0.1 级数计算

0.1.1 裂项方法

例题 **0.1** 计算 $\sum_{n=1}^{\infty} \frac{1}{2^n(1+\sqrt[2^n]{2})}$.

Ŷ 笔记 继续采用强行裂项的想法,猜出裂项之后的模样之后还原看看差什么.

证明 注意到

$$\frac{1}{2^{n-1}\left(2^{\frac{1}{2^{n-1}}}-1\right)} - \frac{1}{2^{n}\left(2^{\frac{1}{2^{n}}}-1\right)} = \frac{2}{2^{n}\left(2^{\frac{1}{2^{n-1}}}-1\right)} - \frac{2^{\frac{1}{2^{n}}}+1}{2^{n}\left(2^{\frac{1}{2^{n-1}}}-1\right)} = -\frac{2^{\frac{1}{2^{n}}}-1}}{2^{n}\left(2^{\frac{1}{2^{n-1}}}-1\right)} = -\frac{1}{2^{n}\left(2^{\frac{1}{2^{n}}}-1\right)},$$

$$= -\frac{2^{\frac{1}{2^{n}}}-1}}{2^{n}\left(2^{\frac{1}{2^{n}}}+1\right)\left(2^{\frac{1}{2^{n}}}-1\right)} = -\frac{1}{2^{n}\left(2^{\frac{1}{2^{n}}}+1\right)},$$

我们有

$$\sum_{n=1}^{\infty} \frac{1}{2^n \left(2^{\frac{1}{2^n}} + 1\right)} = \lim_{n \to \infty} \left(\frac{1}{2^n \left(2^{\frac{1}{2^n}} - 1\right)}\right) - 1 = \frac{1}{\ln 2} - 1.$$

例题 0.2 计算

$$\sum_{k=1}^{\infty} \frac{1}{k(k+1)(k+1)!}$$

📀 笔记 想法的关键是强行裂项.

证明

$$\begin{split} \sum_{k=1}^{\infty} \frac{1}{k(k+1)(k+1)!} &= \sum_{k=1}^{\infty} \left(\frac{1}{k} - \frac{1}{k+1}\right) \frac{1}{(k+1)!} = \sum_{k=1}^{\infty} \left(\frac{1}{k(k+1)!} - \frac{1}{(k+1)(k+1)!}\right) \\ &= \sum_{k=1}^{\infty} \left(\frac{1}{k(k+1)!} - \frac{1}{(k+1)(k+2)!}\right) + \sum_{k=1}^{\infty} \left(\frac{1}{(k+1)(k+2)!} - \frac{1}{(k+1)(k+1)!}\right) \\ &= \frac{1}{2} - \sum_{k=1}^{\infty} \frac{1}{(k+2)!} \frac{e \bowtie \operatorname{Taylor} \mathbb{R}^{\frac{1}{H}}}{2} \frac{1}{2} - \left(e - 1 - 1 - \frac{1}{2}\right) = 3 - e. \end{split}$$

例题 0.3 计算级数

$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{\ln n}{n}$$

🔮 笔记 此类问题化部分和之后估阶.

证明 注意到

$$\sum_{n=1}^{2m+1} (-1)^{n-1} \frac{\ln n}{n} = \sum_{n=1}^{2m} (-1)^{n-1} \frac{\ln n}{n} + \frac{\ln (2m+1)}{2m+1}.$$

$$\lim_{m \to \infty} \sum_{n=1}^{2m+1} (-1)^{n-1} \frac{\ln n}{n} = \lim_{m \to \infty} \sum_{n=1}^{2m} (-1)^{n-1} \frac{\ln n}{n}.$$

于是由子列极限命题 (b) 可得

$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{\ln n}{n} = \lim_{m \to \infty} \sum_{n=1}^{2m} (-1)^{n-1} \frac{\ln n}{n} = \lim_{m \to \infty} \sum_{n=1}^{m} \left(\frac{\ln(2n-1)}{2n-1} - \frac{\ln(2n)}{2n} \right)$$

$$= \lim_{m \to \infty} \left(\sum_{n=1}^{2m} \frac{\ln n}{n} - \sum_{n=1}^{m} \frac{\ln(2n)}{2n} - \sum_{n=1}^{m} \frac{\ln(2n)}{2n} \right) = \lim_{m \to \infty} \left(\sum_{n=1}^{2m} \frac{\ln n}{n} - \sum_{n=1}^{m} \frac{\ln n}{n} - \sum_{n=1}^{m} \frac{\ln 2}{n} \right)$$

