

FUNDAMENTALS OF DATA VISUALIZATION USING TABLEAU

LIVE SESSION ON 10TH JANUARY 2021

www.linkedin.com/in/aarthikumar

- Accountant + Data Scientist
- 10+ years of experience in DS
- Lead Data Scientist, Allianz Benelux
- Ambassador for Women in Data Science, a Stanford initiative

SESSION AGENDA

- Tableau public installation ensure everyone has installed
- Why data visualization is important?
- Data visualization the process
- A quick recap on the basics Data types and Scale of measurement
- Tableau
 - Introduction to the tool (GUI)
 - Various chart options
 - Dashboard
- Design principles

TABLEAU PUBLIC INSTALLATION

- Go to https://public.tableau.com/en-us/s/download
- Enter your email address and start downloading the file (Windows / Mac)

You'll be exploring in minutes

Create interactive graphs, stunning maps, and live dashboards in minutes. Save your viz to your Tableau Public profile, and share it anywhere on the web. Anyone can do it, it's that easy—and it's free.

WHY DATA VISUALIZATION

The greatest value of a picture is when it <u>forces</u> us to notice what we never expected to see.

—John Tukey

The human brain can process an entire image for as little as 13 milliseconds

About 80% of the information we take in, is by eye

The human brain processes visuals 60,000 times faster than words

WHY DATA VISUALIZATION?

DATA VISUALIZATION IS USED THROUGHOUT THE ANALYTICS MATURITY CURVE

HISTORY OF DATA VISUALIZATION – IT IS NOT A NEW FIELD

Some of the path breaking visualization in the history are made by -

- William Playfair (1759–1823)
- Florence Nightingale (1820–1910)
- John Snow (1813–1858)
- Charles Joseph Minard (1781–1870)
- Edmond Halley (1656–1742)
- Charles de Fourcroy (1766–1824)
- Luigi Perozzo (1856–1916)

JOHN SNOW (1813-1858)

CHARLES JOSEPH MINARD (1781–1870)

PROCESS OF DATA VISUALIZATION

Your data is only as good as your ability to understand and communicate it, which is why choosing the right visualization is essential.

KNOW YOUR DATA DATA TYPES & SCALE OF MEASUREMENT

DATA TYPES

SCALES OF MEASUREMENT

Nominal

 Nominal values represent discrete units and are used to label variables, that have no quantitative value

Ordinal

- Ordinal values represent discrete and ordered units.
- It is therefore nearly the same as nominal data, and that it is the ordering that matters

Interval

• Ordered units that have the same difference (interval). They don't have a true zero

Ratio

• The same as interval values, with the difference that they do have an absolute zero

VISUALIZATION TOOLS - LANDSCAPE

Power BI and
Tableau are the
leaders in the
Gartner magic
quadrant on BI
platforms

CHART TYPES (IN TABLEAU)

- 1. Text Table (Crosstab)
- 2. Heat Map
- 3. Highlight Table
- 4. Symbol Map
- 5. Filled Map (Area)
- 6. Pie Chart
- 7. Horizontal Bar Chart
- 8. Stacked Bar Chart
- 9. Side-by-Side Bar Chart
- 10. Treemap
- 11. Circle View

- 12. Side-by-Side Circle View
- 13. Line Charts (Continuous & Discrete)
- 14. Dual-Line Chart (Non-Synchronized)
- 15. Area Charts (Continuous & Discrete)
- 16. Scatter Plot
- 17. Histogram
- 18. Box-and-Whisker Plot
- 19. Gantt Chart
- 20. Bullet Graph
- 21. Packed Bubbles

BAR

 Bar charts are very versatile. They are best used to show change over time, compare different categories, or compare parts of a whole.

VARIATIONS OF BAR CHARTS

PAGE VIEWS, BY MONTH

VERTICAL (COLUMN CHART)

Best used for chronological data (time-series should always run left to right), or when visualizing negative values below the x-axis.

CONTENT PUBLISHED, BY CATEGORY

HORIZONTAL

Best used for data with long category labels.

STACKED BAR

Stacked

Best used when there is a need to compare multiple part-to-whole relationships. These can use discrete or continuous data, oriented either vertically or horizontally.

