(12) UK Patent

(19) GB (11) 2 416 361

(45) Date of publication:

05.09.2007

(54) Title of the invention: Apparatus and method for running a radially expandable tubular member

(51) INT CL: **E21B 43/10** (2006.01) **E21B 17/02** (2006.01)

E21B 17/06 (2006.01) E21B 19/16 (2006.01)

(21) Application No:

0518893.3

(22) Date of Filing:

18.03.2004

(30) Priority Data:

(31) 60455718

(32) 18.03.2003

(33) US

(60) Parent of Application No(s) 0706799.4, 0706794.5 under Section 15(4) of the Patents Act 1977

(86) International Application Data:

PCT/US2004/008073 En 18.03.2004

(87) International Publication Data:

WO2004/083592 En 30.09.2004

(43) Date A Publication:

25.01.2006

(52) UK CL (Edition X): NOT CLASSIFIED

(56) Documents Cited:

US 6516887 B2 US 4995464 A

US 5566772 A US 4915177 A

US 4778088 A US 20030075337 A1

US 3667547 A US 20020139540 A1

(58) Field of Search:

As for published application 2416361 A viz:

US.; 166/242.7, 380, 277, 377 378, 381, 382,

77, 51, 301, 242.1, 242.6, 207,

208 DATA BASE CONSULTED EAST

updated as appropriate

(72) Inventor(s): **David Paul Brisco** Michael Dennis Bullock Kevin Karl Waddell

(73) Proprietor(s):

Enventure Global Technology (Incorporated in USA - Delaware) Suite 350, 15995 North Barkers Landing, Houston, Texas 77079,

United States of America

(74) Agent and/or Address for Service:

Haseltine Lake Redcliff Quay, 120 Redcliff Street, Bristol, BS1 6HU, United Kingdom

APPARATUS AND METHOD FOR RUNNING A RADIALLY EXPANDABLE TUBULAR MEMBER

Cross Reference To Related Applications

[001] The present application is the National Stage application for PCT patent application serial number PCT/US2004/008073, attorney docket number 25791.262.02, filed on 3/18/2004, claimed the benefit of the filing date of U.S. provisional patent application serial no. 60/455,718, attorney docket no. 25791.262, filed on March 18, 2003.

This application is related to the following co-pending applications: (1) U.S. Patent Number 6,497,289, which issued 12/24/2002 which was filed as U.S. Patent Application serial no. 09/454,139, attorney docket no. 25791.03.02, filed on 12/3/1999, which claims priority from provisional application 60/111,293, filed on 12/7/98, (2) U.S. patent application serial no. 09/510,913, attorney docket no. 25791.7.02, filed on 2/23/2000, which claims priority from provisional application 60/121,702, filed on 2/25/99,

- (3) U.S. patent application serial no. 09/502,350, attorney docket no. 25791.8.02, filed on 2/10/2000, now U.S. Patent 6,823,937 which issued 11/30/2004, which claims priority from provisional application 60/119,611, filed on 2/11/99,
- (4) U.S. patent no. 6,328,113 which issued 12/1/01, which was filed as U.S. Patent Application serial number 09/440,338, attorney docket number 25791.9.02, filed on 11/15/99, which claims priority from provisional application 60/108,558, filed on 11/16/98,
- (5) U.S. patent application serial no. 10/169,434, attorney docket no. 25791.10.04, filed on 7/1/02, now U.S. Publication 2004-0244968 which is from PCT US01/04753 filed 2/14/01, attorney docket no. 25791.10.02 which published as WO01/60545 on 8/23/2001, which claims priority from provisional application 60/183,546, filed on 2/18/00,
- (6) U.S. patent number 6,640,903 which issued 11/4/03 which was filed as U.S. patent application serial no. 09/523,468, attorney docket no. 25791.11.02, filed on 3/10/2000, which claims priority from provisional application 60/124,042, filed on 3/11/99,
- (7) U.S. patent number 6,568,471, which issued 5/27/03, which was filed as patent application serial no. 09/512,895, attorney docket no. 25791.12.02, filed on 2/24/2000, which claims priority from provisional application 60/121,841, filed on 2/26/99,
- (8) U.S. patent number 6,575,240, which issued 6/10/03, which was filed as patent application serial no. 09/511,941, attorney docket no. 25791.16.02, filed on 2/24/2000, which claims priority from provisional application 60/121,907, filed on 2/26/99,

- (9) U.S. patent number 6,557,640, which issued on 5/6/03, which was filed as patent application serial no. 09/588,946, attorney docket no. 25791.17.02, filed on 6/7/2000, which claims priority from provisional application 60/137,998, filed on 6/7/99,
- (10) U.S. patent application serial no. 09/981,916, attorney docket no. 25791.18, filed on 10/18/01 (now U.S. Publication 2002-0066576 which published on 6/6/02) as a continuation-in-part application of U.S. patent no. 6,328,113, which was filed as U.S. Patent Application serial number 09/440,338, attorney docket number 25791.9.02, filed on 11/15/99, which claims priority from provisional application 60/108,558, filed on 11/16/98,
- (11) U.S. patent number 6,604,763, which issued on 8/12/03, which was filed as application serial no. 09/559,122, attorney docket no. 25791.23.02, filed on 4/26/2000, which claims priority from provisional application 60/131,106, filed on 4/26/99,
- (12) U.S. patent application serial no. 10/030,593, attorney docket no. 25791.25.08, filed on 1/8/02, which is the national stage of PCT00/018635 which was filed on 7/7/00 and published on 1/18/01 as WO01/04535, which claims priority from provisional application 60/146,203, filed on 7/29/99.
- (13) U.S. provisional patent application serial no. 60/143,039, attorney docket no. 25791.26, filed on 7/9/99,
- (14) U.S. patent application serial no. 10/111,982, attorney docket no. 25791.27.08, filed on 4/30/02, now USP 7048067 which issued 5/23/06, which is the national stage of PCT00/30022 filed 10/31/00 which published as WO01/33037 on 5/10/01, which claims priority from provisional patent application serial no. 60/162,671, attorney docket no. 25791.27, filed on 11/1/1999,
 - (15) U.S. provisional patent application serial no. 60/154,047, attorney docket no. 25791.29, filed on 9/16/1999,
 - (16) U.S. provisional patent application serial no. 60/438,828, attorney docket no. 25791.31, filed on 1/9/03,
 - (17) U.S. patent number 6,564,875, which issued on 5/20/03, which was filed as application serial no. 09/679,907, attorney docket no. 25791.34.02, on 10/5/00, which claims priority from provisional patent application serial no. 60/159,082, attorney docket no. 25791.34, filed on 10/12/1999,
 - (18) U.S. patent application serial no. 10/089,419, filed on 3/27/02, now U.S. Patent 6,695,012 which issued 2/24/2004, attorney docket no. 25791.36.03, which is the U.S. National Stage application of PCTUS00/027645 filed on 10/5/00 which published as WO01/026860 on 4/19/01,

which claims priority from provisional patent application serial no. 60/159,039, attorney docket no. 25791.36, filed on 10/12/1999,

- (19) U.S. patent application serial no. 09/679,906, filed on 10/5/00, attorney docket no. 25791.37.02, which claims priority from provisional patent application serial no. 60/159,033, attorney docket no. 25791.37, filed on 10/12/1999,
- (20) U.S. patent application serial no. 10/303,992, filed on 11/22/02, attorney docket no. 25791.38.07, which is the U.S. National Stage application of PCT/US01/019014 filed on 6/12/01, which published as WO01/098623 on 12/27/01, which claims priority from provisional patent application serial no. 60/212,359, attorney docket no. 25791.38, filed on 6/19/2000,
- (21) U.S. provisional patent application serial no. 60/165,228, attorney docket no. 25791.39, filed on 11/12/1999,
- (22) PCT patent application serial no. PCT/US04/008170 filed 3/15/04 which published as WO04/083593 on 9/30/04, which claims priority to U.S. provisional patent application serial no. 60/455,051, attorney docket no. 25791.40, filed on 3/14/03,
- (23) U.S. patent application serial no. 10/483027 filed on 1/6/04, attorney docket no. 25791.44.05 which published as U.S. 2004-0231855 on 11/25/04, which is the national stage application of PCT application US02/20477, filed on 6/26/02, which published as WO03/004820 on 11/6/03, attorney docket no. 25791.44.02, which claims priority from U.S. provisional patent application serial no. 60/303,711, attorney docket no. 25791.44, filed on 7/6/01,
- (24) U.S. patent application serial no. 10/311,412, filed on 12/12/02, attorney docket no. 25791.45.07, which published as U.S. Publication 2004-0033906 on 2/19/04, which is the U.S. national stage application of PCT/US01/041446 filed on 7/27/01 which published as WO02/010551 on 2/7/02, which claims priority from provisional patent application serial no. 60/221,443, attorney docket no. 25791.45, filed on 7/28/2000,
- (25) U.S. patent application serial no. 10/322947, filed on 12/18/02, (now U.S. Patent No. 7,100,684 which issued on 9/5/06) attorney docket no. 25791.46.07, which published as U.S. 2003-0116325 on 6/23/03, which is the U.S. national stage application of PCT/US01/023815, filed on 7/27/01 which published as WO02/010550 on 2/7/02, which claims priority from provisional patent application serial no. 60/221,645, attorney docket no. 25791.46, filed on 7/28/2000,
- (26) U.S. patent application serial no. 10/322,947, filed on 1/22/03, now U.S. Patent 6,976,541 which issued 12/20/2005, attorney docket no. 25791.47.07, which published as U.S. Publication 2004-0045718 on 3/11/04, which is the U.S. national stage application of PCT/US028960 filed

on 9/17/01, which claims priority from provisional patent application serial no. 60/233,638, attorney docket no. 25791.47, filed on 9/18/2000,

i

(27) U.S. patent application serial no. 10/406,648, filed on 3/31/03, attorney docket no. 25791.48.06, which published as U.S. Publication 2004-0069499 on 4/15/04, which is the U.S. national stage application of PCT/US01/030256 filed on 9/27/01 which published as WO02/029199 on 4/11/02, which claims priority from provisional patent application serial no. 60/237,334, attorney docket no. 25791.48, filed on 10/2/2000,

