Environmentally conscious off-grid Laundry Machine Design Report

Author's name: Kwing Hei Li, Max (khl45)(10502)

Yuk Hei Wong (yhw42)(10897)

Date: 11/12/2015

Word count: 2551

Assignment Project Exam Help https://powcoder.com Add WeChat powcoder

Summary

This project was to design a human-powered washing machine for camping in UK. It will be used once a week for a summer period of 3 months. It has to be portable. Power input is required to produce an output speed of 70 rmp for agitate and 700 rpm for spinning. The design process includes designing several concept ideas. Mechanisms were chosen in order to solve some engineering problems. Various components were chosen after calculations and different considerations. Ergonomic design was considered by using the anthropometric data to generate a more comfortable design to users.

Contents

Summary	1
Introduction	3
Requirement Specification	3-4
Other design considerations	4
Conceptual Design	4-5
Alternative Concepts	5
Concept Evaluation and selection	5-6
Embodiment Design-Design analysis	6,7
Power Transmission	7
Bearings, Components and Material Selection	7-8
Final Design Description	8-10
Assignment Project Exam Help	10-11
Solution Specification	11-12
Reference. https://powcoder.com	12
Appendices	
Technical Data Supplement WeChat powcoder	19-24

Introduction

Engineering products facilitated human's life a lot. People nowadays can easily wash their clothes by putting them with detergent into a washing machine. In this report, a human-powered laundry machine for camping in the UK will be designed and discussed. It could be operated without the access of electricity. It promotes healthy lifestyle and raise people awareness of environmentally conscious. The washing cycle would be:

- 1) Washing with detergent and warm water and agitate for 10 minutes
- 2) Drain water
- 3) Rinse with clean warm water and agitate for 5 minutes
- 4) Drain water
- 5) Spinning at 700 rpm for 4 minutes

The washing machine has a minimum payload of 10 soaking wet t-shirt or 2 soaking wet pairs of jeans. It would be used once per week for a summer period of 3 months. It should be portable for campers to move and a mechanism should be applied to agitate the machine.

Required Signment Project Exam Help

		Design Specification	Date:
	Pr	oduct: A tromontally positive of or Africa Manne	10/11/2015
D/W	Wt	REQUIREMENTS	KEYWORD
		PERFORMANCE	
D	Н	Minimum quired and d is 10 201king or white or 2 southing wet pairs of jeans	payload
D	Н	It has to be portable – it should fit into the boot of a family saloon/estate or the trunk of a motorhome	portable
D	Н	Machine's drum is to be filled with clothes, preheated water and detergent	filled
D	Н	- 1) wash for 10 minutes	wash
D	Н	- 2) agiate rinse for 5 minutes	rinse
D	Н	- 3) 700 rpm spinning for 4 minutes	spin
D	Н	- Drain manually	drain
W	M	- It could be moved with wheels below it	wheel
D	Н	- It will allow users to exercise	exercise
		ENERGY	
D	Н	- All cycles have to be foot- and/or hand-powered	Hand/foot- powered
		ENVIREMENT	
D	Н	- Temperature operation range: 0 - 40	temperature
W	L	- Not too much noise	noise
W	M	- No excessive vibration	vibration

D	Н	LIFE IN SERVICE The machine is to be used in a frequency of once per week for a summer period of 3 months MATAINANCE	frequency
W	M	- It should be easy to maintain and find replacement parts	maintain, replacement
		PRODUCTION	
D	Н	- £50 Factory transfer price	price
D	M	- Batch production of 10,000	10,000
		QUANTITY	
W	M	- Can have various of components	components
		SIZE	
D	M	- Should be small enough to carry because it should be portable	small
		WEIGHT	
D	M	- Should be light enough to carry because it should be portable	light
		AESTHTICS	
W	L	- Attractive to look at	attractive
D	A	SSIZONMENT Project Exam Help	trap
D	Н	- Correct posture to move the machine as it should be portable	posture
D	Н	- Wear a comfortable and suitable shoe to ride eg. No flip flops	suitable
D	Н	- Chanship Sockean Do William to the Market of the Change	chain
		INSTALLATION	
D	M	- Easy to assemble and disassemble	assemble
		pocyArdraweChat powcoder	
W	M	- Include clear instructions to the user on operation	instructions
		DISPOSAL	
W	M	- Material used can be recycled	recycle

Other design considerations

The design considered ergonomics so that users can operate the machine more comfortably. Anthropometrics data was used to design components that users will interact with. For example, the height of the bike seat from the pedal. And the distance from the bike seat to the handle.

Since the machine was designed to be portable. The whole machine could be separated to several parts when it is moved. Frame joint connecting method was used to assembly different parts together and no screws and nuts were used at all. This allows the machine to be easily assembled and disassembled for maintenance and moving around.

Conceptual Design

A morphological charted was created listing possible ways of different elements to build a laundry machine. This includes the washing methods, the mechanism of agitating and human power input etc. The concept designs are basically different combinations of the elements from each section of the chart, which is shown in Appendix 1.

Alternative Concepts

Basically, for the first concept idea, the spinning of the drum harnesses the rotating motion of the rear wheel of the bicycle to drive it. The wheels have to be elevated in order to keep the whole system steady. Moreover, the rear wheel has to be specially designed to match the friction belt on the drum. With a smaller radius extrusion on the drum, a faster angular velocity could be attained when they are switched. This design emphasizes the portability of the whole system which the drum could be attached on to the bicycle and makes the transportation of the machine easy and simple with no noticeable disadvantage against other designs.

