How many faces can be recognized? Performance extrapolation for multi-class classification

Charles Y. Zheng

Department of Statistics Stanford University Stanford, CA 94305 snarles@stanford.edu

Rakesh Achanta

Department of Statistics Stanford University Stanford, CA 94305 rakesha@stanford.edu

Yuval Benjamini

Department of Statistics
Hebrew University
Jerusalem, Israel
yuval.benjamini@mail.huji.ac.il

Abstract

The difficulty of multi-class classification generally increases with the number of classes. Using data from a subset of the classes, can we predict how well a classifier will scale with an increased number of classes? Under the assumption that the classes are sampled exchangeably, and under the assumption that the classifier is generative (e.g. QDA or Naive Bayes), we show that the expected accuracy when the classifier is trained on k classes is the k-1st moment of a *conditional accuracy distribution*, which can be estimated from data. We discuss estimation approaches based on pseudolikelihood, unbiased estimation, and high-dimensional asymptotics. These methods can be extended to a larger class of *asymptotically generative* classifiers, which include k-nearest neighbors, one-vs-one and one-vs-all classifiers. We compare these methods in simulations and real data.

1 Introduction

In multi-class classification, one observes pairs (z,y) where $y \in \mathcal{Y} \subset \mathbb{R}^p$ are feature vectors, and z are unknown labels, which lie in a countable label set \mathcal{Z} . The goal is to construct a classification rule for predicting the label of a new data point; generally, the classification rule $h: \mathcal{Y} \to \mathcal{Z}$ is learned from previously observed data points. In many applications of multi-class classification, such as face recognition or image recognition, the space of potential labels is practically infinite. However, one considers the classification problem on a finite subset of the labels $\mathcal{Z}_1 \subset \mathcal{Z}$: for instance, classifying the faces of 100 selected individuals from the population. At a later time, one might consider a larger (but still finite) classification problem on $\mathcal{Z}_2 \subset \mathcal{Z}$ with $\mathcal{Z}_2 \supset \mathcal{Z}_1$. In general, consider an infinite sequence of classification problems on subsets $\mathcal{Z}_1 \subset \cdots \subset \mathcal{Z}_t \subset \cdots$. Let S_i represent the training data available for the ith classification problem, and let $h^{(i)}: \mathcal{Y} \to \mathcal{Z}_i$ be the learned classification rule. Define the accuracy for the ith problem as

$$\operatorname{acc}^{(i)} = \Pr[h^{(i)}(Y) = Z | Z \in \mathcal{Z}_i].$$

where the probability is taken over the joint distribution of (Z, Y). Using data from only \mathcal{Z}_k , can one predict the accuracy achieved on the larger label set \mathcal{Z}_K , with K > k? This is the problem of prediction extrapolation.

29th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.

A practical instance of prediction extrapolation occurs in neuroimaging studies, Kay et al. (2008) obtain fMRI brain scans which record how a single subject's visual cortex responds to natural images. The label set \mathcal{Z} corresponds to the space of all grayscale photographs of natural images, and the set \mathcal{Z}_1 is a subset of 1750 photographs used in the experiment. Kay et al. construct a classifier based on a combination of regularized multiple-response regression and Naive Bayes: they achieve over 0.75 accuracy on the subset of 1750 photographs, which by itself is already a convincing demonstration of the richness of the information contained in the fMRI scan. However, it would also be of interest to know what accuracy could be achieved on a larger set of photographs. Kay et al. calculated (based on exponential extrapolation) that it would take on the order of $10^{9.5}$ photographs before the accuracy of the model drops below 0.10! Directly validating this estimate would take immense resources, so it would be useful to develop the theory needed to understand how to compute such extrapolations in a principled way.

However, in the fully general setting, it is impossible on construct non-trivial bounds on the accuracy achieved on the new classes $\mathcal{Z}_K \setminus \mathcal{Z}_k$ based only on knowledge of \mathcal{Z}_k : after all, \mathcal{Z}_k could consist entirely of well-separated classes while the new classes $\mathcal{Z}_K \setminus \mathcal{Z}_k$ consist entirely of highly inseparable classes, or vice-versa. Thus, the most important assumption for our theory is that of *exchangeable sampling*. The labels in \mathcal{Z}_i are assumed to be an exchangeable sample from \mathcal{Z} . The exchangeability further implies that the marginal distributions of $z \in \mathcal{Z}$ are equiprobable within every subset \mathcal{Z}_i . The condition of exchangeability ensures that the separability of random subsets of \mathcal{Z} can be inferred by looking at the empirical distributions in \mathcal{Z}_k , and therefore that some estimate of the achievable accuracy on \mathcal{Z}_K can be obtained.

