POUR

LOISIRS

http://www.electronique-magazine.com

Vidéo: **Mini émetteur TV** pour les bandes **UHF ou VHF**

Informatique: Alimentation ATX pour PC avec une batterie 12 V

Radio: **Oscillateur BF** pour le Morse

France 29 F - DOM 35 F EU 5,5 € - Canada 4,95 \$C

CONCENTRE DE HAUTE TECHNOLOGIE 8 L AUTO PILOTE PAR GSM ET SURVEILLE PAR GPS

Chaque mois : votre cours d'électronique

PROMATELEC • 540 Chemin du Petit Rayol • 83470 SAINT-MAXIMIN Tél. : 04 42 70 62 61 - Fax : 04 42 70 62 52

SOMMAIRE

Shop' Actua Toute l'actualité de l'électronique	5	Comment fabriquer vos circuits imprimés facilement ? Non, ce n'est pas une invitation à retourner aux origines, mais c'est l'occasion de présenter un	59
Concentré de haute technologie :		produit qui arrive tout droit des Etats-Unis et qui	
Un antivol auto avec GSM et GPS	8	a révolutionné les méthodes de préparation des circuits imprimés réalisés en petites séries : plus	
Ce tout nouvel antivol auto est un pur concentré de technologie. Sitôt déclenché, il prévient le propriétaire du véhicule en l'appelant sur son portable		de sérigraphie, grâce à une pellicule sur laquelle il suffit de photocopier ou d'imprimer le master	
et en lui envoyant, sous forme de mini-message (SMS), les coordonnées géographiques relatives à		L'heure de vérité!	62
la position du véhicule relevée par GPS. En plus, il permet d'intervenir à distance pour, par exemple, déclencher la sirène d'alarme, ou faire autre chose. Le tout avec assistance vocale fournissant toutes les instructions nécessaires.		Une horloge, une caméra miniature et un émetteur audio/vidéo. Ces trois objets réunis, permettent de surveiller à distance ce qui se passe dans n'importe quel endroit en toute discrétion. Cet article est une suggestion, parmi d'autres, pour utiliser	
Un mini émetteur TVpour les bandes UHF et VHF	22	de la meilleure façon possible quelques produits récemment apparus sur le marché.	
Ce mini émetteur tient sur un circuit imprimé d'à		Diameter DIO	C
peine 4 x 9 cm sur lequel prennent place un micro- phone électret à haute sensibilité et une caméra CMOS ultra miniature noir et blanc. Il s'agit d'un		Planète PIC Microchip - Cours de programmation - Chapitre IX La programmation des PIC16F876 - De la théorie à la pratique	65
émetteur son et images pas plus grand qu'un téléphone portable. Selon le type de module HF que l'on choisit et qui dépend du canal libre disponible là où on le fait fonctionner, il peut émettre soit en UHF soit en VHF. Sa portée est comprise entre 50 et 100 mètres.		Nous voici au dernier chapitre de notre cours de programmation C pour PIC16F876. Nous allons vous présenter aujourd'hui un programme un peu plus complexe, qui peut être un bon point de départ pour une application "réelle", pas seulement une	
		simple démonstration du fonctionnement du microcontrôleur. Nous	
Une alimentation ATX pour PC	30	allons donc décrire un millivoltmètre digital précis, en mesure de lire avec 10 bits de précision n'importe quelle tension positive entre 0 et 5	
à partir d'une batterie de voiture 12 volts Voici une alimentation ATX pour ordinateur, conçue spécialement pour faire fonctionner n'importe quel PC (ou autre appareil incluant un microprocesseur)		volts. Tout ce dont vous aurez besoin au niveau hardware est la carte test du PIC16F876, protagoniste indiscutée de notre cours.	
dans une voiture, à partir de la batterie 12 volts. Le montage présenté ici produit toutes les tensions		Cours d'électronique en partant de zéro (26)	
nécessaires, positives ou négatives.		Mise en pratique des portes logiques	70
Un oscillateur BF pour le Morse	48	Dans la précédente leçon, nous avons réalisé un "clignotant séquentiel" mettant en pratique ce que nous avons appris sur les portes logiques. Nous continuons, et terminerons, par deux mon-	70
parler de signaux Morse. Pourtant, comme vous le verrez, savoir lire la télégraphie peut être encore		tages didactiques. Ceci fait, les portes logiques ne devraient plus avoir aucun secret pour vous !	
utile pour beaucoup.		Mise en pratique des portes logiques	_
		La LX.5025, une sirène numérique deux tons	74
Comment connaître la polarité d'un haut-parleur? Pour connecter en phase les haut-parleurs d'une chaîne stéréo, il est nécessaire de connaître la polarité des entrées. Le circuit proposé dans ces lignes vous permettra de distinguer, avec une extrê-	54	Avec ce dernier montage se termine la leçon sur les portes logiques. Encore une fois, ces trois petits montages ont une grande utilité didactique, ne les négligez pas.	
me facilité, le pôle positif et le pôle négatif d'un quelconque haut-parleur ou d'une enceinte acoustique.		Les Petites Annonces	77
Ce numéro a été envoyé à nos abonnés le 22 juin 2	001	L'index des annonceurs se trouve page	78
FIFTEDONIQUE at laising magazine DADAIT FN AC	nît		

Crédit Photo couverture : Futura, Nuova, JMJ

Photos non contractuelles. Publicité

LES KITS DU MOIS... LES KITS DU MOIS...

HI-TECH: UN ANTIVOL AUTO AVEC GSM ET GPS

Sitôt déclenché, il prévient le propriétaire du véhicule en l'appelant sur son portable et en lui envoyant, sous forme de mini-message (SMS), les coordonnées géographiques relatives à la position du véhicule relevées par GPS. Possibilité d'intervenir à dis-

tance pour, par exemple, déclencher la sirène d'alarme, ou faire autre chose

FT334 Kit complet avec GSM, GPS et antennes	6 800 F
Le modem FALCOM A2D seul	2 700 F
L'antenne pour GSM seule	220 F
Le récepteur GARMIN 25 seul	1 690 F
L'antenne pour GPS seule	900 F

AUTOMOBILE: UNE ALIMENTATION ATX POUR PC A PARTIR D'UNE BATTERIE DE VOITURE 12 VOLTS

Voici une alimentation ATX pour ordinateur, concue spécialement pour faire fonctionner n'importe quel PC (ou autre appareil incluant un microprocesseur) dans une voiture, à partir de la batterie 12 V. Le montage présenté ici produit toutes les tensions nécessaires, positives ou négatives.

FT375 Kit complet895 F	F
------------------------	---

AUDIO: COMMENT CONNAITRE LA POLARITE D'UN HAUT-PARLEUR

Pour connecter en phase les haut-parleurs d'une chaîne stéréo, il est nécessaire de connaître la polarité des entrées. Ce kit vous permettra de distinguer, avec une extrême facilité, le pôle positif et le pôle négatif d'un quelconque haut-parleur ou d'une enceinte acoustique.

LX1481 Kit complet sans coffret6	2 F
MO1481Coffret plastique1	8 F

VIDEO: UN MINI EMETTEUR DE TV POUR LES BANDES UHF OU VHF

Ce mini émetteur tient sur un circuit imprimé d'à peine 4 x 9 cm sur lequel prennent place un microphone électret à haute sensibilité et une caméra CMOS ultra miniature noir et blanc. Il s'agit d'un émetteur son et images pas plus grand qu'un téléphone portable. Selon le type de module HF que l'on choisit et qui dépend du canal libre disponible là où on le fait fonctionner, il peut émettre soit en UHF, soit en VHF. Sa portée est comprise entre 50 et 100 mètres.

FT368 Kit complet avec caméra 699 F

RADIO: UN OSCILLATEUR BF POUR LE MORSE

Dans ces temps modernes où tout le monde utilise les téléphones portables, les fax et le courrier électronique, il apparaît comme un contre sens de parler de signaux Morse. pourtant, comme vous le verrez, les connaître peut être encore utile pour beaucoup.

LX1426Kit complet hors coffret, HP, casque et manipulate	
MO1426Coffret du LX1426	68 F
AP05.01Haut-parleur 0,2 W	26 F
CUF30Un casque économique	28 F
LMCUn manipulateur	219 F

LABORATOIRE: COMMENT FABRIQUER FACILEMENT **VOS CIRCUITS IMPRIMES**

Nouveau produit qui arrive tout droit des États-Unis et qui a révolutionné les méthodes de préparation des circuits imprimés réalisés en petites séries : plus de sérigraphie grâce à une pellicule sur laquelle il suffit de photocopier ou d'imprimer le

FT.PNP5 Lot de 5 feuilles au format A4123 F

LE COURS: UN INTERRUPTEUR CREPUSCULAIRE ET UNE SIRENE NUMERIQUE DEUX TONS

Ces deux montages didacticiels vous permettent de consolider vos connaissances sur les montages utilisant des portes logiques.

Kit interrupteur crépusculaire complet85 F

LX5025

Kit sirène numérique deux tons complet109 F

NOUVEAUTE: UNE AMPOULE ELECTRIQUE CHASSE MOUSTIQUES

Cette ampoule standard à vis (220 V / 60 W) est conçue pour éloigner les moustiques et certains insectes indésirables. Vous pouvez l'utiliser aussi bien à l'intérieur de votre maison qu'à l'extérieur sous une véranda ou dans votre jardin. Sa durée de vie est de 1 000 heures et son rayon d'action est de 2 à 3 mètres.

FR165......39 F

NOUVEAUTE: UN DETECTEUR DE GSM

Vous avez un laboratoire où les instruments sont sensibles aux téléphones ? Vous voulez que les participants d'une réunion n'utilisent pas leur téléphone ou ne soient pas appelés pour ne pas perturber la réunion?

La meilleure solution est de disposer de cet appareil, le GardCell, qui va immédiatement vous signaler si un téléphone cellulaire est en conversation ou même seulement en marche.

GARDCELL.....3 450 F

CD 908 - 13720 BELCODENE Tél : 04 42 70 63 90 - Fax 04 42 70 63 95 Internet: http://www.comelec.fr

Shop' Actua

DISTRIBUTEURS

VELLEMAN

station de soudage économique VTSS5

Cette station de soudage conviendra parfaitement aux amateurs qui ne sont pas encore équipés d'un tel outillage. Par rapport au simple fer à souder, elle offre l'avantage de pouvoir afficher une température de chauffage et une sécurité de travail accrue grâce à sa mise à la terre.

Caractéristiques :

Réglage manuel de la température de consigne. Maintien électronique de la température. Voyant LED d'activation. Mise à la masse. Puissance

Température entre 175 et 480°C. Alimentation 230 V. Poids 1,2 kg. Dimensions 195 x 100 x 90 mm. Consommation 50 VA. Panne de rechange BITS5.

du fer 50 W.

www.velleman.be

Un détecteur de GSM

COMELEC

Vous avez un laboratoire où les instruments sont sensibles aux téléphones portables ? Vous voulez que les participants d'une réunion n'utilisent pas leur téléphone ou ne soient pas appelés pour ne pas perturber la réunion ? La meilleure solution est de disposer de cet appareil, le GardCell, qui va immédiatement vous signaler si un téléphone cellulaire est en conversation ou même seulement en marche.

www.comelec.fr •

REPORTAGE

CONRAD à l'assaut du marché français :

Le 14 juin 2001, Conrad a ouvert à Lille le premier "hyper de l'électronique". Ce magasin pilote est une des étapes du développement du groupe allemand Conrad en France. Conrad mise sur une stratégie multicanaux : VPC, e-commerce et magasins pour conquérir le marché hexagonal.

78 ans d'expérience, 50 000 produits référencés, 25 000 colis envoyés par jour vers 137 pays et 650 millions d'Euros de chiffre d'affaires : le groupe Conrad, société familiale d'origine allemande, est le spécialiste européen de la vente à distance de matériel électronique, informatique, audio et bricolage pour les particuliers et les professionnels.

Présent partout en Europe, 26 magasins, 18 sites de vente en ligne, des catalogues dans plusieurs langues, Conrad s'est fixé comme objectif d'accroître ses parts de marché en France.

• la VPC : à l'origine de la réussite

Première activité développée par l'entreprise dans les années 1920, la VPC représente aujourd'hui 50 % du chiffre d'affaires du groupe Conrad. En France, l'implantation s'est faite par le rachat de l'entreprise Decoq en 1994.

• le e-commerce : du réel au virtuel

Dès 1997, Conrad est passé du réel au virtuel avec l'ouverture d'un site pilote en Allemagne. Conrad.fr voit le jour en 1999 sur le même modèle que les 17 autres sites européens.

Le catalogue français de 600 pages est envoyé à 600 000 clients. Il existe deux versions spécifiques du catalogue, une

Pour cela, elle

base son déve-

loppement sur trois piliers:

ouverture du magasin

pilote et stratégie multicanaux

pour les particuliers et une pour les professionnels.

• les magasins : l'électronique en "hyper"

Le 14 juin 2001, le groupe Conrad a ouvert son magasin pilote français à Englos, près de Lille. Conrad a investi plus de 30 millions de francs pour créer un véritable "hyper de l'électronique". Sur une surface de 1 600 m², le client trouvera jusqu'à 25 000 références de produits technologiques, hifi-vidéo, sécurité, auto, informatique, modélisme, composants...

L'objectif de Conrad d'ici 10 ans est d'ouvrir 10 magasins sur l'ensemble du territoire français.

www.conrad.fr •

NOUVEAUTÉS

DISTRIBUTEURS

SELECTRONIC

Antennes

METZ Communication

"The world's finest antennas!" c'est ainsi que le fabricant les définit: "Les meilleures antennes du monde!" (probablement...). Ces antennes offrent une alternative intéressante aux encombrantes antennes habituelles. Légères, discrètes et efficaces, elles bénéficient d'une exceptionnelle qualité de fabrication tout inox. Le fouet souple évite les inconvénients rencontrés avec les modèles rigides en fibre de verre qui cassent facilement.

Antenne type "1/2 onde" omnidirectionnelle.

Base intégrant la self d'accord (avec connexions soudées) noyée dans la résine. Sortie sur embase standard S0-239. Protection contre la foudre intégrée. Diamètre à l'embase : 40 mm. Installation très

simple grâce à l'étrier de montage en inox fourni.

Il en existe trois modèles :

Antenne FM stéréo

Pour obtenir le meilleur de votre tuner, sans investir dans une installation coûteuse et compliquée. Permet une réception optimum, même dans les endroits "difficiles".

Antenne FM stéréo + AM. Z = 75 ohms. Gain : 2,5 dB.

Hauteur : 1,37 m. Impédance : 75 ohms. Raccord de fouet doré.

Coax recommandé : "TV" 75 ohms. E74.55 489,00 F TTC

Antenne VHF "433 MHz"

Pour les systèmes de télécommande ou de sécurité fonctionnant sur 433 MHz.

Utilisation possible de 430 à 512 MHz.

Z = 50 ohms. TOS < 1,2Puissance admissible : 250 W E68.60 450,00 F TTC

Antenne VHF "marine"

Le choix des professionnels. Ce modèle vient d'être adopté par les U.S. COAST GUARDS (Gardescôtes américains).

Z = 50 ohms. TOS: <1,2 Puissance admissible: 250 W E70.13 460,00 F TTC

Catalogue

Il vient de sortir! Vous y découvrirez de nombreuses affaires, en composants comme en produits finis,

alors ne le manquez pas!

www.selectronic.fr •

COMPOSANTS

OPTEK

Réseaux de photodiodes

Ces composants sont dédiés aux codeurs optiques incrémentaux. La famille OSMxxx commence avec l'OSM960. Il délivre une sortie analogique différentielle en quadrature pour les canaux A et B ainsi qu'un canal d'indexation d'origine.

La large surface active des photodiodes offre un temps de réponse ultrarapide et une grande sensibilité. La conception de ce produit le rend utilisable en haute et basse résolution.

Disponible en boîtier CMS 12 broches, type SO.

Source : « Communiqué « de « Unique Memec «.

http://www.optekinc.com/ ◆

PC industriel monochip

Permettant d'intégrer Internet dans un produit à faible coût, ce boîtier DIL32 est basé sur l'architecture x86. Il contient un microprocesseur IPC@CHIP SC12, destiné aux applications où la partie contrôle ou mesure est combinée à une liaison TCP/IP. Ses ports intégrés permettent de relier ce serveur web à l'Internet.

Le contrôleur est équipé d'un OS temps réel permettant de développer une application 16 bits et de la démarrer comme une tâche supplémentaire.

Les caractéristiques sont les suivantes :

CPU 16 bits 186-20MHz. RAM 512 Ko, Flash 512 Ko. RTOS avec Flash File System. Chargement de logiciel via port série ou Ethernet.

TCP/IP, PPP, HTTP, FTP, Telnet, POP3, SMTP et DHCP.

Port Ethernet 10BaseT avec PHY. 2 ports série rapides TTL-RS323 RXD, TXD, CTS, RTS.

Bus I_C, Watchdog.

2 timers Entrée, 2 timers Sortie. Détection de défaut d'alimentation (NMI) sans perte de données. Bus AD multiplexé compatible Intel®.

14 broches I/O programmables. Boîtier DIL32 - 22 x 44 x 9,5mm (largeur x longueur x hauteur).

Pour obtenir davantage d'informations sur ce composant, visitez le site :

www.bcl-online.de/mproducts/ ◆

MULTIMEDIA

INFOTRONIQUE

CD-ROM éducatif

"La téléphonie mobile en questions"

C'est le second CD-ROM édité par la société INFOTRONIQUE. Le premier s'appelait « L'électronique en questions «. Ce nouveau volume couvre un ensemble de domaines liés au réseau de téléphonie mobile GSM. Il permet de mieux comprendre la conception des terminaux, le choix des antennes, les phénomènes liés à la propagation des ondes, la configuration des stations de base, le fonctionnement des réseaux.

La partie pédagogique est basée sur des unités de connaissances (45 en tout) qui relient des éléments enseignés traditionnellement en cours, ainsi que sur un index de notions, des exercices et de nombreuses animations rendant le CD exploitable, par l'enseignant ou l'étudiant, avant, après et même pendant le cours.

Il dispose d'outils permettant de synthétiser les connaissances : étude

de cas, carte des connaissances, éditeur de parcours personnels. D'autres permettent l'échange entre l'étudiant et l'enseignant (services internet, éditeur de parcours, bloc notes imprimable).

Ce CD-ROM, exploitable sur PC et Mac, fondé sur une démarche pédagogique privilégiant la mise en situation et le questionnement, est destiné en priorité, dans le cadre d'une formation initiale (bac+4 ou +5) et continue à des apprenants dont le cursus intègre des cours sur la norme GSM. Il s'adresse aussi à tous ceux qui souhaitent maîtriser les différents domaines liés aux réseaux de téléphonie mobile GSM.

Des informations complémentaires et un module de démonstration en ligne sont disponibles sur le site :

www.infotronique.fr •

DISTRIBUTEURS

CONRAD

Station météo sans fil

La nouvelle station météorologique à prix incroyable (169 F) dotée d'une horloge intégrée ! Cet appareil affiche en 3 sections l'heure exacte, la température ambiante et jusqu'à 3 températures extérieures avec possibilité de relier 3 capteurs externes. L'affichage de température s'effectue en °C ou °F. De plus, la centrale est équipée d'une mémoire mini/maxi. Contenu : thermomètre sans fil avec un détecteur externe (livré sans pile).

Caractéristiques techniques :

Température ambiante : de 0 à +60°C avec résolution de 0,1°C. Cycle de mesure toutes les 10 secondes. Gamme de température extérieure de -29,9°C à +69,9°C. Résolution de 0,1°C. Cycle de

COMELEC

Une ampoule électrique

température toutes les 5 secondes. Dim. : 60 x 22,5 x 150 mm.

www.conrad.fr ◆

BIBLIOTHÈQUE

Logiciels PC pour l'électronique

Patrick GUEULLE - ETSF

Dans ce livre, l'auteur aborde différents aspects de l'utilisation d'un PC en électronique : conception, mise au point, réalisation de montages.

On trouvera donc la présentation de logiciels permettant : la saisie de schémas, la création de circuits

imprimés, la simulation analogique et digitale, le développement de code pour composants programmables, l'instrumentation virtuelle... cette liste n'étant pas exhaustive.

Les logiciels présentés, provenant du monde entier, ont été essayés et sont commentés sans complaisance. Ils permettent un véritable passage à la pratique, souvent sans bourse délier grâce au CD-ROM inclus avec l'ouvrage.

Ce CD-ROM rassemble ce que l'auteur a pu trouver de meilleur dans chaque domaine : logiciels gratuits, recueils de caractéristiques et équivalences de composants, versions limitées de logiciels professionnels... une véritable mine d'or!

Dans cette nouvelle édition, la présentation du livre est claire, aérée, les textes étant illustrés à chaque fois que nécessaire. Le CD-ROM

a été mis à jour et complété. Cet ouvrage, à la portée de tous, peut être mis entre toutes les mains : il suffit de posséder un PC moderne, équipé d'un lecteur de CD-ROM pour passer à la pratique!

Cet ouvrage est disponible à notre catalogue, voir pages librairie de la revue.

C e t t e a m p o u l e standard à vis (220 V / 60 watts) est conçue pour éloigner les moustiques et certains i n s e c t e s

indésirables. Vous pouvez l'utiliser aussi bien à l'intérieur de votre maison qu'à l'extérieur, sous une véranda ou dans votre jardin. Sa durée de vie est de 1000 heures et son rayon d'action est de 2 à 3 mètres.

www.comelec.fr •

Logiciels PC

EF.334

Concentré de haute technologie : Un antivol auto avec GSM et GPS

Ce tout nouvel antivol auto est un pur concentré de technologie. Sitôt déclenché, il prévient le propriétaire du véhicule en l'appelant sur son portable et en lui envoyant, sous forme de mini-message (SMS), les coordonnées géographiques relatives à la position du véhicule relevée par GPS. En plus, il permet d'intervenir à distance pour, par exemple, déclencher la sirène d'alarme, ou faire autre chose. Le tout avec assistance vocale fournissant toutes les instructions nécessaires.

Les concepteurs de systèmes de protection s'ingénient à inventer en permanence des antivols de plus en plus efficaces. Nos bureaux d'études se sont également penchés sur le problème et cet article est notre contribution.

Il faut savoir qu'en France le nombre de voitures volées chaque année est très important. Les statistiques relatives à l'année 1999 font acte de près de 300 000 véhicules volés, dont près de la moitié n'ont jamais été retrouvés.

Parmi les voitures les plus volées figurent les Golf et les Peugeot 106. Mais aucun modèle n'est vraiment épargné, car dans ce nombre figurent aussi bien les grosses cylindrées que les petites, et aussi bien les Mercedes, les BMW et les Ferrari, que les Skoda, les Daewoo, les Citroën et les Renault.

Présentation générale

Pour faire face à ce phénomène, on ne peut que faire confiance à un bon antivol, lequel est plus efficace s'il est original et utilise les techniques avancées. Celui que nous proposons dans cet article est assurément ce que l'on peut concevoir de mieux sur la base des toutes dernières technologies.

C'est ainsi que va le monde et que les primes des contrats

d'assurance auto ont du mal à rester stables d'une année

A son sujet, il convient de préciser deux choses.

à l'autre.

HI-TECH

La première est qu'il ne remplace pas l'alarme installée sur le véhicule, mais la complète. En ce sens qu'il s'y ajoute. En effet, il se relie à la sortie d'un système d'alarme déjà en place sur le véhicule.

La deuxième est qu'il s'agit d'un dispositif de type personnel : le signal déclenché par l'alarme est envoyé directement au propriétaire du véhicule, par l'intermédiaire de son téléphone portable. Il est donc impératif que celui qui veut installer cet antivol possède un téléphone portable donnant accès au réseau GSM et qu'il l'ait constamment allumé sur lui.

Le signal d'alarme est envoyé sous forme de SMS (Short Message Service) autrement dit au moyen d'un minimessage, et fournit en même temps les coordonnées géographiques relatives à la position du véhicule volé. En effet, notre antivol inclut également un récepteur GPS (Global Positioning System) permettant de repérer la position du véhicule.

Si le signal d'alarme n'est envoyé que dans le seul cas où l'antivol est déclenché, il est, par contre, possible d'interroger à tout moment l'unité éloignée pour en connaître la position.

Après avoir reçu le signal d'alarme, le propriétaire peut soit intervenir personnellement si sa voiture a été déplacée à proximité de son domicile, soit alerter les forces de l'ordre.

Mais les choses ne s'arrêtent pas là.

En effet, nous avons prévu d'activer, sur l'unité éloignée (donc sur le véhi-

cule) et toujours par voie hertzienne, deux relais au moyen desquels on peut contrôler autant de fonctions.

Par exemple, avec l'un on peut mettre en fonctionnement le klaxon ou une sirène et, avec l'autre, on peut faire clignoter les phares ou même couper le moteur.

En voulant être plus méchant (mais dans ce cas il ne faudrait pas craindre la casse des vitres ou du pare-brise!) on pourrait provoquer le blocage des portières et des lève-vitres, ou mettre en route un message criant à tue-tête: "au voleur! au voleur!".

Pour ce genre de choses, chacun peut faire appel à sa fantaisie.

Les deux relais sont là et chacun peut en faire l'usage qu'il veut, en respectant la législation en vigueur. Ils sont indépendants du fait que l'alarme serait ou non entrée en fonctionnement et peuvent être commandés à n'importe quel moment.

Il suffit d'appeler l'unité éloignée au moyen du téléphone portable et suivre les instructions qui sont données par la voix synthétisée faisant partie du système.

Et c'est là – pour ainsi dire – la cerise sur le gâteau car, dans un système aussi sophistiqué, il nous a paru évident d'inclure un circuit de synthèse vocale pour fournir à l'utilisateur l'assistance nécessaire.

Enfin, dans le but de pousser à l'extrême l'inviolabilité de notre antivol et d'éviter que quelqu'un ayant découvert le numéro de téléphone de l'unité éloignée puisse entrer dans le système, nous lui avons ajouté un mot de passe.

Le système embarque donc un module GSM (Global System for Mobile communication), un récepteur GPS et son antenne, et un système de synthèse vocale.

Pour gérer ces éléments et en faire un ensemble coordonné, nous avons fait appel à deux microcontrôleurs que nous avons programmé.

Ainsi que le montre l'illustration de tête d'article, nous sommes parvenus, grâce à l'utilisation de modules ultra-

HI-TECH

compacts, à réaliser un dispositif aux dimensions extrêmement réduites pouvant être facilement dissimulé à l'intérieur d'un véhicule.

Pour l'activation de l'envoi des SMS à partir du module GSM, il suffit de demander l'option de télémessagerie au Service Clients de votre opérateur.

Côté GPS, il est bon de savoir que non seulement il s'agit d'un service gratuit, mais que depuis quelque temps le signal de la constellation GPS américaine ne parvient plus dégradé et atteint la précision militaire, avec une erreur ne dépassant pas cinq mètres.

Nous ne savons pas si cette situation est temporaire ou définitive mais espérant, évidemment, dans son maintien, nous ne pouvons que féliciter les hommes qui président à son fonctionnement.

Vous comprendrez qu'une précision de cet ordre permet de localiser un véhicule très facilement. D'où la possibilité de l'installer sur d'autres types d'unités mobiles : terrestres (camions, cars, camping-cars...) ou maritimes, vu que les bateaux ne sont pas épargnés par le vol.

Comme le prix moyen d'un bateau est d'environ dix fois supérieur à celui d'une voiture, l'emploi d'un antivol de ce genre paraît justifié. Sans compter son utilité en cas d'accident en mer car, fournissant la localisation précise du bateau, il permet d'y dépêcher des secours à coup sûr. Certes, le dispositif ne peut fonctionner que dans les zones couvertes par le réseau GSM.

Mais comme celui-ci est très étendu, il n'y a pas lieu de se plaindre.

Emmenez, par exemple, votre portable en croisière. Vous pouvez vous déplacer de Dunkerque à Nice et constater qu'à l'exception de très peu d'endroits, vous pouvez téléphoner et recevoir des appels partout.

Concluons cette présentation en disant que notre système peut aussi fonctionner sans le récepteur GPS. Dans ce cas, l'alarme n'envoie pas les coordonnées relatives à la localisation du véhicule. Cette solution permet de réduire presque de la moitié le prix de revient de l'antivol, tout en gardant inchangées ses autres caractéristiques et notamment l'envoi du signal d'alarme sur le portable du propriétaire du véhicule et la possibilité d'activer deux

relais à distance. Il ne restera plus qu'à localiser le véhicule !

convient de jeter un œil au synoptique de la figure 1.

tion principale et l'autre à la section vocale.

L'analyse globale

Avant d'analyser les deux sections constituant le schéma électrique, il

Une fois familiarisés avec les différents organes et après avoir compris comment ceux-ci interagissent les uns sur les autres, passez aux schémas des figures 2 et 3 relatifs, l'un à la sec-

ISD2590 VCCD VCCA 13 SP+ 15 SP-AUX IN Α8 20 ANA IN ANA OUT MIC REF EOM 17 MIC OVE

Figure 4b : Brochage du circuit de synthèse vocale ISD2590. C'est dans un circuit de ce type que nous avons stocké les messages débités au cours de l'utilisation de l'antivol.

Le GSM

Comme module GSM nous avons utilisé le tout nouveau FALCOM A2D, référencé CELL (CELLulaire) dans la figure 2, qui est en fait la version bibande du

précédent modèle A2 et qui, en plus de pouvoir travailler tant à 900 MHz qu'à 1,8 GHz, est plus fiable dans l'ensemble et se présente dans un boîtier plus pratique. Le fabricant de ce module en est arrivé là et a pu effectuer un tel bond en avant grâce à l'emploi d'un chip-set GSM complètement repensé.

Note de la rédaction :

De nombreux lecteurs nous ont demandé pour quelles raisons nous

Figure 5 : Organigramme du programme de gestion de l'antivol.

Le système peut envoyer les coordonnées géographiques relatives à la position du véhicule, soit automatiquement chaque fois que l'alarme se déclenche, soit au coup par coup à la demande du propriétaire. Les informations sont transmises sous forme de mini-message (SMS). Par ailleurs, et toujours par voie téléphonique, il est possible d'activer deux relais à distance, pouvant, par exemple, l'un déclencher une sirème et l'autre couper le moteur. Toutes les indications au cours de l'utilisation sont fournies par une voix de synthèse. L'antivol prévoit également un mot de passe qui en interdit l'utilisation à qui voudrait s'en servir sans y être autorisé.

HI-TECH

n'utilisions pas des GSM grand public ou de récupération. Ces raisons sont au nombre de deux. D'une part, les GSM grand public sont livrés, dans la très grande majorité des cas, sans explication ni détail du brochage de leur prise. Il n'est donc pas possible d'accéder à leurs fonctions internes. D'autre part, même si l'on disposait du brochage de leur prise et des explications indispensables pour les piloter depuis l'extérieur, il faudrait adapter le montage pour chaque type de GSM, ce qui rendrait toute description impossible à reproduire. Comme vous avez pu le remarquer à la lecture de nos articles mettant en œuvres les communications via le réseau mobile, nous utilisons toujours un modem professionnel de la firme FALCOM. Cet appareil a, certes, un coût mais il est à peu près le seul à être livré avec une documentation complète. Grâce à lui, nous pouvons vous proposer régulièrement des projets très fiables et parfaitement reproductibles.

Le GPS

Comme récepteur GPS nous avons utilisé le bien connu GARMIN GPS25 qui a largement fait ses preuves, capable de syntoniser jusqu'à 12 canaux en même temps.

Nous avons ajouté à ce module l'antenne amplifiée GA27, aux dimensions réduites.

Le synthétiseur vocal

La section vocale (figure 3) utilise un ISD2590 (figures 4a et 4b) dans lequel nous avons enregistré toutes les phrases nécessaires. Cette section constitue une sorte de sousensemble piloté par son propre microcontrôleur (U2) dont le rôle consiste exclusivement à gérer les bancs mémoire du circuit de parole.

Le microcontrôleur principal

Le vrai cœur du système est par contre ailleurs. Il s'agit d'un deuxième microcontrôleur (U4), figurant dans le schéma relatif à la section principale (figure 2). C'est lui qui préside véritablement au fonctionnement des différents étages.

Les circuits annexes

On trouve ensuite le circuit décodeur DTMF (U1) et un circuit intégré régulateur de tension switching (U5).

La description détaillée

Référons-nous maintenant au schéma relatif à la section principale (figure 2).

Le circuit est alimenté par la batterie du véhicule. Typiquement à 12 volts, nous savons que la tension à ses bornes peut en réalité varier entre 10 et 15 volts en fonction du régime moteur.

Etant donné que tous les composants utilisés dans le circuit (à l'exclusion des deux relais de sortie) fonctionnent sous 5 volts stabilisés, nous avons introduit un étage régulateur de tension switching, dont font partie le circuit intégré U5 (un LM2576T-5), la diode à commutation rapide D7 (un type BY399) et une inductance de 330 microhenrys (L1).

Le rendement de cet étage est linéaire quel que soit le régime moteur. Par ailleurs, le courant qu'il fournit est plus

que suffisant pour alimenter tous les étages. En effet, la consommation maximale de l'antivol avec le GSM en fonctionnement se situe aux alentours de 500 mA.

Avec les 5 volts stabilisés ainsi produits, on alimente tous les circuits intégrés, le module A2D et le récepteur GPS.

Ce dernier utilise le connecteur à trois pôles désigné CN1 GPS dans le schéma, auquel aboutissent les deux lignes d'alimentation (le + 5 volts et la masse) et la sortie série sur laquelle sont présentes les données en format NMA0183.

Aucun contrôle n'étant prévu dans ce type de transmission, dès que le système est mis sous tension, les données arrivent sur la patte 17 du microcontrôleur U4. Cette patte (RAO) est configurée en entrée.

Les connexions au module cellulaire A2D se font au moyen d'un connecteur à 40 pôles et, pour ce qui concerne l'alimentation, par un connecteur à 4 pôles J1, J2, J3, J4. Ces deux connecteurs sont fixés à l'arrière de la carte.

Le microcontrôleur U4 est relié aux lignes d'entrée/sortie des données de l'A2D. Plus précisément : la patte 12 (RB6) reliée à DATA TX (correspondant au pôle 27 du grand connecteur) est celle relative à la transmission des données. Tandis que la patte 11 (RB5) reliée à DATA RX (correspondant au pôle 28 du grand connecteur) est celle relative à la réception des données. Les autres lignes de contrôle sont court-circuitées entre elles : RST (patte 34) avec CTS (patte

HI-TECH

Figure 6 : Schéma d'implantation des composants sur la face principale du circuit imprimé. De l'autre côté de la carte on trouve essentiellement des connecteurs.

D1 D2

niveau logique bas à un niveau logique haut.

Dans ce cas, le microcontrôleur U4 déclenche aussitôt, par l'intermédiaire du cellulaire A2D, l'envoi d'un SMS en direction du portable dont le numéro a préalablement été mémorisé dans la puce de la carte SIM.

Ce message comprend une phrase d'alarme générique ainsi que les coordonnées (latitude et longitude) relatives à la position du véhicule. Les coordonnées sont exprimées en degrés, secondes et millièmes de degré.

Ce format est courant et interprétable par tous les logiciels de gestion cartographique actuellement en circulation. Le message est répété chaque fois que l'entrée d'alarme passe de l'état bas à l'état haut.

36), et DCD (patte 32) avec DSR (pattes 33 et 35).

L'entrée SOFT-ON (patte 29) est reliée au réseau R/C constitué par C13, R11 et R18. Le rôle de ce réseau est de générer un retard.

Pour ce qui concerne la section analogique, la sortie audio de l'A2D (patte 37) est reliée à l'entrée du décodeur DTMF aboutissant au circuit intégré U1, tandis que l'entrée BF du GSM (pattes 39 et 40) est reliée à la sortie du circuit de synthèse vocale.

Au connecteur CN2 (POWER/ALARM) aboutissent la tension d'alimentation à 12 volts (le + sur la borne 4 et la masse sur les bornes 2 et 3) et l'entrée d'alarme (borne 1).

Ainsi que nous l'avons dit dans la présentation générale, cette entrée est à relier à la sortie de l'alarme en place sur le véhicule, souvent installée d'origine.

En cas de déclenchement de l'alarme, le signal doit passer de l'état bas à l'état haut.

Quant au réseau formé par R3, C1, D3 et R4, son rôle est d'écrêter le signal reçu, pour que les impulsions arrivant sur l'entée d'alarme du microcontrôleur U4 (RA3) soient d'un niveau compatible avec la tension admissible sur cette patte et n'endommagent pas le circuit intégré.

