

FORMATO DE SYLLABUS Código: AA-FR-003 Macroproceso: Direccionamiento Estratégico Versión: 01

Fecha de Aprobación: Proceso: Autoevaluación y Acreditación 27/07/2023

FACULTAD:		Tecnológica						
PROYECTO CURRICULAR:			Tecnología en Electrónica Industrial			CÓDIGO PLAN DE ESTUDIOS:		
I. IDENTIFICACIÓN DEL ESPACIO ACADÉMICO								
NOMBRE DEL ESPACIO ACADÉMICO: CONTROL III								
Código del espacio académico:			7311	Número de créditos académicos:			3	
Distribución horas de trabajo:			HTD	2	нтс	2	НТА	5
Tipo de espacio académico:			Asignatura	х	Cátedra			
			NATUR	ALEZA DEL ESPACIO ACA	DÉMICO:			
- v		atorio mentario		Electivo Intrínseco		Electivo Extrínseco		
CARÁCTER DEL ESPACIO ACADÉMICO:								
Teórico		Práctico		Teórico-Práctico	x	Otros:		Cuál:
MODALIDAD DE OFERTA DEL ESPACIO ACADÉMICO:								
Presencial	х	Presencial con incorporación de TIC		Virtual		Otros:		Cuál:
			II SUGERENCIA	S DE SABERES Y CONOCIA	AIENTOS PREVIOS			

II. SUGERENCIAS DE SABERES Y CONOCIMIENTOS PREVIOS

Es esencial que el estudiante haya cursado Control I y II, domine el modelado en espacio de estados, transformada de Laplace y Z, fundamentos de estabilidad, controlabilidad, y programación en MATLAB/Simulink. También debe estar familiarizado con estructuras de control digital, implementación práctica en hardware y lenguajes IEC 61131-3.

III. JUSTIFICACIÓN DEL ESPACIO ACADÉMICO

La complejidad creciente de los sistemas industriales, integrados y multidimensionales, requiere el dominio de técnicas avanzadas de análisis y diseño de controladores multivariables y observadores. El curso de Control III prepara al estudiante para implementar estrategias modernas de control con herramientas que permiten abordar sistemas con múltiples entradas y salidas (MIMO), adaptativos o con no linealidades, fundamentales en sistemas de manufactura inteligente, automatización distribuida y gemelos digitales. Se contextualiza en entornos de la Industria 4.0, compatibles con arquitecturas definidas en ISA-95, seguridad bajo ISA-99, y visualización y control en ISA-112.

IV. OBJETIVOS DEL ESPACIO ACADÉMICO (GENERAL Y ESPECÍFICOS)

Objetivo General:

Diseñar e implementar sistemas de control multivariable y no lineal mediante técnicas de realimentación de estado, observadores y análisis avanzado en espacio de estados, aplicables a procesos industriales complejos.

Objetivos Específicos:

Modelar sistemas multivariables en tiempo continuo y discreto.

Aplicar criterios de estabilidad y realizabilidad en sistemas complejos.

Diseñar controladores mediante realimentación de estado y ubicación de polos.

Construir observadores de estado y estructuras de control dual.

Simular y validar diseños en MATLAB, Simulink o Python.

Aplicar normativas ISA para diseño y documentación técnica.

V. PROPÓSITOS DE FORMACIÓN Y DE APRENDIZAJE (PFA) DEL ESPACIO ACADÉMICO

Propósitos de formación:

Dotar al estudiante de herramientas modernas para el análisis de sistemas MIMO.

Desarrollar capacidades para resolver problemas de diseño y estimación en controladores multivariables.

Fomentar la integración de modelos de control en entornos industriales reales conectados y digitales.

Resultados de aprendizaje esperados:

Representa sistemas multivariables en espacio de estados continuo y discreto.

Aplica criterios de estabilidad y controlabilidad multivariable (Lyapunov, PBH).

Diseña controladores mediante realimentación de estado y ubicación de polos.

Diseña observadores de estado y aplica principios de separación.

Integra modelos multivariables a entornos de simulación con conectividad industrial.

Documenta soluciones conforme a ISA-5.1 y estructura de diseño bajo ISA-95.

VI. CONTENIDOS TEMÁTICOS

1. Fundamentos del control multivariable (2 semanas)

Introducción a sistemas MIMO

Interacción entre variables, desacoplo, modos de operación

Control basado en el modelo vs. no modelado

2. Representación de sistemas multivariables (2 semanas)

Ecuaciones de estado

Matrices de transición (Peano-Baker, Floquet)

