

Engineering Mathematics III Discrete Mathematics

Lecture 3

Equivalence Relations

This course is taught to Computer Science Engineering students in SMIT, India during Jun-Dec, 2019.

Recall...

Cartesian Product

Let A and B be two sets. The Cartesian Product of A and B, denoted $A \times B$, is the set of all ordered pairs of the form (a, b) where $a \in A$ and $b \in B$.

For example,

$${a,b} \times {1,2,3} = {(a,1),(a,2),(a,3),(b,1),(a,b)}$$

Definition

A binary relation (also known as relation) from A to B is a subset of $A \times B$.

- So, relation is nothing but an intuitive formulation, so that one can say who is related with whom from the set A to the set B.
- So, if a in A is related to b in B, we say (a, b) is in the relation \mathcal{R} , and denoted it as $(a, b) \in R$.
- And similarly, when $(a, b) \in \mathcal{R}$, we say that a and b are related.

Representations of Relation

Example

Let us say, we have actor names in the set A and the movie names in the set B. Our relation is defined such that we say an actor from set A is related to a movie in set B, if he acted in that movie.

So if,

 $A = \{\text{Tony Stark}, \text{Steve Rogers}, \text{Bruce Banner}, \text{Peter Parker}\}$

and

 $B = \{ Spider Man, Iron Man, Captain America, Avengers Infinity War, Avengers Endgame \}$

So, the relation

```
\mathcal{R} = \left\{ \begin{array}{l} (\text{Tony Stark, Iron Man}), (\text{Tony Stark, Avengers Infinity War}), (\text{Tony Stark, Avengers Endgame}), \\ (\text{Steve Rogers, Captain America}), (\text{Steve Rogers, Avengers Infinity War}), \\ (\text{Steve Rogers, Avengers Endgame}), \\ (\text{Bruce Banner, Avengers Infinity War}), (\text{Bruce Banner, Avengers Endgame}), \\ (\text{Peter Parker, Spider Man}), (\text{Peter Parker, Avengers Infinity War}), \\ (\text{Peter Parker, Avengers Endgame}) \end{array} \right.
```

	Spider Men	Ironman	Captain	Avengers	Avengers
	Spider Man		America	Infinity war	Endgame
Tony Stark		✓		✓	✓
Steve Rogers			✓	✓	✓
Bruce Banner				✓	✓
Peter Parker	✓			✓	✓

Table 1: Tabular form for a relation

	Spiderman	Ironman	Captain America	Avengers Infinity war	Avengers Endgame
Tony Stark	/ 0	1	0	1	1
Steve Rogers	0	0	1	1	1
Bruce Banner	0	0	0	1	1
Peter Parker	\ 1	0	0	1	1

Figure 1: Matrix Form of Relation

Figure 2: Graphical Representation of Relations

Reflexive Relation

Symmetric Relation

Anti-symmetric Relation

Transitive Relation

Equivalence Relation

Let \mathbb{Z} be the set of all integers. Define \mathbb{R} on $\mathbb{Z} \times \mathbb{Z}$ such that $a\mathbb{R}b \iff (a-b)$ is divisible by 5, $a,b \in \mathbb{Z}$. Show that \mathbb{R} is an equivalence relation on \mathbb{Z} . Find the equivalence class of 3.

Let \mathbb{Z} be the set of all integers. Define \mathcal{R} on $\mathbb{Z} \times \mathbb{Z}$ such that $a\mathcal{R}b \iff (a+b)$ is even, $a,b \in \mathbb{Z}$. Show that \mathcal{R} is an equivalence relation on \mathbb{Z} .

Let \mathbb{N} be the set of all positive integers. Define \mathcal{R} on $\mathbb{N} \times \mathbb{N}$ such that $a\mathcal{R}b \iff |a+b|+2$ is a prime, $a,b\in\mathbb{N}$. Examine whether \mathcal{R} is an equivalence relation on \mathcal{N} .

Using Warshall's algorithm, find the transitive closure of the relation

$$\mathcal{R} = \{(1, 2), (2, 1), (2, 3), (3, 4)\}$$

on the set $A = \{1, 2, 3, 4\}$.

Questions?

Thank you

