

Universidad Nacional Autónoma de México

Facultad de Ingeniería

Ingeniería en computación

Bases de datos

Tarea Derecho a examen "Normalizaciones en dos casos"

Martínez García Gabriela

Grupo 1

Profesor: Ing. Fernando Arreola Franco

Semestre 2022-2

EJERCICIO DE EMPLEADOS Y SUCURSALES

Ejercicio

Partiendo de:

staffNo	name	position	salary	branchNo	branchAddress	telNo
S1500	Tom Daniels	Manager	46000	B001	8 Jefferson Way, Portland, OR 97201	503-555-3618
S0003	Sally Adams	Assistant	30000	B001	8 Jefferson Way, Portland, OR 97201	503-555-3618
S0010	Mary Martinez	Manager	50000	B002	City Center Plaza, Seattle, WA 98122	206-555-6756
\$3250	Robert Chin	Supervisor	32000	B002	City Center Plaza, Seattle, WA 98122	206-555-6756
S2250	Sally Stern	Manager	48000	B004	16 – 14th Avenue, Seattle, WA 98128	206-555-3131
S0415	Art Peters	Manager	41000	B003	14 - 8th Avenue, New York, NY 10012	212-371-3000

PK: {A} PK: {A, E}

CASO PK:{staffNo}={A}

PRIMERA FORMA NORMAL (1FN)

¿Cumple con 1FN?

- Hay atomicidad
- No hay atributos multivaluados
- No hay grupos de repetición

Por lo tanto, <u>Sí cumple 1FN</u>

SEGUNDA FORMA NORMAL (2FN)

Α	В	C	D	E	F	G
staffNo	name	position	salary	branchNo	branchAddress	telNo
S1500	Tom Daniels	Manager	46000	B001	8 Jefferson Way, Portland, OR 97201	503-555-3618
S0003	Sally Adams	Assistant	30000	B001	8 Jefferson Way, Portland, OR 97201	503-555-3618
50010	Mary Martinez	Manager	50000	B002	City Center Plaza, Seattle, WA 98122	206-555-6756
53250	Robert Chin	Supervisor	32000	B002	City Center Plaza, Seattle, WA 98122	206-555-6756
S2250	Sally Stern	Manager	48000	B004	16 – 14th Avenue, Seattle, WA 98128	206-555-3131
S0415	Art Peters	Manager	41000	B003	14 - 8th Avenue, New York, NY 10012	212-371-3000

PK:{ A }

¿PK simple? Sí

Base: A -> { B, C, D, E, F, G}

¿Cumple 2FN?

- Esta en 1FN
- Hay llave PK simple

Por lo tanto, Sí cumple 2FN

TERCERA FORMA NORMAL (3FN)

PK:{ A }

Llaves candidatas: No hay

Análisis de todas las dependencias

• Notación de dependencia funcional

Base: A -> { B, C, D, E, F, G}

 $A \rightarrow \{ B, C, D, E \}$

 $E \rightarrow \{F,G\}$

• Diagrama de dependencias

¿Hay dependencia transitiva en atributos no-principales? Sí. Cuando E -> $\{F,G\}$

Tanto como E como F y G son atributos no principales, por lo que la tabla NO está en 3FN $\,$

Normalizando en 3FN:

Creamos una nueva tabla con E, F y G, donde E será PK de la nueva tabla y FK de la tabla que se partió. F y G ya no forman parte de la tabla original.

Teniendo como resultado:

E(PK)	F	G
branchNo	branchAddress	telNo
B001	8 Jefferson Way, Portland, OR 97201	503-555-3618
B001	8 Jefferson Way, Portland, OR 97201	503-555-3618
B002	City Center Plaza, Seattle, WA 98122	206-555-6756
B002	City Center Plaza, Seattle, WA 98122	206-555-6756
B004	16 – 14th Avenue, Seattle, WA 98128	206-555-3131
B003	14 - 8th Avenue, New York, NY 10012	212-371-3000

¿Cumple 3FN?

