

CSCE 590-1: Trusted Al

Lecture 13: Unstructured Text – Processing and Representation

PROF. BIPLAV SRIVASTAVA, AI INSTITUTE 30TH SEP, 2021

Carolinian Creed: "I will practice personal and academic integrity."

Organization of Lectures 13

- Introduction Segment
 - Review of Quiz 2
 - Review of students course projects peer discussion
- Main Segment
 - Words
 - Parsing
 - Entity extraction
 - Text representation
- Concluding Segment
 - About next lecture Lecture 14
 - Ask me anything

Introductory Segment

Schedule Snapshot

Quiz 2 Recap

- Individual part: Trust issues in projects
- Group part:
 - Water treatment data in Weka
 - Water Atlas data, multiple locations

Main Segment

How Text Complements Quantitative Analysis

- Quantitative data:
 - Captures precise information about well-defined attributes
 - Allows all the tools of mathematics for analysis
 - Example: average student scores in a course
- Textual data
 - Captures multi-dimensional information
 - Needs careful consideration about the context of information
 - Language can be imprecise
 - Example: topics covered in a course
- Both have complementary strengths and weaknesses

Understanding Concepts - Words

What is a Word?

Unix command - man wc

"A word is defined as a string of characters delimited by white space characters."

- Example
 - Content = "CSCE 771: Computer Processing of Natural Language Lecture 3: Words, Morphology, Lexicons
 Prof. Biplav Srivastava, Al Institute 31st Aug 2020"
 - Command = "wc -w content.txt" Result = "20 content.txt" (stored in file - result.txt)
 - "CSCE 771: Computer Processing of Natural Language (7) Lecture 3: Words, Morphology, Lexicons (12)
 Prof. Biplav Srivastava, Al Institute (17) 31st Aug 2020" (20)

Types of Words in English

Content words (open-class – i.e., continuously changing):

- Nouns: student, university, knowledge,...
- Verbs: write, learn, teach,...
- Adjectives: difficult, boring, hard,
- Adverbs: easily, repeatedly,...

Function words (closed-class – fixed):

- Articles: a, an, the

- **Prepositions**: in, with, under,...

– Conjunctions: and, or,...

– Determiners: a, the, every,...

Another Language - Turkish

A Turkish word

Chinese: 我开始写小说 = 我 开始 写 小说 I start(ed) writing novel(s)

uygarlaştıramadıklarımızdanmışsınızcasına uygar laş tır ama dık lar ımız dan mış sınız casına

"as if you are among those whom we were not able to civilize (=cause to become civilized)"

uygar: civilized las: become

tir: cause somebody to do something

ama: not able

dık: past participle

_lar: plural

_imiz: 1st person plural possessive (our)

<u>_dan</u>: *among* (ablative case)

_mış: past

_siniz: 2nd person plural (you)

<u>casına</u>: as if (forms an adverb from a verb)

K. Oflazer pc to J&M

A strict reliance on spaces will make us miss useful parts of text

Common Definitions

- Corpus (plural corpora): a computer-readable corpora collection of text or speech.
- •Lemma: A lemma is a set of lexical forms having the same stem, the same major part-of-speech, and the same word sense. Example: Cat and cats have same lemma.
- Word form: The word form is the full inflected or derived form of the word. Example: Cat and cats have different word forms.
- Word type: Types are the number of distinct words in a corpus. If the set of words is V, the number of types is the word token vocabulary size |V|.
- Word tokens: The total number N of running words in the sentence / document of interest.
- Code switching: use multiple languages in a code switching single communicative act Example: Hindlish (Hindi English), Spanish (Spanish English)

"They picnicked by the pool, then lay back on the grass and looked at the stars."

