In [1]: import pandas as pd
 data = pd.read_csv("/Users/gurnoorvirdi/Desktop/NLP- social sciences/NLP Final

In [2]: data

Out [2]: user_name user_location user_description user_created user_followers user_friendly

	user_name	user_location	user_description	user_created	user_followers	user_frien
0	∜²i ⊚ լ∉Ϯ	astroworld	wednesday addams as a disney princess keepin i	2017-05-26 05:46:42	624	9
1	Tom Basile ■	New York, NY	Husband, Father, Columnist & Commentator. Auth	2009-04-16 20:06:23	2253	16
2	Time4fisticuffs	Pewee Valley, KY	#Christian #Catholic #Conservative #Reagan #Re	2009-02-28 18:57:41	9275	95
3	ethel mertz	Stuck in the Middle	#Browns #Indians #ClevelandProud #[]_[] #Cavs	2019-03-07 01:45:06	197	9
4	4 DIPR-J&K Jammu and Kashmir		Official Twitter handle of Department of Inf	2017-02-12 06:45:15	101009	1
•••	•••	•••			•••	
179103	AJIMATI AbdulRahman O.	llorin, Nigeria	Animal Scientist Muslim Real Madrid/Chelsea	2013-12-30 18:59:19	412	16
179104	Jason	Ontario	When your cat has more baking soda than Ninja	2011-12-21 04:41:30	150	1
179105	BEEHEMOTH		The Architects of Free Trade X Really Did	2016-07-13 17:21:59	1623	21
179106	Gary DelPonte	New York City	Global UX UI Visual Designer. StoryTeller, Mus	2009-10-27 17:43:13	1338	1
179107	TUKY II	Aliwal North, South Africa	TOKELO SEKHOPA TUKY II LAST BORN EISH TU	2018-04-14 17:30:07	97	16

