WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:

C07D 211/58, A61K 31/435, 31/41, C07D 207/14, 211/56, 211/26. 207/09, 401/12, 405/12, 409/12, 413/06, 413/14, 409/06,

(11) International Publication Number:

WO 99/25686

(43) International Publication Date:

27 May 1999 (27.05.99)

(21) International Application Number:

PCT/US98/23254

(22) International Filing Date:

17 November 1998 (17.11.98)

(30) Priority Data:

18 November 1997 (18.11.97) US 08/972.484 6 April 1998 (06.04.98)

US 09/055,285 13 August 1998 (13.08.98) US 09/133,434

(63) Related by Continuation (CON) or Continuation-in-Part (CIP) to Earlier Applications

08/972,484 (CIP) US 18 November 1997 (18.11.97) Filed on 09/055,285 (CIP) US 6 April 1998 (06.04.98) Filed on 09/133,434 (CIP) US 13 August 1998 (13.08.98) Filed on

(71) Applicants (for all designated States except US): TEIJIN LIM-ITED [JP/JP]; 6-7, Minamihommachi 1-chome, Chuo-ku, Osaka-shi, Osaka 541-0054 (JP). COMBICHEM, INC. [US/US]; 9050 Camino Santa Fe, San Diego, CA 92121 (US).

(72) Inventors: and

(75) Inventors/Applicants (for US only): SHIOTA, Tatsuki [JP/JP]; Teijin Limited, Tokyo Research Center, 4-3-2, Asahigaoka, Hino-shi, Tokyo 191 (JP). KATAOKA, Ken-ichiro [JP/JP]; Teijin Limited, Tokyo Research Center, 4-3-2, Asahigaoka, Hino-shi, Tokyo 191 (JP). IMAI, Minoru [JP/JP]; Teiiin Limited, Tokyo Research Center, 4-3-2, Asahigaoka, Hino-shi, Tokyo 191 (JP). TSUTSUMI, Takaharu [JP/JP]; Teijin Limited, Tokyo Research Center, 4-3-2, Asahigaoka, Hino-shi, Tokyo 191 (JP). SUDOH, Masaki [JP/JP]; Teijin Limited, Tokyo Research Center, 4-3-2, Asahigaoka, Hino-shi, Tokyo 191 (JP). SOGAWA, Ryo [JP/JP]; Teiiin Limited, Tokyo Research Center, 4-3-2, Asahigaoka, Hino-shi, Tokyo 191 (JP). MORITA, Takuya [JP/JP]; Teijin Limited, Tokyo Research Center, 4-3-2, Asahigaoka, Hino-shi, Tokyo 191 (JP). HADA, Takahiko [JP/JP]; Teijin Limited, Tokyo Research Center, 4-3-2, Asahigaoka, Hino-shi, Tokyo 191 (JP). MUROGA, Yumiko [JP/JP]; Teijin Limited, Tokyo Research Center, 4-3-2, Asahigaoka, Hino-shi, Tokyo 191 (JP). TAKENOUCHI, Osami [JP/JP]; Teijin Limited. Tokyo Research Center, 4-3-2, Asahigaoka,

Hino-shi, Tokyo 191 (JP). FURUYA, Monoru [JP/JP]: Teijin Limited, Tokyo Research Center, 4-3-2, Asahigaoka, Hino-shi, Tokyo 191 (JP). ENDO, Noriaki [JP/JP]; Teijin Limited, Tokyo Research Center, 4-3-2, Asahigaoka, Hino-shi, Tokyo 191 (JP). TARBY, Christine, M. [US/US]; CombiChem, Inc., 9050 Camino Santa Fe. San Diego, CA 92121 (US). MOREE, Wilna [NL/US]; CombiChem, Inc., 9050 Camino Santa Fe, San Diego, CA 92121 (US). TEIG, Steven, L. [US/US]; CombiChem North, Suite 201, 1804 Embarcadero Road, Palo Alto, CA 94303 (US).

(74) Agents: BIGGART, Waddell, A. et al.; Sughrue, Mion, Zinn, MacPeak & Seas, PLLC, Suite 800, 2100 Pennsylvania Avenue, N.W., Washington, DC 20037-3202 (US).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE). OAPI patent (BF, BJ. CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: CYCLIC AMINE DERIVATIVES AND THEIR USE AS DRUGS

$$\begin{array}{c}
R^{1} \longrightarrow (CH_{2})_{j} - N \longrightarrow (CH_{2})_{m} \longrightarrow (CH_{2})_{n} - N - C - (CH_{2})_{p} \longrightarrow (CH_{2})_{q} - G - R^{6}
\end{array}$$
(I)

(57) Abstract

A compound represented by general formula (I), a pharmaceutically acceptable acid addition salt thereof or a pharmaceutically acceptable C1-C6 alkyl addition salt thereof, and their medical applications. Since these compounds inhibit the action of chemokines such as MIP-1α and/or MCP-1 on target cells, they may be useful as a therapeutic drug and/or preventative drug in diseases, such as atherosclerosis, rheumatoid arthritis, and the like where blood monocytes and lymphocytes infiltrate into tissues.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL AM AT AU AZ BA BB BE BF BG CC CC CC CM CN CC CD DE DK EE	Albania Armenia Armenia Austria Austria Australia Azerbaijan Bosnia and Herzegovina Barbados Belgium Burkina Faso Bulgaria Benin Brazil Belarus Canada Central African Republic Congo Switzerland Côte d'Ivoire Cameroon China Cuba Cuba Czech Republic Germany Denmark Estonia	ES FI FR GA GB GE GN GR HU IS II IS IT JP KE KG KP KR LL LL LL LK LR	Spain Finland France Gabon United Kingdom Georgia Ghana Guinea Greece Hungary Ireland Israel Iceland Israel Iceland Israel Iceland Israel Kenya Kyngyzstan Democratic People's Republic of Korea Republic of Korea Republic of Korea Kazakstan Saint Lucia Liechtenstein Sri Lanka Liberia	LS LT LU LV MC MD MG MK ML MN MR MW MX NE NL NO NZ PL PT RO RU SD SE SG	Lesotho Lithuania Luxembourg Latvia Monaco Republic of Moldova Madagascar The former Yugoslav Republic of Macedonia Mali Mongolia Mauritania Malawi Mexico Niger Netherlands Norway New Zealand Poland Portugal Romania Russian Federation Sudan Sweden Singapore	SI SK SN SZ TD TG TJ TM TT UA UG US UZ VN YU ZW	Slovenia Slovakia Senegal Swaziland Chad Togo Tajikistan Turkey Trinidad and Tobago Ulraine Uganda United States of America Uzbekistan Viet Nam Yugoslavia Zimbabwe	
---	---	--	--	---	---	--	---	--

SPECIFICATION

Cyclic Amine Derivatives and Their Use as Drugs

5 Field of the Invention

10

15

20

25

30

35

This invention relates to novel cyclic amine derivatives.

This invention also relates to chemokine receptor antagonists that may be effective as a therapeutic agent and/or preventive agent for diseases such as atherosclerosis, rheumatoid arthritis, psoriasis, asthma, ulcerative colitis, nephritis (nephropathy), multiple sclerosis, pulmonary fibrosis, myocarditis, hepatitis, pancreatitis, sarcoidosis, Crohn's disease, endometriosis, congestive heart failure, viral meningitis, cerebral infarction, neuropathy, Kawasaki disease, and sepsis in which tissue infiltration of blood leukocytes, such as monocytes and lymphocytes, play a major role in the initiation, progression or maintenance of the disease.

Description of related art

Chemokines are a group of inflammatory/immunomodulatory polypeptide factors which have a molecular weight of 6-15 kD and are produced by a variety of cell types, such as macrophages, monocytes, eosinophils, neutrophiles, fibroblasts, vascular endotherial cells, smooth muscle cells, and mast cells, at inflammatory sites. The chemokines can be classified into two major subfamilies, the CXC chemokines (or α -chemokines) and CC chemokines (or β chemokines), by the common location of the four conserved cysteine residues and by the differences in the chromosomal locations of the genes encoding them. The first two cysteines of CXC chemokines are separated by one amino acid and those of CC chemokines are adjacent. For example IL-8 (abbreviation for interleukin-8) is a CXC chemokine, while the CC chemokines include MIP-llpha/eta (abbreviation for macrophage inflammatory protein- $1\alpha/\beta$), MCP-1 (abbreviation for monocyte chemoattractant protein-1), and RANTES (abbreviation for regulated upon activation, normal T-cell expressed and secreted). There also exist chemokines which do not fall into either chemokine subfamily. They are lymphotactin, which has only two cysteines and defines the C chemokine, and fractalkine that has a chemokine-like domain in the mucin structure in which the first two cysteines are separated by three amino acids and hence defines CX3C chemokine. These chemokines promote chemotaxis, cell migration, increase the expression of cellular adhesion molecules such as integrins, and cellular adhesion, and are

thought to be the protein factors intimately involved in the adhesion and infiltration of leukocytes into the pathogenic sites in such as inflammatory tissues (for references, see for example, Vaddi, K., et al., The Chemokine Facts Book, Academic Press, 1997; Chemoattractant Ligand and Their Receptors, Horuk, R., Ed., CRC Press, 1996; Ward, G.W., et al., Biochem. J., 1998, 333, 457; Luster, A.D., New Engl. J. Med., 1998, 338, 436; Baggiolini, M., Nature, 1998, 392, 565; Rollins, B.J., Blood, 1997, 90, 909; Alam, R., J. Allergy Clin. Immunol., 1997, 99, 273; Hancock, W.W., Am. J. Pathol., 1996, 148, 681; Taub, D.D., Cytokine & Growth Factor Rev., 1996, 7, 335; Strieter, R.M., et al., J. Immunol., 1996, 156, 3583; Furie, M.B., et al., Am. J. Pathol., 1995, 146, 1287; Schall, T.J., et al., Current Opinion in Immunology, 1994, 6, 865; Edginton, S.M., Biotechnology, 1993, 11, 676).

10

30

35

For example, MIP-1 α causes a transient increase in intracellular calcium ion concentration levels and induces migration of T lymphocytes, B lymphocytes (see for example, Taub, D.D., et al., Science, 1993, 260, 355; Schall, T.J., 15 et al., J. Exp. Med., 1993, 177, 1821), and eosinophiles (see for example, Rot, A., et al., J. Exp. Med., 1992, 176, 1489), chemotaxis of natural killer cells (see for example, Maghazachi, A.A., et al., J. Immunol., 1994, 153, 4969), expression of integrins (see for example, Vaddi, K., et al., J. Immunol., 1994, 20 153, 4721), and osteoclast differentiation (see for example, Kukita, T., et al., Lab. Invest., 1997, 76, 399). MIP-1 α also enhances IgE and IgG4 production in B cells (see for example, Kimata, H., et al., J. Exp. Med., 1996, 183, 2397) and inhibits hematopoietic stem cell proliferation (see for example, Mayani, H., et al., Exp. Hematol., 1995, 23, 422; Keller, J.R., et al., Blood, 1994, 25 84, 2175; Eaves, C.J., et al., Proc. Natl. Acad. Sci. USA, 1993, 90, 12015; Bodine, D.M., et al., Blood, 1991, 78, 914; Broxmeyer, H.E., et al., Blood, 1990, 76, 1110).

With respect to the activity of MIP-lα in vivo and its role in the pathogenesis of disease, it has been reported that it is a pyrogen in rabbits (see for example Davatelis, G., et al., Science, 1989, 243, 1066); that MIP-lα injection into mouse foot pads results in an inflammatory reaction such as infiltration by neutrophils and mononuclear cells (see for example Alam, R., et al., J. Immunol., 1994, 152, 1298); that MIP-lα neutralizing antibody has an inhibitory effect or a therapeutic effect in animal models of granuloma (see for example Lukacs, N.W., et al., J. Exp. Med., 1993, 177, 1551), asthma (see for example Lukacs, N.W., et al., Eur. J. Immunol., 1995, 25, 245; Lukacs, N.W., et al., J. Immunol., 1997, 158, 4398), multiple sclerosis (see for example Karpus,

W.J., et al., J. Immunol., 1995, 155, 5003; Karpus, W.J., et al., J. Leukoc. Biol., 1997, 62, 681), idiopathic pulmonary fibrosis (see for example Smith, R.E., et al., J. Immunol., 1994, 153, 4704; Smith, R.E., Biol. Signals, 1996, 5, 223), acute lung injury (see for example Shanley, T.P., et al., J. Immunol., 1995, 154, 4793; Standiford, T.J., et al., J. Immunol., 1995, 155, 1515), and rheumatoid arthritis (see for example Kasama, T., et al., J. Clin. Invest., 1995, 95, 2868); that coxsackie virus induced myocarditis and herpes stromal keratitis are inhibited in mice with a disrupted MIP-l α gene (see for example Cook, D.N. et al., Science, 1995, 269, 1583; Tumpey, T.M., et al., J. Virology, 1998, 72, 3705); and that significant expression of MIP-l α is observed in patients with chronic inflammatory diseases of lung (see for example Standiford, T.J., et al., J. Immunol., 1993, 151, 2852), hypersensitivity pneumonitis (see for example Denis, M., Am. J. Respir. Crit. Care Med., 1995, 151, 164), rheumatoid arthritis (see for example Koch, A.E., et al., J. Clin. Invest., 1994, 93, 921), infectious meningitis (see for example Lahrtz, F., et al., J. Neuroimmunol., 1998, 85, 33), and chronic inflammation of muscle (see for example Adams, E.M., et al., Proc. Assoc. Am. Physicians, 1997, 109, 275). These studies indicate that MIP-1 α is deeply involved in the local attraction of various subtypes of leukocytes and the initiation, progression and maintenance of resulting inflammatory response.

10

15

20

25

30

35

MCP-1 (also known as MCAF (abbreviation for macrophage chemotactic and activating factor) or JE) is a CC chemokine produced by monocytes/macrophages, smooth muscle cells, fibroblasts, and vascular endothelial cells and causes cell migration and cell adhesion of monocytes (see for example Valente, A.J., et al., Biochemistry, 1988, 27, 4162; Matsushima, K., et al., J. Exp. Med., 1989, 169, 1485; Yoshimura, T., et al., J. Immunol., 1989, 142, 1956; Rollins, B.J., et al., Proc. Natl. Acad. Sci. USA, 1988, 85, 3738; Rollins, B.J., et al., Blood, 1991, 78, 1112; Jiang, Y., et al., J. Immunol., 1992, 148, 2423; Vaddi, K., et al., J. Immunol., 1994, 153, 4721), memory T lymphocytes (see for example Carr, M.W., et al., Proc. Natl. Acad. Sci. USA, 1994, 91, 3652), T lymphocytes (see for example Loetscher, P., et al., FASEB J., 1994, 8, 1055) and natural killer cells (see for example Loetscher, P., et al., J. Immunol., 1996, 156, 322; Allavena, P., et al., Eur. J. Immunol., 1994, 24, 3233), as well as mediating histamine release by basophils (see for example Alam, R., et al., J. Clin. Invest., 1992, 89, 723; Bischoff, S.C., et al., J. Exp. Med., 1992, 175, 1271; Kuna, P., et al., J. Exp. Med., 1992, 175, 489).

In addition, high expression of MCP-1 has been reported in diseases where accumulation of monocyte/macrophage and/or T cells is thought to be important

in the initiation or progression of diseases, such as atherosclerosis (see for example Hayes, I.M., et al., Arterioscler. Thromb. Vasc. Biol., 1998, 18, 397; Takeya, M., et al., Hum. Pathol., 1993, 24, 534; Yla-Herttuala, S., et al., Proc. Natl. Acad. Sci. USA, 1991, 88, 5252; Nelken, N.A., J. Clin. Invest., 1991, 88, 1121), rheumatoid arthritis (see for example Koch, A.E., et al., J. Clin. Invest., 1992, 90, 772; Akahoshi, T., et al., Arthritis Rheum., 1993, 36, 762; Robinson, E., et al., Clin. Exp. Immunol., 101, 398), nephritis (see for example Noris, M., et al., Lab. Invest., 1995, 73, 804; Wada, T., at al., Kidney Int., 1996, 49, 761; Gesualdo, L., et al., Kidney Int., 1997, 51, 155), nephropathy (see for example Saitoh, A., et al., J. Clin. Lab. Anal., 1998, 12, 1; Yokoyama, H., 10 et al., J. Leukoc. Biol., 1998, 63, 493), pulmonary fibrosis, pulmonary sarcoidosis (see for example Sugiyama, Y., et al., Internal Medicine, 1997, 36, 856), asthma (see for example Karina, M., et al., J. Invest. Allergol. Clin. Immunol., 1997, 7, 254; Stephene, T.H., Am. J. Respir. Crit. Care Med., 1997, 156, 1377; Sousa, A.R., et al., Am. J. Respir. Cell Mol. Biol., 1994, 10, 142), 15 multiple sclerosis (see for example McManus, C., et al., J. Neuroimmunol., 1998, 86, 20), psoriasis (see for example Gillitzer, R., et al., J. Invest. Dermatol., 1993, 101, 127), inflammatory bowel disease (see for example Grimm, M.C., et al., J. Leukoc. Biol., 1996, 59, 804; Reinecker, H.C., et al., Gastroenterology, 20 1995, 106, 40), myocarditis (see for example Seino, Y., et al., Cytokine, 1995, 7, 301), endometriosis (see for example Jolicoeur, C., et al., Am. J. Pathol., 1998, 152, 125), intraperitoneal adhesion (see for example Zeyneloglu, H.B., et al., Human Reproduction, 1998, 13, 1194), congestive heart failure (see for example Aurust, P., et al., Circulation, 1998, 97, 1136), chronic liver disease 25 (see for example Marra, F., et al., Am. J. Pathol., 1998, 152, 423), viral meningitis (see for example Lahrtz, F., et al., Eur. J. Immunol., 1997, 27, 2484), Kawasaki disease (see for example Wong, M.; et al., J. Rheumatol., 1997, 24,1179) and sepsis (see for example Salkowski, C.A.; et al., Infect. Immun., 1998, 66, 3569). Furthermore, anti-MCP-1 antibody has been reported to show an inhibitory 30 effect or a therapeutic effect in animal models of rheumatoid arthritis (see for example Schimmer, R.C., et al., J. Immunol., 1998, 160, 1466; Schrier, D.J., J. Leukoc. Biol., 1998, 63, 359; Ogata, H., et al., J. Pathol., 1997, 182, 106), multiple sclerosis (see for example Karpus, W.J., et al., J. Leukoc. Biol., 1997, 62, 681), nephritis (see for example Lloyd, C.M., et al., J. Exp. Med., 1997, 35 185, 1371; Wada, T., et al., FASEB J., 1996, 10, 1418), Asthma (see for example Gonzalo, J.-A., et al., J. Exp. Med., 1998, 188, 157; Lukacs, N.W., J. Immunol., 1997, 158, 4398), atherosclerosis (see for example Guzman, L.A., et al.,

Circulation, 1993, 88 (suppl.), I-371), delayed type hypersensitivity (see for example Rand, M.L., et al., Am. J. Pathol., 1996, 148, 855), pulmonary hypertension (see for example Kimura, H., et al., Lab. Invest., 1998, 78, 571), and intraperitoneal adhesion (see for example Zeyneloglu, H.B., et al., Am. J. Obstet. Gynecol., 1998, 179, 438). A peptide antagonist of MCP-1, MCP-1(9-76), has been also reported to inhibit arthritis in the mouse model (see Gong, J.-H., J. Exp. Med., 1997, 186, 131), as well as studies in MCP-1-deficient mice have shown that MCP-1 is essential for monocyte recruitment in vivo (see Lu, B., et al., J. Exp. Med., 1998, 187, 601; Gu, L., et al., Moll. Cell, 1998, 2, 275).

These data indicate that chemokines such as MIP-la and MCP-l attract monocytes and lymphocytes to disease sites and mediate their activation and thus are thought to be intimately involved in the initiation, progression and maintenance of diseases deeply involving monocytes and lymphocytes, such as atherosclerosis, rheumatoid arthritis, psoriasis, asthma, ulcerative colitis, nephritis (nephropathy), multiple sclerosis, pulmonary fibrosis, myocarditis, hepatitis, pancreatitis, sarcoidosis, Crohn's disease, endometriosis, congestive heart failure, viral meningitis, cerebral infarction, neuropathy, Kawasaki disease, and sepsis (see for example Rovin, B.H., et al., Am. J. Kidney. Dis., 1998, 31, 1065; Lloyd, C., et al., Curr. Opin. Nephrol. Hypertens., 1998, 7, 281; Conti, P., et al., Allergy and Asthma Proc., 1998, 19, 121; Ransohoff, R.M., et al., Trends Neurosci., 1998, 21, 154; MacDermott, R.P., et al., Inflammatory Bowel Diseases, 1998, 4, 54). Therefore, drugs which inhibit the action of chemokines on target cells may be effective as a therapeutic and/or preventive drug in the diseases.

Genes encoding receptors of specific chemokines have been cloned, and it is now known that these receptors are G protein-coupled seven-transmembrane receptors present on various leukocyte populations. So far, at least five CXC chemokine receptors (CXCR1-CXCR5) and eight CC chemokine receptors (CCR1-CCR8) have been identified. For example IL-8 is a ligand for CXCR1 and CXCR2, MIP-1a is that for CCR1 and CCR5, and MCP-1 is that for CCR2A and CCR2B (for reference, see for example, Holmes, W.E., et al., Science 1991, 253, 1278-1280; Murphy P.M., et al., Science, 253, 1280-1283; Neote, K. et al., Cell, 1993, 72, 415-425; Charo, I.F., et al., Proc. Natl. Acad. Sci. USA, 1994, 91, 2752-2756; Yamagami, S., et al., Biochem. Biophys. Res. Commun., 1994, 202, 1156-1162; Combadier, C., et al., The Journal of Biological Chemistry, 1995, 270, 16491-16494, Power, C.A., et al., J. Biol. Chem., 1995, 270, 19495-19500; Samson, M., et al.,

Biochemistry, 1996, 35, 3362-3367; Murphy, P.M., Annual Review of Immunology, 1994, 12, 592-633). It has been reported that lung inflammation and granuroma formation are suppressed in CCR1-deficient mice (see Gao, J.-L., et al., J. Exp. Med., 1997, 185, 1959; Gerard, C., et al., J. Clin. Invest., 1997, 100, 2022), and that recruitment of macrophages and formation of atherosclerotic lesion decreased in CCR2-deficient mice (see Boring, L., et al., Nature, 1998, 394, 894; Kuziel, W.A., et al., Proc. Natl. Acad. Sci., USA, 1997, 94, 12053; Kurihara, T., et al., J. Exp. Med., 1997, 186, 1757; Boring, L., et al., J. Clin. Invest., 1997, 100, 2552). Therefore, compound which inhibit the binding of chemokines such as MIP-1 α and/or MCP-1 to these receptors, that is, chemokine receptor antagonist, may be useful as drugs which inhibit the action of chemokines such as MIP-1 α and/or MCP-1 on the target cells, but there are no drugs known to have such effects.

The cyclic amine derivatives provided by the present invention is quite 15 novel. Recently, it has been reported that the diphenylmethane derivatives (WO9724325; Hesselgesser, J., et al., J. Biol. Chem., 1998, 273, 15687), piperidine derivatives (JP9-249566), imidazobenzodiazepine derivatives (JP9-249570), benzazocine derivatives (JP9-255572), tricyclic compounds with cyclic amino group (WO9804554), phenothiazine derivatives (Bright, C., et al., 20 Bioorg. Med. Chem. Lett., 1998, 8, 771), pieprazine derivatives (WO9744329), benzimidazole derivatives (WO9806703), distamycin analogues (Howard, O.M.Z., et al., J. Med. Chem., 1998, 41, 2184), bis-acridine derivatives (WO9830218), spiro-substituted azacycles (WO9825604; WO9825605), substituted aryl (WO9825617), aminoquinoline derivatives (WO9827815), 3-25 arylpiperidine derivatives (WO9831364), hexanoic amide derivatives (WO9838167), and other small molecules (WO9744329; WO9802151; WO9804554) have antagonistic activity of chemokine receptor, such as CXCR1, CXCR4, CCR1, CCR2, CCR3, and CCR5. However, these compounds differ from the compound of the present invention.

30 Summary of the Invention

10

Therefore, it is an object of the present invention to provide small molecule compound which inhibits the binding of chemokines such as MIP-1 α and/or MCP-1 to their receptors on the target cells.

It is another object of the present invention to establish a method to inhibit the binding to the receptors on the target cells and/or effects on target cells of chemokines such as MIP-1 α and/or MCP-1.

It is an additional object of the present invention to propose a method

for the treatment of diseases for which the binding of chemokines such as MIP-l α and/or MCP-l to the receptor on the target cell is one of the causes.

As a result of intensive studies, the present inventors discovered that a cyclic amine derivative having a arylalkyl group, its pharmaceutically acceptable C_1 - C_6 alkyl addition salt or its pharmaceutically acceptable acid addition salt has an excellent activity to inhibit the binding of chemokines such as MIP- 1α and/or MCP-1 and the like to the receptor of a target cell, which has led to the completion of this invention.

That is, the present invention is a compound of the formula (I) below:

10

15

20

25

30

5

$$\begin{array}{c|c}
R_{1}^{1} & (CH_{2})_{j} - N \\
R_{2}^{2} & (CH_{2})_{m}
\end{array}$$

$$\begin{array}{c|c}
(CH_{2})_{n} - N - C - (CH_{2})_{p} - R^{4} \\
R_{3}^{2} & (CH_{2})_{q} - G - R^{6}
\end{array}$$
(I)

, a pharmaceutically acceptable acid addition salt thereof or a pharmaceutically acceptable C_1-C_6 alkyl addition salt thereof (Invention 1),

wherein R1 is a phenyl group, a C3-C8 cycloalkyl group, or an aromatic heterocyclic group having 1-3 heteroatoms selected from the group consisting of an oxygen atom, a sulfur atom, a nitrogen atom, or a combination thereof, in which the phenyl or aromatic heterocyclic group may be condensed with a benzene ring or an aromatic heterocyclic group having 1-3 heteroatoms selected from the group consisting of an oxygen atom, a sulfur atom, a nitrogen atom, or a combination thereof, to form a condensed ring, and the phenyl group, $C_3 - C_\theta$ cycloalkyl group, aromatic heterocyclic group, or condensed ring may be substituted with one or more of a halogen atom, a hydroxy group, a cyano group, a nitro group, a carboxy group, a carbamoyl group, a C_1 - C_6 alkyl group, a C_3 - C_8 cycloalkyl group, a C_2 - C_6 alkenyl group, a C_1 - C_5 alkoxy group, a C_1 - C_6 alkylthio group, a C_3-C_5 alkylene group, a C_2-C_4 alkylenoxy group, a C_1-C_3 alkylenedioxy group, a phenyl group, a phenoxy group, a phenylthio group, a benzyl group, a benzyloxy group, a benzoylamino group, a C_2-C_7 alkanoyl group, a C_2-C_7 alkoxycarbonyl group, a C_2 - C_2 - alkanoyloxy group, a C_2 - C_3 - alkanoylamino group, a C_2 - C_7 N-alkylcarbamoyl group, a C_4 - C_9 N-cycloalkylcarbamoyl group, a C_1 - C_6 alkylsulfonyl group, a C₃-C₂ (alkoxycarbonyl)methyl group, a N-phenylcarbamoyl group, a piperidinocarbonyl group, a morpholinocarbonyl group, a 1pyrrolidinylcarbonyl group, a divalent group represented by the formula: -NH(C=0)0-, a divalent group represented by the formula: -NH(C=S)0-, an amino

group, a mono (C_1 - C_6 alkyl) amino group, or a di (C_1 - C_6 alkyl) amino group, wherein the substituent for the phenyl group, C_3 - C_5 cycloalkyl group, aromatic heterocyclic group, or condensed ring is optionally substituted with one or more of a halogen atom, a hydroxy group, an amino group, a trifluoromethyl group, a C_1 - C_6 alkyl group, or a C_1 - C_6 alkoxy group;

 R^2 is a hydrogen atom, a C_1 - C_6 alkyl group, a C_2 - C_7 alkoxycarbonyl group, a hydroxy group, or a phenyl group, in which the C_1 - C_6 alkyl or phenyl group may be substituted with one or more of a halogen atom, a hydroxy group, a C_1 - C_6 alkyl group, or a C_1 - C_6 alkoxy group, and when j=0, R^2 is not a hydroxy group;

j represents an integer of 0-2;

k represents an integer of 0-2;

m represents an integer of 2-4;

n represents 0 or 1;

15

20

25

30

35

 R^3 is a hydrogen atom or a C_1-C_6 alkyl group optionally substituted with one or two phenyl groups each of which may be substituted with one or more of a halogen atom, a hydroxy group, a C_1-C_6 alkyl group, or a C_1-C_6 alkoxy group;

 R^4 and R^5 are the same or different from each other and are a hydrogen atom, a hydroxy group, a phenyl group, or a C_1-C_6 alkyl group, in which the C_1-C_6 alkyl group is optionally substituted with one or more of a halogen atom, a hydroxy group, a cyano group, a nitro group, a carboxy group, a carbamoyl group, a mercapto group, a guanidino group, a C_2-C_6 cycloalkyl group, a C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a phenyl group optionally substituted with one or more of a halogen atom, a hydroxy group, a C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, or a benzyloxy group, a phenoxy group, a benzyloxy group, a benzyloxycarbonyl group, a C_2-C_7 alkanoyl group, a C_2-C_7 alkoxycarbonyl group, a C_2-C_7 alkanoylamino group, a C_2-C_7 alkoxycarbonyl group, a C_2-C_7 alkanoylamino group, a mono $(C_1-C_6$ alkyl)amino group, a di $(C_1-C_6$ alkyl)amino group, or an aromatic heterocyclic group having 1-3 of heteroatoms selected from the group consisting of an oxygen atom, a sulfur atom, a nitrogen atom, or a combination thereof and optionally condensed with benzene ring, or R^4 and R^5 taken together form a 3 to 6 membered cyclic hydrocarbon;

p represents 0 or 1;

q represents 0 or 1;

G is a group represented by -CO-, -SO₂-, -CO-O-, -NR -CO-, -CO-NR -, -NH-CO-NH-, -NH-CS-NH-, -NR -SO₂-, -SO₂-NR -, -NH-CO-O-, or -O-CO-NH-, wherein R is a hydrogen atom or a C_1 - C_6 alkyl group, or R^7 taken together with R^6 represents C_2 - C_5 alkylene group;

 R^6 is a phenyl group, a C_3-C_8 cycloalkyl group, a C_3-C_8 cycloalkenyl group, a benzyl group, or an aromatic heterocyclic group having 1-3 heteroatoms selected from the group consisting of an oxygen atom, a sulfur atom, a nitrogen atom, or a combination thereof, in which the phenyl, benzyl, or aromatic heterocyclic group may be condensed with a benzene ring or an aromatic heterocyclic group having 1-3 heteroatoms selected from the group consisting of an oxygen atom, a sulfur atom, a nitrogen atom, or a combination thereof, to form a condensed ring, and the phenyl group, C3-Ce cycloalkyl group, C3-Ce cycloalkenyl group, benzyl group, aromatic heterocyclic group, or condensed ring may be substituted with one or more of a halogen atom, a hydroxy group, a mercapto group, a cyano group, a nitro group, a thiocyanato group, a carboxy group, a carbamoyl group, a trifluoromethyl group, a C_1 - C_6 alkyl group, a C_3 - C_6 cycloalkyl group, a C_2 - C_6 alkenyl group, a C_1 - C_6 alkoxy group, a C_3 - C_8 cycloalkyloxy group, a C_1 - C_6 alkylthio group, a C_1 - C_3 alkylenedioxy group, a phenyl group, a phenoxy group, a phenylamino group, a benzyl group, a benzoyl group, a phenylsulfinyl group, a phenylsulfonyl group, a 3-phenylureido group, a C_2 - C_7 alkanoyl group, a C_2 - C_7 alkoxýcarbonyl group, a C_2 - C_7 alkanoyloxy group, a C_2 - C_7 alkanoylamino group, a C_2 - C_7 N-alkylcarbamoyl group, a C_1 - C_6 alkylsulfonyl group, a phenylcarbamoyl group, a $N, N-di(C_1-C_6 \text{ alkyl})$ sulfamoyl group, an amino group, a mono(C_1-C_6 alkyl) amino group, a di $(C_1-C_6$ alkyl) amino group, a benzylamino group, a C_2-C_7 $(alkoxycarbonyl)\,amino\,\,group,\,\,a\,\,C_1-C_{\varepsilon}\,\,(alkylsulfonyl)\,amino\,\,group,\,\,or\,\,a\,\,bis\,(C_1-C_{\delta_1})$ alkylsulfonyl)amino group, wherein the substituent for the phenyl group, C_3 - C_{g_1} cycloalkyl group, C_3 - C_8 cycloalkenyl group, benzyl group, aromatic heterocyclic group, or condensed ring is optionally substituted with one or more of a halogen atom, a cyano group, a hydroxy group, an amino group, trifluoromethyl group, a C_1 - C_6 alkyl group, a C_1 - C_5 alkoxy group, a C_1 - C_6 alkylthio group, a mono(C_1 - C_6 alkyl) amino group, or a $di(C_1-C_{\epsilon} alkyl)$ amino group.

Also the present invention is a method of inhibiting the binding of a chemokine to the receptor of a target cell and/or its action on a target cell using a pharmaceutical preparation containing a therapeutically effective amount of a compound represented by the above formula (I), a pharmaceutically acceptable acid addition salt thereof, or a pharmaceutically acceptable C_1 - C_6 alkyl addition salt thereof (Invention 2).

35

5

10

15

20

25

30

Here, the compound represented by the above formula (I) have activities to inhibit the binding of chemokines such as MIP-l α and/or MCP-l and the like

to the receptor of a target cell and activities to inhibit physiological activities of cells caused by chemokines such as MIP-l α and/or MCP-1 and the like.

5 Description of the Preferred Embodiments

(1) On Invention 1

10

15

20

25

30

- 35

In the above formula (I), R^1 is a phenyl group, a C_3 - C_8 cycloalkyl group, or an aromatic heterocyclic group having 1-3 heteroatoms selected from the group consisting of an oxygen atom, a sulfur atom, a nitrogen atom, or a combination thereof, in which the phenyl or aromatic heterocyclic group may be condensed with a benzene ring or an aromatic heterocyclic group having 1-3 heteroatoms selected from the group consisting of an oxygen atom, a sulfur atom, a nitrogen atom, or a combination thereof, to form a condensed ring, and the phenyl group, C_3 - C_8 cycloalkyl group, aromatic heterocyclic group, or condensed ring may be substituted with one or more of a halogen atom, a hydroxy group, a cyano group, a nitro group, a carboxy group, a carbamoyl group, a C_2 - C_6 alkyl group, a C_3 - C_9 cycloalkyl group, a C_2 - C_6 alkenyl group, a C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, a C_3 - C_5 alkylene group, a C_2 - C_4 alkylenoxy group, a C_1 - C_3 alkylenedioxy group, a phenyl group, a phenoxy group, a phenylthio group, a benzyl group, a benzyloxy group, a benzoylamino group, a C_2 - C_7 alkanoyl group, a C_2 - C_7 alkoxycarbonyl group, a C2-C- alkanoyloxy group, a C2-C- alkanoylamino group, a C_2 - C_7 N-alkylcarbamoyl group, a C_4 - C_6 N-cycloalkylcarbamoyl group, a C_1 - C_6 alkylsulfonyl group, a C_3-C_8 (alkoxycarbonyl) methyl group, a N-phenylcarbamoyl group, a piperidinocarbonyl group, a morpholinocarbonyl group, a 1pyrrolidinylcarbonyl group, a divalent group represented by the formula: -NH(C=O)O-, a divalent group represented by the formula: -NH(C=S)O-, an amino group, a mono(C_1 - C_6 alkyl)amino group, or a di(C_1 - C_6 alkyl)amino group.

The " C_3 - C_6 cycloalkyl group" for R^1 means a cyclic alkyl group such as a cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, and cyclooctyl group, specifically including a cyclopropyl, cyclopentyl, and cyclohexyl group.

The "aromatic heterocyclic group having 1-3 heteroatoms selected from the group consisting of an oxygen atom, a sulfur atom, a nitrogen atom, or a combination thereof" for R¹ is specifically, for example, thienyl, furyl, pyrrolyl, imidazolyl, pyrazolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, pyridyl, pyrimidinyl, triazinyl, triazolyl, oxadiazolyl (furazanyl),

thiadiazolyl group and the like, preferably including a thienyl, furyl, pyrrolyl, isoxazolyl, and pyridyl group.

The "condensed ring" for R¹ means a ring obtained by the condensation with a benzene ring or an aromatic heterocyclic group having 1-3 heteroatoms selected from the group consisting of an oxygen atom, a sulfur atom, a nitrogen atom of a phenyl group or an aromatic heterocyclic group having 1-3 heteroatoms selected from the group consisting of an oxygen atom, a sulfur atom and/or a nitrogen atom, at any possible sites, suitably and specifically for example, naphthyl, indolyl, benzofuranyl, benzothienyl, quinolyl, benzimidazolyl, benzoxazolyl, benzotriazolyl, benzoxadiazolyl (benzofurazanyl), and benzothiadiazolyl group.

Among them, a phenyl group and an isoxazolyl group can be listed as a preferred specific example for \mathbb{R}^1 .

10

20

25

30

35

The "halogen atom" as a substituent for the phenyl group, C_3 - C_8 cycloalkyl group, aromatic heterocyclic group, or condensed ring in R^1 includes a fluorine atom, chlorine atom, bromine atom, and iodine atom, suitably including a fluorine atom, chlorine atom, and bromine atom.

The " C_1 - C_6 alkyl group" as a substituent for R^1 means a C_1 - C_6 straight-chain or a branched alkyl group such as a methyl, ethyl, n-propyl, n-butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl, isopropyl, isobutyl, sec-butyl, tert-butyl, isopentyl, neopentyl, tert-pentyl, isohexyl, 2-methylpentyl, 1-ethylbutyl group, and the like, suitably specifically including a methyl, ethyl, propyl, and isopropyl group.

The " C_2 - C_8 cycloalkyl group" as a substituent for R^1 is the same as defined for the aforementioned " C_3 - C_8 cycloalkyl group" for R^1 , where the same examples can be given for the preferred specific examples.

The " C_2 - C_6 alkenyl group" as a substituent for R^1 means a C_2 - C_6 straight-chain or a branched alkenyl group such as a vinyl, allyl, 1-propenyl, 2-butenyl, 3-butenyl, 2-methyl-1-propenyl, 4-pentenyl, 5-hexenyl, 4-methyl-3-pentenyl group, and the like, suitably specifically including a vinyl and 2-methyl-1-propenyl group.

The " C_1 - C_6 alkoxy group" as a substituent for R^1 means group consisting of the aforementioned C_1 - C_6 alkyl group and oxy group, specifically, for example, a methoxy and ethoxy group.

The " C_1 - C_6 alkylthio group" as a substituent for R^1 means group consisting of the aforementioned C_1 - C_6 alkyl group and thio group, specifically, for example,

a methylthio and ethylthio group.

5

10

15

20

25

30

35

The " C_3 - C_5 alkylene group" as a substituent for R^1 means the C_3 - C_5 divalent alkylene group such as a trimethylene, tetramethylene, pentamethylene, and 1-methyltrimethylene group, specifically, for example, a trimethylene and a tetramethylene group.

The "C₂-C₄ alkylenoxy group" as a substituent for R¹ means group consisting of the aforementioned C₂-C₄ divalent alkylene group and oxy group such as a ethylenoxy (-CH₂CH₂O-), trimethylenoxy (-CH₂CH₂O-), tetramethylenoxy (-CH₂CH₂CH₂O-), and 1,1-dimethylenoxy (-CH₂C(CH₃)₂O-) group, specifically, for example, a ethylenoxy and trimethylenoxy group.

The " C_1 - C_3 alkylenedioxy group" as a substituent for R^1 means group consisting of C_1 - C_3 divalent alkylene group and two oxy groups such as a methylenedioxy (-OCH $_2$ O-), ethylenedioxy (-OCH $_2$ CH $_2$ O-), trimethylenedioxy (-OCH $_2$ CH $_2$ CH $_2$ O-) group, specifically, for example, a methylenedioxy and ethylenedioxy group.

The " C_2-C_7 alkanoyl group" as a substituent for R^1 means C_2-C_7 straight-chain or branched alkanoyl group such as an acetyl, propanoyl, butanoyl, pentanoyl, hexanoyl, heptanoyl, isobutyryl, 3-methylbutanoyl, 2-methylbutanoyl, pivaloyl, 4-methylpentanoyl, 3,3-dimethylbutanoyl, 5-methylhexanoyl group, and the like, where the preferred and specific example includes an acetyl group.

The " C_2 - C_7 alkoxycarbonyl group" as a substituent for R^1 means group consisting of the aforementioned C_1 - C_5 alkoxy group and carbonyl group, preferably and specifically for example, a methoxycarbonyl and ethoxycarbonyl group.

The " C_2 - C_7 alkanoyloxy group" as a substituent for R^1 means group consisting of the aforementioned C_2 - C_7 alkanoyl group and oxy group, specifically, for example, an acetyloxy group.

The " C_2 - C_7 alkanoylamino group" as a substituent for R^1 means group consisting of the aforementioned C_2 - C_7 alkanoyl group and amino group, specifically, for example, an acetylamino group.

The " C_2 - C_7 N-alkylcarbamoyl group" as a substituent for R^1 means group consisting of the aforementioned C_1 - C_5 alkyl group and carbamoyl group, specifically, for example, a N-methylcarbamoyl and N-ethylcarbamoyl group.

The " C_4 - C_5 N-cycloalkylcarbamoyl group" as a substituent for R^1 means group consisting of the aforementioned C_5 - C_5 cycloalkyl group and carbamoyl group, specifically, for example, a N-cyclopentylcarbamoyl and N-cyclohexylcarbamoyl group.

The " C_1-C_6 alkylsulfonyl group" as a substituent for R^2 means group

PCT/US98/23254 WO 99/25686

consisting of the aforementioned C_1 - C_5 alkyl group and sulfonyl group, preferably and specifically, for example, a methylsulfonyl group.

The C_3-C_8 (alkoxycarbonyl)methyl group" as a substituent for R^1 means group consisting of the aforementioned C_2-C_1 alkoxycarbonyl group and methyl group, preferably and specifically for example, a (methoxycarbonyl)methyl and (ethoxycarbonyl) methyl group.

The "mono(C_1 - C_6 alkyl) amino group" as a substituent for R^1 means amino group substituted with one of the aforementioned $C_1\text{-}C_\delta$ alkyl group, preferably and specifically, for example, a methylamino and ethyl amino group.

The "di(C_1 - C_6 alkyl) amino group" as a substituent for \mathbb{R}^1 means amino group substituted with the same or different two $C_1\text{--}C_6$ alkyl group aforementioned, preferably and specifically, for example, a dimethylamino, diethylamino, and N-ethyl-N-methylamino group.

Among them, a halogen atom, a hydroxy group, a C_1 - C_6 alkyl group, a C_2 - C_6 alkenyl group, a C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, a C_2 - C_4 alkylenoxy group, a methylenedioxy group, a N-phenylcarbamoyl group, an amino group, a mono(C_1 - C_6 alkyl)amino group, and a di(C_1 - C_6 alkyl)amino group can be listed as a preferred specific example for substituent for the phenyl group, $C_3\text{-}C_8$ cycloalkyl group, aromatic heterocyclic group, or condensed ring in R1. 20

Furthermore above substituent for the phenyl group, C3-C6 cycloalkyl group, aromatic heterocyclic group, or condensed ring in R¹ are optionally substituted with one or more of a halogen atom, a hydroxy group, an amino group, a trifluoromethyl group, a C_1 - C_6 alkyl group, or a C_1 - C_6 alkoxy group. The halogen atom, C_1 - C_6 alkyl group, and C_1 - C_6 alkoxy group are the same as defined for the aforementioned substituents for the phenyl group, C_3 - C_8 cycloalkyl group, aromatic heterocyclic group, or condensed ring in R¹, and the same examples can be listed as preferred specific examples.

30

35

25

5

10

15

In the above formula (I), R^2 represents a hydrogen atom, a C_2 - C_6 alkyl group, a C2-C2 alkoxycarbonyl group, a hydroxy group, or a phenyl group, in which the C_1 - C_6 alkyl or phenyl group may be substituted with one or more of a halogen atom, a hydroxy group, a C_1 - C_5 alkyl group, or a C_1 - C_5 alkoxy group, and when j = 0, R^2 is not a hydroxy group.

The $C_1 - C_6$ alkyl group and $C_2 - C_7$ alkoxycarbonyl group for R^2 are the same as defined for the aforementioned substituent for the phenyl group, C_3-C_5

cycloalkyl group, aromatic heterocyclic group, or condensed ring in R^1 , and the same examples can be listed as preferred specific examples.

The halogen atom, C_1-C_6 alkyl group, and C_1-C_6 alkoxy group as substituents for the C_1-C_6 alkyl or phenyl group in R^2 are the same as defined for the aforementioned substituent for the phenyl group, C_3-C_8 cycloalkyl group, aromatic heterocyclic group, or condensed ring in R^1 , and the same examples can be listed as preferred specific examples.

Among them, a hydrogen atom is a preferred specific example for R².

In the above formula (I), j represents an integer of 0-2. It is particularly preferred for j to be 0.

In the above formula (I), k represents an integer of 0-2 and m represents an integer of 2-4. It is preferred to use a 2-substituted pyrrolidine in which k is 0 and m is 3, a 3-substituted pyrrolidine in which k is 1 and m is 2, a 3-substituted piperidine in which k is 1 and m is 3, a 4-substituted piperidine in which k is 2 and m is 2, or 3-substituted hexahydroazepine in which k is 1 and m is 4.

n in the above formula (I) represents 0 or 1.

15

20

25

30

35

Especially, 3-amidopyrrolidines in which k is 1, m is 2, and n is 0 and 4-(amidomethyl)piperidines in which k is 2, m is 2, and n is 1 can be listed as a particularly preferred example.

 R^2 in the above formula (I) represents, a hydrogen atom or a C_1 - C_6 alkyl group optionally substituted with one or two phenyl groups each of which may be substituted with one or more of a halogen atom, a hydroxy group, a C_1 - C_6 alkyl group, or a C_1 - C_6 alkoxy group.

The C_1 - C_6 alkyl group for R^2 is the same as defined for the aforementioned substituents for the phenyl group, C_3 - C_2 cycloalkyl group, aromatic heterocyclic group, or condensed ring in R^2 , specifically, for example, a methyl, ethyl and propyl group.

The halogen atom, C_1-C_{ϵ} alkyl group, and C_1-C_{ϵ} alkoxy group as substituents for the phenyl group, which is a substituent for C_1-C_{ϵ} alkyl group in R^2 , are the same as defined for the aforementioned substituents for the phenyl group, C_3-C_{ϵ} cycloalkyl group, aromatic heterocyclic group, or condensed ring in R^1 , and the same examples can be listed as preferred specific examples.

Among them, a hydrogen atom is a preferred specific example for R.

In the above formula (I), R^4 and R^5 are the same or different from each other and are a hydrogen atom, a hydroxy group, a phenyl group, or a C_1 - C_6 alkyl group, in which the C_1 - C_6 alkyl group is optionally substituted with one or more of a halogen atom, a hydroxy group, a cyano group, a nitro group, a carboxy group, a carbamoyl group, a mercapto group, a guanidino group, a C_3 - C_6 cycloalkyl group, a C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, a phenyl group optionally substituted with one or more of a halogen atom, a hydroxy group, a C_1 - C_6 alkyl group, a C_1 - C_6 alkoxy group, or a benzyloxy group, a phenoxy group, a benzyloxy group, a benzyloxy group, a C_2 - C_1 alkanoyl group, a C_2 - C_1 alkanoyloxy group, a C_2 - C_1 alkanoyloxy group, a C_2 - C_1 alkanoylamino group, a C_2 - C_1 alkoxycarbonyl group, a C_2 - C_1 alkanoyloxy group, an amino group, a mono $(C_1$ - C_6 alkyl) amino group, a di $(C_1$ - C_6 alkyl) amino group, or an aromatic heterocyclic group having 1-3 of heteroatoms selected from the group consisting of an oxygen atom, a sulfur atom, a nitrogen atom, or a combination thereof and optionally condensed with benzene ring, or R^4 and R^5 taken together form a 3 to 6 membered cyclic hydrocarbon.

10

15

20

25

30

35

The C_1 - C_6 alkyl group for R^4 and R^5 is the same as defined for the aforementioned substituent for the phenyl group, C_3 - C_8 cycloalkyl group, aromatic heterocyclic group, or condensed ring in R^1 , and the same examples can be listed as preferred specific examples.

The halogen atom, C_1 - C_6 alkoxy group, C_1 - C_6 alkylthio group, C_2 - C_7 alkanoyl group, C_2 - C_7 alkoxycarbonyl group, C_2 - C_7 alkanoyloxy group, C_2 - C_7 alkanoylamino group, C_2 - C_7 N-alkylcarbamoyl group, C_1 - C_6 alkylsulfonyl group, mono(C_1 - C_6 alkyl) amino group, and di(C_1 - C_6 alkyl) amino group as a substituent for the C_1 - C_6 alkyl group in R^4 and R^5 are the same as defined for the aforementioned substituent for the phenyl group, C_3 - C_8 cycloalkyl group, aromatic heterocyclic group, or condensed ring in R^1 , and the same examples can be listed as preferred specific examples.

The C_3 - C_8 cycloalkyl group and aromatic heterocyclic group having 1-3 heteroatoms selected from the group consisting of an oxygen atom, a sulfur atom, a nitrogen atom, or a combination thereof as substituent for the C_1 - C_6 alkyl group in R^4 and R^5 are the same as defined for the aforementioned group for R^1 , and the same examples can be listed as preferred specific examples.

The halogen atom, C_1-C_6 alkyl group, and C_1-C_6 alkoxy group for the substituent for the phenyl group which is substituent for the C_1-C_6 alkyl group in R^4 and R^5 are the same as defined for the aforementioned substituent for the phenyl group, C_2-C_8 cycloalkyl group, aromatic heterocyclic group, or condensed

ring in R¹, and the same examples can be listed as preferred specific examples.

The "3 to 6 membered cyclic hydrocarbon" consisting of R^4 , R^5 , and the adjacent carbon atom includes a cyclopropane, cyclobutane, cyclopentane, and cyclohexane.

Among them, a hydrogen atom and a C_1 - C_6 alkyl group can be listed as a preferred specific example for R^4 and R^5 .

In the above formula (I), p represents 0 or 1, and q represents 0 or 1. It is particularly preferred for both p and q to be 0.

10

15

20

25

In the above formula (I), G is a group represented by -CO-, -SO₂-, -CO-O-, -NR⁷-CO-, -CO-NR⁷-, -NH-CO-NH-, -NH-CS-NH-, -NR⁷-SO₂-, -SO₂-NR⁷-, -NH-CO-O-, or -O-CO-NH-, wherein R⁷ is a hydrogen atom or a C_1 - C_6 alkyl group, or R⁷ taken together with R⁵ represents a C_2 - C_5 alkylene group.

In the above formula, -CO- means a carbonyl group, -SO₂- means a sulfonyl group, and -CS- means a thiocarbonyl group. Preferred G group is specifically, for example, those represented by the formula $-NR^7$ -CO- and -NH-CO-NH-.

The C_1 - C_6 alkyl group for R^7 are the same as defined for the aforementioned substituent for the phenyl group, C_3 - C_8 cycloalkyl group, aromatic heterocyclic group, or condensed ring in R^1 , and the same examples can be listed as preferred specific examples.

The "C₂-C₅ alkylene group" consisting of R^5 and R^7 means C₂-C₅ straight-chain or branched alkylene group such as a methylene, ethylene, propylene, trimethylene, tetramethylene, 1-methyltrimethylene, pentamethylene group, and the like, suitably and specifically including a ethylene, trimethylene and tetramethylene group.

A hydrogen atom is a preferred specific example for R.

In the above formula (I), R⁶ is a phenyl group, a C₃-C₈ cycloalkyl group, 30 a C₃-C₈ cycloalkenyl group, a benzyl group, or an aromatic heterocyclic group having 1-3 heteroatoms selected from the group consisting of an oxygen atom, a sulfur atom, a nitrogen atom, or a combination thereof, in which the phenyl, benzyl, or aromatic heterocyclic group may be condensed with a benzene ring or an aromatic heterocyclic group having 1-3 heteroatoms selected from the group consisting of an oxygen atom, a sulfur atom, a nitrogen atom, or a combination thereof, to form a condensed ring, and the phenyl group, C₂-C₈ cycloalkyl group, C₂-C₆ cycloalkenyl group, benzyl group, aromatic heterocyclic group, or condensed

ring may be substituted with one or more of a halogen atom, a hydroxy group, a mercapto group, a cyano group, a nitro group, a thiocyanato group, a carboxy group, a carbamoyl group, a trifluoromethyl group, a C_1 - C_6 alkyl group, a C_3 - C_6 cycloalkyl group, a C_2 - C_6 alkenyl group, a C_1 - C_6 alkoxy group, a C_3 - C_6 cycloalkyloxy group, a C_1 - C_6 alkylthio group, a C_1 - C_3 alkylenedioxy group, a phenyl group, a phenoxy group, a phenylamino group, a benzyl group, a benzoyl group, a phenylsulfinyl group, a phenylsulfonyl group, a 3-phenylureido group, a C_2 - C_7 alkanoyl group, a C_2 - C_7 alkoxycarbonyl group, a C_2 - C_7 alkanoyloxy group, a C_2 - C_7 alkanoylamino group, a C_2 - C_7 N-alkylcarbamoyl group, a C_1 - C_6 alkylsulfonyl group, a mono (C_1 - C_6 alkyl) amino group, a di (C_1 - C_6 alkyl) amino group, a benzylamino group, a C_2 - C_7 (alkoxycarbonyl) amino group, a C_1 - C_6 (alkylsulfonyl) amino group, or a bis (C_1 - C_6 alkylsulfonyl) amino group, amino group, or a bis (C_1 - C_6 alkylsulfonyl) amino group.

5

10

15

20

25

30

35

The C_3 - C_8 cycloalkyl group, aromatic heterocyclic group having 1-3 heteroatoms selected from the group consisting of an oxygen atom, a sulfur atom, a nitrogen atom, or a combination thereof, and the condensed ring for R^6 are the same as defined for the aforementioned R^1 , and the same examples can be listed as preferred specific examples.

The " C_3-C_8 cycloalkenyl group" for R^6 means a cyclic alkenyl group such as a cyclobutenyl, cyclopentenyl, cyclohexenyl, cycloheptenyl, and cyclooctenyl group, specifically including a 1-cyclopentenyl and 1-cyclohexenyl group.

Among them, a phenyl group, a furyl group, and a thienyl group can be listed as a preferred specific example for R^6 .

The halogen atom, C_1-C_6 alkyl group, C_2-C_6 alkenyl group, C_1-C_6 alkoxy group, C_1-C_6 alkylthio group, C_1-C_3 alkylenedioxy group, C_2-C_7 alkanoyl group, C_2-C_7 alkoxycarbonyl group, C_2-C_7 alkanoyloxy group, C_2-C_7 alkanoylamino group, C_2-C_7 alkylcarbamoyl group, C_1-C_6 alkylsulfonyl group, mono $(C_1-C_6$ alkyl) amino group, and di $(C_1-C_6$ alkyl) amino group as a substituent for the phenyl group, C_3-C_9 cycloalkyl group, C_2-C_9 cycloalkenyl group, benzyl group, aromatic heterocyclic group, or condensed ring in R^6 are the same as defined for the aforementioned substituent for the phenyl group, C_2-C_9 cycloalkyl group, aromatic heterocyclic group, or condensed ring in R^7 , and the same examples can be listed as preferred specific examples.

The C_2 - C_2 cycloalkyl group as a substituent for R^6 is the same as defined for the aforementioned C_2 - C_2 cycloalkyl group for R^1 , where the same examples

can be given for the preferred specific examples.

5

10

15

20

25

30

35

The " C_3-C_6 cycloalkyloxy group" as a substituent for R^6 means group consisting of the aforementioned C_3-C_6 cycloalkyl group and oxy group, specifically, for example, a cyclopropyloxy, cyclopentyloxy, and cyclohexyloxy group.

The "N, N-di(C_1 - C_6 alkyl) sulfamoyl group" as a substituent for R^6 means sulfamoyl group substituted with the same or different two C_1 - C_6 alkyl group aforementioned, preferably and specifically, for example, a N, N-dimethylsulfamoyl, N, N-diethylsulfamoyl, and N-ethyl-N-methylsulfamoyl group.

The ${}^{\text{\tiny MC}}_2-C_7$ (alkoxycarbonyl) amino group" as a substituent for R^6 means group consisting of the aforementioned C_2-C_7 alkoxycarbonyl group and amino group, specifically, for example, a (methoxycarbonyl) amino and (ethoxycarbonyl) amino group.

The " C_1 - C_6 (alkylsulfonyl) amino" group as a substituent for R^6 means group consisting of the aforementioned C_1 - C_6 alkylsulfonyl group and amino group, specifically, for example, a (methylsulfonyl) amino group.

The "bis $(C_1-C_6 \text{ alkylsulfonyl})$ amino" group as a substituent for R^6 means amino group substituted with the same or different two C_1-C_6 alkylsulfonyl group aforementioned, preferably and specifically, for example, a bis (methylsulfonyl) amino group.

Among them, a halogen atom, a mercapto group, a nitro group, a thiocyanato group, a trifluoromethyl group, a C_1 - C_6 alkyl group, a C_1 - C_6 alkoxy group, a phenyl group, a phenylsulfonyl group, a C_2 - C_7 alkanoylamino group, or an amino group can be listed as preferred specific example for substituent for the phenyl group, C_3 - C_8 cycloalkyl group, C_3 - C_8 cycloalkenyl group, benzyl group, aromatic heterocyclic group, or condensed ring in R^6 .

Furthermore above substituents for the phenyl group, C_3-C_8 cycloalkyl group, C_3-C_8 cycloalkenyl group, benzyl group, aromatic heterocyclic group, or condensed ring in R^6 are optionally substituted with one or more of a halogen atom, a cyano group, a hydroxy group, an amino group, trifluoromethyl group, a C_1-C_6 alkyl group, a C_1-C_6 alkyl group, a C_1-C_6 alkyl group, or a di $(C_1-C_6$ alkyl)amino group.

The halogen atom, C_1-C_ϵ alkyl group, C_1-C_ϵ alkoxy group, a C_1-C_ϵ alkylthio group, mono(C_1-C_ϵ alkyl)amino group, and di(C_1-C_ϵ alkyl)amino group are the same as defined for the aforementioned substituents for the phenyl group, C_3-C_ϵ cycloalkyl group, aromatic heterocyclic group, or condensed ring in R^i , and the

same examples can be listed as preferred specific examples.

(2) On Invention 2

5

10

15

20

25

30

35

The compound represented by the formula (I) above, a pharmaceutically acceptable acid addition salt thereof or a pharmaceutically acceptable C_1-C_6 alkyl addition salt can be used to prepare a chemokine receptor antagonist preparation of the present invention by formulating the therapeutically effected amount and a carrier and/or diluent into a pharmaceutical composition. Thus, the cyclic amine derivatives shown by the above formula (I), a pharmaceutically acceptable acid addition salt thereof or a pharmaceutically acceptable C_1-C_6 alkyl addition salt can be administered orally or by parenterally, for example, intravenously, subcutaneously, intramuscularly, percutaneously or intrarectally.

The oral administration can be accomplished in the form of tablets, pills, granules, powder, solution, suspension, capsules, etc.

The tablets for example can be prepared using a vehicle such as lactose, starch and crystallized cellulose; binder such as carboxymethylcellulose, methylcellulose, and polyvinylpyrrolidone; disintegrator such as sodium alginate, sodium bicarbonate and sodium lauryl sulfate, etc.

Pills, powder and granule preparations can be prepared by a standard method using the vehicles mentioned above. Solution or suspension can be prepared by a standard method using glycerin ester such as tricaprylin and triacetin or alcohols such as ethanol. Capsules can be made by charging granules, powder or solution in gelatin, etc.

Subcutaneous, intramuscular or intravenous preparations can be prepared as an injection using aqueous or nonaqueous solution. Aqueous solution for example may include isotonic sodium chloride solution. Nonaqueous solutions may include for example, propyleneglycol, polyethyleneglycol, olive oil, ethyl oleate, etc., and optionally, one can add antiseptics and stabilizers. For injection, one can be sterilized by filtration through a bacterial filter or combination of disinfectant.

Percutaneous administration may be in the form of an ointment or cream, and ointment can be prepared in the standard manner using fatty oils such as

castor oil and olive oil, or Vaseline, while creams can be made using fatty oils or emulsifying agent such as diethyleneglycol and sorbitan esters of fatty acid.

 $\label{eq:formula} For intrarectal administration, one can use standard suppositories using \\ 5 \quad \text{gelatin soft capsules, etc.}$

The cyclic amine derivatives of the present invention, a pharmaceutically acceptable acid addition salt thereof or a pharmaceutically acceptable C_1 - C_6 alkyl addition salt is administered at a dose that varies depending on the type of disease, route of administration, age and sex of patient, and severity of disease, but is likely to be 1-500 mg/day in an average adult.

(3) Matter common throughout Invention 1 and Invention 2

Preferred specific examples for the cyclic amine compound in the above formula (I) include compound having each substituent as shown in the following Tables 1.1-1.201.

In the Tables 1.1-1.201, "chirality" means configuration of the asymmetric carbon atom on the cyclic amine. "R" shows that the asymmetric carbon atom has a R configuration, "S" shows that the asymmetric carbon atom has a S configuration, and "-" means racemate or that the compound do not have a asymmetric carbon atom on the nitrogen containing ring.

20

[Table 1.1 - Table 1.201]

10

20

Table 1.1

rable 1	••						
Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1	с⊢С Сн₂-	1	2	0	-	Н	- CH ₂ -N-C-
2	с⊢С сн₂-	1	2	0	-	н	- CH ₂ - N- C- CH ₃
3	CHCH ₂ -	1	2	O	-	н	-сн ₂ -м-с-
4	CH2-	1	2	0	-	н	- CH ₂ -N-C-CF ₃
5	CH-2-	1	2	0	s	н	- CH ₂ -N-C-CF ₃
6	с⊢—СН₂-	1	2	0	s	н	- CH ₂ -N-C
7	с⊢{_Сн₂-	1	2	0	S	н	-CH ₂ -N-C-Br
8	C ⊢ {_}CH₂-	1	2	0	, S	н	-CH ₂ -N-C
9	С⊢—СН₂-	1	2	0	S	н	-CH2-N-C- CI
10 .	с⊢{сн₂-	1	2	0	S	н	-CH2-N-C-
11	CH-2-	1	2	0	S	Н	- CH₂- N- C- OCH₃

Table 1.2

Compd. No.	R ¹ (CH ₂)j-	k	m	n	chirality	· R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
12	СН_СН₂-	1	2	0	S	н	-CH ₂ -N-C-OCH ₃
13	CH-{CH₂-	1	2	0	S	н	-CH ₂ -N-C-CF ₃
14	С⊢СН2-	1	2	0	S	н	- CH ₂ - N- C
15	CH2-	1	2	0	S	н .	-CH₂-N-C-()
16	CH2-	1	2	0	S	н	-CH ₂ -N-C
17	C├─ ○ -CH ₂ -	1	2	0	S	Н	- CH ₂ -N-C-
18	C├ \ CH ₂ -	. 1	2	0	s	н	- CH ₂ - N- C-
19	C├ - CH ₂ -	1	2	0	S	H	-CH2-N-C
20	C⊢CH₂-	1	2	0	S	н	- CH ₂ - N- C
							-CH ₂ -N-C- F CF ₃
22	С⊢—СН₂-	1	2	0	S	н	- CH ₂ -N-C-S-F

Table 1.3

I able	1.5						
Compd. No.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	-(CH ₂) _p R ⁴ (CH ₂) _q G-R ⁶
23	CI—(CH₂-	1	2	0	S	н	-CH ₂ -N-CF ₃
- 24	CH-CH ₂ -	1	2	0	S	н	-CH ₂ -N-C-CF ₃
	CH-CH ₂ -1					н	-CH ₂ -N-C
26	CHCH2-	1	2	0	S	н	- CH ₂ - N- C- O
27	CH-CH ₂ -	1	2	0	s	н	-CH ₂ -N-C
28	C├ - CH ₂ -	1	2	0	S	н	- CH ₂ - N- C- NO ₂
29	С⊢—СН₂-	1	2	0	R	н	-CH ₂ -N·C-CF ₃ CF ₃
30	C⊢CH₂-	. 1	2	0	R	н	-CH ₂ -N-C- F ₃ C
31	C	1	2	0	R	н	-CH ₂ -N-C- Br
	С⊢—СН₂-						-CH2-N+C
33	C	1	2	0	R	н	- CH ₂ -N C-CI

WO 99/25686

Table 1.4

Compd. No.	R ¹ (CH ₂)	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} G - R^6$
34	с⊢{сн₂-	1	2	0	R	н	-CH ₂ -N-C-OCH ₃
35	C⊢√CH₂-	1	2	0	R	н	-сн ₂ -№ с——— осн ₃
36	CHCH ₂ -	1	2	0	R	н	-CH ₂ -N-C- OCH ₃
37	с⊢С сн₂-	1	2	0	R	н	- CH ₂ -N-C-CF ₃
38	СН-СН2-	1	2	0	R	Н	-CH ₂ -N-C-CH ₃
39	CH_2-	1	2	0	R	н	- CH ₂ -N-C- CI
40	C⊢CH₂-	1	2	0	R	н	-CH ₂ -N-C- H C- OCH₃
41	С⊢—СН₂-	1	2	0	R	Н	- CH ₂ - N- C-
42	С⊢С СН₂-	. 1	2	0	R	H	- CH ₂ -N-C-CN
43	ССН2-	1	2	0	R	Н	· -CH₂-N-C
44	CH ₂ -	1	2	0	R	н	- CH ₂ -N-CF ₃

Table 1.5

, 45.0	1.0						
Compd. No.	R ¹ (CH ₂) _j	k	m	n	chirality	· R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
45	CH2-	1	2	0	R	н	-CH ₂ -N-C-F ₃
46	C├ ─ CH₂-	. 1	2	0	R	н	- CH ₂ - N- C- F
47	CI—CH₂-	1	2	0	R	н	-CH ₂ -N-C-OCF ₃
48	с⊢С сн₂-	1	2	0	R	н	-CH ₂ -N-C
49	CHCH2-	1	2	0	R	н	- CH ₂ - N C - O ₂ N
50	CH-CH2-	· 1	2	0	R	н	-CH ₂ -N-C-CF ₃
51	CH2-	1	2	0	R _.	н .	-CH₂-N-C- Br
52	CI—CH₂-	1	2	0	R	н	-CH₂-N-C-
53	CH-€-	1	2	0	R .	н	-CH ₂ -N-C-CI
54	C├ - CH₂-	1	2	0	R	н	-CH2-NC-
55 ·	С⊢СН₂-	1	2	0	R .	н	- CH ₂ -N-CI

Table 1.6

Compd.	R ¹ (CH ₂)j	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
56	C├ - CH ₂ -	1	2	0	R	н .	-CH ₂ -N-C- H H ₃ C
57	CHCH_2-	1	2	0	R	Н	-CH ₂ -N-C
58	с⊢С сн₂-	1	2	.0	R	н	- CH2- N- C-
59	C├─ ─ CH ₂ -	1	2	0	R	н	- CH ₂ -N-C
60	CH2-	1	2	0	R	н	-CH ₂ -N-C-
61	с⊢СН₂-	. 1	2	0	R	н	-CH ₂ -N-C
62	C⊢—CH₂-	1	2	0	R .	н	-CH ₂ -N-C
63	C⊢—CH₂-	1	2	0	R	н	- CH ₂ -N-C- H C- CH₂CH₃
64	C	1	2	0	R	н	-CH ₂ -N-C-CN
65	C⊢-{CH₂-	1	2	0	R	Н	-CH ₂ -N-C-
66	с⊢С СН₂-	1	2	0	R	н .	-CH ₂ -N-C

Table 1.7

lable	1.7						
Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p R ⁴ (CH ₂) _q G-R ⁶
67	C⊢-{CH₂-	1	2	0	R	н	-CH2-N C - F
68	C├ ─ CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
69	CH_CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
70	CHCH ₂	. 1	2	0	R	н	-CH ₂ -N-C
71	CH-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
72	CHCH_2-	1	. 2	0	R	н	-CH ₂ -N-C
73	СН2-	1	2	0	R	н	$-CH_2-N$ C F_3CO
74	C├ - CH ₂ -	1	2	0	R	н	- CH ₂ - N- C- СО ₂ CH ₃
75	CH ₂ -	1	2	0	R	н	$-CH_2-N$ C F_3C
76	С⊢{СН₂-	1	2	0	R	н	- CH ₂ -N-C
77	C	1	2	o	R	Н	- CH₂-N-C-F
							*

Table 1.8

Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} - (CH_2)_{q$
78	C├ ─ CH₂-	1	2	0	R	н	-CH ₂ -NC-F
79	CI—CH₂-	1	2	0	R	н	$-CH_2-N$ C $+$ C $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
80	CHCH ₂ -	1	2	0	R	н	- CH ₂ - N- C- CF ₃
81	CHCH2-	1	2	0	R	н	-CH₂-N-C-CH₃
82	CHCH_2-	1	2	0	-	− СН ₃	-CH ₂ -N-C-CF ₃
83	CH2-	1	2	0	R	Н	-CH ₂ -N-C-\(\sigma\)
84	С⊢СН2-	1	2	0	R	н	-CH ₂ -N-CNO ₂
85	CH2-	1	2	0	-	н	-(CH ₂) ₂ -N-C-
	CH2-					н	-(CH ₂) ₂ -N-C-NO ₂
87	C├ ~ CH ₂ -	1	2	0	S	н	-(CH ₂) ₂ -N-C-CF ₃ CF ₃
88	С├─{СН₂-	1	2	0	S	Ĥ	-(CH2)2-N-C-CF3 $-(CH2)2-N-C-CF3$ $F3C$

Table 1.9

iable	1.9						
Compd.	R ¹ (CH ₂);	k	m	n.	chirality	R³	—(CH ₂) _p + (CH ₂) _q G−R ⁶
89	с⊢ Сн₂-	1	2	0	S	Н	-(CH ₂) ₂ -N-C
90	C├ - CH₂-	1	2	0	S	н	-(CH ₂) ₂ -N-C
91	CHCH ₂ -	1	2	0	S	н	-(CH ₂) ₂ -N-C-CI
92	CH-CH ₂ -	1	2	0	S	н	-(CH ₂) ₂ -N-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-
93	C⊢√CH₂-	1	2	0	S	н	-(CH ₂) ₂ -N-C
94	CH-2-	1	2	0	S	н	-(CH ₂) ₂ -N-C- OCH ₃
95	CHCH2-	1	2	0	S	Н	-(CH ₂) ₂ -N-C-CF ₃
96	CH-2-	1	2	0	s	н	-(CH ₂) ₂ - N-C-CH ₃
							-(CH ₂) ₂ -N-C
							-(CH ₂) ₂ -N-C-OCH ₃
99	CH- (CH₂-	1	2	0	S	н	-(CH ₂) ₂ -N-C-CI

Table 1.10

Compd.	R ¹ (CH ₂),—	k	m	n	chirality	R³	-(CH ₂) _p
100	C├ - CH₂-	1	2	0	S	н	-(CH ₂) ₂ -N-C-
101	CH-€	1	2	0	S	н	-(CH ₂) ₂ -N-C-
102	CHCH ₂ -	1	2	0	S	н	-(CH ₂) ₂ -N-C-CF ₃
103	CHCH ₂ -	1	2	0	S	н	-(CH ₂) ₂ -N-C
104	CH2-	1	2	0	S	Н	-(CH ₂) ₂ -N-CF ₃
105	C ← CH ₂ -	1	2	0	S	н	-(CH ₂) ₂ -N-C-CF ₃
106	C⊢√CH₂-	1	2	0	S	н	-(CH ₂) ₂ -N-C-OCF ₃
107	CH2-	1	2	0	S	н	-(CH ₂) ₂ -N-C-F
108	CH-CH ₂ -	1	2	0	S	н	-(CH ₂) ₂ -N-C
	ССН2-						
110	С-СН2-	1	2	0	S	Н	-(CH ₂) ₂ -N-C-NO ₂

Table 1.11

Table 1							
Compd.	R ¹ (CH ₂),	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
111	C ⊢√ -CH₂-	1	2	0	R	н	-(CH ₂) ₂ - N- C- CF ₃
112	C├ \ CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C
113	с⊢(сн₂-	1	2	0	R	н	-(CH ₂) ₂ -N-C-
114	C├ ~ CH₂-	1.	2	0	R	н	-(CH ₂) ₂ -N-C-
115	CH- (CH₂-	1	2	0	R	Н	-(CH ₂) ₂ -N-C-CI
116	с⊢—СН₂-	1	2	0	R	н	-(CH ₂) ₂ -N-C
117	CH-2-	1	2	0	R	н	-(CH ₂) ₂ -N-C
118	CHCH2-	1	2	0	R	н	-(CH ₂) ₂ -N-C-OCH ₃
119.	CH-2-	1	2	0	R	н	-(CH ₂) ₂ -N-C-CF ₃
.120	C⊢CH₂-	1	2	0	R	н	-(CH ₂) ₂ -N-C
121	CH2-	1	2	0	R	H	-(CH ₂) ₂ -N-C

Table 1.12

Compd.	R ¹ (CH ₂)	k	m	n	chirality	R³	—(CH ₂) _p + (CH ₂) _q G−R ⁶
122	CH-CH2-	1	2	0	R	Н	-(CH ₂) ₂ -N-C
123	с⊢—СН₂-	1	2	0	R	н	-(CH ₂) ₂ -N-C-CI
124	CH-2-	1	2	0	R	н	-(CH ₂) ₂ -N-C-
125	CH-CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C
126	CH-CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C-CF ₃
127	CH-CH ₂ -	. 1	2	0	R	н	-(CH ₂) ₂ -N-CF ₃
128	CCH₂-	1	2	0	R	H	-(CH ₂) ₂ -N-CF ₃
129	с⊢{_СН₂-	1	2	Ö	R	н	-(CH ₂) ₂ -N-C-CF ₃
130	C	1	2	0	R	н	-(CH ₂) ₂ -N-C-
131	с⊢{	1	2	0	R	н	-(CH ₂) ₂ -N-C-CF ₃
132	C⊢—CH₂-	1	2	0	R	н	-(CH2)2-N-C-F $-(CH2)2-N-C-F$ $O2N$

Table 1.13

lable i	1.13						
Compd.	R ¹ (CH ₂) _j -	ķ	m	n	chirality	R³	$-(CH_2)_p + (CH_2)_q G - R^6$
133	CI—CH2-	1	2	0	R	н	-(CH ₂) ₂ -N-C-NO ₂
134	CH2-	1	2	0	R	н	-(CH ₂) ₂ -N-C-NO ₂
135	CHCH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C-Br
136	C├ - CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C-F
137	C├ \	1	2	0	R	Н	-(CH ₂) ₂ -N-C-CI
138	CH_CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C-
139	C├ - CH₂-	. 1	2	0	R	н	-(CH ₂) ₂ -N-C-CI
140	CH-CH ₂ -	1	2	0	R .	н	$-(CH_2)_2 - NC $
141	С⊢СН₂-	1	2	0	R	н	H ₃ CO O -(CH ₂) ₂ -NC- H ₃ ∞
	C├ - CH₂-					н	-(CH ₂) ₂ -N-C-CI
143	C	1	2	0	. R	н	-(CH ₂) ₂ -N-C-Br

Table 1.14

	 						
Compo No.	$d. \xrightarrow{R^2} (CH_2)_j -$	k	m	n	chirality	Ř³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} - G - R^6$
144	CH-CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C
145	с⊢С}-сн₂-	1	2	0	R	н	-(CH ₂) ₂ -N-C-CF ₃
146	CHCH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C-CH ₃
147	C ⊢ CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ - N C-CH ₂ CH ₃
148	C⊢ (_)- CH₂-	1	2	0	R	н	-(CH ₂) ₂ -N-C-CN
149	С├─(СН₂-	1	2 .	0	R	н	-(CH ₂) ₂ -N-C-
150	CH2-	1	2	0	R	н	-(CH ₂) ₂ -N-C
151	C⊢—CH₂-	1 .	2	0	R	н	-(CH ₂) ₂ -N-C
152	C⊢√ CH₂-	1 . :	2	0	R	н	-(CH ₂) ₂ -N-C
153	CH_CH ₂ -	1 2	2	0	R	Н	-(CH ₂) ₂ -N-C-F
154	CH-2-	1 2	2 (0	R	н	-(CH ₂) ₂ -NC

Table 1.15

iabic							
Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
155	C	1	2	o	R	н	-(CH ₂) ₂ -N-C-OCH ₃ H ₃ CO
156	CHCH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C
157	с⊢С сн₂-	1	2	0	R	н	-(CH ₂) ₂ -N-C
158	C⊢CH₂-	. 1	2	0	R	Н	-(CH ₂) ₂ -N-C- H
159	CH-CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C
160	CI—CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C-F ₃ C
161	CH2-	1	2	0	R	Н	-(CH ₂) ₂ -N-C-F
	C					н	-(CH ₂) ₂ -N-C-F-F
163	CH2-	1	2	0	R	н	-(CH ₂) ₂ -N C- CF ₃
164	CH ₂ -	1	2	0	R	Н	-(CH ₂) ₂ -N-CF ₃ F ₃ C
165	CHCH ₂ -	1	2	0	R .	н	-(CH ₂) ₂ -N-C-CH ₃

Table 1.16

lable	1.10						
Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
166	CH2-	1	2	0	R	н	(S) P CF ₃ -CH-N-C- CF ₃ CH ₃
167	CH2-	1	2	0	R	н	CH-N-C-Br
168	CH2−	1	2	0	R	н .	(S) -CH-N-C
169	CH2−	1	2	0	R	Н	(S) P CI
170	СЊ2-	. 1	2	0	R	н	CH ₃ CF ₃
171	CH₂-	1	2	0	R	н	(S) P CI -CHN-C-C-CI
172	CH₂-	1	2	0	R	н	(S) P C C C C C C C C C C C C C C C C C C
173	CH2-					н	(S) PO2 -CH-N-C
174	CH2-	1	2	0	. R	Н	(F) Q -CH-N-C-CF3 -CH-N-C-CF3
175	CH2-	1	2	0	R	н	(R) -CH-N-C- CH ₃
176	CH2-	. 1	2	0	R	н	(F) H H C C C C C C C C C C C C C C C C C

Table 1.17

. lable	1.17						
Compd.	R ¹ (CH ₂) _i -	k	m	Π	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
177	с⊢—Сн₂-	1	2	0	R	н	(F) O CI -CH-N-C-CI CH ₃
178	CH-CH2-	1	2	.0	R	H	CF ₃ CH ₃ CH ₃ F
179	С├-СН2-	1	2	0	R	н	
180	CH-CH ₂ -	1	2	0	R	н	(A) O O O O O O O O O O O O O O O O O O O
181	CHCH_2-	1	2	0	R	Н	(R) -CHN-C CH ₃
182	CH-CH ₂ -	1	2	0	R	н	CH ₃ O CF ₃ - CH N C CH ₃
183	C ⊢ CH ₂ -	1	2	0	R	н	СН3 О Вr СН3 Н С — Вг
184	C├ \ CH ₂ -	1	2	0	R	н	СН3 О СІ -СН-Н С-
185	C⊢(CH ₂ -	1	2	0	R	н	CH ₃ O CF ₃ CH ₃ O CF ₃ CH ₃ O CF ₃
186	C├ \ CH ₂ -	1	2	0	R	н	CH3 O CF3
187	CHCH ₂ -	1	2	0	R	Н	CH ₃ O F CH ₃ O F CH ₃ O CH CH ₃ O CH CH ₃ O CH CH ₃ O CH

Table 1.18

, ==.0	0						
Compd. No.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	—(CH ₂) _p + (CH ₂) _q G-R ⁶
188	CH ₂	1	2	0	R	н	CH ₃ Q -CH+N-C- CH ₃
189	CH-CH ₂ -	1	2	0	R	н	ÇH₃
190	CH2-	1	2	0	R	н	(A) PCF3
191	C├ ~ CH₂-	1	2	0	R	Н	CH N C Br
192	CH_CH ₂ -	1	2	0	R	н	-CH-HC-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-C
193	с⊢С}-сн₂-	1	2	0	R	н	CH N-C- CI
194	СН-СН2-	1	2	0	R	н	CF ₃ CH ₂ CF ₃ F
195	CH-2-				R	Н	CHN-C-CI
196	C⊢(CH ₂ -	1	2	0	R	н	CH ₂ -C
197	С⊢Сн₂-	1	2	0	R.	н	CH ₂
198.	с⊢—Сн₂-	1	2	0	R	н .	(F) + H 2 S S C C S C C S C C C C C C C C C C C

Table 1.19

Table 1	1.19						
Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
199	C⊢-{¯¯}-CH₂-	1	2	0	R	н	(S) P Br
200	CH-CH ₂ -	1	2	0	R	н	(S) - CH ₂ -
201	с⊢(Сн₂-	1	. 2	0	R	н	(S) P C C C C C C C C C C C C C C C C C C
202	CH2-	1	2	0	R	н	(S) O CF ₃ -CH-NC-F
203	CH-€-	1	2	0	R	н	(S) P -CHHC-C-CI CH2-S
204	CH2-	, 1	2	0	R	н	-(S) P -CH-N-C
205	CH2-	1	2	0	R	н	(S) P NO 2 - CH+ N- C- (S) CH2 (S)
206	CHCH ₂ -	1	2	0	R	н	(S) -CH-N-C- H O (OH ₂) ₂ -S-CH ₃
207	CH_CH ₂ -	1	2	0	R	н	(3) Q -CH-NC- H O (OH ₂) ₂ -\$-CH ₃
208	CHCH ₂ -	1	2	0	R	н	(9 CH NC CI (0H ₂) ₂ -9 CH ₃ (9 CH NC CI (0H ₂) ₂ -9 CH ₃
209	CH-CH ₂ -	1	2	0	R	н	(CH ₂) ₂ -5-CH ₃

WO 99/25686

Table 1.20

Compd. No.	R ¹ (CH ₂) _j	k	m	n	chirality	Ř³	-(CH ₂) _p + (CH ₂) _q -G-R ⁶
210	C├ ─ CH₂-	1	2	0	R	н	(CH ₂) ₂ -GH ₃ F
211	CI————— CH₂-	1	2	0	R	н .	(OH ₂) ₂ -\$-CH ₃
212	CH-2-	1	2	0	R	н	(CH ₂) ₂ -S-CH ₃
213	CH2-	1	2	0	R	н	(S) NO ₂ -CH-N-C- (OH ₂) ₂ -S-CH ₃
214	CH2-	1	2	0	-	н	-(CH ₂) ₃ -C-
215	CH2-	1	2	0	-	н	-(CH ₂) ₃ -C
216	CI—CH₂-	1	2	0	-	н	-(CH ₂) ₃ - C-
217	CH-2-	1	2	0	-	н	$-(CH_2)_2$ - C O
218	CH-(1	2	0	-	н	-(CH2)2-C - CH3 $H3C$
							-(CH ₂) ₂ -C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C
220	CHCH₂-	1	2	0	-	Н	-(CH ₂) ₂ -C-CH ₃

Table 1.21

Table 1	.21						
Compd.	R ¹ (CH ₂)	k	m	n	chirality	R ³	$-(CH_2)_p + (CH_2)_q G - R^6$
221	с⊢ Сн₂-	1	2	0	-	н	-(CH ₂) ₂ -C
222	C├ - ⟨ - ⟩-CH₂-	1	2	0	-	н	-(CH ₂) ₂ -C-CI
223	с⊢—СН₂-	1	2	0	-	н	O -(CH ₂) ₂ -C-(CH ₂) ₃ CH ₃
224	с⊢СТ-сн₂-	1	2	0	•	н	-CH ₂ -S-CH ₃
225	CH_CH ₂ -	1	2	0	-	н	-(CH ₅) ₃ -C-H
226	C├ - CH ₂ -	, , 1	2	0	-	н	-(CH ₂) ₃ -C-N-COCH ₃
227	С⊢СН2-	1	2	0	-	н	-(CH ₂) ₃ -C-NH
228	CH-CH ₂ -	1	2	0	-	н	-(CH ₂) ₃ -C·N
229	с⊢—СН₂-	1	2	0	-	н	- CH ₃ - C-H ₃ - C-H ₃ - CH ₃ - CH ₃
230	с⊢—СН₂-	1	2	0	-	н	-CH ₂ -CH ₂ -C-N-F
231	CH-{	1	2	0	- -	н	-(CH ₂) ₃ -C-N-C-CH ₃

Table 1.22

lanie i	1.22						
Compd.	R ¹ (CH ₂)	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
232	C├ - CH₂-	1	2	0	-	H	-(CH ₂) ₃ -C-N-
233	CHCH ₂ -	1	2	0	-	H	O -(CH ₂) ₃ - C- N- CH ₂ -
234	CHCH ₂ -	1	2	0	-	, H	-(CH ₂) ₃ -C-N-CH ₃
235	CH2-	1	2	0	-	н	- CH ₂ - CH- CH ₂ - C- N- CH ₂ - CD- CI
236	CH-CH ₂ -	1	2	0	-	н .	-CH ₂ -N-S-CH ₃
237	CH₂-	1	2	0	-	н	- CH ₂ - N- C- O- CH ₂
238	CH-2-	1,	2	0	-	н	- cн о с н С
239	CH₂-	1	2	0	S	н	-CH ₂ -N-C-CF ₃
240	CH₂-	1	2	0	S .	н	-CH₂-N-C-CF3
241	CI CH ₂ -	, 1 ,	2	0	S	н	-CH ₂ -N-C-CF ₃
242	CH2−	1	2	0	S	н	-CH₂-N-C-CF3

Table 1.23

lable	1.23						
Compd. No.	R ² (CH ₂)	k	m	n	chirality	·R³	$-(CH_2)_p + (CH_2)_q G - R^6$
243	Cl CH₂-	1	2	0	S	H	-CH ₂ -N-C-CF ₃
244	CH ₃	1	2	0	S	н	-CH₂-N-C-CF3
245	CH ₂ -	1	2	0	S	н	-CH ₂ -N-C-CF ₃
246	CICH ₂ _	1	2	0	S	н	-CH ₂ -N-C-CF ₃
247	Ċţ CH₂−	1	2	0	S	н	-CH ₂ -N-C-CF ₃
248	H₃CQ —CH₂-	1	2	0	S	н	-CH ₂ -N-C-CF ₃
249	F ₃ C ————————————————————————————————————	1	2	0	S	н	-CH ₂ -N-C-CF ₃
250	H ₃ C CH ₂ -	1	2	0	S	H	-CH ₂ -N-C-CF ₃
251	F-CH ₂ -	1 .	2	0	s	н	-CH ₂ -N-C-CF ₃
252	H ₃ CO-CH ₂ -	1	2	0	s	н	-CH ₂ -N-C-CF ₃
253	н₃с-{сн₂-	1	2	0	s	н	-CH₂-N-C- CF3

Table 1.24

lable	1.24						
Compd. No.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G−R ⁶
254	NO₂ CH2−	1	2	0	S	н	-CH ₂ -N-C-CF ₃
255	O ₂ N — CH ₂ —	1	2	0	S	н .	-CH ₂ -N-C-CF ₃
256	O ₂ N-CH ₂ -	1	2	0	S	н	-CH ₂ -N-C-CF ₃
257	CF₃ —CH₂-	1	2	0	S	н	-CH ₂ -N-C-CF ₃
258	CO ₂ CH ₂ CH ₃	1	2	0	S	н	-CH ₂ -N-C-CF ₃
259	СН₃	. 1	2	0	S	н	-CH ₂ -N-C-CF ₃
260	CI CH₂-	1	2	0	S	н	-CH ₂ -N-C-CF ₃
261	F ₃ C-CH ₂ -	1	2	0	S	н	-CH ₂ -N-C-CF ₃
262	Br CH₂−	1	2	0	S	н	-CH ₂ -N-C-CF ₃
263	Br CH2-	1	2	0	S	н	-CH ₂ -N-C-CF ₃
264		1	2	0	S	H	-сн ₂ -N-с-С ₃

Table 1.25

Table 1							
Compd. No.	R ² (CH ₂) _j	k	m	n	chirality	R³	一(CH ₂) p
265	Br—CH ₂ -	1	2	0	S	н	-CH ₂ -N-C-CF ₃
266	CH ₂ -	1	2	0	S	н	-CH ₂ -N-C-CF ₃
267	OCH₃ CH₂-	1	2	0	S	н	-CH ₂ -N-C-CF ₃
268	PC-C-H-CH-CH2	1	2	0	S	н	-CH ₂ -N-C-CF ₃
269	H₃C-\$ CH₂-	1	2	0	S	H	-CH ₂ -N-C-CF ₃
270	H ₃ CO ₂ C —CH ₂ —	1	2	0	S	н	-CH ₂ -N-C-CF ₃
271	CH ₂ -	1	2	0	S	н	-CH ₂ -N-C-CF ₃
272	HO-CH ₂ -	1	2	0	S	н	-CH ₂ -N-C- CF ₃
273	CN CH ₂ -	· 1	2	0	S	н	-CH ₂ -N-C-CF ₃
274	NC CH ₂ -	1	2	0	s	.	-CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃
275	NC	1	2	0	S	н	-CH ₂ -N-C-CF ₃

Table 1.26

Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
276	F—CH₂-	1	2	0	S	н	-CH ₂ -N-C-CF ₃
277	◯ → ○ -OH ₂ -	1	2	0	S	н	-CH ₂ -N-C-CF ₃
278	н₃∞₂с-{	1	2	0	S	н	-CH ₂ -N-C-CF ₃
279	F₃CO-()-CH₂-	1	2	0	S	Н	-CH ₂ -N-C-CF ₃
280	F ₃ CO CH ₂ -	1	2	0	s	н	-CH ₂ -N-C-CF ₃
281	HO ₂ C-CH ₂ -	1	2	0	S	н	-CH ₂ -N-C
282	(H ₃ C) ₃ C{	1	2	0	S	Н	-CH ₂ -N-C-CF ₃
283	CH ₃ CH ₂ -	1	2	0	s	н	-CH ₂ -N-C
284	CH-CH-	1	2	0	S	н	-CH ₂ -N-C-CF ₃
285	CH₂-	1	2	0	R	н .	-CH ₂ -N-C-€
286	CH₂-	1	2	0	R	H	-CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃
286		1	2	0	R ·	Н	-CH₂-N-C-

Table 1.27

Table		_					
Compd.	R ¹ (CH ₂)	k	m	n	chirality	R³	-(CH ₂) _p +(CH ₂) _q -G-R ⁶
287	CI CH₂−	1	2	0	R	н .	-CH ₂ -N-C-CF ₃
288	CI CH₂-	1	2	O	R	н	-CH ₂ -N-C-CF ₃
289	CI CH₂− CI	1	2	0	R	н	CH ₂ -N-C-CF ₃
290	CH ₃	1	2	0	R	н	-CH ₂ -N-C-CF ₃
291	F_CH₂-	1	2	0	R	H	-CH ₂ -N-C-CF ₃
292	Ct —CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
293	CI—CH₂-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
	H₃CQ CH₂-					н	-CH ₂ -N-C-CF ₃
295	F ₃ C —CH ₂ —	1	2	0	R	н	-CH ₂ -N-C-CF ₃
296	H ₃ C —CH ₂ -	. 1	2	0	·R	н	-CH ₂ -N-C-CF ₃
297	F-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃

Table 1.28

labie	1.20						
Compd.	R ¹ (CH ₂)	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} G - R^6$
298	H ₃ CO-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
299	H ₃ CCH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
300	NO₂ CH₂-	1	2	0	R	н .	-CH ₂ -N-C-CF ₃
301	O ₂ N CH ₂ -	, 1	2	0	R.	н	-CH ₂ -N-C-CF ₃
302	O ₂ N-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C CF ₃
303	CF ₃	. 1	2	0	R	H _.	-CH ₂ -N-C-CF ₃
304	СО ₂ СН ₂ СН ₃	1	2	0	R	н	-сн ₂ -N-сСF3
305	СH₃					н	-CH₂-N-C-CF3
306	CI CH₂−	1	2	0	R	н	-CH ₂ -N-C-CF ₃
307	F ₃ CCH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
308	Br CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃

Table 1.29

Table 1							
Compd.	R ¹ (CH ₂)-	k	m	n	chirality	· R³	$-(CH_2)_p$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
309	Br_CH ₂ -	1	2	0	R	н .	-CH ₂ -N-C-CF ₃
310	O-0-0H2-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
311	Br—€CH ₂ -	1	2	0	R	H	-сн ₂ -N-С-С-
312	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C- CF ₃
313	OCH₃ CH₂-	1	2	0	R	н	CH ₂ - N- C- СF ₃
314	#c-c-4-(-)—α+≥	1	2	0	R	н	-CH ₂ -N-C- CF ₃
315	H ₂ C-\$\bigc\text{CH}_2-	1	2	0	R	н	-CH ₂ -N-C- CF ₃
316	H₃CO₂C CH₂−	1	2	0	R	H	-CH₂-N-C-CF3
317	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
318	. но-{	1	, 2	0	R	н .	-CH ₂ -N-C-CF ₃
319	CN CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃

WO 99/25686

Table 1.30

labic	1.00						
Compd.	R ¹ (CH ₂)-	k	m	n	chirality	R³	-(CH ₂) _p
320	NG —CH₂-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
321	NC-{CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
322	F-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
323	CH ₂ -	,1	2	0	R	Н	-CH ₂ -N-C-CF ₃
324	н₃∞₂с-{_}сн₂-	1	2	0	R	H	-CH ₂ -N-C-CF ₃
325	F3CO-CH2-	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
326	F ₃ CO CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
327	HO ₂ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
328	(H ₃ C) ₃ C	1	2	0	R	н	-CH2-N-C-CF3
329	CH ₃ CH ₂ - CH ₃	1	2	0	R	H	-CH ₂ -N-C-CF ₃
330	CH-CH ₂ -	0	3	1	-	н	- CH2- N- C-

Table 1.31

Compd. R^{1} $(CH_{2})_{j}$ k m n chirality R^{3} 331 CH^{2} CH_{2}^{-} 0 3 1 - H 332 CH^{2} CH_{2}^{-} 0 3 1 - H	- CH ₂ - N- C- CH ₃
332 с⊢ СН₂- 0 3 1 - Н	
	OCH₃
333 с⊢С СН₂- 0 3 1 - Н	- cH₂- N- C- OCH₃ OCH₃
·	- CH ₂ - N- C-
334 с⊢ СН₂- 0 3 1 - н	-CH ₂ -N-C-CH ₃
335 с⊢ СН₂- 0 3 1 - н	- CH ₂ -N-C-NO ₂
336 с⊢ СН₂- 0 3 1 - Н	-CH ₂ -N-C-CF ₃
337 CH₂- 0 3 1 - H	CH ₂ N- C
338 с⊢ СН₂- 0 3 1 - Н	- CH ₂ - N- C-
339 c⊢√-CH₂- 0 3 1 R H	- CH ₂ - N C-
340 CH₂- 0 3 1 S H	- CH ₂ - N C-
341 CH2- 0 3 1 - H	-(CH ₂) ₂ -N-C-

Table 1.32

lable i	.3 2						
Compd. No.	R ¹ (CH ₂) _j	k	m	n	chirality	R ³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
342	C	0	3	1	-	н	- CH N - C-
343	с⊢Сту−сн₂-	0	3	1	-	н	-CHN-C- H CH(CH ₃) ₂
344	с⊢{	0	3	1	-	Н	- СН N- С- СН ₂ СН(СН ₃) ₂
345	C├ - CH ₂ -	0 .	·3	1	-	н	-(CH ₂) ₃ -C-
346	C├─(0	3	1	1	н	-(CH ₂) ₂ -C
347	C├─ \ CH ₂ -	0 -	3	1	-	н	-(CH2)2-C - CH3 $H3C$
348	C⊢CH₂−	0	3	1	-	н	-(CH ₂) ₂ -C-CH ₃
349	CH-CH ₂ -	0	3	1	-	н	- CH ₂ - \$ CH ₃
350	CH- (−−)- CH ₂ -	0	3	1	-	н	-CH ₂ -N-S-CH ₃
351	CI—CH₂-	0	3	1	-	H	- CH ₂ -N-C-O-CH ₂ -
352	CH2-	0	3	1	-	H	-CH ₂ -N-C-O-CH ₂ -CI -CH-O-C-N-CI CH ₃

Table 1.33

Table 1							
Compd.	R ¹ (CH ₂),	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
353	с⊢С сн₂-	1	2	1	-	H 	-CH2-N-C-
354	с⊢—СН₂-	1	3	0	-	н	- CH ₂ -N-C-
355	CH-CH₂-	1	3	0	-	н	- CH ₂ -N-C
356	C⊢CH₂-	1	3	0	-	н	-CH ₂ -N-C-
357	CH-2-	1	3	0	-	н	-CH ₂ -N-C
358	с⊢Сту−сн₂-	1	3	0	-	н	- CH ₂ - N+ C- CF ₃
359	с⊢{	1	3	0	-	н	-(CH ₂) ₂ -N-C-
360	с⊢{	1	3	0	-	н	-(CH ₂) ₂ -N-C-NO ₂
361	C⊢(CH₂-	1	3	0	· -	н	-(CH ₂) ₃ -C-
362	с⊢С→-сн₂-	1	3	0	-	н	-(CH ₂) ₃ -C-(CH ₃
363	CHCH ₂ -	1	3	0	. -	н	-(CH ₂) ₃ -C-(S

Table 1.34

Compd.	R ¹ (CH ₂)	k	m	n	chirality	⁻ R³	$-(CH_2)_{p} + (CH_2)_{q} - G - R^6$
364	С⊢—СН₂-	1	3	0	-	н	-(CH ₂) ₂ -C
365	CH-2-	1	3	0	-	н	$-(CH_2)_2$ CH_3 CH_3
366	CH2-	1	3	0	-	н	-(CH ₂) ₂ -C-C-C-OCH ₃
367	CH2−	1.	3	0	-	н	-(CH ₂) ₂ -C-CH ₃
368	CH2 ⁻	1	3	0	-	н	-(CH ₂) ₂ -C-
369	C├─ \ CH ₂ -	1	3	0	-	н	-(CH ₂) ₂ -C-CI
370	СН2−	1	3	0	-	н	-(CH ₂) ₂ -C-(CH ₂) ₃ CH ₃
371	CH₂-	1	3	0	-	н	-(CH ₂) ₂ -C
372	CH2-	1	3	0	-	н	- CH ₂ -S
373	CH-€	1	3	0	-	н .	-(CH ₂) ₃ -C-N-
374	с⊢{сн₂-	1	3	0	- -	н	-(CH ₂) ₃ -C-N-OCH ₃

