(PI(R > 7Q)) 1 ((TP <> Q) VP) Binya L: Avtinalionouge tis ouvenaguses nou 1005 unifies $(P1(7RV7Q))1((7P1Q)V(77P17Q)VP) \equiv$ Briga 2: ITPWXVOUGE TIS MO EJWIPPINS aprincus courrepixa:

(P1(1RV7Q)) 1 ((1P1Q) v (P17Q) VP) = Brug 3. Xpn61400001004 CAV EAUX PESTICOMIZ CUS EXTENTIS: (P17B) 1 ((TP1Q) V (P17Q) VP) V ((P17Q) 1 ((TP1Q) V (P17Q) VP) = ((P17R) 1 (TP1Q)) V ((P17R) 1 (P17Q) V ((P17R) 1P) V ((P17Q) 1 (TP1Q)) v ((P17Q) 1 (P17Q)) v ((P17Q)1P) = (P11RX1P1Q) V (P17R1P17Q) V (P17R1P) V (P17Q1P1Q) V (P17Q1P17Q) V (P17Q1P) =

F V (P17R17Q) V (P17R) V F V (P17Q) V (P17Q) = (PATRATA) V (PATR) V (PATA) = (attoppodnog rouv) (P17R) V (P17Q)

CNF

Brusa 1: AVTI MORDI ENDUYE TIS GUVETTORYWYES VAN 160 DEWORY IES, $\left(P1\left(7RV7Q\right)\right)1\left(\left(7P1Q\right)V\left(77P17Q\right)VP\right) \equiv$

Biujos 2: Inpunvoye tis 110 e Jungines apunees esunginis:

(P1(7R V7Q)) 1 ((7P1Q) V (P17Q) VP) =

Вписа 3: Хрпы и отого ин ст Епиры пота сия бы рыры:

$$(P_1(TRVTQ)) 1 (TP_1Q) V P) = (attoppoigney TOUV)$$

$$PA(TRVTQ)A(T)A(QVP) = (autoppodney.tovA)$$

P1 (7R V7Q)

Άσκηση 2α

Υπόθεση: (Q^VR)<->P Συμπέρασμα: (R->Q) ^VP

Q	R	Р	Q ^V R	(Q ^V R)->P	P->(Q^R)	(Q ^V R)<->P	R->Q	(R->Q) VP
Т	Т	Т	Т	Т	Т	T	Т	Т
Т	Т	F	Т	F	Т	F	Т	Т
Т	F	Т	Т	Т	Т	T	Т	Т
Т	F	F	Т	F	Т	F	Т	Т
F	Т	Т	Т	Т	Т	T	F	Т
F	Т	F	Т	F	Т	F	F	F
F	F	Т	F	Т	F	F	Т	Т
F	F	F	F	Т	T	Т	Т	Т

Όπως βλέπουμε, αν η πρόταση (Q^VR)<->Ρ είναι αληθής, τότε σε καμία περίπτωση η (R->Q) ^VP δεν είναι ψευδής, οπότε η εξαγωγή συμπεράσματος είναι έγκυρη.

Άλλη αιτιολόγηση,

για κάθε ψευδές συμπέρασμα, η υπόθεση είναι επίσης ψευδής, επομένως είναι έγκυρη.

Άσκηση 2β

Υπόθεση: ((¬P->S) ^ R) και (Q<->(S^V (R^Q)))

Συμπέρασμα: (P->(P->Q)) ^Q

Р	S	R	Q	٦P	¬ P->S	(₇ P->S) ^ R	R^Q	S ^V (R ^Q)	Q<->(S ^V (R ^A Q))	P->Q	P->(P->Q)	(P->(P->Q)) ^Q
Т	Т	Т	Т	F	Т	Т	Т	Т	Т	Т	Т	Т
Т	Т	Т	F	F	Т	Т	F	Т	F	F	F	F
Т	Т	F	Т	F	Т	F	F	Т	Т	Т	Т	Т
Т	Т	F	F	F	Т	F	F	Т	F	F	F	F
Т	F	Т	Т	F	T	T	T	T	T	T	Т	Т
Т	F	Т	F	F	Т	Т	F	F	Т	F	F	F
Т	F	F	Т	F	Т	F	F	F	F	Т	Т	T
Т	F	F	F	F	Т	F	F	F	Т	F	F	F
F	Т	Т	Т	Т	T	T	T	T	T	T	Т	T
F	Т	Т	F	Т	T	T	F	Т	F	T	T	F
F	Т	F	Т	Т	Т	F	F	Т	Т	Т	Т	Т
F	Т	F	F	Т	Т	F	F	Т	F	Т	Т	F
F	F	Т	Τ	Т	F	F	T	Т	T	T	T	T
F	F	Т	F	Т	F	F	F	F	T	T	T	F
F	F	F	Т	Т	F	F	F	F	F	T	T	T
F	F	F	F	Т	F	F	F	F	Т	Т	Т	F

