

AEROPLANE LANDING

A Differential Equation Model

ABSTRACT

This document attempts to model the landing of an aeroplane and compares the model with given data.

Martin Standfield
Teacher of Mathematics

Contents

1.	The	Scenario2
1	.1.	Background2
1	.2.	Assumptions used in modelling2
1	.3.	Derivation of the model3
2.	Mod	del 14
2	.1.	Defining f(v)4
2	.2.	General Solution4
2	.3.	Particular Solution5
2	.4.	Graphs and Analysis
2	.5.	Conclusion of Model 1
3.	Mod	del 214
3	.1.	Refining the Model14
3	.2.	General Solution
3	.3.	Particular Solution
3	.4.	Graphs and Analysis
3	.5.	Conclusion of Model 2
4.	Fina	ll Conclusions
4	.1.	Prediction
4	.2.	Comparing the Models24

1. The Scenario

1.1. Background

I have been given 27 data points of time which show 27 velocities of an aircraft after touchdown until it stops. During this time, we are told that after touchdown air-resistance slows it initially, and then when it is slow enough the air resistance is augmented by a constant force from the brakes. The velocities of the 27 seconds are given below:

t	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26
v	96	89	82	77	72	68	64	61	58	55	50	46	41	38	34	31	27	24	21	18	16	13	10	8	5	3	0

As all the velocities are given as integers it is reasonable to assume that these figures have been rounded to the nearest integer. I will assume that the times are given as exact numbers. Since an assumption has been made it seems appropriate to discuss some of the other assumptions that will be made in this work before going any further.

1.2. Assumptions used in modelling

Throughout this coursework, I will be making the following modelling assumptions:

- The aeroplane can be modelled as a point particle this allows us to negate any complex resistances and turbulences that would occur. It is also appropriate to model it like this because we are not interested in any rotations of the aeroplane.
- The runway is horizontal if we don't model the runway as horizontal we would need to consider a component of the weight and reaction force which would affect the calculations.
- **Friction is negligible** we are told in the scenario that there is an air resistance that slows the plane initially and no mention of friction. To include friction would require a second model of resistance and for simplicity we ignore this. In the model(s) that we use, however, friction could be seen as being wrapped up with the air resistance model.
- No vertical resultant force There are no vertical forces other than the weight of the aircraft and the reaction force from the ground, which are negated from this coursework as these will cancel with each other. If this weren't the case the aeroplane would either be sinking into the ground or lifting off the runway since the runway is assumed to be horizontal.
- There is no driving force from the engines if there was a driving force we would need to incorporate this into the model.
- The only resistive force acting before the brakes are applied is air resistance.
- The only resistive forces acting after the brakes are applied are the air resistance and the constant braking force.
- As already mentioned, the velocities have been rounded to the nearest integer I will assume the 27 values of t are exact, however, the probability that the values of v at these 27 points are also integers is essentially zero. By assuming the numbers are rounded to the nearest integer I will include a tolerance of ±0.5 ms⁻¹ from my models to the data.

The other assumption I need to state is when I believe the brakes are applied as we haven't been told this. To do this we look at data given to us as a graph of velocity plotted against time:

The points suddenly drop between t = 9 and t = 10. We can confirm this by looking at the table - the gradient of the segments are as follows: -7, -7,-5,-5,-4,-4,-3,-3,-3,-5,-4,-5,-3,... The gradients are steadily increasing until t = 9 therefore it is reasonable to assume that the brakes were applied at sometime between t = 9 and t = 10. For simplicity, we will model it as though the brakes were applied at t = 9.

1.3. Derivation of the model

I will now derive the model that will be used to model the aircraft landing. See the force diagram:

The diagram ignores the vertical forces that are acting on the aeroplane and consists of the horizontal acceleration, the air resistance (as a function of velocity) and the constant braking force, B Newtons.

By using the result from Newton's second law of motion, F = ma, we can state that, prior to the brakes coming on, we can model the situation with the differential equation:

$$120,000 \frac{dv}{dt} = -f(v)$$

Where v is the velocity at time t and t=0 is when the aeroplane touches down. After the brakes are applied we have the differential equation:

$$120,000 \frac{dv}{dt} = -f(v) - B$$

2. Model 1

2.1. Defining f(v)

For this first model, I will take the air resistance force to be proportional to the velocity. This seems like a suitable model as one would expect the resistance to increase as the velocity increases. Therefore, I assume:

$$f(v) \propto v$$

Hence,

$$f(v) = \alpha v$$

Where α is the constant of proportionality.

Therefore,

$$120,000 \frac{dv}{dt} = \begin{cases} -\alpha v & 0 \le t < 9 \\ -\alpha v - B & 9 < t \le 26 \end{cases}$$

This is the first model which will be solved momentarily. First, I'd like to point out that both lines are not valid for t=9, that is there is a discontinuity in the gradient of v at this point. I've done this on purpose because the model may be better modelled if the acceleration isn't continuous at t=9, after all, the braking force wouldn't go from 0 to B Newtons instantaneously in reality either. I will, however, model the velocity as being continuous at t=9 when the time comes.

2.2. General Solution

 $0 \le t \le 9$

$$120,000 \frac{dv}{dt} = -\alpha v$$

$$120,000 \int v^{-1} dv = -\int \alpha d$$

$$120,000 \ln(v) = -\alpha t + c_1$$

$$v = A_1 e^{-\frac{\alpha}{120,000}t} \qquad Where A_1 = e^{\frac{c_1}{120,000}}$$

 $9 \le t \le 26$

$$120,000 \frac{dv}{dt} = -\alpha v - B$$

$$120,000 \int (\alpha v + B)^{-1} dv = -\int 1 dt$$

$$\frac{120,000}{\alpha} \int \alpha (\alpha v + B)^{-1} dv = -t$$

$$\frac{120,000}{\alpha} \cdot \ln(\alpha v + B) = -t + c_2$$

$$\alpha v + B = e^{-\frac{\alpha}{120,000}t + \frac{c_2\alpha}{120,000}}$$

$$v = A_2 e^{-\frac{\alpha}{120,000}t} - \frac{B}{\alpha} \qquad Where A_2 = \frac{e^{\frac{c_2\alpha}{120,000}}}{\alpha}$$

$$v = \begin{cases} A_1 e^{-\frac{\alpha}{120,000}t} & 0 \le t \le 9\\ A_2 e^{-\frac{\alpha}{120,000}t} - \frac{B}{\alpha} & 9 \le t \le 26 \end{cases}$$

2.3. Particular Solution

This general solution has 4 unknown constants, the constant braking force, B, the constant of proportionality from the air resistance model, α , and 2 constants of integration from solving the 2 differential equations, A_1 and A_2 . To find these constants we will use 3 data points from the data given to me and use the knowledge that v is continuous for all $0 \le v \le 26$. But there are many combinations of choosing 3 valid data points; I do not intend to attempt all of them. To keep things simple, I will use the data point at t = 9 for both equations for v. This will also ensure the function is continuous.

