Weather shocks & risk preference: Evidence from Dak Lak

Duc Tri Anh Nguyen

Institute for Environmental Economics and World Trade
Gottfried Wilhelm Leibniz Universität Hannover

Outline

- Motivation
- Literature
- Theoretical background
- Data
- Empirical Strategy

An Overview

- Question: How reported weather shocks affect individual risk preference?
- Goal: Quantify the shock effect using panel data from rural Dak Lak

Motivation

- Individual preferences can be malleable over time. (Becker and Mulligan, 1997; Bowles, 1998; Fehr and Hoff, 2011)
- Exogenous natural disasters can affect risk preference in short and long terms.
 - Heterogenous evidence on the impact of rare disasters on risk preference (2004 Indian Ocean Tsunami in Indonesia, 2005 Hurricane Katrina in the U.S., 2011 Great East Japan Earthquake)
- Limited research on how the cumulative experience of "smaller-scale" disasters affects risk preference.
 - Rural Vietnamese typically face smaller-scale disasters in hydrometeorological category (flood, drought, landslide, and storm).

Motivation

Study	Disaster Type	Risk aversion	Gap between disaster experience and survey date
Eckel et al. (2009)	Hurricane Katrina in the US	Less risk averse (short) Not significant	1 month after, 11 months after the event
Page et al. (2014)	Floods in Australia	Less risk averse	2 months after the event
Cameron and Shah (2015)	Natural disaster (Flood /Earthquake)	Increases	0 to 36 months after the event
Cameron and Shah (2015)	Natural disaster (Flood/Earthquake)	Not significant	0 to 332 months after the event
Cameron and Shah (2015)	Natural disaster (Flood)	Increases	0 to 416 months after the event
Cameron and Shah (2015)	Natural disaster (Earthquake)	Not significant	0 to 416 months after the event
Chantarat et al. (2015)	Floods in Cambodia	Increases	30 to 33 months after the event
Cassar et al. (2017)	Tsunami in Thailand	More risk averse	52 months after the event
Hanaoka et al. (2018)	Earthquake in Japan	Less risk averse (male) Not significant (female)	1 month before, 11 months after, and 59 months after the event
Abatayo & Lynham (2020)	Natural disaster (Typhoon)	Less risk averse (female) Not significant (male)	18 months after the event
Beine et al. (2020)	Natural disaster (Earthquake)	Increases	From 1 month before to 3 months after the event

Literature

- Impact of Man-made and Natural Shocks on Risk Preference:
 - Effects of man-made shocks (economic, unemployment, financial crises, and geopolitical conflicts) on risk preference.
 - Malmendier & Nagel (2011); Malmendier et al. (2023); Callen et al. (2014) etc.

- Effects of natural disasters: the U.S., China, Japan, the Philippines, etc.
- Eckel et al. (2009), Li et al. (2011); Bchir & Willinger (2013); Cassar et al. (2017); Chantarat et al. (2019); Van den Berg (2010); Sawada & Kuroish (2015); Page et al. (2014); Hanaoka et al. (2018); Ingwersen (2014); Callen (2015) etc.

Theoretical background

- Endogenous Preferences: Becker and Mulligan (1997); Bowles (1998); Fehr and Hoff (2011)
 - Economic and social conditions can shape individual preferences.
 - E.g.: Early exposure to market environments can alter adult behaviors and preferences.
- Natural Disasters and Risk Aversion: at least three channels:
 - income shocks altering utility functions (Gollier and Pratt, 1996),
 - increased perception of future negative events (Cameron and Shah, 2015),
 - emotional responses to disasters (Li et al., 2011; Eckel et al., 2009).
- => varying impacts of disasters on risk behavior due to both short-term emotional effects and long-term changes in risk perception.

Theoretical background

Rational belief updating and Prospect theory:

- Preference shifted due to updates in beliefs regarding risk, significantly impacting migration intentions and insurance investments
- Beine et al. (2020) and Reynaud et al. (2019) find empirical evidences for beyond belief updating and offer psychological channels as alternative explanations.

Research Question

- Q: How do the reported weather shocks affect risk preference in short and medium terms?
 - Consider the time gaps between the reported shocks and the survey date.
 - Examine three analysis samples based on their gap in disaster experiences.

- Thailand–Vietnam Socioeconomic Panel Survey
 - Aims to measure vulnerability to poverty in rural areas of Vietnam.
 - Initially launched in 2007 and funded by German Research Foundation (DFG).
 - Initial sample included approximately 2,000 households across 110 communes or 220 villages.

Figure 1: TVSEP survey timeline starting from the first survey in 2007.

- Geographical and Demographic Variations: Falk et al. (2018)
 - significant variations in preferences across and within countries,
 - influenced by gender, age, income, education attainment, and cognitive ability,
 - correlated with economic outcomes like savings and entrepreneurship.
- Cognitive Ability: Dohmen et al. (2010), Andersson et al. (2016); Vieider (2018)
 - Higher cognitive abilities are associated with greater risk tolerance,
- Complex methods of risk elicitation may yield different responses based on the subjects' understanding, affecting the measurement of risk aversion.

