IOT DATA ALCHEMIST HACKATHON

REAL-TIME HUMAN TRACKING SYSTEM

INDIE-VIDUAL

지금 이 순간에도 실종자가 발생하고있고 가족들은 애타게 찾고 있습니다.

(아동, 지적장애인, 치매환자)

연간실종자수 40,000명

한 시간에 4~5명 실종

성인 실종자는 단순 가출로 여겨져 범죄 피해가 증가하고 있습니다.

(18세 이상 일반 성인)

연간 실종자수 65,000 명

성인 실종자 매일 185건 발생

실종문제는 <u>아직 해결되지 않은 사회적 문제</u>이며 고령사회에서 치매 환자 수 증가로 더욱 큰 이슈로 다가오고 있습니다.

@yonhap_graphics(트위터)

실종사건에서 가장 중요한 것은 '신속'입니다.

GOLDEN TIME 24시간이내

실종자를 못 찾을 확률 12시간 뒤 58% 24시간 뒤 68% 일주일 뒤 89%

최근 '이영학 사건'이 발생한 날 서울지방경찰청에 신고된 4건의 실종 신고 중 단 한 건도 출동을 나가지 않았고, 이 날 2명이 주검이 되었습니다.

현재는 경찰인력과 효율성이 낮은 방법에만 의존하고 있어 미제로 남겨진 장기 실종자 문제가 해결되지 않고 있습니다.

국회에서도 실종문제의 심각성을 인식하고 성인을 실종아동법에 포함하는 등 법안 개정을 위해 노력하고 있지만 인력의 한계 로 경찰청에서는 난색을 표하고 있습니다.

휴대폰을 이용한 실종자 찾기 아이디어를 제안해 좋은 평가를 받았으나 어플 설치와 촬영의 한계가 있었습니다.

Mobile Urban Sensing Data의 주행영상과 GPS정보를 이용한 구현가능성을 보고 영상분석을 해보았으나 <mark>영상의 빠른 움직임과 흐릿한 화소로</mark> 얼굴인식 기술 적용의 어려움이 있었습니다.

Data Introduction

Field	data	Output Type
TIME	time	Output in year-month-day hour: minute: second
LNG	longitude	Korea longitude
LAT	latitude	Korea latitude
Image data	Black box	Four black boxes around the road collect images around the road
Image data	Webcam	Four webcams around the road capture images around the road

2). 6 major metropolitan cities Mobile Urban Sensing Data Introduction

는 개	
Explanation	Based on the 6 metropolitan cities, the vehicle for the sensing collects the air, traffic, life, and flow environment data of the city center for 8 hours a day for 3 months
keyword	32 elements (Air Quality, Fine dust, Humidity, VOC, NO2, SO2, Noise, Vibration)
Collection area	Daejeon, Daegu, Busan, Ulsan, Gwangju, and Incheon. When a vehicle equipped with a sensor module travels eight hours a day, it collects 32 kinds of sensing data

전체 운영 시나리오

실시간 탐색 시스템 구성도

기존 저장 데이터 분석 시스템 구성도

latitude : 35.xxx longitude : 129.xxx

datetime : 2017.11.11 13:00

사용자 어플리케이션

longitude: 129.xxx

datetime: 2017.11.11 13:00

영상분석 시스템

DATABASE

핵심 알고리즘 - 사람 검출

사람 검출을 위한 딥러닝 모델 - SSD(Single Shot MultiBox Detector)

사용한 데이터 셋 - MSCOCO(Common Objects In Context)

Method	data	mAP															person	•				
Fast [6]	07	66.9	74.5	78.3	69.2	53.2	36.6	77.3	78.2	82.0	40.7	72.7	67.9	79.6	79.2	73.0	69.0	30.1	65.4	70.2	75.8	65.8
Fast [6]	07+12	70.0	77.0	78.1	69.3	59.4	38.3	81.6	78.6	86.7	42.8	78.8	68.9	84.7	82.0	76.6	69.9	31.8	70.1	74.8	80.4	70.4
Faster [2]	07	69.9	70.0	80.6	70.1	57.3	49.9	78.2	80.4	82.0	52.2	75.3	67.2	80.3	79.8	75.0	76.3	39.1	68.3	67.3	81.1	67.6
Faster [2]	07+12	73.2	76.5	79.0	70.9	65.5	52.1	83.1	84.7	86.4	52.0	81.9	65.7	84.8	84.6	77.5	76.7	38.8	73.6	73.9	83.0	72.6
Faster [2]	07+12+COCO	78.8	84.3	82.0	77.7	68.9	65.7	88.1	88.4	88.9	63.6	86.3	70.8	85.9	87.6	80.1	82.3	53.6	80.4	75.8	86.6	78.9
SSD300	07	68.0	73.4	77.5	64.1	59.0	38.9	75.2	80.8	78.5	46.0	67.8	69.2	76.6	82.1	77.0	72.5	41.2	64.2	69.1	78.0	68.5
SSD300	07+12	74.3	75.5	80.2	72.3	66.3	47.6	83.0	84.2	86.1	54.7	78.3	73.9	84.5	85.3	82.6	76.2	48.6	73.9	76.0	83.4	74.0
SSD300	07+12+COCO	79.6	80.9	86.3	79.0	76.2	57.6	87.3	88.2	88.6	60.5	85.4	76.7	87.5	89.2	84.5	81.4	55.0	81.9	81.5	85.9	78.9
SSD512	07	71.6	75.1	81.4	69.8	60.8	46.3	82.6	84.7	84.1	48.5	75.0	67.4	82.3	83.9	79.4	76.6	44.9	69.9	69.1	78.1	71.8
SSD512	07+12	76.8	82.4	84.7	78.4	73.8	53.2	86.2	87.5	86.0	57.8	83.1	70.2	84.9	85.2	83.9	79.7	50.3	77.9	73.9	82.5	75.3
SSD512	07+12+COCO	81.6	86.6	88.3	82.4	76.0	66.3	88.6	88.9	89.1	65.1	88.4	73.6	86.5	88.9	85.3	84.6	59.1	85.0	80.4	87.4	81.2

