1 Probabilités conditionnelles

> Rappel théorème de Bayes :

$$Pr(A|B) = \frac{Pr(\tilde{A} \cap B)}{Pr(B)} = \frac{Pr(B|A)Pr(A)}{Pr(B)}$$

> Distribution conditionnelle :

$$\Pr(X_1 = x_1 | X_2 = x_2) = \frac{\Pr(X_1 = x_1, X_2 = x_2)}{\Pr(X_2 = x_2)}$$

> L'espérance d'une fonction conditionnelle :

$$E[g(X_1)|X_2 = x_2] = \sum_{i=0}^{\infty} g(x) \Pr(X_1 = x_1|X_2 = x_2)$$

> La variance d'une fonction conditionnelle :

$$Var(g(X_1)|X_2) = E\left[g(X_1)^2|X_2\right] - E\left[g(X_1)|X_2\right]^2$$

> L'espérance conditionnelle :

$$E[X_1] = E[E[X_1|X_2]] = \sum_{x_2=0}^{\infty} E[X_1|X_2] Pr(X_2 = x_2)$$

$$E[X_1] = E[E[X_1|X_2]] = \int_{-\infty}^{\infty} E[X_1|X_2] f_{X_2}(x_2) dx_2$$

> La variance conditionnelle :

$$Var(X_1) = E[Var(X_1|X_2)] + Var(E[X_1|X_2])$$

Lorsqu'il y a 3 v.a., l'espérance devient

$$E[X_1|X_2] = E[E[X_1|X_2, X_3]|X_2]$$

$$= \sum_{x_3=0}^{\infty} E[X_1|X_2, X_3] \Pr(X_3 = x_3|X_2 = x_2)$$

$$= \int_{-\infty}^{\infty} E[X_1|X_2, X_3] f_{X_3|X_2}(x_3|x_2) dx_3$$

 $= \int_{-\infty}^{\infty} E[\Lambda_1|\Lambda_2, \Lambda_3] f_{X_3|X_2}(X)$ Et la variance conditionnelle devient

$$Var(X_1) = E[Var(X_1|X_2, X_3)] + Var(E[X_1|X_2, X_3])$$

Poisson composée

- > Soit $S = X_1 + ... + X_N$, où les X_i sont iid, $N \sim Pois(\lambda)$ est stochastiquement indépendant des X_i . Alors, on a $\mathbb{E}[Sh(S)] = \lambda \mathbb{E}[Xh(S+X)]$
- > On peut aussi trouver que

$$\mathbf{E}\left[S^{n}\right] = \lambda \sum_{j=0}^{n-1} \binom{n-1}{j} \mathbf{E}\left[S^{j}\right] \mathbf{E}\left[X^{n-j}\right]$$

Mesures de risque

> Value-At-Risk (VaR) : représente le quantile au niveau κ de X.

$$VaR_{\kappa}(X) = F_X^{-1}(\kappa) = \inf\{x \ge 0 : F_X(x) \ge \kappa\}$$

> Tail Value-At-Risk (aussi appelée *Conditional Tail Expectation*) : représente la perte moyenne de X, sachant qu'elle est au dessus de la valeur $VaR_{\kappa}(X)$.

$$TVaR_{\kappa}(X) = \mathbb{E}\left[X|X > VaR_{\kappa}(X)\right]$$

$$= \int_{0}^{\infty} x f_{X|X > VaR_{\kappa}(X)}(x) dx$$

$$= \int_{VaR_{\kappa}(X)}^{\infty} \frac{x f_{X}(x)}{\overline{F}_{X}(VaR_{\kappa}(X))} dx$$

$$= \frac{1}{1 - \kappa} \int_{VaR_{\kappa}(X)}^{\infty} x f_{X}(x) dx$$

2 Chaînes de Markov

Définition

Une chaîne de Markov est homogène si

$$\Pr(X_{n+1} = j | X_n = i, ..., X_0 = i_0) = \Pr(X_{n+1} = j | X_n = i)$$
$$= p_{ij}$$

