Instructor: Chris Peikert

Scribe: Shiva Kintali

Today we will see some concrete one-way function candidates that arise from number theory, and abstract out some of their other special properties that will be useful when we proceed to investigate pseudorandomness.

1 Collections of OWFs

Our generic definition of a one-way function is concise, and very useful for complexity-theoretic crypto. However, it tends not to be as appropriate for the kinds of hard functions that we use in "real-life" crypto; below we give a more flexible definition. (In your homework, you will show that the generic OWF definition is equivalent to this one.)

Definition 1.1. A collection of one-way functions is a family $F = \{f_s \colon D_s \to R_s\}_{s \in S}$ satisfying the following conditions:

- 1. Easy to sample a function: there is a PPT algorithm S such that S() outputs some $s \in S$ (according to some arbitrary distribution).
- 2. Easy to sample from domain: there is a PPT algorithm D such that D(s) outputs some $x \in D_s$ (according to some arbitrary distribution).
- 3. Easy to evaluate function: there is a deterministic polynomial-time algorithm F for which $F(s,x) = f_s(x)$ for all $s \in S$, $x \in D_s$.
- 4. *Hard to invert:* for any non-uniform PPT algorithm \mathcal{I} ,

$$\Pr_{s \leftarrow \mathsf{S}(1^n), x \leftarrow \mathsf{D}(s)} \big[\mathcal{I}(s, f_s(x)) \in f_s^{-1}(f_s(x)) \big] = \mathrm{negl}(n).$$

For example, the subset-sum function f_{ss} is more naturally defined as a collection, as follows. Let $S_n = (\mathbb{Z}_N)^n$ where $N = 2^n$, and let the full index set $S = \bigcup_{n=1}^{\infty} S_n$. Define the domain $D_{\vec{a}} = \{0,1\}^n$ and the range $R_{\vec{a}} = \mathbb{Z}_N$, for all $\vec{a} = (a_1, \ldots, a_n) \in S_n$. The corresponding function is defined as

$$f_{\vec{a}}(x) = \sum_{i=1}^{n} a_i \cdot x_i \mod N.$$

The algorithms S (function sampler), D (domain sampler), and F (function evaluator) are all straightforward. In the remainder of the lecture, we will see other examples of OWF collections (some with other special properties) that arise from number theory.

2 Number Theory Background

Definition 2.1. For positive integers $a, b \in \mathbb{N}$, their *greatest common divisor* $d = \gcd(a, b)$ is the largest integer d such that $d \mid a$ and $d \mid b$.

As a consequence of Algorithm 1 below, there always exist integers $x,y \in \mathbb{Z}$ such that $ax+by=\gcd(a,b)$. We say that a and b are *co-prime* (or *relatively prime*) if $\gcd(a,b)=1$, i.e., $ax=1 \mod b$. From this, x is the multiplicative inverse of a modulo b, and likewise y is the multiplicative inverse of b modulo a. The following deterministic algorithm shows that $\gcd(a,b)$ (and additionally, the integers x and y) can be computed efficiently.

Algorithm 1 Algorithm ExtendedEuclid(a, b) for computing the greatest common divisor of a and b.

```
Input: Positive integers a \geq b > 0.

Output: (x,y) \in \mathbb{Z}^2 such that ax + by = \gcd(a,b).

1: if b \mid a then

2: return (0,1)

3: else

4: Let a = b \cdot q + r for r \in \{1, \dots, b-1\}

5: (x',y') \leftarrow \mathsf{ExtendedEuclid}(b,r)

6: return (y',x'-q\cdot y')

7: end if
```

Theorem 2.2. Extended Euclid is correct and runs in polynomial time in the lengths of a and b, i.e., in $poly(\log a + \log b)$ time.

Proof. For correctness, we argue by induction on the second argument b. Clearly the algorithm is correct when b=1. If $b\mid a$, then $\gcd(a,b)=b$, hence ExtendedEuclid correctly returns (0,1). If $b\nmid a$ then by the inductive hypothesis (using b>r), the recursive call correctly returns (x',y') such that $bx'+ry'=\gcd(b,r)$. It can be checked that $\gcd(a,b)=\gcd(b,r)$, because any common divisor of a and b is also a divisor of r. Finally, observe that

$$\gcd(b, r) = bx' + ry' = bx' + (a - b \cdot q)y' = ay' + (x' - q \cdot y')b.$$

Hence ExtendedEuclid correctly returns $(y', x' - q \cdot y')$.

For the running time, observe that all the basic operations (not including the recursive call) can be implemented in polynomial time. The following claim establishes the overall efficiency.

Claim 2.3. For $2^n > a \ge b > 0$, Extended Euclid makes at most 2n recursive calls.