179108 rows × 13 columns

```
In [3]: import sys
    sys.path
    sys.executable
    sys.path.insert(0, r"/Users/gurnoorvirdi/anaconda3/lib/python3.11/site-packages
```

```
In [4]:
        import nltk
        from nrclex import NRCLex
        import re
        text = data['text']
        # Word Tokenization
        tokens list = text.apply(nltk.word tokenize)
        # Get rid of symbols and special characters from each tweet
        def remove_special_characters(tokens):
            # Regular expression pattern to match any non-alphanumeric character (incl
            pattern = r'[^a-zA-z0-9\s]'
            # Remove special characters and symbols using the pattern
            tokens = [re.sub(pattern, '', token) for token in tokens]
            # Remove any empty tokens
            tokens = [token for token in tokens if token]
            return tokens
        # Apply the remove special characters function to each list of tokens
        tokens_list_cleaned = tokens_list.apply(remove_special_characters)
        tokens list cleaned
                 [If, I, smelled, the, scent, of, hand, sanitiz...
Out[4]:
        1
                 [Hey, Yankees, YankeesPR, and, MLB, would, nt,...
                 [diane3443, wdunlap, realDonaldTrump, Trump, n...
        3
                 [brookbanktv, The, one, gift, COVID19, has, gi...
        4
                 [25, July, Media, Bulletin, on, Novel, CoronaV...
        179103
                 [Thanks, IamOhmai, for, nominating, me, for, t...
        179104
                 [2020, The, year, of, insanity, Lol, COVID19, ...
                 [CTVNews, A, powerful, painting, by, Juan, Luc...
        179105
                 [More, than, 1200, students, test, positive, f...
        179106
        179107
                 [I, stop, when, I, see, a, Stop, SABCNews, Izi...
        Name: text, Length: 179108, dtype: object
In [5]: # Sentiment Analysis with NRC
        from nrclex import NRCLex
        def get_sentiment_score(tokens):
            text = " ".join(tokens)
            return NRCLex(text).affect frequencies
        # Apply the get sentiment score function to each list of tokens
        sentiment scores = tokens list cleaned apply (get sentiment score)
        sentiment scores
                 {'fear': 0.0, 'anger': 0.0, 'anticip': 0.0, 't...
Out[5]:
                 {'fear': 0.0, 'anger': 0.0, 'anticip': 0.0, 't...
                 2
                 {'fear': 0.0, 'anger': 0.0, 'anticip': 0.0, 't...
        3
                 {'fear': 0.0, 'anger': 0.0, 'anticip': 0.0, 't...
        179103
                 179104
                 {'fear': 0.2, 'anger': 0.2, 'anticip': 0.0, 't...
                 {'fear': 0.125, 'anger': 0.125, 'anticip': 0.0...
        179105
                 {'fear': 0.0, 'anger': 0.0, 'anticip': 0.0, 't...
        179106
                 {'fear': 0.0, 'anger': 0.0, 'anticip': 0.0, 't...
        179107
        Name: text, Length: 179108, dtype: object
```

```
In [6]:
        import nltk
        from nrclex import NRCLex
        import re
        import pandas as pd
        text = data['text']
        # Word Tokenization
        tokens list = text.apply(nltk.word tokenize)
        # Get rid of symbols and special characters from each tweet
        def remove_special_characters(tokens):
            pattern = r'[^a-zA-z0-9\s]'
            tokens = [re.sub(pattern, '', token) for token in tokens]
            tokens = [token for token in tokens if token]
            return tokens
        # Apply the remove special characters function to each list of tokens
        tokens_list_cleaned = tokens_list.apply(remove_special_characters)
        # Sentiment Analysis using NRC Lexicon
        def get sentiment score(tokens):
            text = " ".join(tokens)
            return NRCLex(text).affect_frequencies
        # Apply the get_sentiment_score function to each list of tokens
        sentiment_scores = tokens_list_cleaned.apply(get_sentiment_score)
        # Create a new DataFrame for sentiment analysis results
        sentiment df = pd.DataFrame(sentiment scores.tolist(), index=data.index)
        # Combine the new DataFrame with the original data
        data with sentiment = pd.concat([data, sentiment df], axis=1)
        # Display the data with sentiment analysis results
        print(data with sentiment.head())
```

```
user name
                                  user location
                    Ѷі⊕լ∉±
        0
                                     astroworld
             Tom Basile
        1
                                   New York, NY
        2
           Time4fisticuffs
                               Pewee Valley, KY
        3
               ethel mertz Stuck in the Middle
        4
                  DIPR-J&K
                              Jammu and Kashmir
                                           user_description
                                                                    user_created \
          wednesday addams as a disney princess keepin i...
                                                             2017-05-26 05:46:42
          Husband, Father, Columnist & Commentator. Auth...
                                                             2009-04-16 20:06:23
        1
        2 #Christian #Catholic #Conservative #Reagan #Re...
                                                             2009-02-28 18:57:41
          #Browns #Indians #ClevelandProud #[] [] #Cavs ...
                                                             2019-03-07 01:45:06
          Official Twitter handle of Department of Inf...
                                                             2017-02-12 06:45:15
                                       user favourites user verified
           user followers
                          user friends
        0
                      624
                                   950
                                                  18775
                                                                 False
        1
                     2253
                                  1677
                                                     24
                                                                  True
        2
                     9275
                                  9525
                                                   7254
                                                                 False
        3
                                   987
                                                   1488
                     197
                                                                 False
        4
                   101009
                                   168
                                                    101
                                                                 False
                         date
                                                                            text \
          2020-07-25 12:27:21
                              If I smelled the scent of hand sanitizers toda...
        0
        1
          2020-07-25 12:27:17
                               Hey @Yankees @YankeesPR and @MLB - wouldn't it...
                               @diane3443 @wdunlap @realDonaldTrump Trump nev...
          2020-07-25 12:27:14
                               @brookbanktv The one gift #COVID19 has give me...
        3 2020-07-25 12:27:10
          2020-07-25 12:27:08 25 July: Media Bulletin on Novel #CoronaVirus...
                   anger anticip
                                    trust surprise
                                                     positive negative
                                                                          sadness \
                                                              0.500000
        0
                0.000000
                            0.0
                                 0.000000
                                          0.000000
                                                     0.000000
                                                                        0.000000
        1
                0.000000
                            0.0
                                 0.285714
                                          0.000000
                                                     0.428571 0.000000 0.000000
        2
                0.166667
                            0.0
                                 0.000000
                                          0.166667
                                                     0.166667
                                                               0.166667
                                                                         0.166667
                0.000000
                            0.0
                                 0.142857
                                           0.142857
                                                     0.285714
                                                              0.000000
