Interpolacja część III

Seweryn Tasior, WI, grupa 5

10.04.2025

1 Treść ćwiczenia

Dla poniższej funkcji wyznacz wielomian interpolujący, używając funkcji sklejanej.

$$f(x) = -2x\sin(3x - 3)$$

dla $x \in [-\pi + 1, 2\pi + 1]$.

2 Dane techniczne

Programy zostały napisane w języku Python w wersji 3.11.5. Dodatkowo do narysowania wykresów i tabel zostały użyte biblioteki Pandas i matplotlib. Pomocniczo do wykonywania obliczeń zastosowano funkcjonalności biblioteki Numpy. Do rozwiązywania układów równań wykorzystano funkcję linalg.solve z Numpy, używającą algorytmu rozkładu LU. Zadania programistyczne wykonano na laptopie Lenovo IdeaPad Gaming 3 15ACH6. Urządzenie posiada 6-rdzeniowy procesor o taktowaniu 4,4 GHz. Korzystano przy tym z systemu operacyjnego Windows 11.

3 Przebieg ćwiczenia

W ćwiczeniu wykorzystano i zaimplementowano wzory na wartości interpolacji funkcji sklejanych drugiego i trzeciego stopnia. Użyto przy tym naturalnego i clamped boundary warunku brzegowego. Do obliczeń użyto N=1000 punktów na przedziale $[-\pi+1,2\pi+1]$, zarówno dla funkcji interpolowanej, jak i wielomianu interpolującego. Pochodną wyliczono i wynosi ona:

$$f'(x) = -6x\cos(3 - 3x) + 2\sin(3 - 3x)$$

Wyznaczono węzły interpolacyjne, rozmieszczone równomiernie. W eksperymentach przyjęto liczbę węzłów n (każdy o innej wartości) z zakresu:

$$n \in \{2, 3, 4, \dots, 100\}$$

3.1 Wykorzystane wzory dla sześciennej funkcji sklejanej

Dla naturalnego warunku brzegowego $S''(x_1) = S''(x_n) = 0$, przy użyciu wzoru (3.1), układ równań to:

$$\begin{bmatrix} 1 & 0 & 0 & \cdots & \cdots & 0 \\ h_1 & 2(h_1 + h_2) & h_2 & 0 & & \vdots \\ 0 & h_2 & 2(h_2 + h_3) & \ddots & \ddots & \vdots \\ \vdots & 0 & \ddots & \ddots & h_{n-2} & 0 \\ \vdots & & \ddots & h_{n-2} & 2(h_{n-2} + h_{n-1}) & h_{n-1} \\ 0 & \cdots & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \sigma_1 \\ \sigma_2 \\ \sigma_3 \\ \vdots \\ \vdots \\ \sigma_n \end{bmatrix} = \begin{bmatrix} 0 \\ \Delta_2 - \Delta_1 \\ \Delta_3 - \Delta_2 \\ \vdots \\ \Delta_{n-1} - \Delta_{n-2} \\ 0 \end{bmatrix}$$

Dla warunku brzegowego clamped boundary $S'(x_1) = f'(x_1), S'(x_n) = f'(x_n)$, przy użyciu wzoru (3.1), układ równań to:

$$\begin{bmatrix} 2h_1 & h_1 & 0 & \cdots & \cdots & 0 \\ h_1 & 2(h_1 + h_2) & h_2 & 0 & & \vdots \\ 0 & h_2 & 2(h_2 + h_3) & \ddots & \ddots & \vdots \\ \vdots & 0 & \ddots & \ddots & h_{n-2} & 0 \\ \vdots & & \ddots & h_{n-2} & 2(h_{n-2} + h_{n-1}) & h_{n-1} \\ 0 & \cdots & \cdots & 0 & h_{n-1} & 2h_{n-1} \end{bmatrix} \begin{bmatrix} \sigma_1 \\ \sigma_2 \\ \sigma_3 \\ \vdots \\ \vdots \\ \sigma_n \end{bmatrix} = \begin{bmatrix} \Delta_1 - f'(x_1) \\ \Delta_2 - \Delta_1 \\ \Delta_3 - \Delta_2 \\ \vdots \\ \Delta_{n-1} - \Delta_{n-2} \\ f'(x_n) - \Delta_{n-1} \end{bmatrix}$$

