

geyse gabryelle <geysegabry3@gmail.com>

Tradução - Síntese de Proteínas - Exercícios

1 mensagem

Formulários Google <forms-receipts-noreply@google.com> Para: geysegabry3@gmail.com

24 de abril de 2020 18:12

Agradecemos o preenchimento de Tradução - Síntese de Proteínas - Exercícios

Isto foi o que recebemos de você:

Tradução - Síntese de Proteínas - Exercícios

Lista de Exercícios

Endereço de e-mail *

geysegabry3@gmail.com

Nome completo / Turma (IMPORTANTE PREENCHER AS DUAS INFORMAÇÕES) *

Geyse Gabryelle Conceição Silva - TII3 LINUS

1-) A seguir está representada uma das fitas de DNA contendo a sequência de nucleotídeos da região codificadora de um gene. Assinale a alternativa que descreve corretamente a sequência de bases nitrogenadas do RNA mensageiro, transcrito a partir desse segmento de DNA *

- a-) 3' T A C A T A A G T C A G A A T A A C A T C G G C A T C C C A 5'
- b-) 5' ATGTATTCAGTCTTATTGTAGCCGTAGGGT3'
- C-) 5' U G G G A U G C C G A U G U U A U U C U G A C U U A U G U A 3'
- O d-) 3' UTGTUTTCUGTCTTUTTGTUGCCGTUGGGT5'
- e-) 5' A U G U A U U C A G U C U U A U U G U A G C C G U A G G G U 3'

2-) Baseado no RNA mensageiro produzido no problema anterior, utilize a tabela de código genético fornecida abaixo e indique a alternativa com a sequência correta de aminoácidos (polipeptídio) que vão formar a proteína codificada pelo gene *

Segunda Letra

					regunat					
		U		C		Α		G		
	U	UUU	FENILALANINA (FEN)	UCU	SERINA (SER)	UAU	TIROSINA (TIR)	UGU		
		UUA UUG	LEUCINA (LEU)	UCA UCG		UAA UAG	CÓDIGO DE PARADA (STOP CÓDON)	UGA	STOP CÓDON TRIPTOFANO (TRP)	A
5	c	CUU		ccc	PROLINA (PRO)	CAU	HISTIDINA (HIS)	CGU	ARGININA	1
5		CUA	LEUCINA (LEU)	CCA	PROLINA (PRO)	CAA CAG	GLUTAMINA (GLN)	CGA	(ARG)	4
רוווונו	А	AUU	ISOLEUCINA (ILE)	ACU	TREONINA (TRN)	AAU	ASPARAGINA (ASN)	AGU AGC	SERINA (SER)	1
		AUG	METIONINA (MET) - INÍCIO	ACA ACG		AAA AAG	LISINA (LIS)	AGA AGG	ARGININA (ARG)	4
	G	GUU		GCU	ALANINA (ALA)	GAU GAC	ÁCIDO ASPÁRTICO (ASP)	GGU GGC	0.10111.4011	1
		GUA GUG	GCA GCG	ACAITINA (ACA)	GAA GAG	ÁCIDO GLUTÁMICO (GLU)	GGA GGG	GLICINA (GLI)	4	

- a-) Triptofano Ácido Aspártico Alanina Ácido Aspártico Valina Isoleucina Leucina -Treonina - Tirosina - Valina
- b-) Metionina Tirosina Serina Valina Leucina Leucina
- C-) Valina Glutamina Glutamina Alanina Leucina Arginina Metionina
- d-) Metionina Valina Tirosina Prolina Valina Ácido Glutâmico Isoleucina
- e-) Fenilalanina Arginina Valina Metionina Histidina Histidina Prolina Alanina -Glicina - Isoleucina - Metionina
- 3-) Em relação ao primeiro problema, caso ocorresse uma mutação de substituição na 9ª base (no terceiro códon) de modo que T fosse substituído por G qual seria a consequência? *
- a-) A mutação introduziria de forma precoce um códon de parada produzindo uma proteína com apenas 2 aminoácidos. Essa mutação possivelmente produziria uma proteína anormal ou sem função
- b-) A mutação seria neutra, pois produziria o códon UCC que codifica o mesmo aminoácido (serina) do códon anterior a mutação (UCA)
- c-) Não poderia ser considerada uma mutação já que não ocorreu mudança na estrutura da proteína
- d-) A mutação seria positiva já que irá produzir uma proteína mais funcional
- e-) A mutação produziria o códon de início AUG que codifica o aminoácido metionina, que marca o início do processo de tradução

