Sprawozdanie 100B

Michał Puchyr

15 marca 2023

1 Cel ćwiczenia

- Pomiar rezystancji na opornikach oraz żarówce
- Zmierzenie wartości napięcia i natężenia na opornikach oraz żarówce
- Obliczenie oporu przy pomocy praw fizyki i porównanie go z wcześniejszymi pomiarami
- Zrozumienie praw fizyki związanych z prądem elektrycznym

2 Opis ćwiczenia

2.1 Wstęp teoretyczny

W obwodach prądu stałego rezystancja jest wielkością charakteryzującą relację między napięciem a natężeniem prądu elektrycznego. Oznacza to, że opór przewodnika elektrycznego jest wprost proporcjonalny do napięcia i odwrotnie proporcjonalny do natężenia.

$$R = \frac{U}{I}$$

Gdzie:

R - rezystancja $[\Omega]$

U - napięcie między końcami przewodnika [V]

I - natężenie pradu elektrycznego [A]

Przyrządy i materiały wykorzystane do pomiarów :

- 2 mierniki uniwersalne M8906
- Zasilacz stabilizowany
- Przewody elektryczne
- Zestaw oporników z żarówką

Schemat układu nr 1

Schemat układu nr $2\,$

3 Pomiary układów

Pomiary oporu w układzie pierwszym										
Lp.	Opornik	Opór $[\Omega]$	$Zakres[\Omega]$	Niepewność $[\Omega]$						
1	R_1	165,2	200	1,62						
2		165,3	200	1,62						
3		164,9	200	1,62						
4		165,0	200	1,62						
5	R_2	122,6	200	1,28						
6		122,9	200	1,28						
7		123,0	200	1,28						
8		122,9	200	1,28						
9	Żarówka	13,9	200	0,41						
10		13,8	200	0,41						
11		13,9	200	0,41						
12		13,9	200	0,41						

Pomiary napięcia i natężenia w układzie drugim											
Lp.	Opornik	U[V]	u(U)[V]	$I[10^{-3}A]$	$u(I)[10^{-3}A]$	$R[\Omega]$	$U_c[\Omega]$	$R \text{ sr.}[\Omega]$	$\mathrm{u}(\overline{R})[\Omega]$		
1	R_1	3,21	0,02	19,5	0,20	164,62	1,88	163,92	0,09		
2		4,66	0,02	28,4	0,26	164,08	1,66				
3		6,19	0,02	37,7	0,32	164,19	1,53				
4		7,70	0,03	47,0	0,39	163,83	1,49				
5		9,34	0,03	57,1	0,46	163,57	1,44				
6		6,19	0,02	37,8	0,32	163,76	1,52				
7		4,65	0,02	28,4	0,26	163,73	1,66				
8		3,21	0,02	19,6	0,20	163,78	1,86				
9		7,70	0,03	47,0	0,39	163,83	1,49				
10		9,34	0,03	57,0	0,46	163,86	1,44				
11	R_2	3,20	0,02	26,2	0,24	122,14	1,27	122,05	0,05		
12		4,63	0,02	37,9	0,33	122,16	1,19				
13		6,16	0,02	50,4	0,41	122,22	1,10				
14		7,66	0,03	62,8	0,50	121,97	1,07				
15		9,29	0,03	76,2	0,59	121,92	1,04				
16		3,19	0,02	26,2	0,24	121,76	1,25				
17		4,63	0,02	37,9	0,33	122,16	1,19				
18		6,16	0,02	50,4	0,41	122,22	1,10				
19		7,65	0,03	62,7	0,50	122,01	1,07				
20		9,29	0,03	76,2	0,59	121,92	1,04				
21	Żarówka	3,16	0,02	43,5	0,36	72,64	0,69	93,84	4,68		
22		4,60	0,02	54,4	0,44	84,56	0,78				
23		6,13	0,02	63,7	0,50	96,23	0,84				
24		7,64	0,03	73,0	0,57	104,66	0,90				
25		9,28	0,03	82,7	0,64	112,21	0,96				
26		3,16	0,02	43,5	0,36	72,64	0,69				
27		4,60	0,02	54,4	0,44	84,56	0,78				
28		6,13	0,02	64,6	0,51	94,89	0,84				
29		7,64	0,03	73,7	0,57	103,66	0,89				
30		9,28	0,03	82,6	0,64	112,35	0,96				

Rezystancja w układzie drugim została obliczona przy użyciu prawa Ohma. Pomiary zostały wykonane przy zakresie $200 \mathrm{mA}$ i $20 \mathrm{V}.$

3.1 Wykres I = f(U)

3.1.1 Wykres dla pomiaru opornika R1

3.1.2 Wykres dla pomiaru opornika R2

3.1.3 Wykres dla pomiaru żarówki

4 Obliczenia

4.1 Niepewność typu A

Do obliczenia niepewności pommiarowej typu A został wykorzystany poniższy wzór

$$u_a(x) = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n(n-1)}}$$
$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Dla pierwszego opornika:

 $\overline{x} = 163,92\Omega$

 $u_a(x) = 0,09\Omega$

Dla drugiego opornika:

 $\overline{x} = 122,05\Omega$

 $u_a(x) = 0,05\Omega$

Dla żarówki :

 $\overline{x} = 93,84\Omega$

 $u_a(x) = 4,68\Omega$

4.2 Niepewność typu B

Do obliczenia niepewności pomiaru napięcia (zakres 20V) przez miernik wykorzystano wzór

$$\pm 0.5\% rdg + 1dgt$$

Do obliczenia niepewności pomiaru natężenia (zakres 200mA) przez miernik wykorzystano wzór

$$\pm 1.2\% rdg + 1dgt$$

Do obliczenia niepewności pomiaru oporu (zakres 200Ω) przez miernik wykorzystano wzór

$$\pm 0.8\% rdq + 3dqt$$

4.3 Niepewność typu C

Do obliczenia tej niepewności dla danego pomiaru wykorzystano wzór

$$u_c(x) = \sqrt{(\frac{\partial f}{\partial U})^2 u(U)^2 + (\frac{\partial f}{\partial I})^2 u(I)^2}$$

$$u_c(x) = \sqrt{(\frac{1}{I})^2 u(U)^2 + (\frac{-U}{I^2})^2 u(I)^2}$$

5 Wnioski

Poprzez wykonanie pomiarów natężenia i napięcia w układach można zauważyć, że napięcie i natężenie w opornikach zwiększają się proporcjonalnie względem siebie co wynika z prawa Ohma. Poprzez pomiar pierwszy i porównanie wyników pomiaru drugiego można zaobserwować identyczność (z małymi odchyleniami) zmierzonego oporu z tym obliczonym przy pomocy wzoru.

Żarówka ze względu na zmienność temperatury nie zastosowuje się do prawa Ohma, opór zmieniał się w zależności od wielkości napięcia i natężenia nieliniowo. Opór zmierzony na żarówce jest znacząco różniący się od tego, wyliczonego przy pomocy prawa Ohma.

6 Bibliografia

• https://pl.wikipedia.org/wiki/Prawo_Ohma