Package 'dilutionrisk'

August 7, 2022

<i>B B B B B B B B B B</i>
Type Package
Title Modelling and assessment of risk based on aerobic plate count (APC) on diluted testing
Version 0.0.1
Authors Mayooran Thevaraja [aut, cre], Kondaswamy Govindaraju [aut], Mark Bebbington [aut]
<pre>URL https://github.com/Mayooran1987/dilutionrisk</pre>
BugReports https://github.com/Mayooran1987/dilutionrisk/issues
Description This package aims to develop for getting probability estimations and graphical displays in the study associated with Modelling and assessment of risk based on aerobic plate count (APC) on diluted testing.
License GPL (>= 2)
Encoding UTF-8
LazyData true
Imports ggplot2, ggthemes, reshape2, Rcpp, stats
LinkingTo Rcpp
Suggests spelling, testthat, covr
RoxygenNote 7.2.1
Depends R (>= 4.0)
Maintainer Mayooran Thevaraja <mayooran@eng.jfn.ac.1k></mayooran@eng.jfn.ac.1k>
Language en-US
Config/testthat/edition 3
R topics documented:
OC_curves_heterogeneous
OC_curves_homogeneous
pd_curves_homogeneous
prob_acceptance_heterogeneous
prob_acceptance_heterogeneous_multiple
prob_acceptance_homogeneous
prob_detection_heterogeneous

	prob_detection_h	neterogeneous	_multiple	 		 							11	1
	prob_detection_h	nomogeneous		 		 							12	2
	prob_detection_h	nomogeneous	_multiple	 		 							13	3
	rtrunpoilog			 		 							14	1
Index													16	5
dilut	cionrisk	Probabili sessment	•		_			•			_			_

Description

This package aims to develop for getting probability estimations and graphical displays in the study associated with Modelling and assessment of risk based on aerobic plate count (APC) on diluted testing.

Details

This package aims to develop probability estimations and graphical displays in the modelling and assessing risk based on aerobic plate count (APC) on diluted testing. Mainly focuses on the risk assessment based on bounded distributions such as truncated Poisson and truncated Poisson lognormal distributions to model homogeneous and heterogeneous scenarios, respectively. Also, this package attempts to develop truncated Poisson lognormal distributions theory with validation by simulation-based results (this part will be updated later on).

OC_curves_heterogeneous

Comparison based on OC curves for different dilution schemes when the diluted samples collected from a heterogeneous batch.

Description

OC_curves_heterogeneous provides the operating characteristic(OC) curves when samples collected from a heterogeneous batch.

Usage

OC_curves_heterogeneous(c, meanlog_low, meanlog_high, sdlog, a, b, FDF, u, USL, n, n_sim)

Arguments

С	acceptance number
meanlog_low	the lower value of the mean concentration (μ) for use in the graphical display's x-axis.
meanlog_high	the upper value of the mean concentration (μ) for use in the graphical display's x-axis.
sdlog	the standard deviation of the normal distribution (on the log scale).
а	lower domain of the number of cell counts.

b	upper domain of the number of cell counts.
FDF	final dilution factor.
u	amount put on the plate.
USL	upper specification limit.
n	number of samples which are used for inspection.

n_sim Details

OC_curves_heterogeneous provides OC curves for different dilution schemes when the diluted samples collected from a heterogeneous batch (this section will be updated later on).

number of simulations (large simulations provide more precise estimations).

Value

OC curves when samples collected from a heterogeneous batch.

Examples

```
 c <- 2 \\ meanlog_low <- 4 \\ meanlog_high <- 9 \\ sdlog <- 0.2 \\ a <- 0 \\ b <- 300 \\ FDF <- c(0.01,0.1) \\ u <- c(0.1,0.1) \\ USL <- 1000 \\ n <- 5 \\ n_sim <- 50000 \\ OC_curves_heterogeneous(c, meanlog_low, meanlog_high, sdlog, a, b, FDF, USL, u, n, n_sim)
```

OC_curves_homogeneous Comparison based on OC curves for different dilution schemes when diluted samples collected from a homogeneous batch.

Description

OC_curves_homogeneous provides the operating characteristic(OC) curves when diluted sample has homogeneous contaminants.

