TESTS & DESCRIPTIVE STATISTICS

10.2.2020

PROBLEM SET 2

* was due TODAY!

PROBLEM SET 3

* is assigned TODAY! (due in 2 weeks)

RECAP

- * bernoulli distribution
 - * X ~ Bernoulli(q)
- * p-values
 - * what is the probability (under the null hypothesis) that you would see something at least as extreme as what you did see?

BINOMIAL DISTRIBUTION

* it turns out you don't need to simulate lots of experiments to test things about Bernoulli RVs

* because you can compute it exactly using the binomial distribution!

BINOMIAL DISTRIBUTION

* Y ~ Binomial(n, q) # Y is a Binomial RV with n trials and probability q on each trial

- * Y is number of 1's that came up in n samples from a bernoulli distribution with parameter q
- * (this is exactly what we've been doing—generating binomial RVs!)

* If you flip a weighted coin (where Pr(heads) = q) n times, what's the probability that you get k heads?

- * Simpler question: if you flip a coin twice, what's the probability of heads both times?
 - * What's the probability of one heads and one tails?
 - * What's the probability of tails both times?

- * The probability that two things both happen is the product of the probabilities of each thing happening
 - * (assuming that the two things are independent)
- * This can be extended to an arbitrary number of things

* Back to the original question: if you flip a weighted coin (where Pr(heads) = q) n times, what's the probability that you get k heads?

- * Let p1 = the probability of flipping a coin k times and getting heads every time
- * Let p2 = the probability of flipping a coin (n-k) times and getting tails every time
- * Let c = the number of ways to choose k things out of n things

* Pr(k heads in n flips) = p1 * p2 * c

BINOMIAL TEST

- * (As last time) If we flipped a coin 100
 times and got 63 heads, is it a fair
 coin?
- * Formally: if the coin was fair (q=0.5), what is the probability that we would see a result at least as extreme as 63 in 100 trials?

BINOMIAL TEST

- * How do we compute this probability?
 - * We can simulate, as we did before
 - * But, since we know the Binomial distribution we can just compute the probability for each *k* and sum!

BINOMIAL TEST

* In reality we would always use scipy.stats.binom_test

MEAN

- * as we've already seen when talking about numpy, the **mean** of a collection of numbers is the same as the average
- * i.e. mean(arr) = sum(arr) / len(arr)

* What if we want to measure how variable the data is around the mean?

* We could do compute how far each data point is from the mean—let's call this the deviation

* What will the mean deviation be?

- * The mean deviation is always zero!
- * So obviously we can't just average deviations to get a sense of how variable the data is
- * One thing we could do is take the mean squared deviation
- * This is the *variance* of the data

* Variance can also be obtained using arr.var() in numpy

- * Another useful number is the square root of the mean squared deviation
- * This is the **standard deviation**
- * Standard deviation can be obtained using arr.std() in numpy

END