Computer Vision and Machine Learning

(Neural Network-1)

Bhabatosh Chanda bchanda57@gmail.com

Regression

- Regression is a technique to establish relation between independent variables or primary observations (features) and dependent variables.
- Depending on type of relation between dependent variable (decision or prediction) and independent variable(s), we may classify the regression as
 - Linear regression
 - Logistic regression

Intro 2 ML

Machine learning tasks T

• **Classification:** To decide which of the *k* classes the given input belongs to. Learning system tries to develop a mapping (function)

$$f: \mathbb{R}^n \to \{1, 2, \cdots, k\}$$

• **Prediction:** To predict a numerical value for the given input. So the task is similar to classification except the representation of output. Thus the mapping (function) is

$$f\colon R^n\to R$$

Intro 2 ML

Idea of machine learning

- A system (here, machine or computer) is said to have learned
 - to do some task T
 - from a set of examples E
 - in terms of a performance measure P,

if its performance improves

- as measured by the same P
- to carry out the same task T
- by dealing with the example set *E*.

Intro 2 ML

Linear regression

- Task is to build a system to predict a scalar value $y \in R$ as output from the given input $x \in R^n$.
- Suppose \hat{y} is the value predicted by the system, i.e.,

$$\hat{y} = \boldsymbol{w}^T \boldsymbol{x}$$

where $w \in \mathbb{R}^n$ is parameter vector that controls behaviour of system.

• Assume $\mathbf{x} = (x_1, x_2, \dots, x_n)$, similarly $\mathbf{w} = (w_1, w_2, \dots, w_n)$

2 ML

Linear regression (contd.)

• A more general relation between $x \in \mathbb{R}^n$ and $y \in \mathbb{R}$ may be expressed as

$$\hat{y} = \mathbf{w}^T \mathbf{x} + b$$

- If we append a '1' to x and including 'b' as a weight
 - ullet Relation between y and $oldsymbol{x}$ becomes affine, but
 - Relation between \boldsymbol{y} and \boldsymbol{w} remains linear.
- Consider $\pmb x=(x_0,x_1,x_2,\cdots,x_n)$ and $\pmb w=(w_0,w_1,w_2,\cdots,w_n)$ where $x_0=1$ and $w_0=b$.

Intro 2 ML

Linear regression (contd.)

- $x \rightarrow$ independent variable (e.g., age of a deer, time in quarter, etc.)
- y → dependent variable (resp., weight of a deer, pairs of shoes sold)
- Let us consider relation between x and y may be modeled as a straight line:

$$y = wx + b$$

• Exploiting linear regression technique, we estimate

$$w = \frac{\sum (x - \bar{x})(y - \bar{y})}{\sum (x - \bar{x})^2} \qquad b = \bar{y} - w\bar{x}$$

4/10/2024

Prediction: multiple input

• So far we have discussed the cases where input is a single variable.

$$y = f(x)$$

• No. of input variables (independent variables) may be more than 1.

$$y = f(x_1, x_2, x_3, ..., x_n)$$

• A contrived example may have following input variables:

Variable	1	2	3	4	5	6	7	8	9	10
<i>X</i> ₁	37	42	38	34	41	42	36	40	39	43
x ₂	95	93	97	96	98	98	94	97	99	95
У	0	0	0	0	1	1	0	1	1	1

4/10/2024

Boundary function

• Find coefficients a, b and c of equation of a straight line

$$ax + by + c = 0$$

such that for all observation a feature pair (x, y):

```
ax + by + c > 0 if (x,y) belongs to C_1

ax + by + c < 0 if (x,y) belongs to C_2
```

- If the desired condition is not satisfied for any feature-label pair we call a classification error has occurred.
- In general, decision boundary must be estimated to minimize this error.

4/10/2024

L7

Generalization

- The ability to perform well on previously unseen data is called *generalization*.
- The target of machine learning to keep *generalization error* or *test error* as low as possible.
 - Note that system is built by minimizing the train error.
 - Is there any relation between training error and test error?

Intro 2 MI

Generalization (contd.)

- Training and test data are accumulated by same data generating process.
 - Each example in training and test datasets are *independent* to each other.
 - The training and test datasets are identically distributed.
- The *i.i.d.* assumption allows us to study the relationship between the training error and the test error.
 - Expected training error and the expected test error of a model are equal.

