

Numerische Strömungssimulation

Praktikumsbericht

Institut für Technische Verbrennung RWTH Aachen

im Studiengang Computational Engineering Science im 6. Semester

vorgelegt von

Karsten Paul 333 092
4. August 2016

Betreuer: Dr.-Ing. Bernd Binninger

Karsten Paul Matrikelnummer: 333 092

Abstract

Der vorliegende Praktikumsbericht gibt einen Überblick über den im Fach Numerische Strömungssimulation erstellten Strömungslöser für die inkompressiblen Navier-Stokes-Gleichungen.

Das Dokument ist in mehrere einzelne Projekte unterteilt, die sich schrittweise zu dem endgültigen Löser vervollständigen. In diesem Bericht werden die Modellierung des strömungsmechanischen Problems, dessen mathematische Beschreibung und die numerischen Verfahren zur Approximation der Lösung besprochen. Besonderer Augenmerk wird auf die Validierung der implementierten Algorithmen gelegt, indem die vom Computer gelieferten Ergebnisse für einfache Probleme mit deren analytischen Lösungen verglichen wurden. Des Weiteren werden im letzten Kapitel Anwendungsfälle dargestellt, wo die Ergebnisse der Approximation für schwierigere, reale Probleme diskutiert werden.

Als Erstes wird ein potentialtheoretisches Strömungsproblem mithilfe von Finite-Differenzen-Verfahren gelöst, sowohl in einem kartesischen Gitter, als auch in einem gekrümmten Kanal. Anschließend werden Finite-Volumen-Verfahren verwendet, um auch kompliziertere Gleichungen, welche mitunter Reibung und Inkompressibilität modellieren zu lösen bzw. zu approximieren. Dabei wird zunächst ein Strömungsfeld vorgegeben, später wird ebenfalls das Geschwindigkeitsfeld bei Vorgabe des Druckes berechnet, am Ende wird auch noch das Druckfeld numerisch bestimmt.

Inhaltsverzeichnis

A	bbild	ungsv	erzeichnis	V
\mathbf{A}	bkür	zungsv	verzeichnis	VI
Ta	abelle	enverz	eichnis	/II
1	Ein	leitung	y 5	1
2	Pot	entials	strömung	2
	2.1	Aufga	benstellung	2
	2.2	Mathe	ematische Modellbildung	2
		2.2.1	Berechnung des Geschwindigkeitfeldes	3
		2.2.2	Berechnung des Druckfeldes	3
		2.2.3	Randbedingungen	4
	2.3	Diskre	etisierung	4
	2.4	Lösen	des Gleichungssystems	6
	2.5	Konve	ergenzanalyse	8
		2.5.1	Konsistenz	8
		2.5.2	Stabilität	8
	2.6	Validi	erung des Programms	9
		2.6.1	Parallelströmung	9
		2.6.2	Ebene Staupunktströmung	10
		2.6.3	Quelle/Senke	10
		2.6.4	Potentialwirbel	11
		2.6.5	Dipol	12
3	Kor	vektic	ons-Diffusions-Strömung	14
	3.1	Aufga	benstellung	14
	3.2			14
	3.3	Diskre	etisierung	15
		3.3.1	Finite Volumen	15
		3.3.2	Numerischer Fluss	16
			3.3.2.1 Flusskomponenten	16
		3.3.3	Zeit-Evolution	17
		3.3.4	Upwind-Diskretisierung	17
			3.3.4.1 Höhere Ordnung	18
		3.3.5	Vereinheitliche Programmierung	18
	3.4	Validi	erung des Programms	19
		3.4.1	Konvektion	19
		3.4.2	Diffusion	21
		3.4.3	Konvektion-Diffusion	23
		3.4.4	Neumann-Ränder	23

Inhaltsverzeichnis

		3.4.5	Quellen		24
4	Ber	echnur	ng des G	eschwindigkeitsfeldes	2 5
	4.1	Aufga	benstellui	ng	25
	4.2	Mathe	ematische	Modellbildung	25
	4.3	Diskre	etisierung		25
5	Ber	echnur	ng des D	ruck- und Geschwindigkeitsfeldes	27
	5.1	Aufga	$\stackrel{-}{\mathrm{benstellui}}$	ng	27
	5.2			Modellbildung und Diskretisierung	
6	Anv	vendur	ngsfälle		30
	6.1		_	en: Potentialströmung - Kanalströmung	30
	6.2			: verschiedene Anwendungsfälle	
		6.2.1		ung des Transports eines Skalars	
			6.2.1.1	Flussströmung mit Ein- und Abflussrohr am Rand	
			6.2.1.2	Flussströmung mit Ein- und Abflussrohr in der Mitte	
		6.2.2	Berechn	ung des Geschwindigkeitsfeldes bei gegebenem Druck	39
			6.2.2.1		39
			6.2.2.2	Poiseuille-Strömung	
		6.2.3	Berechn	ung des Druck- und Geschwindigkeitsfeldes mit Hilfe des SIMPLE-	
					41
			6.2.3.1	Festkörperrotation	41
			6.2.3.2	Driven Cavity	
			6.2.3.3	Gartenschlauch	
			6.2.3.4	Kanalvergrößerung	
			6235	Stolperdraht	4.5

