9 (i)

By *CLM* of particle parallel to the inclined plane surface of the cone, $v \parallel u$ **E1**

CLM horizontally for system M1

$$m u \cos \alpha = M w - m v \cos \alpha$$
 A1

NEL perp^r. to plane of contact M1

$$e u = v + w \cos \alpha$$
 A1

M1 for subst^g. back and a good attempt at isolating w

Thus $m u \cos \alpha = M w - m(e u - w \cos \alpha) \cos \alpha \implies w = \frac{mu(1+e)\cos \alpha}{M + m\cos^2 \alpha}$

CLM horizontally for system

 $M w = m v \sin(\alpha + \beta)$

NEL perp^r. to plane of contact M1

 $e u \sin \alpha = v \sin \beta + w \cos \alpha$ **A1**

CLM for $P \parallel$ to slope

 $m u \cos \alpha = m v \cos \beta$

A1

A1

M1 for use of $sin(\alpha + \beta) = sin \alpha cos \beta + cos \alpha sin \beta$ and eliminating β

M1

 $v \cos \beta = u \cos \alpha$ and $v \sin \beta = e u \sin \alpha - w \cos \alpha$

to get
$$w = \frac{mu(1+e)\sin\alpha\cos\alpha}{M + m\cos^2\alpha}$$
 A1

SHORT METHOD

Component of particle's velocity parallel to slope does not affect the motion of the cone, so w is as before but with u replaced by $u \sin \alpha$. M7 A1

8

5

$$w = k. \frac{\sin 2\alpha}{M + m\cos^2 \alpha}$$

$$\Rightarrow \frac{dw}{d\alpha} = k. \frac{(M + m\cos^2 \alpha)2\cos 2\alpha - \sin 2\alpha(-2m\sin \alpha\cos \alpha)}{(M + m\cos^2 \alpha)^2}$$

M1 for diffⁿ. attempt using the quotient rule

dM1 for equating numerator to zero

B1 for using appropriate trig. identities to get all in terms of $\cos \alpha$

$$(M + m c^2)(2 c^2 - 1) + 2 m c^2 (1 - c^2) = 0$$
 A1 correct to here

$$\Rightarrow 0 = 2M c^2 + 2m c^4 - M - m c^2 + 2m c^2 - 2m c^4$$

$$\Rightarrow M = (2M + m) c^2 \text{ and } \cos \alpha = \sqrt{\frac{M}{2M + m}}$$
 A1 (GIVEN ANSWER)

10 --

M1 for finding position of C. of G.

dM1 for $(\Sigma m_i) x = \Sigma (m_i x_i)$

$$\left(\pi r^{2}.3r.\rho + \frac{2}{3}\pi r^{3}.3\rho\right)x = 3\pi r^{3}\rho.\frac{3r}{2} + 2\pi r^{3}\rho\left(3r + \frac{3r}{8}\right)$$
B1 B1 B1 B1

Mass of figure

C of G of solid hemisphere

[N.B. May include g's throughout or have cancelled ρ 's automatically.]

Dividing by
$$\pi r^3 \rho \Rightarrow 5 x = \frac{9r}{2} + 6r + \frac{3r}{4} \Rightarrow x = \frac{9r}{4}$$
 M1 A1

Must be correct distance from their point of reference

8

Assuming no tilting, R = mg, P = F and $F = \mu R \Rightarrow P = \mu mg$ M1 A1

Assuming no sliding,
$$\underline{A} \longrightarrow P \cdot 2r \sin \alpha = mg \left(\frac{9r}{4} \sin \alpha - r \cos \alpha \right)$$

M1 B1 dM1 A1

$$\Rightarrow P = mg\left(\frac{9}{8} - \frac{1}{2} \cdot \frac{\cos \alpha}{\sin \alpha}\right) \text{ A1}$$

and figure tilts before it slides provided $\frac{9}{8} - \frac{1}{2}\cot\alpha < \mu$ B1 for correct conclusion