                                                                        0.000000
        3
                0.00000
                            0.0
                                 . . .
            disgust
                         joy anticipation
          0.500000
                    0.000000
        0
                                       NaN
          0.000000 0.142857
                                  0.142857
          0.166667
                    0.000000
                                       NaN
        3 0.000000
                    0.285714
                                  0.142857
        4 0.000000 0.000000
                                       NaN
        [5 rows x 24 columns]
In [7]: #first check how the Location is structured and if we can classify the data by
        print(data with sentiment['user location'])
        # Fill NaN values with 0 before performing aggregation
        data with sentiment.fillna(0, inplace=True)
```

```
0
                                   astroworld
        1
                                 New York, NY
        2
                             Pewee Valley, KY
        3
                         Stuck in the Middle
                            Jammu and Kashmir
                              Ilorin, Nigeria
        179103
        179104
                                      Ontario
                                    Canada
        179105
                                New York City
        179106
        179107
                  Aliwal North, South Africa
        Name: user location, Length: 179108, dtype: object
In [8]: # Display the data with sentiment analysis results
        print(data with sentiment.head())
                 user_name
                                    user_location
        0
                     ∿"i⊕լ∉∄
                                       astroworld
        1
             Tom Basile
                                     New York, NY
        2
           Time4fisticuffs
                                 Pewee Valley, KY
        3
               ethel mertz
                             Stuck in the Middle
        4
                  DIPR-J&K
                                Jammu and Kashmir
                                             user description
                                                                       user created
           wednesday addams as a disney princess keepin i... 2017-05-26 05:46:42
           Husband, Father, Columnist & Commentator. Auth...
                                                                2009-04-16 20:06:23
          #Christian #Catholic #Conservative #Reagan #Re...
                                                                2009-02-28 18:57:41
           #Browns #Indians #ClevelandProud #[]_[] #Cavs ...
                                                                2019-03-07 01:45:06
           Official Twitter handle of Department of Inf...
                                                                2017-02-12 06:45:15
           user followers
                            user friends
                                          user favourites
                                                           user verified
        0
                                     950
                       624
                                                     18775
                                                                    False
        1
                      2253
                                    1677
                                                        2.4
                                                                     True
        2
                                    9525
                                                      7254
                                                                    False
                      9275
        3
                                     987
                                                      1488
                                                                    False
                       197
        Δ
                    101009
                                     168
                                                       101
                                                                    False
                           date
                                                                                text \
           2020-07-25 12:27:21
                                If I smelled the scent of hand sanitizers toda...
           2020-07-25 12:27:17
                                Hey @Yankees @YankeesPR and @MLB - wouldn't it...
                                 @diane3443 @wdunlap @realDonaldTrump Trump nev...
           2020-07-25 12:27:14
                                 @brookbanktv The one gift #COVID19 has give me...
           2020-07-25 12:27:10
           2020-07-25 12:27:08
                                 25 July: Media Bulletin on Novel #CoronaVirus...
                                                       positive
                   anger anticip
                                      trust
                                             surprise
                                                                  negative
                                                                             sadness
                0.00000
                              0.0
                                   0.000000
                                             0.000000
                                                       0.000000
                                                                  0.500000
                                                                            0.000000
        0
           . . .
                                             0.000000
        1
                0.000000
                              0.0
                                   0.285714
                                                       0.428571
                                                                 0.000000
                                                                            0.000000
        2
                0.166667
                              0.0
                                   0.000000
                                             0.166667
                                                        0.166667
                                                                  0.166667
                                                                            0.166667
            . . .
        3
                0.00000
                              0.0
                                   0.142857
                                             0.142857
                                                        0.285714
                                                                  0.000000
                                                                            0.000000
           . . .
                                   0.000000 0.000000
                0.00000
                              0.0
                                                       0.000000 0.000000
                                                                           0.000000
            disqust
                           joy
                                anticipation
           0.500000
                     0.000000
                                    0.00000
           0.000000
                     0.142857
                                    0.142857
                                    0.00000
           0.166667
                     0.000000
           0.000000
                     0.285714
                                    0.142857
           0.000000 0.000000
                                    0.000000
        [5 rows x 24 columns]
```

```
In [9]:
         # create a dataframe that aggregates and takes the mean of all the locations
         sentiment_aggregated_df = data_with_sentiment.groupby('user_location', as_index
              'anger': 'mean',
              'anticip': 'mean',
             'trust': 'mean',
             'surprise': 'mean',
              'positive': 'mean',
              'negative': 'mean',
              'sadness': 'mean',
              'disgust': 'mean',
              'joy': 'mean',
              'anticipation': 'mean',
         })
In [10]: sentiment_aggregated_df['user_location']
Out[10]:
                       \nsomewhere\n
         2
                       Cathlamet, Wa.
         3
                         Canada 🛂 🍁 🧡 🌲
         26916
         26917
         26918
         26919
                             Grounded
         26920
         Name: user location, Length: 26921, dtype: object
In [11]: # Check if the argument contains only letters using regex
         def contains only letters(s):
             return bool(re.match(r'^[a-zA-Z\s]+$', str(s)))
         # Filter rows and take out locations with numbers and emojis - clean
         filtered senti agg df = sentiment aggregated df[sentiment aggregated df['user ]
         print(filtered senti agg df)
```

