Exercices du chapitre VI avec corrigé succinct

Exercice VI.1 Ch6-Exercice1

On veut résoudre

$$z''(t) + b(t)z'(t) + c(t)z(t) = 0$$
, b et c étant des fonctions réelles.

Transformer cette équation différentielle du second ordre en un système d'équations différentielles du premier ordre

Solution:

$$x_1(t) = z(t),$$

$$x_2(t) = z'(t)$$

donc

$$\left\{ \begin{array}{ll} x_1'(t) &= x_2(t) \\ x_2'(t) &= -b(t)x_2(t) - c(t)x_1(t) \end{array} \right. \iff x'(t) = A(t)x(t) \text{ avec } A(t) = \left(\begin{array}{ll} 0 & 1 \\ -c(t) & -b(t) \end{array} \right)$$

Exercice VI.2 Ch6-Exercice2

On définit X_1, X_2 par $X_1(t) = \begin{pmatrix} e^{t^2} \\ 0 \end{pmatrix}, X_2(t) = \begin{pmatrix} 0 \\ e^{-cost} \end{pmatrix}$. Montrer que $\{X_1, X_2\}$ est une famille libre de $(\mathcal{C}^1(\mathbb{R}, \mathbb{R}))^2$.

Solution: On remarque tout d'abord que X_1 et X_2 appartiennent à $(\mathcal{C}^1(\mathbb{R}, \mathbb{R}))^2$. D'autre part :

$$\alpha_1 X_1 + \alpha_2 X_2 = 0 \Longleftrightarrow \alpha_1 X_1(t) + \alpha_2 X_2(t) = 0 \ \forall t \in \mathbb{R} \Longleftrightarrow$$

$$\begin{pmatrix} \alpha_1 e^{t^2} \\ \alpha_2 e^{-cost} \end{pmatrix} = 0 \ \forall t \in \mathbb{R} \Longleftrightarrow \begin{cases} \alpha_1 e^{t^2} = 0 \ \forall t \in \mathbb{R} \\ \alpha_2 e^{-cost} = 0 \ \forall t \in \mathbb{R} \end{cases} \Longleftrightarrow \begin{cases} \alpha_1 = 0 \\ \alpha_2 = 0 \end{cases}.$$

(Il suffit de choisir t = 0.)

Exercice VI.3 Ch6-Exercice3

On définit $S_0 = \{x \in (C^1(I,\mathbb{R}))^n \mid x'(t) = A(t)x(t)\}.$ Montrer que S_0 est un sous-espace vectoriel de $(C^1(I,\mathbb{R}))^n$.

Solution: S_0 n'est pas vide, car $0 \in S_0$ et S_0 est stable.

Exercice VI.4 Ch6-Exercice4

On définit $A(t) = \begin{pmatrix} 2t & 0 \\ 0 & sint \end{pmatrix}$, résoudre x'(t) = A(t)x(t). Montrer que l'on peut écrire

$$x(t) = \alpha_1 X_1(t) + \alpha_2 X_2(t)$$

où X_1, X_2 sont 2 solutions linéairement indépendantes de $(\mathcal{C}^1(\mathbb{R}, \mathbb{R}))^2$.

Solution:

$$x'(t) = A(t)x(t) \iff \begin{cases} x'_1(t) = 2t \ x_1(t) \\ x'_2(t) = sint \ x_2(t) \end{cases} \iff \begin{cases} x_1(t) = \alpha_1 e^{t^2} \\ x_2(t) = \alpha_2 e^{-cost} \end{cases}$$

$$\iff x(t) = \begin{pmatrix} x_1(t) \\ x_2(t) \end{pmatrix} = \alpha_1 \begin{pmatrix} e^{t^2} \\ 0 \end{pmatrix} + \alpha_2 \begin{pmatrix} 0 \\ e^{-cost} \end{pmatrix}.$$

On retrouve les fonctions X_1, X_2 définies dans l'exercice 2, on a montré qu'elles étaient linéairement indépendantes.

