Clase 15 Regresión lineal múltiple

Diplomado en Análisis de Datos y Modelamiento Predictivo con Aprendizaje Automático para la Acuicultura

Dra. María Angélica Rueda Calderón

Pontificia Universidad Católica de Valparaíso

06 June 2023

PLAN DE LA CLASE

1.- Introducción

- Modelo de regresión lineal múltiple.
- Estudio de caso: transformación de variable respuesta.
- Pruebas de hipótesis.
- ► El problema de la multicolinealidad
- ¿Cómo seleccionar variables?
- ¿Cómo comparar modelos?
- Interpretación regresión lineal múltiple con R.

2.- Práctica con R y Rstudio cloud.

- Realizar análisis de regresión lineal múltiple.
- Realizar gráficas avanzadas con ggplot2.
- Elaborar un reporte dinámico en formato pdf.

REGRESIÓN LINEAL MÚLTIPLE

Sea Y una variable respuesta continua y X_1,\ldots,X_p variables predictoras, un modelo de regresión lineal múltiple se puede representar como,

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \dots + \beta_p X_{ip} + \epsilon_i$$

 $\beta_0 =$ Intercepto. $\beta_1 X_{i1}, \beta_2 X_{i2}, \beta_p X_{ip} =$ Coeficientes de regresión estandarizados.

Si p = 1, el modelo es una regresión lineal simple.

Si p > 1, el modelo es una regresión lineal múltiple.

Si p > 1 y alguna variable predictora es Categórica, el modelo se denomina ANCOVA.

ESTUDIO DE CASO ALIMENTACION MOLUSCOS FILTRADORES

Dieta microencapsulada en mitilidos.

time	sample	replicate	particle concentration
0	mussel	a	400
5	mussel	а	320
10	mussel	a	280
0	control	а	160
5	control	a	120
10	control	а	120

Fuente: Willer and Aldridge 2017

TASA DE ACLARACIÓN (PROXY DE CONSUMO DE PARTÍCULAS).

Problemas: Concentración es discreta y relación es no lineal.

Tips: $stat_smooth(method='loess',formula=y\sim x, se=T)$

EVALUACIÓN SUPUESTOS

TRANSFORMACIÓN DE VARIABLE RESPUESTA

Regresión lineal sobre Log10(Tasa de aclaración).

Tips: $stat_smooth(method='lm',formula=y\sim x, se=F)$

PRUEBAS DE HIPÓTESIS: REGRESIÓN LINEAL MÚLTIPLE

Intercepto.
Igual que en regresión lineal simple.

Modelo completo.
Igual que en regresión lineal simple.

Coeficientes.

Uno para cada variable y para cada factor de una variable de clasificación.

REGRESIÓN LINEAL MULTIPLE

Imprime resultado RM con función summary()
summary(lm.full)\$coef %>% kable(digits=2)

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	2.64	0.04	74.39	0.00
time	0.00	0.00	-2.20	0.03
samplemussel	-0.08	0.04	-1.71	0.09
time:samplemussel	-0.01	0.00	-9.36	0.00

 $R^2 = 0.87$, p-val = $1.0691926 \times 10^{-28}$

ANCOVA

anova(lm.full) %>% kable(digits=2)

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
time	1	3.39	3.39	245.85	0
sample	1	4.59	4.59	332.71	0
time:sample	1	1.21	1.21	87.57	0
Residuals	100	1.38	0.01	NA	NA

COMPARACIÓN CON REGRESIONES LINEALES SIMPLES

$$R^2-regM=0.87,\ p ext{-}val=1.0691926\times 10^{-28}$$

$$R^2-regMoluscos=0.78,\ p ext{-}val=2.0490325\times 10^{-22}$$

$$R^2-regControl=0.39,\ p ext{-}val=2.0849643\times 10^{-5}$$

PROBLEMAS CON LOS ANÁLISIS DE REGRESIÓN LINEAL MÚLTIPLE

Para p variables predictoras existen N modelos diferentes que pueden usarse para estimar, modelar o predecir la variable respuesta.

