Curs 2011-12

- 1. (a) Definiu els conceptes de punt interior, punt adherent i de punt de la frontera.
 - (b) Considerem el conjunt $A = \{(x, y) \in \mathbb{R}^2 : x^2 4 \le y \le 4 x^2\}.$
 - (i) Dibuixeu-lo.
 - (ii) Proveu que el conjunt A és compacte.
 - (iii) Determineu la frontera de A. Justifiqueu detalladament la resposta.

Solució:

- (a) Siguin A un subconjunt de \mathbb{R}^n i $a \in \mathbb{R}^n$. Aleshores:
 - a és un punt interior a A quan existeix r > 0 tal que $B(a, r) \subset A$.
 - a és un punt adherent a A quan $B(a,r) \cap A \neq \emptyset$, per a cada r > 0, o, equivalentment, quan a és el límit d'una successió de punts d'A.
 - a és un punt de la frontera d'A quan a és un punt adherent a A i a $\mathbb{R}^n \setminus A$ o, equivalentment, quan a és un punt adherent a A però no és un punt interior a A.
- (b.i) Els punts del conjunt A són els punts del pla \mathbb{R}^2 que estan per sobre de la paràbola $y = x^2 4$ i per sota de la paràbola $y = 4 x^2$. Els punts (x, y) de tall d'aquestes dues paràboles són les solucions del sistema

$$\begin{cases} y = x^2 - 4 \\ y = 4 - x^2, \end{cases}$$

que són $(\pm 2,0)$, ja que l'equació $x^2-4=4-x^2$ és equivalent a $x^2=4$, que té per solucions $x=\pm 2$. Per tant, A és el conjunt representat en el dibuix següent:

(b.ii) A és compacte perquè A és tancat i acotat:

- A és tancat ja que és l'antiimatge d'un subconjunt tancat de \mathbb{R}^2 per una funció contínua $f: \mathbb{R}^2 \to \mathbb{R}^2$. En efecte, $A = f^{-1}((-\infty, 0] \times [0, +\infty))$, on $f: \mathbb{R}^2 \to \mathbb{R}^2$ és la funció definida per $f(x,y) = (x^2 4 y, 4 x^2 y)$, que és contínua perquè les seves funcions components $f_1(x,y) = x^2 4 y$ i $f_2(x,y) = 4 x^2 y$ ho són (són polinomis!).
- A és acotat ja que si $(x,y) \in A$ llavors $-4 \le y \le 4$ i $-2 \le x \le 2$. En efecte, si $(x,y) \in A$ llavors $-4 \le x^2 4 \le y \le 4 x^2 \le 4$, i a més a més $x^2 4 \le 4 x^2$, és a dir, $x^2 \le 4$, o equivalentment $-2 \le x \le 2$.

(b.iii) Anem a provar que la frontera d'A és el conjunt representat en la figura següent:

És a dir, anem a demostrar que FrA = C, on

$$C = \{ (x, x^2 - 4) : -2 \le x \le 2 \} \cup \{ (x, 4 - x^2) : -2 \le x \le 2 \}.$$

Prova de la inclusió Fr $A \subset C$: Primer observeu que Fr $A = \overline{A} \setminus A^{\circ} = A \setminus A^{\circ}$, ja que, com hem vist en (b.ii), A és tancat. Ara $B = \{(x,y) \in \mathbb{R}^2 : x^2 - 4 < y < 4 - x^2\}$ és obert perquè és l'antiimatge d'un subconjunt obert de \mathbb{R}^2 per una funció contínua $f: \mathbb{R}^2 \to \mathbb{R}^2$. En efecte, $B = f^{-1}((-\infty,0) \times (0,+\infty))$, on $f: \mathbb{R}^2 \to \mathbb{R}^2$ és la funció considerada a (b.ii). Així doncs, B és un subconjunt obert d'A, i per tant $B \subset A^{\circ}$. En conseqüència,

Fr
$$A = A \setminus A^{\circ} \subset A \setminus B = C$$
.

