### 連立一次方程式を解く

方程式を解くということは、次のような問題に答えることである

ref: 行列と行列式の基 礎 p25

- A. 解は存在するか?
- B. 解が存在する場合、それはただ 1 つの解か?
- C. 解が複数存在する場合は、どれくらい多く存在するのか?
- D. 解全体の集合を以下にしてわかりやすく表示できるか?



# 拡大係数行列

A を m 行 n 列の行列、 $b \in \mathbb{R}^m$  とし、線形方程式

 $A\boldsymbol{x} = \boldsymbol{b}$ 

ref: 行列と行列式の基

礎 p31~32

を考える

これは、n 個の文字に関する m 本の連立方程式である

 $\boldsymbol{x}$  は未知数  $x_1, x_2, \ldots, x_n$  を成分とするベクトルである

このとき、A は方程式の係数行列と呼ばれる

A の右端に列ベクトル b を追加して得られる m 行 (n+1) 列の行列

$$\tilde{A} = (A \mid \boldsymbol{b})$$

を考えて、これを拡大係数行列という



# 斉次形

b=0 の場合、つまり

#### の形の線形連立方程式は斉次形であるという

斉次形の場合は  $\mathbf{x} = \mathbf{0}$  が明らかに解になっていて、これを自明解というしたがって、自明解以外に解が存在するかどうかが基本的な問題である



## 解の存在条件

まず、一般の b の場合の解の存在(問題 A) について考える

 $ilde{A}$  は A の右端に 1 列追加して得られるので、掃き出しの過程を考えると、 ${\sf rank}( ilde{A})$  は  ${\sf rank}(A)$  と等しいか、1 だけ増えるかのどちらかであることがわかる

 $m{\delta}$  解の存在条件 A を  $m \times n$  型行列、 $m{b} \in \mathbb{R}^m$  とする  $ilde{A} = (A \mid m{b})$  とおくとき、

$$\operatorname{rank}(\tilde{A}) = \operatorname{rank}(A) \Longleftrightarrow A\boldsymbol{x} = \boldsymbol{b}$$
 に解が存在する





「Todo 1: ref: 行列と行列式の基礎 p31 (定理 1.5.1)]

ightharpoonup 解の存在条件の系 A を  $m \times n$  型行列とするとき、

 $\forall oldsymbol{b} \in \mathbb{R}^m$ ,  $Aoldsymbol{x} = oldsymbol{b}$  の解が存在する  $\iff$  rank(A) = m





[ Todo 2: ref: 行列と行列式の基礎 p32 (定理 1.5.2, 1.5.3)]



がある

解が 1 つに定まらない場合は、解の全体像を知ることが方程式を「解く」ことになる

解の集合が直線を成していたり、もっと高い次元の図形になっていること



### 一般解のパラメータ表示

係数行列 A の n 個の列が、n 個の変数に対応していることを思い出そう

ref: 行列と行列式の基 礎 p33~36

 主変数と自由変数 行列 A を行基本変形により行階段形に したとき、主成分がある列に対応する変数を主変数と呼び、それ以 外の変数を自由変数と呼ぶ



解が存在する場合には、

$$\mathbf{x} = \mathbf{x}_0 + t_1 \mathbf{u}_1 + t_2 \mathbf{u}_2 + \cdots + t_{n-r} \mathbf{u}_{n-r}$$

という形の一般解の表示(問題 D の答え)が得られる ここで、r は行列 A の階数である



自由変数、すなわちパラメータの個数を解の自由度と呼ぶ

解の自由度 = (変数の個数) 
$$- \operatorname{rank}(A)$$
  
=  $n - r$ 

これは、解全体の集合が何次元の空間なのかを表している(問題 C の答え)

# 解の一意性

ここまでの議論で、問題 B が解決している

ref: 行列と行列式の基 礎 p37~38

解が一意的である  $\iff$  rank(A) = n

ここで、n は変数の個数である





「Todo 3: ref: 行列と行列式の基礎 p37 (定理 1.5.8)]

斉次形の場合の非自明解の存在問題も解決している

**♣** 斉次形の非自明解の存在条件 斉次形の方程式 *A***x** = **0** において、

自明解しか存在しない  $\iff$  rank(A) = n

ここで、n は変数の個数である

#### 証明 証明

斉次形の場合は自明解が常に存在するので、解の一意性は、それ以 外の解がないということである ■ 自由変数を  $x_{j_1},\ldots,x_{j_{n-r}}$  とするとき、一般解の表示

$$\mathbf{x} = \mathbf{x}_0 + t_1 \mathbf{u}_1 + t_2 \mathbf{u}_2 + \cdots + t_{n-r} \mathbf{u}_{n-r}$$

の  $j_k$  番目の成分は等式

$$x_{j_k} = t_k$$

を意味するので、解が与えられたとき、パラメータの値は直接に読み取れる このことから、

$$\mathbf{x} = \mathbf{x}_0 + t_1 \mathbf{u}_1 + t_2 \mathbf{u}_2 + \cdots + t_{n-r} \mathbf{u}_{n-r}$$

によって解を表示する際のn-r個のパラメータの値は一意的に定まることがわかる

この事実は、 $oldsymbol{u}_1, oldsymbol{u}_2, \dots, oldsymbol{u}_{n-r} \in \mathbb{R}^m$  が線形独立であると表現される



### 仮題

未知数  $x_1, x_2, \ldots, x_n$  に関する連立方程式

$$\begin{cases} a_{11}x_1 + a_{12} x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22} x_2 + \dots + a_{2n}x_n = b_2 \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$

を解くには、行に関する基本変形を繰り返し用いて、 $(A \mid b)$  の既約行階段形  $(P \mid q)$  を求める

A の階数を r とすると、

$$(P \mid \boldsymbol{q}) = egin{pmatrix} \boldsymbol{p}_1 & q_1 \ dots & dots \ \boldsymbol{p}_r & q_r \ \boldsymbol{0} & q_{r+1} \ dots & dots \ \boldsymbol{0} & q_m \end{pmatrix}$$

と表される

ref: 図で整理!例題で 納得!線形空間入門 p300~301

# Zebra Notes

| Туре | Number |
|------|--------|
| todo | 3      |