Voyons maintenant ce qui se passe lorsque l'entrée d'alarme passe d'un

Liste des composants

R1-R2	=	4,7 kΩ	D3	=	Zener 5,1 V
R3-R4	=	10 kΩ	D4-D5	=	Diodes 1N4148
R5	=	330 kΩ	D6	=	Diode 1N4007
R6	=	470 kΩ	D7	=	Diode BY399
R7	=	47 kΩ	U1	=	Intégré MT8870
R8	=	1 Ω	U2	=	μC PIC16C84-MF334A
R9	=	560 Ω	U3	=	Intégré ISD2590
R10	=	4,7 kΩ			DAST-MF334C
R11	=	10 kΩ	U4	=	μC PIC
R12-R13	=	100 kΩ			16C558-MF334B
R14	=	560 Ω	U5	=	Intégré LM2576T-5
R15	=	$4,7~\mathrm{k}\Omega$	T1-T2	=	NPN BC547B
R16	=	10 kΩ	FUS	=	Fusible 1A
R17	=	4,7 kΩ	RL1-RL2	=	Relais 12 V min.
R18	=	10 kΩ	Q1	=	Quartz 3,57 MHz
R19	=	39 Ω			low-profil
R20-R21	=	1 kΩ	Q2	=	Quartz 4 MHz low-profil
R22	=	18 Ω	Q3	=	Quartz 8 MHz low-profil
C1	=	2,2 μF 25 V	L1	=	Self 330 μH 0,5 A
		électrolytique			
C2	=	100 nF 63 V polyester	Divers:		
C3-C4	=	100 nF 63 V polyester 22 pF céramique	1		dem FALCOM A2D
C3-C4 C5		100 nF 63 V polyester 22 pF céramique 100 nF 63 V polyester	1 1	Réc	cepteur GPS GARMIN 25
C3-C4	=	100 nF 63 V polyester 22 pF céramique 100 nF 63 V polyester 2,2 µF 25 V	1 1 2	Réc Bor	cepteur GPS GARMIN 25 niers 2 pôles
C3-C4 C5 C6	= =	100 nF 63 V polyester 22 pF céramique 100 nF 63 V polyester 2,2 µF 25 V électrolytique	1 1 2 2	Réc Bor Bor	cepteur GPS GARMIN 25 niers 2 pôles niers 3 pôles
C3-C4 C5 C6	= =	100 nF 63 V polyester 22 pF céramique 100 nF 63 V polyester 2,2 µF 25 V électrolytique 100 nF 63 V polyester	1 1 2 2 2	Réc Bor Bor Sup	cepteur GPS GARMIN 25 niers 2 pôles niers 3 pôles oports 2 x 9 broches
C3-C4 C5 C6	= = =	100 nF 63 V polyester 22 pF céramique 100 nF 63 V polyester 2,2 µF 25 V électrolytique 100 nF 63 V polyester 2,2 µF 25 V	1 1 2 2 2 1	Réc Bor Bor Sur Sur	cepteur GPS GARMIN 25 niers 2 pôles niers 3 pôles oports 2 x 9 broches oport 2 x 14 broches
C3-C4 C5 C6 C7 C8	= = =	100 nF 63 V polyester 22 pF céramique 100 nF 63 V polyester 2,2 µF 25 V électrolytique 100 nF 63 V polyester 2,2 µF 25 V électrolytique	1 1 2 2 2	Réc Bor Bor Sur Sur Cor	cepteur GPS GARMIN 25 niers 2 pôles niers 3 pôles oports 2 x 9 broches oport 2 x 14 broches nnecteur AMP
C3-C4 C5 C6 C7 C8	= = =	100 nF 63 V polyester 22 pF céramique 100 nF 63 V polyester 2,2 µF 25 V électrolytique 100 nF 63 V polyester 2,2 µF 25 V électrolytique 22 pF céramique	1 1 2 2 2 2 1 1	Réc Bor Bor Sup Sup Cor 40	cepteur GPS GARMIN 25 miers 2 pôles miers 3 pôles ports 2 x 9 broches port 2 x 14 broches mecteur AMP broches
C3-C4 C5 C6 C7 C8	= = = =	100 nF 63 V polyester 22 pF céramique 100 nF 63 V polyester 2,2 µF 25 V électrolytique 100 nF 63 V polyester 2,2 µF 25 V électrolytique 22 pF céramique 1000 µF 35 V	1 1 2 2 2 2 1 1	Réc Bor Bor Sup Sup Cor 40 Cor	cepteur GPS GARMIN 25 miers 2 pôles miers 3 pôles ports 2 x 9 broches port 2 x 14 broches mecteur AMP broches mecteur strip 4 broches
C3-C4 C5 C6 C7 C8 C9 C10	= = = = = =	100 nF 63 V polyester 22 pF céramique 100 nF 63 V polyester 2,2 µF 25 V électrolytique 100 nF 63 V polyester 2,2 µF 25 V électrolytique 22 pF céramique 1000 µF 35 V électrolytique	1 1 2 2 2 2 1 1 1	Réc Bor Bor Sur Sur Cor 40 Cor Cât	cepteur GPS GARMIN 25 niers 2 pôles niers 3 pôles ports 2 x 9 broches port 2 x 14 broches nnecteur AMP broches nnecteur strip 4 broches ble d'antenne FME
C3-C4 C5 C6 C7 C8	= = = = = =	100 nF 63 V polyester 22 pF céramique 100 nF 63 V polyester 2,2 µF 25 V électrolytique 100 nF 63 V polyester 2,2 µF 25 V électrolytique 22 pF céramique 1000 µF 35 V électrolytique 4700 µF 6,3 V	1 1 2 2 2 2 1 1 1	Réc Bor Bor Sup Cor 40 Cor Câb Ada	cepteur GPS GARMIN 25 niers 2 pôles niers 3 pôles poorts 2 x 9 broches poort 2 x 14 broches nnecteur AMP broches nnecteur strip 4 broches ole d'antenne FME aptateur FME/FME
C3-C4 C5 C6 C7 C8 C9 C10		100 nF 63 V polyester 22 pF céramique 100 nF 63 V polyester 2,2 µF 25 V électrolytique 100 nF 63 V polyester 2,2 µF 25 V électrolytique 22 pF céramique 1000 µF 35 V électrolytique 4700 µF 6,3 V électrolytique	1 1 2 2 2 2 1 1 1	Réc Bor Bor Sup Cor 40 Cor Câb Ada Boî	cepteur GPS GARMIN 25 niers 2 pôles niers 3 pôles ports 2 x 9 broches port 2 x 14 broches necteur AMP broches necteur strip 4 broches ole d'antenne FME aptateur FME/FME tier mod. COFFER3
C3-C4 C5 C6 C7 C8 C9 C10		100 nF 63 V polyester 22 pF céramique 100 nF 63 V polyester 2,2 μF 25 V électrolytique 100 nF 63 V polyester 2,2 μF 25 V électrolytique 22 pF céramique 1000 μF 35 V électrolytique 4700 μF 6,3 V électrolytique 100 μF 25 V	1 1 2 2 2 1 1 1 1 1	Réc Bor Bor Sur Cor 40 Cor Cât Ada Boî	cepteur GPS GARMIN 25 niers 2 pôles niers 3 pôles oports 2 x 9 broches oport 2 x 14 broches necteur AMP broches necteur strip 4 broches ole d'antenne FME aptateur FME/FME tier mod. COFFER3 équ.
C3-C4 C5 C6 C7 C8 C9 C10 C11		100 nF 63 V polyester 22 pF céramique 100 nF 63 V polyester 2,2 μF 25 V électrolytique 100 nF 63 V polyester 2,2 μF 25 V électrolytique 22 pF céramique 1000 μF 35 V électrolytique 4700 μF 6,3 V électrolytique 100 μF 25 V	1 1 2 2 2 1 1 1 1 1	Réc Bor Bor Sur Cor 40 Cor Câk Ada Boî ou	cepteur GPS GARMIN 25 niers 2 pôles niers 3 pôles oports 2 x 9 broches oport 2 x 14 broches necteur AMP broches necteur strip 4 broches ole d'antenne FME aptateur FME/FME tier mod. COFFER3 équ. enne GARMIN GA27;
C3-C4 C5 C6 C7 C8 C9 C10	= = = = =	100 nF 63 V polyester 22 pF céramique 100 nF 63 V polyester 2,2 μ F 25 V électrolytique 100 nF 63 V polyester 2,2 μ F 25 V électrolytique 22 pF céramique 1000 μ F 35 V électrolytique 4700 μ F 6,3 V électrolytique 100 μ F 25 V électrolytique 220 μ F 16 V	1 1 2 2 2 1 1 1 1 1	Réc Bor Bor Sur Cor 40 Cor Câk Ada Boî ou Ant	cepteur GPS GARMIN 25 niers 2 pôles niers 3 pôles oports 2 x 9 broches oport 2 x 14 broches necteur AMP broches necteur strip 4 broches ole d'antenne FME aptateur FME/FME tier mod. COFFER3 équ. enne GARMIN GA27; enne plate
C3-C4 C5 C6 C7 C8 C9 C10 C11 C12 C13		100 nF 63 V polyester 22 pF céramique 100 nF 63 V polyester 2,2 μ F 25 V électrolytique 100 nF 63 V polyester 2,2 μ F 25 V électrolytique 22 pF céramique 1000 μ F 35 V électrolytique 4700 μ F 6,3 V électrolytique 100 μ F 25 V électrolytique 220 μ F 16 V électrolytique	1 1 2 2 2 1 1 1 1 1 1 1	Réc Bor Bor Sur Cor 40 Cor Cât Ada Boî ou Ant bib	cepteur GPS GARMIN 25 niers 2 pôles niers 3 pôles oports 2 x 9 broches oport 2 x 14 broches necteur AMP broches necteur strip 4 broches ole d'antenne FME optateur FME/FME tier mod. COFFER3 équ. enne GARMIN GA27; enne plate ande GSM
C3-C4 C5 C6 C7 C8 C9 C10 C11		100 nF 63 V polyester 22 pF céramique 100 nF 63 V polyester 2,2 μ F 25 V électrolytique 100 nF 63 V polyester 2,2 μ F 25 V électrolytique 22 pF céramique 1000 μ F 35 V électrolytique 4700 μ F 6,3 V électrolytique 100 μ F 25 V électrolytique 220 μ F 16 V	1 1 2 2 2 1 1 1 1 1	Réc Bor Bor Sup Cor 40 Cor Câk Ada Boî ou Ant biba Circ	cepteur GPS GARMIN 25 niers 2 pôles niers 3 pôles oports 2 x 9 broches oport 2 x 14 broches necteur AMP broches necteur strip 4 broches ole d'antenne FME aptateur FME/FME tier mod. COFFER3 équ. enne GARMIN GA27; enne plate

A ce moment, nous pouvons appeler l'unité éloignée (en réalité, l'unité éloignée peut être appelée à tout moment), laquelle nous répond automatiquement. Une voix synthétisée nous invite d'abord à entrer le mot de passe, et si ce mot est correct elle nous propose trois choix : appuyer sur la touche 1 pour activer la première sortie (RL1); appuyer sur la touche 2 pour activer la deuxième sortie (RL2); appuyer sur la touche 3 pour demander l'envoi d'un mini-message fournissant les coordonnées du véhicule.

A chaque commande fait suite une confirmation, toujours vocale.

Pour interrompre la liaison à tout moment, il suffit de raccrocher. Par ailleurs, si l'utilisateur n'envoie aucune commande en l'espace de 20 secondes, un compteur de dépassement (time-out) coupe la liaison.

En fait, c'est le codage DTMF élaboré par le clavier du portable qui est reconnu par le décodeur DTMF, correspondant au circuit intégré U1, un classique 8870, relié au microcontrôleur U4 par un bus de 5 lignes (Q1, Q2, Q3, Q4 et StD).

Pour pouvoir fonctionner, le décodeur DTMF se satisfait de peu de composants externes : le quartz Q1 à 3,58 MHz qui représente l'horloge (clock) du circuit, le réseau R12/R13 qui détermine le gain de l'étage d'entrée et la cellule C2/R5 qui contrôle la temporisation du circuit de reconnaissance.

Si la touche sur laquelle on vient d'appuyer est le 1, le microcontrôleur change l'état présent sur la sortie RA2 (patte 1) et, de ce fait, il active ou désactive le relais qui contrôle la première sortie (RL1).

Si la touche sur laquelle on vient d'appuyer est le 2, le microcontrôleur change l'état présent sur la sortie RA1 (patte 18) et, de ce fait, il active ou désactive le relais qui contrôle la deuxième sortie (RL2).

Tandis que si la touche sur laquelle on vient d'appuyer est le 3, le cellulaire A2D envoie un mini-message contenant les coordonnées lues à ce moment-là par le récepteur GPS.

Tout ce qu'on vient de dire paraît évidemment très simple, mais, du point de vue de la programmation, les choses sont loin de l'être autant! Nous serions même tentés de dire que les choses sont en vérité terriblement

Figure 7 : Photo de la partie commande donnant une idée de la complexité de l'antivol.

Figure 8a : Dessin, à l'échelle 1, du circuit imprimé double face à trous métallisés côté soudures.

Figure 8b : Dessin, à l'échelle 1, du circuit imprimé double face à trous métallisés côté composants.

Figure 9 : Détail concernant la façon de relier le récepteur GPS à la carte.

complexes. Si complexes, par exemple, qu'un seul microcontrôleur (U4) n'a pas suffi à contenir la totalité du programme. Au point que, pour la gestion du circuit effectuant la synthèse vocale, il a fallu faire appel à un deuxième microcontrôleur (U2). Celui-ci, en fonction du type de commande choisie par l'utilisateur, demande au module de synthèse vocale l'envoi d'un certain message, en utilisant les lignes RA4 (patte 3) et RB7 (patte 13).

La sélection du message et l'activation du circuit de parole U3 restent ainsi entièrement sous le contrôle du microcontrôleur U2. Ce dernier ne s'occupe que de cette gestion, et comme son périmètre est bien découpé, nous en avons tiré un schéma à part, présenté à la figure 3. Cette figure résume uniquement le travail relatif à la section vocale.

Les échanges entre le circuit de parole et le microcontrôleur asservi ont demandé l'utilisation d'un bus de 11 lignes. Onze lignes de contrôle entièrement affectées à cet étage donnent la mesure de la complexité du logiciel de gestion.

Les échanges entre les deux microcontrôleurs ont lieu en mode série. Par conséquent, deux lignes seulement sont nécessaires pour qu'ils puissent dialoguer entre eux. Ces échanges se limitent à des commandes du type : "sort la phrase numéro 7", "sort la phrase numéro 2", chose qu'il n'aurait pas été possible si U4 avait été relié directement à l'ISD.

Pour savoir comment tout ceci est pris en compte par le logiciel de gestion et comment fonctionne le système installé à bord du véhicule, il faut regarder l'organigramme de la figure 5.

Le numéro de téléphone de l'unité éloignée est, bien évidemment, celui de la carte SIM glissée dans le module cellulaire FALCOM A2D.

Nous le disons ici mais nous le redirons plus loin : lors de la mise en service de cette carte SIM, il faut désactiver le code PIN.

Par ailleurs, le numéro à appeler en cas d'alerte doit être mémorisé à la première position mémoire de la carte SIM et, à ce numéro, il faut affecter le nom "NUMERO" (en minuscule sans les guillemets).

Dans la deuxième position mémoire, il faut insérer le numéro du Centre Serveur de télémessagerie propre à l'opérateur de téléphonie mobile auprès duquel vous avez souscrit l'abonnement, et à ce numéro, il faut donner le nom "CS" (en minuscule sans les guillemets).

Pour ce qui concerne le mot de passe, il n'y a aucune saisie à faire car celui-ci est saisi automatiquement, en prenant les quatre derniers chiffres du numéro que l'unité éloignée doit appeler. Ainsi, par exemple, si le numéro à appeler est le 06 61 94 38 14, le mot de passe est 3814.

Si nous voulions traiter de façon approfondie tous les détails de cet antivol et les implications avec le logiciel, nous dépasserions largement le cadre de cet article et c'est un véritable livre qu'il nous faudrait écrire!

La réalisation pratique

La photo d'en-tête ainsi que celle de la figure 7 donnent une idée de la complexité de l'antivol. Une bonne expérience en matière d'assemblage est donc requise.

Commencer par vous procurer ou par graver et percer le circuit imprimé. Celui-ci est un double face à trous métallisés. Les tracés à l'échelle 1 sont donnés figures 8a et 8b.

Pour réduire au minimum les dimensions du circuit, la densité des compo-

Figure 10 : Le récepteur GPS (GARMIN 25 à 12 canaux) est à fixer à l'horizontale, au-dessus du tapis de composants, au moyen de quatre entretoises. Le boîtier ne doit pas toucher les composants. Les liaisons électriques se limitent à trois câbles.

sants est telle qu'ils se trouvent très rapprochés les uns des autres, les pistes sont fines et les pastilles ont un diamètre réduit.

Pour toutes ces raisons le circuit imprimé est à réaliser avec les plus grands soins, exclusivement par le procédé de la photogravure.

La carte doit ensuite être soumise à un traitement galvanique pour obtenir la métallisation des trous.

La plupart des composants sont montés sur un seul côté (celui que nous appelons habituellement côté composants). Mais il y en a aussi du côté opposé, c'est-à-dire du côté des soudures. Il s'agit, pour l'essentiel, des connecteurs relatifs au module A2D, à savoir celui à 40 pôles et celui du câble plat à 4 pôles.

La mise en place et la soudure du connecteur à 40 broches à bas profil (il faut utiliser un modèle haut de 5 mm) demandent une mèche et un fer à souder très fins, car la distance entre les broches est d'à peine 1 millimètre!

En comparaison de cela, souder l'autre connecteur, celui à 4 pôles au pas de 2,54 mm, est un jeu d'enfants.

Toujours de ce même côté (côté soudures) sont à fixer les borniers au pas de 5 mm auxquels aboutissent les entrées/sorties.

Une fois tous ces éléments mis en place, la phase suivante consiste à monter et à souder les composants se trouvant de l'autre côté, en s'aidant de la sérigraphie de la figure 6

Comme toujours, il est préférable de commencer le montage par les composants les plus bas (résistances, diodes, etc.). Passez ensuite aux supports des circuits intégrés.

Les quartz doivent être des modèles minis, à bas profil.

Au cours de cette phase prêtez attention à l'orientation des composants polarisés, et plus particulièrement aux condensateurs chimiques et aux diodes. Orientez aussi correctement les supports des circuits intégrés.

Poursuivez le montage avec les transistors, les relais, la self relative au circuit switching, puis le régulateur LM2576T-5. Ce

dernier doit être couché sur le circuit imprimé, de manière à pouvoir souder son ailette métallique sur la piste de masse aménagée juste derrière son dos.

A ce stade, avant d'insérer les circuits intégrés dans leurs supports respectifs et de relier le GPS à l'A2D, vérifiez le bon fonctionnement de l'alimentation en reliant la

carte à une source 12 volts continus. Vérifiez tout spécialement, à l'aide du voltmètre, que la tension en sortie du régulateur de tension Simple Switcher soit exactement de 5 volts et que vous trouvez cette même tension aux endroits prévus de chaque support de circuit intégré, ainsi que sur le module GSM et sur le récepteur GPS.

Vérifiez encore le bon fonctionnement de l'étage relatif au circuit switching en faisant varier la tension continue de la source entre 10 et 15 volts : la tension de 5 volts doit rester stable. Pour ce test, faites appel à une alimentation de laboratoire à sortie réglable.

Figure 11 : Aspect que prend l'antivol lorsque le récepteur GPS et le module A2D sont en place.

Une fois sûr que tout va bien pour ce qui concerne la distribution des alimentations, déconnectez la carte et mettez en place les deux microcontrôleurs, le circuit intégré faisant la synthèse vocale et le décodeur DTMF8870.

Il va de soi que les deux microcontrôleurs et le circuit de parole ISD2590 doivent être des modèles préalablement programmés. Ces circuits doivent être considérés comme des composants à part entière. A ce titre, vous les trouverez chez certains de nos annonceurs (voir les publicités dans la revue).

Le récepteur GPS prend place du même côté que les composants, couché à l'horizontal, le plus bas possible, maintenu par quatre entretoises de longueur calculée juste pour qu'il se couche sur le tapis de composants sans les toucher.

C'est notamment pour cette raison que le quartz doit être un modèle mini à bas profil.

Le module A2D, quant à lui, prend place sur le circuit imprimé, du côté des soudures.

Il faut faire attention à ne faire plier aucune de ses pattes. Celles-ci doivent toutes entrer dans les trous prévus et pour éviter que d'éventuels courts-circuits se produisent entre les pistes et le boîtier, nous vous recommandons d'y interposer une feuille de mica, ou de fine bakélite préalablement coupée aux dimensions du module et dans laquelle vous aurez pratiqué les ouvertures nécessaires pour y faire passer les deux connecteurs.

Pour ce qui concerne les liaisons électriques entre le module récepteur GPS25 et la carte, il faut impérativement utiliser le connecter GARMIN à 12 pôles, même si, en réalité, on n'en utilise que trois : un pour le + de l'alimentation, un pour la masse et un pour la liaison sérielle.

Les trois conducteurs sont à souder aux emplacements prévus sur le circuit imprimé.

Après que le récepteur GPS et le module A2D ont été raccordés au circuit imprimé, le montage prend l'aspect que montre la figure 11. Il ne vous reste qu'à mettre le tout dans un boîtier et à relier les deux antennes : celle relative au GPS (à enficher dans son

connecteur spécial) et celle relative au GSM en utilisant son propre câble de raccordement.

L'ensemble prend alors l'aspect de ce que l'on voit aux figures 12 et 13.

Puisque le module est bibande, vérifiez si l'antenne aussi est capable de fournir un gain suffisant, tant aux alentours de 900 MHz qu'aux environs de 1.8 GHz.

Les procédures et aménagements

Les derniers aménagements consistent à habiliter le module GSM. Ceci se fait en glissant une carte SIM dans son logement.

Sautez l'étape qui demande l'entrée du code PIN, puis mémorisez le numéro de téléphone que l'unité éloignée doit appeler en cas de vol du véhicule (en fait celui de votre portable) suivi du numéro du Centre Serveur de télémessagerie de l'opérateur auprès duquel vous avez souscrit l'abonnement SMS ou le numéro de votre portable également si votre télémessagerie est directe.

Rappelons que le numéro du téléphone à alerter en cas vol doit être mémorisé dans la première position mémoire de la carte SIM. Ce numéro de téléphone doit tout naturellement correspondre à un numéro ouvert au service GSM et, une fois saisi, il faut lui affecter le nom "NUMERO" (tapé en lettres minuscules et sans les guillemets, c'est-à-dire

Figure 13 : L'un de nos prototypes relié aux deux antennes.

HI-TECH

juste le contraire de ce que nous faisons, mais à quoi nous sommes conduits par besoin de clarté typographique).

Ensuite, dans la deuxième position mémoire, entrez le numéro du Centre Serveur de mini-messagerie propre à votre opérateur.

Ce numéro se trouve indiqué dans les documents qui vous ont été remis lors de la souscription de l'abonnement.

Nous n'avons nullement l'intention de vous conseiller tel ou tel opérateur, ni tel ou tel type d'abonnement.

A toutes fins utiles, nous rappelons que le numéro du Centre Serveur de mini-messagerie de France Télécom Mobiles Itinéris est le 68 900 4000, celui de Bouygues Télécom est le 66 000 3000 et celui de SFR est le 60 900 1390.

Une fois que ce numéro a été saisi, il faut lui associer le mot "CS" (toujours en lettres minuscules et sans les guillemets).

Ainsi, par exemple, en supposant que vous ayez le numéro 06 61 94 38 14 chez Bouygues Télécom, vous devrez entrer ce numéro, suivi de 66 000 3000.

Après cela, vous pouvez effectuer un essai grandeur nature.

Laissez passer quelques dizaines de secondes, puis essayez d'appeler l'unité éloignée. Une voix synthétisée vous demandera de composer le code d'accès (le mot de passe) qui, nous vous le rappelons, correspond aux quatre derniers chiffres du premier numéro mémorisé dans la SIM.

Ensuite, cette même voix vous proposera de faire un choix parmi trois propositions : soit le déclenchement du relais numéro 1 (vous devrez alors taper 1), soit le déclenchement du relais numéro 2 (vous devrez taper 2), soit l'envoi d'un SMS donnant la position du véhicule (en tapant 3).

Vérifiez que le système interprète correctement chacune de ces commandes. Vérifiez notamment qu'en tapant 1 ou 2, le relais correspondant change de position, et qu'en tapant 3 vous

recevez les coordonnées géographiques relatives à l'endroit auquel se trouve le véhicule.

Pour interrompre la liaison, il suffit de couper la communication.

Essayez ensuite de simuler le déclenchement de l'alarme en portant à l'état haut, pendant quelques instants, l'entrée prévue à cet usage sur l'unité éloignée.

Après une dizaine de secondes vous devriez recevoir un mini-message vous informant que l'alarme s'est déclenchée puis les coordonnées relevées par le GPS.

Sur la base de ces indications, pour repérer la position du véhicule, vous avez le choix entre la solution consistant à chercher vous-même sur une carte ou sur un plan, ou celle de recourir à un logiciel de géo-localisation utilisant des cartes digitalisées.

Tout cela ayant été fait, il ne reste plus qu'à installer l'antivol sur le véhicule que vous voulez protéger.

Un boîtier plastique le mettra à l'abri de la vue et d'éventuels contacts avec la carrosserie.

Il faut aussi repérer dans l'installation électrique du véhicule le câble correspondant à la sortie de l'alarme initialement installée, ainsi que les câbles véhiculant le +12 volts et la masse, en vous assurant qu'ils soient continuellement sous tension et non asservis à une quelconque clé ou contact,

en ce sens que la tension prélevée à cet endroit doit être disponible même après avoir retiré la clé de contact et fermé les portières.

Les deux antennes doivent être installées à l'endroit qui paraît le plus propice en vue de garantir les meilleurs rendements.

Celle du GSM ne doit en aucun cas être en contact avec une quelconque surface métallique, tandis que celle du GPS doit avoir une bonne visibilité du ciel et surtout ne pas se trouver sous une tôle.

Rappelons que le récepteur GPS, pour pouvoir fournir des coordonnées géo-physiques, doit "voir" au moins

trois satellites et que plus le nombre de satellites "vus" est grand, plus les coordonnées sont précises.

Dans la plupart des cas, les professionnels montent l'antenne GPS sous le tableau de bord et celle du GSM sous la planche arrière ou l'inverse, selon la marque et le type du véhicule.

♦ A. S.

Coût de la réalisation*

Tous les composants, visibles sur la figure 6, pour réaliser cet antivol EF.334, y compris le circuit imprimé double face à trous métallisés, les 2 microcontrôleurs programmés et les 2 antennes GSM et GPS: 6 800 F. Le circuit imprimé double face à trous métallisés seul : 90 F. Le microcontrôleur PIC 16C84-MF334A seul: 176 F. Le microcontrôleur PIC 16C558-MF334B seul: 290 F. Le modem FALCOM A2D seul: 2700 F. L'antenne pour GSM seule: 220 Le récepteur GARMIN 25 seul : 1690 F. L'antenne pour GPS seule : 900 F.

N'oubliez pas que vous avez la possibilité de réaliser une version simplifiée de l'antivol, sans le récepteur GPS, ne fournissant pas les coordonnées géographiques relatives à la position du véhicule.

* Les coûts sont indicatifs et n'ont pour but que de donner une échelle de valeur au lecteur. La revue ne fournit ni circuit ni composant. Voir les publicités des annonceurs.

Version 220 V avec entrée et sortie sur prise Péritel.

FILTRES ELECTRONIQUES POUR CASSETTES VIDEO

En cas de duplication de vos images les plus précieuses, il est important d'apporter un filtrage correctif pour régénérer les signaux avant duplication. Fonctionne en PAL comme en SECAM. Correction automatique des signaux de synchronisation vidéo suivants. Synchronisation : composite, verticale. Signal du burst couleur. Signal d'entrelacement. Permet aussi la copie des DVD.

Version 12 V avec entrée et sortie sur

LX1386/K	kit comple	et avec boîtier) 473 F
LX1386/M	kit monté)	699 F

FT282/K	(Kit complet).	375 F
		557 F

MODULATEUR UHF POUR TV SANS PRISE SCART (PÉRITEL)

Ce modulateur TV reçoit sur ses entrées un signal Vidéo et un signal Audio.

Il dispose en sortie d'un signal (60 dBmicrovolt) qui peut être directement appliqué sur l'entrée antenne d'un téléviseur démunie de prise SCART.

francais toutes taxes comprises. Sauf erreurs typographiques ou omissions

en francs

Prix exprimés

parution.

pour le mois de

Photos non contractuelles. Publicité valable

LX1413 (Kit: composants, CI et boîtier)

UNE CAMERA VIDEO ORIENTABLE TELECOMMANDEE

Voici un système de surveillance vidéo innovant, composé, d'une part, d'une unité d'orientation télécommandée par voie radio, avec micro-caméra, émetteur de télévision et servomoteurs et, d'autre part, d'une télécommande spéciale.

FT353K Kit complet hors caméra et hors télécommande 1 100 F
FT352K Kit complet télécommande240 F
FR149 Caméra couleur avec son électronique 1 090 F

UN GENERATEUR ECONOMIQUE DE SIGNAUX VIDEO Remarquable et compact, ce générateur de mire a été étudié pour vérifier les moniteurs vidéo à entrée composite, les téléviseurs pourvus d'une prise SCART (péritel), mais aussi les câbles coaxiaux utilisés dans les installations de télévision en circuit fermé. L'utilisation d'un microcontrôleur permet de produire

CARTES A PUCE ET SIM

LECTEUR / ENREGISTREUR DE CARTE A PUCE 2K

FT269/K	Kit carte de base	321 F
FT237/K	Kit interface	74 F
CPCK	Carte à puce 2K	35 F

MONNAYEUR A CARTES A PUCE

Monnayeur électronique à carte à puce 2 Kbit. Idéal pour les automatismes. La carte de l'utilisateur contient : le nombre de crédits (de 3 à 255) et la durée d'utilisation de chaque crédit (5 à 255 secondes). En insérant la carte dans le lecteur, s'il reste du crédit, le relais s'active et reste ou que la carte n'est pas equi la carte et la platine de visualisation (FT275). Pour utiliser ce kit, vous devez posséder les cartes "Master" (PSC, Crédits, Temps) ou les fabri-

 FT288
 Kit carte de base
 305 F

 FT237
 Kit interface
 74 F

 FT275
 Kit visualisation
 130 F

 CPC2K-MP
 Master PSC
 50 F

 CPC2K-MC
 Master Crédit
 68 F

PROTECTION POUR PC AVEC CARTE A PUCE

Ce dispositif utilisant une carte à puce permet de protéger votre PC.
Votre ordinateur reste bloqué tant que la carte n'est pas introduite dans le lecteur. Le kit comprend le circuit avec tous ses composants, le micro déjà programmé, le lecteur de carte à puce et une carte de 416 bits.

UN LECTEUR / ENREGISTREUR DE CARTE SIM

CPC2K-MT...... Master Temps 68 F

À l'aide d'un ordinateur PC et de ce kit, vous pourrez gérer à votre guise l'annuaire téléphonique de votre GSM. Bien entendu, vous pourrez voir sur le moniteur de votre PC, tous les numéros mémorisés dans n'importe quelle carte SIM.

quer à l'aide du kit FT269.

LX1446..... Kit complet avec coffret et soft....... 478 F

CD 908 - 13720 BELCODENE Tél : 04 42 70 63 90 - Fax 04 42 70 63 95 Internet : http://www.comelec.fr

DEMANDEZ NOTRE NOUVEAU CATALOGUE 32 PAGES ILLUSTRÉES AVEC LES CARACTÉRISTIQUES DE TOUS LES KITS

Expéditions dans toute la France. Moins de 5 kg : Port 55 F. Règlement à la commande par chèque, mandat ou carte bancaire. Bons administratifs acceptés. Le port est en supplément. De nombreux kits sont disponibles, envoyez votre adresse et cinq timbres, nous vous ferons parvenir notre catalogue général.

