# USB Current limiting Power Distribution Switch Chip CH217

Datasheet Version: V1.0 http://wch.cn

#### 1. Overview

CH217 is a USB port power switch chip with adjustable current limiting threshold. The chip has integrated modules for over-current protection, over-temperature protection, and under-voltage protection, and supports programmable currents of up to 2.7A at 5V, which can limit the output current to protect the power supply system in the event of a short circuit at the VOUT output. The following is the internal block diagram of CH217 for reference only.



#### 2. Feature

- Built-in power switching tube, typical  $70\text{m}\Omega$  on-resistance.
- The current limiting threshold can be adjusted by external resistors, supporting 400mA to 2.7A with  $\pm 10\%$  typical error.
- Support power supply voltage 2.7V~5.5V.
- Fast current limiting protection in case of output short circuit.
- Low-power consumption, typical 50uA quiescent operating current.
- Typical shutdown current is less than 1uA, with no reverse current at shutdown.
- SOT23-6L package.

#### 3. Package



| Package form | Shaping width Pin spacing |       | acing  | Package Description | Order Model      |        |
|--------------|---------------------------|-------|--------|---------------------|------------------|--------|
| SOT23-6L     | 1.6mm                     | 63mil | 0.95mm | 37mil               | Small 6-pin chip | CH217K |
| SOT23-6L     | 1.6mm                     | 63mil | 0.95mm | 37mil               | Small 6-pin chip | CH217X |

#### 4. Pin

| CH217K<br>Pin No. | CH217X<br>Pin No. | Pin Name | Туре         | Pin Description                                                               |
|-------------------|-------------------|----------|--------------|-------------------------------------------------------------------------------|
| 6                 | 1                 | VIN      | Power supply | Power input, external capacitor 10uF or more is recommended                   |
| 1                 | 6                 | VOUT     | Power supply | Power output, usually connected to USB port VBUS                              |
| 2                 | 2                 | GND      | Power supply | Common ground terminal                                                        |
| 4                 | 3                 | EN#      | Input        | Power switch enable input, active low, active high shutdown                   |
| 3                 | 4                 | FLAG#    | Output       | Over-current or over-temperature alarm open-drain output, active low          |
| 5                 | 5                 | ISET     | Analog       | Current limiting threshold setting, external resistor Rset to GND to set Iset |

#### 5. Functional module

#### 5.1 Under-voltage lockout protection

When the VIN voltage is below the under-voltage lockout protection threshold Vuvlo, the switching tube will not be controlled by EN# and will always remain off. When the VIN voltage is above the under-voltage lockout protection threshold, the switching tube is allowed to be controlled and turned on when EN# is input low. The under-voltage lockout protection threshold has a hysteresis characteristic.

#### 5.2 Over-temperature protection

When the switch continuous conduction current is high or when over-current or short circuit occurs, the power consumption of the voltage difference between the two terminals of VIN and VOUT multiplied by the current will cause the chip internal temperature to rise. When the chip temperature exceeds the over-temperature protection threshold Tsd, the switch will be forcibly shut down and VOUT will have no output current. Later, after the chip cools down, the switch will be allowed to turn on again. If the chip is over-temperature after a period of time, it will be turned off again.

#### 5.3 Switch control

When EN# is input low and VIN is higher than Vuvlo, the switching tube between VIN and VOUT turns on, i.e. the power switch turns on.

When EN# is input high, or VIN is lower than Vuvlo, the switching tube between VIN and VOUT is turned off, i.e. shutdown, and the discharge tube at VOUT is turned on to accelerate the discharge of VOUT capacitor.

#### 5.4 Current limiting and over-current protection

When the VOUT output current lout exceeds the current limiting threshold Iset, the over-current protection module automatically reduces the conduction degree of the power switching tube, making the conduction

resistance increase and the VOUT voltage drop, thus limiting the output current and entering the constant current state. The constant current value is positively related to the VOUT voltage value. When VOUT is short-circuited to GND, the VOUT voltage is the smallest and the corresponding constant current value is the smallest, i.e. the short-circuit current Ishort.

In the ISET pin external resistor Rset to GND can set the current limiting threshold Iset, Iset = 60K / Rset, Rset is not less than 22K.

