iMath Phần mềm Tao đề ngẫu nhiên

ĐỀ ÔN TẬP Môn thi: Toán Thời gian: phút Mã đề: 007

Ho tên HS:Số báo danh

PHÂN I. Câu trắc nghiệm nhiều phương án lưa chon.

Câu 1. Đổi số đo của góc –710° sang radian ta được kết quả bằng

A.
$$-\frac{73\pi}{18}$$
.

B.
$$-\frac{34\pi}{9}$$
.

C.
$$-\frac{71\pi}{18}$$
. D. $-\frac{35\pi}{9}$.

D.
$$-\frac{35\pi}{9}$$

Áp dụng công thức chuyển đổi: $-710^{\circ} = \frac{\text{Lời giải.}}{180} = -\frac{71\pi}{18}$. Chọn đáp án C.

Câu 2. Tính $\cot \frac{25\pi}{3}$.

A.
$$\frac{\sqrt{3}}{2}$$
.

B.
$$\sqrt{3}$$
.

C.
$$\frac{1}{2}$$
. Lời giải.

D.
$$\frac{\sqrt{3}}{3}$$
.

Chọn đáp án D.

Câu 3. Cho x là góc lượng giác. Tìm khẳng định đúng trong các khẳng định sau.

$$\mathbf{A.} \, \cos\left(\frac{\pi}{2} - x\right) = \cos x \, .$$

B.
$$\cot(\pi + x) = \tan x$$
.

$$\mathbf{C.} \, \sin(\pi + x) = -\sin x \, .$$

D.
$$\sin(\pi + x) = \cos x$$
.

Lời giải.

 $\sin(\pi + x) = -\sin x$ là khẳng định đúng.

Chọn đáp án C.

Câu 4. Cho α là góc lượng giác. Tìm khẳng định đúng trong các khẳng định sau.

A.
$$\cos 2\alpha = 2 \sin \alpha \cos \alpha$$
.

B.
$$\sin 2\alpha = 2 \sin \alpha$$
.

C.
$$\tan 2\alpha = \frac{2\tan \alpha}{1 + \tan^2 \alpha}$$
.

D.
$$\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha$$
.

Lời giải.

 $\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha$ là khẳng định đúng.

Chọn đáp án D.

Câu 5. Cho α, β là các góc lượng giác. Tìm khẳng định đúng trong các khẳng định sau.

A.
$$\cos \alpha \cos \beta = -\frac{1}{2}[\cos(\alpha + \beta) + \cos(\alpha - \beta)]$$
.
B. $\sin \alpha \cos \beta = \frac{1}{2}[\cos(\alpha + \beta) - \cos(\alpha - \beta)]$.
C. $\sin \alpha \cos \beta = \frac{1}{2}[\sin(\alpha + \beta) + \sin(\alpha - \beta)]$.
D. $\sin \alpha \sin \beta = \frac{1}{2}[\cos(\alpha + \beta) - \cos(\alpha - \beta)]$.

B.
$$\sin \alpha \cos \beta = \frac{1}{2} [\cos(\alpha + \beta) - \cos(\alpha - \beta)]$$

C.
$$\sin \alpha \cos \beta = \frac{1}{2} [\sin(\alpha + \beta) + \sin(\alpha - \beta)]$$

D.
$$\sin \alpha \sin \beta = \frac{1}{2} [\cos(\alpha + \beta) - \cos(\alpha - \beta)]$$

 $\sin \alpha \cos \beta = \frac{1}{2} [\sin(\alpha + \beta) + \sin(\alpha - \beta)]$ là khẳng định đúng. Chon đáp án \bar{C} .

Câu 6. Cho sin $a = \frac{2}{3}$ với $a \in \left(\frac{5\pi}{2}; 3\pi\right)$. Tính sin $\left(a - \frac{2\pi}{3}\right)$.

A.
$$-\frac{\sqrt{15}}{6} - \frac{1}{3}$$
.

B.
$$-\frac{\sqrt{3}}{3} + \frac{\sqrt{5}}{6}$$

A.
$$-\frac{\sqrt{15}}{6} - \frac{1}{3}$$
. **B.** $-\frac{\sqrt{3}}{3} + \frac{\sqrt{5}}{6}$. **C.** $-\frac{1}{3} + \frac{\sqrt{15}}{6}$. **D.** $\frac{2}{3} - \frac{\sqrt{5}}{3}$.

