COORDINATION IN SOCIAL NETWORKS

COMMUNICATION BY ACTIONS

Chun-Ting Chen

July 17, 2016

Introduction

Motivation

- How people act collectively under uncertainty?
 - Ex.: protest, joint investment, etc.

This paper shows

 In a long-term relationship, people can aggregate such information and coordinate their actions.

WHAT THIS PAPER DOES?

- I model a repeated game with incomplete information and network-monitoring with discount factor.
 - Players can only observe own/neighbors' types and own/neighbors' actions.
- Look for an equilibrium in which the pay-off relevant information become commonly known in finite time.
- Such equilibrium can be constructed under some assumptions.

Time line

- There is a fixed, finite, connected, undirected, and commonly known network.
- Players of two types— S or B—chosen by nature according to a probability distribution.
 - S: Strategic type; B: Behavior type
- Types are then fixed over time.
- Players play a stage game— a collective action —infinitely repeatedly with common discount factor.

What player can/cannot observe

- Players can observe own/neighbors' types and actions, but not others'.
- Pay-off is hidden.
 - [Aumann and Maschiler 1990], [Miyahara and Sekiguchi 2013], [Wolitzky 2013], etc.

• Stage game—k-threshold game: a protest ([Chwe 2000])

6/26

- Stage game—k-threshold game: a protest ([Chwe 2000])
 - There are n players, and $k \le n$

- Stage game—k-threshold game: a protest ([Chwe 2000])
 - There are n players, and $k \le n$
 - S-type's action set= {p, n}
 - B-type's action set= {n}
 - · Pay-offs for S-type:

$$\begin{array}{lll} u_{S_i}(a_{S_i},a_{-\theta_i}) & = & 1 & \text{if } a_{S_i} = \mathbf{p} \text{ and } \#\{j:a_{\theta_j} = \mathbf{p}\} \geq \mathbf{k} \\ u_{S_i}(a_{S_i},a_{-\theta_i}) & = & -1 & \text{if } a_{S_i} = \mathbf{p} \text{ and } \#\{j:a_{\theta_j} = \mathbf{p}\} < \mathbf{k} \\ u_{S_i}(a_{S_i},a_{-\theta_i}) & = & 0 & \text{if } a_{S_i} = \mathbf{n} \end{array}$$

STATIC EX-POST PARETO EFFICIENT OUTCOME

Type profile	Static ex-post efficient outcome
At least k S-types exist	All S-types play p
Otherwise	All S-types play n

EQUILIBRIUM CONCEPT

- WPBE (weak perfect Bayesian equilibrium)
- Sequential equilibrium

8/26

APEX EQUILIBRIUM

APEX (approaching ex-post efficient) equilibrium

DEFINITION (APEX STRATEGY)

An equilibrium is APEX \Leftrightarrow

 $\forall \theta$, there is a finite time T^{θ}

such that the actions in the equilibrium path repeats the static ex-post efficient outcome after T^{θ} .

RESULT 1: APEX FOR k = n

THEOREM (k = n)

If k = n, then an APEX sequential equilibrium exists whenever discount factor is sufficiently high.

Definition for APEX for k < n

DEFINITION

 θ has **strong connectedness** \Leftrightarrow for every pair of S-types, there is a path consisting of S-types to connect them.

DEFINITION

 π has full support on strong connectedness \Leftrightarrow

 $\pi(\theta) > 0$ if and only if θ has strong connectedness.

WITHOUT STRONG CONNECTEDNESS

Let k=2 and n=3

- A B-type will not reveal information.
- Without full support on strong connectedness, in general, an APEX equilibrium does not
 exist when pay-off is hidden.

RESULT 2: APEX FOR k < n

Theorem (k < n)

If k < n, then if network is a tree, if prior π has full support on strong connectedness, then an APEX WPBE exists whenever discount factor is sufficiently high.

OUTLINE FOR EQUILIBRIUM CONSTRUCTION

- **1** APEX sequential equilibrium for k = n.
 - Sketch of proof.
- ② APEX WPBE for k < n.
 - Consider cheap talk.
 - Onsider "costly" talk.
 - Sketch of proof.

- "messages" to reveal the relevant information.
 - Some B-types neighbors ⇒ play n forever.
 - No B-type neighbor \Rightarrow play **p** unless **n** is observed, and then play **n** forever.

- "messages" to reveal the relevant information.
 - Some B-types neighbors ⇒ play n forever.
 - No B-type neighbor ⇒ play p unless n is observed, and then play n forever.
- "Timing" to coordinate.
 - Finite network ⇒ there is a finite time T(= n) such that players coordinate to the static ex-post efficient outcome.

- "messages" to reveal the relevant information.
 - Some B-types neighbors ⇒ play n forever.
 - No B-type neighbor ⇒ play p unless n is observed, and then play n forever.
- "Timing" to coordinate.
 - Finite network ⇒ there is a finite time T(= n) such that players coordinate to the static ex-post efficient outcome.
- Any deviation ⇒ play "n forever".

- "messages" to reveal the relevant information.
 - Some B-types neighbors ⇒ play n forever.
 - No B-type neighbor ⇒ play **p** unless **n** is observed, and then play **n** forever.
- "Timing" to coordinate.
 - Finite network ⇒ there is a finite time T(= n) such that players coordinate to the static ex-post efficient outcome
- Solution ⇒ play "n forever".
- Let discount factor be sufficiently high to impede deviation.

