Fundamentos de los Sistemas Operativos (FSO)

Departamento de Informática de Sistemas y Computadoras (DISCA)

Universitat Politècnica de València

Part 2: Process Management

Unit 4
Process scheduling

Goals

- Understanding why the operating system requires
 a CPU scheduler
- Knowing the criteria to optimize in order to select an appropiate scheduler
- Studying different CPU scheduling algorithms

- Bibliography
 - A. Silberschatz, P. B. Galvin. "Sistemas Operativos Concepts" 9^a ed. Chapter 5

- Scheduling concept
- Scheduling criteria
- Scheduling algorithms
 - FCFS
 - SJF
 - SRTF
 - Priorities
 - Round robin
- Multilevel queue

- Scheduling concept
- Scheduling criteria
- Scheduling algorithms
 - FCFS
 - SJF
 - SRTF
 - Priorities
 - Round robin
- Multilevel queue

I can only attend to a process at a time. When this is finished I will attend another

- Lack of resources: Many processes competing for a single resource
- The OS has to implement a policy to allocate resources

Short and long term schedulers

New process

Scheduler: OS component that decides what process gets a particular resource (i.e. the CPU) at every time instant, following a certain policy

Short, medium and long term schedulers

Medium term scheduler: It controls which processes, among the initialized ones, should be in memory and which in the swapping area.

Short term scheduler: It chooses a process from the ready queue for execution assigning to it the CPU.

- Process types: the active life of a process is a sequence of CPU bursts and I/O bursts
 - CPU-bound process: It spends most of its life time making calculations (i.e. MathLab)
 - I/O bound process: It spends more time making I/O than making calculations (i.e. SQL server)

CPU burst length

Statistical studies show that most processes have short CPU bursts together with I/O bursts

- A large number of short
 CPU bursts
- An small number of large
 CPU bursts

- Scheduling concept
- Scheduling criteria
- Scheduling algorithms
 - FCFS
 - SJF
 - SRTF
 - Priorities
 - Round robin
- Multilevel queue

- How to schedule depending on the load type?
 - CPU Utilization: Relative CPU busy time
 Resource_busy_time / Total_time
 - Throughput: Number of jobs processed per time unit Number_of_ended_processes / Total_time
 - Turnaround Time: Time elapsed between the arrival of a process and its completion

```
tout – tin = \sum Tcpu + \sum Tı/o + \sum TQueuing
```

- Waiting time: Total time that a process spends in the ready queue
- Response time: Time from launching a process until the CPU starts to execute its first instruction
- Fairness: Ensuring that every process gets its fair share of CPU. That is, processes are treated equally.
 The opposite end of fairness is starvation

Scheduling criteria

Multiprogramming itself improves many of the scheduling criteria compared to sequential execution

Scheduling criteria

Multiprogramming itself improves many of the scheduling criteria compared to sequential execution

- Scheduling concept
- Scheduling criteria
- Scheduling algorithms
 - FCFS
 - SJF
 - SRTF
 - Priorities
 - Round robin
- Multilevel queue

Scheduling algorithms

- Short-term scheduler target
 - Deciding to which process from those in the ready queue is assigned the CPU
- When the scheduler should act:
 - If the CPU is idle (process ends or gets suspended)
 - If a process arrives to the ready queue
 - Timer interrupt (round-robin)

- Scheduling policies: Non Preemptive/Preemptive
 - Non Preemptive: the process owns the CPU until voluntarily leaves (i.e. FCFS)
 - Less context switches, CPU grabbing can happen (i.e. Windows 3.11)
 - Preemptive: the scheduler can take out a process from the CPU
 - It is required to implement time sharing and real time (i.e. Unix, Windows NT and Mac OS X)

- Scheduling algorithms:
 - First-Come First-Served (FCFS).
 - Shortest-job-first (SJF)

- Shortest-remaining-time-first (SRTF)
- Round robin

- Priorities
 - Preemption optional
 - Static / dynamic
- Multilevel queue

FCFS (first-come, first-served)

- Non Preemptive: When a process is assigned to the CPU it keeps it until ending or starting an I/O access
- The CPU is allocated to processes in arrival order to the ready queue
- Advantages: Easy to implement
- Disadvantages:
 - Waiting time in not optimized
 - **Convoy effect**: short delay for long jobs

