

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н. Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н. Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»
КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №1 по курсу «Моделирование»

Студент Рунов К.А.		
Группа ИУ7-74Б		
Студент		Рунов К.А.
	(Подпись, дата)	(Фамилия И.О.)
Преподаватель		Рудаков И.В.
	(Подпись, дата)	(Фамилия И.О.)

1 Теоретическая часть

1.1 Равномерное распределение

Случайная величина имеет равномерное распределение на отрезке [a,b], если ее функция плотности распределения вероятностей

$$f(x) = \begin{cases} \frac{1}{b-a}, & a \le x \le b; \\ 0, & x < a \text{ или } x > b. \end{cases}$$

Ее функция распределения в этом случае определяется выражением

$$F(x) = \begin{cases} 0, & x < a; \\ \frac{x - a}{b - a}, & a \le x \le b; \\ 1, & x > b. \end{cases}$$

1.2 Нормальное распределение

Случайная величина имеет нормальное распределение, если ее функция плотности распределения вероятностей

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-m)^2}{2\sigma^2}} \quad (m \in \mathbb{R}, \ \sigma > 0).$$

Функция нормального распределения имеет вид

$$F(x) = \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{(x-m)^2}{2\sigma^2}} dx.$$

1.3 Распределение Пуассона

Дискретная случайная величина X распределена по закону Пуассона, если она принимает целые неотрицательные значения с вероятностями

$$P\{X = i\} = P(i; \lambda) = \frac{\lambda^i}{i!}e^{-\lambda}, \qquad i = 0, 1, \dots$$

Ее функция распределения

$$F(k; \lambda) = P\{X \le k\} = \sum_{i=0}^{k} P(i; \lambda) = e^{-\lambda} \sum_{i=0}^{k} \frac{\lambda^{i}}{i!}.$$

1.4 Распределение Эрланга

Распределение Эрланга — частный случай Гамма распределения, когда параметр k является целым числом.

Случайная величина имеет Эрланговское распределение, если ее функция плотности распределения вероятностей

$$f(x) = \begin{cases} x^{k-1} \frac{e^{-x/\theta}}{\theta^k (k-1)!}, & x \ge 0; \\ 0, & x < 0. \end{cases}$$

Функция распределения Эрланга

$$F(x; k, \theta) = \begin{cases} 1 - e^{-x/\theta} \sum_{i=0}^{k-1} \frac{x^i}{\theta^i i!}, & x \ge 0; \\ 0, & x < 0. \end{cases}$$

2 Практическая часть

2.1 Равномерное распределение

Рисунок 1 — Равномерное распределение — функция распределения и функция плотности распределения вероятностей

Рисунок 2 — Равномерное распределение — эмпирическая функция распределения и гистограмма

2.2 Нормальное распределение

Рисунок 3 — Нормальное распределение — функция распределения и функция плотности распределения вероятностей

Рисунок 4 — Нормальное распределение — эмпирическая функция распределения и гистограмма

2.3 Распределение Пуассона

Рисунок 5 — Пуассоновское распределение — функция распределения и функция плотности распределения вероятностей

Рисунок 6 — Пуассоновское распределение — эмпирическая функция распределения и гистограмма

2.4 Распределение Эрланга

Рисунок 7 — Эрланговское распределение — функция распределения и функция плотности распределения вероятностей

Рисунок 8 — Эрланговское распределение — эмпирическая функция распределения и гистограмма