Statistik och Dataanalys I Föreläsning 13 - Slumpvariabler

Oscar Oelrich

Statistiska institutionen Stockholms universitet

Översikt

- Slumpvariabler och sannolikhetsfördelningar
- Sammanfatta sannolikhetsfördelningar väntevärde och varians
- Kontinuerliga slumpvariabler en första titt på normalfördelningen.
- Räkna med slumpvariabler skift, skalning, linjärkombination och summor
- Beroende slumpvariabler korrelation och kovarians

Slumpvariabler

Slumpvariabel mäter ett numeriskt värde från slumpmässigt försök. T ex antal prickar vid kast med tärning, eller

$$X = \begin{cases} 0 & \text{om minusgrader} \\ 1 & \text{om plusgrader} \end{cases}$$

- Vi skriver slumpvariabler med stora bokstäver X och deras numeriska utfall med små bokstäver X.
- Slumpvariabeln "antal prickar" X fick utfallet x=3.
- En slumpvariabel kan vara:
 - **diskret** (utfallen går att räkna, även 0, 1, 2, ... till oändligt)
 - kontinuerlig (utfallen går inte att räkna, många decimaler)
- Exempel
 - ightharpoonup Diskret: X =antal prickar på tärning
 - ightharpoonup Kontinuerlig: X = temperatur (med decimaler)

Sannolikhetsfördelning

- Varje värde x som slumpvariabeln X kan anta har en sannolikhet P(X = x) (eller bara P(x)).
- Sannolikhetsfördelningen för X är sannolikheterna för alla möjliga utfall. $\sum P(x) = 1$.

x	1	2	3	4	5	Σ
P(x)	0.10	0.25	0.40	0.20	0.05	1

Diskret slumpvariabel

Kontinuerlig slumpvariabel

Kasta två tärningar - fördelning för slumpvariabel

■ Slumpvariabel: Händelser ⇒ numeriska värden.

Kasta två tärningar - fördelning för slumpvariabel

Väntevärde - fördelningens centrum

Medelvärdet för ett stickprov

$$\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n} = \frac{1}{n} x_1 + \frac{1}{n} x_2 + \ldots + \frac{1}{n} x_n$$

- \blacksquare X är en slumpvariabel med sannolikhetsfördelning P(X=x).
- Väntevärdet för slumpvariabeln X är (expected value)

$$E(X) = \sum_{\mathsf{alla}\ X} x \cdot P(x)$$

- \blacksquare Summan är över alla möjliga värden för X.
- Vi använder ofta grekiska bokstaven μ för E(X). Grekiska bokstaven för m, m som i mean. "lilla my".
- Mer utförligt: om X kan anta värdena $\{x_1, x_2, \dots, x_m\}$ så är

$$E(X) = \sum_{i=1}^{m} x_i \cdot P(x_i)$$

Väntevärde - mått fördelningens centrum (läge)

- Väntevärde sannolikhetsfördelningens centrum.
- Väntevärdet punkt där sannolikhetsfördelning 'balanserar'.
- Medelvärdet \bar{x} påverkas mycket av extrema värden. Jfr median.
- Väntevärdet påverkas mycket av fördelningens 'svansar'.

