

# FCC TEST REPORT

### FCC ID: 2AEBC-XPRINTER

On Behalf of

# ZHUHAI HONOR TECHNOLOGY CO., LTD

Portable Thermalprinter
Model No.: See Annex I

Prepared for : ZHUHAI HONOR TECHNOLOGY CO., LTD

Address 2nd Floor, Building 3, No. 639, Huayu Road, Xiangzhou District,

Zhuhai City, China

Prepared By : Shenzhen Alpha Product Testing Co., Ltd.

Address Building i, No.2, Lixin Road, Fuyong Street, Bao'an District, 518103,

Shenzhen, Guangdong, China

Report Number : A1902100-C03-R06 Date of Receipt : March 20, 2019

Date of Test : March 20-April 8, 2019

Date of Report : April 9, 2019

Version Number : V0

# TABLE OF CONTENTS

| <u>De</u> | escript | 10n                                                    | <u>Page</u> |
|-----------|---------|--------------------------------------------------------|-------------|
| 1.        | Sumr    | nary of Standards And Results                          | 6           |
|           | 1.1.    | Description of Standards and Results                   | 6           |
| 2.        | Gene    | ral Information                                        |             |
|           | 2.1.    | Description of Device (EUT)                            |             |
|           | 2.2.    | Accessories of Device (EUT)                            |             |
|           | 2.3.    | Tested Supporting System Details                       | 8           |
|           | 2.4.    | Block Diagram of connection between EUT and simulators |             |
|           | 2.5.    | Test Mode Description                                  |             |
|           | 2.6.    | Test Conditions                                        |             |
|           | 2.7.    | Test Facility                                          |             |
|           | 2.8.    | Measurement Uncertainty                                |             |
|           | 2.9.    | Test Equipment List                                    |             |
| <b>3.</b> | Spuri   | ious Emission                                          |             |
|           | 3.1.    | Test Limits                                            |             |
|           | 3.2.    | Test Procedure                                         |             |
|           | 3.3.    | Test Setup                                             |             |
|           | 3.4.    | Test Results                                           | _           |
| 4.        | Powe    | r Line Conducted Emission                              |             |
|           | 4.1.    | Test Limits                                            |             |
|           | 4.2.    | Test Procedure                                         |             |
|           | 4.3.    | Test Setup                                             |             |
|           | 4.4.    | Test Results                                           |             |
| <b>5.</b> |         | ucted Maximum Output Power                             |             |
|           | 5.1.    | Test limits                                            | _           |
|           | 5.2.    | Test Procedure                                         | _           |
|           | 5.3.    | Test Setup                                             |             |
|           | 5.4.    | Test Results                                           | -           |
| 6.        |         | Power Spectral Density                                 |             |
|           | 6.1.    | Test limits                                            |             |
|           | 6.2.    | Test Procedure                                         |             |
|           | 6.3.    | Test Setup                                             |             |
|           | 6.4.    | Test Results                                           |             |
| 7.        |         | width                                                  | _           |
|           | 7.1.    | Test limits                                            |             |
|           | 7.2.    | Test Procedure                                         |             |
|           | 7.3.    | Test Setup                                             |             |
| _         | 7.4.    | Test Results                                           |             |
| 8.        |         | Edge Check                                             |             |
|           | 8.1.    | Test limits                                            | _           |
|           | 8.2.    | Test Procedure                                         |             |
|           | 8.3.    | Test Setup                                             |             |
| •         | 8.4.    | Test Results                                           |             |
| 9.        |         | nna Requirement                                        |             |
|           | 9.1.    | Standard Requirement                                   |             |
|           | 9.2.    | Antenna Connected Construction                         | 28          |

|            | 9.3. Results                            | - 28 |
|------------|-----------------------------------------|------|
| <b>10.</b> | Test setup photo                        | 29   |
|            | 10.1. Photos of Radiated emission       | 29   |
|            | 10.2. Photos of Conducted Emission test | 30   |
| 11.        | EUT photo                               | 31   |
|            | Annex I                                 |      |

