1	-	CS	1	
	n		4	n

USN					

RV COLLEGE OF ENGINEERING®

(An Autonomous Institution affiliated to VTU)

IV Semester B. E. Examinations April/May-19

Computer Science and Engineering THEORY OF COMPUTATIONS

Time: 03 Hours Maximum Marks: 100

Instructions to candidates:

- 1. Answer all questions from Part A. Part A questions should be answered in first three pages of the answer book only.
- 2. Answer FIVE full questions from Part B.In Part B question number 2, 7 and 8 are compulsory. Answer any one full question from 3 and 4 & one full question from 5 and 6

PART A

_					
1	1.1	What is minimum number of state a deterministic finite automation			
		requires to accept the language $L = \{w w \in \{0, 1\} *, \text{ number of } 0s \text{ and } 1s \text{ in } w$			
		are divisible by 3 and 5, respectively}.			
	1.2	Identify the shortest string and its length <i>NOT</i> in the language over $\Sigma = \{a, b\}$			
		of the following regular expression.			
	1.3	What is the equivalent left linear grammar for the following given right linear grammar: $S \rightarrow abA bB aba, A \rightarrow b aB bA, B \rightarrow aB aA$			
		linear grammar: $S \to abA bB aba, A \to b aB bA, B \to aB aA$			
	1.4	Consider the context free grammars over the alphabet $\{a,b\}$ given below,			
		where S is non – terminal			
		$X: S = aSa aSb \varepsilon$			
		$Y: S = aaS bbS \varepsilon$			
		What is the length of the shortest string which does not belongs to $L(X)$ but	00		
	1 -	belongs to $L(Y)$.	02		
	1.5	Consider the CFG			
		$S \to XX$			
		$X \to XXX/bX/Xb/a$	02		
	1.6	Construct the parse tree and <i>LMD</i> for the string "bbaaaab".			
	1.0	, , ,			
		grammar. Here, A is the starting and D is final state. $\begin{array}{ c c c c c c c c c c c c c c c c c c c$			
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
		C D B			
		$D \mid C \mid A$	02		
	1.7	Write Chomsky hierarchy for formal languages.	02		
	1.8	Design a turing machine to increment a unary number where $w \in \{0\}^+$.			
	1.9	Mention the Transition function for TM with stay option.	01		
	1.10	Differentiate recursively enumerable language and recursive languages.	02		
	1.11	Consider homomorphism h from alphabet $\{0,1,2\}$ to $\{a,b\}$ defined by			
		$h(0) = ab, h(1) = b$ and $h(2) = aa$. Find $h(0210)$ and $h^{-1}(ababb)$.	01		

PART B

2	а	Define regular expressions. Give regular expression which generates the following languages over the alphabet $\Sigma = \{0, 1\}$.	
		i) Strings of a's and b's ending with b and has no substring aa.ii) Strings that do not end with 01.	05
	b	For the <i>DFA</i> shown in fig 2b, use the minimization algorithm to find a	03
	~	minimum <i>DFA</i> recognizing the same language using table filling algorithm.	
		Fig 2b	06
	С	Obtain a regular expression for the FA shown fig 2c using state elimination	
		method.	
		Fig 2c	05
3		Comment the fellowing amount of into CNE, C , AAIO A , CCI1	06
3	a b	Convert the following grammar into $GNF: S \rightarrow AA 0, A \rightarrow SS 1$. Define a CFG and write a CFG for the language	06
	~	$L = \{a^n b^n c^m d^m n \ge 1, m \ge 1\} \cup \{a^n b^m c^m d^n, n \ge 1, m \ge 1\}$	05
	c	Describe the decision algorithms to answer the following questions:	
		i) Given two finite automata M_1 and M_2 , are there any strings that are	
		accepted by both?	
		ii) Given a FAM , is it a minimum state FA accepting the language $L(M)$?	05
		OR	
4	a	Convert the following grammar into $CNF: S \to AB aB, A \to aab \in B \to bbA$.	04
	b	Using Pumping lemma for regular sets show that $L = \{a^n b^n n \ge 0\}$ is not	04
	С	regular. Define ambiguity in grammar. Is the following grammar ambiguous? Justify	04
	C	your answer : $S \rightarrow iCtS iCtSeS a, C \rightarrow b$	04
	d	Show that the regular languages are closed under complement operation.	04
5	а	Define push down automata and instantaneous description (<i>ID</i>). Construct a <i>PDA</i> to accept the language $L = \{w w \in (a, b)^* and n_a(w) = n_b(w)\}$ by a final state and show by <i>ID</i> that the string <i>abbaa</i> is accepted.	07
	b	If L_1 is CFL and L_2 is regular language, then prove that $L_1 \cap L_2$ is a CFL .	04
	c	Convert the given CFG to its equivalent PDA .	05
		$S \to aABB aAA, A \to aBB a, B \to bBB A, C \to a$	05
		OR	

6	a b c	State and prove pumping lemma for <i>CFL</i> . Show that $L = \{a^ab^nc^n n \ge 0\}$ is not <i>CFL</i> . Define the language accepted by <i>PDA</i> by final state and by empty stack. Find the equivalent <i>CFG</i> for the <i>PDA</i> given below $\delta(q_0, a, z_0) = \{(q_0, AZ_0)\}, \delta(q_0a, A) = \{(q_0, AA)\}, \delta(q_0, b, A) = \{(q_1, \varepsilon)\}, \delta(q_1, \varepsilon, Z_0) = \{(q_2, Z_0)\}.$	06 04 06		
7	a	Obtain the left linear grammar for the <i>DFA</i> given below. Fig 7a			
	b	Obtain a right linear grammar for the language $L = \{a^n b^n n \ge 2, m \ge 3\}$.	04		
	c	Define context sensitive grammar. Give context sensitive grammar to generate the language $L = \{a^n b^n c^n n \ge 1\}$. Show that the string "aaabbbccc" is			
	d	generated. Construct a <i>DFA</i> to accept the language generated by the following			
	a	grammar: $S \to aA \varepsilon, A \to aA bB \varepsilon, B \to bB \varepsilon$.			
		grammar. $\mathcal{S} \to un_{ \mathcal{E}} = $			
8	a	Define post correspondence problem. Solve the <i>PCP</i> given below.			
		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	04		
	b	If L_1 and L_2 are recursively enumerable languages over Σ , then prove that			
		$L_1 \cap L_2$ and $L_1 \cup L_2$ are recursively enumerable.			
	С	During Turing machine and language of TM . Design a TM to perform $x + y$ where x and y are two positive integers.	06		