

Tokyo International Forum, Japan

**EXHIBITION** 

5 - 7 December 2018

# CROSS/OVER

The 11th ACM SIGGRAPH Conference and Exhibition on Computer Graphics and Interactive Techniques in Asia

SA2018.SIGGRAPH.ORG #SIGGRAPHAsia



# Learning to Group and Label Fine-Grained Shape Components

Xiaogang Wang, Bin Zhou, Haiyue Fang, Xiaowu Chen, Qinping Zhao, Kai Xu









#### Motivation



- Highly fine-grained
- The size of components varies significantly
- Highly inconsistent across different shapes



- Highly fine-grained
- The size of components varies significantly
- Highly inconsistent across different shapes





- Highly fine-grained
- The size of components varies significantly
- Highly inconsistent across different shapes





- Highly fine-grained
- The size of components varies significantly
- Highly inconsistent across different shapes



#### Contributions

- A new problem of segmentation of stock 3D models with pre-existing, highly fine-grained components
- A novel solution of part hypothesis generation and characterization
- A benchmark for multi-component labeling with component-wise ground-truth labels

# **Related Work**

#### Mesh segmentation

#### Limited by hand designed features!





**Learning 3D Mesh Segmentation and Labeling.** 

Kalogerakis et al. SIGGRAPH 2010.

**Co-Segmentation of 3D Shapes via Subspace Clustering.** 

Hu et al. CGF 2012.

#### Point clouds segmentation



#### **Cannot Handle** Fine-grained parts

PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation. Su et al. CVPR 2017.



PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space. Qi et al.

Nips 2017.

#### Multi-view projective segmentation



**Self-occlusion!** 

Projective Analysis for 3D Shape Segmentation. Wang et al. Siggraph 2013.



3D Shape Segmentation with Projective Convolutional Networks. Kalogerakis et al. CVPR 2017.

#### segmentation of multi-component models

#### Need scene graph!



Learning Hierarchical Shape Segmentation and Labeling from Online Repositories. *Yi et al. Siggraph 2017.* 

# Method

## **Pipeline**



- Center Distance
- Group Size
- Geometric Contact



- Center Distance
- Group Size
- Geometric Contact





- Center Distance
- Group Size
- Geometric Contact



- Center Distance
- Group Size
- Geometric Contact



$$C_{\text{contact}}(a, b) = \max\{C_{ab}/V_a, C_{ab}/V_b\}$$

## Sampling Results



#### Sampling Results



Part hypothesis quality vs. hypothesis count.

#### Sampling Results



Comparison to Baseline (GMM and CNN-based).

## **Pipeline**











$$L(p, r, c, s) = L_{cls}(p, c) + L_{reg}(r, s)$$



$$L(p, r, c, s) = L_{cls}(p, c) + L_{reg}(r, s)$$



$$L(p, r, c, s) = L_{cls}(p, c) + L_{reg}(r, s)$$

## **Pipeline**



#### Labeling via Higher-order CRF



$$E(L) = \sum_{c \in C} \underline{\varphi(x_c)} + \lambda \sum_{h \in \mathcal{H}} \psi(\mathbf{x}_h)$$

$$\varphi(x_c) = -\log P(x_c = l_k)$$

$$P(x_c = l_k) = \frac{\sum_{i=1}^{K^c} e^{w_i^c s_i^c p(l_k | h_i^c)}}{\sum_{k=1}^{K} \sum_{j=1}^{K^c} e^{w_j^c s_j^c p(l_k | h_j^c)}}$$

#### Labeling via Higher-order CRF



# **Experiments**

#### **Experiments**

- Benchmark dataset
- Labeling results
- Labeling performance
- Parameter analyses

#### **Benchmark Dataset**





#### **Experiments**

- Benchmark dataset
- Labeling Results
- Labeling performance
- Parameter analyses





### **Experments**

- Benchmark dataset
- Labeling results
- Labeling performance
- Parameter analysis

# **Experiment Results Comparison with three baseline methods**



Random forest



CNN-based component classification



CNN-based hypothesis generation

# **Experiment Results Comparison with three baseline methods**



CNN-based hypothesis generation

Feature Map

Input

Refinement branch

Proposal Generator

### **Experiment Results Comparison with 4 state-of-the-art methods**



Guo et al. [2015]

Feature

vector

Label

indicator

Label

optimize

Output

Trained

**CNNs** 

Feature

extract

Input

Yi et al. [2017]

(b) Novel Instance

(a) Input Noisy Scene Graphs

Window

Dashboard

SteeringWheel Cluster72

(c) Hierarchical Shape Segmentation

### **Experments**

- Benchmark dataset
- Labeling results
- Labeling performance
- Parameter analysis