Table 1.35

Table 1							
Compd.	R ¹ (CH ₂)	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
375	CH-2 ⁻	1	3	0	-	н	-(CH ₂) ₃ -C-H
376	с⊢Сту-сн₂-	1	3	0	-	Н	-(CH ₂) ₃ -C-N
377	с⊢СН₂-	1 .	3	0	-	H	CH ₃
378	с⊢ СН₂-	1	3	0	-	н	- CH ₂ CH ₂ -C-N-F
379	с⊢{	1	3	0	-	н	-(CH ₂) ₃ -C-N-C-CH ₃
380	C├ \ CH ₂ -	1	3	0	-	н	-(CH ₂) ₃ -C-N-CH ₂ -
381	CH ₂ -	1	3	0	-	н	- CH ₂ -N-S
382	CH2-	1	3	0	-	н	-CH ₂ -N-C-O-CH ₂ -
383	C├─ \ CH ₂ -	. 1	3	0	-	н	- CH O C N CI
384	CH2-	2	2	0	-	н	-CH ₂ -N-C-NO ₂
385	C⊢√CH₂-	2	2	0	-	Н	-CH ₂ -N-C-NO ₂

Table 1.36

lable	.3.0						
Compd.	R ¹ (CH ₂)	k	m	n	chirality	R ³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
386	CH₂-	2	2	0	-	н	-cH ₂ -N-C-
387	CH ₂ -	2	2	0	-	н	-CH ₂ -N-C-
388	СН₂-	2	2	0	-	н	-CH ₂ -N-C
389	CH ₂ -	2	2	0	-	. н	-CH ₂ -N-C-\CO ₂ CH ₃
390	(CH₂-	2	2	0	-	н	-CH ₂ -N-C-CF ₃
391	⊘ −сн₂−	2	2	0	-	Н	-CH ₂ -N-C-CF ₃
392	⊘ −сн ₂ −	2	2	0	-	н	-CH ₂ -N-C
393	—CH₂-	2	2	0	-	н	-CH ₂ -N-C-Br
394	CH₂-	2	2	0	-	н	-CH ₂ -N-C-Ci
395	CH₂-	2	2	0	•	н	-CH ₂ -N-CBr
396	CH₂-	2	2	0	-	' 'H ' '	-CH2-N-C

Table 1.37

Table 1							
Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	一(CH ₂) p + (CH ₂) q G−R ⁶
397	CH₂-	2	2	0	-	н	-CH2-N-C- CI
398	—CH₂-	2	2	0	-	н	-(CH ₂) ₂ -N-C-
399	€ CH ₂ -	2	2	0	-	н	-(CH ₂) ₂ -N-C-
400	СH₂-	2	2	0	-	н	-(CH ₂) ₂ -N-C
401	 —CH₂-	2	2	0	-	н	-(CH ₂) ₂ -N-C- H
402	CH₂−	2	2	0	-	н	-(CH ₂) ₂ -N-C-
403	CH₂ -	2	2	0	-	н	-(CH ₂) ₂ -N-C-F ₃
404	CH₂−					н	-(CH ₂) ₂ -N-C-
405	CH₂-	2	2	0	-	н	-(CH ₂) ₂ -N-C-Br
406	СН₂-	2	2	0	-	н	-(CH ₂) ₂ -N-C-C
407	CH₂-	2	2	0	-	н	-(CH ₂) ₂ -N-C-Br

Table 1.38

Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	· R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
408	С }−сн₂−	2	2	0	-	н	-(CH ₂) ₂ -N-C
. 409	€ CH2-	2	2	0	-	н	-(CH ₂) ₂ -N-C-CI
410	СН₂-	2	2	0	-	н	(S)
411	€ CH ₂ -	2	2	0	-	н	(S) 0 -CH-N-CH ₂ CH(CH ₃) ₂
412	СН₂-	2	2	0	-	н	(S) -CH-N-C
413	CH ₂ -	2	2	0	-	н .	(S) P −CH−N+C− CH ₂ CH(CH ₃) ₂ CO ₂ CH ₃
414	◯ -CH ₂ -	2	2	0	-	н	(S) -CH-N-C- CH ₂ CH(CH ₃) ₂
415	◯ }−CH₂−	2	2	0	-	Н	(S) -CH-N-C- H CH ₂ CH(CH ₃) ₂ F
416	◯ -CH₂-	2	2	0	-	н	(S) -CH-N-C- CH₂CH(CH₃)₂
417	CH₂-	2	2	0	-	H	(S) P Br -CH-N-C-S CH ₂ CH(CH ₃) ₂
418	◯ }−CH₂−	2	2	0	-	H	(S) -CH-N-C- H CH ₂ CH(CH ₃) ₂

Table 1.39

1 abic							
Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	⁻ R³	$-(CH_2)_{p}$ $+ \frac{R^4}{R^5}$ $(CH_2)_{q}$ $- G - R^6$
419	() −CH ₂ −	2	2	0	-	н	(S) P -CH-N-C
420	CH₂-	2	2	0	-	н	(S) P -CH-N-C
421	СН₂-	2	2	0	-	н	(S) -CH-N-C-CI CH ₂ CH(CH ₃) ₂
422	CH ₂ -	2	2	0	-	Н	(<i>F</i>)
423	€ -CH₂-	. 2	2	0	-	Н	(F) O O O O O O O O O O O O O O O O O O O
424	CH ₂ -	2	2	0	-	H	(A) P NO ₂ -CH-N-C-CH ₂ CH(CH ₃) ₂
425	CH ₂ -	2	2	0	-	н	(<i>H</i>) -CH-N-C
426	€ -CH ₂ -	2	2	0	-	н	(F) -CH-N-C-CF3 CH ₂ CH(CH ₃) ₂
427	СН2-	2	2	0	-	Н	CF ₃ CH-N-C-CF ₃ CH ₂ CH(CH ₃) ₂ F
428	СН₂-	2	2	0	-	н	(F) -CH-N-C- H CH ₂ CH(CH ₃) ₂
429	СН₂-	2	2	0	-	Н	(F) P Br -CH-N-C

Table 1.40

Compd.	R ² (CH ₂) _j	k	m	n	chirality	₽³	—(CH ₂) _p + (CH ₂) _q G−R ⁶
430	—CH₂-	2	2	0	-	H	(A) -CH-N-C- H CH ₂ CH(CH ₃) ₂
431	CH ₂ -	2	2	0	-	н	(F) P −CH−N-C− CH ₂ CH(CH ₃) ₂
432	CH ₂ -	2	2	0	-	н	(FI) - CH-N-C
433	CH₂-	2	2	0	-	н	(A) CI -CH-N-C-CI
434	CH-2-	1	3	1	-	Н	-сн ₂ - N-с-
435	с⊢—СН₂-	. 1	3	1	-	н	-CH ₂ -N-C-
436	C├ ─ CH ₂ -	1	3	1	-	н	-CH ₂ -N-C-\(\bigc\)\(\bigc\)\(\bigc\)
437	CH-CH2-					н	-сн ₂ -N-сСО₂сн ₃
438	CH2-	/ 1	3	1	-	н	-CH ₂ -N-C-✓
439	C	1	3	1	-	H	-CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃ -CH ₂ -N-C-F ₃
440	C	1	3	1	-	н	-CH ₂ -N-C

Table 1.41

Table 1	1.41						
Compd.	R ¹ (CH ₂)	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
441	с⊢С сн₂-	1	3	1	-	н	-CH₂-N-C-
442	с⊢(Сн₂-	1.1	3	1	-	н	-CH2-N-C-
443	с⊢СН₂−	1	3	1	-	н	-CH ₂ -N-C-Br
444	с⊢(сн₂-	1	3	1	-	н	-CH ₂ -N-C
445	CH2−	1	3	1	-	н	-CH ₂ -N-C
446	с⊢{сн₂	1	3	1	-	н	-(CH ₂) ₂ -N-C-
447	C⊢√CH2-	1	3	1	-	Н	-(CH ₂) ₂ -N-C-
448	с⊢СН₂-	1	3	1	- .	н	-(CH ₂) ₂ -N-C-NO ₂
449	с⊢{_}-сн₂-	1	3	1	- .	н	$-(CH_2)_z$ -N-C- $-\infty_2$ CH ₃
450	с⊢{сн₂-	1	3	1	-	H	-(CH ₂) ₂ -N-C-CF ₃
451	с⊢Ст−сн₂−	1	3	1	-	н	-(CH ₂) ₂ -N-C-CF ₃

Table 1.42

Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	Ŕ³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} - (CH_2)_{\overline{q}} - R^6$
452	C├ - CH₂-	1	3	1	-	Н	-(CH ₂) ₂ -N-C-
453	с⊢{_}_сн₂-	1	3	1	-	н	-(CH ₂) ₂ -N-C-
454	CHCH ₂ -	1	3	1	-	H	-(CH ₂) ₂ -N-C-C
455	с⊢СН₂-	1	3	1	-	н	-(CH ₂) ₂ -N-C-Br
456	CHCH_2-	1	3	1	-	Н	-(CH ₂) ₂ -N-C
457	CH2-	. 1	3	1		н	-(CH ₂) ₂ -N-C-CI
458	CH-2-	2	2	1 .	- .	н	- CH ₂ -N-C-
459	CH2-	2	2	1	-	н	- CH ₂ -N-C-CH ₃
460	CH ₂ -	2	2	1	-	H	-CH₂-N-C-CH₃
	CHCH₂-						- CH ₂ - N-C-CF ₃
462	СНСН₂-	2	2	1 .	-	Н	-CH ₂ -N-C- H ₃ C

Table 1.43

lable	1.43						
Compd.	R ² (CH ₂)	·k	m	n	chirality	Ŕ³	$-(CH_2)_{p} + (CH_2)_{q} - G - R^6$
463	C⊢CH₂-	2	2	1	-	н	- CH ₂ -N-C-C
464	с⊢-{СН₂-	2	2	1	-	н	-CH₂-N-C-CH₃ OCH₃
465	с⊢ € }-сн₂-	2	2	1	-	н	-CH ₂ -N-C-√>.
466	с⊢Сту−сн₂-	2	2	1,	-	н	-CH ₂ -N-C-NO ₂
467	с⊢С СН₂-	2	2	1	-	н	-CH ₂ -N-C-Br
468	CH2-	2	2	1	-	н	- CH ₂ -NC-N(CH ₃) ₂
469	с⊢—СН₂-	2	2	1	-	н	-CH ₂ -N-C-
470	CH2-	2	2	1	-	н	-CH2-N-C
471	C├ - CH ₂ -	2	2	1	-	н	-CH₂-N-C
472	CH-CH ₂ -	2	2	1	-	н	-CH2-HC
473	СН-СН2-	2	2	1	-	н	-CH ₂ -N-C-CH ₃

Table 1.44

Table 1							
Compd.	R ² (CH ₂)	k	m	n	chirality	R³	$-(CH_2)_p$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
474	CH2−	2	2	1	-	H	- CH ₂ -N-C
475	С⊢СТ СН₂-	2	2	1	-	H	- CH ₂ - N- C- CH(CH ₃) ₂
476	с⊢СН₂-	2	2	1	-	H	-CH ₂ -N-C-NO ₂
477	C⊢CH₂-	2	2	1	-	н	- CH ₂ -N-C
478	C⊢CH₂-	2	2	1	-	н	CH₂ N C N H₃ C
479	CH2-	2	2	1	-	н	- CH2- N C-
480	CI—€ CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-O Br
481	CH2-	2	2	1	-	н .	-CH₂-N-C-S
482	C	2	2	1	-	н	-CH ₂ -N-C-S
483 ⁻	CH2-	2	. 2	1		н	-CH₂-N-C-S CH3
484	с⊢(Сн₂-	2	2	1	-	н	-CH ₂ -N-C-N-H

Table 1.45

Table 1	.45						
Compd.	R ¹ (CH ₂)j	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
485	CHCH ₂ -	2	2	1	-	Н	- CH ₂ -N-C-CF ₃
486	с⊢{_}-сн₂-	2	2	1	-	Н	- CH ₂ -N-CN
	CH_CH ₂ -					н	- CH ₂ - N C-
488	CH₂-	2	.2	1	-	н	- CH ₂ -N-C-\(\sigma\)
489	C├ - CH₂-	2	2	1	-	н	- CH ₂ - N C − CF ₃ F ₃ C
490	CH2-	2	2	1	-	н	OCH2CH3
491	C├ \ CH ₂ -	2	2	1	-	н	- CH ₂ -N-C
492	CH2-	2	.2	1	-	н	-CH ₂ -N-C-OCF ₃
493	C├ - CH₂-	2	2	1	-		- CH ₂ -N-C-CF ₃
494	C├ \ CH₂-	2	2	1	-	н	- CH ₂ -N-CF ₃
495	CH-2-	2	2	1	-	Н	- CH ₂ - N C CF ₃

Table 1.46

rable							· · · · · · · · · · · · · · · · · · ·
Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
496	с⊢С сн₂-	2	2	1	-	н	O CF ₃ - CH ₂ - N C CF ₃
497	CH- (CH₂-	2	2	1	÷	н	-CH ₂ -N-C-CH(CH ₃) ₂
498	CHCH ₂ -	2	2	1	-	н	-CH ₂ -N-C
499	CHCH2-	2	2	1	-	н	-CH ₂ -N-C-N(CH ₃) ₂
500	C	2	2	1	-	Н	-CH ₂ -N-C-\-OCH ₃
501	CI—⟨¯¯}-CH₂-	2	2	1	-	Н "	- CH ₂ -N-C
502	CH2-	2	2	1	-	Н	-CH ₂ -N-C
503	CH-2-	2	2	1	-	Н	-CH ₂ -N-C
504	CHCH ₂ -	2	2	1	-	н	-CH ₂ -N-C-OCH ₃
	CI—CH₂-						-CH ₂ -N-C-NO ₂
506	CH-CH ₂ -	2	2	1	- ·	` н	-CH2-H-C-01 NO2

Table 1.47

Table 1							
Compd.	R ¹ (CH ₂);-	k	m	n	chirality	Ř³	—(CH ₂) p (CH ₂) q G−R ⁶
507	CHCH ₂ -	2	2	1	-	н	- CH ₂ - N C
508	CH-CH2-	2	2	1	-	н	-CH2-N-C-S
509	С⊢СН2-	2	2	1	-	н	-CH2-N-C-S
510	CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CH ₃
511	CI—CH₂-	2	2	1	-	н	-CH ₂ -N-C-(CH ₃) ₃
512	CI—CH₂-	2	2	1	-	H .	- CH2- N- C- CHCH3
513	CH-€	2	2	1	-	н	- CH₂- N- C- CH₃
514	CI—(CH₂-	2	2	1	-	н	- CH ₂ -N-C-C(CH ₃) ₃
515	CH2-	2	. 2	1	-	H	-CH ₂ -N-С-СН ₂ ОН
516	H ₂ N-CH ₂ -	2	2	_ 1	-	н	-CH ₂ -N-C-CF ₃
517	H ₂ N —CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃

Table 1.48

Table 1	1.48						
Compd.	R ² (CH ₂) _j	k	m	n	chirality	Ř³ -	$-(CH_2)_p + (CH_2)_q - G - R^6$
518	NH ₂	2	2	1	-	н	-CH ₂ -N-C-CF ₃
519	O-0-11-O-012-	2	2	1	-	н	-CH ₂ -N-C-CF ₃
520	CI—(2	2	1	-	—сн₃	-CH ₂ -N-C-CF ₃
521	с⊢—СН₂-	2	2	1	- .	-(CH ₂) ₂ CH-	-CH₂-N-C-CF3
522	C├ ─ }─CH ₂ ─	2	2	1	-	-CH ₂ CH-	-CH₂-N-C-CF₃
· 523 .	CH2-	2	2	1	-	—(CH ₂) ₂ CH—	-CH2-N-C-
524	CH2−	2	2	1	-	-CH ₂ CH-	-CH _Z -N-C-
525	CH2−	2	2	1	•	н	-CH ₂ -N-C-
526	С⊢СН₂-	2	2	1	-		-CH ₂ -N-C-
527	C├ \ CH₂-	2	2	1	-	. н	-CH₂-N-C-√S
528	CI—CH₂-	2	2	1	-	н	$-CH_{2}-N-C-CS$ $-CH_{2}-N-C-CH_{3}$ $F_{3}C$

Table 1.49

labie							
Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
529	C├ - CH₂-	2	2	1	-	н	-CH ₂ -N-C-\ NO ₂
530	с⊢—СН₂-	્રે 2	2	1	- .	н	-сн ₂ -й-с-
531	C	2	2	1	-	Н	-CH ₂ -N-C-S
532	C├ - CH₂-	2	2	1	-	н	-CH ₂ -N-C-CH ₃ H ₃ C
533	CI—(CH₂-	2	2	1	· <u>·</u>	н	-CH ₂ -N-C
534	CH- 2 -	2	2	1	-	н	-CH ₂ -N-C-O
535	CH-CH ₂ -	2	2	1	-	н	-сн ₂ -н-с-С _S
•	CH-2-				-	н	-CH ₂ -N-C-N-CH ₃
537	CHCH ₂ -	2	2	1		н	-CH ₂ -N-C-C(CH ₃) ₃
538	CH_CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-C(CH ₃) ₃ -CH ₃ -N-C-C(CH ₃) ₃
539	CH-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CH ₃ F ₃ C

`WO 99/25686

PCT/US98/23254

Table 1.50

lable							
Compd.	R ² (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+\frac{R^4}{R^5}$ $(CH_2)_{q}$ $G-R^6$
540	С⊢СН₂-	2	2	1	-	Н	-CH ₂ -N-C-N CH ₃
541	CH-CH ₂ -	2	2	1	•	н	-CH ₂ -N-C
542	C├ - CH₂-	2	2	1	-	н	-CH ₂ -N-C-CH ₂ CH ₃
543	CH2-	2	2	1	<u>-</u>	н	-CH ₂ -N-C
544	CH2−	2	2	1	-	н	-CH2-N-C-
545	CH2 ⁻	2	2	1	•	н	-CH₂-N-C-
546	C├ ─ CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-CI
547	C├ - CH₂-	2	2	1	-	н	-CH ₂ -N-C-CI
548	C├─ ○ -CH ₂ -	2	2	1	-		-CH ₂ -N-C-CI
549	CH ₂ -	2	2	1	<u>-</u>	Н	-CH ₂ -N-C-
550	с⊢(Сн₂-	2	2	1	-		-CH ₂ -N-C-

Table 1.51

Table 1	.51 						
Compd.	R (CH ₂)	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
551	C⊢(2	2	1	-	н	-CH ₂ -N-C-CH ₂ -CH ₃
552	C	2	2	1	-	н	-CH ₂ -N-C-CH ₂ -CF ₃
553	CH2−	2	2	1	-	н	-CH ₂ -N-C-CH ₂ -CF ₃
554	C├ - CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-N-H
555	C├ ─ CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-NH
556	C├ - CH₂-	2	2	1	-	н	-CH2-N-C-N-CH3
557	CHCH ₂ -	2	2	1	-	н	-(CH ₂) ₂ -N-C-
558	C├ - CH ₂ -	2	2	1	-	н	CH₃ O -CHŅ-C-
559	CH-2-	2	2	1	-	н	
560	C	2	2	1	-	н	-CH N C-CN
561	C	2	2	1	•	н	-CHNC-OBr -CHNC-OBr -CHNC-OBr -CHNC-OBr

Table 1.52

Compd.	R ¹ /(CH ₂)j-	k	m	n	chirality	₽³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
562	С⊢—СН₂-	2	2	1	-	Н	-CHNC-CI
563	CH-2-	2	2	1	-	H	CHN C-CF3
564	C⊢√Ç}-CH₂-	2	2	1	-	Н	- CH N C → OCH2CH3 CH3
565	C⊢√ CH₂-	2	2	1	-	н	-CHNC-CF3
566	CH-2-	2	2	1	-	Н	
567	CH-CH ₂ -	2	2	1	-	н	-CHNC-CF3
568	C⊢—CH₂-	2	2	1	-	н	-CHNC-CF3
569	C⊢—CH₂-	2	2	1	-	н	-CHNC-CF3
570	CI—CH₂-	2	2	1	-	н	CHNC-F
571	С⊢-{СН₂-					н	CH ₃ OHO CH(CH ₃) ₂ -CHNC-CH ₃
572	CHCH ₂ -	Ž	2	1	-	н	CH ₃ -CHN C-CF ₃ -CHN C-CF ₃

Table 1.53

Table 1	1.53						
Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - G - R^6$
573	с-Ссн2-	2	2	1	-	н	-CHNC-S
574	CHCH ₂ -	2	2	1	-	н	-CHNC-S Br
575	CH-CH ₂ -	2	2.	1	-	н	-CH N C-O C(CH3)3
576	C├ \ CH ₂ -	2	2	1	· -	н	-CH NC-O SCH ₃
577	C ⊢ CH₂-	2	2	1	-	н	-ch k c
578	CHCH ₂ -	2	2	1	-	н	-CHNC-S
579	CCH ₂ -	2	2	1	-	н	-CH-M-C-N
580	C├ ~ CH₂-	2	2	1	-	н	-CHNC-S CH3
581	CHCH ₂ -	2	2	1	-	Н	-CH N C S
582	CH-CH ₂ -	2	2	1	-	н .	-c+ x c-(s)
583	CI—CH ₂ -	2	2	1	-	н.	-CH H CH3

Table 1.54

Compd. No.	R ¹ (CH ₂),	k	m	'n	chirality	R ³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
584	C⊢—CH₂-	2	2	1	-	н	- C + N C - C - C - C - C - C - C - C - C - C
585	CH-CH ₂ -	2	2	1	-	н	-CH N C-CN
586	CI—(CH₂-	2	2	1	-	н	- CH N C - CI
587	CHCH ₂ -	2	2	1	-	н	-CHNC-CF3
588	СН-СН2-	2	2	1		н	-CH-N-C-NH₂ H CH3
589	CH2-	2	2	1	-	н	-CHN-C
590	CH2-	2	2	1	-	н	- CH- N- C- - CH3 CH3
591	CH-2-	2	2	1	-	H.	- CH-N-C- N(CH ₃) ₂ H CH ₃
592	CH2−	2	2	1	-	Н	-сн и с -сн и с -сн з
593	C⊢-{CH₂-	2	2	1	-	н	- СН- N- С — СН₂ОН СН₃
594	С⊢—СН₂-	2	2	1	-	н	- СН³ СН° С- О О О О О О О О О О О О О О О О О О О

WO 99/25686

Table 1.55

lable							
Compd. No.	R ² (CH ₂) _j	k	m	n	chirality	'R³	-(CH ₂) _p R ⁴ (CH ₂) _q G-R ⁶
595	C├ - CH ₂ -	2	2	1	-	н	-сн № С — со2сн3 Сн3
596	CH-CH2-	2	2	1	· -	н	- СН N С С СН3 СН3
597	C⊢-{CH₂-	2	2	1		H .	- CH N C- C-CH3
598	CH-€ CH ₂ -	2	2	1	-	н	-CHNC-O
599	CH-CH2-	2	2	1	<u>.</u> ·	н	-CH N CH3
600	C├─ \ CH ₂ -	2	2	1	-	н	-CHNC-OBr
601	CH2-	2	2	1	- ,	H	-CHNC-OCH3
· 602	CH2-	.2	. 2	1	-	.	ON(CH ₃) ₂ -CHN C N(CH ₃) ₂ CH ₃
603	CH-CH ₂ -	2	2	1	-	н	- CH N C - NH2
604	CH-CH ₂ -						-CH-N-C-\
605	C⊢-€¯¯}- CH₂-	2	2	1	- -	н	-CH-N-C

Table 1.56

Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	⁻ R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
606	CI-CH ₂ -	2	2	1	-	н	-CHNC-CS
607	CH-CH ₂ -	2	2	1	-	н	-CHNC-S
608	C⊢ (CH₂-	2	2	1	-	н.	-CH-N-C-CH ₃ CH ₃ H ₃ C
609	C⊢√ÇH₂-	2	2	1	-	н	-CH-N-CO
610	CH√CH₂-	2	2	1	-	н	-CH-N-C-S CH ₃ O=C _{CH₃}
611	CHCH ₂ -	2	2	1	-	н	-CH-N-C-C(CH ₃) ₃ -CH ₃ H ₃ C
612	CH_2-	2	2	1	-	н	-CH-N-C-O
613	C⊢—CH₂−	2	2	1	-	·H	-CH-N-C-CH ₃ CH ₃ F ₃ C
	С⊢СН₂-						-CH-N-C-N-CH ₃ CH ₃ F ₃ C CH ₃
615	С⊢С СН₂-	2	2	1	-	н	-CH-N-CNH
616	C⊢—CH₂-	2	2	1	-	н .	-c+n-c-n

Table 1.57

lable i	1.5 /						
Compd.	R ² (CH ₂)	k	m	n	chirality	'R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
617	с⊢{	2	2	1	-	н	-CHN-C-CF3
618	C⊢ (CH₂-	2	2	1	-	н	-CHN C- CH(CH ₃) ₂
619	CH-{CH₂-	2	2	1	-	H	- CH+ N C- CN - CH(CH ₃)₂
620	CH-CH ₂ -	2	2	1	-	н	- CH N C - Br - CH (CH ₃) ₂
621	CH-CH ₂ -	2	2	1	-	н	- CH N C CI - CH (CH ₃) ₂
622	C⊢√CH₂-	2	2	1	-	н	O N(CH ₃) ₂ - CH N C CH(CH ₃) ₂ CH(CH ₃) ₂
623	CH-CH ₂ -	2	2	1	-	н	- СН И С СН(СН3)2
624	CH-CH2-	2	2	1	-	н	- CH N C - NO2 - CH (CH ₃) ₂
625	CH-CH ₂ -	2	2	1	-	н	- CH N C - NH2 - CH (CH ₃) ₂
626 _.	C├ - CH₂-	2	2	11	•	н	-C++ N-C
627	C├ - CH₂-	2	2	1	-	н	- CH N C - CH2CH3 - CH(CH3)2

Table 1.58

iabic							
Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	Ŕ³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
628	с⊢—СН₂-	2	2	1	-	н	- CH N-C
629	CH-CH ₂ -	2	2	1	-	н	OF CF3 -CH N C CF3 CH(CH3)2
630	с⊢С сн₂-	2	2	1	-	н	OCF ₃ -CH-N-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-
631	с⊢С сн₂-	2	2	1	-	н	- CH N C - CF ₃
632	C├─ ()-CH ₂ -	2	2	1	-	н	-CHNCH ₃) ₂ CF ₃
633	с⊢СН₂-	2	2	1	-	н	$-CHNCH_3)_2 \qquad F$
634	CH_CH ₂ -	2	2	1	-	н	-CH-N-C-F CH(CH ₃) ₂
635	CH-2-	2	2	1	-	Н	-CH N C CH-
636	CHCH_2-	2	2	1	-	н	-CH N C CH3 -CH(CH3)2
637	CHCH ₂ -	2	2	1	-	н	-CHNCH3)2
638	CH-2-	2	2	1	•	н	- CH N C- H H CH(CH ₃) ₂ CN
							•

Table 1.59

Table 1							
Compd.	R ¹ (CH ₂)	k	m	n	chirality	Ŕ³	$-(CH_2)_{p}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
639	CH-CH ₂ -	2	2	1	-	H .	O - CH- N-C - N(CH ₃) ₂ I H CH(CH ₃) ₂
640	C├ \ CH ₂ -	2	2	1	-	н	- CH N C - OCH ₃ - CH(CH ₃) ₂
641	CHCH ₂ -	2	2	1		н	- CH N C- CO ₂ CH ₃ CH(CH ₃) ₂
642	CH2-	2	2	1	-	н	-CH M C- CH(CH3)2
643	C	2	2	1	-	н .	-CHN C- H H CH(CH ₃) ₂ CF ₃
644	CH2⁻	2	2	1	-	н	O − CH N C ← C(CH ₃) ₃ I H CH(CH ₃) ₂
645	C⊢CH₂-	2	2	1	-	Н	$-CHNC \longrightarrow NH_2$ $CH(CH_3)_2$
646	CH-2-	2	2	1	-	н	- CH- N- C- CH2OH CH(CH3)2
647	CH-2-	2	2	1	-	н	- CH N C- C- CH ₃ - CH(CH ₃) ₂
648	CH2-	2	2	1	-	н	- CH N C - CH(CH ₃) ₂ CH(CH ₃) ₂
649 ·	C⊢-€	. 2	2	1	. -	н	О - СН- И С- СН(СН ₃) ₂

Table 1.60

labic .							
Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	Ŕ³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
650	С⊢{Сн₂-	2	2	1		н	-CH-N-C-C-C-CH(CH ₃) ₂
651	CH-CH ₂ -	2	2	1	-	н	-CH-N-C-CHCH ₃
652	CH-CH ₂ -	2	2	1	-	н	-CH-N-C-NO ₂ CH(CH ₃) ₂
653	CI————————————————————————————————————	2	2	1	-	н	-сн-р-с
654	CH-€-CH₂-	2	2	1	-	н	-CH-N-C-CH ₃ -CH(CH ₃) ₂
655	CHCH ₂ -	2	2	1	-	Н	-CH-N-C
656	CHCH ₂ -	2	2	1	-	H	-сн-ү-с-СЭ сн(Сн ₃₎₂
657	CH-CH ₂ -	2	2	1	-	н	-CH-N-C- CH(CH ₃) ₂
658	СН-СН₂-	2	2.	1	-	H.	-CH-N-C-NH CH(CH ₃) ₂
659	с⊢—СН₂-	2	2	1	-	H ,	-CH-N-C
660	CH-CH ₂ -	2	2	1	- -	н	-CH-N-C-N-C-N-CH(CH ₃) ₂

Table 1.61

Table 1			_				
Compd.	R ¹ (CH ₂)	k	m	n	chirality	⁻ R³	$-(CH_2)_{p}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
661	СН2-	2	2	1	•	н	-сн N-с- S Н Сн(СН ₃) ₂ ОСН ₃
662	CH2⁻	2	2	1	-	н	-CH-N-CCH ₃ -CH(CH ₃) ₂ CH ₃
663	C⊢————————————————————————————————————	2	2	1	-	н	— CH-N-C— OH CH(CH ₃) ₂
664	С⊢—СН₂-	2	2	1	-	н	-CH-N-C-O H NO ₂ CH(CH ₃) ₂
665	CH2⁻	2	2	1	-	н	-CH-N-C-S CH(CH3)2
666	CH2 ⁻	2	2	-1	-	н	-CH-N-C-H ₃ CH ₃ CH ₃ CH ₃ CH ₃
667	CH ₂ -	2	2	1	-	н	-CH-N-CCH-S
668	C├ \ CH ₂ -	2	2	1	-	н	-CH-N-C-CH ₃ CH(CH ₃) ₂ CH ₃
669	CH-CH ₂ -	2	2	1	-	н	-CHN-C-N CH(CH ₃) ₂ CH ₃
670	C⊢(2	2	1	-	н	-CH-N-C
671	с⊢С сн₂-	. 2	2	1	-	н	-CH-N-C- NO ₂

Table 1.62

Compd.	R ² (CH ₂) _j	k	m	n	chirality	R³	-(CH ₂) p + (CH ₂) q G-R ⁶
672	CH_CH2-	2	2	1	-	н	-CH-N-C-
673	CH-2-	2	2	1	-	н	-CH-N-C-S C(CH ₃) ₂
674	C├ - CH₂-	2	2	1	-	н	- CH-N-C- CH(CH ₃) ₂
675	.CHCH ₂	2	2	1	-	н	-CH-N-CS CH ₃
676	CHCH ₂ -	2	2	1	-	н	-CH-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-
677	с⊢—Сн₂-	2	2	1	-	н	-CH-N-C-N-CH3
678	CH-CH ₂ -	2	2	1	-	н	-CH-N-C- CH(CH ₃) ₂
679	C├─ ○ -CH ₂ -	2	2	1	-	Н	-CH-N-C-SCO
680	C⊢CH₂-	2	2	1	-	н	-сн-N-с- сн(СН ₃) ₂ Вг
681	CI—CH₂-	2	2	1	-	н	-CH-N-C
682	С⊢С СН₂-	2	2	1	. -	H	-CH-N-C

Table 1.63

lable i	.03						
Compd.	R ¹ (CH ₂)	k	m	n	chirality	Ŕ³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
683	CH2-	2	2	1	-	н	-CHN-C-S SCH ₃
684	с⊢Сту−сн₂-	2	2	1	-	н	-CH-N-C
685	C⊢—CH₂-	2	2	1	-	н	-CH-N-C
686	С⊢—СН₂-	2	2	1	-	н	- CH N- C- CH2CH(CH3)2
687	C├ - CH ₂ -	2	2	1	-	н	-c+v-c-
688	C	2	2	1	-	н	-CHNC
689	CH-CH₂-	2	2	1	-	Н	-c+ 4-c-
690	C⊢(CH ₂ -	2	2	1	-	н	-CHN-C-Br
	CH_2-						-CH N-C- N(CH3)2
692	C	2	2	1	-	н	-CH N-C
693	С⊢—СН₂-	2	2	1	-	н	-CHNC

Table 1.64

			-				
Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
694	C⊢-{	2	2	1	-	н .	-CHN-C-OCH2CH3
695	CH_CH ₂ -	2	2	1	-	н	-CH N-C- ∞ 2CH3
696	CHCH ₂ -	2	2	1	-	н	-CHNC-COCF3
697	CHCH ₂ -	2	2	1	-	н	-CH-N-C
698	CHCH2-	2	2	1	-	н	-CHN-C
699	CH2-	, 2	2	1	-	н	-сни-с- С- С- С- С- С- С- С- С- С- С- С- С- С-
700	с⊢СН₂-	2	2	1	-	н	-CHN-C-CO2CH3
701	CH- 2 - CH₂-	2	2	1	-	н	-CHN-C
702	CI—{	2	2	1	-	н	-CHN-C-CF3
703	CI—⟨CH ₂ -	2	2	1	-	н	-CH N-C- CH(CH ₃) ₂
704	СҢСН ₂ -	∵2	2	1	•	н	-CH N-C- CH(CH ₃) ₂ -CH N-C- NO ₂

Table 1.65

Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	-(CH ₂) _{p 5} (CH ₂) _q G-R ⁶
705	C⊢-{CH₂-	2	2	1	-	н -	-CHNC H3C
706	C├ - CH₂-	2	2	1	-	н	-CHNC-STCH3
707	C├ - ⟨ - - CH ₂ -	2	2	1	-	н	-c++v-c
708	с⊢{_}-сн₂-	2	2	1	-	H	-CHN-C-S Br
709	с⊢С}-сн₂-	2	2	1	<u>-</u> .	н	-CHNC-SSCH3
710	CH-2-	2	2	1	-	н	-CHN-C-S Br
711	CH-2-	2	2	1	-	н	-CHN-C-CH3
712	CH-2-	2	2	1	-	н	-chyc-s
713	CH-2-	2	2	1	-	н	-CH-N-C
714	CHCH ₂ -	2	2	1	-	н	-CHNC-N
715	C⊢CH₂-	2	2	1	-	н	-chyc-s

Table 1.66

Compd.	R ¹ (CH ₂)	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
716	CH-2-	2	2	1	-	н	-cHNC-H
717	C├ - CH₂-	2	2	1	-	H·	-CH-N-C-QJ NO2
718	CHCH ₂ -	2	2	1		н	-c+nc-2
719	CH_CH ₂ -	2	2	1	-	н	-c+n-c-
720	CHCH2-	2	2	1	-	Н	-CHNC-OBr
721	CH2-	2	2	1	-	н	-chn-c-
722	CH2-	2	2	1	-	н	-сн-к-с-Ф-сн₂он
723	C├ ~ CH ₂ -	2	2	1	-	н	-CH-N-CNH2
724	CH2-	2	2	1	-	н	-CH-N-C-(CH3)3
725	CH-€-CH2-	2	2	1	-	н	-c+1-c
726	CHCH ₂ -	2	2	1	-	н	-сн-и-с-снз

Table 1.67

Table T	1.0 /						
Compd.	R ¹ (CH ₂);	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
727	с⊢{Сн₂-	2	2	1	-	н	-CHN-C-CI
728	с⊢Ст}-сн₂-	2	2	1	-	н	-c++v-c-
729	с⊢—СН₂-	2	2	1	-	н	-CHN-C
730	CH2-	2	2	1	-	н.	-c++v-c
731	СН2-	2	2	1	-	н	-CH-N-C-CH3
732	CHZ-CH₂-	. 2	2	1	-	н	-chyc-CF3
733	CH2-	2	2	1	-	н	-CH-N-C
734	CH2-	2	2	1	-	H	-CHNC-CF3
735	C├ \ CH ₂ -	2	2	1	-	н	-chyc -chy
736	CH2-	2	2	1	-	н.	-CH-N-C- H ₂ N CF ₃ -CH-N-C- F
737	с⊢СН₂-	2	2	1	-	. н	-CHN-C

Table 1.68

i abie	.00						
Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+\frac{R^4}{R^5}(CH_2)_{q}G-R^6$
738	CH-€	2	2	1	-	н	-CH-N-C-CH3 H3C
739	C⊢(2	2	1	-	н	-ch-n-c
740	с⊢С сн₂-	2	2	1	-	н	-CH-N-C
741	с⊢{сн₂-	2	2	1	-	н	-CHN-C-S
742	CH2-	2	2	1	-	н .	-chy-c-
743	CH₂-	2	2	1	-	н	-c+nc-C
744	CH2-	2	2	1	<u>-</u> ·	Н	-CHMC-CH3
745	CH-2-	2	2	1	. -	н	-CHNC-(CH3)3
746	CH2-	2	2	1	-	н	-CH-N-C-N-CH ₃
	CH-2-						-CH-N-C
748	С⊢—СН₂-	2	2	1	-	H	-chyc-Cs

Table 1.69

lable 1							
Compd.	R ² (CH ₂),	k	m	n	chirality	Ĥ³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
749	CHCH2-	2	2	1	-	Н	-c+nc-ln
750	C	2	2	1	-	н	-CH-N-C
751	CH2-	2	2	. 1	-	н	
752	С⊢—СН₂-	2	2	1	-	н	CH-N-C-CF ₃
753	с⊢СН₂-	2	2	1	-	н	-ÇH-N-C-CN CH₂OH
754	C⊢(CH₂-	2	2	1	-	н	-CH-N-C- CH₂OH
755	C⊢(CH ₂ -	2	2	1	-	н	-CH-N-C- CH2OH
756	CH2-	2	2	1	-	н	-CH-N-C
757	CH-€-CH ₂ -	2	2	1	-	- H	-CH-N-C- CH₂OH
758	CHCH ₂ -					Н	-CH-N-C- CH-OH
759	CH2−	2	2	1	-	H .	OCF ₃ -CH-N-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-

Table 1.70

							·
Compd. No.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
760	C├ - CH ₂ -	2	2	1	-	н	CF ₃ -CH-N-C- CH ₂ OH F
761	CH-CH ₂ -	. 2	2	1	-	н	O CH-NC-F H CH₂OH
762	CH-€ CH₂-	2	2	1	· •	н	-CH-N-C-CF3 -CH2OH
763	CH-CH₂-	2	2	1	-	н	-сн-и-с- сн₂он
764	C⊢-(CH ₂ -	2	2	1	-	н	CH ₃ O -C-N-C-C CH ₃
765	CH2-	2	2	1	-	Н	CH ₃ P CH ₃ -CH ₃ CH ₃
766	C⊢—CH₂-	2	2	1	-	н	СН ₃ О СF ₃ -С-N-С-С СН ₃
767	C⊢-{CH₂-	2	2	1	-	н	CH3 P CH3
	C				-	н	CH ₃ P Br
769	CHCH ₂ -	2	2	1	-	н	CH ₃ P CF ₃ CH ₃ P OCF ₃ CH ₃ P OCF ₃
770	CH-2-	2	2	1	-	н	CH ₃ P OCF ₃ -C-N-C-CF ₃ CH ₃ P CF ₃ -C-N-C-CF ₃

Table 1.71

Table 1	1.71					·····	
Compd.	R ² (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)^{R^4}_{p+1}(CH_2)^{-G-R^6}_{q}$
771	CHCH ₂ -	2	2	1	-	н	CH ₃ P CF ₃ -C-N-C-F CH ₃
772	C⊢√_CH₂-	2	2	1	<u>:</u>	н	-C-N-C-CF ₃
773	CH2-	2	2	1		н	C(CH ₃) ₃
774	CH ₂ -	2	2	1	-	н	CH ₃ O CH ₃ SCH ₃
775	CH-2−	2	2	1	-	н	CH ₃ P CH ₃ -C-N-C-C CH ₃ C(CH ₃) ₃
776	C├ \ CH₂-	2	2	1	-	н	CH3 P CH3
777	C⊢√CH₂-	2	2	1	•	н	CH ₃ CF ₃ -C-N-C-CH ₃ CH ₃
778	CH-2-	2	2	1	-	н	CH ₃ O NO ₂ -C-N-C-C-CI CH ₃
779	C├ - CH ₂ -	,2	2	1	-	н	CH3 OCI
	CI— CH₂-						CH ₃ O NO ₂ -C-N-C-
781	с⊢С сн₂-	2	2	1	-	н	-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-

WO 99/25686

Table 1.72

Table !	=						_
Compd. No.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
782	CH-CH ₂ -	2	2	1	-	н	CH ₃ O OCH ₃ -C-N-C-OCH ₃ -CH ₃
783	CH-{	2	2	1	-	н	CH ₃ P OCH₂CH ₃ -C-N-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-
784	CH_CH ₂ -	2	2	1	-	н	CH ₃ O -C-N-C-CH ₂ CF ₃ CH ₃
785	CHCH ₂ -	2	2	1	-	н	CH ₃ OCH ₃ CH ₃ OCH ₃
786	CH-CH ₂ -	2	2	1	-	н	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
787	С⊢СН2-	2	2	1	-	н	H ₂ C—CH ₂
788	CH-CH ₂ -	2	2	1	-	Н .	H ₂ C—CH ₂ CF ₃ CF ₃
789	CH	2	2	1	-	н	He C Orto
790	CHCH ₂ -	2	2	1	-	н	
791	CH2-CH2-	2	2	1	-	. н	-C-N-C-NO ₂
792	CHCH ₂ -	2	2	1		н	H ₂ C—CH ₂ NO ₂ H ₂ C—CH ₂ OCF ₃ H ₂ C—CH ₂

Table 1.73

Table 1	1.73						
Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
793	CI—CH ₂ -	2	2	1	-	н	-C-N-C
794	с⊢С СН₂-	2	2	1	-	н .	-C-N-C- H ₂ C-CH ₂ F
795	CH2-	2	2	1	-	н	-C - N - C - C - C - C - C - C - C - C -
796	CH2-	2	2	1	-	н	H ₂ C-CH ₂
797	CH2⁻	2	2	1	-	н	C(CH ₃) ₃
798	C├ \ CH₂-	2	2	1	-	н	H ₂ C CH ₂
799	C⊢—CH₂-	2	2	1	-	_. H	H ₂ C-CH ₂
800	C├ ~ CH ₂ -	2	2		· -	н	-C-N-C-NO ₂ H ₂ C-CH ₂
801	CH2-	2	2	1	-	н	H ₂ C—CH ₂
802	C⊢CH₂-	2	2	1	-	н	-C-H ₂ C-CH ₂
803	СН2−СН2−	, 2	2	1		H ·	H ₂ C—CH ₂

Table 1.74

	•••						•
Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
804	C├ - CH₂-	2	2	1	-	H	-C-N-C-CH ₂ CF ₃
805	CHCH ₂ -	2	2	1	-	н	H ₂ C—CH ₂ OCH ₃
806	CHCH ₂ -	2	2	1	-	Н	H ₂ C—CH ₂ Br
807	CI—CH₂-	2	2	1	-	н	-CH-N-C-NH2
808	С-СН2-	2	2	1	-	H	-CH-N-C-NH2
809	C	2	2	1	-	н	-CH-N-C-NH ₂
810	C├─ \ CH ₂ -	2	2	1	-	н	-CH-N-C-NH2
811	C⊢—CH₂-	2	2	1	-	н	-CH-N-C-NH ₂
812	C⊢CH₂-	2	2	1	-	н	-CH-N-C-S (CH ₂) ₂ -G-NH ₂ SCH ₃
813	С⊢_СН₂-	2	Ž	1	-	н	-CHN-C
814	C⊢ ()- CH₂-	2	2	1	- ·	н	-CH-N-C

Table 1.75

Table	1./5						
Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
815	CHCH ₂ -	2	2	1	-	н	· - CH-N-C
816	C├ - CH ₂ -	2	2	1	-	н	- CH- N-C
817	CH2-	2	2	1	-	н	O CF3 -CH-NC-F (CH ₂) ₂ -C-NH ₂
818	C⊢CH₂-	2	2	1	-	н	-CH-N-C-Br
819	C⊢CH₂-	2	2	1	-	н	-CH-N-C- H (CH ₂) ₂ -C-NH ₂ CF ₃
820	CH ₂ -	2	2	1	-	н	-CH-N-C
821	CI—CH₂-	2	2	1	-	н	-CH-N-C
822	C⊢————————————————————————————————————	2	2	1	-	н	P S SCH ₃ -CH-N-C-√ S SCH ₃ -CH ₂ OCH ₃
823	CH-CH ₂ -	2	2	,1	-	н	-CH-N-C-H CH₂OCH3
824	CH2-	2	2	1	-	н	-CH-N-C-C(CH ₃) ₃
825	CH2 ⁻	2	- 2	1	-	н	-CH-N-C

Table 1.76

Compd. No.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - G - R^6$
826	с⊢С сн₂-	2	2	1	-	н	-CH-N-C
827	C ⊢ _CH₂-	2	2	1	-	. н	-CH-N-C-NH CH2OCH3
828	CH-€-CH₂-	2	2	1	. -	н	-CH-N-C-CH2OCH3
829	CH-CH ₂ -	2	2	1	-	н ,	-CH-N-C-CF3 -CH₂OCH3 .F
830	CH_CH₂-	2	2	1	-	н	-CH-N-C-F CH ₂ OCH ₃
831	CH-CH ₂ -	2	2	1	-	н	-CH-N-C- H CH₂OCH₃
832	CH-CH₂-	2	2	1	-	н	-ÇH-N-C-CI CH₂OCH₃
833	CH-2-	2	2	1	-	н	-CH-N-C-OCH ₃
834	CHCH ₂ -	2	2	1	-	Н	-CH-N-C
835	CH2-	2	2	1	-	н	-CH-N-C- CH₂OCH3
836	CHCH2-	2	2	1	-	н -	-CH-N-C

Table 1.77

i abie	1.77						
Compd.	R ¹ (CH ₂)	k	m	n	chirality	R³	—(CH ₂) _p + (CH ₂) _q G−R ⁶
837	CHCH ₂ -	2	2	1	-	н	-CH-N-C
838	С⊢—СН₂-	2	2	1	-	н	-CH-N-C-CH ₂ CH ₃ -CH ₂ OCH ₃
839	CH_CH ₂ -	2	2	1	-	н	ОСН ₃ -СН-N-С-ОСН ₃ -ОСН ₃ ОСН ₃
840	CH-2-	2	2	1	-	н	-(CH ₂) ₃ -C-
841	с⊢С—Сн₂-	2	2	1	· -	н	-(CH ₂) ₂ -C-
842	CH2−	2	2	1	-	н	-(CH ₂) ₂ -C-C-CI
843	с⊢—СН₂-	. 2	2	1	-	H	-(CH ₂) ₂ -C-CH ₃
844	с⊢С}-сн₂-	2	2	1	-	н	O -(CH ₂) ₂ -C-CH ₃
845 <u>.</u>	с⊢—СН₂-	2	2	1	-	н	-(CH ₂) ₂ C
846	C├ - CH ₂ -	2	2	1	-	H _.	-(CH ₂) ₂ -C-C-C-C
							-(CH ₂) ₂ -C-C-C-OCH ₃

Table 1.78

Compd. No.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G−R ⁶
848	CH-CH ₂ -	2	2	1	-	н	-(CH ₂) ₂ -CH ₃
849	CH2-	2	2	1	-	н	-(CH ₂) ₂ -C-
850	CH-2-	2	2	1	-	н	- CH ₂ -\$- CH ₃
851	с⊢ СН₂-	2	2	1	-	н	- CH ₂ -N-C-N-CF ₃
852	CHCH ₂ -	2	2	1	-	н	-CH ₂ -N-C-N-CF ₃
853	CH-2-	. 2	2	1	-	н	-CH₂-N-C-N-C-N-
854	CHCH2-	2	2	1	-	н	- CH ₂ -N-C-N-CH ₃
855	CH-2-	2	2	1	-	н	-CH₂-N-C-N-C-H₃
856	C├ \ CH ₂ -	2	2	1	-	н	- CH2- N- C- N- C- CH3
857	CH-2-	2	2	1	-	н	-CH₂-N-C-N-C-N-
858	C├ - CH₂-	2	2	1	-	н	-сн₂- h с- h- О - осн³
							÷

Table 1.79

Table 1	1.79						
Compd.	R ¹ (CH ₂)	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}}$ $+ (CH_2)_{\overline{q}}$ $+ (CH_2)_{\overline$
859	СН2-	2	2	1	-	н	- CH ₂ -N-C-N-CI
860	CHCH ₂ -	2	2	1	-	н	-CH₂-N-C-N-CN
861	с⊢Ст}-сн₂-	2	2	. 1	-	н	- CH₂- N-C- N-
862	с⊢СН₂-	2	2	1	-	н	-CH ₂ -N-C-N-CH ₃
863	CH2-	2	2	1	-	н	-CH ₂ -N-C-N-H-C-H-
864	CHCH2-	2	2	· 1	-	н	-CH2-N-C-N-C-HOCH3
865	CH2-	2	2	1	-	н	- CH ₂ -N-S- CH ₃
866	C├────────────────────────────────────	2	2	1	-	н .	- CH ₂ -N-S
867	CH2-	ź	2	1	-	Н	- CH ₂ -N-S-CF ₃
868	C├─ \ CH ₂ -	2	2	1	-	н	$-CH_{2}-N + S - CH_{2}CH_{3}$ $-CH_{2}-N + S - CH(CH_{3})_{2}$
869	CH ₂ -	2	2	1		н	-CH ₂ -N-S-CH(CH ₃) ₂

Table 1.80

	.80						
Compd. No.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	-(CH ₂) _p
870	CH2-	2	2	1	-	н	- CH ₂ -N-S-CH ₃
871	CI—()- CH₂-	2	2	1	-	н	- 0H ₂ - N S - (OH ₂) ₃ CH ₃
872	C├ \ CH ₂ -	2	2	1	-	н	- CH ₂ -N-S-
873	CH2−	2	2	1	-	н	- CH ₂ - N- C- O- CH ₂ -
874	CI—CH₂-	2	2	1	-	н	-ċ+o-ċ-ਮ CH3
875	CH ₂ -	2	2	1	-	н	-CH₂-N-CF3
876	Br—CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-CF ₃
877	NC-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
878	O ₂ N-CH ₂ -	2	2	1	-	Н	- CH ₂ - N C CF ₃
879	CH₂-	2	2	1	-	н	-CH ₂ -N-C-CF ₃
880	0^0 CH₂-	2	2	1		H ·	- CH₂- N-C-

Table 1.81

Table							
Compd. No.	R ² (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - G-R^6$
881	Br CH ₂ -	2	2	1	-	Н	- CH ₂ - N-C-CF ₃
882	OH2-	2	2	1	-	н	-CH ₂ -N-C-CF ₃
883	CI CH₂-	2	2	1		н	-CH ₂ -N-CF ₃
884	ФС.С-Д—Он2-	2	2	1	-	н	-CH ₂ -N-C-CF ₃
885	H ₃ C-S-CH ₂ -	2	2	1	-	н	- CH ₂ - N- C- CF ₃
886	F-CH ₂ -	2	2	1	-	н	- CH ₂ - N- C- CF ₃
887	F ₃ C-CH ₂ -	2	2	1	-	н	- CH ₂ - N-C-CF ₃
888	HO€	2	2	1	-	н	- CH ₂ - N-C-CF ₃
889	CH ₂ -	2	2	1	-	н	- CH ₂ -N-C-CF ₃
890	CH ₂ - CH ₂ - CH ₂ -	2	2	1	-	н	- CH ₂ -N-C-CF ₃
891	CI CH₂-	2	2	1	. -	н	- CH ₂ -N-C-CF ₃

WO 99/25686

Table 1.82

lable							
Compd. No.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
892	H₃CQ CH₂-	2	2	1	-	н	- CH ₂ - N- C- CF ₃
893	O ₂ N CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
894	H ₃ C-CH ₃ CH ₂ - CH ₃	2	2	1	-	H	- CH ₂ - N C CF ₃
895	(CH ₂) ₂ -	2	2	1	-	н	-CH ₂ -N C- CF ₃
896	CN CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
897	HO ₂ C CH ₂ -	2	2	1	-	н	- CH ₂ - N C- CF ₃
898	HO ₂ CCH ₂ -	2	2	1	-	н	-CH₂-N-C-CF3
•	OCH ₃					н	-CH ₂ -N-C-CF ₃
900	н₃∞₂с-{_}-сн₂-	2	2	1	-	н	-CH ₂ -N-C-CF ₃
901	○ -cH-	2	2	1	-	H	$-CH_{2}-N+C$ $-CH_{2}-N+C$ $-CH_{2}-N+C$ $-CH_{2}-N+C$ $-CH_{3}-N+C$ $-CH_{3}-N+C$ $-CH_{4}-N+C$ $-CH_{5}-N+C$ $-CH_{5}-N+C$
902	O ₂ N O ₂ N	2	2	1	-	Н	-CH ₂ -N-C-CF ₃

Table 1.83

Table	1.83						
Compd.	R ¹ (CH ₂)-	k	m	n	chirality	R ³	$-(CH_2)_{p}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
903	H ₃ CO CH ₂ - OCH ₃	2	2	1	-	н	- CH ₂ -N-C-CF ₃
904	HQ CH₂-	2	2	1	-	н	- CH ₂ - N- C- CF ₃
905	O ₂ N CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
906	(CH ₂) ₃ -	2	2	1	-	н	- CH ₂ - N-C
907	CH(CH ₂) ₂ -	2	2	1	-	н	- CH ₂ -N-C- CF ₃
908	N C C CH₂-	2	2	1	-	н	- CH ₂ - N- C- CF ₃
909	O-12-	2	2	1	-	н	- CH ₂ - N- C- CF ₃
	CH ₂ -				-	н	- CH ₂ -N-C-CF ₃
911	CICH ₂ -	2	2	1	-	н	- CH ₂ -N-C-CF ₃
912	Br CH ₂ -	2	2	1	-	н	- CH ₂ -N-C-CF ₃
913	H ₃ CO-CH ₂ -	2	2	1	-	н	$-CH_{2}-N-C-$ $-CH_{2}-N-C-$ $-CH_{2}-N-C-$ $-CH_{2}-N-C-$ $-CH_{2}-N-C-$ $-CH_{2}-N-C-$ $-CH_{3}-N-C-$ $-CH_$

Table 1.84

iabie	1.04						. •
Compd.	R ² (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} - G - R^6$
914	OH2O	2	2	1	. -	Н	- CH ₂ -N-C-CF ₃
915	OH CHCH ₂ -	2	2	1	-	Н	- CH ₂ -N-C-CF ₃
916	N CH₂-	2	2	1	-	н	- CH ₂ - N- C- CF ₃
917	CH ₂ -	2	2	1	-	н	- CH ₂ - N-C-
918	H3CO2C: CH2	2	2	1	-	н	- CH ₂ - N- C- CF ₃
919	H ₃ C-CH ₂ -	2	2	1	-	н	- CH ₂ -N-C-CF ₃
920	OCF ₃	2	2	1	-	н	- CH ₂ -N-C-CF ₃
921	CH ₂ -	2	2	1	-	н	- CH ₂ - N- C- CF ₃
	> −СН ₂ −				<u>-</u>	н	- CH ₂ - N- C- CF ₃
923	CH-CH-	2	2	1	-	н	- CH ₂ - N-C-CF ₃
924	H ₂ N-C	2	2	1	<u>-</u>	н	- CH ₂ - N-C-CF ₃

Table 1.85

Table	1.85						
Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
925	H ₂ N-C	2	2	1	-	Н	-CH ₂ -N-C-CF ₃
926	CH2-CH2-	2	2	1	-	н	-CH ₂ -N-C-CF ₃
927	F₃CQ —CH₂-	2	2	1	;	н	-CH ₂ -N-C-CF ₃
928	F₃CO-CH₂-	2	2	1	-	н	-CH ₂ -N-C-CF ₃
929	н₃сѕ-{_}-сн₂-	2	2	1	-	н.	-CH ₂ -N-C-CF ₃
930	CH ₃	2	2	1	-	н	-сн _{z-N-} С-С-С-С-3
931	NÇ CH₂-	2	2	1	-	н	-CH ₂ -N-C-CF ₃
	NO₂ CI—CH₂-					н	-CH ₂ -N-C- CF ₃
933	CH-	2	2	1	-	н	-CH ₂ -N-C-CF ₃
	O ₂ N — CH ₂ -						-CH ₂ -N-C-CF ₃
935 .	O ₂ N —CH ₂ -	2	2	1	-	H	-CH ₂ -N-C-CF ₃

Table 1.86

Table 1	1.86						
Compd.	R ¹ (CH ₂)-	k	m	n	chirality	⁻ R ³	-(CH ₂) _p + (CH ₂) _q G-R ⁶ R ⁵
936	NO ₂	2	2	1	-	н	-CH ₂ -N-C-CF₃
937	(H ₃ C) ₂ N-CH ₂ -	2	2	1	-	н	-CH₂-N-C-CF₃
938	CH_CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
939	O ₂ N CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
940	OH CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
941	F ₃ C C⊢————CH ₂ -	2	2	1	-	н.	-CH ₂ -N-C-CF ₃
942	C⊢ √ -CH ₂ -	2	2	1	-	н	-CH+NC- $CH(CH3)2 CF3$
943	CH2-	1	4	0	-	н	-CH ₂ -N-C-CF ₃
	CH2-						-CH ₂ -N-C-CH ₃
945	CH2-	1	4	0	-	н	-CH ₂ -N-C-\(\sigma\)
946	с⊢С сн₂-	1	- 4	0	-	н	-(CH ₂) ₂ -N-C-\bigs\tag{\text{NO}}-NO ₂

Table 1.87

R ² (CH ₂) CH ₂ -		m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{\overline{q}} + (CH_2)_{\overline{q}} + G - R^6$
с⊢√сн,-						R ⁵
	1,	4	0 -	-	н	-(CH ₂) ₂ -N-C
CH2-	t	4	0	-	н	-(CH ₂) ₃ -C-N-CI
CH2-	1	4	0	-	н	-(CH ₂) ₃ -C-N-CH ₂ -
CH2-	0	4	1	-	Н	-CH ₂ -N-C-
CH-2-	1	2	0	R	H	-CH2-N-C-C-CH3
CHCH2-	1	2	0	R	н	-CH ₂ -N-C-√N(CH ₃) ₂
CH_CH ₂ -	1	2	0	R	н	-(CH ₂) _Z -N-C
с⊢С сн₂-	1	2	0	R [·]	н	-CH ₂ -N-C-NH
C⊢————————————————————————————————————	1	2	0	R		
C├ - CH₂-	1	2	0	R	н	-(CH ₂) ₂ -N-C
CHCH2-	1	2	0	R	н	-CH ₂ -N-C-✓OH
	CH_2 - CH_2	$CH - CH_2 - 1$ $CH - CH_2 - 1$ $CH - CH_2 - 0$ $CH - CH_2 - 1$	$CH \longrightarrow CH_{2}^{-} \qquad 1 \qquad 4$ $CH \longrightarrow CH_{2}^{-} \qquad 1 \qquad 4$ $CH \longrightarrow CH_{2}^{-} \qquad 0 \qquad 4$ $CH \longrightarrow CH_{2}^{-} \qquad 1 \qquad 2$	$CH \longrightarrow CH_{2}^{-} \qquad 1 \qquad 4 \qquad 0$ $CH \longrightarrow CH_{2}^{-} \qquad 1 \qquad 4 \qquad 0$ $CH \longrightarrow CH_{2}^{-} \qquad 0 \qquad 4 \qquad 1$ $CH \longrightarrow CH_{2}^{-} \qquad 1 \qquad 2 \qquad 0$ $CH \longrightarrow CH_{2}^{-} \qquad 1 \qquad 2 \qquad 0$ $CH \longrightarrow CH_{2}^{-} \qquad 1 \qquad 2 \qquad 0$ $CH \longrightarrow CH_{2}^{-} \qquad 1 \qquad 2 \qquad 0$ $CH \longrightarrow CH_{2}^{-} \qquad 1 \qquad 2 \qquad 0$ $CH \longrightarrow CH_{2}^{-} \qquad 1 \qquad 2 \qquad 0$ $CH \longrightarrow CH_{2}^{-} \qquad 1 \qquad 2 \qquad 0$	$CH \longrightarrow CH_{2} - 1 4 0 -$ $CH \longrightarrow CH_{2} - 0 4 1 -$ $CH \longrightarrow CH_{2} - 1 2 0 R$ $CH \longrightarrow -CH_{2} - 1 2 0 R$	$CH \longrightarrow -CH_{2} - 1 4 0 - H$ $CH \longrightarrow -CH_{2} - 1 4 0 - H$ $CH \longrightarrow -CH_{2} - 0 4 1 - H$ $CH \longrightarrow -CH_{2} - 1 2 0 R H$ $CH \longrightarrow -CH_{2} - 1 2 0 R H$ $CH \longrightarrow -CH_{2} - 1 2 0 R H$ $CH \longrightarrow -CH_{2} - 1 2 0 R H$ $CH \longrightarrow -CH_{2} - 1 2 0 R H$ $CH \longrightarrow -CH_{2} - 1 2 0 R H$

Table 1.88

Compd. No.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	—(CH ₂) _p
958	C├ - CH₂-	1	2	0	R	н	-(CH ₂) ₂ -N-C-OH
959	CH-CH ₂ -	1	2	0	R	н	-сн ₂ -ү-с-сн₃
960	CH_CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C-CH ₃
961	CHCH ₂ -	1	2	0	R	н	-сн₂-ү-с-{>-ү-сн₃
962	CHCH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C- H CH ₃
963	C├ - CH ₂ -	, 1	2	0	R	н	-(CH ₂) ₂ -N-С- Н
964	C├ \ CH ₂ -	1	2	0	R	н	-CH ₂ -N-C- H CO ₂ CH ₃
965	CI-CH ₂ -	1	2	0	Ŗ	н	-(CH ₂) ₂ -N-C
966	CHCH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CH ₃
967	CHCH ₂ -	1	2	0	R	Н	-(CH ₂) ₂ -N-C-CH ₃
968	CH	1 "	2	Ō	R	н	-CH ₂ -N-C-NH

WO 99/25686 PCT/US98/23254

Table 1.89

lable	1.09						
Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
969	С⊢СН₂-	1	2	0	R	н	-(CH ₂) ₂ -N-C-NH
970	C├ - CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-\(\bigwidth\) N(CH ₃) ₂
971	с⊢—СН₂-	1	2	0	R	н	-(CH ₂) ₂ -N-C-N(CH ₃) ₂
972	C⊢√CH₂-	1	2	0	R	н	-CH ₂ -N-C-✓
973	CH2-	1	2	0	R	H	-(CH ₂) ₂ -N-C-\(\infty\)NH ₂
974	CH-€	1	2	0	R	н	-CH2-N-CNH2
975	CH-CH₂-	1	2	0	R	Н	-(CH ₂) ₂ -N-C-\(\bigcup_NH_2\)
	C├ - CH ₂ -			•		н	-cH2-H-c- NH
977	C	1	2	0	R	н	-(CH ₂) ₂ -N-C-NH
							-CH2-N-C-N-NH
979	С⊢-СН₂-	,1	2	0	R	н	-(CH ₂) ₂ -N-CNH

Table 1.90

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
980	CI—CH₂-	1	2	0	R	H	-CH ₂ -N-C-CH ₃
981	CI-CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C-CH ₃
982	CH-2-	1	2	0	R	Н	-CH ₂ -N-C- H ₃ C) ₂ N
983	CHCH ₂ -	1	2	0	R	Н	-(CH ₂) ₂ -N-C
984	CH-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
985	CI—CH₂-	1	2	0	R	н	-(CH ₂) ₂ -N-С-СН ₂ ОН
986	CH-CH-	1	2	0	R	н .	-CH₂-N-C-CF3
987	CH-CH ₂ -	2	2	1	-	н	-CH₂-N-C-CF3
988	CH2-	1	4	0	-	н	-CH₂-N-C-CF3
989	C	1	4	0	-	н	-сн ₂ -N-с-о-сн ₂ -
990	CH-2-	1	4	0	-	. н	-CH2-N-C-

Table 1.91

Table 1	.91	·					
Compd.	R ¹ (CH ₂)	k	m	n	chirality	R ³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
991	C⊢√_CH₂-	1	4	0	-	H	-(CH ₂) ₂ -C-
992	C├─ \ CH ₂ -	1	4	0	-	н	-(CH ₂) ₂ -C
993	CH₂-	1	4	0	-	н .	-(CH ₂) ₂ -C-CH ₃
994	CH⊋-	1	4	0	-	н	-(CH ₂) ₃ -C-
995	с⊢{Сн₂-	1	4	0	-	н	-(CH ₂) ₃ -C-\OCH ₃
996	с⊢С сн₂-	1	4	0	-	н	-(CH ₂) ₃ -C-N-CH ₃
997	CH-CH ₂ -	2	2	1	-	н .	-CH-N-C
998	C├ - CH₂-	2	2	1	-	н	-СН-Й-С- СН ⁵ СН(СН ⁶) ⁵
999	CH-CH ₂ -	2	2	1	-	. H	-CHN-C- H CH₂CH(CH₃)₂
1000	CH_CH ₂ -	2	2	1	-	H	-CHN-C
1001	CH—CH₂-	. 2	2	1	-	н	-CHN-C-(CH ₃) ₂
•							

Table 1.92

. ubic .							
Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	[·] R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1002	C├ - CH₂-	2	2	1	-	н	OCF ₃ -CH-N-C
1003	с⊢С СН₂-	2	2	1	-	н	-CH-N-C
1004	CH-CH ₂ -	2	2	1	-	н	-CHN-C
1005	C	2	2	1	-	H	O CH ₃ -CH N C CH ₃ -CH ₂ CH(CH ₃) ₂ CCH ₃
1006	CH-2-	2	2	1	-	н	OCH ₂ CH ₃ -CH-N-C
1007	CH-2-	2	2	1	- ,	H	ОСН ₂ СН ₃ — СН- № С— — ОСН ₂ СН ₃ — СН ₂ СҢ(СН ₃) ₂ ОСҢ ₂ СН ₃
1008	C⊢√CH₂-	2	2	1	-	н	- CH-N-C
1009	CH-{CH₂-	2	2 ·	1	-	н	CH2)2-G-NH2
1010	C⊢√_CH₂-	2	2	1	-	H .	- CH-H-C
1011	CH-2-	2	2	1	-	н	-CH-N-C
1012	CH-€	2	2	1		, н	-CHN-C-CH3

Table 1.93

lable	1.93						
Compd.	R ¹ (CH ₂)	k	m	n	chirality	Ŕ³	-(CH ₂) _p + (CH ₂) _q G−R ⁶
1013	CH-CH ₂ -	2	2	1		н	(CH2)3-C-NH2 OCH3
1014	CH-CH ₂ -	2	2	1	•.	н	OCH2CH3 -CHN-C
1015	с⊢С—Сн₂-	2	2	1	-	н	CH)2-G-NH2 OCH2CH3
1016	с⊢(сн ₂ -	2	2	0	-	н	-CH ₂ -N-C- CF₃
1017	CH2-	2	2	0	· <u>-</u>	н	-cH₂-N-C-
1018	C├ \ CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-OCH ₂ CH ₃
1019	CH-CH2-	2	2	1	-	н	-CH ₂ -N-C
1020	с⊢С сн₂-	2	2	1	-	H .	-CH ₂ -N-C
1021	CH	· 2.	2	1	-	H	OCH ₂ C F ₃ -CH ₂ -N-C
1022	с⊢—Сн₂-	2	2	1	-	н	(S) P OCH ₃ -CH ₁ OCH ₃ OCH ₃
1023	С⊢СТ СН₂-	2	2	1	-	н	(S) Q CH ₃ -CH ₃ OCH ₃ (S) Q CH ₂ CH ₃ -CH ₁ C-CH ₂ CH ₃

Table 1.94

Table	1.37						
Compd. No.	R ¹ (CH ₂)j-	k	m	n	chirality	[°] R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1024	с⊢—СН₂-	2	2	1	-	Н	(S) P OCH ₃ -CH-N-C
1025	CH-CH ₂ -	2	2	1	-	. н	(S) OCH₂CH₃ -CH-N-C OCH₂CH₃ CH₃
1026	CH-CH ₂ -	2	2	1	-	н	(S) P OCH ₂ CH ₃ -CH-N-C OCH ₂ CH ₃ CH ₃ OCH ₂ CH ₃
1027	CHCH_2-	2	2	1	-	н	(S) Q OCH₂CH₃ -CHN-C OCH₃ CH₃
1028	С⊢-СН₂-	2	2	1 .	- ·	н	(S) OCH ₂ CF ₃ -CH-N-C-CH ₂ CF ₃ OCH ₂ CF ₃
1029	CH2-	2	2	1	-	н	(S) OCH ₂ CH ₃ -CH-N-C-C-CH ₃ CH ₃
1030	C	2	2	1	· -	H	(S) POCF ₃ -CH-N-C-C
1,031	С⊢—СН₂-	2	2	1	-	н	(S) OCH ₃
1032	CHCH ₂ -	2	2	1	-	H,	CH ₃ OCH ₃
1033	CH-CH ₂ -	2	2	1	-	н	(A) CH2CH3 -CH-N-C-CH2CH3 CH3
1034	C⊢-(CH₂-	2	2	1	-	н	CH ₃ OCH ₃ OCH ₃

Table 1.95

Table	.95						
Compd.	R ¹ (CH ₂)	k	m	n	chirality	. R ³	$-(CH_2)_{p} + (CH_2)_{q} - G - R^6$
1035	CH2⁻	2	2	- 1	•	н	(F) OCH₂CH₃ OCH₂CH₃ CH₃
1036	с⊢ССН₂-	2	2	1	-	н	(A) OCH ₂ CH ₃ -CH-N-C
1037	С⊢—СН₂-	2	2	1	-	н	(F) OCH ₂ CH ₃ -CH-N-C
1038	с⊢СН₂-	2	2	1	-	н	(R) OCH ₂ CF ₃ -CH-N-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-
1039	с⊢{Сн₂-	2	2	1	-	н	(FI) OCH ₂ CH ₃ -CH-N-C
1040	с⊢(сн₂-	2	2	1	-	н	(F) -CH-N-C CH ₃
1041	с⊢{	2	2	1	-	н	(F) OCH ₃ -CH-N-C
1042	CH-2-	2	2	1	-	н	-CH ₂ -N-C
	CH2-						-CH₂-N-C- H H₂N
1044	CH2-	2	2	1	-	н	$-CH_{2}-N-C$ $-CH_{2}-N-C$ $-CH_{2}-N-C$ $-CH_{2}-N-C$ $+I_{2}N$ $-CH_{2}-N-C$ $+I_{2}N$
1045	CH₂-	2	2	1	-	Ĥ	-сн ₂ -м-с

Table 1.96

Compd. No.	R ¹ (CH ₂) _j -	· k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1046	CI—CH₂-	2	2	1	-	н	-CH ₂ -N-C-
1047	CH_CH ₂ -	2	2	1	-	н	CH ₂ -N-C
. 1048	с⊢С}−сн₂-	2	2	1	-	H _.	-CH ₂ -N-COCH ₃ -CH ₂ -N-COCH ₃ -CH ₃ -OCH ₃
1049	CHCP-CH2-	2	2	1	-	н	-CH ₂ -N-C
1050	с⊢СҺ₂-	2	2	1	-	н	(S) OCH ₃ -CH-N-C
1051	CH_CH ₂ -	2	2	1	-	H	(S) O CH ₂ CH ₃ -CH-N-C-CH-CH ₃ CH ₂ CH(CH ₃) ₂
1052	СН-СН2-	2	2	1	<i>-</i>	Н	(S) Q OCH ₃ -CH-N-C-OCH ₃ -CH ₂ CH(CH ₃) ₂ OCH ₃
1053	CHCH_2-	2	2	1	-	н	(S) Q OCH ₂ CH ₃ -CH-N-C
1054	СН2-	2	2	1	-	н	(S) OCH ₂ CH ₃ -CH-N-C
1055	C⊢ÇCH₂-	2	2	1	-	н	(S) OCH ₂ CH ₃ -CH-N-C OCH ₃ CH ₂ CH(CH ₃) ₂
1056	C├─ ○ -CH ₂ -	2	2	1	-	н	(S) OCH ₂ CF ₃ -CH-N-C-C-C-CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CF ₃
					·		

Table 1.97

Table 1	.97						
Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - G - R^6$
1057	C⊢(2	2	1	-	. · H	(<i>F</i>)
1058	С⊢СТ>-СН₂-	2	2	1	-	н	(S) OCH ₃ -CH-N-C- H CH ₂ CH(CH ₃) ₂
1059	С⊢СН₂-	2	2	1	-	H	(S) -CH-N-C- H CH ₂ CH(CH ₃) ₂
1060	CH-2-	2	2	1	-	H	(<i>H</i>)
1061	С⊢—СН₂-	2	2	1	-	н .	(F) → CH ₂ CF ₃ → CH ₂ CH(CH ₃) ₂ OCH ₂ CF ₃
1062	CHCH ₂	2	2	1	<u>-</u>	н	(S) −CH-N-C CH ₂ CH(CH ₃) ₂
1063	CH2⁻	2	2	1	-	н	(FI) OCH ₃ -CH-N-C
1064	CH-€-	2	2	1	-	н	(F) OCF ₃ -CH-N-C
1065	C├ ─ CH₂-	2	2	1	-	н	CH ₂ CH(CH ₃) ₂ OCH ₃
1066	CH2⁻	2	2	1	-	• Н	(F) -CH-N-C- H CH ₂ CH(CH ₃) ₂
1067	CH₂-	2	2	1	-	н	(F) OCH ₃ -CH-N-C OCH ₃ H CH ₂ CH(CH ₃) ₂ OCH ₃

Table 1.98

lable 1							
Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p +(CH ₂) _q -G-R ⁶
1068	C⊢-(CH ₂ -	2	2	1	-	Ĥ	(F) OCH ₂ CH ₃ -CH-N-C
1069	C⊢√_CH ₂ -	2	2	1	-	H	(A) OCH ₂ CH ₃ -CH-N-C OCH ₂ CH ₃ H H CH ₂ CH(CH ₃) ₂ OCH ₂ CH ₃
1070	C├ \ CH ₂ -	2	2	1	-	н	-CH-N-CS-SCHO -CH2OCH2-
1071	с⊢{сн₂-	2	2	1	-	H _.	-CH-N-C-H-N-C-H-2OCH-2-C-H-2OCH-2-C-H-2OCH-2-C-H
1072	C├ \ CH₂-	2	2	1	· -	н	-CH-N-C-C(CH ₃) ₃
1073	CH2-	2	2	1	-	н	-CH-N-O-CH ₂
1074	CH₂-	2	2	1	-	H	-CH-N-C
1075	C	2	2	1	-	н	OCF3
1076	CHCH2-	2	2	1	-	н	-CH-N-C
- 1077	CH-2-	2	2	1	-	H	-CH-N-C
1078	CH-€	2	2	1	• •	н	-CH-NC-C

Table 1.99

Table 1							
Compd.	R ¹ (CH ₂);-	k	m	n (chirality	· R³	-(CH ₂) p G CH ₂) q G-R ⁶
1079	с⊢С}-сн₂-	2	2	1	-	н	-CH-N-C-CH ₂
1080	с⊢(сн₂-	2	2	1	-	н	- CH-H-C
1081	C├ \ CH ₂ -	2	2	1	-	H	-CH-N-C
1082	C├ ─ CH ₂ -	2	2	1	-	н	CH3 CH3
1083	C├ ~ CH₂-	2	2	1	-	н	-CH-N-C-C-CH-N-C-C-CH-N-C-C-C-C
1084	CH2-	1	2	0	R	Н	-CH ₂ -N-C
1085	CH2−	1	2	0	R	н	-CH ₂ -N-C
1086	CH√CH₂-	1	2	0	R	H	-CH ₂ -N-C- H ₂ N
							-CH ₂ -N-C-N-C-N-H
1088	C⊢√CH₂-	1	2	0	R	н	-cH₂-N-C-
1089	CH2⁻	1	· 2	0	R	н	-CH ₂ -N-C-Y-F
					•		

Table 1.100

lable 1							
Compd.	R ¹ (CH ₂);	k	m	n	chirality	R³	—(CH ₂) _p
1090	CH-€-	1	2	0	R	Н	-CH ₂ -N-C
1091	CHCH₂-	1	2	0	R	н	-CH ₂ CH ₂ -N-C-
1092	с⊢СТ>-СН₂-	,1	2	0	R	н	$-CH_2CH_2-N-C-$ H_2N H_2N
1093	CHCH ₂ -	1	2	0	R	н	-сн ₂ сн ₂ -N-с
1094	C├ - CH ₂ -	1	2	0	R	н	-CH ₂ CH ₂ -N-C-N-C-N-H
1095	C⊢√CH₂-	1	2	0	Ŗ	H .	-CH2CH2-N-C-
1096	CHCH ₂ -	1	2	0	R	Н	-CH₂CH₂-N-C-N-H
1097	CH2-	1	2	0	R	н	-CH2CH2-N-C-
1098	CH2-	1	2	0	R	н	-CH ₂ -N-C
							-CH₂-N-C
1100	CH2-	1	2	0	R	· · · H ·	-CH₂-N-C-CIF

Table 1.101

Table 1	1.101						
Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	· R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1101	CH-{}-CH₂-	1	2	0	R	н	-CH ₂ -N-C-CH ₃
1102	C⊢√CH2-	1	2	0	R	Н	-CH ₂ -N-C- CH ₃
1103	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ −N-C−− CH ₃
1104	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-CF
1105	H ₃ CCH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-F
1106	H ₃ C-\CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
1107	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-CNO ₂
1108	CH₃ N—CH₂- CH₃	1	2	0	R	н	-CH ₂ -N-C- Br CH ₃
1109	CH₃ CH₂-	1	2	0	, R	н	-CH₂-N-C
1110	CH ₃	1	2	0	R	. Н	-CH ₂ -N-C-CI
1111	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C-CH ₃

Table 1.102

Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	Ř³	-(CH ₂) _p +(CH ₂) _q -G-R ⁶
1112	CH ₃ CH ₂ CH ₃	1	2	0	R	н	-CH ₂ -N-C-NO ₂
1113	с⊷С}-сн₂-	2	2	1	-	н	-CH ₂ -N-C
1114	C⊢-(CH ₂ - ·	2	2	1`	-	н	-CH ₂ -N-C
1115	C├ - CH ₂ -	2	2	1	-	н	-CH2-N-C
1116	CHCH ₂ -	2	2	1	-	н	-CH ₂ -N-C-C-CH ₃
1117	с⊢СН₂-	2	2	1	, -	н	-CH ₂ -N-CNO ₂
1118	C-H _o -C-cH ^z -	1	2	0	R	н	-сн ₂ -м-с-СF ₃
	H₃CS(-)CH₂-					н	-CH ₂ -N-C-⟨CF ₃
1120	H ₃ CQ CH ₂ - OCH ₃	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1121	H ₃ C O ₂ N-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1122	H3C CH2CH2CH2CH2CH(CH3)2	1	2	0	R	н	-CH₂-N-C-CF3

Table 1.103

Table 1							
Compd.	R ¹ (CH ₂);-	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1123	CH ₂ -	1	2	0	R	· н	-CH ₂ -N-C-CF ₃
1124	O ₂ N_O_CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1125	CHCH2-	2	2	1	-	, H	-CH-HC-CH-CI
1126	с⊢{	2	2	1	-	н	-CH-NC-Br
1127	CH2−	2	2	1	-	н	-ch-hc-NH
1128	C⊢√_CH₂-	2	2	1	-	н	-CH-N-C-CF3
1129	с⊢СН₂-	2	2	1	-	н	-CH-NC-CF3 CH2OCH2
1130	C⊢(CH ₂ -	2	2	1	-	н	- CH-N-C
1131	С⊢СН₂−	2	2	1	-	н	-CH-H-C-
1132	сСН2-	2	2	1	-	. H	-CH-N-C
1133	H ₃ CO ————————————————————————————————————	1	2	. 0	R	н	-CH ₂ -N-C-CF ₃

Table 1.104

Compd. No.	R ² (CH ₂) _j	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1134	H ₃ CQ H ₃ CO—CH ₂ -	1	2	0	R	н	-CH₂-N-C-CF3
1135	CH ₂ -NO ₂	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1136	CH₂− H₃CO	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1137	O CH₂-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1138	CH ₂ -	1	2	0	R	н	-CH₂-N-C-CF3
1139	(CH ₂) ₂ -	1	2	0	R	н	-CH₂-N-C-CF3
1140	O ₂ N CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1141	CH₂-	1	2	0	R	н	-CH₂-N-C-CF3
	CH ₂ -					н	-CH ₂ -N-C-CF ₃
1143	OH2O - CH2-	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1144	H₃CO H₃CO	1	2	0	R	н	-CH ₂ -N-C-CF ₃

Table 1.105

105.0							
Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	. R3	$-(CH_2)_{p} + (CH_2)_{q} - G - R^6$
1145	H ₃ CQ H ₃ CO—CH ₂ — NO ₂	1	2	0	R	H	-CH ₂ -N-C-CF ₃
1146	CH2O-CH2	1	2	0	R	н	-CH ₂ -N-C-CF ₃
·	HC-C-H CHE					н	-CH ₂ -N-C-CF ₃
1148	CH₂-	1	2	0	R	н	-CH₂-N-C-CF3
	CH ₃ CH ₂ -					н	-CH2-N-C-CH3
	CH₃ CH₂-					н	-CH ₂ -N-C-CH ₂ CH ₃
	CH₃ CH₂-					н	-CH ₂ -N-C-CH ₂ -CF ₃
1152	CH ₃ CH ₂ -	1	2	0	R	H	-CH ₂ -N-C-N-H
1153	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C-N-H
1154	CH ₃	1	2	0	R	н	-CH₂-N-C-N-CH3
1155	CH₃ N CH₂- CH₃	1	2	0	R	н	-CH ₂ -N-C- CH ₃ F ₃ C
	-						· · · · · · · · · · · · · · · · · · ·

WO 99/25686

PCT/US98/23254

Table 1.106

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - G - R^6$
1156	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-сн ₂ -ү-с-(СН ₃) ₃
1157	CH₃ CH₃	1	2	0	R	н	-CH ₂ -N-C-SSCH ₃
1158	CH ₃ CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
1159	CH₃ CH₂-	1	2	0	R	н	$-CH_2-N-C$
1160	CH₃ N—CH₂- CH₃	1	2	0	R	н	-CH ₂ -N-C-CH ₃ H ₂ N Br
1161	H₃CO-CH ₂ -	1	2	0	R	н	-CH₂-N-C
1162	H ₃ CO————————————————————————————————————	1	2	0	R	н	-сн ₂ -№с-СF ₃
1163	H ₃ CO—CH ₂ -	1	2	0	R	н	-CH₂-N-C-CF3
1164	H ₃ C H ₃ CO—CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1165	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃
1166	H ₃ CO—CH ₂ -	1	2	0	R	Н .	-CH₂-N-C-CF₃

Table 1.107

lable	1.107						
Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1167	с⊢С—Сн₂-	2	2	1	. -	н	-CH ₂ -NO-C
1168	CL N CH2-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1169	H3 C- C- H2 N CH2-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1170	CH ₂ -CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1171	CI—CH₂-	1	2	0	R	н .	-CH₂-N-C-CH₃
1172	C├ \ _CH ₂ -	1	2	0	R	. н	-CH ₂ -N-C-N-C-N-H
1173	с⊢{сн₂-	1	2	0	R	н	-CH ₂ -N-C-N-C-N-CH ₃
1174	CH ₂ −CH ₂ −	1	2	0	R	н	$-CH_2-N$ H_2N
1175	H₃C————————————————————————————————————	1	2	0	R	н.	CH ₂ −N+C−−Br
1176	H ₃ C-CH ₂ -	. 1	2	0	R	н	-CH ₂ -N-C-N-H
1177	H₃C-⟨CH₂-	1	2	0	R	· · · H · ·	-CH ₂ -N-C-N-C-N-H

WO 99/25686

Table 1.108

Compd.	R (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
1178	H ₃ C-CH ₂ -	1 .	2	0	R	н	-CH ₂ -N-C
1179	H ₃ CCH ₂ -	1	2	0	R	н	-CH ₂ -N-C-NO ₂
1180	H ₃ CCH ₂ -	1	2	0	R	н	-CH ₂ -N-C-N-C-N-H
	CH ₃ CH₂− CH₃					н	-CH ₂ -N-CBr
1182	CH ₃ CH ₂ -					н	-сн ₂ -N-с-(N-1)-ОН
1183	CH ₃ CH ₂ -					H	-CH ₂ -N-C-N-CH ₃
1184	CH₃ N—CH₂- CH₃	1	2	0	R	н	-CH ₂ -N-C
1185	CH ₃ CH ₂ − CH ₃	-1	2	0	R	н	-CH ₂ -N-C-NO ₂
1186	CH₃ N—CH₂- CH₃	1	2	0	R	н	-CH ₂ -N-C-N-H
1187	CH2-	2	2	1	-	н	-CH ₂ -N-C-N-C-N-H
1188	С⊢СН₂−	2	, 2	1	•	н	-CH₂-N-C-N-OH

WO 99/25686 PCT/US98/23254

Table 1.109

i abic							
Compd. No.	R ¹ (CH ₂)	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1189	с⊢СН₂−	2	2	. 1	-	н	-CH ₂ -N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-
1190	CH-CH2-	2	2	1	-	н	-CH ₂ -N-C
1191	CH ₃ CH ₂	1	2	0	R	H	-CH ₂ -N-C-CF ₃
	CH₃ CH₂−					н	-CH ₂ -N-C-CF ₃
1193	CH ₃ CH ₂ − CH ₃	1	2	0	R	н	-CH ₂ -N-C
	CH ₃					н	-CH ₂ -N-C
1195	CH ₃ CH₂-	1	2	0	R	Н	-CH ₂ -N-C-Br
	CH3 CH3						-CH ₂ -N-C- NO₂
1197	CH3 CH3	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1198.	CH ₃ CH ₂ -	1	2		R	н	-CH2-N-C-CI
1199	CH₃ CH₃	1	2	0	R	н	-CH ₂ -N-C-CH ₃ -CH ₂ -N-C-CH ₃ -CH ₂ -N-C-CH ₃

Table 1.110

(able)	.110						
Compd.	R ¹ (CH ₂)	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
	CH ₃ N—CH ₂ - CH ₃					Н	-CH₂-N-C-CI
	CH₃ CH₂-					Н	-CH ₂ -N-C
1202	CH₃ CH₂-	1	2	0	R	Н	-CH₂-N-C-CF₃
1203	H ₃ C	1	2	0	R	н	-CH ₂ -N-C-COCF ₃
1204	H₃C	1	2	0	R	н -	-CH ₂ -N-C
1205	H ₃ C-\CH ₂ -	. 1	2	0	R	н	-сн ₂ -ү-с-
1206	н₃С—СН₂-	1	2	0	R	н	-CH ₂ -N-C-\(\sigma\)
1207	H ₃ CCH ₂ -	1	2	0	R	H	-CH ₂ -N-C- F
	H ₃ C-CH ₂ -						-CH2-N-C-CI
1209	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CH ₃
1210	H ₃ C-(1	2	0	R	' н	-CH ₂ -N-C-CI

Table 1.111

Table 1							
Compd.	R ² (CH ₂) _j -	k	m	n	chirality	R3	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} - G - R^6$
1211	H₃C-(CH₂-	1	2	0	R	н	-CH ₂ -N-C
1212	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1213	СЊ_СН₂-	2	2	1	-	н	-CH ₂ -N-C-CF ₃
1214	СЊ_СН₂-	2	2	1	-	н	-CH ₂ -N-C-S
1215	СЊ_СН₂-	2	2	1	-	Н	-CH2-N-C-
1216	C├ - CH ₂	2	2	1	-	н	-CH2-NCF
1217	с⊢СН₂−	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1218	С ⊢ СН ₂ -	1	2	0	R	н .	-CH ₂ -N-C-S-CH ₃
1219	CH2-	. 1	2	0	R	н	-CH ₂ -N-C-(CI
1220	с⊢СН₂−	1	2	0	R	н	-CH ₂ -N-C-
1221	с⊢СН₂-	1	2	0	R	н	-CH ₂ -N-C

Table 1.112

Compd. No.	R ¹ (CH ₂);—	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q -G-R ⁶
1222	c (c	H ₂	1	2	0	R	н	-CH₂-N-C-N-N-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H
1223	с(С)-сі	H ₂ -	1	2	0	R	н	-CH ₂ -N-C-S-S-S
1224	ci—Ci	H ₂ −	1	2	0	R	н	-CH ₂ -N-C
1225	H ₃ C	H ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1226	н₃с-{с	H ₂ –	1	2	0	R	н	-CH ₂ -N-C
1227	Н₃С-{	H ₂ -	1	2	O	R	H	-CH ₂ -N-C-CI
1228	н₃с-{с	H ₂	1	2	0	R	н	-CH ₂ -N-C
1229	н₃с-{сі	12-	1	2	0	R	н	-CH ₂ -N-C-F H H ₂ N
1230	н₃с-{сн	12-	1	2	0			-CH₂-N-C-N H
	H ₃ C-CH					R	н	-CH ₂ -N-C-
1232	Н₃С-{}СН	1 ₂ -	1	2	0	R	Н	-CH ₂ -N-C-NO ₂

Table 1.113

Table 1	.113						
Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	-(CH ₂) p G (CH ₂) q G -R ⁶
1233	CH ₃	. 1	2	0	R	н	-CH₂-N-C-CF3
1234	CH ₃ CH ₂ - CH ₃	· 1	2	0	R ·	н	-CH ₂ -N-C-→CH ₃
1235	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH₂-N-C
1236	CH ₃ CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1237	CH₃ N CH₂- CH₃				R	н	-CH ₂ -N-C-F
1238	CH ₃ CH ₂ −				R	Ĥ	-CH ₂ -N-C-N-H
1239	CH₃ N—CH₂- CH₃				R	н	-CH2-N-C-
1240	CH₃ CH₂- CH₃					н	-CH ₂ -N-C-NO ₂
1241	CH2-	2	2	1	-	. Н	-CH ₂ -N-C-CF ₃
1242	CH_CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CH ₃
1243	сн Сн2-	2	2	1	•	н	-CH ₂ -N-C-CH ₃ -CH ₂ -N-C-CI

Table 1.114

i able i							
Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_p$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
1244	с⊢С СН₂-	2	2	1	-	н	-CH ₂ -N-C
1245	C├ ~ CH₂-	2	2	1	-	н	-CH ₂ -N-C
1246	C├ - CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-N-CH ₃
1247	CH2-	2	2	1	-	Н	-CH ₂ -N-C
1248	CH2-	2	2	1	-	н	-CH ₂ -N-C-NO ₂
1249	с⊢—СН₂-	, 1	2	0	R	н	-CH ₂ -N-C
1250	H ₃ C-CH ₂ -	1	2	0	R	• н	-CH ₂ -N-C
1251	CH ₃ CH ₂ − CH ₃	1	2	0	R	н	-CH ₂ -N-C
1252	с⊢—СН₂-	. 1	2	0	R	Н	-CH ₂ -N-C-CH(CH ₃) ₂
1253	H₃C- \ CH₂-	1.	2	0	R	н	-CH ₂ -N-C-(CH ₃) ₂
1254	CH ₃ CH ₂ CH ₃	1	2	0	R	н	-CH ₂ -N-C

Table 1.115

lable							
Compd.	R ² (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1255	с⊢С −сн₂-	1	2	0	R	н	-CH ₂ -N-C-Br
1256	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1257	CH ₃ CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-→Br
1258	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
1259	CH₃ CH₂-	1	2	0	R	н	-CH ₂ -N-C-
1260	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
1261	с⊢СН₂-	1	2	0	R	Н	-CH ₂ -N-C-(CH ₃) ₃ H ₃ C
-	H ₃ C-CH ₂ -					н	-CH ₂ -N-C- H H ₃ C
1263	CH ₃ CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
.1264	с⊢С≻сн₂-	1	2	0	R	н	-CH ₂ -N-C
1265	H ₃ C-CH ₂ -	1	2	0	R	н	-сн ₂ -N-с
							_

Table 1.116

Idbic	10						
Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
1266	CH ₃ CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1267	CCH₂-	1	2	0	R	н	-CH ₂ -N-C-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-
1268	C├ - CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1269	CH2-	1	2	Ö	R	Н	-CH₂-N-C
1270	С⊢√_СН₂-	1	2	0	R	H	-CH₂-N-C-
1271	С⊢—СН₂-	1	2	0	R	н	-CH ₂ -N-C-F
1272	H₃C-⟨¯¯¯⟩-CH₂-	,1	2	0	R	н	-CH ₂ -N-C-N-H-OCF ₃
1273	H₃C{CH₂-	1	2	0	R	н	-CH ₂ -N-C-
1274	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C- H HO
1275	H ₃ C	1	2	0	R .	н	-CH ₂ -N-C
1276	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C

Table 1.117

Table	1.117	_					
Compd.	R ¹ (CH ₂)	k	m	n	chirality	·R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1277	CH ₃	1	2	0	R	н	-CH ₂ -N-C-N-H-OCF ₃
1278	CH₃ CH₂−	1	2	0	R	н	-CH ₂ -N-C- CI H ₃ CO
1279	CH₃ CH₂-	1	2	0	R	н	-CH ₂ -N-C
1280	CH₃ CH₂− CH₃	1	2	0	R	н	-CH₂-N-C
1281	CH ₃ CH ₂ -	1	2	0	R	н	-CH₂-N-C-F
1282	с⊢{	2	2	1	-	н	-CH ₂ -N-C-N-CH ₃
1283	с⊢{}-сн₂-	2	2	1	-	н	-CH ₂ -N-C- H H₃CO
1284	CHCH ₂ -	2	2	1	-	н	-CH₂-N-CSr HO
1285	с⊢—Сн₂-	2	2	1	-	н	-CH ₂ -N-C-
1286	H ₃ ¢	1	2	0	R		-CH ₂ -N-C-CF ₃
1287	O ₂ N—CH ₂ —	1	2	0	R	н	-CH ₂ -N-C-CF ₃

WO 99/25686

Table 1.118

Compd.	R ² (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_p + (CH_2)_q G - R^6$
1288	HQ H₃CO—CH₂−	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1289	CH₃ CH₂-	1	2	0	R	H	-CH ₂ -N-C
1290	CH₃ CH₂− CH₃	1	2	Ò	R	н	$-CH_2-N-C \longrightarrow CH_3$ $+L_2N - CH_3$
1291	H ₃ C-CH ₂ -	1	2	0	R	н	-CH₂-N-C-N-CH3
1292	H₃C€	1	2	0	R	н	$-CH_2-N-C \xrightarrow{CH_3}$ $H_2N \xrightarrow{Br}$
1293	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
1294	H₃C€	1	2	· 0	R	н	-CH ₂ -N-CF
1295	H₃C()CH₂-	1	2	0	R	н	-CH2-NC-(CH3)3
1296	H ₃ C-CH ₂ -	1	2	0	R	н	-CH2-N-C-SSCH3
1297	H ₃ C-CH ₂ -	1,	2	0	R	н	-CH ₂ -N-C-CH ₃ -CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃
1298	H ₃ CO—CH ₂ —	1	2	0	R	н	-CH ₂ -N-C-CF ₃
•							

Table '	1.119						
Compd.	R ² (CH ₂) _j	k	m	n	chirality	R ³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1299	H ₃ CO CH ₂ -	1	2	0	R	н	-CH₂-N-C-CF₃
	осн ₃ н ₃ со—Сн ₂ -					н	-CH ₂ -N-C-CF ₃
1301	осн ₃ н ₃ со—Сн ₂ - н ₃ со	1	2	0	R	н	-CH₂-N-C-CF3
1302	H ₃ CO-CH ₂ -CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1303	H ₃ CO————————————————————————————————————	1	2	0	R	н	-CH2-N-C CF3
1304	H ₀ CQ -CH ₂ O-CH ₂ -	1	2	0	R	· H	-сн ₂ -№с
1305	H ₃ CO-CH ₂ -	1	2	0	R	H ·	-сн ₂ -N-с-СF ₃
1306	H ₃ CCH ₂ Q H ₆ CO————————————————————————————————————	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1307	H ₃ CO CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1308	CH ₂ -	1	2	Ö	R	Н	-CH2-N-C-
	H ₃ CO————————————————————————————————————					н	-CH ₂ -N-C-CF ₃

Table 1.120

Table 1							
Compd.	R ¹ (CH ₂);-	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1310	H ₃ CO HO———————————————————————————————————	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1311	0 CH₂-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1312	CH2-	1	2	0	R	н	-CH₂-N-C-CF₃
1313	Br CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1314	O ₂ N CH ₂ -	1	2	0	R	н	-CH2−N-C-CF3
1315	H ₃ C CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1316	F ₃ C CH ₂ -	1	2	0	R	H	-сн ₂ -ү-с
	O ₂ N CH-CH ₂ -					н	-CH₂-N-C-
1318	сн Снг	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1319	CH2-	1	2	0	R	.	-CH ₂ -N-C-CF ₃
1320	Br—CH ₂ -	í	2	0	R	. н	-CH ₂ -N-C-CF ₃

Table 1.121

Table 1	1.121					· · · · · · · · · · · · · · · · · · ·	
Compd.	R ² (CH ₂)	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
1321	снф-сн ₂ -	1	2	0	R	н	-CH₂-N-C-SBr
1322	с⊢СН₂-	1	2	0	R	н	-CH ₂ -N-C-CH ₃
1323	CHCH ₂ -	1	2	0	R	н	-CH2-N-C
1324	C├ - CH ₂ -	1	2	0	R	н	-CH ₂ -N-C- H HO
1325	с⊢С}-сн₂-	1	2	0	R	н	-CH2-N-C
1326	с⊷С>-сн₂-	1	2	0	R	н	-CH ₂ -N-C
1327	с⊢С≻сн₂-	1	2	0	R	н	-CH ₂ -N-C
1328	H ₃ CCH ₂ -	1	2	0	R	н	-CH ₂ -N-C-Br
	H₃C————————————————————————————————————						-CH ₂ -N-C-CH ₃
1330	. H ₃ C-CH ₂ -	1	2	0	R	н	-CH2-N-C-CI
1331	H ₃ C-CH ₂ -	. 1	2	0	R	н	-CH ₂ -N-C
	•						

Table 1.122

Compd. No.	R ¹ (CH ₂)j	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1332	H₃C-⟨¯¯)CH₂-	1	2	0	R	н	-CH ₂ -N-C
1333	H ₃ C	1	2	0	R	н	-CH ₂ -N-CH ₂
1334	H ₃ C-CH ₂ -	1	2	0	R	H	-CH ₂ -N-C
1335	CH ₃ CH ₂ -	1	2	0	R	н	-CH₂-N-CSr CI
1336	CH ₃ N CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C CH ₃
1337	CH₃ N CH₂- CH₃	1	2	0	R	н	-CH2-N-C
1338	CH ₃ CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
1339	CH ₃ CH₂− CH₃	1	2	0	R	H	-CH ₂ -N-C
1340	CH₃ CH₂- CH₃	. 1	2	0	R	н	-CH ₂ -N-C
							-CH ₂ -N-C
	СНСН2-	2	2	1	-	н	-CH ₂ -N-C-SBr
8		_					

Table 1.123

Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	—(CH ₂) _p + (CH ₂) _q G−R [€]
1343	CH2-	2	2	1	-	н	-CH ₂ -N-C-CH ₃
1344	C⊢√_CH₂-	2	2	1	-	н	-CH ₂ -N-C-CI
1345	C⊢√CH₂-	2	2	1	-	н	-сн ₂ -ү-сн ₃
1346	с⊢—Сн₂-	2	2	1	-	н	-CH₂-N-C-
1347	с-Ссн2-	1	2	0	R	н	-CH ₂ -N-C-S CH ₃
1348	H₃C————————————————————————————————————	1	2	0	R	н	-CH ₂ -N-C-S-CH ₃
1349	CH₃ CH₂- CH₃	1	2	0	R	н	-CH₂-N-C-S CH₃
1350	с⊢С}-сн₂-	2	2	1	-	н	-CH2-N-C-STCH3
	с⊢СН₂-						-042-17 C-043
1352	H ₃ C	1	2	0	R '	н	-042-HC-043
1353	H ₃ C—CH ₂ —CH ₂ —CH ₃ CH ₂ —CH ₂ —CH ₃	1	2	0	R	н	-a+5-H C-a+2

Table 1.124

Compd.	R ¹ (CH ₂)	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} \stackrel{\overline{R}^4}{\underset{\overline{R}^5}{\vdash}} (CH_2)_{\overline{q}} G - R^6$
1354	с⊢С}−сн₂-	2	2	1	-	н	-042-12-0-043
1355	CH_CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1356	H ₃ C-CH ₂ -	1	2	0	R	н .	$-CH_2-N-C H_2N$
1357	CH₃ CH₂- CH₃	1	2	0	R	Н	-CH ₂ -N-C-N H ₂ N
1358	C├ - CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-
1359	CH ₃ CH ₂ -	; 1	2	0	R	Н	-cH₂-N-C-
1360	CH₃ N—CH₂- CH₃	1	2	0	R	Н	-CH ₂ -N-C-CH ₃ -CH ₃ -CH ₃ -CH ₃
1361	H ₃ C-CH ₂ -	1	2	0	R	н	-сн ₂ -N-с- Н с- Осн ₃
1362	CH ₃ CH ₂ -	1.	2	0	R	· н	-CH ₂ -N-C-⟨CH ₃
1363	CH ₃ N CH ₂ − CH ₃	1	2	0	R	н	$-CH_{2}-N-C- CH_{3}$ $-CH_{2}-N-C- CH_{3}$ $-CH_{2}-N-C- CH_{3}$
1364	H ₃ CCH ₂ -	1	2	0	R .	н	-CH ₂ -N-C- CH ₃

Table 1.125

Table 1							
Compd.	R ¹ (CH ₂);	k	m	n	chirality	R³	$-(CH_2)_{p+1}^{R^4}(CH_2)_{q-1}^{R^6}G^{-R^6}$
	CH₃ N—CH₂- CH₃						-CH ₂ -N-C- H ₃ C
1366	CH ₃ CH ₂ -	1	2	0	R	. н	-CH ₂ -N-C-CH ₃
1367	H ₃ C	1	2	0	R	н	-cH ₂ -N-C-CH ₃
1368	C	1	2	0	R	н	-CH ₂ -N-C-CI
1369	C├ \ _CH₂-	1	2	0	R	н	-CH ₂ -N-C-S-F ₃ CCH ₂ O
1370	с⊢{	1	2	0	R	н	-CH ₂ -N-C-SBr
1371	с⊢С≻сн₂-	1	2	0	R	Н	-CH ₂ -N-C-
1372	с⊢{_}СН₂-	1	2	0	R	н	- CH 2- N C-
1373	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C CI
1374	н₃с-{}сн₂-	1	2	0	·R	н	-CH ₂ -N-C
1375	H₃C-{}CH₂-	1	2	0	R	н	-CH ₂ -N-C-S Br
	•						

Table 1.126

· ubic							
Compd.	R ² (CH ₂) _j -	k	m	n	chirality	R³	—(CH ₂) _p + (CH ₂) _q G−R ⁶
1376	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
1377	H₃C- \ CH ₂ -	1	2	0	R	н	-a12-110-
	CH₃ CH₂−					н	-CH₂-N-C-(CF₃
	CH ₃ CH₂−					н	-CH ₂ -N-C- H F ₃ CCH ₂ O
1380	CH ₃ CH₂-	1	2	0	R	Н	-CH ₂ -N-C-S Br
1381	CH₃ NDCH₂- CH₃	. 1	2	0	R	н	-CH ₂ -N-C-
1382	CH₃ CH₂- CH₃	1	2	0	R	Н	-OH2-NC-
1383	C├ - CH ₂ -	2	2	1	-	н .	-CH ₂ -N-C-CI
	C├ ─ _CH₂-					н	-CH₂-N-C-(S) Br
1385	С-СН2-	2	2	1	-	н	-CH ₂ -N-C-
1386	CH2-	2	2	1	-	н	-CH ₂ -N-C-
	• .						