Scheduling algorithms: FCFS

Not suitable for interactive systems

Process	Arrival	CPU
	time	burst
P1	0	24
P2	0	3
P3	0	3

Case 1) Arrival order P1, P2, P3

Mean waiting time:

(0 + 24 + 27) / 3 = 17

Case 2) Arrival order P2, P3, P1

Mean waiting time:

SJF (Shortest-Job-First)

- Each job is associated with the length of the next CPU burst
- CPU is assigned to the job with smaller CPU burst
- Non Preemptive

Process	Arrival time	CPU burst
P1	0	7
P2	2	4
P3	4	1
P4	5	4

Arrival instant

Mean waiting time: (0 + 6 + 3 + 7) / 4 = 4

Scheduling algorithms: SRTF

- SRTF (Shortest-Remaining-Time-First)
 - The CPU is allocated to the process with less reamining time to finish its CPU burst
 - Preemptive
 - Advantages: Optimize the average waiting time
 - Disadvantages:
 - Predicting the duration of the next range of CPU
 - Starvation risk on long jobs

Process	Arrival	CPU
	time	burst
P1	0	7
P2	2	4
P3	4	1
P4	5	4

Scheduling algorithms: SRTF

- SRTF (Shortest-Remaining-Time-First)
 - The CPU is allocated to the process with less reamining time to finish its CPU burst
 - Preemptive
 - Advantages: Optimize the average waiting time
 - Disadvantages:
 - Predicting the duration of the next range of CPU
 - Starvation risk on long jobs

Process	Arrival time	CPU burst
P1	0	7
P2	2	4
P3	4	1
P4	5	4

Scheduling algorithms: Priorities

Scheduling with priorities (Preemptive)

Every process is associated with a number (integer), called priority according to some criteria

CPU is allocated according to job priority (usually lower value)

ineans inglier priority)	Process	Arrival time	CPU burst	Priority	Less		
	P1	0	7	15 🕳	priority		
	P2	2	4	10			
Gantt diagram	P3	4	1	5 -	More		
	P4	5	4	10	priority		
(P1) (P2) (P3) (P4)							
P1 P2 P3 P2		P4		P1			
0 2 4 5	7		11		16		

Scheduling with priorities (Preemptive)

Scheduling algorithms: Priorities

Every process is associated with a number (integer), called priority according to some criteria

CPU is allocated according to job priority (usually lower value)

Scheduling algorithms: Priorities

Scheduling with priorities (non Preemptive)

Every process is associated with a number (integer), called priority according to some criteria

CPU is allocated according to job priority (usually lower value)

means higher priority)

Scheduling with priorities (non Preemptive)

Scheduling algorithms: Priorities

Every process is associated with a number (integer), called priority according to some criteria

CPU is allocated according to job priority (usually lower value)

means higher priority)

Scheduling algorithms: Round robin

Round-Robin (RR) or circular scheduling

- Every process is assigned with a CPU time packet or "quantum" (q)
- If the CPU burst is greater than q, then the process is get out from the CPU and it is put into the ready queue

If there are n processes in the ready queue, each gets 1/n of the

CDII time in intervals of a units

CPO tillie ili lillervais of q utills.					Process	Arri	val	CPL	J		
)			time	Э	burst	
Quantum					P1	0	0				
q=4				P2	0		3				
Gantt diagram				P3 0		11					
								,			
	P1	P2	P3	P1	P3		P1	P3		P1	
() .	4 7	7 1	11 1	5	19	23	20	5		30

Process time line

- Scheduling concept
- Scheduling criteria
- Scheduling algorithms
 - FCFS
 - SJF
 - SRTF
 - Priorities
 - Round robin
- Multilevel queue

Several queues of ready processes

- Every queue has its own scheduling policy
- It is required an inter-queue scheduling
 - Preemptive priorities
 - CPU utilization (%)

Multilevel queue

Multilevel queue with feedback

- Parameters
 - Number of queues
 - Scheduling algorithm in every queue
 - Priority of every queue
 - Process promoting method
 - Process demoting method
 - Method to select the queue to enter every process