Usage

```
OC_curves_homogeneous(c, lambda_low, lambda_high, a, b, f, u, USL, n, n_sim)
```

Arguments

С	acceptance number
lambda_low	the lower value of the expected cell count (λ) for use in the graphical display's x-axis.
lambda_high	the upper value of the expected cell count (λ) for use in the graphical display's x-axis.

а	lower domain of the number of cell counts.
b	upper domain of the number of cell counts.
f	final dilution factor.
u	amount put on the plate.
USL	upper specification limit.
n	number of samples which are used for inspection.
n_sim	number of simulations (large simulations provide more precise estimations).

Details

OC_curves_homogeneous provides OC curves for different dilution schemes when samples collected from a homogeneous batch (this section will be updated later on).

Value

OC curves when diluted samples collected from a homogeneous batch.

Examples

```
c <- 0
lambda_low <- 0
lambda_high <- 3000
a <- 0
b <- 300
f <- c(0.01,0.1)
u <- c(0.1,0.1)
USL <- 1000
n <- 5
n_sim <- 50000
OC_curves_homogeneous(c, lambda_low, lambda_high, a, b, f, u, USL, n, n_sim)</pre>
```

pd_curves_heterogeneous

comparison based on probability of detection curves for different dilution schemes when the diluted samples collected from a heterogeneous batch.

Description

pd_curves_heterogeneous provides the probability of detection curves when samples collected from a heterogeneous batch.

```
pd_curves_heterogeneous(meanlog_low, meanlog_high, sdlog, a, b, FDF, u, USL, n_sim)
```

meanlog_low	the lower value of the mean concentration (μ) for use in the graphical display's x-axis (on the log scale).
meanlog_high	the upper value of the mean concentration (μ) for use in the graphical display's x-axis (on the log scale).
sdlog	the standard deviation of the normal distribution (on the log scale).
а	lower domain of the number of cell counts.
b	upper domain of the number of cell counts.
FDF	final dilution factor.
u	amount put on the plate.
USL	upper specification limit.
n_sim	number of simulations (large simulations provide more precise estimations).

Details

pd_curves_heterogeneous provides probability of detection curves for different dilution schemes when the diluted samples collected from a heterogeneous batch (this section will be updated later on).

Value

Probability of detection curves when samples collected from a heterogeneous batch.

Examples

```
\label{eq:meanlog_low} $$ -0 $$ meanlog_high <- 10 $$ sdlog <- 0.2 $$ a <- 0 $$ b <- 300 $$ FDF <- c(0.01,0.1) $$ u <- c(0.1,0.1) $$ USL <- 1000 $$ n_sim <- 50000 $$ pd_curves_heterogeneous(meanlog_low, meanlog_high, sdlog, a, b, FDF, u, USL, n_sim) $$ $$ $$
```

pd_curves_homogeneous comparison based on probability of detection curves for different dilution schemes when diluted samples collected from a homogeneous

batch.

Description

pd_curves_homogeneous provides the probability of detection curves when samples collected from a homogeneous batch.

```
pd_curves_homogeneous(lambda_low, lambda_high, a, b, f, u, USL, n_sim)
```

lambda_low	the lower value of the expected cell count (λ) for use in the graphical display's x-axis.
lambda_high	the upper value of the expected cell count (λ) for use in the graphical display's x-axis.
а	lower domain of the number of cell counts.
b	upper domain of the number of cell counts.
f	final dilution factor.
u	amount put on the plate.
USL	upper specification limit.
n_sim	number of simulations (large simulations provide more precise estimations).

Details

pd_curves_homogeneous provides probability of detection curves for different dilution schemes when samples collected from a homogeneous batch (this section will be updated later on).

Value

Probability of detection curves when diluted samples collected from a homogeneous batch.

Examples

```
lambda_low <- 0
lambda_high <- 3000
a <- 0
b <- 300
f <- c(0.01,0.1)
u <- c(0.1,0.1)
USL <- 1000
n_sim <- 50000
pd_curves_homogeneous(lambda_low, lambda_high, a, b, f, u, USL, n_sim)</pre>
```

 $\verb|prob_acceptance_heterogeneous||$

Probability of acceptance estimation when diluted sample collected from a heterogeneous batch.

