#### Neural Networks: Part I

Daniel Yukimura

yukimura@impa.br

August 29, 2018

## Neural Networks I: Fundamentals

Goal: Learn a Parametric Function.



- $\theta \in \Theta$ : function parameters (these are learned).
- $\mathcal{X}$ : input space.
- $\mathcal{Y}$ : outcome space.

#### The Fundamental Building Block of Deep Learning



#### The Fundamental Building Block of Deep Learning

Processing units biologically inspired in neurons.



Figure: Neuron



Figure: (Artificial) Neuron

 There is no clear correspondence between Deep Learning and how the human brain works!

Rosenhlatt 1957 Neural Networks: Part I

**Model**: A parametric function  $\phi : \mathbb{R}^k \to \mathbb{R}$ , given by



- activation function:  $\sigma : \mathbb{R} \to \mathbb{R}$  (usually non-linear).
- parameters:  $w = (w_1, \dots, w_k) \in \mathbb{R}^k$  and  $b \in \mathbb{R}$



- activation function:  $\sigma : \mathbb{R} \to \mathbb{R}$  (usually non-linear).
- parameters:  $w = (w_1, \dots, w_k) \in \mathbb{R}^k$  and  $b \in \mathbb{R}$

**Model:** A parametric function  $\phi : \mathbb{R}^k \to \mathbb{R}$ , given by Is useful to look at it as a **feedforward flow!** 



- activation function:  $\sigma : \mathbb{R} \to \mathbb{R}$  (usually non-linear).
- parameters:  $w = (w_1, \dots, w_k) \in \mathbb{R}^k$  and  $b \in \mathbb{R}$

Neural Networks: Part I The Perceptron 7 / 40



- activation function:  $\sigma : \mathbb{R} \to \mathbb{R}$  (usually non-linear).
- parameters:  $w = (w_1, \dots, w_k) \in \mathbb{R}^k$  and  $b \in \mathbb{R}$



- activation function:  $\sigma : \mathbb{R} \to \mathbb{R}$  (usually non-linear).
- parameters:  $w = (w_1, \dots, w_k) \in \mathbb{R}^k$  and  $b \in \mathbb{R}$



- activation function:  $\sigma : \mathbb{R} \to \mathbb{R}$  (usually non-linear).
- parameters:  $w = (w_1, \dots, w_k) \in \mathbb{R}^k$  and  $b \in \mathbb{R}$

#### Reassessing Linear Models:

The addition of an **activation function** is the first step on rising model capacity.



Neural Networks: Part I The Perceptron 11 / 40

#### Reassessing Linear Models:

The addition of an **activation function** is the first step on rising model capacity.



Neural Networks: Part I The Perceptron 12 / 40

#### Reassessing Linear Models:

The addition of an **activation function** is the first step on rising model capacity.



Neural Networks: Part I The Perceptron 13 / 40

#### **Common Activation Functions**

# Rectified Linear Unit (ReLU)

$$\sigma(\mathbf{z}) = \max(0, \mathbf{z})$$



## Sigmoid Function

$$\sigma(\mathbf{z}) = \frac{1}{1 + \mathbf{e}^{-\mathbf{z}}}$$



#### Hyperbolic Tangent

$$\sigma(\mathbf{z}) = \frac{e^{\mathbf{z}} - e^{-\mathbf{z}}}{e^{\mathbf{z}} + e^{-\mathbf{z}}}$$



### Example: Binary Classification/Logistic Regression

The Perceptron was proposed as a model for **binary classification**. Originally it used the **step function** as activation.





Neural Networks: Part I The Perceptron 15 / 40

#### Example: Binary Classification/Logistic Regression

The Perceptron was proposed as a model for **binary classification**. Originally it used the **step function** as activation.





Is hard to learn without differentiability!

