EMR 3/8

šk.rok: 2020/2021

Názov cvičenia:

Meranie charakteristík optoelektronického väzobného člena

Ciel': naučiť žiakov vyhľadať z katalógu potrebné parametre optróna, odmerať a zakresliť závislosť transformačného činiteľa od vstupného prúdu, jeho výstupné charakteristiky a skontrolovať s parametrami podľa katalógu

Úlohy:

- 1. Zistite katalógové údaje predloženého optoelektronického väzobného člena
- 2. Odmerajte na optróne:
 - prúdový transformačný činiteľ *CTR* v celom jeho rozsahu vstupného výkonu
 - výstupné charakteristiky
- 3. Znázornite graficky
 - \triangleright závislosť $CTR = f(I_F)$
 - \triangleright výstupné charakteristiky $I_C = f(U_{CE})$ pri $I_F = konšt$,
- 4. Porovnajte odmerané parametre s katalógovými údajmi

Teoretický úvod: charakteristika optoelektronických súčiastok so schematickými značkami, vysvetliť optrón a jeho využitie

Optrón sa skladá z LED diódy (vyžaruje vo vnútri púzdra infra-svetlo) a fototranzistora (nemá vyvedenú bázu – fotocitlivá vrstva, ktorá je vo vnútri púdra osvetlovaná LED diódou). Činnosť súčiastky je podobná ako pri bipolárnom tranzistore, s tým že báza nie je vyvedená (je otvorená), ale je osvetlovaná infradiódou v púdzre vo vnútri. Pri fototranzistore nie je kolektorový prúd ovplyvený prúdom z bázy, ale intenzitou osvetlenia od sily žiarenia infradiódy. Prostredníctvom osvetlenia sa dosiahne galvanické oddelenie vstupného obvodu od výstupného. Funkciou je: čím intenzívnejšie svetlo, pri konštatnom napájaní Uce, tým väčší Ic. Najlepšie zosilnenie sa dosiahne pri zapojení so SE. Čím väčší prúd tým viac bude osvetlovaná fotocitlivá vrstva. Využitím v praxi je hlavne galvanické oddelenie obvodov (LED dióda oddelená od fototranzistora). Čiže ak by sme mali klasický zosilňovač (bipolárny tranzistor) nebol by obvod oddelený. Intenzita osvietenia určuje zosilnenie, ale obvody nie sú fyzicky spojené.

Schéma zapojenia:

Meranie výstupných charakteristík

25

šk. rok: 2020/2021

Použité meracie prístroje a pomôcky:

js. zdroj typ –

V – voltmeter - AXIOMET AX585B

A – ampérmeter - AXIOMET AX585B

Odporová dekáda – VOLTCRAFT Resistance Decade Box

Prípojné vodiče

Meraný objekt – optrón: Označenie podľa katalógu: PC814

Katalógové údaje výrobcu: vložte katalógový list meraného optróna

Značka parametra podľa katalógu	Názov parametra	Optrón PC814		
I _F [mA]	max. prúd cez infradiódu	± 50 mA		
P [mW]	max. výkon na vstupe	70 mW		
U _{CE} [V]	max. napätie medzi kolektorom a emitorom	35 V		
I _C [mA]	max. kolektorový prúd	50 mA		
P _C [mW]	max. dovolený výkon	150 mW		

Tabuľky nameraných a vypočítaných hodnôt:

Meranie výkonového transformačného činiteľ a CTR

 $U_{CE} = 5 V = konšt.$ závislosť $CTR = f(I_F)$

	1.	2.	3.	4.	5.	6.	7.	8.	9.
$\mathbf{I}_{\mathbf{F}}$ (mA)	1	2	5	10	15	20	30	40	50
$\mathbf{R}_{\mathbf{D}}$ (Ω)	1000	1000	1000	500	500	250	250	100	100
U _{RD} (V)	1	2	5	5	7,5	5	7,5	4	5
$I_{\rm C}$ (mA)	1,237	3,46	11,95	27,855	42,95	52,35	61,35	62,5	65,1
$\mathbf{R}_{\mathbf{K}}$ (Ω)	1000	1000	300	200	200	200	200	100	100
$\mathbf{U}_{\mathbf{R}\mathbf{K}}$ (V)	1,237	3,46	3,586	5,571	8,59	10,47	12,27	6,25	6,51
CTR (%)	123,7	173	239,06	278,55	286,33	261,75	204,5	156,25	130,2

Postup pri meraní: Princíp: Na vstupe:

Pre meranie **optrónu** budeme potrebovať 2x jednosmerný napájací zdroj, 3x Multimeter (ako Voltmetre), 2x odporové dekády (pre nastavenie hodnoty odporu a prúdu pretekajúceho obvodom – nepriamou metódou) a merací prípravok (optrón). Vypočítame si hodnotu napätia, ktorú nastavíme na prvom vstupnom zdroji pri prúde I_F pretekajúceho diódou (**cez Ohmov zákon**). Hodnotu známeho odporu R_D na vstupe nastavíme podľa tabuľky, rovnako tak aj odpor R_K na výstupe (**pomocou našich odporových dekád**). Je nutné skontrolovať základné polohy ovládacích prvkov, aby sme napätie zdroja mali na nule a potom nastavíme vstupné napätie U_{RD} podľa výpočtu. Činiteľ akosti plnenia zisťujeme pri konšt. výstupnom napätí U_{CE} =5V (druhý Voltmeter) a z (tretieho Voltmetra) odčítame hodnotu napätia U_{RK} na druhom známom odpore. Následne dopočítame prúd I_C (pomocou **Ohmovho zákona** - pomer napätia na druhom známom odpore a samotnej jeho hodnoty). Dopočítame CTR v percentách a zostrojíme graf $CTR = f(I_F)$.