82600 VERDUN SUR GARONNE 46.91 Fax: 05.63.64.38.39 SAINT-SARDOS Tél: 05.63.64.46

> **SUR INTER** uie.fr/ e-mail · arqui าadoo.fr

	(e-mail : arqui	e-composant
C.Mos.		Circ. intégrés	Condens.
4001 B	2 00	linéaires	Ot 1 1
4001 B 4002 B 4007 B	2.00	MAX 038 170.00	22 μF 25V 1.30
4007 B	2.80		47 μF 25V 1.70 100 μF 25V 1.90
4009 B 4011 B 4012 B	2.00	TL 064	220 µF 25V 2.50 470 µF 25V 4.30
4013 B	2.60	IL 0/1 4.20	Chimiques axiaux 22 μF 25V 1.30 47 μF 25V 1.70 100 μF 25V 1.90 220 μF 25V 2.50 470 μF 25V 4.30 1000 μF 25V 5.00 2200 μF 25V 6.50 4700 μF 25V 14.50
4015 B 4016 B	3.40 2.60	TL 072 4.40 TL 074 5.00	4700 µF 25V 14.50
4017 B	3.70 3.50	TL 081 3.90 TL 082 4.10	10 μF 63V 1.40 22 μF 40V 1.70
4022 B 4023 B	4.00	TL 084 5.40 MAX 232 14.00	47 μF 40V 1.90 100 μF 40V 2.30
4024 B	3.40 2.10	TLC 271 5.80 TLC 272 8.70	220 µF 40V 2.40 470 µF 40V 5.40
4025 B 4027 B 4028 B	3.00	TLC 274 11.00 LM 308 7.00	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
4029 B	3.80	LM 311 2.80 LM 324 2.90	4700 μF 40V 24.00
4030 B	2.30	ILM 335 9.00	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
4040 B 4041 B	3.00	LM 336 8.40 LM 339 2.80	4.7 μF 63V 1.40 22 μF 63V 1.90
4042 B 4043 B	3.00	LF 351 4.90 LF 353 5.90 LF 356 7.80	47 μF 63V
4046 B 4047 B	4.20 4.30	LF 356 7.80 LF 357 7.90	1000 μF 63V 12.50
4049 B 4050 B	3.00 2.80	LF 357 7.90 LM 358 2.60 LM 385Z 1.2 5.80	Chimiques radiaux
4051 B 4052 B	3.80	LM 336 8.40 LM 339 2.80 LF 351 4.90 LF 355 7.80 LF 356 7.80 LF 357 7.90 LM 385 2.60 LM 385Z 1.2 5.80 LM 385Z 1.2 5.80 LM 385Z 5.5V 9.00 LM 385Z 5.5V 9.00	22 μF 25V 0.50 47 μF 25V 0.50
4053 B	3.50 3.40	LM 389 19.00 LM 393 2.70	100 µF 25V 0.80 220 µF 25V 1.40
4066 B	2.80 14.00	LF 411 9.50 TL 431 TO 92 4.80	470 μF 25V 2.40
4068 B	2.40	TL 494 8.40	22 µF 25V 0.50 47 µF 25V 0.50 100 µF 25V 1.40 220 µF 25V 1.40 470 µF 25V 2.40 1000 µF 25V 3.80 2200 µF 25V 5.00 4700 µF 25V 10.00
4070 B 4071 B	2.30	NE 556 3.40	4700 μF 25V 10.00
4073 B	2.20	LMC 567 CN 19.00	10 μF 35/50V 0.60 22 μF 35/50V 0.60
4076 B	3.60		10 μF 35/50V 0.60 22 μF 35/50V 0.60 47 μF 35/50V 0.90 100 μF 35/50V 1.40 220 μF 35/50V 1.90 470 μF 35/50V 3.80
4077 B	2.50	I M 710 450	220 µF 35/50V 1.90 470 µF 35/50V 3.80
4082 B 4093 B	2.40 2.60	μΑ 723 4.50 LM 741 2.80	2200 µF 35/50V 9.50
4094 B	3.50	DAC 0800 15.00 SAE 800 41.50 ADC 0804 26.00 TBA 810 S 6.00	
4503 B	4.10 7.50	ADC 0804 26.00 TBA 810 S 6.00	1 μF 63V 0.50 2.2 μF 63V 0.50 4.7 μF 63V 0.60 10 μF 63V 0.80
4510 B 4511 B	4.60	TCA 965 4150	4.7 μF 63V 0.60 10 μF 63V 0.80
4516 B	10.60 4.70	TDA 1010A 11.50 TEA 1014 17.00	22 µF 63V 0.80 47 µF 63V 1.80
4518 B	3.40	TDA 1010A 11.50 TEA 1014 17.00 ISD 1416P 83.00 ISD 1420P 85.00 TDA 1023 18.80	1 µF 63V 0.50 2.2 µF 63V 0.50 4.7 µF 63V 0.60 10 µF 63V 0.80 22 µF 63V 0.80 47 µF 63V 1.90 220 µF 63V 3.10 470 µF 63V 3.10
4521 B 4528 B	7.20 3.90	TDA 1023 18.80 TEA 1039 21.80	470 μF 63V 4.40 1000 μF 63V 8.30
4532 B	5.00 3.90	TEA 1100 52.00	1000 μF 63V 8.30 2200 μF 63V 16.00 4700 μF 63V 25.50 10000 μF 63V 70.00
4541 B	3.50 4.40	MC 1488 P 3.90 MC 1496 6.80 TDA 1514A 44.00	10000 μF 63V 70.00
4E04 D	18.50 2.90	TDA 1514A 44.00 TDA 1518 34.50	C368
40103 B	5.00	TDA 1518 34.50 TDA 1524 26.00 LM 1881 20.00 TDA 2002 10.00	C368 I nF 400V 1.30 2.2nF 400V 1.30 3.3nF 400V 1.30 4.7nF 400V 1.30 15.nF 400V 1.40 47.nF 400V 1.60 68.nF 400V 1.60 68.nF 400V 1.90 220nF 400V 3.20 330nF 400V 3.80 470nF 400V 3.40 1 μF 400V 4.00 1 μF 400V 4.00
40174B C.M.S	4.30	TDA 2002 10.00 TDA 2003 9.70	3.3nF 400V 1.30 4.7nF 400V 1.30
1		ULN 2003 4.80 TDA 2004 23.00 ULN 2004 4.80 TDA 2005 24.00	10 nF 400V 1.30 15 nF 400V 1.30
UM 3750M LM555D	4.80	ULN 2004 4.80 TDA 2005 24.00	22 nF 400V 1.30 33 nF 400V 1.40
4001 Cmos 4011 Cmos	2.60 2.60	UAA 2016 14.00	47 nF 400V 1.60 68 nF 400V 2.00
74 HC.		TDA 2030 14.50 TDA 2040 24.00 XR 2206 39.50	100nF 400V 1.90 220nF 400V 3.20
74 HC 00 74 HC 02	2.80 2.80	XR 2206 39.50 XR 2211CP 21.50	330nF 400V 3.80 470nF 400V 4.00
74 HC 02 74 HC 04 74 HC 08	2.80	XR 2206 39.50 XR 2211CP 21.50 U 2400B 18.50 TDA 2579A 37.00	1 μF 400V 5.50
74 HC 14 74 HC 20	2.80	ISD 2590 155.00	Classe X2 47nF 250V 15mm 2.50
74 HC 3074 HC 32	2.80	TBA2800 22.00 ULN 2803 6.30	100nF 250V 15 2.50 220nF 250V 15 3.90 470nF 250V 15 8.50
74 HC 74 74 HC 86	2.90 2.90	ULN 2803 6.30 ULN 2804 6.30 LM 2904 3.70 LM 2917 8b 23.50	470nF 250V 15 8.50 1μF 250V 15mm . 9.00
74 HC 105	2 50	SAA 3049F 34.30	
74 HC 138	3.20	CA 3130 10.80	1 nF 400V 1.30 4.7 nF 400V 1.40
74 HC 245	4.20	CA 3130T 19.00 CA 3140 5.80	MKH Siemens 1 nF 400V 1.30 4.7 nF 400V 1.40 22 nF 250V 1.50 47 nF 250V 1.70 100 nF 100V 1.80
74 HC 245	4.20	CA 3130 10.80 CA 3130 19.00 CA 3140 5.80 CA 3160 9.50 CA 3161E 21.00 CA 3162E 59.00 CA 3240 11.50 UM 3759-108A 21.00 UM 3759-102A 21.00 UM 3759-102A 20.00	100 nF 100V 1.80
74 HC 574	3.80	CA 3162E 59.00 CA 3240 11.50	Tantales
74 HC4040	4.80	UM 3750A 18.50 UM 3758-108A 21.00	2.2 µF 16V
74 HC 132	6.00	ITDΔ 3810 25.00	2.2 µF 16V 1.50 4.7 µF 16V 2.00 10 µF 16V 3.00 22 µF 16V 7.00 47 µF 16V 10.00
74 HCT.	. 0.30		47 μF 16V 10.00
74HCT00	2.80	LM 3914 26.00 LM 3915 27.00	1 μF 25V
74HCT245	5.80	TCM 5089 21.50	2.2 µF 25V
74HCT541	4.80	NE 5532 5.90 NE 5534 5.90	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
74HCT574	4.00	TDA 5850 24.50 TDA 7000 25.00	0.1 μF 35V 1.50
74HCT00 74HCT04 74HCT04 74HCT245 74HCT540 74HCT541 74HCT573 74HCT574 74HCT688 74 74LS00	0.00	LM 3914 26.00 LM 3915 27.00 XR 4151 14.50 TCM 5089 21.50 NE 5532 5.90 NE 5532 5.90 TDA 5880 24.50 TDA 700 25.00 LCL 7107 27.00 LCL 7107 27.00 LS 7220 58.50 LS 7222 56.30 LS 7223 60.00 ICL 7236 60.00 ICL 7223 60.00	0.47µF35V 1.80
74LS00 74LS02	3.00	LS 7220 58.50	2.2μF 35V
74LS04	3.50	LS 7222 56.30 LS 7223 60.00 ICL 7224 95.00	10 μF 35V 4.50
74LS08	3.00	TDA 7240 24.50	Condens. ajustables
	3.00	I I DA 7200 45.00	12a 10pF 3.10
74LS20	3.00 3.50 3.00	TDA 7294 V 52.00	2 à 22pF 4.10
74LS20 74LS21 74LS27	3.00 3.50 3.00 5.00 3.50	TDA 7294 V 52.00 ICM 7555 4.90 ICL 7660 9.80	2 à 10pF 3.10 2 à 22pF 4.10 5 à 50pF 6.00
74LS20 74LS21 74LS27 74LS32 74LS38	3.00 3.50 3.00 5.00 3.50 3.00 4.00	LS 7223 60.00 ICL 7224 95.00 TDA 7240 24.50 TDA 7250 45.00 ICM 7555 4.90 ICL 7660 9.80 TL 7705 6.00 µA 78540 18.00	Céramiques monocouches
74LS14 74LS20 74LS21 74LS27 74LS32 74LS38 74LS47 74LS73	3.00 3.50 3.00 5.00 3.50 3.00 4.00 9.00 4.50	µA 78S40	Céramiques monocouches De 4,7pF à 10nF (Préciser la valeur)
74LS14 74LS20 74LS21 74LS27 74LS32 74LS38 74LS47 74LS73 74LS74 74LS86	3.00 3.50 3.00 5.00 3.50 3.00 4.00 9.00 4.50 4.00	μΑ 78S40	Céramiques monocouches De 4,7pF à 10nF (Préciser la valeur) 10 de Même VAL. 3.00
74LS20 74LS20 74LS21 74LS27 74LS32 74LS38 74LS47 74LS73 74LS74 74LS74 74LS90 74LS90	3.00 3.50 3.00 5.00 3.50 3.50 4.00 4.50 4.00 5.00	µA 78S40 18.00 ICL 8038 38.50 TDA 8440 29.00 TDA 8702 15.00 TDA 8708 43.00 LM 13700 14.50 M 145028 20.00	Céramiques monocouches De 4,7pF à 10nF (Préciser la valeur) 10 de Même VAL. 3.00
74LS20 74LS21 74LS27 74LS27 74LS32 74LS38 74LS47 74LS73 74LS74 74LS90 74LS90 74LS92 74LS92 74LS92	3.00 3.50 3.00 5.00 3.50 4.00 4.00 4.50 4.00 5.00 5.00 11.00 3.50	μΑ 78S40	Céramiques monocouches De 4,75F à 10nF (Préciser la valeur) 10 de Même VAL. 3.00 22nF (Lot de 10) 3.50 33nF (Lot de 10) 5.00 47nF (Lot de 10) 5.00
74 S. 741.500 741.501 741.502 741.504 741.507 741.509 741.511 741.521 741.521 741.522 741.532 741.532 741.533 741.547 741.573 741.574 741.580 741.518 741.5183 741.5183 741.5183	3.00 3.50 5.00 3.50 3.50 4.00 9.00 4.50 4.00 5.00 5.00 11.00 3.50	µA 78S40 18.00 ICL 8038 38.50 TDA 8440 29.00 TDA 8702 15.00 TDA 8708 43.00 LM 13700 14.50 M 145028 20.00	Céramiques monocouches De 4,7pF à 10nF (Préciser la valeur) 10 de Même VAL. 3.00 22nF (Lot de 10) . 3.50 33nF (Lot de 10) . 3.80

5.00 5.50 7.00 5.40 5.50 11.00 6.50

(10, x25 : Prix spéciaux, voir notre catalogue

6.91 I	Fax:	05.63.64	4.3
NET http	://w\	ww.arquie	.fr
e-compos	sant	s@wanad	100
Conde	าร.	Cond. L Petits jaun	CC
Chimiques as	kiaux	Petits jaun 63V Pas de	es 5.08
22 µF 25V	1.30	De 1nF à 100 (Préciser la va	0.00 0nF
100 μF 25V	1.90	(Préciser la va Le Condensateur	(leur) 1.00
470 µF 25V	4.30		
1000µF 25V	5.00	150 nF 63V 220 nF 63V 330 nF 63V 470 nF 63V 680 nF 63V	1.50
4700 μF 25V	14.50	330 nF 63V	2.00
10 uF 63V	1 40	470 nF 63V	1.50 3.00 3.00
22 µF 40V	1.70		
100 μF 40V	2.30	Régul	a-
220 µF 40V	2.40	teurs	
1000 μF 40V	8.00		
10 µF 63V 22 µF 40V 47 µF 40V 100 µF 40V 220 µF 40V 470 µF 40V 1000 µF 40V 2200 µF 40V 470 µF 40V 4700 µF 40V	13.00 24.00	POSITIFS TO22	
1	1.40	7805 1.5A 5V 7806 1.5A 6V 7808 1.5A 8V 7809 1.5A 9V	3.40 3.40 3.40 3.40
2.2 μF 63V	1.40 1.40	7808 1.5A 8V	3.40
4.7 µF 63V	1.40	7809 1.5A 9V	3.40
47 μF 63V	2.00	7812 1.5A 9V 7815 1.5A 15V 7824 1.5A 24V	3.40
1 µF 63V	2.50 12.50	7824 1.5A 24V	3.40
1000 дг 050	12.50	78M05 0.5A 5V	3.00
Chimiques ra	diaux	78M05 0.5A 5V 78T05 3A 5V 78T12 3A 12V	19.00
22 µF 25V	0.50 0.50		
100 μF 25V	0.80	NEGATIFS TO2	20
220 µF 25V	1.40	7905 1.5A -5V 7912 1.5A -12V 7915 1.5A -15V 7924 1.5A -24V	4.40
1000 μF 25V	2.40 3.80	7915 1.5A -15V	4.40
2200 µF 25V	5.00 10.00	7924 1.5A -24V	4.40
4700 µ1 20V		POSITIFS TO92	·
10 μF 35/50V	0.60 0.60	78L05 0.1A 5V 78L06 0.1A 6V 78L08 0.1A 8V 78L09 0.1A 9V	2.80 3.00 2.80
47 μF_35/50V	0.90	78L08 0.1A 8V	2.80
100 μF 35/50V 220 μF 35/50V	1.40 1.90	78L09 0.1A 9V 78L10 0.1A 10V	3.00
470 µF 35/50V	3 80	78L09 0.1A 9V 78L10 0.1A 10V . 78L12 0.1A 12V . 78L15 0.1A 15V .	2.80
10 μF 35/50V 22 μF 35/50V 47 μF 35/50V 100 μF 35/50V 220 μF 35/50V 470 μF 35/50V 1000 μF 35/50V 2200 μF 35/50V 4700 μF 35/50V	5.50 9.50	NEGATIFS TO	3.00
4700 μF 35/50V .	17.00		
1 μF 63V	0.50 0.50	79L05 0.1A -5V 79L12 0.1A -12V 79L15 0.1A -15V	3.80 3.50 3.80
2.2 μF 63V	0.50 0.60	79L15 0.1A -15V	3.80
10 μF 63V	0.80	VARIABLES	
22 μF 63V	0.80 1.80	L 200 2A LM 317T TO220 LM 317LZ TO92	17.50
100 μF 63V	1.90	LM 317LZ TO92	3.80
220 μF 63V 470 μF 63V	3.10 4.40	LM 317K TO3	21.00
1000 μF 63V	8.30 16.00	LM 317K TO3 LM 337T TO220	7.80
4700 μF 63V	25.50 70.00	TO 220 FAIBLE	E DDI
1 µF 63V 2.2 µF 63V 4.7 µF 63V 4.7 µF 63V 22 µF 63V 22 µF 63V 100 µF 63V 220 µF 63V 220 µF 63V 100 µF 63V 220 µF 63V 470 µF 63V 470 µF 63V 470 µF 63V 470 µF 63V	70.00	L4940 5V 1.5A	14.00
0000		L4940 5V 1.5A L4940 12V 1.5A . L4960	30.00
1 nF 400V	1.30	Suppor	-
2.2nF 400V	1.30 1.30 1.30	de C.I	
4.7nF 400V	1.30		
10 nF 400V 15 nF 400V	1.30 1.30	Contacts I	
22 nF 400V	1.30	6 Br 8 Br	0.90
33 nF 400V 47 nF 400V	1.40 1.60		0.90
68 nF 400V	2.00	16 Br	1.00
220nF 400V	1.90 3.20	18 Br	1.10
330nF 400V	3.20	24 Br. Etroit	1.90
47 IF 400V 100nF 400V 220nF 400V 330nF 400V 470nF 400V 1 µF 400V	4.00 5.50	28 Br. Large	1.50
Classo Y		14 Br. 16 Br. 20 Br. 24 Br. Etroit 28 Br. Etroit 28 Br. Large 32 Br. Large 40 Br.	2.00
Classe X2 47nF 250V 15mm 100nF 250V 15 220nF 250V 15 470nF 250V 15	2.50 2.50		
220nF 250V 15	3.90	Contacts to	ılipe
470nF 250V 15	8.50	8 Br	1.30
Tμr 250V T5IIIIII .	9.00	8 Br	2.20
MKH Sieme	ens 1.30	18 Br 20 Br	2.90
4.7 nF 400V	1.40	28 Br.Etroit 28 Br.Large	4.20
22 nF 250V 47 nF 250V	1.50 1.70	28 Br.Large 40 Br	4.00
1 nF 400V 4.7 nF 400V 22 nF 250V 47 nF 250V 100 nF 100V	1.80	68 Br	6.00
		84 Br	5.00
Tantales	1.50	Barettes séc	ables
2.2 μF 16V 4.7 μF 16V	2.00	32 Br.Tulipe	6.30
10 μF 16V	3.00 7.00	32 Br. Tul. à wrap.	
47 μF 16V	10.00	Supports à fo	

3.40 3.40	BC 988 1092 BC 988 1093 BC 988	2.60
	BC 517 TO92	2.30
3.00 19.00	BC 546B 1O92 BC 547B TO92	1.00
19.00	BC 547C TO92 BC 548B TO92	1.00
20	BC 549C TO92	1.00
4.40 4.40	BC 556B TO92	1.00
4.40	BC 557B 1092 BC 557C TO92	1.00
4.40	BC 558B TO92 BC 559C TO92	1.00
2.80	BC 560C TO92	1.00
3.00 2.80	BC 847B CMS	1.00
3.00	BD 135 TO126 BD 136 TO126	2.00
3.00 2.80	BD 139 TO126 BD 140 TO126	2.30
3.00	BD 237 TO126	3.70
92	BD 239B TO220	4.50
3.80 3.50 3.80	BD 240 TO220 BD 242C TO220	4.60
3.80	BD 245C TOP3	9.00
17 50	BD 676 TO126	4.00
17.50 4.60	BD 678 TO126	5.00
3.80	BD 679A TO126	4.20 4.20
21.00 7.80	BD 711 TO220	4.80
E DDP	BDW 93C TO220	6.80
14.00	BDX53C TO220	7.50
14.00 30.00	BF 199 TO92 BF 240 TO92	1.40 1.70
rts	BF 245A TO92 BE 245B TO92	3.40
	BF 245C TO92	3.80
	BF 423 TO92	2.00
yre	BF 451 TO92 BF 494 TO92	2.80 1.40
0.90 0.90	BS 170 TO92 BS 250 TO92	2.40
1.00 1.00	BSX20 TO18	2.50
1.10 1.10 1.90 1.50	BU 208D TO3	19.50
1.90	BU 508A TOP3 BU 508D TOP3	18.00
1.50 1.50 2.00	BU 508AF TOP3 BUK 455-60A	16.40 15.00
2.00 1.90	BUT 11AF TO220	8.10 11.50
	BU 508AF TOP3 BUK 455-60A BUT 11AF TO220 BUT 11BAF SAT186 BUZ 10 TO220 BUZ 11 TO220 IRF 580 TO220 IRF 580 TO220 IRF 580 TO220 IRF 9530 TO220 IRF 9540 TO220 IRF 9540 TO220 IRF 9540 TO220 IRF 9540 TO220	8.00
ulipe	IRF 530 TO220	8.00 11.00
1.30 2.20 2.50	IRF 540 TO220 IRF 840 TO220	14.00 11.00
2.50 2.90	IRFD 9110 CMS .	15.00
3.00	IRF 9540 TO220	11.00 14.00 11.00 15.00 13.00 17.50
4.20 4.00	MJ 15024 103 MJ 15025 TO3	31.00
6.00 6.70	TIP 29C TO220	5.00
5.00	TIP 31C TO220	4.80
ables	IRF 95-40 TÖ220 MJ 15024 TO3 MJ 15024 TO3 TIP 29C TÖ220 TIP 39C TÖ220 TIP 31C TÖ220 TIP 31C TÖ220 TIP 32C TÖ220 TIP 38C TÖP3 TIP 38C TÖP3 TIP 38C TÖP3 TIP 38C TÖP3 TIP 41C TÖ220 TIP 41C TÖ220 TIP 121 TÖ220 TIP 121 TÖ220 TIP 122 TÖ220 TIP 124 TÖ220 TIP 127 TÖ220 TIP 127 TÖ220 TIP 127 TÖ220	14.50
6.30	TIP 36C TOP3 TIP 41C TO220	16.00 5.00
21.50	TIP 42C TO220	4.80 6.50
orce nulle	TIP 126 TO220	5.50
	I HE 127 10270	0.20

Quickroute 4.0

Logiciel de C.A.O. **EN FRANÇAIS**. Edition de shémas, saisie automatique, routage automatique. Prise en main facile.

N°13020 Quickroute version démo 50.00^F N°13024 Quickroute 4 twenty (limité à 800 broches) . 1500,00F Quickroute Full Accès (non limité)......1900,00^F N°13021

* * \$ 5 *1 *0 T 1/4

→ + + - = X X X = -

Logiciel simulation de

ENFIN UN SIMULATEUR

VIRTUEL PROFESSIONNEL analogique et numérique D'UN PRIX RAISONNABLE!. Il est complet et vos schémas s'exportent dans QR4 directement pour

réaliser votre circuit imprimé. Librairie de 20000 compo 790.00 F TINA éducation (avec utilitaires pour l'éducation) 2480.00 F

TINA Industriel (version complète avec les outils SPICE manager, l'extracteur de paramètres, l'éditeur de symboles de 3390.00 F schémas etc.)

"TELECONTOLLI'

2N 2222 TO 18 ... 20 2223 TO 18 ... 20 2369A TO 18 ... 2N 2904A TO 18 ... 2N 2905 TO 5 ... 2N 2906A TO 18 ... 2N 2907A TO 18 ... 2N 3055 TO 3 ... 2N 3773 TO 3 ... 2N 3773 TO 3 ... 2N 3819 TO 92 ... 2N 3904 TO 92 ... 2N 3906 TO 92 ... 2N 3905 TO 9

d'insertion null

Modules d'émission /réception en 433.92 MHz

rs AM miniatures 433.92 MHz N° 19348 RT2-433 (Ant. integ.) N° 19425 RT6-433 (Ant. ext.) ...

Multimètre DVM345DI LCD 3 1/2 digit 16mm: "3999" avec

bar graph à 38 segments.Rétro-éclairage. Calibrage automatique ou manuel. Logiciel "Mas-view" W95&98® via la RS232 fournie, permet entre autre de visualiser sous forme digitale et graphique, enregistrer par période paramétrable, toutes les données fournies

par le multimètre. Courant maximun 10A (en DC et AC) 10A Indicateur de dépassement: "OL" Alimentation 9 volts (pile type 6F22) Livré avec

12.06

6F22) Livré avec

1 paire de pointe de touche, 1 pile 9V, une sonde de température (200°C) et notice en francais. Voltmètre: DC 0.1mV à 1000V 0.5 à 0.8 %. Voltmètre: AC 0.1mV à 750V 1.2 à 1.5%. Amp: DC 1µA à 0.4A 1.2%. 0.01A à 10A 2%. Amp: AC 1µA à 0.4A 1.5%. 0.01A à 10A 3%. Ohmètre: 0.1 Wà 40 MW1.2%. Capacité: 1pF à 400nF 4%. Continuité: actif acute: Auguste de la chute de tension. Mesure de température: de -40 à 750°C. Protection par fusible de 15A. Dim:78x186x35mm. 300g. Livré avec: Manuel en français, cables de mesure, pile 9V, thermocouple "K", gaine de protection, cable RS232C, et disquette de 1.44MB. protection, cable RS232C, et disquette de 1.44MB.

8A-04/F N° 19347 RR3-433 (Super réaction) .. 44.00 N° 19345 RRS3-433 (Super hétéro.) 135.00 N° 9085 AT90S8515 108.00 16.0

TINA

50.0

1°68010 Carte à puce PCB 8/10

Nouveaux modèles de cartes universelles voir sur le site: www.arquie.fr N° 0793 Carte à puce type "Wafer" Carte à puce (PIC16F84+24C16 intégre Idéale pour gestion d'accès, jeux de lumi ou autre... (Vierges de tout programmes.) **A** x10, x25, x50 .

N° 8558 Epoxy prés. 8/10 100x160 23.00 N° 8570 Epoxy prés. 8/10 200x300

EPR-01. Mini programmateur d'EPROMS et d'EEPROMS

L'EPR-01 permet de lire, copier et programmer les EPROMS (2716, 2732, 2764, 27128, 27256, 27512, 27C16, 27C32, 27C64, 27C128, 27C256, 27C512) et les EEPROMS parallèle (2816, 2817, 2864, 28256, 28C16, 28C17, 28C64, 28C256) de 24 à 28 broches. Les tensions de programmation : 12V, 12,5V, 21V et 25V. Branchement sur le port parallèle de PC. Support ulipe 28 b. . Le logiciel convivial sous DOS avec fenêtres et menus déroulants. Mode d'emploi en français. Livré avec cable //.

Le CAR-03 (nouvelle version) est un lecteur / programmateur de cartes à puces compatible Phoenix, Smartmouse et JDMprog. Il permet de lire et programmer les cartes Wafer e Gold Wafer dans leurs intégralités (PIC16F84+24LC16B), également les cartes à Bus I2C (24Cxx), les cartes SIM de téléphone portable ainsi que la mémoire de différents types de cartes asynchrone à microprocesseurs. Un seul switch permet de configurer la carte dans les différents modes de programmations. Connectable sur le port série de tout compatible PC, il fonctionne avec différents logiciels sous Windows 95/98. Le circuit possède en standard un connec teur de carte à puce aux normes ISO7816 ainsi qu'un connecteur micro-SIM. Livrés avec un câble port série. -

Logiciel sur disquette 3.

-Mode d'emploi en français. CAR-03: 590.00

PIC -01F. MINI PROGRAMMATEUR DE PIC et EEproms : 390.00 F

Le PIC-01F permet la programmation des microcontrôleurs PIC de chez Microchip, (familles PIC12Cxxx, PIC12CExxx, PIC16Cxxx et PIC16Fxxx), ainsi que les EEproms Séries, (famille 24Cxx). Il supporte les composants en boîtiers DIP 8, 18, 28 et 40 broches permettant la programmation de plus de 60 références différentes. Il est équipé d'une véritable interface RS232 permettant la connexion sur le port série de tout compatible PC. Il fonctionne avec un logiciel sous Windows 95/98/NT/2000/ME

THE RES	Ì
	١
10.	
NEW TOWNS AND ADDRESS OF THE PARTY OF THE PA	
Anna a sa	

ı		
ı	CONDITIONS DE VENTE: PAR CORRESPONDANCE UNIQUEMENT.	Nos prix sont en FF, TTC (T.V.A. 19.6% comprise
ı	- ENVOIS EN COLISSIMO SUIVI SOUS 24 HEURES DU MATERIEL DISPO	
1	- ENVOIS EN COLISSINO SUIVI SOUS 24 MEUNES DU MAI ENIEL DISFO	JNIDLE.

- FRAIS DE PORT ET D'EMBALLAGE (France): 43.00 F (Assurance comprise) PORT GRATUIT AU DESSUS DE 900 F PAIEMENT A LA COMMANDE PAR CHEQUE, MANDAT OU CB.
- (CARTE BANCAIRE: Commande mini: 200.00 F. DONNER LE NUMERO, LA DATE DE VALIDITE, UN NUMERO DE TELEPHONE ET SIGNER) CONTRE REMBOURSEMENT: (Taxe de C.R. en plus: 28.00F) JOINDRE UN ACOMPTE MINIMUM DE 150 F.
- Nous acceptons les bons de commande de l'administration . DETAXE A L'EXPORTATION .

CONGES.	ANNUELS	DU 20/07/2001	au 20/08/2001

BON POUTE BON POUTE CATALOE GRATUT CATALOE POUT POUT CATALOE POUT POUT CATALOE POUT POUT POUT	No Ac
BOALOG GHOM, TO BUS CATALOGE POWS	Co

		Prénom:
N, S	Adresse:	Prénom:
	Code Postal:	Ville:

EF.368

Un mini émetteur de TV pour les bandes UHF ou VHF

Ce mini émetteur tient sur un circuit imprimé d'à peine 4×9 cm sur lequel prennent place un microphone électret à haute sensibilité et une caméra CMOS ultra miniature noir et blanc. Il s'agit d'un émetteur son et images pas plus grand qu'un téléphone portable. Selon le type de module HF que l'on choisit et qui dépend du canal libre disponible là où on le fait fonctionner, il peut émettre soit en UHF soit en VHF. Sa portée est comprise entre 50 et 100 mètres.

e "feuilleton" Loft Story nous interpelle, c'est le moins que l'on puisse dire!

Qui plus, qui moins, nous regardons parfois quelques passages de "Loft Story", la nouvelle émission de télévision diffusée sur M6, présentée par Benjamin Castaldi.

Onze jeunes gens, dont six garçons au milieu de cinq filles dont les noms chantants sont destinés à longtemps hanter notre mémoire : Delphine, Kenza, Loana, Julie et Laure.

Onze jeunes gens choisis parmi une foule de candidats, ayant accepté de vivre ensemble pendant 70 jours, enfermés dans un local commun (le "loft"), constamment surveillés par 24 caméras (dont certaines aux infrarouges, pouvant opérer dans l'obscurité) dont l'existence est connue des candidats mais pas les endroits précis où elles sont cachées.

Qu'ils se trouvent ensemble dans la salle à manger ou seuls dans la salle de bain, ils peuvent faire l'objet d'un coup de zoom à n'importe quel moment, dans n'importe quelle situation.

Ces mêmes images étant diffusées par Internet et par satellite, ce qui était un secret entre deux personnes devient – à la minute même – connu de tout le monde.

Nous ne savons pas quoi penser de cette nouvelle utilisation que l'on fait des caméras et des émetteurs.

Pourtant, nous en avions eu les prémisses, il y a quelques années déjà, en regardant les astronautes enfermés dans une cabine spatiale, eux aussi, filmés en permanence par une caméra installée à bord, qui diffusait leurs gestes, en direct, dans le monde entier.

Est-ce que filmer et transmettre en permanence les images d'un cosmonaute enfermé dans sa combinaison c'est bien, tandis que filmer et transmettre en permanence les agissements de onze jeunes gens vivants ensemble et formant – somme toute – un groupe d'amis, c'est mal ?

Chacun répondra à ces questions selon sa propre sensibilité.

VIDÉO

Nous voulons simplement – à partir de ce fait divers – faire constater que des choses qui étaient impensables

il y a quelques années deviennent aujourd'hui, non seulement possibles, mais licites. Les mœurs semblent évoluer sous la poussée des avancées technologiques.

C'est ainsi que de nos jours il est tout à fait admis qu'en ville nous soyons filmés, en moyenne, sept fois par jour, selon certaines statistiques.

A part les caméras visibles, par exemple, sur les autoroutes et les grands axes routiers permettant au personnel de la sécurité routière de surveiller et délester le trafic aux moments les plus difficiles, nous rencontrons à tout moment, sur notre chemin, une multitude de caméras.

Il y en a à l'entrée des stations de métro, dans les banques, dans les grandes surfaces, dans les gares, dans les aéroports, dans les bijouteries, dans les bureaux...

Et si la porte d'entrée de l'immeuble dans lequel vous habitez est protégée par un portier vidéo, vous commencez la journée en étant filmé... par vousmême... à votre propre insu!

D'autre part, pourquoi interdire à une personne de tenir sous surveillance la porte d'accès de son immeuble, de son garage ou de son magasin ?

On voit par là que selon le côté duquel on se place, le jugement que l'on peut porter sur l'utilisation des émetteurs radio/télé que l'on peut installer n'importe où, n'est pas le même.

Il faut juste prendre conscience que ces systèmes se généralisent et, si le besoin s'en faisait sentir, il faudrait se protéger ou s'en prémunir.

Avantages et inconvénients

Ce qui généralement dissuade les gens de procéder à une installation de vidéosurveillance à circuit fermé, ce sont les inévitables désagréments que ces installations amènent. A savoir : la saleté et le désordre.

En fait, les caméras de surveillance sont installées à des endroits donnés et les unités de visualisation et d'enregistrement se trouvent généralement à une certaine distance. Dans les systèmes classiques, pour acheminer les signaux des unes vers les autres, on se sert de câbles. Et pour faire passer ces câbles on est conduit tantôt à percer, tantôt à faire des saignées et pour cela, il faut déplacer les meubles, d'où saleté et désordre!

Le système que nous présentons dans cet article supprime ces inconvénients et donne à tout le monde la possibilité de procéder facilement à une installation de télésurveillance au moindre coût.

Il s'agit d'un système complet, en ce sens qu'il effectue des prises de vues et les transmet avec les sons qui les accompagnent.

Le signal transmis peut être reçu par un quelconque téléviseur, pouvant être celui que vous avez dans votre cuisine, votre chambre ou votre salon.

Figure 1 : Schéma électrique complet de l'émetteur. La présence de quatre composants à très haut niveau d'intégration (amplificateur opérationnel, microphone électret incorporant un ampli à FET, caméra CMOS spéciale pour circuits imprimés et module hybride HF) conduisent à un schéma extrêmement simple.

Figure 2: Le micro électret à condensateur, bien que présentant deux seules pattes, incorpore un amplificateur à transistor à effet de champ qui lui confère une sensibilité telle qu'il arrive à capter même les chuchotements les plus faibles.

Autrement dit : plus besoin de câbles pour relier la caméra de prise de vues au système de réception, et encore moins d'un système de réception spécialisé (moniteur).

Cependant, comme rien n'est parfait dans ce monde et que toute médaille a son revers, si une installation de ce type a un prix imbattable et peut se faire sans rien percer, elle a deux inconvénients qu'il faut savoir admettre.

En premier lieu, le signal transmis peut être reçu par n'importe qui, aussi facilement que vous : il suffit qu'il allume son poste de télé sur le canal que vous utilisez.

En deuxième lieu, l'émission peut être perturbée par d'autres émetteurs pouvant opérer dans le voisinage sur la même fréquence.

Choix entre UHF et VHF

Si rien ne peut être mis en place pour s'affranchir du premier inconvénient, il existe un moyen pour limiter les conséquences du deuxième.

En effet, étant donné que dans le catalogue du fabricant des modules hybrides figurent deux modèles similaires opérant sur des bandes de fréquences différentes, il est possible de monter sur l'émetteur soit l'un soit l'autre. L'émission peut ainsi se faire soit en bande VHF sur le canal H2, soit en bande UHF sur le canal 22.

Présentation de l'émetteur

Nous avons déjà eu l'occasion de vous parler des modules hybrides fabriqués par la Société AUREL.

Alors que jusqu'ici il s'agissait d'applications ponctuelles, cette fois nous avons implanté un émetteur complet sur un même petit circuit imprimé, comprenant une caméra ultra-miniature noir et blanc prévue pour se souder directement sur le circuit imprimé, et un micro électret à condensateur, très sensible, incorporant un amplificateur à transistor à effet de champ.

Enfermé dans un petit boîtier plastique et alimenté par quatre piles bâton de 1,5 volt, cet émetteur – qui, rappelons-le, ne demande aucune liaison filaire – peut servir comme caméra visible ou cachée car, en raison de ses dimensions très réduites, on n'a aucun mal à la dissimuler. Personne ne se retournerait sur un boîtier ne ressemblant en rien à une caméra de prise de vues et encore moins à un émetteur de télévision miniature.

La portée de cet émetteur varie entre 50 et 100 mètres, selon les obstacles se trouvant entre l'antenne de l'émetteur et l'antenne du téléviseur sur lequel on recoit les images.

Sur la base des expériences que nous avons faites, nous pouvons dire que c'est en version VHF que l'on obtient les meilleurs résultats. Ce n'est pas une question de puissance, car la portée est la même quel que soit le type de module employé. Les meilleurs résultats proviennent simplement du fait qu'en UHF la bande est souvent encombrée (et tout particulièrement le canal 22).

Bref: il s'agit d'un émetteur particulièrement propice à surveiller (par l'image et par le son) un local de petites dimensions, ou des objets situés pas trop loin de lui.

Caractéristiques techniques

Brochage

1 = Sortie vidéo 2 = Masse vidéo et – alim.

3 = + alim.

4 = AGC (CAG)

5 = NC

6 = AGC (CAG)

Figure 3 : Ce nouveau type de caméra, appelé à se répandre, a tout pour séduire. Nous citerons son faible prix, ses dimensions extrêmement réduites ($21 \times 21 \times 15$ mm), sa sensibilité et la possibilité de la souder à plat, directement sur le circuit imprimé. Elle peut ainsi entrer dans des systèmes de prise de vues très compacts et facilement occultables. Sa résolution n'est pas très élevée. Elle n'est que de 240 lignes. Mais ça ne lui empêche pas de fournir des images permettant de parfaitement identifier les sujets. Ne perdons quand même pas de vue le fait que ce type de caméra est conçu pour filmer essentiellement de près.

Le schéma électrique

Grâce à l'emploi de quatre composants à très haut niveau d'intégration vendus déjà assemblés (notamment la capsule micro électret à condensateur incorporant un amplificateur à FET, l'ampli opérationnel, la caméra CMOS ultra miniature spéciale pour circuits imprimés représentant à elle seule un système complet de prise de vues, et le module hybride émetteur HF), le circuit électrique (figure 1) de cet émetteur est extraordinairement simple.

Pour commencer, il n'y a pas d'alimentation secteur à prévoir.

Pour laisser toute la mobilité nécessaire à ce mini émetteur

Figure 4: Le module contenant la microcaméra CMOS est un modèle pour circuits imprimés. Il se soude directement sur les pastilles prévues pour le recevoir. Haut à peine 15 mm, il ne dépasse pas les autres composants. De ses six pattes, quatre seulement sont utilisées. Les pattes 5 et 6 ne sont pas soudées parce que la première n'est pas connectée à l'intérieur du module (NC), et la deuxième parce que la fonction à laquelle elle aboutit (AGC) a été prise à partir de la patte 4 (elle aussi reliée à la fonction AGC).

télé, on fait appel à des piles, sans exclure – évidemment – la possibilité d'adopter un bloc secteur de 6 volts.

Bien qu'on parle ici d'alimentation à 6 volts, le circuit ne voit en réalité que 5,4 volts, à cause de la présence des deux diodes au silicium en série (D1 et D2) se trouvant à l'entrée, lesquelles, tout en assurant une protection contre les courts-circuits, introduisent, avec leurs tensions de déchet, la chute de tension nécessaire.

En effet, les composants intégrés, et notamment l'amplificateur opérationnel U2, la caméra CMOS et le module hybride U1 exigent une tension de 5 volts, dans la limite de plus ou moins 5 %, ce qui est bien le cas ici.

Les modules Aurel TXAV en version UHF et VHF

Les deux modules ont le même brochage et sont compatibles broche à broche.

Leurs caractéristiques techniques sont identiques en tout, à l'exclusion

Figure 5a.

de la valeur de la puissance de sortie disponible sur l'antenne qui, dans la version UHF, est la moitié de celle fournie par le module VHF. Mais, en fait, étant donné que la fréquence d'émission en bande UHF est plus élevée (479,5 MHz contre 224,5 MHz) et donc plus pénétrante, cela n'a aucune répercussion significative sur la portée, qui reste la même. Celle-ci varie entre 50 et 100 mètres, en fonction des obstacles pouvant se trouver entre émetteur et récepteur.

C'est l'utilisation de ce type de modules qui rend si facilement possible la réalisation d'un émetteur télé.

Aux dimensions d'à peine 28 x 25 x 8 mm et avec seulement huit pattes, ces modules hybrides, réalisés

à l'aide de composants CMS et alimentés sous 5 volts, englobent tous les éléments nécessaires permettant d'obtenir une émission de haute qualité.

On y trouve notamment un oscillateur à quartz, modulé en amplitude par le signal vidéo qui entre sur la patte 4, et un modulateur piloté par le signal audio qui entre sur la patte 2, lequel module en fréquence une sous-porteuse à 5,5 MHz.

La sensibilité d'entrée de l'étage audio est 1 Vpp (350 mVeff) sous une impédance de 100 kilohms, qui représente une valeur suffisamment élevée ne surchargeant aucune des sources possibles (mixer, préampli, magnétophone à cassettes, caméscope).

Figure 5c.

Principales caractéristiques techniques constructeur				
Fonction	Module VHF	Module UHF		
Fréquence vidéo	224,5 MHz	479,5 MHz		
Canal	H2	22		
Puissance de sortie antenne	2 mW / 75 ohms	1 mW / 75 Ω		
Tension d'alimentation	5 V	5 V		
Courant absorbé	90 mA (typique)	90 mA (typique)		
Intermodulation	< -60 dBm	< -60 dBm		
Sensibilité de l'entrée vidéo	1,2 Vpp (max)	1,2 Vpp (max)		
Fréquence audio	5,5 MHz	5,5 MHz		
Modulation audio	± 70 kHz	± 70 kHz		
Sensibilité/impédance audio	1Vpp / 100 kΩ	1 Vpp / 100 kΩ		
Préaccentuation	50 μs	50 μs		

Figure 5: Les modules Aurel TXAV en version UHF et VHF.

Figure 6 : Schéma d'implantation des composants du mini émetteur TV.

