Claims

5

1. A polymer comprising optionally substituted first repeat units of formula (I):

$$R_1$$
 R_2 R_3 R_4 (I)

wherein R₁, R₂, R₃ and R₄ are selected from hydrogen, alkyl, alkyloxy, aryl, aryloxy, heteroaryl or heteroaryloxy groups, and R₁ and R₂ and / or R₃ and R₄ may be linked to form a monocyclic or polycyclic, aliphatic or aromatic ring system, provided that at least one of R₁, R₂, R₃ and R₄ comprises an aryl or heteroaryl group.

- A polymer according to claim 1 wherein at least two of R₁, R₂, R₃ and R₄
 comprise an aryl or heteroaryl group.
 - A polymer according to claim 1 wherein at least three of R₁, R₂, R₃ and R₄ comprise an aryl or heteroaryl group.
 - 4. A polymer according to claim 1 wherein R₁, R₂, R₃ and R₄ comprise an aryl or heteroaryl group.
- 15 5. A polymer according to claim 1 wherein R₁ and R₂ comprise an aryl or heteroaryl group and R₃ and R₄ comprise an alkyl group.
 - 6. A polymer according to any preceding claim wherein said aryl group comprises an optionally substituted phenyl group.
- 7. A polymer according to any preceding claim wherein said aryl group comprises a
 4-octylphenyl group or a 4-*tert*-butyl-phenyl group.
 - 8. A polymer according to any preceding claim comprising a second repeat unit.
 - 9. A polymer according to claim 8 wherein said second repeat unit is selected from triarylamines and heteroaromatics.

20

25

30

10. A monomer comprising an optionally substituted compound of formula (II):

wherein each P independently represents a polymerisable group and R_1 , R_2 , R_3 and R_4 are as defined in any one of claims 1-7.

- 11. A monomer according to 10 wherein each P is independently selected from a reactive boron derivative group selected from a boronic acid group, a boronic ester group and a borane group; a reactive halide group or a moiety of formula O-SO₂-Z wherein Z is selected from the group consisting of optionally substituted alkyl and aryl.
- 10 12. A process for preparing a polymer comprising a step of reacting a first monomer as defined in any one of 10 or 11 and a second monomer that may be the same or different from the first monomer under conditions so as to polymerise the monomers.
- 13. A process for preparing a polymer according to claim 12 which comprisespolymerising in a reaction mixture:
 - (a) a monomer according to claim 11 wherein each P is a boron derivative functional group selected from a boronic acid group, a boronic ester group and a borane group, and an aromatic monomer having at least two reactive functional groups independently selected from halides or a moiety of formula -O-SO₂-Z; or
 - (b) a monomer according to claim 11 wherein each P is independently selected from the group consisting of reactive halide functional groups functional groups independently selected from halides and a moieties of formula -O-SO₂-Z and Z is as defined in claim 11, and an aromatic monomer having at least two boron derivative functional groups selected from boronic acid groups, boronic ester groups and borane groups; or
 - (c) a monomer according to claim 11 wherein one P is a reactive halide functional group or a moiety of formula –OSO₂-Z and Z is as defined in claim 11, and the other P is a boron derivative functional group selected from a boronic acid group, a boronic ester group and a borane group,

wherein the reaction mixture comprises a catalytic amount of a catalyst suitable for catalysing the polymerisation of the aromatic monomers, and a base in an amount sufficient to convert the boron derivative functional groups into boronate anionic groups.

5

- 14. An organic light emitting device comprising a polymer according to any of claims1 to 9.
- 15. A monomer comprising an optionally substituted repeat unit of formula (III):

10

15

30

wherein R_8 , R_9 , R_{10} , R_{11} , R_{12} and R_{13} are the same or different and independently represent hydrogen or are selected from alkyl, alkyloxy, aryl, aryloxy, heteroaryl or heteroaryloxy groups, and R_1 and R_2 and / or R_3 and R_4 may be linked to form a monocyclic or polycyclic, aliphatic or aromatic ring system; one or more of the pairs of R_8 and R_9 , R_{10} and R_{11} or R_{12} and R_{13} may be linked to form a ring; and P is as defined in claim 10 or 11.

- 16. A monomer according to claim 15 wherein R₈, R₉, R₁₀ and R₁₁ are independently selected from the group consisting of optionally substituted alkyl, alkoxy, aryl, aryloxy, heteroaryl or heteroaryloxy.
- 17. A monomer according to claim 15 or 16 wherein P is selected from the group consisting of functional halogens, a monovalent unit of formula –OSO₂Z or a monovalent unit of formula –B(OR₁₄)(OR₁₅) wherein R₁₄ and R₁₅ are the same or different and independently represent hydrogen or a substituent R₁₂ and R₁₃ as defined in claim 15 and may be linked to form a ring; and Z is as defined in claim
 11.
 - 18. A monomer according to any of claims 15 17 wherein R₁₂, R₁₃, R₁₄ and R₁₅ are the same or different and are selected from the group consisting of hydrogen and optionally substituted alkyl.
 - 19. A monomer according to claim 18 wherein R_{12} and R_{13} and / or R_{14} and R_{15} are linked to form an optionally substituted ethylene group.

20. A process for preparing a polymer which comprises polymerising in a reaction mixture:

5

10

20

- (a) a monomer according to any one of claims 15-19 wherein P is a group of formula –B(OR₁₄)(OR₁₅) and R₁₄ and R₁₅ are as defined in claim 17, and an aromatic monomer having at least two reactive functional groups independently selected from halide or moieties of formula -O-SO₂-Z and Z is as defined in claim 11; or
- (b) a monomer according to any one of claims 15-19 wherein P is a reactive halide functional group or a moiety of formula -O-SO₂-Z and Z is as defined in claim 11,

wherein the reaction mixture comprises a catalytic amount of a catalyst suitable for catalysing the polymerisation of the aromatic monomers, and a base in an amount sufficient to convert the boron derivative functional groups into boronate anionic groups.

- 15 21. A switching device comprising an oligomer or polymer according to any one of claims 1 − 9.
 - 22. A field effect transistor comprising an insulator having a first side and a second side; a gate electrode located on the first side of the insulator; a polymer according to any one of claims 1 9 located on the second side of the insulator; and a drain electrode and a source electrode located on the polymer.
 - 23. An integrated circuit comprising a field effect transistor according to claim 22.
 - 24. A photovoltaic cell comprising a polymer according to any one of claims 1-9.