GÉNÉRALITÉS SUR LES APPLICATIONS LINÉAIRES

Exercice 1 - Avez-vous compris ce qu'étaient le noyau et l'image ? - $L1/Math\ Sup$ - \star

Supposons d'abord que $g \circ f = 0$, et prenons $y \in \text{Im} f$. Alors il existe $x \in E$ tel que y = f(x). Mais alors, $g(y) = g \circ f(x) = 0$, et donc $y \in \ker g$.

Reciproquement, supposons que $\operatorname{Im} f \subset \ker g$. Alors, pour tout $x \in E$, $f(x) \in \operatorname{Im} f \subset \ker g$, et donc g(f(x)) = 0, prouvant que $g \circ f = 0$.

Exercice 2 - Isomorphisme - $L1/Math Sup - \star\star$

On définit $g: G \to \operatorname{Im}(f)$ par g(x) = f(x). Alors :

- -g est linéaire : c'est une conséquence directe du fait que f est linéaire.
- g est injective : si $x \in \ker(g)$, alors $x \in G$ et $x \in \ker(f)$. Comme G et $\ker(f)$ sont supplémentaires, on a x = 0.
- -g est surjective : prenons $y \in \text{Im}(f)$. Alors y = f(x) avec $x \in E$. Décomposons x en x = u + v avec $u \in G$ et $v \in \ker(f)$. Alors y = f(x) = f(u) + f(v) = f(u) = g(u) avec $u \in G$, ce qui prouve bien que g est surjective.

Ainsi, g définit un isomorphisme de G sur Im(f).

Exercice 3 - Factorisation d'une application linéaire surjective - $L1/L2/Math\ Sup$ - **

- 1. Soit y dans F. Alors, $y = f \circ g(y) = f(g(y))$, et donc f est surjective. Remarquons que ceci ne dépend pas du tout du fait que les applications f et g sont linéaires. D'ailleurs, il est facile de prouver qu'une application $f: E \to F$ est surjective si et seulement s'il existe $g: F \to E$ telle que $f \circ g = Id_F$. Ce qu'il s'agit de prouver maintenant, c'est que si f est linéaire, alors on peut choisir aussi g linéaire.
- 2. (a) On montre que \hat{f} est injective et surjective.
 - \hat{f} est injective : si $x \in G$ est tel que $\hat{f}(x) = 0$, alors f(x) = 0 et donc $x \in \ker(f)$. Comme $x \in G \cap \ker(f) = \{0\}$, on a x = 0 et donc \hat{f} est injective (il est clair que \hat{f} est linéaire).
 - \hat{f} est surjective : soit y élément de F. On sait qu'il existe x de E telle que f(x) = y. Décomposons x en $x = x_1 + x_2$ avec $x_1 \in \ker(f)$ et $x_2 \in G$. Alors $f(x) = f(x_1) + f(x_2) = 0 + \hat{f}(x_2)$ et donc $\hat{f}(x_2) = f(x) = y$ ce qui prouve que \hat{f} est surjective.
 - (b) Soit y dans F, y = f(x). Alors $f \circ g(y) = f \circ \hat{f}^{-1}(f(x)) = f(x) = y$. Donc $f \circ g = Id_F$.
- 3. Si on admet (ou si on sait) que tout sous-espace vectoriel de E admet un supplémentaire, alors on a prouvé que $f \in \mathcal{L}(E,F)$ est surjective si et seulement s'il existe $g \in \mathcal{L}(F,E)$ tel que $f \circ g = Id_F$.

Exercice 4 - Toujours liés - L1/Math Sup - ***

L'hypothèse nous dit, que pour tout x non-nul, il existe un scalaire λ_x tel que $f(x) = \lambda_x x$. On doit prouver qu'il existe un scalaire λ tel que $\lambda_x = \lambda$ pour tout x de E, ou encore que $\lambda_x = \lambda_y$ quels que soient x et y non-nuls. Si la famille (x, y) est liée, c'est clair, car $y = \mu x$ et $\mu \lambda_y x = \lambda_y y = f(y) = \mu f(x) = \mu \lambda_x x$ et on peut simplifier par $\mu x \neq 0$. Si la famille (x, f(x)) est libre, calculons f(x + y). D'une part,

$$f(x+y) = \lambda_{x+y}(x+y) = \lambda_{x+y}x + \lambda_{x+y}y,$$

d'autre part,

$$f(x+y) = f(x) + f(y) = \lambda_x x + \lambda_y y.$$

Puisque la famille (x, y) est libre, toute décomposition d'un vecteur à l'aide de combinaison linéaire de ces vecteurs est unique. On obtient donc $\lambda_x = \lambda_y = \lambda_{x+y}$, ce qui est le résultat voulu.

