Computer Systems & Network Administration

Lecture 13. TCP/IP Networking & PKI

Reference: NYCU CSCC NASA

Outline

- Network Introduction
- TCP/IP suite
 - Link Layer
 - Network Layer
 - Transport Layer
- Network Setup
- PKI
- SSL/TLS
 - o OpenSSL
- PGP

Intro - <u>ARPANET</u>

- Advanced Research Projects
 Agency NETwork
 - Network Control Program (NCP)
 - Provided connections and flow control between processes running on different ARPANET host computers

Intro - ARPANET (cont.)

Design goal of ARPANET

- No one point more critical than any other
- Redundant routes to any destination
- On-the-fly rerouting of data
- Ability to connect different types of computers over different types of networks
- Not controlled by a single corporation
- NCP got replaced by <u>TCP/IP</u>
 - NCP isn't evolved enough to handle growing clients

TCP/IP

- Transmission Control Protocol / Internet Protocol
- Gap between applications and Network
 - Network (IEEE 802)
 - 802.1 Higher Layer LAN Protocols Working Group
 - 802.3 Ethernet
 - 802.11 Wireless LAN & Mesh (Wi-Fi certification)
 - 802.15.1 Bluetooth certification
 - Application
 - Reliable & Performance

TCP/IP - Design Goal

- Hardware independence
- Software independence
- Failure recovery and the ability to handle high error rates
- Efficient protocol with low overhead
- Ability to add new networks to the internetwork without service disruption
- Routable Data

TCP/IP - Layers

- A suite of networking protocols
 - 4-layer architecture
 - Link Layer (Data-Link Layer)
 - Network Layer (IP)
 - Transport Layer (Port)
 - Application Layer

Application	SSH / Telnet / HTTP
Transport	TCP / UDP
Network	IP / ICMP / IGMP
Link	Device Driver / Interface

TCP/IP - Layers - OSI model

ISO/OSI Model

 Internatioal Organization for Standardization / Open System Interconnection Reference Model

TCP/IP - Layers - Encapsulation & Decapsulation

TCP/IP - TCP/IP Family

TCP/IP - Addressing

- IP
 - o IPv4 (32-bit)
 - o IPv6 (128-bit)
- Port
 - 16-bits (1 ~ 65535)
 - Uniquely Identify Application
- MAC Address
 - Media Access Control Address

Link Layer

Network Interface & Hardware

- LAN (Local), WAN (Wide), MAN(Metropolitan)
 - Ethernet, Token-Ring, FDDI
 - PPP, xDSL, ISDN
- Physical Topologies
- Logical Topologies
 - Broadcast, Token-passing
- Common LAN Devices
 - o NIC, Repeater, Bridge, Switch, Router
- Common LAN Media
 - UTP, STP, Coaxial, Fiber Optic

Network Interface & Hardware - Physical Topologies

Network Interfaces & Hardware - Media

- Coaxial Cable
 - Thicknet vs. Thinnet
 - BNC connector
- Twisted Pair Standards
 - o T568-A
 - 綠白、綠、橘白、藍、藍白、橘、棕白、 棕
 - o T568-B
 - 橘白、橘、綠白、藍、藍白、綠、棕白、 棕
 - Straight-through vs. Crossover
 - o RJ-45 connector

Category Cable Wiring

Network Interfaces & Hardware - Media (cont.)

Fiber Optic Cable

Multimode vs. Single mode

Wireless

- 802.11 a (5GHz, 54Mbps)
- o 802.11 b (2.4GHz, 11Mbps)
- o 802.11 g (2.4GHz, 54Mbps)
- 802.11 n (2.4GHz / 5GHz, 288 / 600Mbps)
- 802.11 ac (5GHz, 1733.2 Mbps with 80MHz)
- 802.11 ax (2.4GHz / 5GHz / 6GHz, 9608 Mbps with 160MHz)

Link Layer

- Ethernet
 - 10Mbps -> 100Mbps -> 1Gbps -> 10Gbps
 - Cat3 -> Cat5 -> Cat5e -> Cat6a
 - 802.3 -> 802.3u -> 802.3z/802.3ab -> 802.3ae/...
 - o CSMA/CD
- MAC address (48bit)
 - OUI vendor information
 - Use first 24bit to identify vendor

Link Layer (cont.)

