APPLIED KALMAN FILTERING

Kalman Filter

Dr. Robert H. Bishop, P.E.

Principle of Geometric Determination: Noise-Free Measurement

- ► Objective: Determine the <u>best estimate of the spacecraft position</u> along a known trajectory based on one noise-free <u>measurement</u>
- Assumptions:
 - Trajectory is know perfectly
 - Position on the trajectory is unknown
 - No initial estimate of position, denoted by x
 - Only one position x exists
- Estimate the position in geometric alignment with the measurement
- This has nothing to do with statistics

Principle of Geometric Determination: Noise-Free Measurement

Measure the angle between a fixed reference and a target

Principle of Geometric Determination: Noise-Free Measurement

Adjust the position estimate to try to align with the measurement

Principle of Geometric Determination: Noise-Free Measurement

► Since the measurement is error-free, then **x** is the true position

- ► Objective: Determine the <u>best estimate of the spacecraft position</u> along a known trajectory based on <u>one noisy measurement</u> and an <u>initial position estimate</u> with uniformly distributed errors
- Assumptions:
 - Trajectory is known perfectly
 - Exact position on the trajectory is unknown
 - \blacktriangleright An initial position estimate exists, denoted by \mathbf{x}_1 , with a uniformly distributed error
 - ightharpoonup Only one actual position \mathbf{x} exists and is not between \mathbf{x}_2 and \mathbf{x}_3
- ▶ **x**₂ is the best estimate since it agrees more closely with the measurement than any other point in the shaded region.
- Initial estimate is moved from \mathbf{x}_1 towards \mathbf{x} , but not all the way

Principle of Statistical Weighting: Uniformly Distributed Measurement Errors

Measure the angle between a fixed reference and a target

Principle of Statistical Weighting: Uniformly Distributed Measurement Errors

The position estimate is updated to split the difference between the initial estimate and the position in geometric agreement with the measurement

- ► Objective: Determine the <u>best estimate of the spacecraft position</u> along a known trajectory based on <u>one noisy measurement</u> and an <u>initial position estimate</u> with normally <u>distributed errors</u>
- Assumptions:
 - Trajectory is known perfectly
 - Exact position on the trajectory is unknown
 - \blacktriangleright An initial position estimate exists, denoted by \mathbf{x}_1 , with a normally distributed error
- ▶ **x**₂ is the optimal estimate based on the principle of statistical weighting.
- ► The further **x** is from **x**₁, the more likely it is that the actual position lies between **x** and **x**₁.
- ▶ The higher the confidence in the measurement, the closer \mathbf{x}_2 is to \mathbf{x} .
- ▶ The statistical model of the estimation error in the estimate \mathbf{x}_2 changes.

Principle of Statistical Weighting: Normally Distributed Measurement Errors

Measure the angle between a fixed reference and a target

Note: The noisy measurement leads to an error in the position estimate based on geometric agreement.

Principle of Statistical Weighting: Normally Distributed Measurement Errors

Both the position estimate and the position estimate uncertainty are updated according to the principle of statistical weighting

Principle of Statistical Weighting: Summary

- From a statistical point of view, the situation has been improved by this one measurement
- However, it is possible that the actual estimation error has increased by this single measurement
- To build confidence, it is necessary to obtain a sequence of measurements
- Each incorporation of the measurement will, on the average, decrease the estimation error

Illustrative Example: Estimate distance with noisy range measurements

- ► Estimate the distance to the wall, x, using a noisy laser ranger
- ▶ Model the laser ranger output at time t_i as

$$y_i = x + v_i$$

where v_i is a white noise sequence with $E\{v_i\} = 0$, $E\{v_i^2\} = R$, $\forall i$, and $E\{v_iv_j\} = 0$ for $i \neq j$

Suppose we take n measurements at t_1, t_2, \dots, t_n , denoted by y_1, y_2, \dots, y_n , respectively, Denote the estimate of x at t_n as \hat{x}_n . Estimate the distance with a simple average as

$$\hat{x}_n = \frac{1}{n} \sum_{i=1}^n y_i$$

Note that with the mathematical model $y_i = x + v_i$ it follows that

$$\hat{x}_n = \frac{1}{n} \sum_{i=1}^n y_i = x + \frac{1}{n} \sum_{i=1}^n v_i = x + \nu_n$$

where we define $\nu_n:=\frac{1}{n}\sum_{i=1}^n v_i.$ We have $E\{\nu_n\}=0$ and $E\{\nu_n^2\}=R/n$

