Math 29: Computability Theory

Spring 2024

$\mathbf{Mid\text{-}Term\ Exam\ 05/03/2024}$

Prof. Miller Student: Amittai Siavava

Problem 1.

Give a register machine which, when given a natural number n in R_0 at start, halts and outputs x + 1 in R_1 if there is some natural x satisfying $x^2 + n^2 = 2nx$, and returns 0 otherwise.

Problem 2.

Prove that no index set is immune.

Problem 3.

Give an example of a partial computable function i(x, y) such that:

- $i(x,y) \downarrow \text{implies } i(x,y) = 0 \text{ or } i(x,y) = 1.$
- If A is computable, then there exists an e such that $i(e,n)=\chi_A(n)$ for all n.
- $I_x := \{y \mid i(x,y) \downarrow > 0\}$ is computable for all x.

Why does i(x, y) not contradict Homework 3, Question 2?

Definition of i(x,y)

Let i(x, y) be the following partial computable function:

$$i(x,y) = \begin{cases} 1 & \text{if } \varphi_x(y) \downarrow = 1 \\ 0 & \text{if } \varphi_x(y) \downarrow = 0 \end{cases}$$

Problem 4.

Let M be the set

$$\{x \mid \forall \ y < x \, (\varphi_x \neq \varphi_y)\}.$$

That is, M is the set of minimal indices of computable functions: the smallest indices which define a given (partial) computable function.

Problem 5.

Prove that $W_e \leq_1 H$ for all e, then prove that $H \leq_1 K$.

Problem 6.

Suppose C is the set of valid codes for machines based on our coding scheme defined in class. Give a total, computable bijection from ω to C, i.e. a computable function which associates every natural number to a unique machine.

Problem 7.

SHow that there is an e such that

$$W_e = \{e+1, e^2+4, e^3+9, \ldots\}.$$