ECT342 Embedded Systems

Dr. Sajesh Kumar U.

Thumb Instruction Set

- Thumb entry in CPSR -5th bit in CPSR is Thumb bit
- Thumb entry--- Using BX instructions, Using special instructions when returning from exceptions
- Thumb exit---Explicit switch to ARM instructions using BX thumb instruction.
 Implicit change to ARM execution occurs when returning from exceptions

Thumb Programmers Model

- ☐ Registers R0 to R7 are used
- R13 (stack pointer), R14 (Link register), R15 (program counter) for special purposes
- R8 to R12 and CPSR have restricted access
- ☐ Instructions are 16 bit long
- CPSR flags are changed by arithmetic and logic instructions and control conditional branching instructions

Thumb Programmers Model

- Thumb instructions execute unconditionally
- Many thumb data processing instructions use 2 address format.
- Instruction format is less regular than ARM
- Return from exceptions involve return address adjustments to compensate the ARM pipeline behavior

Thumb Branch Instructions

- BL offset can be extended to 22 bits by using 2 instructions.
- ARM supports word offsets whereas Thumb supports half word offsets

Thumb Software Interrupt Instruction

SWI 8bit immediate

- Address of next thumb instruction is stored in R14_svc, CPSR in SPSR_svc
- IRQ is disabled
- ☐ PC is forced to 0x08 location
- ARM SWI handler is entered as exceptions clear thumb mode

Thumb Data Processing Instructions

- (1) ADD | SUB Rd, Rn, Rm
- (2) ADD|SUB Rd, Rn, #imm3
- (3) < Op> Rd/Rn, #imm8
- (4) LSL|LSR|ASR Rd, Rn, #shift
- (5) <Op> Rd/Rn, Rm/Rs
- (6) ADD | CMP | MOV Rd/Rn, Rm
- (7) ADD Rd, SPIPC, #imm8
- (8) ADDISUB SP, SP, #imm7

- Shift and ALU operations in separate instructions
- All data processing operations set the flags if operated on R0 to R7.
- Only CMP sets flags if operated on Hi registers

Thumb Single register transfer Instruction

Same as ARM instructions

Thumb multiple register transfer Instruction

LDMIA Rn!, {<reg list>)
STMIA Rn!, {<reg list>}
POP {<reg list>{, pc}}
PUSH {<reg list>{, lr}}

- PUSH, POP instructions
- Bottom bit of a loaded PC updates thumb bit

Thumb Break Point Instruction

- BKPT
- Processor takes prefetch abort for debugging

Thumb Implementation

- Thumb de-compressor
- 16 bit thumb instruction to 32 bit ARM instruction

Thumb Implementation

- In thumb only conditional codes are branch instructions
- Data processing instructions modifying Conditional flags is implicit in Thumb
- Thumb 2 address format to ARM 3 address format by replicating a register specifier

Thumb Applications

- Thumb uses 70% of the ARM code
- Thumb uses 40% more instructions
- With 32 bit memory ARM code is faster and with 16 bit Thumb is faster
- Thumb uses 30% less external memory power than ARM code

Architectural support for system development

- Memory interface
- 32 bit address bus and 32 bit bidirectional data bus
- Signal for memory needed (mreq), sequential address (seq) for memory control logic
- R/W direction and size of data for transfer
- Bus timing and control signals

Memory Interface

ROM wait states

Memory Wait States and Address Decoding

A[31:0]

wait

wait1

wait2

ROM0e

fast

ROM1

ROM2

ROM3

DRAM and Address Incrementer

Advanced Microcontroller bus Architecture (AMBA) Bus

- AHB
- ASB
- APB

Advanced High Performance Bus (AHB)

ARM Reference Peripheral Specification

- For operating system, number of components are required
- Memory map- Define base addresses of interrupt controller, counter time controller, reset controller and pause controller
- Interrupt controller- disabling, enabling, examining 32 IRQ sources, FIQ
- Counter timer—frequency division, prescaling
- Reset and pause controller---reset, pause status

Hardware System Prototyping Tools

- ☐ Testing the components
- Rapid Silicon Prototyping
- Required blocks are implemented as off chip components
- On chip components not required are de configured

ARMulator

- Software simulator which contains four components
- The processor core model
- Memory interface
- □ Coprocessor interface
- Operating system interface

JTAG Boundary Scan Architecture

Embedded ICE

- Introduces breakpoints and watch point registers
- Accessed by JTAG instructions

System on chip has many macro cells to be tested

ARM Debug Architecture

- Use AMBA bus and access the test data parallel rather than serial in case boundary scan
- Embedded ICE contains two watch point registers, control and status registers

Embedded Trace-Real Time Debug System Organization

DSP Core

- Piccolo co processor, 16 bit
- 4, 48 bit registers

ARM v5TE

- Q flag for saturated arithmetic
- Multiply 16X16

```
SMLAxy{cond} Rd,Rm,Rs,Rn

SMLAWy{cond} Rd,Rm,Rs,Rn

SMLAWy{cond} Rd,Rm,Rs,Rn

QADD{cond} Rd,Rm,Rn

QADD{cond} Rd,Rm,Rn

QADD{cond} Rd,Rm,Rn

Rd,Rm,Rn

Rd,Rm,Rn

Rd,Rm,Rn
```

SMULxy{cond} Rd,Rm,Rs

SMLALxy{cond} RdLo, RdHi, Rm, Rs.