Welcome to the new era of Quantum Computing - where Quantum Physics entangles with Computing

Prepared by Mohammad Aamir Sohail and Erin Diran-Ojo for the ISIT 2025 Quanutm Hackathor

Outline:

- Motivation: Unstructured Search
- 2 Introduction-Grover's Algorithm
- 3 Amplitude Amplification
 - Grover's Circuit
- 5 References & Further Reading

Motivation – Unstructured Search

Suppose we have given a large list of N (unstructured) items. Among these we wish to find items which is a solution to a certain problem.

of employees: $N = 2^n$

First Name	Last Name	Position	Company
Thomas	Sneed	Inspector	Sink, Inc.
Betty	Brown	Line Manager	Carp Corp.
Larry	Snopes	CEO	Snopes, LLC
Reginald	Williams	Partner	Williams, Lane 8 Porter, PC
Wendy	Lane	Clown	Party Hearty
Steve	Linder	Support Representative	Carp Corp
Patrick	Gerald	Attorney	Williams, Lane & Porter, PC
Stanley	Worrell	Store Manager	Quick Tire & Battery
Janet	Mercer	Catering Sales	Pellatino Patries
Sandeep	Khatri	VP Sales	Widget Mania

of possible paths: $N = 2^n$

Problem 1: Find details of Wendy Lane from a database.

Problem 2: Find the shortest path between Ann Arbor and Detroit.

continued...

Problem: Let $x_1, x_2, x_3, \dots, x_n$ be the variables which take only positive integer value, $0 \le x_1 \le M$ -1. Find $x_i's$ such that $(x_1 + x_2 + x_3 + \dots + x_n) = \delta$.

of possible combinations: $N = M^n$

Naïve Approach:

Define
$$p(\overline{x}) = (1_n \cdot \overline{x}) - \delta$$

For each possible $\overline{x} = (x_1, x_2, x_3, ..., x_n)$, Compute $p(\overline{x})$, if $p(\overline{x}) = 0$, \overline{x} is a solution

else

 $\rightarrow \overline{x}$ is not a solution

Classically ...

The performance of the classical search algorithm is O(N).

Using classical computation, in order to search an element in an unstructured list with probability 0.5, one need to traverse at N/2 elements.

Worst case, one need to traverse *N* elements to find a solution.

Detour: Big-O Notation

Definition:

Let f and g are the functions from the set of real numbers (\mathbb{R}) to the set of real numbers (\mathbb{R}) . We say that f(n) = O(g(n)), if there exist positive constant c and n_0 such that-

$$0 \le f(n) \le cg(n)$$
, for all $n \ge n_0$

Here, g(n) is an asymptotic upper bound for f(n)

Why do we need Big-O?

In computer science, it is used to categorize the algorithm based on their scalability.

** Estimating the worst case running time of an algorithm as a function of the input size **

Quantum Search Algorithm

Question:

Can we compute $p(\overline{x})$ at once for all possible \overline{x} .

"Quantum Parallelism" or "Superposition"

The Grover's Search Algorithm

Lov Grover published a "Quantum Unstructured Search Algorithm" in 1996 with complexity $O(\sqrt{N})$. It's commonly known as the Grover's algorithm.

It provides 'quadratic speedup' over classical algorithm.

Consider a list of million elements, which contains integer 1 to 10^6 , in randomised order. We need to traverse the list and find out the integer 59.

Classically: $\sim \frac{10^6}{2} = (5 \times 10^5)$ units of time.

Quantum: $\sqrt{10^6}$ = 10^3 units of time.

 $O(\sqrt{N})$! But we are using Quantum Parallelism

Amplitude Amplification

Let the search space be $S = \{|0\rangle, |1\rangle, ..., |N-1\rangle\}$, basis for the N dimensional Hilbert Space. Also, $|x_o\rangle \in S$ be a solution to problem p(x).

Step 0: Uniform Superposition

$$|\psi\rangle = \frac{1}{\sqrt{N}} \sum_{x=0}^{N-1} |x\rangle$$

Steps:

- 1. Flipping the sign of the x_o
- 2. Inversion about the mean

Note: Qbit or **Quantum Bit** is a state vector of 2-dimensional Hilbert Space. (standard /computational) Basis: $\{|0\rangle, |1\rangle\}$

Consider an example of n=3 qubits quantum system. $\dim(\mathcal{H}) = N = 2^n = 8$

Basis (search space): $\{|000\rangle, |001\rangle, ..., |111\rangle\}$ (i.e. $|0\rangle \rightarrow |7\rangle$).

Step 0:

$$|\psi\rangle = \frac{1}{\sqrt{8}} \sum_{x=0}^{8} |x\rangle = \frac{1}{\sqrt{8}} \{|000\rangle + |001\rangle + \dots + |111\rangle\}$$

Amplitude Amplification continued ...