Figure 8 : Dessin du circuit imprimé, à l'échelle 1, de notre mini émetteur télé complet.

Liste des composants

R1, R3 1 kO R2 $3.3 \text{ k}\Omega$ R4, R5 22 kΩ R6 $680 \text{ k}\Omega$ R7 270 ohms C1 10 µF 16 V électrolytique $220~\mu F~16~V$ C2électrolytique C3 100 nF multicouche C4 10 µF 16 V électrolytique C5 1 µF 16 V électrolytique C6 10 µF 63 V électrolytique C7 $1 \mu F 16 V$ électrolytique **C8** 10 µF 16 V électrolytique C9 150 pF céramique 100 nF multicouche C10 Module Aurel TXAV U1 ou TXAV/UHF U2 Intégré LM741 D1. D2 Diode 1N4007 CAM1 Caméra TV CMOS pour ci MIC Micro électret préamplifié

Divers:

1 2	Support 2 x 4 broches Broches
	en bande sécable
1	Cavalier informatique
1	Coupe de fil émaillé
	12/10 pour l'antenne
	(voir texte)
1	Circuit imprimé
	réf. S368/369

Les deux diodes au silicium introduisant une chute de 1,6 volt, la tension qui parvient aux circuits est, en fait, de 5,4 volts.

L'amplificateur opérationnel U2 sert à amplifier le signal provenant du microphone électret "MIC", dont le rôle est, évidemment, de capter les sons.

En dépit de sa petite taille (figure 2) et du fait qu'il n'ait que deux seuls connecteurs, ce microphone renferme un amplificateur à transistor à effet de champ qui lui confère une sensibilité telle qu'il arrive à capter même des chuchotements.

Figure 7 : Voici comment se présente l'émetteur, la réalisation terminée. Remarquez que le micro et le module hybride du prototype ici photographié ont été légèrement relevés pour les besoins de la photo.

Le signal radio issu de l'amplificateur opérationnel arrive, via le condensateur C7, sur l'entrée "IN A" (A, comme Audio) du module hybride, correspondant à la patte 2.

Le signal vidéo à transmettre, prélevé sur la patte 1 de la micro-caméra CMOS, dont vous pouvez lire les caractéristiques à la figure 3, arrive directement sur l'entrée "IN V" (V, comme Vidéo) du module hybride, correspondant à la patte 4.

La patte 3 est reliée au positif de l'alimentation, tandis que la patte 2 représente la masse générale et en même temps la masse du signal vidéo.

Quant à la patte 4, correspondant à l'AGC (Automatic Gain Control), elle aboutit à un cavalier dont la mise en place est facultative.

En insérant ce cavalier, on peut activer la commande automatique de gain, qui

est en fait un système qui corrige les variations de niveau du signal vidéo.

Bien que la micro-caméra CMOS ait six pattes, quatre seulement sont utilisées.

La disposition de ces six pattes a d'ailleurs été conçue par le fabricant de telle sorte qu'on ne puisse pas se tromper de sens lors de son implantation sur le circuit imprimé.

Le module de cette micro-caméra se soude à plat, tout contre le circuit imprimé (voir détail à la figure 4).

Pour le reste, il n'est prévu ni réglage ni mise au point.

Les valeurs de chaque composant ont été calculées de façon à obtenir de ce minuscule émetteur les meilleurs résultats en terme de qualité d'images.

Pour ce qui concerne le son, la seule chose qu'on pourrait éventuellement ajuster concerne la sensibilité du microphone (MIC). Pour augmenter ou réduire cette sensibilité, il suffit de modifier la valeur de la résistance R6, dont le rôle est de déterminer le gain de l'amplificateur opérationnel.

Le niveau de sortie du signal vidéo de la micro-caméra est standard et

s'adapte automatiquement au niveau d'entrée du module hybride émetteur.

Ce dernier se présente sous la forme d'un petit circuit imprimé pourvu de 8 broches (voir figure 5) à souder comme un quelconque composant.

Une fois les soudures terminées, il faut le rabattre à l'horizontale. De telle sorte, le module se couche à plat sur le circuit imprimé, occupant l'emplacement qui lui est réservé, et dont le plan de masse constitue une sorte de blindage HF.

La réalisation

Comme à chaque fois qu'un circuit utilise des modules prémontés dans lesquels les vraies difficultés se trouvent toutes résolues d'avance, la réalisation pratique de ce petit émetteur télévision tient à peu de chose.

Le petit circuit imprimé, donné à sa taille réelle à la figure 7, ne comporte aucune piste fine, et la taille des pastilles est telle qu'elles permettent d'effectuer des soudures confortables.

ELECTRONIQUE et Loisirs magazine PARAÎT EN AOÛT

... SPÉCIAL PIC... SPÉCIAL PIC... SPÉCIAL PIC...

COMPILATEUR BASIC POUR PIC

MICROCONTRÔLEURS PIC : CARTE DE TEST POUR PIC

Pour apprendre de manière simple la technique de programmation des microcontrôleurs PIC. Interfaçable avec le programmateur pour PIC universel, (Réf.: FT284). Le demoboard possède les options suivantes : 8 LED, 1 display LCD, 1 clavier matriciel, 1 display 7 segments, 2 poussoirs, 2 relais, 1 buzzer piézo ; toutes ces options vous permettent de contrôler immédiatement votre programme. Le kit comles composants, un micro PIC16C84, un prend tous les composants, un micro PIC16C84, un afficheur LCD, le clavier matriciel et une

disquette contenant des programmes de démonstrations.

FT215/K (Kit complet) 468 F

FT215/M (Livré monté). 668 F

UNE CARTE DE TEST POUR LES PIC 16F87X

Carte de développement pour PIC 16F87X interfaçable avec le program-mateur pour PIC16C84 (réf. : FT284).

FT333K
Kit complet
avec afficheur LCD
et programmes de démo...450 F

Un compilateur sérieux est enfin disponible (en deux versions) pour la famille des microcontrôleurs 8 bits. Avec ces softwares il est possible "d'écrire"

un quelconque programme en utilisant des instructions Basic que le compilateur transformera en codes machine, ou en instructions prêtes pour être simulées par MPLAB ou en instructions transférables directement dans la mémoire du microcontrôleur. Les avantages de l'utilisation d'un

PIC BASIC COMPILATEUR: Permet d'utiliser des fonctions de programmation avancées, commandes de saut (GOTO, GOSUB), de boucle (FOR... NEXT), de condition (IF... THEN...), d'écriture et de lecture d'une mémoire (POKE, PEEK) de gestion du bus I2E (I2CIN, I2COUT), de contrôle des liaisons séries (SERIN, SEROUT) et naturellement de toutes les commandes classiques du BASIC. La compilation se fait très rapidement, sans se préoccuper du langage machine.

PBC (Pic Basic Compiler) 932,00 F

compilateur Basic par rapport au langage assembleur sont évidents : l'apprentissage des commandes est immédiat ; le temps de développement est

considérablement réduit ; on peut réaliser des programmes complexes avec peu de lignes d'instructions ; on peut immédiatement réaliser des fonctions que seul un expert programmateur pourrait réaliser en assembleur. (pour la liste complète des instructions basic : www.melabs.com)

PIC BASIC PRO COMPILATEUR: Ajoute de nombreuses autres fonctions à la version standard, comme la gestion des interruptions, la possibilité d'utiliser un tableau, la possibilité d'allouer une zone mémoire pour les variables, la gestion plus souple des routines et sauts conditionnels (IF... THEN... ELSE...). La compilation et la rapidité d'exécution du programme compilé sont bien meilleures que dans la version standard. Ce compilateur est adapté aux utilisateurs qui souhaitent profiter au maximum de la puissance des PIC.

PBC PRO 2 070,00 F

COMELEC

COMELEC - CD 908 - 13720 BELCODÈNE Tél. : 04 42 70 63 90 - Fax 04 42 70 63 95 Internet : http://www.comelec.fr

ADRESSE - NOUVELLE DEMANDEZ NOTRE NOUVEAU CATALOGUE 32 PAGES ILLUSTRÉES AVEC LES CARACTÉRISTIQUES DE TOUS LES KITS NUOVA ELETTRONICA ET COMELEC Expéditions dans toute la France. Moins de 5 kg : Port 55 F. Règlement à la commande par chèque, mandat ou carte bancaire. Bons administratifs acceptés. Le port est en supplément. De nombreux kits sont disponibles, envoyez votre adresse et cinq timbres, nous vous ferons parvenir notre catalogue général.

Pour vos achats,
choisissez
de préférence
nos annonceurs.
C'est auprès d'eux
que vous trouverez
les meilleurs tarifs et
les meilleurs services

Une fois que vous vous êtes procuré ou avez réalisé le circuit imprimé, commencez par y installer et souder les composants de plus petite taille.

Ainsi que vous pouvez le voir d'après le plan de montage de la figure 6, le circuit imprimé prévoit deux straps : l'un est situé à côté de la caméra miniature, et l'autre plus haut, à côté de la résistance R6.

Commencez donc par ces straps. Puis installez les 7 résistances, les 2 diodes (attention à leurs polarités si vous voulez que le circuit fonctionne!) et le support destiné à recevoir l'amplificateur opérationnel 741 (en l'orientant comme le montre la sérigraphie, pour que vous n'ayez, ensuite, aucune question à vous poser quant à la façon d'insérer le circuit intégré).

Continuez avec le cavalier J1 relatif à l'AGC, et les 7 condensateurs chimiques (dont le respect des polarités est impératif).

Puis terminez en installant la microcaméra et le module hybride HF, qu'il faut ensuite rabattre pour qu'il occupe

ABONNEZAVOUS À
ELECTRONIQUE
EL MASSIEL DE L'ÉLECTRONIQUE POUR
EL MASSIEL DE L'ÉLETRONIQUE POUR
EL MASSIEL DE L'ÉTRONIQUE POUR
EL MASSIEL DE L'ÉTRONIQUE POUR
EL MASSIEL DE L'ÉTRONIQUE POUR
EL MASSIEL DE L'ÉTRONI

et bénéficiez des 5 % de remise sur toute notre librairie d'ouvrages techniques ! entièrement la surface qui lui est réservée sur le circuit imprimé.

Pour ce qui concerne l'antenne, le plus simple est d'utiliser un morceau de fil rigide (émaillé 12/10 par exemple), après l'avoir dénudé et gratté sur l'extrémité à souder.

Sa longueur exacte dépend du type de module employé.

En association avec un module UHF, l'antenne doit mesurer 12 cm. Par contre, en association avec un module VHF elle doit mesurer 30 cm.

En fait la longueur d'une antenne se calcule en appliquant la formule suivante :

$$I = \frac{\frac{e}{f}}{4}$$

dans laquelle "e" représente la vitesse de la lumière (300 000 km/s) et "f" la fréquence du signal exprimée en kilohertz. Le résultat "I" (en mètres) est ensuite divisé par 4 car c'est sur le quart d'onde de la fréquence d'accord que l'on obtient l'impédance la plus basse et par conséquent le résultat optimal.

Mais, dans notre cas précis, étant donné que sur le circuit imprimé existe déjà un morceau de piste, la longueur de celle-ci doit être prise en compte dans le calcul final aboutissant à déterminer la longueur réelle de l'antenne.

Si bien qu'en définitive l'antenne proprement dite devra mesurer seulement 12 cm dans le premier cas, et 30 cm dans le deuxième. Bien entendu, tout élément qui serait amené à rallonger la longueur de l'antenne doit être pris en compte dans le calcul de la taille réelle du brin rayonnant. Une fiche banane par exemple.

Une fois les soudures terminées, la réalisation prend l'aspect de ce que vous pouvez voir à la figure 7.

Protégez-le dans un boîtier de votre choix, susceptible de contenir également les 4 piles bâton de 1,5 volt qui seront placées dans un porte-piles et pratiquez les ouvertures nécessaires à la caméra, au microphone et à l'antenne.

A partir de là, l'émetteur est prêt à fonctionner. Vous pouvez l'installer où vous voulez et en faire, somme toute, l'usage que vous voulez, à la condition

de l'abriter de la pluie et de l'humidité

Toutefois, tenez compte de la législation française en termes de protection de la vie privée, du droit à l'image, etc. Par ailleurs, comme nous l'avons déjà écrit en début d'article, la réception de ce que vous émettez se fera sur n'importe quel récepteur réglé sur votre canal. Donc n'importe quel proche voisin en train de régler son téléviseur peut recevoir vos images. Ne transmettez donc jamais d'images pouvant choquer ou attenter aux bonnes mœurs. En un mot comme en cent, jouissez de cette micro-caméra selon les termes consacrés : "en bon père de famille".

Nous avons déjà précisé que cet émetteur convient tout particulièrement pour tenir sous contrôle audio/vidéo des locaux de petites dimensions, distants de 50, voir 100 mètres du récepteur.

Il peut servir soit à fournir des images visibles en temps réel (pensez, par exemple, à la surveillance de la chambre d'un bébé), soit à alimenter un magnétoscope, pour voir les images plus tard, après les prises de vues.

Selon l'usage que l'on veut faire de ce montage, on pourrait également faire précéder le magnétoscope d'un circuit basé sur la détection des mouvements (motion detector) qui mettrait le magnétoscope en route seulement lorsque quelque chose passe devant l'objectif de la caméra.

Ce sera la fantaisie de chacun qui suggérera, en fin de compte, l'usage de ce mini émetteur.

♠ A. B

Coût de la réalisation*

Tous les composants, visibles sur la figure 6, nécessaires à la réalisation de ce mini émetteur de télévision EF.368, y compris le circuit imprimé, la micro-caméra et le module hybride AUREL VHF ou UHF: 699 F. Le circuit imprimé seul: 60 F. Le module hybride VHF ou UHF seul: 164 F.

* Les coûts sont indicatifs et n'ont pour but que de donner une échelle de valeur au lecteur. La revue ne fournit ni circuit ni composant. Voir les publicités des annonceurs.

EF.375

Une alimentation ATX pour PC à partir d'une batterie de volture 12 volts

Voici une alimentation ATX pour ordinateur, concue spécialement pour faire fonctionner n'importe quel PC (ou autre appareil incluant un microprocesseur) dans une voiture, à partir de la batterie 12 V. Le montage présenté ici produit toutes les tensions nécessaires, positives ou négatives.

Il arrive cependant quelquefois que l'on doive effectuer des opérations pour lesquelles un ordinateur domestique serait tout à fait indiqué mais l'achat d'un portable grèverait le budget de façon rédhibitoire, surtout si l'on doit l'installer à demeure pour une seule application.

Nous pensons, par exemple, aux systèmes intelligents de gestion des véhicules, ou simplement aux microprocesseurs dont la seule finalité est de manipuler des informations mais sans jamais avoir à "montrer" des données à

évidemment inutiles mais contribuent de façon notable à l'envol du prix.

L'unique solution, donc, pour pouvoir utiliser la puissance d'un ordinateur personnel, et ce à faible coût, consiste à utiliser un PC classique. Mais ici surgit un problème considérable : l'alimentation. Il va de soi qu'un ordinateur domestique est alimenté par le réseau EDF 220 volts alternatifs, alors qu'en voiture nous ne disposons que de la tension fournie par la batterie, c'est-à-dire 12 volts continus!

L'alternative (c'est le cas de le dire !)

La voici!

Première solution, utiliser un convertisseur DC/AC 12/220 V avec lequel on alimente l'ordinateur. Seconde solution, concevoir et construire une alimentation ATX pour PC, modifiée cependant pour fonctionner sur 12 Vcc. La première a été écartée parce qu'elle présentait l'inconvénient de nécessiter la production d'un courant parfaitement sinusoïdal pour éviter d'endommager l'alimentation ATX standard du PC.

Notre solution

Nous avons donc opté pour la seconde et conçu une alimentation ATX parfaitement compatible avec celles que l'on trouve aujourd'hui dans les ordinateurs basés sur Pentium II, III, Athlon, Duron, etc.

Cela donne un circuit qui reçoit le 12 Vcc en entrée et élève cette tension pour la distribuer aux différents régulateurs nécessaires à l'obtention des tensions requises par la carte mère. Certes, notre alimentation est plus encombrante qu'une du commerce, mais cette dernière aurait dû être précédée d'un convertisseur... lui aussi encombrant.

L'alimentation proposée ici est parfaitement en mesure d'alimenter un PC complet : elle fournit une puissance réelle totale de 150 watts (nous vous assurons que cela est plus que suffisant pour alimenter un PII avec carte vidéo 3D et HD).

Le schéma électrique de l'alimentation

En vous reportant à la figure 4, vous pourrez plus facilement comprendre les détails ci-dessus et d'autres encore à venir. En effet dans les lignes suivantes nous expliquerons les analogies et les différences qui existent entre notre alimentation ATX et celles du commerce.

Avant tout, il faut dire que, dans tous les cas, des solutions hybrides sont mises à profit, aussi bien la technique du découpage que la technique linéaire.

Normalement, le découpage donne 3,3 V, 5 V et 12 V positifs alors que les régulateurs linéaires ordinaires produisent - 5 V et - 12 V. En plus d'un étage d'entrée de type "step-up", c'està-dire élévateur de tension, plutôt que "step-down" (abaisseur), notre schéma présente une différence substantielle par rapport aux schémas standards : alors que ces derniers comportent une alimentation à découpage, régulée sur la base d'une tension de rétroaction prélevée sur la piste +5 V, le nôtre est constitué d'un découpage à 2 tensions d'environ 40 V et 28 V (utilisées par les autres convertisseurs DC/DC et par les régulateurs linéaires).

Donc, l'alimentation ATX proposée dans ces pages présente des sorties régulées, chacune par son propre régulateur : cela est sans aucun doute un

Figure 1 : Brochage du connecteur standard ATX avec toutes les tensions nécessaires au fonctionnement complet des cartes mères des ordinateurs personnels d'aujourd'hui.

Le circuit intégré L4970A

Le circuit intégré L4970A est un régulateur à découpage de 10 A (15 A max), réglable en tension de 5,1 à 40 V.

L'utilisation de la nouvelle technologie BCD et des sorties à transistor DMOS, permet d'obtenir un très bon rendement et une vitesse de commutation très élevée.

Le régulateur est monté dans un boîtier plastique à 15 broches et ne demande, pour fonctionner, que peu de com-

Figure 2a : Vue latérale sur le circuit intrégré L4970A.

posants externes (photo 2a).

Pour plus de détails, nous vous invitons à télécharger le "datasheet" complet (en anglais) "L4970A.PDF" à l'adresse suivante :

www.electroniquem a g a z i n e . c o m /telechargement.asp.

A cette même adresse, vous trouverez également le fichier "ATX_201.PDF" qui donne les spécifications ATX, version 2.01.

Figure 2b : Affectation des 15 broches, toutes du même côté, en forme de peigne.

Figure 2c : Le schéma interne par sous-ensembles.

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
Vi	input Voltage Range (pin 9)	$V_o = V_{ref}$ to 40V $I_o = 10A$	15		50	V
Vo	Output Voltage	$V_i = 15V \text{ to } 50V$ $I_o = 5A; V_o = V_{re}f$	5	5.1	5.2	V
ΔV _o	Line Regulation	$V_i = 15V \text{ to } 50V$ $I_o = 5A; V_o = V_{re}f$		12	30	mV
ΔV _o	Load Regulation	$V_o = V_{ref}$ $I_o = 3A \text{ to } 6A$ $I_o = 2A \text{ to } 10A$		10 20	30 50	mV mV
V _d	Dropout Voltage Between Pin 9 and 7	I _o = 5A I _o = 10A		0.55 1.1	0.8 1.6	V V
I _{7L}	Max. Limiting Current	$V_i = 15 \text{ to } 50V$	11	13	15	Α
η	Efficiency	$I_o = 5A$ $V_o = V_{ref}$ $V_o = 12V$	80	85 92		%
		$I_o = 10A$ $V_o = V_{ref}$ $V_o = 12V$	75	80 87		%
SVR	Supply Voltage Ripple Reject.	V_i = 2VRMS; I_o = 5A f = 100Hz; V_o = V_{ref}	56	60		dB
f	Switching Frequency		180	200	220	KHz
$\frac{\Delta f}{\Delta V_i}$	Voltage Stability of Swiching Frequency	V _i = 15V to 45V		2	6	%
$\frac{\Delta f}{T_j}$	Temperature Stability of Swiching Frequency	$T_j = 0 \text{ to } 125^{\circ}\text{C}$		1		%
f _{max}	Maximum Operating Switching Frequency	$V_o = V_{ref}$; $R_4 = 10K\Omega$ $I_o = 10A$; $C_9 = 1nF$	500			KHz

Figure 2d : Le tableau des caractéristiques électroniques du L4970A.

AUTOMOBILE

avantage en dépit d'une plus grande complexité du circuit et d'une perte de rendement par rapport à la solution traditionnelle dans laquelle un seul transformateur produit toutes les tensions positives (à partir d'une seule) et où deux seuls régulateurs en boîtier TO220 se chargent des pistes négatives du 5 V et du 12 V.

Examinons maintenant en détail le schéma de la figure 4. Divisons-le, ce sera plus commode, en sous-ensembles fonctionnels :

Le premier étage est un élévateur de tension à découpage à 2 tensions, une positive et l'autre négative, obtenues à partir du 12 Vcc de la batterie de la voiture.

Cinq régulateurs constituent l'étage suivant : 3 d'entre eux sont aussi à découpage, les 2 autres sont linéaires.

Il reste un sixième régulateur de tension attaqué directement par le 12 Vcc d'entrée batterie et qui fournit le 5 V stabilisé pour la logique de mise en route de la carte mère ATX (tension toujours disponible).

Procédons par ordre et voyons le premier sous-ensemble, celui qui donne les tensions, positive et négative, destinées à être ensuite abaissées par les divers régulateurs des sorties.

Il s'agit d'un convertisseur DC/DC à découpage, utilisant un transformateur dont le double primaire à prise centrale est piloté en "push-pull" et dont le secondaire est double aussi.

La méthode de travail est classique, malgré la présence d'une nouveauté remarquable constituée par le microcontrôleur U7, qui fait office de générateur de signal de contrôle des MOSFET.

Aussi, nous n'avons pas employé le classique SG3525 ou le TL494 (les drivers PWM les plus courants pour alimentations à découpage) mais un PIC12C672 programmé pour lire l'état logique du signal de mise en route ("POWERGOOD") directement sur la carte mère qui gère le "softstart" et produisant 2 signaux rectangulaires en opposition de phase, nécessaires au fonctionnement en "push-pull" du transformateur élévateur.

Le microcontrôleur doit toujours être alimenté (grâce au 5 V obtenu par un régulateur 7805, qui stabilise la tension d'entrée batterie 12 Vcc) et, jusqu'à ce que la broche 3 (signal de mise en marche) se trouve au niveau haut, il demeure

Figure 3 : Gestion complète de l'alimentation par le PIC12C672-MF375.

Nous avons utilisé un microcontrôleur PIC de façon à pouvoir gérer toutes les fonctions de l'alimentation. La mise en marche est commandée par un signal envoyé par la carte mère (dont la logique 5 V doit être toujours alimentée) qui attend un signal de confirmation de cette mise en marche.

en boucle, dans l'attente de la commutation PWR ON qui maintient l'alimentation en veille.

Cette dernière condition est remplie lorsque l'usager presse le poussoir de mise en marche de l'ordinateur, alors que la logique toujours alimentée de la carte mère (par le +5 V présent sur le fil VIOLET, "PURPLE") porte à zéro le contact du connecteur ATX relatif au signal de PWR ON (fil VERT, "GREEN").

A ce moment, le PIC active le "soft-start", produisant les deux ondes rectangulaires disponibles sur les broches 6 et 7.

Les deux signaux sont, l'un par rapport à l'autre, en opposition de phase et il doit en être ainsi car les MOSFET de l'étage suivant doivent être excités alternativement, de façon à alimenter une moitié du primaire à la fois.

Comme chaque MOSFET met à la masse une moitié du primaire et comme cet enroulement comporte une prise centrale reliée au +12 Vcc d'entrée batterie, on va trouver, aux bornes des secondaires, des tensions, rectangulaires elles aussi, mais alternées puisque, quand T1 est passant, la phase de la tension induite est opposée par rapport à celle due à l'état passant de T2.

Cela s'explique par le fait que les deux moitiés du primaire sont bobinées dans le même sens et que la conduction alternée des MOSFET établit des courants opposés, ou, encore, détermine dans le noyau de ferrite un flux magné-

tique qui change de signe à chaque demi-période.

Après une seconde d'émission des signaux PWM, étant donné que les étages en aval se sont régulés, le microcontrôleur commute sa broche 2, qui prend l'état logique zéro, bloque le transistor T3 et, déterminant ainsi un état haut sur le fil GRIS (signal POWERGOOD, qui informe le BIOS de la carte mère que le système peut se mettre en marche, toutes les tensions étant disponibles).

Notez bien que les spécifications des alimentations ATX indiquent que le +5 V doit être disponible avant 20 ms à partir de la mise en route : notre alimentation remplit cette condition en moins de 10 ms (8 ms typiques!).

Un autre point à prendre en considération : l'étage qui fournit le signal de POWER-GOOD possède une résistance de "pull-up", alimentée spécialement par la sortie +5 V de l'alimentation.

Ceci parce qu'en l'absence d'une quelconque rétroaction, si d'aventure un problème se produisait en aval du transformateur et que l'alimentation ne donnât pas les tensions correctes, le microcontrôleur ne pourrait pas s'en rendre compte et, au bout d'une seconde à partir de la mise en route, enverrait quand même le signal de POWER-GOOD. Le circuit est conçu de manière que, en cas de problème sur la piste du 5 V, ou sur le pont redresseur du positif, si le 5 V venait à manquer, le signal de POWER-GOOD ne pourrait prendre le niveau haut. En fait la condition "OK", donnée par le microcontrôleur, s'applique à un transistor qui peut, soit se bloquer, soit laisser passer le 5 V vers la carte mère. Ainsi, si le 5 V fait défaut, indépendamment de l'information donnée par le microcontrôleur, le signal sur le fil GRIS reste à zéro.

Sur le secondaire du transformateur

Ces choses importantes étant entendues, voyons ce qui se passe sur le secondaire du transformateur, aux bor-

AUTOMOBILE

nes duquel se trouvent 2 tensions rectangulaires et alternées, redressées individuellement et lissées par leur propre condensateur.

A noter toutefois que le positif du pont inférieur est relié au négatif du pont supérieur. Cette connexion permet d'obtenir une alimentation double : une tension positive et une négative, condition indispensable étant donné que les cartes mères des PC requièrent, on l'a vu, 5 V, 12 V et 3,3 V positifs, 5 V et 12 V négatifs. Ajoutons que la tension positive atteint environ 40 V et la négative environ 28 V. La raison en est que, si les régulateurs à découpage (U2, U3, U4) acceptent en entrée jusqu'à 50 V, les linéaires, en revan-

che, (79XX) ne supportent pas plus de 35 V.

Les sorties

C'est ici que les circuits de sortie, ceux dont la finalité est de fournir exactement les différentes tensions requises, sont à considérer avec attention. Analysons-les dans l'ordre.

La sortie +5 V

Le plus important est celui qui fournit le +5 V. Le cœur de cette section est le régulateur à découpage intégré L4970A, un "driver" PWM à charge inductive, capable de débiter au moins 15 A. En pratique, ce composant actif alimente la self L1 en la reliant au positif général (broche 9), par le truchement de la broche 7, l'énergie accumulée sous l'effet de chaque impulsion se déchargeant, à travers la diode D1, dans les condensateurs de sortie C3, C4, C5 et C30.

La diode sert à fermer le circuit en décharge et empêche la surtension produite aux bornes de la self d'endommager le transistor de sortie. De fait, selon la loi de Lenz, une self privée brusquement de tension d'alimentation, réagit en produisant une tension de sens opposé qui, instantanément, peut prendre une valeur beaucoup plus haute. Sur la broche 11 (rétroaction),

AUTOMOBILE

AUTOMOBILE

Liste des composants

R1 R2 R3 R4-R5	= $10 \Omega 2/3 W$ = $2,2 k\Omega$ = $50 k\Omega$ trimmer multitour = $2,2 k\Omega$	C13-C14 C15-C16 C17-C18 C19 C20	 2200 μF 25 V électrolytique 10 nF céramique 470 μF 50 V électrolytique 2,2 μF 63 V électrolytique 470 μF 50 V électrolytique 	T1-T2 T3 à T5 U1 U2 U3-U4	= MOSFET RFG70N06 = NPN BC547 = Régulateur 7805 = Régulateur L4970A = Rég. Ajust.
R6	= 50 k Ω trimmer	C21	= 4700 µF 50 V électrolytique		switching LM2576T
	multitour	C22-C23	= 10 μF 63 V électrolytique	U5	= Rég. négatif 7905
R7	$= 2.2 \text{ k}\Omega$	C24	= 2,2 µF 100 V électrolytique	U6	= Rég. négatif 7912
R8-R9	$= 120 \Omega 2/3 W$	C25	= 330 pF céramique	U7	$= \mu C PIC12C672-MF375$
R10	$= 120 \Omega$	C26	= 22 nF multicouche	U8	= Régulateur 78L05
R11	$=47 k\Omega$	C27	= 2,2 nF multicouche	TF1	= Transfo (voir texte)
R12	$= 10 \text{ k}\Omega$	C28	= 220 nF multicouche		
R13-R14	$= 4.7 \text{ k}\Omega$	C29	= 10 µF 63 V électrolytique	Divers:	
R15-R16	$= 270 \Omega$	C30	= 1 µF polyester		
R17-R18	$=$ 10 Ω		100 V 10 mm	5	Radiateurs ML33
R19-R20	$=$ 100 Ω	C31÷C34	,		ou éq. (vr txt)
R21	$= 4.7 \text{ k}\Omega$	C35-C36	= 1 µF polyester	3	Radiateurs ML26
R22	$=$ 100 Ω		100 V 10 mm		ou éq. (vr txt)
R23	= 10 $k\Omega$	C37-C38	= 1 µF polyester 63 V 5 mm	9	Vis métal. 3MA x 20
R24	$=470 \Omega$	C39	= 1 μF polyester	9	Ecrous métal. 3MA
R25	= 1,2 k Ω		100 V 10 mm	1	Ventilateur 12 V
R26-R27	= 15 k Ω	D2 à D4	= Diodes MBR745	1	Set de câbles alim. ATX
C1 à C10	= 2200 µF 16 V	D5 à D8	= Diodes BY399	1	Set de câbles
	électrolytique	PT1	= Pont redresseur KBL04		alim. disque dur
C11-C12	$= 100 \mu F 25 V$	L1	= Self 47 μH	1	Circuit imprimé
	électrolytique	L2-L3	= Self 220 μH		réf. S357

le circuit intégré lit la tension de sortie afin d'intervenir en l'abaissant, si elle augmente trop, ou en l'élevant, si elle chute à cause d'une augmentation de la charge.

La sortie +3,3 V

Passons à la piste 3,3 V, sortie réalisée grâce à un autre régulateur PWM série, LM2576-ADJ, fonctionnant comme le L4970, c'est-à-dire à charge inductive et pilotant, par des impulsions rectangulaires positives, la self L2. Cette dernière, pendant les périodes de pause, restitue l'énergie emmagasinée aux condensateurs de sortie C7, C8 et C31. Le LM2576 (U3) utilise la broche 4 (rétroaction) pour recevoir une partie de la tension de sortie provenant du curseur du trimmer R3. Celui-ci permet de faire varier le potentiel envoyé à l'amplificateur d'erreur interne et au régulateur, ce qui permet, en pratique, de régler finement le potentiel présent sur la piste +3,3 V. Cette sortie peut débiter jusqu'à 5 A.

La sortie +12 V

La section du +12 V est, en substance, identique à la précédente et donc les remarques seraient les mêmes. L'unique différence tient en ce que la tension de sortie, ajustée par R6, est de 12 V exactement.

Les sorties négatives

Les pistes négatives, alimentées par la différence de potentiel prise aux bornes des condensateurs C20 et C36, utilisent des régulateurs linéaires ordinaires, 7905 pour le – 5 V et 7912 pour le –12 V. En fait, les courants requis sur ces sorties sont vraiment faibles (300 mA au plus) et les compo-

sants de la série 79XX sont pleinement adaptés.

En conclusion, nous dirons que le rendement de l'alimentation ATX, décrite dans cet article, est de 63 % à pleine charge (un peu moins si la charge est moindre, à cause de l'absorption au repos).

Figure 6 : Photo d'un des prototypes prêt à fonctionner.

Notre prototype est certes plus encombrant qu'un produit du commerce équivalent mais il permet de connecter un PC à une batterie de voiture de 12 Vcc sans utiliser aucun convertisseur DC/AC.

AUTOMOBILE

La réalisation pratique

La réalisation du circuit est relativement simple, les composants faciles à trouver auprès des distributeurs, quant au connecteur d'alimentation ATX, on le trouvera chez un revendeur d'ordinateurs.

La première chose à faire est, bien sûr, de préparer ou de se procurer le circuit imprimé visible côté cuivre, à l'échelle 1, figure 7.

Une fois gravé et percé le circuit imprimé, vous devrez tout d'abord réaliser les "straps" d'interconnexion, constitués par des fils de cuivre dénudés de 0,8 à 1 mm de diamètre. Ils sont au nombre de 15.

Placer ensuite le support du microcontrôleur en prenant soin d'orienter le repère-détrompeur vers C19 (reportez-vous figure 5 au schéma d'implantation des composants).

Les alimentations ATX

Contrairement aux alimentations pour PC de première génération (appelées AT, réalisées pour les ordinateurs personnels construits autour des microprocesseurs allant du 8088 au Pentium MMX), une alimentation ATX n'est pas mise sous tension par simple connexion du secteur 220 Vac, mais par un signal de commande partant de la carte mère de l'ordinateur et présent sur l'une des broches du connecteur.

Figure 8: Les alimentations ATX.

C'est la raison pour laquelle l'alimentation ATX se compose de 2 sections. L'une d'elles est toujours en fonction et fournit les 5 V à la logique d'activation, une sorte de FLIP-FLOP qui, sur la carte mère, est commandé par le poussoir de mise en marche (PWR ON) ou bien par un signal de commande particulier venant du BIOS (du même type que le signal provenant de la ligne reliée au modem).

Donc, la logique de contrôle est toujours reliée au 5 V (\pm 5 Standby, fil violet, voir figure 1) fourni par la section toujours allumée de l'alimentation ATX et, quand elle est connectée, elle met à la masse la broche du connecteur d'alimentation reliée au fil vert. Le passage 1/0 logique sur cette connexion allume l'étage de puissance du découpage, et l'alimentation fournit des tensions ordinaires, soit \pm 3,3 V, \pm 0 u \pm 5 V et \pm 0 u \pm 12 V.

La section de puissance s'arrête lorsque, à cause du signal de commande logiciel ou bien à cause de l'action sur le poussoir ON/OFF, la logique de la carte mère est réinitialisée, le fil vert étant alors "ouvert".

Enfilez résistances et diodes en faisant attention à la polarité de ces dernières.

Les diodes redresseuses en boîtier T0220 seront disposées debout et orientées comme le montre la figure 5.

D2 sera fixée sur un dissipateur à U, présentant une résistance thermique Rth de 15 à 18 °C/W, qui évacuera la chaleur pendant le fonctionnement.

Les régulateurs, intégrés eux aussi, demandent à être montés sur dissipateurs : 7805, 7905 et 7912 et utiliseront chacun un dissipateur en U, d'une Rth de 8 à 10 °C/W (par exemple ML/33). Même chose pour les dissipateurs des MOSFET P70N06.

U8 fait exception : ce régulateur 78L05, en boîtier plastique T092, sera placé côté plat vers C37, et ne comportera aucun dissipateur.

Le transformateur

Le transformateur élévateur à découpage sera réalisé sur une carcasse de ferrite à EI, modèle EE4242, visible sur la photo de la figure 10, en enroulant, pour le primaire, 2 + 2 spires de fil de cuivre émaillé de 1,8 mm de diamètre.

La prise centrale ira au positif d'entrée (+12 Vcc batterie) et chacune des extrémités au drain d'un des MOSFET. Des secondaires, celui qui alimente le pont redresseur du positif (D5, D6, D7 et D8), sera constitué de 7 spires de fil de

ABONNEZAVOUS À

et bénéficiez des 5 % de remise sur toute notre librairie d'ouvrages techniques!

cuivre émaillé de 1,3 mm de diamètre, tandis que l'autre (vers PT1), de 5 spires seulement, du même fil.

Bien sûr, avant de souder les extrémités des enroulements, il faut bien gratter, sur quelques millimètres de longueur, l'émail qui protège le fil et empêcherait la soudure de prendre.

Vérification et réglages

Complétez enfin les opérations de montage, vérifiez bien que tout est en place puis vous pourrez relier le circuit à une alimentation ou une batterie 12 Vcc capables de débiter une dizaine d'ampères.

Ensuite, à l'aide d'un testeur, il faudra vérifier les différentes tensions des sorties : en particulier, il sera nécessaire de régler les trimmers R3 et R6 pour obtenir respectivement 3,3 V et 12 V sur les sorties positives.

INPUT 12 Vcc 15 A

FOR ALL PC **FULL ATX** COMPATIBLE

OUTPUT 150W MAX

CAUTION! HAZARDOUS AREA

Trained service personnel only. No user serviceable components inside.

Figure 9 : L'étiquette des caractéristiques principales d'une alimentation du commerce.

L'étiquette ci-dessus peut servir à la comparaison entre notre appareil et les alimentations standard ATX du commerce.