Table 1: Descriptive statistics of control variables (N = 946 for the whole sample in rural Vietnam)

VARIABLES	Mean	SD	Min.	Max.	Mean	SD	Min.	Max.
Control group	0				1			
Dummy for female (1 if female)		0.48	0	1	0.56	0.50	0	1
Dummy for ethnicity (1 for Kinh majority)		0.39	0	1	0.87	0.34	0	1
Dummy for low education (1 for having 0-4 years)		0.37	0	1	0.16	0.37	0	1
Individual age in 2016		12.40	22	86	55.29	13.86	18	93
Dummy for farming/fishing (1 for being farmer/fisherman) 2016	0.77	0.42	0	1	0.63	0.48	0	1
Dummy for farming/fishing 2017	0.82	0.38	0	1	0.65	0.48	0	1
Dummy for Out of Labor (1 if retired/disabled) 2016	0.03	0.18	0	1	0.09	0.28	0	1
Dummy for Out of Labor 2017	0.03	0.18	0	1	0.08	0.27	0	1
Dummy for subjective health (1 if healthy) 2016	0.36	0.48	0	1	0.42	0.49	0	1
Dummy for subjective health 2017	0.33	0.47	0	1	0.33	0.47	0	1
Dummy for Unemployment (1 if unemployed) 2016	0.04	0.19	0	1	0.07	0.25	0	1
Dummy for Unemployment 2017	0.01	0.12	0	1	0.05	0.22	0	1
Yearly income per capita 2016	2994.48	3491.22	-254.53	22808.93	3006.57	3383.20	-1617.67	27232.00
Yearly income per capita 2017	2685.08	2831.53	-903.99	25545.67	3316.11	5290.08	-7389.51	105820.49
Observations	737				209			

Table 2: **Dependent variables and relevant statistics** (N = 946)

VARIABLES	Mean	SD	Min.	Max.	Mean	SD	Min.	Max.
Control group	0				1			
Risk attitudes 2016	6.20	2.21	0	10	6.01	2.35	0	10
Risk attitudes 2017	5.77	2.56	0	10	6.01	2.69	0	10

"General risk attitudes" measured by:

[&]quot;Are you generally a person who is fully prepared to take risks or do you try to avoid taking risk?

(Please choose a number on a scale from 0 to 10. With 0 being unwilling to take risks and 10 being fully prepared to take risks)"

Table 3: Balance check of individual characteristics between control and treatment groups

	Treatment group	Control group			
VARIABLES	Mean	Mean	Difference	t-Statistic	p-Value
Risk Attitudes	6.1962	6.0054	0.1907	1.0504	0.2938
Dummy for female (1 if female)	0.6268	0.5604	0.0664	1.7152	0.0866
Age	53.1244	55.2944	-2.170035*	-2.0434	0.0413
Yearly Income per capita	2994.4840	3006.5740	-12.0908	-0.0453	0.9639
Dummy for farming/fishing	0.7656	0.6255	.1400414***	3.7874	0.0002
Dummy for ethnicity (1 for Kinh majority)	0.8182	0.8711	-0.0529	-1.9444	0.0521
Dummy for low education	0.1579	0.1615	-0.0036	-0.1239	0.9014
Dummy for Unemployment	0.0383	0.0651	-0.0269	-1.4520	0.1468
Dummy for Out of Labor	0.0335	0.0868	0533457**	-2.5900	0.0097
Dummy for subjective health	0.3636	0.4152	-0.0516	-1.3408	0.1803
Observations	737	209			

Note: Standard errors are in parentheses. Significance levels are indicated as * (p<0.10), ** (p<0.05), *** (p<0.01).

Empirical strategy:

Use wave 6 (2016) and wave 7 (2017) of the panel data

• Exploit the exogeneity of disaster experiences & the between- and within-individual variations in exposure to weather shocks.

• Estimate the impact of reported weather shocks for different time gaps in exposure. (12-month, 18-month, and 24-month gaps)

Empirical strategy:

$$R_{ijT} = \alpha + \beta_d E_{ijT} + \beta_x X_{ijT} + \gamma Z_{jT} + \pi_i + \varepsilon_{ijT}$$
 (1), where:

 R_{iiT} is a measure of risk preferences for individual i at province j at time T;

 E_{ijT} = 1 if individual i reported any disasters within the past 12/18/24 months at location j at time T;

 X_{ijT} represents a vector of time-varying individual characteristics, including gender, age, employment status, education level, and ethnicity.

 Z_{jT} represents time-varying characteristics of the province j;

 π_i represents unobserved time-invariant individual characteristics; and

 ε_{iiT} is an idiosyncratic shock.

The End!