The second concept idea is totally different from the first one. With the implementation of a spring, a packent with input that be attained with the name and the prince of the name and tension is built up and forcing the system into an opposite direction (anti-clockwise). As soon as the user releases the handle bar, the strump verse its price tips direction does to the high tension force built up because of extension. By repeating this process, an "agitating " motion can be obtained.

The third concept design utilise the working hechanism of a bicycle, by transferring power from the pedal to a gear system and finally to the drum. The gear system used here is specifically designed to create a 2-way rotating motion on the drum to achieve an agitating system. Another highlight of the design is that the assemble of the machine requires no bolts and nuts, only frame joining all the parts which has a great advantage on easy assembly and disassembly, especially for camping use.

Concept Evaluation and selection

	Selection													
		Cond	ept 1	Cond	ept 2	Concept 3								
Criteria	Weighting	Score	Weight	Score	Weight	Score	Weight							
			Score		Score		Score							
Fit 5 T-shirts	3	Υ	3	Υ	3	Υ	3							
or 2 jeans														
Washing	3	N	-3	Υ	3	Υ	3							
cycle(agitate)														
Portable	3	Υ	3	Υ	3	Υ	3							
Use once per	3	Υ	3	Υ 3		Υ	3							

week							
Spin at 700	3	Υ	3	N	-3	Υ	3
rpm							
Human	2	Υ	2	Υ	2	Y	2
powered							
Used by ages	1	Υ	1	N	-1	Y	1
16 - 65							
Batch	2	Υ	2	Υ	2	Υ	2
produced							
			14		12		20

Table 1 - Concept selection scoring chart

Evaluation														
		Conc	ept 1	Conc	ept 2	Concept 3								
Criteria	Weighting	Score	Weight	Score	Weight	Score	Weight							
			Score		Score		Score							
Size	2	-2	-4	2	2 4		4							
Durability	2	1	2	-1	-2	1	2							
Maintenance	signn	ont i	Droie	of F	xåm	LP ₂ 1-	0							
Assembly	<u>ngam</u>		riple		A C 2111	1 4CI	2							
Cost	2	-2	-4	2	4	2	4							
Stability	http	g · 9/m		d^1	-2	1	2							
	mttp	5.//p	U W C	Juei.	CQIII		14							

Table 2 - Concept evaluation scoring chart

Embodiment Dasigh De Weight at powcoder

It is assumed that the mass of 10 soaking wet T-shirt is 5kg. Hence, the mass of the drum was assumed to be 6kg. The rpm for washing and rinsing was set to be 70 rpm and 700 rpm was required for spinning. By applying equation 1, 2 and 3, the power input by human and power output to the drum could be calculate. [Appendix 2]

$$T = I \frac{\omega}{t}$$
 (1)

$$I = \frac{m}{2} (r_1 \dot{c} \dot{c} 2 + r_2^2) \dot{c}$$
 (2)

$$P = T\omega$$
 (3)

, where T = torque, I = moment of inertia, ω = angular speed, r_1 and r_2 are the inner and outer radius of the drum.

The service factor was considered in the calculation which obtained by using **Technical Data Supplement [TDS1] & Appendix 3**.

The forces acting on the shaft is calculated as shown in **Appendix 4 & 5**. It is done by first drawing the free body diagram and distinguishes the force acting at various points of the shaft. Simple moment calculations were applied. After that, Macaulay's

notation was applied to obtain the shear stress and bending moment diagram as shown in **Appendix 6 & 7 & 8**.

Nodes are identified throughout the shaft. [Appendix 9] The moment at each node calculated, torque, moment of inertia, bending stress, second moment of area, torsional stress and combined stress were then be compare with the allowable stress of materials in order to choose a suitable and cost effective material for the shaft. [Appendix 10] Safety factors will also be considered and the stress concentration factor was calculated by using TDS 3.

Power Transmission

Since the power input and output were calculated for 70 and 700 rpm, the speed ratio was calculated to be 3:1. [Appendix 11] Hence, suitable gear ratio [TDS 2] could be selected with in order to step the power input into the power output required for the drum to operate in the required speed. Taper lock sprockets selected under the 10B T/L group are:

Bearings, Comparings and page Mal Conder.com

The overall static bearing forces at bearing A, B, C and D are calculated as shown in

Appendix 12. Add WeChat powcoder The overall dynamic bearing forces at bearings are then calculated by using the equation $L=\mathcal{L}$, where: L = Life = 530 million revs, C = Dynamic Load Rating, P = Applied Load, and P = Life Factor

For a ball bearing
$$C = P \times L^{\frac{1}{3}}$$
 (4)

, the results are

Bearing	Α	В	С	D	
C /kN	0.518	0.417	0.417	0.753	

Table 4 - Dynamic load for bearings

Bearings would then be chosen in the catalogue in order to match with other components and the diameter of the shaft. [TDS5 & 6 & 7] Those bearings chosen are required to be strong enough to withstand the Dynamic load, C calculated here in order to make to shaft work.