- Etherenet Frame
 - Etherenet MTU Usually set as 1500
 - <u>Jumbo Frame</u> Usually means MTU 9000 or up
 - IP fragmentation
 - RFC 791, RFC 815
 - Path MTU
 - MTU of various physical device

Link Layer - Path MTU Discovery

Network Layer

Network Layer

- IP address
- ARP
- Subnet / Netmask
- Address types
- Routing

Network Layer - IP address (IPv4)

- 32-bit long
 - Network Part
 - Identify a logical network
 - Host Part
 - Identify a machine on a certain network
- NCKU
 - o Class B: 140.116.0.0
 - Network Part: 140.116
 - Number of hosts: 256 * 256 = 65536

ARP

- Address Resolution Protocol
 - Ask MAC address of certain IP
 - Broadcast
 - Anyone receiving ARP packet and having this IP will reply to the sender
 - When the host owing this IP is not on the same network, sender will use the MAC address of next-hop router to send the packet
 - What is a ROUTER? // FREE CCNA // EP 2
 - Watch how ARP works

ARP (cont.)

```
Windows PowerShell
PS C:\Users\star0> arp -a
Interface: 192.168.133.1 --- 0xd
  Internet Address
                        Physical Address
                                              Type
  192.168.133.255
                       ff-ff-ff-ff-ff
                                              static
  224.0.0.22
                       01-00-5e-00-00-16
                                              static
  224.0.0.251
                       01-00-5e-00-00-fb
                                              static
                                              static
  224.0.0.252
                        01-00-5e-00-00-fc
  239.255.255.250
                        01-00-5e-7f-ff-fa
                                              static
Interface: 192.168.253.1 --- 0xe
  Internet Address
                        Physical Address
                                              Type
  192.168.253.255
                       ff-ff-ff-ff-ff
                                              static
  224.0.0.22
                        01-00-5e-00-00-16
                                              static
  224.0.0.251
                       01-00-5e-00-00-fb
                                              static
  224.0.0.252
                       01-00-5e-00-00-fc
                                              static
  239.255.255.250
                        01-00-5e-7f-ff-fa
                                              static
Interface: 192.168.1.131 --- 0xf
  Internet Address
                        Physical Address
                                              Type
  192.168.1.1
                                             dynamic
                        04-d4-c4-5d-63-74
  192.168.1.100
                        78-e7-d1-a0-a6-91
                                              dynamic
  192.168.1.255
                        ff-ff-ff-ff-ff
                                              static
  224.0.0.22
                        01-00-5e-00-00-16
                                              static
  224.0.0.251
                        01-00-5e-00-00-fb
                                              static
  224.0.0.252
                        01-00-5e-00-00-fc
                                              static
  239.255.255.250
                       01-00-5e-7f-ff-fa
                                              static
                       ff-ff-ff-ff-ff
  255.255.255.255
                                              static
Interface: 192.168.160.1 --- 0x3b
  Internet Address
                        Physical Address
                                              Type
  192.168.167.236
                        00-15-5d-f9-ee-59
                                              dynamic
  192.168.175.255
                        ff-ff-ff-ff-ff
                                              static
  224.0.0.22
                       01-00-5e-00-00-16
                                              static
  224.0.0.251
                       01-00-5e-00-00-fb
                                              static
  239.255.255.250
                       01-00-5e-7f-ff-fa
                                              static
PS C:\Users\star0>
```

