Técnicas de validación estadística Bondad de ajuste

Georgina Flesia

FaMAF

17 de mayo, 2016

Pruebas de bondad de ajuste

- Dado un conjunto de observaciones, ¿de qué distribución provienen o cuál es la distribución que mejor ajusta a los datos?
- Si se realiza una simulación de datos por computadora, ¿podemos asegurar que responden a la distribución deseada?
- Para responder a estas preguntas, existen técnicas de validación estadística.
- Técnica: Prueba de hipótesis:
 - H₀) Hipótesis nula. Los datos provienen de la distribución *F*.
 - H₁) Hipótesis alternativa. Los datos no provienen de la distribución F.

Tests de hipótesis

- Test Prueba Contraste.Se utilizan para
 - contrastar el valor de un parámetro.
 - Ejemplo: la media de una población es 30. Intervalo de confianza.
 - comparar dos parámetros.
 - Ejemplo: la efectividad de el medicamento A es mejor que la de B.
 - contrastar los datos con una distribución teórica.
 - Ejemplo: los datos provienen de una distribución normal.
 - contrastar hipótesis de homogeneidad.
 - Ejemplo: el porcentaje de desempleados, ¿es igual en Bs. As.,
 Córdoba y Rosario? Tablas de contingencia
 - contrastar hipótesis de independencia.
 - Ejemplo: ser varón o mujer, ¿influye en la preferencia de un producto?

Procedimiento en una prueba de hipótesis

- Plantear
- *H*₀) Hipótesis nula, con la que se contrastan los datos de la muestra.
- H₁) Hipótesis alternativa.
- Fijar un estadístico de prueba T.
- Fijar el o los valores críticos para el estadístico de prueba, que delimitan la zona de rechazo. (valor α).
- Tomar la muestra y calcular el estadístico de prueba.
- ¿Los datos evidencian que la hipótesis nula es falsa?
 - Sí. Se rechaza la hipótesis nula.
 - No. No se rechaza la hipótesis nula.

Test cola izquierda

- ▶ valor $p = P(T < t_{obs}) < \alpha$: se rechaza la hipótesis nula.
- Equivalentemente, si el valor observado es menor que el valor crítico, se rechaza H₀.
- ► Si no, no hay evidencias para rechazar *H*₀.

Test dos colas

- ▶ valor $p = P(|T| > t_{obs}) < \alpha$: se rechaza la hipótesis nula.
- Equivalentemente, si el valor observado es menor que el valor crítico (de ser negativo) o mayor que el valor crítico (de ser positivo), se rechaza H₀.
 - Si no, no hay evidencias para rechazar H_0 .

Errores

Dado que una prueba de hipótesis se trabaja con muestras, puede haber errores:

Errores	Rechazar H ₀	no Rechazar H_0
H ₀ verdadera	E _I	DC
H_0 falsa	DC	Ε _{II}

 E_I : error de tipo I. $P(E_I) = \alpha$. E_{II} : error de tipo II. $P(E_{II}) = \beta$.

DC: Decisión correcta.

Probabilidades

Probabilidades	Rechazar H ₀	no Rechazar H ₀
H ₀ verdadera	α	$1-\alpha$
H_0 falsa	$1-\beta$	eta

- α: es la probabilidad de equivocarse rechazando una hipótesis correcta. Es controlable.
- β: es la probabilidad de equivocarse no rechazando una hipótesis falsa. No se calcula fácilmente, y puede reducirse tomando muestras grandes.
- ▶ 1β : potencia del test.
- Control sobre β:
 - aumentar α
 - aumentar el tamaño de la muestra.
- ▶ Un test deseable debe tener $1 \beta > \alpha$: la probabilidad de rechazar debería ser mayor cuando H_0 es falsa.

Error de tipo II

Pruebas de bondad de ajuste

- Aplicación: contrastar los datos con una distribución.
- Test chi-cuadrado (ji-cuadrado):
 - Es aplicable a distribuciones continuas o discretas.
 - Compara las frecuencias observadas con las frecuencias esperadas.
- Test de Kolmogorov-Smirnov:
 - Es aplicable a distribuciones continuas.
 - Compara las distribuciones acumuladas observadas y esperadas.
- Aconsejable: Utilizar chi-cuadrado para discretas, y Kolmogorov Smirnov para continuas.

Test chi-cuadrado

- No se utilizan los valores de las observaciones sino las frecuencias.
- Se compara la distribución de las frecuencias de los datos observados con las frecuencias según la distribución teórica supuesta.

$$T = \sum \frac{(f_o - f_e)^2}{f_e}.$$

Test chi-cuadrado

- ▶ valor $p = P(T > t_{obs}) < \alpha$: se rechaza la hipótesis nula.
- Equivalentemente, si el valor observado es mayor que el valor crítico, se rechaza H₀.
- ► Si no, no hay evidencias para rechazar *H*₀.