Όπως παρατηρούμε, όταν και οι δύο υποθέσεις είναι True **ταυτόχρονα**, το συμπέρασμα δεν είναι πάντα αληθές, επομένως δεν είναι έγκυρη

```
'A I KHI H 3
```

```
a) (((PVQ) RR) V (R \rightarrow (\neg Q \rightarrow R))) \rightarrow R \equiv aveckatà 6 ca 6n i coduva-

<math>((PVQ) RR) V (R \rightarrow (QVR))) \rightarrow R \equiv aveckatà 6 ca 6n i coduva-

<math>((PVQ) RR) V (\neg RV(QVR))) \rightarrow R \equiv ana Joseph napèvo e cons

(((PVQ) RR) V (\neg RVQVR)) \rightarrow R \equiv

(((PVQ) RR) V T \rightarrow R \equiv anoppò e n construction T

<math>T \rightarrow R \equiv

\neg TVR \equiv

FVR \equiv R
```

```
'AIKHIH 4
(RNQ) -> (RV((RNQ) -> P)) = aveckatà 6 ca6n (60 duvapias ->
7 (RNQ) V (RV((RNQ)⇔P)) = De Horgan
(7 RV 7Q) V (RV ((RNQ) ↔ P)) = analougi na pèréegns
 (7RV7a) VR V ((RNa)↔PI)) = aveckacà 6ca 6n LGO duva pias
 (TRVTA) VRV(RNANP) V(T(RNA) NTP) = anoppo enon touv
 (TRV7Q) VR V(T(RNQ) NTP) = De Horgan
 (TRV7Q) V R V ((TRV7Q) NTP) = ENCLEPIGLICS
 (TRV7a) VR V (TRNTP) V (TPNTQ) = anadorgi na pérécons
 TRV7QVRV(1RN7p)v(7PN7Q) =
TOVT V (TRATP) V (TPATQ) ET
'H no andà;
(RNQ) -> (RV((RNQ) (>P)) = aveckazá GzaGn LGOUVAMIAS ->
T(RNQ) V (RV ((RNQ) -> P)) = De Morgan
 TRVIQV(RV((RNQ) >> P)) = anador (p) napévOEGNS
TRV7QVRV((RNQ) AP)
```

TV7QV((RNQ) -> P) = T

'AIKHIH 5

Η προσαθη που εfajeral από τον πίνακα αδηθείας είναι: (AABAC)ν (ΠΑΛΒΛΠ) ν (ΠΑΛΠΒΛ C)ν (ΠΑΛΠΒΛΤ) =.

(ANBAC) V (TANBATC) V (TANTB) = (Enchepicocian)

(ANBAC) V (TANBATC) V (TANTB) = (Enchepicocian)

(ANBAC) V (TANGETE) N (T (VTB)) =

(ANBAC) V (TANTB) = (Enchepicocian)

(ANBAC) V (TANTB) V (TANTC) = (Enchepicocian)

(ANBAC) V (TANTB) V (TANTC) = De Morgan

(ANBAC) V (TANGETE)

(ANBAC) V (ANBAC) (ANBAC)

DEWPREAUE GWECES Kar cis (1), (3)

Enalné Evoure env napanàre pròzaen enprouppiveas eur nivaka alla-Deias kar eujkpivoveas eur pe eur nivaka nou diverar Genr Ekquvnen

18	3 (C	(ANBAC) V7(AV(BNC))
0	2 0	2	a
	2 9	Y	Ψ
4	0		Ψ
4	ψ	1	Ψ
,	a 6	Ĺ	Ψ
1	a y)	a
p (y a		a
4	ΨΨ		Σημείωση: Υπάρχει και απλούστερη μορφή. Από (2) έχουμε ισοδύναμα:
	4		$(A \wedge (B \wedge C)) \vee (\neg A \wedge \neg (B \wedge C))$

 $A \leftrightarrow (B \land C)$