First-order Methods for Affinely Constrained Composite Non-convex Non-smooth Problems: Lower Complexity Bound and Near-optimal Methods

Wei Liu

liuw16@rpi.edu Rensselaer Polytechnic Institute

Joint work with Qihang Lin (iowa), and Yangyang Xu (RPI)

Talk in MOPTA August, 2023

References and Photos

Wei Liu, Qihang Lin, Yangyang Xu, First-order Methods for Affinely Constrained Composite Non-convex Non-smooth Problems: Lower Complexity Bound and Near-optimal Methods. Submitted to Mathematical Programming.

(a) Qihang Lin

(b) Yangyang Xu

Why Lower Complexity Bounds

- provide understanding of the fundamental limit of a class of methods and the difficulty of a class of problems
- tell if existing methods could be improved
- \bullet guide to design "tight/near-optimal" methods to find an ϵ stationary point

Here, if there are only constants and log terms difference between lower bound and upper bound, we call them tight/near-optimal

First-order Methods for Nonsmooth Nonconvex Problems

Consider Problem

$$\min_{\mathbf{x}} f_0(\mathbf{x}) + g(\mathbf{x})$$

- g is nonsmooth, the proximal operator of g is allowed
- f_0 is nonconvex and L_f -smooth, i.e.,

$$\|\nabla f_0(\mathbf{x}_1) - \nabla f_0(\mathbf{x}_2)\| \le L_f \|\mathbf{x}_1 - \mathbf{x}_2\|, \forall \mathbf{x}_1, \mathbf{x}_2\|$$

• upper complexity bound $O(L_f \epsilon^{-2})$, provided by a proximal gradient method [Nesterov 2012]:

$$\mathbf{x}^{k+1} = \mathbf{prox}_{\eta g}(\mathbf{x}^k - \eta \nabla f_0(\mathbf{x}^k))$$

• lower complexity bound: $O(L_f \epsilon^{-2})$ [Carmon et al. 2020], by accessing the gradient of f_0 and the proximal operator of $g \Rightarrow$ Tight!

First-order Methods for Affinely Constrained Nonconvex Problems

Consider Problem

$$\min_{\mathbf{x}} f_0(\mathbf{x}),$$
s.t. $\mathbf{A}\mathbf{x} + \mathbf{b} = 0$

- f_0 is non-convex and L_f -smooth
- A has a full-row rank
- upper complexity bound $O(\kappa(\mathbf{A})L_f\epsilon^{-2})$, provided by a projection gradient method [Nesterov 2013]:

$$\mathbf{x}^{k+1} = \mathbf{proj}_{\mathbf{x}: \mathbf{A}\mathbf{x} + \mathbf{b} = 0}(\mathbf{x}^k - \eta \nabla f_0(\mathbf{x}^k))$$

• lower complexity bound: $O(\kappa(\mathbf{A})L_f\epsilon^{-2})$ [Sun-Hong 2019], by accessing the information of ∇f_0 and $\mathbf{A} \cdot \Rightarrow \mathsf{Tight!}$

More Examples

- first-order methods for convex problems [Nesterov 2004]
- first-order methods for stochastic convex problems [Agarwal et al. 2012]
- first-order methods for finite-sum convex problems
 [Woodworth-Srebro 2016]
- first-order and higher-order methods for nonconvex problems
 [Carmon et al. 2017]

Diagram: iteration complexity analysis

This talk: Affinely Constrained Nonsmooth Nonconvex Problems

Problem Class I

$$\min_{\mathbf{x}} F_0(\mathbf{x}) := f_0(\mathbf{x}) + g(\mathbf{x})$$
s.t. $\mathbf{A}\mathbf{x} + \mathbf{b} = \mathbf{0}$ (P)

 $\mathbf{A} \in \mathbb{R}^{n \times d}$, $\mathbf{b} \in \mathbb{R}^{n}$, f_0 is smooth nonconvex, and g is convex non-smooth

Assumptions

- ∇f_0 is L_f -Lipschitz continuous
- $\inf_{\mathbf{x}} F_0(\mathbf{x}) > -\infty$. $\Delta := F_0(\mathbf{x}^{(0)}) \inf_{\mathbf{x}} F_0(\mathbf{x})$
- $g(\mathbf{x}) = \bar{g}(\bar{\mathbf{A}}\mathbf{x} + \bar{\mathbf{b}})$, where $\bar{\mathbf{A}} \in \mathbb{R}^{\bar{n} \times d}$, $\bar{\mathbf{b}} \in \mathbb{R}^{\bar{n}}$ and \bar{g} is convex non-smooth.
- \bullet g is a proximable function, i.e., easy proximal mapping $\mathbf{prox}_{\eta g}$

