CAPES 2017

Thème: suites

L'exercice

Déterminer le sens de variation de la suite (u_n) définie par :

$$u_1 = 1$$
 et $u_{n+1} = \frac{u_n}{\sqrt{u_n^2 + 1}}$, pour tout $n \ge 1$.

Les réponses de trois élèves de terminale S

Élève 1

Je considère la fonction f (*x*) = $\frac{x}{\sqrt{x^2 + 1}}$.

Je calcule la dérivée de la fonction f et j'obtiens $f'(x) = \frac{1}{(x^2+1)\sqrt{x^2+1}}$.

La fonction f' est clairement positive pour toutes les valeurs de x.

J'en déduis que la fonction f est croissante et, par conséquent, que la suite (u_n) est croissante.

Élève 2

À l'aide de ma calculatrice, j'ai calculé les premiers termes de la suite.

J'ai obtenu $u_2 = 0.71$, $u_3 = 0.58$ et $u_4 = 0.5$.

Je pense donc que la suite (u_n) est décroissante.

$$u_{n+1}-u_n=\frac{u_n}{\sqrt{u_n^2+1}}-u_n=\frac{u_n-u_n\times\sqrt{u_n^2+1}}{\sqrt{u_n^2+1}}, je\ n'arrive\ pas\ \grave{a}\ conclure.$$

Élève 3

J'ai calculé les premiers termes : $u_1=1$, $u_2=\frac{1}{\sqrt{2}}$, $u_3=\frac{1}{\sqrt{3}}$ et $u_4=\frac{1}{\sqrt{4}}$.

On voit que $u_n = \frac{1}{\sqrt{n}}$.

Pour tout entier n non nul, $\sqrt{n} \leqslant \sqrt{n+1}$ par conséquent $\frac{1}{\sqrt{n+1}} \geqslant \frac{1}{\sqrt{n}}$.

J'en déduis que la suite (u_n) *est décroissante.*

Le travail à exposer devant le jury

- 1 À partir d'une analyse des trois productions d'élèves, précisez une aide à apporter à chacun d'eux pour faire aboutir leur démarche.
- 2 Présentez une correction de l'exercice telle que vous l'exposeriez devant une classe de terminale scientifique.
- 3 Proposez deux exercices sur le thème *suites*, dont l'un fait intervenir un algorithme. Vous motiverez vos choix en indiquant les compétences que vous cherchez à développer chez les élèves.