(28) U.S. patent application serial no. 10/644101, filed on 2/14/02, attorney docket no. 25791.50.06, which published as U.S. Publication 2004-026014 on 12/30/04 which is the U.S. national stage application of PCT application US02/04353, filed on 2/14/02, attorney docket no. 25791.50.02, which published as WO02/066783 on 8/29/02 which claims priority from U.S. provisional patent application serial no. 60/270,007, attorney docket no. 25791.50, filed on 2/20/2001,

(29) U.S. patent application serial no. 10/465,835, filed on 6/13/03, attorney docket no. 25791.51.06, which published as U.S. Publication 20040118574 on 6/24/04 which is the U.S. national stage application of PCT application US02/000677 filed on 1/11/02, which published as 2002/068792 on 9/6/02, which claims priority from provisional patent application serial no. 60/262,434, attorney docket no. 25791.51, filed on 1/17/2001,

(30) U.S. patent application serial no. 10/465,831, filed on 6/13/03 now U.S. patent 7100685, which issued on 9/5/06 and also published as U.S. Publication 2004-0112589 on 6/17/04, attorney docket no. 25791.52.06, which is the U.S. national stage application of PCT application US02/00093 filed on 1/2/02, which also published as WO02/053867 on 7/11/02, which claims priority from U.S. provisional patent application serial no. 60/259,486, attorney docket no. 25791.52, filed on 1/3/2001,

(31) U.S. provisional patent application serial no. 60/452,303, filed on 3/5/03, attorney docket no. 25791.53,

(32) U.S. patent number 6,470,966, which was filed as patent application serial number 09/850,093, filed on 5/7/01, attorney docket no. 25791.55, (which also published as U.S. publication 20010047870 on 12/6/01,) as a divisional application of U.S. Patent Number 6,497,289, which was filed as U.S. Patent Application serial no. 09/454,139, attorney docket no. 25791.03.02, filed on 12/3/1999, which claims priority from provisional application 60/111,293, filed on 12/7/98.

(33) U.S. patent number 6,561,227, which was filed as patent application serial number 09/852,026, filed on 5/9/01, attorney docket no. 25791.56, (which also published as U.S.

publication 20010047866 on 12/6/01,) as a divisional application of U.S. Patent Number 6,497,289, which was filed as U.S. Patent Application serial no. 09/454,139, attorney docket no. 25791.03.02, filed on 12/3/1999, which claims priority from provisional application 60/111,293, filed on 12/7/98.

- (34) U.S. patent application serial number 09/852,027, filed on 5/9/01, attorney docket no. 25791.57, (which also published as U.S. publication 20010045289 on 11/29/01) as a divisional application of U.S. Patent Number 6,497,289, which was filed as U.S. Patent Application serial no. 09/454,139, attorney docket no. 25791.03.02, filed on 12/3/1999, which claims priority from provisional application 60/111,293, filed on 12/7/98,
- (35) U.S. patent application serial no. 10/488574 filed on 9/13/04 which published as U.S. publication 2005-0022986 on 2/3/05, attorney docket no. 25791.58.05 which is the national stage application of PCT Application US02/25608, attorney docket no. 25791.58.02, filed on 8/13/02, which also published as WO03/023178 on 3/20/03, which claims priority from provisional application 60/318,021, filed on 9/7/01, attorney docket no. 25791.58,
- (36) U.S. patent application serial no. 10/487199 which published as U.S. publication 2005-0028987 on 2/10/05, attorney docket no. 25791.59.05, which is the national stage application of PCT Application US02/24399, attorney docket no. 25791.59.02, filed on 8/1/02, which also published as WO03/016669 on 2/27/03, which claims priority from U.S. provisional patent application serial no. 60/313,453, attorney docket no. 25791.59, filed on 8/20/2001,
- (37) U.S. patent application serial no. 10/491709 filed on 4/2/04, which published as U.S. publication 2004-0251034 on 12/16/04, attorney docket no. 25791.60.05, which is the national stage application of PCT Application US02/29856, attorney docket no. 25791.60.02, filed on 9/19/02, which also published as WO03/029607 on 4/10/03, which claims priority from U.S. provisional patent application serial no. 60/326,886, attorney docket no. 25791.60, filed on 10/3/2001,
- (38) U.S. patent application serial no. 10/483017 filed on 1/6/04, which published as U.S. publication 2004-0238181 on 12/2/04, attorney docket no. 25791.61.05, which is the national stage application of PCT Application US02/20256, attorney docket no. 25791.61.02, filed on 6/26/02, which also published as WO03/004819 on 1/16/03, which claims priority from U.S. provisional patent application serial no. 60/303,740, attorney docket no. 25791.61, filed on 7/6/2001,
- (39) U.S. patent application serial no. 09/962,469, filed on 9/25/01, now U.S. Patent 6892819 which issued 5/17/2005 and published on 5/23/02 as U.S. publication 2002-0060078, attorney docket no. 25791.62, which is a divisional of U.S. patent application serial no. 09/523,468,

attorney docket no. 25791.11.02, filed on 3/10/2000, (now U.S. Patent 6,640,903 which issued 11/4/2003), which claims priority from provisional application 60/124,042, filed on 3/11/99,

- (40) U.S. patent application serial no. 09/962,470, filed on 9/25/01, attorney docket no. 25791.63, which is a divisional of U.S. patent application serial no. 09/523,468, attorney docket no. 25791.11.02, filed on 3/10/2000, (now U.S. Patent 6,640,903 which issued 11/4/2003), which claims priority from provisional application 60/124,042, filed on 3/11/99,
- (41) U.S. patent application serial no. 09/962,471, filed on 9/25/01, now U.S. Patent 6,739,392 which issued 5/25/2004, and also published as U.S. publication 2002-0060069 on 5/23/02, attorney docket no. 25791.64, which is a divisional of U.S. patent application serial no. 09/523,468, attorney docket no. 25791.11.02, filed on 3/10/2000, (now U.S. Patent 6,640,903 which issued 11/4/2003), which claims priority from provisional application 60/124,042, filed on 3/11/99,
- (42) U.S. patent application serial no. 09/962,467, filed on 9/25/01, now U.S. Patent 6,725,919 which issued 4/27/2004, and also published as U.S. publication 2002-0060068 on 5/23/02, attorney docket no. 25791.65, which is a divisional of U.S. patent application serial no. 09/523,468, attorney docket no. 25791.11.02, filed on 3/10/2000, (now U.S. Patent 6,640,903 which issued 11/4/2003), which claims priority from provisional application 60/124,042, filed on 3/11/99,
- (43) U.S. patent application serial no. 09/962,468, filed on 9/25/01, now U.S. Patent 6,758,278 which issued 7/6/2004, and also published as U.S. publication 2002-0050360 on 5/2/02, attorney docket no. 25791.66, which is a divisional of U.S. patent application serial no. 09/523,468, attorney docket no. 25791.11.02, filed on 3/10/2000, (now U.S. Patent 6,640,903 which issued 11/4/2003), which claims priority from provisional application 60/124,042, filed on 3/11/99.
- (44) U.S. patent application serial no. 10/488664 filed on 3/4/04, now U.S. publication 2004-0231858 as published on 11/25/04, attorney docket no. 25791.67.06, which is the U.S. national stage application of PCT application US 02/25727, filed on 8/14/02, attorney docket no. 25791.67.03, which also published as WO03/023179 on 3/20/03 which claims priority from U.S. provisional patent application serial no. 60/317,985, attorney docket no. 25791.67, filed on 9/6/2001, and U.S. provisional patent application serial no. 60/318,386, attorney docket no. 25791.67.02, filed on 9/10/2001,
- (45) U.S. patent application serial no. 10/500063, filed 6/24/04, attorney docket no. 25791.68.05, which published as U.S. publication 2005-0230123 on 12/20/05, which is the national stage application of PCT application US 02/39425, filed on 12/10/02, attorney docket

no. 25791.68.02, which also published as WO03/058022 on 7/17/03, which claims priority from U.S. provisional patent application serial no. 60/343,674, attorney docket no. 25791.68, filed on 12/27/2001,

(46) U.S. utility patent application serial no. 09/969,922, attorney docket no. 25791.69, filed on 10/3/2001, (now U.S. Patent 6,634,431 which issued 10/21/2003 and published as U.S. publication 2002-0148612 on 10/17/02), which is a continuation-in-part application of U.S. patent no. 6,328,113, which was filed as U.S. Patent Application serial number 09/440,338, attorney docket number 25791.9.02, filed on 11/15/99, which claims priority from provisional application 60/108,558, filed on 11/16/98,

(47) U.S. utility patent application serial no. 10/516,467, now U.S. Patent No. 6745845 which issued 6/8/2004 and published as U.S. publication 2002-0121372 on 9/5/02, attorney docket no. 25791.70, filed on 12/10/01, which is a continuation application of U.S. utility patent application serial no. 09/969,922, attorney docket no. 25791.69, filed on 10/3/2001, (now U.S. Patent 6,634,431 which issued 10/21/2003), which is a continuation-in-part application of U.S. patent no. 6,328,113, which was filed as U.S. Patent Application serial number 09/440,338, attorney docket number 25791.9.02, filed on 11/15/99, which claims priority from provisional application 60/108,558, filed on 11/16/98,

(48) PCT application US 03/00609, filed on 1/9/03, attorney docket no. 25791.71.02, which published as WO03/071086 on 8/28/03, which claims priority from U.S. provisional patent application serial no. 60/357,372, attorney docket no. 25791.71, filed on 2/15/02,

(49) U.S. patent application serial no. 10/074,703, now U.S. Patent 6,705,395 which issued 3/16/2004 and also published as U.S. publication 2002-0100594 on 8/1/02, attorney docket no. 25791.74, filed on 2/12/02, which is a divisional of U.S. patent number 6,568,471, which was filed as patent application serial no. 09/512,895, attorney docket no. 25791.12.02, filed on 2/24/2000, which claims priority from provisional application 60/121,841, filed on 2/26/99,

