Supply Chain Dataset Analysis – Excel & Power Bl Guide

Mapped from Python steps to Excel formulas, PivotTables, Power Query (M), and Power BI DAX/visuals.

Data Overview

Rows: 100 | Columns: 25

Key Columns Detected: Lead time, Production volumes, Manufacturing costs, Defect rates, Transportation

modes, Routes, Inspection results.

Metric	Value
Avg Lead time	17.08
Avg Manufacturing costs	47.27
Avg Production volumes	567.84
Avg Defect rates	2.28
Avg Cost per unit	0.11

By Transportation Mode – averages

Transportation Mode	Avg Lead Time	Avg Mfg Cost	Avg Cost/Unit	Count
Air	15.96	42.36	0.1	26
Sea	16.41	40.13	0.08	17
Rail	17.54	49.54	0.11	28
Road	18.03	53.65	0.15	29

Top Routes by Avg Manufacturing Cost (Cheapest first)

Route	Avg Lead Time	Avg Mfg Cost	Avg Cost/Unit	Count
Route C	16.55	41.4	0.08	20
Route B	18.16	46.4	0.12	37
Route A	16.4	50.74	0.12	43

Inspection Result Summary

Inspection Result	Avg Defect	Avg Cost	Count
Fail	2.57	52.23	36
Pass	2.04	46.14	23
Pending	2.15	43.54	41

Correlation between Defect rates and Manufacturing costs: -0.0078 (near zero ⇒ weak linear relationship in this dataset).

Week 1 – Data Preprocessing (Replace Python with Excel & Power BI)

Goal: Prepare clean, structured data.

Excel (Power Query + Formulas):

```
1) Import CSV \rightarrow Data > Get Data > From Text/CSV.
2) In Power Query:
   • Ensure data types: Transform > Data Type (Lead time/Costs/Volumes as Decimal Number).
   • Standardize 'Inspection results':
       Add Column > Custom Column:
         = Text.Proper(Text.Trim([Inspection results]))
   • Create 'Cost per unit':
       Add Column > Custom Column:
         = if [Production volumes] <> 0 then [Manufacturing costs] / [Production volumes] else null
   • Close & Load to Excel.
3) In Excel sheet (alternative, not Power Query):
   • Standardize inspection text:
       =PROPER(TRIM([@[Inspection results]]))
   • Cost per unit:
      =IFERROR([@[Manufacturing costs]]/[@[Production volumes]],0)
4) Save as a clean table: Format as Table and save workbook.
```

Power BI (Power Query + Model):

Avg Defect Rate = AVERAGE('Supply'[Defect rates])

Avg Cost/Unit = DIVIDE(SUM('Supply'[Manufacturing costs]), SUM('Supply'[Production volumes]))

Week 2 – Analysis Questions (Excel & Power BI)

Goal: Answer business questions via PivotTables and DAX.

Excel - PivotTables & Charts

· Values: Average of Manufacturing costs, Average of Lead time

• Sort by Avg Manufacturing costs ascending

Power BI - Visuals & Measures

• Rows: Routes

```
Matrix visual (Mode vs Metrics):
    Rows: Transportation modes
    Values: Avg Lead Time (measure), Avg Mfg Cost (measure), Avg Cost/Unit (measure)
Scatter visual (Defect vs Cost):
    X: Defect rates, Y: Manufacturing costs
    Analytics: Add Trend line (show equation/R² if available in your version)
Table (Routes by efficiency):
    Columns: Route, Avg Lead Time, Avg Mfg Cost, Avg Cost/Unit
    Sort by Avg Mfg Cost ascending
(Optional) Pearson correlation measure between Defect and Cost:
    Corr Defect-Cost =
    VAR mx = AVERAGEX(ALLSELECTED('Supply'), 'Supply'[Defect rates])
    VAR my = AVERAGEX(ALLSELECTED('Supply'), 'Supply'[Manufacturing costs])
    VAR cov = SUMX(ALLSELECTED('Supply'), 'Supply'[Defect rates]-mx)*('Supply'[Manufacturing costs]-my))
    VAR sx = SQRT(SUMX(ALLSELECTED('Supply'), POWER('Supply'[Defect rates]-mx,2)))
    VAR sy = SQRT(SUMX(ALLSELECTED('Supply'), POWER('Supply'[Manufacturing costs]-my,2)))
    RETURN DIVIDE(cov, sx*sy)
```

Comparison: Modes by Avg Lead vs Cost

Mode	Avg Lead	Avg Cost	Avg CPU	N
Air	15.96	42.36	0.1	26
Sea	16.41	40.13	0.08	17
Rail	17.54	49.54	0.11	28
Road	18.03	53.65	0.15	29

Comparison: Cheapest Routes (Top 10)

Route	Avg Lead	Avg Cost	Avg CPU	N
Route C	16.55	41.4	0.08	20
Route B	18.16	46.4	0.12	37
Route A	16.4	50.74	0.12	43

Week 3 – Forecasting (No Date column \rightarrow use Regression/What-If)

Excel - LINEST / SLOPE & INTERCEPT

Lead time from Mode/Route (categorical):

- Use Pivot averages as baseline targets (lookup by Mode/Route).
- Or build multiple regression using dummy variables: Create 0/1 columns per mode/route and use LINEST with multiple X.

Power BI - Measures & What-If Parameter

- 1) Create a What-If parameter for Production volumes (Modeling > New Parameter).
- 2) Create regression coefficients calculated offline (from Excel) or compute via Quick Measure/measure. Example predicted cost measure:
 - Pred Cost = [Intercept] + [Slope] * SELECTEDVALUE('Production Volume Parameter'[Production Volume Value
- 3) Use a line/column combo visual to show Actual vs Predicted Manufacturing costs.
- 4) For Lead time: create a table of average Lead time by Mode/Route (Matrix) and use slicers for scenario

Week 4 - Visualization & Storytelling

Excel - Dashboard Steps

Excel Dashboard:

- 1) KPI Cards: Use cells with formulas (AVERAGE) and Data Bars/Icons (Conditional Formatting).
- 2) PivotCharts:
 - Combo: Mode vs Avg Lead time (line) & Avg Cost (columns)
 - Bar: Routes sorted by Avg Manufacturing cost
 - Scatter: Defect rate vs Manufacturing cost (add Trendline, show ${\tt R}^2)$
- 3) Slicers: Add slicers for Transportation modes / Routes / Inspection results.

Power BI - Dashboard Steps

Power BI Dashboard:

- 1) Cards: Avg Lead Time, Avg Mfg Cost, Avg Cost/Unit, Avg Defect Rate (DAX measures from Week 1).
- 2) Visuals:
 - Matrix: Transportation modes (rows) with Avg Lead, Avg Cost, Avg CPU
 - Bar chart: Routes by Avg Cost (ascending)

 - Scatter: Defect vs Cost, add trendline (Analytics)
 (Optional) Decomposition Tree: Cost drivers (requires Power BI Desktop)
- 3) Filters / Slicers: Mode, Route, Inspection result.
 4) Layout: Top = KPI cards; Left = Modes matrix; Right = Routes bar; Bottom = Scatter.

Recommendations & Notes

Data-driven Findings (from this dataset):

- Fastest mode: Air (Avg Lead ≈ 15.96); Most expensive mode: Road (Avg Cost ≈ 53.65).
- Cheapest route by cost: Route C (Avg Cost \approx 41.40); Fastest route: Route A (Avg Lead \approx 16.40). Defect vs cost correlation \approx -0.0078 \rightarrow minimal linear relationship; focus on process rather than cost li
- 'Pass' inspections associate with lower average costs and defect levels than 'Fail'.