Exercice VI.5 Ch6-Exercice5

Résoudre
$$x'(t) = A(t)x(t) + g(t)$$
 où $A(t) = \begin{pmatrix} 2t & 0 \\ 0 & \sin t \end{pmatrix}$, $g(t) = \begin{pmatrix} -t \\ 1 - t\sin t \end{pmatrix}$.

Solution:

$$x'(t) = A(t)x(t) + g(t) \iff \begin{cases} x'_1(t) = 2t \ x_1(t) - t \\ x'_2(t) = \sin t \ x_2(t) + 1 - t \sin t \end{cases}.$$

On obtient deux équations différentielles avec second membre. On résout les équations sans second membre, on obtient

$$x_{1h}(t) = \alpha_1 e^{t^2}, \quad x_{2h}(t) = \alpha_2 e^{-\cos t}.$$

En réfléchissant un peu on trouve une solution particulière pour chacune des équations qui sont

$$x_{1p}(t) = \frac{1}{2}, \ x_{2p}(t) = t.$$

D'où la solution

$$x(t) = \alpha_1 \begin{pmatrix} e^{t^2} \\ 0 \end{pmatrix} + \alpha_2 \begin{pmatrix} 0 \\ e^{-\cos t} \end{pmatrix} + \begin{pmatrix} \frac{1}{2} \\ t \end{pmatrix}.$$

Exercice VI.6 Ch6-Exercice6

Résoudre le système différentiel x'(t) = Ax(t), avec $A = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}$.

Solution:

$$x'(t) = Ax(t) \Longleftrightarrow \begin{cases} x_1'(t) &= 2x_1(t) \\ x_2'(t) &= 3x_2(t) \end{cases} \Longleftrightarrow \begin{cases} x_1(t) &= \alpha_1 e^{2t} \\ x_2(t) &= \alpha_2 e^{3t} \end{cases} \text{ avec } \alpha_1 \alpha_2 \in \mathbb{R}$$

Exercice VI.7 Ch6-Exercice 7

Résoudre le système différentiel x'(t) = Ax(t), avec $A = \begin{pmatrix} 1 & -1 \\ 2 & 4 \end{pmatrix}$.

Solution: On calcule les valeurs propres de A, on obtient

$$\lambda_1 = 2, \lambda_2 = 3,$$

on calcule des vecteurs propres associés, on obtient

$$Y_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}, Y_2 = \begin{pmatrix} 1 \\ -2 \end{pmatrix}$$

donc si on note

$$D = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}, P = \begin{pmatrix} 1 & 1 \\ -1 & -2 \end{pmatrix},$$

on a $A = PDP^{-1}$, donc

$$x'(t) = Ax(t) \iff P^{-1}x'(t) = DP^{-1}x(t).$$

Si l'on pose $z(t) = P^{-1}x(t)$, on a donc en utilisant l'exercice précédent :

$$z'(t) = Dz(t) \Longleftrightarrow \begin{cases} z_1(t) = \alpha_1 e^{2t} \\ z_2(t) = \alpha_2 e^{3t} \end{cases}$$
.

On obtient enfin:

$$x(t) = Pz(t) \Longleftrightarrow \begin{cases} x_1(t) = \alpha_1 e^{2t} + \alpha_2 e^{3t} \\ x_2(t) = -\alpha_1 e^{2t} - 2\alpha_2 e^{3t} \end{cases}, \text{ avec } \alpha_1 \alpha_2 \in \mathbb{R}.$$

Exercice VI.8 Ch6-Exercice8 On définit $A=\begin{pmatrix}1&1\\-1&3\end{pmatrix}$, montrer que A n'est pas diagonalisable.

On note Y_1 un vecteur propre de A, on choisit Y_2 un vecteur quelconque tel que $\{Y_1,Y_2\}$ soit une famille libre. On définit $P=(Y_1Y_2)$. P est inversible. (pourquoi?)