Abbildungsverzeichnis

2.1	Äquipotentiallinien, Parallelströmung	9
2.2	Stromlinien, Parallelströmung	9
2.3	Äquipotentiallinien, Ebene Staupunktströmung	10
2.4	Stromlinien, Ebene Staupunktströmunge	10
2.5	Äquipotentiallinien, Quelle	11
2.6		11
2.7	Äquipotentiallinien, Senke	11
2.8	Stromlinien, Senke	11
2.9	Äquipotentiallinien, Potentialwirbel	12
2.10	Stromlinien, Potentialwirbel	12
2.11	Äquipotentiallinien, Dipol	12
2.12	Stromlinien, Dipol	12
3.1	Zentrale-Differenzen-Methode, stationäre Endlösung	20
3.2	Upwind-Methode, stationäre Endlösung	20
3.3	1	20
3.4	Upwind-Methode, stationäre Endlösung $(v = 0)$	20
3.5	Upwind-Methode, Initialzustand	21
3.6	1	21
3.8	\circ	21
3.9	Initialwerte	22
3.10	0	22
3.12	0	22
3.14	zeitliche Evolution konvektiv-diffusiver Strömung	23
		24
3.18	zeitliche Evolution diffusiver Strömung mit Quelle und Senke	24
6.1	Kanal 1: Äquipotential- und Stromlinien	31
6.2	0	31
6.3		32
6.4	1 1	32
6.5	Kanal 2: Geschwindigkeitsfeld	33
6.6	Kanal 3: Aquipotential- und Stromlinien	33
6.7		34
6.8	1 1	34
6.9		35
6.10	Kanal 2: erzeugtes/berechnetes Gitter	35
		37
6.14	Vergleich Flussströmungen mit verschiedenen Ergiebigkeiten der Quellen und	
		38
		39
6.16	Poiseuille-Strömung: gegebenes Druckfeld	40

${\bf Abbildung sverzeichn is}$

6.17	Poiseuille-Strömung: gegebene Anfangswerte des Geschwindigkeitsfeldes 4
6.18	Poiseuille-Strömung: stationärer Endzustand
6.19	Festkörperrotation: Druckfeld
6.20	Festkörperrotation: Geschwindigkeitsfeld
6.21	Driven Cavity: Druckfeld
6.22	Driven Cavity: Geschwindigkeitsfeld
6.23	Gartenschlauch: Druckfeld
6.24	Gartenschlauch: Geschwindigkeitsfeld
6.25	Kanalvergrößerung: Druckfeld
6.26	Kanalvergrößerung: Geschwindigkeitsfeld
6.27	Stolperdraht: Druckfeld
6.28	Stolperdraht: Geschwindigkeitsfeld 4

Tabellenverzeichnis

3.1	Einflussgebiet von Zelle i, j	18
3.2	Berechnung von $A(Pe)$	19

Kapitel 1

Einleitung

Dieser Bereicht bezieht sich an mehreren Stellen auf die Vorlesungsfolien zum Fach Numerische Strömungssimmulation von Dr.-Ing. Bernd Binninger. Um den Text übersichtlich zu halten ist nicht an jeder Stelle ein Verweis auf jene Folien angeführt, deshalb wird nur an dieser Stelle hierauf verwiesen. Dieser Praktikumsbericht kann allerdings in sämtlichen Kapiteln und Unterkapiteln als eigenständiger Bericht aufgefasst werden, indem alle wichtigen Formeln, Erläuterungen und Herleitungen aufgeführt werden.

In diesem Bericht werden an mehreren Stellen physikalische Größen, wie beispielsweise Länge, Geschwindigkeit, usw., verwendet. Es ist absichtlich auf Einheiten verzichtet worden, da die numerischen Resultate hier unabhängig von den Einheiten der physikalischen Größen sind. Solange diese Größen alle in den selben Einheiten dargestellt werden, können die numerischen Ergebnisse noch als sinnvoll angesehen werden.

Kapitel 2

Potentialströmung

2.1 Aufgabenstellung

Ziel ist es, die Potential- und Stromfunktionsgleichung numerisch auf einem krummlinigen Integrationsgebiet mithilfe eines iterativen Gleichungslösers zu lösen. Das zugrundeliegende ingenieurtechnische Problem ist eine "Potentialströmung", d.h. eine **stationäre**, **zweidimensionale**, **wirbel- und reibungsfreie Strömung**, in einem Kanal veränderlichen Querschnittes.

Im Folgenden wird dargestellt, wie dieses Problem mathematisch modelliert, anschließend diskretisiert und schließlich numerisch gelöst worden ist. Danach werdend die numerischen Verfahren und die Resultate diskutiert bzw. validiert.

