

Scheduling in the e-commerce era: New scheduling problems in order fulfilment and warehousing

Scheduling Seminar

Chair of Operations Management

Carl-Zeiß-Str. 3 07743 Jena, Germany www.om.uni-jena.de Prof. Dr. Nils Boysen

+49 3641 / 9-43100 nils.boysen@uni-jena.de

Evolution of e-commerce and warehousing, and the impact on scheduling research

Jane Snowball (then 72) ordered groceries via TV and phone line in 1984

Traditional warehouse

Picker-to-parts warehouse:
Picker routing

Tremendous growth of e-commerce sales

E-commerce warehouse of German fashion retailer Zalando

Parts-to-picker warehouse: Order fulfillment scheduling

Basic setup of a parts-to-picker process

Automated storage and retrieval system (ASRS)

Conveyor system

Agenda

Relation machine scheduling and order fulfillment scheduling

Machine scheduling (MS)

VS.

Order fulfillment scheduling (OFS)

Input-output process:

► MS: Input: Jobs -> Output: Products

► OFS: Input: Bins with many SKUs (stock keeping units) -> Output: customer orders

Relation among input and output:

► MS (single or parallel machine): 1:1 – one job –> one product

► MS (Job shop or flow shop): 1:n - multiple jobs -> one product

► OFS: n:m – each SKU bin can contribute to multiple orders and each order requires multiple SKU bins for completion

■ Batching:

► MS (default): one job per machine at a time

► OFS: Parallel batching: Multiple SKU bins and/or customer bins in parallel

OFS: Synchronization problem of SKU bins with customer bins to improve order throughput

Example for order fulfillment scheduling

Solution (a)

Solution (b)

$lpha_1$ capacity for parallel SKU bins	o k	only a single SKU bin at a time $k > 1$ SKU bins in parallel
$lpha_2$ bin composition	o mix	only one SKU per bin multiple SKUs per bin
$lpha_3$ arrival sequence	o fix	part of optimization problem already fixed
α_4 bin inventory	o pieces	all bins carry enough pieces limited number of pieces in the SKU bins

 $\alpha_1 = \circ$: single SKU bin

 $\alpha_1 = k$: multiple SKU bins in parallel access

$lpha_1$ capacity for parallel SKU bins	o k	only a single SKU bin at a time $k > 1$ SKU bins in parallel
$lpha_2$ bin composition	o mix	only one SKU per bin multiple SKUs per bin
α ₃ arrival sequence	o fix	part of optimization problem already fixed
α ₄ bin inventory	o pieces	all bins carry enough pieces limited number of pieces in the SKU bins

 $\alpha_2 = \circ$: homogeneous SKU bins

 $\alpha_2 = mix$: heterogeneous inventory pods

eta_1 capacity for parallel customer bins	1 °	only a single customer bin at a time multiple customer bins in parallel
eta_2 order composition	1-SKU o	each order demands only a single SKU each order may demand multiple SKUs
β_3 processing sequence	o fix	part of optimization problem already fixed
eta_4 bin exchange	o batch seq	random access to each customer bin batch-wise exchange of customer bins customer bins enter and leave concurrently
eta_5 SKU availability	o fast	new customer bin cannot get current SKU new customer bin can reach current SKU

 $\beta_1 = 1$: Picking workstation with on active customer bin

 $\beta_1 = \circ$: Put-to-light system with many customer bins

eta_1 capacity for parallel customer bins	1 0	only a single customer bin at a time multiple customer bins in parallel
eta_2 order composition	1-SKU ∘	each order demands only a single SKU each order may demand multiple SKUs
β_3 processing sequence	o fix	part of optimization problem already fixed
eta_4 bin exchange	o batch seq	random access to each customer bin batch-wise exchange of customer bins customer bins enter and leave concurrently
eta_5 SKU availability	o fast	new customer bin cannot get current SKU new customer bin can reach current SKU

