that u is of good form. For instance, let $P_1 = (0, d/b)$ and $P_2 = (1, (d-a)/b)$, then we have $P_2 - P_1 = (1, -a/b)$. Therefore, we can choose $\lambda = b$, and as a result, we obtain u = (b, -a).

Let v be a perpendicular vector of u, for example, we can choose v = (a, b).

In Serie 9, we have learned that the reflection through the line ax + by = 0 can be presented as follows:

$$Sym_u \colon w = (x,y) \to w - 2 \frac{\langle w, v \rangle}{\langle v, v \rangle} \cdot v.$$

The map Sym_u can be understood as the linear part of the reflection R. So the matrix of R and Sym_u are the same. Since $\langle w, v \rangle = ax + by$ and $\langle v, v \rangle = a^2 + b^2$, we have

$$Sym_u(w) = \begin{pmatrix} \frac{x(b^2 - a^2) - 2aby}{a^2 + b^2} \\ \frac{(a^2 - b^2)y - 2abx}{a^2 + b^2} \end{pmatrix}$$

On the other hand, we know that $Sym_u(w) = Aw$. This implies that

$$A = \begin{pmatrix} \frac{b^2 - a^2}{a^2 + b^2} & \frac{-2ab}{a^2 + b^2} \\ \frac{-2ab}{a^2 + b^2} & \frac{a^2 - b^2}{a^2 + b^2} \end{pmatrix}$$

2. The second way is very short and practical. We know that the matrix A of R is of the form

$$A = \begin{pmatrix} c & s \\ s & -c \end{pmatrix}, \ c^2 + s^2 = 1.$$

To find c and s, we solve the following system Av = -v with v = (a, b). This is a system of two equations and two variables. After some calculations, we archive

$$c = \frac{b^2 - a^2}{a^2 + b^2}, \ s = \frac{-2ab}{a^2 + b^2}.$$

To find v, let P be an arbitrary point on l. Then we have R(P) = P = AP + v. This implies that

$$v = P - AP$$
.

Applications:

1. If l is of the form 3x + 4y = 2. Then we have

$$A = \begin{pmatrix} 7/25 & -24/25 \\ -24/25 & -7/25 \end{pmatrix}.$$

Let $P=(2,-1)\in l$, we have $v=P-A\cdot P=(12/25,16/25).$ I other words,

$$R_1(\mathbf{x}) = \begin{pmatrix} 7/25 & -24/25 \\ -24/25 & -7/25 \end{pmatrix} \cdot \mathbf{x} + \begin{pmatrix} 12/25 \\ 16/25 \end{pmatrix}.$$

2. If l is of the form -2x + 5y = 3, by using the same way, we have

$$R_2(\mathbf{x}) = \begin{pmatrix} 21/29 & 20/29 \\ 20/29 & -21/29 \end{pmatrix} \cdot \mathbf{x} + \begin{pmatrix} -12/29 \\ 30/29 \end{pmatrix}.$$

II. Find $R_1 \circ R_2$: We have $R_1(\mathbf{x}) = A_1 \cdot \mathbf{x} + v_1$ and $R_2(\mathbf{x}) = A_2 \cdot \mathbf{x} + v_2$. This implies that

$$R_1 \circ R_2(\mathbf{x}) = R_1(R_2(\mathbf{x})) = R_1(A_2\mathbf{x} + v_2) = A_1 \cdot (A_2\mathbf{x} + v_2) + v_1 = A_1A_2\mathbf{x} + (A_1v_2 + v_1).$$

Hence,

$$R_1 \circ R_2(\mathbf{x}) = \begin{pmatrix} -333/725 & 644/725 \\ -644/725 & -333/725 \end{pmatrix} \cdot \mathbf{x} + \begin{pmatrix} -456/725 \\ 542/725 \end{pmatrix}.$$

III. Find complex parameters : Suppose that we have an isometry of the following form

$$R(x,y) = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}$$

Case 1: If R is a reflection, then from the following system

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} c & -s \\ -s & -c \end{pmatrix}$$

we get c = a and s = -b.

This implies that R can be presented in complex parameters as follows:

$$R = \overline{\rho z} + v,$$

where $\rho = a + i(-b)$ and z = x + iy and $v = v_1 + iv_2$.

Case 2: If R is a rotation, then from the following system

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} c & -s \\ s & c \end{pmatrix}$$

we get c = a and s = c.

This implies that R can be presented in complex parameters as follows:

$$R = \rho z + v$$
,

where $\rho = a + ic$ and z = x + iy and $v = v_1 + iv_2$.