2.2 Mathematische Modellbildung

Das strömende Fluid wird als Kontinuum angenommen, dass heißt das Grenzwerte wie

$$\lim_{\Delta V \to 0} \frac{\Delta \Phi}{\Delta V},\tag{2.1}$$

wobei Φ einen passiven Skalar und ΔV ein Volumen darstellen, angenommen werden. Ein Beispiel hierfür ist die Dichte ρ :

$$\rho = \lim_{\Delta V \to 0} \frac{\Delta m}{\Delta V},\tag{2.2}$$

wobei m die Masse ist. Da im Folgenden eine Kanalströmung simuliert werden soll, ist das Grenzvolumen klein im Gegensatz zu den relevanten Abmessungen des Kanals, aber dennoch groß genug gegenüber der Größe der Moleküle und Atome des Fluids. Somit ist die Annahme eines Kontinuums für das Fluid durchaus gerechtfertigt.

Im Folgenden betrachten wir die Impulsgleichung für ein inkompressibles Fluid:

$$\frac{\partial \vec{v}}{\partial t} + (\vec{v} \circ \nabla) \vec{v} = -\frac{1}{\rho} \cdot \nabla p + \vec{g} + \nu \cdot \Delta \vec{v}. \tag{2.3}$$

Die linke Seite dieser Gleichung spiegelt die substantielle Beschleunigung, welche sich aus lokaler und konvektiver Beschleunigung zusammensetzt, wieder. Die rechte Seite setzt sich aus der Summe von Druck-, Volumen- (in diesem Fall Gewichts-) und Reibungskräften zusammen. Wendet man nun die mathematische Operation der Rotation auf beide Seiten der Gleichungen an, kommt man auf folgende Form (unter der Annahme konstanter Zähigkeit ν), die sogenannte Wirbeltransportgleichung:

$$\frac{\partial \vec{\omega}}{\partial t} - rot(\vec{v} \times \vec{\omega}) = \nu \cdot \Delta \vec{\omega}, \tag{2.4}$$

wobei folgende Identitäten benutzt worden sind:

$$(\vec{v} \circ \nabla) \, \vec{v} = \nabla \frac{\vec{v}^2}{2} - \vec{v} \times rot \, (\vec{v}) \,, \tag{2.5}$$

$$\vec{g} = -\nabla U, \tag{2.6}$$

$$rot\left(\nabla\bullet\right) = \vec{0},\tag{2.7}$$

$$\omega := rot(\vec{v}), \tag{2.8}$$

mit Potential U.

Für die zu simulierenden Potentialströmungen gilt:

$$\vec{v} := \nabla \Phi, \tag{2.9}$$

$$\vec{v} := rot \left(\Psi \right), \tag{2.10}$$

mit Potentialfunktion Φ und Stromfunktion Ψ . Es werden nun Bestimmungsgleichungen für diese beiden neuen Größen benötigt.

Man sieht, dass für den stationären und inkompressiblen Fall Φ (2.4) erfüllt, da $rot(\vec{v}) = rot(\nabla \Phi) = \vec{0}$. Die Potentialfunktion erfüllt also automatisch die Drehungsfreiheit. Die Bestimmungsgleichung ergibt sich demnach aus der Kontinuitätsgleichung für ein inkompressibles Fluid ($\rho = const$):

$$div\left(\vec{v}\right) = 0. \tag{2.11}$$

Dies führt zu der Bestimmungsgleichung

$$div\left(\nabla\Phi\right) = \Delta\Phi = 0. \tag{2.12}$$

Für die Stromfunktion Ψ ist es genau der andere Fall. Ψ erfüllt wegen $div\left(rot\left(\Psi\right)\right)=0$ bereits (2.11), somit folgt die Bestimmungslgleichung hier aus der Rotationsfreiheit der Strömung:

$$\Delta \Psi = 0. \tag{2.13}$$

2.2.1 Berechnung des Geschwindigkeitfeldes

Aus den Definitionen (2.9) und (2.10) folgt direkt die Formel zur Berechnung des Geschwindigkeitfeldes innerhalb des zweidimensionalen Integrationsgebietes:

$$u = \frac{\partial \Phi}{\partial x} = \frac{\partial \Psi}{\partial y},\tag{2.14}$$

$$v = \frac{\partial \Phi}{\partial y} = -\frac{\partial \Psi}{\partial x},\tag{2.15}$$

wobei u die Geschwindigkeitskomponente in x-Richtung, und v die Geschwindigkeitskomponente in y-Richtung darstellt.