Intro 2 ML

21

Overfitting and underfitting

- *Two criteria* that determines how well a machine learning algorithm performs are its ability to
 - 1. make the training error small, and
 - 2. Make the gap between the training error and the test error small.
- These correspond to two problems: overfitting and underfitting.
 - If the training error is not small → underfitting
 - If gap between training and test errors is not small → overfitting.

How to set the boundary function

- Based on the training data set.
 - All at a time.
 - · Linear discriminant analysis
 - · One at a time.
 - · Perceptron network, neural network

Intro 2 ML

How to set the boundary function

- Based on the training data set.
 - All at a time.
 - · Linear discriminant analysis
 - One at a time.
 - · Perceptron network, neural network

Intro 2 ML

Boundary function

• Find coefficients a, b and c of equation of a straight line

$$ax + by + c = 0$$

such that for all observation a feature pair (x, y):

```
ax + by + c > 0 if (x,y) belongs to C_1

ax + by + c < 0 if (x,y) belongs to C_2
```

- If the desired condition is not satisfied for any feature-label pair we call a classification error has occurred.
- In general, decision boundary must be estimated to minimize this error.

4/10/2024

5

What are Artificial Neural Networks?

- Mimics the function of the brain and nervous system
- Highly parallel
 - Process information much more like the brain than a serial computer
- Learning
- Very simple principles
- Very complex behaviours

4/10/2024

Function of a node

- At node $\hbox{Output } O=f(\sum w_ix_i)$ where f(.) is a squashing function.
- Squashing function limits node output.

4/10/2024

Perceptron

• Linear treshold unit (LTU) x_1 w_2 $x_0=1$ $x_0=1$

Perceptron network • Synonym for single layer, feed-forward network capable of learning. • Output $O = f(\sum_j W_j I_j + b_j)$ where 'b' is bias, which however, may be included as additional weight. I, w, o I, w

Standard activation functions

- The hard-limiting threshold function
 - Corresponds to the biological paradigm
 - either fires or not (Perceptron)
- Sigmoid functions ('S'-shaped curves)
 - The hyperbolic tangent (symmetrical)
 - Both functions have a simple differential
 - Only the shape is important (Neuron)

 $1 + e^{-ax}$

Example: node function

• Feeding data through the net:

Squashing: $\frac{1}{1 + a^{0.5}} = 0.37$

4/10/2024

Loss function or Error or Cost function

- Training sample is composed of
 - Input data (feature vector) and
 - Actual class label (also known as groundtruth)
- Given the input, feed forward network predicts class label
 - based on current parameters
 - Loss or error or cost is measured as total deviation from groundtruth

<u>Cost</u> or <u>Loss</u> or <u>Error</u>: $E(\mathbf{w}) = \sum (Predicted \ label - Actual \ label)^2$ where \mathbf{w} is parameter vector.

4/10/2024

4/10/2024

Training the network

- Means setting correct weights (including bias) or parameters of the network.
- Backpropagation
 - Requires training set (input / output pairs)
 - Starts with small random weights
 - Compute error between predicted label and actual label (groundtruth)
 - Error is used to adjust weights (supervised learning)
 - → Gradient descent on error landscape

4/10/2024

Machine learning network

Machine learning models for classification have followings are common:

- Input layer: quantitative representation of object features
- Hidden layer(s): apply transformations with nonlinearity
- Output layer: Result for classification, regression etc.
- The models are trained through *supervised learning*.
 - Training data are explicitly labelled (known output).
 - Weights are updated to minimize error between prediction and the groundtruth.

Intro 2 ML

Multilayer neural networks

Input layer | hidden layers | output layer | upper layer |

Different Non-Linearly Separable Problems Structure Types of Decision Regions Problem Meshed regions Region Shapes Single-Layer Half Plane Bounded By Hyperplane By Hyperplane

Backpropagation

- Algorithm proposed in 1970.
- Became convincingly popular in 1986 due to a paper by <u>David</u> Rumelhart, Geoffrey Hinton, and Ronald Williams.
- At the core of backpropagation is an expression for the partial derivative of Error function with respect to weights, i.e., $\frac{\partial E}{\partial w}$

Intro 2 M

Weights of neural network

 w^l_{jk} is the weight from the $k^{\rm th}$ neuron in the $(l-1)^{\rm th}$ layer to the $j^{\rm th}$ neuron in the $l^{\rm th}$ layer

w^{to} the layer to neuron, from neuron

L

Output of j-th node at the l-th layer

- Input to l-th layer is coming from (l-1)-th layer, i.e., $\mathbf{y}^{(l-1)}$.
- Suppose there are K nodes in the (l-1)-th layer.

$$\bullet \ \pmb{y}^{(l-1)} = \left(1, \ y_1^{(i-1)}, y_2^{(l-1)}, y_3^{(l-1)}, \dots, y_{K-1}^{(l-1)}\right)^T$$

- Weight of the connection from k-th node of the (l-1)-th layer to the j-th node of the l-th layer is $w_{ik}^{(l)}$.
 - $\mathbf{w}_{j}^{(l)} = \left(w_{j0}^{(l)}, w_{j1}^{(l)}, w_{j2}^{(l)}, \dots, w_{jK-1}^{(l)}\right)^{T}$, where $w_{j0}^{(l)}$ is the weight to the bias.

Intro 2 MI

Output of i-th node at the l-th layer

ullet Output of the j-th node at the l-th layer is

$$y_j^{(l)} = \sigma\left(\left(\mathbf{w}_j^{(l)}\right)^T \mathbf{y}^{(l-1)}\right)$$

where $l=1,2,3,\ldots,L$ and that means the NN has L-1 hidden layers.

- Note that at the input layer, i.e., $\mathbf{y}^{(0)} = \mathbf{x}$ and output is $\mathbf{y}^{(L)} = \widehat{\mathbf{y}}$.
- Let us decompose $y_j^{(l)} = \sigma\left(\left(\boldsymbol{w}_j^{(l)}\right)^T \boldsymbol{y}^{(l-1)}\right)$ into $y_j^{(l)} = \sigma\left(z_j^{(l)}\right)$ where $z_i^{(l)} = \sum_k w_{ik}^{(l)} y_k^{(l-1)}$

Chain rule to compute

• Considering single output node, rewrite $y_j^{(l)} = \sigma\left(\left(\boldsymbol{w}_j^{(l)}\right)^T\boldsymbol{y}^{(l-1)}\right)$ as

$$y_j^{(l)} = \sigma(z_j^{(l)})$$
 where $z_j^{(l)} = \sum_k w_{jk}^{(l)} y_k^{(l-1)}$

• Following the chain rule:

$$\begin{split} \hat{y}(\boldsymbol{x}, \boldsymbol{w}) &= y^{(L)} = \sigma \left(\sum_{k} w_{jk}^{(L)} y_{k}^{(L-1)} \right) \\ &= \sigma \left(\sum_{k} w_{jk}^{(L)} \sigma \left(z_{k}^{(L-1)} \right) \right) \\ &= \sigma \left(\sum_{k} w_{jk}^{(L)} \sigma \left(\sum_{m} w_{km}^{(L-1)} y_{m}^{(L-2)} \right) \right) \; \cdots \end{split}$$

ntro 2 ML

Derivative of function of functions

• Suppose we have $f(x) = log_e(sin(x^2))$

• Consider $f(x) = f_1(y)$ where $y = sin(x^2)$

• then $y = f_2(z)$ where $z = x^2$

• then $z = f_3(x)$

• Thus $f(x) = f_1(y) \Rightarrow f(x) = f_1(f_2(z)) \Rightarrow f(x) = f_1(f_2(f_3(x)))$

• $\frac{df}{dx} = \frac{df_1}{df_2} \frac{df_2}{df_3} \frac{df_3}{dx}$ OR $\frac{df}{dx} = \frac{df}{dy} \frac{dy}{dz} \frac{dz}{dx}$ OR $\frac{df}{dx} = \frac{1}{\sin(x^2)} \cos(x^2) 2x$

Intro 2 ML

Backpropagation

• We do not have groundtruth at the output of every layer, except the final layer, change in weight at any layer is related to the change in error ΔE as

$$\Delta E = \frac{\partial E}{\partial w_{jk}^{(l)}} \Delta w_{jk}^{(l)}$$

Recall that

$$\hat{y}(\boldsymbol{x}, \boldsymbol{w}) = y^{(L)} = \sigma \left(\sum_{k} w_{jk}^{(L)} \sigma \left(\sum_{m} w_{km}^{(L-1)} y_{m}^{(L-2)} \right) \right) \cdots$$

Backpropagation (contd.)

