Fiche d'exercices n°2 : sommes et produits

Prenez l'habitude de vérifier systématiquement vos résultats, par exemple avec www.wolframalpha.com.

Pour réviser...

Exercice 1. Simplifier les expressions suivantes :

$$i) \; \frac{5^3 \, 2^4 \, 10^-}{20^3}$$

$$ii) \frac{10^9 \, 6^3}{25^4 \, 3 \, 2^{11}}$$

$$iii) \frac{1}{10^{56}} - \frac{1}{10^{57}}$$

$$i) \ \frac{5^3 \ 2^4 \ 10^{-1}}{20^3} \qquad ii) \ \frac{10^9 \ 6^3}{25^4 \ 3 \ 2^{11}} \qquad iii) \ \frac{1}{10^{56}} - \frac{1}{10^{57}} \qquad iv) \ 5^{108} \ 2^{106} \ \frac{11}{10^{107}} \qquad v) \ \frac{\left(3^4\right)^2 \ 4}{2^{-3} \ \left(6^2\right)^3}$$

$$v) \frac{\left(3^4\right)^2 4}{2^{-3} (6^2)^3}$$

Exercice 2. Exprimer en fonction de ln 2 et ln 5 les valeurs suivantes :

$$\ln(20)$$
 ; $\ln\left(\sqrt{\frac{2}{125}}\right)$; $\ln(0.001)$; $\ln\left(\frac{\sqrt[3]{25}}{8\sqrt{2}}\right)$; $\ln(500e)$

Exercice 3. Soient a et b deux réels strictement positifs. Exprimer en fonction de $\ln a$ et $\ln b$ les valeurs suivantes :

$$\ln \frac{a^2 \sqrt{a}}{b^3} - \ln \frac{b^2}{a}$$
 ; $2 \ln ab^2 - 3 \ln a^2 b + \ln \left(\frac{a}{b}\right)^3$; $\ln \sqrt{a^3 b^3} - \ln \sqrt[3]{a^2 b^2}$

Exercice 4. A l'aide du tableau ci-dessous, montrer que $1+2+3+\cdots+n=\frac{n(n+1)}{2}$.

1	2	 	n-1	n
n	n-1	 	2	1

Exercice 5.

- 1. Développer les expressions $(1+a+a^2)(1-a)$ et $(1+a+a^2+a^3)(1-a)$.
- 2. Développer l'expression $(1 + a + a^2 + a^3 + \cdots + a^n)(1 a)$.
- 3. En déduire la valeur de la somme $1 + a + a^2 + a^3 + \cdots + a^n$
- 4. En déduire la valeur de la somme $3^3 + 3^4 + \cdots + 3^{10}$

Exercice 6. Développer les expressions suivantes :

$$(a-b)^2$$

$$i) (a-b)^2$$
 $ii) (x+y)(x-y)$ $iii) (u+3)^2$ $iv) (x+y)^3$ $v) (a-b)^3$

$$iii) (u+3)^2$$

$$iv)(x+y)^3$$

$$v) (a - b)^3$$

Exercice 7.

- 1. Rappeler les valeurs de 3!, 4!, 5! ...
- 2. Simplifier les expressions suivantes : $\frac{10!}{7!}$; $\frac{7!}{9!}$; $\frac{(n+2)!}{n!}$; $\frac{(n-1)!}{(n+1)!}$

Exercices de base sur les sommes et produits

Exercice 8. Calculer les sommes et les produits suivants.

a)
$$\sum_{k=1}^{3} (k^2 - 1)^k$$

b)
$$\sum_{k=1}^{3} (2k-1)$$

$$c) \quad \sum_{j=2}^{4} j^2$$

a)
$$\sum_{k=1}^{3} (k^2 - 1)$$
 b) $\sum_{k=1}^{3} (2k - 1)$ c) $\sum_{j=2}^{4} j^2$ d) $\sum_{p=0}^{2} (2p + 1)$ e) $\sum_{n=0}^{2} 2^n$ f) $\prod_{k=1}^{4} (2k - 1)$ g) $\sum_{j=2}^{2} j$ h) $\prod_{p=2}^{4} p$ i) $\sum_{k=1}^{3} 5$ j) $\prod_{p=3}^{5} 2$

$$e) \quad \sum_{n=0}^{2} 2^n$$

$$f$$
) $\prod_{k=1}^{4} (2k-1)^{k}$

$$g$$
) $\sum_{i=-2}^{2} g$

$$h) \prod_{n=2}^{4} p$$

$$i) \sum_{k=1}^{3} \xi$$

$$j) \quad \prod_{n=3}^{3} 2$$

Exercice 9. Écrire les sommes et les produits suivants en utilisant les symboles \sum et \prod .

