lplyeqkk1

June 19, 2024

```
[1]: import os, shutil
     train_dir = 'C:/Users/flavi/Desktop/Projeto-20240530/train'
     validation_dir = 'C:/Users/flavi/Desktop/Projeto-20240530/validation'
     test_dir = 'C:/Users/flavi/Desktop/Projeto-20240530/test'
[2]: from keras.utils import image_dataset_from_directory
     IMG_SIZE = 150
     train_dataset = image_dataset_from_directory(
     train_dir,
     image_size=(IMG_SIZE, IMG_SIZE),
     batch_size=32)
     validation_dataset = image_dataset_from_directory(
     validation_dir,
     image_size=(IMG_SIZE, IMG_SIZE),
     batch_size=32)
     test_dataset = image_dataset_from_directory(
     test_dir,
     image_size=(IMG_SIZE, IMG_SIZE),
     batch_size=32)
    Found 40000 files belonging to 10 classes.
    Found 10000 files belonging to 10 classes.
    Found 10000 files belonging to 10 classes.
[3]: from tensorflow import keras
     from keras import layers
     from keras import models
     from keras.preprocessing import image
     inputs = keras.Input(shape=(IMG_SIZE, IMG_SIZE, 3))
     x = layers.Rescaling(1./255)(inputs)
     x = layers.Conv2D(filters=32, kernel_size=3, activation="relu", __
      →padding='same')(x)
     x = layers.BatchNormalization()(x)
     x = layers.MaxPooling2D(pool_size=2)(x)
```

```
x = layers.Conv2D(filters=64, kernel_size=3, activation="relu", __
      ⇔padding='same')(x)
     x = layers.BatchNormalization()(x)
     x = layers.MaxPooling2D(pool_size=2)(x)
     x = layers.Conv2D(filters=128, kernel_size=3, activation="relu", __
     →padding='same')(x)
     x = layers.BatchNormalization()(x)
     x = layers.MaxPooling2D(pool_size=2)(x)
     x = layers.Flatten()(x)
     x = layers.Dropout(0.5)(x)
     x = layers.Dense(512, activation="relu")(x)
     outputs = layers.Dense(10, activation="softmax")(x)
     model = keras.Model(inputs=inputs, outputs=outputs)
[4]: model.compile(
         optimizer='adam',
         loss='sparse_categorical_crossentropy',
         metrics=['accuracy']
[5]: from keras.callbacks import ReduceLROnPlateau
     reduce_lr = ReduceLROnPlateau(
         monitor='val_loss',
         factor=0.2,
         patience=2,
         min_lr=0.001
[6]: from keras.callbacks import EarlyStopping
     early_stopping = EarlyStopping(
         monitor='val_loss',
         patience=5,
         restore_best_weights=True
[7]: from keras.callbacks import ModelCheckpoint
     model_checkpoint = ModelCheckpoint(
         filepath='C:/Users/flavi/Desktop/projetoClassificaoDeImagens/
      ⇔dl_project_2201707_2211044/ModelosS/ModelS_AdamOptimizer.keras',
         save_best_only=True,
         monitor='val_loss'
```

```
[8]: callbacks = [reduce_lr, early_stopping, model_checkpoint]
     history = model.fit(
         train_dataset,
         epochs=30,
         validation_data=validation_dataset,
         callbacks=callbacks
     )
    Epoch 1/30
                          673s 537ms/step
    1250/1250
    - accuracy: 0.3705 - loss: 2.4561 - val_accuracy: 0.5171 - val_loss: 1.3737 -
    learning_rate: 0.0010
    Epoch 2/30
    1250/1250
                          685s 548ms/step
    - accuracy: 0.5677 - loss: 1.2209 - val accuracy: 0.5833 - val loss: 1.2325 -
    learning_rate: 0.0010
    Epoch 3/30
    1250/1250
                          685s 548ms/step
