COURSECODE Cheatsheet

Hanhee Lee

July 1, 2024

Contents

List of Figures

List of Tables

1 Week 1

Terminology: Interest Rate

- 1. P: Principle amount
- 2. F: Future amount
- 3. F_N : Future amount in (time unit) N
- 4. N: Number of periods (e.g. years)
- 5. i: Interest rate
- 6. I: Total interest amount
- 7. r Nominal interest rate (usually for 1 year)
- 8. m: Number of times compounded (subperiods) per year
- 9. i_s : Subperiod interest rate
- 10. i_e : Effective interest rate, the equivalent rate if compounded only once per year.

Definition: Interest Rate

$$i = \frac{I}{P} \tag{1}$$

Definition: Subperiod Interest Rate

$$i_s = \frac{r}{m} \tag{2}$$

Definition: Effective Interest Rate

$$i_e = (1 + i_s)^m - 1 (3)$$

Definition: Simple Interest

$$F_N = P(1+Ni) \tag{4}$$

Definition: Compound Interest

$$F_N = P(1+i)^N \tag{5}$$

Definition: Compound Interest with Subperiods

$$F_N = P(1+i_s)^{Nm} \tag{6}$$

COURSECODE Hanhee Lee

Definition: Continuous Compound Interest The finite amount of i_e as the compounding period becomes infinitesimally small.

 $i_e = \lim_{m \to \infty} (1 + \frac{r}{m})^m - 1 = e^r - 1$ (7)

Note: i_e increases as the compounding period decreases.

- 2 Week 2
- 3 Week 3
- 4 Week 4
- 5 Week 5
- 6 Week 6
- 7 Week 7
- 8 Week 8
- 9 Week 9
- 10 Week 10
- 11 Week 11
- 12 Week 12
- 13 Week 13

Process:

- 1.
- 2.
- 3.

4.

Example: Hanhee Lee

Definition:

Theorem: Hanhee Lee

Derivation: Hanhee Lee

Intuition: Hanhee Lee

Warning: Hanhee Lee

Hanhee Lee

COURSECODE Hanhee Lee

Figure 1: ESC195