anger anticip

trust surprise

user_location

```
2
                                              0.07684
                                                           0.0 0.050577 0.030339
         5
                                   WorldWide
                                             0.00000
                                                           0.0 0.000000
                                                                         0.000000
         8
                                    Fujairah 0.00000
                                                           0.0 0.166667
                                                                         0.166667
         9
                                                           0.0 0.000000 0.000000
                  NO investment advice given 0.00000
         10
                         Shropshire England
                                              0.00000
                                                           0.0 0.125000 0.083333
                                                 . . .
         26114
                                    your mom 0.00000
                                                           0.0 0.000000 0.000000
         26116
                            your mums house
                                              0.00000
                                                           0.0 0.000000
                                                                         0.000000
                                                          0.0 0.000000
         26117
                                    yourmama
                                             0.25000
                                                                         0.00000
                                         yyc 0.00000
                                                           0.0 0.250000
         26121
                                                                         0.000000
                                                           0.0 0.250000
         26123
                                      zagreb
                                             0.00000
                                                                         0.125000
                positive negative
                                     sadness
                                              disgust
                                                                 anticipation
                                                            joy
         2
                0.211436 0.145599 0.076587 0.041450 0.047042
                                                                      0.093506
         5
                0.000000 \quad 0.000000 \quad 0.000000 \quad 0.000000
                                                                      0.00000
         8
                0.166667 0.000000 0.000000 0.166667 0.166667
                                                                      0.166667
         9
                0.755556 0.111111 0.000000 0.000000 0.000000
                                                                      0.133333
                10
                                                                      0.083333
                    . . .
                               . . .
                                        . . .
                                                            . . .
                                                                          . . .
         26114 0.000000 0.500000
                                   0.000000 0.000000 0.000000
                                                                      0.00000
         26116 0.000000
                         1.000000
                                   0.000000 0.000000 0.000000
                                                                      0.00000
         26117 0.000000 0.250000
                                   0.166667 0.166667
                                                        0.000000
                                                                      0.00000
         26121 0.250000 0.500000
                                   0.000000 0.000000 0.000000
                                                                      0.00000
         26123 0.250000 0.000000
                                   0.000000 0.000000 0.125000
                                                                      0.250000
         [8286 rows x 11 columns]
In [12]: # Filter rows based on the condition
         us filtered df = filtered senti agg df[filtered senti agg df['user location'].s
         print(us filtered df)
                       user location
                                         anger anticip
                                                            trust surprise positive
                                                    0.0 0.000000 0.000000 0.000000
         3262
                Big Island of Hawaii 0.200000
         9128
                             Hawaii
                                      0.015686
                                                    0.0 0.133578 0.073529
                                                                            0.208088
                    Hawaiian Islands 0.000000
                                                    0.0 0.000000 0.000000 0.166667
         9135
         20422
                     State of Hawaii 0.000000
                                                   0.0 0.333333 0.000000 0.333333
                                                   joy anticipation
                negative
                          sadness
                                   disgust
                0.200000 0.200000 0.200000 0.000000
                                                            0.00000
         3262
         9128
                0.128922 0.027451 0.015686 0.073284
                                                            0.063480
                                                            0.166667
         9135
                0.111111 0.111111
                                    0.000000 0.000000
         20422 0.166667 0.000000 0.000000 0.000000
                                                            0.166667
In [13]: states = [
             'Alabama', 'Alaska', 'Arizona', 'Arkansas', 'California', 'Colorado', 'Conr
             'Delaware', 'Florida', 'Georgia', 'Hawaii', 'Idaho', 'Illinois', 'Indiana',
             'Kansas', 'Kentucky', 'Louisiana', 'Maine', 'Maryland', 'Massachusetts', 'N
             'Minnesota', 'Mississippi', 'Missouri', 'Montana', 'Nebraska', 'Nevada', 'New Jersey', 'New Mexico', 'New York', 'North Carolina', 'North Dakota', '
             'Oregon', 'Pennsylvania', 'Rhode Island', 'South Carolina', 'South Dakota',
             'Texas', 'Utah', 'Vermont', 'Virginia', 'Washington', 'West Virginia', 'Wis
         ]
         # Create a a filter mask to get rows of that ocntain every state only
         state mask = filtered senti agg df.apply(lambda row: any(state in row['user look
         us filtered df = filtered senti agg df[state mask]
         print(us filtered df)
```

```
user location
                                     anger
                                            anticip
                                                       trust surprise
11
        Sunny Southern California 0.053030
                                                0.0 0.075758 0.000000
24
                                                    0.000000
          A Life Long New Yorker 0.250000
                                               0.0
                                                              0.000000
27
                         Alabama 0.000000
                                               0.0 0.500000 0.000000
54
           Colorado Plains Native 0.038889
                                               0.0 0.059722 0.045833
66
                         Florida 0.125000
                                               0.0 0.125000 0.000000
. . .
                                                . . .
25412
          make Florida BLUE again 0.200000
                                               0.0 0.000000
                                                              0.200000
25545
               north central Ohio 0.000000
                                               0.0 0.000000
                                                              0.000000
         patch of blue in Florida 0.142857
                                               0.0
                                                    0.000000
25634
                                                              0.000000
                                               0.0 0.000000
25770
                 small town Texas 0.000000
                                                              0.000000
25830
              southern California 0.000000
                                               0.0 0.000000
                                                              0.000000
      positive negative
                          sadness
                                    disgust
                                                      anticipation
                                                  joy
      0.242424 0.113636 0.015152 0.022727 0.015152
                                                          0.045455
11
24
      0.000000 \quad 0.250000 \quad 0.000000 \quad 0.250000 \quad 0.000000
                                                          0.000000
27
      0.00000
54
      0.122222 0.223611 0.070139 0.013889 0.045833
                                                          0.020833
      0.125000 0.250000 0.125000 0.125000 0.000000
                                                          0.000000
66
. . .
           . . .
                     . . .
                              . . .
                                                  . . .
                                                               . . .
25412 0.000000 0.200000
                         0.200000 0.200000 0.000000
                                                          0.00000
25545
      0.000000 0.000000
                         0.000000 0.000000
                                            0.000000
                                                          0.00000
      0.000000 0.142857
                         0.071429 0.071429 0.000000
                                                          0.00000
25634
25770 0.000000 0.000000
                         0.000000 0.000000 0.000000
                                                          0.00000
25830 0.000000 0.500000
                         0.000000 0.000000 0.000000
                                                          0.00000
```

[542 rows x 11 columns]

```
In [14]: #here we will take the average and create a new DF with 50 rows and average ser
# Iterate through each state and aggregate scores
import warnings
warnings.filterwarnings('ignore')
agg_us_scores_df = pd.DataFrame(columns=['user_location'] + us_filtered_df.colu
for state in states:
    state_rows = us_filtered_df[us_filtered_df['user_location'].str.contains(st

if not state_rows.empty:
    state_avg_scores = state_rows.mean()
    state_avg_scores['user_location'] = state
    agg_us_scores_df = agg_us_scores_df.append(state_avg_scores, ignore_inc)
```

