Introduction to Machine Learning

Hyperparameter Tuning - Problem Definition

Learning goals

- Definition of HPO objective and components
- Understand its properties
- What makes tuning challenging

HYPERPARAMETER OPTIMIZATION

Hyperparameters (HP) λ are parameters that are *inputs* to learner \mathcal{I} which performs ERM on training data set to find optimal **model parameters** θ . HPs can influence the generalization performance in a non-trivial and subtle way.

× 0 × ×

Hyperparameter optimization (HPO) / **Tuning** is the process of finding a well-performing hyperparameter configuration (HPC) $\lambda \in \tilde{\Lambda}$ for an learner \mathcal{I}_{λ} .

OBJECTIVE AND SEARCH SPACE

Search space $\tilde{\Lambda} \subset \Lambda$ with all optimized HPs and ranges:

$$\tilde{\Lambda} = \tilde{\Lambda}_1 \times \tilde{\Lambda}_2 \times \cdots \times \tilde{\Lambda}_{\it l}$$

where $\tilde{\Lambda}_i$ is a bounded subset of the domain of the i-th HP Λ_i , and can be either continuous, discrete, or categorical.

The general HPO problem is defined as:

$$oldsymbol{\lambda}^* \in rg \min oldsymbol{c}(oldsymbol{\lambda}) = rg \min \widehat{\operatorname{GE}}(\mathcal{I}, \mathcal{J},
ho, oldsymbol{\lambda})$$
 $oldsymbol{\lambda} \in \tilde{oldsymbol{\Lambda}}$

with λ^* as theoretical optimum, and $c(\lambda)$ is short for estim. gen. error when \mathcal{I} , resampling splits \mathcal{J} , performance measure ρ are fixed.

OBJECTIVE AND SEARCH SPACE

$$\boldsymbol{\lambda}^* \in \arg\min_{\boldsymbol{\lambda} \in \tilde{\boldsymbol{\Lambda}}} \boldsymbol{c}(\boldsymbol{\lambda}) = \arg\min_{\boldsymbol{\lambda} \in \tilde{\boldsymbol{\Lambda}}} \widehat{\operatorname{GE}}(\mathcal{I}, \mathcal{J}, \boldsymbol{\rho}, \boldsymbol{\lambda})$$

- Evals are stored in archive $\mathcal{A}=((\boldsymbol{\lambda}^{(1)},c(\boldsymbol{\lambda}^{(1)})),(\boldsymbol{\lambda}^{(2)},c(\boldsymbol{\lambda}^{(2)})),\dots),$ with $\mathcal{A}^{[t+1]} = \mathcal{A}^{[t]} \cup (\lambda^+, c(\lambda^+)).$
- We can define tuner as function $\tau: (\mathcal{D}, \mathcal{I}, \tilde{\Lambda}, \mathcal{J}, \rho) \mapsto \hat{\lambda}$

WHY IS TUNING SO HARD?

- Tuning is usually black box: No derivatives of the objective are availabe. We can only eval the performance for a given HPC via a computer program (CV of learner on data).
- Every evaluation can require multiple train and predict steps, hence it's expensive.
- Even worse: the answer we get from that evaluation is not exact,
 but stochastic in most settings, as we use resampling.
- Categorical and dependent hyperparameters aggravate our difficulties: the space of hyperparameters we optimize over can have non-metric, complicated structure.
- Many standard optimization algorithms cannot handle these properties.