1. Montrer que $T = P^{-1}AP$ est une matrice triangulaire supérieure qui vérifie

$$t_{11} = t_{22} = 2.$$

2. Résoudre x'(t) = Ax(t).

Solution: On calcule les valeurs propres de A, on obtient que 2 est valeur propre double. On détermine les vecteurs propres associés, on obtient un sous espace propre de dimension 1 un vecteur propre est par exemple

$$Y_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
.

On peut choisir par exemple $Y_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$.

La matrice P est inversible puisque Y_1, Y_2 forment une base de \mathbb{R}^2 .

- 1. On note f l'application linéaire de \mathbb{R}^2 dans \mathbb{R}^2 qui a x associe Ax. La matrice de f dans la base canonique est bien sûr A. D'autre part $AY_1=2Y_1$, donc la matrice de f dans la base $\{Y_1,Y_2\}$ est $T=\begin{pmatrix}2&t_{12}\\0&t_{22}\end{pmatrix}$, d'autre part cette matrice est semblable à A ($T=P^{-1}AP$) donc elle admet les mêmes valeurs propres donc $t_{22}=2$, ce qui termine la démonstration.
- 2. On peut maintenant déterminer t_{12} , on calcule $AY_2=\begin{pmatrix}1\\3\end{pmatrix}=Y_1+2Y_2$, on obtient donc $t_{12}=1$, on retrouve bien sûr que $t_{22}=2$. On peut maintenant résoudre le système :

$$x'(t) = Ax(t) \iff z'(t) = Tz(t) \text{ avec } z(t) = P^{-1}x(t),$$

on obtient les équations différentielles :

$$z_2'(t) = 2z_2(t) \Longleftrightarrow z_2(t) = \alpha_2 e^{2t},$$

$$z_1'(t) = 2z_1(t) + z_2(t) \Longleftrightarrow z_1(t) = (\alpha_1 + \alpha_2 t)e^{2t}.$$

On obtient enfin

$$x(t) = Pz(t) \iff x(t) = \begin{pmatrix} (\alpha_1 + \alpha_2 t)e^{2t} \\ (\alpha_1 + \alpha_2 + \alpha_2 t)e^{2t} \end{pmatrix}$$

Exercice VI.9 Ch6-Exercice9

Résoudre le système différentiel x'(t) = Ax(t) + g(t),

avec
$$A = \begin{pmatrix} 1 & -1 \\ 2 & 4 \end{pmatrix}$$
, $g(t) = \begin{pmatrix} t \\ 2t \end{pmatrix}$.

Solution : 2 façons de procéder :

– On effectue un changement de fonction inconnue en posant $z(t)=P^{-1}x(t),$ on a :

$$x'(t) = Ax(t) + g(t) \Longleftrightarrow z'(t) = Dz(t) + P^{-1}g(t) \Longleftrightarrow \begin{cases} z_1'(t) &= 2z_1(t) + 4t \\ z_2'(t) &= 3z_2(t) - 3t \end{cases}.$$
 On résout chacune des équations différentielles , on ajoute à la solution

On résout chacune des équations différentielles , on ajoute à la solution générale de l'équation sans second membre déjà calculée dans l'exercice précédent, une solution particulière cherchée sous forme polynômiale (1-er degré), on obtient :

$$\begin{cases} z_1(t) = \alpha_1 e^{2t} - 2t - 1 \\ z_2(t) = \alpha_2 e^{3t} + t + \frac{1}{3} \end{cases},$$

donc x(t) = Pz(t) donne :

$$\begin{cases} x_1(t) = \alpha_1 e^{2t} + \alpha_2 e^{3t} - t - \frac{2}{3} \\ x_2(t) = -\alpha_1 e^{2t} - 2\alpha_2 e^{3t} + \frac{1}{3} \end{cases}$$

– On utilise les résultats du paragraphe Systèmes non homogènes à coefficients constants, on connaît déjà la solution générale du système sans second membre (homogène), il reste à calculer une solution particulière. On cherche cette solution $x_p(t)$ sous forme polynomiale :

$$x_p(t) = \begin{pmatrix} \beta_1 t + \gamma_1 \\ \beta_2 t + \gamma_2 \end{pmatrix}.$$

