WEEKLY REPORT 3

YANG zhi lin - 19-06-2018

1. Data preprocessing:

Model: Seagate A 'ST4000DM000' **Date range**: 2017-01-01 ~ 2017-12-31

Number of samples: 35189

1) Feature selection:

After discarding the features with not enough records, there are <u>48</u> available features in total:

```
['smart 1 normalized', 'smart 1 raw',
'smart 3 normalized', 'smart 3 raw',
'smart 4 normalized', 'smart 4 raw',
'smart 5 normalized',
                       'smart 5 raw',
'smart 7 normalized',
                      'smart_7_raw',
'smart_9_normalized',
                       'smart_9_raw',
'smart 10 normalized',
                        'smart 10 raw',
'smart_12_normalized',
                       'smart 12 raw',
'smart 183 normalized',
                         'smart_183_raw',
'smart 184 normalized',
                         'smart 184 raw',
                         'smart_187_raw',
'smart 187 normalized',
'smart 188 normalized',
                         'smart 188 raw',
                         'smart 189 raw',
'smart 189 normalized',
'smart 190 normalized',
                         'smart 190 raw',
'smart_191_normalized',
                         'smart 191 raw',
'smart 192 normalized'
                         'smart 192 raw'
                         'smart_193_raw',
'smart 193 normalized',
'smart 194 normalized'
                         'smart 194 raw',
'smart 197 normalized',
                         'smart 197 raw',
'smart 198 normalized',
                         'smart_198_raw',
'smart 199 normalized',
                         'smart 199 raw',
```

```
'smart_240_normalized', 'smart_240_raw',
'smart_241_normalized', 'smart_241_raw',
'smart_242_normalized', 'smart_242_raw']
```

2) failed samples collection:

1061 replaced disks among 35189 samples

3) change point detection on failed samples:

Method: CPD frequentist approach

Code Source: http://www.claudiobellei.com/2016/11/15/changepoint-frequentist/

Model: Normal distribution, single change point, change in mean

Example: Take sample 'Z3029FAS'


```
2G = 7.331324e+06
sigma**2*lambda = 1.993853e+05
-->H0 rejected
Changepoint detected at position: 27
m1 = 16707.518519
m2 = 17391.562500
```


As the figures show, this attribute actually has a significant shift on day 27 and it's captured by the program. But here is another problem: it seems that it is not a permanent change, but rather more like a temporary change? Is it really indicative of a failure?

After change point detection, I have aggregated the distribution of days before replacement of each SMART attributes. The median values have been used as the window width in exponential smoothing:

	smart_1_normalize d	smart_1_raw smart_3_normalize d		lize smart_3_raw
get_median	24	4	19	101
get_mean	68	8	35	113

smart_4_normalize d	smart_4_raw	smart_5_normalize d	smart_5_raw	smart_7_normalize d
	86	4	4	94
	100	16	17	106
smart_12_normaliz ed	smart_12_raw	smart_183_normali zed	smart_183_raw	smart_184_normali zed
	smart_12_raw 86		smart_183_raw	

smart_189_normali zed	smart_189_raw	smart_190_normali zed	smart_190_raw	smart_191_normali zed
115	115	90	91	
133	132	111	111	

smart_191_raw			smart_193_normali zed	smart_193_raw
		68	72	72
		100	90	91

smart_194_normali zed	smart_194_raw	smart_197_normali zed	smart_197_raw	smart_198_normali zed
91	91	2	6	2
111	111	4	22	4

smart_198_raw sn ze	nart_199_normali ed	smart_199_raw	smart_240_normali zed	smart_240_raw
6		39		86
22		95		88

smart_7_raw	smart_9_normalize d	smart_9_raw	smart_10_normaliz smart_10_raw ed
74	89	86	
85	91	88	

smart_241_normali zed	smart_241_raw	smart_242_normali zed	smart_242_raw	
	103			67
	104			80

smart_184_raw	smart_187_normali zed	smart_187_raw	smart_188_normali zed	smart_188_raw
1	4	4		5
10	26	26		47

Then I count the SMART correlation frequencies for those features with change points: (correlation frequency: the percentage of drives for which a correlation with disk is observed)

Correlation frequencies

	percent	smart_188_raw	0.85%
smart_1_normalized	30.62%	smart_189_normalized	2.36%
smart_1_raw	24.57%	smart_189_raw	2.46%
smart_3_normalized	14.65%	smart_190_normalized	54.06%
smart_4_raw	33.08%	smart_190_raw	53.97%
smart_5_normalized	6.14%	smart_192_raw	5.01%
smart_5_raw	20.51%	smart_193_normalized	30.06%
smart_7_normalized	41.78%	smart_193_raw	58.32%
smart_7_raw	61.91%	smart_194_normalized	53.97%
smart_9_normalized	54.25%	smart_194_raw	53.97%
smart_9_raw	58.79%	smart_197_normalized	9.74%
smart_12_raw	33.08%	smart_197_raw	44.71%
smart_183_normalized	12.76%	smart_198_normalized	9.74%
smart_183_raw	12.76%	smart_198_raw	44.71%
smart_184_normalized	2.08%	smart_199_raw	0.38%
smart_184_raw	2.08%	smart_240_raw	58.32%
smart_187_normalized	33.93%	smart_241_raw	48.02%
smart_187_raw	33.93%	smart_242_raw	65.12%

Those red marked features are the features I selected to train the ML classifiers:

Totally 25 features.

