CÁLCULO VETORIAL E GEOMETRIA ANALÍTICA 5º LISTA DE EXERCÍCIOS

- 1. Em cada item, esboçar o gráfico e determinar os vértices, os focos e a excentricidade das elipses dadas.
 - a) $\frac{x^2}{25} + \frac{y^2}{4} = 1$
 - b) $9x^2 + 16y^2 144 = 0$
 - c) $25x^2 + 4y^2 = 100$
- 2. Em cada item, determinar uma equação da elipse que satisfaça as condições dadas e esboçar o gráfico.
 - a) Focos $F_1(-4,0)$ e $F_2(4,0)$, eixo maior igual a 10
 - b) Centro C(0,0), eixo menor igual a 6, focos no eixo dos x e passando pelo ponto $P(-2\sqrt{5},2)$
 - c) Vértices $A(0, \pm 6)$ e passando por P(3,2)
 - d) Eixo maior igual a 10 e focos $F_1(2, -1)$ e $F_2(2, 5)$
 - e) Vértices $A_1(-7,2)$ e $A_2(-1,2)$ e eixo menor igual a 2
- 3. Em cada item, determinar a equação reduzida, o centro, os vértices, os focos e a excentricidade das elipses dadas e esboçar o gráfico.
 - a) $9x^2 + 16y^2 36x + 96y + 36 = 0$
 - b) $25x^2 + 16y^2 + 50x + 64y 311 = 0$
- 4. Em cada item, obter equações paramétricas da elipse de equação dada.
 - a) $9x^2 + 16y^2 = 1$
 - b) $4x^2 + 9y^2 54y + 45 = 0$
- 5. Em cada item, esboçar o gráfico e determinar os vértices, os focos, a excentricidade e as equações das assíntotas das hipérboles dadas.
 - a) $\frac{x^2}{4} \frac{y^2}{9} = 1$
 - b) $\frac{y^2}{4} \frac{x^2}{9} = 1$
 - c) $4x^2 5y^2 + 20 = 0$
 - d) $x^2 4y^2 + 16 = 0$
- 6. Em cada item determinar uma equação da hipérbole que satisfaça as condições dadas e esboçar o gráfico.
 - a) Focos $F = (\pm 5.0)$ e vértices $V = (\pm 3.0)$
 - b) Vértice $A = (0, \pm 5)$ e excentricidade 2;
 - c) Centro C = (0,0), eixo real sobre Oy, b = 8 e excentricidade $\frac{5}{3}$;
 - d) Centro C = (5,1), um foco F = (9,1) e eixo imaginário medindo $4\sqrt{2}$.
- 7. Em cada item determinar a equação reduzida, o centro, os vértices, os focos, a excentricidade, as equações das assíntotas das hipérboles e esboce os gráficos.
 - a) $9x^2 4y^2 18x 16y 43 = 0$
 - b) $16x^2 9y^2 64x 18y + 199 = 0$

8. Em cada item obter equações paramétricas da hipérbole dada.

a)
$$9x^2 - 25y^2 - 18x - 50y - 241 = 0$$

b)
$$3x^2 - y^2 + 18x + 18 = 0$$

- 9. Obtenha uma equação reduzida da hipérbole de centro na origem e que tem focos em um dos eixos coordenados, excentricidade e = 2 e contém o ponto $(2,\sqrt{7})$.
- 10. Estabeleça a equação de cada uma das elipses a seguir, sabendo que:
 - (a) Seu eixo maior mede 10 (unidades de medida) e os focos são $F_1=(-4,0)$ e $F_2=(4,0)$.
 - (b) Tem centro C em (2,4), um foco em F=(5,4) e tem excentricidade e=3/4.