EECE72545

Power Budget

Matthew Hengeveld 8534331 3/21/2019

Device Power Consumption:

Component/Device	Number	Worst	Standby	Nominal	Total	Note
	of units	case		Voltage	power	
TPS562201	1	750 μΑ	1 μΑ	14.8V	11 mW	[1]
Power LED	1	0.73 mA	0.73 mA	3V3	2.4 mW	
CAT6219	1	90 μΑ	1 μΑ	5V	0.45 mW	Quiescent
INA219	1	1 mA	6 μΑ	3V3	3.3 mW	
'Heartbeat' LED	1	0.07 mA	0	3V3	231 mW	
ICL3232	1	121 mA	1 μΑ	3V3	399 mW	
TX/RX LED	2	2.86 mA	0	3V3	9.5 mW	
MCP2542	1	140 mA	4 μΑ	3V3	100 mW	
LCD	1	3 mA	1 mA	5V	15 mW	
LCD Backlight	1	20 mA	0	5V	100 mW	
MCP23S08	1	125 mA	1 μΑ	3V3	412.5 mW	
DRV8814	1					[2]
Stepper Motor	1	400 mA	0	14.8V	5.92 W	Half- stepping
DRV8884	1					[3]
DC Motor	2	3 A	0	14.8V	44.4 W	Stall
Fault LED	2	20 mA	0	3V3	66 mW	
74LVC2G14	1	200 mA	8 μΑ	3V3	660 mW	Outputs shorted
Servo	1	300 mA	0	5V	1.5W	
HC-10 Bluetooth	1	50 mA	200 μΑ	3V3	165 mW	Transmit mode
μSD Card	1	50 mA	-	3V3	165 mW	Writing
NTC Thermistor	2	2.2 mA	2.2 mA	3V3	7.3 mW	
Ultrasonic Rangefinder	1	20 mA	2.5mA	5V	100 mW	Transmitting

[1] TPS562201 Power Consumption:

Worse case power dissipation ($I_{OUT} = 1A, 25$ °C):

The following method was taken from TI: Application Report AN-1566 "Techniques for Thermal Analysis of Switching Power Supply Designs"

$$P_{BIAS} = I_q \times V_{IN} = 750 \mu A \times 14.8V = 0.011W$$

$$P_{COND} = Duty \times \left[\left(R_{DS(ON)HS} \times I_{OUT}^{2} \right) + \left(R_{DS(ON)LS} \times I_{OUT}^{2} \right) \right]$$

$$= 35\% \times \left[(0.14\Omega \times 1A^{2}) + (0.084\Omega \times 1A^{2}) \right]$$

$$= 0.078W$$

$$P_{SW} = \frac{(I_{OUT} \times V_{IN})}{2} \times f_{SW} \times (t_R + t_F)$$

$$= \frac{(1A \times 14.8V)}{2} \times 580KHz \times (50ns) = 0.215W$$

$$P_{TOTAL} = P_{BIAS} + P_{COND} + P_{SW} = \mathbf{0.31W}$$

[2] DRV8814 Power Consumption:

The DRV8814 has internal 5V and 3V3 regulators.

Worse case power dissipation ($V_M = 14.8V$, $I_{OUT} = 1.5A$, 25°C):

$$P_{RDS(ON)} = (2) \left(R_{DS(ON)HS+LS} \right) \left(I_{OUT}^{2} \right) = (2) (0.525\Omega) (1.5A^{2}) = 2.36W$$

$$P_{SW} = (V_{M}) (I_{OUT}) \left(t_{F,R} \right) (f_{SW}) = (14.8V) (1.5A) (300ns) (50KHz) = 0.333W$$

$$P_{IVM} = (V_{M}) (I_{IVM}) = (14.8V) (5mA) = 0.074W$$

$$P_{LDO} = (V_{M} - V_{LDO}) (I_{LDO\ OUT}) = (14.4V - 3.3V) (1mA) = 0.0115W$$

$$P_{TOTAL} = P_{RDS(ON)+} P_{SW} + P_{IVM} + P_{LDO} = 2.775W$$

[3] DRV8884 Power Consumption:

The DRV8884 has internal 5V and 3V3 regulators.

Worse case power dissipation ($V_M = 14.8V$, $I_{OUT} = 0.4A$, 25°C):

$$P_{RDS(ON)} = (R_{DS(ON)HS})(I_{OUT}^{2}) + (R_{DS(ON)LS})(I_{OUT}^{2})$$

$$= (0.798\Omega)(0.4A^{2}) + (0.749\Omega)(0.4A^{2}) = 0.247W$$

$$P_{SW} = (V_{M})(I_{OUT})(t_{F,R})(f_{SW}) = (14.8V)(0.4A)(100ns)(50KHz) = 0.029W$$

ESE S4 Embedded Systems H/W week 5 Worksheet – Power Calculations

$$P_{IVM} = (V_M)(I_{IVM}) = (14.8V)(5mA) = 0.074W$$

 $P_{TOTAL} = P_{RDS(ON)} + P_{SW} + P_{IVM} = \mathbf{0.35W}$

Per Rail Power Consumption:

Rail	Total Power
5V	1715.45 mW
3V3	2311 mW

Efficiency Corrected Power Consumption:

Because the 5V and 3V3 rails are converted from the battery voltage, there are losses associated with each conversion. The efficiency of the TPS562201 is about 91% at 300mA, and the CAT6219, being a linear regulator, is about 50%. Therefore, 3V3 rail could draw a total 2.888W from the 5V rail. The 5V rail, along with the previously calculated 3V3 draw, could draw a total 5.058W from the 14.8V battery.