Claims

1. Process for the preparation of substituted pyridine derivatives of formula (I)

5 wherein

 R^1 , R^2 independently the same or different are H; C_{1-20} -alkyl (branched or straight chain or cyclic); C_{6-20} -aryl - which each of those may be substituted with one or more of the following groups: F, Cl, Br, I, C_{1-20} -alkoxy, C_{6-20} -aryloxy, amino; F; Cl; Br; I;

 $R^3 = CN$, NO_2 , C_{1-20} -alkyl (branched or straight chain or cyclic); C_{6-20} -aryl - which each of those may be substituted with one or more of the following groups: F, Cl, Br, I, C_{1-20} -alkoxy, C_{6-20} -aryloxy, amino; F; Cl; Br; I;

15

10

 $R^4 = E_n R^6_m$ in which

if n=m=1 than E=S and $R^6=C_{1\text{-}20}\text{-}alkyl$ (branched or straight chain or cyclic); $C_{6\text{-}20}\text{-}aryl$ - which each of those may be substituted with one or more of the following groups: F, Cl, Br, I, $C_{1\text{-}20}\text{-}alkoxy$, $C_{6\text{-}20}\text{-}aryloxy$, amino; F, Cl, Br, I;

if n = 0 and m = 1 than R^6 = H, C_{1-20} -alkyl (branched or straight chain or cyclic); C_{6-20} -aryl - which each of those may be substituted with one or more of the following groups: F, Cl, Br, I, C_{1-20} -alkoxy, C_{6-20} -aryloxy, amino; F, Cl, Br, I;

 $E^{1} = 0. N$

25

 $R^5 = H$

n= 1 for $E^1 = 0$ und 2 for $E^1 = N$

comprising reaction of a α - β -unsaturated carbonyl compound of formula (II)

$$R^3$$
-C(O)-C(R^1)=C(R^2)-G (II)

wherein

R¹, R² and R³ have the above defined meaning;

 $G = -NH_2$ or a leaving group

with a Wittig reagent or Horner-Wadsworth-Emmons reagent of formula (III)

$$(P) \stackrel{\mathsf{E}_{n}\mathsf{R}^{6}_{m}}{\mathsf{C-Y}} \qquad \text{(IIIa1)}$$

$$O \quad \mathsf{E}_{n}\mathsf{R}^{6}_{m}$$

$$\mathsf{R'} \stackrel{\mathsf{D}}{-\mathsf{D}} \stackrel{\mathsf{D}}{-\mathsf{C-Y}} \qquad \text{(IIIa2)}$$

$$\mathsf{R'} \stackrel{\mathsf{D}}{-\mathsf{O}} \qquad \mathsf{R'} \stackrel{\mathsf{D}}{-\mathsf{O}} \qquad \mathsf{IIIa2}$$

10

15

wherein

(P)= P(Ar)₃, with Ar = substituted or preferably unsubstituted C_{6-20} aryl, R' = is equal or different independently means C_{1-20} alkyl, branched or straight or cyclic, or C_{6-20} aryl;

 $E_nR_m^6 = in which$

if n = m = 1 than E = S and R⁶ = C₁₋₂₀-alkyl (branched or straight chain or cyclic);

C₆₋₂₀-aryl - which each of those may be substituted with one or more of the following groups: F, Cl, Br, I, C₁₋₂₀-alkoxy, C₆₋₂₀-aryloxy, amino; F; Cl; Br; I; if n = 0 and m = 1 than R⁶ = H, C₁₋₂₀-alkyl (branched or straight chain or cyclic); C₆₋₂₀-aryl - which each of those may be substituted with one or more of the following groups: F, Cl, Br, I, C₁₋₂₀-alkoxy, C₆₋₂₀-aryloxy, amino; F; Cl; Br; I;

25

Y = - CN; -C(O)NH₂; -C(O)OR⁷ with R⁷ = as defined for R¹ above, except H

in the presence of a base and if

30

- i) Y = -CN or C(O)NH₂, G = a leaving group and the base is an alcoholate, subsequent acidic catalyzed, with zeolithes catalyzed or basic catalyzed cyclization:
- ii) $Y = -C(O)-OR^7$, G = a leaving group and the base is an alcoholate, subsequent basic cyclization in the presence of ammonia.

