矩阵理论作业10

刘彦铭 ID: 122033910081

Last Edited: 2022 年 12 月 2 日

1. 习题 1

$$B = A - 2E = \begin{bmatrix} 1 & -1 & 0 & 0 \\ 1 & -1 & 0 & 0 \\ 3 & 0 & 3 & -3 \\ 4 & -1 & 3 & -3 \end{bmatrix}, B^2 = O.$$
 求得 $Bx = 0$ 的解空间上的一组基 $\alpha_1 = [-1, -1, 0, -1]^{\mathsf{T}}, \alpha_2 = [-1, -1, 0, -1]^{\mathsf{T}}$

[0,0,3,3]^T. 容易构造
$$\beta_1 = [0,1,0,0]^T$$
, $\beta_2 = [0,0,1,0]^T$ 使 $B\beta_1 = \alpha_1$, $B\beta_2 = \alpha_2$. 容易验证 β_1 , β_2 , α_1 , α_2 线性无关,故构造得到 $S = [\alpha_1,\beta_1,\alpha_2,\beta_2] = \begin{bmatrix} -1 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 0 & 0 & 3 & 1 \\ -1 & 0 & 3 & 0 \end{bmatrix}$. 求得 $S^{-1} = \begin{bmatrix} -1 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ -1/3 & 0 & 0 & 1/3 \\ 1 & 0 & 1 & -1 \end{bmatrix}$. 从

而
$$S^{-1}AS = J = \begin{bmatrix} 2 & 1 \\ & 2 \\ & & 2 \end{bmatrix} = 2E + B_1$$
. 其中 B_1 是幂零的 Jordan 阵, $B_1^2 = O$.

(1)
$$\sin(2+x) = \sin(2) + \cos(2) \cdot x - \frac{\sin(2)}{2}x^2 + \cdots$$
, $\sin(J) = \sin(2E + B_1) = \sin(2)E + \cos(2)B_1$.

$$\sin(A) = S \cdot \sin(J) \cdot S^{-1} = S \cdot \begin{bmatrix} \sin(2) & \cos(2) & & & \\ & \sin(2) & & & \\ & & \sin(2) & \cos(2) & \\ & & & \sin(2) & \cos(2) \end{bmatrix} \cdot S^{-1}$$

曲于 sin $A = (\sin 2)SES^{-1} + (\cos 2)SB_1S^{-1} = (\sin 2)E + (\cos 2)(A - 2E)$,

具体计算可得
$$\sin(A) = \begin{bmatrix} \sin 2 + \cos 2 & -\cos 2 & 0 & 0 \\ \cos 2 & -\cos 2 + \sin 2 & 0 & 0 \\ 3\cos 2 & 0 & 3\cos 2 + \sin 2 & -3\cos 2 \\ 4\cos 2 & -\cos 2 & 3\cos 2 & \sin 2 - 3\cos 2 \end{bmatrix}$$
.

$$(2) e^{J} = e^{2}(E + B_{1}) = e^{2} \begin{bmatrix} 1 & 1 \\ & 1 \\ & & 1 & 1 \end{bmatrix}, e^{A} = S \cdot e^{J} \cdot S^{-1}.$$
由于 $e^{A} = e^{2} \cdot S(E + B_{1})S^{-1} = e^{2}(E + A - 2E) = e^{2}(A - E),$
具体计算可得 $e^{A} = e^{2} \cdot \begin{bmatrix} 2 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 3 & 0 & 4 & -3 \\ 4 & -1 & 3 & -2 \end{bmatrix}.$