Student Name							
Course Title							
Assignment Name							
Date							
Normalization And Database							
PART A.							
1. a. The attributes from the 1NF table have been assigned to the correct 2NF tables as							
follows:							
Table 1: Bagel_Order							
Order_Number (PK)							
Customer_Name							
Order_Date							
Table 2: Bagel_Order_Details							
Order_Number (FK)							
Bagel_Type							
Quantity							

Last Name 2

b. The relationship between the two pairs of 2NF tables is one-to-many (1:M).

c. The attributes were assigned to the 2NF tables based on the fact that the attributes

Customer_Name and Order_Date need to be associated with each order and the attributes

Bagel Type and Quantity need to be associated with each bagel type and quantity ordered. The

cardinality of the relationships between the 2NF tables was determined by identifying the fact

that each order can have multiple bagel types and quantities associated with it, but each bagel

type and quantity can only be associated with one order.

2. a. The attributes from the 2NF "Bagel Order" table have been assigned to the new 3NF

tables as follows:

Table 1: Customer

Customer_ID (PK)

Customer Name

Table 2: Order

Order_ID (PK)

Last Name 4

e. The attributes were assigned to the 3NF tables based on the fact that the attributes

Customer_Name and Order_Date need to be associated with the customer and the order,

respectively, and the attributes Bagel_Type and Quantity need to be associated with each bagel

type and quantity ordered. The cardinality of the relationships between the 3NF tables was

determined by identifying the fact that each customer can have multiple orders, each order can

have multiple bagel types and quantities associated with it, but each bagel type and quantity can

only be associated with one order.

3. a. The table names and cardinality information from the 3NF diagram have been

copied into the "Final Physical Database Model" and the attributes have been renamed as

follows:

Table 1: Customer

Customer_ID (PK)

Customer_Name

Table 2: Order

Order ID (PK)

Order_Date

Customer_ID (FK)

Table 3: Order_Details
Order_ID (FK)
Bagel_Type
Quantity
b. The data types assigned to each attribute in the 3NF tables are as follows:
Customer:
Customer_ID: INTEGER
Customer_Name: VARCHAR()
Order:
Order_ID: INTEGER
Order_Date: TIMESTAMP
Customer_ID: INTEGER
Order_Details:

Order_ID: INTEGER

Bagel_Type: CHAR()

Quantity: NUMERIC()

PART B.

C170 Performance Assessment Jaunty Coffee Co. ERD

EN ER					OFFE SHOP			C	OFFEE	
P	emplo	INTEG		P	shop	INTEG		P	coffee_i	INTEG
K	yee_id	ER		K	_id	ER		K	d	ER
		VARC			shop	VARC				
	first_n	HAR(3	M		_nam	HAR(5	1:	F		INTEG
	ame	0)	:1		e	0)	M	_ K	shop_id	ER
		VARC				VARC				
	last_na	HAR(3				HAR(5		F	supplier_	
	me	0)			city	0)		K	id	ER
										VARC
	hire_d					CHAR			coffee_n	HAR(3
	ate	DATE			state	(2)			ame	0)
		VARC								NUME
	job_titl								price_pe	RIC(5,
	e	0)							r_pound	2)
F	shop_i	INTEG								
K	d	ER								
										M:1
								SI	JPPLIER	
								P		INTEG
									id	ER
								11	10	VARC
										7 1110
									company	HAR(5

	VARC
	HAR(3
country	0)
sales_co	VARC
ntact_na	HAR(6
me	0)
	VARC
	HAR(5
email	0),
	NOT
	NULL

Creating the database

DB NAME: jaunty coffee co. erd_database

Task 1: Develop SQL code to create each table as specified in the attached "Jaunty Coffee Co. ERD" by doing the following:

a. Provide the SQL code you wrote to create all the tables.

```
CREATE TABLE Employee
 employee_id INTEGER PRIMARY KEY,
 first_name VARCHAR(30),
 last_name VARCHAR(30),
 hire_date DATE,
 job_title VARCHAR(30),
 shop_id INTEGER NOT NULL
);
CREATE TABLE Coffee_Shop
 shop_id INTEGER PRIMARY KEY,
 shop_name VARCHAR(50) NOT NULL,
 city VARCHAR(50) NOT NULL,
 state CHAR(2) NOT NULL
);
CREATE TABLE Coffee
 coffee_id INTEGER PRIMARY KEY,
 shop_id INTEGER NOT NULL,
 supplier_id INTEGER NOT NULL,
 coffee_name VARCHAR(50) NOT NULL,
 price_per_pound INTEGER NOT NULL
);
CREATE TABLE Supplier
  supplier_id INTEGER PRIMARY KEY,
 company_name VARCHAR(50) NOT NULL,
 country VARCHAR(50) NOT NULL,
 sales_contact_name VARCHAR(50) NOT NULL,
 email VARCHAR(50) NOT NULL
);
```

b. Demonstrate that you tested your code by providing a screenshot showing your SQL commands and the database server's response.

