Consumer Credit analysis.docx

by Turnitin LLC

Submission date: 24-May-2024 01:56AM (UTC+0300)

Submission ID: 2386726282

File name: AgADwRcAAvFbgFI (41.22K)

Word count: 766 Character count: 4740

Consumer Credit analysis

Question a

Discriminant Analysis (DFA) analysis is mainly performed on a set of data to identify the linear functions existing in the data. In this case, Canonical Discriminant Analysis (DFA) was performed on the dataset "Ass2Credit" to identify a linear function of the variables that best discriminates between individuals who pay off their debt (TARGET = 0) and those who do not (TARGET = 1).

Table 1.0

Canonical Discriminant Analysis

The DISCRIM Procedure Canonical Discriminant Analysis													
	Adju sted Can Can onic onic	sted Can onic	ted Can Appr		Eigenvalues of Inv(E)*H = CanRsq/(1-CanRsq)			Test of H0: The canonical correlations in the current row and all that follow are zero					
	al Corr elati on	al Corr elati on	ate Stan dard Error	al Corr elati on	6ge nval ue	Diff ere nce	Pro port ion	Cum ulati ve	Likelih ood Ratio	Approxi mate F Value	Num DF	Den DF	Pr >
1	0.45 0851	0.43 6162	0.036 790	0.20 3267	0.25 51		1.00	1.00	0.79673 341	13.04	9	460	<.00 01

Only one discriminant function was identified in the data. The Canonical Discriminant
 Analysis table above provides different statistics and also identifies the number of linear functions in the data.

The below plot justifies the use of a single discriminant function in separating the two individual groups.

Figure 1.0

Plot of Canonical Discriminant (Function) Analysis

2) Identifying the most important variables that discriminate between the different classes in the data, can be achieved by critically analyzing the "Total-Sample Standardized Canonical Coefficients" and "Pooled Within-Class Standardized Canonical Coefficients" tables from the output of the PROC DISCRIM procedure allowing to determine which variables contribute the most to the discrimination between classes. The variables with the highest absolute coefficient are deemed the most important.

Table 2.0

5

Total-Sample Standardized Canonical Coefficients

Total-Sample Standardized Canonical Coefficients					
Variable	Label	Can1			
CollectCnt	Number Collections	0.0499636785			
InqFinanceCnt24	Number Finance Inquires 24 Months	0.5466558736			
InqTimeLast	Time Since Last Inquiry	0.1033763125			
TLTimeFirst	Time Since First Trade Line	1687640127			
TLBalHCPct	Percent Trade Line Balance to High Credit	0.3080052121			
TLSatPct	Percent Satisfactory to Total Trade Lines	7163946321			
TLSum	Total Balance All Trade Lines	0.0752990652			
TLOpenPct	Percent Trade Lines Open	0.3295953728			
TLDel60Cnt24	Number Trade Lines 60 Days or Worse 24 Months	0.3712633783			

Table 3.0Pooled Within Canonical Structure Coefficients

Pooled Within Canonical Structure				
Variable	Label	Can1		
CollectCnt	Number Collections	0.172287		
InqFinanceCnt24	Number Finance Inquires 24 Months	0.486341		
InqTimeLast	Time Since Last Inquiry	-0.083938		

Pooled Within Canonical Structure					
Variable	Label	Can1			
TLTimeFirst	Time Since First Trade Line	-0.181288			
TLBalHCPct	Percent Trade Line Balance to High Credit	0.401838			
TLSatPct	Percent Satisfactory to Total Trade Lines	-0.618060			
TLSum	Total Balance All Trade Lines	-0.029255			
TLOpenPct	Percent Trade Lines Open	-0.135203			
TLDel60Cnt24	Number Trade Lines 60 Days or Worse 24 Months	0.599692			

The most important variables from the data are TLSatPct, TLDel60Cnt24 and InqFinanceCnt24. These variables are the most critical in distinguishing between individuals who pay off their debt and those who do not.

3. I would consider reducing the variables in the data and focus on the most important variables as identified. Reducing the variables and focusing on the most important variables in the data will ensure the DFA methods sustains higher discriminative Power, Simplicity and increase classification accuracy.

Question b

Fisher Discriminant Analysis

Fisher Discriminant Analysis also know as Linear Discriminant Analysis (LDA) is a mathematical method used to classify data points based on their characteristics that separates the data distinctively. To classify the individuals, Fisher Discriminant Analysis method was applied. The method produced an overall classification accuracy of 68.40%. The method correctly classified 75.85% of class 0 and 67.44% of class 1 and had an error rate 28.36%.

Table 4.0

Number of Observations and Percent Classified into TARGET				
From TARGET	0	1	Total	
0	314	100	414	
	75.85	24.15	100.00	
1	28	58	86	
	32.56	67.44	100.00	
Total	342	158	500	
3	68.40	31.60	100.00	
Priors	0.5	0.5		

Table 5.0

Error Count Estimates for TARGET

Error Count Estimates for TARGET				
	0	1	Total	
Rate	0.2415	0.3256	0.2836	
Priors	0.5000	0.5000		

linear discriminant analysis is more preferable than the quadratic discriminant analysis method since the LDA results satisfies the assumption of equality of the covariance matrices of the two classes. The assumption of linearity holds for the data, this implies that the method finds a linear

combination of the predictor variables that best separates the classes. Based on the visual inspection, the assumption of linearity is reasonable for the most important variables. In practical applications, especially in financial and consumer credit analysis, simpler models that are easy to explain to stakeholders are often preferred. The performance difference between the two methods is not substantial enough to warrant the additional complexity of QDA.

References

Discriminant Function Analysis | SAS Data Analysis Examples. (2018).

https://stats.oarc.ucla.edu/sas/dae/discriminant-function-analysis/

Fisher's linear discriminant functions. (2018, April 6).

https://communities.sas.com/t5/Statistical-Procedures/Fisher-s-linear-discriminant-

functions/td-p/451752

Consumer Credit analysis.docx

ORIGIN	ALITY REPORT		
2 SIMIL	3% 15% INTERNET SOURCES	15% PUBLICATIONS	18% STUDENT PAPERS
PRIMAF	Y SOURCES		
1	Submitted to Regis Col Student Paper	lege	7%
2	Submitted to Oklahom	a State Univers	sity 5%
3	tudr.thapar.edu:8080 Internet Source		5%
4	Stéphane Tufféry. "Clas Prediction Methods", W		2%
5	www.slideshare.net Internet Source		1 %
6	Submitted to University Student Paper	y of Derby	1 %
7	Torrey, Amber. "The Dis Used by the IRS to Pred Individual Tax Return A DigitalCommons@Brya Publication	dict Profitable audits",	I %

8 support.sas.com
Internet Source

9

Hubert Gatignon. "Categorical Dependent Variables", Statistical Analysis of Management Data, 2010

1 %

Publication

Exclude quotes

On

Exclude matches

Off

Exclude bibliography On