

Development and validation of a new dynamic facial expression database

National Institute of Mental Health

Sophia Lipetzky, Susan Wardle, J. Brendan Ritchie, Chris Baker, & Shruti Japee Lab of Brain and Cognition, National Institute of Mental Health, Bethesda, MD, USA

sophia.kaidi@nih.gov

Introduction

- Facial expressions are essential for effective communication and social interaction
- Most prior research has used static images of homogenous, highly posed facial expressions
- Our goal is to create a more heterogenous and dynamic facial stimuli database reflecting the expressions seen in the natural world

Development of Stimuli

- 23 actors, 14 female, 9 male
- 6 African American, 3 Asian, 4 Hispanic, 10
 White
- Age Range 27-71
- Mean Age 44.22 (±13.87)
- Directed to make different types of facial motion:

EXPRESSIVE	NON-EXPRESSIVE
Angry	Neutral
Disgust	Counting
Fear	Chewing
Нарру	
Sad	
Surprised	

- Actors made each expression in 7 different orientations
- Videos were edited to extract 4 sec clips

EXAMPLE STIMULI

Methods

- 10 Participants
- 7 female, 3 male
- 50% Asian, 50% White
- 10% Hispanic
- 1-2 hour computer-based expression recognition and rating task
- Each participant saw all 204 of the front-facing videos
- Asked to identify the expression out of 7 choices or select 'Other' and provide alternate expression

 Rate intensity, genuineness, and valence on a Likert scale of 1-9

 Participants were given a break every 15 videos to rest their eyes

Observer Results

	Expressive Facial Motion											
Intended Expression	AN	68.2%	18.2%	3.2%		1.8%	3.6%	0.5%	4.5%			
	DI	5.3%	86.5%	1.9%	1.4%	1.0%	2.9%	0.5%	0.5%			
	FE	0.9%	4.1%	58.2%		2.3%	34.1%	0.5%				
	НА		0.5%		97.7%		0.9%	0.5%	0.5%			
	SA	2.7%	7.3%	2.3%	5.9%	69.1%	0.5%	5.0%	7.3%			
	SU			0.5%	26.5%		73.1%					
		AN	DI	FE	НА	SA	SU	NE	ОТ			
Perceived Expression												

- Good overall correspondence between perceived and intended expressions
- Happiness and Disgust videos well recognized
- Fear sometimes perceived as Surprise, while
 Surprise sometimes perceived as Happiness

Non-Expressive Facial Motion

OII	NE	CO	СН	AN	DI	FE	НА	SA	SU	ОТ
СН			81.2%	6.0%	2.8%		6.4%	1.8%		1.8%
СО		85.5%		10.6%	1.0%	0.5%	0.5%	1.0%	0.5%	0.5%
NE	84.9%			6.6%	0.5%		2.8%	2.4%	0.5%	2.4%

 Non-expressive videos sometimes perceived as Angry

Observer Results | Intensity | February | F

Conclusions

- While most videos were perceived as depicting the intended expression, fear was sometimes perceived as surprise, and surprise as happiness
- Variability in recognizability, genuineness, and intensity across expressions and actors

Future Directions

- Further analyze variability across actors and expressions
- Analyze videos in other orientations
- Use pre-trained neural networks to identify expressions and compare to human judgements
- Share videos and associated data with other researchers