D.
$$\frac{2}{3} - \frac{\sqrt{5}}{3}$$

Vì $a \in \left(\frac{5\pi}{2}; 3\pi\right)$ nên $\cos a < 0$.

$$\cos a = -\sqrt{1 - \frac{4}{9}} = -\frac{\sqrt{5}}{3}.$$

$$\sin\left(a - \frac{2\pi}{3}\right) = \sin a \cos(-\frac{2\pi}{3}) + \cos a \sin(-\frac{2\pi}{3}) = \frac{2}{3}.(-\frac{1}{2}) + (-\frac{\sqrt{5}}{3}).(-\frac{\sqrt{3}}{2}) = -\frac{1}{3} + \frac{\sqrt{15}}{6}.$$
Chọn đáp án C.

Câu 7. Tìm tập xác định của hàm số $y = \tan(10x - 5\pi)$.

A.
$$D = \mathbb{R} \setminus \{ \frac{11}{20}\pi + k \frac{1}{10}\pi \}$$
.
B. $D = \mathbb{R} \setminus \{ \frac{3}{10}\pi + k \frac{1}{10}\pi \}$.
C. $D = \mathbb{R} \setminus \{ \frac{3}{5}\pi + k \frac{1}{10}\pi \}$.
D. $D = \mathbb{R} \setminus \{ \frac{11}{10}\pi + k \frac{1}{10}\pi \}$.
Lòi giải.

Chọn đáp án A.

Câu 8. Nghiệm của phương trình
$$\cos\left(4x + \frac{\pi}{2}\right) = \sin\left(-3x - \frac{\pi}{6}\right)$$
 là

A.
$$x = \frac{5\pi}{21} + k2\pi, x = -\frac{\pi}{6} + k2\pi(k \in \mathbb{Z})$$
.
B. $x = \frac{\pi}{6} + k\frac{\pi}{7}, x = -\frac{\pi}{6} + k\pi(k \in \mathbb{Z})$.
C. $x = \frac{5\pi}{21} + k2\pi, x = -\frac{\pi}{6} + k\frac{2\pi}{7}(k \in \mathbb{Z})$.
D. $x = \frac{\pi}{6} + k2\pi, x = -\frac{\pi}{6} + k\frac{2\pi}{7}(k \in \mathbb{Z})$.

Lòi giải.
$$\cos\left(4x + \frac{\pi}{2}\right) = \sin\left(-3x - \frac{\pi}{6}\right) \Leftrightarrow \cos\left(4x + \frac{\pi}{2}\right) = \cos\left(3x + \frac{2\pi}{3}\right)$$

$$\Leftrightarrow \begin{bmatrix} 4x + \frac{\pi}{2} = 3x + \frac{2\pi}{3} + k2\pi \\ 4x + \frac{\pi}{2} = -3x - \frac{2\pi}{3} + k2\pi \end{bmatrix}$$

$$\Leftrightarrow \begin{bmatrix} x = \frac{\pi}{6} + k2\pi \\ 7x = -\frac{7\pi}{6} + k2\pi \end{bmatrix}$$

$$\Leftrightarrow \begin{bmatrix} x = \frac{\pi}{6} + k2\pi \\ x = -\frac{\pi}{6} + k2\pi \end{bmatrix}, k \in \mathbb{Z}$$

Chon đáp án D.

PHẦN II. Câu trắc nghiệm đúng sai.

Câu 1. Cho sin $x = \frac{4}{7}$, $x \in \left(-\frac{3\pi}{2}; -\pi\right)$. Xét tính đúng-sai của các khẳng định sau.