Unfortunately, the assumption of exchangeability is clearly violated in a majority of instances of multi-class classification. Many multi-class classification problems have a hierarchical structure, where the initial label set \mathcal{Z}_1 corresponds to a coarse-grained partition of the instances, and an expanded label set \mathcal{Z}_2 corresponds to a refinement of the partition induced by \mathcal{Z}_1 : for instance, \mathcal{Z}_1 consists of the categories {animal, vegetable, mineral}, while \mathcal{Z}_2 consists of subcategories {mammal, bird, insect, reptile, fungus, tree, flower, rock, metal}. Not only is \mathcal{Z}_2 not a superset of \mathcal{Z}_1 , but the marginal distributions within \mathcal{Z}_2 are necessarily more concentrated than the marginals of \mathcal{Z}_1 . Many non-hierarchical classification problems are also excluded by the requirement of exchangeability. Consider the problem of annotating spoken words: the set \mathcal{Z}_1 might consist of data from the 100 most common words, while the set \mathcal{Z}_2 consists of data from the 1000 most common words. Exchangeability is violated because the words $z \in \mathcal{Z}$ are not equiprobable, but rather follow a long-tail law. It would be interesting to extend our theory to the hierarchical setting, or to handle non-hierarchical settings with non-uniform prior class probabilities, but we leave the subject for future work.

In addition to the assumption of exchangeability, we restrict the set of classifiers considered. We focus initially on generative classifiers, which are classifiers which work by training a model separately on each class. This convenient property allows us to characterize the accuracy of the classifier by selectively conditioning on one class at a time, which then reveals an equivalence between the expected accuracies of \mathcal{Z}_k to moments of a common distribution. This moment equivalence result allows standard approaches in statistics, such as U-statistics and nonparametric pseudolikelilood, to be directly applied to the extrapolation problem. In non-generative classifiers, the classification rule has a joint dependence on the entire set of classes, and cannot be analyzed by conditioning on individual classes. However, in a particular limit (where the number of classes grows to infinity), we note that some non-generative multi-class classifiers can be approximated by a generative classifier, which therefore allows our framework to be extended to the class of asymptotic generative classifiers. In this paper, we show that particular variants of k-nearest neighbors, one-vs-one (OVO) and one-vs-all (OVA) classifiers are asymptotically generative. There are other classifiers, such as multinomial logistic regression, which we conjecture to be asymptotically generative, but at the same time we suspect that classifiers capable of representation learning, such as deep neural networks, are not asymptotically generative. Unlike generative classifiers, representation-learning classifiers can improve the model learned for a single class by using data from other classes. One can construct examples of representation-learning classifiers with counter-intuitive behaviors, such as a nonmonotonic expected accuracy in the number of classes. Intuitively, we expect our theory to apply poorly to such representation-learning classifiers, which we confirm in data examples. We speculate that achieving prediction extrapolation for a representation-learning classifier would require a theory tailored to the dynamics of that particular classifier.

In section 2 we formalize the concepts of *classifier* and *prediction extrapolation*, and define generative and asymptotic generative classifiers. In section 3 we develop the theory of prediction extrapolation for generative classifiers, culminating in the definition of the conditional accuracy distribution and the equivalence between the moments of the conditional accuracy distribution and the expected accuracy. In section 4 we present three classes of methods for prediction extrapolation: moment-based, pseudolikelihood-based, and a method derived from the high-dimensional asymptotic classification theory of Anon (2016.) Section 5 presents simulated and real data examples, and section 6 concludes. All proofs are given in the supplement.

