Approximation de fonctions

raph

September 13, 2023

Contents

1	Esp	ace metrique	1
	1.1	Notion de distance	1
	1.2	Les boules	1
	1.3	Notion de norme	2
	1.4	Normes dans des espaces de fonctions	3

1 Espace metrique

Rappel: Definition de suite (U_n) convergente:

$$\forall \epsilon > 0, \exists N \in \mathbb{N}, n \ge N \implies |U_n - \ell| < \epsilon$$

1.1 Notion de distance

Une distance satisfie:

- 1. **Separation**: $\forall x, y \in E, d(x, y) = 0 \iff x = y$
- 2. Symetrie: $\forall x, y \in E, d(x, y) = d(y, x)$
- 3. Inegalite Δ : $\forall x, y, z \in E, d(x, y) \leq d(x, z) + d(z, y)$

1.2 Les boules

Definition: Une boule ouvert / fermee. On appelle une boule ouverte centree en a de rayon r par rapport a la distance d l'ensemble:

$$B_d(a,r) = \{x \in E | d(a,x) < r\}$$

Et une boule fermee:

$$B_d(a,r) = \{x \in E | d(a,x) <= r\}$$

1.3 Notion de norme

Definition: Soit $p \in [1, +\infty[$. On appelle norme p sur \mathbb{R}^n la norme notee $||x||_p = (\sum_{i=1}^n |x_i|^p)^{\frac{1}{p}}$

On note d_p la distance induite par $\|\cdot\|_p$.

- d_1 distance de Manhattan
- d_2 distance euclidienne
- d_{∞} distance infinie

On remarque l'egalite:

$$||x - y||_{\infty} \le ||x - y||_2 \le ||x - y||_1$$

On a bien $\forall x \in \mathbb{R}^n$:

$$||x||_{\infty} \le ||x||_2 \le ||x||_1 \le n||x||_{\infty}$$

Et plus generalement:

$$p < q \implies \|x\|_p \ge \|x\|_q$$

1.4 Normes dans des espaces de fonctions

$$||f||_p = \left(\int_I |f(t)|^p dt\right)^{\frac{1}{p}}$$

Et pour $p = +\infty$ on a:

$$\|f\|_{\infty} = \sup_{x \in I} |f(x)|$$