Description

prob_acceptance_heterogeneous provides a probability of acceptance in the original sample when samples collected from a heterogeneous batch.

```
prob_acceptance_heterogeneous(c, meanlog, sdlog, a, b, f, u, USL, n, n_sim)
```

С	acceptance number
meanlog	the mean concentration (on the log scale).
sdlog	the standard deviation of the normal distribution (on the log scale).
а	lower domain of the number of cell counts.
b	upper domain of the number of cell counts.
f	final dilution factor.
u	amount put on the plate.
USL	upper specification limit.
n	number of samples which are used for inspection.
n_sim	number of simulations (large simulations provide a more precise estimation).

Details

prob_detection_heterogeneous provides a probability of acceptance when diluted sample collected from a heterogeneous batch (this section will be updated later on).

Value

Probability of acceptance when sample collected from a heterogeneous batch.

Examples

```
 c <- 2 \\ meanlog <- 7 \\ sdlog <- 0.2 \\ a <- 0 \\ b <- 300 \\ f <- 0.01 \\ u <- 0.1 \\ USL <- 1000 \\ n <- 5 \\ n_sim <- 50000 \\ prob_acceptance_heterogeneous(c, meanlog, sdlog, a, b, f, u, USL, n, n_sim)
```

```
prob_acceptance_heterogeneous_multiple
```

Probability of acceptance estimation when diluted samples are collected from a heterogeneous batch.

Description

prob_acceptance_heterogeneous_multiple provides a probability of acceptance in the original sample when samples collected from a heterogeneous batch.

```
prob_acceptance_heterogeneous_multiple (c, meanlog, sdlog, a, b, f, u, USL, n, n_sim)
```

С	acceptance number
meanlog	the mean concentration (on the log scale).
sdlog	the standard deviation of the normal distribution (on the log scale).
а	lower domain of the number of cell counts.
b	upper domain of the number of cell counts.
f	final dilution factor.
u	amount put on the plate.
USL	upper specification limit.
n	number of samples which are used for inspection.
n_sim	number of simulations (large simulations provide more precise estimations).

Details

prob_acceptance_heterogeneous_multiple provides a probability of acceptance when diluted samples are collected from a heterogeneous batch (this section will be updated later on).

Value

Probability of acceptance when samples collected from a heterogeneous batch.

Examples

```
 c <- 2 \\ meanlog <- 7 \\ sdlog <- 0.2 \\ a <- 0 \\ b <- 300 \\ f <- c(0.01,0.1,1) \\ u <- c(0.1,0.1,0.1) \\ USL <- 1000 \\ n <- 5 \\ n_sim <- 50000 \\ prob_acceptance_heterogeneous_multiple (c, meanlog, sdlog, a, b, f, u, USL, n, n_sim)
```

prob_acceptance_homogeneous

Probability of acceptance estimation when diluted sample collected from a homogeneous batch.

Description

prob_acceptance_homogeneous provides a probability of acceptance in the original sample when samples collected from a homogeneous batch.

```
prob_acceptance_homogeneous(c, lambda, a, b, f, u, USL, n, n_sim)
```

С	acceptance number
lambda	the expected cell count (λ) .
а	lower domain of the number of cell counts.
b	upper domain of the number of cell counts.
f	final dilution factor.
u	amount put on the plate.
USL	upper specification limit.
n	number of samples which are used for inspection.
n_sim	number of simulations (large simulations provide a more precise estimation).

Details

prob_detection_homogeneous provides a probability of acceptance when samples collected from a homogeneous batch (this section will be updated later on).

Value

Probability of acceptance when the diluted sample collected from a homogeneous batch.

Examples

```
c <- 2
lambda <- 2000
a <- 0
b <- 300
f <- 0.001
u <- 0.1
USL <- 1000
n <- 5
n_sim <- 50000
prob_acceptance_homogeneous(c, lambda, a, b, f, u, USL, n, n_sim)</pre>
```

```
prob_acceptance_homogeneous_multiple
```

Probability of acceptance estimation for multiple dilution schemes when diluted samples are collected from a homogeneous batch.

Description

prob_acceptance_homogeneous_multiple provides a probability of acceptance for multiple dilution schemes in the original sample when samples collected from a homogeneous batch

```
prob_acceptance_homogeneous_multiple(c, lambda, a, b, f, u, USL, n, n_sim)
```

С	acceptance number
lambda	the expected cell count (λ).
а	lower domain of the number of cell counts.
b	upper domain of the number of cell counts.
f	final dilution factor.
u	amount put on the plate.
USL	upper specification limit.
n	number of samples which are used for inspection.
n_sim	number of simulations (large simulations provide more precise estimations).

