Theorem 8.14

For each positive integer km the complete graph K_{2k} is 1-factorable.

Proof:

Since the result is true for k=1 and k=2, we assume that $k\geq 3$. Let $G=K_{2k}$, where $V(G)=\{v_0,v_1,v_2\dots v_{2k-1}\}$. Let $v_0,v_1,v_2\dots v_{2k-1}$ be the vertices of a regular (2k-1)-gon and place v_0 in the center of the (2k-1)-gon. Draw each edge of G as a straight line segment. Let F_1 be the 1-factor of G consisting of the edge v_0v_1 and all edges of G perpendicular to v_0v_1 , namely $v_2v_{2k-1},v_3v_{2k-2},\dots,v_kv_{k+1}$. In general, for $1\leq i\leq 2k-1$ let F_i be the 1-factor of G consisting of the edge v_0v_i and all edges of G perpendicular to v_0v_i . Then G has a factorization into the 1-factors F_1,F_2,\dots,F_{2k-1} .