更多技术文章:http://www.edadoc.com/book

【高速先生原创|叠层系列】4层板到12层板层叠设计案例

作者: 吴均 一博科技高速先生团队队长

4 层板到 12 层板层叠设计案例

1、 信号能不能跨电源分割

本系列很多文章都是链接与引用,说明不少问题之前就谈过了,所以后面就可以轻松一点。最后再索引一篇文章,讲清楚和层叠设计相关的另一个很重要的知识点-信号跨分割问题:

SI 与 EMI (二) 小陈带你看看跨分割的影响

然后再节选一下本期话题的网友精彩回复:

层叠设计流程及信号回流与参考平面

<u></u> 2

参考平面被用于计算阻抗同时提供回流路径,带状线的参考平面有两个,上下两个平面都是参考平面,两个参考平面都存在返回电流,总的返回电流等于信号电流,两个平面承载的返回电流大小与它到布线层的厚度成反比,厚度越大占比越小;计算带状线的阻抗时需要考虑两个平面;所以是否要考虑电源层的影响取决于叠层厚度。任何皆可回流,信号线周围的线路也会承载一部分的返回电流,而参考平面是以平面形式存在的回流路径。4天前

引用Dr.Johson的话:高频信号传输,实际上是传输线与直流层之间包夹的介质电容充电的过程。越靠近完整地层,电容量越大,回流量越大,越远离分割电源层,电源层回流量越小,实际工程中一般按3倍的原则(到分隔电源层的距离3倍于到完整地层的距离)作为设计指导,3倍后并不是分割电源层没有回流,而是回流量很小,基本不会影响工程的性能指标,当然如果条件允许,大于3倍会更好3天前

- 1、搜索微信号"高速先生"
- 2、扫描右侧二维码,开始学习

2、 4~12 层板层叠设计讨论

还是偷懒一下吧,引用《Cadence 印刷电路板设计: Allegro PCB Editor 设计指南(第2版)》这本书的层叠设计章节

四层板的层叠方案

层叠建议:优选方案一(见图1)。 方案一为常见四层 PCB 的主选层设置方案。

方案二适用于主要元器件在 BOTTOM 布局或关键信号底层布线的情况;一般情况限制使用。

方案三适用于元器件以插件为主的 PCB,常常考虑电源在布线层 S2 中实现,BOTTOM 层为地平面,进而构成屏蔽腔体。

No	Construction	方案一	方案二	方案三
	Silkscreen			
	Soldermask			
L1	Copper	ТОР	TOP	GND1
	Prepreg			
L2	Copper	GND1	PWR1	S1
	Core			
L3	Copper	PWR1	GND1	\$2
	Prepreg			
L4	Copper	воттом	воттом	PWR1
	Soldermask			
	Silkscreen			

图 1 四层板的层叠方案

六层板的层叠方案

层叠建议: 优选方案三,可用方案一,备用方案二、四(见图2)。

- 1、搜索微信号"高速先生"
- 2、扫描右侧二维码,开始学习

No	Construction	方案一	方案二	方案三	方案四
	Silkscreen				
	Soldermask				
L1	Copper	ТОР	ТОР	ТОР	ТОР
	Prepreg				
L2	Copper	GND1	S1	GND1	GND1
	Core				
L3	Copper	S1	GND1	S 1	S1
	Prepreg				
L4	Copper	S2	PWR1	PWR1	GND2
	Core				
L5	Copper	PWR1	S2	GND2	PWR1
	Prepreg				
L6	Copper	воттом	воттом	воттом	воттом
	Soldermask				
. Γ	694]			

图 2 六层板的层叠方案

对于六层板,优先考虑方案三,优先布线 S1 层。增大 S1 和 PWR1 之间的间距,缩小 PWR1 和 GND2 之间的间距,以减小电源平面的阻抗。

在数码消费等对成本要求较高的时候,常采用方案一,优先布线 S1 层。

与方案一相比,方案二保证了电源、地平面相邻,减少电源阻抗,但所有走线全 部裸露在外,只有 S1 才有较好的参考平面;不推荐使用。但在埋盲孔设计时,优先采 用此方案。

