- 1. Soient F, G, H trois sous-espaces vectoriels d'un espace vectoriel E.
 - (a) Est-il vrai que $F \cap (G+H) = (F \cap G) + (F \cap H)$?
 - **(b)** Est-il vrai que $F \cap (G + F \cap H) = (F \cap G) + (F \cap H)$?
- 2. Soit (F_n) une suite décroissante de sous-espaces vectoriels de E. Montrer que, si E est de dimension finie,
- alors $(\bigcap_{n\geq 0}^{n} F_n) + G = \bigcap_{n\geq 0}^{n} (F_n + G)$ et donner un contre-exemple en dimension infinie.

 3. Soit $f: \left(\begin{array}{c} \mathbb{R}^4 \to \mathbb{R}^3 \\ (x,y,z,t) \mapsto (x-y+z+t, \ x+2z-t, \ x+y+3z-3t) \end{array}\right)$

Déterminer une base de son noyau et une base de son image.

4. Soit $f: \left(\begin{array}{c} \mathbb{R}^3 \to \mathbb{R}^3 \\ (x,y,z) \mapsto (x+y-z, \ 2x+y-3z, \ 3x+2y-4z) \end{array} \right)$

Déterminer une base de son novau et une base de son image.

- **5.** Pour $a \in \mathbb{R}^+$, on note f_a l'application de \mathbb{R} vers \mathbb{R} définie par $f_a(t) = \cos(at)$ Montrer que la famille $(f_a)_{a\in\mathbb{R}^+}$ est une famille libre d'éléments de l'espace de $\mathcal{F}(\mathbb{R},\mathbb{R})$.
- **6.** Pour $a \in \mathbb{C}$, on note e_a l'application de \mathbb{R} vers \mathbb{C} définie par $e_a(t) = \exp(at)$. Montrer que la famille $(e_a)_{a\in\mathbb{C}}$ est une famille libre d'éléments de l'espace $\mathcal{F}(\mathbb{R},\mathbb{C})$.
- 7. Soit f un endomorphisme d'un K-espace vectoriel E de dimension finie vérifiant $\operatorname{rg}(f^2) = \operatorname{rg}(f)$
 - (a) Etablir $\text{Im} f^2 = \text{Im} f$ et $\ker f^2 = \ker f$.
 - **(b)** Montrer que $\ker f \oplus \operatorname{Im} f = E$.
- 8. Soient E un K-espace vectoriel de dimension finie, on suppose $n = \dim E > 1$.
 - (a) Montrer que pour tout $f \in \mathcal{L}(E)$: $\operatorname{rg}(f^2) = \operatorname{rg}(f) \dim(Kerf \cap Imf)$
 - (b) En déduire dim $Ker(f^2) \le 2 \dim Kerf$.
- **9.** E un K-espace vectoriel. Soit $f \in \mathcal{L}(E)$ tel que $f^3 = f^2 + 2f$. On pose $F_1 = Kerf$, $F_2 = Ker(f + Id_E)$ et $F_3 = Ker(f - 2Id_E)$.
 - (a) Prouver que $E = F_1 \oplus F_2 \oplus F_3$
 - (b) On note p_1, p_2, p_3 les projecteurs associés à cette somme directe. Exprimer f en fonction de p_1, p_2, p_3 . En déduire l'existence de 3 suites $(a_n, b_n, c_n)_{n \in \mathbb{N}^*}$ vérifiant : $(\forall n \in \mathbb{N}) f^n = a_n p_1 + b_n p_2 + c_n p_3$.
 - (c) Justifier l'existence de suites $(\alpha_n, \beta_n, \gamma_n)_{n \in \mathbb{N}^*}$ telles que : $(\forall n \in \mathbb{N}) f^n = \alpha_n Id + \beta_n f + \gamma_n f^2$.
- 10. On note E l'espace vectoriel des fonctions de $\mathbb C$ dans $\mathbb C$. On rappelle que $j=e^{-3}$ et pour $0\leq k\leq 2$ on pose $F_k = \{ f \in E / (\forall z \in \mathbb{C}) f(jz) = j^k f(z) \}.$ Montrer que $E = F_0 \oplus F_1 \oplus F_2$.
- 11. Soit f un endomorphisme d'un \mathbb{K} -espace vectoriel E vérifiant $f^3 = \mathrm{Id}$. Montrer

$$\ker(f - \operatorname{Id}) \oplus \operatorname{Im}(f - \operatorname{Id}) = E$$

12. Soient E un K-espace vectoriel de dimension finie et $f, g \in \mathcal{L}(E)$. On suppose

$$Im f + Im g = \ker f + \ker g = E$$

Montrer que ces sommes sont directes.

- 13. Soit φ l'application de $\mathbb{K}_n[X]$ dans $\mathbb{K}_n[X]$ qui à un polynôme P de $\mathbb{K}_n[X]$ associe le polynôme définie par $\varphi(P) = P(X+1) - 2P(X) + P(X-1)$. Montrer que φ est un endomorphisme de $\mathbb{K}_n[X]$. Déterminer son noyau et son image.
- **14.** Soit $n \in \mathbb{N}$, on note $E = \mathbb{K}_n[X]$, et soit P_0 un polynôme fixé avec $d^0P_0 = n$.

Soient (a_1, a_2, \ldots, a_n) n+1 scalaires distincts.

Montrer que la famille définie par $(Q_k = P(X + a_k))_{0 \le k \le n}$ est une base de $E = \mathbb{K}_n[X]$.

15. Soit (F_n) une suite décroissante de sous-espaces vectoriels de E. Montrer que, si E est de dimension finie, alors $(\bigcap F_n) + G = \bigcap (F_n + G)$ et donner un contre-exemple en dimension infinie.