- In [15]:

 """

 create an overall column that classifies the state as negative or positive:

 sum the columns of anger, anticip, negative, sadness, disgust, anticipation for sum the columns od joy, surprisem, trust, and positive for positive check which sum is greater, if negative is greater write negative for column of do this for all 50 rows

 """
- Out[15]: '\ncreate an overall column that classifies the state as negative or positive e:\n\nsum the columns of anger, anticip, negative, sadness, disgust, anticipat ion for negative \nsum the columns od joy, surprisem, trust, and positive for positive \ncheck which sum is greater, if negative is greater write negative for column otherwise write positive,\ndo this for all 50 rows \n'

```
In [18]: import geopandas as gpd
import pandas as pd
import matplotlib.pyplot as plt
```

```
In [19]: #find the column with the strongest sentiment

# Calculate strongest sentiment for each state
sentiment_columns = ['anger', 'anticip', 'trust', 'surprise', 'positive', 'nega
agg_us_scores_df['strongest_sentiment'] = agg_us_scores_df[sentiment_columns].i
agg_us_scores_df
```

Out[19]: us

	user_location	anger	anticip	trust	surprise	positive	negative	sadness	dis
0	Alabama	0.002670	0.0	0.200302	0.018384	0.188794	0.134620	0.010879	0.03
1	Alaska	0.056447	0.0	0.119493	0.004456	0.054483	0.065191	0.021122	0.01
2	Arizona	0.114036	0.0	0.085088	0.001273	0.159430	0.133965	0.011533	0.00
3	Arkansas	0.021970	0.0	0.066064	0.004631	0.151812	0.028840	0.009107	0.00
4	California	0.027277	0.0	0.115297	0.017014	0.201627	0.122074	0.037427	0.02
5	Colorado	0.028601	0.0	0.237927	0.004150	0.204377	0.100326	0.051442	0.01
6	Connecticut	0.007165	0.0	0.099459	0.001134	0.210038	0.150347	0.063382	0.00
7	Delaware	0.073769	0.0	0.052800	0.001420	0.081636	0.176001	0.007819	0.04
8	Florida	0.033622	0.0	0.061704	0.013890	0.175530	0.135855	0.048314	0.03
9	Georgia	0.010267	0.0	0.124279	0.008961	0.171858	0.188340	0.066592	0.00
10	Hawaii	0.053922	0.0	0.116728	0.018382	0.177022	0.151675	0.084641	0.05
11	Idaho	0.031507	0.0	0.093545	0.003787	0.116440	0.262762	0.104753	0.00
12	Illinois	0.032679	0.0	0.140503	0.005048	0.150130	0.082832	0.076252	0.01
13	Indiana	0.042436	0.0	0.129132	0.045969	0.189190	0.088760	0.042905	0.030
14	Iowa	0.011574	0.0	0.334606	0.007581	0.197743	0.188397	0.009230	0.00
15	Kansas	0.014974	0.0	0.111481	0.024518	0.166489	0.049694	0.022098	0.00
16	Kentucky	0.005673	0.0	0.074542	0.002339	0.141167	0.129339	0.171923	0.00
17	Louisiana	0.012309	0.0	0.074782	0.069608	0.103050	0.050545	0.014052	0.00
18	Maine	0.010439	0.0	0.282134	0.046987	0.128494	0.051117	0.011296	0.00
19	Maryland	0.093084	0.0	0.039266	0.019048	0.050959	0.253302	0.146108	0.00
20	Massachusetts	0.060565	0.0	0.106015	0.042534	0.186096	0.148118	0.049447	0.00
21	Michigan	0.034634	0.0	0.119701	0.049800	0.121993	0.164133	0.002338	0.05
22	Minnesota	0.001832	0.0	0.134603	0.000641	0.128624	0.098134	0.039345	0.03
23	Mississippi	0.050397	0.0	0.068545	0.001852	0.247407	0.081508	0.019471	0.01
24	Missouri	0.016071	0.0	0.082301	0.019481	0.342878	0.049788	0.026578	0.02
25	Montana	0.000000	0.0	0.000000	0.000000	0.250000	0.000000	0.000000	0.00
26	Nebraska	0.048077	0.0	0.036538	0.000000	0.361538	0.019231	0.009615	0.00
27	Nevada	0.002915	0.0	0.034742	0.000000	0.089164	0.202381	0.030612	0.00
28	New Hampshire	0.003961	0.0	0.033918	0.023569	0.568994	0.011151	0.011151	0.00
29	New Jersey	0.016401	0.0	0.137736	0.000814	0.186689	0.130169	0.031961	0.00
30	New Mexico	0.023208	0.0	0.019362	0.007998	0.125772	0.049781	0.017614	0.01
31	New York	0.049371	0.0	0.118170	0.029024	0.185814	0.133903	0.056896	0.03
32	North Carolina	0.065729	0.0	0.010745	0.057531	0.049436	0.138481	0.027730	0.00
33	North Dakota	0.077976	0.0	0.097222	0.023810	0.097222	0.258532	0.077976	0.05

