ANALYSIS QUALIFYING EXAMINATION

August, 2000

Questions 1 - 8 are worth ten points each and question nine is worth 20 points.

- 1) Suppose that $E, F \subset \mathbb{R}$ are compact. Prove that the set $E+F := \{x+y : x \in E, y \in F\}$ is compact.
- (2) Let $f_n \in L_2[a,b]$ be such that $\sum_{n=1}^{\infty} (\int_a^b |f_n|^2)^{1/2} < \infty$. Show that
 - (a) $\sum_{n=1}^{\infty} |f_n(x)| < \infty$ for almost all $x \in [a, b]$.
 - (b) If $f(x) = \sum_{n=1}^{\infty} f_n(x)$, then $f \in L_2[a, b]$.
 - (c) $(\int_a^b |f_n f|^2)^{1/2} \to 0$.
- 3) Let f_n be measurable on \mathbb{R} , $f_n \geq 0$, and $f \in L_1(\mathbb{R})$. Prove that if $f_n \to f$ a.e. on \mathbb{R} , then

$$\int_{\mathbb{R}} (f - f_n)^+ \to 0, \quad \text{where} \quad x^+ := \left\{ \begin{array}{ll} x, & \text{if } x > 0, \\ 0, & \text{if } x \le 0. \end{array} \right.$$

- 4) State and prove Vitali's covering lemma.
- 5) Let $\langle g_n \rangle$ be a sequence of measurable functions on \mathbb{R} such that there exists M > 0 with $|g_n| \leq M$ for $n = 1, 2, \ldots$ Suppose $\int_E g_n \to 0$ for every set $E \subset \mathbb{R}$ such that $m(E) < \infty$. Prove that for every $f \in L_1(\mathbb{R})$

$$\int_{\mathbb{R}} f g_n \to 0.$$

6) Suppose f is measurable on $[a, b] \times [c, d]$, $f(x, y) \ge 0$ on $[a, b] \times [c, d]$, and

$$\int \int_{[a,b]\times[c,d]} f(x,y) \, dx dy > b - a.$$

Show that there exists $x \in [a, b]$ such that

$$\int_{c}^{d} f(x, y) \, dy > 1.$$

- 7) Show that if $f \in L_p[0,1]$, $1 , then <math>f \in L_1[0,1]$ and $||f||_{L_1} \le ||f||_{L_p}$. Is the result true if [0,1] is replaced by \mathbb{R} ? Prove or give a counterexample.
- 8) (a) State and prove Liouville's theorem.
- (b) Suppose f is an entire function and $|f(z)| \leq Me^{Rez}$ for every z from the complex plane, where M is a constant. Prove that there exists a constant C such that $f(z) = Ce^z$.

- (9) True or False? Prove or give a counterexample.
 - (a) Every uncountable set of real numbers has a non-measurable subset.
 - (b) For every $\varepsilon > 0$ there exists an open dense subset \mathcal{O} of [0,1] such that $m(\mathcal{O}) < \varepsilon$.
 - (c) If f_n are measurable on [0,1], $f_n \geq 0$, $\int_0^1 f_n = 1$, and $f_n \to f$ a.e., then $\int_0^1 f = 1$.
 - (d) If f_n are measurable on \mathbb{R} , $0 \le f_1 \le f_2 \le ...$, $f_n \to f$ a.e., and $\int_{\mathbb{R}} f_n \to 1$, then $f \in L_1(\mathbb{R})$.
 - (e) Suppose f and g are continuous on [0,1], f' and g' exist a.e. on [0,1], f'=g' a.e., and f(0)=g(0). Then f=g on [0,1].