Mixture Models and EM

Sargur Srihari srihari@cedar.buffalo.edu

Plan of discussion

- Examples of mixture models
- K-means algorithm for finding clusters in a data set
- Latent variable view of mixture distributions
 - Assigning data points to specific components of mixture
- General technique for finding m.l. estimators in latent variable models
 - Expectation Maximization (EM) algorithm
- EM Algorithm
 - Gaussian mixture models motivates EM
 - Latent variable viewpoint
 - K-means seen as non-probabilistic limit of EM applied to mixture of Gaussians
 - EM in generality
- Infinite Mixture Models

Definition

- Probabilistic model representing subpopulations within a population
 - Without requiring that the sub-population of the data items be identified
- Constructing such models is called unsupervised learning or clustering

Example of a Mixture Model

Three-component model for a single variable with estimated densities

More Examples

Also Called as Finite Mixture Models (FMMs)

Bernoulli Mixture Model

Handwritten Digit Data

Mixture Model for 0-4 identifies 12 components

Role of Mixture Models

- Mixture models provide:
 - Framework for building complex probability distributions
 - A method for clustering data
- Viewed statistically as follows:
 - Complex distribution expressed in terms of more tractable joint distribution of observed and latent variables
 - Distribution of observed variables alone is obtained by marginalization

K-means Clustering

- Given data set {x₁,...,x_N} in D-dimensional Euclidean space
- Partition into K clusters, which is given
- One of K coding
- Indicator variable $r_{nk} \in \{0,1\}$ where k = 1,...,K
 - Describes which of K clusters data point x_n is assigned to

Distortion measure

Sum of squared errors

$$J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} \| x_n - \mu_k \|^2$$

- Goal is to find values for $\{r_{nk}\}$ and the $\{\mu_k\}$ so as to minimize J
 - Can be done by iterative procedure
 - Each iteration has two steps
 - Successive optimization w.r.t. r_{nk} and μ_k

Two Updating Stages

- First choose initial values for
- First phase:
 - minimize J w.r.t. r_{nk} keeping μ_k fixed
- Second phase:
 - minimize J w.r.t. μ_k keeping r_{nk} fixed
- Two stages correspond to E (expectation) and M (maximization) of EM algorithm
 - Expectation: what is the expected class?
 - Maximization: what is the mle of the mean?

E: Determination of Indicator r_{nk}

- Because $J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} || \mathbf{x}_n \mu_k ||^2$
 - is a linear function of r_{nk} this optimization is performed easily (closed form solution)
- Terms involving different *n* are independent
 - Therefore can optimize for each n separately
 - Choosing r_{nk} to be 1 for whichever value of k gives minimum value of $||x_n \mu_k||^2$
- Thus $r_{nk} = \begin{cases} 1 \text{ if } k = \operatorname{argmin}_{j} \|x_{n} \mu_{j}\|^{2} \\ 0 \text{ otherwise} \end{cases}$
- Interpretation:
 - Assign x_n to cluster whose mean is closest

M: Optimization of μ_k

- Hold r_{nk} fixed
- Objective function $J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} \|\mathbf{x}_n \boldsymbol{\mu}_k\|^2$ is a quadratic function of $\boldsymbol{\mu}_k$
- Minimized by setting derivative w.r.t. μ_k to zero
- Thus $2\sum_{n=1}^{N} r_{nk}(x_n \mu_k) = 0$
- Which is solved to give
- Interpretation:

– Set μ_k to mean of all data points \mathbf{x}_n assigned to cluster k

Termination of K-Means

- Two phases
 - re-assigning data points to clusters
 - Re-computing means of clusters
- Done repeatedly until no further change in assignments
- Since each phase reduces J convergence is assured
- May converge to local minimum of J

Illustration of K-means

- Old Faithful dataset
- Single Gaussian is a poor fit
- We choose K=2
- Data set is standardized so each variable has zero mean and unit standard deviation
- Assignment of each data point to nearest cluster center is equivalent to
 - which side of the perpendicular bisector of line joining cluster centers

K-means iterations

Cost Function after Iteration

- J for Old Faithful Data
- Poor initial value chosen for cluster centers
 - Several steps needed for convergence
 - Better choice is to assign m_k to random subset of k data points
- K-means is itself used to initialize parameters for Gaussian mixture model before applying EM

Implementation of K-means

- Direct implementation can be slow
 - In E step Euclidean distances are computed between every mean and every data point
 - $||\mathbf{x}_n \boldsymbol{\mu}_k||^2$ is computed for n=1,..N and k=1,..K
- Faster implementations exist
 - Precomputing trees where nearby points are on same sub-tree
 - Use of triangle inequality to avoid unnecessary distance calculation

On-line Stochastic Version

- Instead of batch processing entire data set
- Apply Robbins-Monro procedure
 - To finding roots of the regression function given by the derivative of J w.r.t m_k

$$\mu_k^{new} = \mu_k^{old} + \eta_n \left(\mathbf{x}_n - \mu_k^{old} \right)$$

 - where h_n is a learning rate parameter made to decrease monotonically as more samples are observed

Dissimilarity Measure

- Euclidean distance has limitations
 - Inappropriate for categorical labels
 - Cluster means are non-robust to outliers
- Use more general dissimilarity measure v(x,x') and distortion measure

$$\widetilde{J} = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} v(\mathbf{x}_n, \boldsymbol{\mu}_k)$$

- Which gives the k-medoids algorithm
- M-step is potentially more complex than for k-means

Limitation of *K*-means

- Every data point is assigned uniquely to one and only one cluster
- A point may be equidistant from two cluster centers
- A probabilistic approach will have a 'soft' assignment of data points reflecting the level of uncertainty

Image Segmentation and Compression

- Goal: partition image into regions
 - each of which has homogeneous visual appearance
 - or corresponds to objects
 - or parts of objects
- Each pixel is a point in R_G_B space
- K-means clustering is used with a palette of K colors
- Method does not take into account proximity of different pixels

K-means in Image Segmentation

Two examples where 2, 3, and 10 colors are chosen to encode a color image

Data Compression

- Lossless data compression
 - Able to reconstruct data exactly from compressed representation
- Lossy data compression
 - Accept some error in return for greater compression
- K-means for Lossy compression
 - For each of N data points store only identity k of cluster center to which it is assigned
 - Store values of cluster centers m_k where K<<N
 - Vectors m_k are called *code-book vectors*
 - Method is called Vector Quantization
 - Data compression achieved
 - Original image needs 24N bits (R,G,B need 8 bits each)
 - Compressed image needs 24K+Nlog₂K bits
 - For K=2,3 and 10, compression ratios are 4%,8% and 17%