Определение угла наклона текста на сканированных изображениях

Валерий В. ДмитриевУфа, Россия ufabiz@gmail.com

Аннотация

При оптическом распознавании текста на сканированных документах, качество распознавания зависит от того, наклонён ли текст в документе. У выровненных документов качество распознавания заметно лучше. Соответственно, возникает практическая необходимость в средствах автоматического выравнивания угла наклона текста.

В статье предлагается простой, универсальный и достаточно эффективный алгоритм выравнивания наклона текста, основанный на идее минимизации средней энтропии строк и столбцов растрового изображения.

1 Идея

Базовая идея алгоритма состоит в том, что при повороте текста на сканированном изображении, средняя, по строкам и столбцам, энтропия распределения пикселей должна возрасти.

Предположим, нам дан чёрно-белый скан изображения. То есть, каждый пиксель может принимать только два значения: 0 или 1. Как известно, энтропия равномерного распределения максимальна. Если изображение повёрнуто, то в среднем, распределение чёрных и белых пикселей по строкам (и столбцам) будет ближе к равномерному, чем у неповёрнутого изображения. У выровненного изображения распределение пикселей в среднем должно быть менее равномерным.

Гипотеза состоит в том, чтобы вычислить среднюю по строкам и столбцам энтропию распределения пикселей для разных углов поворота. И найти такой угол, при котором эта усреднённая энтропия примет минимальное значение.

Для проверки предложенной гипотезы в сети Интернет был собран набор данных различных видов сканированных изображений. После чего предположения были проверены экспериментально.

Предложенный подход работает и позволяет абсолютно точно определить угол поворота в 83 % случаев и с точностью до 1° в 98 % случаев.

Хотя, на первый взгляд, энтропия Шеннона хорошо подходит для этой задачи, было бы разумно не ограничиваться только ей, а рассмотреть весь спектр энтропий Реньи. И с учётом полученных ре-

зультатов, а также вычислительной сложности, выбрать оптимальное значение параметра энтропии Реньи.

Энтропия Реньи вычисляется с помощью следующего выражения [1]:

$$R_{\alpha} = \frac{1}{1 - \alpha} \log \left(\sum_{i=1}^{n} p_i^{\alpha} \right), \tag{1}$$

где p_i – вероятности, соответствующие распределению. В нашем случае это частоты чёрных и белых пикселей.

В случае $\alpha = 1$, выражение (1) превращается в энтропию Шеннона:

$$R_1 = H = -\sum_{i=1}^{n} p_i \log(p_i).$$
 (2)

2 Эксперимент

Для проведения эксперимента был собран набор различных документов в сети Интернет. Каждое изображение из набора было повёрнуто на случайный угол в интервале от -45° до 45° и, затем, был вычислен угол поворота с помощью предложенного алгоритма.

В таблице ниже представлены результаты для различных значений параметра энтропии Реньи α :

Параметр энтропии Реньи α	1/8	1/4,	1/2	3/4	1	2	5
Среднее абсолютное отклонение	0.498	0.299	0.211	0.283	0.240	5.827	41.099
Доля полных совпадений (точность)	0.822	0.834	0.828	0.815	0.805	0.641	0.009
Доля совпадений с точностью до 1°	0.942	0.969	0.980	0.982	0.983	0.822	0.015
Доля совпадений с точностью до 2°	0.967	0.983	0.991	0.993	0.994	0.841	0.015

Всего было обработано 1665 документов.

Из таблицы можно сделать вывод, что наименьшее среднее абсолютное отклонение достигается при $\alpha = \frac{1}{2}$.

Наилучшая точность (доля полных совпадений) достигается при $\alpha = \frac{1}{4}$.

Наилучшая приемлемая точность, как доля совпадений с точностью до 1°, достигается при $\alpha \in \{1, \frac{3}{4}, \frac{1}{2}\}$. И наилучшая доля совпадений с точностью до 2° достигается также при $\alpha \in \{1, \frac{3}{4}, \frac{1}{2}\}$.

Если рассматривать предложенную методику, как часть комплекса оптического распознавания документов, то наилучшим значением оказывается $\alpha = \frac{1}{2}$.

При $\alpha = \frac{1}{2}$, среднее абсолютное отклонение составит всего 0.211°. При этом достигается оптимальная приемлемая доля совпадений с точностью до 1°.

Для выбора $\alpha = \frac{1}{2}$ есть ещё одна причина: при этом значении достигается оптимальная вычислительная сложность.

Ниже представлены результаты бенчмарка многократного вычисления энтропий (1) для различных значений параметра α [3].

Бэнчмарк вычислялся для 1000000000 примеров 1.