Problem Class II: Splitting case

$$\min_{\mathbf{x}, \mathbf{y}} F(\mathbf{x}, \mathbf{y}) := f_0(\mathbf{x}) + \bar{g}(\mathbf{y})$$

s.t. $\mathbf{A}\mathbf{x} + \mathbf{b} = 0$, $\mathbf{y} = \bar{\mathbf{A}}\mathbf{x} + \bar{\mathbf{b}}$ (SP)

- \bar{g} is a proximable function (weaker than that of g)
- $\inf_{\mathbf{x},\mathbf{y}} F(\mathbf{x},\mathbf{y}) > -\infty$. $\Delta := F(\mathbf{x}^{(0)},\mathbf{y}^{(0)}) \inf_{\mathbf{x},\mathbf{y}} F(\mathbf{x},\mathbf{y})$

Algorithm Setup (first-order "Oracle: Information") Linear Combinations of

- information of f_0 through $f_0(\mathbf{x})$, $\nabla f_0(\mathbf{x})$ (for (P) and (SP))
- information of A through Ax and $A^{\top}y$ for inquiry (x,y) (for (P) and (SP))
- information of \bar{A} through $\bar{A}x$ and $\bar{A}^\top y$ for inquiry (x,y) (for (P) and (SP))
- information of $\bar{\mathbf{b}}$ and \mathbf{b} (for (P) and (SP))

and information of g (for (P)) or \bar{g} (for (SP)) through the proximal operator

Problem Class II: Splitting case

$$\min_{\mathbf{x}, \mathbf{y}} F(\mathbf{x}, \mathbf{y}) := f_0(\mathbf{x}) + \bar{g}(\mathbf{y})
\text{s.t. } \mathbf{A}\mathbf{x} + \mathbf{b} = 0, \ \mathbf{y} = \bar{\mathbf{A}}\mathbf{x} + \bar{\mathbf{b}}$$
(SP)

- \bar{g} is a proximable function (weaker than that of g)
- $\bullet \inf_{\mathbf{x},\mathbf{y}} F(\mathbf{x},\mathbf{y}) > -\infty. \ \Delta := F(\mathbf{x}^{(0)},\mathbf{y}^{(0)}) \inf_{\mathbf{x},\mathbf{y}} F(\mathbf{x},\mathbf{y})$

Algorithm Setup (first-order "Oracle: Information") Linear Combinations of

- information of f_0 through $f_0(\mathbf{x})$, $\nabla f_0(\mathbf{x})$ (for (P) and (SP))
- information of A through Ax and $A^{\top}y$ for inquiry (x,y) (for (P) and (SP))
- information of \bar{A} through $\bar{A}x$ and $\bar{A}^\top y$ for inquiry (x,y) (for (P) and (SP))
- \bullet information of $\bar{\mathbf{b}}$ and \mathbf{b} (for (P) and (SP))

and information of g (for (P)) or \bar{g} (for (SP)) through the proximal operator

Our Desired "Approximate Solution"

To obtain an ϵ -stationary point of (P) and (SP) (due to nonconvexity)

• a point \mathbf{x}^* is called an ϵ -stationary point of (P) if for some $\mathbf{z} \in \mathbb{R}^n$,

$$\max \left\{ \operatorname{dist} \left(\mathbf{0}, \nabla f_0(\mathbf{x}^*) + \mathbf{A}^{\top} \mathbf{z} + \partial g(\mathbf{x}^*) \right), \left\| \mathbf{A} \mathbf{x}^* + \mathbf{b} \right\| \right\} \leq \epsilon$$

 $\bar{\mathbf{x}}$ is a near ϵ -stationary point of (P) if it is ω -close to an ϵ -stationary point \mathbf{x}^* of (P) with $\omega = O(\epsilon)$

