

											l									
	1	_						_	_	-	-	-	\rightarrow		_	-		~	_	7
2.0 -	1	_	_	_		_				_	-	-	\rightarrow		_	~	~	~	1	1
	1	7	\	1	1	1	_	_	_			-		-	~	~	1	1	1	1
1.0 -	7	7	7	7	7	7	7	7	7	\				~	1	1	1	1	1	1
	Ĭ	Ĭ	Ì	Ĵ	Ì	1	1	1	2	2		*	≪—	*	*	*	*	*	*	1
	y /	<i>y</i>	/	1	* /	/	/	/		, , , , , , , , , , , , , , , , , , ,	_	4	◄—	*	₩	*	*	*	*	*
0.0										-	-				*	*-	₩	*	*	R_
	/						_	_	_	4	4-	4-	◄—	4	4	4	*	*	*	*
							-	_	_			4	4	4	4	4	4	4	*	*
-1.0 -	*	*	*	_											_	_	-	-	4	
										4		-	_							
							-	4	4	4	4	4	◄—	-	4	4	4	4		
-2.0 -				4	4	4	4	4	4	4	-	-	-	◄	4	4	4	4	4	*
	-	4	4	4	4	4	4	4	4	4	4	4	◄—	-	4	4	4	4	4	4
-3.0 -	*	-	4	4	4	4	4	4	4	4-	4-	-	←	←	-	-	4	4	4	*
-4.	.0	-3.5	-3.0	-2.5	-2	2.0	-1.5	-1.0	-0.5	0	.0	0.5	1.0	1.5	2.	.0	2.5	3.0	3.5	4.0

✓ Τα διαγράμματα (α) και (δ) αντιστοιχούν σε συστήματα διαφορικών εξισώσεων όπου:

*1/1

- Και στις δύο περιπτώσεις υπάρχει ευσταθές σημείο ισορροπίας.
- Και στις δύο περιπτώσεις υπάρχει ασταθές σημείο ισορροπίας.
- Στην πρώτη περίπτωση υπάρχει ασταθές σημείο ισορροπίας και στην δεύτερη ευσταθές.
- Στην πρώτη περίπτωση υπάρχει ευσταθές σημείο ισορροπίας και στην δεύτερη ασταθές.

- Και στα δύο υπάρχει ευσταθές σημείο ισορροπίας.
- Και στα δύο υπάρχει ασταθές σημείο ισορροπίας.
- Στο (β) υπάρχει ασταθές σημείο ισορροπίας και στο (γ) ισορροπία σαγματικού σημείου.
- Στο (β) υπάρχει ευσταθές σημείο ισορροπίας και στο (γ) ευσταθές σημείο ισορροπίας.

Σωστή απάντηση

Στο (β) υπάρχει ασταθές σημείο ισορροπίας και στο (γ) ισορροπία σαγματικού σημείου.

- Υπάρχει ευσταθής εστία.
- Υπάρχει ασταθές σημείο ισορροπίας.
- Υπάρχει ισορροπίας σαγματικού σημείου.
- Υπάρχει ασταθής εστία.

1/1

$$\dot{y}_1 = y_1 - y_2 \\ \dot{y}_2 = y_1 + y_2$$

 $y_1(t) = C_1 e^t + C_2 e^{-2t}$ $y_2(t) = C_1 e^{-2t} + C_2 e^t$

$$\dot{y}_1 = -y_1 - 2y_2
\dot{y}_2 = y_1 + y_2$$

$$y_1(t) = C_1 e^t + C_2 e^{-2t}$$

 $y_2(t) = C_1 e^{-2t} + C_2 e^t$

Το διάγραμμα που αντιστοιχεί στο δοσμένο σύστημα διαφορικών εξισώσεων είναι το:

*0/1

$$\dot{y}_1 = -2y_1 - 2y_2 + 1$$

$$\dot{y}_2 = y_1 - y_2 - 1$$

- (a).
- (β).
- (ε).
- (δ).

Σωστή απάντηση

(δ).