Scaling laws, from Perceptrons to Deep networks

Francesco D'Amico

Dipartimento di Fisica

Chimera journal club, October 7, 2025

Outline of the talk

- Review on neural scaling law
 - Empirical findings on neural scaling laws
 - Two models to predict power-laws exponents
 - Discussion (1^o part)

- Our results (with Dario Bocchi and Matteo Negri)
 - Simple perceptron model
 - Experiments on deep networks
 - Discussion (2^o part)

Part IA: Empirical findings

- What is meant by "neural scaling laws"
- Why they motivated large scale LLMs like GPT-3/4
- How can be used to optimize compute cost

Hestness et al (2017): Deep Learning Scaling is Predictable, Empirically

ResNet, image classification

LLM, next word prediction

Hestness et al (2017): Deep Learning Scaling is Predictable, Empirically

Power law region in the intermediate regime:

$$\mathcal{L} \sim cP^{-\gamma}$$

Hestness et al (2017): Deep Learning Scaling is Predictable, Empirically

Power law region in the intermediate regime:

$$\mathcal{L} \sim cP^{-\gamma}$$

Empirical properties of curves for model tested:

- Power laws in all domains tested
- Within each domain, model architectures mainly changes the constant not the exponent
- Same for optimizers (SGD, Adam ..)

With P number of data and N number of parameters, two separate scaling laws:

$$arepsilon(N,P)pprox egin{cases} aP^{-lpha}+c_P(N) & ext{ (data scaling at fixed model)} \\ bN^{-eta}+c_N(P) & ext{ (model scaling at fixed dataset)} \end{cases}$$

With P number of data and N number of parameters, two separate scaling laws:

$$\varepsilon(N,P) \approx \begin{cases}
aP^{-\alpha} + c_P(N) \\
bN^{-\beta} + c_N(P)
\end{cases}$$

Saturating constant depending on the other parameter

With P number of data and N number of parameters, two separate scaling laws:

$$arepsilon(N,P)pprox egin{cases} a\,P^{-lpha}+c_P(N) \ b\,N^{-eta}+c_N(P) \ \end{cases}$$

Saturating constant depending on the other parameter

Proposed scaling: $\varepsilon(N,P) = aP^{-\alpha} + bN^{-\beta} + c_{\infty}$

Proposed scaling: $\varepsilon(N,P) = aP^{-\alpha} + bN^{-\beta} + c_{\infty}$

(c) Extrapolation on WikiText-103.

model fraction 1/16

6

data fraction 1/8

measured test loss

7.0

6.5 - u:0.5%

6.0

5.5 5.0 4.5 4.0

3.5

3.0

fit

 $\sigma:1.689\%$

extrapolated

Proposed scaling: $\varepsilon(N,P) = aP^{-\alpha} + bN^{-\beta} + c_{\infty}$

 \Rightarrow small P,N models capable of predicting large P,N models

Almost perfect scaling laws in GPT models across many magnitudes

Language modeling performance improves smoothly and predictably:

 Performance depends strongly on scale, weakly on model shape (i.e. width vs depth)

- Performance depends strongly on scale, weakly on model shape (i.e. width vs depth)
- Maximum exponent by scaling in tandem N,P

- Performance depends strongly on scale, weakly on model shape (i.e. width vs depth)
- Maximum exponent by scaling in tandem N,P
- Large models are more sample-efficient than small models: same performance with fewer datapoints

- Performance depends strongly on scale, weakly on model shape (i.e. width vs depth)
- Maximum exponent by scaling in tandem N,P
- Large models are more sample-efficient than small models: same performance with fewer datapoints
- Given a fixed compute budget C, best strategy ⇒ very large model stopped very short of convergence

All those results motivated extreme P,N scaling \Rightarrow GPT-3/4 models

All those results motivated extreme P,N scaling \Rightarrow GPT-3/4 models

Smaller models fit predicted GPT-4 loss

Hoffmann et al. (2022): Training Compute-Optimal Large Language Models

Given an available compute C, what is best choice of N,P?

Hoffmann et al. (2022): Training Compute-Optimal Large Language Models

Given an available compute C, what is best choice of N,P? Isocurves at fixed C

Hoffmann et al. (2022): Training Compute-Optimal Large Language Models

Given an available compute C, what is best choice of N,P? Isocurves at fixed C

They found $P_{opt}(C), N_{opt}(C)$ both $\sim C^{0.5}$

Summary of empirical results

- Loss/error scales as $\varepsilon(N,P) = aP^{-\alpha} + bN^{-\beta} + c_{\infty}$
- Exponents robusts wrt most of details of training and architectures
- **Solution** Exponents found $\in [0.05, 0.5]$
- **9** Best strategy given a compute C to scale $P, N \sim C^{0.5}$

Part IB: Two attempts to explain exponents: geometric bounds and DMFT models

Idea:

Case
$$\mathcal{L}(P) - \mathcal{L}(\infty) = \Delta(P)$$
:

