0.1 Axioms of ZFC (Continued)

7. Axiom of Specification:

The collection of all elements of a known set, that satisfiy a certain predicate, is a set.

E.g $\{x \in \mathbb{N} | x \text{ is prime}\}$

8. Axiom of power set

If S is a set, then the collection of all subsets of S is a set, called the power set. $\mathcal{P}(S)$

$$(a,b) = \{\{a\}, \{a,b\}\}\$$

 $A \times B := \text{set of ordered pairs}(a, b) = \{\{a\}, \{a, b\}\}\$

Let A, B be sets. A function $f: A \to B$ is an element of the $\mathcal{P}(A \times B)$,

- For every $a \in A$, there is some $b \in B$ such that $(a, b) \in F$
- if b_1 and $b_2 \in B$ such that $(a, b_1) \in F$ and $(a, b_2) \in f$ then $b_1 = b_2$
- 9. Let X be a set. Define $succ(x) = x^+ := x \cup \{x\}$. There exists a set S such that
 - (a) $\emptyset \in S$,
 - (b) $x \in S$ then $x^+ \in S$.

E.g.
$$succ(\emptyset) = \emptyset \cup \emptyset = \emptyset \{\emptyset\}^+ = \{\emptyset\} \cup \{\{\emptyset\}\} = \{\emptyset, \{\emptyset\}\}\}$$

10. Axiom of choice.

A choice function f defined on a set X of non-empty sets is a function with the property that if $a \in X$ then $f(a) \in a$.

Choice functions always exist for any X.

0.2 Construction of \mathbb{N}

 \mathbb{N} includes 0.

Define $0 := \emptyset$

$$1:=\emptyset^+$$

$$2 := 1^+ = \{\emptyset, \{\emptyset\}\}\$$

$$3 := 2^+ = \{\emptyset, \{\emptyset\}\} \cup \{\{\emptyset, \{\emptyset\}\}\}\} = \{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}\}$$

Q: What is \mathbb{N} .

A9 tells us that there is a set S such that $\phi \in s$, if $x \in S, x^+ \in S$

Consider
$$I_S := \{ T \in \mathcal{P}(S) | \emptyset \in T \text{ and } \forall x \in T, x^+ \in T \}$$

Say that a set A is inductive. If $\emptyset \in A$ and if $x \in A, x^+ \in A$.

 $I_s = \text{set of all inductive subsets of S.}$

 $I_s \neq \emptyset$ because $S \in I_S$

Define
$$\mathbb{N} = \bigcap_{x \in I_S} x = \{x \in S | \forall T \in I_s, x \in T\}$$

Theorem 0.1 Principle of Mathematical Induction

Let p be a predicate defined on \mathbb{N} . Assume that p(0) holds, and for every $n \in \mathbb{N}$, p(n) implies $p(n^+)$. Then p(n) holds for every $n \in \mathbb{N}$.

Proof: Fix p, with the above properties.

 $S = \{x \in \mathbb{N} | p(x) \text{ holds}\}$. We want to show that S = N, i.e. the elements of S are exactly the elements of \mathbb{N} . Observation S is inductive

- 1. $\emptyset \in S$, because $p(0) = p(\emptyset)$ holds.
- 2. If $x \in S$ it means p(x) holds, therefore $p(x^+)$ also holds. So, $x^+ \in S$

1 and 2 tell us that S is inductive.

 $S \subseteq \mathbb{N}$ by construction.

 $N \subseteq S$ by construction.

$$\Longrightarrow S=\mathbb{N}$$

Theorem 0.2 If $m, n \in \mathbb{N}$, such that $m^+ = n^+$, then m = n.

Proof:

Lemma 0.3 Let $x, n \in \mathbb{N}$. If $x \in n$ then $x \subseteq n$