利用例题??(2), 我们知道

$$\sum_{m=1}^{m} \frac{\ln 2}{n} = \ln 2 \cdot \ln m + \ln 2 \cdot \gamma + o(1), m \to \infty$$

由 0 阶 E-M 公式知道

$$\sum_{m=1}^{m} \frac{\ln n}{n} = \frac{\ln m}{2m} + \int_{1}^{m} \frac{\ln x}{x} dx + \int_{1}^{m} \left(x - [x] - \frac{1}{2} \right) \left(\frac{\ln x}{x} \right)' dx$$

注意到 $\int_{1}^{m} \frac{\ln x}{x} dx = \frac{1}{2} \ln^2 m$ 以及

$$\left| \int_1^m \left(x - [x] - \frac{1}{2} \right) \left(\frac{\ln x}{x} \right)' dx \right| = \left| \int_1^m \left(x - [x] - \frac{1}{2} \right) \frac{1 - \ln x}{x^2} dx \right| \leqslant \frac{1}{2} \int_1^\infty \frac{|1 - \ln x|}{x^2} dx < \infty$$

于是我们有

$$\sum_{n=1}^{m} \frac{\ln n}{n} = \frac{1}{2} \ln^2 m + C + o(1), m \to \infty$$

这里 $C = \int_{1}^{\infty} \left(x - [x] - \frac{1}{2} \right) \left(\frac{\ln x}{x} \right)' dx$. 现在结合上述渐近估计式就有

$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{\ln n}{n} = \lim_{m \to \infty} \left[\frac{1}{2} \ln^2(2m) - \frac{1}{2} \ln^2 m - \ln 2 \cdot \ln m - \ln 2 \cdot \gamma + o(1) \right] = \frac{\ln^2 2}{2} - \ln 2 \cdot \gamma$$

例题 0.4

1. 计算

$$\sum_{n=1}^{\infty} \frac{1 + \frac{1}{2} + \dots + \frac{1}{n}}{(n+1)(n+2)}$$

2. 计算

$$\sum_{n=1}^{\infty} \frac{1 + \frac{1}{2} + \dots + \frac{1}{n}}{n(n+1)}$$

Ŷ 笔记 证明的想法即强行裂项.

证明

1. 记
$$H_n riangleq 1 + \frac{1}{2} + \dots + \frac{1}{n}$$
, 我们有

$$\begin{split} &\sum_{n=1}^{\infty} \frac{1 + \frac{1}{2} + \dots + \frac{1}{n}}{(n+1)(n+2)} = \lim_{m \to \infty} \left(\sum_{n=1}^{m} \frac{H_n}{n+1} - \sum_{n=1}^{m} \frac{H_n}{n+2} \right) \\ &= \lim_{m \to \infty} \left(\sum_{n=1}^{m} \frac{H_n}{n+1} - \sum_{n=1}^{m} \frac{H_{n+1}}{n+2} \right) + \lim_{m \to \infty} \left(\sum_{n=1}^{m} \frac{H_{n+1}}{n+2} - \sum_{n=1}^{m} \frac{H_n}{n+2} \right) \\ &= \lim_{m \to \infty} \left(\frac{H_1}{2} - \frac{H_{m+1}}{m+2} \right) + \sum_{n=1}^{\infty} \frac{1}{(n+1)(n+2)} = \frac{1}{2} + \sum_{n=1}^{\infty} \left(\frac{1}{n+1} - \frac{1}{n+2} \right) = 1. \end{split}$$

2. 我们有

$$\sum_{n=1}^{\infty} \frac{1 + \frac{1}{2} + \dots + \frac{1}{n}}{n(n+1)} = \sum_{n=1}^{\infty} \left(\frac{H_n}{n} - \frac{H_n}{n+1} \right)$$

$$= \sum_{n=1}^{\infty} \left(\frac{H_n}{n} - \frac{H_{n+1}}{n+1} \right) + \sum_{n=1}^{\infty} \left(\frac{H_{n+1}}{n+1} - \frac{H_n}{n+1} \right)$$

$$= H_1 + \sum_{n=1}^{\infty} \frac{1}{(n+1)^2} = \frac{\pi^2}{6}.$$

例题 0.5 计算

$$\sum_{n=1}^{\infty} \arctan \frac{1}{2n^2}$$

\$

笔记 证明的想法即利用合适范围内都成立的恒等式

$$\arctan x - \arctan y = \arctan \frac{x - y}{1 + xy}$$

来裂项.

