ME 594 – Numerical Methods - HW02

Viral Panchal | Due date: 09/28

'I pledge my honor that I have abided by the stevens honor system'

	Numerical yethods - HW02 VIRAL PANCHAL
(1.5	C 2 7
	$\sqrt{x} + x^2 = 7$
	Using Newbons yethod:
	$f(x) = \sqrt{x} + x^2 - 7$, $\chi_0 = 7$
	$f'(x) = \frac{1}{2\sqrt{x}} + 2x$
	$ \chi_1 = \chi_0 - f(\chi_0) = 7 - (44.6458) = 3.85349 $ $ f'(\chi_0) \qquad (14.189) $
	$x_2 = x_1 - f(x_1) = 3.85349 - (9.81243) - 2.62103$ $f'(x_1) \qquad (7.96169)$
-	$\chi_3 = \chi_2 - f(\chi_2) = 2.62103 - (1.48879) = 2.35283$ $f'(\chi_2)$ (5.55091)
	$\chi_4 = \chi_3 - f(\chi_3) = 2.35283 - (0.0697) = 2.3389$ $f'(\chi_3) \qquad (5.031627)$
	$75 = 74 - \frac{f(x4)}{f'(x4)} = (2.3379) - (1.852 \times 10^{-4}) = 6.33894$
	: 25 = 2.33894 /1 AV

1, 1		
0 2)	LOS X - 0. 8 x 2= 0	
	Parishing mark to Carl I	
	Positive root by fixed point my	ekrod.
	for fixed point yelhod: x=	g(x)
	Assuming xo = 1	7(1)
	· 0 8 x 1 = cos x	0 /
	x = cosx	
	0.7%	
	·. x = 1.25 cosx = g.(x))
-0	g'(x) = 125 (24-sinx)-(c	(1.820
	= -1.25 hasinx 400	()()
	$= \frac{-1.25}{x^2} \frac{1}{2} \times \sin x + \cos x$	2
	1011212	1-
	19, (1) >1	0
	divelaina	-1
	diverging	
	Alternate solution;	
	$x = \sqrt{1.25} \cos x = g_2(x)$	
	U	
	1/-	(x x) = -0.625sinz
	2 V 1.25 LOSX	VI-25 COS X

 $|g_{2}(x)| \leq 1$ $|x_{0}| = 1$ $|x_{1}| = \sqrt{1.25 \, \omega_{5}(1)} = 0.92181$ $|x_{2}| = \sqrt{1.25 \, \omega_{5}(0.92181)} = 0.92256$ $|x_{3}| = \sqrt{1.25 \, \omega_{5}(0.92251)} = 0.86875$ $|x_{4}| = \sqrt{1.25 \, \omega_{5}(0.92251)} = 0.86875$ $|x_{5}| = \sqrt{1.15 \, \omega_{5}(0.92251)} = 0.87144$ $|x_{5}| = \sqrt{1.15 \, \omega_{5}(0.92813)} = 0.89144$ $|x_{5}| = \sqrt{1.15 \, \omega_{5}(0.92813)} = 0.88134 \, \text{May}$

<u>(23)</u>	Van der waals squation.
	$\frac{P \cdot nRT}{V - nb} = \frac{n^2a}{V^2}$
	R = 0 0 8206 L/(mole K)
	U = 12 Mel
	a=1.59 L2 atm b= 003913 L
	T=25°C = 298K P=13.5 du
	Based on the yatlab plot:
	rooks e (2,3) Eplot attached below
	i) Bisection yethod
	ii) Secart yello. I hatlab program attached 3

Q3. Programs

• Van der waal's function:

```
% Q3 - Van Der Waal's equation
function f = VDW_f(V)

R = 0.08206;
n = 1.5;
a = 1.39;
b = 0.03913;
T = 298;
p = 13.5;

f = ((n*R*T)./(V-(n*b)))-(((n^2)*a)./(V.^2)) - p;
```

• *Driver for plotting the above function:*

```
% plotting van der waal's function
% To determine the range in which the roots belong to.

x = linspace(1,5,100);
y = VDW_f(x);
z = zeros(100);
plot(x,y,x,z)
grid on
```

