## Imbalanced Dataset









Cross-validation is a resampling procedure used to evaluate machine learning models on a limited data sample. It is a technique used to protect against overfitting in a predictive model, particularly in a case where the amount of data may be limited. In cross-validation, you make a fixed number of folds (or partitions) of the data, run the analysis on each fold, and then average the overall error estimate.



- Hold Out Cross Validation
- K-Fold Cross Validation
- Leave One-Out Cross Validation (LOOCV)
- Stratified K Fold Cross Validation

# Machine Learning Model







Cross-validation is a resampling procedure used to evaluate machine learning models on a limited data sample.





## Hold Out Cross Validation





## Hold Out Cross Validation

from sklearn.model\_selection import train\_test\_split

xtrain, xtest, ytrain, ytest = train\_test\_split(x,y, train\_size=0.7, random\_state=1)



#### K-Folds Cross Validation

## The general procedure is as follows:

- 1. Shuffle the dataset randomly.
- 2. Split the dataset into k groups
- 3. For each unique group:
  - 1. Take the group as a hold out or test data set
  - 2. Take the remaining groups as a training data set
  - 3. Fit a model on the training set and evaluate it on the test set
  - 4. Retain the evaluation score and discard the model
- 4. Summarize the skill of the model using the sample of model evaluation scores



#### K-Folds Cross Validation

Iteration 1

Iteration 3

Iteration 4

Iteration 5

# The general procedure is as follows:

- 1. Shuffle the dataset randomly.
- 2. Split the dataset into k groups
- 3. For each unique group:
  - 1. Take the group as a hold out or test data Iteration 2 set
  - 2. Take the remaining groups as a training data set
  - 3. Fit a model on the training set and evaluate it on the test set
  - 4. Retain the evaluation score and discard the model
- 4. Summarize the skill of the model using the sample of model evaluation scores

| 20%   | 20%   | 20%   | 20%   | 20%   |
|-------|-------|-------|-------|-------|
|       |       |       |       |       |
| Test  | Train | Train | Train | Train |
|       |       |       |       |       |
| Train | Test  | Train | Train | Train |
|       |       |       |       |       |
| Train | Train | Test  | Train | Train |
|       |       |       |       |       |
| Train | Train | Train | Test  | Train |
|       |       |       |       |       |
| Train | Train | Train | Train | Test  |



## K-Folds Cross Validation





Leave One-Out Cross Validation (LOOCV)







## Stratified K Fold Cross Validation





Let's Do it with PYTHON