Colles semaine 17 - Conditionnement, chaînes de Markov

Conditionnement 1

Système complet d'événements :

(principe de la disjonction des cas)

*) deux-à-deux incompatibles :

$$A_i \cap A_j = \emptyset$$
, pour $i \neq j$

 \star) collectivement exhaustifs:

$$A_1 \cup A_2 \cup \ldots \cup A_n = \Omega$$

Formule des probabilités totales $\mathbb{P}(B) = \sum_{i=1}^{n} \mathbb{P}(A_i \cap B)$

$$= \sum_{i=1}^{n} \underbrace{\mathbb{P}(A_i)}_{\text{proba.}} \cdot \underbrace{\mathbb{P}_{A_i}(B)}_{\text{proba.}}$$
conditionnantes conditionnelle

Pour un couple de variables aléatoires

Conditionnement de Y par X:

nement de
$$Y$$
 par X : $(de\ chaque\ Y(\Omega) = \{y_j, j \in J\}\ par\ les\ X(\Omega) = \{x_i, i \in I\})$

$$\underbrace{\mathbb{P}(Y = y_j)}_{\substack{\text{marginale} \\ \text{conditionnée}}} = \sum_{i \in I} \underbrace{\mathbb{P}(X = x_i, Y = y_j)}_{\substack{\text{loi conjointe}}} = \sum_{i \in I} \underbrace{\mathbb{P}(X = x_i)}_{\substack{\text{marginale} \\ \text{conditionnante}}} \cdot \underbrace{\mathbb{P}_{X = x_i}(Y = y_j)}_{\substack{\text{loi} \\ \text{conditionnelle}}}$$

2 Notion de chaîne de Markov

- une succession d'épreuves (pour $n \in \mathbb{N}$) aléatoires
- une évolution aléatoire sur un ensemble fini d'états
- $(ici\ A, B, C)$
- → une suite de systèmes complets d'événements

- l'état probabiliste au temps n
- (donnée des probatés de chaque état)

- ullet vecteur de probabilités $ec{V}_n = \left(egin{matrix} p_n \\ q_n \\ r_n \end{matrix}
 ight) = \left(egin{matrix} \mathbb{F}(A_n) \\ \mathbb{P}(B_n) \\ \mathbb{P}(C_n) \end{matrix}
 ight)$
- ▶ la matrice de transition T est formée avec les proba. de transition $(p.ex.\ p_{[A\leadsto B]} = \mathbb{P}_{A_n}(B_{n+1})).$
- $T = \begin{bmatrix} p_{[A \leadsto A]} & p_{[B \leadsto A]} & p_{[C \leadsto A]} \\ p_{[A \leadsto C]} & p_{[B \leadsto C]} & p_{[C \leadsto C]} \end{bmatrix} \xrightarrow{\rightarrow} \text{vers } A$ $\Rightarrow \text{vers } B$ $\Rightarrow \text{vers } C$

(si la chaîne de Markov est une suite de v.a. (X_n) , alors T = loi conditionnelle de X_{n+1} sachant X_n) La formule des probabilités totales s'écrit : $V_{n+1} = T$ · V_{n+1} · $V_$

3 Réduction matricielle et chaînes de Markov

- Puissances de la matrice de transition On a $\vec{V}_n = T^n \cdot \underbrace{\vec{V}_0}_{\text{état init.}}$
- ▶ Application de la réduction pour $T = P \cdot D \cdot P^{-1}$, on a alors $T^n = P \cdot D^n \cdot P^{-1}$
- (Variante) décomposⁿ de l'état initial \vec{V}_0 dans une base de vecteurs propres \rightsquigarrow calcul de V_n
- Convergence vers un état probabiliste limite quand $n \to +\infty$.
- Interprétation du s-esp. propre ($\lambda = 1$) comme donnant un état stationnaire

Questions de cours 4

1. La formule des probabilités totales

2. Loi conjointe, lois marginales, lois conditionnelles d'un couple de variables discrètes

3. La matrice de transition d'une chaîne de Markov

4. Décomposition d'un vecteur \vec{v} dans une base $\mathcal{B} = (\vec{u}_1, \dots, \vec{u}_n)$.

5. La loi géométrique $\mathcal{G}(p)$.