2 Setting

2.1 Prediction extrapolation

Having motivated the problem of prediction extrapolation, we now reformulate the problem for notational and theoretical convenience. Instead of requiring \mathcal{Z}_k to be a random subset of \mathcal{Z} as we did in section 1, take $\mathcal{Z} = \mathbb{N}$ and $\mathcal{Z}_k = \{1, \dots, k\}$. We fix the size of \mathcal{Z}_k without losing generality, since any monotonic sequence of finite subsets can be embedded in a sequence with $|\mathcal{Z}_k| = k$. In addition, rather than randomizing the labels, we will randomize the marginal distribution of each label; Towards that end, let $\mathcal{Y} \subset \mathbb{R}^p$ be a space of feature vectors, and let $\mathcal{P}(\mathcal{Y})$ be a measurable space of probability distributions on \mathcal{Y} . Let \mathcal{F} be a probability measure on \mathcal{P} , and let F_1, F_2, \dots be an infinite sequence of i.i.d. draws from \mathbb{F} . We refer to \mathbb{F} , a probability measure on probability measures, as a meta-distribution. The distributions F_1, \dots, F_k are the marginal distributions of the first k classes. We therefore rewrite the accuracy as

$$acc^{(i)} = \frac{1}{t} \sum_{i=1}^{t} \Pr_{F_i}[h^{(t)}(Y) = i].$$

where the probabilities are taken over $Y \sim F_i$.

In order to construct the classification rule $h^{(t)}$, we need data from the classes F_1,\ldots,F_t . In most instances of multi-class classification, one observes independent observations from each F_i which are used to construct the classifier. However, there are more general problems, such as *identification* (Kay 2008, Naselaris 2011) where classification rules can be constructed even in the absence of observations from a given class, as long as some form of prior information is available for each class. A unifying framework for this *generalized classification* task, which includes both classification and identification is to suppose that one observes empirical marginals \hat{F}_i for $i=1,\ldots,t$. In the case of classification, \hat{F}_i is the empirical distribution of training data, but in the case of identification, \hat{F}_i may be obtained from a model. Let us assume that \hat{F}_i are conditionally independent given F_1, F_2, \ldots , and let $\hat{\mathbb{F}}(F)$ denote the conditional distribution of \hat{F}_i given $F_i = F$. Also write $\hat{\mathbb{F}}$ for the marginal distribution of \hat{F} when $F \sim \mathbb{F}$. It must be noted that we implicitly assumed that in the classification setting, the training data for the ith class remains unchanged for $t=1,2,\ldots$; in general, we would have to write \hat{F}_i to denote the training data for the ith class in the tth time step. In the current paper, we assume fixed \hat{F}_i (meaning fixed training data per class) for notational convenience.

Most of the commonly used multi-class classifiers can be extended to the generalized classification setting. Some examples of classifiers which can be given generalized definitions and which we will discuss throughout the paper are multinomial logistic regression, linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), decision trees, and random forests, as well as the two 'divide and conquer' approaches, one-vs-one (OVO) and one-vs-all (OVA) (Friedman et al, 2008.) One exception is k-nearest neighbors, since the concept of k-nearest neighbors can only be applied to discrete point clouds, and not to continuous distributions. On the other hand, ϵ -nearest neighbors (which is k-nearest neighbors with $k = \epsilon n$), can be given a generalized definition, since one can redefine a neighborhood as a ball of probability mass ϵ .

Extending the formalism of Tewari and Bartlett (2007), we define a classifier as a collection of mappings $\mathcal{M}_i: \mathcal{P}(\mathcal{Y})^k \times \mathcal{Y} \to \mathbb{R}$ called *margin functions*. Intuitively speaking, each margin function learns a model from the first k arguments, which are the empirical marginals of the k classes, which it uses to assign a margin or score to the query point $y \in \mathcal{Y}$. A higher score $\mathcal{M}_i(\hat{F}_1, \dots, \hat{F}_k, y)$ indicates a higher estimated probability that y belongs to the kth class. Therefore, the classification

rule corresponding to a classifier \mathcal{M}_i assigns a class with maximum margin to y:

$$h(y) = \operatorname{argmax}_{i \in \{1, \dots, k\}} \mathcal{M}_i(y).$$

For our purposes, it is not important how ties are resolved. We will also neglect discussion of randomized classifiers, except to mention that they can be treated in our framework as probability distributions over deterministic classifiers.

The level sets $\{y : \operatorname{argmax}_i \mathcal{M}_i(\hat{F}_1, \dots, \hat{F}_k, y) = k\}$ are called *decision regions*. We say the classifier is *continuous* if and only if the *decision regions* of $\mathcal{M}_{i=1}^k$ are continuous in the first k arguments with respect to the topology of weak convergence.

