PR IV Pengantar Sains Komputasi 20921004 - Mohammad Rizka Fadhli

10 November 2022

TUGAS

Hitunglah nilai π menggunakan simulasi Monte Carlo!

Jawab

Catatan

Pada tugas ini, saya menggunakan bahasa pemrograman \mathbf{R} . Saya akan lampirkan pula baris codes untuk melakukan semua simulasi Monte Carlo.

Menghitung π

Untuk menghitung π menggunakan simulasi Monte Carlo, saya menggunakan prinsip acceptreject pada lingkaran dengan r=1.

Misalkan saya memiliki lingkaran sebagai berikut:

Figure 1: Lingkaran dengan r=1

Dari gambar di atas, luas area pada x di range [0,1] saya tuliskan sebagai berikut:

$$L1 = \frac{1}{4} \times L_{lingkaran} = \frac{1}{4}\pi r^2$$

$$L1 = \frac{1}{4}\pi(1^2) = \frac{\pi}{4}$$

Berdasarkan informasi di atas, kunci untuk mencari nila
i π adalah dengan menghitung L1.

Untuk menghitung L1 saya melakukan generating random dots di area $x \in [0, 1]$ dan $y \in [0, 1]$. Setiap titik yang memenuhi persyaratan $x^2 + y^2 \le 1$ akan saya tandai sebagai accept dan diluar itu akan saya tandai sebagai reject.

Perhatikan grafik di bawah ini:

Proses Menghitung L1 Dengan cara generating random dots

Berapa banyak random dots yang dibuat:

Figure 2: Ilustrasi proses generating random dots

Jika dilihat dari grafik di atas, semakin banyak dots yang saya buat, semakin banyak area L1 yang ter-cover. Akibatnya semakin akurat saya menghitung L1.

Luas L1 dapat saya tuliskan sebagai:

$$L1 \approx \frac{count(dots_{accept})}{count(all.dots)}$$

Lalu: $\pi = 4 \times L1$

Berikut algoritma yang saya gunakan untuk melakukan simulasi $generating\ random\ dots$ dengan berbagai nilai n.

Untuk melihat akurasi perhitungan, saya akan bandingkan hasil simulasi dengan nilai π default dari ${\bf R}$ yakni $\pi=3.1415927$.

Berikut adalah proses *run* dan hasilnya:

Table 1: Nilai Pi Hasil Simulasi dengan Berbagai Nilai n

n	pi	pi_simulasi	beda dengan pi R
1e+02	0	3.000000	0.1415927
2e+02	0	2.940000	0.2015927
5e+02	0	2.992000	0.1495927
9e+02	0	3.133333	0.0082593
1e+03	0	3.032000	0.1095927
2e + 03	0	3.134000	0.0075927
5e + 03	0	3.130400	0.0111927
1e+04	0	3.168000	-0.0264073
5e + 04	0	3.152640	-0.0110473
1e + 05	0	3.132120	0.0094727
5e + 05	0	3.146992	-0.0053993
1e+06	0	3.141756	-0.0001633

Agar hasilnya lebih akurat, proses di atas saya akan ulang 5 kali dan saya akan hitung nilai expected dari rata-rata nilai π hasil simulasi.

Table 2: Nilai Pi Hasil Simulasi dengan Berbagai Nilai n

n	s1	s2	s3	s4	s5	pi_simulasi	beda dengan pi R
1e+02	3.200000	3.040000	3.240000	2.880000	3.320000	3.136000	0.0055927
2e + 02	3.020000	3.280000	3.080000	3.100000	3.360000	3.168000	-0.0264073
5e + 02	3.080000	3.104000	3.088000	3.080000	3.096000	3.089600	0.0519927
9e + 02	3.191111	3.271111	3.066667	3.008889	3.146667	3.136889	0.0047038
1e + 03	3.184000	3.164000	3.152000	3.124000	3.120000	3.148800	-0.0072073
2e + 03	3.146000	3.136000	3.126000	3.112000	3.138000	3.131600	0.0099927
5e + 03	3.145600	3.136800	3.136800	3.152000	3.144800	3.143200	-0.0016073
1e+04	3.158800	3.146000	3.118800	3.156000	3.124000	3.140720	0.0008727
5e + 04	3.135120	3.134560	3.139520	3.135760	3.131600	3.135312	0.0062807
1e + 05	3.143280	3.144480	3.142320	3.133920	3.135920	3.139984	0.0016087
5e + 05	3.140088	3.143936	3.141288	3.143840	3.139792	3.141789	-0.0001961
1e+06	3.141684	3.140404	3.141404	3.142576	3.139496	3.141113	0.0004799