Förväntad vinst - Trisslott

E(vinst	$) = 0 \cdot 0.7855 + 30 \cdot 0.0942$	2605+
(VIIID0	0.00012	1000

vinst antal probs 0 4713000 0.785500000 30 565563 0.0942605000 6 601056 0.1001760000 90 78000 0.133000000 120 212600 0.0036000000 150 11280 0.0004600000 300 2.790 0.000465000 450 375 0.000025000 600 600 0.000100000 600 150 0.000025000 900 180 0.000025000 1500 240 0.000040000 2500 45 0.000025000 2500 45 0.000025000 2500 45 0.000025000 2000 12 0.000025000 2000 25 0.000015000 2000 21 0.000025000 2000 20 0.000015000 2000 20 0.000015000 10000 3 0.000015000 2000 4 <th></th> <th></th> <th></th>			
30 565553 0.0942605000 60 601056 0.101760000 90 78000 0.0130000000 120 21600 0.0036000000 150 11280 0.0018800000 150 11280 0.0018800000 300 2790 0.000465000 450 375 0.000025000 500 600 0.000100000 750 150 0.000250000 900 180 0.00030000 1500 240 0.00045000 2000 150 0.000025000 2500 45 0.000025000 2500 45 0.000025000 2500 9 0.000015000 5000 9 0.000015000 5000 9 0.000015000 5000 9 0.000015000 5000 9 0.000015000 5000 9 0.000015000 5000 9 0.0000015000 20000 23	probs	antal	vinst
60 601056 0.1001760000 90 78000 0.013000000 120 21600 0.0036000000 150 11280 0.0018000000 180 3600 0.0006000000 300 2790 0.000465000 450 375 0.0000625000 600 600 0.0001000000 600 600 0.0001000000 600 100 0.0001000000 150 150 0.000250000 900 180 0.000035000 1500 240 0.000045000 2500 45 0.000025000 2500 45 0.000025000 10000 132 0.000025000 10000 132 0.000025000 10000 132 0.000025000 50000 9 0.000015000 100000 132 0.0000035000 50000 9 0.000015000 50000 9 0.000015000 100000 1 0.000015000 50000 1 0.000015000 50000 1 0.000015000 50000 1 0.0000015000 50000 1 0.0000015000 50000 1 0.0000015000 50000 1 0.0000015000 50000 1 0.0000005000 50000 1 0.0000005000	0.7855000000	4713000	0
90 78000 0.130000000 150 11280 0.001800000 150 11280 0.001800000 180 300 2790 0.000465000 450 375 0.0000625000 550 600 0.0001000000 750 150 0.000025000 1000 480 0.0001000000 150 240 0.000045000 250 45 0.000025000 250 45 0.000025000 250 45 0.000025000 250 45 0.0000055000 250 45 0.0000055000 250 0.00015000 10000 132 0.0000250000 250 0.00015000 10000 2 0.000015000 100000 2 0.000015000 2500 9 0.000015000 100000 3 0.0000015000 25000 9 0.000015000 25000 9 0.000015000 25000 1 0.0000015000 25000 1 0.0000015000	0.0942605000	565563	30
120 21600 0.0036000000 150 11280 0.0018800000 300 2790 0.0004650000 500 600 0.0001000000 600 600 0.0001000000 750 150 0.00025000 900 180 0.00025000 1500 240 0.000045000 2000 150 0.00025000 2000 150 0.00025000 2500 45 0.000025000 2500 45 0.000025000 10000 132 0.000025000 10000 132 0.000025000 5000 90 0.000015000 10000 132 0.000025000 5000 9 0.000015000 5000 9 0.000015000 5000 9 0.000015000 5000 10000 100000 100000 100000 5000 10000 100000 10000005000 5000 10000 10000005000 5000 100000 10000005000 50000 10000005000 1000005000 50000 100000 1000005000 50000 100000 1000005000	0.1001760000	601056	60
150 11280 0.0018800000 180 3600 0.0006000000 450 375 0.00006500000 500 600 0.0001000000 600 600 0.0001000000 1000 480 0.0000300000 1500 240 0.0000450000 2500 45 0.0000075000 2500 45 0.0000075000 2500 45 0.0000075000 2500 45 0.0000075000 10000 132 0.0000250000 2500 9 0.000015000 10000 132 0.0000250000 2500 9 0.000015000 100000 10 0.000015000 25000 9 0.000015000 25000 9 0.000015000 25000 10 0.000015000 25000 10 0.0000015000 100000 10 0.0000015000 100000 10 0.0000015000 100000 10 0.0000015000 100000 10 0.0000015000 100000 10 0.0000015000 100000 10 0.0000015000			50
180 36600 0.0006000000 300 2790 0.000465000 450 375 0.0000625000 500 600 0.0001000000 750 150 0.000025000 750 150 0.000030000 1000 480 0.000080000 1500 240 0.000025000 2500 45 0.000025000 2500 45 0.000025000 2000 121 0.000025000 2000 21 0.000025000 5000 9 0.000015000 5000 9 0.000015000 5000 9 0.000015000 5000 3 0.000000500 265000 26 0.00001500 265000 26 0.000001500 2765000 3 0.000000500	0.0036000000	21600	120