• a point $(\mathbf{x}^*, \mathbf{y}^*)$ is called an ϵ -stationary point of (SP) if for some $\mathbf{z}_1 \in \mathbb{R}^{\bar{n}}$ and $\mathbf{z}_2 \in \mathbb{R}^n$

$$\max \left\{ \text{dist}(\mathbf{0}, \partial \bar{g}(\mathbf{y}^*) - \mathbf{z}_1), \|\nabla f_0(\mathbf{x}^*) + \bar{\mathbf{A}}^{\top} \mathbf{z}_1 + \mathbf{A}^{\top} \mathbf{z}_2 \|, \\ \|\mathbf{y}^* - \bar{\mathbf{A}} \mathbf{x}^* \|, \|\mathbf{A} \mathbf{x}^* \| \right\} \le \epsilon$$

Existing Upper Bound Complexity Results

For (P)

- inexact proximal point method: $O(\epsilon^{-2.5})$ [Lin et al. 200]
- inexact proximal accelerated augmented Lagrangian (ALM): $O(\epsilon^{-2.5})$ [Melo et al. 2020]
- smoothed proximal ALM with g being indicator function: $O(\epsilon^{-2})$ [Zhang-Luo 2022]
- alternating direction method of multipliers (ADMM) with g=0 or $\bar{\bf A}=I_d$: $O(\epsilon^{-2})$ [Jiang et al. 2019]

For (SP)

- ullet ADMM with Kurdyka-Łojasiewicz coefficient: $O(\epsilon^{-2})$ [Yashtini 2022]
- ADMM: $O(\epsilon^{-2})$ [Goncalves et al. 2017]

Questions

For problems (P) and (SP)

• are existing lower bound results tight?

(there is no lower bound results for our problem, except for some special instances)

are existing upper bound results tight?

(examine the hidden constant)

Are These Upper Bound Complexity Tight?

Our lower bound complexity results: $O(\kappa([\mathbf{A}; \bar{\mathbf{A}}])L_f\Delta\epsilon^{-2})$ for (P) and (SP)

For (P)

- \bullet smoothed proximal ALM: $O(\hat{\kappa}^2 L_f^3 \Delta \epsilon^{-2})$ [Zhang-Luo 2022]
- ADMM with g=0 or $\bar{\bf A}=I_d$: $O(\kappa([{\bf A};\bar{\bf A}])^2L_f^2\Delta\epsilon^{-2})$ [Jiang et al. 2019]

For (SP)

- ADMM with Kurdyka-Łojasiewicz coefficient: not comparable [Yashtini 2022]
- ADMM: $O(\kappa([{\bf A};\bar{\bf A}])^2L_f^2\Delta\epsilon^{-2})$ [Goncalves et al. 2017]

the existing upper bound is not tight!

Roadmap

lower iteration complexity bounds

- $O(\kappa([\mathbf{A}; \bar{\mathbf{A}}])L_f\Delta\epsilon^{-2})$ to find a near ϵ stationary point of (P)
- $O(\kappa([\mathbf{A}; \bar{\mathbf{A}}])L_f\Delta\epsilon^{-2})$ to find an ϵ stationary point of (SP)
- κ: condition number

upper iteration complexity bounds

- design a new inexact proximal gradient (IPG) method
- find an ϵ stationary point $(\mathbf{x}^*, \mathbf{y}^*)$ of (SP) within $\tilde{O}(\kappa([\mathbf{A}; \bar{\mathbf{A}}])L_f\Delta\epsilon^{-2})$ \Rightarrow tight/near-optimal!
- \mathbf{x}^* is arbitrary close to an ϵ stationary point of (P) \Rightarrow find a near ϵ stationary point \mathbf{x}^* of (P) within $\tilde{O}(\kappa([\mathbf{A}; \bar{\mathbf{A}}])L_f\Delta\epsilon^{-2})$ \Rightarrow tight/near-optimal!

Roadmap

lower iteration complexity bounds

- $O(\kappa([\mathbf{A}; \bar{\mathbf{A}}])L_f\Delta\epsilon^{-2})$ to find a near ϵ stationary point of (P)
- $O(\kappa([\mathbf{A}; \bar{\mathbf{A}}])L_f\Delta\epsilon^{-2})$ to find an ϵ stationary point of (SP)
- κ: condition number

upper iteration complexity bounds

- design a new inexact proximal gradient (IPG) method
- find an ϵ stationary point $(\mathbf{x}^*, \mathbf{y}^*)$ of (SP) within $\tilde{O}(\kappa([\mathbf{A}; \bar{\mathbf{A}}])L_f\Delta\epsilon^{-2})$ \Rightarrow tight/near-optimal!
- \mathbf{x}^* is arbitrary close to an ϵ stationary point of (P) \Rightarrow find a near ϵ stationary point \mathbf{x}^* of (P) within $\tilde{O}(\kappa([\mathbf{A}; \bar{\mathbf{A}}])L_f\Delta\epsilon^{-2})$ \Rightarrow tight/near-optimal!

