Punktschweißen – Workshop

Maximilian Grau

16. März 2024

Folie: 1 / 12

Ziele des Workshops

- ► Grundlagen des Punktschweißens
- Bedienung des Schweißgerätes
- praktische Übungen
- Umgang mit 18650-Zellen

Was ist Punktschweißen?

Punktschweißen nutzt das Prinzip des Widerstandsschweißens

- elektrischer Strom wird angelegt
- an den zu schweißenden Punkten auf dem Metall herrscht ein hoher Widerstand
- $W_s = I_s^2 R_s t_s$ W_s - Schweißenergie | I_s - Strom | t_s - Schweißzeit R_s - Widerstand an der Schweißstelle
- ightharpoonup enorme Erhitzung ightarrow Metall schmilzt
- durch Druckausübung bilden beide Metalle bei Abkühlung an diesem Punkt eine feste Verbindung

https://proleantech.com/ spot-welding-advantages-disadvantages-application

Folie: 3 / 12

Punktschweißgerät im Netz39 e.V.

- kWeld von keenlab
- bis zu 500 Joule bzw. 2000 Ampere
- Steuerung über LCD und Drehknopf
- Schweißen geschieht entweder über Fußpedal oder Automatik
- Anschluss an Ultrakondensatoren oder LiPo-Akkıı

https://www.keenlab.de/index.php/product/ kweld-electronics/

Anforderungen an die Spannungsquelle:

Damit ein sehr hoher Strom fließen kann, brauchen wir eine Spannungsquelle mit einem sehr niedrigen Innenwiderstand. Die zwei einfachsten Möglichkeiten sind:

Ultrakondensatoren

https://www.keenlab.de/index.php/product/kweld-ultracapacitor-module/

Lithium-Polymer (LiPo-Akku)

https://spielzeug-fuchs.de/produkt/lipo-akku-3s-111v-5000mah-40c-softcase-5mm-goldkontakt/

Maximilian Grau 16. März 2024

Folie: 5 / 12

Arbeitsschutz

Gefahren beim Schweißen entstehen durch:

- Funkenbildung aufgrund herausgespritztem schmelzflüssigem Schweißgut
- überhitzten LiPo-Akku
- starke magnetische Felder

Verbot für Personen mit Herzschrittmacher nach ISO 7010

https://commons.wikimedia.org/w/index.php?curid=26500071

Warnung vor magnetischem Feld nach ISO 7010

https://commons.wikimedia.org/w/index.php?curid=26501573

Materialwahl

Elektrodenmaterial:

- bestehen aus Kupfer
- hohe Wärmeleitfähigkeit, sehr geringer elektr. Widerstand
- → Wärme wird dadurch vorzugsweise in Werkstücken, nicht in Elektroden, erzeugt

Materialien zum Punktschweißen:

- Edelstahl
- (verzinkter) Stahl
- Nickellegierungen
- Titan

Alle leiten Wärme schlecht und besitzen einen hohen elektr. Widerstand

→ geeignete Materialien zum Punktschweißen

Joule-Einstellung

Die Menge an Energie, die für das Erstellen von Schweißpunkten fließen muss, hängt vom Material und dessen Dicke ab.

dünner Nickelstreifen	20 J
dickerer Nickelstreifen	30-40 J

Gefährlichkeit von Spannung/Strom

Welche Konstellation ist gefährlich für den menschlichen Körper?

Der Mensch fässt eine Leitung an, dort liegt eine Spannung an und es fließt ein Strom.

Konstellation 1:

Spannung: 16 V

Strom: 1600 A

Konstellation 2:

Spannung: 1600 V

Strom: 50 mA

Umgang mit 18650-Zellen

Kurzschluss-Gefahr ist hoch – nicht hebeln beim Entfernen von Nickelstreifen!

+ und - sind sich gefährlich nahe

Werkszustand: gelber Schrumpfschlauch und weißer Isolationsring)

zusätzlicher Isolationspad

Folie: 11 / 12

Umgang mit 18650-Zellen

Alte Schweißpunkte mit Dremel glatt schleifen. Nur so können qualitativ gute neue Schweißpunkte entstehen.

Platzhalter Bild alte Schweißpunkte auf einer 18650-Zelle

Platzhalter Bild glatt geschliffene Oberfläche

Folie: 12 / 12

Wartung

Kupferelektroden neu anspitzen:

- Schrauben lösen. Elektrode entnehmen
- Elektrode in die Tischbohrmaschine einspannen
- mit feinem Sandpapier die Spitze anschleifen, bis sie wieder blank und einigermaßen spitz ist

LiPo-Akku wieder auf Storage-Spannung laden

https://www.keenlab.de/index.php/product/kweld-electronics/