

Array

(TIB11 – Struktur Data)

Pertemuan 3, 4

Sub-CPMK

 Mahasiswa mampu menggunakan array untuk menyimpan dan mengakses data (C3, A3)

Materi

- Array n Dimensi
- Index Array
- Record Dengan Array

1.

Array n Dimensi

Pengertian Array

- Array atau Larik adalah sejumlah data secara berurutan
- Mempunyai susunan elemen yang sama
- Setiap array dapat diakses menggunakan indeks yang menyatakan urutan penempatan data pada array
- Secara umum, Array adalah sekumpulan item-item data yang homogen yang dapat dipilih menggunakan indeks pada saat program dijalankan
- Array secara sederhana dibentuk dari tipe data primitif, sehingga membentuk sederetan data dengan tipe data yang sama
- Array dapat dibentuk dari struktur /record

Tipe data array

- Tipe data array adalah jenis data yang mewakili kumpulan elemen (nilai atau variabel), masing-masing dipilih oleh satu atau beberapa indeks (kunci identifikasi) yang dapat dihitung pada run time selama eksekusi program. Koleksi seperti ini biasanya disebut variabel array, nilai array, atau array sederhana.
- Dengan analogi dengan konsep matematis vektor dan matriks, tipe array dengan satu dan dua indeks sering disebut tipe vektor dan tipe matriks.

Struktur Data Array

- Struktur data array, atau hanya array, adalah struktur data yang terdiri dari kumpulan elemen (nilai atau variabel), masing-masing diidentifikasi oleh setidaknya satu indeks array atau kunci. Sebuah array disimpan sehingga posisi masing-masing elemen dapat dihitung dari tupel indeksnya dengan rumus matematika.
- Jenis struktur data yang paling sederhana adalah array linier, disebut juga array satu dimensi.

Dimensi Array

- Array dapat tersusun dalam 1 dimensi, 2 dimensi, 3 dimensi bahkan lebih
- Array dengan 1 dimensi biasa digunakan untuk menyatakan himpunan atau sejumlah record
- Array dengan 2 dimensi biasa digunakan untuk menyatakan sekumpulan himpunan matriks atau tabel
- Array dengan 3 dimensi biasa digunakan untuk menyatakan sekumpulan matriks atau tabel

Array 1Dimensi

Array index

Jakarta	Surabaya	Medan	Manado	 Denpasar
i=0	i=1	i=2	i=3	 i=n

index	Array
i=0	Jakarta
i=1	Surabaya
i=2	Medan
i=3	Manado
i=n	Denpasar

Array 2 Dimensi

	j=0	j=1	j=2	j=3	 j=n
i=0	Jakarta	Surabaya	Medan	Manado	 Denpasar
i=1	New York	Manhattan	California	Kentucky	 Washington
i=2	Tokyo	Osaka	Kyoto	Hiroshima	 Nagasaki
i=3	Bangkok	Pattaya	Chiangmai	Mukdahan	 Krbai
		_			_
i=n	Beijing	Shanghai	Guangzhou	Shenzhen	 Chengdu

Implementasi Tabel

- Sebuah Tabel dapat diterapkan dengan struct yang diimplementasikan dengan array 1D
- Tabel dengan struct yang dideklarasikan pada array 1D menjadikan fields sebagai kolom dan index array sebagai baris

Implementasi Matriks

- Matriks dapat diterapkan dengan menggunakan array 2 dimensi
- Implementasi matriks dengan struct yang dideklarasikan pada array 1 dimensi untuk menyatakan dapat juga dilakukan dengan fields merupakan array juga untuk menyatakan kolom

Universitas Bunda Contoh Implementasi Tabel dan Matriks

Input Koordinat

Input Arah

ton Implementasi Tabel dan Matriks (cont.)

Pada Contoh ditampilkan sebuah grafik dengan koordinatkoordinat dan arah vektornya.