Network Layer - IP address (IPv4) - Class

Class	1st byte	Format	Comments
Α	1 ~ 126	N.H.H.H	Very early networks, or reserved for DOD
В	128 ~ 191	N.N.H.H	Large sites, usually subnetted
С	192 ~ 223	N.N.N.H	Easy to get, often obtained in sets
D	224 ~ 239	-	Multicast addresses, not permanently assigned
Е	240 ~ 254	-	Experimental addresses

Network Layer - Subnet & Netmask

Subnet

- Borrow some bits from host ID to extends network ID
- For example
 - 140.116.0.0 is class B subnet
 - which contains 256 class C-like subnet
 - 140.116.246.0 is class C-like class B subnet

Netmask

- Specify how many bits of network ID are used for network ID
- 0 140.116.0.0/16
 - First 16 bits are network ID
 - Last 16 bits are host ID
- 0 140.116.246.0/24

Network Layer - Subnet & Netmask (cont.)

- To determine network ID
 - o Bitwise-AND IP and netmask
 - **1**40.116.246.189 & 255.255.255.0 => 140.116.246.0
 - **1**0.20.30.40 & 255.255.255.240 => 10.20.30.32
 - IP Calculator / IP Subnetting

Network Layer - CIDR Notation

 A compact representation of an IP address and its associated network mask

- 140.116.246.189/24 means
 - Network ID: 140.116.246.0
 - o Host ID: 189
 - o Subnet: 24
 - 1 ~ 254, total 254 IPs are usable

Network Layer - <u>Classless Inter-Domain Routing</u>

IPv4 CIDR blocks [edit]

Address format	Difference to last address	Mask	Addresses		Relative	Restrictions	
			Decimal	2 ⁿ	to class A, B, C	on <i>a</i> , <i>b</i> , <i>c</i> and <i>d</i> (0255 unless noted)	Typical use
a.b.c.d/32	+0.0.0.0	255.255.255.255	1	2 ⁰	½56 C		Host route
a.b.c.d/31	+0.0.0.1	255.255.255.254	2	2 ¹	½ ₁₂₈ C	d = 0 (2n) 254	Point-to-point links (RFC 3021 2)
a.b.c.d/30	+0.0.0.3	255.255.255.252	4	2 ²	½ ₆₄ C	d = 0 (4n) 252	Point-to-point links (glue network
a.b.c.d/29	+0.0.0.7	255.255.255.248	8	2 ³	¹⁄₃₂ C	d = 0 (8n) 248	Smallest multi-host network
a.b.c.d/28	+0.0.0.15	255.255.255.240	16	2 ⁴	1/ ₁₆ C	d = 0 (16n) 240	Small LAN
a.b.c.d/27	+0.0.0.31	255.255.255.224	32	2 ⁵	1/8 C	d = 0 (32n) 224	
a.b.c.d/26	+0.0.0.63	255.255.255.192	64	2 ⁶	1/4 C	d = 0, 64, 128, 192	
a.b.c.d/25	+0.0.0.127	255.255.255.128	128	2 ⁷	½ C	d = 0, 128	Large LAN
a.b.c.0/24	+0.0.0.255	255.255.255.0	256	2 ⁸	1 C		
a.b.c.0/23	+0.0.1.255	255.255.254.0	512	2 ⁹	2 C	c = 0 (2n) 254	
a.b.c.0/22	+0.0.3.255	255.255.252.0	1,024	2 ¹⁰	4 C	c = 0 (4n) 252	Small business
a.b.c.0/21	+0.0.7.255	255.255.248.0	2,048	2 ¹¹	8 C	c = 0 (8n) 248	Small ISP/ large business
a.b.c.0/20	+0.0.15.255	255.255.240.0	4,096	2 ¹²	16 C	c = 0 (16n) 240	
a.b.c.0/19	+0.0.31.255	255.255.224.0	8,192	2 ¹³	32 C	c = 0 (32n) 224	ISP/ large business
a.b.c.0/18	+0.0.63.255	255.255.192.0	16,384	2 ¹⁴	64 C	c = 0, 64, 128, 192	
a.b.c.0/17	+0.0.127.255	255.255.128.0	32,768	2 ¹⁵	128 C	c = 0, 128	
a.b.0.0/16	+0.0.255.255	255.255.0.0	65,536	2 ¹⁶	256 C = B		
a.b.0.0/15	+0.1.255.255	255.254.0.0	131,072	2 ¹⁷	2 B	b = 0 (2n) 254	
a.b.0.0/14	+0.3.255.255	255.252.0.0	262,144	2 ¹⁸	4 B	b = 0 (4n) 252	