 $\beta_5 = \circ$: Manual bin exchange

 β_5 =fast: Picking workstation with automated bin exchange

- o minimizing the total number of SKU bins
- another objective

- All objectives of traditional machine scheduling are possible.
- Reduced setup times:
 - Setup time associated with each SKU bin exchange
 - Waiting time during bin switch
 - Orientation time (e.g., perceive new put-to-light signals)
- Relief of ASRS:
 - ► Fewer SKU bins to be delivered relief the bin supply system
 - ► Each bin change is a source of potential delay (e.g., delayed robot arrival)

Literature survey

Summary of synchronization literature.

reference	tuple	Methods	application context
Asahiro et al. (2012)	[1-SKU,fix,fast]	_	paint shop batching
Boysen et al. (2017)	[mix fast]	MIP, HEU	shelf-lifting mobile robots
	[mix,fix fast] [mix fix,fast]	EX EX	
Chan et al. (2012)	[1-SKU,fix,fast]	EX	paint shop batching
Füßler & Boysen (2017)		MIP, HEU	inverse order picking
Füßler & Boysen (2019)	[fast]	MIP, HEU	ergonomic picking workstation
Nicolas, Yannick, & Ramzi (2018)	[mix batch]	MIP	vertical lift module
Ouzidan, Sevaux, Olteanu, Pardo, & Duarte (2022)	[fast]	MIP, HEU	ergonomic picking workstation
Valle & Beasley (2020)	[mix,pieces *]	HEU	shelf-lifting mobile robots

Legend: MIP: mixed integer program, EX: exact procedure, HEU: heuristic.

[|fast|] - Picking workstation

Solution (a) Solution (b)

[|fast|] - Complexity

(c) solution:

order sequence

2 1 3 4 5

DA-ACB-BE-ECF-FD

SKU bin sequence

[|1-SKU,fix,fast|] - Paint shop batching

[|1-SKU,fix,fast|] - Paint shop batching

Previous research:

- Asahiro, Y., Kawahara, K., & Miyano, E. (2012). NP-hardness of the sorting buffer problem on the uniform metric. Discrete Applied Mathematics, 160(10-11), 1453-1464.
- ► Chan, H. L., Megow, N., Sitters, R., & van Stee, R. (2012). A note on sorting buffers offline. Theoretical Computer Science, 423, 11-18.
- Adamaszek, A., Renault, M. P., Rosén, A., & van Stee, R. (2017). Reordering buffer management with advice. Journal of Scheduling, 20, 423-442.

[||] - Put-to-light order picking

(a) Put-to-light system Lightning Pick at apparel retailer Charlotte Russe

(b) System setup

[||] - Example

[||] - Complexity

(c) solution:

[mix|fast|] - Shelf-lifting mobile robots

(a) Robots lift shelves... (here CarryPick of Swisslog)

(b) and deliver them to picking stations

[mix|fast|] - Planning hierarchy

order selection and assignment

(selects the next orders from the pool and assigns them to pick stations)

order fulfillment scheduling (OFS)

(determines the assignment of orders to batches and their processing sequence at a pick station and assigns racks to satisfy the demanded SKUs)

rack assignment problem

(assigns each stopover of racks a storage position)

robot assignment and path planning

(assigns a robot to each movement of a rack and coordinates their travel paths on the shop floor)

[mix|fast|] - Example for pick station scheduling (PSS)

- \blacksquare Set S = {A, B, C, D} an SKUs
- $n = 4 \text{ orders: } o_1 = \{A, B, C\}, o_2 = \{A, B, C, D\}, o_3 = \{B, C, D\}, o_4 = \{C, D\}$
- \blacksquare m = 3 racks: $r_1 = \{A, C\}, r_2 = \{B, D\}, r_3 = \{C, D\}$
- $\blacksquare \quad \text{Capacity C} = 2$

Order sequence = $\langle o_4, o_3, o_1, o_2 \rangle$ Rack sequence = $\langle r_3, r_2, r_1 \rangle$

Order sequence = $\langle o_2, o_1, o_4, o_3 \rangle$ Rack sequence = $\langle r_3, r_2, r_1, r_2 \rangle$

[mix|fast|] - Complexity

- Decomposition
 - ► Solve rack sequencing for given order sequence str. NP-hard
 - ► Solve order sequencing for given rack sequence str. NP-hard

More complexity results

Strongly NP-hard synchronization problems.

