Neizrazito, evolucijsko i neuroračunarstvo Neuro-evolucijski sustavi

dr.sc. Marko Čupić

Fakultet elektrotehnike i računarstva Sveučilište u Zagrebu

9. siječnja 2014.

Zašto neuro-evolucijski spoj? Problem 1.

- Postoji mnoštvo vrsta neuronskih mreža (vrlo gruba podjela):
 - unaprijedne
 - samoorganizirajuće
 - dinamičke (postoje povratne veze)
 - ...
- Postoji mnoštvo različitih vrsta neurona (prijenosnih funkcija):
 - identitet
 - funkcija skoka
 - linearna
 - linearna sa zasićenjem
 - logistička
 - polinomijalna
 - tangens-hiperbolni
 - radijalne bazne funkcije
 - . . .

Zašto neuro-evolucijski spoj? Problem 1.

- Za svaku vrstu mreža razvijani su zasebni algoritmi učenja
- Razvijeni algoritmi rade uz jake pretpostavke na strukturu mreže i karakteristike neurona
 - Koje su to pretpostavke za algoritam Backpropagation?
- Postoji velika opasnost od lokalnih optimuma
 - Na zadanom problemu algoritam može biti praktički neprimjenjiv jer vrlo brzo zaglavi u neprihvatljivo lošem lokalnom optimumu
- Gradijentni postupci primjenjivi samo na poseban skup funkcija pogrešaka.

Zašto neuro-evolucijski spoj? Problem 1.

- Algoritmi evolucijskog računanja mogu se koristiti kao robusni (tipično populacijski) alati za rješavanje optimizacijskih problema
- Zadatak učenja neuronske mreže može se formulirati kao optimizacijski problem
 - Učenje s učiteljem: pronađi parametre mreže uz koje mreža ima minimalnu ocjenu greške
 - Grupiranje: pronađi centre uz koje se devijacija unutar grupa minimizira a ukupna devijacija između grupa maksimizira
 - Podržano učenje: pronađi parametre mreže uz koje mreža radi minimalne gubitke

Zašto neuro-evolucijski spoj? Problem 2.

- Pretpostavimo da problem rješavamo unaprijednom neuronskom mrežom (zašto?)
- Hoćemo li algoritmom Backpropagation trenirati općenitu unaprijednu mrežu od 10, 20 ili 50 neurona?
- Hoćemo li algoritmom Backpropagation trenirati slojevitu mrežu od 3, 4 ili 7 slojeva? I s koliko neurona po slojevima?
- Arhitektura neuronske mreže ima velik utjecaj na performanse neuronske mreže.
- Koja je optimalna arhitektura neuronske mreže?

Zašto neuro-evolucijski spoj? Problem 2.

- Optimalnost arhitekture može se ocjenjivati različitim kriterijima.
- Algoritme evolucijskog računanja moguće je primijeniti na zadatak pronalaska optimalne arhitekture neuronske mreže.

Zašto neuro-evolucijski spoj? Problem 3.

- Prethodno smo naveli niz prijenosnih funkcija koje mogu koristiti neuroni
- U optimalnoj arhitekturi neuronske mreže, koje nam prijenosne funkcije trebaju?
- Rješenje ne mora biti uniformno: zašto različiti neuroni ne bi koristili različite prijenosne funkcije?
- Mješavina: recimo da je broj neurona i način povezivanja fiksan i recimo da imamo unaprijed zadano da n neurona treba koristiti prijenosnu funkciju $\phi_1(x)$ a m neurona prijenosnu funkciju $\phi_2(x)$. Kojim neuronima dati koju prijenosnu funkciju?
- Problem možemo rješavati algoritmima evolucijskog računanja!

Zašto neuro-evolucijski spoj? Problem 4.

- Ovisno o problemu koji se rješava neuronskom mrežom, uobičajeni postupni učenja ne moraju biti najefikasniji.
- Može li se definirati kakvo bolje pravilo učenja uz koje će postupak treniranja neuronske mreže biti djelotvorniji i učinkovitiji?
- Problem možemo rješavati algoritmima evolucijskog računanja!

