TRY OUT OSK ONLINE

po.alcindonesia.co.id

PAKET 12019

SMA KIMIA

WWW.ALCINDONESIA.CO.ID

@ALCINDONESIA

085223273373

18 8A	2 He 4.003	10	Ne 20.18	18	Ar	39.95	36	Кr	83.80	54	Xe	131.3	98	R.	(222)	118	(Qno)	(294)
	17 7A	6 1	F 19.00	17	ວ	35.45	35	Br	79.90	53	Н	126.9	85	Αt	(210)	117	(I)mg)	(294)
	16 6A	∞ (00791	16	s	32.07	34	Se	78.96	52	Te	127.6	84	$_{\rm P0}$	(502)	116	ΓΛ	(293)
	15 5A	۲- ا	N 14.01	15	Ь	30.97	33	As	74.92	51	$^{\mathrm{gp}}$	121.8	83	Bi	209.0	115	(Grig)	(288) (288)
	14 4A	9	C 12.01	14	Si	28.09	32	g	72.61	50	Sn	118.7	82	Pb	207.2	114	Ξ	(289)
	13 3A	5	B 10.81	13	ΥI	26.98	31	Сa	69.72	46	ΙI	114.8	81	Π	204.4	113	Opt G	(284)
					12	2B	30	Zu	65.39	48	PΩ	112.4	80	Hg	200.6	112	C	(382)
	ını				11	1B	29	Cn	63.55	47	Ag	107.9	79	Au	197.0	111	Rg	(272)
	Unsu				10	8B	28	Z	28.69	46	Pd	106.4	78	F	195.1	110	õ	(281)
	sur				6	8B	27	ပိ	58.93	45	Rh	102.9	77	ŀ	192.2	109	Mt	(266)
) L				œ	8B	26	Fe	55.85	44	Ru	101.1	76	ő	190.2	108	Hs	(S65)
	Perioda Unsur				7	7B	25	Mn	¥.	43	Tc	(98)	75	Re	186.2	107	Bh	(262)
	Per				9	6B	24	Ċ	52.00	42	Mo	95.94	74	×	183.8	106	Sg	(263)
	Tabel				ĸ	SB	23	>	50.94	41	Ν	92.91	73	Тa	180.9	105	Dp	(262)
	Ľ				4	4B	22	Ţ	47.88	40	Zr	91.22	72	ΗĮ	178.5	104	Rf	(261)
					e	3B	21	Sc	4.8	39	Y	88.91	57	La	138.9	68	Ac	(222)
_	2 2A	4	Be 9.012	12	Mg	24.31	20	Ca	40.08	38	Sr	87.62	56	Ва	137.3	88	Ra	629
1 1A	H 1.008	ω ;	E	11	Na	22.99	19	X	39.10	37	Rb	85.47	55	ű	132.9	83	F	(223)

28	59	99	19	62	63	64	65	99	67	89	69	70	71
Ç	Pr	PΝ	Pm	Sm	Eu	3	Tb	Dy	Но	Er	Тш	ΧP	Lu
140.1	140.9	14.2	(145)	150.4	152.0	157.3	158.9	162.5	164.9	167.3	168.9	173.0	175.0
90	16	92	93	64	65	96	26	86	66	100	101	102	103
Th	Pa	Ω	Np	Pu	Аш	СШ	Bķ	Ç	Es	Fm	Md	No.	Ľ
232.0	231.0	238.0	(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(262)