Neural Networks: Part I The Perceptron 16 / 40

#### Example: Binary Classification/Logistic Regression

In **logistic regression** we model the posterior distribution  $p(y \mid x)$  by smoothly squeezing the linear model into a probability distribution.

$$p_w(y = 1 \mid x) = \operatorname{sigm}(w^T x)$$
$$= \frac{1}{1 + e^{-w^T x}}$$



*meaning*: The probability that x belongs to the class 1.

Neural Networks: Part I The Perceptron 17 / 40

#### Example: The XOR function

- The Perceptron is unnable to learn the exclusive or (XOR) function!
- The classes can't be separated by half-spaces (linear models).

| $x_1$ | $x_2$ | y |
|-------|-------|---|
| 0     | 0     | 0 |
| 0     | 1     | 1 |
| 1     | 0     | 1 |
| 1     | 1     | 0 |

Table: 
$$y = x_1 \oplus x_2$$



#### How to combine neurons to build more expressive models?

**Feedforward Neural Network (FNN):** We combine neurons layerwise as vertices of a directed graph.



• 
$$h_j = \sigma\left(\sum_{i=1}^{n_0} w_{i,j}^{(1)} x_i + b_j\right)$$

• 
$$y_k = \sum_{i=1}^{n_1} w_{j,k}^{(2)} h_i$$

#### How to combine neurons to build more expressive models?

**Feedforward Neural Network (FNN):** We combine neurons layerwise as vertices of a directed graph.



• 
$$h_j = \sigma\left(\sum_{i=1}^{n_0} w_{i,j}^{(1)} x_i + b_j\right)$$

• 
$$y_k = \sum_{j=1}^{n_1} w_{j,k}^{(2)} h_i$$

· Forward propagation

#### How to combine neurons to build more expressive models?

**Feedforward Neural Network (FNN):** We combine neurons layerwise as vertices of a directed graph.



• 
$$h_j = \sigma\left(\sum_{i=1}^{n_0} w_{i,j}^{(1)} x_i + b_j\right)$$

• 
$$y_k = \sum_{i=1}^{n_1} w_{j,k}^{(2)} h_i$$

· Forward propagation

#### How to combine neurons to build more expressive models?

**Feedforward Neural Network (FNN):** We combine neurons layerwise as vertices of a directed graph.



• 
$$h_j = \sigma\left(\sum_{i=1}^{n_0} w_{i,j}^{(1)} x_i + b_j\right)$$

• 
$$y_k = \sum_{j=1}^{n_1} w_{j,k}^{(2)} h_i$$

Forward propagation

#### How to combine neurons to build more expressive models?

**Feedforward Neural Network (FNN):** We combine neurons layerwise as vertices of a directed graph.



• 
$$h_j = \sigma\left(\sum_{i=1}^{n_0} w_{i,j}^{(1)} x_i + b_j\right)$$

• 
$$y_k = \sum_{j=1}^{n_1} w_{j,k}^{(2)} h_i$$

· Forward propagation

#### How to combine neurons to build more expressive models?

**Feedforward Neural Network (FNN):** We combine neurons layerwise as vertices of a directed graph.



• 
$$h_j = \sigma\left(\sum_{i=1}^{n_0} w_{i,j}^{(1)} x_i + b_j\right)$$

• 
$$y_k = \sum_{j=1}^{n_1} w_{j,k}^{(2)} h_i$$

· Forward propagation

#### How to combine neurons to build more expressive models?

**Feedforward Neural Network (FNN):** We combine neurons layerwise as vertices of a directed graph.



• 
$$h = \sigma \left( W^{(1)} x + b \right)$$

• 
$$y = W^{(2)}^T h$$

· Matrix notation is useful!

#### How to combine neurons to build more expressive models?

**Feedforward Neural Network (FNN):** We combine neurons layerwise as vertices of a directed graph.



- $h = \sigma \left( W^{(1)} x + b \right)$
- $y = W^{(2)}^T h$
- Universal Approximation Theorem: Given enough neurons in a hidden layer, and a non-linear increasing activation function, one can approximate any Borel measurable function (see [ref]).

#### Do we need more layers?



- Using more layers seems to allow more capacity while using fewer neurons, see [ref].
- There are many cases of success by using more layers.
- Deeper networks are harder to train!