The bearings chosen are:

Bearing	A & D	B & C
Reference Number	62/22	61807-2RSR

Table 5 - Bearings chosen

After that, relative circlips were chose according to the $r_{a max}$ value stated in the catalogue. Circlips chosen are:

Bearing	62/22	61807-2RSR
Circlip	A22	A35

Table 6 - Circlips chosen [See TDS8 & 9]

Taper locks, TB3020, with 40mm bore size were chose to connect the inner drum to the shaft. [See TDS10 & 11]

Different materials were selected for different components of the washing machine. For example, the frame of the washing machine will be made of mild steel as this is strong and cheap. It is weldable and, hence recyclable. [5] Besides, the drum will be manufactured by polypropylene. It is light and it has long service life as exposed membrane guaranteed. [6]

Figure 1 – Whole assembly

The final design of the washing machine is from the third concept idea with a little adjustment made on the body frame. This whole assembly is shown on **Figure 1**. In **Figure 2**, the drum is shown, with an inner core of 0.4 meter diameter cylinder covered with holes evenly distributed and an outer drum of 0.5 meter diameter separated into 2 parts, the cover and the body. The inner core has a depth of 0.4 meter and the outer has 0.5 meter. These dimensions are proved to be able to withhold more than 10 wet T-shirts plus sufficient water to operate the washing cycle. **Figure 3** shows the body frame of the machine. The base plates that support the frame at the bottom have wide extension to steady the body frame. The frame would

be manufactured by lengths of steel hollow square sections and frame joint together to achieve easy disassembly.

To switch the washing cycles into spinning cycles, manual gear changing is required. This is because a gearbox would not be necessary to perform such an easy operation and in addition the budget is low that cannot possibly include a gearbox in the system. For the washing cycle, the drum would be turning in both ways. This is all attributed to the specifically design gear system shown in **Figure 4**.

The dimensions of the body frame were designed based on data from anthropometric resources to meet the ergonomic requirements that it would be suitable for 90% of users. The length from the seat to the pedal, distance from seat to handles and the angle of the seat frame made with the vertical were all taken into account and the final overall dimensions are shown in attachment 1.

Figure 2 – Drum assembly

Assignment: Projects Exam Help

Figure 4 – Agitate mechanism

Method of Operation

The user cycles the pedals to spin the sprocket and rotate the drum.

The drum can easily be loaded by removing the shaft end support and the covering lid and resealed simply by assemble back the parts. No bolts or nuts needed, easy and simple.

Project Exam Help

https://powcoder.com

Add WeChat

The seat has an adjustable height for different users of different height and leg length, simply by unplugging the pin and adjusts to the desirable height then inserts the pin back.

Manual gear changing is required when changing rinsing cycle to spinning cycle. The driving sprocket has a teeth number of 57 and the driven one has 19, of which another 57-teeth sprocket is on the driven sprocket shaft. On the shaft connecting the drum, a 19-teeth sprocket is to be used. This has a total angular velocity step up of 9 times the pedal angular velocity.

Safety

Safety safe septimisted in the least of the safety changes that could be made for the washing machine.

- 1) A derailleur could be added to hange the gear instead of wing hands to do so
- 2) Guards could be added to the taper lock sprocket to avoid user injured by it directly
- 3) Add a clear instruction on how to use and move the machine der

Solution Specification

- Power Required (Spin Cycle) 14W
- Power Required (Agitation Cycles) 42W
- Load Capacity 5kg
- Spin Cycle Speed 700 rpm (Cycling Speed Required 78rpm, Force Required 25N)
- Agitation Cycle Speed 70rpm (Cycling Speed Required 70rpm, Force Required 34N)
- Dimensions 1583 X 1082 X 1077 mm
- Ergonomically designed features such as the seat, grip and position of the pedal and gear changer
- Adjustable seating position to allow people of different heights to use comfortability

Reference

Other concepts

[1] Zinn, L. (2012) Technical FAQ: Crankarm length versus BB height, long-spindle Eggbeaters,

perspective and more, Retrieved 29 November 2015, from

http://velonews.competitor.com/2012/12/bikes-and-tech/technical-faq/technical-faq-crankarm-length-versus-bb-height-long-spindle-eggbeaters-perspective-and-more 269831

[2] Marinoff, S. (11th Jan 2015) A little bit of everything but (probably) mostly bicycles, Retrieved 29 November 2015, from

http://www.scott-marinoff.com/post/107952237826/measuring-custom-bicycle-frame

Calculations

[3] N.A. (10th Dec 2015) List of moments of inertia, Retrieved 29 November 2015, from https://en.wikipedia.org/wiki/List_of_moments of inertia

[4] N.A. (N.D.) Angular Motion – Power and Torque, Retrieved 29 November 2015, from http://www.engineeringtoolbox.com/angular-velocity-acceleration-power-torquedd 1397.html

Writing estignment Project Exam Help
[5] Knapman, A. (25th Nov 2014) Top 5 Advantages of Mild Steel, Retrieved 29 November 2015, from

http://www.auslenkitapngan.cd.ph/blog/2016/11/25/top-5-advantages-of-mild-steel/

[6]N. A. (25th Oct 2044) The follow problem advantage, Retrieved 29 November 2015, from http://www.geochemimc.com/ppadvantage.htm

Appendices

Add WeChat powcoder

App

endix 1 - Morphological Approach

$$T = \frac{m}{2} (r_1^2 + r_2^2)$$

$$= \frac{6}{2} (0.2^2 + 0.195^2)$$

$$= 0.234075.$$

$$Torpm, w = 70 \times \frac{2\pi}{60} = 7.33 \text{ rads}^{-1}$$

$$T = Fr$$

$$= 6 (9.81) (0.2) = 11.772.$$

Assignment Project Exam Help

Add WeChat powcoder

(with service factor)

Too rpm, $\omega = 700 \times \frac{2\pi}{60} = 73.3 \text{ rads}^{-1}$ $P = I \frac{\chi^2}{2} = 0.234075(73.3)^2$ 2 assume 7t takes 30 s from 0 to 700 rpm. = 41.922.

Appendix 2 - Power calculation

Pout for Too rpm = 12.6×1.1=13.8.

