Data-driven methods for chemists & chemical engineers

Validation problems of data-based models

Sebastian Werner, Mar/30th 2021

Code & slides are at https://github.com/blackw1ng/data-validation-lecture

Underlying principles of data-based models

- A model has a **structure**, as well as **parameters**
- Models link inputs to a system to outputs

$$y = m \cdot x + b$$

- Common challenge in chemistry & chemical engineering:
 - Fitting measurement data to a known model
 - Even then, validation is important

<u>Today</u>: Fit data where we have neither know the **structure** nor the **parameters**. We just have **inputs** and **outputs**!

Modified CRISP-DM process for experimental data analysis

Know your challenge: Classification vs. Regression problems

Assignment of a **label** based on input

Models & validation: A chicken and egg problem

Observations can be used to inspire a model structure... and you validate them with more experiments

- Newton's first law
- Stefan-Boltzmann law
- Transport-resistance laws: Fourier's, Ohm's, Fick's & Darcy's law

Models postulated based on theory and then subsequently proof / validate with experiments

- Einstein theory on relativity
- Higg's boson

Validation of models versus model verification

Verification

Making sure a model structurally fits the training data

Validation

Assessment of predictive quality outside the testing regime

Verification answers the questions, whether the model was built right.

Validation answers the question, that the right model was built.

D Cook, J.Skinner CrossTalk 2005 18(5), 20-24.

→ It makes little sense to validate a model without prior verification!

Validation challenges of data based-models

Data-based "soft" models exhibit **several pitfalls**:

- **Overfitting**: That may describe available data well, but fail to extrapolate
- **Underfitting**: Inputs that may influence the modelled output are **not considered**
- Not robust: Model changes significantly depending on training
- Cause-effect relationships are not necessarily correctly described

Validation of a **model** implies a previous **validation** of **experimental setup** that generated this **data**!

(Basically: Calibrate / Validate input and output)

Can the model distinguish between cause and effect?

Causal: Clear relationship between input and output.

Descriptive: cannot give conclusive evidence about cause and effect.

Quality measures for regressions

• **R-squared** (R²): *For linear models only!* Prediction error divided by deviation from mean.

$$R^{2} = 1 - \frac{\sum_{i} (y_{i} - f_{i})^{2}}{\sum_{i} (y_{i} - \bar{y})^{2}}$$

Mean Absolute Error (MAE)
 Normalized sum of absolute prediction errors

$$MAE = rac{1}{N} \sum_{i}^{N} |y_i - f_i|$$

(Root) Mean Squared Error (RMSE):

 (Square root of) normalized sum of squared distance of real value and prediction

$$RMSE = \sqrt{\frac{1}{N} \sum_{i}^{N} (y_i - f_i)^2}$$

RMSE gives large penalty to big prediction error (e.g. outliers) by square it while MAE treats all errors the same.

Split available datasets: Train & test splits

- Take most of the data for "training" the model – and verification
- Spare some data to test the model & validate it
- This is specifically important for databased models
- For larger datasets, a commontechnique is k-fold cross-validation
 - Compare results from each "fold"
 - You do it k times
- In case results vastly differ, it indicates a ill-defined model

train/test splitting

k-fold cross-validation

Rate measurements over temperature

 Observations of rate over a range of temperatures

- "It almost looks linear!"
- R^2 is in the range of 0.99!

Techniques to visually inspect quality: parity plots.

- Visualizes model quality transparently
 - Works for linear & non-linear models
- Builds on reangular plot
 - Measured value on x-axis
 - Modeled value on y-axis
- Visually inspect model quality
 - Ideal model should follow diagonal over whole validity range
- Mathematically: Residual analysis

Common tools: Variance / residual analysis

- Formalizes the parity plot approach
- Allows you to assess heteroscedacticity
 - Watch out for a slope in variance
 - Patterns like "waves"
- Histogram shape should match expected error model (e.g. Gaussian, Poisson)
- Additional methods that work best with train/test sets
 - Student's t-test: compare variance of subsets
 - F-test: compare means / std of subsets
 - χ^2 test: statistical significance tests

All of those are methods to support verification and subsequent validation

Overfitting and underfitting: Finding the right number of paramters

- Based on just "data", the functional relationship can only be inferred
- Let us try to fit this set of data with a n-th order polynomial

- MSE is drecreasing
- R2 is increasing, indicating a "better fit"
- Low order polynomial is not capturing the all the effects: Underfitting

Checking outside of the verification range

- Outside of the training range you can really see
- Starting from a certain point, the MSE really "takes off"
- This typically indicates overfitting

Order 7 MSE = -4.9e + 02

Analyze MSE for verification and validation to determine the "most suitable" – but this still may not be the "right one"

In this case, a 4th order seems to be the best compromise

Finding the ground truth in databased models is often an iterative trial & error process

Do not trust a single statistical numbers alone!

Anscombe's quartet

Datasaurus dozen

Summary on validation of data-based models

Common things we can do to assist validation:

- Use data-sets that are artifact free and from validated experiments ©
- Carefully verify all model candidates using statistics
- Check for under-/overfitting
- Cross-validate models on available data
- Take care of validity ranges based on trained data
- Clearly document assumptions and boundary conditions

Fully validating a data-based model may result in commonly-accepted relationship! (cf. first principle model / law)

Next steps in our journey

- Validation of classification models
- Fitting beyond least squares: Likelihood based fitting of noisy data
- Advanced goodness-of-fit tests
 - AIC: Akaike information criterion
 - Chi-squared test
 - Bayes information criterion
- Preparation of datasets for parameter estimations
- Model construction, selection & generation criteria

Validation & verification are almost "never-ending" tasks, unless you deal with a hard, first-principle model... and even then, you have to verify your measurement data!

Literature for further study

- Ross, S: Introduction to probability and statistics for engineers and scientists, 5th ed, Elsevier, 2014
- Raasch, J: <u>Statistik für Verfahrenstechniker und Chemie-Ingenieure</u>, 2010
- Bruce, A. & Bruce, P: Practical Statistics for Data Scientists, O'Reilly, 2017
- Strutz, T.: Data fitting & uncertainty, 2nd ed, Springer, 2016

Code & slides are at https://github.com/blackw1ng/data-validation-lecture

Any questions?