Semaine 12 - Arithmétique et polynômes

Valentin De Bortoli email : valentin.debortoli@gmail.com

1 Carrés parfaits

Soit $n \in \mathbb{N}$ si il existe $m \in \mathbb{N}$ tel que $n = m^2$. On dit que n est un carré parfait.

- 1 Montrer que $\forall n \in \mathbb{N}, \ 8n+7$ n'est pas un carré parfait.
- 2 Montrer que la somme de cinq nombres consécutifs au carré n'est pas un carré parfait.

2 Implication et primalité

Soit p un nombre premier.

1 Montrer que $8p^2 + 1$ premier $\Rightarrow 8p^2 - 1$ premier.

Remarque : on pourra différencier les cas selon la valeur de p modulo 3.

3 Puissance et nombres premiers entre eux

- **1** Montrer que $\forall n \in \mathbb{N}, \ (1+\sqrt{2})^n = a_n + b_n\sqrt{2}$ avec a_n et b_n deux entiers.
- **2** Montrer que $a_n \wedge b_n = 1$.

4 Équations et arithmétique

Résoudre dans \mathbb{Z}^2 les équations suivantes :

1

$$\begin{cases} x + y = 56 \\ x \lor y = 105 \end{cases}$$

 $\mathbf{2}$

$$\begin{cases} x \land y = x - y \\ x \lor y = 72 \end{cases}$$

3 $x \lor y - x \land y = 243$

5 Triplets pythagoriciens

On appelle triplet pythagoricien tout triplet $(x, y, z) \in \mathbb{Z}^3$ tel que $x^2 + y^2 = z^2$.

- 1 Exhiber un tel triplet.
- 2 Montrer que l'on peut se restreindre au cas où x, y et z sont premiers entre eux dans leur ensemble.

- 3 Montrer qu'alors ils sont premiers entre eux deux à deux.
- 4 Dans ce cas, montrer que deux sont impairs et que z est impair. On suppose alors que y = 2y' et x et z impairs.
- 5 On pose $X = \frac{x+z}{2}$ et $Z = \frac{z-x}{2}$. Montrer que $X \wedge Z = 1$ et que X et Z sont des carrés parfaits.
- 6 En déduire l'ensemble des triplets pythagoriciens.

Remarque : il n'existe pas de solutions si l'exposant est strictement supérieur à 2. Il s'agit du grand théorème de Fermat que celui-ci pensait avoir montré. Une démonstration rigoureuse a été donnée par Wiles en 1995 après de nombreuses années de recherche.

6 Écriture binaire et polynôme

Soit $P_n(x) = (1+X)(1+X^2)\dots(1+X^{2^n})$ avec $n \in \mathbb{N}$.

- 1 Donner la forme développée de P_n .
- **2** Montrer que tout entier $p \in \mathbb{N}$ s'écrit de manière unique comme la somme de puissance de deux.

Remarque : ce résultat permet de montrer de manière élégante, l'existence et l'unicité de l'écriture binaire des entiers.

7 Équations polynomiale(s) (1)

Résoudre dans k[X] les équations suivantes.

- 1 $Q^2 = XP^2 \text{ en } (P, Q).$
- $\mathbf{2} \quad P \circ P = P \text{ en } P.$
- 3 $P(X^2) = (X^2 + 1)P(X)$ en P

8 Équations polynomiale(s) (2)

Soit $P \in \mathbb{C}[X]$ tel que $P(X^2) = P(X)P(X-1)$ et P non nul.

- $\mathbf{1}$ Montrer que les racines de P sont de module 1.
- **2** Déduire P.

9 Intégration et polynômes (1)

Soit [a,b] un intervalle non vide de \mathbb{R} . Soit $f \in \mathcal{C}([a,b])$. Soit $n \in \mathbb{N}$.

1 On suppose que $\forall k \in [0, n]$, $\int_a^b f(t)t^k dt = 0$. Montrer que f s'annule au moins n+1 fois.

Remarque : le théorème de Weierstrass permet de montrer une version limite de ce théorème à savoir : si $\forall P \in \mathbb{R}[X], \int_a^b f(x)P(x)\mathrm{d}x = 0$, alors f = 0.

10 Intégration et polynômes (2)

1 Trouver tous les polynômes de $\mathbb{R}[X]$ qui vérifient : $\forall k \in \mathbb{N}, \ \int_k^{k+1} P(x) dx = k+1$.

11 Localisation des racines

Soit $P = X^n + a_{n-1}X^{n-1} + \cdots + a_0$ un polynôme de $\mathbb{C}[X]$. Soit z une racine complexe de P.

1 Montrer que $|z| \le 1 + \max_{j \in \llbracket 0, n-1 \rrbracket} |a_j|$.

Remarque : cette majoration permet de réduire l'ensemble de recherche des racines du polynômes. D'autres techniques permettent d'affiner le domaine : règle de changement des signes de Descartes, suites de Sturm, disques de Gershgörin.

12 Le théorème de Gauss-Lucas

Soit $P \in \mathbb{C}[X]$.

1 Montrer que toute racine de P' est barycentre des racines de P.

13 Majoration des coefficients

Soit $P = a_n X^n + a_{n-1} X^{n-1} + \dots + a_0$.

- 1 Calculer $P(1) + P(\omega) + \cdots + P(\omega^n)$ avec ω une racine n+1-ème de l'unité.
- **2** En déduire que $\forall k \in [0, n], |a_k| \leq M \text{ avec } M = \sup_{z \in \mathbb{U}} (|P(z)|).$

14 Localité et polynômes

Soit f une fonction sur $\mathbb R$ localement polynômiale :

$$\forall x_0 \in \mathbb{R}, \ \exists (\epsilon, P_{x_0}) \in \mathbb{R}_+^* \times \mathbb{R}[X], \ \forall x \in]x_0 - \epsilon, x_0 + \epsilon[, \ f(x) = P(x)]$$

1 Montrer que f est un polynôme.

Remarque : on peut encore affaiblir les hypothèses (théorème de Balaguer-Corominas) :

$$\forall x \in \mathbb{R}, \exists n_x, f^{(n_x)}(x) = 0 \Leftrightarrow f \text{ est polynômiale.}$$

15 Trigonométrie et polynômes

1 Peut-on écrire la fonction cos comme un polynôme?

16 Racines réelles de polynôme (1)

Soit $(a,b) \in \mathbb{R}^2$, $n \in \mathbb{N}$.

1 Montrer que le polynôme $X^n + aX + b$ admet au plus trois racines réelles.

17 Racines réelles de polynômes (2)

1 Montrer que $P_n = ((1 - X^2)^n)^{(n)}$ est un polynôme de degré n dont les racines sont réelles, simples et appartiennent à [-1, 1].