

DL as Representation Learning

A nice perspective on DNs is to view them as "space tranformation machines"

- The input is encoded in its natural space
- The first layer morphs the input into a transformed space and so on
- The last layer applies linear/logistic regression to a learned representation

DL as Representation Learning

From this perspective, DNs can act as automatic feature extractor

This is the reason why they work so well on certain domains

- E.g. images, audio, natural language processing
- ...Meaning domains with complex or perceptual representations

Consider a digit recognition application

With classical ML, one would need to:

- Design high quality features (which requires a lot of domain expertise)
- ...And then train a model

With DL, the first step can be (partially skipped)

This is a huge advantage!

We will try to use Deep Learning on image data

In particular we will use the MNIST Digit Recognition Dataset

Code to download MNIST is available directy in Keras

```
In [2]: from keras.datasets import mnist
# load the data, shuffled and split between train and test sets
(x_train, y_train), (x_test, y_test) = mnist.load_data()
```

The MNIST data is now stored in pairs of numpy arrays.

- The x_train and x_test arrays contain the greyscale value of each pixel
- The y_train and y_test arrays contain the class (digit) as an integer

Let's inspect the output

```
In [3]: print(f'Shape of y_train: {y_train.shape}')
    print(f'Shape of y_test: {y_test.shape}')
    n_tr = y_train.shape[0]
    n_ts = y_test.shape[0]

Shape of y_train: (60000,)
    Shape of y_test: (10000,)
```

- There are 60,000 training examples
- ...And 10,000 test examples

The target arrays are one-dimensional

Let's check a sample:

```
In [4]: y_train
Out[4]: array([5, 0, 4, ..., 5, 6, 8], dtype=uint8)
```

Let's inspect the input

```
In [5]: print(f'Shape of x_train: {x_train.shape}')
    print(f'Shape of x_test: {x_test.shape}')
    x_h = x_train.shape[1]
    x_w = x_train.shape[2]

Shape of x_train: (60000, 28, 28)
    Shape of x_test: (10000, 28, 28)
```

The dataset input consists of 28x28 matrices

```
In [6]: print(f'Minimum: {x_train.min()} (train), {x_test.min()} (test)')
print(f'Maximum: {x_train.max()} (train), {x_test.max()} (test)')

Minimum: 0 (train), 0 (test)
Maximum: 255 (train), 255 (test)
```

- The content of the matrix cells ranges from 0 to 255
- ...And it represents 8 bit brightness values

Let's see some sample images

```
In [7]: m, n = 2, 6
         plt.figure(figsize=figsize)
         for i in range(m):
              for j in range(n):
                   plt.subplot(m, n, i*n + j + 1)
                   plt.imshow(x_train[i*n + j], cmap='Greys')
         plt.show()
                                                10 -
                                                                   10 -
           10
                             10 -
                                                                                     10
                                                20 -
           20
                                                     10
           10
                                                10 -
                             10
                                                                   10
                                                                                                        10
           20
                                                20 -
                10 20
                                                     10
                                                         20
                                                                                           10
                                                                                                             10
```

Preprocessing

Before we can start training we need to do some preprocessing

We will apply a min-max encoding to the input

...Since minima and maxima are clearly define

```
In [8]: x_train_norm = x_train / 255.0
x_test_norm = x_test / 255.0
```

We will adopt a one-hot encoding for the output

- ...Since we will need to build a network with one neuron per class
- Keras provides a utility function for the conversion

Adding Channel Information

When working with image data, one extra step is needed

...Since images are not necessarily greyscale!

- Color images are often represented using the RGB color space
- ...I.e. each pixel has an associated value for the red, green, and blue hue.