On définit la matrice des probabilités de transition

$$P = [p_{ij}]_{i \times j}$$

Équation de Chapman-Kolmogorov

$$p_{ij}^{(n)} = \Pr(X_{k+n} = j | X_k = i)$$

$$p_{ij}^{(n+m)} = \sum_{k=0}^{\infty} p_{ik}^{(n)} p_{kj}^{(m)}$$

Note : soit P la matrice des probabilités de transition. On peut trouver $P^{(n+m)}=P^{(n)}\cdot P^{(m)}$, avec $P^{(n)}=P^n=P\cdot P\cdot P\cdot ...\cdot P$.

$$\Pr(X_n = j) = \sum_{i=0}^{\infty} p_{ij}^{(n)} p_{x_0}(i)$$
$$= \sum_{i=0}^{\infty} \Pr(X_n = j | X_0 = i) \Pr(X_0 = i)$$

États accessibles et communicants

- > j est accessible de i si $p_{ij}^{(n)} > 0$, pour $n \in \mathbb{N}$.
- \rightarrow si i et j sont accessibles réciproquement ($i \leftrightarrow i$), alors ils sont **communicants**. Ils forment donc une classe (ainsi que les autres états communicants).
- > Une chaîne de Markov est dite <u>irréductible</u> si elle est composée d'une seule classe.

Propriété d'une classe

- **✓** Réflexibilité : $p_{ii}^{(0)} = 1$.
- **✓** Symétrie : $i \leftrightarrow j$ est équivalent à $j \leftrightarrow i$.
- ✓ Transitivité : si i communique avec j (i.e. $p_{ij}^{(n)} > 0$) et que j communique avec k (i.e. $p_{ik}^{(m)} > 0$), alors

$$p_{ik}^{(n+m)} = \sum_{r=0}^{\infty} p_{ir}^{(n)} p_{rk}^{(m)} \ge p_{ij}^{(n)} p_{jk}^{(m)} > 0$$

États récurrents, transcients et absorbants

- > f_{ii}: probabilité de revenir éventuellement à l'état i en ayant comme point de départ i.
- > Si $f_{ii} = 1$, i est récurrent. Si $f_{ii} < 1$, alors i est transcient.
- > Aussi, si $\sum_{n=1}^{\infty} p_{ii}^{(n)} = \infty$, alors *i* est récurrent. Sinon, il est transcient.
- > Si l'état i est récurrent et que i ↔ j, alors j est récurrent aussi.
- > $f_{ii}^{(n)}$: probabilité de revenir à l'état i pour la première fois après n étapes.
- > Une chaîne de Markov irréductible avec espace d'état fini n'a que des états récurrents.

> **État absorbant** : j est un état absorbant si $p_{jj} = 1$. De plus, Si j est un état absorbant, alors

$$f_{ij} = \sum_{k=0}^{m} p_{ik} f_{kj}$$

Probabilité limites

> **État périodique** : si l'état a une période *d*, alors il sera possible de revenir à cet état après *n* étapes, qui est un multiple de *d*. i.e

$$d(i) = P.G.C.D\{n \in \mathbb{N} \mid p_{ii}^{(n)} > 0\}$$

- \Rightarrow si d(i) = 1, alors l'état i est **apériodique**.
- > La périodicité est une propriété de classe : si $i \leftrightarrow j$, alors d(i) = d(j).
- > Le temps de retour moyen pour l'état *i* est défini par

$$\mu_{ii} = \sum_{n=1}^{\infty} n f_{ii}^{(n)}$$

- > **État récurrent positif** : si, à partir de l'état *i*, le temps de retour moyen μ_{ii} à l'état *i* est fini, alors l'état *i* est récurrent positif.
- > **État ergodique** : un état qui est à la fois apériodique et récurrent positif.
- > Si une Chaîne de Markov est irréductible et que tout ses états sont ergodiques, alors

(1)
$$\lim_{n\to\infty} p_{ij}^{(n)} = \pi_j < \infty$$

(2)
$$\pi_j = \sum_{i=0}^{\infty} \pi_i p_{ij}$$

(3)
$$\sum_{i=0}^{\infty} \pi_i = 1$$

> On peut alors résoudre un système d'équations pour trouver nos π_i .

