• Показать, что $\emptyset \in \mathcal{D}$

Доказательство:

- 1. Из D_1 следует, что $X \in \mathcal{D}$
- 2. Из D_2 следует, что $X^c=\varnothing\in\mathcal{D}$
- 3. Ч.Т.Д.
- Показать, что сигма алгебра замкнута относительно объединения попарно непересекающихся множеств

Доказательство:

- 1. Пусть $A_1,A_2\in\mathcal{D}$ так, что $A_1\cap A_2=\varnothing$
- 2. Пусть $(A_n)_{n\in\mathbb{N}}\subset\mathcal{D}$ попарно неперескаются. Поскольку $\varnothing\in\mathcal{D}$, мы можем положить, что $\forall k>2, A_k=\varnothing$.
- 3. Из D_3 следует, что $\bigsqcup_{n\in\mathbb{N}}A_n\subset\mathcal{D}$
- 4. Из (2) следует, что $\bigsqcup_{n\in\mathbb{N}}A_n=A_1\sqcup A_2\subset\mathcal{D}$
- 5. Ч.Т.Д.
- Показать, что любая сигма алгебра система Дынкина.

Доказательство:

- 1. \sum_{1} эквивалентно D_1
- 2. \sum_2 эквивалентно D_2
- 3. Пусть $(A_n)_{n\in\mathbb{N}}\subset\mathcal{A}$.
- 4. Поскольку сигма алгебра замкнута относительно разности, то из посылки (3) можно сформировать последовательность $D_1 = A_1, D_2 = A_2 A_1, ... D_n = A_n A_{n-1}$ такую, что $\bigcup_{n \in \mathbb{N}} A_n = \bigcup_{n \in \mathbb{N}} D_n$.
- 5. Поскольку $\bigcup_{n\in\mathbb{N}}A_n\in\mathcal{A}$, то по равенству из (4) следует, что $\bigsqcup_{n\in\mathbb{N}}D_n\in\mathcal{A}$. Поэтому выполняется D_3
- 6. Из (1) (2) и (5) следует, что $\mathcal{D} \subset \mathcal{A}$
- 7. Ч.Т.Д.

Задача №2

• Пусть $X=\{1,2,3,...,4k-1,4k\}$ с произвольным $k\in\mathbb{N}$. Показать, что $\mathcal{D}=\{A\subset X:|A|$ – четно $\}$ - система Дынкина, но не сигма алгебра

Доказательство:

1. Покажем, что при $k \in \mathbb{N} \ |X| = 4k$ - четно.

- (a) Легко видеть, что |X| = 4k = 2(2k) = 2b. Поскольку $k \in \mathbb{N}$, то по определению четности |X| = 4k четно.
- (b) Поскольку |X| четно, следовательно $X \in \mathcal{D}$. Поэтому верно D_1
- 2. Чтобы показать, что система \mathcal{D} замкнута относительно дополнения, необходимо показать, что для каждого четного по мощности $A \in \mathcal{D}$ мощность $A^c \in \mathcal{D}$ также четна
 - (a) Рассмотрим произвольный элемент $A \in \mathcal{D}$.
 - (b) По определению \mathcal{D} мощность |A| четна. Положим $|A|=2n, n\in\mathbb{N}$
 - (c) Из (1) известно, что $\forall k \in \mathbb{N}, |X| = 2k$ четно.
 - (d) Мощность дополнения можно представить как $|A^c| = |X| |A| = 2k 2n = 2(k n)$.
 - (e) Поскольку $k-n\in\mathbb{N}$, следовательно $|A^c|$ четно
 - (f) Поэтому $A^c \in \mathcal{D}$. Поэтому верно D_2
- 3. Рассмотрим последовательность множеств $(A_n)_{n\in\mathbb{N}}\subset\mathcal{D}$. Положим, что они попарно не пересекаются.
 - (a) По определению $\mathcal D$ это значит, что для каждого $n\in\mathbb N$ $|A_n|$ четна.
 - (b) По формуле включений и исключений верно, что $\left|\bigcup_{n\in\mathbb{N}}A_n\right|=\sum_{n\in\mathbb{N}}|A_n|$
 - (c) Из (a) следует, что $\left|\bigcup_{n\in\mathbb{N}}A_n\right|=\sum_{n\in\mathbb{N}}k_n=2\left(\sum_{n\in\mathbb{N}}k_n\right)$
 - (d) Поскольку для каждого $n \in \mathbb{N}$ $k_n \in \mathbb{N}$, очевидно, что $\sum_{n \in \mathbb{N}} k_n \in \mathbb{N}$. Поэтому $\left| \bigcup_{n \in \mathbb{N}} A_n \right| \in \mathcal{D}$
 - (e) Из (d) следует, что выполнено D_3
- 4. Покажем, что система Дынкина может не быть сигма алгеброй.
 - (a) Пусть \mathcal{D} сигма алгебра. Пусть $A_1 \cap A_2 \neq \emptyset$ так, что $A_1 = \{1,2\} \in \mathcal{D}, A_2 = \{2,3\} \in \mathcal{D}$. Очевидно, что оба мощность обоих множеств четна.
 - (b) Поскольку сигма алгебра замкнута относительно разности, отсюда следует, что $A=A_1-A_2=\{1,2\}-\{2,3\}=\{1\}$
 - (c) Но мощность синглетона $\{1\}$ нечетна, и это контрпример. Поэтому $\mathcal D$ не сигма алгебра

