Dæmi1-Gagnspan og spenna í bakvafi

Gefið er að $v_{\rm in}(t)=10 sin(10t) {\rm V}.$ Finnið gagnspanið Mog spennuna v_2 sem spanast upp í $L_2.$

Breyta	Gildi
L_1	$1\mathrm{mH}$
L_2	$5\mathrm{mH}$
k	0.7

Finnum gagnspan met
$$k = \frac{M}{\sqrt{l_1 l_2}}$$
 eta $M = k \sqrt{l_1 l_2} = \frac{7}{10} \sqrt{5} mH = \frac{7}{2\sqrt{5}} mH \approx 1.57mH$

N'n $V = l_1 \frac{di_1}{dt} + M \frac{di_2}{dt}$ Töhum ethir di $i_2 = \frac{di_2}{dt} = \frac{1}{2\sqrt{5}} mH \approx 1.57mH$

$$p_a$$
 er wist et $\frac{di_1}{dt} = \frac{N_1}{L_1}$

A bahveti gildiv
$$N_2 = M \frac{di_1}{dt} + L \frac{di_2}{dt} = M \cdot \left(\frac{N_1}{L_1}\right) = k \frac{\sqrt{L_1 L_2}}{L_1} N_1 = \frac{7}{2\sqrt{5} \cdot 5} N_1 = \frac{7\sqrt{5}}{5} \sin(10t) V$$

Dæmi 2 – Kjörspennir

Höfum kjörspenni og innmerki $v_1 = sin(377t)$ V. Finnið v_2 , i_2 og p_2 , aflið sem

Fyrir hysrspeini gild
$$V$$
 $\frac{v_1}{v_2} = \frac{n_1}{n_2}$

$$\boxed{\frac{v_1}{v_2} = \frac{n_1}{n_2}}$$

$$p_{vi} = V_2 = \frac{n_2}{n_1} N_1 = \frac{1}{10} sin (377t) V$$

$$\lambda_2 = \frac{N_2 \cdot 0}{R_1} = \frac{1}{20} \sin(377t) A$$

$$\rho_{2} = N_{2} i_{2} = \left(\frac{1}{10} \sin(377t)\right) \left(\frac{1}{20} \sin(377t)\right) = \frac{1}{200} \sin^{2}(377t)$$

$$= \frac{1}{200} \left[\frac{1}{2} \left(1 - \cos(2 \cdot 377t)\right)\right] = \frac{1}{400} \left(1 - \cos(754t)\right) W$$

Dæmi 3 – Kjörspennir, Thévenin jafngildisrás

Finnið Thévenin jafngildisrás milli póla a og b. Hvaða hlutfall $n_1 : n_2$ hámarkar afl í R_2 ?

Breyta	Gildi
R_1	800Ω
R_2	80Ω

Fyrr kjörspeni gilder

v_1		n_1	
v_2	_	n_2	

Final tonganys spann
$$V_{oc}$$
. Ho from $\frac{V_1}{V_{oc}} = \frac{n_1}{n_2}$

Noc Sun $V_{oc} = V_1 \frac{n_2}{n_1}$

Höfm
$$\left[\frac{i_1}{i_2} = +\frac{n_2}{n_1}\right]$$
 sve

svo
$$i_2 = I_{sc} = \left(\frac{n_1}{n_2}\right)i_1$$

en
$$i_1 = \frac{N_1 - 0}{R_1} = \frac{1}{800} V_1$$

svo
$$I_{SC} = \frac{1}{800} \left(\frac{n_1}{n_2}\right) N_1 A$$

$$\frac{1}{N_1} R_1$$

$$\frac{1}{N_1} R_2$$

$$\frac{1}{N_2} R_2$$

$$\frac{1}{N_1} R_1 = R_1$$

$$\frac{N_1}{N_2} = \frac{R_1}{R_2} = \frac{10}{1}$$

$$\frac{1}{R_2} R_2 = \frac{10}{1}$$

Hi er one at fut not at lysa some doni

& firm spinm milli pola a & b á formi $v_{
m 2} = V_{
m Th} - Z_{
m Th} i$

$$v_2 = V_{\mathrm{Th}} - Z_{\mathrm{Th}} i$$

$$v_{\mathrm{Th}} \stackrel{i}{=} v$$

Höfum
$$i_1 = \frac{N_s - N_l}{R_l}$$
 & $i_2 = -\frac{n_l}{n_2} i_1 = -\frac{n_l}{n_2} \left(N_s - N_l\right) G_l$

$$H\ddot{o}$$
 from $N_1 = \frac{n_1}{n_2} V_2$

$$\dot{p}_{a} = -\frac{n_{1}}{n_{2}} G_{1} \left(N_{5} - \frac{n_{1}}{n_{2}} V_{2} \right)$$

$$V_{2} = \left(\frac{n_{2}}{n_{1}}\right)^{2} R_{1} \left(\frac{n_{1}}{n_{2}} G_{1} N_{5} + i_{2}\right)$$

$$SVO \qquad N_{2} = \frac{n_{2}}{n_{1}} N_{5} + \left(\frac{n_{2}}{n_{1}}\right)^{2} R_{1} i_{2}$$

$$\hat{v}_{2} = V_{th} - Z_{th} i$$

$$V_{th} = \frac{n_2}{n_1} V_s + \frac{2}{2} t n = \left(\frac{n_2}{n_1}\right)^2 R_1$$

Dæmi 4 – Kjörspennar, jafngildisviðnám

Finnið jafngildisviðnámið $R_{\rm eq} = v_b/i_b.$

Vit vitur at gen mi ethoferandi en földun

nint: 43 mm

sömlit.
$$n_1:n_1 n_3:n_4$$

$$R_{ey} = \frac{N_b}{ib} = \left(\frac{n_1}{n_2}\right)^2 \left(\frac{n_3}{n_4}\right)^2 R_2 = \left(\frac{1}{n_3 n_4}\right)^2 R_3 = \left(\frac{$$