3 Processus de Poisson

Soit N(t) le nombre d'évènements qui se sont produits dans l'intervalle t.

Définitions

Définition 1

Un processus de dénombrement $\{N(t); t \ge 0\}$ est dit un processus de Poisson avec $\lambda > 0$ ssi

- (1) N(0) = 0
- (2) Le processus a des accroissements indépendants, i.e pour $0 \le t_1 \le t_2 < t_3$, les accroissements $(N(t_3) N(t_2))$ et $(N(t_2) N(t_1))$ sont stochastiquement indépendants.
- (3) $\forall t$, $(N(s+t) N(s)) \sim Pois(\lambda t)$. Alors, $\Pr(N(s+t) - N(s) = n) = \frac{(\lambda t)^n e^{-\lambda t}}{n!}$

Définition 2

Un processus de dénombrement $\{N(t); t \ge 0\}$ est dit un processus de Poisson avec $\lambda > 0$ ssi

- (1) N(0) = 0
- (2) a des accroissements indépendants et stationnaires

(3)
$$Pr(N(h) = 1) = \lambda h + o(h)$$

(4)
$$\Pr(N(h) \ge 2) = o(h)$$

Avec o(h) une fonction où f(h) = o(h) si $\lim_{n \to \infty} \frac{f(h)}{h} = 0$.

On peut prouver que ces 2 définitions sont équivalents.

Temps séparant 2 évènements successifs

- > Soit T_i le temps entre le $(i-1)^e$ et le i^e évènement.
- \rightarrow Alors, $T_n \sim Exp(\lambda)$.
- > Soit S_n le moment où se produit le i^e évènement. On a

$$S_n = \sum_{i=1}^n T_i$$

- → On peut facilement prouver que $S_n \sim \Gamma(n, \lambda)$.
- > Si N(t) ≥ n, alors nécessairement S_n ≤ t.

Processus de Poisson avec évènements de type I et II

- > Soit un Processus de Poisson $\{N(t); t \geq 0\}$ où il peut y avoir un évènement de type I avec probabilité p ou un de type II avec probabilité q.
- > Nécessairement, on a

$$N(t) = N_1(t) + N_2(t)$$

Avec $N_1(t)$ et $N_2(t)$ qui sont stochastiquement indépendants.

 $> N_i(t) \sim Pois(\lambda p_i t)$, où p_i est la probabilité que l'évènement de type i se produise.

Distribution conditionnelle des temps d'occurence

> Pour un processus de Poisson $\{N(t); t \ge 0\}$, la distribution conditionnelle des temps d'occurence $S_1,...S_n$ sachant que N(t) = n est définie par

$$f_{S_1,...,S_n|N(t)}(s_1,...,s_n|n) = \frac{n!}{t^n}$$

pour $0 < s_1 < ... < s_n$.

> La distribution de $S_1, ..., S_n | N(t) = n$ a la même distribution que les statistiques d'ordre :

$$U_{(1)},...,U_{(n)} \sim U(0,t)$$

Processus de Poisson non-homogène

Définition

Un processus de dénombrement $\{N(t); t \geq 0\}$ est dit être un processus de Poisson non-homogène avec fonction d'intensité $\lambda(t)$ si

- (1) N(0) = 0;
- (2) $\{N(t); t \ge 0\}$ a des accroissements indépendants;
- (3) $\Pr(N(t+h) N(t) = 1) = \lambda(t)h + o(h);$
- (4) $\Pr\left(N(t+h)-N(t)\geq 2\right)=o(h)$ où o(h) est une fonction négligeable.

