

CLAIMS

What is claimed is:

- 1 1. An integrated circuit (IC) comprising:
 - 2 interface circuitry to interface the IC to a burn-in system, the interface circuitry to receive at least one temperature value from the burn-in system and to send at least one temperature indication to the burn-in system;
 - 5 a storage circuit coupled to the interface circuitry to store the at least one temperature value; and
 - 7 a thermal sense circuit coupled to the interface circuitry to provide the at least one temperature indication.
- 1 2. The IC recited in claim 1, wherein the at least one temperature value is a set-point.
- 1 3. The IC recited in claim 1, wherein the at least one temperature indication is proportional to the junction temperature of the IC.

- 1 4. An integrated circuit (IC) burn-in system comprising:
 - 2 a computer system comprising a processor operating under the control of a computer program; and
 - 4 at least one IC comprising:
 - 5 interface circuitry to interface the IC to the computer system; and
 - 6 a thermal sense circuit, coupled to the interface circuitry, to provide a temperature indication that is proportional to the junction temperature of the IC.
- 1 5. The IC burn-in system recited in claim 4, wherein the computer system compares the temperature indication with a temperature value determined by the computer program;

4 wherein if the temperature indication substantially matches the temperature value,
5 the computer system bins the IC at that temperature value; and
6 wherein if the temperature indication is less than the temperature value, the
7 computer system decrements the temperature value and compares the temperature
8 indication with the decremented temperature value.

1 6. The IC burn-in system recited in claim 4, wherein the IC further comprises:
2 logic circuitry coupled to the interface circuitry; and
3 wherein the logic circuitry is responsive to the temperature indication generated
4 by the thermal sense circuit;
5 wherein the logic circuit is also responsive to a temperature value generated by
6 the computer system as determined by the computer program;
7 wherein the logic circuitry compares the temperature indication with the
8 temperature value;
9 wherein if the temperature indication substantially matches the temperature value,
10 the logic circuitry generates a first indication to the computer system, and the computer
11 system bins the IC at that temperature value; and
12 wherein if the temperature indication is less than the temperature value, the logic
13 circuitry generates a second indication to the computer system, and the computer system
14 decrements the temperature value and compares the temperature indication with the
15 decremented temperature value.

1 7. A burn-in system for an IC comprising a thermal sense circuit, the burn-in system
2 comprising:
3 a fixture to electrically couple to the IC;
4 a temperature-altering mechanism to alter the ambient temperature of the IC; and
5 a data processing system coupled to the fixture, the data processing system
6 executing a computer program, the computer program operating the burn-in system to
7 characterize the IC and comprising the operations of:
8 storing a temperature value for the IC;

9 controlling the temperature-altering mechanism to thermally stress the IC;
10 determining whether a temperature indication from the thermal sense circuit
11 substantially matches the temperature value;
12 if so, recording the temperature value; and
13 if not, changing the temperature value to a new temperature value and
14 determining whether the temperature indication matches the new temperature value.

1 8. The burn-in system recited in claim 7, wherein the computer program operating
2 the burn-in system further comprises the operations of:

3 determining whether the temperature indication matches the new temperature
4 value;
5 if so, recording the new temperature value;
6 otherwise, repeatedly changing the temperature value and comparing the
7 temperature indication with the changed temperature value, until the temperature
8 indication matches the changed temperature value; and
9 recording the changed temperature value.

1 9. The burn-in system recited in claim 7, wherein the temperature value is stored in
2 a storage circuit in the IC.

1 10. The burn-in system recited in claim 7, wherein the temperature value is stored in
2 a storage element in the data processing system.

1 11. A method of testing an integrated circuit (IC) comprising a plurality of electronic
2 devices, one of which is to provide a temperature indication, the method comprising:
3 storing a temperature value for the IC;
4 thermally stressing the IC;
5 the one electronic device providing a temperature indication;
6 determining whether the temperature indication matches the temperature value;
7 if so, recording the temperature value; and

8 if not, changing the temperature value to a new temperature value and
9 determining whether the temperature indication matches the new temperature value.

1 12. The method recited in claim 11 and further comprising;
2 if the temperature indication matches the new temperature value, recording the
3 temperature value;
4 otherwise, repeatedly changing the temperature value and comparing the
5 temperature indication with the changed temperature value, until the temperature
6 indication matches the changed temperature value; and
7 recording the changed temperature value.

1 13. The method recited in claim 11, wherein storing is performed by another one of
2 the plurality of electronic devices in the IC.

