P.C.T

ORGANISATION MONDIALE DE LA PROPRIETE INTELLECTUELLE Bureau international

DEMANDE INTERNATIONALE PUBLIEE EN VERTU DU TRAITE DE COOPERATION EN MATIERE DE BREVETS (PCT)

		טע ט	TRAITE DE COOPERATION EN MATIERE DE BREVETS (PCT)						
	(51) Classification internationale des brevets ⁶ :	ا م ا	(11) Numéro de publication internationale: WO 99/03836						
	C07D 233/54, A61K 7/13	A1	(43) Date de publication internationale: 28 janvier 1999 (28.01.99)						
	(21) Numéro de la demande internationale: PCT/FR	98/015:	35 (81) Etats désignés: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE,						
	(22) Date de dépôt international: 13 juillet 1998 (1	13.07.9	8) GH, GM, HR, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW,						
	(30) Données relatives à la priorité: 97/09028 16 juillet 1997 (16.07.97)	F	MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, brevet ARIPO (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), brevet eurasien (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), brevet						
	(71) Déposant (pour tous les Etats désignés sauf US): L [FR/FR]; 14, rue Royale, F-75008 Paris (FR).	'OREA	européen (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), brevet OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).						
\mathbf{C}	l ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '	GENE F-936 VFR];	Avec rapport de recherche internationale.						
	(74) Mandataire: MISZPUTEN, Laurent; L'Oréal – DPI du Général Roguet, F-92583 Clichy Cedex (FR).	, 90, п	ue · · ·						
	·								
	(54) Title: NOVEL CATIONIC OXIDATION BASES, TO COMPOSITIONS AND DYEING METHODS		USE FOR OXIDATION DYEING OF KERATIN FIBRES, DYEING						
			QUES, LEUR UTILISATION POUR LA TEINTURE D'OXYDATION FINCTORIALES ET PROCEDES DE TEINTURE						
	(57) Abstract								
\overline{C}	The invention concerns novel monobenzene oxidati- aliphatic chains containing at least a quaternized unsaturat containing them and oxidation dyeing methods using them.	ted cyc	es comprising at least a cationic group Z, Z being selected among the le, their use for oxidation dyeing of keratin fibres, dyeing compositions						
	(57) Abrégé								
	choisi parmi des chaînes aliphatiques comportant au moin	s un c	nobenzéniques comportant au moins un groupement cationique Z, Z étant ycle insaturé quaternisé, leur utilisation pour la teinture d'oxydation des usi que les procédés de teinture d'oxydation les mettant en oeuvre.						

UNIQUEMENT A TITRE D'INFORMATION

Codes utilisés pour identifier les Etats parties au PCT, sur les pages de couverture des brochures publiant des demandes internationales en vertu du PCT.

AL	Albanie ·	ES	Espagne	LS	Lesotho	SI	Slovénie
AM	Arménie	FI	Finlande	LT	Lituanie	SK	Slovaquie
ΑT	Autriche	FR	France	LU	Luxembourg	SN	Sénégal
ΑÜ	Australie	GA	Gabon	LV	Lettonie	SZ	Swaziland
AZ	Azerbaldjan	GB	Royaume-Uni	MC	Monaco	TD	Tchad
BA	Bosnie-Herzégovine	GE	Géorgie	MD	République de Moldova	TG	Togo
BB	Barbade	GH	Ghana	MG	Madagascar	TJ	Tadjikistan
BE	Belgique	GN	Guinée	MK	Ex-République yougoslave	TM	Turkménistan
BF	Burkina Faso	GR	Grèce		de Macédoine	TR	Turquie
BG	Bulgarie	HU	Hongrie	ML	Mali	TT	Trinité-et-Tobago
BJ	Bénin	IE	Irlande	MN	Mongolie	ÜA	Ukraine
BR	Brésil	IL	Israël	MR	Mauritanie	UG	Ouganda
BY	Bélarus	IS	Islande	MW	Malawi	US	Etats-Unis d'Amérique
CA	Canada	IT	Italie	MX	Mexique	UZ	Ouzbékistan
CF	République centrafricaine	JP	Japon	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Pays-Bas	YU	Yougoslavie
CH	Suisse	KG	Kirghizistan	NO	Norvège	zw	Zimbabwe
CI	Côte d'Ivoire	KP	République populaire	NZ	Nouvelle-Zélande	211	Zimbaowe
CM	Cameroun		démocratique de Corée	PL	Pologne		
CN	Chine	KR	République de Corée	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Roumanie		
CZ	République tchèque	LC	Sainte-Lucie	RU	Rédération de Russie		
DE	Allemagne	u	Liechtenstein	SD	Soudan		
DK	Danemark	LK	Sri Lanka	SE	Suède		
EE	Estonie	LR	Libéria	SG			
_ _		LIK.	Diocila	SG	Singapour		

WO 99/03836 PCT/FR98/01535

NOUVELLES BASES D'OXYDATION CATIONIQUES, LEUR UTILISATION POUR LA TEINTURE D'OXYDATION DES FIBRES KERATINIQUES, COMPOSITIONS TINCTORIALES ET PROCEDES DE TEINTURE

L'invention a pour objet de nouvelles bases d'oxydation monobenzéniques comportant au moins un groupement cationique Z, Z étant choisi parmi des chaînes aliphatiques comportant au moins un cycle insaturé quaternisé, leur utilisation pour la teinture d'oxydation des fibres kératiniques, les compositions tinctoriales les contenant, ainsi que les procédés de teinture d'oxydation les mettant en œuvre.

Il est connu de teindre les fibres kératiniques et en particulier les cheveux humains avec des compositions tinctoriales contenant des précurseurs de colorant d'oxydation, en particulier des ortho ou paraphénylènediamines, des ortho ou paraaminophénols, des composés hétérocycliques tels que des dérivés de diaminopyrazole, appelés généralement bases d'oxydation. Les précurseurs de colorants d'oxydation, ou bases d'oxydation, sont des composés incolores ou faiblement colorés qui, associés à des produits oxydants, peuvent donner naissance par un processus de condensation oxydative à des composés colorés et colorants.

On sait également que l'on peut faire varier les nuances obtenues avec ces bases d'oxydation en les associant à des coupleurs ou modificateurs de coloration, ces derniers étant choisis notamment parmi les métadiamines aromatiques, les métaaminophénols, les métadiphénols et certains composés hétérocycliques.

La variété des molécules mises en jeu au niveau des bases d'oxydation et des coupleurs, permet l'obtention d'une riche palette de couleurs.

25

15

10

15

20

25

La coloration dite "permanente" obtenue grâce à ces colorants d'oxydation, doit par ailleurs satisfaire un certain nombre d'exigences. Ainsi, elle doit être sans inconvénient sur le plan toxicologique, elle doit permettre d'obtenir des nuances dans l'intensité souhaitée et présenter une bonne tenue face aux agents extérieurs (lumière, intempéries, lavage, ondulation permanente, transpiration, frottements).

Les colorants doivent également permettre de couvrir les cheveux blancs, et être enfin les moins sélectifs possible, c'est à dire permettre d'obtenir des écarts de coloration les plus faibles possible tout au long d'une même fibre kératinique, qui peut être en effet différemment sensibilisée (i.e. abîmée) entre sa pointe et sa racine.

Il a déjà été proposé, notamment dans le brevet US 5,139,532, d'utiliser certains dérivés cationiques de paraphénylènediamines, à savoir plus précisément des paraphénylènediamines dont un des groupements amino est monosubstitué par une chaîne aliphatique quaternisée, pour la teinture d'oxydation des fibres kératiniques dans des nuances intenses et plus rouges que celles obtenues habituellement en mettant en œuvre des paraphénylènediamines classiques, c'est à dire ne portant pas de groupement cationique. Toutefois, l'utilisation des paraphénylènediamines décrites dans ce brevet antérieur ne permet pas d'obtenir une riche palette de couleurs et, de plus, les colorations obtenues ne donnent pas toujours entière satisfaction du point de vue de leur résistance vis à vis des diverses agressions que peuvent subir les cheveux (action de la lumière, de la transpiration, des shampooings, etc...).

Or, la demanderesse vient maintenant de découvrir, de façon totalement inattendue et surprenante, que certaines nouvelles bases d'oxydation monobenzéniques de formule (I) ci-après définie, comportant au moins un groupement cationique Z, Z étant choisi parmi des chaînes aliphatiques comportant au moins un cycle insaturé quaternisé, non seulement conviennent

pour une utilisation comme précurseurs de colorant d'oxydation, mais en outre qu'elles permettent d'obtenir des compositions tinctoriales conduisant à des colorations puissantes, dans une large palette de couleurs, et présentant d'excellentes propriétés de résistances aux différents traitements que peuvent subir les fibres kératiniques. Enfin, ces composés s'avèrent être aisément synthétisables.

Ces découvertes sont à la base de la présente invention.

10 L'invention a donc pour premier objet de nouveaux composés de formule (I) suivante, et leurs sels d'addition avec un acide :

$$R_2$$
 R_3
 R_1
 R_1
 R_3
 R_1

15 dans laquelle:

• R_1 , R_2 , R_3 , qui peuvent être identiques ou différents, représentent un atome d'hydrogène ; un atome d'halogène ; un groupement Z ; un radical alkyl(C_1 - C_6) carbonyle ; un radical aminoalkyl(C_1 - C_6) carbonyle ; un radical N-Z-aminoalkyl(C_1 - C_6)carbonyle ; un radical N-Alkyl(C_1 - C_6)aminoalkyl(C_1 - C_6)carbonyle ; un radical N-Alkyl(C_1 - C_6)carbonyle ; un radical N-Z-aminoalkyl(N-N-dialkyl(N

20

10

15

20

 C_6); un radical N-Z-aminosulfonylalkyle(C_1 - C_6); un radical N-alkyl(C_1 radical N, N-dialkyl(C,-C₆)aminosulfonyl-alkyle(C₁-C₆) un C_6)aminosulfonylalkyle(C_1 - C_6); un radical carbamyle; un radical N-alkyl(C_1 -C₆)carbamyle; un radical N,N-dialkyl-(C₁-C₆)carbamyle; un radical carbamylalkyle(C_1 - C_6); un radical N-alkyl(C_1 - C_6)carbamylalkyle(C_1 - C_6); un radical N,N-dialkyl(C_1 - C_6)carbamylalkyle(C_1 - C_6); un radical alkyle en C_1 - C_6 ; un radical monohydroxyalkyle en C₁-C₆; un radical polyhydroxyalkyle en $C_2\text{-}C_6$; un radical alcoxy($C_1\text{-}C_6$)alkyle en $C_1\text{-}C_6$; un radical trifluoroalkyle en $\text{C}_{\text{1}}\text{-}\text{C}_{\text{6}}$; un radical cyano ; un groupement OR_{6} ou SR_{6} ; un groupe amino radical alkyl(C₁-C₆)carbonyle, alkyl(C_1 - C_6)carboxy, par un protégé $trifluoroalkyl(C_1-C_6) carbonyle, \ aminoalkyl(C_1-C_6) carbonyle, \ N-Z-aminoalkyl(C_1-C_6) carbonyle, \ N-Z-aminoalky$ $N-alkyl(C_1-C_6)$ aminoalkyl(C_1-C_6)carbonyle, $N,N-dialkyl(C_1-C_6)$ C₆)carbonyle, C_6)aminoalkyl(C_1 - C_6)carbonyle, alkyl(C_1 - C_6)carboxy, carbamyle, N-alkyl(C_1 -N,N-dialkyl(C_1 - C_6)carbamyle, alkyl(C₁-C₆)sulfonyle, C₆)carbamyle, N-Z-aminosulfonyle, N-alkyl(C_1 - C_6)aminosulfonyle, aminosulfonyle, N,N-dialkyl(C₁-C₆)aminosulfonyle, thiocarbamyle, formyle, ou par groupement Z; ou un radical aminoalkyle en C1-C6 dont l'amine est substituée par un ou deux radicaux identiques ou différents choisis parmi les radicaux alkyle en C₁-C₆, monohydroxyalkyle en C₁-C₆, polyhydroxyalkyle en alkyl(C₁-C₆)carbonyle, carbamyle, N-alkyl(C₁-C₆)carbamyle N, N-dialkyl(C_1 - C_6) carbamyle, alkyl(C_1 - C_6) sulfonyle, formyle, trifluoroalkyl(C_1 -C₆)carbonyle, alkyl(C₁-C₆)carboxy, thiocarbamyle, ou par un groupement Z;