对于局部、少量信号要求较高的场合,方案四比方案三更适合,它能提供极佳的布线 层 S1。

十层板的层叠方案

层叠建议:推荐方案一、方案二(见图3)。

No	Construction		方案二	方案三	方案四	方案五
1.0	Silkscreen	3330	333	773	333	773
	Soldermask					
L1	Copper	ТОР	тор	ТОР	ТОР	тор
	Prepreg					
L2	Copper	GND1	GND1	GND1	GND1	GND1
	Core					
L3	Copper	S1	S1	S1	S1	S1
	Prepreg					
L4	Copper	S2	S2	GND2	S2	GND2
	Core					
L5	Copper	GND2	PWR1	S2	GND2	PWR1
	Prepreg	51.22			31.22	
L6	Copper	PWR1	GND2	GND3	PWR1	PWR2
	Core		51,22			
L7	Copper	S3	S3	PWR1	PWR2	GND3
	Prepreg					
L8	Copper	S4	S4	S3	S3	S2
	Core					
L9	Copper	GND3	PWR2	GND4	GND3	GND4
	Prepreg					
L10	Copper	воттом	воттом	воттом	воттом	воттом
	Soldermask					
	Silkscreen	1				

图 3 十层板的层叠方案

对于单一电源层的情况,首先考虑方案一。层叠设置时,加大S1~S2、S3~S4的间距 控制串扰。

对于需要两电源层的情况,首先考虑方案二。层叠设置时,加大 S1~S2、S3~S4 的间 距控制串扰。

方案五 EMC 效果较佳,但与方案四比,牺牲一个布线层;在成本要求不高、EMC 指 标要求较高且必须双电源层的核心单板,建议采用此种方案;优先布线层 S1、S2。

十二层板的层叠方案

层叠建议:推荐方案一、方案三(见图4)。

No	Construction	方案一	方案二	方案三	方案四
	Silkscreen				
	Soldermask				
L1	Copper	ТОР	ТОР	TOP	TOP
	Prepreg				
L2	Copper	GND1	GND1	GND1	GND1
	Core				
L3	Copper	S1	S1	S1	S1
	Prepreg				
L4	Copper	GND2	GND2	S2	s2
	Core				
L5	Copper	S2	S2	GND2	PWR1
	Prepreg				
L6	Copper	GND3	PWR1	PWR1	GND2
	Core				
L7	Copper	PWR1	GND3	PWR2	S 3
	Prepreg				
L8	Copper	\$3	\$3	GND3	PWR2
	Core				
L9	Copper	GND4	PWR2	S 3	S4
	Prepreg				
L10	Copper	S4	\$4	S4	\$ 5
	Core				
L11	Copper	GND5	GND4	GND5	GND3
	Prepreg				
L12	Copper	воттом	BOTTOM	воттом	воттом
	Soldermask				
	Silkscreen				

图 4 十二层板的层叠方案

【关于一博】

一博科技专注于高速 PCB 设计、PCB 制板、焊接加工、物料供应等服务。作为全球最大 的高速 PCB 设计公司, 我司在中国、美国、日本设立研发机构, 全球研发工程师 500 余人。超大规模的高速 PCB 设计团队,引领技术前沿,贴近客户需求。

一博旗下 PCB 板厂成立于 2009 年,位于广东四会(广州北 50KM),采用来自日本、 德国的一流加工设备,TPS 精益生产管理以及品质管控体系的引入,致力为广大客户提 供高品质、高多层的制板服务。

- 1、搜索微信号"高速先生"
- 2、扫描右侧二维码,开始学习

一博旗下 PCBA 总厂位于深圳,并在上海设立分厂,现有 12 条 SMT 产线,配备全新进口富士 XPF、NXT3、全自动锡膏印刷机、十温区回流炉等高端设备,并配有波峰焊、AOI、XRAY、BGA 返修台等配套设备,专注研发打样、中小批量的 SMT 贴片、组装等服务。

【关于高速先生】

高速先生由深圳市一博科技有限公司 R&D 技术研究部创办,用浅显易懂的方式讲述高速设计,成立至今保持每周发布两篇原创技术文章,已和大家分享了百余篇呕心沥血之作,深受业内专业人士欢迎,是中国高速电路第一自媒体品牌。

扫一扫,即可关注

- 1、搜索微信号"高速先生"
- 2、扫描右侧二维码,开始学习