- Meranie výstupných charakteristík $I_C = F(U_{CE})$ pri $I_F = konšt$

$I_F = 1 \text{ mA}$		$I_F = 5 \text{ mA}$		$I_{\rm F}$ = 10 mA		$I_{\rm F}$ = 20 mA		$I_{\rm F}$ = 30 mA		$I_F = 40 \text{ mA}$	
$\mathbf{U}_{\mathbf{CE}}(\mathbf{V})$	$I_{C}(mA)$	$\mathbf{U}_{\text{CE}}(\mathbf{V})$	$I_{C}(mA)$	$\mathbf{U}_{\text{CE}}(\mathbf{V})$	$I_{\rm C}({\rm mA})$	$\mathbf{U}_{\text{CE}}(\mathbf{V})$	$I_{\rm C}({\rm mA})$	$\mathbf{U}_{\text{CE}}(\mathbf{V})$	$I_{C}(mA)$	$\mathbf{U}_{\text{CE}}(\mathbf{V})$	$I_{C}(mA)$
1	1,157	1	10,87	1	20,15	1	25,57	1	28,93	1	31,92
2	1,188	2	11,15	2	25,94	2	37,63	2	42,3	2	45,22
3	1,211	3	11,38	3	27,16	3	44,86	3	50,01	3	56,2
4	1,231	4	11,57	4	27,88	4	49,44				
5	1,25	5	11,75	5	28,53	5					
6	1,266	6	11,94	6	28,84	6					
7	1,282	7	12,11	7	29,15						
8	1,298	8	12,3	8	29,75						
9	1,312	9	12,52	9	30,15						

Postup pri meraní:

Pre meranie budeme potrebovať 2x js. napájací zdroj, 3x Multimeter $(2x \ Va \ 1x \ mA)$ a 1x odporová dekáda. Meranie robíme pri I_F konšt., ktorý nastavíme nepriamou metódou, ako pri predošlom meraní. Hodnotu známeho odporu R_D na vstupe nastavíme podľa tabuľky a cez Ohmov zákon vypočítame vstupné napätie U_{RD} , ktoré nastavíme na prvom zdroji. Ku druhému zdroju zapojíme paralelne Voltmeter pre meranie napätia U_{CE} . Na štvrtý vývod oprónu pripojíme m-ampérmeter, ktorý nám bude merať I_C pri I_F konšt. a meniacom sa U_{CE} . Skontrolujeme, aby sme mali napätie zdrojov stiahnuté na nulu, zapneme obidva zdroje. Nastavíme si rozsahy na Multimetroch. Pri meraní s odporom $R_D = 500 \ \Omega$ preteká prúd $I_F = 10 \ mA$, čiže na vstupe optrónu nastavíme hodnotu $U_{RD} = 5V$. Napätie na výstupe U_{CE} budeme postupne zvyšovať od 1 do $10 \ V$ a pri každej hodnote odčítame hodnotu prúdu I_C . Nesmieme však prekročiť I_{Cmax} tečúci cez fototranzistor. Aj pri ďalších meraniach pri inom I_F konšt. $(30/40 \ mA)$ nemôžeme U_{CE} zvyšovať do hodnoty $10 \ V$, pretože už pri 2-3V dosiahneme $I_{Cmax} = 50 \ mA$. Následne zostrojíme graf výstupných charakteristík $I_C = f(U_{CE})$ pri $I_F = k$ onšt.

Použité vzťahy pre výpočet: dosaďte konkrétne hodnoty pre jedno meranie

$$I_F = \frac{U_{RD}}{R_D} = \frac{1}{1000} = 1 \ mA$$

$$I_C = \frac{U_{RK}}{R_K} = \frac{1,237}{1000} = 1,237 \, mA$$

$$CTR = \frac{I_c}{I_F} \cdot 100\% = \frac{1,237}{1}.100 = 123,7 \%$$

Vyhodnotenie: nakresliť charakteristiky podľa zadania, skontrolovať katalógové údaje s odmeraný mi

Činiteľ akosti plnenia **nevyšiel** presne ako v katalógu, pretože naše odpory sú vyrobené s nominálnou hodnotou, ktorú predpokladá výrobca, ale s toleranciou, čiže aj pretekajúci prúd nebude presne rovnaký, ako vypočítaný. Výstupné charakteristiky vyšli veľmi podobne, ako v katalógu. Výstupný prúd sa zmenou napätia U_{CE} pri I_F konšt. moc nemenil. Hlavný vplyv na I_C má prúd I_F na vstupe optrónu, čiže **hlavná** zmena je v závislosti od toho, **ako veľmi osvetlíme** nevyvedenú bázu. Nesmieme však prekročiť P_{Cmax} . Pri tomto meraní je veľmi dôležité zapojiť správne vývody, inak môžeme optrón zničiť. Treba použiť 2 samostatné zdroje, pretože ak by sme mali jeden zdroj (1 krabica a 2 zdroje), tak majú spoločnú zem a porušili by sme galvanické oddelenie obvodov. Nemerali sme priamo prúdy, pretože sú veľmi malé a ťažko sa merajú, preto sme merali nepriamou metódou cez odpor a prúd.

