Clustering – Gaussian mixture model (2)

Rohit Budhiraja

Machine Learning for Wireless Communications (EE798L)

March 6, 2024

Agenda of today's class

- Discussed Gaussian mixture modelling and started developing EM algorithm
- Finish developing EM algorithm
 - Reference: Chapter 6 of FCML

Mixture model – generative process (recap)

- We assume that data is generated by multiple Gaussians we propose
- Two-step procedure for sampling the nth data object \mathbf{x}_n :
 - 1) Select one of the three Gaussians; 2) Sample x_n from this Gaussian
- Step 1 chooses one value from a discrete set, like rolling a die
 - To do this, we just need to define the probability of each outcome π_k such that $\sum_k \pi_k = 1$
- We used z_{nk} as an indicator variable
 - If we choose kth component as the source of nth object, we set $z_{nk}=1$, and $z_{nj}=0$ for all $j\neq k$
- Require likelihood of data objects \mathbf{x}_n under the whole model: $p(\mathbf{x}_n \mid \Delta, \pi)$
- We started with likelihood of a particular data object conditioned on $z_{nk} = 1$:

$$p(\mathbf{x}_n \mid z_{nk} = 1, \Delta) = p(\mathbf{x}_n \mid \Delta_k)$$

Summed both sides over k (marginalising over the individual components) yields

$$p(\mathbf{x}_n \mid \Delta, \boldsymbol{\pi}) = \sum_{k=1}^{n} \pi_k p(\mathbf{x}_n \mid \Delta_k)$$

• Made standard independence assumption and extended this to likelihood of all N data objects:

$$p(\mathbf{X} \mid \Delta, \boldsymbol{\pi}) = \prod_{n=1}^{N} \sum_{k=1}^{K} \pi_k p(\mathbf{x}_n \mid \Delta_k)$$

Simplification of log likelihood using Jensen inequality (recap)

• We want to maximise the log likelihood

$$L = \log p(\mathbf{X} \mid \Delta, \boldsymbol{\pi}) = \sum_{n=1}^{N} \log \sum_{k=1}^{K} \pi_{k} p\left(\mathbf{x}_{n} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)\right)$$

- Summation inside logarithm makes finding optimal parameter μ_k, Σ_k, π difficult
- EM algorithm overcomes this problem by deriving a lower bound on this likelihood
 Instead of maximising L directly, we maximise a lower bound obtained using Jensen inequality
- ullet To obtain lower bound, we multiply and divide expression inside summation over k by q_{nk}
 - $q_{nk} \geq 0$ with $\sum_{k=1}^K q_{nk} = 1$
 - \bullet q_{nk} can be considered as some probability distribution over K components for the nth object
- We used the Jensen inequality and got a following lower bound

$$L = \sum_{n=1}^{N} \log \sum_{k=1}^{K} \pi_{k} p\left(\mathbf{x}_{n} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right) \frac{q_{nk}}{q_{nk}} \geq \sum_{n=1}^{N} \sum_{k=1}^{K} q_{nk} \log \left(\frac{\pi_{k} p\left(\mathbf{x}_{n} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)}{q_{nk}}\right) = \mathcal{B}$$

- Maximize lower bound $\mathcal B$ to calculate $\mu_k, \mathbf \Sigma_k, \pi, q_{nk}$
 - Partially differentiate \mathcal{B} w.r.t $\mu_k, \Sigma_k, \pi, q_{nk}$ and set it to zero

Updating π_k (1)

Bound

$$\mathcal{B} = \sum_{n=1}^{N} \sum_{k=1}^{K} q_{nk} \log \pi_k + \sum_{n=1}^{N} \sum_{k=1}^{K} q_{nk} \log p(\mathbf{x}_n \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) - \sum_{n=1}^{N} \sum_{k=1}^{K} q_{nk} \log q_{nk}$$