(with service factor)

Appendix 3 - Service factor considered

Appendix 5 - Force distribution on shaft

```
Force: at 0, x = 0 < x > 0 at 0.06, x = 64 < x < -0.06 > 0 at 0.06, x = 64 < x < -0.06 > 0 at 0.06, x = 64 < x < -0.06 > 0 at 0.28, x = 64 < -0.06 > 0 at 0.28 > 0
```

Appendix 6 - Calculation of Macaulay's natation

Appendix 7 - Shear stress diagram

Appendix 8 - Bending moment diagram

	circlip	Bearing A	radius	circlip	Bearing B	radius	taper lock A	radius	radius	taper lock B	radius	Bearing C	circlip	radius	Bearing D	circlip
Node No.	1	2	. 3	4	5	- 6	7	8	9	10	_ 11	12	13	14	15	16
Dia. (mm)	21	22	Δ		 		<u>''h എ</u>	1 1/2	1	V/C		35	33	23	22	21
Mv	0	7.68			20.48			ll o		VCO	UU	13.23	0	0	7.65	0
Mh	0	0	0	0	0	0	0	0	(0	0	0	0	0	0	0
Mc (N/m2)	0.00	7.68	0.00	0.00	20.48	0.00	20.73	0.00	0.00	14.06	0.00	13.23	0.00	0.00	7.65	0.00
Torque (Nm)	11.772	11.772	11.772	11.772	11.772	11.772	11.772	11.772	11.772	11.772	11.772	11.772	11.772	11.772	11.772	11.772
I	9.54E-09	1.15E-08	1.37E-08	5.82E-08	7.36E-08	7.62E-08	1.26E-07	1.53E-07	1.53E-07	1.26E-07	7.62E-08	7.36E-08	5.82E-08	1.37E-08	1.15E-08	9.54E-09
Bending stress	0.00E+00	7.35E+06	0.00E+00	0.00E+00	4.87E+06	0.00E+00	3.30E+06	0.00E+00	0.00E+00	2.24E+06	0.00E+00	3.14E+06	0.00E+00	0.00E+00	7.32E+06	0.00E+00
J	1.91E-08	2.30E-08	2.75E-08	1.16E-07	1.47E-07	1.52E-07	2.51E-07	3.05E-07	3.05E-07	2.51E-07	1.52E-07	1.47E-07	1.16E-07	2.75E-08	2.30E-08	1.91E-08
Torsional stress	6.48E+06	5.63E+06	4.93E+06	1.67E+06	1.40E+06	1.36E+06	9.37E+05	8.10E+05	8.10E+05	9.37E+05	1.36E+06	1.40E+06	1.67E+06	4.93E+06	5.63E+06	6.48E+06
al	2	2	2	2	2	2	2	2	2	. 2	2	2	2	2	2	2
a2	2.3	2.3	2.3	2.3	2.3	2.3	2.3	2.3	2.3	2.3	2.3	2.3	2.3	2.3	2.3	2.3
a3	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25
b.c.d	5.4	5.4	5.4	5.4	5.4	5.4	5.4	5.4	5.4	5.4	5.4	5.4	5.4	5.4	5.4	5.4
k	2	1	1.7	2	1	1.8	1	1.28	1.28	1	1.8	1	2	1.7	1	2
Nu (b,c,d *k*a)	10.8a	5.4a	9.18a	10.8a	5.4a	9.72a	5.4a	6.912a	6.912a	5.4a	9.72a	5.4a	10.8a	9.18a	5.4a	10.8a
Combined Stress at node	6.48E+06	6.73E+06	4.93E+06	1.67E+06	2.81E+06	1.36E+06	1.90E+06	8.10E+05	8.10E+05	1.46E+06	1.36E+06	2.10E+06	1.67E+06	4.93E+06	6.72E+06	6.48E+06
Allowable stress material 1	2.04E+07	4.07E+07	2.40E+07	2.04E+07	4.07E+07	2.26E+07	4.07E+07	3.18E+07	3.18E+07	4.07E+07	2.26E+07	4.07E+07	2.04E+07	2.40E+07	4.07E+07	2.04E+07
Allowable stress material 2	2.50E+07	4.99E+07	2.94E+07	2.50E+07	4.99E+07	2.77E+07	4.99E+07	3.90E+07	3.90E+07	4.99E+07	2.77E+07	4.99E+07	2.50E+07	2.94E+07	4.99E+07	2.50E+07
Allowable stress material 3	6.30E+07	1.26E+08	7.41E+07	6.30E+07	1.26E+08	7.00E+07	1.26E+08	9.84E+07	9.84E+07	1.26E+08	7.00E+07	1.26E+08	6.30E+07	7.41E+07	1.26E+08	6.30E+07

Appendix 10 - Comparison to choose the best material

Speed ration =
$$\frac{42}{13.8} = 3.04$$
; 3:1

Appendix 11 - Calculation on speed ratio

```
Bearing.

L = (\frac{C}{P})^{P}
C = P \times L^{\frac{1}{3}}
- Force at Bearing A = 64N.

C = 0.064 \times 530^{\frac{1}{3}} = 0.5179 \text{ kN}.
- Force at Bearing Band C = 51.5N.

C = 0.0515 \times 530^{\frac{1}{3}} = 0.41677 \text{ kN}.
C = 0.093 \times 530^{\frac{1}{3}} = 0.752619 \text{ kN}.
C = 0.093 \times 530^{\frac{1}{3}} = 0.752619 \text{ kN}.
```