a)
$$1+2+3+4+5+6+7+8+9+10$$

b)
$$4+5+6+7+8+9$$

c)
$$0+1+2+3+4+5$$

$$d)$$
 3+3+3+3+3+3

$$e)$$
 $2 \times 3 \times 4 \times 5 \times 6 \times 7$

$$f) \quad 1 \times \frac{1}{2} \times \frac{1}{3} \times \frac{1}{4} \times \frac{1}{5}$$

$$g)$$
 $7 \times 7 \times 7 \times 7 \times 7 \times 7$

h)
$$\frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8}$$

$$i)$$
 2+4+6+8+10+12+14+16+18+20

$$i) \quad 2+4+6+8+10+12+14+16+18+20 \quad j) \quad 3+5+7+9+11+13+15+17+19+21$$

$$k)$$
 1+3+5+7+9+11+13+15

$$l)$$
 2+4+6+8+10+...+98+100

Exercice 10. Simplifier les expressions suivantes, pour les écrire de façon plus concise :

$$a) \quad a_1 + \sum_{k=2}^n a_k$$

$$b) \quad a_0 + \sum_{k=1}^{n+2} a_k$$

a)
$$a_1 + \sum_{k=2}^{n} a_k$$
 b) $a_0 + \sum_{k=1}^{n+2} a_k$ c) $\sum_{k=0}^{3} a_k + \sum_{j=4}^{n} a_j$ d) $\sum_{p=n+1}^{2n} a_p + \sum_{m=1}^{n} a_m$

$$\sum_{p=n+1}^{2n} a_p + \sum_{m=1}^n a_m$$

$$e) \quad \prod_{k=1}^{2n+1} 3^k \qquad \qquad f) \quad \prod_{k=1}^{10} 2^k \qquad \qquad g) \quad \prod_{m=7}^{10} 3^j \qquad \qquad h) \quad \frac{1}{3} \prod_{k=3}^7 k$$

$$f) \quad \frac{\prod_{k=1}^{n} 2^k}{\prod_{k=1}^{n} 2^k}$$

$$g) \quad \frac{\prod_{j=1}^{3^j}}{\prod_{j=1}^{10} 3^m}$$

$$h) \quad \frac{1}{3} \prod_{k=3}^{7} k$$

$$i) \quad \sum_{p=1}^{n} 2^p - \sum_{k=1}^{4} 2^k$$

$$\sum_{k=1}^{n+4} k^3 - \sum_{j=1}^{n-1} j^3 \quad i$$

$$\frac{1}{10} \prod_{k=1}^{10} k$$

$$i) \quad \sum_{p=1}^{n} 2^{p} - \sum_{k=1}^{4} 2^{k} \quad j) \quad \sum_{k=1}^{n+4} k^{3} - \sum_{j=1}^{n-1} j^{3} \quad k) \quad \frac{1}{10} \prod_{k=1}^{10} k \qquad \qquad l) \quad \left(\prod_{k=1}^{n} (2k)\right) \left(\prod_{p=0}^{n} (2p+1)\right) = 0$$

Exercice 11. Calculer les sommes et les produits suivants :

$$a) \quad \sum_{k=1}^{n} \xi$$

$$b) \quad \sum_{p=1}^{n+2} 7^p$$

$$c) \prod_{k=2}^{n} 0$$

$$d) \quad \sum_{k=0}^{n} 4$$

$$e) \quad \prod_{k=0}^{n+3} 5$$

$$a) \quad \sum_{k=1}^{n} 5 \qquad b) \quad \sum_{p=1}^{n+2} 7 \qquad c) \quad \prod_{k=2}^{n} 6 \qquad d) \quad \sum_{k=0}^{n} 4 \qquad e) \quad \prod_{k=0}^{n+3} 5 \qquad f) \quad \sum_{j=n}^{2n+1} 8 \qquad g) \quad \prod_{k=1}^{5} i = 1$$