• However, to compute total change in error ΔE due to change in weights of k-th node of (l-1)-th layer connected to the j-th node of l-th layer, it is plausible that we should sum over all possible paths from k-th node of the (l-1)-th layer to the final layer, i.e.,

$$\Delta E \approx \sum_{mnp...qr} \frac{\partial E}{\partial y_m^{(L)}} \frac{\partial y_m^{(L)}}{\partial y_n^{(L-1)}} \frac{\partial y_n^{(L-1)}}{\partial y_n^{(L-2)}} \cdots \frac{\partial y_q^{(l+1)}}{\partial y_r^{(l)}} \frac{\partial y_r^{(l)}}{\partial y_{ik}^{(l)}} \Delta w_{jk}^{(l)}$$

Backpropagation (contd.)

• Now combining following two equations:

$$\Delta E = rac{\partial E}{\partial w_{jk}^{(l)}} \Delta w_{jk}^{(l)}$$
 and

$$\Delta E \approx \sum_{mnp...qr} \frac{\partial E}{\partial y_m^{(L)}} \frac{\partial y_m^{(L)}}{\partial y_n^{(L-1)}} \frac{\partial y_n^{(L-1)}}{\partial y_p^{(L-2)}} \cdots \frac{\partial y_q^{(l+1)}}{\partial y_r^{(l)}} \frac{\partial y_r^{(l)}}{\partial w_{ik}^{(l)}} \Delta w_{jk}^{(l)}$$

· We obtain

$$\frac{\partial E}{\partial w_{ik}^{(l)}} = \sum_{mn \dots qr} \frac{\partial E}{\partial y_m^{(L)}} \frac{\partial y_m^{(L)}}{\partial y_n^{(L-1)}} \frac{\partial y_n^{(L-1)}}{\partial y_p^{(L-2)}} \dots \frac{\partial y_q^{(l+1)}}{\partial y_r^{(l)}} \frac{\partial y_r^{(l)}}{\partial w_{ik}^{(l)}}$$

Intro 2 ML

Updating weight

- Error function: $E(\mathbf{w}) = \frac{1}{2n} \sum_{\mathbf{x}} ||\hat{y}(\mathbf{x}, \mathbf{w}) y(\mathbf{x})||^2$ where $\hat{y}(\mathbf{x}, \mathbf{w}) = \sigma \left(\sum_{k} w_{jk}^{(l)} \sigma \left(\sum_{m} w_{km}^{(l-1)} y_{m}^{(l-2)} \right) \right) \cdots$
- Earlier we had (for single layer): $w_k^{(t+1)} = w_k^{(t)} \eta \, \frac{\partial \mathit{E}}{\partial w_k}$
- ullet Now updating weight from k-th node of (l-1)-th layer to j-th node of l-th layer as

$$w_{jk}^{(l)(t+1)} = w_{jk}^{(l)(t)} - \eta \frac{\partial E}{\partial w_{jk}^{(l)(t)}}$$

Intro 2 ML

Intro 2 ML

69

Standard activation functions

- Sigmoid functions ('S'-shaped curves)
 - The hyperbolic tangent (symmetrical)
 - Both functions have a simple differential
 - Only the shape is important (Neuron)

$$\sigma(z) = \frac{1}{1 + e^{-az}}$$

4/10/2024

Sigmoid function

- Sigmoid function
 - may be expressed as

$$\sigma(z) = \frac{1}{1 + e^{-\alpha z}}$$

- is one of the most popular activation function.
- squashes the input value between 0 and 1.
- is smooth and differentiable.
- maximum slope is at z=0

Derivative of sigmoid function

- We have $y = \sigma(z) = \frac{1}{1 + e^{-\alpha}}$
- Derivative of $\sigma(z)$ at z=0 may be written as

$$\frac{d\sigma}{dz}|_{z=0} = \frac{e^{-\alpha z}}{(1+e^{-\alpha z})^2}|_{z=0} = \frac{1}{(1+1)^2} = 0.25$$

• This is the maximum value of gradient for any z.

Intro 2 M

Multilayer neural network: Example

Vanishing gradient problem

- Number of layers are usually approximates the degree of polynomial function it
- However, more layers means more neurons and consequently more time to train
- Second, since the derivative of the activation function (resulting in output at each layer) ≤ 0.25 ,

$$\frac{\partial E}{\partial w_{jk}^{(l)}} = \sum_{mnp...qr} \frac{\partial E}{\partial y_m^{(L)}} \frac{\partial y_m^{(L)}}{\partial y_n^{(L-1)}} \frac{\partial y_n^{(L-1)}}{\partial y_p^{(L-2)}} \cdots \frac{\partial y_q^{(l+1)}}{\partial y_r^{(l)}} \frac{\partial y_r^{(l)}}{\partial w_{jk}^{(l)}}$$

- May tend to zero. This is known as vanishing gradient problem.
- This problem is more evident as we deeper layers from output input.

Vanishing gradient problem

$$w_{jk}^{(l)(t+1)} = w_{jk}^{(l)(t)} - \eta \frac{\partial E}{\partial w_{ij}^{(l)(t)}}$$

- Recall the weight updating rule $w_{jk}^{(l)(t+1)} = w_{jk}^{(l)(t)} \eta \, \frac{\partial E}{\partial w_{jk}^{(l)(t)}}$ If $\frac{\partial E}{\partial w_{jk}^{(l)(t)}} \rightarrow 0$, we have $w_{jk}^{(l)(t+1)} \approx w_{jk}^{(l)(t)}$
- The first layers are supposed to carry most of the information, but we see it gets trained the least.
- Hence, the problem of vanishing gradient eventually leads to the death of the network.

Exploding gradient problem

- Suppose vanishing gradient problem does not occur.
- Then $\frac{\partial E}{\partial w_{jk}^{(l)}} = \sum_{mn} \dots qr \frac{\partial E}{\partial y_m^{(L)}} \frac{\partial y_m^{(L)}}{\partial y_n^{(L-1)}} \frac{\partial y_n^{(L-1)}}{\partial y_p^{(L-2)}} \dots \frac{\partial y_q^{(l+1)}}{\partial y_r^{(l)}} \frac{\partial y_r^{(l)}}{\partial w_{jk}^{(l)}}$ implies that
- $\frac{\partial E}{\partial w_{jk}^{(l)}}$ is a sum of gradient magnitude along $m \times n \times p \times \cdots \times q \times r$ number of paths, where each gradient is greater than 0.
- Thus this sum could be significantly high resulting in exploding gradient problem.

Intro 2 ML

77

Activation function (non-linear)

- Rectified Linear Unit (ReLU): y = max(0, x)
 - Softplus function: $y = \log(1 + e^x)$

Leaky ReLU:

4/10/2024

78

Some hyperparameters

- **Epoch:** Suppose there are *n* samples in the training set. Passing (or using) all *n* samples to train the network is known as one epoch.
 - To train the network we need pass the training samples over and over again.
 - As the number of epoch increases network upgrades from underfitting to optimum to overfitting.
- Batch: If n is large, training set is divided into small batches or groups or sets of training data. Batch size is the number of training samples, say m, in each batch.
- Iteration: The number of batches that are passed through the network to complete one epoch, i.e., n/m.

Batch normalization

- As the training progresses the network encounters (or being feed into) newer data
 - The statistical distribution of the input to layer(s) keeps changing.
 - The distribution of the output of each layer in different batches are different.
 - · This reduces training efficiency.
- The input samples (in every batch) are normalized before feeding it into the next layer of the network.
 - The mean and variance of all such batches, instead of the entire data, are computed.
 - This is known as batch normalization.

Intro 2 MI

Dropout

- This is used to overcome the overfitting problem.
- Often certain nodes in the network are randomly switched off, from some or all the layers of a neural network.
 - Hence, in every iteration, we get a new network.
 - The resulting network (obtained at the end of training) is a combination of all of them.

Intro 2 ML

• This is an way of implementing the *regularization*.

81

Thank you!

Any question?

Intro 2 ML