    - accuracy: 0.6413 - loss: 1.0304 - val_accuracy: 0.6330 - val_loss: 1.0583 -
    learning_rate: 0.0010
    Epoch 4/30
    1250/1250
                          711s 569ms/step
    - accuracy: 0.6905 - loss: 0.8979 - val_accuracy: 0.5812 - val_loss: 1.2554 -
    learning rate: 0.0010
    Epoch 5/30
    1250/1250
                          686s 549ms/step
    - accuracy: 0.7301 - loss: 0.7969 - val_accuracy: 0.6662 - val_loss: 1.0196 -
    learning_rate: 0.0010
    Epoch 6/30
                          685s 548ms/step
    1250/1250
    - accuracy: 0.7556 - loss: 0.7171 - val_accuracy: 0.5760 - val_loss: 1.2709 -
    learning rate: 0.0010
    Epoch 7/30
    1250/1250
                          681s 545ms/step
    - accuracy: 0.7785 - loss: 0.6461 - val_accuracy: 0.6446 - val_loss: 1.1514 -
    learning_rate: 0.0010
    Epoch 8/30
    1250/1250
                          671s 537ms/step
    - accuracy: 0.8016 - loss: 0.5742 - val_accuracy: 0.6360 - val_loss: 1.1917 -
    learning_rate: 0.0010
    Epoch 9/30
    1250/1250
                          678s 542ms/step
    - accuracy: 0.8210 - loss: 0.5195 - val_accuracy: 0.6958 - val_loss: 0.9695 -
    learning_rate: 0.0010
    Epoch 10/30
    1250/1250
                          698s 559ms/step
    - accuracy: 0.8358 - loss: 0.4802 - val_accuracy: 0.6871 - val_loss: 1.0233 -
```

```
learning_rate: 0.0010
    Epoch 11/30
    1250/1250
                          680s 544ms/step
    - accuracy: 0.8490 - loss: 0.4394 - val_accuracy: 0.6887 - val_loss: 1.1140 -
    learning rate: 0.0010
    Epoch 12/30
    1250/1250
                          686s 549ms/step
    - accuracy: 0.8634 - loss: 0.4103 - val_accuracy: 0.6782 - val_loss: 1.1822 -
    learning rate: 0.0010
    Epoch 13/30
    1250/1250
                          1179s
    944ms/step - accuracy: 0.8764 - loss: 0.3702 - val_accuracy: 0.6261 - val_loss:
    1.4763 - learning_rate: 0.0010
    Epoch 14/30
    1250/1250
                          1404s 1s/step -
    accuracy: 0.8839 - loss: 0.3423 - val_accuracy: 0.6893 - val_loss: 1.1352 -
    learning_rate: 0.0010
[9]: import matplotlib.pyplot as plt
     plt.plot(history.history['accuracy'], 'bo', label='Training acc')
     plt.plot(history.history['val_accuracy'], 'b', label='Validation acc')
     plt.title('Training and validation accuracy')
     plt.xlabel('Epochs')
     plt.ylabel('Accuracy')
     plt.legend()
     plt.show()
     plt.plot(history.history['loss'], 'bo', label='Training loss')
     plt.plot(history.history['val_loss'], 'b', label='Validation loss')
     plt.title('Training and validation loss')
     plt.xlabel('Epochs')
     plt.ylabel('Loss')
     plt.legend()
     plt.show()
```



```
[10]: val_loss, val_acc = model.evaluate(validation_dataset)
      print('Validation Accuracy:', val_acc)
     313/313
                         59s 189ms/step -
     accuracy: 0.6903 - loss: 0.9989
     Validation Accuracy: 0.6958000063896179
[11]: loss, accuracy = model.evaluate(test_dataset)
      print(f"Loss: {loss}, Accuracy: {accuracy}")
     313/313
                         60s 191ms/step -
     accuracy: 0.6954 - loss: 0.9368
     Loss: 0.9532666802406311, Accuracy: 0.695900022983551
[14]: import numpy as np
      from sklearn.metrics import confusion_matrix, classification_report
      import seaborn as sns
      import matplotlib.pyplot as plt
```