Implementación

- Se observan n valores de v.a. independientes igualmente distribuidas, Y₁, Y₂, ..., Y_n: Por ejemplo, se generan n valores mediante simulación, o se tienen n observaciones.
- Llamamos Y a cualquiera de las Y_i.
- Se agrupan los datos en k intervalos adyacentes que cubran el rango de la variable Y:

$$[y_0, y_1), [y_1, y_2), \ldots, [y_{k-1}, y_k).$$

Se puede elegir $y_0 = -\infty$ o $y_k = \infty$.

▶ N_j : cantidad de valores que cayeron en $[y_{j-1}, y_j)$. Es la frecuencia observada.

Implementación

 \triangleright p_i : Si f_{H_0} o p_{H_0} son las densidades (discretas o continuas) a aiustar:

$$p_j = \int_{y_{j-1}}^{y_j} f_{H_0}(x) dx$$
 o $p_j = \sum_{y_{j-1} \le x_i < y_j} p_{H_0}(x_i).$

- ▶ np_i : es la frecuencia esperada. H_0): $N_i = np_i$.

Estadístico:

$$T = \sum_{j=1}^k \frac{(N_j - np_j)^2}{np_j}.$$

Si t es el valor observado del estadístico, se calcula

valor
$$p = P_{H_0}(T \ge t)$$

que permite decidir si la hipótesis nula se rechaza o no.

Valor p

Si el nivel de significación del test es α ,

- ▶ Valor $p < \alpha \Rightarrow$ se rechaza la hipótesis nula.
- ▶ Valor $p > \alpha \Rightarrow$ no se rechaza la hipótesis nula.
- Valor p próximo a α ⇒ se optimiza el cálculo del valor p: Simulación.

El valor *p* está relacionado con los valores críticos y el nivel de significación del test de la siguiente manera: Para valores de *n* grandes, el estadístico

$$T = \sum_{j=1}^{\kappa} \frac{(N_j - np_j)^2}{np_j}$$

tiene aproximadamente una distribución χ^2 .

El valor p

- Si se conocen todos los parámetros de la distribución, el número de grados de libertad es k − 1.
- ► En algunos casos hace falta estimar parámetros (λ en una Poisson, p en una binomial, etc.).
- ▶ Si se estiman *m* parámetros, el número de grados de libertad es

$$(k-1) - m$$
.

▶ Para estimar el valor p, puede utilizarse

valor
$$p = P_{H_0}(T \ge t) \approx P\left(\chi^2_{k-1-m} \ge t\right)$$

▶ Se toma como punto crítico $\chi^2_{k-m-1,1-\alpha}$:

$$P(\chi_{k-m-1}^2 \ge \chi_{k-m-1,1-\alpha}^2) = \alpha.$$

Test chi-cuadrado

Si el valor observado cae en la "zona de rechazo", se rechaza la hipótesis nula.

- valor p < α: se rechaza la hipótesis nula.
- Equivalentemente, si el valor observado es mayor que el valor crítico, se rechaza H₀.
- ► Si no, no hay evidencias para rechazar *H*₀.

Ejemplo: tiempos entre arribos

Se tiene el registro de n = 219 tiempos entre arribos, y se utiliza la prueba chi-cuadrado para ajustar a una distribución exponencial

$$F_{H_0}(x) = 1 - e^{-x/0.399}, \qquad x \ge 0.$$

- ▶ Se han construido k = 10 intervalos, con $p_i = 0.1$.
- ▶ $np_i = 21.9. (\geq 5).$
 - H₀): Los datos provienen de una distribución exponencial con media 0.399.
 - *H*₁): Los datos no provienen de una distribución exponencial con media 0.399.

Ejemplo: tiempos entre arribos

j	Intervalo	N _j	npj	$\frac{(N_j - np_j)^2}{np_j}$
1	[0, 0.042)	19	21.9	0.384
2	[0.42, 0.089)	28	21.9	1.699
3	[0.089, 0.142)	26	21.9	0.768
4	[0.142, 0.204)	12	21.9	4.475
5	[0.204, 0.277)	25	21.9	0.439
6	[0.277, 0.366)	14	21.9	2.850
7	[0.366, 0.480)	22	21.9	0.000
8	[0.480, 0.642)	29	21.9	2.302
9	[0.642, 0.919)	20	21.9	0.165
10	[0.919, ∞)	24	21.9	0.201
	- ,			T = 13.283

Ejemplo: tiempos entre arribos

- ► H₀: la distribución es exponencial con media 0.399.
- ▶ Dado que los parámetros son todos conocidos, se utiliza una χ^2 con 9 = 10 − 1 grados de libertad.
- $\chi^2_{9,\,0.90}=$ 14.684 es mayor que 13.283, no se rechaza la hipótesis al nivel $\alpha=0.10$.
- ► Equivalentemente, valor $p \approx P(\chi_9^2 > 13.283) \sim 0.2$

valor
$$p > 0.10$$
 no se rechaza la hipótesis

- Al nivel α = 0.10, el test no da razones para concluir que la distribución no se ajuste a una exponencial con λ = 0.399.
- $\chi^2_{9, 0.75} = 11.389$ es menor que 13.283, se rechaza la hipótesis al nivel $\alpha = 0.25$.