证明 我们有

$$\sum_{n=1}^{\infty} \arctan \frac{1}{2n^2} = \sum_{n=1}^{\infty} \left(\arctan \frac{n}{n+1} - \arctan \frac{n-1}{n}\right) = \lim_{n \to \infty} \arctan \frac{n}{n+1} = \frac{\pi}{4}.$$

0.1.2 凑已知函数

例题 0.6 对 |x| < 1, 计算

$$\sum_{n=0}^{\infty} \frac{4n^2 + 4n + 3}{2n + 1} x^{2n}$$

证明 我们有

$$\sum_{n=0}^{\infty} \frac{4n^2 + 4n + 3}{2n + 1} x^{2n} = \sum_{n=0}^{\infty} (2n + 1)x^{2n} + 2\sum_{n=0}^{\infty} \frac{x^{2n}}{2n + 1}$$

$$= \left(\sum_{n=0}^{\infty} x^{2n+1}\right)' + \frac{2}{x} \int_{0}^{x} \sum_{n=0}^{\infty} y^{2n} dy$$

$$= \left(\frac{x}{1 - x^2}\right)' + \frac{2}{x} \int_{0}^{x} \frac{1}{1 - y^2} dy$$

$$= \begin{cases} \frac{1 + x^2}{(1 - x^2)^2} + \frac{1}{x} \ln \frac{1 + x}{1 - x} & , x \neq 0 \\ 3 & , x = 0 \end{cases}$$

例题 0.7 计算

$$1 - \frac{1}{6} - \sum_{k=2}^{\infty} \frac{(3k-4)(3k-7)\cdots 5\cdot 2}{6^k k!}.$$

证明 我们有

$$1 - \frac{1}{6} - \sum_{k=2}^{\infty} \frac{(3k-4)(3k-7)\cdots 5\cdot 2}{6^k k!} = 1 - \frac{1}{6} - \sum_{k=2}^{\infty} \frac{3^{k-1} \prod_{j=2}^k \left(j - \frac{4}{3}\right)}{6^k k!}$$
$$= 1 - \sum_{k=1}^{\infty} \frac{(-3)^{k-1} 3 \prod_{j=1}^k \left(\frac{1}{3} - j + 1\right)}{6^k k!} = 1 + \sum_{k=1}^{\infty} \left(\frac{\frac{1}{3}}{k}\right) \left(-\frac{1}{2}\right)^k = \left(1 - \frac{1}{2}\right)^{\frac{1}{3}} = 2^{-\frac{1}{3}}.$$

例题 0.8 对 |x| < 1, 计算

$$\sum_{k=1}^{\infty} \frac{1}{2^k} \tan \frac{x}{2^k}.$$

П

证明 相似例题??的计算,我们有恒等式

$$\frac{\sin x}{2^n \sin \frac{x}{2^n}} = \prod_{k=1}^n \cos \frac{x}{2^k}.$$

于是

$$\sum_{k=1}^{n} \ln \cos \frac{x}{2^k} = \ln \sin x - n \ln 2 - \ln \sin \frac{x}{2^n}.$$

两边求导有

$$-\sum_{k=1}^{n} \frac{1}{2^k} \tan \frac{x}{2^k} = \frac{\cos x}{\sin x} - \frac{\cos \frac{x}{2^n}}{2^n \sin \frac{x}{2^n}}.$$

于是就有

$$\sum_{k=1}^{\infty} \frac{1}{2^k} \tan \frac{x}{2^k} = -\frac{\cos x}{\sin x} + \lim_{n \to \infty} \frac{\cos \frac{x}{2^n}}{2^n \sin \frac{x}{2^n}} = \begin{cases} -\frac{\cos x}{\sin x} + \frac{1}{x}, & 0 < |x| < 1\\ 0, & x = 0 \end{cases}.$$

0.1.3 生成函数和幂级数计算方法

例题 0.9 计算

$$\sum_{n=1}^{\infty} \left(1 + \frac{1}{2} + \dots + \frac{1}{n} \right) x^n.$$

🕏 笔记 使用 Cauchy 积计算幂级数有一个特点, 即系数往往出现求和结构.