- Se encuentra en 2FN
- No hay dependencias transitivas

Por lo tanto, <u>Sí cumple 3FN</u>

CASO PK:{staffNo,branchNo}={A,E}

PRIMERA FORMA NORMAL (1FN)

Α	В	C	D	E	F	G
staffNo	name	position	salary	branchNo	branchAddress	telNo
S1500	Tom Daniels	Manager	46000	B001	8 Jefferson Way, Portland, OR 97201	503-555-3618
S0003	Sally Adams	Assistant	30000	B001	8 Jefferson Way, Portland, OR 97201	503-555-3618
50010	Mary Martinez	Manager	50000	B002	City Center Plaza, Seattle, WA 98122	206-555-6756
S3250	Robert Chin	Supervisor	32000	B002	City Center Plaza, Seattle, WA 98122	206-555-6756
S2250	Sally Stern	Manager	48000	B004	16 – 14th Avenue, Seattle, WA 98128	206-555-3131
S0415	Art Peters	Manager	41000	B003	14 - 8th Avenue, New York, NY 10012	212-371-3000

¿Cumple con 1FN?

- Hay atomicidad
- No hay atributos multivaluados
- No hay grupos de repetición

Por lo tanto, <u>Sí cumple 1FN</u>

SEGUNDA FORMA NORMAL (2FN)

¿PK simple? No

- Análisis de dependencias parciales y totales

¿Hay dependencia funcional parcial? Sí

- Aplicando proceso de normalización 2FN

Formando las tablas obtenidas:

$$A \mathrel{->} \{\,B,\,C,\,D\,\}$$

$$E \to \{ F, G \}$$

$${A, E} \rightarrow {B}$$

Tabla EMPLEADO

(PK)			
Α	В	C	D
StaffNo	Name	Position	Salary
S1500	Tom Daniels	Manager	46000
S0003	Sally Adams	Assistent	30000
S0010	Mary Martinez	Manager	50000
S3250	Robert Chin	Supervisor	32000
S2250	Sally Stern	Manager	48000
S0415	Art Peters	Manager	41000

¿Cumple 2FN?

- Esta en 1FN
- No hay dependencia funcional parcial

Por lo tanto, <u>Sí cumple 2FN</u>

Tabla SUCURSAL

(PK)

E F G

branchNo.	Name	telNo
B001	8 Jefferson Way, Portland, OR 97201	503-555-3618
B002	Citi Center Plaza, Seattle, WA 98122	206-555-6756
B003	14 - 8th Avenue, New York, NY 10012	212-371-3000
B004	16 - 14th Avenue, Seattle, WA 98128	206-555-3131

¿Cumple 2FN?

- Esta en 1FN
- No hay dependencia funcional parcial

Por lo tanto, <u>Sí cumple 2FN</u>

Tabla TRABAJA

[(FK)	(FK)](PK)
Α	E	
StaffNo	branchNo	
S1500	B001	
S0003	B001	
S0010	B002	
S3250	B002	
S2250	B004	
S0415	B003	

¿Cumple 2FN?

- Esta en 1FN
- No hay dependencia funcional parcial

Por lo tanto, <u>Sí cumple 2FN</u>

TERCERA FORMA NORMAL (3FN)

Llaves candidatas: No hay

- Identificando dependencias:

¿Hay dependencia transitiva en atributos no-principales? No.

¿Cumple 3FN?

- Se encuentra en 2FN
- No hay dependencias transitivas en atributos no-principales

Por lo tanto, <u>Sí cumple 3FN</u>

¿POR QUÉ los RESULTADOS DE AMBOS CASOS SON EQUIVALENTES?

En el caso 1 como resultado de la normalización se obtuvieron dos tablas: EMPLEADO Y SUCURSAL. La relación que mantienen las tablas radica en que la llave PK de la tabla SUCURSAL se encuentra propagada como FK a la tabla EMPLEADO, esta relación describe la regla de Codd para las relaciones M:1. Ejemplificando el caso en el que la regla de negocio especifique que un empleado trabaja en una sola sucursal y que en una sucursal se puede tener a más de un empleado laborando.