R₆ désigne un radical alkyle en C₁-C₆; un radical monohydroxyalkyle en C₁-C₆; un radical polyhydroxyalkyle en C₂-C₆; un groupement Z; un radical alcoxy(C₁-C₆)alkyle en C₁-C₆; un radical aryle; un radical benzyle; un radical carboxyalkyle en C₁-C₆; un radical alkyl(C₁-C₆)carboxyalkyle en C₁-C₆; un radical carbamylalkyle en C₁-C₆; un radical N-alkyl(C₁-C₆)carbamylalkyle en C₁-C₆; un radical trifluoroalkyle en C₁-C₆; un radical aminosulfonylalkyle en C₁-C₆; un radical N-Z-aminosulfonylalkyle en C₁-C₆ un

15

20

25

radical N-alkyl(C₁-C₆)aminosulfonylalkyle en C₁-C₆; un radical N,N-dialkyl(C₁- C_6)aminosulfonylalkyle en C_1 - C_6 ; un radical alkyl $(C_1$ - C_6)sulfinylalkyle en C_1-C_6 ; un radical alkyl(C_1-C_6)sulfonylalkyle en C_1-C_6 ; un radical alkyl(C_1-C_6) C₆)carbonylalkyle en C₁-C₆; un radical aminoalkyle en (C₁-C₆); un radical aminoalkyle en (C₁-C₆) dont l'amine est substituée par un ou deux radicaux ou différents choisis parmi les radicaux alkyle(C₁-C₆), monohydroxyalkyle(C_1 - C_6), polyhydroxyalkyle(C_2 - C_6), alkyl(C_1 - C_6)carbonyle, formyle, trifluoroalkyl(C₁-C₆)carbonyle, alkyl(C₁-C₆)carboxy, carbamyle, N-alkyl(C₁-C₆)carbamyle, N,N-dialkyl(C₁-C₆)carbamyle, thiocarbamyle. alkyl(C₁-C₆)sulfonyle, et le groupement Z;

° A représente un groupement -NR $_4$ R $_5$ ou un radical hydroxyle ;

° R₄ et R₅, identiques ou différents, représentent un atome d'hydrogène ; un groupement Z; un radical alkyle en C₁-C₆; un radical monohydroxyalkyle en C_1-C_6 ; un radical polyhydroxyalkyle en C_2-C_6 ; un radical alcoxy(C_1-C_6)alkyle en C₁-C₆; un radical aryle; un radical benzyle; un radical cyanoalkyle en C₁-C₆; un radical carbamylalkyle en C₁-C₆; un radical N-alkyl(C₁-C₆)carbamylalkyle en C₁-C₆; un radical N,N-dialkyl(C₁-C₆)carbamylalkyle en C₁-C₆; un radical thiocarbamylalkyle en C₁-C₆; un radical trifluoroalkyle en C_1 - C_6 ; un radical sulfoalkyle en C_1 - C_6 ; un radical alkyl(C_1 - C_6)carboxyalkyle en C₁-C₆; un radical alkyl(C₁-C₆)sulfinylalkyle en C₁-C₆; un radical aminosulfonylalkyle en C₁-C₆; un radical N-Z-aminosulfonylalkyle en C₁-C₆; un radical N-alkyl(C₁-C₆)aminosulfonylalkyle en C₁-C₆ ; un radical N,N-dialkyl(C_1 - C_6)aminosulfonylalkyle en C_1 - C_6 ; un radical alkyl(C_1 -C₆)carbonylalkyle en C₁-C₆; un radical aminoalkyle en C₁-C₆; un radical aminoalkyle en C₁-C₆ dont l'amine est substituée par un ou deux radicaux identiques ou différents choisis parmi les radicaux alkyle en C₁-C₆, monohydroxyalkyle en C₁-C₆, polyhydroxyalkyle en C₂-C₆, alkyl(C₁-C₆)carbonyle, carbamyle, N-alkyl(C₁-C₆)carbamyle ou N,N-dialkyl(C₁-

 C_6)carbamyle, alkyl(C_1 - C_6)sulfonyle, formyle, trifluoroalkyl(C_1 - C_6)carbonyle, alkyl(C_1 - C_6)carboxy, thiocarbamyle, ou par un groupement Z;

Z est choisi parmi les groupements cationiques insaturés de formules (II) et
 (III) suivantes, et les groupements cationiques saturés de formule (IV) suivante :

dans lesquelles :

- D est un bras de liaison qui représente une chaîne alkyle comportant de préférence de 1 à 14 atomes de carbone, linéaire ou ramifiée pouvant être interrompue par un ou plusieurs hétéroatomes tels que des atomes d'oxygène, de soufre ou d'azote, et pouvant être substituée par un ou plusieurs radicaux hydroxyle ou alcoxy en C₁-C₆, et pouvant porter une ou plusieurs fonctions cétone;
- les sommets E, G, J, L et M, identiques ou différents, représentent un atome de carbone, d'oxygène, de soufre ou d'azote;
- n est un nombre entier compris entre 0 et 4 inclusivement ;

BNSDOCID: <WO 9903836A1 1 >

10

15

10

- m est un nombre entier compris entre 0 et 5 inclusivement;
- les radicaux R, identiques ou différents, représentent un groupement Z, un atome d'halogène, un radical hydroxyle, un radical alkyle en C_1 - C_6 , un radical monohydroxyalkyle en C_1 - C_6 , un radical polyhydroxyalkyle en C_2 - C_6 , un radical nitro, un radical cyano, un radical cyanoalkyle en C_1 - C_6 , un radical alcoxy en C_1 - C_6 , un radical trialkyl(C_1 - C_6)silanealkyle en C_1 - C_6 , un radical amido, un radical aldéhydo, un radical carboxyle, un radical alkylcarbonyle en C_1 - C_6 , un radical thio, un radical thioalkyle en C_1 - C_6 , un radical alkyl(C_1 - C_6)thio, un radical amino, un radical amino protégé par un radical alkyl(C_1 - C_6)carbonyle, carbamyle ou alkyl(C_1 - C_6)sulfonyle; un groupement NHR" ou NR"R" dans lesquels R" et R", identiques ou différents, représentent un radical alkyle en C_1 - C_6 , un radical monohydroxyalkyle en C_1 - C_6 ou un radical polyhydroxyalkyle en C_2 - C_6 ;
- R₇ représente un radical alkyle en C₁-C₆, un radical monohydroxyalkyle en C₁-C₆, un radical polyhydroxyalkyle en C₂-C₆, un radical cyanoalkyle en C₁-C₆, un radical trialkyl(C₁-C₆)silanealkyle en C₁-C₆, un radical alcoxy(C₁-C₆)alkyle en C₁-C₆, un radical carbamylalkyle C₁-C₆, un radical alkyl(C₁-C₆)carboxyalkyle en C₁-C₆, un radical benzyle, un groupement Z de formule (II), (III) ou (IV) telles que définies ci-dessus;
 - R₈, R₉ et R₁₀, identiques ou différents, représentent un radical alkyle en C₁-C₆, un radical monohydroxyalkyle en C₁-C₆, un radical polyhydroxyalkyle en C₂-C₆, un radical alcoxy(C₁-C₆)alkyle en C₁-C₆, un radical aryle, un radical benzyle, un radical amidoalkyle en C₁-C₆, un radical trialkyl(C₁-C₆)silanealkyle en C₁-C₆ ou un radical aminoalkyle en C₁-C₆ dont l'amine est protégée par un radical alkyl(C₁-C₆)carbonyle, carbamyle, ou alkyl(C₁-C₆)sulfonyle; deux des radicaux R₇, R₈ et R₉ peuvent également former ensemble, avec l'atome d'azote auquel ils sont rattachés, un cycle saturé à 5 ou 6 chaînons carboné ou contenant un ou plusieurs hétéroatomes tel que par

30

10

exemple un cycle pyrrolidine, un cycle pipéridine, un cycle pipérazine ou un cycle morpholine, ledit cycle pouvant être ou non substitué par un atome d'halogène, un radical hydroxyle, un radical alkyle en C_1 - C_6 , un radical monohydroxyalkyle en C_1 - C_6 , un radical polyhydroxyalkyle en C_2 - C_6 , un radical nitro, un radical cyano, un radical cyanoalkyle en C_1 - C_6 , un radical alcoxy en C_1 - C_6 , un radical trialkyl(C_1 - C_6)silanealkyle en C_1 - C_6 , un radical amido, un radical aldéhydo, un radical carboxyle, un radical cétoalkyle en C_1 - C_6 , un radical thio, un radical thioalkyle en C_1 - C_6 , un radical alkyl(C_1 - C_6)thio, un radical amino, un radical amino protégé par un radical alkyl(C_1 - C_6)carbonyle, carbamyle où alkyl(C_1 - C_6)sulfonyle;

l'un des radicaux R₈, R₉ et R₁₀ peut également représenter un second groupement Z identique ou différent du premier groupement Z;

- R₁₁ représente un radical alkyle en C₁-C₆; un radical monohydroxyalkyle en C₁-C₆; un radical polyhydroxyalkyle en C₂-C₆; un radical aryle; un radical benzyle; un radical aminoalkyle en C₁-C₆, un radical aminoalkyle en C₁-C₆ dont l'amine est protégée par un radical alkyl(C₁-C₆)carbonyle, carbamyle ou alkyl(C₁-C₆)sulfonyle; un radical carboxyalkyle en C₁-C₆; un radical cyanoalkyle en C₁-C₆; un radical carbamylalkyle en C₁-C₆; un radical trifluoroalkyle en C₁-C₆; un radical trialkyl(C₁-C₆)silanealkyle en C₁-C₆; un radical sulfonamidoalkyle en C₁-C₆; un radical alkyl(C₁-C₆)carboxyalkyle en C₁-C₆; un radical alkyl(C₁-C₆)sulfinylalkyle en C₁-C₆; un radical alkyl(C₁-C₆)carbamylalkyle en C₁-C₆; un radical N-alkyl(C₁-C₆)carbamylalkyle en C₁-C₆; un radical N-alkyl(C₁-C₆)sulfonamidoalkyle en C₁-C₆;
 - x et y sont des nombres entiers égaux à 0 ou 1 ; avec les conditions suivantes :
 - dans les groupements cationiques insaturés de formule (II) :
 - lorsque x = 0, le bras de liaison D est rattaché à l'atome d'azote,

10

15

20

25

()

- lorsque x = 1, le bras de liaison D est rattaché à l'un des sommets E,
 G, J ou L,
- y ne peut prendre la valeur 1 que :
- 1) lorsque les sommets E, G, J et L représentent simultanément un atome de carbone, et que le radical R₇ est porté par l'atome d'azote du cycle insaturé ; ou bien
- lorsqu'au moins un des sommets E, G, J et L représente un atome d'azote sur lequel le radical R₇ est fixé;
- dans les groupements cationiques insaturés de formule (III) :
 - lorsque x = 0, le bras de liaison D est rattaché à l'atome d'azote,
 - lorsque x = 1, le bras de liaison D est rattaché à l'un des sommets E,
 G, J, L ou M,
 - y ne peut prendre la valeur 1 que lorsqu'au moins un des sommets E,
 G, J, L et M représente un atome divalent, et que le radical R₇ est porté par l'atome d'azote du cycle insaturé;
- dans les groupements cationiques de formule (IV) :
 - lorsque x = 0, alors le bras de liaison est rattaché à l'atome d'azote portant les radicaux R_8 à R_{10} ,
 - lorsque x = 1, alors deux des radicaux R₈ à R₁₀ forment conjointement avec l'atome d'azote auquel ils sont rattachés un cycle saturé à 5 ou 6 chaînons tel que défini précédemment, et le bras de liaison D est porté par un atome de carbone dudit cycle saturé;
- X représente un anion monovalent ou divalent et est de préférence choisi parmi un atome d'halogène tel que le chlore, le brome, le fluor ou l'iode, un hydroxyde, un hydrogènesulfate, ou un alkyl(C₁-C₆)sulfate tel que par exemple un méthylsulfate ou un éthylsulfate;

étant entendu:

que le nombre de groupements cationiques insaturés Z de formule (II) ou (III)
 est au moins égal à 1;

- que lorsque A représente un groupement -NR₄R₅ dans lequel R₄ ou R₅ représente un groupement Z dans lequel le bras de liaison D représente une chaîne alkyle comportant une fonction cétone, alors ladite fonction cétone n'est pas directement rattachée à l'atome d'azote du groupement -NR₄R₅;

5

et à l'exclusion du chlorure de 4-amino-3-méthyl-N-éthyl-N-β-(1-pyridinium)-éthyl aniline.

10

Comme indiqué précédemment, les colorations obtenues avec la composition de teinture d'oxydation conforme à l'invention sont puissantes et permettent d'atteindre une large palette de couleurs. Elles présentent de plus d'excellentes propriétés de résistance vis à vis de l'action des différents agents extérieurs (lumière, intempéries, lavage, ondulation permanente, transpiration, frottements). Ces propriétés sont particulièrement remarquables notamment en ce-qui concerne la résistance des colorations obtenues vis à vis de l'action de la

lumière.