Pre-Brakes

I will look at the first equation:

$$v = A_1 e^{-\frac{\alpha}{120,000}t} \qquad 0 \le t \le 9$$

And use the point (t = 9, v = 55):

$$55 = A_1 e^{-\frac{\alpha}{120,000}9}$$

I will then use the other 9 points that this equation is relevant for to calculate nine pairs of values for α and A_1 , each pair passing through a different point for $0 \le t \le 8$. I will do this as follows:

Take point (t_0, v_0) :

$$v_0 = A_1 e^{-\frac{\alpha}{120,000}t_0}$$

Divide the two to eliminate A₁:

$$\frac{v_0}{55} = \frac{e^{-\frac{\alpha}{120,000}t_0}}{e^{-\frac{\alpha}{120,000}}}$$

$$v_0 e^{-\frac{\alpha}{120,000}9} = 55e^{-\frac{\alpha}{120,000}t_0}$$

$$\ln(v_0) - \frac{\alpha}{120,000}9 = \ln(55) - \frac{\alpha}{120,000}t_0$$

$$\frac{\alpha}{120,000}t_0 - \frac{\alpha}{120,000}9 = \ln\left(\frac{55}{v_0}\right)$$

$$\alpha = \frac{120,000}{t_0 - 9}\ln\left(\frac{55}{v_0}\right)$$

$$v_0 = A_1 e^{-\frac{\ln(\frac{55}{v_0})}{t_0 - 9}t_0}$$

$$A_1 = v_0 e^{\frac{\ln(\frac{55}{v_0})}{t_0 - 9}t_0}$$

Using a spreadsheet package and the formulae derived on the previous page, I found values for pairs of α and A_1 and they are given as follows:

t ₀	V ₀	α	A ₁
0	96	7426.867	96.00000
1	89	7219.548	94.51885
2	82	6846.618	91.91181
3	77	6729.445	91.10763
4	72	6463.990	89.31170
5	68	6365.236	88.65264
6	64	6061.996	86.65917
7	61	6212.441	87.64252
8	58	6373.179	88.70548

We'll come back to these values in a short while, I'll first find solutions for $9 \le t \le 26$:

Post-Brakes

Let's look at the second equation:

$$v = A_2 e^{-\frac{\alpha}{120,000}t} - \frac{B}{\alpha}$$
 $9 \le t \le 26$

Using t = 9:

$$55 + \frac{B}{\alpha} = A_2 e^{-\frac{\alpha}{120,000}9}$$

Bearing in mind α has been found so we only have B and A₂ to find, we require 1 other data point. Again, I will use each one possible, this time in the interval $10 \le t \le 26$ yielding 17 results.

Take point (t_0, v_0) :

$$v_0 + \frac{B}{\alpha} = A_2 e^{-\frac{\alpha}{120,000}t_0}$$

Divide the two to eliminate A₂:

$$\frac{v_0 + \frac{B}{\alpha}}{55 + \frac{B}{\alpha}} = \frac{e^{-\frac{\alpha}{120,000}t_0}}{e^{-\frac{\alpha}{120,000}9}}$$

$$(\alpha v_0 + B)e^{-\frac{\alpha}{120,000}9} = e^{-\frac{\alpha}{120,000}t_0}(55\alpha + B)$$

$$Be^{-\frac{\alpha}{120,000}9} - Be^{-\frac{\alpha}{120,000}t_0} = 55\alpha e^{-\frac{\alpha}{120,000}t_0} - \alpha v_0 e^{-\frac{\alpha}{120,000}9}$$

$$B = \frac{55\alpha e^{-\frac{\alpha}{120,000}} - \alpha v_0 e^{-\frac{\alpha}{120,000}9}}{e^{-\frac{\alpha}{120,000}9} - e^{-\frac{\alpha}{120,000}t_0}}$$

$$v_{0} = A_{2}e^{-\frac{\alpha}{120,000}t_{0}} - \frac{55e^{-\frac{\alpha}{120,000}t_{0}} - v_{0}e^{-\frac{\alpha}{120,000}9}}{e^{-\frac{\alpha}{120,000}} - e^{-\frac{\alpha}{120,000}t_{0}}}$$

$$A_{2} = \left(v_{0} + \frac{55e^{-\frac{\alpha}{120,000}t_{0}} - v_{0}e^{-\frac{\alpha}{120,000}9}}{e^{-\frac{\alpha}{120,000}t_{0}}}\right)e^{\frac{\alpha}{120,000}t_{0}}$$

Using spreadsheet software, I can calculate approximations for pairs of values for B and A2:

		α ₀ = 7,	426.867	α1 = 7,	219.548	α2 = 6,8	346.618	α ₃ = 6,	729.445	α4 = 6,	463.990	α ₅ = 6,	365.236	α ₆ = 6,	061.996	α ₇ = 6,2	212.441	α ₈ = 6,3	73.179
t ₀	V 0	В	A_2	В	A_2	В	A_2	В	A_2	В	A_2	В	A_2	В	A_2	В	A_2	В	A ₂
10	50	210,281	145.4200	221,155	147.1620	240,715	150.6656	246,861	151.8744	260,786	154.8249	265,966	156.0031	281,873	159.9230	273,981	157.9190	265,549	155.9066
11	46	165,633	134.9268	176,064	136.4288	194,832	139.4663	200,729	140.5185	214,091	143.0944	219,062	144.1256	234,329	147.5653	226,754	145.8053	218,662	144.0411
12	41	205,118	144.2067	214,981	145.6925	232,729	148.7163	238,307	149.7686	250,947	152.3532	255,650	153.3908	270,096	156.8619	262,928	155.0840	255,272	153.3057
13	38	167,253	135.3076	176,750	136.5920	193,843	139.2253	199,216	140.1465	211,396	142.4175	215,928	143.3321	229,851	146.4016	222,943	144.8277	215,564	143.2571
14	34	177520	137.7206	186,525	138.9188	202,739	141.3964	207,838	142.2683	219,395	144.4270	223,698	145.2996	236,918	148.2384	230,357	146.7295	223,352	145.2279
15	31	166,148	135.0479	174,760	136.1184	190,274	138.3539	195,154	139.1462	206,220	141.1170	210,340	141.9169	223,003	144.6217	216,718	143.2311	210,008	141.8511
16	27	182,983	139.0044	191,072	140.0012	205,652	142.1074	210,241	142.8600	220,650	144.7422	224,527	145.5096	236,450	148.1166	230,532	146.7742	224,215	145.4465
17	24	181,100	138.5619	188,770	139.4532	202,604	141.3634	206,960	142.0524	216,846	143.7866	220,530	144.4974	231,863	146.9245	226,237	145.6725	220,234	144.4389
18	21	182,773	138.9552	190,013	139.7490	203,080	141.4795	207,197	142.1107	216,546	143.7112	220,032	144.3712	230,760	146.6377	225,432	145.4663	219,751	144.3167
19	18	187,002	139.9491	193,799	140.6503	206,078	142.2114	209,951	142.7885	218,749	144.2646	222,031	144.8774	232,139	146.9964	227,119	145.8988	221,767	144.8268
20	16	178,108	137.8587	184,576	138.4550	196,274	139.8184	199,966	140.3307	208,359	141.6544	211,491	142.2085	221,146	144.1389	216,349	143.1364	211,239	142.1626
21	13	186,617	139.8585	192,622	140.3700	203,495	141.5809	206,930	142.0451	214,748	143.2594	217,668	143.7726	226,676	145.5763	222,199	144.6369	217,433	143.7300
22	10	196,181	142.1064	201,711	142.5337	211,741	143.5935	214,914	144.0103	222,142	145.1171	224,845	145.5901	233,192	147.2700	229,042	146.3922	224,628	145.5508
23	8	193,805	141.5479	198,981	141.8839	208,384	142.7742	211,363	143.1362	218,156	144.1155	220,698	144.5399	228,558	146.0654	224,648	145.2651	220,493	144.5045
24	5	205,518	144.3006	210,199	144.5541	218,723	145.2978	221,429	145.6141	227,609	146.4905	229,926	146.8767	237,099	148.2854	233,529	147.5430	229,739	146.8443
25	3	205,981	144.4095	210,293	144.5765	218,163	145.1611	220,667	145.4263	226,392	146.1847	228,541	146.5261	235,207	147.7936	231,887	147.1220	228,368	146.4974
26	0	219,167	147.5085	222,965	147.5929	229,924	148.0316	232,144	148.2515	237,234	148.9083	239,149	149.2122	245,103	150.3658	242,135	149.7505	238,995	149.1866