100% Stacked

 Best used when the total value of each category is unimportant and percentage distribution of subcategories is the primary message.

MONTHLY TRAFFIC, BY SOURCE

PERCENTAGE OF CONTENT PUBLISHED, BY MONTH

BAR CHART BEST PRACTICES

USE HORIZONTAL LABELS

Avoid steep diagonal or vertical type, as it can be difficult to read.

SPACE BARS APPROPRIATELY

Space between bars should be ½ bar width.

START THE Y-AXIS VALUE AT O

 Starting at a value above zero truncates the bars and doesn't accurately reflect the full value.

USE CONSISTENT COLORS

 Use one colour for bar charts. You may use an accent colour to highlight a significant data point. (unless colour is a dimension to display the data)

ORDER DATA APPROPRIATELY

Order categories alphabetically, sequentially, or by value.

PIE CHART

 Pie charts are best used for making part-to-whole comparisons with discrete or continuous data. They are most impactful with a small data set.

PIE CHART BEST PRACTICES

VISUALIZE NO MORE THAN 5 CATEGORIES PER CHART

• It is difficult to differentiate between small values; depicting too many slices decreases the impact of the visualization. If needed, you can group smaller values into an "other" or "miscellaneous" category, but make sure it does not hide interesting or significant information.

DON'T USE MULTIPLE PIE CHARTS FOR COMPARISON

Slice sizes are very difficult to compare side-by-side. Use a stacked bar chart instead.

MAKE SURE ALL DATA ADDS UP TO 100%

 Verify that values total 100% and that pie slices are sized proportionate to their corresponding value.

ORDER SLICES CORRECTLY

- There are two ways to order sections, both of which are meant to aid comprehension:
 - OPTION 1 CLOCKWISE
 - OPTION 2 COUNTER CLOCKWISE

LINE CHART

Line charts are used to show time-series relationships with continuous data. They
help show trend, acceleration, deceleration, and volatility.

DIRECT MARKETING VIEWS, BY DATE

LINE CHART BEST PRACTICES

INCLUDE A ZERO BASELINE IF POSSIBLE

 Although a line chart does not have to start at a zero baseline, it should be included if possible. If relatively small fluctuations in data are meaningful (e.g., in stock market data), you may truncate the scale to showcase these variances.

DON'T PLOT MORE THAN 4 LINES

If you need to display more, break them out into separate charts for better comparison.

USE SOLID LINES ONLY

Dashed and dotted lines can be distracting.

LABEL THE LINES DIRECTLY

This lets readers quickly identify lines and corresponding labels instead of referencing a legend.

USE THE RIGHT HEIGHT

 Plot all data points so that the line chart takes up approximately two-thirds of the y-axis' total scale.

AREA CHART

 Area charts depict a time-series relationship, but they are different than line charts in that they can represent volume.

AREA CHART

Best used to show or compare a quantitative progression over time.

STACKED AREA

Best used to visualize part-to-whole relationships, helping show how each category contributes to the cumulative total.

100% STACKED AREA

Best used to show distribution of categories as part of a whole, where the cumulative total is unimportant.

AREA CHART BEST PRACTICES

MAKE IT EASY TO READ

 In stacked area charts, arrange data to position categories with highly variable data on the top of the chart and low variability on the bottom.

START Y-AXIS VALUE AT O

Starting the axis above zero truncates the visualization of values.

DON'T DISPLAY MORE THAN 4 DATA CATEGORIES

Too many will result in a cluttered visual that is difficult to decipher

USE TRANSPARENT COLORS

 In standard area charts, ensure data isn't obscured in the background by ordering thoughtfully and using transparency.

DON'T USE AREA CHARTS TO DISPLAY DISCRETE DATA

The connected lines imply intermediate values, which only exist with continuous data.

SCATTER PLOT

Scatter plots show the relationship between items based on two sets of variables.
 They are best used to show correlation in a large amount of data.

REVENUE, BY PRODUCT FAMILY

SCATTER PLOT BEST PRACTICES

START Y-AXIS VALUE AT O

Starting the axis above zero truncates the visualization of values.

INCLUDE MORE VARIABLES

Use size and dot colour to encode additional data variables.

USE TREND LINES

These help draw correlation between the variables to show trends.