Phát biểu	Ð	S
a) $\cos x = -\frac{\sqrt{33}}{7}$.	X	
b) $\sin 2\beta = -\frac{4\sqrt{33}}{49}$.		X
$\mathbf{c}) \cos 2\beta = -\frac{17}{49} .$		X
d) $\sin\left(\beta + \frac{\pi}{6}\right) = -\frac{\sqrt{33}}{14} + \frac{2\sqrt{3}}{7}$.	X	

Lời giải.

a) Khẳng định đã cho là khẳng định đúng.

$$\text{Vi } x \in \left(-\frac{3\pi}{2}; -\pi\right) \text{ nên } \cos x < 0.$$

$$\cos x = -\sqrt{1 - \frac{16}{49}} = -\frac{\sqrt{33}}{7}.$$

b) Khẳng định đã cho là khẳng định sai.

$$\sin 2\beta = 2\sin\beta\cos\beta = 2.\frac{4}{7}.(-\frac{\sqrt{33}}{7}) = -\frac{8\sqrt{33}}{49}.$$

c) Khẳng định đã cho là khẳng định sai.

$$\cos 2\beta = 1 - 2\sin^2\beta = 1 - 2.\frac{16}{49} = \frac{17}{49}$$

d) Khẳng định đã cho là khẳng định đúng.

$$\sin\left(\beta + \frac{\pi}{6}\right) = \sin\beta\cos(\frac{\pi}{6}) + \cos\beta\sin(\frac{\pi}{6}) = \frac{4}{7}.(\frac{\sqrt{3}}{2}) + (-\frac{\sqrt{33}}{7}).(\frac{1}{2}) = -\frac{\sqrt{33}}{14} + \frac{2\sqrt{3}}{7}.$$

Chọn đáp án a đúng | b sai | c sai | d đúng.

Câu 2. Cho hàm số $y = 4\cos(8x) - 6$. Xét tính đúng-sai của các khẳng đinh sau.

Phát biểu	Ð	S
a) Tập xác định của hàm số là $D = [-4; 4]$.		X
b) Hàm số đã cho là hàm số lẻ.		X
c) Tập giá trị của hàm số đã cho là $T = [-14; -6]$.		X
d) Đồ thị cắt trục tung tại điểm có tung độ bằng −2.	X	

Lời giải.

a) Khẳng định đã cho là khẳng định sai.

Tập xác đinh của hàm số là $D = \mathbb{R}$.

b) Khẳng định đã cho là khẳng định sai.

Ta có: Với mọi $x \in \mathbb{R}$ thì $-x \in \mathbb{R}$.

 $f(-x) = 4\cos(8x) - 6 = 4\cos(8x) - 6$. Vây hàm số $y = 4\cos(8x) - 6$ là hàm số chẵn.

c) Khẳng định đã cho là khẳng định sai.

Ta có: $-10 \le 4\cos(8x) - 6 \le -10$ nên tập giá trị là [-10; -10]

d) Khẳng định đã cho là khẳng định đúng.

Cho $x = 0 \Rightarrow y = -2$. Suy ra đồ thị cắt trục tung tại điểm có tung độ bằng -2.

Chọn đáp án a sai | b sai | c sai | d đúng.

PHẦN III. Câu trắc nghiệm trả lời ngắn.

Câu 1. Một bánh xe của một loại xe có bán kính 52 cm và quay được 5 vòng trong 5 giây. Tính độ dài quãng đường (theo đơn vị mét) xe đi được trong 4 giây (kết quả làm tròn đến hàng phần mười).

Lời giải.

Môt giây bánh xe quay được số vòng là: 1.

Một vòng quay ứng với quãng đường là $2\pi.0, 5 = 1, 0\pi$.

Sau 4 giây quãng đường đi được là: 1.4.1, $0\pi = 12, 6$:

Câu 2. Số nghiệm thuộc đoạn $[-3\pi; 3\pi]$ của phương trình $\tan\left(2x - \frac{\pi}{3}\right) = 1$ là

$$\tan\left(2x - \frac{\pi}{3}\right) = 1 \Leftrightarrow 2x - \frac{\pi}{3} = \frac{\pi}{4} + k\pi \Leftrightarrow x = \frac{7\pi}{24} + k\frac{\pi}{2}, k \in \mathbb{Z}.$$

Do
$$x \in [-3\pi; 3\pi]$$
 nên $-3\pi \le \frac{7\pi}{24} + k\frac{\pi}{2} \le 3\pi \Rightarrow -\frac{79}{12} \le k \le \frac{65}{12}$.

Có 12 số k thỏa mãn nên phương trình có 12 nghiệm.