2.2.2 Berechnung des Druckfeldes

Die Berechnung ist unwesentlich komplizierter als die Berechnung des Geschwindigkeitfeldes. Betrachtet man die Bernoullische Gleichung für den stationären Fall

$$\rho \cdot \frac{\vec{v}^2}{2} + p + \rho \cdot U \equiv const, \tag{2.16}$$

so folgt, da keine freien Oberflächen in dem Problem auftreten, dass sich das Schwerepotential und der hydrostatische Druck gerade gegeneinander aufheben. Bezeichne p nun nur mehr den dynamischen Druck, so ändert sich die Gleichung zu:

$$\rho \cdot \frac{\vec{v}^2}{2} + p \equiv const. \tag{2.17}$$

Für den Druckbeiwert, mit welchem das Druckfeld charakterisiert bzw. beschrieben wird, folgt daraus:

$$c_p = \frac{\Delta p}{\frac{\rho}{2} \cdot |\vec{v}_{ref}|^2} = \frac{p - p_{ref}}{\frac{\rho}{2} \cdot |\vec{v}_{ref}|^2} = 1 - \frac{|\vec{v}|^2}{|\vec{v}_{ref}|^2}.$$
 (2.18)

Als Referenzgeschwindigkeit in x-Richtung kann beispielsweise die Einströmgeschwindigkeit u_{∞} des Fluid in den Kanal verwendet werden.

2.2.3 Randbedingungen

Die hier relevanten Randbedingungen sind

- Ein- bzw. Ausströmränder
- Undurchlässige Wände.

Für den ersten Fall gibt man an den jeweiligen Rändern die Geschwindigkeit vor. Aus (2.14) und (2.15) folgt direkt, dass

$$u_{Rand} = \left(\frac{\partial \Phi}{\partial x}\right)_{Rand},\tag{2.19}$$

$$v_{Rand} = \left(\frac{\partial \Phi}{\partial y}\right)_{Rand}.$$
 (2.20)

Für den Fall undurchlässiger Wände, wie bei der Kanalströmung, werden andere Randbedingungen benötigt. In der Potentialtheorie werden Konturen mithilfe von Stromlinien dargestellt. Aus der Definition der Stromlinien folgt für eine Wand, die mit der Funktion h(x) beschrieben wird und mit Hilfe von (2.14) und (2.15), dass

$$\frac{\mathrm{d}h}{\mathrm{d}x} = \frac{v}{u} = \frac{\frac{\partial\Phi}{\partial y}}{\frac{\partial\Phi}{\partial x}} = -\frac{\frac{\partial\Psi}{\partial x}}{\frac{\partial\Psi}{\partial y}}.$$
 (2.21)

2.3 Diskretisierung

Es wird zunächst ein rechteckiges, zweidimensionales Integrationsgebiet, der Dimensionen $[x_{min}, x_{max}] \times [y_{min}, y_{max}]$ betrachtet. Dieses wird nun in x-Richtung in I Intervalle unterteilt, in y-Richtung in J Intervalle. Diese Intervalle werden zunächst als äquidistant verteilt angenommen. Somit folgt für die Gitterschrittweiten:

$$\Delta x = \frac{1}{I - 1}, \quad \Delta y = \frac{1}{J - 1}.$$
 (2.22)

In dem im Folgenden hergeleiteten Algorithmus, wird an jedem inneren Gitterpunkt ein Wert für die Potential- und Stromfunktion berechnet.

Die für dieses Problem verwendete Diskretisierung geschieht mittels **Finiter Differenzen**. Für die ersten und zweiten Ableitungen von $\Phi = \Phi(x, y)$ werden bei äquidistanten Gittern folgende Differenzenausdrücke verwendet, welche beide zweiter Ordnung sind (s. Taylorentwicklung):

$$\frac{\partial \Phi}{\partial x} \approx \frac{\Phi_{i+1,j} - \Phi_{i-1,j}}{2 \cdot \Delta x},\tag{2.23}$$

$$\frac{\partial^2 \Phi}{\partial x^2} \approx \frac{\Phi_{i+1,j} - 2 \cdot \Phi_{i,j} + \Phi_{i-1,j}}{\Delta x^2},\tag{2.24}$$

analog für die y-Ableitung und die Ableitungen der Stromfunktion.

Setzt man diese Approximationen nun in die zwei Gleichungen (2.12) und (2.13) ein, so folgen die Diskretisierungen der Potential- und Stromfunktionsgleichungen:

$$0 \stackrel{!}{=} \Delta \Phi = \frac{\partial^2 \Phi}{\partial x^2} + \frac{\partial^2 \Phi}{\partial y^2} \approx \frac{\Phi_{i+1,j} - 2 \cdot \Phi_{i,j} + \Phi_{i-1,j}}{\Delta x^2} + \frac{\Phi_{i,j+1} - 2 \cdot \Phi_{i,j} + \Phi_{i,j-1}}{\Delta y^2}, \tag{2.25}$$

$$0 \stackrel{!}{=} \Delta \Psi = \frac{\partial^2 \Psi}{\partial x^2} + \frac{\partial^2 \Psi}{\partial y^2} \approx \frac{\Psi_{i+1,j} - 2 \cdot \Psi_{i,j} + \Psi_{i-1,j}}{\Delta x^2} + \frac{\Psi_{i,j+1} - 2 \cdot \Psi_{i,j} + \Psi_{i,j-1}}{\Delta y^2}, \tag{2.26}$$

für alle i, j. Dies stellt ein algebraisches Gleichungssystem dar, welches iterativ gelöst werden kann (vgl. Kapitel 2.4).