Problemas

- ¿Qué hacer si las variables predictoras están correlacionadas?.
- ¿Cómo seleccionar variables para incluir en el modelo?.
- ¿Qué hacemos con las variables que no tienen efecto sobre la variable respuesta?.
- Dado N modelos ¿Cómo compararlos?, ¿Cuál es mejor?.

DATOS SIMULADOS PARA REG. LINEAL MÚLTIPLE

100 datos simulados de 3 variables cuantitativas continuas.

Y	X1	X2
2.81	0.55	0.18
1.01	-0.84	-2.57
1.84	0.03	0.19
2.93	0.52	1.98
1.29	-1.73	-4.25
1.98	-0.28	-0.86

MULTICOLINEALIDAD

Correlaciones >0,80 es problema.

FACTOR DE INFLACIÓN DE LA VARIANZA (VIF).

- VIF: es una medida del grado en que la varianza del estimador de mínimos cuadrados incrementa por la colinealidad entre las variables predictoras.
- mayor a 10 es evidencia de alta multicolinealidad

```
lm1<- lm(Y~X1+X2)
vif(lm1) %>%
  kable(digits=2, col.names = c("VIF"))
```

	VIF
X1	10.6
X2	10.6

¿CÓMO RESOLVEMOS MULTICOLINEALIDAD?

- ► Eliminar variables correlacionadas, pero podríamos eliminar una variable causal.
- Transformar una de las variables: log u otra.
- ▶ Reemplazar por variables ortogonales: Una solución simple y elegante son los componentes principales (ACP).

COMPARACIÓN DE MODELOS: MODELO COMPLETO 0

Crea modelo de regresión múltiple
lm0<- lm(Y~X1+X2)</pre>

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	2.06	0.04	50.87	0.00
X1	0.54	0.13	4.07	0.00
X2	0.07	0.04	1.79	0.08

$$R^2 = 0.79$$
, p-val = $4.4295606 \times 10^{-34}$

COMPARACIÓN DE MODELOS: MODELO REDUCIDO 1

Crea modelo de regresión simple variable X1 lm1<- lm(Y~X1)

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	2.05	0.04	50.40	0
X1	0.76	0.04	18.58	0

$$R^2 = 0.78$$
, p-val = 7.108665×10^{-34}

COMPARACIÓN DE MODELOS: MODELO REDUCIDO 2

Crea modelo de regresión simple variable X2
lm2<- lm(Y~X2)</pre>

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	2.07	0.04	47.61	0
X2	0.23	0.01	17.12	0

$$R^2 = 0.75$$
, p-val = $3.3098905 \times 10^{-31}$

CRITERIOS PARA COMPARAR MODELOS.

Existen diferentes criterios para comparar modelos.

- Anova de residuales (RSS).
- Criterios que penalizan número de variables:
- a) Akaike Information Criterion (AIC).
- b) Bayesian Information Criterion (BIC).

En todos los casos mientras menor es el valor de RSS, AIC o BIC mejor es el modelo.

COMPARACIÓN DE MODELOS USANDO RESIDUALES.

anova(lm0, lm1, lm2) %>% kable(digits=2)

Res.Df	RSS	Df	Sum of Sq	F	Pr(>F)
97	15.48	NA	NA	NA	NA
98	15.99	-1	-0.51	3.2	0.08
98	18.12	0	-2.13	NA	NA

COMPARACIÓN DE MODELOS USANDO AIC Y BIC

```
AIC <- AIC(lm0, lm1, lm2)
BIC <- BIC(lm0, lm1, lm2)
```

	df	AIC
lm0	4	105.23
lm1	3	106.47
lm2	3	118.97

	df	BIC
lm0	4	115.6467
lm1	3	114.2837
lm2	3	126.7828

PRÁCTICA ANÁLISIS DE DATOS

► El trabajo práctico se realiza en Rstudio.cloud. **Guía 15 Regresión lineal multiple**

RESUMEN DE LA CLASE

- Elaborar hipótesis para una regresión lineal múltiple.
- Realizar análisis de covarianza.
- Interpretar coeficientes.
- Evaluar supuestos: multicolinealidad.
- Comparar modelos: residuales, AIC, BIC.