

SUMMATIVE ASSESSMENT – I 2015 – 16 Class - IX MATHEMATICS

Time allowed: 3 hours (Maximum Marks: 90)

General Instructions:

- 1. All question are compulsory.
- **2.** The question paper consists of 31 questions divided into four sections A, B, C and D. Section -A comprises of 4 questions of 1 mark each; Section-B comprises of 6 questions of 2 marks each; Section-C comprises of 10 questions of 3 marks each and Section-D comprises of 11 question of 4 marks each.
- **3.** There is no overall choice in this question paper.
- **4.** Use of calculator is not permitted.

Section A

Question number 1 to 4 carry one mark each.

- **Q.1** Which is the greatest among $\sqrt{2}$, $\sqrt[3]{4}$ and $\sqrt[4]{3}$?
- **Q.2** If 2x+1 is one factor of the polynomial $2x^2 x 1$, then find the other factor.
- **Q.3** In the given figure, $\angle ABD = 66^{\circ}$ and $\angle ACD = 60^{\circ}$. If bisector of $\angle A$ meets BC at D, then find $\angle ADB$.

Q. 4 What do you mean by ordinate of point?

Section B

Question number 5 to 10 carry two marks each.

Q.5 Is zero (0) a rational number? Justify your answer.

Q.6 Factories': $3y^3 + y^2 - 3y - 1$

Q.7 In the figure, if $\angle AOB = 60^{\circ}$ and $\angle BOC = 2x$, then find the value of x so that AOC is a straight line.

Q.8 In the give figure; if $\angle 1 = \angle 3$, $\angle 2 = \angle 4$ and $\angle 3 = \angle 4$, write a relation between $\angle 1$ and $\angle 2$ by using an Euclid's axiom. Write the axiom also.

Q.9 A point is a distance of 4 units from z-axis and 5 units from the y-axis. Represent the position of the point in the Cartesian plane and also write its co-ordinates.

Q.10 Compute the area of the trapezium shown in the figure:

Section C

Question number 11 to 20 carry three marks each.

Q.11 Simplify:
$$\sqrt[4]{81x^8y^4z^{16}}$$

Q.12 If
$$x = 2 + \sqrt{3}$$
; find the value of $x^3 + \frac{1}{x^3}$

Q.13 Using a suitable identity, evaluate $(43)^3 - (18)^3 - (24)^3$.

Q.14 Let R_1 and R_2 are the remainders when the polynomials

$$f(x) = 4x^3 + 3x^2 - 12ax - 5$$
 and $g(x) = 2x^3 + ax^2 - 6x - 2$ are divided by (x-1) and (x-1)

2) respectively. If $3x_1 + R_2 - 28 = 0$, find the value of 'a'.

Q.15 Write any three Euclid's Postulate.

Q.16 In the give figure, if the line segment AB is parallel to another line segment RS and O is the mid-point of As, then Show that :

- (a) $\triangle AOB \cong \triangle SOR$
- (ii) O is also mid-point of BR

Q.17 In the figure, PQ \perp PR , PQ \mid \mid RL, \angle RQT = 38° and \angle QTL = 75° . Find x and y.

Q.18 Prove that if two lines intersect, vertically opposite angles are equal.

Q.19 On the graph paper, plot a point A(-2,-2). Reflect point A in x-axis and y-axis. Let these points be B and C respectively. Guess the measure of $\angle BAC$.

Q.20 The Perimeter of a triangular garden is 900 cm and its sides are in the ratio 3:5:4. Using Heron's formula, find the area of the garden.

Section D

Question number 21 to 31 carry four marks each.

Q.21 Express in the form of
$$\frac{p}{q}$$
: $0.\overline{38} + 1.2\overline{7}$

Q.22 Rationalise the denominator of the following:
$$\frac{3}{\sqrt{3} + \sqrt{5} - \sqrt{2}}$$

Q.23 If ab + bc + ca = 0 find value of
$$\frac{1}{a^2 - bc} + \frac{1}{b^2 - ca} + \frac{1}{c^2 - ab}$$

Q.24 Verify if -3 and 4 are zeroes of the polynomial $2x^3-3x^2-23x+12$. If yes, then factorise the polynomial.

Q.25 Using long division method, show that the polynomial $p(x)=x^3+1$ is divisible by $q(x)=x^3+1$

Modern Technology

x+1. Verify your result using factor theorem.

Q.26 Show that
$$a^3 + b^3 + c^3 - 3abc = \frac{1}{2}(a+b+c)[(a+b)^2 + (b-c)^2 + (c-a)^2]$$

Q. 27 For spreading the message "Save environment Save future" a rally was organized by some students of a school. They were given triangular cardboard piece ABC which they divided in to two parts by drawing the angle bisectors BO and CO of base angles B and C.

Prove that $\angle BOC = 90 + \frac{1}{2} \angle A$. what is the benefit of these types of rallies?

- **Q.28** Solve the equation a 35=75 and state which axiom you use here. Also give two more axioms other than the axiom used in the above situation.
- **Q.29** In the figure, two straight lines PQ and RS intersect each other at O. If $\angle POT = 75^{\circ}$, find the values of a, b and c.

Q.30 In the given figure, prove that $\angle A + \angle B + \angle C + \angle D + \angle E + \angle F = 360^{\circ}$

Q.31 The angles of a triangle are $(x-40)^\circ$, $(x-20)^\circ$ and $\left(\frac{x}{2}-10\right)^\circ$. Find the value of x and then the angles of the triangle.