BARBIER CONSULTING

Détection des faux billets

MISSION

Office Central pour la Répression du Faux Monnayage (OCRFM)

Jeu de billets

Détection faux billets

Python / Notebook Jupyter

MISSION

Questions:

- 1. Caractéristiques géométriques pour différencier billets vraix/faux?
- 2. Quelle modélisation permet le mieux d'identifier les billets?
- 3. Est-il possible de proposer un outil pour différencier les billets vraix/faux?

NETTOYAGE:

- Vérification valeurs manquantes
 - -> aucune valeurs manquantes

DONNÉES

	is_genuine	diagonal	height_left	height_right	margin_low	margin_up	length
0	True	171.81	104.86	104.95	4.52	2.89	112.83
1	True	171.67	103.74	103.70	4.01	2.87	113.29
2	True	171.83	103.76	103.76	4.40	2.88	113.84
3	True	171.80	103.78	103.65	3.73	3.12	113.63
4	True	172.05	103.70	103.75	5.04	2.27	113.55

170 observations

- 1 variable qualitative
- 6 variables quantitatives

ANALYSE DESCRIPTIVE

TENDANCES CENTRALES

	diagonal	height_left	height_right	margin_low	margin_up	length
count	170.000000	170.000000	170.000000	170.000000	170.000000	170.000000
mean	171.940588	104.066353	103.928118	4.612118	3.170412	112.570412
std	0.305768	0.298185	0.330980	0.702103	0.236361	0.924448
min	171.040000	103.230000	103.140000	3.540000	2.270000	109.970000
25%	171.730000	103.842500	103.690000	4.050000	3.012500	111.855000
50%	171.945000	104.055000	103.950000	4.450000	3.170000	112.845000
75%	172.137500	104.287500	104.170000	5.127500	3.330000	113.287500
max	173.010000	104.860000	104.950000	6.280000	3.680000	113.980000

MATRICE PAR PAIRES

MATRICE CORRELATIONS

ACP

EBOULIS VALEURS PROPRES

Hypothèse : conserver composante 1 (méthode coude - critère de Kaiser, 100/p, soit 50%)

CERCLE CORRÉLATION 1er PLAN

 Corrélation négative pour "lenght" avec 4 autres variables

PROJECTION INDIVIDUS 1er PLAN

- bonne séparation billets sur 1er plan
- F1 & F2

CERCLE CORRÉLATION 2ème PLAN

- Corrélation négative "margin"
- Corrélation négative "height"+"length" avec "diagonal"

PROJECTION INDIVIDUS 2ème PLAN

Mauvaise séparation billets sur 2ème plan

QUALITÉ DE REPRÉSENTATION DES INDIVIDUS 1ER PLAN

 Meilleures représentation sur F1 que sur F2

Caractéristiques géométriques pour différencier billets vraix/faux?

Probable

- F1 et F2 / F1 ou F2?
- Variables initiales ?

CLASSIFICATION

Kmeans

 bonne séparation clusters sur 1er plan

Centroïdes ACP et Kmeans

 Centroïdes assez similaires

Caractéristiques géométriques pour différencier billets vraix/faux?

OUI

- F1 et F2 / F1 ou F2?
- Variables initiales ?

MODÉLISATION

PRÉSENTATION

Modèle 1

 Is_genuine
 diagonal
 height_left
 height_right

 margin_up
 margin_low
 length

Dep. Variable:	:	is_genuine	No. Obse	rvations:		170
Model:		Logit	Df Resid	uals:		164
Method:		MLE	Df Model			5
Date:	Mon,	20 Apr 2020	Pseudo R	-squ.:		0.9999
Time:		12:58:12	Log-Like	lihood:	-0	.0086318
converged:		True	LL-Null:			-115.17
Covariance Typ	oe:	nonrobust	LLR p-va	lue:	9	.084e-48
	coef	std err	z	P> z	[0.025	0.975
diagonal	-1.5840	46.270	-0.034	0.973	-92.271	89.10
height_left	0.1350	51.880	0.003	0.998	-101.547	101.81
height_right	4.2889	69.600	0.062	0.951	-132.124	140.70
margin_low	-37.5951	76.858	-0.489	0.625	-188.234	113.04
margin_up	-17.0606	44.873	-0.380	0.704	-105.010	70.88
length	14.6691	40.654	0.361	0.718	-65.012	94.35

Possibly complete quasi-separation: A fraction 0.96 of observations can be perfectly predicted. This might indicate that there is complete quasi-separation. In this case some parameters will not be identified.

