データ構造とアルゴリズム第3週

掛下 哲郎

kake@is.saga-u.ac.jp

前回のポイント

- アルゴリズムの効率を、 具体例を用いて検討
 - 株価データから「最大売却 益」をもとめる例
 - □ データ数 n
 - 素直なアルゴリズム→ O(n²)
 - ・頭を使って改良 → O(*n*)
 - □ n次多項式の計算

今日学ぶこと

探索(search)問題

• データ集合から、自分の欲しいデータを探す

さまざまな探索方法

- 逐次探索
- 順序関係を利用した探索
- m-ブロック法
- 2分探索
- ・ハッシュ

探索問題

例:住所録からxさんの住所を探す。

探索:キーフィールドを探して、一致するレコードを探す

探索問題

- 簡単のため, 以下を仮定
 - 整数のキーフィールドが一つだけのデータ
 - □ データ集合中に、指定された整数が「有る」か「無い」かを 返す問題

(探索対象のデータ集合)

ここではデータ構造として配列を仮定

データ構造として配列(1次元)を使用

int s[*n*]

どんな探索アルゴリズムを考える?

イメージ

- 並んだ箱の中に数字 が1つづつ
- 中身を知るには箱を 開ける必要がある
- 箱を開ける回数を少なくしたい

逐次探索

• 配列要素を先頭から順に調べてゆく

9 4	1	8	3	7	10	5	6
-----	---	---	---	---	----	---	---

手間数(配列要素を調べる回数)は?

3を探索: 5回

5を探索: 8回

9を探索: 1回

2を探索: 9回

アルゴリズム(逐次探索)

入力: 質問データx

- 1. 探索位置を配列の先頭とする.
- 2. 配列の末尾に到達するまで以下の処理を繰り返す.
 - 2-1. 探索位置の要素がxと一致したならば、探索位置を返して終了する.
 - 2-2. そうでなければ、探索位置を1つ進める.
- 2. 検索失敗を返して終了する.

正しさの確認

- 停止性(「停止するか?」)
 - □ 配列の先頭からスタート
 - 配列の末尾に到達するまで繰り返し
 - □ 探索位置は 1ずつ増加
 - → 必ず停止
- 正当性(「正しく解くか?」)
 - _ 全てのデータを調べる
 - 見つけたときはその位置を返す
 - 見つからなかったときは失敗を返す
 - → 正しく動作

逐次探索の効率

- 見つかるとき
 - □ 最良 · · · 1回 O(1)
 - ・ 先頭で見つけたとき
 - □ 最悪 • n 回 O(n)
 - 最後で見つけたとき
 - □ 平均 ••• (n+1)/2 回 O(n)

見つからないとき
・・・ n回 O(n)

$$\sum_{k=0\sim(n-1)} (1/n) (k+1)$$

・出現確率が等確率と仮定。期待値を計算すれば良い

整理

- n要素の配列における探索問題
 - 基本的にO(n) (平均、最悪ともに)
 - □ つまり、データの数に比例する時間計算量
 - ・データ数が10倍になれば手間も10倍。100倍になれば 手間も100倍。•••
- 身の回りの「探索問題」
 - アドレス帳、辞書における「探索」
 - □何か違いは?

順序関係がある場合

• 「順序」が定義され、その順番にデータが並んでいる場合 (数字の大小、あいうえお順、etc.)

15 4 25 8 39 7 10 5 6 (バラバラ)

4 5 6 7 8 10 15 25 39

(大小順)

「順番通りに並んでいる」という性質を、どう利用する?

順序関係を利用した探索(1)

- 逐次探索の改良版
 - 「探す数字」>「配列中の数字」になったら処理をやめる (→無駄な探索を省く)

順序関係を利用した逐次探索の効率

- 見つかるとき・・・通常の逐次探索と同じ
- 見つからないとき
 - □ 最良 1回 O(1)
 - ・最初の要素より小さい
 - □ 最悪 n回 O(n)
 - □ 平均 (n+1)/2 回 O(n)

少しはマシになるが, オーダーは変わらない

整理

- 逐次探索
 - □ 平均、最悪ともに O(n)
- 逐次探索(順序関係を利用)
 - □ 平均、最悪ともに O(n)

順序関係をもっと賢く利用できれば、もっと改善できる?