- "messages" to reveal the relevant information.
 - Some B-types neighbors ⇒ play n forever.
 - No B-type neighbor ⇒ play p unless n is observed, and then play n forever.
- "Timing" to coordinate.
 - Finite network
 ⇒ there is a finite time T(= n) such that players coordinate to the static ex-post
 efficient outcome
- Solution ⇒ play "n forever".
- Let discount factor be sufficiently high to impede deviation.
- A belief system for sequential equilibrium can be chosen.

- Challenges:
 - Only two actions— $\{n, p\}$ used for transmit relevant information.
 - How to find that finite time "T" for every state?
 - Group punishment is hard to be made. (Network-monitoring)

For simplicity, assume ${\it T}$ is fixed, commonly known, and independent from states.

- Idea:
 - Suppose players can transmit information by "talking" within \hat{T} rounds, where there are multiple periods in each round, and then play a one-shot game.

\overline{k} -Threshold game augmented by $\hat{\mathcal{T}}$ -round cheap talk

Time line

- Nature choose θ according to π .
- Types are then fixed over time.
- At the first \hat{T} rounds, players play \hat{T} -rounds of cheap talk (or costly talk).
- At $\hat{T} + 1$ round, players play a one-shot k-Threshold game.
- · Game ends.

$k ext{-} ext{Threshold}$ game augmented by $\hat{\mathcal{T}} ext{-} ext{round}$ cheap talk

Example of a WPBE construction:

- k = 5, n = 8 and $\hat{T} = 2$.
- G and θ =

- Equilibrium path
 - At $\hat{t} = 1$,

$k ext{-} ext{Threshold}$ game augmented by $\hat{\mathcal{T}} ext{-} ext{round}$ cheap talk

Example of a WPBE construction:

- k = 5, n = 8 and $\hat{T} = 2$.
- G and θ =

- Equilibrium path
 - At $\hat{t} = 2$,

S-type 4
$$(p, p, n, p, p, p, n, p)$$
S-type 5 (p, p, n, p, p, p, n, p)
S-type 1,2,6,8 \emptyset

• At $\hat{t} = 3$, all S-types play **p**, then game ends.

\overline{k} -Threshold game augmented by $\hat{\mathcal{T}}$ -round cheap talk

Off-path strategy can be constructed

Off-path belief can be constructed

k-Threshold game augmented by \hat{T} -round cheap talk

- Off-path strategy can be constructed
 - If S-type 4 (or 5) make detectable deviation (e.g. wrong sentence)

 others play n and then n.
 - If S-type 4 (or 5) make undetectable deviation ⇒ he is facing a possibility of failure to coordinate.
- Off-path belief can be constructed
 - If a player observes a detectable deviation ⇒ he believes that all players outside neighborhood are B-types.

k-Threshold game augmented by \hat{T} -round costly talk

If there is a fixed cost ϵ to send the letter...

- Off-path strategy can be constructed
 - If S-type 4 (or 5) make detectable deviation (e.g. wrong sentence, playing ∅)
 ⇒ others play ∅ and then n.
 - If S-type 4 (or 5) make undetectable deviation ⇒ he is facing a possibility of failure to coordinate.
- Off-path belief can be constructed
 - If a player observes a detectable deviation ⇒ he believes that all players outside neighborhood are B-types.

$\overline{\textit{k}}$ -Threshold game augmented by $\hat{\mathcal{T}}$ -round costly talk

If there is a fixed cost ϵ to send the letter...

- Off-path strategy can be constructed
 - If S-type 4 (or 5) make detectable deviation (e.g. wrong sentence, playing ∅)
 ⇒ others play ∅ and then n.
 - If S-type 4 (or 5) make undetectable deviation \Rightarrow he is facing a possibility of failure to coordinate.
- Off-path belief can be constructed
 - If a player observes a detectable deviation ⇒ he believes that all players outside neighborhood are B-types.

So, when ϵ is small enough and \hat{T} is large enough, a WPBE can be constructed when ϵ is independent from messages.

k-Threshold game augmented by T-round costly talk

FREE RIDER PROBLEM

However, if ϵ is not independent from messages, then a Free Rider Problem may occur.

- Suppose $\epsilon \downarrow$ when announce more S-types in the 1st round.
- k = 5, n = 8 and T = 2.
- G and $\theta =$

- S-type 4 and S-type 5 will deviate from truthfully announcement.
- Why? They will report more S-types to save costs in the 1st round and "wait for" each others' truthfully announcement (Free Rider Problem).

k-Threshold game augmented by **T**-round costly talk

FREE RIDER PROBLEM

How to solve the Free Rider Problem? Main idea:

Let some of them be free rider, while letting others report truthfully.

RESULT 2: APEX FOR k < n

Theorem (k < n)

If k < n, then if network is a tree, if prior π has full support on strong connectedness, then an APEX WPBE exists whenever discount factor is sufficiently high.

- The Free Rider Problem may exist in tree networks, but it can be solved.
- ② Detectable deviation ⇒ playing n forever (by off-path belief).
- Undetectable deviation ⇒ facing a possibility of coordination failure.
- Any deviation will let APEX fail with positive probability.
- APEX outcome gives maximum ex-post continuation pay-off after T.
- Sufficiently high discount factor will impede deviation.

Conclusion

In the repeated k-threshold game played in the finite networks, if the network is a tree, then players can act collectively after finite time under an assumption on connectedness.

Thank you.

25 / 26