Prova de la inclusió Fr $A \supset C$: Primer observeu que Fr $A = \overline{A} \cap (\mathbb{R}^2 \setminus A) = A \cap (\mathbb{R}^2 \setminus A)$, ja que, com hem vist en (b.ii), A és tancat. Però és clar que $C \subset A$, i per tant només cal comprovar que $C \subset \mathbb{R}^2 \setminus A$, és a dir, cada punt de C és el límit d'alguna successió de punts de $\mathbb{R}^2 \setminus A$. En efecte:

- Si $-2 \le x \le 2$ i $y = x^2 4$ llavors $(x, y) = \lim_{n \to \infty} (x_n, y_n)$, on $(x_n, y_n) = (x, y \frac{1}{n})$ pertany a $\mathbb{R}^2 \setminus A$, ja que $y_n = y \frac{1}{n} < y = x^2 4 = x_n^2 4$.
- Si $-2 \le x \le 2$ i $y = 4 x^2$ llavors $(x, y) = \lim_{n \to \infty} (x_n, y_n)$, on $(x_n, y_n) = (x, y + \frac{1}{n})$ pertany a $\mathbb{R}^2 \setminus A$, ja que $y_n = y + \frac{1}{n} > y = 4 x^2 = 4 x_n^2$.

- **2.** (a) Proveu que si $f: \mathbb{R}^n \to \mathbb{R}$ és diferenciable en un punt $p \in \mathbb{R}^n$, llavors f és contínua en aquest punt.
 - (b) Per a $m \in \mathbb{N}$ definim les funcions

$$f_m(x,y) = \begin{cases} \frac{2y^m}{x^2 + y^2}, & \text{si } (x,y) \neq (0,0), \\ 0, & \text{si } (x,y) = (0,0). \end{cases}$$

- (i) Per a quins valors de m són contínues en \mathbb{R}^2 ?
- (ii) Per a quins valors de m són diferenciables en \mathbb{R}^2 ?
- (iii) Quina és l'equació del pla tangent a la gràfica de f_5 en el punt (1, -1, -1)?

Solució:

(a) Volem demostrar que f és contínua en p, és a dir,

$$\lim_{x\to p} f(x) = f(p)$$
 o, equivalentment, $\lim_{x\to p} (f(x) - f(p)) = 0$.

En efecte, si $x \in \mathbb{R}^n \setminus \{p\}$ llavors f(x) - f(p) = g(x) ||x - p|| + Df(p)(x - p), on Df(p) és la diferencial de f en p i

$$g(x) = \frac{f(x) - f(p) - Df(p)(x - p)}{\|x - p\|}.$$

Però $\lim_{x\to p}g(x)=0$ (perquè f és diferenciable en p), $\lim_{x\to p}\|x-p\|=0$ i

$$\lim_{x \to p} Df(p)(x - p) = \lim_{y \to 0} Df(p)(y) = Df(p)(0) = 0$$

(perquè $Df(a): \mathbb{R}^n \to \mathbb{R}$ és lineal i per tant contínua en p i compleix Df(p)(0) = 0). En conseqüència,

$$\lim_{x \to p} (f(x) - f(p)) = \left(\lim_{x \to p} g(x)\right) \left(\lim_{x \to p} ||x - p||\right) + \lim_{x \to p} Df(p)(x - p) = 0.$$

(b.i) Observeu que f_m restringida a $\mathbb{R}^2 \setminus \{(0,0)\}$ és el quocient de dos polinomis i el del denominador només s'anul·la a l'origen. Per tant, f_m és diferenciable en cada punt de $\mathbb{R}^2 \setminus \{(0,0)\}$, i, en particular, f_m també és contínua en cada punt de $\mathbb{R}^2 \setminus \{(0,0)\}$. Així doncs, f_m és contínua (diferenciable) en \mathbb{R}^2 si i només si ho és en l'origen. Però

$$(1) |f_m(x,y)| = \frac{2|y|^m}{x^2 + y^2} \le \frac{2||(x,y)||^m}{||(x,y)||^2} = 2||(x,y)||^{m-2} ((x,y) \in \mathbb{R}^2 \setminus \{(0,0)\}).$$

Si m>2aleshores $\lim_{(x,y)\to(0,0)}2\,\|(x,y)\|^{m-2}=0,$ i (1) implica que

$$\lim_{(x,y)\to(0,0)} f_m(x,y) = 0 = f_m(0,0), \text{ és a dir}, f_m \text{ és contínua en l'origen}.$$

D'altra banda, si $m \leq 2$ llavors

$$\lim_{y \to 0^+} f_m(0, y) = \lim_{y \to 0^+} 2y^{m-2} = \begin{cases} 2, & \text{si } m = 2, \\ +\infty, & \text{si } m < 2, \end{cases}$$

i per tant f_m no és contínua en l'origen.