Where I have used the 9 different α values obtained at the top of the previous page for each data point $t \ge 10$ totalling 153 pairs of values for B and A₂.

2.4. Graphs and Analysis

$0 \le t \le 9$

I'll now look at the nine pairs of values I obtained for the constants α and A_1 for $0 \le t \le 9$, plot them and look at some of the errors these models produce. First, here are the 9 graphs:

Where the black points are the given data and the vertical lines show ±0.5 error; my ideal tolerance.

First notice that all 9 solutions pass through the point (9,55), this is because this coordinate was used in all 9 calculations and ensures the velocity function is continuous at t=9. The difference between these models comes from the second chosen point; notice that each of these solution curves passes through a different data point. The green on the top, for example, passes through (0,96), the red one below it passes through (1,89), and so on... I can see that these estimates produce an appropriate approximation to the given data, however, I now look at the error each estimate gives to allow me to paint an overall picture of these models and aim to conclude which one is best:

α	7,426.87	<mark>α</mark>	7,219.55	α	6,846.62	α	6,729.45	α	6,463.99	α	6,365.24	α	6,062.00	α	6,212.44	α	6,373.18
A ₁	96.0000	A ₁	94.5189	A ₁	91.9118	A ₁	91.1076	A ₁	89.3117	A ₁	88.6526	A ₁	86.6592	A ₁	87.6425	A ₁	88.7055
v	E	V	E	V	E	V	E	V	E	v	E	V	E	V	E	V	E
96.000	0.000	94.519	1.481	91.912	4.088	91.108	4.892	89.312	6.688	88.653	7.347	86.659	9.341	87.643	8.357	88.705	7.295
90.239	1.239	89.000	0.000	86.815	2.185	86.139	2.861	84.628	4.372	84.073	4.927	82.390	6.610	83.221	5.779	84.117	4.883
84.823	2.823	83.803	1.803	82.000	0.000	81.441	0.559	80.190	1.810	79.729	2.271	78.331	3.669	79.022	2.978	79.766	2.234
79.732	2.732	78.910	1.910	77.452	0.452	77.000	0.000	75.985	1.015	75.610	1.390	74.473	2.527	75.035	1.965	75.641	1.359
74.947	2.947	74.303	2.303	73.157	1.157	72.801	0.801	72.000	0.000	71.704	0.296	70.804	1.196	71.249	0.751	71.728	0.272
70.449	2.449	69.964	1.964	69.100	1.100	68.831	0.831	68.224	0.224	68.000	0.000	67.316	0.684	67.655	0.345	68.018	0.018
66.221	2.221	65.879	1.879	65.268	1.268	65.077	1.077	64.646	0.646	64.487	0.487	64.000	0.000	64.241	0.241	64.500	0.500
62.247	1.247	62.033	1.033	61.648	0.648	61.528	0.528	61.256	0.256	61.156	0.156	60.847	0.153	61.000	0.000	61.164	0.164
58.512	0.512	58.411	0.411	58.229	0.229	58.172	0.172	58.044	0.044	57.996	0.004	57.850	0.150	57.922	0.078	58.000	0.000
55.000	0.000	55.000	0.000	55.000	0.000	55.000	0.000	55.000	0.000	55.000	0.000	55.000	0.000	55.000	0.000	55.000	0.000
	1.617		1.278		1.113		1.172		1.506		1.688		2.433		2.049		1.672
	1.107		0.817		1.181		1.466		2.145		2.392		3.058		2.734		2.372

Where |E| is the absolute error between the model and the given value.

The top number at the bottom of each column shows the average of the absolute errors and the bottom number at the bottom of each column shows the standard deviation of the absolute errors. At first glance, the third model in from the left looks to be one of the best, it has the lowest average of the errors and the standard deviation isn't too bad compared to the others either, however, the reason the standard deviation is so high is because the model gives an absolute error of almost 4.1 when t=0, and this is reflected in the graph. The models then proceed to give worse and worse estimates for v at t=0. Due to the lowest standard deviation, the third lowest mean and the accuracy of the graph I conclude that out of these 9 models the second model from the left is the most accurate despite only having 1 value within the 0.5 tolerance level. Therefore, I state that the values of α and A_1 are 7,219.548 (7sf) and 94.51885 (7sf) respectively. The respective graph is shown below:

$9 \le t \le 26$

Now I shall have a look for the latter part of the model, where the brakes have been applied. For this part of the solution I obtained 153 pairs of values for B and A_2 because of the 17 data points and the 9 values of α . Well, now that I have decided on a value for α , I will cut these 153 pairs back down to the 17 pairs of values which correspond to α = 7,219.548. The data in the table to the right takes just the α_1 columns from the table at the top of page 7 along with the t_0 and v_0 columns.

Just as was done for $0 \le t \le 9$ the 17 pairs of values for B and A_2 along with the respective α value shall be plotted for $9 \le t \le 26$. An error table will then be calculated and a best fit model will be concluded.

First then, the 17 graphs:

		$\alpha_1 = 7,2$	19.548
to	V ₀	В	A_2
10	50	221,154	147.1620
11	46	176,064	136.4288
12	41	214,981	145.6925
13	38	176,750	136.5920
14	34	186,525	138.9188
15	31	174,760	136.1184
16	27	191,072	140.0012
17	24	188,770	139.4532
18	21	190,013	139.7490
19	18	193,799	140.6503
20	16	184,576	138.4550
21	13	192,622	140.3700
22	10	201,711	142.5337
23	8	198,981	141.8839
24	5	210,199	144.5541
25	3	210,293	144.5765
26	0	222,965	147.5929

This graph shows the first 9 curves of the 17 along with the data points, again, all of these curves pass through the point (9,55) and each curve passes through another one of the other data points. Only 9 have been shown here because all 17 on the same graph was too congested. The other 8 curves are shown on the graph at the top of the next page.

As before the data points have been included in black and a ± 0.5 vertical tolerance line has been included at each point.

The next page consists of a table which evaluates all the estimates for v of the 17 different models at the times $9 \le t \le 26$. It then calculates the absolute error between these estimates and the values of v we have been given for this coursework. As before, those estimates that are exact due to the use of that point are coloured green and those estimates that are within the ± 0.5 tolerance level are highlighted in green.