证明 考虑
$$a_n = 1, n \in \mathbb{N}_0, b_n = \begin{cases} \frac{1}{n}, & n \in \mathbb{N} \\ 0, & n = 0 \end{cases}$$

$$\sum_{n=0}^{\infty} a_n x^n = \frac{1}{1-x}, \sum_{n=0}^{\infty} b_n x^n = -\ln(1-x),$$

并且上述级数在 (-1,1) 上绝对收敛,于是由 Cauchy 积收敛定理及推论??可知

$$\sum_{n=1}^{\infty} \left(1 + \frac{1}{2} + \dots + \frac{1}{n} \right) x^n = -\frac{\ln(1-x)}{1-x}, |x| < 1.$$

收敛域可以直接注意到

$$\lim_{n \to \infty} \frac{1 + \frac{1}{2} + \dots + \frac{1}{n} + \frac{1}{n+1}}{1 + \frac{1}{2} + \dots + \frac{1}{n}} = 1,$$

以及

$$\lim_{n\to\infty} \left(1 + \frac{1}{2} + \dots + \frac{1}{n}\right) 1^n = \infty, \lim_{n\to\infty} \left(1 + \frac{1}{2} + \dots + \frac{1}{n}\right) (-1)^n = \infty$$

故收敛域就是 (-1,1).

例题 0.10 设

$$f(x) = \frac{1}{1 - x - x^2}, a_n = \frac{f^{(n)}(0)}{n!}, n = 0, 1, 2, \dots,$$

计算

$$\sum_{n=1}^{\infty} \frac{a_{n+1}}{a_n a_{n+2}}.$$

室记 注意到形式幂级数法我们不需要担心考虑的 f 的幂级数是否收敛的问题. 因为这个方法最后往往可以算出一个具体的 f, 对这个 f 来说直接用数学归纳法计算验证会发现其 Taylor 多项式的系数恰好就是条件中的数列,从而整个逻辑严谨. 因此这又是一个从逻辑上来说属于先猜后证的方法.

对本题而言,f(x)已知,且容易求出其收敛半径.此时用形式幂级数法本身就是严谨地.

证明 考虑 $f(x) = \sum_{n=0}^{\infty} a_n x^n$, 则对任意在其收敛域内的 x 我们有

$$1 = (1 - x - x^{2}) \sum_{n=0}^{\infty} a_{n} x^{n} = \sum_{n=0}^{\infty} a_{n} x^{n} - \sum_{n=0}^{\infty} a_{n} x^{n+1} - \sum_{n=0}^{\infty} a_{n} x^{n+2}$$
$$= \sum_{n=0}^{\infty} a_{n} x^{n} - \sum_{n=1}^{\infty} a_{n-1} x^{n} - \sum_{n=2}^{\infty} a_{n-2} x^{n}$$
$$= a_{0} + a_{1} x - a_{0} x + \sum_{n=2}^{\infty} (a_{n} - a_{n-1} - a_{n-2}) x^{n},$$

于是对比系数得

$$a_0 = 1$$
, $a_1 = a_0 = 1$, $a_n = a_{n-1} + a_{n-2}$, $n = 2, 3, \cdots$.