Function to evaluate the model and get true and predicted labels

```
def evaluate_model(model, dataset):
    all_labels = []
    all_predictions = []
    for images, labels in dataset:
        predictions = model.predict(images)
        predicted_labels = np.argmax(predictions, axis=1)
        true_labels = labels.numpy() # Convert to numpy array if not already
        all_labels.extend(true_labels)
        all predictions.extend(predicted labels)
    return np.array(all_labels), np.array(all_predictions)
# Get true and predicted labels for the test dataset
true_labels, predicted_labels = evaluate_model(model, test_dataset)
# Compute the confusion matrix
conf_matrix = confusion_matrix(true_labels, predicted_labels)
# Plot the confusion matrix
plt.figure(figsize=(10, 8))
sns.heatmap(conf_matrix, annot=True, fmt="d", cmap="Blues",__
 →xticklabels=range(10), yticklabels=range(10))
plt.title('Matriz de Confusão')
plt.xlabel('Previsão')
plt.ylabel('Realidade')
plt.show()
# Print classification report
class_names = [str(i) for i in range(10)] # Define class names based on your
 \rightarrow dataset
print(classification_report(true_labels, predicted_labels,__
 ⇔target_names=class_names))
# Extract precision, recall, and F1-score for each class from classification □
\hookrightarrow report
report = classification_report(true_labels, predicted_labels,_
 starget_names=class_names, output_dict=True)
metrics = {'precision': [], 'recall': [], 'f1-score': []}
for cls in class_names:
    metrics['precision'].append(report[cls]['precision'])
    metrics['recall'].append(report[cls]['recall'])
    metrics['f1-score'].append(report[cls]['f1-score'])
# Plot precision, recall, and F1-score
```

```
plt.figure(figsize=(10, 6))
bar_width = 0.2
index = np.arange(len(class_names))
plt.bar(index, metrics['precision'], bar_width, label='Precision')
plt.bar(index + bar_width, metrics['recall'], bar_width, label='Recall')
plt.bar(index + 2*bar_width, metrics['f1-score'], bar_width, label='F1-score')
plt.xlabel('Class')
plt.ylabel('Scores')
plt.title('Precision, Recall e F1-score para cada classe')
plt.xticks(index + bar_width, class_names)
plt.legend()
plt.tight_layout()
plt.show()
1/1
                0s 378ms/step
1/1
                Os 290ms/step
1/1
                Os 273ms/step
1/1
                Os 243ms/step
1/1
                Os 362ms/step
1/1
                Os 247ms/step
1/1
                Os 253ms/step
1/1
                Os 337ms/step
1/1
                Os 272ms/step
1/1
                0s 258ms/step
1/1
                Os 310ms/step
1/1
                Os 307ms/step
1/1
                Os 344ms/step
1/1
                0s 355ms/step
1/1
                Os 249ms/step
1/1
                Os 241ms/step
1/1
                Os 310ms/step
1/1
                Os 363ms/step
1/1
                Os 211ms/step
1/1
                Os 272ms/step
1/1
                Os 252ms/step
1/1
                Os 378ms/step
1/1
                Os 249ms/step
1/1
                Os 265ms/step
1/1
                Os 240ms/step
1/1
                0s 398ms/step
1/1
                0s 334ms/step
1/1
                Os 216ms/step
1/1
                Os 242ms/step
1/1
                Os 372ms/step
```

