허블의 법칙과 우주의 팽창

1. 목표

- (1) 거리가 서로 다은 외부 은하의 스펙트럼 사진에서 적색 편이량을 측정하여 외부 은하의 거리와 후퇴 속도 사이의 관계를 구할 수 있다.
- (2) 허블의 법칙으로부터 우주 팽창에 대하여 이해하고, 우주의 크기와 나이를 계산할 수 있다.

2. 과정

_ I33: 395. II

[그림1]는 여러 외부 은하들의 스펙트럼을 비교 방출선 스펙트럼과 함께 나타낸 것이다. 은하의 스펙트럼에서 전리된 칼슘의 H와 K흡수선의 파장은 각각 393.37nm와 396.85nm이다. 또한 그림의 맨 아래에 표시된 a, b, c, d, e, f, g는 비교 스펙트럼이며, 그 파장은 각각 388.87nm, 396.47nm, 402.62nm, 414.38nm, 447.15nm, 471.31nm, 501.57nm이다.

- (1) 각 은하의 스펙트럼 사진에서 방출선a를 영점으로 하여 적색 이동이 일어난 양($\Delta\lambda$)을 구한다.(단, 사진에서 H선과 K선을 정확히 잴 수 없으므로 편의상 적색 이동된 화살표(→)의 길이를 재며, 이 때의 원래 파장(λ)은 H선과 K선의 중간값을 택한다.)
- (2) 사진 좌측 하단에 있는 150"에 대응하는 거리를 측정하여 건판 척도("/mm)를 결정한다.
- (3) 각 은하의 각지름(D)을 장경과 단경의 평균으로 구하고, 이를 통해 은하까지의 거리를 Mpc 단위로 구한다. 이 때 각 은하들의 실제 지름은 모두 평균적으로 0.03Mpc으로 동일하다고 가정한다.
- (4) 가로축은 은하까지의 거리, 세로축은 은하의 후퇴속도로 하여 은하까지의 거리와 후퇴 속도의 관계를 그래프로 그린다.

3. 유의점

- (1) 도플러 효과에 대해 충분히 이해한 후 실험하도록 한다.
- (2) 파장이나 은하의 직경을 측정할 때 평균값을 구하되, 0.1mm 단위까지 정확히 측정하도록 한다.

4. 결과 및 토의

(1) 각 은하의 적색 이동량($\Delta\lambda$)을 mm단위로 측정하고, 비교 방출선의 파장을 이용하여 적색 이동량을 nm단위로 환산한다. 또한 각 은하들의 적색 이동량($\Delta\lambda$)과 도플러 효과 관계식 $(v=\frac{\Delta\lambda}{\lambda_0}\times c)$ 을 이용하여 은하들의 후퇴 속도를 구해 보자.(단, 광속 c=3.0×10 5 km/s으로 계산한다.)

외부은하		측정값(mm)		환산값 $\Delta\lambda$ (nm)	후퇴속도(km/s)	
	1회	2회	평균	전한값스/(IIII)		
처녀자리	0.00136	0.00136	0.06136	1.36	1032.6	
큰곰자리	0.01929	0.01927	0.01927	19.29	14681.4	
북쪽 왕관자리	6,03019	0.02019	0,63019	30.19	22922.1	
목자자리	0.05)19	0.05)19	0.05)19	51.19	43423.4	
바다뱀자리	0.08086	0.08086	0.08086	20.3b	6.395.6	

(2) 각 은하의 거리를 구해 보자. (\50 = 140 nm)

외부은하	각지름(mm)			각지름(˝)	각지름(rad)	거리(Mpc)	
기구 <u>는</u> 이	장경	단경	평균	국사급()	기 급(i au)	, I — (Mbc)	
처녀자리	145	110	129.5	136.6	6.62e-9	45.3	
큰곰자리	45	35	40	12.9	2.08e-f	[44.4	
북쪽 왕관자리	20	20	20.	21.4	1.04e-f	233.8	
목자자리	(1	11	1/	11.8	t.11e-t	525.0	
바다뱀자리	7	7	7	7.5	3.64e-5	825.\	

(4) 위의 그래프에서 은하의 거리와 후퇴속도와의 어떤 관계가 있으며, 기울기(허블 상수)는 얼마인가?

$$427271$$
, $v = H_0 r$.
 $H_0 = 15.61$.

(5) 허블의 법칙을 이용하여 팽창하는 우주에서 우주의 크기와 우주의 나이를 구해 보자.

$$301: \frac{c}{H_0} = 3467.6$$
 $401: \frac{1}{H_0} \times \frac{M_0}{K_0} \times \frac{1}{K_0}$
 $= 1.29 \times 10^{10} \text{ Y}$

세페이드변광성의 주기-광도 관계를 이용한 거리 측정

1. 목표

세페이드 변광성의 변광 주기를 관측하여 절대 등급을 구하고, 거리지수를 이용하여 세페이드 변광성까지의 거리를 구할 수 있다.