Network Layer - IPv4 crisis

- IPv4 addresses are running out
 - No more IPv4 addresses to assign to organizations
 - IP addresses were being allocated on a FCFS basis
- Solutions
 - Short term
 - Subnetting / CIDR
 - NAT
 - Long term
 - IPv6

Network Layer - NAT

Private Address

- Packets with private address will not go out to the Internet
- 3 private address ranges

IP Class	From	То	CIDR notation
Class A	10.0.0.0	10.255.255.255	10.0.0.0/8
Class B	172.16.0.0	172.31.255.255	172.16.0.0/12
Class C	192.168.0.0	192.168.255.255	192.168.0.0/16

Network Layer - NAT

- Network Address Translation
- Allow hosts using private address to talk with outside

Network Layer - NAT (cont.)

Network Layer - Routing

- Direct a packer closer to the destination
- Flat vs. Hierarchical
- Routing Table
 - Routing Information
 - Rule-based Information
 - Kernel will pick the most suitable way to route the packets

Network Layer - Routing (cont.)

Network Layer - Routing (cont.)

- Static Route
 - Statically configured by "route" command
 - # ip route add 172.10.1.0/24 via 10.0.0.100 dev eth0
- Dynamic Route
 - Configured by some routing protocol

Network Layer - Routing (cont.)

- Trace packet
 - o ping -R
 - traceroute
 - o mtr

Network Layer - Routing - mtr

Transport Layer

Transport Layer - ports

- 16-bits number
- Preserve ports
 - 1 ~ 1024 (root access only)
- Well-known ports
 - /etc/services

```
File: /etc/services
# Full data: /usr/share/iana-etc/port-numbers.iana
                     1/tcp
tcpmux
                     1/udp
tcpmux
                     2/tcp
compressnet
compressnet
                     2/udp
compressnet
                     3/tcp
compressnet
                     3/udp
                     5/tcp
rje
rje
                     5/udp
echo
                     7/tcp
echo
                     7/udp
discard
                     9/tcp
discard
                     9/udn
```

Transport Layer - TCP vs. UDP

Function	UDP	TCP
Connection-oriented	No	Yes
Message boundaries	Yes	No
Data checksum	Optional	Yes
Positive acknowledgement	No	Yes
Time-out and retransmit	No	Yes
Duplicate detection	No	Yes
Sequencing	No	Yes
Flow control	No	Yes

Transport Layer - useful commands

- tcpdump, sniffit, trafshow, netstat -s
- Wireshark
 - GUI-based network protocol analyzer

Network Setup

Network Setup

- Assign IP address / Hostname
- Default Route
- DNS
- ping / traceroute to make sure network works

Network Setup - IP assignment

- In Ubuntu Linux 20.04, OS use <u>netplan</u>
- /etc/netplan/50-cloud-init.yaml
 - PLEASE DO NOT EDIT THIS FILE IN YOUR VM!!!

Network Setup - IP assignment - netplan

Network Setup - Hostname

- /etc/hosts
 - Hostname database
- /etc/hostname
 - Hostname for this machine

Network Setup - Default Route

ip route add default via 192.168.1.254 dev eth0

Network Setup - DNS

- /etc/resolv.conf
- 127.0.0.53
 - systemd-resolved
 - systemd DNS resolver

Topics we didn't cover this time

- DHCP
- NAT
- DNS
 - Previous lecture
- Mail
- VPN
- Tunnel
- ...

