Università degli Studi di Firenze

Facoltà d' Ingegneria Dipartimento di Elettronica e Telecomunicazioni

Modulazioni digitali

Massimiliano Pieraccini

Modulazione

Variazioni di fase

Variazioni continue ------ Modulazioni analogiche

Variazioni discrete ------ Modulazioni digitali

A ogni valore discreto corrisponde un simbolo

"Rigenerazione del segnale"

Modulazione digitali

bit rate: numero di bit al secondo

baud: numero di simboli al secondo

M numero di stati del simbolo

Capacità: $f_b = B \log_2(M)$ B = bandabase

ASK (Amplitude Shift Keying)

FSK (Frequency Shift Keying)

PSK (Phase Shift Keying)

Modulazione IQ

$$v = V\cos(\omega t + \varphi(t))$$

B-PSK

Q-PSK 2bit

Q-PSK 3bit

Modulazione IQ

$$v = V\cos(\omega t + \varphi(t))$$

QAM

Modulatore IQ

$$v_o = I\cos(\omega t) + Q\sin(\omega t) = \sqrt{I^2 + Q^2}\cos(\omega t - \tan^{-1}(\frac{Q}{I}))$$

$$\varphi$$

Demodulatore IQ

$$v_A = \cos(\omega t - \varphi)\cos(\omega t) = \frac{1}{2}(\cos(2\omega t - \varphi) + \cos(-\varphi)) \longrightarrow I = \frac{1}{2}\cos(\varphi)$$

$$v_B = \cos(\omega t - \varphi)\sin(\omega t) = \frac{1}{2}(\sin(2\omega t - \varphi) - \sin(-\varphi)) \qquad Q = \frac{1}{2}\sin(\varphi)$$

Il problema della coerenza del LO del RX

$$v_A = \cos(\omega t - \varphi)\cos(\omega t - \varphi_0) = \frac{1}{2}(\cos(2\omega t - \varphi - \varphi_0) + \cos(-\varphi + \varphi_0)) \longrightarrow I = \frac{1}{2}\cos(-\varphi + \varphi_0) = \frac{1}{2}\cos(\varphi - \varphi_0)$$

$$v_B = \cos(\omega t - \varphi)\sin(\omega t - \varphi_0) = \frac{1}{2}(\sin(2\omega t - \varphi - \varphi_0) - \sin(-\varphi + \varphi_0)) \longrightarrow Q = -\frac{1}{2}\sin(-\varphi + \varphi_0) = \frac{1}{2}\sin(\varphi - \varphi_0)$$

- 1) Ricostruzione della portante
- 2) D-PSK (Differential –PSK)

Ricostruzione della portante

$$s(t) = A\cos(\omega_0 t + \varphi)$$

$$s(t) = A\cos(\omega_0 t + \varphi) \qquad \varphi = \frac{\pi}{4}, \frac{3}{4}\pi, -\frac{\pi}{4}, -\frac{3}{4}\pi$$

$$s(t) = A\cos(4\omega_0 t + 4\varphi)$$
 $4\varphi = \pi, 3\pi, -\pi, 3\pi = \pi$

$$4\varphi = \pi, 3\pi, -\pi, 3\pi = \pi$$

B-PSK

Ricostruzione del clock

Bit stuffer

Ogni 5 simboli uguali, il sesto è diverso. Il ricevitore ignora il valore del sesto simbolo se i precedenti 5 sono uguali

Ricostruzione del clock

Bit scrambling

MLS (Maximum Lenght Sequence) = $2^N - 1$

Nota: la funzione logica della rete di reazione dipende dal numero di bit

Le brusche transizioni producono componenti a larga banda che devono essere filtrate per non interferire con i canali adiacenti

MSK Minimum Shift Keying

Continuità di fase

Offset Q-PSK

ų,

Filtro gaussiano

	
} <u> </u>	(# ``)
	~

Modulation format	Theoretical bandwidth efficiency limits
MSK	1 bit/second/Hz
BPSK	1 bit/second/Hz
QPSK	2 bits/second/Hz
8PSK	3 bits/second/Hz
16 QAM	4 bits/second/Hz
32 QAM	5 bits/second/Hz
64 QAM	6 bits/second/Hz
256 QAM	8 bits/second/Hz

Modulation format	Application
MSK, GMSK	GSM, CDPD
BPSK	Deep space telemetry, cable modems
QPSK, ^π / ₄ DQPSK	Satellite, CDMA, NADC, TETRA, PHS, PDC, LMDS, DVB-S, cable (return path), cable modems, TFTS
OQPSK	CDMA, satellite
FSK, GFSK	DECT, paging, RAM mobile data, AMPS, CT2, ERMES, land mobile, public safety
8PSK	Satellite, aircraft, telemetry pilots for monitoring broadband video systems
16 QAM	Microwave digital radio, modems, DVB-C, DVB-T
32 QAM	Terrestrial microwave, DVB-T
64 QAM	DVB-C, modems, broadband set top boxes, MMDS
256 QAM	Modems, DVB-C (Europe), Digital Video (US)