II. REPREZENTAREA NUMERELOR ÎN CALCULATOR. ARITMETICA BINARĂ

2.1. Reprezentarea numerelor în calculator

- Reprezentarea numerelor în calculatoarele numerice se face pe baza sistemului de numerație binar
- Numere pozitive şi negative → reprezentare semn?
 - numere fără semn reprezentare în binar sau în cod binar-zecimal
 - numere cu semn asociat pe poziția cea mai semnificativă un bit special de semn
 - convenţie:
 - semnul plus cifra 0
 - semnul minus cifra 1
 - un număr binar de "n" biţi, cu semn are "n+1" biţi

2.1. Reprezentarea numerelor în calculator

- Numere:
 - întregi
 - fracţionare
- Poziţia virgulei la numere fracţionare → determină reprezentarea → poziţie fixă sau variabilă a virgulei:
 - reprezentare în virgulă fixă
 - reprezentare în virgulă mobilă (flotantă)

- Calculatoarele pot opera cu numere de lungime fixă
- Numărul de cifre (de exemplu, 32 sau 64 de poziții binare) determinat de numărul de celule din care sunt realizate registrele utilizate
- Poziția virgulei
 - se stabileşte iniţial la proiectare
 - nu se mai schimbă
 - nu se realizează fizic, dar localizarea ei trebuie cunoscută

- Blocuri aritmetice ale calculatoarelor care lucrează în virgulă fixă:
 - virgula este în fața cifrei celei mai semnificative
 - numerele sunt deci subunitare (numerele reale sunt transformate în prealabil în acest sens)
- Indicarea semnului → realizată prin mai multe tehnici ⇒ moduri diferite de reprezentare:
 - mărime şi semn
 - complement față de 2 (cod complementar)
- **complement față de 1 (cod invers)**18.10.2019

 Curs 2 Proiectare Logica

Definiții:

- $(\underline{N})_b = b^n (N)_b$
- $(\overline{N})_b = b^n (N)_b b^{-m}$
 - $(\overline{N})_b$ = complement față de baza "b" a numărului $(N)_b$
 - $\overline{(N)}_b$ = complement față de "b-1" a numărului $(N)_b$
 - n = nr. de cifre ale părții întregi ale numărului N
 - m = nr. de cifre ale părții fracționare ale numărului N
- În binar, $N = 2^n 1 = cel$ mai mare număr binar de "n" cifre care poate fi reprezentat $\Rightarrow 2^n$ necesar pentru complement nu se poate reprezenta $\Rightarrow 2^n$ se echivalează cu numărul 0

Exemple generale:

- $N_1 = (123,45)_{10}$ cu n = 3, m = 2
 - $(N_1)_{10} = 10^n N_1 = 10^3 123,45 = 876,55$
 - $(\overline{N_1})_{10} = 10^n N_1 10^{-m} = 10^3 123,45 10^{-2} = 876,54$
- $N_2 = (1101,011)_2 \text{ cu n} = 4, \text{ m} = 3$
 - $(N_2)_2 = 2^n N_2 = 2^4 1101,011 = 0010,101$
 - $(\overline{N_2})_2 = 2^n N_2 2^{-m} = 2^4 1101,011 2^{-3} = 0010,100$

Determinarea complementului față de 2 → există 3 procedee:

- $(\overline{N})_2 = 0 N$
- $\overline{(N)}_2 = \overline{\overline{N}} + 2^{-n}$
- pornind de la dreapta spre stânga se păstrează neschimbate cifrele egale cu 0, inclusiv prima cifră egală cu 1, după care toate celelalte cifre se inversează
 - n = numărul de cifre ale numărului

Determinarea complementului față de $1 \rightarrow \text{exist}$ ă 3 procedee:

$$(\overline{N})_2 = 0 - N - 2^{-n}$$

$$(\overline{\overline{N}})_2 = \overline{N} - 2^{-n}$$

$$(\overline{N})_2 = \overline{N} - 2^{-n}$$

se inversează fiecare cifră în parte

- Exemplu de determinare a complementului față de 2
- Numărul $(N)_2 = 101011$

1.
$$(\overline{N})_2 = 0000000 - \frac{101011}{010101} =$$

2.
$$(\overline{N})_2 = 010100 + \frac{000001}{010101} =$$

3.
$$(\overline{N})_2 = 010101$$
rămâne neschimbat s-au inversat

4

Complement

- Exemplu de determinare a complementului față de 1
- Numărul $(N)_2 = 101011$

$$2. (\overline{N})_2 = 010101 - \frac{000001}{010100} =$$

3.
$$(\overline{N})_2 = 010100 \rightarrow \text{am inversat cifrele } (0 \text{ cu } 1, 1 \text{ cu } 0)$$

