Divisive Normalization

Comparing Heeger Model with our model Start with Heeger Model: Set some parameters to fit values:

```
c_50 <- 13.1
n <- 1.5
```

Create contrasts between 1 and 100:

```
c_1 <- 1:100
c_2 <- 1:100
```

Here's a function that gives us the weights from Heeger's model:

```
heeger <- function(c_1, c_2, c_50, n)
{
    w <- (c_1^n)/(c_50^n + (c_1^2 + c_2^2)^(n/2))
    w
}
```

Let's plot weights for different values of c_1 and c_2:

```
df <- expand.grid(c_1=c_1, c_2=c_2)
df$w <- heeger(df$c_1, df$c_2, c_50, n)
library(ggplot2)
p <- qplot(df$c_1, df$c_2, data = df, fill = df$w, geom = "raster")
p + scale_fill_gradient2(name = "w", midpoint = .5)</pre>
```


Our model: Initialize some values (SDs):

```
s <- 19
s_c <- 19
```

Computes weight for a given x_1 and x_2 :

```
ma_halpern <- function(x_1, x_2, s, s_c)
{
   norm = dnorm(x_1, sd = s) * dnorm(x_2, sd=s) + dnorm(x_1, sd=s) + dnorm(x_2, sd=s) + dnorm(x_1, mean=s)
   w_2 = (x_1/s^2 + x_2/(s^2 + 2*s_c^2))/(1/s^2 + 1/(s^2 + 2*s_c^2))
   num = x_1 * dnorm(x_2, sd=s) + w_2 * dnorm(x_1, mean=x_2, sd=sqrt(2*s^2 + 2*s_c^2))
   w = num/norm
}</pre>
```

Now let's estimate the weights for a given c_1 and c_2 by simulating many x values: (Means are normalized so they will be on the same scale as Heeger... maybe this is not the right thing to do though?)

```
estimate_weights <- function(c_1, c_2, s, s_c)
{
    x_1s = rnorm(100, mean=c_1, sd=s)
    x_2s = rnorm(100, mean=c_2, sd=s)
    w = ma_halpern(x_1s, x_2s, s, s_c)
    mean(w/100)
}
vew <- Vectorize(estimate_weights, c("c_1", "c_2"))</pre>
```

And plot them:

```
df <- expand.grid(c_1=c_1, c_2=c_2)
df$w <- vew(df$c_1, df$c_2, s, s_c)
p <- qplot(df$c_1, df$c_2, data = df, fill = df$w, geom = "raster")
p + scale_fill_gradient2(name = "w", midpoint = .5)</pre>
```


Lets try some less noisy data to get a better view of the function:

 $s_c = 1$

What happens as vision improves?

s = 10

Weights as a function of c_1 for various c_2 values

```
c_2w <- seq(0, 100, 10)
dfw <- expand.grid(c_1=c_1, c_2=c_2w)
dfw$h <- heeger(dfw$c_1, dfw$c_2, c_50, n)
dfw$mh <- vew(dfw$c_1, dfw$c_2, s, s_c)
ggplot(dfw, aes(x=c_1, y=h, group=c_2, colour=c_2)) + geom_line()</pre>
```


ggplot(dfw, aes(x=c_1, y=mh, group=c_2, colour=c_2)) + geom_line()

Attempts to fit ma_halpern to heeger using Root Mean Squared Error

```
rmse <- function(s)</pre>
  sig <- s * 100
  df$mh <- vew(df$c_1, df$c_2, sig[1], sig[2])</pre>
  sqrt(mean(df$h-df$mh)^2)
}
df <- expand.grid(c_1=c_1, c_2=c_2)</pre>
df$h <- heeger(df$c_1, df$c_2, c_50, n)</pre>
sigs <- matrix(, 1, 2)</pre>
s <- runif(2)
o <- optimx(s, fn=rmse, lower=c(0.001,0.001), upper=c(1,1))</pre>
sigs <- c(coef(o[1,]))</pre>
for(i in 1:100)
{
  s <- runif(2)
  o <- optimx(s, fn=rmse, lower=c(0.001,0.001), upper=c(1,1))
  sigs <- rbind(sigs, c(coef(o[1,])))</pre>
}
```

```
0.102474341 0.99999366
0.001073785 0.17760943
0.001331999 0.05370380
0.001000000 0.12245692
```

```
1.00000000 1.00000000
```