• • • • •

(50) U.S. patent application serial no. 10/074,244, attorney docket no. 25791.75, filed on 2/12/02, now U.S. Patent 6,631,759 which issued 10/14/2003, and also published as U.S. publication 2002-0100593 on 8/1/02 which is a divisional of U.S. patent number 6,568,471, which was filed as patent application serial no. 09/512,895, attorney docket no. 25791.12.02, filed on 2/24/2000, which claims priority from provisional application 60/121,841, filed on 2/26/99,

(51) U.S. patent application serial no. 10/076,660, attorney docket no. 25791.76, filed on 2/15/02, which published as U.S. publication 2002-0100595 on 8/1/02which is a divisional of U.S. patent number 6,568,471, which was filed as patent application serial no. 09/512,895,

attorney docket no. 25791.12.02, filed on 2/24/2000, which claims priority from provisional application 60/121,841, filed on 2/26/99,

(52) U.S. patent application serial no. 10/076,661, attorney docket no. 25791.77, filed on 2/15/02, now U.S. Patent 6,631,769 which issued 10/14/2003, and also published as U.S. publication 2002-0084078 on 7/4/02, which is a divisional of U.S. patent number 6,568,471, which was filed as patent application serial no. 09/512,895, attorney docket no. 25791.12.02, filed on 2/24/2000, which claims priority from provisional application 60/121,841, filed on 2/26/99,

(53) U.S. patent application serial no. 10/076,659, attorney docket no. 25791.78, filed on 2/15/02, now U.S. Patent 7,063,142 which issued 6/20/2006, which also published as U.S. publication 2002-0092657 on 7/18/02, which is a divisional of U.S. patent number 6,568,471, which was filed as patent application serial no. 09/512,895, attorney docket no. 25791.12.02, filed on 2/24/2000, which claims priority from provisional application 60/121,841, filed on 2/26/99,

(54) U.S. patent application serial no. 10/078,928, attorney docket no. 25791.79, filed on 2/20/02, now U.S. Patent 6,684,947 which issued 2/3/2004, which also published as U.S. publication 2002-0074130 on 6/20/02, which is a divisional of U.S. patent number 6,568,471, which was filed as patent application serial no. 09/512,895, attorney docket no. 25791.12.02, filed on 2/24/2000, which claims priority from provisional application 60/121,841, filed on 2/26/99,

••••

(55) U.S. patent application serial no. 10/078,922, attorney docket no. 25791.80, filed on 2/20/02, now U.S. Patent 6,966,370 which issued 11/22/2005, which also published as U.S. publication 20020074134 on 6/20/02, which is a divisional of U.S. patent number 6,568,471, which was filed as patent application serial no. 09/512,895, attorney docket no. 25791.12.02, filed on 2/24/2000, which claims priority from provisional application 60/121,841, filed on 2/26/99,

(56) U.S. patent application serial no. 10/078,921, attorney docket no. 25791.81, filed on 2/20/02, now U.S. Patent 7,044,221 which issued 5/16/2006, which also published as U.S. publication 2003-0066655 on 4/10/03, which is a divisional of U.S. patent number 6,568,471, which was filed as patent application serial no. 09/512,895, attorney docket no. 25791.12.02, filed on 2/24/2000, which claims priority from provisional application 60/121,841, filed on 2/26/99,

(57) U.S. patent application serial no. 10/261,928, attorney docket no. 25791.82, filed on 10/1/02, now U.S. Patent 7,011,161 which issued 3/14/2006, which also published as U.S.

publication 2003-0024705 on 2/6/03, which is a divisional of U.S. patent number 6,557,640, which was filed as patent application serial no. 09/588,946, attorney docket no. 25791.17.02, filed on 6/7/2000, which claims priority from provisional application 60/137,998, filed on 6/7/99, (58) U.S. patent application serial no. 10/079,276, attorney docket no. 25791.83, filed on 2/20/02, now U.S. Patent 7,040,396 which issued 5/9/2006, which also published as U.S. publication 2003-0121669 on 7/3/03. which is a divisional of U.S. patent number 6,568,471, which was filed as patent application serial no. 09/512,895, attorney docket no. 25791.12.02, filed on 2/24/2000, which claims priority from provisional application 60/121,841, filed on 2/26/99.

(59) U.S. patent application serial no. 10/262,009, attorney docket no. 25791.84, filed on 10/1/02, now U.S. 7048062 which issued 5/23/2006, which also published as U.S. publication 2003-0094279 on 5/20/03, which is a divisional of U.S. patent number 6,557,640, which was filed as patent application serial no. 09/588,946, attorney docket no. 25791.17.02, filed on 6/7/2000, which claims priority from provisional application 60/137,998, filed on 6/7/99,

••••

(60) U.S. patent application serial no. 10/092,481, attorney docket no. 25791.85, filed on 3/7/02, now U.S. Patent 6,857,473 which issued 2/22/2005, which also published as U.S. publication 2002-0096338 on 7/25/02, which is a divisional of U.S. patent number 6,568,471, which was filed as patent application serial no. 09/512,895, attorney docket no. 25791.12.02, filed on 2/24/2000, which claims priority from provisional application 60/121,841, filed on 2/26/99,

...

- (61) U.S. patent application serial no. 10/261,926, attorney docket no. 25791.86, filed on 10/1/02, which is a divisional of U.S. patent number 6,557,640, which also published as U.S. publication 2003-0098162 on 5/29/03, which was filed as patent application serial no. 09/588,946, attorney docket no. 25791.17.02, filed on 6/7/2000, which claims priority from provisional application 60/137,998, filed on 6/7/99,
- (62) PCT application US 02/36157, filed on 11/12/02, attorney docket no. 25791.87.02, which published as WO03/042486 on 5/22/03, which claims priority from U.S. provisional patent application serial no. 60/338,996, attorney docket no. 25791.87, filed on 11/12/01.
- (63) PCT application US 02/36267, filed on 11/12/02, attorney docket no. 25791.88.02, which published as WO03/042487 on 5/22/03, which claims priority from U.S. provisional patent application serial no. 60/339,013, attorney docket no. 25791.88, filed on 11/12/01,
- (64) PCT application US 03/11765, filed on 4/16/03, attorney docket no. 25791.89.02, which published as WO03/10265 on 12/11/03, which claims priority from U.S. provisional patent application serial no. 60/383,917, attorney docket no. 25791.89, filed on 5/29/02,

- (65) PCT application US 03/15020, filed on 5/12/03, attorney docket no. 25791.90.02, which published as WO04/003337 on 1/8/04 which claims priority from U.S. provisional patent application serial no. 60/391,703, attorney docket no. 25791.90, filed on 6/26/02,
- (66) PCT application US 02/39418, filed on 12/10/02, attorney docket no. 25791.92.02, which published as WO03/059549 on 7/24/03, which claims priority from U.S. provisional patent application serial no. 60/346,309, attorney docket no. 25791.92, filed on 1/7/02,
- (67) PCT application US 03/06544, filed on 3/4/03, attorney docket no. 25791.93.02, which published as WO03/086675 on 10/23/03, which claims priority from U.S. provisional patent application serial no. 60/372,048, attorney docket no. 25791.93, filed on 4/12/02,
- (68) U.S. patent application serial no. 10/331,718, attorney docket no. 25791.94, filed on 12/30/02, which published as U.S. publication 2003-0107217 on 6/12/03, which is a divisional U.S. patent application serial no. 09/679,906, filed on 10/5/00, attorney docket no. 25791.37.02, which claims priority from provisional patent application serial no. 60/159,033, attorney docket no. 25791.37, filed on 10/12/1999,
- (69) PCT application US 03/04837, filed on 2/29/03, attorney docket no. 25791.95.02, which published as WO03/078785 on 9/25/03 which claims priority from U.S. provisional patent application serial no. 60/363,829, attorney docket no. 25791.95, filed on 3/13/02,
- (70) U.S. patent application serial no. 10/261,927, attorney docket no. 25791.97, filed on 10/1/02, now U.S. Patent 7077213 which issued 7/18/2006, which also published as U.S publication 2003-0094278 on 5/22/03 which is a divisional of U.S. patent number 6,557,640, which was filed as patent application serial no. 09/588,946, attorney docket no. 25791.17.02, filed on 6/7/2000, which claims priority from provisional application 60/137,998, filed on 6/7/99,

•••••••

- (71) U.S. patent application serial no. 10/262,008, attorney docket no. 25791.98, filed on 10/1/02, now U.S. Patent 7,036,582 which issued 5/2/2006, which also published as U.S. publication 2003-0094277 on 5/22/03, which is a divisional of U.S. patent number 6,557,640, which was filed as patent application serial no. 09/588,946, attorney docket no. 25791.17.02, filed on 6/7/2000, which claims priority from provisional application 60/137,998, filed on 6/7/99,
- (72) U.S. patent application serial no. 10/261,925, attorney docket no. 25791.99, filed on 10/1/02, now U.S. Patent 7,044,218 which issued 5/16/2006, which also published as U.S. publication 2003-0098154 on 5/29/03, which is a divisional of U.S. patent number 6,557,640, which was filed as patent application serial no. 09/588,946, attorney docket no. 25791.17.02, filed on 6/7/2000, which claims priority from provisional application 60/137,998, filed on 6/7/99,
- (73) U.S. patent application serial no. 10/199,524, attorney docket no. 25791.100, filed on 7/19/02, which is a continuation of U.S. Patent Number 6,497,289, which also published as U.S.

publication 2002-0189816 on 12/19/02, which was filed as U.S. Patent Application serial no. 09/454,139, attorney docket no. 25791.03.02, filed on 12/3/1999, which claims priority from provisional application 60/111,293, filed on 12/7/98,