On obtient alors les équations vérifiées par $\beta_1, \beta_2, \gamma_1, \gamma_2$:

$$\begin{cases} \beta_1 & -\beta_2 & = -1 \\ \beta_1 & -\gamma_1 & +\gamma_2 & = 0 \\ 2\beta_1 & +4\beta_2 & = -2 \\ \beta_2 & -2\gamma_1 & +4\gamma_2 & = 0 \end{cases} \iff \begin{cases} \beta_1 = -1 \\ \beta_2 = 0 \\ \gamma_1 = -\frac{2}{3} \\ \gamma_2 = \frac{1}{3} \end{cases}.$$

Ce qui donne bien sûr la même solution.

Exercice VI.10 Ch6-Exercice 10

Résoudre y'' - 2y' + 2y = 0. Donner les solutions dans $\mathbb C$ puis dans $\mathbb R$.

Solution: Le trinôme caractéristique $s^2 - 2s + 2$ a pour racines 1 + i et 1 - i. On obtient donc les solutions complexes :

$$y(t) = \alpha_1 e^{(1+i)t} + \alpha_2 e^{(1-i)t}$$
 avec $\alpha_1, \alpha_2 \in \mathbb{C}$.

Pour obtenir les solutions réelles on doit choisir α_1, α_2 complexes conjugués, par exemple

$$\alpha_1 = a_1 + ia_2, \alpha_2 = a_1 - ia_2 \text{ avec } a_1, a_2 \in \mathbb{R}.$$

Après calculs, on obtient les solutions réelles :

$$y(t) = (\beta_1 cost + \beta_2 sint)e^t$$
 avec $\beta_1, \beta_2 \in \mathbb{R}$.

On a posé $\beta_1 = 2a_1, \beta_2 = -2a_2$.

Exercice VI.11 Ch6-Exercice11

 t_0, a, b et c sont des réels fixés, on suppose $a \neq 0$. On admettra que pour tout couple (y_0, y_1) donné il existe une et une seule fonction $y \in \mathcal{C}^2(\mathbb{R}, \mathbb{R})$ vérifiant

$$\begin{cases} ay''(t) + by'(t) + cy(t) = 0 \ \forall t \in \mathbb{R} \\ y(t_0) = y_0 \\ y'(t_0) = y_1 \end{cases}$$
 (1.1)

On note $S_0 = \{y \in \mathcal{C}^2(\mathbb{R}, \mathbb{R}) \text{ v\'erifiant } y''(t) + by'(t) + cy(t) = 0 \ \forall t \in \mathbb{R}\}$ On appelle u l'application de S_0 dans \mathbb{R}^2 qui à y associe (y_0, y_1) définis par $y_0 = y(t_0), y_1 = y'(t_0)$.

1. Montrer que S_0 est un sous espace vectoriel de $\mathcal{C}^2(\mathbb{R}, \mathbb{R})$.

- 2. Montrer que u est linéaire.
- 3. Montrer que u est bijective de S_0 dans \mathbb{R}^2 .
- 4. En déduire que la dimension de S_0 est 2.
- 5. Si λ vérifie $a\lambda^2 + b\lambda + c = 0$, montrer que la fonction y définie par $y(t) = e^{\lambda t}$ appartient à S_0 .
- 6. On suppose qu'il existe 2 racines distinctes λ_1 et λ_2 de l'équation $a\lambda^2 + b\lambda + c = 0$, montrer que $e^{\lambda_1 t}$ et $e^{\lambda_2 t}$ sont 2 fonctions linéairement indépendantes de S_0 .
- 7. En déduire que $\forall y \in S_0 \ y(t) = \alpha_1 e^{\lambda_1 t} + \alpha_2 e^{\lambda_2 t}$.