Tetapan dan Rumus

Bilangan Avogadro	$N_A = 6,022 \cdot 10^{23} \text{ partikel.mol}^{-1}$			
bilangan Avogauro	R = 0,08205 L-atm/mol·K			
	= 8,3145 L·kPa/mol·K			
	= 8,3145 L*RFa/mol*K = 8,3145 x10 ⁷ erg/mol*K			
Tetapan gas universal, R	= 8,3145 X10 erg/mol·K = 8,3145 J/mol·K			
	= 8,3145 J/moi·K = 1,987 kal/moi·K			
	= 62,364 L·torr/mol·K			
	1 atm = 101,32 kPa			
	1 atm = 760 mmHg = 760 torr			
	= 101325 Pa = 1,01325 bar			
Tekanan gas	1 torr = 133,322 Pa			
	1 bar = 10 ⁵ Pa			
	1 Pa = 1 N/m ² = 1 kg/(m.s ²)			
Volume gas ideal (S,T,P)	22,4 liter/mol = 22,4 dm ³ /mol			
,	1 kal = 4,182 J			
Energi	1 J = 1 L·kPa			
	IJ-IEM 8			
Persamaan gas Ideal	PV= nRT			
Tekanan Osmosis pada larutan	π = M RT			
Tetapan Kesetimbangan air (K _w) pada 25°C	K _w = 1,0×10 ⁻¹⁴			
Tetapan kesetimbangan dan tekanan parsial	$K_o = K_c(RT)^{\Delta n}$			
gas	Np = Nc(N1)			
Temperatur dan Tetapan kesetimbangan				
Tetapan Faraday	F = 96500 C/mol elektron			
Muatan elektron	1,6022 x 10 ⁻¹⁹ C			
Ampere (A) dan Coulomb (C)	A =C/det			
Reaksi orde pertama: A→B	$\begin{split} -\frac{d\left[A\right]}{dt} &= k\left[A\right] \\ \left[A\right]_t &= \left[A\right]_0 e^{-kt} \end{split}$			
Reaksi orde kedua: A→B	$\begin{aligned} rate &= -\frac{d\left[A\right]}{dt} = k\left[A\right]^2 \\ \frac{1}{\left[A\right]_t} &= -kt + \frac{1}{\left[A\right]_0} \end{aligned}$			

SOAL

1. Muatan formal atom C, O, dan Cl yang diberi tanda dari struktur Lewis berikut ini berturut-turut adalah:

- a. 0, 0, 0
- b. 0, -1, -1
- c. +1, -1, 0
- d. -1, +1, 0
- e. 0, +1, 0
- 2. Suatu sampel merkuri (II) oksida ditempatkan dalam wadah bervolume 5,00 L yang hampa udara. Wadah tersebut dipanaskan hingga semua merkuri oksida terurai menjadi logam merkuri dan gas oksigen. Sesudah wadah didinginkan hingga 25°C, tekanan gas di dalamnya adalah 1,73 atm. Berapa massa merkuri (II) oksida yang ditempatkan dalam wadah tersebut?
 - a. 1,51 g
 - b. 45,6 g
 - c. 76,6 g
 - d. 153 g
 - e. 913 g
- 3. Penutup botol dari botol yang mengandung SiCl4 kadang-kadang susah dibuka karena terbentuknya SiO₂.2H₂O di sekitar penutup. Terangkan kenapa hal ini tidak terjadi pada CCl4.
 - a. Jari-jari atom Si lebih besar daripada karbon
 - b. Energi ionisasi silikon lebih rendah daripada karbon
 - c. Atom silikon mempunyai orbital 3d yang siap mengadakan ikatan
 - d. Kestabilan unsur dengan bilangan oksidasi +4 berkurang dari atas ke bawah dalam suatu golongan
 - e. Silikon dan karbon bukan satu golongan
- 4. Atom atau ion berikut ini, Ar, K⁺ dan Ca²⁺ adalah isoelektronik (mempunyai jumlah electron yang sama). Dari penyataan berikut ini, manakah urutan kenaikan jari-jari yang benar?
 - a. $Ar < Ca^{2+} < K^{+}$
 - b. $Ar < K^+ < Ca^{2+}$
 - c. $Ca^{2+} < Ar < K^{+}$

- d. $Ca^{2+} < K^{+} < Ar$
- e. $K^+ < Ar < Ca^{2+}$
- 5. Pasangan berikut ini, manakah molekul yang mempunyai bentuk geometri sama?
 - a. AlCl₃ dan BCl₃
 - b. AlCl₃ dan PCl₃
 - c. BF₃ dan NH₃
 - d. BeCl₂ dan H₂O
 - e. CO₂ dan SO₂
- 6. Geometri dari molekul NH₃, SF₆ dan XeF₄ adalah...

