

Mestrado Integrado em Engenharia Eletrotécnica e de Computadores 2021/2022 – P2

Modelação e Simulação

TRABALHO 1

Modelação de um sistema de terapia de cancro

Preparado por

João Miranda Lemos

Instituto Superior Técnico

Departamento de Engenharia Eletrotécnica e de Computadores

Área Científica de Sistemas, Decisão e Controlo

imagem: Freepik.com

Declaração de Ética

Ao entregar a resolução deste trabalho, o grupo de alunos que o assina garante, por esse ato, que o texto e todo o software e resultados entregues foram inteiramente realizados pelos elementos do grupo, com uma participação significativa de todos eles, e que nenhuma parte do trabalho ou do software e resultados apresentados foi obtida a partir de outras pessoas ou fontes.

Objetivo

Simular um Sistema biomédico de tratamento de um tumor canceroso com quimioterapia, incluindo um modelo farmacocinético (modelo compartimental com dois compartimentos), um modelo farmacodinâmico (equação de Hill) e um modelo de crescimento do tumor (equação logística). A variável de controlo é um trem de impulsos em tempo discreto.

Conceitos envolvidos

- Aproximação de um sistema de equações diferenciais de 1ª ordem (modelo de estado) por equações de diferenças usando o método de Euler;
- Simulação em tempo discreto de um sistema de equações de diferenças de 1º ordem (modelo de estado) usando uma linguagem de programação.
- Mostrar como é possível aplicar princípios da engenharia numa área interdisciplinar (neste caso, biomedicina).
- Modelos importantes:
 - Modelo de estado em tempo discreto
 - A equação logística como um modelo não-linear de crescimento
 - Modelos compartimentais e farmacocinéticos
 - Modelos farmacodinâmicos

Organização deste enunciado

Este enunciado está organizado em secções, numeradas sequencialmente. Estas secções contêm a informação necessária para elaborar o trabalho (devem ser complementadas com os acetatos das aulas teóricas) e devem ser lidas atentamente.

As questões a responder estão também numeradas, sendo identificadas pela letra P (P1, P2, ...).

Formato do relatório a entregar

O relatório a entregar deve satisfazer o seguinte formato:

- Formato pdf
- Ter na 1º página:
 - o O nome da unidade curricular e o ano letivo
 - O título e número do trabalho
 - o O número de aluno, o nome e o email de todos os alunos do grupo
 - o Um compromisso de ética de originalidade com o seguinte texto:

O grupo de alunos acima identificado garante que o texto deste relatório e todo o software e resultados entregues foram inteiramente realizados pelos elementos do grupo, com uma participação significativa de todos eles, e que nenhuma parte do trabalho ou do software e resultados apresentados foi obtida a partir de outras pessoas ou fontes.

- As respostas devem ser dadas sequencialmente a partir da página 2, indicando no início de cada uma o número respetivo (P1, P2, ...) em tipo negrito (bold).
- O número máximo de páginas do relatório a entregar, incluindo a página de rosto é 10, com texto de tipo 12, podendo ser usado LATEX ou outro processador de texto.
- As páginas devem ser numeradas sendo, preferencialmente, os números colocados no centro da linha inferior.

1. Modelos da terapia do cancro

"Cancro" é um nome genérico para um grupo de doenças que são caraterizadas por uma desordem genética causadas por mutações do ADN que acontecem espontaneamente ou são induzidas por agressões ambientais. A proliferação descontrolada das células degeneradas, ditas cancerosas, pode originar aglomerações denominadas tumores, que impedem o funcionamento normal do organismo. Um dos objetivos das terapias do cancro é reduzir a dimensão dos tumores cancerosos, o que pode ser conseguido por diversas maneiras (por exemplo, radioterapia, quimioterapia, ou mesmo remoção cirúrgica, ou ainda estimulando outros sistemas que combatem as células cancerosas tal como o sistema imunitário ou a anti-angiogénese).

Neste trabalho, pretende-se estudar um modelo, relativamente simples, da quimioterapia que consiste na toma, normalmente periódica de fármacos. O modelo deve assim incluir:

- Um modelo que represente a toma dos medicamentos e a sua absorção pelo corpo até chegarem aos órgãos do corpo humano (modelo farmacocinético);
- Um modelo que relacione a concentração do princípio ativo do medicamento.

Poderiam ainda ser considerados modelos relativos a subsistemas que interagem com o modelo de crescimento do tumor, que não serão no entanto considerados neste trabalho. Estes foram já referidos acima e são o sistema imunitário e o sistema antiangiogénese (que tem a ver com a formação de vasos sanguíneos que levam nutrientes e oxigénio às células do tumor).

Figura 1 – Estrutura do modelo (simplificado) de terapia do cancro.