4) **Exponential smoothing**:

Method: ewma in pandas library

After 4 stages of data preprocessing, I collected <u>15001 samples in total</u>, with <u>458 replaced disk samples</u>.

2. Downsampling on healthy samples:

Method: K-Means clustering

totally: 1000 healthy samples and 458 replaced samples to feed into ML

classifiers

3. Training Machine Learning Classifiers:

Basic Method: 10-folds cross validation

Healthy

	RGF	GBDT	RF	SVM	LR	DT
Precision	0.916 +/- 0.018	0.907 +/- 0.012	0.913 +/- 0.015	0.686 +/- 0.002	0.686 +/-	0.925 +/- 0.013
Recall	0.985 +/- 0.010	0.981 +/- 0.012	0.974 +/- 0.014	1.000 +/- 0.000	1.000 +/- 0.000	0.916 +/- 0.031
F-score	0.949 +/- 0.009	0.942 +/-	0.942 +/- 0.010	0.814 +/- 0.001	0.814 +/- 0.001	0.920 +/- 0.017

Replaced

	RGF	GBDT	RF	SVM	LR	DT
Precision	0.962 +/- 0.026	0.950 +/- 0.029	0.935 +/- 0.035	0.000 +/- 0.000	0.000 +/-	0.824 +/- 0.054
Recall	0.801 +/-	0.780 +/-	0.797 +/-	0.000 +/-	0.000 +/-	0.838 +/-
	0.046	0.031	0.036	0.000	0.000	0.032
F-score	0.873 +/-	0.856 +/-	0.860 +/-	0.000 +/-	0.000 +/-	0.830 +/-
	0.026	0.022	0.024	0.000	0.000	0.032

The result in the paper:

		RGF		GBDT		RF		SVM		LR		DT	
- 9		SgtA	HitA	SgtA	HltA	SgtA	HitA	SgtA	HitA	Sgt.A.	HitA	SgtA	HIEA
Replaced	P	0.98	0.84	0.97	0.82	0.93	0.82	0.53	0.72	0.73	0.73	0.89	0.74
	R.	0.98	0.79	0.95	0.78	0.94	0.76	0.85	0.65	0.81	0.59	0.87	0.61
	F	0.98	0.81	0.96	0.80	0.94	0.79	0.94	0.68	0.77	0.65	0.88	0.67
	84	0.01	0.02	0.01	0.04	0.05	0.08	0.02	0.05	0.07	0.1	0.04	0.03
Healthy	P	0.99	0.93	0.98	0.92	0.97	0.92	0.97	0.87	0.89	0.85	0.94	0.86
	E.	0.98	0.95	0.98	0.94	U.PG	0.93	0.96	0.90	0.85	0.90	0.95	0.91
	F	0.98	0.94	0.98	0.93	0.97	0.92	0.96	0.88	0.87	0.87	0.94	0.88
	Sd	0.01	0.02	0.02	0.03	0.04	0.05	0.02	0.04	0.08	0.05	0.02	0.02

Table 3: Frencion, Recall, F-score, Deviation of different classifiers - modian on 100 runs , each of which using randomly-drawn training and test data points

Analysis:

- <1> Same as what in the paper, **RGF** achieved the highest F-score among all classifiers on both healthy disks and replaced disks.
- <2> All tree based machine learning methods get fairly good performance.
- <3> The F-scores of replaced disks are generally lower than those of healthy disks. These are mainly due to the class imbalance.
- <4> The **zero precision problem** still exists for LR classifier and SVM classifier. When I actually checked their prediction results, I find they actually managed to predict several replaced disks but the ratio is just too low. I think it may be because these two classifiers are more sensitive to class imbalance.

4. Assessment:

(1) Learning curves of RGF:

Analysis:

- 1. Both accuracies are reasonably high, which shows that the learning result has a good bias-variance trade-off.
- 2. The validation accuracy shows a tendency of increase, which suggests the potential of further improvement by collecting more training samples.

(2) Feature importance assessment

Method: Measure feature importance as **the averaged impurity decrease** computed from the decision tree

5. Generate SMART indicator rules by the decision tree:

Method: Sketch the decision tree and trace its decision process

Image: Github link: Machine-Learning-Research-Project/decision tree.pdf

My problem:

- 1. The paper doesn't give details on how to actually generate the indicator rules and how to measure the confidence rate?
- 2. Since different decision trees split data space in different ways (different choices of features and different threshold), the indicator rules generated by different classifiers will be quite different.

6. Transfer learning

(1) **Model:** Seagate A and B **Time:** 2015 whole year

Sample Statistics:

Seagate A 15001 disks in total 572 replaced disks Seagate B 1693 disks in total 109 replaced disks

After downsampling SeagateA:

Seagate A 1572 disks in total 572 replaced disks

(2) Prediction result of SgtB failure before transfer learning:

Classifier1: RGF training on SgtA

Precision: 0.362 Recall: 0.899 F1: 0.516

(3) Cross validation result for **classifying A and B**:

Classifier2: RGF training on the combined set of SgtA and B

precision: 0.875 +/- 0.020 recall: 0.968 +/- 0.007 f1: 0.919 +/- 0.010

(4) **Select samples from SgtA** that are representative of B:

Classifier: Classifier2 in step (3)

Result: Select 1690 SgtA samples in total (107 replaced disks)

(Fortunately, this size is comparable to SgtB)

(5) Prediction result of SgtB after transfer learning:

Classifier: Classifier3 trained on SgtA dataset from step (4)

Precision: 1.000 Recall: 0.725 F1: 0.840