Computational Intelligence Lab

2024

Graded Homework 1

Christopher Zanoli Student Number: 23-942-394

1. Let $S = \{v_1, \dots, v_p\}$ be a set of orthonormal non-zero vectors with $v_i \in \mathbb{R}^n \ \forall i$. Prove that S is an orthonormal basis of span(S).

2 pts

We want to prove that $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ are linearly independent, they $\in span(S)$ and dim(span(S)) = p.

Since S is orthonormal:

$$\langle \mathbf{v}_i, \mathbf{v}_i \rangle = 1 \quad \forall i \quad (1)$$

 $\langle \mathbf{v}_i, \mathbf{v}_j \rangle = 0 \quad \forall i \neq j \quad (2)$

Let

$$\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \dots + \alpha_p \mathbf{v}_p = 0,$$

then $\forall i$:

$$0 = \langle \alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \dots + \alpha_p \mathbf{v}_p, \mathbf{v}_i \rangle$$
 by definition

$$= \alpha_1 \langle \mathbf{v}_1, \mathbf{v}_i \rangle + \alpha_2 \langle \mathbf{v}_2, \mathbf{v}_i \rangle + \dots + \alpha_p \langle \mathbf{v}_p, \mathbf{v}_i \rangle$$
 by linearity of inner product

$$= \alpha_i \langle \mathbf{v}_i, \mathbf{v}_i \rangle$$
 due to (2)

$$= \alpha_i$$
 due to (1)

 \Rightarrow $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ are linearly independent. Furthermore, since $\{\mathbf{v}_1, \dots, \mathbf{v}_p\} \in S$, then $\{\mathbf{v}_1, \dots, \mathbf{v}_p\} \in span(S)$ as well, since, by definition of span, span(S) is the set of all possible linear combination of vectors in S. Hence, S spans span(S) because any vector in span(S) can be written as a linear combination of vectors in S. Consequently, this means that dim(span(S)) = p, where p is the cardinality of S.

QED

2. Let $A \in \mathbb{R}^{m \times n}$ be a matrix of rank $r \leq n$ and $n \leq m$.

Further, let $D = \{v_1, \ldots v_n\}$ be an orthonormal basis of \mathbb{R}^n , where $\{v_1, \ldots v_n\}$ are eigenvectors of A^TA arranged such that their associated eigenvalues are decreasing $\lambda_1 \geq \ldots \geq \lambda_n$. Given A is of rank r, A^TA is also of rank r and we have $\forall i \leq r, \lambda_i \neq 0$ and $\forall i > r, \lambda_i = 0$.

Show the following

(a) For all $i \in \{1, ... n\}$ $\lambda_i \geq 0$. Hint: what is $||Av_i||^2$?

We need to show that $\lambda_i \geq 0 \ \forall i \in \{1, \dots, n\}$

$$||A\mathbf{v}_i||^2 \equiv \langle A\mathbf{v}_i, A\mathbf{v}_i \rangle$$
 by definition
 $= (A\mathbf{v}_i)^{\top}(A\mathbf{v}_i)$ assuming inner product as dot product
 $= \mathbf{v}_i^{\top} A^{\top} A \mathbf{v}_i$ property of transpose
 $= \langle A^{\top} A \mathbf{v}_i, \mathbf{v}_i \rangle$ by definition, inner product as dot product

By definition, we know that $A^{\top}A\mathbf{v}_i = \lambda_i \mathbf{v}_i$.

$$\Rightarrow \langle A^{\top} A \mathbf{v}_i, \mathbf{v}_i \rangle = \langle \lambda_i \mathbf{v}_i, \mathbf{v}_i \rangle$$

$$= \lambda_i \langle \mathbf{v}_i, \mathbf{v}_i \rangle$$

$$= \lambda_i \qquad \text{because } D \text{ is orthonormal}$$

Since by definition $||A\mathbf{v}_i||^2 \ge 0 \ \forall i \in \{1, ..., n\}$ (being squared), and since we proved $||A\mathbf{v}_i||^2 = \lambda_i \ \forall i \in \{1, ..., n\}$, it follows that $\lambda_i \ge 0 \ \forall i \in \{1, ..., n\}$.

QED

(b)
$$\{Av_1, \ldots, Av_r\}$$
, $1 \leq k \leq r$ is an orthogonal basis for $Col(A)$. Reminder: if a_1, \cdots, a_n are the columns of A , $Col(A) = span(\{a_1, \cdots, a_n\})$.