Lucas Pong

### TEST REPORT DECLARATION

Applicant : ZHUHAI HONOR TECHNOLOGY CO., LTD

Address : 2nd Floor, Building 3, No. 639, Huayu Road, Xiangzhou District, Zhuhai City, China

Manufacturer : ZHUHAI HONOR TECHNOLOGY CO., LTD

Address : 2nd Floor, Building 3, No. 639, Huayu Road, Xiangzhou District, Zhuhai City, China

EUT Description : Portable Thermalprinter

(A) Model No. : See Annex I

(B) Trademark : N/A

#### Measurement Standard Used:

### FCC Rules and Regulations Part 15 Subpart C Section 15.247 ANSI C63.10-2013

The device described above is tested by Shenzhen Alpha Product Testing Co., Ltd. to determine the maximum emission levels emanating from the device. The maximum emission levels are compared to the FCC Part 15 Subpart C limits both conducted and radiated emissions. The test results are contained in this test report and Shenzhen Alpha Product Testing Co., Ltd. is assumed of full responsibility for the accuracy and completeness of these tests.

After the test, our opinion is that EUT compliance with the requirement of the above standards.

This report applies to above tested sample only. This report shall not be reproduced in parts without written approval of Shenzhen Alpha Product Testing Co., Ltd.

Tested by (name + signature)...... Lucas Pang
Project Engineer

Approved by (name + signature).....: Simple Guan Project Manager

Date of issue..... April 9, 2019

# **Revision History**

| Revision | Issue Date    | Revisions              | Revised By  |
|----------|---------------|------------------------|-------------|
| V0       | April 9, 2019 | Initial released Issue | Simple Guan |

# 1. SUMMARY OF STANDARDS AND RESULTS

# 1.1.Description of Standards and Results

The EUT have been tested according to the applicable standards as referenced below:

| Test Item                                  | Test Requirement                              | Standards<br>Paragraph | Result |  |  |  |  |
|--------------------------------------------|-----------------------------------------------|------------------------|--------|--|--|--|--|
| Conducted Emission                         | FCC PART 15                                   | 15.207                 | P      |  |  |  |  |
| 6dB Bandwidth                              | FCC PART 15                                   | 15.247 (a)(2)          | Р      |  |  |  |  |
| Output Power                               | FCC PART 15                                   | 15.247 (b)(3)          | Р      |  |  |  |  |
| Radiated Spurious Emission                 | FCC PART 15                                   | 15.247 (c)             | Р      |  |  |  |  |
| Conducted Spurious & Band<br>Edge Emission | FCC PART 15                                   | 15.247 (d)             | Р      |  |  |  |  |
| Power Spectral Density                     | FCC PART 15                                   | 15.247 (e)             | P      |  |  |  |  |
| Radiated Band Edge<br>Emission             | FCC PART 15                                   | 15.205                 | Р      |  |  |  |  |
| Antenna Requirement                        | FCC PART 15                                   | FCC PART 15 15.203     |        |  |  |  |  |
| Note: 1. P is an abbreviation for Pass.    |                                               |                        |        |  |  |  |  |
| 2. F is an abbreviation for Fail.          |                                               |                        |        |  |  |  |  |
|                                            | 3. N/A is an abbreviation for Not Applicable. |                        |        |  |  |  |  |

Report No.: A1902100-C03-R06

# 2. GENERAL INFORMATION

### 2.1.Description of Device (EUT)

Description : Portable Thermalprinter

Model Number : See Annex I

Diff

There is no difference except for the appearance, shape and model name. So all the

test were performed on the model XP-P200.

Trademark : N/A

Power supply : DC 9V from adapter with AC 120V/60Hz, DC 7.4V from battery(2000mAh)

Bluetooth Version : Bluetooth V4.2 BLE

Operation : 2402-2480MHz

Channel No. : 40 Channels

Modulation type : GFSK

Antenna Type : PCB Antenna, 2dBi(Max.)