Dans la formule (I) ci-dessus les radicaux alkyle et alcoxy peuvent être linéaires ou ramifiés.

20

Parmi les cycles des groupements insaturés Z de formule (II) ci-dessus, on peut notamment citer à titre d'exemple les cycles pyrrolique, imidazolique, pyrazolique, oxazolique, thiazolique et triazolique.

25

Parmi les cycles des groupements insaturés Z de formule (III) ci-dessus, on peut notamment citer à titre d'exemple les cycles pyridinique, pyrimidinique, pyrazinique, oxazinique et triazinique.

Parmi les composés de formule (I) ci-dessus, on peut notamment citer :

- le bromure de 1-[2-(4-amino-phénylamino)-éthyl]-3-méthyl-3H-imidazol-1-ium ;
- le chlorure de 1-[3-(2,5-diamino-phénoxy)-propyl]-3-méthyl-3H-imidazol-1-ium ;
 - le chlorure de 3-[3-(4-amino-phénylamino)-propyl]-1-méthyl-3H-imidazol-

1-ium;

5

- le chlorure de 3-[3-(4-amino-3-méthyl-phénylamino)-propyl]-1-méthyl-3H-imidazol-1-ium;
- le chlorure de 3-[3-(4-amino-2-méthyl-phénylamino)-propyl]-1-méthyl-3H-imidazol-1-ium;
- le chlorure de 3-[3-(4-amino-2-fluoro-phénylamino)-propyl]-1-méthyl-3H-imidazol- 1-ium, monohydrate ;
- le chlorure de 3-[3-(4-amino-2-cyano-phénylamino)-propyl]-1-méthyl-3Himidazol-1-ium;
- 10 le chlorure de 1-[2-(4-amino-2-méthoxy-phénylamino)-éthyl]-3-méthyl-3H-imidazol-1-ium;
 - le chlorure de 1-(5-amino-2-hydroxy-benzyl)-3-méthyl-3H-imidazol-1-ium ;
 - le chlorure de 1-(5-amino-2-hydroxy-benzyl)-2-méthyl-2H-pyrazol-1-ium ;
 - le chlorure de 1-[2-(2,5-diamino-phényl)-éthyl]-3-méthyl-3H-imidazol-1-ium :
 - le chlorure de 3-[2-(2,5-diamino-phényl)-éthyl]-1-méthyl-3H-imidazol-1-ium;
 - le chlorure de 1-{2-{(4-amino-phényl)-éthyl-amino}-éthyl}-3-méthyl-3H-imidazol-1-ium ;
 - le dichlorure de N,N-bis-[2-(3-méthyl-3H-imidazol-1-ium)-éthyl]-4-aminoaniline :
 - le chlorure de 3-[2-(4-amino-phénylamino)-butyl]-1-méthyl-3H-imidazol-1-ium ;
 - le chlorure de 1-{[5-amino-2-(2-hydroxy-éthylamino)-phénylcarbamoyl]méthyl}-3-méthyl-3H-imidazol-1-ium;
 - le bromure de 4-[2-(2,5-diamino-phénoxy)-éthyl]-1,3-diméthyl-3H-imidazol-1-ium ;
 - le chlorure de 2-(2,5-diamino-phénoxyméthyl)-1,3-diméthyl-3H-imidazol-1-ium;
 - le chlorure de 4-[3-(4-amino-phénylamino)-propyl]-1,3-diméthyl-3H-imidazol 1-ium;
 - le chlorure de 4-[3-(4-amino-3-méthyl-phénylamino)-propyl]-1,3-diméthyl-3Himidazol-1-ium;
 - le chlorure 4-[(2,5-diamino-phénylcarbamoyl)-méthyl]-1,3-diméthyl-3H-

()

()

imidazol-1-ium;

- le chlorure de 4-{2-[2-(2-amino-5-hydroxy-phényl)-acétylamino]-éthyl}-1,3-diméthyl-3H-imidazol-1-ium;
- le chlorure de 4-[(5-amino-2-hydroxy-benzylcarbamoyl)-méthyl]-1,3-diméthyl-3H-imidazol-1-ium;

et leurs sels d'addition avec un acide.

Les composés de formule (I) conformes à l'invention peuvent être facilement obtenus, selon des méthodes bien connues de l'état de la technique :

10

15

5

- soit par réduction des composés nitrés cationiques correspondants (paranitranilines cationiques ou para-nitrophénols cationiques),
- soit par réduction des composés nitrosés cationiques correspondants (obtenus par exemple par nitrosation d'une aniline tertiaire ou d'un phénol correspondant),
- soit par réduction des composés azoïques cationiques correspondants (coupure réductrice).

Cette étape de réduction (obtention d'une amine aromatique primaire) qui confère au composé synthétisé son caractère de composé oxydable (de base d'oxydation) suivie ou non d'une salification, est en général, par commodité, la dernière étape de la synthèse.

Cette réduction peut intervenir plus tôt dans la suite des réactions conduisant à la préparation des composés de formule (I), et selon des procédés bien connus il faut alors "protéger" l'amine primaire créée (par exemple par une étape d'acétylation, de benzènesulfonation, etc...), faire ensuite la ou les substitutions ou modifications désirées (y compris la quaternisation) et terminer par le "déprotection" (en général en milieu acide) de la fonction amine.

30

WO 99/03836 PCT/FR98/01535

De même la fonction phénolique peut être protégée selon des procédés bien connus par un radical benzyle ("déprotection" par réduction catalytique) ou par un radical acétyle ou mésyle ("déprotection" en milieu acide).

Lorsque la synthèse est terminée, les composés de formule (I) conformes à l'invention peuvent, le cas échéant, être récupérés par des méthodes bien connues de l'état de la technique telles que la cristallisation, la distillation.

Un autre objet de l'invention est l'utilisation des composés de formules (I)

conformes à l'invention à titre de base d'oxydation pour la teinture d'oxydation des fibres kératiniques, et en particulier des fibres kératiniques humaines telles que les cheveux.

L'invention a également pour objet une composition pour la teinture d'oxydation des fibres kératiniques et en particulier des fibres kératiniques humaines telles que les cheveux, caractérisée par le fait qu'elle comprend à titre de base d'oxydation, dans un milieu approprié pour la teinture, au moins un composé de formule (I) conforme à l'invention.

- Le ou les composés de formule (I) conformes à l'invention représentent de préférence de 0,0005 à 12 % en poids environ du poids total de la composition tinctoriale, et encore plus préférentiellement de 0,005 à 6 % en poids environ de ce poids.
 - Le milieu approprié pour la teinture (ou support) est généralement constitué par de l'eau ou par un mélange d'eau et d'au moins un solvant organique pour solubiliser les composés qui ne seraient pas suffisamment solubles dans l'eau. A titre de solvant organique, on peut par exemple citer les alcanols inférieurs en C₁-C₄, tels que l'éthanol et l'isopropanol ; le glycérol ; les glycols et éthers de glycols comme le 2-butoxyéthanol, le propylèneglycol, le monométhyléther du diéthylèneglycol.

15

()

20

25

ainsi que les alcools aromatiques comme l'alcool benzylique ou le phénoxyéthanol, les produits analogues et leurs mélanges.

Les solvants peuvent être présents dans des proportions de préférence comprises entre 1 et 40 % en poids environ par rapport au poids total de la composition tinctoriale, et encore plus préférentiellement entre 5 et 30 % en poids environ.

Le pH de la composition tinctoriale conforme à l'invention est généralement compris entre 3 et 12 environ, et de préférence entre 5 et 11 environ. Il peut être ajusté à la valeur désirée au moyen d'agents acidifiants ou alcalinisants habituellement utilisés en teinture des fibres kératiniques.

Parmi les agents acidifiants, on peut citer, à titre d'exemple, les acides minéraux ou organiques comme l'acide chlorhydrique, l'acide orthophosphorique, l'acide sulfurique, les acides carboxyliques comme l'acide acétique, l'acide tartrique, l'acide lactique, les acides sulfoniques.

Parmi les agents alcalinisants on peut citer, à titre d'exemple, l'ammoniaque, les carbonates alcalins, les alcanolamines telles que les mono-, di- et triéthanolamines ainsi que leurs dérivés, les hydroxydes de sodium ou de potassium et les composés de formule (V) suivante :

$$R_{12}$$
 $N-W-N$ R_{14} (V) R_{13}

dans laquelle W est un reste propylène éventuellement substitué par un groupement hydroxyle ou un radical alkyle en C_1 - C_6 ; R_{12} , R_{13} , R_{14} et R_{15} , identiques ou différents, représentent un atome d'hydrogène, un radical alkyle en C_1 - C_6 ou hydroxyalkyle en C_1 - C_6 .

ž

La composition tinctoriale conforme à l'invention peut encore contenir, en plus des colorants définis ci-dessus, au moins une base d'oxydation additionnelle qui peut être choisie parmi les bases d'oxydation classiquement utilisées en teinture d'oxydation et parmi lesquelles on peut notamment citer les paraphénylènediamines différentes des composés de formule (I) conformes à l'invention, les bis-phénylalkylènediamines, les para-aminophénols différents des composés de formule (I) conformes à l'invention, les ortho-aminophénols et les bases hétérocycliques.

Parmi les paraphénylènediamines, on peut plus particulièrement citer à titre 10 d'exemple, la paraphénylènediamine, la paratoluylènediamine, la 2,6-diméthyl paraphénylènediamine, la 2-β-hydroxyéthyl paraphénylènediamine, la 2-n-propyl paraphénylènediamine, la 2-isopropy paraphénylènediamine, $N-(\beta-hydroxypropyl)$ paraphénylènediamine, la N,N-bis-(β-hydroxyéthyl) 15 paraphénylènediamine, la 4-amino N-(β-méthoxyéthyl) aniline. les paraphénylènediamines décrites dans la demande de brevet français FR 2 630 438, et leurs sels d'addition avec un acide.

Parmi les bis-phénylalkylènediamines, on peut plus particulièrement citer à titre d'exemple, le N,N'-bis-(β-hydroxyéthyl) N,N'-bis-(4'-aminophényl) 1,3-diamino propanol, la N,N'-bis-(β-hydroxyéthyl) N,N'-bis-(4'-aminophényl) éthylènediamine, la N,N'-bis-(4-aminophényl) tétraméthylènediamine, la N,N'-bis-(β-hydroxyéthyl) N,N'-bis-(4-aminophényl) tétraméthylènediamine, la N,N'-bis-(4-méthylaminophényl) tétraméthylènediamine, la N,N'-bis-(éthyl) N,N'-bis-(4'-amino, 3'-méthylphényl) éthylènediamine, et leurs sels d'addition avec un acide.

Parmi les para-aminophénols, on peut plus particulièrement citer à titre d'exemple, le para-aminophénol, le 4-amino 3-méthyl phénol, le 4-amino 3-fluoro phénol, le 4-amino 3-hydroxyméthyl phénol, le 4-amino 2-méthyl phénol, le 4-amino 2-méthyl phénol, le 4-amino 2-méthyl phénol, le

30

20

25

()

()

10

15

20

25

4-amino 2-aminométhyl phénol, le 4-amino 2-(β-hydroxyéthyl aminométhyl) phénol, et leurs sels d'addition avec un acide.

Parmi les ortho-aminophénols, on peut plus particulièrement citer à titre d'exemple, le 2-amino phénol, le 2-amino 5-méthyl phénol, le 2-amino 6-méthyl phénol, le 5-acétamido 2-amino phénol, et leurs sels d'addition avec un acide.

Parmi les bases hétérocycliques, on peut plus particulièrement citer à titre d'exemple, les dérivés pyridiniques, les dérivés pyrimidiniques et les dérivés pyrazoliques.

Lorsqu'elles sont utilisées, ces bases d'oxydation additionnelles représentent de préférence de 0,0005 à 12 % en poids environ du poids total de la composition tinctoriale, et encore plus préférentiellement de 0,005 à 6 % en poids environ de ce poids.

Les compositions de teinture d'oxydation conformes à l'invention peuvent également renfermer au moins un coupleur et/ou au moins un colorant direct, notamment pour modifier les nuances ou les enrichir en reflets.

Les coupleurs utilisables dans les compositions de teinture d'oxydation conformes à l'invention peuvent être choisis parmi les coupleurs utilisés de façon classique en teinture d'oxydation et parmi lesquels on peut notamment citer les métaphénylènediamines, les méta-aminophénols, les métadiphénols et les coupleurs hétérocycliques tels que par exemple les dérivés indoliques, les dérivés indoliniques, les dérivés pyridiniques et les pyrazolones, et leurs sels d'addition avec un acide.

