Strategic Ratification: Supplementary Proofs

Macartan Humphreys Coumbia University

We prove the following claim.

Claim 1 Let C be representable as a compact convex subset of \mathbb{R}^1 and let preferences over elements of C be represented with a concave utility function for each of i and j with $u'_i > 0$, $u'_j < 0$ and $u_k(x) > 0$ for $x \in C$, $k \in \{i, j\}$. Then, for points a, b, c, d on C, with c > d, $\delta \in (0, 1)$, $u_i(d) = \delta u_i(b)$ and $u_j(b) = \delta u_j(d)$:

- (I) $u_j(a) = \delta u_j(c) \text{ implies } \delta u_i(a) < u_i(c)$
- (II) $u_i(c) = \delta u_i(a) \text{ implies } u_j(a) < \delta u_j(c).$

According to Claim 1 Condition (*) from the main text holds for any concave utility functions when contract curves are linear. The proof of the claim makes use of the following Lemma:

Lemma 2 Let w, x, y, z denote four distinct points on \mathbb{R}^1 with w < x < z and w < y < z and let $f : \mathbb{R}^1 \to \mathbb{R}^1$ denote a concave function. Then: $\frac{f(x) - f(w)}{x - w} \ge \frac{f(z) - f(y)}{z - y}.$

Proof. Without loss of generality assume that w = f(w) = 0. The chord joining w and z has slope $\frac{f(z)-f(w)}{z-w} = \frac{f(z)}{z}$ and intercept f(w) = 0; values on the chord corresponding to any point $q \in \mathbb{R}^1$ are described by the function $g: \mathbb{R}^1 \to \mathbb{R}^1$ where $g(q) = \frac{f(z)}{z}q$. Note that with x and y both lying between w and z we have from the concavity of f that $f(x) \geq g(x)$ and $f(y) \geq g(y)$. Now, $f(y) \geq g(y) = \frac{f(z)}{z}y$ implies that $zf(y) \geq yf(z)$ and hence, subtracting z(f(z)) from both sides, $z(f(y) - f(z)) \geq f(z)(y - z)$ which, with z > y, implies that $\frac{f(z)}{z} \geq \frac{f(z)-f(y)}{z-y}$. Also, $f(x) \geq g(x) = \frac{f(z)}{z}x$ implies that $\frac{f(x)}{x} \geq \frac{f(z)}{z}$. Together these imply that $\frac{f(x)-f(w)}{x-w} = \frac{f(x)}{x} \geq \frac{f(z)-f(y)}{z-y}$. \blacksquare

Proof of claim. Let the negotiation set and utilities be as in the statement of the claim and note that c > d implies $u_j(d) > u_j(c)$ and $u_i(d) < u_i(c)$.

Assume first that $u_j(a) = \delta u_j(c)$. In this case $u_j(b) = \delta u_j(d)$ implies b > d and $u_j(a) = \delta u_j(c)$ implies a > c. Furthermore, c > d implies a > b (since $c > d \Rightarrow u_j(d) > u_j(c) \Rightarrow u_j(b) = \delta u_j(d) > \delta u_j(c) = u_j(a) \Rightarrow a > b$). The slope of the chord between $(d, u_j(d))$ and $(b, u_j(b))$ is $\frac{u_j(d)(\delta-1)}{b-d}$; the slope between $(c, u_j(c))$ and $(a, u_j(a))$ is $\frac{u_j(c)(\delta-1)}{a-c}$. With u_j concave, d < c and b < a we have from Lemma 2 that $\frac{u_j(d)(\delta-1)}{b-d} \geq \frac{u_j(c)(\delta-1)}{a-c}$. Hence, with $\delta < 1$, $\frac{u_j(d)}{b-d} \leq \frac{u_j(c)}{a-c}$. But, then $u_j(d) > u_j(c)$ implies a - c < b - d. The slope of the chord between $(d, u_i(d))$ and $(b, u_i(b))$ is $\frac{u_i(d)\frac{1-\delta}{\delta}}{b-d}$; the slope between $(c, u_i(c))$ and $(a, u_i(a))$ is $\frac{u_i(a)-u_i(c)}{a-c}$. If, contrary to the proposition, $\delta u_i(a) \geq u_i(c)$, then $u_i(a) - u_i(c) \geq \frac{1}{\delta}u_i(c) - u_i(c) = u_i(c)\frac{(1-\delta)}{\delta}$, and again using the concavity of u_i we then have that d < c and b < a imply $\frac{u_i(d)\frac{1-\delta}{\delta}}{b-d} \geq \frac{u_i(a)-u_i(c)}{a-c} = \frac{u_i(c)\frac{1-\delta}{\delta}}{a-c}$ and so $\frac{u_i(d)}{b-d} \geq \frac{u_i(c)}{a-c}$. As $u_i(d) < u_i(c)$ we have then that b-d < a-c, a contradiction that proves Part I of the claim.

The proof for Part II is essentially identical: $\delta u_i(a) = u_i(c)$ implies a > c and c > d implies b < a (since $c > d \Rightarrow u_i(a) = \frac{1}{\delta}u_i(c) > \frac{1}{\delta}u_i(d) = u_i(b) \Rightarrow a > b$). With u_i concave, d < c and b < a we have $\frac{u_i(d)\frac{(1-\delta)}{\delta}}{b-d} \geq \frac{u_i(c)\frac{(1-\delta)}{\delta}}{a-c}$ and hence $\frac{u_i(d)}{b-d} \geq \frac{u_i(c)}{a-c}$ and so, using, $u_i(d) < u_i(c)$ we have a-c>b-d. If, contrary to the proposition $u_j(a) \geq \delta u_j(c)$, then $u_j(a)-u_j(c) \geq u_j(c)(\delta-1)$ and, again using the concavity of u_j we then have $\frac{u_j(d)(\delta-1)}{b-d} \geq \frac{u_j(a)-u_j(c)}{a-c} \geq \frac{u_j(c)(\delta-1)}{a-c}$, and hence $u_j(d) > u_j(c)$ implies a-c < b-d—a contradiction, proving Part II of the claim.