TD Topo

Matthieu Boyer

23 octobre 2023

Table des matières

Ι	TD3			
1	Exercice 1 : Echauffement			
	1.1 Question 1			
	1.1.1 Question a			
	1.1.2 Question b			
	1.2 Question 2			
	1.3 Question 3			
	1.4 Question 4			
	1.4.1 Question a			
	1.4.2 Question b			
	1.4.3 Question c			
	1.5 Question 5			
	1.5.1 Question a			
	1.5.2 Question b			
_				
2	Exercice 2: Topologie Induite			
	2.1 Question 1			
	2.2 Question 2			
	2.2.1 Question a			
	2.2.2 Question b			
	2.2.3 Question c			
3	Exercice 3 : Séparation et espaces quotients			
	3.1 Question 1			
	3.2 Question 2			
	3.3 Question 3			
	3.3.1 Question a			
	3.3.2 Question b			
4	Exercice 4 : Lemme d'Urysohn			
	4.1 Question 1			
	4.2 Question 2			
	4.3 Question 3			
	4.3.1 Question a			
	4.3.2 Question b			
_				
5	Exercice 5 : Quelques propriétés des espaces produits			
	5.1 Question 1			
	5.2 Question 2			
	5.3 Question 3			

6	Exo	$10~\mathrm{TD4}/~\mathrm{TD5}$		
	6.1	Question 1		
	6.2	Question 2		
	6.3	Question 3		
	6.4	Question 4		
		6.4.1 Question a		
		6.4.2 Question b		
		6.4.3 Question c		
II	\mathbf{T}	D6		
7	Exercice 1			
	7.1	Question 1		
	7.2	Question 2		
	7.3	Question 3		
	7.4	Question 4		
	7.5	Question 5		
	7.6	Question 6		
	7.7	Question 7		
8	Exercice 2			
	8.1	Question 1		
	8.2	Question 2		
	8.3	Question 3		

Première partie

TD3

1 Exercice 1 : Echauffement

1.1 Question 1

1.1.1 Question a.

Plus ou moins vrai, $f\mid_A$ est continue pour la topologie induite/trace

1.1.2 Question b.

Faux, il suffit de prendre la fonction sign qui n'est pas continue sur \mathbb{R} mais qui l'est sur \mathbb{R}^{+*}

1.2 Question 2

Vrai, les singletons sont ouverts

1.3 Question 3

Faux, les singletons ne sont pas ouverts.

1.4 Question 4

1.4.1 Question a.

On a $\pi\left([0,1[\right)=[0,1[.$ Mais $\left[\cdot\right]^{-1}\left([0,1[\right)=\left]-1,1[$ qui est ouvert.

1.4.2 Question b.

On a $\pi(1) = 1$ et $\pi([0,1]) = [0,1]$. Or, ce segment contient un voisinage de 1 : 1. Donc c'est bien un voisinage de 1

1.4.3 Question c.

On ne peut pas séparer -1 et 1.

1.5 Question 5

1.5.1 Question a.

Faux : 0, -1 n'est pas ouvert.

1.5.2 Question b.

Faux: 0 est ouvert.

2 Exercice 2: Topologie Induite

2.1 Question 1

Oui bon ça va hein

2.2 Question 2

2.2.1 Question a.

La fonction j étant croissante de réciproque croissante pour \subset , c'est bien un homéomorphisme.

2.2.2 Question b.

 $\overline{\{\omega\}} = Y$ et donc : $\{\{\omega\}\}$ est une base finie de Y.

2.2.3 Question c.

On a $\omega \in U \cap V$

3 Exercice 3 : Séparation et espaces quotients

3.1 Question 1

Si $(x,y) \in (X \times X)/\mathcal{R}$, on a U,V ouverts de X/\mathcal{R} tels que :

$$x \in U, y \in V$$

$$U\cap V=\varnothing$$

Alors, $\{[t] \mid t \in U\}$ (de même pour V) est ouvert. Donc en particulier, \mathcal{R} est fermé.