显然有

$$a_n \in \mathbb{N} \Rightarrow \lim_{n \to \infty} a_n = \infty,$$

于是

$$\sum_{n=1}^{\infty} \frac{a_{n+1}}{a_n a_{n+2}} = \sum_{n=1}^{\infty} \left(\frac{1}{a_n} - \frac{1}{a_{n+2}} \right) = \frac{1}{a_1} + \frac{1}{a_2} = \frac{3}{2}.$$

 \dot{x} (证明可见复分析教材) 为了求出 f 收敛半径, 可以展开点为中心作圆并一直扩大直到接触到和函数在 \mathbb{C} 上第一个奇点为止. 对于 $f(x)=\frac{1}{1-x-x^2}$,第一个奇点即使得 $\frac{1}{1-x-x^2}$ 分母为 0 且模更小的点 $\frac{\sqrt{5}-1}{2}$. 于是 $f(x)=\sum_{n=0}^{\infty}a_nx^n$ 收敛半径为 $\frac{\sqrt{5}-1}{2}$. 于是我们得到一个极限

$$\lim_{n \to \infty} \sqrt[n]{|a_n|} = \frac{2}{\sqrt{5} - 1} = \frac{\sqrt{5} + 1}{2}.$$

例题 **0.11** 设 $a_0 = 0$, $a_1 = \frac{2}{3}$, $(n+1)a_{n+1} = 2a_n + (n-1)a_{n-1}$, $n \in \mathbb{N}$, 计算 $\sum_{n=0}^{\infty} na_n x^n$ 收敛域和和函数.

证明 记 $f(x) = \sum_{n=0}^{\infty} a_n x^n$, 形式的, 我们有

$$\sum_{n=1}^{\infty} (n+1)a_{n+1}x^{n-1} = 2\sum_{n=1}^{\infty} a_n x^{n-1} + \sum_{n=1}^{\infty} (n-1)a_{n-1}x^{n-1}.$$

于是

$$\frac{1}{x}[f'(x) - a_1] = \frac{2}{x}[f(x) - a_0] + xf'(x) \Rightarrow \frac{1}{x}\left[f'(x) - \frac{2}{3}\right] = \frac{2}{x}f(x) + xf'(x).$$

故解微分方程得 $f(x) = \frac{2x}{3-3x}, x \in (-1,1)$. 这给出了 $a_n = \frac{2}{3}, n \in \mathbb{N}$. 于是

$$\sum_{n=0}^{\infty} n a_n x^n = \frac{2}{3} \sum_{n=0}^{\infty} n x^n = \frac{2}{3} x \left(\sum_{n=0}^{\infty} x^n \right)' = \frac{2}{3} x \left(\frac{1}{1-x} \right)' = \frac{2x}{3(1-x)^2}, x \in (-1,1).$$

例题 0.12

1. 计算

$$\sum_{n=0}^{\infty} \frac{(2n)!!}{(2n+1)!!} x^{2n+1}.$$

2. 计算

$$\sum_{n=1}^{\infty} \left[\left(\frac{1 \cdot 2 \cdot 3 \cdot \dots \cdot n}{3 \cdot 5 \cdot 7 \cdot \dots \cdot 2n + 1} \right) \cdot \frac{1}{n+1} \right].$$

注 第 2 问是第十届大学生数学竞赛非数学类决赛得分率非常低的一个题. 可以看到如果我们平时记忆 arcsin² x 展开, 就能快速解题而规避掉最容易考的构造微分方程求解幂级数的技巧. 这一点我们在命题**??**中也提到过. 证明

1. 考虑

$$g(x) = \sum_{n=0}^{\infty} \frac{(2n)!!}{(2n+1)!!} x^{2n+1}, g'(x) = 1 + \sum_{n=1}^{\infty} \frac{(2n)!!}{(2n-1)!!} x^{2n},$$

我们有

$$g'(x) = 1 + x \sum_{n=1}^{\infty} \frac{(2n-2)!!}{(2n-1)!!} 2nx^{2n-1} = 1 + x \left(\sum_{n=1}^{\infty} \frac{(2n-2)!!}{(2n-1)!!} x^{2n} \right)'$$
$$= 1 + x \left(x \sum_{n=1}^{\infty} \frac{(2n-2)!!}{(2n-1)!!} x^{2n-1} \right)' = 1 + x [xg(x)]',$$

即

$$g'(x) - \frac{x}{1 - x^2}g(x) = \frac{1}{1 - x^2}, g(0) = 0.$$

由常数变易法得 $g(x) = \frac{\arcsin x}{\sqrt{1-x^2}}$. 于是收敛区间为 |x| < 1. 由

$$\lim_{x \to 1^{-}} g(x) = +\infty, \lim_{x \to -1^{+}} g(x) = +\infty$$

知幂级数在 $x = \pm 1$ 不收敛, 故收敛域为 |x| < 1.