$$g) \prod_{k=1}^{5} i$$

Exercice 12. Simplifier les produits suivants :

$$\prod_{k=1}^{n+2} k$$

a)
$$\prod_{k=1}^{n+2} k$$
 b)
$$\prod_{k=3}^{n} k$$
 c)
$$\prod_{k=1}^{p} 3k^{2}$$
 d)
$$\prod_{k=2}^{n} (k-1)$$
 e)
$$\prod_{m=1}^{m} \frac{m+1}{3}$$
 f)
$$\prod_{k=2}^{n} \frac{(l-1)(l+2)}{2}$$
 g)
$$\prod_{k=3}^{n} \frac{k}{k-1}$$
 h)
$$\prod_{m=3}^{n} \frac{p(p+1)}{p-1}$$
 i)
$$\prod_{k=1}^{n} (2k+1)$$
 j)
$$\sum_{k=1}^{n} \ln(k+1)$$

$$g) \quad \prod_{k=2}^{n} \frac{k}{k-1}$$

$$h) \quad \prod_{p=2}^{n} \frac{p(p+1)}{p-1}$$

$$i) \quad \prod_{k=1}^{n} (2k+1)$$

$$j) \quad \sum_{k=1}^{n} \ln(k+1)$$

Exercice 13. Calculer les sommes suivantes :

a)
$$\sum_{i=1}^{n} (\ln 3 + 3 \ln j)$$

a)
$$\sum_{j=1}^{n} (\ln 3 + 3 \ln j)$$
 b) $\sum_{k=2}^{n} (2 \ln k + \ln(k+1))$ c) $\sum_{p=2}^{n} \ln(2p^3)$

$$c) \quad \sum_{p=2}^{n} \ln(2p^3)$$

Exercice 14. Calculer les sommes suivantes :

$$a) \qquad \sum_{k=0}^{n} 3^k$$

b)
$$\sum_{p=0}^{n+2} 7^p$$

$$c) \quad \sum_{k=1}^{n} 2^{k}$$

$$d) \qquad \sum_{j=2}^{n} 5^{j}$$

a)
$$\sum_{k=0}^{n} 3^k$$
 b) $\sum_{n=0}^{n+2} 7^p$ c) $\sum_{k=1}^{n} 2^k$ d) $\sum_{j=2}^{n} 5^j$ e) $\sum_{k=0}^{n} (-2)^k$ f) $\sum_{k=0}^{n} 2^{3k+2}$

$$f$$
) $\sum_{k=0}^{n} 2^{3k+2k}$

$$g) \sum_{k=1}^{n+1} 7^{2k+1}$$

$$h) \sum_{k=0}^{n+2} \frac{1}{2^k}$$

$$i) \sum_{l=0}^{n} \frac{2^{l+1}}{3^{l+2}}$$

$$j$$
) $\sum_{k=0}^{2n-1} 3^{k/2}$

$$g) \sum_{k=1}^{n+1} 7^{2k+1} \qquad h) \sum_{k=0}^{n+2} \frac{1}{2^k} \qquad i) \sum_{k=0}^{n} \frac{2^{l+1}}{3^{l+2}} \qquad j) \sum_{k=0}^{2n-1} 3^{k/2} \qquad k) \sum_{k=1}^{p+1} 3^k 5^{2-k} \qquad l) \sum_{k=0}^{n-1} e^{\frac{2i\pi k}{n}}$$

$$l) \quad \sum_{k=0}^{n-1} e^{\frac{2i\pi k}{n}}$$

Exercice 15. Calculer les sommes suivantes :

$$a) \sum_{k=1}^{n} 4k$$

a)
$$\sum_{i=1}^{n} 4k$$
 b) $\sum_{i=1}^{n} (2k+5)$ c) $\sum_{i=1}^{n+2} 3k$ d) $\sum_{i=1}^{n} (j+4)$ e) $\sum_{i=1}^{n} (k-2)$ f) $\sum_{i=1}^{n} \frac{p}{2}$

$$c) \sum_{k=0}^{n+2} 3k$$

$$d) \sum_{j=0}^{n} (j+4)^{j}$$

$$e) \sum_{k=0}^{n} (k-2)$$

$$f$$
) $\sum_{n=2}^{2n} \frac{p}{2}$

Exercice 16. Mettre sous forme algébrique les nombres complexes suivants :