Exercice 5 - Factorisation et inclusion de noyaux - $L1/L2/Math\ Sup/Math\ Sp\acute{e}$ - ***
Une inclusion est immédiate : si $v=f\circ u$, et $x\in\ker(u)$, avec v(x)=f(u(x))=f(0)=0 et donc $\ker(u)\subset\ker(v)$.

Réciproquement, supposons que $\ker(u) \subset \ker(v)$. Prenons $y \in \operatorname{Im}(u)$. Alors y = u(x) pour un x dans E. Nécessairement, on a v(x) = f(u(x)) = f(y) et donc f doit être définie sur $\operatorname{Im}(u)$ par f(y) = v(x) pour y = u(x).

On considère donc un supplémentaire S de $\mathrm{Im}(u)$ dans F et on définit f sur la somme directe $\mathrm{Im}(u) \oplus S$ par

$$\begin{cases} f(y) &= 0 & \text{si } y \in S \\ f(y) &= v(x) & \text{si } y \in \text{Im}(u) \text{ et } y = u(x). \end{cases}$$

Cette définition a bien un sens. En effet, si $y = u(x_1) = u(x_2)$, alors $x_1 - x_2 \in \ker(u) \subset \ker(v)$ et donc $v(x_1) = v(x_2)$. De plus, f ainsi défini est bien linéaire. Il suffit de verifier la linéarité sur $\operatorname{Im}(f)$. Mais prenons $y_1 = u(x_1), \ y_2 = u(x_2) \in \operatorname{Im}(f)$ et $\lambda \in \mathbb{K}$. Alors

$$y_1 + \lambda y_2 = u(x_1) + \lambda u(x_2) = u(x_1 + \lambda x_2)$$

et donc

$$f(y_1 + \lambda y_2) = v(x_1 + \lambda x_2) = v(x_1) + \lambda v(x_2) = f(x_1) + \lambda f(x_2).$$

Ceci achève la preuve du résultat.

Exercice 6 - Factorisation et inclusion des images - L1/Math Sup - ***

- $(ii) \implies (i)$: c'est l'inclusion facile. En effet, si $x \in \text{Im}(v)$, alors x = v(y) = u(w(y)) et donc $x \in \text{Im}(u)$.
- $-(i) \Longrightarrow (ii)$: commençons par réfléchir à ce que l'on souhaite... Pour $x \in E$, on veut définir $w(x) \in F$ tel que u(w(x)) = v(x). Mais, puisque $\mathrm{Im}(v) \subset \mathrm{Im}(u)$, alors il existe $y \in E$ tel que v(x) = u(y). On a envie de poser w(x) = y, ce qui donne la bonne factorisation. Le problème c'est que plusieurs y peuvent répondre à ce problème... On va se simplifier la tâche en considérant F_1 un supplémentaire de $\ker u$ dans F. Alors $u_{|F_1}$ est un isomorphisme de F_1 sur G. En particulier, on peut définir l'isomorphisme réciproque $f: G \to F_1$ vérifiant u(f(x)) = x. On pose alors w(x) = f(v(x)). w est bien un élément de $\mathcal{L}(E, F)$, et

$$\forall x \in E, u(w(x)) = u(f(v(x))) = v(x).$$

SYMÉTRIE ET PROJECTIONS

Exercice 7 - Projections - L1/L2/Math Sup/Math Spé - **

- 1. (a) Soit $y \in \text{Im}(p)$. Alors y = p(x). On en déduit p(y) = p(p(x)) = p(x) = y. Prouvons maintenant que $\ker(p)$ et Im(p) sont en somme directe. Si $y \in \ker(p) \cap \text{Im}(p)$, alors y = p(y) = 0. Pour prouver que les deux sous-espaces sont supplémentaires, il y a deux alternatives :
 - la première est d'utiliser le théorème du rang (le faire!). Cette méthode suppose néanmoins que E est de dimension finie, ce que l'on ne suppose pas à ce moment de l'exercice.
 - la seconde est de faire à la main! Prenons donc $x \in E$, et posons y = x p(x). Il est clair que x = p(x) + y, et comme p(y) = 0, $y \in \ker(p)$.
 - (b) Considérons une base de E formée par la réunion d'une base de $\operatorname{Im}(p)$ et d'une base de $\operatorname{ker}(p)$ (on obtient bien une base de E car les sous-espaces sont supplémentaires). Alors la matrice de p dans cette base a exactement la forme voulue. La trace de p (ie la trace de cette matrice) vaut donc le nombre de vecteurs dans une base de $\operatorname{Im}(p)$, donc la dimension de $\operatorname{Im}(p)$, c'est-à-dire encore le rang de p.
- 2. Il est clair que $\text{Im}(p_j)=E_j\subset \ker(p_i)$ ce qui prouve que $p_i\circ p_j=0$. D'autre part, si $x\in E_i$, on a

$$p_1(x) + \dots + p_i(x) + \dots + p_n(x) = 0 + \dots + x + \dots + 0 = x.$$

On a $p_1 + \cdots + p_n = Id_E$ sur chaque E_i , donc sur tout l'espace par "recollement". En outre, le calcul de la trace du projecteur à l'aide de la trace de sa matrice dans cette base montre que cette trace vaut exactement le nombre de vecteurs d'une base de Im(p), c-est-à-dire exactement le rang de p.