2. 首先把级数写成

$$\sum_{n=1}^{\infty} \left[\left(\frac{1 \cdot 2 \cdot 3 \cdot \dots \cdot n}{3 \cdot 5 \cdot 7 \cdot \dots \cdot 2n + 1} \right) \cdot \frac{1}{n+1} \right] = \sum_{n=1}^{\infty} \left[\frac{n!}{(2n+1)!!} \cdot \frac{1}{n+1} \right].$$

然后利用等式 $(2n)!! = 2^n n!$ 可考虑

$$f(x) = \sum_{n=1}^{\infty} \frac{(2n)!!}{(2n+1)!!} \frac{x^{2n+2}}{n+1} = \frac{1}{2} \sum_{n=1}^{\infty} \left[\frac{n!}{(2n+1)!!} \cdot \frac{(\sqrt{2}x)^{2n+2}}{n+1} \right].$$

现在所求级数为 $2f\left(\frac{1}{\sqrt{2}}\right)$. 我们利用第 1 问有

$$f'(x) = 2\sum_{n=1}^{\infty} \frac{(2n)!!}{(2n+1)!!} x^{2n+1} = 2\left(\frac{\arcsin x}{\sqrt{1-x^2}} - x\right).$$

于是我们有

$$2f\left(\frac{1}{\sqrt{2}}\right) - 2f(0) = 2\int_0^{\frac{1}{\sqrt{2}}} \left[2\left(\frac{\arcsin x}{\sqrt{1 - x^2}} - x\right)\right] dx = \frac{\pi^2}{8} - 1.$$

例题 **0.13** 计算 $\sum_{n=0}^{\infty} \frac{1}{(4n)!}$.

证明 注意到

$$f(x) = \sum_{n=0}^{\infty} \frac{x^{4n}}{(4n)!}, f'(x) = \sum_{n=1}^{\infty} \frac{x^{4n-1}}{(4n-1)!}, f''(x) = \sum_{n=1}^{\infty} \frac{x^{4n-2}}{(4n-2)!}, f'''(x) = \sum_{n=1}^{\infty} \frac{x^{4n-3}}{(4n-3)!}.$$

于是我们有

$$f + f' + f'' + f''' = \sum_{n=0}^{\infty} \frac{x^n}{n!} = e^x.$$

注意到 f(0) = 1, f'(0) = f'''(0) = f'''(0) = 0, 求解微分方程 (Euler 待定指数法) 得解 $f(x) = \frac{1}{4}(e^{-x} + e^x + 2\cos x)$.

0.1.4 多重求和

例题 0.14 计算

$$\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{m^2 n}{3^m (n3^m + m3^n)}.$$

Ŷ 笔记 二重级数一类题型往往会用对称性来简化结构

证明 直接计算有

$$\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{m^2 n}{3^m (n3^m + m3^n)} = \frac{\text{55 mod Fubini } \text{100 mod } \text{$$

这里最后的级数是一个差比数列, 高中数学的错位相减可以直接算出结果. 或者利用凑已知函数的方法计算:

$$\sum_{m=1}^{\infty} m x^m = x \left(\sum_{m=1}^{\infty} x^m \right)' = x \cdot \left(\frac{1}{1-x} \right)' = \frac{x}{(1-x)^2}.$$

将 $x = \frac{1}{3}$ 代入得

$$\sum_{m=1}^{\infty} \frac{m}{3^m} = \frac{3}{4} \Rightarrow \frac{1}{2} \left(\sum_{m=1}^{\infty} \frac{m}{3^m} \right)^2 = \frac{9}{32}.$$

例题 0.15 计算

$$\left[\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{100m^2n}{2^m (n2^m + m2^n)} \right].$$

证明 我们有

$$\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{100m^2n}{2^m (n2^m + m2^n)} \xrightarrow{\text{g $\underline{\delta}$ in Fubini $\underline{\not{E}}$}} \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{100mn^2}{2^n (m2^n + n2^m)} = 50 \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \left(\frac{m^2n}{2^m (n2^m + m2^n)} + \frac{n^2m}{2^n (m2^n + n2^m)} \right)$$

$$= 50 \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \left(\frac{mn \left(\frac{m}{2^m} + \frac{n}{2^n} \right)}{n2^m + m2^n} \right) = 50 \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{mn}{2^{m+n}} = 50 \left(\sum_{n=1}^{\infty} \frac{n}{2^n} \right)^2 = 200.$$

0.1.5 级数特殊算法(换序法)

例题 0.16

1. 证明:
$$\sum_{n=1}^{\infty} \frac{1}{(2n-1)^2} = \frac{\pi^2}{8}$$
.