B A ₂	221,155 147.16	B A ₂	176,064 136.43	B A ₂	214,981 145.69	B A ₂	176,750 136.59	B A ₂	186,525 138.92	B A ₂	174,760 136.12	B A ₂	191,072	B A ₂	188,770 139.45	B A ₂	190,013	B A ₂	193,799 140.65	B A ₂	184,576 138.45	B A ₂	192,621 140.37	B A ₂	201,711	B A ₂	198,981 141.88	B A ₂	210,199	B A ₂	210,293 144.58	B A ₂	222,965 147.59
V	E	V	E	V	E	V	E	V	E	V	E	V	E	V	E	V	E	V	E	V	E	V	E	٧	E	V	E	V	E	V	E	٧	E
55.000 50.000	0.000	55.000 50.365	0.000	55.000	0.000	55.000	0.000	55.000 50.280	0.000	55.000	0.000	55.000 50.243	0.000	55.000 50.262	0.000	55.000 50.252	0.000	55.000	0.000	55.000 50.296	0.000	55.000	0.000	55.000 50.157	0.000	55.000	0.000	55.000	0.000	55.000	0.000	55.000 49.985	0.000
45.292	0.708	46.000	0.000	45.389	0.611	45.989	0.011	45.836	0.164	46.020	0.020	45.764	0.236	45.800	0.202	45.781	0.219	45.722	0.278	45.866	0.134	45.740	0.260	45.597	0.403	45.640	0.360	45.464	0.536	45.463	0.537	45.264	0.736
40.859	0.141	41.890	0.890	41.000	0.000	41.874	0.874	41.651	0.651	41.920	0.920	41.547	0.547	41.600	0.600	41.571	0.571	41.485	0.276	41.695	0.695	41.511	0.511	41.304	0.304	41.366	0.366	41.109	0.109	41.107	0.337	40.817	0.183
36.684	1.316	38.020	0.020	36.867	1.133	38.000	0.000	37.710	0.290	38.059	0.059	37.576	0.424	37.644	0.356	37.607	0.393	37.495	0.505	37.768	0.232	37.530	0.470	37.261	0.739	37.341	0.659	37.009	0.991	37.006	0.994		1.369
32.754	1.246	34.376	0.376	32.976	1.024	34.352	0.352	34.000	0.000	34.423	0.423	33.836	0.164	33.919	0.081	33.874	0.126	33.738	0.262	34.070	0.070	33.781	0.219	33.454	0.546	33.552	0.448	33.148	0.852	33.145	0.855	32.689	1.311
29.053	1.947	30.945	0.055	29.312	1.688	30.916	0.084	30.506	0.494	31.000	0.000	30.315	0.685	30.412	0.588	30.360	0.640	30.201	0.799	30.588	0.412	30.250	0.750	29.869	1.131	29.983	1.017	29.513	1.487	29.509	1.491	28.977	2.023
25.568	1.432	27.714	0.714	25.862	1.138	27.682	0.682	27.216	0.216	27.777	0.777	27.000	0.000	27.110	0.110	27.050	0.050	26.870	0.130	27.309	0.309	26.926	0.074	26.494	0.506	26.623	0.377	26.089	0.911	26.085	0.915	25.482	1.518
22.286	1.714	24.672	0.672	22.613	1.387	24.636	0.636	24.119	0.119	24.741	0.741	23.878	0.122	24.000	0.000	23.934	0.066	23.734	0.266	24.222	0.222	23.796	0.204	23.315	0.685	23.460	0.540	22.866	1.134	22.861	1.139	22.191	1.809
19.196	1.804	21.808	0.808	19.554	1.446	21.768	0.768	21.202	0.202	21.883	0.883	20.939	0.061	21.072	0.072	21.000	0.000	20.781	0.219	21.315	0.315	20.849	0.151	20.323	0.677	20.481	0.519	19.831	1.169	19.826	1.174	19.092	1.908
16.287	1.713	19.111	1.111	16.674	1.326	19.068	1.068	18.455	0.455	19.192	1.192	18.171	0.171	18.315	0.315	18.237	0.237	18.000	0.000	18.578	0.578	18.074	0.074	17.505	0.495	17.675	0.325	16.973	1.027	16.967	1.033	16.174	1.826
13.547	2.453	16.571	0.571	13.961	2.039	16.525	0.525	15.869	0.131	16.658	0.658	15.564	0.436	15.719	0.281	15.635	0.365	15.382	0.618	16.000	0.000	15.461	0.539	14.851	1.149	15.034	0.966	14.282	1.718	14.276	1.724	13.426	2.574
10.968	2.032	14.179	1.179	11.407	1.593	14.130	1.130	13.434	0.434	14.272	1.272	13.110	0.110	13.274	0.274	13.186	0.186	12.916	0.084	13.573	0.573	13.000	0.000	12.353	0.647	12.547	0.453	11.748	1.252	11.741	1.259	10.839	2.161
8.539	1.461	11.927	1.927	9.003	0.997	11.876	1.876	11.141	1.141	12.025	2.025	10.800	0.800	10.973	0.973	10.879	0.879	10.595	0.595	11.288	1.288	10.683	0.683	10.000	0.000	10.205	0.205	9.362	0.638	9.355	0.645	8.403	1.597
6.252	1.748	9.807	1.807	6.738	1.262	9.753	1.753	8.982	0.982	9.910	1.910	8.624	0.624	8.805	0.805	8.707	0.707	8.409	0.409	9.136	1.136	8.501	0.501	7.785	0.215	8.000	0.000	7.115	0.885	7.108	0.892	6.109	1.891
4.098	0.902	7.810	2.810	4.606	0.394	7.754	2.754	6.949	1.949	7.918	2.918	6.575	1.575	6.764	1.764	6.662	1.662	6.350	1.350	7.110	2.110	6.447	1.447	5.699	0.699	5.924	0.924	5.000	0.000	4.992	0.008	3.949	1.051
2.070	0.930	5.931	2.931	2.599	0.401	5.872	2.872	5.035	2.035	6.042	3.042	4.646	1.646	4.843	1.843	4.736	1.736	4.412	1.412	5.202	2.202	4.513	1.513	3.735	0.735	3.968	0.968	3.008	0.008	3.000	0.000	1.915	1.085
0.161	0.161	4.160	4.160	0.708	0.708	4.099	4.099	3.232	3.232	4.276	4.276	2.829	2.829	3.033	3.033	2.923	2.923	2.587	2.587	3.405	3.405	2.692	2.692	1.885	1.885	2.127	2.127	1.132	1.132	1.124	1.124	0.000	0.000
	1.206		1.133		0.955		1.102		0.710		1.194		0.593		0.642		0.612		0.568		0.776		0.573		0.610		0.580		0.774		0.777		1.281
	0.732		1.138		0.591		1.119		0.848		1.172		0.716		0.785		0.749		0.627		0.904		0.667		0.442		0.484		0.525		0.527		0.781

Where |E| is the absolute error between the model and the given value.