Proposition 1

$$\Pr\left(N(t+s)-N(t)=n\right) = \frac{\left(m(t+s)-m(s)\right)^n}{n!} e^{-\left(m(t+s)-m(s)\right)}$$
 i.e. où $m(t) = \int_0^t \lambda(x) dx$. On a alors que
$$N(t+s)-N(s) \sim Pois(m(t+s)-m(s))$$

Proposition 2

Si S_n désigne le temps d'occurrence du n^e évènement, alors $f_{S_n}(t) = \lambda(t) \frac{m(t)^{n-1}}{(n-1)!} e^{-m(t)}$

Proposition 3

Si
$$T_n = S_n - S_{n-1}$$
, alors on a, pour $n \ge 2$,
$$f_{T_n}(t) = \frac{1}{(n-2)!} \int_0^\infty \lambda(s) \lambda(t+s) m(s)^{n-2} e^{-m(t+s)} ds$$

Processus de Poisson composé

Définition

Un processus stochastique $\{N(t); t \geq 0\}$ est dit être un processus de Poisson composé s'il peut être représenté comme suit :

$$X(t) = \sum_{i=1}^{N(t)} Y_i$$

où $\{N(t); t \ge 0\}$ est un Processus de Poisson avec paramètre $\lambda > 0$ et $\{Y_i; i \in \mathbb{N}\}$ est une suite de v.a. *iid* indépendantes de N(t).

Proposition 1

Soit $\{X(t); t \geq 0\}$ un processus de Poisson composé avec paramètre $\lambda > 0$ et supposons que $\Pr\left(Y_i = \alpha_i\right) = p_i, \sum p_i = 1$.

$$X(t) = \sum_{j} \alpha_{j} N_{j}(t)$$

où $N_i(t)$ est le nombre de fois que se produit l'évènement α_i dans l'intervalle de temps [0,t], et $\{N(t); t \geq 0\}$ forme une suite de v.a. indépentantes telles que $N_i(t) \sim Pois(\lambda p_i t)$. Lorsque $t \to \infty$, alors X(t) est asymptotiquement normal,

$$X(t) \sim \mathcal{N}\left(\lambda t \mathbb{E}\left[Y\right], \lambda t \mathbb{E}\left[Y^2\right]\right)$$

Proposition 2

Si $\{X(t); t \geq 0\}$ et $\{Y(t); t \geq 0\}$ sont 2 processus de Poisson composés indépendants avec paramètres et fonctions de répartition λ_1, F_{X_1} et λ_2, F_{Y_1} respectivement, alors $\{X(t) +$ $Y(t); t \ge 0$ } est aussi un processus de Poisson composé avec paramètre $\lambda_1\lambda_2$ et fonction de répartition $F_{X_1+Y_1}$ telle que

$$F_{X_1+Y_1} = \frac{\lambda_1 F_{X_1} + \lambda_2 F_{Y_1}}{\lambda_1 + \lambda_2}$$

Processus de Poisson conditionnel

Définition

Un processus de dénombrement avec un taux aléatoire $\Lambda > 0$ est un processus de Poisson conditionnel si $\{N(t)|\Lambda = \lambda; t \geq 0\}$ est un processus de Poisson avec taux $\lambda > 0$.

Rappel sur la loi Gamma

La fonction de répartition de la loi Gamma, lorsque $\alpha \in \mathbb{Z}$, est définie par

$$F_X(x) = 1 - \sum_{k=1}^{\alpha - 1} \frac{(\lambda x)^k e^{-\lambda x}}{k!}$$

Remarques importantes

- (1) Un processus de Poisson conditionnel a des accroissements stationnaires (i.e. l'accroissement ne dépend pas d'où on est, mais plutôt de l'intervalle de temps);
- (2) Mais le processus de Poisson conditionnel n'a pas nécessairement des accroissements indépendants;
- (3) Identité Poisson-Gamma : si on a $\Lambda \sim \Gamma(m, \theta)$, alors ¹ $N(t) \sim NB\left(r = m, p = \frac{\theta}{\theta + t}\right)$