330 2790 0.0004650000 450 375 0.0000625000 500 600 0.0001000000 600 600 0.0001000000 750 150 0.000250000 900 180 0.000030000 1500 240 0.0000440000 2000 150 0.00025000 2500 45 0.000025000 5000 9 0.000015000 5000 1 0.000003500 5000 9 0.000015000 5000 9 0.000015000 5000 3 0.000000500 265000 26 0.00001500 265000 26 0.000001500 276500 3 0.00000500	0.0018800000	11280	150
A\$0	0.0006000000	3600	180
500 600 0.0001000000 600 600 0.0001000000 750 150 0.000025000 900 180 0.000030000 1500 240 0.000040000 2000 150 0.000025000 5000 90 0.000015000 10000 132 0.000025000 5000 9 0.000015000 5000 9 0.00001500 5000 9 0.00001500 100000 6 0.00001500 20000 26 0.000000500 265000 26 0.000001500 276500 3 0.000000500	0.0004650000	2790	300
600 600 0.000100000 750 150 0.000025000 900 180 0.000300000 1000 480 0.000040000 1500 240 0.0000440000 2500 45 0.000075000 5000 9 0.000015000 20000 121 0.000020000 5000 9 0.000015000 50000 9 0.000015000 50000 3 0.000000500 265000 26 0.00004330 265000 26 0.00001500 2765000 3 0.00000500	0.0000625000	375	450
T50	0.0001000000	600	500
990 180 0.000300000 1000 480 0.000080000 1500 240 0.0000400000 2000 150 0.000025000 2500 45 0.000027500 5000 9 0.000015000 20000 21 0.000035000 50000 9 0.000015000 100000 3 0.000001500 200000 3 0.000000500 265000 26 0.0000433 1000000 1 0.000000167 2765000 3 0.00000500	0.0001000000	600	600
1000 480 0.000800000 1500 240 0.000040000 2000 150 0.000025000 2500 45 0.000015000 10000 132 0.000025000 20000 21 0.000025000 50000 9 0.000015000 100000 6 0.000010500 200000 3 0.000005000 265000 26 0.00004330 1000000 1 0.000000500 2765000 3 0.00000500	0.0000250000	150	750
1500 240 0.0000400000 2000 150 0.0000250000 5000 90 0.0000150000 10000 132 0.0000250000 50000 9 0.000015000 100000 6 0.000015000 100000 6 0.000015000 200000 3 0.0000005000 265000 26 0.000004533 1 0.0000005000 2765000 3 0.0000005000	0.0000300000	180	900
2000 150 0.0000250000 2500 45 0.0000075000 5000 90 0.000015000 10000 132 0.000022000 50000 9 0.000015000 100000 6 0.000015000 200000 3 0.000000500 265000 26 0.00000450 1000000 1 0.000000167 2765000 3 0.000005000	0.0000800000	480	1000
2500 45 0.000075000 5000 90 0.000015000 10000 132 0.0000220000 20000 21 0.000035000 50000 9 0.000015000 200000 3 0.000005000 265000 26 0.000004530 1 0.000000167 2765000 3 0.0000005000	0.0000400000	240	1500
5000 90 0.0000150000 10000 132 0.000022000 20000 21 0.000003500 50000 9 0.00001500 100000 6 0.00001500 200000 3 0.00000500 265000 26 0.00000130 1000000 1 0.00000167 2765000 3 0.000005000	0.0000250000	150	2000
10000 132 0.0000220000 20000 21 0.0000035000 50000 9 0.0000015000 100000 6 0.0000010000 265000 26 0.0000043333 1000000 1 0.000001667 2765000 3 0.000005000	0.0000075000	45	2500
20000 21 0.000035000 50000 9 0.000015000 100000 6 0.000015000 200000 3 0.000005000 265000 26 0.000003500 1000000 1 0.000001667 2765000 3 0.000005000	0.0000150000	90	5000
50000 9 0.000015000 100000 6 0.000010000 200000 3 0.0000004333 1000000 1 0.000001667 2765000 3 0.0000005000	0.0000220000	132	10000
100000 6 0.0000010000 200000 3 0.000005000 265000 26 0.0000043333 1000000 1 0.000001667 2765000 3 0.000005000	0.0000035000	21	20000
200000 3 0.000005000 265000 26 0.0000043333 1000000 1 0.000001667 2765000 3 0.0000005000	0.0000015000	9	50000
265000 26 0.0000043333 1000000 1 0.0000001667 2765000 3 0.0000005000	0.0000010000	6	100000
1000000 1 0.000001667 2765000 3 0.000005000	0.0000005000	3	200000
2765000 3 0.0000005000	0.0000043333	26	265000
	0.0000001667	1	1000000
summa: 6000000 1	0.0000005000	3	2765000
	1	6000000	summa:

$$60 \cdot 0.100176 + \dots + 2765000 \cdot 0.0000005$$
= 14.7 kr

Källa: Svenska spel - https://www.svenskaspel.se/triss/spelguide/triss-30

Vilken räntekostnad för bolån i slutet av 2023?

Antag: lån på 1 miljon. 1% högre ränta än styrräntan.

bankränta i %	sannolikhet	månadskostnad
1	0.017	833
2	0.094	1667
3	0.252	2500
4	0.334	3333
5	0.219	4167
6	0.071	5000
7	0.011	5833
8	0.001	6667

$$E(\text{bankränta}) = 1 \cdot 0.017 + 2 \cdot 0.094 + ... + 8 \cdot 0.001 \approx 3.9\%$$

 $E(\text{kostnad}) = 833 \cdot 0.017 + 1667 \cdot 0.094 + ... + 6667 \cdot 0.001 \approx 3252 \text{ kr}$

Diagram 5 från Penningpolitisk rapport, Nov 2022, Sveriges Riksbank, https://www.riksbank.se

Varians - fördelningens spridning (i kvadrat)

- Väntevärdet μ är bara en slags bästa gissning.
- Ofta viktigt att veta fördelningens spridning. Osäkerhet.
- Medelavvikelse från μ som spridning?
 - ightharpoonup Avvikelser från centrum $x \mu$.
 - ▶ Problem: Negativa och positiva avvikelser tar ut varandra.
 - ▶ Lösning: kvadrera avvikelserna $(x \mu)^2$ först.
- Variansen för en slumpvariabel

$$Var(X) = \sum_{\mathsf{alla} \ \mathsf{x}} (x - \mu)^2 P(x)$$

- Variansen skrivs ofta med symbolen σ^2 .
- Exempel: X = räntekostnad. $\mu = E(X) = 3252$.

$$Var(X) = (833 - 3252)^2 \cdot 0.017 + (1667 - 3252)^2 \cdot 0.094 + \dots + (6667 - 3252)^2 \cdot 0.001 \approx 965553.1 \text{ kr}^2$$

Standardavvikelse - ett mått på medelspridning

■ Variansen för en slumpvariabel

$$\mathit{Var}(X) = \sum_{\mathsf{alla}\; \mathsf{x}} (\mathsf{x} - \mu)^2 P(\mathsf{x})$$

Variansen har enheter i kvadrat. Ingen trevlig tolkning.

Standardavvikelsen har samma enheter som slumpvariabeln

$$\sigma = SD(X) = \sqrt{Var(X)}$$

Exempel: X = räntekostnad.

$$\sigma = \sqrt{965553.1} \approx 982.63 \text{ kr}$$

- Vår "bästa gissning" av räntekostnad: $\mu = 3252 \text{ kr}$
- En genomsnittlig avvikelse från denna gissning är cirka 983 kr.