Ces coupleurs sont plus particulièrement choisis parmi le 2-méthyl 5-amino phénol, le 5-N-(β-hydroxyéthyl)amino 2-méthyl phénol, le 3-amino phénol, le 1,3-dihydroxy benzène, le 1,3-dihydroxy 2-méthyl benzène, le 4-chloro

10

15

20

25

30

جد. دنت

1,3-dihydroxy benzène, le 2,4-diamino 1-(β-hydroxyéthyloxy) benzène, le 2-amino 4-(β-hydroxyéthylamino) 1-méthoxy benzène, le 1,3-diamino benzène, le 1,3-bis-(2,4-diaminophénoxy) propane, le sésamol, l'α-naphtol, le 6-hydroxy indole, le 4-hydroxy indole, le 4-hydroxy N-méthyl indole, la 6-hydroxy indoline, la 2,6-dihydroxy 4-méthyl pyridine, le 1-H 3-méthyl pyrazole 5-one, le 1-phényl 3-méthyl pyrazole 5-one, et leurs sels d'addition avec un acide.

Lorsqu'ils sont présents ces coupleurs représentent de préférence de 0,0001 à 10 % en poids environ du poids total de la composition tinctoriale et encore plus préférentiellement de 0,005 à 5 % en poids environ de ce poids.

D'une manière générale, les sels d'addition avec un acide utilisables dans le cadre des compositions tinctoriales de l'invention (composés de formule (I), bases d'oxydation additionnelles et coupleurs) sont notamment choisis parmi les chlorhydrates, les bromhydrates, les sulfates, les citrates, les succinates, les tartrates, les lactates et les acétates.

La composition tinctoriale conforme l'invention peut également renfermer divers adjuvants utilisés classiquement dans les compositions pour la teinture des cheveux, tels que des agents tensio-actifs anioniques, cationiques, non-ioniques, amphotères, zwittérioniques ou leurs mélanges, des polymères anioniques, cationiques, non-ioniques, amphotères, zwittérioniques ou leurs mélanges, des agents épaississants minéraux ou organiques, des agents antioxydants, des agents de pénétration, des agents séquestrants, des parfums, des tampons, des agents dispersants, des agents de conditionnement tels que par exemple des silicones, des agents filmogènes, des agents conservateurs, des agents opacifiants.

Bien entendu, l'homme de l'art veillera à choisir ce ou ces éventuels composés complémentaires de manière telle que les propriétés avantageuses attachées intrinsèquement à la composition de teinture d'oxydation conforme à l'invention

15

20

ne soient pas, ou substantiellement pas, altérées par la ou les adjonctions envisagées.

La composition tinctoriale selon l'invention peut se présenter sous des formes diverses, telles que sous forme de liquides, de crèmes, de gels, ou sous toute autre forme appropriée pour réaliser une teinture des fibres kératiniques, et notamment des cheveux humains.

L'invention a également pour objet un procédé de teinture des fibres kératiniques et en particulier des fibres kératiniques humaines telles que les 10 cheveux mettant en œuvre la composition tinctoriale telle que définie précédemment.

Selon ce procédé, on applique sur les fibres au moins une composition tinctoriale telle que définie précédemment, la couleur étant révélée à pH acide, neutre ou alcalin à l'aide d'un agent oxydant qui est ajouté juste au moment de l'emploi à la composition tinctoriale ou qui est présent dans une composition oxydante appliquée simultanément ou séquentiellement de façon séparée.

Selon une forme de mise en œuvre préférée du procédé de teinture de l'invention, on mélange de préférence, au moment de l'emploi, la composition tinctoriale décrite ci-dessus avec une composition oxydante contenant, dans un milieu approprié pour la teinture, au moins un agent oxydant présent en une quantité suffisante pour développer une coloration. Le mélange obtenu est ensuite appliqué sur les fibres kératiniques et on laisse poser pendant 3 à 50 25 minutes environ, de préférence 5 à 30 minutes environ, après quoi on rince, on lave au shampooing, on rince à nouveau et on sèche.

L'agent oxydant peut être choisi parmi les agents oxydants classiquement utilisés pour la teinture d'oxydation des fibres kératiniques, et parmi lesquels on peut citer le peroxyde d'hydrogène, le peroxyde d'urée, les bromates de métaux

alcalins, les persels tels que les perborates et persulfates. Le peroxyde d'hydrogène est particulièrement préféré.

Le pH de la composition oxydante renfermant l'agent oxydant tel que défini ci-dessus est tel qu'après mélange avec la composition tinctoriale, le pH de la composition résultante appliquée sur les fibres kératiniques varie de préférence entre 3 et 12 environ, et encore plus préférentiellement entre 5 et 11. Il est ajusté à la valeur désirée au moyen d'agents acidifiants ou alcalinisants habituellement utilisés en teinture des fibres kératiniques et tels que définis précédemment.

La composition oxydante telle que définie ci-dessus peut également renfermer divers adjuvants utilisés classiquement dans les compositions pour la teinture des cheveux et tels que définis précédemment.

15

10

La composition qui est finalement appliquée sur les fibres kératiniques peut se présenter sous des formes diverses, telles que sous forme de liquides, de crèmes, de gels, ou sous toute autre forme appropriée pour réaliser une teinture des fibres kératiniques, et notamment des cheveux humains.

20

25

()

Un autre objet de l'invention est un dispositif à plusieurs compartiments ou "kit" de teinture ou tout autre système de conditionnement à plusieurs compartiments dont un premier compartiment renferme la composition tinctoriale telle que définie ci-dessus et un second compartiment renferme la composition oxydante telle que définie ci-dessus. Ces dispositifs peuvent être équipés d'un moyen permettant de délivrer sur les cheveux le mélange souhaité, tel que les dispositifs décrits dans le brevet FR-2 586 913 au nom de la demanderesse.

Les exemples qui suivent sont destinés à illustrer l'invention sans pour autant en 30 limiter la portée.

iy I

5

10

15

20

EXEMPLES DE PREPARATION

EXEMPLE DE PREPARATION 1 : Synthèse du monobromure, dichlorhydrate de 1-[2-(4-amino-phénylamino)-éthyl]-3-méthyl-3H-imidazol-1-ium

a) Préparation du bromure de 3-méthyl-1-[2-(4-nitro-phénylamino)-éthyl]-3Himidazol-1-ium

On a réalisé une suspension de 49,0 g (0.2 mole) de (2-bromo-éthyl)-(4-nitro-phényl)-amine et de 19,8 g (0,24 mole) de 1-méthyl-1H-imidazole dans 200 ml de toluène. On a chauffé sous agitation au reflux du toluène pendant 4 heures, essoré bouillant et réempaté deux fois dans l'acétate d'éthyle puis dans l'éthanol absolu.

Après séchage à 40°C sous vide, on a obtenu des cristaux jaune pâle (62,3 g) de bromure de 3-Méthyl-1-[2-(4-nitro-phénylamino)-éthyl]-3H-imidazol-1-ium qui ont fondu à 214°C (Kofler) et dont l'analyse élémentaire calculée pour $C_{12}H_{15}N_4O_2Br$ était :

Ν 0 % C Н Br Calculé 44,05 4,62 17,12 9,78 24,42 4,57 9,78 Trouvé 44,14 17,03 24,37

10

b) Réduction du bromure de 3-méthyl-1-[2-(4-nitro-phénylamino)-éthyl]-3H-imidazol-1-ium

On a chauffé au reflux de l'alcool un mélange de 50 ml d'éthanol à 96°, 5 ml d'eau, 25 g de zinc en poudre fine et 0,5 g de chlorure d'ammonium. On a ajouté par portions de façon à maintenir le reflux sans chauffage 16,4 g (0,05 mole) de bromure de 3-méthyl-1-[2-(4-nitro-phénylamino)-éthyl]-3H-imidazol-1-ium obtenu à l'étape précédente. La réaction a été exothermique.

A la fin de l'addition on a maintenu le reflux pendant 10 minutes supplémentaires.

On a filtré bouillant en coulant dans 22 ml d'éthanol absolu chlorhydrique (glacé) environ 5N.

Le précipité cristallisé a été essoré, lavé à l'éthanol absolu et séché sous vide à 40°C sur potasse.

On a obtenu, après recristallisation d'un mélange d'eau et d'éthanol au reflux, 10,4 g de cristaux blancs fondant à 195-200°C (Kofler) et dont la structure était conforme en RMN 1H.

20 <u>EXEMPLE DE PREPARATION 2</u>: Synthèse du monochlorure, dichlorhydrate de1-[3-(2,5-diamino-phénoxy)-propyl]-3-méthyl-3H-imidazol-1-ium

15

20

a) Préparation du N-[2-(3-chloro-propoxy)-4-nitro-phényl]acétamide

vide à 40°C sur anhydride phosphorique.

On a chauffé sous agitation à 50 °C, un mélange de 98,1 g (0,5 mole) de N-(2-hydroxy-4-nitro-phényl)-acétamide et de 69,2 g (0,5 mole) de carbonate de potassium dans 500 ml de diméthylformamide, puis on a ajouté 113,0 g (1 mole) de 1,3-dichloro-propane et continué à chauffer à 50°C pendant une heure. On a versé le mélange réactionnel dans 4 litres d'eau glacée, essoré le précipité cristallisé, réempaté dans l'eau puis dans l'alcool isopropylique et séché sous

On a obtenu 113,5 g de cristaux beiges qui, après purification par recristallisation de l'acétate d'isopropyle au reflux, ont fondu à 121°C.

L'analyse élémentaire était conforme à celle calculée pour C₁₁H₁₃N₂O₄Cl.

b) Préparation du chlorure de 1-[3-(2-acétylamino-5-nitro-phénoxy)-propyl]-3-méthyl-3H-imidazol-1-ium

On a utilisé le mode opératoire décrit ci-dessus pour l'exemple 1, étape a). A partir de 27,2 g (0,1 mole) de N-[2-(3-chloro-propoxy)-4-nitro-phényl]-acétamide obtenu à l'étape précédente et de 9,9 g (0,12 mole) de1-méthyl-1H-imidazole dans 120 ml de toluène, on a obtenu des cristaux jaune pâle (21,5 g) de chlorure de 1-[3-acétylamino-5-nitro-phénoxy)-propyl]-3-méthyl-3H-imidazol-1ium qui ont fondu à 227°C (Kofler) et dont l'analyse élémentaire calculée pour $C_{15}H_{19}N_4O_4Cl$ était :

%	С	Н	N	0	CI
Calculé	50,78	5,40	15,79	18,04	9,99
Trouvé	50,69	5,36	15,74	18,23	9,79

c) Réduction du chlorure de 1-[3-(2-acétylamino-5-nitro-phénoxy)-propyl]-3-méthyl-3H-imidazol-1-ium

La réduction a été effectuée selon le mode opératoire décrit pour l'exemple 1, étape b).

A partir de 21,3 g (0,06 mole) de chlorure de 1-[3-(2-acétylamino-5-nitro-phénoxy)-propyl]-3-méthyl-3H-imidazol-1-ium on a obtenu, après filtration et évaporation à sec sous pression réduite, 19,0g d'une huile brune de chlorure de 1-[3-(2-Acétylamino-5-amino-phénoxy)-propyl]-3-méthyl-3H-imidazol-1-ium.

10

15

()

5

d) désacétylation du chlorure de 1-[3-(2-acétylamino-5-amino-phénoxy)-propyl]-3-méthyl-3H-imidazol-1-ium

Le chlorure de 1-[3-(2-acétylamino-5-amino-phénoxy)-propyl]-3-méthyl-3H-imidazol-1-ium, obtenu à l'étape précédente (19,0 g), a été mis en solution, à température ambiante et sous agitation, dans 90 ml d'éthanol absolu chlorhydrique environ 5N.

Au bout d'une demi-heure un précipité cristallisé blanc est apparu.

La suspension a été chauffée une heure au reflux de l'alcool.

On a refroidi, essoré, lavé à l'éthanol absolu et séché à 50°C sous vide et sur potasse.

On a obtenu 14,9 g de cristaux blanc cassé qui ont fondu à 216-220°C (Kofler) et dont l'analyse élémentaire calculée pour C₁₃H₂₁N₄OCl₃ était :

%	С	Н	N	0	CI
Calculé	43,90	5,95	15,75	4,50	29,90
Trouvé	43,83	6,01	15,62	5,09	29,80

EXEMPLE DE PREPARATION 3 : Synthèse du monochlorure, dichlorhydrate de 3-[3-(4-amino-phénylamino)-propyl]-1-méthyl-3H-imidazol-1-ium

a) Préparation de la (3-imidazol-1-yl-propyl)-(4-nitro-phényl)-amine

Sous agitation, on a chauffé pendant une demi-heure un mélange de 28,2 g (0,2 mole) de 1-fluoro-4-nitro-benzène, de 31,3 g (0,25 mole) de 3-imidazol-1-yl-propylamine et de 34,8 ml de triéthylamine dans 30 ml de 1,2-diméthoxy-éthane. On a versé dans 1,5 litres d'eau glacée, essoré le précipité cristallisé, réempaté dans l'eau puis dans l'alcool isopropylique et séché sous vide à 40°C sur anhydride phosphorique. On a obtenu des cristaux jaunes (36,6 g) qui, après purification par recristallisation de l'éthanol à 96° au reflux, ont fondu à 124°C et dont l'analyse élémentaire calculée pour C₁₂H₁₄N₄O₂ était :

%	С	Н	N	0
Calculé	58,53	5,73	22,75	12,99
Trouve	58,17	5,75	22,67	13,45

b) Quaternisation de la (3-imidazol-1-yl-propyl)-(4-nitro-phényl)-amine

On a fait la suspension de 30,4 g (0,123 mole) de (3-imidazol-1-yl-propyl)-(4-nitro-phényl)-amine obtenu à l'étape précédente et de 12,9 ml de diméthylsulfate dans 600 ml d'acétate d'éthyle, que l'on a laissé pendant 2 heures à température ambiante sous agitation.

