

Overview

Project Title	Why this project?	How will it impact the overall goal of the Department / BU?	Project Objective	Target	Key Deliverables				
Pad printing Machine Vision inspection system in Wheel	Good exposure of Computer Vision applications in the automotive industry, using edge computing with Jetson Nano along with Hands on experience with python programming	 (1) Automation of visual inspection systems (2) Quality improvement (3) Better Reliability (4) Digitalizing the processes 	Identifying the defects in wheel pad printing	July 15th	Develop Vision Application software for printing defects detection using Computer Vision.				

Pad Printing

- Pad printing is a printing process that can transfer a 2-D image onto a 3-D object.
- Pad printing is used in automotive industry.
- Indicator parts, Dashboard components, Wheels etc.
- What are the possible defects in pad printing?
 - 1. Print cut
 - 2. Print shift
 - 3. Partial print
 - 4. Double print
 - 5. Print edge burr
 - 6. Print smudging

Possible Pad Printing Defects

Partial print

Possible Pad Printing Defects

Double print

Print Smudging

Print Edge burr

Machine Vision Inspection System

- Vision inspection systems provide image-based inspection automated for your convenience for a variety of industrial and manufacturing applications.
- 2D machine vision system is used.
- Major components: Lighting, lens, image sensor.
- Benefits:
 - 1. Lowers Costs
 - 2. Eliminates Human Error
 - 3. Identifies Print Defects
 - 4. Low inference time
 - 5. Reliability
 - 6. Simple Layout

Vision system Camera

- For identifying defects using OpenCV, camera used can be of low resolution
- For identifying defects using Machine learning, camera of high resolution should be used.

Bassler acA2500-14uc

Sensor: MT9P031

Shutter : Rolling

Shutter

Sensor Type: CMOS

Sensor Size : 5.7 mm x

4.3 mm

Resolution : 5 MP

• Frame Rate: 14 fps

Logitech C270

Sensor Type : CMOS

Resolution: 720p

• Frame rate : 30 fps

Approach towards identifying defects

- Print shift
- Print Cut
- Double print

OpenCV

- Partial print
- Print smudging
- Print edge burr
- Other defects like scratches, dust etc

Machine Learning

Image Pre-processing

Image

Thresholding

Edge detection

Morphological Transformation

Masked image

Bitwise operation

- To improve the quality of the image so that we can analyze it in a better way.
- After pre-processing, template matching technique is used to find the defects.
- Programming Language used: Python
- Libraries used : OpenCV, NumPy, matplotlib

Defect Identification – OpenCV

- OpenCV is an open-source computer vision library
- **Template matching** is a technique in vision image processing for finding small parts of an image which match a template image.

Template for this image

Print Shift

• Three models were given for identification. Results are as shown:

MODEL: PLASMA BLUE

Print shift

MODEL: GLOSSY RED

Print shift

MODEL: MATT BURNT RED

Defect Identification - Machine Learning

• The models are provided with training and testing data and the features to be identified are defined.

But why ML for this?

There are so many variables that we can't contain. We never know what kind of error comes up and it is not always a single kind of error.

Timeline

Ī	Timeline (8 Weeks)															
		Week 1		Week 2		Week 3		Week 4		Week 5		Week 6		Week 7		Week 8
-	1)	Acquainted	1)	Worked on	1)	Given rims of	1)	Working on	1)	Model	1)	Evaluating	1)	Parameter	1)	Prediction
		with		OpenCV		three models		other		training		the models		tuning		making
		computer	2)	Experimente		for		defects								
		vision and		d with a		identification		using	2)	Patterns and	2)	Increasing	2)	All the	2)	If any error,
		its uses in		bearing to				OpenCV		predictions		the accuracy		variables to		find which
		image		test my	2)	Identified	2)	Studying		to be made		of the		be fine		part is
		applications		understandin		the type of		deep				models		tuned to		wrong
2	2)	Studied		g on OpenCV.		model and		learning	3)	Different				maximize		
		python and	3)	Implemented		detected a		models		predictions	3)	Finding the		the	3)	Make
		various		most of the		particular	3)	Choosing a		for different	:	speed and try		accuracy of		necessary
		libraries		functions in		type of		model		models		to optimize it		type of		changes if
		used like		the library		defect –		suitable for						defect		prediction
		OpenCV		and detected		Print Shift		the						detected		made is
3	3)	Studied		features of it.				detection								wrong
		about						for each								
		Jetson						defect								
		Nano														

