上海交通大学试卷

(20<u>19</u> 至 20<u>20</u> 学年 第<u>1</u>学期 <u>2019</u>年 <u>10</u>月 <u>23</u>日)

班级号_	号			学号				姓名		
课程名称	Κ	《数学	分析衆營()	成绩					
题 号		=	Ξ	四	五	六	七	总分	<u> </u>	
满分	20	12	10	32	10	8	8	100		
得 分										
1. " $\lim_{x \to x_0}$	i f(x) 存石	在"用Ca	共 20 分 uchy 收敛	双准则叙述) —			_	
2. 区方()	$(x) = \sin x$	$x \in \left[\frac{1}{2}, \frac{1}{2}\right]$	- 」, 则 <i>f</i> ((X) 的汉世	的数 $f(x)$)=			_•	
3. 若当2	$\alpha \to 0$ 时,	$\sqrt{1+x}$ ar	$\frac{1}{\cos x} - \sqrt{\cos x}$	$\frac{1}{\cos x} \sim ax^{l}$,则常数	½ a =	, b=			
4. 设函数	数 <i>f</i> (x) 在	ℝ 上定义	,且f有	且仅有两	个连续点	(,则 f(x))的表达:	式可以是	是	
					$-, \inf_{n\in\mathbb{N}} \{x_n\}$	} =	·			
二、单项	选择题((每小题 3	分,共1	2分)						
6.数列	$\sin^2\left(\pi\sqrt{n}\right)$	$\left(n^2+n\right)$					•••••	ľ	1	
(A) <u>I</u>	单调且收缩	敛于 0.		(B) 単调	且收敛	F 1.				
(C)	非单调.			(D) 发散	· ·•					
7. 设函数	め ƒ 在区门	间 / 上连约	卖,则 <i>f</i> 7	生1上严格	各单调是、	f 存在反	函数的…	•]	
(\mathbf{A})	充分不必!	要条件.		(B) 必要	要不充分	条件.				
(\mathbf{C})	充要条件.			(D) 既	非充分又	非必要条	件.			

- 8. 函数 $\sin(x^2)$, $x \sin \frac{1}{x}$, $\sin^2 x$, $\frac{\ln(1+x)}{x}$ 中, 在 $(0,+\infty)$ 内一致连续的有【 】
 - **(A)** $1 \uparrow$. **(B)** $2 \uparrow$. **(C)** $3 \uparrow$. **(D)** $4 \uparrow$.

- 9. 设 $f(x) = \begin{cases} 1, & x = 0,1 \\ q, & x = \frac{p}{q}, (p, q \in \mathbb{N}, 且互质), & x \in [0,1], \quad \text{则 } f(x) \stackrel{\cdot}{\times} [0,1] \\ 0, & x \in \mathbb{Q}^c \end{cases}$
 - (A)处处存在极限,且极限值为 0. (B)处处无极限,不连续.

(C)有理点处连续.

- (**D**)无理点处连续.
- 三、证明题(本题共10分)
- **10.** 用" ε -N"定义证明: $\lim_{n\to\infty} \frac{2n^2+2n+3}{3n^2-2n+1} = \frac{2}{3}$.

四、求下列极限(每小题8分,共32分)

11.
$$\lim_{n\to\infty} \frac{1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}}{\ln(n+1)}$$
.

12.
$$\lim_{n\to\infty} \left(\cos\frac{x}{2}\cos\frac{x}{2^2}\cos\frac{x}{2^3}\cdots\cos\frac{x}{2^n}\right), \quad (x\neq 0).$$

13.
$$\lim_{x\to\infty} \left[x^2 \ln \left(\cos \frac{\pi}{x} \right) \right].$$

14.
$$\lim_{x\to 1^-} (2-x)^{\tan\frac{\pi x}{2}}$$
.

- 五、证明题(本题共10分)
- 15. 用闭区间套定理证明致密性定理.

六、证明题(本题共8分)

16. 设函数 f(x), g(x) 在闭区间 [a,b] 上定义,满足条件 $g(x) \in C[a,b]$, f(x) + g(x) 在 [a,b] 上递增,且 f(a) > 0, f(b) < 0. 证明:存在 $\xi \in (a,b)$,使得 $f(\xi) = 0$.

七、证明题(本题共8分)

17. 设函数 f(x) 在[1,+∞)上一致连续,证明: $\frac{f(x)}{x}$ 在[1,+∞)有界.