A figura 1 mostra a estrutura do modelo, com o esboço das formas típicas dos sinais à saída de alguns dos blocos.

1.1. Modelo farmacocinético

O modelo farmacocinético (ou PK, do inglês *PharmacoKinetic*) representa a relação entre a dose de fármaco aplicada ao longo do tempo ao paciente e a concentração de fármaco no compartimento de efeito, que corresponde, em termos intuitivos, ao local do organismo onde o fármaco atua.

A dose de fármaco ("medicamento", na forma de comprimidos) administrado, d(t), tem a forma de uma sucessão de impulsos e é aplicada ao modelo farmacocinético (abreviadamente, PK). Este modelo é do tipo compartimental: admite que o corpo está dividido num certo número de compartimentos e que o fármaco se vai diluindo neles e passando de uns para os outros até passar para o compartimento de efeito, onde vai ter uma ação terapêutica.

Figura 2 – Modelo compartimental com 2 compartimentos.

Neste trabalho, admite-se que o modelo PK tem dois compartimentos, tal como se mostra na figura 2, e que o compartimento de efeito é o compartimento 2, ou seja, a concentração de efeito, c_e , é

$$c_e = c_2 \tag{1}$$

Para tornar mais clara a explicação, na figura 2 mostra-se também o compartimento 0, que normalmente não é representado e que corresponde ao exterior do corpo. A dose de fármaco 1 d é uma função do tempo que traduz a quantidade de fármaco administrada por unidade de tempo, e que traduz a quantidade de fármaco que entra no compartimento 1. Do ponto de vista da terminologia da teoria de sistemas, d é uma entrada do sistema farmacocinético. De facto, a dose, d, é uma variável manipulada ou variável de controlo porque pode ser imposta por alguém ou algo que gira o

¹ A palavra inglesa para *fármaco* é *drug*. Vice-versa, a tradução portuguesa de *drug*, num contexto de terapia, é *fármaco* e **não** *droga*.

sistema (um médico, que decide a quantidade de fármaco a administrar, ou um computador equipado com um programa de terapia automática²).

Os compartimentos 1 e 2 trocam fármaco entre si e são caracterizados por uma concentração (massa de fármaco por unidade de volume ou de massa do compartimento). Admite-se que estas trocas são proporcionais à concentração no compartimento de origem. Por exemplo, o compartimento 1, com concentração c_1 , envia para o compartimento 2 um fluxo de fármaco dado por $K_{12}c_1$, em que K_{12} é um coeficiente positivo. Por sua vez, o compartimento 2 envia para o compartimento 1 um fluxo $K_{21}c_2$. Fazendo o balanço dos fluxos entre os compartimentos, obtém-se o sistema de equações diferenciais

$$\begin{bmatrix} \dot{c}_1 \\ \dot{c}_2 \end{bmatrix} = \begin{bmatrix} \frac{1}{V_1} (-K_{12} - K_{10}) & \frac{1}{V_1} K_{21} \\ \frac{1}{V_2} K_{12} & -\frac{1}{V_2} K_{21} \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} + \begin{bmatrix} \frac{1}{V_1} \\ 0 \end{bmatrix} \delta d$$
 (2)

em que, para o fármaco atezolizumab, os parâmetros têm os valores numéricos

- $K_{12} = 0.3 \times 3600$
- $K_{21} = 0.2455 \times 3600$
- $K_{10} = 0.0643 \times 3600$
- $V_1 = 3110$
- $V_2 = 3110$
- $\delta = 1000$

As unidades em que se exprimem estes parâmetros, e os seus valores, foram escolhidas por forma a que as variáveis (c_1, c_2) venham expressas em mg/kg. A dose d é expressa em mg/dia e o tempo em dia.

1.2. Modelo farmacodinâmico

O modelo farmacodinâmico (PD, do inglês *Pharmacodynamics*) relaciona a concentração de fármaco no compartimento de efeito, $c_e=c_2$, com o efeito, expresso como um fator adimensional (ou seja, sem unidades) u que tome valores entre 0 e 1. Vem dado pela equação de Hill³, que se escreve

-

² Neste momento não existem sistemas automáticos de terapia do cancro, pelo menos usados na clínica corrente, mas existem em outras áreas, por exemplo na anestesia ou no tratamento da diabetes.