W powyższych układach równań przyjęto oznaczenia:

- $x_i : i \in {1, 2, ..., n}$ węzły
- $y_i = f(x_i) : i \in 1, 2, ..., n$
- $\bullet \ \sigma_i = \frac{S''(x)}{6}$
- $\bullet \ h_i = x_{i+1} x_i$
- $\Delta_i = \frac{(y_{i+1} y_i)}{h_i}$

Po uzyskaniu układu równań wyszukiwano przedział $[x_i, x_{i+1}]$ do którego należała wartość x, dla której obliczono S(x), uzyskane na podstawie wzoru:

$$S(x) = y_i + b_i(x - x_i) + c_i(x - x_i)^2 + d_i(x - x_i)^3 dla \ x \in [x_i, x_{i+1}] \ (3.1)$$

Gdzie:

- $\bullet \ b_i = \frac{y_{i+1} y_i}{h_i} h_i \cdot (\sigma_{i+1} + 2\sigma_i)$
- $c_i = 3 \cdot \sigma_i$
- $d_i = \frac{\sigma_{i+1} \sigma_i}{h_i}$

3.2 Wykorzystane wzory dla kwadratowej funkcji sklejanej

Wartości kwadratowej funkcji sklejanej obliczano iteracyjnie według wzoru S(x) (3.2). Najpierw wyszukiwano i dla którego $x \in [x_i, x_{i+1}]$. Następnie obliczono iteracyjnie współczynniki a_i, b_i .

Warunki początkowe dla naturalnego warunku brzegowego $S'(x_1) = 0$ S(x):

- $h_1 = x_2 x_1$
- $a_1 = 0$
- $b_1 = \frac{f(x_2) f(x_1)}{h_1}$
- $c_1 = f(x_1)$

Warunki początkowe dla warunku brzegowego clamped boundary $S'(x_1) = f'(x_1)$:

- $h_1 = x_2 x_1$
- $a_1 = \frac{f(x_2) f(x_1) f'(x_1)(x_2 x_1)}{h_1^2}$
- $\bullet \ b_1 = f'(x_1)$
- $c_1 = f(x_1)$

Następnie (dla $j=2,\ldots,i$) oblicza:

- $h_j = x_{j+1} x_j$
- $b_i = b_{i-1} + 2a_{i-1}(x_i x_{i-1})$
- $\bullet \ a_j = \frac{f(x_{j+1}) f(x_j) b_j h_j}{h_j^2}$

•
$$c_j = f(x_j)$$

Gdy dojdzie do przedziału zawierającego punkt x oblicza S(x) na podstawie wzoru:

$$S(x) = y_i + b_i(x - x_i) + a_i(x - x_i)^2$$
 dla $x \in [x_i, x_{i+1}]$ (3.2)

3.3 Wykorzystane wzory dla błędów

Oszacowanie błędów wykonano na podstawie następujących wzorów:

Błąd średni =
$$\sqrt{\frac{\sum_{x \in P} (f(x) - w(x))^2}{|P|}}$$

Błąd maksymalny =
$$\max_{x \in P} |f(x) - w(x)|$$

Gdzie:

- f(x) oznacza wartość funkcji interpolowanej w punkcie x.
- \bullet w(x) oznacza wartość wielomianu interpolującego w punkcie x.
- \bullet P jest zbiorem punktów, w których obliczane są błędy.
- |P| oznacza moc zbioru P.

Na podstawie uzyskanych wyników sporządzono wykresy porównujące wyniki interpolacji. Wartości błędów średnich i maksymalnych zostały przedstawione w tabelach.

