

Context-free Languages

Context-free grammars

- More powerful method (than NFAs and regular expressions) for describing languages
- Describe certain features that have recursive structure
- Major applications:
 - Study of human languages
 - Compilers
 - parsers extract the meaning of a program prior to generating a compiled code or performing the interpreted execution
 - a number of methodologies facilitate the construction of a parser once a context-free grammar is available
- The collection of languages associated with CFGs are called contextfree languages

Context-free grammars

An example of CFG – G₁

$$A \rightarrow 0A1$$

$$A \rightarrow B$$

$$B \rightarrow \#$$

A grammar consists of:

- substitution rules (productions) each line above is a rule
- variables what is to the left of an arrow
- terminals (analogous to input alphabets)
- one variable designated as the start variable
 - usually occurs on the LHS of the topmost rule

G₁ contains 3 rules; the variables are A and B, where A is the start variable; the terminals are 0, 1, #

Generation of strings from a grammar

We use a grammar to describe a language by generating each string of that language using the following procedure:

- Write down the start variable (usually the variable on the LHS of the top rule)
- 2. Find a variable that is written down and a rule that starts with that variable. Replace the written down variable with the RHS of that rule.
- Repeat step 2 until no variables remain.

The sequence of substitutions to obtain a string is called a *derivation*.

Example – for G₁

$$\begin{array}{c} A \rightarrow \mathsf{0} A \mathsf{1} \\ A \rightarrow B \\ B \rightarrow \# \end{array}$$

 $A \Rightarrow 0A1 \Rightarrow 000A11 \Rightarrow 000A111$ $\Rightarrow 0000A1111 \Rightarrow 0000B1111$ $\Rightarrow 0000#1111$

The language of a grammar

- All strings generated in this way constitute the language of the grammar
- We write L(G₁) for the language of grammar G₁. Some experimentation with the grammar G₁ shows us that

$$L(G_1) = \{0^n \# 1^n | n \ge 0\}$$

- Any language that can be generated by some CFG is called a contextfree language (CFL)
- When presenting a CFG, we usually abbreviate several rules with the same left-hand variable into a single line using the symbol "|" as an "or"
 - E.g: $A \rightarrow 0A1$ and $A \rightarrow B$ is abbreviated into a single line as $A \rightarrow 0A1 \mid B$

A second example of CFG – G₂

a fragment of the English language

```
\langle \text{SENTENCE} \rangle \rightarrow \langle \text{NOUN-PHRASE} \rangle \langle \text{VERB-PHRASE} \rangle
\langle \text{NOUN-PHRASE} \rangle \rightarrow \langle \text{CMPLX-NOUN} \rangle | \langle \text{CMPLX-NOUN} \rangle \langle \text{PREP-PHRASE} \rangle
\langle \text{VERB-PHRASE} \rangle \rightarrow \langle \text{CMPLX-VERB} \rangle | \langle \text{CMPLX-VERB} \rangle \langle \text{PREP-PHRASE} \rangle
\langle \text{PREP-PHRASE} \rangle \rightarrow \langle \text{PREP} \rangle \langle \text{CMPLX-NOUN} \rangle
\langle \text{CMPLX-NOUN} \rangle \rightarrow \langle \text{ARTICLE} \rangle \langle \text{NOUN} \rangle
\langle \text{CMPLX-VERB} \rangle \rightarrow \langle \text{VERB} \rangle | \langle \text{VERB} \rangle \langle \text{NOUN-PHRASE} \rangle
\langle \text{ARTICLE} \rangle \rightarrow \mathbf{a} | \mathbf{the}
\langle \text{NOUN} \rangle \rightarrow \mathbf{boy} | \mathbf{girl} | \mathbf{flower}
\langle \text{VERB} \rangle \rightarrow \mathbf{touches} | \mathbf{likes} | \mathbf{sees}
\langle \text{PREP} \rangle \rightarrow \mathbf{with}
```

G₂ has

10 variables (the capitalized grammatical terms written in brackets)
27 terminals (the standard English alphabet plus a space character)

18 rules

Derivation of the string "a boy sees" using G₂

```
⟨SENTENCE⟩ ⇒ ⟨NOUN-PHRASE⟩⟨VERB-PHRASE⟩
 ⇒ ⟨CMPLX-NOUN⟩⟨VERB-PHRASE⟩
 ⇒ ⟨ARTICLE⟩⟨NOUN⟩⟨VERB-PHRASE⟩
 ⇒ a ⟨NOUN⟩⟨VERB-PHRASE⟩
 ⇒ a boy ⟨VERB-PHRASE⟩
 ⇒ a boy ⟨CMPLX-VERB⟩
 ⇒ a boy ⟨VERB⟩
 ⇒ a boy sees
```

Formal definition of a CFG

DEFINITION 2.2

A context-free grammar is a 4-tuple (V, Σ, R, S) , where

- 1. V is a finite set called the *variables*,
- 2. Σ is a finite set, disjoint from V, called the *terminals*,
- 3. R is a finite set of *rules*, with each rule being a variable and a string of variables and terminals, and
- **4.** $S \in V$ is the start variable.

Some notations

- If u, v and w are strings of variables and terminals, and A → w is a rule of the grammar,
 - We say that uAv *yields* uwv,
 and write it as uAv ⇒ uwv
 - We say that u drives v,
 and write it as u * * v,
 if u = v or if a sequence u₁, u₂, ..., u_k exists for k≥0 and u ⇒ u₁ ⇒ u₂ ⇒ ⇒ u_k ⇒ v
- The language of the grammar is {w ∈ Σ* | S*w}

-

More examples of CFGs -- G₃

```
Consider grammar G_3 = (\{S\}, \{a, b\}, R, S). The set of rules, R, is S \to aSb \mid SS \mid \varepsilon.
```

Which of the following strings belong to $L(G_3)$?

aabb

abab

abba

aababb

abbabb

Example – G₄

```
Consider grammar G_4 = (V, \Sigma, R, \langle \text{EXPR} \rangle).

V is \{\langle \text{EXPR} \rangle, \langle \text{TERM} \rangle, \langle \text{FACTOR} \rangle\} and \Sigma is \{\text{a}, +, \times, (,)\}. The rules are \langle \text{EXPR} \rangle \rightarrow \langle \text{EXPR} \rangle + \langle \text{TERM} \rangle \mid \langle \text{TERM} \rangle \langle \text{TERM} \rangle \rightarrow \langle \text{TERM} \rangle \times \langle \text{FACTOR} \rangle \mid \langle \text{FACTOR} \rangle \langle \text{FACTOR} \rangle \rightarrow (\langle \text{EXPR} \rangle) \mid \text{a}
```

Consider the strings $a+a \times a$ and $(a+a) \times a$ Can these strings be generated with grammar G_4 ?

```
Consider grammar G_4 = (V, \Sigma, R, \langle \text{EXPR} \rangle). 
 V is \{\langle \text{EXPR} \rangle, \langle \text{TERM} \rangle, \langle \text{FACTOR} \rangle\} and \Sigma is \{\text{a}, +, \times, (,)\}. The rules are  \langle \text{EXPR} \rangle \rightarrow \langle \text{EXPR} \rangle + \langle \text{TERM} \rangle \mid \langle \text{TERM} \rangle \\ \langle \text{TERM} \rangle \rightarrow \langle \text{TERM} \rangle \times \langle \text{FACTOR} \rangle \mid \langle \text{FACTOR} \rangle \\ \langle \text{FACTOR} \rangle \rightarrow (\langle \text{EXPR} \rangle) \mid \text{a}
```

Parse trees

Parse trees of the strings $a+a \times a$ and $(a+a) \times a$