▶ The averaging algorithm has reduced the noise strength by a factor of $1/n \rightarrow$ more measurements reduces the <u>estimation error</u>, in other words, the estimate is closer to the truth

▶ Suppose we take an additional measurement y_{n+1} at t_{n+1} . If we have <u>saved</u> (non-recursive) all the previous n measurements, we can compute the estimate via

$$\hat{x}_{n+1} = \frac{1}{n+1} \sum_{i=1}^{n+1} y_i$$

Let's re-think this:

$$\hat{x}_{n+1} = \frac{1}{n+1} \sum_{i=1}^{n} y_i + \frac{1}{n+1} y_{n+1} = \frac{n}{n+1} \hat{x}_n + \frac{1}{n+1} y_{n+1}$$

▶ If we define $K_1 := \frac{n}{n+1}$ and $K_2 := \frac{1}{n+1}$ we have

$$\hat{x}_{n+1} = K_1 \hat{x}_n + K_2 y_{n+1}$$

▶ This is an example of Principle of Statistical Weighting—except in this simple example K_1 and K_2 are fixed. In general, if we have more confidence in the estimate \hat{x}_n we select K_1 larger than K_2 , and vice versa

Illustrative Example: Creating a recursive, real-time estimator

▶ We can rewrite $\hat{x}_{n+1} = K_1 \hat{x}_n + K_2 y_{n+1}$ as

$$\hat{x}_{n+1} = \hat{x}_n + K_n (y_{n+1} - \hat{y}_{n+1})$$
 $n = 1, 2, \cdots$

where $K_n = 1/(n+1)$ and \hat{y}_{n+1} is our estimate of the measurement which is derived from a model of the sensor. Here we let $\hat{y}_{n+1} = \hat{x}_n$, the last available state estimate and \hat{x}_1 is given

Recursive - no need to save any past measurements

Real-time – updated estimate is computed with each measurement

▶ Define the estimation errors and estimation error covariances at t_n and t_{n+1} as

$$e_n = x - \hat{x}_n$$
, $e_{n+1} = x - \hat{x}_{n+1}$ and $P_n = E\{e_n^2\}$, $P_{n+1} = E\{e_{n+1}^2\}$

For $n = 1, 2, \dots$, it follows that

$$P_{n+1} = \left(\frac{n}{n+1}\right)^2 P_n + \left(\frac{1}{n+1}\right)^2 R \text{ with } P_1 \text{ given}$$

▶ In general, we would use a sensor mathematical model for \hat{y}_{n+1} and K_n would be computed via Kalman filtering theory

Simulated data—the measurements with $R = 0.1 \text{ m}^2$

Illustrative Example: Simulated data—a single run of the recursive estimator with K = 1/(1+n), x = 10; $\hat{x}_0 = 10.2$, $P_0 = 0.5$

Discrete Kalman Filter

- ▶ What? A design and analysis of a recursive real-time algorithm to provide state estimates
- ► Why? Estimation errors drive performance.

Provide real-time estimates of the state of the system to other subsystems at required rates in required frames in the presence of significant modeling uncertainties and sensor errors

► Let's ease into it · · · Use the Principle of Statistical Weighting to develop the <u>Kalman filter</u> (KF) architecture for linear systems

► The Kalman filter has two main stages: propagation and update

- ► The update stage using sensor measurements from multiple sensors can occur asynchronously and at varying time intervals
- At each measurement update, the state estimate and the state estimation error covariance will
 exhibit a discrete update
- ► On average, we expect the state estimate to converge to the true state and the state estimation error covariance to reflect the true uncertainty in the state estimate

► Begin with the Principle of Statistical Weighting

$$\hat{\mathbf{x}}_k^+ = \mathbf{K}_{1,k}\hat{\mathbf{x}}_k^- + \mathbf{K}_{2,k}\mathbf{y}_k$$

