Time Complexity
Content
— Basics
— Count of factor
— Big O
TLE
Bitwise Operators
Rules
_
1> Private chat 10 answer. 2> Question toub to out questions
·
3> Quizzer don't answer in chat.
u> Be patient.

Sum of first n natural numbers
$$?$$
 $S = 1 + 2 + ... + N - 1 + N$
 $S = N + N - 1 + ... + 2 + 1$
 $2S = (N+1) + (N+1) ... + (N+1) + (N+1)$
 $N \text{ times}$.

 $2S = N * (N+1)$
 $S = N * (N+1)$
 S

```
Factors
          If i u a factor of N
           N there is no remainder.
How to programatically check
       (if N\% i = = 0)
Count factors of N = 24
                                  am = 8
     1 2 3 4 8 6 7 8 8 12 24
Count factors of N = 10
     1 2 5 10 am = 4
   Given N
   min factor = 1
   max factor = N
Pseudocode to count factors of given N
   count = 0
   for i \longrightarrow 1 to N q
     if(N\% i = = 0) \quad count + +
   neturn count
```

```
Lets say you submitted the above code.
     I sec to proces 108 iterations of loop count?
                 #iteration 108
  N = 108
                                     time = 1 sec
                 # Herationy 109
  N = 109
                                     time = 10 &c
                 # iterations 1018
  N = 1018
                                     time = 10^{10}
                                      10 10 % 10 8 iteration
                                         10 bec.
                             \approx 317 yes
       iteration = >1 sec
        iteration =
                        109
                              seconds
         (09 iterations — 10 * (108 iterations)
                                        1 sec
Observation
           a * b = N \qquad a < = b
 If a is known what is the value of b =
```

N = 24	N = 10	
a b	1 * 10	
<u>1 * 2 4</u>	2 * 5	
2 * 2		
3 * 8		
Y * 6		
$a_{\min} = 1$	q = N	
$q_{\text{max}} = \sqrt{N}$	a	
	a*a = N	
	$a = \sqrt{N}$	
Optimised		
count = 0		
for $l \rightarrow 1$ to \sqrt{N}		
if (N% i ==0) {		
count += 2		
13	N = g	
13	1 9 +2	
print (count)	3 3 +2	
One was the beauty of the	h a a a	
After you write the code thin	it of eage cones.	
The above code doesn't work		
	ect square.	

```
Optimised
```

count = 0

```
for \[ifncm] \rightarrow I to \[ifncm] \[ifncm] \] for \[ifncm] \[ifncm] \] for \[ifncm] \[ifncm] \] if \[ifncm] \[ifncm] \] where \[ifncm] \[ifncm] \] count \[ifncm] \] else \[ifncm] \[ifncm] \] else \[ifncm] \[ifncm] \] print \[ifncm] \] count \[ifncm] \]
```

Total no of iterations for above code = IN iterations

$$N = 10^8$$
 # iteration = 10^4 time = 10^{-4} sec

$$N = 10^{18}$$
 # iteration = $\sqrt{10^{18}}$ time = 10^9 kcs = 10^9

317 ycs to 10 sec108 iteration = 1 sec ...

$$10^8$$
 iteration = 1 sec
1 iteration = 1 secs

$$10^{4}$$
 iteration = 10^{4} = 10^{-4} secu

10

Follow up — Check if a given N is prime or not. Exactly 2 factory. HW $i = N \quad // N > 0$ while (i>1) f 1 iteration — $\left(\frac{N}{2}\right) = \frac{N}{V} = \frac{N}{2^2}$ 2 iteration —> 3 iteration ->> N K iteration ---> $2^k = N$ log_2 K $log(2^k) = log N$ $r \log(2) = \log N$ K = log N $log_b C = a$ if $b^a = c$

```
for
                     10
                          N
                             \mathcal{N}
                   \rightarrow 1 to
                 print (itj)
                             # iteration
                    NJ
                                 N
                    N
                 N
                                            N times
                    N
                                 N
                  [I N]
                                  N
         N
                                 N*N
                    to N-1 of
for
        for j \longrightarrow 0 to if
                print (i+j)
         1 3
                                  iteration
                              #
                       0
           0
                                  2
                                              N*(N+1)
                  CO
                                   3
                        2]
                   TO
           N-1
                        N-1
                    To
```

NOTE: we always take worst case # iteration