Väntevärde och standardavvikelse

Normalfördelning - 68-95-99.7% regeln

- Normalfördelning, $X \sim N(\mu, \sigma)$
 - ▶ Väntevärde $E(X) = \mu$
 - ▶ Standardavvikelse $SD(X) = \sigma$
- Parametrarna μ och σ är just väntevärdet och standardavvikelsen!
- 68-95-99.7% regeln

68-95-99.7% regeln

Kontinuerliga slumpvariabler och täthetsfunktionen

- **Kontinuerlig slumpvariabel** antar alla värden, men P(X = x) = 0 för alla x!
- **Täthetsfunktion**: f(x).
- Täthetsfunktion ger inte sannolikheter.
 - f(x) > 0 för alla x. (ok med f(x) > 1)
 - ightharpoonup arean under f(x) ska vara 1.
- Täthetsfunktionen används för att beräkna sannolikheter:

$$P(a \le X \le b) = \text{arean under } f(x) \text{ mellan } a \text{ och } b$$

SDAIII: räkna arean under funktion med integration.

Normalfördelning - interaktivt

Median och interkvartilavstånd

■ Median, m: värde med 50% av sannolikhetsmassan till vänster.

$$P(X \le m) = 0.5$$

- 10%-kvantil: 10% av sannolikhetsmassan till vänster.
- **Kvartiler**: 25%, 50%, 75%.
- Interkvartilavstånd (IQR): avstånd mellan 25%-kvartil och 75%-kvartil.

Skifta slumpvariabler

- Exempel: X ränta i procent på mitt banklån. E(X)=3.9%.
- Sämre förhandlare: bankräntan 2% högre än min.
- Din ränta: Y = X + 2. Skiftar/förskjuter slumpvariabeln.
- Måste vi göra om alla beräkningar för dig? Nope.

$$E(Y) = E(X) + 2 = 3.9 + 2 = 5.9\%$$

Väntevärde - skiftade slumpvariabler.

$$E(X\pm c)=E(X)\pm c$$
 för godtycklig konstant c

■ Variansen ändras inte av ett skift:

Varians - skiftade slumpvariabler.

$$Var(X \pm c) = Var(X)$$
 för godtycklig konstant c

Skala slumpvariabler

- Exempel: får dra av 30% på skatten för räntekostnad.
- Räntekostnad efter skatt: $Y = 0.7 \cdot X$. Skalar slumpvariabeln.

Väntevärde - skalning.

$$E(aX) = a \cdot E(X)$$
 för godtycklig konstant a

Varians - skalning.

$$Var(aX) = a^2 Var(X)$$
 för godtycklig konstant a

Standardavvikelse - skalning.

$$SD(aX) = |a| \cdot SD(X)$$
 för godtycklig konstant a

- $E(Y) = E(0.7 \cdot X) = 0.7 \cdot E(X) = 0.7 \cdot 3252 = 2276.4 \text{ kr}$
- $SD(Y) = SD(0.7 \cdot X) = |0.7| \cdot SD(X) = 0.7 \cdot 982.63 \approx 687.84 \text{ kr}$

Linjärkombinationer av slumpvariabler 🖭

Linjärkombination av slumpvariabel = skift och skalning.

$$Y = c + aX$$

Väntevärde - linjärkombination.

$$E(c \pm aX) = c \pm aE(X)$$
 för konstanter a och c

Varians - linjärkombination.

$$Var(c \pm aX) = a^2 Var(X)$$
 för konstanter a och c

- Exempel företags produktionskostnader:
 - X antal efterfrågade enheter (slumpvariabel).
 - Fast produktionskostnad c
 - Rörlig produktionskostnad per enhet a
 - Produktionskostnad: Y = c + aX