	class of synchronization problems	# SP	transformation from	reference
1	[0; 0; 0; 0 0; 0; 0; 0; 0 0]	1	min-cut linear arrangement	(Füßler & Boysen, 2017)
2	[0; -; 0; - 0; 0; 0; 0; 0 0]	4	[0; 0; 0; 0 0; 0; 0; 0; 0 0]	Lemma 2
3	[o; -; o; - 1; o; o; -; fast o]	12	Hamilton path	Theorem 1
4	[o; -; o; - -; o; o; -; fast o]	24	Hamilton path	Corollary 1
5	$[k; -; \circ; - -; \circ; \circ; -; fast \circ]$	24	[o; -; o; - -; o; o; -; fast o]	Corollary 11
6	[o; o; o; o o; 1-SKU; fix; o; fast o]	1	sorting buffer problem	(Asahiro et al., 2012; Chan et al., 2012)
7	[o; -; o; - o; -; fix; o; fast o]	8	[o; o; o; o o; 1-SKU; fix; o; fast o]	Lemma 2
8	[o; -; -; pieces -; -; o; -; o o]	48	3-Partition	Theorem 2
9	[o; -; -; pieces o; o; o; -; fast o]	12	3-Partition	Theorem 2
10	[k; -; -; pieces o; o; o; -; fast o]	12	[o; -; -; pieces o; o; o; -; fast o]	Corollary 11
11	[o; -; o; pieces 1; -; -; -; o o]	24	3-Partition	Theorem 2
12	[o; -; fix; pieces 1; -; o; -; fast o]	12	3-Partition	Corollary 5
13	[k; -; fix; pieces 1; o; o; -; fast o]	6	[o; -; fix; pieces 1; -; o; -; fast o]	Corollary 11
14	[o; -; fix; pieces o; -; o; batch; - o]	8	3-Partition	Corollary 6
15	$[k; -; fix; pieces \circ; \circ; \circ; batch; fast \circ]$	2	[o; -; fix; pieces o; o; o; batch; fast o]	Corollary 11
16	[o; -; fix; pieces o; -; o; seq; - o]	8	3-Partition	Corollary 6
17	[k; -; fix; pieces o; o; o; seq; fast o]	2	[o; -; fix; pieces o; o; o; seq; fast o]	Corollary 11
18	[o; -; o; pieces -; -; fix; -; - o]	48	3-Partition	Corollary 7
19	$[k; -; \circ; pieces -; \circ; fix; -; fast \circ]$	12	[o; -; o; pieces -; o; fix; -; fast o]	Corollary 11
20	[o; -; fix; pieces o; o; fix; o; - o]	4	3-Partition	Corollary 8
21	$[k; -; fix; pieces \circ; \circ; fix; \circ; fast \circ]$	2	[o; -; fix; pieces o; o; fix; o; fast o]	Corollary 11
22	[o; mix; o; o o; 1-SKU; -; -; - o]	12	set covering	(Boysen et al., 2017), Theorem 3
23	$[k; mix; \circ; \circ \circ; 1-SKU; -; -; fast \circ]$	6	set covering	(Boysen et al., 2017), Theorem 3
24	[o; mix; o; - o; -; -; -; - o]	48	[o; mix; o; o o; 1-SKU; -; -; - o]	Lemma 2
25	[k; mix; o; - o; -; -; -; fast o]	24	[k; mix; o; o o; 1-SKU; -; -; fast o]	Lemma 2
26	[-; mix; o; - 1; -; o; -; fast o]	24	set covering	Corollary 9
27	$[k; mix; \circ; - 1; -; fix; -; fast \circ]$	12	set covering	Corollary 9
28	$[-; mix; \circ; - -; \circ; -; -; - \circ]$	96	set covering	Corollary 10
29	[o; mix; fix; o 1; o; o; o; fast o]	1	interval scheduling	(Boysen et al., 2017)
30	[o; mix; fix; - -; o; o; -; fast o]	12	[o; mix; fix; o 1; o; o; o; fast o]	Lemmas 1 and 2
31	$[k; mix; fix; - -; \circ; \circ; -; fast \circ]$	12	[o; mix; fix; - -; o; o; -; fast o]	Corollary 11

281 out of 576 problems are shown to be strongly NP-hard.