Zašto neuro-evolucijski spoj?

Algoritme evolucijskog računanja s neuroračunarstvom kombiniramo u sljedećim područjima:

- Evolucija težinskih faktora
 - \Rightarrow problem 1
- Evolucija arhitektura
 - \Rightarrow problem 2, problem 3
- Evolucija pravila učenja
 - \Rightarrow problem 4

Pretpostavke

- Arhitektura mreže je u potpunosti zadana.
- Jedina su nepoznanica vrijednosti težinskih faktora uz koje mreža nad zadanim problemom radi minimalnu pogrešku.
- Klasični algoritmi učenja unaprijednih mreža:
 - Backpropagation [Rumelhart, Hinton i Williams (1986)]
 - QuickProp [Fahlman (1989), Craig Veitch i Holmes (1991)]
 - Algoritam konjugiranog gradijenta [Moller (1990)]
 - Levenberg-Marquardt algoritam [Hagan i Menhaj (1994), Suratgar, Tavakoli i Hoseinabadi]

Klasični algoritmi za unaprijedne mreže

- Prikazani klasični algoritmi za unaprijedne mreže temeljeni su na gradijentu i/ili višim derivacijama
 - ullet Mogu biti dosta neefikasni o potreban velik broj iteracija algoritma
 - Postavljaju zahtjev na funkciju pogreške: mora biti derivabilna, inače algoritam ne radi
 - Kako izračun pogreške koristi izlaz mreže, zahtjev na derivabilnost se propagira u sve elemente mreže → prijenosne funkcije moraju biti derivabilne

Klasični algoritmi za unaprijedne mreže

- Prikazani klasični algoritmi za unaprijedne mreže temeljeni su na gradijentu i/ili višim derivacijama
 - Algoritmi ove porodice su po prirodi algoritmi pronalaska najbližeg lokalnog optimuma – tamo pokazuje gradijent!
 Globalni optimum – ako nam se posreći
 - Otpornost na lokalne optimume pokušava se osigurati:
 - dodatnim modifikacijama pravila učenja (npr. dodavanje momenta inercije)
 - uporabom stohastičke procjene gradijenta umjesto korektne vrijednosti – kompromis: pravi gradijent → brža konvergencija (u najbliži optimum, najvjerojatnije lokalni);
 - stohastička procjena o sporija konvergencija (ali veća šansa da izbjegnemo lokalne optimume)

Evolucija težinskih faktora

- Algoritmi evolucijskog računanja mogu se koristiti za pronalazak optimalnih težina
- Dosta robusni
- Kromosom
 - Binarni niz koji predstavlja sve težine u mreži
 - Svaka težina "troši" k bitova; ukupno za n težina kromosom sadrži k · n bitova
 - Potrebno odrediti način kodiranja / dekodiranja težina
 - Moguća uporaba uobičajenih evolucijskih operatora nad binarnim nizovima
 - Zahtjeva zadavanje granica prostora koji se pretražuje
 - Vektor realnih brojeva
 - Fleksibilnije rješenje
 - Granice pretraživanja nisu nužne (često niti ne znamo kako ih dobro postaviti)
 - Treba biti oprezan s evolucijskim operatorima

Problem permutacija

- Neuronske mreže su po prirodi vrlo simetrične strukture
 - Postoji više različitih zapisa neuronske mreže koja obavlja identično preslikavanje (koliko za ovaj primjer?)

(a) Originalna mreža

(b) Drugačija mreža za isto preslikavanie

Problem permutacija

- Kod populacijskih algoritama koji koriste operatore kombiniranja dva li više rješenja simetričnost rezultira problemom
 - ⇒ djeca su vrlo često bitno lošija od oba roditelja (zašto?)
- Problem je poznat pod nazivom problem permutacija (engl. Permutation problem, Competing conventions problem
- Zbog toga se često koriste samo algoritmi koji ne kombiniraju roditelje, već koriste samo operatore nad jednom jedinkom (npr. mutaciju)
- Dio znanstvenih publikacija ukazuje da ovaj problem ipak nedovoljno izražen da bi se odustalo od prednosti koje donosi operator križanja
- U praksi → oprez!