- (74) PCT application US 03/10144, filed on 3/28/03, attorney docket no. 25791.101.02, which published as WO03/089161 on 10/30/03, which claims priority from U.S. provisional patent application serial no. 60/372,632, attorney docket no. 25791.101, filed on 4/15/02,
- (75) PCT application US 03/029859, filed on 9/22/03, attorney docket no. 25791.102.02, which published as WO2004/027205 on 4/1/04, which claims priority from U.S. provisional patent application serial no. 60/412,542, attorney docket no. 25791.102, filed on 9/20/02,
- (76) PCT application US 03/14153, filed on 5/6/03, attorney docket no. 25791.104.02, which published as WO03/093623 on 11/13/03, which claims priority from U.S. provisional patent application serial no. 60/380,147, attorney docket no. 25791.104, filed on 5/6/02,
- (77) PCT application US 03/19993, filed on 6/24/03, attorney docket no. 25791.106.02, which published as WO04/010039 on 1/29/04, which claims priority from U.S. provisional patent application serial no. 60/397,284, attorney docket no. 25791.106, filed on 7/19/02,
- (78) PCT application US 03/13787, filed on 5/5/03, attorney docket no. 25791.107.02, which published as WO03/104601 on 12/18/03, which claims priority from U.S. provisional patent application serial no. 60/387,486 attorney docket no. 25791.107, filed on 6/10/02,
- (79) PCT application US 03/18530, filed on 6/11/03, attorney docket no. 25791.108.02, which published as WO03/106130 on 12/24/03, which claims priority from U.S. provisional patent application serial no. 60/387,961, attorney docket no. 25791.108, filed on 6/12/02,
- (80) PCT application US 03/20694, filed on 7/1/03, attorney docket no. 25791.110.02, which published as WO04/009950 on 1/29/04, which claims priority from U.S. provisional patent application serial no. 60/398,061, attorney docket no. 25791.110, filed on 7/24/02,
- (81) PCT application US 03/20870, filed on 7/2/03, attorney docket no. 25791.111.02, which published as WO04/01176 on 2/5/04, which claims priority from U.S. provisional patent application serial no. 60/399,240, attorney docket no. 25791.111, filed on 7/29/02,
- (82) PCT application US03/029858 filed on 9/22/03, attorney docket no. 25791.112.02, which published as WO04/027204 on 4/1/04, which claims priority to U.S. provisional patent application serial no. 60/412,487, attorney docket no. 25791.112, filed on 9/20/02,
- (83) PCT application PCT/US03/029460 filed on 9/22/03, attorney docket no. 25791.114.02, which published as WO2004/027200 on 4/1/04, which claims priority to U.S. provisional patent application serial no. 60/412,488, attorney docket no. 25791.114, filed on 9/20/02,

- (84) U.S. patent application serial no. 10/280,356, attorney docket no. 25791.115, filed on 10/25/02, which is a continuation of U.S. patent number 6,470,966, which was filed as patent application serial number 09/850,093, filed on 5/7/01, attorney docket no. 25791.55, (which also published as U.S. publication 20010047870 on 12/6/01,) as a divisional application of U.S. Patent Number 6,497,289, which was filed as U.S. Patent Application serial no. 09/454,139, attorney docket no. 25791.03.02, filed on 12/3/1999, which claims priority from provisional application 60/111,293, filed on 12/7/98.
- (85) PCT application US 03/025742 filed on 8/18/03, attorney docket no. 25791.117.02, which published as WO US04/026017 on 4/1/04, which claims priority to U.S. provisional patent application serial no. 60/412,177, attorney docket no. 25791.117, filed on 9/20/02,
- (86) PCT application US 03/025667 filed on 8/18/03, attorney docket no. 25791.118.02, which published as WO04/027392 on 4/1/04, which claims priority to U.S. provisional patent application serial no. 60/412,653, attorney docket no. 25791.118, filed on 9/20/02,
- (87) PCT application US03/025677 filed on 8/18/03, attorney docket no. 25791.119.02, which published as WO04/018824 on 3/4/04, which claims priority to U.S. provisional patent application serial no. 60/405,610, attorney docket no. 25791.119, filed on 8/23/02,
- (88) PCT application US 03/025676 filed on 8/18/03, attorney docket no. 25791.120.02, which published as WO 04/018823 on 3/4/04, which claims priority to U.S. provisional patent application serial no. 60/405,394, attorney docket no. 25791.120, filed on 8/23/02,
- (89) PCT application US 03/025675 filed on 8/18/03, attorney docket no. 25791.121.02, which published as WO 04/026500 on 4/1/04, which claims priority to U.S. provisional patent application serial no. 60/412,544, attorney docket no. 25791.121, filed on 9/20/02,
- (90) PCT application PCT/US03/24779, filed on 8/8/03, attorney docket no. 25791.125.02, which published as WO04/02895 on 3/11/04, which claims priority from U.S. provisional patent application serial no. 60/407,442, attorney docket no. 25791.125, filed on 8/30/02,
- (91) U.S. provisional patent application serial no. 60/423,363, attorney docket no. 25791.126, filed on 12/10/02.
- (92) PCT application US 03/025707 filed on 8/18/03, attorney docket no. 25791.127.02, which published as WO 04/027786 on 4/1/04, which claims priority to U.S. provisional patent application serial no. 60/412,196, attorney docket no. 25791.127, filed on 9/20/02,
- (93) PCT application US 03/025715 filed on 8/18/03, attorney docket no. 25791.128.02, which published as WO 04/026073 on 4/1/04, which claims priority to U.S. provisional patent application serial no. 60/412,187, attorney docket no. 25791.128, filed on 9/20/02,

(95) U.S. patent application serial no. 10/382,325, attorney docket no. 25791.145, filed on 3/5/03, which published as U.S. publication 2003-0173090 on 9/18/03, which is a continuation of U.S. patent number 6,557,640, which was filed as patent application serial no. 09/588,946, attorney docket no. 25791.17.02, filed on 6/7/2000, which claims priority from provisional application 60/137,998, filed on 6/7/99,

(96) U.S. patent application serial no. 10/624,842, attorney docket no. 25791.151, filed on 7/22/03, which published as U.S. publication 2004-0123988 on 7/1/04, which is a divisional of U.S. patent application serial no. 09/502,350, attorney docket no. 25791.8.02, filed on 2/10/2000, now U.S. Patent 6,823,937 which issued 11/30/2004, which claims priority from provisional application 60/119,611, filed on 2/11/99,

(97) PCT application US 03/038550 filed on 12/4/03, attorney docket no. 25791.157.03, which published as WO 04/053434 on 6/24/04, which claims priority to U.S. provisional patent application serial no. 60/431,184, attorney docket no. 25791.157, filed on 12/5/02,

(98) PCT application US 04/004740 filed on 2/17/04, attorney docket no. 25791.185.02, which published as WO 04/074622 on 9/2/04, which claims priority to U.S. provisional patent application serial no. 60/448,526, attorney docket no. 25791.185, filed on 2/18/03,

(99) U.S. provisional patent application serial no. 60/461,539, attorney docket no. 25791.186, filed on 4/9/03,

• • • • • • •

(100) PCT application US 04/011177 filed on 4/13/04, attorney docket no. 25791.193.02, which published as WO 04/092530 on 10/28/04, which claims priority to U.S. provisional patent application serial no. 60/462,750, attorney docket no. 25791.193, filed on 4/14/03,

(101) U.S. provisional patent application serial no. 60/436,106, attorney docket no. 25791.200, filed on 12/23/02,

(102) U.S. provisional patent application serial no. 60/442,942, attorney docket no. 25791.213, filed on 1/27/03,

(103) PCT application US 04/002122 filed on 1/26/04, attorney docket no. 25791.225.02, which published as WO 04/067961 on 8/12/04, which claims priority to U.S. provisional patent application serial no. 60/442,938, attorney docket no. 25791.225, filed on 1/27/03,

(104) U.S. patent application serial no. 10/418,687, attorney docket no. 25791.228, filed on 4/18/03, now U.S. Patent 7,021,390 which issued 4/4/2006, which also published as U.S. publication 2004-0045616 on 3/11/04,

- (105) U.S. provisional patent application serial no. 60/454,896, attorney docket no. 25791.236, filed on 3/14/03,
- (106) U.S. provisional patent application serial no. 60/450,504, attorney docket no. 25791.238, filed on 2/26/03,
- (107) U.S. provisional patent application serial no. 60/451,152, attorney docket no. 25791.239, filed on 3/9/03,
- (108) U.S. provisional patent application serial no. 60/455,124, attorney docket no. 25791.241, filed on 3/17/03,
- (109) U.S. provisional patent application serial no. 60/453,678, attorney docket no. 25791.253, filed on 3/11/03,
- (110) U.S. patent application serial no. 10/421,682, attorney docket no. 25791.256, filed on 4/23/03, which published as U.S. publication 2003-0192705 on 10/16/03, which is a continuation of U.S. patent application serial no. 09/523,468, attorney docket no. 25791.11.02, filed on 3/10/2000, (now U.S. Patent 6,640,903 which issued 11/4/2003), which claims priority from provisional application 60/124,042, filed on 3/11/99,
- (111) U.S. provisional patent application serial no. 60/457,965, attorney docket no. 25791.260, filed on 3/27/03,
- (112) U.S. provisional patent application serial no. 60/455,718, attorney docket no. 25791.262, filed on 3/18/03,
- (113) U.S. patent number 6,550,821, which was filed as patent application serial no. 09/811,734, filed on 3/19/01, attorney docket no. 25791.263.
 - (114) U.S. patent application serial no. 10/436,467, attorney docket no. 25791.268, filed on 5/12/03, now U.S. Patent 6,968,618 which issued 11/29/2005, which also published as U.S. publication 2003-0222455 on 12/4/03, which is a continuation of U.S. patent number 6,604,763, which was filed as application serial no. 09/559,122, attorney docket no. 25791.23.02, filed on 4/26/2000, which claims priority from provisional application 60/131,106, filed on 4/26/99,
 - (115) U.S. provisional patent application serial no. 60/459,776, attorney docket no. 25791.270, filed on 4/2/03,
 - (116) U.S. provisional patent application serial no. 60/461,094, attorney docket no. 25791.272, filed on 4/8/03,
 - (117) U.S. provisional patent application serial no. 60/461,038, attorney docket no. 25791.273, filed on 4/7/03,
- (118) U.S. provisional patent application serial no. 60/463,586, attorney docket no. 25791.277, filed on 4/17/03,

(119) U.S. provisional patent application serial no. 60/472,240, attorney docket no. 25791.286, filed on 5/20/03.