• Matlab Output:

Published with MATLAB® R2021a

• Function for Bisection method:

```
% Making function for bisection method
function [c,error,f c] = VDW bisection(f,a,b,delta)
% f = function
% delta = tolerance
% c = root
% f c = f(c)
f a = feval(f,a);
f b = feval(f,b);
while(f_a*f_b) > 0
   break
end
fprintf(' i
              a
                        c b
                                                f(c) \n')
N = floor((log(b - a) - log(delta))/(log(2)));
for i = 1:N
   c = (a+b)/2;
   f c = feval(f,c);
   fprintf('%3i %11.6f %11.6f %11.6f % 11.6f\n', i,a,c,b,f c)
    if f c == 0
       a = c;
       b = c;
    elseif f_c*f_b>0
       b = c;
       f_b = f_c;
    else
       a = c;
       f_a = f_c;
    end
end
fprintf('\n');
c = (a+b)/2;
error = abs(b-a);
f c = feval(f,c);
```

• Driver for the above function:

```
% Q3.1
% driver for bisection method

a = 2;
b = 3;

% delta = tolerance

delta = 10^(-6);
format long
[v,error,f_v] = VDW_bisection('VDW_f',a,b,delta)
```

• Matlab Output:

i	a	С	b	f(c)
1	2.000000	2.500000	3.000000	1.024687
2	2.500000	2.750000	3.000000	-0.284173
3	2.500000	2.625000	2.750000	0.339365
4	2.625000	2.687500	2.750000	0.020407
5	2.687500	2.718750	2.750000	-0.133619
6	2.687500	2.703125	2.718750	-0.057047
7	2.687500	2.695312	2.703125	-0.018431
8	2.687500	2.691406	2.695312	0.000960
9	2.691406	2.693359	2.695312	-0.008742
10	2.691406	2.692383	2.693359	-0.003893
11	2.691406	2.691895	2.692383	-0.001467
12	2.691406	2.691650	2.691895	-0.000253
13	2.691406	2.691528	2.691650	0.000353
14	2.691528	2.691589	2.691650	0.000050
15	2.691589	2.691620	2.691650	-0.000102
16	2.691589	2.691605	2.691620	-0.000026
17	2.691589	2.691597	2.691605	0.000012
18	2.691597	2.691601	2.691605	-0.000007
19	2.691597	2.691599	2.691601	0.000003

V =

2.691599845886230

error =

1.907348632812500e-06

f_V =

-2.078221672974223e-06

Published with MATLAB® R2021a

• Function for the secant method:

```
% Making function for secant method
function [P,i,error, rel error, f p] = VDW secant(f,p0,p1,delta,eps,max i)
% f = function
% p0, p1 = Initial approximated roots
% delta = tolerance within iterations
% eps = tolerance in function
% max i = maximum iterations
% P = approximated root
% i = iterations
% f p = f(p)
fprintf(' i
                p0 p1 p2 f(c) \n');
for i = 1:max_i
   p2 = p1 - (feval(f,p1)*(p1-p0))/(feval(f,p1) - feval(f,p0));
   fprintf('%3i %11.6f %11.6f %11.6f %11.6f \n',i,p0,p1,p2,feval(f,p2))
   error = abs(p2-p1);
   rel error = (2 \cdot error) / (abs(p2) + abs(p1));
   p0 = p1;
   p1 = p2;
   f p = feval(f,p1);
   if (error<delta) | (rel error<delta) | (abs(f p)<eps)</pre>
       break;
    end
end
fprintf('\n')
P = p1;
```

• Driver for the above function:

```
%Q 3.2
% driver for secant method

p0 = 2;
p1 = 2.1;
delta = 10^(-6);
eps = 10^(-6);
max_i = 100;

format long
[v,i,error,rel_error,f_v] = VDW_secant('VDW_f',p0,p1,delta,eps,max_i)
```