Nun wird ein krummliniges Integrationsgebiet betrachtet, wie es zum Beispiel bei Kanälen vorkommt. Anstatt die Differenzenausdrücke entsprechend abzuändern, wird die physkalische x-y-Ebene in den Rechenraum ξ - η transformiert. Die transfomierte Ebene ist hierbei wieder rechteckig und äquidistant unterteilt. Als Vereinfachungen werden die daraus resultierenden Gitterzellengrößen $\Delta \xi$ und $\Delta \eta$ auf 1 gesetzt, so dass man bei den Differenzenausdrücken keine rechenintensive Division durch diese Zellengrößen in Kauf nehmen muss. Für die Transformation werden folgende Funktionen bzw. Umkehrfunktionen verwendet:

$$\xi(x,y) = (I-1) \cdot \frac{x - x_{min}}{x_{max} - x_{min}}, \qquad \eta(x,y) = (J-1) \cdot \frac{y - h_u(x)}{h_o(x) - h_u(x)}, \qquad (2.27)$$

$$x(\xi, \eta) = x_{min} + \frac{x_{max} - x_{min}}{I - 1} \cdot \xi, \qquad y(\xi, \eta) = h_u(x) + \frac{h_o(x) - h_u(x)}{J - 1} \cdot \eta,$$
 (2.28)

wobei $h_u(x)$ die untere und $h_o(x)$ die obere Kontur des Kanals beschreibt. Als Ein- und Ausströmränder werden immer im x-y-Koordinatensystem vertikale Ränder verwendet. Aufgrund der Transformation ändern sich nun auch die Differenzenaudrücke aus (2.23) und (2.24). Mit Hilfe der Kettenregel folgt beispielsweise für die erste Ableitung:

$$\frac{\partial \Phi}{\partial \bullet} = \frac{\partial \xi}{\partial \bullet} \frac{\partial \Phi}{\partial \xi} + \frac{\partial \eta}{\partial \bullet} \frac{\partial \Phi}{\partial \eta}.$$
 (2.29)

Setzt man dies für die zweiten Ableitungen in beide Richtungen fort, so ergibt sich eine neue Diskretisierung der Potentialgleichung(vgl. (2.25)):

$$0 \stackrel{!}{=} \Delta \Phi \approx \left(\alpha_1 \frac{\partial^2}{\partial \xi^2} + \alpha_2 \frac{\partial^2}{\partial \eta^2} + \alpha_3 \frac{\partial^2}{\partial \xi \partial \eta} \alpha_4 \frac{\partial}{\partial \xi} + \alpha_1 \frac{\partial}{\partial \eta} + \alpha_6 \right) \cdot \Phi, \tag{2.30}$$

mit den Koeffizienten

$$\alpha_1 = \left(\frac{\partial \xi}{\partial x}\right)^2 + \left(\frac{\partial \xi}{\partial y}\right)^2,\tag{2.31}$$

$$\alpha_2 = \left(\frac{\partial \eta}{\partial x}\right)^2 + \left(\frac{\partial \eta}{\partial y}\right)^2,\tag{2.32}$$

$$\alpha_3 = 2 \cdot \left[\frac{\partial \xi}{\partial x} \frac{\partial \eta}{\partial x} + \frac{\partial \xi}{\partial y} \frac{\partial \eta}{\partial y} \right], \tag{2.33}$$

$$\alpha_4 = \frac{\partial^2 \xi}{\partial x^2} + \frac{\partial^2 \xi}{\partial y^2},\tag{2.34}$$

$$\alpha_5 = \frac{\partial^2 \eta}{\partial x^2} + \frac{\partial^2 \eta}{\partial y^2},\tag{2.35}$$

$$\alpha_6 = 0. (2.36)$$

Für die Randbedingungen an der oberen und unteren Kontur (siehe (2.21)) ist in η -Richtung die Bildung zentaler Differenzen nicht möglich, da nur Werte in einer Richtung bekannt sind und die Werte in der anderen Richtung außerhalb des Integrationsgebietes liegen. Für den Fall werden die einseitgen Differenzenausdrücke verwendet:

$$\left(\frac{\partial \Phi}{\partial \eta}\right)_{i,j} \approx \frac{-\Phi_{i,j+2} + 4 \cdot \Phi_{i,j+1} - 3 \cdot \Phi_{i,j}}{2 \cdot \Delta \eta},$$
(2.37)

wobei $\Delta \eta = 1$ gesetzt worden ist (s.o.). Dieser Differenzenquotient ist ebenfalls zweiter Ordnung (s. Taylorentwicklung), so dass die Ordnung der Diskretisierung erhalten bleibt. Analog ergeben sich die Differenzenausdrücke an der oberen Kontur.