Le précipité cristallisé a été essoré, lavé plusieurs fois dans l'acétate d'éthyle, réempaté dans le minimum d'éthanol absolu et séché sous vide à 50°C. on a obtenu 37,6 g de cristaux jaunes qui ont fondu à 74°C (Kofler) et dont l'analyse élémentaire calculée pour $C_{14}H_{20}N_4O_6S$ était :

5

%	С	Н	N	0	S
Calculé	45,15	5,41	15,04	25,78	8,61
Trouvé	44,85	5,50	14,91	25,97	8.49

c) Réduction du méthylsulfate de 1-méthyl-3-[3-(4-nitro-phénylamino)-propyl]-3H-imidazol-1-ium

La réduction a été effectuée selon le mode opératoire décrit pour l'exemple 1, étape b).

A partir de 33,5 g (0,09 mole) de méthylsulfate de 1-méthyl-3-[3-(4-nitro-phénylamino)-propyl]-3H-imidazol-1-ium obtenu ci-dessus à l'étape précédente, on a obtenu, après chauffage dans l'éthanol absolu chlorhydrique environ 5N pour compléter l'échange d'anions, 18,7 g de cristaux blancs qui ont fondu avec décomposition à 184-190°C (Kofler) et dont l'analyse élémentaire calculée pour $C_{13}H_{21}N_4Cl_3 + 1/3H_2O$ était :

% С Н Ν 0 CI Calculé 45,17 6,32 16,21 1,54 30,77 Trouvé 44,98 6,22 16,05 1,57 30.78

20

15

()

EXEMPLE DE PREPARATION 4 : Synthèse du monochlorure, dichlorhydrate de 3-[3-(4-amino-3-méthyl-phénylamino)-propyl]-1-méthyl-3H-imidazol-1-ium

a) Préparation de la (3-imidazol-1-yl-propyl)-(3-méthyl-4-nitro-phényl)-amine

Sous agitation on a chauffé pendant 3 heures au bain-marie bouillant un mélange de 31,2 g (0,2 mole) de 4-fluoro-2-méthyl-1-nitro-benzène, de 37,5 g (0,3 mole) de 3-imidazol-1-yl-propylamine et de 34,8 ml (0,25 mole) de triéthylamine dans 30 ml de 1,2-diméthoxy-éthane.

On a versé dans 0,5 l d'eau glacée, essoré le précipité cristallisé, réempaté dans l'eau puis dans l'alcool isopropylique et séché sous vide à 40°C sur anhydride phosphorique.

Après purification par recristallisation de l'éthanol à 96° au reflux, on a obtenu 17,0 g de cristaux jaune orangé qui ont fondu à 133°C (Kofler) et dont l'analyse élémentaire calculée pour $C_{13}H_{16}N_4O_2$ était :

%	C	Н	N	0
Calculé	59,99	6,20	21,52	12,29
Trouvé	59,55	6,22	21,43	12,88

20

5

10

b) Préparation du méthylsulfate de 1-méthyl-3-[3-(3-méthyl-4-nitrophénylamino)-propyl]-3H-imidazol-1-ium

La quaternisation de 16,5 g (0,063 mole) de (3-imidazol-1-yl-propyl)-(3-méthyl-4-nitro-phenyl)-amine obtenu ci-dessus à l'étape précédente dissous dans 165 ml d'acétate d'éthyle a été faite en ajoutant 6,7 ml (0,07 mole) de diméthylsulfate sous agitation, pendant une heure, à température ambiante.

On a obtenu 20,8 g d'huile jaune de méthylsulfate de 1-méthyl-3-[3-(3-méthyl-4-nitro-phénylamino)-propyl]-3H-imidazol-1-ium.

10

15

20

5

c) réduction du méthylsulfate de 1-méthyl-3-[3-(3-méthyl-4-nitro-phénylamino)-propyl]-3H-imidazol-1-ium

La réduction a été effectuée selon le mode opératoire décrit ci-dessus pour l'exemple 1, étape b).

A partir de 20,0 g (0,051 mole) de méthylsulfate de 1-méthyl-3-[3-(3-méthyl-4-nitro-phénylamino)-propyl]-3H-imidazol-1-ium obtenu ci-dessus à l'étape précédente, on a obtenu, après chauffage dans l'éthanol absolu chlorhydrique environ 5N pour compléter l'échange d'anions, 12,5 g de cristaux blancs qui ont fondu à 210-220°C (Kofler) et dont l'analyse élémentaire calculée pour $C_{14}H_{23}N_4Cl_3 + \frac{1}{2}H_2O$ était :

()

%	C	Н	N	0	CI
Calculé	46,36	6,67	15,45	2,21	29,32
Trouvé	46,21	6,40	15,33	2,37	29,69

EXEMPLE DE PREPARATION 5 : Synthèse du monochlorure, dichlorhydrate de 3-[3-(4-amino-2-méthyl-phénylamino)-propyl]-1-méthyl-3H-imidazol-1-ium

a) Préparation de la (3-imidazol-1-yl-propyl)-(2-méthyl-4-nitro-phényl)-amine

On utilise le mode opératoire décrit pour l'exemple 4, étape a).

A partir de 31,2 g (0,2 mole) de 1-fluoro-2-méthyl-4-nitro-benzène et de 37,5 g (0,3 mole) de 3-imidazol-1-yl-propylamine, et après purification par recristallisation de l'éthanol à 96° au reflux, on a obtenu 23,0 g de cristaux jaune orangé qui ont fondu à 163°C (Kofler) et dont l'analyse élémentaire calculée pour $C_{13}H_{16}N_4O_2 + \frac{1}{4}H_2O$ était :

15

5

10

%	С	Н	Ν	· O
Calculé	58,97	6,28	21,16	13,59
Trouvé	59,10	6,22	21,09	12,85

b) Préparation du méthylsulfate de 1-méthyl-3-[3-(2-méthyl-4-nitro-phénylamino)-propyl]-3H-imidazol-1-ium

On utilise le mode opératoire décrit pour l'exemple 4, étape b).

A partir de 22,5 g (0,086 mole) de (3-imidazol-1-yl-propyl)-(2-méthyl-4-nitro-phényl)-amine obtenu à l'étape précédente et de 9,0 ml (0,095 mole) de sulfate de méthyle, on a obtenu 19,5 g de cristaux jaunes de méthylsulfate de 1-méthyl-

3-[3-(2-méthyl-4-nitro-phénylamino)-propyl]-3H-imidazol-1-ium qui ont fondu à 70°C (Kofler) et dont l'analyse élémentaire calculée pour $C_{14}H_{19}N_4O_2$ était :

%	Ċ	Н	N _.	Ο	S
Calculé	46,62	5,74	14,50	24,84	8,30
Trouvé	46,66	5,80	14,50	24,90	8,27

5 <u>c) Réduction du méthylsulfate de 1-méthyl-3-[3-(2-méthyl-4-nitro-phénylamino)-</u> propyl]-3H-imidazol-1-ium

La réduction est effectuée selon le mode opératoire décrit pour l'exemple 1, étape b).

A partir de 19,0 g (0,05 mole) de méthylsulfate de 1-méthyl-3-[3-(2-méthyl-4-nitro-phénylamino)-propyl]-3H-imidazol-1-ium, on a obtenu, après chauffage dans l'éthanol absolu chlorhydrique environ 5N pour compléter l'échange d'anions, 14,6 g de cristaux blancs qui ont fondu à 255-260°C (Kofler) et dont l'analyse élémentaire calculée pour C₁₄H₂₃N₄Cl₃ + ½ H₂O était :

С % Н 0 Ν CI Calculé 46,36 6,67 15,45 2,21 29,32 Trouvé 45,84 6,63 15,35 2,09 29,67

EXEMPLE DE PREPARATION 6 : Synthèse du monochlorure, dichlorhydrate, monohydrate de 3-[3-(4-amino-2-fluoro-phénylamino)-propyl]-1-méthyl-3H-imidazol-1-ium

20

15

()

a) Préparation de la (2-fluoro-4-nitro-phényl)-(3-imidazol-1-yl-propyl)-amine

On utilise le mode opératoire décrit ci-dessus pour l'exemple 4, étape a). A partir de 31,8 g (0,2 mole) de 1,2-difluoro-4-nitro-benzène et de 37,5 g (0,3 mole) de 3-imidazol-1-yl-propylamine, et après purification par recristallisation de l'éthanol à 96° au reflux, on a obtenu 36,0g de cristaux jaune orangé qui ont fondu à 144°C (Kofler) et dont l'analyse élémentaire calculée pour $C_{12}H_{13}N_4O_2F$ était :

%	С	H	N	0	F
Calculé	54,54	4,96	21,20	12,11	7,19
Trouvé	54,25	4,99	21,14	-	6.97

10

5

b) Préparation du méthylsulfate de 3-[3-(2-fluoro-4-nitro-phénylamino)-propyl]-1-méthyl-3H-imidazol-1-ium

On utilise le mode opératoire décrit pour l'exemple 4, étape b).

A partir de 36,0 g (0,136 mole) de (2-fluoro-4-nitro-phényl)-(3-imidazol-1-yl-propyl)-amine obtenu à l'étape précédente et de 14,3 ml (0,15 mole) de sulfate de méthyle, on a obtenu 46,0 g de cristaux jaunes de méthylsulfate de 3-[3-(2-fluoro-4-nitro-phénylamino)-propyl]-1-méthyl-3H-imidazol-1-ium qui ont fondu avec décomposition à 110°C (Kofler) et dont l'analyse élémentaire calculée pour C₁₄H₁₉N₄O₆SF était :

%	С	Н	N	0	S	F
Calculé	43,07	4,91	14,35	24,59	4,87	8,21
Trouvé	43,00	5,00	14,37	-	4.87	8.12

10

c) Réduction du méthylsulfate de 3-[3-(2-fluoro-4-nitro-phénylamino)-propyl]-1-méthyl-3H-imidazol-1-ium

La réduction a été effectuée selon le mode opératoire décrit ci-dessus pour l'exemple 1, étape b).

A partir de 41,0 g (0,105 mole) de méthylsulfate de 3-[3-(2-fluoro-4-nitro-phénylamino)-propyl]-1-méthyl-3H-imidazol-1-ium on a obtenu, après chauffage dans l'éthanol absolu chlorhydrique environ 5N pour compléter l'échange d'anions, 19,0 g de cristaux blancs qui ont fondu avec décomposition à 165-170°C (Kofler) et dont l'analyse élémentaire calculée pour $C_{13}H_{20}N_4Cl_3F + H_2O$ était :

%	С	Н	Ν	0	CI	F
Calculé	41,56	5,90	14,91	4,26	28,31	_ 5,06
Trouvé	41,59	5,41	14,88	-	29,13	5,32

EXEMPLE DE PREPARATION 7 : Synthèse du monochlorure, chlorhydrate de 3-[3-(4-amino-2-cyano-phénylamino)-propyl]-1-méthyl-3H-imidazol-1-ium

20

()

a) Préparation du 2-(3-imidazol-1-yl-propylamino)-5-nitro-benzonitrile

On a utilisé le mode opératoire décrit pour l'exemple 4, étape a), mais en utilisant de la N-méthylpyrrolidone à la place du 1,2-diméthoxy-ethane.

A partir de 36,5 g (0,2 mole) de 2-chloro-5-nitro-benzonitrile et de 31,3 g (0,25 mole) de 3-imidazol-1-yl-propylamine, et après purification par recristallisation de l'éthanol à 96° au reflux, on a obtenu 28,2 g de cristaux jaunes qui ont fondu à 177°C (Kofler) et dont l'analyse élémentaire calculée pour C₁₃H₁₃N₅O₂ était :

%	С	H	N	0
Calculé	57,56	4,83	25,82	11,80
Trouvé	57,69	4,86	25,65	11,94

10

b) Préparation du méthylsulfate de 3-[3-(2-cyano-4-nitro-phénylamino)-propyl]-1-méthyl-3H-imidazol-1-ium

On a utilisé le mode opératoire décrit pour l'exemple 4, étape b).