1. Lower bound complexity results

Variable x, Matrices A and $\bar{\mathbf{A}}$, Vectors \mathbf{b} and $\bar{\mathbf{b}}$, Function g

- $m = 3m_1m_2$ with $2 \mid m_1, n = (m 3m_2)\bar{d}, \ \bar{n} = (3m_2 1)\bar{d}$
- $\mathbf{x} = (\mathbf{x}_1^\top, \dots, \mathbf{x}_m^\top)^\top \in \mathbb{R}^d$, with $\mathbf{x}_i \in \mathbb{R}^{\bar{d}}$, $2 \nmid \bar{d}$, $\bar{d} \geq 5$, $d = m\bar{d}$

$$\mathbf{J}_p := \begin{bmatrix} -1 & 1 & & & \\ & -1 & 1 & & \\ & & \ddots & \ddots & \\ & & & -1 & 1 \end{bmatrix} \in \mathbb{R}^{(p-1)\times p}.$$

- $\mathbf{H} := mL_f \cdot \mathbf{J}_m \otimes \mathbf{I}_{\bar{d}}$
- $\mathcal{M} := \{im_1 | i = 1, 2, \dots, 3m_2 1\}, \ \mathcal{M}^C := \{1, 2, \dots, m 1\} \setminus \mathcal{M}$
- $\bullet \ \bar{\mathbf{A}} := mL_f \cdot \mathbf{J}_{\mathcal{M}} \otimes \mathbf{I}_{\bar{d}}, \quad \mathbf{A} := mL_f \cdot \mathbf{J}_{\mathcal{M}^C} \otimes \mathbf{I}_{\bar{d}}, \quad \bar{\mathbf{b}} = \mathbf{0} \in \mathbb{R}^{\bar{n}}, \quad \mathbf{b} = \mathbf{0} \in \mathbb{R}^n$
- $\beta > (50\pi + 1 + ||\mathbf{A}||) \sqrt{m}\epsilon$

Variable x, Matrices A and $\bar{\mathbf{A}}$, Vectors \mathbf{b} and $\bar{\mathbf{b}}$, Function g

- $m = 3m_1m_2$ with $2 \mid m_1, n = (m 3m_2)\bar{d}, \ \bar{n} = (3m_2 1)\bar{d}$
- $\mathbf{x} = (\mathbf{x}_1^\top, \dots, \mathbf{x}_m^\top)^\top \in \mathbb{R}^d$, with $\mathbf{x}_i \in \mathbb{R}^{\bar{d}}$, $2 \nmid \bar{d}$, $\bar{d} \geq 5$, $d = m\bar{d}$

•

$$\mathbf{J}_{p} := \begin{bmatrix} -1 & 1 & & & & \\ & -1 & 1 & & & \\ & & \ddots & \ddots & \\ & & & -1 & 1 \end{bmatrix} \in \mathbb{R}^{(p-1) \times p}.$$

- $\mathbf{H} := mL_f \cdot \mathbf{J}_m \otimes \mathbf{I}_{\bar{d}}$
- $\mathcal{M} := \{im_1 | i = 1, 2, ..., 3m_2 1\}, \ \mathcal{M}^C := \{1, 2, ..., m 1\} \setminus \mathcal{M}$
- $\bullet \ \bar{\mathbf{A}} := mL_f \cdot \mathbf{J}_{\mathcal{M}} \otimes \mathbf{I}_{\bar{d}}, \quad \mathbf{A} := mL_f \cdot \mathbf{J}_{\mathcal{M}^C} \otimes \mathbf{I}_{\bar{d}}, \quad \bar{\mathbf{b}} = \mathbf{0} \in \mathbb{R}^{\bar{n}}, \quad \mathbf{b} = \mathbf{0} \in \mathbb{R}^n$
- $\beta > (50\pi + 1 + ||\mathbf{A}||) \sqrt{m}\epsilon$

Variable x, Matrices A and $\bar{\mathbf{A}}$, Vectors \mathbf{b} and $\bar{\mathbf{b}}$, Function g

