Esame di Ricerca Operativa del 04/02/16

(Cognome)	(Nome)	(Corso di laurea)

Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

$$\begin{cases} \min \ 4 \ y_1 + 2 \ y_2 + 7 \ y_3 + 11 \ y_4 + 28 \ y_5 + 35 \ y_6 \\ -y_1 - 5 \ y_2 + y_3 - 2 \ y_4 + 5 \ y_5 + 6 \ y_6 = 1 \\ -2 \ y_1 - y_2 + y_3 + 3 \ y_4 - 2 \ y_5 - y_6 = -3 \\ y \ge 0 \end{cases}$$

Base	Soluzione di base	Ammissibile (si/no)	Degenere
		(81/110)	(81/110)
$\{1, 2\}$	x =		
$\{1, 5\}$	y =		

Esercizio 2. Effettuare due iterazioni dell'algoritmo del simplesso duale per il problema dell'esercizio 1.

	Base	x	y	Indice	Rapporti	Indice
				entrante		uscente
1° iterazione	{2,6}					
1 Refazione	{2,0}					
2° iterazione						

Esercizio 3. Una fabbrica produce 4 tipi di lavatrici ed è divisa in 2 stabilimenti A e B. La fabbrica dispone di 65 operai in A e 40 in B ognuno dei quali lavora 8 ore al giorno per 5 giorni la settimana. In tabella abbiamo: tempo di lavorazione in ore e la richiesta minima di mercato da soddisfare

	1	2	3	4
A	1	1.2	1.5	1.2
В	1.5	0.8	2	0.5
Richiesta	500	400	200	150

Sapendo che il prezzo di vendita è rispettivamente di 500, 600, 900, e 300 euro per ogni lavatrice, determinare il piano produttivo migliore.

iabili decisionali:	
dello:	
COMANDI DI MATLAR	

c=	
A=	b=
Aeq=	beq=
lb=	ub=

Esercizio 4. Completare la seguente tabella considerando il problema di flusso di costo minimo sulla seguente rete (su ogni nodo è indicato il bilancio e su ogni arco sono indicati, nell'ordine, il costo e la capacità).

Archi di T	Archi di U	Soluzione di base	Ammissibile	Degenere
			(si/no)	(si/no)
(1,2) (1,3) (1,4)				
(5,4) (5,7) (6,5)	(3,5)	x =		
(1,3) $(2,4)$ $(3,5)$				
(4,3) $(4,6)$ $(6,7)$	(5,7)	$\pi = (0,$		

Esercizio 5. Effettuare due iterazioni dell'algoritmo del simplesso su reti per il problema dell'esercizio 4.

	1° iterazione	2° iterazione
Archi di T	(1,2) (1,3) (2,4) (4,6) (5,4) (5,7)	
Archi di U	(3,5)	
x		
π		
Arco entrante		
ϑ^+,ϑ^-		
Arco uscente		

Esercizio 6. a) Applicare l'algoritmo di Dijkstra per trovare l'albero dei cammini minimi di radice 1 sulla seguente rete.

	ite	r 1 iter 2 iter 3 iter 4 iter 5		iter 6		ite	r 7							
	π	p	π	p	π	p	π	p	π	p	π	p	π	p
nodo														
visitato														
nodo 2														
nodo 3														
nodo 4														
nodo 5														
nodo 6														
nodo 7														
insieme														
Q														

b) Applicare l'algoritmo FFEK per trovare il flusso massimo tra il nodo 1 ed il nodo 7 sulla seguente rete.

cammino aumentante	δ	x	v

Taglio di capacità minima: $N_s = N_t = N_t$

Esercizio 7. Si consideri il seguente problema di programmazione lineare intera:

$$\begin{cases} \min 5 x_1 + 6 x_2 \\ 17 x_1 + 10 x_2 \ge 50 \\ 11 x_1 + 16 x_2 \ge 56 \\ x_1 \ge 0 \\ x_2 \ge 0 \\ x_1, x_2 \in \mathbb{Z} \end{cases}$$

a) Calcolare una valutazione inferiore del valore ottimo risolvendo il rilassamento continuo.