What is COCO?

COCO is a large-scale object detection, segmentation, and captioning dataset. COCO has several features:

- Object segmentation
- Recognition in context
- Superpixel stuff segmentation
- 330K images (>200K labeled)
- ↑ 1.5 million object instances
- 80 object categories
- 91 stuff categories
- 5 captions per image
- ◆ 250,000 people with keypoints

핵심 알고리즘 - 사람 검출

성능 개선을 위한 딥러닝 아키텍처 보완: MobileNet

Figure 3. Left: Standard convolutional layer with batchnorm and ReLU. Right: Depthwise Separable convolutions with Depthwise and Pointwise layers followed by batchnorm and ReLU.

Model name	Speed	COCO mAP	Outputs	
ssd_mobilenet_v1_coco	fast	21	Boxes	
ssd_inception_v2_coco	fast	24	Boxes	
rfcn_resnet101_coco	medium	30	Boxes	
faster_rcnn_resnet101_coco	medium	32	Boxes	
faster_rcnn_inception_resnet_v2_atrous_coco	slow	37	Boxes	

Table 13. COCO object detection results comparison using different frameworks and network architectures. mAP is reported with COCO primary challenge metric (AP at IoU=0.50:0.05:0.95)

Framework	Model	mAP	Billion	Million		
Resolution			Mult-Adds	Parameters		
	deeplab-VGG	21.1%	34.9	33.1		
SSD 300	Inception V2	22.0%	3.8	13.7		
	MobileNet	19.3%	1.2	6.8		
Faster-RCNN	VGG	22.9%	64.3	138.5		
300	Inception V2	15.4%	118.2	13.3		
	MobileNet	16.4%	25.2	6.1		
Faster-RCNN	VGG	25.7%	149.6	138.5		
600	Inception V2	21.9%	129.6	13.3		
	Mobilenet	19.8%	30.5	6.1		

Figure 6. Example objection detection results using MobileNet SSD.

핵심 알고리즘 - 이미지매칭

Feature Extraction 적용

- GMS (Grid-based Motion Statistics for Fast, Ultra-robust Feature Correspondence)
- SIFT (Scale-Invariant Feature Trasform)

노이즈와 해상도 문제로 인해 특징점 추출이 어려움

Sample data : 대전시 - 2017-08-25(FRI) - Car1 - blackbox front - Rec_20170825_174904_D.avi

핵심 알고리즘 - 이미지매칭

Histogram Comparison 적용

- Correlation
- Chi-Square
- Intersection
- Bhattacharyya distance

Correlation equation

$$d(H_1, H_2) = \frac{\sum_{I} (H_1(I) - \bar{H}_1)(H_2(I) - \bar{H}_2)}{\sqrt{\sum_{I} (H_1(I) - \bar{H}_1)^2 \sum_{I} (H_2(I) - \bar{H}_2)^2}}$$

Correlation이 가장 좋은 성능을 보임. Target과 비교했을때 92~95%를 threshold로 설정하기로 결정

Sample data : 대전시 - 2017-08-25(FRI) - Car1 - blackbox front - Rec_20170825_174904_D.avi

추후 보완 사항

이미지 매칭 threshold 자동 설정

- Threshold에 따라 오검출 발생
- 머신러닝을 이용해서 추출된 histogram을 상황에 맞게 threshold 자동 설정

바운딩 박스 최적화 이미지 매칭 시 배경의 영향을 덜 받게 하기 위해 전경분리를 통해서 대상 객체만 정확하게 분리

추후 보완 사항

얼굴 인식 기술 적용

- Eigenface, Fisherface, LPB
- Deep learning

Deep neural networks learn hierarchical feature representations

Home CCTV를 통해 전신 사진 비교를 통한 실종자 찾기가 가능합니다.

반려동물 실종 시, 이동반경이 넓어 역시 빠른 대응이 중요합니다.

강아지를 찾습니다! 010-1234-5678

죄송합니다! 전단지는 강아지를 찾는 즉시 훼수하겠습니다

점례: 2살: 웰시코기: 수컷 점례를 보셨으면 부디 연락주세요. 꼭 사례하겠습니다.

010.1234.5678/010.4321.8765

딥러닝을 이용한 안면인식 및 특징점 추출기술로 반려동물 추적이 가능합니다.