(4) L'espérance et la variance d'un processus de Poisson conditionnel sont définies par

$$E[N(t)] = tE[\Lambda]$$

$$Var(N(t)) = tE[\Lambda] + t^{2}Var(\Lambda)$$

(5) En utilisant le théorème de Bayes, on peut trouver la fonction de répartition $F_{\Lambda|N(t)}(x|n)$ et fonction de densité $f_{\Lambda|N(t)}(x|n)$ telles que

$$\begin{split} F_{\Lambda|N(t)}(x|n) &= \frac{\Pr\left(\Lambda \leq x|N(t) = n\right)}{\Pr\left(N(t) = n\right)} \\ &= \frac{\Pr\left(N(t) = n|\Lambda\right) f_{\Lambda}(\lambda) d\lambda}{\int_{0}^{\infty} \Pr\left(N(t) = n|\Lambda = \lambda\right) f_{\Lambda}(\lambda) d\lambda} \end{split}$$

(6) On a, $\forall t > 0$, $\Pr(N(t) > n) = \int_{0}^{\infty} \overline{F}_{\Lambda} \left(\frac{x}{n}\right) \frac{x^{n}}{n!} e^{-x} dx$

Processus de renouvellement

Définitions générales

- > T_n : intervalle de temps entre le $(n-1)^e$ et le n^e renouvellement:
- $S_n = \sum_{i=1}^n T_i$: le temps d'occurence du $n^{\rm e}$ renouvellement. On va souvent noter $S_{N(t)}$, avec N(t) comme temps d'arrêt du processus ²;
- $\rightarrow \mu = E[T_i]$: temps moyen d'attente entre 2 renouvellements:

Distribution de N(t)

On définit N(t) comme $N(t) = \max\{n : S_n \le t\}$. Alors,

$$\Pr\left(N(t) = n\right) = F_T^{*n}(t) - F_T^{*(n+1)}(t)$$
 Dans le cas où $T \sim Erlang(m, \lambda)$, alors

$$\Pr\left(N(t) = n\right) = \sum_{k=mn}^{m(n+1)-1} \frac{(\lambda x)^k e^{-\lambda x}}{k!}$$

- 1. Être capable de faire cette démonstration pour l'examen
- 2. N(t) est le temps d'arrêt dans le sens où on cesse le processus de dénombrement lorsqu'on atteint N(t).

Fonction de renouvellement

La fonction de renouvellement est le nombre moyen d'occurences dans l'intervalle [0,t]:

$$m(t) = E[N(t)] = \sum_{n=1}^{\infty} F_T^{*(n)}(t)$$

Solution de l'équation de renouvellement

m(t) satisfait l'équation de renouvellement, soit

$$m(t) = F_T(t) + \int_0^t m(t-x) f_T(x) dx$$

Relation biunivoque entre m(t) et F_T

Avec la transformée de Laplace de m(t), $\hat{m}(s)$, on a

$$\hat{m}(s) = \frac{\hat{f}_T(s)}{s} + \hat{m}(s)\hat{f}_T(s)$$
$$= \frac{\hat{f}(s)}{s\left(1 - \hat{f}(s)\right)}$$

Théorèmes limites

- (1) On a que $N(\infty) = \infty$ avec probabilité 1. De plus, $\frac{N(t)}{t} \underset{t \to \infty}{\longrightarrow} \frac{1}{u}$
 - avec une probabilité presque certaine.
- (2) Théorème élémentaire du renouvellement : avec $t \to \infty$, on a $\frac{m(t)}{t} \underset{t \to \infty}{\longrightarrow} \frac{1}{u}$
- (3) Lorsque $t \to \infty$, N(t) est aymptotiquement normale, telle que

$$N(t) \sim \mathcal{N}\left(\frac{t}{\mathrm{E}\left[T\right]}, \frac{t\mathrm{Var}\left(T\right)}{\mathrm{E}\left[T\right]^{3}}\right)$$

Équation de renouvellement

De façon générale, si on a une équation intégrale d'une fonction g(t) telle que

$$g(t) = h(t) + \int_0^t g(t - x) dF_T(x)$$

Alors, la seule solution est

$$g(t) = h(t) + \int_0^t h(t - x) dm(x)$$

Distribution de $S_{N(t)}$

On peut définir la fonction de répartition et l'espérance de $S_{N(t)}$ comme

$$F_{S_{N(t)}}(x) = \overline{F}_T(t) + \int_0^x \overline{F}_T(t-y)dm(y)$$

e

$$\mathrm{E}\left[S_{N(t)}\right] = tF_{T}(t) - \int_{0}^{t} (t - y)\overline{F}_{T}(t - y)dm(y)$$