Nos prototypes ont été testés avec une charge constituée par MB ATX, Celeron 600, SVGA 3D et HD de 10 MB

Pour pouvoir effectuer les réglages, il faudra relier le +12 V à l'entrée EN du PIC (figure 4) ou, évidemment, envoyer le signal de mise en marche (PWR ON) en reliant à la masse le contact correspondant (VERT).

Faites le réglage des régulateurs LM2576 et l'alimentation est prête à

fonctionner. Il faudra donc réaliser la connexion à la carte mère grâce au connecteur spécial, à câbler avec du fil aux couleurs standard (voir figure 1).

Les fils rouges vont aux cosses marquées +5 V ou R, les fils orange doivent entrer dans les trous marqués OR (3,3 V) tandis que les jaunes iront aux cosses Y (12 V). Le violet (+5 SB) sera soudé sur la cosse POWER-GOOD (VIOLET) et le blanc en W (-5 V). Enfin le vert (ON) doit être relié au trou GREEN.

♠ A. G.

Figure 10 : Gros plan sur le transfo et les transistors T1 et T2.

Coût de la réalisation*

Tous les composants, visibles sur la figure 4, nécessaires à la réalisation de cette alimentation ATX pour PC à partir d'une batterie de voiture 12 Vcc EF.375, y compris le circuit imprimé et le microcontrôleur PIC12C672-MF375: 895 F.

Le circuit imprimé seul : 170 F.

Le microcontrôleur PIC12C672-MF375 seul: 140 F.

* Les coûts sont indicatifs et n'ont pour but que de donner une échelle de valeur au lecteur. La revue ne fournit ni circuit ni composant. Voir les publicités des annonceurs.

TEL: 01- 43 -78 -58-33 FAX: 01- 43 -76 -24-70 94220 CHARENTON Métro: CHARENTON-ECOLES

VENTE PAR CORRESPONDANCE-RÉGLEMENT À LA COMMANDE ENVOI COLLISSIMO SUR DEMANDE POrt et emballage: de 0-6Kg........55F et plus de 6Kg......80F Moniteur Forfait 190F (Etranger NC) Ces prix sont valables dans la limite des stocks disponibles. Ils sont donnés à titre indicatif TTC et peuvent être modifies en fonction des fluctuations du marché et sous réserve d'erreurs typographiques.

HORAIRES:

DU MARDI AU SAMEDI INCLUS 10h à 12h et de 14h à 18h

WWW.DZélectronic.com

dzelec@noos.fr

VENTE PAR CORRESPONDANCE - Composants Rares:L120ab-SAA1043P-D8749h-TCM3105m-2n6027-U106bs-UAA170

VENT		<u>'AR CC</u>)Kŀ	<u>RESPO</u>	NL	
LINEAIRES						
24C08 24C16 24c32	15F	LM117hvk	NC.	SAA1050	79F	
24C16	NC	LM2575N	33F	SAA1058	48F	
24032	NC	LM293N	5F	SAA1070	NC	
24LC65	30E	LM318DP	10E	SAA3010	35F	
24LC64	40E	LM319DP	145	SAA5444A	139F	
93C46P	491	LIVIS 19DP	141	SAD1024A	170F	
93C46P	10F	LM324N	3F	SDA2201	70E	
87c52-16	89F	LM391N-100.	NC	SAF1032	NIC.	
AD558JN	149F	LM741CH	25F	SL5500	145	
AD590	NC	LT1014	NC	SLB0586	400	
AD592	49F	LT1076CT		SLB0300	49	
AD633JN	73F	LT1064		SN76001	351	
AD818AN	NC	M253B1	NC	ST62T20		
AD7541 AD7569JN	NC	MAX038	180F	ST62T25	/91	
AD7569JN	124F	MAX/icl232	15F	TCA1365B		
ADC804cn	44F	MC1437L	.90F	TCM3105A	149F	
ADC0808cn	65F	MC14493P MC14495P	.49F	TDA1013A	20F	
AM7911PC	199F	MC14495P	69F	TDA1015	18F	
AT89C1051	30F	MC145026P	NC	TDA1048	28F	
AT89C1051 AT89C2051	49E	MC145026P MC145027P MC145028P	27E	TDA1170S	11F	
AT89c51	SOF	MC14502PP	275	TDA1180P	25F	
AT90S1200	09F	MC1648L	120E	TDA2030	14F	
A19051200	49F	MC 1046L	ISUF	TDA4601D	10F	
AY3-8910	123F	MC3361BP	241	TDA8443	205	
CA3086	10F	MC3403N	NC	TDA8734	NIC	
CA3130E	14F	MC3420P	NC	TEASEO0	EEE	
CA3161E	17F	MC3479P	99F	TEA5500	OOF	
CA3162E	66F	MC3486p	NC	TL032	NC	
CA3189E	NC	MC68HC11A1F	89F	TL061	NC	
CA3240	16F	MC68HC811E2	.179F	TL072CN	8F	
CNY17-2	4F	MDA2062	49F	TL074CN	4F	
D8279c5	89F	MK50240N	NC	TL082	4F	
D8749H	NC	MK50398	NC	TL497AN	26F	
DAC08(800)	20F	MK48Z08B-2		TP5089	35F	
DAC808	22F	MK48Z02B-1		TP5089 TS87C52X2	69F	
DAC0932L	NC	MUX24		U106bs	NC	
DS3695N	110E	NE529	20F	UAA2001	NC	
DS1267-010	NC	NE5534P	8F	UC3524AN UC3637N		
GAL22V10	205	NE555N	25	UC3637N	NC	
ICL7126CP	ZUF	NE592N	10	UC3842	15E	
ICL/120CP	NC	NEO9ZIV	NC	UC3844	15F	
ICL7652cp	NC	NE605	451	UC3847N	NC	
ICL7660CP	15F	OP07CN	12F	LIC3954NI		
ISD1016ap	169F	OP249GP	25F	UC3854N UC3901N	NIC	
ISD1420p	89F	P80c31	25F	UGN3503U	IVC	
ISD2590p	149F	P80c32	30F	UGN35030	15F	
KTY83-110	10F	P8251A	89F	UGN3130N	25	
L120ab	NC	PCD3311CP	52F	UDN2585N	NC	
L123	NC	PCF8573	38F	UM3561	13F	
L293D	55F	PCF8574	.35F	UM3750	25F	
L296	49F	PCF8582	49F	UM82c54-2.	39F	
1.308K/\	NC	PCF8583	39F	XR2206CP	59F	
L4710cv L487	SEE	DCE9504	CEE			
1.487	20F	PIC12c508	15F			
L4962	20F	PIC16C54RC	13E	Filtre Ond	e de	
L6219				433.92Mhz	R263	
1702	N/C	PIC16C633	39F	par 5		
L702	COL	PIC 10C022	491	MODULES	LIVE	
LS7220 LF347N	691	PIC16C64	591	MODULES	HE 42	
LF347N	TUF	PIC16C622 PIC16C64 PIC16C84	49F	Récepteur	TF 43	

Réalisez vos
circuits
imprimés Simple Face
Double Face
en quelques minutes (Film positif)

(Film positir)
Plaques Prés.30x20cm
Simple Face 16/10
Par 145F
Par 285F
par 10399F
Plaques Prés.30x20cm
Simple Face 8/10
PAR 175F PAR 369F
TAIT O
The second live of the second live of

- Inde CHRACTERES
2LignesX8c129F 4Lignes x16c199F 1Lignesx16c49F
2Lignesx16c89F
7segments A.C. 12.7mm
TDSR516010F TFK90110F

Ì	Filtre Onde de Surface (FOS) 433.92Mhz R263239F par 5125F	H.F.	
ı	MODULES HYBRIDES	BF981	F
ı	Récepteur HF 433.92	BFG6523	BF
ı	Sensibilité -100dBm(2.2µVrms)	BFR9010	F
ı	Alim 5V Dim38.10mmx13.7mm Prix Unitaire. 59F	BFR9110	F
:	par5225F	BFR9610	F
		BFW928	BF
ı	E FOE	NE60545	F
	700	POS1025299	F

Gagner du temps en commandant en ligne sur internet consulter les promos WWW.DZélectronic.com

	x1	x10	x25
PIC16F84A	34F	33pF	29F
PIC16c622	39F	30F	
PIC16F876	85F	69F	
PIC16F628	79F	64F	
PIC16c57rc	39F		
PIC12c508a	15F		
24lc16 24lc32 24lc64	18F	11F	9F
24lc32	22F		
24lc64	49F	35F	
24lc65			
24LC256	59F		
IcI/max232	15F	9F	
SN7407	6.50F	5F	
TL074	4F	3.50F	2F
Quartz			
3.5795Mhz	8F	6.50F	5F
11.0592Mhz	8F	6.50F	5F
Gal 22v10	20F	15F	12F
zener 1/2W	1F	0.80F	0.50F

2RT 12V.....**20F** Mini-Relais Siemens Prix 15F 10...120F

CONNECTEURS GSM Full pins

Alcatel-Ericsson-Motorola Nokia-Panasonic-Phillips Siemens-Sony

Câbles data GSM Alcatel Ericsson Nokia Motorola Panasonic

CONNECTEUR DE CARTE 29F

lecteur de cartes magnétiques

deux pistes. Vitesse 5à150cm/s Courant:1mA par piste Alim 5V couleur noir

Programmateur TOPMAX ziF 48broches
Plus de 5500 C.I. sous Win/DOS

Programmateur PIC "Monté'

PLB3717A SAA1043F

Micro-Controleur UV

PIC16c71/jw.....120F ST62E25. PIC16c64/jw.....120F ST62E01. PIC16c57/jw.....120F

Pic16F84+12c508+24c16+24c32

Programmateurs8189F 350F

Programmateur LPC-2B.. Programmateur rommaster2..... 2699 F **CHIP MAX** ...3980F Effaceur d"Eprom en KIT

des caméras sur place.

LH0032. LM111J8

CCD 1/3" + Audio 12v DC

Caméra NetB
Mini-caméra cmos sur un flexible de 20cm pixels 365k-Lines 380-1lux angle 90°-alim 12V
Dim:16x27x27

néra couleur Pal 1/3 NetB Cmos + Audio image sensor pixels 330k lines tv 380 3luxDC12V Dim:30x23x58mm

⇒ 220AC 12VDC = Convertisseur de tension CC vers CA 150W fiche allume cigare Tension d'entrée 12VTension de sortie 230V AC

ALIMENTATION entrée 220V sortie 15VDC

TRANSDUCTEURS A ULTRASONS
Transducteurs

CAPTEUR TELEPHONIQUE
Capteur téléphonique inductif à ventouse. Fixacéramiques à ultrasons pour télécommandes. Fréquence: 40 kHz. Sensibilité: 0.5 mV/ Dim.: Ø16 x 12 mm.

Livré avec câble de 1 mètre de long et prise jack de 3.5mm.

PLAQUE S

D'ESSAI

à 840 contacts

Caméra N/B PINHOLE avec Audio CMOS 1/3"

500x582 pixels 240 lignes. 1lux mini Lentille:f3.7mm/F2.0/ Angle 90° avec cable et boitier metal noir. D36x36x10mm

EMETTEUR CAMERA COULEUR RECEPTEUR

AUDIONIDEO SANS FIL 2.4GHz - 4 CANAUX

Transformateur torrique 2x10V 0.15A 1x12V 2.4A dim 67mm/H34mm

WWW.DZelectronic.com

Caméra Pinhole

WWW.DZelectronic.com

WWW.DZelectronic.com

DZélectronique-DZélectroni

NOUVEAUTÉS

PRIX. Réf. JE084 Disjonctions différentielles intempestives, échauffement des câbles, destruction de batteries de condensateurs... Autant de conséquences possibles des perturbations harmoniques sur les réseaux. Avec la prolifération des charges non linéaires, la menace des harmoniques pèse de plus en plus sur l'équilibre qualité / coûts de l'énergie électrique distribuée. De plus, elle constitue un obstacle pour préserver la qualité de l'alimentation électrique des applications sensibles (informatique, télécom, industrie,...). Pour éviter ces dégradations, il faudra procéder à une analyse fine et dynamique des origines du phénomène harmonique et posséder une connaissance approfondie des différentes solutions disponibles sur le marché. Cet ouvrage didactique synthétise le savoir-faire dans ce domaine des constructeurs leaders dans l'appareillage de mesure et les équipements électriques.

Réf. JEJ87 225F INFORMATIQUE

Réf. JEJA157 138F PRIX **TECHNOLOGIE**

278 **TECHNOLOGIE**

Vous permettre de maîtriser les bases de l'électronique programmable, telle est l'ambition de ce livre. Pour y parvenir, nous avons choisi de nous appuyer sur le fameux et universel microcontrôleur PIC avec lequel on "fait" de l'électronique sans s'embarrasser de schémas complexes. Le modèle retenu ici est le 16F84 au rapport performances/ prix sans égal sur le marché. Cet apprentissage, progressif au travers de montages simples et ludiques, est basé sur des applications actuelles comme les cartes à puce, la télévision ou les robots. Cette progressivité est également percep-tible au travers des outils de programmation mis à votre disposition sur le CD-ROM accompagnant livre. Ainsi, vous explorerez les immenses possibilités de cette électronique moderne en basic, assistés du logiciel BASIC F84.

SPÉCIAL MONTAGES

98 MONTAGES

Réf. JF. 179 95^F PRIX MONTAGES

Réf. JEJ81 145F MONTAGES

148F MONTAGES

.168F MONTAGES

98F PRIX MONTAGES

.158F MONTAGES

Enrichi de près de 500 schémas, cet ouvrage regroupe la quasitotalité des fonctions principales rencontrées en électronique. Réalisés par l'auteur ou par les firmes citées, les montages proposés couvrent de nombreux domaines : audio, vidéo, générateurs de signaux, de courant et de tension, alimentations, mesures, filtrage, alarmes, détection...

Réf. JEJ75 .225F Les modules électroniques, petits circuits électroniques interdépendants, vont vous permettre, par simple assemblage des uns aux autres, de créer les applications les plus diverses. sans risques de destruction, sans avoir besoin d'utiliser un fer à souder, et en gagnant un temps appréciable.

Réf. JEJA015 Réservée il y a encore quelques années aux grands fabricants, la synthèse vocale est aujourd'hui à la portée de tous grâce à des circuits intégrés performants, peu coûteux et aisément disponibles. Cet ouvrage vous propose de découvrir ces circuits passionnants au travers des réalisations les plus diverses.

Vous pouvez également consulter notre site Livres-techniques.com sur lequel vous trouverez les dernières nouveautés.

28,81€

EXTRAIT DE LISTE

1 - LES LIVRES

REF	DÉSIGNATION	PRIX PRIX EN F EN €

DÉBU'	TANTS	EN	ÉLECTRON	IQUE

JEA12	ABC DE L'ÉLECTRONIQUE50 F	7,62€
JEJ82	APPRENDRE L'ÉLECT. FER À SOUDER EN MAIN 149 F	22,56€
JEJ02	CIRCUITS IMPRIMÉS 138 F	21,04€
JEJA104	CIRCUITS IMPRIMÉS EN PRATIQUE 128 F	19,51€
JEI03	CONNAÎTRE LES COMPOSANTS ÉLECTRONIQUES 98 F	14,94€
JEO48	ÉLECT. ET PROGRAMMATION POUR DÉBUTANTS 110 F	16,77€
JEJ57	GUIDE PRATIQUE DES MONTAGES ÉLECTRONIQUES . 90 F	13,72€
JE022-1	L'ÉLECTRONIQUE ? PAS DE PANIQUE ! (T.1) 169 F	25,76€
JEO22-2	L'ÉLECTRONIQUE ? PAS DE PANIQUE ! (T.2) 169 F	25,76€
JEO22-3	L'ÉLECTRONIQUE ? PAS DE PANIQUE ! (T.3) 169 F	25,76€
JEJ31-1	L'ÉLECTRONIQUE PAR LE SCHÉMA (T.1)158 F	24,09€
JEJ31-2	L'ÉLECTRONIQUE PAR LE SCHÉMA (T.2) 158 F	24,09€
JEJA039	L'ÉLECTRONIQUE ? RIEN DE PLUS SIMPLE ! 148 F	22,56€
JEJ38	LES CELLULES SOLAIRES 128 F	19,51€
JEJ39	POUR S'INITIER À L'ÉLECTRONIQUE 148 F	22.56€

APPRENDRE ET/OU COMPRENDRE				
	L'ÉLECTRONIQUE			
JEO24	APPRENEZ LA CONCEPT° DES MONTAGES ÉLECT95 F 14,48€			
JEJ34	APPRIVOISEZ LES COMPOSANTS ÉLECTRONIQUES. 130 F 19,82€			
JEP18	ASSERVISSEMENTS ET RÉGULATIONS CONTINUS210 F 32,01€			
JEP11	AUTOMATIQUE DES SYSTÈMES CONTINUS240 F 36,59€			
JEJ84	CALCUL PRATIQUE DES CIRCUITS ÉLECT 135 F 20,58€			
JEJA118	CALCULER SES CIRCUITS2EME EDITION 99 F 15,09€			
JEJ62	COMPOSANTS ÉLECT. : TECHNO. ET UTILISATION 198 F 30,18€ I			
JEJ95	COMPOSANTS INTÉGRÉS 178 F 27,14€ I			
JEO70	COMPRENDRE ET UTLISER L'ÉLECT. DES HF249 F 37,96€			
JEO68	COMPRENDRE LE TRAITEMENT NUMÉRIQ. SIGNAL 219 F 33,39 €			
JEJA127	COMPRENDRE L'ÉLECT. PAR LA SIMULATION 210 F 32,01€			
JEM21	CONCEPTION DE CIRCUITS LINÉAIRES MICRO-ONDES 230 F 35,06€ I			
JEP20	CONVERTISSEURS STATIQUES			
JEO03	DE LA DIODE AU MICROPROCESSEUR 280 F 42,69€			
JEI05	DÉPANNAGE EN ÉLECTRONIQUE			
JEL21-1	DISPOSITIFS DE L'ÉLECT DE PUISSANCE (T.1) 296 F 45,12€			
JEL21-2	DISPOSITIFS DE L'ÉLECT DE PUISSANCE (T.2) 296 F 45,12€ I			
JEJA005	ÉLECTRONIQUE DIGITALE			
JEJA140	ÉLECTROTECHNIQUE			
JEP17	ESTIMATION PRÉDICTION			
JEJ21	FORMATION PRATIQUE À L'ÉLECT. MODERNE 125 F 19,06€			
JEP14	GÉNIE ÉLECTRIQUE : DU RÉSEAU AU CONVERT 280 F 42,69€ I			
JEM12	INITIATION AUX TECHN. MODERNES DES RADARS 220 F 33,54€			
JEP13	INTRODUCTION À LA COMMANDE FLOUE			
JE005	INTRO À LA THÉORIE DU SIGNAL ET DE L'INFO 290 F 44,21€			
JEO26	L'ART DE L'AMPLIFICATEUR OPÉRATIONNEL 169 F 25,76€			
JEJ42	L'ÉLECTRONIQUE À LA PORTÉE DE TOUS			
JEJA040	L'ÉLECTRONIQUE DE PUISSANCE			
JEI09	L'ÉLECTRONIQUE PAR L'EXPÉRIENCE			
JEO13 JEM1 <i>7</i>	LE COURS TECHNIQUE			
JEM17 JEO35	LE FILTRAGE ET SES APPLICATIONS			
JEM16	LES AUTOMATISMES PROGRAMMABLES			
JEJ24	LES CMS			
JEL17	LES COMPOSANTS OPTOÉLECTRONIQUES 230 F 35,06€			
JEJ45	MES PREMIERS PAS EN ÉLECTRONIQUE			
JEP19	MODÉLISATION ET COMMANDE MACHINE ASYNCRONE 340 F 51,83€			
JEJ33-1	PARASITES ET PERTURBATIONS DES ÉLECT. (T.1) . 160 F 24.39€			
JEJ33-2	PARASITES ET PERTURBATIONS DES ÉLECT. (T.2) . 160 F 24.39€			
JEJ33-2	PARASITES ET PERTURBATIONS DES ÉLECT. (1.2) . 160 F 24,39€			
JEJ33-4	PARASITES ET PERTURBATIONS DES ÉLECT. (T.4) . 160 F 24,39€			
JEJA128	PERTURBATIONS HARMONIQUES			
JEO41	PRATIQUE DES LASERS			
JEM10	PRATIQ. DU SIGNAL ET SON TRAITEMENT LINÉAIRE 148 F 22,56€ I			
JEM11-1	PRINCIPES ET FONCT. DE L'ÉLEC INTÉGRÉE (T.1) 200 F 30,49€			
JEM11-2	PRINCIPES ET FONCT. DE L'ÉLEC INTÉGRÉE (T.2)200 F 30,49€			

PRINCIPES ET FONCT. DE L'ÉLEC INTÉGRÉE (T.3)...280 F 42,69€

PRINCIPES ET PRATIQUE DE L'ÉLECT. (T.1)............195 F 29,73€

PRINCIPES ET PRATIQUE DE L'ÉLECT. (T.2) 195 F 29,73€ I

JEM11-3

ı JEJ63-2

technol des con electro	nposants
	Résistances Bobinages Condensateurs Normes Essais
RADIO	tome1

Réf. JEJ32-1198 F APPRENDRE L'ÉLEC.

Réf. JEM18 ..255F TECHNOLOGIE

Réf. JE070 249^F PRIX ... APPRENDRE L'ÉLEC.

Réf. JEJA121198 F **TECHNOLOGIE**

JEJA115 **JEO14**

1 JEO64 JEJ52

JEO69

JEJ50

JEO38

JEO10

.88F APPRENDRE L'ÉLEC.

	ECTRONIQUE POUR 1005		
JEJ44	PROGRESSEZ EN ÉLECTRONIQUE	159 F	24,24€
JEJA091	SIGNAL ANALOGIQUE ET CAPACITÉS COMMUTÉES .	210 F	32,01€
JEP15	SYSTÈMES ÉLECTRONTECHNIQUES		
JEJ32-1	TECHNOLOGIE DES COMPOSANTS ÉLECT. (T.1)		
JEJ32-2	TECHNOLOGIE DES COMPOSANTS ÉLECT. (T.2)		
JEO25 JEJ36	THYRISTORS ET TRIACS TRACÉ DES CIRCUITS IMPRIMÉS 2EME EDITION	199 ^г 150 F	30,34€ 24,09€
JEJ30 JEO30-1	TRACE DES CIRCUITS IMPRIMES ZEME EDITION TRAITÉ DE L'ÉLECTRONIQUE (T.1)		
JEO30-2	TRAITÉ DE L'ÉLECTRONIQUE (T.2)		
JE076	TRAITÉ DE L'ÉLECT : CORRIGÉ DES EXERCICES		
JE031-1	TRAVAUX PRATIQUE DU TRAITÉ (T.1)	298 F	45,43€
JEO31-2	TRAVAUX PRATIQUE DU TRAITÉ (T.2)		
JEO27	UN COUP ÇA MARCHE, UN COUP ÇA MARCHE PAS		
	CHNOLOGIE ÉLECTRONI		
JEO04	CEM ET ÉLECTRONIQUE DE PUISSANCE		
JEM13	CAPTEURS INTELLIGENTS ET MICORACTIONNEURS. CIRCUITS INTÉGRÉS ET TECHN. NUMÉRIQUES		
I JEM18 I JEJA099	CIRCUITS LOGIQUES PROGRAMMABLES		
JEM14	CIRCUITS PASSIFS		
JEW10	ÉLECTRONIQUE ANALOGIQUE À CAPACITÉS		10,022
	COMMUTÉES EN BOITIER REPROGRAMMABLE		
JEJA106	GUIDE PRATIQUE DE LA CEM	198 F	30,18€
JEJA158	IDENTIFICATION RADIOFRÉQUENCE ET CARTES		
15170	À PUCE SANS CONTACT - DESCRIPTION		
JEJ78	L'ACCESS.BUS L'ÉLECTRONIQUE DE COMMUTATION		
ı JEO02 ı JEP16	LA COMMANDE PAR CALCULATEUR		
JEL20	LA MICROÉLECTRONIQUE HYBRIDE		
JEJA031	LE BUS CAN THÉORIE ET PRATIQUE		
	LE BUS CAN APPLICATIONS		
JEJA033	LE BUS 12C PAR LA PRATIQUE		
JEJA111	LE BUS 12C PRINCIPES ET MISE EN ŒUVRE		
JEJA034	LE BUS IEE-488		
JEJA152	LE BUS USB - GUIDE DU CONCEPTEUR		
JEJA035 JEJA037	LE BUS VAN LE MICROPROCESSEUR ET SON ENVIRONNEMENT.	148 ⁻ 155 F	22,56€ 23,63€
JEJAUS/	LES BASIC STAMP		
JEJA116	LES DSP FAMILLE ADSP218x		
JEJA113	LES DSP FAMILLE TMS320C54x		
JEJA051	LES MICROPROCESSEURS COMMENT CA MARCHE	88 F	13,42€
JEJA064	MICROPROCESSEUR POWERPC		
JEJA065	MICROPROCESSEURS	275 F	41,92€
JEJA121	MOTEURS ÉLECTRIQUES POUR LA ROBOTIQUE		
JEJA157 JEP10	MOTEURS PAS À PAS ET PC		
JEJA097	THYRISTORS, TRIACS ET GTO	240 · 949 F	36,59€ 36,89€
JEL19	VARIATION DE VITESSE		
	OC. POUR ÉLECTRONICI		,
JEJ12	350 SCHÉMAS HF DE 10 KHZ À 1 GHZ		30,18€
JEJ53	AIDE-MÉMOIRE D'ÉLECTRONIQUE PRATIQUE	128 F	19,51€
JEJ83	ASTUCES ET MÉTHODES ÉLECTRONIQUES		
JEO65	COMPATIBILITÉ ÉLECTROMAGNÉTIQUE		
JEJYO	CONVERSION, ISOLEMENT ET TRANSFORM. ÉLECT.		
JEJA151 JEJA141	COURS D'ÉLECTRONIQUEÉLECTRICITÉ ÉLECTRONIQUE ÉLECTROTECHNIQUE		
JEJA 14 I I JEO43	ÉLECTRONIQUE : MARCHÉ DU XXIÈME SIÈCLE		
JEJ54	ÉLECTRONIQUE AIDE-MÉMOIRE		
JEJA011	ÉLECTRONIQUE PRATIQUE		
JE051	ENVIRONNEMENT ET POLLUTION	169 F	25,76€
JEJA013	ÉQUIVALENCES CIRCUITS INTÉGRÉS		
JEJ56	ÉQUIVALENCES DIODES	175 F	26,68€
JEJA014	ÉQUIVALENCES THYRISTORS, TRIACS, OPTO		
JEJAU54-I	ÉQUIVALENCES TRANSISTORS (T.1)	1 75 F	28,20€

JEJA054-2 ÉQUIVALENCES TRANSISTORS (T.2) 175 F 26,68€

GUIDE DES CIRCUITS INTÉGRÉS 189 F

LOGIQUE FLOUE & RÉGULATION PID 199 F 30,34€

Vous pouvez également consulter notre site Livres-techniques.com sur lequel vous trouverez les dernières nouveautés.

RAIL

EXTRAIT DE LISTE

	AA						
JEO29	MÉMOTECH	ÉLECTRO	ONIQUE			247 F	37,65€
JEJA075	OPTO-ÉLECTR	RONIQU	E			153 F	23,32€
JEO28	RÉPERTOIRE						22,11€
JEJ61	RÉPERTOIRE						36,59€
JEJA124	SCHÉMATHÈ						24,39€
JEJA125	SCHÉMATH.						24,39€
JEJA090 JEJA154	SCHÉMATH. SÉLECTION R						25,15€
JEJA I 54	SELECTION K					130 '	21,04€
15000	ADDDENET L		IESUR		CT.		
JEO23 JEJA008-1	APPRENEZ LA						16,77€
JEJAUU8-1 JEJA008-2							19,82€ 19,82€
JEJAUUS-2 JEU92	GETTING THE						6,10€
JEO84	LA MENACE I						25,00€
JE067-1	MESURES ET						21,50€
JEO67-2	MESURES ET	ESSAIS	5 T.2			147 F	22,41€
JEJA057	MESURES ET	ESSAIS	D'ÉLECTRIC	ITÉ		98 F	14,94€
ı JEJ48	MESURE ET						35,06€
JEU91	MORE ADVA						6,10€
JEJ55	OSCILLOSCO						29,27€
JEJ18	PRATIQUE DE					198 1	30,18€
			ENTAT				
JEJ11	300 SCHÉM						
JEJ40	ALIMENTATIO						19,67€
JEJ27	ALIMENTATIO				/ELLE ED	. 298 F	45,43€
	,		ONTAG				
JEJA112	2000 SCHÉ/						45,43€
JEJ75	27 MODULES						34,30€
JEO17	301 CIRCUIT						19,67€
JEO18 JEO19	302 CIRCUIT 303 CIRCUIT						19,67€ 25,76€
JEO19 JEO20	304 CIRCUIT						25,76€ 25,76€
JEO21	305 CIRCUIT						25,76€
JEO32	306 CIRCUIT						25,76€
JEO80	307 CIRCUIT						28,81€
JEJ77	75 MONTAG						14,94€
JEJ79	AMPLIFICATE						14,48€
JEJ81	APPLICATION						22,11€
JEJ90	CIRCUITS IN						25,61€
JEJA015	FAITES PARLI						19,51€
JEJA022	JEUX DE LUA						22,56€
JEJA044	LES JEUX DE						11,43€
ı JEJA117 ^I JEJA073	MONTAGES A						24,09€ 12,96€
JEJ37	MONTAGES I						14,94€
JEJ26	MONTAGES I						14,74€
JEJA103	RÉALISATION						22,71€
JEJA089	RÉUSSIR 25						14,48€
	TRON	IQU	E ET II	NFO	RM/	ATIQ	UE
JEJ94	COMPOSANT						30,18€
JE055-1	DÉPANNEZ LI						37,96€
JE055-2	DÉPANNEZ LI						37,96€
JEJA119	ÉLECTRONIQ	UE ET P	ROGRAMMAT	10N		158 F	24,09€
JE072	ESPRESSO						22,71€
JEJA021	INTERFACES						30,18€
E011	J'EXPLOITE L						25,76€
JEO12	JE PILOTE L'I						23,63€
JE075	JE PROGRAM						33,39€
I JEJ60 I JEJA072	LOGICIELS P						35,06€
JEJAU72 JEJ23	MONTAGES I	יטטא אל בוברדסר	MIUITEC DUI	ID DC		775	30,18€ 34,30€
, JEJ23 , JEJ47	PC ET CARTE						34,30€ 34,30€
JEJ47 JEJ59	PC ET DOMO						30,18€
JEO83	PILOTAGE PA	R ORDIN	NATEUR DE N	ODÈLE R	ÉDUIT		00,100
	FERROVIAIRE					229 F	34,91€
JEO63	TRAITEMENT						48,63€

DOCUMENTATION POUR ELECTRONICIENS

Réf. JEJ83 PRIX. ..135 F Les électroniciens sont souvent à l'affût d'astuces qui rendent la pratique de ce loisir plus agréable. Ce mémento est un recueil de nombreuses astuces glanées au fil de la pratique de l'auteur. Tous les thèmes sont abordés, de l'analogie au digital, des fonctions logiques basiques au microcontrôleur, du maquettage à la fabrication en série. Un exemple : l'art et la manière de remplacer un composant par un autre lorsqu'il n'est plus disponible ou qu'il coûte trop cher. Cet ouvrage intéressera aussi bien l'amateur, débutant ou chevronné, que le professionnel, en phase de conception, de mise au point, ou d'industrialisation. Un livre à garder sous la main, entre les documentations des constructeurs et le fer à souder!

PRIX. .72F **DOCUMENTATION**

Réf. JEJA011 .128F DOCUMENTATION

PRIX ...175 ⁻ DOCUMENTATION

PRIX .. .180F DOCUMENTATION

.76^F PRIX. DOCUMENTATION

Réf. JEJA054-1 PRIX. .185^F DOCUMENTATION

P_{RIX} ...175 F DOCUMENTATION

Réc IF IANGO PRIX .. 165F PRIX. DOCUMENTATION

Réf. JEJA154 .138^F DOCUMENTATION

165^F Réf. JEJA115 Quel électronicien n'a jamais rêvé de réaliser ses propres circuits électroniques à partir d'un schéma structurel créé pour le besoin ou emprunté dans un ouvrage?

Vous faire franchir les portes de la conception et vous faire enfin connaître les joies de la création électronique, c'est ce que nous vous proposons dans ce livre. La démarche adoptée par l'auteur s'éloigne résolument de celles - souvent rébarbatives - employées dans les ouvrages d'électronique "conventionnels". Originale, elle permet de rationaliser la conception de la maquette à travers une réflexion sur le choix des composants.

Vous pouvez également consulter notre site Livres-techniques.com sur lequel vous trouverez les dernières nouveautés.

dans la journée de réception, sauf en cas d'indisponibilité temporaire d'un ou plusieurs produits en attente de livraison. SRC ÉDITIONS ne pourra être tenu pour responsable

TRANSPORT: La marchandise voyage aux risques et périls du destinataire. La livraison se faisant soit par colis postal, soit par transporteur. Les prix indiqués sur le bon de commande sont valables dans toute la France métropolitaine. Pour les expéditions vers la CEE, les DOM/TOM ou l'étranger, nous consulter. Nous nous réservons la possibilité d'ajuster le prix du transport en fonction des variations du prix des fournisseurs ou des taux de change. Pour bénéficier des recours possibles, nous invitons notre aimable (light)èle à onter pour l'envoi en recommandé à réserving des colis toute détringation. clientèle à opter pour l'envoi en recommandé. À réception des colis, toute détérioration doit être signalée directement au transporteur.

RÉCLAMATION : Toute réclamation doit intervenir dans les dix jours suivant la réception des marchandises et nous être adressée par lettre recommandée avec accusé de réception.

TOUT LE CATALOGUE LIBRAIRIE SUR LIVRES-TECHNIQUES.COM • LES DESCRIPTIONS DE PLUS DE 600 OUVRAGES CONSACRÉS À L'ÉLECTRONIQUE • COMMANDE SÉCURISÉE

JE PEUX COMMANDER PAR TÉLÉPHONE AU AVEC UN RÈGLEMENT PAR CARTE BANCAIRE	2 9	9 4	2 5	2 73
DÉSIGNATION	RÉF.	QTÉ	PRIX UNIT.	S/TOTAL
JE COMMANDE ET J'EN PROFITE POUR M'ABONNER	S	OUS-T	OTAL	
JE REMPLIS LE BULLETIN SITUÉ AU VERSO ET JE BÉNÉFICIE IMMÉDIATEMENT DE LA REMISE DE 5 % SUR TOUT LE CATALOGUE D'OUVRAGES TECHNIQUES ET DE CD-ROM JE SUIS ABONNÉ, POUR BÉNÉFICIER DE LA REMISE DE	R	EMISE-	ABONNÉ	x 0,95
	SOUS-	TOTAL	ABONNÉ	
	T	PC	PRT*	
5%, JE JOINS	* Tarifs & CEE / DOM-	expédition FOM / Étrang	er No	OUS CONSULTER
OBLIGATOIREMENT MON ÉTIQUETTE ADRESSE				: 45 F (6,86 €) s : 70 F (10,67 €)
Je joins mon règlement à l'ordre de SRC	-			25 F (3,81€) □ 35 F (5,34€) □
chèque bancaire □ chèque postal □ mandat □	TOT	AL:		
JE PAYE PAR CARTE BANCAIRE				LES SVP, MERCI.
Date d'expiration	ADRESSE :			
Date de commande	CODE POST	AL:	VILLE :	
Ces informations sont destinées à mieux vous servir	ADRESSE E-	MAIL:		

TÉLÉPHONE (Facultatif):

Elles ne sont ni divulguées, ni enregistrées en informatique.

profitez de vos privilèges !

sur to

sur tout le catalogue d'ouvrages techniques et de CD-ROM.

Bulletin à retourner à : JMJ - Abo. ELECTRONIQUE

B.P. 29 - F35890 LAILLÉ - Tél. 02.99.42.52.73 - FAX 02.99.42.52.88

- L'assurance de ne manquer aucun numéro.
- L'avantage d'avoir ELECTRONIQUE magazine directement dans votre boîte aux lettres près d'une semaine avant sa sortie en kiosques.
 - Recevoir un CADEAU*!
- * pour un abonnement de deux ans uniquement. (délai de livraison : 4 semaines)

délai de livraison : 4 semaines

dans la limite des stocks disponibles

OUI, Je m'abonne à ELECTRIE LOISING LE L'ÉLECTRIE L'ÉLE	RONIQUE POUR TOUS espondant à l'abonnement de mon choix.	9 3 3
Adresse		1 CADEAU
Code postal Ville		au choix parmi les 5
Je joins mon règlement à l'ordre de JMJ chèque bancaire mandat	Adresse e-mail: TARIFS FRANCE 6 numéros (6 mois)	POUR UN ABONNEMENT DE 2 ANS Gratuit : Un réveil à quartz
Je désire payer avec une carte bancaire Mastercard – Eurocard – Visa	au lieu de 174 FF en kiosque, soit 38 FF d'économie 136FF 20,73€ 12 numéros (1 an) au lieu de 348 FF en kiosque, soit 92 FF d'économie 39,03€	☐ Un outil 10 en 1☐ Un porte-clés mètre Avec 24 FF uniquement en timbres : ☐ Un multimètre ☐ Un fer à souder
Date, le	24 numéros (2 ans) au lieu de 696 FF en kiosque, soit 200 FF d'économie Pour un abonnement de 2 ans, cochez la case du cadeau désiré. DOM-TOM/ETRANGER: NOUS CONSULTER	O C C C C C C C C C C C C C C C C C C C

TELECOMMANDE ET SECURITE

TX ET RX CODES MONOCANAL (de 2 à 5 km)

Pour radiocommande. Très bonne portée. Le nouveau module AUREL permet, en champ libre, une por-tée entre 2 et 5 km. Le système utilise un circuit intégré codeur MM53200 (UM86409). Décrit dans ELECTRONIQUE nº 1.