Mutacija za neuronske mreže

- Mutacija bez pristranosti
- Mutacija s pristranošću
- Mutacija neurona
- Mutacija najslabijeg neurona
- ...

(vidi skriptu za pojašnjenja)

Križanja za neuronske mreže

- Križanje težina
- Križanje neurona
- Križanje značajki
- .

(vidi skriptu za pojašnjenja)

Poboljšanje performansi (1)

- Poznato je da algoritmi evolucijskog računanja relativno brzo uspjevaju pronaći obećavajući podprostor u prostoru koji pretražuju, a potom imaju dosta sporu konvergenciju.
- Međutim: dosta su otporni na problem lokalnih optimuma.
- Klasični algoritmi: izražen problem lokalnih optimuma; u praksi treba pokretati nekoliko puta prije no što se dobije zadovoljavajuće rješenje.

Poboljšanje performansi (2)

- Algoritmi evolucijskog računanja mogu se hibridizirati algoritmima lokalne pretrage
 - Algoritmi evolucijskog računanja rade grubu robusnu pretragu prostora
 - Lokalna pretraga zadužena je za brzu konvergenciju ka optimumu
- Lokalna pretraga može biti upravo klasičan algoritam, npr.
 Backpropagation odnosno nekoliko iteracija takvog algoritma
- Što se time gubi?
 - ⇒ algoritam više nije univerzalno primjenjiv, već funkcija mora biti takva da je lokalna pretraga na nju primjenjiva
- Oprez: koji kompromis radimo?
 - \Rightarrow više iteracija algoritma lokalne pretrage \rightarrow konvergencija \uparrow
- Pitanja: Koje odluke još treba donijeti?
 - \rightarrow broja parametara \uparrow

Što želimo

- Za zadani zadatak pronaći arhitekturu optimalne neuronske mreže
- Tipično se pretražuje ograničeni podskup porodica arhitektura
- Zašto uopće postoji problem?
 - prejednostavna arhitektura mreža ne može dobro modelirati zadano preslikavanje i radi veliku pogrešku
 - presložena arhitektura mreža je podložna pretreniranju
 - ⇒ dobar štreber, ali loša sposobnost generalizacije
 - ⇒ postupak učenja će biti vrlo dugotrajan
- Ideja: pronaći optimalnu arhitekturu mreže
 ⇒ primjerice, od svih slojevitih mreža s logističkim prijenosnim funkcijama

Izgrađujući i razgrađujući algoritmi

- Za potrebe pronalaska optimalne arhitekture postoje heuristički algoritmi:
 - izgrađujući kreću od minimalne mreže pa je povećavaju
 - razgrađujući kreću od vrlo općenite mreže pa uklanjaju nepotrebne dijelove
- Niz problema:
 - jaka ovisnost o upotrebljenim heuristikama
 - smislenost heuristike
 - problem globalne optimalnosti rješenja
- Ideja: formulirati problem kao optimizacijski pa primijeniti algoritme evolucijskog računanja koji su posebno pogodni za takvu vrstu problema

Karakteristike funkcije dobrote arhitekture

- Dobrotu arhitekture možemo mjeriti: jednostavnošću mreže, brzinom kojom klasični algoritam može naučiti takvu mrežu, kvalitetom uz koju mreža može rješavati zadani problem i slično, te kombinacijom tih elemenata
- Funkcija dobrote arhitekture ima sljedeće karakteristike:
 - beskonačna površina
 - nije derivabilna gradijentne metode su neprimjenjive
 - kompleksna i sadrži veliku količinu šuma (problem mjerenja kvalitete)
 - decepcijska (slične arhitekture, bitno različita kvaliteta)
 - višemodalna (simetričnost mreža)