We need to show that:

- i. $\{A\mathbf{v}_1, A\mathbf{v}_2, \dots, A\mathbf{v}_r\}$ are orthogonal, and, as a consequence, linearly independent
- ii. The vectors $\{A\mathbf{v}_1, A\mathbf{v}_2, \dots, A\mathbf{v}_r\}$ must span Col(A). This means that any vector in Col(A) can be expressed as a linear combination of $\{A\mathbf{v}_1, A\mathbf{v}_2, \dots, A\mathbf{v}_r\}$
- iii. dim(Col(A)) = r where r is the cardinality of $\{A\mathbf{v}_1, A\mathbf{v}_2, \dots, A\mathbf{v}_r\}$

For the first point, we want to show that $\{A\mathbf{v}_1, A\mathbf{v}_2, \dots, A\mathbf{v}_r\}$ is a set of non-zero vectors and that $\langle A\mathbf{v}_i, A\mathbf{v}_i \rangle = 0 \ \forall i \neq j, i \leq r, j \leq r$.

From exercise 2(a) we have shown that $\forall i \in \{1, ..., n\} \|A\mathbf{v}_i\|^2 = \lambda_i$, and, from the problem statement, $\forall i \leq r \ \lambda_i \neq 0$. Hence, $\{A\mathbf{v}_1, A\mathbf{v}_2, ..., A\mathbf{v}_r\}$ is a set of non-zero vectors.

It suffices to prove orthogonality for $i, j \leq r$, as these correspond to the non-zero eigenvalues of $A^T A$ and thus the non-zero vectors $A \mathbf{v}_i$, which are relevant for the basis of Col(A).

To establish this, we know that $\langle A\mathbf{v}_i, A\mathbf{v}_j \rangle = (A\mathbf{v}_j)^{\top}(A\mathbf{v}_i) = \mathbf{v}_j^{\top}A^{\top}A\mathbf{v}_i = \langle A^{\top}A\mathbf{v}_i, \mathbf{v}_j \rangle$.

But we know that $A^{\top}A\mathbf{v}_i = \lambda_i \mathbf{v}_i$ implies $\langle A^{\top}A\mathbf{v}_i, \mathbf{v}_j \rangle = \langle \lambda_i \mathbf{v}_i, \mathbf{v}_j \rangle = \lambda_i \langle \mathbf{v}_i, \mathbf{v}_j \rangle$. But since \mathbf{v}_i and \mathbf{v}_j are orthogonal (they are part of an orthonormal basis), we have $\langle \mathbf{v}_i, \mathbf{v}_j \rangle = 0 \ \forall i \neq j$, which implies $\langle A\mathbf{v}_i, A\mathbf{v}_j \rangle = 0 \ \forall i \neq j$. Since $\{A\mathbf{v}_1, A\mathbf{v}_2, \dots, A\mathbf{v}_r\}$ are non-zero and orthogonal, they form a basis for a subspace of Col(A). In order to show that they span Col(A), we need to show that any vector \mathbf{y} in Col(A) can be expressed as a linear combination of $A\mathbf{v}_i \ \forall i \in \{1, ..., r\}$.

Given that $\mathbf{y} \in Col(A)$ and Col(A) = Im(A), $\forall \mathbf{y} \in Col(A)$ there exists an $\mathbf{x} \in \mathbb{R}^n$ such that $A\mathbf{x} = \mathbf{y}$. Since $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ is an orthonormal basis (from problem statement), we can write \mathbf{x} as the following linear combination of the orthonormal basis vectors \mathbf{v}_i :

$$\mathbf{x} = \sum_{i=1}^{n} \langle \mathbf{x}, \mathbf{v}_i \rangle \mathbf{v}_i \qquad \Rightarrow \quad A\mathbf{x} = A\left(\sum_{i=1}^{n} \langle \mathbf{x}, \mathbf{v}_i \rangle \mathbf{v}_i\right) = \sum_{i=1}^{n} \langle \mathbf{x}, \mathbf{v}_i \rangle A\mathbf{v}_i$$

However, for i > r, $A\mathbf{v}_i = \mathbf{0}$ (from exercise 2(a)), so we only need to consider $i \leq r$, which shows that \mathbf{y} can be written as a linear combination of $\{A\mathbf{v}_1, A\mathbf{v}_2, \dots, A\mathbf{v}_r\}$.

As a consequence, also the third point is proved since A is of rank r (there are r linearly independent columns of A) $\Rightarrow dim(Col(A)) = r$, and the cardinality of $\{A\mathbf{v}_1, A\mathbf{v}_2, \dots, A\mathbf{v}_r\}$ is r (by definition).