Exercice 8 - Matrice d'une projection - L1/Math Sup - **

On commence par chercher une base de P et une base de D. On a

$$(x,y,z) \in P \iff \begin{cases} x = x \\ y = y \\ z = x -y \end{cases}$$

Autrement dit, si on pose u=(1,0,1) et v=(0,1,-1), alors (u,v) est une base de P. On cherche ensuite une base (ici, un vecteur directeur) de D. Clairement, (1,-1,1) convient. On vérifie ensuite que (u,v,w) est une base de \mathbb{R}^3 . La matrice de la projection dans cette base est :

$$A = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{array}\right).$$

Si P est la matrice de passage de la base canonique à la base (u, v, w), alors la matrice recherchée est PAP^{-1} . Or, on peut écrire P directement,

$$P = \left(\begin{array}{ccc} 1 & 0 & 1 \\ 0 & 1 & -1 \\ 1 & -1 & 1 \end{array}\right),$$

et, après calculs, on obtient

$$P^{-1} = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & -1 \\ 1 & -1 & -1 \end{pmatrix}, PAP^{-1} = P = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & -1 \\ -1 & 1 & 2 \end{pmatrix}.$$

Exercice 9 - Famille de deux projecteurs - $L1/Math\ Sup$ - \star

Si (p,q) n'est pas libre, il existe $\lambda \in \mathbb{K}$ tel que $q=\lambda p$. Alors

$$\lambda p = q = q^2 = \lambda^2 p^2 = \lambda^2 p.$$

On a donc $\lambda^2 = \lambda$, c'est-à-dire $\lambda = 1$ ce qui contredit $p \neq q$.

Exercice 10 - Somme de deux projecteurs - L1/Math Sup - **

1. La condition est suffisante. En effet, si $p \circ q = q \circ p = 0$, alors

$$(p+q)^2 = p^2 + p \circ q + q \circ p + q^2 = p + q$$

et donc p + q est un projecteur.

Réciproquement, si p+q est un projecteur, alors le calcul précédent donne

$$p \circ q + q \circ p = 0.$$

On a alors:

$$p \circ q = p^2 \circ q = p \circ (p \circ q) = -p \circ (q \circ p) = -(p \circ q) \circ p = (q \circ p) \circ p = q \circ p.$$

On obtient donc $2p \circ q = 0$, ce qui entraı̂ne $p \circ q = 0$ et par suite $q \circ p = 0$.

2. Prouvons d'abord que $\operatorname{Im}(p)$ et $\operatorname{Im}(q)$ sont en somme directe. En effet, si $x \in \operatorname{Im}(p) \cap \operatorname{Im}(q)$, alors x = p(x) et x = q(x) d'où x = p(x) = p(q(x)) = 0.

D'autre part, il est clair que $\operatorname{Im}(p+q) \subset \operatorname{Im}(p) + \operatorname{Im}(q)$. Réciproquement, soit $z=p(x)+q(y) \in \operatorname{Im}(p)+\operatorname{Im}(q)$. Alors

$$p(z) = p^{2}(x) + p \circ q(y) = p(x)$$
 et $q(z) = q \circ p(x) + q^{2}(y) = q(y)$.

Ainsi, $z = (p+q)(z) \in \text{Im}(p+q)$.

Enfin, on a toujours $\ker(p) \cap \ker(q) \subset \ker(p+q)$. Réciproquement, si p(x) + q(x) = 0, alors puisque $\operatorname{Im}(p)$ et $\operatorname{Im}(q)$ sont en somme directe, on a p(x) = 0 et q(x) = 0, d'où $x \in \ker(p) \cap \ker(q)$.

Exercice 11 - Sous-espace stable et projecteur - L1/Math Sup - **

Supposons d'abord que $u \circ p = p \circ u$, et prouvons que $\ker(p)$ et $\operatorname{Im}(p)$ sont stables par u. En effet, si p(x) = 0, alors $p \circ u(x) = u \circ p(x) = 0$ et donc $u(x) \in \ker p$. De plus, si $x \in \operatorname{Im}(p)$, alors x = p(y) et $u(x) = u \circ p(y) = p(u(y)) \in \operatorname{Im}(p)$. Remarquons que cette implication n'utilise pas du tout le fait que p est un projecteur.

