HW3_sliang

Liang Shi

9/26/2020

Problem 3

I'm familiar with almost of these rules. What impress me is the rule "Don't use attach()". So I make some research and find out if we have several different datasets, the cold will become messy.

Problem 5

Observer	Mean_1	Mean_2	SD_1	SD_2	Corr_12
1	54.26610	47.83472	16.76983	26.93974	-0.0641284
2	54.26873	47.83082	16.76924	26.93573	-0.0685864
3	54.26732	47.83772	16.76001	26.93004	-0.0683434
4	54.26327	47.83225	16.76514	26.93540	-0.0644719
5	54.26030	47.83983	16.76774	26.93019	-0.0603414
6	54.26144	47.83025	16.76590	26.93988	-0.0617148
7	54.26881	47.83545	16.76670	26.94000	-0.0685042
8	54.26785	47.83590	16.76676	26.93610	-0.0689797
9	54.26588	47.83150	16.76885	26.93861	-0.0686092
10	54.26734	47.83955	16.76896	26.93027	-0.0629611
11	54.26993	47.83699	16.76996	26.93768	-0.0694456
12	54.26692	47.83160	16.77000	26.93790	-0.0665752

Observer	Mean_1	Mean_2	SD_1	SD_2	Corr_12
13	54.26015	47.83972	16.76996	26.93000	-0.0655833

boxplot(df\$dev1, main = "Dev1")

Dev1

boxplot(df\$dev2, main = "Dev2")

Dev2

These two distribution are almost symmetric, and no outliers here.

From the vioplot, we know that in dev1, the mode is near the median, but in dev2, the mode is a little skew from the median. And we can also see that the standard deviation of dev2 is larger than of dev1.

I see many funny plots. From the scatter plot, we know the correlation between dev1 and dev2 is very weak, which agree with our data summary. I think plot the data is a very important way before analysis, because statistics only may misleading our approach.

Problem 6

```
get_integral <- function(x){
    y <- exp(- (x^2 / 2))
    return(y)
}

x_range <- seq(0, 1, by = 1e-6)
sum(get_integral(x_range) * 1e-6)</pre>
```

[1] 0.8556252

Problem 7

```
fx <- function(x){
  y <- 3^x - sin(x) + cos(5*x)
}
fdx <- function(x){</pre>
```

```
y <- 3^x*log(3) - cos(x) - 5*sin(5*x)
}

ggplot(data = data.frame(x = 0,y = 0), mapping = aes(x = x)) +
    stat_function(fun = fx) +
    xlim(-5, 2.5) +
    geom_abline(intercept = 0, slope = 0, colour = "red")</pre>
```



```
x <- -2.5
while (abs(fx(x)-0) > 1e-6) {
   x <- x - fx(x)/fdx(x)
}
x</pre>
```

[1] -3.930114

Problem 8

```
start <- Sys.time()
X <- cbind(rep(1,100),rep.int(1:10,time=10))
beta <- c(4,5)
y <- X%*%beta + rnorm(100)
I <- diag(100)
NJ_1 <- rep(1/100, 100)
y_A <- vector()
for (i in 1:100){</pre>
```

```
a <- I[,i] - NJ_1
num <- t(y)%*%a
  y_A[i] <- num
}
SST = t(y_A)%*%y
print(SST)

## [,1]
## [1,] 20737.44
end <- Sys.time()
print(end - start)</pre>
```

Time difference of 0.06573987 secs