(Autumn 2023)

Due: 11:59pm October 15

Name

1. Figure 1 shows a rectangle in 2D space with two contact points. The rectangle has a height of h. f_1 and f_2 are two point contacts with friction coefficient μ . Derive the range of μ such that the grasp yields force closure and write it as function of h and c.

2. Figure 2 shows a square that is restrained by three contact points. f_1 is a point contact with friction coefficient μ , while f_2 and f_3 are frictionless point contacts. If c = 0.25 and h = 0.5, find one value of μ such that the grasp yields force closure.

- 3. Find the shortest path to node A from every other node in the weighted graph below.
 - (a) Apply the backward dynamic programming algorithm. Let $V^*(s)$ be the shortest-path length from node s to A and $V_i(s)$ be the estimated shortest-path length in the i'th iteration of the

dynamic programming algorithm. Show the values for $V_0(s)$, $V_1(s)$, and $V_2(s)$ as well as $V^*(s)$ for all nodes in the graph.

	Α	В	С	D	Е	F	G
V_0							
V_1							
$V_2 \ V^*$							
V^*							

- (b) Apply the Dijkstra's algorithm. The shortest paths form a tree. Draw the shortest-path tree.
- 4. Give the dimension of the configuration space for the following systems. Briefly justify your answer.
 - (a) An articulated robot in a 2D plane with a fixed base and two revolute joints.
 - (b) Two mobile robots freely translate and rotate in the plane.
 - (c) An aerial manipulator consisting of two manipulators attached to an unmanned aerial vehicle (UAV). Each manipulator has 6 revolute joints.
- 5. This problem explores the configuration space of lines and that of line segments.
 - (a) Consider an infinite line l that translates and rotates freely in 3-D space. Give two different parameterizations of the configuration space C for l: one that makes use of angles and one that makes no use of angles.
 - (b) What is the dimension of C?
 - (c) Consider a straight-line segment s that translates and rotates freely in 3-D space. What is the dimension of the configuration space for s? Can you use the two parameterizations in part (a) for s? What modifications would be needed if any?
- 6. Suppose that the configurations space C is the unit space $[0,1] \times [0,1]$. The multi-query PRM algorithm, first samples n collision-free configurations and then tries to connect these milestones by calling **LINK**.
 - (a) If the algorithm calls **LINK** for every pair of roadmap nodes, give an asymptotic upper bound on the number of calls to **LINK**.
 - (b) Suppose that the algorithms calls **LINK** only if the Euclidean distance between two milestones is smaller than a threshold t. Give an asymptotic bound on the number of calls to LINK when $t = O(\sqrt{1/n})$. You may assume that the milestones are distributed roughly uniformly in C.

7. Consider the hybrid A* algorithm described in the class and apply it to plan the motion of an autonomous robot car. Suppose that the A* search starts at the node S, shown in the figure below. By applying four candidate actions, it reaches new nodes: A, B, C, and D. The cost-to-come and the heuristic estimate of the cost-to-go for all the new nodes are shown in the figure.

- (a) What is the dimension of the grid used in the hybrid A* search?
- (b) What does the priority queue contain at the stage of the hybrid A* search illustrated in the figure? For each item, in the priority queue, specify the node and its associated f -value.
- 8. A key step in applying the A^* algorithm in practice is to design a good heuristic function. Suppose that we want to apply A^* to a shortest-path problem and have two heuristic functions $h_1(x)$ and $h_2(x)$, both of which are admissible.
 - (a) Show that $h(x) = \max\{h_1(x), h_2(x)\}\$ is also admissible.
 - (b) Of the three heuristic functions, $h_1(x)$, $h_2(x)$, and h(x), which one would you use? Why? Give a proof if you can.