

BACHELOR THESIS DRAFT

Irish Debbarma

A thesis submitted for the degree of Bachelor of Science (Research) with major in Mathematics

Department of Mathematics Indian Institute of Science, Bangalore

December 2022

Contents

Ac	know	rledgements						
Ab	strac	ıt en	i					
1	Intr	oduction						
2	Prel	reliminaries						
	2.1	Topological Groups, Rings and Vector Spaces						
	2.2	Measure theory						
	2.3	Algebraic Number Theory						
		2.3.1 Basics						
		2.3.2 Restricted direct product topology						
		2.3.3 Adéle and Idéle rings						
	2.4	Local Fields						
	2.5	Global Fields						
3	Loca	ocal Theory						
	3.1	Additive characters and measures						
	3.2	Multiplicative characters and measures						
	3.3	The local ζ function and functional equation						
	3.4	Computation of $\rho(c)$ for special functions						
4	Glol	bal Theory						
	4.1	Characters and measures						
	4.2	Riemann-Roch Theorem						
	4.3	Additive theory						
	4.4	Multiplicative theory						
	4.5	The ζ function and functional equation						
	4.6	Comparison with classical theory						

Acknowledgements

Abstract

1 Introduction

2 Preliminaries

- 2.1 Topological Groups, Rings and Vector Spaces
- 2.2 Measure theory
- 2.3 Algebraic Number Theory
- **2.3.1 Basics**
- 2.3.2 Restricted direct product topology
- 2.3.3 Adéle and Idéle rings
- 2.4 Local Fields
- 2.5 Global Fields

3 Local Theory

- 3.1 Additive characters and measures
- 3.2 Multiplicative characters and measures
- 3.3 The local ζ function and functional equation

Definition.

For $f \in \mathcal{S}$ and quasicharacters c with exponent > 0, we introduce a function $\zeta(f,c)$ as

$$\zeta(f,c) = \int_{K_n^{\times}} f(\alpha)c(\alpha)d^{\times}\alpha$$

and call such a function a ζ -function of $K_{\mathfrak{p}}$.

Lemma 3.3.1.

A ζ -function is regular for all quasi-characters with of exponent greater than 0.

Proof. \Box

Theorem 3.3.2

A ζ -function has an analytic continuation to the domain of all quasi-characters given by the functional equation of the type

$$\zeta(f,c) = \rho(c)\zeta(\hat{f},c^{\vee})$$

The factor $\rho(c)$ is independent of the choice of f, is a meromorphic function of quasi-characters defined for $0\sigma < 1$ by the functional equation itself and for all quasi-characters by analytic continuation.

3.4 Computation of ho(c) for special functions

4 Global Theory

- 4.1 Characters and measures
- 4.2 Riemann-Roch Theorem
- 4.3 Additive theory
- 4.4 Multiplicative theory
- 4.5 The ζ function and functional equation
- 4.6 Comparison with classical theory