Applications: For this exercise, we apply for the case of rotations, i.e. c = -333/725, s = -644/725, $(v_1, v_2) = (-456/725, 542/725)$. In short,

$$R_1 \circ R_2(\mathbf{x}) = \rho z + v,$$

where $\rho = \frac{-333}{725} + i \frac{-644}{725}$, z = x + iy and $v = \frac{-456}{725} + i \frac{542}{725}$.

Exercise 3 : Soit φ une isometrie et

$$Fix(\varphi) = \{ P \in \mathbb{R}^2, \ \varphi(P) = P \}$$

l'ensemble des points fixe de ϕ . Plus generalement pour $\Phi \subset \text{Isom}(\mathbb{R}^2)$ un ensemble quelconque d'isometries, soit

$$Fix(\Phi) = \{ P \in \mathbb{R}^2, \ \forall \varphi \in \Phi, \ \varphi(P) = P \}$$

l'ensemble des points fixes de Φ .

- 1. Soit ψ une autre isometrie, et $\varphi' = \operatorname{Ad}(\psi)(\varphi) = \psi \circ \varphi \circ \psi^{-1}$ l'isometrie conjuguee; que vaut $\operatorname{Fix}(\varphi')$ en fonction de $\operatorname{Fix}(\varphi)$. Meme question pour $\operatorname{Ad}(\psi)(\Phi)$.
- 2. Montrer (sans calcul) que le conjugue d'une symetrie axiale par une isometrie est une symetrie axiale; meme question pour une symetrie glisssseeeee.
- 3. Montrer que toute droite (affine) peut etre envoyee sur toute autre droite par une rotation (affine). En deduire que toute symetrie axiale est conjuguee a la symetrie lineaire s_1 .
- 4. Etant donne $s_{\beta,\nu}$ un symetrie axiale ou glissee donner une condition necessaire et suffisante sur (β,ν) pour que $s_{\beta,\nu}$ soit conjuguee a s_1 par un rotation; quand c'est le cas quels sont les parametres de cette rotation et retrouver ainsi les formules qui donne l'axe d'une symetrie axiale en fonction de (β,ν) .

Solution:

1. We have

$$\operatorname{Fix}(\varphi') = \{ P \in \mathbb{R}^2, \ \varphi'(P) = P \}$$

$$= \{ P \in \mathbb{R}^2, \ \psi \circ \varphi \circ \psi^{-1}(P) = P \}$$

$$= \{ P \in \mathbb{R}^2, \ \varphi(\psi^{-1}(P)) = \psi^{-1}(P) \}$$

$$= \{ P \in \mathbb{R}^2, \ \psi^{-1}(P) \in \operatorname{Fix}(\varphi) \}$$

$$\stackrel{*}{=} \{ P \in \mathbb{R}^2, \ P \in \psi(\operatorname{Fix}(\varphi)) \}$$

$$= \psi(\operatorname{Fix}(\varphi)),$$

where the equality with the asterisk holds because ψ is an injective mapping. For $\operatorname{Fix}(\operatorname{Ad}(\psi)(\Phi))$ we have

$$\operatorname{Fix}(\operatorname{Ad}(\psi)(\Phi)) = \bigcap_{\varphi \in \Phi} \operatorname{Fix}(\operatorname{Ad}(\psi)(\varphi)) = \bigcap_{\varphi \in \Phi} \psi(\operatorname{Fix}(\varphi))$$
$$= \psi(\bigcap_{\varphi \in \Phi} \operatorname{Fix}(\varphi)) = \psi(\operatorname{Fix}(\Phi)).$$

2. Suppose φ is an axial symmetry and ψ is an arbitrary isometry. According to the lecture notes, we know the set $Fix(\varphi)$ forms a line. Now by part 1 we have

$$\operatorname{Fix}(\operatorname{Ad}(\psi)(\varphi)) = \psi(\operatorname{Fix}(\varphi)),$$

which implies that $\operatorname{Fix}(\operatorname{Ad}(\psi)(\varphi))$ also forms a line, and as a result, $\operatorname{Ad}(\psi)(\varphi)$ is again an axial symmetry, since axial symmetry is the only type of isometry whose set of fix points is a line.

Now suppose φ is a glide (glissee) symmetry. Then we know that $Fix(\varphi) = \emptyset$. By the same reasoning as above, we get

$$\operatorname{Fix}(\operatorname{Ad}(\psi)(\varphi)) = \emptyset,$$

which according to the lecture notes, implies that $Ad(\psi)(\varphi)$ is either a glide symmetry or a translation. But considering the complex form of the isometries, one can see that it cannot be a translation, since the complex variable z in $Ad(\psi)(\varphi)$ appears in the conjugate form. So it is indeed a glide symmetry.