Evolucijski algoritam

- Odlučiti što se točno upisuje u kromosom (svaki kromosom predstavlja jednu mrežu)
- Potom radi sljedeće:
 - 1 generiraj početnu populaciju mreža
 - dekodiraj svaki kromosom u odgovarajuću mrežu
 - svaku mrežu treniraj puno puta
 - temeljem rezultata treniranja svakoj mreži dodijeli pripadnu dobrotu
 - u skladu s dobrotom biraj roditelje i generiraj djecu

Što se upisuje u kromosom

- Dvije krajnosti:
 - direktno kodiranje u kromosom se upisuje sve, do na iznos svake pripadne težine
 - ⇒ istovremeno se evoluira i arhitektura i pripadne težine
 - indirektno kodiranje u kromosom se upisuje samo grubi nacrt mreže, npr. broj slojeva i broj neurona po slojevima
 - ⇒ prilikom "instanciranja" mreže težine se dodjeljuju nekim pravilom ili se naprosto uče treniranjem mreže

Direktno kodiranje

• Koristi se najčešće matrični prikaz: matrica težina

	0	1	2	3	4	5	
0	0.0	0.0	0.0	W _{0,3}	W _{0,4}	W _{0,5}	_
1	0.0	0.0	0.0	$W_{1,3}$	$W_{1,4}$	0.0	
2	0.0	0.0	0.0	$W_{2,3}$	W _{2,4}	0.0	Opći oblik unaprijedne mreže
3	0.0	0.0	0.0	0.0	0.0	W3,5	
4	0.0	0.0	0.0	0.0	0.0	$W_{4,5}$	
5	0.0	0.0	0.0	0.0	0.0	0.0	
-							
•	0	1	2	3	4	5	1 -
0	!						1
	0	1	2	3	4	5	1 - 0
0	0.0	0.0	2	3 -4.5	4 -3.5	5	x1 (1) -6 -3 .5
0 1	0.0 0.0	0.0 0.0	0.0 0.0	-4.5 -6.0	-3.5 2.5	5 -5.0 0.0	x1 1 -6 3 -5 3
0 1 2	0.0 0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	-4.5 -6.0 3.5	-3.5 2.5 -4.0	5 -5.0 0.0 0.0	$x1 \longrightarrow 1 \xrightarrow{6} 3 \xrightarrow{5}$

Indirektno kodiranje

- Kodira se samo grubi nacrt mreže
- Više mogućnosti; dvije najčešće su:
 - parametarski prikaz
 - razvojno pravilo

Indirektno kodiranje: parametarski prikaz

- Pohranjuju se samo općenite informacije o mreži
- Primjerice, neku slojevitu unaprijednu mrežu možemo zapisati $2 \times 7 \times 3 \times 1$; to je mreža koja ima:
 - 4 sloja
 - 1. (ulazni) sadrži dva neurona
 - 2. (skriveni) sadrži sedam neurona
 - 3. (skriveni) sadrži tri neurona
 - 4. (izlazni) sadrži jedan neurona
 - ullet mreža radi preslikavanje $\mathbb{R}^2 o \mathbb{R}$
- sve ostalo se postavlja na pretpostavljene vrijednosti; npr.:
 - ullet povezivost o potpuna (između slojeva)
 - prijenosne funkcije → logističke

Indirektno kodiranje: parametarski prikaz

- U kromosomu nemamo informaciju o vrijednostima težinskih faktora
- Da bismo došli do težina, trebamo napraviti postupak učenja mreže
- Da bismo procijenili kvalitetu arhitekture, trebamo težine kako bismo izračunali pogrešku
- Naučene težine ovise o tome koliko smo imali sreće prilikom učenja
 - ⇒ to je uzrok šuma u ovom optimizacijskom procesu
 - ⇒ ako nisam imao sreće, naučio sam loše težine iako je arhitektura dobra dobit će slab iznos funkcije dobrote