³ A equação de Hill como um modelo PD do cancro foi assim designada por Wagner em 1968, reconhecendo o trabalho de Archibald Hill, que usou esta equação em 1910 para descrever a limitação das ligações das moléculas de oxigénio à hemoglobina. Hill (1886 -1977) graduou-se em Matemática no Trinity College da Universidade de Cambridge (o mesmo onde Newton estudou e foi professor), mas veio posteriormente a interessar-se pela fisiologia. É considerado

$$u(t) = \frac{c(t)}{c_{50} + c(t)} \ . \tag{3}$$

O valor do parâmetro c_{50} traduz a concentração que corresponde a metade do efeito do fármaco. Para valores da concentração nulos, o efeito é nulo. Para valores da concentração muito grandes (muito maiores do que c_{50}) o efeito aproxima-se do valor máximo 1. O parâmetro c_{50} depende do fármaco, mas também do paciente (por exemplo, da sua massa), mas também pode depender da história passada de administração do fármaco. Neste trabalho, toma-se o seguinte valor, para o atezolizumab com um paciente médio,

• $c_{50} = 7,1903$ (mg/kg) (dose por unidade de massa do paciente)

Repare-se que, ao contrário do modelo PK, que resulta de um balanço de massa (embora feito de maneira simplificada, pois admite que o organismo está dividido num certo número de compartimentos), a equação de Hill não tem nenhuma base física ou bioquímica, sendo apenas um artifício matemático, cuja justificação é estar de acordo, pelo menos até certo ponto, com dados experimentais

1.3. Dinâmica de crescimento do tumor

A dinâmica de crescimento do tumor é dada pela equação logística⁴

$$\dot{V} = aV\left(1 - \frac{V}{K_T}\right) - buV,\tag{4}$$

em que u é o efeito, que toma valores entre 0 e 1, e V é o volume do tumor. Os parâmetros têm os valores numéricos

- a = 0.09
- $K_T = 10$
- b = 1

As unidades em que são expressos estes parâmetros são tais que V é expresso em ${\rm mm^3}$.

um dos fundadores de campos tão diversos como a biofísica e a investigação operacional. Em 1922 recebeu o prémio Nobel da Fisiologia ou Medicina pelo seu trabalho relativo à produção de calor e trabalho mecânico nos músculos.

⁴ Há várias alternativas à equação logística. Uma das mais frequentemente utilizadas é o modelo de Gompertz, que conduz a resultados semelhantes. Não é clara qual a melhor escolha para modelar o crescimento de um tumor.

2. Traçado de gráficos e índices no MATLAB

O MATLAB dá várias funções para o traçado de gráficos. Neste trabalho iremos utilizar a função *plot*.

Suponha que tem dois vetores, t, que representa instantes de tempo e c1, que representa a concentração no compartimento 1. Para representar c1 em função de t, pode usar a instrução

```
plot(t,c1)
```

Esta instrução une os pontos (t(1),c1(1)), (t(2),c1(2)), (t(3),c1(3)), ... por uma linha reta fina. É conveniente alterar a largura da linha para tornar o gráfico mais visível, para o que pode usar as instruções

```
gg=plot(t,c1);
set(gg,'LineWidth',1.5)
```

A primeira instrução gera um apontador (dito um *handle*) para o gráfico (considerado um objeto. O valor deste apontador fica na variável *gg* (pode ser qualquer nome). Com base neste apontador é possível alterar várias propriedades do objeto por ele apontado (gráfico) e que estão pré-definidas. É o que faz a segunda instrução que atribui o valor 1.5 à propriedade *LineWidth* do objeto definido pelo apontador *gg*.

Quando pretendemos representar variáveis definidas em tempo discreto, podemos querer representar pontos individuais, para o que se pode usar a instrução

```
plot(t,c1,'o')
```

ou representá-los por pontos Unidos por uma linha, com

```
gg=plot(t,c1,'o-')
```

Também é possível alterar a cor dos gráficos.

Faça help plot para saber mais sobre a função plot.

Também podemos querer desenhar gráficos em diversas figuras. Se fizermos

figure(1)

plot(t,c1)

figure(2)

plot(t,c2)

O gráfico de *c1* fica na figura 1 e o gráfico de *c2* fica na figura 2. Também é possível desenhar vários gráficos em zonas de uma figura com a instrução *subplot*, ou sobrepor gráficos com *hold on* e *hold off* (fazer *help* para mais detalhes).

Atenção: há muitas vezes a tentação de usar as letras i ou j como índices de vetores. Isto não deve ser feito porque o MATLAB tem ambas estas variáveis pré-definidas como $\sqrt{-1}$. Para confirmar este facto, escreva no MATLAB i*i ou j*j e observe que em cada um dos casos a resposta é -1. Uma alternativa é usar como índices ii ou jj ou outra combinação de símbolos.

3. Simulação de equações diferenciais

Um dos métodos mais simples para integrar numericamente equações diferenciais é o método de Euler. A solução da equação diferencial

$$\dot{x} = f(x)$$

Pode ser aproximada iterando a equação de diferenças, em que a derivada foi aproximada pela razão incremental

$$\frac{x((k+1)h) - x(kh)}{h} = f(x(kh))$$

ou seja,

$$x((k+1)h) = x(kh) + hf(x(kh)), \tag{5}$$

em que h é um intervalo de tempo pequeno dito passo de integração e k é um número inteiro, chamado tempo discreto.