#### 6. Parameters

# **6.1 Absolute maximum value** (critical or exceeding the absolute maximum value will probably cause the chip to work improperly or even be damaged)

| Name                   | Parameter Description                       | Minimum<br>value | Maximum<br>value | Unit |
|------------------------|---------------------------------------------|------------------|------------------|------|
| TA                     | Ambient temperature at work                 | -40              | 85               | °C   |
| TS                     | Ambient temperature during storage          | -55              | 150              | °C   |
| VIN                    | Supply Voltage                              | -0.4             | 6                | V    |
| VOUT                   | Output Voltage                              | -0.4             | VIN              | V    |
| VIO                    | Voltage on EN# or FLAG# pins                | -0.4             | 5.5              | V    |
| PD                     | Maximum power consumption of the whole chip |                  | 500              | mW   |
| $\theta_{\mathrm{JA}}$ | SOT23-6L package thermal resistance         |                  | 200              | °C/W |

#### **6.2 Electrical parameters** (Test conditions: TA=25°C, VIN=5V, Rset=30KΩ)

| Name   | Parameter Descri                            | Minimum value      | Typical values | Maximum value | Unit |    |
|--------|---------------------------------------------|--------------------|----------------|---------------|------|----|
| VIN    | Supply Voltag                               | ge                 | 2.7            | 5.0           | 5.5  | V  |
| Iq     | Quiescent operating current                 | EN#=low level      | 25             | 50            | 80   | uA |
| Isd    | Shutdown current                            | EN#=high level     | 0              | 0.1           | 3    | uA |
| VIL    | EN# pin low input                           | voltage            | 0              |               | 0.7  | V  |
| VIH    | EN# pin high input voltage                  |                    | 1.8            |               | 5    | V  |
| VOL    | FLAG# pin low output voltage                | Inhale 2mA current |                | 0.2           | 0.4  | V  |
| Ron    | Power switching tube on-<br>resistance      | Iout=500mA         | 40             | 70            | 110  | mΩ |
| Iset   | Current limiting threshold                  | Rset=30K           | 1.7            | 2.0           | 2.3  | A  |
| Ishort | VOUT short-circuit current to ground        | Rset=30K           | 1.0            | 1.2           | 1.4  | A  |
|        | Under-voltage lockout                       | VIN rising stage   | 1.8            | 2.2           | 2.7  | V  |
| Vuvlo  | voltage(with hysteresis characteristics)    | VIN falling stage  | 1.6            | 2.0           | 2.4  | V  |
|        | Over-temperature protection                 | Heating up stage   |                | 155           |      | °C |
| Tsd    | threshold (with hysteresis characteristics) | Cooling stage      |                | 135           |      | °C |
| Tdly   | Valid from fault detection to F             |                    | 8              |               | mS   |    |

# **7. Typical characteristics diagram** (TA=25°C, VIN=5V, Rset=22KΩ, unless otherwise specified)









#### 8. Application

The CH217 can be used for power control of computers, USB hosts, USB HUB hubs, chargers, and other ports.

The following figure shows the application of independent power distribution control for each port of the HUB. The EN# pin is controlled by the PWREN# signal of the HUB chip CH335 or CH334, and the FLAG# pin can generate an over-current or over-temperature alarm signal to notify the HUB controller and the computer, and the CH334/5 has built-in pull-up resistors.

In the figure, Rset is 56K and the current limiting threshold is set to about 1A, which should actually be selected according to the power supply capability to achieve the protection effect.

Capacitor C8 selects the capacity as needed, with typical values of C4/C5/C6/C7 available at 150uF.

The actual operating current carrying capacity needs to be considered when designing the PCB, VIN (+5V) and VOUT (VBUS\*) alignment path of the PCB as wide as possible, if there is an over-hole is recommended more than one, at least two or more in parallel.



## 9. Package

### 9.1 SOT23-6L

| Symbols | Metric in mm |      |      |  |  |
|---------|--------------|------|------|--|--|
| Symbols | Min          | Туре | Max  |  |  |
| A       | 1.05         | 1.15 | 1.4  |  |  |
| A1      | 0.0          | 0.07 | 0.15 |  |  |
| b       | 0.3          | 0.4  | 0.5  |  |  |
| c       | 0.1          | 0.16 | 0.22 |  |  |
| D       | 2.7          | 2.9  | 3.1  |  |  |
| E       | 1.4          | 1.6  | 1.8  |  |  |
| E1      | 2.6          | 2.8  | 3.0  |  |  |
| e       |              | 0.95 |      |  |  |
| L       |              | 0.6  |      |  |  |
| L1      | 0.25         | 0.4  | 0.55 |  |  |
| θ       | 0°           |      | 8°   |  |  |