Table 1.127

· abic							
Compd. No.	R ² (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
1387	CH₃ N—CH₂- CH₃	1	2	0	R	н	-ch2-N-C-1
	CH₃ N—CH₂- CH₃					н	-CH ₂ -N-C-\(\frac{\text{P}\cup C(CH ₃) ₃ \) CH ₃
1389	CH₃ CH₂− CH₃	1	2	0	R	н	-CH ² -HC-CNO
1390	H_3C CH_3 H_3C CH_2 CH_3	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1391	H ₃ C H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1392	CI H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1393	ң _а ссн _ұ ——Сн _ұ -	1	2	0	R .	Н	-CH ₂ -N-C-CF ₃
1394	O ₂ N H ₃ C—CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
	H ₂ C=CH-CH ₂ -						•
1396	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1397	Br—CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃

Table 1.128

lable	1.120						1
Compd.	R ¹ (CH ₂)	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1398	CI CH³	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1399	CH3 CH− CI	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1400	сн-сн-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1401	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-N-C1
1402	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1403	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-_N
1404	H ₃ C-CH ₂ -	1	2	0	R	н	-CH₂-N-C-
1405	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-N H ₃ CS
1406	H ₃ C-(1	2	0	R	н	-cH₂-N-C-
1407	H ₃ C-CH ₂ -	1	2	0	R	H	-CH ₂ -N-C-N H ₃ CCH ₂ S
1408	H ₃ C-CH ₂ -	1	2	0	R	н	-CH2-N-C-\N

Table 1.129

lable							
Compd.	R ¹ (CH ₂)	k	m	n	chirality	R³	—(CH ₂) p (CH ₂) q G−R ⁶
1409	H ₃ C-(1	2	0	R	н	-сн ₂ -N-с-СН ₃
1410	CH₃ CH₂-	, 1	2	0	R	н	-CH ₂ -N-C-
1411	С⊢—СН₂-	1	2	0	R	н	-012-N-C-VH
1412	H ₃ C	1	2	0	R	н	- CH2-N-C-C-NH
1413	CH₃ N—CH₂- CH₃	· 1	2	0	R	н	-CH ₂ -N-C-C-NH
1414	с⊢—СН₂-	2	2	1	-	н	-CH ₂ -N-C
1415	с⊢—СН₂-	1	2	0	R	н	-CH ₂ -N-C-SCN H ₂ N
1416	H ₃ C-\CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-SCN H ₂ N
1417	CH₃ CH₂- CH₃	1	2	0	R	н	-CH ₂ -N-C-SCN
1418	C├ \ CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-SCIN
1419	СЊ_СН₂-	1	2	0	R	н	-CH ₂ -N-C-SH

WO 99/25686

Table 1.130

Compd.	R ¹ (CH ₂)	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1420	H ₃ CCH ₂ -	1	2	0	R	н	-сн ₂ -N-с- н ₂ N
1421	CH₃ CH₂-	1	2	0	R	н	-CH ₂ -N-C-SH H ₂ N
1422	C⊢√CH ₂ -	2	2	1	-	H,	$-CH_2-N-C-\longrightarrow_{H_2N}^{O}$
1423	с⊢СН₂−	1	2	0	R	н	-CH ₂ -N-C-
1424	H ₃ C	1	2	0	R	H	-CH ₂ -N-C-
1425	CH ₃ CH ₂ -	1 .	2	0	R	H	-CH ₂ -N-C-
1426	CHCH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-
1427	CH2−	2	2	1	-	н	-CH ₂ -N-C-SBr H H ₃ C-NH
1428	с⊢{	, 2	2	1	-	н	-CH ₂ -N-C
	ңсан₂о-{_}аң₂-						-CH ₂ -N-C
1430	O—CH₂-	2	2	1	•	Н	-CH ₂ -N-C

Table 1.131

labie	1.101						
Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{p}^{R^4}$ $+(CH_2)_{q}^{-}G-R^6$
1431	ңсан 20- ⟨ ¯⟩- ан2-	2	2	1	-	н	-CH ₂ -N-C-SBr
1432	O—CH₂-	2	2	1	-	н	-CH ₂ -N-C
1433	H ₃ CCH 2O-{\bigcitcle} CH2-	2	2	1	-	Н	-cH2-N-C-H2CH2CH3
1434	н,ссн₂о-{	2	2	1	-	н	-CH2-NC-WH2CH
1435	ң₃ссн₂—{	2	2	1	-	н	$-CH_2-N-C-$ H_2N
1436	(H ₃ C) ₂ CH-√CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1437	H ₃ C(CH ₂) ₂ O	2	2	1	-	н	-CH ₂ -N-C
1438	ң₅ссн₂—⟨¯¯Ў−сн₂−	2	2	1	-	н	-CH ₂ -N-C
1439	(њс)₂сн-{}-онг	2	2	1	-		-CH ₂ -N-C
1440	H ₃ C(CH ₂) ₂ OСТ	2	2	1	•	н	$-CH_2-N-C$ H_2N Br
1441	H₃CS{}-CH₂-	2	2	1	-	н	-CH ₂ -N-C-Br

Table 1.132

lable	1.132						
Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
1442	H ₃ CCH ₂ —CH ₂ -	2	2	1	-	н	-CH2-N-C
1443	(H ₆ C) ₂ CH ← CH ₂ -	2	2	1	-	н	-CH2-N-C
1444	н ₃ с(сн ₂) ₂ о	2	2	1	, -	н	-CH2-N-C
1445	ң,ссн₂—Сн₂–	2	2	1	-	н	-CH2-N-C-H2CH2CH3
1446	(H ₆ C) ₂ CH	2	2	1	-	н	-CH2-N-C
1447	ң _. С(СН ₂) ₂ О	2	2	1	-	н .	-a+2-H-C-H-C-H-C-H-C-H-C-H-C-H-C-H-C-H-C-H-
1448	н₃СS-{}СН ₂ -	2	2	1	-	н	-CH ₂ -NC-SCH ₆
1 449	H₃CCH₂—CH₂−	2	2	1	-	н .	-CH ₂ -N-C-CF ₃
1450	(H ₂ C) ₂ CH-{	2	2	1	-	Н	-CH ₂ -N-C-CF ₃
1,451	(H ₂ CGH ₂) ₂ N-CH ₂ -	2	, 2	1	-	н	-CH ₂ -N-C-CF ₃
1452	HQ H ₃ CO————————————————————————————————————	2	2	1	· -	н	-CH ₂ -N-C-CF ₃

Table 1.133

lable	1.133						
Compd.	R ² (CH ₂) _j	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q -G-R ⁶
1453	н ₃ с(сн ₃) ₃ о{}- ан ₂ -	2	2	. 1	-	н	-CH₂-N-C CF3
1454	H ₆ CCH ₂ O⟨ CH ₂	2	2	1	-	н	-CH ₂ -N-C-CF ₃
1455	H ₃ CQ HO————————————————————————————————————	2	2	1	-	н	-CH ₂ -N-C-CF ₃
1456	CH₂-	2	2	1	-	. н	-CH ₂ -N-C-CF ₃
1457	(CH ₃) ₂ N-\(\bigcirc\)-\(\text{CH}_2\)-	2	2	1	-	н	-CH ₂ -N-C-
1458	H ₃ CQ HO————————————————————————————————————	2	2	1	-	н	-CH ₂ -N-C
1459	(H ₃ C) ₂ N————————————————————————————————————	2	2	1	· -	н	-CH ₂ -N-C
	H ₃ CQ HO————————————————————————————————————				-	н	-CH ₂ -N-C
1461	H ₃ CQ HO—CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C
1462	H ₃ CQ HO————————————————————————————————————	2	2	1	-	н	-CHZ-N-COCH
1463	C├ ─ CH₂-	2	1	1	-	Н	-CH ₂ -N-C-CF ₃
							•

Table 1.134

/F330	2)∫ k m r CH₂- 2 1 1			-(CH ₂) _p + (CH ₂) _q G-R
1464 c⊢√	CH₂- 2 1 1	-		
			Н	-CH ₂ -N-C-C-C-3
1465 CH	H₂− 2 1 1	-	н	-CH ₂ -N-C-CF ₃
1466 c⊢√_)—c	⁴ 2− 2 1 1	-	н	-CH2-N-C-
1467 c⊢ √ _cı	dz 2 1 1	-	H .	-CH ₂ -N-C
1468 CH CH	er 2 1 ·1	-	н	-CH ₂ -N-C
1469 сн Сн	e ,2 1 1	-	н	-CH ₂ -N-C
	- 2 1 1	••	Н	-CH₂-N-C-CI
	2 1 1	-	н	-CH ₂ -N-C
1472 CH ₂ -	1 2 0	R	Н	-сн ₂ -N-с-С _{Б3}
1472 CH ₃ 1473 Br S CH ₂ 1474 CH ₂ 1474 CH ₂	1 2 0	R	н	-CH₂-N-C-CF3
1474 N CH ₂ -	1 2 0	R	н	-CH ₂ -N-C-CF ₃

Table 1.135

lable	1.133	_					
Compd.	R ² (CH ₂)j-	k	m	n	chirality	R³	-(CH ₂) _p G-R ⁶
1475	Ch CH2	1	2	0	R	н	-CH₂-N-C-CF3
1476	Br S CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1477	Br CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1478	Br ()-012-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1479	CH ₃ CH ₂ - CH ₃	1	2	0	R _.	н	-CH ₂ -N-C-CF ₃
1480	H ₃ C-CH ₂ -	1	2	0	R	H	-CH ₂ -N-C-CF ₃
1481	H ₃ C — CH ₂ — CH ₂ — H ₃ C	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1482	Br CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1483	H ₃ C CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1484	J S B air	1	2	0	R	н	-CH ₂ -N-C-
1485	н₃С-{	1	2	0	R	н	-CH2-N-C-S

Table 1.136

Compd. No.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{\overline{P}} + (CH_2)_{\overline{q}} G - R^6$
1486	H ₃ C-CH ₂ -	. 1	2	0	R	н	-CH ₂ -N-C-OCH ₃
1487	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
1488	H₃C-{	1	2	0	R	н	-cH ₂ -N-c√
1489	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1490	H ₃ C-CH ₂ -	1	2	0	R	н	-сн ₂ -N-с-(СН ₃
1491	H₃C-€	1 -	2	0	R	н	NH₂ 0 C=0 -CH₂-N-C- H
1492	н₃с-Сн₂-	1	2	0	R	Н	-CH ₂ -N-C-NO ₂
	CH₃ CH₃					Н	-01= Hc - 20
1494	CH ₃ CH ₂ CH ₂ -	1	2	0	R	H	-CH ₂ -N-C
1495	CH₃ CH₂-	1	2	0	R	. H	-CH ₂ -N-CN-CH ₃ -CH ₂ -N-CN-CN-CH ₃ -CH ₂ -N-CN-CN-CN-CH ₃ -CH ₂ -N-CN-CN-C-N-C-N-C-N-C-N-C-N-C-N-C-
1496	CH ₃ N ← CH ₂ - CH ₃	.1	2	0	R	н	-CH ₂ -N-C
							•

Table 1.137

IADIC	1.107						
Compd.	R ¹ (CH ₂)	k	m	n	chirality	R³	-(CH ₂) _p CH ₂) _q G-R ⁶
	CH₃ CH₂− CH₃					н	-CH ₂ -N-C
	CH₃ N CH₂- CH₃					н	О СИ -СН2-М-С-Ц
1499	CH₃ N CH₂- CH₃	1	2	0	R	Н	-сн²-й-с-Д осн³
1500	CH ₃ CH ₂ -	1	2	0	R	н	-CH₂-N-C OCH₃
1501	CH ₃ CH ₂ -	1	2	0	R	н	-сн ₂ -ү-с
1502	CH ₃ CH ₂ - CH ₃						-CH ₂ -N-C-CF ₃
1503	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH2-N-C-OCHF2
1504	H₂N—CH₂-					н	-CH ₂ -N-C-CF ₃
1505	CH ₂ O -CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1506	С⊢—СH ₂ -	2	1	1	-	Н	-CH ₂ -N-C
1507	С⊢—СН ₂ -	2	1	1	-	Н	-CH ₂ -N-C-SH ₂ N

Table 1.138

lable	1.130						
Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_p + (CH_2)_q G - R^6$
1508	с⊢С≻сн₂-	2	1	1	-	н	-CH ₂ -N-C-F
1509	C⊢√_CH ₂ -	2	1	1	-	Н	-CH ₂ -N-C-
1510	с⊢С сн₂-	2	. 1	1	-	н	-CH ₂ -N-C
1511	СН-СН2-	2	. 1	1	-	Н	-CH ₂ -N-C-SBr
1512	с⊢С≻сн₂-	2	1	1	-	н	-CH ₂ -N-C-
1513	CHCH ₂	2	1	1	-	н	-CH2-N-C-
1514	(H ₃ CCH ₂) ₂ N-CH ₂ -	2	2	1	- -	н	-CH ₂ -N-C
	HQ H₃CO—CH₂-				-	н	-CH ₂ -N-C
1516	(H3CCH2)2N-CH2-	2	2	1	-	н	-CH ₂ -N-C
1517	HQ H₃CO-CH₂-	2	2	1	-	, н	CH ₂ -N-C
1518	HQ H ₃ CO-CH ₂ -	2	2	1	- -	н	-CH2-NC-OCH
							•

Table 1.139

Compd.	R ² (CH ₂) _j	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1519	HQ H₃CO————————————————————————————————————	2	2	1	<u>-</u> .	н	-CH ₂ -NC-Br OH HN CH ₂ -OCH ₆
1520	Br—CH ₂	1	2	0	R	н	-CH₂-N-C-SBr
1521	H ₃ CO-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
1522	CH₂-	1	2	0	R	н	-CH ₂ -N-C-
1523	H ₃ CO————————————————————————————————————	1	2	0	R	н	-сн ₂ -N-С-
1524	HO-CH ₂	1	2	.0	Ŗ	, н	-CH₂-N-C-S
1525	Br—CH ₂ -	1	2	0	R	н	−CH ₂ −N-C−√OCF ₃
	H₃CO{					н	-CH ₂ -N-C-C-CF ₃
1527	CH₂-	1	2	0	R	н .	-CH ₂ -N-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-
1528	H ₃ CO CH ₂	1	2	0	R	н	-CH₂-N-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-
1529	H ₃ CQ HO− CH ₂ −	1	2	0	R	Н	-CH ₂ -N-C-OCF ₃ -CH ₂ -N-C-OCF ₃ -CH ₂ -N-C-OCF ₃ -CH ₂ -N-C-OCF ₃

Table 1.140

lable	1.140				· · · · · · · · · · · · · · · · · · ·		
Compd.	R ² (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1530	Br—CH ₂ -	1	2	0	R	н	-CH₂-N-C-CF₃
1531	H₃CO-€	1	2	0	R	н	-CH₂-N-C- F
1532	CH₂-	1	2	0	R	′ н	-CH ₂ -N-C- H
1533	H₃CQ H₃CO————————————————————————————————————	1	2	0	R	н	-CH ₂ -N-C
1534	H ₃ CQ HO− C H ₂ −	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1535	Br—CH ₂ -	- 1	2	. - 0	R	H	-CH ₂ -N-C-CF ₃
1536	H₃CO-(CH₂-	1	2	0	R	Н	-CH₂-N-CCF3
1537	CH ₂ -	1	2	0	R	н	-CH₂-N-C-CF3
1538	H ₃ CO————————————————————————————————————	1	2	0	R	Н	-CH ₂ -N-CF
1539	H ₃ CQ HO————————————————————————————————————	1	2	0	, R	H	-CH ₂ -N-C-CF ₃
1540	Br—CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-F
	•						

Table 1.141

1541 $H_{9}CO \longrightarrow CH_{2}$ 1 2 0 R H $-CH_{2}$ H_{2} CH_{2} H_{2} H_{3} CH_{2} H_{4} H_{4} H_{5} H								
1542 CH_2 1 2 0 R H $-CH_2$ N	Compd.	R ¹ (CH ₂)	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1543 H_3CO H_2 1 2 0 R H $-CH_2$ 1 2 0 R H $-CH_2$ 1 2 0 R $-CH_2$ 1 $-CH_2$ 1 $-CH_2$ 1 $-CH_2$ 1 $-CH_2$	1541	H₃CO- ()-CH₂-	· 1	2	0	R	н	-CH ₂ -N-CFF
1544 $H_0 \leftarrow CH_2 \leftarrow 1$ 2 0 R H $-CH_2 \leftarrow N \leftarrow CH_2 \leftarrow N \leftarrow N \leftarrow CH_2 \leftarrow N \leftarrow N \leftarrow CH_2 \leftarrow N \leftarrow $	1542	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF₃ F
1545 CH_{2} 1 2 0 R H $-CH_{2}$ N C $-CH_{2}$ 1 2 0 R H $-CH_{2}$ N C $-CH_{2}$ 1 2 0 R H $-CH_{2}$ N C $-CH_{2}$ 1 2 0 R H $-CH_{2}$ N C $-CH_{2}$ 1 2 0 R H $-CH_{2}$ N C $-CH_{2}$ 1 2 0 R H $-CH_{2}$ N C $-CH_{2}$ 1 2 0 R H $-CH_{2}$ N C $-CH_{2}$ 1 2 0 R H $-CH_{2}$ N C $-CH_{2}$ 1 2 0 R H $-CH_{2}$ N C $-CH_{2}$ 1 2 0 R H $-CH_{2}$ N C $-CH_{2}$ 1 2 0 R H $-CH_{2}$ N C $-CH_{2}$ 1 2 0 R H $-CH_{2}$ N C $-CH_{2}$ 1 2 0 R H $-CH_{2}$ $-C$	1543	H ₃ CO C H ₂	1	2	0	R	н	-CH ₂ -N-C-F
1546 $H_3CO \longrightarrow CH_2$ 1 2 0 R H $-CH_2$ 1 2 0 R $-CH_2$ 1 2 0 R H $-CH_2$ 1 2 0 R H $-CH_2$ 1 2 0 R H $-CH_2$ 1 1 2 0 R $-CH_2$ 1 2 0 R H $-CH_2$ 1 2 0 R $-CH_2$ 1 $-C$	1544	H ₃ CQ HO—CH ₂ —	1	2	0	R	н	-CH ₂ -N-C-CF ₃
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1545	CL_S_CH ₂ -	1	2	0	R	н	-сн ₂ -N-с-
1548 H_3C — CH_2 — 1 2 0 R H $-CH_2$ — H_3C — CH_3	1546	H₃CO	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1549 H ₃ C-CH ₂ - 1 2 0 R H -CH ₂ -N-C -CH ₃	1547	H ₃ CO—Br	1	2	0	R	н	-CH₂-N-C-CF3
	1548	H ₃ C-\CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
	1549	H ₃ CCH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1551 H C CH 1 2 0 D								
-CH2-HC-	1551	H₃C-(CH ₂ -	1	2	o	R	Н	-CH2-HC-

Table 1.142

							•
Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	-(CH ₂) _p +5 (CH ₂) _q -G-R ⁶
1552	H₃C- \ _CH ₂ -	1 ,	2	0	R	н	-CH ₂ -N-C-
1553	H ₃ C	1	2	0	R	н	-a+2-Hc - 0
1554	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1555	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-N H ₃ C
1556	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-QN H ₃ C
1557	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-
1558	H ₃ C-CH ₂ -	1	2	0	R .	Н	-CH ₂ -N-C-N-CH ₃
1559	H ₃ C-CH ₂ -	1	2	0	R	H	-CH ₂ -N-C-N-N H ₃ C
	H ₃ C-CH ₂ -						-CH ₂ -N-C
1561	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CH ₃ -CH ₃
1562	H ₃ C-CH ₂ -	1	2	0	R	н	O ₂ N OCH ₃

PCT/US98/23254

Table '	1.143						
Compd.	R ² (CH ₂) _j -	k	m	n	chirality	· R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1563	H₃C-{	1	2	0	R	H	-CH4-NC-
1564	H ₃ C-CH ₂ -	1	2	0	R	н	-0+2-Hc-
1565	CH ₃ CH ₃	1	2	0	R	н	-CH ₂ -N-C
1566	CH₃ CH₂- CH₃	1	2	0	R	н	-сн ₂ -ү-с- О ₂ N ОСН ₃
1567	CH₃ N CH₂- CH₃	1	2	0	R	н	-CH ² -H _C -Ch ³ -H _C
1568	CH ₃ CH ₂ -	1	2	0	R	н	-042-11°C>
1569	CH ₃ CH ₂ -	1	2	0	R	н	-CH2-H2-CM
1570	н₃сѕ-{}Сн₂-				-	н	-CH ₂ -N-C
1571	н₃сэ—СН₂-	2	2	1	-	Н	H ₂ N -cH ₂ -N HN CH ₂ -ScH ₆
1572	Che CHE CHE	2	2	1	-	H	-CH ₂ -N-C-CF ₃
1573	H,CO	2	2	1	-	Н	-CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃
			•				

Table 1.144

-							
Compo No.	d. R^2 (CH ₂)	- ,	c m	n	chirality	R³	—(CH ₂) p CH₂ q G −R ⁶
1574	#c	-a4- 2	2	1	-	н	-CH ₂ -N-C-CF ₃
1575	c	он₂- 2	2	1	-	н	-CH ₂ -N-C-CF ₃
1576	€\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	н₂- 2	2	1	-	н	-CH₂-N-C-CF3
1577	но(сн.) - Н. с	ઋ₌ 2	2	1	-	н	-CH ₂ -N-C-CF ₃
1578	H,c P, c C	:н _э - 2	2	1		H .	-CH ₂ -N-C-CF ₃
1579	C. H. S. C.	₁₂ - 2	2	1	-	. H	-CH ₂ -N-C-CF ₃
1580	O-hc-O-o	_{l2} - 2	2	1	-	H	-CH₂-N-C-CF3
1581	С⊢√СН₂-	2	2	1	-	Н	-CH ₂ -N-C-S-NH
1582	CH ₂ -	2	2	1	-	н	-cH-HC-2
1583	СҢ СН2-					H	$-CH_{2}-N+C-$ $H_{2}N$ $-CH_{2}-N+C-$ $-CH_{2}-N+C-$ $H_{2}N$ $-CH_{2}-N+C-$ $H_{2}N$
1584	CH_CH2-	1	2	0	R	н	-CH ₂ -N-C

Table 1.145

lable	1.145						
Compd.	R ² (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+ \frac{R^4}{R^5}$ $(CH_2)_{q}$ $G-R^6$
1585	с⊢СҺ₂-	1	2	0	R	H	-CH ₂ -N-C-S
1586	с⊢{	1	2	0	R	н	-CH ₂ -N-C-
1587	CH2-	1	2	0	R	н	-CH ₂ -N-C-
1588	CH2-	1	2	0	R	Н	-CH ₂ -N-C
1589	H ₃ C-CH ₂ -	1	2	0	R	H	-CH ₂ -N-C- H ₂ N
1590	H ₃ C-CH ₂ -	1	2	0	R	н.	-CH ₂ -N-C
1591	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-S
	H ₃ C-CH ₂ -					Н	-CH ₂ -N-C-√
1593	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
1594	CH₃ CH₂-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1595	CH₃ CH₂-	1	2		R	н	$-CH_{2}-N-C$

Table 1.146

I able			_				
	• • •					R³	$-(CH_2)_{p}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
1596	CH ₃ CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-S
1597	CH ₃ CH ₂ -	1	2	0	R	н .	-CH ₂ -N-C-√N=
	CH₃ N—CH₂- CH₃					н	-CH ₂ -N-C-
1599	CH ₃ CH ₂ − CH ₃	1	2	0	R	н	-CH₂-N-C-
1600	с⊢СН₂-	2	2	1	-	н	$-CH_2-N-C$ H_2N
1601	C⊢CH₂-	2	2	1	-	н	-сн ₂ -N-с
1602	с⊢СН₂-	2	2	1	-	н	-CH₂-N-C-
1603	CH2-	2	2	1	-	н	-CH2-N-C-
1604	с⊢СН₂-	2	2	1	-	. н	-CH ₂ -N-C-
	C⊢√CH₂-						-CH ₂ -N-C-CH ₃
1606	с⊢СН₂-	1	2	0	R	н	-CH ₂ -N-C-SCF ₃

Table 1.147

Table 1						<u> </u>	
Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	—(CH ₂) p (CH ₂) q G−R ⁶
1607	H₃C-{	1	2	0	R	н	-CH ₂ -N-C-SCF ₃
1608	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C-SCF ₃
1609	С⊢—СН₂-	. 2	2	1	-	н	-CH ₂ -N-C-SCF ₃
1610	CF3 P C-CH2-	2	2	1	-	н	-CH₂-N-C-CF₃
1611	CH CHE CHE	2	2	1	-	н	-CH₂-N-C-CF3
1612	H*CO(CH3)2-HC	2	2	1	-	н	-CH₂-N-C-CF₃
1613	40-C-4-	2	2	1	-	н	-CH ₂ -N-C-CF ₃
1614	F₃CS—CH₂−	1	2	0	R	н	-CH ₂ -N-C-CF ₃
	F ₃ CS-CH ₂ -						-сн ₂ - N-с СF ₃
1616	F3CS-CH2-	2	2	1	<u>.</u> .	н	-CH ₂ -N-C-
1617	F ₃ CS—CH ₂ -	2	2	1		н	$-CH_2-NC$

Table 1.148

	1.140							
Comp No.	d. R ¹	(CH ₂) _j —	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1618	но н₃со—		1	2	0	R	Н	-CH₂-N-C-
1619	H ₃ CO-{		1	2	0	R	н	-CH ₂ -N-C-COCF ₃
1620	HQ H₃CO-{		1	2	0	R	.Н	-СH ₂ -N-ССF ₃
1621	HQ_ H₃CO-{_		1	2	0	R	н	-CH ₂ -N-C-CF ₃
1622	н₃со-	_у̀—сн₂-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1623	но-{	∕—сн ₂ -	1	2	0	R	н	-сн ₂ -ү-с-
1624	но-{) —СН₂—	1	2	0	R	н	-CH ₂ -N-C
1625	но-)—CH₂–	1	2	0	R	H	-CH ₂ -N-C- F
1626	но-С	⊢СН ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1627	но-	∼·GH₂ -	1	2	0	R	н	-CH ₂ -N-C
1628	н₃сѕ-{) —СН₂-	1	2	0 .	R	. н	-CH₂-N-C-CF3

Table 1.149

Table							
Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} - G - R^6$
1629	H₃CS-{}-CH₂-	1	2	0	R	н	CF ₃ −CH ₂ −N-C−−−F
1630	H ₃ C CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1631	H ₂ NCH ₂ —CH ₂ -	1	2	0	R ·	н	-CH₂-N-C-CF3
1632	CF ₃ CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1633	H ₃ CS NC—CH ₂ —CH ₂ —	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1634	(H ₂ C) ₂ CH ← CH ₂ -CH ₂ -	1	, 2	0	R	н	-CH₂-N-C-CF3
1635	H₃C-(-)-CH₂-	1	2	0	R	н	-CH ₂ -N-C
1636	H ₃ C	1	2	0	R	н	-CH ₂ -N-C H ₃ C CH ₃
1637	CH ₃ CH ₂ -	1	2	0	R	· н	-OH ₂ -N-C-(CH ₂) ₄ CH ₃
1638	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-сн ₂ - № с———— «СН ₂) ₃ СН ₃
1639	CH ₃ CH ₂ CH ₃	1	2	0	R	н	-CH2-H2 H2N

Table 1.150

Table	1.150						
Compd No.	R ² (CH ₂)	k	m	n	chirality	R³	-(CH ₂) _p
1640	CH₃ CH₃	1	2	0	R	Н	-сн ₂ -м-с
1641	CH ₃ CH ₂ - CH ₃	1	2	0	Ř	н	-CH2-N-C
1642	CH ₃ CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-N O ₂ N-
1643	CH₃ N CH₂- CH₃	1	2	0	R	н	-CH ₂ -N-C-
1644	CH₃ CH₂−	1	2	0	R	н	-CH ₂ -N-C
1645	CI CH ₂ -	1	2	0	R	н	-СH ₂ -N-С-С-С-С-
1646	Br O-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1647	H ₃ C(CH ₂) ₃ ———————————————————————————————————	2	2	1	-	Н .	-CH ₂ -N-C-CF ₃
648 r	H ₃ C(CH ₂) ₃ ———————————————————————————————————	1	2	0	R	н	-CH ₂ -N-C-CF ₃
649 H	45C(CH ₂) ₂ —(T)—CH ₂ -	2	2	1	-	н	-CH ₂ ··N·C-CF ₃
650 н	H ₃ C(CH ₂) ₂	1	2	0	R	H	-CH₂-N-C

Table 1.151

labic	1.101						
Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	11
1651	н ₃ с(ан ₂)3—СЭ—ан ₂ -	2	2	1	-	н	-CH2-N-C-H2-CH2)3CH3
1652	H ₃ C(CH ₂) ₃ ———————————————————————————————————	2	2	1	-	Н	$-CH_2-N$ H_2N H_2N
1653	H ₃ C(CH ₂) ₂ —CH ₂ -	2	2	1	-	н	-CH2-NCC
1654	H ₃ C(CH ₂) ₂ —CH ₂ —	2	2	1	-	н	-CH ₂ -N-C
1655	H ₃ C(CH ₂) ₃ —CH ₂ —	2	2	1	-	н	-CH2-NC-H
1656	H ₃ C(CH ₂) ₃ —CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1657	H ₃ C(CH ₂) ₂ —CH ₂ —CH ₂ —	2	2	1	-	н	-CH2-HC
1658	H3C(CH2)2-CH2-	2	2	1	•	н	-CH ₂ -N-C-S
1659						н	$-CH_2-N-C-$ $+L_2N$ $+L_2N$ $+L_2N$ $+L_2N$
1660	Br—CH ₂ —	1	2	. 0	R	н	$-CH_2-N-C$ H_2 H_2 H_2
1661	Br—CH ₂ -	1	2	0	R	н .	$-CH_{2}-N$ $-CH_{2}-N$ $-CH_{2}-N$ $-CH_{3}-N$ $-CH_{2}-N$ $-CH_{2}-N$ $-CH_{2}-N$ $-CH_{2}-N$ $-CH_{3}-N$ $-CH_{2}-N$ $-CH_{3}-N$ $-CH_{2}-N$ $-CH_{3}-N$ $-CH_{3}-N$ $-CH_{3}-N$ $-CH_{4}-N$

Table 1.152

Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	-(CH ₂) _p
1662	Br-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1663	Br—CH ₂ -	1	2	0	R	H·	-CH ₂ -N-C
1664	н₃сѕ-{	2	2	1	-	` H	-CH ₂ -N-C
1665	н₃сѕ-СҺ₂-	2	2	1	-	H	-CH ₂ -N-C
1666	H₃CS-{\bigce}-CH2-	2	2	1	-	н	-CH ₂ -N-C
1667	ң₃ссн ₂ —(сн ₂ -	2	2	1	-	н	-CH ₂ -N-C-Br
1668	ң₃ссн₂—(¯)—сн₂-	2	2	1	-	.н	$-CH_2-N$ C H_2 N C F
1669	н₃ссн₂—{	2	2	1	-	н	$-CH_2-N-C$ H_2N
1670	н₃ссн₂{}сн₂-	2	2	1	-	н	$-CH_2-N-C$ H_2N
167i	н₃ссн₂—Сн₂-	2	2	1	-	н	-CH ₂ -N-C
1672	ң ссн ₂ Сн ₂ -	2	2	1	-	н	$-CH_2-N$ CF_3 H_2N

Table 1.153

lable	1.133						
Compd.	R ² (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1673	н₃ссн₂—СН₂-	2	2	1	-	н	-CH ₂ -N-C-Br H C-CI
1674	FCH₂-	2	2	1	-	Н	-CH₂-N-C-(Br
1675	F——CH₂-	2	2	1	-	н	-CH ₂ -N-C-F H H ₂ N
1676	F-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1677	F-CH2-	2	2	1	-	H	-CH ₂ -N-C
1678	F—————————————————————————————————————	2	2	1	-	н	-CH ₂ -N-C
1679	F—CH2-	2	2	1	- .	н	-CH ₂ -N-C-
1680	F—CH2-	2	2	1	-	н	-CH ₂ -N-C
1681	F——CH₂-	2	2	1	-	н	$-CH_2-N-C-$ H_2N
1682	F——CH₂-	2	2	1	-	н	$-CH_{2}-N-C$
1683	○ -Ŋ°- ○ -□	2	2	1	-	н	-CH ₂ -N-C-Br

Table 1.154

Table							
Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	. K3	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
1684	₩ ° CH₂-	2	2	1	-	н	-CH ₂ -N-C
1685	○ -\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	2	2	1	-	н	-CH ₂ -N-C
1686	— H c — CH₂-	2	2	1	-	н	-CH ₂ -N-C
1687		2	2	1	-	H	-CH ₂ -N-C
1688		2	2	1	-	Н	-CH ₂ -N-C
1689	C→HC→CH₂-	2	2	1	-	H	$-CH_2-NC-$ H_2N
1690	- H &	2	2	1	-	Н	-сн ₂ -N-С
1691	N+0	2	2	1	-	H	-CH ₂ -N-C-Br
1692	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-Br
							-CH ₂ -N-C-F H H ₂ N
1694	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
			-				

Table 1.155

Table 1	.155						
Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	—(CH ₂) p + (CH ₂) q G−R ⁶
1695	H ₃ C—CH ₂ -	1	2	0	R	H	-CH ₂ -N-C-→Br
1696	H ₃ C−⟨CH ₃ −CH ₂ −	1	2	0	R	н	$-CH_2-NC \longrightarrow H_2N$
1697	CH ₃ H ₃ C−CH ₂ −	1	2	0	R	н	-CH ₂ -N-C
1698	СН ₃ Н ₃ С—СН ₂ -	1	2	0	R	н	-CH ₂ -N-C
1699	H ₃ C—CH ₂ —CH ₂ —	1	2	0	R	н	-CH ₂ -N-C
1700	CH ₃	1	2	0	R	н	-CH₂-N-C-SCI
1701	H ₂ C=CH-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
	H ₃ CO-CH ₂ -				R	н	$-CH_2-NC-$ H_2N
1703	CH₂-	1	2	0	R	H .	$-CH_2-N \xrightarrow{C} H_2 N$
1704	HO-(-)-UH2-	1	2	0	R	н	-CH ₂ -N-C
1705	CH_CH2-	1	2	0	R	н	$-CH_{2}-N-C$

Table 1.156

labic	1.100		_				
Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R ³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} - (CH_2)_{\overline{q}} - R^6$
1706	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1707	H₃CS-()-CH₂-	1	2	0	R	H·	-CH ₂ -N-C-CF ₃
1708	ңссн₂-√ту-сн₂-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1709	(HgC)2CH-{-}-CH ;-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1710	H ₃ C Br—CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1711	CH₃ CH₂−	1	2	0	R	H .	-CH ₂ -N-C-CF ₃
1712	H₃CCH₂Q HO—CH₂-	1	2	0	R	. н	-CH ₂ -N-C-CF ₃
	H ₃ C HO—CH ₂ -					н	-CH ₂ -N-C-CF ₃
1714	H ₃ CO—CH ₂ —	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1715	N—CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃
1716	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃

Table 1.157

lable							
Compd.	R ² (CH ₂) _j	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1717	H ₃ CO-(N-)-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1718	CH ₂ -	1	2	0	R	н	CF ₃
1719	ÇN—CH₂-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1720	H ₃ C-CH ₂ -CH ₂ -	1	2	0	R	н .	-CH₂-N-C-CF3
1721	н₃ссн₂—Сту−сн₂-	1	2	0	R	н	-CH₂-N-C-CF3
1722	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1723	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1724	CH₃ H₃C−CH₂−	1	2	0	R	н	-CH ₂ -N-C-⟨CF ₃ F
1725	CH ₃ CH ₂ - CH ₂ -	. 1	2	0	R	н	-CH ₂ -N-C-CF ₃
						н	-CH ₂ - N-C-F
1727	H ₃ CCH ₂ —CH ₂ -	1	2	0	, R	Н	-CH ₂ -N-C-F

Table 1.158

					
Com No	ipd. R ² (CH ₂),	k m n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1728	B CH ₂ -	1 2 0	R	н	-CH ₂ -N-C
1729	H ₃ C-\CH ₂ -		R	Н	-CH ₂ -N-C-CF ₃
1730	W N OH2-	1 2 0	R	н	-CH ₂ -N-C-CF ₃
1731	H ₃ CO N CH ₂ -	1 2 0	R	н	-CH ₂ -N-C-CF ₃
1732	HOCH ₂ ————————————————————————————————————	1 2 0	R	Н	-сн ₂ -м-с-СF ₃
1733	CH₂-	1 2 0	R	н	-CH ₂ -N-C-CF ₃
1734	н₃сѕ—Сн₂-	1 2 0	R	н	-CH ₂ -N-C-⟨CF ₃ H C-⟨F
1735	H ₃ CCH ₂ —CH ₂ -	1 2 0	R	н	-CH ₂ -N-CF
1736	CH₂-		R	Н	-CH ₂ -N-C-CF ₃ F
1737	CH ₃ CH ₂ CH ₂ CH ₃ CH ₂ CH ₂ -	1 2 0	R	н	-CH ₂ -N-C-CF ₃
1738	H ₃ C — CH ₂ -	2 0	R	н	-CH ₂ -N-C

Table 1.159

			_			
R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
(H ₂ C) ₂ CH-√2-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
-CH ₂ -	1	2	0	R	н	-CH₂-N-C-S
H₃CS()-CH₂-	1	2	0	R	н	-CH ₂ -N-C-✓Br
ң₀ссн₂—{¯}—сн₂-	1	2	0	R	Н	-CH₂-N-C-S
o—cH₂-	1	2	0	R	H	-CH₂-N-C-S
					н	-CH₂-N-C-S
H ₃ C ← CH ₂ − CH ₂ −	1	2	0	R	н	-CH₂-N-C-Sr
(H ₂ C) ₂ CH CH ₂ -CH ₂ -	1	2	0	R	н	-CH₂-N-C-
CH ₂ -	· 1	2	0	R		-CH ₂ -N-C
H ₃ CCH ₂ —CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-Br
H ₃ C—CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
	(H ₂ C) ₂ CH — CH ₂ - CH ₂ - H ₃ CS — CH ₂ - CH ₃ H ₃ C — CH ₂ - CH ₂ -	$(H_{0}C)_{2}CH - CH_{2} - 1$ $CH_{2} - 1$ $H_{3}CS - CH_{2} - 1$ $CH_{2} - 1$ $CH_{2} - 1$ $H_{3}C - CH_{2} - 1$ $H_{3}C - CH_{2} - 1$ $H_{3}C - CH_{2} - 1$ $CH_{3} - CH_{2} - 1$	$(H_{0}C)_{2}CH - CH_{2} - 1 2$ $CH_{2} - 1 2$ $H_{3}CS - CH_{2} - 1 2$ $H_{5}CCH_{2} - CH_{2} - 1 2$ $CH_{2} - 1 2$ $H_{3}C - CH_{2} - 1 2$ $H_{3}C - CH_{2} - 1 2$ $H_{3}C - CH_{2} - 1 2$ $(H_{5}C)_{2}CH - CH_{2} - 1 2$ $CH_{2} - 1 2$	$(H_{0}C)_{2}CH - CH_{2} - 1 2 0$ $-CH_{2} - 1 2 0$ $H_{3}CS - CH_{2} - 1 2 0$ $H_{3}CCH_{2} - CH_{2} - 1 2 0$ $-CH_{2} - 1 2 0$ $-CH_{2} - 1 2 0$ $-CH_{2} - 1 2 0$ $-CH_{3} - CH_{2} - 1 2 0$ $-CH_{2} - 1 2 0$ $-CH_{2} - 1 2 0$	$(H_0C)_2CH - CH_2 - 1 $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Table 1.160

·ubic							•	
Compo	d. R ¹	-(CH ₂);-	k	m	n	chirality	R³	-(CH ₂) _{p 5} (CH ₂) _q G-R ⁶
1750	0	СН₂-	1	2	0	·R	н	-CH ₂ -N-C
1751	н₃CS—∢		1	2	0	·R	н	-CH ₂ -N-C-C-C-S
1752	H₃CCH2−	-Сн₂-	1	2	0	R.	· н	-CH ₂ -N-C
1753	8	CH2-	1	2	0	R	н	-CH ₂ -N-C-OCF ₃
1754	н₃с⊸{¯	CH ₃	1	2	0	R	н	-CH ₂ -N-C
1755	H₃C-√ H₃C	CH ₃	1	2	0	R	н	-CH ₂ -N-C
1756	(H ₆ C) ₂ CH	~ -a+ _₹	1	2	0	R	н	-CH ₂ -N-C-C
	Br	Br CH ₂ -					Н	-CH ₂ -N-C-CF ₃
1758	H₃CO-BI	Br CH ₂ -	1	2	0	R	H ·	-CH ₂ -N-C-CF ₃
1759	Н₃С	_у̂—сн₂–	1	2	0	R	н	-01-H2-H2-
1760	н₃с-{	∕ −сн₂-	1	2	0	R	H	-CH ₂ -N-C

Table 1.161

Compd.	R ² —(CH ₂) _j —	k	m	'n	chirality	· R³	$-(CH_2)^{\frac{R^4}{p+1}}(CH_2)^{\frac{1}{q}}G^{-R^6}$
1761	H₃C-{	1	2	0	R	н	-CHZ-N-C-N-CI
1762	CH ₃ N—CH ₂ - CH ₃	1	2	0	R	н	-ch - H c Cl
1763	—CH₂-	2	2	0	-	н	-CH ₂ -N-C
1764	СН₂-	2	2	0	•	н	C H2 CH2 - N- C C
1765	◯ -CH ₂ -	2	2	0	-	н	(S) Q OCH ₂ CH ₃ -CH-N-C S CH ₂ CH(CH ₃) ₂
1766	CH₂-	2	2	0	-	н	(<i>F</i>) OCH ₂ CH ₃ CH-N-C
1767	с⊢—СН₂-	1	3	1		н	-CH ₂ -N-C-COCH ₂ CH ₃
1768	C├─ ─ CH ₂ -					н	-CH2CH2-N-C
1769	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH2-N-C-N-CI -CH2-N-C-N-CI
1770	CH ₃	1	2	0	R	н	-cH2-Hc-Q HN-C-N-CI
1771	CH₃ N CH₂- CH₃	1	2	0	R	Н .	-cH₂-N-C (H₃C)₃C-C+N-C H₃C

Table 1.162

Comp No.	d. R ¹ (CH ₂)	k	m	n	chirality	⁻ R³	$-(CH_2)_p + (CH_2)_q - G-R^6$
1772	CH ₃ N CH₂- CH₃				R	н	H°C H°C A
1773	CH ₃ N CH ₂ - CH ₃	1	2	0	R	н	- CH ₂ - N C - H ₃ C
1774	CH ₃ CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-
1775	H0-CH ₂ -CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1776	H₃CO—CH₂—	1	2	0	R	н	-CH ₂ -N-C-S
1777	CH_CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1778	H ₃ C-\CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1779	CH ₂	2	2	1	-	H .	-CH ₂ -N-C
1780	Br—⟨¯>−CH ₂ −	2	2	1	-	Н	-CH ₂ -N-C
1781	HO-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
782	H ₂ C=CH-{	2	2 ·	1	•	`H	$-CH_{2}-N \cdot C \longrightarrow CF_{3}$ $+L_{2}N$

Table 1.163

	.103						
Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - G-R^6$
1783	NC-CH2-	2	2	1	-	н	-CH ₂ -N-C-CF ₃
1784	CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C
1785	CH ₃ (CH ₂) ₂ —————————————————————————————————	2	2	1	-	н	-CH ₂ -N-C
1786	CH ₂ -	2	2	1	-	Н	$-CH_2-N$ CF_3 H_2N
1787	CH ₃ (CH ₂) ₂ —()—CH ₂ —	- 1	2	0	R	н	-CH ₂ -N-C- H ₂ N
1788	CH ₃ CH ₂ −	2	2	1	-	H	-CH ₂ -N-C- H ₂ N
1789	H₃CO-{	2	2	1	-	н	-CH ₂ -N-C
1790	CH-{	1	2	0	s	Н	-CH ₂ -N-C
1791	CHCH	1	2	0	S	н	$-CH_2-N-C-$ H_2N
1792	CH ₃	2	2	1	-	н	-CH ₂ -N-C-F
1793	a—⟨S−a+₂−	2	2	1	• .	н	-CH ₂ -N-C-F H ₂ N

Table 1.164

Compd No.	R ¹ (CH ₂) _j -	k	m	n	chirality	[°] R³	$-(CH_2)_p + (CH_2)_q G - R^6$
1794	H₃C-{CH₂-	2	2	1	-	Н	-CH ₂ -N-C
1795	CH₂-	2	2	1	<u>-</u>	н	$-CH_2-N-C$ H H_2N
1796	Br—CH₂−	2	2	1	-	н	-CH ₂ -N-C-F H ₂ N
1797	HO-CH ₂ -	2	2	1	-	н	CH ₂ -N-C
1798	H ₃ CO-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-F H ₂ N
1799	H ₂ C=CH-\(\bigc\)-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-F H ₂ N
1800	NC-CH2-	2	2	1	-	Н	-CH ₂ -N-C
1801	CH2-	2	2	1	-	н	-CH ₂ -N-C
1802	HO-CH ₂ -CH ₂ -	· 1	2	0	R	н	-CH ₂ -N-C
1803	HO-CH ₂ -	, 1	2	0	R	н	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
1804 .	H ₃ C(CH ₂) ₂ —————————————————————————————————	2	2	1	-	н	$-CH_2-N-C$ H_2 H_2 H_2

Table 1.165

· ab.c							•
Compd.	R ¹ (CH ₂),-	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1805	Br	1	2	0	R	н	-CH ₂ -N-C-SCF ₃
1806	H₃ CO-{CH₂-	1	2	0	R	н	-CH ₂ -N-C-SCF ₃
1807	H ₃ CQ HO————————————————————————————————————	1	2	0	R	н	-CH ₂ -N-C-SCF ₃
1808	HQ H ₃ CO-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-SCF ₃
1809	но-{	1	2	0	R	н	-CH ₂ -N-C-SCF ₃
1810	CH₂-	1	2	0	R	н	-CH ₂ -N-C-SCF ₃
1811	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-SCF ₃
	H₃CS-{}-CH₂-					H	-CH ₂ -N-C-SCF ₃
1813	н₃ссн₂-{_}-сн₂-	1	2	0	R	н	-CH ₂ -N-C-SCF ₃
1814	CH2-	1	2	0	R	н	-CH ₂ -N-C-SCF ₃
1815 .	H₃C−CH₂−	. 1	2	0	R	н :	-CH ₂ -N-C-SCF ₃ -CH ₂ -N-C-SCF ₃ -CH ₂ -N-C-SCF ₃ -CH ₂ -N-C-SCF ₃

Table 1.166

							•
Compd No.	R ¹ (CH ₂),	k	m.	n	chirality	'R³	$-(CH_2)_{p}$ $+ \frac{R^4}{R^5}$ $(CH_2)_{q}$ $- G-R^6$
1816	(CH ₃) ₂ C H-{	· 1	2	0	R	Н.	-CH ₂ -N-C-SCF ₃
1817	(CH ₃) ₃ C-⟨ CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-SCF ₃
1818	Br-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-C-CH ₂
1819	H₃CO-{}CH₂-	1	2	0	R	н	-CH ₂ -N-C-C
1820	H0-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-C
1821	HQ H₃CO-CH₂-	. 1	2	0	R	Н	-CH ₂ -N-C-C
1822	HO-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-C
1823	CH₂-	1	2	0	R	н	-CH ₂ -N-C-C
1824	CH ₂ -	1	2	0	R	, н	-CH ₂ -N-C
1825	H₃CS-()-CH₂-	1	2	0	R	н	-CH ₂ -N-C
1826 .	H ₃ CCH ₂ -CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-OCHF ₂

Table 1.167

Compd.	R ¹ (CH ₂)-	, k	m	'n	chirality	R³	$-(CH_2)_{p}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
1827	O-CH₂-	1	2	0	R	н	-CH ₂ -N-C-OCHF ₂
1828	CH ₃	1	2	0	R	н	-CH ₂ -N-C-
1829	H_3C CH_3 CH_2 CH_2	1	2	0	R	н	-CH ₂ -N-C
1830	(CH ₃) ₂ CH-CH ₂ -	1	2	0	R	. н	-CH ₂ -N-C-OCHF ₂
1831	Br—CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-C(CH ₃) ₃
1832	H₃CO-{CH₂-	1	2	0	R	н	-CH ₂ -N-C-C(CH ₃) ₃
1833	H ₃ CQ HO—CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-C(CH ₃) ₃
1834	HQ H₃CO-CH₂-	. 1	2	0	R	H	-CH ₂ -N-C-C(CH ₃) ₃
1835	но-{_}сн₂-	1	2	0	, R	н	-CH ₂ -N-C-C(CH ₃) ₃
1836	CH₂−	1	2	0	R	н	-CH ₂ -N-C-C(CH ₃) ₃
1837	- CH ₂ -	. 1	2	0	R	н	-CH ₂ -N-C-C(CH ₃) ₃

Table 1.168

Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} G - R^6$
1838	H₃CS-{\bigce}-CH2-	1	2	0	R	н	-CH ₂ -N-C-(CH ₃) ₃
1839	H ₃ CCH ₂ —CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-(CH ₃) ₃
1840	O-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-(CH ₃) ₃
1841	H ₃ C-CH ₂ -	, 1	2	0	R	н .	-CH ₂ -N-C-(CH ₃) ₃
1842	H ₃ C CH ₃ H ₃ C	1	2	0	R	н	-CH ₂ -N-C-(CH ₃) ₃
1843	(CH ₃) ₂ CH-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-(CH ₃) ₃
1844	(CH ₃) ₃ C-CH ₂ -	1	2	0	R	н	-CH2-N-C-(CH3)3
1845	H ₃ CCH ₂ —CH ₂ —	1	2	0	R	• н	-CH2-N-C-S HN CH2-CH2CH3
1846	H ₃ C CH ₂ -	. 1	2	0	R	H	-CH ₂ -N-C-OCHF ₂
1847	(CH ₃) ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-C
1848	H ₃ CQ HO-CH ₂ -	1	2	0	R	H	-CH ₂ -N-C-

Table 1.169

Compd.	R ¹ (CH ₂)j-	k	m	п	chirality	R³	$-(CH_2)^{R^4}_{p} + (CH_2)^{q}_{q} - G^{-R^6}$
1849	CH ₂ -	1	2	0	R	н	-cH2-H-c-
1850	H ₃ CCH ₂	1	2	0	R	н	-CH ₂ -N-C-
1851	H ₃ C-CH ₂ -CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
1852	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
1853	H ₃ CQ HO—CH₂-	1	2	0	R	н	-CH2-N-C-
1854	CH ₂ -	1	2	0	R	н	-ch2-N-C-
1855	H3CCH2CH2-	1	2	0	R	н	-CH ₂ -N-C-
1856	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
1857	CH₂-	1	2	0	R	н	-CH ₂ -N-C
1858	Br-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-Br
1859	н₃со-{Сн₂-	1	2	0	R	н	-CH ₂ -N-C

Table 1.170

Compo	1 R	-					R ⁴
No.	$\begin{array}{ccc} & & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$	k	m	n	chirality	R³	$-(CH_2)^{R^4}_{P^5}(CH_2)^{G-R^6}_{Q^7}$
1860	H ₃ CQ HO————————————————————————————————————	1	2	0	R	н	-CH ₂ -N-C-Br
1861	HQ H₃CO—CH ₂ —	1	2	0	R	н	$-CH_2-N-C$ H_2N H_2N
1862	HOCH ₂	1	2	0	R	н	-CH ₂ -N-C
1863	CH₂-	1	2	0	R	H .	$-CH_2-N-C \longrightarrow Br$ H_2N
1864	H₃CS-{}CH₂-	1	2	0	R .	H	-CH ₂ -N-C
1865	O—CH₂-	1	2	0	R	н	$-CH_2-N-C$ H_2N H_2N
1866	H ₃ C CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1867	(CH ₃) ₂ CH-CH ₂ -	1	2	0	R	н	$-CH_2-N-C-\longrightarrow H_2N$
1868	(CH ₃) ₃ C-CH ₂ -	1	2	0	R	н .	-CH ₂ -N-C-SBr
1869	Br—CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1870	H₃CO-(CH₂-	1	2	0	R	н	$-CH_2-N-C$ H_2N

Table 1.171

Compd. No.	R ¹ (CH ₂)-	k	m	n	chirality	R³	$-(CH_2)_{p}^{R^4}$ $+(CH_2)_{q}^{-}G^{-}R^6$
1871	H ₃ CQ HO————————————————————————————————————	1	2	0	R	н	$-CH_2-N-C-$ H_2N
1872	HQ H₃CO—CH₂-	1	2	0	R	H	-CH ₂ -N-C
1873	но-{	1	2	0	R	H	$-CH_2-N-C$ H_2N
1874	CH ₂ -	1	2	0	R	н	$-CH_2-N$ H_2N
1875	CH ₂ -	1	2	0	Ŗ	н	$-CH_2-N-C-$ H_2N
1876	H₃CS-CH₂-	1	2	0	R	н	$-CH_2-N-C-$ H_2-N H_2-N
1877	н₃ссн₂{Т}сн₂-	1	2	0	R	н	$-CH_2-N$ H_2 H_2
1878	o√CH ₂ -				R	н	$-CH_2-N-C$ $H_2 N$
1879	CH ₃ CH ₂ - CH ₂ -	1	2	0	R	н	$-CH_2-NC - $ H_2N
1880	(CH ₃) ₂ CH-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1881	(CH ₃) ₃ C-CH ₂ -	1	2	0	R	н	$-CH_{2}-N$ $+l_{2}N$ $+l_{2}N$

Table 1.172

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1882	Br—⟨¯¯→CH₂−	1	2	0	R	н	-CH ₂ -N-C
1883	H ₃ CO	1	2	0	R	н	-CH ₂ -N-C-NO ₂
1884	H ₃ CQ HO————————————————————————————————————	1	2	0	R	н	-CH ₂ -N-C
1885	HQ H ₃ CO—CH ₂ —	1	2	0	R	Н	-CH ₂ -N-C-NO ₂
1886	HO-{}-CH ₂ -	1	2	0	R	н	- CH ₂ -N-C
1887	CH₂-	1	2	0	R	н	$-CH_2-N-C$ H_2N
1888	CH ₂ -	1	2	0	R	н	$-CH_{2}-NC$ $H_{2}N$ $H_{2}N$
1889	н₃сs—(сн ₂ -	1	2	0	R	н	-CH ₂ -N-C
1890	н₃ссн₂-СҺ₂-	. 1	2	0	R	н	$-CH_2-N$ C H_2N NO_2
1891	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1892	CH ₃ H ₃ C-CH ₂ -	.1	2	0	R	н	$-CH_{2}-N+C$ $H_{2}N$ $-CH_{2}-N+C$ $H_{2}N$ $+CH_{2}-N+C$ $H_{2}N$

Table 1.173

	R ¹ R ² (CH ₂) _j					R³	ー(CH ₂) _p + (CH ₂) _q G-R ⁶
1893	H ₃ C CH ₃ CH ₂ - H ₃ C	1	2	0	R	н	$-CH_2-N-C$ H_2N NO_2 H_2N
1894	(CH ₃) ₂ CH————————————————————————————————————	1	2	0	R	н	-CH ₂ -N-C-NO ₂
1895	(CH ₃) ₃ C	1	2	0	R	н	-CH ₂ -N-C-NO ₂
1896	HQ H ₃ CO—CH ₂ —	1	2	0	R	н	$-CH_{2}-N-C$ $H_{2}N$
1897	H₃CS-{}CH2-	1	2	0	R	н	$-CH_2-N-C-$ H_2N
1898	H ₃ CCH ₂ ————————————————————————————————————	1	2	0	R	н	$-CH_{2}-NC-$ $H_{2}N$
1899	(CH ₃) ₂ CH————————————————————————————————————	1	2	0	R	н	$-CH_{2}-NC-$ $H_{2}N$
1900	H ₃ CQ HO————————————————————————————————————	1	2	0	R	н	$-CH_2-N-C$ H_2N H_2N
1901	H ₃ C(СН ₂) ₂ ——————СН ₂ -	1	2	0	R	н	$-CH_{2}-N$ $H_{2}N$ OCF ₃
1902	O—CH₂-	1	2	0	R	н	$-CH_{2}-NC-OCF_{3}$ $-CH_{2}-NC-OCF_{3}$ $-CH_{2}-NC-OCF_{3}$
1903 .	(CH ₃) ₂ CH————————————————————————————————————	2	2	1	-	н	$-CH_2-N-C H_2N$ H_2N OCF_3

Table 1.174

Compd No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1904	H ₃ C(CH ₂) ₂ —————————————————————————————————	2	2	1	-	н	-CH ₂ -N-C
1905	CH2−	1	2	0	R	н	$-CH_2-N$ H_2N OCF_3
1906	O-CH₂-	1	2	0	R	н	-CH ₂ -N-C
1907	но-{сн₂-	1	2	0	R	н ·	-CH ₂ -N-C-OCF ₃
1908	H ₃ CO-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-OCF ₃
1909	H ₂ C=CH-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1910	Br-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C
1911	CH ₂ -	2	2	1	-	н	$-CH_2-N-C$ H H_2N $+N$
1912	HO-CH ₂ -			1	-	н	-CH ₂ -N-C
1913	Н₃С-СН₂-	2	2	1	-	н	-CH ₂ -N-C-OCF ₃
1914	H ₃ C-CH ₂ -	2	2	1	-	Н	$-CH_{2}-N-C$

Table 1.175

. 45.0							
Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)^{R^4}_{P_5}(CH_2)^{-}_{q}G^{-R^6}$
1915	H ₃ CCH ₂ Q HO-CH ₂ -CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1916	H ₃ C HO—CH₂−	1	2	0	R	н	-CH ₂ -N-C
1917	H3CCH2Q H0-CH2-	2	2,	1	-	н	$-CH_2-N$ CH_2 H_2N CCF_3
1918	H ₃ C HO—CH₂−	. 2	2	1	-	н	$-CH_2-N-C H_2N$ OCF_3
1919	NH ₂	2	2	1	-	н	-CH ₂ -N-C
1920	OH2-CH2-	2	2	1	-	н	-CH ₂ -N-C-F H ₂ N
1921	CH2-	1	2	0	R	н	$-CH_{2}-N-C$ $H_{2}N$
1922	NH₂ CH₂-	2	2	1	-	Н	-CH ₂ -N-C
1923	Br—CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-SCF ₃
1924	H ₃ CO-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-SCF ₃
1925	F—CH ₂ —	2	2	1	-	• н	-CH ₂ -N-C-SCF ₃

Table 1.176

	,					•	
Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	Ŕ³	$-(CH_2)_{p+1}^{R^4}(CH_2)_{q-1}^{R^6}G^{-R^6}$
1926	. F—CH ₂ —	2	2	1	-	н	-CH ₂ -N-C-SCF ₃
1927	HO-(2	2	1	-	н	-CH ₂ -N-C-SCF ₃
1928	CH₂-	2	2	1	-	н	-CH2-N-C-SCF3
1929	CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-SCF ₃
1930	H₃CS-{}CH2-	2	2	1	- ′	н	-CH ₂ -N-C-SCF ₃
1931	H₃CCH₂——————————————————————————————————	2	2	1	-	Н	-CH ₂ -N-C-SCF ₃
1932	CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-SCF ₃
1933	CH ₃ CH ₂ −	2	2	1	-	Н	-CH ₂ -N-C-SCF ₃
1934	H ₃ C CH ₂ -	2	2	1	-	Н .	-CH₂-N-C-SCF3
1935	O ₂ N-(CH ₂ -	2	2	1	- ≪	н	-CH₂-N-C-SCF3
1936 -	H ₃ C-CH ₂ -	2	2	1	•	. н	-CH ₂ -N-C-SCF ₃
	·						

Table 1.177

lable	1.177						
Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
1937	(CH ₃) ₂ CH	2	2	1	-	н	-CH ₂ -N-C-SCF ₃
1938	в€СН₂-	2	2	1	-	н	-CH ₂ -N-C
1939	H₃CO-(CH ₂ -	2	2	1	-	н	-CH₂-N-C-S-CH₃
1940	F-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-Sr CH ₃
1941	F-CH ₂ -	2	2	1	-	н	-CH₂-N-CSr -CH₃
1942	HO- (_)-CH ₂ -	2	2	1	-	н	-CH ₂ -N-CSr -CH ₃
1943	CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1944	-CH ₂ -	2	2	1	-	н	-CH₂-N-C-Sr CH₃
1945	H ₃ CS-CH ₂ -	2	2	1	-	H	-CH₂-N-C-CH₃
1946	H₃CCH₂—CH₂−	2	2	1	-	н	-CH₂-N-CCH₃
1947	CH₂−	2	2	1	<u>-</u>	н	-CH₂-N-CSr CH₃

Table 1.178

Compd. No.	R ² (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} G - R^6$
1948	H_3 C- CH_2 -	2	2	1	-	н	-CH ₂ -N-C-⟨Sr -CH ₃
1949	H ₃ C CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1950	O ₂ N-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C CH ₃
1951	H₃ C(-) CH ₂	2	2	1	-	н	-сн ₂ -и-с- Вг сн ₃
1952	BCH ₂ -	2	2	1	-	н	-CH ₂ -N-C-Br
1953	H₃CO-{CH₂-	2	2	1	-	н	-CH ₂ -N-CS ^{Br} F
1954	F—(¯¯)-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1.955	F—CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1956	HO-{	2	2	1	-	н	-CH ₂ -N-C
	CH ₂ -						-CH ₂ -N-C
1958	CH ₂ -	2	2	1	-	н	-CH₂-N-C-SF
							

Table 1.179

lable	1.175						
Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p}^{R^4}$ $+(CH_2)_{q}^{-}G^{-}R^6$
1959	H₃CS-{}CH₂-	2	2	1	-	н	-CH ₂ -N-C-Br
1960	н₃ссн₂{СҺ₂-	2	2	1	-	н	-CH ₂ -N-C
1961	O−CH2−	2	2	1	-	н	-CH ₂ -N-C- Br
1962	CH ₃ C−CH ₂ −	2	2	1	<u>-</u>	н	-CH ₂ -N-C
1963	H ₃ C CH ₂ -	2	2	1	-	н	-CH₂-N-C-SF
1964	02 N-CH2-	2	2	1	-	н	-CH ₂ -N-C-Br
1965	H₃C-{	2	2	1	-	н	-CH ₂ -N-C-Br
1966	(CH ₃) ₂ CH-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1967	Br—⟨□}−CH₂−	2	2	1	-	н	-CH ₂ -N-C
1968	H₃CO-{}-CH₂-	2	2	1	-	H	-CH ₂ -N-C
1969	но-{_}-сн₂-	2	2	1	-	н	-CH ₂ -N-C

Table 1.180

Compd.	R ¹ (CH ₂) _j -	k	·m	ภ	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - (C$
1970	CH ₂ -	2	2	1	•	н	-CH ₂ -N-C
1971	CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1972	H ₃ CS-CH ₂ -	2	2	1		н	-CH ₂ -N-C
1973	H₃CCH₂CH₂-	2	2	1	-	н	$-CH_2-N-C-$ H_2N
1974	H ₃ C-CH ₂ -	2	2	1	-	н	$-CH_2-N-C-$ H_2N
1975	O ₂ N-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1976	H ₃ C-CH ₂ -	2	2	1	-	H	$-CH_2-N-C$ H_2N
1977	NC-{\bigce}-CH2-	2	2	1	-	н	-CH ₂ -N-C
1978	(CH ₃) ₂ C H-√	2	2	1	-	н	-CH ₂ -N-C-
1979	CH₂-	2	2	1	-	Н	-CH ₂ -N-C
1980	CH₂-	2	2	1	-	н	-CH ₂ -N-C-F

Table 1.181

rable	1,101						
Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	˳	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1981	0 ₂ N-CH ₂ -	2	2	1	-	H	-CH ₂ -N-C
1982	NC—CH₂-	2	2	1	-	н	-CH ₂ -N-C-F
1983	(CH ₃) ₂ CH-CH ₂ -	2	2	1	-	н .	$-CH_2-NC$ H_2N F
1984	Br	2	2	1	-	н	-CH ₂ -N-C-
1985	H ₃ CO-()-CH ₂ -	2	2	1	-	н	- CH ₂ -N-C-
1986	HO-{	2	2	1	-	н	-CH ₂ -N-C
1987	CH2-	2	2	1	-	н	-CH ₂ -N-C
1988	CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1989	н₃сэ-{}сн₂-	2	2	1	-	· H	-CH ₂ -N-C
							-CH ₂ -N-C-
1991	O-CH2-	2	2	1	-	н	-CH ₂ -N-C

Table 1.182

1992 $H_3C \longrightarrow CH_2$ 2 2 1 - H $-CH_2 \longrightarrow CH_2$ 1993 $O_2N \longrightarrow CH_2$ 2 2 1 - H $-CH_2 \longrightarrow CH_2$ 1994 $H_3C \longrightarrow CH_2$ 2 2 1 - H $-CH_2 \longrightarrow CH_2$ 1995 $NC \longrightarrow CH_2$ 2 2 1 - H $-CH_2 \longrightarrow CH_2$ 1996 $(CH_3)_3CH \longrightarrow CH_2$ 2 2 1 - H $-CH_2 \longrightarrow CH_2$ 1997 $H_3C \longrightarrow CH_2$ 2 2 1 - H $-CH_2 \longrightarrow CH_2$ 1998 $B \longrightarrow CH_2$ 2 2 1 - H $-CH_2 \longrightarrow CH_2$ 1999 $H_3CO \longrightarrow CH_2$ 2 2 1 - H $-CH_2 \longrightarrow CH_2$ 1999 $-CH_2$ 2 2 1 - H $-CH_2 \longrightarrow CH_2$ 1990 $-CH_2$ 2 2 1 - H								
1993 $O_2N \longrightarrow CH_2-$ 2 2 1 - H $-CH_2-NC \longrightarrow H_2N$ 1994 $H_3C \longrightarrow CH_2-$ 2 2 1 - H $-CH_2-NC \longrightarrow H_2N$ 1995 $NC \longrightarrow CH_2-$ 2 2 1 - H $-CH_2-NC \longrightarrow H_2N$ 1996 $(CH_3)_2CH \longrightarrow CH_2-$ 2 2 1 - H $-CH_2-NC \longrightarrow H_2N$ 1997 $H_3C \longrightarrow CH_2-$ 2 2 1 - H $-CH_2-NC \longrightarrow H_2N$ 1998 $B \longrightarrow CH_2-$ 2 2 1 - H $-CH_2-NC \longrightarrow H_2N$ 1999 $H_3CO \longrightarrow CH_2-$ 2 2 1 - H $-CH_2-NC \longrightarrow CH_2-NC \longrightarrow CH_2-NC$	Compd No.	R ¹ (CH ₂)) ,	: m	n	chirality	R³	$-(CH_2)_{p}$ $+ (CH_2)_{q}$ $+ G-R^6$
1994 $H_3C \longrightarrow CH_{2^-}$ 2 2 1 - H $-CH_{2^-}NC \longrightarrow H_{2N}$ 1995 $NC \longrightarrow CH_{2^-}$ 2 2 1 - H $-CH_{2^-}NC \longrightarrow H_{2N}$ 1996 $(CH_3)_2CH \longrightarrow -CH_{2^-}$ 2 2 1 - H $-CH_{2^-}NC \longrightarrow H_{2N}$ 1997 $H_3C \longrightarrow -CH_{2^-}$ 2 2 1 - H $-CH_{2^-}NC \longrightarrow H_{2N}$ 1998 $B \longrightarrow -CH_{2^-}$ 2 2 1 - H $-CH_{2^-}NC \longrightarrow CG$ 1999 $H_3CO \longrightarrow -CH_{2^-}$ 2 2 1 - H $-CH_{2^-}NC \longrightarrow CG$ 2000 $F \longrightarrow -CH_{2^-}$ 2 2 1 - H $-CH_{2^-}NC \longrightarrow CG$	1992	H ₃ C-CH ₃	ı ; _{H₂} – 2	2	1	-	н	-CH ₂ -N-C
1995 NC—CH ₂ — 2 2 1 - H —CH ₂ —NC—H ₂ N—CH ₂ — 1996 (CH ₃) ₂ CH—CH ₂ — 2 2 1 - H —CH ₂ —NC—H ₂ N—CH ₂ — 1997 H ₃ C—CH ₂ — 2 2 1 - H —CH ₂ —NC—CH ₂ — CH ₂	1993	O₂N—(:H ₂ - 2	2	1	-	н	-CH ₂ -N-C
1996 $(CH_3)_2CH$ CH_2 2 2 1 - H $-CH_2$ CH_2 1997 $-CH_2$ 2 2 1 - H $-CH_2$ $-CH_2$ $-CH_2$ 1998 $-CH_2$ 2 2 1 - H $-CH_2$ $-CH_2$ 1999 $-CH_2$ 2 2 1 - H $-CH_2$ $-CH_2$ 1999 $-CH_2$ 2 2 1 - H $-CH_2$ $-CH_2$ 1990 $-CH_2$ 2 2 1 - H $-CH_2$	1994	H₃ C-{	H ₂ – 2	2	1	-	н	-CH ₂ -N-C-
1997 H_3C CH_2 2 2 1 - H $-CH_2$ CI CI $-CH_2$ 2 2 1 - CI $-CH_2$ CI $-CH_2$ $-CH_2$ 2 2 1 - CI $-CH_2$ $-CH_$	1995	NC-C-	-1 ₂ - 2	2	1	-	н	-CH ₂ -N-C
1998 Br $-CH_{2}$ 2 2 1 - H $-CH_{2}$ $-CH_{2}$ 2 2 1 - H $-CH_{2}$ $-CH_{2$	1996	(CH ₃) ₂ CH-	сн₂– 2	2	1	-	н.	-CH ₂ -N-C
1999 $H_3CO \longrightarrow CH_2-$ 2 2 1 - H $CH_2-N-C \longrightarrow CI$ 2000 $F \longrightarrow CH_2-$ 2 2 1 - H $-CH_2-N-C \longrightarrow CI$	1997	H ₃ C CH ₃	H ₂ - 2	2	1	-	н	-CH ₂ -N-C
2000 F-CH ₂ - 2 2 1 - H - CH ₂ - N-C-CH ₂ - 2 2 1 - H - CH ₂ - N-C-CH ₂ - CH ₂	1998	вСН	₂ – 2	2	1	-	Н	-CH ₂ -N-C-C
2001 HO—CH ₂ — 2 2 1 - H —CH ₂ —N-C—	1999	н₃со-{}-сі	H ₂ - 2	2	1	-	Н	-CH ₂ -N-C-CI
2001 HO—CH ₂ — 2 2 1 - H —CH ₂ —N-C—CI 2002 —CH ₂ — 2 2 1 - H —CH ₂ —N-C—CI								-CH ₂ -N-C-CI
2002 CH ₂ - 2 2 1 - H -CH ₂ -N-C-CI	2001	но-{-}-сн ₂	. 2	2	1	-	н	-CH2-N-C-CI
	2002	CH ₂	- 2	2	1	-	н .	-CH ₂ -N-C

Table 1.183

labic	1.100						
Compd.	R ¹ (CH ₂)	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
2003	CH2-	2	2	1	-	н	-CH ₂ -N-C-C
2004 ′	H₃CS-()-CH₂-	2	2	1	-	н	-CH ₂ -N-C-C
2005	н₃ссн₂—Сн₂-	2	2	1	-	н	-CH ₂ -N-C-C
2006	CH ₃ H ₃ C-⟨□ CH ₂ -	2	2	1	-	н	-CH2-N-C-
2007	0 ₂ N-(CH ₂ -	2	2	1	-	н	-CH2-N-C-
2008	H ₃ C-CH ₂ -	2	2	1	-	н	-CH2-N-C-
2009	NC{CH₂-	2	2	1	-	н	-CH ₂ -N-C-C
	(CH ₃) ₂ CH-(н	-CH2-N-C-
2011	CH ₃ H ₃ C CH ₂ -	2	2	1	-	н	СH2-И-С
	Br—CH₂-						-CH ₂ -N-C
2013	. H₃CO————————————————————————————————————	2	2	1	-	н	-CH ₂ -N-C

Table 1.184

								•
Comp No.	d. R ¹ / _{R²} /(C	H ₂) _j —	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
2014	но-{	-CH ₂ -	2	2	1	<u>-</u>	н	-CH ₂ -N-C
2015		-CH₂ -	2	2	1	-	н	-cH ₂ -N-c-⟨Br
2016		-CH₂ -	2	2	1	-	н	-CH ₂ -N-C
2017	н₃сѕ—	≻CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
2018	H₃CCH₂—⟨) сн₂-	2	2	1	-	н	-CH₂-N-C-SPr
2019		CH₂–	2	2	1	-	Н	-CH ₂ -N-C
2020	н₃с-{	H₃ -CH₂ -	2	2	1	-	Н	-CH ₂ -N-C
2021	O ₂ N-	-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-Br
2022	H ₃ C-	-CH₂ -	2	2	1	-	н	-CH₂-N-C-
2023	NC-{\bigs	CH ₂ -	2	2	1.	-	н	-CH ₂ -N-C-SBr
2024	(CH₃)₂CH—)—СН ₂ —	2	2	1	-	Н	-CH₂-N-C

Table 1.185

Compd. No.	R ² (CH ₂) _j -	k	m	n _.	chirality	R³	$-(CH_2)_p + (CH_2)_q - G-R^6$
2025	CH ₃ H ₃ C CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
2026	F-CH ₂ -	2	2	1	- -	H	-CH ₂ -N-C
20.27	BrCH ₂ -	2	2	1	-	н	-CH ₂ -N-C-SBr
2028	H3CO-()-CH2-	2	2	1	-	Н	-CH ₂ -N-C-Br
2029	HO- (CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
2030	CH₂-	2	2	1	-	н	-CH ₂ -N-C
2031	-CH ₂ -	2	. 2	1	-	Н	-CH ₂ -N-C-Br
2032	CH ₂ -					Н	-CH ₂ -N-C-S
2033	CH ₃	2	2	1	-	н	-CH ₂ -N-C-S
2034	0 ₂ N-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C
2035 .	H ₃ C-CH ₂ -	2	2	1	-	H	-CH ₂ -N-C

Table 1.186

Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - G - R^6$
2036	NC-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-Br
2037	H ₃ C — CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
2038	F—CH₂-	2	2	1	-	н	-CH ₂ -N-C-Br
2039	H ₃ C-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CN
2040	H ₃ C-CH ₂ -	1	2	0	R	н	-CH2-N-C-CH-OH
2041	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CH-
2042	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-H ₃ C-CH ₃
	H ₃ C-CH ₂ -				R	н	-CH ₂ -N-C-CH ₂ CH ₃ CH ₃
2044	CH ₃ CH ₂ CH ₃	1	2	0	R	н	-CH2-N-C
2045	CH ₃ -	1	2	0	R	, H	-c+2-H-c-
2046	CH ₃ CH ₂ — CH ₃	1	2	. 0	R	Н	-CH ₂ -N-C-H HN -CH ₂ -N-C-H HN -CH ₃ -N-C-H

Table 1.187

lable							
Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³ 	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
	CH ₃ CH ₂ - CH ₃					н	-CH ₂ -N-C
2048	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C
2049	CH ₃ CH ₂ -	1	2	0	R	н	-CH2-N-CH3
2050	H ₃ C S CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
2051	H ₃ C N CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
2052	B ₅ CH ₂ − OCH ₂ CH ₃	2	2	1	-	н	$-CH_2-N-C$ H_2N
2053	- H ₃ CQ - CH ₂ O CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C
	H ₃ CO-CH ₂ -					н	-CH ₂ -N-C-F H H ₂ N
2055	H ₃ CQ OH OH	2	2	1	-	н	-CH ₂ -N-C
2056	Br. CH ₂ -	2	2	. 1	-	н	-CH ₂ -N-C
2057	H ₃ CO—CH ₂ —	2	2	1	· •	`Н	-CH ₂ -N-C

Table 1.188

Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R ³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
2058	H ₃ CO OCH ₃	2	2	1	-	H	-CH ₂ -N-C
2059	CH₂				-	н	$-CH_2-N-C$
2060	H_3CO H_3CO CH_2 OCH_3	2	2	1	-	н	-CH ₂ -N-C
2061	F_CH ₃ CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
2062	F. H₃CO-CH₂-	2	2	1	-	н	-CH ₂ -N-C
2063	H ₃ CO - CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
2064	B ₁ —CH ₂ —	2	2	1	-	н	-CH ₂ -N-C-F H H ₂ N
2065	H ₃ CCH ₂ Q H ₃ CCH ₂ O-CH ₂ -	2	2	1	-	H	-CH ₂ -N-C
2066	OCH ₂ -CH ₂ -	2	2	1	-	н	$-CH_2-N-C-$ H_2N
2067	(H ₅ C) ₂ CHCH ₂	2	2	1	-	н	-CH ₂ -N-C
2068	CL F—CH ₂ -	2	2	1		Н	$-CH_{2}-N-C$ $+CH_{2}-N-C$ $+CH_{2}-N-C$ $+CH_{2}-N-C$ $+CH_{2}-N-C$ $+CH_{2}-N-C$

Table 1.189

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - (C$
2069	H ₃ C H ₃ CO—CH ₂ —	2	2	1	-	н	-CH ₂ -N-C
2070	Br CH ₂ - OC H ₃	2	2	1	-	н	-CH ₂ -N-C
2071	H ₃ CO-CH ₂ - OCH ₃	2	2	1	-	н	-CH ₂ -N-C
2072	(Ӊӡс)₂сно-{	2	2	1	-	н	$-CH_2-N-C +$ H_2N $+$ F
2073	CH ₂ Q CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
2074	H ₃ CO-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
2075	H ₃ CQ CH ₂ F	2	2	1	-	н	-CH ₂ -N-CF H ₂ N
2076	F-CH ₂ -	2	2	1		н	-CH ₂ -N-C
2077	CI OH₂−	2	2	· 1	-	н	-CH ₂ -N-C-F H ₂ N
2078	H₃CCH₂Q OH CH₂r	2	2	1	-	н	-CH ₂ -N-C
2079	н ₃ co-СН ₂ -СН ₂ -	2	2	1	-	. н	-CH ₂ -N-C

Table 1.190

Compo No.	$H \xrightarrow{R^2} (CH_2)_j$	- k	m	n	chirality	R ³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
2080	CH ₂ Q H ₃ CO	сн ₂ - 2	2	1	-	н	-CH ₂ -N-C
2081	CI HO—CH₂	_. 2	2	1	· _	н	-CH ₂ -N-C
2082	H₃CO-(OH	₁₂ – 2	2	1	-	н	-CH ₂ -N-C-F H ₂ N
2083	H ₃ CO HO———————————————————————————————————	- 1	2	0	R	н	-CH ₂ -N-C
2084	H ₃ CO HO CH ₂ H ₃ CO	- 1	2	0	R	н	-CH ₂ -N-C
2085	H₃CO—CH	₂ - 1	2	0	R	н	$-CH_2-N-C- \xrightarrow{P} CF_3$ $+D_2 N$
2086	но- С I -сн ₂ -	. 1	2	0	R	н	-CH ₂ -N-C
2087	(H ₃ C) ₂ N————————————————————————————————————	l ₂ - 1	2	0	R	н	-CH ₂ -N-C
2088	(H ₃ CCH ₂) ₂ N-√CH	b- 1	2	0	R	н	-CH ₂ -N-C- H ₂ N
2089	F-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
2090	О О О СН,	r 1	2	0	R	н	$-CH_2-N-C-$ $-CH_2-N-C-$ $-CH_2-N-C-$ $+_2N$ $+_2N$ $+_2N$

Table 1.191

lable i	.191						
Compd.	R ¹ (CH ₂),-	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G^{-R^6}$
2091	с⊢{Сн₂-	2	2	1	-	н	OCH ₂ CH ₃
2092	C├ ~ CH ₂ -	2	2	1	-	н	CH NC NH
2093	CH2-	2	2	1	-	н	(A) OCH2CH3 -CHN-C-SCH3
2094	CH-2−	2	2	1	-	н	(R O OCH ₂ CH ₃ -CH N C CH ₂ CH ₃
2095	CI—CH₂−	2	2	1	-	Н	(F) OCH ₂ CH ₃ -CH-N-C
2096	CH2-	2	2	1	-	н	(R) OCH ₂ CH ₃ CH-NC CH ₂ CH ₂ CH ₃
2097	CH2-	2	2	1	-	н	(F) OCH ₂ CH ₃ -CH-N-C-CH ₂ CH ₃ CH ₂ CH ₂ CH ₃
2098	CH2-	2	2	1	-	н	(R O OCH ₂ CH ₃ -CH-NC-CI
	CI—CH2-					Н	-chhc
2100	О—{СH ₂ -	2	2	1	-	н	CH ₂ OCH ₂ CH ₃
2101	CHCH2-	2	2	1	-	н	CH2-OCH2-CH3 CH2-CH2-CH3

Table 1.192

Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} - G - R^6$
2102	CH2-	2	2	1	-	н	-CH-N-C
2103	CHCH ₂ -	2	2	1	- -	н	H ₃ C-CHOCH ₂ CH ₃
2104	C	2	2	1	-	н	CH ₂ CH ₂ C-OCH ₃ CH ₂ CH ₂ -C-OCH ₃ O H
2105	H₃CO OH CH₂-	2	2	1	-	н	$-CH_2-N-C-$ H_2N
2106	H₃C OH CH₂-	2	2	1	-	н	-CH ₂ -N-C-F H ₂ N
2107	Br CH₂-	- 2	2	1	-	н	$-CH_2-N-C$ H_2N F H_2N
2108	CH ₃ CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-F H ₂ N
2109	Br O CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-F H ₂ N
	H ₃ CCH ₂ CH ₂ -					н	-CH ₂ -N-C-F H ₂ N
2111	CH ₂ -	2	2	1	-	н	$-CH_{2}-N-C$ $H_{2}N$ $-CH_{2}-N-C$ $H_{2}N$ F F F F $H_{2}N$
2112	H ₃ CO—CH ₂ —CH ₂ —	2	2	1	-	н	$-CH_2-N-C$ H_2N F F

Table 1.193

Table 1	1.193						
Compd.	R ¹ (CH ₂)-	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G^{-R^6}$
2113	H ₂ N H ₃ CO—CH ₂ —	2	2	1	-	н	-CH ₂ -N-C
2114	H ₂ N H ₃ C-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-F H ₂ N
2115	с⊢Ср-сн₂-	2	2	1	-	н	(<i>F</i>)
2116	C├─{}CH₂-	2	2	1	-	н	(<i>F</i>)
2117	CH2−	2	2	1	-	н	CH2-NH
2118	HO—CH ₂ -	- 1	2	0	R	н	$-CH_2-N-C H_2N$
2119	OH HO-CH ₂ -	1	2	0	R	н	$-CH_2-N-C-$ H_2 H_2 N
	Br—CH ₂ -					н	-CH ₂ -N-C
2121	OCH ₃	1	2	0	R	н	-CH ₂ -N-C
2122	CH	1	2	0	R	н	-:H ₂ -N-C
2123	CH2- CH2- NO2	. 1	. 2	0	R	H	H_2N CF_3 H_2N H_2N CF_3 CF_3 CF_3 CF_3 CF_3 CF_3

Table 1.194

							
Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R ³	$-(CH_2)_{p} + (CH_2)_{q} - G - R^6$
2124	O ₂ N CI—CH ₂ —	1	2	0	R	Н	-CH ₂ -N-C- H ₂ N
2125	O ₂ N H ₃ CO CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
2126	O ₂ N H ₃ C—CH ₂ —	1	2	0	R	н	-CH ₂ -N-C-CF ₃
2127	CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
2128	H ₂ N H ₃ CO-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
2129	H ₂ N H ₃ C—CH ₂ -	- 1	2	0	R	н	-CH ₂ -N-C
2130	O. V. CH ² -	2	2	1	-	н	-CH ₂ -N-C
2131	CH ₃ CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-F H ₂ N
2132	H ₂ N CI————————————————————————————————————	1	2	0	R	H	-CH ₂ -N-C-S
2133	1 ₃ C) ₂ N CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
2134	CH ₂ - N(CH ₃) ₂	1	2	0	R	Н	$-CH_{2}-N-C-$ $H_{2}N$ $-CH_{2}-N-C-$ $H_{2}N$ $-CH_{2}-N-C-$ $H_{2}N$ $-CH_{3}-N-C-$ $H_{2}N$ $-CH_{3}-N-C-$ $H_{2}N$

Table 1.195

labie							
Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
2135	(H ₃ C) ₂ N H ₃ CO————————————————————————————————————	1	2	0	R	н	-CH ₂ -N-C
2136	(H ₃ C) ₂ N H ₃ C—CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
2137	CH₃ CH₂−	1	2	0	R	н	$-CH_2-N-C H_2N$
2138	CH ₃ CH ₃	1	2	0	R	н	$-CH_2$ -N-C- $-CF_3$
2139	H ₃ C, CH ₂ -CH ₂ -CH ₃	1	2	0	R	H	-CH ₂ -N-C
2140	CH ₂ -	2	2	1	-	н	$-CH_2-N-C$ H_2 H_2 H_2 N
2141	H ₂ N HO—CH ₂ —	2	2	1	-	Н	$-CH_2-N-C$ H_2N H_2N
	H ₂ N CH ₂ -					Н	$-CH_2-N-C$ H_2 H_2 N
2143	HM&cH³	2	2	1	-	Н	$-CH_2-N-C$ H_2N F
2144	H ₂ N H ₃ CO—CH ₂ —	2	2	1	•	Н	$-CH_{2}-NC-$ $H_{2}N$ $-CH_{2}-NC-$ $H_{2}N$ $-CH_{2}-NC-$ $H_{2}N$
2145	H ₂ N CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C

Table 1.196

14510							
Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R ³	-(CH ₂) _p + (CH ₂) _q -G-R ⁶
2146	CH ₂ -NH ₂	2	2	1	-	н	-CH ₂ -N-C
2147	H ₃ C-C-NH H ₃ CO-CH ₂ -	2	2	1	-	н	$-CH_2-N-C$ H_2N H_2N
2148	H ₃ C-C-NH HO-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-F H ₂ N
2149	O ₂ N HO-CH ₂ -	.1	2	0	R	н	$-CH_2-NCC+$ H_2N CF_3
2150	H ₃ C-C-NH CIH CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
2151	нис-сн₃	- 1	2	0	R	н	$-CH_2-NCC+$ H_2N CF_3
2152	H ₃ C-C-NH H ₃ CO-CH ₂ -	1	2	0	R	н	$-CH_2-NCC$ H_2N CF_3
2153	H ₃ C-C-NH H ₃ C-C-NH CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
	H ₃ C-C-NH H ₃ CO-CH ₂ -						-CH ₂ -N-C
.2155	H ₃ C-C-NH HO-CH ₂ - CH ₂ - HNC-CH ₃	2	2	1	-	н	$-CH_{2}-N \cdot C \longrightarrow CF_{3}$
2156	HNP CH ²	2	2	1	-	н	$-CH_2-N-C H_2N$ CF_3

Table 1.197

Table 1	.197						
Compd.	R ¹ (CH ₂),	k	m	n	chirality	R³ 	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
2157	HO—CH ₂ —	1	2	0	R	н	$-CH_2-NCF_3$ H_2N
2158	H ₃ C-NH HO-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
2159	H ₃ C-NH H ₃ CO-CH ₂ -	2	2	1	-	н	$-CH_2-N-C$ H_2 H_2 H_2 H_2
2160	H ₃ C-NH HO——————CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
2161	H ₃ C-NH CH-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
2162	H ₃ C-NH H ₃ CO-CH ₂ -	. 2	2	1	-	н	$-CH_2-N-C-$ H_2N
2163	H ₃ C-NH HO-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
2164	CH ₃ CH₂−				•	н .	-CH ₂ -N-C-CF ₃
2165	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
2166	€ S CH2-	1	2	0	R	^ H	-CH ₂ -N-C- H ₂ N
2167	H N CH ₂ -	1	2	0	·R	н	$-CH_{2}-N+C-$ $H_{2}N$ $-CH_{2}-N+C-$ $H_{2}N$ $-CH_{2}-N+C-$ $H_{2}N$ $-CH_{2}-N+C-$ $H_{2}N$ $-CH_{2}-N+C-$ $H_{2}N$

Table 1.198

Compd. No.	n.					R ³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
2168	H ₃ C CH ₂ - CH ₃ -	1	2	0	R	н	-CH ₂ -N-C
2169	H ₃ C-CH ₃ CH ₃ CH ₃	1	2	0	R	н	-CH ₂ -N-C
2170	C) CH2-	1	2	0	R	н	-CH ₂ -N-C
2171	HN CH2-	1	2	0	R	н	-CH ₂ -N-C
2172	F ₃ C CH ₂	. 1	2	0	R	н	$-CH_2-N$ CF_3 H_2N
2173	CH ₂ -CH ₃	· 1	2	0	R	н	-CH ₂ -N-C-CF ₃ H ₂ N
2174	H ₃ C CH ₃ B CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
2175	H ₃ CO-(N-)-CH ₂ -					н	-CH ₂ -N-C-CF ₃
2176	H ₃ C'N CH ₂ -	1	2	0	·R	н	-CH ₂ -N-C
2177	H ₃ C OH CH ₂ -CH ₂ OH	1	2	0	R	н	-CH ₂ -N-C-CF ₃
2178	H ₃ CO-CH ₂ -	1	2	0	·R	н	$\begin{array}{c} H \\ H_2N \\ \end{array}$ $-CH_2-N-C \longrightarrow H_2N \\ -CH_2-N-C \longrightarrow H_2N \\ -CH_2-N-C \longrightarrow H_2N \\ \end{array}$ $-CH_2-N-C \longrightarrow H_2N \\ -CF_3$ $-CH_2-N-C \longrightarrow H_2N \\ \end{array}$

Table 1.199

lable	1.199						
Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} G - R^6$
2179	H ₃ C-Ç-N-CH ₂ -	1	2	0	R	н	$-CH_2-NCH_2$ H_2N
2180	CH2)2-	1	2	0	R ,	н	$-CH_2-N+C-$ H_2-N
2181	H ₃ CO N CH ₂ −	1	2	0	R	н	$-CH_2-NC - CF_3$ H_2N
2182	H ₃ C N CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
2183	S-N N-CH2-	1	2	0	R	н	-CH ₂ -N-C
2184	S-N CH ₂ -	. 2	2	1	-	Н	$-CH_2-N-C$ H_2 H_2 H_2
2185	5-N CH ₂ -	2	- 2	1	-	н	-CH ₂ -N-C
2186	CH2-					H	-CH ₂ -N-C
2187	H ₂ N HO—CH ₂ —	1	2	0	R	н	-CH ₂ -N-C-CF ₃ H ₂ N C-CF ₃
2188	CH ₂ -	2	2	1	•	н	-CH ₂ -N-C
2189	CH ₂ -	1	2	0	R	. н	-CH ₂ -N-C

Table 1.200

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
2191		Compd. No.	R^1 $(CH_2)_j$	k	m	n	chirality	R³	$-(CH_2)_{p} + G^4 + G^6$
2192 \longrightarrow_{CH_2} 2 2 1 - H \longrightarrow_{H_2N} \longrightarrow_{CH_2} CF3 2193 \longrightarrow_{CH_2} 2 2 1 - H \longrightarrow_{CH_2} CF3 2194 \longrightarrow_{H_3C} CH2 2 2 1 - H \longrightarrow_{H_2N} CF3 2195 \longrightarrow_{CH_2} 2 2 1 - H \longrightarrow_{H_2N} CF3 2196 \longrightarrow_{H_3C} CH2 1 2 0 R H \longrightarrow_{H_2N} CF3 2197 \longrightarrow_{H_3C} CH2 1 2 0 R H \longrightarrow_{H_2N} CF3 2198 \longrightarrow_{CH_2} 1 2 0 R H \longrightarrow_{CH_2} CF3 2198 \longrightarrow_{CH_2} 1 2 0 R H \longrightarrow_{CH_2} CF3		2190	CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
2193 $\begin{array}{cccccccccccccccccccccccccccccccccccc$		2191	CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
2194 $\underset{H_3C}{\overset{H_2N}{\longrightarrow}} CH_{2^-}$ 2 2 1 - H $\underset{H_2N}{\overset{CF_3}{\longrightarrow}} CF_3$ 2195 $\underset{H_3C}{\overset{C}{\longrightarrow}} CH_{2^-}$ 2 2 1 - H $\underset{H_2N}{\overset{C}{\longrightarrow}} CF_3$ 2196 $\underset{H_3C}{\overset{H_3C-NH}{\longrightarrow}} CH_{2^-}$ 1 2 0 R H $\underset{H_2N}{\overset{C}{\longrightarrow}} CH_{2^-}$ 1 2 0 R $\underset{H_2N}{\overset{C}{\longrightarrow}} CH_{2^-}$ 1 2 2 0 R $\underset{H_2N}{\overset$		2192	SH2-CH2-	2	2	1	-	н	-CH ₂ -N-C
2195 $\xrightarrow{H_2N}$ 2 2 1		2193	CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
2196 H_3C-NH		2194	H ₂ N H ₃ C — CH ₂ —	2	2	1	-	н	-CH ₂ -N-C
2197 H_3C-NH 1 2 0 R H $-CH_2-N-C-1$ 2 0 R H $-CH_2-N-C-1$ 1 2 0 CF ₃		2195	CH2-	.2	2	1	-	н	-CH ₂ -N-C
2198 CH ₂ -NH CH ₂ -NH CH ₂ -N-C CF ₃ CF ₃ CF ₃ CF ₃		2196 -	H ₃ C-NH H ₃ C-CH ₂ -	1	,2	0	R	н	-CH ₂ -N-C
H ₃ C-NH CF ₃	;	2197	H ₃ C-NH H ₃ CO-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
H₃C-ŊH	2	2198	H ₃ C-NH CH ₂ -CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C- H ₂ N
2200 H ₃ C-NH CH ₂ - 2 2 1 - H -CH ₂ -N-C-S	.2	1100	H ₃ C-NH H ₃ C-CH ₂ -	2	2	1	-	н	O ,CF₃
H₂Ń	- 2	2200	H ₃ C-NH CH ₂ -	2	2	1	-	н	-CH ₂ -N-C

Table 1.201

Table 1	.201						
Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+\frac{R^4}{R^5}(CH_2)_{q}G-R^6$
2201	H ₃ C-NH H ₃ C-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
2202	CH ₂ -	1	2	0	R	н	$-CH_2-NCC H_2N$
2203	CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
2204	CH₃ CH₂-	2	2	1	-	н	-CH ₂ -N-C
2205	CH ₃	2	2	1	-	н	-CH ₂ -N-C
2206	СH ₃	2	2	1	-	Н	-CH ₂ -N-C
2207	СН ₃ НО⟨СН ₂ -	2	2	1	-	н	-CH ₂ -N-C-F H H ₂ N
2208	HN-CH ₃	2	2	1	-	н	-CH ₂ -N-C
2209	HN-CH₃ CH2-	2	2	1	-	н	-CH ₂ -N-C-F H ₂ N

The present invention can also use acid addition salt of the cyclic amine compound where such acids include, for example, mineral acids such as hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid, carbonic acid, and the like, as well as organic acids such as maleic acid, citric acid, malic acid, tartaric acid, fumaric acid, methanesulfonic acid, trifluoroacetic acid, formic acid, and the like.

