Homework Week 5

113-2 General Physics II

Due before 4:10 PM on March 24, 2025

Name <u>作於</u> 110703.56 資料四

1. [15 points] Example 26.1 Drift Speed in a Copper Wire

The 12-gauge copper wire in a typical residential building. What is the drift speed (v_d) of the electrons in the wire?

- Cross-sectional area of 3.31 \times 10⁻⁶ m².
- A constant current of 10.0 A.
- Each copper atom contributes one free electron to the current.
- The density of copper is 8.92 g/cm³.
- The molecular mass of copper is 63.5 g/mol. \

2. [20 points] Quick Quiz 26.1

Consider positive and negative charges of equal magnitude moving horizontally through the four regions. Rank the current in these four regions from highest to lowest.

3. [20 points] Example 26.3 The Radial Resistance of a Coaxial Cable

Coaxial cables are used extensively for cable television and other electronic applications. (a) Calculate the radial resistance of the plastic between the two conductors. [10 points] (b) Calculate the resistance to that of the inner copper conductor of the cable along the 15.0-cm length. [10 points]

- Two concentric cylindrical conductors
- The region between conductors is completely filled with polyethylene plastic
- Unwanted current leakage through the plastic, in the *radial* direction
- a = 0.500 cm, b = 1.75 cm, L = 15.0 cm. The resistivity of the plastic is 1.0 $\times 10^{13} \Omega \cdot m$.

Table 27.2 Resistivities and Temperature Coefficients of Resistivity for Various Materials

Material	Resistivity ^a $(\Omega \cdot m)$	Coefficient ^b $\alpha [(^{\circ}C)^{-1}]$
Silver	1.59×10^{-8}	3.8×10^{-3}
Copper	1.7×10^{-8}	3.9×10^{-3}

4. [20 points] Example 26.4 Power in an Electric Heater

An electric heater is constructed by applying a potential difference of 120 V across a Nichrome wire that has a total resistance of 8.00 Ω . Find (a) the current carried by the wire [10 points] and (b) the power rating of the heater. [10 points]

5. [25 points] (A) 重複 HW Week 2 最後一題的問題。[5 points] (B) Google 搜尋關鍵字 or 查閱維基有無文章 (注意維基不見得正確)。[20 points] 螢幕截圖或照相,線上繳交。如前面手寫,可分開繳交。

答案範例:

- 1. 庫侖力的形式與牛頓重力相似,電荷有正負之分,質量有正負之分嗎,有的 話會發生什麼事?
- 2. (中英皆可)

3. (1)
$$dR = \frac{P dr}{A} = \frac{P}{22rL} dr - \int \frac{dx}{x}$$

$$\Rightarrow R = \int dr = \frac{P}{22L} \ln \left(\frac{6}{\alpha}\right) = \ln |r| + C$$

$$= \frac{|x|0|^{3}}{22} (0.15 m) \ln \left(\frac{1.15 cm}{0.5 cm}\right)$$

$$= 1.35 \times |0|^{13} (L) = 1.35 \times |0|^$$

≡ LK-99

Article Talk

From Wikipedia, the free encyclopedia

LK-99 (from the Lee-Kim 1999 research),^[2] also called PCPOSOS,^[3] is a grayblack, polycrystalline compound, identified as a copper-doped lead-oxyapatite. A team from Korea University led by Lee Sukbae (이석배) and Kim Ji-Hoon (김지훈) began studying this material as a potential superconductor starting in 1999.^{[4]:1} In July 2023, they published preprints claiming that it acts as a room-temperature superconductor^{[4]:8} at temperatures of up to 400 K (127 °C; 260 °F) at ambient pressure.^{[2][5][4]:1}

Many different researchers have attempted to replicate the work, and were able to reach initial results within weeks, as the process of producing the material is relatively straightforward.^[6] By mid-August 2023, the consensus^[1] was that LK-99 is not a superconductor at room temperature, and is an insulator in pure form.^{[7][8]}

As of 12 February 2024, no replications had gone through the peer review process of a journal, but some had been reviewed by a materials science lab. A number of replication attempts identified non-superconducting ferromagnetic and diamagnetic causes for observations that suggested superconductivity. A prominent cause was a copper sulfide impurity^[10] occurring during the proposed synthesis, which can produce resistance drops, lambda transition in heat capacity, and magnetic response in small samples.^{[11][12][10][13][14][15][16]}

After the initial preprints were published, Lee claimed they were incomplete,^[17] and coauthor Kim Hvun-Tak (김현탁) said one of the papers contained flaws.^[18]