a)
$$\sum_{i=1}^{n} (1+2ip)$$
 b) $\sum_{i=1}^{10} (2+ik)$ c) $\sum_{i=1}^{n} \frac{5l}{2+i}$ d) $\sum_{i=1}^{p} \frac{n+i}{1+i}$

b)
$$\sum_{k=1}^{10} (2+ik)$$

c)
$$\sum_{l=1}^{n} \frac{5l}{2+i}$$

$$d) \quad \sum_{n=1}^{p} \frac{n+i}{1+i}$$

Exercice 17. Calculer les sommes suivantes :

a)
$$\sum_{k=0}^{n} \binom{n}{k} 2^k 3^{n-k}$$

b)
$$\sum_{k=0}^{n} \binom{n}{k} 2^k \left(\frac{1}{2}\right)^{n-1}$$

c)
$$\sum_{k=0}^{n} \binom{n}{k} 3^{k+1} 5^{n-k}$$

a)
$$\sum_{k=0}^{n} \binom{n}{k} 2^k 3^{n-k}$$
 b) $\sum_{k=0}^{n} \binom{n}{k} 2^k \left(\frac{1}{2}\right)^{n-k}$ c) $\sum_{k=0}^{n} \binom{n}{k} 3^{k+1} 5^{n-k}$ d) $\sum_{k=0}^{n} \binom{n}{k} 2^{k+1} 3^{2n-k}$

$$e$$
) $\sum_{k=0}^{n} \binom{n}{k} 2^k$

$$f) \qquad \sum_{k=0}^{n} \binom{n}{k} 4^k 3^{-k}$$

$$g) \qquad \sum_{k=0}^{n} \binom{n}{k} \frac{5^k}{2^{n-k}}$$

$$e) \qquad \sum_{k=0}^{n} \binom{n}{k} 2^{k} \qquad f) \qquad \sum_{k=0}^{n} \binom{n}{k} 4^{k} 3^{-k} \qquad g) \qquad \sum_{k=0}^{n} \binom{n}{k} \frac{5^{k}}{2^{n-k}} \qquad h) \qquad \sum_{k=0}^{n} \binom{n}{k} 3^{2k-n} \frac{5^{k}}{2^{n-k}}$$

$$i) \quad \sum_{k=1}^{n} \binom{n}{k} 5^k 3^{n-k}$$

i)
$$\sum_{k=1}^{n} \binom{n}{k} 5^k 3^{n-k}$$
 j) $\sum_{k=0}^{n-1} \binom{n}{k} 3^k 4^{n-k}$

Exercice 18. Simplifier les expressions suivantes :

$$a) \qquad \prod_{k=1}^{20} e^{ik\pi/3}$$

b)
$$\prod_{p=1}^{7} 2e^{ip\pi/8}$$

c)
$$\prod_{k=1}^{6} (1+i)^k$$

a)
$$\prod_{k=1}^{20} e^{ik\pi/3}$$
 b)
$$\prod_{p=1}^{7} 2e^{ip\pi/8}$$
 c)
$$\prod_{k=1}^{6} (1+i)^k$$
 d)
$$\sum_{l=0}^{7} \left(-2 + \sqrt{2}e^{i\pi/4}\right)^l$$
 e)
$$\sum_{k=0}^{7} \left(\sqrt{2}e^{i\pi/4}\right)^k$$
 f)
$$\sum_{m=0}^{12} (-1 + e^{i\pi/3})^m$$

$$e) \quad \sum_{k=0}^{7} \left(\sqrt{2}e^{i\pi/4}\right)^k$$

$$f$$
) $\sum_{m=0}^{12} (-1 + e^{i\pi/3})^m$

Soit $a \in \mathbb{R}$. Calculer les coefficients α et β tels que $\frac{1}{k(k+a)} = \frac{\alpha}{k} + \frac{\beta}{k+a}$. En déduire les valeurs des sommes suivantes :

a)
$$\sum_{k=1}^{n} \frac{1}{k(k+1)}$$

a)
$$\sum_{k=1}^{n} \frac{1}{k(k+1)}$$
 b) $\sum_{k=1}^{n} \frac{1}{k(k+2)}$ c) $\sum_{k=2}^{n} \frac{1}{k^2 - 1}$

c)
$$\sum_{k=2}^{n} \frac{1}{k^2 - 1}$$

Pour vous entrainer...