2. 证明:
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{(2n-1)^3} = \frac{\pi^3}{32}.$$

3. 证明:
$$\sum_{n=1}^{\infty} \frac{1}{n^2 2^n} = \frac{\pi^2}{12} - \frac{\ln^2 2}{2}.$$

注熟知 $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}.$

ATE RE

1. 我们有

$$\sum_{n=1}^{\infty} \frac{1}{(2n-1)^2} = \sum_{n=1}^{\infty} \frac{1}{n^2} - \sum_{n=1}^{\infty} \frac{1}{(2n)^2} = \frac{3}{4} \sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{8}.$$

2. (考试肯定会给提示或多设置一问) 注意到傅立叶展开 $f(x) = x^3 - \pi^2 x, x \in [-\pi, \pi]$ 得

$$x^3 - \pi^2 x \sim 12 \sum_{n=1}^{\infty} \frac{(-1)^n}{n^3} \sin(nx).$$

考虑 $x = \frac{\pi}{2}$ 即得

$$12\sum_{n=1}^{\infty} \frac{(-1)^n}{n^3} \sin(nx) = -12\sum_{n=1}^{\infty} \frac{1}{(2n-1)^3} \sin\left(\frac{\pi}{2}(2n-1)\right) = -12\sum_{n=1}^{\infty} \frac{1}{(2n-1)^3} \sin\left(n\pi - \frac{\pi}{2}\right) = 12\sum_{n=1}^{\infty} \frac{(-1)^n}{(2n-1)^3}.$$

故
$$12\sum_{n=1}^{\infty} \frac{(-1)^n}{(2n-1)^3} = \frac{\pi^3}{32}.$$

3. 由命题??(2) 得到 $\sum_{n=1}^{\infty} \frac{1}{n^2 2^n} = \frac{\pi^2}{12} - \frac{\ln^2 2}{2}$.

例题 0.17 设 $f \in C^1[0,1], f(x) \ge 0$, 证明下述级数收敛且求值

$$\sum_{n=1}^{\infty} (-1)^{n-1} \int_{0}^{1} x^{n} f(x) dx.$$

笔记 为了有换序

$$\sum_{n=1}^{\infty} \int f_n(x) dx = \int \sum_{n=1}^{\infty} f_n(x) dx,$$

我们只需要

$$\lim_{m\to\infty}\sum_{n=1}^m\int f_n(x)dx=\lim_{m\to\infty}\int\sum_{n=1}^m f_n(x)dx=\int\sum_{n=1}^\infty f_n(x)dx,$$

即需要证明

$$\lim_{m \to \infty} \int \sum_{n=m+1}^{\infty} f_n(x) dx = 0.$$

注 实际上, 这里的换序就是控制收敛定理. 证明 显然 $\int_0^1 x^n f(x) dx$ 递减且

$$0 \leqslant \int_0^1 x^n f(x) dx \leqslant \max f \cdot \int_0^1 x^n dx \to 0, n \to \infty,$$

故由交错级数判别法知 $\sum_{i=0}^{\infty} (-1)^{n-1} \int_{0}^{1} x^{n} f(x) dx$ 收敛. 故

$$\sum_{n=1}^{\infty} (-1)^{n-1} \int_0^1 x^n f(x) dx = -\int_0^1 \sum_{n=1}^{\infty} (-x)^n f(x) dx = \int_0^1 \frac{x f(x)}{1+x} dx,$$

这里换序来自

$$\left| \int_0^1 \sum_{n=m}^\infty (-x)^n f(x) dx \right| \overset{\text{交错级数不等式}}{\leqslant} \int_0^1 x^m f(x) dx \to 0, m \to \infty.$$