Appendix 12 - Calculation on the dynamic load rating of bearings

Assignment Project ExamoHelp
Total cost

Assignment Project ExamoHelp
E58.33

https://powcoder.com

Add WeChat powcoder

Technical Data Supplements

		TYI	PES OF PE	RIME MOV	/ER	
	'5	Soft' start	s	'He	eavy' star	ts
	D.C. – Sh Internal c with 4 or All prime	ar-delta sta unt wound ombustion more cylin movers fit al clutches	engines nders. ted with	D.C Se compour Internal c	rect-on-line ories and od wound. combustion with less th	1
			Hours per	day duty		
TYPES OF DRIVEN MACHINE	10 and under	Over 10 to 16	Over 16	10 and under	Over 10 to 16	Over 16
Light Duty Agitators (uniform density), Belt conveyors (uniformly oaded).	1.0	1.1	1.2	1.1	1.2	1.3
Medium Duty Agitators and mixers (variable density). Belt conveyors (not uniformly loaded), Kilns, aundry machinery, ineshafts, Machine tools, Printing machinery, Sawmill and woodworking machinery, Screens (rotary).	1.1	1.2	1.3	1.2	1.3	1.4
elevators, Conveyors (heavy duty), Hoists, Quarry plant, Rubber machinery, Screens vibratigo), Textile machinery,	t P	roj	ect	E) 1.5	1.6	n F

TABLE 4 - SPEED RATIOS

					1	4	N	mbero	teeth	– Driv	ing Sp	rocket	XX		പ	eı	•		
		10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	27	30
	10 11 12 13 14	1.00 1.10 1.20 1.30 1.40	1.00 1.09 1.18 1.27	1.00 1.08 1.17	1.00 1.08	1.00													
Driven Sprocket	15 16 17 18 19	1.50 1.60 1.70 1.80 1.90	1.36 1.45 1.55 1.64 1.73	1.25 1.33 1.42 1.50 1.58	1.15 1.23 1.31 1.38 1.46	1.07 1.14 1.21 1.29 1.36	1.00 1.07 1.13 1.20 1.27	1.00 1.06 1.13 1.19	1.00 1.06 1.12	1.00 1.06	1.00								
1	20 21 22 23 24	2.00 2.10 2.20 2.30 2.40	1.82 1.91 2.00 2.09 2.18	1.67 1.75 1.83 1.92 2.00	1.54 1.62 1.69 1.77 1.85	1.43 1.50 1.57 1.64 1.71	1.33 1.40 1.47 1.53 1.60	1.25 1.31 1.38 1.44 1.50	1.18 1.24 1.29 1.35 1.41	1.11 1.17 1.22 1.28 1.33	1.05 1.11 1.16 1.21 1.26	1.00 1.05 1.10 1.15 1.20	1.00 1.05 1.10 1.14	1.00 1.05 1.09	1.00 1.04	1.00			
Number of teeth	25 26 27 28 29	2.50 2.60 2.70 2.80 2.90	2.27 2.36 2.45 2.54 2.64	2.08 2.17 2.25 2.33 2.42	1.92 2.00 2.08 2.15 2.23	1.79 1.86 1.93 2.00 2.07	1.67 1.73 1.80 1.87 1.93	1.56 1.63 1.69 1.75 1.81	1.47 1.53 1.59 1.65 1.71	1.39 1.44 1.50 1.56 1.61	1.32 1.37 1.42 1.47 1.53	1.25 1.30 1.35 1.40 1.45	1.19 1.24 1.29 1.33 1.38	1.14 1.18 1.23 1.27 1.32	1.09 1.13 1.17 1.22 1.26	1.04 1.08 1.13 1.17 1.21	1.00 1.04 1.08 1.12 1.16	1.00 1.04 1.07	
	30 38 57 76 95	3.00 3.80 5.70 7.60 9.50	2.73 3.45 5.18 6.91 8.64	2.50 3.17 4.75 6.33 7.92	2.31 2.92 4.38 5.85 7.31	2.14 2.71 4.07 5.43 6.79	2.00 2.53 3.80 5.07 6.33	1.88 2.38 3.56 4.75 5.94	1.76 2.24 3.35 4.47 5.59	1.67 2.11 3.17 4.22 5.28	1.58 2.00 3.00 4.00 5.00	1.50 1.90 2.85 3.80 4.75	1.43 1.81 2.71 3.62 4.52	1.36 1.73 2.59 3.45 4.32	1.30 1.65 2.48 3.30 4.13	1.25 1.58 2.38 3.17 3.96	1.20 1.52 2.28 3.04 3.80	1.11 1.41 2.11 2.81 3.52	1.00 1.27 1.90 2.53 3.17