• We first update π_k

$$\mathcal{B} = \sum_{n=1}^{N} \sum_{k=1}^{K} q_{nk} \log \pi_k - \lambda \left(\sum_{k=1}^{K} \pi_k - 1 \right) + \cdots$$

$$\frac{\partial \mathcal{B}}{\partial \pi_k} = \frac{\sum_{n=1}^{N} q_{nk}}{\pi_k} - \lambda = 0 \Rightarrow \sum_{n=1}^{N} q_{nk} = \lambda \pi_k$$

$$\sum_{k=1}^{K} \sum_{n=1}^{N} q_{nk} = \lambda \sum_{k=1}^{K} \pi_k \stackrel{\text{(a)}}{\Rightarrow} \sum_{n=1}^{N} 1 = \lambda \Rightarrow \lambda = N$$

$$(1)$$

- Arrow (a) used the fact that $\sum_{k=1}^{K} q_{nk} = 1$ and $\sum_{k=1}^{K} \pi_k = 1$ by definition.
- Substituting $\lambda = N$ into Eq. (1) gives us the expression for $\pi_k = \frac{1}{N} \sum_{n=1}^{N} q_{nk}$

Updating μ_k (1)

Bound

$$\mathcal{B} = \sum_{n=1}^{N} \sum_{k=1}^{K} q_{nk} \log \pi_k + \sum_{n=1}^{N} \sum_{k=1}^{K} q_{nk} \log p(\mathbf{x}_n \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) - \sum_{n=1}^{N} \sum_{k=1}^{K} q_{nk} \log q_{nk}$$

ullet Updating μ_k : only second term of ${\cal B}$ includes μ_k – expand multi-variate Gaussian $p({f x}_n|\mu_k,{f \Sigma}_k)$

$$\mathcal{B} \propto \sum_{n=1}^{N} \sum_{k=1}^{K} q_{nk} \log \left(\frac{1}{(2\pi)^{d/2} |\mathbf{\Sigma}_{k}|^{1/2}} \exp \left(-\frac{1}{2} (\mathbf{x}_{n} - \boldsymbol{\mu}_{k})^{T} \mathbf{\Sigma}_{k}^{-1} (\mathbf{x}_{n} - \boldsymbol{\mu}_{k}) \right) \right)$$

$$= -\frac{1}{2} \sum_{n=1}^{N} \sum_{k=1}^{K} q_{nk} \log \left((2\pi)^{d} |\mathbf{\Sigma}_{k}| \right) - \frac{1}{2} \sum_{n=1}^{N} \sum_{k=1}^{K} q_{nk} (\mathbf{x}_{n} - \boldsymbol{\mu}_{k})^{T} \mathbf{\Sigma}_{k}^{-1} (\mathbf{x}_{n} - \boldsymbol{\mu}_{k})$$

• Making use of the identity $\left(f(\mathbf{w}) = \mathbf{w}^T \mathbf{C} \mathbf{w}, \quad \frac{\partial f(\mathbf{w})}{\partial \mathbf{w}} = 2 \mathbf{C} \mathbf{w}\right)$

$$\frac{\partial \mathcal{B}}{\partial \boldsymbol{\mu}_{k}} = -\frac{1}{2} \sum_{n=1}^{N} q_{nk} \times \frac{\partial \left(\mathbf{x}_{n} - \boldsymbol{\mu}_{k}\right)^{T} \boldsymbol{\Sigma}_{k}^{-1} \left(\mathbf{x}_{n} - \boldsymbol{\mu}_{k}\right)}{\partial \left(\mathbf{x}_{n} - \boldsymbol{\mu}_{k}\right)} \times \frac{\partial \left(\mathbf{x}_{n} - \boldsymbol{\mu}_{k}\right)}{\partial \boldsymbol{\mu}_{k}} = \sum_{n=1}^{N} q_{nk} \boldsymbol{\Sigma}_{k}^{-1} \left(\mathbf{x}_{n} - \boldsymbol{\mu}_{k}\right)$$

Updating μ_k (2)

ullet Equating to zero and rearranging gives us an expression for μ_k

$$\sum_{n=1}^{N} q_{nk} \mathbf{\Sigma}_{k}^{-1} (\mathbf{x}_{n} - \boldsymbol{\mu}_{k}) = 0$$

$$\sum_{n=1}^{N} q_{nk} \mathbf{\Sigma}_{k}^{-1} \mathbf{x}_{n} = \sum_{n=1}^{N} q_{nk} \mathbf{\Sigma}_{k}^{-1} \boldsymbol{\mu}_{k}$$

$$\sum_{n=1}^{N} q_{nk} \mathbf{x}_{n} = \boldsymbol{\mu}_{k} \sum_{n=1}^{N} q_{nk}$$

$$\boldsymbol{\mu}_{k} = \frac{\sum_{n=1}^{N} q_{nk} \mathbf{x}_{n}}{\sum_{n=1}^{N} q_{nk} \mathbf{x}_{n}}$$