Based on this table there is a clear best model in my opinion, and that is the one that is in the 10th column from the left. This column is the column that contains the lowest average of the absolute errors, a column that contains 9 points within the tolerance level (11 if the exact points were included) and a column that has a very low standard deviation implying that there are very few points (if any) of a significant distance away from the true value, in fact, looking at the entire column, the only point that is significantly far away (1.5 or more) is when t=26. Therefore, based on the analysis that has gone before I state that the values of these latter two constants are:

- B = 193,799 (6sf)
- $A_2 = 140.6503$ (7sf)

Which results in the following graph:

2.5. Conclusion of Model 1

Now that the analysis of the solutions has been done, all four of the constants, B, α , A₁ and A₂ have been found to a good degree of accuracy. They are shown below with the resultant function for v in terms of t:

- A₁ = 94.51885
- $\alpha = 7,219.548$
- B = 193,799
- A₂ = 140.6503

$$v = \begin{cases} 94.51185e^{-0.0601629t} & 0 \le t \le 9\\ 140.6503e^{-0.0601629t} - 26.84364728 & 9 \le t \le 26 \end{cases}$$

Which gives the following graph:

We can use the function for v to estimate the length of runway required for the aeroplane to land; since $\dot{x} = v$, x is given by the integral:

$$x = \int_0^{26} v \, dt \approx \int_0^9 94.51185 e^{-0.0601629t} \, dt + \int_9^{26} (140.6503 e^{-0.0601629t} - 26.84364728) \, dt$$

$$x \approx \left[-1,570.932 e^{-0.0601629t} \right]_0^9 + \left[-2,337.824 e^{-0.0601629t} - 26.84364728t \right]_9^{26}$$

$$x \approx 656.8153 + 414.8401 = 1,071.6554$$

This means, according to model 1, the aeroplane stops in approximately 1,070 metres. Therefore, I would advise, based on this result, the runway needs to be 1,600m long minimum. This figure is approximately 1.5 times the stopping distance and is a value which would allow for conditions which could require a longer runway, i.e. wet runway, or oil on the runway, or a brake failure, etc...

Ideally, however, I would be looking for absolute errors to be 0.5 or less, that is, I would be looking to see the solution curve v(t) to lie within the small black vertical lines at each point. This is because I am assuming the velocities that were given to me have been rounded to the nearest integer and could therefore contain an error of up to ± 0.5 .

Although most of the points for $9 \le t \le 23$ are very close to the curve in the graph at the top of the page, I can see that the data points for $2 \le t \le 7$ and t = 24, 25, 26 have a significant amount of room for improvement, therefore, I will now revise the model to see if a better function for v can be found.

3. Model 2

3.1. Refining the Model

In the previous section I made the modelling assumption that the force due to air resistance is directly proportional to the velocity. I now intend on changing this assumption to see if the model can be improved. In the graphs of the previous model we can see that the curve doesn't "bend" enough to get close to all of the points, this could imply that the resistance model we used is not a powerful enough relationship; a more powerful resistance model should allow the curve to better fit the data, therefore, I will now model the resistance as being proportional to the square of the velocity:

$$f(v) = \beta v^2$$

Hence,

$$120,000 \frac{dv}{dt} = \begin{cases} -\beta v^2 & 0 \le t < 9 \\ -\beta v^2 - B' & 9 < t \le 26 \end{cases}$$

Where B' is used only to emphasise the difference between B, from model 1, and B' from model 2.

3.2. General Solution

0 < t < 9

$$120,000 \frac{dv}{dt} = -\beta v^{2}$$

$$120,000 \int v^{-2} dv = -\int \beta dt$$

$$-120,000 \cdot v^{-1} = -\beta t + c_{3}$$

$$v = \frac{120,000}{A_{3} + \beta t} \qquad Where A_{3} = -c_{3}$$

 $9 \le t \le 26$

$$120,000 \frac{dv}{dt} = -\beta v^{2} - B'$$

$$120,000 \int \frac{1}{\beta v^{2} + B'} dv = -\int 1 dt$$

$$\frac{120,000}{\beta} \int \frac{1}{v^{2} + \frac{B'}{\beta}} dv = -t$$

$$\frac{120,000}{\beta} \cdot \sqrt{\frac{\beta}{B'}} \cdot \arctan\left(\sqrt{\frac{\beta}{B'}}v\right) = -t + c_{4}$$

$$\arctan\left(\sqrt{\frac{\beta}{B'}}v\right) = \frac{\sqrt{\beta B'}(c_{4} - t)}{120,000}$$

$$v = \sqrt{\frac{B'}{\beta}} \tan\left(A_{4} - \frac{\sqrt{\beta B'}}{120,000}t\right) \qquad Where A_{4} = \frac{\sqrt{\beta B'}c_{4}}{120,000}$$

$$v = \begin{cases} \frac{120,000}{A_3 + \beta t} & 0 \le t \le 9\\ \sqrt{\frac{B'}{\beta}} \tan\left(A_4 - \frac{\sqrt{\beta B'}}{120,000}t\right) & 9 \le t \le 26 \end{cases}$$

3.3. Particular Solution

Again, as before, I will be using (t = 9, v = 55) consistently across the 2 equations, to ensure the velocity is continuous, and I will use 1 other point each side of t = 9. This will enable me to calculate values for the 4 unknown constants, B', β , A_3 and A_4 . Note that I will be required to use a numerical method to find values for B' in this model as the unknown B' appears inside and outside of the tan function.

Pre-Brakes

First, I look at the equation

$$v = \frac{120,000}{A_3 + \beta t} \qquad 0 \le t \le 9$$

And use the point (t = 9, v = 55):

$$55 = \frac{120,000}{A_3 + 9\beta}$$

I will then use the other 9 points that this equation is relevant for to calculate nine pairs of values for β and A_3 , each pair passing through a different point for $0 \le t \le 8$. I will do this as follows:

Take point (t_0, v_0) :

$$v_0 = \frac{120,000}{A_3 + \beta t_0}$$

Eliminate A₃:

$$A_{3} = \frac{120,000}{55} - 9\beta = \frac{120,000}{v_{0}} - \beta t_{0}$$

$$\frac{24,000}{11} - \frac{120,000}{v_{0}} = 9\beta - \beta t_{0}$$

$$\frac{24,000(v_{0} - 55)}{11v_{0}} = (9 - t_{0})\beta$$

$$\beta = \frac{24,000(v_{0} - 55)}{11v_{0}(9 - t_{0})}$$

$$A_3 = \frac{120,000}{55} - 9 \frac{120,000(v_0 - 55)}{55v_0(9 - t_0)}$$
$$A_3 = \frac{24,000}{11} \left(1 - \frac{9(v_0 - 55)}{v_0(9 - t_0)} \right)$$

Using a spreadsheet package I can quickly obtain 9 pairs of values for β and A_3 , the results are below:

t _o	V ₀	β	A_3
0	96	103.5354	1250.000
1	89	104.1879	1244.127
2	82	102.6291	1258.156
3	77	103.8961	1246.753
4	72	103.0303	1254.545
5	68	104.2781	1243.316
6	64	102.2727	1261.364
7	61	107.3025	1216.095
8	58	112.8527	1166.114

Post-Brakes

Now I look at the second equation:

$$v = \sqrt{\frac{B'}{\beta}} \tan\left(A_4 - \frac{\sqrt{\beta B'}}{120,000}t\right) \qquad 9 \le t \le 26$$

Using t = 9:

$$55 = \sqrt{\frac{B'}{\beta}} \tan \left(A_4 - \frac{9\sqrt{\beta B'}}{120,000} \right)$$

Bearing in mind β has been found so we only have B' and A₄ to find, we require 1 other data point.