1/1	0s	193ms/step
1/1	0s	261ms/step
1/1	0s	305ms/step
1/1	0s	298ms/step
1/1	0s	183ms/step
1/1	0s	282ms/step
1/1		400ms/step
1/1		264ms/step
1/1		340ms/step
1/1		312ms/step
1/1		283ms/step
1/1		259ms/step
1/1		378ms/step
1/1		158ms/step
1/1		260ms/step
1/1		269ms/step
1/1		302ms/step
1/1		269ms/step
1/1		256ms/step
1/1		363ms/step
1/1		334ms/step
1/1		263ms/step
1/1		204ms/step
1/1		278ms/step
1/1		367ms/step
1/1		320ms/step
1/1		310ms/step
1/1		273ms/step
1/1		237ms/step
1/1		363ms/step
1/1		279ms/step
1/1		229ms/step
1/1	0s	_
1/1		425ms/step
1/1		441ms/step
1/1		236ms/step
1/1		226ms/step
1/1		369ms/step
1/1		305ms/step
1/1		257ms/step
		_
1/1		312ms/step 177ms/step
1/1		_
1/1		247ms/step
1/1		474ms/step
1/1		423ms/step
1/1		215ms/step
1/1		262ms/step
1/1	ບຣ	348ms/step

1/1	0s	318ms/step
1/1	0s	144ms/step
1/1	0s	251ms/step
1/1	0s	362ms/step
1/1	0s	167ms/step
1/1	0s	246ms/step
1/1	0s	363ms/step
1/1	0s	_
1/1	0s	172ms/step
1/1	0s	_
1/1	0s	414ms/step
1/1	0s	_
1/1	0s	
1/1	0s	266ms/step
1/1		314ms/step
1/1		317ms/step
1/1		357ms/step
1/1	0s	_
1/1	0s	-
1/1	0s	_
1/1	0s	
1/1		294ms/step
1/1		250ms/step
1/1	0s	
1/1	0s	
1/1	0s	-
1/1	0s	-
1/1	0s	
1/1		368ms/step
1/1		265ms/step
1/1		260ms/step
1/1		317ms/step
1/1	0s	338ms/step
1/1	0s	189ms/step
1/1	0s	_
1/1	0s	· ·
1/1	0s	
1/1	0s	-
1/1	0s	258ms/step
1/1	0s	244ms/step
1/1	0s	357ms/step
1/1	0s 0s	_
	0s 0s	235ms/step
1/1 1/1	os os	
1/1	0s	
1/1	0s	
1/1	0s	254ms/step
1/1	0s	352ms/step

1/1	0s	175ms/step
1/1	0s	259ms/step
1/1	0s	296ms/step
1/1	1s	507ms/step
1/1	0s	392ms/step
1/1	0s	268ms/step
1/1	0s	244ms/step
1/1	0s	_
1/1	0s	367ms/step
1/1	0s	-
1/1	0s	-
1/1	0s	
1/1	0s	
1/1		266ms/step
1/1		224ms/step
1/1	1s	_
1/1		425ms/step
1/1	0s	_
1/1	0s	-
1/1	0s	_
1/1	0s 0s	-
	0s	-
1/1		
1/1	0s	
1/1	0s	-
1/1	0s	-
1/1	0s	360ms/step
1/1	0s	_
1/1	0s	
1/1	0s	-
1/1	0s	-
1/1	0s	
1/1	0s	190ms/step
1/1	0s	271ms/step
1/1	0s	327ms/step
1/1	0s	163ms/step
1/1	0s	323ms/step
1/1	0s	401ms/step
1/1	0s	288ms/step
1/1	0s	221ms/step
1/1	0s	352ms/step
1/1	0s	262ms/step
1/1	0s	374ms/step
1/1	0s	_
1/1		180ms/step
1/1	0s	
1/1	0s	_
1/1	0s	309ms/step
1/1	0s	
1/ 1	UB	Zioma/aceh

1/1	0s	362ms/step
1/1	0s	378ms/step
1/1	0s	298ms/step
1/1	0s	191ms/step
1/1	0s	-
1/1	0s	
1/1		192ms/step
1/1	0s	_
1/1	0s	
1/1	0s	-
1/1	0s	
1/1		-
		248ms/step
1/1		384ms/step
1/1		287ms/step
1/1		242ms/step
1/1		316ms/step
1/1		353ms/step
1/1	0s	
1/1	0s	
1/1		317ms/step
1/1		282ms/step
1/1	0s	242ms/step
1/1	0s	356ms/step
1/1	0s	245ms/step
1/1	0s	244ms/step
1/1	0s	260ms/step
1/1	0s	395ms/step
1/1	0s	361ms/step
1/1	0s	185ms/step
1/1	0s	260ms/step
1/1		203ms/step
1/1		307ms/step
1/1	0s	_
1/1	0s	260ms/step
1/1	0s	313ms/step
1/1	0s	-
1/1	0s	206ms/step
1/1	0s	234ms/step
1/1	0s	406ms/step
1/1	0s	345ms/step
1/1	0s	-
		262ms/step
1/1	0s	259ms/step
1/1	0s	345ms/step
1/1	0s	338ms/step
1/1	0s	174ms/step
1/1	0s	261ms/step
1/1	0s	207ms/step
1/1	0s	165ms/step