_--

(120) U.S. patent application serial no. 10/619,285, attorney docket no. 25791.292, filed on 7/14/03, which published as U.S. publication 2004-0123983 on 7/1/04, which is a continuation-in-part of U.S. utility patent application serial no. 09/969,922, attorney docket no. 25791.69, filed on 10/3/2001, (now U.S. Patent 6,634,431 which issued 10/21/2003), which is a continuation-in-part application of U.S. patent no. 6,328,113, which was filed as U.S. Patent Application serial number 09/440,338, attorney docket number 25791.9.02, filed on 11/15/99, which claims priority from provisional application 60/108,558, filed on 11/16/98,

(121) U.S. utility patent application serial no. 10/418,688, attorney docket no. 25791.257, now U.S. Patent 7,055,608 which issued 6/6/2006, which also published as U.S. publication 2005-0098323 on 5/12/05, which was filed on 4/18/03, as a division of U.S. utility patent application serial no. 09/523,468, attorney docket no. 25791.11.02, filed on 3/10/2000, (now U.S. Patent 6,640,903 which issued 11/4/2003), which claims priority from provisional application 60/124,042, filed on 3/11/99,

(122) U.S. National Stage patent application serial no. 10/546548, filed 8/23/05, attorney docket no. 25791.238.05 (now U.S. Publication 2006-0169460) which was filed from PCT patent application serial no. PCT/US2004/006246, attorney docket no. 25791.238.02, filed on 2/26/2004,

(123) U.S. National Stage patent application serial no. 10/548934, filed 9/12/05, attorney docket no. 25791.253.05 which was filed from PCT patent application serial no. PCT/US2004/007711, attorney docket no. 25791.253.02, filed on 3/11/2004, which published as WO04/081346,

(124) PCT patent application serial no. PCT/US2004/008170, attorney docket no. 25791.40.02, filed on 3/15/2004, which published as WO04/083593 on 9/30/2004,

(125) PCT patent application serial no. PCT/US2004/06246, attorney docket no. 25791.238.02, filed on 2/26/2004, which published as WO 2004/076798 on 9/10/2004,

(126) PCT patent application serial number PCT/US2004/08170, attorney docket number 25791.40.02, filed on 3/15/04, which published as WO 2004/083593 on 9/30/2004,

(127) U.S. National Stage patent application serial no. 10/546,903, filed 8/25/05, attorney docket no. 25791.236.05 which was filed from PCT patent application serial number PCT/US2004/08171, attorney docket number 25791.236.02, filed on 3/15/04, which published as WO04/083594 on 9/30/2004,

(128) U.S. National Stage patent application serial no. 10/549410, filed 9/13/05, attorney docket no. 25791.262.05 which was filed from PCT patent application serial number

PCT/US2004/08073, attorney docket number 25791.262.02, filed on 3/18/04, which published as WO04/083592, on 9/30/2004,

- (129) PCT patent application serial number PCT/US2004/07711, attorney docket number 25791.253.02, filed on 3/11/2004, which published as WO 2004/081346 on 9/23/2004,
- (130) U.S. National Stage patent application serial no. 10/550906, filed 9/27/05, attorney docket no. 25791.260.05 which was filed from PCT patent application serial number PCT/US2004/029025, attorney docket number 25791.260.02, filed on 3/26/2004, which published as WO04/085790, on 10/7/2004,
- (131) U.S. National Stage patent application serial no. 10/551,880, filed 9/30/05, attorney docket no. 25791.270.05 which was filed from PCT patent application serial number PCT/US2004/010317, attorney docket number 25791.270.02, filed on 4/2/2004, which published as WO04/089608 on 10/21/2004,
- (132) U.S. National Stage patent application serial no. 10/552,790, filed 10/11/05, attorney docket no. 25791.272.06 (now U.S. Publication 2006-0196679) which was filed from PCT patent application serial number PCT/US2004/010712, attorney docket number 25791.272.02, filed on 4/6/2004, which published as WO04/092527 on 10/28/04,
- (133) U.S. National Stage patent application serial no. 10/552,253, filed 10/4/05, attorney docket no. 25791.273.06 which was filed from PCT patent application serial number PCT/US2004/010762, attorney docket number 25791.273.02, filed on 4/6/2004, which published as WO04/092528 on 10/28/2004,
- (134) U.S. National Stage patent application serial no. 10/553,566, filed 10/17/05, attorney docket no. 25791.277.06 which was filed from PCT patent application serial number PCT/US2004/011973, attorney docket number 25791.277.02, filed on 4/15/2004, which published as WO04/094766 on 11/4/2004,
- (135) U.S. National Stage patent application serial no. 10/568,200, filed 2/13/06, attorney docket no. 25791.301.06 which was filed from PCT patent application serial number PCT/US 2004/026345, filed 8/13/04, attorney docket no. 25791.301.02, which published as WO05/017303 on 2/24/2005, which claimed priority to U.S. provisional patent application serial number 60/495056, attorney docket number 25791.301, filed on 8/14/2003,
- (136) U.S. provisional patent application serial number 60/600679, attorney docket number 25791.194, filed on 8/11/2004,
- (137) PCT patent application serial number PCT/US2005/027318, attorney docket number 25791.329.02, filed on 7/29/2005, which published as WO06/017459 on 2/16/06,

- (138) PCT patent application serial number PCT/US2005/028936, attorney docket number 25791.338.02, filed on 8/12/2005, which published as WO06/020960 on 2/23/06,
- (139) PCT patent application serial number PCT/US2005/028669, attorney docket number 25791.194.02, filed on 8/11/2005, which published as WO06/020827, on 2/23/06,
- (140) PCT patent application serial number PCT/US2005/028453, attorney docket number 25791.371, filed on 8/11/2005, which published as WO06/020827, on 3/30/06,
- (141) PCT patent application serial number PCT/US2005/028641, attorney docket number 25791.372, filed on 8/11/2005, which published as WO06/020809, on 2/23/06,
- (142) PCT patent application serial number PCT/US2005/028819, attorney docket number 25791.373, filed on 8/11/2005, which published as WO06/020913, on 2/23/06,
- (143) PCT patent application serial number PCT/US2005/028446, attorney docket number 25791.374, filed on 8/11/2005, which published as WO06/020723, on 2/23/06,
- (144) PCT patent application serial number PCT/US2005/028642, attorney docket number 25791.375, filed on 8/11/2005, which published as WO06/020810, on 2/23/06,
- (145) PCT patent application serial number PCT/US2005/028451, attorney docket number 25791.376, filed on 8/11/2005, which published as WO06/020726, on 2/23/06, and
- (146) PCT patent application serial number PCT/US2005/028473, attorney docket number 25791.377, filed on 7/29/2005, which published as WO06/020734, on 2/23/06.

Background

- [002] This invention relates generally to oil and gas exploration, and in particular to forming and repairing well bore casings to facilitate oil and gas exploration.
- [003] Expandable tubing may be used in, among other applications, the forming and repairing of well bore casings. Typically, an expandable tubing string is lowered into and down a well bore by an expansion apparatus positioned at the bottom of the string. The expansion apparatus is lowered down the well bore via another tubing string that is disposed through the expandable tubing string and connected to the expansion apparatus. Because the expansion apparatus supports the weight of the expandable tubing string, the string is in compression while being carried down the well bore. If the expandable tubing string is comprised of a series of interconnected joints, this compressive state can result in damage to the various joint connections along the expandable tubing string. Also, if the expandable tubing string is long enough, the overall weight of the string may cause the string to compress to such a degree that an unwanted and/or uncontrolled expansion of the string occurs.

[004] Therefore, what is needed is an apparatus and method for carrying an expandable tubing string in a well bore that overcomes the above-described problems, among others.

[004A] According to a first aspect of the present invention, there is provided a tubular apparatus comprising: a first tubular member adapted to be lowered into a well bore; a second tubular member connected to the first tubular member; and a third tubular member which in a first state is connected to the first tubular member and disconnected from the second tubular member, and in a second state is disconnected from the first tubular member and connected to the second tubular member, the third tubular member adapted for movement relative to the first and second tubular members to switch between the first and second states.

[004B] Preferably, the third tubular member moves relative to the first and second tubular members in response to at least one of the first and second tubular members encountering a resistance in the well bore.

[004C] Preferably, the third tubular member moves axially relative to the first and second tubular members.

[004D] Preferably, the apparatus further comprises means for applying a torque to the third tubular member when it has been disconnected from the first tubular member and connected to the second tubular member.

[004E] Preferably, the torque is transferred from the third tubular member to the second tubular member to enable the resistance to be overcome.

[004F] Preferably, the third tubular member moves in one direction relative to the first and second tubular members in response to one of the members encountering a predetermined resistance in the well bore.

[004G] Preferably, the third tubular member is adapted to move relative to the first and second tubular members in a direction opposite the one direction to disconnect from the second tubular member and reconnect with the first tubular member.

[004H] Preferably, The apparatus further comprises means for applying a torque to the third tubular member after the first tubular member has been disconnected from the second tubular member Preferably, the apparatus further comprises a fourth tubular member threadedly connected to the first tubular member, and wherein the torque is transferred from the third tubular member to the first tubular member to disconnect the threaded connection between the fourth tubular member and the first tubular member.

[004I] Preferably, the apparatus further comprises means for introducing a sealing material through the tubular members for passage into the well bore, and means for applying a torque to the third tubular member when it has been disconnected from the first tubular member and

[004J] connected to the second tubular member to transfer the torque from the third tubular member to the second tubular member to distribute the material in the well bore.