3.2 Question 2

Si \mathcal{R} est fermée, alors si, $(x,y) \in (\mathbb{R} \times \mathbb{R})/\mathcal{R}$ il existe des voisinages disjoints de x et y. Par ouverture de π on obtient bien la séparation de X/\mathcal{R} .

3.3 Question 3

3.3.1 Question a.

- $(i. \Rightarrow ii.)$ On considère : $\|\cdot\|$: $S \mapsto \sup_{x \in S} d(x, F)$. Il est clair que cette application est positive et est nulle si et seulement si $\forall x \in S, x \in \overline{F} = F$ i.e. $S \subset F$. Par les propriétés de d, cette fonction définit bien une norme sur E/F en passant au quotient.
- $(ii. \Rightarrow iii.)$ En particulier, E/F est métrisable donc est séparé.
- $(iii. \Rightarrow i.)$ Ceci est une conséquence de la question 1.

3.3.2 Question b.

- (\Leftarrow) Si $F = \ker f$ est fermé. En particulier si $U \subset \Im f$ est ouvert, en quotientant par F, puisque E/F est normable, f est continue.
- (\Rightarrow) Si f est continue, il est clair que ker f est fermé.

4 Exercice 4: Lemme d'Urysohn

4.1 Question 1

En prenant pour ouverts dans la définition d'un espace normal $f^{-1}([0,1/3[)$ et $f^{-1}([2/3,1[),$ on a bien le résultat.

4.2 Question 2

Si (X,d) est métrique, si F_0, F_1 sont fermés disjoints dans X. En particulier, en prenant un recouvrement d'ouverts le plus petit possible de F_0 et un de F_1 , on a bien le résultat.

4.3 Question 3

4.3.1 Question a.

Déjà, il existe une bijection r de \mathbb{N} dans \mathcal{D} . Ensuite, on peut définir par récurrence la famille G. On suppose que les r_k pour k < n sont déjà définis.

On pose alors $U_n = F_0 \cup \bigcup_{k < n, r_k < r_n} \overline{G_{r_k}}$. C'est un fermé, inclus dans l'ouvert : $V_n = F_1^{\complement} \cap$

$$\bigcap_{k < n, r_k > r_n} G_{r_k}.$$

Puisquee X est normal, il existe donc un ouvert G_{r_n} tel que : $U_n \subset G_{r_n}$ et $\overline{G_{r_n}} \subset V_n$. On a bien défini une famille de fermés $(G_x)_{x \in \mathcal{D}}$ qui convient.

4.3.2 Question b.

Il est clair que f est bien définie, à valeurs dans 0, 1. De plus, il est aussi clair que : $f(F_0) = 0$ puisque $\forall x \in F_0, x \in G_1$ et $x \in F_0$.

Ensuite, si $x \in F_1, x \notin G_1 \subset F_1^{\complement}$. Donc $f(F_1) = 1$.

Enfin, par densité des nombres dyadiques, il est clair que f est continue.

5 Exercice 5 : Quelques propriétés des espaces produits

5.1 Question 1

Bah oui. 'fin, c'est trivial quoi.

5.2 Question 2

Faites un effort svp.

5.3 Question 3

- (\Leftarrow) Si I est dénombrable, le résultat est direct en prenant pour métrique l'infimum des métriques
- (\Rightarrow) Sinon, si I n'est pas dénombrable, supposons qu'il y ait une métrique d qui induit la topologie produit sur X. En particulier, si on pose se donne une famille croissante C de parties finies de I, $O_{i,n} = \prod_{k \in C_i} B_{X_k}(x_k, 1/n)$, les $O_{i,n}$ sont ouverts donc sont des ouverts pour d. Mais alors, en faisant tendre i vers l'infini, on n'obtient plus des ouverts, ce qui contredit l'existence de d.

6 Exo 10 TD4/ TD5

6.1 Question 1

On peut appliquer la propriété universelle à K = Y, $f = j_x$. On dispose d'une unique fonction continue \hat{f} telle que $\hat{f}o\iota_X = j_X$. On a alors de même une fonction continue \hat{g} en inversant les rôles de \hat{X} et Y. En appliquant la propriété universelle à $K = \hat{X}$ et $f = \iota_X$ on dispose d'une unique application continue telle que $\hat{h}o\iota_X = \iota_X$. Par unicité, $\hat{h} = \mathrm{id}$. Comme $\hat{g}o\hat{f}$ convient aussi, on a bien le résultat.