156 out of 576 problems are solvable in polynomial time.

Synchronization problems solvable to optimality in polynomial time.

	class of synchronization problems	# SP	valid only if	reference
1	[o; -; fix; o -; 1-SKU; o; -; fast o]	12		Lemma 5
2	$[\circ; \circ; \text{fix}; \circ -; 1\text{-SKU}; \circ; -; \circ \circ]$	6		Lemma 5
3	$[\circ; \circ; \circ; \circ -; 1-SKU; \circ; -; fast \circ]$	6		Lemma 5
4	[o; o; o; pieces -; 1-SKU; o; -; fast o]	6		Lemma 5
5	$[\circ; \circ; \circ; \circ 1; 1\text{-SKU}; \text{fix}; -; - \circ]$	6		Lemma 6
6	$[\circ;\circ;\circ;\circ 1;-;-;\circ \circ]$	12		Lemma 7
7	$[\circ; -; \text{fix}; \circ -; -; \text{fix}; -; - \circ]$	48		Lemma 8
8	$[\circ; -; -; \circ 1; 1-SKU; -; -; \circ \circ]$	24		Lemma 9
9	$[\circ; mix; fix; \circ -; 1-SKU; \circ; -; \circ \circ]$	6		Lemma 10
10	[o; mix; o; o 1; 1-SKU; fix; -; fast o]	3		Theorem 4
11	$[-; -; \circ; \circ -; -; \text{fix}; \circ; \text{fast} \circ]$	16	(a) and (b) and (c)	Corollary 12
12	$[-; -; \circ; \circ -; -; \text{fix}; \text{seq}; \text{fast} \circ]$	16	(a) and (b) and (c)	Corollary 13
13	$[-; -; \circ; \circ -; -; \text{fix}; \text{batch}; \text{fast} \circ]$	16	(a) and (b) and (c)	Corollary 14
14	$[-; -; fix; \circ -; -; fix; -; fast \circ]$	48	(a) and (b) and (c)	Corollary 15
15	$[-; -; -; \circ -; -; fix; -; fast \circ]$	96	(a) and (b) and (c)	Theorem 5
(a)	the SKU bin capacity k is limited by	a const	ant	
(b)	the customer bin capacity is limited	by a co	nstant	
(c)	the maximum number of SKUs requ	ired by	a customer bin is limit	ed by a constant

Managerial results - I

Synchronization gains in number of SKU bins deliveries in % for different workstation setups related to default case [||] depending on different demand structures (EQ and ABC) and customer bin capacities β_1 .

		EQ			ABC		
case	extension	$\beta_1 = 1$	$\beta_1 = 3$	$\beta_1 = 5$	$\beta_1 = 1$	$\beta_1 = 3$	$\beta_1 = 5$
[]	æ	0.00	-27.55	-35.92	0.00	-42.50	-56.61
[3]]]	parallel SKU bins	-24.43	-32.60	-38.05	-48.27	-49.41	-59.86
[5]]	parallel SKU bins	-33.63	-34.45	-38.77	-61.26	-61.26	-62.10
[mix]	mix of SKUs per bin	-2.83	-41.60	-52.26	-2.63	-50.24	-64.14
[fix]	given order sequence	0.00	-17.46	-27.17	0.00	-26.54	-45.51
[batch]	bin exchange	0.00	-8.51	-14.70	0.00	-25.00	-35.95
[seq]	bin exchange	0.00	-14.04	-25.31	0.00	-32.82	-44.42
[fast]	bin exchange	-11.54	-30.43	-36.61	-20.78	-49.21	-58.16

- Should we have more bins?
 - Yes, more bin capacity greatly reduces the SKU bin deliveries.
 - The positive effect is especially strong for ABC orders.
 - ► The positive effect quickly diminishes, so that more than five is barely worth the effort.
 - ▶ Negative effect: More picker movement along the pick face.
- Should be increase the capacity for SKU bins or customer bins?
 - It does not matter.

