Mini-Midterm 1 Solutions

- 1. B The average weight was computed from a sample, making it a statistic.
- 2. C Measuring temperature in the Celsiuis or Farenheit scale an example of a Interval measurement, while Kelvin is Ratio.
- 3. B This is a binomial experiment. Using binompdf (8,0.55,4) gives 0.26266.
- 4. B Since all teachers at the random schools were interviewed, this is cluster sampling.
- 5. **B** The class width is the difference between **lower class limits**, not the high and low value of a class. So, for example, 6-1=5 is the class width.
- 6. **B** To find the probability that a racket is wood or defective, we first find how many rackets are either wooden or defective. There are 100 wood rackets in total and 14 defective rackets that **are not wooden**. Thus the probability is 114/200 = 0.57.
- 7. A Chebyshev's inequality tells us the minimal amount of data between two endpoints $\bar{x} \pm k \cdot s$ where s is a number greater than 1. We first find out how many standard deviations the endpoints of the interval are from the mean: (44-26)/12 = 1.5. Thus the amount of data is at least $1-1/(1.5)^2 = 0.55555$, or approximately 55.6%.
- 8. C A premature baby would be born at any pregnancy length of 268 21 = 247 days or less. Using normalCDF we find that

normalCDF
$$(-1E99, 247, 368, 15) \approx 0.087567$$
.

9. **B** We need to find the probability that the number of successes in this binomial experiment is 6 or more, $P(x \ge 6)$. We will compute this by using $P(x \ge 6) = 1 - P(x \le 5)$. Hence,

$$1 - binomcdf(10, 0.5, 5) = 0.37695.$$

- 10. D Using $\{0, 1, 2, 3\}$ into L_1 and $\{0.45, 0.37, 0.17, 0.01\}$ into L_2 , 1-Var Stats L_1, L_2 will compute both the expected value (or mean) of this distribution. Reading \bar{x} give 0.74.
- 11. C Be sure to carefully read the key for stem and leave plots.
- 12. **B** Following the same strategy in problem 10, we see $\bar{x} = 3.6$.
- 13. **C**

normalCDF
$$(-1E99, 20, 15.5, 3.6) \approx 0.89435$$
.

- 14. (a) Since there are 87 flights in total, 48/87.
 - (b) There are 48 Upstate Airline flights and 33 on-time flights that are **not** Upstate. Thus, 81/87.
 - (c) There are 76 on-time flights, 43 of which are Upstate Airline. Thus, $\frac{43}{76}$.
 - (d) There are 43 on-time, Upstate Airline flights out of the 87 total. Thus, 43/87.
- 15. B This is a binomial experiment and we will call a success "a driver who was involved in an accident last year". Computing $P(x \ge 3) = 1 P(x \le 2) = 1 \text{binomcdf}(14, 0.08, 2) = 0.09583$.

16. The number of defective clocks is 7% of 8000, which is 560 defective clocks. We first compute the probability of selecting **all good clocks**.

$$\left(\frac{7440}{8000}\right)\cdot\left(\frac{7439}{7999}\right)\cdot\left(\frac{7438}{7998}\right)\cdot\left(\frac{7437}{7997}\right)\cdot\left(\frac{7436}{7996}\right)\approx0.6956$$

The reason for this is the complement to at least one defective is that none are defective. Thus the probability of at least one defective is 1 - 0.6956 = 0.3044.

A tempting, but incorrect solution would be to use 1-binomcdf(5,0.07,0)...

- 17. (a) Typing all the data into L_1 and using 1-Var Stats we get $S_x = 11.0721$.
 - (b) The largest value is 62 and the smallest is 27. We then compute (62-27)/8 = 4.375 since we want 8 classes. Increasing this to the next integer gives a class width of 5. So the classes will go 25-29, 30-34, etc.

Age	Midpoint	Frequency	Relative Frequency	Cumulative Frequency
25 - 29	27	3	3/34	3
30 - 34	1 32	3	3/34	6
35 - 39	37	6	6/34	12
40 - 44	42	4	4/34	16
45 - 49	47	5	5/34	21
50 - 54	52	3	3/34	24
55 - 59	57	5	5/34	29
60 - 64	4 62	5	5/34	34

18. A The first thing to note is the question asks for the probablility that a **sample mean** is between 68 and 70. Using the central limit theorem, this sample mean will be normally distributed with mean 69 and standard deviation $2.8/\sqrt{64}$. Thus,

$${\tt normalCDF}\left(68, 70, 69, 2.8/\sqrt{64}\right) \approx 0.995725.$$

If one were to use tables, one would get the exact answer listed in option A. As this is a multiple choice, we will select the nearest answer.