- 4-) Os biólogos decifraram o código genético no começo dos anos 60 do século XX. O código genético é chamado de universal e degenerado pois, respectivamente: *
- a-) AUG é o códon de início e existem 3 códons de parada
- b-) pode ser transferido para qualquer espécie e não é confiável
- c-) é o mesmo para a maioria das espécies e um aminoácido pode ser codificado por vários códons
- d-) foi encontrado em outras espécies do universo e diferentes códons podem codificar o mesmo aminoácido
- e-) diferentes códons podem codificar o mesmo aminoácido e existe o códon de parada
- 5-) A figura abaixo esquematiza o processo de síntese de proteínas. O nome das moléculas indicadas nas setas (A, B e C) são, respectivamente: *

- a-) RNA mensageiro (RNAm), RNA transportador (RNAt) e RNA ribossômico (RNAr)
- b-) RNA mensageiro (RNAm), RNA transportador (RNAt) e aminoácido glicina
- c-) RNA transportador (RNAt), aminoácido glicina e proteína
- d-) RNA mensageiro (RNAm), RNA transportador (RNAt) e aminoácido prolina
- e-) RNA transportador (RNAt), aminoácido alanina e aminoácido glicina
- 6-) O quadro a seguir contém um segmento de DNA, os códons presentes no RNAm e os anticódons nos RNAt correspondentes. Para preenchê-lo corretamente, os algarismos I, II, III e IV devem ser substituídos, respectivamente, por: *

DNA	ATA	GCC	TCA	
	1	CGG	AGT	
RNAm	UAU	III	IV	
RNAt	Ш	GCC	AGU	

- a-) TAT, AUA, CGG e UCA
- b-) ATA, TAT, CGG e ACU
- c-) ATA, UAU, GCC e AGU

O d-) TAT, AUA, CGG e UCG
e-) TAA, UAU, GCC e UCA
7-) Uma proteína formada por 300 aminoácidos é codificada por uma molécula de RNA
(1) de, no mínimo(2) nucleotídeos. Para completar corretamente a frase, os espaços 1 e 2 devem ser preenchidos, respectivamente, por: *
a-) mensageiro e 300
b-) transportador e 150
c-) ribossômico e 600
d-) mensageiro e 900
e-) transportador e 900
C-) transportation e 300
8-) Ao compararmos os materiais genéticos de uma célula do fígado aos de uma célula epidérmica, do mesmo indivíduo, encontraremos diferenças entre os *
a-) DNAs genômicos
b-) RNAs transportadores
c-) RNAs mensageiros
d-) RNAs ribossômicos
e-) DNAs mitocondriais
9-) Um cientista espanhol encontrou proteínas no ovo fóssil de dinossauro. A partir dessas proteínas é possível percorrer o caminho inverso para chegar à sequência exata de DNA que o gerou? *
 a-) sim, ao analisar código genético podemos chegar a sequência de RNA e, em seguida de DNA
b-) não, pois o código genético é universal
c-) sim, mas a proteína deve conter o aminoácido metionina, codificado pelo códon de início AUG
 d-) sim, pelo processo conhecido como transcrição reversa
 e-) não, pois o código genético é degenerado, ou seja, um mesmo aminoácido pode ser codificado por vários códons
10-) Com o objetivo de produzir uma proteína em tubo de ensaio, um cientista utilizou RNA transportador de células de cachorro, ribossomos de células de arara, RNA mensageiro de células de tubarão e aminoácidos de células de humano. A proteína produzida teria uma sequência de aminoácidos igual à do: *
a-) cachorro

○ b-) arara
C-) humano
◯ d-) humano e tubarão
● e-) tubarão

Crie seu próprio formulário do Google.