

20V, 13A DUAL N-CHANNEL POWER MOSFET

GENERAL DESCRIPTION

The SFN0213T2 uses advanced trench technology and design to provide excellent $R_{DS(on)}$ with low gate charge.

It can be used in a wide variety applications.

Features

- ♦V_{DS}=20V,I_D=13A
- $ightharpoons R_{DS(on)}$

 $TYP:6.0m\Omega@V_{GS}\text{=}4.5V$

Applications

- ◆Power faction correction (PFC)
- ◆Switched mode power supplies (SMPS)
- ◆Uninterruptible power supply (UPS)
- **♦**LED lighting power

ORDERING INFORMATION

Part No.	Package	Marking	Material	Packing
SFN0213T2	DFN3*3-8L	SFN0213T2	Pb Free	Reel

ABSOLUTE MAXIMUM RATINGS (T_J=25°C unless otherwise noted)

Characteristics		Symbol	Ratings	Unit
Drain-Source Voltage		V_{DS}	20	V
Gate-Source Voltage		V_{GS}	±12	V
	T _C = 25°C	I _D	13	
Drain Current	T _C = 100°C		9.1	Α
Drain Current Pulsed(Note 1)		I _{DM}	52	Α
Power Dissipation(Tc=25°C)		P _D	1.86	W
Operation Junction Temperature Range		TJ	-55∼+150	°C
Storage Temperature Range		T _{stg}	-55∼+150	°C
Maximum lead temperature for soldering purposes,1/8" from case for 5 seconds		TL	300	$^{\circ}$

THERMAL CHARACTERISTICS

Characteristics	Symbol	MAX	Unit
Thermal Resistance, Junction-to-Case	$R_{ heta JC}$	67	°C/W
Thermal Resistance, Junction-to-Ambient	Reja	80	°C/W

ELECTRICAL CHARACTERISTICS

Characteristics	Symbol	Test conditions	Min.	Тур.	Max.	Unit
Off Characteristics						
Drain -Source Breakdown Voltage	B _{VDSS}	V _{GS} =0V, I _D =250µA	20			V
Drain-Source Leakage Current	I _{DSS}	V_{DS} =20V, V_{GS} =0V			1.0	uA
Gate-Source Leakage Current	I _{GSS}	V _{GS} =12V, V _{DS} =0V			100	
Gate-Source Leakage Current	I _{GSS}	V_{GS} =-12V, V_{DS} =0V			-100	nA
On Characteristics		· ·	_			
Gate Threshold Voltage	V _{GS(th)}	V _{GS} = V _{DS} , I _D =250µA	0.5	0.65	0.9	V
		V _{GS} =4.5V, I _D =6A		6.0	7.0	mΩ
Static Drain- Source On State	R _{DS(on)}	V _{GS} =3.8V, I _D =5A		6.3	8.0	
Resistance		V _{GS} =2.5V, I _D =5A		7.1	9.0	
Dynamic Characteristics						
Input Capacitance	C _{iss}	V _{DS} =15V		1767		
Output Capacitance	Coss	V _{GS} =0V		164	_	pF
Reverse Transfer Capacitance	C _{rss}	f=1.0MHZ		155		
Switching Characteristics						
Turn-on Delay Time	t _{d(on)}			11.2		
Turn-on Rise Time	t _r	V_{DD} =16 V , R_{G} =6 Ω		42		ns
Turn-off Delay Time	t _{d(off)}	I _D =6.5A		68		
Turn-off Fall Time	t _f	(Note 2.3)		32		
Total Gate Charge	Q_g	V _{DS} =16V, I _D =13A		24		
Gate-Source Charge	Q_{gs}	V _{GS} =4.5V		3.7		nc
Gate-Drain Charge	Q _{gd}	(Note 2.3)		8.6		

SOURCE-DRAIN DIODE RATINGS AND CHARACTERISTICS

Characteristics	Symbol	Test conditions	Min.	Тур.	Max.	Unit
Continuous Source Current	Is	Integral Reverse P-			13	
Pulsed Source Current	Іѕм	NJunction Diode in the MOSFET			52	А
Diode Forward Voltage	V _{SD}	I _S =6A,V _{GS} =0V			1.4	V
Reverse Recovery Time	Trr	I _F =13A	-	48		ns
Reverse Recovery Charge	Qrr	dIF/dt=100A/µS		10.9		μC

- 1.Pluse width limited by maximum junction temperature
- 2.Pulse Test: Pulse width ≤300µs, Duty cycle≤2%
- 3.Essentially independent of operating temperature

Typical Performance Characteristics

Fig.1 Typical Output Characteristics

Fig.2 On-Resistance vs.Gate-Source

Fig.3 Forward Characteristics of Reverse

Fig.4 Gate-Charge Characteristics

Fig.5 Vgs(th)vs.TJ

Fig.6 Normalized Roson vs.TJ

10

F=1.0MHz

Typical Performance Characteristics

Fig.7 Capacitance 10000 Ciss Capacitance (pF) 2 Coss

-V_{rs}, Drain to Source Voltage (V)

Crss

25

Fig.8 Safe Operating Area 100.00 100us 10.00 1ms 10ms €1.00 100ms DC 0.10 T_A=25°C Single Pulse 0.01 10 0.01 V_{DE} (V)

Test Circuit

Gate Charge Test Circuit & Waveform

Resistive Switching Test Circuit & Waveform

Unclamped Inductive Switching Test Circuit & Waveform

Package Dimensions of DFN3*3-8L

Unit:mm

Symbol	Min	Тур	Max
A	0.70	0.75	0.80
В	0.27	0.32	0.37
С	0.153	0.203	0.253
D	2.90	3.00	3.10
Е	2.90	3.00	3.10
e	0.60	0.65	0.70
F	0.25	0.30	0.35
Н	0.89	0.99	1.09
H1	0.42	0.52	0.62
H2	0.25	0.35	0.45
Н3	0.15	0.25	0.35
H4	0.15	0.25	0.35
L	2.30	2.40	2.50

Disclaimer:

- ▶ Hi-semicon reserves the right to make changes to the information herein for the improvement of the design and performance without further notice! Customers should obtain the latest relevant information before placing orders and should verify that such information is complete and current.
- ▶ All semiconductor products malfunction or fail with some probability under special conditions. When using Hisemicon products in system design or complete machine manufacturing, it is the responsibility of the buyer to comply with the safety standards strictly and take essential measures to avoid situations in which a malfunction or failure of such Hi-semicon products could cause loss of body injury or damage to property.
- ► Hi-semicon will supply the best possible product for customers!