#### Do we need more layers?



- Using more layers seems to allow more capacity while using fewer neurons, see [ref].
- There are many cases of success by using more layers.
- Deeper networks are harder to train!

#### Do we need more layers?



- Using more layers seems to allow more capacity while using fewer neurons, see [ref].
- There are many cases of success by using more layers.
- Deeper networks are harder to train!

Neural Networks: Part I

#### Do we need more layers?



- $h^{(0)} = x$ ,  $h^{(\ell)} = \sigma \left( W^{(\ell)^T} h^{(\ell-1)} + b^{(\ell)} \right)$ ,  $\ell \in [L-1]$
- $\hat{y} = f(x, \theta) = W^{(l)^T} h^{(l-1)}$  (sometimes  $\hat{y} = \sigma(\dots)$ ).
- We denote  $\theta_\ell=(W^{(\ell)},b^{(\ell)})$  the parameters of layer  $\ell$ , and  $\theta=(\theta_1,\ldots,\theta_{\it L})$

### **Risk Minimization**

#### Recall:

We want to find the network weights that achieve the lowest risk value.

$$\begin{split} \hat{\theta} &= \underset{\theta \in \Theta}{\operatorname{argmin}} \, R_n(\theta) \\ &= \underset{\theta \in \Theta}{\operatorname{argmin}} \, \frac{1}{n} \sum_{i=1}^n \ell\left( f(x_i, \theta) \, , y_i \right) \end{split}$$

**Example:** For  $L_2$  regression we have

$$R_n(\theta) = \frac{1}{n} \sum_{i=1}^n \|f(x_i, \theta) - y_i\|_2^2$$

• When modelling posterior distributions  $p_{\theta}(y|x)$  is useful to look at the likelihood function

$$\mathcal{L}_n(\theta) = p_{\theta}(\mathcal{D}) = \prod_{i=1}^n p_{\theta}(x_i, y_i)$$

- Maximizing  $\mathcal{L}_n(\theta)$  means finding  $p_{\theta}$  that best represents the data
- · But, in the supervised problem we can consider the alternative form

$$\mathcal{L}_n(\theta) = \prod_{i=1}^n p_\theta \left( y_i \mid x_i \right).$$

• When modelling posterior distributions  $p_{\theta}(y|x)$  is useful to look at the likelihood function

$$\mathcal{L}_n(\theta) = p_{\theta}(\mathcal{D}) = \prod_{i=1}^n p_{\theta}(x_i, y_i)$$

- Maximizing  $\mathcal{L}_n(\theta)$  means finding  $p_{\theta}$  that best represents the data.
- · But, in the supervised problem we can consider the alternative form

$$\mathcal{L}_n(\theta) = \prod_{i=1}^n p_\theta (y_i \mid x_i).$$

• When modelling posterior distributions  $p_{\theta}(y|x)$  is useful to look at the likelihood function

$$\mathcal{L}_n(\theta) = p_{\theta}(\mathcal{D}) = \prod_{i=1}^n p_{\theta}(x_i, y_i)$$

- Maximizing  $\mathcal{L}_n(\theta)$  means finding  $p_{\theta}$  that best represents the data.
- But, in the supervised problem we can consider the alternative form

$$\mathcal{L}_n(\theta) = \prod_{i=1}^n p_\theta (y_i \mid x_i).$$

• The negative log-likelihood translates into the risk problem

$$-\frac{1}{n}\log\left(\mathcal{L}_n(\theta)\right) = \frac{1}{n}\sum_{i=1}^n -\log p_\theta\left(y_i\mid x_i\right)$$

 Therefore, the Maximum Likelihood Estimator (MLE) can be obtained through minimizing such risk

$$\hat{\theta} = \underset{\theta \in \Theta}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} -\log p_{\theta} (y_i \mid x_i)$$

