SVM and Clustering

Jiayi Shen 5/11/2019

```
#Load and tidy data
#read data
rawdata <- read.csv("kc_house_data.csv", header = TRUE)
#inspect the structure of data
str(rawdata)
## 'data.frame':
                  21613 obs. of 21 variables:
                  : num 7.13e+09 6.41e+09 5.63e+09 2.49e+09 1.95e+09 ...
## $ id
                : Factor w/ 372 levels "20140502T000000",..: 165 221 291 221 284 11 57 252 340 306 .
## $ date
## $ price
                : num 221900 538000 180000 604000 510000 ...
## $ bedrooms
                 : int 3 3 2 4 3 4 3 3 3 3 ...
## $ bathrooms : num 1 2.25 1 3 2 4.5 2.25 1.5 1 2.5 ...
## $ sqft_living : int 1180 2570 770 1960 1680 5420 1715 1060 1780 1890 ...
## $ sqft_lot : int 5650 7242 10000 5000 8080 101930 6819 9711 7470 6560 ...
## $ floors
                  : num 1 2 1 1 1 1 2 1 1 2 ...
## $ waterfront : int 0 0 0 0 0 0 0 0 0 ...
## $ view : int 0 0 0 0 0 0 0 0 0 ...
## $ condition : int 3 3 3 5 3 3 3 3 3 ...
                 : int 77678117777...
## $ grade
## $ sqft above : int 1180 2170 770 1050 1680 3890 1715 1060 1050 1890 ...
## $ sqft_basement: int 0 400 0 910 0 1530 0 0 730 0 ...
## $ yr_built
               : int 1955 1951 1933 1965 1987 2001 1995 1963 1960 2003 ...
## $ yr_renovated : int 0 1991 0 0 0 0 0 0 0 ...
## $ zipcode
                : int 98178 98125 98028 98136 98074 98053 98003 98198 98146 98038 ...
## $ lat
                  : num 47.5 47.7 47.7 47.5 47.6 ...
## $ long
                  : num -122 -122 -122 -122 -122 ...
## $ sqft_living15: int 1340 1690 2720 1360 1800 4760 2238 1650 1780 2390 ...
                 : int 5650 7639 8062 5000 7503 101930 6819 9711 8113 7570 ...
#clean the rawdata; create a tidied dataset for analysis and modelling.
#subset data: only those with view >0 and basement >0.
housing =
  rawdata %>%
  select(-id, -date, -zipcode, -lat, -long) %>%
 filter(view > 0, bedrooms <30) %>%
  mutate(basement = ifelse(sqft_basement == 0, 0, 1),
        renovated = ifelse(yr_renovated == 0, 0, 1)) %>%
  filter(basement > 0) %>%
  select(-sqft_basement, -yr_renovated, -view, - sqft_living, -sqft_lot, -basement)
# dichotimize response variable
median(housing$price) #= 805000
## [1] 805000
housing <- housing %>%
```

mutate(price.new = ifelse(price>805000, "High", "Low")) %>%

SVM

Using caret Linear Kernel

svml.fit\$bestTune\$cost #0.311

[1] 0.8464817

Radial Kernel


```
svmr.fit$bestTune #sigma=0.004; C=95
```

```
## sigma C
## 23 0.004086771 16.08324
```

```
resamp <- resamples(list(svmr = svmr.fit, svml = svml.fit))
bwplot(resamp)</pre>
```