Standardisering

lacksquare Om $X \sim \mathcal{N}(\mu, \sigma)$ så gäller att

$$Z = \frac{X - \mu}{\sigma} \sim N(0, 1)$$

Standardisering: från allmän normalfördelning till standard normal genom skift och skalning

$$Z = \frac{X - \mu}{\sigma}$$

Beräkna sannolikheter för $X \sim \mathit{N}(\mu, \sigma)$ från standard normal

$$P(X \le x) = P(X - \mu \le x - \mu) = P\left(\frac{X - \mu}{\sigma} \le \frac{x - \mu}{\sigma}\right) = P\left(Z \le \frac{x - \mu}{\sigma}\right)$$

Exempel: $X \sim N(2,3)$, vad är sannolikheten att $X \leq 5$?

$$P(X \le 5) = P\left(\frac{X-2}{3} \le \frac{5-2}{3}\right) = P(Z \le 1) = 0.8413$$

Normalfördelning - Z-tabell

Normalfördelning

Tabellen ger sannolikheten $\Phi(z)=P(Z\leq z)$ för olika z där Z är standardnormal, $Z\sim N(0,1)$. Sannolikheter i den vänstra svansen fås genom symmetri: $P(Z\leq -z)=1-P(Z\leq z)$.

Andra decimalen i z

	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817

Standardisering

Normalfördelning i R

 $X \sim N(\mu, \sigma)$.

Beräkning	R kommando				
f(2)	dnorm(x = 2, mean = 1, sd = 1.5)				
$P(X \le 2)$	pnorm(q = 2, mean = 1, sd = 1.5)				
Kvantil	qnorm(p = 0.5, mean = 1, sd = 1.5)				
10 slumptal	rnorm(n = 10, mean = 1, sd = 1.5)				

Väntevärde - summa av slumpvariabler

- X och Y är två olika slumpvaribler
 - ▶ X antal prickar på 1:a tärningen
 - Y antal prickar på 2:a tärningen
 - \rightarrow X + Y = totalt antal prickar på båda tärningarna.

Väntevärde - summa av slumpvariabler.

$$E(X + Y) = E(X) + E(Y)$$

Varians - summa av oberoende slumpvariabler

- För variansen måste vi vara försiktiga med eventuella beroenden mellan variabler.
- Vadslagning:
 - ▶ X är din vinst/förlust i ett vad.
 - Y är din motståndares vinst/förlust.
 - X + Y = 0, dvs har ingen varians alls! Perfekt beroende.
- Aktieportfölj:
 - X är avkastning aktie.
 - Y är avkastning på annan aktie.
 - ▶ Total avkastning: X + Y. Varians?
- Om vi antar att X och Y är oberoende blir variansen enkel:

Varians - summa av oberoende slumpvariabler.

$$Var(X + Y) = Var(X) + Var(Y)$$

Väntevärde och varians - många oberoende variabler

Låt X_1, X_2 och X_3 vara tre oberoende slumpvariabler.

$$E(X_1 + X_2 + X_3) = E(X_1) + E(X_2) + E(X_3)$$

 $Var(X_1 + X_2 + X_3) = Var(X_1) + Var(X_2) + Var(X_3)$

Väntevärde - summa av slumpvariabler.

$$E(X_1 + X_2 + ... + X_n) = E(X_1) + E(X_2) + ... + E(X_n)$$

Varians - summa av oberoende slumpvariabler.

$$V(X_1+X_2+\ldots+X_n) = Var(X_1) + Var(X_2) + \ldots + Var(X_n)$$

Simultanfördelning - två diskreta variabler

- X och Y diskreta variabler, t ex
 - \rightarrow X = antal mål som hemmalaget gör
 - ightharpoonup Y =antal mål som bortalaget gör

punktens storlek representerar den simultana sannolikheten P(x,v)

Simultanfördelning - två diskreta variabler

			Υ		
		0	1	2	Marginal X
	0	0.25	0.05	0.02	0.32
Χ	1	0.1	0.23	0.05	0.38
	2	0.05	0.1	0.15	0.3
Marginal Y		0.4	0.38	0.22	1