Furthermore, the present invention can also use a C_1 - C_6 alkyl addition salt of the cyclic amine compound, such as 1-(4-chlorobenzyl)-1-methyl-4-[(N-(3-trifluoromethylbenzoyl)glycyl)aminomethyl]piperidinium iodide, where such alkyl include, for example, a methyl, ethyl, n-propyl, n-butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl, isopropyl, isobutyl, sec-butyl, tert-butyl, isopentyl, neopentyl, tert-pentyl, 2-methylpentyl, 1-ethylbutyl, and the like, suitably specifically including, a methyl and ethyl group. As preferred specific examples for counter anion of the ammonium cation, a halide anion such as fluoride, chloride, bromide or iodide can be listed.

The present invention may use racemates and all possible optically active forms of the compound represented by the above formula (I).

20 Compound represented by the above general formula (I) can be synthesized by any of the general preparations given below.

(Preparation 1)

10

15

25

30

A preparation which call for treating one equivalent of a compound represented by the formula (II) below:

$$\begin{array}{c}
R^{1} \longrightarrow (CH_{2})_{j} - N \longrightarrow (CH_{2})_{n} - NH \\
R^{2} \longrightarrow (CH_{2})_{m} \longrightarrow (CH_{2})_{n} - NH \\
R^{3} \longrightarrow (CH_{2})_{m} \longrightarrow (R^{3})_{n} \longrightarrow (R^{3})$$

(where R^1 , R^2 , R^3 , j, k, m, and n are the same as defined respectively in the above formula (I)) with 0.1-10 equivalents of a carboxylic acid represented by the formula (III) below:

{where R^4 , R^5 , R^6 , G, p, and q are the same as defined respectively in the above formula (I)}, or its reactive derivative, either in the absence or presence of solvent.

The reactive derivative for the carboxylic acid in the above formula (III) include highly reactive carboxylic acid derivatives, which are usually used in synthetic organic chemistry, such as acid halides, acid anhydrides, mixed acid anhydrides.

Such reactions can be more smoothly run by using suitable amounts of a dehydrating agent such as molecular sieve, coupling reagent such as N-ethyl-N'-(3-(DCC), dicyclohexylcarbodiimide dimethylaminopropyl)carbodiimide (EDCI or WSC), carbonyldiimidazole (CDI), $\emph{N} ext{-hydroxysuccinimide}$ (HOSu), $\emph{N} ext{-hydroxybenzotriazole}$ (HOBt), benzotriazol-1-(PyBOP®), yloxytris(pyrrolidino)phosphonium hexafluorophosphate benzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate (HBTU), 2-(1H-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium tetrafluoroborate (TBTU), 2-(5-norbornene-2,3-dicarboxyimido)-1,1,3,3-tetramethyluronium O-(N-succinimidyl)-1,1,3,3-tetramethyluronium (TNTU), tetrafluoroborate tetrafluoroborate (TSTU), bromotris(pyrrolidino)phosphonium hexafluorophosphate (PyBrop®), and the like, or base including inorganic salts such as potassium. carbonate, sodium carbonate, sodium hydrogencarbonate, and the like, amines such as triethylamine, diisopropylethylamine, and pyridine, and the like, or polymer (piperidinomethyl)polystyrene, bases such as supported (diethylaminomethyl)polystyrene, poly(4-(morpholinomethyl)polystyrene, vinylpyridine), and the like.

(Preparation 2)

A preparation which calls for treating 1 equivalent of an alkylating reagent given by the formula (IV) below:

$$\begin{array}{c}
R^1 \\
 \longrightarrow (CH_2)_j \longrightarrow X
\end{array} \qquad (IV)$$

(where R^1 , R^2 , and j are the same as defined respectively in the above formula (I)); X represents a halogen atom, alkylsulfonyloxy group, or arylsulfonyloxy group), with 0.1-10 equivalents of a compound represented by the formula (V) below:

35

30

5

10

15

20

$$\begin{array}{c} \begin{pmatrix} (C H_2)_k \\ H N \end{pmatrix} & C H_2)_n - N - C - (C H_2)_p - H - (C H_2)_q - G - R^6 \\ (C H_2)_m & R^3 \end{pmatrix} (V)$$

(where R^3 , R^4 , R^5 , R^6 , G, k, m, n, p, and q are the same as defined respectively in the above formula (I)) either in the absence or presence of solvent.

Such reactions can be more smoothly run if a base similar to that used in the above preparation 1 is present. In addition, the reactions in these preparations can also be promoted by iodide such as potassium iodide, sodium iodide, and the like.

In the above formulas (IV), X represents a halogen atom, alkylsulfonyloxy group, arylsulfonyloxy group. Such halogen atoms include preferably chlorine, bromine, and iodine atoms. Suitable specific examples for the alkylsulfonyloxy groups include methylsulfonyloxy, trifluoromethylsulfonyloxy group, and the like. A preferred specific example for the arylsulfonyloxy group includes a tosyloxy group.

15 (Preparation 3)

5

10

30

A preparation which calls for treating 1 equivalent of an aldehyde represented by the formula (VI) below:

$$R^1$$
 (CH₂)_{j-1}—CHO (VI)

20 {where R^1 and R^2 are the same as defined respectively in the above formula (I); j represents 1 or 2} or the formula (VII) below:

25 {where R¹ is the same as defined in the above formula (I); j represents 0}, with 0.1-10 equivalents of a compound represented by the formula (V) either in the absence or presence of solvent under reductive conditions.

Such reactions are in general called reductive emination reactions and such reductive conditions may be generated by catalytic hydrogenation using a catalyst containing a metal such as palladium, platinum, nickel, rhodium, or the like, using complex hydrides, such as lithium aluminum hydride, sodium borohydride, sodium cyanoborohydride, sodium triacetoxyborohydride, and the

like, boranes, or electrolytic reduction, and the like.

(Preparation 4)

10

20

A preparation which call for treating one equivalent of a compound represented by the formula (VIII) below:

$$\begin{array}{c|c}
R_{1}^{1} & (CH_{2})_{j} - N \\
R_{2}^{2} & (CH_{2})_{m} - N - C - (CH_{2})_{p} - N + C - (CH_{2})_{q} -$$

{where R^1 , R^2 , R^3 , R^4 , R^5 , R^7 , j, k, m, n, p and q are the same as defined respectively in the above formula (I)} with 0.1-10 equivalents of a carboxylic acid or sulfonic acid represented by the formula (IX) below:

$$HO-A-R^6$$
 (IX)

(where R⁶ is the same as defined in the above formulas (I); "A" represents a carbonyl group or sulfonyl group), or its reactive derivative, either in the absence or presence of solvent.

The reactive derivative for the carboxylic acid or sulfonic acid in the above formula (IX) include highly reactive carboxylic acid or sulfonic acid derivative, which are usually used in synthetic organic chemistry, such as acid halides, acid anhydrides, mixed acid anhydrides.

Such reactions can be more smoothly run by using suitable amounts of a dehydrating agent, coupling reagent, or base which are similar to those used in the above preparation 1.

25 (Preparation 5)

A preparation which calls for treating 1 equivalent of a compound represented by the above formula (VIII) with 0.1-10 equivalents of a isocyanate or isothiocyanate represented by the formula (X) below:

$$Z=C=N-R^6 \tag{X}$$

(where R^{ϵ} is the same as defined in the above formulas (I)); Z represents a oxygen atom or sulfur atom), either in the absence or presence of solvent.

(Preparation 6)

5

15

20

25

30

A preparation which calls for treating 1 equivalent of a compound represented by the formula (XI) below:

$$\begin{array}{c}
R^{1} \\
 & (CH_{2})_{j} - N \\
 & (CH_{2})_{m}
\end{array}
\right) - (CH_{2})_{n} - N - C - (CH_{2})_{p} - R^{4} \\
 & (CH_{2})_{q} - A - OH$$
(XI)

{where R^1 , R^2 , R^3 , R^4 , R^5 , j, k, m, n, p and q are the same as defined respectively in the above formula (I)); "A" represents a carbonyl group or sulfonyl group} with 0.1-10 equivalents of an amine represented by the formula (XII) below:

 $R^{6}-NH_{2} \tag{XII}$

{where R^6 is the same as defined in the above formula (I)}, either in the absence or the presence of solvent.

Such reactions can be more smoothly run by using suitable amounts of a dehydrating agent, coupling reagent, or base which are similar to those used in the above preparation 1.

If the substrates submitted to each of the above preparations contains a substituent which reacts under each reaction condition or is thought to adversely affect the reaction in general in synthetic organic chemistry, that functional group can be protected by a known suitable protecting group followed by the reaction of the above preparations and deprotection using a known procedure to obtain the desired compound.

Furthermore, a compound of the present invention can be prepared by the further conversion of the substituent(s) of the compound, prepared with the above preparations 1-6, using known reactions which are usually used in synthetic organic chemistry, such as alkylation, acylation, reduction, and so on.

Each of the above preparations may use solvents for the reaction such as halogenated hydrocarbons such as dichloromethane, chloroform, and the like, aromatic hydrocarbons such as benzene, toluene, and the like, ethers such as diethyl ether, tetrahydrofuran, and the like, esters such as ethyl acetate, aprotic polar solvents such as dimethylformamide, dimethyl sulfoxide, acetonitrile, and the like, alcohols such as methanol, ethanol, isopropyl alcohol, and the like.

The reaction temperature in either of the preparations should be in the range of -78 °C - +150 °C, preferably 0 °C - 100 °C. After completion of the reaction, the usual isolation and purification operations such as concentration, filtration, extraction, solid-phase extraction, recrystallization, chromatography, and the like may be used, to isolate the desired cyclic amine compound represented by the above formula (I). These can be converted into pharmaceutically acceptable acid addition salt or C_1-C_6 alkyl addition salt by the usual method.

10 Potential Industrial Utilities

15

20

The chemokine receptor antagonist, which contain the cyclic amine compound, its pharmaceutically acceptable acid addition salt or a pharmaceutically acceptable C_1 - C_6 alkyl addition salt of this invention, which inhibits chemokines such as MIP-l α and/or MCP-l and the like from action on target cells, are useful as therapeutic agents and/or preventive preparation for diseases such as atherosclerosis, rheumatoid arthritis, psoriasis, asthma, ulcerative colitis, nephritis (nephropathy), multiple sclerosis, pulmonary fibrosis, myocarditis, hepatitis, pancreatitis, sarcoidosis, Crohn's disease, endometriosis, congestive heart failure, viral meningitis, cerebral infarction, neuropathy, Kawasaki disease, sepsis, and the like, in which tissue infiltration of blood monocytes, lymphocytes, and the like plays a major role in the initiation, progression, and maintenance of the disease.

Examples

The present invention is now specifically described by the following examples. However, the present invention is not limited to these compounds described in these examples. Compound numbers in these examples represent numbers attached to these compounds listed as suitable specific examples in Tables 1.1-1.201.

Reference Example 1: Preparation of 3-Amino-1-(4-chlorobenzyl)pyrrolidine dihydrochloride.

- 4-Chlorobenzyl chloride (4.15 g, 25.8 mmol) and Pr₂NEt (6.67 g, 51.6 mmol)
 were added to a solution of 3-{(tert-butoxycarbonyl)amino}pyrrolidine (4.81 g,
 25.8 mmol) in DMF (50 mL). The reaction mixture was stirred at 70 °C for 15
 h and the solvent was removed under reduced pressure. Recrystallization (CH₃CN,
 50 mL) provided the desired material, 3-(tert-butoxycarbonyl)amino-1-(4chlorobenzyl)pyrrolidine as a pale yellow solid (6.43 g, 80.2%): H NMR (CDCl₃,
 300 MHz) δ 1.37 (s, 9 H), 1.5-1.7 (br, 1 H), 2.1-2.4 (m, 2 H), 2.5-2.7 (m, 2
 H), 2.83 (br, 1 H), 3.57 (s, 2 H), 4.1-4.3 (br, 1 H), 4.9-5.1 (br, 1 H), 7.15-7.35
 (br, 4 H); The purity was determined by RPLC/MS (98%); ESI/MS m/e 311.0 (M*+H,
 C₁₆H₂₄ClN₂O₂).
- 20 A solution of 3-(tert-butoxycarbonyl) amino-1-(4-chlorobenzyl)pyrrolidine (6.38 g, 20.5 mmol) in CH₃OH (80 mL) was treated with 1 N HCl-Et₂O (100 mL) and was stirred at 25 °C for 15 h. The solvent was removed under reduced pressure to afford a solid which was purified by recrystallization (1:2 CH₃OH-CH₃CN, 150 mL) to give 3-amino-1-(4-chlorobenzyl)pyrrolidine dihydrochloride as a white powder (4.939 g, 84.9%): ¹H NMR (d₆-DMSO, 300 MHz) δ 3.15 (br, 1 H), 3.3-3.75 (br-m, 4 H), 3.9 (br, 1 H), 4.05 (br, 1 H), 4.44 (br, 1 H), 4.54 (br, 1 H), 7.5-7.7 (m, 4 H), 8.45 (br, 1 H), 8.60 (br, 1 H); The purity was determined by RPLC/MS (>99%); ESI/MS m/e 211.0 (M*+H, C₁₁H₁₆ClN₂).
- Optically active (R)-3-amino-1-(4-chlorobenzyl)pyrrolidine dihydrochloride and (S)-3-amino-1-(4-chlorobenzyl)pyrrolidine dihydrochloride were also prepared pursuant to the above method using the corresponding reactant respectively. The products showed the same 1H NMR with that of the racemate.
- 35 Example 1: Preparation of 3-(N-Benzoylglycyl)amino-1-(4-chlorobenzyl)pyrrolidine (Compound No. 1).
 - N-Benzoylglycine (9.9 mg, 0.055 mmol), 3-ethyl-1-{3-(dimethylaminopropyl)carbodiimide hydrochloride (EDCI) (10.5 mg) and 1-

hydroxybenzotriazole hydrate (HOBt) (7.4 mg) were added to a solution of 3-amino-1-(4-chlorobenzyl)pyrrolidine dihydrochloride (14.2 mg, 0.050 mmol) and Et₃N (15.2 mg) in CHCl₃ (2.5 mL). The reaction mixture was stirred at 25 °C for 16 h, washed with 2 N aqueous NaOH (2 mL x 2) and brine (1 mL). After filtration through a PTFE membrane filter, the solvent was removed under reduced pressure to afford 3-(N-benzoylglycyl)amino-1-(4-chlorobenzyl)pyrrolidine (compound No. 1) as a pale yellow oil (17.7 mg, 95%): The purity was determined by RPLC/MS (95%); ESI/MS m/e 372.0 (M'+H, C₂₀H₂₂ClN₃O₂).

10 Examples 2-32.

The compounds of this invention were synthesized pursuant to methods of Example 1 using the corresponding reactant respectively. The ESI/MS data and yields are summarized in Table 2.

15 Table 2

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 2	2	C21 H24 C1 N3 O2	386	16.4	85
Example 3	3	C19 H21 C1 N4 O2	373	18.7	100
Example 4	4	C21 H21 C1 F3 N3 O2	440	57.2	69
Example 5	82	C22 H23 C1 F3 N3 O2	454	5.6	11
Example 6	85	C21 H24 C1 N3 O2	386	22.6	59
Example 7	86	C21 H23 C1 N4 O4	431	21.2	98
Example 8	214	C22 H25 Cl N2 O2	385	23.9	62
Example 9	215	C23 H27 C1 N2 O3	415	17.4	84
Example 10	216	C20 H23 C1 N2 O2 S	391	21.6	quant
Example 11	217	C23 H27 C1 N2 O4	431	15.3	66
Example 12	218	C23 H27 C1 N2 O2	399	12.8	64
Example 13	219	C22 H24 C1 F N2 O3	419	18.1	86
Example 14	220	C22 H25 Cl N2 O2	385	16.4	85
Example 15	221	C21 H23 C1 N2 O2	371	14.9	80
Example 16	222	C21 H22 C12 N2 O2	405	13.3	- 65
Example 17	223	C25 H31 C1 N2 O3	443	18.4*	63
Example 18	224	C20 H23 C1 N2 O3 S	407	11.2	28
Example 19	225	C22 H26 C1 N3 O2	400	22.7	quant
Example 20	226	C23 H28 C1 N3 O3	430	21.0	98
Example 21	227	C22 H25 C12 N3 O2	434	21.9	100
Example 22	228	C23 H28 C1 N3 O3	430	20.8	97

Example 23	229	C25 H32 C1 N3 O2	462	25.4	quant
Example 24	230	C26 H31 C1 F N3 O2	472	26.0	quant
Example 25	231	C24 H28 C1 N3 O3	442	30.3*	quant
Example 26	232	C22 H32 C1 N3 O2	406	3.9	19
Example 27	233	C23 H28 C1 N3 O2	414	8.5	41
Example 28	234	C22 H27 C1 N4 O2	415	7.3	35
Example 29	235	C24 H29 C12 N3 O2	462	9.0	39
Example 30	236	C25 H29 C1 N4 O3 S	501	17.4	69
Example 31	237	C21 H24 C1 N3 O3	402	14.2	71
Example 32	238	C21 H23 C12 N3 O3	436	23.4	quant

^{*}Yield of TFA salt.

5

10

20

25

Reference Example 2: Preparation of (R) -3- $\{N-(tert-Butoxycarbonyl)\}$ glycyl $\{n-1-(4-chlorobenzyl)\}$ pyrrolidine.

A mixture of (R)-3-amino-1-(4-chlorobenzyl)pyrrolidine dihydrochloride (4.54 g, 16.0 mmol), 2 N NaOH solution (80 mL), and ethyl acetate (80 mL) was shaken, the organic layer was separated, and the aqueous layer was extracted with ethyl acetate (80 mL x 2). The combined organic layers were dried over anhydrous sodium sulfate, filtered, and evaporated to give free (R)-3-amino-1-(4-chlorobenzyl)pyrrolidine (3.35 g, 99%).

A solution of (R)-3-amino-1-(4-chlorobenzyl)pyrrolidine (3.35 g, 16 mmol) in CH_2Cl_2 (80 mL) was treated with Et₃N (2.5 mL, 17.6 mmol), N-tert-butoxycarbonylglycine (2.79 g, 16.0 mmol), EDCI (3.07 g, 16.0 mmol) and HOBt (2.16 g, 16 mmol). After the reaction mixture was stirred at 25 °C for 16 h, 2 N NaOH solution (80 mL) was added. The organic layer was separated, and the aqueous layer was extracted with dichloromethane (100 mL x 3). The combined organic layer was washed with water (100 mL x 2) and brine (100 mL), dried over anhydrous sodium sulfate, filtered, and concentrated. Column chromatography (SiO₂, ethyl acetate) afforded the desired (R)-3- $\{N$ -(tert-butoxycarbonyl)glycyl)amino-1-(4-chlorobenzyl)pyrrolidine (5.40 g, 92%).

Reference Example 3: Preparation of (R)-1-(4-Chlorobenzyl)-3-(glycylamino) pyrrolidine.

To a solution of $(R)-3-\{N-(tert-butoxycarbonyl)\,glycyl\}$ amino-1-(4-chlorobenzyl)pyrrolidine (5.39 g, 14.7 mmol) in methanol (60 mL) was added 4 N HCl in dioxane (38 mL). The solution was stirred at room temperature for 2 h. The reaction mixture was concentrated and 2 N NaOH solution (80 mL) was added. The mixture was extracted with dichloromethane (80 mL x 3), and the combined

```
extracts were dried over sodium sulfate and concentrated. Column chromatography (SiO<sub>2</sub>, AcOEt/EtOH/Et<sub>3</sub>N = 90/5/5) gave (R)-3-(glycyl) amino-1-(4-chlorobenzyl) pyrrolidine (3.374 g, 86%): ^{1}H NMR (CDCl<sub>3</sub>, 270 MHz) \delta 1.77 (dd, J = 1.3 and 6.9 Hz, 1 H), 2.20-3.39 (m, 2 H), 2.53 (dd, J = 3.3 and 9.6 Hz, 1 H), 2.62 (dd, J = 6.6 and 9.6 Hz, 1 H), 2.78-2.87 (m, 1 H), 3.31 (s, 2 H), 3.57 (s, 2 H), 4.38-4.53 (br, 1 H), 7.18-7.32 (m, 4 H), 7.39 (br. s, 1 H).
```

Other 3-acylamino-1-(4-chlorobenzyl)pyrrolidines were also synthesized pursuant to methods of Reference Example 2 and 3 using the corresponding reactants respectively.

- (S)-1-(4-Chlorobenzyl)-3-(glycylamino) pyrrolidine: 3.45 g, 79% (2 steps).
- $(R)-3-(\beta-Alanylamino)-1-(4-chlorobenzyl) \ pyrrolidine: 3.79 \ g, 85% (2 steps).$
- 15 $(S)-3-(\beta-Alanylamino-)1-(4-chlorobenzyl)$ pyrrolidine: 3.72 g, 86% (2 steps).
 - (R)-3-{(S)-Alanylamino}-1-(4-chlorobenzyl)pyrrolidine: 368 mg, 65% (2 steps).
 - $(R)-3-\{(R)-Alanylamino\}-1-(4-chlorobenzyl)$ pyrrolidine: 425 mg, 75% (2

20 steps).

25

- $(R)-3-\{(2S)-2-Amino-3-thienylpropanoyl\}$ amino-1-(4-chlorobenzyl)pyrrolidine: 566 mg, 78% (2 steps).
- $(R)-3-\{\ (2R)-2-Amino-3-thienylpropanoyl\}\ amino-1-(4-chlorobenzyl)\ pyrrolidine: 585\ mg,\ 81\%\ (2\ steps).$
- (R)-3-(2-Amino-2-methylpropanoyl)amino-1-(4-chlorobenzyl)pyrrolidine: 404 mg, 66% (2 steps).
- $(R) 3 \{(2S) 2 Amino 4 (methylsulfonyl) \ butanoyl\} \ amino 1 (4 chlorobenzyl) \ pyrrolidine: 535 \ mg, 72\% (2 steps).$
- Furthermore (R)-3-(glycylamino)-1-(4-methylbenzyl)pyrrolidine, (R)-1-(4-bromobenzyl)-3-(glycylamino)pyrrolidine, (R)-1-(2,4-dimethylbenzyl)-3-(glycylamino)pyrrolidine, and (R)-1-(3,5-dimethylisoxazol-4-ylmethyl)-3-(glycylamino)pyrrolidine were also synthesized pursuant to methods of Reference Example 1, 2 and 3 using the corresponding reactants respectively.
- 35 (R)-3-(Glycylamino)-1-(4-methylbenzyl)pyrrolidine: 4.65 g, 62% yield from 3-{(tert-butoxycarbonyl)amino)pyrrolidine.
 - (R)-1-(4-Bromobenzyl)-3-(glycylamino)pyrrolidine: 2.55 g, 68% yield from (R)-3-amino-1-(4-bromobenzyl)pyrrolidine; H NMR (CDCl₂, 270 MHz) δ

1.37-1.78 (m, 3 H), 2.23-2.39 (m, 2 H), 2.50-2.67 (m, 2 H), 2.80-2.89 (m, 1 H), 3.32 (s, 2 H), 3.58 (s, 2 H), 4.39-4.55 (m, 1 H), 7.21 (d, J = 6.5 Hz, 2 H), 7.45 (d, J = 6.5 Hz, 2 H).

(R)-1-(2,4-Dimethylbenzyl)-3-(glycylamino) pyrrolidine: 1.56 g, 58% yield from 3-{(tert-butoxycarbonyl)amino}pyrrolidine; ¹H NMR (CDCl₃, 270 MHz) δ 1.55-1.78 (m, 3 H), 2.30(s, 3 H), 2.23-2.31 (m, 2 H), 2.33(s, 3 H), 2.51-2.63 (m, 2 H), 2.78-2.87 (m, 1 H), 3.30 (s, 2 H), 3.55 (s, 2 H), 4.38-4.60 (m, 1 H), 6.95 (d, J = 7.6 Hz, 1 H), 6.97 (s, 1 H), 7.13 (d, J = 7.6 Hz, 1 H), 7.43 (br-s, 1 H).

10 (R)-1-(3,5-Dimethylisoxazol-4-ylmethyl)-3-(glycylamino)pyrrolidine:
3.14 g, 45% yield from 3-{(tert-butoxycarbonyl)amino)pyrrolidine.

Example 33: Preparation of (S)-3-[N-{3,5-Bis(trifluoromethyl)benzoyl}glycyl]amino-1-(4-chlorobenzyl)pyrrolidine (Compound No. 5).

A solution of 3,5-bis(trifluoromethyl)benzoyl chloride (0.060 mmol) in chloroform (0.4 mL) was added to a solution of (S)-1-(4-chlorobenzyl)-3-(glycylamino)pyrrolidine (0.050 mmol) and triethylamine (0.070 mmol) in chloroform (1.0 mL). After the reaction mixture was agitated at room temperature for 2.5 h, (aminomethyl)polystyrene resin (1.04 mmol/g, 50 mg, 50 mmol) was added and the mixture was agitated at room temperature for 12 h. The reaction mixture was filtered and the resin was washed with dichloromethane (0.5 mL). The filtrate and washing were combined, dichloromethane (4 mL) was added, and the solution was washed with 2 N aqueous NaOH solution (0.5 mL) to give (S)-3-[N-{3,5-bis(trifluoromethyl)benzoyl)glycyl]amino-1-(4-chlorobenzyl)pyrrolidine (compound No. 5) (14.4 mg, 57%): The purity was determined by RPLC/MS (97%); ESI/MS m/e 508.0 (M*+H, $C_{22}H_{20}ClF_6N_3O_2$).

Examples 34-239.

The compounds of this invention were synthesized pursuant to methods of Example 33 using the corresponding reactant respectively. The ESI/MS data and yields are summarized in Table 3.

Table 3

35

30

15

20

	Compound No.	Molecular	Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 34	5	$C_{22}H_{23}ClF_6N_3O_2$		508.0	14.4	57

e 35	6	C21H21ClF3N3O2	440.0	17.0	77
e 36	7	C ₂₀ H ₂₁ BrClN ₃ O ₂	450.0	17.7	79
e 37	8	C ₂₀ H ₂₁ ClFN ₃ O ₂	390.0	12.7	65
e 38	9	C ₂₀ H ₂₀ Cl ₃ N ₃ O ₂	440.0	39.0	quant
e 39	10	$C_{21}H_{24}ClN_3O_3$	402.5	23.5	quant
e 40	11	C ₂₂ H ₂₆ ClN ₃ O ₄	432.5	22.4	quant
e 41	12	C22H26ClN3O4	432.5	15.9	74
e 42	13	C ₂₁ H ₂₁ ClF ₃ N ₃ O ₂	440.0	13.1	60
e. 43	14	C ₂₁ H ₂₄ ClN ₃ O ₂	386.0	16.4	85
e 44	15	C ₂₀ H ₂₁ Cl ₂ N ₃ O ₂	406.0	15.7	77
e 45	16	C21H24ClN3O2	402.0	28.2	quant
e 46	17	C ₂₀ H ₂₀ Cl ₃ N ₃ O ₂	442.0	35.6	quant
e 47	18	C ₂₁ H ₂₁ C1N ₄ O ₂	397.5	22.8	quant
e 48	19	C ₂₁ H ₂₂ ClN ₃ O ₄	416.0	16.3	78
e 49	20	C ₂₁ H ₂₀ ClF ₄ N ₃ O ₂	458.0	24.9	quant
e 50	21	C ₂₁ H ₂₀ ClF ₄ N ₃ O ₂	458.0	17.9	78
e 51	22	C ₂₁ H ₂₀ ClF ₄ N ₃ O ₂	458.0	9.4	41
e 52	23	C ₂₁ H ₂₀ ClF ₄ N ₃ O ₂	458.0	15.4	67
e 53	24	C ₂₁ H ₂₁ ClF ₃ N ₃ O ₃	456.0	20.7	91
e 54	25	C21H20ClF4N3O2	458.0	18.5	81
e 55	26	C20H21ClN4O4	417.0	21.9	quant
e 56	27	C20H21ClN4O4	417.0	16.8	81
.e 57	28	C20H21ClN4O4	417.0	6.8	33
.e 58	29	C22H20ClF6N3O2	508.0	20.8	82
e 59	30	C21H21ClF3N3O2	440.0	15.2	69
.e 60	31	C20H21BrClN3O2	450.0	15.6	69
e 61	32,	C ₂₀ H ₂₁ ClFN ₃ O ₂	390.0	11.8	61
e 62	33	C20H20Cl3N3O2	440.0	15.8	72
e 63	34	C ₂₁ H ₂₄ ClN ₃ O ₃	402.5	33.8	quant
e 64	35	C22H26ClN3O4	432.5	56.1	quant
e 65	36	C ₂₂ H ₂₆ ClN ₃ O ₄	432.5	37.6	quant
e 66	. 37	C ₂₁ H ₂₁ ClF ₃ N ₃ O ₂	440.0	12.6	57
e 67	38	C ₂₁ H ₂₄ ClN ₃ O ₂	386.0	12.3	64
e 68	39	C ₂₀ H ₂₁ Cl ₂ N ₃ O ₂	406.0	15.9	78
e 69	40	C ₂₁ H ₂₄ ClN ₃ O ₂	402.0	11.6	58
e 70	41	C ₂₀ H ₂₀ Cl ₃ N ₃ O ₂	442.0	17.8	81
e 71	42	C21H21ClN4O2	397.5	22.4	quant
e 72	43	C21H22C1N3O4	416.0	30.1	quant
e 73	44	C21H26C1F4N3O2	458.0	13.4	59
e 74	45	C21H20ClF4N3O2	458.0	13.2	58
le 72	43	C ₂₁ H ₂₂ ClN ₃ O ₄ C ₂₁ H ₂₆ ClF ₄ N ₃ O ₂	416.0	30.1	dı

Example 75 Example 76 Example 77 Example 78 Example 79 Example 80	46 47 48 49	C ₂₁ H ₂₀ ClF ₄ N ₃ O ₂ C ₂₁ H ₂₁ ClF ₃ N ₃ O ₃	458.0 456.0	14.4	63
Example 77 Example 78 Example 79	48		456.0	16.4	
Example 78 Example 79		C.H.CIENO		1 -0	72
Example 79	49	C ₂₁ H ₂₀ ClF ₄ N ₃ O ₂	458	16.5	72
		C20H21ClN4O4	417.0	12.5	60
Example 80	50	C21H20ClF4N3O2	458.0	26.3	quant
L	51	C20H21BrClN3O2	450.0	8.6	38
Example 81	52	C20H21C1FN3O2	390.5	4.1	21
Example 82	53	C20H21Cl2N3O2	406.0	5.4	27
Example 83	54	C20H20Cl3N3O2	440.0	8.8	40
Example 84	55	C20H20BrCl4N3O2	440.0	7.7	35
Example 85	56	C21H24ClN3O2	386.0	4.8	25
Example 86	57	C22H26ClN3O4	429.5	4.9	23
Example 87	58	C20H21Cl2N3O2	406.0	4.1	20
Example 88	59	C20H21BrClN3O2	452.0	3.5	16
Example 89	60	$C_{26}H_{26}ClN_3O_2$	448.5	7.3	33
Example 90	61	C21H21ClF3N3O2	440.0	7.1	32
Example 91	62	C21H24ClN3O2	386.0	10.4	54
Example 92	63	C ₂₂ H ₂₆ ClN ₃ O ₂	400.5	6.0	30
Example 93	64	C ₂₁ H ₂₁ ClN ₄ O ₂	397.0	7.0	35
Example 94	65	C24H24C1N3O2	422.0	7.7	36
Example 95	66	C24H24C1N3O2	422.0	6.3	30
Example 96	67	C20H20ClF2N3O2	408.0	4.7	23
Example 97	68	C20H20ClF2N3O2	408.0	7.8	38
Example 98	69	C20H20ClF2N3O2	408.0	7.3	36
Example 99	70	C20H20ClF2N3O2	408.0	9.1	45
Example 100	71	C22H26ClN3O4	429.0	5.6	26
Example 101	72	C ₂₁ H ₂₁ ClF ₃ N ₃ O ₂	456.0	6.2	27
Example 102	73	C ₂₁ H ₂₁ ClF ₃ N ₃ O ₂	456.5	16.8	74
Example 103	74	C22H24ClN3O4	430.0	16.4	76 \
Example 104	75	C21H20ClF4N3O2	458.0	16.1	70
Example 105	76	C21H20ClF4N3O2	458.0	17.0	74
Example 106	77	$C_{20}H_{1}$ \in $C1F_3N_3O_2$	426.0	16.2	76
Example 107	78	$C_{20}H_{19}ClF_3N_3O_2$	426.0	18.0	85.
Example 108	79	C ₂₂ H ₂₀ ClF ₆ N ₃ O ₂	508.0	18.8	74
Example 109	90	C ₂₂ H ₂₀ ClF ₆ N ₃ O ₂	508.0	16.4	65
Example 110	81	C ₂₂ H ₂₆ ClN ₃ O ₂	400.0	13.9	70
Example 111	83	C20H21ClN4O4	417.0	16.0	77
Example 112	84	$C_{20}H_{21}ClN_4O_4$	417.0	21.6	quant
Example 113	87	$C_{23}H_{22}ClF_6N_3O_2$	522.0	17.5	67
Example 114	88	C ₂₂ H ₂₃ ClF ₃ N ₅ O ₂	454.0	13.9	61

Example 115	89	C ₂₁ H ₂₃ BrClN ₃ O ₂	466.0	15.4	66
Example 116	90	C21H23ClFN3O2	404.0	10.7	53
Example 117	91	C ₂₁ H ₂₂ Cl ₃ N ₃ O ₂	456.0	13.7	60
Example 118	92	C ₂₂ H ₂₆ ClN ₃ O ₃	416.0	38.4	qùant
Example 119	93	C23H26ClN3O4	446.0	25.2	quant
Example 120	94	C ₂₃ H ₂₈ ClN ₃ O ₄	446.0	16.5	74
Example 121	<u>95</u>	C ₂₂ H ₂₃ ClF ₃ N ₃ O ₂	454.0	16.3	72
Example 122	96	C22H26ClN3O2	400.5	16.7	84
Example 123	97	C ₂₁ H ₂₃ Cl ₂ N ₃ O ₂	420.0	11.2	53
Example 124	98	C ₂₂ H ₂₆ ClN ₃ O ₂	416.5	11.8	57
Example 125	99	C ₂₁ H ₂₂ Cl ₃ N ₃ O ₂	454.0	14.8	65
Example 126	100	C22H23ClN4O2	411.0	9.5	46
Example 127	101	C ₂₂ H ₂₄ ClN ₃ O ₄	430.5	13.2	61
Example 128	102	C22H22ClF4N3O2	472.0	13.1	56
Example 129	103	C ₂₂ H ₂₂ C1F ₄ N ₃ O ₂	472.0	36.5	quant
Example 130	104	C ₂₂ H ₂₂ ClF ₄ N ₃ O ₂	472.0	22.8	97
Example 131	105	C ₂₂ H ₂₂ ClF ₄ N ₃ O ₂	472.0	20.1	85
Example 132	106	C ₂₂ H ₂₃ ClF ₃ N ₃ O ₃	470.0	27.4	quant
Example 133	107	C ₂₂ H ₂₂ C1F ₄ N ₃ O ₂	. 472.0	18.5	78
Example 134	108	C ₂₁ H ₂₃ ClN ₄ O ₄	431.0	11.9	55
Example 135	109	C21H23ClN4O4	431.0	23.9	quant
Example 136	110	C ₂₁ H ₂₃ ClN ₄ O ₄	431.0	24.4	quant
Example 137	111	C23H25ClF6N3O2	522.0	9.5	36
Example 138	112	C ₂₂ H ₂₃ ClF ₃ N ₃ O ₂	454.0	3.9	17
Example 139	113	C21H23BrClN3O2	466.0	7.5	32
Example 140	114	C ₂₁ H ₂₃ ClFN ₃ O ₂	404.0	6.1	30
Example 141	115	C ₂₁ H ₂₂ Cl ₃ N ₃ O ₂	456.0	6.6	29
Example 142	116	C ₂₂ H ₂₆ ClN ₃ O ₃	416.0	4.8	23
Example 143	117	C23H28ClN3O4	446.0	6.4	29
Example 144	118	C23H28C1N3O4	446.0	24.6	quant
Example 145	119	C ₂₂ H ₂₃ C1F ₃ N ₃ O ₂	454.0	5.2	23
Example 146	120	C22H26ClN3O2	400.5	4.4	22
Example 147	121	C ₂₁ H ₂₅ Cl ₂ N ₃ O ₂	420.0	7.8	37
Example 148	122	C ₂₂ H ₂ ClN ₃ O ₂	416.5	14.1	68
Example 149	123	C ₂₁ H ₂₂ Cl ₃ N ₃ O ₂	454.0	5.4	. 24
Example 150	124	C22H22ClN4O2	411.0	34.0	quant
Example 151	125	C22H24ClN3O4	430.5	32.0	quant
Example 152	126	C22H22ClF4N3O2	472.0	4.6	19
Example 153	127	C22H22ClF4N3O2	472.0	10.4	44
Example 154	128	C22H22ClF4N3O2	472.0	7.3	31
					

Example 155	129	C22H22ClF4N3O2	472.0	13.5	57
Example 156	130	C22H23C1F3N3O3	470.0	15.1	64
Example 157	131	C22H22ClF4N3O2	472.0	8.6	36
Example 158	132	C ₂₁ H ₂₃ ClN ₄ O ₄	431.0	4.4	20
Example 159	133	C ₂₁ H ₂₃ ClN ₄ O ₄	431.0	32.0	quant
Example 160	134	C21H23ClN4O4	431.0	6.9	32
Example 161	135	C ₂₁ H ₂₃ BrClN ₃ O ₂	466.0	7.8	34
Example 162	136	C ₂₁ H ₂₃ ClFN ₃ O ₂	404.0	13.7	68
Example 163	137	C ₂₁ H ₂₃ Cl ₂ N ₃ O ₂	420.5	14.6	69
Example 164	138	C21H22Cl3N3O2	454.0	17.7	78
Example 165	139	C ₂₁ H ₂₂ BrCl ₄ N ₃ O ₂	454.0	17.2	76
Example 166	140	C22H26ClN3O2	400.0	15.0	75
Example 167	141	C23H28ClN3O4	443.5	13.9	62
Example 168	142	C ₂₁ H ₂₃ Cl ₂ N ₃ O ₂	420.0	13.7	65
Example 169	143	C ₂₁ H ₂₃ BrClN ₃ O ₂	464.0	16.1	69
Example 170	144	C ₂₇ H ₂₉ ClN ₃ O ₂	462.0	17.6	76
Example 171	145	C22H23C1F3N3O2	454.0	16.0	71
Example 172	146	C22H26ClN3O2	400.0	14.9	75
Example 173	147	C23H28ClN3O2	414.0	16.2	78
Example 174	148	C22H23ClN4O2	411.0	14.9	73
Example 175	149	C25H26ClN3O2	436.0	17.1	78
Example 176	150	C ₂₅ H ₂₆ ClN ₅ O ₂	436.0	13.1	60
Example 177	151	$C_{21}H_{22}ClF_2N_3O_2$	422.0	14.8	70
Example 178	152	$C_{21}H_{22}ClF_2N_3O_2$	422.0	15.3	73
Example 179	153	C ₂₁ H ₂₂ ClF ₂ N ₃ O ₂	422.0	15.3	73
Example 180	154	$C_{21}H_{22}ClF_2N_3O_2$	422.0	16.4	78
Example 181	155	C ₂₃ H ₂₈ ClN ₃ O ₄	443.0	16.9	76
Example 182	156	$C_{22}H_{23}ClF_3N_3O_2$	470.5	12.6	54
Example 183	157	C ₂₂ H ₂₃ ClF ₃ N ₃ O ₂	470.0	20.0	8.5
Example 184	158	C ₂₃ H ₂₆ ClN ₃ O ₄	444.0	17.4	78
Example 185	159	C ₂₂ H ₂₂ ClF ₄ N ₃ O ₂	472.0	18.4	78
Example 186	160	C ₂₂ H ₂₂ ClF ₄ N ₃ O ₂	472.0	19.6	83
Example 187	161	$C_{21}H_{21}ClF_3N_3O_2$	440.0	17.0	77
Example 188	162	$C_{21}H_{21}C1F_3N_3O_2$	440.0	17.1	78
Example 189	163	$C_{23}H_{22}ClF_6N_3O_2$	522.0	20.8	80
Example 190	164	C23H22C1F6N3O2	522.0	2.7	10
xample 191	165	$C_{23}H_{28}ClN_3O_2$	414.0	16.4	79
xample 192	166	C ₂₂ H ₂₃ ClF ₃ N ₃ O ₂	454.0	8.6	38 -
xample 193	167	C ₂₁ H ₂₃ BrClN ₃ O ₂	464.0	11.6	50 .
xample 194	168	C21H23Cl2N3O2	420.0	11.5	55

Example 195	169	C21H22Cl3N3O2	454.0	10.0	44
Example 196	170	C22H22ClF4N3O2	472.0	10.4	44
Example 197	171	$C_{21}H_{23}Cl_2N_3O_2$	420.0	8.9	42
Example 198	172	C21H24ClN3O2	386.0	10.3	53
Example 199	173	C21H23ClN4O4	431.0	14.6	68
Example 200	174	C22H23C1F3N3O2	454.0	10.4	46
Example 201	175	C ₂₁ H ₂₃ BrClN ₃ O ₂	464.0	13.4	58
Example 202	176	C21H23Cl2N3O2	420.0	12.7	60
Example 203	177	C ₂₁ H ₂₂ Cl ₃ N ₃ O ₂	454.0	13.2	58
Example 204	178	C ₂₂ H ₂₂ Cl F ₄ N ₃ O ₂	472.0	12.9	55
Example 205	179	C ₂₁ H ₂₅ Cl ₂ N ₃ O ₂	420.0	13.3	63
Example 206	180	C ₂₁ H ₂₄ ClN ₃ O ₂	386.0	24.2	quant
Example 207	181	C ₂₁ H ₂₃ ClN ₄ O ₄	431.0	1.0	1
Example 208	182	C23H25ClF3N3O2	468.0	15.1	65
Example 209	183	C ₂₂ H ₂₅ BrClN ₃ O ₂	478.0	18.0	75
Example 210	184	C ₂₂ H ₂₅ Cl ₂ N ₃ O ₂	434.0	16.3	75
Example 211	185	C ₂₂ H ₂₄ Cl ₃ N ₃ O ₂	468.0	18.6	79
Example 212	186	C ₂₃ H ₂₄ ClF ₄ N ₃ O ₂	486.0	16.5	68
Example 213	187	C ₂₂ H ₂₅ Cl ₂ N ₃ O ₂	434.0	14.4	66
Example 214	188	C ₂₂ H ₂₆ ClN ₃ O ₂	400.0	14.0	70
Example 215	189	C22H25ClN4O4	445.0	16.8	76
Example 216	190	$C_{26}H_{25}ClF_3N_3O_2S$	536.0	17.7	66
Example 217	191	C ₂₅ H ₂₅ BrClN ₃ O ₂ S	546.0	20.4	75
Example 218	192	C ₂₅ H ₂₅ Cl ₂ N ₃ O ₂ S	502.0	16.9	67
Example 219	193	C ₂₅ H ₂₄ Cl ₃ N ₃ O ₂ S	536.0	18.3	68
Example 220	194	C26H24ClF4N3O2S	554.0	19.4	70
Example 221	195	C ₂₅ H ₂₅ Cl ₂ N ₃ O ₂ S	502.0	19.1	76
Example 222	196	C ₂₅ H ₂₆ ClN ₃ O ₂ S	468.0	16.0	68
Example 223	197	C ₂₅ H ₂₅ ClN ₄ O ₄ S	513.0	18.4	72
Example 224	198	C26H25ClF3N3O2S	536.0	13.9	52
Example 225	199	C ₂₅ H ₂₅ BrClN ₃ O ₂ S	546.0	12.9	47
Example 226	200	C ₂₅ H ₂₅ Cl ₂ N ₃ O ₂ S	502.0	15.6	62
Example 227	201	C ₂₅ H ₂₄ Cl ₃ N ₃ O ₂ S	536.0	17.3	64
Example 228	202	C26H24C1F4N3O2S	554.0	15.4	56
Example 229	203	C ₂₅ H ₂₅ Cl ₂ N ₃ O ₂ S	502.0	13.5	54
Example 230	204	C25H25ClN3O2S	468.0	13.7	59
Example 231	205	C25H25ClN4O4S	513.0	13.9	54
Example 232	206	C24H27ClF3N3O4S	546.0	10.0	37
Example 233	207	C ₂₃ H ₂ -BrClN ₃ O ₄ S	558.0	17.1	61
Example 234	208	C23H27Cl2N3O4S	512.0	17.0	66
<u> </u>					

Example 235	209	C23H26C13N3O4S	546.0	7.3	27
Example 236	210	C24H26ClF4N3O4S	564.0	19.2	68
Example 237	211	C23H27Cl2N3O4S	512.0	7.9	31
Example 238	212	C23H26ClN3O4S	478.0	13.7	57
Example 239	213	C23H27ClN4O4S	523.0	5.5	21

Example 240: Preparation of (R)-3-[N-{3-Fluoro-5-(trifluoromethyl)benzoyl}glycyl]amino-1-(3,5-dimethylisoxazol-4-ylmethyl)pyrrolidine (Compound No. 1191).

5 A solution of 3-fluoro-5-(trifluoromethyl)benzoyl chloride (0.058 mmol) in dichloromethane (1 mL) was added to a mixture of (R)-1-(3,5dimethylisoxazol-4-ylmethyl)-3-(glycylamino)pyrrolidine (0.050 mmol) and piperidinomethylpolystyrene (58 mg) in chloroform (0.2 mL) and dichloromethane (0.75 mL). After the reaction mixture was stirred at room temperature for 2h, methanol (1.0 mL) was added and the mixture was stirred at room temperature 10 for 30 min. The reaction mixture was loaded onto Varian™ SCX column, and washed with CH_3OH (16 mL). Product was eluted off using 2 N NH_3 in CH_3OH (6 mL) and to afford $(R) - 3 - [N - {3 - fluoro - 5 - }]$ concentrated (trifluoromethyl)benzoyl}glycyl]amino-1-(3,5-dimethylisoxazol-4ylmethyl)pyrrolidine (Compound No. 1191) (19.5 mg, 88%): The purity was 15 determined by RPLC/MS (100%); ESI/MS m/e 443.2 (M+H, $C_{20}H_{22}F_4N_4O_3$).

Examples 241-265.

The compounds of this invention were synthesized pursuant to methods of 20 Example 240 using the corresponding reactant respectively. The ESI/MS data and yields are summarized in Table 4.

Table 4

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 241	1192	C20 H22 F4 N4 O3	443.2	19.2	87
Example 242	- 1193	C20 H23 F3 N4 O4	441.0	17.5	79
Example 243	1194	C21 H22 F6 N4 O3	493.0	20.4	83
Example 244	1195	C19 H23 Br N4 O3	435.1	16.8	77
Example 245	1196	C19 H23 N5 O5	402.2	16.2	81
Example 246	1197	C20 H22 F4 N4 O3	443.2	17.6	80
Example 247	1198	C19 H23 Cl N4 O3	391.0	16.5	84
Example 248	1199	C20 H26 N4 O3	371.0	16.1	87

PCT/US98/23254 WO 99/25686

Example 249	1200	C19 H22 C12 N4 O3	425.0	18.0	85
Example 250	1201	C19 H22 F2 N4 O3	393.0	16.6	85
Example 251	1202	C20 H22 F4 N4 O3	443.2	16.8	76
Example 252	1203	C22 H24 F3 N3 O3	436.2	17.1	79
Example 253	1204	C23 H23 F6 N3 O2	488.2	18.1	74
Example 254	1205	C21 H24 Br N3 O2	430.0	17.5	81
Example 255	1206	C21 H24 N4 O4	397.0	16.2	82
Example 256	1207	C22 H23 F4 N3 O2	438.2	17.5	80
Example 257	1208	C21 H24 C1 N3 O2	386.0	15.8	82
Example 258	1209	C22 H27 N3 O2	366.0	15.7	86
Example 259	1210	C21 H23 C12 N3 O2	420.0	17.8	85
Example 260	1211	C21 H23 F2 N3 O2	388.0	16.3	84
Example 261	1212	C22 H23 F4 N3 O2	438.2	17.4	80
Example 262	1213	C24 H24 C1 F6 N3 O2	536.2	24.0	90
Example 263	1214	C23 H24 C1 F4 N3 O3	486.2	22.2	91
Example 264	1215	C22 H24 C13 N3 O2	467.9	20.9	89
Example 265	1216	C22 H24 C1 F2 N3 O2	436.0	19.3	89
Example 200	1210	022 112 1 02 12 110 02		1	

Preparation o£ $(R) -1 - (4 - Chlorobenzyl) -3 - [{N - {4 - }}]$ 266: Example (dimethylamino)benzoyl)glycyl)amino]pyrrolidine (Compound No. 952).

A solution of (R)-1-(4-chlorobenzyl)-3-(glycylamino) pyrrolidine (13.8) mg, 0.052 mmol) in CHCl $_3$ (2 mL) was treated with Et $_3N$ (0.021 mL, 0.15 mmol), 4-(dimethylamino)benzoic acid (10 mg, 0.061 mmol), EDCI (10.2 mg, 0.053 mmol) and HOBt (7.5 mg, 0.055 mmol). The reaction mixture was stirred at room temperature for 16 h. The solution was washed with 2 N aqueous NaOH solution (2 mL \times 2) and brine (2 mL), and dried by filtration through a PTFE membrane 10 using CH_2Cl_2 (3 mL). Concentration afforded the desired material (compound No. 952) (24.9 mg, quant): The purity was determined by RPLC/MS (91%); ESI/MS m/e 415.0 (M+H, C22H27C1N4O2).

Examples 267-347.

5

15

The compounds of this invention were synthesized pursuant to methods of Example 266 using the corresponding reactant respectively. extraction (Varian TM SCX column) or chromatography (HPLC-C₁₆), if needed, afforded the desired material. The ESI/MS data and yields are summarized in Table 5.

Table 5 20

	Compound	Molecular Formula	ESI/MS m/e	Yield (mg)	Vield (8)
	No.			ricia (mg)	11010 (8)
Example 267	951	C22 H24 C1 N3 O4	430.0	26.3	quant
Example 268	953	C23 H29 C1 N4 O2	429.0	28.8	quant
Example 269	954	C21 H25 Cl N4 O2	401.0	27.9	quant
Example 270	955	C22 H27 C1 N4 O2	415.0	26.8	quant
Example 271	956	C21 H24 C1 N3 O3	402.0	10.3	51
Example 272	957	C20 H22 C1 N3 O3	388.0	1.4	7
Example 273	958	C21 H24 C1 N3 O3	402.5	1.2	6
Example 274	959	C22 H25 C1 N4 O3	429.5	4.7	22
Example 275	960	C23 H27 C1 N4 O3	443.0	10.9	49
Example 276	961	C21 H25 C1 N4 O2	401.0	28.4	quant
Example 277	962	C22 H27 C1 N4 O2	415.0	24.9	quant
Example 278	963	C21 H24 C1 N3 O3	402.0	4.4	22
Example 279	964	C22 H24 Cl N3 O4	430.0	29.5	quant
Example 280	965	C23 H26 C1 N3 O4	444.0	27.2	quant
Example 281	966	C22 H24 Cl N3 O3	414.0	27.0	quant
Example 282	967	C23 H26 Cl N3 O3	428.0	27.0	quant
Example 283	968	C22 H23 Cl N4 O2	411.0	21.4	quant
Example 284	969	C23 H25 Cl N4 O2	425.0	27.6	quant
Example 285	970	C22 H27 C1 N4 O2	415.0	28.6	quant
Example 286		C23 H29 Cl N4 O2	429.0	27.9	quant
Example 287		C20 H23 C1 N4 O2	387.0	26.2	quant
Example 288		C21 H25 Cl N4 O2	401.0	26.8	quant
Example 289		C20 H23 C1 N4 O2	387.0	26.6	quant
Example 290		C21 H25 C1 N4 O2	401.0	28.2	quant
Example 291		C22 H23 C1 N4 O2	411.0	29.2	quant
Example 292	į.	C23 H25 C1 N4 O2	425.0	29.5	quant
Example 293		C20 H21 C1 N6 O2	413.0	2.2	11
Example 294		C21 H23 C1 N6 O2	427.0	10.2	48
Example 295		C22 H25 C1 N4 O3	429.0	28.8	quant
Example 296		C23 H27 C1 N4 O3	443.0	11.9	54
Example 297		C22 H27 C1 N4 O2	415.0	27.4	quant
Example 298		C23 H29 C1 N4 O2	429.5	28.1	quant
Example 299		C21 H24 C1 N3 O3	402.0	27.7	quant
Example 300		C22 H26 C1 N3 O3	416.0	28.6	quant
Example 301		C21 H28 N4 O4	401	15.5*	38
Example 302		C21 H28 N4 O3	385	10.9*	28
Example 303		C21 H25 F3 N4 O3	439	17.3*	39
Example 304	1152	C21 H24 F N5 O3	415	12.7*	30

Example 305						
Example 307 1155 C19 H23 F3 N4 O4 429 13.8* 32 Example 308 1156 C21 H30 N4 O4 403 17.7* 43 Example 309 1157 C18 H24 N4 O3 S2 409 12.6* 30 Example 310 1158 C19 H23 C12 N5 O3 440 16.9* 38 Example 311 1159 C22 H31 N5 O6 462 38.6* 85 Example 312 1160 C20 H26 Br N5 O3 464 20.4 45 Example 313 1289 C20 H27 N5 O4 403 5.8* 14 Example 314 1290 C21 H29 N5 O3 400 6.9* 17 Example 315 1291 C24 H28 N4 O2 405 22.4 68 Example 316 1292 C22 H27 Br N4 O2 461 23.8 15 Example 317 1293 C22 H23 F4 N3 O2 438 20.9 59 Example 319 1295 C23 H31 N3 O3 398 17.5 54 Example 320 1296 C20 H25 N3 O2 S2 404 18.8 58 Example 321 1297 C21 H24 F3 N3 O3 424 18.1 53 Example 322 1388 C21 H32 N6 O4 399 15.2 48 Example 324 1401 C23 H25 C1 N4 O2 425 8.3* 16 Example 325 1400 C24 H3 N4 O2 353 14.8 52 Example 326 1403 C20 H24 N4 O2 353 14.8 52 Example 327 1404 C20 H24 N4 O2 353 14.8 52 Example 328 1405 C21 H26 N4 O2 353 14.8 52 Example 329 1407 C22 H28 N4 O2 457 8.3* 15 Example 320 1296 C20 H25 N5 O2 S2 404 18.8 52 Example 324 1401 C23 H25 C1 N4 O2 425 8.3* 16 Example 325 1400 C24 H3 N4 O5 457 8.3* 16 Example 326 1403 C20 H24 N4 O2 353 17.0 60 Example 327 1404 C20 H24 N4 O2 353 17.0 60 Example 328 1405 C21 H26 N4 O2 5 399 17.3 54 Example 329 1407 C22 H28 N4 O2 5 353 17.0 60 Example 331 1769 C22 H26 N4 O2 5 353 17.0 60 Example 331 1769 C22 H26 N4 O2 5 353 17.0 60 Example 333 1770 C26 H28 C12 N6 O4 559 13.1* 21 Example 334 1770 C26 H28 C12 N6 O4 559 13.1* 21 Example 335 1773 C28 H37 N5 O4 484 12.7* 23 Example 336 1774 C26 H37 N5 O4 559 13.1* 21 Example 337 1770 C26 H28 C12 N6 O4 559 13.1.6* 22 Example 338 C040 C22 H27 N3 O4 398 2.0* 5 Example 339 C41 C23 H29 N3 O3 396 6.2* 15 Example 339 C41 C23 H29 N3 O3 396 6.2* 15 Example 330 C44 C25 H34 N6 O6 551 13.6* 22 Example 331 C204 C25 H37 N5 O4 449 6.7* 16 Example 334 C044 C25 H34 N6 O6 551 13.6* 22 Example 337 C044 C25 H34 N6 O6 551 13.6* 22 Example 338 C040 C22 H27 N3 O4 449 6.7* 16 Example 340 C044 C25 H28 N4 O4 449 6.7* 16	Example 305	1153	C21 H24 Cl N5 O3	430	17.5*	41
Example 308 1156 C21 H30 N4 O4 403 17.7* 43 Example 309 1157 C18 H24 N4 O3 S2 409 12.6* 30 Example 310 1158 C19 H23 C12 N5 O3 440 16.9* 38 Example 311 1159 C22 H31 N5 O6 462 38.6* 85 Example 312 1160 C20 H26 Br N5 O3 464 20.4 45 Example 313 1289 C20 H27 N5 O4 403 5.8* 14 Example 314 1290 C21 H29 N5 O3 400 6.9* 17 Example 315 1291 C24 H28 N4 O2 405 22.4 68 Example 316 1292 C22 H27 Br N4 O2 461 23.8 15 Example 317 1293 C22 H23 F4 N3 O2 438 20.9 59 Example 318 1294 C22 H23 F4 N3 O2 438 20.9 59 Example 319 1295 C23 H31 N3 O3 398 17.5 54 Example 320 1296 C20 H25 N3 O2 S2 404 18.8 58 Example 321 1297 C21 H24 F3 N3 O3 424 18.1 53 Example 322 1388 C21 H32 N6 O3 417 7.4* 24 Example 323 1389 C19 H22 N6 O4 399 15.2 48 Example 324 1401 C23 H25 N4 O2 425 8.3* 16 Example 325 1402 C24 H32 N4 O2 425 8.3* 16 Example 326 1403 C20 H24 N4 O2 353 14.8 52 Example 327 1404 C20 H24 N4 O2 353 17.0 60 Example 331 1769 C22 H28 N4 O2 353 17.0 60 Example 332 1770 C26 H28 N4 O2 S 413 19.1 57 Example 333 1771 C26 H32 N6 O4 559 13.1* 21 Example 334 1770 C26 H28 N4 O2 S 519 11.6* 20 Example 337 1770 C26 H28 C1 F3 N4 O5 59 13.1* 21 Example 337 1770 C26 H28 C1 F3 N4 O5 59 13.1* 21 Example 337 1770 C26 H38 C1 F3 N4 O5 59 13.1* 21 Example 337 1770 C26 H38 C1 F3 N4 O5 59 13.1* 21 Example 337 1770 C26 H38 C1 F3 N4 O5 59 13.1* 21 Example 337 1770 C26 H38 C1 F3 N4 O5 59 13.1* 21 Example 337 1770 C26 H38 C12 N6 O4 559 13.1* 21 Example 338 1771 C26 H37 N5 O4 484 12.7* 23 Example 339 1774 C28 H39 N5 O4 510 5.5* 9 Example 337 1774 C28 H39 N5 O4 510 5.5* 9 Example 338 1774 C28 H39 N5 O4 510 5.5* 9 Example 339 1774 C28 H39 N5 O4 510 5.5* 9 Example 339 1774 C28 H39 N5 O4 510 5.5* 9 Example 339 1774 C28 H39 N5 O4 510 5.5* 9 Example 339 1774 C28 H39 N5 O4 510 5.5* 9 Example 339 1774 C28 H39 N5 O4 510 5.5* 9 Example 339 1774 C28 H39 N5 O4 510 5.5* 9 Example 339 1774 C28 H39 N5 O4 510 5.5* 9 Example 339 1774 C28 H39 N5 O4 510 5.5* 15 Example 339 1774 C28 H39 N5 O4 510 5.5* 15 Example 339 1774 C28 H39 N5 O4 510 5.5* 15	Example 306	1154	C22 H27 N5 O3	410		50
Example 309	Example 307	1155	C19 H23 F3 N4 O4	429	13.8*	32
Example 310 1158 C19 H23 C12 N5 O3 440 16.9* 38 Example 311 1159 C22 H31 N5 O6 462 38.6* 85 Example 312 1160 C20 H26 Br N5 O3 464 20.4 45 Example 313 1289 C20 H27 N5 O4 403 5.8* 14 Example 314 1290 C21 H29 N5 O3 400 6.9* 17 Example 315 1291 C24 H28 N4 O2 405 22.4 68 Example 316 1292 C22 H27 Br N4 O2 461 23.8 15 Example 316 1292 C22 H27 Br N4 O2 461 23.8 15 Example 317 1293 C22 H23 F4 N3 O2 438 20.9 59 Example 318 1294 C22 H23 F4 N3 O2 438 20.9 59 Example 319 1295 C23 H31 N3 O3 398 17.5 54 Example 320 1296 C20 H25 N3 O2 S2 404 18.8 58 Example 320 1296 C20 H25 N3 O3 424 18.1 53 Example 322 1388 C21 H32 N6 O3 417 7.4* 24 Example 322 1388 C21 H32 N6 O3 417 7.4* 24 Example 324 1401 C23 H25 N1 O2 425 8.3* 16 Example 325 1402 C24 H32 N4 O5 457 8.3* 16 Example 326 1403 C20 H24 N4 O2 353 14.8 52 Example 326 1403 C20 H24 N4 O2 353 17.0 60 Example 327 1404 C20 H24 N4 O2 353 17.0 60 Example 328 1405 C21 H26 N4 O2 5 399 17.3 54 Example 328 1405 C21 H26 N4 O2 5 399 17.3 54 Example 329 1407 C22 H28 N4 O2 5 399 17.3 54 Example 329 1407 C22 H28 N4 O2 5 399 17.3 54 Example 329 1407 C22 H28 N4 O2 5 399 17.3 54 Example 330 1410 C19 H24 N4 O2 5 399 17.3 54 Example 331 1769 C22 H28 N4 O2 5 399 17.3 54 Example 332 1770 C26 H28 C12 N6 O4 559 13.1* 21 Example 333 1770 C26 H28 C12 N6 O4 559 13.1* 21 Example 334 1772 C28 H39 N5 O4 509 6.2* 11 Example 335 1770 C26 H28 C12 N6 O4 559 13.1* 21 Example 336 1774 C28 H39 N5 O4 509 6.2* 11 Example 337 1774 C28 H39 N5 O4 509 6.2* 11 Example 338 1771 C26 H37 N5 O4 509 6.2* 11 Example 339 1773 C28 H39 N5 O4 509 6.2* 11 Example 339 1774 C28 H39 N5 O4 509 6.2* 11 Example 339 1774 C28 H39 N5 O4 509 6.2* 11 Example 339 1774 C28 H39 N5 O4 509 6.2* 11 Example 339 1774 C28 H39 N5 O4 509 6.2* 11 Example 336 1774 C28 H39 N5 O4 509 6.2* 15 Example 337 2039 C19 H24 N4 O2 341 5.2* 14 Example 336 1774 C28 H39 N5 O4 509 6.2* 15 Example 337 2039 C19 H24 N4 O2 341 5.2* 14 Example 338 2040 C22 H27 N3 O4 398 2.0* 5 Example 339 2041 C23 H29 N3 O3 396 6.2* 15 Example 340 2042 C25 H39 N3 O4 398 2.0* 5 Example 340 2043	Example 308	1156	C21 H30 N4 O4	403		43
Example 311 1159 C22 H31 N5 O6 462 38.6* 65 Example 312 1160 C20 H26 Br N5 O3 464 20.4 45 Example 313 1289 C20 H27 N5 O4 403 5.8* 14 Example 314 1290 C21 H29 N5 O3 400 6.9* 17 Example 315 1291 C24 H28 N4 O2 405 22.4 68 Example 316 1292 C22 H27 Br N4 O2 461 23.8 15 Example 317 1293 C22 H23 F4 N3 O2 438 20.9 59 Example 318 1294 C22 H23 F4 N3 O2 438 20.9 59 Example 319 1295 C23 H31 N3 O3 398 17.5 54 Example 320 1296 C20 H25 N3 O2 S2 404 18.8 58 Example 321 1297 C21 H24 F3 N3 O3 424 18.1 53 Example 322 1388 C21 H32 N6 O3 417 7.4* 24 Example 323 1389 C19 H22 N6 O3 417 7.4* 24 Example 324 1401 C23 H25 C1 N4 O2 425 8.3* 16 Example 325 1402 C24 H32 N4 O5 457 8.3* 15 Example 326 1403 C20 H24 N4 O2 353 14.8 52 Example 327 1404 C20 H24 N4 O2 353 17.0 60 Example 328 1405 C21 H26 N4 O2 5 399 17.3 54 Example 329 1407 C22 H28 N4 O2 5 399 17.3 54 Example 330 1410 C19 H24 N4 O2 353 17.0 60 Example 331 1769 C22 H26 N4 O2 5 399 17.3 54 Example 332 1770 C26 H28 N4 O2 5 399 17.3 54 Example 333 1771 C26 H38 N5 O4 484 12.7* 23 Example 330 1410 C19 H24 N4 O2 351 13.6* 20 Example 331 1772 C28 H39 N5 O4 510 5.5* 9 Example 333 1771 C26 H39 N5 O4 510 5.5* 9 Example 334 1772 C28 H39 N5 O4 510 5.5* 9 Example 335 1773 C28 H37 N5 O4 509 6.2* 11 Example 336 1774 C28 H34 N6 O6 551 13.6* 22 Example 337 2039 C19 H24 N4 O2 341 5.2* 14 Example 338 2040 C22 H27 N3 O4 398 2.0* 5 Example 339 2041 C23 H29 N3 O3 396 6.2* 15 Example 339 2041 C23 H29 N3 O3 396 6.2* 15 Example 330 2041 C23 H29 N3 O3 396 6.2* 15 Example 334 2043 C24 H31 N3 O2 394 6.8* 17 Example 336 2040 C25 H37 N3 O2 449 449 8.7* 16 Example 342 2044 C25 H38 N4 O4 449 8.7* 16	Example 309	1157	C18 H24 N4 O3 S2	409		30
Example 312 1160 C20 H26 Br N5 O3 464 20.4 45 Example 313 1269 C20 H27 N5 O4 403 5.8* 14 Example 314 1290 C21 H29 N5 O3 400 6.9* 17 Example 315 1291 C24 H28 N4 O2 405 22.4 68 Example 316 1292 C22 H27 Br N4 O2 461 23.8 15 Example 317 1293 C22 H23 F4 N3 O2 438 20.9 59 Example 318 1294 C22 H23 F4 N3 O2 438 20.8 59 Example 319 1295 C23 H31 N3 O3 398 17.5 54 Example 320 1296 C20 H25 N3 O2 S2 404 18.8 58 Example 321 1297 C21 H24 F3 N3 O3 424 18.1 53 Example 322 1388 C21 H32 N6 O3 417 7.4* 24 Example 323 1389 C19 H22 N6 O4 399 15.2 48 Example 324 1401 C23 H25 C1 N4 O2 425 8.3* 16 Example 325 1402 C24 H32 N4 O5 457 8.3* 15 Example 326 1403 C20 H24 N4 O2 353 14.8 52 Example 327 1404 C20 H24 N4 O2 353 17.0 60 Example 328 1405 C21 H26 N4 O2 5 399 17.3 54 Example 329 1407 C22 H28 N4 O2 5 399 17.3 54 Example 329 1407 C22 H26 N4 O2 5 399 17.3 54 Example 330 1410 C19 H24 N4 O3 357 9.7* 59 Example 331 1769 C22 H26 C1 F3 N4 O5 519 11.6* 20 Example 332 1770 C26 H38 N4 O4 509 6.2* 11 Example 333 1771 C26 H37 N5 O4 509 6.2* 11 Example 336 1774 C28 H38 N6 O6 5551 13.6* 22 Example 337 2039 C19 H24 N4 O2 341 5.5* 9 Example 338 1771 C26 H37 N5 O4 509 6.2* 11 Example 339 2040 C22 H27 N3 O4 398 2.0* 5 Example 339 2040 C22 H27 N3 O4 398 2.0* 5 Example 339 2040 C22 H27 N3 O4 398 2.0* 5 Example 340 2042 C25 H37 N3 O2 394 6.8* 17 Example 341 2043 C24 H31 N3 O2 394 6.8* 17 Example 342 2044 C25 H38 N4 O4 449 6.7* 16	Example 310	1158	C19 H23 C12 N5 O3	440	16.9*	38
Example 313 1289 C20 H27 N5 O4 403 5.8* 14 Example 314 1290 C21 H29 N5 O3 400 6.9* 17 Example 315 1291 C24 H28 N4 O2 405 22.4 68 Example 316 1292 C22 H27 Br N4 O2 461 23.8 15 Example 317 1293 C22 H23 F4 N3 O2 438 20.9 59 Example 318 1294 C22 H23 F4 N3 O2 438 20.8 59 Example 319 1295 C23 H31 N3 O3 398 17.5 54 Example 320 1296 C20 H25 N3 O2 S2 4004 18.8 58 Example 321 1297 C21 H24 F3 N3 O3 424 18.1 53 Example 321 1297 C21 H24 F3 N3 O3 424 18.1 53 Example 322 1388 C21 H32 N6 O3 417 7.4* 24 Example 322 1388 C21 H32 N6 O4 399 15.2 48 Example 324 1401 C23 H25 C1 N4 O2 425 8.3* 16 Example 325 1402 C24 H32 N4 O5 457 8.3* 15 Example 326 1403 C20 H24 N4 O2 353 17.0 60 Example 328 1405 C21 H26 N4 O2 353 17.0 60 Example 329 1407 C22 H26 N4 O2 S 399 17.3 54 Example 329 1407 C22 H26 N4 O2 S 399 17.3 54 Example 329 1407 C22 H26 N4 O2 S 413 19.1 57 Example 330 1410 C19 H24 N4 O3 357 9.7* 59 Example 331 1769 C22 H26 C1 F3 N4 O5 519 11.6* 20 Example 332 1770 C26 H28 C12 N6 O4 559 13.1* 21 Example 333 1771 C26 H37 N5 O4 484 12.7* 23 Example 334 1772 C28 H39 N5 O4 509 6.2* 11 Example 335 1773 C28 H37 N5 O4 509 6.2* 11 Example 336 1774 C28 H37 N5 O4 509 6.2* 11 Example 337 2039 C19 H24 N4 O2 341 5.2* 14 Example 338 1770 C26 H28 C12 N6 O4 559 13.1* 21 Example 338 1771 C26 H37 N5 O4 509 6.2* 11 Example 336 1774 C28 H39 N5 O4 509 6.2* 11 Example 337 2039 C19 H24 N4 O2 341 5.2* 14 Example 338 1770 C26 H28 N3 O3 398 2.0* 55 Example 339 2041 C23 H29 N3 O3 396 6.2* 15 Example 330 2040 C22 H27 N3 O4 398 2.0* 55 Example 331 2043 C24 H31 N3 O2 394 6.8* 17 Example 340 2042 C25 H37 N3 O2 394 6.8* 17 Example 342 2044 C25 H28 N4 O4 449 8.7* 16 Example 343 2045 C26 H29 C1 N6 O4 525 11.4* 19	Example 311	1159	C22 H31 N5 O6	462	38.6*	85
Example 314 1290 C21 H29 N5 O3 400 6.9* 17 Example 315 1291 C24 H28 N4 O2 405 22.4 68 Example 316 1292 C22 H27 Br N4 O2 461 23.8 15 Example 317 1293 C22 H23 F4 N3 O2 438 20.9 59 Example 318 1294 C22 H23 F4 N3 O2 438 20.8 59 Example 319 1295 C23 H31 N3 O3 398 17.5 54 Example 320 1296 C20 H25 N3 O2 S2 404 18.8 58 Example 321 1297 C21 H24 F3 N3 O3 424 18.1 53 Example 322 1388 C21 H32 N6 O3 417 7.4* 24 Example 322 1388 C21 H32 N6 O4 399 15.2 48 Example 323 1389 C19 H22 N6 O4 399 15.2 48 Example 324 1401 C23 H25 C1 N4 O2 425 8.3* 16 Example 325 1402 C24 H32 N4 O5 457 8.3* 15 Example 326 1403 C20 H24 N4 O2 353 14.8 52 Example 327 1404 C20 H24 N4 O2 353 17.0 60 Example 328 1405 C21 H26 N4 O2 S 399 17.3 54 Example 329 1407 C22 H28 N4 O2 S 413 19.1 57 Example 330 1410 C19 H24 N4 O3 357 9.7* 59 Example 331 1769 C22 H26 C1 F3 N4 O5 519 11.6* 20 Example 333 1770 C26 H28 C12 N6 O4 559 13.1* 21 Example 334 1772 C28 H39 N5 O4 509 6.2* 11 Example 335 1773 C28 H37 N5 O4 484 12.7* 23 Example 336 1774 C28 H39 N5 O4 509 6.2* 11 Example 337 2039 C19 H24 N4 O2 341 5.2* 14 Example 338 1776 C26 H28 C12 N6 O4 559 13.1* 21 Example 337 2039 C19 H24 N4 O2 341 5.2* 14 Example 338 1774 C28 H39 N5 O4 509 6.2* 11 Example 338 1776 C28 H39 N5 O4 509 6.2* 11 Example 338 1777 C26 H28 N4 O2 341 5.2* 14 Example 339 2041 C23 H27 N3 O4 398 2.0* 5 Example 337 2039 C19 H24 N4 O2 341 5.2* 14 Example 338 2040 C22 H27 N3 O4 398 2.0* 5 Example 340 2042 C25 H37 N3 O2 443 2.6* 6 Example 341 2043 C24 H31 N3 O2 394 6.8* 17 Example 342 2044 C25 H28 N4 O4 449 8.7* 16 Example 343 2045 C26 H29 C1 N6 O4 525 11.4* 19	Example 312	1160	C20 H26 Br N5 O3	464	20.4	45
Example 314 1290 C24 H28 N4 O2 405 22.4 68 Example 316 1292 C22 H27 Br N4 O2 461 23.8 15 Example 317 1293 C22 H23 F4 N3 O2 438 20.9 59 Example 318 1294 C22 H23 F4 N3 O2 438 20.8 59 Example 319 1295 C23 H31 N3 O3 398 17.5 54 Example 320 1296 C20 H25 N3 O2 S2 404 18.8 58 Example 321 1297 C21 H24 F3 N3 O3 424 18.1 53 Example 322 1388 C21 H32 N6 O3 417 7.4* 24 Example 323 1389 C19 H22 N6 O4 399 15.2 48 Example 324 1401 C23 H25 C1 N4 O2 425 8.3* 16 Example 325 1402 C24 H32 N4 O5 457 8.3* 15 Example 326 1403 C20 H24 N4 O2 353 17.0 60 Example 328 1405 C21 H26 N4 O2 353 17.0 60 Example 329 1407 C22 H28 N4 O2 353 17.0 60 Example 329 1407 C22 H28 N4 O2 353 17.0 60 Example 329 1407 C22 H28 N4 O2 5 399 17.3 54 Example 330 1410 C19 H24 N4 O3 357 9.7* 59 Example 331 1769 C22 H26 C1 F3 N4 O5 519 11.6* 20 Example 332 1770 C26 H28 C12 N6 O4 559 13.1* 21 Example 333 1771 C26 H38 N5 O4 484 12.7* 23 Example 334 1772 C28 H39 N5 O4 510 5.5* 9 Example 336 1774 C28 H39 N5 O4 510 5.5* 9 Example 337 C039 C19 H24 N4 O2 341 551 13.6* 22 Example 338 2040 C22 H27 N3 O4 398 2.0* 5 Example 338 2040 C22 H27 N3 O4 398 2.0* 5 Example 339 2041 C23 H29 N3 O3 396 6.2* 11 Example 330 2041 C23 H29 N3 O3 396 6.2* 15 Example 334 2044 C25 H38 N4 O4 449 8.7* 16 Example 342 2044 C25 H38 N4 O4 449 8.7* 16	Example 313	1289	C20 H27 N5 O4	403	5.8*	
Example 316	Example 314	1290	C21 H29 N5 O3	400	6.9*	17
Example 317 1293 C22 H23 F4 N3 O2 438 20.9 59 Example 318 1294 C22 H23 F4 N3 O2 438 20.8 59 Example 319 1295 C23 H31 N3 O3 398 17.5 54 Example 320 1296 C20 H25 N3 O2 S2 404 18.8 58 Example 321 1297 C21 H24 F3 N3 O3 424 18.1 53 Example 322 1388 C21 H32 N6 O3 417 7.4* 24 Example 323 1389 C19 H22 N6 O4 399 15.2 48 Example 324 1401 C23 H25 C1 N4 O2 425 8.3* 16 Example 325 1402 C24 H32 N4 O5 457 8.3* 15 Example 326 1403 C20 H24 N4 O2 353 17.0 60 Example 327 1404 C20 H24 N4 O2 353 17.0 60 Example 328 1405 C21 H26 N4 O2 5 399 17.3 54 Example 329 1407 C22 H28 N4 O2 5 413 19.1 57 Example 330 1410 C19 H24 N4 O3 357 9.7* 59 Example 331 1769 C22 H26 C1 F3 N4 O5 519 11.6* 20 Example 333 1771 C26 H38 N5 O4 484 12.7* 23 Example 334 1772 C28 H39 N5 O4 510 5.5* 9 Example 336 1774 C28 H39 N5 O4 510 5.5* 9 Example 337 2039 C19 H24 N4 O2 341 5.2* 14 Example 338 2040 C22 H27 N3 O4 398 2.0* 5 Example 341 2043 C24 H31 N3 O2 394 6.8* 17 Example 342 2044 C25 H28 N4 O4 449 8.7* 16 Example 342 2044 C25 H28 N4 O4 449 8.7* 16 Example 342 2044 C25 H28 N4 O4 449 8.7* 16	Example 315	1291		405	22.4	68
Example 318 1294 C22 H23 F4 N3 O2 438 20.8 59 Example 319 1295 C23 H31 N3 O3 398 17.5 54 Example 320 1296 C20 H25 N3 O2 S2 404 18.8 58 Example 321 1297 C21 H24 F3 N3 O3 424 18.1 53 Example 322 1388 C21 H32 N6 O3 417 7.4* 24 Example 323 1389 C19 H22 N6 O4 399 15.2 48 Example 324 1401 C23 H25 C1 N4 O2 425 8.3* 16 Example 325 1402 C24 H32 N4 O5 457 8.3* 15 Example 326 1403 C20 H24 N4 O2 353 14.8 52 Example 327 1404 C20 H24 N4 O2 353 17.0 60 Example 328 1405 C21 H26 N4 O2 5 399 17.3 54 Example 329 1407 C22 H28 N4 O2 S 413 19.1 57 Example 330 1410 C19 H24 N4 O3 357 9.7* 59 Example 331 1769 C22 H26 C1 F3 N4 O5 519 11.6* 20 Example 332 1770 C26 H28 C12 N6 O4 559 13.1* 21 Example 334 1772 C28 H39 N5 O4 510 5.5* 9 Example 336 1774 C28 H39 N5 O4 509 6.2* 11 Example 337 C09 H24 N4 O2 341 5.2* 14 Example 338 2040 C22 H27 N3 O4 398 2.0* 5 Example 339 2041 C23 H29 N3 O3 396 6.2* 15 Example 341 2043 C24 H31 N3 O2 394 6.8* 17 Example 342 2044 C25 H28 N4 O4 449 8.7* 16 Example 342 2044 C25 H28 N4 O4 449 8.7* 16 Example 342 2044 C25 H28 N4 O4 449 8.7* 16	Example 316	1292			23.8	
Example 319 1295 C23 H31 N3 O3 398 17.5 54 Example 320 1296 C20 H25 N3 O2 S2 404 18.8 58 Example 321 1297 C21 H24 F3 N3 O3 424 18.1 53 Example 322 1388 C21 H32 N6 O3 417 7.4* 24 Example 323 1389 C19 H22 N6 O4 399 15.2 48 Example 324 1401 C23 H25 C1 N4 O2 425 8.3* 16 Example 325 1402 C24 H32 N4 O5 457 8.3* 15 Example 326 1403 C20 H24 N4 O2 353 14.8 52 Example 327 1404 C20 H24 N4 O2 353 17.0 60 Example 328 1405 C21 H26 N4 O2 5 399 17.3 54 Example 329 1407 C22 H28 N4 O2 5 399 17.3 54 Example 330 1410 C19 H24 N4 O3 357 9.7* 59 Example 331 1769 C22 H26 C1 F3 N4 O5 519 11.6* 20 Example 332 1770 C26 H28 C12 N6 O4 559 13.1* 21 Example 333 1771 C26 H37 N5 O4 484 12.7* 23 Example 334 1772 C28 H39 N5 O4 510 5.5* 9 Example 336 1774 C28 H34 N6 O6 551 13.6* 22 Example 337 2039 C19 H24 N4 O2 341 5.2* 14 Example 338 2040 C22 H27 N3 O4 398 2.0* 5 Example 339 2041 C23 H29 N3 O3 396 6.2* 15 Example 340 2042 C25 H37 N3 O2 413 2.6* 6 Example 341 2043 C24 H31 N3 O2 394 6.8* 17 Example 342 2044 C25 H28 N4 O4 449 8.7* 16 Example 343 2045 C26 H29 C1 N6 O4 525 11.4* 19	Example 317	1293	C22 H23 F4 N3 O2	438	20.9	
Example 320 1296 C20 H25 N3 O2 S2 404 18.8 58 Example 321 1297 C21 H24 F3 N3 O3 424 18.1 53 Example 322 1388 C21 H32 N6 O3 417 7.4* 24 Example 323 1389 C19 H22 N6 O4 399 15.2 48 Example 324 1401 C23 H25 C1 N4 O2 425 8.3* 16 Example 325 1402 C24 H32 N4 O5 457 8.3* 15 Example 326 1403 C20 H24 N4 O2 353 14.8 52 Example 327 1404 C20 H24 N4 O2 353 17.0 60 Example 328 1405 C21 H26 N4 O2 S 399 17.3 54 Example 329 1407 C22 H28 N4 O2 S 399 17.3 54 Example 330 1410 C19 H24 N4 O3 357 9.7* 59 Example 331 1769 C22 H26 C1 F3 N4 O5 519 11.6* 20 Example 332 1770 C26 H28 C12 N6 O4 559 13.1* 21 Example 333 1771 C26 H37 N5 O4 484 12.7* 23 Example 334 1772 C28 H39 N5 O4 510 5.5* 9 Example 336 1774 C28 H34 N6 O6 551 13.6* 22 Example 337 2039 C19 H24 N4 O2 341 5.2* 14 Example 338 2040 C22 H27 N3 O4 398 2.0* 5 Example 340 2042 C25 H37 N3 O2 413 2.6* 6 Example 341 2043 C24 H31 N3 O2 394 6.8* 17 Example 342 2044 C25 H28 N4 O4 449 8.7* 16 Example 343 2045 C26 H29 C1 N6 O4 525 11.4* 19	Example 318	1294	1			
Example 321 1297 C21 H24 F3 N3 O3 424 18.1 53 Example 322 1388 C21 H32 N6 O3 417 7.4* 24 Example 323 1389 C19 H22 N6 O4 399 15.2 48 Example 324 1401 C23 H25 C1 N4 O2 425 8.3* 16 Example 325 1402 C24 H32 N4 O5 457 8.3* 15 Example 326 1403 C20 H24 N4 O2 353 14.8 52 Example 327 1404 C20 H24 N4 O2 353 17.0 60 Example 328 1405 C21 H26 N4 O2 5 399 17.3 54 Example 329 1407 C22 H28 N4 O2 S 399 17.3 54 Example 330 1410 C19 H24 N4 O3 357 9.7* 59 Example 331 1769 C22 H26 C1 F3 N4 O5 519 11.6* 20 Example 332 1770 C26 H28 C12 N6 O4 559 13.1* 21 Example 333 1771 C26 H37 N5 O4 484 12.7* 23 Example 334 1772 C28 H39 N5 O4 510 5.5* 9 Example 336 1774 C28 H34 N6 O6 551 13.6* 22 Example 337 C039 C19 H24 N4 O2 341 5.2* 14 Example 338 2040 C22 H27 N3 O4 398 2.0* 5 Example 339 2041 C23 H29 N3 O3 396 6.2* 15 Example 340 2042 C25 H37 N3 O2 413 2.6* 6 Example 341 2043 C24 H31 N3 O2 394 6.8* 17 Example 342 2044 C25 H28 N4 O4 449 8.7* 16 Example 343 2045 C26 H29 C1 N6 O4 525 11.4* 19	Example 319	1295	·	398	17.5	
Example 322	Example 320	1296	· I			
Example 323 1389 C19 H22 N6 O4 399 15.2 48 Example 324 1401 C23 H25 C1 N4 O2 425 8.3* 16 Example 325 1402 C24 H32 N4 O5 457 8.3* 15 Example 326 1403 C20 H24 N4 O2 353 14.8 52 Example 327 1404 C20 H24 N4 O2 353 17.0 60 Example 328 1405 C21 H26 N4 O2 5 399 17.3 54 Example 329 1407 C22 H28 N4 O2 S 413 19.1 57 Example 330 1410 C19 H24 N4 O3 357 9.7* 59 Example 331 1769 C22 H26 C1 F3 N4 O5 519 11.6* 20 Example 332 1770 C26 H28 C12 N6 O4 559 13.1* 21 Example 333 1771 C26 H37 N5 O4 484 12.7* 23 Example 334 1772 C28 H39 N5 O4 510 5.5* 9 Example 336 1774 C28 H37 N5 O4 509 6.2* 11 Example 337 2039 C19 H24 N4 O2 341 5.2* 14 Example 338 2040 C22 H27 N3 O4 398 2.0* 5 Example 339 2041 C23 H29 N3 O3 396 6.2* 15 Example 340 2042 C25 H37 N3 O2 413 2.6* 6 Example 341 2043 C24 H31 N3 O2 394 6.8* 17 Example 342 2044 C25 H28 N4 O4 449 8.7* 16 Example 343 2045 C26 H29 C1 N6 O4 525 11.4* 19	Example 321	1297	i	424		
Example 324 1401 C23 H25 C1 N4 O2 425 8.3* 16 Example 325 1402 C24 H32 N4 O5 457 8.3* 15 Example 326 1403 C20 H24 N4 O2 353 14.8 52 Example 327 1404 C20 H24 N4 O2 353 17.0 60 Example 328 1405 C21 H26 N4 O2 S 399 17.3 54 Example 329 1407 C22 H28 N4 O2 S 413 19.1 57 Example 330 1410 C19 H24 N4 O3 357 9.7* 59 Example 331 1769 C22 H26 C1 F3 N4 O5 519 11.6* 20 Example 332 1770 C26 H28 C12 N6 O4 559 13.1* 21 Example 333 1771 C26 H37 N5 O4 484 12.7* 23 Example 334 1772 C28 H39 N5 O4 510 5.5* 9 Example 335 1773 C28 H37 N5 O4 509 6.2* 11 Example 336 1774 C28 H34 N6 O6 551 13.6* 22 Example 337 2039 C19 H24 N4 O2 341 5.2* 14 Example 338 2040 C22 H27 N3 O4 398 2.0* 5 Example 340 2042 C25 H37 N3 O2 413 2.6* 6 Example 341 2043 C24 H31 N3 O2 394 6.8* 17 Example 342 2044 C25 H28 N4 O4 449 8.7* 16 Example 343 2045 C26 H29 C1 N6 O4 525 11.4* 19	Example 322	1388		417		
Example 325 1402 C24 H32 N4 O5 457 8.3* 15 Example 326 1403 C20 H24 N4 O2 353 14.8 52 Example 327 1404 C20 H24 N4 O2 353 17.0 60 Example 328 1405 C21 H26 N4 O2 S 399 17.3 54 Example 329 1407 C22 H28 N4 O2 S 413 19.1 57 Example 330 1410 C19 H24 N4 O3 357 9.7* 59 Example 331 1769 C22 H26 C1 F3 N4 O5 519 11.6* 20 Example 332 1770 C26 H28 C12 N6 O4 559 13.1* 21 Example 333 1771 C26 H37 N5 O4 484 12.7* 23 Example 334 1772 C28 H39 N5 O4 510 5.5* 9 Example 335 1773 C28 H37 N5 O4 509 6.2* 11 Example 336 1774 C28 H34 N6 O6 551 13.6* 22 Example 337 2039 C19 H24 N4 O2 341 5.2* 14 Example 338 2040 C22 H27 N3 O4 398 2.0* 5 Example 340 2042 C25 H37 N3 O2 413 2.6* 6 Example 341 2043 C24 H31 N3 O2 394 6.8* 17 Example 342 2044 C25 H28 N4 O4 449 8.7* 16 Example 343 2045 C26 H29 C1 N6 O4 525 11.4* 19	Example 323	1389				
Example 326 1403 C20 H24 N4 O2 353 14.8 52 Example 327 1404 C20 H24 N4 O2 353 17.0 60 Example 328 1405 C21 H26 N4 O2 S 399 17.3 54 Example 329 1407 C22 H28 N4 O2 S 413 19.1 57 Example 330 1410 C19 H24 N4 O3 357 9.7* 59 Example 331 1769 C22 H26 C1 F3 N4 O5 519 11.6* 20 Example 332 1770 C26 H28 C12 N6 O4 559 13.1* 21 Example 333 1771 C26 H37 N5 O4 484 12.7* 23 Example 334 1772 C28 H39 N5 O4 510 5.5* 9 Example 335 1773 C28 H37 N5 O4 509 6.2* 11 Example 336 1774 C28 H34 N6 O6 551 13.6* 22 Example 337 2039 C19 H24 N4 O2 341 5.2* 14 Example 338 2040 C22 H27 N3 O4 398 2.0* 5 Example 340 2042 C25 H37 N3 O2 413 2.6* 6 Example 341 2043 C24 H31 N3 O2 394 6.8* 17 Example 342 2044 C25 H28 N4 O4 449 8.7* 16 Example 343 2045 C26 H29 C1 N6 O4 525 11.4* 19	Example 324	1401		<u> </u>	1	
Example 327 1404 C20 H24 N4 O2 353 17.0 60 Example 328 1405 C21 H26 N4 O2 S 399 17.3 54 Example 329 1407 C22 H28 N4 O2 S 413 19.1 57 Example 330 1410 C19 H24 N4 O3 357 9.7* 59 Example 331 1769 C22 H26 C1 F3 N4 O5 519 11.6* 20 Example 332 1770 C26 H28 C12 N6 O4 559 13.1* 21 Example 333 1771 C26 H37 N5 O4 484 12.7* 23 Example 334 1772 C28 H39 N5 O4 510 5.5* 9 Example 335 1773 C28 H37 N5 O4 509 6.2* 11 Example 336 1774 C28 H34 N6 O6 551 13.6* 22 Example 337 2039 C19 H24 N4 O2 341 5.2* 14 Example 338 2040 C22 H27 N3 O4 398 2.0* 5 Example 339 2041 C23 H29 N3 O3 396 6.2* 15 Example 340 2042 C25 H37 N3 O2 413 2.6* 6 Example 341 2043 C24 H31 N3 O2 394 6.8* 17 Example 342 2044 C25 H28 N4 O4 449 8.7* 16 Example 343 2045 C26 H29 C1 N6 O4 525 11.4* 19	Example 325	1402			L	
Example 328 1405 C21 H26 N4 O2 S 399 17.3 54 Example 329 1407 C22 H28 N4 O2 S 413 19.1 57 Example 330 1410 C19 H24 N4 O3 357 9.7* 59 Example 331 1769 C22 H26 C1 F3 N4 O5 519 11.6* 20 Example 332 1770 C26 H28 C12 N6 O4 559 13.1* 21 Example 333 1771 C26 H37 N5 O4 484 12.7* 23 Example 334 1772 C28 H39 N5 O4 510 5.5* 9 Example 335 1773 C28 H37 N5 O4 509 6.2* 11 Example 336 1774 C28 H34 N6 O6 551 13.6* 22 Example 337 2039 C19 H24 N4 O2 341 5.2* 14 Example 338 2040 C22 H27 N3 O4 398 2.0* 5 Example 339 2041 C23 H29 N3 O3 396 6.2* 15 Example 340 2042 C25 H37 N3 O2 413 2.6* 6 Example 341 2043 C24 H31 N3 O2 394 6.8* 17 Example 342 2044 C25 H28 N4 O4 449 8.7* 16 Example 343 2045 C26 H29 C1 N6 O4 525 11.4* 19	Example 326	1403	C20 H24 N4 O2		l	
Example 329 1407 C22 H28 N4 O2 S 413 19.1 57 Example 330 1410 C19 H24 N4 O3 357 9.7* 59 Example 331 1769 C22 H26 C1 F3 N4 O5 519 11.6* 20 Example 332 1770 C26 H28 C12 N6 O4 559 13.1* 21 Example 333 1771 C26 H37 N5 O4 484 12.7* 23 Example 334 1772 C28 H39 N5 O4 510 5.5* 9 Example 335 1773 C28 H37 N5 O4 509 6.2* 11 Example 336 1774 C28 H34 N6 O6 551 13.6* 22 Example 337 2039 C19 H24 N4 O2 341 5.2* 14 Example 338 2040 C22 H27 N3 O4 398 2.0* 5 Example 339 2041 C23 H29 N3 O3 396 6.2* 15 Example 340 2042 C25 H37 N3 O2 413 2.6* 6 Example 341 2043 C24 H31 N3 O2 394 6.8* 17 Example 342 2044 C25 H28 N4 O4 449 8.7* 16 Example 343 2045 C26 H29 C1 N6 O4 525 11.4* 19	Example 327	1404				
Example 330 1410 C19 H24 N4 O3 357 9.7* 59 Example 331 1769 C22 H26 C1 F3 N4 O5 519 11.6* 20 Example 332 1770 C26 H28 C12 N6 O4 559 13.1* 21 Example 333 1771 C26 H37 N5 O4 484 12.7* 23 Example 334 1772 C28 H39 N5 O4 510 5.5* 9 Example 335 1773 C28 H37 N5 O4 509 6.2* 11 Example 336 1774 C28 H34 N6 O6 551 13.6* 22 Example 337 2039 C19 H24 N4 O2 341 5.2* 14 Example 338 2040 C22 H27 N3 O4 398 2.0* 5 Example 339 2041 C23 H29 N3 O3 396 6.2* 15 Example 340 2042 C25 H37 N3 O2 413 2.6* 6 Example 341 2043 C24 H31 N3 O2 394 6.8* 17 Example 342 2044 C25 H28 N4 O4 449 8.7* 16 Example 343 2045 C26 H29 C1 N6 O4 525 11.4* 19	Example 328	1405				
Example 331 1769 C22 H26 C1 F3 N4 O5 519 11.6* 20 Example 332 1770 C26 H28 C12 N6 O4 559 13.1* 21 Example 333 1771 C26 H37 N5 O4 484 12.7* 23 Example 334 1772 C28 H39 N5 O4 510 5.5* 9 Example 335 1773 C28 H37 N5 O4 509 6.2* 11 Example 336 1774 C28 H34 N6 O6 551 13.6* 22 Example 337 2039 C19 H24 N4 O2 341 5.2* 14 Example 338 2040 C22 H27 N3 O4 398 2.0* 5 Example 339 2041 C23 H29 N3 O3 396 6.2* 15 Example 340 2042 C25 H37 N3 O2 413 2.6* 6 Example 341 2043 C24 H31 N3 O2 394 6.8* 17 Example 342 2044 C25 H28 N4 O4 449 8.7* 16 Example 343 2045 C26 H29 C1 N6 O4 525 11.4* 19	Example 329	1407	1		l	
Example 332 1770 C26 H28 C12 N6 O4 559 13.1* 21 Example 333 1771 C26 H37 N5 O4 484 12.7* 23 Example 334 1772 C28 H39 N5 O4 510 5.5* 9 Example 335 1773 C28 H37 N5 O4 509 6.2* 11 Example 336 1774 C28 H34 N6 O6 551 13.6* 22 Example 337 2039 C19 H24 N4 O2 341 5.2* 14 Example 338 2040 C22 H27 N3 O4 398 2.0* 5 Example 339 2041 C23 H29 N3 O3 396 6.2* 15 Example 340 2042 C25 H37 N3 O2 413 2.6* 6 Example 341 2043 C24 H31 N3 O2 394 6.8* 17 Example 342 2044 C25 H28 N4 O4 449 8.7* 16 Example 343 2045 C26 H29 C1 N6 O4 525 11.4* 19	Example 330	1410	i			
Example 333 1771 C26 H37 N5 O4 484 12.7* 23 Example 334 1772 C28 H39 N5 O4 510 5.5* 9 Example 335 1773 C28 H37 N5 O4 509 6.2* 11 Example 336 1774 C28 H34 N6 O6 551 13.6* 22 Example 337 2039 C19 H24 N4 O2 341 5.2* 14 Example 338 2040 C22 H27 N3 O4 398 2.0* 5 Example 339 2041 C23 H29 N3 O3 396 6.2* 15 Example 340 2042 C25 H37 N3 O2 413 2.6* 6 Example 341 2043 C24 H31 N3 O2 394 6.8* 17 Example 342 2044 C25 H28 N4 O4 449 8.7* 16 Example 343 2045 C26 H29 C1 N6 O4 525 11.4* 19	Example 331	1769	<u> </u>	<u> </u>		
Example 334 1772 C28 H39 N5 O4 510 5.5* 9 Example 335 1773 C28 H37 N5 O4 509 6.2* 11 Example 336 1774 C28 H34 N6 O6 551 13.6* 22 Example 337 2039 C19 H24 N4 O2 341 5.2* 14 Example 338 2040 C22 H27 N3 O4 398 2.0* 5 Example 339 2041 C23 H29 N3 O3 396 6.2* 15 Example 340 2042 C25 H37 N3 O2 413 2.6* 6 Example 341 2043 C24 H31 N3 O2 394 6.8* 17 Example 342 2044 C25 H28 N4 O4 449 8.7* 16 Example 343 2045 C26 H29 C1 N6 O4 525 11.4* 19	Example 332	1770		<u> </u>	·	
Example 335 1773 C28 H37 N5 O4 509 6.2* 11 Example 336 1774 C28 H34 N6 O6 551 13.6* 22 Example 337 2039 C19 H24 N4 O2 341 5.2* 14 Example 338 2040 C22 H27 N3 O4 398 2.0* 5 Example 339 2041 C23 H29 N3 O3 396 6.2* 15 Example 340 2042 C25 H37 N3 O2 413 2.6* 6 Example 341 2043 C24 H31 N3 O2 394 6.8* 17 Example 342 2044 C25 H28 N4 O4 449 8.7* 16 Example 343 2045 C26 H29 C1 N6 O4 525 11.4* 19	Example 333	1771		<u> </u>		
Example 336 1774 C28 H34 N6 O6 551 13.6* 22 Example 337 2039 C19 H24 N4 O2 341 5.2* 14 Example 338 2040 C22 H27 N3 O4 398 2.0* 5 Example 339 2041 C23 H29 N3 O3 396 6.2* 15 Example 340 2042 C25 H37 N3 O2 413 2.6* 6 Example 341 2043 C24 H31 N3 O2 394 6.8* 17 Example 342 2044 C25 H28 N4 O4 449 8.7* 16 Example 343 2045 C26 H29 C1 N6 O4 525 11.4* 19	-					
Example 337 2039 C19 H24 N4 O2 341 5.2* 14 Example 338 2040 C22 H27 N3 O4 398 2.0* 5 Example 339 2041 C23 H29 N3 O3 396 6.2* 15 Example 340 2042 C25 H37 N3 O2 413 2.6* 6 Example 341 2043 C24 H31 N3 O2 394 6.8* 17 Example 342 2044 C25 H28 N4 O4 449 8.7* 16 Example 343 2045 C26 H29 C1 N6 O4 525 11.4* 19	Example 335	1773	<u> </u>		1	
Example 338 2040 C22 H27 N3 O4 398 2.0* 5 Example 339 2041 C23 H29 N3 O3 396 6.2* 15 Example 340 2042 C25 H37 N3 O2 413 2.6* 6 Example 341 2043 C24 H31 N3 O2 394 6.8* 17 Example 342 2044 C25 H28 N4 O4 449 8.7* 16 Example 343 2045 C26 H29 C1 N6 O4 525 11.4* 19	Example 336	1774				
Example 339 2041 C23 H29 N3 O3 396 6.2* 15 Example 340 2042 C25 H37 N3 O2 413 2.6* 6 Example 341 2043 C24 H31 N3 O2 394 6.8* 17 Example 342 2044 C25 H28 N4 O4 449 8.7* 16 Example 343 2045 C26 H29 C1 N6 O4 525 11.4* 19	Example 337	2039		<u> </u>		
Example 340 2042 C25 H37 N3 O2 413 2.6* 6 Example 341 2043 C24 H31 N3 O2 394 6.8* 17 Example 342 2044 C25 H28 N4 O4 449 8.7* 16 Example 343 2045 C26 H29 C1 N6 O4 525 11.4* 19	1 -			ļ		
Example 341 2043 C24 H31 N3 O2 394 6.8* 17 Example 342 2044 C25 H28 N4 O4 449 8.7* 16 Example 343 2045 C26 H29 C1 N6 O4 525 11.4* 19	Example 339	2041	·	<u> </u>		
Example 342 2044 C25 H28 N4 O4 449 8.7* 16 Example 343 2045 C26 H29 C1 N6 O4 525 11.4* 19	Example 340	2042		<u> </u>		ļ
Example 343 2045 C26 H29 C1 N6 O4 525 11.4* 19	Example 341	2043	•	<u> </u>		
Example 343 2013	Example 342	2044		<u> </u>		
	Example 343	2045			l	<u> </u>
Example 344 2046 C27 H32 N6 O4 505 7.7* 13	Example 344	2046	C27 H32 N6 O4	505	7.7*	13

Example 345	2047	C28 H32 N4 O4	489	10.0*	18
Example 346	2048	C28 H37 N5 O5	524	3.7*	6
Example 347	2049	C28 H37 N5 O4	509	5.3*	9

^{*}Yield of TFA salt.