Underparametrized $(P \gg N \gg 1)$: variance dominates $\Delta(P) \sim c_{\text{var}} P^{-1}$ (infinite limit + corrections)

Case
$$\mathcal{L}(P) - \mathcal{L}(\infty) = \Delta(P)$$
:

- **Underparametrized** $(P \gg N \gg 1)$: variance dominates $\Delta(P) \sim c_{\text{var}} P^{-1}$ (infinite limit + corrections)
- **Overparametrized** $(N \gg P \gg 1)$: bias dominates $\Delta(P) \sim c_{\text{bias}} P^{-\alpha_{\text{bias}}}$

Case
$$\mathcal{L}(P) - \mathcal{L}(\infty) = \Delta(P)$$
:

- **Underparametrized** $(P \gg N \gg 1)$: **variance** dominates $\Delta(P) \sim c_{\text{var}} P^{-1}$ (infinite limit + corrections)
- **Overparametrized** $(N \gg P \gg 1)$: bias dominates $\Delta(P) \sim c_{\rm bias} P^{-\alpha_{\rm bias}}$

Case
$$\mathcal{L}(N) - \mathcal{L}(\infty) = \Delta(N)$$
:

- **Overparametrized** $(N \gg P \gg 1)$: variance dominates $\Delta(N) \sim c_{\text{var}} N^{-1} \ (N^{-1/2} \ \text{deep case})$ (infinite limit + corrections)
- ② Underparametrized $(P \gg N \gg 1)$: bias dominates $\Delta(N) \sim c_{\rm bias} N^{-\alpha_{\rm bias}}$

- Trivial exponents in variance-dominated regimes
- Non-trivial exponents in bias-dominated regimes

Idea:

- Trivial exponents in variance-dominated regimes
- Non-trivial exponents in bias-dominated regimes

Prediction for non-trivial exponents:

Idea:

- Trivial exponents in variance-dominated regimes
- Non-trivial exponents in bias-dominated regimes

Prediction for non-trivial exponents:

$$\Delta(P) \sim P^{-1/d} \ \Delta(N) \sim N^{-1/d}$$

Idea:

- Trivial exponents in variance-dominated regimes
- Non-trivial exponents in bias-dominated regimes

Prediction for non-trivial exponents:

$$\Delta(P) \sim P^{-1/d} \ \Delta(N) \sim N^{-1/d}$$

Assuming:

- Compact d-dimensional hidden manifold of data
- Teacher-student case: y = F(x) and $\hat{y} = f(x)$
- Both F,f are smooth

Idea:

Why -1/d exponents? Arguments for *bounds*

Idea:

Why -1/d exponents? Arguments for *bounds*

Scaling in P (overparametrized): Distance of test points to closest training point $\mathcal{O}(P^{-1/d})$

Idea:

Why -1/d exponents? Arguments for *bounds*

- Scaling in P (overparametrized):
 Distance of test points to closest training point \(\mathcal{O}(P^{-1/d}) \)
- ② Scaling in N (underparametrized):

Idea:

Why -1/d exponents? Arguments for *bounds*

- Scaling in P (overparametrized):
 Distance of test points to closest training point \(\mathcal{O}(P^{-1/d}) \)
- Scaling in N (underparametrized):
 - **1** Take *N* points $I = \{x\}_{1,...,N}$ from the huge dataset.

Idea:

Why -1/d exponents? Arguments for *bounds*

- Scaling in P (overparametrized):
 Distance of test points to closest training point \(\mathcal{O}(P^{-1/d}) \)
- Scaling in N (underparametrized):
 - Take *N* points $I = \{x\}_{1,...,N}$ from the huge dataset.
 - $oldsymbol{2}$ f approximates F piecewise with N regions, centered on I points.

Idea:

Why -1/d exponents? Arguments for *bounds*

- **Scaling** in P (overparametrized): Distance of test points to closest training point $\mathcal{O}(P^{-1/d})$
- Scaling in N (underparametrized):
 - **1** Take *N* points $I = \{x\}_{1,...,N}$ from the huge dataset.
 - f approximates F piecewise with N regions, centered on I points.
 - **3** Distance of test points to closest $I: \mathcal{O}(N^{-1/d})$

Analytical model: linear random features:

Here they show bounds \equiv *estimates*

Analytical model: linear random features:

Here they show bounds \equiv *estimates*

Teacher

$$F(x) = \sum_{M=1}^{S} \omega_M F_M(x)$$

Analytical model: linear random features:

Here they show bounds \equiv *estimates*

Teacher

$$F(x) = \sum_{M=1}^{S} \omega_M F_M(x)$$

Student

$$f(x) = \sum_{\mu=1}^{N} \theta_{\mu} f_{\mu}(x)$$

Analytical model: linear random features:

Here they show bounds \equiv *estimates*

Teacher

$$F(x) = \sum_{M=1}^{S} \omega_M F_M(x)$$

Student

$$f(x) = \sum_{\mu=1}^{N} \theta_{\mu} f_{\mu}(x)$$

• $\omega_M \sim \mathcal{N}(0, 1/S)$, θ_M learnable

Analytical model: linear random features:

Here they show bounds \equiv *estimates*

Teacher

$$F(x) = \sum_{M=1}^{S} \omega_M F_M(x)$$

Student

$$f(x) = \sum_{\mu=1}^{N} \theta_{\mu} f_{\mu}(x)$$

- $\omega_M \sim \mathcal{N}(0, 1/S)$, θ_M learnable
- Student features $f_{\mu} \in P$ -dimensional subspace of teacher features

Analytical model: linear random features

Key ingredient: power-laws in features and data

Analytical model: linear random features

Key ingredient: power-laws in features and data

Feature-feature second moment matrix:

$$\mathscr{C} = \mathbb{E}_x[F(x)F^T(x)]$$

Data-data second moment matrix:

$$\mathscr{K}(x,x') = \frac{1}{S}F^{T}(x)F(x')$$

Analytical model: linear random features

Key ingredient: power-laws in features and data

Feature-feature second moment matrix:

$$\mathscr{C} = \mathbb{E}_x[F(x)F^T(x)]$$

Data-data second moment matrix:

$$\mathscr{K}(x,x') = \frac{1}{S}F^{T}(x)F(x')$$

Results:

 $lackbox{0} \mathscr{C}, \mathscr{K}$ share non-zero eigenvalues λ_i

Analytical model: linear random features

Key ingredient: power-laws in features and data

Feature-feature second moment matrix:

$$\mathscr{C} = \mathbb{E}_{x}[F(x)F^{T}(x)]$$

Data-data second moment matrix:

$$\mathscr{K}(x,x') = \frac{1}{S}F^{T}(x)F(x')$$

Results:

- $\mathbf{0}$ \mathscr{C},\mathscr{K} share non-zero eigenvalues λ_i
- **2** Assume power-law spectrum: $\lambda_i = \frac{1}{i^{1+\alpha_K}}$ $\Rightarrow \mathcal{L}(P) \sim P^{-\alpha_K}, \mathcal{L}(N) \sim N^{-\alpha_K}$

Analytical model: linear random features

Key ingredient: power-laws in features and data

Feature-feature second moment matrix:

$$\mathscr{C} = \mathbb{E}_{x}[F(x)F^{T}(x)]$$

Data-data second moment matrix:

$$\mathscr{K}(x,x') = \frac{1}{S}F^{T}(x)F(x')$$

Results:

- $\mathbf{0}$ \mathscr{C},\mathscr{K} share non-zero eigenvalues λ_i
- ② Assume power-law spectrum: $\lambda_i = \frac{1}{i^{1+\alpha_K}}$ $\Rightarrow \mathcal{L}(P) \sim P^{-\alpha_K}, \mathcal{L}(N) \sim N^{-\alpha_K}$
- **1** They show $\alpha_K \sim 1/d$

Result: linear random features

Why studying dynamics?

They show:

Why studying dynamics?

They show:

Scaling law in training time t

Why studying dynamics?

They show:

- Scaling law in training time t
- Predict compute-optimal scalings

Why studying dynamics?

They show:

- Scaling law in training time t
- Predict compute-optimal scalings
- $t \rightarrow \infty$ coincides with previous results

Model: teacher-student random features

Model: teacher-student random features

• Data $\mathbf{x} \in \mathbb{R}^N$ drawn $\mathbf{x} \sim p(\mathbf{x})$

Model: teacher-student random features

- Data $\mathbf{x} \in \mathbb{R}^N$ drawn $\mathbf{x} \sim p(\mathbf{x})$
- ullet Teacher from an eigenbasis of features $\psi(\mathbf{x}) \in \mathbb{R}^M$ + noise:

$$y(\mathbf{x}) = \frac{1}{\sqrt{M}} \mathbf{w}^* \cdot \psi(\mathbf{x}) + \sigma \varepsilon(\mathbf{x})$$

Model: teacher-student random features

- Data $\mathbf{x} \in \mathbb{R}^N$ drawn $\mathbf{x} \sim p(\mathbf{x})$
- ullet Teacher from an eigenbasis of features $\psi(\mathbf{x}) \in \mathbb{R}^M$ + noise:

$$y(\mathbf{x}) = \frac{1}{\sqrt{M}} \mathbf{w}^* \cdot \boldsymbol{\psi}(\mathbf{x}) + \sigma \boldsymbol{\varepsilon}(\mathbf{x})$$

• Student is a lower-dimensional projection of features $\mathbf{A}\psi(\mathbf{x})$ where $\mathbf{A} \in \mathbb{R}^{N \times M}, \, A_{ij}$ i.i.d.

$$f(\mathbf{x}) = \frac{1}{\sqrt{N}} \mathbf{w} \cdot \mathbf{A} \psi(\mathbf{x})$$