Take point (t₀, v₀):

$$v_0 = \sqrt{\frac{B'}{\beta}} \tan \left(A_4 - \frac{\sqrt{\beta B'}}{120,000} t_0 \right)$$

Eliminate A₄:

$$A_{4} = \arctan\left(\sqrt{\frac{\beta}{B'}}55\right) + \frac{9\sqrt{\beta B'}}{120,000} = \arctan\left(\sqrt{\frac{\beta}{B'}}v_{0}\right) + \frac{\sqrt{\beta B'}}{120,000}t_{0}$$

$$Let \quad F(B') = \arctan\left(\sqrt{\frac{\beta}{B'}}55\right) + \frac{9\sqrt{\beta B'}}{120,000} - \arctan\left(\sqrt{\frac{\beta}{B'}}v_{0}\right) - \frac{\sqrt{\beta B'}}{120,000}t_{0}$$

$$F(B') = \arctan\left(\sqrt{\frac{\beta}{B'}}55\right) - \arctan\left(\sqrt{\frac{\beta}{B'}}v_{0}\right) + \frac{\sqrt{\beta B'}}{120,000}(9 - t_{0})$$

$$F'(B') = -\frac{55\sqrt{\beta}}{2\sqrt{B'}(3025\beta + B')} + \frac{v_{0}\sqrt{\beta}}{2\sqrt{B'}(v_{0}^{2}\beta + B')} + \frac{\sqrt{\beta}}{240,000\sqrt{B'}}(9 - t_{0})$$

Hence the Newton Raphson formula to find B' is as follows:

$$B'_{n+1} = B'_{n} - \frac{\arctan\left(\sqrt{\frac{\beta}{B'_{n}}}55\right) - \arctan\left(\sqrt{\frac{\beta}{B'_{n}}}v_{0}\right) + \frac{\sqrt{\beta B'_{n}}}{120,000}(9 - t_{0})}{\frac{v_{0}\sqrt{\beta}}{2\sqrt{B'_{n}}(v_{0}^{2}\beta + B'_{n})} - \frac{55\sqrt{\beta}}{2\sqrt{B'_{n}}(3025\beta + B'_{n})} + \frac{\sqrt{\beta}}{240,000\sqrt{B'_{n}}}(9 - t_{0})}$$

This could be tidied up to give something much neater, but the spreadsheet package I'm using can more than cope with this formula so I'll leave it as it is.

I wouldn't expect the values of B' to be too much different in model 2 as the B values were in model 1, therefore, I will take $B'_0 = 200,000$ and run 5 iterations of the Newton Raphson iteration method to obtain values for B'. From there we can use the following to obtain corresponding values for A₄:

$$A_4 = \arctan\left(\sqrt{\frac{\beta}{B'_5}}55\right) + \frac{9\sqrt{\beta B'_5}}{120,000}$$

From model 1 we obtained 153 pairs of numbers for B and if I were to do the same here then this would require computing 765 iterations of the Newton Raphson Method. To cut back on this figure I will average the first 8 β values obtained at the top of the previous page. The reason for only taking the first 8 is because these are all fairly similar numbers whereas the 9th value (which is from the point (t = 8, v = 58)) gives values for β and A_3 , which are radically different from the other 8, therefore, I will take β = 103.89152 and calculate 17 pairs of values for B' and A_4 . Results are as follows:

t _o	\mathbf{v}_0	B' ₀	B' ₁	B'2	B' ₃	B' ₄	B' ₅	A ₄
10	50	200,000	319,831	313,842	313,845	313,845	313,845	1.213999
11	46	200,000	277,670	275,721	275,721	275,721	275,721	1.219500
12	41	200,000	324,544	321,817	321,819	321,819	321,819	1.213133
13	38	200,000	287,802	287,218	287,218	287,218	287,218	1.217586
14	34	200,000	299,860	300,581	300,582	300,582	300,582	1.215646
15	31	200,000	289,156	290,721	290,722	290,722	290,722	1.217049
16	27	200,000	304,066	308,153	308,163	308,163	308,163	1.214672
17	24	200,000	300,452	305,753	305,771	305,771	305,771	1.214970
18	21	200,000	299,245	305,958	305,990	305,990	305,990	1.214943
19	18	200,000	299,388	307,732	307,786	307,786	307,786	1.214719
20	16	200,000	289,057	296,606	296,653	296,653	296,653	1.216186
21	13	200,000	291,542	300,917	300,997	300,997	300,997	1.215591
22	10	200,000	293,913	305,239	305,365	305,365	305,365	1.215022
23	8	200,000	287,930	298,631	298,750	298,750	298,750	1.215895
24	5	200,000	290,676	303,305	303,481	303,481	303,481	1.215263
25	3	200,000	286,209	298,258	298,425	298,425	298,425	1.215940
26	0	200,000	288,831	302,627	302,855	302,855	302,855	1.215345

3.4. Graphs and Analysis

$0 \le t \le 9$

The idea was to now graph the 8 graphs that have been obtained for the 8 pairs of β and A_3 values shown at the top of the previous page, however, to calculate my values of B' I have fixed the value of β to be 103.89152 (8sf). This means I will need to use this value to recalculate a value for A_3 to ensure v = 55 when t = 9. At this stage I hope this will give a model which is within the tolerance level otherwise I'll need to adapt my current strategy.

Recall, from page 15, that

$$55 = \frac{120,000}{A_3 + 9\beta}$$

On page 15 I then used another point to solve simultaneous equations in A_3 and β . I then used these values of β to find an average to define a new value for β which was used to find values for B' and A_4 . Now, I need to use this new value of β in the equation above to define a corresponding value for A_3 .

$$A_3 = \left(\frac{120,000}{55} - 9\beta\right)\Big|_{\beta=103.89152} = 1,246.795$$

Below I have included the values of the models for the first 7 pairs of A_3 and β given at the top of page 16, along with this new pair described above.

β	103.5354	β	104.1879	β	102.6291	β	103.8961	β	103.0303	β	104.2781	β	102.2727	β	103.8915
A ₃	1,250.000	A ₃	1,244.127	A ₃	1,258.156	A ₃	1,246.753	A ₃	1,254.545	A ₃	1,243.316	A ₃	1,261.364	A ₃	1,246.795
v	Err	V	Err	٧	Err	V	Err	V	Err	V	Err	V	Err	v	Err
96.000	0.000	96.453	0.453	95.378	0.622	96.250	0.250	95.652	0.348	96.516	0.516	95.135	0.865	96.247	0.247
88.657	0.343	89.000	0.000	88.184	0.816	88.846	0.154	88.393	0.607	89.048	0.048	88.000	1.000	88.844	0.156
82.357	0.357	86.616	0.616	82.000	0.000	82.500	0.500	82.158	0.158	82.652	0.652	81.860	0.140	82.498	0.498
76.893	0.107	77.087	0.087	76.626	0.374	77.000	0.000	76.744	0.256	77.113	0.113	76.522	0.478	76.999	0.001
72.109	0.109	72.251	0.251	71.913	0.087	72.188	0.188	72.000	0.000	72.271	0.271	71.837	0.163	72.187	0.187
67.886	0.114	67.986	0.014	67.747	0.253	67.941	0.059	67.808	0.192	68.000	0.000	67.692	0.308	67.940	0.060
64.130	0.130	64.197	0.197	64.037	0.037	64.167	0.167	64.078	0.078	64.206	0.206	64.000	0.000	64.166	0.166
60.767	0.233	60.807	0.193	60.712	0.288	60.789	0.211	60.736	0.264	60.813	0.187	60.690	0.310	60.789	0.211
57.740	0.260	57.758	0.242	57.715	0.285	57.750	0.250	57.726	0.274	57.761	0.239	57.705	0.295	57.750	0.250
55.000	0.000	55.000	0.000	55.000	0.000	55.000	0.000	55.000	0.000	55.000	0.000	55.000	0.000	55.000	0.000
	0.165		0.205		0.276		0.178		0.218		0.223		0.356		0.178
	0.121		0.192		0.258		0.139		0.171		0.204		0.322		0.138

All the errors from the latter column are within the tolerance level.