Für die Randbedingungen oben und unten im transformierten Raum ergibt sich mit (2.21) folgender Ausdruck:

$$\frac{\mathrm{d}h}{\mathrm{d}x} = \frac{v}{u} = \frac{\frac{\partial\Phi}{\partial\xi}\frac{\partial\xi}{\partialy} + \frac{\partial\Phi}{\partial\eta}\frac{\partial\eta}{\partialy}}{\frac{\partial\Phi}{\partial\xi}\frac{\partial\xi}{\partialx} + \frac{\partial\Phi}{\partial\eta}\frac{\partial\eta}{\partialx}}.$$
 (2.38)

Setzt man nun (2.37) bzw. (2.23),(2.24) hier ein und formt nach $\Phi_{i,j}$ um, so ergibt sich folgende Diskretisierung der Randbedingung an der unteren Kontur:

$$\Phi_{i,j} = \frac{\frac{\mathrm{d}h}{\mathrm{d}x} \left[\left(\Phi_{i+1,j} - \Phi_{i-1,j} \right) \frac{\partial \xi}{\partial x} + \left(-\Phi_{i,j+2} + 4\Phi_{i,j+1} \right) \frac{\partial \eta}{\partial x} \right] - \left(\Phi_{i+1,j} - \Phi_{i-1,j} \right) \frac{\partial \xi}{\partial y} - \left(-\Phi_{i,j+2} + 4\Phi_{i,j+1} \right) \frac{\partial \eta}{\partial y}}{3 \frac{\partial \eta}{\partial y} \frac{\mathrm{d}h}{\mathrm{d}x} - 3 \frac{\partial \eta}{\partial y}}$$
(2.39)

analog für die obere Kontur.

2.4 Lösen des Gleichungssystems

In Kapitel 2.3 ist dargelegt worden, wie das zu dem Problem passende Gleichungssystem aufgestellt wird. Nun werden kurz drei Strategien aufgezeigt, wie man dieses LGS¹ lösen kann). Es werden ausschließlich iterative Löser verwendet.

Die erste Möglichkeit das LGS zu lösen, ist mittels des Jacobi-Verfahrens. Dieses Verfahren berechnet jede Aktualisierung der Lösung nur aufgrundlage der Lösung aus dem vorherigen

¹LGS: Lineares Gleichungssystem

Iterationsschritt. Betrachtet man beispielsweise Gleichung (2.25), so ergibt sich, nach Auflösen nach $\Phi_{i,j}$ folgende Formel für das Jacobi-Verfahren, wobei k den Iterationsindex bezeichnet:

$$\Phi_{i,j}^{k+1} = \frac{1}{2 \cdot (\Delta x^2 + \Delta y^2)} \cdot \left[\Delta y^2 \left(\Phi_{i+1,j}^k + \Phi_{i-1,j}^k \right) + \Delta x^2 \left(\Phi_{i,j+1}^k + \Phi_{i,j-1}^k \right) \right]. \tag{2.40}$$

Hieran ist erkennbar, dass der neue Wert (Index k+1) lediglich von alten Werten (Index k) abhängt.

Der Gauss-Seidel-Algorithmus berechnet in einem Iterationsschritt neue Werte wie beim Jacobi-Verfahren. Nun werden aber die, im aktuellen Iterationsschritt bereits berechneten Werte, schon für die Berechnung der nächsten Werte verwendet. Ähnlich zum Jacobi-Verfahren, sieht die Berechnung nun wie folgt aus, wenn das i-j-Gebiet zeilenweise durchlaufen wird:

$$\Phi_{i,j}^{k+1} = \frac{1}{2 \cdot (\Delta x^2 + \Delta y^2)} \cdot \left[\Delta y^2 \left(\Phi_{i+1,j}^k + \Phi_{i-1,j}^{k+1} \right) + \Delta x^2 \left(\Phi_{i,j+1}^k + \Phi_{i,j-1}^{k+1} \right) \right]. \tag{2.41}$$

Für diese beiden Löser ist ebenfalls eine Überrelaxation implementiert, so dass:

$$\Phi_{i,j}^{k+1}|_{\text{mit Überrelaxation}} = \Phi_{i,j}^k + \beta \cdot \left(\Phi_{i,j}^{k+1} - \Phi_{i,j}^k\right). \tag{2.42}$$

Der Relaxationsparameter β ist vom Benutzer zu setzen.

Im Gegensatz zu den gerade beschriebenen explititen Lösern gibt es noch die Möglichkeit den Thomas-Algorithmus zu verwenden, welcher ein impliziter Algorithmus ist. Dieser Algorithmus ist auf tridiagonale Matrizen anwendbar:

$$\begin{bmatrix} b_1 & c_1 & & & 0 \\ a_2 & b_2 & c_2 & & \\ & a_3 & b_3 & \ddots & \\ & & \ddots & \ddots & c_{N-1} \\ 0 & & & a_N & b_N \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_N \end{bmatrix} = \begin{bmatrix} d_1 \\ d_2 \\ d_3 \\ d_N \end{bmatrix}$$
(2.43)