Assumption: power-law features + data

• Given
$$\langle \psi_k(\mathbf{x}) \psi_l(\mathbf{x})
angle_{\mathbf{x} \sim p(\mathbf{x})} = \delta_{kl} \lambda_k$$

$$\Rightarrow \text{ assume } \lambda_k \sim k^{-b}$$

b inverse to data+kernel complexity

Assumption: power-law features + data

• Given
$$\langle \psi_k(\mathbf{x}) \psi_l(\mathbf{x}) \rangle_{\mathbf{x} \sim p(\mathbf{x})} = \delta_{kl} \lambda_k$$

$$\Rightarrow$$
 assume $\lambda_k \sim k^{-b}$

b inverse to data+kernel complexity

2 Expand Teacher
$$f^*(\mathbf{x}) = \sum_k \omega_k^* \psi_k(\mathbf{x})$$

$$\Rightarrow$$
 assume $(\omega_k^*)^2 \lambda_k \sim k^{-a}$

Assumption: power-law features + data

lacktriangledown Given $\langle \psi_k(\mathbf{x})\psi_l(\mathbf{x})
angle_{\mathbf{x}\sim p(\mathbf{x})}=\delta_{kl}\lambda_k$

$$\Rightarrow$$
 assume $\lambda_k \sim k^{-b}$

b inverse to data+kernel complexity

2 Expand Teacher $f^*(\mathbf{x}) = \sum_k \omega_k^* \psi_k(\mathbf{x})$

$$\Rightarrow$$
 assume $(\omega_k^*)^2 \lambda_k \sim k^{-a}$

- $(\omega_k^*)^2 \lambda_k$ controls generalization error per mode
- Large a ⇒ target error concentrated in first modes ⇒ easy task

DMFT results

(1) Bottleneck scalings

$$\mathscr{L}(t,P,N) \, \approx \, \begin{cases} t^{-\frac{a-1}{b}}, & P,N \to \infty \quad \text{(Time)}, \\ P^{-\min\{a-1,2b\}}, & t,N \to \infty \quad \text{(Data)}, \\ N^{-\min\{a-1,2b\}}, & t,P \to \infty \quad \text{(Model)}. \end{cases}$$

DMFT results

(1) Bottleneck scalings

$$\mathscr{L}(t,P,N) \, pprox \, egin{cases} t^{-rac{a-1}{b}}, & P,N
ightarrow \infty & ext{(Time)}, \ P^{-\min\{a-1,2b\}}, & t,N
ightarrow \infty & ext{(Data)}, \ N^{-\min\{a-1,2b\}}, & t,P
ightarrow \infty & ext{(Model)}. \end{cases}$$

(2) Compute optimal

• Using typical cases $\min\{a-1, 2b\} = a-1$, compute optimal

$$t \sim C^{\frac{b}{1+b}}$$
, $N \sim C^{\frac{1}{1+b}}$

⇒ different scalings for time and data/size

DMFT results

(1) Bottleneck scalings

$$\mathscr{L}(t,P,N) pprox egin{cases} t^{-rac{a-1}{b}}, & P,N
ightarrow \infty & (\mathsf{Time}), \ P^{-\min\{a-1,2b\}}, & t,N
ightarrow \infty & (\mathsf{Data}), \ N^{-\min\{a-1,2b\}}, & t,P
ightarrow \infty & (\mathsf{Model}). \end{cases}$$

(2) Compute optimal

• Using typical cases $\min\{a-1, 2b\} = a-1$, compute optimal

$$t \sim C^{\frac{b}{1+b}}$$
, $N \sim C^{\frac{1}{1+b}}$

⇒ different scalings for time and data/size

Limitations and new results

NTK/random features model: underestimate (absolute) exponents

Limitations and new results

- NTK/random features model: underestimate (absolute) exponents Recent attempts with feature learning:
 - Bordelon et al. (ICLR 2025) How Feature Learning Can Improve Neural Scaling Laws
 - Defilippis et al. (Sept. 2025) Scaling Laws and Spectra of Shallow Neural Networks in the Feature Learning Regime

Limitations and new results

- NTK/random features model: underestimate (absolute) exponents Recent attempts with feature learning:
 - Bordelon et al. (ICLR 2025) How Feature Learning Can Improve Neural Scaling Laws
 - Defilippis et al. (Sept. 2025) Scaling Laws and Spectra of Shallow Neural Networks in the Feature Learning Regime
- Different (complicated) tasks produce "phase-transitions" Wei et al., (2022): Emergent Abilities of Large Language Models

References

- Hestness et al (2017): Deep Learning Scaling is Predictable, Empirically
- Rosenfeld et al. (2020): A Constructive Prediction of the Generalization Error Across Scales
- Kaplan et al (2020): Scaling laws for neural language models
- Bahri et al. (2021): Explaining Neural Scaling Laws
- Hoffmann et al. (2022): Training Compute-Optimal Large Language Models
- Maloney et al. (2022): A Solvable Model of Neural Scaling Laws
- Wei et al., (2022): Emergent Abilities of Large Language Models
- Bordelon et al. (2024): A Dynamical Model of Neural Scaling Laws
- Bordelon et al. (2025) How Feature Learning Can Improve Neural Scaling Laws
- Defilippis et al. (2025) Scaling Laws and Spectra of Shallow Neural Networks in the Feature Learning Regime