Task 2: Develop SQL code to populate each table in the database design document by doing the following:

Note: This data is not provided. You will be fabricating the data for this step.

a. Provide the SQL code you wrote to populate the tables with at least three rows of data in each table.

INSERT INTO Employee (employee_id, first_name, last_name, hire_date, job_title, shop_id)

VALUES (1, 'John', 'Smith', '01-01-2020', 'Manager', 1);

INSERT INTO Employee (employee_id, first_name, last_name, hire_date, job_title, shop_id)

VALUES (2, 'Jane', 'Doe', '02-01-2020', 'Barista', 1);

INSERT INTO Employee (employee_id, first_name, last_name, hire_date, job_title, shop_id)

VALUES (3, 'Tim', 'Rogers', '03-01-2020', 'Barista', 2);

INSERT INTO Coffee_Shop (shop_id, shop_name, city, state) VALUES (1, 'Jaunty Coffee Co', 'New York', 'NY');

INSERT INTO Coffee_Shop (shop_id, shop_name, city, state) VALUES (2, 'Dapper Coffee Co', 'Chicago', 'IL');

INSERT INTO Coffee (coffee_id, shop_id, supplier_id, coffee_name, price_per_pound) VALUES (1, 1, 1, 'Arabica', 8);

INSERT INTO Coffee (coffee_id, shop_id, supplier_id, coffee_name, price_per_pound) VALUES (2, 1, 2, 'Robusta', 10);

INSERT INTO Coffee (coffee_id, shop_id, supplier_id, coffee_name, price_per_pound) VALUES (3, 2, 3, 'Kona', 12);

INSERT INTO Supplier (supplier_id, company_name, country, sales_contact_name, email)

VALUES (1, 'Java Beans', 'Brazil', 'John Smith', 'jsmith@javabeans.com');

INSERT INTO Supplier (supplier_id, company_name, country, sales_contact_name, email)

VALUES (2, 'Mountain Coffee', 'Peru', 'Jane Doe', 'jdoe@mountaincoffee.com');

INSERT INTO Supplier (supplier_id, company_name, country, sales_contact_name, email)

VALUES (3, 'Kona Roasters', 'Hawaii', 'Tim Rogers', 'trogers@konaroasters.com');

b. Demonstrate that you tested your code by providing a screenshot showing your SQL commands and the database server's response.

Task 3: Develop SQL code to create a view by doing the following:

a. Provide the SQL code you wrote to create your view. The view should show all of the information from the "Employee" table but concatenate each employee's first and last name, formatted with a space between the first and last name, into a new attribute called employee_full_name.

CREATE VIEW Employee_Full_Name AS

SELECT employee_id, first_name, last_name, CONCAT(first_name, '', last_name) AS employee_full_name, hire_date, job_title, shop_id FROM Employee;

- b. Demonstrate that you tested your code by providing a screenshot showing your
- SQL commands and the database server's response.

Task 4: Develop SQL code to create an index on the coffee_name field by doing the following:

a. Provide the SQL code you wrote to create your index on the coffee_name field from the "Coffee" table.

CREATE INDEX coffee_name_idx on Coffee (coffee_name);

c. Demonstrate that you tested your code by providing a screenshot showing your SQL commands and the database server's response.

Task 5: Develop SQL code to create a SFW (SELECT-FROM-WHERE) query for any of your tables or views by doing the following:

a. Provide the SQL code you wrote to create your SFW query.

SELECT first_name, last_name, hire_date, job_title FROM Employee WHERE shop_id = 1;

b. Demonstrate that you tested your code by providing a screenshot showing your SQL commands and the database server's response.

Task 6: Develop SQL code to create a query by doing the following:

a. Provide the SQL code you wrote to create your table joins query. The query should join together three different tables and include attributes from all three tables in its output.

SELECT e.first_name, e.last_name, e.hire_date, e.job_title, c.coffee_name, c.price_per_pound, s.company_name
FROM Employee e
INNER JOIN Coffee c ON e.shop_id = c.shop_id

INNER JOIN Supplier s ON c.supplier_id = s.supplier_id;

- b. Demonstrate that you tested your code by providing a screenshot showing your
- SQL commands and the database server's response.

Full database

TABLE Employee

TABLE Coffee_Shop

TABLE Supplier

CLRS/13.3.md at m...

phpMyAdmin □ □ □Server: 127 0.0.1 → □ Database jounty collect co. and database → □ Table: collect_shop

🗏 Browse 🧗 Structure 📳 SQL 🔍 Search 🥻 Insert 🗒 Export 🖫 Import 💌 Privileges 🥒 Operations 💌 Tracking 🗯 Triggers

Last Name 19

