1 Problem Definition

In the Set Cover Problem one is given a universe set $U = \{1, 2, ..., n\}$, a set of Subsets $S = \{s_1, s_2, ..., s_m\}$ and a set of costs $C = \{c_1, c_2, ..., c_m\}$ that assign costs to each subset $s_k \in S$. We can represent the relationship between U and S in a matrix A which is defined in the following way

$$a_{ij} = \begin{cases} 1 & \text{if } i \in s_j \\ 0 & \text{otherwise} \end{cases}$$

To describe a solution X we will use a vector \vec{x} with

$$x_j = \begin{cases} 1 & \text{if } s_j \in X \\ 0 & \text{otherwise} \end{cases}$$

The goal is now to find an X which

minimizes
$$\sum_{j}^{m} x_{j} \cdot c_{j} \tag{1}$$

with
$$\sum_{j=1}^{m} a_{ij} \cdot x_j \ge 1, \ i \in \{1, 2, \dots, n\}$$
 (2)

2 Features

The table below shows an overview of the selected features

Group	Features	Description	Definition
Subset Size	mean standard deviation median absolute deviation mininum 0.25 - quantile median 0.75 - quantile maximum		$\left\{ \frac{\sum_{i=0}^{n} a_{ij}}{ U } \mid 1 \le j \le m \right\}$
Subset Size to Cost ratio	mean standard deviation median absolute deviation mininum 0.25 - quantile median 0.75 - quantile maximum		$\left\{ \frac{\sum_{i=1}^{n} a_{ij} \cdot \sum_{k=c_k}^{m} c_k}{ U \cdot c_j} \mid 1 \le j \le m \right\}$
Element Appearances	mean standard deviation median absolute deviation mininum 0.25 - quantile median 0.75 - quantile maximum		$\left\{ \frac{\sum_{j}^{m} a_{ij}}{ S } \mid 1 \le i \le n \right\}$
Costs	variation coefficient relative median absolute deviation quartile coefficient of dispersion		$\left\{c_j \mid 1 \le j \le m\right\}$
Singular elements	count	Elements that appear in only a single set	$\left\{i \mid \sum_{j=0}^{m} a_{ij} = 1\right\}$
Graph	number of connected components shortest cycle longest cycle		$G = (V, E)$ $V = U$ $E = \{(i, j) \mid \exists s \in S : i, j \in s\}$