Implicit bias produces neural scaling laws in learning curves, from perceptrons to deep networks

Francesco D'Amico^{1,2}*, Dario Bocchi^{1,2}*, Matteo Negri^{1,2}

¹ Physics Department, University of Rome Sapienza, Piazzale Aldo Moro 5, Rome 00185

² 1CNR-Nanotec Rome unit, Piazzale Aldo Moro 5, Rome 00185

Implicit bias produces neural scaling laws in learning curves, from perceptrons to deep networks

Francesco D'Amico^{1,2*}, Dario Bocchi^{1,2*}, Matteo Negri^{1,2}

Physics Department, University of Rome Sapienza, Piazzale Aldo Moro 5, Rome 00185

2 1CNR-Nanotec Rome unit, Piazzale Aldo Moro 5, Rome 00185

Outline:

Implicit bias produces neural scaling laws in learning curves, from perceptrons to deep networks

Francesco D'Amico^{1,2}*, Dario Bocchi^{1,2}*, Matteo Negri^{1,2}

Physics Department, University of Rome Sapienza, Piazzale Aldo Moro 5, Rome 00185

2 1CNR-Nanotec Rome unit, Piazzale Aldo Moro 5, Rome 00185

Outline:

We show two new scalings laws in a simple Perceptron model

Implicit bias produces neural scaling laws in learning curves, from perceptrons to deep networks

Francesco D'Amico^{1,2}*, Dario Bocchi^{1,2}*, Matteo Negri^{1,2}

Physics Department, University of Rome Sapienza, Piazzale Aldo Moro 5, Rome 00185

2 1CNR-Nanotec Rome unit, Piazzale Aldo Moro 5, Rome 00185

Outline:

- We show two new scalings laws in a simple Perceptron model
- ② These new laws combined reproduce $\varepsilon \sim P^{-\gamma}$ scaling law

Part II: Our work

Implicit bias produces neural scaling laws in learning curves, from perceptrons to deep networks

Francesco D'Amico^{1,2}*, Dario Bocchi^{1,2}*, Matteo Negri^{1,2}

Physics Department, University of Rome Sapienza, Piazzale Aldo Moro 5, Rome 00185

2 1CNR-Nanotec Rome unit, Piazzale Aldo Moro 5, Rome 00185

Outline:

- We show two new scalings laws in a simple Perceptron model
- ② These new laws combined reproduce $\varepsilon \sim P^{-\gamma}$ scaling law
- Valid empirically for Deep Nets in real image classification

• Student perceptron $\mathbf{w} \in \mathbb{R}^N$, Teacher perceptron $\mathbf{w}^* \in \mathbb{R}^N$

- Student perceptron $\mathbf{w} \in \mathbb{R}^N$, Teacher perceptron $\mathbf{w}^* \in \mathbb{R}^N$
- $P = \alpha N$ random binary examples $x^{\mu} \in \{\pm 1\}^N$
- Labels $y^{\mu} = \operatorname{sign}(\mathbf{x}^{\mu} \cdot \mathbf{w}^*)$

- Student perceptron $\mathbf{w} \in \mathbb{R}^N$, Teacher perceptron $\mathbf{w}^* \in \mathbb{R}^N$
- $P = \alpha N$ random binary examples $x^{\mu} \in \{\pm 1\}^N$
- Labels $y^{\mu} = \operatorname{sign}(\mathbf{x}^{\mu} \cdot \mathbf{w}^*)$
- Spherical weights $\|\mathbf{w}^*\|^2 = \|\mathbf{w}\|^2 = N$

- Student perceptron $w \in \mathbb{R}^N$, Teacher perceptron $w^* \in \mathbb{R}^N$
- $P = \alpha N$ random binary examples $\mathbf{x}^{\mu} \in \{\pm 1\}^{N}$
- Labels $y^{\mu} = \operatorname{sign}(\mathbf{x}^{\mu} \cdot \mathbf{w}^*)$
- Spherical weights $\|\mathbf{w}^*\|^2 = \|\mathbf{w}\|^2 = N$
- Cross-entropy (Pseudo-likelihood) Loss:

$$L_{\lambda}(\mathbf{w}) = -\sum_{\mu=1}^{P} \frac{1}{\lambda} \left(\lambda \Delta^{\mu} - \log 2 \cosh \left(\lambda \Delta^{\mu} \right) \right) = \sum_{\mu=1}^{P} V_{\lambda}(\Delta^{\mu})$$

where margins

$$\Delta^{\mu} \equiv y^{\mu} \left(\frac{\boldsymbol{w} \cdot \boldsymbol{x}^{\mu}}{\sqrt{N}} \right)$$