Updating Σ_k (1)

• As with μ_k , we only need to look at the multi-variate Gaussian $p(\mathbf{x}_n|\mu_k, \mathbf{\Sigma}_k)$ term of \mathcal{B}

$$\mathcal{B} \propto -rac{1}{2}\sum_{n=1}^{N}\sum_{k=1}^{K}q_{nk}\log\left(\left(2\pi
ight)^{d}\left|\mathbf{\Sigma}_{k}
ight|
ight) -rac{1}{2}\sum_{n=1}^{N}\sum_{k=1}^{K}q_{nk}\left(\mathbf{x}_{n}-oldsymbol{\mu}_{k}
ight)^{T}\mathbf{\Sigma}_{k}^{-1}\left(\mathbf{x}_{n}-oldsymbol{\mu}_{k}
ight)$$

• Ignoring the constant (2π) part of the first term, we are left with

$$\mathcal{B} \propto -rac{1}{2}\sum_{n=1}^{N}\sum_{k=1}^{K}q_{nk}\log\left(\left|\mathbf{\Sigma}_{k}
ight|
ight) -rac{1}{2}\sum_{n=1}^{N}\sum_{k=1}^{K}q_{nk}\left(\mathbf{x}_{n}-oldsymbol{\mu}_{k}
ight)^{T}\mathbf{\Sigma}_{k}^{-1}\left(\mathbf{x}_{n}-oldsymbol{\mu}_{k}
ight)$$

• To take partial derivatives with respect to the matrix Σ_k , we need two identities

$$\frac{\partial \log |\mathbf{C}|}{\partial \mathbf{C}} = (\mathbf{C}^T)^{-1} \text{ and } \frac{\partial \mathbf{a}^T \mathbf{C}^{-1} \mathbf{b}}{\partial \mathbf{C}} = -(\mathbf{C}^T)^{-1} \mathbf{a} \mathbf{b}^T (\mathbf{C}^T)^{-1}$$

• We take partial derivatives with respect to Σ_k

$$\frac{\partial \mathcal{B}}{\partial \mathbf{\Sigma}_k} = -\frac{1}{2} \sum_{n=1}^{N} q_{nk} \mathbf{\Sigma}_k^{-1} + \frac{1}{2} \sum_{n=1}^{N} q_{nk} \mathbf{\Sigma}_k^{-1} \left(\mathbf{x}_n - \boldsymbol{\mu}_k \right) \left(\mathbf{x}_n - \boldsymbol{\mu}_k \right)^T \mathbf{\Sigma}_k^{-1}$$

• Above equation uses the fact that Σ_k is symmetric and therefore $(\Sigma_k)_{*}^T = \Sigma_k$

Updating Σ_k (2)

• We now equate $\frac{\partial \mathcal{B}}{\partial \mathbf{\Sigma}_k}$ to zero

$$-\frac{1}{2}\sum_{n=1}^{N}q_{nk}\boldsymbol{\Sigma}_{k}^{-1} + \frac{1}{2}\sum_{n=1}^{N}q_{nk}\boldsymbol{\Sigma}_{k}^{-1}\left(\mathbf{x}_{n} - \boldsymbol{\mu}_{k}\right)\left(\mathbf{x}_{n} - \boldsymbol{\mu}_{k}\right)^{T}\boldsymbol{\Sigma}_{k}^{-1} = 0$$

$$\frac{1}{2}\sum_{n=1}^{N}q_{nk}\boldsymbol{\Sigma}_{k}^{-1} = \frac{1}{2}\sum_{n=1}^{N}q_{nk}\boldsymbol{\Sigma}_{k}^{-1}\left(\mathbf{x}_{n} - \boldsymbol{\mu}_{k}\right)\left(\mathbf{x}_{n} - \boldsymbol{\mu}_{k}\right)^{T}\boldsymbol{\Sigma}_{k}^{-1}$$