- $m = 3m_1m_2$ with $2 \mid m_1, n = (m 3m_2)\bar{d}, \ \bar{n} = (3m_2 1)\bar{d}$
- $\mathbf{x} = (\mathbf{x}_1^\top, \dots, \mathbf{x}_m^\top)^\top \in \mathbb{R}^d$, with $\mathbf{x}_i \in \mathbb{R}^{\bar{d}}$, $2 \nmid \bar{d}$, $\bar{d} \geq 5$, $d = m\bar{d}$

0

$$\mathbf{J}_{p} := \begin{bmatrix} -1 & 1 & & & & \\ & -1 & 1 & & & \\ & & \ddots & \ddots & \\ & & & -1 & 1 \end{bmatrix} \in \mathbb{R}^{(p-1)\times p}.$$

- $\mathbf{H} := mL_f \cdot \mathbf{J}_m \otimes \mathbf{I}_{\bar{d}}$
- $\mathcal{M} := \{im_1 | i = 1, 2, \dots, 3m_2 1\}, \ \mathcal{M}^C := \{1, 2, \dots, m 1\} \setminus \mathcal{M}$
- $\bullet \ \bar{\mathbf{A}} := mL_f \cdot \mathbf{J}_{\mathcal{M}} \otimes \mathbf{I}_{\bar{d}}, \quad \mathbf{A} := mL_f \cdot \mathbf{J}_{\mathcal{M}^C} \otimes \mathbf{I}_{\bar{d}}, \quad \bar{\mathbf{b}} = \mathbf{0} \in \mathbb{R}^{\bar{n}}, \quad \mathbf{b} = \mathbf{0} \in \mathbb{R}^n$
- $\beta > (50\pi + 1 + ||\mathbf{A}||) \sqrt{m}\epsilon$

Function f_0

Inspired by [Sun-Hong 2019]

•

$$f_0(\mathbf{x}) := \sum_{i=1}^m f_i(\mathbf{x}_i) := \sum_{i=1}^m \frac{300\pi\epsilon^2}{mL_f} h_i\left(\frac{\sqrt{m}L_f\mathbf{x}_i}{150\pi\epsilon}\right), \forall \mathbf{x} \in \mathbb{R}^d$$

$$h_i(\mathbf{z}) := \left\{ \begin{array}{ll} l(\mathbf{z},1) + 3 \sum_{j=1}^{\lfloor \bar{d}/2 \rfloor} l(\mathbf{z},2j) & \text{if } i \in \left[1,\frac{m}{3}\right] \\ l(\mathbf{z},1) & \text{if } i \in \left[\frac{m}{3}+1,\frac{2m}{3}\right] \\ l(\mathbf{z},1) + 3 \sum_{j=1}^{\lfloor \bar{d}/2 \rfloor} l(\mathbf{z},2j+1) & \text{if } i \in \left[\frac{2m}{3}+1,m\right] \end{array} \right.$$

$$l(\mathbf{z},j) := \begin{cases} -\Psi(1)\Phi\left(z_{1}\right) & \text{if } j = 1\\ \Psi\left(-z_{j-1}\right)\Phi\left(-z_{j}\right) - \Psi\left(z_{j-1}\right)\Phi\left(z_{j}\right) & \text{if } j = 2,\ldots,\bar{d} \end{cases}$$

$$\Psi(w) := \begin{cases} 0, & \text{if } w \le 0 \\ 1 - e^{-w^2}, & \text{if } w > 0 \end{cases} \quad \text{and} \quad \Phi(w) := 4 \arctan w + 2\pi$$

Function f_0

•

•

•

•

Inspired by [Sun-Hong 2019]

$$f_0(\mathbf{x}) := \sum_{i=1}^m f_i(\mathbf{x}_i) := \sum_{i=1}^m \frac{300\pi\epsilon^2}{mL_f} h_i\left(\frac{\sqrt{m}L_f\mathbf{x}_i}{150\pi\epsilon}\right), \forall \mathbf{x} \in \mathbb{R}^d$$

$$h_{i}(\mathbf{z}) := \begin{cases} l(\mathbf{z}, 1) + 3 \sum_{j=1}^{\lfloor \bar{d}/2 \rfloor} l(\mathbf{z}, 2j) & \text{if } i \in \left[1, \frac{m}{3}\right] \\ l(\mathbf{z}, 1) & \text{if } i \in \left[\frac{m}{3} + 1, \frac{2m}{3}\right] \\ l(\mathbf{z}, 1) + 3 \sum_{j=1}^{\lfloor \bar{d}/2 \rfloor} l(\mathbf{z}, 2j + 1) & \text{if } i \in \left[\frac{2m}{3} + 1, m\right] \end{cases}$$

