Amendments to the Claims:

The following listing of claims will replace all prior versions, and listings, of claims in the application.

Listing of the Claims:

Claims 1-21 (canceled).

- 22. (currently amended): A transparent, non-elastomeric, polythiourethane/urea material comprising the reaction product of:
 - (a) at least one (α, ω)-diiso(thio)cyanate <u>polysulfide</u> prepolymer having a number average molecular weight ranging from 100 to 3000 gmol⁻¹, said prepolymer being free from disulfide (-S-S-) linkage, and
 - (b) at least one aromatic primary diamine, in an equivalent molar ratio amine function/iso(thio)cyanate function (NH₂/NCX, X=O, S) ranging from 0.5 to 2, said aromatic primary diamine being free from disulfide (-S-S-) linkage, and
 - wherein, at least one of the prepolymer or the diamine contains one or more S atoms in its ehain wherein the (α, ω) -diiso(thio)cyanate polysulfide prepolymer is the reaction product of at least one cycloaliphatic or aromatic diiso(thio)cyanate and at least one (α, ω) -diol or dithiol prepolymer, said (α, ω) -diol or dithiol prepolymer being a polysulfide or a mixture of polysulfides.
- 23. (previously presented): The transparent, non elastomeric polythiourethane/urea material of claim 22, wherein the equivalent ratio NH₂/NCX ranges from 0.90 to 1.10.
- 24. (previously presented): The material of claim 22, wherein the equivalent ratio NH₂/NCX ranges from 0.93 to 0.95.
- 25. (canceled).
- 26. (canceled).

- 27. (canceled).
- 28. (currently amended): The material of claim [[27]] <u>22</u>, wherein the polysulfide or mixture of polysulfides is selected from the group consisting of:
 - Prepolymers of formula:

$$HS - CH(CH_3)CH_2 - S - \frac{1}{X} - CH_2CH_2S - \frac{1}{y}H$$

in which x and y are such that the number average molecular weight of the prepolymer ranges from 100 to 3000 gmol⁻¹;

-prepolymers resulting from the polymerization of diepisulfides of formula:

$$CH_{2} \longrightarrow C \longrightarrow R^{3} \longrightarrow S \longrightarrow (CH_{2})_{m} \longrightarrow S \longrightarrow R^{4} \longrightarrow C \longrightarrow CH_{2}$$
 (Ib)

in which R^1 and R^2 are, independently from each other, H, alkyl, aryl, alkoxy, alkylthio or arylthio; R^3 and R^4 are, independently from each other,

R_a designates H, alkyl, aryl, alkoxy, aryloxy, alkylthio or arylthio and, n is an integer from 0 to 4 and m is an integer from 1 to 6, and

-prepolymers of formula:

$$HS - (CH_2) - S - (CH_2) - (CH_$$

where n' is such that the number average molecular weight (\overline{M}_n) of the prepolymer ranges from 500 to 1500g mol⁻¹.

- 29. (previously presented): The material of claim 22, wherein the aromatic diamine contains at least one S atom in its molecule.
- 30. (previously presented): The material of claim 29 wherein the diamine is selected from

$$H_2N$$
 S NH_2

in which R is H or an alkyl group and R' is an alkyl group, and mixtures of the above diamines.

31. (currently amended): The material of claim 22, wherein the material is also the reaction product of:

- a) the said at least one (α, ω)-diiso(thio)cyanate polysulfide prepolymer with a di-, tri- or tetra alcohol, a di-, tri or tetrathiol or a mixture thereof, which is mixed with said at least one aromatic primary diamine;
- b) said at least one aromatic primary diamine; and
- <u>at least one di-, tri-, or tetra alcohol, or at least one di-, tri-, or tetra thiol, or a mixture thereof.</u>
- 32. (currently amended): The material of claim 31, wherein the alcohols and thiols are selected from the groups consisting of:

$$C\left(CH_2O-C-CH_2CH_2SH\right)_4$$

$$\begin{array}{c} {\sf CH_2-SH} \\ {\sf I} \\ {\sf CH--S---CH_2CH_2---SH} \\ {\sf I} \\ {\sf CH_2--S---CH_2CH_2---SH} \end{array}$$

and mixtures thereof.

- 33. (previously presented): The material of claim 22 having a refractive index, n_D^{25} , higher than 1.53.
- 34. (previously presented): The material of claim 22 having a refractive index, n_D^{25} , of at least 1.55.
- 35. (previously presented): The material of claim 22 having a refractive index, n_D^{25} , of at least 1.57.
- 36. (previously presented): The material of claim 27, wherein the polysulfide is an hyperbranched polysulfide resulting from the polymerization of a diepisulfide of formula:

$$CH_2$$
 $C-R^3-S-R^4$ C CH_2

in which R¹ and R² are, independently from each other, H, alkyl, aryl, alkoxy, alkylthio or arylthio, R³ and R⁴ are independently from each other,

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \end{array} \end{array} \end{array}$$

Ra designates H, alkyl, aryl, alkoxy, aryloxy, alkylthio or arylthio, with 2-mercaptoethyl sulfide (DMES).

37. (previously presented): The material of claim 36, wherein the diepisulfide has formula:

- 38. (previously presented): An optical article made from a material according to claim 22.
- 39. (previously presented): The material of claim 28, wherein n' is such that the number average molecular weight (\overline{M}_n) of the prepolymer ranges from 650 to 1350 g mol⁻¹.
- 40. (previously presented): The material of claim 25, wherein the prepolymer is the reaction product of at least one (α, ω) dithiol prepolymer.
- 41. (previously presented): The material of claim 25, wherein the prepolymer is the reaction product of at least one (α, ω) dithiol prepolymer further comprising at least one S atom in its chain.
- 42. (previously presented): The material of claim 30, wherein R and R' are CH₃.

43. (currently amended): The material of claim 30, wherein the diamine is a mixture of by weight: