Projektdokumentation – Industrie-Robotersteuerung (Embedded C++)

Abdelali ELAmine

1. Projektübersicht

1.1 Zielsetzung

Entwicklung einer Software zur Steuerung eines fischertechnik-basierten Industrie-Roboters mit drei Achsen (Radius, Winkel, Höhe) und einem motorisierten Greifer. Ziel ist die Durchführung eines definierten Bewegungsablaufs zur Handhabung von Werkstücken gemäß vorgegebener Koordinaten.

2. Systemarchitektur

2.1 Hardwarekomponenten

- Mikrocontroller: STM32L100 (Experimentierboard)
- Motorsteuerung: H-Brücken des Boards
- Inkrementalgeber: zur Positionsbestimmung
- Endschalter: zur Nullpositions-Erkennung
- **Bedienelemente**: Tasten A, B, C, D (für Reset, Start, Stop, Pause)
- **Display**: 4x20 LCD zur Anzeige von Positionen und Status

2.2 Softwarestruktur

Hauptklassen

Motor

- Abstraktion eines einzelnen Motors mit Bewegungs- und Statuskontrolle
- Zustände: Idle, Running, Homing
- Funktionen: fahreZu, home, stop, pause, update, reset

Robot

- Enthält 4 Motoren (Radius, Winkel, Höhe, Greifer)
- Steuert die Bewegungsabfolge anhand eines Stacks von Position-Objekten
- Zustände: GreiferZu, GreiferAuf, WartenGreifer, Fertig
- Methoden: start, HomingRobot, goTO, update, motorenupdate, pause, stop und reset.

myTimerTask1

• Erzeugt einen Systemzähler (counter) für Zeitsteuerung in Millisekunden

myTimerTask

 Zyklischer Aufruf von robot.update() und robot.motorenupdate() für Logik und Steuerung

3. Bewegungsablauf (gemäß Lastenheft)

3.1 Szenario (Lagerkoordinaten)

Lager	Winkel	Radius	Höhe
Hülse	63	75	88
Scheibe	63	75	160
Endprodukt	130	100	130

3.2 Abfolge (Hardcodiert im Robot::start()):

Sch	Aktion	Koordinaten (R, W,	Grei	Beschreibung
ritte		H)	fer	beschielbung
1	Startposition	(0, 0, 0)	_	Initiale Nullposition

2	Vorposition (Scheibe)	(0, 72, 73)	_	Positionieren neben Scheibe höhe
3	Scheibe positionieren	(75, 72, 73)	_	Exakte Ausrichtung
4	Scheibe greifen	(75, 72, 73)	Zu	Greifer schließt – Scheibe wird abgeholt
5	Zurückziehen (hoch)	(75, 80, 60)	_	Zurück nach Einlegen
6	Scheibe ablegen	(100, 137, 137)	Auf	Greifer öffnet – Scheibe ablegen
7	Zurueck fast nach Home	(10, 10, 10)	_	Nicht totale Homing
8	Höhenfahrt	(10, 10, 160)	_	Positionieren vor Hülse
9	Seitlich neben Ziel	(10, 70, 160)	_	Seitlich vor Zielhöhe
10	Hülse positionieren	(75, 70, 160)	_	Ausrichtung über Ziel
11	Hülse ablegen	(75, 70, 160)	Zu	Greifer schließt – Hülse aufnehmen
12	Zurückziehen (hoch)	(75, 80, 160)	_	Nach oben wegfahren
13	Hülse ablegen	(100, 133, 95)	Auf	Greifer öffnet – Hülse wird abgesetzt
14	Rückkehr zur Startposition	(0, 0, 0)	-	Zyklusende

3.3 Ablauf Diagram:

4. Benutzerinteraktion

4.1 Tasten

Taste	Funktion
Α	Homing starten
В	Roboter starten
С	Roboter stoppen
D	Robot pausieren

4.2 Displayanzeigen

- Höhe, Winkel, Radius in Echtzeit
- Statusmeldungen: "homing", "start", "stop", "pause"

5. Sicherheits- und Timeout-Handling

- Motorsperre bei Stillstand für >1000ms (über lastMoveTime)
- Greifer-Timeout wird als "geschlossen" interpretiert
- Positionierung nur innerhalb definierter Grenzen
- Blockierter Motor beendet Bewegung automatisch