Tutorial 10 Solution

1. Suppose we have data for five objects on two features:

object	x_1	x_2
A	1	1
В	1.5	2
С	3	4
D	3.5	5
E	4.5	5

We set k=2 to cluster the six data points into two clusters, \mathcal{P} and \mathcal{Q} , and initialize the algorithm with the centroids $(x_{1,\mathcal{P}}, x_{2,\mathcal{P}}) = (2,2)$ and $(x_{1,\mathcal{Q}}, x_{2,\mathcal{Q}}) = (4,4)$.

Solution:

(a) Fill up the following table to identify the objects in each cluster during the first iteration of the k-means algorithm.

cluster	object(s)	
\mathcal{P}	A, B	
Q	C, D, E	

For A: the distance from A to centroid of \mathcal{P} is shorter than to the centrod of \mathcal{Q} . Hence, A is classified to \mathcal{P} .

Similarly, B is classified to \mathcal{P} also.

C, D and E are closer to \mathcal{Q} than to \mathcal{P} . Hence, C, D and E are classified to \mathcal{Q} .

(b) Compute the new centroids for the two clusters based on cluster assignment in (a).

Answer: \mathcal{P} now has A and B. New centroid for \mathcal{P} : $\left(\frac{1+1.5}{2}, \frac{1+2}{2}\right) = (1.25, 1.5)$

 $\mathcal Q$ now has C, D and E. New centroid for $\mathcal Q$: $\left(\frac{3+3.5+4.5}{3},\frac{4+5+5}{3}\right) \approx (3.67,4.67)$

(c) Based on the centroids computed in (b), identify the objects in each cluster during the second iteration of the k-means algorithm.

Answer: For A, the distance to the new centroid of \mathcal{P} , (1.25, 1.5) is shorter than to the centroid of \mathcal{P} , (3/67, 4.67). Hence, A is classified to \mathcal{P} again. Similar for B.

For C, D and E, they are closer to the new centroid of Q. Hence, they are classified to Q again. The classification is the same as at the end of 1st iteration. Hence, it's converged.

(d) Calculate the Within Sum of Squares (WSS) for the clustering assignment in (c).

Answer: Sum of squares for cluster \mathcal{P} : $(1-1.25)^2 + (1-1.5)^2 + (1.5-1.25)^2 + (2-1.5)^2 = 0.625$

Sum of squares for cluster Q: $(3-3.67)^2 + (4-4.67)^2 + (3.5-3.67)^2 + (5-4.67)^2 + (4.5-3.67)^2 + (5-4.67)^2 \approx 1.833$

Hence, $WSS \approx 0.625 + 1.833 = 2.458$.

- 2. (K-Means) Consider data set hdb-2012-to-2014.csv which was extracted from the published data ¹. The file has information on the HDB resale flats from Jan 2012 to Dec 2014.
 - (a) Load data into R. Use k means algorithm to pick an optimal value for k (using WSS as a criterion), based on two variables, resale_price and floor_area_sqm.
 - (b) With the optimal k in part (a), plot the data points in the k clusters determined.

Solution:

```
(a) > data = read.csv("C:/Data/hdb-2012-to-2014.csv")
> dim(data)
[1] 6047
> names(data)
 [1] "X"
                            "month"
                                                   "town"
 [4] "flat_type"
                            "street_name"
                                                   "storey_range"
                                                   "flat_model"
 [7] "floor_area_sqft"
                            "floor_area_sqm"
[10] "lease_commence_date" "resale_price"
> attach(data)
> # PLOT WSS vs K TO PICK OPTIMAL K:
> K = 15
> wss <- numeric(K)</pre>
> for (k in 1:K) {
     wss[k] <- sum(kmeans(data[,c("floor_area_sqm","resale_price")], centers=k)$withinss)
> plot(1:K, wss, col = "blue", type="b", xlab="Number of Clusters",
       ylab="Within Sum of Squares")
> # plot is shown in Figure 1
```

From the plot in Figure 1, k=3 would be a good choice.

(b) With the optimal k in part (a), plot the data points in the k clusters determined.

¹https://data.gov.sg/dataset/resale-flat-prices

Figure 1: Q2(a)

Figure 2: Q2(b)