Пусть $\mathcal D$ - система Дынкина. Показать, что для всех $A,B\in\mathcal D$ таких, что $A\subset B$, верно следующее $B-A\in\mathcal D$ Доказательство:

- 1. Пусть $\mathcal D$ система Дынкина.
- 2. Пусть $A, B \in \mathcal{D}$ так, что $A \subset B$
- 3. Поскольку $\mathcal D$ замкнута относительно пересечения, следовательно $A\cap B\in\mathcal D$
- 4. Поскольку \mathcal{D} замкнута относительно дополнения, следовательно $B^c \in \mathcal{D}$
- 5. Поскольку $(A \cap B) \cap B^c = \emptyset$, из задачи 1 следует, что $(A \cap B) \sqcup B^c \in \mathcal{D}$
- 6. Поскольку $\mathcal D$ замкнута относительно дополнения, следовательно $[(A\cap B)\sqcup B^c]^c\in \mathcal D$
- 7. Покажем, что $[(A \cap B) \sqcup B^c]^c = B A$

- (a) $[(A \cap B) \sqcup B^c]^c = (A \cap B)^c \cap B$
- (b) $[(A \cap B) \sqcup B^c]^c = (A^c \cup B^c) \cap B$
- (c) $[(A \cap B) \sqcup B^c]^c = (A^c \cap B) \cup (B^c \cap B)$
- (d) $[(A \cap B) \sqcup B^c]^c = B A$
- (е) Поэтому (7) верно
- 8. Следовательно $B-A\in\mathcal{D}$
- 9. Ч.Т.Д.

1. Пусто

Задача №5

• Пусть $A,B\subset X$. Сравните $\delta\left(\{A,B\}\right)$ и $\sigma\left(\{A,B\}\right)$

Решение:

- 1. Пусть $A, B \subset X$, так, что $A \cap B = \emptyset$. Тогда, $\delta(\{A, B\}) = \sigma(\{A, B\}) = \{X, \emptyset, A, A^c, B, B^c, A \sqcup B, (A \sqcup B)^c\}$
- 2. Пусть $A, B \subset X$, так, что $A \cap B \neq \emptyset$. Тогда, $\delta\left(\{A, B\}\right) = \{X, \emptyset, A, A^c, B, B^c\}$. В этом случае $\delta\left(\{A, B\}\right) \neq \sigma\left(\{A, B\}\right)$, поскольку, например, $A \cap B \in \sigma\left(\{A, B\}\right)$ и $A \cap B \notin \delta\left(\{A, B\}\right)$

Задача №6

• Показать, что система Дынкина \mathcal{D} - монотонный класс.

Доказательство:

- 1. Поскольку выполнено D_1 , то $X \in \mathcal{D}$
- $2. \ D_3'$ это тоже самое, что MC_1
- 3. Рассмотрим $(D_n)_{n\in\mathbb{N}}\subset\mathcal{D},$ такое, что $F_n\uparrow F$
 - (a) Из D_2 следует, что взять дополнения для каждого из $(D_n)_{n\in\mathbb{N}}$ так, чтобы получить $(D_n)_{n\in\mathbb{N}}\subset\mathcal{D}$, такое, что $F_n\downarrow F$
 - (b) Из D_3' следует, что $\bigcup_{n\in\mathbb{N}}F_n\in\mathcal{D}$
 - (c) Из D_2 следует, что $\overline{\bigcup_{n\in\mathbb{N}}F_n}\in\mathcal{D}$
 - (d) По закону Де Моргана $\bigcap_{n\in\mathbb{N}} \overline{F_n} \in \mathcal{D}$
 - (e) Из D_2 следует, что $\bigcap_{n\in\mathbb{N}}F_n\in\mathcal{D}$
- 4. Из (1) (2) и (3) следует, что $\mathcal D$ монотонный класс

Задача №7

• Показать, что Теорема 5.7 верна, если $(G_n)_{n\in\mathbb{N}}\subset\mathcal{G}$ не возрастающая последовательность, а счетная система множеств, такая, что: $\bigcup_{n\in\mathbb{N}}G_n=X$ и $\nu\left(G_n\right)=\mu\left(G_n\right)<\infty$

Доказательство:

- 1. Пусть $(X, \sigma(\mathcal{G}))$ измеримо
- 2. Пусть $(G_n)_{n\in\mathbb{N}}\subset\mathcal{G}$ так, что для каждого $n\in\mathbb{N}$ $G_n=X$
- 3. Для теоремы 5.7 пункт (i) выполняется, поскольку если $A,B\in\mathcal{G}$ так, что A=B=X, то $X\cap X=X\in\mathcal{G}$
- 4. $(G_n)_{n\in\mathbb{N}}$ невозрастающая, поскольку $X\subset X$
- 5. $(G_n)_{n\in\mathbb{N}}$ исчерпывающая $X=G_n\uparrow X$.
- 6. Поскольку, по условию $\nu\left(G_{n}\right)=\mu\left(G_{n}\right)<\infty$
- 7. То из (3) (5) и (6) по теореме 5.7 следует, что