Details

prob_detection_homogeneous_multiple provides a probability of acceptance for multiple dilution schemes in the original sample when samples collected from a homogeneous batch (this section will be updated later on).

Value

Probability of acceptance when diluted samples are collected from a homogeneous batch.

Examples

```
c <- 2
lambda <- 1000
a <- 0
b <- 300
f <- c(0.01,0.1,1)
u <- c(0.1,0.1,0.1)
USL <- 1000
n <- 5
n_sim <- 50000
prob_acceptance_homogeneous_multiple(c, lambda, a, b, f, u, USL, n, n_sim)</pre>
```

prob_detection_heterogeneous

Probability of detection estimation when diluted sample collected from a heterogeneous batch.

Description

prob_detection_heterogeneous provides a probability of detection in the original sample when samples collected from a heterogeneous batch.

```
prob_detection_heterogeneous(meanlog, sdlog, a, b, f, u, USL, n_sim)
```

meanlog	the mean concentration (on the log scale).
sdlog	the standard deviation of the normal distribution (on the log scale).
а	lower domain of the number of cell counts.
b	upper domain of the number of cell counts.
f	final dilution factor.
u	amount put on the plate.
USL	upper specification limit.
n_sim	number of simulations (large simulations provide a more precise estimation).

Details

prob_detection_heterogeneous provides a probability of detection when the diluted sample has heterogeneous contaminants. We define the random variable X_i is the number of colonies on the i^{th} plate. In practice, the acceptance for countable numbers of colonies on a plate must be between 30 and 300. Therefore, we can utilise bounded distributions to model the number of colonies on a plate. In the heterogeneous case, we employed truncated Poisson lognormal distribution to model (this section will be updated later on).

Value

Probability of detection when sample collected from a heterogeneous batch.

Examples

```
meanlog <- 2
sdlog <- 0.2
a <- 0
b <- 300
f <- 0.01
u <- 0.1
USL <- 1000
n_sim <- 50000
prob_detection_heterogeneous(meanlog, sdlog, a, b, f, u, USL, n_sim)</pre>
```

prob_detection_heterogeneous_multiple

Probability of detection estimation for multiple dilution schemes when diluted samples are collected from a heterogeneous batch.

Description

prob_detection_heterogeneous_multiple provides a probability of detection for multiple dilution schemes in the original sample when samples collected from a heterogeneous batch.

```
prob_detection_heterogeneous_multiple(meanlog, sdlog, a, b, f, u, USL, n_sim)
```

meanlog	the mean concentration (on the log scale).
sdlog	the standard deviation of the normal distribution (on the log scale).
a	lower domain of the number of cell counts.
b	upper domain of the number of cell counts.
f	vector of final dilution factor.
u	vector of amount put on the plate.
USL	upper specification limit.
n_sim	number of simulations (large simulations provide more precise estimations).

Details

prob_detection_heterogeneous_multiple provides a probability of detection when diluted samples are collected from a heterogeneous batch. We define the random variable X_i is the number of colonies on the i^{th} plate. In practice, the acceptance for countable numbers of colonies on a plate must be between 30 and 300. Therefore, we can utilise bounded distributions to model the number of colonies on a plate. In the heterogeneous case, we employed truncated Poisson lognormal distribution to the model. (this section will be updated later on).

Value

Probability of detection when samples collected from a heterogeneous batch.

Examples

```
meanlog <- 7
sdlog <- 0.2
a <- 0
b <- 300
f <- c(0.01,0.1,1)
u <- c(0.1,0.1,0.1)
USL <- 1000
n_sim <- 50000
prob_detection_heterogeneous_multiple(meanlog, sdlog, a, b, f, u, USL, n_sim)</pre>
```

prob_detection_homogeneous

Probability of detection estimation when diluted sample collected from a homogeneous batch.

Description

prob_detection_homogeneous provides a probability of detection in the original sample when samples collected from a homogeneous batch.

```
prob_detection_homogeneous(lambda, a, b, f, u, USL, n_sim)
```

lambda	the expected cell count (λ).
a	lower domain of the number of cell counts.
b	upper domain of the number of cell counts.
f	final dilution factor.
u	amount put on the plate.
USL	upper specification limit.
n sim	number of simulations (large simulations provide a more precise estimation).

