Reducing Deep Learning training times with parallelism strategies and TensorFlow Distribute.

Juan Manuel Muñoz Betancur

PRESENTATION OUTLINE

- Introduction/Motivation.
- Common types of parallelism.
 - Model Parallelism
 - Data Parallelism
- Tensorflow Demo.

Motivation

Get results faster and iterate quickly in your small/medium/large projects without additional costs.

State of the art models: GPT-3 has 175 Billion parameters, to train it even in the best SINGLE GPU available in the market would take about 355 years.

Motivation

To train a model you need to take into account the size of the parameters, the forward pass activations (saving them for the backprop) and the gradients of the weights.

Params size

InceptionV3 24M params

ⓐ $fp64 = 24 \times 10^6 \times 8$ bytes

= 192 MB

Activations size

InceptionV3 @ fp64 batch_size=256

 \sim 256 (4 x 10⁶ x 8 bytes)

= 32MB * 256 = 8GB

Params size

GPT-3 175B parameters @fp16

 $= 175 \times 10^9 \times 2 \text{ bytes}$

= 316.2 GB

Activations size

GPT-3 **~TBs**

COMMON TYPES OF PARALLELISM

- Model Parallelism.
 - Pipeline Parallelism
- Data Parallelism.

Model Parallelism (Large model training)

split the model across devices

each device runs a fragment of the model

GPU₁ GPU 2

Distributed Tensor Computation

GPU₁

GPU 2

Model Parallelism: Naive

Model Parallelism: Naive

Model Parallelism: Naive

key idea: split mini-batch into sequential micro-batches

12

Pros and cons of model parallelism

Pros:

- Can train bigger models.
- Implemented on Pytorch.

Cons:

- Not found in the distribution strategy of default libraries such as Tensorflow. (Mesh Tensorflow)
- Tricky to design an implement.

Data Parallelism (Large Batch Training)

split the data across devices

each device sees a fraction of the batch

each device replicates the model

each device replicates the optimizer

Data Parallelism

GPUs could be on same or multiple nodes

Get a batch of data

Split batch across devices

Parallel forward passes

Parallel forward passes

Backpropagate gradients

Backpropagate gradients

GPU₁

Gradients GPU1

GPU₂

Gradients GPU2

Start the next step with a new minibatch of data

GPU₂

all parameters stay synchronized!

So, what's All-Reduce?

GPU₁

tensor 1

GPU 3

tensor 3

GPU 2

tensor 2

GPU₁

1 2 3

GPU 3

1

2

3

GPU 2

1

2

3

split tensor into *p* chunks

GPU 3

GPU 2

1

3

reduce locally

Ring All-Reduce Advantages

Naive method = p senders x (p - 1) receivers x o(n) tensor = $o(np^2)$ everyone does o(np) work.

Manager node method = $(p-1) \times 2$ transfers x o(n) tensor = **o(np)** manager does **o(np)** work

Ring All-Reduce = p senders x 1 receiver x o(n/p) tensor x (p-1) rounds x 2 phases = o(np) everyone does <u>equal</u> o(n) work (independent of p)

Before the demo, what strategies are implemented in Tensorflow

Training API	MirroredStrategy	TPUStrategy	MultiWorkerMirroredStrategy	CentralStorageStrategy	ParameterServerStrategy
Keras API	Supported	Supported	Supported	Experimental support	Supported planned post 2.4
Custom training loop	Supported	Supported	Supported	Experimental support	Experimental support
Estimator API	Limited Support	Not supported	Limited Support	Limited Support	Limited Support

Demos

Using data parallelism with model.fit

Using data parallelism with a custom training loop.

(https://github.com/juanma9613/Reducing-deep-learnin g-training-times-Pycon2021)

THANK YOU!

- https://www.linkedin.com/in/juan-manuel-munoz-betancur/
- jmunozb@eafit.edu.co

Link to demo:

 https://github.com/juanma9613/Reducing-deep-learning-training-times-Pyc on2021

Factored is hiring!