强化学习 HW2

- ▲ 饶翔云 520030910366

Problem 1

Reformalize: $V_n = (1 - \alpha_n)V_{n-1} + \alpha_n x_n$, where x_n is a sample of value, and $|x_n| \leq C_1$, $|V_n| \leq C_2$. Please prove $\{V_n\}$ coverges.

I suppose to use Cachy coverges rule:

$$\text{An array coverges} \iff \forall \epsilon > 0, \exists N \in \mathbb{N}, \forall m > N, \forall n > N, |x_m - x_n| \leq \epsilon$$

Proof: $\forall \epsilon$, when n closed to ∞

$$\begin{split} & : |V_m| = |\prod_{i=n+1}^m (1-\alpha_i) V_n + \sum_{i=n+1}^m \prod_{i=n+1}^m (1-\alpha_i) \alpha_i x_i | \\ & : |V_m - V_n| = |\prod_{i=n+1}^m (1-\alpha_i) V_n + \sum_{i=n+1}^m \prod_{i=n+1}^m (1-\alpha_i) \alpha_i x_i - V_n | \\ & = |(\prod_{i=n+1}^m (1-\alpha_i) - 1) V_n + \sum_{i=n+1}^m (\frac{n}{m(n+1)}) \alpha_i x_i | \\ & \le |(\prod_{i=n+1}^m (1-\alpha_i) - 1) V_n| + |\sum_{i=n+1}^m (\frac{n}{m(n+1)}) \alpha_i x_i | \\ & \le |((1-\frac{1}{N^2}) - 1) V_n| + |(\frac{n(m-n)}{m(n+1)N^2}) x_i | \\ & \le |\frac{C_2}{N^2}| + |\frac{C_1}{N^2}|(\sum_{i=1}^\infty \alpha_i \text{ coverges to } \frac{\pi^2}{6}) \\ & : |x_m - x_n| \le \epsilon, \forall m > N, \forall n > N \\ & : \forall \epsilon, \exists N \ge \sqrt{\frac{C_1 + C_2}{\epsilon}}, \forall m > N, \forall n > N, |x_m - x_n| \le \epsilon. \end{split}$$

Therefore, TD-learning coverges

Problem 2

以下是从0.01到0.9的 ϵ 得到的累计价值随批次的变化曲线:

(a) what are the impacts of different values of ϵ on the performance of the above three algorithms?

With low ϵ , here is less uncertainty and thus we have a stable curve. And with the ϵ increasingm, there is more uncertainty and curve become more unstable, that is, more and more closed to random walk in this cliff-walking environment.

(b) what is the difference between the performance of the behavior policy of Q-learning algorithm and the performance of the target policy of Q-learning algorithm?

ϵ	Q- learning(behaviour)	Q-learning(target)	Sarsa
low	Nearly the same because it is closed to full greedy and that is a certain policy	Nearly the same because it is closed to full greedy and that is a certain policy	Nearly the same because it is closed to full greedy and that is a certain policy
high	Performs poor for extraordinary unstable	Performs poor but better than others because it use target policy with the same Q-table as behaviour policy but execute full greedy.	Performs poor for extraordinary unstable