Illumina Genome Analyzer IIx for high throughput sequencing

Cosentino Cristian, PhD

Genomics and Bioinformatics unit Filarete Foundation – Milan (IT) cosentia@gmail.com

Summary

1 Towards NGS sequencing
2 NGS with Illumina GAIIx
Genome Analyzer IIx
3 Data management

Target enrichment

4

Summary

1	Towards NGS sequencing
2	NGS with Illumina GAIIx
3	Data management
4	Target enrichment

Next-generation sequencing platforms

Summary

	Towards NGS sequencing
2	NGS with Illumina GAIIx
3	Data management
4	Target enrichment

GAIIx instruments

Bioanalyzer 2100

Flow Cell

Cluster station

Paired-end module Linux server

Applications

de novo sequencing (whole-genome)

re-sequencing (whole-genome or targeted)

RNA-seq

smallRNA-seq

CHiP-seq

Single-read
Paired-end
Multiplexing

Parameter	Performance
Amplification	Bridge-PCR on solid-phase
Chemistry	SBS with reversible terminators
Cost	2 \$/Mbp

Advantages	Disadvantages
•Most widely used platform (> 90	•Low multiplexing capability
science/nature publication)	•Substitution errors
•Sample preparation automatable	
•SBS, real-time analysis and base calling are	
performed simultaneously to the run	
 Automated cluster generation procedure 	

Coverage estimation

Sample oreparation

Clusters amplification

Sequencing by synthesis

Analysis pipeline

READ LENGTH	RUN TIME (DAYS)	CLUSTERS PASSING FILTER	OUTPUT (GB)	THROUGHPUT (GB/DAY)	BASE CALLS WITH Q ≥30	RAW READ ACCURACY	% PERFECT READS
1 × 35 bp	~2	225-250 million	8.0–9.0	~4.0–4.5	75–90%	≥ 99%	≥ 90%
2 × 35 bp	~4	225-250 million	16.0–18.0	~4.0–4.5	75–90%	≥ 99%	≥ 90%
2 × 50 bp	~5	225-250 million	22.5-25.0	~4.5–5.0	75–90%	≥ 99%	≥ 85%
2 × 75 bp	~7.5	225-250 million	34.0-38.0	~4.5–5.0	70–85%	≥ 98.5%	≥ 80%
2 × 100 bp	~9.5	225-250 million	45.0–50.0	~4.75–5.25	≥ 70%	≥ 98%	≥ 70%
CAMDIEC							

SAMPLES

Throughput: eight channels per flow cell, up to 12 samples per channel using Illumina Multiplexing Reagents

Input requirement: 0.1–1.0 μg (single- and paired-end reads), 10 μg (Mate Pair reads)

Genomic DNA sample prep: Three hours hands-on, six hours total for single or paired-end libraries

GAIIx sequencing workflow

Sample preparation

Clusters amplification

Sequencing by synthesis

Analysis pipeline

Workbench

Cluster Station

Genome Analyzer

Linux Server

Library preparation

Sample preparation

Clusters amplification

Sequencing by synthesis

Library validation

Sample preparation

Clusters amplification

Sequencing by synthesis

Bioanalyzer 2100

GAIIx sequencing workflow

Sample preparation

Workbench

Clusters amplification

Cluster Station

Sequencing by synthesis

Genome Analyzer

Analysis pipeline

Linux Server

Sample preparation

Clusters amplification

Sequencing by synthesis

Cluster generation

Sample preparation

Clusters amplification

Sequencing by synthesis

Sample reparation

Clusters amplification

Sequencing by synthesis

Analysis pipeline

Denature dsDNA and wash original forward template; reverse template stays covalently attached to the array

Sample preparation

Clusters amplification

Sequencing by synthesis

Analysis pipeline

Double strand bridge is denatured and reverse as wel as forward fragments are covalently attached to the array

Sample preparation

Clusters amplification

Sequencing by synthesis

Analysis pipeline

Reverse strands fragments are cleaved and washed away

Sample preparation

Clusters amplification

Sequencing by synthesis

Sequencing primers start the SBS process

Sample preparation Clusters

amplification

Sequencing by synthesis

Analysis pipeline

Workbench

Cluster Station

Genome Analyzer

Linux Server

Sample preparation

Clusters amplification

Sequencing by synthesis

GAIIx optical path

Sample preparation

Clusters amplification

Sequencing by synthesis

Single-read sequencing workflow

Sample preparation

Clusters amplification

Sequencing by synthesis

Paired-end sequencing workflow

Sample preparation

Clusters amplification

Sequencing by synthesis

Paired-end strategy

Sample preparation

Clusters amplification

Sequencing by synthesis

Analysis pipeline

Paired-end sequencing works into GA and uses chemicals from PE module to perform cluster amplification of the reverse strand

Paired-end strategy

Sample preparation

Clusters amplification

Sequencing by synthesis

Reference

sequence

Sequence reads

Analysis pipeline

Single-read (read 1)

Paired-end (read 1 & read 2)

Sample preparation

Clusters amplification

Sequencing by synthesis

Analysis pipeline

Workbench

Cluster Station

Genome Analyzer

Linux Server

Firecrest and CASAVA

Analysis pipeline

Firecrest From image to intensity

Bustard

From intensity to reads

Base calls files

Maximum Threshold

Gerald/ELAND Alignment to genome

Assembly

GenomeStudio Data visualization

Sequence **ANALYSIS**

CASAVA Consensus assembly

GenomeStudio viewer

Sample preparation

Clusters amplification

Sequencing by synthesis

Analysis pipeline

Small RNA sequencing

Sample preparation

Clusters amplification

Sequencing by synthesis

Analysis pipeline

RNA sequencing

Analysis pipeline

DNA sequencing

GenomeStudio viewer

Summary

	Towards NGS sequencing
2	NGS with Illumina GAIIx
3	Data management
4	Target enrichment

High throughput data storage

1 - 6 Tb/FlowCell

High throughput data analysis

Summary

	Towards NGS sequencing
2	NGS with Illumina GAIIx
3	Data management
4	Target enrichment

High throughput sample preparation

Nature Methods, 2010, 7: 111-118

SureSelect target enrichment

Agilent SureSelect

Solution-phase capture with streptavidin-coated magnetic beads

Reported 60-80% of capture efficiency

The end