Employee Promotion Analysis

Model Development

Name: Gope Sai Kumar

Branch: Dilsukhnagar

Email: sai.gope2002@gmail.com

Trainer: Rajan Sir

Employee Promotion Analysis

Model Development

Project Overview

 This project analyze employee promotion trends using a dataset containing various employee attributes. The goal is to identify patterns and visualize the promotion distribution using a pie chart.

Dataset Information

Filename: HR Analytics Dataset

Total Records: 54,808

• Columns: 14

Target Variable (1 = Promoted, 0 = Not Promoted)

Project Overview:-

 Problem Statement: Predict employee promotion eligibility based on certain attributes/features.

❖ Dataset Overview:

• The dataset consists of multiple employee-related attributes, including demographic, performance, and training data. The target variable is is_promoted, which indicates whether an employee was promoted (1) or not (0).

* Key Columns:

- employee_id Unique identifier for each employee
- 2. department Department the employee belongs to
- 3. region Geographic region of the employee
- 4. education Employee's education level
- 5. gender Gender of the employee
- 6. recruitment channel Source of recruitment
- 7. no_of_trainings Number of training programs attended
- 8.age Employee age

- 9.previous_year_rating -Performance rating from the previous year
- 10.length_of_service Years of service in the company
- 11.KPIs_met >80% Whether performance KPIs exceeded 80%
- 12.awards_won? Whether the employee has won any awards
- 13.avg_training_score Average score in training programs
- 14.is_promoted **Target Variable** (1 = Promoted, 0 = Not Promoted)

Objectives

- Load and explore the dataset
- Analyze the distribution of promotions
- Develop a predictive model for employee promotion. The model utilizes employee-related features to predict whether an employee will be promoted.

❖ Necessary imports:

- import pandas as pd
- import numpy as np
- import joblib
- from sklearn.impute import SimpleImputer
- from sklearn.preprocessing import StandardScaler, MinMaxScaler, OrdinalEncoder, OneHotEncoder
- from sklearn.pipeline import Pipeline
- from sklearn.compose import ColumnTransformer
- from sklearn.model_selection import train_test_split, RandomizedSearchCV
- from sklearn.metrics import accuracy_score, classification_report
- import xgboost as xgb

Implementation Steps

1. Load the Dataset

- Read the CSV file using pandas
- Inspect the dataset structure and missing values

2. Data preprocessing

Features:

Categorical: department, region, education, gender, recruitment_channel

Numerical: no_of_trainings, age, previous_year_rating, length_of_service, KPIs_met
>80%, awards_won?, avg_training_score

Handle missing values:

- education: Impute missing values using the mode (most frequent value in the columns
- previous_year_rating: Fill missing values with 0, as employees with length_of_service equal to 1 do not have a previous rating

3. Feature engineering:

Feature scaling:

Standardization:

- Standardizing "age", "avg_training_score" columns as they have outliers
- The skewness of two columns less than 1 we are standardizing the columns

Normalization:

 Normalizing "length_of_service" column cause the skewness of the column is greater than 1

Feature selection:

• Droping the columns like is_promoted ,region ,employee_id

4. Encoding:

One hot enconding by using pd.get_dummies():

• One hot encoding columns "department", "recruitment_channel", "gender" as they don't have any order and value

Ordinal encoding:

• The column "education" is ordinally encoded as it has order education level as "below secondary", "bachelors" "mastersabove"

❖ MODEL DEVELOPMENT:

1. Evaluation Metrics:

• Accuracy: Measures overall correctness.

Precision: Fraction of correctly predicted positive instances.

• Recall: Ability to capture actual positives.

• F1-Score: Harmonic mean of precision and recall.

• ROC-AUC Score: Distinguishes between classes effectively.

❖ Logistic Regression :

• Classification Report:

METRICS	0	1
precision	0.93	0.86
recall	1.00	0.25
F1 score	0.97	0.38
support	10093	869

Precision

Class 0: 93% predications of 0s are corect

Class 1: 86% of predicted 1s are correct.

• Recall:

Class 0: 100% of actual 0s were predicted correctly.

