

National Design Centre, Singapore Uli Hitzel, Senior Architect December 17th 2014

Agenda

Introduction

Changing Role of IT | Evolving Workloads | Service Layers

OpenStack

Overview | Use Cases | User Story | Innovation

OpenShift

Overview | PaaS & DevOps | Innovation

The changing role of IT

Workloads are evolving

Applications are evolving

Cloud - Service Layers

Runtime

Middleware

Operating System

Virtualization & Abstraction

Storage Compute

Network

Community Innovation → Enterprise

Agenda

Introduction
Changing Role of IT | Evolving Workloads | Service Layers

OpenStackOverview | Use Cases | User Story | Innovation

OpenShift
Overview | PaaS & DevOps | Innovation

OpenStack: Elastic Infrastructure

Open source project for building a private or public infrastructure-as a-Service (laas) cloud running on standard hardware

Cloud operating system that controls large pools of compute, storage and networking resources throughout a datacenter

Community of global collaborators creating open source software to build public and private clouds

OpenStack - Use Cases

- Telco / ISP public cloud offering
- Internal Private Cloud
- AWS Equivalent

- Content Farm
- Scale-Out Storage
- AWS S3 Equivalent
- Enterprise Drop-Box

Network Functions Virtualization (NFV)

User Story: Cern

- Large Hadron Collider: particle accelerator
- 40 million photos per second, producing 1PB of data per second
- Massive increase in computing requirements, no increase in staff
- Cern Cloud based on OpenStack, Ceph & Puppet
- analytic results in minutes instead of months
- Project started 2011, production 2013
- 4 OpenStack clouds with ~115k cores in total
- Expected to pass 150k cores by Q1 2015
- All non-specific Cern code upstream

User Story: eBay

- multi-tenant, multi-region, self-service OpenStack cloud that provides on-demand computing resources for all eBay developers
- project started 2012
- 95% of eBay traffic powered by OpenStack
- ~7k servers
- "frictionless" -- no tickets, no people, get job done
- Advantages: reduced app provisioning time from 4 weeks to 30 minutes. Saved double-digit million dollars on hardware
- contributor to Trove → DBaaS

Network Function Virtualization

Alcatel Lucent: CloudBand

OpenStack as a basis for Innovation

Agenda

Introduction

Changing Role of IT | Evolving Workloads | Service Layers

OpenStack

Overview | Use Cases | User Story | Innovation

OpenShiftOverview | PaaS & DevOps | Innovation

OpenShift

Open source project for building a private or public platform-as a-Service (Paas) cloud running on various virtualization or laaS platforms

Elastic middleware layer that provides environments for developers to build, test and deploy their applications while taking care of scalability of resources

Community of global collaborators creating open source software to build public and private clouds

OpenShift: DevOps & Continuous Delivery

- standardizes developer workflows
- accelerates & automates processes
- increases productivity
- streamlines IT services delivery

OpenShift: Cloud for developers

Integration into Eclipse

OpenShift: Focus & innovate faster

Physical

How to Build an App:

- Have Idea
- Get Budget
- 3. Submit hardware acquisition request
- 4. Wait
- Get Hardware
- 6. Rack and Stack Hardware
- Install Operating System
- Install Operating System Patches
- Create user Accounts
- Deploy framework/appserver
- Deploy testing tools
- 12. Code
- 13. Test
- Buy and configure Prod servers
- 15. Push to Prod
- 16. Launch
- Order more servers to meet demand
- 18. Wait...
- 19. Deploy new servers
- 20. Etc.

Virtualized

How to Build an App:

- Have Idea
- Get Budget
- Submit VM Request request
- 4. Wait
- Deploy framework/appserver
- Deploy testing tools
- Code
- 8. Test
- Configure Prod VMs
- 10. Push to Prod
- 11. Launch
- 12. Request VMs to meet demand
- 13. Wait
- Deploy app to new VMs
- 15. Etc

With PaaS

How to Build an App:

- 1. Have Idea
- 2. Get Budget
- 3. Code
- 4. Test
- 5. Launch
- 6. Automatically Scale

redhat.