

<u>课程 > Unit 7: Bayesian inf... > Lec. 15: Linear mod</u>... > 11. Exercise: The e...

11. Exercise: The effect of a stronger signal

Exercise: The effect of a stronger signal

1/1 point (graded)

For the model $X=\Theta+W$, and under the usual independence and normality assumptions for Θ and W, the mean squared error of the LMS estimator is

$$\frac{1}{(1/\sigma_0^2) + (1/\sigma_1^2)},$$

where σ_0^2 and σ_1^2 are the variances of Θ and W, respectively.

Suppose now that we change the observation model to $Y=3\Theta+W$. In some sense the "signal" Θ has a stronger presence, relative to the noise term $oldsymbol{W}$, and we should expect to obtain a smaller mean squared error. Suppose $\sigma_0^2=\sigma_1^2=1$. The mean squared error of the original model $X=\Theta+W$ is then 1/2. In contrast, the mean squared error of the new model $Y=3\Theta+W$ is

Hint: Do not solve the problem from scratch. Think of an alternative observation model in which you observe $Y' = \Theta + (W/3)$.

Solution:

Since $m{Y'}$ is just $m{Y}$ scaled by a factor of $m{1/3}, m{Y'}$ carries the same information as $m{Y}$, so that $\mathbf{E}[\Theta \mid Y] = \mathbf{E}[\Theta \mid Y']$. Thus, the alternative observation model $Y' = \Theta + (W/3)$ will lead to the same estimates and will have the same mean squared error as the unscaled model $Y=3\Theta+W$. In the equivalent Y^\prime model, we have a noise variance of 1/9 and therefore the mean squared error is

$$\frac{1}{\frac{1}{1} + \frac{1}{1/9}} = \frac{1}{10}. \quad = \frac{1}{\frac{1}{3}} + 1$$

提交

You have us You can also by-pass the hint by just considering $\Theta'=3\Theta$, and interpreting $Y=\Theta'+W$. Now the variance of Θ' is simply the Θ 's multiplied by 9, and you are good to apply the previous formula.