

Centralna Komisja Egzaminacyjna

Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu.

2010
OKE
0
oraficzny
149

WDICTIE 7DATACY

WPISUJE ZDAJĄC I		miejsce na naklejkę
KOD PESEL		z kodem
	-	dysleksja

EGZAMIN MATURALNY Z MATEMATYKI

POZIOM PODSTAWOWY

- 1. Sprawdź, czy arkusz egzaminacyjny zawiera 18 stron (zadania 1–34). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Rozwiązania zadań i odpowiedzi wpisuj w miejscu na to przeznaczonym.
- 3. Odpowiedzi do zadań zamkniętych (1–24) przenieś na kartę odpowiedzi, zaznaczając je w części karty przeznaczonej dla zdającego. Zamaluj **I** pola do tego przeznaczone. Błędne zaznaczenie otocz kółkiem i zaznacz właściwe.
- 4. Pamiętaj, że pominięcie argumentacji lub istotnych obliczeń w rozwiązaniu zadania otwartego (25-34) może spowodować, że za to rozwiązanie nie będziesz mógł dostać pełnej liczby punktów.
- 5. Pisz czytelnie i używaj tylko długopisu lub pióra z czarnym tuszem lub atramentem.
- 6. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl.
- 7. Pamiętaj, że zapisy w brudnopisie nie będą oceniane.
- 8. Możesz korzystać z zestawu wzorów matematycznych, cyrkla i linijki oraz kalkulatora.
- 9. Na tej stronie oraz na karcie odpowiedzi wpisz swój numer PESEL i przyklej naklejkę z kodem.
- 10. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora.

CZERWIEC 2012

Czas pracy: **170** minut

Liczba punktów do uzyskania: 50

MMA-P1_1P-123

ZADANIA ZAMKNIĘTE

W zadaniach od 1. do 24. wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź.

Zadanie 1. (1 pkt)

Ułamek $\frac{\sqrt{5}+2}{\sqrt{5}-2}$ jest równy

A. 1

B. -1 **C.** $7+4\sqrt{5}$ **D.** $9+4\sqrt{5}$

Zadanie 2. (1 pkt)

Liczbami spełniającymi równanie |2x+3|=5 są

A. 1 i -4

B. 1 i 2

 \mathbf{C}_{\bullet} -1 i 4

D. −2 i 2

Zadanie 3. (1 pkt)

Równanie $(x+5)(x-3)(x^2+1)=0$ ma

A. dwa rozwiązania: x = -5, x = 3.

B. dwa rozwiązania: x = -3, x = 5.

C. cztery rozwiązania: x = -5, x = -1, x = 1, x = 3.

D. cztery rozwiązania: x = -3, x = -1, x = 1, x = 5.

Zadanie 4. (1 pkt)

Marża równa 1,5% kwoty pożyczonego kapitału była równa 3000 zł. Wynika stąd, że pożyczono

A. 45 zł

B. 2000 zł

C. 200 000 zł

D. 450 000 zł

Zadanie 5. (1 pkt)

Na jednym z poniższych rysunków przedstawiono fragment wykresu funkcji $y = x^2 + 2x - 3$. Wskaż ten rysunek.

Zadanie 6. (1 pkt)

Wierzchołkiem paraboli będącej wykresem funkcji określonej wzorem $f(x) = x^2 - 4x + 4$ jest punkt o współrzędnych

A. (0,2)

B. (0,-2) **C**. (-2,0) **D**. (2,0)

Zadanie 7. (1 *pkt*)

Jeden kat trójkata ma miarę 54°. Z pozostałych dwóch katów tego trójkata jeden jest 6 razy większy od drugiego. Miary pozostałych katów są równe

A. 21° i 105°

B. 11° i 66°

C. 18° i 108°

D. 16° i 96°

Zadanie 8. (1 pkt)

Krótszy bok prostokąta ma długość 6. Kąt między przekątną prostokąta i dłuższym bokiem ma miarę 30°. Dłuższy bok prostokąta ma długość

A. $2\sqrt{3}$

B. $4\sqrt{3}$

C. $6\sqrt{3}$

D. 12

Zadanie 9. (1 pkt)

Cięciwa okręgu ma długość 8 cm i jest oddalona od jego środka o 3 cm. Promień tego okręgu ma długość

A. 3 cm

B. 4 cm

C. 5 cm

D. 8 cm

Zadanie 10. (1 pkt)

Punkt O jest środkiem okręgu. Kąt wpisany BAD ma miarę

150° A.