Reprezentarea prin mărime și semn

Relaţia de reprezentare prin mărime şi semn:

$$N = a_n 2^n + \sum_{i=-m}^{n-1} a_i 2^i$$

- $a_n = bit de semn$
 - N pozitiv \Rightarrow $a_n = 0$
 - N negativ \Rightarrow $a_n = 1$
- a_i = cifrele binare ale numărului N

Reprezentarea prin mărime și semn

- Avantaj asemănătoare cu scrierea manuală
- Dezavantaje pentru realizarea calculelor aritmetice:
 - adunarea și scăderea depind și de semnele numerelor
 - este necesară examinarea semnului înaintea operației
 - sunt necesare blocuri diferite pentru adunare şi scădere
- Exemplu:

$$+6 = 00110$$
semn cifre număr

$$-6 = 10110$$
semin cifre număr

Reprezentarea prin complement față de 2

Relaţiile de reprezentare:

$$N = 0 \cdot 2^n + \sum_{i=-m}^{n-1} a_i 2^i$$
 pentru $N > 0$

$$N = -1 \cdot 2^{n} + \sum_{i=-m}^{n-1} a_{i} 2^{i} + 2^{-m} \text{ pentru N} < 0$$

- $\overline{a_i} = 1 a_i$ este complementul față de 1 al cifrei a_i
- Exemplu:
 - -+6 = 00110
 - - 6 = 11010 (1010 = complementul față de 2 al lui 6)

Reprezentarea prin complement față de 1

Relaţiile de reprezentare:

$$N = 0 \cdot 2^n + \sum_{i=-m}^{n-1} a_i 2^i$$
 pentru $N > 0$

$$N = -1 \cdot 2^n + \sum_{i=1}^{n-1} \overline{a_i} 2^i \qquad \text{pentru N} < 0$$

- $\overline{a_i} = 1 a_i$ este complementul față de 1 al cifrei a_i
- Exemplu:

$$-+6 = 00110$$

Un număr N în virgulă fixă se poate scrie:

$$N = a_0 2^0 + N^*$$

- $a_0 = bit de semn$
- N* are semnificaţiile:

• mărime și semn
$$N^* = \sum_{i=1}^n a_i 2^{-i}$$

N < 0 în complement față de 2
$$N^* = \sum_{i=1}^n \overline{a_i} 2^{-i} + 2^{-n}$$
N < 0 în complement față de 1
$$N^* = \sum_{i=1}^n \overline{a_i} 2^{-i}$$

$$N^* = \sum_{i=1}^n \overline{a}_i 2^{-i}$$

•
$$a_i$$
 = cifrele numărului

• n = numărul de cifre din dreapta virgulei

18.10.2019
$$\overline{a}_i = 1 - a_i$$

- Avantaje dacă virgula se plasează după prima poziție binară:
 - N* fiind subunitar poziția virgulei este aceeași după înmulțirea binară
 - înmulțirea nu va duce niciodată la depășirea limitei superioare a gamei de reprezentare a numerelor
 - această plasare poate fi uşor memorată

- Pentru numere foarte mari sau foarte mici, cu grad de precizie ridicat
- Reprezentarea unui număr prin mantisă M şi exponent E
- Exponent indică ordinul de mărime al numărului printr-o putere
- Mantisa determină mărimea (valoare) exactă a numărului în cadrul ordinului respectiv

Exemplu - o reprezentare pe 32 de biţi:

SE							SM			
0	1	2	3	4	5	6	7	8	• • • • • • •	31

- bitul 0 = SE semn exponent
- biţii 1-6 = exponent E
- bitul 7 = SM semn mantisă
- biţii 8-31 = mantisă M
- Numărul +12,34 se poate reprezenta în binar:
 - +1100,010101111 sau +0,1100010101111 x 2⁺⁴ sau +0,001100010101111 x 2⁺⁶
 - Reprezentarea pe 32 de biţi poate fi:
 - 0 000100 0 110001010111000000000000 sau
 - 0 000110 0 001100010101110000000000