In einem Iterationsschritt werden zunächst alle Koeffizienten der Matrix des LGS's modifiziert und zwar nach folgender Formel (Quelle: Wikipedia):

$$c'_{i} = \begin{cases} \frac{c_{1}}{b_{1}} &, i = 1\\ \frac{c_{i}}{b_{i} - c'_{i-1}a_{i}} &, i = 2, 3, ..., N - 1, \end{cases}$$

$$(2.44)$$

$$c'_{i} = \begin{cases} \frac{c_{1}}{b_{1}} &, i = 1\\ \frac{c_{i}}{b_{i} - c'_{i-1}a_{i}} &, i = 2, 3, ..., N - 1, \end{cases}$$

$$d'_{i} = \begin{cases} \frac{d_{1}}{b_{1}} &, i = 1\\ \frac{d_{i} - d'_{i-1}a_{i}}{b_{i} - c'_{i-1}a_{i}} &, i = 2, 3, ..., N. \end{cases}$$

$$(2.44)$$

In einem zweiten Schritt werden die Unbekannten mittels Rückwärts-Einsetzten berechnet:

$$x_n = d_n', (2.46)$$

$$x_i = d'_i - c'_i x_{i+1}$$
, $i = N - 1, N - 2, ..., 1.$ (2.47)

Dieser Algorithmus berechnet die Lösung nach lediglich $\mathcal{O}(n)$ Operationen. Es wird abwechselnd in x- und in y-Richtung "gelöst".

2.5 Konvergenzanalyse

Die Konvergenz der Methode folgt aus der Konsistenz und Stabilität. Beides wird nun getrennt überprüft.

2.5.1 Konsistenz

Im Folgenden folgt eine Konsistenzuntersuchung für die in 2.3 diskretisierte Laplace-Gleichung (vlg. 2.25). Mittels Talyorentwicklung folgt:

$$\Phi_{i\pm 1,j} = \Phi_{i,j} \pm \frac{\partial \Phi}{\partial x}|_{i,j} \Delta x + \frac{1}{2} \frac{\partial^2 \Phi}{\partial x^2}|_{i,j} \Delta x^2 \pm \frac{1}{6} \frac{\partial^3 \Phi}{\partial x^3}|_{i,j} \Delta x^3 + \frac{1}{24} \frac{\partial^4 \Phi}{\partial x^4}|_{i,j} \Delta x^4 \pm \frac{1}{120} \frac{\partial^5 \Phi}{\partial x^5}|_{i,j} \Delta x^5 + \mathcal{O}(\Delta x^6)$$
(2.48)

$$\Phi_{i,j\pm 1} = \Phi_{i,j} \pm \frac{\partial \Phi}{\partial y}|_{i,j} \Delta y + \frac{1}{2} \frac{\partial^2 \Phi}{\partial y^2}|_{i,j} \Delta y^2 \pm \frac{1}{6} \frac{\partial^3 \Phi}{\partial y^3}|_{i,j} \Delta y^3 + \frac{1}{24} \frac{\partial^4 \Phi}{\partial y^4}|_{i,j} \Delta y^4 \pm \frac{1}{120} \frac{\partial^5 \Phi}{\partial y^5}|_{i,j} \Delta y^5 + \mathcal{O}(\Delta y^6).$$
(2.49)

Setzt man nun diese Taylorentwicklungen in (2.25) ein, so erhält man nach Kürzen, Umstellen und Grenzwertbildung:

$$\frac{\partial^2 \Phi}{\partial x^2} + \frac{\partial^2 \Phi}{\partial y^2} = -\lim_{\Delta x, \Delta y \to 0} \mathcal{O}\left(\Delta x^2, \Delta y^2\right) \stackrel{!}{\approx} 0. \tag{2.50}$$

Somit gibt die Differenzenlösung eine hinreichend genaue Lösung für Gleichung (2.12). Das Gleiches gilt für die Stromfunktion Ψ .

2.5.2 Stabilität

Für Stabilität wird folgendes gefordert:

$$|G^k| \le 1,\tag{2.51}$$

mit Verstärkungsfaktor $G^k = \frac{\zeta_{i,j}^{k+1}}{\zeta_{i,j}^k}$ und Fehler $\zeta_{i,j}^k = \tilde{\Phi}_{i,j}^k - \Phi_{i,j}^k$, sprich die Differenz aus im

Computer dargesteller Lösung und exakter numerischer Lösun
g. Mittels Fourier-Transformation $\zeta_{i,j}^k = V_{\nu}^k \cdot e^{\sqrt{-1}(\nu_x i \Delta x + \nu_y j \Delta y)}$ folgt beispielsweise für das Jacobi-Verfahren (siehe (2.40)) ohne Transformation nach Einsetzen und Umstellen:

$$\frac{V_{\nu}^{k+1}}{V_{\nu}^{k}} = \frac{1}{\Delta x^{2} + \Delta y^{2}} \cdot \left[\Delta y^{2} \cos\left(\nu_{x} \Delta x\right) + \Delta x^{2} \cos\left(\nu_{y} \Delta y\right) \right], \tag{2.52}$$

wobei $cos(x) = \frac{e^{\sqrt{-1}x} + e^{-\sqrt{-1}x}}{2}$ verwendet worden ist. Für Stabilität muss nun gelten, dass $|\frac{V_{\nu}^{k+1}}{V_{\cdots}^{k}}| \leq 1 \text{ ist. Mittels der Abschätzung } |cos\left(x\right)| \leq 1 \text{ folgt, dass}$