Se começarmos com a condição inicial dada x(0), calcula-se x(h) por

$$x(h) = x(0) + hf(x(0)).$$

A partir daqui, calcula-se x(2h) por

$$x(2h) = x(h) + hf(x(h)).$$

e assim sucessivamente. Para que o método convirja, é necessário que h seja suficientemente pequeno.

Uma dificuldade do MATLAB é não haver índice 0: todos os vetores começam com o índice 1. Há, no entanto, situações em que é conveniente ter um índice zero. Por exemplo, se t for o tempo discreto, queremos que ele assuma valores a partir de 0, que corresponde o instante inicial (t=0, t=1, t=2, ...). Se estes valores forem gerados

num ciclo (por exemplo, em que se calculam valores de um instante inicial a um instante final), a variável de ciclo não pode ser t, devendo t ser gerado a partir da variável de ciclo. Se k for a variável de ciclo pode simplesmente calcular-se t=k-t1 para todos os valores de k.

O pseudocódigo para integrar a equação é

```
X(1)=valor dado % Definição da condição inicial 
For k=1:kfinal t(k)=k-1; % t é o vetor de tempo discreto entre 0 e kfinal-1 x(k+1)=x(k)+h*f(x(k)); end
```

4. Perguntas a responder no relatório

- **P1.** Simule a equação matricial (2), que modela o modelo PK usando a aproximação em tempo discreto obtida com o método de Euler (explicado na secção 3). Utilize como intervalo de amostragem h=1 dia e como entrada uma sequência de valores da dose $d(k)=3\ mg$ separados por zeros (ou seja, por exemplo: d(0)=3, d(1)=0, d(2)=0, d(3)=0, d(4)=0, d(5)=0, d(6)=3, d(7)=0, d(8)=0, d(9)=0, d(10)=0, d(11)=0, d(12)=3, etc. Este tipo de funções pode ser gerado com a função upsample do MATLAB. Trace os gráficos da evolução no tempo da dose e das concentrações. Apresente o programa que escreveu.
- **P2.** Trace o gráfico do efeito em função da dose usando o modelo PD (equação (3)). Discuta se há vantagens em aplicar doses muito elevadas.
- **P3.** Discuta as propriedades qualitativas da equação logística (4), que modela o crescimento do tumor:
 - a) Quais os pontos de equilíbrio, ou seja, quais os valores de V tais que, se V for inicializado num desses valores, esta variável permanecerá constante no tempo (para u=0) ?
 - b) Para que gama de valores de V é que esta variável é crescente ou é decrescente (para u=0)?
 - c) Será que é possível atribuir valores a u (entre 0 e 1) que levem a que V assuma valores negativos?
- **P4.** Simule agora o sistema completo, incluindo os modelos PK, PD e de crescimento do tumor, e admitindo uma terapia correspondente a impulsos equiespaçados no tempo. Tome para valor inicial do volume do tumor 1 mm³. Apresente o programa que escreveu.

- a) Trace os gráficos das variáveis relevantes.
- b) Ajuste o espaçamento entre aplicações da terapia por forma a que o volume do tumor se reduza a no máximo 10% do valor inicial ao fim de 25 dias.
- **P5.** Discuta a vantagem de usar espaçamento variável entre as tomas de medicamento. Ilustre com uma simulação.

P6. As células cancerígenas têm a capacidade de se adaptarem aos fármacos. Se a dose de fármaco for muito baixa, o seu efeito é muito reduzido ou nulo e o único efeito é "treinar" células cancerígenas (num processo de seleção em que há mutações e apenas sobrevivem as mais adaptadas) para resistirem ao fármaco. Como pode modelar este efeito de desenvolvimento de resistência? Ilustre o seu modelo com simulações. Apresente o programa que escreveu.

Sugestões: Considere que há um limiar para a concentração de efeito acima do qual não há desenvolvimento de resistência, mas abaixo do qual há um desenvolvimento de resistência tanto maior quanto mais baixa for a concentração de efeito. Admita que este mecanismo é irrecuperável. Use o modelo PD para modelar o aumento de resistência.

5. Leitura complementar

O texto deste trabalho, em conjunto com os slides das aulas de Modelação e Simulação, é autossuficiente para a sua realização. Para os alunos que queiram saber mais sobre o tema é, no entanto, muito fácil encontrar artigos disponíveis na internet. Um texto compacto sobre a modelação e o projeto de terapias otimizadas de cancro baseadas na toma de fármacos espaçada no tempo é

J. P. Belfo e J. M. Lemos (2021). *Optimal Impulsive Control for Cancer Therapy,* Springer.

https://www.springer.com/gp/book/9783030504878

– Fim do trabalho –