Software version : V1.2 Hardware version : 6.5.6

# 2.2.Accessories of Device (EUT)

Accessories 1 : AC/DC ADAPTER

Manufacturer : Zhongshan City Youchuang Electronics Technology Co., Ltd

Model : YC18-09020005

Ratings : Input:100-240V ~0.5A 50/60Hz

Output: 9V=2A

# 2.3.Tested Supporting System Details

| No. | Description | Manufacturer | Model           | Serial Number              | Certification or DOC |
|-----|-------------|--------------|-----------------|----------------------------|----------------------|
| 1   | Notebook PC | ACER         | ASPIRE<br>M1830 | PTSF90C00305005C<br>AC3000 | DOC                  |

# 2.4.Block Diagram of connection between EUT and simulators

EUT

# 2.5.Test Mode Description

| Tested mode, channel, and data rate information |              |      |  |  |  |  |  |
|-------------------------------------------------|--------------|------|--|--|--|--|--|
| Mode                                            | Mode Channel |      |  |  |  |  |  |
|                                                 | Low :CH1     | 2402 |  |  |  |  |  |
| GFSK                                            | Middle: CH20 | 2440 |  |  |  |  |  |
|                                                 | High: CH40   | 2480 |  |  |  |  |  |

### 2.6.Test Conditions

| Items              | Required  | Actual |  |
|--------------------|-----------|--------|--|
| Temperature range: | 15-35℃    | 27℃    |  |
| Humidity range:    | 25-75%    | 56%    |  |
| Pressure range:    | 86-106kPa | 980kPa |  |

# 2.7.Test Facility

Shenzhen Alpha Product Testing Co., Ltd Building i, No.2, Lixin Road, Fuyong Street, Bao'an District, 518103, Shenzhen, Guangdong, China

June 21, 2018 File on Federal Communication Commission

Registration Number: 293961

July 25, 2017 Certificated by IC Registration Number: 12135A

# 2.8. Measurement Uncertainty

(95% confidence levels, k=2)

| Item                                                  | Uncertainty          |
|-------------------------------------------------------|----------------------|
| Uncertainty for Power point Conducted Emissions Test  | 2.42dB               |
| Uncertainty for Radiation Emission test in 3m chamber | 2.13 dB(Polarize: V) |
| (below 30MHz)                                         | 2.57dB(Polarize: H)  |
| Uncertainty for Radiation Emission test in 3m chamber | 3.54dB(Polarize: V)  |
| (30MHz to 1GHz)                                       | 4.1dB(Polarize: H)   |
| Uncertainty for Radiation Emission test in 3m chamber | 2.08dB(Polarize: H)  |
| (1GHz to 25GHz)                                       | 2.56dB(Polarize: V)  |
| Uncertainty for radio frequency                       | 1×10-9               |
| Uncertainty for conducted RF Power                    | 0.65dB               |
| Uncertainty for temperature                           | 0.2°C                |
| Uncertainty for humidity                              | 1%                   |
| Uncertainty for DC and low frequency voltages         | 0.06%                |