	NLP_Group_Project_2023								
	user_location	anger	anticip	trust	surprise	positive	negative	sadness	dis
34	Ohio	0.015935	0.0	0.127872	0.024574	0.288905	0.117548	0.031486	0.010
35	Oklahoma	0.028240	0.0	0.172890	0.069174	0.218338	0.051587	0.021531	0.01
36	Oregon	0.020957	0.0	0.036247	0.070957	0.201390	0.118935	0.043163	0.02
37	Pennsylvania	0.003516	0.0	0.097885	0.011888	0.132317	0.021779	0.004439	0.00
38	Rhode Island	0.072727	0.0	0.091017	0.019048	0.188095	0.228788	0.047727	0.04
39	South Carolina	0.009238	0.0	0.109800	0.007133	0.275704	0.058328	0.013624	0.00
40	South Dakota	0.000000	0.0	0.166667	0.000000	0.333333	0.166667	0.166667	0.00
41	Tennessee	0.086728	0.0	0.065983	0.000000	0.073038	0.175386	0.046197	0.019
42	Texas	0.030502	0.0	0.072974	0.051478	0.147305	0.188573	0.060635	0.02
43	Utah	0.001471	0.0	0.034475	0.112500	0.212857	0.072381	0.068347	0.00
44	Vermont	0.012488	0.0	0.066364	0.048368	0.081932	0.286880	0.022394	0.00
45	Virginia	0.054642	0.0	0.088879	0.029125	0.158464	0.076529	0.043198	0.03
46	Washington	0.044714	0.0	0.147548	0.034992	0.264687	0.167897	0.043517	0.01
47	West Virginia	0.061111	0.0	0.137500	0.000000	0.279167	0.088194	0.098611	0.04
48	Wisconsin	0.045635	0.0	0.027778	0.020833	0.045139	0.330159	0.051472	0.04
49	Wyoming	0.000000	0.0	0.642857	0.071429	0.071429	0.071429	0.071429	0.00
<pre># Load GeoJSON file containing state geometries geojson_file = "/Users/gurnoorvirdi/Desktop/NLP- social sciences/NLP Final Proj us_map = gpd.read_file(geojson_file) # us_map the GeoDataFrame's structure print(us_map.head()) GEO_ID STATE NAME LSAD CENSUSAREA \</pre>									
0 1	0400000US04 0400000US05	04 05	Arizo Arkans		113594.08				

```
In [21]:
        1 0400000US05
                       05
                                Arkansas
                                              52035.477
        2 0400000US06
                        06 California
                                              155779.220
        3 0400000US08
                        08
                                Colorado
                                              103641.888
        4 040000US09
                         09 Connecticut
                                                4842.355
                                                 geometry
        0 POLYGON ((-112.53859 37.00067, -112.53454 37.0...
        1 POLYGON ((-94.04296 33.01922, -94.04304 33.079...
```

```
4 POLYGON ((-72.39743 42.03330, -72.19883 42.030...

In [22]:
    from matplotlib.patches import Patch
        # Merge sentiment data with US map data
        merged_data = us_map.merge(agg_us_scores_df, how='left', left_on='NAME', right_merged_data
        # Plot the US map with labeled states
        fig, ax = plt.subplots(figsize=(12, 10))
        merged_data.plot(column='strongest_sentiment', cmap='coolwarm', linewidth=0.8,
```

color map = {

2 MULTIPOLYGON (((-120.24848 33.99933, -120.2473... 3 POLYGON ((-107.31779 41.00296, -107.00061 41.0...

```
'Positive': 'lightblue',
    'Negative': 'darkblue',
    'Trust': 'red',
    'Sadness': 'orange'
}

# Add legend
legend_elements = [Patch(facecolor=color_map[sentiment], label=sentiment) for sax.legend(handles=legend_elements, title='Sentiments')

ax.set_title('Strongest Sentiment by State')
plt.show()
```


In [23]: merged_data

Out[23]

:		GEO_ID	STATE	NAME	LSAD	CENSUSAREA	geometry	user_location
	0	0400000US04	04	Arizona		113594.084	POLYGON ((-112.53859 37.00067, -112.53454 37.0	Arizona
	1	0400000US05	05	Arkansas		52035.477	POLYGON ((-94.04296 33.01922, -94.04304 33.079	Arkansas
	2	0400000US06	06	California		155779.220	MULTIPOLYGON (((-120.24848 33.99933, -120.2473	California
	3	0400000US08	08	Colorado		103641.888	POLYGON ((-107.31779 41.00296, -107.00061 41.0	Colorado
	4	0400000US09	09	Connecticut		4842.355	POLYGON ((-72.39743 42.03330, -72.19883 42.030	Connecticut
	5	0400000US11	11	District of Columbia		61.048	POLYGON ((-77.03299 38.83950, -77.03170 38.850	NaN
	6	0400000US13	13	Georgia		57513.485	POLYGON ((-84.81048 34.98761, -84.80918 34.987	Georgia
	7	0400000US15	15	Hawaii		6422.628	MULTIPOLYGON (((-155.77823 20.24574, -155.7727	Hawaii
	8	0400000US17	17	Illinois		55518.930	POLYGON ((-89.36603 42.50027, -89.36156 42.500	Illinois
	9	0400000US18	18	Indiana		35826.109	POLYGON ((-84.80412 40.35276, -84.80392 40.310	Indiana
	10	0400000US22	22	Louisiana		43203.905	MULTIPOLYGON (((-88.86507 29.75271, -88.88975	Louisiana
	11	040000US27	27	Minnesota		79626.743	POLYGON ((-92.19150	Minnesota