- 3. Consider two lines D, D'. Our goal is to find an affine rotation to map D to D'. We split the solution into the following two cases:
- case i) $D \cap D' \neq \emptyset$: Suppose $P = D \cap D'$. We set up a complex coordinate system in such a way that P is the origin. Assume that the lines are determined by the following equations in this system

$$D = \{\lambda \beta : \lambda \in \mathbb{R}\}, D' = \{\lambda \beta' : \lambda \in \mathbb{R}\},\$$

where $\beta, \beta' \in \mathbb{C} \setminus \{0\}$. Now define the rotation φ in the following way

$$\varphi(z) = \frac{\beta'}{\beta} \cdot z.$$

Then we get $\varphi(D) = D'$, since for an arbitrary $\lambda \in \mathbb{R}$, we have

$$\varphi(\lambda\beta) = \frac{\beta'}{\beta} \cdot \lambda\beta = \lambda\beta'.$$

case ii) $D \cap D' = \emptyset$: In this case, the two lines are parallel, so one can transform D to D' by using a translation which is perpendicular to the lines and its length is the distance between D and D'.

For the second part of the problem, suppose φ is an axial symmetry with axis line D and translation vector \vec{v} . Consider the line D' which is obtained by translating D in the direction $\frac{\vec{v}}{2}$ and let φ' be the linear axial symmetry with respect to D'. Once can check that $\varphi' = \varphi$. Therefore, we can work with φ' instead of φ . Now according to the first part, consider the rotation ψ which sends D' to the x-axis. We have

$$\psi \circ \varphi' \circ \psi^{-1} = s_1.$$

This holds since by applying the rotation ψ^{-1} , the x-axis is sent to D', and then by φ' , we get the axial symmetry with respect to D', and at the end, the line D' is sent back to the x-axis by applying ψ .

4. For an arbitrary isometry ψ , we have

$$\psi \circ s_{\beta,\nu} \circ \psi^{-1} = s_1$$

if and only if we have

$$\psi^{-1} \circ s_1 \circ \psi = s_{\beta,\nu}.$$

Now suppose ψ is an arbitrary affine rotation with $\psi(z) = \alpha z + u$. We have

$$(\psi^{-1} \circ s_1 \circ \psi)(z) = \psi^{-1} (s_1(\alpha z + u)) =$$

$$= \psi^{-1} (\overline{\alpha z + u}) = \overline{\alpha} (\overline{\alpha z + u}) - \overline{\alpha} u$$

$$= \overline{\alpha^2} \overline{z} + \overline{\alpha} (\overline{u} - u) = \overline{\alpha^2} \overline{z} - 2\overline{\alpha} \cdot \text{Im}(u)i,$$

where Im(u) is the imaginary part of u. Now we have

$$\psi^{-1} \circ s_1 \circ \psi = s_{\beta,\nu},$$

if and only if

$$\alpha^2 = \beta, \nu = -2\overline{\alpha} \cdot \operatorname{Im}(u)i,$$

or equivalently

$$\alpha^2 = \beta, \alpha \nu = -2 \cdot \text{Im}(u)i.$$

So there exists such a rotation ψ iff there exists some $\alpha \in \mathbb{C}$ such that

$$\alpha^2 = \beta, \operatorname{Re}(\alpha) \cdot \operatorname{Re}(\nu) = \operatorname{Im}(\alpha) \cdot \operatorname{Im}(\nu).$$

On the other hand, by Proposition 3.8 of the lecture notes, the solutions of $\alpha^2 = \beta$ are

$$\alpha = \epsilon \sqrt{\frac{1}{2}(\operatorname{Re}(\beta) + |\beta|)} + \epsilon' i \sqrt{\frac{1}{2}(|\beta| - \operatorname{Re}(\beta))},$$

where $\epsilon, \epsilon' \in \{1, -1\}$ have to be chosen so that we have $2\operatorname{Re}(\alpha) \cdot \operatorname{Im}(\alpha) = \operatorname{Im}(\beta)$. So with this choice of α , the condition $\operatorname{Re}(\alpha) \cdot \operatorname{Re}(\nu) = \operatorname{Im}(\alpha) \cdot \operatorname{Im}(\nu)$ is equivalent to

$$\epsilon'' \sqrt{(\operatorname{Re}(\beta) + |\beta|)} \cdot \operatorname{Re}(\nu) = \sqrt{(|\beta| - \operatorname{Re}(\beta))} \cdot \operatorname{Im}(\nu),$$

where the value of $\epsilon'' \in \{1, -1\}$ depends on $\text{Im}(\beta)$ as discussed above. Also in this case we get that

$$u = \operatorname{Re}(u) - i \frac{\left(\operatorname{Re}(\alpha) \cdot \operatorname{Im}(\nu) + \operatorname{Im}(\alpha) \cdot \operatorname{Re}(\nu)\right)}{2},$$

where $Re(u) \in \mathbb{R}$ can be arbitrarily chosen. (one can simply assume it to be zero)