Managerial results - II

Synchronization gains in number of SKU bins deliveries in % for different workstation setups related to default case [||] depending on different demand structures (EQ and ABC) and customer bin capacities β_1 .

		EQ			ABC		
case	extension	$\beta_1 = 1$	$\beta_1 = 3$	$\beta_1 = 5$	$\beta_1 = 1$	$\beta_1 = 3$	$\beta_1 = 5$
[]	-	0.00	-27.55	-35.92	0.00	-42.50	-56.61
[3]	parallel SKU bins	-2 <mark>4-4</mark> 3	-3760	-38 05	-4 <mark>8-2</mark> 7	-41141	-50.86
[5]	parallel SKU bins	-33-53	-34-45	-38-/7	-6126	-61.26	-62.10
[mix]	mix of SKUs per bin	-2.83	-41.60	-52.26	-2.63	-50.24	-64.14
[fix]	given order sequence	0.00	-17.46	-27.17	0.00	-26.54	-45.51
[batch]	bin exchange	0.00	-8.51	-14.70	0.00	-25.00	-35.95
[seq]	bin exchange	0.00	-14.04	-25.31	0.00	-32.82	-44.42
[fast]	bin exchange	-11.54	-30.43	-36.61	-20.78	-49.21	-58.16

[Source: Amazon]

Mixed SKU bins?

- Should we mix the SKU bins?
 - ► Not necessarily, the positive effect is rather small.
 - ▶ Negative effect: More search effort for the picker to find the right SKU.
 - ► Support in warehouses: Picture of SKU on display or laser beam onto right compartment.

Managerial results - III

Synchronization gains in number of SKU bins deliveries in % for different workstation setups related to default case [||] depending on different demand structures (EQ and ABC) and customer bin capacities β_1 .

		EQ			ABC		
case	extension	$\beta_1 = 1$	$\beta_1 = 3$	$\beta_1 = 5$	$\beta_1 = 1$	$\beta_1 = 3$	$\beta_1 = 5$
[]	-	0.00	-27.55	-35.92	0.00	-42.50	-56.61
[3]	parallel SKU bins	-2 <mark>4.4</mark> 3	-3 <mark>-7-6</mark> 0	-38 05	-48-27	-40-41	-5 <mark>0-8</mark> 6
[5]	parallel SKU bins	-3	-3 15	-38 7	-6	-6	-6
[mix]	mix of SKUs per bin	-2	-4 50	-52 6	-2	-5 24	-6 4
[fix]	given order sequence	0.0	-1 46	-27 7	0.0	-2 34	-4 51
[batch]	bin exchange	0.0	-8	-14 0	0.0	-2 10	-3 95
[seq]	bin exchange	0.0	-14.04	-25.31	0.04	-32.82	-44.42
[fast]	bin exchange	-11.54	-30.43	-36.61	-20.78	-49.21	-58.16

Fast customer bin switches?

- Should we invest into an automated mechanism to switch completed customer bins fast?
 - ➤ Yes, but only if a parallelization of multiple (SKU or customer) bins is not possible.

Conclusions

- Order fulfillment problems appear
 - ► in many different parts-to-picker systems
 - with slight variation.
 - ► There is not much work on these problems,
 - especially from a general perspective.

Outlook: Within 5-10 years, we have the fully-automated e-commerce fulfillment factory

Picking robot with vacuum griper

Automated packing

Robots and machinery need advice!
We need more research on warehouse scheduling!

Thank you very much for your attention

Literature:

- ▶ Boysen, N., Schwerdfeger, S., & Stephan, K. (2023). A review of synchronization problems in parts-to-picker warehouses. European Journal of Operational Research, 307(3), 1374-1390.
- ▶ Boysen, N., Briskorn, D., & Emde, S. (2017). Parts-to-picker based order processing in a rack-moving mobile robots environment. European Journal of Operational Research, 262(2), 550-562.
- ► Füßler, D., & Boysen, N. (2019). High-performance order processing in picking workstations. EURO Journal on Transportation and Logistics, 8(1), 65-90.
- ► Füßler, D., & Boysen, N. (2017). Efficient order processing in an inverse order picking system. Computers & Operations Research, 88, 150-160.