CYK/2023/PH201 Mathematical Physics

Mid-Semester Exam

Total Marks: 30; Duration: 2 Hours (9AM-11AM); Date: 18 Sept 2023, Monday

- 1. $[6 \times 2 \text{ Marks}]$ Answer the following questions: (Write steps and reasons in **brief**. Writing just final answers will not be awarded marks.)
 - (a) Find and sketch the image of the straight line y = x + 1 under the transformation $w = \frac{1}{z}$.
 - (b) The branch cut of $\ln z$ is chosen along the radial line making an angle of 120 degrees with the positive x axis. If $\ln 1 = 0$, then what are the values of $\ln (i)$, $\ln (1)$ and $\ln (-1)$?
 - (c) Show that if a function f(z) = u + iv is analytic at z, level curves of u and v passing through z are orthogonal.
 - (d) At which points the function $f(z) = \bar{z}^2$, analytic?
 - (e) If C: |z| = R is a positively oriented circular contour, compute

$$\oint_C \frac{e^z}{\left(z - \frac{\pi i}{4}a\right)^2} dz \qquad (R > a).$$

(f) Discuss and classify the singularities of $\frac{1}{\sin(\pi/z)}$.

Answers:

(a) Since z = 1/w implies $x = \frac{u}{u^2 + v^2}$ and $y = -\frac{v}{u^2 + v^2}$. Substituting in y = x + 1 gives

$$\left(u + \frac{1}{2}\right)^2 + \left(v + \frac{1}{2}\right)^2 = \frac{1}{2}$$

which is a circle with center at -(1+i)/2 and passing through origin.

- (b) In this case, $-4\pi/3 < \theta < 2\pi/3$. And hence, $\ln i = i\pi/2$, $\ln (-1) = -\pi i$ and $\ln (-i) = -i\pi/2$. (Typing error in QP, marks awarded as per QP)
- (c) The angle between two curves is given by the angles between the normals to the curves. The normal to u = c is $\nabla u = (u_x, u_y)$ and similarly, the normal to v = c' is $\nabla v = (v_x, v_y)$. If the angle between the curves is ϕ then

$$\cos \phi = \frac{\nabla u \cdot \nabla v}{|\nabla u| |\nabla v|} = \frac{1}{|\nabla u| |\nabla v|} (u_x v_x + u_y v_y) = 0$$

The last step follows from CR conditions, $v_y = u_x$ and $v_x = -u_y$.

- (d) Here $u = x^2 y^2$ and v = -2xy. The CR condition are valid only at x = y = 0 and the function is differentiable at z = 0. But, it is not analytic since it is not differentiable in any deleted-nbd of z = 0.
- (e) Clearly, R > a implies $R > a\pi/4$. Using Cauchy integral formula, we get

$$\oint_C \frac{e^z}{\left(z - \frac{\pi i}{4}a\right)^2} dz = \frac{2\pi i}{1!} \left. \frac{d}{dz} e^z \right|_{z = i\pi a/4} = 2\pi i e^{i\pi a/4}.$$

(f) The denominator has a simple zero at z = 1/n, where n is any integer. Thus, the given function has isolated simple poles at z = 1/n. The function also has a singular point at z = 0 but this singularity is not isolated since every nbd of z = 0 contains infinitely many singularities of the function.

2. $[2 \times 3 \text{ Marks}]$ Answer the following questions:

- (a) [3] The Euler numbers E_n are defined by the power series $\frac{1}{\cosh z} = \sum_{n=0}^{\infty} \frac{E_n}{n!} z^n$. What is the radius of convergence for this series? Compute E_0 to E_4 .
- (b) [3] Given the function $f(z) = \frac{z}{(z-2)(z+i)}$, expand the function in a series about $z_0 = 0$, in the regions (i) |z| < 1 (ii) 1 < |z| < 2 and (iii) |z| > 2.

Answers:

(a) From the definition, it is clear that $E_n = \frac{d^n}{dz^n} \operatorname{sech}(0)$. The table of derivatives

n	$\frac{d^n}{dz^n}\operatorname{sech}(z)$	E_n
0	$\operatorname{sech}(z)$	1
1	$\tanh(z)(-\mathrm{sech}(z))$	0
2	$\tanh^2(z)\operatorname{sech}(z) - \operatorname{sech}^3(z)$	-1
3	$5 \tanh(z) \operatorname{sech}^3(z) - \tanh^3(z) \operatorname{sech}(z)$	0
4	$5\operatorname{sech}^{5}(z) - 18\tanh^{2}(z)\operatorname{sech}^{3}(z) + \tanh^{4}(z)\operatorname{sech}(z)$	5

(b) Note that

$$\frac{z}{\left(z-2\right)\left(z+i\right)} = \frac{1}{2+i} \left[\frac{2}{\left(z-2\right)} + \frac{i}{\left(z+i\right)} \right].$$

i. Given |z| < 1 implies that |z/2| < 1 and |z/i| < 1. Thus,

$$\frac{1}{2+i} \left[\frac{2}{(z-2)} + \frac{i}{(z+i)} \right] = \frac{1}{2+i} \left[\frac{-1}{(1-z/2)} + \frac{1}{(1+z/i)} \right]$$
$$= \frac{1}{2+i} \sum_{n=0}^{\infty} \left[-\frac{1}{2^n} + i^n \right] z^n$$