	NH ₃	SF ₆	XeF ₄
a.	Liniear	Trigonal	Tetrahedral
		bipiramida	
b.	Tetrahedral	Oktahedral	Segiempat planar
c.	Trigonal planar	Tetrahedral	Tetrahedral
d.	Trigonal piramida	Oktahedral	Segiempat planar
e.	Trigonal planar	Trigonal	Segiempat planar
		bipiramida	

7. Gas asetilena dapat dibuat menurut reaksi:

$$CaC_{2(s)} + 2H_2O_{(l)} \rightarrow Ca(OH)_{2(aq)} + C_2H_{2(g)}$$

Kalor pembakaran gas ini adalah 320 kkal/mol. Jika dalam suatu proses digunakan 160 g CaC_2 (Mr = 64) dan dengan asumsi bahwa hanya 60% berat CaC_2 yang bereaksi, maka pada pembakaran asetilena yang terbentuk akan dihasilkan kalor sebanyak...

- a. 960 kkal
- b. 800 kkal
- c. 640 kkal
- d. 480 kkal
- e. 320 kkal
- 8. Presentasi ionisasi dari larutan HNO2 0,01 M ($Ka = 7.1 \times 10^{-4}$) adalah...
 - a. 2,7 %
 - b. 5,4 %
 - c. 8,4 %
 - d. 13,5 %
 - e. 23,3 %
- 9. Suatu serbuk putih dikirimkan ke laboratorium untuk dianalisis. Serbuk tesebut merupakan produk reaksi antara reaktan reaktan yang diduga mengandung N, C, H, dan O. Hasil analisis menunjukkan bahwa serbuk tersebut mengandung 4,58% massa hidrogen, 40,92% massa karbon dan 54,5% massa oksigen. Instrumen yang digunakan

untuk menentukan persentase massa nitrogen ternyata mengalami kerusakan sehingga tidak ada data yang diperoleh. Tentukan rumus empiris dari serbuk putih tersebut!

- a. Tidak dapat ditentukan dari informasi diatas
- b. C₃H₄O₃
- c. C₆H₈O₆
- d. C₃H₄O₃N₂
- e. C₄H₄O₄N
- 10. Dari data berikut:

$$\begin{array}{ll} \text{C(grafit)} + \text{O}_{2(\text{g})} & \Delta H^o_{rxn} = -393,5 \text{ kJ/mol} \\ \text{H}_{2(\text{g})} + \frac{1}{2} \, \text{O}_{2(\text{g})} & \rightarrow \text{H}_2 \text{O}_{(\text{l})} \\ \text{2C}_2 \text{H}_{6(\text{g})} + 7 \, \text{O}_{2(\text{g})} & \rightarrow 4 \, \text{CO}_{2(\text{g})} + 6 \, \text{H}_2 \text{O}_{(\text{l})} \\ \end{array} \qquad \begin{array}{ll} \Delta H^o_{rxn} = -285,8 \, \text{kJ/mol} \\ \Delta H^o_{rxn} = -3119,6 \, \text{kJ/mol} \\ \end{array}$$

Hitung perubahan entalpi untuk reaksi:

$$2C_{(grafit)} + 3 H_{2(g)} \rightarrow C_2 H_{6(g)}$$

- a. -84,6 kJ/mol
- b. +84,6 kJ/mol
- c. -1475,2 kJ/mol
- d. +1475,2 kJ/mol
- e. -3204,2 kJ/mol
- 11. Apabila logam Ag dilarutkan dalam asam nitrat encer akan menghasilkan gas...
 - a. H_2

d. NO

b. O_2

e. NO₂

- c. NH₃
- 12. Tabel berikut menunjukkan hasil eksperimen yang diperoleh dari reaksi:

$$2 \text{ XO}_{(g)} + \text{O}_{2(g)} \rightarrow 2 \text{ XO}_{2(g)}$$

2 110(g) + 02(g) 7 2 1102(g)				
Tekanan Parsial XO (satuan bebas)	100	100	50	50
Tekanan parsial O ₂ (satuan bebas)	100	25	100	?
Laju relatif	1,0	0,25	0,50	0,125

a. 12,5

d. 75

b. 25

e. 125

- c. 50
- 13. Unsur-unsur A, B, C, terletak pada periode yang sama dalam sistem periodik. Oksida unsur A dalam air menghasilkan larutan yang mempunyai pH<7, sedang unsur B dengan air bereaksi menghasilkan gas H2. Percobaan lain menunjukkan unsur C dapat bereaksi dengan larutan asam maupun basa kuat. Susunlah unsur-unsur tersebut dalam sistem periodik dari kiri ke kanan ialah
 - a. A, C, B

d. A, B, C

b. C, A, B

e. B, C, A

- c. B, A, C
- 14. Kelarutan PbCl₂ dalam laruta n HCl lebih besar karena...