- ▶ We have the current state estimate and latest external measurement
- ► How do we choose $\mathbf{K}_{1,k}$ and $\mathbf{K}_{2,k}$?
- ► Theory is based on linear mathematical models for both dynamics and sensors ← typically not the case in the real-world
- Define the estimation errors:

$$oldsymbol{\mathbf{e}_k^-=\mathbf{x}_k-\hat{\mathbf{x}}_k^-}$$
 (apriori) and $oldsymbol{\mathbf{e}_k^+=\mathbf{x}_k-\hat{\mathbf{x}}_k^+}$ (aposteriori)

▶ We need to compute $K_{1,k}$ and $K_{2,k}$ so that the KF is an <u>unbiased</u> filter

$$E\{\mathbf{e}_k^-\}=0$$
 and $E\{\mathbf{e}_k^+\}=0$ $\forall k$ and $\forall \mathbf{x}_k$

► After a little algebra

$$\mathbf{e}_{k}^{-} = \mathbf{x}_{k} - \hat{\mathbf{x}}_{k}^{-} \qquad \mathbf{y}_{k} = \mathbf{H}_{k}\mathbf{x}_{k} + \mathbf{v}_{k}$$

$$\mathbf{e}_{k}^{+} = \mathbf{x}_{k} - \hat{\mathbf{x}}_{k}^{+} \qquad \hat{\mathbf{x}}_{k}^{+} = \mathbf{K}_{1,k}\hat{\mathbf{x}}_{k}^{-} + \mathbf{K}_{2,k}\mathbf{y}_{k}$$

$$\mathbf{e}_{k}^{+} = \mathbf{K}_{1,k}\mathbf{e}_{k}^{-} + (\mathbf{I} - \mathbf{K}_{1,k} - \mathbf{K}_{2,k}\mathbf{H}_{k})\mathbf{x}_{k} - \mathbf{K}_{2,k}\mathbf{v}_{k}$$

Taking the expectation yields

$$E\{e_k^+\} = K_{1,k}E\{e_k^-\} + (I - K_{1,k} - K_{2,k}H_k)E\{x_k\} - K_{2,k}E\{v_k\}$$

- ▶ We know $E\{\mathbf{v}_k\} = \mathbf{0}$. Suppose $E\{\mathbf{e}_k^-\} = \mathbf{0}$ (more on this later)
- ▶ Since we want $E\{\mathbf{e}_k^+\} = \mathbf{0}$ for all \mathbf{x}_k , we require $\mathbf{K}_{1,k} = \mathbf{I} \mathbf{K}_{2,k}\mathbf{H}_k$
- The result is that

$$\hat{\mathbf{x}}_k^+ = \hat{\mathbf{x}}_k^- + \mathbf{K}_k \left(\mathbf{y}_k - \mathbf{H}_k \hat{\mathbf{x}}_k^- \right)$$

where $\mathbf{K}_k := \mathbf{K}_{2,k}$

└─ Kalman Filter

Optimal State Update-State Estimation Covariance Matrix

► After a little more algebra

$$\begin{aligned} \mathbf{e}_{k}^{+} &= [\mathbf{K}_{1,k} \mathbf{e}_{k}^{-} + (\mathbf{I} - \mathbf{K}_{1,k} - \mathbf{K}_{2,k} \mathbf{H}_{k}) \mathbf{x}_{k} - \mathbf{K}_{2,k}^{\prime} \mathbf{v}_{k} \\ \mathbf{e}_{k}^{+} &= [\mathbf{I} - \mathbf{K}_{k} \mathbf{H}_{k}] \mathbf{e}_{k}^{-} + \mathbf{K}_{k} \mathbf{v}_{k} \end{aligned}$$

▶ Define the *apriori* and *aposteriori* state estimation covariance matrices:

$$\mathbf{P}_{k}^{-} := E\{\mathbf{e}_{k}^{-}\mathbf{e}_{k}^{-}^{\top}\}$$
 and $\mathbf{P}_{k}^{+} := E\{\mathbf{e}_{k}^{+}\mathbf{e}_{k}^{+}^{\top}\}$

