CS5805: Machine Learning I

Lecture: Maximum Likelihood Estimation

Reza Jafari, Ph.D

Collegiate Associate Professor rjafari@vt.edu

October 22, 2024

Modeling steps

Maximum likelihood Estimation

- There are many methods to estimate unknown parameters from data.
 One of them is called Maximum Likelihood Estimation (MLE).
- For which unknown parameter θ does the observed data **y** have the biggest probability?
- MLE is a method of estimating the parameters of probability distribution by maximizing a likelihood function, so that under the assumed statistical model the observed data is most probable.
- The goal of maximize likelihood estimation is to find the values of the model parameters that maximize the likelihood function over the parameter space.

Bayes Theorem

Setting up Problem

Let θ be the unknown parameter and \mathbf{y} be the set of observations. Using the *Bayes Theorem*:

$$P(\theta|\mathbf{y}) = \frac{P(\mathbf{y}|\theta)P(\theta)}{P(\mathbf{y})}$$

$$posterior = \frac{\textit{Likelihood} \times \textit{prior}}{\textit{evidence}}$$

Basic Idea of MLE

- Suppose we have a random samples $(y_1, y_2,...,y_T)$ whose assumed probability distribution depends on some unknown parameter θ .
- It seems reasonable that a good estimate of the unknown parameter θ would be the value of θ that **maximizes** the probability $P(\mathbf{y}|\theta)$, the **likelihood**, of getting the data we observed.
- In a nutshell, that is the idea behind the method of maximum likelihood estimation.
- MLE is the most general estimator for parameter estimation.

How to implement MLE

Let suppose the joint probability density function of the measurements are given as :

$$f_{Y_1,Y_2,...,Y_T}(\lambda_1,\lambda_2,...,\lambda_T;\theta) = f_{Y_1}(\lambda_1;\theta).f_{Y_2}(\lambda_2;\theta),...,f_{Y_T}(\lambda_T;\theta)$$

② Replace dummy variable by the measurements to construct likelihood function (function of θ):

$$L(\mathbf{y}|\theta) = f_{Y_1}(y_1;\theta).f_{Y_2}(y_2;\theta),...,f_{Y_T}(y_T;\theta)$$

③ For simplifying calculations, it is customary to work with the natural logarithm of L as the likelihood function. Hence, $\hat{\theta}_{MLE}$ calculated as :

$$egin{aligned} \hat{ heta}_{ extit{MLE}} = rgmax \ L(\mathbf{y}| heta) & \textit{or} \quad rgmax \ \ln(L(\mathbf{y}| heta)) \end{aligned}$$

MLE

- If $ln(L(\mathbf{y}|\theta))$ is used to find the θ_{MLE} , this is called **log-likelihood**.
- In order to find θ_{MLE} , the necessary condition is :

$$\frac{\partial L(\mathbf{y}|\theta)}{\partial \theta} = 0$$

which is called likelihood equation. $\hat{\theta}_{MLE}$ is the solution to above equation.

Example

Suppose our data $y_1, ..., y_T$ are independently drawn from a uniform distribution U(a, b). Find the MLE of \hat{a}, \hat{b} .

Example

Suppose that we have observed random samples $y_1, y_2, ..., y_N$ where $y_i \sim N(\theta_1, \theta_2)$. Find the maximum likelihood estimator for θ_1, θ_2

$$f_y(\lambda) = \frac{1}{\theta_2 \sqrt{2\pi}} e^{\frac{-(\lambda - \theta_1)^2}{2\theta_2^2}}$$