TDS2 - Speed ratio

TDS3 - Stress concentration factor, k

10BT/L SPROCKET

5/8" (15.9mm) PITCH

Tooth V B1 b1 B2 B3	9.1m 9.0m 25.5m 42.1m	m m																			
No.of		Outer	Dia Over Chain		Duplex Taper Lock						Triplex Taper Lock										
Teeth	Pitch	Dia		Product code	Desig- nation	Bush No.	Туре	Length Bore	Hub Dia	Product code	Desig- nation	Bush No.	Туре	Length Bore	Hub Dia	Product code	Desig- nation	Bush No.	Туре	Length Bore	Hub Dia
	d _₽ mm	de mm	A mm					L mm	N mm					L mm	N mm					L mm	N mm
13	66.34	73	81	026C0113	51-13	1008	1	22.2	47												
15	76.35	83	91	15	51-15	1210	1	25.4	60	026C0215	52-15	1210	3	25.4		026C0315	53-15	1210	5	42.1	
17	86.39	93	101	17	51-17	1610	1	25.4	71	17	52-17	1610	3	25.4		17	53-17	1210	5	42.1	
19	96.44	103	111	19		1610	1	25.4	75	19	52-19	1610	3	25.4		19	53-19	1615	5	42.1	
20	101.49	108	116	20	51-20	1610	1	25.4	76												ш
21	106.50	114	122	21	51-21	1610	1	25.4	76	21	52-21	1610	3	25.4		21	53-21	1615	5	42.1	
23	116.59	124	132	23	51-23	1610	1	25.4	76	23	52-23	1610	3	25.4		23	53-23	2012	5	42.1	
25	126.67	134	142	25	51-25	2012	1	32.0	90	25	52-25	2012	2	32.0	90	25	53-25	2517	4	45.0	105
27	136.75	144	152	27	51-27	2012	1	32.0	90	27	52-27	2012	2	32.0	90	27	53-27	2517	4	45.0	110
30	151.87	159	167	30	51-30	2012	1	32.0	90	30	52-30	2012	2	32.0	90	30	53-30	2517	4	45.0	120
38	192.23	200	208	38	51-38	2012	1	32.0	100												
45	227.58	235	243	45	51-45	2012	6	32.0	100												
57 76	288.19 384.15	296 392	304 400	57 76	51–57 51–76	2012 2012	6	32.0 32.0	110 110												

Taper Lock bushes supplied as a separate item

TDS4 - Taper lock sprocket

TDS5 - Bearing B & C

Principal dimensions			ad ratings c static	Fatigue load limit	Speed rati Reference speed	ngs Limiting speed	Mass	Designation			
i	D	В	С	Co	Pu	speed	speed				
mm			kN		kN	r/min		kg	-		
		_									
12	21	5	1,74	0,915	0,039	70 000	43 000	0,0063	61801		
	24	6	2,91	1,46	0,062	67 000	40 000	0,011	61901		
	28	8	5,4	2,36	0,1	60 000	38 000	0,021	* 6001		
	30	8	5,07	2,36	0,1	60000	38 000	0,026	16101		
	32	10	7,28	3,1	0,132	50 000	32 000	0,037	* 6201		
	37	12	10,1	4,15	0,176	45 000	28 000	0,06	* 6301		
15	24	5	1,9	1,1	0,048	60000	38 000	0,0065	61802		
	28	7	4,36	2,24	0,095	56 000	34 000	0,016	61902		
	32	8	5,85	2,85	0,12	50 000	32 000	0,03	* 16002		
	32	9	5,85	2,85	0,12	50 000	32 000	0,03	* 6002		
	35	11	8,06	3,75	0,16	43 000	28 000	0,045	* 6202		
	42	13	11,9	5,4	0,228	38 000	24 000	0,082	* 6302		
17	26	5	2.03	1,27	0.054	56 000	34 000	0.0075	61803		
	30	7	4,62	2,55	0.108	50 000	32 000	0.016	61903		
	35	8	6,37	3,25	0.137	45 000	28 000	0.038	* 16003		
	35	10	6,37	3,25	0,137	45 000	28 000	0,038	* 6003		
	40	12	9,95	4.75	0.2	38 000	24 000	0.065	* 6203		
	40	12	11,4	5.4	0,228	38 000	24 000	0.064	6203 ETN9		
	47	14	14.3	6.55	0,275	34 000	22 000	0.11	* 6303		
	62	17	22,9	10,8	0,455	28 000	18000	0,27	6403		
20	32	7	4.03	2.32	0.104	45 000	28 000	0.018	61804		
	37	9	6,37	3,65	0.156	43 000	26 000	0.037	61904		
	42	8	7.28	4,05	0,156	38 000	24 000	0.05	* 16004		
	42	12	9,95	5	0.212	38 000	24 000	0.067	* 6004		
	47	14	13,5	6,55	0,28	32 000	20 000	0,11	* 6204		
	47	14	15,6	7,65	0,325	32 000	20 000	0,098	6204 ETN9		
	52 52	15 15	16,8 18,2	7,8 9	0,335	30 000 30 0 00	19 000 19 000	0.14	* 6304 6304 LTN		
Δ		190	1147	ieni	Dr.	A TOP	25 100	ન ેજ જો:	man H A		
	Z DD	12				\mathbf{O}		JAU.			
22	50 56	16	14 18.6	7,65 9.3	0,325	38.000 28.000	19 000 18 000	0.13	62/22 63/22		
	30	10	10,0	7,3	0,37	20000	19000	0.10	03/22		