Задача №8

Показать, что полуоткрытые интервалы полукольца $\mathcal F$ на $\mathbb R^n$ замкнуты относительно конечных пересечений Доказательство:

- 1. Пусть $X_{i=1}^{n}[a_i,b_i)\cap X_{i=1}^{n}[a_i',b_i')$ пересечение на \mathbb{R}^n так, что для каждого $i\in\overline{1,n}$ верны неравенства: $a_i\geq b_i$ и $a_i'\geq b_i'$
- 2. Это так же значит, что для каждого $i \in \overline{1,n}$, координата x_i вектора x удовлетворяет неравенствам: $a_i \leq x_i < b_i$ и $a_i' \leq x_i < b_i'$
- 3. Чтобы координата для каждого $i \in \overline{1,n}$ x_i , удовлетворяла неравенствам, достаточно, чтобы $\max\{a_i,a_i'\} \leq x_i < \min\{b_i,b_i'\}$. Это эквивалентно выражению (1)
- 4. Поэтому, $\times_{i=1}^{n} [a_i, b_i) \cap \times_{i=1}^{n} [a'_i, b'_i) = \times_{i=1}^{n} [max\{a_i, a'_i\}, min\{b_i, b'_i\})$
- 5. Ч.Т.Д.

Задача №9

Показать, что $tb = \{tb : b \in B\}$ - Борелевское множество, где произвольный элемент $B \in \mathcal{B}(\mathbb{R}^n)$ и t > 0. Более того, $\forall B \in \mathcal{B}(\mathbb{R}^n)$, $\forall t > 0$ $\lambda^n (tB) = t^n \lambda^n (B)$

Доказательство:

1. Пусто

Задача №11

Пусть $\mathcal{A}_{\mathcal{G}} = \sigma\left(\mathcal{G}\right)$ и $\mathcal{A}_{\mathcal{H}} = \sigma\left(\mathcal{H}\right)$ такие, что \mathcal{G} и \mathcal{H} замкнуты относительно пересечения. $\mathcal{A}_{\mathcal{G}}$ и $\mathcal{A}_{\mathcal{H}}$ независимы тогда и только тогда, когда $\forall G \in \sigma\left(\mathcal{G}\right), \, \forall H \in \sigma\left(\mathcal{H}\right) \, \mathbb{P}\left(G \cap H\right) = \mathbb{P}\left(G\right) \mathbb{P}\left(H\right)$ Доказательство:

1. Пусто

Пусть \mathcal{G} - алгебра Буля (семейство множеств, такое что $X \in \mathcal{G}$, замкнуто относительно конечных пересечений, объединения и дополнения). Пусть $\mathcal{A} = \sigma(\mathcal{G})$, μ - конечная мера на (X, \mathcal{A}, μ) . Пусть $A \triangle B = (A - B) \sqcup (B - A)$ - симметрическая разность $A, B \subset X$

• Показать, что для каждого $\epsilon>0$ и $A\in\mathcal{A}$ существует $G\in\mathcal{G}$ такое что $\mu\left(A\triangle G\right)<\epsilon$

Доказательство:

- 1. Пусть $\mathcal{D}:=\{A\in\mathcal{A}:\forall\epsilon>0\exists G\in\mathcal{G}:\mu\left(A\triangle G\right)<\epsilon\}$. Мы покажем, что \mathcal{D} система Дынкина.
- 2. Докажем D_1
 - (a) Поскольку $\mathcal A$ сигма-алгебра, следовательно $X\in\mathcal A$.
 - (b) По условию $G \in \mathcal{G}$
 - (c) Из (a) и (b) следует, что $\mu(A \triangle G) = \mu((X X) \sqcup (X X)) = \mu(\emptyset \sqcup \emptyset) = \mu(\emptyset) = 0 < \epsilon$. Где $\epsilon > 0$
- 3. Докажем D_2
 - (a) Пусть $A \in \mathcal{A}, G \in \mathcal{G}$. Мы докажем, что $\overline{A} \in \mathcal{A}, \overline{G} \in \mathcal{G}$, показав, что $\mu(\overline{A} \triangle \overline{G}) < \epsilon$
 - (b) По условию $\mu\left[\overline{A}\triangle\overline{G}\right]=\mu\left[\left(\overline{A}-\overline{G}\right)\sqcup\left(\overline{G}-\overline{A}\right)\right]=\mu\left[\left(\overline{A}\cap G\right)\sqcup\left(\overline{G}\cap A\right)\right]=\mu\left[\left(A\cap\overline{G}\right)\sqcup\left(G\cap\overline{A}\right)\right]=\mu\left[A\triangle G\right]$
 - (c) Поскольку $\mu\left[\overline{A}\triangle\overline{G}
 ight]<\epsilon,$ из (b) следует, что $\mu\left[A\triangle G\right]<\epsilon$
- 4. Докажем D_3
 - (а) Пусто

Задача №13

1. Пусто