sol. ottima del rilassamento = $v_I(P)$ =

b) Calcolare una valutazione superiore del valore ottimo arrotondando la soluzione ottima del rilassamento.

sol. ammissibile = $v_S(P)$ =

c) Calcolare un taglio di Gomory.

r = taglio:

Esercizio 8. Si consideri il problema di trovare il ciclo hamiltoniano di costo minimo su una rete di 5 città, le cui distanze reciproche sono indicate in tabella:

città	2	3	4	5
1	10	41	62	52
2		27	54	96
3			11	13
4				94

a) Trovare una valutazione inferiore del valore ottimo calcolando il 4-albero di costo minimo.

4-albero:	$v_I(P) =$

b) Trovare una valutazione superiore applicando l'algoritmo del nodo più vicino a partire dal nodo 3.

ciclo: $v_S(P) =$

c) Applicare il metodo del *Branch and Bound*, utilizzando il 4-albero di costo minimo come rilassamento di ogni sottoproblema ed istanziando, nell'ordine, le variabili x_{45} , x_{35} , x_{25} .

Esercizio 9. Trovare massimi e minimi della funzione $f(x_1, x_2) = -x_1^2 - 2x_2^2 + 8x_2$ sull'insieme

$${x \in \mathbb{R}^2 : -x_1^2 - x_2^2 + 1 \le 0, \quad x_1^2 - x_2 - 2 \le 0}.$$

Soluzioni del siste	ma LKT		Mass	simo	Mini	imo	Sella
x	λ	μ	globale	locale	globale	locale	
(0, -2)							
(0, -1)							
$\left(\frac{\sqrt{15}}{2}, \frac{7}{4}\right)$							
$\left(-\frac{\sqrt{15}}{2}, \frac{7}{4}\right)$							
(0, 1)							
(0, 2)							

Esercizio 10. Si consideri il seguente problema:

$$\begin{cases} \min -2 x_1^2 - 8 x_1 x_2 + 2 x_2^2 + 3 x_1 - 9 x_2 \\ x \in P \end{cases}$$

e i vertici di P sono (4,-4), (1,1), (-2,2) e (-4,-2). Fare un passo del metodo del gradiente proiettato.

Punto	Matrice M	Matrice H	Direzione	Max spostamento possibile	Passo	Nuovo punto
$\left(\frac{4}{3}, -\frac{10}{3}\right)$						

Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

$$\begin{cases} \min \ 4 \ y_1 + 2 \ y_2 + 7 \ y_3 + 11 \ y_4 + 28 \ y_5 + 35 \ y_6 \\ -y_1 - 5 \ y_2 + y_3 - 2 \ y_4 + 5 \ y_5 + 6 \ y_6 = 1 \\ -2 \ y_1 - y_2 + y_3 + 3 \ y_4 - 2 \ y_5 - y_6 = -3 \\ y \ge 0 \end{cases}$$

Base	Soluzione di base	Ammissibile (si/no)	Degenere (si/no)
{1, 2}	x = (0, -2)	SI	NO
{1, 5}	$y = \left(\frac{13}{12}, \ 0, \ 0, \ \frac{5}{12}, \ 0\right)$	SI	NO

Esercizio 2. Effettuare due iterazioni dell'algoritmo del simplesso duale per il problema dell'esercizio 1.

	Base	x	y	Indice	Rapporti	Indice
				entrante		uscente
1° iterazione	{2, 6}	(3, -17)	$\left(0, \ \frac{17}{11}, \ 0, \ 0, \ 0, \ \frac{16}{11}\right)$	1	$\frac{17}{13}, \frac{16}{9}$	2
2° iterazione	{1, 6}	$\left(\frac{66}{13}, -\frac{59}{13}\right)$	$\left(\frac{17}{13},\ 0,\ 0,\ 0,\ \frac{5}{13}\right)$	5	$\frac{17}{7}, \frac{5}{12}$	6

Esercizio 3.