M1 for considering P in other direction

R = mg, P = F and $F = \mu R \implies P = \mu mg$ with G to the left of A A1

$$\underline{A} = P \cdot 2r \sin \alpha = mg \left(r \cos \alpha - \frac{9r}{4} \sin \alpha \right) \mathbf{A} \mathbf{1}$$

leading to
$$\mu > \frac{1}{2} \cot \alpha - \frac{9}{8}$$
 A1

STEP II 2007 Marking Scheme

11 (i) N.B.
$$\tan \theta = \frac{1}{2} \implies \sin \theta = \frac{1}{\sqrt{5}}$$
 and $\cos \theta = \frac{2}{\sqrt{5}}$ B1

$$x = v t \cos \theta = 10 t \sqrt{5}$$
 B1

so $\underline{\mathbf{i}}$ – component is 50 – their $x \times \cos 60^{\circ}$ M1 = $50 - 5 t \sqrt{5}$ A1 and (the M1 is for either of these)

j – component is their
$$x \times \sin 60^{\circ}$$
 = 5 $t\sqrt{15}$ A1

$$y = v t \sin \theta - \frac{1}{2} g t^2$$
 M1 = $5 t \sqrt{5} - 5 t^2$ A1

i.e.
$$\underline{\mathbf{r}} = \left(50 - 5t\sqrt{5}\right)\mathbf{i} + \left(5t\sqrt{15}\right)\mathbf{j} + \left(5t\sqrt{5} - 5t^2\right)\mathbf{k}$$

Then $OP = 5\sqrt{(10 - t\sqrt{5})^2 + (t\sqrt{15})^2 + (t\sqrt{5} - t^2)^2}$

M1 for attempt at this with decent squaring attempt

$$= 5\sqrt{100 - 20t\sqrt{5} + 5t^2 + 15t^2 + 5t^2 - 2t^3\sqrt{5} + t^4}$$
$$= 5\sqrt{t^4 - 2\sqrt{5}t^3 + 25t^2 - 20t\sqrt{5} + 100}$$

= $5(t^2 - t\sqrt{5} + 10)$ A1 from fully correct working (GIVEN ANSWER)

2

M1 for diff^g. or completing the square

$$OP = 5\left(\left[t - \frac{1}{2}\sqrt{5}\right]^2 - \frac{5}{4} + 10\right)$$

 $\Rightarrow OP_{\min}$ when $t = \frac{1}{2}\sqrt{5}$ dM1 for finding the time at which *OP* is minimised

Then
$$\mathbf{p} = \frac{75}{2}\mathbf{i} + \frac{25\sqrt{3}}{2}\mathbf{j} + \frac{25}{4}\mathbf{k}$$
 B1 ft

Horizontal bearing from O is then $\tan^{-1} \left(\frac{\mathbf{i}}{\mathbf{j}} \right) = \tan^{-1} \sqrt{3} = (0)60^{\circ}$ A1 cao

4

(ii) M1 for diff^g, their k – component (= $5 t \sqrt{5} - 5 t^2$) from earlier (or equivalent) A1 for showing that $t = \frac{1}{2} \sqrt{5}$ here also

(iii) When $t = \frac{1}{2}\sqrt{5}$, $OP = \frac{175}{4}$ or $43\frac{3}{4}$ **M1 for finding** OP_{\min}

dM1 for finding time taken for bullet to reach P: $\frac{175/4}{350} = \frac{1}{8}$ sec.

M1 for attempt at speed of particle at this time:

$$\left| (-5\sqrt{5})\mathbf{i} + (5\sqrt{15})\mathbf{j} + (0)\mathbf{k} \right| = 5\sqrt{5}\sqrt{1^2 + 3^2} = 10\sqrt{5}$$

M1 for finding distance moved by particle in this time:

 $10\sqrt{5} \times \frac{1}{8} \approx \frac{22}{8} \approx 3 \text{ m}$ A1 (GIVEN ANSWER) cao from sensible approxⁿ. work

OR

(iii) When
$$t = \frac{1}{2}\sqrt{5}$$
, $\mathbf{\underline{r_0}} = \frac{75}{2}\mathbf{i} + \frac{25\sqrt{3}}{2}\mathbf{j} + \frac{25}{4}\mathbf{k}$ and $OP = \frac{175}{4}$ or $43\frac{3}{4}$

M1 for finding OP_{min} and \underline{r}_0

dM1 for finding time taken for bullet to reach *P*: $\frac{175/4}{350} = \frac{1}{8}$ sec.