We use induction. The claim is true when $a < 2^1$. Suppose the claim is true for all $a < 2^n$, and suppose $a < 2^{n+1}$. Two cases arise:

- If $b < 2^n$, the first recursive call is on (b, r). Since $b < 2^n$, by the inductive hypothesis we make at most 2n more recursive calls. Hence the total number of recursive calls is at most 1 + 2n < 2(n + 1).
- If $b \ge 2^n$, i.e., $2^{n+1} > a \ge b \ge 2^n$, we have $a = b \cdot 1 + r$ for $r = a b < 2^n < b$. The first recursive call is on $(b \ge 2^n, r < 2^n)$. In turn, its recursive call uses $r < 2^n$ as its first parameter. By the inductive hypothesis, the number of recursive calls following the second one is at most 2n. Hence the total number of recursive calls is at most $2 + 2n \le 2(n+1)$.

We frequently work with the ring $(\mathbb{Z}_N, +, \cdot)$ of integers modulo a positive integer N.

Lemma 2.4 (Chinese remainder theorem, special case). Let $N = p \cdot q$ for distinct primes p, q. The ring \mathbb{Z}_N is isomorphic to the product ring $\mathbb{Z}_p \times \mathbb{Z}_q$, via the isomorphism $h(x) = (x \mod p, x \mod q)$.

A few remarks about the above lemma:

• In the product ring $\mathbb{Z}_p \times \mathbb{Z}_q$, addition and multiplication are coordinate-wise.

• Clearly the isomorphism h is efficiently computable. Less obvious is that it is also efficiently *invertible*. Suppose we know some elements $c_p, c_q \in \mathbb{Z}_N$ such that $h(c_p) = (1,0)$ and $h(c_q) = (0,1)$; such a pair is sometimes called a *CRT basis*. Then given $(x,y) \in \mathbb{Z}_p \times \mathbb{Z}_q$, it is easy to see that $h^{-1}(x,y) = \bar{x} \cdot c_p + \bar{y} \cdot c_q$, where $\bar{x}, \bar{y} \in \mathbb{Z}_N$ are any elements such that $\bar{x} = x \pmod{p}$ and $\bar{y} = y \pmod{q}$. (For example, we could take the "smallest" elements in \mathbb{Z}_N that have the required residues modulo p and q, respectively.)

Question 1. For the CRT isomorphism on \mathbb{Z}_{15} , verify that the following example equations hold: $h(7 \cdot 9) = h(7) \cdot h(9)$ and h(6+11) = h(6) + h(11).

Question 2. Show that $h^{-1}(x,y) = \bar{x} \cdot c_p + \bar{y} \cdot c_q$, as claimed above.

Question 3. Show how to compute c_p, c_q efficiently (hint: use ExtendedEuclid on p, q).

Definition 2.5. The multiplicative group $\mathbb{Z}_N^* := \{x \in \mathbb{Z}_N : x \text{ is invertible mod } N, \text{ i.e., } \gcd(x, N) = 1\}.$

Here are some useful facts about the multiplicative group \mathbb{Z}_N^* :

- For a prime $p, \mathbb{Z}_p^* = \{1, \dots, p-1\}.$
- When N = pq for distinct primes p, q, we have $\mathbb{Z}_N^* \cong \mathbb{Z}_p^* \times \mathbb{Z}_q^*$.

Definition 2.6. For $N \in \mathbb{Z}^+$, Euler's *totient function* $\varphi(N)$ is defined to be $|\mathbb{Z}_N^*|$, i.e., the number of positive integers $a \leq N$ that are relatively prime to N.

Here are some useful facts about the totient function:

- For a prime p, we have $\varphi(p) = p 1$.
- For a prime p and positive integer a, we have $\varphi(p^a)=(p-1)p^{a-1}=p^a-p^{a-1}$.
- If gcd(a, b) = 1, then $\varphi(a \cdot b) = \varphi(a) \cdot \varphi(b)$.

Definition 2.7. The subgroup of *quadratic residues* is defined as

$$\mathbb{QR}_N^* = \{ y \in \mathbb{Z}_N^* : \exists \ x \in \mathbb{Z}_N^* \text{ s.t. } y = x^2 \text{ mod } N \} \subseteq \mathbb{Z}_N^*.$$

Here are some useful facts about \mathbb{QR}_N^* :

- For an odd prime $p, |\mathbb{QR}_p^*| = \frac{p-1}{2}$, because $x \mapsto x^2$ is 2-to-1 over \mathbb{Z}_p^* . (Exercise: prove this.)
- When N=pq for distinct odd primes p,q, we have $\mathbb{QR}_N^*\cong\mathbb{QR}_p^*\times\mathbb{QR}_q^*$, hence $|\mathbb{QR}_N^*|=\frac{p-1}{2}\cdot\frac{q-1}{2}$.
- For an odd prime p, we have $-1 \in \mathbb{QR}_p^*$ if and only if $p = 1 \mod 4$.

