Задача 4-1. Во входе задано бинарное дерево поиска, такое что для любой вершины все ключи в ее левом поддереве строго меньше ее ключа, а все ключи в ее правом поддереве не меньше ее ключа. В первой строке — количество вершин в дереве, во второй — ключи дерева в порядке preorder. В выход выведите две строки. В первой — дерево в порядке postorder, во второй — дерево в порядке inorder. Количество вершин дерева не более 100 000. Значения ключей от 0 до 1 000 000 000.

Пример входа	Пример выхода
7	1 3 2 5 7 6 4
4 2 1 3 6 5 7	1 2 3 4 5 6 7
6	2 3 3 6 5 5
5 3 2 3 5 6	2 3 3 5 5 6

Задача 4-2. В первой строке входа число n ($1 \le n \le 400$). Во второй строке -n целых чисел a_1, a_2, \ldots, a_n . Посчитайте количество различных бинарных деревьев поиска, состоящих из n вершин с ключами a_1, a_2, \ldots, a_n . Рассматриваются только такие деревья поиска, у которых в левом поддереве ключи строго меньше, а в правом — не меньше, чем в корне.

Когда два дерева считаются одинаковыми — интуитивно понятно: если нарисовать их на картинке, то картинки должны выглядеть одинаково. Формально это можно определить, например, так: два дерева считаются одинаковыми, если их preorder обходы порождают одну и ту же последовательность чисел. Ответ может быть очень большим числом, поэтому посчитайте его по модулю 123 456 789. Значения ключей от -2^{31} до $2^{31}-1$.

Пример входа	Пример выхода
2	2
2 1	
3	1
10 10 10	
3	5
1 2 3	

Задача 4-3.

Реализуйте следующий класс для хранения множества целых чисел:

```
class FixedSet {
  public:
    FixedSet();
    void Initialize(const vector<int>& numbers);
    bool Contains(int number) const;
};
```

FixedSet получает при вызове Initialize набор целых чисел, который впоследствии и будет хранить. Набор чисел не будет изменяться с течением времени (до следующего вызова Initialize). Операция Contains возвращает true, если число number содержится в наборе. Мат. ожидание времени работы Initialize должно составлять O(n), где n

количество чисел в numbers. Затраты памяти должны быть порядка O(n). Операция Contains должна выполняться за O(1).

С помощью этого класса решите модельную задачу: во входе будет дано множество различных чисел, а затем множество запросов — целых чисел. Необходимо для каждого запроса определить, лежит ли число из запроса в множестве.

В первой строке входа — число n — размер множества. $1 \le n \le 100~000$. В следующей строке n различных целых чисел, по модулю не превосходящих 10^9 . В следующей строке — число q — количество запросов. $1 \le q \le 1~000~000$. В следующей строке q целых чисел, по модулю не превосходящих 10^9 . Для каждого запроса нужно вывести в отдельную строку "Yes" (без кавычек), если число из запроса есть в множестве и "No" (без кавычек), если числа из запроса нет в множестве. См. примеры.

Пример входа	Пример выхода
3	Yes
1 2 3	Yes
4	Yes
1 2 3 4	No
3	No
3 1 2	Yes
4	No
10 1 5 2	Yes

Задача 4-4. Вам дан набор из n треугольников ($1 \le n \le 1000000$). Каждый треугольник задается тремя целыми числами — длинами его сторон. Длины сторон — положительные целые числа, не превосходящие 10^9 . Некоторые пары треугольников подобны. В силу свойств подобия известно, что все эти треугольники распадаются на несколько классов, в каждом из которых все треугольники подобны друг другу. К примеру, три треугольника со сторнами (6,6,10), (15,25,15), (35,21,21) все попарно подобны друг другу, то есть образуют один класс. Необходимо найти количество классов подобия, на которые распадаются данные n треугольников. В первой строке входа дано число n. В каждой из следующих n строк — по три целых числа, задающих стороны очередного треугольника. Выведите число классов подобия. Сложность алгоритма должна в среднем линейно зависеть от n (может еще зависеть от ограничений на стороны треугольника). Т.е. никаких сортировок длинных массивов в решении делать нельзя.

Пример входа	Пример выхода
3	1
6 6 10	
15 25 15	
35 21 21	
4	3
3 4 5	
10 11 12	
6 7 8	
6 8 10	