- Student perceptron $w \in \mathbb{R}^N$, Teacher perceptron $w^* \in \mathbb{R}^N$
- $P = \alpha N$ random binary examples $x^{\mu} \in \{\pm 1\}^N$
- Labels $y^{\mu} = \operatorname{sign}(\mathbf{x}^{\mu} \cdot \mathbf{w}^*)$
- Spherical weights $\|\mathbf{w}^*\|^2 = \|\mathbf{w}\|^2 = N$
- Cross-entropy (Pseudo-likelihood) Loss:

$$L_{\lambda}(\mathbf{w}) = -\sum_{\mu=1}^{P} \frac{1}{\lambda} \left(\lambda \Delta^{\mu} - \log 2 \cosh \left(\lambda \Delta^{\mu}\right)\right) = \sum_{\mu=1}^{P} V_{\lambda}(\Delta^{\mu})$$

where margins

$$\Delta^{\mu} \equiv y^{\mu} \left(\frac{\boldsymbol{w} \cdot \boldsymbol{x}^{\mu}}{\sqrt{N}} \right)$$

• λ reabsorbed in norm of weights: $\|\mathbf{w}^*\|^2 = \|\mathbf{w}\|^2 = \lambda N$

Solution at fixed α interpolates known learning rules

Unbounded norm perceptrons \approx fixed-norm

• Norm $\lambda(t)$ increases monotonically for GD, Soudry et al., (2018)

Unbounded norm perceptrons \approx fixed-norm

- Norm $\lambda(t)$ increases monotonically for GD, Soudry et al., (2018)
- $\varepsilon(\lambda)$ curves in fixed-norm case $\approx \varepsilon(\lambda(t))$ in unbounded case

Unbounded norm perceptrons ≈ fixed-norm

- Norm $\lambda(t)$ increases monotonically for GD, Soudry et al., (2018)
- $\varepsilon(\lambda)$ curves in fixed-norm case $\approx \varepsilon(\lambda(t))$ in unbounded case

Result (1): Two new scaling laws in λ

Relative error $\hat{\epsilon}_{gen} \equiv \epsilon_{gen}/\epsilon_0$, where $\epsilon_0 = \epsilon(\lambda=0)$

Result (1): Two new scaling laws in λ

Relative error $\hat{\epsilon}_{gen} \equiv \epsilon_{gen}/\epsilon_0$, where $\epsilon_0 = \epsilon(\lambda=0)$

1 Early training $(\lambda < \lambda_{elbow}(\alpha))$ $\rightarrow \hat{\epsilon}_{gen} \sim k_1 \lambda^{-\gamma_1}$

Result (1): Two new scaling laws in λ

Relative error $\hat{\epsilon}_{gen} \equiv \epsilon_{gen}/\epsilon_0$, where $\epsilon_0 = \epsilon(\lambda=0)$

- **1** Early training $(\lambda < \lambda_{elbow}(\alpha))$ $\rightarrow \hat{\epsilon}_{gen} \sim k_1 \lambda^{-\gamma_1}$
- ② Optima of curves $(\lambda > \lambda_{elbow}(\alpha)) \rightarrow \lambda_{opt} \sim k_2 \alpha^{\gamma_2}$

Result (2): collapse on a master curve Φ

Define the rescaling $\hat{\epsilon}_{gen}/\hat{\epsilon}_{opt} = \Phi_{\alpha}(\lambda/\lambda_{opt})$

Curves converge to a master curve for $\alpha >> 1$: $\Phi_{\alpha} \to \Phi$

Result (3): predict neural scaling law

- lacktriangle $\hat{\epsilon}_{gen} \sim k_1 \lambda^{-\gamma_1}$ for $\lambda < \lambda_{elbow}(\alpha)$
- $oldsymbol{2} \lambda_{\mathrm{opt}} \sim k_2 lpha^{\gamma_2} \ \mathrm{for} \ \lambda > \lambda_{elbow}(lpha)$
- $\ \ \, \boldsymbol{\hat{\epsilon}_{gen}}/\boldsymbol{\hat{\epsilon}_{opt}} = \boldsymbol{\Phi}(\boldsymbol{\lambda}/\lambda_{opt}) \text{ for } \boldsymbol{\alpha} \gg 1$

We recover $\hat{\epsilon}_{gen} \sim lpha^{-\gamma}$, with $\gamma = \gamma_1 \gamma_2$