1 14. The method recited in claim 11, wherein storing is performed by a burn-in system
2 coupled to the IC and comprising a stored-program digital computer.

1 15. The method recited in claim 11, wherein the plurality of electronic devices
2 includes a logic circuit, and wherein determining is performed by the logic circuit.

1 16. The method recited in claim 11, wherein determining is performed by a burn-in
2 system coupled to the IC and comprising a stored-program digital computer.

1 17. A method of testing a plurality of integrated circuits (ICs), each comprising a
2 thermal sense circuit, the method comprising:
3 storing a temperature value for each IC;
4 thermally stressing the ICs;
5 each thermal sense circuit providing a temperature indication for its respective
6 IC;
7 determining whether the temperature indication matches the temperature value;

8 if so, recording the temperature value for the corresponding IC; and
9 if not, changing the temperature value to a new temperature value and
10 determining whether the temperature indication matches the new temperature value.

1 18. The method recited in claim 17 and further comprising;
2 if the temperature indication matches the new temperature value, recording the
3 temperature value for the corresponding IC;
4 otherwise, repeatedly changing the temperature value and comparing the
5 temperature indication with the changed temperature value, until the temperature
6 indication matches the changed temperature value; and
7 recording the changed temperature value for the respective IC.

1 19. The method recited in claim 17, wherein each IC comprises a storage circuit, and
2 wherein storing is performed by the storage circuit.

1 20. The method recited in claim 17, wherein storing is performed by a burn-in system
2 coupled to the IC and comprising a stored-program digital computer.

1 21. The method recited in claim 17, wherein each IC comprises a logic circuit, and
2 wherein determining is performed by the logic circuit.

1 22. The method recited in claim 17, wherein determining is performed by a burn-in
2 system coupled to the IC and comprising a stored-program digital computer.

1 23. A method of testing a plurality of electronic components, each comprising a
2 thermal sense circuit, the method comprising:
3 storing a temperature value for each electronic component;
4 thermally stressing the electronic components;
5 each thermal sense circuit providing a temperature indication for its respective
6 electronic component;

7 determining whether the temperature indication matches the temperature value;
8 if so, recording the temperature value for the corresponding electronic
9 component; and
10 if not, changing the temperature value to a new temperature value and
11 determining whether the temperature indication matches the new temperature value.

1 24. The method recited in claim 23 and further comprising;
2 if the temperature indication matches the new temperature value, recording the
3 temperature value for the corresponding electronic component;
4 otherwise, repeatedly changing the temperature value and comparing the
5 temperature indication with the changed temperature value, until the temperature
6 indication matches the changed temperature value; and
7 recording the changed temperature value for the respective electronic component.

1 25. The method recited in claim 23, wherein each electronic component comprises a
2 storage circuit, and wherein storing is performed by the storage circuit.

1 26. The method recited in claim 23, wherein storing is performed by a burn-in system
2 coupled to the electronic component and comprising a stored-program digital computer.

1 27. The method recited in claim 23, wherein each electronic component comprises a
2 logic circuit, and wherein determining is performed by the logic circuit.

1 28. The method recited in claim 23, wherein determining is performed by a burn-in
2 system coupled to the electronic component and comprising a stored-program digital
3 computer.

1 29. The method recited in claim 23, wherein the electronic components are integrated
2 circuits.

1 30. A computer-readable medium containing computer instructions for instructing a
2 processor to perform a method of binning a plurality of ICs each having a thermal sense
3 circuit, the processor forming an element in a system comprising a temperature-altering
4 mechanism to thermally stress the ICs and a comparison mechanism, wherein the
5 instructions comprise:

6 storing a temperature value for each IC;
7 obtaining a temperature indication from the thermal sense circuit of each IC;
8 for each IC not yet binned, comparing the stored temperature value with the
9 temperature indication; and
10 if the temperature indication substantially matches the stored temperature value,
11 recording the temperature value;
12 otherwise, changing the temperature value to a new temperature value and
13 comparing the new temperature value with the temperature indication.

1 31. The computer-readable medium recited in claim 30, wherein the instructions
2 further comprise:

3 if the temperature indication substantially matches the new temperature value,
4 recording the new temperature value;
5 otherwise, repeatedly changing the temperature value and comparing the
6 temperature indication with the changed temperature value, until the temperature
7 indication substantially matches the changed temperature value, and recording the
8 changed temperature value.

1 32. The computer-readable medium recited in claim 30, wherein the instructions
2 further comprise:

3 determining an estimate of the burn-in time for each IC, using the particular
4 temperature value recorded for each IC.