Exercice 20. Simplifier les expressions suivantes, pour les écrire de façon plus concise :

a)
$$\sum_{n=1}^{3n+2} p - \sum_{k=2n}^{3n+2} k$$

$$b) \quad \sum_{l=1}^{n+4} l - \sum_{k=1}^{n-1} k$$

a)
$$\sum_{p=1}^{3n+2} p - \sum_{k=2n}^{3n+2} k$$
 b) $\sum_{l=1}^{n+4} l - \sum_{k=1}^{n-1} k$ c) $\sum_{j=1}^{2n-1} j - \sum_{k=n-1}^{2n-1} k$ d) $\frac{\prod_{k=1}^{2^k} 2^k}{\prod_{k=1}^{2^k} 2^k}$

$$d) \quad \frac{\prod_{k=1}^{n} 2^k}{\prod_{k=1}^{n} 2^k}$$

$$e) \quad \frac{\prod_{j=1}^{2n+1} 3^j}{\prod_{k=1}^n 3^k}$$

f)
$$\sum_{p=n+1}^{2n} a_p + \sum_{k=1}^n a_k$$
 g) $\prod_{k=0}^{n-1} (k+1)^2$ h) $\sum_{l=3}^{p+2} (l-2)$

$$g) \prod_{k=0}^{n-1} (k+1)^2$$

h)
$$\sum_{l=3}^{p+2} (l-2)$$

Exercice 21. Calculer les sommes et les produits suivants :

$$a) \sum_{k=0}^{n-1} 3^{k}$$

b)
$$\prod_{l=3}^{p+1} 2^{l}$$

$$c) \sum_{l=m}^{n} c$$

$$d) \prod_{n=1}^{n+1} 2$$

$$e) \prod_{j=n+1}^{3n+5} 7^{j}$$

a)
$$\sum_{k=0}^{n-1} 3$$
 b) $\prod_{l=3}^{p+1} 2$ c) $\sum_{l=m}^{n} a$ d) $\prod_{k=3}^{n+1} 2$ e) $\prod_{j=n+1}^{3n+5} 7$ f) $\sum_{k=p-2}^{2p+2} 8$

Exercice 22. Simplifier les produits suivants :

$$a) \qquad \prod_{k=2}^{n+1} (5k)$$

$$b) \prod_{p=1}^{n+2} (p+3)$$

$$c) \quad \prod_{j=1}^{p} \frac{2}{j+1}$$

a)
$$\prod_{k=2}^{n+1} (5k)$$
 b) $\prod_{p=1}^{n+2} (p+3)$ c) $\prod_{j=1}^{p} \frac{2}{j+1}$ d) $\prod_{k=2}^{n} (k-1)(k+1)$ e) $\prod_{k=2}^{n} k(k+1)$

$$e) \quad \prod_{k=2}^{n} k(k+1)$$

$$f) \quad \prod_{m=1}^{n} \frac{m+2}{m}$$

$$g) \quad \prod_{k=2}^{n} \frac{k}{k^2 - 1}$$

$$h) \quad \prod_{k=2}^{n} (3k^2)$$

$$\sum_{k=2}^{n} \ln \frac{1}{k}$$

$$f) \quad \prod_{m=1}^{n} \frac{m+2}{m} \quad g) \quad \prod_{k=2}^{n} \frac{k}{k^2 - 1} \quad h) \quad \prod_{k=2}^{n} (3k^2) \quad i) \quad \sum_{k=2}^{n} \ln \frac{1}{k} \quad j) \quad \prod_{l=1}^{n-2} (l+2)$$

Exercice 23. Calculer les sommes suivantes :

$$a) \quad \sum_{i=2}^{n} \ln(5j^2)$$

a)
$$\sum_{j=2}^{n} \ln(5j^2)$$
 b) $\sum_{k=1}^{n} (2\ln k - \ln(k+1))$ c) $\sum_{p=2}^{n} \left(\ln \frac{p+1}{3} + \ln \frac{2}{p}\right)$

c)
$$\sum_{p=2}^{n} \left(\ln \frac{p+1}{3} + \ln \frac{2}{p} \right)$$

Exercice 24. Calculer les sommes suivantes :

