Leçon: Ondes acoustiques

Gabriel Le Doudic

Préparation à l'agrégation de Rennes

14 mai 2023

: CPGE PSI Niveau

Prérequis: Thermodynamique

: Mécanique de première année

: Écoulement parfait

: Ondes électromagnétiques dans le vide

- Équation de propagation
 - Approximation acoustique
 - équations locales
 - Effet Doppler
- Ondes planes progressives harmoniques
 - Notation Complexes
 - Notion d'impédance acoustique
 - Aspect énergétique
 - Intensité sonore
- 3 Production, transmission et détection d'une onde sonore
 - Ondes sphériques
 - Adaptation d'impédance acoustique

Effet Doppler

FIGURE – Manipulation effet Doppler

Intensité sonore

Source	Intensité (dB)
Ronronnement d'un chat	15
Pièce calme	30
Voiture (à 10 m)	50
Conversation normale à 1 m	60
Avion au décollage	125

TABLE - Tiré du Dunod PC - Ondes acoustiques dans les fluides

Équation de propagation

Adaptation d'impédance acoustique

Coefficients de réflexion et transmission en puissance :

$$R = \frac{||\langle \vec{\Pi_0} r \rangle||}{||\langle \vec{\Pi_0} r \rangle||} \qquad T = \frac{||\langle \vec{\Pi_0} t \rangle||}{||\langle \vec{\Pi_0} i \rangle||}$$

$$R = \left(\frac{Z_1 - Z_2}{Z_1 + Z_2}\right)^2 \qquad T = \frac{4Z_1 Z_2}{(Z_1 + Z_2)^2}$$
(1)

Milieu	air	sang/tissu	cerveau	squelette
$Z (kg m^{-2}s^{-1})$	440	1.66×10^{6}	1.55×10^{6}	7.8×10^{6}

0

Adaptation d'impédance acoustique

Équation de propagation

Merci pour votre attention