5

10

15

20

Example 348: Preparation of $(R)-1-(4-\text{Chlorobenzyl})-3-[\{N-(2-\text{amino}-5-\text{chlorobenzoyl})glycyl\}amino]pyrrolidine (Compound No. 1084).$

A solution of (R)-l-(4-chlorobenzyl)-3-(glycylamino)pyrrolidine (0.050 mmol) in CHCl₃ (2 mL) was treated with 2-amino-5-chlorobenzoic acid (0.060 mmol) and diisopropylcarbodiimide (0.060 mmol). The reaction mixture was stirred at room temperature for 15 h. The mixture was loaded onto VarianTM SCX column, and washed with CH₃OH (15 mL). Product was eluted off using 2 N NH₃ in CH₃OH (5 mL) and concentrated to afford (R)-l-(4-chlorobenzyl)-3- $\{N$ -(2-amino-5-chlorobenzoyl)glycyl)amino]pyrrolidine (Compound No. 1084) (12.7 mg, 60%): The purity was determined by RPLC/MS (87%); ESI/MS m/e 421.0 (M*+H, C₂₀H₂₂Cl₂N₄O₂).

Examples 349-361.

The compounds of this invention were synthesized pursuant to methods of Example 348 using the corresponding reactant respectively. If the starting amine remained, treatment with isocyanatomethylated polystyrene (50 mg) in CHCl₃ (1 mL) at room temperature, filtration and concentration afforded the desired material. The ESI/MS data and yields are summarized in Table 6.

_ . _

Table	6
-------	---

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 349	1085	C ₂₀ H ₂₂ ClN ₅ O ₄	432.0	4.1	19
Example 350	1086	C ₂₀ H ₂₃ ClN ₄ O ₂	387.0	7.9	41
Example 351	1087	C ₂₂ H ₂₃ ClN ₄ O ₂	411.0	15.0	73
Example 352	1088	$C_{18}H_{20}ClN_3O_3$	362.0	12.9	71
Example 353	1089	C ₂₂ H ₂₂ ClFN ₄ O ₂	429.0	16.0	75
Example 354	1090	C ₂₂ H ₂₆ ClN ₃ O ₃	416.0	15.8	76
Example 355	1091	C ₂₁ H ₂₄ Cl ₂ N ₄ O ₂	435.0	10.9	50
Example 356	1092	C21H24ClN5O4	446.0	7.9	35
Example 357	1093	C ₂₁ H ₂₅ ClN ₄ O ₂	401.0	9.5	47
Example 358	1094	C ₂₃ H ₂₅ ClN ₄ O ₂	425.0	15.8	74
Example 359	1095	C ₁₅ H ₂₂ ClN ₃ O ₃	376.0	13.5	72
Example 360	1096	C25H24C1FN4O2	443.0	11.8	53

Example 361	1097	C23H28ClN5O3	430.0	15.1	70
			<u> </u>	<u> </u>	

Example 362: Preparation of $(R)-1-(4-Chlorobenzyl)-3-[{N-(3-bromo-4-methylbenzoyl)glycyl}amino}pyrrolidine (Compound No. 1098).$

A solution of (R)-1-(4-chlorobenzyl)-3-(glycylamino)pyrrolidine (0.050 mmol) in CHCl₃ (1.35 mL) and tert-butanol (0.15 mL) was treated with 3-bromo-4-methylbenzoic acid (0.060 mmol), diisopropylcarbodiimide (0.060 mmol), and HOBt (0.060 mmol). The reaction mixture was stirred at room temperature for 15 h. The mixture was loaded onto VarianTM SCX column, and washed with CH₃OH/CHCl₃ 1:1 (12 mL) and CH₃OH (12 mL). Product was eluted off using 2 N NH₃ in CH₃OH (5 mL) and concentrated to afford (R)-1-(4-chlorobenzyl)-3-[{N-(3-bromo-4-methylbenzoyl)glycyl)amino]pyrrolidine (Compound No. 1098) (11.6 mg, 50%): The purity was determined by RPLC/MS (94%); ESI/MS m/e 466.0 (C₂₁H₂₃BrClN₃O₂).

15 Examples 363-572.

The compounds of this invention weré synthesized pursuant to methods of Example 362 using the corresponding reactant respectively. Preparative TLC, if needed, afforded the desired material. The ESI/MS data and yields are summarized in Table 7.

The following 3 compounds were obtained as byproduct of Compound Nos. 1415, 1416, and 1417, respectively.

1419: 7.9 mg, 38% yield; ESI/MS m/e 419.0 ($C_{20}H_{23}ClN_4O_2S$).

1420: 7.1 mg, 36% yield; ESI/MS m/e 399.2 ($C_{21}H_{26}N_4O_2S$).

1421: 7.4 mg, 37% yield; ESI/MS m/e 404.2 ($C_{19}H_{25}N5O3S$).

25

Table 7

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 363	1099	C26H20BrClFN3O2	470.0	3.1	13
Example 364	1100	C20H20Cl2FN3O2	424.0	3.1	15
Example 365	1101	C ₂₁ H ₂₃ ClIN ₃ O ₂	512.0	12.5	49
Example 366		C21H23ClN4O4	431.2	7.7	36
Example 367		C ₂₂ H ₂₆ BrN ₂ O ₂	446.0	13.8	62
Example 368		C21H23BrFN3O2	450.0	16.5	74
Example 369	<u> </u>	C ₂₁ H ₂₃ ClFN ₃ O ₂	404.2	14.7	73
Example 370	L	C22H26IN3O2	492.0	18.5	75

Example 371	1107	C22H26N4O4	411.2	15.2	74
Example 372	1108	C ₂₀ H ₂₅ BrN ₄ O ₃	449.0	12.8	57
Example 373	1109	C ₁₉ H ₂₂ BrFN ₄ O ₃	455.0	16.2	71
Example 374	1110	C ₁₉ H ₂₂ ClFN ₄ O ₃	409.2	14.4	70
Example 375	1111	C ₂₀ H ₂₅ IN ₄ O ₃	497.0	17.9	70
Example 376	1112	C ₂₀ H ₂₅ N5O ₅	416.2	14.9	72
Example 377	1113	C ₂₃ H ₂₇ BrClN ₃ O ₂	494.0	16.1	65
Example 378	1114	C ₂₂ H ₂₄ BrClFN ₃ O ₂	498.0	20.2	
Example 379	1115	C ₂₂ H ₂₄ Cl ₂ FN ₃ O ₂	452.2	18.6	81
Example 380	1116	C ₂₃ H ₂₇ ClIN ₃ O ₂	539.1	21.9	82
Example 381	1117	C ₂₃ H ₂₇ ClN ₄ O ₄	459.2	18.7	81
Example 382	1171	C ₂₁ H ₂₃ BrClN ₃ O ₂	466.0		81
Example 383	1172	C ₂₂ H ₂₃ ClN ₄ O ₃	400.0	4.9	21
Example 384	1172	C ₂₂ H ₂₃ CIN ₄ O ₃ C ₂₃ H ₂₅ CIN ₄ O ₃	427.2	16.1	75
	1173	25 25 1 5		22.8	quant
Example 385 Example 386	1174	C ₂₀ H ₂₂ C1FN ₄ O ₂	405.2	21.4	quant
Example 386	1175	C ₂₂ H ₂₆ BrN ₃ O ₂	446.0	15.8	71
	1176	C ₂₃ H ₂₆ N ₄ O ₃	407.2	17.6	87
Example 388		C ₂₄ H ₂₈ N ₄ O ₃	421.2	20.2	96
Example 389	1178	C ₂₁ H ₂₅ FN ₄ O ₂	385.0	16.2	84
Example 390	1179	C ₂₁ H ₂₅ N ₅ O ₄	412.2	2.3	11
Example 391	1180	C ₂₃ H ₂₆ N ₄ O ₂	391.0	21.6	quant
Example 392	1181	C ₂₀ H ₂₅ BrN ₄ O ₃	451.0	20.1	89
Example 393	1182	C ₂₁ H ₂₅ N ₅ O ₄	412.2	13.3	65
Example 394	1183	C22H27N5O4	426.2	20.9	98
Example 395	1184	C ₁₉ H ₂₄ FN ₅ O ₃	390.0	20.0	quant
Example 396	1185	C ₁₉ H ₂₄ N ₆ O ₅	417.2	18.2	87
Example 397	1186	C ₂₁ H ₂₅ N ₅ O ₃	396.2	17.6	89
Example 398	1187	C ₂₃ H ₂₇ BrClN ₃ O ₂	494.0	22.1	90
Example 399	1188	C ₂₄ H ₂₇ ClN ₄ O ₃	455.2	17.2	76
Example 400	1189	C ₂₅ H ₂₅ ClN ₄ O ₃	469.2	21.1	90
Example 401	1190	C22H26C1FN4O2	433.2	20.4	94
Example 402	1217	C ₂₁ H ₂₀ Cl ₂ F ₃ N ₃ O ₂	474.0	38.5	81
Example 403	1218	C ₂₁ H ₂₃ ClFN ₃ O ₂	404.2	35.6	88
Example 404	1219	C ₂₁ H ₂₃ Cl ₂ N ₃ O ₂	420.0	3.7	9
Example 405	1220	C ₂₀ H ₂₂ ClIN ₄ O ₂	513.0	53.0	quant
Example 406	1221	C ₂₀ H ₂₁ Cl F ₂ N ₄ O ₂	423.0	38.7	92
Example 407	1222	C ₁ ;H ₂₃ ClN ₄ O ₂	375.2	33.6	90
Example 408	1223	C ₂₆ H ₂₆ ClN ₃ O ₂ S	496.0	43.7	88
Example 409	1224	C ₂₀ H ₂₁ ClN ₄ O ₅	433.0	40.6	94
Example 410	1225	C22H23ClF3N3O2	454.2	18.4	41

Example 411	1226	$C_{22}H_{26}FN_3O_2$	384.0	17.1	45
Example 412	1227	C ₂₂ H ₂₆ ClN ₃ O ₂	400.2	17.5	44
Example 413	1228	C ₂₁ H ₂₅ IN ₄ O ₂	493.0	23.3	47
Example 414	1229	C21H24F2N4O2	403.2	18.4	46
Example 415	1230	C ₂₀ H ₂₆ N ₄ O ₂	355.2	15.7	44
Example 416	1231	C ₂₇ H ₂₉ N ₃ O ₂ S	476.0	20.9	88
Example 417	1232	C ₂₁ H ₂₄ N ₄ O ₅	413.0	19.9	96
Example 418	1233	C ₂₀ H ₂₂ ClF ₃ N ₄ O ₃	459.0	19.4	85
Example 419	1234	C ₂₀ H ₂₅ FN ₄ O ₃	389.0	17.8	92
Example 420	1235	C ₂₀ H ₂₅ ClN ₄ O ₃	405.2	18.7	92
Example 421	1236	C1:H24IN5O3	498.0	23.9	96
Example 422	1237	C ₁₉ H ₂₃ F ₂ N ₅ O ₃	408.2	19.0	93
Example 423	1238	C ₁₈ H ₂₅ N ₅ O ₃	360.0	16.3	91
Example 424	1239	C25H28N4O3S	481.2	21.4	89
Example 425	1240	C ₁₉ H ₂₃ N ₅ O ₆	418.0	19.9	95
Example 426	1241	C23H24Cl2F3N3O2	502.0	22.5	90
Example 427	1242	C ₂₃ H ₂₇ ClFN ₃ O ₂	432.2	21.2	98
Example 428	1243	C ₂₃ H ₂₇ Cl ₂ N ₃ O ₂	448.0	21.6	96
Example 429	1244	C ₂₂ H ₂₆ ClIN ₄ O ₂	541.0	26.4	98
Example 430	1245	C22H25C1F2N4O2	451.0	21.3	94
Example 431	1246	C ₂₁ H ₂₇ ClN ₄ O ₂	403.2	19.4	96
Example 432	1247	C ₂₈ H ₃₀ ClN ₃ O ₂ S	524.0	24.7	94
Example 433	1248	C22H25ClN4O5	461.0	20.7	90
Example 434	1249	C20 H20 C12 N4 O4	451.0	7.4	33
Example 435	1250	C21 H23 C1 N4 O4	431.2	15.5	72
Example 436	1251	C19 H22 Cl N5 O5	436.0	22.9	quant
Example 437	1252	C23 H28 C1 N3 O2	414.2	17.9	86
Example 438	1253	C24 H31 N3 O2	394.2	15.8	80
Example 439	1254	C22 H30 N4 O3	399.2	17.3	87
Example 440	1255	C20 H22 Br C1 N4 O2	467.0	21.3	91
Example 441	1256	C21 H25 Br N4 O2	445.0	20.7	93
Example 442	1257	C19 H24 Br N5 O3	450.0	21.8	97
Example 443	1258	C21 H25 C1 N4 O2	401.2	18.1	90
Example 444	1259	C19 H24 C1 N5 O3	406.0	20.1	99
Example 445	1260	C23 H29 N3 O3	396.2	16.8	- 85
Example 446	1261	C23 H30 C1 N3 O3	432.2	19.8	92
Example 447	1262	C24 H33 N3 O3	412.2	17.4	85
Example 448	1263	C22 H32 N4 O4	417.2	18.7	90
Example 449	1264	C25 H26 C1 N3 O3	452.2	29.1	quant
Example 450	1265	C26 H29 N3 O3	432.2	18.1	84
•	*·····				

Example 451	1266	C24 H28 N4 O4	437.2	19.3	88
Example 452	1267	C ₂₃ H ₂₂ ClF ₃ N ₄ O ₃	495.2	20.6	83
Example 453	1268	C ₂₁ H ₂₃ Cl ₂ N ₃ O ₃	436.0	17.5	80
Example 454	1269	C ₂₀ H ₂₁ BrClN ₃ O ₃	468.0	19.2	82
Example 455	1270	C ₂₀ H ₂₁ Cl ₂ N ₃ O ₃	422.2	17.3	82
Example 456	1271	C20H20C1FN4O4	435.0	17.1	79
Example 457	1272	C ₂₄ H ₂₅ F ₃ N ₄ O ₃	475.2	21.7	91
Example 458	1273	C ₂₂ H ₂₆ ClN ₃ O ₃	416.2	17.8	86
Example 459	1274	C ₂₁ H ₂₄ BrN ₃ O ₃	448.0	19.5	87
Example 460	1275	$C_{21}H_{24}ClN_3O_3$	402.2	16.7	83
Example 461	1276	C ₂₁ H ₂₃ FN ₄ O ₄	415.2	18.1	87
Example 462	1277	C ₂₂ H ₂₄ F ₃ N ₅ O ₄	480.2	20.3	85
Example 463	1278	C ₂₀ H ₂₅ ClN ₄ O ₄	421.2	18.6	88
Example 464	1279	C ₁₉ H ₂₃ BrN ₄ O ₄	451.0	21.3	94
Example 465	1280	C ₁₉ H ₂₃ ClN ₄ O ₄	407.2	19.1	94
Example 466	1281	C ₁₉ H ₂₂ FN ₅ O ₅	420.2	19.1	91
Example 467	1282	C ₂₅ H ₂₆ ClF ₃ N ₄ O ₃	523.2	25.0	96
Example 468	1283	C ₂₃ H ₂₇ Cl ₂ N ₃ O ₃	464.2	12.2	53
Example 469	1284	C ₂₂ H ₂₅ BrClN ₃ O ₃	496.0	24.1	97
Example 470	1285	C ₂₂ H ₂₅ Cl ₂ N ₃ O ₃	450.2	21.8	97
Example 471	1321	C ₂₀ H ₂₀ BrCl ₂ N ₃ O ₂	486.0	5.1	21
Example 472	1322	C ₂₁ H ₂₃ Cl ₂ N ₃ O ₂	420.0	10.5	50
Example 473	1323	$C_{20}H_{20}Cl_2IN_3O_2$	532.0	7.1	27
Example 474	1324	C ₂₁ H ₂₄ ClN ₃ O ₃	402.2	22.2	quant
Example 475	1325	C ₂₇ H ₂₆ ClN ₃ O ₃	476.0	22.2	93
Example 476		C20H21ClIN3O3	514.0	26.9	quant
Example 477	1327	C ₂₁ H ₂₅ ClN ₄ O ₂	401.2	24.2	quant
Example 478	1328	C ₂₁ H ₂₃ BrClN ₃ O ₂	466.0	23.1	99
Example 479	1329	C ₂₂ H ₂₆ ClN ₃ O ₂	400.2	16.4	82
Example 480		C ₂₁ H ₂₃ ClIN ₃ O ₂	512.2	20.8	81
Example 481		C ₂₁ H ₂₄ N ₃ O ₃	382.2	19.6	quant
Example 482		C ₂₈ H ₂₉ N ₃ O ₃	456.2	21.1	93
Example 483		$C_{21}H_{24}IN_3O_3$	494.0	25.3	quant
Example 484		C ₂₂ H ₂₈ N ₄ O ₂	381.2	19.0	quant
Example 485		C ₁₉ H ₂₂ BrClN ₄ O ₃	471.0	25.8	quant
Example 486	I	C ₂₀ H ₂₅ ClN ₄ O ₃	405.2	18.5	91
Example 487	!	C ₁ H ₂₂ ClIN ₄ O ₃	517.0	23.1	89
Example 488	1338	C ₂₀ H ₂₆ N ₄ O4	387.2	20.6	quant
Example 489	Ĺ	C ₂₆ H ₂₈ N ₄ O ₄	461.2	23.7	quant
Example 490	1340	C ₁₉ H ₂₅ IN ₄ O ₄	499.0	28.2	quant

•					
Example 491	1341	C ₂₀ H ₂₆ N ₄ O ₄	386.0	20.5	quant
Example 492	1342	C ₂₂ H ₂₄ BrCl ₂ N ₃ O ₂	514.0	27.2	quant
Example 493	1343	C ₂₃ H ₂₇ Cl ₂ N ₃ O ₂	448.0	21.4	95
Example 494	1344	C ₂₂ H ₂₄ Cl ₂ IN ₃ O ₂	560.0	27.0	96
Example 495	1345	C ₂₃ H ₂₈ ClN ₃ O ₃	430.2	23.8	quant
Example 496	1346	C ₂₂ H ₂₅ ClIN ₃ O ₃	542.0	29.4	quant
Example 497	1347	C ₁₉ H ₂₂ ClN ₃ O ₂ S	392.0	16.9	43
Example 498	1348	C ₂₀ H ₂₅ N ₃ O ₂ S	372.2	6.9	19
Example 499	1349	C ₁₈ H ₂₄ N ₄ O ₃ S	377.2	8.1	43
Example 500	1350	C ₂₁ H ₂₆ ClN ₃ O ₂ S	420.0	13.0	62
Example 501	1351	C ₂₂ H ₂₄ BrClN ₄ O ₃	509.2	5.0	10
Example 502	1352	C ₂₃ H ₂₇ BrN ₄ O ₃	489.2	3.6	15
Example 503	1353	C ₂₁ H ₂₆ BrN ₅ O ₄	494.0	2.8	11
Example 504	1354	C24H28BrClN4O3	537.2	5.2	19
Example 505	1355	C21 H22 C1 N5 O2	412.0	25.5	quant
Example 506	1356	C22 H25 N5 O2	392.0	16.5	84
Example 507	1357	C20 H24 N6 O3	397.2	19.9	quant
Example 508	1358	C23 H26 Cl N5 O2	440.2	21.8	99
Example 509	1368	$C_{21}H_{20}Cl_2F_3N_3O_2$	474.0	18.4	78
Example 510	1369	C24H24ClF6IN3O4	568.0	24.1	85
Example 511	1370	C ₁₈ H ₁₉ BrClN ₃ O ₂ S	458.0	19.4	85
Example 512	1371	C26H26ClN3O4S	512.2	22.1	86
Example 513	1372	$C_{26}H_{26}C1N_3O_2$	448.0	19.1	85
Example 514	1373	$C_{22}H_{23}ClF_3N_3O_2$	454.2	16.2	71
Example 515	1374	C ₂₅ H ₂₇ F ₆ IN ₃ O ₄	548.2	22.1	81
Example 516	1375	C ₁₉ H ₂₂ BrN ₃ O ₂ S	436.0	17.1	78.
Example 517	1376	C ₂₇ H ₂₉ N ₃ O ₄ S	492.0	19.4	79
Example 518	1377	C ₂₇ H ₂₉ N ₃ O ₂	428.2	18.1	85
Example 519	1378	C ₂₀ H ₂₂ C1F ₃ N ₄ O ₃	459.0	17.3	75
Example 520	1379	C23H26F6IN4O5	553.2	21.0	76
Example 521	1380	C ₁₇ H ₂₁ BrN ₄ O ₃ S	443.0	16.4	74
Example 522	1381	C ₂₅ H ₂₈ N ₄ O ₅ S	497.0	18.4	74
Example 523	1382	C ₂₅ H ₂₈ N ₄ O ₃	433.2	17.3	80
Example 524	1383	C ₂₃ H ₂₄ Cl ₂ F ₃ N ₃ O ₂	502.0	20.0	80
Example 525	1384	C ₂₀ H ₂₃ BrClN ₃ O ₂ S	486.0	21.0	87
Example 526	1385	C28H30ClN3O4S	540.2	· 23.8	88
Example 527	1386	C ₂₈ H ₃₀ ClN ₃ O ₂	476.0	20.0	84
Example 528	1411	C ₂₂ H ₂₄ Cl ₂ N ₄ O ₃	463.0	0.4	2
Example 529	1412	C ₂₃ H ₂₇ ClN ₄ O ₂	443.0	1.3	6
Example 530	1413	C21H26ClN5O4	448.0	1.1	5
L					

500	2 4 1 4	In 11 01 11 0	401 0		
Example 531		C ₂₄ H ₂₈ Cl ₂ N ₄ O ₃	491.0	0.8	3
Example 532	1415	C ₂₁ H ₂₂ ClN ₅ O ₂ S	444.0	6.8	31
Example 533	1416	C ₂₂ H ₂₅ N ₅ O ₂ S	424.0	4.8	23
Example 534	1417	C ₂₀ H ₂₄ N ₆ O ₃ S	429.2	4.5	21
Example 535	1418	C ₂₃ H ₂₆ ClN ₅ O ₂ S	472.0	10.4	44
Example 536	1423	C27 H26 C1 N3 O3	476.0	23.9	quant
Example 537	1424	C27 H29 N3 O4 S	456.2	28.0	quant
Example 538	1425	C26 H28 N4 O4	461.2	22.3	97
Example 539	1426	C29 H30 C1 N3 O3	504.2	26.8	quant
Example 540	1583	C21 H22 C1 F3 N4 O2	455.0	14.6	64
Example 541	1584	C21 H22 C1 F3 N4 O3	471.0	17.4	74
Example 542	1585	C19 H20 Br Cl N4 O2	453.0	15.6	69
Example 543	1586	C19 H20 C12 N4 O2	407.2	2.3	11
Example 544	1587	C26 H26 C1 N3 O3	464.0	15.4	66
Example 545	1588	C20 H23 C1 N4 O2	387.0	14.8	77
Example 546	1589	C22 H25 F3 N4 O2	435.2	11.1	51
Example 547	1590	C20 H25 F3 N4 O3	451.2	16.3	72
Example 548	1591	C20 H23 Br N4 O2	433.0	15.4	71
Example 549	1592	C20 H23 C1 N4 O2	387.0	15.6	81
Example 550	1593	C27 H29 N3 O3	444.2	14.8	67
Example 551	1594	C20 H24 F3 N5 O3	440.2	16.2	74
Example 552	1595	C20 H24 F3 N5 O4	456.2	15.4	68
Example 553	1596	C18 H22 Br N5 O3	436.0	15.6	72
Example 554	1597	C18 H22 C1 N5 O3	391.8	14.4	73
Example 555	1598	C25 H28 N4 O4	449.2	15.9	71
Example 556	1599	C19 H25 N5 O3	372.2	15.8	85
Example 557	1606	C21 H21 C1 F3 N3 O2 S	472.0	17.0	72
Example 558	1607	C21 H21 C1 F3 N3 O2 S	452.2	15.3	68
Example 559	1608	C20 H23 F3 N4 O3 S	457.2	15.9	70
Example 560	1660	C21 H22 Br F3 N4 O2	501.0	19.0	76
Example 561	1661	C21 H22 Br F3 N4 O3	517.0	16.2	63
Example 562	1662	C20 H21 Br F2 N4 O2	469.0	15.1	65
Example 563	1663	C20 H22 Br Cl N4 O2	467.0	14.5	62
Example 564	1692	C20 H23 Br2 N3 O3	514	7.3	28
Example 565	1693	C22 H26 F2 N4 O2	417	16.2	78
Example 566	1694	C22 H27 F N4 O2	399	21.8	quant
Example 567	1695	C22 H27 Br N4 O2	459	24.5	quant
Example 568	1696	C22 H27 I N4 O2	507	27.4	quant
Example 569	1697	C22 H27 C1 N4 O2	415	22.1	quant
Example 570	1698	C23 H27 F3 N4 O3	465	24.3	quant
		·			

Example 571	1699	C23 H27 F3 N4 O2	449	25.3	quant
Example 572	1700	C22 H25 Br C1 N3 O2	480	17.8	74

For example, Compound No. **1583** showed the following NMR spectra: 1 H NMR (400 MHz, CD₃OD) δ 1.64-1.72 (m, 1 H), 2.20-2.30 (m, 1 H), 2.41-2.51 (m, 2 H), 2.71-2.78 (m, 2 H), 3.59 (dd, J = 15.4, 12.9 Hz, 2 H), 3.94 (s, 2 H), 4.35-4.41 (m, 1 H), 6.82 (d, J = 8.6 Hz, 1 H), 7.29 (s, 4 H), 7.40 (dd, J = 8.6, 1.7 Hz, 1 H), 7.85 (d, J = 0.96 Hz, 1 H).

Reference Example 4: Preparation of $(S)-3-[N-\{3-(trifluoromethyl)benzoyl\}glycyl]$ aminopyrrolidine.

10

15

- of $(S)-1-(4-chlorobenzyl)-3-[N-{3-}$ suspension Α (trifluoromethyl)benzoyl}glycyl]aminopyrrolidine (2.93 g, 6.66 mmol) and $Pd(OH)_2$ in 5% $HCO_2H/methanol$ (70 mL) was stirred at 60 °C for 3 h. The Pd catalyst was filtered off through Celite, and the filtrate was concentrated. To the residue was added 2N aqueous NaOH solution (100 mL) and the mixture was extracted with ethyl acetate (100 mL x 3). The combined extracts were washed with brine, dried over anhydrous sodium sulfate, filtered, and concentrated. chromatography (SiO₂, AcOEt/MeOH/Et₃N = 85/10/5-60/30/5) gave (S)-3-[N-{3- $\frac{1}{3}$ } (trifluoromethyl)benzoyl)glycyl]aminopyrrolidine (1.70 g, 81%) as an oil: H NMR (CDCl₃, 270 MHz) δ 1.76 (d, J = 7.3 Hz, 1 H), 2.07-2.25 (m, 1 H), 2.81-2.98 (m, 2 H), 3.02-3.11 (m, 2 H), 4.12 (s, 2 H), 4.41 (br, 1 H), 6.90 (br, 1 H), 7.45 (br, 1 H), 7.58 (dd, J = 7.3 and 7.3 Hz, 1 H), 7.77 (d, J = 7.3 Hz, 1 H), 8.02 (d, J = 7.3 Hz, 1 H), 8.11 (s, 1 H); ESI/MS m/e 316.0 (M'+H, $C_{14}H_{16}F_3N_3O_2$).
- $(R)-3-[N-(3-(Trifluoromethyl)benzoyl)glycyl]aminopyrrolidine was also prepared pursuant to the above method using the corresponding reactant: 1.49 g, 68%; The product showed the same <math>^1H$ NMR and ESI/MS with those of (S)-isomer.
 - $(R)-3-[N-\{2-Amino-5-(trifluoromethyl)benzoyl\}glycyl]aminopyrrolidine was also prepared pursuant to the above method using the corresponding reactant: 316 mg, 93%; ESI/MS m/e 331.2 (M*+H, <math>C_{14}H_{17}F_3N_4O_2$).
- 30 (R)-3-[N-{2-(tert-Butoxycarbonylamino)-5(trifluoromethoxy)benzoyl)glycyl]aminopyrrolidine was also prepared pursuant
 to the above method using the corresponding reactant: quant; ¹H NMR (CDCl₃,
 400 MHz) δ 1.51 (s, 9 H), 1.60-1.70 (m, 2 H), 2.10-2.25 (m, 1 H), 2.80-2.88 (m,
 1 H), 2.89-2.98 (m, 1 H), 3.04-3.18 (m, 2 H), 4.05 (d, J = 4.9 Hz, 2 H), 4.43

 (br, 1 H), 6.15 (br, 1 H), 7.03 (br, 1 H), 7.32 (d, J = 9.3 Hz, 1 H), 7.38 (s,
 1 H), 8.42 (d, J = 9.3 Hz, 1 H).

Example 573: Preparation of (R)-3-[{N-(2-(tert-Butoxycarbonylamino)-5-trifluoromethylbenzoyl)glycyl}amino]-1-(4-chlorobenzyl)pyrrolidine.

A solution of (R)-1-(4-chlorobenzyl)-3-(glycylamino)pyrrolidine (5.0 g, 18.7 mmol) in dichloromethane (100 mL) was treated with Et₃N (2.9 mL, 20.5 mmol), 2-(tert-butoxycarbonylamino)-5-(trifluoromethyl)benzoic acid (6.27 g, 20.5 mmol), EDCI (3.9 g, 20.5 mmol) and HOBt (2.8 g, 20.5 mmol). The reaction mixture was stirred at room temperature overnight. To the reaction mixture was added 2 N aqueous NaOH solution (80 mL) and the mixture was extracted with dichloromethane. The extract was dried over anhydrous Na₂SO₄, filtered, and evaporated. Column chromatography (SiO₂, hexane/ethyl acetate = 1/1-1/4) afforded

(R)-3-[{N-(2-(tert-butoxycarbonylamino)-5-trifluoromethylbenzoyl)glycyl}amino]-1-(4-chlorobenzyl)pyrrolidine (9.41 g, 91%) as a white amorphous solid: ESI/MS m/e 555.2 (M*+H, C₂₆H₃₀ClF₃N₄O₄).

15

35

Reference Example 5: Preparation of $(R)-3-[\{N-(2-(tert-butoxycarbonylamino)-5-trifluoromethylbenzoyl)glycyl}amino]pyrrolidine.$

A mixture of (R)-3-[{N-(2-(tert-butoxycarbonylamino)-5-trifluoromethylbenzoyl)glycyl}amino]-1-(4-chlorobenzyl)pyrrolidine (6.3 g, 11.4 mmol), Pd(OH)₂ (1.68 g), HCO₂H (3.7 mL), and methanol (80 mL) was stirred at 50 °C overnight. After the mixture was cooled to room temperature, the Pd catalyst was filtered off through Celite and the filtrate was concentrated. Column chromatography (SiO₂, AcOEt, AcOEt/MeOH = 5/1-4/1) gave (R)-3-[{N-(2-(tert-butoxycarbonylamino)-5-

25 trifluoromethylbenzoyl)glycyl)amino]pyrrolidine (4.42 g, 90%) as a white solid: 1 H NMR (CDCl₃, 400 MHz) δ 1.48 (s, 9 H), 2.0-2.4 (m, 2 H), 3.42-3.71 (m, 5 H), 4.00-4.22 (m, 2 H), 4.56 (br, 1 H), 7.48 (d, J = 9.0 Hz, 1 H), 7.93 (s, 1 H), 8.17 (br, 1 H), 8.33 (d, J = 9.0 Hz, 1 H), 8.45 (br, 1 H).

30 Example 574: Preparation of (S)-1-Benzyl-3-[N-(3-(trifluoromethyl)benzoyl)glycyl]aminopyrrolidine (Compound No. 239).

A solution of (5)-3-[N-(3-(4-3-(4-3-(4-3-4)))]) (trifluoromethyl) benzoyl) glycyl) aminopyrrolidine (0.060 mmol) in CH₃CN (1.1 mL) and (piperidinomethyl) polystyrene (2.6-2.8 mmol/g, 30 mg) were added to a solution of benzyl bromide (0.050 mmol) in CH₃CN (0.4 mL). The reaction mixture was stirred at 45 °C for 5 h. After the mixture was cooled to room temperature, the resin was removed by filtration and the filtrate was concentrated. The residue was resolved in CH₃CN (1.0 mL) and phenyl isocyanate (0.008 mL, 0.05)

mmol) was added. The mixture was stirred at room temperature for 1 h, loaded onto Varian^{TN} SCX column, and washed with CH₃OH (15 mL). Product was eluted off using 2 N NH₃ in CH₃OH (6 mL) and concentrated to afford (S)-1-benzyl-3-[N-{3-(trifluoromethyl)benzoyl)glycyl}aminopyrrolidine (compound No. 239) (9.0 mg, 44%): The purity was determined by RPLC/MS (99%); ESI/MS m/e 406.0 (M+H, $C_{21}H_{22}F_{3}N_{3}O_{2}$).

Example 575: Preparation of (R)-1-(4-Butylbenzyl)-3-[{N-(3-trifluoromethylbenzoyl)glycyl}amino]pyrrolidine (Compound No. 1648).

To a mixture of $(R)-3-[N-\{3-\{1,1\}]$ (trifluoromethyl)benzoyl)glycyl]aminopyrrolidine (0.050 mmol), 4-butylbenzaldehyde (0.18 mmol), NaBH₃CN (0.23 mmol), and methanol (1.85 mL) was added acetic acid (0.060 mL). The reaction mixture was stirred at 60 °C for 12 h. The mixture was cooled to room temperature, loaded onto Varian SCX column, and washed with CH₃OH (15 mL). Product was eluted off using 2 N NH₃ in CH₃OH (5 mL) and concentrated to afford $(R)-1-(4-\text{butylbenzyl})-3-[\{N-(3-\text{trifluoromethylbenzoyl})\text{glycyl}\}$ amino}pyrrolidine (Compound No. 1648) (20.6 mg, 89%): The purity was determined by RPLC/MS (91%); ESI/MS m/e 462.2 $(M^4+H, C_{25}H_{30}F_3N_3O_2)$.

20 Examples 576-738.

10

15

25

The compounds of this invention were synthesized pursuant to methods of Examples 574or 575 using the corresponding reactant respectively. Preparative TLC or chromatography (HPLC- C_{12}), if needed, afforded the desired material. The ESI/MS data and yields are summarized in Table 8.

Table 8

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 576	240	C ₂₁ H ₂₁ F ₄ N ₃ O ₂	424.0	10.2	48
Example 577	241	C ₂₁ H ₂₁ ClF ₃ N ₃ O ₂	440.0	12.1	55
Example 578	242	C21H26Cl2F3N5O2	474.0	13.9	59
Example 579	243	C ₂₁ H ₂₆ Cl ₂ F ₃ N ₃ O ₂	474.0	13.8	58
Example 580	244	C22H24F3N3O2	420.0	13.1	62
Example 581	245	C ₂₁ H ₂₁ F ₄ N ₃ O ₂	424.0	11.9	56
Example 582	246	C ₂₁ H ₂₁ ClF ₃ N ₃ O ₂	440.0	8.5	39
Example 583	247	C ₂₁ H ₂₀ Cl ₂ F ₃ N ₃ O ₂	474.0	10.5	44
Example 584	248	C ₂₂ H ₂₄ CF ₃ N ₃ O ₃	436.0	11.0	51

Example 585	
Example 587 251	
Example 588 252 C ₂₂ H ₂₄ F ₃ N ₃ O ₃ 436.0 11.8 54 Example 589 253 C ₂₂ H ₂₄ F ₃ N ₃ O ₂ 420.0 11.1 53 Example 590 254 C ₂₁ H ₂₀ C1F ₃ N ₄ O ₄ 485.0 2.4 10 Example 591 255 C ₂₁ H ₂₁ F ₃ N ₄ O ₄ 451.0 12.2 54 Example 592 256 C ₂₁ H ₂₁ F ₃ N ₄ O ₄ 451.0 11.4 51 Example 593 257 C ₂₂ H ₂₁ F ₆ N ₃ O ₂ 474.0 11.1 47 Example 594 258 C ₂₄ H ₂₆ F ₃ N ₃ O ₄ 478.0 15.3 64 Example 595 259 C ₂₂ H ₂₃ C1F ₃ N ₃ O ₂ 420.0 6.4 31 Example 596 260 C ₂₁ H ₂₀ C1 ₂ F ₃ N ₃ O ₂ 474.0 12.1 51 Example 597 261 C ₂₂ H ₂₁ C1F ₆ N ₃ O ₂ 474.0 13.6 57 Example 598 262 C ₂₁ H ₂₁ ErF ₃ N ₃ O ₂ 484.0 15.2 63 Example 599 263 C ₂₁ H ₂₁ ErF ₃ N ₃ O ₂ 484.0 15.2 63 Example 600 264 C ₂₇ H ₂₆ F ₃ N ₃ O ₃ 498.0 9.3 37 Example 601 265 C ₂₁ H ₂₁ ErF ₃ N ₃ O ₂ 484.0 11.6 48 Example 602 266 C ₂₂ H ₂₂ F ₃ N ₃ O ₄ 450.0 8.9 40 Example 603 267 C ₂₂ H ₂₄ F ₃ N ₃ O ₃ 436.0 10.3 47	
Example 589 253	
Example 590 254 C ₂₁ H ₂₀ ClF ₃ N ₄ O ₄ 485.0 2.4 10 Example 591 255 C ₂₁ H ₂₁ F ₃ N ₄ O ₄ 451.0 12.2 54 Example 592 256 C ₂₁ H ₂₁ F ₃ N ₄ O ₄ 451.0 11.4 51 Example 593 257 C ₂₂ H ₂₁ F ₆ N ₃ O ₂ 474.0 11.1 47 Example 594 258 C ₂₄ H ₂₆ F ₃ N ₃ O ₄ 478.0 15.3 64 Example 595 259 C ₂₂ H ₂₃ ClF ₃ N ₃ O ₂ 420.0 6.4 31 Example 596 260 C ₂₁ H ₂₀ Cl ₂ F ₃ N ₃ O ₂ 474.0 12.1 51 Example 597 261 C ₂₂ H ₂₁ ClF ₆ N ₃ O ₂ 474.0 13.6 57 Example 598 262 C ₂₁ H ₂₁ BrF ₃ N ₃ O ₂ 484.0 15.2 63 Example 599 263 C ₂₁ H ₂₁ BrF ₃ N ₃ O ₂ 484.0 14.5 60 Example 600 264 C ₂₇ H ₂₆ F ₃ N ₃ O ₃ 498.0 9.3 37 Example 601 265 C ₂₁ H ₂₁ BrF ₃ N ₃ O ₂ 484.0 11.6 48 Example 602 266 C ₂₂ H ₂₂ F ₃ N ₃ O ₄ 450.0 8.9 40 Example 603 267 C ₂₂ H ₂₄ F ₃ N ₃ O ₃ 436.0 10.3 47	
Example 591 255 $C_{21}H_{21}F_3N_4O_4$ 451.0 12.2 54 Example 592 256 $C_{21}H_{21}F_3N_4O_4$ 451.0 11.4 51 Example 593 257 $C_{22}H_{21}F_6N_3O_2$ 474.0 11.1 47 Example 594 258 $C_{24}H_{26}F_3N_3O_4$ 478.0 15.3 64 Example 595 259 $C_{22}H_{23}C1F_3N_3O_2$ 420.0 6.4 31 Example 596 260 $C_{21}H_{20}C1_2F_3N_3O_2$ 474.0 12.1 51 Example 597 261 $C_{22}H_{21}C1F_6N_3O_2$ 474.0 13.6 57 Example 598 262 $C_{21}H_{21}BrF_3N_3O_2$ 484.0 15.2 63 Example 599 263 $C_{21}H_{21}BrF_3N_3O_2$ 484.0 14.5 60 Example 600 264 $C_{27}H_{26}F_3N_3O_3$ 498.0 9.3 37 Example 601 265 $C_{21}H_{21}BrF_3N_3O_2$ 484.0 11.6 48 Example 602 266 $C_{22}H_{22}BrF_3N_3O_3$ 484.0 11.6 48 Example 603 267 $C_{22}H_{22}BrF_3N_3O_3$ 486.0 10.3 47	
Example 592 256 $C_{21}H_{21}F_{3}N_{4}O_{4}$ 451.0 11.4 51 Example 593 257 $C_{22}H_{21}F_{6}N_{3}O_{2}$ 474.0 11.1 47 Example 594 258 $C_{24}H_{26}F_{3}N_{3}O_{4}$ 478.0 15.3 64 Example 595 259 $C_{22}H_{23}C1F_{3}N_{3}O_{2}$ 420.0 6.4 31 Example 596 260 $C_{21}H_{20}C1_{2}F_{3}N_{3}O_{2}$ 474.0 12.1 51 Example 597 261 $C_{22}H_{21}C1F_{6}N_{3}O_{2}$ 474.0 13.6 57 Example 598 262 $C_{21}H_{21}BrF_{3}N_{3}O_{2}$ 484.0 15.2 63 Example 599 263 $C_{21}H_{21}BrF_{3}N_{3}O_{2}$ 484.0 14.5 60 Example 600 264 $C_{27}H_{26}F_{3}N_{3}O_{3}$ 498.0 9.3 37 Example 601 265 $C_{21}H_{21}BrF_{3}N_{3}O_{2}$ 484.0 11.6 48 Example 602 266 $C_{22}H_{22}F_{3}N_{3}O_{4}$ 450.0 8.9 40 Example 603 267 $C_{22}H_{24}F_{3}N_{3}O_{3}$ 436.0 10.3 47	
Example 593 257 $C_{22}H_{21}F_6N_3O_2$ 474.0 11.1 47 Example 594 258 $C_{24}H_{26}F_3N_3O_4$ 478.0 15.3 64 Example 595 259 $C_{22}H_{23}C1F_3N_3O_2$ 420.0 6.4 31 Example 596 260 $C_{21}H_{20}C1_2F_3N_3O_2$ 474.0 12.1 51 Example 597 261 $C_{22}H_{21}C1F_6N_3O_2$ 474.0 13.6 57 Example 598 262 $C_{21}H_{21}BrF_3N_3O_2$ 484.0 15.2 63 Example 599 263 $C_{21}H_{21}BrF_3N_3O_2$ 484.0 14.5 60 Example 600 264 $C_{27}H_{26}F_3N_3O_3$ 484.0 11.6 48 Example 601 265 $C_{21}H_{21}BrF_3N_3O_2$ 484.0 11.6 48 Example 602 266 $C_{22}H_{22}F_3N_3O_4$ 450.0 8.9 40 Example 603 267 $C_{22}H_{24}F_3N_3O_3$ 436.0 10.3 47	
Example 594 258 $C_{24}H_{26}F_{3}N_{3}O_{4}$ 478.0 15.3 64 Example 595 259 $C_{22}H_{23}C1F_{3}N_{3}O_{2}$ 420.0 6.4 31 Example 596 260 $C_{21}H_{20}C1_{2}F_{3}N_{3}O_{2}$ 474.0 12.1 51 Example 597 261 $C_{22}H_{21}C1F_{6}N_{3}O_{2}$ 474.0 13.6 57 Example 598 262 $C_{21}H_{21}BrF_{3}N_{3}O_{2}$ 484.0 15.2 63 Example 599 263 $C_{21}H_{21}BrF_{3}N_{3}O_{2}$ 484.0 14.5 60 Example 600 264 $C_{27}H_{26}F_{3}N_{3}O_{3}$ 498.0 9.3 37 Example 601 265 $C_{21}H_{21}BrF_{3}N_{3}O_{2}$ 484.0 11.6 48 Example 602 266 $C_{22}H_{22}BrF_{3}N_{3}O_{3}$ 498.0 9.3 47 Example 603 267 $C_{22}H_{22}BrF_{3}N_{3}O_{3}$ 484.0 11.6 48	
Example 595 259 $C_{22}H_{23}C1F_3N_3O_2$ 420.0 6.4 31 Example 596 260 $C_{21}H_{20}C1_2F_3N_3O_2$ 474.0 12.1 51 Example 597 261 $C_{22}H_{21}C1F_6N_3O_2$ 474.0 13.6 57 Example 598 262 $C_{21}H_{21}BrF_3N_3O_2$ 484.0 15.2 63 Example 599 263 $C_{21}H_{21}BrF_3N_3O_2$ 484.0 14.5 60 Example 600 264 $C_{27}H_{26}F_3N_3O_3$ 498.0 9.3 37 Example 601 265 $C_{21}H_{21}BrF_3N_3O_2$ 484.0 11.6 48 Example 602 266 $C_{22}H_{22}F_3N_3O_4$ 450.0 8.9 40 Example 603 267 $C_{22}H_{24}F_3N_3O_3$ 436.0 10.3 47	
Example 596 260 $C_{21}H_{20}Cl_{2}F_{3}N_{3}O_{2}$ 474.0 12.1 51 Example 597 261 $C_{22}H_{21}ClF_{6}N_{3}O_{2}$ 474.0 13.6 57 Example 598 262 $C_{21}H_{21}BrF_{3}N_{3}O_{2}$ 484.0 15.2 63 Example 599 263 $C_{21}H_{21}BrF_{3}N_{3}O_{2}$ 484.0 14.5 60 Example 600 264 $C_{27}H_{26}F_{3}N_{3}O_{3}$ 498.0 9.3 37 Example 601 265 $C_{21}H_{21}BrF_{3}N_{3}O_{2}$ 484.0 11.6 48 Example 602 266 $C_{22}H_{22}BrF_{3}N_{3}O_{3}$ 484.0 11.6 48 Example 603 267 $C_{22}H_{22}F_{3}N_{3}O_{4}$ 450.0 8.9 40 Example 603 267 $C_{22}H_{24}F_{3}N_{3}O_{3}$ 436.0 10.3 47	
Example 597 261 $C_{22}H_{21}C1F_6N_3O_2$ 474.0 13.6 57 Example 598 262 $C_{21}H_{21}BrF_3N_3O_2$ 484.0 15.2 63 Example 599 263 $C_{21}H_{21}BrF_3N_3O_2$ 484.0 14.5 60 Example 600 264 $C_{27}H_{26}F_3N_3O_3$ 498.0 9.3 37 Example 601 265 $C_{21}H_{21}BrF_3N_3O_2$ 484.0 11.6 48 Example 602 266 $C_{22}H_{22}F_3N_3O_4$ 450.0 8.9 40 Example 603 267 $C_{22}H_{24}F_3N_3O_3$ 436.0 10.3 47	
Example 598 262 $C_{21}H_{21}BrF_{3}N_{3}O_{2}$ 484.0 15.2 63 Example 599 263 $C_{21}H_{21}BrF_{3}N_{3}O_{2}$ 484.0 14.5 60 Example 600 264 $C_{27}H_{26}F_{3}N_{3}O_{3}$ 498.0 9.3 37 Example 601 265 $C_{21}H_{21}BrF_{3}N_{3}O_{2}$ 484.0 11.6 48 Example 602 266 $C_{22}H_{22}F_{3}N_{3}O_{4}$ 450.0 8.9 40 Example 603 267 $C_{22}H_{24}F_{3}N_{3}O_{3}$ 436.0 10.3 47	
Example 599 263 $C_{21}H_{21}BrF_{3}N_{3}O_{2}$ 484.0 14.5 60 Example 600 264 $C_{27}H_{26}F_{3}N_{3}O_{3}$ 498.0 9.3 37 Example 601 265 $C_{21}H_{21}BrF_{3}N_{3}O_{2}$ 484.0 11.6 48 Example 602 266 $C_{22}H_{22}F_{3}N_{3}O_{4}$ 450.0 8.9 40 Example 603 267 $C_{22}H_{24}F_{3}N_{3}O_{3}$ 436.0 10.3 47	
Example 600 264 $C_{27}H_{26}F_{3}N_{3}O_{3}$ 498.0 9.3 37 Example 601 265 $C_{21}H_{21}BrF_{3}N_{3}O_{2}$ 484.0 11.6 48 Example 602 266 $C_{22}H_{22}F_{3}N_{3}O_{4}$ 450.0 8.9 40 Example 603 267 $C_{22}H_{24}F_{3}N_{3}O_{5}$ 436.0 10.3 47	
Example 601 265 C ₂₁ H ₂₁ BrF ₃ N ₃ O ₂ 484.0 11.6 48 Example 602 266 C ₂₂ H ₂₂ F ₃ N ₃ O ₄ 450.0 8.9 40 Example 603 267 C ₂₂ H ₂₄ F ₃ N ₃ O ₃ 436.0 10.3 47	
Example 602 266 C ₂₂ H ₂₂ F ₃ N ₃ O ₄ 450.0 8.9 40 Example 603 267 C ₂₂ H ₂₄ F ₃ N ₃ O ₅ 436.0 10.3 47	
Example 603 267 C ₂₂ H ₂₄ F ₃ N ₃ O ₃ 436.0 10.3 47	
Evample 604 269 C H ENO	
Example 604 268 C ₂₃ H ₂₅ F ₃ N ₄ O ₃ 463.0 6.3 27	_
	-
Example 605 269 C ₂₂ H ₂₄ F ₃ N ₃ O ₄ S 484.0 8.0 33	
Example 606 270 C ₂₃ H ₂₄ F ₃ N ₃ O ₄ 464.0 8.9 38	
Example 607 271 $C_{21}H_{20}F_5N_3O_2$ 442.0 6.1 28	\dashv
Example 608 272 C ₂₁ H ₂₂ F ₃ N ₃ O ₃ 422.0 13.6 59	
Example 609 273 C ₂₂ H ₂₁ F ₃ N ₄ O ₂ 431.0 12.6 59	\dashv
Example 610 274 C ₂₂ H ₂₁ F ₃ N ₄ O ₂ 431.0 7.7 36	\dashv
Example 611 275 C ₂₂ H ₂₁ F ₃ N ₄ O ₂ 431.0 12.7 59	\dashv
Example 612 276 $C_{21}H_{20}F_5N_3O_2$ 442.0 11.7 53	ᅴ
Example 613 277 $C_{27}H_{26}F_3N_3O_2$ 482.0 9.5 39	\dashv
Example 614 278 C ₂₃ H ₂₄ F ₃ N ₃ O ₄ 464.0 13.0 56	
Example 615 279 C ₂₂ H ₂₁ F ₆ N ₃ O ₃ 490.0 10.4 42	\dashv
Example 616 280 C ₂₂ H ₂₁ F ₆ N ₂ O ₃ 490.0 12.0 49	\dashv
Example 617 281 C ₂₂ H ₂₂ F ₃ N ₃ O ₄ 450.0 4.9 22	\dashv
Example 618 282 C ₂₅ H ₃₀ F ₃ N ₃ O ₂ 462.0 12.0 52	\dashv
Example 619 283 $C_{20}H_{23}F_3N_4O_3$ 425.0 8.1 38	\dashv
Example 620 284 $C_{27}H_{25}ClF_3N_3O_2$ 516.0 4.8 19	\dashv
Example 621 285 $C_{21}H_{22}F_3N_3O_2$ 406.0 4.8 24	\dashv
Example 622 286 C ₂₁ H ₂₁ F ₄ N ₃ O ₂ 424.0 4.5 21	
Example 623 287 $C_{21}H_{21}ClF_3N_3O_2$ 440.0 5.8 26	\dashv
Example 624 288 $C_{21}H_{20}Cl_2F_3N_3O_2$ 474.0 8.1 34	\exists

Example 625	289	$C_{21}H_{20}Cl_2F_3N_3O_2$	474.0	8.0	34
Example 626	290	C ₂₂ H ₂₄ F ₃ N ₃ O ₂	420.0	6.0	29
Example 627	291	C ₂₁ H ₂₁ F ₄ N ₃ O ₂	424.0	6.2	29
Example 628	292	C ₂₁ H ₂₁ ClF ₃ N ₃ O ₂	440.0	4.5	20
Example 629	293	$C_{21}H_{20}Cl_2F_3N_3O_2$	474.0	5.1	22
Example 630	294	C ₂₂ H ₂₄ CF ₃ N ₃ O ₃	436.0	4.2	19
Example 631	295	C22H21ClF6N3O2	474.0	6.0	25
Example 632	296	C22H24F3N3O2	420.0	4.3	21
Example 633	297	C ₂₁ H ₂₁ F ₄ N ₃ O ₂	424.0	8.2	39
Example 634	298	C22H24F3N3O3	436.0	12.2	56
Example 635	299	C22H24F3N3O2	420.0	8.1	39
Example 636	300	C21H20ClF3N4O4	485.0	13.7	57
Example 637	301	C21H21F3N4O4	451.0	15.1	67
Example 638	302	C21H21F3N4O4	451.0	16.6	74
Example 639	303	C ₂₂ H ₂₁ F ₆ N ₃ O ₂	474.0	12.6	53
Example 640	304	C24H26F3N3O4	478.0	14.5	61
Example 641	305	$C_{22}H_{23}ClF_3N_3O_2$	420.0	8.4	37
Example 642	306	C ₂₁ H ₂₀ Cl ₂ F ₃ N ₃ O ₂	474.0	13.5	57
Example 643	307	C ₂₂ H ₂₁ ClF ₆ N ₃ O ₂	474.0	3.7	16
Example 644	308	C ₂₁ H ₂₁ BrF ₃ N ₃ O ₂	484.0	7.2	30
Example 645	309	$C_{21}H_{21}BrF_3N_3O_2$	484.0	6.7	28
Example 646	310	C ₂₇ H ₂₆ F ₃ N ₃ O ₃	498.0	4.2	17
Example 647	311	C ₂₁ H ₂₁ BrF ₃ N ₃ O ₂	484.0	6.3	26
Example 648	312	C22H22F3N3O4	450.0	2.4	11
Example 649	313	C ₂₂ H ₂₄ F ₃ N ₃ O ₃	436.0	1.9	9
Example 650	314	C ₂₃ H ₂₅ F ₅ N ₄ O ₃	463.0	5.0	22
Example 651	315	C22H24F3N3O4S	484.0	2.5	10
Example 652	316	C23H24F3N3O4	464.0	3.3	14
Example 653	317	$C_{21}H_{20}F_5N_3O_2$	442.0	4.5	20
Example 654	318	C ₂₁ H ₂₂ F ₃ N ₃ O ₃	422.0	7.9	34
Example 655	319	C ₂₂ H ₂₁ F ₃ N ₄ O ₂	431.0	6.5	30
Example 656	32.0	C22H21F3N4O2	431.0	14.2	66
Example 657	321	C ₂₂ H ₂₁ F ₃ N ₄ O ₂	431.0	14.9	69
Example 658	322	$C_{21}H_{20}F_5N_3O_2$	442.0	13.6	62
Example 659	323	C27H26F3N3O2	482.0	3.9	16
Example 660	324	C23H24F3N3O4	464.0	15.2	66
Example 661	325	C22H21F6N3O3	490.0	16.1	66
Example 662	326	C22H21F6N3O3	490.0	13.6	56
Example 663	327	C22H22F3N3O4	450.0	5.4	24
Example 664	328	C25H3 : F3N3O2	462.0	10.9	47
		_ 			

Example 665	329	C20H23F3N4O3	425.0	12.0	57
Example 666	986	C27 H25 C1 F3 N3 O2	516.0	1.5	6
Example 667	1118	C28 H27 F3 N4 O3	525	21.5	62
Example 668	1119	C22 H24 F3 N3 O2 S	452	16.9	57
Example 669	1120	C23 H26 F3 N3 O4	466	20.5	67
Example 670	1121	C22 H23 F3 N4 O4	465	16.8	55
Example 671	1122	C28 H36 F3 N3 O2	504	21.0	63
Example 672	1123	C25 H23 Br F3 N3 O2	534	26.6	75
Example 673	1124	C19 H19 F3 N4 O5	441	21.3	73
Example 674	1133	C23 H26 F3 N3 O4	467	33.6	84
Example 675	1134	C24 H28 F3 N3 O5	496	34.8	82
Example 676	1135	C22 H21 F3 N4 O6	495	32.6	77
Example 677	1136	C23 H24 F3 N3 O5	480	36.6	89
Example 678	1137	C22 H21 Br F3 N3 O4	529	30.8	69
Example 679	1138	C24 H26 F3 N3 O2	446	32.7	86
Example 680	1139	C22 H24 F3 N3 O2	420	18.6	51
Example 681	1140	C21 H20 F3 N5 O6	496	20.5	49
Example 682	1141	C25 H24 F3 N3 O2	456	22.5	58
Example 683	1142	C25 H24 F3 N3 O2	456	21.6	5 5
Example 684	1143	C35 H34 F3 N3 O4	618	27.3	53
Example 685	1144	C23 H26 F3 N3 O4	466	25.5	64
Example 686	1145	C23 H25 F3 N4 O6	511	38.0	88
Example 687	1146	C28 H28 F3 N3 O3	512	38.3	89
Example 688	.1147.	C23 H25 F3 N4 O3	463	27.1	62
Example 689	1148	C27 H26 F3 N3 O2	482	22.4	57
Example 690	1161	C22 H24 F3 N3 O4	452	13.5	58
Example 691	1162	C24 H28 F3 N3 O3	464	16.7	70
Example 692	1163	C22 H23 F4 N3 O3	454	15.8	68
Example 693	1164	C23 H26 F3 N3 O3	450	15.7	68
Example 694	1165	C23 H24 F3 N3 O4	464	16.3	68
Example 695	1166	C22 H23 Br F3 N3 O3	513	15.0	57
Example 696		C17 H17 C1 F3 N5 O2 S		6.9*	23
Example 697	1169	C20 H22 F3 N5 O3 S	470	1.7*	6
Example 698	1170	C22 H22 F3 N5 O2	446	2.3*	8
Example 699	1286	C26 H33 F3 N4 O3	507	25.3*	51
Example 700	1287	C21 H20 F3 N5 O6	496	4.0*	8
Example 701	1288	C22 H24 F3 N3 O4	452	3.6*	13
Example 702	1298	C23 H25 Br F3 N3 O4	544	28.4	quant
Example 703 Example 704	1299	C24 H28 F3 N3 O5	496	1.4	6
Example /04	1300	C23 H26 F3 N3 O4	466	7.3	33

Example 705	1301	C24 H28 F3 N3 O5	496	12.6	53
Example 706	1302	C24 H28 F3 N3 O3	464	24.5	quant
Example 707	1303	C23 H25 Br F3 N3 O4	544	22.2	86.
Example 708	1304	C29 H30 F3 N3 O4	542	28.6	quant
Example 709	1305	C26 H26 F3 N3 O3	486	35.4	quant
Example 710	1306	C24 H28 F3 N3 O4	480	8.1	35
Example 711	1307	C23 H26 F3 N3 O5	482	27.9	quant
Example 712	1308	C23 H24 F3 N3 O3	448	5.9	28
Example 713	1309	C23 H25 F3 I N3 O4	592	24.0	85
Example 714	1310	C22 H24 F3 N3 O4	452	3.4	16
Example 715	1311	C22 H22 F3 N3 O4	450	3.4	16
Example 716	1312	C21 H21 F3 I N3 O2	532	18.1	72
Example 717	1313	C21 H21 Br F3 N3 O2	484	17.4	76
Example 718	1314	C19 H19 F3 N4 O4 S	457	16.8	77
Example 719	1315	C20 H22 F3 N3 O3	410	13.6	70
Example 720	1316	C22 H20 Cl F6 N3 O2	508	18.6	77
Example 721	1317	C21 H20 Cl F3 N4 O4	485	17.0	74
Example 722	1318	C21 H20 Cl F4 N3 O2	458	17.0	78
Example 723	1319	C21 H20 C1 F4 N3 O2	458	17.6	81
Example 724	1320	C21 H20 Br F4 N3 O2	502	18.5	77
Example 725	1390	C26 H32 F3 N3 O2	476	16.1	51
Example 726	1391	C23 H26 F3 N3 O2	434	20.0	76
Example 727	1392	C22 H23 Cl F3 N3 O2	454	20.0	67
Example 728	1393	C23 H26 F3 N3 O2	434	20.1	70
Example 729	1394	C22 H23 F3 N4 O4	465	18.4	60
Example 730	1395	C23 H24 F3 N3 O2	432	21.4	75
Example 731	1396	C26 H26 F3 N3 O2	470	20.4	66
Example 732	, 1397	C21 H20 Br2 F3 N3 O2	562	14.5	54
Example 733	1398	C22 H22 C12 F3 N3 O2	488	10.8	47
Example 734	1399	C22 H22 C12 F3 N3 O2	488	9.4	40
Example 735	1400	C22 H23 C1 F3 N3 O2	454	19.1	88
Example 736	1614	C22 H21 F6 N3 S	506.0	24.2	96
Example 73	2050	C20 H22 F3 N3 O2 S	426	6.0	30
	2051	C21 H23 F3 N4 O2	421	6.5	32

^{*}Yield of TFA salt.

Examples 739-748.

The compounds of this invention were synthesized pursuant to methods of Example 738 using the corresponding reactant respectively. Preparative TLC,

if needed, afforded the desired material. The ESI/MS data and yields are summarized in Table 9.

Table 9

20

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 739	1650	C24 H28 F3 N3 O2	448.0	20.4	91
Example 740	1706	C23 H25 F3 N4 O3	463.2	3.7	11
Example 741	1707	C22 H25 F3 N4 O2 S	467.0	10.3	29
Example 742	1708	C23 H27 F3 N4 O2	449.2	11.4	34
Example 743	1709	C24 H29 F3 N4 O2	463.2	15.2	44
Example 744	1775	C22 H25 F3 N4 O4	467.2	9.2	26.3
Example 745	1776	C22 H25 F3 N4 O4	467.2	8.9	25.4
Example 746	1787	C24 H29 F3 N4 O2	463.2	5.6	16.1
Example 747	1802	C23 H27 F3 N4 O4	481.2	11.7	32.5
Example 748	1803	C22 H25 F3 N4 O3	451.2	9.6	28.4

Example 749: Preparation of (R)-3-[{N-(2-Amino-5-trifluoromethoxybenzoyl)glycyl}amino]-1-(3-hydroxy-4-methoxybenzyl)pyrrolidine (Compound No. 1896).

10 То mixture of (R)-3-[N-{2-(tert-butoxycarbonylamino)-5-(trifluoromethoxy)benzoyl)glycyl]aminopyrrolidine (0.050 mmol), 3-hydroxy-4-methoxybenzaldehyde (0.060 mmol), NaBH3CN (0.15 mmol), and methanol (1.3 mL) was added acetic acid (0.050 mL). The reaction mixture was stirred at 60 °C for 8 h. The mixture was cooled to room temperature, loaded onto $Varian^{TM}$ SCX 15 column, and washed with CH_3OH (10 mL). Product was eluted off using 2 N NH_3 in $\mathrm{CH_{3}OH}$ (5 mL) and concentrated. To the resulting material was added 4 N HCl in 1,4-dioxane and the solution was stirred overnight at room temperature. Concentration and preparative TLC gave $(R) - 3 - [{N - (2-amino-5$ trifluoromethoxybenzoyl)glycyl)amino]-1-(3-hydroxy-4-

methoxybenzyl)pyrrolidine (Compound No. 1896) (9.1 mg, 38%): The purity was determined by RPLC/MS (93%); ESI/MS m/e 483 (M*+H, $C_{22}H_{25}F_3N_4O_5$).

Examples 750-757.

The compounds of this invention were synthesized pursuant to methods of Example 749 using the corresponding reactant respectively. The ESI/MS data and yields are summarized in Table 10.

Table 10

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 750	1897	C22 H25 F3 N4 O3 S	483	22.7	94.1
Example 751	1898	C23 H27 F3 N4 O3	465	12.2	52.5
Example 752		C24 H29 F3 N4 O3	479	14.4	60.2
Example 753	1900	C22 H25 F3 N4 O5	483	2.6	10.8
Example 754		C24 H29 F3 N4 O3	479	14.5	60.6
Example 755	<u> </u>	C23 H25 F3 N4 O4	479	12.0	50.2
Example 756	1915	C23 H27 F3 N4 O5	467.2	2.5	6.7
Example 757	1916	C22 H25 F3 N4 O4	467.2	3.1	8.9

Example 758: Preparation of (R)-3-[{N-(2-Amino-5-5 (trifluoromethyl)benzoyl)glycyl}amino]-1-(4-vinylbenzyl)pyrrolidine (Compound No. 1701).

A mixture of $(R)^{-3}-[\{N-(2-\min n-5-(trifluoromethyl) \operatorname{benzoyl}) \operatorname{glycyl}\} \operatorname{amino}]$ pyrrolidine $(0.050 \, \mathrm{mmol})$, $4-\operatorname{vinylbenzyl}$ chloride $(9.9 \, \mathrm{mg}, \, 0.065 \, \mathrm{mmol})$, piperidinomethylpolystyrene $(60 \, \mathrm{mg})$, acetonitrile $(1.0 \, \mathrm{mL})$ and chloroform $(0.30 \, \mathrm{mL})$ was stirred at 50 °C for 12 h. The reaction mixture was cooled, loaded onto Varian SCX column and washed with CH₃OH $(15 \, \mathrm{mL})$. Product was eluted using 2 N NH₃ in CH₃OH $(5 \, \mathrm{mL})$ and concentrated to afford $(R)^{-3}-[\{N^{-}(2-\min n-5-(\mathrm{trifluoromethyl}) \mathrm{benzoyl}) \mathrm{glycyl}\} \mathrm{amino}]^{-1}-(4-\mathrm{vinylbenzyl})$ pyrrolidine $(\mathrm{Compound \, No. \, 1701})$ $(19.6 \, \mathrm{mg}, \, 88\%)$: The purity was determined by RPLC/MS (92%); ESI/MS m/e 547.2 $(\mathrm{M}^{+}+\mathrm{H}, \, \mathrm{C}_{23}\mathrm{H}_{25}\mathrm{ClF}_{3}\mathrm{N}_{4}\mathrm{O}_{2})$.

Examples 759-762

10

15

20

The compounds of this invention were synthesized pursuant to methods of Example 758 using the corresponding reactant respectively. Preparative TLC, if needed, afforded the desired material. The ESI/MS data and yields are summarized in Table 11.

Table 11

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 759	1702	C22 H25 F3 N4 O3	451.2	5.3	24
Example 760	1703	C22 H23 F3 N4 O4	465.2	5.0	22
Example 761	1704	C21 H23 F3 N4 O3	437.2	20.9	96
Example 762	1705	C21 H21 C12 F3 N4 O2	489.2	9.3	38

Example 763: Preparation of (R)-3-[{N-(2-Amino-5-(trifluoromethoxy)benzoyl)glycyl}amino]-1-(2,4-dichlorobenzyl)pyrrolidine (Compound No. 1905).

Α mixture οf $(R) -3 - [{N - (2-amino-5-$ (trifluoromethoxy)benzoyl)glycyl)amino]pyrrolidine (0.050 mmol), dichlorobenzyl chloride (0.060 mmol), piperidinomethylpolystyrene (60 mg), acetonitrile (0.8 mL) and chloroform (0.5 mL) was stirred at 60 °C for 12 h. The reaction mixture was cooled, loaded onto $Varian^{TM}$ SCX column and washed with 50% CHCl $_3$ /CH $_3$ OH (10 mL) and CH $_3$ OH (10 mL). Product was eluted using 2 N NH $_3$ in CH_3OH (5 mL) and concentrated. To the resulting material was added 4 N HCl in 1,4-dioxane (2 mL), and the solution was stirred overnight at room temperature. Concentration preparative TLC afforded $(R) -3 - [{N - (2 - amino - 5 -$ (trifluoromethoxy)benzoyl)glycyl}amino}-1-(2,4-dichlorobenzyl)pyrrolidine (Compound No. 1905) (17.6 mg, 70%): The purity was determined by RPLC/MS (93%); ESI/MS m/e 505 (M $^+$ +H, $C_{21}H_{21}C1_2F_3N_4O_3$).

Examples 764-770

The compounds of this invention were synthesized pursuant to methods of Example 763 using the corresponding reactant respectively. The ESI/MS data and yields are summarized in Table 12.

Molecular Formula Compound ESI/MS m/e Yield (mg) Yield (%) No. Example 764 1906 C22 H23 F3 N4 O5 481 9.4 39.1 Example 765 1907 C21 H23 F3 N4 O4 453 7.5 33.2 Example 766 1908 C22 H25 F3 N4 O4 467 7.7 33.0 Example 767 2180 C22 H24 C1 F3 N4 O2 469 1.3 26 Example 768 2181 C23 H25 F3 N6 O3 491 4.3 52 Example 769 C19 H22 F3 N5 O2 S 2182 442 7.0 51 Example 770 1909 C23 H25 F3 N4 O3 463 8.7 37.6

Table 12

25

5

10

15

Example 771: Preparation of (R) -3-[(N-(2-Amino-5-trifluoromethoxybenzoyl)glycyl)amino]-1-(2-amino-4-chlorobenzyl)pyrrolidine (Compound No. 1921).

A mixture of $(R)-3-[\{N-(2-amino-5-30 trifluoromethoxybenzoyl)glycyl\}amino]pyrrolidine (0.050 mmol), 4-chloro-2-$

nitrobenzyl chloride (0.050 mmol), piperidinomethylpolystyrene (60 mg), acetonitrile (1.0 mL) and chloroform (0.7 mL) was stirred overnight at 50 °C. The reaction mixture was cooled, loaded onto Varian SCX column and washed with 50% CHCl₃/CH₃OH (10 mL) and CH₃OH (10 mL). Product was eluted using 2 N NH₃ in CH₃OH (5 mL) and concentrated. To the resulting material was added ethanol (3 mL) and 10% Pd-C (15 mg), and the mixture was stirred under H₂ at room temperature for 1.5 h. Filtration, concentration, and preparative TLC afforded (R)-3-[{N-(2-amino-5-trifluoromethoxybenzoyl)glycyl}amino]-1-(2-amino-4-chlorobenzyl)pyrrolidine (Compound No. 1921) (2.2 mg, 6%): The purity was determined by RPLC/MS (81%); ESI/MS m/e 486.2 (M*+H, C₂₁H₂₃ClF₃N₅O₃).

Example 772: Preparation of (R)-3-[{N-(2-Amino-5-trifluoromethylbenzoyl)glycyl}amino]-1-(4-bromo-2-fluorobenzyl)pyrrolidine (Compound No. 2120).

 $(R)-3-[\{N-(2-(tert-butoxycarbonylamino)-5$ of To mixture trifluoromethylbenzoyl)glycyl)amino]pyrrolidine (0.050 mmol), 4-bromo-2fluorobenzaldehyde (0.15 mmol), methanol (1.5 mL), and acetic acid (0.016 mL) was added NaBH3CN (0.25 mmol) in methanol (0.50 mL). The reaction mixture was stirred at 50 °C overnight. The mixture was cooled to room temperature, loaded onto Varian TM SCX column, and washed with CH $_3$ OH (5 mL x 2). Product was eluted off using 2 N NH $_3$ in CH $_3$ OH (5 mL) and concentrated. The residue was dissolved in methanol (0.25 mL) and 4 N HCl in dioxane (0.50 mL) was added. The solution was stirred at room temperature for 5 h and concentrated. The residue was dissolved in methanol, loaded onto $Varian^{TM}$ SCX column, and washed with CH_3OH (5 mL x 2). Product was eluted off using 2 N NH $_3$ in CH $_3$ OH (5 mL) and concentrated. The resulting material was dissolved into ethyl acetate (0.5 mL), loaded onto VarianTM Si column, eluted off using ethyl acetate/methanol = 5:1 (6 mL), and (R) - 3 - [(N - (2 - amino - 5 afford concentrated trifluoromethylbenzoyl)glycyl}amino]-1-(4-bromo-2-fluorobenzyl)pyrrolidine (Compound No. 2120) (16.0 mg, 31%): The purity was determined by RPLC/MS (99%); ESI/MS m/e 517.0 $(M^{+}H, C_{21}H_{21}BrF_4N_4O_2)$.

Examples 773-793.

10

15

20

25

30

35

The compounds of this invention were synthesized pursuant to methods of Example 772 using the corresponding reactant respectively. The ESI/MS data and yields are summarized in Table 13.

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 773	2083	C22 H24 Br F3 N4 O4	545.2	2.9	11
Example 774	2084	C23 H27 F3 N4 O5	497.2	5.1	21
Example 775	2085	C22 H25 F3 N4 O4	467.2	3.1	13
Example 776	2086	C21 H22 C1 F3 N4 O3	471.0	4.6	20
Example 777	2087	C23 H28 F3 N5 O2	464.2	5.6	24
Example 778	2088	C25 H32 F3 N5 O2	492.2	5.9	24
Example 779	2089	C21 H21 F5 N4 O2	457.2	4.5	20
Example 780	2090 .	C27 H27 F3 N4 O3	513.2	8.0	31
Example 781	2118	C21 H23 F3 N4 O4	453.1	2.7	12
Example 782	2119	C21 H23 F3 N4 O4	453.1	4.3	19
Example 783	2121	C22 H25 F3 N4 O4	467.0	1.2	
Example 784	2122	C21 H21 Cl F4 N4 O2	472.9	13.1	28
Example 785	2123	C22 H22 F3 N5 O6	510.1	13.1	51
Example 786	2124	C21 H21 Cl F3 N5 O4	500.1	15.6	62
Example 787	2125	C22 H24 F3 N5 O5	496.0	16.0	65
Example 788	2126	C22 H24 F3 N5 O4	480.1	15.6	65
Example 789	2137	C22 H24 Cl F3 N4 O2	469.2	2.6	11
Example 790	2138	C26 H29 F3 N6 O2	515.3	25.1	98
Example 791	2139	C20 H24 C1 F3 N6 O2	473.2	25.0	98
Example 792	2149	C21 H22 F3 N5 O5	482.3	4.9	34
Example 793	2157	C22 H25 F3 N4 O3	451.2	15.5	70

Example 794: Preparation of (R)-3-[{N-(2-Amino-5-trifluoromethylbenzoyl)glycyl}amino]-1-(2,4-dimethoxypyrimidin-5-ylmethyl)pyrrolidine (Compound No. 2175).

(R)-3-[{N-(2-Amino-5-trifluoromethylbenzoyl)glycyl}amino]pyrrolidine (17.2 mg, 0.04 mmol) was dissolved in THF (1 mL) and 2,4-dimethoxy-5-pyrimidine carboxaldehyde (6.7 mg, 0.04 mmol) was added followed by sodium triacetoxyborohydride (12.7 mg, 0.06 mmol) and glacial acetic acid (2.4 mg, 0.04 mmol). The mixture was stirred at room temperature for 24 h and evaporated. The residue was then dissolved in dichloromethane (1 mL) and washed with 1 N NaOH solution (1 mL). The organic phase was recovered and evaporated then treated with 25% trifluoroacetic acid in dichloromethane (1 mL) for 1 h at room temperature and evaporated. The residue was purified using LC/MS to afford (R)-3-[{N-(2-amino-5-trifluoromethylbenzoyl)glycyl}amino]-1-(2,4-dimethoxypyrimidin-5-ylmethyl)pyrrolidine (Compound No. 2175) (18.6 mg, 78%): The purity was determined by RPLC/MS (98%); ESI/MS m/e 483 (M+H, C21H25F3N6O4).

10

15

PCT/US98/23254

Examples 795-803.

The compounds of this invention were synthesized pursuant to methods of Example 794 using the corresponding reactant respectively. The ESI/MS data and yields are summarized in Table 14.

5

20

Table 14

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 795	2165	C18 H21 F3 N6 O2	411	2.0	27
Example 796		C18 H20 F3 N5 O2 S	428	9.9	66
Example 797		C24 H25 F3 N6 O2	487	15.1	73
Example 798		C24 H29 F3 N4 O2	463	1.2	24
Example 799		C26 H25 Cl F3 N5 O2	520	6.0	40
Example 800		C19 H23 F3 N6 O2	425	16.8	88
Example 801		C23 H24 Br F3 N4 O2 52	591	5.3	53
Example 802		C25 H28 F3 N5 O4	518	5.4	62
Example 803		C25 H28 F3 N5 O3	502	6.3	60

(R) -1-(2-Amino-4,5of 804: Preparation Example methylenedioxybenzyl)-3-[{N-(2-amino-5-10 trifluoromethylbenzoyl)glycyl)amino]pyrrolidine (Compound No. 2127). (R) - 3 - [(N - (2 - amino - 5 -))]of mixture trifluoromethylbenzoyl)glycyl}amino}-1-(4,5-methylenedioxy-2nitrobenzyl)pyrrolidine (30.5 mg), 10% Pd-activated carbone (6 mg), and methanol (3 mL) was stirred under a hydrogen atmosphere at room temperature for 10 h. 15 The Pd catalyst was filtered off through Celite, and the filtrate was concentrated. Solid phase extraction (Bond Elut TM SI, 20% methanol/AcOEt) afforded (R)-1-(2-amino-4,5-methylenedioxybenzyl)-3-[{N-(2-amino-5-

trifluoromethylbenzoyl)glycyl)amino]pyrrolidine (Compound No. 2127) (21.9 mg, 76%): The purity was determined by RPLC/MS (95%); ESI/MS m/e 480.1 (M^++H , $C_{22}H_{24}F_3N_5O_4$).

Examples 805 and 806.

The compounds of this invention were synthesized pursuant to methods of Example 804 using the corresponding reactant respectively. The ESI/MS data and yields are summarized in Table 15.

Table 15

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 805	2128	C22 H26 F3 N5 O3	466.0	8.6	30
Example 806	2129	C22 H26 F3 N5 O2	450.1	13.1	37

Example 807: Preparation of $(R)-1-(3-Amino-4-chlorobenzyl)-3-[{N-(2-amino-5-trifluoromethylbenzoyl)glycyl}amino]pyrrolidine (Compound No. 2132).$

A mixture of $(R)-3-[\{N-(2-a\min o-5-trifluoromethylbenzoyl)glycyl\}amino]-1-(4-chloro-3-nitrobenzyl)pyrrolidine (32.6 mg), 10% Pd-activated carbone (8 mg), ethyl acetate (2.7 mL) and methanol (0.3 mL) was stirred under a hydrogen atmosphere at room temperature for 15 h. The Pd catalyst was filtered off, and the filtrate was concentrated. Solid phase extraction (Bond ElutTM SI, 20% methanol/AcOEt) afforded <math>(R)-1-(3-a\min o-4-chlorobenzyl)-3-[\{N-(2-a\min o-5-item)o-1-(3-a\min o-4-trifluoromethyl)-3-[\{N-(2-a\min o-5-item)o-1-(3-a\min o-4-trifluoromethyl)-3-[\{N-(2-a\min o-5-item)o-1-(3-a\min o-5-item)o-1-(3-a\min o-4-trifluoromethyl)-3-[\{N-(2-a\min o-5-item)o-1-(3-a\min o-4-trifluoromethyl)-3-[\{N-(2-a\min o-5-item)o-1-(3-a\min o-5-item)o-1-(3-a\min o-4-trifluoromethyl)-3-[\{N-(2-a\min o-5-item)o-1-(3-aim o-4-trifluoromethyl)-3-[\{N-(2-a\min o-5-item)o-1-(3-aim o-4-trifluoromethyl)-3-[\{N-(2-a\min o-5-item)o-1-(3-aim o-4-trifluoromethylbenzoyl)-3-[\{N-(2-aim o-5-item)o-1-(3-aim o-4-trifluoromethylbenzoyl)-3-[\{N-(2-aim o-5-item)o-1-(3-aim o-4-trifluoromethylbenzoyl)-3-[\{N-(2-aim o-5-item)o-1-(3-aim o-4-trifluoromethylbenzoyl)-3-[\{N-(2-aim o-5-item)o-1-(3-aim o-4-trifluoromethylbenzoyl)-3-[\{N-(2-aim o-5-item)o-1-(3-aim o-4-trifluoromethylbenzoyl)-3-[\{N-(2-aim o-5-item)o-1-(3-aim o-4-trifluoromethylbenzoyl)-3-[(N-(2-aim o-5-item)o-4-trifluoromethylbenzoyl)-3-[(N-(2-aim o-5-item)o-4-$

trifluoromethylbenzoyl)glycyl}amino]pyrrolidine (Compound No. 2132) (10.5 mg, 34%): The purity was determined by RPLC/MS (84%); ESI/MS m/e 470.2 (M $^{+}$ +H, C₂₁H₂₃ClF₃N₅O₂).

15

20

25

10

5

Example 808: Preparation of $(R)-1-(2-A\min o-4,5-methylenedioxybenzyl)-3-[{N-(2-(text-butoxycarbonylamino)-5-trifluoromethylbenzoyl)glycyl)amino]pyrrolidine.$

To a mixture of $(R)-3-[\{N-(2-(tert-butoxycarbonylamino)-5-trifluoromethylbenzoyl)glycyl\}amino]pyrrolidine <math>(0.150 \text{ mmol})$, 4,5-methylenedioxy-2-nitrobenzaldehyde <math>(0.45 mmol), methanol (4.5 mL), and acetic acid (0.048 mL) was added NaBH₃CN (0.75 mmol) in methanol (1.50 mL). The reaction mixture was stirred at 50 °C overnight. The mixture was cooled to room temperature, loaded onto VarianTM SCX column, and washed with CH₃OH. Product was eluted off using 2 N NH₃ in CH₃OH and concentrated to afford $(R)-3-[\{N-(2-(tert-butoxycarbonylamino)-5-trifluoromethylbenzoyl)glycyl\}amino]-1-<math>(4,5-methylenedioxy-2-nitrobenzyl)$ pyrrolidine.

A mixture of $(R)-3-[\{N-(2-(tert-butoxycarbonylamino)-5-trifluoromethylbenzoyl)glycyl)amino]-1-(4,5-methylenedioxy-2-$

nitrobenzyl)pyrrolidine prepared above, 10% Pd-activated carbone (22 mg), and methanol (3.0 mL) was stirred under a hydrogen atmosphere at room temperature overnight. The Pd catalyst was filtered off, and the filtrate was concentrated to afford (R)-1-(2-amino-4,5-methylenedioxybenzyl)-3-[{N-(2-(tert-butoxycarbonylamino)-5-trifluoromethylbenzoyl)glycyl)amino]pyrrolidine

(87.1 mg, quant.): Any remarkable by-products were not detected in TLC.

 $(R)-1-(3-A\min o-4-methoxybenzyl)-3-[\{N-(2-(tert-butoxycarbonylamino)-5-trifluoromethylbenzoyl)glycyl\}amino]pyrrolidine and (R)-1-(3-amino-4-methylbenzyl)-3-[\{N-(2-(tert-butoxycarbonylamino)-5-trifluoromethylbenzoyl)glycyl\}amino]pyrrolidine were also synthesized pursuant to methods of Example 808 using the corresponding reactant respectively.$

5

10

15

20

25

30

35

 $(R)-1-(3-A\min o-4-methoxybenzyl)-3-[\{N-(2-(tert-butoxycarbonylamino)-5-trifluoromethylbenzoyl)glycyl\}amino]pyrrolidine: 101 mg, quant.; Any remarkable by-products were not detected in TLC.$

(R)-1-(3-amino-4-methylbenzyl)-3-[{N-(2-(tert-butoxycarbonylamino)-5-trifluoromethylbenzoyl)glycyl}amino]pyrrolidine: 97.2 mg, quant.; Any remarkable by-products were not detected in TLC.

Example 809: Preparation of (R)-1-(3-Amino-4-chlorobenzyl)-3-[{N-(2-(tert-butoxycarbonylamino)-5-trifluoromethylbenzoyl)glycyl}amino]pyrrolidine.

To a mixture of $(R)-3-[\{N-(2-(tert-butoxycarbonylamino)-5-trifluoromethylbenzoyl)glycyl\}amino]pyrrolidine (0.150 mmol), 4-chloro-3-nitrobenzaldehyde (0.45 mmol), methanol (4.5 mL), and acetic acid (0.048 mL) was added NaBH₃CN (0.75 mmol) in methanol (1.50 mL). The reaction mixture was stirred at 50 °C overnight. The mixture was cooled to room temperature, loaded onto VarianTM SCX column, and washed with CH₃OH. Product was eluted off using 2 N NH₂ in CH₂OH and concentrated to afford <math>(R)-3-[\{N-(2-(tert-butoxycarbonylamino)-5-trifluoromethylbenzoyl)glycyl\}amino)-1-(4-chloro-3-nitrobenzyl)pyrrolidine.$

A mixture of $(R)-3-\{\{N-(2-(tert-butoxycarbonylamino)-5-trifluoromethylbenzoyl)glycyl\}$ amino]-1-(4-chloro-3-nitrobenzyl)pyrrolidine prepared above, 10% Pd-activated carbone (22 mg), ethyl acetate (2.7 mL) and methanol (0.3 mL) was stirred under a hydrogen atmosphere at room temperature for 15 h. The Pd catalyst was filtered off, and the filtrate was concentrated to afford $(R)-1-(3-a\min o-4-chlorobenzyl)-3-\{\{N-(2-(tert-butoxycarbonylamino)-5-trifluoromethylbenzoyl)glycyl\}amino]pyrrolidine (89.7 mg, quant.): Any remarkable by-products were not detected in TLC.$

Example 810: Preparation of $(R)-1-(3-A\min no-4-hydroxybenzyl)3-[{N-(2-A\min no-5-trifluoromethylbenzoyl)glycyl}amino]pyrrolidine (Compound No. 2187).$

A solution of $(R)-1-(3-amino-4-hydroxybenzyl)-3-[{N-(2-(tert-infty))}]$

butoxycarbonylamino)-5-trifluoromethylbenzoyl)glycyl}amino]pyrrolidine (20 mg), prepared pursuant to methods of Example 808, in 4 N HCl in dioxane (2.0 mL) was stirred at room temperature overnight. After the solution was concentrated, the residue was dissolved in methanol, loaded onto VarianTM SCX column, washed with CH_3OH , and eluted off using 2 N NH₃ in CH_3OH . Concentration and preparative TLC (SiO₂, AcOEt/MeOH = 4:1) afforded (R)-1-(3-amino-4-hydroxybenzyl)3-[{N-(2-Amino-5-trifluoromethylbenzoyl)glycyl}amino]pyrrolidine (Compound No. 2187) (9.6 mg, 59%): The purity was determined by RPLC/MS (86%); ESI/MS m/e 452.3 (M*+H,

Example 811: Preparation of (R)-3-[{N-(2-Amino-5-trifluoromethylbenzoyl)glycyl)amino]-1-(4-chloro-3-(dimethylamino)benzyl)pyrrolidine (Compound No. 2133).

15 (R)-1-(3-amino-4-chlorobenzyl)-3-[{N-(2-(terta mixture of butoxycarbonylamino)-5-trifluoromethylbenzoyl)glycyl)amino]pyrrolidine (44.9 mg), methanol (0.95 mL), acetic acid (0.05 mL), and 37% aqueous HCHO solution (0.15 mL) was added NaBH $_3$ CN (38 mg). The reaction mixture was stirred at 50 $^{\circ}\text{C}$ overnight. The mixture was cooled to room temperature and evaporated. To the 20 residue was added 2 N aqueous NaOH solution and ethyl acetate, the organic layer was separated, and the aqueous layer was extracted with ethyl acetate. The combined organic layers were dried and concentrated, and the residue was loaded onto Varian TH SCX column and washed with CH $_3$ OH. Product was eluted off using 2 N NH $_3$ in CH $_3$ OH and concentrated. The residue was dissolved in 50% conc. 25 HCl/dioxane and the solution was stirred at room temperature for 1 h. The reaction mixture was adjusted to pH 10 with 5 N aqueous NaOH solution and extracted with ethyl acetate (2 times). The combined extracts were dried over Na_2SO_4 , filtered, and evaporated. Preparative TLC (SiO_2 , 20% MeOH/AcOEt) gave (R)- $3-[{N-(2-amino-5-trifluoromethylbenzoyl)glycyl}amino}]-1-{4-chloro-3-incomplex}$ 30 (dimethylamino)benzyl)pyrrolidine (Compound No. 2133). (10.9 mg, 28%): The purity was determined by RPLC/MS (95%); ESI/MS m/e 498.3 (M*+H, $C_{23}H_2$ -C1 $F_3N_5O_2$).

Examples 812-814.

10

 $C_{21}H_{24}F_3N_5O_3$).

The compounds of this invention were synthesized pursuant to methods of Example 811 using the corresponding reactant respectively. The ESI/MS data and yields are summarized in Table 16.

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 812	2134	C24H28F3N5O4	508.4	19.0	50
Example 813	2135	C ₂₄ H ₃₀ F ₃ N ₅ O ₃	494.4	21.8	50
Example 814	2136	C ₂₄ H ₃₀ F ₃ N ₅ O ₂	478.4	29.2	69

Example 815: Preparation of (R)-3-[{N-(2-Amino-5-trifluoromethylbenzoyl)glycyl}amino]-1-(3-methylamino-4-hydroxybenzyl)pyrrolidine (Compound No. 2158).

5

10

15

20

25

30

To a mixture of $(R)-1-(3-\text{amino}-4-\text{hydroxybenzyl})-3-[\{N-(2-(\text{tert-butoxycarbonylamino})-5-\text{trifluoromethylbenzoyl})\,\text{glycyl}\}\,\text{amino}]\,\text{pyrrolidine}$ (27.3 mg, 0.049 mmol), 37% HCHO solution (4.0 mg, 0.049 mmol), acetic acid (0.10 mL) and methanol (1.3 mL) was added NaBH₃CN (9.2 mg) in methanol (0.2 mL). The reaction mixture was stirred at 60 °C overnight. The mixture was cooled to room temperature, loaded onto VarianTM SCX column, and washed with CH₃OH (5 mL x 2). Product was eluted off using 2 N NH₃ in CH₃OH (8 mL) and concentrated.

The resulting material was dissolved in methanol (1 mL) and 4 N HCl in dioxane (1.0 mL) was added. The solution was stirred at room temperature for 3 h. After the solution was concentrated, the residue was dissolved in methanol (1 mL), loaded onto Varian SCX column, washed with CH₃OH (5 mL x 2), and eluted off using 2 N NH₃ in CH₃OH (8 mL). Concentration and preparative TLC (SiO₂) afforded (R)-3-[{N-(2-amino-5-trifluoromethylbenzoyl)glycyl}amino]-1-(3-methylamino-4-hydroxybenzyl)pyrrolidine (Compound No. 2158) (4.3 mg, 19%): The purity was determined by RPLC/MS (71%); ESI/MS m/e 480.3 (MT+H, C₂₂H₂₆F₃N₅O₃).

Example 816: Preparation of (R)-1-(3-Acetylamino-4-methoxybenzyl)-3-[{N-(2-amino-5-trifluoromethylbenzoyl)glycyl}amino]pyrrolidine (Compound No. 2152).

To a solution of $(R)-1-(3-\min -4-\operatorname{methoxybenzyl})-3-[\{N-(2-(\operatorname{tert-butoxycarbonylamino})-5-\operatorname{trifluoromethylbenzoyl})\operatorname{glycyl}\}\operatorname{amino}\operatorname{pyrrolidine}$ (50.5 mg) in pyridine (1 mL) was added acetic anhydride (1 mL). The reaction mixture was stirred at room temperature overnight and methanol was added. The mixture was evaporated, and 1 N NaOH solution was added. The mixture was extracted with ethyl acetate and the organic layer was concentrated. Preparative TLC gave $(R)-1-(3-\operatorname{acetylamino}-4-\operatorname{methoxybenzyl})-3-[\{N-(2-(\operatorname{tert-butoxycarbonylamino})-5-\operatorname{trifluoromethylbenzoyl})\operatorname{glycyl})\operatorname{amino}]\operatorname{pyrrolidine}.$

The resulting $(R)-1-(3-acetylamino-4-methoxybenzyl)-3-{(N-(2-(tert-tert-tert)-1))}$

butoxycarbonylamino)-5-trifluoromethylbenzoyl)glycyl}amino]pyrrolidine was dissolved in 50% 6 N hydrochloric acid in dioxane and the solution was stirred at room temperature for 2 h. The mixture was adjusted to pH 10 with 5 M NaOH solution, and extracted with ethyl acetate. The organic layer was evaporated and preparative TLC (SiO_2 , AcOEt/MeOH = 4:1) afforded (R)-1-(3-acetylamino-4-methoxybenzyl)-3-[{N-(2-amino-5-

trifluoromethylbenzoyl)glycyl)amino)pyrrolidine (Compound No. 2152) (3.7 mg, 8%): The purity was determined by RPLC/MS (100%); ESI/MS m/e 508.3 (M † +H, $C_{24}H_{26}F_3N_5O_4$).

10

Examples 817-819.

The compounds of this invention were synthesized pursuant to methods of Example 816 using the corresponding reactants respectively. The ESI/MS data and yields are summarized in Table 17.

15

20

25

Table 17

	Compound No.		ESI/MS m/e	Yield (mg)	Yield (%)
Example 817	2150	C23H25C1F3N5O3	512.3	3.8	9
Example 818	2151	C24H26F3N5O5	522.2	3.1	- 8
Example 819	2153	C24H28F3N5O3	492.3	4.3	10

Example 820: Preparation of (R)-3-[{N-(2-Amino-5-trifluoromethylbenzoyl)glycyl)amino]-1-(benz[d]oxazol-5-yl)pyrrolidine (Compound No. 2189).

A solution of $(R)-1-(3-a\min no-4-hydroxybenzyl)-3-[(N-(2-(tert-butoxycarbonylamino)-5-trifluoromethylbenzoyl)glycyl)amino]pyrrolidine (20 mg), prepared pursuant to methods of Example 808, in THF (2 mL) was treated with triethyl orthoformate (0.020 mL, 3.3 eq) and pyridinium <math>p$ -toluenesulphonate (1.2 mg, 0.4 eq). The reaction mixture was stirred overnight under reflux. After cooling to room temperature, the mixture was concentrated. The residue was dissolved in AcOEt, loaded onto BondElutTM Si column, eluted off using ethyl acetate/methanol = 4/1, and concentrated.

