## Local-Access Generators

Amartya Shankha Biswas, Ronitt Rubinfeld, Anak Yodpinyanee CSAIL, MIT

#### Partial Sampling from a Distribution

# Full Sampling $R \sim D$ in $\mathcal{O}(T)$ time Do we need to spend $\mathcal{O}(T)$ upfront?



#### Problem Statement

A local-access generator of a random object  $R \sim D$ , provides indirect access to R' with a query oracle s.t.

- ► All query responses (partial samples) are consistent
- ▶ The **distribution** of R' is  $\epsilon$ -close to D in  $L_1$  distance

## Trivial Example - Sampling G(n, p)

**Model:** N vertex undirected graph: edge probability p

Query Model: Given vertices u, v, is  $(u, v) \in E$ ?

▶ Just a collection of  $\frac{N(N-1)}{2}$  Bernoulli RVs with bias p.

## Find Next-Neighbor (skip-sampling)

Adjacency List query: Return neighbors of v in order.  $\mathbb{P}[k \text{ non-neighbors before next-neighbor}] = p(1-p)^k$ 

- ► Can sample from this distribution in  $\mathcal{O}(1)$  time [ELMR17]
- ► Avoid sampling each 0 separately

Issue: Adjacency matrix is symmetric So, each zero must also appear in the corresponding column of v



If the sampled neighbor is a 0, discard and resample. Cannot afford too many re-samplings.

#### Bucketing-Generator & Random-Neighbor Queries

*Problem*: next-neighbor cannot "jump" to a random potential neighbor of v**Bucketing** Divide each row of the adjacency matrix into contiguous buckets  $\Rightarrow$  random neighbor of  $v \approx$  random neighbor in a random bucket of v

*Problem*: Do NOT know deg(v): Must return each neighbor with prob. 1/ deg(v)Rejection Sampling Normalize probability of returning any specific neighbor

*Problem*: next-neighbor cannot "jump" to a random potential neighbor of v ⇒ suffice to show that **any neighbor** is returned with the **equal** probability

#### #neighbors in each bucket

 $\sim \Theta(1)$  in expectation,  $O(\log n)$  max w.h.p.  $\Rightarrow$  #buckets  $\sim$  #neighbors



 $\Pr[u \text{ returned}] = \frac{1}{\text{\#buckets}} \times \frac{1}{\text{\#neighbors in bucket}} \times \frac{\text{\#neighbors in bucket}}{O(\log n)} \sim$  $\Omega(1/\log n)$ #neighbors

 $\Pr[\text{some neighbor returned}] \sim \Omega(1/\log n) \Rightarrow O(\log n) \text{ tries suffices}$ 

Data Structure Buckets contains set of known neighbors, and "filled" marker

- $\Rightarrow$  "fill" with expected  $\Theta(1)$  next-neighbor queries  $O(\log n)$  time per query  $\tilde{O}(m+n)$  space usage
- $\Rightarrow$  random-neighbor succeeds in  $O(\log n)$  tries

### Stochastic Block Model

Communities  $\{C_i\}_{i\in[r]}$  partition V: If  $u\in C_i, v\in C_j$ , then  $\mathbb{P}_{(u,v)\in E}=p_{ij}$ .

#### Given sizes of each comunity $C_i$ and a range of length $\ell$

- ► Count number of occurrences of each community in any contiguous range
- ► Sample from Multivariate Hypergeometric Distribution

$$\Pr[\mathbf{S}_{\ell}^{\mathbf{C}} = \langle s_1, \dots, s_r \rangle] = \frac{\binom{C_1}{s_1} \cdot \binom{C_2}{s_2} \cdots \binom{C_r}{s_r}}{\binom{B}{\ell}} \quad \text{where } \ell = \sum_{i=1}^r s_i \text{ and } B = \sum_{i=1}^r C_i$$



#### Multivariate Hypergeometric Distribution

[GGN10] solves the special case of r=2 and  $B=2\ell$ .

COUNTING-GENERATOR

- ▶ Extending to  $B \neq 2\ell$ : Divide  $\ell$  into dyadic segments.
- **Extending to** r > 2: Make a tree with a leaf for each  $C_i$  Every branch in the tree is equivalent to a 2-splitting
- ► Use Counting-Generator to sample community counts
- ► Run the Bucketing-Generator as before

#### Work in Progress



## Graph Coloring: Glauber Dynamics

Find random k-coloring for graph with max degree  $\Delta$ 

Global Algorithm (for  $k > 2\Delta$ )

- Sample  $\mathcal{O}(n \log n)$  (vertex, color) pairs:  $\{(v_1,c_1),(v_2,c_2),(v_3,c_3),\cdots,(v_r,c_r)\}$
- For steps  $i \in [1 \cdots r]$
- If no neighbor of  $v_i$  has color  $c_i$  set  $v_i$ 's color to  $c_i$ .
- Else, do nothing

**Local Algorithm** (for  $k = \Theta(\Delta \log n)$ )

- ▶ Given v, what is color(v) (in some random coloring)?
- ▶ Locally sample occurrences of  $(v, \star)$  using the *Count* Splitting Generator
- Sample  $(w, \star)$  if necessary, where w is neighbor of v
- Query tree is bounded for  $k = \Theta(\Delta \log n)$