The negative log-likelihood translates into the risk problem

$$-\frac{1}{n}\log\left(\mathcal{L}_n(\theta)\right) = \frac{1}{n}\sum_{i=1}^n -\log p_\theta\left(y_i\mid x_i\right)$$

• Therefore, the Maximum Likelihood Estimator (MLE) can be obtained through minimizing such risk

$$\hat{\theta} = \underset{\theta \in \Theta}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} -\log p_{\theta} (y_i \mid x_i)$$

#### Example: Binary Classification/Logistic Regression

• Observe that in the binary classification case  $y_i \in \{0,1\}$  we can write the posterior as

$$p_{\theta}(y_i \mid x_i) = f(x_i, \theta)^{y_i} (1 - f(x_i, \theta))^{(1-y_i)}$$

Implying

$$\log p_{\theta}(y_i \mid x_i) = y_i \log (f(x_i, \theta)) + (1 - y_i) \log (1 - f(x_i, \theta))$$

#### Example: Binary Classification/Logistic Regression

• Observe that in the binary classification case  $y_i \in \{0,1\}$  we can write the posterior as

$$p_{\theta}(y_i \mid x_i) = f(x_i, \theta)^{y_i} (1 - f(x_i, \theta))^{(1-y_i)}$$

Implying

$$\log p_{\theta}\left(y_{i}\mid x_{i}\right)=y_{i}\log\left(f(x_{i},\theta)\right)+\left(1-y_{i}\right)\log\left(1-f(x_{i},\theta)\right)$$

#### Example: Binary Classification/Logistic Regression

• The resulting loss is called the Cross Entropy Loss

$$R_n(\theta) = \frac{1}{n} \sum_{i=1}^n y_i \log (f(x_i, \theta)) + (1 - y_i) \log (1 - f(x_i, \theta))$$

• The next question is how to actually optimize such functions.

#### Example: Binary Classification/Logistic Regression

• The resulting loss is called the Cross Entropy Loss

$$R_n(\theta) = \frac{1}{n} \sum_{i=1}^n y_i \log (f(x_i, \theta)) + (1 - y_i) \log (1 - f(x_i, \theta))$$

• The next question is how to actually optimize such functions.

### Gradient Descent

The classical gradient descent (GD) consists on the iteration

$$\theta_{t+1} = \theta_t - \alpha \nabla L(\theta_t)$$

for some initial configuration  $\theta_0$  and learning rate  $\alpha > 0$ .



- Let  $L(\theta) = c(f(x, \theta))$ , where the cost function c might depend on the label y or other parameters, but for the derivation purpose they are omitted.
- How does a small change in the parameters  $\theta_{\ell}$  affect the loss L?
- Observe that  $L(\theta) = L(h^{(\ell)}(h^{(\ell-1)}, \theta_\ell), \theta_{\ell+1}^L)$ , then

$$\frac{\partial L}{\partial \theta_{\ell}} = \sum_{j=1}^{|H_{\ell}|} \frac{\partial L}{\partial h_{j}^{(\ell)}} \cdot \frac{\partial h_{j}^{(\ell)}}{\partial \theta_{\ell}}$$

- Let  $L(\theta) = c(f(x, \theta))$ , where the cost function c might depend on the label y or other parameters, but for the derivation purpose they are omitted.
- How does a small change in the parameters  $\theta_{\ell}$  affect the loss L?
- Observe that  $L(\theta) = L(h^{(\ell)}(h^{(\ell-1)}, \theta_\ell), \theta_{\ell+1}^L)$ , then

$$\frac{\partial L}{\partial \theta_{\ell}} = \sum_{j=1}^{|H_{\ell}|} \frac{\partial L}{\partial h_{j}^{(\ell)}} \cdot \frac{\partial h_{j}^{(\ell)}}{\partial \theta_{\ell}}$$