En conclusió, f_m és contínua en \mathbb{R}^2 si i només si m > 2 o, equivalentment, si i només si $m \ge 3$ (ja que $m \in \mathbb{N}$).

(b.ii) Si f_m és diferenciable en \mathbb{R}^2 , també és contínua i per tant $m \geq 3$, segons acabem de provar. A més a més, també hem vist que f_m és diferenciable en \mathbb{R}^2 si i només si ho és en l'origen. Així doncs, cal determinar per a quins $m \in \mathbb{N}$, $m \geq 3$, f_m és diferenciable en l'origen. Ara $\frac{\partial f_m}{\partial x}(0,0) = 0$, ja que $f_m(x,0) = 0$, per a tot $x \in \mathbb{R}$. D'altra banda,

$$\frac{\partial f_m}{\partial y}(0,0) = \lim_{y \to 0} \frac{f_m(0,y) - f_m(0,0)}{y} = \lim_{y \to 0} 2y^{m-3} = \begin{cases} 2, & \text{si } m = 3, \\ 0, & \text{si } m > 3. \end{cases}$$

Per tant, si $m \geq 3$ llavors f_m és diferenciable en l'origen si i només si $\lim_{(x,y)\to(0,0)}g_m(x,y)=0$,

on
$$g_m(x,y) = \frac{f_m(x,y)}{\|(x,y)\|}$$
, si $m > 3$, i

$$g_3(x,y) = \frac{f_3(x,y) - 2y}{\|(x,y)\|} = \frac{2y^3 - 2y(x^2 + y^2)}{\|(x,y)\|(x^2 + y^2)} = \frac{-2x^2y}{(x^2 + y^2)^{3/2}}.$$

Si m > 3, per (1) tenim que $|g_m(x,y)| \le 2 ||(x,y)||^{m-3}$ i $\lim_{(x,y)\to(0,0)} 2 ||(x,y)||^{m-3} = 0$. En conseqüència, $\lim_{(x,y)\to(0,0)} g_m(x,y) = 0$, és a dir, f_m és diferenciable en l'origen.

D'altra banda, $\lim_{x\to 0^+}g_3(x,x)=\lim_{x\to 0^+}\frac{-x^3}{2^{1/2}|x|^3}=-2^{-1/2}\neq 0$, i en particular no es compleix que $\lim_{(x,y)\to(0,0)}g_3(x,y)=0$. Per tant f_3 no és diferenciable en l'origen.

En conclusió, f_m és diferenciable en \mathbb{R}^2 si i només si m > 3 o, equivalentment, si i només si $m \ge 4$ (ja que $m \in \mathbb{N}$).

(b.iii) L'equació del pla tangent a la gràfica de f_5 en el punt $(1,-1,-1)=(1,-1,f_5(1,-1))$ és

$$z = f_5(1, -1) + \frac{\partial f_5}{\partial x}(1, -1)(x - 1) + \frac{\partial f_5}{\partial y}(1, -1)(y + 1),$$

ja que f_5 és diferenciable en el punt (1, -1), per (b.ii). Ara, per a cada $(x, y) \in \mathbb{R}^2 \setminus \{(0, 0)\}$, tenim que

$$\frac{\partial f_5}{\partial x}(x,y) = \frac{-4xy^5}{(x^2+y^2)^2} \quad i \quad \frac{\partial f_5}{\partial y}(x,y) = \frac{10y^4}{x^2+y^2} - \frac{4y^6}{(x^2+y^2)^2}.$$

En particular, $\frac{\partial f_5}{\partial x}(1,-1) = 1$ i $\frac{\partial f_5}{\partial y}(1,-1) = 4$. Així doncs, l'equació del pla tangent a la gràfica de f_5 en el punt $(1,-1,-1) = (1,-1,f_5(1,-1))$ és z = -1 + x - 1 + 4(y+1), és a dir,

$$x + 4y - z + 2 = 0.$$