Question 4. Verify that the CRT isomorphism works in \mathbb{Z}_{15} by checking that $h(7 \cdot 9) = h(7) \cdot h(9)$.

Question 5. Show that $h^{-1}(x,y) = x \cdot c_p + y \cdot c_q$.

3 Factoring-Related Functions

We can abstract out a modulus generation algorithm S, which given the security parameter 1^n outputs the product N of two primes p,q. For example, S might choose p and q to be uniformly random and independent n-bit primes.

Rabin's function $f_N \colon \mathbb{Z}_N^* \to \mathbb{Q}\mathbb{R}_N^*$ is defined as follows:

$$f_N(x) = x^2 \bmod N.$$

Precisely defining the collection according to Definition 1.1 is a simple exercise. Note that f_N is 4-to-1, because each $y \in \mathbb{QR}_N^*$ has two square roots modulo p, and two modulo q.

Theorem 3.1. *If factoring is hard (with respect to* S)*, then the Rabin collection (with function generator* S) *is one-way.*

Proof. First, as already discussed it is easy to generate a function, sample its domain, and evaluate the function. The main fact we use to prove one-wayness is the following.

Claim 3.2. Let N = pq be the product of distinct odd primes. Given any $x_1, x_2 \in \mathbb{Z}_N^*$ such that $x_1^2 = x_2^2 \mod N$ but $x_1 \neq \pm x_2 \mod N$, the factors of N can be computed efficiently.

Proof of Claim. We have $x_1^2 = x_2^2 \mod p$ and $x_1^2 = x_2^2 \mod q$, which implies $x_1 = \pm x_2 \mod p$ and $x_1 = \pm x_2 \mod q$. But we cannot have both + or both -, by assumption. Wlog, we have $x_1 = +x_2 \mod p$ and $x_1 = -x_2 \mod q$. Then $p \mid (x_1 - x_2)$ but $q \nmid (x_1 - x_2)$, otherwise we'd have $q \mid (2x_2) \Rightarrow q \mid x_2 \Rightarrow x_2 \notin \mathbb{Z}_N^*$. Then $\gcd(x_1 - x_2, N) = p$, which we can compute efficiently. \square

Continuing with the proof of Theorem 3.1, we prove one-wayness by contrapositive, via a reduction. Assuming we have an inverter for the Rabin function, the idea is to choose our own $x_1 \in \mathbb{Z}_N^*$ and invoke the inverter on $y = f_N(x_1) = x_1^2 \mod N$. The square root x_2 it returns will be $\neq \pm x_1$, with probability 1/2. In such a case, we get the prime factorization of N by Claim 3.2. We now proceed more formally.

Assume a non-uniform PPT inverter \mathcal{I} violating the one-wayness of the Rabin collection, i.e.,

$$\Pr_{N \leftarrow \mathsf{S}(1^n), x \leftarrow \mathbb{Z}_N^*} [\mathcal{I}(N, y = x^2 \bmod N) \in \sqrt{y} \bmod N] = \delta(n)$$

is non-negligible.

Our factoring algorithm $\mathcal{A}(N)$ works as follows: first, generate a uniform $x_1 \leftarrow \mathbb{Z}_N^*$. Let $y = x_1^2 \mod N$ and let $x_2 \leftarrow \mathcal{I}(N,y)$. If $x_2^2 = y \mod N$ but $x_1 \neq \pm x_2 \mod N$, then compute the factorization of N by Claim 3.2.

We now analyze the reduction. First, N and y are distributed as expected, so \mathcal{I} outputs x_2 such that $x_2^2 = y \mod N$ with probability δ . Conditioned on the fixed value of y, there are four possible values for x_1 , each equally likely by construction. So we have $x_2^2 = y \mod N$ and $x_2 \neq \pm x_1 \mod N$ with prob $\delta/2$, which is non-negligible by assumption. \square

Suppose $p,q=3 \mod 4$. Then -1 is not a square modulo p (respectively, q). So for any $x \in \mathbb{Z}_p^*$ (resp., \mathbb{Z}_q^*), exactly one of $\pm x$ is a square modulo p (resp., q). From this it can be seen that if we restrict the Rabin function to have domain \mathbb{QR}_N^* , i.e., $f_N \colon \mathbb{QR}_N^* \to \mathbb{QR}_N^*$, it becomes a *permutation* (bijection).

Question: Our proof that f_N is one-way used (quite essentially) the fact that f_N is 4-to-1. Now that we have changed its domain to make f_N a permutation, is the proof still valid?