• Pre- and post-multiplying both sides by Σ_k allows us to cancel all of the Σ_k^{-1} :

$$\mathbf{\Sigma}_{k} \sum_{n=1}^{N} q_{nk} \mathbf{\Sigma}_{k}^{-1} \mathbf{\Sigma}_{k} = \mathbf{\Sigma}_{k} \mathbf{\Sigma}_{k}^{-1} \sum_{n=1}^{N} q_{nk} (\mathbf{x}_{n} - \boldsymbol{\mu}_{k}) (\mathbf{x}_{n} - \boldsymbol{\mu}_{k})^{T} \mathbf{\Sigma}_{k}^{-1} \mathbf{\Sigma}_{k}$$

$$\mathbf{\Sigma}_{k} \sum_{n=1}^{N} q_{nk} = \sum_{n=1}^{N} q_{nk} (\mathbf{x}_{n} - \boldsymbol{\mu}_{k}) (\mathbf{x}_{n} - \boldsymbol{\mu}_{k})^{T}$$

$$\mathbf{\Sigma}_{k} = \frac{\sum_{n=1}^{N} q_{nk} (\mathbf{x}_{n} - \boldsymbol{\mu}_{k}) (\mathbf{x}_{n} - \boldsymbol{\mu}_{k})^{T}}{\sum_{n=1}^{N} q_{nk}}$$

Updating q_{nk} (1)

Bound

$$\mathcal{B} = \sum_{n=1}^{N} \sum_{k=1}^{K} q_{nk} \log \pi_k + \sum_{n=1}^{N} \sum_{k=1}^{K} q_{nk} \log p(\mathbf{x}_n \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) - \sum_{n=1}^{N} \sum_{k=1}^{K} q_{nk} \log q_{nk}$$

- Updating q_{nk} , which appears all three terms in \mathcal{B} . It is subject to the constraint $\sum_{k=1}^K q_{nk} = 1$
- Using Lagrangian method we have

$$\mathcal{B} = \sum_{n=1}^{N} \sum_{k=1}^{K} q_{nk} \log \pi_k + \sum_{n=1}^{N} \sum_{k=1}^{K} q_{nk} \log p\left(\mathbf{x}_n \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_K\right) - \sum_{n=1}^{N} \sum_{k=1}^{K} q_{nk} \log q_{nk} - \lambda \left(\sum_{k=1}^{K} q_{nk} - 1\right)$$

• Taking partial derivatives with respect to q_{nk} gives

$$rac{\partial \mathcal{B}}{\partial q_{nk}} = \log \pi_k + \log p\left(\mathbf{x}_n \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k
ight) - \left(1 + \log q_{nk}\right) - \lambda$$

• Setting to zero, rearranging and exponentiating gives us an expression for q_{nk} :

$$\begin{array}{rcl} 1 + \log q_{nk} + \lambda & = & \log \pi_k + \log p\left(\mathbf{x}_n \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k\right) \\ \exp\left(\log q_{nk} + (\lambda + 1)\right) & = & \exp\left(\log \pi_k + \log p\left(\mathbf{x}_n \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k\right)\right) \\ q_{nk} \exp(\lambda + 1) & = & \pi_k p\left(\mathbf{x}_n \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k\right) \end{array}$$

Updating q_{nk} (2)

• We need to find the constant term $\exp(\lambda + 1)$, we sum both sides over k:

$$egin{array}{lll} \exp(\lambda+1) \sum_{k=1}^K q_{nk} & = & \sum_{k=1}^K \pi_k p\left(\mathbf{x}_n \mid oldsymbol{\mu}_k, oldsymbol{\Sigma}_k
ight) \ & \exp(\lambda+1) & = & \sum_{k=1}^K \pi_k p\left(\mathbf{x}_n \mid oldsymbol{\mu}_k, oldsymbol{\Sigma}_k
ight) \end{array}$$

• Substituting above in Eq. (2), we have

$$q_{nk} = \frac{\pi_k p\left(\mathbf{x}_n \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k\right)}{\sum_{j=1}^K \pi_j p\left(\mathbf{x}_n \mid \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j\right)}$$

Summary and intuitions from the derived expressions (1)