4 Wyniki

4.1 Tabele błędów dla sklejeń

Tabela 1: Porównanie błędów dla sześciennej funkcji sklejanej z naturalnym i *clamped boundary* warunkiem brzegowym

Liczba węzłów	Błąd średni nat.	Błąd maks. nat.	Błąd średni clamped	Błąd maks. clamped
2	1.66335×10^{-1}	1.35350×10^{1}	1.026 46	5.70241×10^{1}
3	2.00875×10^{-1}	1.39013×10^{1}	6.62564×10^{-1}	4.82726×10^{1}
4	1.66335×10^{-1}	1.35350×10^{1}	3.37222×10^{-1}	3.32536×10^{1}
5	2.14191×10^{-1}	1.68348×10^{1}	2.92370×10^{-1}	2.82847×10^{1}
6	2.15477×10^{-1}	1.65459×10^{1}	2.28030×10^{-1}	2.05882×10^{1}
7	2.28170×10^{-1}	1.94588×10^{1}	1.92850×10^{-1}	1.81673×10^{1}
8	2.10226×10^{-1}	$2.06459\ \times 10^{1}$	$1.38208\ \times 10^{-1}$	1.08866×10^{1}
9	$1.81122\ \times 10^{-1}$	1.80981×10^{1}	$1.08956\ imes 10^{-1}$	9.30147
10	$1.66335\ imes 10^{-1}$	$1.35350\ imes 10^{1}$	$1.26935\ imes 10^{-1}$	9.48101
11	$1.03685\ \times 10^{-1}$	9.17850	$7.60624\ imes 10^{-2}$	6.26673
12	5.95165×10^{-2}	5.99465	$4.03794\ \times 10^{-2}$	3.31235
13	3.71790×10^{-2}	3.92831	$2.54524\ imes 10^{-2}$	1.99366
14	$2.41636\ \times 10^{-2}$	2.63764	$1.68892\ \times 10^{-2}$	1.56939
15	$1.62931\ \times 10^{-2}$	1.82741	1.15736×10^{-2}	1.01634
16	1.13772×10^{-2}	1.30775	8.15160×10^{-3}	8.43847×10^{-1}
17	$8.20443\ \times 10^{-3}$	9.65171×10^{-1}	$5.88596\ \times 10^{-3}$	6.35855×10^{-1}
18	6.09108×10^{-3}	$7.32421\ imes 10^{-1}$	$4.34697\ imes 10^{-3}$	$4.54589\ imes 10^{-1}$
19	4.64161×10^{-3}	$5.69718\ imes 10^{-1}$	$3.27632\ imes 10^{-3}$	3.13974×10^{-1}
20	3.62072×10^{-3}	4.53235×10^{-1}	2.51488×10^{-3}	2.11683×10^{-1}
25	$1.38111\ \times 10^{-3}$	2.76660×10^{-1}	8.31053×10^{-4}	9.65870×10^{-2}
30	7.36374×10^{-4}	2.12969×10^{-1}	3.53433×10^{-4}	4.42563×10^{-2}
35	4.89191×10^{-4}	1.80820×10^{-1}	1.77200×10^{-4}	$2.56582\ \times 10^{-2}$
40	3.74852×10^{-4}	1.61927×10^{-1}	9.98803×10^{-5}	1.92661×10^{-2}
		•••		
90	2.02105×10^{-4}	1.18845×10^{-1}	7.52578×10^{-6}	4.64790×10^{-3}
100	1.97864×10^{-4}	1.17831×10^{-1}	6.22031×10^{-6}	4.00939×10^{-3}

Tabela 2: Porównanie błędów dla kwadratowej funkcji sklejanej z naturalnym i $clamped\ boundary$ warunkiem brzegowym