When
$$t = \frac{1}{2}\sqrt{5} + \frac{1}{8}$$
, $\mathbf{r}_1 = \left(\frac{75}{2} - \frac{5\sqrt{5}}{8}\right)\mathbf{i} + \left(\frac{25\sqrt{3}}{2} + \frac{5\sqrt{15}}{8}\right)\mathbf{j} + \left(\frac{25}{4} - \frac{5}{64}\right)\mathbf{k}$

M1 for finding $\underline{\mathbf{r}}_1$

M1 for finding difference and its magnitude

$$\underline{\mathbf{r}_{\text{diff}}} = \left(\frac{5\sqrt{5}}{8}\right)\mathbf{i} + \left(\frac{5\sqrt{15}}{8}\right)\mathbf{j} - \frac{5}{64}\mathbf{k} = \frac{5}{64}\left(8\sqrt{5}\,\mathbf{i} + 8\sqrt{15}\,\mathbf{j} - \mathbf{k}\right)$$

and

$$\left|\mathbf{r}_{\text{diff}}\right| = \frac{5}{64}\sqrt{320 + 960 + 1} = \frac{5}{64}\sqrt{1281} \approx \frac{5}{64} \times 36 = 2\frac{13}{16} \approx 3$$

A1 (GIVEN ANSWER) cao from sensible approxⁿ. work

12 (i) p(one die gives at least one 6 in first r throws) = 1 - p(die gives no 6s in first r throws)

$$= 1 - q^r$$
 M2 A1

OR B1 for
$$p + qp + q^2p + q^3p + \dots + q^{r-1}p = \frac{p(1-q^r)}{1-q} = 1 - q^r$$
 M1 A1

Then p(both dice have given 6 at the r^{th} throw) M1

= p(both dice give 6 in first r throws) – p(both dice give 6 in first r-1 throws)

$$= (1-q^r)^2 - (1-q^{r-1})^2$$
 B1 for use of independence of events

$$= (1-q^r-1+q^{r-1})(1-q^r+1-q^{r-1})$$
 by the difference of two squares

$$=q^{r-1}(1-q) \cdot (2-q^{r-1}-q^r)$$

$$= p q^{r-1} (2 - q^{r-1} - q^r)$$
 A1 (GIVEN ANSWER)

OR

M2 for correct approach

 $P_r =$ p(neither die gives 6 in first r-1 throws, then both give 6 on r^{th} throw)

+ p(one die gives a 6 before the r^{th} throw, then 2^{nd} die first gives a 6 on r^{th} throw)

$$=(q^2)^{r-1}.p^2+2\times(1-q^{r-1})\times(q^{r-1}p)$$
 B1 for use of independence of events

A1 A1 for correct, unsimplified probs.

$$= (pq^{r-1})[(1-q)q^{r-1} + 2 - 2q^{r-1}]$$

$$= (pq^{r-1})[2-q^{r-1}-q^r]$$
 A1 (GIVEN ANSWER)

6

Expn. =
$$\sum_{r=1}^{\infty} r p q^{r-1} (2 - q^{r-1} - q^r)$$
 M1

$$=2p\left(1+2q+3q^2+\ldots\ldots\right)-p\left(1+2q^2+3q^4+\ldots\ldots\right)-pq(1+2q^2+3q^4+\ldots\ldots)$$

A1 A1 for correct series identified (one of each kind)

=
$$2p \cdot \frac{1}{(1-q)^2} - p(1+q) \cdot \frac{1}{(1-q^2)^2}$$
 B1 B1 for correct use of given result

$$= \frac{2p}{p^2} - \frac{p(1+q)}{p^2(1+q)^2} = \frac{2(1+q)-1}{p(1+q)} \text{ or } \frac{2q+1}{p(1+q)} \text{ or } \frac{3-2p}{p(2-p)} \text{ A1}$$

or any other correct alternative form with p's / q's

(ii) M1 for equating their answer (in terms of
$$p$$
 only) to m : $m = \frac{3-2p}{p(2-p)}$

dM1 for creating a quadratic eqn. in p: $0 = m p^2 - 2(1 + m) p + 3$ A1 correct dM1 for use of the quadratic formula:

$$p = \frac{2(m+1) \pm \sqrt{4(m^2 + 2m + 1) - 12m}}{2m} = \frac{1}{m} \left\{ m + 1 \pm \sqrt{m^2 - m + 1} \right\}$$

A1 for correct, simplified answer

A1 for choosing correct answer:
$$p = \frac{1}{m} \left\{ m + 1 - \sqrt{m^2 - m + 1} \right\}$$

M1 A1 for explaining reasons for rejecting other answer:

e.g. With the + sign,
$$p = 1 + \frac{1}{m}$$
 + (something positive) > 1

13 M1 for use of
$$e^{-x} \approx 1 - x$$
 and applying this to $\frac{n-r}{n} = 1 - \frac{r}{n}$

A1 for getting $\frac{n-r}{n} \approx e^{-r/n}$ (GIVEN ANSWER)

