Package 'intervalpsych'

July 8, 2025

Title Analyzing Interval Data in Psychometrics

Version 0.1.0 Maintainer Matthias Kloft <kloft.dev+intervalpsych@gmail.com> Description Implements the Interval Consensus Model (ICM) for analyzing continuous bounded interval-valued responses in psychometrics using 'Stan' for 'Bayesian' estimation. Provides functions for transforming interval data to simplex representations, fitting item response theory (IRT) models with isometric log-ratio (ILR) and sum log-ratio (SLR) link functions, and visualizing results. The package enables aggregation and analysis of interval-valued response data commonly found in psychological measurement and related disciplines. Based on Kloft et al. (2024) <doi:10.31234/osf.io/dzvw2>. License GPL (>= 3)**Encoding UTF-8** URL https://matthiaskloft.github.io/intervalpsych/, https://github.com/matthiaskloft/intervalpsych BugReports https://github.com/matthiaskloft/intervalpsych/issues RoxygenNote 7.3.2 Biarch true **Depends** R (>= 4.1)**Imports** dplyr, ggdist, ggokabeito, ggplot2, methods, posterior, purrr, Rcpp (>= 0.12.0), RcppParallel (>= 5.0.1), rstan (>= 2.18.1), rstantools (>= 2.4) **LinkingTo** BH (>= 1.66.0), Rcpp (>= 0.12.0), RcppEigen (>= 0.3.3.3.0), RcppParallel (>= 5.0.1), rstan (>= 2.18.1), StanHeaders (>= 2.18.0) SystemRequirements GNU make LazyData true **Suggests** testthat (>= 3.0.0) Config/testthat/edition 3 Config/Needs/website rmarkdown NeedsCompilation yes

2 extract_consensus

Contents

		2
	t_icm	3
	r	
	nv_ilr	7
	vl_to_splx	9
	lot.icm_stanfit	9
	lot_consensus	(
	lot_intervals	2
	lot_intervals_cumulative	2
	uantifiers	4
	emove_zeros	5
	plx_to_itvl	6
	ummary.icm_stanfit	6
	neme_icm	
Index	1	9
extra	t consensus Extract consensus intervals from ICM Stan Fit Object	

Description

This function extracts parameter estimates for the consensus intervals from a fitted Interval Consensus Model Stan fit object of class $icm_stanfit$.

Usage

```
extract_consensus(icm_stanfit, print_summary = TRUE)
```

Arguments

```
icm_stanfit An object of class icm_stanfit containing the fitted Stan model.

print_summary A logical value indicating whether to print a summary of the extracted parameters. Default is TRUE.
```

Details

This function extracts parameter estimates for the consensus intervals from a fitted Interval Consensus Model Stan fit object of class icm_stanfit.

fit_icm 3

Value

A list containing:

df_rvar A data frame with extracted posterior samples in the random variable datatype

(see posterior::rvar()).

summary A table with posterior medians and credible intervals for the consensus intervals.

Examples

fit_icm

Fit the Interval Consensus Model

Description

This function fits the Interval Consensus Model (ICM, Kloft et al., 2024) using Stan.

```
fit_icm(
  df_simplex,
  id_person,
  id_item,
  item_labels = NULL,
  link = "ilr",
  padding = 0,
  iter_sampling = 500,
  iter_warmup = 500,
  n_chains = 4,
  n_cores = 1,
```

fit_icm

```
adapt_delta = 0.9,
    ...
)
```

Arguments

df_simplex	A dataframe containing the simplex data.
id_person	A vector of person indices.
id_item	A vector of item indices.
item_labels	A vector of item labels. Can be long format matching id_item or a vector of unique labels in ascending order. Default is NULL.
link	A character string specifying the link function. Options are "ilr" (Isometric Log-Ratio) or "slr" (Sum Log-Ratio). See also ilr() and slr() for details. Default is "ilr".
padding	Padding constant that was used to remove zero-components from the simplex. Default is 0. The model will reverse the padding when transforming results back to the original interval response scale. See also remove_zeros() for details.
iter_sampling	An integer specifying the number of sampling iterations used by rstan::sampling() Default is 500.
iter_warmup	An integer specifying the number of warmup iterations used by rstan::sampling() Default is 500.
n_chains	An integer specifying the number of Markov chains used by rstan::sampling() Default is 4.
n_cores	An integer specifying the number of cores to use used by rstan::sampling() Default is 1.
adapt_delta	A numeric value specifying the target acceptance rate used by rstan::sampling() Default is 0.9.
	Additional arguments passed to the rstan::sampling() function.

