

Authors: MyungJae Shin (Presenter) and Joongheon Kim

School of Computer Science and Engineering, Chung-Ang University, Seoul, Republic of Korea

Emails: mjshin.cau@gmail.com, joongheon@gmail.com

Sites: https://github.com/170928, https://github.com/170928, https://github.com/site/joongheonkim/

Outline

Background

Motivation

RAIL framework

Experiments

Background

Technologies

- High-performance Sensors
- Assistance System
- Deep Learning

Background

Vehicle Sensors

- Various sensors for vehicle
 (e.g. LIDAR, RADAR, ···)
- High performance
- Sensor fusion techniques

ADAS Algorithms

- Various ADAS (e.g. AEB, LKAS, BSD, ESC, ···)
- Already commercialized
- Essential function for safety

(ref) Deep Q Learning Based High Level Driving Policy Determination by Kyusik Min (IV Symposium 2018)

- Many driver assistance systems are already commercialized and applied to lots of vehicles.
- Many driver assistance systems perform partial function of autonomous driving.
- Autonomous driving can be achieved by properly choosing driver assistance system in specific scenario.

Goal: Learn policies High-dimensional & raw observations

Challenge: Provide appropriate cost or reward signal.

- Sparse reward
- Mathematical definition

Jump is desired behavior or not?

Input: expert behavior generated by expert π_E

$$\{(s_0^i, a_0^i, s_1^i, a_1^i, \dots)\}_{i=1}^N \sim \pi_E$$

Goal: learn cost function or policy

Goal

- Apply imitation learning to train supervisor of self driving car.
- Enhance safety of the self driving agent during training and testing.
- Implement an algorithm that can be easily parallelized.

Generative Adversarial Imitation Learning (GAIL), NIPS 2016

- The quality of the samples we obtain is measured by training the discriminator D.
- The policy is trained to produce behaviors that are difficult to distinguish from expert.

Challenge

- A lot of interaction with the environment is required to optimize the policy through GAIL framework
- Hard to be parallelized.

minimize
$$\mathbb{E}_{\pi}[\log(D(s,a)] + \mathbb{E}_{\pi_E}[\log(1-D(s,a))]$$

D(s, a): Probability between 0 and 1

The probability that the input data sample is the expert data sample

Usually in AI:

$$f'(x) = \frac{df}{dx}$$

• To update the weights of policy the gradient descent method is used.

Method of finite differences

$$f'(a) = \frac{f(a+h) - f(a)}{h}$$

 To update the weights of policy the method of finite differences.

random numbers or a matrix with random tiny values

Positive perturbative weights

Negative perturbative weights

Experiments

Experiments

Average	RAIL (Stacked)	RAIL (Linear)	Expert
Speed [km/h]	70.38	65.00	68.83
# Overtake	45.04	40.03	44.48
# Lane change	15.01	13.05	14.04
Longitudinal	2719.38	2495.57	2642.11
Lateral	-122.98	-175.6	-132.52

Summary

- In autonomous driving system, RAIL is able to train the shallow network supervisor.
- RAIL is easy to parallel processing because only the constant reward values need to be shared between processors.
- RAIL is an algorithm that increases reproducibility with fewer hyperparameters.

Contact

- MyungJae Shin: mjshin.cau@gmail.com
- Joongheon Kim: joongheon@gmail.com

Thank You