	GEO_ID	STATE	NAME	LSAD	CENSUSAREA	geometry	user_location
						46.67259, -92.19715 46.663	
12	0400000US28	28	Mississippi		46923.274	MULTIPOLYGON (((-89.09562 30.23177, -89.07726	Mississippi
13	0400000US30	30	Montana		145545.801	POLYGON ((-111.04427 45.00135, -111.05621 44.9	Montana
14	0400000US35	35	New Mexico		121298.148	POLYGON ((-105.99800 32.00233, -106.09976 32.0	New Mexico
15	0400000US38	38	North Dakota		69000.798	POLYGON ((-100.51195 45.94365, -100.62768 45.9	North Dakota
16	0400000US40	40	Oklahoma		68594.921	POLYGON ((-100.00038 34.74636, -100.00038 34.7	Oklahoma
17	0400000US42	42	Pennsylvania		44742.703	POLYGON ((-79.47666 39.72108, -79.60822 39.721	Pennsylvania
18	0400000US47	47	Tennessee		41234.896	POLYGON ((-83.47211 36.59728, -83.27630 36.598	Tennessee
19	0400000US51	51	Virginia		39490.086	MULTIPOLYGON (((-75.24227 38.02721, -75.29687	Virginia
20	040000US72	72	Puerto Rico		3423.775	MULTIPOLYGON (((-65.28076 18.28827, -65.28327	NaN
21	040000US10	10	Delaware		1948.543	MULTIPOLYGON (((-75.56493 39.58325, -75.57627	Delaware
22	0400000US54	54	West Virginia		24038.210	POLYGON ((-78.57190 39.03200, -78.56584 39.026	West Virginia

	GEO_ID	STATE	NAME	LSAD	CENSUSAREA	geometry	user_location
23	0400000US55	55	Wisconsin		54157.805	MULTIPOLYGON (((-90.45668 47.01674, -90.45530	Wisconsin
24	0400000US56	56	Wyoming		97093.141	POLYGON ((-104.05508 43.93653, -104.05510 43.8	Wyoming
25	0400000US01	01	Alabama		50645.326	MULTIPOLYGON (((-88.12466 30.28364, -88.08681	Alabama
26	040000US02	02	Alaska		570640.950	MULTIPOLYGON (((-162.25503 54.97835, -162.2496	Alaska
27	040000US12	12	Florida		53624.759	MULTIPOLYGON (((-80.25058 25.34193, -80.25492	Florida
28	0400000US16	16	Idaho		82643.117	POLYGON ((-111.04897 44.47407, -111.04919 44.4	Idaho
29	0400000US20	20	Kansas		81758.717	POLYGON ((-99.54112 36.99957, -99.55807 36.999	Kansas
30	0400000US24	24	Maryland		9707.241	MULTIPOLYGON (((-76.04837 38.12055, -76.05681	Maryland
31	0400000US34	34	New Jersey		7354.220	POLYGON ((-74.90024 40.07715, -74.83801 40.100	New Jersey
32	040000US37	37	North Carolina		48617.905	MULTIPOLYGON (((-75.75377 35.19961, -75.74522	North Carolina
33	0400000US45	45	South Carolina		30060.696	POLYGON ((-82.21622 35.19604, -82.19548 35.194	South Carolina
34	0400000US53	53	Washington		66455.521	MULTIPOLYGON (((-122.39735 47.91240, -122.4192	Washington

	GEO_ID	STATE	NAME	LSAD	CENSUSAREA	geometry	user_location
35	0400000US50	50	Vermont		9216.657	POLYGON ((-72.45852 42.72685, -72.86418 42.737	Vermont
36	0400000US49	49	Utah		82169.620	POLYGON ((-111.04669 42.00157, -111.04640 41.5	Utah
37	0400000US19	19	lowa		55857.130	POLYGON ((-91.16306 42.98678, -91.14556 42.907	lowa
38	0400000US21	21	Kentucky		39486.338	MULTIPOLYGON (((-89.53910 36.49820, -89.56034	Kentucky
39	0400000US23	23	Maine		30842.923	MULTIPOLYGON (((-69.30791 43.77377, -69.30675	Maine
40	0400000US25	25	Massachusetts		7800.058	MULTIPOLYGON (((-70.82100 41.58727, -70.82174	Massachusetts
41	0400000US26	26	Michigan		56538.901	MULTIPOLYGON (((-85.56644 45.76022, -85.54956	Michigan
42	0400000US29	29	Missouri		68741.522	POLYGON ((-89.54501 36.33681, -89.56044 36.337	Missouri
43	0400000US31	31	Nebraska		76824.171	POLYGON ((-104.05283 41.69795, -104.05277 41.7	Nebraska
44	0400000US32	32	Nevada		109781.180	POLYGON ((-114.04655 40.11693, -114.04713 39.9	Nevada
45	0400000US33	33	New Hampshire		8952.651	POLYGON ((-70.81955 43.12323, -70.78411 43.098	New Hampshire
46	0400000US36	36	New York		47126.399	MULTIPOLYGON (((-73.77336	New York

