NETWORK PROTOCOLS AND SECURITY

Dr. G. Omprakash

Assistant Professor, ECE, KLEF

Aim of the session

To understand the fundamental concepts on the allocation and management of IP addresses in computer networks

Learning Outcomes

At the end of this session, you should be able to:

- Describe the structure and format of IP addresses, differentiating between IPv4 and IPv6
- Classify IP addresses into appropriate address classes and identify the address ranges for each class

IP Address

Internet Protocol

- Only two versions have survived: IP Version 4 (IPv4) and IP Version 6 (IPv6).
- IPv4 is almost depleted
- Logical address assigned to each device connected to the network
- An address Space is the total number of addresses used by the protocol
- If a protocol uses b bits to define an address \implies the address space is 2^b
- IPv4 uses 32-bit addresses; So address space is $2^{32} = 4,294,967,296$

IPv4 Notation

• Three Notations: Binary (base 2), dotted-decimal notation (base 256), hexadecimal notation (base 16)

Rewrite the following IP addresses using binary notation.

- **a.** 110.11.5.88
- **b.** 12.74.16.18
- **c.** 201.24.44.32

Rewrite the following IP addresses using dotted-decimal notation.

- a. 01011110 10110000 01110101 00010101
- **b.** 10001001 10001110 11010000 00110001
- c. 01010111 10000100 00110111 00001111

Find the error, if any, in the following IPv4 addresses.

- a. 111.56.045.78
- **b.** 221.34.7.8.20
- **c.** 75.45.301.14
- **d.** 11100010.23.14.67

Find the error, if any, in the following IPv4 addresses.

- a. 111.56.045.78
- **b.** 221.34.7.8.20
- c. 75.45.301.14
- d. 11100010.23.14.67
- There must be no leading zero (045).
- There can be no more than four numbers.
- Each number needs to be less than or equal to 255.
- A mixture of binary notation and dotted-decimal notation is not allowed.

Hierarchy in Addressing

Any communication network works on hierarchy. Examples

- Postal network: The postal address (mailing address) includes
 - country, state, city, street, house number
 - Name of the mail recipient
- Telephone network
 - Country code, area code, local exchange
 - connection
- IPv4 Address
 - prefix: Defines the network
 - suffix: Defines the connection of a device to the Internet

Hierarchy in Addressing

- prefix length is n bits; suffix length is (32 n) bits
 - n is fixed length: classful addressing
 - n is variable length: classless addressing

Classful addressing

- When the Internet started, an IPv4 address was designed with a fixed-length prefix.
- To accommodate both small and large networks, three fixed-length (n=8,16,24) prefixes were designed instead of one
- ★ The whole address space was divided into five classes (classes A, B, C, D, and E)

a. Binary notation

b. Dotted-decimal notation

Class A,B

Class A

- Network length= 8 bits
- The first bit is always $(0)_2$
 - We can have only 7 bits as the network identifier
- There are only $2^7 = 128$ networks in the world that can have a class A address
- Each network can accommodate $2^{24} = 16,777,216$ nodes

Class B

- Network length=16 bits
- The first 2 bits= $(10)_2$
 - We can have only 14 bits as the network identifier
- There are only $2^{14} = 16,384$ networks in the world that can have a class B address
- Each network can accommodate $2^{16} = 65,536$ nodes

Class C,D,E

Class C

- Network length=16 bits
- The first 3 bits= $(110)_2$
 - We can have only 21 bits as the network identifier.
- There are $2^{21} = 2,097,152$ networks in the world that can have a class C address.
- Each network can accommodate $2^8 = 256$ nodes

Class D

- Class D is not divided into prefix and suffix
- It is used for multicast addresses
- The first 4 bits= $(1110)_2$

Class E

- The first 4 bits= $(1111)_2$
- Used as reserve

CLASS	LEADING BITS	NET ID BITS	HOST ID BITS	NO. OF NETWORKS	ADDRESSES PER NETWORK	START ADDRESS	END ADDRESS
CLASS A	0	8	24	2 ⁷ (128)	2 ²⁴ (16,777,216)	0.0.0.0	127.255.255.255
CLASS B	10	16	16	2 ¹⁴ (16,384)	2 ¹⁶ (65,536)	128.0.0.0	191.255.255.255
CLASS C	110	24	8	2 ²¹ (2,097,152)	2 8 (256)	192.0.0.0	223.255.255.255
CLASS D	1110	NOT DEFINED	NOT DEFINED	NOT DEFINED	NOT DEFINED	224.0.0.0	239.255.255.255
CLASS E	1111	NOT DEFINED	NOT DEFINED	NOT DEFINED	NOT DEFINED	240.0.0.0	255.255.255.255

Class	Number of Blocks	Block Size	Application
A	128	16,777,216	Unicast
В	16,384	65,536	Unicast
С	2,097,152	256	Unicast
D	1	268,435,456	Multicast
Е	1	268,435,456	Reserved

Figure: Number of blocks and block size

Address Depletion

- Internet faced with the problem of the addresses being rapidly used up
- Class A: can be assigned to only 128 organizations in the world
 - Each organization has a single network with 16,777,216 nodes
 - Most of the addresses in this class were wasted (unused).
- Class B addresses are designed for midsize organizations
 - Many of the addresses in this class also remained unused
- Class C: Most companies were not comfortable using a block in this address
 - The number of addresses that can be used in each network (256) was so small

Classless addressing

- The larger address space requires the length of IP addresses to be increased
- The format of the IP packets needs to be changed
- Long-range solution is IPv6
- Short-term solution: class privilege is removed
 - Use variable-length blocks¹ (n = 1 to 32 instead of n = 8, 16, 24)
- How to know the network portion?
 - Use Slash Notation
 - $12.24.76.8/8 \implies \text{Prefix length} = 8$
 - $23.14.67.92/12 \implies \text{Prefix length} = 12$
 - 220.8.24.255/25 \Longrightarrow Prefix length=25

¹prefix in an address defines the block (network);

Dr. G. Omprakash

Subnet

- Routing protocols must carry the prefixes to routers
 - \bullet Prefixes are described by their length: "/16" which is pronounced "slash 16"
 - Use Subnet mask
- It can be ANDed with the IP address to extract only the network portion.

Class	Binary	Dotted-Decimal	CIDR
A	1111111 00000000 00000000 00000000	255 .0.0.0	/8
В	1111111 11111111 00000000 00000000	255.255 .0.0	/16
С	11111111 11111111 11111111 00000000	255.255.255. 0	/24

Subnetting: Splitting an IP Prefix

Figure: Prefix and a subnet mask

- Computer Science: 10000000 11010000 1xxxxxx xxxxxxxx
- Electrical Eng: 10000000 11010000 00xxxxx xxxxxxxx
- Art: 10000000 11010000 011xxxx xxxxxxx

Acknowledge various sources for the images. Thankyou