2.2 Generative and Asymptotic Generative classifiers

For some classifiers, the margin function \mathcal{M}_i is especially simple in that \mathcal{M}_i is only a function of \hat{F}_i and y. Furthermore, due to symmetry, in such cases one can write

$$\mathcal{M}_i(\hat{F}_1,\ldots,\hat{F}_k,y) = \mathcal{Q}(\hat{F}_i,y)$$

where Q is *scoring rule*. For notational convenience, we assume that ties occur with probability zero: that is, $\hat{\mathbb{F}}$ and Q jointly satisfy the *tie-breaking* property:

$$\Pr[\mathcal{Q}(\hat{F}, y) = \mathcal{Q}(\hat{F}, y')] = 0. \tag{1}$$

for all $y \neq y' \in \mathcal{Y}$, where $\mathbb{F} \sim \hat{\mathbb{F}}$. Quadratic discriminant analysis and Naive Bayes are two examples of generative classifiers. For QDA, the scoring rule is given by

$$Q_{QDA}(F, y) = -(y - \mu(F))^T \Sigma(F)^{-1} (y - \mu(F)) - \log \det(\Sigma(F))$$

where $\mu(F) = \int y dF(y)$ and $\Sigma(F) = \int (y - \mu(F))(y - \mu(F))^T dF(y)$. In Naive Bayes, the scoring rule is

$$Q_{NB}(\hat{F}, y) = \sum_{i=1}^{n} \log \hat{f}_i(y_i)$$

where \hat{f}_i is a density estimate for the *i*th component of F.

The *generative* property allows us to prove strong results about the accuracy of the classifier under the exchangeable sampling assumption. For starters, we can show that the expected accuracy follows a *mixed exponential decay*, as stated by the following theorem.

Theorem 2.1 Let Q be the scoring function of a generative classifier, and assume that $F_1, \ldots, F_k \stackrel{iid}{\sim} \mathbb{F}$ and $\hat{F}_i \sim \hat{\mathbb{F}}(F_i)$ independently, following the notation of section 2. Further assume that Q and \mathbb{F} satisfy the tie-breaking property (1). Then, recalling the definition of accuracy,

$$acc^{(t)} = \frac{1}{t} \sum_{i=1}^{t} \Pr_{F_i}[\mathcal{Q}(\hat{F}_i, y) > argmax_{i>j}\mathcal{Q}(\hat{F}_i, y)],$$

there exists a measure α on $[0, \infty)$ such that

$$E[acc^{(t)}] = \int_{\mathbb{R}^+} e^{\kappa t} d\alpha(\kappa).$$

The theorem immediately suggests a method for predicting $acc^{(K)}$: fit a mixed exponential curve to $acc^{(2)}, \ldots, acc^{(k)}$ (we discuss a similar approach in Section 4), but this is just a preview of the methods which can be developed for generative classifiers, which we discuss more fully in Section 3.

Unfortunately, the majority of classifiers used in practice are *not* generative, and for good reason. While generative classifiers attempt to estimate the marginal distributions, discriminative classifiers directly search for good classification boundaries based on the data: in most problems, discriminative classifiers outperform generative classifiers (Ng 2002). Despite this fact, it can be shown that many non-generative classifiers are *asymptotic generative*, meaning that $i\mathcal{M}_i^{(t)}$, the *i*th margin for the *t*th classification problem in the sequence, converges to a function of \hat{F}_i and y with probability one:

$$\lim_{t \to \infty} \mathcal{M}_i^{(t)}(\hat{F}_1, \dots, \hat{F}_t, y) = \mathcal{Q}(\hat{F}_i, y) \text{ w.h.p.}$$
 (2)

While asymptotic generative classifiers share the properties of generative classifiers with respect to prediction extrapolation, they need not share the same *limitations* as generative classifiers. A generative classifier requires the user to specify the scoring function \mathcal{Q} in advance: this practically requires some prior knowledge about the marginal distributions of the classes, e.g. that the marginal distributions are approximately multivariate Gaussian. But the scoring function \mathcal{Q} appearing in the definition of an asymptotically generative classifier *need not be specified* by the user: it can (and usually does) depend on the unknown meta-distribution \mathbb{F} . Therefore one can think of asymptotic generative classifiers as generative classifiers with 'adaptive' \mathcal{Q} , which explains how an asymptotic generative classifier could outperform generative classifiers.