# 2.9.Test Equipment List

| Equipment              | Manufacture       | Model No.                   | Serial No.        | Last cal.  | Cal Interval |
|------------------------|-------------------|-----------------------------|-------------------|------------|--------------|
| 3m<br>Semi-Anechoic    | ETS-LINDGRE<br>N  | N/A                         | SEL0017           | 2018.09.21 | 1Year        |
| Spectrum analyzer      | Agilent           | E4407B                      | MY46185649        | 2018.09.21 | 1Year        |
| Receiver               | R&S               | ESCI                        | 1166.5950K03-1011 | 2018.09.21 | 1 Year       |
| Receiver               | R&S               | ESCI                        | 101202            | 2018.09.21 | 1 Year       |
| Bilog Antenna          | Schwarzbeck       | VULB 9168                   | VULB9168-438      | 2018.04.13 | 2Year        |
| Horn Antenna           | EMCO              | 3115                        | 640201028-06      | 2018.04.13 | 2Year        |
| Active Loop<br>Antenna | Beijing Daze      | ZN30900A                    | SEL0097           | 2018.04.13 | 2Year        |
| Cable                  | Resenberger       | N/A                         | No.1              | 2018.09.21 | 1Year        |
| Cable                  | SCHWARZBEC<br>K   | N/A                         | No.2              | 2018.09.21 | 1 Year       |
| Cable                  | SCHWARZBEC<br>K   | N/A                         | No.3              | 2018.09.21 | 1Year        |
| Pre-amplifier          | Schwarzbeck       | BBV9743                     | 9743-019          | 2018.09.21 | 1Year        |
| Pre-amplifier          | R&S               | AFS33-18002650-<br>30-8P-44 | SEL0080           | 2018.09.21 | 1 Year       |
| Temperature controller | Terchy            | MHQ                         | 120               | 2018.09.21 | 1 Year       |
| L.I.S.N.#1             | Schwarzbeck       | NSLK8126                    | 8126466           | 2018.09.21 | 1 Year       |
| L.I.S.N.#2             | ROHDE&SCHW<br>ARZ | ENV216                      | 101043            | 2018.09.21 | 1 Year       |
| 20db Attenuator        | ICPROBING         | IATS1                       | 82347             | 2018.09.21 | 1 Year       |
| Horn Antenna           | SCHWARZBEC<br>K   | ВВНА 9170                   | BBHA 9170294      | 2018.04.13 | 2 Year       |
| Power Meter            | Anritsu           | ML2487A                     | 6K00001491        | 2018.09.21 | 1 Year       |

### 3. SPURIOUS EMISSION

#### 3.1.Test Limits

| Frequencies<br>(MHz) | Field Strength<br>(micorvolts/meter) | Measurement Distance<br>(meters) |
|----------------------|--------------------------------------|----------------------------------|
| 0.009~0.490          | 2400/F(KHz)                          | 300                              |
| 0.490~1.705          | 24000/F(KHz)                         | 30                               |
| 1.705~30.0           | 30                                   | 30                               |
| 30~88                | 100                                  | 3                                |
| 88~216               | 150                                  | 3                                |
| 216~960              | 200                                  | 3                                |
| Above 960            | 500                                  | 3                                |

Harmonic emissions limits comply with below 54 dBuV/m at 3m. Other emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or comply with the radiated emissions limits specified in section 15.209(a) limit in the table below has to be followed.

#### NOTE:

- a) The tighter limit applies at the band edges.
- b) Emission Level(dB uV/m)=20log Emission Level(uv/m)

#### 3.2.Test Procedure

The measuring distance of 3m shall be used for measurements at frequency up to 1GH and above 1GHz, The EUT was placed on a rotating 0.8 m high above ground for below 1GHz and 1.5m high for above1GHz testing, The table was rotated 360 degrees to determine the position of the highest radiation

The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set of make measurement.

The initial step in collecting conducted emission data is a spectrum analyzer Peak detector mode pre-scanning the measurement frequency range. Significant Peaks are then marked. and then Qusia Peak Detector mode premeasured

If Peak value comply with QP limit Below 1GHz. The EUT deemed to comply with QP limit. But the Peak value and average value both need to comply with applicable limit above 1GHz. For the actual test configuration, please see the test setup photo.

# 3.3.Test Setup



Below 30MHz Test Setup



Above 30MHz Test Setup



Above 1GHz Test Setup

### 3.4.Test Results

**Test Condition** 

Continual Transmitting in maximum power.

| 9KHz~150KHz  | RBW200Hz  | VBW1KHz    |
|--------------|-----------|------------|
| 150KHz~30MHz | RBW9KHz   | VBW 30KHz  |
| 30MHZ~1GHz   | RBW120KHz | VBW 300KHz |
| Above1GHz    | RBW1MHz   | VBW 3MHz   |

We have scanned the 10th harmonic from 9 kHz to the EUT.

Detailed information please see the following page.