Väntevärden

$$\begin{split} E(X) &= \sum_{\text{alla x}} x \cdot P(x) = 0 \cdot 0.32 + 1 \cdot 0.38 + 2 \cdot 0.30 = 0.98 \\ E(Y) &= \sum_{\text{alla y}} y \cdot P(y) = 0 \cdot 0.40 + 1 \cdot 0.38 + 2 \cdot 0.22 = 0.82 \end{split}$$

Varianser

$$V(X) = \sum_{\text{alla x}} (x - E(X))^2 \cdot P(x) = (0 - 0.98)^2 \cdot 0.32 + (1 - 0.98)^2 \cdot 0.38 + (2 - 0.98)^2 \cdot 0.30 = 0.62$$

$$V(Y) = \sum_{\text{alla x}} (y - E(Y))^2 \cdot P(y) = (0 - 0.82)^2 \cdot 0.40 + (1 - 0.82)^2 \cdot 0.38 + (2 - 0.82)^2 \cdot 0.22 = 0.59$$

Simultanfördelning - två diskreta variabler

			Υ		
		0	1	2	Marginal X
	0	0.25	0.05	0.02	0.32
Х	1	0.1	0.23	0.05	0.38
	2	0.05	0.1	0.15	0.3
Marginal Y		0.4	0.38	0.22	1
mai gii	141 1	0.4	0.00	0.22	

Kovarians mellan X och Y

$$\mathit{Cov}(X,Y) = \sum_{\mathsf{alla}\,(\mathbf{x},\mathbf{y})\,\mathsf{par}} (\mathbf{x} - E(X))(\mathbf{y} - E(Y)) \cdot P(\mathbf{x},\mathbf{y})$$

där

$$E(X) = 0.98$$
 och $E(Y) = 0.82$

$$Cov(X,Y) = (0 - 0.98)(0 - 0.82) \cdot 0.25 + (1 - 0.98)(0 - 0.82) \cdot 0.10 + (2 - 0.98)(0 - 0.82) \cdot 0.05 + \dots + (2 - 0.98)(2 - 0.82) \cdot 0.15$$

$$= 0.326$$

Korrelation mellan X och Y

$$Corr(X, Y) = \frac{Cov(X, Y)}{SD(X) \cdot SD(Y)} = \frac{0.326}{\sqrt{0.62}\sqrt{0.588}} = 0.54$$

Korrelation kontinuerliga variabler - Stickprov

Korrelation: linjärt beroende mellan variabler.

Positiv korrelation - flest datapunkter med

$$(x_i-ar{x})(y_i-ar{y})>0$$
 $(x_i-ar{x})(y_i-ar{y})<0$

Negativ korrelation - flest datapunkter med negativa bidrag till täljaren i korrelationen

Stickprovskovarians:
$$s_{xy} = Cov(x, y) = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{n-1}$$

Korrelation kontinuerliga variabler - Sannolikhetsmodell

- Låt X ha väntevärde μ och Y väntevärde ν .
- **Kovarians**: **linjärt beroende** mellan slumpvariabler.

$$Cov(X, Y) = E((X - \mu)(Y - \nu))$$

Positiv kovarians - mest sannolikhetsmassa med positiva bidrag till täljaren i kovariansen

Korrelation $(-1 \le Corr(X, Y) \le 1)$

$$Corr(X, Y) = \rho_{XY} = \frac{Cov(X, Y)}{\sigma_X \cdot \sigma_Y}$$

Variansen av en summan av beroende variabler

Varians - summa av beroende slumpvariabler.

$$V(X + Y) = Var(X) + Var(Y) + 2Cov(X, Y)$$

- Positiv kovarians variansen f\u00f6r summan st\u00f6rre \u00e4n vid oberoende.
- Negativ kovarians variansen f\u00f6r summan mindre \u00e4n vid oberoende.
- Säker aktieportfölj: välj aktier var priser tenderar att röra sig i olika riktningar. Negativ kovarians. Even Steven.

Credits

Dessa slides skapades för kursen statistik och dataanalys 1 av Mattias Villani HT 2023, och har modifierats av Oscar Oelrich för statistik och dataanalys 1 VT 2024.