1. Question 1

There are two main functions that need completing:

- a. 'parse_data_line': the function takes one argument data_line as a single input, and returns a tuple of label and text. In this case, data_line should be each row from the file, which is equivalent to the 'line' in loop <for line in reader> in 'load_data' function. Thus, to extract label and text data from a list, we simply subset it with index 1 and 2 in turn.
- b. 'pre_process': the function takes one argument text as an input and returns a list of to-kens. The function is then implemented in a function called 'split_and_preprocess_data', where the input of 'pre_process' function follows string type. Hence, to split a text into to-kens, the string split method with default separator (any whitespace) is used.

Moreover, the 'load_data' function needs argument "encoding = 'utf-8" in the open method to avoid any unnecessary errors.

2. Question 2

In this question, there is only a function: 'to_feature_vector'. This takes one argument *tokens* as input and aims to return *vocabulary*. This can be solved by checking whether each *token* from the text is within a *vocabulary* dictionary created at first – this will be initially empty and gradually added when looping through the *tokens* input; if not, add that *token* as a new key with value 1; otherwise, update that *token* with <new value = current + 1>.

3. Question 3

In question 3, there is only one main function 'cross_validate' to be finished. This function takes dataset and folds as arguments, then returns the average model performance after folding. The idea is to divide the input dataset into 2 sets: training and validation. The validation set is decided by the fold_size and the train set is defined as <dataset – validation set>. Then, the classifier is trained with the train set and used to predict on validation. After folding k times (k-time iteration), the performance of each loop is stored and used to calculate average score (precision/recall/f1⁽¹⁾ & accuracy⁽²⁾).

4. Question 4

The label order in 'confusion_matrix_heatmap' is FAKE – REAL, where FAKE is a positive label and REAL is a negative one. The ratio of false positive (FP) cases and false negative (FN) ones is quite balance, though a bit inclined to more FN.

In the *error analysis* on a simple train-test split of training data, the classifier predicts the REAL labels better than FAKE (f1 score: 0.62 and 0.5 respectively). Looking at the FP and FN, there are some assumptions for model misclassification:

- a. There are a mixture of capital and lowercase words, which may cause confusion.
- b. There are many common words (a, an, the,...)
- c. Some tokens are glued to a punctuation due to the str.split() method using any whitespace as separator.

5. Question 5

The idea is to individually test each modification in a greedy way (keep what is good for score and use it for further test). Below is what I have tried:

Table 1: Different pre-process method testing and tunning model hyperparameter (question 5)

Model modification	Details	Impact	Decision	Updated method for better model
'pre_process' function: use word_tokenize method	Replace the traditional tokenizing string split, as the new one returns cleaner tokens, splitting punctuation	No improve- ment	Keep the str.split()	No change
'pre_process' function: remove punctuation	Use str.isalpha()	No improve- ment	Do not re- move punctu- ation	No change

⁽¹⁾ Precision/recall/f1 score are achieved by implementing the precision_recall_fscore_support method from sklearn

⁽²⁾ Accuracy is defined by a function called 'accuracy_calculate': count how many cases where predicted class y_pred = true class y_true, then dividing it by total observations of true labels

'pre_process' function: remove stopwords	Get rid of too common words, such as a/an/	Improve all scores	Remove stop- words	Remove stop- words(1)
'pre_process' function: normalize tokens	Convert words into low- ercase with str.lower()	No improve- ment	Do not nor- malize	(1)
'pre_process' function: lemmatize tokens	Use WordNetLemma- tizer from nltk package	No improve- ment	Do not lem- matize	(1)
'pre_process' function: stem tokens	Use PorterStemmer from nltk package	No improve- ment	Do not stem	(1)
'train_classifier' func- tion: tunning regulariz- ing cost hyperparame- ter	Use GridSearchCV method for tunning a list of C values	Greatly improve all score with C = 0.01	Update C = 0.01	Remove stop- words and set the model hy- perparameter C = 0.01 (2)
'train_classifier' func- tion: update balanced class_weight	Set a hyperparameter 'class_weight' as 'bal- anced'	No improve- ment	Do not bal- ance class weight	(2)
'to_feature_vector' function: add control for vocabulary	Set minimum frequency = 2	No improve- ment	Do not set control for vo-cabulary	(2)
'to_feature_vector' function: add sen- tence length	Add a token for length of text	No improve- ment	Do not add text length	(2)

Eventually, after testing around, we have optimal preprocessing method: (a) tokenize with str.split(), (b) remove stopwords and (c) set the C hyperparameter of LinearSVC as 0.01. The result achieved is significantly improved, compared to base model⁽³⁾: precision/recall/f1 score/accuracy of the new one is 5%-7% better.

6. Question 6

The strategy is to add the feature one by one, then check the individual effect on the score, benchmarking with the best model achieved in question 5. Below is the summary:

Table 2: Individual feature testing (question 6)

Individual feature test	Impact	Decision
Subject	All the scores improve	Add 'subject' to the model
Speaker	All the scores improve	Add 'speaker' to the model
Speaker job title	All the scores improve	Add 'speaker job title' to the model

	All the		
State info	scores im-	Add 'state info' to	
State IIII0		the model	
	prove		
Party affilia-	All the	Add 'party affilia-	
tion	scores im-	tion' to the model	
	prove		
Total barely true counts	All the	Add 'total barely	
	scores im-	true counts' to the	
	prove	model	
Total false	All the	Add 'total false	
	scores im-	counts' to the	
counts	prove	model	
Total half	All the	Add 'total half true	
	scores im-	counts' to the	
true counts	prove	model	
Total mostly	All the	Add 'total mostly	
Total mostly true counts	scores im-	true counts' to the	
	prove	model	
Total pants	All the	Add State I names as	
on fire	scores im-	Add 'total pants on	
counts	prove	fire' to the model	
Context	No im-	Do not add 'con-	
	provement	text' to the model	

After adding more features as stated in the table, the performance score of new model, with 10 new added features (from table 2), is improved by 21%-22% on test dataset prediction