- a. Efek ion senama
- b. PbCl₂ lebih mudah terionisasi dalam suasana asam
- c. Pembentukan senyawa kompleks [PbCl₄]²⁻
- d. PbCl₂ bersifat basa
- e. HCl lebih polar dibandingkan air
- 15. Tetapan kesetimbangan reaksi berikut dapat dinyatakan dalam...

$$2 \text{ BaO}_{2(s)} \leftrightarrow 2 \text{BaO}_{(s)} + \text{O}_{2(g)}$$

a.
$$K = \frac{[BaO_2]^2}{[BaO]^2}$$
 d. $K = \frac{[BaO]^2}{[BaO_2]^2 [O_2]}$ e. $K = [O_2]$

- 16. Pada reaksi kesetimbangan, persentase zat yang dihasilkan tidak dipengaruhi oleh...
 - a. Suhu
 - b. Katalis
 - c. Pengurangan zat reaksi
 - d. Penambahan zat inert
 - e. Perngurangan hasil reaksi
- 17. Untuk reaksi: $PCl_{5(g)} \leftrightarrow PCl_{3(g)} + Cl_{2(g)}$ nilai Kc pada 261°C adalah 0,0454. Bila dalam suatu wadah diisi dengan setiap gas dalam reaksi sehingga: $[PCl_5] = 0,25M$, $[PCl_3] = 0,20M$, dan $[Cl_2] = 2,25M$, kemana arah rekasi yang terjadi dan mengapa?
 - a. Kearah produk karena Q = 0.56
 - b. Kearah reaktan karena Q = 1.8
 - c. Kearah produk karena Q = 2.8
 - d. Kearah reaktan karena Q = 0.0454
 - e. Berada dalam kesetimbangan
- 18. Elektrolisis 500 mL larutan LSO₄ dengan elektrode C menghasilkan larutan dengan pH=2. Pada katoda diendapkan sebanyak 0,14 gram logam L. Jika unsur mempunyai 30 neutron dan massa atom relatif dianggap sebagai nomor massa, maka pernyataan berikut yang salah adalah:
 - a. L termasuk logam transisi
 - b. Atom L memeliki 4 elektron yang tidak berpasangan
 - c. L dapat mempunyai bilangan oksidasi lebih dari 1
 - d. Atom L memiliki 3 elektron pada kulit terluar
 - e. Dapat membentuk ion kompleks [L(CN)₆]²-
- 19. Berikut ini diberikan potensial reduksi setengah sel:

$$Mg^{2+} + 2e^{-} \rightarrow Mg$$
 $E^{o} = -2,38 \text{ V}$ (1)
 $Cu^{2+} + 2e^{-} \rightarrow Cu$ $E^{o} = 0,34 \text{ V}$ (2)
 $Ag^{+} + e^{-} \rightarrow Ag$ $E^{o} = 0,80 \text{ V}$ (3)

Berdasarkan potensial setengah sel tersebut, berikut ini manakah pernyataan yang benar?

(I) Magnesium adalah reduktor yang paling baik di antara ketiganya

- (II) Dalam keadaan standar, reaksi akan terjadi secara spontan bila setengah sel (2) digabung dengan setengah sel hidrogen
- (III) Bila logam tembaga ditambahkan ke dalam larutan AgNO₃, logam perak akan mengendap
- (IV) Untuk reaksi $2 \text{ Ag}^+ + 2 \text{ e}^- \rightarrow 2 \text{ Ag}$, maka E = 1,60 V.