https://powweder.com

Dimens	ions		•	•	Abutme	ent and fill	et dimensions	Calculat	ion factors	
d	d ₁	Åć	D ₂	We	a h	åt	nou	Z <mark>Č</mark> O	der	
mm		110			min		PON		GOI	
12	14.8	18,3	-	0.3	14	19	0.3	0.015	13	
	16	20,3	-	0,3	14	22	0,3	0,02	15	
	17	23,2	24,8	0,3	14	26	0,3	0,025	13	
	17	23,4	24,8	0,3	14,4	27,6	0,3	0,025	13	
	18,4	25,7	27,4	0,6	16,2	27,8	0,6	0,025	12	
	19,5	29,5	31,5	1	17,6	31,4	1	0,03	11	
15	17,8	21,3	-	0,3	17	22	0,3	0,015	14	
	18,8	24,2	25,3	0,3	17	26	0,3	0,02	14	
	20,5	26,7	28,2	0,3	17	30	0,3	0,02	14	
	20,5	26,7	28,2	0,3	17	30	0,3	0,025	14	
	21,7	29	30,4	0,6	19,2	30,8	0,6	0,025	13	
	23,7	33,7	36,3	1	20,6	36,4	1	0,03	12	
17	19,8	23,3	-	0,3	19	24	0,3	0,015	14	
	20,4	26,6	27,7	0,3	19	28	0,3	0,02	15	
	23	29,2	31,2	0,3	19	33	0,3	0,02	14	
	23	29,2	31,2	0,3	19	33	0,3	0,025	14	
	24,5	32,7	35	0,6	21,2	35,8	0,6	0,025	13	
	24,5	32,7	-	0,6	21,2	35,8	0,6	0,03	12	
	26,5	37,4	39,6	1	22,6	41,4	1	0,03	12	
	32,4	46,6	48,7	1,1	23,5	55,5	1	0,035	11	
20	23,8	28,3	-	0,3	22	30	0,3	0,015	15	
	25,5	31,4	32,7	0,3	22	35	0,3	0,02	15	
	27,3	34,6		0,3	22	40	0,3	0,02	15	
	27,2	34,8	37,2	0,6	23,2	38,8	0,6	0,025	14	
	28,8	38,5	40,6	1	25,6	41,4	1	0,025	13	
	28,2	39,6	-	1	25,6	41,4	1	0,025	12	
	30,3	41,6	44,8	1,1	27	45	1	0,03	12	
	30,3	42,6	-	1,1	27	45	1	0,03	12	
	37,1	54,8	-	1,1	29	63	1	0,035	11	
22	22.2	74.0	44		27.6			0.025	40	
22	32,2	41,8 45,3		1.1	27,6 29	44,4	1 1	0.025	14	
	32,9	45,3	-	1,1	24	4/	1	0,03	12	

TDS7- Bearing A &D

																-	-						
	DIN 471					Ć)						7	Ĵ					Α .	T	A		
dl	D1400 A	s	Δ	d ₃	Δ	a max.	ь =	d ₅ min.	c ₁	C ₂		d ₂	Δ	m min.	t	n	FN (kN)	FR (kN)	g	FRg (kN)	AN (mm²)	В	ndet. x1000 (rpm)
3 4 5 6 7	A3 A4 A5 A6 A7	0.40 0.40 0.60 0.70 0.80	-0.05	2.7 3.7 4.7 5.6 6.5	+0.04 -0.15 +0.06	1.9 2.2 2.5 2.7 3.1	0.8 0.9 1.1 1.3 1.4	1.0 1.0 1.0 1.2 1.2	7.0 8.6 10.3 11.7 13.5	6.6 8.2 9.8 11.1 12.9	0.017 0.022 0.066 0.084 0.121	2.8 3.8 4.8 5.7 6.7	-0.04	0.50 0.50 0.70 0.80 0.90	0.10 0.10 0.10 0.15 0.15	0.3 0.3 0.3 0.5 0.5	0.1 0.2 0.2 0.4 0.5	0.47 0.50 1.00 1.45 2.60	0.5 0.5 0.5 0.5 0.5	0.27 0.30 0.80 0.90 1.40	0.9 1.2 1.5 2.8 3.2	2.06 1.93 7.38 10.40 14.70	360 211 154 114 121
8 9 10 11 12	A8 A9 A10 A11 A12	0.80 1.00 1.00 1.00 1.00		7.4 8.4 9.3 10.2 11.0	-0.18	3.2 3.3 3.3 3.3 3.3	1.5 1.7 1.8 1.8 1.8	1.2 1.2 1.5 1.5	14.7 16.0 17.0 18.0 19.0	14.0 15.2 16.2 17.1 18.1	0.158 0.300 0.340 0.410 0.500	7.6 8.6 9.6 10.5 11.5	-0.06	0.90 1.10 1.10 1.10 1.10	0.20 0.20 0.20 0.25 0.25	0.6 0.6 0.6 0.8 0.8	0.8 0.9 1.0 1.4 1.5	3.00 3.50 4.00 4.50 5.00	0.5 0.5 1.0 1.0	2.00 2.40 2.40 2.40 2.40	4.9 5.5 6.2 8.4 9.2	14.20 30.00 28.20 26.10 24.00	96 85 84 70 75
13 14 15 16 17	A13 A14 A15 A16 A17	1.00 1.00 1.00 1.00 1.00		11.9 12.9 13.8 14.7 15.7	+0.10 =0.36	3.4 3.5 3.6 3.7 3.8	2.0 2.1 2.2 2.2 2.3	1.7 1.7 1.7 1.7 1.7	20.2 21.4 22.6 23.8 25.0	19.2 20.4 21.5 22.6 23.8	0.530 0.640 0.670 0.700 0.820	12.4 13.4 14.3 15.2 16.2	-0.11	1.10 1.10 1.10 1.10 1.10	0.30 0.30 0.35 0.40 0.40	0.9 0.9 1.1 1.2 1.2	2.0 2.1 2.6 3.2 3.4	5.80 6.40 6.90 7.40 8.00	1.0 1.0 1.0 1.0	2.40 2.40 2.40 2.40 2.40	11.9 12.9 16.1 19.6 20.8	23.20 22.90 21.60 21.00 21.60	66 58 50 45 41
18 19 20 21	A18 A19 A20 A21 A22	1.20 1.20 1.20 1.20 1.20	-0.06	16.5 17.5 18.5 19.5 20.5	+0.13 -0.42	3.9 3.9 4.0 4.1 4.2	2.4 2.5 2.6 2.7 2.8	2.0 2.0 2.0 2.0 2.0	26.2 27.2 28.4 29.6 30.8	24.8 25.8 27.0 28.2 29.4	1.110 1.220 1.300 1.420 1.500	17.0 18.0 19.0 20.0 21.0	-0.13	1.30 1.30 1.30 1.30 1.30	0.50 0.50 0.50 0.50 0.50	1.5 1.5 1.5 1.5 1.5	4.5 4.8 5.0 5.3 5.6	17.00 17.00 17.10 16.80 16.90	1.5 1.5 1.5 1.5 1.5	3.75 3.80 3.85 3.75 3.80	27.5 29.1 30.6 32.2 33.8	37.10 36.40 36.30 35.40	39 35 32 29 27
23 24 25 26 27	A23 A24 A25 A26 A27	1.20 1.20 1.20 1.20 1.20		21.5 22.2 23.2 24.2 24.9		4.3 4.4 4.4 4.5 4.6	2.9 3.0 3.0 3.1 3.1	2.0 2.0 2.0 2.0 2.0 2.0	32.0 33.2 34.2 35.5 36.7	30.6 31.7 32.7 33.9 34.8	1.630 1.770 1.900 1.960 2.080	22.0 22.9 23.9 24.9 25.6	-0.15 -0.21	1.30 1.30 1.30 1.30 1.30	0.50 0.55 0.55 0.55 0.70	1.5 1.7 1.7 1.7 2.1	5.9 6.7 7.0 7.3 9.6	16.60 16.10 16.20 16.10 16.40	1.5 1.5 1.5 1.5 1.5	3.80 3.65 3.70 3.70 3.80	35.4 40.5 42.3 44.0 57.8	34.70 33.40 33.40 32.90 33.40	25 27 25 24 22
28 29 30 31 32	A28 A29 A30 A31 A32	1.50 1.50 1.50 1.50 1.50		25.9 26.9 27.9 28.6 29.6	+0.21	4.7 4.8 5.0 5.1 5.2	3.2 3.4 3.5 3.5 3.6	2.0 2.0 2.0 2.5 2.5	37.9 39.1 40.5 41.7 43.0	36.0 37.2 38.6 40.9 40.7	2.920 3.200 3.320 3.450 3.540	26.6 27.6 28.6 29.3 30.3	-0.11	1.60 1.60 1.60 1.60 1.60	0.70 0.70 0.70 0.85 0.85	2.1 2.1 2.1 2.6 2.6	10.0 10.3 10.7 13.4 13.8	32.10 31.80 32.10 31.50 31.20	1.5 1.5 1.5 2.0 2.0	7.50 7.45 7.65 5.60 5.55	60.0 62.0 64.0 81.0 83.0	65.00 64.00 64.20 62.80 61.80	21 20 19 18 17
33 34 35 36 37	A33 A34 A35 A36 A37	1.50 1.50 1.50 1.75 1.75		30.5 31.5 32.2 33.2 34.2	+0.25 -0.50	5.2 5.4 5.6 5.6 5.7	3.7 3.8 3.9 4.0 4.1	2.5 2.5 2.5 2.5 2.5 2.5	44.0 45.4 46.8 47.8 49.0	41.7 43.1 44.2 45.2 47.0	3.690 3.800 4.000 5.000 5.370	31.3 32.3 33.0 34.0 35.0	-0.25	1.60 1.60 1.60 1.85 1.85	0.85 0.85 1.00 1.00 1.00	2.6 2.6 3.0 3.0 3.0	14.3 14.7 17.8 18.3 18.8	31.60 31.30 30.80 49.40 50.00	2.0 2.0 2.0 2.0 2.0	5.65 5.60 5.55 9.00 9.15	86.0 88.0 107.0 110.0 113.0	62.20 61.30 60.10 95.80 96.40	17 16 16 15 14