For the formula defining the axis line D of $s_{\beta,\nu}$, first we find the line D', which passes through the origin and is the axis line of $s_{\beta,\mathbf{0}}$. For that, note that we have

$$D' = \{ z \in \mathbb{C} : s_{\beta, \mathbf{0}}(z) = z \} = \{ z \in \mathbb{C} : \overline{\beta z} = z \}$$

Suppose $\beta = a + ib$. The set of the solutions of $\overline{\beta z} = z$ is

$$\{\lambda(b+i(a-1)):\lambda\in\mathbb{R}\},\$$

which implies that

$$D' = \{\lambda(b + i(a - 1)) : \lambda \in \mathbb{R}\}.$$

Now we find the formula of the axis line D of $s_{\beta,\nu}$. For that, note that according to what was mentioned earlier in part 3, we have

$$D = D' + \frac{\nu}{2}.$$

So we get

$$D = \{\lambda(b + i(a - 1)) + \frac{\nu}{2} : \lambda \in \mathbb{R}\}.$$

Exercise 5: $[\star]$ Le but de cet exercice est de montrer le resultat suivant : Soit un morphisme de groupe continu

$$\phi: (\mathbb{R}, +) \mapsto (\mathbb{C}^1, \times)$$

(la fonction $t \mapsto \phi(t) = x(t) + iy(t)$ est continue c'est a dire que x(t) et y(t) le sont) alors ϕ est derivable.

Pour demontrer ce resultat on procede comme suit : on pose

$$\Phi(u) = \int_0^u \phi(t)dt = \int_0^u x(t)dt + i \int_0^u y(t)dt.$$

Comme ϕ est continue sa primitive $\Phi(u)$ existe, est derivable de derivee

$$\Phi'(u) = \phi(u).$$

1. Montrer que

$$\Phi(u+1) = \Phi(u) + \phi(u)\Phi(1)$$

(on pourra ecrire $\int_0^{u+1} \cdots = \int_0^u \cdots + \int_u^{u+1} \cdots$, effectuer un changement de variable et utiliser la propriete principale de ϕ).

2. Montrer que ϕ est derivable.

Solution:

First we note that $\phi(t) = x(t) + iy(t)$ is derivative if x(t) and y(t) are derivative.

1. We have

$$\Phi(u) = \int_0^u \phi(t)dt = \int_0^u x(t)dt + \int_0^u y(t)dt.$$

For any c > 0, we have

$$\Phi(u+c) = \int_0^{u+c} \phi(t)dt = \int_0^u \phi(t)dt + \int_u^{u+c} \phi(t)dt = \Phi(u) + \int_u^{u+c} \phi(t)dt.$$

For the second integral, we set x = t - u, then dx = dt and

$$\int_{u}^{u+c} \phi(t)dt = \int_{0}^{c} \phi(x+u)dx = \phi(u) \int_{0}^{c} \phi(x)dx = \phi(u)\Phi(c),$$

where we have used the property $\phi(x+u) = \phi(x)\phi(u)$.

In other words, if c = 1 then we have

$$\Phi(u+1) = \phi(u)\Phi(1).$$

2. Prove that $\phi(u)$ is derivative.

Before proving this statement, we note that if a function f(x) = x(t) + iy(t) is derivative and z = a + bi is a fixed complex number, then zf(x) is also derivative.

To prove $\phi(u)$ is derivative, we will show that the following limitation exists:

$$\lim_{\delta \to 0} \frac{\phi(u+\delta) - \phi(u)}{\delta}$$

(note that here we mean that the limitations of the real part and the imaginary part exist.)

Since x(t) and y(t) are continuous functions, there always exits c > 0 such that $\Phi(c) \neq 0$. In this exercise, we can not make sure that $\Phi(1)$ is non-zero, for instance, one can take $x(t) = \sin 2\pi t$ and $y(t) = \cos 2\pi t$.

We have

$$\lim_{\delta \to 0} \frac{\phi(u+\delta) - \phi(u)}{\delta} = \lim_{\delta \to 0} \Phi(c)^{-1} \left(\frac{\Phi(u+\delta+1) - \Phi(u+1)}{\delta} - \frac{\Phi(u+\delta) - \Phi(u)}{\delta} \right).$$

This limitation exists since the following limitations exist

$$\lim_{\delta \to 0} \frac{\Phi(u+\delta+1) - \Phi(u+1)}{\delta} = \Phi(u+1)', \lim_{\delta \to 0} \frac{\Phi(u+\delta) - \Phi(u)}{\delta} = \Phi(u)',$$

which completes the solution of the exercise.