DON'T COMPARE MORE THAN 2 TREND LINES

Too many lines make data difficult to interpret.

HEAT MAP

 Heat maps display categorical data, using intensity of colour to represent values of geographic areas or data tables.

STATES WITH NEW SERVICE CONTRACTS

QUARTERLY SALES BY VEHICLE TYPE

Sample Size	F19Q1	F19Q3	F20Q1	F19Q1	F19Q3	F20Q1
Bike	50%	51%	47%	49%	47%	43%
	591	379	432	7,272	4,304	5,026
	0.5042	0.5134	0.4687	0.4641	0.3990	0.3785
Car	22%	19%	25%	27%	29%	30%
	255	139	226	3,969	2,681	3,502
	0.2177	0.1891	0.2450	0.2533	0.2485	0.2637
Horse	28%	30%	29%	24%	24%	27%
	326	219	264	3,547	2,207	3,115
	0.2781	0.2975	0.2862	0.2264	0.2046	0.2346

HEAT MAP BEST PRACTICES

USE A SIMPLE MAP OUTLINE

These lines are meant to frame the data, not distract

SELECT COLORS APPROPRIATELY

Some colours stand out more than others, giving unnecessary weight to that data. Instead, use a single colour with varying shade or a spectrum between two analogous colours to show intensity. Also remember to intuitively code colour intensity according to values.

CHOOSE APPROPRIATE DATA RANGES

 Select 3-5 numerical ranges that enable fairly even distribution of data between them.

FINDING THE STORY IN YOUR DATA							
FINDING THE STOR	Y IN YOUR DATA						

TRENDS, CORRELATION, OUTLIERS

DATA RELATIONSHIPS

- This is a simple comparison of the quantitative values of subcategories. Example: Number of visitors to various websites.
- This tracks changes in values of a consistent metric over time. Example: Monthly sales.
- This is data with two or more variables that may demonstrate a positive or negative correlation to each other. Example: Salaries according to education level
- This shows data distribution, often around a central value. Example: Heights of players on a basketball team.

DATA RELATIONSHIPS (CONTD.)

Deviation

 This examines how data points relate to each other, particularly how far any given data point differs from the mean. Example: Amusement park tickets sold on a rainy day vs. a regular day.

DASHBOARD GATHER YOUR CHARTS AND CREATE STORIES

DASHBOARD DESIGN PRINCIPLES

- Include text to explain your dashboard
- Each dashboard should be constructed based on a story (e.g. Sales performance by multiple dimensions like month, author, genre, book, territory, etc.)
- Do not clutter the dashboard
- Add filters on top of the dashboard (applicable to all charts)
- Build interaction in the charts add filters only if necessary
- Use colour legends next to the charts if there are more than one

BEST PRACTICES FOR BUILDING EFFECTIVE DASHBOARDS

In general

- Know your audience
- Limit the number of views & colours
- Add interactivity to encourage exploration
- Test your dashboard before deploying

Tableau specific

- Consider display size
- Plan for fast load times
- Leverage tooltips, the story within your story

CLOSING NOTES POINTS TO REMEMBER WHILE CREATION VISUALS

10 DATA DESIGN DOS AND DON'TS

Dos

- Do use one colour to represent each category.
- Do order data sets using logical hierarchy.
- Do highlight important or interesting information.
- Do visualize data in a way that is easy for readers to compare values.
- Do use icons to enhance comprehension and reduce unnecessary labelling.

Don'ts

- Don't use high contrast colour combinations such as red/green or blue/yellow unless you want to show contrasting information (+ve / -ve)
- Don't use 3D charts. They can skew perception of the visualization.
- Don't add chart junk. Unnecessary illustrations, drop shadows, or ornamentations distract from the data.
- Don't use more than 6 colours in a single layout
- Don't use distracting fonts or elements (such as bold, italic, or underlined text).

COMMON MISTAKES TO AVOID

- Trying to answer too many questions with a single dashboard
- Using metrics no one understands
- Cluttering the dashboard with low-value graphics and widgets
- Not viewing your dashboard as your users will
- Forgetting to check in with your audience

Sources: Bank of Greece; and IMF staff calculations.

THANK YOU, QUESTIONS?