JUN 1 9 2007

Application No.: 10/538,057

Docket No.: 4590-419

AMENDMENTS TO THE CLAIMS:

This listing of claims will replace all prior versions and listings of claims in the application:

Listing of Claims:

- 1. (Currently Amended): A method of calibrating the phase of a microwave source, in which said method comprising:
- -a) a first step during which elesing a calibration circuit is closed, the calibration circuit comprising an injection channel connected to a measurement channel via microwave through the source to be calibrated[[;]] said first step including:
- injecting test signal through the source to be calibrated, the test signal being injected on the injection channel,
- -measuring the phase ϕ_m of the signal having passed through the source to be calibrated, the phase of the signal being measured on the measurement channel,
- -measuring the amplitude A_m of the signal having passed through the source to be calibrated, the amplitude of the signal being measured on the measurement channel;
- b) a second step during which opening the calibration circuit is opened at the source to be calibrated [[(]]which is used to perform a relative measurement U_f of the microwave interference signal coming from the imperfect electromagnetic isolation of the calibration circuit and not coming from outside[[),]] said second step including:[[:]]
 - -injecting the test signal on the injection channel;
- -measuring the phase ϕ_f and the amplitude A_f of the signal present on the measurement channel; and
- -c) a third step during which determining a corrected phase value φ_c is determined, this corrected phase being the phase of a complex number U_c , calculated from two complex numbers U_m and U_f , where:

$$U_m = A_m \cdot \exp(i \cdot \varphi_m)$$

$$U_f = A_f \cdot \exp(i \cdot \varphi_f)$$

Application No.: 10/538,057

Docket No.: 4590-419

2. (Previously Presented): The method as claimed in claim 1, in which the complex number U_c is given by the following equation:

$$U_c = U_m - \alpha \cdot U_f$$

where α is a complex coefficient correcting for the fluctuations over time in ϕ_f and A_f between the measurements of ϕ_m and A_m , on the one hand, and of ϕ_f and A_f on the other, this coefficient being equal to 1 in the absence of the correction.

- 3. (Previously Presented): The method as claimed in claim 1, in which a value of the corrected amplitude A_c is determined, this corrected amplitude being the amplitude of the complex number U_c .
- 4. (Previously Presented): The method as claimed in claim 2, in which the complex coefficient α is given by the following equation:

$$\alpha = \frac{U_r(t_1)}{U_r(t_0)}$$

where U_r represents a measurement of the phase and of the amplitude of a reference signal, the measurement $U_r(t_1)$ being concomitant with the measurement of U_m , and the measurement $U_r(t_0)$ being concomitant with the measurement of U_r .

- 5. (Previously Presented): The method as claimed in claim 2, in which a value of the corrected amplitude A_c is determined, this corrected amplitude being the amplitude of the complex number U_c .
- 6. (New): The method as claimed in claim 5, in which the complex coefficient α is given by the following equation:

$$\alpha = \frac{U_r(t_1)}{U_r(t_0)}$$

Application No.: 10/538,057

Docket No.: 4590-419

where U_r represents a measurement of the phase and of the amplitude of a reference signal, the measurement $U_r(t_1)$ being concomitant with the measurement of U_m , and the measurement $U_r(t_0)$ being concomitant with the measurement of U_f .

- .7. (New): The method as claimed in claim 4, in which a value of the corrected amplitude A_c is determined, this corrected amplitude being the amplitude of the complex number U_c .
- 8. (New): The method as claimed in claim1, wherein the calibration circuit is used to increase the phase and amplitude of the signal U_m through the source to be calibrated.