For this reason, an image is best described by a tensor not a matrix

- An i, j pair identifies a pixel
- ...And a third dimension specifies the channel (RGB)

Even if we have a single channel, is best to make Keras aware of that

```
In [10]: x_train_c = x_train_norm.reshape(-1, x_h, x_w, 1)
    x_test_c = x_test_norm.reshape(-1, x_h, x_w, 1)
    input_shape = (x_h, x_w, 1)
    output_shape = (10,)
    print(f'New shape of the training set: {x_train_c.shape}')
New shape of the training set: (60000, 28, 28, 1)
```

Training a Baseline Model

As a baseline, we will build an MLP model

```
In [11]:

def build_mlp(input_shape, output_shape, hidden, rate=0.05):
    mdl = keras.Sequential()
    mdl.add(keras.Input(shape=input_shape))
    mdl.add(keras.layers.Flatten())
    for k, h in enumerate(hidden):
        mdl.add(Dense(h, activation='relu'))
        mdl.add(keras.layers.Dropout(rate))
    mdl.add(Dense(output_shape[0], activation='softmax'))
    return mdl
```

A classical MLP is not designed to handle images

- ...For this reason with start with a special Flatten layer
- ...Which discards all tensor dimensions (except the number of samples)

We also need to build one output neuron per class

...And we need to use a softmax activation function

Training a Baseline Model

We can now train a 2-layer network as a baseline

```
In [12]: def train_nn(nn, X_tr, y_tr, batch_size, epochs, verbose=1):
          nn.compile(loss='categorical crossentropy', optimizer='adam')
          history = nn.fit(X tr, y tr, batch size=batch size, epochs=epochs, verbose=verbose)
          cols = [k for k in history.history.keys()]
          vals = np.array([history.history[c] for c in cols]).T
          return pd.DataFrame(data=vals, columns=cols)
       nn1 = build_mlp(input_shape, output_shape, hidden=[16, 16])
       history = train nn(nn1, x train c, y train cat, batch size=32, epochs=30, verbose=1)
       Epoch 1/30
       1875/1875 — 1s 388us/step - loss: 0.9207
       Epoch 2/30
                      1s 368us/step - loss: 0.3404
       1875/1875 ———
       Epoch 3/30
       1875/1875 — 1s 367us/step – loss: 0.2849
       Epoch 4/30
       1875/1875 — 1s 375us/step – loss: 0.2532
       Epoch 5/30
       1875/1875 — 1s 366us/step – loss: 0.2319
       Epoch 6/30
       1875/1875 — 1s 359us/step – loss: 0.2252
       Epoch 7/30
                   1s 366us/step - loss: 0.2176
       1875/1875 —
       Epoch 8/30
```

Training a Baseline Model

Let's inspect the training curve

There's still something to go before convergence, but we'll stop here

Evaluation

Now we can compute the model accuracy

We are doing already pretty well!

- What can we do to improve the results?
- Beyond "stacking more layers" the answer is not clear

Exploiting Structural Information

DNs are very flexible learning models

- ...Since we can choose both how many layer to use
- ...And how big they should be

However, it's difficult to develop an intuition of which options work

- This is due to the poor interpretability of DNs
- ...To the point that a <u>fully fledged research field</u> focuses on automatic tuning

There is one type of choice that is intuitive and has a big impact

- ...This concerns the idea of exploiting structural information
- For example, nearby pixels in an image may be semantically linked
- ...And the same goes for nearby points in time
- ...Or nearby words in a sentence

This idea is at the basis of convolutional layers

A 2D convolution layer...

- Starts from an input tensor with shape (m, n, c)
- ...And slides a linear n_f , m_f filter (or kernel) on top of the image
- ...With a certain step size (stride)

- lacktriangle You can think of that as moving an n_f, m_f mask across an image
- The figure shows a 2x2 convolution with stride 2

Each application of the kernel...