В. 120°

C. 115°

D. 85°

Zadanie 11. (1 pkt)

Pięciokąt *ABCDE* jest foremny. Wskaż trójkąt przystający do trójkąta *ECD*

 ΔABF A.

В. ΔCAB

C. ΔIHD

D. ΔABD

Zadanie 12. (1 pkt)

Punkt O jest środkiem okręgu przedstawionego na rysunku. Równanie tego okręgu ma postać:

A.
$$(x-2)^2 + (y-1)^2 = 9$$

B.
$$(x-2)^2 + (y-1)^2 = 3$$

C.
$$(x+2)^2 + (y+1)^2 = 9$$

D.
$$(x+2)^2 + (y+1)^2 = 3$$

Zadanie 13. (1 pkt)

Wyrażenie $\frac{3x+1}{x-2} - \frac{2x-1}{x+3}$ jest równe

A.
$$\frac{x^2+15x+1}{(x-2)(x+3)}$$
 B. $\frac{x+2}{(x-2)(x+3)}$ **C.** $\frac{x}{(x-2)(x+3)}$ **D.** $\frac{x+2}{-5}$

B.
$$\frac{x+2}{(x-2)(x+3)}$$

C.
$$\frac{x}{(x-2)(x+3)}$$

D.
$$\frac{x+2}{-5}$$

Zadanie 14. (1 pkt)

Ciąg (a_n) jest określony wzorem $a_n = \sqrt{2n+4}$ dla $n \ge 1$. Wówczas

A.
$$a_8 = 2\sqrt{5}$$

B.
$$a_8 = 8$$

D.
$$a_8 = \sqrt{12}$$

Zadanie 15. (1 pkt)

Ciąg $(2\sqrt{2}, 4, a)$ jest geometryczny. Wówczas

A.
$$a = 8\sqrt{2}$$

B.
$$a = 4\sqrt{2}$$

B.
$$a = 4\sqrt{2}$$
 C. $a = 8 - 2\sqrt{2}$ **D.** $a = 8 + 2\sqrt{2}$

D.
$$a = 8 + 2\sqrt{2}$$

Zadanie 16. (1 pkt)

Kąt α jest ostry i tg $\alpha = 1$. Wówczas

A.
$$\alpha < 30^{\circ}$$

B.
$$\alpha = 30^{\circ}$$

$$\mathbf{C.} \quad \alpha = 45^{\circ} \qquad \qquad \mathbf{D.} \quad \alpha > 45^{\circ}$$

$$\mathbf{D.} \quad \alpha > 45^{\circ}$$

Zadanie 17. (*1 pkt*)

Wiadomo, że dziedziną funkcji f określonej wzorem $f(x) = \frac{x-7}{2x+a}$ jest zbiór $(-\infty,2)\cup(2,+\infty)$. Wówczas

A.
$$a = 2$$

B.
$$a = -2$$

C.
$$a = 4$$

B.
$$a = -2$$
 C. $a = 4$ **D.** $a = -4$

Zadanie 18. (1 pkt)

Jeden z rysunków przedstawia wykres funkcji liniowej f(x) = ax + b, gdzie a > 0 i b < 0. Wskaż ten wykres.