2. 과정

(1) 표1은 소마젤란 은하 내에 있는 16개의 맥동 변광성의 변광주기(P)와 평균겉보기 등급 (m_{u}) 을 나타 낸 것이다. 가로축을 $\log P$, 세로푹을 겉보기 등급 (m_{u}) 으로 하여 그래프를 그리고, 맥동 변광성의 변광주기와 겉보기 등급과의 관계를 알아본다.

변광성	log P	m_v	변광성	log P	m_v	변광성	log P	m_v
HV2019	0.21	16.8	HV1825	0.63	15.6	HV847	1.42	13.8
HV2035	0.30	16.7	HV1903	0.71	15.6	HV840	1.52	13.4
HV844	0.35	16.3	HV1945	0.81	15.2	HV1182	1.60	13.6
HV2064	0.41	16.0	HV2060	1.01	14.3	HV1837	1.63	13.1
HV1809	0.45	16.1	HV1873	1.11	14.7			
HV1987	0.50	16.0	HV1954	1.22	13.8			

丑 1

(2) [그림2] - 소마젤란 은하에서 발견된 4개의 세페이드 변광성의 광토 곡선을 나타 낸 것이다. 각 변광성이 가장 밝았을 때와 가장 어두웠을 때의 겉보기 등급과 각 변광성의 평균 겉보기 등급을 구한다. 또한 각 변광성의 광도 곡선에서 변광 주기 를 구하여 과정(1)에서 그린 그래프에 다른 기호로 표시한다.

[그림 2] 소마젤란은하내의 세페이드 변광성의 광도 곡선

(3) [표2]는 미국의 섀플리가 구한 세페이드 변광성의 변광주기(P)와 평균 절대 등급 (M_v) 과의 관계를 나타낸 것이다. 과정(1)에서 그린 그래프에 동일한 척도로 [표2]의 세페이 드 변광성의 변광 주기-절대 증급 관계 그래프를 그린다.

별	P	log P	M_v	별	P	log P	M_{v}
카시오페이아자리SU	1.95	0.29	-2.54	카시오페이아자리DL	8.00	0.90	-3.84
방패자리EV	3.09	0.49	-2.62	수준기자리S	9.75	0.99	-4.03
카시오페이아자리CF	4.87	0.69	-3.08	페르세우스자리VX	10.89	1.04	-4.34
페르세우스자리UY	5.36	0.73	-3.54	카시오페이아자리SZ	13.62	1.13	-4.71
페르세우스자리VY	5.53	0.74	-3.91	고물자리RS	41.38	1.62	-5.95
궁수자리U	6.74	0.83	-3.93				

표 2

 $igce{(4)}$ 거리지수 $(m_{y}$ - M_{y})를 구하여 소마젤란 은하까지의 거리를 구한다.

63kpc. ~> (5/3 201) (QE1/2): 62.44kpc)

```
Mv - Mv
                                                                                                = - 5+5 bgr
        plt.plot(fst_logp, fst_m, ".", label="SMC")
plt.plot(trd_logp, trd_m, ".", label="standard")
                                                                                       r = 10<sup>4.8</sup>
                                                                                                      = 63096pc.

= 63kpc.

(A) Cy.

2bage
                                                         SMC
                                                         standard
                                                                            [B/CE).
                                              -5
                                               0
                                                       ٥Ļ
                                               5
                                                       195621
                                              10
                                              15
                                              20
                                                   0.2
                                                            0.4
                                                                     0.6
                                                                              0.8
                                                                                      1.0
                                                                                               1.2
                                                                                                      . 1.4
                                                                                                                 1.6
                                                                                  logP
-6.5
                                                        standard
-6.0
                                                                               12.5
-5.5
                                                                                                                                           SMC
                                                                               13.0
-5.0
                                                                               13.5
-4.5
                                                                 5 G
                                                                               14.0
-4.0
                                                                               14.5
-3.5
                                                                               15.0
-3.0
                                                                               15.5
-2.5
                                                                               16.0
-2.0
      0.2
              0.4
                      0.6
                             0.8
                                     1.0
                                             1.2
                                                    1.4
                                                            1.6
                                                                               16.5
                                                                               17.0
```

0.8

1.0

1.4

1.6

3. 결과 및 토의

(1) 소마젤란 은하 내의 맥동 변광성의 변광 주기와 겉보기 등급과의 관계를 나타내는 그 래프에서 세페이드 변광성의 겉보기 등급 (m_n) 과 $\log P$ 와는 어떤 관계가 있는가?