#### Labeling performance without confidence score



$$\varphi(x_{3}) \quad E(L) = \sum_{c \in C} \varphi(x_{c}) + \lambda \sum_{h \in \mathcal{H}} \psi(\mathbf{x}_{h})$$

$$\varphi(x_{c}) = -\log P(x_{c} = l_{k})$$

$$P(x_{c} = l_{k}) = \frac{\sum_{i=1}^{K^{c}} e^{w_{i}(s_{i}^{c})} (l_{k} | h_{i}^{c})}{\sum_{k=1}^{K} \sum_{j=1}^{K^{c}} e^{w_{j}(s_{j}^{c})} (l_{k} | h_{j}^{c})}$$

| Rows             | Vehicle | Bicycle | Chair | Cabinet | Plane | Lamp | Motor | Helicopter | Living room | Office |
|------------------|---------|---------|-------|---------|-------|------|-------|------------|-------------|--------|
| Ours (w/o score) | 71.5    | 66.8    | 72.5  | 76.5    | 71.4  | 87.6 | 70.7  | 81.2       | 63.3        | 60.1   |
| Ours (all)       | 73.7    | 68.1    | 74.3  | 78.7    | 76.5  | 88.3 | 71.7  | 83.3       | 66.1        | 65.4   |
|                  | -       |         |       |         |       |      |       |            |             |        |



Labeling performance vs. part hypothesis count

#### **Conclusion**

- A new problem of segmentation of off-the-shelf 3D models with highly fine-grained components. And a benchmark with component-wise ground-truth labels
- A novel solution of part hypothesis generation based on a bottom-up hierarchical grouping process
- A deep neural network is trained to encode part hypothesis, rather than components
- A higher order potential adopts a soft constraint, providing more degree of freedom in optimal labeling search.

#### **Limitations and Future Work**

- Only groups the components but NOT segment
- Part hypotheses overlap significantly (shape concavity)
- Extend hypothesis for hierarchical segmentation, and Integrate CRF into the deep neural networks





CONFERENCE 4 - 7 December 2018

Tokyo International Forum, Japan

**EXHIBITION** 

5 - 7 December 2018

CROSS/OVER

The 11th ACM SIGGRAPH Conference and Exhibition on Computer Graphics and Interactive Techniques in Asia

SA2018.SIGGRAPH.ORG

**#SIGGRAPHAsia** 





#### E-mail:

wangxiaogang@buaa.com.cn

#### Code&Dataset:

https://github.com/wangxiaogang866/fglabel

#### $\varphi(x_c) + \lambda$ $h_2 = \{2, 3, 4\}$ $\varphi(x_2)$ $c \in C$



56.5

59.3

62.0

73.7

49.9

54.9

61.9

68.1

Ours ( $K^c = 3$ )

Ours ( $K^c = 5$ )

Ours ( $K^c = 10$ )

Ours (all)

66.6

69.6

74.1

78.7

Parameter K<sup>c</sup>

$$s = l_i$$

55.4

59.8

68.6

76.5

$$\varphi(x_c) = -\log P(x_c = l_k)$$

$$\psi(x_c) = -\log P(x_c = l_k)$$

$$\psi(x_c) = \frac{\sum_{i=1}^{K^c} e^{w_i^c s_i^c p(l_k | h_i^c)}}{\sum_{k=1}^{K} \sum_{j=1}^{K^c} e^{w_j^c s_j^c p(l_k | h_j^c)}}$$

84.0

86.3

86.9

88.3

51.7

55.3

62.4

71.7

43.4

50.7

75.6

83.3

| i     | , |
|-------|---|
| $l_k$ | h |

Office

70.7

70.1

68.9

66.1

65.4

Living room

54.6

63.1

64.7

66.6

66.1

| $\psi(h_1)$                       |         |         | $\psi(h_2)$ | 1 (x    | $c - \iota$ | κ) – | $\sum_{k=1}^{K}$ | $\sum_{J=1}^{K^c} e^{-\frac{1}{2}}$ | , |
|-----------------------------------|---------|---------|-------------|---------|-------------|------|------------------|-------------------------------------|---|
| Rows                              | Vehicle | Bicycle | Chair       | Cabinet | Plane       | Lamp | Motor            | Helicopter                          |   |
| Ours ( <i>K</i> <sup>c</sup> = 1) | 52.0    | 43.2    | 63.5        | 62.0    | 47.6        | 76.5 | 41.7             | 42.4                                |   |

67.0

70.5

72.6

74.3