Belegung

• V ist die Menge der aussagenlogischen Variablen

• Belegung mit Wahrheitswerten

- Funktion
$$\beta$$
: V'->{w,f}

• vollständige Belegung mit Wahrheitswerten

- wenn alle Variablen abgebildet werden

– Funktion β : V–>{w,f}

Fortsetzung

• L ist die Menge aller Formeln über Variablen in V

• Fortsetzung β L: $->\{w,f\}$, $x->\beta(x)$

$$- \forall v \in V: \beta(v) = \beta(v)$$

$$- \forall x \in L: \beta(\neg x) = \neg \beta(x)$$

$$- \forall x,y \in L: \beta(x \land y) = \beta(x) \land \beta(y)$$

* analog für andere binäre Operationen

-ß(x) heißt Wahrheitswert von x unter Belegung β

$$* [[x]]_{\beta}$$

NOTE: Unterschied zwischen β und β !

• vollständige Belegung β erfüllt x, wenn $\beta(x)=w$

$$\beta$$
ist Model für x

• Formel erfüllbar, wenn für mindestens eine Belegung gilt:

$$-\beta(x)=w$$

• Tautologie T

– wenn jede vollständige Belegung erfüllbar ist

- \bullet Kontradiktion bzw. unerfüllbar \bot
 - wenn jede vollständige Belegung unerfüllbar ist

$$* \beta(x)=f$$

• Beispiele:

 $[[{\bf Diskrete\ Mathematik}]]$