[[rewrite completed to here]]

Definition 2.1. (Asymptotically generative) Suppose that for time stages $t=1,2,...,k_t=O(t)$ and $n_{i,t}=O(t)$, with $F_1,F_2,...$ drawn i.i.d. from \mathbb{F} , and $y^{(i),1},...$ drawn i.i.d. from F_i for each i=1,2,... A recognition system (characterized by mappings f_t) is considered asymptotically generative if and only there exists a scoring rule \mathcal{Q} and probability vector $\tilde{\pi}$ such that defining

$$\tilde{f}_t(y) = \operatorname{argmax}_{i=1}^{k_t} \mathcal{Q}(\hat{F}_{i,t}, \tilde{\pi}_i, y)$$

we have

$$\lim_{t \to \infty} \frac{1}{k_t} \sum_{i=1}^{k_t} \Pr[f_t(Y) = \tilde{f}_t(Y) | Y \sim p(y|x^{(i)})] \to 1.$$

We will show that recognition systems based on certain implementations of k-nearest neighbors, LDA, one-vs-one, or one-vs-all classifiers satisfy this definition of separability.

Definition 2.2.(i) Define a binary classifier \mathcal{B} as a binary-valued mapping with four arguments: distributions F_0 , F_1 , prior probability π_0 and a query y. A one-vs-one (OVO) recognition system is defined by

$$f_t(y) = \operatorname{argmax}_{i=1}^{k_t} \sum_{j \neq i} I\left(\mathcal{B}(\hat{F}_{i,t}, \hat{F}_{j,t}, \frac{n_{i,t}}{n_{i,t} + n_{j,t}}, y) = 0\right),$$

resolving ties arbitrarily.

(ii) Define a binary scoring rule \mathcal{D} as a real-valued mapping with four arguments: distributions F_0 , F_1 , prior probability π_0 , and a query y. A one-vs-all (OVA) recognition system is defined by

$$f_t(y) = \operatorname{argmax}_{i=1}^{k_t} \mathcal{D}\left(\hat{F}_{i,t}, \sum_{j \neq i} \frac{n_{j,t}}{n_t - n_{i,t}} \hat{F}_{j,t}, \frac{n_{i,t}}{n_t}, y\right).$$

(iii) Let d be a distance metric on \mathcal{Y} . Let $D_t(y)$ denote the induced distribution of d(Y,y) when $Y \sim \hat{F}_t$, and let $d_{\alpha,t}$ denote the α -quantile of $D_t(y)$. A kNN recognition system with neighborhood size α is defined by

$$f_t(y) = \operatorname{argmax}_{i=1}^{k_t} \Pr[d(y, Y) < d_{\alpha, t} | Y \sim \hat{F}_{i, t}].$$

(iv) Assume WLOG that $y_1 = 1$ for all $y \in \mathcal{Y}$, and let B^t be a $p \times k_t$ matrix which minimizes the log-likelihood

$$\sum_{j=1}^{k_t} n_{j,t} \mathbf{E}_{\hat{F}_j} \left[\langle Y, B_j^t \rangle - \log \left[\sum_{\ell=1}^{k_t} \exp[\langle Y, B_\ell^t \rangle] \right] \right].$$

A multinomial logistic regression recognition system is defined by

$$f_t(y) = \operatorname{argmax}_{i=1}^{k_t} \langle y, B_i^t \rangle.$$

Theorem 2.1.(more like conjecture; not actually proved yet!!) (i) an OVO recognition system equipped with a continuous binary classifier is separable; (ii) an OVA recognition system equipped with a continuous binary scoring rule is separable; (iii) a kNN recognition system with fixed neighborhood size $\alpha \in (0,1)$ is separable; (iv) a multinomial logistic regression recognition system is separable.

3 Prediction Extrapolation

3.1 Problem formulation

Recall the notation from section 2.1. Assume that F_1, F_2, \ldots are sampled i.i.d. from the meta-distribution \mathbb{F} , and $y^{(i),1}, \ldots, y^{(i),r}$ from F_i for $i=1,2,\ldots$ Take $k_t=t$ and $n_{i,t}=r$.

Unlike in section 2.1., only the first $r_1 < r$ measurements in each species will be used to construct the classifier: redefine

$$\hat{F}_{i,t} = \frac{1}{r_1} \sum_{j=1}^{r_1} \delta_{y^{(i),j}}.$$

Since $\hat{F}_{i,t}$ no longer depends on t, we will write it as \hat{F}_i . The remaining $r_2 = r - r_1$ measurements of each species constitute the *test set*, used to evaluate the performance of the classifier.

