

作品集

github連結: https://github.com/youbb517/Portfolio.git

Draw JuliaSet

程式語言 ARM Assembly

課程 組合語言與嵌入式系統

說明 使用組合語言撰寫簡單計算。計

算出二維陣列裡每個元素的值, 並用元素值決定投影至畫面上的

元素,最後畫出Julia Set動畫。

5-Stage Pipeline CPU

程式語言 Verilog

課程 計算機組織

說明 使用Verilog與Modelsim模擬器,

以ALU Design為基礎,設計 Pipeline MIPS-Lite CPU,完成 16道MIPS指令(含算數計算、邏 輯計算、記憶體存取、branch、

32-bits除法指令)。

Our-Scheme

程式語言 C / C++

課程程程式語言

說明 使用C++ 實作Scheme語言直

譯器,並可以處理基本的Scheme

指令。

SCOLjapeter [2]	⊞stott,	ontput.txt E	3			
1 COPY START 0	1	Line	Location S	Source code		Object code
2 varl RESW 1	2					
3 var2 RESB 12	3	5	0000 COPY	START	0	
4 var3 EQU 12	4	10	0000 var1	RESW	1	
	5	15	0003 var2	RESB	12	
5 add varl	6	20	000C var3	EQU	12	
6 +addf var2	7	25	000F	add	var1	1B2FEE
7 addr a,b	8	30	0012	+addf	var2	5B100003
8 +and varl	9	35	0016	addr	a,b	9003
9 clear b	10	40	0018	+and	varl	43100000
10 comp 0	11	45	001C	clear	b 0	B430
11 +compf var3	12	50	001E	comp		280000
	13	55	0021	+compf	var3	8B10000C
12 compr b, a	14 15	60 65	0025	compr .this is	b, a	A030
13 .this is comment	16	70	0027	div	comment varl	272FD6
14 div varl	17	75	002A	divf	varl	672FD3
15 divf varl	18	80	002D	divr	1,5	9C24
16 divr l,s	19	85	002F	fix	4,0	C4
17 fix	20	90	0030	float		CO
18 float	21	95		END	FIRST	
	22			EAD.		
19 END FIRST	0.5					

SIC/XE Assembler

程式語言 C / C++

課程 系統程式

說明 模擬翻譯SIC及SIC/XE組合語言

的組譯器,在Pass1時給予合法 的指令對應位址,再經由Pass2 將指令轉為對應的object code

輸出。

K = 100K = 100★ 方法一 → 方法二 → 方法三 → 方法四 方法三 → 方法四 100000 80000 600 60000 400 40000 200 20000 0 100000 500000 100000 500000 資料等數(N) 省科策數(N) K = 500K = 500- 方法 方法二 → 方法三 → — 方法三 → 方法四 100000 140 120 80000 100 80 60 40000 40 20000 20 100000 500000 1000000 500000 1000000 資料筆數(N) 資料筆數(N)

	FCFS	RR	SJF	SRTF	HRRN	PPRR
input1	14.33	18.40	8.87	8.07	11.60	14.67
Input2	8.40	6.40	8.20	3	8.20	9.40
Input3	6.67	11.67	6.67	6.67	6.67	12.50
Input4	3.75	5.50	3.50	3.25	3.75	4.50

表 1 : 不同 input 檔個別使用六種排程法的平均等待時間(ms)

	FCFS	RR	SJF	SRTF	HRRN	PPRR
input1	18.20	22.27	12.73	11.93	15.47	18.53
Input2	13.20	11.20	13	7.80	13	14.20
Input3	24.17	29.17	24.17	24.17	24.17	30
Input4	8.75	10.50	8.50	8.25	8.75	9.50

表 2: 不同 input 檔個別使用六種排程法的平均往返時間(ms)

Page frame number 皆為 3←

Input1 Reference String: 123412512345←

Input2 Reference String: 70120304230321201701

←	FIFO←	LRU←	LFU+FIFO←	MFU+FIFO	LFU+LRU←
Input1←	9←	10←	10←	9←	10←
Input2←	15←	12↩	13↩	15↩	11←

表 1: Page Fault 次數比較表↓

\neg	FIFO←	LRU←	LFU+FIFO←	MFU+FIFO	LFU+LRU←	←:
Input1⊲	6←	7←	7←	6←	7←	←:
Input2⊲	12↩	9←	10←	12↩	8←	←:

表 2: Page Replacement 次數比較表↓

Compiler

程式語言 C / C++ 課程 系統程式

說明 實作含指定statement的Compiler

,依各指令放入相對應的Table中 並轉換為中間碼,最後將中間碼

及所對應的資訊輸出。

MultiProcess與MultiThread 排序時間比較

程式語言 Python

課程 作業系統

說明 使用MultiProcess及MultiThread

分別執行BubbleSort及MergeSort

,比較分割成不同個數的Process

及Thread在不同資料量(1、10、

50、100萬)執行時間的差異。

CPU Scheduling

程式語言 Python

課程 作業系統

說明 模擬不同CPU排程演算法,包含

FCFS(先進先出)、RR(知更鳥是

循環)、SJF(最短工作優先)、

SRTF(最短剩餘時間優先)、

HRRN(最高響應比率優先)、

PPRR(優先等級+RR),並比較

不同排程法間差異。

Paging Management

程式語言 Python

課程 作業系統

說明 實作Memory中的分頁法,包括

FIFO(先進先出)、LRU(最近罕用)

· LFU+FIFO · MFU+FIFO ·

LFU+LRU •

推箱子遊戲

程式語言 Python

課程 演算法分析

說明 S為人初始位置,B為箱子之初始

位置,T為目標位置,依輸入之迷

宮,將箱子推動至指定目標,E、

W、S、N、e、w、s、n分別代表

推動或移動方向。

以關鍵字建2-3樹及AVL樹

程式語言 C / C++

課程 資料結構

說明 將學校代碼/學校名稱/科系代碼/

科系名稱/日間/進修別/等級別/ 學生數/教師數/上學年度畢業生

數/縣市名稱/體育別等資訊分別 按照學校名稱建 2-3 tree;按照

上學年度畢業生數建 AVL tree。

自動販賣機

程式語言 Verilog

課程 邏輯設計實驗

說明 利用有限狀態機的方法模擬出自動

販賣機。共分為四個狀態:初始狀態(SO)、選擇狀態(S1)、給予狀態

(S2)、結帳狀態(S3),若購買完成

或取消購買則回到初始狀態。