STA257: PROBABILITY AND STATISTICS I

University of Toronto — Fall 2019

Jeff Shen

Contents

1	\mathbf{Pro}	bability and Counting 2
	1.1	Introduction
	1.2	Set Theory
	1.3	Probability Measures
	1.4	Permutations and Combinations
	1.5	Conditional Probability
	1.6	Independence, Law of Total Probability
2	Ran	ndom Variables
	2.1	Discrete Random Variables
		2.1.1 Bernoulli
		2.1.2 Binomial
		2.1.3 Geometric
		2.1.4 Negative Binomial
		2.1.5 Hypergeometric
		2.1.6 Poisson
	2.2	Continuous Random Variables
		2.2.1 Uniform
		2.2.2 Exponential
		2.2.3 Gamma
		2.2.4 Beta
		2.2.5 Uniform
		2.2.6 Standard Normal
		2.2.7 General Normal
	2.3	Transformations of Random Variables
3	Exp	pected Values
	3.1	Mean and Variance
		3.1.1 LOTUS
		3.1.2 Inequalities
	3.2	Moment Generating Functions
4	Joir	nt Distributions
	4.1	Joint and Marginal Distributions
		4.1.1 Discrete
		4.1.2 Continuous
	4.2	Independence in Joint Distributions
	4.3	Conditional Distributions
	~	4.3.1 Discrete
		4.3.2 Continuous
	4.4	Functions of Joint Distributions
	4.5	Order Statistics

1 Probability and Counting

- 1.1 Introduction
- 1.2 Set Theory
- 1.3 Probability Measures
- 1.4 Permutations and Combinations
- 1.5 Conditional Probability
- 1.6 Independence, Law of Total Probability

STA257: Probability and Statistics I $$\operatorname{Page}\ 2\ /\ 5$$

2 Random Variables

- 2.1 Discrete Random Variables
- 2.1.1 Bernoulli
- 2.1.2 Binomial
- 2.1.3 Geometric
- 2.1.4 Negative Binomial
- 2.1.5 Hypergeometric
- 2.1.6 Poisson
- 2.2 Continuous Random Variables
- 2.2.1 Uniform
- 2.2.2 Exponential
- 2.2.3 Gamma
- 2.2.4 Beta
- 2.2.5 Uniform
- 2.2.6 Standard Normal
- 2.2.7 General Normal
- 2.3 Transformations of Random Variables

3 Expected Values

- 3.1 Mean and Variance
- 3.1.1 LOTUS
- 3.1.2 Inequalities
- 3.2 Moment Generating Functions

STA257: Probability and Statistics I $$\operatorname{Page}\ 4\ /\ 5$$

4 Joint Distributions

- 4.1 Joint and Marginal Distributions
- 4.1.1 Discrete
- 4.1.2 Continuous
- 4.2 Independence in Joint Distributions
- 4.3 Conditional Distributions
- 4.3.1 Discrete
- 4.3.2 Continuous
- 4.4 Functions of Joint Distributions
- 4.5 Order Statistics