順序関係を利用した探索(2)

- m-ブロック法
 - □ n個のデータをm個のブロックに分割。
 - ・ 各ブロックにはn/m要素を保持。
 - □ n/m個とびにチェックし、可能性のあるブロックを見つける
 - 可能性のあるブロックの中にあるn/m個を逐次探索 ブロックO ブロック1 ブロック2

2 3 4 6 8 10 11 18 20 30 50 51 52 90 99

51

51を発見!

m-ブロック法のアルゴリズム

- 入力:質問データx
- 1. ブロック数mを定める.
- 2. ブロック長kをn/mとする(小数点 以下切り上げ).
- 3. 探索位置を配列の先頭ブロックとする.
- 4. 末尾を除く各ブロックに対して以下の処理を繰り返す.
 - 4-1. 当該ブロックの末尾の要素がxの値以上ならば、ループから出る.
 - 4-2. そうでなければ, 探索位置 を次のブロックに進める.

- 5. 探索位置を当該ブロックの先頭とする.
- 6. 当該ブロックの末尾に到達するまで以下の処理を繰り返す.
 - 6-1. 探索位置の要素がxの値以 上ならば、ループから出る.
 - 6-2. そうでなければ, 探索位置 を1つ進める.
- 7. 探索位置の要素がxと一致したならば、探索位置を返す.
- 8. そうでなければ、探索失敗を返す.

m-ブロック法の効率

比較回数 ≦ (m-1) + [n/m]
 [α]・・・α以上の最小整数
 [n/m] ≦ n/m + 1 より

比較回数 $\leq m + n/m$

相加平均と相乗平均

$$\sqrt{a \times b} \leq (a+b)/2$$
 (等号は $a=b$ のとき)

• 比較回数最小となるのは、n/m = m のときっまり、 $m = \sqrt{n}$ のときが最小で、 $O(\sqrt{n})$

整理

- 逐次探索
 - □ 平均、最悪ともに O(n)
- 逐次探索(順序関係を利用)
 - □ 平均、最悪ともに O(n)
- m-ブロック法
 - □ 平均, 最悪ともにO (\sqrt{n})

順序関係を利用した探索(3)

- 二分探索
 - 対象区間の真ん中に見当をつけながら探す

二分探索法のアルゴリズム

- 入力:質問データx
- 1. xが配列の先頭要素よりも小さいか, 末尾要素よりも大きい場合, 探索失敗を返す.
- 2. 探索区間を配列の全域とする.
- 3. 探索区間が空でない限り以下の処理を繰り返す.
 - 3-1. 探索区間の中央の要素を求める(小数点以下切り捨て).
 - 3-2. xが中央の要素よりも小さいならば、探索区間の末尾を中央-1とする.
 - 3-3. そうでなければ、探索区間の先頭を中央+1とする.
- 4. 探索区間の末尾の要素がxと一致したならば、末尾の位置を返す.
- 5. そうでなければ、探索失敗を返す.

二分探索法の効率

- 最悪でもO(log n)
 - □ 探索区間は、高々log,n回の分割で大きさが1になる
 - なぜなら・・・ (k回分割後の探索区間の幅)=n/2/2/2/・・・/2 ≦ 1 (2でk回割る)

$$n \times 2^{-k} \leq 1$$

$$\log_2 n - k \log_2 2 \leq \log_2 1$$

$$\log_2 n \leq k$$

整理

- 逐次探索
 - □ 平均、最悪ともに O(n)
- 順序関係を利用した逐次探索
 - □ 平均、最悪ともに O(n)
- m-ブロック法
 - □ 平均, 最悪ともにO (\sqrt{n})
- 二分探索法
 - 平均,最悪ともにO(log n)

ハッシュ法

- 平均計算時間 O(1)
- n個のデータを格納するのに、1.5~2倍程度の大き さの配列s[m]を用いる。
- アイデア
 - □ データxの格納位置を、関数hash(x)で求める
 - ・x:格納したいデータ
 - i = hash(x):0~m-1の整数を返す関数
 - ・s[i] にデータxを格納
 - ・異なるxで同じiになったとき ⇒ 次の位置から空きを探し て格納
 - □ 探索は、hash[x]の位置から順次探索

ハッシュ法の具体例

- 格納したいデータ10, 15, 20, 33, 44 (n=5)
- m = 10とし、s[0],s[1],...,s[9] にデータを格納(ハッシュ表と呼ぶ)
- hash(x) = x % m で定義

(ハッシュ表)

10	20		33	44	15				
0	1	2	3	4	5	6	7	8	9

ハッシュ表を作る(1)

(探索対象のデータ) n = 5

27 11 13 10 41

hash(27) = 7 より, 位置7に格納 ハッシュ関数は hash(x) = x % 10 とする

ハッシュ表を作る(2)