Modelado de procesos reales industriales

3. Análisis de sistemas multivariables (3 semanas)

Estabilidad: Lyapunov, PBH

Controlabilidad y observabilidad

Realización mínima, formas canónicas

Representaciones entrada-salida, forma de Brunovsky

4. Diseño por realimentación de estado (3 semanas)

Localización de polos

Forma controlable de Kalman

Compensación de estado

Compensadores multivariables con desacoplo

5. Observadores de estado (2 semanas)

Observador de Luenberger

Principio de separación

Observadores reducidos

Estabilización por salida

6. Estrategias modernas en control multivariable (2 semanas)

Regulación robusta

Control óptimo LQR/LQI

Introducción a control predictivo basado en modelos (MPC)

7. Aplicaciones y estándares industriales (1 semana)

Implementación en redes industriales ISA-95

Representación de lazo de control en ISA-5.1

Supervisión SCADA y protocolos ISA-112

Ciberseguridad y comunicación en redes de control (ISA-99)

VII. ESTRATEGIAS DE ENSEÑANZA QUE FAVORECEN EL APRENDIZAJE

Se trabajará con clases activas, desarrollo de casos industriales, simulación intensiva en MATLAB/Simulink, controladores programables en entorno CODESYS o TIA Portal, uso de Python con bibliotecas como control, scipy y matplotlib. Se incorporarán proyectos bajo aprendizaje basado en proyectos (ApP) y desarrollo de documentación técnica con base en ISA.

VIII. EVALUACIÓN

De acuerdo con el estatuto estudiantil vigente (Acuerdo No. 027 de 1993 expedido por el Consejo Superior Universitario y en su Artículo No. 42 y al Artículo No. 3, Literal d) el profesor al presentar el programa presenta una propuesta de evaluación como parte de su propuesta metodológica.

Para dar cumplimiento a lo dispuesto en el estatuto estudiantil, los porcentajes por corte se definen como se indica a continuación, con base en las fechas establecidos por el Consejo Académico en el respectivo calendario académico.

Primer corte (hasta la semana 8) à 35% Segundo corte (hasta la semana 16) à 35% Proyecto final (hasta la semana 18) à 30%

En todo caso, la evaluación será continua e integral, teniendo en cuenta los avances del estudiante en los siguientes aspectos: i) comprensión conceptual (pruebas escritas, talleres); ii) aplicación práctica (laboratorios, informes técnicos); iii) proyecto integrador final (análisis, diseño, montaje y presentación); y iv) participación y trabajo en equipo. Asimismo, se debe valorar el desarrollo de competencias comunicativas, resolución de problemas, uso de instrumentos, pensamiento lógico y creatividad. Las pruebas se concertarán con el grupo y se ajustarán a las fechas establecidas en el respectivo calendario académico.

IX. MEDIOS Y RECURSOS EDUCATIVOS

Para el adecuado desarrollo de este espacio académico, se requiere el uso de medios institucionales y recursos individuales que faciliten los procesos de enseñanza y aprendizaje, tanto en ambientes presenciales como virtuales. Las actividades teóricas se apoyarán en aulas de clase dotadas de medios audiovisuales (tablero, videobeam, sillas) y plataformas virtuales institucionales como Microsoft Teams o Google Meet. Además, será fundamental el acceso a presentaciones digitales, textos base, hojas de datos, artículos técnicos y bibliotecas digitales.

En cuanto al trabajo práctico, se utilizarán aulas de laboratorio equipadas con fuentes de voltaje DC, generadores de señales, osciloscopios, multímetros y otros instrumentos de medición. Adicionalmente se cuenta MATLAB/Simulink, Python (control, scipy, sympy), laboratorio de control con procesos MIMO (tanques acoplados, robots de 2 DOF), tarjetas didácticas con múltiples sensores y actuadores, normas: ISA-5.1 (símbolos), ISA-95 (arquitectura), ISA-99 (ciberseguridad), ISA-112 (SCADA).

Como recursos propios, el estudiante debe disponer de una calculadora científica, conexión estable a internet que la universidad proporciona, un sistema para la toma de apuntes (cuaderno, tablet o computador) y acceso a los materiales de clase. Será responsabilidad del estudiante descargar los insumos digitales y contar con los elementos necesarios que serán especificados previamente en cada práctica o proyecto

X. PRÁCTICAS ACADÉMICAS - SALIDAS DE CAMPO

Se sugiere visita a planta industrial con sistemas MIMO, SCADA y redes industriales integradas, o a centros de simulación donde se empleen estrategias avanzadas de control predictivo, observación de estados y control multivariable.

XI. BIBLIOGRAFÍA

Chen, C.-T. Linear System Theory and Design. Oxford Skogestad, S. & Postlethwaite, I. Multivariable Feedback Control. Wiley Ogata, K. Ingeniería de Control Moderna. Pearson Albertos, P., Sala, A. Multivariable Control Systems. Springer Khalil, H. Nonlinear Systems. Prentice Hall

ISA. ISA-5.1, ISA-95, ISA-99, ISA-112

XII. SEGUIMIENTO Y ACTUALIZACIÓN DEL SYLLABUS

Fecha revisión por Consejo Curricular:
Fecha aprobación por Consejo Curricular:
Número de acta: