

Implementing Artificial Neural Networks (ANNs) with TensorFlow

Session 0: About & Regulations

University of Osnabrück Institute of Cognitive Science

WS 2017 / 18

Lukas Braun, Ibraun@uos.de

Aim of the course

- Deepen theoretical understanding of ANNs
- Learn how current state-of-the-art networks work
- Learn how to design, code and debug ANNs
- Learn how to use TensorFlow
- Improve your coding skills
- Some facts about hardware and underlying processes
- * Code some amazing and fun applications!

Structure of the course

Two consecutive blocks on Mondays (32/110 & 93/E06)

- 1) Theoretical introduction (14:00 to 16:00)
- 2) Homework coding (from 16:00)

Every second week on Tuesdays (93/E31)

3) Theoretical introduction (8:00 to 10:00)

Schedule

Unannounced changes might occur!

Date	Торіс	Date	Торіс
Monday 23.10.17	Introduction	Tuesday 12.12.17	Final Task Topics & Q&A Midterm Exam
Monday 30.10.17	Backpropagation & Gradient Descent (Double Session)	Monday 18.12.17	Midterm Exam
Monday 6.11.17	TensorFlow	Monday 8.1.18	Reinforcement Learning 1
Monday 13.11.17	Convolutional Neural Networks (CNNs)	Tuesday 9.1.18	Reinforcement Learning 2
Tuesday 14.11.17	Training ANNs	Monday 15.1.18	Generative Adversarial Models
Monday 20.11.17	Advanced CNNs & Training ANNs 2	Monday 22.1.18	Liquid State Machines 1
Monday 27.11.17	Word Embeddings	Tuesday 23.1.18	Liquid State Machines 2
Tuesday 28.11.17	Data and Training Visualization	Monday 29.1.18	Spiking Neural Networks 1
Monday 4.12.17	Recurrent Neural Networks	Monday 5.2.18	Spiking Neural Networks 2
Monday 11.12.17	Advanced RNNs	Tuesday 6.2.18	Review & Final Task Q&A

Groups

- Enroll into groups on studip until Monday October 30th, 23:59
- Groups must consist of 3 members
- * You hand in both, your weekly homework assignment and your final task as part of this group

Homework assignments

Weekly homework assignments

- There are going to be 10 homeworks
- * Upload your solution as ipython notebook and HTML export in the public "Homework Submissions" data folder every Saturday until 23:59
- * Solutions are going to be uploaded on Sunday mornings
- * Homeworks can be Failed / Passed / Outstanding
- For each outstanding homework -0.05 will be granted on your final grade

Homework assignments

Weekly homework assignments

- * Correct an assignment of another group by Monday 23:59 every week and put your rating into the public spreadsheet
- Do not use names or any other personal data in the spreadsheet, strictly stick to group IDs
- * Find the rating guidelines on studip
- * There is time for questions and discussions in the practice sessions on Mondays

About the Final Task

- 1) Come up with an ANN paper (suggestions are going to be presented on 12th December) *or* your own idea
- Implement the ANN described in the paper or design an ANN which is capable of solving your problem
- 3) Optional: Crawl and pre-process data
- Implement and train the ANN with TensorFlow and extensively comment your code
- 5) Evaluate and discuss the **theoretical basis**, used procedures, the structure and the performance of the ANN in written form on five to six pages (**as .pdf**)

About the Final Task

Upload everything (pre-processing scripts, training data, TensorFlow code, documentation ...) on myshare and send the sharing link to lbraun@uni-osnabrueck.de

You are invited to discuss your ideas with me, before you start!

Find the assessment sheet on studip

How to pass

In order to be granted with 8 *ECTS* and your grade:

- 1) Pass 9/10 homeworks, correct one every week
- 2) Write the midterm exam
- 3) Hand in a *Final Task*

Midterm exam: 14:00 – 18:00 on 18th December, 2017 Final Task selection until: 23:59 on 9th January, 2018 Deadline Final Task: 23:59 on 28th February, 2018 No more answers to questions past 15th February

Both, the midterm exam and the final grade will make up for 50% of your final grade each

Questions and Contact

Please visit the following resources first:

- 1) TensorFlow Python API Documentation
- 2) Stackoverflow
- 3) Your group and class mates

... then, contact me: lbraun@uos.de

Please use the following prefix for the subject: [TF] <your_question_or_concern>

Questions?