Tabla EMPLEADO PK:{staffNo} FK:{ branchNo}

Tabla SUCURSAL PK:{branchNo}

staffNo	name	position	salary	branchNo
\$1500	Tom Daniels	Manager	46000	B001
S0003	Sally Adams	Assistant	30000	B001
50010	Mary Martinez	Manager	50000	B002
S3250	Robert Chin	Supervisor	32000	B002
S2250	Sally Stern	Manager	48000	B004
S0415	Art Peters	Manager	41000	B003

branchNo	branchAddress	telNo
B001	8 Jefferson Way, Portland, OR 97201	503-555-3618
B001	8 Jefferson Way, Portland, OR 97201	503-555-3618
B002	City Center Plaza, Seattle, WA 98122	206-555-6756
B002	City Center Plaza, Seattle, WA 98122	206-555-6756
B004	16 – 14th Avenue, Seattle, WA 98128	206-555-3131
B003	14 - 8th Avenue, New York, NY 10012	212-371-3000

En las tablas se puede observar de forma visual que un solo empleado registrado puede trabajar en la sucursal. Sin embargo, si se quisiera dar la oportunidad del caso en que un empleado trabaje en más de una sucursal, esto no se podría hacer con esta solución ya que se tendría registros repetidos en la columna branchNo, además de que por cada registro de una sucursal en la que se encuentra trabajando un empleado se tendría que volver a registrar al mismo empleado ocasionando que la llave primaria de los empleados se repita, lo cual no es posible, pues las llaves principales se caracterizan por ser únicas, siendo que también se causaría un problema de redundancia.

De otra forma si se hiciera un atributo multivaluado al numero de sucursal (brachNo), ya no se cumpliría la 1FN y se tendría que volver a aplicar el proceso de normalización para reducir las redundancias e inconsistencias. Siendo este caso una solución más particular al problema

En el caso 2 como resultado de la normalización se obtuvieron 3 tablas: EMPLEADO, SUCURSAL y TRABAJA. Este caso atiende a una regla de negocio en la que se especifique que un empleado pueda trabajar en muchas sucursales y que en una sucursal se tengan mucho empleado. Este resultado sería una solución al inconveniente del caso 1; si se quisiera que un empleado trabaje en una o más sucursales.

La relación que guardan las 3 tablas es una relación M:M, la cual describe la regla de Codd que en relaciones M:M se crea una nueva tabla manteniendo la unicidad de los registros haciendo una clave primaria compuesta entre la llave PK de la tabla EMPLEADO y la llave PK de la tabla TRABAJA.

En la tabla EMPLEADO contamos con información únicamente referente al empleado

Tabla EMPLEADO PK: {staffNo}

StaffNo	Name	Position	Salary
S1500	Tom Daniels	Manager	46000
S0003	Sally Adams	Assistent	30000
S0010	Mary Martinez	Manager	50000
S3250	Robert Chin	Supervisor	32000
S2250	Sally Stern	Manager	48000
S0415	Art Peters	Manager	41000

La tabla trabaja muestra la relación en la que un empleado puede trabajar en muchas sucursales, respetando la no duplicidad de los datos. Aquí se podrá encontrar las relaciones que guardan los registros de los empleados con las sucursales, respecto a qué empleado se encuentra trabajando en cuál o cuáles sucursales.

Tabla TRABAJA Pk:{staffNo (FK), brachNo(FK)}

StaffNo	branchNo
S1500	B001
S0003	B001
S0010	B002
S3250	B002
S2250	B004
S0415	B003

En la tabla SUCURSAL tendremos información referente solo a la sucursal

Tabla SUCURSAL PK:{brachNo}

branchNo.	Name	telNo
B001	8 Jefferson Way, Portland, OR 97201	503-555-3618
B002	Citi Center Plaza, Seattle, WA 98122	206-555-6756
B003	14 - 8th Avenue, New York, NY 10012	212-371-3000
B004	16 - 14th Avenue, Seattle, WA 98128	206-555-3131

Siendo este caso una solución general al problema planteado. Sin embargo, el inconveniente que se presenta es en relación con el almacenamiento en memoria que se considera ya que se cuenta con una tabla extra.

La elección entre cualquiera de los dos casos dependerá de las especificaciones detallas que el cliente detalle respecto al funcionamiento de su empresa, puesto que ambas soluciones son correctas solo que una solución (caso 2) es muy general y otra (caso 1) muy particular.