H4129 7-71. (9510891 721/2)

(2) 소마젤란 은하의 광도 곡선에서 각 변광성이 가장 밝았을 때와 가장 어두웠을 때의 겉보기 등급을 읽고 평균 겉보기 등급과 변광주기를 구해보자. 변광성의 평균 겉보기 등급과 변광 주기 사이에는 어떤 관계가 있는가?

구분	HV837	HV1967	HV843	HV2063
최대겉보기등급	13.65	14	15.35	4.15
최소겉보기등급	12.95	13.05	14.25	14.2
평균겉보기등급	3.2	13. 525	H. 35	14.495
변광 주기	40Ð	2119	1519	ACI

(3) 세페이드 변광성의 주기와 절대등급(광도) 사이에는 어떤 관계가 있는가?

(4) 소마젤란 은하까지의 거리는 몇 pc인가?

(5) 어느 세페이드 변광성을 관측하여 얻어진 변광 주기가 20일이고, 평균 겉보기 등급이 20이었다면 이 천체의 거리는 얼마인가?

(6) 아래 자료를 참고하여 변광성의 밝기가 변화하는 특징에 대해 자세히 설명하시오.

HOW BORN ON BE 66. 52 OR.

WHIE TO HOUSE ESSEN LES KEEDIN

LPROICH DEOPLE COLZ 2 GETWICH.

주계열 맞추기 수행 평가

1. 목표

성단의 색-겉보기 등급도를 표준 주계열의 H-R도와 비교하여 성단까지의 거리를 구한다.

2. 과정

가. 표 1은 표준 주계열의 색-절대등급 자료이다. 가로축을 색지수(B-V), 세로축을 절 대등급(M_v)으로 하는 표준 주계열의 H-R도를 그래프 용지에 작성한다.

[표1]표준 주계열성의 색지수-절대 등급 자료

연 번	색지수(B−V)	절대 등급 (M,)	연 번	색지수(B-V)	절대 등급 (M.)
1	-0.25	-2.10	11	0.40	3.56
2	-0.20	-1.10	12	0.50	4.23
3	-0.15	-0.30	13	0.60	4.79
4	-0.10	0.50	14	0.70	5.38
5	-0.05	1.10	15	0.80	5.88
6	0.00	1.50	16	0.90	6.32
7	0.05	1.74	17	1.00	6.78
8	0.10	2.00	18	1.10	7.20
9	0.20	2.45	19	1.20	7.66
10	0.30	2.95	20	1.30	8.11

[표2] 플레이아데스 성단의 색지수-겉보기 등급 자료

번호	색지수 (B-V)	겉보기 등급 (m,)	번호	색지수 (B-V)	겉보기 등급 (m_v)	번호	색지수 (B-V)	겉보기 등급 (m_v)
3	0.085	8.24	19	0.211	8.58	35	0.620	10.2
5	0.043	8.06	20	0.487	10.11	36	0.343	9.27
6	0.332	9.6	21	0.006	7.15	39	0.527	10.51
7	0.118	8.14	22	0.425	9.7	40	-0.148	6.81
8	0.414	9.83	23	0.369	9.42	41	0.149	8.37
9	-0.224	5.44	24	-0.249	3.86	42	0.339	9.44
10	-0.297	3.7	26	0.038	7.85	43	-0.140	6.98
11	0.512	10.37	27	-0.215	5.74	44	0.046	7.64
13	0.197	8.56	28	-0.197	6.41	45	-0.133	7.25
15	-0.255	5.64	31	-0.242	4.17	46	0.001	7.75
16	-0.289	4.29	32	0.526	10.42	47	-0.098	6.8
17	0.307	8,97	33	-0.073	7.34	56	-0.031	6.93
18	0.067	8.03	34	0.209	8.09			

- 나. 표 2는 플레이아데스 성단을 이루는 별들의 색-겉보기 등급 자료이다. 표준 주계열 의 H-R도와 동일한 척도로 가로축은 색지수(B-V), 세로축은 겉보기 등급(M)으로 하는 색-겉보기 등급도를 그래프에 작성한다.
- 다. 주계열 맞추기 과정에 따라 거리를 구한다.

.....이후 과정 생략.....

3. 결과 및 토의

가. 플레이아데스 성단까지의 거리는 몇 pc인가?(단, 모든 과정을 나타내시오.)

CR\$ 158pc.

(인단시 검색: 136.2pc)

```
### Graph3.py | Graph2.py | Graph2.py | Graph2.py | Graphpy | Graphpy | Graphpy | Graph2.py | Graph2.p
```

7=27+ $10^{\frac{1}{8}}=158pc$ (H-RE)

-0.2

0.0

0.2

0.4

B-V

0.6

0.8

1.0

1.2

Homework