Аппроксимация квадратного корня

Мироненко Фома 431

28.09.21

Для неотрицательного вещественного числа $c \in \mathbb{R}_+ \cup \{0\}$ рассмотрим последовательность чисел $y_n \in \mathbb{R}$, заданную рекуррентным соотношением:

$$y_n = \begin{cases} 1, & n = 0\\ \frac{1}{2} \left(y_{n-1} + \frac{c}{y_{n-1}} \right), & n > 0 \end{cases}$$
 (1)

Данная последовательность задаёт динамическую систему с дискретным временем $T = \mathbb{Z}_+ \cup \{0\}$, фазовым пространством $X = \mathbb{R}$ и правилом эволюции, задаваемым формулой (1).

Покажем, что данная последовательность аппроксимирует величину \sqrt{c} .

Лемма. Для числа $c \in \mathbb{R}_+ \cup \{0\}$, последовательность y_n , заданная рекуррентным соотношением (1) сходится κ числу \sqrt{c} , и κ числу $-\sqrt{c}$, если в формуле (1) положить $y_0 = -1$.

Доказательство

Докажем Лемму для неортицательного числа c, и тогда доказательство для отрицательного числа получим, произведя замену $z_n:=-y_n$. При c=0 имеем $y_n=2^{-n} \xrightarrow{n\to\infty} 0=c$. Рассмотри случай c>0. Пусть уже известно, что существует предел

$$\exists Y = \lim_{n \to \infty} y_n \neq 0 \tag{2}$$

Тогда переходя к пределу в (1), получаем

$$2Y = Y + \frac{c}{Y} \tag{3}$$

откуда и выводим искомое тождество $Y = \sqrt{c}$, поскольку очевидно, что все y_n неотрицательны. Остаётся доказать (2).

По индукции покажем, что при n>0: $y_n\geqslant \sqrt{c},\ y_n\searrow$, откуда следует существование предела.

$$y_1 = \frac{1}{2} + \frac{1}{2}c \geqslant \sqrt{c}$$

что верно поскольку $1+c\geqslant 2\sqrt{c} \;\;\Leftrightarrow\;\; (1-\sqrt{c})^2\geqslant 0.$

$$y_n = \frac{1}{2}y_{n-1} + \frac{1}{2}\frac{c}{y_{n-1}} \begin{cases} \leqslant \frac{1}{2}y_{n-1} + \frac{1}{2}\sqrt{c} \leqslant y_{n-1} \\ \geqslant \sqrt{c} \end{cases}$$

Верхние неравенства верны в силу индукционного предположения: $y_{n-1}\geqslant \sqrt{c}$. Нижнее неравенство верно так как

$$y_{n-1} + \frac{c}{y_{n-1}} \ge 2\sqrt{c} \iff y_{n-1}^2 - 2\sqrt{c} \cdot y_{n-1} + c \ge 0 \iff (y_{n-1} - \sqrt{c})^2 \ge 0$$

Таким образом, последовательность y_n является ограниченной снизу и невозрастающей; у неё существует предел (2) и он равняется \sqrt{c} из (3).