命题 0.1 (组合数的无穷和技巧)

1. 我们有

$$\sum_{n=0}^{\infty} a_n (y+x)^n = \sum_{k=0}^{\infty} b_k y^k \Rightarrow b_k = x^{-k} \sum_{n=k}^{\infty} C_n^k a_n x^n.$$

2. 我们有

$$\sum_{n=0}^{m} a_n (y+x)^n = \sum_{k=0}^{m} b_k y^k \Rightarrow b_k = x^{-k} \sum_{n=k}^{m} C_n^k a_n x^n.$$

证明

例题 0.18 计算

$$\sum_{n=k}^{\infty} C_n^k \left(1 + \frac{1}{2} + \dots + \frac{1}{n} \right) x^n, k \in \mathbb{N}.$$

证明 取 $a_n = 1 + \frac{1}{2} + \dots + \frac{1}{n}, n \in \mathbb{N}$. 由例题 0.9, 我们有

$$\sum_{n=1}^{\infty} \left(1 + \frac{1}{2} + \dots + \frac{1}{n} \right) (y+x)^n = -\frac{\ln(1-x-y)}{1-x-y} = -\frac{\ln(1-x)}{1-x} \frac{1}{1-x} - \frac{1}{1-x} \frac{\ln\left(1-\frac{y}{1-x}\right)}{1-\frac{y}{1-x}}$$

$$= -\frac{\ln(1-x)}{1-x} \sum_{k=0}^{\infty} \frac{y^k}{(1-x)^k} + \frac{1}{1-x} \sum_{k=1}^{\infty} \left(1 + \frac{1}{2} + \dots + \frac{1}{k} \right) \frac{y^k}{(1-x)^k}$$

$$= -\frac{\ln(1-x)}{1-x} + \sum_{k=1}^{\infty} \left[\frac{1 + \frac{1}{2} + \dots + \frac{1}{k} - \ln(1-x)}{(1-x)^{k+1}} \right] y^k$$

于是由命题 0.1, 我们有

$$\sum_{n=k}^{\infty} C_n^k \left(1 + \frac{1}{2} + \dots + \frac{1}{n} \right) x^n = b_k x^k = \left[\frac{1 + \frac{1}{2} + \dots + \frac{1}{k} - \ln(1-x)}{(1-x)^{k+1}} \right] x^k$$

注意到和函数第一个奇点是 x=1, 所以幂级数收敛半径是 1. 注意到和函数在 x=1 的左极限发散, 因此幂级数在 x=1 不收敛. 虽然和函数在 x=-1 的右极限收敛, 但并不能一定能推出幂级数在 x=-1 收敛, 为了判断 x=-1 的收敛性, 我们要使用小 o Tauber 定理.

若
$$\lim_{x\to 1^-}\sum_{n=k}^{\infty}C_n^k\left(1+\frac{1}{2}+\cdots+\frac{1}{n}\right)(-x)^n$$
 存在, 则由小 o Tauber 定理知

$$\lim_{m \to \infty} \frac{1}{m} \sum_{n=k}^{k+m} \left[(-1)^n n C_n^k \left(1 + \frac{1}{2} + \dots + \frac{1}{n} \right) \right] = 0.$$

注意到

$$\lim_{m \to \infty} \frac{1}{2m} \sum_{n=k}^{k+2m} \left[(-1)^n n C_n^k \left(1 + \frac{1}{2} + \dots + \frac{1}{n} \right) \right] = 0.$$

$$\lim_{m \to \infty} \frac{1}{2m+1} \sum_{n=1}^{k+2m+1} \left[(-1)^n n C_n^k \left(1 + \frac{1}{2} + \dots + \frac{1}{n} \right) \right] = 0.$$

我们有

$$\lim_{m \to \infty} \frac{(-1)^{k+2m+1}(k+2m+1)C_{k+2m+1}^k\left(1+\frac{1}{2}+\cdots+\frac{1}{k+2m+1}\right)}{2m+1} = 0.$$

又

$$\lim_{m \to \infty} C_{k+2m+1}^k = \lim_{m \to \infty} \frac{(k+2m+1)!}{k!(2m+1)!} = +\infty.$$

矛盾! 因此我们证明了原幂级数收敛域是 (-1,1).