Test data performance for SVM

```
pred.svml <- predict(svml.fit, newdata = housing[-rowTrain,])</pre>
pred.svmr <- predict(svmr.fit, newdata = housing[-rowTrain,])</pre>
confusionMatrix(data = pred.svml,
                reference = housing$price.new[-rowTrain]) #0.8229
## Confusion Matrix and Statistics
##
             Reference
##
## Prediction High Low
##
         High 120 22
         Low
##
                23 123
##
                  Accuracy : 0.8438
##
##
                    95% CI: (0.7966, 0.8837)
       No Information Rate: 0.5035
##
##
       P-Value [Acc > NIR] : <2e-16
##
##
                     Kappa: 0.6875
##
##
    Mcnemar's Test P-Value : 1
##
##
               Sensitivity: 0.8392
##
               Specificity: 0.8483
##
            Pos Pred Value : 0.8451
##
            Neg Pred Value: 0.8425
                Prevalence: 0.4965
##
```

```
##
            Detection Rate: 0.4167
##
      Detection Prevalence: 0.4931
##
         Balanced Accuracy: 0.8437
##
##
          'Positive' Class : High
##
confusionMatrix(data = pred.svmr,
                reference = housing$price.new[-rowTrain]) #0.8368
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction High Low
         High 121 22
##
##
         Low
                22 123
##
##
                  Accuracy : 0.8472
##
                    95% CI: (0.8004, 0.8867)
##
       No Information Rate: 0.5035
##
       P-Value [Acc > NIR] : <2e-16
##
##
                     Kappa: 0.6944
##
##
   Mcnemar's Test P-Value : 1
##
               Sensitivity: 0.8462
##
##
               Specificity: 0.8483
##
            Pos Pred Value: 0.8462
##
            Neg Pred Value: 0.8483
##
                Prevalence: 0.4965
##
            Detection Rate: 0.4201
##
      Detection Prevalence: 0.4965
##
         Balanced Accuracy: 0.8472
##
##
          'Positive' Class : High
##
```

Clustering

K-means

#optimal number of clusters = 2

K-means

Hierarchical clustering

PCA

```
pca <- prcomp(housing1)
pca$rotation</pre>
```

```
##
                  PC1
                           PC2
                                    PC3
                                              PC4
## bedrooms
            -0.27130829 -0.038457629 -0.36324180
                                        0.189225815
## bathrooms
            -0.43966664 0.055997681 -0.09217362
                                        0.060750743
## floors
            -0.31065079
                     ## waterfront
            ## condition
             ## grade
            -0.44187019 0.005398891 -0.04141166 -0.058355492
            ## sqft_above
## yr_built
            -0.27507154 -0.524484902 0.30856097 -0.035491023
## sqft_living15 -0.35657475 -0.001045787 -0.17170504 -0.279229641
## sqft_lot15
            -0.03390324
                              0.20661065 0.269441773
## renovated
                     0.695568436
##
                  PC5
                           PC6
                                   PC7
                                                      PC9
                                             PC8
## bedrooms
            -0.35399857 0.38097304 -0.58982345 0.148405327 -0.28415445
## bathrooms
            -0.02400276 -0.03136323 -0.19745597 -0.290187880 0.55039788
## floors
             0.26119663 -0.63287771 -0.15290085 0.218964669 -0.44991255
## waterfront
             ## condition