	GEO_ID	STATE	NAME	LSAD	CENSUSAREA	geometry	user_location
						40.85945, -73.77055	
47	0400000US39	39	Ohio		40860.694	MULTIPOLYGON (((-82.70021 41.61219, -82.69112	Ohio
48	0400000US41	41	Oregon		95988.013	POLYGON ((-121.90827 45.65440, -121.90086 45.6	Oregon
49	0400000US44	44	Rhode Island		1033.814	MULTIPOLYGON (((-71.38359 41.46478, -71.38928	Rhode Island
50	0400000US46	46	South Dakota		75811.000	POLYGON ((-104.05510 43.85348, -104.05508 43.9	South Dakota
51	0400000US48	48	Texas		261231.711	MULTIPOLYGON (((-96.83003 28.11184, -96.82705	Texas

52 rows × 21 columns

```
# Plot bar graph by state for sentiment scores
agg_us_scores_df.set_index('user_location')[sentiment_columns].plot(kind='bar',
plt.title('Sentiment Scores by State')
plt.xlabel('State')
plt.ylabel('Sentiment Score')
plt.xticks(rotation=45)
plt.legend(title='Sentiment')
plt.tight_layout()
```



```
In [31]:
           # Define subsets of states starting from the east coast
           subset states list = [
                ['Maine', 'New Hampshire', 'Vermont', 'Massachusetts', 'Rhode Island'],
                ['Connecticut', 'New York', 'New Jersey', 'Pennsylvania', 'Delaware'],
['Maryland', 'Virginia', 'West Virginia', 'North Carolina', 'South Carolina
                ['Georgia', 'Florida', 'Alabama', 'Mississippi', 'Tennessee'],
                ['Kentucky', 'Ohio', 'Michigan', 'Indiana', 'Illinois'],
['Wisconsin', 'Minnesota', 'Iowa', 'Missouri', 'Arkansas'],
                ['Louisiana', 'Texas', 'Oklahoma', 'Kansas', 'Nebraska'],
                ['South Dakota', 'North Dakota', 'Montana', 'Wyoming', 'Colorado'],
                ['New Mexico', 'Arizona', 'Utah', 'Idaho', 'Nevada'],
['Washington', 'Oregon', 'California', 'Alaska', 'Hawaii']
           ]
           # Legend labels
           legend labels = {
                'Anger': 'Anger',
                'Negative': 'Negative',
                'Positive': 'Positive',
                'Joy': 'Joy',
                'Trust': 'Trust',
                'Anticipation': 'Anticipation'
           }
           # Loop through each subset and create choropleth maps
           for i, subset states in enumerate(subset states list):
                sub gdf = us map[us map['NAME'].isin(subset states)]
                merged_data_subset = pd.merge(sub_gdf, agg_us_scores_df[agg_us_scores_df['\u00ed]
                fig, ax = plt.subplots(1, 1, figsize=(15, 10))
               merged data subset.plot(column='overall', cmap='coolwarm', linewidth=0.8, a
                plt.title(f"Strongest Sentiment by Region (Subset {i+1})")
```

```
ax.legend(title='Sentiment', loc='upper left', labels=[legend_labels])

for index, row in sub_gdf.iterrows():
    x, y = row['geometry'].centroid.x, row['geometry'].centroid.y
    state_name = row['NAME'] # Assuming your GeoJSON attribute is 'state_r
    ax.text(x, y, state_name, fontsize=10, ha='center', va='center')

ax.set_axis_off()

# Show the plot or save it to a file
plt.show()
```

Strongest Sentiment by Region (Subset 1)

Strongest Sentiment by Region (Subset 2)

Strongest Sentiment by Region (Subset 3)

Strongest Sentiment by Region (Subset 4)

Strongest Sentiment by Region (Subset 5)

Strongest Sentiment by Region (Subset 6)

Strongest Sentiment by Region (Subset 7)

Strongest Sentiment by Region (Subset 8)

Strongest Sentiment by Region (Subset 9)

Hawaii

```
# Group states in subsets of 5
In [ ]:
        subset_size = 5
        num_subsets = len(agg_us_scores_df) // subset_size
        for i in range(num_subsets):
            subset_start = i * subset_size
            subset_end = (i + 1) * subset_size
            subset_data = agg_us_scores_df.iloc[subset_start:subset_end]
            # Create a bar plot for the subset of states
            plt.figure(figsize=(12, 8))
            subset_data.set_index('user_location')[sentiment_columns].plot(kind='bar',
            plt.title(f'Sentiment Scores by State (Subset {i+1})')
            plt.xlabel('State')
            plt.ylabel('Sentiment Score')
            plt.xticks(rotation=45)
            plt.legend(title='Sentiment')
            plt.tight_layout()
            plt.show()
```

```
In []:

In []:
```