EJERCICIO DE ORDENES

Ejercicio

- La PK es id_Orden
- Dibujar el diagrama de dependencias
- Normalizar hasta 3FN

A Ordenes	В	С	D	E	F	G	Н	I
Id orden	Fecha	Id cliente	Nom cliente	Estado	Num art	nom art	cant	Precio
2301	23/02/11	101	Martin	Caracas	3786	Red	3	35,00
2301	23/02/11	101	Martin	Caracas	4011	Raqueta	6	65,00
2301	23/02/11	101	Martin	Caracas	9132	Paq-3	8	4,75
2302	25/02/11	107	Herman	Coro	5794	Paq-6	4	5,00
2303	27/02/11	110	Pedro	Maracay	4011	Raqueta	2	65,00
2303	27/02/11	110	Pedro	Maracay	3141	Funda	2	10,00

Análisis de todas las dependencias

• Notación de dependencia funcional

• Diagrama de dependencias

CASO PK:{Id_orden}={A}

PRIMERA FORMA NORMAL (1FN)

¿Cumple con 1FN?

- Hay atomicidad
- No hay atributos multivaluados
- Sí hay grupos de repetición que representan lo mismo

Por lo tanto, NO cumple 1FN

Normalizando en 1FN:

ORDEN:

PΚ

Id_orden	Fecha	Id_cliente	Nom_cliente	Estado
2301	23/02/2011	101	Martin	Caracas
2302	25/02/2011	107	Hernan	Coro
2303	27/02/2011	110	Pedro	Maracay

ARTICULO:

FK

PK

Id_orden	Num_art	nom_art	cant	Precio
2301	3786	Red	3	35,00
2301	4011	Raqueta	6	65,00
2301	9132	Paq-3	8	4,75
2302	5794	Paq-6	4	5,00
2303	4011	Raqueta	2	65,00
2303	3141	Funda	2	10,00

¿Cumple con 1FN?

- Hay atomicidad
- No hay atributos multivaluados
- No hay grupos de repetición que representan lo mismo

Por lo tanto, <u>Sí cumple 1FN</u>

SEGUNDA FORMA NORMAL (2FN)

Tabla ORDEN

A	В	C	U	E
Id_orden	Fecha	Id_cliente	Nom_cliente	Estado
2301	23/02/2011	101	Martin	Caracas
2302	25/02/2011	107	Hernan	Coro
2303	27/02/2011	110	Pedro	Maracay

¿PK simple? Sí. PK:{ A }

¿Cumple 2FN?

- Esta en 1FN
- Hay llave PK simple

Por lo tanto, <u>Sí cumple 2FN</u>

Tabla ARTICULO

A PK	F	G	Н	
Id_orden	Num_art	nom_art	cant	Precio
2301	3786	Red	3	35,00
2301	4011	Raqueta	6	65,00
2301	9132	Paq-3	8	4,75
2302	5794	Paq-6	4	5,00
2303	4011	Raqueta	2	65,00
2303	3141	Funda	2	10,00
		1		

¿PK simple? No. PK:{A, F}

- Análisis de dependencias parciales y totales

Base: $\{A,F\} \rightarrow \{G,H,I\}$

$$F \to \{G, I\}$$

$$\{A,F\} \to H$$

¿Hay dependencia funcional parcial? Sí

Normalizando en 2FN

Formando las tablas obtenidas:

$$F \rightarrow \{ G, I \}$$

Tabla ARTICULO

PΚ

F

G

Num_art	nom_art	Precio
3786	Red	35,00
4011	Raqueta	65,00
9132	Paq-3	4,75
5794	Paq-6	5,00
4011	Raqueta	65,00
3141	Funda	10,00

¿Cumple 2FN?

- Esta en 1FN
- No hay dependencia funcional parcial

Por lo tanto, <u>Sí cumple 2FN</u>

Tabla TICKET

Α	G	Н
FK(PK)	FK(P	K)
Id_orden	Num_art	cant
2301	3786	3
2301	4011	6
2301	9132	8
2302	5794	4
2303	4011	2
2303	3141	2

¿Cumple 2FN?