             0.17148620 - 0.28248307 - 0.04329887 - 0.418921865 - 0.14596884
## grade
             0.13733403 0.02976869 0.32030941 0.009535377 0.16428984
## sqft_above
             0.02347765 -0.11999447 0.02195195 0.155862201 0.27028093
             ## yr_built
## sqft_living15 -0.08523537 0.29681488 0.53230811 0.201937120 -0.39417354
            -0.59049724 -0.35879225 -0.16548611 0.041867099 -0.01992272
## sqft_lot15
            ## renovated
##
                  PC10
                           PC11
```

```
## bedrooms
             -0.184355976 -0.04538328
## bathrooms
              0.495136527 -0.34426040
## floors
              0.112030341 -0.16832503
## waterfront
              0.007777977 -0.02000870
## condition
             -0.071391029 0.06224075
             -0.705611876 -0.39023862
## grade
## sqft above
             -0.078396974 0.80760189
             -0.030726793 0.17197688
## yr_built
## sqft_living15  0.433455131 -0.05148543
## sqft_lot15
             -0.075144429 -0.07509299
## renovated
             -0.068090699 0.06666947
pca$sdev
## [1] 1.9592205 1.1478695 1.0762769 1.0476570 0.9526513 0.8940484 0.8482443
  [8] 0.6586719 0.5603973 0.4859539 0.4212635
pca$rotation %*% diag(pca$sdev)
                             [,2]
                                       [,3]
                                                [,4]
                                                          [,5]
             -0.53155276 -0.044144339 -0.39094877 0.19824374 -0.33723721
## bedrooms
## bathrooms
             ## floors
             ## waterfront
## condition
              0.16336655
             ## grade
## sqft above
             -0.90346310 0.126791779 -0.06794798 -0.00526486 0.02236601
## yr_built
             ## sqft_living15 -0.69860855 -0.001200427 -0.18480217 -0.29253688 -0.08119958
## sqft_lot15
             ## renovated
             -0.06642393 0.798421784 0.22237028 0.28228255 -0.30170820
##
                   [,6]
                            [,7]
                                                [,9]
                                      [,8]
## bedrooms
              0.34060835 -0.50031439 0.097750423 -0.15923939
## bathrooms
             -0.02804025 -0.16749091 -0.191138611 0.30844149
## floors
             -0.56582333 -0.12969728 0.144225881 -0.25212979
## waterfront
            0.31223743 -0.31147080 0.057433424 -0.02745000
## condition
             -0.25255355 -0.03672802 -0.275932074 -0.08180055
## grade
              0.02661465 0.27170064 0.006280685 0.09206758
## sqft_above
             ## yr_built
              0.07166290 - 0.07290047 - 0.406958054 - 0.17980948
## sqft_living15  0.26536688  0.45152733  0.133010313  -0.22089379
## sqft lot15
             -0.32077766 -0.14037265 0.027576683 -0.01116464
## renovated
              ##
                   [,10]
                             [.11]
## bedrooms
             -0.089588499 -0.019118321
## bathrooms
              0.240613508 -0.145024339
## floors
              0.054441577 -0.070909193
## waterfront
              0.003779738 -0.008428934
## condition
             -0.034692746 0.026219757
## grade
             -0.342894818 -0.164393284
             ## sqft_above
## yr_built
             -0.014931804 0.072447580
## sqft_living15  0.210639196 -0.021688931
## sqft_lot15
             -0.036516725 -0.031633935
             -0.033088938 0.028085413
## renovated
```