Details

prob_detection_homogeneous provides a probability of detection when the diluted sample has homogeneous contaminants. We define the random variable X_i is the number of colonies on the i^{th} plate. In practice, the acceptance for countable numbers of colonies on a plate must be between 30 and 300. Therefore, we can utilise bounded distributions to model the number of colonies on a plate. In the homogeneous case, we employed truncated Poisson distribution to model (this section will be updated later on).

Value

Probability of detection when the diluted sample collected from a homogeneous batch.

Examples

```
lambda <- 2000
a <- 0
b <- 300
f <- 0.01
u <- 0.1
USL <- 1000
n_sim <- 50000
prob_detection_homogeneous(lambda, a, b, f, u, USL, n_sim)</pre>
```

```
prob_detection_homogeneous_multiple
```

Probability of detection estimation for multiple dilution schemes when diluted samples are collected from a homogeneous batch.

Description

prob_detection_homogeneous_multiple provides a probability of detection for multiple dilution schemes in the original sample when samples collected from a homogeneous batch.

```
prob_detection_homogeneous_multiple(lambda, a, b, f, u, USL, n_sim)
```

14 rtrunpoilog

Arguments

lambda	the expected cell count (λ).
а	lower domain of the number of cell counts.
b	upper domain of the number of cell counts.
f	final dilution factor.
u	amount put on the plate.
USL	upper specification limit.
n_sim	number of simulations (large simulations provide more precise estimations).

Details

prob_detection_homogeneous_multiple provides a probability of detection when the diluted sample has homogeneous contaminants. We define the random variable X_i is the number of colonies on the i^{th} plate. In practice, the acceptance for countable numbers of colonies on a plate must be between 30 and 300. Therefore, we can utilise bounded distributions to model the number of colonies on a plate. In the homogeneous case, we employed truncated Poisson distribution to model (this section will be updated later on).

Value

Probability of detection when diluted samples are collected from a homogeneous batch.

Examples

```
lambda <- 1000
a <- 0
b <- 300
f <- c(0.01,0.1,1)
u <- c(0.1,0.1,0.1)
USL <- 1000
n_sim <- 50000
prob_detection_homogeneous_multiple(lambda, a, b, f, u, USL, n_sim)</pre>
```

rtrunpoilog Generates random deviates from truncated Poisson lognormal distribution.

Description

rtrunpoilog provides generated random numbers from truncated Poisson lognormal distribution with given parameters.

```
rtrunpoilog(n, meanlog, sdlog, a, b)
```

rtrunpoilog 15

Arguments

n	number of observations. If $length(n) > 1$ then the length is taken to be the number required.
meanlog	the mean concentration (on the log scale).
sdlog	the standard deviation of the normal distribution (on the log scale).
a	lower truncation points (lower domain of the number of cell counts).
b	upper truncation points (upper domain of the number of cell counts).

Details

rtrunpoilog provides generated random numbers from truncated Poisson lognormal distribution with given parameters. (this section will be updated later on).

Value

rtrunpoilog generates random numbers from truncated Poisson lognormal distribution.

Examples

```
n <- 100
meanlog <- 0
sdlog <- 1
a <- 0
b <- 300
rtrunpoilog(n, meanlog, sdlog, a, b)</pre>
```

Index

```
dilutionrisk, 2
OC_curves_heterogeneous, 2, 2, 3
OC_curves_homogeneous, 3, 3, 4
pd_curves_heterogeneous, 4, 4, 5
pd_curves_homogeneous, 5, 5, 6
prob_acceptance_heterogeneous, 6, 6
prob_acceptance_heterogeneous_multiple,
         7, 7, 8
prob\_acceptance\_homogeneous, 8, 8
\verb|prob_acceptance_homogeneous_multiple|,
         9,9
prob_detection_heterogeneous, 7, 10, 10,
         11
prob_detection_heterogeneous_multiple,
         11, 11, 12
prob_detection_homogeneous, 9, 12, 12, 13
\verb|prob_detection_homogeneous_multiple|,\\
         10, 13, 13, 14
rtrunpoilog, 14, 14, 15
```