Ejemplo: cantidades de demanda

Se tienen registros de cantidades de demanda de un producto, y se quiere testear el ajuste de estos datos a una distribución geométrica con p = 0.346.

$$F_{H_0}(x) = P(X \le x) = 1 - (0.654)^x, \qquad x = 1, 2, \dots$$

- ▶ Se han construido k = 3 intervalos.
- Como la distribución es discreta, los intervalos son esencialmente subconjuntos de valores de la variable.
- En este caso se han elegido:

$$I_1=\{1\},\ I_1=\{2,3\},\ I_1=\{4,5,\dots\}.$$

 H_0): Los datos provienen de una distribución geométrica con p = 0.346.

Ejemplo: cantidades de demanda

j	Intervalo	N _j	npj	$\frac{(N_j - np_j)^2}{np_j}$
1	{1}	59	53.960	0.471 1.203 0.256 $T = 1.930$
2	{2,3}	50	58.382	
3	{4,5,}	47	43.658	

- Los parámetros de la distribución son conocidos.
- ▶ Se utiliza una χ^2 con 2 = 3 − 1 grados de libertad.
- $\chi^2_{2,0.90} = 4.605$. No se rechaza la hipótesis nula a un nivel de $\alpha = 0.10$.
- ▶ Equivalentemente, valor $p \approx P(\chi_2^2 > 1.930) \sim 0.6$
- valor p > 0.10, no se rechaza la hipótesis nula.

Ejemplo

Una v.a. puede tomar los valores 1,2,3,4,5. Testear la hipótesis que estos valores son equiprobables.

$$H_0$$
) $p_i = 0.2$, para cada $i = 1, ..., 5$.

- ▶ Se toma una muestra de tamaño n = 50.
- ► Se obtienen los siguientes valores:

$$N_1=12, \quad N_2=5, \quad N_3=19, \quad N_4=7, \quad N_5=7.$$

▶ $np_i = 50 \cdot 0.2 = 10$ para cada i = 1, ..., 5.

Ejemplo

Estadístico:

$$T = \frac{(12-10)^2 + (5-10)^2 + (19-10)^2 + (7-10)^2 + (7-10)^2}{10}$$
= 12.8

- valor $p \approx P(\chi_4^2 > 12.8) = 0.0122$.
- Para este valor de p, se rechaza la hipótesis que todos los valores son igualmente probables.

Simulación del valor p

- Si el valor p es próximo a α significa que el valor observado t es próximo al valor crítico.
- ¿Se rechaza o no se rechaza?
- Es conveniente tener una estimación más exacta para p.
- Método: simulación.

Implementación en el caso discreto

- ► H_0 : $P(Y = y_j) = p_j$, para todo j = 1, ..., k.
- Generar n v.a. independientes con probabilidad de masa p_i, 1 ≤ i ≤ k.
- Evaluar el estadístico T.
- Repetir el procedimiento r veces y calcular la proporción de valores mayores que t.

Implementación

Generar $Y_1^{(1)}, Y_2^{(1)}, \dots, Y_n^{(1)}$ independientes, que tomen los valores $1, 2, \dots, k$ con probabilidad de masa

$$P\left(Y_i^{(1)}=j\right)=p_j.$$

- $N_i^{(1)} = \#\{i \mid Y_i^{(1)} = j\}.$
- Evaluar el estadístico T para este conjunto de valores:

$$T^{(1)} = \sum_{i=1}^{k} \frac{(N_i^{(1)} - np_i)^2}{np_i}$$

► Repetir el procedimiento r veces, para obtener $T^{(1)}$. $T^{(2)}$ $T^{(r)}$.

valor
$$p = P_{H_0}(T \ge t) \approx \frac{\#\{i \mid T_i \ge t\}}{r}$$

Estimación del valor p en el caso continuo

Implementación en el caso continuo

- ▶ H_0 : Las v.a. $Y_1, Y_2, ..., Y_n$ tienen distribución continua F_{H_0} .
- ▶ Particionar el rango de $Y = Y_j$ en k intervalos distintos:

$$[y_0, y_1), [y_1, y_2), \ldots, [y_{k-1}, y_k),$$

► Considerar las n v.a. discretizadas $Y_1^d, Y_2^d, \dots, Y_n^d$ dadas por

$$Y_j^d = i$$
 si $Y_i \in [y_{j-1}, y_j)$.

- La hipótesis nula es entonces $H_0) P(Y_i^d = i) = F_{H_0}(y_i) F_{H_0}(y_{i-1}), \qquad i = 1, \dots, k.$
- Proceder ahora como en el caso discreto.
- Es aconsejable utilizar el test de Kolmogorov-Smirnov.