Prova d'esame Algebra Lineare ed Elementi di Geometria - 16.01.2024

Esercizio 1 (Teoria)

- Dare la definizione di una base per un spazio vettoriale e di indipendenza lineare per dei vettori di un spazio vettoriale.
- Enunciare e dimostrare il teorema di dimensione per le applicazioni lineare.

Esercizio 2 (Applicazioni lineari e sistemi lineari)

A) Considerare l'applicazione lineare

$$f:\mathbb{R}^3\longrightarrow\mathbb{R}^3$$

dove

$$fegin{pmatrix} x_1 \ x_2 \ x_3 \end{pmatrix} = egin{pmatrix} 2x_1 + x_2 + 3x_3 \ x_2 + 2x_3 \ 2x_1 - x_2 - x_1 \end{pmatrix}$$

- Calcolare la matrice associata all'applicazione lineare $A=M_{\mathcal{E}}^{\mathcal{E}}(f)$, dove \mathcal{E} è la base canonica per \mathbb{R}^3 .
- Calcolare le dimensioni di im f, ker f ed esibire una base per ciascuna di queste.
- Esibire un vettore $v \in \mathbb{R}^3$ tale che $v \in \operatorname{im} f \cap \ker f$.
- B) Considera il seguente sistema lineare

$$Aegin{pmatrix} x_1 \ x_2 \ x_3 \end{pmatrix} = egin{pmatrix} 1+lpha \ 3 \ -4 \end{pmatrix}$$

- Dire per quale parametro α al variare in $\mathbb R$ il sistema lineare diventa compatibile.
- Trovare una generica soluzione per il sistema lineare per il valore in cui il sistema lineare è compatibile.

Esercizio 3 (Diagonalizzazione)

Considerare la matrice

$$A = egin{pmatrix} -2 & 9 & -12 \ 0 & 1 & 0 \ 1 & -3 & 5 \end{pmatrix}$$

e l'applicazione lineare associata a questa matrice L_A .

- A) Determinare il polinomio caratteristico di L_A e il spettro di L_A .
- B) Determinare una base \mathcal{B} composta da auto vettori per gli autovalori di L_A .
- C) Calcolare le matrici del cambiamento di base $M_{\mathcal{E}}^{\mathcal{B}}(L_A)$, $M_{\mathcal{B}}^{\mathcal{E}}(L_A)$.

Esercizio 4 (Geometria affine)

- A) Considerare la retta s: x+2y=1 e il punto Q=(1,-2). Determinare la retta $r\subset \mathbb{A}^2_{\mathbb{R}}$ parallela a s e passante per Q.
- B) Considerare le seguenti rette nello spazio:

$$r: egin{cases} x=1+t \ y=1-t \ z=-t \end{cases} \quad s: egin{cases} x+z=2 \ x-y=-1 \end{cases}$$

- Determinare la posizione reciproca tra r,s (ovvero se sono paralleli, incidenti, sghembi, ...)
- Se paralleli o incidenti, determinare un piano π tale che $r,s\subseteq\pi$
- Altrimenti determinare due piani paralleli π, τ tali che $r \subseteq \pi, s \subseteq \tau$.

N. B. Non mi ricordo il conteggio dei punti, dunque non sono stati segnati. Sono più o meno uguali a quelli delle simulazioni.