[004K] According to a second aspect of the present invention, there is provided a method comprising: lowering a first tubular member into a well bore; connecting a second tubular member to the first tubular member; connecting a third tubular member to the first tubular member; and moving the third tubular member relative to the first and second tubular members to disconnect the third tubular member from the first tubular member and connect the third tubular member to the second tubular member.

[004L] Preferably, the third tubular member moves relative to the first and second tubular members in response to at least one of the first and second tubular members encountering a resistance in the well bore.

[004M] Preferably, the third tubular member moves axially relative to the first and second tubular members.

[004N] Preferably, the method further comprises the step of applying a torque to the third tubular member after the step of moving.

[0040] Preferably, the method further comprises the step of transferring the torque from the third tubular member to the second tubular member to enable the resistance to be overcome.

[004P] Preferably, the third tubular member moves in one direction relative to the first and second tubular members in response to one of the members encountering a predetermined resistance in the well bore.

[004Q] Preferably, the method further comprises the step of moving the third tubular member relative to the first and second tubular members in a direction opposite the one direction to disconnect from the second tubular member and reconnect with the first tubular member.

- [004R] Preferably, the method further comprises the step of applying a torque to the third tubular member after the first tubular member has been disconnected from the second tubular member and reconnected to the first tubular member.
- [004S] Preferably, the method further comprises the step of threadedly connecting a fourth tubular member to the first tubular member, and transferring the torque from the third tubular member to the first tubular member to disconnect the threaded connection between the fourth tubular member and the first tubular member.
- [004T] Preferably, the method further comprises introducing a sealing material through the tubular members for passage into the well bore, and applying a torque to the third tubular member when it has been disconnected from the first tubular member and connected to the

second tubular member to transfer the torque from the third tubular member to the second tubular member to distribute the material in the well bore.

Ł

[004U] According to a third aspect of the present invention, there is provided a system comprising: means for lowering a first tubular member into a well bore; means for connecting a second tubular member to the first tubular member; means for connecting a third tubular member to the first tubular member; and means for moving the third tubular member relative to the first and second tubular members to disconnect the third tubular member from the first tubular member and connect the third tubular member to the second tubular member.

[004V] Preferably, the third tubular member moves relative to the first and second tubular members in response to at least one of the first and second tubular members encountering a resistance in the well bore.

[004W] Preferably, the third tubular member moves axially relative to the first and second tubular members.

[004X] Preferably, the system further comprises means for applying a torque to the third tubular member after the step of moving.

[004Y] Preferably, the torque is transferred from the third tubular member to the second tubular member to enable the resistance to be overcome.

[004Z] Preferably, the third tubular member moves in one direction relative to the first and second tubular members in response to one of the members encountering a predetermined resistance in the well bore.

[004AA] Preferably, the system further comprises means for moving the third tubular member relative to the first and second tubular members in a direction opposite the one direction to disconnect from the second tubular member and reconnect with the first tubular member.

[004BB] Preferably, the system further comprises means for applying a torque to the third tubular member after the first tubular member has been disconnected from the second tubular member and reconnected to the first tubular member.

[004CC] Preferably, the system further comprises means for threadedly connecting a fourth tubular member to the first tubular member, and wherein the torque is transferred from the third tubular member to the first tubular member to disconnect the threaded connection between the fourth tubular member and the first tubular member.

[004DD] Preferably, the system further comprises means for introducing a sealing material through the tubular members for passage into the well bore, and means for applying a torque to the third tubular member when it has been disconnected from the first tubular member and

connected to the second tubular member to transfer the torque from the third tubular member to the second tubular member to distribute the material in the well bore.

Brief Description of the Drawings

[005] Fig 1 is a partial elevational/partial sectional/partial schematic view, not necessarily to scale, depicting a system according to one embodiment, the system including a tool 20, a slip joint 24, a safety sub 28, an expansion apparatus 30 and an expandable member 34 wherein the expansion apparatus 30, among other components, is being lowered.

[006] Fig. 1a is a partial sectional view, not necessarily to scale, depicting the tool 20 of Fig. 1.

[007] Fig. 1b is a partial sectional view, not necessarily to scale, depicting the slip joint 24 of Fig. 1.

[008] Fig. 1c is a partial elevational/partial sectional view, not necessarily to scale, depicting the sub 28 and the expansion apparatus 30 of Fig. 1.

[009] Fig. 2a is a partial sectional view, not necessarily to scale, depicting the tool 20 of Fig. 1 but showing another operational mode.

[0010] Fig. 2b is a partial sectional view, not necessarily to scale, depicting the slip joint 24 of Fig. 1 but showing another operational mode.

[0011] Fig. 3a is a partial sectional view, not necessarily to scale, depicting the tool 20 of Fig. 1 but showing yet another operational mode.

[0012] Fig. 3b is a partial sectional view, not necessarily to scale, depicting the slip joint 24 of Fig. 1 but showing yet another operational mode.

Detailed Description

[0013] Referring to Fig. 1 of the drawings, the reference numeral 10 refers to a well bore penetrating a subterranean ground formation F for the purpose of recovering hydrocarbon fluids from the formation, the well bore having a bottom 12. A series of components 14 is lowered into the well bore 10 by a tubular string 16, in the form of coiled tubing, jointed tubing, or the like which is connected to the upper end of the series. The components in the series 14 will be described.

[0014] The string 16 extends from a rig 18 that is located above ground and extends over the well bore 10. The rig 18 is conventional and, as such, includes support structure, a motor driven winch, or the like, and other associated equipment for receiving and supporting the series 14 and lowering it into the well bore 10 by unwinding the string 16 from the winch. The upper portion of the well bore 10 can be lined with a casing 19 in any conventional manner.

[0015] The series 14 includes a tool 20 to which the string 16 is connected. A tubular string 22, in the form of coiled tubing, jointed tubing, or the like, is connected to and extends downward Page 19 follows

from the tool 20. A slip joint 24 is connected to the lower end of the string 22, and a tubular string 26, in the form of coiled tubing, jointed tubing, or the like, is connected to and extends downward from the slip joint 24 and its lower end is connected to a safety sub 28. An expansion apparatus 30 is connected to the sub 28. The expansion apparatus 30 includes a float shoe 32.

[0016] An expandable tubular member 34 is connected to, and extends downward from, the lower end of the tool 20 to the shoe 32 so that the slip joint 24, the string 26, the sub 28, and the expansion apparatus 30 are all disposed within the member 34. The expansion apparatus 30 is slidably engaged with the internal wall of the member 34. The member 34 is comprised of a plurality of joints (not shown) that are each interconnected via a left hand thread engagement configuration. Thus, the series of components 14 includes the tool 20, the string 22, the slip joint 24, the string 26, the sub 28, the expansion apparatus 30 which includes the shoe 32, and the member 34.

•

[0017] The lower end portion of the member 34 that extends around the apparatus 30 has an increased diameter, and a variable-dimension annulus 35 is defined by the internal wall of the member 34 and the external walls of the string 22, the slip joint 24 and the string 26. A variable-dimension annulus 36 is also defined between the inner wall of the well bore 10 and the external wall of the member 34.

••••••

[0018] Referring to Fig. 1a, an embodiment of the tool 20 is shown and includes an elongated tubular member or coupling 37 to which the string 16 is connected via a conventional drillpipe box thread connection 38. The coupling 37 includes an o-ring 40, a pair of openings 42a and 42b, and an internal straight thread connection 44. Also, the coupling 37 defines a passage 45. [0019] A mandrel extension 46, in the form of an elongated tubular body member, is connected to the coupling 37 via the thread connection 44, and the o-ring 40 seals against the mandrel extension 46 immediately above this connection. The mandrel extension 46 includes a pair of openings 48a and 48b that are aligned with the openings 42a and 42b of the coupling 37, and the aligned openings receive two torque pins 50a and 50b, respectively. The mandrel extension 46 further includes an o-ring 52, a pair of openings 54a and 54b, and an internal straight thread connection 55.

[0020] A mandrel 56, also in the form of an elongated tubular body member, is connected to the mandrel extension 46 via the thread connection 55, and the o-ring 52 seals against the mandrel immediately above this connection. The mandrel 56 includes a pair of openings 58a and 58b that are aligned with the openings 54a and 54b, respectively, of the mandrel extension 46. Two torque pins 60a and 60b extend through the aligned openings 54a and 60a, and the aligned

openings 54b and 60b, respectively. The mandrel 56 further includes a plurality of external splines 62a and 62b extending downwardly a predetermined distance along the mandrel 56. Each external spline 62a and 62b includes at least one chamfer 64.

[0021] An external shoulder 66 is formed on the mandrel 56 below the external splines 62a and 62b, and a plurality of downward-extending grooves 68 are formed in the shoulder 66 (a side wall of one groove 68 is shown in Fig. 1a). The mandrel 56 further includes a conventional drillpipe pin thread connection 70 to which the string 22 is connected.

[0022] A tubular cap 72 extends around the mandrel 56 and has a plurality of internal splines 74a and 74b formed therein which are engaged with the external splines 62a and 62b, respectively, of the mandrel 56. Each of the splines 74a and 74b has at least one chamfer 76 (not shown) which is adapted to engage a corresponding chamfer 64 of the mandrel 56. The cap 72 further includes a radial surface 78 that is engaged with the shoulder 66 of the mandrel 56, and a pair of fluid ports 80a and 80b are formed in the cap 72 at a predetermined distance below the surface 78. An annular recess 82 is formed in the cap 72 at a predetermined distance below the fluid ports 80a and 80b, and receives an anti-torque ring 84, which is made of a conventional low-friction material. The cap 72 further includes an internal right hand straight thread connection 86.