FT151K	Emetteur en kit	220 F
	Récepteur en kit	
	Emetteur monté	
FT152M	Récepteur monté	210 F

DE RADIOCOMMANDE UHF **LONGUE PORTEE**

Il comporte deux canaux avec codage digital et des sorties sur relais avec la possibilité d'un fonctionnement bistable ou monostable. Alimentation 12 V

FT310 Emetteur complet	7	0	
	T310 Emetteur c	omplet	230 F
FT311Récepteur complet		•	

UN RECPTEUR 433,92 MHz 16 CANAUX

Ce récepteur fonctionne avec tous émetteurs type MM53200, UM86409, UM3750, comme le FT151, FT270, TX3750/2C.

EF356Récepteur complet en kit	590 F
TX3750/4C Télécommande 4 canaux	260 F

UNE TELECOMMANDE 2 CANAUX A ROLLING CODE

Récepteur à auto-apprentissage, basé sur le système de codage Keeloq de Microchip. Il dispose de deux sorties sur relais qui peuvent fonctionner en mode monostable ou à impulsions.

1 1001	
Kit récepteur comp	et190 F
TX-MINIRR/2	Télécommande 2 canaux130 F

UN DETECTEUR DE MICROS ESPIONS

Récepteur à large bande, très sensible, pouvant détecter les rayonnements radioélectriques du megahertz au gigahertz. S'il est intéressant pour localiser des émetteurs dans les gammes CB ou UHF, il est tout particulièrement utile pour "désinfester" les bureaux ou la maison en cas de doute sur la présence de micros espions.

Kit complet hors coffret et antenne 195 F

Coffret Teko pour FT370......48 F

UNE CENTRALE D'ALARME 2 ZONES A ROLLING-CODE

Centrale d'alarme 2 zones, sans fil, de haute technologie. Sa mise en ou hors service se fait par l'intermédiaire d'une télécommande à rolling-code ce qui la rend pratiquement inviolable. Elle est équipée de sor-ties relais dont le déclenchement est activé par des capteurs via une liaison radio. La centrale accepte jusqu'à 8 capteurs disposant d'un code différent. Leur activation est visualisée un "afficheur" composé de 8 diodes LED.

ı	
ı	FT303* Kit complet sans coffret ni télécommande 990 F
	TX-MINIRR Télécommande 2 canaux 180 F
	TEKO 767 Coffret pour FT303
	PIR113 Détecteur radio
	*Le kit FT303 inclut tous les composants, le transformateur, l'antenne 433, la sirène et la batterie.

TX / RX 4 CANAUX A ROLLING CODE

Système de télécommande à code aléatoire et tournant. Chaque fois que l'on envoie un signal, combinaison change. Avec ses 268 435 456 combinaisons possibles le système offre une sécurité maximale.

Récepteur i	monté avec	boîtier	420 F
TX433RR/4	Emette	ur monté	212 F

TELECOMMANDES CODEES 2 ET 4 CANAUX

Emetteurs à quartz 433,92 MHz homologués CE. Type de codage MM53200 avec 4096 combinaisons possibles. Disponible en 2 et 4 canaux. Livré monté avec piles.

TX3750/2C	Emetteur 2 canaux 190 F	
TX3750/4C	Emetteur 4 canaux 250 F	

UN DECODEUR DE TELECOMMANDES POUR PC

Cet appareil permet de visualiser sur l'écran d'un PC l'état des bits de

codage, donc le code, des émetteurs de télécommande standards basés sur le MM53200 de National Semiconductor et sur les MC145026, 7 ou 8 de Motorola, transmettant sur 433.92 MHz. Le tout fonctionne grâce à une interface reliée au port série RS232-C du PC et à un simple logiciel en QBasic.

FT255/KKit	complet avec log	270 F
FT255/MKit	monté avec log	360 F

UNE CLEF DTMF 4 OU 8 CANAUX

de plusieurs appareils, par l'intermédiaire de codes, exprimés à l'aide de séquences multifréquence. Il se connecte à la ligne téléphonique ou bien à la sortie d'un appareil radio émetteur-récepteur. Il peut être facilement activé à l'aide d'un téléphone ou d'un clavier DTMF, du même

téléphoniques.

EF354Kit 4 canaux	420 F
EF110EK Extension canaux	
Zi i i ozitimimi zxtoriorori odridax imministra	

UNE SERRURE ELECTRONIQUE DE SECURITE A TRANSPONDEURS

FT318 Kit complet sans transpondeur	
TAG-1 Transpondeur type porte-clé	95 F
TAG-2 Transpondeur type carte	95 F

CD 908 - 13720 BELCODENE Tél : 04 42 70 63 90 - Fax 04 42 70 63 95 Internet : http://www.comelec.fr

DEMANDEZ NOTRE NOUVEAU CATALOGUE 32 PAGES ILLUSTRÉES AVEC LES CARACTÉRISTIQUES DE TOUS LES KITS

Un oscillateur BF pour le Morse

Dans ces temps modernes où tout le monde utilise les téléphones portables, les fax et le courrier électronique, il apparaît comme un contre sens, de parler de signaux Morse, pourtant, comme vous le verrez, les connaître peut être encore utile pour beaucoup.

l'ère des téléphones cellulaires, du fax et des emails, parler d'alphabet morse pourrait sembler à quelques-uns un mode dévolu au passé, en contraste évident avec l'évolution du secteur des télécommunications.

Contrairement à ce que l'on pourrait penser, le code Morse (on dit également la CW ou la télégraphie) n'est pas encore dépassé, et cela est démontré par le fait qu'aujourd'hui, il est utilisé par les radioamateurs du monde entier, les forces armées et certains services d'un grand nombre de pays.

Pour obtenir le certificat d'opérateur radiotélégraphiste, ou simplement pour le plaisir d'écouter des transmissions que peu de gens peuvent comprendre, il faut démontrer son savoir-faire dans l'utilisation de l'alphabet Morse (du nom de son inventeur, voir le Petit Larousse).

Nous n'avons donc pas été surpris par la demande qui nous est parvenue d'une association de radioamateurs, de décrire un générateur en mesure de produire une note acoustique variable de 500 Hz à 1 000 Hz, demande motivée par la difficulté de trouver dans le commerce, un instrument similaire.

Peut-être que dans la boutique de quelque fripier passionné par ce genre d'article, vous parviendrez à dénicher un vieil oscillophone à lampes thermoïoniques, mais, si vous cherchez un modèle plus récent, auprès d'un revendeur d'électronique, vous vous apercevrez bien vite que peu d'entre eux connaissent l'existence d'un tel instrument.

Ceux qui ont tenté de réaliser un générateur BF en utilisant des transistors modernes ou des circuits intégrés, auront noté qu'en appuyant le manipulateur, ils obtenaient une note acoustique très différente de celle que l'on écoute normalement via radio sur les ondes courtes.

En fait, dans les vieux oscillophones, étaient insérés des filtres passe-bas qui permettaient d'éliminer toutes les fréquences harmoniques, pour obtenir, en sortie, une note extrêmement limpide.

Le schéma électrique

A propos du schéma électrique reporté à la figure 2, il faut dire que les deux amplificateurs opérationnels IC1/A et IC1/B, contenus dans le circuit intégré NE5532, sont utilisés pour générer un signal BF de forme triangulaire, que l'on peut modifier d'un minimum de 500 Hz environ, à un maximum de 1 000 Hz, en tournant simplement le potentiomètre R3.

Le signal triangulaire qui sort de l'ampli opérationnel IC1/B est transformé, à l'aide des deux diodes DS1 et DS2, en un signal presque sinusoïdal.

Ce dernier est transféré sur l'entrée du troisième ampli opérationnel IC2/A, utilisé comme filtre passe-bas, avec une fréquence de coupure de 1 200 Hz, qui le transforme en un signal sinusoïdal.

De la sortie de IC2/A, le signal BF, déjà filtré, est appliqué au potentiomètre R14, utilisé

MORSE di DA В DA di di di C DA di DA di D DA di di Ε di F di di DA di DA DA di G Н di di di di di di di DA DA DA K DA di DA di DA di di L M DA DA N DA di 0 DA DA DA di DA DA di Р Q DA DA di DA di DA di R di di di S T DA U di di DA ٧ di di di DA W di DA DA DA di di DA X DA di DA DA Z DA DA di di di DA DA DA DA 1 2 di di DA DA DA di di di DA DA 3 di di di DA 4 5 di di di di 6 DA di di di di 7 DA DA di di di 8 DA DA DA di di 9 DA DA DA DA di 0 DA DA DA DA di DA di DA di DA DA DA DA di di di di di DA DA di di DA di di di di DA di DA di DA di DA di di di DA di DA di DA di

Figure 1 : Si vous voulez apprendre rapidement le code Morse, il faut mémoriser le "son" de chaque lettre comme s'il s'agissait d'une note acoustique.

Le quatrième ampli opérationnel, IC2/B, sert pour piloter les deux transistors finaux, TR1 et TR2, qui permettent d'obtenir en sortie, une puissance plus que suffisante pour piloter en petit haut-parleur ou un ou plusieurs casques.

Dans cet oscillateur Morse, le manipulateur est connecté entre la résistance de sortie R21 et la broche de l'inverseur S2, utile pour diriger le signal BF sur le casque ou sur le hautparleur.

Pour alimenter cet appareil, il suffit d'une pile de 9 volts et, compte tenu de la très faible consommation (50 mA environ, manipulateur en contact), nous pouvons espérer une bonne autonomie.

La réalisation pratique

Tous les composants nécessaires pour réaliser cet appareil sont montés sur un circuit imprimé double face à trous métallisés, en les disposant comme le montre la figure 4a.

Les premiers composants que nous vous conseillons d'insérer, sont les deux supports destinés aux circuits intégrés IC1 et IC2, dont les pattes seront soudées sur les pistes en cuivre.

Cette opération terminée, vous pouvez monter toutes les résistances, puis les diodes DS1 et DS2, en orientant leur bague

Figure 2 : Schéma électrique de l'oscillateur pour apprendre l'alphabet Morse. Le montage, qui utilise deux circuits intégrés et deux transistors, est alimenté avec une classique pile de 9 volts.

dans un sen opposé l'une par rapport à l'autre.

Insérez ensuite tous les condensateurs polyester, puis les électrolytique, en respectant la polarité de leurs pattes.

Enfin, montez les deux transistors TR1 et TR2, en orientant la partie plate de leur corps vers le support d'IC2 et le bornier à 2 plots, duquel partiront les deux fils qui seront reliés au manipulateur

En vous reportant à la figure 4 et à la photo de la figure 5, insérez et soudez des picots dans les trous afin de pouvoir y souder les fils qui seront reliés aux composants externes au circuit imprimé, comme les potentiomètres,

la prise pour la pile 9 volts, les inverseurs, etc.

Le montage de tous les composants terminé, il faut mettre en place les circuits intégrés dans leur support, en orientant leur repère-détrompeur en forme de U vers les condensateurs C11 et C2.

A présent, prenez un petit coffret en plastique avec faces en aluminium (comme celui visible sur la photo en début d'article).

Sur la face avant, fixez les deux potentiomètres du volume et de la fréquence, en faisant attention de lire correctement la valeur marquée sur leur corps.

Dans le trou, "Volume", est installé le potentiomètre de valeur 47K (47 kilohms).

Dans le trou, "Frequency", est installé le potentiomètre de valeur 4K7 (4,7 kilohms).

Toujours sur la face avant, fixez le support chromé de la LED, les deux inverseurs S1 et S2 et les deux prises de sortie pour les casques.

Les deux fils pour le manipulateur doivent sortir du panneau arrière.

Si en plus des prises pour les casques, vous voulez aussi un haut-parleur, vous devrez fixer ce dernier sur le couvercle du coffret (voir figure 6), mais pour cela, il est indispensable de pratiquer auparavant, une série de trous dans le couvercle, afin de permettre au son de sortir convenablement.

Pour utiliser cet oscillateur Morse dans un local assez vaste, il convient de fixer le haut-parleur dans une petite enceinte acoustique, en l'orientant vers l'aspirant opérateur.

Pour apprendre le code Morse

Tout le monde sait que le code Morse est un code alphabétique, basé sur la combinaison de sons brefs, les points,

avec des sons plus longs, les traits (voir tableau de la figure 1).

Si de nombreux jeunes rencontrent des difficultés pour l'apprendre, c'est parce qu'ils commettent l'erreur de mémoriser les points et les traits correspondants à chacune des lettres.

A = point trait

B = trait point point point

c = trait point trait point

d = trait point point, etc.

Pour apprendre rapidement le code Morse, il faut mémoriser le son de chaque lettre et si vous adoptez ce système, vous découvrirez que tout cela est beaucoup plus simple.

Si vous entendez un "dida", vous saurez que ce son correspond à la lettre "A".

Si vous entendez "dadidi", vous saurez que ce son correspond à un "B".

Si vous entendez "dadidi dida dadidi dida", ce son correspond à "B.A.B.A".

Figure 4a : Schéma d'implantation des composants de l'oscillateur Morse. Les deux fils du manipulateur sont connectés au bornier à proximité du circuit IC1. Contrôlez que le premier transistor BC547, qui est un NPN, soit bien inséré dans les trous repérés TR1 et que le BC557, qui est un PNP, soit bien dans TR2. Le côté plat des deux transistors est orienté vers IC2.

Liste des composants

п									
	R1 et R2	=	10 k Ω	R16 et R17	=	10 kΩ	C11	=	100 nF polyester
	R3	=	$4,7$ k Ω pot. lin.	R18	=	3,9 kΩ	C12	=	2,2 nF polyester
	R4	=	8,2 kΩ	R19	=	47 kΩ	C13	=	100 µF électrolytique
	R5	=	5,6 kΩ	R20	=	1 k Ω	C14	=	220 µF électrolytique
	R6	=	8,2 k Ω	R21	=	1Ω	DS1	=	Diode 1N4150
	R7	=	10 k Ω	C1	=	10 µF électrolytique	DS2	=	Diode 1N4150
	R8	=	47 kΩ	C2	=	100 nF polyester	DL1	=	Diode LED
	R9	=	100 k Ω	C3 et C4	=	47 nF polyester	TR1	=	NPN BC547
	R10	=	47 kΩ	C5	=	3,9 nF polyester	TR2	=	PNP BC557
	R11	=	6,8 kΩ	C6	=	2,2 nF polyester	IC1	=	Intégré NE5532
	R12	=	47 kΩ	C7	=	220 nF polyester	IC2	=	Intégré NE5532
	R13	=	1 k Ω	C8	=	10 µF électrolytique	S1	=	Interrupteur
	R14	=	47 k Ω pot. lin.	C9	=	220 nF polyester	S2	=	Inverseur
١	R15	=	47 kΩ	C10	=	10 µF électrolytique	HP	=	Haut-parleur 8 Ω 0,2 W
1									

Figure 4b : Dessin, à l'échelle 1, du circuit imprimé de l'oscillateur Morse, côté soudures.

Figure 4c : Dessin, à l'échelle 1, du circuit imprimé de l'oscillateur Morse, côté composants. N'oubliez pas de souder des deux côtés les composants ayant des pastilles communes. Le circuit imprimé professionnel est un double face à trous métallisés, sérigraphié, ce qui rend inutile cette opération.

Figure 5 : Photo d'un des prototypes de l'oscillateur BF pour la CW, avec tous les composants en place.

Si vous entendez "dididi dadada dididi", ce son correspond à "S.O.S".

Cela est valable aussi bien pour recevoir, que pour transmettre, car il est plus facile de se rappeler le son dididi dadada dididi que 3 points, 3 traits, 3 points.

Il existe de nombreux cours de télégraphie. Tous se valent plus ou moins.

Denis BONOMO, F6GKQ et James PIER-RAT, F6DNZ ont réalisé un cours très complet disponible auprès de la librairie de la revue.

♦ N. E.

Figure 6 : Le circuit imprimé est fixé à l'intérieur d'un coffret plastique, à l'aide de quatre entretoises adhésives. Sur le panneau arrière du coffret, se trouve le logement qui renferme la pile de 9 volts. Ceux qui, en plus du casque, voudraient utiliser un haut-parleur, pourront fixer celui-ci directement sur le couvercle. Pour faire sortir le son efficacement, il faut percer plusieurs petits trous sur ce dernier.

Coût de la réalisation*

Tous les composants, visibles sur la figure 4a, nécessaires à la réalisation de cet oscillateur Morse EN.1476, y compris le circuit imprimé double face à trous métallisés mais à l'exclusion du boîtier, du casque, du haut-parleur et du manipulateur : 149 F.

Le coffret plastique percé et sérigraphié seul : 68 F.

Le circuit imprimé seul : 30 F. Un haut-parleur AP05.01 de 0,2 W par exemple : 25F.

Un casque économique CUF30 par exemple : 28 F.

Un manipulateur LMC par exemple : 219 F.

* Les coûts sont indicatifs et n'ont pour but que de donner une échelle de valeur au lecteur. La revue ne fournit ni circuit ni composant. Voir les publicités des annonceurs. EN.1481

Comment connaître la polarité d'un haut-parleur ?

Pour connecter en phase les haut-parleurs d'une chaîne stéréo, il est nécessaire de connaître la polarité des entrées. Le circuit proposé dans ces lignes vous permettra de distinguer, avec une extrême facilité, le pôle positif et le pôle négatif d'un quelconque haut-parleur ou d'une enceinte acoustique.

e nombre des passionnés qui se consacrent à la construction de circuits simples est en augmentation continuelle car, outre la satisfaction de les voir tout de suite fonctionner, ils peuvent aussi apprendre de nouvelles notions techniques.

Par exemple, qui a déjà eu l'occasion de construire un étage final stéréo aura noté que si l'on intervertit, sur le bornier de sortie, les fils qui vont aux enceintes acoustiques, on a la sensation que le son est atténué, même si la puissance appliquée aux bornes des enceintes demeure inchangée.

Cela se produit parce que le signal électrique appliqué à un haut-parleur est transformé en onde sonore par le mouvement de son cône. Donc, si celui-ci se déporte vers l'avant, les molécules d'air seront compressées, alors que s'il se déporte vers l'arrière, les molécules d'air seront décompressées.

Par conséquent, si nous appliquons un signal stéréo à deux enceintes acoustiques, de telle façon que les cônes

des haut-parleurs se déportent en phase, notre oreille entendra un son plus puissant.

Si, au contraire, nous appliquons le signal stéréo à deux enceintes de telle manière que les cônes des haut-parleurs se déplacent en opposition de phase, du fait que nous avons un cône qui comprime les molécules et un autre qui les décomprime, de multiples vibrations de la membrane verront leurs effets s'annuler et notre oreille percevra un son atténué. Pour éviter cet inconvénient, il faut touiours connecter les hautsparleurs ou les enceintes en phase et, pour y parvenir, il est nécessaire de savoir laquelle des deux bornes d'entrée est la borne positive et laquelle est la néga-

Normalement, la borne positive devrait être marquée d'un signe + ou d'un

point rouge, mais si l'un et l'autre manquent ou sont effacés ou si on a un doute, comment identifier cette borne d'entrée ? Pour résoudre ce problème, il suffit de réaliser le circuit ultra-économique, donné en figure 1, qui ne met en œuvre que deux circuits intégrés et deux LED.

L'étude du schéma

Le schéma de la figure 1 permet d'expliquer comment fonctionne ce circuit très simple.

Après avoir connecté les deux entrées de ce montage aux bornes d'un haut-parleur, il suffira de donner un petit choc sur son cône, avec un doigt ou un crayon, pour qu'apparaisse, sur les-dites bornes, un train d'impulsions qui, passant à travers le condensateur C3, rejoindra l'entrée non inverseuse 3 du premier amplificateur opérationnel IC1/A et l'entrée inverseuse 6 du second amplificateur opérationnel IC1/B.

Si du côté du condensateur d'entrée C3 se trouve connecté le pôle positif du haut-parleur, le premier front d'impulsions qui sortira sera de polarité négative (figure 2a). Si du côté du condensateur d'entrée C3 se trouve, au contraire, connecté le pôle négatif du haut-parleur, le premier front d'impulsions qui sortira sera alors de polarité positive (figure 3a).

Comme on l'aura noté, sort du hautparleur une impulsion de polarité opposée par rapport à la polarité du pôle connecté au condensateur C3 et ceci parce que, quand nous donnons un choc au cône, sa membrane est compressée vers l'intérieur et non vers l'extérieur. Les deux amplis opérationnels IC1/A-IC1/B sont utilisés dans ce circuit comme comparateur à fenêtre pour transformer en un signal carré les impulsions électriques qui parviennent à leurs entrées. Précisons que les demi-ondes positives sont transformées en signal carré par l'ampli opérationnel IC1/A, tandis que les négatives le sont par IC1/B.

Notons que, sur les sorties des deux amplis opérationnels, sont présentes des impulsions toujours positives.

Pour déterminer la polarité d'un hautparleur, on prendra comme référence la première impulsion qui sort du condensateur C3 (voir figures 2a et 3a).

Si la première impulsion qui sort est négative (voir figure 2a), elle est transformée tout de suite en signal carré par IC1/B. En fait, si on regarde attentivement la figure 2a, on verra que, la deuxième impulsion étant de polarité positive, elle est transformée en signal carré par IC1/A, mais en retard par rapport à la première impulsion qui sort de IC1/B.

Si la première impulsion qui sort est positive (figure 3a), elle est tout de suite transformée en signal carré par IC1/A. En fait, si on regarde attentivement la figure 3a, on verra que, la deuxième impulsion étant de polarité négative, elle est transformée en signal carré par IC1/B, mais en retard par rapport à la première impulsion qui sort de IC1/A.

Les deux signaux qui sortent des deux amplificateurs opérationnels IC1/A-IC1B, sont appliqués aux entrées "clock" (voir CK) des deux FLIP-FLOP IC2/A-IC2/B, utilisés comme indicateurs de priorité.

La première impulsion positive présente sur la broche CK d'un des deux FLIP-FLOP allume instantanément la LED reliée à sa broche de sortie Q, mais, par contre, n'allume pas la LED reliée au FLIP-FLOP opposé.

Pour que les deux LED demeurent éteintes à la mise sous tension du circuit, dès que celui-ci sera alimenté par une tension de 9 volts, le condensateur C5 enverra une impulsion positive à la broche RESET des deux FLIP-FLOP (broche 4 de IC2/A et broche 10 de IC2/B).

Ainsi, les deux sorties Q des deux FLIP-FLOP (broche 1 de IC2/A et broche 13 de IC2/B) prennent le niveau logique D et donc les LED DL1 et DL2 reliées à ces sorties demeurent éteintes.

Les sorties opposées marquées \overline{Q} (broche 2 de IC2/A) et broche 12 de IC2/B) prennent toutes deux le niveau logique 1. Si la première impulsion est présente sur la broche CK de IC2/A,

Figure 1 : Schéma électrique du circuit indicateur de polarité des haut-parleurs. Le signal qui sort du haut-parleur est transformé en un signal carré par les amplificateurs opérationnels IC1/A-IC1/B, utilisés comme comparateurs à fenêtre, puis ils sont appliqués à deux FLIP-FLOP IC2/A-IC2/B, utilisés comme indicateurs de polarité.

AUDIO

sa sortie Q prend instantanément le niveau logique 1 et, donc, DL1, reliée à la broche 1 s'allume.

Automatiquement, la broche opposée Q (broche 2) prend le niveau logique 0 et, puisque cette broche est reliée à la broche D de IC2/B (broche 9), ce FLIP-FLOP se bloque. Pour cette raison, même si sur la broche CK de IC2/B (broche 11) sont présentes les impulsions positives, la LED DL2 demeure

Si la première impulsion est présente sur la broche CK de IC2/B, sa sortie Q prend le niveau logique 1, et donc la LED DL2, relié à la broche 13, s'allume.

Automatiquement, la broche opposée \overline{Q} (broche 1) prend le niveau logique 0 et, puisque cette broche est reliée à la broche D de IC2/A (broche 5), ce FLIP-FLOP se bloque.

Pour cette raison, même si sur la broche CK de C2/A (broche 3) sont présentes des impulsions positives, la LED DL1 demeure éteinte.

Une fois déterminée la polarité du HP, il suffira d'appuyer sur le poussoir de RESET P1 pour éteindre la LED qui s'est allumée.

Pour simplifier

Pour éviter de devoir se souvenir de ce long verbiage ou de devoir le relire chaque fois que l'on veut déterminer la polarité d'un hautparleur ou d'une enceinte ou simplement pour éviter de se tromper, il suffit de marquer d'un "+" et d'un "-" les fils (ou bornes) d'entrée négative et positive et de marquer "BON" au-dessus de

> DL2 et "INVERSE" au-dessus de DL1.

> Si le haut-parleur ou l'enceinte sont dans le bon sens, c'est-à-dire le positif à C3 et le négatif à la masse, DL2 "BON" s'allume. Si c'est DL1 "INVERSE" qui s'allume, il suffit de permuter les entrées.

La réalisation pratique

Pour ce circuit, nous n'avons pas prévu de coffret. Néanmoins, vous pourrez quand même faire votre propre "mise en boîte" si vous le désirez, pourvu qu'elle soit capable de contenir à la fois le circuit imprimé et la pile 9 volts

Une fois en possession du circuit imprimé, les pre-

AUDIO

Liste des composants

 $= 47 \text{ k}\Omega$ $= 47 \text{ k}\Omega$

R3 = 3,3 k Ω $= 3,3 k\Omega$

 $= 47 \text{ k}\Omega$ $= 47 \text{ k}\Omega$

R7 $= 560 \Omega$

 $= 560 \Omega$

= 47 µF électrolytique = 100 nF polyester

C3 = 100.000 pFpolyester

= 10 µF électrolytique

= 100 nF polyester C6 = 100 nF polyester

DS1 = Diode 1N4148DS2 = Diode 1N4148

DS3 = Diode 1N4148

DL1 = Diode LED rouge DL2 = Diode LED verte

IC1 = Intégré LM358 IC2 = CMOS 4013

S1 = Interrupteur P1 = Poussoir

Toutes les résistances sont des 1/4 de watt.

Réservez votre Nouveau Catalogue Général

PLUS DE 12.000 RÉFÉRENCES

Parution Septembre 2001

Coupon à retourner à : Selectronic BP 513 59022 LILLE Cedex - FAX : 0 328 550 329

– OUI, je	desire recevoir des sa parution (Septembre 2001) le Catalogue General 2002 Selectronic
	à l'adresse suivante (ci-jointe la somme de 30 F en timbres-poste) :
/lr. / Mme :	Tél :
I°:	Rue :

"Conformément à la loi informatique et libertés n° 78.17 du 6 janvier 1978, Vous disposez d'un droit d'accès et de rectification aux données vous concernant"

ELM

Figure 5 : Brochage des deux circuits intégrés CT4013 et LM358 vus de dessus avec leur repère-détrompeur en forme de U vers la gauche. Quand vous insérerez, sur le circuit imprimé, les deux LED, souvenez-vous que le fil le plus long (A) va du côté des résistances R7-R8.

ports en orientant bien leur repèredétrompeur en forme de U vers le haut du circuit imprimé (figure 4).

Pour distinguer les pôles d'un haut-parleur

Reliez les bornes d'un haut-parleur ou les bornes d'une enceinte acoustique aux deux fils (ou aux deux bornes que vous aurez montées sur votre boîtier) qui sortent du côté gauche du circuit imprimé (figures 2b et 3b), puis donnez un petit choc avec le doigt sur le cône

Si la LED DL2 "BON" s'allume, vous saurez que la broche positive du hautparleur est reliée au fil (ou à la borne) allant à C3 (figure 2b), alors que si la LED DL1 "INVERSE" s'allume, vous saurez que la broche positive du hautparleur est celle qui est reliée au fil (à la borne) de masse.

Une fois déterminée la polarité d'un haut-parleur ou d'une enceinte, avant de contrôler un second haut-parleur ou une seconde enceinte, vous devrez toujours appuyer sur le poussoir de reset P1

♦ N. E.

miers composants que vous monterez seront les supports des circuits intégrés IC1 et IC2.

Après avoir soudé toutes leurs broches, vous pourrez poursuivre par l'insertion des résistances et, après celles-ci, des trois diodes DS1, DS2, DS3, en orientant le côté marqué d'une bande vers le poussoir P1 (figure 4).

Après ces composants, insérez les quatre condensateurs polyester et les deux condensateurs électrolytiques en respectant la polarité +/- de leurs pattes

A droite du circuit imprimé, vous devez connecter les deux LED en vérifiant attentivement que le fil le plus long (indiqué A : anode) soit tourné, pour DL1 vers la résistance R7, et pour DL2 vers la résistance R8.

Dans les trous du circuit imprimé où devront être fixés les composants externes, soudez des picots. Sur ceux-ci, vous pourrez souder directement les broches de l'interrupteur S1 et celles du poussoir P1.

Pour compléter le montage, insérez les deux circuits intégrés dans leurs sup-

Coût de la réalisation*

Tous les composants, visibles sur la figure 4, nécessaires à la réalisation de cet indicateur de polarité EN.1481, y compris le circuit imprimé : 62 F. Le coffret plastique seul : 18 F. Le circuit imprimé seul : 16 F.

* Les coûts sont indicatifs et n'ont pour but que de donner une échelle de valeur au lecteur. La revue ne fournit ni circuit ni composant. Voir les publicités des annonceurs.

HOT LINE TECHNIQUE

Vous rencontrez un problème lors d'une réalisation ? Vous ne trouvez pas un composant pour un des montages décrits dans la revue ?

UN TECHNICIEN EST À VOTRE ÉCOUTE

du lundi au vendredi de 16 heures à 18 heures sur la HOT LINE TECHNIQUE d'ELECTRONIQUE magazine au

04 42 82 30 30

Comment fabriquer vos circuits imprimés facilement ?

Non, ce n'est pas une invitation à retourner aux origines, mais c'est l'occasion de présenter un produit qui arrive tout droit des Etats-Unis et qui a révolutionné les méthodes de préparation des circuits imprimés réalisés en petites séries : plus de sérigraphie, grâce à une pellicule sur laquelle il suffit de photocopier ou d'imprimer le master...

graphie, la photogravure, la méthode anglaise, etc.

Dans le cas le plus simple, la méthode manuelle, vous aurez recours à un stylo spécial de type Decon Dalo pour repasser un tracé que vous aurez transféré sur le cuivre du futur circuit imprimé par l'intermédiaire de papier carbone.

Les résultats sont satisfaisants pour un prototype ou tout du moins dans le cadre de la réalisation de montages amateur, mais même s'il est fonctionnel, le circuit imprimé reste toutefois trop grossier.

Si l'on doit préparer des circuits complexes, avec des pistes denses et fines à la fois (1 mm, voire moins), il est pratiquement indispensable de faire appel à la photogravure, c'est-à-dire à la technique utilisée même dans la production à grande échelle, et jusqu'à aujourd'hui, la plus fiable.

Pour les réalisations "domestiques", il faut différentes choses que l'on peut diviser en deux catégories : celles servant à la préparation photo du circuit et celles véritablement utilisées pour la gravure (retrait du cuivre inutile).

Dans la première catégorie, on classera :

- Le papier huilé, le papier calque, le film, le mylar ou le typon, etc.,
- La couche photosensible qui sera déposée sur le cuivre (bombe, pinceau, prévernis, etc.),
- La lampe UV ou le photocopieur dont le tube servira à réaliser "l'impression" du support,
- Le révélateur qui permettra de retirer la couche photosensible aux endroits exposés à la lumière.

Dans la seconde catégorie, on classera :

- Les solutions servant à graver le cuivre là où le vernis photosensible a été retiré par le révélateur (perchlorure de fer, persulfate d'ammonium, acide,...),
- La laine d'acier pour retirer le vernis photosensible non exposé, une fois la gravure terminée,
- Les solutions servant à protéger le cuivre (étamage à froid ou argentage, etc.)

LABORATOIRE

Les étapes de la réalisation du circuit imprimé

Voici, étape par étape, comment réaliser un circuit imprimé à l'aide du support PnP-blue.

Les nombreuses étapes requises par la méthode de photogravure traditionnelle disparaissent en grande partie lorsque l'on utilise ce nouveau produit "made in USA".

Il s'agit d'une feuille en acétate recouverte d'une substance bleue qui permet de faire adhérer directement le

tracé des pistes (toner) sur la surface en cuivre d'un circuit imprimé et donc, de procéder immédiatement à la gravure, sans avoir à passer par d'autres préparations!

En fait, comme vous pouvez le voir sur ces photos, il suffit de transférer par copie laser (ou par photocopieuse si on ne dispose pas d'une imprimante laser) le master sur la surface sensible de cette pellicule.

Il faut ensuite plaquer la partie imprimée (le côté rugueux et poreux sur lequel le toner est déposé) sur le cuivre du circuit à imprimer et passer un fer à repasser sur la surface brillante pendant quelques instants.

Après refroidissement, on peut retirer et jeter la pellicule puis plonger le circuit dans le bain de solution acide pour obtenir un circuit imprimé de qualité professionnelle.

1 - Réalisez le circuit et son master en utilisant n'importe quel programme de CAD.

2 - Imprimez l'image du master sur le support, soit directement, soit via une photocopieuse.

3 - Découpez le support PnP-blue de façon à pouvoir utiliser le reste pour d'autres circuits.

4-Il est préférable de laisser quelques centimètres de marge de chaque côté du circuit imprimé.

La méthode classique

Donc, avant de plonger le support dans la solution acide, il faut dessiner le tracé des pistes, c'est-à-dire transférer une image du "master" (ce que l'on trouve sous le nom de "dessin, à l'échelle 1, du circuit imprimé" dans ELM!) résistant à l'attaque chimique mais lui permettant de "dissoudre" les seules zones découvertes du cuivre.

Cela s'obtient en déposant tout d'abord une couche photosensible (une résine qui polymérise ou dépolymérise, selon qu'elle est négative ou positive, lorsqu'elle est exposée aux rayons ultraviolets) puis en la laissant sécher dans l'obscurité avant d'appliquer le "master" sur la surface cuivrée photosensible. Ensuite, l'ensemble plaque cuivrée photosensible et master sera placé sous une lampe UV ou sur la glace d'un photocopieur pour l'exposer à la lumière UV pendant un laps de temps allant de 3 à 6 minutes, selon le niveau de transparence du master (acétate, papier calque ou feuille blanche).

Il faut ensuite retirer le "master" et "développer" le cuivre photosensible comme s'il s'agissait d'une photographie. Cette opération est réalisée en l'immergeant dans un bain de développement (en général, il s'agit d'hy-

droxyde de sodium dilué dans de l'eau) jusqu'à ce que les pistes apparaissent avec un fort contraste.

Il ne reste alors plus qu'à retirer l'excès de résine exposé en le frottant légèrement avec les doigts (protégés à l'aide de gants en caoutchouc car la solution est corrosive!) ou bien à l'aide d'un pinceau.

Une fois lavé, le support est prêt pour la gravure, dans une solution de perchlorure de fer, par exemple. La méthode est sans aucun doute laborieuse car elle requiert de nombreuses étapes qui peuvent être éliminées en grande partie en faisant appel au nouveau produit "made in USA", objet de cet article.

Une méthode moderne et rapide

Il s'agit d'une feuille d'acétate recouverte d'une substance bleue qui permet de faire adhérer directement le tracé des pistes sur la surface en cuivre d'un circuit imprimé et donc, de procéder immédiatement à la gravure, sans avoir à passer par d'autres étapes!

En fait, il suffit de transférer le dessin du circuit imprimé (à l'échelle 1, bien évidemment!) sur la surface sensible de cette pellicule, qui est caractérisée par une certaine rugosité et porosité en imprimant directement le tracé du circuit à l'aide d'une imprimante laser (malheureusement, les imprimantes à jet d'encre ne conviennent pas...). Bien entendu, ce transfert peut se faire à l'aide d'un photocopieur mais alors, il faudra modifier le titre de cet article!

Il faut ensuite appuyer la partie imprimée sur le cuivre du support et passer un fer à repasser sur la surface brillante pendant quelques minutes, en faisant bien attention à maintenir la température dans la zone réservée au Nylon (température allant de 170 à 190 °C) et évidemment, après avoir désactivé la vapeur!

La feuille bleue est plus ou moins de la même taille que n'importe quel A4 pour imprimante ou machine à écrire (les dimensions exactes sont 216 x 284 mm, au lieu des 210 x 297 mm du format A4) et coûte autour de 120 F, un prix tout à fait raisonnable si l'on considère qu'avec une feuille on peut réaliser au moins deux circuits de format Eurocard (100 x 160 mm) en utilisant un support cuivré beaucoup moins coûteux qu'un support présensibilisé, c'est-à-dire recouvert de résine photosensible.

LABORATOIRE

5 - Nettovez soigneusement le cuivre du circuit avec de l'alcool de façon à ce qu'il soit brillant et non gras.

6 - Appuyez le papier PnPblue de façon à ce que le toner soit en contact avec le cuivre du circuit.

7 - Passez le fer à repasser sur la face lisse du support de façon à transférer le toner sur le circuit.

