## Coursework 1

Task 1

| Task ID | Task Description      | Duration (weeks) | Predecessors |
|---------|-----------------------|------------------|--------------|
| Α       | Requirement Planning  | 2                | -            |
| В       | Order and Receive     | 3                | Α            |
|         | Hardware              |                  |              |
| С       | Software              | 4                | Α            |
|         | Development           |                  |              |
| D       | Software Testing      | 3                | 1 week of C  |
| E       | Install Hardware      | 1                | В            |
| F       | Install Software      | 2                | B, D, E      |
| G       | Test System           | 4                | F            |
| Н       | Debug and Fixes       | 2                | G            |
| 1       | Marketing Preparation | 1                | Н            |
| J       | UK Release            | 1                |              |

Task 2



Task 3



Critical Path: A, B, E, F, G, H, I, J

Total time for completion: 16 weeks

Task 4

i.



Critical Path: A, C, D, F, G, H, I, J

ii.

By changing the task timeline, several consequences occur. Firstly, the project as a whole is delayed by 3 weeks due to the dependency change between activity C and D. Rather than only taking 1 week to move on from the activity, the time taken is now 4 weeks. Furthermore, by inducing time delays so early on in the project, each activity that precedes activity D is delayed. This could incur extra charges as stakeholders in the project may have to invest more money. In conclusion, inducing time delays early in the project causes a large knock-on effect later in the project, increasing money and time commitment.