Análisis Real

MATÍAS LEIVA

${\bf \acute{I}ndice}$

1.	Conjuntos y Funciones	2
2.	Propiedades del valor absoluto	3

1. Conjuntos y Funciones

Una de las deficiones más importantes es la defición de conjunto. Esta es una de las definiciones más intuitivas, pero a la vez más difíciles de definir. La definición de conjunto que se utilizará es la siguiente: Un conjunto es una colección no ordenada de elementos distintos.

Definición 1: Conjuntos

- El conjunto sin elementos ($\{\}$) se denota por \emptyset .
- Si $x \in B$ para todo $x \in A$, entonces A es un subconjunto de B y se denota por $A \subseteq B$.
- La unión de dos conjuntos A y B es el conjunto $A \cup B = \{x | x \in A \lor x \in B\}$.
- La intersección de dos conjuntos A y B es el conjunto $A \cap B = \{x | x \in A \land x \in B\}$.

Ahora se definirá el concepto de función. Una función es una relación entre dos conjuntos, Dado un conjunto A y un conjunto B, una función f de A en B es una regla que asigna a cada elemento $x \in A$ un único elemento $f(x) \in B$. Se denota por $f: A \to B$.

- 1. Además, A es el dominio de f y B es el codominio de f. El rango de f es el conjunto de todos los valores que toma f y se denota por R_f . (Es decir, $R_f = \{f(x) | x \in A\}$).
- 2. Una función $f: A \to B$ es inyectiva si $f(x) = f(y) \Rightarrow x = y$ para todo $x, y \in A$.
- 3. Una función $f:A\to B$ es sobreyectiva si para todo $x\in B$, existe algún $a\in A$, tal que, f(a)=B.
- 4. Una función es biyectiva si es inyectiva y sobreyectiva.

¹ Todo es un conjunto

² Igualmente se puede definir de la siguiente manera: f es inyectiva si $x \neq y \Rightarrow f(x) \neq f(y)$ para todo $x, y \in A$.

 $^{{}^{3}\}forall x \in B \; \exists a \in A \mid f(a) = b$

2. Propiedades del valor absoluto

1.
$$|x| \ge 0$$
 para todo $x \in \mathbb{R}$.

2.
$$|x| = |-x|$$

$$3. -|x| \le x \le |x|$$

$$4. |a \cdot b| = |a| \cdot |b|$$

$$5. \ \frac{|a|}{|b|} = \left| \frac{a}{b} \right|, \ b \neq 0$$

6.
$$|a| \le b \Leftrightarrow -b \le a \le b$$

7.
$$|a+b| \le |a| + |b|$$

8.
$$||a| - |b|| \le |a - b|$$

Problemas 1

Demuestre las siguientes propiedades del valor absoluto:

•
$$|a| \le b \Leftrightarrow -b \le a \le b$$

$$\bullet ||a+b| \le |a| + |b|$$

$$\bullet ||a| - |b|| \le |a - b|$$