A partir de 27,7 g (0,102 mole) de 2-(3-imidazol-1-yl-propylamino)-5-nitrobenzonitrile obtenu à l'étape précédente et de 10,8 ml (0,114 mole) de sulfate de méthyle, et après purification par recristallisation de l'éthanol absolu, on a obtenu 30,0 g de cristaux jaunes de méthylsulfate de 3-[3-(2-cyano-4-nitrophénylamino)-propyl]-1-méthyl-3H-imidazol-1-ium qui ont fondu à 110-115°C (Kofler) et dont l'analyse élémentaire calculée pour C₁₅H₁₉N₅O₆S était :

%	С	Н	N	0	S
Calculé	45,34	4,82	17,62	24,16	8,07
Trouvé	45,31	4,82	17,73	24,21	8,15

10

15

c) Réduction du méthylsulfate de 3-[3-(2-cyano-4-nitro-phénylamino)-propyl]-1-méthyl-3H-imidazol-1-ium

La réduction est effectuée selon le mode opératoire décrit ci-dessus pour l'exemple 1, étape b).

A partir de 25,0 g (0,063 mole) de méthylsulfate de 3-[3-(2-cyano-4-nitro-phénylamino)-propyl]-1-méhyl-3H-imidazol-1-ium on a obtenu, après chauffage dans l'éthanol absolu chlorhydrique environ 5N pour compléter l'échange d'anions, 16,2 g de cristaux blancs qui ont fondu à 220°C (Kofler) et dont l'analyse RMN 1H était conforme au produit attendu (NH non salifié).

EXEMPLE DE PREPARATION 8 : Synthèse du monochlorure, dichlorhydrate de 1-[2-(4-amino-2-méthoxy-phénylamino)-éthyl]-3-méthyl-3H-imidazol-1-ium

a) Préparation du bromure de 1-[2-(2-méthoxy-4-nitro-phénylamino)-éthyl]-3-20 méthyl-3H-imidazol-1-ium

On a chauffé 7 heures au reflux un mélange de 46,8 g (0,17 mole) de (2-bromo-éthyl)-(2-méthoxy-4-nitro-phényl)-amine et de 20,5 g (0,25 mole) de 1-méthyl-1H-imidazole dans 170 ml de toluène.

On a essoré le précipité cristallisé, réempaté dans l'éthanol absolu et séché sous vide à 50°C.

a) Préparation du chlorure de 1-(2-hydroxy-5-nitro-benzyl)-3-méthyl-3H-imidazol-1-ium

On utilise le mode opératoire décrit pour l'exemple 8, étape a).

A partir de 56,3 g (0,3 mole) de 2-chlorométhyl-4-nitro-phénol et de 29,6 g (0,36 mole) de 1-méthyl-1H-imidazole on a obtenu 65,1 g de cristaux jaunes qui ont fondu avec décomposition à 250-260°C (Kofler) et dont l'analyse élémentaire calculée pour C₁₁H₁₂N₃O₃Cl était :

%	С	H	N	0	Cl
Calculé	48,99	4,49	15,58	17,80	13,15
Trouvé	48,74	4,58	15,72	17,62	13,27

10

15

b) Réduction du chlorure de 1-(2-hydroxy-5-nitro-benzyl)-3-méthyl-3H-imidazol-1-ium

Dans un hydrogénateur on a placé 27,5 g (0,102 mole) de chlorure de 1-(2-hydroxy-5-nitro-benzyl)-3-methyl-3H-imidazol-1-ium obtenu à l'étape précédente, 10 g de palladium à 5% sur charbon (contenant 50% d'eau), et 400 ml d'eau.

La réduction s'est faite en une heure sous une pression d'hydrogène d'environ 4 bars et à une température qui a été portée progressivement à 35°C.

20 Après filtration du catalyseur sous azote on a coulé sur de l'acide chlorhydrique aqueux.

On a évaporé le filtrat à sec sous pression réduite, repris dans l'éthanol absolu et essoré.

Après séchage à 40°C sous vide et sur potasse on a obtenu 23,5 g de cristaux blancs qui ont fondu à 170-175°C (Kofler) et dont l'analyse élémentaire était conforme à celle calculée pour C₁₁H₁₅N₃OCl₂.

La structure était conforme en RMN 1H.

On a obtenu 53,4 g de cristaux blancs de N-[4-acétylamino-2-(2-chloro-éthyl)-phényl]-acétamide qui ont fondu à 214-216°C et dont l'analyse élémentaire calculée pour $C_{12}H_{15}N_2O_2Cl$ était :

%	С	Н	N	Ο	CI
Calculé	56,59	5,94	11,00	12,56	13,92
Trouvé	56,31	6,05	11,10	12,95	13,92

5

10

15

. 20

()

b) Quaternisation et désacétylation

On a chauffé au reflux pendant 18 heures un mélange de 25,5 g (0,1 mole) de N-[4-acétylamino-2-(2-chloro-éthyl)-phényl]-acétamide obtenu ci-dessus à l'étape précédente et de 17,5 ml (0,22 mole) de 1-méthyl-1H-imidazole dans 150 ml de toluène et 210 ml d'isobutanol.

On a évaporé à sec sous pression réduite.

La gomme de 3-[2-(2,5-bis-acétylamino-phényl)-éthyl]-1-méthyl-3H-imidazol-

1-ium obtenue a ensuite été chauffée pendant 6 heures au reflux dans 100 ml d'acide chlorhydrique aqueux à 36%.

On a évaporé à sec sous pression réduite, repris dans l'isopropanol et essoré le précipité cristallisé.

Après séchage à 40°C sous vide et sur anhydride phosphorique, on a obtenu 24,7g de cristaux crème de chlorure de 3-[2-(2,5-diamino-phényl)-éthyl]-1-méthyl-3H-imidazol-1-ium, dichlorhydrate qui ont fondu avec décomposition à plus de 260°C (Kofler) et dont l'analyse élémentaire calculée pour $C_{12}H_{19}N_4Cl_3$ + $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ O était :

%	С	Н	N .	0	CI
Calculé	43,07	6,02	16,74	2,39	31,78
Trouvé	43,29	6,25	16,62	2,21	32,06

b) Quaternisation du N-{4-[(2-chloro-éthyl)-éthylamino]-phényl}-acétamide

On a chauffé au reflux pendant 4 heures un mélange de 24,1 g (0,1 mole) de N-{4-[(2-chloro-éthyl)-éthylamino]-phényl}-acétamide obtenu ci-dessus à l'étape précédente et de 17,5 ml (0,22 mole) de 1-méthyl-1H-imidazole dans 70 ml d'isobutanol.

On a refroidi vers 0°C et ajouté 140 ml de toluène.

Le précipité cristallisé a été essoré, lavé dans le toluène puis l'éther de pétrole, et séché sous vide à 45°C et sur anhydride phosphorique.

On a obtenu 31,5 g de cristaux blancs de chlorure de 3-{2-[(4-acétylamino-phényl)-éthylamino]-éthyl}-1-méthyl-3H-imidazol-1-ium qui ont fondu à 206°C et dont l'analyse élémentaire calculée pour C₁₆H₂₃N₄OCl + ½ H₂O était :

%	С	Н	N	0	CI
Calculé	58,71	7,24	17,12	6,11	10,83
Trouvé	58,77	7,18	17,25	6,05	10,68

c) Désacétylation du 3-{2-[(4-acétylamino-phényl)-éthylamino]-éthyl}-1-méthyl-3H-imidazol-1-ium

On a chauffé au reflux pendant 1 heure 29 g (0,09 mole) de chlorure de 3-{2-[(4-acétylamino-phényl)-éthylamino]-éthyl}-1-méthyl-3H-imidazol-1-ium obtenu ci-dessus à l'étape précédente dans 30 ml d'acide chlorhydrique 36%. On a évaporé à sec sous pression réduite, repris dans l'éthanol absolu, précipité par dilution à l'éther éthylique, essoré et séché le précipité cristallisé. On a obtenu 13,4 g de cristaux blancs de chlorure de 1-{2-[(4-amino-phényl)-éthylamino]-éthyl}-3-méthyl-3H-imidazol-1-ium, dichlorhydrate qui ont fondu avec décomposition à 212-214°C (Kofler) et dont la RMN 1H était conforme à celle du produit attendu.

b) Réduction du dichlorure de N,N-bis-[2-(3-méthyl-3H-imidazol-1-ium)-éthyl]-4-nitro-aniline, dihydrate

Dans un hydrogénateur, on a placé 45,0 g (0,105 mole) de dichlorure de N,N-bis-[2-(3-méthyl-3H-imidazol-1-ium)-éthyl]-4-nitro-aniline, dihydrate obtenu ci-dessus à l'étape précédente, 16 g de palladium à 5% sur charbon (contenant 50% d'eau), 300 ml d'éthanol et 300 ml d'eau.

La réduction s'est faite en une heure sous une pression d'hydrogène d'environ 8 bars et à une température qui a été portée progressivement à 80°C.

Après filtration du catalyseur sous azote on a coulé sur acide chlorhydrique 36%.

On a évaporé à sec sous pression réduite, repris dans l'éthanol absolu et essoré.

Après recristallisation de l'éthanol à 96° au reflux, on a obtenu 28,2 g de cristaux blancs de dichlorure de N,N-bis-[2-(3-méthyl-3H-imidazol-1-ium)-éthyl]-4-amino-aniline, monochlorhydrate, monohydrate qui ont fondu avec décomposition à plus de 260°C (Kofler), et dont l'analyse élémentaire calculée pour $C_{18}H_{27}N_6Cl_3 + H_2O$ était. :

	%	С	Н	N	0	CI
	Calculé	47,85	6,47	18,60	3,54	2.54
•	Trouvé	46,93	6,55	18,03		23,72

20

b) Préparation de la (1-chlorométhyl-propyl)-(4-nitro-phényl)-amine

On a utilisé le mode opératoire décrit ci-dessus à l'exemple 11, étape a).

A partir de 63,1 g (0,3 mole) de 2-(4-nitro-phénylamino)-butan-1-ol obtenu ci-dessus à l'étape précédente on a obtenu, après recristallisation de l'éthanol à 90° au reflux, 47,8 g de cristaux jaunes de (1-chlorométhyl-propyl)-(4-nitro-phényl)-amine qui ont fondu à 50-52°C et dont l'analyse élémentaire calculée pour C₁₀H₁₃N₂O₂Cl était :

\cap	%	С	H	N	0	CI
	Calculé	52,52	5,73	12,25	13,99	15.50
	Trouvé	52,46	5,89	12,14	13,91	15,55

10

.15

5

c) Préparation du chlorure de 1-méthyl-3-[2-(4-nitro-phénylamino)-butyl]-3H-imidazol-1-ium

On a chauffé au reflux pendant 9 heures un mélange de 22,9 g (0,1 mole) de (1-chlorométhyl-propyl)-(4-nitro-phényl)-amine obtenue ci-dessus à l'étape précédente et de 17,5 ml (0,22 mole) de 1-méthyl-1H-imidazole dans 70 ml de toluène.

Le précipité cristallisé a été essoré, lavé dans le toluène puis l'éther de pétrole et recristallisé de l'isopropanol au reflux.

On a obtenu 16,0 g de cristaux jaunes de chlorure de 1-méthyl-3-[2-(4-nitro-phénylamino)-butyl]-3H-imidazol-1-ium qui ont fondu à 191°C et dont l'analyse élémentaire calculée pour $C_{14}H_{19}N_4O_2Cl + \frac{1}{2}H_2O$ était :

%	С	Н	N	. 0	CI
Calculé	52,58	6,30	17,52	12,51	11,09
Trouvé	52,03	6,23	17,01	12,76	10,94

10

15

On a ajouté goutte à goutte, en maintenant la température entre 5 et 12°C, 34,7 ml de chlorure de chloracétyle.

On a agité pendant une heure supplémentaire.

On a verse sur un mélange de 2 litres d'eau glacée et de 100 ml d'acide chlorhydrique à 36%.

Le précipité cristallisé a été essoré, lavé à l'eau, séché et recristallisé de l'acétonitrile au reflux.

On a obtenu 74,2 g de cristaux jaunes de 2-chloro-N-[2-(2-hydroxy-éthylamino)-5-nitro-phényl]-acétamide qui ont fondu à 206°C et dont l'analyse élémentaire calculée pour $C_{10}H_{12}N_3O_4Cl$ était :

%	С	Н	Ν	0	CI
Calculé	43,89	4,42	15,35	23,38	12,95
Trouvé	43,83	4,63	15,23	22,87	13,00

b) Préparation du chlorure de 1-{[2-(2-hydroxy-éthylamino)-5-nitro-phénylcarbamoyl}-méthyl}-3-methyl-3H-imidazol-1-ium

On a chauffé au reflux pendant une heure la suspension de 42,0 g (0,15 mole) de 2-chloro-N-[2-(2-hydroxy-éthylamino)-5-nitro-phényl]-acétamide obtenu ci-dessus à l'étape précédente et de 24,6 g (0,3 mole) de 1-méthyl-1H-imidazole dans 150 ml de toluène.

