MATRIKS

An R package for the automatic generation of Raven-like matrices

Andrea Brancaccio, **Ottavia M. Epifania**, Debora de Chiusole, Pasquale Anselmi, Luca Stefanutti

Dipartimento di Filosofia, Sociologia, Pedagogia e Psicologia Applicata, Università di Padova

Convegno AIP-Sezione Sperimentale 2023 Symposium:

New frontiers for the adaptive assessment of executive functions

18 Settembre 2023

- 1 Introduction
- 2 Generating rules
- 3 The matRiks package
- 4 Why?
- 5 Final remarks

Assessment of fluid intelligence or abstract reasoning

Beyond clinical assessment \rightarrow Job recruitment

An example: The matrix

An example: The matrix

An example: The matrix

Repetition

Incomplete Correlate Wrong Principle Difference

Repetition Incomplete Correlate Wrong Principle Difference

Difference

- 1 Introduction
- ② Generating rules
- 3 The matRiks package
- 4 Why?
- 5 Final remarks

Category	Rule name	Definition
Visuospatial	Object addition	Visually merge two objects
	Movement	Change the position of an object across the cells
	Rotation	Change the spatial orientation of the objects across the cells
	Mental transformation	Apply the characteristics of the objects in the sec- ond cell to the objects in the first cell to obtain the object in the third cell.
	Numerical progression	Quantitative increase or decrease in the number of objects from cell to cell
	Changes in shape	Change objects across cells
	Changes in shade	Change the shade of the objects across cells
	Changes in size	Change the size of the objects across cells
	Changes in outline	Change the outline of the objects across cells
Logical	AND	The third cell contains only the elements that appeared in both the first and second cells (\cap)
	OR	The third cell contains all the elements in the first and second cells (\cup)
	XOR	The third cell contains the elements in the first cel
		not present in the second cell and vice-versa $\left(\Delta\right)$
Directional Logic	Horizontal	The objects are modified across columns
	Vertical	The objects are modified across rows
	Diagonal	The objects are modified horizontally and diagonally

- 1 Introduction
- 2 Generating rules
- 3 The matRiks package
- 4 Why?
- 5 Final remarks

devtools::install_github("https://github.com/OttaviaE/matRiks")

- Generates 2×2 or 3×3 Raven-like matrices
- ullet Generates the response list associated with the matrix (1 correct response + 10 distractors)
- Core elements:

Objects Rules Matrix generator Response options generator

devtools::install_github("https://github.com/OttaviaE/matRiks")

- Generates 2×2 or 3×3 Raven-like matrices
- \bullet Generates the response list associated with the matrix (1 correct response + 10 distractors)
- Core elements:

Objects Rules Matrix generator Response options generator

devtools::install_github("https://github.com/OttaviaE/matRiks")

- Generates 2×2 or 3×3 Raven-like matrices
- ullet Generates the response list associated with the matrix (1 correct response + 10 distractors)
- Core elements:

Objects Rules Matrix generator Response options generator

(Some) of the available objects

Visuospatial rules

Rotate

Shape

Shade

Size

Logical rules

AND (∩)

 $XOR(\Delta)$

7? Final remarks

Rule

Rule

Object

rotate

Final remarks

rotate

Introduction

Response options generator

```
Cell1 Cell2 Cell3
Cell4 Cell5 Cell6
Cell7 Cell8 ?
```

Response options generator

```
Cell1 Cell2 Cell3
Cell4 Cell5 Cell6
Cell7 Cell8 ?
```

Response options generator

Response options generator

```
Cell1
            Cell2
                     Cell3
    Cell4
            Cell5
                     Cell6
    Cell7
            Cell8
                                              Correct
                                                                  \times 1
                                            Repetition
                                                                  \times 3
                                      Incomplete Correlate
Response options generator
                                                                  \times 4
                                         Wrong Principle
                                                                  \times 2
                                             Difference
                                                                  \times 1
```


- 1 Introduction
- 2 Generating rules
- 3 The matRiks package
- 4 Why?
- 5 Final remarks

PsycAssist

Introduction

Stimuli

Introduction

40 Raven-like matrices:

- ullet 1 imes 1 matrices (jigsaw puzzle) , n=5
- 2×2 matrices, n = 20
- 3×3 matrices, n = 15

Sample

```
n=600 children aged 4-11 ( M=8.39\pm2.17 ), recruited in Italian schools F=48\% 30% preschoolers
```

Rasch validation

- Monotonicity check
- Fit the Rasch model:
 - ① Check for item with infit and/or outfit statistics ≥ 2 (underfit)
 - ② Local dependence (Yeun's $Q3 \ge .20$)

Rasch validation

Note

- 2 matrices were eliminated because of technical issues
- 4 matrices were eliminated because of a lack of monotonicity

The starting model included 34 matrices:

Madcov	SRMR	<i>p</i> -value
0.95	0.06	0.001

Oufit statistic suggested the underfit of one matrix (item 21) \rightarrow removed and refitted the model

- Check for infit/outfit \rightarrow no matrices were identified as underfitting
- Check for local dependence:

The final model

990

- 1 Introduction
- 2 Generating rules
- 3 The matRiks package
- 4 Why?
- 5 Final remarks

- Formalization of the matrix generation process
- Generate similar but different matrices \rightarrow Equivalent matrices (?)
- Reproducibility of the stimuli
- Ease of use (for useR)

- Formalization of the matrix generation process
- ullet Generate similar but different matrices o Equivalent matrices (?)
- Reproducibility of the stimuli
- Ease of use (for useR)

SOON A shiny app

Introduction

matRiks

990

matRiks

990