The generalization accuracy at time t is defined

$$\operatorname{acc}^{(t)} = \frac{1}{k} \sum_{i=1}^{k} \Pr[f_t(y) = i | y \sim p(y | x^{(i)})].$$

The extrapolation problem is the problem of predicting $acc^{(K)}$ using only information known at time k < K, namely, $\{y^{(i),j}\}_{i=1,j=1}^{k,r}$.

3.2 Conditional accuracy

Consider estimating the expected accuracy at time t,

$$p_t \stackrel{def}{=} \mathbf{E}[\mathrm{acc}^{(t)}].$$

Assume that the classifier is based on a scoring rule \mathcal{Q} . Further assume that \mathcal{Q} has a trivial dependence on the prior probability parameter: $\mathcal{Q}(F,a,y)=\mathcal{Q}(F,b,y)$ for all F,y, and $a,b\in[0,1]$. This assumption is more mild than it appears, since most classifiers indeed have a trivial dependence on $\vec{\pi}$ in the case when $\vec{\pi}$ is set to the uniform distribution.

Define the *conditional accuracy* function u(F,y) which maps a distribution F on \mathcal{Y} and a *test* observation y to a real number in [0,1]. The conditional accuracy gives the probability that for independently drawn F and F' from \mathbb{F} , letting \hat{F}' be the empirical distribution of r_1 measurements drawn from F', that the scoring function $\mathcal{Q}(F,0,y)$ will give a higher score to y than the scoring function $\mathcal{Q}(\hat{F}',0,y)$:

$$u(F, y) = \Pr[Q(F, 0, y) > Q(\hat{F}', 0, y)].$$

Define the *conditional accuracy* distribution μ as the law of $u(\hat{F}, Y)$ when $F \sim \mathbb{F}$, and \hat{F}, Y are both obtained from F. The significance of the conditional accuracy distribution is that the expected generalization error p_t can be written in terms of its moments.

Theorem 3.1. Let U be defined as the random variable

$$U = u(F, Y)$$

for X, Y drawn from p(x,y) = p(x)p(y|x), and $\hat{F}(X) = \frac{1}{r_1} \sum_{j=1}^{r_1} \delta Y^j$ with $Y^i \stackrel{iid}{\sim} p(y|X)$ Then $p_k = \mathbf{E}[U^{k-1}]$.

Proof. Write $q^{(i)}(y) = \mathcal{Q}(\hat{F}_i, 0, y)$, and let $Y^{(i),*} \sim p(y|X^{(i)})$ for i = 1, ..., k. Note that by using conditioning and conditional independence, p_k can be written

$$\begin{split} p_k &= \mathbf{E} \left[\frac{1}{k} \sum_{i=1}^k \Pr[q^{(i)}(Y^{(i),*}) > \max_{j \neq i} q^{(j)}(Y^{(i),*})] \right] \\ &= \mathbf{E} \left[\Pr[q^{(1)}(Y^{(1),*}) > \max_{j \neq 1} q^{(j)}(Y^{(1),*})] \right] \\ &= \mathbf{E}[\Pr[q^{(1)}(Y^{(1),*}) > \max_{j \neq 1} q^{(j)}(Y^{(1),*})|Y^{(1),*}, \hat{F}_1]] \\ &= \mathbf{E}[\Pr[\cap_{j>1} q^{(1)}(Y^{(1),*}) > q^{(j)}(Y^{(1),*})|Y^{(1),*}, \hat{F}_1]] \\ &= \mathbf{E}[\prod_{j>1} \Pr[q^{(1)}(Y^{(1),*}) > q^{(j)}(Y^{(1),*})|Y^{(1),*}, \hat{F}_1]] \\ &= \mathbf{E}[\Pr[q^{(1)}(Y^{(1),*}) > q^{(2)}(Y^{(1),*})|Y^{(1),*}, \hat{F}_1]^{k-1}] \\ &= \mathbf{E}[u(\hat{F}_1, Y^{(1),*})^{k-1}] = \mathbf{E}[U^{k-1}]. \end{split}$$

Theorem 3.1 tells us that the problem of extrapolation can be approached by attempting to estimate the conditional accuracy distribution. The (t-1)th moment of U gives us p_t , which will in turn be a good estimate of $\operatorname{acc}^{(t)}$.

