Opgave 2:

basistilfælde:
$$N=1$$
 $(x')'=1=1 \cdot x'^{-1}$

Incluktionstrin: Antag., for $n \ge 2$ $(x^{n-1})'=(n-1) \cdot x^{n-2}$

Vi vil gerne vise, $(x^n)'=n \cdot x^{n-1}$
 $(x^n)'=(x^{n-1}\cdot x)'$
 $=(x^{n-1})'\cdot x+(x^{n-1})\cdot x'$
 $=(n-1)\cdot x^{n-2}\cdot x+(x^{n-1})\cdot 1$
 $\Rightarrow \text{brug antagelse}$
 $=(n-1)\cdot x^{n-1}$

Opgane 3.

basistilfolde:
$$n=1$$
 $\sum_{k=1}^{1} (2k-1)=1=1^{2}$

Induktionstrin: Antag for $n \ge 2$. $\sum_{k=1}^{n-1} (2k-1)=(n-1)^{2}$

Vi skal vise $\sum_{k=1}^{n} 2k-1=n^{2}$.

$$\sum_{k=1}^{n} (2k-1)=\sum_{k=1}^{n-1} (2k-1)+2n-1$$

$$= (n-1)^{2}+2n-1$$

$$= n^{2}$$

antagelse.

 $\sum_{k=1}^{n} (2k-1)=1$
 $\sum_{k=1}^{n-1} (2k-1)+2n-1$
 $\sum_{k=1}^{n-1} (2k-1)=1$
 $\sum_{k=1}^{n-1} (2k-1)=1$

Opgave 4:

$$B$$
 $n=0$ $\ln(c^0) = 0 \cdot \ln(c)$
 $Antag$ for $n \ge e$, $\ln(c^{n-1}) = (n-1)\ln(c)$, vi skal vise $\ln(c^n) = n \ln(c)$
 $\ln(c^n) = \ln(c^{n-1} \cdot c)$
 $= \frac{\ln(c^{n-1}) + \ln(c)}{\ln(c) + \ln(c)}$ \Rightarrow brug antagelse
 $= n \ln(c)$

Opgave 5.

I Antag for
$$n \ge 3$$
. $a \cdot (b_1 + b_2 + \cdots + b_{n-1}) = a \cdot b_1 + \cdots + ab_{n-1}$, vi skal vise $a \cdot (b_1 + b_2 + \cdots + b_n) = a \cdot b_1 + \cdots + ab_n$

$$a (b_1 + b_2 + \cdots + b_n)$$

$$= a \cdot (b_1 + b_2 + \cdots + b_{n-1}) + b_n$$

$$= a \cdot (b_1 + b_2 + \cdots + b_{n-1}) + a \cdot b_n$$

= a.b. + ab. + ... + a.bn = brug antagelse.

Opgone 6.

Antag for
$$n \ge 2$$
, $|+r+\cdots+r^{n-1}| = \frac{r^n-1}{r-1}$

Vi skal vise $|+r+\cdots+r^n| = \frac{r^{n+1}-1}{r-1}$

($|+r+\cdots+r^{n-1}|+r^n| = \frac{r^n-1}{r-1}+r^n$ a brug antagelse

$$= \frac{r^n-1+r^{n+1}-r^n}{r-1}$$

I Antag for
$$n \ge 2$$
 $\sqrt{2+\sqrt{2+2}} = a_{n-1} < 2$
 $\sqrt{2}$ $\sqrt{2}$

Opgave 8.

$$\sum_{k=1}^{n} \frac{1}{k(k+1)} = \frac{1}{k} - \frac{1}{k+1}$$

$$\sum_{k=1}^{n} \frac{1}{k(k+1)} = (\frac{1}{1} - \frac{1}{2}) + (\frac{1}{2} - \frac{1}{3}) + (\frac{1}{3} - \frac{1}{4}) + \dots + (\frac{1}{14} - \frac{1}{14}) = 1 - \frac{1}{14}$$