corrplot(pca\$rotation %*% diag(pca\$sdev))

var <- get_pca_var(pca)
corrplot(var\$cor)</pre>

#plots the eigenvalues/variances against the number of dimensions.
fviz_eig(pca, addlabels = TRUE)


```
a <- fviz_contrib(pca, choice = "var", axes = 1)
b <- fviz_contrib(pca, choice = "var", axes = 2)
#visualize the contribution of variables from the results of PCA.
grid.arrange(a, b, nrow = 2)</pre>
```


Contribution of variables to Dim-2

sqrt_above, grade, bathrooms, sqrt_living15, and floors contribute more to the first principal component, compared to other variables. renovated, yr_built, and waterfront contribute more to the second pricipal ccomponent.

With only two principal components, we can distinguish the two classes reasonably well.

Classification tree

CART

rpart.plot(rpart.fit\$finalModel)


```
## Balanced Accuracy : 0.8197
##

## 'Positive' Class : High
##

# 0.8194
```

CIT

plot(ctree.fit\$finalModel)

```
grade
                                                                                                                        p < 0.001
                                                                                                       2
                                                                                                                       ≤ 8
                                                                                                                                                                            19
                                                                                                                                                        >8
                                                                                          sqft_above
                                                                                                                                                                       grade
                                                                                            p < 0.001
                                                                                                                                                                  p < 0.001
                                                                      ≤ 1746
                                                                                                                                                                                                      25
                                               3
                                                                                                                  <del>1</del>16
                                                                                                                                               20
                                                                                                                                         yr_built
                                sqft_living15
                                                                                                                                                                                                   grade
                                                                                                             yr_bui
                                    p < 0.001
                                                                                                          0.00 = 0
                                                                                                                                     p < 0.001
                                                                                                                                                                                                p = 0.04
                                 4 2611 > 2619
                                                                                                                                           ≤ ≥
                                                                                                                                                                                          26 1
                     waterfront
                                                                                                                                                                                   yr_bui/
                                                               bathrooms
                                                                                                                                                  sqft_abg
                                                                                                                                                                                                          bathrooms
                      p < 0.001
                                                                                                                                                    p = 0.0
                                                                                                                                                                                                            p = 0.086
                                                                                                                                                                                \delta 0.0 = q
                                                                p = 0.012
                                                                                                                 > 1964
                   5
                                                            10 4
                                                                                   의13
                                                                                                            <
    sqft_living15
                                                  condition
                                                                                 yr_built
                                                                                                                                                           > 163( ≤
                                                                                                                                                                                        > 196€ ≤ > 4.75
        p < 0.001
                                                  p = 0.0
                                                                              p = 0.049
           ≤ > 2120
                                                                                 <
                                                                                       > 1973
=N60(tre==No(tre==No(tre)=N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(tre)N60(t
                                                                                                                                                                                                                                  0.8
# Test set performance
ctree.pred.prob <- predict(ctree.fit, newdata = housing[-rowTrain,], type = "prob")[,1]</pre>
ctree.pred <- rep("Low", length(ctree.pred.prob))</pre>
ctree.pred[ctree.pred.prob>0.5] <- "High"</pre>
confusionMatrix(data = as.factor(ctree.pred),
                                          reference = housing$price.new[-rowTrain],
                                          positive = "High")
## Confusion Matrix and Statistics
##
##
                                  Reference
## Prediction High Low
                       High 126 42
##
                                          17 103
##
                        Low
##
##
                                               Accuracy : 0.7951
                                                     95% CI: (0.7439, 0.8402)
##
##
                  No Information Rate: 0.5035
##
                  P-Value [Acc > NIR] : < 2.2e-16
##
##
                                                        Kappa: 0.5908
##
          Mcnemar's Test P-Value: 0.001781
##
##
##
                                       Sensitivity: 0.8811
##
                                       Specificity: 0.7103
##
                                Pos Pred Value: 0.7500
                                Neg Pred Value: 0.8583
##
##
                                          Prevalence: 0.4965
```

```
## Detection Rate : 0.4375

## Detection Prevalence : 0.5833

## Balanced Accuracy : 0.7957

##

## 'Positive' Class : High

##

## 0.7951
```

Random Forest


```
# Test set performance
rf.pred.prob <- predict(rf.fit, newdata = housing[-rowTrain,], type = "prob")[,1]</pre>
```

```
rf.pred <- rep("Low", length(rf.pred.prob))</pre>
rf.pred[rf.pred.prob>0.5] <- "High"
confusionMatrix(data = as.factor(rf.pred),
                reference = housing$price.new[-rowTrain],
                positive = "High")
## Confusion Matrix and Statistics
##
             Reference
##
## Prediction High Low
##
         High 120 20
##
         Low
                23 125
##
##
                  Accuracy : 0.8507
##
                    95% CI: (0.8042, 0.8898)
##
       No Information Rate: 0.5035
##
       P-Value [Acc > NIR] : <2e-16
##
##
                     Kappa : 0.7013
##
##
    Mcnemar's Test P-Value: 0.7604
##
##
               Sensitivity: 0.8392
##
               Specificity: 0.8621
##
            Pos Pred Value: 0.8571
            Neg Pred Value: 0.8446
##
##
                Prevalence: 0.4965
##
            Detection Rate: 0.4167
##
      Detection Prevalence: 0.4861
##
         Balanced Accuracy: 0.8506
##
##
          'Positive' Class : High
##
# 0.8056
# Explain your prediction
new_obs <- housing[-rowTrain,-12][1:2,]</pre>
explainer.rf <- lime(housing[rowTrain,-12], rf.fit)</pre>
explanation.rf <- explain(new_obs, explainer.rf, n_features = 8,
                           labels = "High")
plot_features(explanation.rf)
```


The optimal mtry is 2 and the minimal node size picked up by the optimal model is 3.

Variable importance of random forest model

Using node impurity as the measure of variable importance, the top three important variable are grade, sqft_above, and sqft_living15.