De plus

$$E\left[S_{N(t)+1}\right] = E\left[T\right]\left(m(t)+1\right)$$

Key renewal theorem

$$\lim_{t \to \infty} \int_0^t h(t - x) dm(x) = \frac{1}{E[T]} \int_0^\infty h(x) dx$$

Processus de renouvellement avec délai

- > Soit $\{T_n : n \in \mathbb{N}\}$ des temps entre des renouvellements succesifs qui sont *iid* tel que $F_{T_n}(t) = F_{T_2}(t)$ pour $n \ge 2$ et $F_{T_1(t)} \ne F_{T_2}(t)$. Alors $\{N_d(t); t \ge 0\}$ est dit être un processus de renouvellement avec délai.
- \rightarrow La distribution de $N_d(t)$ est

$$\Pr\left(N_d(t) = n\right) = F_{T_1} * F_{T_2}^{*(n-1)}(t) - F_{T_1} * F_{T_2}^{*(n)}(t)$$

 \Rightarrow la fonction de renouvellement $m_d(t)$ est donc

$$m_d(t) = \sum_{n=1}^{\infty} F_{T_1} * F_{T_2}^{*(n-1)}(t)$$

 \rightarrow De plus, $m_d(t)$ satisfait aussi l'équation de renouvellement, telle que

$$m_d(t) = F_{T_1}(t) + \int_0^t m_o(t-x) f_{T_1}(x) dx$$

où $m_o(t)$ est la fonction de renouvellement d'un processus de renouvellement ordinaire qui débute à T_2 .

Processus de renouvellement stationnaire

> Un processus de renouvellement $\{N_e(t); t \geq 0\}$ est dit stationnaire si

$$F_{T_1} = F_e(t) = \frac{\int_0^t \overline{F}_{T_2}(x) dx}{\operatorname{E}[T_2]}$$

 \rightarrow La fonction de renouvellement $m_e(t)$ est définie par

$$m_e(t) = \operatorname{E}\left[N_e(t)\right] = \frac{t}{\operatorname{E}\left[T_2\right]}$$

> La distribution de $N_e(t)$ est définie par $\Pr\left(N_e(t+h)-N_e(t)=n\right)=\Pr\left(N_e(h)=n\right)$ Car les accroissements sont stationnaires.

Processus de renouvellement alterné

- > Soit la suite $\{(T_n, T'_n); n \in \mathbb{N}\}$ des vecteurs iid où les composantes (T_n, T'_n) peuvent être dépendante. T_n représente un intervalle de temps dans lequel le processus (de renouvellement) est on et T'_n un intervalle de temps où le processus est off.
- > On peut donc définir 2 processus (*on* et *off*):
 - $\{N_1(t); t \geq 0\}$ est un processus de renouvellement *avec délai* généré par la suite des temps $\{T_1, T'_n + T_{n+1}; n \in \mathbb{Z}\}$, et sa fonction de renouvellement est

$$m_1(t) = \sum_{n=1}^{\infty} F_{T_1} * F_{T_2+T_1}^{*(n-1)}(t)$$
$$= \sum_{n=1}^{\infty} F_{T_1}^{*(n)}(t) * F_{T_1'}^{*(n-1)}(t)$$

- $\{N_2(t); t \geq 0\}$ est un processus de renouvellement *ordinaire* généré par la suite des temps $\{T_n + T'_n; n \in \mathbb{Z}\}$, et sa fonction de renouvellement est

$$m_2(t) = \sum_{n=1}^{\infty} F_{T_1 T_1'}^{*(n)}(t) = \sum_{n=1}^{\infty} F_{T_1}^{*(n)} * F_{T_1'}^{*(n)}(t)$$