From 9KHz to 30MHz: Conclusion: PASS

Note: 1.The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

2.Only show the test data of the worst Channel in this report.





| No. | Mk. | Freq.    | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Margin |          | Antenna<br>Height | Table<br>Degree |         |
|-----|-----|----------|------------------|-------------------|------------------|--------|--------|----------|-------------------|-----------------|---------|
|     |     | MHz      | dBu∀             | dB                | dBu∀/m           | dBu∀/m | dB     | Detector | cm                | degree          | Comment |
| 1   |     | 39.4371  | 10.34            | 14.22             | 24.56            | 40.00  | -15.44 | peak     |                   |                 |         |
| 2   | *   | 82.0704  | 26.53            | 9.52              | 36.05            | 40.00  | -3.95  | peak     |                   |                 |         |
| 3   |     | 105.2716 | 15.06            | 11.09             | 26.15            | 43.50  | -17.35 | peak     |                   |                 |         |
| 4   |     | 185.1379 | 14.47            | 11.52             | 25.99            | 43.50  | -17.51 | peak     |                   |                 |         |
| 5   |     | 276.1235 | 26.24            | 12.89             | 39.13            | 46.00  | -6.87  | peak     |                   |                 |         |
| 6   |     | 574.6258 | 9.62             | 19.04             | 28.66            | 46.00  | -17.34 | peak     |                   |                 |         |



**Notes:** Above is below 1GHz test data. This report only shall the worst case mode for TX 2402MHz.

From 1G-25GHz

| Test Mode: TX Low |                           |                |                             |                   |                       |                 |                |             |        |
|-------------------|---------------------------|----------------|-----------------------------|-------------------|-----------------------|-----------------|----------------|-------------|--------|
| Freq (MHz)        | Read<br>Level<br>(dBuV/m) | Polar<br>(H/V) | Antenna<br>Factor<br>(dB/m) | Cable<br>loss(dB) | Amp<br>Factor<br>(dB) | Result (dBuV/m) | Limit (dBuV/m) | Margin (dB) | Remark |
| 4804              | 42.57                     | V              | 33.98                       | 10.22             | 34.25                 | 52.52           | 74             | 21.48       | PK     |
| 4804              | 32.80                     | V              | 33.98                       | 10.22             | 34.25                 | 42.75           | 54             | 11.25       | AV     |
| 7206              | /                         | /              | /                           | /                 | /                     | /               | /              | /           | /      |
| 9608              | /                         | /              | /                           | /                 | /                     | /               | /              | /           | /      |
| 4804              | 42.01                     | Н              | 33.98                       | 10.22             | 34.25                 | 51.96           | 74             | 22.04       | PK     |
| 4804              | 31.77                     | Н              | 33.98                       | 10.22             | 34.25                 | 41.72           | 54             | 12.28       | AV     |
| 7206              | /                         | /              | /                           | /                 | /                     | /               | /              | /           | /      |
| 9608              | /                         | /              | /                           | /                 | /                     | /               | /              | /           | /      |
| Test Mo           | Test Mode: TX Mid         |                |                             |                   |                       |                 |                |             |        |
| 4880              | 42.53                     | V              | 33.98                       | 10.22             | 34.25                 | 52.48           | 74             | 21.52       | PK     |
| 4880              | 32.89                     | V              | 33.98                       | 10.22             | 34.25                 | 42.84           | 54             | 11.16       | AV     |
| 7320              | /                         | /              | /                           | /                 | /                     | /               | /              | /           | /      |
| 9760              | /                         | /              | /                           | /                 | /                     | /               | /              | /           | /      |
| 4880              | 42.17                     | Н              | 33.98                       | 10.22             | 34.25                 | 52.12           | 74             | 21.88       | PK     |
| 4880              | 31.75                     | Н              | 33.98                       | 10.22             | 34.25                 | 41.70           | 54             | 12.30       | AV     |
| 7320              | /                         | /              | /                           | /                 | /                     | /               | /              | /           | /      |
| 9760              | /                         | /              | /                           | /                 | /                     | /               | /              | /           | /      |
| Test Mo           | Test Mode: TX High        |                |                             |                   |                       |                 |                |             |        |
| 4960              | 42.05                     | V              | 33.98                       | 10.22             | 34.25                 | 52.00           | 74             | 22.00       | PK     |
| 4960              | 33.08                     | V              | 33.98                       | 10.22             | 34.25                 | 43.03           | 54             | 10.97       | AV     |
| 7440              | /                         | /              | /                           | /                 | /                     | /               | /              | /           | /      |
| 9920              | /                         | /              | /                           | /                 | /                     | /               | /              | /           | /      |
| 4960              | 42.84                     | Н              | 33.98                       | 10.22             | 34.25                 | 52.79           | 74             | 21.21       | PK     |
| 4960              | 31.71                     | Н              | 33.98                       | 10.22             | 34.25                 | 41.66           | 54             | 12.34       | AV     |
| 7440              | /                         | /              | /                           | /                 | /                     | /               | /              | /           | /      |
| 9920              | /                         | /              | /                           | /                 | /                     | /               | /              | /           | /      |

