EXERCISES 1

1–14 ■ Evaluate the expression and write your answer in the form a + bi.

1.
$$(5-6i)+(3+2i)$$

2.
$$(4-\frac{1}{2}i)-(9+\frac{5}{2}i)$$

3.
$$(2 + 5i)(4 - i)$$

4.
$$(1-2i)(8-3i)$$

5.
$$\overline{12 + 7i}$$

6.
$$2i(\frac{1}{2}-i)$$

7.
$$\frac{1+4i}{3+2i}$$

8.
$$\frac{3+2i}{1-4i}$$

9.
$$\frac{1}{1}$$

10.
$$\frac{3}{4-3}$$

11.
$$i^3$$

13.
$$\sqrt{-25}$$

14.
$$\sqrt{-3}\sqrt{-12}$$

15.
$$12 - 5i$$

16.
$$-1 + 2\sqrt{2}i$$

17.
$$-4i$$

number.

18. Prove the following properties of complex numbers.

(a)
$$\overline{z+w} = \overline{z} + \overline{w}$$

(b)
$$\overline{zw} = \overline{z} \overline{w}$$

(c)
$$\overline{z^n} = \overline{z}^n$$
, where *n* is a positive integer

[Hint: Write
$$z = a + bi$$
, $w = c + di$.]

19–24 ■ Find all solutions of the equation.

19.
$$4x^2 + 9 = 0$$

20.
$$x^4 = 1$$

21.
$$x^2 + 2x + 5 = 0$$

22.
$$2x^2 - 2x + 1 = 0$$

23.
$$z^2 + z + 2 = 0$$

24.
$$z^2 + \frac{1}{2}z + \frac{1}{4} = 0$$

25–28 ■ Write the number in polar form with argument between 0 and 2π .

25.
$$-3 + 3i$$

26.
$$1 - \sqrt{3}i$$

27.
$$3 + 4i$$

29–32 Find polar forms for zw, z/w, and 1/z by first putting zand w into polar form.

29.
$$z = \sqrt{3} + i$$
, $w = 1 + \sqrt{3}i$

30.
$$z = 4\sqrt{3} - 4i$$
, $w = 8i$

31.
$$z = 2\sqrt{3} - 2i$$
, $w = -1 + i$

32.
$$z = 4(\sqrt{3} + i), \quad w = -3 - 3i$$

33.
$$(1 + i)^{20}$$

34.
$$(1-\sqrt{3}i)^5$$

35.
$$(2\sqrt{3} + 2i)^5$$

36.
$$(1-i)^8$$

37–40 ■ Find the indicated roots. Sketch the roots in the complex

37. The eighth roots of 1

38. The fifth roots of 32

39. The cube roots of i

40. The cube roots of 1 + i

41–46 Write the number in the form a + bi.

41.
$$e^{i\pi/2}$$

42.
$$e^{2\pi i}$$

43.
$$e^{i\pi/3}$$

44.
$$e^{-i\pi}$$

45.
$$e^{2+i\pi}$$

46.
$$e^{\pi+i}$$

47. Use De Moivre's Theorem with
$$n = 3$$
 to express $\cos 3\theta$ and $\sin 3\theta$ in terms of $\cos \theta$ and $\sin \theta$.

ANSWERS

1.
$$8 - 4i$$
 3. $13 + 18i$

5.
$$12 - 7i$$
 7. $\frac{11}{13} + \frac{10}{13}i$

9.
$$\frac{1}{2} - \frac{1}{2}i$$
 11. $-i$ **13.** $5i$

1.
$$-i$$
 13.

15.
$$12 + 5i$$
; 13

19.
$$\pm \frac{3}{2}i$$

21.
$$-1 + 2i$$

21.
$$-1 \pm 2i$$
 23. $-\frac{1}{2} \pm (\sqrt{7}/2)i$

25.
$$3\sqrt{2} \left[\cos(3\pi/4) + i\sin(3\pi/4)\right]$$

27.
$$5\{\cos\left[\tan^{-1}\left(\frac{4}{3}\right)\right] + i\sin\left[\tan^{-1}\left(\frac{4}{3}\right)\right]\}$$

29.
$$4[\cos(\pi/2) + i\sin(\pi/2)], \cos(-\pi/6) + i\sin(-\pi/6), \frac{1}{2}[\cos(-\pi/6) + i\sin(-\pi/6)]$$

31.
$$4\sqrt{2} \left[\cos(7\pi/12) + i\sin(7\pi/12)\right],$$
 $(2\sqrt{2})\left[\cos(13\pi/12) + i\sin(13\pi/12)\right], \frac{1}{4}\left[\cos(\pi/6) + i\sin(\pi/6)\right]$

33.
$$-1024$$
 35. $-512\sqrt{3} + 512i$

37.
$$\pm 1$$
, $\pm i$, $(1/\sqrt{2})(\pm 1 \pm i)$ **39.** $\pm (\sqrt{3}/2) + \frac{1}{2}i$, $-i$

39.
$$\pm(\sqrt{3}/2) + \frac{1}{2}i$$
, -

41.
$$i$$
 43. $\frac{1}{2} + (\sqrt{3}/2)i$

45.
$$-e^2$$

47.
$$\cos 3\theta = \cos^3 \theta - 3 \cos \theta \sin^2 \theta$$
, $\sin 3\theta = 3 \cos^2 \theta \sin \theta - \sin^3 \theta$