[0023] A casing adapter 88, in the form of an elongated tubular member, is connected to the cap 72 via the connection 86 and the anti-torque ring 84 is adapted to allow the cap 72 to be removably connected to the casing adapter 88. Since the anti-torque ring 84 is conventional, it will not be described in further detail. The casing adapter 88 extends downwardly and includes an internal left hand thread connection 90 to which the member 34 is connected. It is understood that the connection 86 may be tightened until the casing adapter 88 firmly shoulders against the anti-torque ring 84 and the recess 82 in the cap 72, and then the casing adapter 88 may be backed off of at least a portion of the threads in the connection 86 so as to prevent any inadvertent right hand torque from being applied to the top of the member 34 and thereby loosen the aforementioned left hand threaded joint interconnections of the member 34.

[0024] Referring to Fig. 1b, an embodiment of the slip joint 24 is shown within the expandable tubular member 34 and includes a tubular member 92 having a conventional drillpipe box thread connection 94 to which the string 22 is connected. The bore of the member 92 is stepped to define three concentric inner passages 96, 98 and 100 of increasing diameter in a downwardly direction, as viewed in Fig. 1b. An o-ring 101 is retained in an annular channel extending circumferentially about the passage 98.

[0025] The upper end portion of a tubular member 102 is connected to the lower end portion of the tubular member 92 via a threaded connection 103 and a pair of torque pins 104a and 104b. The tubular member 102 defines a passage 106 and includes a pair of protrusions 108a and 108b extending upwardly from the connection 103. A pair of channels 110a and 110b are formed in the bottom portion of the tubular member 102 (one inner side wall of each channel 110a and 110b are shown in Fig. 1b).

[0026] The slip joint 24 also includes an elongated tubular member 112 which is disposed in the passages 98, 100 and 106. The tubular member 112 includes an upper portion 114 that is slidably engaged with a portion of the internal wall of the passage 98 of the tubular member 92, with the o-ring 101 sealing against the upper portion 114. A integral flange or ring 116 extends radially outward from the tubular member 112 and a pair of channels 118a and 118b are formed therein (one inner side wall of each channel 118a and 118b are shown in Fig. 1b). The channels 118a and 118b are configured to couple with the protrusions 108a and 108b, respectively, of the tubular member 102.

[0027] A tubular member 120 also forms part of the slip joint 24, defines an internal passage 121, and is connected to the tubular member 112 via a threaded connection 122 and a pair of torque pins 124a and 124b. The tubular member 120 has a pair of protrusions 126a and 126b extending upwardly from the connection 122 and configured to couple with the channels 110a and 110b, respectively, of the tubular member 102. The tubular member 120 further includes an o-ring 127 which is sealed against a bottom portion of the tubular member 112, and a conventional drillpipe pin thread connection 128 to which the string 26 is connected.

[0028] Referring to Fig. 1c, an embodiment of the expansion apparatus 30 is shown within the tubular member 34. The upper end of the apparatus 30 is connected to the sub 28 in any conventional manner, and the sub 28 is connected to the string 26 via a conventional drillpipe box thread connection 130.

[0029] The expansion apparatus 30 includes an expansion cone portion 132 that engages the inner wall of the member 34. The shoe 32 of the expansion apparatus 30 is connected to the member 34 via a threaded connection 134 and a pair of radially-extending threaded fasteners 136a and 136b are disposed through the member 34 and into the shoe 32. The sub 28 and the expansion apparatus 30 are designed so that torque may be transmitted from the string 26 to the member 34 via the shoe 32. To this end, the expansion apparatus 30 may be in the form of one of several existing expansion apparatuses, such as, for example, the expansion apparatus disclosed in detail in co-pending U.S. National Stage patent application serial no. 10/546548, filed 8/23/05, attorney docket no. 25791.238.05 (now U.S. Publication 2006-0169460 on 8/3/06)

which was filed from PCT patent application no. PCT/US2004/006246 (attorney's docket no. 25791.238.02), which claims the benefit of the filing date of U.S. provisional patent application serial no. 60/450,504, attorney docket no. 25791.238, filed on February 26, 2003.

[0030] The operation will be described in connection with the general goal of placing the expandable apparatus 30 at the bottom 12 of the well bore 10 and conditioning it for expansion in a manner to be described. To this end, the string 16 and the series of components 14 are lowered in the well bore 10.

[0031] During this lowering, the external splines 62a and 62b of the mandrel 56 are engaged with the internal splines 74a and 74b of the cap 72, and the surface 78 of the cap 72 is in contact with the shoulder 66, as described above. Also, the tubular member 34 is in tension since its weight is primarily carried by the shoulder 66 of the mandrel 56 of the tool 20 and neither the above-described joints nor the joint interconnections of the member 34 undergo compression due to the weight of the expandable tubular member. Further, the fluid ports 80a and 80b allow fluid to flow from the well bore 10 and into the annulus 35, or vice versa, and the o-rings 40 and 52 provide a fluid seal between the well bore 10 and the passage 45 of the tool 20. Moreover, the o-ring 101 provides a fluid seal between the passage 100 and the passage 98 of the slip joint 24, and the o-ring 127 provides a fluid seal between the annulus 35 and the passage 121.

[0032] The lowering continues until the shoe 32 of the expansion apparatus 30 reaches the bottom 12 of the well bore 10. However, during this movement, a relatively high predetermined displacement resistance may be encountered as a result of (1) the shoe 32 reaching a relatively narrow or collapsed section of the well bore 10, (2) the shoe 32 or the member 34 becoming jammed or stuck in the well bore, (3) the friction between the member 34 and the well bore 10 being too high, or (4) any similar resistance.

[0033] If a resistance is encountered, the string 16 is further lowered into the well bore 10 which also lowers the mandrel extension 46, the mandrel 56, the string 22, the member 92 and the member 102 relative to the expansion apparatus 30, the shoe 32, the sub 28, the member 34, the cap 72, the members 112 and 120 and the string 26 which are prevented from further movement by the resistance. This causes the external splines 62a and 62b of the mandrel 56 to disengage from the internal splines 74a and 74b of the cap 72, respectively, and the shoulder 66 of the mandrel 56 to disengage from the surface 78 of the cap 72, as shown in Fig. 2a. Also, since the tubular member 120 is stationary in the well bore 10, the above lowering of the tubular member 102 causes the channels 110a and 110b of the member 102 to engage the protrusions

126a and 126b, respectively, of the tubular member 120 and thus connect the member 102 to the member 120 as shown in Fig. 2b, and therefore to the string 26, the expansion apparatus 30, and the tubular member 34. It is noted that the grooves 68 allow fluid to flow between the annulus 35 and the ports 80a and 80b.

[0034] In this position, a torque from the rig 18 is applied to the string 16 in any conventional manner, to rotate the string 16 clockwise, as viewed downwardly towards the bottom 12 of the well bore 10, to apply a right hand torque that is transmitted from the string 16 through the coupling 37, the mandrel extension 46, the mandrel 56, the string 22, the tubular member 92, the tubular member 102, the tubular member 120, the string 26, the sub 28, the expansion apparatus 30, the shoe 32 and the member 34, due to the above-described connections between these components. However, it is noted that even thought the cap 72 will rotate due to its connection with the member 34, torque is not directly transferred between the mandrel 56 and the cap 72 since the external splines 62a and 62b of the mandrel 56 are spaced, and therefore disengaged, from the internal splines 74a and 74b, respectively, of the cap 72.

[0035] This torque thus causes the shoe 32 and the member 34 to rotate in a clockwise direction, as defined above and hopefully free them from the above-described resistance, thus allowing the string 16 and the series of components 14 to be lowered further until the shoe 32 reaches the bottom 12 of the well bore 10. Due to the above-described left hand thread engagement configuration of the various joint interconnections of the member 34, the interconnections are not loosened due to this rotation.

[0036] Assuming that the shoe 32 reaches the bottom 12 of the well bore 10 either directly by the lowering operation described above, or as a result of the shoe 32 and/or the member 34 being freed up as described above, and further lowered as necessary, the expansion apparatus 30 can be conditioned for expansion in the following manner.

[0037] In particular, the string 16, and therefore the coupling 37, the mandrel extension 46 and the mandrel 56, are raised as necessary in order to directly connect the mandrel 56 with the cap 72 by engaging the external splines 62a and 62b of the mandrel with the internal splines 74a and 74b, respectively, of the cap, and by engaging the shoulder 66 of the mandrel 56 with the surface 78 of the cap 72. This also raises the string 22 and the tubular members 92 and 102 of the slip joint 24, thereby disengaging the channels 110a and 110b from the protrusions 126a and 126b, respectively and thus disconnecting the member 102 from the member 120.

[0038] Left hand torque is then applied to the string 16, thereby rotating the string 16 in a counterclockwise direction towards the bottom 12 of the well bore 10. This torque is transmitted from the string 16, through the coupling 37, the mandrel extension 46, the mandrel 56, and to

the string 22. The mandrel 56 also transmits the torque directly to the cap 72, via the engagement of the splines 62a and 74a, and 62b and 74b. Thus, the cap 72 is rotated counterclockwise until it disengages from the threaded connection 86 and therefore the casing adapter 88. It is understood that, during this rotation, the anti-torque ring 84 functions in a conventional manner, allowing the cap 72 to be removed from the casing adapter 88. However, during this rotation, the torque is not transmitted from the string 22 to the string 26 since there is no engagement between the members 102 and 112, nor between the members 102 and 120, as described above and as shown in Fig. 1b.

[0039] Once the cap 72 is disengaged from the casing adapter 88 in the above manner as shown in Fig. 3a, the string 16 is raised further, thereby raising the coupling 37, the mandrel extension 46, the mandrel 56, the cap 72 (via the shoulder 66 of the mandrel 56) and the string 22. As the string 22 is raised, the tubular members 92 and 102 are also raised until the protrusions 108a and 108b of the member 102 engage the channels 118a and 118b of the member 112, as shown in Fig. 3b. This places the components in condition for an expansion procedure in which the expansion apparatus 30 expands the tubular member 34. In this context, one of several existing expansion procedures may be employed to expand the member 34 such as, for example, the methods disclosed in detail in co-pending U.S. National Stage patent application serial no. 10/546548, filed 8/23/05, attorney docket no. 25791.238.05 (now U.S. Publication 2006-0169460 on 8/3/06) which was filed from PCT. patent application no. PCT/US2004/006246 (attorney's docket no. 25791.238.02), which claims the benefit of the filing date of U.S. provisional patent application serial no. 60/450,504, attorney docket no. 25791.238, filed on February 26, 2003.

