Laplace's Equation

We saw:
$$\omega(r,\theta) = \frac{1}{2}a_0 + \sum_{k=1}^{\infty} (a_k \cos(k\theta) + b_k \sin(k\theta))$$

Fourier series of f

Rmk. One can show:

$$\omega(r,\theta) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{1-r^2}{1-2r\cos(\theta-\phi)+r^2} f(\phi) d\phi$$
Poisson Integral

- Note I Can compute values of $\omega(r,\theta)$, in particular, r<1, by the values of f only, i.e. the values of ω for r=1
 - 2 ω(0, θ) = $\frac{1}{2\pi}\int_{-\pi}^{\pi}f(\phi)d\phi$ mean value
 - 3 For r<1, $\omega(r,\theta)$ is infinitely often differentiable.

Sturm Liouville Problems

Recall Separation of variables for the heat equation with non-const mass density led to: $y''(x) + \lambda_3(x)y(x) = 0$

Let
$$Ly = -P(x)y'' - P'(x)y' + R(x)y$$

$$= -(P(x)y')' + R(x)y$$

$$L(function) = \dots function$$

Aim: Given 3(X)>0, study the eigenvalue problem

Ly=
$$\lambda S(x)y$$
, $\lambda \in \mathbb{R}$
(e.g. S=1, R=0, P=1: -y"(x)= $\lambda y(x)$

Ex.
$$y''(x) + \lambda y(x) = 0$$

i) $y(0) = y(\pi) = 0$
introduction \implies nonzero solutions
if $\lambda = k^{L}$, $k \in \mathbb{N}$
 $y_{k}(x) = const \cdot sin(kx)$

ii)
$$y(0)=0$$
, $y'(\pi)=0$

nonzero solutions iff $\lambda>0$ (check!)

e.g. $\lambda=0: y=ax+b$
 $0=y(0)=b$
 $0=y'(\pi)=a \rightarrow y(x)=0$
 $\lambda>0: y(x)=a\cos(\sqrt{3}x)+b\sin(\sqrt{3}x)$
 $0=y(0)=a$
 $0=y'(\pi)=b\sqrt{3}\cos(\sqrt{3}x)$

For a nonzero solution, must have $\cos(\sqrt{3}\pi)=0$, i.e. $\sqrt{3}\cdot\pi=\frac{\pi}{2}+\pi k$
 $\rightarrow \sqrt{3}=\frac{1}{2}+k$, $k=0,1,2,...$

and $y_k=const\cdot sin((\frac{1}{2}+k)x)$

for k=0,1,2,...

Prop. Ly = -(Py')' + Ry and y_i , y_i satisfy the boundary conditions (*). Then $(Ly_i, y_i)_{i'}(a,b) = (y_i, Ly_i)_{i'}(a,b)$.

Let's calculate:

(Ly,
$$y_2$$
) $i^2(a,b) = \int_a^b (Ly_1) \cdot y_2$

$$= -\int_a^b (Py_1')' y_2 + \int_a^b Ry_1 y_2$$
integration by parts
$$= Py_1' y_2 |_a^b - \int_a^b Py_1' y_2 + \int_a^b Ry_1 y_2$$
integration by parts
$$= Py_1' y_2 |_a^b - \int_a^b y_1 (Py_2') + Py_1 y_2' |_a^b$$

$$+ \int_a^b Ry_1 y_2$$

Say $C_1 \neq 0$: $-C_1 y_1 y_2 + C_1 y_1 y_2 = 0$ at x = abecause boundary condition $C_1 y(a) + C_2 y'(a) = 0$ yields: $-C_1 y_2 = C_2 y_2 '$, $C_1 y_1 = -C_2 y_1 '$. Hence $-C_1 y_1 ' y_2 + C_1 y_1 y_2 ' = C_2 y_1 ' y_2 ' - C_2 y_1 ' y_2 ' = 0$

Cor. Suppose y_1 , y_2 with (*) and $Ly_1 = \lambda 3(x)y_1$, then $\int_a^a y_1(x)y_2(x) g(x) dx = 0$ i.e. y_1 , y_2 are orthogonal wrt the g-weighted L^2 inner product.

Ex. $y''(x) + \lambda y(x) = 0$ $y(0) = y(\pi) = 0 : y_k(x) = \sin(kx)$ By corollary: $\int_0^{\pi} \sin(kx) \cdot \sin(kx) dx = 0$ if $k \neq k$

Why is the corollary true? $(\lambda_1-\lambda_2)\int_a^b y_1(x)y_2(x)S(x)dx$ = $\int_a^b \lambda_1S(x)y_1(x)\cdot y_2(x)dx$ - $\int_a^b y_1\lambda_2S(x)y_2(x)dx$ = $(Ly_1, y_2) - (y_1, Ly_2) = 0$