- Let  $L(\theta) = c(f(x, \theta))$ , where the cost function c might depend on the label y or other parameters, but for the derivation purpose they are omitted.
- How does a small change in the parameters  $\theta_{\ell}$  affect the loss *L*?
- Observe that  $L(\theta) = L(h^{(\ell)}(h^{(\ell-1)}, \theta_\ell), \theta_{\ell+1}^L)$ , then

$$\frac{\partial L}{\partial \theta_{\ell}} = \sum_{j=1}^{|H_{\ell}|} \frac{\partial L}{\partial h_{j}^{(\ell)}} \cdot \frac{\partial h_{j}^{(\ell)}}{\partial \theta_{\ell}}$$

- Let  $L(\theta) = c(f(x, \theta))$ , where the cost function c might depend on the label y or other parameters, but for the derivation purpose they are omitted.
- How does a small change in the parameters  $\theta_{\ell}$  affect the loss L?
- Observe that  $L(\theta) = L(h^{(\ell)}(h^{(\ell-1)},\theta_\ell),\theta_{\ell+1}^L)$ , then

$$\frac{\partial L}{\partial \theta_{\ell}} = \sum_{j=1}^{|H_{\ell}|} \frac{\partial L}{\partial h_{j}^{(\ell)}} \cdot \frac{\partial h_{j}^{(\ell)}}{\partial \theta_{\ell}}$$
vector vector

- Observe that  $\mathit{L}(\theta) = \mathit{L}(\mathit{h}^{(\ell)}(\mathit{h}^{(\ell-1)},\theta_\ell),\theta_{\ell+1}^\mathit{L})$ , then

$$\frac{\partial L}{\partial \theta_{\ell}} = \sum_{j=1}^{|H_{\ell}|} \frac{\partial L}{\partial h_{j}^{(\ell)}} \cdot \frac{\partial h_{j}^{(\ell)}}{\partial \theta_{\ell}}$$
vector vector

•  $\frac{\partial h_i^{(c)}}{\partial \theta_\ell}$  can be computed directly from the definition.

• Observe that  $\mathit{L}(\theta) = \mathit{L}(\mathit{h}^{(\ell)}(\mathit{h}^{(\ell-1)},\theta_\ell),\theta_{\ell+1}^\mathit{L})$ , then

$$\frac{\partial L}{\partial \theta_{\ell}} = \sum_{j=1}^{|H_{\ell}|} \frac{\partial L}{\partial h_{j}^{(\ell)}} \cdot \frac{\partial h_{j}^{(\ell)}}{\partial \theta_{\ell}}$$
vector vector

•  $\frac{\partial h_j^{(\ell)}}{\partial \theta_\ell}$  can be computed directly from the definition.

- The vector  $\delta_\ell = \frac{\partial L}{\partial h_j^{(\ell)}}$  can be computed through a recursion on the network, on the opposite direction, starting from L
  - $\delta_L = \frac{\partial L}{\partial h^{(L)}}$  is just the gradient of the cost function  $c(\cdot)$ .
  - For  $\ell \in [L-1]$

$$\delta_{\ell} = \frac{\partial L}{\partial h^{(\ell+1)}} \frac{\partial h^{(\ell+1)}}{\partial h^{(\ell)}} = \delta_{\ell+1} \frac{\partial h^{(\ell+1)}}{\partial h^{(\ell)}}$$

• The values of  $\frac{\partial h^{(\ell+1)}}{\partial h^{(\ell)}}$  can also be computed directly.

# **Stochastic Gradient Descent (SGD)**

• On each iteration t > 0 we choose uniformly at random an S-set  $S \subseteq [N]$  of indices ( $|\mathcal{D}| = N$ ) and compute the *minibatch* gradient as

$$\hat{L}_{S}(\theta) = \frac{1}{S} \sum_{i \in S} \ell(\theta, Z_i)$$

$$\hat{g}_{S}(\theta) = \nabla \hat{L}_{S}(\theta)$$

The iteration is given as before

$$\theta_{t+1} = \theta_t - \alpha \hat{g}_{S}(\theta)$$

# Stochastic Gradient Descent (SGD)

**Remark:** The noise resulting from working with minibatches actually helps on avoiding bad minimas and to escape saddle points.