▶ With the estimation error and estimation error covariance defined as above, and with the fact that $E\{\mathbf{e}_k^{\mathsf{T}}\mathbf{v}_k^{\mathsf{T}}\}=\mathbf{0}$ we have

$$\boxed{\mathbf{P}_k^+ = \left[\mathbf{I} - \mathbf{K}_k \mathbf{H}_k\right] \mathbf{P}_k^- \left[\mathbf{I} - \mathbf{K}_k \mathbf{H}_k\right]^\mathsf{T} + \mathbf{K}_k \mathbf{R}_k \mathbf{K}_k^\mathsf{T}} \leftarrow \textit{Joseph Formula}$$

► Goal is to minimize the expected mean squared error, $\mathcal{J}_k = E\{\mathbf{e}_k^{+T}\mathbf{e}_k^+\}$

$$\mathbf{P}_k^+ := E\{\mathbf{e}_k^+\mathbf{e}_k^{+T}\} o \mathcal{J}_k = tr\left\{E\{\mathbf{e}_k^+\mathbf{e}_k^{+T}\}\right\} = tr\ \mathbf{P}_k^+$$
 university of SOUTH FLORIDARIES.

└-Kalman gain

► Search for \mathbf{K}_k to minimize $\mathcal{J}_k = tr \; \mathbf{P}_k^+$, or

$$tr \mathbf{P}_k^+ = tr \mathbf{P}_k^- - 2tr \mathbf{K}_k \mathbf{H}_k \mathbf{P}_k^- + tr \mathbf{K}_k \left[\mathbf{H}_k \mathbf{P}_k^- \mathbf{H}_k^\mathsf{T} + \mathbf{R} \right] \mathbf{K}_k^\mathsf{T}$$

- ▶ Approach: Take the partial derivative of tr \mathbf{P}_k^+ with respect to \mathbf{K}_k , set the result to zero and solve for the optimal \mathbf{K}_k
- ► Recall a few really useful relationships

$$\frac{\partial}{\partial \mathbf{A}} t r \mathbf{A} \mathbf{B} = \mathbf{B}^{\mathsf{T}}$$
 and $\frac{\partial}{\partial \mathbf{A}} t r \mathbf{A} \mathbf{B} \mathbf{A}^{\mathsf{T}} = 2 \mathbf{A} \mathbf{B}^{\mathsf{T}}$

► So we have

$$\frac{\partial}{\partial \mathbf{K}_k} tr \mathcal{J}_k = -2 \mathbf{P}_k^{\mathsf{T}} \mathbf{H}_k^{\mathsf{T}} + 2 \mathbf{K}_k \left[\mathbf{H}_k \mathbf{P}_k^{\mathsf{T}} \mathbf{H}_k^{\mathsf{T}} + \mathbf{R}_k \right] = \mathbf{0}$$

ightharpoonup Optimal gain matrix \mathbf{K}_k is

$$\mathbf{K}_k = \mathbf{P}_k^{\mathsf{T}} \mathbf{H}_k^{\mathsf{T}} \left[\mathbf{H}_k \mathbf{P}_k^{\mathsf{T}} \mathbf{H}_k^{\mathsf{T}} + \mathbf{R}_k \right]^{-1} \leftarrow Kalman Gain$$

ightharpoonup Substituting the Kalman gain \mathbf{K}_k into the Joseph formula yields

State Propagation

▶ At any time, $t_{k-1} \le t \le t_k$, the state estimate is given by

$$\hat{\mathbf{x}}(t) = E\{\mathbf{x}(t)\}\$$

▶ It follows from the continuous-time mathematical model that

$$\dot{\hat{\mathbf{x}}}(t) = \mathbf{F}(t)\hat{\mathbf{x}}(t) + \mathbf{G}(t)\mathbf{u}(t), \quad t_{k-1} \le t \le t_k$$
(1)

with the initial condition

$$\hat{\mathbf{x}}(t_{k-1}) = \hat{\mathbf{x}}_{k-1}^+$$

▶ It follows from the discrete-time mathematical model that

$$\hat{\mathbf{x}}_{k}^{-} = \Phi_{k-1}\hat{\mathbf{x}}_{k-1}^{+} + \mathbf{u}_{k-1}$$
 (2)

where $\mathbf{u}_{k-1} = \int_{t_{k-1}}^{t_k} \Phi(t_k, au) \mathbf{G}(au) \mathbf{u}(au) d au$