$$l(\mathbf{z},j) := \begin{cases} -\Psi(1)\Phi(z_1) & \text{if } j = 1\\ \Psi\left(-z_{j-1}\right)\Phi\left(-z_j\right) - \Psi\left(z_{j-1}\right)\Phi\left(z_j\right) & \text{if } j = 2,\dots,\bar{d} \end{cases}$$

$$\Psi(w) := \begin{cases} 0, & \text{if } w \le 0 \\ 1 - e^{-w^2}, & \text{if } w > 0 \end{cases} \text{ and } \Phi(w) := 4 \arctan w + 2\pi$$

Wei Liu (RPI) August 17/29

Worst-case Instance

Definition 1 (instance \mathcal{P})

Given $\epsilon \in (0,1)$ and $L_f > 0$, let m_1, m_2 and \bar{d} be integers such that $m_1 \geq 2$ is even and $\bar{d} \geq 5$ is odd. We call as *instance* \mathcal{P} the instance of problem (P) where $f_0, g, (\mathbf{A}, \mathbf{b}), (\bar{\mathbf{A}}, \bar{\mathbf{b}})$ are defined aforementioned.

Remark:

- condition number of $[A; \bar{A}] = H$ proportional to m
- the instance P is difficult because of the coexistence of the regularization term and the affine constraints
- f_0 is nonconvex, and do not have a bounded level set

Lower bound complexity Result for (P)

Noting

$$\bar{d} \ge \frac{L_f \left(F_0 \left(\mathbf{x}^{(0)} \right) - \inf_{\mathbf{x}} F_0(\mathbf{x}) \right)}{3000\pi^2} \epsilon^{-2} = \frac{L_f \Delta_{F_0}}{3000\pi^2} \epsilon^{-2}$$

Theorem 2

Let $\epsilon>0$ and $L_f>0$ be given. Suppose an first-order algorithm is applied to problem (P) and generates a sequence $\{\mathbf{x}^{(t)}\}_{t\geq 0}$. There exists an instance of problem (P), i.e., instance \mathcal{P} , such that the algorithm requires at least

$$t \ge \frac{\kappa([\bar{\mathbf{A}}; \mathbf{A}])L_f\Delta}{36000\pi^2}\epsilon^{-2}$$

iterations to obtain a near ϵ -stationary point of instance \mathcal{P} .

Hard Instance

Let
$$\bar{\mathbf{g}}(\mathbf{y}) := \frac{\beta}{mL_f} ||\mathbf{y}||_1$$

Definition 3 (instance \mathcal{P})

Given $\epsilon \in (0,1)$ and $L_f > 0$, let m_1, m_2 and \bar{d} be integers such that $m_1 \geq 2$ is even and $\bar{d} \geq 5$ is odd. We call as *instance* \mathcal{P} the instance of problem (SP) where $f_0, \bar{g}, (\mathbf{A}, \mathbf{b}), (\bar{\mathbf{A}}, \bar{\mathbf{b}})$ are defined aforementioned.

Lower bound complexity Result for (SP)

Theorem 4

Let $\epsilon > 0$ and $L_f > 0$ be given. Suppose an first-order algorithm is applied to problem (SP) and generates a sequence $\{\mathbf{x}^{(t)}, \mathbf{y}^{(t)}\}_{t \geq 0}$. There exists an instance of problem (SP), i.e., instance \mathcal{P} , such that the algorithm requires at least

$$t \ge \frac{\kappa([\bar{\mathbf{A}}; \mathbf{A}])L_f\Delta}{72000\pi^2}\epsilon^{-2}$$

iterations to obtain an ϵ -stationary point of instance \mathcal{P} .