- 2. Process according to claim 1, wherein $R^1 = R^2 = H$ and $R^3 =$ electron withdrawing group.
- 5 3. Process according to claims 1 to 2, wherein $R^1 = R^2 = H$ and R^3 is a partially or fully fluorinated C_{1-6} -alkylgroup.
 - 4. Process according to claims 1 to 3, wherein $R^3 = -CF_3$.
- 10 5. Phosporus compounds of formula Illa2

$$\begin{array}{cccc}
O & E_n R^6_m \\
II & I_- \\
P - C - Y
\end{array}$$
(IIIa2)

in which

R' = is equal or different independently means C_{1-20} alkyl, branched or straight or cyclic, or C_{6-20} aryl

 $E_n R_m^6 = in which$

- 20 if n = m = 1 than E = S and $R^6 = C_{1-20}$ -alkyl (branched or straight chain or cyclic); C_{6-20} -aryl which each of those may be substituted with one or more of the following groups: F, Cl, Br, I, C_{1-20} -alkoxy, C_{6-20} -aryloxy, amino; F; Cl; Br; I;
- $Y = -CN; -C(O)NH_{2}; -C(O)OR^7$ with $R^7 = C_{1-20}$ -alkyl (branched or straight chain or cyclic);

 C_{6-20} -aryl - which each of those may be substituted with one or more of the following groups: F, Cl, Br, I, C_{1-20} -alkoxy, C_{6-20} -aryloxy, amino; F; Cl; Br, I.

6. Compounds of the formula IV-1 to IV-4

$$E_nR_m$$
 Y
 G
 $IV-1$
 $IV-2$
 E_nR_m
 OR'
 R^3
 G
 $IV-3$
 $IV-4$

in which the variables have the following meanings:

 $E_nR_m^6 = in which$

5

25

if n = m = 1 than E = S and $R^6 = C_{1-20}$ -alkyl (branched or straight chain or cyclic); C_{6-20} -aryl - which each of those may be substituted with one or more of the following groups: F, Cl, Br, I, C_{1-20} -alkoxy, C_{6-20} -aryloxy, amino; F; Cl; Br; I; if n = 0 and m = 1 than $R^6 = H$, C_{1-20} -alkyl (branched or straight chain or cyclic); C_{6-20} -aryl - which each of those may be substituted with one or more of the following groups: F, Cl, Br, I, C_{1-20} -alkoxy, C_{6-20} -aryloxy, amino; F; Cl; Br; I;

- 15 $Y = -CN; -C(O)NH_{2;} -C(O)OR^7 \text{ with } R^7 = C_{1-20} \text{alkyl (branched or straight chain or cyclic)};$ $C_{6-20} \text{aryl which each of those may be substituted with one or more of the following groups: F, Cl, Br, I, C_{1-20} \text{alkoxy, C}_{6-20} \text{aryloxy, amino; F, Cl, Br, I.}$
- 20 R' is equal or different independently means C₁₋₂₀ alkyl, branched or straight or cyclic

 $R^3 = CN$, NO_2 , C_{1-20} -alkyl (branched or straight chain or cyclic); C_{6-20} -aryl - which each of those may be substituted with one or more of the following groups: F, Cl, Br, I, C_{1-20} -alkoxy, C_{6-20} -aryloxy, amino; F; Cl; Br; I;

 $G = -NH_2$ or a leaving group.

WO 2005/063780 PCT/EP2004/014590 **21**

7. Compounds as claimed in claims 5 or 6 as intermediates in the synthesis of pyridine derivatives.