QED

Next, we will prove the Singular Value Decomposition Theorem (SVD). We define the matrix $V = [v_1, \ldots, v_n]$ using D defined in Q2. We set $U = [u_1, \ldots, u_m]$ an orthonormal basis of \mathbb{R}^m such that $\forall i, u_i = \frac{Av_i}{\|Av_i\|}$.

We define
$$\Sigma \in \mathbb{R}^{m \times n}$$
, $\Sigma = \begin{bmatrix} \Delta & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}$ where $\Delta = \begin{bmatrix} \sigma_1 & & 0 \\ & \ddots & \\ 0 & & \sigma_r \end{bmatrix}$ with $\forall i \leq r, \sigma_i > 0$.

3. Prove that

(a) Using
$$\sqrt{\lambda_i} = \sigma_i$$
, $AV = [\sigma_1 u_1, \dots, \sigma_r u_r, 0, \dots, 0]$

2 pts

$$AV = A[\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n] = [A\mathbf{v}_1, A\mathbf{v}_2, \dots, A\mathbf{v}_n] = [u_1 || A\mathbf{v}_1 ||, \dots, u_r || A\mathbf{v}_r ||, 0, \dots, 0]$$

Since:

- $\forall i \leq r, \ \mathbf{u}_i = \frac{A\mathbf{v}_i}{\|A\mathbf{v}_i\|}$
- From exercise 2(a), $\lambda_i = 0 \ \forall i > r$. Since we proved $||A\mathbf{v}_i||^2 = \lambda_i$, then $\lambda_i = 0 \iff ||A\mathbf{v}_i|| = 0 \ \forall i > r$

Now, $||A\mathbf{v}_i||^2 = \lambda_i$ implies $||A\mathbf{v}_i|| = \sqrt{\lambda_i}$ and $\sqrt{\lambda_i} = \sigma_i$ (by definition),

$$\Rightarrow [u_1 || A \mathbf{v}_1 ||, \dots, u_r || A \mathbf{v}_r ||, 0, \dots, 0] = [\sigma_1 u_1, \dots, \sigma_r u_r, 0, \dots, 0]$$

(b)
$$U\Sigma = AV$$
, and

1 pts

We need to prove that

$$U\Sigma = AV = [\sigma_1 u_1, \dots, \sigma_r u_r, 0, \dots, 0]$$

where $U \in \mathbb{R}^{m \times m}$ and $\Sigma \in \mathbb{R}^{m \times n}$

$$U\Sigma = [u_1, u_2, \dots, u_m] \begin{bmatrix} \sigma_1 & & & & \\ & \sigma_2 & & & \\ & & \ddots & & & \\ & & & \sigma_r & & \\ & & & & 0 & \\ & & & & \ddots & \\ & & & & & 0 \end{bmatrix}$$

$$= \begin{bmatrix} u_{1,1} & u_{1,2} & \dots & u_{1,m} \\ u_{2,1} & u_{2,2} & \dots & u_{2,m} \\ \vdots & \vdots & \ddots & \vdots \\ u_{m,1} & u_{m,2} & \dots & u_{m,m} \end{bmatrix} \begin{bmatrix} \sigma_1 & & & & & \\ & \sigma_2 & & & & \\ & & \ddots & & & \\ & & & \sigma_r & & \\ & & & & 0 & \\ & & & & \ddots & \\ & & & & & 0 \end{bmatrix}$$

$$= [u_1\sigma_1, u_2\sigma_2, \dots, u_r\sigma_r, 0, \dots, 0] = AV$$

QED

(c)
$$A = U\Sigma V^T$$
.

To prove that $A = U\Sigma V^{\top}$ we can start by observing that V has been defined as an orthogonal matrix since, from $2(a), \{v_1, v_2, \dots, v_n\}$ are orthonormal vectors $\Rightarrow V^{-1} = V^{\top}$.

Hence, since in the previous point we showed that $U\Sigma = AV$:

$$U\Sigma V^{-1}=AVV^{-1}$$
 by multiplying each right hand side by V^{-1}
$$U\Sigma V^{\top}=AI$$
 where I is the identity matrix
$$U\Sigma V^{\top}=A$$

QED

We have shown that any matrix $A \in \mathbb{R}^{m \times n}$ of rank r can be decomposed into $U \Sigma V^T$ where U, V are orthogonal matrices and $\Sigma = \begin{bmatrix} \Delta & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}$ is a diagonal matrix containing the singular values of A.