► The two ways of propagating the state estimate in Eqs. (1) and (2) are mathematically equivalent

Covariance Propagation

► As before, we define

$$\boldsymbol{e}_{k}^{-} := \boldsymbol{x}_{k} - \hat{\boldsymbol{x}}_{k}^{-} \;,\; \boldsymbol{e}_{k-1}^{+} := \boldsymbol{x}_{k-1} - \hat{\boldsymbol{x}}_{k-1}^{+} \;,\; \boldsymbol{P}_{k}^{-} := E\{\boldsymbol{e}_{k}^{-}\boldsymbol{e}_{k}^{-T}\} \;,\; \boldsymbol{P}_{k-1}^{+} := E\{\boldsymbol{e}_{k-1}^{+}\boldsymbol{e}_{k-1}^{+T}\}$$

► The state estimation error is then given by

$$\mathbf{e}_{k}^{-} = \Phi_{k-1} \mathbf{e}_{k-1}^{+} + \mathbf{w}_{k-1}$$

Note that

$$E\{\mathbf{w}_{k-1}\} = \mathbf{0}$$

so, if $E\{\mathbf{e}_{k-1}^+\}=\mathbf{0}$ (unbiased update), then $E\{\mathbf{e}_k^-\}=\mathbf{0}$, as desired \checkmark

► Computing $\mathbf{P}_k^- = E\{\mathbf{e}_k^-\mathbf{e}_k^{-\mathsf{T}}\}$ yields

$$\mathbf{P}_{k}^{-} = \Phi_{k-1} \mathbf{P}_{k-1}^{+} \Phi_{k-1}^{\mathsf{T}} + \mathbf{Q}_{k-1}$$

where

$$\mathbf{Q}_{k-1} = \int_{t_{k-1}}^{t_k} \Phi(t_k, au) \mathbf{Q}_s(au) \Phi^\mathsf{T}(t_k, au) d au$$

System model	$\dot{\mathbf{x}}(t) = \mathbf{F}(t)\mathbf{x}(t) + \mathbf{G}(t)\mathbf{u}(t) + \mathbf{w}(t)$
Measurement model	$\mathbf{y}_k = \mathbf{H}_k \mathbf{x}_k + \mathbf{v}_k$
Noise model	$E\left\{\mathbf{w}(t)\right\} = 0, E\left\{\mathbf{w}(t)\mathbf{w}^{T}(\tau)\right\} = \mathbf{Q}_{s}(t)\delta(t-\tau)$ $E\left\{\mathbf{v}_{k}\right\} = 0, E\left\{\mathbf{v}_{k}\mathbf{v}_{j}^{T}\right\} = \mathbf{R}_{k}\delta_{kj}$
	$E\left\{\mathbf{v}_{k}\right\}=0,E\left\{\mathbf{v}_{k}\mathbf{v}_{j}^{T}\right\}=\mathbf{R}_{k}\delta_{kj}$
	$E\left\{\mathbf{w}(t)\mathbf{v}_{k}^{T}\right\} = 0, \forall t, k$
Initial conditions	$\mathbf{x}_0 = \mathbf{x}(t_0)$
Assumptions	$\mathbf{Q}_s(t) = \mathbf{Q}_s^T(t) \geq 0, \ orall t \ \mathbf{R}_k = \mathbf{R}_k^T > 0, \ orall k$

- ▶ The matrices $\mathbf{F}(t) \in \Re^{n \times n}$, $\mathbf{G}(t) \in \Re^{n \times p}$, and $\mathbf{Q}_s(t) \in \Re^{n \times n}$ are given $\forall t \geq t_0$
- ▶ The matrices $\mathbf{H}_k \in \Re^{m \times n}$ and $\mathbf{R}_k \in \Re^{m \times m}$ are given $\forall k$
- ▶ The exogenous input $\mathbf{u}(t) \in \Re^{p}$ is known $\forall t \geq t_0$

Summary of Kalman Filter - Algorithm 1

End Module

END MODULE