Indirektno kodiranje: razvojna pravila

- Razvojna pravila definiraju kako izgraditi arhitekturu mreže
- Možemo na njih gledati kao na "program" koji kad izvršimo dobijemo arhitekturu
- Pretpostavimo da arhitekturu prikazujemo matricom veza
 - element matrice je 0 ako nema veze između para neurona,
 1 ako veza postoji (iznos težine nije bitan)
- razvojno pravilo može biti rekurzivna jednadžba koja iz koraka u korak popunjava (ili gradi) konačnu matricu
 - u tom slučaju evoluiraju se koeficijenti u rekurzivnom izrazu i samo se oni upisuju u kromosom
- Matricu veza možemo graditi i produkcijskim sustavom (ako-onda pravilima)
 - u tom slučaju evoluiraju se pravila produkcijskog sustava
 - jedan kromosom predstavlja čitav produkcijski sustav

Indirektno kodiranje: razvojna pravila

$$S \longrightarrow \begin{pmatrix} A & B \\ C & D \end{pmatrix}$$

$$A \longrightarrow \begin{pmatrix} a & a \\ a & a \end{pmatrix} \quad B \longrightarrow \begin{pmatrix} i & i \\ i & a \end{pmatrix} \quad C \longrightarrow \begin{pmatrix} i & a \\ a & c \end{pmatrix} \quad D \longrightarrow \begin{pmatrix} a & e \\ a & e \end{pmatrix} \quad \cdots$$

$$a \longrightarrow \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \quad c \longrightarrow \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \quad c \longrightarrow \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \quad i \longrightarrow \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \quad \cdots$$

$$A \quad B \quad a \quad a \quad i \quad i$$

$$S \quad A \quad B \quad a \quad a \quad i \quad a$$

$$C \quad D \quad i \quad a \quad a \quad e$$

$$a \quad c \quad a \quad e$$

$$a \quad c \quad a \quad e$$

$$0 \quad 0 \quad 0 \quad 0 \quad 1 \quad 0 \quad 1 \quad 0$$

$$0 \quad 0 \quad 0 \quad 0 \quad 1 \quad 0 \quad 1 \quad 0$$

$$0 \quad 0 \quad 0 \quad 0 \quad 1 \quad 0 \quad 1 \quad 0$$

$$0 \quad 0 \quad 0 \quad 0 \quad 1 \quad 0 \quad 0 \quad 0$$

$$1 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0$$

$$1 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0$$

$$1 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0$$

$$1 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0$$

$$1 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0$$

$$1 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0$$

$$1 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0$$

$$1 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0$$

$$1 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0$$

$$1 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0$$

$$1 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0$$

$$1 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0$$

$$1 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0$$

$$1 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0$$

$$1 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0$$

$$1 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0$$

$$1 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0$$

$$1 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0$$

$$1 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0$$

$$1 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0$$

$$1 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0$$

$$1 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0$$

$$1 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0$$

$$1 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0$$

$$1 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0$$

$$1 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0$$

$$1 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0$$

$$1 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0$$

$$1 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0$$

$$1 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0$$

$$1 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0$$

$$1 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0$$

$$1 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0$$

$$1 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0$$

$$1 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0$$

$$1 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0$$

$$1 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0$$

$$1 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0$$

$$1 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0$$

$$1 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0$$

$$1 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0$$

$$1 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0$$

$$1 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0$$

$$1 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0$$

$$1 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0$$

$$1 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0$$

$$1 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0$$

$$1 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0$$

$$1 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0$$

$$1 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0$$

$$1 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0$$

$$1 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0$$

$$1 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0$$

(e)

Indirektno kodiranje: razvojna pravila

• Zanimljiv pristup je i stanični razvoj

Što želimo

- Uz fiksno pravilo učenja: algoritmom evolucijskog računanja možemo tražiti optimalne parametre pravila (npr. kod algoritma Backpropagation stopa učenja i faktor inercije)
- Uz dostupne lokalne informacije svakog neurona (što mu je na ulazu, što mu je na izlazu i slično) neko drugo pravilo učenja koje radi bolje ⇒ pogledati što piše u skripti!

Zaključak

• Vrlo interesantno područje koje je još uvijek u razvoju