회귀분석팀

6팀

심은주 진수정 문병철 이수정 임주은

INDEX

- 1. 회귀가정
- 2. 잔차 플랏
- 3. 선형성 진단과 처방
- 4. 등분산성 진단과 처방
- 5. 정규성 진단과 처방
- 6. 독립성 진단과 처방
- 7. 공간회귀분석

• 회귀분석의 가정

$$y_i = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p$$
, $\varepsilon \sim NID(0, \sigma^2)$

- 1. 식 자체가 X 변수들의 '선형결합'으로 이루어짐
- 2. 오차는 정규분포(N)를 따름
- 3. 오차들은 서로 <mark>독립적(ID)</mark>
- 4. 오차의 평균은 0, 분산은 σ^2

• 잔차플랏

R에서 회귀식을 적합(fitting)하면 제공해주는 네 개의 플랏

회귀모형의 기본가정과 데이터의 문제를 시각적으로 진단 가능!

• 진단 - crPlots

Car 패키지의 CrPlots 함수를 통해 개별 변수의 선형성 파악

Y 축 : Partial residual $(y - (\beta_i x_i) = 3$ 제외한모든회귀식성분))

파란 점선: Partial residual과 x_i 의 적합된 직선

보라색 실선: 잔차의 추세선

• 처방 - Polynomial Regression

잔차 플랏이나 Partial regression plot을 봤을 때, 2차 이상의 곡선 형태가 나타날 경우에 사용

Residual vs fitted plot

: 2차함수의 모양을 띔

분홍선(polynomial)이

데이터의 2차 모양을 잘 설명

3차를 넘어서는 모델링은 거의 하지 않음

• 진단 - test

가설

 H_0 : 주어진 데이터는 등분산성을 지님

 H_1 : 주어진 데이터는 등분산성을 지니지 않음

- BP(Breusch-Pagan) test : 가능도비검정 기반으로 추정
 - 분산이 설명(X) 변수에 대한 선형결합으로 되어있음 가정

$$\sigma^2 = \alpha_0 + \alpha_1 X_{i1} + \dots + \alpha_p X_{ip} + u_i$$

- 위의 회귀식의 $결정계수(R^2)$ 값을 구해 검정통계량 계산

$$X_{stat}^2 = nR^2 \sim X_{p-1}^2$$

• 처방 - 변수 변환

Y를 변환함으로써 등분산 혹은 정규성을 해결해주는 방법

이때, 통계적인 검정에 따라 구한다는 점에서 효율적

Box-Cox Transformation Yeo-Johnson Transformation • 진단 - test

가설

 H_0 : 주어진 데이터는 정규분포를 따름

 H_1 : 주어진 데이터는 정규분포를 따르지 않음

- Shapiro Wilk Test

R 기본함수로 내장되어 있으며, residual 값을 넣음

```
shapiro.test(salary.reg$residuals)

##
## Shapiro-Wilk normality test
##
## data: salary.reg$residuals
## W = 0.96887, p-value = 1.41e-08
```

0.05기준으로 p-value가 작으니 귀무가설 기각 → :: 정규성을 만족하지 않음 • 진단 - test

가설

 H_0 : 잔차들이 서로 독립 (자기상관성이 없음)

 H_1 : 잔차들이 서로 독립이 아님 (자기상관성이 있음)

- Durbin Watson Test

바로 앞 뒤 관측치의 자기상관성을 확인하는 테스트

$$d = \frac{\sum_{t=2}^{T} (e_t - e_{t-1})^2}{\sum_{t=1}^{T} e_t^2} \approx 2(1 - \widehat{\rho_1}), \qquad \widehat{\rho_1} = \frac{\sum_{t=2}^{n} e_i e_{i-1}}{\sum_{t=1}^{n} e_t^2}$$

 $\widehat{
ho_1}$: 표본 잔차 상관, e_i 와 e_{i-1} 의 상관계수의 꼴, $-1 \leq \widehat{
ho_1} \leq 1$

$$0 \le d \le 4$$

• 공간데이터의 특성: 공간자기상관

공간상에 분포하는 객체 간의 상호작용

전역적 공간자기상관

Global Spatial Autocorrelation

전체 구역이 가지는 하나의 공간자기상관의 정도

예시 한국 전체에서 나타나는 고혈압 유병률의 공간적인 패턴

국지적 공간자기상관

Global Spatial Autocorrelation

개별 지점이 가지는 공간자기상관의 정도

수도권에서 나타나는 예시 고혈압 유병률의 공간적인 패턴

특정 지역의 사건 강도가 <mark>인접 지역</mark>의 사건에 <mark>영향</mark>을 주는지를 파악하자!

7 공간회귀분석 공간데이터 공간자기상관 진단방법 처방방법

• 공간데이터의 특성: 공간적 이질성

넓은 지역에서 나타나는 불규칙한 분포를 의미하며, 한 지역 내에 서로 다른 성격의 하위 집단이 존재하는 것을 말함

Example

지하철 개통이 지가에 미치는 영향력의 크기가 모든 지역에서 같은가?

→ 영향을 크게 받는 지역, 영향을 크게 받지 않는 지역 등 여러 유형의 집단 존재

공간적 이질성은…

특정 사건이 전 지역에서 동일한 강도로 나타나는지 파악하자!

• 공간자기상관 진단

먼저 지역 내 지점들이 인접해 있는지부터 체크해야 한다!

공간가중행렬(Spatial Weights Matrix)

- 지역 내 다수의 지점들이 서로 공간적으로 인접하고 있는지의 여부를 파악할 수 있도록 행렬로 나타낸 것
- 지역 간의 잠재적 상호작용의 강도를 나타냄

$$w_{ij} = \begin{cases} 1 & \text{if } i, j \text{ is neighbor} \\ 0 & \text{otherwise} \end{cases}$$

이웃? 기준이 뭔데?

공간회귀모델 선택 알고리즘

의료수공작장기위의성전자생범 합청방 광병

감창 4835만 웬땐식의 폭답면수가 동계식으로 유의미안가?

모란 I 지수, LISA로 공간 자기상관성이 있는지 확인

라그랑치 승수검정(LM: Lagrange Multiplier)

: 개별 회귀계수의 유의성을

· 이 등 하기모델이 종소변수 다

<mark>세서 공간자기상관이 실재하지 않는다는</mark>

 $H_0: \ \beta_i = 0$

라그랑지승수검정으로 모델 선택

 x_i 는 통계적으로 유의하지 않다

유의 X

OLS 회귀모델

LM-Lag 유의

공간시차모델

LM-Error 유의

공간오차모델

둘다유의

Robust LM

한 번 더 검정해서 더 유의한 모델 선택

7 공간회귀분석 공간데이터 공간자기상관 진단 방법 처방 방법

• 공간자기상관 처방

공간 자기상관성	공간시차모델(SLM)
	공간오차모델(SEM)
공간적 이질성	지리가중회귀모형(GWR)

공간 자기상관성

인접지역의 영향력을 변수에 포함시켜 통제

공간적 이질성

각 지역마다 다른 추정계수로 영향력을 추정