The resulting material was dissolved into AcOEt (1.5 mL), and 4 N HCl in dioxane (0.5 mL) was added. The solution was stirred at room temperature overnight, adjusted to pH 10 with 5 M NaOH aqueous solution, and extracted with AcOEt. The extract was concentrated and purified by PTLC (SiO₂, AcOEt/MeOH =

4:1) to afford $(R)-3-[\{N-(2-amino-5-trifluoromethylbenzoyl)glycyl\}amino]-1-(benz[d]oxazol-5-yl)pyrrolidine (Compound No. 2189) (0.5 mg, 3%): The purity was determined by RPLC/MS (97%); ESI/MS m/e 462.3 (M*+H, <math>C_{22}H_{22}F_3N_5O_3$).

Example 821: Preparation of (R)-3-[(N-(2-Amino-5-trifluoromethylbenzoyl)glycyl)amino]-1-(benzo[c]thiadiazol-5-yl)pyrrolidine (Compound No. 2183).

5

10

15

20

25

30

35

To a mixture of 5-(hydroxymethyl) benzo[c] thiadiazole (8.3 mg, 0.050 mmol), (piperidinomethyl) polystyrene (86 mg), and chloroform (1 mL) was added methanesulfonyl chloride (0.0042 mL) and the mixture was stirred at room temperature for 1.5 h. Acetonitrile (1 mL) and (R)-3-[{N-(2-(tert-butoxycarbonylamino)-5-trifluoromethylbenzoyl)glycyl)amino]pyrrolidine (0.060 mmol) was added and the reaction mixture was stirred at 50 °C for 3 h. After cooling to room temperature, phenyl isocyanate (30 mg) was added, and the mixture was stirred at room temperature for 1 h, loaded onto Varian SCX column and washed with CH₃OH (5 mL) and CHCl; (5 mL). Product was eluted using 2 N NH; in CH₃OH (3 mL) and concentrated.

The resulting material was dissolved into dichloromethane (1 mL), and 1 M chlorotrimethylsilane and 1 M phenol in dichloromethane (1 mL) was added. The solution was stirred at room temperature for 5 h, loaded onto Varian SCX column and washed with CH3OH and dichloromethane. Product was eluted using 2 N NH3 in CH3OH and concentrated. Preparative TLC (SiO2, AcOEt/MeOH = 3:1) afforded $(R) - 3 - [\{N - (2 - \text{amino} - 5 - \text{trifluoromethylbenzoyl}) \text{glycyl}\} \text{amino}] - 1 - (benzo[c] thiadiazol - 5 - yl) pyrrolidine (Compound No. 2183) (11.5 mg, 48%): The purity was determined by RPLC/MS (86%); ESI/MS m/e 479.2 (M*+H, C21H21F3N6O2S).$

Reference Example 6: Preparation of $4-[N-(1-(9-1)\log n)]$ fuluorenylmethoxycarbonyl) pyrrolidin-3-yl) carbamoylmethyl aminomethyl]-3-methoxyphenyloxymethyl-polystyrene.

To a solution of $(R)-1-(9-\text{fuluorenylmethoxycarbonyl})-3-\text{glycylamino-pyrrolidine hydrochloride } (4.38 g, 10 mmol) in DMF (65 mL) were added acetic acid (0.3 mL), sodium triacetoxyborohydride (1.92 g), and 4-formyl-3-(methoxyphenyloxymethyl)-polystyrene (1 mmol/g, 200 g). The mixture was shaken for 2 h and filtered. The resin was washed with MeOH, DMF, <math>\text{CH}_2\text{Cl}_2$, and methanol, and dried to afford the desired material (2.73 g).

Examples 822-912: General Procedure for Solid-Phase Synthesis of 3-Aminopyrrolidines.

To a mixture of the corresponding acid (1.6 mmol), HBTU (1.6 mmol), and DMF (6 mL) was added disopropylethylamine (3.6 mmol), and the mixture was shaken for 2 min. $4-[\{N-(1-(9-\text{fuluorenylmethoxycarbonyl})\text{pyrrolidin-3-yl})\text{ carbamoylmethyl}]$ aminomethyl]-3-methoxyphenyloxymethyl-polystyrene (400 mg, 0.4 mmol) was added and the mixture was shaken for 1 h and filtered. The resin was rinsed with DMF and CH_2Cl_2 , and dried.

A mixture of the resulting resin, piperidine (3.2 mL), and DMF (12.8 mL) was shaken for 10 min and filtered. The resin was washed with DMF and CH_2Cl_2 , and dried.

To the dry resin (0.05 mmol) was added a mixture of NaBH (OAc)₃ (0.25 mmol), AcOH (0.025 mL) and DMF (1 mL). The corresponding aldehyde (2.5 mmol) was added, and the mixture was shaken for 2 h, then filtered and washed with CH₃OH, 10% diisopropylethylamine in DMF, DMF, CH₂Cl₂, and CH₃OH. A mixture of the resin, water (0.050 mL), and trifluoroacetic acid (0.95 mL) was shaken for 1 h and filtered. The resin was washed with CH₂Cl₂ and CH₃OH. The filtrate and washings were combined and concentrated. The crude material was loaded onto Varian SCX column and washed with CH₃OH (15 mL). Product was eluted using 2 N NH₃ in CH₃OH (5 mL) and concentrated. Preparative TLC or HPLC, if needed, afforded the desired material. The ESI/MS data and yields are summarized in Table 18.

Table 18

10

15

20

		Compound No.	Mo	oleci	ılar	F	ormi	ula		ESI/MS m/e	Yield (mg)	Yield ((₴)
Example 8	22	1805	C21	H21	Br	F3	NЗ	02	S	516	13.3	76	
Example 8	23	1806	C22	H24	F3	ΝЗ	03	S	_	468	12.8	81	
Example 8	24	1807	C22	H24	F3	ΝЗ	04	s	_	484	13.7	83	
Example 8	25	1808	C22	H24	F3	ИЗ	04	S		484	14.9	91	
Example 8	26	1809	C21	H22	F3	ИЗ	03	S		454	12.9	84	
Example 8	27	1810	C22	H22	F3	N3	04	S	1	482	12.9	79	
Example 8	28	1811	C24	H26	F3	N3	02	S	7	478	12.9	79	
Example 8	29	1812	C22	H24	F3	ΝЗ	02	S2	7	484	5.3	32	
Example 8	30	1813	C23	H26	F3	N3	02	S	1	466	12.8	81	
Example 8	31	1814	C23	H24	F3	N3	03	S	1	480	9.7	59	
Example 8	32	1815	C23	H26	F3	N3	02	S	7	466	12.7	80	
Example 8	33	1816	C24	H28	F3	N3	02	S	1	480	14.4	88	
Example 8:	34	1817	C25	H30	F3	ΝЗ	02	S	7	494	14.1	84	
Example 8:	35	1818	C21	H22	Br	F2	N3	03	+	482	13.4	82	
Example 8:	36	1819	C22	H25	F2	ΝЗ	04		+	434	11.7	79	

Example 838 18 Example 839 18 Example 840 18 Example 841 18 Example 842 18 Example 843 18 Example 844 18 Example 845 18 Example 846 18 Example 847 18 Example 847 18 Example 848 18 Example 848 18	C22 H25 F2 N3 C22 H25 F2 N3 C22 C21 H23 F2 N3 C23 C22 H23 F2 N3 C24 C24 H27 F2 N3 C25 C22 H25 F2 N3 C26 C23 H27 F2 N3 C27 C23 H25 F2 N3 C28 C23 H27 F2 N3 C29 C24 H29 F2 N3 C30 C24 H29 F2 N3 C31 C22 H28 Br N3 C32 C23 H31 N3 O4 C33 C23 H31 N3 O4	05 450 04 420 05 448 03 444 03 5 03 450 03 432 04 446 03 432 03 446 03 446 03 446	11.8 13.3 11.9 11.9 9.1 11.3 10.8 12.7 11.7 14.3 10.0 4.8	77 87 83 78 60 74 74 84 80 94
Example 839 18 Example 840 18 Example 841 18 Example 842 18 Example 843 18 Example 844 16 Example 845 18 Example 846 18 Example 847 18 Example 848 18 Example 848 18	C21 H23 F2 N3 C22 H23 F2 N3 C24 C24 H27 F2 N3 C25 C22 H25 F2 N3 C26 C23 H27 F2 N3 C27 C23 H25 F2 N3 C28 C23 H27 F2 N3 C29 C24 H29 F2 N3 C30 C24 H29 F2 N3 C31 C22 H28 Br N3 C32 C23 H31 N3 O4	04 420 05 448 03 444 03 5 03 450 03 432 04 446 03 432 03 446 03 446 03 446 03 446 03 446	11.9 11.9 9.1 11.3 10.8 12.7 11.7 14.3 10.0	83 78 60 74 74 84 80 94
Example 840 18 Example 841 18 Example 842 18 Example 843 18 Example 844 18 Example 845 18 Example 846 18 Example 847 18 Example 847 18 Example 848 18 Example 848 18	C22 H23 F2 N3 C24 C24 H27 F2 N3 C25 C22 H25 F2 N3 C26 C23 H27 F2 N3 C27 C23 H25 F2 N3 C28 C23 H27 F2 N3 C29 C24 H29 F2 N3 C30 C24 H29 F2 N3 C31 C22 H28 Br N3 C32 C23 H31 N3 O4	O5 448 O3 444 O3 5 O3 450 O3 432 O4 446 O3 432 O3 446 O3 446 O3 446 O3 446	11.9 9.1 11.3 10.8 12.7 11.7 14.3 10.0	78 60 74 74 84 80 94
Example 841 18 Example 842 18 Example 843 18 Example 844 16 Example 845 16 Example 846 16 Example 847 16 Example 848 16 Example 848 16	C24 H27 F2 N3 C25 C22 H25 F2 N3 C26 C23 H27 F2 N3 C27 C23 H25 F2 N3 C28 C23 H27 F2 N3 C29 C24 H29 F2 N3 C30 C24 H29 F2 N3 C31 C22 H28 Br N3 C32 C23 H31 N3 O4	O3 444 O3 450 O3 432 O4 446 O3 432 O3 446 O3 446 O3 462	9.1 11.3 10.8 12.7 11.7 14.3	60 74 74 84 80 94
Example 842 18 Example 843 18 Example 844 18 Example 845 18 Example 846 18 Example 847 18 Example 848 18 Example 848 18	C22 H25 F2 N3 C26 C23 H27 F2 N3 C27 C23 H25 F2 N3 C28 C23 H27 F2 N3 C29 C24 H29 F2 N3 C30 C24 H29 F2 N3 C31 C22 H28 Br N3 C32 C23 H31 N3 O4	O3 S 450 O3 432 O4 446 O3 432 O3 446 O3 446 O3 446 O3 462	11.3 10.8 12.7 11.7 14.3	74 74 84 80 94
Example 843 18 Example 844 18 Example 845 18 Example 846 18 Example 847 18 Example 848 18 Example 848 18	C23 H27 F2 N3 C27 C23 H25 F2 N3 C28 C23 H27 F2 N3 C29 C24 H29 F2 N3 C30 C24 H29 F2 N3 C31 C22 H28 Br N3 C32 C23 H31 N3 O4	O3 432 O4 446 O3 432 O3 446 O3 446 O3 462	10.8 12.7 11.7 14.3 10.0	74 84 80 94
Example 844 18 Example 845 18 Example 846 18 Example 847 18 Example 848 18 Example 848 18	C23 H25 F2 N3 C28 C23 H27 F2 N3 C29 C24 H29 F2 N3 C30 C24 H29 F2 N3 C31 C22 H28 Br N3 C32 C23 H31 N3 O4	O4 446 O3 432 O3 446 O3 446 O3 462	12.7 11.7 14.3 10.0	84 80 94
Example 845 18 Example 846 18 Example 847 18 Example 848 18 Example 849 18	C23 H27 F2 N3 C29 C24 H29 F2 N3 C30 C24 H29 F2 N3 C31 C22 H28 Br N3 C32 C23 H31 N3 O4	O3 432 O3 446 O3 446 O3 462	11.7 14.3 10.0	80 94
Example 846 18 Example 847 18 Example 848 18 Example 849 18	C24 H29 F2 N3 C24 H29 F2 N3 C24 H29 F2 N3 C22 H28 Br N3 C23 H31 N3 O4	O3 446 O3 446 O3 462	14.3	94
Example 847 18 Example 848 18 Example 849 18	C24 H29 F2 N3 C22 H28 Br N3 C23 H31 N3 O4	O3 446 O3 462	10.0	ł
Example 848 18 Example 849 18	C22 H28 Br N3 C23 H31 N3 O4	03 462		66
Example 849 18	32 C23 H31 N3 O4		4.8	
		414		31
m1 - 050 19	33 C23 H31 N3 O5	ı	10.4	74
Example 850 18	I	430	12.1	83
Example 851 18	34 C23 H31 N3 O5	430	12.0	82
Example 852 18	35 C22 H29 N3 O4	400	7.9	58
Example 853 18	336 C23 H29 N3 O5	428	11.1	76
Example 854 18	337 C25 H33 N3 O3	424	13.3	92
Example 855 18	338 C23 H31 N3 O3		8.7	60
Example 856 18	339 C24 H33 N3 O3	412	11.3	81
Example 857 18	340 C24 H31 N3 O4	426	12.9	89
Example 858 18	341 C24 H33 N3 O3	413	12.8	91
Example 859 18	342 C25 H35 N3 O3	426	8.7	60
Example 860 18	343 C25 H35 N3 O3	426	12.2	84
Example 861 18	344 C26 H37 N3 O3		11.3	76
Example 862 18	345 C31 H37 Br N4		6.4	30
Example 863 18	346 C23 H28 F3 N3	02 S 480	12.8	81
Example 864 18	347 C25 H31 F2 N3	i	12.2	78
Example 865 18	348 C27 H29 N3 O4		6.1	39
	C29 H31 N3 O2		15.1	98
I	050 C28 H31 N3 O2		12.7	85
l	351 C28 H31 N3 O2		14.3	95
	352 C28 H29 N3 O3	1	3.4	22
-	353 C27 H29 N3 O6		15.4	87
Example 871 18	354 C29 H31 N3 O4		15.8	90
	355 C28 H31 N3 O4		17.0	99
Example 873 18	356 C28 H31 N3 O4		3.0	17
Example 874 18	357 C28 H29 N3 O5		10.0	57
Example 875 18	358 C20 H22 Br2 N	l l	9.3*	37
Example 876 1	359 C21 H25 Br N4	03 461	6.7*	29

. .

Example 877	1860	Igo1 205 - 206			
		C21 H25 Br N4 O4	477	9.5*	40
Example 878		C21 H25 Br N4 O4	477	10.0*	42
Example 879		C20 H23 Br N4 O3	447	7.8*	34
Example 880		C21 H23 Br N4 O4	475	3.4*	14
Example 881	1864	C21 H25 Br N4 O2 S	477	3.9*	16
Example 882	1865	C22 H25 Br N4 O3	473	6.4*	27
Example 883	1866	C23 H29 Br N4 O2	472	7.0*	29
Example 884	1867	C23 H29 Br N4 O2	473	7.6*	32
Example 885	1868	C24 H31 Br N4 O2	487	9.1*	37
Example 886	1869	C20 H22 Br I N4 O2	557	8.9*	33
Example 887	1870	C21 H25 I N4 O3	509	9.2*	37
Example 888	1871	C21 H25 I N4 O4	525	6.3*	25
Example 889	1872	C21 H25 I N4 O4	525	5.9*	23
Example 890	1873	C20 H23 I N4 O3	495	7.7*	31
Example 891	1874	C21 H23 I N4 O4	523	8.2*	32
Example 892	1875	C23 H27 I N4 O2	519	6.7*	26
Example 893	1876	C21 H25 I N4 O2	525	4.3*	17
Example 894	1877	C22 H27 I N4 O2	507	7.9*	32
Example 895	1878	C22 H25 I N4 O3	521	8.4*	33
Example 896	1879	C23 H29 I N4 O2	521	8.2*	32
Example 897	1880	C23 H29 I N4 O2	521	8.1*	32
Example 898	1881	C24 H31 I N4 O2	535	8.6*	33
Example 899	1882	C20 H22 Br N5 O4	476	5.3*	22
Example 900	1883	C21 H25 N5 O5	428	5.7*	26
Example 901	1884	C21 H25 N5 O6	444	8.2*	36
Example 902	1885	C21 H25 N5 O6	444	5.0*	22
Example 903	1886	C20 H23 N5 O5	414	8.7*	40
Example 904	1887	C21 H23 N5 O6	442	7.8*	34
Example 905	1888	C23 H27 N5 O4	438	5.6*	25
Example 906	1889	C21 H25 N5 O4 S	444	13.2*	58
Example 907	1890	C22 H27 N5 O4	426	11.3*	51
Example 908	1891	C22 H25 N5 O5	440	7.4*	33
Example 909	1892	C22 H27 N5 O4	426	5.5*	25
Example 910	1893	C23 H29 N5 O4	440	5.7*	25
Example 911	1894	C23 H29 N5 O4	440	9.4*	41
Example 912	1895	C24 H31 N5 O4	455	8.5*	37
					3 /

^{*}Yield of TFA salt.

Reference Example 7: Preparation of 2-Carbamoyl-1-(4-

chlorobenzyl)pyrrolidine.

A solution of dl-prolinamide hydrochloride (2.5 g, 21.8 mmol) in CH_3CN (35 mL) was treated with Et_3N (7.45 mL) and 4-chlorobenzyl chloride (3.88 g, 24.1 mmol). The reaction mixture was stirred at 70 °C for 4 h and then at 25 °C for 16 h. The resulting mixture was diluted with CH_2Cl_2 (20 mL) and was washed with water (3 x 30 mL). The organic phase was dried (MgSO₄) and concentrated. Chromatography (SiO₂, 1% $CH_3OH-CH_2Cl_2$) afforded 2-carbamoyl-1-(4-chlorobenzyl)pyrrolidine (5.21 g, 81%).

Reference Example 8: Preparation of 2-(Aminomethyl)-1-(4-chlorobenzyl)pyrrolidine.

2-carbamoyl-1-(4-chlorobenzyl)pyrrolidine was dissolved in 1M BH₃-THF (9.4 mL) and heated to 70 °C. After 16 h and 25 h, additional 0.5 equiv. of 1M BH₃-THF were added. After 40 h, 1 N aqueous HCl solution (14 mL) was added and the reaction was heated to reflux for 3 h, 3 N aqueous HCl solution (6 mL) was added and the reaction was heated for an additional 3 h. The reaction mixture was cooled to 25 °C, basicified with 4 N aqueous NaOH solution and extracted with CH_2Cl_2 (4 x 15 mL). Chromatography (SiO₂, 8:1:1 $^{\frac{1}{2}}$ PrOH-H₂O-NH₄OH) afforded 2-(aminomethyl)-1-(4-chlorobenzyl)pyrrolidine (1.21 g, 86%).

20

10

15

Optically active (S)-2-(aminomethyl)-1-(4-chlorobenzyl) pyrrolidine and (R)-2-(aminomethyl)-1-(4-chlorobenzyl) pyrrolidine were also prepared pursuant to the above method using the corresponding reactant respectively.

(S)-2-(aminomethyl)-1-(4-chlorobenzyl) pyrrolidine: ¹H NMR (CDCl₂, 400 MHz) δ 1.40-1.80 (m, 5 H), 1.80-1.95 (m, 1 H), 2.12-2.21 (m, 1 H), 2.48-2.65 (m, 1 H), 2.66-2.78 (m, 2 H), 2.85-2.95 (m, 1 H), 3.26 (d, J = 13.2 Hz, 1 H), 3.93 (d, J = 13.2 Hz, 1 H), 7.20-7.40 (m, 4 H).

(R)-2-(aminomethyl)-1-(4-chlorobenzyl) pyrrolidine showed the same ^{1}H NMR with that of (S)-isomer.

30

35

25

Example 913: Preparation of 2-((N-benzoylleucyl)aminomethyl)-1-(4-chlorobenzyl)pyrrolidine (Compound No. 344).

A solution of 2-(aminomethyl)-1-(4-chlorobenzyl)pyrrolidine (22.5 mg, 0.10 mmol) and dl-benzoylleucine (0.12 mmol) in CHCl₃ (1 mL) was treated with EDCI (23 mg), HOBt (16.2 mg) and Et₃N (15.2 μ L), and stirred at 25 °C for 16 h. The reaction mixture was diluted with CH₂Cl₂ (0.5 mL), washed with 2 N aqueous NaOH solution (2 x 0.75 mL), dried by filtration through a PTFE membrane and concentrated to afford 2-(N-benzoylleucyl)aminomethyl}-1-(4-

chlorobenzyl)pyrrolidine (compound No. 344) (74 mg, quant) : The purity was determined by RPLC/MS (85%); ESI/MS m/e 442 (M^++H , $C_{25}H_{32}ClN_3O_2$).

Examples 914-935.

The compounds of this invention were synthesized pursuant to methods of Example 913 using the corresponding reactant respectively. Chromatography, if needed, (HPLC- C_{18} , $CH_3CN/H_2O/TFA$) afforded the desired material as the TFA salt. The ESI/MS data and yields are summarized in Table 19 and compound No. 339 and 340 showed the following 1H NMR spectra respectively.

10

15

5

Table 19

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 914	330	C21 H24 C1 N3 O2	386	75*	quant
Example 915	331	C22 H26 Cl N3 O2	400	44*	70
Example 916	332	C24 H30 Cl N3 O5	476	57	quant
Example 917	333	C20 H23 Cl N4 O2	387	40	quant
Example 918	334	C22 H26 Cl N3 O2	400	68	quant
Example 919	335	C21 H23 C1 N4 O4	431	73	quant
Example 920	336	C22 H23 Cl F3 N3 O2	454	75	quant
Example 921	337	C22 H26 Cl N3 O2	400	68	quant
Example 922	338	C22 H26 Cl N3 O2	400	70	quant
Example 923	341	C22 H26 Cl N3 O2	400	80*	quant
Example 924	342	C22 H26 Cl N3 O2	400	68	quant
Example 925	343	C24 H30 Cl N3 O2	428	63	quant
Example 926	345	C23 H27 Cl N2 O2	399	68*	quant
Example 927	346	C23 H26 Cl F N2 O3	433	51	quant
Example 928	347	C24 H29 C1 N2 O2	413	47	quant
Example 929	348	C23 H27 Cl N2 O2	399	26	quant
Example 930	349	C21 H25 C1 N2 O3 S	421	42	quant
Example 931	350	C26 H33 Cl N2 O3	457	12.4	54
Example 932	351	C22 H26 C1 N3 O3	416	34	81
Example 933	352	C22 H25 C12 N3 O3	450	51	quant

^{*}Yield of TFA salt.

Example 934. Compound No. **339**: 82%; ¹H NMR (CDCl₃) δ 1.52-1.75(m, 4 H), 1.84-1.95 (m, 1 H), 2.10-2.20 (m, 1 H), 2.67-2.78 (m, 1 H), 2.80-2.90 (m, 1 H), 3.10-3.20 (m, 1 H), 3.25 (d, J = 13.1 Hz, 1 H), 3.50-3.60 (m, 1 H), 3.89 (d,

J = 13.1 Hz, 1 H), 4.28-4.20 (m, 2 H), 7.00-7.05 (m, 1 H), 7.12-7.29 (m, 4 H), 7.51 (t, J = 7.8 Hz, 1 H), 7.74 (d, J = 7.8 Hz, 1 H), 7.99 (d, J = 7.8 Hz, 1 H), 8.10-8.27 (m, 2 H).

Example 935. Compound No. **340**: 68%; ¹H NMR (CDCl₃) δ 1.55–1.73 (m, 4 H), 1.86–1.97 (m, 1 H), 2.12–2.21 (m, 1 H), 2.67–2.76 (m, 1 H), 2.86–2.93 (m, 1 H), 3.14–3.21 (m, 1 H), 3.27 (d, J = 13.1 Hz, 1 H), 3.52–3.59 (m, 1 H), 3.89 (d, J = 13.1 Hz, 1 H), 4.09–4.21 (m, 2 H), 7.00–7.07 (m, 1 H), 7.12–7.30 (m, 4 H), 7.50 (t, J = 7.8 Hz, 1 H), 7.73 (d, J = 7.8 Hz, 1 H), 8.01 (d, J = 7.8 Hz, 1 H), 8.10–8.25 (m, 2 H).

10

15

20

5

Reference Example 9: Preparation of 3-(Aminomethyl)-1-(4-chlorobenzyl)pyrrolidine.

To a mixture of 4-carboxy-1-(4-chlorobenzyl)pyrrolidin-2-one (5.05 g, 20 mmol), EDCI (2.85 g, 22 mmol), HOBt (2.97 g, 22 mmol) and dichloromethane (100 mL) was added 0.5 M ammonia in dioxane (60 mL, 30 mmol). The reaction mixture was stirred at room temperature for 15 h and washed with 2N HCl (3 times) and 2 N NaOH aqueous solution (100 mL x 4). The organic layer was dried over anhydrous magnesium sulfate, filtered, and concentrated to afford 3-carbamoyl-1-(4-chlorobenzyl)pyrrolidin-2-one (1.49 g) as a colorless solid.

To a solution of 3-carbamoyl-1-(4-chlorobenzyl)pyrrolidin-2-one (1.45 g) in THF (15 mL) was added 1.0 N BH₃ in THF (25 mL). The reaction mixture was stirred at 65 °C for 15 h. After cooling to room temperature, the solvent was removed under reduced pressure. Water (30 mL) and conc. HCl (10 mL) were added and the mixture was stirred at 100 °C for 2 h and room temperature for 1 h. 2 N NaOH aqueous solution (100 mL) was added and the mixture was extracted with AcOEt (50 mL x 3). The combined organic layers were dried over K₂CO₃, filtered and concentrated. Column chromatography (SiO₂, 15% CH₃OH-5% Et₃N in CH₂Cl₂) afforded 3-(aminomethyl)-1-(4-chlorobenzyl)pyrrolidine (860 mg, 19%) as a colorless oil.

30

25

Reference Example 10: Preparation of 1-(4-Chlorobenzyl)-3-{(glycylamino)methyl}pyrrolidine.

A mixture of 3-(aminomethyl)-1-(4-chlorobenzyl)pyrrolidine (860 mg, 3.8 mmol), Et₃N (5.7 mmol), N-tert-butoxycarbonylglycine (704 mg), EDCI (594 mg), HOBt (673 mg), and dichloromethane (20 mL) was stirred at room temperature for 15 h. Dichloromethane (50 mL) was added and the solution was washed with 2 N NaOH solution (50 mL x 2), dried over anhydrous sodium sulfate, filtered, and concentrated to afford 3-[$\{N$ -(tert-butoxycarbonyl)glycyl $\}$ aminomethyl $\}$ -1-(4-

chlorobenzyl)pyrrolidine (1.31 g, 90%).

To a solution of $3-[\{N-(tert-butoxycarbonyl)glycyl\}aminomethyl]-1-(4-chlorobenzyl)pyrrolidine (804 mg, 2.11 mmol) in methanol (10 mL) was added 4 N HCl in dioxane (5 mL). The solution was stirred at room temperature for 3.5 h. The reaction mixture was concentrated and 1 N NaOH solution (20 mL) was added. The mixture was extracted with dichloromethane (20 mL x 3), and the combined extracts were dried over sodium sulfate and concentrated to give desired <math>1-(4-chlorobenzyl)-3-\{(glycylamino)methyl\}pyrrolidine (599 mg, 100%): The purity was determined by RPLC/MS (100%); ESI/MS m/e 282.2 (M*+H, <math>C_{14}H_{20}ClN_3O$).

10

15

20

Example 936: Preparation of 3-[{N-(3-Trifluoromethylbenzoyl)glycyl}aminomethyl]-1-(4-chlorobenzyl)pyrrolidine (Compound No. 1463).

A solution of 3-(trifluoromethyl)benzoyl chloride (0.058 mmol) in dichloromethane (0.2 mL) was added to a mixture of 1-(4-chlorobenzyl)-3-{(glycylamino)methyl)pyrrolidine (0.050 mmol) and piperidinomethylpolystyrene (60 mg) in chloroform (0.2 mL) and dichloromethane (1 mL). After the reaction mixture was stirred at room temperature for 2.5 h, methanol (0.30 mL) was added and the mixture was stirred at room temperature for 1 h. The reaction mixture was loaded onto Varian SCX column, and washed with CH₃OH (15 mL). Product was eluted off using 2 N NH₃ in CH₃OH (5 mL) and concentrated to afford (3-[{N-(3-trifluoromethylbenzoyl)glycyl}aminomethyl]-1-(4-chlorobenzyl)pyrrolidine (Compound No. 1463) (22.4 mg, 99%): The purity was determined by RPLC/MS (97%); ESI/MS m/e 454.2 (M'+H, $C_{22}H_{23}$ ClF₃N₃O₂).

25

Examples 937-944.

The compounds of this invention were synthesized pursuant to methods of Example 936 using the corresponding reactant respectively. The ESI/MS data and yields are summarized in Table 20.

30

Table 20

,	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 937	1464	C22 H23 C1 F3 N3 O3	470.0	21.0	89
Example 938	1465	C23 H22 C1 F6 N3 O2	522.0	24.5	94
Example 939	1466	C21 H23 Br Cl N3 O2	466.0	20.8	90
Example 940	1467	C21 H23 C12 N3 O2	420.0	19.6	93

Example 941	1468	C21 H23 Cl N4 O4	431.2	19.5	91
Example 942	1469	C22 H22 Cl F4 N3 O2	472:0	21.8	92
Example 943	1470	C21 H22 C13 N3 O2	456.0	22.1	97
Example 944	1471	C21 H22 C1 F2 N3 O2	422.0	20.9	99

Example 945: Preparation of 3-[(N-(2-Amino-4,5-difluorobenzoyl)glycyl)aminomethyl]-1-(4-chlorobenzyl)pyrrolidine (Compound No. 1506).

A solution of 1-(4-chlorobenzyl)-3-{(glycylamino)methyl}pyrrolidine (0.050 mmol) in CHCl₃ (1.35 mL) and tert-butanol (0.05 mL) was treated with 2-amino-4,5-difluorobenzoic acid (0.060 mmol), diisopropylcarbodiimide (0.060 mmol), and HOBt (0.060 mmol). The reaction mixture was stirred at room temperature for 19 h. The mixture was loaded onto VarianTM SCX column, and washed with CH₃OH/CHCl₃ 1:1 (10 mL) and CH₃OH (10 mL). Product was eluted off using 2 N NH₃ in CH₃OH (5 mL) and concentrated to afford $3-[\{N-(2-amino-4,5-difluorobenzoyl)glycyl\}aminomethyl]-1-(4-chlorobenzyl)pyrrolidine (Compound No.$ **1506**) (22.0 mg, quant): The purity was determined by RPLC/MS (92%); ESI/MS m/e 437 (C₂₁H₂₃ClF₂N₄O₂).

15

Examples 946-952.

The compounds of this invention were synthesized pursuant to methods of Example 945 using the corresponding reactant respectively. The ESI/MS data and yields are summarized in Table 21.

20

5

10

Table 21

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 946	1506	C21 24 Br Cl N4 O2	481	20.6	86
Example 947	1507	C21 H24 F Cl N4 O2	419	21.7	quant
Example 948	1509	C27 H28 C1 N3 O2	462	26.5	quant
Example 949	1510	C21 H24 Cl I N4 O2	527	22.0	84
Example 950	1511	C19 H21 Br Cl N3 O2 S	472	23.7	quant
Example 951	1512	C21 H24 C12 N4 O2	435	22.3	quant
Example 952	1513	C27 H28 Cl N3 O4 S	526	24.6	94

Reference Example 11: Preparation of 1-(4-Chlorobenzyl) nipecotic acid. 4-Chlorobenzyl chloride (6.42 g, 39.9 mmol) and ¹Pr₂NEt (7.74 g, 40.0 mmol)

were added to a solution of ethyl nipecotate (6.29 g, 40.0 mmol) in CH₃CN (15 mL). The reaction mixture was stirred at 70 °C for 1.5 h. The solvent was removed under reduced pressure. Saturated aqueous NaHCO₃ (50 mL) was added to the residue and the mixture was extracted with EtOAc (100 mL). The organic phase was washed with saturated aqueous NaHCO₃ and brine, and dried over Na₂SO₄. The solvent was removed under reduced pressure to afford ethyl 1-(4-chlorobenzyl)nipecotate as a red yellow oil (11.025 g, 97.8%) used without further purification. The purity was determined by RPLC/MS (97%); ESI/MS m/e 382.2 (M*+H, C₁₅H_{C1}ClNO₂).

A solution of LiOH (1.66 g) in H₂O (25 mL) was added to the solution of ethyl 1-(4-chlorobenzyl)nipecotate in THF (60 mL) and CH₃OH (20 mL). The reaction mixture was stirred at room temperature for 15 h. The solvent was removed under reduced pressure to afford an amorphous solid which was purified by column chromatography (SiO₂, 50% CH₃OH-CH₂Cl₂) to yield 1-(4-chlorobenzyl)nipecotic acid (9.75 g, 98.2%) as a pale yellow amorphous solid. The purity was determined by RPLC/MS (>95%); ESI/MS m/e 254.0 (M*+H, C₁₃H₁₇ClNO₂).

10

15

Reference Example 12: Preparation of 1-(4-Chlorobenzyl)-3-{(tert-butoxycarbonyl)amino}piperidine.

A solution of 1-(4-chlorobenzyl)nipecotic acid (7.06 g, 27.8 mmol) in ¹BuOH (500 mL) was treated with Et₃N (3.38 g) and activated 3 A molecular sieves (30 g). Diphenylphosphoryl azide (8.58 g) was added, and the reaction mixture was warmed at reflux for 18 h. The mixture was cooled and the solvent was reflux for 18 h. The mixture was cooled and the solvent was remove under vacuum. The residue was dissolved in EtOAc (500 mL), and the organic phase was washed with saturated aqueous NaHCO₃ (2 x 100 mL) and brine (50 mL), dried (Na₂SO₄), and concentrated in vacuo. Chromatography (SiO₂, 25% EtOAc-hexane) afforded 1-(4-chlorobenzyl)-3-{(tert-butoxycarbonyl)amino}piperidine (2.95 g, 32.6%) as a white crystalline solid: ¹H NMR (CDCl₃, 300 MHz) δ1.4-1.75 (br, 4 H), 2.2-2.7 (br, 4 H), 3.5 (br, 2 H), 3.8 (br, 1 H), 7.3 (br, 4 H); The purity was determined by RPLC/MS (>99%); ESI/MS m/e 269.2 (M*+H-56, C₁₇H₂₅ClN₂O₂).

Reference Example 13: Preparation of 3-Amino-1-(4-chlorobenzyl)piperidine.

A solution of 1-(4-chlorobenzyl)-3-{(tert-35 butoxycarbonyl) amino}piperidine (2.55 g, 7.85 mmol) in CH₂OH (25 mL) was treated with 1 N HCl-Et₂O (50 mL). The reaction mixture was stirred at 25 °C for 15 h. The solvent was removed under reduced pressure to afford 3-amino-1-(4-chlorobenzyl)piperidine dihydrochloride as an amorphous solid (2.49 g, quant).

The purity was determined by RPLC/MS (>95%),; ESI/MS m/e 225.2 (M^{+} +H, $C_{12}H_{18}ClN_{2}$).

Example 953: Preparation of $1-(4-Chlorobenzy1)-3-\{N-(3-methylbenzoy1)glycyl\}$ amino]piperidine (Compound No. 355).

 $N-(3-{\rm Methylbenzoyl})$ glycine (10.6 mg, 0.055 mmol), EDCI (10.5 mg) and 1-hydroxybenzotriazole hydrate (7.4 mg) were added to a solution of 1-(4-chlorobenzyl)-3-aminopiperidine dihydrochloride (14.9 mg, 0.050 mmol) and Et₃N (15.2 mg) in CHCl₃ (2.5 mL). The reaction mixture was stirred at 25 °C for 16 h, washed with 2 N aqueous NaOH (2 mL x 2) and brine (1 mL). After filtration through PTFE membrane filter, the solvent was removed under reduced pressure to afford 1-(4-chlorobenzyl)-3-[{N-(3-methylbenzoyl)glycyl}amino]piperidine (compound No. 355) as a pale yellow oil (17.4 mg, 87%): The purity was determined by RPLC/MS (97%); ESI/MS m/e 400.0 (M⁺+H, C₂₂H₂₆ClN₃O₂).

Examples 954-982.

The compounds of this invention were synthesized pursuant to methods of Example 953 using the corresponding reactant respectively. The ESI/MS data and yields are summarized in Table 22 and compound No. 358 showed the following ¹H NMR spectra.

20

5

10

15

Table 22

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 954	354	C21 H24 Cl N3 O2	386	16.1	83
Example 955	356	C20 H23 C1 N4 O2	387	19.4	100
Example 956	357	C22 H26 Cl N3 O2	400	16.8	84
Example 957	359	C22 H26 Cl N3 O2	400	8.9	17
Example 958	360	C22 H25 Cl N4 O4	445	25.6	quant
Example 959	361	C23 H27 Cl N2 O2	399	15.5	29
Example 960	362	C24 H29 Cl N2 O3	429	12.4	58
Example 961	363	C21 H25 C1 N2 O2 S	405	22.2	quant
Example 962	364	C24 H29 Cl N2 O4	445	20.7	93
Example 963	365	C24 H29 Cl N2 O2	413	15.6	75
Example 964	366	C23 H26 Cl F N2 O3	433	21.6	100
Example 965	367	C23 H27 Cl N2 O2	399	11.9	60
Example 966	368	C22 H25 C1 N2 O2	385	16.0	83
Example 967	369	C22 H24 C12 N2 O2	419	13.9	60
Example 968	370	C26 H33 C1 N2 O3	457	15.9	54

Example 969	371	C25 H31 C1 N2 O3	443	19.6	84
Example 970	372	C21 H25 C1 N2 O3 S	421	23.0	
Example 971	373	C23 H28 C1 N3 O2			quant
		<u> </u>	414	19.1	92
Example 972	374	C24 H30 C1 N3 O3	444	18.6	84
Example 973	375	C23 H27 C12 N3 O2	448	18.0	80
Example 974	376	C24 H30 C1 N3 O3	444	19.6	88
Example 975	377	C25 H31 C12 N3 O2	476	20.7	87
Example 976	378	C27 H33 C1 F N3 O2	486	23.9	98
Example 977	379	C25 H30 Cl N3 O3	456	33.3	guant
Example 978	380	C24 H30 C1 N3 O2	428	9.8	46
Example 979	381	C21 H26 C1 N3 O3 S	436	10.3	47
Example 980	382	C22 H26 C1 N3 O3	416	24.4	
Example 981	383	C22 H25 C12 N3 O3			quant
		C22 1125 C12 N3 O3	450	27.5	quant

Example 982. Compound No. **358**: 88%; 1 H NMR (CDCl₃) δ 1.53-1.75 (m, 4 H), 2.12-2.20 (m, 1 H), 2.37-2.50 (m, 2 H), 2.53-2.61 (m, 1 H), 3.38-3.50 (m, 2 H), 2.53-2.61 (m, 1 H), 3.38-3.50 (m, 2 H), 4.06-4.20 (m, 3 H), 7.10-7.13 (m, 1 H), 7.18-7.30 (m, 4 H), 7.59 (t, J = 7.8 Hz, 1 H), 7.79 (d, J = 7.8 Hz, 1 H), 8.01 (d, J = 7.8 Hz, 1 H), 8.11 (s, 1 H).

Reference Example 14: Preparation of 1-benzyl-4- $[{N-(tert-butoxycarbonyl)glycyl}amino]$ piperidine.

A solution of 4-amino-1-benzylpiperidine (3.80 g, 20 mmol) in CH₂Cl₂ (40 mL) was treated with N-(tert-butoxycarbonyl)glycine (3.48 g, 20 mmol), EDCI (4.02 g, 21 mmol) and HOBt (2.83 g, 21 mmol). After the reaction mixture was stirred at room temperature for 12 h, 2 N NaOH solution (20 mL) was added. The organic layer was separated, and the aqueous layer was extracted with dichloromethane (20 mL x 2). The combined organic layers were washed with water (20 mL) and brine (20 mL), dried over anhydrous sodium sulfate, filtered, and concentrated. Column chromatography (SiO₂, ethyl acetate/MeOH/Et₁N = 85/12/3) afforded 1-benzyl-4-{N-(tert-butoxycarbonyl)glycyl}aminopiperidine (6.59 g, 95%).

20 Reference Example 15: Preparation of 1-(4-Chlorobenzyl)-4-(glycylamino)piperidine.

25

To a solution of 1-benzyl-4-{N-(tert-butoxycarbonyl)glycyl}aminopiperidine (6.59 g) in methanol (80 mL) was added 4 N HCl in dioxane (19 mL). The solution was stirred at room temperature for 2 h. The reaction mixture was concentrated and 2 N aqueous NaOH solution (20

mL) was added. The mixture was extracted with dichloromethane (40 mL x 3), and the combined extracts were dried over anhydrous sodium sulfate and concentrated. Column chromatography (SiO_2 , AcOEt/MeOH/Et₃N = 85/12/3) gave 1-(4-chlorobenzyl)-4-(glycylamino)piperidine (3.91 g, 83%): ¹H NMR (CDCl₃, 400 MHz) d 1.47-1.59 (m, 2 H), 1.59 (br, 2 H), 1.76-1.96 (m, 2 H), 2.10-2.19 (m, 2 H), 2.75-2.87 (m, 2 H), 3.29 (s, 2 H), 3.50 (s, 2 H), 3.65-3.89 (m, 1 H), 7.15-7.23 (m, 1 H), 7.23-7.33 (m, 5 H).

Other 4-acylamino-1-benzylpiperidines were also synthesized pursuant to methods of Reference Example 13 and 14 using the corresponding reactant respectively.

4- $(\beta$ -alanylamino)-1-benzylpiperidine: 2.46 g, 51% (2 steps). 1-benzyl-4-((S)-leucylamino)piperidine: 1.78 g, 74% (2 steps).

1-benzyl-4-((R)-leucylamino)piperidine: 1.48 g, 61% (2 steps).

15

20

25

Example 983: Preparation of 4-(N-benzoylglycyl)amino-1-benzylpiperidine (Compound No. 386).

A solution of benzoyl chloride (0.060 mmol) in chloroform (0.4 mL) was added to a solution of 1-(4-chlorobenzyl)-4-(glycylamino)piperidine (0.050 mmol) and triethylamine (0.070 mmol) in chloroform (1.0 mL). After the reaction mixture was agitated at room temperature for 2.5 h, (aminomethyl)polystyrene resin (1.04 mmol/g, 50 mg, 50 mmol) was added and the mixture was agitated at room temperature for 12 h. The reaction mixture was filtered and the resin was washed with dichloromethane (0.5 mL). The filtrate and washing were combined, dichloromethane (4 mL) was added, and the solution was washed with 2 N aqueous NaOH solution (0.5 mL) to give 4-(N-benzoylglycyl)amino-1-benzylpiperidine (compound No. 386) (11.3 mg, 64%): The purity was determined by RPLC/MS (94%); ESI/MS m/e 352.0 (M*+H, C21H25N3O2).

30 Examples 984-1034.

The compounds of this invention were synthesized pursuant to methods of Example 983 using the corresponding reactant respectively. The ESI/MS data and yields are summarized in Table 23.

35

Table 23

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 984	384	C22 H26 Cl N3 O2	400	60.0	quant
Example 985	385	C21 H23 C1 N4 O4	431	58.7	91
Example 986	387	C25 H27 N3 O2	402.5	15.5	77
Example 987	388	C21 H24 N4 O4	397.0	16.2	82
Example 988	389	C23 H27 N3 O4	410.0	16.2	79
Example 989	390	C22 H24 F3 N3 O2	420.0	17.4	83
Example 990	391	C22 H23 F4 N3 O2	438.0	18.4	84
Example 991	392	C22 H24 F3 N3 O3	436.0	17.1	79
Example 992	393	C21 H24 Br N3 O2	430.0	18.0	84
Example 993	394	C21 H24 C1 N3 O2	386.0	16.4	85
Example 994	395	C21 H24 Br N3 O2	430.0	17.2	80
Example 995	396	C21 H23 F2 N3 O2	388.0	15.1	78
Example 996	397	C21 H23 C12 N3 O2	420.0	11.7	56
Example 997	398	C22 H27 N3 O2	366.0	13.1	72
Example 998	399	C26 H29 N3 O2	416.0	15.8	76
Example 999	400	C22 H26 N4 O4	411.0	17.4	85
Example 1000	401	C24 H29 N3 O4	424.0	16.9	80
Example 1001	402	C23 H26 F3 N3 O2	434.0	17.7	82
Example 1002	403	C23 H25 F4 N3 O2	452.0	18.6	82
Example 1003	404	C23 H26 F3 N3 O3	450.0	17.8	79
Example 1004	405	C22 H26 Br N3 O2	444.0	17.9	81
Example 1005	406	C22 H26 C1 N3 O2	400.0	15.5	78
Example 1006		C22 H26 Br N3 O2	444.0	17.8	80
Example 1007	408	C22 H25 F2 N3 O2	402.0	15.6	78
Example 1008	409	C22 H25 C12 N3 O2	434.0	17.6	81
Example 1009		C25 H33 N3 O2	408.0	16.2	79
Example 1010		C29 H35 N3 O2	458.5	18.8	82
Example 1011	412	C25 H32 N4 O4	453.0	19.4	86
Example 1012	413	C27 H35 N3 O4	466.0	19.8	85
Example 1013	414	C26 H32 F3 N3 O2	476.0	20.2	85
Example 1014	1	C26 H31 F4 N3 O2	494.0	20.5	83
Example 1015		C26 H32 F3 N3 O3	492.0	19.5	79
Example 1016		C25 H32 Br N3 O2	486.0	19.1	79
Example 1017	i 1	C25 H32 Cl N3 O2	442.0	17.7	80
Example 1018		C25 H32 Br N3 O2	486.0	20.3	83
Example 1019		C25 H31 F2 N3 O2	444.0	18.6	84
Example 1020		C25 H31 C12 N3 O2	476.0	19.4	81
Example 1021	422	C25 H33 N3 O2	408.0	14.4	71

_					70
Example 1022	423	C29 H35 N3 O2	458.0	16.4	72
Example 1023	424	C25 H32 N4 O4	453.0	18.1	80
Example 1024	425	C27 H35 N3 O4	466.0	16.4	70
Example 1025	426	C26 H32 F3 N3 O2	476.0	17.3	73
Example 1026	427	C26 H31 F4 N3 O2	494.0	18.8	76
Example 1027	428	C26 H32 F3 N3 O3	492.0	18.4	75
Example 1028	429	C25 H32 Br N3 O2	486.0	17.9	74
Example 1029	430	C25 H32 C1 N3 O2	442.0	15.7	71
Example 1030	431	C25 H32 Br N3 O2	486.0	17.7	73
Example 1031	432	C25 H31 F2 N3 O2	444.0	16.6	75
Example 1032	433	C25 H31 C12 N3 O2	476.0	18.7	78
Example 1033	1016	C22 H23 C1 F3 N3 O2	454	32.5*	53
Example 1034		C21 H24 C1 N3 O2	386	55.2*	quant
Example 1031 Example 1032 Example 1033	432 433 1016	C25 H31 F2 N3 O2 C25 H31 C12 N3 O2 C22 H23 C1 F3 N3 O2	444.0 476.0 454	16.6 18.7 32.5*	78 53

^{*}Yield of TFA salt.

5

10

15

20

25

Reference Example 16: Preparation of 3-Carbamoyl-1-(4-chlorobenzyl)piperidine.

A solution of nipecotamide (6.40 g, 50 mmol) in CH₃CN (150 mL) and ethanol (20 mL) was treated with Et₃N (7.0 mL, 50 mmol) and 4-chlorobenzyl chloride (8.05 g, 50 mmol). The reaction mixture was stirred at 50 °C for 16 h. After cooling to room temperature, saturated aqueous NaHCO₃ (50 mL) and water (150 mL) was added to the reaction mixture. The mixture was extracted with ethyl acetate (150 mL x 3) and the combined organic layers were washed with brine, dried (Na₂SO₄) and concentrated to give a pale red solid. The crude solid was washed with ether (100 mL) to afford 3-carbamoyl-1-(4-chlorobenzyl)piperidine (6.98 g, 54%).

Reference Example 17: Preparation of 3-(Aminomethyl)-1-(4-chlorobenzyl)piperidine.

3-Carbamoyl-1-(4-chlorobenzyl)piperidine (3.80 g, 15 mmol) was dissolved in THF (30 mL) and 1 M BH₃-THF (9.4 mL) was added to the solution. The reaction mixture was stirred at 70 °C for 15 h. After the mixture was cooled to 0 °C, 2 N aqueous HCl solution (50 mL) was added and the mixture was stirred at room temperature for additional 3 h, basicified with 4 N aqueous NaOH solution, and extracted with ethyl acetate (100 mL x 3). The combined extracts were washed with brine, dried over anhydrous Na₂SO₄, filtered and concentrated. Column chromatography (SiO₂, ethyl acetate/EtOH/Et₃N = 80/15/5) afforded 3-(aminomethyl)-1-(4-chlorobenzyl)piperidine (2.05 g, 55%): H NMR (CDCl₃, 400 MHz) δ 1.00-1.09 (m, 1 H), 1.50-1.87 (m, 7 H), 1.97-2.06 (m, 1 H), 2.65-2.77

(m, 2 H), 3.16-3.26 (m, 2 H), 3.32 (s, 2 H), 3.40. (d, J = 13.3 Hz, 1 H), 3.49 (d, J = 13.3 Hz, 1 H), 7.22-7.33 (m, 5 H).

Example 1035: Preparation of 3-{(N-Benzoylglycyl)amino}methyl-1-(4-chlorobenzyl)piperidine (Compound No. 434).

A solution of benzoyl chloride (0.060 mmol) in chloroform (0.4 mL) was added to a solution of 3-(aminomethyl)-1-(4-chlorobenzyl)piperidine (0.050 mmol) and triethylamine (0.070 mmol) in chloroform (1.0 mL). After the reaction mixture was agitated at room temperature for 2.5 h, (aminomethyl)polystyrene resin (1.04 mmol/g, 50 mg, 50 mmol) was added and the mixture was agitated at room temperature for 12 h. The reaction mixture was filtered and the resin was washed with dichloromethane (0.5 mL). The filtrate and washing were combined, dichloromethane (4 mL) was added, and the solution was washed with 2 N aqueous NaOH solution (0.5 mL) to give $3-((N-\text{benzoylglycyl}) \text{amino}) \text{methyl-1-(4-chlorobenzyl)piperidine (compound No. 434) (14.7 mg, 74%): The purity was determined by RPLC/MS (91%); ESI/MS m/e 400 (M*+H, C22H26ClN3O2).$

Examples 1036-1058.

5

10

15

20

The compounds of this invention were synthesized pursuant to methods of Example 1035 using the corresponding reactant respectively. The ESI/MS data and yields are summarized in Table 24.

Table 24

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 1036	435	C26 H28 C1 N3 O2	450	16.0	71
Example 1037	436	C22 H25 Cl N4 O4	445	18.9	85
Example 1038	437	C24 H28 Cl N3 O4	458	18.2	79
Example 1039	438	C23 H25 C1 F3 N3 O2	468	19.0	81
Example 1040	439	C23 H24 C1 F4 N3 O2	486	20.2	83
Example 1041	440	C23 H25 Cl F3 N3 O3	484	18.9	78
Example 1042	441	C22 H25 Br Cl N3 O2	478	19.2	80
Example 1043	442	C22 H25 C12 N3 O2	434	17.3	80
Example 1044	443	C22 H25 Br Cl N3 O2	478	18.8	79
Example 1045	444	C22 H24 C1 F2 N3 O2	436	16.7	77
Example 1046	445	C22 H24 C13 N3 O2	468	17.9	76
Example 1047	446	C23 H28 Cl N3 O2	414	14.6	71
Example 1048	447	C27 H30 Cl N3 O2	464	17.0	73

Example 1049	448	C23 H27 Cl N4 O4	459	19.5	85
Example 1050	449	C25 H30 Cl N3 O4	472	17.1	72
Example 1051	450	C24 H27 Cl F3 N3 O2	482	19.4	81
Example 1052	451	C24 H26 Cl F4 N3 O2	500	18.2	73
Example 1053	452	C24 H27 Cl F3 N3 O3	498	18.8	76
Example 1054	453	C23 H27 Br Cl N3 O2	492	19.4	79
Example 1055	454	C23 H27 C12 N3 O2	448	16.5	74
Example 1056	455	C23 H27 Br Cl N3 O2	492	19.3	78
Example 1057	456	C23 H26 Cl F2 N3 O2	450	17.1	76
Example 1058	457	C23 H26 C13 N3 O2	482	16.9	70

Reference Example 18: Preparation of 4-(Aminomethyl)-1-(4-chlorobenzyl)piperidine.

A solution of 4-(aminomethyl)piperidine (7.00 g, 61.3 mmol) in CH₃CN (100 mL) was treated sequentially with K_2CO_3 (3.02 g) and 4-chlorobenzyl chloride (3.52 g, 21.8 mmol). The reaction mixture was heated to 60 °C for 16 h, cooled to 25 °C and concentrated. The residue was partitioned between CH₂Cl₂ (75 mL) and water (50 mL), and was washed with water (2 x 50 mL) and brine (1 x 50 mL). The organic phase was dried (MgSO₄) and concentrated. Chromatography (SiO₂, 4% $H_2O^{-1}PrOH$) afforded 4-(aminomethyl)-1-(4-chlorobenzyl)piperidine (3.58 g, 69%).

Example 1059: Preparation of 4-{(N-Benzoylglycyl)amino)methyl-1-(4-chlorobenzyl)piperidine (Compound No. 458).

A solution of 4-(aminomethyl)-1-(4-chlorobenzyl)piperidine (50 mg, 0.21 mmol) in CH_2Cl_2 (1 mL) was treated with hippuric acid (38 mg, 0.21 mmol), EDCI (48 mg, 0.24 mmol), HOBt (31 mg, 0.23 mmol) and Et₃N (38 µL, 0.27 mmol). The reaction mixture was stirred for 16 h at 25 °C, diluted with 1 mL of CH_2Cl_2 , washed with 2 N aqueous NaOH solution (2 x 0.75 mL), dried (MgSO₄) and concentrated. Chromatography (SiO₂, 6 to 8% CH_3OH/CH_2Cl_2 gradient elution) afforded 4-((N-benzoylglycyl)amino)methyl-1-(4-chlorobenzyl)piperidine (compound No. 458) which was treated with TFA to give a TFA salt(105 mg, 97%): The purity was determined by RPLC/MS (85%); ESI/MS m/e 400 (M⁴+H, $C_{22}H_{26}ClN_3O_2$).

Examples 1060-1086.

5

10

15

20

25

The compounds of this invention were synthesized pursuant to methods of Example 1059 using the corresponding reactant respectively. The ESI/MS data and yields are summarized in Table 25.

Table 25

	Compound	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
	No.			licia (mg)	ileid (%)
Example 1060	459	C23 H28 C1 N3 O2	414	86*	78
Example 1061	460	C23 H28 C1 N3 O2	414	55	quant
Example 1062	461	C23 H25 C1 F3 N3 O2	468	65	quant
Example 1063	462	C23 H28 C1 N3 O2	414	61	quant
Example 1064	463	C23 H28 C1 N3 O2	414	54	quant
Example 1065	464	C25 H32 Cl N3 O5	490	56	quant
Example 1066	465	C21 H 25 Cl N4 O2	401	38	96
Example 1067	466	C22 H25 C1 N4 O4	445	15	34
Example 1068	557	C23 H28 Cl N3 O2	414	58*	66
Example 1069	558	C23 H 28 Cl N3 O2	414	55	quant
Example 1070	618	C25 H32 Cl N3 O2	442	58	quant
Example 1071	686	C26 H34 C1 N3 O2	456	62	quant
Example 1072	749	C34 H37 Cl N4 O2	569	7.2*	18
Example 1073	750	C24 H30 Cl N3 O3	444	4.7*	14
Example 1074	840	C24 H29 C1 N2 O2	413	52*	58
Example 1075	841	C23 H27 C1 N2 O2	399	52	quant
Example 1076	842	C23 H26 C12 N2 O2	433	55	quant
Example 1077	843	C25 H31 C1 N2 O2	427	58	quant
Example 1078	844	C24 H29 C1 N2 O2	413	56	quant
Example 1079	845	C24 H29 Cl N2 O4 S	477	62	quant
Example 1080	846	C29 H31 C1 N2 O3	491	43	88
Example 1081	847	C24 H28 C1 F N2 O3	447	54	quant
Example 1082	848	C25 H31 C1 N2 O2	427	47	quant
Example 1083	849	25 H31 Cl N2 O4	459	55	quant
Example 1084	850 (22 H27 C1 N2 O3 S	435	46	quant
Example 1085	873	20 H28 Cl N3 O2	378	44.8	quant
Example 1086	874	23 H27 C12 N3 O3	464	51	quant

^{*}Yield of TFA salt.

4-(Aminomethyl)-1-(4-chlorobenzyl)piperidine (120 mg) was alkylated with 3,3-diphenylpropyl methanesulfonate (1.0 equiv.) in the presence of NaI (2.6 equiv.) in CH₂CN at 70 °C for 16 h. General workup and column chromatography 10 (SiO₂) afforded l-(4-chlorobenzyl)-4-{N-(3,3-

Reference Example 19: Preparation of 1-(4-Chlorobenzyl)-4-{N-(3,3-diphenylpropyl)aminomethyl}piperidine.

diphenylpropyl) aminomethyl) piperidine (118 mg, 54%): The purity was determined by RPLC (98%).

Reference Example 20: Preparation of $1-(4-Chlorobenzy1)-4-\{N-(2,2-diphenylethy1)\}$ aminomethyl)piperidine.

Reductive amination of 4-(aminomethyl)-1-(4-chlorobenzyl)piperidine (120 mg) with 2,2-diphenylacetaldehyde (0.66 equiv.)and polymer-supported borohydride in methanol at 25 °C for 16 h, followed by general workup and column chromatography (SiO₂) afforded 1-(4-chlorobenzyl)-4- $\{N-(2,2-diphenylethyl)\}$ aminomethyl)piperidine (70 mg, 49%): The purity was determined by RPLC (98%).

Example 1087: Preparation of 4-{N-(N-Benzoylglycyl)-N-(2,2-diphenylethyl)aminomethyl}-1-(4-chlorobenzyl)piperidine (Compound No. 524).

A solution of 1-(4-chlorobenzyl)-4-(N-(2,2-diphenylethyl)) aminomethyl)piperidine (0.084 mmol) in CH_2Cl_2 was treated with hippuric acid (1.1 equiv.), HBTU (1.1 equiv.), HOBt (1.1 equiv.). The reaction mixture was stirred at 40 °C for 24 h. General workup and preparative TLC (SiO₂) afforded 4-(N-benzoylglycyl)-N-(2,2-diphenylethyl) aminomethyl)-1-(4-chlorobenzyl) piperidine (Compound No. 524) (8.5 mg, 17%): The purity was determined by RPLC/MS (98%); ESI/MS m/e 580 (M*+H, $C_{36}H_{38}ClN_3O_2$).

Examples 1088-1090.

5

10

15

20

25

30

The compounds of this invention were synthesized pursuant to methods of "Example 1087 using the corresponding reactant respectively. The ESI/MS data and yields are summarized in Table 26.

ξ.

Table 26

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 1088	521	C38 H39 C1 F3 N3 O2	662	5.5	10
Example 1089	522	C37 H37 Cl F3 N3 O2	648	8.6	16
Example 1090	523	C37 H40 C1 N3 O2	594	4.8	10

Reference Example 21: Preparation of 1-(4-Chlorobenzyl)-4-{ (valylamino)methyl)piperidine.

A solution of 4-(aminomethyl)-1-(4-chlorobenzyl)piperidine (1.0 g, 4.2

mmol) in CH_2Cl_2 (21 mL) was treated with Et₃N (0.76 mL, 5.44 mmol), dl-N-(tert-butoxycarbonyl)valine (1.09 g, 5.03 mmol), EDCI (883 mg, 4.61 mmol) and HOBt (623 mg, 4.61 mmol). The reaction mixture was stirred at 25 °C for 16 h. The resulting solution was diluted with CH_2Cl_2 (20 mL), and washed with 2 N NaOH solution (2 x 20 mL), brine (1 x 20 mL) and dried (MgSO₄). Concentration and chromatography (SiO₂, 3% CH_3OH/CH_2Cl_2) afforded 1-(4-chlorobenzyl)-4-[{(N-Boc-valyl)amino}methyl]piperidine (1.1 g, 60%) as a pale amber oil: ESI/MS m/e 438 (M*+H).

1-(4-Chlorobenzyl)-4-[{(N-Boc-valyl)amino}methyl]piperidine (1.1 g, 2.51 mmol) was dissolved in 3 M HCl-CH₃OH solution (25 mL) and stirred at 25 °C for 1 h. The reaction mixture was concentrated and the resulting salt was dissolved in 3:1 'BuOH-H₂O (25 mL). Anion (OH') exchange resin was added until the solution was slightly basic. Filtration and concentration afforded 1-(4-chlorobenzyl)-4-{(valylamino)methyl}piperidine (819 mg, 97%) which required no further purification: RPLC (97%); ESI/MS 338.1 (M'+H, C₁₈H₂₈ClN₃O).

Other 4-{(acylamino)methyl}-1-(4-chlorobenzyl)piperidines were also synthesized pursuant to methods of Reference Example 20 using the corresponding reactant respectively.

1-(4-chlorobenzyl)-4-{(serylamino)methyl)piperidine: 0.286 g, 20% (2 steps); ESI/MS 326 ($M^{+}+H$).

4-{(alanylamino)methyl}-1-(4-chlorobenzyl)piperidine: 1.20 g, 65% (2 steps); ESI/MS 310 ($M^{+}+H$).

 $1-(4-\text{chlorobenzyl})-4-\{(\text{prolylamino}) \text{ methyl}\}$ piperidine: 1.48 g, 86% (2 steps); ESI/MS 336 (M*+H).

 $1-(4-chlorobenzyl)-4-\{(glutaminylamino)methyl)piperidine: 0.830 g, 27% (2 steps); ESI/MS 367 (M*+H).$

1-(4-chlorobenzyl)-4-{((2-methylalanyl)amino)methyl)piperidine: 2.24 g, 62% (2 steps); ESI/MS 324 (M*+H).

 $1-(4-chlorobenzyl)-4-\{((O-methylseryl)amino)methyl\}piperidine: 0.686 g, 38% (2 steps); ESI/MS 340 (M*+H).$

1-(4-chlorobenzyl)-4-{((1-

25

30

35 aminocyclopropylcarbonyl) amino) methyl) piperidine: 2.03 g, 82% (2 steps); ESI/MS 322 (M^+H).

 $1-(4-\text{chlorobenzyl})-4-\{(\text{leucylamino})\text{methyl}\}$ piperidine: 1.30 g, 58% (2 steps); ESI/MS 352 (M*+H).

 $1-(4-chlorobenzyl)-4-\{((O-benzylseryl)amino)methyl\}piperidine: 1.34 g, 56 {(2 steps); ESI/MS 416 (M<math>^+$ +H).}

Reference Example 22: Preparation of 1-(text-Butoxycarbonyl)-4-[{N-(9-fluorenylmethyloxycarbonyl)glycyl}aminomethyl}piperidine.

A solution of 4-(aminomethyl)-1-(tert-butoxycarbonyl)piperidine (5.72 g) in CH_2Cl_2 (150 mL) was treated with Et_3N (3.51 g), N-(9-fluorenylmethyloxycarbonyl)glycine (7.93 g, 26.7 mmol), EDCI (3.80 g) and HOBt (4.33 g). After the reaction mixture was stirred at room temperature for 5 h, the mixture was washed with water (100 mL x 3) and brine (100 mL x 2), dried over anhydrous sodium sulfate, filtered, and concentrated. Recrystallization from CH_3CN/CH_3OH (150 mL/1 mL) at 0 °C afforded 1-(tert-Butoxycarbonyl)-4-[(N-(9-fluorenylmethyloxycarbonyl)glycyl)aminomethyl)piperidine (5.75 g, 44%) as pale yellow crystals.

15

20

30

35

10

5

Reference Example 23: Preparation of 4-[{N-(9-Fluorenylmethyloxycarbonyl)glycyl}aminomethyl]piperidine.

fluorenylmethyloxycarbonyl)glycyl)aminomethyl]piperidine (3.17 g, 6.42 mmol) was added 4 N HCl in dioxane (50 mL). The solution was stirred at room temperature for 5 h. The reaction mixture was concentrated to give $4-[\{N-(9-fluorenylmethyloxycarbonyl)glycyl)aminomethyl]piperidine (3.85 g) as a white solid. The product was used without further purification.$

25 Reference Example 24: Preparation of 4-[{N-(9-Fluorenylmethyloxycarbonyl)glycyl}aminomethyl]-1-(4-methylthiobenzyl)piperidine.

solution A· of 4-[{N-(9-To fluorenylmethyloxycarbonyl)glycyl)aminomethyl]piperidine (1.00 g, 2.33 mmol) in 1% AcOH/DMF (15 mL) were added 4-methylthiobenzaldehyde (1.24 g) and NaBH (OAc) (2.56 g). The reaction mixture was stirred at 60 °C for 1 h, cooled to room temperature, and concentrated. Saturated aqueous NaHCO3 solution (50 mL) was added and the mixture was extracted with AcOEt (50 mL x 2). The combined extracts were dried over anhydrous sodium sulfate, filtered, and concentrated. Column CH₃OH/CH₂Cl₂) afforded 4-[{N-(9chromatography (SiO2; 5%-10% fluorenylmethyloxycarbonyl)glycyl}aminomethyl]-1-(4methylthiobenzyl)piperidine (602 mg) as a colorless oil.

Reference Example 25: Preparation of .1-(4-Ethylbenzyl)-4-[{N-(9-fluorenylmethyloxycarbonyl)glycyl}aminomethyl]piperidine.

fluorenylmethyloxycarbonyl)glycyl}aminomethyl]piperidine (1.00 g, 2.33 mmol) in 2.5% AcOH/CH₃OH (80 mL) were added 4-ethylbenzaldehyde (1.09 g, 8.16 mmol) and NaBH₃CN (6.59 g, 10.5 mmol). The reaction mixture was stirred at 60 °C for 13 h. After the mixture was cooled to room temperature, 1 N aqueous NaOH solution (50 mL) and dichloromethane (50 mL) were added. The organic layer was separated and the aqueous layer was extracted with dichloromethane (50 mL x 3). The combined organic layers were washed with brine, dried over anhydrous sodium sulfate, filtered, and concentrated. Column chromatography (SiO2, CH₃OH/AcOEt 2 : 8) afforded 1-(4-ethylbenzyl)-4-[{N-(9-fluorenylmethyloxycarbonyl)glycyl}aminomethyl]piperidine (740 mg, 62%).

10

30

Reference Example 26: Preparation of 4-{(Glycylamino)methyl}-1-(4-methylthiobenzyl)piperidine.

A solution of 4-[{N-(9-fluorenylmethyloxycarbonyl)glycyl}aminomethyl]-1-(4-methylthiobenzyl)piperidine (590 mg) and piperidine (1 mL) in DMF (4 mL) was stirred at room temperature for 2 h. Concentration and column chromatography (SiO₂, Et₃N : CH₃OH : CH₂Cl₂ = 1 : 1 : 9) afforded 4-{(glycylamino)methyl}-1-(4-methylthiobenzyl)piperidine (365 mg) as a white solid: ¹H NMR (CDCl₃, 270 MHz) δ1.25(dd, J = 12 Hz, 4.1 Hz, 2 H), 1.34(dd, J = 12 Hz, 4.1 Hz, 2 H), 1.51 (br-s, 2 H), 1.66 (d, J = 12 Hz, 2 H), 1.77 (d, J = 7.3 Hz, 1 H), 1.94 (t, J = 9.5 Hz, 2 H), 2.48 (s, 3 H), 2.80 (d, J = 12 Hz, 2 H), 3.18 (t, J = 6.2 Hz, 2 H), 3.35

(s, 2 H), 3.45 (s, 2 H), 7.18-7.29 (m, 4 H), 7.35 (br-s, 1 H).

1-(4-Ethylbenzyl)-4-{(glycylamino)methyl}piperidine was also synthe-

sized pursuant to methods of Reference Example 25 using the corresponding reactant: 333 mg, 79%.

Reference Example 27: Preparation of 4-{(glycylamino)methyl)-1-(4-fluorobenzyl)piperidine.

fluorenylmethyloxycarbonyl)glycyl)aminomethyl]-1-(4-fluorobenzyl)piperidine.

5

10

15

20

25

30

35

A solution of the $4-[\{N-(9-1)\}]$ fluorenylmethyloxycarbonyl) glycyl aminomethyl]-1-(4-fluorobenzyl) piperidine and piperidine (5 mL) in DMF (5 mL) was stirred at room temperature for 17 h. Concentration and column chromatography (SiO₂, Et₃N : CH₃OH : CH₂Cl₂ = 0.5: 2 : 8) afforded $4-\{(glycylamino)methyl\}-1-(4-fluorobenzyl)$ piperidine (453 mg, 46%).

Reference Example 28: Preparation of 4-{(glycylamino)methyl)-1-{4-(N-phenylcarbamoyl)benzyl}piperidine.

Example 1091: Preparation of 1-(4-Chlorobenzyl)-4-[{N-(3-cyanobenzoyl)valyl}aminomethyl]piperidine (Compound No. 619).

Ji.

A solution of 1-(4-chlorobenzyl)-4-{(valylamino)methyl}piperidine (20 mg, 0.059 mmol) in CH_2Cl_2 (0.60 mL) was treated with Et₃N (0.011 mL, 0.077 mmol), m-cyanobenzoic acid (28 mg, 0.071 mmol), EDCI (13 mg, 0.065 mmol) and HOBt (9 mg, 0.065 mmol). The reaction mixture was stirred at 25 °C for 16 h. The resulting solution was diluted with CH_2Cl_2 (0.75 mL), washed with 2 N aqueous NaOH solution (2 x 0.75 mL) and dried by filtration through a PTFE membrane. Concentration afforded the 1-(4-chlorobenzyl)-4-[{N-(3-cyanobenzoyl)valyl}aminomethyl]piperidine (compound No. 619) (24.2 mg, 88%) which required no further purification: The purity was determined by RPLC/MS (85%); ESI/MS m/e 467 (M*+H, $C_{26}H_{31}ClN_4O_2$).

Examples 1092-1543.

The compounds of this invention were synthesized pursuant to methods of Example 1091 using the corresponding reactant respectively. The ESI/MS data and yields are summarized in Table 27.

Table 27

	Compound	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
F	No.	200 1105 11			
Example 1092	467	C22 H25 Br Cl N3 O2	478	11	46
Example 1093	468	C24 H31 C1 N4 O2	443	9	41
Example 1094	469	C23 H28 C1 N3 O3	430	7*	27
Example 1095	470	C23 H25 Cl N4 O2	425	21	quant
Example 1096	471	C24 H28 C1 N3 O4	458	7	29
Example 1097	472	C29 H31 N3 O3	504	5*	21
Example 1098	473	C24 H28 C1 N3 O3	442	16	71
Example 1099	474	C23 H25 C1 F3 N3 O2	468	14	60
Example 1100	475	C25 H32 C1 N3 O2	442	5	22
Example 1101	476	C22 H25 Cl N4 O4	. 445	4	17
Example 1102	477	C25 H32 Cl N3 O3	458	10*	36
Example 1103	478	C21 H27 C1 N4 O2	403	9	47
Example 1104	479	C20 H24 Cl N3 O3	390	17	87
Example 1105	480	C20 H23 Br Cl N3 O3	470	23	quant
Example 1106	481	C20 H24 C1 N3 O2 S	406	7	33
Example 1107	482	C21 H26 C1 N3 O2 S	420	9	45
Example 1108	483	C21 H26 C1 N3 O2 S	420	8	40
Example 1109	484	C24 H27 C1 N4 O2	439	9*	34
Example 1110	485	C24 H24 C1 F6 N3 O2	536	13	49
Example 1111	486	C23 H25 Cl N4 O2	425	16	74
Example 1112	487	C22 H25 C12 N3 O2	434	5	24
Example 1113	488	C22 H27 Cl N4 O2	415	7	32
Example 1114	489	C24 H24 C1 F6 N3 O2	536	21	78
Example 1115	490	C24 H30 Cl N3 O3	444	8	35
Example 1116	491	C23 H24 C1 F4 N3 O2	486	19	79
Example 1117	492	C23 H25 Cl F3 N3 O3	484	18	76
Example 1118	493	C23 H24 C12 F3 N3 O2	502	23	92
Example 1119	494	C23 H24 C1 F4 N3 O2	486	19	79
Example 1120	495	C23 H24 C1 F4 N3 O2	486	20	83
Example 1121	496	C23 H24 C1 F4 N3 O2	486	12	48
Example 1122	497	C25 H32 C1 N3 O3	458	4	16
Example 1123	498	C23 H26 C1 F3 N4 O2	483	13	52
Example 1124	499	C24 H31 Cl N4 O2	443	8	36
Example 1125	500	C23 H28 C1 N3 O3	430	10	48
Example 1126	501	C22 H24 Br Cl N4 O4	523	10	39
Example 1127	502	C22 H24 C1 F N4 O4	463	4	17
	L				

Example 1128	503	C22 H24 C12 N4 O4	479	12	52
Example 1129	504	C24 H30 C1 N3 O4	460	11	43
Example 1130	505	C22 H24 Br Cl N4 O4	523	2	8
Example 1131	506	C20 H23 C1 N4 O5	435	2	10
Example 1132	507	C21 H26 Cl N3 O3	404	9	44
Example 1133	508	C24 H26 C1 N3 O2 S	456	1	5
Example 1134	509	C20 H23 Br Cl N3 O2 S	484	12	48
Example 1135		C22 H28 C1 N3 O3	418	9	44
Example 1136		C24 H32 C1 N3 O3	446	9	40
Example 1137	512	C25 H29 C1 N4 O2	453	10	45
Example 1138	Ī	C24 H28 Cl N3 O3	442	9	41
Example 1139		C26 H34 Cl N3 O2	456	11	49
Example 1140	515	C23 H28 C1 N3 O3	430	5	24
Example 1141	525	C23 H28 C1 N3 O4 S	478	20	- 85
Example 1142	526	C20 H24 C1 N3 O3	390	6	31
Example 1143		C20 H24 C1 N3 O2 S	406	8	39
Example 1144		C25 H30 C1 F3 N4 O4	543	28.2	95
Example 1145	529	C20 H23 C1 N4 O4 S	451	9	39
Example 1146		C31 H33 Cl N4 O2	529	5	17
Example 1147		C21 H26 C1 N3 O3 S	436	8	37
Example 1148		C22 H28 Cl N3 O3	418	8	40
Example 1149		C21 H26 C1 N3 O3	404	6	32
Example 1150		C21 H25 C1 N4 O5	449	5	20
Example 1151		C22 H26 C1 N3 O3 S	448	8	37
Example 1152		C23 H31 Cl N4 O2	431	6	28
Example 1153		C25 H34 C1 N3 O3	460	8	34
Example 1154		C27 H30 C1 N3 O3	480	9	36
Example 1155		C22 H25 C1 F3 N3 O3	472	18	75
Example 1156		C25 H29 Cl N4 O2	453	8	36
Example 1157	541	C22 H26 Cl N5 O4	460	2.4	10
Example 1158		C24 H30 C1 N3 O2	428	4.6*	51
Example 1159		C24 H30 Cl N3 O2	428	20.6*	71
Example 1160	L	C22 H25 Cl F N3 O2	418	15.8*	56
Example 1161		C22 H24 C13 N3 O2	468	7.3*	23
Example 1162		C22 H24 C13 N3 O2	468	17.4*	55
Example 1163		C22 H24 C13 N3 O2	468	14.1*	44
Example 1164		C22 H24 C13 N3 O2	468	6.8*	22
Example 1165		C22 H24 C12 N4 O4	479	5.7*	18
Example 1166		C22 H24 C12 N4 O4	479	18.9*	58
Example 1167	551	C24 H30 C1 N3 O2	428	14.2*	49

Evample 1169	552	1004 voz av po vo			
Example 1168		C24 H27 C1 F3 N3 O2	482	30.6*	94
Example 1169		C25 H26 C1 F6 N3 O2	550	38.0*	quant
Example 1170		C24 H26 C1 F N4 O2	457	0.9*	3
Example 1171		C24 H26 C12 N4 O2	473	11.1*	35
Example 1172	!	C25 H29 C1 N4 O2	453	12.5*	41
Example 1173		C25 H26 C1 F6 N3 O2	550	15	72
Example 1174	ł .	C24 H27 Cl N4 O2	439	12	68
Example 1175		C23 H27 Br Cl N3 O2	494	14	73
Example 1176		C23 H27 C12 N3 O2	448	13	75
Example 1177	563	C25 H26 Cl F6 N3 O2	550	14	66
Example 1178	564	C25 H32 C1 N3 O3	458	5	28
Example 1179	565	C24 H26 Cl F4 N3 O2	500	12	61
Example 1180	566	C24 H27 C1 F3 N3 O3	498	12	62
Example 1181	567	C24 H26 C12 F3 N3 O2	516	12	61
Example 1182	568	C24 H26 Cl F4 N3 O2	500	15	77
Example 1183	569	C24 H26 Cl F4 N3 O2	500	11	59
Example 1184	570	C24 H26 Cl F4 N3 O2	500	16	84
Example 1185	571	C26 H34 Cl N3 O3	472	14	77
Example 1186	572	C24 H28 Cl F3 N4 O2	497	11	55
Example 1187	573	C21 H25 Br Cl N3 O2 S	500	12	64
Example 1188	574	C21 H25 Br Cl N3 O2 S	500	15	75
Example 1189	575	C25 H34 C1 N3 O3	460	16	87
Example 1190	576	C22 H28 C1 N3 O2 S2	466	13	71
Example 1191	577	C22 H28 C1 N3 O3	418	12	72
Example 1192	578	C25 H28 Cl N3 O2 S	470	15	81
Example 1193	579	C25 H29 Cl N4 O2	453	17	94
Example 1194	580	C22 H28 C1 N3 O2 S	434	15	91
Example 1195	581	C21 H26 C1 N3 O2 S	420	13	80
Example 1196	582	C22 H28 C1 N3 O2 S	434	10	59
Example 1197	583	C26 H31 C1 N4 O2	467	6	31
Example 1198	584	C30 H32 C1 N3 O3	518	18	92
Example 1199	585	C24 H27 C1 N4 O2	439	14	85
Example 1200	586	C23 H27 C12 N3 O2	448	17	97
Example 1201	587	C24 H27 Cl F3 N3 O2	482	17	91
Example 1202	588	C23 H29 Cl N4 O2	429	5	29
Example 1203	589	C27 H36 Cl N3 O2	470	4	24 .
Example 1204	590	C26 H34 C1 N3 O2	456	6	36
Example 1205	591	C25 H33 Cl N4 O2	457	7	38
Example 1206	592	C24 H30 C1 N3 O3	444	4	20
Example 1207	593	C24 H30 Cl N3 O3	444	2	14
 L					4.7

Example 1208	594	C23 H28 Cl N3 O3	430	4	25
Example 1209	595	C25 H30 C1 N3 O4	472	7	38
Example 1210	596	C25 H30 Cl N3 O3	456	7	40
Example 1211	597	C25 H30 Cl N3 O3	456	15	85
Example 1212	598	C21 H26 Cl N3 O3	404	15	94
Example 1213	599	C22 H29 Cl N4 O2	417	5	30
Example 1214	600	C21 H25 Br Cl N3 O3	484	6	34
Example 1215	601	C24 H30 Cl N3 O3	444	5	28
Example 1216	602	C25 H33 Cl N4 O2	457	5	28
Example 1217	603	C23 H29 C1 N4 O2	429	4	22
Example 1218	604	C21 H27 C1 N4 O2	403	9	58
Example 1219	605	C21 H26 Cl N3 O3	404	17	87
Example 1220	606	C21 H26 Cl N3 O2 S	420	15	74
Example 1221	607	C22 H28 Cl N3 O3 S	450	31	quant
Example 1222	608	C23 H30 Cl N3 O3	432	17	80
Example 1223	609	C22 H28 C1 N3 O3	418	18	89
Example 1224	610	C23 H28 Cl N3 O3 S	462	20	86
Example 1225	611	C26 H36 C1 N3 O3	474	21	90
Example 1226	612	C28 H32 C1 N3 O3	494	20	84
Example 1227	613	C23 H27 Cl F3 N3 O3	486	19	81
Example 1228	614	C24 H33 Cl N4 O2	445	23	quant
Example 1229	615	C25 H29 C1 N4 O2	453	4	20
Example 1230	616	C32 H35 Cl N4 O2	543	11	40
Example 1231	617	C25 H27 C1 F3 N3 O2	482	6.7	37
Example 1232	620	C25 H31 Br Cl N3 O2	520	15	49
Example 1233	621	C25 H31 C12 N3 O2	476	18	64
Example 1234	622	C27 H37 C1 N4 O2	485	14	50
Example 1235	623	C26 H34 C1 N3 O3	472	19	69
Example 1236	624	C25 H31 C1 N4 O4	487	21	73
Example 1237	625	C25 H33 C1 N4 O2	457	19	69
Example 1238	626	C27 H30 C1 F6 N3 O2	578	8	25
Example 1239	627	C27 H36 C1 N3 O3	486	16	55
Example 1240	628	C27 H34 C1 N3 O4	500	24	80
Example 1241	629	C26 H30 Cl F4 N3 O2	528	18	56
Example 1242	630	C26 H31 Cl F3 N3 O3	526	21	68
Example 1243	631	C26 H30 C12 F3 N3 O2	544	15	48
Example 1244	632	C26 H30 Cl F4 N3 O2	528	13	41
Example 1245	633	C26 H30 C1 F4 N3 O2	528	20	63
Example 1246	634	C26 H30 Cl F4 N3 O2	528	19	62
Example 1247	635	C28 H38 C1 N3 O3	500	11	36
		_ 			

Example 1249 Example 1250 Example 1251 Example 1252 Example 1253	636 637 638 639	C26 H34 C1 N3 O2 C26 H31 C1 F3 N3 O2 C26 H31 C1 N4 O2	456 510	21	89
Example 1250 Example 1251 Example 1252	638		510	20	
Example 1251 Example 1252		C26 H21 C1 W4 CC		1 20	95
Example 1252	639	C20 H31 C1 N4 O2	467	15	54
		C27 H37 Cl N4 O2	485	19	66
Example 1253	640	C26 H34 Cl N3 O3	472	16	56
	641	C27 H34 C1 N3 O4	500	18	59
Example 1254	642	C32 H36 C1 N3 O3	546	24	73
Example 1255	643	C26 H31 C1 F3 N3 O2	510	16	54
Example 1256	644	C29 H40 C1 N3 O2	498	18	61
Example 1257	645	C25 H33 C1 N4 O2	457	22	78
Example 1258	646	C26 H34 C1 N3 O3	472	13	47
Example 1259	647	C27 H34 C1 N3 O3	500	13	46
Example 1260	648	C28 H38 C1 N3 O2	484	· 17	60
Example 1261	649	C28 H38 C1 N3 O3	500	12.5	42
Example 1262	650	C32 H36 C1 N3 O3	546	1*	2
Example 1263	651	C28 H35 C1 N4 O2	495	4 *	12
Example 1264	652	C25 H31 Cl N4 O4	487	5*	14
Example 1265	653	C30 H42 Cl N3 O3	528	1*	3
Example 1266	654	C27 H34 C1 N3 O3	484	7*	21
Example 1267	655	C26 H32 Cl F3 N4 O2	525	6*	16
Example 1268	656	C23 H30 C1 N3 O3	432	6*	18
Example 1269	657	C23 H30 C1 N3 O2 S	448	4 *	13
Example 1270	658	C27 H33 C1 N4 O2	48	1*	4
Example 1271	659	C23 H29 Cl N4 O4 S	493	4*	10
Example 1272	660	C34 H39 C1 N4 O2	571	3*	7
Example 1273	661	C24 H32 Cl N3 O3 S	478	3*	7
	662	C25 H34 Cl N3 O3	460	2*	6
Example 1275	663	C24 H32 C1 N3 O3	446	2*	5
	664	C24 H31 Cl N4 O5	491	.2*	5
, T	665	C25 H32 C1 N3 O3 S	490	1*	3
	666	C26 H37 Cl N4 O2	473	3+	7
	667	C30 H36 C1 N3 O3	522	3*	7
	668	C25 H31 Cl F3 N3 O3	514	2*	6
	669	C24 H33 Cl N4 O2	445	15*	45
	670	C23 H29 Br Cl N3 O3	510	3*	7
	671	C23 H29 Cl N4 O5	477	2*	5
	572	C23 H31 Cl N4 O2	431	2*	7
Example 1285	573	C23 H30 Cl N3 O2 S	448	2*	6
	574	224 H32 Cl N3 O2 S	462	3*	9 ·
Example 1287 6	575	C24 H32 C1 N3 O2 S	462	1*	4

Example 1288	676	C27 H33 Cl N4 O2	482	2*	6
Example 1289	677	C28 H35 Cl N4 O2	495	2*	6
Example 1290	678	C24 H32 C1 N3 O3	446	3*	9
Example 1291	679	C27 H32 Cl N3 O2 S	498	1*	3
Example 1292	680	C23 H29 Br Cl N3 O2 S	526	2*	. 6
Example 1293	681	C25 H34 Cl N3 O3	460	2*	5
Example 1294	682	C27 H38 Cl N3 O3	488	2*	4
Example 1295	683	C24 H32 Cl N3 O2 S2	494	1*	4
Example 1296	684	C26 H36 Cl N3 O4 S2	554	2*	5
Example 1297	685	C24 H32 Cl N3 O4 S2	526	3*	7
Example 1298	687	C25 H30 Cl N3 O2	440	24	quant
Example 1299	688	C27 H28 C1 F6 N3 O2	576	28	98
Example 1300	689	C26 H29 C1 N4 O2	465	23	99
Example 1301	690	C25 H29 Br Cl N3 O2	518	26	99
Example 1302	691	C27 H35 C1 N4 O2	483	24	97
Example 1303	692	C26 H32 Cl N3 O3	470	24	quant
Example 1304	693	C27 H28 Cl F6 N3 O2	576	16	55
Example 1305	694 .	C27 H34 Cl N3 O3	484	25	quant
Example 1306	695	C27 H32 C1 N3 O4	498	12	47
Example 1307	696	C26 H29 Cl F3 N3 O3	524	25	95
Example 1308	697	C26 H29 Cl N4 O2	465	15	64
Example 1309	698	C27 H35 Cl N4 O2	483	24	quant
Example 1310	699	C26 H32 C1 N3 O3	470	26	quant
Example 1311	700	C27 H32 Cl N3 O4	498	15	62
Example 1312	701	C27 H32 C1 N3 O3	482	11	44
Example 1313	702	C26 H29 C1 F3 N3 O2	508	23	94
Example 1314	703	C28 H36 Cl N3 O2	482	. 26	quant
Example 1315	704	C25 H29 C1 N4 O4	485	11	43
Example 1316	705	C24 H30 C1 N3 O2 S	460	25	quant
Example 1317		C24 H30 C1 N3 O2 S	460	25	quant
Example 1318	707	C26 H29 C1 F3 N3 O2	508	15	55
Example 1319	708	C23 H27 Br Cl N3 O2 S		25	92
Example 1320		C24 H30 C1 N3 O2 S2	492	26	quant
Example 1321		C23 H27 Br C1 N3 O2 S		25	94
Example 1322		C25 H32 C1 N3 O3	458	26	quant
Example 1323	712	C27 H30 C1 N3 O2 S	496	26	quant
Example 1324		C24 H30 C1 N3 O3	444	26	quant
Example 1325		C28 H33 C1 N4 O2	493	12	50
Example 1326	715	C23 H28 C1 N3 O2 S	446	24	quant
Example 1327	716	C27 H31 C1 N4 O2	479	32	quant

Example 1328		C23 H27 Cl N4 O5	475	23	95
Example 1329	718	C23 H29 Cl N4 O2	429	24	quant
Example 1330	719	C23 H28 Cl N3 O3	430	24	quant
Example 1331	720	C23 H27 Br Cl N3 O3	510	24	95
Example 1332	721	C24 H31 Cl N4 O2	443	22	98
Example 1333	722	C26 H32 C1 N3 O3	470	9	37
Example 1334	723	C25 H31 C1 N4 O2	455	10	44
Example 1335	724	C29 H38 C1 N3 O2	496	28	quant
Example 1336	725	C32 H34 C1 N3 O3	544	26	95
Example 1337	726	C27 H33 C1 N4 O3	497	3	11
Example 1338	727	C25 H29 C12 N3 O2	474	25	quant
Example 1339	728	C25 H31 Cl N4 O2	455	21	92
Example 1340	729	C25 H29 C1 N4 O4	485	26	quant
Example 1341	730	C25 H29 C12 N3 O2	474	21	90
Example 1342	731	C27 H32 C1 N3 O3	482	10	41
Example 1343	732	C26 H28 C1 F4 N3 O2	526	27	quant
Example 1344	733	C28 H36 Cl N3 O3	498	22	89
Example 1345	734	C26 H28 Cl F4 N3 O2	526	25	94
Example 1346	735	C26 H28 Cl F4 N3 O2	526	23	87
Example 1347	736	C26 H30 C1 F3 N4 O2	523	24	78
Example 1348	737	C26 H28 Cl F4 N3 O2	526	21	66
Example 1349	738	C25 H32 C1 N3 O3	458	23	84
Example 1350	739	C27 H31 C1 N4 O2	479	19	66
Example 1351	740	C24 H31 C1 N4 O5	489	23	77
Example 1352	741	C23 H27 C1 N4 O4 S	491	26	88
Example 1353	742	C24 H30 Cl N3 O3 S	476	23	82
Example 1354	743	C23 H28 C1 N3 O3	430	21	81
Example 1355	744	C26 H32 C1 N3 O2	454	25	91
Example 1356	745	C27 H36 C1 N3 O3	486	23	80
Example 1357	746	C26 H35 C1 N4 O2	471	27	96
Example 1358	747	C25 H29 C1 F3 N3 O3	512	23	74
Example 1359	748	C23 H28 C1 N3 O2 S	446	22	82
Example 1360		C24 H30 C1 N3 O3	444	3	11
Example 1361	752	C25 H26 C1 F6 N3 O3	566	. 7	20
Example 1362	753	C24 H27 C1 N4 O3	455	6	22
Example 1363	754	C23 H27 C12 N3 O3	464	8	29
Example 1364		C24 H30 Cl N3 O4	460	6	22
Example 1365	756	C23 H27 Cl N4 O5	475	5	18
Example 1366	757	C25 H32 C1 N3 O4	474	5	18
Example 1367	758	C25 H30 C1 N3 O5	488	5	18

la	759	C24 H27 C1 F3 N3 O4	514	6	20
Example 1368		1	516	6	18
Example 1369	760	C24 H26 Cl F4 N3 O3			
Example 1370	761	C24 H26 C1 F4 N3 O3	516	3	10
Example 1371	762	C24 H27 C1 F3 N3 O3	498	2	95
Example 1372	763	C23 H28 C1 N3 O3	430	4	95
Example 1373	764	C24 H30 Cl N3 O2	428	9	42
Example 1374	765	C25 H32 C1 N3 O2	442	10	47
Example 1375	766	C25 H29 Cl F3 N3 O2	496	10	42
Example 1376	. 767	C25 H32 C1 N3 O4 S	506	8	32
Example 1377	768	C24 H29 Br Cl N3 O2	506	9	35
Example 1378	769	C25 H29 Cl F3 N3 O3	512	6	22
Example 1379	770	C25 H28 C1 F4 N3 O2	514	3	10
Example 1380	771	C25 H28 C1 F4 N3 O2	514	10	37
Example 1381	772	C25 H29 C1 F3 N3 O2	496	8	33
Example 1382	773	C26 H36 Cl N3 O3	474	10	41
Example 1383	774	C23 H30 C1 N3 O2 S2	480	12	50
Example 1384	775	C27 H38 C1 N3 O3	488	14	57
Example 1385	776	C29 H34 Cl N3 O3	508	12	49
Example 1386	777	C24 H29 Cl F3 N3 O3	500	22	87
Example 1387	778	C24 H28 C12 N4 O4	507	6	22
Example 1388	779	C24 H29 C12 N3 O2	462	10	46
Example 1389	780	C24 H29 Cl N4 O4	473	15	65
Example 1390	781	C26 H31 C1 N4 O2	467	7*	20
Example 1391	782	C25 H32 Cl N3 O3	458	8*	23
Example 1392	783	C26 H34 Cl N3 O3	472	7*	19
Example 1393	784	C26 H31 Cl F3 N3 O2	510	7*	17
Example 1394	785	C26 H34 C1 N3 O4	488	6*	17
Example 1395	786	C24 H28 Cl N3 O2	426	22	9
Example 1396	787	C25 H30 C1 N3 O2	440	21	94 .
Example 1397	788	C25 H27 C1 F3 N3 O2	494	4*	14
Example 1398	789	C25 H30 Cl N3 O4 S	504	9	35
Example 1399	790	C24 H27 C12 N3 O2	460	5*	16
Example 1400	791	C24 H27 C1 N4 O4	471	3*	10
Example 1401	792	C25 H27 C1 F3 N3 O3	510	5*	16
Example 1402	793	C25 H26 Cl F4 N3 O2	511	5*	16
Example 1403	794	C25 H26 Cl F4 N3 O2	512	5*	16
Example 1404	795	C25 H27 C1 F3 N3 O2	494	6*	21
Example 1405	796	C23 H28 C1 N3 O2 S2	478	4*	14
Example 1406	797	C27 H36 C1 N3 O3	486	7*	29
Example 1407	798	C29 H32 C1 N3 O3	506	3	13
L	L	<u></u>	L		L

Example 1408	799	C24 H27 C1 F3 N3 O3	1 400		
Example 1409	800	C24 H26 C12 N4 O4	498	3*	11
Example 1410	<u>i</u>	C26 H29 C1 N4 O2		5*	15
Example 1411		C25 H30 C1 N3 O3	465	12	41
Example 1412		<u>i</u>	456	5*	15
Example 1413	L	C26 H32 C1 N3 O3	470	6*	16
Example 1414			508	8*	20
Example 1415	4	C26 H32 Cl N3 O4	486	6*	15
Example 1416		C24 H27 Br C1 N3 O2	506	5*	14
Example 1417		C27 H32 C1 N5 O3	510	29.7	quant
Example 1418	1	C26 H33 C1 N4 O3	485	29.9	quant
		C25 H30 C12 N4 O3	505	30.2	quant
Example 1419		C30 H35 C1 N4 O4	551	31.0	quant
Example 1420		C25 H29 C12 N5 O5	550	30.4	quant
Example 1421	812	C24 H31 C1 N4 O3 S2	523	25.0	88
Example 1422		C26 H30 C1 F3 N4 O3	539	20.5	70
Example 1423	814	C26 H30 C1 F3 N4 O4	555	22.7	75
Example 1424	815	C26 H29 C1 F4 N4 O3	557	25.8	85
Example 1425	816	C26 H30 C1 F3 N4 O3	539	25.3	86
Example 1426	817	C26 H29 Cl F4 N4 O3	557	26.8	88
Example 1427	818	C25 H30 Br Cl N4 O3	551	27.1	90
Example 1428	819	C27 H29 C1 F6 N4 O3	607	13.9	42
Example 1429	820	C25 H30 C1 N5 O5	516	14.1	51
Example 1430	821	C24 H28 C12 N4 O5	523	40	86
Example 1431	822	C23 H30 Cl N3 O3 S2	496	41	93
Example 1432	823	C26 H31 Cl N4 O3	483	43	quant
Example 1433	824	C27 H38 Cl N3 O4	503	37	83
Example 1434	825	C29 H34 C1 N3 O4	524	28	61
Example 1435	826	C24 H29 Cl F3 N3 O4	516	40	87
Example 1436	827	C26 H31 Cl N4 O3	483	31	72
Example 1437	828	C25 H29 C1 F3 N3 O4	528	40	86
Example 1438	829	C25 H28 C1 F4 N3 O3	530	45	97
Example 1439	830	C25 H28 C1 F4 N3 O3	530	35	74
Example 1440	831	C24 H29 Br Cl N3 O3	523	45	98
Example 1441	832	C24 H29 C12 N3 O3	478	38	91
Example 1442	833	C24 H29 C1 N4 O5	488	38	87
Example 1443	834	C25 H29 C1 F3 N3 O3	512	42	93.
Example 1444	835	C24 H30 C1 N3 O3	444	43	quant
Example 1445	836	C25 H32 C1 N3 O3	458	37	91
Example 1446	837	C25 H29 C1 F3 N3 O3	512	41	91
example 1447	838	C26 H34 C1 N3 O4	488	34	78
		·			-

				•	
Example 1448	839	C27 H36 C1 N3 O6	534	37	71
Example 1449	942	C27 H30 Cl F6 N3 O2	578	17	48
Example 1450	997	C26 H34 Cl N3 O2	456	7.6*	23
Example 1451	998	C27 H33 Cl F3 N3 O2	524	6	15
Example 1452	999	C27 H36 Cl N3 O2	470	8	24
Example 1453	1000	C27 H36 Cl N3 O3	486	9	24
Example 1454	1001	C28 H38 Cl N3 O3	500	4	10
Example 1455	1002	C27 H33 Cl F3 N3 O3	540	9	23
Example 1456	1003	C28 H38 Cl N3 O2	484	7.	21
Example 1457	1004	C28 H38 Cl N3 O4	516	11	30
Example 1458	1005	C29 H40 Cl N3 O5	547	9	23
Example 1459	1006	C30 H42 C1 N3 O4	544	8	21
Example 1460	1007	C32 H46 Cl N3 O5	589	7	17
Example 1461	1008	C25 H31 Cl N4 O3	471	25	79
Example 1462	1009	C26 H33 Cl N4 O4	501	35	97
Example 1463	1010	C27 H35 Cl N4 O4	515	35	9
Example 1464	1011	C27 H35 C1 N4 O3	499	32	54
Example 1465	1012	C27 H35 C1 N4 O5	531	27 .	77
Example 1466	1013	C28 H37 Cl N4 O6	561	14	37
Example 1467	1014	C29 H39 C1 N4 O5	559	24	66
Example 1468	1015	C31 H43 Cl N4 O6	603	25	65
Example 1469	1018	C26 H34 C1 N3 O4	488	13.0*	39
Example 1470	1019	C28 H38 C1 N3 O5	532	13.4*	37
Example 1471	1020	C25 H32 C1 N3 O4	474	12.7*	40
Example 1472	1021	C26 H28 C1 F6 N3 O4	596	13.8*	34
Example 1473	1022	C25 H32 C1 N3 O4	474	14.2*	37
Example 1474	1023	C25 H32 C1 N3 O2	442	11.5*	32
Example 1475	1024	C26 H34 Cl N3 O5	504	12.0*	30
Example 1476	1025	C27 H36 C1 N3 O4	502	14.7*	37
Example 1477	1026	C29 H40 C1 N3 O5	546	13.5*	32
Example 1478	1027	C26 H34 Cl N3 O4	488	11.9*	31
Example 1479	1028	C27 H30 Cl F6 N3 O4	610	14.6*	31
Example 1480	1029	C25 H32 C1 N3 O3	458	14.0*	38
Example 1481	1030	C24 H27 Cl F3 N3 O3	498	14.0*	35
Example 1482	1031	C24 H30 Cl N3 O3	444	10.4*	29
Example 1483	1032	C25 H32 C1 N3 O4	474	14.9*	39
Example 1484	1033	C25 H32 C1 N3 O2	442	13.3*	37
Example 1485	1034	C26 H34 Cl N3 O5	504	13.7*	34
Example 1486	1035	C27 H36 Cl N3 O4	502	16.7*	42
Example 1487	1036	C29 H40 C1 N3 O5	547	15.5*	36
B					

Example 1488	1037	C26 H34 C1 N3 O4	100		
Example 1489	<u> </u>	C27 H30 C1 F6 N3 O4	488	14.1*	36
Example 1490	1	C25 H32 C1 N3 O3	610	17.5*	37
Example 1491	L		458	15.1*	41
Example 1492		C24 H27 C1 F3 N3 O3	498	15.4*	39
Example 1493			444	12.7*	35
Example 1493		C22 H26 Br Cl N4 O2	495	10.4*	25
Example 1494		C22 H26 C12 N4 O2	449	11.1*	29
		C23 H29 C1 N4 O2	429	5.2*	14
Example 1496		C23 H29 Cl N4 O3	445	12.4*	33
Example 1497		C22 H25 C13 N4 O2	483	10.0*	25
Example 1498	1047	C24 H31 C1 N4 O2	443	12.1*	32
Example 1499	1048	C25 H33 C1 N4 O5	505	16.1*	39
Example 1500	1049	C23 H28 Br Cl N4 O2	507	12.0*	29
Example 1501	1050	C28 H38 C1 N3 O4	516	39.2*	quant
Example 1502	1051	C28 H38 C1 N3 O2	484	34.0*	quant
Example 1503	1052	C29 H40 Cl N3 O5	546	14.5*	39
Example 1504	1053	C30 H42 Cl N3 O4	544	11.8*	32
Example 1505	1054	C32 H46 C1 N3 O5	588	12.2*	31
Example 1506	1055	C29 H40 C1 N3 O4	530	44.5*	quant
Example 1507	1056	C30 H36 C1 F6 N3 O4	652	46.0*	quant
Example 1508	1057	C28 H38 C1 N3 O3	500	11.2*	32
Example 1509	1058	C27 H36 C1 N3 O3	486	35.5*	quant
Example 1510	1059	C27 H33 C1 F3 N3 O3	540	41.4*	quant
Example 1511	1060	C29 H40 C1 N3 O4	530	13.6*	37
Example 1512	1061	C30 H36 C1 F6 N3 O4	652 ,	44.2*	quant
Example 1513	1062	C28 H38 C1 N3 O3	500	39.9*	quant
Example 1514	1063	C27 H36 Cl N3 O3	486	12.0*	35
Example 1515	1064	C27 H33 C1 F3 N3 O3	540	37.8*	quant
Example 1516	1065	C28 H38 Cl N3 O4	516	12.3*	34
Example 1517	1066	C28 H38 Cl N3 O2	484	30.7*	90
Example 1518	1067	C29 H40 Cl N3 O5	546	13.8*	37
Example 1519	1068	C30 H42 Cl N3 O4	544	13.1*	35
Example 1520	1069	C32 H46 C1 N3 O5	589	14.1*	35
Example 1521	1070	C29 H34 C1 N3 O3 S2	572	38.3	93
Example 1522	1071	C32 H35 Cl N4 O3	559	39.6	98
Example 1523	1072 .	C33 H42 C1 N3 O4	580	40.9	98
Example 1524	1073	C35 H38 C1 N3 O4	600	40.5	94
Example 1525	1074	C30 H33 C1 F3 N3 O4	592	38.7	91
Example 1526	1075	C31 H33 C1 F3 N3 O4	604	38.	87
Example 1527	1076	C30 H33 C1 N4 O5	565	38.5	94

Example 1528	1077	C31 H33 C1 F3 N3 O3	588	35.8	84
Example 1529	1078	C30 H34 Cl N3 O3	520	34.7	93
Example 1530	1079	C31 H36 Cl N3 O3	534	38.4	quant
Example 1531	1080	C32 H38 Cl N3 O4	564	39.3	97
Example 1532	1081	C33 H40 Cl N3 O6	610	45.5	quant
Example 1533	1082	C28 H36 Cl N3 O3	498	4.1*	10
Example 1534	1083	C28 H36 Cl N3 O3	498	6.4*	16
Example 1535	1125	C30 H32 C12 N4 O5	599	3.4*	8
Example 1536	1126	C30 H32 Br Cl N4 O5	644	3.4*	7
Example 1537	1127	C32 H35 Cl N4 O3	559	1.6*	4
Example 1538	1128	C31 H32 Cl F4 N3 O3	606	4.3*	10
Example 1539	1129	C31 H32 Cl F4 N3 O3	606	5.9*	14
Example 1540	1130	C30 H33 Br Cl N3 O3	599	5.7*	13
Example 1541	1131	C30 H33 C12 N3 O3	554	6.4*	16
Example 1542	1132	C31 H33 Cl F3 N3 O3	588	6.3*	15
Example 1543	1167	C27 H34 C1 N3 O3	484	1.8*	4

^{*}Yield of TFA salt.