Result (3): predict neural scaling law

$$lacktriangle$$
 $\hat{arepsilon}_{
m gen} \sim k_1 \lambda^{-\gamma_1}$ for $\lambda < \lambda_{elbow}(lpha)$

$$\begin{array}{c} \textcircled{\scriptsize \textbf{0}} \quad \hat{\varepsilon}_{\rm gen} \sim k_1 \lambda^{-\gamma_1} \ \ \text{for} \ \lambda < \lambda_{elbow}(\alpha) \\ \\ \textcircled{\scriptsize \textbf{0}} \quad \lambda_{\rm opt} \sim k_2 \alpha^{\gamma_2} \ \ \text{for} \ \lambda > \lambda_{elbow}(\alpha) \\ \\ \textcircled{\scriptsize \textbf{0}} \quad \hat{\varepsilon}_{\rm gen} / \hat{\varepsilon}_{\rm opt} = \Phi(\lambda/\lambda_{\rm opt}) \ \ \text{for} \ \alpha \gg 1 \\ \end{array} \right\}$$

$$oldsymbol{\hat{\epsilon}}_{
m gen}/\hat{oldsymbol{\hat{\epsilon}}}_{
m opt} = \Phi(\lambda/\lambda_{
m opt}) ext{ for } lpha \gg 1$$

$$\hat{arepsilon}_{
m gen} \sim k_1 \, k_2^{-\gamma_1} \, lpha^{-\gamma_1 \gamma_2} \, \, {
m for} \, \, lpha \gg 1$$

Result (3): predict neural scaling law

 $\begin{array}{c} \textcircled{\scriptsize \textbf{0}} \quad \hat{\varepsilon}_{\rm gen} \sim k_1 \lambda^{-\gamma_1} \ \ \text{for} \ \lambda < \lambda_{elbow}(\alpha) \\ \\ \textcircled{\scriptsize \textbf{0}} \quad \lambda_{\rm opt} \sim k_2 \alpha^{\gamma_2} \ \ \text{for} \ \lambda > \lambda_{elbow}(\alpha) \\ \\ \textcircled{\scriptsize \textbf{0}} \quad \hat{\varepsilon}_{\rm gen} / \hat{\varepsilon}_{\rm opt} = \Phi(\lambda/\lambda_{\rm opt}) \ \ \text{for} \ \alpha \gg 1 \\ \end{array} \right\}$

We recover $\hat{\varepsilon}_{\rm gen} \sim \alpha^{-\gamma}$, with $\gamma = \gamma_1 \gamma_2$

Does the theory also apply to deep networks?

Architectures:

- Convolutional Neural Networks (CNN)
- Residual Neural Networks (ResNet)
- Vision Transformers (ViT)

Datasets:

- MNIST (greyscale digits, 10 classes)
- CIFAR10 (RGB images, 10 classes)
- CIFAR100 (RGB images, 100 classes)

Norm in deep networks: Bartlett et al. (2017) Spectrally-normalized margin bounds for neural networks

Spectral Complexity norm for a L-layer deep net with matrices A_i :

- ρ_i Lipschitz constant of layer i activation function
- $\|\cdot\|_{\sigma}$ biggest singular value (spectral norm)
- $\|\cdot\|_{2,1}$ sum of ℓ_2 norms of columns
- M_i reference matrix (can be = 0)

$$R_{A} = \left(\prod_{i=1}^{L} \rho_{i} \|A_{i}\|_{\sigma}\right) \left(\sum_{i=1}^{L} \frac{\|A_{i}^{\top} - M_{i}^{\top}\|_{2,1}^{2/3}}{\|A_{i}\|_{\sigma}^{2/3}}\right)^{3/2}$$

Norm in deep networks: Bartlett et al. (2017) Spectrally-normalized margin bounds for neural networks

Spectral Complexity norm for a L-layer deep net with matrices A_i :

- ρ_i Lipschitz constant of layer i activation function
- $\|\cdot\|_{\sigma}$ biggest singular value (spectral norm)
- $\|\cdot\|_{2,1}$ sum of ℓ_2 norms of columns
- M_i reference matrix (can be = 0)

$$R_{A} = \left[\left(\prod_{i=1}^{L} \rho_{i} \|A_{i}\|_{\sigma} \right) \right] \left(\sum_{i=1}^{L} \frac{\|A_{i}^{\top} - M_{i}^{\top}\|_{2,1}^{2/3}}{\|A_{i}\|_{\sigma}^{2/3}} \right)^{3/2}$$

Maximum expansion

Norm in deep networks: Bartlett et al. (2017) Spectrally-normalized margin bounds for neural networks

Spectral Complexity norm for a L-layer deep net with matrices A_i :

- ρ_i Lipschitz constant of layer i activation function
- $\|\cdot\|_{\sigma}$ biggest singular value (spectral norm)
- $\|\cdot\|_{2,1}$ sum of ℓ_2 norms of columns
- M_i reference matrix (can be = 0)

$$R_{A} = \left[\left(\sum_{i=1}^{L} \rho_{i} \|A_{i}\|_{\sigma} \right) \right] \left(\sum_{i=1}^{L} \frac{\|A_{i}^{\top} - M_{i}^{\top}\|_{2,1}^{2/3}}{\|A_{i}\|_{\sigma}^{2/3}} \right)^{3/2}$$

