Prof. Dr. M. Chimani L. Enz, J. Kirstein, T. Oelschlägel, F. Stutzenstein, <u>N. Troost</u> https://kreuzerl.tcs.uos.de Universität Osnabrück Theoretische Informatik Sommersemester 2020

Übungsblatt 3 zur Einführung in die Theoretische Informatik

Ausgabe: 08. Mai 2020 Kreuzerl-Deadline: 17. Mai 2020

Die Aufgaben auf diesem Blatt beziehen sich auf den Vorlesungsstoff bis inklusive Kapitel 4.3. Bitte beachten Sie die Ankündigung Wichtige Hinweise zu den Übungsgruppen in der stud. IP-Veranstaltung.

Aufgabe 3.1 Natürliche Zahlen erzeugen

Seien $\mathbb{B}(n)$ die Binärdarstellung und $\mathbb{H}(n)$ die Hexadezimaldarstellung von $n \in \mathbb{N}$. In diesen Darstellungen sind keine führenden Nullen enthalten (mit Ausnahme der Zahl Null selbst, die aus genau einer "0" besteht). Sei $R_2 = \{n \in \mathbb{N} \mid n-2 \text{ ist durch 8 teilbar}\}$.

- (a) Geben Sie eine reguläre Grammatik an, die genau $\mathbb{B}(n)$ für alle $n \in \mathbb{R}_2$ erzeugt.
- (b) Geben Sie einen DEA an, der genau $\mathbb{B}(n)$ für alle $n \in R_2$ akzeptiert.
- (c) Geben Sie einen regulären Ausdruck an, der genau $\mathbb{H}(n)$ für alle $n \in R_2$ beschreibt.

$\textbf{Aufgabe 3.2} \quad \textbf{DEA} \rightarrow \textbf{regul\"{a}re Grammatik} \rightarrow \textbf{NDEA}$

(a) Wandeln Sie den folgenden DEA – gemäß dem Vorgehen aus der Vorlesung! – in eine reguläre Grammatik um.

(b) Wandeln Sie die entstandene reguläre Grammatik – gemäß dem Vorgehen aus der Vorlesung! – in einen NDEA um.

Aufgabe 3.3 NDEA \rightarrow DEA

Gegeben sei der folgende NDEA. Wandeln Sie ihn – gemäß dem Vorgehen aus der Vorlesung! – in einen DEA um.

Aufgabe 3.4 Regulärer Ausdruck \rightarrow NDEA

Gegeben sei der reguläre Ausdruck:

$$((aa)^* \mid (b|c)^+d)$$

Wandeln Sie ihn – gemäß dem Vorgehen aus der Vorlesung! – in einen NDEA um.

Hinweis: Beachten Sie dabei also, dass Sie nichts vereinfachen. Insbesondere alle ε-Übergänge sollen erhalten bleiben.

Aufgabe 3.5 Fiese Ausdrücke

Wir definieren im Folgenden fiese Ausdrücke rekursiv. Dazu definieren wir die Funktion \mathcal{L} , die fiese Ausdrücke auf Sprachen abbildet.

- [] ist ein fieser Ausdruck. Wir definieren $\mathcal{L}([]) := \{ \varepsilon \},$
- Für jedes $\sigma \in \Sigma$ ist $[\sigma]$ ein fieser Ausdruck. Wir definieren $\mathcal{L}([\sigma]) := {\sigma}$.
- Sei F ein fieser Ausdruck, dann sind $\{F\}$ und F? fiese Ausdrücke. Wir definieren $\mathcal{L}(\{F\}) := \mathcal{L}(F)^+$ und $\mathcal{L}(F?) := \mathcal{L}(F) \cup \{\varepsilon\}$.
- Seien F_1 und F_2 fiese Ausdrücke, dann sind $[F_1F_2]$ und $[F_1, F_2]$ fiese Ausdrücke. Wir definieren $\mathcal{L}([F_1F_2]) := \mathcal{L}(F_1)\mathcal{L}(F_2)$ und $\mathcal{L}([F_1, F_2]) := \mathcal{L}(F_1) \cup \mathcal{L}(F_2)$.

Beispiel: $\mathcal{L}([[[a][b]?],[[\{[c]\}[b]][a]]) = \{a,ab\} \cup \{c\}^+\{ba\}.$ Zeigen Sie nun

- (a) dass alle Sprachen, die durch fiese Ausdrücke beschreibbar sind, auch durch reguläre Ausdrücke beschreibbar sind,
- (b) dass es eine Sprache gibt, die durch reguläre Ausdrücke, aber nicht durch fiese Ausdrücke beschreibbar ist.

Aufgabe 3.6 Kreuzworträtsel, Reguläre Ausdrücke

Lösen Sie das folgende Kreuzworträtsel. Jedes Wort ist durch seinen regulären Ausdruck gegeben.

Veľa šťastia!