3.3 Properties of the conditional accuracy distribution

The conditional error distribution ν is determined by \mathbb{F} and \mathcal{Q} . What can we say about the the conditional accuracy distribution without making any assumptions on either \mathbb{F} or \mathcal{Q} ? The answer is: not much–for an arbitrary probability measure ν' on [0,1], one can construct \mathbb{F} and \mathcal{Q} such that $\nu = \nu'$.

Theorem 3.2. Let U be defined as in Theorem 2.1, and let ν denote the law of U. Then, for any probability distribution ν' on [0,1], one can construct a meta-distribution $\mathbb F$ and a scoring rule $\mathcal Q$ such that $\nu=\nu'$.

In practice, however, the scoring rule Q must approximate a monotonic function of the conditional density $f = \frac{dF}{du}$ in order to yield an effective classifier.

It is therefore notable that in the case that F has a density with respect to Lesbegue measure, and where $\mathbb F$ has no atoms, taking an *optimal* scoring rule, with the property that $\mathcal Q(\hat F,y)=g(f(y))$ for monotonic g, the distribution of U has a monotonically increasing density.

Theorem 3.3. Let U be defined as in Theorem 3.1, and let ν denote the law of U. Suppose F has a density f(y) with respect to Lebesgue measure on \mathcal{Y} with probability one, \mathbb{F} has no atoms, and $(\mathbb{F}, \mathcal{Q})$ jointly satisfy the property of monotonicity

$$f(y) > f(y')$$
 implies $Q(\hat{F}, 0, y) > Q(\hat{F}, 0, y')$

and the property of tie-breaking (1) with probability one. Then μ has a density $\eta(u)$ on [0,1] which is monotonic in u.

4 Nonparametric Estimation

Let us assume that U has a density $\eta(u)$. While $U=u(\hat{F},0,Y)$ cannot be directly observed, we can estimate $u(\hat{F}_i,0,y^{(i),r_1+j})$ for any $1 \le i \le k, 1 \le j \le r_2$ from the data.

Theorem 4.1. For given p(x, y) and scoring rule Q, assume that U as defined in Theorem 3.1 has a density $\eta(u)$ and that Q satisfies the tie-breaking property (1). Define

$$V_{i,j} = \sum_{i=1}^{k} I(q^{(i)}(y^{(i),j}) > q^{(j)}(y^{(i),j})).$$

Then

$$V_{i,j} \sim Binomial(k, u(\hat{F}_i, y^{(i),j})).$$

At a high level, we have a hierarchical model where U is drawn from a density $\eta(u)$ on [0,1] and then $V_{i,j} \sim \text{Binomial}(k,U)$; therefore the marginal distribution of $V_{i,j}$ can be written

$$\Pr[V_{i,j} = \ell] = \binom{k}{\ell} \int_0^1 u^{\ell} (1 - u)^{k - \ell} \eta(u) du.$$

However, the observed $\{V_{i,j}\}$ do *not* comprise an i.i.d. sample.

We discuss the following three approaches for estimating $p_t = \mathbf{E}[U^{t-1}]$ based on $V_{i,j}$. The first is unbiased estimation based on binomial U-statistics, which is discussed in Section 4.1. The second is the psuedolikelihood approach. In problems where the marginal distributions are known, but the dependence structure between variables is unknown, the psuedolikelihood is defined as the product of the marginal distributions. For certain problems in time series analysis and spatial statistics, the maximum psuedolikelihood estimator (MPLE) is proved to be consistent (CITE). We discuss psuedolikelihood-based approaches in Sections 4.2 and 4.3.

4.1 Unbiased estimation

If $V \sim \text{Binomial}(k, \eta)$, then an unbiased estimator $f_t(V)$ of $\eta^{(t-1)}$ exists if and only if $0 \le t \le k$. The theory of U-statistics provides the minimal variance unbiased estimator for $\eta^{(t-1)}$:

$$\eta^t = \mathbf{E} \left[rac{inom{V}{t}}{inom{k}{t}}
ight].$$

This result can be immediately applied to yield an unbiased estimator of p_t , when $t \leq k$:

$$\hat{p}_{t}^{UN} = \mathbf{E} \left[\frac{1}{kr_{2}} \sum_{i=1}^{k} \sum_{j=1}^{r_{2}} \frac{\binom{V_{i,j}}{t}}{\binom{k}{t}} \right]. \tag{3}$$

The problem of *extrapolation* concerns the case t > k, in which the expression (3) is undefined. Still, the estimator (3) is worthy of study, since it has close to optimal performance for the case $t \le k$.