α	nanoseconds	miliseconds	% of Shannon
1	10249895206	10249	100
1/2	8677368472	8677	84.66
1/4	10421639934	10421	120.1
1/8	13235709810	13235	127
3/4	11403406522	11403	86.16
2	7245386547	7245	63.54
5	7771674801	7771	107.26
10	10809162384	10809	139.08

Из таблицы мы видим, что из подходящих нам значений α , наилучшая производительность достигается при $\alpha=1/2$, что вполне ожидаемо.

3 Алгоритм

Замечание. Предлагаемый ниже алгоритм ² предполагает, что для определения угла поворота мы используем бинарное чёрно-белое растровое изображение, в котором каждый пиксель может принимать два значения: 0 или 1.

Таким образом, для применения алгоритма необходимо, в первую очередь, получить бинаризованную копию изображения.

Я реализовал алгоритм с применением библиотеки *libleptonica* для манипуляции растровыми изображениями, т.к. эта библиотека используется в TesseractOCR [2].

Для этого я использовал последовательное преобразование pixContrastTRC с $contrast_factor = 1.0$ и затем pixConvertTo1 с threshold = 170.

Пусть h высота и w ширина исходного изображения.

И пусть $d = \sqrt{w^2 + h^2}$ – длина диагонали.

Будем поворачивать изображение на угол ϕ относительно центра изображения и считать среднюю энтропию по строкам и столбцам.

Чтобы в результате поворота не выйти за границы изображения, мысленно расширим полотно до размеров с высотой и шириной равной d.

Определим целые числа $x_{from}, x_{to}, y_{from}$ и y_{to} как:

$$\begin{split} x_{from} &= \frac{d}{2} - \frac{h|\sin(\phi)| + w|\cos(\phi)|}{2}, \\ x_{to} &= d - x_{from}, \\ y_{from} &= \frac{d}{2} - \frac{h|\cos(\phi)| + w|\sin(\phi)|}{2}, \\ y_{to} &= d - y_{from}, \end{split}$$

где x_{from} и x_{to} , соответственно, определяют левую и правую границы повёрнутого изображения.

А y_{from} и y_{to} , соответственно, определяют верхнюю и нижнюю границы повёрнутого изображения.

Нужно посчитать среднюю энтропию по строкам и по столбцам. Для примера покажем, как считать по строкам. Расчёт по столбцам аналогичен.

Пусть V(x,y) – цвет точки в пикселе с координатами (x,y) (принимает значения $\{0,1\}$).

¹Исходный код бенчмарка можно найти на странице https://gist.github.com/valmat/6a737cc3783449c4f7a829e77c77393e

²Исходный код алгоритма: https://github.com/valmat/rotate_detection

 $R(\{p,q\})$ – энтропия распределения $\{p,q\}$.

Приведённый ниже алгроритм рассчитывает среднюю энтропию S_{ϕ} растрового бинарного изображения, повёрнутого на угол ϕ .

Algorithm 1 Рассчёт средней энтропии строк

```
S_{\phi} = 0
y = y_{from}
while y < y_{to} do
    b = 0
                                                                                ⊳ Количество чёрных пикселей в строке.
    x = x_{from}
    while x < x_{to} do
         \widetilde{x} = x - \frac{d}{2}
\widetilde{y} = y - \frac{d}{2}
                                                                                        > Устанавливаем начало координат
                                                                                                                ⊳ в центр полотна.
         x' = \widetilde{x} \cdot \widetilde{\cos}(\phi) - \widetilde{y} \cdot \sin(\phi) + \frac{w}{2}
                                                                                        {\,\vartriangleright\,} Поворачиваем полотно на угол \phi.
         y' = \widetilde{x} \cdot \sin(\phi) + \widetilde{y} \cdot \cos(\phi) + \frac{h}{2}
         if x' \ge 0 AND x' < w AND y' \ge 0 AND y' < h then
             b = b + V(x', y');
                                                                                                    ⊳ Считаем чёрные пиксели.
         end if
         x = x + 1
    end while
    p = \frac{b}{d}, q = 1 - p
    S_{\phi} = S_{\phi} + \frac{R(\{p,q\})}{d}
    y = y + 1
end while
```

Полученное в результате значение S_{ϕ} и будет искомой средней энтропией для угла поворота ϕ .

Для нахождения искомого угла поворота ϕ_0 нужно найти минимум S_{ϕ} :

$$\phi_0 = -\arg\min_{\phi} S_{\phi}$$

Знак "-" берётся, потому-что для выравнивания изображения, нужно повернуть его в обратную сторону.

Список литературы

- [1] WikiPedia "Энтропия Реньи" https://ru.wikipedia.org/wiki/Энтропия Реньи
- [2] Исходный код алгоритма на C++ https://github.com/valmat/rotate_detection
- [3] Исходный код бенчмарка производительности энтропий на C++ https://gist.github.com/valmat/6a737cc3783449c4f7a829e77c77393e