- P1 dengan koordinat(50,50)
- P2 dengan koordinat(100,150)
- P3 dengan koordinat(150,50)
- P4 dengan koordinat(25,115)
- P5 dengan koordinat(175,115)

Jika digambarkan sebagai tabel maka tabel vektor adalah sbb

Dengan menggunakan Record yang dideklarasikan dengan array, maka tabel vektor dapat digambarkan dengan cara

- Label Vektor dapat diwakili dengan Indeks array
- Kolom X diwakili dengan fields X pada tiap record
- Kolom Y diwakili dengan fields Y pada tiap record

Implementasi Dengan Record dan Array

Indeks	Х	Y
1	50	50
2	100	150
3	150	50
4	25	115
5	175	115

Dengan menggunakan array 2 Dimensi maka tabel vektor dapat digambarkan dengan cara:

- Label Vektor dapat diwakili dengan Indeks array dimensi pertama
- Kolom X diwakili array dimensi ke 2 indeks ke 1
- Kolom Y diwakili array dimensi ke 2 indeks ke 2

Implementasi dengan Arrad 2D

Indeks	1	2
1	50	50
2	100	150
3	150	50
4	25	115
5	175	115

17

 Arah vektor diimplementasikan dengan matriks arah (ini akan dibahas pada materi 8 mengenai Graph), dimana baris merupakan asal vektor dan kolom merupakan tujuan.

Dengan menggunakan array 2 Dimensi maka matriks arah dapat digambarkan dengan cara:

- Array dimensi pertama digunakan sebagai indeks baris
- array dimensi kedua sebagai indeks kolom
- Dapat juga diterapkan dengan cara sebaliknya.

Implementasi dengan array 2 dimensi

array dimensi ke dua

Dengan menggunakan record yang berisi field array yang dideklarasikan dengan array 1 Dimensi maka matriks arah dapat digambarkan dengan cara:

- Array sebagai baris
- Field berupa array sebagai kolom pada tiap barisnya

Struct berisi field array yang dideklarasikan sebagai array 1 dimensi

Contoh Array 2 D dalam C

```
#include <stdio.h>
int main(void)
 int matrix[2][3] = \{\{1,2,3\},\{7,8,9\}\};
 printf("Isi array matrix: \n");
 printf("%d %d %d \n", matrix[0][0], matrix[0][1], matrix[0][2]);
 printf("%d %d %d \n", matrix[1][0], matrix[1][1], matrix[1][2]);
 return 0;
```

21

Row- and column-major order

Row-major order

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

Column-major order

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

Array 3 Dimensi

Array 1D (pascal)

```
Declaration
namaArray : array [awalIndex..akhirIndex] of tipevariabel;
Var
  table1d : array[1..10] of integer;
Assignment \rightarrow table1d[8] := 1000;
//mengisi array ke 8 dengan 1000
              \rightarrow temp := table1d[8];
Accessing
//mengambil array ke 8 dan menyimpan pada variabel temp
```


Array 2D (pascal)

```
Declaration
namaArray : array [awalIndexDimensil..akhirIndexDimensil,
awalIndexDimensi2..akhirIndexDimensi2] of tipevariabel;
//contoh array 2D berukuran 5 x 10
Var
  table2d : array[1..5, 1..10] of byte;
Assignment \rightarrow table2d[1,3] := 88;
//mengisi array baris 1 kolom 3 dengan 88
Accessing
             \rightarrow temp := table2d[1,3];
//mengambil array baris 1 kolom 3 dan menyimpan pada variabel temp
```


Array 3D (pascal)

Declaration

```
namaArray : array [awalIndexDimensil..akhirIndexDimensil,
awalIndexDimensi2..akhirIndexDimensi2, awalIndexDimensi3..akhirIndexDimensi3] of
tipevariabel;
//contoh array 3D berkuran 5 x 4 x 6
Var
       table3d : array [1..5, 1..4, 1..6] of byte;
              \rightarrow table3d[1,4,3] := 100;
Assignment
//mengisi array baris 1 kolom 4 tabel 3 dengan 100
Accessing
              \rightarrow temp := table3d[1,4,3];
//mengambil array baris 1 kolom 4 tabel 3 dan menyimpan pada variabel
temp
```