• 16 (word) tokens, 14 (word) types

Source: Jurafsky & Martin

Lexical Meaning – Common Terms

- Synonym: same/ similar meaning
 - start-begin, finish-end, far-distant
- Antonym: opposite meaning
 - Far near, clever stupid, high low, big small
- Homonym: identical in spelling and pronunciation
 - bear, bank, ...
- Homophones: sounds identical but are written differently
 - site-sight, piece-peace.
- Homograph: written identically but sound differently
 - · Potato, tomato, lead, wind, minute
- Polysemy: a word or phrase which has two(or more) rated meanings
 - Duck, sharp

Source: Mausam

Knowing About Words

— Of course he wants to take the advanced course too. — He already took two beginners' courses.

- Words set of characters separated by spaces
- Word forms
 - Spelling differences specialize v/ specialise
 - Meaning similarity/differences Take/ took, course/ courses, two/ too
- Word types distinct words

Pop Quiz:

- Are word tokens and word types same in the example above?
- Which words have different forms in the example above?

Word Variety

- Inflection: creates different forms of the same word
 - Verbs: to be, being, I am, you are, he is, I was,
 - Nouns: one book, two books
- Derivation: creates different words from the same lemma
 - grace ⇒ disgrace ⇒ disgracefull ⇒ disgracefully
- •Compounding: new words from combinations

"ice cream", "website", "web site", "New York-based"

• Clitics - a clitic is a morpheme that has syntactic characteristics of a word, but depends phonologically on another word or phrase. In this sense, it is syntactically independent but phonologically dependent ...

```
English: "doesn't", "I'm",
Italian: "dirglielo" = dir + gli(e) + lo // tell + him + it
```

New words over time:

Google ⇒ Googler, to google, to ungoogle, to misgoogle, googlification, ungooglification, googlified, Google Maps, Google Maps service, ...

Morphology

Morphemes: The small meaningful units that make up words

Stems: The core meaning-bearing units

Affixes: Bits and pieces that adhere to stems

Morphemes: stems, affixes

dis-grace-ful-ly prefix-stem-suffix-suffix

Many word forms consist of a stem plus a number of affixes (prefixes or suffixes)

Infixes are inserted inside the stem. *Circumfixes* (German <u>ge</u>seh<u>en</u>) surround the stem

Morphemes: the smallest (meaningful/grammatical) parts of words.

Stems (grace) are often free morphemes.

Free morphemes can occur by themselves as words.

Affixes (dis-, -ful, -ly) are usually bound morphemes.

Bound morphemes have to combine with others to form words.

- Plural nouns add -s to singular:
 - book-books,
- but:
 - box-boxes, fly-flies, childchildren
- Past tense verbs add -ed to infinitive: walk-walked,
- but:
 - like-liked, leap-leapt

Source: Julia Hirschberg

Morphological Generation

- Generate legal variations.
 - For grace (stem): graceful, gracefully, disgrace, disgraceful, disgracefully, ungraceful, ungracefully, undisgracefully,...
- But avoid ungrammatical variations
 - *gracelyful, *gracefuly, *disungracefully,...

Source: Julia Hirschberg

Processing Language

Levels of Linguistic Studies

Types of Parsing

- Phrase structure / Constituency Parsing: find phrases and their recursive structure. Constituency groups of words behaving as single units, or constituents.
 - **Shallow Parsing/ Chunking**: identify the flat, non-overlapping segments of a sentence: noun phrases, verb phrases, adjective phrases, and prepositional phrases.
- Dependency Parsing: find relations in sentences
- **Probabilistic Parsing**: given a sentence X, predict the most probable parse tree Y

Advanced Topic –Language Formalism

An alphabet \sum is a set of symbols:

e.g.
$$\sum = \{a, b, c\}$$

A string ω is a sequence of symbols, e.g $\omega = abcb$. The empty string ε consists of zero symbols.

The Kleene closure Σ^* ('sigma star') is the (infinite) set of all strings that can be formed from Σ : $\Sigma^* = \{\varepsilon, a, b, c, aa, ab, ba, aaa, ...\}$

A language $L\subseteq \Sigma^*$ over Σ is also a set of strings. Typically we only care about proper subsets of Σ^* ($L \subset \Sigma$).