Solution:

- 1. S_0 contient la fonction nulle donc est non vide, on montre d'autre part que S_0 est stable.
- 2. On montre facilement que $u(y+z)=u(y)+u(z), u(\alpha y)=\alpha u(y)$.
- 3. u est surjective : c'est l'existence de la solution du problème

$$\begin{cases} ay''(t) + by'(t) + cy(t) = 0 \ \forall t \in \mathbb{R} \\ y(t_0) = y_0 \\ y'(t_0) = y_1 \end{cases}$$

qui permet de conclure en effet à tout couple (y_0, y_1) correspond une fonction y de S_0 .

- u est injective : c'est l'unicité de la solution au même problème qui permet de conclure, il ne peut exister 2 fonctions distinctes de S_0 qui vérifient $y(t_0) = y_0, y'(t_0) = y_1$.
- 4. Les dimensions des 2 espaces vectoriels S_0 et \mathbb{R}^2 sont donc égales.
- 5. Il suffit de calculer ay''(t) + by'(t) + cy(t).
- 6. Tout d'abord les fonctions y_1 et y_2 définies par $y_1(t) = e^{\lambda_1 t}$ et $y_2(t) = e^{\lambda_2 t}$ appartiennent à S_0 , montrons que ces fonctions forment une famille libre. On a :

$$\alpha_1 y_1 + \alpha_2 y_2 = 0 \Longleftrightarrow \alpha_1 e^{\lambda_1 t} + \alpha_2 e^{\lambda_2 t} = 0 \forall t \in \mathbb{R},$$

donc en particulier pour t = 0 on obtient

$$\alpha_1 + \alpha_2 = 0.$$

D'autre part puisque $\alpha_1 e^{\lambda_1 t} + \alpha_2 e^{\lambda_2 t} = 0 \forall t$ cette fonction a une dérivée nulle, si on évalue la dérivée pour t=0 on obtient

$$\lambda_1 \alpha_1 + \lambda_2 \alpha_2 = 0.$$

On a donc obtenu 2 équations linéaires dont les inconnues sont α_1, α_2 , le déterminant de la matrice du système vaut $\lambda_1 - \lambda_2$, il est donc différent de 0. Donc ce système admet une solution unique $\alpha_1 = \alpha_2 = 0$. Les fonctions y_1, y_2 sont donc linéairement indépendantes.

7. On en déduit que y_1, y_2 est une base de S_0 donc toute fonction y de S_0 se décompose sur cette base.

Exercice VI.12 Ch6-Exercice12

- Quel est le polynôme caractéristique de la matrice

$$A = \begin{pmatrix} 0 & 1 \\ -\gamma & -\beta \end{pmatrix}$$
 ($\beta, \gamma \in \mathbb{R}$)?

- Montrer que si λ est une valeur propre de A alors $\begin{pmatrix} 1 \\ \lambda \end{pmatrix}$ est un vecteur propre associé.
- Montrer que si A admet une valeur propre double, elle n'est pas diagonalisable.

Solution:

– $\pi_A(s)=s^2+\beta s+\gamma$ (A est une matrice Compagnon comme vous l'avez vu dans l'exercice 2 du TD4).

$$A\begin{pmatrix} 1\\ \lambda \end{pmatrix} = \begin{pmatrix} \lambda\\ -\gamma - \beta\lambda \end{pmatrix} = \begin{pmatrix} \lambda\\ \lambda^2 \end{pmatrix} = \lambda \begin{pmatrix} 1\\ \lambda \end{pmatrix}$$

 $\operatorname{donc}\left(\begin{array}{c}1\\\lambda\end{array}\right)\operatorname{est}\operatorname{un}\operatorname{vecteur}\operatorname{propre}\operatorname{de}A$

(On rappelle que λ vérifie $\lambda^2 + \beta\lambda + \gamma = 0$).