8 - Laissez refroidir ou nassez sous l'eau froide et détachez le support PnP-blue de la face cuivré du circuit.

9 - L'immersion du circuit ainsi préparé dans une solution acide permet de "dissoudre" le cuivre en excès.

10 - Après cette "dissolution", on obtient un circuit sur lequel est gravé le tracé désiré des pistes.

11 - Nettoyez ensuite le circuit imprimé avec un diluant nitré de façon à faire disparaître la couche.

12 - Vérifiez que la "dissolution" du cuivre a bien été correcte afin d'éviter d'éventuels courts-circuits.

L'utilisation est très simple et très sûre, sans compter qu'immédiatement après le passage du fer à repasser, on peut mettre le support sous l'eau pour le refroidir. Il ne reste plus alors qu'à décoller la pellicule en veillant à retirer d'éventuelles bayures à l'aide d'une lame de cutter ou d'un morceau d'adhésif transparent appliqué quelques instants sur la partie où il est resté du bleu qui n'était pas prévu par le master.

Pour finir, on procède à la gravure.

Beaucoup d'étapes sont ainsi éliminées et le révélateur, la cuvette pour le développement, les gants et les pinceaux spéciaux, sans oublier le photocopieur ne sont plus d'aucune utilité!

Et ce n'est pas rien car, à lui seul, le système d'insolation représente un investissement non négligeable.

Et puis, l'utilisation de la pellicule bleue réduit considérablement l'espace occupé lors de la préparation des circuits imprimés. Tout ce qui est nécessaire à la mise en œuvre de cette méthode se résume à une petite cuvette pour le perchlorure de fer et à un plan où "repasser". En un mot, un coin sur la table de la cuisine!

Un petit résumé

A présent, si notre sujet vous a intéressé et que vous souhaitez essayer la pellicule PnP-blue (c'est ainsi qu'on l'appelle dans le commerce...), sachez que la feuille de base est en acétate transparent ordinaire, recouvert par le fabricant d'un voile opaque bleu, rugueux et poreux au toucher.

Ce revêtement se détache à une température de 170 °C et adhère presque uniquement aux toner secs utilisés pour les photocopieurs et les imprimantes laser.

Avant d'utiliser la pellicule, nous vous conseillons de la couper aux dimensions du master en prévoyant un peu de marges.

Imprimez ensuite grandeur réelle la pellicule, en disposant la feuille de manière à ce que la copie s'effectue sur le côté rugueux.

Plaquez alors la pellicule sur le cuivre de façon à laisser le côté brillant tourné vers l'extérieur (le toner doit toucher la surface du support) puis, après avoir réglé son thermostat sur le programme pour le Nylon ou les fibres synthétiques, passez le fer à repasser sur le support pendant quelques minutes.

Rincez le circuit imprimé de façon à le refroidir, détachez la pellicule et jetez-la. Sur la surface cuivrée, vous devez alors voir les pistes colorées de bleu très foncé, tandis que les zones vides doivent seulement laisser apparaître le cuivre. Immergez le support dans la solution acide (perchlorure de fer ou persulfate d'ammonium) pour la gravure définitive. Très simple, non ? Il suffit d'imprimer, de repasser et de graver...

♦ F. E.

Coût de la réalisation*

(si on peut dire!)

Le lot de 5 feuilles au format 216 x 284 mm, identiques à celle que I'on peut voir en figure 3 : 123 F.

* Les coûts sont indicatifs et n'ont pour but que de donner une échelle de valeur au lecteur. La revue ne fournit ni circuit ni composant. Voir les publicités des annonceurs.

L'heure de vérité !

Une horloge, une caméra miniature et un émetteur audio/vidéo. Ces trois objets réunis, permettent de surveiller à distance ce qui se passe dans n'importe quel endroit... en toute discrétion. Cet article est une suggestion, parmi d'autres, pour utiliser de la meilleure façon possible quelques produits récemment apparus sur le marché.

I se fait tard, c'est presque l'heure de la fermeture du magasin : un client de la dernière heure franchit le seuil. Il n'y a que le tic-tac de l'aiguille de l'horloge murale, derrière le comptoir, pour rompre le silence de la pièce vide, et la voix du propriétaire qui s'élève de l'arrière-boutique et s'exclame: "une seconde, j'arrange deux petites choses et j'arrive!".

Per range rive!".

évidemment très bien cachée, reliée directement à un écran placé dans l'arrière boutique par l'intermédiaire d'un système TV en circuit fermé.

C'est de là que le commerçant avait surpris notre homme en train de piller la caisse et qu'il avait appelé les forces de police avant que le voleur ne s'évapore en emmenant avec lui le fruit d'une dure journée de labeur.

Le "client" ne doit pas en être un au sens propre du terme car, semblant bien connaître les habitudes du commerçant, il tend les mains vers la caisse restée entr'ouverte et dérobe, rapidement, quelques grosses coupures.

Le propriétaire n'arrivant toujours pas, le voleur s'éloigne en silence mais une drôle de surprise l'attend devant la sortie : deux policiers l'invitent à les suivre au commissariat... "Mais qu'est-ce qui n'a pas marché?", se demande le maladroit voleur, "je n'ai vraiment pas de chance ou bien est-ce que quelqu'un m'a vu ?".

Il ne le saura jamais, mais le commerçant avait installé un système très discret de télésurveillance derrière le comptoir. La fameuse horloge au tic-tac sympathique contenait tout simplement une caméra vidéo miniature, Des situations comme celle que nous venons de romancer, il s'en produit tous les jours. C'est pourquoi, disposer d'un système de surveillance en TVCC (télévision en circuit fermé ou télévision par câble) est d'une grande utilité. Un tel système rendra service non seulement au commerçant qui veut contrôler le flux des clients qui entrent ou qui sortent de son magasin, mais également dans de nombreuses autres situations.

Pour être totalement efficace, une installation de surveillance doit, autant que possible, être complètement invisible et équipée d'une ou plusieurs caméras vidéo.

Une méthode très efficace pour camoufler une caméra miniature, c'est de pratiquer un trou dans un objet usuel pour permettre de laisser passer seulement son objectif. C'est la raison pour laquelle il existe, depuis un certain

SÉCURITÉ

Figure 1 : Une microcaméra, tellement petite que sa connectique semble avoir une taille impressionnante !

temps déjà, des horloges murales équipées de caméras vidéo. Plus la technologie progresse plus l'horloge peut se faire discrète. Au début, l'horloge avait la taille d'une roue de camion et il fallait percer le mur derrière elle pour y loger la caméra, qui, pour la plus petite, était au moins de la taille de deux boîtes de sucre en morceaux!

Aujourd'hui, on trouve facilement des caméras miniatures dont les dimensions ne dépassent pas 12 x 12 mm pour une profondeur de 15 mm! Comme vous pouvez le voir sur la photo de la figure 1, la prise audio/alimentation a une taille supérieure à la caméra elle-même!

Ces microcaméras sont idéales pour ce type d'application car elles sont légères, peu encombrantes et munies d'optiques qui peuvent facilement être placées derrière un petit trou (d'un diamètre de 5 à 7 mm) pratiqué dans un endroit discret du cadran d'une horloge.

Personne ne prête attention à l'horloge car c'est un objet que l'on retrouve presque partout : à la maison, au bureau, dans les gares, chez le médecin, mais également dans les couloirs des administrations, dans les hôpitaux, dans les magasins, etc.

Il n'y a donc rien d'étonnant à ce que l'endroit stratégique où cacher une caméra vidéo soit, pour bon nombre de constructeurs, le cadran d'une horloge. S'il existe des produits commerciaux, une telle réalisation est également à la portée d'un amateur soigneux.

L'horloge-caméra, placée judicieusement enverra ses images et, pourquoi pas, les sons qu'elle capte, vers un écran ou vers un commutateur vidéo dans le cas où il y aurait plusieurs caméras à gérer... Cette transmission, dans le cas le plus simple, se fera grâce à un cordon. Bien entendu, en fonction du budget dont on dispose et/ou de la complexité de faire un raccordement filaire, on pourra choisir la solution de l'émission vidéo, soit en VHF, en UHF ou en SHF.

De nombreux émetteurs et récepteurs miniatures sont disponibles sur le marché. Les figures 2 et 3 vous donnent un aperçu de ces appareils prévus pour fonctionner sur la bande 2,4 GHz. Nous avons également décrit de nombreux émetteurs et récepteurs audio/vidéo. Pour ne parler que des derniers en date, vous pouvez également utiliser les émetteurs et récepteurs que nous avons décrits dans ELM 23, page 8 et suivantes et dans ELM 24, page 30 et suivantes.

Quelques réalisations pratiques

A l'aide d'une horloge (on en trouve quelquefois en promotion dans les grandes surfaces à moins de 30 francs !) et d'une caméra miniature, nous avons réalisé quelques applications pratiques que nous allons à présent vous proposer car elles nous semblent très intéressantes.

La plus simple est, bien sûr, la télésurveillance en circuit fermé, dans laquelle la sortie vidéo de la caméra est reliée, par l'intermédiaire d'un petit câble coaxial, à l'entrée d'un écran ou d'un magnétoscope (voir figure 4a).

La caméra vidéo nécessite une alimentation à part (la pile de l'horloge est réservée à son "mouvement" - c'est, en horlogerie, le nom donné à la mécanique qui fait tourner les aiguilles. Dans les horloges électroniques modernes, elle en est d'ailleurs très souvent solidaire.). Il faut donc

SÉCURITÉ

Figure 3 : Deux récepteurs audio/ vidéo 4 canaux du commerce. C'est la solution simple si on ne veut pas avoir à souder des CMS pour miniaturiser!

prévoir un second câble, qui peut être un simple morceau de fil plat à deux conducteurs, pour amener la tension à la caméra (qui peut être, suivant le modèle, de 5 ou de 12 volts). Cette tension doit être parfaitement régulée et stabilisée. Il n'est donc pas question d'utiliser un bloc secteur de bas de gamme, qui, en général, ne comporte qu'une diode de redressement et un condensateur.

Si l'on veut éviter l'alimentation et si l'on considère que la caméra nécessite du 12 volts, il faut alors prévoir l'installation d'un porte-piles, placé à l'intérieur de l'horloge et pouvant contenir 10 piles Ni-MH de 1,2 volt ou 8 piles alcalines de 1,5 volt.

En unissant les qualités des microcaméras à celles des nouveaux microémetteurs audio/vidéo, on peut réaliser une horloge avec caméra vidéo "wireless" (sans fil), c'est-à-dire un système complet et autonome, capable d'envoyer à distance les images filmées (voir figure 4b).

Ces mêmes images pourront être regardées sur n'importe quel écran de télévision ou d'ordinateur équipé d'une entrée vidéo composite ou d'une prise péritel, par l'intermédiaire d'un récepteur à quatre canaux à 2,4 GHz tel qu'un de ceux présentés en figure 3 par exemple.

Bien entendu, si l'horloge est d'assez grande taille, on peut également utiliser l'émetteur et le récepteur audio/ vidéo décrit dans ELM 23 page 8 et suivantes. A ce sujet, nous avons également testé une configuration de ce genre, à l'arrière de laquelle nous avons installé le TX à 2,4 GHz EF.T173, une

Figure 4 : Trois modèles de caméra pour satisfaire à tous les besoins

Figure 4a : L'option "éco" : la caméra est reliée à une entrée vidéo par un câble coaxial et l'alimentation se fait par fils.

Figure 4b : L'option "confort" : la caméra est connectée à un émetteur vidéo et l'alimentation se fait par accumulateurs ou piles alcalines.

Figure 4c : L'option "luxe" : même chose que la version "confort" mais avec l'audio en plus !

microcaméra telle que celle visible en figure 1, ainsi qu'un porte-piles de 10 piles rechargeables de 1,1 A/h (collé à l'aide de silicone).

L'émetteur peut opérer sur 4 canaux, qui sont 2,400, 2,427, 2,454 et 2,481 GHz, que l'on peut facilement sélectionner par l'intermédiaire d'un dipswitch.

La portée, en utilisant le récepteur EF.R173 (qui doit être réglé sur le même canal que le TX), varie entre environ 50 et 100 mètres et couvre de toute façon, sans aucun problème, un grand appartement, un bureau ou un petit immeuble.

En utilisant le même système de base que sur la figure 4b, nous avons remplacé la caméra par une caméra équipée d'un microphone électret (voir figure 4c), fidèle et sensible : ainsi, en plus de transmettre les images filmées par la caméra, on peut également envoyer les voix et les bruits perçus sur le lieu de surveillance, le tout sur une seule porteuse. Le micro électret est suffisamment sensible pour rester placé derrière l'horloge. On peut également le déporter à l'extérieur et le dissimuler d'une façon ou d'une autre.

Pour conclure

Nous espérons que cet article vous donnera des idées de réalisation. Entre les caméras, les émetteurs et les récepteurs, les choix sont larges! Vous pouvez soit acheté du tout fait auprès de nos annonceurs ou réaliser vousmême en partant des articles de la revue. Si vous trouvez une idée intéressante, n'hésitez pas à nous le faire savoir. Nous nous ferons un plaisir de la publier pour qu'elle profite au plus grand nombre!

♠ F. E.

Coût de la réalisation

Il n'est pas simple de chiffrer le coût d'une telle réalisation, tout dépend des options que vous choisirez. L'ensemble peut aller de quelques centaines de francs pour un système simple à des sommes beaucoup plus importantes pour un système très élaboré. Pour faire votre calcul, en fonction de vos options, vous pouvez consulter ELM 23 page 19, ELM 24 page 36 ainsi que les publicités de nos annonceurs.

COURS PROGRAMMATION

CHAPITRE IX •

La programmation des PIC16F876

de la théorie à la pratique

Nous voici au dernier chapitre de notre cours de programmation C pour PIC16F876. Nous allons vous présenter aujourd'hui un programme un peu plus complexe, qui peut être un bon point de départ pour une application "réelle", pas seulement une simple démonstration du fonctionnement du micro. Nous allons vous décrire un millivoltmètre digital précis, en mesure de lire avec 10 bits de précision n'importe quelle tension positive entre 0 et 5 V. Tout ce dont vous aurez besoin au niveau hardware est la carte test du PIC16F876, protagoniste indiscutée de notre cours.

'afficheur LCD, que vous avez déjà appris à programmer dans le numéro précédent, permet la visualisation de la tension appliquée à l'entrée spéciale prévue sur la carte test. Cette tension est lue par le convertisseur analogique/digital à 10 bits présent dans le microcontrôleur de Microchip, après avoir transité par l'amplificateur opérationnel 4558. D'un point de vue didactique, le programme est particulièrement intéressant pour deux raisons :

- il montre comment programmer le convertisseur A/D présent dans le PIC16F876,
- il constitue un exemple de passage "d'informations" entre les parties du programme écrites en C et les parties réalisées en assembleur.

Vous avez sûrement déjà constaté qu'il est souvent inévitable d'avoir recours à l'assembleur. Et bien, dans ce cas encore, nous avons été contraints à ce choix "hybride" pour la partie correspondant au convertisseur A/D. Le compilateur C2C Rock (et pratiquement tous les autres...) nous vient en aide en nous offrant des procédures plutôt commodes pour mettre en "communication" les deux milieux.

Continuons avec la description détaillée de notre code : vous remarquerez certainement que certaines parties vous sont assez familières si vous êtes des lecteurs assidus de notre cours.

Le cycle "for" qui fait clignoter 5 fois le chiffre 8 sur l'afficheur à 7 segments est, en effet, également présent dans


```
'WWW.electronique-magazine.COM
                                                                       long mvolt;
'VOLTMETRE.C
                                                                       long mvolt prec;
                                                                       tableau[0]='V';
'Programme qui permet de visualiser une
'tension comprise entre 0 et 5V.
                                                                       tableau[1]='o';
                                                                       tableau[2]='1';
                                                                       tableau[3]='t';
#pragma CLOCK FREQ 4000000
                                                                       tableau[4]='m';
asm config 03F32
                                                                       tableau[5]='e';
                                                                       tableau[6]='t';
char tableau[16];
                                                                       tableau[7]='e';
                                                                       tableau[8]='r';
LCD send command (char command code)
                                                                       tableau[9]=' ';
                                                                       tableau[10]='i';
        output_port_a(2);
                                                                       tableau[11]='s';
                                                                       tableau[12]=' ';
        nop();nop();
                                                                       tableau[13]='0';
        output_port_b(command_code);
        nop();nop();
                                                                       tableau[14]='N';
        output_port_a(0);
                                                                       tableau[15]=' ';
        nop();nop();
                                                                       LCD writeline(0);
        output_port_a(2);
        nop();nop();
                                                                       tableau[0]='V';
                                                                       tableau[1]='a';
                                                                       tableau[2]='1';
LCD send data(char data)
                                                                       tableau[3]='u';
        -{
        output_port_a(6);
                                                                       tableau[4]='e';
        nop();nop();
                                                                       tableau[5]=' ';
                                                                       tableau[6]=' '
        output_port_b(data);
                                                                       tableau[7]=' ';
        nop();nop();
        output port a(4);
                                                                       tableau[8]=' '
        nop(); nop();
                                                                       tableau[9]=' ';
        output_port_a(6);
                                                                       tableau[10]=' ';
                                                                       tableau[11]='m';
        nop();nop();
                                                                       tableau[12]='V';
                                                                       tableau[13]='o';
LCD writeline(int numligne)
                                                                       tableau[14]='1';
                                                                       tableau[15]='t';
        int indice;
        LCD send command(128+(64*numligne));
                                                                       LCD writeline(1);
        for(indice=0;indice<16;indice++)</pre>
                                                                       mvolt_prec=0;
                 LCD_send_data(tableau[indice]);
                                                                       LCD writenum(0,1);
                                                                       for(;;)
                                                                                asm bsf ADCON0,GO
LCD writenum(long n,int numligne)
                                                                                delay ms(1);
                                                                                asm movf ADRESH,0;
        int reste;
                                                                                asm movwf _valeur_high_lecture_tension;
        char thousand, hundred, ten, unit;
        LCD_send_command(128+(64*numligne)+6);
                                                                                asm bsf STATUS,RP0
                                                                                asm movf ADRESL,0;
        delay ms(1);
        thousand=n/1000+'0';
                                                                                asm movwf _valeur_low_lecture_tension;
        resto=n%1000:
                                                                                asm bcf STATUS, RP0
                                                                                valeur=4*valeur_high+(valeur_low>>6);
        n=reste;
        hundred=n/100+'0';
                                                                                mvolt=valeur*5;
        resto=n%100;
                                                                                if(mvolt!=mvolt_prec)
        n=reste;
        ten=n/10+'0';
                                                                                        LCD_writenum(mvolt,1);
                                                                                        mvolt prec=mvolt;
        resto=n%10;
                                                                                        delay_ms(500);
        n=reste:
        unit=n+'0';
        LCD_send_data(thousand);
                                                                                }
        delay_ms(1);
                                                                       }
        LCD send data(hundred);
        delay_ms(1);
                                                              main()
        LCD send data(ten);
        delay ms(1);
                                                                       int i;
        LCD_send_data(unit);
                                                                       disable_interrupt(GIE);
                                                                       set bit(STATUS,RP0);
                                                                       set tris c(0);
void lecture_tension()
                                                                       set tris b(0);
                                                                       set_tris_a(249);
        int appuyé=0;
        char valeur_low;
        char valeur high;
        int valeur:
                                                                                bsf STATUS, RP0
```

```
bcf STATUS, RP1
        clrf ADCON1
        bcf STATUS, RP0
        movlw 1
        movwf ADCON0
clear bit(STATUS,RP0);
for(i=0;i<5;i++)
        {
        output port c(254);
        delay ms(100);
        output port c(0);
        delay ms(100);
output_port_a(2);
delay_ms(1);
LCD send command(1);
delay_ms(10);
LCD send command(8+4+2+1);
delay ms(10);
LCD_send_command(32+16+8);
delay_ms(10);
tableau[0]='E';
tableau[1]='1';
tableau[2]='e';
tableau[3]='t';
tableau[4]='t';
tableau[5]='r';
tableau[6]='o';
tableau[7]='n';
tableau[8]='i';
```

```
tableau[9]='q';
tableau[10]='u';
tableau[11]='e';
tableau[12]=' ';
tableau[13]='m';
tableau[14]='a';
tableau[15]='g';
LCD_writeline(0);
tableau[0]='D';
tableau[1]='i';
tableau[2]='g':
tableau[3]='i';
tableau[4]='t';
tableau[5]='a';
tableau[6]='1';
tableau[7]=' ';
tableau[8]='V';
tableau[9]='o';
tableau[10]='1';
tableau[11]='t';
tableau[12]='m';
tableau[13]='e';
tableau[14]='t';
tableau[15]='.';
LCD writeline(1);
delay s(2);
lecture_tension();
```

Listing complet du programme de visualisation et d'acquisition d'une valeur analogique de tension comprise entre 0 et 5 volts.

ce programme. Nous vous avons déjà parlé de ce cycle dans le numéro précédent. Son but est purement diagnostic, car il sert justement à nous faire comprendre que hardware et software sont en train de travailler correctement. Si vous voyez donc clignoter l'afficheur mais que le voltmètre ne fonctionne pas, vous savez déjà qu'il faudra aller chercher la cause dans l'afficheur LCD.

Une fois les clignotements terminés, les inscriptions "Electronique" et "Digital voltmètre", sur la ligne du dessous, sont affichées sur l'afficheur LCD. Dans ce cas encore, nous avons "récupéré" le code utilisé dans le dernier numéro, c'est-à-dire que nous utilisons la fonction "LCD_send_command" (envoie les commandes à l'afficheur LCD pour le configurer correctement), "LCD writeline" (écrit sur la première ou la deuxième ligne, passée comme paramètre, le contenu du tableau de caractères "tableau"), "LCD_send_data" (écrit le caractère passé comme paramètre. Il s'agit évidemment d'une fonction demandée par "LCD_writeline").

Nous ne souhaitons pas nous attarder sur la description de ces fonctions, et vous renvoyons pour cela au chapitre précédent (ELM 25) où nous en avons parlé largement. Revenons à notre code : l'inscription en question reste affichée pendant 2 secondes, grâce à l'instruction "delay_s(2)", dont le sens est évident.

Une fois l'attente terminée, la fonction "lire_tension()", qui représente la partie fondamentale du programme, est appelée. Cette routine exécute une série d'opérations en séquence, opérations que nous allons étudier en détail afin d'en comprendre la logique de fonctionnement :

- Elle visualise, en rappelant les fonctions que nous venons de voir, l'inscription "Voltmètre allumé" sur la première ligne de l'afficheur et "Valeur" sur la deuxième. Le mot "valeur" sera évidemment suivi de la valeur de tension lue, comme nous le verrons bientôt.
- Elle habilite le convertisseur A/D interne au PIC. Dès cet instant le convertisseur "commence" à lire la tension en entrée.
- Elle attend une milliseconde, de façon à être certain que la lecture a eu lieu.
- Elle "copie" le contenu des deux registres du PIC qui contiennent la

valeur de la tension acquise (un nombre de 0 à 2¹⁰ qui représente une tension de 0 à 5 volts), dans une variable de type long.

- Elle "convertit" la valeur numérique acquise (valeur, qui, nous vous rappelons, peut prendre des valeurs de 0 à 2¹⁰) en une valeur égale à la tension mesurée. Par exemple, si la valeur lue est 0, la tension à visualiser doit être 0 V, si la valeur est 1024, la tension doit être 5 V, et ainsi de suite pour toutes les valeurs intermédiaires. Il s'agit, en fait, d'une simple proportion.
- Elle rappelle la fonction "LCD_writenum" en passant comme paramètre la valeur à visualiser, calculée au point précédent, et le numéro de la ligne sur laquelle doit se passer la visualisation.
- Après avoir attendu 500 millisecondes, elle retourne au point 2, et répète indéfiniment cette séquence d'opérations. Ce qui veut dire qu'environ chaque demi-seconde, une nouvelle valeur de tension est acquise et visualisée. Il est possible de diminuer ce temps en agissant sur l'instruction "delay_ms(500)" mais la chose nous semble d'une utilité douteuse : notre ceil ne réussirait pas à visualiser sur

un afficheur un chiffre qui, théoriquement au moins, change plus de 2 fois par seconde. Les voltmètres digitaux, quelle que soit leur marque ou leur type, travaillent sûrement avec des temps d'acquisition analogues.

Nous avons été volontairement concis dans la description de ces opérations : ce qui nous importait avant de passer à une analyse un peu plus détaillée était surtout d'illustrer ce que fait notre fonction.

Il y a trois concepts fondamentaux présents dans "lire_tension()" que nous résumerons ainsi :

- Fonctionnement du convertisseur A/D.
- Passage "d'informations" assembleur en C.
- Visualisation d'une variable C sur l'afficheur.

Fonctionnement du convertisseur A/D

Les processeurs PIC de la famille 16F87x sont dotés d'un convertisseur A/D à 10 bits.

Dans le cas du PIC 16F876 l'entrée de ce convertisseur peut être n'importe laquelle des cinq broches RAO, RA1, RA2, RA3, RA5. Ces broches sont habituellement utilisées en entrées/ sorties. Cependant, en programmant un registre de configuration vous pouvez "relier" (à l'intérieur du microcontrôleur) la patte choisie à l'entrée du convertisseur. Dans ce cas, évidemment, la broche cesse de fonctionner comme entrée/sortie.

Nous avons parlé de registre de configuration : c'est seulement par le biais des registres que l'on établit le fonctionnement du convertisseur et, du reste, de tous les autres périphériques présents dans le microcontrôleur.

Seulement 4 sont consacrées au convertisseur A/D. Ils sont appelés "ADCONO", "ADCON1", "ADRESH", "ADRESL". Il s'agit, dans tous les cas, de registres à 8 bits.

Les deux premiers s'occupent de la configuration, les autres contiennent le résultat de l'acquisition.

"ADCONO" permet de préparer l'horloge du convertisseur (bits 7 et 6), de sélectionner l'entrée en fonction de ce qu'on vient de dire (bits 5, 4 et 3), de faire partir la conversion (bit 2 mis à 1 par le programme) et d'habiliter ou bien de déshabiliter le convertisseur (bit 0).

"ADCON1" impose le format du résultat, c'est-à-dire la façon où les 10 bits

acquis sont "disposés" dans les 16 bits d'ADRESH et ADRESL (c'est-à-dire s'ils sont "tous à gauche" avec les 6 bits les moins significatifs d'ADRESL non utilisés, ou bien "tous à droite" avec les 6 bits les plus significatifs d'ADRESH non utilisés) ainsi que les tensions de référence pour l'A/D (bits 3, 2, 1 et 0).

Pour fonctionner correctement un convertisseur A/D a besoin de deux tensions de référence, appelées habituellement "Vref+" et "Vref-". La première doit être égale à la tension positive maximale que nous voulons mesurer, et la seconde à la tension négative maximale. Il n'est évidemment pas possible de donner comme tension de référence des valeurs "incompatibles" avec les technologies avec lesquelles le convertisseur est réalisé dans l'illusion de pouvoir acquérir une valeur quelconque.

Très souvent, "Vref+" et "Vref-" ne peuvent même pas excéder la tension d'alimentation du convertisseur.

Dans le cas du PIC16F876, vous pouvez choisir si "Vref+" et "Vref-" doivent être assignés de l'extérieur ou bien si vous voulez prendre "Vdd" comme "Vref+" et "Vss" comme "Vref-".

Nous vous rappelons que "Vdd" est la tension que nous employons pour alimenter le micro et "Vss" la masse.

Les trois bits du registre "ADCON1" s'occupent justement de signaler au microcontrôleur si les références doivent être internes ou bien externes et, dans ce cas, il indique à laquelle des 5 broches du convertisseur il faut appliquer "Vref+" et "Vref-".

Nous ne vous reproduisons pas le tableau qui montre pour chaque configuration possible la valeur des trois bits, et renvoyons ceux qui seraient intéressés par le sujet à la datasheet du PIC16F876.

Dans notre programme nous avons établi les références internes, et donc le PIC étant alimenté avec 5 volts, nous pourrons acquérir des valeurs de tension de 0 V à 5 V.

Passage "d'informations" d'assembleur en C

Le résultat de notre mesure se trouve dans "ADRESH" et "ADRESL". Etant donné que nous avons choisi le for-

Figure 1 : Les microcontrôleurs PIC de la famille 16F87x sont dotés d'un convertisseur A/D à 10 bits. Selon leurs versions, ils disposent de plus ou moins d'entrées analogiques (voir texte).

Réf.: JEA25 + port 35 F

Utilisez le bon de commande **ELECTRONIQUE**

Réservés, il y a encore quelques années, aux seuls industriels, les microcontrôleurs sont aujourd'hui à la portée des amateurs et permettent des réalisations aux possibilités étonnantes.

Vous pouvez concevoir l'utilisation des microcontrôleurs de deux façons différentes. Vous pouvez considérer que ce sont des circuits "comme les autres", intégrés à certaines réalisations, et tout ignorer de leur fonctionnement. Mais vous pouvez aussi profiter de ce cours pour exploiter leurs possibilités de programmation, soit pour concevoir vos propres réalisations, soit pour modifier le comportement d'appareils existants, soit simplement pour comprendre les circuits les utilisant.

Pour ce faire, il faut évidemment savoir les programmer mais, contrairement à une idée reçue qui a la vie dure, ce n'est pas difficile. C'est le but de ce Cours.

mat "tous à gauche", nous devons prendre tous les 8 bits des "ADRESH" et les deux les plus significatifs de "ADRESL". Mais il se pose ensuite une question: comment passer ces valeurs à une variable C?

La chose est très simple : il suffit d'aller en assembleur (donc d'écrire le code précédé par l'instruction "asm"), de déplacer le contenu du registre que nous voulons "transférer" dans le registre "W" (par exemple dans la ligne "movf ADRESH, 0"), et de déplacer le contenu de "W" dans la position qui porte ce nom:

"_<nom var.C>_<nom fonction C où est définie la var.>"

Exemple: vous voulez mettre le contenu du registre "ADCONO" dans la variable C appelée "var1" qui est déclarée dans la fonction "fonc1" :

Movf ADCON0,0 Movwf var1 fonc1

Faites très attention aux tirets bas (c'est-à-dire le caractère "_") qui doivent précéder aussi bien le nom de la variable que celui de la fonction.

Revenons à notre listing, nous voyons que "ADRESH" et "ADRESL" sont transférés dans les variables C "valeur_high" et "valeur_low" grâce aux deux lignes assembleur:

asm movwf valeur high lecture tension; asm movwf_valeur_low_lecture_tension;

"lecture tension" est, en effet, la fonction dans laquelle les deux variables sont définies.

A partir de ces deux variables, on réussit à "reconstruire" le nombre acquis en ayant à l'esprit le format "tous à gauche". Il suffit de multiplier par 4 "valeur_high" et de déplacer de 6 bits à

droite "valeur_low", mais là, nous pouvons tranquillement travailler en C.

Observez la ligne:

"Valeur = 4*valeur_high+(valeur_low>>6)"

Visualisation d'une variable C sur l'afficheur

Nous voici donc arrivés au dernier aspect sur lequel nous tenons à attirer votre attention. Dans le cours sur le C vous avez appris qu'imprimer le contenu d'une variable, par exemple de type interne, était une opération facile, il suffisait de taper quelque chose comme: "Printf ("%d", variable)" et les jeux étaient faits.

Malheureusement, notre compilateur ne met pas à notre disposition une "printf" qui écrit sur l'afficheur (sinon, nous l'aurions certainement utilisée!). Mais ce n'est pas un problème : le C est un langage puissant et nous allons résoudre le problème en quelques lignes.

Nous avons donc écrit la fonction "LCD_writenum", dans laquelle nous passons comme paramètre le numéro de la ligne de l'afficheur mais aussi et c'est très important – la variable dont nous voulons visualiser la valeur.

Il suffit d'avoir recours à un peu d'arithmétique. Prenez, en effet, la variable, divisez-la par 1000 et considérez sa partie entière. Celle-ci constitue le chiffre (de 0 à 9) des milliers que vous pouvez tout de suite envoyer à l'afficheur en ajoutant simplement le code ASCII du 0 (voir la ligne "thousand=n/1000+'0'").

En d'autres termes, vous avez converti le chiffre des milliers en un caractère

ASCII à visualiser. Maintenant le tour est joué.

Passez aux centaines en prenant simplement le reste de la division précédente : le listing se commente tout seul. Rappelez-vous seulement que le symbole "%" en C veut dire "résultat de la division". Il est évident que "LCD_writenum" visualise des nombres de 0 à 9999 mais, pour vous exercer, vous pouvez le modifier pour visualiser des valeurs à plusieurs chif-

Conclusion

Nous espérons vous avoir, grâce à ce cours, fait faire un grand pas en avant dans la compréhension des microcontrôleurs PIC de la famille 16F87x.

Réaliser son propre programme, l'implanter dans le PIC et le faire tourner procure une indicible joie! Nous vous la souhaitons!

◆ D. M

MICRO MODULE H8/3048F

- uC Hitachi H8-3048F 16 MHz
- Mémoire Flash 128 Ko intégré
- Mémoire SRAM 4 Ko ext. à 16 Mo
- CAN 10 bits 8 canaux
- CAN 8 bits 2 canaux
- 2 ports séries RS232
- 5 timers 16 bits
- 70 entrées/sorties TTL + 8 entrées TTL Très faible consom. (3 modes)

Prix : 690 F HT

MICROTRONIQUE safí 15, rue des Bruyères - 25220 THISE - France Tél. : 03 81 40 02 70 - Fax : 03 81 40 05 15 Email: microtronique@microtronique.com Site internet: http://www.microtronique.com

Le LX.5024, un interrupteur crépusculaire

Mise en pratique des portes logiques

Dans la précédente leçon, nous avons réalisé un "clignotant séquentiel" mettant en pratique ce que nous avons appris sur les portes logiques. Nous continuons, et terminerons, par deux montages didactiques. Ceci fait, les portes logiques ne devraient plus avoir aucun secret pour vous!

ous avez probablement déjà remarqué que les lumières de l'entrée de nombreux immeubles s'allument automatiquement dès que la nuit tombe et s'éteignent, toujours automatiquement, dès que le jour se lève.

Le montage que nous allons maintenant vous présenter effectue cette fonction d'allumer et d'éteindre des éclairages de façon automatique, grâce à une photorésistance.

En observant le schéma électrique de la figure 608, vous pouvez remarquer que pour réaliser ce circuit, il nous faut deux transistors PNP (observez la flèche de la jonction E (émetteur) tournée vers la base), une porte logique 4002 munie de deux NOR IC1/A et IC1/B internes, un relais servant d'interrupteur et, comme élément sensible à la lumière, une photorésistance FR1.

Commençons la description du schéma électrique par le transistor TR1, en vous

faisant remarquer que l'émetteur (E) est dirigé vers le haut, c'est-à-dire vers le positif de l'alimentation et le collecteur

Figure 607 : Voici comment se présente l'interrupteur crépusculaire, LX.5024, une fois le montage terminé. Remarquez la photorésistance, à gauche, qui, dans ce prototype, est raccordée directement (tout comme les LED, d'ailleurs).

vers le bas, c'est-à-dire vers la masse puisqu'il s'agit d'un PNP.

Pour faire en sorte qu'il y ait une tension supérieure à 4,5 volts (niveau logique 1) sur le collecteur lorsque la photorésistance FR1 est frappée par une lumière et une tension inférieure à 4 volts (niveau logique 0) lorsque la photorésistance se trouve dans l'obscurité, il faut polariser la base du transistor TR1 à l'aide d'une tension positive d'environ 9,7 volts, que l'on obtient grâce à la LED DL1 et à la résistance R1.

On aurait pu remplacer la LED DL1 par une résistance, mais nous avons préféré la LED parce qu'en s'allumant, elle entraîne une chute de tension d'environ 1,6 volt, faisant ainsi baisser la tension d'alimentation de 11,3 volts par rapport à la valeur requise.

En fait, 11,3 - 1,6 = 9,7 volts.

Vous avez certainement remarqué que sur les bornes d'alimentation, on applique une tension de 12 volts et non une tension de 11,3 volts, mais il est également vrai que

nous avons inséré la diode DS2 en série dans le positif de cette tension afin de protéger le circuit d'une inversion de

Figure 608 : Schéma électrique de l'interrupteur crépusculaire. Pour régler la sensibilité de cet interrupteur à niveau de luminosité, il faut tourner le curseur du trimmer R4 comme indiqué dans le texte.

polarité. Cette diode fait descendre la tension d'environ 0,7 volt.

En fait, nos 12 volts deviennent donc seulement 11,3 volts.

La photorésistance FR1, comme vous pouvez le constater en observant le schéma électrique, est reliée à l'émetteur de TR1 en parallèle à la résistance R2 de 330 kilohms.

Lorsque la photorésistance se trouve dans l'obscurité, elle prend une valeur ohmique d'environ 2 ou 3 mégohms et, avec une valeur aussi élevée placée en parallèle sur la résistance R2 de 300 kilohms, c'est comme si elle n'était pas là. Dans ces conditions, on retrouve une tension supérieure à 4,5 volts (niveau logique 1) sur le collecteur du transistor.

Dès que la photorésistance est frappée par une lumière, on retrouve sur ses broches une valeur ohmique d'environ 100 ohms et, donc, on n'a plus sur l'émetteur du transistor les 330 kilohms de la résistance R2, mais les 100 ohms de la photorésistance.

Le transistor TR1 devient donc conducteur et c'est alors que l'on retrouve une tension inférieure de 4 volts sur le collecteur, ce qui correspond à un niveau logique 0.