1/1	0s	272ms/step
1/1	0s	230ms/step
1/1	0s	276ms/step
1/1	0s	156ms/step
1/1	0s	285ms/step
1/1	0s	325ms/step
1/1	0s	_
1/1	0s	323ms/step
1/1	0s	-
1/1	0s	_
1/1	0s	-
1/1	0s	-
1/1	0s	_
1/1	0s	_
1/1	0s	-
1/1	0s	_
1/1	0s	-
1/1	0s	
1/1	0s	_
1/1	0s	
1/1	0s	_
1/1	0s	
1/1	0s	
1/1	0s	-
1/1	0s	210ms/step
1/1	0s	_
1/1	0s	240ms/step
1/1	0s	421ms/step
1/1	0s	
1/1	0s	_
1/1	0s	
1/1	0s	_
1/1	0s	350ms/step
1/1	0s	322ms/step
1/1	0s	170ms/step
1/1	0s	_
1/1	0s	_
1/1	0s	
	0s 0s	-
1/1 1/1		237ms/step
	0s	396ms/step
1/1	0s	322ms/step
1/1	0s	210ms/step
1/1	0s	261ms/step
1/1	0s	-
1/1	0s	-
1/1	0s	198ms/step
1/1	0s	281ms/step
1/1	0s	249ms/step

1/1	0s	384ms/step
1/1	0s	426ms/step
1/1	0s	457ms/step
1/1	0s	374ms/step
1/1	0s	279ms/step
1/1	0s	273ms/step
1/1	0s	315ms/step
1/1	0s	353ms/step
1/1	0s	211ms/step
1/1	0s	253ms/step
1/1	0s	321ms/step
1/1	0s	387ms/step
1/1	0s	278ms/step
1/1	0s	213ms/step
1/1	0s	328ms/step
1/1	0s	317ms/step
1/1	0s	285ms/step
1/1	0s	272ms/step
1/1	0s	318ms/step
1/1	0s	378ms/step
1/1	0s	297ms/step
1/1	0s	242ms/step
1/1		259ms/step
1/1		166ms/step
1/1	0s	310ms/step
1/1	0s	373ms/step
1/1	0s	311ms/step
1/1	0s	169ms/step
1/1	0s	256ms/step
1/1	0s	341ms/step
1/1		356ms/step
1/1	0s	297ms/step
1/1	0s	231ms/step
1/1	0s	360ms/step
1/1	0s	422ms/step
1/1	0s	_
1/1		189ms/step
1/1	0s	243ms/step
1/1	0s	-
1/1	0s	-
1/1		265ms/step
1/1		290ms/step
1/1	0s	326ms/step

Matriz de Confusão											
0 -	673	12	81	39	19	4	7	7	115	43	- 800
1	- 24	762	5	11	3	5	10	6	36	138	- 700
2 -	- 69	2	507	88	121	55	87	33	21	17	- 600
m -	- 14	10	48	580	80	121	78	21	22	26	- 500
lade 4	- 17	2	60	77	709	11	55	41	20	8	300
Realidade 5 4	- 7	5	51	213	72	559	29	39	17	8	- 400
φ-	- 5	3	37	68	70	18	785	3	6	5	- 300
7	- 14	3	38	56	91	40	11	724	6	17	- 200
ω -	- 50	28	13	12	6	3	6	4	829	49	- 100
o -	- 26	46	6	17	11	1	5	14	43	831	
	Ö	i	2	3	4 Prev	5 isão	6	7	8	9	

	precision	recall	f1-score	support
0	0.75	0.67	0.71	1000
1	0.87	0.76	0.81	1000
2	0.60	0.51	0.55	1000
3	0.50	0.58	0.54	1000
4	0.60	0.71	0.65	1000
5	0.68	0.56	0.62	1000
6	0.73	0.79	0.76	1000
7	0.81	0.72	0.77	1000
8	0.74	0.83	0.78	1000
9	0.73	0.83	0.78	1000
accuracy			0.70	10000
macro avg	0.70	0.70	0.70	10000
weighted avg	0.70	0.70	0.70	10000

