

Huazhong University of Science & Technology

Electronic Circuit of Communications

School of Electronic Information and Commnications

Jiaqing Huang

Power Amplifier Circuit

◆ Antenna Output Circuit

> Aim: Antenna Circuit Coupling with Parallel Resonance by M

- > Reflected Impedance of Coupling Circuits
 - \succ Reflected impedance r' from antenna to L_1C_1 :

 L_1C_1 Equivalent Circuit

- > Reflected Impedance of Coupling Circuits
 - \succ Reflected impedance r' from antenna to L_1C_1 :

$$R_p = rac{L}{C}rac{1}{R}$$
 $R_p' = rac{L_1}{C_1(r_1+r')} = rac{L_1}{C_1\left(r_1+rac{\omega^2 M^2}{R_A}
ight)}$ M helps matching

- For optimal power transmission to antenna R_A , Reflected Resistance r' >> Loss Resistance r_1
- $> L_1C_1$ Efficiency η_k : $= P_A / P_o$

$$\eta_k = \frac{r'}{r_1 + r'} = 1 - \frac{r_1}{r_1 + r'} = 1 - \frac{R'_p}{R_p} = 1 - \frac{Q_L}{Q_0}$$

 $L_1 C_1$ Equivalent Circuit

> Total Efficiency:

$$\eta = \frac{P_A}{P_=} = \frac{P_o}{P_=} \frac{P_A}{P_o} = \eta_c \cdot \eta_k$$

Antenna Output Circuit

 \succ After considering coupling antenna, L_1C_1 resonance resistance becomes R_p'

$$R'_{p} = rac{L_{1}}{C_{1}(r_{1} + r')} = rac{L_{1}}{C_{1}\left(r_{1} + rac{\omega^{2}M^{2}}{R_{A}}
ight)}$$

 \triangleright State for $M \downarrow R'_p \uparrow$

 R'_p vs. State

Summary

- > Antenna Output Circuit
 - $\triangleright \eta_k$ and P_A

 $> R'_p$ vs. M with Operating State

Example 4-4 A resonant power amplifier is shown in Figure. The LC circuit and the load circuit have operated at resonance. And the amplifier is operating at critical state.

- 1. If M_2 is increased and V_{CC} , V_{BB} , M_1 are unchanged, how will the operating state of the amplifier change? Why?
- 2. If M_2 is increased, how should M_1 change such that the amplifier could still operate at critical state (V_{CC} and V_{BB} are unchanged)? Why?
- 3. The resonant circuit operates at critical state. The transistor has the following operating conditions: the slope of the transfer characteristic curve $g_c = 0.8A/V$, $V_{BZ} = 0.6V$, $|V_{BB}| = 1V$, $\theta_c = 70^\circ$, $V_{CC} = 24V$, and collector voltage utilization factor $\xi = 0.9$. And L_1C circuit has $Q_0 = 100$ and $Q_L = 10$. Determine the collector output power P_0 and the antenna power P_A .

1. If M_2 is increased and V_{CC} , V_{BB} , M_1 are unchanged, how will the operating state of the amplifier change? Why?

Solution: From the equation of equivalent load resistance and M_2 , it is known that R'_p will decrease if M_2 increases:

$$R_p' = \frac{L}{C[r_1 + \frac{(\omega M_2)^2}{R_A}]}$$

According to the load characteristic, the operating state of the amplifier tends to change from critical state to undervoltage state as R'_p decreases.

2. If M_2 is increased, how should M_1 change such that the amplifier could still operate at critical state (V_{CC} and V_{BB} are unchanged)? Why?

Solution:

If M_2 is increased and V_{CC} , V_{BB} are unchanged, M_1 must be increased in order to keep the amplifier still operating at critical state.

Because the input voltage V_{bm} will increase if M_1 is increased. And the operating state of the amplifier tends to change from undervoltage state to critical state as V_{bm} increases.

3. The resonant circuit operates at critical state. The transistor has the following operating conditions: slope of the transfer characteristic curve $g_c = 0.8A/V$, $V_{BZ} = 0.6V$, $|V_{BB}| = 1V$, $\theta_c = 70^\circ$, $V_{CC} = 24V$, and collector voltage utilization factor $\xi = 0.9$. And L_1C circuit has $Q_0 = 100$ and $Q_L = 10$. Determine the collector output power P_0 and the antenna power P_A .

Solution: The maximum collector current is
$$i_{Cmax} = g_c V_{bm} (1 - cos\theta_c)$$

From the transfer characteristic, $V_{bm}cos\theta_c = V_{BB} + V_{BZ}$

From simultaneous equations 1 and 2,
$$V_{bm} = \frac{|V_{BB}| + V_{BZ}}{\cos \theta_c} = \frac{1 + 0.6}{\cos 70^{\circ}} = 4.71V$$

$$i_{Cmax} = g_c V_{bm} (1 - \cos 70^\circ) = 0.8 \times 4.71 \times (1 - 0.34) A = 2.49 A$$

$$I_{cm1} = i_{Cmax} \cdot \alpha_1 (70^\circ) = 1.084 A$$

$$V_{cm} = \xi V_{CC} = 0.9 \times 24V = 21.6V$$

Therefore, the collector output power P_0 is $P_0 = \frac{1}{2}I_{cm1} \cdot V_{cm} = \frac{1}{2} \times 1.084 \times 21.6W = 11.7W$

The antenna power
$$P_A$$
 is $P_A = \eta_k \cdot P_0 = \left(1 - \frac{Q_L}{Q_0}\right) \cdot P_0 = 0.9 \times 11.7W = 10.54W$