Réciproquement, supposons que $\ker p$ et $\operatorname{Im}(p)$ sont stables par u, et prouvons que u et p commutent. Prenons $x \in E$. Il se décompose de manière unique en x = y + z, avec $y \in \ker(p)$ et $z \in \operatorname{Im}(p)$. En particulier, p(y) = 0 et p(z) = z. Mais alors, on a d'une part

$$u(p(x)) = u(z)$$

et d'autre part, puisque $u(y) \in \ker(p)$ et $u(z) \in \operatorname{Im}(p)$ par hypothèse :

$$p(u(x)) = p(u(y)) + p(u(z)) = u(z).$$

Ainsi, u(p(x)) = p(u(x)) et les deux endomorphismes p et u commutent.

Exercice 12 - Endomorphismes annulant un polynôme de degré 2 - $L1/Math\ Sup$ -

1. On remarque que

$$(\beta - \alpha)Id_E = (f - \alpha Id_E) - (f - \beta Id_E).$$

Autrement dit, si $x \in E$, on a x = y + z avec

$$y = (f - \alpha I d_E)(y_1)$$
 et $y_1 = \frac{1}{\beta - \alpha} x$

et

$$z = (f - \beta Id_E)(z_1)$$
 et $z_1 = \frac{1}{\alpha - \beta}x$.

2. La relation s'écrit encore

$$f^2 - (\alpha + \beta)f + \alpha\beta Id_E = 0$$

soit

$$f \circ \frac{1}{-\alpha\beta}(f - (\alpha + \beta)Id_E) = Id_E$$

et

$$\frac{1}{-\alpha\beta}(f - (\alpha + \beta)Id_E)circf = Id_E$$

ce qui prouve que f est inversible, d'inverse $\frac{1}{-\alpha\beta}(f-(\alpha+\beta)Id_E)$.

3. On commence par prouver que les espaces vectoriels sont en somme directe. En effet, si $x \in \ker(f - \alpha Id_E) \cap \ker(f - \beta Id_E)$, alors

$$f(x) = \alpha x$$
 et $f(x) = \beta x$

ce qui prouve que $(\beta - \alpha)x = 0 \implies x = 0$. D'autre part, la relation implique que $\operatorname{Im}(f - \beta Id_E) \subset \ker(f - \alpha Id_E)$. Mais dans cette relation, tout commute et on a aussi

$$(f - \beta Id_E) \circ (f - \alpha Id_E) = 0$$

et donc $\operatorname{Im}(f - \alpha Id_E) \subset \ker(f - \beta Id_E)$. Il suffit maintenant d'appliquer le résultat de la première question pour conclure. En effet, si x = y + z avec $y \in \operatorname{Im}(f - \alpha Id_E)$ et $z \in \operatorname{Im}(f - \beta Id_E)$, alors x = y + z avec $y \in \ker(f - \beta Id_E)$ et $z \in \operatorname{Im}(f - \alpha Id_E)$.

4. On utilise à nouveau le résultat de la question 1. En effet, avec les mêmes notations que ci-dessus, on a p(x) = z et donc

$$p(x) = (f - \beta I d_E) \left(\frac{1}{\alpha - \beta} x\right).$$

Exercice 13 - Base de projecteurs - L2/Math Spé - **

1. On sait que $p \in \mathcal{L}(E)$ est un projecteur si et seulement si $p^2 = p$. M est donc la matrice d'un projecteur si et seulement $M^2 = M$.

2. Il suffit de prendre le carré de ces matrices. Il est clair que $E_{i,i}^2=1.$ De plus,

$$(E_{i,i} + E_{i,j})^2 = E_{i,i}^2 + E_{i,i}E_{i,j} + E_{i,j}E_{i,i} + E_{i,j}^2 = E_{i,i} + E_{i,j} + 0 + 0.$$

Ceci prouve que $E_{i,i} + E_{i,j}$ est la matrice d'un projecteur.

3. Considérons la famille constituée par les matrices $E_{i,i}$ et $E_{i,i} + E_{i,j}$, pour $1 \le i, j \le n$ et $j \ne i$. Il suffit de démontrer que cette famille est une base de $\mathcal{M}_n(\mathbb{R})$. Elle est constituée de $n + n(n-1) = n^2$ éléments. Il suffit donc de prouver qu'il s'agit d'une famille génératrice. Mais la famille des $(E_{i,j})$ est génératrice et chaque $E_{i,j}$ s'écrit en fonction des éléments précédents : c'est clair pour $E_{i,i}$, et pour $i \ne j$, on a

$$E_{i,j} = (E_{i,i} + E_{i,j}) - E_{i,i}.$$