Value

A fitted Stan model object of class icm_stanfit containing the following components:

stan_model The compiled Stan model object.

stan_fit The fitted Stan model with posterior samples for the model parameters (see below).

stan_data The data list passed to Stan.

item_labels A vector of item labels.

The stan_fit component contains posterior samples for these ICM parameters:

Person Parameters: • E_loc - Person proficiency for location

- E_wid Person proficiency for width
- a_loc Person scaling bias for location
- b_loc Person shifting bias for location
- b_wid Person shifting bias for width

fit_icm 5

• rho_E - Correlation between person proficiencies for location and width

Item Parameters: • Tr_loc - Item consensus location in the logit-transformed space

- Tr_wid Item consensus width in the logit-transformed space
- Tr_loc_splx Item consensus location in the simplex space
- Tr_wid_splx Item consensus width in the simplex space
- Tr_L Item consensus lower bound
- Tr_U Item consensus upper bound
- Tr_splx Item consensus simplex representation
- lambda_loc Item discernibility for location
- lambda_wid Item discernibility for width
- · omega Item residual correlations between location and width
- rho_lambda Correlation between item discernibilities for location and width

Hyperparameters: • mu_E - Means for person proficiencies

- sigma_I Standard deviations for person parameters
- sigma_lambda Standard deviations for item discernibilities

Posterior Predictive Checks: • Y_ppc_loc - Predicted responses for location in the logit-transformed space

- Y_ppc_wid Predicted responses for width in the logit-transformed space
- Y_ppc_splx Predicted responses in simplex space
- Y_ppc_loc_splx Predicted location responses in the simplex space (mean of lower and upper bound)
- Y_ppc_wid_splx Predicted width responses in the simplex space

References

Kloft, M., Siepe, B. S., & Heck, D. W. (2024). The Interval Truth Model: A Consensus Model for Continuous Bounded Interval Responses. doi:10.31234/osf.io/dzvw2

6 ilr

ilr

Log-Ratio transformations for interval responses

Description

Transform interval responses from the simplex space to the unbounded space using either Isometric Log-Ratio (ILR) or Sum Log-Ratio (SLR) transformations, as described by Smithson & Broomell (2024). These transformations preserve the dimensional conceptualization of the interval responses in terms of a location and a width. See also inv_ilr(), inv_slr() for the inverse transformations.

ILR

The ILR transformation equations are:

$$x_{loc} = \sqrt{\frac{1}{2}} \log \left(\frac{x_1}{x_3}\right)$$

$$x_{wid} = \sqrt{\frac{2}{3}} \log \left(\frac{x_2}{\sqrt{x_1 x_3}} \right)$$

SLR

The SLR transformation equations are:

$$x_{loc} = \log\left(\frac{x_1}{x_3}\right)$$

$$x_{wid} = \log\left(\frac{x_2}{x_1 + x_3}\right)$$

where (x_1, x_2, x_3) is the interval response in the simplex format and (x_{loc}, x_{wid}) are the transformed values representing the unbounded location and width.

Usage

ilr(simplex)
slr(simplex)

Arguments

simplex

A numeric vector that is a 2-simplex (3 elements that sum to 1) or a dataframe where each of the rows is a 2-simplex.

Value

A numeric vector with 2 elements, the unbounded interval location and width, or a dataframe where each of the rows is a numeric vector with these 2 elements.

inv_ilr 7

References

Smithson, M., & Broomell, S. B. (2024). Compositional data analysis tutorial. Psychological Methods, 29(2), 362–378.

See Also

```
inv_ilr(), inv_slr()
```

Examples

```
# Generate some simplex data
simplex <- data.frame(rbind(c(.1, .2, .7), c(.4, .5, .1)))
# ILR transformation
ilr(simplex)
# SLR transformation
slr(simplex)</pre>
```

inv_ilr

Inverse Log-Ratio transformations for interval responses

Description

Transform unbounded data back to the simplex space using either Isometric Log-Ratio (ILR) or Sum Log-Ratio (SLR) inverse transformations, as described by Smithson & Broomell (2024). These transformations are the inverse transformations of ilr() and slr().