I do believe that the left most column is the best model for this data; I have judged this on the fact that all data points are within the tolerance **and** that the mean and standard deviation of the absolute errors are both less than that of the right-hand column, however, I feel I would be doing an injustice to the model if I were to use a different β value for before the brakes are applied to after the brakes are applied. This is because the coefficient of proportionality, β , has no reason to change within the model regardless of the application of the brakes.

Therefore, since all data points lie within the tolerance for the right-most column, I feel confident enough to conclude that β is 103.89152 (8sf) and A_3 is 1,246.795 (7sf). This results in the following graph:

 $9 \le t \le 26$

Recall, for this portion of the model, we have

$$v = \sqrt{\frac{B'_5}{\beta}} \tan \left(A_4 - \frac{\sqrt{\beta B'_5} t}{120,000} \right)$$

Where β is defined as 103.89152 and the 17 pairs of B'₅ and A₄ values have been given on page 17. Below are the graphs of the first 9 pairs of values. The other 8 are in the graph at the top of the next page; split only because of graph congestion.

The variation in the values of the parameters appear to affect the curve less here than they did in model 1. On the next page is a table of the 17 models across the 18 values of t such that $9 \le t \le 26$ along with the absolute errors between the model predictions and the values given to me in the initial data. The parts of the table written in green are exactly the same as the given data (because these were the points I used in the calculations of the parameters), the parts of the table highlighted in green are within the ± 0.5 tolerance level I described in the assumptions section of this work.

B ′ ₅	313,845	B ′ ₅	275,721	B ′ ₅	321,819	B' 5	287,218	B'5	300,582	B ′ ₅	290,722	B ′ ₅	308,163	B ′ ₅	305,771	B ′ ₅	305,990	B ′ ₅	307,786	B ′ ₅	296,653	B'5	300,997	B ′ ₅	305,365	B'5	298,750	B ′ ₅	303,481	B ′ ₅	298,425	B ′ ₅	302,855
A ₄	1.21400	A ₄	1.21950	A ₄	1.21313	A ₄	1.21759	A4	1.21565	A4	1.21705	A_4	1.21467	A ₄	1.21497	A ₄	1.21494	A ₄	1.21472	A ₄	1.21619	A ₄	1.21559	A_4	1.21502	A_4	1.21590	A4	1.21526	A ₄	1.21594	A ₄	1.21535
v	E	v	E	٧	ΙΕΙ	V	E	v	E	V	E	V	E	٧	E	٧	E	v	E	٧	E	V	E	V	ΙΕΙ	V	ΙΕΙ	v	E	V	ΙΕΙ	V	IEI
55.000	0.000	55.000	0.000	55.000	0.000	55.000	0.000	55.000	0.000	55.000	0.000	55.000	0.000	55.000	0.000	55.000	0.000	55.000	0.000	55.000	0.000	55.000	0.000	55.000	0.000	55.000	0.000	55.000	0.000	55.000	0.000	55.000	0.000
50.000	0.000	50.304	0.304	49.936	0.064	50.212	0.212	50.106	0.106	50.184	0.184	50.045	0.045	50.064	0.064	50.063	0.063	50.048	0.048	50.137	0.137	50.102	0.102	50.068	0.068	50.120	0.120	50.083	0.083	50.123	0.123	50.088	0.088
45.415	0.585	46.000	0.000	45.293	0.707	45.824	0.176	45.619	0.381	45.770	0.230	45.502	0.498	45.539	0.461	45.536	0.464	45.508	0.492	45.679	0.321	45.612	0.388	45.545	0.455	45.647	0.353	45.574	0.426	45.652	0.348	45.584	0.416
41.178	0.178	42.026	1.026	41.000	0.000	41.770	0.770	41.473	0.473	41.692	0.692	41.304	0.304	41.357	0.357	41.353	0.353	41.313	0.313	41.560	0.560	41.464	0.464	41.366	0.366	41.514	0.514	41.408	0.408	41.521	0.521	41.422	0.422
37.232	0.768	38.331	0.331	37.002	0.998	38.000	0.000	37.615	0.385	37.899	0.101	37.396	0.604	37.465	0.535	37.459	0.541	37.407	0.593	37.728	0.272	37.603	0.397	37.477	0.523	37.668	0.332	37.531	0.469	37.677	0.323	37.549	0.451
33.533	0.467	34.874	0.874	33.252	0.748	34.470	0.470	34.000	0.000	34.347	0.347	33.733	0.267	33.817	0.183	33.810	0.190	33.746	0.254	34.138	0.138	33.985	0.015	33.832	0.168	34.064	0.064	33.898	0.102	34.076	0.076	33.920	0.080
30.043	0.957	31.619	0.619	29.712	1.288	31.145	0.145	30.592	0.408	31.000	0.000	30.278	0.722	30.377	0.623	30.368	0.632	30.294	0.706	30.755	0.245	30.575	0.425	30.394	0.606	30.668	0.332	30.472	0.528	30.681	0.319	30.498	0.502
26.730	0.270	28.538	1.538	26.350	0.650	27.994	0.994	27.360	0.360	27.828	0.828	27.000	0.000	27.114	0.114	27.103	0.103	27.018	0.018	27.547	0.547	27.341	0.341	27.133	0.133	27.447	0.447	27.223	0.223	27.463	0.463	27.252	0.252
23.566	0.434	25.606	1.606	23.137	0.863	24.993	0.993	24.278	0.278	24.806	0.806	23.872	0.128	24.000	0.000	23.988	0.012	23.892	0.108	24.489	0.489	24.256	0.256	24.022	0.022	24.376	0.376	24.123	0.123	24.394	0.394	24.156	0.156
20.530	0.470	22.801	1.801	20.052	0.948	22.119	1.119	21.323	0.323	21.911	0.911	20.870	0.130	21.013	0.013	21.000	0.000	20.893	0.107	21.557	0.557	21.298	0.298	21.037	0.037	21.432	0.432	21.150	0.150	21.452	0.452	21.187	0.187
17.599	0.401	20.105	2.105	17.071	0.929	19.353	1.353	18.475	0.475	19.123	1.123	17.975	0.025	18.133	0.133	18.119	0.119	18.000	0.000	18.734	0.734	18.448	0.448	18.160	0.160	18.596	0.596	18.284	0.284	18.617	0.617	18.325	0.325
14.757	1.243	17.501	1.501	14.178	1.822	16.678	0.678	15.717	0.283	16.427	0.427	15.169	0.831	15.342	0.658	15.326	0.674	15.196	0.804	16.000	0.000	15.687	0.313	15.371	0.629	15.849	0.151	15.508	0.492	15.872	0.128	15.553	0.447
11.986	1.014	14.975	1.975	11.354	1.646	14.080	1.080	13.033	0.033	13.806	0.806	12.436	0.564	12.624	0.376	12.607	0.393	12.465	0.535	13.341	0.341	13.000	0.000	12.656	0.344	13.177	0.177	12.805	0.195	13.202	0.202	12.854	0.146
9.273	0.727	12.513	2.513	8.586	1.414	11.544	1.544	10.408	0.408	11.247	1.247	9.761	0.239	9.965	0.035	9.947	0.053	9.793	0.207	10.743	0.743	10.373	0.373	10.000	0.000	10.565	0.565	10.161	0.161	10.592	0.592	10.214	0.214
6.602	1.398	10.104	2.104	5.858	2.142	9.058	1.058	7.831	0.169	8.737	0.737	7.130	0.870	7.352	0.648	7.332	0.668	7.165	0.835	8.193	0.193	7.793	0.207	7.389	0.611	8.000	0.000	7.564	0.436	8.030	0.030	7.621	0.379
3.962	1.038	7.737	2.737	3.158	1.842	6.611	1.611	5.289	0.289	6.266	1.266	4.532	0.468	4.771	0.229	4.750	0.250	4.570	0.430	5.679	0.679	5.247	0.247	4.812	0.188	5.471	0.471	5.000	0.000	5.503	0.503	5.062	0.062
1.340	1.660	5.402	2.402	0.473	2.527	4.192	1.192	2.769	0.231	3.820	0.820	1.955	1.045	2.212	0.788	2.189	0.811	1.995	1.005	3.189	0.189	2.725	0.275	2.256	0.744	2.965	0.035	2.458	0.542	3.000	0.000	2.526	0.474
-1.275	1.275	3.088	3.088	-2.210	2.210	1.790	1.790	0.262	0.262	1.391	1.391	-0.614	0.614	-0.337	0.337	-0.362	0.362	-0.570	0.570	0.713	0.713	0.214	0.214	-0.290	0.290	0.473	0.473	-0.072	0.072	0.510	0.510	0.000	0.000
	0.716		1.474		1.155		0.844		0.270		0.662		0.409		0.308		0.316		0.390		0.381		0.265		0.297		0.302		0.261		0.311		0.256
	0.473		0.932		0.741		0.553		0.149		0.433		0.320		0.253		0.259		0.310		0.244		0.147		0.240		0.195		0.183		0.205		0.169