- În calculatoare se utilizează reprezentarea numai cu semn la mantisă, nu şi la exponent ⇒ se foloseşte mărimea numită "Caracteristică"
- Caracteristica numărului N: C = E + deplasament
 - E = exponentul numărului (putere a lui 16)
 - deplasamentul ales ca să rezulte întotdeauna o valoare pozitivă (ex.: 64 sau 128)
- Valoarea exponentului E = (C deplasament)
 - avantaje
 - este numai pozitiv ⇒ operații simplificate
 - cifra 0 reprezentată la fel cu reprezentarea în virgulă fixă ⇒ tratare similară
 - dezavantaj există o operație de scădere în plus!

Reprezentare în dublă precizie, de exemplu:

b)	S	C		M
	0	1 7	8	63

Exemplu:

- Pentru caracteristica C = 7 biţi \Rightarrow numerele pot fi între 0 şi 2^7 -1 \Rightarrow $0 \le C \le 127$
- Dacă deplasamentul = $64 \Rightarrow$ exponentul E = C 64, deci $-64 \le E \le 63$

- Forma normalizată bitul cel mai semnificativ al mantisei = 1
 - acest bit nu se mai memorează ⇒ mantisa câştigă un bit semnificativ în plus
 - simplificare operații
 - creştere precizie
- Probleme cu reprezentarea valorii 0, care nu poate fi normalizată ⇒ valoarea 0 are o reprezentare specială

- Exemplu: gama numerelor reprezentate în complement față de 2, în cuvinte de 32 de biți:
 - numere pozitive între: $0.5 \cdot 2^{-128}$ și $(1 2^{-24}) \cdot 2^{127}$
 - numere negative între: $(1 2^{-24}) \cdot 2^{127}$ și $0.5 \cdot 2^{-128}$
 - 5 regiuni necuprinse în aceste domenii → depăşire
 - depășire inferioară negativă: < $(1 2^{-24})$ 2^{127}
 - depășire superioară negativă: > 0,5 2⁻¹²⁸
 - zero
 - depășire inferioară pozitivă: < 0,5 2⁻¹²⁸
 - depășire superioară pozitivă: $> (1 2^{-24}) \cdot 2^{127}$
- coprocesoarele matematice și unitățile de calcul în virgulă mobilă au mecanisme speciale pentru detectarea, semnalizarea și tratarea depășiri

23

- Compromis între dimensiunea mantisei şi a exponentului
 - mantisa de dimensiune mai mare ⇒ creşte precizia numerelor care pot fi reprezentate
 - exponentul de dimensiune mai mare ⇒ creşte domeniul numerelor care pot fi reprezentate
- Creşterea numărului de biţi pentru reprezentare:
 - creşterea preciziei
 - creșterea domeniului numerelor

- Standardul pentru "floating point":
 - IEEE 754 din 1985, actualizat în august 2008 și apoi în iulie 2019
- Reprezentarea numerelor în virgulă mobilă
- Operații aritmetice în această reprezentare

Operații aritmetice cu numere fără semn

- Adunarea binară
 - operație modulo 2
 - cifra cu valoarea cea mai mare: 2-1 = 1
 - dacă rezultatul adunării a 2 cifre de rang "i" depăşeşte valoarea 1 → apare transport către rangul "i+1", care se adaugă la suma cifrelor de rang "i+1"
 - transportul de la cifra cea mai semnificativă indică depăşirea capacității de reprezentare a rezultatului

Operații aritmetice cu numere fără semn

Adunarea binară

X	y	Transport	Sumă
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Exemplu:

$$22_{10} = 10110_2 + 19_{10} = 10011_2$$
$$41_{10} = 101001_2$$

Operații aritmetice cu numere fără semn

Scăderea binară

• 2 cifre de rang "i"; poate să apară împrumut de la rangul

X	y	Împrumut	Diferență
0	0	0	0
0	1	1	1
1	0	0	1
1	1	0	0

Exemplu:

$$22_{10} = 10110_2$$
 -

$$19_{10} = 10011_2$$

$$3_{10} = 00011_2$$

Operații aritmetice cu numere fără semn

- Înmulțirea binară
 - prin adunarea repetată de produse parţiale
 - produsul este 1 doar dacă şi deînmulţitul şi înmulţitorul sunt 1