a)
$$\sum_{k=1}^{n} 3^{3k-1}$$

$$b) \sum_{n=0}^{p+2} \frac{1}{3^{n-2}}$$

a)
$$\sum_{k=1}^{n} 3^{3k-1}$$
 b) $\sum_{n=0}^{p+2} \frac{1}{3^{n-2}}$ c) $\sum_{l=0}^{n} 2^{1+3l} 3^{-2(l+1)}$ d) $\sum_{k=2}^{n+2} (-3)^k$ e) $\sum_{k=0}^{n-1} e^{\frac{i\pi k}{n}}$ f) $\sum_{k=0}^{n} \frac{2^k 3^{k+2}}{7^{k+1}}$

$$d) \quad \sum_{k=2}^{n+2} (-3)^k$$

$$e) \quad \sum_{k=0}^{n-1} e^{\frac{i\pi k}{n}}$$

$$f) \quad \sum_{k=0}^{n} \frac{2^k 3^{k+2}}{7^{k+1}}$$

Exercice 25. Calculer les sommes suivantes :

a)
$$\sum_{l=1}^{3n} (2l-1)$$

$$b) \quad \sum_{n=1}^{p} \frac{1-n}{3}$$

$$c) \quad \sum_{k=1}^{n} (ak+b)$$

a)
$$\sum_{l=1}^{3n} (2l-1)$$
 b) $\sum_{n=1}^{p} \frac{1-n}{3}$ c) $\sum_{k=1}^{n} (ak+b)$ d) $\sum_{j=1}^{2n} 3(j+1)$ e) $\sum_{k=2}^{3n} \frac{2-k}{3}$

$$e) \sum_{k=2}^{3n} \frac{2-k}{3}$$

Exercice 26. Calculer les sommes suivantes :

$$a) \quad \sum_{k=0}^{n} \binom{n}{k} \frac{1}{3^k}$$

b)
$$\sum_{k=0}^{n} \binom{n}{k} 5^{k-n}$$

c)
$$\sum_{k=0}^{n} \binom{n}{k} 2^k 3^{2n-k}$$

a)
$$\sum_{k=0}^{n} \binom{n}{k} \frac{1}{3^k}$$
 b) $\sum_{k=0}^{n} \binom{n}{k} 5^{k-n}$ c) $\sum_{k=0}^{n} \binom{n}{k} 2^k 3^{2n-k}$ d) $\sum_{k=0}^{n} \binom{n}{k} 2^{k+1} 3^{2-k}$

$$e)$$
 $\sum_{k=0}^{n} \binom{n}{k} \frac{5^k}{2^{2k}}$

$$f$$
) $\sum_{k=1}^{n} \binom{n}{k} (3^k)^2$

e)
$$\sum_{k=0}^{n} \binom{n}{k} \frac{5^k}{2^{2k}}$$
 f) $\sum_{k=1}^{n} \binom{n}{k} (3^k)^2$ g) $\sum_{k=1}^{n} \binom{n}{k} 5^k 3^{n+k}$

Exercice 27. Calculer les expressions suivantes :

$$a) \qquad \sum_{k=1}^{n} \frac{1-2k}{5}$$

$$b) \qquad \sum_{k=0}^{n} 3^{k-2} 2^{3-k}$$

$$c) \quad \prod_{k=1}^{n} \frac{k+3}{k+1}$$

$$\sum_{k=1}^{n} \frac{1-2k}{5} \qquad b) \qquad \sum_{k=0}^{n} 3^{k-2} 2^{3-k} \qquad c) \quad \prod_{k=1}^{n} \frac{k+3}{k+1} \qquad d) \quad \sum_{k=0}^{n} \binom{n}{k} \frac{3^k 2^{n-k}}{5^k}$$

$$e$$
)
$$\prod_{k=1}^{n} \left(\sum_{j=1}^{k} j \right)$$

e)
$$\prod_{k=1}^{n} \left(\sum_{j=1}^{k} j \right) \qquad f) \quad \sum_{k=0}^{n} \binom{n}{k} 3^{2k} 2^{2n-k} \qquad g) \quad \sum_{k=1}^{2n} (k+2) \qquad h) \qquad \sum_{k=2}^{n} 2^{2-k}$$

$$g) \sum_{k=1}^{2n} (k+2)$$

$$h$$
) $\sum_{k=2}^{n} 2^{2-k}$

i)
$$\sum_{k=1}^{n} \binom{n}{k} 2^{2n+k} 5^{2n-k}$$
 j) $\prod_{k=2}^{n} \frac{(k-1)(k+1)}{k^2}$

$$j$$
) $\prod_{k=2}^{n} \frac{(k-1)(k+1)}{k^2}$

Pour aller plus loin...