20 On a ajouté 30 ml d'isobutanol et prolongé pendant 2 heures le chauffage au reflux.

On a refroidi à température ambiante, essoré, lavé au toluène et recristallisé d'un mélange d'éthanol et d'eau au reflux.

On a obtenu 37,9 g de cristaux jaunes de chlorure de 1-{[2-(2-hydroxy-25 éthylamino)-5-nitro-phénylcarbamoyl]-méthyl}-3-méthyl-3H-imidazol-1-ium qui ont fondu à 200°C et dont l'analyse élémentaire calculée pour C₁₄H₁₈N₅O₄Cl était :

 \bigcirc

EXEMPLE	-	2	6	4	5	9	7	80	6	9	7	12	13
Monochlorure, dichlorhydrate de 3-[3- (4-Amino-phénylamino)-propyl]-1- méthyl-3H-imidazol-1-ium (composé de formule (1))	1,036	1,036	1	1	•	1	1	,	ı	1	1	ŧ	-
Monochlorure, dichlorhydrate de1-[3- (2,5-Diamino-phénoxy)-propyl]-3- méthyl-3H-imidazol-1-ium (composé de formule (I))	•	1	1,066	1,066	ı	ŧ	1					ī	ı
Monochlorure, dichlorhydrate de 3-[3- (4-Amino-3-méthyl-phénylamino)- propyl]-1-méthyl-3H-imidazol-1-ium (composé de formule (1))	•	•	1	t	1,061	1,061	1,061	1,061	ı		•		, 4/
Monochlorure, dichlorhydrate de 3-[3- (4-Amino-2-méthyl-phénylamino)- propyl]-1-méthyl-3H-imidazol-1-ium	,	,	•	1	•	1		•	1,087	1,087	· 1	•	ŧ
Monochlorure, dichlorhydrate de 1-[2- (4-Amino-2-méthoxy-phénylamino)- éthyl]-3-méthyl-3H-imidazol-1-ium (composé de formule (1))	ı	ı	t	•	1	•	ı	•	ı	ı	1,094	'	
Monochlorure, dichlorhydrate, monohydrate de 3-[3-(4-Amino-2- fluoro-phénylamino)-propyl]-1-méthyl- 3H-imidazol-1-ium (composé de formule (1))	ı	1	•		ı						-	1,126	•

g

(*) Support de teinture commun:

à 20 volumes (6 % en poids) de pH 3.

- Ammoniaque à 20 %

- Ethanol à 96°	20	9
- Sel pentasodique de l'acide diéthylène triamine pentacétique vend	u	
sous la dénomination MASQUOL DTPA par la société PROTEX	1,08	g
- Métabisulfite de sodium en solution aqueuse à 35 % de M.A.	0,58	g M.A.

Au moment de l'emploi, on a mélangé poids pour poids chacune des compositions tinctoriales ci-dessus avec une solution de peroxyde d'hydrogène

Le mélange obtenu a été appliqué sur des mèches de cheveux gris, naturels ou permanentés, à 90 % de blancs pendant 30 minutes. Les mèches ont ensuite été rincés, lavés avec un shampooing standard, rincées à nouveau puis séchées.

Les nuances obtenues figurent dans le tableau ci-après :

20

15

5

10

()

25

EXEMPLE	14	15	16	17
Chlorure de 3-[2-(2,5-diamino-phényl)-éthyl]-1- méthyl-3H-imidazol-1-ium, 2HCl (Composé de formule (I))	0,98	-	<u>-</u>	-
Chlorure de 1-{2-[(4-amino-phényl)-éthyl-amino]- éthyl}-3-méthyl-3H-imidazol-1-ium, 2HCl (Composé de formule (I))	-	1,06	-	-
Dichlorure de N,N-bis-[2-(3-méthyl-3H-imidazol-1-ium)-éthyl]-4-amino-aniline, monochlorhydrate, monohydrate (Composé de formule (I))	-	-	1,41	-
Chlorure de 3-[2-(4-amino-phénylamino)-butyl]-1-méthyl-3H-imidazol-1-ium, dichlorhydrate (Composé de formule (I))	-	-	-	1,06
2,4-diamino 1-(β-hydroxyéthyloxy) benzène, 2HCl (Coupleur)	0,723	-	-	-
3-amino phénol (Coupleur)	-	0,327	-	-
6-hydroxy indole (Coupleur)	-	-	0,399	-
5-N-(β-hydroxyéthyl)amino 2-méthyl phénol (Coupleur)	-	-	-	0,498
Support de teinture commun	(*)	(*)	(*)	(*)
Eau déminéralisée q.s.p.	100 g	100 g	100 g	100 g

(*) Support de teinture commun :

il est identique à celui utilisé pour les exemples de teinture 1 à 13 ci-dessus.

Au moment de l'emploi, on a mélangé poids pour poids chacune des compositions tinctoriales ci-dessus avec une solution de peroxyde d'hydrogène à 20 volumes (6 % en poids) de pH 3.

Le mélange obtenu a été appliqué sur des mèches de cheveux gris naturels à 90 % de blancs pendant 30 minutes. Les mèches ont ensuite été rincés, lavés avec un shampooing standard, rincées à nouveau puis séchées.

Les nuances obtenues figurent dans le tableau ci-après :

10

15

20

25

REVENDICATIONS

1. Composés de formule (I) suivante, et leurs sels d'addition avec un acide :

R₂

$$R_2$$
 R_3
 NH_2
(I)

dans laquelle:

• R₁, R₂, R₃, qui peuvent être identiques ou différents, représentent un atome d'hydrogène ; un atome d'halogène ; un groupement Z ; un radical alkyl(C,-C₆) carbonyle; un radical aminoalkyl(C₁-C₆)carbonyle; un radical N-Z-aminoalkyl(C_1 - C_6)carbonyle; un radical N-alkyl(C_1 - C_6)aminoalkyl(C_1 -C₆)carbonyle; un radical N,N-dialkyl(C₁-C₆)aminoalkyl(C₁-C₆)carbonyle; un radical aminoalkyl(C₁-C₆)carbonylalkyle(C₁-C₆); un radical N-Z-aminoalkyl(C₁- C_6)carbonylalkyle(C_1 - C_6) radical $N-alkyl(C_1-C_6)aminoalkyl(C_1$ un C_6)carbonylalkyle(C_1 - C_6); un radical N,N-dialkyl(C_1 - C_6)aminoalkyl(C_1 - C_6)carbonylalkyle(C_1 - C_6); un radical carboxy; un radical alkyl(C_1 - C_6) carboxy; un radical alkyl(C₁-C₆) sulfonyle; un radical aminosulfonyle; un radical N-Z-aminosulfonyle; un radical N-alkyl(C1-C6)aminosulfonyle; un radical N,N-dialkyl(C1-C6)aminosulfonyle; un radical aminosulfonylalkyle(C1-C₆); un radical N-Z-aminosulfonylalkyle(C₁-C₆); un radical N-alkyl(C₁- C_6)aminosulfonyl-alkyle(C_1 - C_6) radical un N, N-dialkyl(C,-C₆)aminosulfonylalkyle(C₁-C₆); un radical carbamyle; un radical N-alkyl(C₁-C₆)carbamyle; un radical N,N-dialkyl-(C₁-C₆)carbamyle; un radical carbamylalkyle(C_1 - C_6); un radical N-alkyl(C_1 - C_6)carbamylalkyle(C_1 - C_6); un radical N,N-dialkyl(C_1 - C_6)carbamylalkyle(C_1 - C_6); un radical alkyle en C_1 - C_6 ; un radical monohydroxyalkyle en C1-C6; un radical polyhydroxyalkyle en formyle, trifluoroalkyl(C_1 - C_6)carbonyle, alkyl(C_1 - C_6)carboxy, carbamyle, N-alkyl(C_1 - C_6)carbamyle, N,N-dialkyl(C_1 - C_6)carbamyle, thiocarbamyle, alkyl(C_1 - C_6)sulfonyle, et le groupement Z;

- A représente un groupement -NR₄R₅ ou un radical hydroxyle ;
 - R₄ et R₅, identiques ou différents, représentent un atome d'hydrogène ; un groupement Z; un radical alkyle en C₁-C₆; un radical monohydroxyalkyle en C_1 - C_6 ; un radical polyhydroxyalkyle en C_2 - C_6 ; un radical alcoxy(C_1 - C_6)alkyle en $C_1\text{-}C_6$; un radical aryle; un radical benzyle; un radical cyanoalkyle en C_1 - C_6 ; un radical carbamylalkyle en C_1 - C_6 ; un radical N-alkyl(C_1 - C_6)carbamylalkyle en C_1 - C_6 ; un radical N,N-dialkyl(C_1 - C_6)carbamylalkyle en C₁-C₆; un radical thiocarbamylalkyle en C₁-C₆; un radical trifluoroalkyle en C_1 - C_6 ; un radical sulfoalkyle en C_1 - C_6 ; un radical alkyl(C_1 - C_6)carboxyalkyle en C₁-C₆ ; un radical alkyl(C₁-C₆)sulfinylalkyle en C₁-C₆ ; un radical aminosulfonylalkyle en $C_1\text{-}C_6$; un radical N-Z-aminosulfonylalkyle en $C_1\text{-}C_6$; un radical N-alkyl(C_1 - C_6)aminosulfonylalkyle en C_1 - C_6 ; un radical C₆)carbonylalkyle en C₁-C₆; un radical aminoalkyle en C₁-C₆; un radical aminoalkyle en C₁-C₆ dont l'amine est substituée par un ou deux radicaux identiques ou différents choisis parmi les radicaux alkyle en C1-C6, monohydroxyalkyle en C₁-C₆, polyhydroxyalkyle en C₂-C₆, alkyl(C₁carbamyle, N-alkyl(C₁-C₆)carbamyle ou N,N-dialkyl(C₁-C₆)carbonyle, C_6)carbamyle, alkyl(C_1 - C_6)sulfonyle, formyle, trifluoroalkyl(C_1 - C_6)carbonyle, alkyl(C₁-C₆)carboxy, thiocarbamyle, ou par un groupement Z;
 - Z est choisi parmi les groupements cationiques insaturés de formules (II) et (III) suivantes, et les groupements cationiques saturés de formule (IV) suivante :

25

10

15

10

15

20

25

alkylcarbonyle en C_1 - C_6 , un radical thio, un radical thioalkyle en C_1 - C_6 , un radical alkyl(C_1 - C_6)thio, un radical amino, un radical amino protégé par un radical alkyl(C_1 - C_6)carbonyle, carbamyle ou alkyl(C_1 - C_6)sulfonyle; un groupement NHR" ou NR"R" dans lesquels R" et R", identiques ou différents, représentent un radical alkyle en C_1 - C_6 , un radical monohydroxyalkyle en C_1 - C_6 ou un radical polyhydroxyalkyle en C_2 - C_6 ;

R₇ représente un radical alkyle en C₁-C₆, un radical monohydroxyalkyle en C₁-C₆, un radical polyhydroxyalkyle en C₂-C₆, un radical cyanoalkyle en C₁-C₆, un radical trialkyl(C₁-C₆)silanealkyle en C₁-C₆, un radical alcoxy(C₁-C₆)alkyle en C₁-C₆, un radical carbamylalkyle C₁-C₆, un radical alkyl(C₁-C₆)carboxyalkyle en C₁-C₆, un radical benzyle, un groupement Z de formule (II), (III) ou (IV) telles que définies ci-dessus;

• R₈, R₉ et R₁₀, identiques ou différents, représentent un radical alkyle en C_1 - C_6 , un radical monohydroxyalkyle en C_1 - C_6 , polyhydroxyalkyle en C₂-C₆, un radical alcoxy(C₁-C₆)alkyle en C₁-C₆, un radical cyanoalkyle en C1-C6, un radical aryle, un radical benzyle, un radical amidoalkyle en C₁-C₆, un radical trialkyl(C₁-C₆)silanealkyle en C₁-C₆ ou un radical aminoalkyle en C₁-C₆ dont l'amine est protégée par un radical alkyl(C_1 - C_6)carbonyle, carbamyle, ou alkyl(C_1 - C_6)sulfonyle; deux des radicaux R₇, R₈ et R₉ peuvent également former ensemble, avec l'atome d'azote auquel ils sont rattachés, un cycle saturé à 5 ou 6 chaînons carboné ou contenant un ou plusieurs hétéroatomes, ledit cycle pouvant être ou non substitué par un atome d'halogène, un radical hydroxyle, un radical alkyle en C₁-C₆, un radical monohydroxyalkyle en C₁-C₆, un radical polyhydroxyalkyle en C₂-C₆, un radical nitro, un radical cyano, un radical cyanoalkyle en C₁-C₆, un radical alcoxy en C₁-C₆, un radical trialkyl(C₁-C₆)silanealkyle en C₁-C₆, un radical amido, un radical aldéhydo, un radical carboxyle, un radical cétoalkyle en C₁-C₆, un radical thio, un radical thioalkyle en C₁-C₆, un radical alkyl(C₁-C₆)thio, un radical