2

p(at least one matching pair)

$$= 1 - p(\text{no matching pairs})$$

$$=1-\frac{365}{365}\times\frac{364}{365}\times\dots\times\frac{365-(k-1)}{365}$$
 A1

$$=1-1\times\left(1-\frac{1}{365}\right)\left(1-\frac{2}{365}\right).....\left(1-\frac{k-1}{365}\right)$$
 M1 for attempt to use above result

$$\approx 1 - e^{-1/365} \times e^{-2/365} \times \dots \times e^{-(k-1)/365}$$
 A1

$$= 1 - \exp\left\{-\frac{1}{365}(1 + 2 + \dots + [k-1])\right\}$$
 M1 for

$$= 1 - \exp\left\{-\frac{1}{365} \times \frac{k(k-1)}{2}\right\}$$

$$= 1 - \exp\{-k(k-1)/730\}$$

7

Require
$$1 - \exp\{-k(k-1)/730\} \ge \frac{1}{2}$$
 M1

dM1 for
$$\exp\{-k(k-1)/730\} \le \frac{1}{2}$$
 and taking logs

$$-\frac{k(k-1)}{730} \le -\ln 2$$

$$k^2 - k \ge 730 \times \frac{253}{365}$$
 B1 for use of given approxⁿ. to ln 2

M1 for solving quadratic inequality in k: $k^2 - k - 506 \ge 0$

either by completing the square: $4k^2 - 4k - 2024 \ge 0 \implies (2k-1)^2 \ge 45^2$

or by factorising: $(k-23)(k+22) \ge 0$ (or by the quadratic formula)

A1 for answer $k \ge 23$

 $P_H = 1 - \left(\frac{N-1}{N}\right)^k = 1 - \left(1 - \frac{1}{N}\right)^k \approx 1 - \left(e^{-1/N}\right)^k = 1 - e^{-k/N}$

M1 A1 M1 for attempt at expl. form A1

 $P_H \ge \frac{1}{2} \implies e^{-k/N} \le \frac{1}{2} \implies \frac{k}{N} \ge \ln 2 \implies k \ge N \ln 2 = 253$

M1 for solving, including taking logs A1

14

M1 for a continuous graph

M1 for 3 (5) pieces

B1 for correct vertices

A1 all correct (else)

(ii)
$$f(2k) = a - 2kb = \ln k$$

$$f(4k) = a - 4kb = 0$$

M1 for substⁿ, and solving attempt

$$\Rightarrow a = 4kb \Rightarrow b = \frac{\ln k}{2k}$$
 and $a = 2 \ln k$ A1 for both answers

Total Prob. =
$$1 = \int_{1}^{k} \ln x \, dx + k \ln k + \int_{2k}^{4k} (a - bx) \, dx$$

M1 for three integrals/areas

$$\Rightarrow 1 = \left[x \ln x - x \right]_1^k$$

$$\Rightarrow 1 = [x \ln x - x]_1^k + k \ln k + [ax - \frac{1}{2}bx^2]_{2k}^{4k}$$

M1 A1 by parts

$$\Rightarrow 1 = k \ln k - k + 1$$

$$\Rightarrow 1 = k \ln k - k + 1 + k \ln k + 2ak - \frac{1}{2}b \cdot 12k^2$$

A1 for both of these

M1 for substⁿ. of limits and use of their a and b in terms of k

$$\Rightarrow 0 = k \ln k - k + k \ln k + 4k \ln k - 3k \ln k$$

$$k \neq 0 \implies k = e^{1/3}$$
 and so $a = \frac{2}{3}$, $b = \frac{1}{6}e^{-1/3}$

M1 for obtaining numerical answers for k, a and b

A1 for all correct

(iii) **B1 for**
$$\int_{1}^{k} \ln x \, dx = k \ln k - k + 1$$
 (from earlier) = $1 - \frac{2}{3} e^{1/3}$

and
$$1 - \frac{2}{3} e^{1/3} < \frac{1}{2} \iff e^{1/3} > \frac{3}{4}$$
 which it is since $e^{1/3} > 1$

B1 for showing median not in first region

B1 for
$$\int_{1}^{k} \ln x \, dx + k \ln k = 1 - \frac{1}{3} e^{1/3}$$

and
$$1 - \frac{1}{3} e^{1/3} > \frac{1}{2} \iff e^{1/3} < \frac{3}{2} \iff e < \frac{27}{8}$$
 which it is since $e < 3$

B1 for showing median is in second region

Then median is given by
$$1 - \frac{2}{3} e^{1/3} + (m - k) \ln k = \frac{1}{2}$$
 M1

$$\Rightarrow m = 3 e^{1/3} - \frac{3}{2} A1$$