Often when analyzing a divide & conquer algorithm, we obtain a recurrence for its running time of the following form

$$T(n) = aT(\frac{n}{b}) + cn^k \tag{1}$$

(rev: Jan 2017)

In words, on input size n, the algorithm generates a subproblems, each of size n/b; combining these subproblems to obtain the overall solution requires time polynomial in n, specifically cn^k .

Such recurrences appear frequently so it is useful to know asymptotic bounds for them in terms of a, b and k (as we will see, c does not affect the asymptotic solution). To this end, we will analyze the recursion tree for this recurrence (see Figure 1).

Figure 1: The recursion tree for recurrence (1). a is the branching factor, b is the factor by which the input size shrinks at every recursive call and cn^k is the time required to combine the solutions to the subproblems into the overall solution for input size is n. The smallest possible size of a subproblem is O(1); typically, solving input instances of small constant size requires constant time c.

Note that

- ullet a is the branching factor of the tree: every subproblem gives rise to a new subproblems at the next level of the tree; thus
 - 1. at level 1, we have a subproblems
 - 2. at level 2, **each** of the a subproblems in level 1 gives rise to a new subproblems; therefore there are a total of a^2 subproblems
 - 3. at level 3, each of the a^2 subproblems in level 2 generates a new subproblems; therefore there are a total of a^3 subproblems
 - 4. at the level i, there are a^i subproblems

- b is the factor by which the input size shrinks at every level; thus
 - 1. at level 1, the input size of each subproblem shrinks by a factor of b, that is, from n it now becomes n/b;
 - 2. at level 2, the input size of each subproblem further shrinks by a factor of b, that is, from n/b it now becomes $(n/b)/b = n/b^2$;
 - 3. at level 3, the input size of each subproblem again shrinks by a factor of b, hence becomes $(n/b^2)/b = n/b^3$;
 - 4. at level i, the size of each subproblem is n/b^i
- \Rightarrow at level i, the amount of work spent on each subproblem of size n/b^i is ¹:

$$c\left(\frac{n}{b^i}\right)^k$$

 \Rightarrow at level i, the work spent on all subproblems is

$$a^{i}c\left(\frac{n}{b^{i}}\right)^{k} = cn^{k}\left(\frac{a}{b^{k}}\right)^{i}$$

We need one more observation before we can compute the total work spent on the recursion tree.

Fact 1 The depth of the tree in Figure 1 is $\lceil \log_b n \rceil$ levels.

Proof. The last level of the recursion tree, call it d, consists of subproblems of size 1. Since at level i subproblems have size n/b^i , we are looking for d such that

$$\frac{n}{b^d} = 1 \Rightarrow d = \log_b n$$

Since d is an integer, $d = \lceil \log_b n \rceil$.

We are now ready to derive a bound for T(n) by computing the total work spent on this recursion tree, which is given by the sum of the work spent at each level of the tree:

$$T(n) = \sum_{i=0}^{\lceil \log_b n \rceil} c n^k \left(\frac{a}{b^k}\right)^i = c n^k \sum_{i=0}^{\lceil \log_b n \rceil} \left(\frac{a}{b^k}\right)^i$$
 (2)

Note that T(n) depends on a sum over $\lceil \log_b n \rceil$ terms of a geometric progression with common ratio a/b^k and initial value $(a/b^k)^0 = 1$. Depending on the value of the common ratio a/b^k , this sum will exhibit the following behavior:

1. $\frac{a}{b^k} = 1$; in this case, we have

$$\sum_{i=0}^{\lceil \log_b n \rceil} \left(\frac{a}{b^k}\right)^i = \sum_{i=0}^{\lceil \log_b n \rceil} 1 = \lceil \log_b n \rceil + 1 = \Theta(\log_b n)$$
(3)

2. $\frac{a}{b^k}$ < 1; in this case, you can show that the sum of the entire geometric progression is dominated by its initial value, that is,

$$\sum_{i=0}^{\lceil \log_b n \rceil} \left(\frac{a}{b^k} \right)^i = \Theta\left(\left(\frac{a}{b^k} \right)^0 \right) = \Theta(1) \tag{4}$$

¹Recall that the amount of work spent on combining the subproblems when the the input size is n is cn^k .

3. $\frac{a}{b^k} > 1$; again, you can show that the sum of the entire geometric progression is now dominated by its last term, that is,

$$\sum_{i=0}^{\lceil \log_b n \rceil} \left(\frac{a}{b^k} \right)^i = \Theta\left(\left(\frac{a}{b^k} \right)^{\log_b n} \right) = \Theta\left(\left(\frac{a^{\log_b n}}{b^{k \log_b n}} \right) \right) = \Theta\left(\frac{n^{\log_b a}}{n^k} \right)$$
 (5)

Plugging back equations (3), (4), (5) into equation (2), we summarize our findings in the following theorem.

Theorem 1 (Master theorem) If $T(n) = aT(\lceil n/b \rceil) + O(n^k)$ for some constants a > 0, b > 1, $k \ge 0$, then

$$T(n) = \begin{cases} O(n^{\log_b a}) &, \text{ if } a > b^k \\ O(n^k \log n) &, \text{ if } a = b^k \\ O(n^k) &, \text{ if } a < b^k \end{cases}$$