6.2 Question 2

- ι_X est continue
- Soit x, y deux points distincts. $\{y\}$ est fermé car X est séparé. Puisque X est de Tychonoff, il existe $f: X \to [0,1]$ continue qui envoie x sur 0 et y sur 1. On applique la propriété universelle à f, pour K = [0,1]. On dispose de $\hat{f}: \hat{X} \to [0,1]$ continue telle que $f(\iota_X(x)) = 0$ et $f(\iota_X(y)) = 1$ donc ι_X est injective, et donc bijective sur son image.
- Soit $F \subset X$ un fermé. Soit $x \in X \setminus F$. Montrons que $\iota_X(x) \subset U \subset X \setminus \iota_X(F)$. Puisque X est de Tychonoff, il existe f de X dans [0,1] continue telle que f(x) = 0 et $f^{-1}(F) = \{1\}$. Par propriété universelle, il existe \hat{f} continue telle que $\hat{f}o\iota_X = f$. Remarquons alors que $\hat{f}^{-1}([0,1/2[)])$ est un ouvert par continuité de \hat{f} . De plus, $\iota_X(x)$ est dans cet ouvert, et $\iota_X(F) \cap \hat{f}^{-1}([0,1/2[)]) = \emptyset$ d'où le résultat. Donc ι_X est ouverte et donc sa réciproque est continue. Finalement, on a bien le résultat.

6.3 Question 3

Théorème de Tychonoff

6.4 Question 4

6.4.1 Question a.

Si on a I(x) = I(y), en particulier, leurs images par toute application continue de X dans [0,1] sont égales. Donc en particulier, x et $\{y\}$ sont pas séparables et donc, puisque X est de Tychonoff, on a le résultat.

6.4.2 Question b.

Soit $U = \prod_{g \in C_X} O_g$ un ouvert avec $O_g = [0, 1]$ sauf en $g_1, \ldots, g_n \in C_X$ où $O_{g_i} = U_i$ ouvert de [0, 1]. On a alors :

$$I(x) \in U \Leftrightarrow \forall i = 1, \dots, n, \ I(x)(g_i) \in U_i$$

 $\Leftrightarrow \forall i = 1, \dots, n, \ g_i(x) \in U_i$

Ainsi : $I^{-1}(U) = \bigcap_{i=1}^n g_i^{-1}(U_i)$ qui est un ouvert par continuité de g_i .

6.4.3 Question c.

Si F est un fermé de X, $x \notin F$. Puisque X est de Tychonoff, il existe f de X dans [0,1] continue telle que f(x) = 0 et $f^{-1}(F) = \{1\}$. Alors, on a I(x)(f) = 0 et $\forall y \in F$, $I(y)(f) = \{1\}$. On a donc, en particulier, $U \cap I(F) = \emptyset$ où $U = [0,1/2[\times[0,1]^{C_X \setminus \{f\}}]$ et donc I est ouverte.

Deuxième partie

TD6

7 Exercice 1

7.1 Question 1

Pas un espace métrique, le TD Man ce bâtard...

7.2 Question 2

Bah non, 1 - 1/n ne converge pas dans [0, 1[. On prend [0, 1].

7.3 Question 3

Oui : fermé dans le complet C_B^0

7.4 Question 4

Non : pas un fermé

7.5 Question 5

Non, c_0 n'est pas fermé : $\overline{c_0} = l^{\inf}$ est complet

7.6 Question 6

Oui : preuve par cours.

7.7 Question 7

 $Non: c_0$

8 Exercice 2

8.1 Question 1

La topologie induite explose sinon.

8.2 Question 2

Si $E = O_0 \cup O_1$: Il n'est pas connexe par arcs car $\bigcup_{\mathbb{N}} (\frac{1}{n})$ n'est pas dense dans [0,1]: on ne peut pas sortir de (0,0).

8.3 Question 3