a. I dan II

d. I, III, dan IV

b. II dan III

e. I, II, dan IV

- c. I, II, dan III
- 20. Kedua senyawa berikut ini, CH₃-CH₂OH dan CH₃-O-CH₃, mempunyai massa relatif yang sama, tetapi titik didihnya tidak sama, dan titik didih masing-masing adalah 78°C dan 24°C. Perbedaan titik didih ini disebabkan oleh adanya perbedaan:
 - a. rumus molekul
 - b. panas pembakaran
 - c. panas spesifik
 - d. berat jenis
 - e. ikatan antar molekulnya
- 21. Tentukan urutan kereaktifan dari senyawa turunan asam karboksilat berikut:
 - 1. Asetamida
 - 2. Asetil klorida
 - 3. Etil asetat
 - 4. Anhidrida asam asetat

a. 1 > 2 > 3 > 4

d. 2 > 4 > 3 > 1

b. 2 > 1 > 3 > 4

e. 4 > 3 > 2 > 1

- c. 3 > 4 > 2 > 1
- 22. Misalkan anda mempunyai pereaksi sebagai berikut

i. Logam Na

iii. CH₃CO₂H/H₂SO₄

ii. PCl₅

iv. Ag_2C

Eter dan alkohol dapat dibedakan dengan menggunakan pereaksi...

a. i dan ii

d. ii, iii, dan iv

b. ii dan iii

e. i.

ii.

iii

dan

- c. i dan iv
- 23. Tentukan senyawa X bila direaksikan dengan ozon kemudian ditambah air dan zink memberikan campuran dua senyawa, yaitu etanal dan propil sek-butil keton :
 - a. 4-metil-3-propil-2-heksanol
 - b. 4-metil-3-propil-3-heksanol
 - c. 4-metil-3-propil-2-heksanon
 - d.4-metil-3-propil heksanal
 - e. 4-metil-3-propil heksena
- 24. Warfarin digunakan sebagai racun tikus. Jumlah pusat kiral yang terdapat dalam molekul warfarin di bawah ini adalah

- a. 0
- b. 1
- c. 2

- d. 3
- e. 4
- 25. Reaksi substitusi nukleofilik ion metoksida (CH3O-) dapat berlangsung pada senyawasenyawa berikut, kecuali

26. Berturut – turut, bagaimana masing – masing hibridasi dari atom nomor 1 hingga nomor 4 berikut ini:

- a. sp3 sp2 sp3 sp3
- b. sp3 sp2 sp3 sp
- c. sp3 sp2 sp2 sp

- d. sp2 sp sp2 sp3
- e. sp2 sp2 sp3 sp

27. Sebuah arus 10,0 A mengalir selama 2 jam melalui sel elektrolisis yang mengandung garam cair logam X dan menghasilkan deposit logam X sebesar 0,25 mol di katoda. Bilangan oksidasi dari X dalam galam yang dielektrolisis adalah:

- a. +1
- b. +2
- c. +3
- d. +4
- e. +5
- 28. Seorang ahli kimia menganalisis suatu senyawa kimia organik yang belum diketahui. Dengan spektrometri massa, diketahui massa molekul dari senyawa kimia organik tersebut adalah 114 g/mol. Analisis unsur yang dilakukan menunjukkan bahwa senyawa mengandung 63% C, 9% H dan 28% O (% w/w). Apakah senyawa kimia organik tersebut?

- 29. Larutan 20 mg Insulin dalam 5,0 mL air pada 300 K memberikan tekanan osmosa sebesar 12,5 mmHg. Berat molekul Insulin adalah. . .
 - a. 16700 g mol-1
 - b. 12360 g mol-1
 - c. 8680 g mol-1
 - d. 5990 g mol-1
 - e. 3480 g mol-1
- 30. Aroma dari buah almond berasal dari senyawa amygdalin. Hidrolisis dari amygdalin menghasilkan senyawa Z, kemudian Z direduksi dengan H2, Pt menghasilkan Y. Tentukan Z dan Y tersebut.

Amygdalin

- a. Z adalah C₆H₅CH(OH)COOH dan Y adalah C₆H₅CH(OH)CH₂OH
- b. Z adalah C₆H₅CH(OH)COOH dan Y adalah C₆H₅CH₂COOH
- c. Z adalah C6H5CH2COOH dan Y adalah HCHO

- d. $\, Z \,$ adalah $C_6H_5OH \,$ dan $\, Y \,$ adalah $\, CH_3CN \,$