Inverse ILR

The inverse ILR transformation equations are:

$$x_{1} = \frac{\exp(\sqrt{2}x_{loc})}{\exp(\sqrt{2}x_{loc}) + \exp(\sqrt{\frac{3}{2}}x_{wid} + \frac{x_{loc}}{\sqrt{2}}) + 1}$$

$$x_{2} = \frac{\exp(\sqrt{\frac{3}{2}}x_{wid} + \frac{x_{loc}}{\sqrt{2}})}{\exp(\sqrt{2}x_{loc}) + \exp(\sqrt{\frac{3}{2}}x_{wid} + \frac{x_{loc}}{\sqrt{2}}) + 1}$$

$$x_{3} = \frac{1}{\exp(\sqrt{2}x_{loc}) + \exp(\sqrt{\frac{3}{2}}x_{wid} + \frac{x_{loc}}{\sqrt{2}}) + 1}$$

Inverse SLR

The inverse SLR transformation equations are:

$$x_1 = \frac{\exp(x_{loc})}{(\exp(x_{loc}) + 1)(\exp(x_{wid}) + 1)}$$

inv_ilr

$$x_2 = \frac{\exp(x_{wid})}{\exp(x_{wid}) + 1}$$
$$x_3 = \frac{1}{(\exp(x_{loc}) + 1)(\exp(x_{wid}) + 1)}$$

where (x_{loc}, x_{wid}) are the unbounded interval location and width and (x_1, x_2, x_3) is the resulting interval response in the simplex format.

Usage

```
inv_ilr(bvn)
inv_slr(bvn)
```

Arguments

bvn

A numeric vector containing an unbounded interval location and width or a dataframe where each of the rows consists of such a vector.

Value

A numeric vector containing a 2-simplex or a dataframe where each of the rows consists of such a vector.

References

Smithson, M., & Broomell, S. B. (2024). Compositional data analysis tutorial. Psychological Methods, 29(2), 362–378.

See Also

```
ilr(), slr()
```

```
# Generate some unbounded data
bvn <- data.frame(rbind(c(0, .2), c(-2, .4)))
# Inverse ILR transformation
inv_ilr(bvn)
# Inverse SLR transformation
inv_slr(bvn)</pre>
```

itvl_to_splx 9

		_	
itvl	+ ~	on I	
1 L V I	L.O	50	X

Convert from interval bounds to simplex

Description

Convert interval responses from interval bounds format to compostional/simplex format. See also splx_to_itvl() for the inverse transformation.

Usage

```
itvl_to_splx(interval_bounds, min = NULL, max = NULL)
```

Arguments

interval_bounds

A vector of length 2 representing the lower and upper bounds of an interval

response or a data frame where each row contains such a vector.

min Minimum of the original response scale.

max Maximum of the original response scale.

Value

A numeric vector representing a 2-simplex if input is a vector, or a data frame where each row is a 2-simplex if input is a data frame.

See Also

```
splx_to_itvl()
```

Examples

```
interval_responses <- data.frame(rbind(c(.1,.5), c(.4,.7)))
itvl_to_splx(interval_responses, min = 0, max = 1)</pre>
```

```
plot.icm_stanfit
```

Plot Method for icm_stanfit Objects

Description

This function provides a plot method for objects of class icm_stanfit.

```
## S3 method for class 'icm_stanfit'
plot(x, ...)
```

plot_consensus

Arguments

x An object of class icm_stanfit.

... Additional arguments passed to the plot_consensus function.

Value

A plot generated by the plot_consensus() function.

See Also

```
plot_consensus()
```

Examples

plot_consensus

Plot ICM Consensus Intervals

Description

Plot consensus intervals estimated by the Interval Consensus Model (ICM) via fit_icm().

```
plot_consensus(icm_stanfit, method = "median_bounds", CI = 0.95)
```

plot_consensus 11

Arguments

icm_stanfit	An object of class icm_stanfit containing the Stanfit results.
method	A character string specifying the plotting method. Options are "median_bounds" (default) or "draws_distribution".
CI	A numeric value specifying the confidence interval for the "draws_distribution" method. Default is 0.95. This can also be a vector of length 2 for multiple confidence intervals.

