Wahrscheinlichkeit und Statistik

Wahrscheinlichkeiten

Grundbegriffe

Ereignisraum Ω : Menge aller möglichen elementaren Ereignissen.

Beispiel: Bei einem Würfelwurf sind die Elementarereignisse $\Omega = \{1, 2, 3, 4, 5, 6\}$.

Potenzmenge $\mathcal{P}(\Omega)$ oder 2^{Ω} : Menge aller Teilmengen von Ω .

Klasse aller beobachtbaren Ereignisse \mathcal{F} : $\mathcal{F} \subseteq \mathcal{P}(\Omega)$ und \mathcal{F} ist eine σ -Algebra. Bei diskreten, d.h. endlichen bzw. abzählbaren Wahrscheinlichkeitsräumen wird $\mathcal{F} = \mathcal{P}(\Omega)$ gewählt.

 σ -Algebra: $\mathcal{F} \subseteq \mathcal{P}(\Omega)$ ist eine σ -Algebra, wenn gilt:

- 1. $\Omega \in \mathcal{F}$
- 2. $A \in \mathcal{F} \implies A^c \in \mathcal{F}$ 3. $(A_n)_{n \in \mathbb{N}}, A_n \in \mathcal{F} \implies \bigcup_{n=1}^{\infty} A_n \in \mathcal{F}$

Beispiel: Jemand wirft einen Würfel und teilt uns mit, ob die gewürfelte Zahl gerade oder ungerade ist.

Wir könnten den Grundraum $\Omega_1 = \{G, U\}$ wählen mit G für gerade und U für ungerade. In diesem Fall wäre $\mathcal{F} = \{\emptyset, \Omega_1, \{G\}, \{U\}\}.$

Jedoch könnten wir auch den Grundraum $\Omega_2 = \{1, 2, 3, 4, 5, 6\}$ wählen. Dann wäre $\mathcal{F} = \{\emptyset, \Omega_2, \{2, 4, 6\}, \{1, 3, 5\}\} \neq \emptyset$ $\mathcal{P}(\Omega_2)$, da beispielsweise das prinzipielle Ereignis $\{1\}$ nie beobachtbar ist.

Wahrscheinlichkeitsmass $P: \mathcal{F} \to [0,1]$: $P[A] \in \mathcal{F} \in [0,1]$ ist die Wahrscheinlichkeit, dass A eintritt. Dabei muss gelten:

- 1. $\forall A \in \mathcal{F} : P[A] \ge 0$
- 2. $P[\Omega] = 1$ 3. $P[\bigcup_{i=1}^{\infty} A_i] = \sum_{i=1}^{\infty} P[A_i]$, sofern die $A_i \in \mathcal{F}$ paarweise disjunkt sind.

Folgende Rechenregeln lassen sich herleiten:

- 1. $P[A^c] = 1 P[A]$
- 2. $P[\emptyset] = 0$
- 3. Für $A \subseteq B$ gilt $P[A] \leq P[B]$
- 4. Additions regel: $P[A \cup B] = P[A] + P[B] P[A \cap B]$

Diskrete Wahrscheinlichkeitsräume

Bei diskreten, d.h. endlichen bzw. abzählbaren Wahrscheinlichkeitsräumen gilt $\mathcal{F} = \mathcal{P}(\Omega)$ und $P[A] = \sum_{w_i \in A} P[\{w_i\}]$.

Laplace-Raum: Ω ist endlich alle Elementarereignisse $\Omega = \{w_1, \dots, w_N\}$ sind gleich wahrscheinlich mit $p_1 = \dots = 0$ $p_N = \frac{1}{N}$.

Diskrete Gleichverteilung: In einem Laplace-Raum gilt für beliebige $A \subseteq \Omega$: $P[A] = \frac{|A|}{|\Omega|}$.

Beispiel: Beim zweimaligen Münzwurf ist $\Omega = \{KK, KZ, ZK, ZZ\}$, also $|\Omega| = 4$ und damit $p_i = \frac{1}{4}$. Dann ist $P[Mindestens einmal Kopf] = P[\{KK, KZ, ZK\}] = \frac{3}{4}$

Bedingte Wahrscheinlichkeiten

Unabhängigkeit

Diskrete Zufallsvariablen und Verteilungen

Grundbegriffe

Diskrete Zufallsvariable: Funktion $X: \Omega - > \mathbb{R}$, W(X): Wertebereich von X.

Verteilungsfunktion $F_x : \mathbb{R} \to [0,1]$: $F_X(t) := P[X \le t] := P[\{w \mid X(w) \le t\}]$.

Gewichtsfunktion $p_x : \mathbb{W}(X) \to [0,1]$: $p_X(x_k) := P[X = x_k] = P[\{w \mid X(w) = x_k\}]$.

Erwartungswerte

Erwartungswert: $E[X] := \sum_{x_k \in W(X)} x_k p_X(x_k)$. Es gilt:

- 1. Monotonie: Ist $X \leq Y$ (d.h. $\forall w : X(w) \leq Y(w)$), so gilt auch $E[X] \leq E[Y]$
- 2. Linearität: E[aX + b] = aE[X] + b
- 3. Falls $X \ge 0$, so gilt $E[X] = \sum_{j=1}^{\infty} P[X \ge j]$

Varianz: $Var[X] := E[(X - E[X])^2]$. Es gilt:

- 1. $\operatorname{Var}[X] = E[X^2] (E[X])^2$ 2. $\operatorname{Var}[aX + b] = a^2 \operatorname{Var}[X]$

Standardabweichung: $\sigma(X) = \sqrt{\operatorname{Var}[X]}$.

Gemeinsame Verteilungen und unabhängige Zufallsvariablen

	Diskrete Zufallsvariablen	Allgemeine Zufallsvariablen
Verteilungsfunktion	$F_X(t) := P[X \le t] := P[\{w \mid X(t) \le t\}]$	Analog zum diskreten Fall
Monoton wachsend	$X(w) \le t\}]$ $\forall s \le t : F_X(s) \le F_X(t)$	
Rechtsstetig	$\forall u > t, u \to t : F_X(u) \to F_X(t)$	
	$\lim_{t \to \infty} F_X(t) = 1, \ \lim_{t \to -\infty} F_X(t) = 0$	
Gewichtsfunktion, Dichtefunktion	$p_X(x_k) := P[X = x_k] = P[\{w \mid x_k\}]$	$f_X(t) = \frac{d}{dt} F_X(t)$
	$X(w) = x_k$] Geometrische Verteilung	Exponentialverteilung
	Geometrische vertenung	Exponentiatvertenting