a.) Amendment to the Claims

- 1. (Currently Amended) A method of treating restless legs syndrome, comprising administering an effective amount of at least one adenosine $A_{2\Lambda}$ receptor antagonist to a patient suffering from restless legs syndrome, which patient does not have Parkinson's disease.
- 2. (Previously Presented) The method of treating restless legs syndrome according to claim 1, wherein the adenosine A_{2A} receptor antagonist is a xanthine derivative or a pharmaceutically acceptable salt thereof.
- 3. (Previously Presented) The method of treating restless legs syndrome according to claim 2, wherein the xanthine derivative is represented by the following formula (I):

$$R^1$$
 R^2
 R^3
 R^4
 R^2
 R^3

wherein R^1 , R^2 , and R^3 independently represent hydrogen, lower alkyl, lower alkenyl, or lower alkynyl; R^4 represents cycloalkyl, -(CH₂)_n- R^5 (in which R^5 represents substituted or

- 2 -

unsubstituted aryl, or a substituted or unsubstituted heterocyclic group; and n is an integer of 0 to 4), or

 $\{ \text{in which } Y^1 \text{ and } Y^2 \text{ independently represent hydrogen, halogen, or lower alkyl; and } Z$ represents substituted or unsubstituted aryl, or

(in which R^6 represents hydrogen, hydroxy, lower alkyl, lower alkoxy, halogen, nitro or amino; and m represents an integer of 1 to 3)}; and X^1 and X^2 independently represent O or S.

 (Currently Amended) The method of treating restless legs syndrome according to claim 2, wherein the xanthine derivative is represented by the following formula (I-A):

- 3 -

$$\mathbb{R}^{1a}$$
 \mathbb{N} $\mathbb{$

wherein R^{1a} and R^{2a} independently represent methyl or ethyl; R^{3a} represents hydrogen or lower alkyl; and Z^a represents

(in which at least one of R^7 , R^8 and R^9 represents lower alkyl or lower alkoxy and the others represent hydrogen; and R^{10} represents hydrogen or lower alkyl) or

 $\label{eq:continuous} \mbox{(in which R^6 represents hydrogen, hydroxy, lower alkyl, lower alkoxy, halogen, nitro or amino; and m represents an integer of 1 to 3).}$

 (Previously Presented) The method of treating restless legs syndrome according to claim 2, wherein the xanthine derivative is (E)-8-(3,4dimethoxystyryl)-1,3-diethyl-7-methylxanthine.

Claims 6 and 7 (Cancelled).

- (Currently Amended) A method of treating nocturnal myoclonus, comprising administering an effective amount of at least one adenosine A_{2A} receptor antagonist to a patient suffering from nocturnal myoclonus, which patient does not have Parkinson's disease.
- 9. (Previously Presented) The method of treating nocturnal myoclonus according to claim 8, wherein the adenosine A_{2A} receptor antagonist is a xanthine derivative or a pharmaceutically acceptable salt thereof.
- 10. (Previously Presented) The method of treating nocturnal myoclonus according to claim 9, wherein the xanthine derivative is represented by the following formula (I):

wherein R^1 , R^2 , and R^3 independently represent hydrogen, lower alkyl, lower alkenyl, or lower alkynyl; R^4 represents cycloalkyl, -(CH_2)_n- R^5 (in which R^5 represents substituted or unsubstituted aryl, or a substituted or unsubstituted heterocyclic group; and n is an integer of 0 to 4), or

 $\label{eq:continuous} \mbox{ \{in which Y^1 and Y^2 independently represent hydrogen, halogen, or lower alkyl; and Z represents substituted or unsubstituted aryl, or } \mbox{ }$

(in which R^6 represents hydrogen, hydroxy, lower alkyl, lower alkoxy, halogen, nitro or amino; and m represents an integer of 1 to 3)}; and X^1 and X^2 independently represent O or S.

 (Currently Amended) The method of treating nocturnal myoclonus according to claim 9, wherein the xanthine derivative is represented by the following formula (I-A):

$$R^{1a}$$
 N
 N
 R^{2a}
 R^{2a}

wherein R^{1a} and R^{2a} independently represent methyl or ethyl; R^{3a} represents hydrogen or lower alkyl; and Z^a represents

(in which at least one of R^7 , R^8 and R^9 represents lower alkyl or lower alkoxy and the others represent hydrogen; and R^{10} represents hydrogen or lower alkyl) or

 $\label{eq:continuous} \mbox{(in which R^6 represents hydrogen, hydroxy, lower alkyl, lower alkoxy, halogen, nitro or amino; and m represents an integer of 1 to 3).}$

12. (Previously Presented) The method of treating nocturnal myoclonus according to claim 9, wherein the xanthine derivative is (E)-8-(3,4-dimethoxystyryl)-1,3-diethyl-7-methylxanthine.