· ·	W/	1 ==		10411
Con 18 1			9	
11/1/	£ 3.821	of the state	1. 4	
Q:=1(c):=6(x)=		~~	9	
	1+e	-100 C-1	v 7 1/1 - p.	
\Rightarrow $\epsilon(x)$ \geq δ		,		
$\frac{\partial x}{\partial x}$	Itex/	South 1 of	2 = 3.1	
(-1)	9 ($(+e^{\alpha})$	·	
$\frac{(1+e^{-x})}{(1+e^{-x})}$	2 d(x)	9		
= -1). (0.	$-e^{2c}$		_
$(1+\bar{e}^{x})$	2	· · ·	J .	_
->	<u> </u>		6	=
e				
(1+ē	x j 2	T. C. S.		
	22	4 3	-	
=	e	(.		
ex	(ext1)2		1	
De 2	,	1 2	2	
= t.e		5		
£x. (e	x+(-)2	x lx might	c	
1 2	1			
= /ex	1 0 1 0	100		
(ext)	$e^{\alpha}t$	Lis averi	73 77 3	
		ingui	<u> </u>	
CS Scanned with (1+e)	(1-	-1.+		
C3 CamScanner		e	+1	

Nearest Neighbors:
Nearest Words to the word great : great juan ringside toast kenneth
Nearest Words to the word brilliant stephen brilliant liberating undermines ugly-duckling
Nearest Words to the word female : female illuminates dancing fear-inducing skateboarding
Nearest Words to the word king : instinct king xtc composition lector
Nearest Words to the word snow : snow presents savvy compensate

squandering

Vectors plot:

Analysis:

- By comparing results from kNN and word vectors plot, we can see the drastic difference in word similarities resulted from both.
- By looking at 5 nearest words for the given word, we can see that kNN is only able to give same
 word as the closest similar word to given word itself. Other 4 words are not even close to being
 similar. The reason is the way kNN calculates similarity. In this case kNN only depends on cosine
 distance to calculate similarity, which doesn't take context of the word into account. It only tries
 to calculate distance based on simple dot product.
- On other hand, word vectors are designed to capture the context of the word given its neighboring words. As we can see in the plot, similar words are grouped together. For example: (Woman, female), (amazing, wonderful, great), (tea, coffee) etc.
- Only advantage of kNN is its speed. Because, word vectors heavily relay on many calculations to capture proper context of the word, word vectors are slow to calculate.