COMANDI DI MATLAB

Esercizio 4. Completare la tabella considerando il problema di flusso di costo minimo sulla seguente rete (su ogni nodo è indicato il bilancio e su ogni arco sono indicati, nell'ordine, il costo e la capacità).

Archi di T	Archi di U	Soluzione di base	Ammissibile	Degenere
			(si/no)	(si/no)
(1,2) (1,3) (1,4)				
(5,4) (5,7) (6,5)	(3,5)	x = (-6, 4, 6, 0, 8, 0, 0, -4, 1, -5, 0)	NO	NO
(1,3) $(2,4)$ $(3,5)$				
(4,3) $(4,6)$ $(6,7)$	(5,7)	$\pi = (0, -5, 7, 3, 15, 12, 17)$	NO	NO

Esercizio 5. Effettuare due iterazioni dell'algoritmo del simplesso su reti per il problema dell'esercizio 4.

	1° iterazione	2° iterazione
Archi di T	(1,2) $(1,3)$ $(2,4)$ $(4,6)$ $(5,4)$ $(5,7)$	(1,3) $(1,4)$ $(2,4)$ $(4,6)$ $(5,4)$ $(5,7)$
Archi di U	(3,5)	(3,5)
x	(0, 4, 0, 6, 8, 0, 5, 1, 1, 0, 0)	(0, 4, 0, 6, 8, 0, 5, 1, 1, 0, 0)
π	(0, 6, 7, 14, 10, 23, 16)	(0, -1, 7, 7, 3, 16, 9)
Arco entrante	(1,4)	(3,5)
ϑ^+,ϑ^-	8,0	8 , 1
Arco uscente	(1,2)	(5,4)

Esercizio 6. a) Applicare l'algoritmo di Dijkstra per trovare l'albero dei cammini minimi di radice 1 sulla seguente rete.

	iter	1	iter	· 2	iter	: 3	ite	r 4	ite	r 5	ite	r 6	ite	r 7
	π	p	π	p	π	p	π	p	π	p	π	p	π	p
nodo visitato	1		2		4	:	Ş	}	6	j	Ę	,)	7	7
nodo 2	7	1	7	1	7	1	7	1	7	1	7	1	7	1
nodo 3	18	1	18	1	12	4	12	4	12	4	12	4	12	4
nodo 4	8	1	8	1	8	1	8	1	8	1	8	1	8	1
nodo 5	$+\infty$	-1	15	2	15	2	15	2	15	2	15	2	15	2
nodo 6	$+\infty$	-1	$+\infty$	-1	13	4	13	4	13	4	13	4	13	4
nodo 7	$+\infty$	-1	$+\infty$	-1	$+\infty$	-1	24	3	21	6	19	5	19	5
$\begin{matrix} \text{insieme} \\ Q \end{matrix}$	2, 3	, 4	3, 4	, 5	3, 5	, 6	5, 6	5, 7	5,	7	7	7	Q	Ď

b) Applicare l'algoritmo di Ford-Fulkerson (con la procedura di Edmonds-Karp per la ricerca del cammino aumentante) per trovare il flusso massimo tra il nodo 1 ed il nodo 7 sulla seguente rete.

cammino aumentante	δ		21
cammino aumentante	0	x	v
1 - 3 - 7	11	(0, 11, 0, 0, 0, 0, 11, 0, 0, 0, 0)	11
1 - 2 - 5 - 7	8	(8, 11, 0, 0, 8, 0, 11, 0, 0, 8, 0)	19
1 - 4 - 6 - 7	15	(8, 11, 15, 0, 8, 0, 11, 0, 15, 8, 15)	34