Details

If the method is "median_bounds", the function uses posterior medians for the lower and upper bounds of the consensus intervals.

If the method is "draws_distribution", the function computes a consensus distribution for each consensus interval by uniformly sampling one value from the interval range for each posterior draw. From this distribution, a density plot is generated. As a rough guideline, the number of draws for this method should be above 1000.

Value

A ggplot2 object depicting the consensus interval estimates.

plot_intervals

Plot Intervals

Description

Plot intervals from a data frame of interval bounds.

Usage

```
plot_intervals(df_interval_bounds, item_labels = NULL)
```

Arguments

df_interval_bounds

A data frame with two columns: the lower and upper bounds of the intervals.

item_labels

An optional vector of labels for the items. Its length must match the number of rows in df_interval_bounds.

Value

A ggplot object depicting the intervals.

Examples

```
 df <- data.frame(lower = c(0.1, 0.3, 0.5), upper = c(0.4, 0.6, 0.8)) \\ labels <- c("Item 1", "Item 2", "Item 3") \\ plot_intervals(df, item_labels = labels)
```

```
plot_intervals_cumulative
```

Plot Cumulative Intervals

Description

Generate a cumulative interval plot based on the provided lower and upper bounds, cluster IDs, and other optional parameters.

Usage

```
plot_intervals_cumulative(
   lower,
   upper,
   cluster_id,
   truth = NA,
   min,
   max,
   facet_wrap = NULL,
   weighted = FALSE,
   show_quantiles = TRUE,
   ncol = 3
)
```

Arguments

lower A numeric vector of lower bounds.

A numeric vector of upper bounds.

cluster_id A vector of cluster IDs corresponding to the intervals.

truth A numeric vector of ground truth values. Default is NA.

min Numeric. The minimum value for the x-axis.

Numeric. The maximum value for the x-axis.

facet_wrap A logical value indicating whether to use facet wrapping. Default is NULL.

weighted A logical value indicating whether the intervals should be weighted by their

width. If TRUE, values are sampled uniformly within each interval. If FALSE, values are gathered using the same step size for all intervals. Default is FALSE.

show_quantiles A logical value indicating whether to show quantiles on the plot. Default is

TRUE.

ncol The number of columns for facet wrapping. Default is 3.

Value

A ggplot object depicting the cumulative intervals.

```
# Example data
lower_bounds <- c(0.01, 0.3, 0.02, 0.4)
upper_bounds <- c(0.5, 0.96, 0.6, 0.8)
cluster_ids <- c(1, 1, 2, 2)
truth_values <- c(0.3, 0.3, 0.6, 0.6)

# Create cumulative interval plot
plot_intervals_cumulative(
  lower = lower_bounds,
  upper = upper_bounds,
  cluster_id = cluster_ids,</pre>
```

14 quantifiers

```
truth = truth_values,
min = 0,
max = 1,
weighted = FALSE
)
```

quantifiers

Verbal Quantifier Data

Description

A subset of data from the data collected by Kloft & Heck (2024) containing the probability interval judgments for verbal quantifiers. The dataset is in the long format, with responses for the lower and upper interval bounds in separate columns.

Usage

quantifiers

Format

A data frame with 3,344 rows and 10 columns:

id_person Unique identifier for each person

id_item Unique identifier for each item

name_ger German name of the quantifier

name_en English name of the quantifier

truth True value of the quantifier if applicable

scale_min Minimum value of the response scale

scale_max Maximum value of the response scale

width_min Minimum possible interval width of the response scale

x_L Lower bound of the interval jugdment

x_U Upper bound of the interval jugdment

Source

https://osf.io/67vyj/

References

Kloft, M., & Heck, D. W. (2024). Discriminant validity of interval response formats: Investigating the dimensional structure of interval widths. **Educational and Psychological Measurement**, **0** (0). doi:10.1177/00131644241283400

remove_zeros 15

Description

Remove zero-components from interval data in the simplex format.