- Esta en 1FN
- No hay dependencia funcional parcial

Por lo tanto, <u>Sí cumple 2FN</u>

TERCERA FORMA NORMAL (3FN)

Tabla ORDEN

PK	В	C	U .	E
Id_orden	Fecha	Id_cliente	Nom_cliente	Estado
2301	23/02/2011	101	Martin	Caracas
2302	25/02/2011	107	Hernan	Coro
2303	27/02/2011	110	Pedro	Maracay

PK:{ A }

Llaves candidatas: No hay

- Identificación dependencias

$$A \rightarrow \{ B, C, D, E \}$$

$$C \to \{D, E\}$$

¿Hay dependencia transitiva en atributos no-principales? Sí. Cuando C -> {D,E},

Tanto como C como D y E son atributos no principales, por lo que la tabla NO está en 3FN

Normalizando en 3FN:

Creamos una nueva tabla con C, D y E, donde C será PK de la nueva tabla y FK de la tabla de la que se partió. D y E ya no forman parte de la tabla original.

Teniendo como resultado:

Tabla ORDEN

Α	В	С
PK		FK

Id_orden	Fecha	Id_cliente
2301	23/02/2011	101
2302	25/02/2011	107
2303	27/02/2011	110

Tabla CLIENTE

C D E PK

Nom_cliente	Estado	
Martin	Caracas	
Hernan	Coro	
Pedro	Maracay	
	Hernan	

¿Cumple 3FN?

- Se encuentra en 2FN
- No hay dependencias transitivas en atributos no-principales

Por lo tanto, <u>Sí cumple 3FN</u>

Tabla ARTICULO

PΚ

F	G	. 1
Num_art	nom_art	Precio
3786	Red	35,00
4011	Raqueta	65,00
9132	Paq-3	4,75
5794	Paq-6	5,00
4011	Raqueta	65,00
3141	Funda	10,00

PK:{ F }
Llaves candidatas: No hay

- Identificación dependencias

 $F \rightarrow \{G,H,I\}$

¿Hay dependencia transitiva en atributos no-principales? No ¿Cumple 3FN?

- Se encuentra en 2FN
- No hay dependencias transitivas en atributos no-principales

Por lo tanto, <u>Sí cumple 3FN</u>

Tabla TICKET

Α	G	н
FK(PK)	FK(P	K)
Id_orden	Num_art	cant
2301	3786	3
2301	4011	6
2301	9132	8
2302	5794	4
2303	4011	2
2303	3141	2

PK:{ A,G }

Llaves candidatas: No hay

- Identificación dependencias

$$A \rightarrow \{G,H\}$$

¿Hay dependencia transitiva en atributos no-principales? No ¿Cumple 3FN?

- Se encuentra en 2FN
- No hay dependencias transitivas en atributos no-principales

Por lo tanto, <u>Sí cumple 3FN</u>

CASO PK:{Id_orden, Num_art}={ A, F }

A Ordenes	В	С	D	E	F	G	Н	I
Id orden	Fecha	Id_cliente	Nom_cliente	Estado	Num_art	nom_art	cant	Precio
2301	23/02/11	101	Martin	Caracas	3786	Red	3	35,00
2301	23/02/11	101	Martin	Caracas	4011	Raqueta	6	65,00
2301	23/02/11	101	Martin	Caracas	9132	Paq-3	8	4,75
2302	25/02/11	107	Herman	Coro	5794	Paq-6	4	5,00
2303	27/02/11	110	Pedro	Maracay	4011	Raqueta	2	65,00
2303	27/02/11	110	Pedro	Maracay	3141	Funda	2	10,00

PRIMERA FORMA NORMAL (1FN)

¿Cumple con 1FN?