4.2 Maximum pseudo-likelihood

The psuedolikelihood is defined as

$$\ell_t(\eta) = \sum_{i=1}^k \sum_{j=1}^{r_1} \log \left(\int u^{V_{i,j}} (1-u)^{k-V_{i,j}} \eta(u) du \right), \tag{4}$$

and a maximum psuedolikelihood estimator (MPLE) is defined as any density $\hat{\eta}$ such that

$$\ell(\hat{\eta}_{MPLE}) = \sup_{\eta} \ell_t(\eta).$$

The motivation for $\hat{\eta}_{MPLE}$ is that it consistently estimates η in the limit where $k \to \infty$.

Theorem 4.2. For given $\mathbb F$ and scoring rule $\mathcal Q$, assume that U as defined in Theorem 3.1 has a density $\eta(u)$ and that $\mathcal Q$ satisfies the tie-breaking property (1), and also that $r_2 \geq 1$. For $t = 1, 2, \ldots$, let $\hat{\eta}_t$ be any MPLE for ℓ_t . As $k_t \to \infty$, $\hat{\eta}_t$ weakly converges to η .

However, in finite samples, $\hat{\eta}_{MPLE}$ is not uniquely defined, and if we define the plug-in estimator

$$\hat{p}_t^{MPLE} = \int u^{t-1} \hat{\eta}_{MPLE}(u) du,$$

 \hat{p}_t^{MPLE} can vary over a large range, depending on which $\hat{\eta} \in \operatorname{argmax}_{\eta} \ell_t(\eta)$ is selected. These shortcomings motivate the adoption of additional constraints on the estimator $\hat{\eta}$.

Figure 1: Extrapolation classification performance for CIFAR data. (This simulation needs to be fixed later.) PMLE: maximum psuedolikelihood. MCPMLE: Moment-constrained max psuedolikelihood. Info: Zheng and Benjamini's info-theoretic method. Unbiased: U-statistic (cannot be used to extrapolate.)

4.3 Constrained pseudo-likelihood

Theorem 3.2. motivates the *monotonicity constraint* that $\frac{d\hat{\eta}}{du} > 0$, hence we define $\hat{\eta}_{INC}$ as a solution to

maximize
$$\ell_t(\eta)$$
 subject to $\frac{d\hat{\eta}}{du} > 0$.

An alternative strategy is to directly attack the variability is \hat{p}_t due to non-uniqueness of $\hat{\eta}$. Therefore, we define $\hat{\eta}_{MC}$ (where MC stands for moment-constrained) as

maximize
$$\ell_t(\eta)$$
 subject to $\int u^{k-1}\eta(u)du = \hat{p}_k^{UN}$.

Thirdly, we can combine both the moment constraint and the monotonicity constraint, yielding $\hat{\eta}_{COM}$, which is obtained by solving

maximize
$$\ell_t(\eta)$$
 subject to $\int u^{k-1}\eta(u)du = \hat{p}_k^{UN}$ and $\frac{d\hat{\eta}}{du} > 0$.

Unfortunately, none of the three density estimators are uniquely defined. An easy way to see this is to transform the parameterization of $\eta(u)$, defining

$$\eta(u) = \int_0^u \xi(u) du;$$

the monotonicity constraint is equivalent to the condition that $\xi > 0$, and the moment condition translates into a linear equality constraint on ξ .

5 Results

6 Discussion

Acknowledgments

CZ is supported by an NSF graduate research fellowship.

References

[X] Ng, Andrew Y., and Michael I. Jordan. "On Discriminative vs. Generative classifiers: A comparison of logistic regression and naive Bayes." (2002).

[X] Naselaris, T., Kay, K. N., Nishimoto, S., & Gallant, J. L. (2011). Encoding and decoding in fMRI. *Neuroimage*, 56(2), 400-410.

[X] Friedman, Jerome, Trevor Hastie, and Robert Tibshirani. *The elements of statistical learning*. Vol. 1. Springer, Berlin: Springer series in statistics, 2008.