3. Upper bound complexity for Problem (SP)

An Inexact Proximal Gradient Method

$$\min_{\mathbf{x},\mathbf{y}} F(\mathbf{x},\mathbf{y}) := f_0(\mathbf{x}) + \bar{g}(\mathbf{y}), \quad \text{s.t. } \mathbf{A}\mathbf{x} + \mathbf{b} = 0, \ \mathbf{y} = \bar{\mathbf{A}}\mathbf{x} + \bar{\mathbf{b}}$$
 (SP)

A new inexact proximal gradient (IPG) method for problem (SP)

- **Input:** A feasible solution $(\mathbf{x}^{(0)}, \mathbf{y}^{(0)})$ of problem (SP), $\sigma > 0$, and a proximal parameter $\tau > L_f$, set k = 0.
- Inexactly solve subproblem

$$(\mathbf{x}^{(k+1)}, \mathbf{y}^{(k+1)}) \approx \underset{\mathbf{x}, \mathbf{y}}{\arg\min} \left\langle \nabla f_0(\mathbf{x}^{(k)}), \mathbf{x} - \mathbf{x}^{(k)} \right\rangle + \frac{\tau}{2} \left\| \mathbf{x} - \mathbf{x}^{(k)} \right\|^2 + \bar{g}(\mathbf{y})$$
s.t. $\mathbf{y} = \bar{\mathbf{A}}\mathbf{x} + \bar{\mathbf{b}}, \ \mathbf{A}\mathbf{x} + \mathbf{b} = \mathbf{0}.$ (1)

 \bullet set k := k + 1, return to step 2.

How to Solve Problem (1)

Dual problem: convex and smooth

$$\min_{\mathbf{z} = (\mathbf{z}_1^{\mathsf{T}}, \mathbf{z}_2^{\mathsf{T}})^{\mathsf{T}}} \frac{1}{2\tau} ||\bar{\mathbf{A}}^{\mathsf{T}} \mathbf{z}_1 + \mathbf{A}^{\mathsf{T}} \mathbf{z}_2 + \nabla f_0(\mathbf{x}^{(k)}) - \tau \mathbf{x}^{(k)}||^2 + \bar{g}^{\star}(\mathbf{z}_1) - \mathbf{z}_1^{\mathsf{T}} \bar{\mathbf{b}} - \mathbf{z}_2^{\mathsf{T}} \mathbf{b},$$
(2)

- if [Ā; A] has a full-row rank
 ⇒ the objective function in problem (2) is strongly convex
 ⇒ using accelerated proximal gradient methods [Nesterov 2013]
- if ḡ(y) = max{u^Ty : Cu ≤ d, u ∈ ℝ^{n̄}} for some C and d
 ⇒ the objective function in problem (2) has a quadratic growth
 ⇒ restarted accelerated proximal gradient [Necoara et al. 2019]

Recover a Primer Solution from the Inexact Dual Solution

Let $\mathbf{z}^{(k+1)} = (\mathbf{z}_1^{(k+1)}, \mathbf{z}_2^{(k+1)})$ be a nearly optimal point of problem (2)

$$\bullet \ \mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} - \tfrac{1}{\tau} \left(\bar{\mathbf{A}}^\top \mathbf{z}_1^{(k+1)} + \mathbf{A}^\top \mathbf{z}_2^{(k+1)} + \nabla f_0(\mathbf{x}^{(k)}) \right)$$

$$\bullet \ \ \mathbf{y}^{(k+1)} = \mathbf{prox}_{\sigma^{-1}\bar{g}} \left(\sigma^{-1} \mathbf{z}_1^{(k+1)} + \bar{\mathbf{A}} \mathbf{x}^{(k+1)} + \bar{\mathbf{b}} \right).$$

August 25/29

Upper Bound Complexity Results for (SP)

Theorem 5

Let $\tau = 2L_f$. Then, an ϵ -stationary point $(\mathbf{x}^K, \mathbf{y}^K)$ of problem (SP) can be found within K main iterations of Algorithm IPG, where

$$K := \left\lceil 12L_f \Delta \epsilon^{-2} \right\rceil = O(L_f \Delta \epsilon^{-2})$$

- lower bound: $\frac{\kappa([\bar{\mathbf{A}};\mathbf{A}])L_f\Delta}{72000\pi^2}\epsilon^{-2}$
- if $[\bar{\mathbf{A}}; \mathbf{A}]$ has a full-row rank \Rightarrow accelerated proximal gradient methods [Nesterov 2013] \Rightarrow Total complexity: $\tilde{O}(\kappa([\mathbf{A}; \bar{\mathbf{A}}])L_f\Delta\epsilon^{-2}) \Rightarrow$ Near optimal!
- if $\bar{g}(\mathbf{y}) = \max\{\mathbf{u}^{\top}\mathbf{y} : \mathbf{C}\mathbf{u} \leq \mathbf{d}, \mathbf{u} \in \mathbb{R}^{\bar{n}}\}$ for some \mathbf{C} and $\mathbf{d}, \mathbf{b} = 0, \bar{\mathbf{b}} = 0$ \Rightarrow restarted accelerated proximal gradient [Necoara et al. 2019] \Rightarrow Total complexity: $\tilde{O}(\kappa([\mathbf{A}; \bar{\mathbf{A}}])L_f\Delta\epsilon^{-2}) \Rightarrow$ Near optimal!

