Clocking Strategies

Introduction

Clock - key to synchronous systems

 Clocks help the design of FSM where outputs depend on both input and previous states.

 Clock signals provide reference points in time define what is previous state, current state and next state:

Introduction

- Clock key to synchronous systems
- Clocks help the design of FSM where outputs depend on both input and previous states.
- Clock signals provide reference points in time define what is previous state, current state and next state:

Latch vs Flip-Flop

 Latch stores data when clock is low

 Flip-Flop stores data when clock rises

Clock for timing synchronization

- Clocks serve to slow down signals that are too fast
- Flip-flops / latches act as barriers
- With a latch, a signal can't propagate through until the clock is high
- With a Flip-flop, the signal only propagates through on the rising edge
- All real flip-flops consist of two latch like elements (master and slave latch)

Latch Timing Parameters

3/8/___

Flip-flop Timing Parameters

Clocking Strategies

- Different clocking methods:
 - Pulse mode clocking
 - Edge triggered clocking
 - Two phase clocking
 - Single phase clocking

Pulse Mode Clocking

- Two requirements:
- All loops of logic are broken by a single latch
- The clock is a narrow pulse
- It must be shorter than the shortest path through the logic

Edge Trigger Flip-flop

- Used in many ASIC designs (Gate Arrays and Std Cells)
- Using a single clock, but replaces latches with flip-flops

Two phase clocking

Use different edges for latching the data and changing the output

There are 4 different time periods, all under user control:

- ♦ φ1 high
- ♦ φ1 falling to φ2 rising
- ♦ φ2 high
- \$\phi\$2 falling to \$\phi\$1 rising

Single-phase Clocking

Clock Distribution

- In a large CMOS chip, clock distribution is a serious problem
 - Vdd=5V
 - C_{reg}=2000pF (20K register bits @ 0.1pF)
 - $-T_{clk}=10ns$
 - T_{rise/fall}=1ns
 - $-I_{peak} = Cdv/dt = (2000px5)/1n = 10A$
 - Pd=CVdd²f=2000px25x100M=5W
- Methods for reducing the values of I_{peak} and Pd
 - Reduce C
 - Interleaving the rise/fall time

Clock Distribution

- Clocking is a floorplanning problem because clock delay varies with position on the chip
- Ways to improve clock distribution
 - Physical design
 - Make clock delays more even
 - * At least more predictable
 - Circuit design
 - Minimizing delays using several stages of drivers
- Common physical clocking networks
 - H tree
 - Balanced tree

Clocking Distribution – *H Tree*

Clocking Distribution – Reducing Power

- Technique used to reduce the high dynamic power dissipation
 - Use a low capacitance clock routing line such as metal3.
 - This layer of metal can be, dedicated to clock distribution only