[0040] It is understood that the above-mentioned right hand torque can be applied to the string 16 to rotate the shoe 32 and the member 34 for reasons other than those discussed above. For example, before the cap 72 is disengaged from the adapter 88, and therefore the member 34 in the above manner, it is sometimes desired to introduce a hardenable fluidic sealing material into at least a lower region of the annulus 36 between the member 34 and the wall of the well bore 10. To this end, the sealing material would be introduced from the rig 18 into the string 16 and pass through the tool 20, the string 22, the slip joint 24, the string 26 and the expansion apparatus 30 and flow into at least a lower region of the annulus 36 between the member 34 and the wall of the well bore 10. In this situation, the application of right hand torque in the above manner to rotate the member 34 would more evenly distribute the sealing material in the lower region of the annulus 36. In this context, examples of methods for employing the sealing material in the above manner are disclosed in detail in co-pending U.S. National Stage patent

application serial no. 10/546548, filed 8/23/05, attorney docket no. 25791.238.05 (now U.S. Publication 2006-0169460 on 8/3/06) which was filed from PCT patent application no. PCT/US2004/006246 (attorney's docket no. 25791.238.02), which claims the benefit of the filing date of U.S. provisional patent application serial no. 60/450,504, attorney docket no. 25791.238, filed on February 26, 2003. Also, it is understood that the above-mentioned right hand torque can be applied in known casing drilling applications.

[0041] It is also noted that when the above components are in condition for an expansion procedure, the series of components 14 may be entirely positioned below the casing 19, or the series may be entirely positioned within the casing, or a portion of the series may be within the casing 19 and another portion of the series may be below the casing 19, such as, for example, the tool 20 being positioned within the casing 19 and the majority of the member 34 being positioned below the casing 19.

Variations

•

[0042] It is understood that variations may be made in the foregoing without departing from the scope of the invention. For example, the teachings of the present illustrative embodiments may be used to provide a well bore casing, a pipeline, or a structural support. Furthermore, the elements and teachings of the various illustrative embodiments may be combined in whole or in part in some or all of the illustrative embodiments. Further examples of variations are as follows:

- 1. The mandrel extension 46 may be combined with the mandrel 56 to form an integral component.
- 2. Additional external splines may be added to the mandrel 56, and additional corresponding internal splines may be added to the cap 72.
- Additional grooves and fluid ports for fluid flow may be formed in the shoulder 66 and the cap
 respectively.
 - 4. Conventional supporting structures such as, for example, solid centralizers or standoffs, may be added in any conventional manner in order to decrease the possibility of the member 34 buckling during the above-described operation.
 - 5. Instead of or in addition to torque pins, other conventional mechanisms may be used to rotatably lock the above-described rotatably-locked connections.
 - 6. Additional channels may be formed in the tubular member 112 of the slip joint 24 and these additional channels may be coupled to additional protrusions that may be added to the tubular member 102.

7. Additional channels may be formed in the tubular member 102 of the slip joint 24 and these additional channels may be coupled to additional protrusions that may be added to the tubular member 120.

. - •

- 8. Instead of or in addition to using the above-described channels and protrusions of the tubular member 102, the channels of the tubular member 112, and the protrusions of the tubular member 120, it is understood that other conventional torque transmission mechanisms may be used to selectively transmit torque between the tubular member 102 and the tubular member 112, and to selectively transmit torque between the tubular member 102 and the tubular member 120.
- 9. It is understood that the foregoing disclosure may be employed in many different applications, including cased hole applications or openhole applications and all types and variations thereof.
- 10. In addition to a vertical well bore as shown in Figs. 1 and 2, it is understood that the foregoing disclosure may be applied to horizontal well bores and multilateral wells, including main well bores and all branches thereof.
- [0043] Spatial references, such as "upper", "lower", "above", "below", "between", "vertical", "bottom", "angular", etc., are for the purpose of illustration only and do not limit the specific orientation or location of the structure described above.
- [0044] Although illustrative embodiments of the invention have been shown and described, a wide range of modifications, changes and substitutions is contemplated in the foregoing disclosure. In some instances, some features of the present invention may be employed without a corresponding use of the other features. Accordingly, it is appropriate that the appended claims be construed broadly and in a manner consistent with the scope of the invention. In the claims, means-plus-function clauses are intended to cover the structures described herein as performing the recited function and not only structural equivalents, but also equivalent structures.

Claims

- 1. A tubular apparatus comprising:
 - a first tubular member adapted to be lowered into a well bore;
 - a second tubular member connected to the first tubular member; and
- a third tubular member which in a first state is connected to the first tubular member and disconnected from the second tubular member, and in a second state is disconnected from the first tubular member and connected to the second tubular member, the third tubular member adapted for movement relative to the first and second tubular members to switch between the first and second states.
- 2. The apparatus of claim 1 wherein the third tubular member moves relative to the first and second tubular members in response to at least one of the first and second tubular members encountering a resistance in the well bore.
- 3. The apparatus of claim 1 wherein the third tubular member moves axially relative to the first and second tubular members.
- 4. The apparatus of claim 1 or 2 further comprising means for applying a torque to the third tubular member when it has been disconnected from the first tubular member and connected to the second tubular member.
- 5. The apparatus of claim 4 where the torque is transferred from the third tubular member to the second tubular member to enable the resistance to be overcome.
- 6. The apparatus of claim 3 wherein the third tubular member moves in one direction relative to the first and second tubular members in response to one of the members encountering a predetermined resistance in the well bore.
- 7. The apparatus of claim 6 wherein the third tubular member is adapted to move relative to the first and second tubular members in a direction opposite the one direction to disconnect from the second tubular member and reconnect with the first tubular member.

- 8. The apparatus of claim 7 further comprising means for applying a torque to the third tubular member after the first tubular member has been disconnected from the second tubular member and reconnected to the first tubular member.
- 9. The apparatus of claim 8 further comprising a fourth tubular member threadedly connected to the first tubular member, and wherein the torque is transferred from the third tubular member to the first tubular member to disconnect the threaded connection between the fourth tubular member and the first tubular member.
- 10. The apparatus of claim 1 further comprising means for introducing a sealing material through the tubular members for passage into the well bore, and means for applying a torque to the third tubular member when it has been disconnected from the first tubular member and connected to the second tubular member to transfer the torque from the third tubular member to the second tubular member to distribute the material in the well bore.
- 11. A method comprising: lowering a first tubular member into a well bore; connecting a second tubular member to the first tubular member; connecting a third tubular member to the first tubular member; and moving the third tubular member relative to the first and second tubular members to disconnect the third tubular member from the first tubular member and connect the third tubular member to the second tubular member.
- 12. The method of claim 11 wherein the third tubular member moves relative to the first and second tubular members in response to at least one of the first and second tubular members encountering a resistance in the well bore.
- 13. The method of claim 11 wherein the third tubular member moves axially relative to the first and second tubular members.
- 14. The method of claim 11 or 12 further comprising applying a torque to the third tubular member after the step of moving.

- 16. The method of claim 13 wherein the third tubular member moves in one direction relative to the first and second tubular members in response to one of the members encountering a predetermined resistance in the well bore.
- 17. The method of claim 16 further comprising moving the third tubular member relative to the first and second tubular members in a direction opposite the one direction to disconnect from the second tubular member and reconnect with the first tubular member.
- 18. The method of claim 17 further comprising applying a torque to the third tubular member after the first tubular member has been disconnected from the second tubular member and reconnected to the first tubular member.
- 19. The method of claim 18 further comprising threadedly connecting a fourth tubular member to the first tubular member, and wherein the torque is transferred from the third tubular member to the first tubular member to disconnect the threaded connection between the fourth tubular member and the first tubular member.
- 20. The method of claim 11 further comprising introducing a sealing material through the tubular members for passage into the well bore, and applying a torque to the third tubular member when it has been disconnected from the first tubular member and connected to the second tubular member to transfer the torque from the third tubular member to the second tubular member to distribute the material in the well bore.
- 21. A system comprising: means for lowering a first tubular member into a well bore; means for connecting a second tubular member to the first tubular member; means for connecting a third tubular member to the first tubular member; and means for moving the third tubular member relative to the first and second tubular

members to disconnect the third tubular member from the first tubular member and connect the third tubular member to the second tubular member.

- 22. The system of claim 21 wherein the third tubular member moves relative to the first and second tubular members in response to at least one of the first and second tubular members encountering a resistance in the well bore.
- 23. The system of claim 21 wherein the third tubular member moves axially relative to the first and second tubular members.
- 24. The system of claim 21 or 22 further comprising means for applying a torque to the third tubular member after the step of moving.
- 25. The system of claim 24 where the torque is transferred from the third tubular member to the second tubular member to enable the resistance to be overcome.
- 26. The system of claim 23 wherein the third tubular member moves in one direction relative to the first and second tubular members in response to one of the members encountering a predetermined resistance in the well bore.
- 27. The system of claim 26 further comprising means for moving the third tubular member relative to the first and second tubular members in a direction opposite the one direction to disconnect from the second tubular member and reconnect with the first tubular member.
- 28. The system of claim 27 further comprising means for applying a torque to the third tubular member after the first tubular member has been disconnected from the second tubular member and reconnected to the first tubular member.
- 29. The system of claim 28 further comprising means for threadedly connecting a fourth tubular member to the first tubular member, and wherein the torque is transferred from the third tubular member to the first tubular member to disconnect the threaded connection between the fourth tubular member and the first tubular member.
- 30. The system of claim 21 further comprising means for introducing a sealing material through the tubular members for passage into the well bore, and means for applying a torque to the third tubular member when it has been disconnected from the first tubular member and

connected to the second tubular member to transfer the torque from the third tubular member to the second tubular member to distribute the material in the well bore.