Class 1: Only 25% of actual 1s were predicted correctly (very low recall).

• F1-Score:

Class 0 has a strong F1-score (0.97), but Class 1 is poor (0.38).

• Accuracy:

> Accuracy of logistic regression is 0.93

Random Forest:

• Classification Report:

METRICS	0	1
precision	0.95	0.71
recall	0.99	0.35
F1 score	0.97	0.47
support	10093	869

• Precision:

Class 0: 95% predications of 0s are corect

> Class 1:71% of predicted 1s are correct.

• Recall:

Class 0: 99% of actual 0s were predicted correctly.

Class 1: Only 35% of actual 1s were predicted correctly (very low recall).

• F1-Score:

➤ Class 0 has a strong F1-score (0.97), but Class 1 is poor (0.47) but improved then logistic regression

• Accuracy:

> Accuracy of Random forest is 0.93

❖ XGBoost Classifier:

• Classification Report:

METRICS	0	1
precision	0.95	0.93
recall	100	0.35

F1 score	0.97	0.51
support	10093	869

• Precision:

Class 0: 95% predications of 0s are correct

Class 1: 93% of predicted 1s are correct.

• Recall:

Class 0: 100% of actual 0s were predicted correctly.

Class 1: Only 35% of actual 1s were predicted correctly (very low recall).

• F1-Score:

➤ Class 0 has a strong F1-score (0.97), but Class 1 is poor (0.51) but improved then random forest

• Accuracy:

Accuracy of Xgb classifier is 0.94

❖ AUC Score & ROC Curve

- ROC(Receiver Operating Charcteristic Curve) curve plots True Positive Rate against False Positive Rate.
- AUC(Area Under The Curve) score measures model's ability to differentiate between classes.
- Comparing ROC-AUC scores for Logistic Regression, Random Forest, and XGBoost

ROC-AUC Curve Random Forest

Comparing Auc Scores for Logistic regression, Random Forest, Xgb classifier

Algorithm Name	AUC Score	
Logistic regression	0.87	
Random forest	0.87	
Xgb classifier	0.91	

❖ Model Selection:

From table the Xgb classifier have more Auc score We are selecting Xgb classifier as our model

Hyperparameter Tuning For Xgb Classifier:

Parameters for Xgb Classifier:

- n_estimators: Number of boosting rounds.
- max_depth: Maximum tree depth.

- **learning_rate:** Step size shrinkage.
- subsample: Fraction of samples used for training each tree
- colsample_bytree: Fraction of features used for training each tree
- min_child_weight: Minimum sum of instance weights needed to make a child node.

Tuning strategy:

• RandomizedSearchCV: Tests a random subset of hyperparameter combinations.

Model development & Deployment

1. Preprocessing Steps & Tools Used:

ColumnTransformer

 Purpose: Apply different preprocessing techniques to different columns in a structured way.

Process:

- Standardized numerical features (age, avg_training_score).
- Normalized certain numerical features (length_of_service).
- One-hot encoded categorical features (department, gender, recruitment_channel).
- Applied ordinal encoding to "education" using a predefined order.
- Imputed missing values for education (mode) and previous_year_rating (filled with 0) cause for length_of_serivce is equal to there is no rating

• Why?

ColumnTransformer allows us to process different types of data (numerical, categorical) in a single step.

2. Pipeline

 Purpose: Automate sequential data transformations and ensure consistency during training and inference.

• Process:

- Created separate pipelines for numerical features, categorical encoding, and missing value imputation.
- Combined these pipelines into the **ColumnTransformer** for seamless preprocessing.

Why?

Pipelines help us avoid manual transformations and ensure the same preprocessing is applied to both training and test datasets.

Model Deployment Process

1. Model & Preprocessor Saving

- Saved the trained XGBoost model using joblib.dump().
- Saved the preprocessor (ColumnTransformer) so it can be applied to future test data.

2. Predicting on Test Data

- Loaded the test dataset and applied the saved preprocessor.
- Used the trained model to make predictions.
- Saved the results in a submission.csv file.