> **Proposition 1**: Supposons que T_n est indépendant de T'_n , $\forall n \in \mathbb{N}$ et soit $p_i(t)$ la probabilité que le processus de renouvellement alterné soit dans l'état i au temps t, i=1,2. Alors,

$$p_1(t) = m_2(t) - m_1(t) + 1 = 1 - p_2(t)$$

> **Proposition 2 :** Avec les mêmes hypothèses qu'à la proposition 1, on a

$$\lim_{t \to \infty} p_1(t) = \frac{E[T_1]}{E[T_1] + E[T_1']} = 1 - \lim_{t \to \infty} p_2(t)$$

Application : somme de renouvellements Note : on appelle aussi σ le paramètre de volatilité ou coeffiavec réclamations escomptées

> On considère le processus des réclamations escomptées à t = 0, soit $\{Z(t); t \ge 0\}$, défini par

$$Z(t) = \sum_{k=1}^{N(t)} e^{-\delta S_k} X_k$$

où

- $-\{N(t); t \ge 0\}$ un processus de renouvellement ordinaire;
- S_k est le moment où se produit la k^e réclamation;
- La suite $\{X_n; n \in \mathbb{Z}\}$ de v.a. *iid* et indépendantes de N(t) représentant les montants de réclamations;
- $-\delta$ est la force d'intérêt appliquée pour actualiser les réclamations.
- > Dans un processus de renouvellement ordinaire, on a, pour k = 1, 2, ..., n,

$$f_{S_k|N(t)}(x|n) = f_{S_k}(x) \frac{\Pr\left(N(t-x) = n - k\right)}{\Pr\left(N(t) = n\right)}$$

> On peut calculer le premier moment du processus des réclamations escomptées $\{Z(t); t \geq 0\}$:

$$E[Z(t)] = E[X] \int_0^t e^{-\delta x} dm(x)$$

où m(t) est la fonction de renouvellement du processus de renouvellement $\{N(t); t \geq 0\}$.

Mouvement Brownien

Définitions

Définition générale

Un processus stochastique $\{X(t); t \geq 0\}$ est dit être un mouvement Brownien avec paramètre de variance σ^2 si

- (1) X(0) = 0;
- (2) $\{X(t); t \geq 0\}$ a des accroissements indépendants et stationnaires;
- (3) $\forall t > 0, X(t) \sim \mathcal{N}(0, \sigma^2 t).$

cient de diffusion. Un mouvement Brownien est dit standard si $\sigma = 1$.

Proposition 1

Considérons un mouvement Brownien standard. Alors, $\forall 0 < t_1 < t_2 < ... < t_n$, on a

$$f_{X_1(t_1),...,X_n(t_n)}(x_1,...,x_n) = \frac{e^{-\frac{1}{2}\left(\frac{x_1^2}{t_1} + \frac{(x_2 - x_1)^2}{t_2 - t_1} + ... + \frac{(x_n - x_{n-1})^2}{t_n - t_{n-1}}\right)}}{(2\pi)^{\frac{n}{2}}(t_1(t_2 - t_2)...(t_n - t_{n-1}))}$$

Proposition 2

Considérons un mouvement Brownien standard. Alors, $\forall 0 < s < t, X(s) | X(t)$ obéit à une loi normale, tel que

$$E[X(s)|X(t) = x] = \frac{s}{t}x$$

$$Var(X(s)|X(t) = x) = \frac{s}{t}(t - s)$$

Temps d'atteinte d'une barrière

 \rightarrow Soit T_a le le premier moment où le mouvement Brownien standard atteint le niveau a. Alors,

$$\Pr\left(T_a \le t\right) = \sqrt{\frac{2}{\pi}} \int_{|a|/\sqrt{t}}^{\infty} e^{-\frac{x^2}{2}} dx$$

> On peut trouver la distribution de la valeur maximale que peut prendre $\{X(s); 0 \le s \le t\}$, telle que

$$\Pr\left(\max_{0\leq s\leq t}X(s)\geq a\right)=\sqrt{\frac{2}{\pi}}\int_{a/\sqrt{t}}^{\infty}e^{-\frac{x^2}{2}}dx$$

Variations sur le mouvement Brownien

Mouvement Brownien avec dérive

Un mouvement Brownien avec dérive (drifted) a exactement la même définition qu'un mouvement Brownien standar, à l'exception que

$$X(t) \sim \mathcal{N}\left(\mu t, \sigma^2 t\right)$$

où μ est le paramètre de dérive. Note : on a donc que X(t) = $\mu t + \sigma B(t)$, où B(t) est un mouvement Brownien standard.