ii. Given 1 < |z| < 2 implies that |z/2| < 1 and |z/i| > 1. Thus,

$$\frac{1}{2+i} \left[\frac{2}{(z-2)} + \frac{i}{(z+i)} \right] = \frac{1}{2+i} \left[\frac{-1}{(1-z/2)} + \frac{i}{z(1+i/z)} \right]$$
$$= \frac{1}{2+i} \left[-\sum_{n=0}^{\infty} \left(\frac{z}{2}\right)^n + \sum_{n=0}^{\infty} (-1)^n \left(\frac{i}{z}\right)^{n+1} \right]$$

iii. Given 2 < |z| implies that |z/2| > 1 and |z/i| > 1. Thus,

$$\frac{1}{2+i} \left[\frac{2}{(z-2)} + \frac{i}{(z+i)} \right] = \frac{1}{2+i} \left[\frac{2}{z(1-2/z)} + \frac{i}{z(1+i/z)} \right]$$
$$= \frac{1}{2+i} \left[\sum_{n=0}^{\infty} \left(\frac{2}{z} \right)^{n+1} + \sum_{n=0}^{\infty} (-1)^n \left(\frac{i}{z} \right)^{n+1} \right]$$

- 3. $[3 \times 4 \text{ Marks}]$ Using the method of residues, answer the following questions: (sketch contours and show contributions from each segment of contours explicitly)
 - (a) Compute

$$\operatorname{pv} \int_{-\infty}^{\infty} \frac{dx}{x^2 + 2x + 2}$$

Let $f(z) = \frac{1}{z^2 + 2z + 2}$. Let $C = C_1 + C_R$ be the contour as shown in the figure. Note that

$$\operatorname{pv} \int_{-\infty}^{\infty} \frac{dx}{x^2 + 2x + 2} = \lim_{R \to \infty} \int_{C_1} f(z) \, dz.$$

The integrand has simple poles at $(-1 \pm i)$ of which -1 + i is inside the contour C. Thus,

$$\int_{C} f(z) dz = 2\pi i \operatorname{Res} f(-1+i)$$

$$\lim_{R \to \infty} \int_{C_{1}} f(z) dz = 2\pi i \operatorname{Res} f(-1+i) - \lim_{R \to \infty} \int_{C_{R}} f(z) dz$$

Now.

$$\operatorname{Res} f(-1+i) = \frac{1}{2i}$$

Also,

$$\left| \int_{C_R} f\left(z\right) dz \right| \leq \frac{1}{R^2} \pi R \sim \frac{1}{R} \to 0 \quad R \to \infty$$

Finally,

$$\operatorname{pv} \int_{-\infty}^{\infty} \frac{dx}{x^2 + 2x + 2} = \pi$$

(b) Compute

$$\int_{-\infty}^{\infty} \frac{\cos kx}{(x+b)^2 + a^2} dx$$

where a > 0, k > 0 and b is a real number

Let $f(z) = \frac{e^{ikz}}{(z+b)^2 + a^2}$. Let $C = C_1 + C_R$ be the contour as shown in the figure where $R^2 > 1$

$$\int_{-\infty}^{\infty} \frac{\exp\left(ikx\right)}{\left(x+b\right)^{2} + a^{2}} dx = \lim_{R \to \infty} \int_{C_{1}} f\left(z\right) dz.$$

The integrand has simple poles at $-b \pm ia$ of which -b + ia is inside the contour C. Thus,

$$\int_{C} f(z) dz = 2\pi i \operatorname{Res} f(-b + ia)$$

$$\lim_{R \to \infty} \int_{C_{1}} f(z) dz = 2\pi i \operatorname{Res} f(-b + ia) - \lim_{R \to \infty} \int_{C_{R}} f(z) dz$$

Now,

$$\operatorname{Res} f(-b+ia) = \frac{\exp\left(ik\left(-b+ia\right)\right)}{-b+ia-(-b-ia)} = e^{-ka} \frac{e^{-ikb}}{2ia}$$

Also, by Jordan lemma,

$$\lim_{R \to \infty} \int_{C_R} f(z) \, dz = 0$$

since $\left| \frac{1}{(z+b)^2 + a^2} \right| \sim \frac{1}{R^2} \to 0$ as $R \to \infty$. Finally,

$$\int_{-\infty}^{\infty} \frac{\exp(ikx)}{(x+b)^2 + a^2} dx = \frac{\pi}{a} e^{-ka} e^{-ikb}$$

and the required integral is

$$\frac{\pi}{a}e^{-ka}\cos kb$$

(c) Compute

$$\int_0^\pi \frac{\cos 2\theta \, d\theta}{a^2 - 2a\cos\theta + 1}; \qquad -1 < a < 1.$$

Answer:

The integrand even function of theta hence the required integral is 1/2 of

$$\frac{1}{a} \int_0^{2\pi} \frac{\cos 2\theta \, d\theta}{(1+a^2)/a - 2\cos\theta} = \frac{1}{a} \int_0^{2\pi} \frac{\left(2\cos^2\theta - 1\right)}{(1+a^2)/a - 2\cos\theta} d\theta$$
$$= \frac{i}{2a} \oint_{|z|=1} \frac{\left(\left(z^2 + 1\right)^2 - 2z^2\right)}{z^2 - \frac{1}{a}\left(1+a^2\right)z + 1} \frac{dz}{z^2}.$$

The integrand has simple poles at a and 1/a and a pole of order 2 at 0. Thus

$$I = -\frac{\pi}{2az^2} \left[\frac{1+a^2}{a} + \frac{a^4+1}{a(a^2-1)} \right] = \frac{\pi a^2}{1-a^2}$$