Maximum expansion

Effective rank

Result (1): Two scaling laws

Result (2): Collapse on a master curve

- Direct measure: γ_{meas}
- Measure γ_1, γ_2 and compute $\gamma_{pred} = \gamma_1 \gamma_2$

- Direct measure: γ_{meas}
- Measure γ_1, γ_2 and compute $\gamma_{pred} = \gamma_1 \gamma_2$

In a realistic case:

$$\bullet \quad \varepsilon_{\rm gen} = k_1 \lambda^{-\gamma_1} + q_1$$

$$\begin{cases}
\mathbf{\varepsilon}_{\text{gen}} = k_1 \lambda^{-\gamma_1} + q_1 \\
\mathbf{\varepsilon}_{\text{gen}} = k_1 (k_2 P^{\gamma_2} + q_2)^{-\gamma_1} + q_1
\end{cases}$$

$$\mathbf{\varepsilon}_{\text{gen}} = k_1 (k_2 P^{\gamma_2} + q_2)^{-\gamma_1} + q_1$$

- Direct measure: γ_{meas}
- Measure γ_1, γ_2 and compute $\gamma_{pred} = \gamma_1 \gamma_2$

In a realistic case:

$$\varepsilon_{\text{gen}} = k_1 (k_2 P^{\gamma_2} + q_2)^{-\gamma_1} + q_1$$

Intermediate regime $\varepsilon \sim P^{-\gamma_1 \gamma_2}$

Hestness et al (2017) empirical curve

- Direct measure: γ_{meas}
- Measure γ_1, γ_2 and compute $\gamma_{pred} = \gamma_1 \gamma_2$

In a realistic case:

$$\varepsilon_{\text{gen}} = k_1 (k_2 P^{\gamma_2} + q_2)^{-\gamma_1} + q_1$$

Intermediate regime $\varepsilon \sim P^{-\gamma_1 \gamma_2}$

Model	Dataset	γ_{pred}	γ_{meas}	σ
CNN	MNIST	0.60	0.55	0.09
CNN	CIFAR10	0.28	0.25	0.07
CNN	CIFAR100	0.16	0.16	0.03
ResNet	MNIST	0.57	0.69	0.08
ResNet	CIFAR10	0.54	0.56	0.04
ResNet	CIFAR100	0.31	0.37	0.03
ViT	MNIST	0.47	0.54	0.03
ViT	CIFAR10	0.23	0.21	0.03
ViT	CIFAR100	0.14	0.12	0.04

Hestness et al (2017) empirical curve

 $\gamma_1 \gamma_2$ compatible with γ_{meas}

Numerically we tested

Numerically we tested

A moderate weight decay

Numerically we tested

- A moderate weight decay
- SGD instead of Adam

Numerically we tested

- A moderate weight decay
- SGD instead of Adam
- **1** Other norm definitions: $\ell_1, \ell_2, G_{2,1}$, Spectral.

Numerically we tested

- A moderate weight decay
- SGD instead of Adam
- **1** Other norm definitions: $\ell_1, \ell_2, G_{2,1}$, Spectral.

Results:

Qualitative picture is the same in all cases

Numerically we tested

- A moderate weight decay
- SGD instead of Adam
- **1** Other norm definitions: $\ell_1, \ell_2, G_{2,1}$, Spectral.

Results:

- Qualitative picture is the same in all cases
- ② In (1) and (2) also $\gamma_1 \gamma_2$ compatible with γ (same γ as before)

Numerically we tested

- A moderate weight decay
- SGD instead of Adam
- **1** Other norm definitions: $\ell_1, \ell_2, G_{2,1}$, Spectral.

Results:

- Qualitative picture is the same in all cases
- ② In (1) and (2) also $\gamma_1 \gamma_2$ compatible with γ (same γ as before)
- **1** In (3) $\gamma_1 \gamma_2 \neq \gamma \Rightarrow$ Spectral complexity is "special"

Limitations and possible extensions

No hidden layer ⇒ no scaling in N
 Extension: NTK or feature learning two-layers NN

Limitations and possible extensions

- No hidden layer ⇒ no scaling in N
 Extension: NTK or feature learning two-layers NN
- Statical results to predict dynamics
 Extension: DMFT (i.e. Montanari and Urbani, (2025) Dynamical Decoupling of Generalization and Overfitting in Large Two-Layer Networks)

Limitations and possible extensions

- No hidden layer ⇒ no scaling in N
 Extension: NTK or feature learning two-layers NN
- Statical results to predict dynamics
 Extension: DMFT (i.e. Montanari and Urbani, (2025) Dynamical Decoupling of Generalization and Overfitting in Large Two-Layer Networks)
- Only image classification
 Extension: LLMs (i.e. Maloney et al. (2022) A Solvable Model of Neural Scaling Laws)

Thank you for your attention!

Francesco D'Amico

Dipartimento di Fisica

Chimera journal club, October 7, 2025

Contacts:

- francesco.damico@uniroma1.it
- https://francill99.github.io/fdamico_website/about