Mouvement Brownien géométrique

Définition

Soit $\{X(t); t > 0\}$ un mouvement Brownien brownien avec dérive μ et volatilité σ . Alors, le processus $\{X(t); t \ge 0\}$ défini par

$$X(t) = e^{Y(t)}$$

est dit être un mouvement Brownien géométrique.

Proposition : Soit $\{X(t); t \geq 0\}$ un mouvement Brownien géométrique avec dérive μ et volatilité σ . Alors,

$$E[X(t)|X(u)] = X(s)e^{(t-s)\left(\mu + \frac{\sigma^2}{2}\right)}$$
pour $0 \le u \le s \le t$.

Pont Brownien

Processus Gaussien

Un processus stochastique $\{X(t); t \ge 0\}$ est dit être un processus Gaussien si, $\forall 0 < t_1 < t_2 < ... < t_n$, $X(t_1),...,X(t_n)$ a une distribution normale multiva-

Définition alternative d'un mouvement Brownien standard

Un processus $\{X(t); t \ge 0\}$ est un mouvement Brownien standard ssi

- (1) $\{X(t); t \ge 0\}$ est un processus Gaussien;
- (2) $\forall t > 0$, E[X(t)] = 0, avec X(0) = 0;
- (3) $\forall 0 \le s \le t$, on a Cov (X(s), X(t)) = s.

Définition d'un pont Brownien

Soit $\{X(t); t \geq 0\}$ un mouvement Brownien standard. Alors, le processus conditionnel $\{X(t); 0 \leq t \leq 1 | X(1) = 0\}$ est dit être un *pont* Brownien. De plus, on a

$$E[X(t)|X(1) = 0] = 0$$

Et, pour s < t < 1,

$$Cov(X(s), X(t)|X(1) = 0) = s(1 - t).$$

Une autre condition pour déterminer si le processus $\{Z(t); t \geq 0\}$ est un point Brownien est de vérifier que l'équation suivante est respectée

$$Z(t) = X(t) - tX(1)$$

Proposition 2

L'espérancet et la variance de $\int_a^b f(t)dX(t)$ sont respectivement

$$E\left[\int_{a}^{b} f(t)dX(t)\right] = 0$$

$$Var\left(\int_{a}^{b} f(t)dX(t)\right) = \int_{a}^{b} f(t)^{2}dt$$

Proposition 3

La mouvement Brownien intégré (tout comme le mouvement Brownien standard) obéit à une loi Normale. En combinant avec les hypothèses de la proposition 2, on a

$$\int_a^b f(t)dX(t) \sim \mathcal{N}\left(0, \int_a^b f(t)^2 dt\right)$$
 et
$$\int_a^b X(t)df(t) \sim \mathcal{N}\left(0, a\left(f(b) - f(a)\right)^2 + \int_a^b \left(f(b) - f(t)\right)^2 dt\right)$$

Mouvement Brownien intégré

Définition de l'Intégrale d'Îto

Soit $\{X(t); t \geq 0\}$ un mouvement Brownien standard et une fonction f est une dérivée continue. Alors, nous définissons *l'intégrale stochastique d'Îto* comme

$$\int_{a}^{b} f(t)dX(t) = f(b)X(b) - f(a)X(a) - \int_{a}^{b} X(t)df(t)$$

Définition du mouvement Brownien intégré

Si $\{X(t); t \geq 0\}$ un mouvement Brownien standard, alors le processus Soit $\{Z(t); t \geq 0\}$ défini par (en utilisant *l'intégrale d'Îto*)

$$Z(t) = \int_0^t X(s)ds = tX(t) - \int_0^t vdX(v)$$