Zadanie 19. (1 pkt)

Punkt S = (2,7) jest środkiem odcinka AB, w którym A = (-1,3). Punkt B ma współrzędne:

A.
$$B = (5,11)$$
 B. $B = (\frac{1}{2},2)$ **C.** $B = (-\frac{3}{2},-5)$ **D.** $B = (3,11)$

Zadanie 20. (1 pkt)

W kolejnych sześciu rzutach kostką otrzymano następujące wyniki: 6, 3, 1, 2, 5, 5. Mediana tych wyników jest równa:

Zadanie 21. (1 pkt)

Równość $(a+2\sqrt{2})^2 = a^2 + 28\sqrt{2} + 8$ zachodzi dla

A.
$$a = 14$$
 B. $a = 7\sqrt{2}$ **C.** $a = 7$ **D.** $a = 2\sqrt{2}$

Zadanie 22. (1 pkt)

Trójkąt prostokątny o przyprostokątnych 4 i 6 obracamy wokół dłuższej przyprostokątnej. Objętość powstałego stożka jest równa

A.
$$96\pi$$
 B. 48π **C.** 32π **D.** 8π

Zadanie 23. (1 pkt)

Jeżeli A i B są zdarzeniami losowymi, B' jest zdarzeniem przeciwnym do B, P(A) = 0,3, P(B') = 0,4 oraz $A \cap B = \emptyset$, to $P(A \cup B)$ jest równe

Zadanie 24. (1 pkt)

Przekrój osiowy walca jest kwadratem o boku a. Jeżeli r oznacza promień podstawy walca, h oznacza wysokość walca, to

A.
$$r+h=a$$
 B. $h-r=\frac{a}{2}$ **C.** $r-h=\frac{a}{2}$ **D.** $r^2+h^2=a^2$

ZADANIA OTWARTE

Rozwiązania zadań o numerach od 25. do 34. należy zapisać w wyznaczonych miejscach pod treścią zadania.

Zadanie 25. (2 *pkt*)

Rozwiąż nierówność $x^2 - 3x - 10 < 0$.

Odpowiedź:

Zadanie 26. (2 pkt)

Średnia wieku w pewnej grupie studentów jest równa 23 lata. Średnia wieku tych studentów i ich opiekuna jest równa 24 lata. Opiekun ma 39 lat. Oblicz, ilu studentów jest w tej grupie.

Zadanie 27. (2 *pkt*)

Podstawy trapezu prostokątnego mają długości 6 i 10 oraz tangens jego kąta ostrego jest równy 3. Oblicz pole tego trapezu.

Odpowiedź:

Zadanie 28. (2 pkt)

Uzasadnij, że jeżeli α jest kątem ostrym, to $\sin^4 \alpha + \cos^2 \alpha = \sin^2 \alpha + \cos^4 \alpha$.

Zadanie 29. (2 pkt)

Uzasadnij, że suma kwadratów trzech kolejnych liczb całkowitych przy dzieleniu przez 3 daje resztę 2.

Zadanie 30. (2 *pkt*)

Suma $S_n = a_1 + a_2 + ... + a_n$ początkowych n wyrazów pewnego ciągu arytmetycznego (a_n) jest określona wzorem $S_n = n^2 - 2n$ dla $n \ge 1$. Wyznacz wzór na n-ty wyraz tego ciągu.

Zadanie 31. (2 *pkt*)

Dany jest romb, którego kąt ostry ma miarę 45°, a jego pole jest równe $50\sqrt{2}$. Oblicz wysokość tego rombu.

Zadanie 32. (4 pkt)

Punkty A = (2,11), B = (8,23), C = (6,14) są wierzchołkami trójkąta. Wysokość trójkąta poprowadzona z wierzchołka C przecina prostą AB w punkcie D. Oblicz współrzędne punktu D.

Zadanie 33. (*4 pkt*)

Oblicz, ile jest liczb naturalnych pięciocyfrowych, w zapisie których nie występuje zero, jest dokładnie jedna cyfra 7 i dokładnie jedna cyfra parzysta.

Zadanie 34. (4 pkt)

Dany jest graniastosłup prawidłowy trójkątny *ABCDEF* o podstawach *ABC* i *DEF* i krawędziach bocznych *AD*, *BE* i *CF* (zobacz rysunek). Długość krawędzi podstawy *AB* jest równa 8, a pole trójkąta *ABF* jest równe 52. Oblicz objętość tego graniastosłupa.