Available Bore Sizes - Metric mm Bush No. 11 14 14 14 18 16 19 25 35 35 12 12 16 16 16 19 18 20 28 38 38 14 14 18 18 18 20 19 22 30 40 40 16 16 19 19 19 22 20 24 32 42 42 19 22 22 25 24 28 38 48 48 22 25 25 25 30 28 32 42 55 30 30 30 35 32 38 18 20 20 20 24 22 25 35 45 45 TB1210 TB1215 TB1610 24 24 28 25 30 40 50 50 28 28 32 30 35 45 60 60 42 42 48 45 50 TB1615 TB2012 TB2017 TB2517 TB2525 TB3020 TB3030 TB3535

TDS10 - Taper lock

Bush size		1008	1108	1210	1610	1615	2012	2517	3020	3030	3525	3535	4030	4040	4535	4545	5040	5050
Screw tightening torque (Nm)		5.6	5.6	20.0	20.0	20.0	30.0	50.0	90.0	9 0 .0	115.0	115.0	170.0	170.0	190.0	190.0	270.0	270.0
	qty	2	2	2	2	2	2	2	2	2	3	3	3	3	3	3	3	3
Screw	size (BSVV)	1/4"	1/4"	3/8"	3/8"	3/8"	7/16"	1/2"	5/8"	5/8"	1/2"	1/2"	5/8"	5/8"	3/4"	3/4"	7/8"	7/8"
details	Hex. socket size (mm)	3	3	5	5	5	6	6	8	8	10	10	12	12	14	14	14	14
Large er	nd dia. (mm)	35.0	38.0	47.5	57.0	57.0	70.0	85.5	108.6	108.0	127.0	127.0	146.0	146.0	162.0	162.0	178.0	178.0
Bush length (mm)		22.3	22.3	25.4	25.4	38.1	31.8	44.5	50.8	76.2	63.5	89.0	76.2	102.0	89.0	114.0	102.0	127.0
Approx mass (kg)		0.1	0.1	0.2	0.3	0.5	0.7	1.5	2.7	3.6	3.8	5.0	5.6	7.7	7.5	10.0	11.1	14.0

TDS11 - Taper lock (2)

TDS12 - Dimension and tolerance of keyway