# Note:

<sup>1,</sup> Result = Read level + Antenna factor + cable loss-Amp factor
2, All the other emissions not reported were too low to read and deemed to comply with FCC limit.

### 4. POWER LINE CONDUCTED EMISSION

#### 4.1. Test Limits

| Frequency   | Limits dB(μV)    |               |  |  |
|-------------|------------------|---------------|--|--|
| MHz         | Quasi-peak Level | Average Level |  |  |
| 0.15 -0.50  | 66 -56*          | 56 - 46*      |  |  |
| 0.50 -5.00  | 56               | 46            |  |  |
| 5.00 -30.00 | 60               | 50            |  |  |

Notes: 1. \*Decreasing linearly with logarithm of frequency.

- 2. The lower limit shall apply at the transition frequencies.
- 3. The limit decreases in line with the logarithm of the frequency in rang of 0.15 to 0.50 MHz.

#### 4.2. Test Procedure

The EUT is put on the plane 0.8m high above the ground by insulating support and is connected to the power mains through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm coupling impedance for the EUT system. Please refer the block diagram of the test setup and photographs. Both sides of AC lines are checked to find out the maximum conducted emission. In order to find the maximum emission levels, the relative positions of equipment and all of the interface cables shall be changed according to ANSI ANSI C63.10:2013 on Conducted Emission Measurement.

The bandwidth of test receiver is set at 9 kHz.

### 4.3.Test Setup



# 4.4.Test Results



| No. Mk. | Freq.  | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit | Margir | ı        |         |
|---------|--------|------------------|-------------------|------------------|-------|--------|----------|---------|
|         | MHz    | dBu∀             | dB                | dBu∀             | dBu∀  | dB     | Detector | Comment |
| 1       | 0.1500 | 62.74            | 0.10              | 62.84            | 66.00 | -3.16  | QP       |         |
| 2       | 0.1500 | 52.75            | 0.10              | 52.85            | 56.00 | -3.15  | AVG      |         |
| 3 *     | 0.1800 | 61.32            | 0.10              | 61.42            | 64.49 | -3.07  | QP       |         |
| 4       | 0.1800 | 48.72            | 0.10              | 48.82            | 54.49 | -5.67  | AVG      |         |
| 5       | 0.1980 | 59.55            | 0.10              | 59.65            | 63.69 | -4.04  | QP       |         |
| 6       | 0.1985 | 42.24            | 0.10              | 42.34            | 53.67 | -11.33 | AVG      |         |
| 7       | 0.2310 | 57.22            | 0.10              | 57.32            | 62.41 | -5.09  | QP       |         |
| 8       | 0.2310 | 43.92            | 0.10              | 44.02            | 52.41 | -8.39  | AVG      |         |
| 9       | 0.2847 | 48.52            | 0.10              | 48.62            | 60.68 | -12.06 | QP       |         |
| 10      | 0.2849 | 38.46            | 0.10              | 38.56            | 50.67 | -12.11 | AVG      |         |
| 11      | 0.5340 | 44.25            | 0.10              | 44.35            | 56.00 | -11.65 | QP       |         |
| 12      | 0.5340 | 38.52            | 0.10              | 38.62            | 46.00 | -7.38  | AVG      |         |



Remark: All modes and channels have been tested and only listed BT link mode that is worst data

# 5. CONDUCTED MAXIMUM OUTPUT POWER

### 5.1.Test limits

Please refer section RSS-247 & 15.247.