Upper Bound Complexity Results for (P)

Theorem 6

Let $\tau = 2L_f$. Then, a near ϵ -stationary point \mathbf{x}^K of problem (P) can be found within K main iterations of Algorithm IPG, where

$$K := \left\lceil 192 L_f \Delta \epsilon^{-2} \right\rceil = O(L_f \Delta \epsilon^{-2})$$

- lower bound: $\frac{\kappa([\bar{\mathbf{A}};\mathbf{A}])L_f\Delta}{36000\pi^2}\epsilon^{-2}$
- if $[\bar{\mathbf{A}}; \mathbf{A}]$ has a full-row rank \Rightarrow using accelerated proximal gradient methods [Nesterov 2013] \Rightarrow Total complexity: $\tilde{O}(\kappa([\mathbf{A}; \bar{\mathbf{A}}])L_f\Delta\epsilon^{-2}) \Rightarrow$ Near optimal!
- if $\bar{g}(\mathbf{y}) = \max\{\mathbf{u}^{\top}\mathbf{y} : \mathbf{C}\mathbf{u} \leq \mathbf{d}, \mathbf{u} \in \mathbb{R}^{\bar{n}}\}$ for some \mathbf{C} and $\mathbf{d}, \mathbf{b} = 0, \bar{\mathbf{b}} = 0$ \Rightarrow restarted accelerated proximal gradient [Necoara et al. 2019] \Rightarrow Total complexity: $\tilde{O}(\kappa([\mathbf{A}; \bar{\mathbf{A}}])L_f\Delta\epsilon^{-2}) \Rightarrow$ Near optimal!

Upper Bound Complexity Results for (P)

Theorem 6

Let $\tau = 2L_f$. Then, a near ϵ -stationary point \mathbf{x}^K of problem (P) can be found within K main iterations of Algorithm IPG, where

$$K := \left\lceil 192 L_f \Delta \epsilon^{-2} \right\rceil = O(L_f \Delta \epsilon^{-2})$$

- lower bound: $\frac{\kappa([\bar{\mathbf{A}};\mathbf{A}])L_f\Delta}{36000\pi^2}\epsilon^{-2}$
- if $[\bar{A}; A]$ has a full-row rank
 - \Rightarrow using accelerated proximal gradient methods [Nesterov 2013]
 - \Rightarrow Total complexity: $\tilde{O}(\kappa([\mathbf{A}; \bar{\mathbf{A}}])L_f\Delta\epsilon^{-2}) \Rightarrow \text{Near optimal!}$
- if $\bar{g}(y) = \max\{\mathbf{u}^{\top}y : \mathbf{C}\mathbf{u} \leq \mathbf{d}, \mathbf{u} \in \mathbb{R}^{\bar{n}}\}$ for some \mathbf{C} and $\mathbf{d}, \mathbf{b} = 0, \bar{\mathbf{b}} = 0$
 - ⇒ restarted accelerated proximal gradient [Necoara et al. 2019]
 - \Rightarrow Total complexity: $\tilde{O}(\kappa([\mathbf{A}; \bar{\mathbf{A}}])L_f\Delta\epsilon^{-2}) \Rightarrow \text{Near optimal!}$

Conclusions and Future Work

Conclusions

- established lower complexity bounds of affinely constrained nonconvex nonsmooth problems
- prove the tightness of the lower complexity results

Future Work

- determine whether an ϵ stationary point of problem (P) can be achieved within $O(\epsilon^{-2})$ iterations
- determine whether the lower bound complexity for problem (SP) can be achieved by an algorithm with weaker assumptions

Conclusions and Future Work

Conclusions

- established lower complexity bounds of affinely constrained nonconvex nonsmooth problems
- prove the tightness of the lower complexity results

Future Work

- determine whether an ϵ stationary point of problem (P) can be achieved within $O(\epsilon^{-2})$ iterations
- determine whether the lower bound complexity for problem (SP) can be achieved by an algorithm with weaker assumptions

Thanks for your listening!

Email: liuw16@rpi.edu