Homework 3

Jacob Sachs

26 April 2013

Problem 1: Power Method Eigendecomposition

- Accuracy Testing
- All Eigenvectors:

Matrix:
$$\begin{pmatrix} 5 & -2 \\ -2 & 8 \end{pmatrix}$$
 U with $k = 2$: $\begin{pmatrix} -0.4472 & 0.8944 \\ 0.8944 & 0.4472 \end{pmatrix}$

Are these eigenvectors?

$$\begin{pmatrix} 5 & -2 \\ -2 & 8 \end{pmatrix} \begin{pmatrix} -0.4472 \\ 0.8944 \end{pmatrix} = \begin{pmatrix} -4.0248 \\ 8.0496 \end{pmatrix} = 9 * \begin{pmatrix} -0.4472 \\ 0.8944 \end{pmatrix}$$

$$\begin{pmatrix} 5 & -2 \\ -2 & 8 \end{pmatrix} \begin{pmatrix} 0.8944 \\ 0.4472 \end{pmatrix} = \begin{pmatrix} 3.5776 \\ 1.7888 \end{pmatrix} = 4 * \begin{pmatrix} 0.8944 \\ 0.4472 \end{pmatrix}$$

■ Bigger Matrices:

$$\begin{pmatrix} 1 & 2 & 3 & 6 \\ 2 & 5 & 4 & -2 \\ 3 & 4 & 7 & 8 \\ 6 & -2 & 8 & -3 \end{pmatrix} \begin{pmatrix} 0.3958 \\ 0.2975 \\ 0.7510 \\ 0.4370 \end{pmatrix} = \begin{pmatrix} 5.8658 \\ 4.4091 \\ 11.1304 \\ 6.4768 \end{pmatrix} = 14.82 * \begin{pmatrix} 0.3958 \\ 0.2975 \\ 0.7510 \\ 0.4370 \end{pmatrix}$$

■ Complexity Testing

■ Matrix Size: $\epsilon = 0.00001$

```
n = 2: iterations = 16
n = 3: iterations = 6
n = 4: iterations = 28
n = 5: iterations = 59
n = 6: iterations = 40
```


While the data isn't great, there appears to be a linear relation between iterations and matrix size. However, it could be n^2 , since we do a matrix multiplication with every iteration, but this is a question related solely to iterations, not total complexity.

■ Epsilon: n = 4

 $\epsilon = 0.1$: iterations = 4 $\epsilon = 0.01$: iterations = 10 $\epsilon = 0.001$: iterations = 16 $\epsilon = 0.0001$: iterations = 22 $\epsilon = 0.00001$: iterations = 28 $\epsilon = 0.000001$: iterations = 34 $\epsilon = 0.00000001$: iterations = 40 $\epsilon = 0.000000001$: iterations = 47 $\epsilon = 0.0000000001$: iterations = 53

My guess is that the number of iterations is $O(n \log(\epsilon))$

Problem 2: SVD and Frobenius Norm

■ Code Test

Matrix:
$$\begin{pmatrix} 2 & 4 \\ 1 & 3 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}$$
, $k = 2$, $\epsilon = 0.0000001$

$$U = \begin{pmatrix} 0.8174 & -0.576 \\ 0.576 & 0.8174 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}, S = \begin{pmatrix} 5.465 & 0 \\ 0 & 0.366 \end{pmatrix}, V^{T} = \begin{pmatrix} 0.40455 & 0.9145 \\ 0.9145 & -0.40456 \end{pmatrix}$$

Reconstructed
$$A = \begin{pmatrix} 1.61437 & 4.17044 \\ 1.54705 & 2.75767 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}$$

■ Frobenius Norm

k, ∈ = 0.000001	Frobenius Norm
1	43.4974624568
2	76.9731978598
3	73.3288842462
4	73.3288842469
5	73.3288499536

There does not appear to be any clear relation, though perhaps a linear one in a better example matrix.

Problem 3: SVD with Missing Entries

■ Function of k

$$p = 0.9$$

■ Function of p

k = 4

```
\label{line:bound} $$ \inf[\{\{.1, 3.80610291185\}, \{.2, 5.26913207621\}, \{.3, 5.94108022057\}, \\ \{.4, 8.86373438169\}, \{.5, 9.89066379246\}, \{.6, 9.88893903494\}, \{.7, 9.82577846779\}, \\ \{.8, 9.80918130332\}, \{.9, 7.24801256161\}\}, \\ $$ Filling $\rightarrow Axis, AxesLabel $\rightarrow \{"p", "Frob Norm"\}]$
```


Problem 4: Latent Semantic Analysis

■ Reconstruction Accuracy

As stated in the README, my code will not converge for the movie matrix.

■ Genre Prediction