#### 5.2.Test Procedure

Details see the KDB 558074 D01 15.247 Meas Guidance v05r01

- 5.2.1 Place the EUT on the table and set it in transmitting mode.
- 5.2.2 Measure out each mode and each bands peak output power of EUT.

Note: The cable loss and attenuator loss were offset into measure device as amplitude offset.

# 5.3.Test Setup



### 5.4.Test Results

| Channel          | Frequency<br>(MHz) | PK Output Power (dBm) | PK Output Power (mW) | Limit<br>(dBm) |  |
|------------------|--------------------|-----------------------|----------------------|----------------|--|
| CH1              | 2402               | 7.462                 | 5.574                | 30             |  |
| CH20             | 2440               | 8.245                 | 6.676                | 30             |  |
| CH40             | 2480               | 7.662                 | 5.837                | 30             |  |
| Conclusion: PASS |                    |                       |                      |                |  |

# 6. PEAK POWER SPECTRAL DENSITY

#### 6.1.Test limits

- 6.1.1 Please refer section RSS-247 & 15.247.
- 6.1.2 For direct sequence systems, the peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8dBm in any 3kHz band during any time interval of continuous transmission.
- 6.1.3 The direct sequence operating of the hybrid system, with the frequency hopping operation turned off, shall comply with the power density requirements of paragraph (d) of this section.

#### 6.2. Test Procedure

Details see the KDB 558074 D01 15.247 Meas Guidance v05r01

- 6.2.1 Place the EUT on the table and set it in transmitting mode.
- 6.2.2 Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 6.2.3 Set the spectrum analyzer as RBW = 3kHz(Set the RBW to:  $3kHz \le RBW \le 100 kHz$ .), VBW = 10kHz(Set the VBW  $\ge 3 \times RBW$ ), span= $1.5 \times DTS$  bandwidth., detail see the test plot.
- 6.2.4 Record the max reading.
- 6.2.5 Repeat the above procedure until the measurements for all frequencies are completed.

#### 6.3. Test Setup



#### 6.4. Test Results

| Channel          | Frequency<br>(MHz) | Power Spectral Density (dBm) | Limit<br>(dBm) | Result |  |  |
|------------------|--------------------|------------------------------|----------------|--------|--|--|
| CH1              | 2402               | -9.8                         | 8              | PASS   |  |  |
| CH20             | 2440               | -9.1                         | 8              | PASS   |  |  |
| CH40             | 2480               | -9.7                         | 8              | PASS   |  |  |
| Conclusion: PASS |                    |                              |                |        |  |  |



Lowest channel



Middle channel



Highest channel

# 7. BANDWIDTH

#### 7.1.Test limits

Please refer sectionRSS-247 & 15.247

For direct sequence systems, the minimum 6dB bandwidth shall be at least 500 kHz.

#### 7.2.Test Procedure

Details see the KDB 558074 D01 15.247 Meas Guidance v05r01

- a) The bandwidth is measured at an amplitude level reduced 20dB from the reference level. The reference level is the level of the highest amplitude signal observed from the transmitter at the fundamental frequency. Once the reference level is established, the equipment is conditioned with typical modulating signal to produce the worst-case (i.e. the widest) bandwidth.
- b) The test receiver set RBW = 100kHz, VBW  $\geq 3*RBW = 300kHz$ ,, Sweep time set auto, detail see the test plot.

# 7.3.Test Setup



#### 7.4.Test Results

| Channel | Frequency (MHz) | 6dB Bandwidth<br>(MHz) | Limit<br>(MHz) | Result |
|---------|-----------------|------------------------|----------------|--------|
| CH1     | 2402            | 0.533                  | 0.5            | PASS   |
| CH20    | 2440            | 0.541                  | 0.5            | PASS   |
| CH40    | 2480            | 0.541                  | 0.5            | PASS   |



Lowest channel



Middle channel



Highest channel

# 8. BAND EDGE CHECK

#### 8.1.Test limits

Please refer section RSS-GEN&15.247.