Four update equations are

$$\pi_{k} = \frac{1}{N} \sum_{n=1}^{N} q_{nk}, \quad \mu_{k} = \frac{\sum_{n=1}^{N} q_{nk} \mathbf{x}_{n}}{\sum_{n=1}^{N} q_{nk}}, \quad \mathbf{\Sigma}_{k} = \frac{\sum_{n=1}^{N} q_{nk} (\mathbf{x}_{n} - \mu_{k}) (\mathbf{x}_{n} - \mu_{k})^{T}}{\sum_{n=1}^{N} q_{nk}}$$

$$q_{nk} = \frac{\pi_{k} p(\mathbf{x}_{n} \mid \boldsymbol{\mu}_{k}, \mathbf{\Sigma}_{k})}{\sum_{j=1}^{K} \pi_{j} p(\mathbf{x}_{n} \mid \boldsymbol{\mu}_{j}, \mathbf{\Sigma}_{j})}$$

- First three expressions rely heavily on q_{nk} what does q_{nk} represent?
 - \bullet Could be interpreted posterior probability of object n belonging to class k

$$p(z_{nk} = 1 \mid \mathbf{x}_n) = \frac{p(z_{nk} = 1) p(\mathbf{x}_n \mid z_{nk} = 1)}{\sum_{j=1}^K p(z_{nj} = 1) p(\mathbf{x}_n \mid z_{nj} = 1)} = \frac{\pi_k p(\mathbf{x}_n \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{j=1}^K \pi_j p(\mathbf{x}_n \mid \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)} = q_{nk}$$

- ullet π_k is the average of all posterior probabilities of belonging to class k
 - ullet Equivalently expected proportion of data belonging to class k
- ullet μ_k and $oldsymbol{\Sigma}_k$ are mean and variance of each class
 - ullet Calculated by weighting each object by its posterior probability of belonging to class k

Intuition from the derived expressions (2)

- Keeping the previous discussion in mind, we can split the four updates into two steps
 - Step-1: update current estimates of model parameter π_k , μ_k and Σ_k by fixing q_{nk}
 - Step-2: update assignments q_{nk} to reflect the new values of π_k , μ_k and Σ_k
- Algorithm is very similar to K-means algorithm
 - Updating q_{nk} is analogous to updating z_{nk} in K-means
 - Updating μ_k , Σ_k π is analogous to updating μ_k in K-means
- Two key differences from K-means
 - Compute posterior probabilities of cluster memberships rather than making hard assignments and
 - Inferring the component covariances
- Four update equations make up an example of the EM algorithm
- ullet First three updates π_k μ_k and $oldsymbol{\Sigma}_k$ make up the so-called 'M' (maximisation) step
 - ullet Step maximized the bound conditioned on the values of q_{nk}
- Update of q_{nk} is known as the 'E' (expectation) step
 - ullet Computes expected value of unknown assignments, z_{nk} we have not derived them this way

Example of EM algorithm (1)

- Before start performing updates in equations we need to initialise some of the parameters
 - ullet We set K=3 and randomly choose the means and covariances of K=3 mixture components
 - ullet To compute q_{nk} , we need to initialize π_k uniform distribution over three components: $\pi_k=1/K$

Example of EM algorithm (2)

• Three resulting Gaussian pdfs are

(a) The three randomly initialised Gaussian mixture components.

(d) The three components after seven iterations of the EM algorithm.

(b) The three components after one iteration of the EM algorithm.

(e) The three components at convergence of the EM algorithm.

(c) The three components after five iterations of the EM algorithm.

(f) The evolution of the bound \mathcal{B} (solid line, Equation 6.8) and log-likelihood L (dashed line, Equation 6.5).

Example of EM algorithm (2)

- We are not interested in Gaussians themselves but assignments of objects to cluster components • Provided by values of q_{nk} posterior probability of objects belonging to components
- Consider an object n that has the following values of q_{nk} at convergence:

$$q_{n1} = 0.53, q_{n2} = 0.45, q_{n3} = 0.02$$

- If we must assign it to a particular cluster, first one is most appropriate
 - We are throwing away useful information about relationship object n has with component 2
- Clusterings produced by K-means and mixture model are similar and K-means can be kernelised
 - Mixture models have advantages over K-means due, predominantly, to their probabilistic nature

Clustering in 5G wireless systems - examples

8422

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 67, NO. 12, DECEMBER 2019

An EM-Based User Clustering Method in Non-Orthogonal Multiple Access

Jie Ren[®], Student Member, IEEE, Zulin Wang, Member, IEEE, Mai Xu[®], Senior Member, IEEE, Fang Fang, Member, IEEE, and Zhiguo Ding[®], Senior Member, IEEE