Le niveau logique présent sur le collecteur de TR1 atteint, par l'intermédiaire de la résistance R5, l'entrée de la porte NOR IC1/A utilisé comme INVER-TER.

L'entrée de la seconde porte NOR IC1/B, toujours utilisée comme INVER-

TER, est reliée sur la sortie de IC1/A et, donc, ce niveau logique se retrouve également sur IC1/B.

Le niveau logique présent sur la sortie de la porte NOR IC1/B nous sert à polariser la base du transistor TR2 et, par conséquent, le relais.

Lorsqu'un niveau logique 1 se trouve sur la base de TR1, le relais est désactivé

Lorsqu'un niveau logique 0 se trouve sur la base de TR1, le relais est activé.

A présent, tachons de suivre les niveaux logiques en partant du collecteur du transistor TR1 jusqu'à la base du transistor TR2.

Photorésistance éclairée

Collecteur TR1 = niveau logique 1 Sortie IC1/A = niveau logique 0 Sortie IC1/B = niveau logique 1

Etant donné qu'un niveau logique 1 (tension positive), ne peut pas polariser la base du transistor TR2, qui est un PNP, celui-ci ne peut pas être conducteur et, donc, le relais reste désactivé et la LED DL2 ne pourra pas s'allumer

Photorésistance dans l'obscurité

Collecteur TR1 = niveau logique 0 Sortie IC1/A = niveau logique 1 Sortie IC1/B = niveau logique 0 Le niveau logique O court-circuite vers la masse la résistance R7 reliée à la base du transistor TR2, qui devient conducteur, excite le relais et allume la LED DL2.

Dans ce circuit, nous avons utilisé de petites astuces afin de rendre le fonctionnement plus efficace et plus stable

- Le trimmer R4, relié sur le collecteur de TR1, sert à régler la valeur de la lumière ou de l'obscurité sur laquelle nous voulons que le relais soit activé ou désactivé.
- Le condensateur électrolytique C2, placé sur le collecteur de TR1, empêche que des éclairs de lumière impromptus dus à des orages nocturnes puissent désactiver le relais.

La durée d'un éclair n'est pas suffisamment importante pour que le condensateur C2 puisse être chargé, c'est pourquoi la sortie du collecteur TR1 reste au niveau logique 0.

- La résistance R6, reliée entre la broche de sortie IC1/B et l'entrée de IC1/A, évite que le relais puisse vibrer lorsqu'une tension instable entre le niveau logique 1 et le niveau logique 0 ou vice-versa se trouve sur le collecteur du transistor TR1.

En fait, si la broche de sortie de IC1/B atteint le niveau logique 1, la résistance R6 renvoie la tension positive directement sur l'entrée de IC1/A. Donc, même si la tension sur le collecteur de TR1 descend légèrement, elle ne pourra pas faire varier le niveau logique sur la broche de sortie de IC1/B.

Figure 609a : Schéma d'implantation des composants de l'interrupteur crépusculaire. Ne raccordez pas le secteur 220 volts tant que le circuit imprimé n'est pas monté dans un boîtier obligatoirement en matière plastique. Le circuit doit être alimenté à l'aide d'une tension de 12 volts.

Si la broche de sortie de IC1/B descend au niveau logique 0, la résistance R6 court-circuite vers la masse l'entrée de IC1/A. Donc, même si la tension sur le collecteur de TR1 augmente légèrement, elle ne pourra pas faire varier le niveau logique sur la broche de sortie de IC1/B.

Pour vérifier ce que nous venons d'énoncer, il ne vous reste plus qu'à monter le circuit.

La réalisation pratique

Pour construire cet interrupteur crépusculaire, vous devez d'abord réaliser ou vous procurer le circuit imprimé de la figure 609c puis y insérer tous les composants, comme indiqué sur la figure 609a.

Nous vous conseillons de commencer par le support du circuit intégré IC1, puis de poursuivre avec toutes les résistances, le trimmer R4, les condensateurs polyester C1 et C3.

Pour finir, vous mettrez en place les condensateurs électrolytiques, en res-

Liste des composants LX.5024

R1	=	1 kΩ
R2	=	330 k Ω
R3	=	$680~\Omega$
R4	=	50 k Ω trimmer
R5	=	15 k $Ω$
R6	=	1 M Ω
R7	=	10 k Ω
R8	=	1 k Ω
R9	=	47 kΩ
C1	=	100 nF
		polyester
C2	=	2,2 µF
		électrolytique
C3	=	100 nF
		polyester
C4	=	100 μF
		électrolytique
DS1-DS2	=	Diodes 1N4007
DL1-DL2	=	Diodes LED

pectant la polarité +/- de leurs broches

Près du relais, insérez les deux diodes DS1 et DS2 en dirigeant la partie de leur corps entourée d'une bague blanche vers la gauche (voir figure 609a).

Poursuivez le montage en insérant les deux borniers sur la droite, puis les deux transistors, TR1 et TR2, en dirigeant la partie plate de leur corps vers le bas.

Finissez en soudant le relais.

Une fois cette opération terminée, placez le circuit intégré IC1 dans son support, en dirigeant son repère-détrompeur en forme de "U" vers le haut.

Pour finir, montez les deux LED DL1 et DL2 en raccordant la patte la plus longue au trou du circuit imprimé indiqué par la lettre A (anode).

Quand vous monterez le circuit dans un boîtier obligatoirement en matière plastique (à cause du 220 volts), vous pourrez déporter les deux LED sur sa face avant.

RELAIS 1 = Relais 12 V 1 RT

Intégré

PNP BC328

PNP BC328

CMOS 4002

Photorésistance

TR1

TR2

FR1

IC1

LE COURS

Figure 609b : Brochage du circuit intégré 4002, vu de dessus, ainsi que d'un transistor BC328, vu du dessous.

Figure 609c : Dessin, à l'échelle 1, du circuit imprimé de l'interrupteur crépusculaire.

Les deux pattes de la photorésistance FR1 doivent être reliées aux deux trous placés à côté du condensateur polyester C1 à l'aide de deux fils et sans qu'il soit nécessaire de respecter de polarité. La photorésistance devra, bien entendu, être placée à l'endroit où elle doit capter la lumière et ne pas être éloignée de plus de 20 cm du circuit imprimé. Si elle doit se trouver à l'extérieur, elle pourra être partiellement noyée dans du silicone transparent. Ne recouvrez pas sa tête sinon la sensibilité s'en ressentira.

Pour tester le montage

Pour les réglages, NE RACCORDEZ PAS LE 220 V mais uniquement le 12 V. En effet, certaines pistes sont parcourues par la tension secteur et vous risqueriez de vous électrocuter.

Pour tester ce montage, nous vous conseillons de placer une boîte sur la photorésistance afin de la maintenir dans l'obscurité. Vous pouvez alors tourner le curseur du trimmer R4, jusqu'à ce que la LED DL2 s'allume.

Une fois la LED allumée, retirez la boîte afin d'illuminer la photorésistance. Vous observerez alors que la LED DL2 s'éteint et qu'elle se rallume dès que vous replacez la boîte.

Si vous voulez que le relais soit excité dans une semi-obscurité, vous pouvez soulever la boîte légèrement de façon à ne laisser pénétrer à l'intérieur qu'un peu de lumière. Tournez alors le curseur de R4 jusqu'à ce que la LED DL2 s'allume à nouveau.

Nous avons utilisé le relais comme interrupteur pour pouvoir commander des ampoules de 220 volts la nuit et les éteindre le jour.

Note importante :

Avant d'alimenter le bornier du relais avec une tension de 220 volts, il faut installer le circuit à l'intérieur d'un coffret, obligatoirement en matière plastique, de façon à l'isoler. En effet, comme nous venons de le dire, le secteur 220 volts parcourt certaines pistes en cuivre. Il est donc dangereux de les toucher avec les mains (risque d'électrocution), ou de les faire entrer en contact avec une surface conductrice (risque de court-circuit).

Pour remplacer la tension secteur et visualiser le fonctionnement, vous pou-

vez utiliser une pile de 4,5 volts ainsi qu'une ampoule basse tension.

Le relais étant à 1 contact repos, 1 contact travail, (1 RT) nous avons prévu deux possibilités (qui peut le plus peut le moins!):

- Si vous reliez les deux fils aux borniers A et C, l'ampoule reste allumée le jour et s'éteint dès la tombée de la nuit.
- Si vous reliez les deux fils aux borniers C et B, l'ampoule reste éteinte le jour et s'allume dès la tombée de la nuit (ce qui est tout de même plus intéressant!).

◆ G. M.

Coût de la réalisation*

Tous les composants visibles sur la figure 609a pour réaliser l'interrupteur crépusculaire LX.5024, y compris le circuit imprimé : 85 F. Le circuit imprimé seul : 23 F.

* Les coûts sont indicatifs et n'ont pour but que de donner une échelle de valeur au lecteur. La revue ne fournit ni circuit ni composant. Voir les publicités des annonceurs.

La LX.5025, une sirène numérique deux tons

Mise en pratique des portes logiques

Avec ce dernier montage se termine la leçon sur les portes logiques. Encore une fois, ces trois petits montages ont une grande utilité didactique, ne les négligez pas.

uni d'un circuit intégré du type 40106 équipé de 6 portes logiques INVERTER et de deux transistors NPN, on peut réaliser une petite, mais très intéressante, sirène deux tons.

Figure 610 : La sirène bitonale telle qu'elle se présente une fois tous les composants montés.

Si vous regardez le schéma électrique de la figure 611, vous constaterez qu'il n'est pas très facile à comprendre. Nous allons donc vous l'expliquer, aussi simplement que possible, de façon à ce qu'ensuite tout devienne très clair.

Commençons par vous rappeler que dès qu'une porte inverseuse (INVERTER) est mise sous tension, on trouve un niveau logique 0 sur sa broche d'entrée et que, par conséquent, on retrouve un niveau logique 1 sur sa broche de sortie.

Ceci étant dit, nous pouvons commencer par décrire la porte IC1/A sur la broche d'entrée de laquelle est relié le condensateur C1 de 4,7 microfarads.

Comme nous avons un niveau logique 1 sur la broche de sortie 2, cette tension positive charge le condensateur élec-

trolytique C1, en passant à travers la résistance R1

Une fois que le condensateur s'est chargé, on retrouve un niveau logique 1 sur la broche d'entrée et sur la broche de sortie, qui équivaut à la broche reliée à masse, on retrouve

l'inverse, donc un niveau logique 0.

Le condensateur C1 commence à se décharger grâce à la sortie court-circuitée vers la masse, toujours par l'intermédiaire de la résistance R1.

Lorsque le condensateur s'est déchargé, on retrouve à nouveau sur la broche d'entrée un niveau logique 0 et sur la broche de sortie, qui équivaut à la broche reliée à masse, l'inverse, c'est-à-dire un niveau logique 1.

Le condensateur C1 commence à nouveau à se recharger.

Le cycle de charge et de décharge du condensateur C1 se répète à l'infini, donnant sur la broche de sortie 2 de IC1/A un signal à onde carrée que les deux diodes DS1 et DS2, appliquent sur les entrées des deux autres portes INVERTER, IC1/B et IC1/C.

Ces deux portes INVERTER ont également un condensateur sur leurs entrées (voir C2 et C3) relié à leur sortie par l'intermédiaire d'une résistance et d'un trimmer (voir R2 et R3, ainsi que R4 et R5).

Etant donné que la capacité de ces deux condensateurs est de seulement 47 nanofarads, ils se chargeront et se déchargeront beaucoup plus rapidement que le condensateur C1 de 4,7 microfarads, relié à IC1/A. C'est pour cette raison que la fréquence des ondes carrées génère une note acoustique audible et dont on peut changer la tonalité en tournant les trimmers R2 et R4

Pour obtenir deux tons, il faut tourner les deux trimmers de façon à obtenir deux notes différentes. Il faut, en outre, faire en sorte que lorsqu'on entend la note de IC1/B, on n'entende pas celle de IC1/C et vice- versa.

Ce sont les ondes carrées qui sortent de la broche 2 de IC1/A qui, comme

nous allons le voir, permettent la commutation automatique.

Lorsqu'une tension positive (niveau logique 1) est présente sur la broche 2 de IC1/A, la diode DS1 court-circuite le condensateur C2, relié à IC1/B, vers le positif d'alimentation.

Donc, l'étage oscillateur ne peut plus émettre de note. Par contre, la note est émise par l'étage oscillateur IC1/C, car la diode DS2, reliée en sens inverse à DS1, ne court-circuite pas vers le positif d'alimentation le condensateur C3 relié à IC1/C.

Lorsqu'un niveau logique 0 se trouve sur la broche 2 de IC1/A, la diode DS1 alimente le condensateur C2, permettant ainsi à l'étage oscillateur IC1/B d'émettre sa note.

Comme un niveau logique 0 équivaut à la broche 2 reliée à la masse, la seconde diode, DS2, court-circuite automatiquement le condensateur C3 de IC1/C vers la masse.

Donc, l'étage oscillateur n'émet aucune note.

Pour conclure, lorsque la porte INVER-TER IC1/B émet sa note, la seconde porte INVERTER, IC1/C, reste bloquée.

A l'inverse, lorsque la porte INVERTER IC1/C émet sa note, c'est IC1/B qui se bloque.

Liste des composants LX.5025

R1 = 330 k Ω R2 = 100 k Ω trimmer

R3 = $10 \text{ k}\Omega$

R4 = 100 kΩ trimmer

R5 = 10 kΩ R6 = 10 kΩ R7 = 120 Ω

R8

C1 = 4,7 μ F électrolytique C2 = 47 nF polyester C3 = 47 nF polyester C4 = 47 μ F électrolytique C5 = 100 nF polyester

 $= 1 k\Omega$

 $= 1000 \mu F$ électrolytique

DS1/DS4 = Diodes 1N4150 DS5-DS6 = Diodes 1N4007 DZ1 = Zener 8,2 V 1/2 W TR1 = NPN BC547 TR2 = NPN BD377

HP1 = Haut-parleur 8 Ω IC1 = Intégré CMOS 40106

Figure 612 : Schéma d'implantation du montage. Les trimmers R2 et R4 servent à régler la note.

Figure 612b : Brochage du transistor NPN BD377, vu de face et de dos. Brochage du transistor NPN BC547, vu de dessous. Brochage du circuit intégré 40106, vu de dessus.

Lorsqu'un niveau logique 1 se trouve sur la sortie de IC1/B, la tension positive, en passant à travers la diode DS3, atteint les broches d'entrée des portes INVERTER IC1/E et IC1/F, reliés en parallèle, afin d'obtenir un signal de puissance supérieure en sortie.

Lorsqu'un niveau logique 0 se trouve sur la sortie de IC1/C, la seconde porte INVERTER, IC1/D, l'inverse et, en sortie, on retrouve alors un niveau logique 1, c'est-à-dire une tension positive qui, en passant à travers la diode DS4, atteint les deux broches d'entrée des portes INVERTER IC1/E et IC1/F.

Sur les sorties des deux portes INVER-TER IC1/E et IC1/F, on retrouve l'une après l'autre, l'onde carrée de la note émise par IC1/B et celle émise par IC1/C, qui atteignent la base du transistor TR1, pour être amplifiées.

Elles passent de ce transistor au transistor TR2, afin d'être encore amplifiées de façon suffisante à pouvoir piloter un petit haut-parleur.

Comme vous pouvez le remarquer, grâce à la flèche placée sur leur émetteur et dirigée vers l'extérieur, ces deux transistors sont des NPN.

Pour alimenter cette sirène deux tons, vous pouvez prélever les 12 volts

nécessaires à l'aide de l'alimentation LX.5004 que vous avez réalisée à la leçon 7.

La diode DS6, placée en série sur la tension positive des 12 volts, sert à protéger le circuit au cas où il y aurait une inversion accidentelle de la polarité de l'alimentation.

La diode DS5, placée en parallèle sur le haut-parleur, sert à protéger le transistor de surtensions éventuelles.

La diode zener DZ1, placée après la résistance R7, stabilise la tension sur la broche 14 de IC1, c'est-à-dire du circuit intégré 40106, à une valeur de 8,2 volts.

La réalisation pratique

Pour construire cette sirène numérique deux tons, vous devez réaliser ou vous procurer le circuit imprimé donné en figure 612c et y monter tous les composants comme vous pouvez le voir sur la figure 612a.

Nous vous conseillons de commencer par insérer le support du circuit intégré IC1, puis de poursuivre avec toutes les résistances, les deux trimmers R2 et R4, les condensateurs polyester C2, C3 et C5. Pour finir, insérez les condensateurs électrolytiques C1, C4 et C6, en respectant la polarité +/- de leurs broches.

Poursuivez le montage en insérant les deux diodes plastiques au silicium DS5 et DS6, en dirigeant la partie de leur corps entourée d'une bague comme indiqué sur le schéma d'implantation de la figure 612a, puis les quatre diodes en verre, DS1, DS2, DS3 et DS4, en dirigeant toujours la partie de leur corps entourée d'une bague comme indiqué sur le même schéma.

La diode zener en verre DZ1 se distingue des autres car la référence "8V2" est marquée sur son corps.

La bague de cette diode zener, qui devra être placée derrière le condensateur C5, doit être dirigée vers la droite.

Après avoir inséré le bornier servant aux 12 volts de l'alimentation, vous pouvez insérer le transistor TR1, en dirigeant la partie plate de son corps vers le bas, puis le transistor de puissance, TR2, en le pliant en "L", de façon à ce que sa partie métallique porte sur le petit radiateur de refroidissement en forme de "U".

Finissez en plaçant le circuit intégré IC1 dans son support, en dirigeant son repère-détrompeur en forme de "U" vers C5, puis, à l'aide de deux morceaux de fil, reliez le petit haut-parleur au circuit.

Vous pouvez, dès lors, relier les 12 volts d'alimentation au bornier, en respectant la polarité +/-, pour que le haut-parleur émette une note à deux tons, caractéristique des sirènes des pompiers.

Vous pouvez modifier la tonalité des notes par "tâtonnements", en tournant les curseurs des trimmers R2 et R4.

◆ G. M.

Figure 612c : Dessin, à l'échelle 1, de la sirène numérique deux tons.

Coût de la réalisation*

Tous les composants visibles sur la figure 612a, pour réaliser la sirène numérique deux tons LX.5025, y compris le circuit imprimé : 109 F. Le circuit imprimé seul : 26 F.

* Les coûts sont indicatifs et n'ont pour but que de donner une échelle de valeur au lecteur. La revue ne fournit ni circuit ni composant. Voir les publicités des annonceurs.

PETITES ANNONCES

Directeur de Publication

James PIERRAT elecwebmas@aol.com

Direction - Administration

JMJ éditions

La Croix aux Beurriers - B.P. 29 35890 LAILLÉ

> Tél.: 02.99.42.52.73 + Fax: 02.99.42.52.88

Rédaction

Rédacteur en Chef: James PIERRAT Secrétaire de Rédaction : Marina LE CALVEZ

Publicité

A la revue

Secrétariat

Abonnements - Ventes Francette NOUVION

Vente au numéro

A la revue

Maquette - Dessins Composition - Photogravure

SRC sarl Béatrice JEGU

Impression

SAJIC VIEIRA - Angoulême

Distribution

NMPP

Hot Line Technique

04 42 82 30 30

Web

http://www.electronique-magazine.com

e-mail

redaction@electronique-magazine.com

EN COLLABORATION AVEC

Elettronica In

JMJ éditions

Sarl au capital social de 7 800 €

RCS RENNES: B 421 860 925 - APE 221E Commission paritaire: 1000T79056 ISSN: 1295-9693 Dépôt légal à parution

Ont collaboré à ce numéro :

Alberto Battelli, Denis Bonomo Alberto Ghezzi, Giuseppe Montuschi, Arsenio Spadoni.

I M P O R T A N T Reproduction totale ou partielle interdite sans accord écrit de l'Editeur. Toute utilisation des articles de ce magazine à des fins de notice ou à des fins commerciales est soumise à autorisation écrite de l'Editeur. Toute utilisation non autorisée fera l'objet de poursuites. Les opinions exprimées ainsi que les articles n'engagent que la responsabilité de leurs auteurs et ne reflètent pas obligatoirement l'opinion de la rédaction. L'Editeur décline toute responsabilité quant à la teneur des annonces de publicités insérées dans le magazine et des transactions qui en découlent. L'Editeur se réserve le droit de refuser les annonces et publicités sans avoir à justifier ce refus. Les noms, prénoms et adresses de nos abonnés ne sont communiqués qu'aux services internes de la société, ainsi qu'aux organismes liés contractuellement pour le rou tage. Les informations peuvent faire l'objet d'un droit d'accès et de rectification dans le cadre légal. Recherche schéma technique d'un convertisseur de 6 V à 12 V, de 1 A ou plus pour autoradio et véhicule ancien. Tél. 03.89.46.57.56 après 20 heures. Denis Kleindienst, 16, rue du Tir, 68100 Mulhouse.

Vends Yaesu FT290R. Prix: 1500 F. Ampli 30 W. Prix: 800 F. Antenne 9 éléments 144. Prix : 300 F. Rotor. Prix: 200 F. Toswatt Daïwa. Prix: 500 F. Yaesu déca 100 W FT707. Prix: 2700 F. Boîte d'accord FC700. Prix: 800 F. Alimentation Kenwood PS430, 20 A, secteur. Prix: 1500 F. Matériel en très bon état + port ou sur place, dépt 34. Tél. 04.67.74.43.09, heures repas.

Cède micro-ordinateur de collection Thomson TO8 en be - b.f. avec moniteur et imprimante. Manuels d'instruction inclus et nombreuses disquettes de logiciels pédagogiques, de jeux et utilitaires avec leurs docs papier. Expédition route possible. Pour détails, tél. 02.31.92.14.80. Recherche contrôleur CDA 15

(aiguille). Téléphoner 01.42.98.96.32. Recherche

nombreux types tubes en urgence : AX50, EL39, ECH3, EF40, EL34, GZ32,

12AUM, EF41, EM85, EZ91, GBQ5, 6AJ8 plus schéma ampli Philips AM700. Georges Bontemps, 1 rue Marcel et René Cherrier, Appart. 30, 18000 Bourges.

Vends appareil mesure RX/TX, alimentation stabilisée, appareil photo 6 x9, téléphone ancien, pièces détachées. Demander vos désirs, alimentation pro 0,36 V, disjoncteur réglable. Prix :

INDEX DES ANNONCEURS COMELEC - « Piles » MICRELEC - « Unité de perçage et logiciel... » ... 13 MULTIPOWER - « Logiciel PROTEUS VSM » ARQUIE COMPOSANTS - « Composants » DZ ELECTRONIQUE - « Composants et matériel » 41 JMJ - « Bulletin d'abo à ÉLECTRONIQUE MAGAZINE » . . . 46 COMELEC - « Télécommande et sécurité » 47 MICROTRONIQUE - « Micro Module H8/3048F » . SRC - « Livre : Microcontrôleurs PIC le cours » . . JMJ - « Anciens numéros, CD-Rom... » COMELEC - « Trans. AV »

NGEZOVO

LIGNES		XTE												JU	sc	UL	.ES	s. I	LAI	ss	ΕZ	U	N I	BL	AN	C I	EN	TR	E	LES	s M	ЮТ	s.
1	ı	ı	1	1	ı		1	1	1	ı	1	1	1		ı	1	1		ı		ı	1	ı		ı	1			ı	1	1	1	_
2			1	1		1		Ī	1		1		_			Ī			ı	1					ı					1		ī	
3			1	1	-	1		Ī	1		1		_			Ī			ı		1				ı	L				ı		L	
4	ı	ı	ı	1	1	ı	1	ı	1	ı	1	1	1		ı	ı	1		I	ı	ı	1	ı		ı	1	1		ı	1	1	1	_
5	ı	1	1	1	ı	ı	1	Ī	ı		ı	1	ı		1	i	ı		ı	ı	1	ı	1		ı	1				1		_	1
6		1	1	1	-			ı	1		1				1	ı	-		l	1	1				ı	L				ı			
7	ı	ı	1	1	ı	1	1	i	1		1				1	ı	1		ı	1	1	1	ı		ı	1	1			1	1	1	
8	ı		1	1	1	ı	ı	1	1			1				1	1		ı		1	1	ı		1	1	1		1	1			
9	ı		ı	ı		ı	ı	i	1	ı	ı	i			ı	i			ı		ı	_	1		ı	1			I	1	_		_
10																																	

Particuliers: 3 timbres à 3 francs - Professionnels: La ligne: 50	FTTC - PA avec photo : + 250 F - PA encadrée : + 50 I
Nom	Prénom

Adresse Code postal......Ville......Ville......

Toute annonce professionnelle doit être accompagnée de son règlement libellé à l'ordre de JMJ éditions. Envoyez la grille, éventuellement accompagnée de votre règlement à : **ELECTRONIQUE magazine** • Service PA • BP 88 • 35890 LAILLÉ

•	
Prénom	

PETITES ANNONCES

200 F. Louis Bosc, 8 rue des Dominicains, 84160 Cadenet.

Vends CD Rom externe Sanyo.

Prix: 500 F. Lecteur externe 6

CD Rom Pioneer. Prix: 600 F.

Onduleur 1 kW/220 V. Prix:

2000 F. Magnétoscope VHS

380H (20 jours) spécial surveillance. Prix: 1400 F. Modulateur

TV VHF

HOT LINE TECHNIQUE

Vous rencontrez un problème lors d'une réalisation ? Vous ne trouvez pas un composant pour un des montages décrits dans la revue ?

UN TECHNICIEN EST À VOTRE ÉCOUTE

du lundi au vendredi de 16 heures à 18 heures sur la HOT LINE TECHNIQUE d'ELECTRONIQUE magazine au

04 42 82 30 30

 $(147,30/135,25 \text{ MHz}, \text{ out} = 95 \text{ dB}_{\mu}\text{V}. \text{ Prix}: 1200 \text{ F. Tuner} \text{TV Sony. Prix } 600 \text{ F. Splitter} \text{Barco vidéo } 1 \text{ IN, } 3 \text{ OUT, RVBS.} \text{Prix}: 1000 \text{ F. Recherche schémas réc. TR394A. Téléph. au } 05.65.67.39.48.$

Vends studio montagne Hautes Alpes 1850 m, Super Devoluy, 4 pl. bal., face jeux, funiculaire, piscine, commerces, location: 2000 F/semaine ou vente pour 80 ans: 20 000 F, cars, trains, ascens., promen., air pur, repos assuré, tennis, basket, location juillet. Tél. 02.54.97.63.19, heures repas.

Recherche docum. maintenance Eaton 2075B, scope Tektro 2432A distors. Tektro AA501, voltmètre sélectif HP3581C. Recherche tubes 6336A. Vends scope Tektro 7603 + 7A18 + 7B53 + doc. Vends scope Schlumberger 5500 + 5537 + doc. Tél. 03.22.91.88.97 heures repas le soir.

Vends matériel état neuf, 2 Pony CB36, 1 scr 610 + alimentation secteur + quartz + tubes et absolument neuf, jamais servi, 1 Pony CBH 36, 1 Pony CB71,

HP Supravox, transfos BF Millerioux, transfos spéaration, circuits 1 kW, boîte 10 tubes, RL12P35, 2 tubes 2A3, transfos Ali Vedovelli, tubes BF. Faire offre au 03.21.27.74.44.

Vends pylône Leclerc autoportant triangulaire 1 m de côté, 5 éléments de 3 m + parafoudre + 50 m KX14. Prix : 5000 F. Groupe électrogène 10 kVA, 220 V, moteur thermique à revoir. Prix : 2000 F à débattre. Onduleur 2 kW - faire offre. Parabole pro Prime Focus 2 m avec feed 10 GHz. Prix : 500 F. Alimentation stabilisée 0 à 40 V, 80 A. Prix : 500 F. Dépt 01. Tél. 04.74.30.62.40, le soir.

Vends 280 tubes différents, types, genre PCF/PCL/PCH/PC/ECHEY, etc., neuf, emballage d'origine, le lot : 550 F. Multimètre Fluke 73 sélection auto de gamme, housse de protection origine, état impeccable, notice, cordons. Prix : 400 F. Tél. 01.39.60.46.28.

Recherche tubes 845 et 838 d'origine US (RCA, GE, AMPEREX). Tél. 06.12.32.62.99.

Emetteur audio/vidéo programmable 20 mW de 2,2 à 2,7 GHz au pas de 1 MHz

Ce petit émetteur audio-vidéo, dont on peut ajuster la fréquence d'émission entre 2 et 2.7 GHz par

pas de 1 MHz, se programme à l'aide de deux touches. Il com-porte un afficheur à 7 segments fournissant l'indication de la fréquence sélectionnée. Il utilise un module HF à faible prix dont les prestations sont remarquables.

Récepteur audio/vidéo de 2.2 à 2.7 GHz

Voici un système idéal pour l'émetteur de télévision amateur FT374.

Fonctionnant dans la bande s'étendant de 2 à 2,7 GHz, il trouvera également une utilité non négligeable dans la recherche de mini-émetteurs télé opérant dans la même gamme de fréauences.

FT373 Kit complet sans récepteur 550 F

Emetteur 2.4 GHz / 20 mW

Récepteur 2.4 GHZ

4 canaux

Sélection des fréquences : DIP switch Fréquences :...2,4 à 2,4835 GHz Stéréo :..... Audio 1 et 2 (6,5 et 6,0 MHz)

TX2.4GEmetteur monté299 F

et 256 canaux

. 13,8 VDC2,2 à 2,7 GHz Fréquences :

TX2.4G/256 Emetteur monté 399 F

4 canaux

Sélection canal : Poussoir

8 canaux max. Sorties audio :6,0 et 6,5 MHz Visualisation canal :.....LED RX2.4G.....Récepteur monté......309 F

et 256 canaux

Alimentation:.13,8 VDC Sélection canal:..... ...DIP switch Sorties audio: Audio 1 et 2 (6,5 et 6 MHz)

RX2.4G/256... Récepteur monté ... 399 F

Module Emetteur vidéo 2,4 GHz 4 canaux alimenté en 5 V

Émetteur vidéo miniature travaillant sur la bande des 2,4 GHz. Les fréquences sont au nombre de 4 (2.413 / 2.432 / 2.451 / 2.470 GHz) et sont sélectionnables à l'aide d'un dip swich. Il est livré avec son antenne. Caractéristiques techniques :

Alimentation.... 5 V Consommation..... 80 mA Puissance de sortie 10 mW Dim. ... 103 x 24 x 7,5 Poids 8 grammes

Récepteur audio/vidéo 4 canaux

Emetteur audio/vidéo 2,4 GHz 4 canaux avec micro

Émetteur vidéo miniature avec entrée microphone travaillant sur la bande des 2,4 GHz. Il est livré sans son antenne et un microphone électret. Les fréquences de transmissions sont au nombre de 4 (2.413 / 2.432 / 2.451 / 2.470 GHz) et sont sélectionnables à l'aide d'un commutateur.

Caractéristiques techniques : Alimentation...... 12 V Alimentation 12 V Puissance de sortie . 10 mW

Alimentation:.....13,8 VDC

Consommation .. 140 mA Dim......40 x 30 x 7.5 Poids......17 grammes

Livré complet avec boîtier et antenne, il dispose de 4 canaux (2.413 / 2.432 /

2.451 / 2.470 GHz) sélectionnables à l'aide d'un cavalier. Caractéristiques techniques :

Sortie vidéo 1 Vpp sous 75 Ω Sortie audio ... 2 Vpp max.

Ampli 1,3 Watt

Alim.:......... 9 V à 12 V Gain: 12 dB ~ 1,3 W P. max.:.....

F. in:1800 MHz à 2500 MHz AMP2.4G/1W 890 F

Cordon 1m/SMA mâle 120 F ANT-HG2.4

Antenne patch.....990 F

Antenne Patch pour la bande des 2,4 GHz

Cette antenne directive patch offre un gain de 8,5 dB. Elle s'utilise en réception aussi bien qu'en émission et elle permet d'augmenter considé-rablement la portée des dispositifs RTX travaillant sur ces fréquences. Ouverture angulaire:

:.....54x120x123 mm . 260 q

Emetteur audio/vidéo

Microscopique émetteur audio/vidéo de 10 mW travaillant à la fréquence de 2 430 MHz.

L'émetteur qui mesure seulement 12 x 50 x 8 mm offre une portée en champ libre de 300 m.

Il est livré complet avec son récepteur (150 x 88 x 44 mm). Alimentation : 7 à 12 Vdc.

FR162..... 1 999 F

Caméra CMOS couleur

Microscopique caméra CMOS couleur (18 x 34 x 20 mm) avec un émetteur vidéo 2 430 MHz incorporé. Puissance de sortie 10 mW. Résolution de la caméra : 380 lignes TV. Optique 1/3" f=4.3 F=2.3.

Ouverture angulaire 73°.

Alimentation de 5 à 7 Vdc. Consommation 140 mA.
Le système est fourni complet avec un récepteur (150 x 88 x 44 mm).

FR163..... 3 250 F 2 850 F

Emetteur TV audio/vidéo 49 canaux

Tension d'alimentation...... 5 -6 volts max Consommation... Puissance de sortie 50 mW environ Transmission en UHF. du CH21 au CH69 Vin mim Vidéo 500 mV

KM 1445 Emetteur monté

.180 mA

Amplificateur 438.5 MHz - 1 watt

Cet amplificateur 438.5 MHz et canaux UHF est particulièrement adapté pour les émissions TV. Entrée et sortie 50 ohms. P in min. : 10 mW. P in max. : 100 mW. P out max. : 1 W. Gain : 12,5 dB. Alim. : 9 V.

AMPTV.....Amplificateur TV monté330 F

CD 908 - 13720 BELCODENE 04 42 70 63 90 - Fax 04 42 70 63 95 Internet: http://www.comelec.fr

DEMANDEZ NOTRE NOUVEAU CATALOGUE 32 PAGES ILLUSTRÉES AVEC LES CARACTÉRISTIQUES DE TOUS LES KITS

Expéditions dans toute la France. Moins de 5 kg : Port 55 F. Règlement à la commande par chèque, mandat ou carte bancaire. Bons administratifs acceptés. Le port est en supplément. De nombreux kits sont disponibles, envoyez votre adresse et cinq timbres, nous vous ferons parvenir notre catalogue général.

ESPACE COMPOSANT ELECTRONIQUE 66 Rue de Montreuil 75011 Paris Metro Nation ou Boulets de Montreuil

Tel: 01.43.72.30.64; Fax: 01.43.72.30.67 Ouvert du mardi au samedi de 9 h 30 à 19 h et le lundi de 10 h à 19 h

NOUVEAU MOTEUR DE RECHERCHE COMMANDE SECURISEE

PLUS DE 25000 REFERENCES EN STOCK

Comparez nos prix !!! Un défi pour nous, une bonne affaire pour vous !!!

KIT PCB102 serrure sérrure de l'an 2000 avec changement de code à chaque introduction de la carte "clé" de type wafer possibilité de 16 cartes cé

autonome en cas de perte d'une 2 types de relais possible, 1rt ou

PCB102 390.00Frs*

Programmateur de PIC en kit avec afficheur digital Pour les 12c508/509 16684 ou 1684 ou 24c16 ou 24c32. Livré complet avec notice de cáblage + disquette : 249,00 Frs Option insertion nulle... 120.00 Frs (Revendeurs nous consulter)

Version montée : 350.00 Frs PCB101 249,00 Frs*

EXCEPTIONNEL!

NOUVEAU

PCB101-3 : adaptateur pour cartes à puces pour le PCB101 équipé du Module Loader

179,00 Frs*

199,00 Frs*

wafer serrure pcb Carte 8/10ieme 16f84+24c16 sans

25.00 Frs unité 24.00 Frs X10 19.00 Frs X25

REF	unité	X10	X25
PIC16f84/04	29.00	28.00	27.00
PIC24lc16	10.00	9.00	8.00
PIC12c508A	10.00	9.50	8.00

Prix sujet à modifications au jour le jour.
Pour être informé des dernieres modif nous contacter.

PHASE

Nouveau programmateur "TOUT EN UN"

Reset possible sur pin 4 ou 7. Loader en hardware intégré Programme les carles wafer en 1 passe. Programme les composants de type12c508/509 16f84 16C622 16F622 16F628 16f876 24c02/04/08/16/32/64, D2000-4000, Gold Wafer, etc.

PCB105 449,00 Frs*en kit 549,00 Frs*monté

es SRAM et des TTL et C-MOS.

nouveau !!! PROGRAMMATEUR AUTONOME

AUTONOME
permet la lecture des carte type "wafer
gold" (si la carte n'est pas en mode "oode
protect") la sauvegarde dans une memoire
interne et la programmation du PIC et de
"EPROM se fait en une passe et cela
sans ordinateur.
fonctionne sur PILES ou bloc alim.

Prix de lancement :

349,00 Frs* PCB106 Version montée

339,00 Frs*

Fonctionne à la fois avec les PIC16f84/04 PIC16f876 : 24 c 16 : 24 c 64 et sert d'adaptateu du PIC14 f 84 au PIC16 f 876

x1 = 39,00 ; x10 = 35,00 ; x25 = 30,00 Frs

39,00 Frs*

c gaine de 259.00 Frs*

999,00 Frs*

2495.00 Frs*

1249,00 Frs*

2700,00 Frs*

590.00Frs*

1490.00 Frs*

2999,00 Frs*

169,00 Frs*

39.00 Frs*

49,00 Frs*

Catalogue : 39 Frs TTC + 15 Frs de port **

94.00 Frs* 74,00 Frs* 49,00 Frs*

99,00 Frs*

199.00Frs*