– Comme on l'a déjà vu si A admet une valeur propre double λ et si A est diagonalisable, alors A est semblable à λI et on a $A = P^{-1}(\lambda I)P = \lambda I$, ce qui n'est pas possible. Une autre façon de démontrer le résultat serait :

$$A - \lambda I = \begin{pmatrix} -\lambda & 1 \\ -\gamma & -\beta - \lambda \end{pmatrix},$$

donc le rang de $A-\lambda I$ est supérieur ou égal à 1, donc la dimension de Ker $(A-\lambda I)$ est inférieur ou égal à 1, donc la dimension de V_{λ} n'est pas égale à la multiplicité de la valeur propre (double) λ , donc A n'est pas diagonalisable.

Exercice VI.13 Ch6-Exercice 13

Mettre l'équation différentielle y''-2y'+2y=0 sous forme d'un système différentiel du premier ordre. Puis le résoudre dans \mathbb{C} , comparer avec les résultats obtenus dans l'exercice VI.10.

Solution : On pose $y = x_1, y' = x_2$, on a alors :

$$y'' - 2y' + 2y = 0 \iff \begin{cases} x_1'(t) &= x_2(t) \\ x_2'(t) &= -2x_1(t) + 2x_2(t) \end{cases} \iff x'(t) = \begin{pmatrix} 0 & 1 \\ -2 & 2 \end{pmatrix} x(t).$$

La matrice $A=\begin{pmatrix}0&1\\-2&2\end{pmatrix}$ admet 2 valeurs propres 1+i et 1-i, des vecteurs propres correspondants sont

$$Y_1 = \begin{pmatrix} 1 \\ 1+i \end{pmatrix}, Y_2 = \begin{pmatrix} 1 \\ 1-i \end{pmatrix}.$$

On définit comme d'habitude $P = (Y_1Y_2), x = Pz$. On résout

$$\begin{cases} z_1'(t) &= (1+i)z_1(t) \\ z_2'(t) &= (1-i)z_2(t) \end{cases},$$

on obtient

$$\begin{cases} z_1(t) = \alpha_1 e^{(1+i)t} \\ z_2(t) & \alpha_2 e^{(1-i)t} \end{cases}$$

Enfin

$$x = Pz \iff \begin{cases} x_1(t) = \alpha_1 e^{(1+i)t} + \alpha_2 e^{(1-i)t} \\ x_2(t) = \alpha_1 (1+i) e^{(1+i)t} + \alpha_2 (1-i) e^{(1-i)t} \end{cases}.$$

On retrouve bien sûr $y = x_1$ et on vérifie que $y' = x_2$

Exercice VI.14 Ch6-Exercice 14

Résoudre le système :

$$\begin{cases} z_1'(t) = z_1(t) \\ z_2'(t) = tz_2(t) + t \end{cases}$$

En déduire la solution du système différentiel x'(t) = A(t)x(t) + g(t), avec

$$A(t) = \begin{pmatrix} 2t - 1 & 2(1 - t) \\ t - 1 & 2 - t \end{pmatrix}$$
et $g(t) = \begin{pmatrix} 2t \\ t \end{pmatrix}$.

Solution: On a vu dans le cours que la matrice A(t) admet $\lambda_1 = 1, \lambda_2 = t$ comme valeurs propres avec

$$P_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
 et $P_2 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$

comme vecteurs propres associés.

Donc, si on pose x(t) = Pz(t), le système

$$x'(t) = A(t)x(t) + g(t)$$

est équivalent à

$$\begin{cases} z'_1(t) &= z_1(t) \\ z'_2(t) &= tz_2(t) + t \end{cases} \iff \begin{cases} z_1(t) &= \alpha_1 e^t \\ z_2(t) &= \alpha_2 e^{\frac{t^2}{2}} - 1 \end{cases}.$$

D'où

$$x(t) = Pz(t) \iff \begin{cases} x_1(t) = \alpha_1 e^t + 2\alpha_2 e^{\frac{t^2}{2}} - 2\\ x_2(t) = \alpha_1 e^t + \alpha_2 e^{\frac{t^2}{2}} - 1 \end{cases}$$