Usage

```
remove_zeros(simplex, method = "rescaling", padding = 0.01)
```

Arguments

simplex	A numeric simplex vector of length 3 where the elements sum to 1, or a numeric matrix or data frame where each row is a simplex vector.
method	A character string specifying the method to remove zeros. Currently, only "rescaling" is supported. Default is "rescaling".
padding	A numeric value to add to each element of the simplex when using the "rescaling" method. Default is 0.01 .

Details

Rescaling

The rescaling methods adds a small value (padding) to each element of the simplex and then divides by the row sum to close the composition.

Value

A numeric matrix with the same dimensions as the input simplex, with zeros removed according to the specified method.

```
# Example usage: simplex <- matrix(c(0.2, 0.3, 0.5, 0, 0.5, 0.5), nrow = 2, byrow = TRUE) remove_zeros(simplex)
```

summary.icm_stanfit

splx_to_itvl

Convert from simplex to interval bounds

Description

Convert from simplex/compostional format to interval bounds format. See also itvl_to_splx() for the inverse transformation.

Usage

```
splx_to_itvl(simplex, min = NULL, max = NULL)
```

Arguments

simplex A numeric vector that is a 2-simplex (3 elements that sum to 1) or a data frame

where each of the rows is a 2-simplex.

min Minimum of the original response scale.

max Maximum of the original response scale.

Value

A numeric vector with 2 elements representing the lower and upper bounds of the interval response, or a data frame where each of the rows contains such a vector.

See Also

```
itvl_to_splx()
```

Examples

```
responses <- data.frame(rbind(c(.1,.5,.4), c(.3,.4,.3))) splx_to_itvl(responses, min = 0, max = 1)
```

```
summary.icm_stanfit
```

Summarize ICM Stanfit Object

Description

This function provides a summary method for objects of class icm_stanfit. via a wrapper around the extract_consensus() function.

```
## S3 method for class 'icm_stanfit'
summary(object, ...)
```

theme_icm 17

Arguments

```
object An object of class icm_stanfit.
... Additional arguments (currently not used).
```

Value

A table with posterior medians and credible intervals for the consensus intervals.

See Also

```
extract_consensus()
```

Examples

 ${\tt theme_icm}$

Custom ggplot2 Theme for intervalpsych

Description

 $Creates\ a\ custom\ ggplot 2\ theme\ for\ interval psych\ visualizations.$

Usage

```
theme_icm(hide_axis_text_y = FALSE, base_size = 12)
```

Arguments

```
hide_axis_text_y
Logical. If TRUE, the y-axis text and ticks will be hidden. Default is FALSE.
base_size
Numeric. Base font size for the theme. Default is 12.
```

theme_icm

Value

A ggplot2 theme object.

```
# Create sample interval data
df_intervals <- data.frame(
  lower = c(0.1, 0.3, 0.2, 0.4),
  upper = c(0.5, 0.7, 0.6, 0.8)
)
item_labels <- c("Item A", "Item B", "Item C", "Item D")

# Basic usage
plot_intervals(df_intervals, item_labels) +
  theme_icm()

# Hide y-axis text
plot_intervals(df_intervals, item_labels) +
  theme_icm(hide_axis_text_y = TRUE)

# Custom base size
plot_intervals(df_intervals, item_labels) +
  theme_icm(base_size = 14)</pre>
```

Index

```
* datasets
    quantifiers, 14
extract_consensus, 2
extract_consensus(), 16, 17
fit_icm, 3
fit_icm(), 10
ilr, 6
ilr(), 4, 7, 8
inv_ilr, 7
inv_ilr(), 6, 7
inv_slr(inv_ilr), 7
inv_slr(), 6, 7
itvl_to_splx, 9
itvl_to_splx(), 16
plot.icm_stanfit, 9
plot_consensus, 10
plot\_consensus(), 10
plot_intervals, 12
\verb|plot_intervals_cumulative|, 12|
posterior::rvar(), 3
quantifiers, 14
remove_zeros, 15
remove_zeros(), 4
rstan::sampling(), 4
slr(ilr), 6
slr(), 4, 7, 8
splx_to_itvl, 16
splx_to_itvl(), 9
summary.icm\_stanfit, 16
theme_icm, 17
```