- 0.523826106 1.00000000
- 0.001000000 0.68692467
- 0.034453589 0.97508780
- 0.035796153 0.70151735
- 0.235620318 0.56200022
- 0.001000000 0.10929099
- 0.001000000 1.00000000
- 0.001000000 1.00000000
- 0.060842346 0.73784384
- 0.877873887 0.81970844
- 0.001000000 0.99999210 0.002070543 0.39062208
- 0.001000000 0.91017253 0.588303091 0.64327413
- 0.019842521 0.84865678 0.380784704 0.97671970
- 0.001000000 0.20374478
- 0.162126114 0.70389242

NA

- 0.130002015 0.94395401
- 0.001000000 0.62332399
- 0.001000000 0.91877175
- 0.752145685 0.75643039
- 0.664027868 0.60621882
- 0.001397428 0.04557056
- 0.036321368 0.97444112
- 0.067691674 0.94630337
- 0.001000000 0.26583646
- 0.194855734 0.94667137 0.001000000 0.78815492
- 0.165732899 0.94983276
- 0.209202475 0.77716948

NANA

0.005144855 0.52347423

NΑ

- 0.185466911 1.00000000
- 0.305819857 0.71238889
- 0.042294377 0.97879865
- 0.001008274 0.60425602
- 0.001000000 0.38168447
- 0.003483951 0.16990160
- 0.001000000 0.08226764
- 0.884808321 0.50784126
- 0.676000128 0.76220164
- 0.001000000 0.40243909
- 0.001864401 0.52082322
- 0.001307906 1.00000000
- 0.001000000 0.09400947
- 0.001000000 0.07699153
- 0.001000000 0.04995524
- 0.001917776 0.08466055 0.001000000 0.88712935
- 0.001705685 0.16506352

```
0.001000000 0.38012771
0.001000000 0.67266465
0.168197220 0.91529773
0.001000000 0.40688204
0.687467534 0.71330363
0.551109082 1.00000000
0.001000000 0.80188037
0.001000000 0.13530647
0.014786885 0.21743388
0.001000000 0.98298715
0.976375711 0.89341372
0.339211515 0.99094302
0.162931799 0.16748831
0.586377455 0.75871343
0.005731327 0.21324106
0.802124335 0.98552978
0.001000000 0.14104017
0.001000000 0.46379863
0.001000000 0.43688628
0.750813197 0.78920705
0.001000000 1.00000000
0.001061592 0.83566690
0.027032159 0.30080081
          NA
0.131404365 0.85659281
         NA
0.242076534 0.82647055
 0.152611767 0.61058017
          NA
0.002080649 0.41614029
0.268077675 0.65690376
0.001000000 0.91871726
0.001000000 0.12695971
0.585379743 0.14646889
0.066418728 0.98325028
0.016374681 0.87123387
0.001000000 0.49615733
0.555834204 1.00000000
0.001000000 0.38922631
0.660527648 0.12988535
0.679869320 1.00000000
          NA
                     NA
0.459913174 0.83963203
sds <- sigs[which(sigs[,1]!="NA" & sigs[,2]!="NA"),]</pre>
cov(sds)
```

[,1] [,2] ------|

[1,] 0.07907139 0.02731668 [2,] 0.02731668 0.10835487

Weights for model 2

```
erf <- function(x, mu, s) 2 * pnorm(x * sqrt(2), mean=mu, sd=s) - 1
ma_halpern2 <- function(x_1, x_2, s)</pre>
  integrand <- function(c)</pre>
   d \leftarrow dnorm(x_1, mean=c, sd=s) * erf(c, x_2, s)
  }
  i <- sum(integrand(seq(-200, 200, .01)))/100
  w < -.5 + .5 * i
}
vmh <- Vectorize(ma_halpern2, c("x_1", "x_2"))</pre>
estimate_weights2 <- function(c_1, c_2, s)</pre>
 x_1s = rnorm(100, mean=c_1, sd=s)
 x_2s = rnorm(100, mean=c_2, sd=s)
 w = vmh(x_1s, x_2s, s)
 mean(w)
}
vew2 <- Vectorize(estimate_weights2, c("c_1", "c_2"))</pre>
df \leftarrow expand.grid(c_1=c_1, c_2=c_2)
df$w <- vew2(df$c_1, df$c_2, s)
```


Normalization Project/MH Model 2 plot.pdf