10

15

20

25

- dans les groupements cationiques insaturés de formule (III) :
 - lorsque x = 0, le bras de liaison D est rattaché à l'atome d'azote,
 - lorsque x = 1, le bras de liaison D est rattaché à l'un des sommets E,
 G, J, L ou M,
 - y ne peut prendre la valeur 1 que lorsqu'au moins un des sommets E,
 G, J, L et M représente un atome divalent, et que le radical R₇ est
 porté par l'atome d'azote du cycle insaturé;
- dans les groupements cationiques de formule (IV) :
 - lorsque x = 0, alors le bras de liaison est rattaché à l'atome d'azote portant les radicaux R_8 à R_{10} .
 - lorsque x = 1, alors deux des radicaux R₈ à R₁₀ forment conjointement avec l'atome d'azote auquel ils sont rattachés un cycle saturé à 5 ou 6 chaînons tel que défini précédemment, et le bras de liaison D est porté par un atome de carbone dudit cycle saturé;

X - représente un anion monovalent ou divalent ;

étant entendu:

- que le nombre de groupements cationiques insaturés Z de formule (II) ou (III) est au moins égal à 1 ;
- que lorsque A représente un groupement -NR₄R₅ dans lequel R₄ ou R₅ représente un groupement Z dans lequel le bras de liaison D représente une chaîne alkyle comportant une fonction cétone, alors ladite fonction cétone n'est pas directement rattachée à l'atome d'azote du groupement -NR₄R₅;
- et à l'exclusion du chlorure de 4-amino-3-méthyl-N-éthyl-N-β-(1-pyridinium)-éthyl aniline.
- Composés selon la revendication 1, caractérisés par le fait que les cycles des
 groupements insaturés Z de formule (II) sont choisis parmi les cycles pyrrolique,
 imidazolique, pyrazolique, oxazolique, thiazolique et triazolique.

10

- le chlorure de 1-(5-amino-2-hydroxy-benzyl)-2-méthyl-2H-pyrazol-1-ium ;
- le chlorure de 1-[2-(2,5-diamino-phényl)-éthyl]-3-méthyl-3H-imidazol-1-ium ;
- le chlorure de 3-[2-(2,5-diamino-phényl)-éthyl]-1-méthyl-3H-imidazol-1-ium ;
- le chlorure de 1-{2-[(4-amino-phényl)-éthylamino]-éthyl}-3-méthyl-3H-imidazol-1-ium;
- le dichlorure de N,N-bis-[2-(3-méthyl-3H-imidazol-1-ium)-éthyl]-4-aminoaniline ;
- le chlorure de 3-[2-(4-amino-phénylamino)-butyl]-1-méthyl-3H-imidazol-1-ium ;
- le chlorure de 1-{[5-amino-2-(2-hydroxy-éthylamino)-phénylcarbamoyl]-méthyl}-3-méthyl-3H-imidazol-1-ium :
- le bromure de 4-[2-(2,5-diamino-phénoxy)-éthyl]-1,3-diméthyl-3H-imidazol-1-ium ;
 - le chlorure de 2-(2,5-diamino-phénoxyméthyl)-1,3-diméthyl-3H-imidazol-1-ium;
- le chlorure de 4-[3-(4-amino-phénylamino)-propyl]-1,3-diméthyl-3H-imidazol-1-ium;
 - le chlorure de 4-[3-(4-amino-3-méthyl-phénylamino)-propyl]-1,3-diméthyl-3H-imidazol-1-ium;
 - le chlorure 4-[(2,5-diamino-phénylcarbamoyl)-méthyl]-1,3-diméthyl-3H-
- 20 imidazol-1-ium;
 - le chlorure de 4-{2-[2-(2-amino-5-hydroxy-phényl)-acétylamino]-éthyl}-1,3-diméthyl-3H-imidazol-1-ium ;
 - le chlorure de 4-[(5-amino-2-hydroxy-benzylcarbamoyl)-méthyl]-1,3-diméthyl-3H-imidazol-1-ium;
- 25 et leurs sels d'addition avec un acide.
 - 7. Utilisation des composés de formule (I) tels que définis à l'une quelconque des revendications précédentes, à titre de base d'oxydation pour la teinture d'oxydation des fibres kératiniques, et en particulier des fibres kératiniques humaines telles que les cheveux.

- 14. Composition selon la revendication 13, caractérisée par le fait que la ou les bases d'oxydation additionnelles représentent de 0,0005 à 12 % en poids du poids total de la composition tinctoriale.
- 15. Composition selon l'une quelconque des revendications 8 à 14, caractérisée par le fait qu'elle renferme au moins un coupleur et/ou au moins un colorant direct.
 - 16. Composition selon la revendication 15, caractérisée par le fait que le ou les coupleurs sont choisis parmi les métaphénylènediamines, les méta-aminophénols, les métadiphénols et les coupleurs hétérocycliques, et leurs sels d'addition avec un acide.
- 17. Composition selon la revendication 15 ou 16, caractérisée par le fait que le ou les coupleurs représentent de 0,0001 à 10 % en poids du poids total de la composition tinctoriale.
 - 18. Composition selon l'une quelconque des revendications 8 à 17, caractérisée par le fait que les sels d'addition avec un acide sont choisis parmi les chlorhydrates, les bromhydrates, les sulfates, les citrates, les succinates, les tartrates, les lactates et les acétates.
- 19. Procédé de teinture des fibres kératiniques et en particulier des fibres kératiniques humaines telles que les cheveux caractérisé par le fait que l'on applique sur ces fibres au moins une composition tinctoriale telle que définie à l'une quelconque des revendications 8 à 18, et que l'on révèle la couleur à pH acide, neutre ou alcalin à l'aide d'un agent oxydant qui est ajouté juste au moment de l'emploi à la composition tinctoriale ou qui est présent dans une composition oxydante appliquée simultanément ou séquentiellement de façon séparée.

INTERNATIONAL SEARCH REPORT

Inter mai Application No PCT/FR 98/01535

	C070233/54 A61K7/13		
According to	International Patent Classification (IPC) or to both national classification	tion and IPC	
B. FIELDS	SEARCHED		
	cumentation searched (classification system followed by classification CO7D A61K	n symbots)	
Documentat	ion searched other than minimum documentation to the extent that su	ch documents are included in the fields sea	arched
Electronic da	ata base consulted during the international search (name of data bas	e and, where practical, search terms used	
C. DOCUME	ENTS CONSIDERED TO BE RELEVANT	 ;	
Category °	Citation of document, with indication, where appropriate, of the rele	vant passages	Relevant to claim No.
х	BE 616 439 A (BADISCHE ANILIN-& SODA-FARBRIK AKTIENGESELLSCHAFT)		1,2,5
	15 October 1962 see page 23 - page 24; example 15 see page 20 - page 22; example 13 see page 14 - page 16; example 9	•	·
Х	DE 11 35 589 B (BADISCHE ANILIN- SODA-FABRIK AKTIENGESELLSCHAFT) 30 August 1962 see column 4 - column 5; example		1,3,5
		/	
		, .	
X Furti	her documents are listed in the continuation of box C.	X Patent family members are listed	in annex.
"A" docume consid "E" earlier of filling d "L" docume which citation "O" docume other of the results of the res	ent defining the general state of the art which is not lered to be of particular relevance document but published on or after the international late and which may throw doubts on priority claim(s) or is cited to establish the publication date of another nor other special reason (as specified) ent referring to an oral disclosure, use, exhibition or means and published prior to the international filing date but	"T" later document published after the inte or priority date and not in conflict with cited to understand the principle or the invention." X" document of particular relevance; the cannot be considered novel or cannot involve an inventive step when the different of particular relevance; the cannot be considered to involve an indocument of particular relevance; the cannot be considered to involve an indocument is combined with one or ments, such combination being obvidin the art. S" document member of the same patent.	the application but learly underlying the claimed invention to be considered to bocument is taken alone claimed invention eventive step when the ore other such docupous to a person skilled
	actual completion of theinternational search	Date of mailing of the international se-	arch report
2	9 September 1998	08/10/1998	
Name and r	nailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk	Authorized officer	
	Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Chouly, J	

Form PCT/ISA/210 (second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

information on patent family members

thte onal Application No PCT/FR 98/01535

	atent document d in search report		Publication date		atent family member(s)	Publication date
BE	616439	Α	L	NONE		
DE	1135589	В		NONE		
EP	0544400	A	02-06-1993	US CA DE DE ES US	5139532 A .2080412 A 69209011 D 69209011 T 2085574 T 5198584 A	18-08-1992 28-05-1993 18-04-1996 07-11-1996 01-06-1996 30-03-1993
DE	1292784	В		GB LU NL NL US	909700 A 36853 A 122875 C 236431 A 3100739 A	13-08-1963
WC	9501772	A	19-01-1995	AU CA CN EP JP MX US	687849 B 7344894 A 2142091 A = 1111444 A 0658095 A 8501322 T 9405076 A 5733343 A	05-03-1998 06-02-1995 19-01-1995 08-11-1995 21-06-1995 13-02-1996 31-01-1995 31-03-1998
FI	R 1391675	A	23-06-1965	BE CH CH DE FR GB NL NL US US	642008 A 426876 A 427150 A 1492066 A 1794332 A 87902 E 1053535 A 126022 C 302452 A 3442895 A 3467483 A 3528972 A	30-06-1964 23-07-1970 10-02-1972 20-01-1967 06-05-1969 16-09-1969 15-09-1970

RAPPORT DE RECHERCHE INTERNATIONALE

Dem. Internationale No PCT/FR 98/01535

Catégori	e Identification des documents cités, avec le cas échéant. l'indicationdes passages pertinents	no. des revendications vise
X		
X	TONG L K J ET AL: "The Mechanism of Dye Formation in Color Photography. VII. Intermediate Bases in the Deamination of Quinonedimines" JOURNAL OF THE AMERICAN CHEMICAL SOCIETY.,	1,3,5
	vol. 82, no. 8, 25 avril 1960, pages 1988-1996, XP002060566 DC US * page 1988; tableau 1, composé no. 1 * voir page 1994, colonne 1, alinéa 5	
Α	EP 0 544 400 A (BRISTOL MYERS CO) 2 juin 1993 cité dans la demande	1-21
	voir le document en entier	
A .	DE 12 92 784 B (HENKEL & CIE GMBH) 17 avril 1969 * le document en entier; en particulier, colonne 7 - colonne 8, exemple 2 *	1-7
Α	. WO 95 01772 A (CIBA GEIGY AG ; MOECKLI PETER (CH)) 19 janvier 1995 voir le document en entier	1-7
Α	FR 1 391 675 A (L'ORÉAL) 1 février 1965 voir le document en entier	1-7

RAPPORT DE RECHERCHE INTERNATIONALE

- Renseignements relatifs and membres de familles de brevets

Dem Internationale No PCT/FR 98/01535

Document brevet cité au rapport de recherche			Date de publication	Membre(s) de la famille de brevet(s)		Date de publication
BE	616439	Α		AUCUI	N	
DE	1135589	В	AUCUN			
EP	0544400	Α .	02-06-1993	US CA DE DE ES US	5139532 A 2080412 A 69209011 D 69209011 T 2085574 T 5198584 A	18-08-1992 28-05-1993 18-04-1996 07-11-1996 01-06-1996 30-03-1993
DE	1292784	В		GB LU NL NL US	909700 A 36853 A 122875 C 236431 A 3100739 A	13-08-1963
WO	9501772	A	19-01-1995	AU AU CA CN EP JP MX US	687849 B 7344894 A 2142091 A 1111444 A 0658095 A 8501322 T 9405076 A 5733343 A	05-03-1998 06-02-1995 19-01-1995 08-11-1995 21-06-1995 13-02-1996 31-01-1995 31-03-1998
FR	1391675	A	23-06-1965	BE CH CH DE DE FR GB NL US US	642008 A 426876 A 427150 A 1492066 A 1794332 A 87902 E 1053535 A 126022 C 302452 A 3442895 A 3467483 A 3528972 A	30-06-1964 23-07-1970 10-02-1972 20-01-1967 06-05-1969 16-09-1969