#### 8.2.Test Procedure

Details see the KDB 558074 D01 15.247 Meas Guidance v05r01

- 8.2.1 Put the EUT on a 0.8m high table, power on the EUT. Emissions were scanned and measured rotating the EUT to 360 degrees, Find the maximum Emission
- 8.2.2 Check the spurious emissions out of band.
- 8.2.3 RBW 1MHz ,VBW 3MHz ,peak detector for peak value , RBW 1MHz ,VBW 3MHz ,RMS detector for AV value.

### 8.3.Test Setup

Same as 5.2.2.

8.4.Test Results

#### Radiated Method:

Test Mode: Low





#### Polarization: Horizontal



# Test Mode: High Polarization: Vertical



#### Polarization: Horizontal



#### Conducted Method:



Lowest channel



Highest channel

# 9. ANTENNA REQUIREMENT

# 9.1.Standard Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

#### 9.2. Antenna Connected Construction

The antenna is internal antenna and no consideration of replacement. Please see EUT photo for details.

#### 9.3.Results

The EUT antenna is internal Antenna. It complies with the standard requirement.

# 10.TEST SETUP PHOTO

# 10.1.Photos of Radiated emission





# 10.2.Photos of Conducted Emission test



# **11.EUT PHOTO**









































### 12.ANNEX I

#### Model No.

XP-P100, XP-P101, XP-P102, XP-P103, XP-P105, XP-P200, XP-P210, XP-P220, XP-P230. XP-P300. XP-P310. XP-P320. XP-P330. XP-P350. XP-P400. XP-P500. XP-P510, XP-P520, XP-P530, XP-P550, XP-P600, XP-P610, XP-P620, XP-P630, XP-P650, XP-P800, XP-P801, XP-P802, XP-P803, XP-P805, XP-P810, XP-P820, XP-P830, XP-A1, XP-A2, XP-A3, XP-A5, XP-V1, XP-V2, XP-V3, XP-V5, P100, P101, P102, P103, P105, P200, P210, P220, P230, P300, P310, P320, P330, P350, P500, P510, P520, P530, P550, P600, P610, P620, P630, P650, P800, P801, P802, P803, P805, P810, P820, P830, SK-P600, SK-P601, SK-P602, SK-P603, SK-P605, SK-P801, SK-P802, SK-P803, SK-P805, XP-P211, XP-P212, XP-P213, XP-P215, XP-P216, XP-P217, XP-P218, XP-P221, XP-P223, XP-P225, XP-P226, XP-P227, XP-P228, XP-P811, XP-P812, XP-P813, XP-P815, XP-P816, XP-P817, XP-P818, XP-P821, XP-P822, XP-P823, XP-P825, XP-P826, XP-P827, XP-P828, XP-58IIH, XP-58IIHT, XP-58IIHA, XP-58IIHB, XP-58IIHD, XP-58IIHE, XP-58IIHF, XP-58IIHK, XP-58IIHM, XP-58IIHN, XP-58IIHQ, XP-236B, XP-237B, XP-239B, XP-245B, XP-246B, XP-256B, XP-257B, 4B-2023B, 4B-2023BM, 4B-2024B, 4B-2025B, XP-233Q, XP-235Q, XP-236Q, XP-237Q, XP-239Q, XP-253Q, XP-256Q, XP-257Q, XP-258Q, XP-259Q, XP-250B, XP-251B, XP-252B, XP-258B, XP-259B, XP-230H, XP-233H, XP-235H, XP-236H, XP-237H, XP-239H, M220B, M221B, M223B, M225B, M58IIA, M58IIB, M58IID, M58IIE, M58IIF, M58IIH, M58IIK, M58IIN, M58IIQ

-----THE END OF REPORT-----