Seminário I: Álgebra Geométrica

Guilherme Philippi

Departamento de Matemática Universidade Federal de Santa Catarina, Blumenau

Orientado por Felipe Fidalgo

PIBIC ciclo 2021/2022
Teoria e prática em Distance Geometry e Clifford Algebras com aplicações

18 de fevereiro de 2022

- Preliminares recordar é viver
- 2 Álgebra dos subespaços vetoriais com produto interno
- Sepaços métricos
- Algebra Geométrica
 - Subespaços orientados como primitivas: o produto externo
 - O produto regressivo
 - O produto escalar de Blades
 - Contrações
 - O produto Geométrico
 - Dualidade
- Modelos de Geometria
 - Modelo Euclidiano
 - Modelo Homogêneo
 - Modelo Conforme
- 6 Referências

- Preliminares recordar é viver
- Álgebra dos subespaços vetoriais com produto interno
- Seconda de la Espaços métricos de la Espaços métricos
- Algebra Geométrica
 - Subespaços orientados como primitivas: o produto externo
 - O produto regressivo
 - O produto escalar de Blades
 - Contrações
 - O produto Geométrico
 - Dualidade
- Modelos de Geometria
 - Modelo Euclidiano
 - Modelo Homogêneo
 - Modelo Conforme
- 6 Referências

Recordar é viver

Definição (R-Módulo)

Seja $(R,+,\cdot)$ um anel. Um grupo abeliano (M,\oplus) é chamado de *módulo sobre* um anel R (ou, simplesmente R-módulo) se existir uma aplicação

$$\begin{array}{ccc} R \times M & \longrightarrow & M \\ (r,m) & \mapsto & rm \end{array},$$

chamada multiplicação por escalar, tal que para todo $r,r'\in R$ e $m,m'\in M$ valham

- $0_R m = 0_M$:
- ② se R tem identidade 1, então 1m = m;
- **3** $(r + r')m = (rm) \oplus (r'm);$
- $(r \cdot r')m = r(r'm).$

G. Philippi PIBIC 2021/2022 18 Fevereiro, 2022 4

Recordar é viver

Exemplo (\mathbb{Z} -módulo)

Seja o anel $(\mathbb{Z}, +, \cdot)$. Podemos fazer qualquer grupo abeliano (A, +) virar um \mathbb{Z} -módulo através do seguinte produto escalar: para $n \in \mathbb{Z}$ e $a \in A$,

$$na = \begin{cases} a+a+\cdots+a & (n \text{ vezes}), & \text{se } n>0\\ 0, & \text{se } n=0\\ -a-a-\cdots-a & (-n \text{ vezes}), & \text{se } n<0 \end{cases}.$$

Definição (Espaço vetorial)

Seja o grupo abeliano E um K-módulo. Se K é um corpo, dizemos que E é um espaço vetorial sobre o corpo K. Também, passamos a nos referenciar aos elementos de K por escalares e aos de E por vetores.

E assim ganhamos a possibilidade de "contrair" elementos de E, em relação a elementos de K "contraídos".

G. Philippi PIBIC 2021/2022 18 Fevereiro, 2022

- Preliminares recordar é viver
- Álgebra dos subespaços vetoriais com produto interno
- Espaços métricos
- Algebra Geométrica
 - Subespaços orientados como primitivas: o produto externo
 - O produto regressivo
 - O produto escalar de Blades
 - Contrações
 - O produto Geométrico
 - Dualidade
- Modelos de Geometria
 - Modelo Euclidiano
 - Modelo Homogêneo
 - Modelo Conforme
- 6 Referências

Espaços vetoriais com produto interno

Vamos incrementar os espaços vetoriais com uma aplicação adicional.

Definição (Espaço com produto interno)

Seja E um espaço vetorial sobre K. Um *produto interno* sobre E é uma função $\langle,\rangle:E\times E\longrightarrow K$ tal que valham

• (Positividade) Para todo $v \in E$,

$$\langle v,v\rangle \geq 0 \quad \text{e} \quad \langle v,v\rangle = 0 \iff v=0;$$

- ② (Simetria) Para todo $v, u \in E$, $\langle u, v \rangle = \langle v, u \rangle$; ^a
- **1** (Linearidade no primeiro argumento) Para todo $v, u, w \in E$ e $r, s \in K$,

$$\langle ru + sv, w \rangle = r \langle u, w \rangle + s \langle v, w \rangle.$$

O espaço vetorial E sobre K, junto do produto interno \langle , \rangle , é chamado K espaço com produto interno.

^amais geralmente, quando K é um corpo complexo, $\langle u, v \rangle = \overline{\langle v, u \rangle}$

Espaços vetoriais com produto interno: implicações

Se $K = \mathbb{R}$, então as propriedades (2) e (3) mostram que o produto interno é bilinear. Caso K seja complexo, tem-se algo que chamamos linearidade conjugada, da forma

$$\langle w, ru + sv \rangle = \overline{\langle ru + sv, w \rangle} = \overline{r} \langle w, u \rangle + \overline{s} \langle w, v \rangle.$$

Definição (Norma)

A *norma* de $v \in E$ é definida como $||v|| = \sqrt{\langle v, v \rangle}$.

Proposição

$$||v|| \ge 0$$
 e $||v|| = 0$ se, e somente se, $v = 0$.

Proposição

Para todo $r \in K$ e $v \in E$.

$$||rv|| = |r| ||v||.$$

Espaços vetoriais com produto interno: implicações

Teorema (Desigualdade de Cauchy-Schwarz)

Para todo $u, v \in E$,

$$|\langle u, v \rangle| \leq ||u|| ||v||$$

Teorema (Desigualdade triangular)

$$||u + v|| \le ||u|| + ||v||$$

Proposição

As igualdades dos teoremas acima só acontecem quando $v = \alpha u$, com $\alpha \in K$.

Teorema (A lei do paralelogramo)

Para todo $u, v \in E$,

$$||u + v||^2 + ||u - v||^2 = 2||u||^2 + 2||v||^2$$

- Preliminares recordar é viver
- Álgebra dos subespaços vetoriais com produto interno
- Session Servicos Espaços métricos
- Algebra Geométrica
 - Subespaços orientados como primitivas: o produto externo
 - O produto regressivo
 - O produto escalar de Blades
 - Contrações
 - O produto Geométrico
 - Dualidade
- Modelos de Geometria
 - Modelo Euclidiano
 - Modelo Homogêneo
 - Modelo Conforme
- 6 Referências

10 / 25

Espaços métricos

Definição (Espaço métrico)

Chamamos de *espaço métrico* um espaço com produto interno M sobre \mathbb{R} , monido de uma função $d: M \times M \longrightarrow \mathbb{R}$, que associa pares de vetores a um número real que chamamos de distância entre esses pontos, tal que valham, $\forall u, v, w \in M$,

- ② d(u, v) = d(v, u);
- $d(u,v) \leq d(u,w) + d(w,v).$

Exemplo

Seja d(u, v) a distância entre os dois vetores u e $v \in E$ definida como

$$d(u,v) = \|u - v\|.$$

Pseudométricas

Definição (Espaço pseudométrico)

Chamamos de *espaço pseudométrico* um espaço com produto interno M sobre \mathbb{R} , monido de uma função de distância $d: M \times M \longrightarrow \mathbb{R}$, tal que valham, $\forall u, v, w \in M$,

- ② d(u, v) = d(v, u);
- $oldsymbol{1} d(u,v) \leq d(u,w) + d(w,v).$

Proposição

Um espaço pseudométrico é métrico se, e somente se, d(u, v) > 0 sempre que $u \neq v$.

Assinatura de uma métrica

Uma maneira prática para representar uma métrica Q é pelo uso de uma **matriz de métrica** M, ou tensor métrico,

$$\mathbf{M} = \begin{pmatrix} \mu_{1,1} & \mu_{1,2} & \cdots & \mu_{1,n} \\ \mu_{2,1} & \mu_{2,2} & \cdots & \mu_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ \mu_{n,1} & \mu_{n,2} & \cdots & \mu_{n,n} \end{pmatrix},$$

simétrica que codifica a distância entre os pares dos vetores de base $\{e_i\}_{i=1}^n$ do espaço métrico, *i.e.*, $\mu_{i,j} = d(e_i, e_i)$, para $1 \le i, j \le n$.

Perceba que quando a função de distância for dada pelo produto interno a matriz de métrica codificará o produto interno entre estes elementos de base.

G. Philippi PIBIC 2021/2022 18 Fevereiro, 2022 13/25

- Preliminares recordar é viver
- Algebra dos subespaços vetoriais com produto interno
- Espaços métricos
- Algebra Geométrica
 - Subespaços orientados como primitivas: o produto externo
 - O produto regressivo
 - O produto escalar de Blades
 - Contrações
 - O produto Geométrico
 - Dualidade
- Modelos de Geometria
 - Modelo Euclidiano
 - Modelo Homogêneo
 - Modelo Conforme
- 6 Referências

14 / 25

Álgebra Geométrica: introdução

espaço físico × espaço de representação

O espaço de representação da **Álgebra Linear** é construída a partir do **conceito de vetor**, isso é, **pontos no espaço de representação**.

Já a **Álgebra Geométrica** é construída sobre o conceito de **subespaços vetoriais**, o que implica uma nova natureza de seus objetos elementares.

A partir das ideias de **Grassmann**, com sua Álgebra Exterior, **pode-se codificar elementos de dimensões variadas**, produto dos elementos de sua própria álgebra. Combinando este produto de Grassmann com o produto interno (clássico da álgebra linear), **dá-se origem a um novo produto**, capaz de codificar transformações nesse novo espaço de maneira **muito mais simples** (eficiente?) do que na Álgebra Linear.

Não só, mas esse novo produto permite interpretar tais transformações (operadores) como objetos geométricos e vice versa!

Álgebra Geométrica: introdução

A rotação do círculo C (determinado por três pontos c_1 , c_2 e c_3) ao redor da linha L, e suas reflexões através de um plano Π .

Cronologia das descobertas, incluindo os cientistas que mais influenciaram no desenvolvimento da Álgebra Geométrica.

Subespaços orientados como primitivas: o produto externo

Em Álgebra Linear, assumindo base $\{e_i\}_{i=1}^n$ para \mathbb{R}^n , um vetor a arbitrário pode ser escrito como a *combinação linear* dos elementos da base. Para n=3,

$$a = \alpha_1 e_1 + \alpha_2 e_2 + \alpha_3 e_3 \in \mathbb{R}^3$$

Na Álgebra Linear temos o produto vetorial, limitado a vetores no \mathbb{R}^3 , onde um o produto de dois vetores $\vec{u}, \vec{v} \in \mathbb{R}^3$ gera um novo vetor $\vec{u} \times \vec{v} \in \mathbb{R}^3$ perpendicular aos outros dois.

Uma dúvida natural é: existe algum produto que generalize o produto vetorial para qualquer dimensão?

Subespaços orientados como primitivas: o produto externo

Grassmann define um produto que nos permite construir subespaços de dimensionalidade mais alta a partir de vetores: o **produto externo** $b \land a$ entre os vetores $b \in a$ pode ser usado para representar o subespaço 2-dimensional

 $D_{\scriptscriptstyle (3)} = a \wedge b \wedge c \equiv e_{\scriptscriptstyle 1} \wedge e_{\scriptscriptstyle 2} \wedge e_{\scriptscriptstyle 3}$

No geral, em Álgebra Geométrica, podemos gerar tais subespaços com dimensão k a partir de k vetores linearmente independentes em \mathbb{R}^n . Chamamos tais subespaços de k-blades, onde k é o grau do blade. Estes serão os elementos primitivos da Álgebra Geométrica. Veja que isso generaliza a Álgebra Vetorial, onde possuíamos apenas os 0-blades e 1-blades, isso é, escalares e vetores.

G. Philippi PIBIC 2021/2022 18 Fevereiro, 2022 18

O espaço Multivetorial $\bigwedge \mathbb{R}^n$

Assim, a partir dos elementos do espaço vetorial \mathbb{R}^n , **podemos construir um espaço multivetorial** $\bigwedge \mathbb{R}^n$. Isso é, temos $\sum_{k=0}^n \binom{n}{k} = 2^n$ k-combinações dos vetores de base de \mathbb{R}^n , que descrevem 2^n **blades de base** para $\bigwedge \mathbb{R}^n$. No caso n=3, temos

$$\left\{ \begin{array}{cccc} \underline{1}, & \underline{e_1, \quad e_2, \quad e_3}, & \underline{e_1 \wedge e_2, \quad e_1 \wedge e_3, \quad e_2 \wedge e_3}, & \underline{e_1 \wedge e_2 \wedge e_3} \\ \mathrm{Valores} & \mathrm{Espaço} & \mathrm{Espaço} & \mathrm{Espaço} \\ \mathrm{Reais} & \mathrm{Vetorial} & \mathrm{Bivetorial} & \mathrm{Trivetorial} \\ \end{array} \right\}.$$

A combinação linear destes elementos formam os multivetores

Perceba a simetria entre $\bigwedge^k \mathbb{R}^n$ e $\bigwedge^{n-k} \mathbb{R}^n$. Por conta de tal simetria, chamamos os elementos de $\bigwedge^{n-1} \mathbb{R}^n$ de **pseudovetores** e os elementos de $\bigwedge^n \mathbb{R}^n$ de **pseudoescalares**.

Assim, um 2-**vetor** (não necessáriamente 2-blade) pode ser escrito como $C_{(2)}=\alpha_1 e_1 \wedge e_2 + \alpha_2 e_1 \wedge e_3 + \alpha_3 e_2 \wedge e_3$

G. Philippi PIBIC 2021/2022 18 Fevereiro, 2022 1

Conhecendo o espaço multivetorial $\bigwedge \mathbb{R}^n$ podemos definir formalmente o produto externo, como o mapeamento:

$$\wedge: \bigwedge^r \mathbb{R}^n \times \bigwedge^s \mathbb{R}^n \to \bigwedge^{r+s} \mathbb{R}^n,$$

definido a partir de um pequeno conjunto de propriedades:

antissimetria: $a \wedge b = -b \wedge a$ (que implica $c \wedge c = 0$),

distributividade: $a \wedge (b+c) = a \wedge b + a \wedge c$,

associatividade: $a \wedge (b \wedge c) = (a \wedge b) \wedge c$,

comutatividade de escalares: $a \wedge (\beta b) = \beta(a \wedge b)$.

G. Philippi PIBIC 2021/2022 18 Fevereiro, 2022 20 / 25

O produto regressivo

Com o **produto regressivo** podemos construir subespaços orientados k-dimensionais a partir de (n-k) pseudovetores. Por exemplo, para n=3, $c=A_{\langle 2\rangle}\vee B_{\langle 2\rangle}$

O produto regressivo é um mapeamento:

$$\forall: \bigwedge^{n-r} \mathbb{R}^n \times \bigwedge^{n-s} \mathbb{R}^n \to \bigwedge^{n-(r+s)} \mathbb{R}^n,$$

com propriedades similares àquelas observadas no produto externo:

$$\begin{array}{ll} antissimetria: \ A_{\langle n-1\rangle} \vee B_{\langle n-1\rangle} = -B_{\langle n-1\rangle} \vee A_{\langle n-1\rangle} \\ \text{(que implica } C_{\langle n-1\rangle} \vee C_{\langle n-1\rangle} = 0), \\ distributividade: \ A_{\langle n-1\rangle} \vee (B_{\langle n-1\rangle} + C_{\langle n-1\rangle}) = A_{\langle n-1\rangle} \vee B_{\langle n-1\rangle} \\ + A_{\langle n-1\rangle} \vee C_{\langle n-1\rangle}, \end{array}$$

$$associatividade: \ A_{\langle n-1\rangle} \vee (B_{\langle n-1\rangle} \vee C_{\langle n-1\rangle}) = \\ (A_{\langle n-1\rangle} \vee B_{\langle n-1\rangle}) \vee C_{\langle n-1\rangle},$$

comutatividade de escalares:
$$A_{(n-1)} \vee (\beta B_{(n-1)}) = \beta (A_{(n-1)} \vee B_{(n-1)}).$$

Perceba que o produto regressivo é calculado encontrando o subespaço $C_{\langle t \rangle}$ compartilhado por $A_{\langle r \rangle}$ e $B_{\langle s \rangle}$. Isso pode ser algo complicado fora da AG.

G. Philippi PIBIC 2021/2022 18 Fevereiro, 2022 2

- Preliminares recordar é viver
- Álgebra dos subespaços vetoriais com produto interno
- Seconda de la Espaços métricos de la Espaços métricos
- Algebra Geométrica
 - Subespaços orientados como primitivas: o produto externo
 - O produto regressivo
 - O produto escalar de Blades
 - Contrações
 - O produto Geométrico
 - Dualidade
- Modelos de Geometria
 - Modelo Euclidiano
 - Modelo Homogêneo
 - Modelo Conforme
- 6 Referências

22 / 25

- Preliminares recordar é viver
- Álgebra dos subespaços vetoriais com produto interno
- 3 Espaços métricos
- Algebra Geométrica
 - Subespaços orientados como primitivas: o produto externo
 - O produto regressivo
 - O produto escalar de Blades
 - Contrações
 - O produto Geométrico
 - Dualidade
- Modelos de Geometria
 - Modelo Euclidiano
 - Modelo Homogêneo
 - Modelo Conforme
- 6 Referências

Contato: g.philippigrad.ufsc.br UFSC - Blumenau