- Hay atomicidad
- No hay atributos multivaluados
- No hay grupos de repetición que representan lo mismo

Por lo tanto, <u>Sí cumple 1FN</u>

SEGUNDA FORMA NORMAL (2FN)

¿PK simple? No

- Análisis de dependencias parciales y totales

¿Hay dependencia funcional parcial? Sí

Aplicando proceso de normalización 2FN

Formando las tablas obtenidas:

Tabla ORDEN

Α	В	С	D	E
PK				

Id_orden	Fecha	Id_cliente	Nom_Cliente	Estado
2301	23/02/2011	101	Martin	Caracas
2301	23/02/2011	101	Martin	Caracas
2301	23/02/2011	101	Martin	Caracas
2302	25/02/2011	107	Hernan	Coro
2303	27/02/2011	110	Pedro	Maracay
2303	27/02/2011	110	Pedro	Maracay

¿Cumple 2FN?

- Esta en 1FN
- No hay dependencia funcional parcial

Por lo tanto, $\underline{Si\ cumple\ 2FN}$

Tabla ARTICULO

F PK	G	
Num_art	nom_art	Precio
3786	Red	35,00
4011	Raqueta	65,00
9132	Paq-3	4,75
5794	Paq-6	5,00
4011	Raqueta	65,00
3141	Funda	10,00

¿Cumple 2FN?

- Esta en 1FN
- No hay dependencia funcional parcial

Por lo tanto, <u>Sí cumple 2FN</u>

Tabla TICKET

FK(PK)	FK(PK)	н
Id_orden	Num_art	cant
2301	3786	3
2301	4011	6
2301	9132	8
2302	5794	4
2303	4011	2
2303	3141	2

¿Cumple 2FN?

- Esta en 1FN
- No hay dependencia funcional parcial

Por lo tanto, <u>Sí cumple 2FN</u>

TERCERA FORMA NORMAL (3FN)

Tabla ORDEN

Α

PK				
Id_orden	Fecha	Id_cliente	Nom_Cliente	Estado
2301	23/02/2011	101	Martin	Caracas
2301	23/02/2011	101	Martin	Caracas
2301	23/02/2011	101	Martin	Caracas
2302	25/02/2011	107	Hernan	Coro
2303	27/02/2011	110	Pedro	Maracay
2303	27/02/2011	110	Pedro	Maracay

B C D E

PK:{ A }
Llaves candidatas: No hay

- Identificando dependencias:

¿Hay dependencia transitiva en atributos no-principales? Sí. Cuando C -> {D, E}

Tanto como C como D y E son atributos no principales, por lo que la tabla NO está en 3FN

Normalizando en 3FN:

Creamos una nueva tabla con C, D y E, donde C será PK de la nueva tabla y FK de la tabla de la que se partió. D y E ya no forman parte de la tabla original.

Teniendo como resultado:

Tabla ORDEN

A	В	C
PK	1	FK
Id_orden	Fecha	Id_cliente
2301	23/02/2011	101
2301	23/02/2011	101
2301	23/02/2011	101
2302	25/02/2011	107
2303	27/02/2011	110
2303	27/02/2011	110

Tabla CLIENTE

C PK	D	E
Id_cliente	Nom_Cliente	Estado
101	Martin	Caracas
101	Martin	Caracas
101	Martin	Caracas
107	Hernan	Coro
110	Pedro	Maracay
110	Pedro	Maracay

¿Cumple 3FN?

- Se encuentra en 2FN
- No hay dependencias transitivas en atributos no-principales

Por lo tanto, <u>Sí cumple 3FN</u>

Tabla ARTICULO

F PK	G	
Num_art	nom_art	Precio
3786	Red	35,00
4011	Raqueta	65,00
9132	Paq-3	4,75
5794	Paq-6	5,00
4011	Raqueta	65,00
3141	Funda	10,00

¿Hay dependencia transitiva en atributos no-principales? No.

¿Cumple 3FN?

- Se encuentra en 2FN

Н

- No hay dependencias transitivas en atributos no-principales

Por lo tanto, <u>Sí cumple 3FN</u>

Tabla TICKET

Α

FK(PK)	FK(PK)	
Id_orden	Num_art	cant
2301	3786	3
2301	4011	6
2301	9132	8
2302	5794	4
2303	4011	2
2303	3141	2

¿Hay dependencia transitiva en atributos no-principales? No.

¿Cumple 3FN?

- Se encuentra en 2FN
- No hay dependencias transitivas en atributos no-principales

Por lo tanto, $\underline{Si\ cumple\ 3FN}$