• Matlab Output:

i	р0	p1	p2	f(c)
1	2.000000	2.100000	2.540842	0.793415
2	2.100000	2.540842	2.658741	0.165325
3	2.540842	2.658741	2.689775	0.009076
4	2.658741	2.689775	2.691577	0.000110
5	2.689775	2.691577	2.691599	0.00000

V =

2.691599412939109

i =

5

error =

2.207079108806909e-05

rel_error =

8.199913208204459e-06

f_v =

7.378801214485975e-08

• Published with MATLAB® R2021a

Q.Y)	Quasi - one - dinjensional isentropic from		
	$\mathcal{E} = \frac{1}{M} \left(\frac{2}{P+1} \left(\frac{1+P-1}{2} M^2 \right) \right)^{-1} (P+1)^{-1} \left(\frac{2}{2} (P-1) \right)$		
	$f(M) = \frac{1}{M} \left(\frac{2}{(\gamma+1)} \left(\frac{1+(\gamma-1)m^2}{2} \right) \frac{\gamma+1}{2(\gamma-1)} - \epsilon = 0$		
	E = 10.0 Y = 1.4		
	To find: M. <1 Matlab program attached & M2 >1		

Q4 - Program

• Function for Mach number:

```
% Making a function for Mach number 'M'
function f = Mach_f(M)
eps = 10;
gamma= 1.4;
f = (1/M)*(2/(gamma+1)*(1+(gamma-1)/2*M^2))^((gamma+1)/2/(gamma-1))-eps;
```

• Function for Regula Falsi Method:

```
% function for regula falsi method
function [c,error,f_c] = Regula_falsi(f,a,b,delta,eps,max_i)
f a = feval(f,a);
f b = feval(f,b);
while f a*f b > 0
    fprintf('Breaking since f(a)*f(b)>0 \n')
    break;
end
for i = 1:max i
    dx = f_b^*(b-a)/(f_b - f_a);
    c = b - dx;
    a c = c - a;
    f c = feval(f,c);
    fprintf('%3i %11.6f % 11.6f % 11.6f % 11.6f \n', i,a,c,b,f c)
    if f c == 0
        break;
    elseif f b*f_c > 0
        b = \bar{c};
        f_b = f_c;
    else
        a = c;
        f a = f c;
    end
    dx = min(abs(dx), a c);
    if (abs(dx) < delta)
        fprintf('Difference between the iterates is less than the tolerance
\n')
        break;
    end
end
error = abs(b-a/2);
f c = feval(f,c);
end
```

• Driver for the above function:

• Matlab Outout:

1	0.010000	0.843337	1.000000	-8.977340
2	0.010000	0.711746	0.843337	-8.913905
3	0.010000	0.601593	0.711746	-8.813677
4	0.010000	0.509614	0.601593	-8.678127
5	0.010000	0.432946	0.509614	-8.507300
6	0.010000	0.369128	0.432946	-8.300547
7	0.010000	0.316062	0.369128	-8.057066
8	0.010000	0.271972	0.316062	-7.776358
9	0.010000	0.235365	0.271972	-7.458620
10	0.010000	0.204987	0.235365	-7.105098
11	0.010000	0.179788	0.204987	-6.718359
12	0.010000	0.158893	0.179788	-6.302458
13	0.010000	0.141572	0.158893	-5.862950
14	0.010000	0.127217	0.141572	-5.406733
15	0.010000	0.115322	0.127217	-4.941703
16	0.010000	0.105468	0.115322	-4.476273
17	0.010000	0.097305	0.105468	-4.018806
18	0.010000	0.090543	0.097305	-3.577051
19	0.010000	0.084944	0.090543	-3.157667
20	0.010000	0.080306	0.084944	-2.765880
21	0.010000	0.076466	0.080306	-2.405331
22	0.010000	0.073287	0.076466	-2.078079
23	0.010000	0.070654	0.073287	-1.784745
24	0.010000	0.068474	0.070654	-1.524748
25	0.010000	0.066669	0.068474	-1.296578
26	0.010000	0.065175	0.066669	-1.098079
27	0.010000	0.063938	0.065175	-0.926700
28	0.010000	0.062913	0.063938	-0.779702
29	0.010000	0.062065	0.062913	-0.654324
30	0.010000	0.061363	0.062065	-0.547897
31	0.010000	0.060782	0.061363	-0.457925
32	0.010000	0.060301	0.060782	-0.382125
33	0.010000	0.059903	0.060301	-0.318449
34	0.010000	0.059573	0.059903	-0.265089
35	0.010000	0.059300	0.059573	-0.220465
36	0.010000	0.059074	0.059300	-0.183210
37	0.010000	0.058887	0.059074	-0.152152
38	0.010000	0.058732	0.058887	-0.126291
39	0.010000	0.058604	0.058732	-0.104778
40	0.010000	0.058498	0.058604	-0.086897
41	0.010000	0.058410	0.058498	-0.072045
42	0.010000	0.058337	0.058410	-0.059716
43	0.010000	0.058277	0.058337	-0.049487
44	0.010000	0.058227	0.058277	-0.041002
45	0.010000	0.058186	0.058227	-0.033967
46	0.010000	0.058151	0.058186	-0.028136
47	0.010000	0.058123	0.058151	-0.023303
48	0.010000	0.058100	0.058123	-0.019299
49	0.010000	0.058080	0.058100	-0.015982
50	0.010000	0.058064	0.058080	-0.013234
51	0.010000	0.058051	0.058064	-0.010958
J ±	0.01000	0.00000	0.00001	0.010330

```
52
     0.010000
               0.058040
                         0.058051 -0.009073
53
     0.010000
                0.058031
                        0.058040 -0.007512
54
                         0.058031
     0.010000
                0.058023
                                     -0.006220
55
     0.010000
                0.058017
                         0.058023
                                    -0.005150
56
     0.010000
                0.058012
                         0.058017 -0.004263
57
     0.010000
                0.058008
                         0.058012
                                    -0.003530
58
     0.010000
                0.058004
                         0.058008
                                     -0.002922
59
     0.010000
                0.058001
                         0.058004 -0.002419
60
     0.010000
                0.057999 0.058001 -0.002003
     0.010000
                0.057997
                         0.057999
61
                                    -0.001658
     0.010000
                0.057995
                         0.057997
                                     -0.001373
62
63
     0.010000
                0.057994
                         0.057995 -0.001136
64
     0.010000
                0.057993 0.057994 -0.000941
65
     0.010000
                0.057992
                           0.057993
                                    -0.000779
```

Difference between the iterates is less than the tolerance

M =

0.057991737440885

error =

0.052991737440885

 $f_M =$

-7.787717569609498e-04

```
***********
```

```
1
    1.000000
                2.500000 5.000000 -7.363281
 2
     2.500000
              3.323144 5.000000 -4.247229
 3
                          5.000000
     3.323144
                3.693171
                                    -1.881975
                         5.000000
4
     3.693171
               3.838854
                                   -0.727969
 5
    3.838854
              3.892598
                        5.000000 -0.266217
    3.892598
 6
               3.911909
                         5.000000
                                    -0.095327
 7
     3.911909
                3.918780
                          5.000000
                                    -0.033876
                         5.000000
 8
     3.918780
                3.921216
                                    -0.012006
9
     3.921216
                3.922079
                         5.000000
                                    -0.004251
                3.922385
10
     3.922079
                         5.000000
                                    -0.001504
11
     3.922385
                3.922493
                         5.000000
                                    -0.000532
12
    3.922493
              3.922531
                        5.000000
                                   -0.000188
13
    3.922531
              3.922544
                         5.000000
                                   -0.000067
14
     3.922544
                3.922549
                          5.000000
                                    -0.000024
15
     3.922549
                3.922551
                          5.000000
                                    -0.000008
     3.922551
                3.922551
                          5.000000
                                    -0.000003
```

Difference between the iterates is less than the tolerance

M =

3.922551492461081

error =

3.038724253769460

 $f_M =$

-2.954691659340369e-06

Published with MATLAB® R2021a