# Sentiment Analysis of Amazon Fine Food Reviews

**Natural Language Processing** 

#### **Data Set Information**

The Amazon Fine Food Reviews dataset consists of 568,454 food reviews users left up to October 2012. This dataset consists of a single CSV file, Reviews.csv, and a corresponding SQLite table named Reviews in database.sqlite. The 10 columns in the table are:

- Id
- **ProductId** unique identifier for the product
- UserId unqiue identifier for the user
- ProfileName
- HelpfulnessNumerator number of users who found the review helpful
- **HelpfulnessDenominator** number of users who indicated whether they found the review helpful
- Score rating between 1 and 5
- Time timestamp for the review
- **Summary** brief summary of the review
- Text text of the review

#### **Client and Business Problem**

Our client Amazon would like to build a model that predicts customer sentiment based on their reviews.



# **Data Wrangling Steps**

- This dataset is relatively clean.
- Drop missing values they were very small number of observations with missing data that I decided to drop.
- I created a column called sentiment to have two classes:
  - o 0: negative review (Score: 1 & 2)
  - o 1: positive review (Score: 4 & 5)
- I dropped reviews with Score 3 because these reviews have inconsistent sentiment based on individual preferences.

#### **Exploratory Data Analysis**

- In-balanced dataset where our target variable has way more positive reviews than negative ones.
- I'm only including Summary text column as my predictive variable.



## **Predictive Model Building**

- I split my data into training and testing sets
- Lused CountVectorizer and TfidfVectorizer to convert texts into matrices
- I used few classifiers:
  - MultinomialNB (w/ CountVectorizer & w/Tfidf): Accuracy score 91%
  - Logistic Regression w/ CountVectorizer: Accuracy score 92%
  - Random Forest w/CountVectorizer: Accuracy score 93%

## **Predictive Model Building**

- Although Accuracy is high recall rate for negative reviews is not that high for MultinomialNB and Logistic regression.
  - Recall rate for MultinomialNB: 67%
  - Recall rate for Logistic Regression: 68%
- Random Forest achieves the highest recall and precision rate.
  - Recall rate for Random Forest: 74%
  - Precision rate of Random Forest: 77%

#### Conclusion

The best classifier is the **Random Forest** w/ CountVectorizer which achieves the highest recall and precision scores.

The model achieves accuracy score of 92%, f1-score of 93% (f-1 score of 76% for the minority class) and AUC score of 94% which is pretty good.