Is_genuine

Time:

converged:

Covariance Type:

margin_low

Logit Regression Results

length

Modèle 2 (backward)

Dep. Variable: is_genuine No. Observations: Model: Logit Df Residuals: Method: MLE Df Model: Date: Mon, 20 Apr 2020 Pseudo R-squ.:

12:58:12

nonrobust

True

std err coef P> | z | [0.025 0.975] margin low -2.300 -9.5509 3.700 -2.582 0.010 -16.802 length 8.1480 3.041 2.680 0.007 2.189 14.107

Log-Likelihood:

LLR p-value:

LL-Null:

Possibly complete quasi-separation: A fraction 0.75 of observations can be perfectly predicted. This might indicate that there is complete quasi-separation. In this case some parameters will not be identified.

170

168

0.9613

-4.4520

-115.17

4.379e-50

Is_genuine

F1

F2

Modèle 3

Dep. Variable	e:		is_ge	nuine	No. Ob	servations:		170
Model:				Logit	Df Res	iduals:		168
Method:				MLE	Df Moo	lel:		1
Date:		Mon,	20 Apr	2020	Pseudo	R-squ.:		0.8703
Time:			12:	58:13	Log-Li	kelihood:		-14.943
converged:				True	LL-Nul	1:		-115.17
Covariance T	ype:		nonrobust		LLR p-value:		1.656e-4	
			std err		Z	P> z	[0.025	0.975]
F1	-3.3	735	0.685		1.922	0.000	-4.717	-2.030
F2	2.49	916	0.613		1.063	0.000	1.290	3.694

Possibly complete quasi-separation: A fraction 0.11 of observations can be perfectly predicted. This might indicate that there is complete quasi-separation. In this case some parameters will not be identified.

Is_genuine

F1

Modèle 4

Dep. Variable	.:		is genu	ine	No. Ob	servations:		170
Model:				git		iduals:		169
Method:			i	MLE	Df Mod	el:		Θ
Date:		Mon,	20 Apr 20	920	Pseudo	R-squ.:		0.6585
Time:			12:58	:13	Log-Li	kelihood:		-39.335
converged:			T	rue	LL-Nul	1:		-115.17
Covariance Ty	pe:	e: no		nonrobust LLR p-value:		na		
	coe	===== f	std err		z	P> z	[0.025	0.975]
F1	-2.133	4	0.313	-6	.824	0.000	-2.746	-1.521

CROSS VALIDATION

PRÉSENTATION

Séparation 70/30

Stratification

Accuracy

Sensitivity

Specificity

Precision

AUC

Performances

	model1	model 2	model 3	model 4
accuracy	0.960784	1.0	0.941176	0.921569
sensitivity	0.952381	1.0	0.952381	0.952381
specificity	0.966667	1.0	0.933333	0.900000
precision	0.966667	1.0	0.965517	0.964286
auc	0.959524	1.0	0.942857	0.926190

Quelle modélisation permet le mieux d'identifier les billets ?

margin_low

length

OUTIL POUR DIFFÉRENCIER LES BILLETS VRAIX/FAUX ?

	diagonal	height_left	height_right	margin_low	margin_up	length	id
Θ	171.76	104.01	103.54	5.21	3.30	111.42	A_1
1	171.87	104.17	104.13	6.00	3.31	112.09	A_2
2	172.00	104.58	104.29	4.99	3.39	111.57	A_3
3	172.49	104.55	104.34	4.44	3.03	113.20	A_4
4	171.65	103.63	103.56	3.77	3.16	113.33	A_5

	id	proba	is_genuine
0	A_1	0.025227	False
1	A_2	0.015513	False
2	A_3	0.084346	False
3	A_4	0.993360	True
4	A_5	0.999580	True

MERCI!

@xavbarbier

https://www.linkedin.com/in/barbierxavier/

https://github.com/xavierbarbier/

contact@xavierbarbier.com