MACHINE LEARNING PROGRAMMING ASSIGNMENT-01

For Abalone Dataset.,
 Plot for RMSE vs. Gradient Descent Iterations

Normal Equation:-For 5 folds,

Validation Set as,	Training Error	Validation Error	
Set_1	1.9426886875517582	3.1432646752702667	
Set_2	2.309533279020077	1.7390761273526838	
Set_3	2.153749554804753	2.41613134782802	
Set_4	2.2615904696714675	1.9376728831949075	
Set_5	2.245421961909177	2.008866622887424	

As fold_2 considering as validation set, we are getting minimal RMSE.

RMSE(on validation set) for fold 2,

Using Normal Equation :- 1.7390761273526838

Using Gradient Descent:- 1.986580991903103

Normal Equation is always treated as a benchmark and very fast to compute, Gradient Descent takes time because it has to iterate until it converges.

b)
L1-regularization with lambda=1000

L2-regularization with lambda=1

RMSE on test set using L1 regularization :- 1.8067985589580664 RMSE on test set using L2 regularization :- 1.9844921665450708

c) Best-Fit line without regularization

Best-Fit Line with L1-regularization with lambda= 10,000

Best-Fit Line with L2-regularization with lambda=10

Comparison between the above 3:-

2) a) Error Vs. Iterations curve:-

Accuracy vs Iteration curve:-

In this case,L1 Regularization is better than L2 Regularization,because gradually the error in the case of L1 is decreasing more compared to the L2.

2)b)

Testing accuracy using L2: 91.09