5

10

15

20

Example 1544: Preparation of 1-(4-Chlorobenzyl)-4-[{N-(3,5-bis(trifluoromethyl)benzoyl)glycyl}aminomethyl]piperidine (Compound No. 1213).

A solution of 3,5-bis(trifluoromethyl)benzoyl chloride (0.058 mmol) in dichloromethane (1 mL) was added to a mixture of 1-(4-chlorobenzyl)-4- ((glycylamino)methyl)piperidine (0.050 mmol) and piperidinomethylpolystyrene (58 mg) in chloroform (0.2 mL) and dichloromethane (0.75 mL). After the reaction mixture was stirred at room temperature for 2 h, methanol (1.0 mL) was added and the mixture was stirred at room temperature for 30 min. The reaction mixture was loaded onto Varian CX column, and washed with CH₃OH (16 mL). Product was eluted off using 2 N NH₃ in CH₃OH (6 mL) and concentrated to afford 1-(4-chlorobenzyl)-4-[{N-(3,5-

bis (trifluoromethyl) benzoyl) glycyl) aminomethyl] piperidine (Compound No. 1213) (24.0 mg, 90%): The purity was determined by RPLC/MS (100%); ESI/MS m/e 536.2 (M*+H, $C_{24}H_{24}ClF_6N_3O_2$).

Examples 1545-1547.

The compounds of this invention were synthesized pursuant to methods of Example 1544 using the corresponding reactant respectively. The ESI/MS data and yields are summarized in Table 28.

Table 28

-	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 1545	1214	C23 H24 C1 F4 N3 O3	486.2	22.2	91
Example 1546	1215	C22 H24 C13 N3 O2	467.9	20.9	89
Example 1547	1216	C22 H24 C1 F2 N3 O2	436.0	19.3	89

Example 1548: Preparation of 4-[{N-(3-Bromo-4-methylbenzoyl)glycyl}aminomethyl]-1-(4-chlorobenzyl)piperidine (Compound No. 1113).

A solution of $1-(4-\text{chlorobenzyl})-4-\{(\text{glycylamino})\text{ methyl}\}$ piperidine (0.050 mmol) in CHCl₃ (1.35 mL) and tert-butanol (0.15 mL) was treated with 3-bromo-4-methylbenzoic acid (0.060 mmol), diisopropylcarbodiimide (0.060 mmol), and HOBt (0.060 mmol). The reaction mixture was stirred at room temperature for 15 h. The mixture was loaded onto VarianTM SCX column, and washed with CH₃OH/CHCl₃ 1:1 (12 mL) and CH₃OH (12 mL). Product was eluted off using 2 N NH₃ in CH₃OH (5 mL) and concentrated to afford $4-[\{N-(3-\text{bromo}-4-\text{methylbenzoyl})\text{ glycyl}\}$ aminomethyl]-1-(4-chlorobenzyl) piperidine (Compound No. 1113) (16.1 mg, 65%): The purity was determined by RPLC/MS (95%); ESI/MS m/e 494.0 (C₂₃H₂₇BrClN₃O₂).

Examples 1549-1619.

5

10

15

20

The compounds of this invention were synthesized pursuant to methods of Example 1548 using the corresponding reactant respectively. Preparative TLC, if needed, afforded the desired material. The ESI/MS data and yields are summarized in Table 29.

Compound No. 1422 was obtained as byproduct of Compound No. 1418: 5.6 mg, 25% yield; ESI/MS m/e 447.2 ($C_{22}H_{27}ClN_4O_2S$).

Table 29

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 1549	1114	C ₂₂ H ₂₄ BrClFN ₃ O ₂	498.0	20.2	81
Example 1550	1115	C ₂₂ H ₂₄ Cl ₂ FN ₅ O ₂	452.2	18.6	82
Example 1551	1116	C23H27ClIN3O2	539.1	21.9	81
Example 1552	1117	C23H27C1N4O4	459.2	18.7	81

Example 1553		C ₂₃ H ₂₇ BrClN ₃ O ₂	494.0	22.1	90
Example 1554	1188	C ₂₄ H ₂₇ ClN ₄ O ₃	455.2	17.2	76
Example 1555	1189	C ₂₅ H ₂₉ ClN ₄ O ₃	469.2	21.1	90
Example 1556	1190	C ₂₂ H ₂₆ C1FN ₄ O ₂	433.2	20.4	94
Example 1557	1241	C ₂₃ H ₂₄ Cl ₂ F ₃ N ₃ O ₂	502.0	22.5	90
Example 1558	1242	C ₂₃ H ₂₇ ClFN ₃ O ₂	432.2	21.2	98
Example 1559	1243	C ₂₃ H ₂₇ Cl ₂ N ₃ O ₂	448.0	21.6	96
Example 1560	1244	C ₂₂ H ₂₆ ClIN ₄ O ₂	541.0	26.4	98
Example 1561	1245	C22H25ClF2N4O2	451.0	21.3	94
Example 1562	1246	C21H27ClN4O2	403.2	19.4	96
Example 1563	1247	C ₂₈ H ₃₀ ClN ₃ O ₂ S	524.0	24.7	94
Example 1564	1248	C ₂₂ H ₂₅ ClN ₄ O ₅	461.0	20.7	90
Example 1565	1282	C ₂₅ H ₂₆ ClF ₃ N ₄ O ₃	523.2	25.0	96
Example 1566	1283	C ₂₃ H ₂₇ Cl ₂ N ₃ O ₃	464.2	12.2	53
Example 1567	1284	C ₂₂ H ₂₅ BrClN ₃ O ₃	496.0	24.1	97
Example 1568	1285	C ₂₂ H ₂₅ Cl ₂ N ₃ O ₃	450.2	21.8	97
Example 1569	1342	C ₂₂ H ₂₄ BrCl ₂ N ₃ O ₂	514.0	27.2	quant
Example 1570	1343	C ₂₃ H ₂₇ Cl ₂ N ₃ O ₂	448.0	21.4	95
Example 1571	1344	C ₂₂ H ₂₄ Cl ₂ IN ₃ O ₂	560.0	27.0	96
Example 1572	1345	$C_{23}H_{28}ClN_3O_2$	430.2	23.8	quant
Example 1573	1346	C ₂₂ H ₂₅ ClIN ₃ O ₅	542.0	29.4	quant
Example 1574	1350	C ₂₁ H ₂₆ ClN ₃ O ₂ S	420.0	13.0	62
Example 1575	1354	C24H28BrClN4O5	537.2	5.2	19
Example 1576	1358	C ₂₃ H ₂₆ ClN ₅ O ₂	440.2	21.8	99
Example 1577	13,83	C23H24Cl2F3N3O2	502.0	20.0	80
Example 1578	1384	C ₂₀ H ₂₃ BrClN ₃ O ₂ S	486.0	21.0	87
Example 1579	1385	C28H30ClN3O4S	540.2	23.8	88
Example 1580	1386	C28H30ClN3O2	476.0	20.0	84
Example 1581	1414	C24H28Cl2N4O3	491.0	0.8	3
Example 1582	1418	C ₂₃ H ₂₆ ClN ₅ O ₂ S	472.0	10.4	44
Example 1583	1436	C29 H30 C1 N3 O3	504.2	26.8	quant
Example 1584	1600	C23 H26 C1 F3 N4 O2	483.2	16.5	68
Example 1585	1601	C23 H26 C1 F3 N4 O3	499.0	20.0	80
Example 1586	1602	C21 H24 Br Cl N4 O2	481.0	18.1	75
Example 1587	1603	C21 H24 C12 N4 O2	435.0	5.5	25
Example 1588	1604	C27 H30 Cl N3 O3	492.0	18.6	76
Example 1589	1605	C21 H27 C1 N4 O2	415.2	18.1	87
Example 1590	1609	C23 H25 N3 O2 S	500.0	18.3	73
Example 1591	1659	C22 H26 C12 N4 O2	449.0	366.0	83
Example 1592	1664	C24 H29 F3 N4 O2 S	495.2	13.7	55
	<u> </u>	<u> </u>	<u> </u>		·

					
Example 1593		C24 H29 F3 N4 O3 S	511.2	14.9	58
Example 1594	1666	C23 H28 F2 N4 O2 S	463.2	12.9	56
Example 1595	1667	C22 H27 Br2 N3 O3	542	26.1	96
Example 1596	1668	C24 H30 F2 N4 O2	445	22.9	quant
Example 1597	1669	C24 H31 F N4 O2	427	24.0	quant
Example 1598	1670	C24 H31 I N4 O2	535	28.1	quant
Example 1599	1671	C25 H31 F3 N4 O3	493	26.8	quant
Example 1600	1672	C25 H31 F3 N4 O2	. 478	24.7	quant
Example 1601	1673	C24 H29 Br Cl N3 O2	508	24.9	98
Example 1602	1674	C20 H22 Br2 F N3 O3	532	25.6	96
Example 1603	1675	C22 H25 F3 N4 O2	435	21.5	99
Example 1604	1676	C22 H26 F2 N4 O2	417	21.4	quant
Example 1605	1677	C22 H26 Br F N4 O2	479	23.4	98
Example 1606	1678	C22 H26 F I N4 O2	525	27.4	quant
Example 1607	1679	C22 H26 C1 F N4 O2	433	22.4	quant
Example 1608	1680	C23 H26 F4 N4 O3	483	25.5	quant
Example 1609	1681	C23 H26 F4 N4 O2	467	23.2	99 .
Example 1610	1682	C23 H26 Br Cl F N3 O	498	24.2	98
Example 1611	1683	C27 H28 Br2 N4 O4	633	31.8	quant
Example 1612	1684	C29 H31 F2 N5 O3	536	28.3	quant
Example 1613		C29 H32 F N5 O3	518	31.1	quant
Example 1614	1686	C29 H32 Br N5 O3	578	29.6	quant
Example 1615	1687	C29 H32 I N5 O3	626	32.4	quant
Example 1616	1688	C29 H32 C1 N5 O3	534	28.2	quant
Example 1617	1689	C30 H32 F3 N5 O4	584	31.7	quant
Example 1618	1690	C30 H32 F3 N5 O3	568	30.6	quant
Example 1619	1691	C29 H30 Br Cl N4 O3	599	31.4	quant
					

For example, Compound 1245 and 1600 showed the following NMR spectra. Compound No. 1245: 1 H NMR (270 MHz, CDCl₃) δ 1.20-1.97 (m, 7 H), 2.80-2.86 (m, 2 H), 3.19 (t, J = 6.5 Hz, 2 H), 3.43 (s, 2 H), 4.02 (d, J = 5.3 Hz, 2 H), 5.52 (br s, 2 H), 6.44 (d, J = 11.9, 6.6 Hz, 1 H), 7.02 (br s, 1 H), 7.21-7.32 (m, 5 H).

Compound No. 1600: ${}^{1}H$ NMR (270 MHz, CDCl₃) δ 1.25-1.97 (m, 9 H), 2.82-2.87 (m, 2 H), 3.21 (t, J=6.5 Hz, 2 H), 3.44 (s, 2 H), 4.06 (d, J=5.1 Hz, 2 H), 5.98 (br s, 1 H), 6.71 (d, J=8.3 Hz, 1 H), 6.87 (br s, 1 H), 7.26 (s, 4 H), 7.43 (dd, J=5.9 Hz, 1 H), 7.64 (s, 1 H).

Example 1620: Preparation of 1-(4-Chlorobenzyl)-4-[{N-(4-

isopropylphenylsulfonyl)glycyl}aminomethyl]piperidine (Compound No. 869).

A solution of 1-(4-chlorobenzyl)-4-{(glycylamino)methyl}piperidine CHCl₃ (2 mL) was treated (14.8 0.05 mmol) in resin (28 mq, 2.8 mmol/q), (piperidinomethyl)polystyrene isopropylbenzenesulfonyl chloride (1.5 equiv.) and stirred at 25 °C for 16 h. (Aminomethyl) polystyrene was added to scavenge the residual sulfonyl chloride and the reaction mixture was stirred at 25 °C for 16 h. Filtration and afforded 1-(4-chlorobenzyl)-4-{{(4concentration isopropylphenylsulfonyl)glycyl}aminomethyl]piperidine (compound No. 869) (22.1 mg, 92%): The purity was determined by RPLC/MS (86%); ESI/MS m/e 478 (M*+H, $C_{24}H_{32}ClN_3O_3S$).

Examples 1621-1627.

The compounds of this invention were synthesized pursuant to methods of Example 1620 using the corresponding reactant respectively. The ESI/MS data and yields are summarized in Table 30.

Table 30

	Compound No.	Molec	ular	F (rmu	ıla		ESI/MS m/e	Yield (mg)	Yield (%)
Example 1621	865	C22 H28	Cl	N3	03	s		450	16.2	72
Example 1622	866	C22 H25	Cl	F3	ΝЗ	03	S	504	8.8	35
Example 1623	867	C23 H24	Cl	F6	N3	03	S	572	8.0	28
Example 1624	868	C23 H30	Cl	N3	03	S		464	9.6	41
Example 1625	870	C22 H28	C1	N3	03	S		450	.8.8	39
Example 1626	871	C25 H34	Cl	ΝЗ	03	S	_	492	11.1	45
Example 1627	872	C21 H26	Cl	N3	03	S		436	9.6	44

20

25

10

Example 1628: Preparation of 1-(4-Chlorobenzyl)-4-[{2-(3-(4-trifluoromethylphenyl)ureido}acetylamino}methyl]piperidine (Compound No. 852).

A solution of 1-(4-chlorobenzyl)-4-((glycylamino)methyl)piperidine (14.8 ma. 0.05 mmol) CHCl₃ (2 mL) was treated with (piperidinomethyl)polystyrene resin (28 mg, 2.8 mmol/g), (trifluoromethyl)phenyl isocyanate (1.3 equiv.) and stirred at 25 °C for 16 h. (Aminomethyl) polystyrene was added to scavenge the residual isocyanate and the reaction mixture was stirred at 25 °C for 16 h. Filtration and concentration

5

Examples 1629-1641.

The compounds of this invention were synthesized pursuant to methods of Example 1628 using the corresponding reactant respectively. The ESI/MS data and yields are summarized in Table 31.

10

15

Table 31

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 1629	851	C23 H26 Cl F3 N4 O2	483	13.2	55
Example 1630	853	C22 H27 Cl N4 O2	416	8.5*	32
Example 1631	854	C23 H29 Cl N4 O2	429	11.4*	42
Example 1632	855	C23 H29 Cl N4 O2	429	10.1*	37
Example 1633	856	C24 H29 Cl N4 O3	457	10.3*	36
Example 1634	857	C23 H29 C1 N4 O3	445	10.9*	39
Example 1635	858	C23 H29 C1 N4 O3	445	8.6*	31
Example 1636	859	C22 H26 C12 N4 O2	449	11.0*	39
Example 1637	860	C23 H26 Cl N5 O2	440	9.2*	33
Example 1638	861	C22 H27 Cl N4 O S	431	13.3	62
Example 1639	862	C23 H29 C1 N4 O S	445	15.3	69
Example 1640	863	C23 H29 C1 N4 O2 S	461	14.7	64
Example 1641	864	C23 H29 Cl N4 O2 S	461	13.1	57

^{*}Yield of TFA salt.

Example 1642: Preparation of 1-(4-Chlorobenzyl)-4-[{N-(3-ethoxybenzoyl)-D-phenylalanyl}aminomethyl]piperidine (Compound No. 2091).

A solution of 1-(4-chlorobenzyl)-4-(aminomethyl)piperidine (100 mg) in CHCl₃ (3 mL) was treated with Et₃N (0.090 mL), N-(tert-butoxycarbonyl)-p-phenylalanine (122 mg), EDCI (89 mg) and HOBt (62 mg). The reaction mixture was stirred at room temperature for 17 h. The reaction mixture was washed with 1 N aqueous NaOH solution (2 mL x 2) and brine (2 mL). The organic layer was dried and concentrated to afford $1-(4-chlorobenzyl)-4-[{N-(tert-butoxycarbonyl)-p-phenylalanyl)aminomethyl)piperidine.$

The resulting 1-(4-chlorobenzyl)-4-[{N-(tert-butoxycarbonyl)-p-

phenylalanyl)aminomethyl]piperidine was dissolved in methanol (5 mL) and 4 N $\,$ HCl in dioxane (1.5 mL) was added. The solution was stirred at room temperature for 19 h and concentrated.

A solution of the resulting material and 3-ethoxybenzoic acid (80 mg, 0.48 mmol) in CHCl₃ (1 mL) was treated with Et₃N (0.090 mL), EDCI (90 mg) and HOBt (68 mg). The reaction mixture was stirred at room temperature for 11 h. The reaction mixture was washed with 1 N aqueous NaOH solution (1.5 mL x 2) and brine (1.5 mL). The organic layer was dried and concentrated. Column chromatography (SiO₂, CH₂Cl₂/MeOH = 95 : 5) afforded 1-(4-chlorobenzyl)-4-[{N-(3-ethoxybenzoyl)-p-phenylalanyl}aminomethyl]piperidine (Compound No. 2091) (183.5 mg, 82%): The purity was determined by RPLC/MS (99%); ESI/MS m/e 534.0 (M*+H, C₃₁H₃₆ClN₃O₃).

Examples 1643-1657.

The compounds of this invention were synthesized pursuant to methods of Example 1642 using the corresponding reactant respectively. The ESI/MS data and yields are summarized in Table 32.

Table 32

20

5

10

15

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 1643	2092	C33 H37 C1 N4 O3	572.8	152.9	64
Example 1644	2093	C27 H36 Cl N3 O3 S	518.0	177.4	82
Example 1645	2094	C29 H34 C1 N3 O3 S	539.9	164.4	73
Example 1646	2095	C28 H38 Cl N3 O3	500.0	139.1	66
Example 1647	2096	C31 H42 C1 N3 O3	540.0	161.7	71
Example 1648	2097	C27 H36 C1 N3 O3	485.8	157.8	78
Example 1649	2098	C31 H35 C12 N3 O3	567.9	172.2	72
Example 1650	2099	C30 H34 C1 N3 O3	519.8	144.7	66
Example 1651	2100	C32 H38 Cl N3 O4	564.0	181.5	77
Example 1652	2101	C38 H42 C1 N3 O4	639.9	192,3	72
Example 1653	2103	C33 H40 C1 N3 O4	577.8	159.9	66
Example 1654	2104	C28 H36 Cl N3 O5	530.1	99.7	45
Example 1655	2115	C27 H36 C1 N3 O3	486.2	122.9	60
Example 1656	2116	C28 H38 C1 N3 O3	500.1	118.3	57
Example 1657	2117	C28 H34 C1 N5 O3	524.1	98.3	45

Reference Example 29: Preparation of 1-(tert-Butoxycarbonyl)-4-[{N-

(3-(trifluoromethyl)benzoyl)glycyl}aminomethyl]piperidine.

5

10

15

N-{3-(Trifluoromethyl)benzoyl}glycine (4.22 g, 17.0 mmol), EDCI (4.25 g, 22.1 mmol), 1-hydroxybenzotriazole hydrate (2.99 g, 22.1 mmol) and Et₅N (1.72 g) were added to a solution of 1-(tert-butoxycarbonyl)-4-(aminomethyl)piperidine (4.03 g) in dry CH_2Cl_2 (200 mL). The reaction mixture was stirred at 25 °C for 20 h. H_2O (100 mL) was added to the reaction mixture and the mixture was extracted with CH_2Cl_2 (2 x 50 mL). The combined extracts were washed with H_2O (2 x 50 mL), brine (50 mL) and dried (MgSO₄). The solvent was removed under reduced pressure to afford an yellow oil which was purified by column chromatography (SiO₂, 70% EtOAc-hexane) to give 1-(tert-butoxycarbonyl)-4-[{N-(3-

(trifluoromethyl) benzoyl) glycyl) aminomethyl] piperidine as a white solid (6.39 g, 85%): 1 H-NMR (CDCl₃, 300 MHz) δ 1.4 (s, 9 H), 1.0-1.8 (m, 5 H), 2.6-2.8 (m, 2 H), 3.15-3.3 (m, 2 H), 4.0-4.3 (m, 4 H), 6.6-6.7 (m, 1H), 7.64 (s, 1 H), 7.60 (dd, 1 H, J = 7.2, 7,2 Hz), 7.79 (d, 1 H, J = 7,2 Hz), 8.0 (d, 1 H, J = 7.2 Hz), 8.11 (s, 1 H); The purity was determined by RPLC/MS (97%); ESI/MS m/e 444.3 (M⁺+H, C₂₁H₂₈F₃N₃O₄).

Reference Example 30: Preparation of 4-[{N-(3-20 (Trifluoromethyl)benzoyl)glycyl}aminomethyl]piperidine.

of 1-(tert-butoxycarbonyl)-4-[{Nsolution (3-(trifluoromethyl)benzoyl)glycyl)aminomethyl]piperidine (2.29 g, 5.16 mmol) in CH_3OH (40 mL) was treated with 1 N HCl-Et₂O (55 mL). The reaction mixture was stirred at 25 °C for 15 h and the solvent was removed under reduced pressure. 2 N aqueous NaOH solution (100 mL) was added to the reaction mixture and the mixture was extracted with EtOAc (3 x 100 mL). The combined extracts were washed with brine and dried (K_2CO_3) . The solvent was removed under reduced pressure to afford a white solid which was purified by column chromatography (SiO2, CH3OH/CH2Cl2/Et3N 7/6/1)) give $4 - [\{N - \{3 - \}\}]$ (trifluoromethyl)benzoyl)glycyl)aminomethyl]piperidine as a white solid (1.27 g, 72%): The purity was determined by RPLC/MS (98%); ESI/MS m/e 344.1 (M^* +H, $C_{16}H_{20}F_3N_3O_2$).

Example 1658: Preparation of 1-{3-(Trifluoromethoxy)benzyl}-4-[{N-35 (3-(trifluoromethyl)benzoyl)glycyl}aminomethyl]piperidine (Compound No. 927).

A solution of 4-[{N-(3-(trifluoromethyl)benzoyl)glycyl}aminomethyl]piperidine (19.9 mg, 0.058 mmol) in CH₃CN (1.0 mL) and (piperidinomethyl)polystyrene (55 mg, 2.7 mmol base/g resin)

were added to a solution of 3-(trifluoromethoxy) benzyl bromide (12.3 mg, 0.048 mmol) in CH₃CN (1.0 mL). The reaction mixture was stirred at 60 °C for 2.5 h. Phenyl isocyanate (6.9 mg, 0.048 mmol) was added to the cooled reaction mixture and the mixture was stirred at 25 °C for 1 h. The reaction mixture was loaded onto VarianTM SCX column and washed with CH₃OH (20 mL). Product was eluted off using 2 N NH₃ in CH₃OH (6 mL) and concentrated to afford 1-{3-(trifluoromethoxy)benzyl}-4-[{N-(3-(trifluoromethyl)benzoyl)glycyl}aminomethyl]piperidine (compound No. 927) (22.8 mg, 91%) as a pale yellow oil: The purity was determined by RPLC/MS (99%); ESI/MS m/e 518.1 (M*+H, $C_{24}H_{25}F_6N_3O_3$).

Examples 1659-1710.

10

The compounds of this invention were synthesized pursuant to methods of Example 1658 using the corresponding reactant respectively. The ESI/MS data and yields are summarized in Table 33.

Table 33

	Compound No.		ESI/MS m/e		
Example 1659	875	C23 H26 F3 N3 O2	434	6.3	40
Example 1660	876	C23 H25 Br F3 N3 O2	512	4.3	23
Example 1661	877	C24 H25 F3 N4 O2	459	11.3	68
Example 1662	878	C23 H25 F3 N4 O4	479	8.3	48
Example 1663	884	C25 H29 F3 N4 O3	491	10.8	61
Example 1664	885	C24 H28 F3 N3 O4 S	512	9.0	49
Example 1665	886	C23 H25 F4 N3 O2	452	12.7	78
Example 1666	887	C24 H25 F6 N3 O2	502	13.9	77
Example 1667	888	C23 H26 F3 N3 O3	450	11.5	71
Example 1668	889	C29 H30 F3 N3 O2	510	12.4	68
Example 1669	890	C27 H28 F3 N3 O2	484	12.0	69
Example 1670	891	C23 H24 C12 F3 N3 O2	502	11.4	63
Example 1671	892	C24 H28 F3 N3 O3	464	11.7	70
Example 1672	893	C24 H26 F3 N5 O5	522	13.9	74
Example 1673	894	C26 H32 F3 N3 O3	492	11.3	64
Example 1674	895	C24 H28 F3 N3 O2	448	4.8	30
Example 1675	896	C24 H25 F3 N4 O2	459	17.5	quant
Example 1676	897	C24 H26 F3 N3 O4	478	9.2	57
Example 1677	898	C24 H26 F3 N3 O4	478	8.9	55

Example 1678	899	C24 H28 F3 N3 O3	1		
Example 1679			464	13.7	82
_		C25 H28 F3 N3 O4	492	18.6	quant
Example 1680		C29 H30 F3 N3 O2	510	13.7	75
Example 1681	902	C23 H24 F3 N5 O6	524	12.6	67
Example 1682	903	C25 H30 F3 N3 O4	494	14.0	79
Example 1683	906	C25 H30 F3 N3 O2	462	11.2	67
Example 1684	907	C31 H34 F3 N3 O2	538	19.6	75
Example 1685	908	C30 H31 F3 N4 O3	553	30.4	76
Example 1686	909	C30 H31 F3 N4 O3	553	12.6	63
Example 1687	910	C23 H24 C12 F3 N3 O2	502	11.0	61
Example 1688	911	C23 H25 C1 F3 N3 O2	468	20.2	89
Example 1689	912	C23 H24 Br2 F3 N3 O2	590	20.2	95
Example 1690	913	C24 H28 F3 N3 O3	464	12.6	76
Example 1691	914	C30 H32 F3 N3 O3	540	13.9	72
Example 1692	915	C24 H28 F3 N3 O3	464	8.3	25
Example 1693	916	C22 H25 F3 N4 O2	435	2.5	8
Example 1694	917	C22 H25 F3 N4 O2	435	2.7	9
Example 1695	918	C26 H30 F3 N3 O4	506	3.9	22
Example 1696	919	C24 H28 F3 N3 O2	448	15.9	99
Example 1697	920	C24 H25 F6 N3 O3	518	20.3	81
Example 1698	921	C27 H28 F3 N3 O2	484	15.5	89
Example 1699	922	C20 H26 F3 N3 O2	398	7.3	51
Example 1700	923	C29 H29 C1 F3 N3 O2	544	12.5	
Example 1701	928	C24 H25 F6 N3 O3	518	21.4	48
Example 1702	929	C24 H28 F3 N3 O2 S	480	23.7	86
Example 1703	930	C24 H28 F3 N3 O2	448		quant
Example 1704	931	C24 H25 F3 N4 O2	459	21.3	99
Example 1705	932	C23 H24 C1 F3 N4 O4		21.4	97
Example 1706	933	C24 H28 F3 N3 O2	513	15.6	63
Example 1707	934	C22 H25 F3 N4 O2	448	16.6	77
Example 1708	935		435	18.0	43
Example 1709	936		479	15.1	65
Example 1710	1615	C23 H25 F3 N4 O4	479	15.4	67
	1012	C24 H25 F6 N3 O2 S	534.2	26.3	99

Example 1711: Preparation of $1-\{4-(Dimethylamino)benzyl\}-4-\{N-(3-(trifluoromethyl)benzoyl)glycyl\}$ aminomethyl]piperidine (Compound No. 937).

A solution of 4-[(N-(3-5)(1.0 mL) m] solution of 4-[(N-(3-5)(1.0 m) m]) of 4-[(N-(3-5)(1.0 m) m])

(dimethylamino) benzaldehyde (30.4 mg, 0.204 mmol) in 5 % CH₃COOH/CH₃OH (1.0 mL). The reaction mixture was stirred at 60 °C for 19 h. The solvent was evaporated to afford a solid. CH₃CN (2.0 mL) and phenyl isocyanate (6.9 mg, 0.048 mmol) were added to the solid and the mixture was stirred at 25 °C for 1 h. The reaction mixture was loaded onto Varian^{TN} SCX column and washed with CH₃OH (20 mL). Product was eluted using 2 N NH₃-CH₃OH (6 mL) and the eluant was concentrated to afford $1-(4-(\text{dimethylamino}) \text{benzyl})-4-[\{N-(3-$

(trifluoromethyl)benzoyl)glycyl}aminomethyl]piperidine (compound No. 937) as a pale yellow oil (13.5 mg, 49%): The purity was determined by RPLC/MS (87%); ESI/MS m/e 477.3 (M^++H , $C_{25}H_{31}F_3N_4O_2$).

Examples 1712-1729.

10

15

The compounds of this invention were synthesized pursuant to methods of Example 1711 using the corresponding reactant respectively. Preparative TLC (SiO_2) , if needed, afforded the desired material. The ESI/MS data and yields are summarized in Table 34.

Table 34

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 1712	879	C24 H26 F3 N3 O4	478	13.0	62
Example 1713	880	C24 H26 F3 N3 O4	478	16.3	78
Example 1714	881	C23 H25 Br F3 N3 O2	512	11.4	51
Example 1715	882	C29 H30 F3 N3 O3	526	13.4	58
Example 1716	883	C23 H25 Cl F3 N3 O2	468	7.9	39
Example 1717	904	C23 H26 F3 N3 O3	450	3.3	17
Example 1718	905	C21 H23 F3 N4 O4 S	485	27.7	98
Example 1719	938	C23 H24 Cl F4 N3 O2	486	8.6	30
Example 1720	939	C23 H24 Cl F3 N4 O4	513	11.0	37
Example 1721	940	C23 H26 F3 N3 O3	450	5.5	21
Example 1722	941	C24 H24 C1 F6 N3 O2	536	11.2	36
Example 1723	987	C30 H32 F3 N3 O2	524	17.5	76
Example 1724	1449	C25 H30 F3 N3 O2	462	21.6	80
Example 1725	1450	C26 H32 F3 N3 O2	476	23.5	85
Example 1726	1452	C27 H35 F3 N4 O2	505	5.1	17
Example 1727	1453	C26 H32 F3 N3 O3	492	22.0	77
Example 1728	1454	C25 H30 F3 N3 O3	478	21.4	77
Example 1729	1456	C25 H28 F3 N3 O4	492	23.8	83

Example 1730: Preparation of 1-{3-Hydroxy-4-methoxybenzyl}-4-[{N-(3-(trifluoromethyl)benzoyl)glycyl}aminomethyl]piperidine (Compound No. 1452).

To solution (trifluoromethyl)benzoyl)glycyl}aminomethyl]piperidine (20.0 mg, 0.058 mmol) 5 and 3-hydroxy-4-methoxybenzaldehyde (33 mg)in 5 % CH $_3$ COOH/CH $_3$ OH (1.0 mL) was added $NaBH_3CN$ (16.5 mg)in 5 % CH_3COOH/CH_3OH (1.0 mL). The reaction mixture was stirred at 60 °C for 15 h. The reaction mixture was loaded onto Varian TM SCX column and washed with CH_3OH (15 mL). Product was eluted using 2 N NH_3 - CH_3OH (5 mL) and the eluant was concentrated to afford 1-{3-hydroxy-4-methoxybenzyl}-4-[{N-1}] (3-(trifluoromethyl)benzoyl)glycyl)aminomethyl]piperidine (Compound No. 1452) (25.8 mg, 92%): The purity was determined by RPLC/MS (91%); ESI/MS m/e 480 (M^{+} H, $C_{24}H_{28}F_3N_3O_4$).

15 Examples 1731-1733.

The compounds of this invention were synthesized pursuant to methods of Example 1730 using the corresponding reactant respectively. The ESI/MS data and yields are summarized in Table 35.

20

25

30

10

Table 35

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 1731		C24 H28 F3 N3 O4	480	24.0	86
Example 1732		C27 H34 F3 N3 O2	490.2	23.6	96
Example 1733	1649	C26 H32 F3 N3 O2	476.2	23.1	97

Example 1734: Preparation ٥f 1-(4-Benzylbenzyl)-4-[{N-(3-(trifluoromethyl)benzoyl)glycyl}aminomethyl]piperidine (Compound No. 926).

A solution of methanesulfonyl chloride (4.2 mg, 0.037 mmol) in CHCl₃ (1.0 mL) and (piperidinomethyl)polystyrene (54 mg, 2.7 mmol base/g resin) were added to a solution of 4-(benzyl)benzyl alcohol (8.7 mg, 0.044 mmol) in CHCl₃ (1.0 mL). The reaction mixture was stirred at 25 $^{\circ}\text{C}$ for 15 h. A solution of 4-[$\{N-(3-(\text{trifluoromethyl})\text{benzoyl})\text{glycyl}\}$ aminomethyl]piperidine (15.1 mg, 0.044) mmol) in CH_3CN (1.0 mL) and KI (2 mg) were added to the reaction mixture and the mixture was stirred at 65 °C for 5 h. Phenyl isocyanate (5.2 mg) was added to the cooled reaction mixture and the mixture was stirred at 25 °C for 1 h. The reaction mixture was loaded onto Varian TH SCX column and washed with CH $_3$ OH

(20 mL). Product was eluted off using 2 N NH₃ in CH₃OH (6 mL) and concentrated to afford 1-(4-benzylbenzyl)-4-[(N-(3-(trifluoromethyl)benzoyl)glycyl)aminomethyl]piperidine (compound No. **926**) as a pale yellow oil (5.6 mg, 29%): The purity was determined by RPLC/MS (94%); ESI/MS m/e 524.1 (M⁺+H, C₃₀H₃₂F₃N₃O₂).

Reference Example 31: Preparation of 4-[{(N-(Benzyloxycarbonyl)glycyl)amino}methyl]-1-(text-butoxycarbonyl)piperidine.

10

15

25

A solution of 4-(aminomethyl)-1-(tert-butoxycarbonyl)piperidine (3.54 g, 16.5 mmol) in CH_2Cl_2 (80 mL) was treated with Et_3N (2.8 mL, 20 mmol), N-(benzyloxycarbonyl)glycine (3.77 g, 18 mmol), EDCI (3.45 g, 18 mmol) and HOBt (2.43 g, 18 mmol). After the reaction mixture was stirred at room temperature for 15 h, 2 N aqueous NaOH solution (100 mL) was added. The organic layer was separated, and the aqueous layer was extracted with dichloromethane (100 mL x 3). The combined organic layers were dried over anhydrous sodium sulfate, filtered, and concentrated. Column chromatography (SiO₂, ethyl acetate) afforded the desired 4-[(N-(Benzyloxycarbonyl)glycyl)amino)methyl]-1-(tert-butoxycarbonyl)piperidine (6.27 g, 94%) as an amorphous solid.

20 Reference Example 32: Preparation of 4-{(Glycylamino)methyl}-1-(text-butoxycarbonyl)piperidine.

A solution of 4-{{(N-(benzyloxycarbonyl)glycyl)amino)methyl}-1-(tert-butoxycarbonyl)piperidine (6.26 g, 15.4 mmol) in methanol (100 mL) was "hydrogenated at 1 atm in the presence of 5% palladium on charcoal (620 mg) at "room temperature for 7 h. The catalyst was removed by filtration through Celite and the combined filtrate was concentrated to afford 4-{(glycylamino)methyl}-1-(tert-butoxycarbonyl)piperidine (3.84 g, 92%) as a solid.

30 Reference Example 33: Preparation of 4-[{(N-(2-Amino-5-chlorobenzoyl)glycyl)amino)methyl]-1-(tert-butoxycarbonyl)piperidine.

A solution of $4-\{(glycylamino\}methyl\}-1-(tert-butoxycarbonyl)$ piperidine (1.33 g, 4.90 mmol) in CH_2Cl_2 (25 mL) was treated with Et_3N (0.75 mL, 5.4 mmol), 2-amino-5-chlorobenzoic acid (840 mg, 4.9 mmol), EDCI (940 mg, 4.9 mmol) and HOBt (660 mg, 4.9 mmol). After the reaction mixture was stirred at room temperature for 3 h, 2 N aqueous NaOH solution (20 mL) was added. The organic layer was separated, and the aqueous layer was extracted with dichloromethane (20 mL x 3). The combined organic layers were dried over

anhydrous sodium sulfate, filtered, and concentrated. Column chromatography (SiO_2 , ethyl acetate) afforded the desired $4-[\{(N-(2-amino-5-chlorobenzoyl)glycyl)amino\}methyl]-1-(tert-butoxycarbonyl)piperidine (1.63 g, 78%) as a solid.$

5

10

15

Reference Example 34: Preparation of $4-[{(N-(2-Amino-5-chlorobenzoyl)glycyl)amino}methyl]piperidine.$

To solution of 4-[{(N-(2-amino-5chlorobenzoyl)glycyl)amino}methyl]-1-(tert-butoxycarbonyl)piperidine (1.63g, 3.84 mmol) in methanol (20 mL) was added 4 N HCl in dioxane (9.5 mL). The solution was stirred at room temperature for 6 h. The reaction mixture was concentrated and 2 N aqueous NaOH solution (20 mL) was added. The mixture was extracted with dichloromethane (20 mL \times 3), and the combined extracts were dried over sodium sulfate, filtered and concentrated to give 4-[{(N-(2-amino-5chlorobenzoyl)glycyl)amino}methyl]piperidine (1.19 g, 95%): ¹H NMR (CDCl₃, 270 MHz) δ 1.10-1.76 (m, 4 H), 2.55 (td, J = 2.4 and 12.2 Hz, 2 H), 3.00-3.10 (m, 2 H), 3.17 (t, J = 6.2 Hz, 2 H), 3.48 (s, 2 H), 4.03 (d, J = 4.9 Hz, 2 H), 5.50(br. s, 2 H), 6.11-6.23 (m, 1 H), 6.60 (d, J=8.8 Hz, 1 H), 6.85-7.02 (m, 1 H), 7.15 (dd, J = 2.7 and 8.8 Hz, 1 H), 7.38 (d, J = 2.4 Hz, 1 H); ESI/MS m/e 325.2 $(C_{15}H_{21}ClN_4O_2)$.

 $4-[\{(N-(2-Amino-5-bromobenzoyl)glycyl)amino\}methyl]$ piperidine was also synthesized pursuant to methods of Reference Examples 32 and 33 using the corresponding reactant: 951 mg, 64% (2 steps). ESI/MS m/e 369.2 ($C_{15}H_{21}BN_4O_2$).

25

30

35

20

Example 1735: Preparation of $4-[{(N-(2-(tert-Butoxycarbonylamino)-4,5-difluorobenzoyl)glycyl)amino}methyl]-1-(4-chlorobenzyl)piperidine.$

A solution of 1-(4-chlorobenzyl)-4-{(glycylamino)methyl)piperidine dihydrochloride (738 mg, 2 mmol) in CH_2Cl_2 (20 mL) was treated with Et_3N (1.1 mL, 8 mmol), 2-(tert-butoxycarbonylamino)-4,5-difluorobenzoic acid (607 mg, 2.2 mmol), EDCI (422 mg, 2.2 mmol) and HOBt (337 mg, 2.2 mmol). After the reaction mixture was stirred at room temperature for 14 h, 0.6 N aqueous NaOH solution (50 mL) was added, and the mixture was extracted with dichloromethane (3 times). The combined organic layers were dried over anhydrous sodium sulfate, filtered, and concentrated. Column chromatography (SiO_2 , ethyl acetate then ethyl acetate/methanol 92/8) afforded the desired 4-[{(N-(2-(tertbutoxycarbonylamino)-4,5-difluorobenzoyl)glycyl)amino}methyl]-1-(4chlorobenzyl)piperidine (1.01 g, 92%): ESI/MS m/e 551.3 (M^++H , $C_{27}H_{35}ClF_2N_4O_4$).

PCT/US98/23254 WO 99/25686

4-[((N-(2-(tert-butoxycarbonylamino)-5trifluoromethylbenzoyl)glycyl)amino)methyl)-1-(4-chlorobenzyl)piperidine was also prepared pursuant to the above method using the corresponding reactant: 3.03 g, 82%; ESI/MS m/e 583.2 (M $^{\circ}$ +H, C₂₈H₃₄ClF₃N₄O₄).

5

10

of 4-[{(N-(2-Amino-5-Example 35: Preparation Reference trifluoromethylbenzoyl)glycyl)amino}methyl]piperidine.

1-(4-chlorobenzyl)-4-[((N-(2-amino-5suspension ٥f trifluoromethylbenzoyl)glycyl)amino}methyl]piperidine (447 mg, 0.93 mmol) and $Pd(OH)_2$ (60 mg, 0.23 mmol) in 5% $HCO_2H/methanol$ (10 mL) was stirred at 50 °C for 14 h. The Pd catalyst was filtered off through Celite, and the filtrate was concentrated. To the residue was added 1N aqueous NaOH solution (15 mL) and the mixture was extracted with ethyl acetate (30 mL \times 3). The combined extracts were dried over anhydrous sodium sulfate, filtered, and concentrated. Column 15 chromatography (SiO₂, AcOEt/MeOH/Et₃N = 70/25/5) gave 4-{((N-(2-amino-5trifluoromethylbenzoyl)glycyl)amino)methyl]piperidine (284 mg, 86%): ESI/MS m/e 359.0 $(M^{+}+H, C_{16}H_{21}F_3N_4O_2)$.

4-[{(N-(2-Amino-4,5-difluorobenzoyl)glycyl)amino}methyl]piperidine, 20 4-[(N-(2-(tert-Butoxycarbonylamino)-5-4-[{(N-(2-(tert-trifluoromethoxybenzoyl)glycyl)aminomethyl]piperidine, butoxycarbonylamino)-4,5-difluorobenzoyl)glycyl)amino)methyl]piperidine, 4-[{(N-(2-(tert-butoxycarbonylamino)-5trifluoromethylbenzoyl)glycyl)amino)methyl]piperidine were also prepared 25 pursuant to the above method using the corresponding reactant, respectively. 4-[{(N-(2-amino-4,5-difluorobenzoyl)glycyl)amino}methyl]piperidine:

4-[{N-(2-(tert-Butoxycarbonylamino)-5-

564 mg, 89%; ESI/MS m/e 327.2 (M+H, $C_{15}H_{20}F_2N_4O_2$).

trifluoromethoxybenzoyl)glycyl}aminomethyl]piperidine: quant; H NMR (CDCl3, 30 400 MHz) δ 1.10-1.25 (m, 2 H), 1.45-1.73 (m, 3 H), 1.51 (s, 9 H), 2.53-2.64 (m, 2 H), 3.04-3.13 (m, 2 H), 3.22 (t, J = 6.3 Hz, 2 H), 4.09 (d, J = 4.6 Hz, 2 H), 5.91 (br. s, 1 H), 7.08 (br. s., 1 H), 7.32 (d, J = 9.0 Hz, 1 H), 7.38 (s, 1 H), 8.43 (d, J = 9.0 Hz, 1 H).

4-[((N-(2-(tert-butoxycarbonylamino)-4,5-35 difluorobenzoyl)glycyl)amino)methyl]piperidine: 310 mg, 40%; ESI/MS m/e 427.3 $(M^++H, C_{20}H_{28}F_2N_4O_4)$.

4-[{(N-(2-(tert-butoxycarbonylamino)-5-

trifluoromethylbenzoyl)glycyl)amino}methyl]piperidine: 1.35 g, $57\hat{\epsilon}$; ESI/MS m/e 459.3 (M † +H, $C_{21}H_{29}F_3N_4O_4$).

Example 1736: Preparation of 4-[{N-(2-Amino-5-chlorobenzoyl)glycyl}aminomethyl]-1-(4-ethoxybenzyl)piperidine (Compound No. 1429) and 1-(4-Ethoxybenzyl)-4-[{N-(2-(4-ethoxybenzyl)amino-5-chlorobenzoyl)glycyl}aminomethyl]piperidine (Compound No. 1433).

Sodium cyanoborohydride (140 mmol) in methanol (0.4 mL) was added to a mixture of $4-[\{N-(2-\text{amino}-5-\text{chlorobenzoyl})\,\text{glycyl}\}\,\text{aminomethyl}]$ piperidine (0.10 mmol), 4-ethoxybenzaldehyde (0.10 mmol), acetic acid (0.050 mL), and methanol (1.6 mL). The reaction mixture was stirred at 60 °C for 14 h. The reaction mixture was loaded onto Varian SCX column and washed with CH₃OH (20 mL). Product was eluted using 2 N NH₃ in CH₃OH (6 mL) and concentrated. Preparative TLC (SiO2, AcOEt/CH3OH 5 : 1) afforded $4-[\{N-(2-\text{amino}-5-\text{chlorobenzoyl})\,\text{glycyl}\}\,\text{aminomethyl}]-1-(4-\text{ethoxybenzyl})\,\text{piperidine}$ (Compound No. 1429) and $1-(4-\text{ethoxybenzyl})-4-[\{N-(2-(4-\text{ethoxybenzyl}))\,\text{amino}-5-\text{chlorobenzoyl})\,\text{glycyl}\}\,\text{aminomethyl}]$ piperidine (Compound No. 1433).

Compound No. 1429: 4.5 mg, 20%: The purity was determined by RPLC/MS (95%); ESI/MS m/e 459.2 (M $^+$ +H, $C_{24}H_{31}ClN_4O_3$).

Compound No. 1433: 8.4 mg, 28%: The purity was determined by RPLC/MS (98%); ESI/MS m/e 593.2 ($M^{+}+H$, $C_{53}H_{41}C1N_4O_4$).

Examples 1737-1779.

5

10

15

20

The compounds of this invention were synthesized pursuant to methods of 25 Example 1736 using the corresponding reactant respectively. The ESI/MS data and yields are summarized in Table 36.

Table 36

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 1737	1430	C24 H29 Cl N4 O4	473.0	3.1	13
Example 1738	1431	C24 H31 Br N4 O3	505.2	5.8	23
Example 1739	1432	C24 H29 Br N4 O4	517.0	4.1	16
Example 1740	1434	C33 H41 Br N4 O6	637.2	9.7	30
Example 1741	1435	C24 H31 Cl N4 O2	443.2	9.7	44
Example 1742	1436	C25 H33 C1 N4 O2	457.2	12.5	55
Example 1743	1437	C25 H33 C1 N4 O3	473.2	9.4	40

Example 1744	1438	C24 H31 Br N4 O2	489.2	5.9	24
Example 1745	1439	C25 H33 Br N4 O2	503.2	15.2	61
Example 1746	1440	C25 H33 Br N4 O3	519.2	11.0	43
Example 1747	1441	C23 H29 Br N4 O2 S	507.2	9.3	37
Example 1748	1442	C33 H41 Cl N4 O2	561.4	6.8	24
Example 1749	1443	C35 H45 Cl N4 O2	589.4	9.8	33
Example 1750	1444	C35 H45 Cl N4 O4	621.4	9.4	30
Example 1751	1445	C33 H41 Br N4 O2	605.2	6.5	21
Example 1752	1446	C35 H45 Br N4 O2	635.2	10.7	34
Example 1753	1447	C35 H45 Br N4 O4	665.4	12.4	37
Example 1754	1448	C31 H37 Br N4 O2 S2	643.2	7.6	24
Example 1755	1457	C24 H32 C1 N5 O2	458.2	4.5	20
Example 1756	1458	C23 H29 C1 N4 O4	461.2	6.0	26
Example 1757	1459	C24 H32 Br N5 O2	504.0	6.8	27
Example 1758	1460	C23 H29 Br N4 O4	505.0	8.0	32
Example 1759	1461	C31 H37 C1 N4 O6	597.2	5.9	20
Example 1760	1462	C31 H37 Br N4 O6	643.2	6.0	19
Example 1761	1514	C26 H36 C1 N5 O2	486.2	5.5	23
Example 1762	1515	C23 H29 C1 N4 O4	463.0	5.8	25
Example 1763	1516	C26 H36 Br N5 O2	530.2	4.2	16
Example 1764	1517	C23 H29 Br N4 O4	505.0	6.5	26
Example 1765	1518	C31 H37 Cl N4 O6	597.2	4.3	14
Example 1766	1519	C31 H37 Br N4 O6	641.2	5.3	17
Example 1767	1570	C23 H29 Cl N4 O2 S	461.0	2.7	12
Example 1768	1571	C31 H37 C1 N4 O2 S2	597.2	4.9	16
Example 1769	1651	C37 H49 Br N4 O2	663.2	5.5	17
Example 1770	1652	C26 H35 Br N4 O2	515.2	6.0	23
Example 1771	1653	C35 H45 Br N4 O2	633.2	5.0	16
Example 1772	1654	C25 H33 Br N4 O2	501.0	6.2	25
Example 1773	1655	C37 H49 C1 N4 O2	617.4	5.6	18
Example 1774	1656	C26 H35 Cl N4 O2	471.2	5.9	25
Example 1775	1657	C35 H45 C1 N4 O2	589.2	4.6	16
Example 1776	1	C25 H33 C1 N4 O2	457.2	5.3	23
Example 1777	1785	C26 H33 F3 N4 O2	491.2	4.7	12.8
Example 1778	1786	C25 H29 F3 N4 O3	491.2	3.7	10.1
Example 1779	1804	C25 H32 F2 N4 O2	459.2	3.3	9.6
		<u> </u>		·	

Example 1780: Preparation of 4-[{N-(2-Amino-5-trifluoromethoxybenzoyl)glycyl}aminomethyl]-1-(4-isopropylbenzyl)piperidine

(Compound No. 1903).

To mixture of 4-[{N-(2-(tert-butoxycarbonylamino)-5trifluoromethoxy)benzoylglycyl}aminomethyl]piperidine (0.050 mmol), isopropylbenzaldehyde (0.060 mmol), NaBH3CN (0.15 mmol), and methanol (1.3 mL) was added acetic acid (0.050 mL). The reaction mixture was stirred at 60 $^{\circ}\text{C}$ for 8 h. The mixture was cooled to room temperature, loaded onto Varian™ SCX column, and washed with CH₃OH (10 mL). Product was eluted off using 2 N NH₃ in CH3OH (5 mL) and concentrated. To the resulting material was added 4 N HCl in 1,4-dioxane (2 mL) and the solution was stirred overnight at room temperature. Concentration and preparative TLC gave 4-[{N-(2-amino-5trifluoromethoxybenzoyl)glycyl}aminomethyl]-1-(4-isopropylbenzyl)piperidine (Compound No. 1903) (6.6 mg, 26%): The purity was determined by RPLC/MS (93%); ESI/MS m/e 507 (M^++H , $C_{26}H_{33}F_3N_4O_3$).

15 Examples 1781-1783.

The compounds of this invention were synthesized pursuant to methods of Example 1780 using the corresponding reactant respectively. The ESI/MS data and yields are summarized in Table 37.

20

25

30

10

Table 37

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 1781	1904	C26 H33 F3 N4 O3	507	9.6	37.9
Example 1782	1917	C25 H31 F3 N4 O5	525.2	1.2	3.1
Example 1783	1918	C24 H29 F3 N4 O4	495.2	2.8	7.5

Example 1784: Preparation of 4-[{N-(2-Amino-4,5-difluorobenzoyl)glycyl}aminomethyl]-1-(5-bromo-2-ethoxybenzyl)piperidine (Compound No. 2052).

To a mixture of $4-[\{N-(2-(tert-butoxycarbonylamino)-4,5-diffluorobenzoyl)glycyl\}$ aminomethyl]piperidine (0.050 mmol), 5-bromo-2-ethoxybenzaldehyde (0.15 mmol), methanol (1.2 mL), and acetic acid (0.030 mL) was added NaBH₃CN (0.25 mmol) in methanol (0.50 mL). The reaction mixture was stirred at 50 °C for 13 h. The mixture was cooled to room temperature, loaded onto VarianTM SCX column, and washed with CH₃OH (5 mL x 3). Product was eluted off using 2 N NH₃ in CH₃OH (5 mL) and concentrated. To the resulting material were added dichloromethane (1 mL) and trifluoroacetic acid (TFA) (0.50 mL) and

the solution was stirred at room temperature for 10 min. The reaction mixture was concentrated, and the residue was dissolved in methanol, loaded onto Varian SCX column, and washed with CH₃OH (5 mL x 2). Product was eluted off using 2 N NH₃ in CH₃OH (5 mL) and concentrated. Preparative TLC (SiO2, ethyl acetate/methanol = 10/1) gave $4-[\{N-(2-\text{amino-4},5-\text{difluorobenzoyl}\}\text{glycyl}\}\text{aminomethyl}]-1-(5-\text{bromo-2-ethoxybenzyl})\text{piperidine}$ (Compound No. 2052) (10.2 mg, 38%): The purity was determined by RPLC/MS (96%); ESI/MS m/e 539.2 (M*+H, $C_{24}H_{25}\text{BrF}_2N_4O_3$).

10 Examples 1785-1792.

20

25

The compounds of this invention were synthesized pursuant to methods of Example 1784 using the corresponding reactant respectively. The ESI/MS data and yields are summarized in Table 38.

15 Table 38

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 1785	2053	C30 H34 F2 N4 O4	553.4	12.7	46
Example 1786	2054	C27 H30 F2 N4 O3	497.2	13.7	55
Example 1787	2055	C23 H28 F2 N4 O4	463.2	10.1	44
Example 1788	2056	C22 H24 Br F3 N4 O2	515.2	7.7	30
Example 1789	2057	C23 H27 Br F2 N4 O3	527.0	8.6	33
Example 1790	2058	C24 H30 F2 N4 O4	477.2	6.4	27
Example 1791	2059	C28 H30 F2 N4 O3	509.4	6.7	26
Example 1792	2060	C25 H32 F2 N4 O5	507.2	7.2	28

Example 1793: Preparation of 4-[{N-(2-Amino-4,5-difluorobenzoyl)glycyl}aminomethyl]-1-(3,4-diethoxybenzyl)piperidine (Compound No. 2065).

To a mixture of $4-[\{N-(2-(tert-butoxycarbonylamino)-4,5-diffluorobenzoyl)glycyl\}$ aminomethyl]piperidine (0.050 mmol), 3,4-diethoxybenzaldehyde (0.15 mmol), methanol (1.2 mL), and acetic acid (0.050 mL) was added NaBH₃CN (0.25 mmol) in methanol (0.50 mL). The reaction mixture was stirred at 50 °C overnight. The mixture was cooled to room temperature, loaded onto VarianTM SCX column, and washed with CH₂OH (5 mL × 2). Product was eluted off using 2 N NH₃ in CH₃OH (5 mL) and concentrated. To the resulting material were added dichloromethane (2 mL) and phenyl isocyanate (0.10 mL) and the solution was stirred at room temperature for 1 h, loaded onto VarianTM SCX column, and

washed with CH₃OH (5 mL x 2). Product was eluted off using 2 N NH₃ in CH₃OH (5 mL) and concentrated. The residue was dissolved in methanol (0.25 mL) and 4 N HCl in dioxane (0.125 mL) was added. The solution was stirred at room temperature overnight and concentrated. The residue was dissolved in methanol, loaded onto Varian SCX column, and washed with CH₃OH (5 mL x 2). Product was eluted off using 2 N NH₃ in CH₃OH (5 mL) and concentrated to afford 4-[{N-(2-amino-4,5-difluorobenzoyl)glycyl)aminomethyl]-1-(3,4-diethoxybenzyl)piperidine (Compound No. 2065) (21.2 mg, 84%): The purity was determined by RPLC/MS (97%); ESI/MS m/e 505.2 (M'+H, $C_{26}H_{34}F_{2}N_{4}O_{4}$).

10

Examples 1794-1808.

The compounds of this invention were synthesized pursuant to methods of Example 1793 using the corresponding reactant respectively. The ESI/MS data and yields are summarized in Table 39.

15

20

Table 39

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 1794	2061	C23 H27 F3 N4 O2	449.2	12.6	56
Example 1795	2062	C23 H27 F3 N4 O3	465.2	19.7	85
Example 1796	2063	C25 H32 F2 N4 O4	491.2	19.8	81
Example 1797	2064	C22 H24 Br F3 N4 O2	515.2	17.5	68
Example 1798	2066	C29 H32 F2 N4 O3	523.2	18.0	69
Example 1799	2067	C26 H34 F2 N4 O2	473.2	21.9	93
Example 1800	2068	C22 H24 Cl F3 N4 O2	469.2	11.2	48
Example 1801	2069	C24 H30 F2 N4 O3	461.4	20.2	88
Example 1802	2070	C23 H27 Br F2 N4 O3	527.2	17.7	67
Example 1803	2071	C24 H30 F2 N4 O4	477.2	10.9	46
Example 1804	2072	C25 H32 F2 N4 O3	475.2	19.3	81
Example 1805	2073	C29 H32 F2 N4 O3	523.2	22.8	87
Example 1806	2074	C29 H32 F2 N4 O4	539.2	22.5	84
Example 1807	2075	C23 H27 F3 N4 O3	465.2	14.9	64
Example 1808	2076	C22 H24 F4 N4 O2	453.2	21.9	97

Example 1809: Preparation of 4-[{N-(2-Amino-4,5-difluorobenzoyl)glycyl)aminomethyl]-1-(2-hydroxy-3-methylbenzyl)piperidine (Compound No. 2106).

To a mixture of 4-[(N-(2-(tert-butoxycarbonylamino)-4,5-diffuorobenzoyl)glycyl)aminomethyl]piperidine (0.050 mmol), 2-hydroxy-3-

methylbenzaldehyde (0.25 mmol), methanol (1.0 mL), and acetic acid (0.040 mL) was added $NaBH_3CN$ (0.40 mmol) in methanol (0.50 mL). The reaction mixture was stirred at 50 °C overnight. The mixture was cooled to room temperature, loaded onto $Varian^{TM}$ SCX column, and washed with CH_3OH (5 mL x 2). Product was eluted off using 2 N NH $_3$ in CH $_3$ OH (5 mL) and concentrated. The resulting material was dissolved into ethyl acetate/methanol = 5:1 (1 mL), loaded onto VarianTM Si column, eluted off using ethyl acetate/methanol = 5:1 (5 mL), and concentrated. The residue was dissolved in methanol (2 mL) and 4 N HCl in dioxane (0.50 mL) was added. The solution was stirred at room temperature overnight and concentrated. The residue was dissolved in methanol, loaded onto Varian™ SCX column, and washed with CH₃OH (5 mL \times 2). Product was eluted off using 2 N NH₃ in CH₃OH (5 mL) and TLC afforded 4-[{N-(2-amino-4,5-Preparative concentrated. difluorobenzoyl)glycyl)aminomethyl]-1-(2-hydroxy-3-methylbenzyl)piperidine (Compound No. 2106): The purity was determined by RPLC/MS (97%); ESI/MS m/e $447.0 (M^++H, C_{23}H_{28}F_2N_4O_3)$.

Examples 1810-1823.

10

15

20

The compounds of this invention were synthesized pursuant to methods of Example 1809 using the corresponding reactant respectively. The ESI/MS data and yields are summarized in Table 40.

Table 40

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 1810	2077	C22 H25 C1 F2 N4 O3	467.2	3.7	16
Example 1811	2078	C24 H30 F2 N4 O4	477.2	1.9	8
Example 1812	2079	C30 H34 F2 N4 O4	553.4	4.8	17
Example 1813	2080	C22 H25 C1 F2 N4 O3	467.2	13.5	58
Example 1814	. 2081	C22 H25 C1 F2 N4 O3	467.2	13.8	59
Example 1815	2082	C23 H28 F2 N4 O4	463.2	9.6	42
Example 1816	2105	C23 H28 F2 N4 O4	463.2	ND	ND
Example 1817	2106	C23 H28 F2 N4 O3	447.0	ND	ND
Example 1818	2107	C20 H23 Br F2 N4 O2 S	503.1	ND	ND
Example 1819	2108	C25 H28 F2 N4 O2 S	487.2	ND	ND
Example 1820	2109	C20 H23 Br F2 N4 O3	487.0	ND	ND
Example 1821	2110	C22 H28 F2 N4 O3	435.1	ND	ND
Example 1822	2111	C22 H24 C1 F3 N4 O2	469.0	ND	ND
Example 1823	2112	C24 H29 Br F2 N4 O4	557.0	ND	ND

ND: Not determined.

Example 1824: Preparation of 4-[{N-(2-Amino-4,5-difluorobenzoyl)glycyl}aminomethyl]-1-(3-amino-4-methylbenzyl)piperidine (Compound No. 2114).

5 mixture of 4-[(N-(2-(tert-butoxycarbonylamino)-4,5difluorobenzoyl)glycyl)aminomethyl]piperidine (0.050 mmol), nitrobenzaldehyde (0.25 mmol), methanol (1.2 mL), and acetic acid (0.050 mL) was added $NaBH_3CN$ (0.50 mmol) in methanol (1.0 mL). The reaction mixture was stirred at 50 °C overnight. The mixture was cooled to room temperature, loaded onto Varian TM SCX column, and washed with CH $_3$ OH (5 mL x 2). Product was eluted off using 2 N NH_3 in CH_3OH (5 mL) and concentrated. The resulting material was dissolved into ethyl acetate/methanol = 2/1 (2 mL), loaded onto Varian™Si column, eluted off using ethyl acetate/methanol = 2/1 (6 mL), and concentrated. The residue was dissolved in methanol (1 mL) and 4 N HCl in dioxane (0.50 mL) was added. The solution was stirred at room temperature overnight and concentrated. The residue was dissolved in methanol, loaded onto Varian $^{\text{TM}}$ SCX column, washed with CH_3OH (5 mL x 2), and eluted off using 2 N NH_3 in CH_3OH (5 mL). Concentration 4-[{N-(2-amino-4,5-difluorobenzoyl)glycyl}aminomethyl]-1-(4afforded methyl-3-nitrobenzyl)piperidine.

10

15

30

35

A mixture of 4-[{N-(2-amino-4,5-difluorobenzoyl)glycyl}aminomethyl]1-(4-methyl-3-nitrobenzyl)piperidine prepared above, 5% palladium-activated carbon (15 mg), and methanol (2 mL) was stirred under a hydrogen atmosphere at room temperature for 4 h. The Pd catalyst was filtered off through Celite and the filtrate was concentrated. Preparative TLC (SiO₂, ethyl acetate/MeOH = 3/1)
gave 4-[{N-(2-amino-4,5-difluorobenzoyl)glycyl}aminomethyl]-1-(3-amino-4-methylbenzyl)piperidine (Compound No. 2114) (2.9 mg, 13%): The purity was determined by RPLC/MS (100%); ESI/MS m/e 446.1 (M*+H, C₂₃H₂,F₂N₅O₂).

Example 1825: Preparation of 4-[{N-(2-Amino-4,5-difluorobenzoy1)glycyl}aminomethyl]-1-(3-amino-4-methoxybenzyl)piperidine (Compound No. 2113).

The titled compound, $4-[N-(2-amino-4,5-difluorobenzoyl)glycyl)aminomethyl]-1-(3-amino-4-methoxybenzyl)piperidine (Compound No. 2113), was synthesized pursuant to methods of Example 1824 using the corresponding reactant: 4.6 mg, 20% yield; ESI/MS m/e 462.2 (M'+H, <math>C_{23}H_{29}F_2N_5O_3$).

Example 1826: Preparation of 1-(3-Amino-4-hydroxybenzyl)-4-[{N-(2-

(tert-butoxycarbonylamino) -4,5difluorobenzoyl) glycyl}aminomethyl]piperidine.

10

15

25

30

35

To a mixture of $4-[\{N-(2-(tert-butoxycarbonylamino)-4,5-diffluorobenzoy1)\,glycyl\}$ aminomethyl]piperidine (0.35 mmol), 4-hydroxy-3-nitrobenzaldehyde (1.22 mmol), methanol (3.8 mL), and acetic acid (0.175 mL) was added NaBH₃CN (1.58 mmol) in methanol (3.2 mL). The reaction mixture was stirred at 50 °C overnight. The mixture was cooled to room temperature, loaded onto VarianTM SCX column, and washed with CH₃OH. Product was eluted off using 2 N NH₃ in CH₃OH and concentrated. The resulting material was dissolved into ethyl acetate/methanol = 5/1, loaded onto VarianTM Si column, eluted off using ethyl acetate/methanol = 5/1 (10 mL), and concentrated to give $4-[\{N-(2-(tert-butoxycarbonylamino)-4,5-difluorobenzoy1)\,glycyl\}$ aminomethyl]-1-(4-hydroxy-3-nitrobenzyl)piperidine (175 mg, 87%).

A mixture of 4-[{N-(2-(tert-butoxycarbonylamino)-4,5-difluorobenzoyl)glycyl}aminomethyl]-1-(4-hydroxy-3-nitrobenzyl)piperidine prepared above, 10% palladium-activated carbon (45 mg), and methanol (5 mL) was stirred under a hydrogen atmosphere at room temperature for 2 h. The Pd catalyst was filtered off and the filtrate was concentrated to afford 1-(3-amino-4-hydroxybenzyl)-4-[{N-(2-(tert-butoxycarbonylamino)-4,5-

20 difluorobenzoyl)glycyl)aminomethyl)piperidine (100 mg, 60%).

Example 1827: Preparation of 4-[(N-(2-Amino-4,5-difluorobenzoyl)glycyl)aminomethyl]-1-(3-amino-4-hydroxybenzyl)piperidine (Compound No. 2141).

To a solution of 1-(3-amino-4-hydroxybenzyl)-4-[(N-(2-(tert-butoxycarbonylamino)-4,5-difluorobenzoyl)glycyl)aminomethyl]piperidine (20.0 mg, 0.035 mmol) in methanol (1 mL) was added 4 N HCl in dioxane (0.50 mL) and the solution was stirred at room temperature overnight. After the solution was concentrated, the residue was dissolved in methanol, loaded onto Varian SCX column, washed with CH₃OH (5 mL x 2), and eluted off using 2 N NH₃ in CH₃OH (5 mL). Concentration afforded 4-[(N-(2-amino-4,5-difluorobenzoyl)glycyl)aminomethyl]-1-(3-amino-4-hydroxybenzyl)piperidine (Compound No. 2141) (17.6 mg, quant.): The purity was determined by RPLC/MS (85%); ESI/MS m/e 448.3 (M*+H, C₂₂H₂₇F₂N₅O₃).

Examples 1828-1831.

The compounds of this invention were synthesized pursuant to methods of Examples 1826 and 1827 using the corresponding reactants respectively.

Preparative TLC (SiO_2) , if needed, afforded the desired material. The ESI/MS data and yields of last step are summarized in Table 41.

Table 41

5

20

25

30

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 1828	2140	C23 H27 F2 N5 O4	476.3	6.7	28.4
Example 1829	2144	C24 H30 F3 N5 O3	494.2	18.7	82.0
Example 1830	2145	C23 H28 F3 N5 O3	480.3	19.8	63.7
Example 1831	2146	C24 H28 F3 N5 O4	508.3	13.5	81.7

Example 1832: Preparation of 1-(3-Amino-4-chlorobenzyl)-4-[N-(2-(tert butoxycarbonylamino)-4,5-difluorobenzoyl)glycyl}aminomethyl]piperidine.

To 4-[{N-(2-(tert-butoxycarbonylamino)-4,5mixture οf 10 difluorobenzoyl)glycyl)aminomethyl]piperidine (0.14 mmol), nitrobenzaldehyde (0.50 mmol), methanol (1.5 mL), and acetic acid (0.070 mL) was added $NaBH_3CN$ (0.63 mmol) in methanol (1.3 mL). The reaction mixture was stirred at 50 °C overnight. The mixture was cooled to room temperature, loaded onto Varian TM SCX column, and washed with CH $_3$ OH. Product was eluted off using 15 2 N NH₃ in CH₃OH and concentrated. The resulting material was dissolved into ethyl acetate/methanol = 5/1, loaded onto VarianTM Si column, eluted off using ethyl acetate/methanol = 5/1 (6 mL), and concentrated to give $4-[{N-(2-$ (tert-butoxycarbonylamino)-4,5-difluorobenzoyl)glycyl}aminomethyl]-1-(4chloro-3-nitrobenzyl)piperidine (44 mg, 53%): ESI/MS m/e 596.3 (M'+H).

A mixture of 4-[{N-(2-(tert-butoxycarbonylamino)-4,5-difluorobenzoyl)glycyl}aminomethyl]-1-(4-chloro-3-nitrobenzyl)piperidine (121 mg, 0.20 mmol), 10% palladium-activated carbon (85 mg), ethyl acetate (10 mL), and methanol (1 mL) was stirred under a hydrogen atmosphere at room temperature for 19 h. The Pd catalyst was filtered off and the filtrate was concentrated to afford 1-(3-amino-4-chlorobenzyl)-4-[{N-(2-(tert-butoxycarbonylamino)-4,5-difluorobenzoyl)glycyl}aminomethyl]piperidine (78 mg, 68%).

Example 1833: Preparation of 1-(3-Amino-4-chlorobenzyl)-4-[(N-(2-amino-4,5-difluorobenzoyl)glycyl)aminomethyl]piperidine (Compound No. 2142).

The titled compound, $1-(3-amino-4-chlorobenzyl)-4-[{N-(2-amino-4,5-difluorobenzoyl)glycyl}aminomethyl]piperidine (Compound No. 2142) was synthesized pursuant to method of Example 1832 using the corresponding reactant:$

13.7 mg, 98%); The purity was determined by RPLC/MS (83%); ESI/MS m/e 466.2 (M'+H, $C_{22}H_{26}ClF_2N_5O_2$).

Example 1834: Preparation of 1-(3-Acetylamino-4-hydroxybenzyl)-4-5 [{N-(2-amino-4,5-difluorobenzoyl)glycyl}aminomethyl]piperidine (Compound No. 2148).

To a mixture of 1-(3-amino-4-hydroxybenzyl)-4-[N-(2-(tert-butoxycarbonylamino)-4,5-difluorobenzoyl) glycyl) aminomethyl] piperidine (27 mg, 0.049 mmol), (piperidinomethyl) polystyrene (2.7 mmol/g, 60 mg, 0.15 mmol) and dichloromethane (2 mL) was added acetic anhydride (0.12 mmol) in dichloromethane (0.12 mL). The reaction mixture was stirred at room temperature for 3 h. The mixture was loaded onto Varian SCX column, and washed with CH₃OH. Product was eluted off using 2 N NH₃ in CH₃OH and concentrated to give 1-(3-acetylamino-4-hydroxybenzyl)-4-[N-(2-(tert-butoxycarbonylamino)-4,5-difluorobenzoyl) glycyl) aminomethyl] piperidine (30 mg, quant.): ESI/MS m/e

590.4 (M*+H, $C_{29}H_{37}F_{2}N_{5}O_{6}$).

To a solution of 1-(3-acetylamino-4-hydroxybenzyl)-4-[{N-(2-{tert-butoxycarbonylamino}-4,5-difluorobenzoyl)glycyl}aminomethyl]piperidine obtained above in methanol (1 mL) was added 4 N HCl in dioxane (0.50 mL) and the solution was stirred at room temperature overnight. After the solution was concentrated, the residue was dissolved in methanol, loaded onto Varian SCX column, washed with CH₃OH (5 mL x 2), and eluted off using 2 N NH₃ in CH₃OH (5

mL). Concentration and preparative TLC (SiO₂, AcOEt/MeOH = 3:2) afforded 1-

 $(3-acetylamino-4-hydroxybenzyl)-4-[\{N-(2-amino-4,5-25 difluorobenzoyl)glycyl\}aminomethyl]piperidine (Compound No. 2148) (2.3 mg, 9.2%): The purity was determined by RPLC/MS (98%); ESI/MS m/e 490.3 (M*+H, $C_{24}H_{29}F_2N_5O_4).$

Examples 1835-1839.

The compounds of this invention were synthesized pursuant to methods of Examples 1826 and 1834 using the corresponding reactants respectively. The ESI/MS data and yields are summarized in Table 42.

35

10

15

20

Table 42

	Compound No.	Molecular Formula	ESI/MS · m/e	Yield (mg)	Yield (%)
Example 1835	2143	C25 H29 F2 N5 O5	518.3	4.8	45
Example 1836	2147	C25 H31 F2 N5 O4	504.3	3.0	23
Example 1837	2154	C26 H32 F3 N5 O4	536.4	4.1	66
Example 1838	2155	C25 H30 F3 N5 O4	522.3	5.5	71
Example 1839	2156	C26 H30 F3 N5 O5	550.3	7.0	78

Example 1840: Preparation of 4-[{N-(2-Amino-4,5-difluorobenzoyl)glycyl}aminomethyl]-1-(3-methylamino-4-hydroxybenzyl)piperidine (Compound No. 2160).

To a mixture of $4-[\{N-(2-(tert-butoxycarbonylamino)-4,5-diffluorobenzoyl)glycyl)aminomethyl]-1-(3-amino-4-hydroxybenzyl)piperidine (20.4 mg, 0.037 mmol), 37% HCHO solution (3.0 mg, 0.037 mmol), acetic acid (0.10 mL) and methanol (1.3 mL) was added NaBH₃CN (7.0 mg) in methanol (0.2 mL). The reaction mixture was stirred at 60 °C overnight. The mixture was cooled to room temperature, loaded onto VarianTM SCX column, and washed with CH₃OH (5 mL x 2). Product was eluted off using 2 N NH₃ in CH₃OH (8 mL) and concentrated to give <math>4-[\{N-(2-(tert-butoxycarbonylamino)-4,5-diffluorobenzoyl)glycyl\}aminomethyl]-1-(3-methylamino-4-hydroxybenzyl)piperidine.$

To a solution of $4-[\{N-(2-(tert-butoxycarbonylamino)-4,5-difluorobenzoyl)]$ glycyl) aminomethyl] -1-(3-methylamino-4-hydroxybenzyl) piperidine obtained above in methanol (1.0 mL) was added 4 N HCl in dioxane (1.0 mL) and the solution was stirred at room temperature for 3 h. After the solution was concentrated, the residue was dissolved in methanol (1 mL), loaded onto Varian SCX column, washed with CH₃OH (5 mL x 2), and eluted off using 2 N NH₃ in CH₃OH (8 mL). Concentration and preparative TLC (SiO₂) afforded $4-[\{N-(2-amino-4,5-difluorobenzoyl)]]$ aminomethyl] -1-(3-methylamino-4-hydroxybenzyl) piperidine (Compound No. 2160) (3.4 mg, 20%): The purity was determined by RPLC/MS (96%); ESI/MS m/e 462.4 (M*+H, C₂₃H₂₅F₂N₅O₃).

25

5

10

15

20

Examples 1841-1844.

The compounds of this invention were synthesized pursuant to methods of Examples 1826 and 1840 using the corresponding reactants respectively. The ESI/MS data and yields are summarized in Table 43.

30

	Compound No.	Molecular Formula	ESI/MS - m/e	Yield (mg)	Yield (%)
Example 1841	2159	C24 H31 F2 N5 O3	476.3	7.6	48
Example 1842	2161	C23 H28 C1 F2 N5 O2	480.3	7.3	45
Example 1843	2162	C25 H32 F3 N5 O3	508.4	6.0	24
Example 1844		C24 H30 F3 N5 O3	494.3	4.3	15

Example 1845: Preparation of 4-[{N-(2-Amino-4,5-difluorobenzoyl)glycyl}aminomethyl]-1-(benzo[c]furazan-5-yl)piperidine (Compound No. 2130).

5

10

15

20

25

30

4-[{N-(2-(tert-butoxycarbonylamino)-4,5of mixture Α difluorobenzoyl)glycyl}aminomethyl]piperidine (0.050 mmol), (bromomethyl)benzo[c]furazan (0.75 mmol), (piperidinomethyl)polystyrene (2.6-2.8 mmol/g, 60 mg, 0.15 mmol), methanol (0.2 mL), acetonitrile (1.0 mL), and chloroform (0.50 mL) was stirred at 50 °C overnight. The mixture was cooled to room temperature, loaded onto Varian TM SCX column, and washed with CH₃OH (5 $mL \times 2$). Product was eluted off using 2 N NH₃ in CH₃OH (5 mL) and concentrated. To the resulting material were added chloroform (1.5 mL) and phenyl isocyanate (0.075 mL) and the solution was stirred at room temperature for 1 h, loaded onto Varian TH SCX column, and washed with CH₃OH (5 mL x 2). Product was eluted off using 2 N NH_3 in CH_3OH (5 mL) and concentrated. The residue was dissolved in methanol (1 mL) and 4 N HCl in dioxane (0.50 mL) was added. The solution was stirred at room temperature overnight and concentrated. The residue was dissolved in methanol, loaded onto Varian TM SCX column, washed with CH $_3$ OH (5 mL $_{\perp}$ \times 2), and eluted off using 2 N NH₃ in CH₃OH (5 mL). Concentration and preparative... ethyl acetate/MeOH = 5/1) afforded $4-[{N-(2-amino-4,5-mino-4,5$ (SiO₂, difluorobenzoyl)glycyl)aminomethyl]-1-(benzo[c]furazan-5-yl)piperidine (Compound No. 2130) (3.6 mg, 16%): The purity was determined by RPLC/MS (87%); ESI/MS m/e 459.3 (M^++H , $C_{22}H_{24}F_2N_6O_3$).

Example 1846: Preparation of 4-[(N-(2-Amino-4,5-diffluorobenzoyl)glycyl)aminomethyl]-1-(3,5-dimethylisoxazol-4-yl)piperidine (Compound No. 2131).

The titled compound, $4-[\{N-(2-amino-4,5-difluorobenzoyl)glycyl\}aminomethyl]-1-(3,5-dimethylisoxazol-4-yl)piperidine (Compound No. 2131), was synthesized pursuant to methods of Example 1845 using the corresponding reactant: 3.8 mg, 18% yield; ESI/MS m/e 436.2 (M*+H, <math>C_{21}H_{27}F_2N_5O_3$).

Example 1847: Preparation of 4-[{N-(2-Amino-5-chlorobenzoyl)glycyl}aminomethyl]-1-{4-

(trifluoromethylthio)benzyl}piperidine (Compound No. 1616).

mixture 4-[{N-(2-amino-5-5 chlorobenzoyl)glycyl}aminomethyl]piperidine (16.2 mg, 0.050 mmol), 4-(trifluoromethylthio)benzyl bromide (20.3 mg, 0.075 mmol), piperidinomethylpolystyrene (60 mg), acetonitrile (1.0 mL) and chloroform (0.50 mL) was stirred at 60 °C for 15 h. The reaction mixture was cooled, loaded onto $Varian^{TM}$ SCX column and washed with CH_3OH (15 mL). Product was eluted using 2 N NH_3 in CH_3OH 10 (5 mL) and concentrated to afford $4 - \{ \{ N - (2 - amino - 5 - amino - 5$ chlorobenzoyl)glycyl}aminomethyl]-1-{4-(trifluoromethylthio)benzyl)piperidine (Compound No. 1616) (21.9 mg, 85%): The purity was determined by RPLC/MS (96%); ESI/MS m/e 545.2 (M $^{+}$ +H, C₂₃H₂₆C1F₃N₄O₂S).

15 Example 1848-1868.

The compound of this invention was synthesized pursuant to methods of Example 1847 using the corresponding reactant. Preparative TLC, if needed, afforded the desired material. The ESI/MS data and yields are summarized in Table 44.

20

Table 44

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 1848	1617	C23 H26 Br F3 N4 O2 S	559.0	21.0	75
Example 1849	1777	C23 H25 C12 F3 N4 O2	517.0	16.3	63.0
Example 1850	1778	C24 H29 F3 N4 O2	463.2	9.5	41.1
Example 1851	1779	C24 H27 F3 N4 O4	493.2	12.7	51.6
Example 1852	1780	C23 H26 Br F3 N4 O2	527.0	16.4	62.2
Example 1853	1781	C23 H27 F3 N4 O3	465.2	10.0	28.7
Example 1854	1782	C25 H29 F3 N4 O2	475.2	12.2	34.3
Example 1855	1783	C24 H26 F3 N5 O2	474.2	17.2	48.4
Example 1856	1784	C23 H27 F3 N4 O2	449.2	11.3	33.6
Example 1857	1788	C25 H31 F3 N4 O2	477.2	10.0	42.0
Example 1858	1789	C24 H29 F3 N4 O3	479.2	10.0	27.9
Example 1859	1792	C24 H30 F2 N4 O2	445.2	5.9	26.5
Example 1860	1793	C22 H24 C12 F2 N4 O2	485.2	9.2	37.9
Example 1861	1794	C23 H28 F2 N4 O2	431.2	5.7	26.5
Example 1862	1795	C23 H26 F2 N4 O4	461.2	6.0	26.1

Example 1863	1796	C22 H25 Br F2 N4 O2	497.0	10.5	42.4
Example 1864	1797	C22 H26 F2 N4 O3	433.2	3.5	16.2
Example 1865	1798	C23 H28 F2 N4 O3	447.2	5.6	25.1
Example 1866	1799	C24 H28 F2 N4 O2	443.2	5.5	24.9
Example 1867	1800	C23 H25 F2 N5 O2	442.2	9.4	42.6
Example 1868	1801	C22 H26 F2 N4 O2	417.2	6.5	31.2

Example 1869: Preparation of 4-[{N-(2-Amino-5-trifluoromethoxybenzoyl)glycyl}aminomethyl]-1-(4-bromobenzyl)piperidine (Compound No. 1910).

4-[{N-(2-(tert-butoxycarbonylamino)-5of А mixture trifluoromethoxybenzoyl)glycyl)aminomethyl]piperidine (0.050 bromobenzyl bromide (0.060 mmol), piperidinomethylpolystyrene (60 mg), acetonitrile (0.8 mL) and chloroform (0.5 mL) was stirred at 60 °C for 12 h. The reaction mixture was cooled, loaded onto Varian TM SCX column and washed with 50% CHCl $_3$ /CH $_3$ OH (10 mL) and CH $_3$ OH (10 mL). Product was eluted using 2 N NH $_3$ in ${
m CH_3OH}$ (5 mL) and concentrated. To the resulting material was added 4 N HCl in 1,4-dioxane (2 mL), and the solution was stirred overnight at room temperature. preparative afforded 4-[{N-(2-amino-5-TLC Concentration and (Compound No. 1910) (6.5 mg, 24%): The purity was determined by RPLC/MS (96%); ESI/MS m/e 545 (M $^{+}$ +H, $C_{23}H_{26}BrF_{3}N_{4}O_{3}$).

Examples 1870-1873.

5

10

15

25

The compounds of this invention were synthesized pursuant to methods of Example 1869 using the corresponding reactant respectively. The ESI/MS data and yields are summarized in Table 45.

Table 45

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 1870	1911	C23 H25 Cl2 F3 N4 O3	533	10.6	39.7
Example 1871	1912	C23 H27 F3 N4 O4	481	12.5	52.0
Example 1872	1913	C25 H31 F3 N4 O3	493	7.5	30.5
Example 1873	1914	C24 H29 F3 N4 O3	479	11.0	46.0

Example 18°

Preparation

of

4-[{N-(2-Amino-5-

trifluoromethylbenzoyl)glycyl)aminomethyl]-1-(benz[d]imidazol-5-

yl)piperidine (Compound No. 2186).

10

15

20

25

30

35

A mixture of $4-[\{N-(2-(tert-butoxycarbonylamino)-5-trifluoromethylbenzoyl)glycyl\}aminomethyl]piperidine (0.060 mmol), <math>1-(tert-butoxycarbonyl)-6-(bromomethyl)benz[d]imidazole (15.6 mg, 0.050 mmol), (piperidinomethyl)polystyrene (86 mg), and acetonitrile (2 mL) was stirred at 50 °C for 3 h. After cooling to room temperature, phenyl isocyanate (30 mg) was added and the mixture was stirred at room temperature for 1 h, loaded onto Varian SCX column and washed with <math>CH_3OH$ (5 mL) and $CHCl_3$ (5 mL). Product was eluted using 2 N NH_3 in CH_3OH (3 mL) and concentrated.

The resulting material was dissolved into methanol (1 mL), and 4 N HCl in dioxane (1 mL) was added. The solution was stirred at room temperature overnight, loaded onto VarianTM SCX column and washed with CH₃OH and dichloromethane. Product was eluted using 2 N NH₃ in CH₃OH and concentrated. Preparative TLC (SiO₂, AcOEt/MeOH = 3:1) afforded $4-[\{N-(2-\text{amino}-5-\text{trifluorobenzoyl})\text{glycyl}\}$ aminomethyl]-1-(benz[d]imidazol-5-yl)piperidine (Compound No. 2186) (1.9 mg, 7.8%): The purity was determined by RPLC/MS (100%); ESI/MS m/e 489.4 (M*+H, C₂₄H₂₇F₃N₆O₂).

Example 1875: Preparation of 4-[{N-(2-Amino-4,5-difluorobenzoyl)glycyl}aminomethyl]-1-(benzo[c]thiadiazol-5-yl)piperidine (Compound No. 2184).

To a mixture of 5-(hydroxymethyl) benzo[c] thiadiazole (8.3 mg, 0.050 mmol), (piperidinomethyl) polystyrene (86 mg), and chloroform (1 mL) was added methanesulfonyl chloride (0.0042 mL) and the mixture was stirred at room temperature for 1.5 h. Acetonitrile (1 mL) and $4-[N-(2-(tert-butoxycarbonylamino)-4,5-difluorobenzoyl) glycyl} aminomethyl] piperidine (0.060 mmol) was added and the reaction mixture was stirred at 50 °C for 3 h. After cooling to room temperature, phenyl isocyanate (30 mg) was added, and the mixture was stirred at room temperature for 1 h, loaded onto Varian SCX column and washed with CH₃OH (5 mL) and CHCl₃ (5 mL). Product was eluted using 2 N NH₃ in CH₃OH (3 mL) and concentrated.$

The resulting material was dissolved into dichloromethane (1 mL), and 1 M chlorotrimethylsilane and 1 M phenol in dichloromethane (1 mL) was added. The solution was stirred at room temperature for 5 h, loaded onto VarianTM SCX column and washed with CH₂OH and dichloromethane. Product was eluted using 2 N NH₃ in CH₂OH and concentrated. Preparative TLC (SiO₂, AcOEt/MeOH = 3:1) afforded $4-[\{N-(2-amino-4,5-difluorobenzoyl)glycyl)aminomethyl]-1-(benzo[c]thiadiazol-5-yl)piperidine (Compound No. 2184) (1.3 mg, 5.5%): The$

purity was determined by RPLC/MS (100%); ESI/MS m/e 475.2 (M*+H, $C_{22}H_{24}F_2N_6O_2S$).

Example 1876: Preparation of 4-[{N-(2-Amino-5-trifluoromethylbenzoyl)glycyl}aminomethyl]-1-(benzo[c]thiadiazol-5-yl)piperidine (Compound No. 2185).

The titled compound, $4-[\{N-(2-amino-5-trifluoromethylbenzoyl)]$ glycyl $\}$ aminomethyl]-1-(benzo[c] thiadiazol-5-yl) piperidine (Compound No. 2185) was synthesized pursuant to methods of Example 1875 using the corresponding reactant: 7.2 mg, 28% yield; ESI/MS m/e 507.4 (M*+H, $C_{23}H_{25}F_3N_6O_2S$).

Example 1877: Preparation of 4-[{N-(2-Amino-5-trifluoromethylbenzoyl)glycyl}aminomethyl]-1-(2-amino-4-chlorobenzyl)piperidine (Compound No. 1919).

4-[{N-(2-amino-5mixture 15 А mmol), trifluoromethylbenzoyl)glycyl)aminomethyl]piperidine (0.050 chloro-2-nitrobenzyl chloride (0.050 mmol), piperidinomethylpolystyrene (60 mg), acetonitrile (1.0 mL) and chloroform (0.7 mL) was stirred overnight at 50 $^{\circ}$ C. The reaction mixture was cooled, loaded onto Varian TM SCX column and washed with 50% CHCl $_3$ /CH $_3$ OH (10 mL) and CH $_3$ OH (10 mL). Product was eluted using 2 N 20 NH₃ in CH₃OH (5 mL) and concentrated. To the resulting material was added ethanol (3 mL) and 10% Pd-C (15 mg), and the mixture was stirred under H_2 at room temperature. for 1.5 h. Filtration, concentration, and preparative TLC afforded 4-[[N-(2-amino-5-trifluoromethylbenzoyl)glycyl)aminomethyl]-1-(2-amino-4chlorobenzyl)piperidine (Compound No. 1919) (5.1 mg, 14%): The purity was 25 determined by RPLC/MS (90%); 1 H NMR (400 MHz, CDCl₃) δ 1.09-1.32 (m, 4 H), 1.41-1.59 (m, 1 H), 1.66 (d, J = 12.5 Hz, 2 H), 1.88 (t, J = 11.5 Hz, 2 H), 2.82 (d, J= 11.5 Hz, 2 H), 3.17 (t, J = 6.5 Hz, 2 H), 3.42 (s, 2 H), 4.05 (d, J = 5.5 Hz, 2 H), 4.85 (br s, 1 H), 5.92 (br s, 2 H), 6.25-6.36 (m, 1 H), 6.55-6.66 (m, 1 H), 6.70 (d, J = 8.5 Hz, 1 H), 6.85 (d, J = 8.5 Hz, 1 H), 7.26 (s, 1 H), 7.42 30 (d, J = 8.5 Hz, 1 H), 7.68 (s, 1 H) ;ESI/MS m/e 498.2 (M*+H, $C_{23}H_{27}ClF_3N_5O_2$).

Examples 1878 and 1879.

5

10

35

The compounds of this invention were synthesized pursuant to methods of Example 1877 using the corresponding reactant respectively. The ESI/MS data and yields are summarized in Table 46.

Table 46

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 1878	1920	C22 H26 C1 F2 N5 O2	466.2	3.5	10.0
Example 1879	1922	C23 H27 C1 F3 N5 O3	514.2	1.2	3.1

Example 1880: Preparation of 4-[(N-(2-Amino-5-trifluoromethylbenzoyl)glycyl)aminomethyl]-1-(benz[d]oxazol-5-yl)piperidine (Compound No. 2188).

5

10

15

20

25

30

A solution of $1-(3-\text{amino-}4-\text{hydroxybenzy1})-4-[\{N-(2-(\text{tert-butoxycarbonylamino})-5-\text{trifluoromethylbenzoyl})\,\text{glycyl}\}\,\text{aminomethyl}]$ piperidine (34.8 mg, 0.060 mmol), prepared pursuant to methods of Example 1826, in THF (2 mL) was treated with triethyl orthoformate (0.033 mL, 3.3 eq) and pyridinium p-toluenesulphonate (2 mg, 0.4 eq). The reaction mixture was stirred overnight under reflux. After cooling to room temperature, the mixture was concentrated. The residue was dissolved in AcOEt, loaded onto BondElutTM Si column, eluted off using ethyl acetate/methanol = 4/1, and concentrated.

The resulting material was dissolved into AcOEt (1.5 mL), and 4 N HCl in dioxane (0.5 mL) was added. The solution was stirred at room temperature overnight, adjusted to pH 10 with 5 M NaOH aqueous solution, and extracted with AcOEt. The extract was concentrated and purified by PTLC (SiO₂, AcOEt/MeOH = 4:1) to afford $4-[\{N-(2-amino-5-trifluoromethylbenzoyl)glycyl)aminomethyl]-1-(benz[d]oxazol-5-yl)piperidine (Compound No. 2188) (1.6 mg, 5%): The purity was determined by RPLC/MS (94%); ESI/MS m/e 490.3 (M*+H, <math>C_{24}H_{26}F_3N_5O_3$).

Example 1881: Preparation of 4-[{N-(2-Amino-4,5-difluorobenzoyl)glycyl}aminomethyl]-1-(2-oxo-2,3-dihydro-1,3-benzoxazol-5-yl)piperidine (Compound No. 2190).

To a mixture of $1-(3-\text{amino-}4-\text{hydroxy})-4-[\{N-(2-(\text{tert-butoxycarbonylamino})-4,5-\text{difluorobenzoyl})\,\text{glycyl}\}\,\text{aminomethyl}]\,\text{piperidine}$ (22 mg, 0.040 mmol), NaHCO₂ (0.040 mmol), water (0.7 mL), and methanol (1.5 mL) was added phenyl chloroformate (0.046 mmol) and the mixture was stirred at room temperature for 3 h. A 1 N NaOH solution (0.040 mL) was added, and the reaction mixture was stirred for additional 1.5 h. The mixture was extracted with ethyl acetate and evaporated. The residue was dissolved in methanol, loaded onto Varian SCX column and washed with CH₃OH (5 mL x 2). Product was eluted using 2 N NH₃ in CH₃OH (5 mL) and concentrated.

To the resulting material was added 1 M chlorotrimethylsilane and 1 M $\,$

phenol in dichloromethane (2 mL). The solution was stirred at room temperature for 2 h and evaporated. The residue was dissolved in methanol, loaded onto VarianTM SCX column and washed with CH₃OH (5 mL x 2). Product was eluted using 2 N NH₃ in CH₃OH (5 mL) and concentrated. Preparative TLC (SiO₂, AcOEt/MeOH = 5:2) afforded 4-[(N-(2-amino-4,5-difluorobenzoyl)glycyl)aminomethyl]-1-(2-oxo-2,3-dihydro-1,3-benzoxazol-5-yl)piperidine (Compound No. 2190) (4.1 mg, 22%): The purity was determined by RPLC/MS (100%); ESI/MS m/e 474.2 (M⁺+H, C₂₃H₂₅F₂N₅O₄).

10 Examples 1882-1884.

5

15

20

25

30

The compounds of this invention were synthesized pursuant to methods of Example 1881 using the corresponding reactant respectively (phenyl chlorothionoformate was used instead of phenyl chloroformate for preparation of Compounds 2192 and 2193). The ESI/MS data and yields are summarized in Table 47.

Table 47

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 1882	2191	C24 H26 F3 N5 O4	506.3	3.1	10
Example 1883	2192	C23 H25 F2 N5 O3 S	490.2	6.9	35
Example 1884	2193	C24 H26 F3 N5 O3 S	522.2	3.6	11

ylmethyl)carbamoylmethyl)aminomethyl]-3-methoxyphenyloxymethyl-polystyrene.