X	y	Produsul
0	0	0
0	1	0
1	0	0
1	1	1

Operații aritmetice cu numere fără semn

• Înmulțirea binară - exemplu:

Operații aritmetice cu numere fără semn

- Împărțirea binară
 - nu se poate efectua dacă împărțitorul este egal cu 0!!!
 - trebuie să fie satisfăcută relația:

$$X = Q \cdot Y + R$$

- X = deîmpărţit; Y = împărţitor; Q = cât; R = rest
- se fac scăderi ale împărțitorului din resturile parțiale
 - dacă restul parțial este:
 - mai mare ca împărţitorul ⇒ cifra câtului este 1
 - dacă restul parţial este mai mic decât împărţitorul ⇒ cifra câtului este 0

Operații aritmetice cu numere fără semn

■ Împărțirea binară - exemplu

$$147_{10} = 10010011_2$$
; $11_{10} = 1011_2$
 $10010011 : 1011 = 1101_2$ cât = 13_{10}
 $\frac{1011}{1110}$
 $\frac{1011}{1111}$
 $\frac{1011}{1111}$

 $\underset{\text{Curs 2 Proiectare Logica}}{\text{rest}} = 4_{10}$

18.10.2019

 100_{2}

Operații aritmetice cu numere în virgulă fixă

- Adunarea numerelor reprezentate în complement față de 2
 - se adună numerele bit cu bit, inclusiv biţii de semn
 - se ignoră transportul de la biții de semn
 - dacă rezultatul e negativ apare ca un număr reprezentat în complement față de 2
 - Observaţii:
 - dacă rezultatul în valoare absolută este mai mare decât valoarea maximă care poate fi reprezentată ⇒ depăşire
 - la adunarea a 2 numere de acelaşi semn apare depăşire dacă şi numai dacă rezultatul are semn contrar semnelor numerelor

Operații aritmetice cu numere în virgulă fixă

 Adunarea numerelor reprezentate în complement față de 2 - exemple

+ 9 ₁₀	0 1001 ₂
+ 5 ₁₀	0.0101_{2}
$+14_{10}$	0.1110_{2}

$$\begin{array}{ccc}
-9_{10} & 10111_{2} \\
-5_{10} & 11011_{2} \\
\hline
-14_{10} & 110010_{2}
\end{array}$$

$$\begin{array}{cccc}
+7_{10} & 0.0111_{2} \\
-4_{10} & 1.1100_{2} \\
+3_{10} & 10.0011_{2}
\end{array}$$

$$\begin{array}{c|cccc} + & 9_{10} & & 0 & 1001_2 \\ + & 11_{10} & & 0 & 1011_2 \\ \hline + & 20_{10} & & \hline & 1 & 0100_2 \\ \end{array}$$

rezultat incorect

$$\begin{array}{c|cccc}
- 9_{10} & 10111_{2} \\
- 11_{10} & 10101_{2} \\
\hline
- 20_{10} & 101100_{2}
\end{array}$$

rezultat incorect

$$\begin{array}{c|cccc} -7_{10} & 11001_2 \\ +4_{10} & 00100_2 \\ \hline -3_{10} & 11101_2 \end{array}$$

Curs 2 Proiectare Logica

Operații aritmetice cu numere în virgulă fixă

- Scăderea numerelor reprezentate în complement față de 2
 - se poate executa prin 2 metode:
 - prin scădere directă, dacă se dispune de scăzătoare elementare
 - prin adunarea complementului față de 2 a scăzătorului, dacă se dispune de sumatoare elementare
 - pot să apară depăşiri, care trebuie detectate
 - la scăderea unor numere de semne contrare pot să apară depăşiri dacă şi numai dacă rezultatul are acelaşi semn cu

18.10.20 Scăzătorul

Operații aritmetice cu numere în virgulă fixă

Scăderea numerelor reprezentate în complement față de 2 - exemplu pentru metoda cu adunare cu complementul față de 2 al scăzătorului

$$D: +7_{10}$$
 0 0111₂

$$\overline{S}$$
: - (-4)₁₀ 0 0100₂ complement față de 2

Atunci:

D:
$$+7_{10}$$
 0 0111₂

S:
$$+4_{10}$$
 0 0100₂

$$+11_{10}$$
 0 1011₂ Curs 2 Pr