

Statistiques

F. Florea Ph. Leray

TP Echantillonage - Estimation

 3^{eme} année

Considérons une variable aléatoire X qui suit une loi normale $\mathcal{N}(\mu, \sigma^2)$ et un échantillon de taille $n: X_1 \dots X_n$. Nous allons étudier certaines propriétés de deux estimateurs de σ^2 (à μ inconnu):

$$S^2 = \frac{1}{n} \sum_{i} (X_i - \overline{X})^2$$

$$S^{*2} = \frac{1}{n-1} \sum_{i} (X_i - \overline{X})^2.$$

1 Génération d'une réalisation d'un échantillon

Générez une matrice [X] de taille $p \times n$ contenant p réalisations de $X_1 \dots X_n$, où $X \sim \mathcal{N}(2,9)$:

2 Etude de la convergence des estimateurs

- Pour p = 1 (une réalisation), faites varier la taille de l'échantillon n de 10 à 5000 (avec un pas de 10).
- Pour chaque réalisation $x_1 ildots x_n$, calculez s^2 et s^{*2} réalisations respectives de S^2 et S^{*2} .
- Tracez s^2 et s^{*2} en fonction de n. Qu'observez-vous?

3 Etude de la notion de biais

3.1 Experience 1

- Pour une taille d'échantillon n=10, générez p=1000 réalisations de $X_1 \dots X_n$.
- Pour chacune de ces réalisations, calculez s^2 et s^{*2} .
- Nous obtenons donc p réalisations des variables aléatoires S^2 et S^{*2} . Tracez l'histogramme des réalisations s^2 et s^{*2} . Qu'observez-vous?
- Estimez de manière empirique $E(S^2)$, $var(S^2)$, $E(S^{*2})$ et $var(S^{*2})$ puis comparez les aux grandeurs théoriques correspondantes.
- Faites la même expérience avec n = 300 puis n = 1000. Qu'observez-vous?

3.2 Experience 2

- Faites varier la taille de l'échantillon n de 10 à 1000 avec un pas de 10 (toujours pour p = 1000), et tracez les estimations empiriques de $E(S^2)$, $E(S^{*2})$, $var(S^2)$ et $var(S^{*2})$
- Illustrez la notion de biais d'un estimateur.