Ejercicios 1.

1.1. Ejercicio 1

Sea $A \subset \mathbb{R}$ un conjunto no vacío acotado superiormente. Entonces

$$-\inf\left(-A\right) = \sup\left(A\right)$$

Solución

Demostración. Por definición sabemos que $A \neq \emptyset$ y además existe un $M \in \mathbb{R}$ tal que $a \leq M$ para todo $a \in A$. Sabemos que por definición de **supremo** se cumple que $\sup (A) \leq M$. También sabemos que

$$a \le M \qquad \forall a \in A$$

$$(-1) \cdot a \ge (-1) \cdot M \qquad \forall a \in A$$

$$-a \ge -M \qquad \forall a \in A$$

Recordemos la definición de -A

$$-A = \{-a : a \in A\}$$

De la definición de -A, sabemos que $-A \neq \emptyset$. Notemos que -M es una cota inferior del conjunto -Aconsecuentemente -A está cotado inferiormente. Sea β una cota superior de A entonces por definición de $\sup (A)$ tenemos que

$$\beta \ge \sup(A) \ge a \qquad \forall a \in A$$

$$(-1) \cdot \beta \le (-1) \cdot \sup(A) \le (-1) \cdot a \qquad \forall a \in A$$

$$-\beta \le -\sup(A) \le -a \qquad \forall a \in A$$

Lo anterior pasa para cualquier cota superior β y por ende para cualquier cota inferior $-\beta$. Así notemos que $-\sup(A)$ es una cota inferior de -A y además es la cota inferior más grande, es decir

$$\inf(-A) = -\sup(A)$$
$$-\inf(-A) = \sup(A)$$