Array 1D (C)

Declaration

tipeVariabel namaArrayname[ukuranArray];

```
//deklarasi array berukuran 10 dengan indeks 0..9
//Catatan: pada C index array dimulai dari 0
int table1d[10];
```

Assignment

```
table1d[7] = 1000; //mengisi array ke 7 dengan 1000
```

Accessing

```
temp = table1d[7]; //mengambil data dari array ke 7 dan menyimpan pada
variabel temp
```


Array 2D (C)

Declaration

```
tipeVar namaArrayname[ukuranArraydimensi1][ukuranArraydimensi2];
//deklarasi array berukuran 10 x 20 bertipe data int
int table2d[10][20];
Assignment
//mengisi array baris 1 kolom 4 dengan 88
table3d[1][4] = 88;
Accessing
//mengambil data array pada baris 1 kolom 4 dan menyimpan pada variabel temp
    temp = table2d[1][4];
```

28

Array 3D (C)

Declaration

```
tipeVar namaArray[ukuranArrayDim1][ukuranArrayDim2] [ukuranArrayDim3];
//deklarasi array berukuran 10 x 20 x 5 bertipe int
  int table3d[10][20][5];
Assignment
//mengisi baris 1 kolom 4 tabel 5 dengan 100
  table3d[1][4][5] = 100;
Accessing
//mengambil data array pada baris 1 kolom 4 tabel 5
//dan menyimpan pada variabel temp
  temp = table3d[1][4][5]; //Accessing
```

VERSITAS^{TMSM} B^{ray}UNDA MU

2.

Index Array

3.

Record Dengan Array

UNIVERSITAS BUNDA MULIA

Record with array - PASCAL

Record definition

```
Type
  RecordName = Record
  Var1Name : vartype;
  Var2Name : vartype;
  VarnName : vartype;
  End;
```

Array declaration

DataCell: array[1..250] of RecordName;

Assignment

DataCell[ArrayNum].VarName := value;

Accessing

DataCell[ArrayNum].VarName

```
Example
//record definition
Type
TheCell=Record
   Name : string;
   Age : Integer;
End;
//Declaration
Var
    DataMhs: array[1..250] of TheCell;
Begin
   //Assignment
   DataMhs[1].Name := "Doraemon";
   DataMhs[1].Age := 19;
   //Accessing
   writeln(DataMhs[1].Name);
   writeln(DataMhs[1].Age);
```


Record with array - C

Record definition

```
struct StructName
{
    vartype Var1Name;
    vartype Var2Name;
    vartype VarNName;
};
```

Array declaration

```
struct StructName DataCell[ArraySize];
```

Assignment

```
DataCell[ArrayNum].VarName = value;
```

Accessing

```
DataCell[ArrayNum].VarName
```

```
    Example

//Struct definition
struct TheCell
   char Name[10];
   int Age;
//Declaration
struct TheCell DataMhs[250];
void main()
   //Assignment
   strcpy(DataMhs[1].Name, "Doraemon");
   DataMhs[1].Age = 19;
   //Accessing
   printf("%s", DataMhs[1].Name);
   printf("%d", DataMhs[1].Age);
```


Ringkasan

- Array atau Larik adalah sejumlah data secara berurutan yang mempunyai susunan elemen yang sama
- Array dapat diakses menggunakan indeks yang menyatakan urutan penempatan data pada array
- Array dapat dibentuk dari struktur / record
- Array dapat tersusun dalam 1 dimensi, 2 dimensi, 3 dimensi bahkan lebih
- Array dengan 1 dimensi biasa digunakan untuk menyatakan himpunan atau sejumlah record
- Array dengan 2 dimensi biasa digunakan untuk menyatakan sekumpulan himpunan matriks atau tabel
- Array dengan 3 dimensi biasa digunakan untuk menyatakan sekumpulan matriks atau tabel

Terimakasih

TUHAN Memberkati Anda

Teady Matius Surya Mulyana (tmulyana@bundamulia.ac.id)

UNIVERSITAS BUNDA MULIA