Exercice 28. Simplifier les expressions :
$$\prod_{k=1}^{393} i$$
 ; $\prod_{k=1}^{4n+3} i$; $\prod_{k=1}^{8n+5} (1+i)$; $\prod_{k=3}^{200} e^{i\pi/3}$

Exercice 29. Calculer les produits :
$$\left(\prod_{k=1}^{n}(2k)\right)\left(\prod_{k=1}^{n}(2k+1)\right)$$
 ; $\prod_{j=1}^{n}(2j)$; $\prod_{k=1}^{n}(2k+1)$

Exercice 30. On démontre par récurrence que
$$\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$$
 et $\sum_{k=1}^{n} k^3 = \left(\frac{n(n+1)}{2}\right)^2$

A l'aide de ces formules, calculer les sommes suivantes :

a)
$$\sum_{k=1}^{n} k(k+1)$$
 b) $\sum_{k=0}^{n} (k^2+1)$ c) $\sum_{k=1}^{n} (2k+2)(3k-2)$ d) $\sum_{k=1}^{n} k(k-1)(k+1)$

Exercice 31. Calculer les sommes :
$$\sum_{k=0}^{n} \binom{n+1}{k} 2^k 3^{n-k}$$
 et $\sum_{k=0}^{n} \binom{n+1}{k+1} 2^k 3^{n-k}$

Exercice 32. Calculer le module du nombre complexe :
$$\prod_{k=1}^{n} \frac{ki}{(\sqrt{k}+i)^2}$$

Exercice 33. Calculer les sommes :
$$\sum_{k=1}^{n} \frac{k}{(k+1)!}$$
 et
$$\sum_{k=1}^{n} \frac{2^{k}(k-1)}{(k+1)!}$$

Exercice 34. On définit la somme
$$S = \sum_{k=1}^{n} \frac{4k+1}{k(k+1)(k+2)}$$
. Déterminer trois réels a,b,c tels que

$$\forall k \in \mathbb{N}^*, \quad \frac{4k+1}{k(k+1)(k+2)} = \frac{a}{k} + \frac{b}{k+1} + \frac{c}{k+2}$$

En déduire la valeur de S.

Exercice 35. Exprimer en fonction de x et n les sommes suivantes :

$$a) \quad \sum_{k=1}^{n} \sin(xk)$$

a)
$$\sum_{k=1}^{n} \sin(xk)$$
 b) $\sum_{k=1}^{n} \sin(x(2k+1))$ c) $\sum_{k=1}^{n} k \cos(kx)$

$$c) \quad \sum_{k=1}^{n} k \cos(kx)$$

Exercice 36. Soit $a \in]0, \pi[$ fixé.

- 1. Pour tout $k \in \mathbb{N}^*$, montrer que $\sin\left(\frac{a}{2^{k-1}}\right) = 2 \sin\left(\frac{a}{2^k}\right) \cos\left(\frac{a}{2^k}\right)$
- 2. En déduire la valeur de $\prod_{k=1}^n \cos\left(\frac{a}{2^k}\right)$

Exercice 37. On considére une expérience ayant deux issues possibles, que l'on appelle issue positive et issue négative. Soit $p \in]0,1[$ la probabilité d'avoir une issue positive. On répète plusieurs fois cette expérience dans les mêmes conditions et de façon indépendante.

- 1. Calculer la probabilité p_k pour que la première expérience positive soit la k-ième.
- 2. Soit q_1 la probabilité que au moins une expérience parmi les 100 premières soit positive. Exprimer q_1 en fonction de p_1, \ldots, p_{100} et donc en fonction de p.
- 3. Soit q_0 la probabilité que les 100 premières expériences soient toutes négatives. Exprimer q_0 en fonction de p.
- 4. Les événements "Au moins une expérience parmi les 100 premières est positive" et "Les 100 premières expériences sont toutes négatives" sont complémentaires. On devrait donc avoir $q_0 + q_1 = 1$. Est-ce bien ce que vous avez obtenu?