Boosting

Binomial loss


```
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction High Low
         High 121 23
##
         Low
                22 122
##
##
##
                  Accuracy : 0.8438
##
                    95% CI: (0.7966, 0.8837)
       No Information Rate: 0.5035
##
       P-Value [Acc > NIR] : <2e-16
##
##
##
                     Kappa : 0.6875
##
    Mcnemar's Test P-Value : 1
##
##
##
               Sensitivity: 0.8462
               Specificity: 0.8414
##
##
            Pos Pred Value: 0.8403
```

```
##
            Neg Pred Value: 0.8472
##
                Prevalence: 0.4965
##
            Detection Rate: 0.4201
##
      Detection Prevalence: 0.5000
##
         Balanced Accuracy: 0.8438
##
##
          'Positive' Class : High
##
# 0.8333
#Variable importance
summary(gbmB.fit$finalModel, las = 2, cBars = 19, cex.names = 0.6)
```


Relative influence

```
##
                           var
                                  rel.inf
                        grade 29.7155156
## grade
## sqft_above
                    sqft_above 25.5522851
## sqft_living15 sqft_living15 18.8998282
## yr built
                     yr_built 7.7012347
## sqft_lot15
                    sqft_lot15 7.4277080
## bathrooms
                    bathrooms 3.1671985
## condition
                     condition 3.0267079
## waterfront
                    waterfront 1.8977893
                    renovated 1.3013290
## renovated
## bedrooms
                     bedrooms 0.8561193
## floors
                        floors 0.4542846
```

The top three important variable are grade, sqft_above, and sqft_living15.

AdaBoost


```
## Confusion Matrix and Statistics
##
## Reference
## Prediction High Low
```

```
High 123 24
##
         Low
                20 121
##
##
##
                  Accuracy : 0.8472
                     95% CI : (0.8004, 0.8867)
##
##
       No Information Rate: 0.5035
##
       P-Value [Acc > NIR] : <2e-16
##
##
                      Kappa: 0.6945
##
##
    Mcnemar's Test P-Value : 0.6511
##
##
               Sensitivity: 0.8601
##
               Specificity: 0.8345
##
            Pos Pred Value: 0.8367
##
            Neg Pred Value: 0.8582
##
                Prevalence: 0.4965
            Detection Rate: 0.4271
##
      Detection Prevalence : 0.5104
##
         Balanced Accuracy: 0.8473
##
##
##
          'Positive' Class : High
##
# 0.8333
# Explain your prediction
new_obs <- housing[-rowTrain,-12][1:2,]</pre>
explainer.gbm <- lime(housing[rowTrain,-12], gbmA.fit)</pre>
explanation.gbm <- explain(new_obs, explainer.gbm, n_features = 8,</pre>
                            labels = "High")
plot_features(explanation.gbm)
```



```
## bathrooms bathrooms 5.0192286
## waterfront waterfront 2.7627767
## condition condition 2.7019817
## bedrooms bedrooms 1.5235294
## renovated renovated 1.2087462
## floors floors 0.5798215
```

The top three important variable are also grade, sqft_above, and sqft_living15.

Resamples

Variable importance - PDP

Test data performance (Tree)

```
roc.rpart <- roc(housing$price.new[-rowTrain], rpart.pred.prob)
roc.ctree <- roc(housing$price.new[-rowTrain], ctree.pred.prob)
roc.rf <- roc(housing$price.new[-rowTrain], rf.pred.prob)
roc.gbmA <- roc(housing$price.new[-rowTrain], gbmA.pred.prob)
roc.gbmB <- roc(housing$price.new[-rowTrain], gbmB.pred.prob)

plot(roc.rpart)
plot(roc.ctree, add = TRUE, col = 2)
plot(roc.rf, add = TRUE, col = 3)
plot(roc.gbmA, add = TRUE, col = 4)
plot(roc.gbmB, add = TRUE, col = 5)</pre>
```

```
auc <- c(roc.rpart$auc[1], roc.ctree$auc[1],</pre>
         roc.rf$auc[1], roc.gbmA$auc[1], roc.gbmB$auc[1])
modelNames <- c("rpart_caret","ctree","rf","gbmA","gbmB")</pre>
legend("bottomright", legend = paste0(modelNames, ": ", round(auc,3)),
       col = 1:6, lwd = 2)
    0.8
Sensitivity
                                                                  rpart_caret: 0.885
                                                                  ctree: 0.885
                                                                  rf: 0.919
                                                                  gbmA: 0.924
                                                                  gbmB: 0.922
    0.0
                        1.0
                                              0.5
                                                                    0.0
```

Specificity