To a solution of 1-(9-fuluorenylmethoxycarbonyl)-4-(glycylaminomethyl) piperidine hydrochloride (10 mmol) in DMF (65 mL) were added acetic acid (0.3 mL), sodium triacetoxyborohydride (1.92 g), and 4-formyl-3-(methoxyphenyloxymethyl)-polystyrene (1 mmol/g, 200 g). The mixture was shaken for 2 h and filtered. The resin was washed with MeOH, DMF, CH_2Cl_2 , and methanol, and dried to afford the desired material.

Examples 1885-2000: General Procedure for Solid-Phase Synthesis of 4-Aminomethylpiperidines.

To a mixture of the corresponding acid (1.6 mmol), HBTU (1.6 mmol), and DMF (6 mL) was added disopropylethylamine (3.6 mmol), and the mixture was shaken

for 2 min. $4-[{N-(1-(9-\text{fuluorenylmethoxycarbonyl})\text{piperidine-}4-ylmethyl)\text{carbamoylmethyl}}$ aminomethyl]-3-methoxyphenyloxymethyl-polystyrene (0.4 mmol) was added and the mixture was shaken for 1 h and filtered. The resin was rinsed with DMF and CH_2Cl_2 , and dried.

A mixture of the resulting resin, piperidine (3.2 mL), and DMF (12.8 mL) was shaken for 10 min and filtered. The resin was washed with DMF and CH_2Cl_2 , and dried.

To the dry resin (0.05 mmol) was added a mixture of NaBH (OAc) $_3$ (0.25 mmol), AcOH (0.025 mL) and DMF (1 mL). The corresponding aldehyde (2.5 mmol) was added, and the mixture was shaken for 2 h, then filtered and washed with CH $_3$ OH, 10% diisopropylethylamine in DMF, DMF, CH $_2$ Cl $_2$, and CH $_3$ OH. A mixture of the resin, water (0.050 mL), and trifluoroacetic acid (0.95 mL) was shaken for 1 h and filtered. The resin was washed with CH $_2$ Cl $_2$ and CH $_3$ OH. The filtrate and washings were combined and concentrated. The crude material was loaded onto Varian SCX column and washed with CH $_3$ OH (15 mL). Product was eluted using 2 N NH $_3$ in CH $_3$ OH (5 mL) and concentrated. Preparative TLC or HPLC, if needed, afforded the desired material. The ESI/MS data and yields are summarized in Table 48.

Table 48

Ω	\sim
-/	
4	v

5

10

15

	Compound No.	Molecular	Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 1885	1923	C23 H25 Br	F3 N3 O2 :	5 544	15.7	87
Example 1886	1924	C24 H28 F3	N3 03 S	496	14.6	89
Example 1887	1925	C23 H25 F4	N3 02 S	484	11.7	73
Example 1888	1926	C23 H24 F5	N3 O2 S	502	13.9	84
Example 1889	1927	C23 H26 F3	N3 O3 S	482	10.7	67
Example 1890	1928	C24 H26 F3	N3 04 S	510	14.3	85
Example 1891	1929	C26 H30 F3	N3 O2 S	506	14.7	88
Example 1892	1930	C24 H28 F3	N3 O2 S2	512	14.4	85
Example 1893	1931	C25 H30 F3	N3 02 S	494	14.3	88
Example 1894	1932	C25 H28 F3	N3 03 S	509	7.1*	35
Example 1895	1933	C25 H30 F3	N3 O2 S	494	14.3	88
Example 1896	1934	C26 H32 F3	N3 O2 S	509	14.4	86
Example 1897	1935	C23 H25 F3	N4 O4 S	511	14.9	88
Example 1898	1936	C24 H28 F3 I	N3 02 S	480	13.3	84
Example 1899	1937	C26 H32 F3 I	N3 O2 S	509	11.1	66
Example 1900	1938	C23 H27 Br2	N3 O2	538	5.3*	25
Example 1901	1939	C24 H30 Br 1	N3 O3	488	5.0*	25

Example 1902	1940	C23 H27 Br F N3 O2	476	4.9*	25
	1941	C23 H26 Br F2 N3 O2	494	6.1*	30
Example 1903		C23 H28 Br N3 O3	474	1.7*	9 .
Example 1904	1942	C24 H28 Br N3 O4	502	6.6*	32
Example 1905	1943	C26 H32 Br N3 O2	498	7.0*	35
Example 1906	1944				67
Example 1907	1945	C24 H30 Br N3 O2 S	504	3.2*	16
Example 1908	1946	C25 H32 Br N3 O2	488	5.7	35
Example 1909	1947	C25 H30 Br N3 O3	500		
Example 1910	1948	C25 H32 Br N3 O2	486	4.9*	25
Example 1911	1949	C26 H34 Br N3 O2	500	6.7*	33
Example 1912	1950	C23 H27 Br N4 O4	503	5.0*	25
Example 1913	1951	C24 H30 Br N3 O2	472	5.1*	26
Example 1914	1952	C22 H24 Br2 F N3 O2	542	14.9	83
Example 1915	1953	C23 H27 Br F N3 O3	492	13.9	86
Example 1916	1954	C22 H24 Br F2 N3 O2	480	12.5	79
Example 1917	1955	C22 H23 Br F3 N3 O2	498	13.2	80
Example 1918	1956	C22 H25 Br F N3 O3	478	7.0	44
Example 1919	1957	C23 H25 Br F N3 O4	506	4.0*	20
Example 1920	1958	C25 H29 Br F N3 O2	502	14.6	88
Example 1921	1959	C23 H27 Br F N3 O2 S	508	13.1	78
Example 1922	1960	C24 H29 Br F N3 O2	490	13.8	85
Example 1923	1961	C24 H27 Br F N3 O3	504	2.7*	13
Example 1924	1962	C24 H29 Br F N3 O2	490	12.7	78
Example 1925	1963	C25 H31 Br F N3 O2	504	13.5	81
Example 1926	1964	C22 H24 Br F N4 O4	507	14.8	88
Example 1927	1965	C23 H27 Br F N3 O2	476	12.1	77
Example 1928	1966	C25 H31 Br F N3 O2	504	13.4	80
Example 1929	1967	C22 H26 Br F N4 O2	477	4.7*	20
Example 1930	1968	C23 H29 F N4 O3	429	6.9*	32
Example 1931	1969	C22 H27 F N4 O3	415	3.7*	17
Example 1932	1970	C23 H27 F N4 O4	443	5.4*	24
Example 1933	1971	C25 H31 F N4 O2	439	4.3*	20
Example 1934	1972	C23 H29 F N4 O2 S	445	6.2*	28
Example 1935	1973	C24 H31 F N4 O2	427	6.3*	29
Example 1936	1974	C24 H31 F N4 O2	427	4.9*	23
Example 1937	1975	C22 H26 F N5 O4	444	5.9*	27
Example 1938	1976	C23 H29 F N4 O2	413	6.7*	.32
Example 1939	1977	C23 H26 F N5 O2	424	5.1*	24
Example 1940	1978	C25 H33 F N4 O2	441	6.3*	29
Example 1941	1979	C25 H30 F2 N4 O2	457	8.0*	35
L	L			L	· · · · · · · · · · · · · · · · · · ·

Example 1942	1980	C24 H28 F2 N4 O3	450	T	
Example 1943		C22 H25 F2 N5 O4	459	6.0*	26
Example 1944		C23 H25 F2 N5 O2	462	9.3*	41
Example 1945		C25 H32 F2 N4 O2	442	6.0*	27
Example 1946		C22 H26 Br I N4 O2	459	8.3*	37
Example 1947			585	9.7*	36
Example 1948		C23 H29 I N4 O3	537	9.2*	36
Example 1949	ŀ	C22 H27 I N4 O3	523	5.8*	23
Example 1949	,	C23 H27 I N4 O4	551	8.2*	32
Example 1950		C25 H31 I N4 O2	547	6.7*	26
Example 1951	1989	C23 H29 I N4 O2 S	553	6.4*	25
	1990	C24 H31 I N4 O2	535	7.2*	29
Example 1953	1991	C24 H29 I N4 O3	549	5.6*	22
Example 1954	1992	C24 H31 I N4 O2	535	6.2*	25
Example 1955	1993	C22 H26 I N5 O4	552	10.2*	40
Example 1956	1994	C23 H29 I N4 O2	521	7.5*	30
Example 1957	1995	C23 H26 I N5 O2	532	6.8*	27
Example 1958	1996	C25 H33 I N4 O2	549	7.1*	28
Example 1959	1997	C25 H33 I N4 O2	549	3.0*	12
Example 1960	1998	C22 H25 Br Cl N3 O2	478	7.6*	39
Example 1961	1999	C23 H28 C1 N3 O3	430	7.0*	39
Example 1962	2000	C22 H25 C1 F N3 O2	418	14.1	102
Example 1963	2001	C22 H26 C1 N3 O3	416	6.3*	36
Example 1964	2002	C23 H26 C1 N3 O4	444	7.1*	39
Example 1965	2003	C25 H30 Cl N3 O2	440	15.3	105
Example 1966	2004	C23 H28 C1 N3 O2 S	446	8.4*	45
Example 1967	2005	C24 H30 C1 N3 O2	428	7.4*	41
Example 1968	2006	C24 H30 C1 N3 O2	428	13.8	98
Example 1969	2007	C22 H25 Cl N4 O4	445	16.0	109
Example 1970	2008	C23 H28 C1 N3 O2	414	14.1	103
Example 1971	2009	C23 H25 C1 N4 O2	425	14.8	106
Example 1972	2010	C25 H32 C1 N3 O2	442	14.5	99
Example 1973	2011	C25 H32 C1 N3 O2	442	14.5	99
Example 1974	2012	C22 H24 Br2 Cl N3 O2	558	12.8*	58
Example 1975	2013	C23 H27 Br Cl N3 O3	508	8.6*	42
Example 1976	2014	C22 H25 Br Cl N3 O3	494	6.0*	30
Example 1977	2015	C23 H25 Br Cl N3 O4	522	8.4.*	40
Example 1978	2016	C25 H29 Br Cl N3 O2	518	17.6	103
Example 1979	2017	C23 H27 Br Cl N3 O2 S	524	17.1	99
Example 1980	2018	C24 H29 Br Cl N3 O2	506	14.7	88
Example 1981	2019	C24 H27 Br Cl N3 O3	520	8.0*	38
		<u> </u>			

Example 1982	2020	C24 H29 Br Cl N3 O2	506	14.7	88
Example 1983	2021	C22 H24 Br Cl N4 O4	523	12.0*	57
Example 1984	2022	C23 H27 Br Cl N3 O2	492	8.5*	42
Example 1985	2023	C23 H24 Br Cl N4 O2	503	6.3*	31
Example 1986	2024	C25 H31 Br Cl N3 O2	520	9.6*	46
Example 1987	2025	C25 H31 Br Cl N3 O2	520	15.0	87
Example 1988	2026	C22 H23 Br Cl F2 N3 O2	514	15.8	93
Example 1989	2027	C22 H26 Br2 N4 O2	537	10.7*	42
Example 1990	2028	C23 H29 Br N4 O3	489	8.5*	36
Example 1991	2029	C22 H27 Br N4 O3	475	7.5*	32
Example 1992	2030	C23 H27 Br N4 O4	503	6.8*	28
Example 1993	2031	C25 H31 Br N4 O2	499	6.2*	26
Example 1994	2032	C24 H29 Br N4 O3	501	8.9*	37
Example 1995	2033	C24 H31 Br N4 O2	487	9.1*	39
Example 1996	2034	C22 H26 Br N5 O4	504	6.4*	26
Example 1997	2035	C23 H29 Br N4 O2	473	6.5*	28
Example 1998	2036	C23 H26 Br N5 O2	484	6.3*	. 27
Example 1999	2037	C25 H33 Br N4 O2	501	5.4*	22
Example 2000	2038	C22 H25 Br F2 N4 O2	495	5.4*	23
	I	ł			

^{*}Yield of TFA salt.

5

10

15

Example 2001: Preparation of 1-(3-Carbamoylbenzyl)-4-[{N-(3-(trifluoromethyl)benzoyl)glycyl}aminomethyl]piperidine (Compound No. 924).

Example 2002: Preparation of 1-(4-Carbamoylbenzyl)-4-[{N-(3-(trifluoromethyl)benzoyl)glycyl}aminomethyl]piperidine (Compound No. 925).

Compound No. 925 was synthesized pursuant to methods of Example 2001 using

the corresponding reactant: 14.2 mg, 72%; The purity.was determined by RPLC/MS (86%); ESI/MS m/e 447 (M^{+} +H, $C_{24}H_{27}F_{3}N_{4}O_{3}$).

Example 2003: Preparation of 1-(4-Aminobenzyl)-4-[(N-(3-(trifluoromethyl)benzoyl)glycyl}aminomethyl]piperidine (Compound No. 516).

A solution of $1-(4-\text{nitrobenzyl})-4-[\{N-(3-(\text{trifluoromethyl})\text{benzoyl})\text{glycyl}\}$ aminomethyl]piperidine (22.4 mg, 0.047 mmol) in EtOH (3 mL) was hydrogenated at 1 atm for 1 h in the presence of 5% palladium on charcoal (10 mg) at 25 °C. The catalyst was removed by filtration and washed with EtOH (5 mL). The combined filtrate was evaporated to afford $1-(4-\text{aminobenzyl})-4-[\{N-(3-\text{minobenzyl})-4-[\{N-(3$

(trifluoromethyl)benzoyl)glycyl}aminomethyl]piperidine (compound No. 516) as a pale yellow solid (20.1 mg, 96%). The purity was determined by RPLC/MS (99%); ESI/MS m/e 449.1 (M^++H , $C_{23}H_{27}F_3N_4O_2$).

15

10

5

Examples 2004 and 2005.

Compounds No. **517** and **518** were synthesized pursuant to methods of Example 2003 using the corresponding reactant respectively. The ESI/MS data and yields are summarized in Table 49.

20

25

30

Table 49

	Compound No.	Molecular Fo	ormula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 2004	517	C23 H27 F3 N4	02	449	26.5	78
Example 2005	518	C23 H27 F3 N4	02	449	25.3	71

Example 2006: Preparation of 1-{4-(Benzoylamino)benzyl}-4-[{N-(3-(trifluoromethyl)benzoyl)glycyl}aminomethyl]piperidine (Compound No. 519).

EDCI (4.7 mg), 1-hydroxybenzotriazole hydrate (3.3 mg), Et₃N (2.5 mg) and benzoic acid (3.0 mg) were added to a solution of 1-(4-aminobenzyl)-4-[(N-(3-(trifluoromethyl)benzoyl)glycyl)aminomethyl]piperidine (10.1 mg, 0.023 mmol) in CH₂Cl₂ (2.5 ml). The reaction mixture was stirred at 25 °C for 16 h, washed with 2 N aqueous NaOH (2 x 2 mL) and brine (1 mL). After filtration through PTFE membrane filter, the solvent was removed under reduced pressure to afford an yellow oil which was purified by preparative TLC (SiO₂, 10% CH₃OH-CH₂Cl₂) to give $1-(4-(\text{benzoylamino})\text{benzyl})-4-[{N-(3-(\text{benzoylamino})\text{benzyl}})-4-[{N-(3-(\text{benzoylamino})\text{benzyl}})]$

a colorless oil (4.6 mg, 36%): The purity was determined by RPLC/MS (99%); ESI/MS m/e 553.2 (M^*+H , $C_{30}H_{31}F_3N_4O_3$).

Example 2007: Preparation of 1-{4-(Piperidinocarbonyl)benzyl}-4-[{N-5 (3-(trifluoromethyl)benzoyl)glycyl}aminomethyl]piperidine (Compound No. 1572)

Piperidine (0.048 mmol), diisopropylcarbodiimide (0.45 mmol) in DMF (0.15 mL), 1-hydroxybenzotriazole hydrate (0.45 mmol) in DMF (0.15 mL) were added to $1-(4-carboxybenzyl)-4-[{N-(3$ of solution (trifluoromethyl)benzoyl)glycyl)aminomethyl]piperidine (0.040 mmol) in DMF 10 (1.0 mL). The reaction mixture was stirred at room temperature for 17 h, loaded onto VarianTM SCX column, and washed with CHCl $_3$ /CH $_3$ OH 1 : 1 (5 mL) and CH $_3$ OH (5 mL). Product was eluted off using 2 N NH_3 in CH_3OH (5 mL) and concentrated to 1-{4-(piperidinocarbonyl)benzyl}-4-[{N-(3afford (trifluoromethyl)benzoyl)glycyl}aminomethyl]piperidine (Compound No. 1572) 15 (14.3 mg, 66%): The purity was determined by RPLC/MS (99%); ESI/MS m/e 545 (M^++H , $C_{29}H_{35}F_3N_4O_3$).

Examples 2008-2015.

The compounds of this invention were synthesized pursuant to methods of Example 2007 using the corresponding reactant respectively. The ESI/MS data and yields are summarized in Table 50.

Table 50

25

20

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 2008	1573	C31 H33 F3 N4 O4	583	17.6	76
Example 2009	1574	C31 H33 F3 N4 O3	567	18.8	83
Example 2010	1575	C30 H30 C1 F3 N4 O3	587	3.2	14
Example 2011	1576	C28 H33 F3 N4 O4	547	21.1	97
Example 2012	1577	C26 H31 F3 N4 O4	521	5.1	24
Example 2013	1578	C31 H33 F3 N4 O3	567	16.9	75
Example 2014	1579	C31 H33 F3 N4 O3	567	6.0	26
Example 2015	1580	C29 H35 F3 N4 O3	545	15.1	69

Example 2016: Preparation of $1-[4-(Chloroformy1)benzy1]-4-[{N-(3-(trifluoromethy1)benzoy1)glycy1}aminomethy1]piperidine.$

A mixture of $1-(4-\text{carboxybenzyl})-4-[\{N-(3-(\text{trifluoromethyl})\text{benzoyl})\text{glycyl}\}$ aminomethyl] piperidine (240 mg) and thionyl chloride (1 mL) was stirred at room temperature for 12 h and the excess thionyl chloride was removed under reduced pressure to give desired $1-[4-(\text{chloroformyl})\text{benzyl}]-4-[\{N-(3-(\text{chloroformyl})\text{benzyl}]-4-[\{N-(N-(\text{chloroformyl})\text{benzyl}]-4-[\{N-(N-(N-(\text{chloroformyl})\text{benz$

(trifluoromethyl)benzoyl)glycyl}aminomethyl]piperidine. The acid chloride was used without further purification.

Example 2017: Preparation of $1-[4-\{N-(2-Methoxyethyl) carbamoyl\}benzyl]-4-[\{N-(3-Methoxyethyl) carbamoyl]benzyl]-4-[-[-1]benzyl]-4-[-1]benzy$

(trifluoromethyl)benzoyl)glycyl)aminomethyl]piperidine (Compound No. 1612).

A mixture of $1-[4-(\text{chloroformyl}) \text{benzyl}]-4-[\{N-(3-(\text{trifluoromethyl}) \text{benzoyl}) \text{glycyl}\} \text{aminomethyl}] \text{piperidine} (0.042 \text{ mmol}), 2-\text{methoxyethylamine} (3.8 \text{ mg}, 0.050 \text{ mmol}), \text{piperidinomethylpolystyrene} (46 \text{ mg}) \text{ and dichloromethane} (1.5 \text{ mL}) \text{ was stirred at room temperature for 17 h. Water (0.020 \text{ mL}) was added and the mixture was stirred for 30 min. Methanol (1 mL) was added and the mixture was loaded onto Varian SCX column, and washed with CH₃OH (10 mL). Product was eluted off using 2 N NH₃ in CH₃OH (5 mL) and concentrated to afford <math>1-[4-\{N-(2-\text{methoxyethyl}) \text{carbamoyl}\} \text{benzyl}]-4-[\{N-(3-(\text{trifluoromethyl}) \text{benzoyl}) \text{glycyl}\} \text{aminomethyl}] \text{piperidine} (Compound No. 1612) (26.7 mg, 100%): The purity was determined by RPLC/MS (92%); ESI/MS m/e 535.2 (M-H, C₂₇H₃₃F₃N₄O₄).$

Examples 2018-2020.

The compounds of this invention were synthesized pursuant to methods of Example 2017 using the corresponding reactant respectively. Preparative TLC, if needed, afforded the desired material. The ESI/MS data and yields are summarized in Table 51.

30

25

5

10

15

20

Table 51

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 2018	1610	C31 H30 F6 N4 O3	621.2	4.4	14
Example 2019	1611	C30 H29 Cl2 F3 N4 O3	621.2	35.7	quant
Example 2020	1613	C32 H35 F3 N4 O3	581.2	29.9	quant

Example

2021:

Preparation

of

4-[N-{5-Bromo-2-

(methylamino) benzoyl}glycyl]aminomethyl-1-(4-chlorobenzyl)piperidine (Compound No. 1427).

A solution of $4-\{N-(2-amino-5-bromobenzoyl)\ glycyl\}$ aminomethyl-1-(4chlorobenzyl)piperidine (Compound No. 1042) (50 mg, 0.10 mmol) in triethyl orthoformate (6.5 mL) was stirred at 150 °C for 17 h. Concentration afforded a yellow solid. To a solution of the yellow solid in ethanol (3 mL) was added sodium borohydride (7.6 mg, 0.2 mmol) and the mixture was stirred at room temperature for 14 h. A resulting white precipitate was resolved in dichloromethane and the solution was washed with 1 N aqueous NaOH (2 mL). The organic layer was separated, dried over K_2CO_3 , filtered and evaporated. Column gave 4-[N-{5-bromo-2-MeOH/CHCl₃) (SiO₂, 20% chromatography (methylamino)benzoyl)glycyl]aminomethyl-1-(4-chlorobenzyl)piperidine (Compound No. 1427) (40 mg, 80%): The purity was determined by RPLC/MS (100%); ESI/MS m/e 505 ($C_{23}\dot{H}_{28}BrClF_6N_4O_2$).

15

20

25

10

5

Example 2022: Preparation of 4-[N-{5-Bromo-2-(dimethylamino)benzoyl)glycyl]aminomethyl-1-(4-chlorobenzyl)piperidine (Compound No. 1428).

Sodium cyanoborohydride (26 mg, 0.42 mmol) and acetic acid (14 μL) was of 4-{N-(2-amino-5mixture а successively to added bromobenzoyl)glycyl}aminomethyl-1-(4-chlorobenzyl)piperidine (Compound No. . 1042) (67 mg, 0.14 mmol), 37% formaldehyde solution in water (0.112 mL, 1.4 mmol), acetonitrile (2 mL), and methanol (1.5 mL). After the solution was stirred at 50 °C for 30 h, 1 N aqueous NaOH and dichloromethane were added. The aqueous layer was separated and the organic layer was dried over K2CO3, filtered and Column chromatography (SiO₂, 20% MeOH/AcOEt) gave 4-[N-{5evaporated. bromo-2-(dimethylamino)benzoyl}glycyl}aminomethyl-1-(4chlorobenzyl)piperidine (Compound No. 1428) (60 mg, 82%): The purity was determined by RPLC/MS (100%); ESI/MS m/e 523 ($C_{24}H_{30}BrClF_6N_4O_2$).

30

35

Example 2023: Preparation of 4-[{N-(5-Bromo-2-(methylsulfonylamino)benzoyl)glycyl}aminomethyl]-1-(4-chlorobenzyl)piperidine (Compound No. 1581).

A mixture of 4-[(N-(2-amino-5-bromobenzoyl)glycyl)aminomethyl]-1-(4-chlorobenzyl)piperidine (25 mg, 0.05 mmol), methanesulfonyl chloride (0.0045 mL), triethylamine (0.026 mL) and dichloromethane (2 mL) was stirred at room temperature for 17 h. The reaction mixture was purified with column chromatography (SiO₂), loaded onto VarianTH SAX column, and washed with CH₃OH (5

Example 2024: Preparation of 4-[{N-(5-Bromo-2-(bis(methylsulfonyl)amino)benzoyl)glycyl}aminomethyl]-1-(4-chlorobenzyl)piperidine (Compound No. 1582).

10 of mixture $1-(4-chlorobenzyl)-4-[{N-(2-amino-5$ bromobenzoyl)glycyl}aminomethyl]piperidine (57 mg, 0.10 mmol), methanesulfonyl chloride (0.018 mL, 0.24 mmol), triethylamine (0.068 mL) and dichloromethane (2 mL) was stirred at room temperature for 8 h. Aqueous 1 N NaOH solution (1 mL) was added and the mixture was extracted with dichloromethane (2 mL $_{
m X}$ 3). 15 The combined extracts were dried over K2CO3, filtered and evaporated. Column (SiO₂)chromatography gave 4-[{N-(5-bromo-2-(bis (methylsulfonyl) amino) benzoyl) glycyl) aminomethyl]-1-(4chlorobenzyl)piperidine (Compound No. 1582) (40 mg, 62%): ESI/MS m/e 651 (M*+H, C24H30BrClN4O6S2).

20

5

Example 2025: Preparation of 1-(4-Chlorobenzyl)-1-methyl-4-[{N-(3-(trifluoromethyl)benzoyl)glycyl}aminomethyl]piperidinium iodide (Methylammonium iodide of Compound No. 461).

solution of 4-[{N-(3-25 (trifluoromethyl)benzoyl)glycyl)aminomethyl]piperidine (30 mg, 0.087 mmol) in CH₃CN (1.0 mL) and (piperidinomethyl)polystyrene (80 mg, 2.7 mmol base/g resin) were added to a solution of 4-chlorobenzyl chloride (11.7 mg, 0.073 mmol) in $\mathrm{CH_3CN}$ (1.0 mL). The reaction mixture was stirred at 60 °C for 2 h. Phenyl isocyanate (10.4 mg, 0.087 mmol) was added to the cooled reaction mixture and the mixture was stirred at 25 °C for 1 h. The reaction mixture was loaded onto 30 Varian M SCX column and washed with CH3OH (20 mL). Product was eluted off using 2 N NH₃ in CH₃OH (6 mL) and concentrated to afford 1-(4-chlorobenzyl)-4-[{N-(3-(trifluoromethyl)benzoyl)glycyl}aminomethyl]piperidine as a colorless oil used without purification. Iodomethane (28 mg, 0.20 mmol) was added to a solution $35 \cdot of$ 1-(4-chlorobenzyl)-4-[{N-(3-(trifluoromethyl)benzoyl)glycyl)aminomethyl]piperidine in CH₃CN (2.0 mL) andthe reaction mixture was stirred at 70 $^{\circ}$ C for 4 h. The solvent was removed under reduced afford $1-(4-\text{chlorobenzyl})-1-\text{methyl}-4-\{\{N-(3-$

(trifluoromethyl)benzoyl)glycyl}aminomethyl]piperidinium iodide as a pale yellow oil (31.7 mg, 71%): The purity was determined by RPLC/MS (99%); ESI/MS m/e 482.1 (M^* , $C_{24}H_{28}ClF_3N_3O_2$).

Example 2026: Preparation of 1-{4-Chlorobenzyl}-4-[N-methyl-N-{N-(3-(trifluoromethyl)benzoyl)glycyl}aminomethyl]piperidine (Compound No. 520).

5

10

15

20

30

Formaldehyde (108 mg, 1.33 mmol, 37% wt solution in H_2O) was added to a solution of 1-(4-chlorobenzyl)-4-(aminomethyl) piperidine (318 mg, 1.33 mmol) and NaBH₃CN (668 mg) in 10% CH₃COOH/CH₃OH (3 mL). The reaction mixture was stirred at 25 °C for 1 h. The reaction mixture was loaded on DOWEXTM 50Wx2 column (10 mL) and washed with CH₃OH (100 mL). Product was eluted off using 2 N NH₃ in CH₃OH (100 mL) and concentrated to afford 173 mg of crude 1-(4-chlorobenzyl)-4-(methylamino) methyl) piperidine as a colorless oil used without purification.

EDCI (85 mg), 1-hydroxybenzotriazole hydrate (60 mg) were added to a solution of 1-(4-chlorobenzyl)-4-{(methylamino)methyl}piperidine (111 mg, 0.44 mmol) in CH_2Cl_2 (4 mL). The reaction mixture was stirred at 25 °C for 1 h and then washed with 2 N aqueous NaOH (2 mL X 2) and brine (1 mL). After filtration through PTFE membrane filter, the solvent was removed under reduced pressure to afford an yellow oil which was purified by preparative TLC (SiO₂, 5% CH_3OH/CH_2Cl_2) to give 1-(4-chlorobenzyl)-4-[N-methyl-N-(N-(3-(trifluoromethyl)benzoyl)glycyl)aminomethyl]piperidine (compound No. 520) as a pale yellow oil (14.0 mg, 3.4%). The purity was determined by RPLC/MS (99%); ESI/MS m/e 482.1 (M*+H, $C_{24}H_{27}ClF_3N_3O_2$).

25 Reference Example 37: Preparation of 3-Aminohomopiperidine.

A solution of DL- α -amino- ϵ -caprolactam (2 g, 16 mmol) in THF (70 mL) was treated with 1 M BH₃-THF solution (80 mL) and heated to reflux for 3 h. 2 N aqueous HCl solution (50 mL) was added and the reaction was heated to reflux for an additional hour before cooling to 25 °C. The reaction was basicified (pH 10) by the addition of 4 N NaOH solution and extracted with EtOAc (3 x 200 mL). The combined organic phases were washed with saturated aqueous NaHCO₂, dried (MgSO₄) and concentrated to yield the desired material (990 mg, 54%) which was used without any further purification.

35 Reference Example 38: Preparation of 3-Amino-1-(4-chlorobenzyl)homopiperidine.

A solution of 3-aminohomopiperidine (1.71 g, 15 mmol) in CH_3CN (45 mL) was treated with p-chlorobenzyl chloride (463 mg, 2.9 mmol) and K_2CO_1 (828 g,

6 mmol) and heated to 70 °C for 9 h. The reaction mixture was cooled to 25 °C and concentrated to afford a yellow solid. The residue was partitioned between $\rm H_2O$ (5 mL) and EtOAc (50 mL), and extracted with EtOAc (2 x 50 mL). The combined organic extracts were washed with brine (20 mL), dried ($\rm Na_2SO_4$) and concentrated. The resulting yellow oil was purified by chromatography ($\rm SiO_2$, 5-20% CH₃OH-CH₂Cl₂ gradient elution) to afford the desired product as a yellow oil (639 mg, 93%).

Example 2027: Preparation of 1-(4-Chlorobenzyl)-3-((4-benzoylbutyryl)amino)homopiperidine (Compound No. 994).

A solution of 3-amino-1-(4-chlorobenzyl)homopiperidine (24 mg, 0.10 mmol) and 4-benzoylbutyric acid (1.2 equiv.) in CHCl3 (1 mL) was treated with EDCI (23 mg), HOBt (16.2 mg) and Et₃N (15.2 μL), and stirred at 25 °C for 16 h. The reaction mixture was diluted with CH₂Cl₂ (0.5 mL), washed with 2 N aqueous NaOH solution (2 x 0.75 mL), dried by filtration through a PTFE membrane and concentrated to afford 1-(4-chlorobenzyl)-3-{(4-benzoylbutyryl)amino}homopiperidine (compound No. 994) (43 mg, 99%): The purity was determined by RPLC/MS (98%); ESI/MS m/e 413 (M*+H, C₂₄H₂₉ClN₂O₂).

Examples 2028-2042.

The compounds of this invention were synthesized pursuant to methods of Example 2027 using the corresponding reactant respectively. Chromatography (HPLC-C18), if needed, afforded the desired material as the TFA salt. The ESI/MS data and yields are summarized in Table 52.

25

20

Table 52

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 2028	943	C23 H25 Cl F3 N3 O2	468	6	28
Example 2029	l	C23 H28 Cl N3 O2	414	5	29
Example 2030	945	C22 H25 Cl N4 O4	445	6	30
Example 2031	946	C23 H27 Cl N4 O4	459	5	24
Example 2032	947	C25 H31 Cl N2 O4	459	4	20
Example 2033	948	C24 H29 Cl2 N3 O2	462	6	32
Example 2034	949	C25 H32 Cl N3 O2	442	6	31
Example 2035	988	C23 H25 C1 F3 N3 O2	468	45	92
Example 2036	989	C23 H28 Cl N3 O3	430	44	97
Example 2037	990	C22 H26 Cl N3 O2	400	41	99
Example 2038	991	C23 H27 Cl N2 O2	399	41	97

Example 2039	992	C25 H31 Cl	N2 04	459	47	98
Example 2040	993	C25 H31 Cl	N2 O2	427	44	98
Example 2041	995	C25 H31 C1	N2 03	443	44	95
Example 2042	996	C24 H31 C1	N4 O2	443	5*	11

^{*}Yield of TFA salt.

Example 2043: Measurement of Inhibition of MIP-1 α Binding to THP-1 Cells by Test Compounds.

Human monocytic leukemia cell line THP-1 was suspended in assay buffer (RPMI-1640 (Gibco-BRL Co.) containing 0.1% BSA and 25 mM HEPES adjusted to pH 7.4) to give a cell suspension of a concentration of 1 x 10° cells/mL. The test compound was diluted in the assay buffer and used as the test compound solution. Iodinated human MIP-1 α (DuPont NEN Co.) was diluted in assay buffer to 250 nCi/mL and used as the labeled ligand solution. In a 96 well filter plate (Millipore Co.), 25 μ L of test compound solution, 25 μ L of labeled ligand solution and 50 μ L of cell suspension were aliquoted into each well in this order, stirred (total reaction volume 100 μ L), and incubated for one hour at 18 °C.

After the reaction, the reaction solution was filtered, and the filter was washed twice with 200 μL of cold PBS (200 μL of cold PBS was added and then filtered). The filter was air-dried and 25 μL of liquid scintillator was added into each well. The radioactivity retained by the cells on the filter were measured using TopCount (Packard Instrument Co.).

20

5

10

15

To calculate the ability of test compounds to inhibit binding of human MIP-1 α to THP-1 cells, non-specific binding determined by adding 100 ng of unlabeled human MIP-1 α (Peprotech Co.) in place of the test compound was subtracted, while the counts with no test compound added was taken as 100%.

25

Inhibition
$$(%) = \{1 - (A - B)/(C - B)\} \times 100$$

(A, counts with test compound added; B, counts with 100 ng of unlabeled human MIP-1 α added; C, counts with [125I]-labeled human MIP-1 α added).

30

When inhibition by the cyclic amine derivative of this invention was measured, for example, the following compounds demonstrated 20-50%, 50%-80% and >80% inhibitory activity at 2 μ M or 10 μ M, respectively. These compounds are

```
20\%-50\% inhibition at 10 \mu\text{M}: Compound Nos. 29, 37, 41, 45, 46, 47, 50, 82, 85,
      107, 120, 134, 214, 217, 218, 220, 222, 225, 226, 227, 228, 229, 230, 231, 233,
      234, 236, 237, 238, 333, 334, 335, 336, 338, 340, 342, 347, 348, 349, 350, 352,
      357, 359, 361, 366, 372, 374, 375, 376, 380, 382, 383, 385, 470, 471, 472, 473,
      474, 483, 484, 488, 489, 491, 497, 499, 500, 502, 506, 508, 510, 514, 515, 518,
      524, 543, 553, 554, 555, 556, 563, 571, 575, 576, 578, 579, 580, 583, 586, 587,
      588, 590, 591, 592, 595, 596, 598, 603, 610, 611, 612, 614, 624, 625, 626, 629,
      635, 638, 639, 640, 641, 642, 643, 644, 646, 647, 648, 649, 652, 653, 658, 659,
      660, 665, 666, 669, 671, 675, 677, 679, 681, 682, 684, 691, 695, 696, 700, 702,
 10
      704, 706, 711, 712, 714, 717, 721, 723, 724, 726, 727, 728, 729, 731, 737, 739,
      740, 741, 742, 744, 746, 765, 767, 772, 773, 774, 775, 776, 780, 781, 785, 786,
      787, 788, 790, 791, 792, 793, 795, 796, 797, 798, 805, 806, 807, 810, 813, 820,
      821, 822, 824, 825, 827, 829, 830, 833, 834, 837, 838, 844, 853, 855, 873, 877,
      878, 880, 882, 887, 888, 891, 894, 901, 903, 904, 905, 911, 929, 932, 933, 935,
15
      938, 940, 948, 993, 996, 1006, 1018, 1026, 1028, 1035, 1048, 1053, 1054, 1055,
      1056, 1068, 1070, 1071, 1072, 1073, 1075, 1076, 1081, 1763, 1764.
      50%-80% inhibition at 10 μM: Compound Nos. 1, 2, 3, 4, 7, 13, 22, 23, 24, 25,
      27, 31, 32, 38, 48, 83, 119, 121, 123, 131, 215, 216, 221, 235, 337, 351, 354,
     358, 362, 363, 365, 367, 368, 369, 373, 378, 381, 384, 458, 459, 463, 465, 466,
20
     467, 468, 478, 479, 480, 482, 485, 486, 487, 492, 493, 494, 495, 496, 498, 501,
     503, 504, 507, 511, 512, 513, 520, 523, 527, 529, 530, 531, 532, 533, 534, 535,
     536, 537, 538, 539, 540, 541, 542, 545, 546, 547, 548, 549, 550, 551, 552, 558,
     559, 560, 561, 562, 565, 567, 568, 569, 570, 572, 573, 574, 577, 581, 582, 594,
     597, 599, 600, 602, 604, 606, 607, 608, 609, 613, 615, 616, 618, 619, 620, 621,
25
     628, 630, 631, 632, 633, 634, 636, 637, 645, 651, 654, 655, 657, 661, 662, 664,
     673, 674, 676, 678, 680, 683, 685, 687, 688, 689, 693, 703, 705, 707, 708, 709,
     710, 713, 716, 718, 719, 720, 725, 730, 732, 733, 734, 735, 736, 749, 750, 751,
     752, 753, 754, 756, 758, 760, 762, 763, 764, 766, 768, 769, 770, 771, 777, 778,
     779, 784, 794, 799, 800, 802, 804, 808, 809, 811, 812, 815, 816, 819, 828, 831,
30
     832, 835, 836, 839, 840, 845, 846, 847, 848, 850, 851, 854, 857, 858, 859, 860,
     861, 862, 863, 865, 866, 867, 868, 872, 874, 876, 886, 899, 910, 942, 998, 1004,
     1005, 1007, 1013, 1015, 1016, 1017, 1019, 1020, 1021, 1022, 1024, 1030, 1037,
     1042, 1043, 1044, 1045, 1046, 1047, 1049, 1050, 1052, 1059, 1060, 1061, 1067,
     1069, 1074, 1078, 1079, 1080, 1766.
35
     >80% inhibition at 10 µM: Compound Nos. 461, 464, 469, 481, 490, 505, 509, 521,
     526, 528, 544, 564, 566, 601, 605, 617, 622, 623, 627, 650, 656, 663, 668, 672,
     686, 690, 692, 694, 715, 743, 747, 748, 755, 757, 759, 761, 782, 783, 803, 814,
     817, 818, 826, 849, 856, 864, 869, 870, 871, 999, 1000, 1001, 1002, 1003, 1008,
```

1009, 1010, 1011, 1012, 1023, 1029, 1031, 1032, 1033, 1034, 1036, 1038, 1039, 1040, 1041, 1051, 1057, 1058, 1062, 1063, 1064, 1065, 1066, 1082, 1083. 20%-50% inhibition at 2 μM: Compound Nos. 1042, 1043, 1244, 1245, 1416, 1435, 1436, 1438, 1441, 1480, 1570, 1583, 1584, 1589, 1590, 1594, 1595, 1601, 1660, 1672, 1687, 1724, 1779, 1780, 1787, 1795, 1796, 1798, 1799, 1802, 1893, 1894, 1898, 1900, 1915, 1919, 1920, 2092, 2096, 2098, 2100. 50%-80% inhibition at 2 μM: Compound Nos. 1190, 1414, 1600, 2091, 2094, 2095. >80% inhibition at 2 μM: Compound Nos. 2093, 2097, 2099, 2103, 2104.

10 Example 2044: Measurement of Inhibition of MCP-1 Binding to THP-1 Cells.

Construction of recombinant baculovirus carrying the human MCP-1 gene

Based on the previously published human MCP-1 gene sequence (for example T. Yoshimura et al., FEBS Lett., 1989, 244, 487-493), two synthetic DNA primers (5'-CACTCTAGACTCCAGCATGA-3' and 5'-TAGCTGCAGATTCTTGGGTTG-3') flanked by restriction enzyme sites were used to amplify a DNA fragment from cDNA derived from human endothelial cells (purchased from Kurabow Co.); the amplified fragment was cut with the restriction enzymes (PstI and XbaI), ligated into a transfer vector pVL1393 (Invitrogen Co.), and the resulting vector was co-transfected along with infectious baculovirus into Sf-9 insect cells and the supernatant was plaque assayed to yield human MCP-1 gene baculovirus recombinant.

- 2. Synthesis of $[^{125}I]$ -labeled human MCP-1 expressed in baculovirus
- Using the method of K. Ishii et al. (Biochem Biophys Research Communications, 1995, 206, 955-961), 5 x 10⁶ Sf-6 insect cells was infected with 5 x 10⁷ PFU (plaque forming units) of the above human MCP-1 recombinant baculovirus and cultured for 7 days in Ex-Cell 401 medium. The culture supernatant was affinity purified using a heparin Sepharose column (Pharmacia Co.) and then further purified using reverse phase HPLC (Vydac C18 column) to prepare purified human MCP-1. The purified human MCP-1 was protein labeled by Amersham Co. using the Bolton Hunter method to yield [125]-labeled baculovirus expressed human MCP-1 (specific activity 2000 Ci/mmol).
- 35 3-1. Measurement of inhibition of binding of [125]-labeled baculovirus expressed human MCP-1 to THP-1 cells (Method 1)

Human monocytic leukemia cell line THP-1 was suspended in assay buffer

(RPMI-1640 (Gibco-BRL Co.) containing 0.1% BSA and 25 mM HEPES adjusted to pH 7.4) to give a cell suspension of a concentration of 1 x 10^7 cells/mL. The test compound was diluted in the assay buffer and used as the test compound solution. [125I]-labeled human MCP-1 described above was diluted in assay buffer to 1 mCi/mL and used as the labeled ligand solution. In a 96 well filter plate (Millipore Co.), 25 μ L of test compound solution, 25 μ L of labeled ligand solution and 50 μ L of cell suspension were aliquoted into each well in this order, stirred (total reaction volume 100 μ L), and incubated for one hour at 18 °C.

After the reaction, the reaction solution was filtered, and the filter was washed twice with 200 μL of cold PBS (200 μL of cold PBS was added and then filtered). The filter was air-dried and 25 μL of liquid scintillator was added into each well. The radioactivity retained by the cells on the filter were measured using TopCount (Packard Instrument Co.).

15

To calculate the ability of test compound to inhibit binding of human MCP-1 to THP-1 cells, non-specific binding determined by adding 100 ng of unlabeled human MCP-1 in place of the test compound was subtracted, while the counts with no test compound added was taken as 100%.

20

Inhibition (%) =
$$\{1 - (A - B)/(C - B)\} \times 100$$

(A, counts with test compound added; B, counts with 100 ng of unlabeled human MCP-1 added; C, counts with $[^{125}I]$ -labeled human MCP-1 added).

25

When inhibition by the cyclic amine derivative of this invention was measured, for example, the following compounds demonstrated 20%-50%, 50%-80% and >80% inhibitory activity at 1 μ M, 10 μ M or 100 μ M, respectively. These compounds are

30 20%-50% inhibition at 100 μM: Compound Nos. 3, 6, 11, 15, 16, 19, 28, 44, 88, 92, 94, 104, 111, 112, 124, 125, 133, 219, 220, 224, 228, 236, 338, 343, 346, 347, 348, 349, 362, 363, 367, 368, 371, 373, 381, 618, 847, 849, 850, 866, 867, 869, 870, 871, 872, 873.

50%-80% inhibition at 100 µM: Compound Nos. 1, 8, 10, 12, 18, 21, 26, 30, 33, 35, 39, 84, 89, 90, 91, 96, 97, 98, 99, 100, 101, 103, 106, 108, 109, 110, 116, 122, 126, 216, 218, 221, 225, 226, 231, 330, 332, 333, 334, 337, 341, 342, 350, 352, 354, 356, 359, 360, 361, 364, 366, 374, 375, 379, 382, 462, 463, 464, 557, 686, 840, 841, 842, 843, 844, 845, 846, 848, 862, 863, 864, 865, 868.

```
>80% inhibition at 100 \mu M: Compound Nos. 2, 4, 5,.7, 13, 14, 17, 20, 22, 23,
     24, 25, 27, 29, 31, 32, 34, 36, 38, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 83,
     85, 86, 95, 102, 105, 107, 113, 114, 115, 119, 120, 121, 123, 127, 128, 129,
     130, 131, 132, 134, 214, 215, 217, 227, 237, 238, 331, 335, 336, 339, 340, 345,
    351, 355, 357, 358, 383, 458, 459, 460, 466, 558, 851, 852, 861, 874.
     20\%-50\% inhibition at 10 \mu M: Compound Nos. 12, 18, 30, 34, 40, 42, 43, 51, 52,
     53, 54, 55, 56, 57, 59, 60, 64, 66, 75, 76, 77, 78, 79, 82, 89, 90, 97, 98, 102,
     103, 116, 127, 128, 129, 130, 132, 135, 136, 140, 141, 144, 156, 157, 159, 160,
     161, 162, 163, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 178, 179,
    190, 191, 192, 195, 197, 200, 202, 203, 204, 205, 208, 233, 234, 235, 239, 240,
10
     241, 242, 243, 245, 247, 249, 250, 255, 263, 264, 269, 274, 278, 279, 282, 306,
     316, 317, 323, 324, 380, 404, 409, 433, 446, 448, 449, 451, 470, 471, 473, 476,
     479, 486, 488, 489, 497, 498, 499, 501, 504, 507, 508, 509, 510, 512, 514, 516,
     519, 527, 530, 532, 542, 545, 560, 563, 564, 565, 566, 568, 569, 572, 573, 574,
     575, 578, 583, 584, 586, 587, 589, 590, 599, 600, 601, 603, 606, 612, 613, 620,
15
     621, 622, 624, 625, 627, 629, 630, 632, 634, 636, 637, 640, 641, 642, 643, 644,
     645, 646, 647, 648, 649, 658, 678, 682, 687, 692, 694, 764, 775, 856, 857, 860,
     881, 882, 883, 884, 890, 892, 899, 900, 903, 905, 907, 908, 911, 912, 916, 917,.
     921, 922, 923, 925, 927, 931, 932, 935, 939, 940, 968, 986, 1039, 1041, 1045,
     1047, 1062, 1063, 1083.
20
     50\%-80\% inhibition at 10 \mu\text{M}: Compound Nos. 7, 32, 36, 61, 62, 63, 65, 67, 69,
     70, 71, 72, 73, 74, 81, 91, 105, 114, 121, 123, 134, 137, 138, 139, 146, 147,
     148, 149, 151, 154, 165, 177, 232, 244, 248, 251, 252, 253, 256, 259, 261, 266,
     267, 276, 286, 292, 293, 295, 301, 305, 307, 310, 314, 315, 320, 322, 328, 434,
     435, 436, 437, 439, 440, 443, 447, 450, 452, 453, 454, 455, 456, 468, 469, 472,
25
     474, 475, 477, 478, 480, 481, 482, 483, 485, 490, 493, 494, 500, 505, 511, 517,
     520, 529, 534, 540, 543, 544, 548, 555, 556, 561, 562, 570, 576, 579, 611, 617,
     853, 854, 855, 858, 859, 875, 877, 879, 880, 885, 886, 887, 888, 891, 894, 895,
     904, 906, 909, 910, 913, 914, 918, 928, 930, 933, 937, 938, 945, 970, 1040, 1044,
30
     1046.
     >80% inhibition at 10 \muM: Compound Nos. 31, 45, 46, 48, 58, 68, 80, 83, 113,
     115, 142, 143, 145, 150, 152, 265, 268, 272, 275, 283, 285, 287, 288, 290, 291,
     294, 296, 297, 302, 308, 309, 313, 321, 325, 326, 358, 438, 441, 442, 444, 445,
     457, 466, 467, 484, 487, 491, 492, 495, 496, 503, 518, 537, 538, 547, 554, 876,
35
     878, 919, 929, 943.
     208-508 inhibition at 1 \mu M: Compound Nos. 1118, 1121, 1136, 1143, 1146, 1158,
     1159, 1167, 1170, 1359, 1361, 1362, 1363.
     50%-80% inhibition at 1 μM: Compound Nos. 1133, 1134, 1137, 1141, 1156, 1161,
```

1162, 1163, 1164, 1166.>80% inhibition at 1 μM: Compound No. 1147.

10

15

20

3-2. Measurement of inhibition of binding of $[^{125}I]$ -labeled baculovirus expressed human MCP-1 to THP-1 cells (Method 2)

Human monocytic leukemia cell line THP-1 was suspended in assay buffer (50 mM HEPES, pH 7.4, 1.0 mM CaCl₂, 5.0 mM MgCl₂, 0.5% BSA) to give a cell suspension of a concentration of 1 x 10 7 cells/mL. The test compound was diluted in the assay buffer and used as the test compound solution. [125 I]-labeled human MCP-1 described above was diluted in assay buffer to 1 mCi/mL and used as the labeled ligand solution. In a 96 well filter plate (Millipore Co.), 25 µL of test compound solution, 25 µL of labeled ligand solution and 50 µL of cell suspension were aliquoted into each well in this order, stirred (total reaction volume 100 µL), and incubated for one hour at 18 °C.

After the reaction, the reaction solution was filtered, and the filter was washed twice with 200 μL of cold PBS (200 μL of cold PBS was added and then filtered). The filter was air-dried and 25 μL of liquid scintillator was added into each well. The radioactivity retained by the cells on the filter were measured using TopCount (Packard Instrument Co.).

To calculate the ability of test compound to inhibit binding of human MCP-1 to THP-1 cells, non-specific binding determined by adding 100 ng of unlabeled human MCP-1 in place of the test compound was subtracted, while the counts with no test compound added was taken as 100%.

Inhibition
$$(%) = \{1 - (A - B)/(C - B)\} \times 100$$

(A, counts with test compound added; B, counts with 100 ng of unlabeled human MCP-1 added; C, counts with [125]-labeled human MCP-1 added).

When inhibition by the cyclic amine derivative of this invention was measured, for example, the following compounds demonstrated $20\hat{\tau}-50\hat{\tau}$, $50\hat{\tau}-80\hat{\tau}$ and >80% inhibitory activity at 0.2 μ M, 1 μ M or 10 μ M, respectively. These compounds are

20%-50% inhibition at 10 μ M: Compound No. 1560. 50%-80% inhibition at 10 μ M: Compound No. 1550.

```
>80% inhibition at 10 \mu\text{M}: Compound Nos. 541, 1042, 1043, 1559.
     20%-50% inhibition at 1 \muM: Compound Nos. 1098, 1100, 1101, 1104, 1105, 1109,
     1110, 1116, 1174, 1175, 1176, 1178, 1187, 1188, 1189, 1197, 1198, 1199, 1200,
     1201, 1202, 1209, 1210, 1211, 1212, 1222, 1225, 1229, 1230, 1237, 1238, 1243,
     1250, 1259, 1261, 1265, 1266, 1272, 1277, 1282, 1294, 1299, 1302, 1307, 1315,
     1318, 1319, 1320, 1329, 1330, 1335, 1336, 1337, 1343, 1344, 1353, 1355, 1356,
     1357, 1358, 1368, 1372, 1385, 1386, 1392, 1400, 1413, 1422, 1423, 1425, 1426,
     1429, 1430, 1432, 1437, 1440, 1445, 1446, 1447, 1448, 1450, 1452, 1453, 1455,
      1458, 1459, 1461, 1463, 1464, 1466, 1468, 1469, 1470, 1471, 1474, 1479, 1482,
     1485, 1507, 1508, 1510, 1511, 1512, 1513, 1514, 1515, 1516, 1518, 1519, 1521,
10
      1522, 1524, 1535, 1538, 1540, 1542, 1544, 1571, 1573, 1574, 1575, 1576, 1577,
      1578, 1579, 1580, 1581, 1582, 1585, 1587, 1598, 1602, 1603, 1604, 1609, 1611,
      1612, 1613, 1614, 1615, 1616, 1617, 1618, 1622, 1627, 1630, 1643, 1646, 1662,
      1669, 1716, 1717, 1723, 1728, 1731, 1733, 1736, 1739, 1740, 1747, 1750, 1755,
     1757, 1758, 1759, 1760, 1761, 1762, 1769, 1770, 1771, 1772, 1773, 1774, 1777,
15
      1783, 1784, 1785, 1791, 1793, 1904, 1911, 1917, 2057, 2061, 2063, 2064, 2065,
      2066, 2067, 2068, 2069, 2071, 2072, 2073, 2074, 2075, 2076, 2080, 2081, 2082,
      2110, 2112, 2123, 2130, 2131, 2139.
      508-807 inhibition at 1 \mu M: Compound Nos. 37, 298, 318, 1084, 1091, 1103, 1106,
      1108, 1111, 1113, 1114, 1115, 1138, 1142, 1165, 1179, 1190, 1192, 1193, 1195,
20
      1196, 1204, 1205, 1206, 1207, 1208, 1245, 1246, 1255, 1257, 1258, 1262, 1263,
      1293, 1300, 1342, 1351, 1352, 1354, 1370, 1371, 1373, 1375, 1377, 1378, 1380,
      1381, 1383, 1384, 1391, 1411, 1412, 1414, 1417, 1418, 1419, 1421, 1424, 1431,
      1436, 1439, 1449, 1454, 1456, 1457, 1460, 1462, 1472, 1473, 1487, 1502, 1504,
      1506, 1517, 1525, 1526, 1527, 1529, 1530, 1531, 1532, 1533, 1534, 1536, 1537,
25
      1539, 1541, 1545, 1593, 1600, 1601, 1606, 1608, 1619, 1620, 1621, 1623, 1624,
      1625, 1626, 1628, 1629, 1645, 1650, 1654, 1658, 1663, 1664, 1665, 1670, 1671,
      1672, 1673, 1675, 1678, 1679, 1681, 1684, 1687, 1688, 1689, 1690, 1711, 1712,
      1714, 1718, 1722, 1725, 1726, 1727, 1729, 1730, 1732, 1734, 1735, 1737, 1741,
      1742, 1743, 1744, 1745, 1746, 1748, 1751, 1753, 1754, 1756, 1779, 1781, 1782,
 30
      1786, 1788, 1789, 1790, 1792, 1795, 1797, 1798, 1800, 1801, 1804, 1848, 1862,
      1883, 1885, 1886, 1887, 1889, 1893, 1894, 1903, 1905, 1910, 1912, 1913, 1914,
      1918, 1922, 1976, 1985, 2027, 2035, 2062, 2083, 2084, 2088, 2089, 2090, 2111,
      2124, 2125, 2126, 2135.
      >80% inhibition at 1 \mu M: Compound Nos. 299, 311, 312, 329, 1042, 1043, 1085,
      1119, 1191, 1203, 1220, 1228, 1236, 1244, 1256, 1288, 1295, 1308, 1310, 1376,
      1382, 1393, 1395, 1415, 1416, 1420, 1435, 1438, 1441, 1480, 1481, 1570, 1583,
      1584, 1589, 1590, 1594, 1595, 1607, 1634, 1660, 1661, 1666, 1668, 1695, 1696,
```

```
1697, 1698, 1699, 1701, 1702, 1703, 1704, 1705, 1706, 1707, 1708, 1709, 1713,
     1724, 1749, 1752, 1775, 1776, 1778, 1780, 1787, 1794, 1796, 1799, 1802, 1803,
     1841, 1869, 1870, 1871, 1872, 1876, 1877, 1892, 1896, 1897, 1898, 1899, 1900,
     1901, 1902, 1906, 1907, 1908, 1909, 1915, 1916, 1919, 1920, 1921, 2085, 2086,
     2087, 2113, 2114, 2118, 2119, 2120, 2121, 2122, 2127, 2128, 2129, 2132, 2133,
     2136, 2137, 2138, 2159, 2161, 2162, 2187, 2189, 2193.
     20%-50% inhibition at 0.2 μM: Compound Nos. 1680, 1682, 1686, 1691, 1694, 1700,
     1805, 1810, 1811, 1812, 1813, 1815, 1816, 1817, 1818, 1819, 1820, 1824, 1825,
     1826, 1827, 1828, 1832, 1833, 1834, 1835, 1836, 1839, 1840, 1842, 1843, 1851,
     1852, 1853, 1854, 1855, 1856, 1858, 1859, 1860, 1863, 1864, 1865, 1866, 1868,
10
     1874, 1878, 1879, 1880, 1888, 1890, 1891, 1895, 1926, 1927, 1928, 1929, 1930,
     1934, 1935, 1937, 1945, 1946, 1951, 1952, 1953, 1954, 1959, 1960, 1961, 1962,
     1966, 1969, 1970, 1971, 1972, 1973, 1977, 1978, 1979, 1980, 1981, 1985, 2014,
     2027, 2028, 2033, 2035, 2039, 2040, 2041, 2042, 2044, 2045, 2046.
15
     50\%-80\% inhibition at 0.2 \mu\text{M}: Compound Nos. 1677, 1678, 1679, 1681, 1687, 1688,
     1689, 1690, 1695, 1697, 1808, 1809, 1841, 1848, 1861, 1862, 1869, 1870, 1871,
     1872, 1873, 1876, 1877, 1883, 1884, 1885, 1886, 1887, 1889, 1893, 1894, 1976.
     >80% inhibition at 0.2 \mu M: Compound No. 1696, 1892.
```

- 20 Example 2045: Measurement of Inhibition of Binding of [125I]-Labeled Human MCP-1 to Cells Expressing the MCP-1 Receptor.
 - Derivation of cells expressing the MCP-1 receptor

25

30

cDNA fragment containing the MCP-1 receptor reported by S. Yamagami et al., Biochemical Biophysical Research Communications 1994, 202, 1156-1162) was cloned into the expression plasmid pCEP4 (Invitrogen Co.) at the NotI site, and the plasmid obtained was transfected into the human kidney epithelial cell line 293-EBNA using the Lipofectamine reagent (Gibco-BRL Co.). The cells were cultured in the presence of the selective agent (Hygromycin), and a stably expressing transfectant line was obtained. The expression of the receptor was confirmed by binding of [125I]-labeled human MCP-1.

2. Measurement of inhibition of binding of $[^{125}I]$ -labeled baculovirus expressed human MCP-1 to the MCP-1 receptor expressing cells

The MCP-1 receptor expressing cells on tissue culture dishes were scraped using a cell scraper and suspended in assay buffer (D-MEM(Gibco-BRL Co.) containing 0.1% BSA and 25 mM HEPES adjusted to pH 7.4) to give a cell suspension of a concentration of 6 x 10⁶ cells/mL. The test compound was diluted in the assay buffer. The remainder of the procedure was as described in Example 2044.

When the inhibition by some typical compounds of the present invention was measured, the inhibitory activities were substantially the same as those in Example 2044, respectively.

5

10

15

20

25

Example 2046: Measurement of Inhibition of Cell Chemotaxis.

In order to determine the inhibition of cell chemotaxis by the compounds of this invention, we measured cell chemotaxis caused by monocyte chemotactic factor MCP-1 using the human monocytic leukemia cell line THP-1 as the chemotactic cell according to the method of Fall et al. (J. Immunol. Methods, 190, 33, 239-247). 2 x 10^6 cells/mL of THP-1 cells (suspended in RPMI-1640 (Flow Laboratories Co.) + 10% FCS) was placed in the upper chamber (200 μ L) of a 96 well micro-chemotaxis chamber (Neuroprobe, registered tradename), and human recombinant MCP-1 in a same solution (Peprotech Co.) at a final concentration of 20 ng/mL was placed in the lower chamber, with a polycarbonate filter (PVP-free, Neuroprobe; registered tradename) placed between the two chambers. These were incubated at 37 °C for 2 hr in 5% CO₂.

The filter was removed, and the cells which had migrated to the underside of the filter was fixed, stained using Diff Quick (Kokusai Shiyaku Co.) and then quantitated using a plate reader (Molecular Device Co.) at a wavelength of 550 nm to determine the index of cell migration as a mean of 3 wells. In addition, test compounds were placed in the upper and lower chambers along with THP-1 and MCP-1, respectively, and the inhibition of cell migration (inhibition IC50 (μ M)) was determined. Inhibition was defined as { (cells migration induced MCP-1 with no test compound in the upper and lower chambers) - (cells migration with no MCP-1 added in the lower chamber) = 100%}, and the concentration of the test compound which gave 50% inhibition was designated IC50.

When inhibition by the cyclic amine derivative of this invention was 30 measured, for example, the 50% inhibition concentration (IC₅₀) for the following compounds were IC₅₀ < 0.1 μM.

IC₅₀ < 0.1 μM: Compound Nos. 4, 37, 298, 299, 311, 312, 318, 329, 461, 886, 909, 1042, 1043, 1085, 1119, 1138, 1142, 1165, 1179, 1191, 1203, 1205, 1220, 1228, 1236, 1244, 1245, 1256, 1288, 1293, 1295, 1308, 1310, 1352, 1376, 1382, 1393, 35 1395, 1416, 1420, 1435, 1436, 1438, 1441, 1480, 1531, 1532, 1570, 1583, 1584, 1589, 1590, 1594, 1595, 1600, 1601, 1607, 1660, 1661, 1664, 1666, 1668, 1698, 1699, 1701, 1702, 1703, 1704, 1706, 1707, 1708, 1709, 1713, 1775, 1776, 1778, 1779, 1787, 1794, 1796, 1799, 1802, 1803, 1896, 1898, 1899, 1900, 1901, 1902,

1906, 1907, 1908, 1909, 1915, 1916, 1919, 1920, 1921, 2087, 2114, 2128, 2129, 2132, 2137, 2141, 2144, 2157, 2158, 2189.

Claims

What is claimed is:

5.

10

15

20

25

30

A compound of the formula (I) below:

$$\begin{array}{c|c}
R^{1} & (CH_{2})_{j} - N \\
R^{2} & (CH_{2})_{m} - N - C - (CH_{2})_{n} - N - C - (CH_{2})_{p} - R^{4} \\
(CH_{2})_{m} & R^{5}
\end{array}$$
(I)

, a pharmaceutically acceptable acid addition salt thereof or a pharmaceutically acceptable C_1 - C_6 alkyl addition salt thereof,

wherein R^1 is a phenyl group, a C_3 - C_8 cycloalkyl group, or an aromatic heterocyclic group having 1-3 heteroatoms selected from the group consisting of an oxygen atom, a sulfur atom, a nitrogen atom, or a combination thereof, in which the phenyl or aromatic heterocyclic group may be condensed with a benzene ring or an aromatic heterocyclic group having 1-3 heteroatoms selected from the group consisting of an oxygen atom, a sulfur atom, a nitrogen atom, or a combination thereof, to form a condensed ring, and the phenyl group, C_3-C_8 cycloalkyl group, aromatic heterocyclic group, or condensed ring may be substituted with one or more of a halogen atom, a hydroxy group, a cyano group, a nitro group, a carboxy group, a carbamoyl group, a C_1-C_6 alkyl group, a C_3-C_8 cycloalkyl group, a C_2 - C_6 alkenyl group, a C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, a C_3 - C_5 alkylene group, a C_2 - C_4 alkylenoxy group, a C_1 - C_3 alkylenedioxy group, a phenyl group, a phenoxy group, a phenylthio group, a benzyl group, a benzyloxy group, a benzoylamino group, a C_2-C_7 alkanoyl group, a C_2-C_7 alkoxycarbonyl group, a C_2 - C_7 alkanoyloxy group, a C_2 - C_7 alkanoylamino group, a C_2-C_7 N-alkylcarbamoyl group, a C_4-C_9 N-cycloalkylcarbamoyl group, a C_1-C_6 alkylsulfonyl group, a C_3 - C_8 (alkoxycarbonyl) methyl group, a N-phenylcarbamoyl group, a piperidinocarbonyl group, a morpholinocarbonyl group, a 1pyrrolidinylcarbonyl group, a divalent group represented by the formula: -NH(C=O)O-, a divalent group represented by the formula: -NH(C=S)O-, an amino group, a mono $(C_1-C_6 \text{ alkyl})$ amino group, or a di $(C_1-C_6 \text{ alkyl})$ amino group, wherein the substituent for the phenyl group, C_3 - C_8 cycloalkyl group, aromatic heterocyclic group, or condensed ring is optionally substituted with one or more of a halogen atom, a hydroxy group, an amino group, a trifluoromethyl group, a C₁-C₆ alkyl group, or a C₁-C₆ alkoxy group;

 R^2 is a hydrogen atom, a C_1-C_6 alkyl group, a C_2-C_7 alkoxycarbonyl group, a hydroxy group, or a phenyl group, in which the C_1-C_6 alkyl or phenyl group may

be substituted with one or more of a halogen atom, a hydroxy group, a C_1 - C_6 alkyl group, or a C_1 - C_6 alkoxy group, and when j=0, R^2 is not a hydroxy group;

j represents an integer of 0-2;

k represents an integer of 0-2;

m represents an integer of 2-4;

n represents 0 or 1;

35

40

45

50

55

60

65

 R^3 is a hydrogen atom or a C_1 - C_6 alkyl group optionally substituted with one or two phenyl groups each of which may be substituted with one or more of a halogen atom, a hydroxy group, a C_1 - C_6 alkyl group, or a C_1 - C_6 alkoxy group;

 R^4 and R^5 are the same or different from each other and are a hydrogen atom, a hydroxy group, a phenyl group, or a C_1 - C_6 alkyl group, in which the C_1 - C_6 alkyl group is optionally substituted with one or more of a halogen atom, a hydroxy group, a cyano group, a nitro group, a carboxy group, a carbamoyl group, a mercapto group, a guanidino group, a C_3 - C_6 cycloalkyl group, a C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, a phenyl group optionally substituted with one or more of a halogen atom, a hydroxy group, a C_1 - C_6 alkyl group, a C_1 - C_6 alkoxy group, or a benzyloxy group, a phenoxy group, a benzyloxy group, a benzyloxycarbonyl group, a C_2 - C_7 alkanoyl group, a C_2 - C_7 alkanoyl group, a C_2 - C_7 alkanoylamino group, a C_2 - C_7 alkanoylamino group, a C_2 - C_7 alkanoylamino group, a mono $(C_1$ - C_6 alkyl) amino group, a di $(C_1$ - C_6 alkyl) amino group, or an aromatic heterocyclic group having 1-3 of heteroatoms selected from the group consisting of an oxygen atom, a sulfur atom, a nitrogen atom, or a combination thereof and optionally condensed with benzene ring, or R^4 and R^5 taken together form a 3 to 6 membered cyclic hydrocarbon;

p represents 0 or 1;

q represents 0 or 1;

G is a group represented by -CO-, -SO₂-, -CO-O-, -NR⁷-CO-, -CO-NR⁷-, -NH-CO-NH-, -NH-CS-NH-, -NR⁷-SO₂-, -SO₂-NR⁷-, -NH-CO-O-, or -O-CO-NH-, wherein R⁷ is a hydrogen atom or a C_1 - C_6 alkyl group, or R⁷ taken together with R⁵ represents C_2 - C_5 alkylene group;

 R^6 is a phenyl group, a C_3 - C_8 cycloalkyl group, a C_3 - C_8 cycloalkenyl group, a benzyl group, or an aromatic heterocyclic group having 1-3 heteroatoms selected from the group consisting of an oxygen atom, a sulfur atom, a nitrogen atom, or a combination thereof, in which the phenyl, benzyl, or aromatic heterocyclic group may be condensed with a benzene ring or an aromatic heterocyclic group having 1-3 heteroatoms selected from the group consisting of an oxygen atom, a sulfur atom, a nitrogen atom, or a combination thereof, to form a condensed

ring, and the phenyl group, C_3-C_8 cycloalkyl group, C_3-C_8 cycloalkenyl group, benzyl group, aromatic heterocyclic group, or condensed ring may be substituted 70 with one or more of a halogen atom, a hydroxy group, a mercapto group, a cyano group, a nitro group, a thiocyanato group, a carboxy group, a carbamoyl group, a trifluoromethyl group, a C_1-C_6 alkyl group, a C_3-C_6 cycloalkyl group, a $C_2 C_6$ alkenyl group, a C_1 - C_6 alkoxy group, a C_3 - C_8 cycloalkyloxy group, a C_1 - C_6 alkylthio group, a C_1 - C_3 alkylenedioxy group, a phenyl group, a phenoxy group, 75 a phenylamino group, a benzyl group, a benzoyl group, a phenylsulfinyl group, a phenylsulfonyl group, a 3-phenylureido group, a C_2-C_1 alkanoyl group, a C_2-C_1 alkoxycarbonyl group, a C_2 - C_7 alkanoyloxy group, a C_2 - C_7 alkanoylamino group, a C_2 - C_7 N-alkylcarbamoyl group, a C_1 - C_6 alkylsulfonyl group, a phenylcarbamoyl group, a $N, N-\text{di}(C_1-C_6 \text{ alkyl})$ sulfamoyl group, an amino group, a mono(C_1-C_6 80 alkyl)amino group, a di(C_1 - C_6 alkyl)amino group, a benzylamino group, a C_2 - C_7 (alkoxycarbonyl) amino group, a C_1 - C_6 (alkylsulfonyl) amino group, or a bis $(C_1$ - C_6 alkylsulfonyl)amino group, wherein the substituent for the phenyl group, $C_3 - C_6$ cycloalkyl group, C_3 - C_8 cycloalkenyl group, benzyl group, aromatic heterocyclic group, or condensed ring is optionally substituted with one or more of a halogen 85 atom, a cyano group, a hydroxy group, an amino group, trifluoromethyl group, a C_1 - C_6 alkyl group, a C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, a mono(C_1 - C_6 alkyl) amino group, or a $di(C_1-C_6$ alkyl) amino group.

- 2. A compound, its pharmaceutically acceptable acid addition salt or its pharmaceutically acceptable C_1 - C_6 alkyl addition salt as set forth in claim 1, wherein k=1 and m=2 in the above formula (I).
- 3. A compound, its pharmaceutically acceptable acid addition salt or its pharmaceutically acceptable C_1 - C_6 alkyl addition salt as set forth in claim 2, wherein n=0 in the above formula (I).
- 4. A compound, its pharmaceutically acceptable acid addition salt or its pharmaceutically acceptable C_1 - C_6 alkyl addition salt as set forth in claim 1, wherein k=0, m=3 and n=1 in the above formula (I).
- 5. A compound, its pharmaceutically acceptable acid addition salt or its pharmaceutically acceptable C_1 - C_6 alkyl addition salt as set forth in claim 1, wherein k=1 and m=3 in the above formula (I).

6. A compound, its pharmaceutically acceptable acid addition salt or its pharmaceutically acceptable C_1 - C_6 alkyl addition salt as set forth in claim 1, wherein k=2 and m=2 in the above formula (I).

- 7. A compound, its pharmaceutically acceptable acid addition salt or its pharmaceutically acceptable C_1 - C_6 alkyl addition salt as set forth in claim 6, wherein n=1 in the above formula (I).
- 8. A compound, its pharmaceutically acceptable acid addition salt or its pharmaceutically acceptable C_1 - C_6 alkyl addition salt as set forth in claim 1, wherein k=1 and m=4 in the above formula (I).
- 9. A compound, its pharmaceutically acceptable acid addition salt or its pharmaceutically acceptable C_1 - C_6 alkyl addition salt as set forth in claim 1, wherein j = 0 in the above formula(I).
- 10. A compound, its pharmaceutically acceptable acid addition salt or its pharmaceutically acceptable C_1-C_6 alkyl addition salt as set forth in claim 1, wherein p=0, q=0 and G is a group represented by $-NR^7-CO-$ in the above formula (I).
- 11. A compound, its pharmaceutically acceptable acid addition salt or its pharmaceutically acceptable C_1 - C_6 alkyl addition salt as set forth in claim 1, wherein R^2 is a hydrogen atom, R^3 is a hydrogen atom and R^7 is a hydrogen atom in the above formula (I).

5

5

5

- 12. A compound, its pharmaceutically acceptable acid addition salt or its pharmaceutically acceptable C_1 - C_6 alkyl addition salt as set forth in claim 1, wherein the substituent for the phenyl group, C_3 - C_8 cycloalkyl group, aromatic heterocyclic group, or condensed ring in R^1 is one or more of a halogen atom, a hydroxy group, a C_1 - C_6 alkyl group, a C_2 - C_6 alkenyl group, a C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, a C_2 - C_4 alkylenoxy group, a methylenedioxy group, a N-phenylcarbamoyl group, an amino group, a mono(C_1 - C_6 alkyl)amino group, or a di(C_1 - C_6 alkyl)amino group in the above formula (I).
- 13. A compound, its pharmaceutically acceptable acid addition salt or its pharmaceutically acceptable C_1 - C_6 alkyl addition salt as set forth in claim 1,

wherein the substituent for the phenyl group, C_3-C_8 cycloalkyl group, C_3-C_8 cycloalkenyl group, benzyl group, aromatic heterocyclic group, or condensed ring in R^6 is one or more of a halogen atom, a nitro group, a trifluoromethyl group, a C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a phenylsulfonyl group, a C_2-C_7 alkanoylamino group, or an amino group in the above formula (I).

5

5

5

10

15

- 14. A compound, its pharmaceutically acceptable acid addition salt or its pharmaceutically acceptable C_1 - C_6 alkyl addition salt as set forth in claim 1, wherein R^1 is a phenyl group or an isoxazolyl group in the above formula (I).
- 15. A compound, its pharmaceutically acceptable acid addition salt or its pharmaceutically acceptable C_1 - C_6 alkyl addition salt as set forth in claim 1, wherein R^6 is a phenyl group, a furyl group, or a thienyl group in the above formula (I).
- 16. A method of inhibiting the binding of a chemokine to the receptor of a target cell and/or its action on a target cell using a pharmaceutical preparation containing a therapeutically effective amount of a compound represented by the formula (I) below:

$$\begin{array}{c}
R_{1}^{1} \longrightarrow (CH_{2})_{j} - N \\
R_{2}^{2} \longrightarrow (CH_{2})_{m} \longrightarrow (CH_{2})_{m} \longrightarrow (CH_{2})_{n} - N - C - (CH_{2})_{p} \longrightarrow (CH_{2})_{q} - G - R^{6}
\end{array} (1)$$

, a pharmaceutically acceptable acid addition salt thereof or a pharmaceutically acceptable $C_1\text{--}C_6$ alkyl addition salt thereof,

wherein R^1 is a phenyl group, a C_3 - C_8 cycloalkyl group, or an aromatic heterocyclic group having 1-3 heteroatoms selected from the group consisting of an oxygen atom, a sulfur atom, a nitrogen atom, or a combination thereof, in which the phenyl or aromatic heterocyclic group may be condensed with a benzene ring or an aromatic heterocyclic group having 1-3 heteroatoms selected from the group consisting of an oxygen atom, a sulfur atom, a nitrogen atom, or a combination thereof, to form a condensed ring, and the phenyl group, C_3 - C_8 cycloalkyl group, aromatic heterocyclic group, or condensed ring may be substituted with one or more of a halogen atom, a hydroxy group, a cyano group, a nitro group, a carboxy group, a carbamoyl group, a C_1 - C_6 alkyl group, a C_3 - C_8 cycloalkyl group, a C_2 - C_6 alkenyl group, a C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, a C_3 - C_5 alkylene group, a C_2 - C_6 alkylenoxy group, a C_1 - C_6 alkylenedioxy group,

a phenyl group, a phenoxy group, a phenylthio group, a benzyl group, a benzyloxy group, a benzoylamino group, a C₂-C₇ alkanoyl group, a C₂-C₇ alkoxycarbonyl group, a C₂-C₇ alkanoyloxy group, a C₂-C₇ alkanoylamino group, a C₂-C₇ N-alkylcarbamoyl group, a C₄-C₉ N-cycloalkylcarbamoyl group, a C₁-C₆ alkylsulfonyl group, a C₃-C₈ (alkoxycarbonyl) methyl group, a N-phenylcarbamoyl group, a piperidinocarbonyl group, a morpholinocarbonyl group, a l-pyrrolidinylcarbonyl group, an amino group, a mono (C₁-C₆ alkyl) amino group, or a di (C₁-C₆ alkyl) amino group, wherein the substituent for the phenyl group, C₃-C₈ cycloalkyl group, aromatic heterocyclic group, or condensed ring is optionally substituted with one or more of a halogen atom, a hydroxy group, an amino group, a trifluoromethyl group, a C₁-C₆ alkyl group, or a C₁-C₆ alkoxy group;

 R^2 is a hydrogen atom, a C_1 - C_6 alkyl group, a C_2 - C_7 alkoxycarbonyl group, a hydroxy group, or a phenyl group, in which the C_1 - C_6 alkyl or phenyl group may be substituted with one or more of a halogen atom, a hydroxy group, a C_1 - C_6 alkyl group, or a C_1 - C_6 alkoxy group, and when j=0, R^2 is not a hydroxy group;

j represents an integer of 0-2;

k represents an integer of 0-2;

m represents an integer of 2-4;

n represents 0 or 1;

35

40

45

50

55

 R^3 is a hydrogen atom or a C_1 - C_6 alkyl group optionally substituted with one or two phenyl groups each of which may be substituted with one or more of a halogen atom, a hydroxy group, a C_1 - C_6 alkyl group, or a C_1 - C_6 alkoxy group;

 R^4 and R^5 are the same or different from each other and are a hydrogen atom, a hydroxy group, a phenyl group, or a C_1 - C_6 alkyl group, in which the C_1 - C_6 alkyl group is optionally substituted with one or more of a halogen atom, a hydroxy group, a cyano group, a nitro group, a carboxy group, a carbamoyl group, a mercapto group, a guanidino group, a C_3 - C_6 cycloalkyl group, a C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, a phenyl group optionally substituted with one or more of a halogen atom, a hydroxy group, a C_1 - C_6 alkyl group, a C_1 - C_6 alkoxy group, or a benzyloxy group, a phenoxy group, a benzyloxy group, a benzyloxycarbonyl group, a C_2 - C_7 alkanoyl group, a C_2 - C_7 alkoxycarbonyl group, a C_2 - C_7 alkanoylamino group, a C_2 - C_7 alkanoylamino group, a maino group, a mono $(C_1$ - C_6 alkyl) amino group, a di $(C_1$ - C_6 alkyl) amino group, or an aromatic heterocyclic group having 1-3 of heteroatoms selected from the group consisting of an oxygen atom, a sulfur atom, a nitrogen atom, or a combination thereof and optionally condensed with benzene ring, or R^4 and R^5 taken together form a 3 to 6 membered cyclic hydrocarbon;

```
p represents 0 or 1;
q represents 0 or 1;
```

60

65

70

75

80

85

90

G is a group represented by -CO-, $-SO_2-$, -CO-O-, $-NR^7-CO-$, $-CO-NR^7-$, -NH-CO-NH-, -NH-CS-NH-, $-NR^7-SO_2-$, $-SO_2-NR^7-$, -NH-CO-O-, or -O-CO-NH-, wherein R^7 is a hydrogen atom or a C_1-C_6 alkyl group, or R^7 taken together with R^5 represents C_2-C_5 alkylene group;

 R^6 is a phenyl group, a C_3 - C_8 cycloalkyl group, a C_3 - C_8 cycloalkenyl group, a benzyl group, or an aromatic heterocyclic group having 1-3 heteroatoms selected from the group consisting of an oxygen atom, a sulfur atom, a nitrogen atom, or a combination thereof, in which the phenyl, benzyl, or aromatic heterocyclic group may be condensed with a benzene ring or an aromatic heterocyclic group having 1-3 heteroatoms selected from the group consisting of an oxygen atom, a sulfur atom, a nitrogen atom, or a combination thereof, to form a condensed ring, and the phenyl group, C_3-C_8 cycloalkyl group, C_3-C_8 cycloalkenyl group, benzyl group, aromatic heterocyclic group, or condensed ring may be substituted with one or more of a halogen atom, a hydroxy group, a mercapto group, a cyano group, a nitro group, a thiocyanato group, a carboxy group, a carbamoyl group, a trifluoromethyl group, a C_1 - C_6 alkyl group, a C_3 - C_6 cycloalkyl group, a C_2 - C_6 alkenyl group, a C_1 - C_6 alkoxy group, a C_3 - C_8 cycloalkyloxy group, a C_1 - C_6 alkylthio group, a C_1 - C_3 alkylenedioxy group, a phenyl group, a phenoxy group, a phenylamino group, a benzyl group, a benzoyl group, a phenylsulfinyl group, a phenylsulfonyl group, a 3-phenylureido group, a C_2 - C_1 alkanoyl group, a C_2 - C_1 alkoxycarbonyl group, a C_2 - C_7 alkanoyloxy group, a C_2 - C_7 alkanoylamino group, a C_2 - C_7 N-alkylcarbamoyl group, a C_1 - C_6 alkylsulfonyl group, a phenylcarbamoyl group, a $N, N-\text{di}(C_1-C_6 \text{ alkyl})$ sulfamoyl group, an amino group, a mono(C_1-C_6 alkyl) amino group, a di $(C_1-C_6$ alkyl) amino group, a benzylamino group, a C_2-C_7 $(alkoxycarbonyl)\,amino\,\,group,\,\,a\,\,C_1-C_6\,\,(alkylsulfonyl)\,amino\,\,group,\,\,or\,\,a\,\,bis\,(C_1-C_6)$ alkylsulfonyl)amino group, wherein the substituent for the phenyl group, $extst{C}_3 ext{-C}_8$ cycloalkyl group, C_3 - C_8 cycloalkenyl group, benzyl group, aromatic heterocyclic group, or condensed ring is optionally substituted with one or more of a halogen atom, a cyano group, a hydroxy group, an amino group, trifluoromethyl group, a C_1 - C_6 alkyl group, a C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, a mono $(C_1$ - C_6 alkyl)amino group, or a di(C1-C6 alkyl)amino group.

17. A method of inhibiting the binding of a chemokine to the receptor of a target cell and/or its action on a target cell as set forth in claim 16, wherein k=1 and m=2 in the above formula (I).

18. A method of inhibiting the binding of a chemokine to the receptor of a target cell and/or its action on a target cell as set forth in claim 17, wherein n = 0 in the above formula (I).

- 19. A method of inhibiting the binding of a chemokine to the receptor of a target cell and/or its action on a target cell as set forth in claim 16, wherein k = 0, m = 3 and n = 1 in the above formula (I).
- 20. A method of inhibiting the binding of a chemokine to the receptor of a target cell and/or its action on a target cell as set forth in claim 16, wherein k=1 and m=3 in the above formula (I).
- 21. A method of inhibiting the binding of a chemokine to the receptor of a target cell and/or its action on a target cell as set forth in claim 16, wherein k = 2 and m = 2 in the above formula (I).
- 22. A method of inhibiting the binding of a chemokine to the receptor of a target cell and/or its action on a target cell as set forth in claim 21, wherein n = 1 in the above formula (I).
- 23. A method of inhibiting the binding of a chemokine to the receptor of a target cell and/or its action on a target cell as set forth in claim 16, wherein k = 1 and m = 4 in the above formula (I).
- 24. A method of inhibiting the binding of a chemokine to the receptor of a target cell and/or its action on a target cell as set forth in claim 16, wherein j = 0 in the above formula (I).
- 25. A method of inhibiting the binding of a chemokine to the receptor of a target cell and/or its action on a target cell as set forth in claim 16, wherein p = 0, q = 0 and G is a group represented by $-NR^7-CO-$ in the above formula (I).
- 26. A method of inhibiting the binding of a chemokine to the receptor of a target cell and/or its action on a target cell as set forth in claim 16, wherein R^2 is a hydrogen atom, R^3 is a hydrogen atom and R^7 is a hydrogen atom in the above formula (I).

5

- 27. A method of inhibiting the binding of a chemokine to the receptor of a target cell and/or its action on a target cell as set forth in Claim 16, wherein the substituent for the phenyl group, C_3 - C_8 cycloalkyl group, aromatic heterocyclic group, or condensed ring in R^1 is one or more of a halogen atom, a hydroxy group, a C_1 - C_6 alkyl group, a C_2 - C_6 alkenyl group, a C_1 - C_6 alkylthio group, a C_2 - C_4 alkylenoxy group, a methylenedioxy group, a N-phenylcarbamoyl group, an amino group, a mono(C_1 - C_6 alkyl)amino group, or a di(C_1 - C_6 alkyl)amino group in the above formula (I).
- 28. A method of inhibiting the binding of a chemokine to the receptor of a target cell and/or its action on a target cell as set forth in claim 16, wherein the substituent for the phenyl group, C_3 - C_8 cycloalkyl group, C_3 - C_8 cycloalkenyl group, benzyl group, aromatic heterocyclic group, or condensed ring in R^6 is one or more of a halogen atom, a nitro group, a trifluoromethyl group, a C_1 - C_6 alkoxy group, a phenylsulfonyl group, a C_2 - C_7 alkanoylamino group, or an amino group in the above formula (I).
- 29. A method of inhibiting the binding of a chemokine to the receptor of a larget cell and/or its action on a target cell as set forth in claim 16, wherein \mathbb{R}^1 is a phenyl group or an isoxazolyl group in the above formula (I).
- 30. A method of inhibiting the binding of a chemokine to the receptor of a target cell and/or its action on a target cell as set forth in claim 16, wherein R^6 is a phenyl group, a furyl group, or a thienyl group in the above formula (I).

5

5

- 31. A method of inhibiting the binding of a chemokine to the receptor of a target cell and/or its action on a target cell as set forth in claim 16, wherein the chemokine is MIP-1 α .
- 32. A method of inhibiting the binding of a chemokine to the receptor of a target cell and/or its action on a target cell as set forth in claim 16, wherein the chemokine is MCP-1.
- 33. A method of inhibiting the binding of a chemokine to the receptor of a target cell and/or its action on a target cell as set forth in claim 16, wherein

the chemokine receptor is CCR1.

34. A method of inhibiting the binding of a chemokine to the receptor of a target cell and/or its action on a target cell as set forth in claim 16, wherein the chemokine receptor is CCR2A or CCR2B.

35. A compound, its pharmaceutically acceptable acid addition salt or its pharmaceutically acceptable C_1 - C_6 alkyl addition salt as set forth in claim 1, wherein the compound is $4-[\{N-(2-amino-5-chlorobenzoyl)glycyl\}aminomethyl]-1-(4-chlorobenzyl)piperidine.$

5

36. A compound, its pharmaceutically acceptable acid addition salt or its pharmaceutically acceptable C_1 - C_6 alkyl addition salt as set forth in claim 1, wherein the compound is 4-[(N-(2-amino-4,5-difluorobenzoyl)glycyl)aminomethyl]-1-(4-chlorobenzyl)piperidine.

5

37. A compound, its pharmaceutically acceptable acid addition salt or its pharmaceutically acceptable C_1 - C_6 alkyl addition salt as set forth in claim 1, wherein the compound is $4-[\{N-(2-amino-5-trifluoromethylbenzoyl)glycyl\}aminomethyl]-1-(4-chlorobenzyl)piperidine.$

5

38. A compound, its pharmaceutically acceptable acid addition salt or its pharmaceutically acceptable C_1 - C_6 alkyl addition salt as set forth in claim 1, wherein the compound is $4-[\{N-(2-amino-5-trifluoromethoxybenzoyl)glycyl\}aminomethyl]-1-(4-chlorobenzyl)piperidine.$

5

39. A compound, its pharmaceutically acceptable acid addition salt or its pharmaceutically acceptable C_1 - C_6 alkyl addition salt as set forth in claim 1, wherein the compound is $4-[\{N-(2-amino-4,5-difluorobenzoyl)\}]$ aminomethyl]-1-(4-bromobenzyl)piperidine.

5

40. A compound, its pharmaceutically acceptable acid addition salt or its pharmaceutically acceptable C_1 - C_6 alkyl addition salt as set forth in claim 1, wherein the compound is $1-(2-amino-4-chlorobenzyl)-4-[{N-(2-amino-5-trifluoromethylbenzoyl)glycyl}aminomethyl]piperidine.$

5

41. A compound, its pharmaceutically acceptable acid addition salt or its

pharmaceutically acceptable C_1 - C_6 alkyl addition salt as set forth in claim 1, wherein the compound is 1-(3-amino-4-methoxybenzyl)-4- $\{N$ -(2-amino-4,5-difluorobenzoyl)glycyl}aminomethyl}piperidine.

5

- 42. A compound, its pharmaceutically acceptable acid addition salt or its pharmaceutically acceptable C_1 - C_6 alkyl addition salt as set forth in claim 1, wherein the compound is $4-[\{N-(2-amino-4,5-difluorobenzoyl)glycyl\}aminomethyl]-1-\{4-chloro-3-difluorobenzoyl)glycyl\}aminomethyl]-1-{4-chloro-3-$
- 5 (methylamino)benzyl)piperidine.
 - 43. A compound, its pharmaceutically acceptable acid addition salt or its pharmaceutically acceptable C_1 - C_6 alkyl addition salt as set forth in claim 1, wherein the compound is 4-[(N-(2-amino-5-trifluoromethylbenzoyl)glycyl)aminomethyl]-1-(2-thioxo-2,3-dihydro-1,3-benzoxazol-5-ylmethyl)piperidine.
 - 44. A compound, its pharmaceutically acceptable acid addition salt or its pharmaceutically acceptable C_1 - C_6 alkyl addition salt as set forth in claim 1, wherein the compound is $3-[\{N-(2-amino-5-trifluoromethylbenzoyl)glycyl\}amino]-1-(4-chlorobenzyl)pyrrolidine.$

5

5

45. A compound, its pharmaceutically acceptable acid addition salt or its pharmaceutically acceptable C_1 - C_6 alkyl addition salt as set forth in claim 1, wherein the compound is $3-\{\{N-(2-\text{amino-5-trifluoromethylbenzoyl})\text{glycyl}\}$ amino]-1-(4-methoxybenzyl)pyrrolidine.

5

- 46. A compound, its pharmaceutically acceptable acid addition salt or its pharmaceutically acceptable C_1 - C_6 alkyl addition salt as set forth in claim 1, wherein the compound is $3-[\{N-(2-amino-5-trifluoromethylbenzoyl)glycyl\}amino]-1-(3,4-$
- 5 methylenedioxybenzyl)pyrrolidine.
 - 47. A compound, its pharmaceutically acceptable acid addition salt or its pharmaceutically acceptable C_1 - C_6 alkyl addition salt as set forth in claim 1, wherein the compound is $3-[(N-(2-a\min 0.5-trifluoromethylbenzoyl)glycyl)amino]-1-(2,3-dihydro-1-benzofuran-5-$
- 5 ylmethyl)pyrrolidine.

48. A compound, its pharmaceutically acceptable acid addition salt or its pharmaceutically acceptable C_1 - C_6 alkyl addition salt as set forth in claim 1, wherein the compound is $3-[\{N-(2-amino-5-trifluoromethylbenzoyl)glycyl\}amino]-1-(4-methylthiobenzyl)pyrrolidine.$

5

49. A compound, its pharmaceutically acceptable acid addition salt or its pharmaceutically acceptable C_1 - C_6 alkyl addition salt as set forth in claim 1, wherein the compound is 3-[N-(2-amino-5-trifluoromethylbenzoyl)glycyl)amino]-1-(4-ethylbenzyl)pyrrolidine.

5

50. A compound, its pharmaceutically acceptable acid addition salt or its pharmaceutically acceptable C_1 - C_6 alkyl addition salt as set forth in claim 1, wherein the compound is $3-[\{N-(2-a\min -5-trifluoromethoxybenzoyl)glycyl\}amino]-1-(4-ethylbenzyl)pyrrolidine.$

5

51. A compound, its pharmaceutically acceptable acid addition salt or its pharmaceutically acceptable C_1 - C_6 alkyl addition salt as set forth in claim 1, wherein the compound is 1-(3-amino-4-methoxybenzyl)-3- $[{N-(2-amino-5-trifluoromethylbenzoyl)glycyl}amino]pyrrolidine.$

5

- 52. A compound, its pharmaceutically acceptable acid addition salt or its pharmaceutically acceptable C_1 - C_6 alkyl addition salt as set forth in claim 1, wherein the compound is $3-[\{N-(2-amino-5-trifluoromethylbenzoyl)glycyl)amino]-1-(4-chloro-3-methylbenzoyl)glycyl)glycyl$
- 5 methylbenzyl)pyrrolidine.
 - 53. A compound, its pharmaceutically acceptable acid addition salt or its pharmaceutically acceptable C_1 - C_6 alkyl addition salt as set forth in claim 1, wherein the compound is $3-[\{N-(2-a\min o-5-trifluoromethylbenzoyl)glycyl\}amino]-1-\{4-hydroxy-3-trifluoromethylbenzoyl)glycyl\}amino]-1-{4-hydroxy-3-trifluoromethylbenzoyl}glycyl}amino]-1-{4-hydroxy-3-trifluoromethylbenzoyl}gl$

5 (methylamino)benzyl)pyrrolidine.

54. A compound, its pharmaceutically acceptable acid addition salt or its pharmaceutically acceptable C_1 - C_6 alkyl addition salt as set forth in claim 1, wherein the compound is 3-[(N-(2-amino-5-trifluoromethylbenzoyl)glycyl)amino]-1-(1,3-benzoxazol-5-

5 ylmethyl)pyrrolidine.

Inte onal Application No PCT/US 98/23254

		PC1/US 98/23254			
IPC 6	### CO7D211/58 A61K31/435 A61K31/ CO7D211/26 CO7D207/09 CO7D401 CO7D413/06 CO7D413/14 CO7D409 International Patent Classification (IPC) or to both national c	/12 C07D409 /06 C07D409	5/12 C 07	D211/56 D409/12	
	SEARCHED	oduon and ii C			
	ocumentation searched (classification system followed by classifica	tion symbols)			
IPC 6	C07D A61K	• ,	,	• .	
Documenta	tion searched other than minimum documentation to the extent that	such documents are inc	uded in the fields	searched	
Electronic	data base consulted during the international search (name of data b	ase and, where practica	i, search terms use	d) :	
C. DOCUM	ENTS CONSIDERED TO BE RELEVANT				
Category °	Citation of document, with indication, where appropriate, of the re	elevant passages		Relevant to claim No.	
X.	EP 0 217 286 A (OKAMOTO SHOSUKE ;SHOWA DENKO KK (JP)) 8 April 1987 see page 31, compound 42; claim 1			1,3,6, 9-11,14	
X	EP 0 417 698 A (HOECHST AG) 20 March 1991			1,3,6,9, 14,15	
	see example 5C				
		-/		,	
	·				
X Furt	her documents are listed in the continuation of box C.	V Patent family	members are listed	I in annay	
<u> </u>		X Patent family			
"A" docume consider and the consideration of the co	nt which may throw doubts on priority claim(s) or is cited to establish the publication date of another in or other special reason (as specified) and the special reason (as specified) and the special reason (as specified) and the special reason or specified).	cited to understant invention "X" document of particic cannot be conside involve an invention "Y" document of particic cannot be conside document is combined.	d not in conflict with d the principle or the later relevance; the ored novel or cannow step when the d later relevance; the ored to involve an in- lated with one or m	n the application but neory underlying the claimed invention of the considered to ocument is taken alone	
later th	int published prior to the international filing date but an the priority date claimed	"&" document member	of the same paten	t family	
_	actual completion of the international search		the international se	earch report	
<u> </u>	March 1999	25/03/1			
Name and r	nailing address of the ISA European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo ni, Fax: (+31-70) 340-3016	Authorized officer De Jong	, в		

2

Inter -nat Application No PCT/US 98/23254

	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	Relevant to claim No.		
Category *	Citation of document, with indication, where appropriate, of the relevant passages	naievait to dalii 140.		
X	CHEMICAL ABSTRACTS, vol. 107, no. 7, 17 August 1987 Columbus, Ohio, US; abstract no. 51382, KHALID, M. ET AL: "N,N'-disubstituted L-isoglutamines as novel cancer chemotherapeutic agent" XP002094911 see abstract & DRUGS EXP. CLIN. RES. (1987), 13(SUPPL. 1), 57-60; ISSN: 0378-6501,1987,	1,3,6, 9-11,14, 15		
A	DATABASE WPI Section Ch, Week 9804 Derwent Publications Ltd., London, GB; Class B03, AN 98-035793 XP002094912 & JP 09 249566 A (TAKEDA CHEM IND LTD) , 22 September 1997 see abstract	1-54		
P,X	WO 98 50534 A (SMITHKLINE BEECHAM CORP; RUYU (US); VEBER DANIEL F (US); MARQUIS) 12 November 1998 see claim 1; examples	1-15		

PCT/US 98/23254

Box I	Observations where certain claims were found unsearchable (Continuation of Item 1 of first sheet)
This Inte	ernational Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. X	Claims Nos.: 16-34 because they relate to subject matter not required to be searched by this Authority, namely: Remark: Although claims 16-34 are directed to a method of treatment of the human/animal body, the search has been carried out and based on the alleged effects of the compounds. Claims Nos.: not applicable
	because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically: See FURTHER INFORMATION sheet PCT/ISA/210
	Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II	Observations where unity of invention is lacking (Continuation of Item 2 of first sheet)
This Inter	national Searching Authority found multiple inventions in this international application, as follows:
1	As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
2	As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. A	As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
4. N	to required additional search fees were timely paid by the applicant. Consequently, this International Search Report is estricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark or	The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

Claims Nos.: not applicable

In view of the extremely broad Markush claims 1-15, the search was executed with due regard to the PCT Search Guidelines (PCT/GL/2), C-III, paragraph 2.1, 2.3 read in onjunction with 3.7 and Rule 33.3 PCT, i.e. particular emphasis was put on the inventive concept, as illustrated by the examples. The international search was, in so far as possible and reasonable, complete in that it covered the entire subject-matter to which the claims are directed.

information on patent family members

Inter nal Application No PCT/US 98/23254

Patent document cited in search report		Publication date	Patent 1 membe		Publication date
EP 0217286	Α	08-04-1987	AU 598750 B		05-07-1990
2. 021/200	• •	••••	AU 63	305186 A	02-04-1987
				297633 A	17-03-1992
				395842 A	23-01-1990
				023215 C	26-02-1996
			JP 70	053705 B	07-06-1995
		•	JP 630	022061 A	29-01=1988
EP 0417698	Α	20-03-1991	AT 1	135368 T	15-03-1996
LI 041/030	• •	20 00 2002	AU 6	639259 B	22-07-1993
				234090 A	21-03-1991
				025093 A	13-03-1991
			DD 2	295377 A	31-10-1991
			DE 40	028741 A	28-03-1991
			DE 590	010189 D	18-04-1996
			,	417698 T	22-07-1996
				086341 T	01-07-1996
				019331 T	30-06-1996
				106877 A	07-05-1991
·				203284 A	31-07-1992
				177143 B	18-04-1995
			PT	95278 A	22-05-1991
			US 5	374731 A	20-12-1994
WO 9850534		12-11-1998	AU 7	288598 A	27-11-1998