PKI

Public-Key Infrastructure

- A set of hardware, software, people, policies, and procedures
- To create, manage, distribute, use, store, and revoke digital certificates
- Encryption, authentication, and signature
- Bootstrapping secure communication protocols

Certificate Authority / Tree structure of CA

Certificate

- Contains data of the owner, such as Company Name, Server Name, Name, Email, Address...
- Public key of the owner
- Followed by some digital signatures
 - Signed for the certificate
- X.509
 - A certificate is signed by a CA
 - To verify the authenticity of the certificate, check the signature of CA

Certificate Authority

- Trusted server which signs certificates
- One private key and relative public key
- Tree source of X.509
 - Root CA

Root CA

- Do not sign the certificates for users
- Root CA signs for itself
- To trust Root CA
 - Install the certificate of Root CA via secure channel

Cost of certificate

- Public CA: \$78 / per year / per host
- Self-signed: \$0 (But no one will trust this certificate except yourself)
- Let's Encrypt: \$0

SSL / TLS

SSL / TLS

- Secure Socket Layer
- Transport Layer Security

- Provide communication security over the Internet
 - prevent eavesdropping and tampering
- Encrypt segments over Transport Layer

SSL - History

- SSL was developed by Netscape
 - o SSL 1.0
 - Was never publicly published
 - o SSL 2.0, 1995
 - A number of security flaws
 - o SSL 3.0, 1996
 - A complete redesign
 - Newer version of SSL/TLS are based on SSL 3.0
 - POODLE attack

TLS - History

- TLS IETF RFC
 - o TLS 1.0 (SSL 3.1), RFC 2246 in 1999
 - Backward compatible to SSL 3.0
 - CBC vulnerability discovered in 2002
 - o TLS 1.1 (SSL 3.2), RFC 4346 in 2006
 - Prevent CBC attacks
 - o TLS 1.2 (SSL 3.3), RFC 5246 in 2008
 - Enhance security strength
 - Introduce new cryptographic algorithms
 - TLS 1.3, RFC 8446 in 2018

SSL/TLS Negotiation

SSL/TLS Negotiation (cont.)

- (C) Request a secure connection, and present a list of supported ciphers and hash functions
- (S) Select common cipher and hash function, and send back with server's digital certificate
- (C) Confirm the validity of the certificate
- (C) Encrypt a random number (pre-master secret) with server's public key, and send it to the server
- (C/S) Generate session key(s) from the random number

C: Client

S: Server

SSL/TLS Applications

- Implemented on top of Transport Layer protocols
 - o TCP
 - o UDP (DTLS)
- To protect insecure services
 - HTTP / FTP / SMTP / VPN / VoIP...
- To activate SSL/TLS
 - Use a different port (Like HTTP/HTTPS is 80/443)
 - Use different mechanism (Like STARTTLS)

SSL/TLS Application - Name-based Virtual Server

- All virtual servers belong to the same domain
 - Wildcard certificate (*.example.com)
 - Add all virtual hostnames in subjectAltName
 - Disadvantage
 - Certificate need re-issue whenever adding a new virtual server
- Server Name Indication (SNI)
 - o RFC 4366
 - Client browser also need to support SNI

OpenSSL

OpenSSL

Contains an open-source implementation of the SSL and TLS protocols.
 The core library, written in the C programming language, implements basic cryptographic functions and provides various utility functions. Wrappers allowing the use of the OpenSSL library in a variety of computer languages are available.

OpenSSL - <u>Heartbleed</u>

● OpenSSL Heartbleed 全球駭客的殺戮祭典, 你參與了嗎? | DEVCORE

PGP

PGP

- Pretty Good Privacy
- Public key system
 - Encryption
 - Signature
- Will not cover in this class, maybe next time