ハッシュ関数は hash(x) = x % 10 とする

ハッシュ表を作る(3)

(探索対象のデータ) n = 513 10 41

hash(13) = 3 より, 位置3に格納 ハッシュ関数は hash(x) = x % 10 <mark>大</mark>する

ハッシュ表を作る(4)

(探索対象のデータ) n = 5

10_ 41

ハッシュ関数は hash(x) = x % 10 とする

hash(10) = 0 より、位置0に格納

ハッシュ表を作る(5)

(探索対象のデータ) n = 5

41

ハッシュ関数は hash(x) = x % 10 とする

hash(41) = 1 より, 位置1に格納

(ハッシュ表) m = 10

先客がいるので 右隣へ

完成したハッシュ表

(探索対象のデータ) n = 5

ハッシュ関数は hash(x) = x % 10 とする

(ハッシュ表)

データ登録アルゴリズム

- 1. ハッシュ表の各要素を空にする.
- 2. 登録対象の各データdについて以下の処理を繰り返す.
 - 2-1. dのハッシュ値jを求める.
 - 2-2. ハッシュ表の位置j以降で空の要素を探し、最初の空き要素にdを格納する.

ハッシュ法の具体例

(ハッシュテーブル)

- データ34を探索
 - hash(34) = 34 % 10 = 4
 s[4], s[5], s[6](空き)と順に調べ、
 「データ無し」と返す(失敗)
- データ44を探索
 - hash(44) = 44 % 10 = 4s[4] から調べ、一発で見つける。

ハッシュ法で探索(1)

ハッシュ法で探索(2)

ハッシュ法で探索(3)

探索例:

29を探したい!

hash(29) = 9より、位置9を探す ハッシュ関数は hash(x) = x % 10とする

無し!

(ハッシュ表)

ハッシュ法で探索(4)

データ探索 アルゴリズム 入力:質問データx

- 1. xのハッシュ値jを求める.
- 2. ハッシュ表の位置jを探索位置とする.
- 3. 探索位置が空でない限り以下の処理を繰り返す.
 - 3-1. 探索位置の要素がxと一致したならば、探索位置を返す.
 - 3-2. そうでなければ、探索位置を1つ進める.
- 4. 探索失敗を返す.

ハッシュ法の効率

- 平均成功探索回数 ~ 1/2 { 1 + 1/ (1-a) }
- 平均不成功探索回数 ~ 1/2 { 1 + 1/ (1-a)² }
- aはハッシュ表の占有率。
 - データ量には依存していない
 - ⇒ 1にくらべて充分小さければ、平均1回の比較で済む

どんなとき効率が悪くなるか?

ハッシュ関数は (探索対象のデータ) n = 5 hash(x) = x % 1011 51 31 71 21 とする **21を探したい!** 、hash(21) = 1より, 位置1を探す 発見! 2 3 4 5 6 7 8 ()(ハッシュ表) m=10

結局, n個全ての要素のチェックが必要 → 手間O(n)

本日のまとめ

- 逐次探索
 - □ 平均、最悪ともに O(n)
 - □ 未登録データを探索した場合, 全要素の確認が必要
- 順序関係を利用した逐次探索
 - 平均、最悪ともに O(n)
- m-ブロック法
 - \blacksquare 平均、最悪ともに $O(\sqrt{n})$
- 二分探索法
 - □ 平均、最悪ともにO(log n)
- ハッシュ法
 - □ 平均O(1)。最悪時は?

未登録データを探索 した場合でも、全要 素の確認は不要

確認テスト

- 1. データが 1, 2, 4, 6, 7, 8, 9, 10,13,15,17 と昇順に格 納されているとする。
 - (a) m=4でm-ブロック法を用いて探索する。8を探索すると きと、11を探索する場合のそれぞれについて、どのよう な順番で要素をチェックするか説明せよ。
 - (b) 13, 6, 3を二分探索するとき、それぞれ、どのような順番で要素をチェックするか説明せよ。

確認テスト

- 2. ハッシュ法での探索を考える.
 - データの集合は 1, 3, 16, 8. (n=4. この順番でハッシュ 表に入れる)
 - ハッシュ表のサイズ m = 8
 - ハッシュ関数 hash(x) = x % 8
 - データ登録後のハッシュ表の状態を示せ.
 - 4つのデータ 1, 5, 8, 27 を探索するとき, どのようにハッシュ表をチェックしていくのか, それぞれ示せ.
- 3. ハッシュ法の最悪時の時間計算量は? ヒント:ハッシュ表へ格納するとき衝突ばかり起こった