Taglio di capacità minima: $N_s = \{1, 2, 3, 5\}$ $N_t = \{4, 6, 7\}$

Esercizio 7. Si consideri il seguente problema di programmazione lineare intera:

$$\begin{cases} & \min \ 5 \ x_1 + 6 \ x_2 \\ & 17 \ x_1 + 10 \ x_2 \ge 50 \\ & 11 \ x_1 + 16 \ x_2 \ge 56 \\ & x_1 \ge 0 \\ & x_2 \ge 0 \\ & x_1, x_2 \in \mathbb{Z} \end{cases}$$

a) Calcolare una valutazione inferiore del valore ottimo risolvendo il rilassamento continuo.

sol. ottima del rilassamento = $\left(\frac{40}{27}, \frac{67}{27}\right)$ $v_I(P) = 23$

b) Calcolare una valutazione superiore del valore ottimo arrotondando la soluzione ottima del rilassamento.

sol. ammissibile =
$$(2,3)$$

c) Calcolare un taglio di Gomory.

Esercizio 8. Si consideri il problema di trovare il ciclo hamiltoniano di costo minimo su una rete di 5 città, le cui distanze reciproche sono indicate in tabella:

città	2	3	4	5
1	10	41	62	52
2		27	54	96
3			11	13
4				94

a) Trovare una valutazione inferiore del valore ottimo calcolando il 4-albero di costo minimo.

4-albero:
$$(1,2)(2,3)(2,4)(3,4)(3,5)$$
 $v_I(P)=115$

b) Trovare una valutazione superiore applicando l'algoritmo del nodo più vicino a partire dal nodo 3.

ciclo:
$$3 - 4 - 2 - 1 - 5$$
 $v_S(P) = 140$

c) Applicare il metodo del *Branch and Bound*, utilizzando il 4-albero di costo minimo come rilassamento di ogni sottoproblema ed istanziando, nell'ordine, le variabili x_{45} , x_{35} , x_{25} .

Esercizio 9. Trovare massimi e minimi della funzione $f(x_1, x_2) = -x_1^2 - 2x_2^2 + 8x_2$ sull'insieme

$$\{x \in \mathbb{R}^2: -x_1^2 - x_2^2 + 1 \le 0, \quad x_1^2 - x_2 - 2 \le 0\}.$$

Soluzioni del siste	ema LKT		Mass	imo	Mini	mo	Sella
x	λ	μ	globale	locale	globale	locale	
(0, -2)	(0, 16)		NO	NO	NO	SI	NO
(0, -1)	(-6,0)		NO	NO	NO	NO	SI
$\left(\frac{\sqrt{15}}{2}, \frac{7}{4}\right)$	(0,1)		NO	NO	NO	NO	SI
$\left(-\frac{\sqrt{15}}{2},\frac{7}{4}\right)$	(0,1)		NO	NO	NO	NO	SI
(0, 1)	(2,0)		NO	NO	NO	NO	SI
(0, 2)	(0,0)		SI	SI	NO	NO	NO

Esercizio 10. Si consideri il seguente problema:

$$\begin{cases} \min -2 \ x_1^2 - 8 \ x_1 x_2 + 2 \ x_2^2 + 3 \ x_1 - 9 \ x_2 \\ x \in P \end{cases}$$

dove P è il poliedro di vertici (4,-4), (1,1), (-2,2) e (-4,-2). Fare una iterazione del metodo del gradiente proiettato.

Punto	Matrice M	Matrice H	Direzione	Max spostamento	Passo	Nuovo punto
				possibile		
$\left(\frac{4}{3}, -\frac{10}{3}\right)$	(-1, -4)	$ \begin{pmatrix} 16/17 & -4/17 \\ -4/17 & 1/17 \end{pmatrix} $	$\left(-\frac{92}{3}, \frac{23}{3}\right)$	$\frac{4}{23}$	$\frac{4}{23}$	(-4, -2)