Liczba węzłów	Błąd średni nat.	Błąd maks. nat.	Błąd średni clamp.	Błąd maks. clamp.
2	$1.66335\ \times 10^{-1}$	$1.35350\ \times 10^{1}$	7.14979×10^{-1}	3.54574×10^{1}
3	$2.05685\ \times 10^{-1}$	$1.54239\ \times 10^{1}$	4.52969×10^{-1}	$3.01131\ \times 10^{1}$
4	1.66335×10^{-1}	$1.35350\ \times 10^{1}$	2.88750×10^{-1}	$1.92931\ \times 10^{1}$
5	2.15897×10^{-1}	1.63502×10^{1}	2.66068×10^{-1}	2.31974×10^{1}
6	2.17363×10^{-1}	1.64341×10^{1}	$2.66710\ \times 10^{-1}$	2.15868×10^{1}
7	2.46608×10^{-1}	1.98273×10^{1}	$2.84621\ \times 10^{-1}$	2.18727×10^{1}
8	3.18552×10^{-1}	3.38969×10^{1}	3.64905×10^{-1}	3.84923×10^{1}
9	4.44228×10^{-1}	4.03974×10^{1}	3.91101×10^{-1}	3.64339×10^{1}
10	1.66335×10^{-1}	$1.35350\ \times 10^{1}$	2.26573×10^{-1}	1.68968×10^{1}
11	2.57669×10^{-1}	$2.01713\ \times 10^{1}$	3.04354×10^{-1}	2.30136×10^{1}
12	2.22967×10^{-1}	2.03381×10^{1}	1.87188×10^{-1}	1.79332×10^{1}
13	1.19108×10^{-1}	8.95022	8.81432×10^{-2}	6.90838
14	9.33877×10^{-2}	7.84922	6.19826×10^{-2}	6.11329
15	6.73482×10^{-2}	4.73848	3.99410×10^{-2}	3.26009
16	5.60587×10^{-2}	4.35721	3.08731×10^{-2}	3.39878
18	3.82275×10^{-2}	3.33199	1.82278×10^{-2}	1.35154
20	2.78896×10^{-2}	2.69866	1.18948×10^{-2}	1.94917
22	2.12557×10^{-2}	2.26669	8.31169×10^{-3}	1.59475
24	1.67201×10^{-2}	1.95287	6.11044×10^{-3}	1.34516
26	1.34789×10^{-2}	1.71470	4.67424×10^{-3}	1.16064
28	1.10840×10^{-2}	1.52799	3.69270×10^{-3}	1.019 18
30	9.26693×10^{-3}	1.37793	2.99651×10^{-3}	$9.07610\ \times 10^{-1}$
32	7.85808×10^{-3}	1.25488	2.48738×10^{-3}	8.17606×10^{-1}
34	6.74558×10^{-3}	1.15231	2.10533×10^{-3}	7.43632×10^{-1}
36	5.85321×10^{-3}	1.06563	1.81222×10^{-3}	6.81878×10^{-1}
38	5.12759×10^{-3}	9.91496×10^{-1}	1.58295×10^{-3}	6.29638×10^{-1}
40	4.53044×10^{-3}	9.27455×10^{-1}	1.40052×10^{-3}	5.84940×10^{-1}
45	$3.12121\ imes 10^{-3}$	1.55164×10^{-1}	8.90779×10^{-4}	3.62067×10^{-1}
50	2.70270×10^{-3}	7.05989×10^{-1}	8.76939×10^{-4}	4.33568×10^{-1}
90	8.80177×10^{-4}	3.90910×10^{-1}	3.77955×10^{-4}	2.27626×10^{-1}
100	7.54306×10^{-4}	3.58153×10^{-1}	3.38315×10^{-4}	2.06948×10^{-1}

4.2 Wizualizacje

4.2.1 Interpolacja poprzez sześcienne sklejanie funkcji

Rysunek 1: Porównanie wykresów interpolacji sześciennej funkcją sklejanej dla $n \in \{5, 8, 10, 12, 15, 20\}$

Rysunek 2: Porównanie wykresów interpolacji funkcją sześcienną dla $n \in \{40, 100\}$

4.2.2 Interpolacja poprzez kwadratowe sklejenie funkcji

Rysunek 3: Porównanie wykresów interpolacji funkcją sześcienną dla $n \in \{4, 8, 9, 10, 12, 15\}$

Rysunek 4: Porównanie wykresów interpolacji funkcją sześcienną dla $n \in \{20, 30, 40, 100\}$

5 Obserwacje

- Wraz ze wzrostem liczby węzłów dokładność interpolacji się polepsza.
- $\bullet\,$ Funkcje sklejane szęscienne dają dokładną interpolację dla mniejszego n.
- \bullet Warunek brzegowy $clamped\ boundary$ daje dokładniejsze wartości dla mniejszegon,aniżeli warunek naturalny
- Można zauważyć, że dla n=20 przy sklejaniu funkcji sześciennych oraz dla n=40 przy sklejaniu funkcji kwadratowych, różnica między interpolacją z różnymi warunkami brzegowymi staje się zaniedbywalna