Step 1: Flipping the sign mean

Step 2: Inversion about the

Note: y-axis represents prob. amplitude

Amplitude Amplification continued ...

Iteration # 2

Step 1: Flipping the sign

Step 2: Inversion about the

 $Prob(observing | 010 \rangle) = 94.53 \%$

Amplitude Amplification continued ...

Iteration # 3

Step 1: Flipping the sign

Step 2: Inversion about the mean

Performance Analysis:

upper bound on the # of iterations:
$$itr \leq \left[\frac{\pi}{4}\sqrt{\frac{N}{M}}\right] i.e. O\left(\sqrt{\frac{N}{M}}\right)$$
,

here N is the dimension of search space, M is the # of solution of p(x).

*** Geometrical Interpretation, Chp.6, Neilson and Chuang, Quantum Computation and Quantum Information

Grover's Circuit

Let the search space be $S = \{|0\rangle, |1\rangle, ..., |N-1\rangle\}$, basis for the N dimensional Hilbert Space. Also, $|x_o\rangle \in S$ be a solution to problem p(x).

Hadamard Gate,
$$H|0\rangle = \frac{1}{\sqrt{2}}\{|0\rangle + |1\rangle\}$$
 $H = \frac{1}{\sqrt{2}}\begin{bmatrix}1 & 1\\1 & -1\end{bmatrix}$, $H|1\rangle = \frac{1}{\sqrt{2}}\{|0\rangle - |1\rangle\}$ $H^{\otimes n}|0\rangle^{\otimes n} = |\psi\rangle = \frac{1}{\sqrt{N}}\sum_{n=0}^{N-1}|x\rangle$

Example: n = 3 qubits, $N = 2^n = 8$.

$$H^{\otimes 3}|0\rangle^{\otimes 3} = |\psi\rangle = \frac{1}{\sqrt{8}} \sum_{x=0}^{8} |x\rangle = \frac{1}{\sqrt{8}} \{|000\rangle + |001\rangle + |010\rangle + |011\rangle + |101\rangle + |110\rangle + |111\rangle \}$$

oracle:

Example:
$$n = 3 \ qubits$$
, $N = 2^n = 8$, $|x_0| = |010|$

$$f(x) = \begin{cases} 1, & |x\rangle = |010\rangle \\ 0, & |x\rangle \neq |010\rangle \end{cases}$$

$$|\psi_1\rangle = \frac{1}{\sqrt{8}}\{|000\rangle + |001\rangle - |010\rangle + |011\rangle + |101\rangle + |110\rangle + |111\rangle\}$$

Amplitude Amplification circuit – 2. inversion about

Example:
$$n=3$$
 qubits, $N=2^n=8$, $|x_0\rangle=|010\rangle$

$$|\psi_2\rangle = (2|\psi\rangle\langle\psi| - I)|\psi_1\rangle = [(2|\psi\rangle\langle\psi| - I)Oracle]|\psi\rangle = G|\psi\rangle$$

$$|\psi\rangle = \frac{1}{\sqrt{N}} \sum_{x=0}^{N-1} |x\rangle$$

Amplitude Amplification circuit – 2. *inversion about mean*

Example: n = 3 *qubits*, $N = 2^n = 8$, $|x_0| = |010|$

$$|\psi_1\rangle = \frac{1}{\sqrt{8}}\{|000\rangle + |001\rangle - |010\rangle + |011\rangle + |101\rangle + |110\rangle + |111\rangle\}$$

$$(2|\psi_1\rangle\langle\psi_1|-I)|\psi_1\rangle = 0.1768 * \{|000\rangle + |001\rangle + |011\rangle + |101\rangle + |110\rangle + |111\rangle\} + 0.8839 * |010\rangle$$

Conclusion

The Grover's Algorithm

Summary:

- Superposition
- Amplitude Amplification:
 - Flipping the sign
 - Inversion about mean
- Repeat the above process $O(\sqrt{N})$ times
- Perform Measurement

Applications:

- Finding minimum
- Cryptography finding keys

References

- Grover's Algorithm, Chapter 3, Section-3.10, Qiskit Notebook. https://qiskit.org/textbook/ch-algorithms/grover.html
- Lecture 4- Grover's Algorithm, Quantum Computation-Fall 2015, John Wright (CMU). https://www.cs.cmu.edu/~odonnell/quantum15/lecture04.pdf
- The Grover's Algorithm, QSIT16-talks, Camilo Zapata, Xiao yang.
 https://qudev.phys.ethz.ch/static/content/QSIT16/talks/Grover_QSIT.pdf

Further Reading

- Quantum Computation and Quantum Information, Neilson and Chuang
- Dancing with Qubits, Robert S. Tutor
- Quantum Algorithms for Beginners (https://arxiv.org/pdf/1804.03719.pdf)