Where |E| is the absolute error between the model and the given value.

Here I have a model which is clearly better than the others because it is within 0.5 of **all** of the data points and it has the lowest mean absolute error and the lowest standard deviation of the absolute error. It is the column 6th from the right. Another really good model is given in the 5th column from the left; this model is also within the tolerance of all of the points, however, the average of the absolute errors was slightly higher, therefore, I claim that the values of the 2 constants B' and A₄ are as follows:

- $B'_5 = 300,997$ (6sf)
- $A_4 = 1.215591$ (7sf)
- And $\beta = 103.89152$ (8sf)

Which gives the following graph:

3.5. Conclusion of Model 2

Now that the analysis of the solutions has been done, all four of the constants, B', β , A_3 and A_4 have been found to a good degree of accuracy. They are shown below with the resultant function for v in terms of t:

- $A_3 = 1,246.795$
- $\beta = 103.89152$
- B' = 300,997
- A₄ = 1.215591

$$v = \begin{cases} \frac{120,000}{1,246.795 + 103.89152t} & 0 \le t \le 9\\ 53.825867 \tan(1.215591 - 0.046600426t) & 9 \le t \le 26 \end{cases}$$

Which gives the following graph:

We can use the function for v to estimate the length of runway required for the aeroplane to land since $\dot{x} = v$ and therefore x is given by the integral:

$$x = \int_0^{26} v \, dt \approx \int_0^9 \frac{120,000}{1,246.795 + 103.89152t} dt + \int_9^{26} 53.825867 \tan(1.215591 - 0.0466004261t) \, dt$$

$$x \approx \left[1,155.051 \ln(1,246.795 + 103.89152t) \right]_{0}^{9} + \left[-1,155.051 \ln(sec(1.215591 - 0.0466004261t)) \right]_{9}^{26}$$

$$x \approx 646.3463 + 412.8983 = 1,059.2446$$

This means, according to model 2, the aeroplane stops in approximately 1,060 metres. Therefore, I would still advise, based on this result, the runway needs to be 1,600m long, minimum. This figure is approximately 1.5 times the stopping distance and is a value which would allow for conditions which could require a longer runway, i.e. wet runway, or oil on the runway, or a brake failure, etc...

4. Final Conclusions

4.1. Prediction

Based on the models I predict the aeroplane stopped in 1,060 metres and therefore recommend a length of runway to be absolutely no less than 1,600 metres for the reasons mentioned in this work.

4.2. Comparing the Models

Da	ita	Mod	del 1	Мо	del 2
t	v	V	Err	V	Err
0	96	94.519	1.481	96.247	0.247
1	89	89.000	0.000	88.844	0.156
2	82	83.803	1.803	82.498	0.498
3	77	78.910	1.910	76.999	0.001
4	72	74.303	2.303	72.187	0.187
5	68	69.964	1.964	67.940	0.060
6	64	65.879	1.879	64.166	0.166
7	61	62.033	1.033	60.789	0.211
8	58	58.411	0.411	57.750	0.250
9	55	55.000	0.000	55.000	0.000
10	50	50.221	0.221	50.102	0.102
11	46	45.722	0.278	45.612	0.388
12	41	41.485	0.485	41.464	0.464
13	38	37.495	0.505	37.603	0.397
14	34	33.738	0.262	33.985	0.015
15	31	30.201	0.799	30.575	0.425
16	27	26.870	0.130	27.341	0.341
17	24	23.734	0.266	24.256	0.256
18	21	20.781	0.219	21.298	0.298
19	18	18.000	0.000	18.448	0.448
20	16	15.382	0.618	15.687	0.313
21	13	12.916	0.084	13.000	0.000
22	10	10.595	0.595	10.373	0.373
23	8	8.409	0.409	7.793	0.207
24	5	6.350	1.350	5.247	0.247
25	3	4.412	1.412	2.725	0.275
26	0	2.587	2.587	0.214	0.214
			0.852		0.242

To the left is a table of all the values of v the 2 models give along with the given values of v and the absolute error between the models and the given values.

As mentioned on page 2, in the initial assumptions, I have assumed that the values for the velocity that were given to me have been rounded to the nearest integer. This gives me a ±0.5 error tolerance in my models.

13 out of 27 data points lie within the tolerance level in model 1.

All 27 data points lie within the tolerance level in model 2.

Moreover, the average absolute error for model 1 is over 3 times greater than that for model 2. These are shown at the bottom of the absolute error columns.

Therefore, I declare, based on this analysis, that model 2 is a significant improvement from model 1.