- Automata
- Finite State
 Automata
- Deterministic Finite State Automata(DFSA)
- Non-Deterministic Finite State Automata(NDFS A)

Source: Julia Hirschberg

Advanced Topics – Recognizing as Automata

- Automata
 - an abstract model of a computer which reads an input string, and changes its internal state depending on the current input symbol. It can either accept or reject the input string.
 - Hence, an automata defines a language
- Finite State Automata regular expressions

Source: Julia Hirschberg

Review: Regular Expression

Metacharacter	Explanation
Λ	Matches the starting position within the string
	Matches any single character
[]	Matches a single character that is contained within the brackets
[^]	Matches a single character that is not contained within the brackets.
\$	Matches the ending position of the string
*	Matches the preceding element zero or more times
+	Matches the preceding element one or more times
I	Separates choices

Regex	Matches any string that
hello	contains {hello}
gray grey	contains {gray, grey}
gr(a e)y	contains {gray, grey}
gr[ae]y	contains {gray, grey}
b[aeiou]bble	contains {babble, bebble, bibble, bobble, bubble}
[b-chm-pP]at ot	<pre>contains {bat, cat, hat, mat, nat, oat, pat, Pat, ot}</pre>
colou?r	contains {color, colour}
rege(x(es)? xps?)	contains {regex, regexes, regexp, regexps}
go*gle	contains {ggle, gogle, google, gooogle, gooogle,}
go+gle	contains {gogle, google, gooogle, goooogle,}
g(oog)+le	contains {google, googoogle, googoogoogle, googoogoogoogle,}
z{3}	contains {zzz}
z{3,6}	contains {zzz, zzzz, zzzzz, zzzzzz}
z{3,}	contains {zzz, zzzz, zzzzz,}

Example Source: https://cs.lmu.edu/~ray/notes/regex/

Implementation: Finding Words in Python

- Python has extended Regex specifications for convenience
- Useful for
 - Matching patterns
 - Information extraction
 - Content manipulation (e.g., substitution)
 - Error (e.g., spelling) correction

Details: https://docs.python.org/3/library/re.html

Code Examples

- Regular expressions
 - https://github.com/biplav-s/course-d2d-ai/blob/main/sample-code/l20-text-overview/WordLesson-Examples.ipynb
- •Supporting multiple languages encoding
 - https://github.com/biplav-s/course-d2d-ai/blob/main/sample-code/l20-text-overview/Multiple%20Languages.ipynb

Word Representation

- Words as independent, discrete symbols
- Why
 - To process language efficiently (numeric representation)
 - Find similarity between words efficiently (vector representation)

Credit:

Contextual Word Representations: Putting Words into Computers", by Noah Smith, CACM June 2020

Contextual Word Embeddings Paper

- Words as independent, discrete symbols
- Words with distributional assumptions:
 - Context: given a word, its nearby words or sequences of words
 - Words used in similar ways are likely to have related meanings; i.e., words used in the same (similar) context have related meanings
 - No claim about meaning except relative similarity v/s dis-similarity of words
- Two main strategies
 - Compare with words in a manually-created taxonomy, e.g., Wordnet
 - Learn context and representation from data

Credit:

Contextual Word Representations: Putting Words into Computers", by Noah Smith, CACM June 2020

Concluding Segment

Lecture 13: Concluding Comments

- We completed review of projects for trust issues
- Looked at textual content
 - Words in English
 - Understood types of language processing
 - Explored representation

About Next Lecture – Lecture 14

Lecture 14: Common NLP Tasks

- Text representation
- A subset from common NLP Tasks
 - Text similarity
 - Event Extraction
 - Sentiment detection
 - Question Answering
 - Summarization
 - Machine translation
 - Natural Language Interface to Databases
 - Natural Language Generation