- Compute a dot product (involving all channels) to obtain a scalar
- ...The optionally applies an activation function

Here we see the effect along 1 dimension:

Therefore, by applying a (m_f, n_f) 2D convolution to an (m, n, c) tensor

...We get a
$$(m - m_f + 1, n - n_f + 1)$$
 output tensor

- Intuitively, starting from a multi-channel image
- ...We get a slightly smaller single-channel image

If we don't want to reduce the image size

...We can include some padding

If we want to undersample the image

...We can use a non unary stride

If we use multiple filters for the same level

...We obtain multiple output "images"

If we stack multiple convolutional layers

...Later layers will be able to access information from a larger receptive field

Convolutional layers have some interesting properties

Their weights are associated only to the filter

- lacksquare So, if we have c channels and a (m_f, n_f) filter
- ...We have $m_f n_f c$ weights regardless of the input size

This allows a huge reduction in terms of number of weights

The price to pay is a higher bias

...But the trick is that it's a bias that makes sense!

- Intuitively, filters will learn to recognize local features
- Earlier convolutions will focus on fine-grain details
- ...While later convolution will aggregate them

This property allows CNN to work very well on image data

CNNs in Keras

Convolutional layer are available in Keras as Conv2D objects

```
In [15]: from keras.layers import Conv2D

def build_cnn(input_shape, output_shape, hidden, convs, rate=0.05):
    mdl = keras.Sequential()
    mdl.add(keras.Input(shape=input_shape))
    for nf in convs:
        mdl.add(Conv2D(nf, kernel_size=(3,3), activation='relu'))
    mdl.add(keras.layers.Flatten())
    for h in hidden:
        mdl.add(Dense(h, activation='relu'))
        mdl.add(keras.layers.Dropout(rate))
    mdl.add(Dense(output_shape[0], activation='softmax'))
    return mdl
```

- The first parameter is the number of filters
- Then we have the filter (kernel) size and the activation function

Training a CNN

CNNs can be trained as usual, but the process is much slower

...Since even with few weights, we still need to do a lot of computations

Using GPUs can considerably accelerate this step

```
In [16]: cnn1 = build cnn(input shape, output shape, hidden=[16], convs=[16])
         history2 = train_nn(cnn1, x_train_c, y_train_cat, batch_size=32, epochs=30, verbose=1)
         Epoch 1/30
                                       - 4s 2ms/step - loss: 0.5168
         1875/1875
         Epoch 2/30
                                        - 3s 2ms/step - loss: 0.1182
         1875/1875
         Epoch 3/30
                                       - 3s 2ms/step - loss: 0.0873
         1875/1875
         Epoch 4/30
                                        - 3s 2ms/step - loss: 0.0692
         1875/1875
         Epoch 5/30
                                        - 3s 2ms/step - loss: 0.0594
         1875/1875 •
         Epoch 6/30
         1875/1875
                                        - 3s 2ms/step - loss: 0.0516
         Epoch 7/30
                                        - 3s 2ms/step - loss: 0.0400
         1875/1875
         Epoch 8/30
                                        - 3s 2ms/step - loss: 0.0394
         1875/1875
         Epoch 9/30
                                         3s 2ms/step - loss: 0.0361
         1875/1875
         Epoch 10/30
```

Training a CNN

Let's check the training curve

Again, there is still some way to go, but we'll stop here for a fair comparison

Quality Evaluation

```
In [18]: cnn1_p_tr = cnn1.predict(x_train_c, verbose=0).argmax(axis=1)
    cnn1_p_ts = cnn1.predict(x_test_c, verbose=0).argmax(axis=1)

cnn1_acc_tr = accuracy_score(y_train, cnn1_p_tr)
    cnn1_acc_ts = accuracy_score(y_test, cnn1_p_ts)

print(f'Shallow network accuracy: {nn1_acc_tr:.3f} (train), {nn1_acc_ts:.3f} (test)')
    print(f'Convolutional network accuracy: {cnn1_acc_tr:.3f} (train), {cnn1_acc_ts:.3f} (test)

Shallow network accuracy: 0.972 (train), 0.956 (test)
    Convolutional network accuracy: 0.999 (train), 0.982 (test)
```

The results are much better!

- Even if the CNN has much fewer weights than the fully connected one
- ...And the same number of hidden layers

Exploiting structural information is a powerful idea in DL

- Rather than focusing o low-level design choices (e.g. crafting features)
- ...We focus on building architecture that can exploit general properties