Definition 3.3 (One-Way Permutation). A collection $F = \{f_s \colon D_s \to D_s\}_{s \in S}$ is a collection of *one-way permutations* if it is a collection of one-way functions f_s under the *uniform* distribution over D_s , and each f_s is a *permutation* of D_s (i.e., a bijection).

Answers

Question 1. For the CRT isomorphism on \mathbb{Z}_{15} , verify that the following example equations hold: $h(7 \cdot 9) = h(7) \cdot h(9)$ and h(6+11) = h(6) + h(11).

Answer. Note that 15 is the product of two primes, 3 and 5, so $\mathbb{Z}_{15} \cong \mathbb{Z}_3 \times \mathbb{Z}_5$.

First, we consider $h(7 \cdot 9)$. We have $7 \cdot 9 = 3 \pmod{15}$ and $h(3) = (3 \mod 3, 3 \mod 5) = (0, 3)$. Next, $h(7) = (7 \mod 3, 7 \mod 5) = (1, 2)$ and $h(9) = (9 \mod 3, 9 \mod 5) = (0, 4)$. Finally, we multiply the pairs elementwise, recalling that the first elements of each pair are from \mathbb{Z}_3 and the second elements are from \mathbb{Z}_5 . We see that $(1, 2) \cdot (0, 4) = (0 \mod 3, 8 \mod 5) = (0, 3)$, as expected.

Now we consider h(6+11). We have $6+11=2 \pmod{15}$ and $h(2)=(2 \mod 3, 2 \mod 5)=(2,2)$. Next, $h(6)=(6 \mod 3, 6 \mod 5)=(0,1)$ and $h(11)=(11 \mod 3, 11 \mod 5)=(2,1)$. Finally, adding the pairs elementwise (and reducing modulo the appropriate moduli) yields (0,1)+(2,1)=(2,2), as expected.

Question 2. Show that $h^{-1}(x,y) = \bar{x} \cdot c_p + \bar{y} \cdot c_q$, as claimed above.

Answer. We use the CRT isomorphism several times:

$$(x,y) = (x,0) + (0,y)$$

$$= h(\bar{x}) \cdot (1,0) + h(\bar{y}) \cdot (0,1)$$

$$= h(\bar{x}) \cdot h(c_p) + h(\bar{y}) \cdot h(c_q)$$

$$= h(\bar{x} \cdot c_p + \bar{y} \cdot c_q),$$

and the result follows by applying the bijection h^{-1} to both sides.

Question 3. Show how to compute c_p , c_q efficiently (hint: use ExtendedEuclid on p, q).

Answer. Because p,q are distinct primes, their gcd is 1, so ExtendedEuclid(p,q) returns integers $a,b \in \mathbb{Z}$ such that $a \cdot p + b \cdot q = 1$. We claim that $c_p = b \cdot q \mod p$ and $c_q = a \cdot p \mod q$. To see this, observe that $b \cdot q = 1 - a \cdot p = 1 \pmod{p}$ (because a is an integer) and $b \cdot q = 0 \pmod{q}$ (because b is an integer), so $h(b \cdot q) = (1,0)$, as needed. A similar calculation shows that $h(a \cdot p) = (0,1)$.

Question 4. Verify that the CRT isomorphism works in \mathbb{Z}_{15} by checking that $h(7 \cdot 9) = h(7) \cdot h(9)$.

Answer. Note that 15 is the product of two primes: 3 and 5, so $\mathbb{Z}_{15} \cong \mathbb{Z}_3 \times \mathbb{Z}_5$. First, we consider $h(7 \cdot 9)$. $7 \cdot 9 \equiv 3 \pmod{15}$ and $h(3) = (3 \mod 3, 3 \mod 5) = (0, 3)$. Next, $h(7) = (7 \mod 3, 7 \mod 5) = (1, 2)$ and $h(9) = (9 \mod 3, 9 \mod 5) = (0, 4)$. Finally we multiply the pairs elementwise, recalling that the first elements of each pair are from \mathbb{Z}_3 and the second elements are from \mathbb{Z}_5 . $(1, 2) \cdot (0, 4) = (0, 3)$ as expected.

Question 5. Show that $h^{-1}(x,y) = x \cdot c_p + y \cdot c_q$.

Answer. Consider,

$$(x,y) = (x,0) + (0,y)$$

$$= h(x) \cdot (1,0) + h(y) \cdot (0,1)$$

$$= h(x) \cdot h(c_p) + h(y) \cdot h(c_q)$$

$$= h(x \cdot c_p + y \cdot c_q)$$

$$h^{-1}(x,y) = x \cdot c_p + y \cdot c_q$$