MILP Model for Single Depot VRP with Customer and Locker Assignments

1 Mathematical Model

1.1 Decision Variables

$x_{i,j,v}$ Binary, 1 if vehicle v travels from node i to j, 0 otherwise $\forall i,j \in N, v \in V, i \neq j$	(1)
y_v Binary, 1 if vehicle v is used, 0 otherwise $\forall v \in V$	(2)
$home_i$ Binary, 1 if customer i is served at home, 0 otherwise $\forall i \in M$	(3)
$z_{i,lk}$ Binary, 1 if customer i is assigned to locker lk , 0 otherwise $\forall i \in M, lk \in L$	(4)
w_{lk} Binary, 1 if locker lk is used, 0 otherwise $\forall lk \in L$	(5)
d_{lk} Continuous, demand assigned to locker lk $\forall lk \in L$	(6)
$u_{i,v}$ Continuous, load of vehicle v at node i $\forall i \in M \cup L, v \in V$	(7)
$\delta_{v,i}$ Binary, 1 if vehicle v visits node i, 0 otherwise $\forall i \in M \cup L, v \in V$	(8)
Additional variables for load constraints: $load_aux_{v,i} \forall v \in V, i \in L$	(9)

1.2 Objective Function

Minimize the total cost, including routing and assignment costs:

$$\min \sum_{v \in V} \left[\text{fixed cost of } v \cdot y_v + \sum_{i \in N} \sum_{j \in N} c_{i,j} \cdot x_{i,j,v} \right] + \sum_{i \in M} \sum_{lk \in L} c_{i,lk} \cdot z_{i,lk}$$
 (10)

1.3 Constraints

• Each customer is either served at home or assigned to a locker:

$$home_i + \sum_{lk \in L} z_{i,lk} = 1, \quad \forall i \in M$$
 (11)

• If a customer cannot be assigned to a locker, they must receive home delivery:

If no available locker:
$$home_i = 1, \quad \forall i \in M$$
 (12)

• Locker demand constraints:

$$d_{lk} = \sum_{i \in M} demand_i \cdot z_{i,lk}, \quad \forall lk \in L$$
 (13)

• If a locker is not used, its assigned demand must be zero:

$$d_{lk} = 0$$
, if no customer is assigned to locker lk (14)

• Locker capacity constraints:

$$d_{lk} \le capacity_{lk} \cdot w_{lk}, \quad \forall lk \in L$$
 (15)

• Flow conservation:

$$\sum_{i \in N} x_{i,k,v} = \sum_{j \in N} x_{k,j,v}, \quad \forall k \in M \cup L, v \in V$$

$$\tag{16}$$

• MTZ subtour elimination:

$$u_{i,v} + demand_j \le u_{j,v} + C(1x_{i,j,v}), \quad \forall i, j \in M \cup L, v \in V, i \ne j$$

$$\tag{17}$$

• Customers assigned home must be visited:

$$\sum_{v \in V} \delta_{v,i} = home_i, \quad \forall i \in M$$
(18)

• If a locker is used, it must be visited by at least one vehicle:

$$\sum_{i \in N} x_{i,lk,v} = w_{lk}, \quad \forall lk \in L, v \in V$$
(19)

• Vehicle capacity constraint:

$$\sum_{i \in M} demand_i \cdot \delta_{v,i} + \sum_{i \in L} load_aux_{v,i} \le capacity_v, \quad \forall v \in V$$
 (20)

• Time limit constraint:

$$\sum_{i \in N} \sum_{j \in N} \frac{c_{i,j}}{\text{speed}} \cdot x_{i,j,v} \le max_duration_v, \quad \forall v \in V$$
 (21)

• Forbidden group constraints:

$$\sum_{i \in G} \sum_{j \in G} x_{i,j,v} \le 1, \quad \forall G \in \text{forbidden groups}, v \in V$$
 (22)