$$\left|\frac{V_{\nu}^{k+1}}{V_{\nu}^{k}}\right| \le \frac{1}{\Delta x^{2} + \Delta y^{2}} \left[\Delta y^{2} \cdot 1 + \Delta x^{2} \cdot 1\right] = 1, \tag{2.53}$$

da Δx und Δy stets positiv sind. Somit ist die Stabilität des Jacobi-Verfahrens ohne Transformation nachgewiesen. Für die anderen zwei Lösungsverfahren und bei Anwendung der Transformation für krummlinige Gebiete folgt das selbe Ergebnis. Da diese Formeln wesentlich komplexer sind, werden sie hier nicht dargestellt.

2.6 Validierung des Programms

Zunächst werden die Ergebnisse für einzelne Potentialströmungen diskutiert bzw. validiert. Für jede individuelle Potentialströmung werden drei Testfälle diskutiert:

- 1. Zunächst wird ein Gebiet der Größe $[0,1] \times [0,1]$ in 3×3 Zellen unterteilt. Der berechnete Wert in der mittleren Zelle, wo keine Randwerte festgeschrieben sind, wird mit der analytischen Lösung verglichen,
- 2. Auf einem 50 × 50-Gitter werden als Anfangsdaten bereits die Werte der analytischen Lösung vorgegeben. Da die Methode nicht berechnen muss, sollte sie bereits nach einem Iterationsschritt mit einem Rediduum von 0 beenden, unter Beachtung der Maschinengenauigkeit.
- 3. Es werden die Äquipotentiallinien und Stromlinien visualisiert. Die Grafiken werden mit den analytischen Lösungen verglichen.

2.6.1 Parallelströmung

- 1. Es gilt $u_{\infty} = 5$ und $v_{\infty} = 3$. Die analytische Lösung besagt, dass für die mittlere Zelle folgende Werte angenommen werden müssen: $\Phi = 4$, $\Psi = 1$. Dies stimmt mit der berechneten Lösung überein, das maximale Residuum beträgt bei beiden Berechnungen 0.00e + 00. Es wurden je zwei Gauss-Seidel-Iterationen ausgeführt.
- 2. Die analytischen Werte berechnen sich nach den Formeln:

$$\Phi = u_{\infty} x + v_{\infty} y, \tag{2.54}$$

$$\Psi = -v_{\infty}x + u_{\infty}y. \tag{2.55}$$

Es wird lediglich ein Iterationsschritt ausgeführt.

3. Visualisierungen:

Abbildung 2.1: Äquipotentiallinien, Abbildung 2.2: Stromlinien, Parallel-Parallelströmung strömung

2.6.2 Ebene Staupunktströmung

- 1. Es gilt a=5. Die analytische Lösung besagt, dass für die mittlere Zelle folgende Werte angenommen werden müssen: $\Phi=0, \quad \Psi=2.5$. Dies stimmt mit der berechneten Lösung, unter Berücksichtigung der Maschinengenauigkeit, überein, das maximale Residuum beträgt bei beiden Berechnungen 0.00e+00.
- 2. Die analytischen Werte berechnen sich nach den Formeln:

$$\Phi = a \cdot \left(x^2 - y^2\right),\tag{2.56}$$

$$\Psi = 2a \cdot xy. \tag{2.57}$$

Es wird lediglich ein Iterationsschritt ausgeführt.

3. Visualisierungen:

Abbildung 2.3: Äquipotentiallinien, **Abbildung 2.4:** Stromlinien, Ebene Staupunktströmung

2.6.3 Quelle/Senke

- 1. Es gilt S=5. Das Gebiet ist in diesem Fall $[1,2]\times[1,2]$. Die analytische Lösung besagt, dass für die mittlere Zelle folgende Werte angenommen werden müssen: $\Phi\approx 0.59845, \quad \Psi=0.625$. Dies stimmt mit der berechneten Lösung, unter Berücksichtigung der Maschinengenauigkeit, überein, das maximale Residuum beträgt bei beiden Berechnungen 0.00e+00.
- 2. Die analytischen Werte berechnen sich nach den Formeln:

$$\Phi = \frac{S}{2\pi} \ln \sqrt{x^2 + y^2},\tag{2.58}$$

$$\Psi = \frac{S}{2\pi} \arctan\left(\frac{y}{x}\right). \tag{2.59}$$

Es wird lediglich ein Iterationsschritt ausgeführt.

3. Visualisierungen:

Abbildung 2.5: Äquipotentiallinien, Abbildung 2.6: Stromlinien, Quelle Quelle

Abbildung 2.7: Äquipotentiallinien, Senke

Abbildung 2.8: Stromlinien, Senke

Aufgrund der Rotationssymmetrie des Laplace-Operators (siehe (2.12) und (2.13)), ist dieses Ergebnis auf die verbleibenden drei Quadranten entsprechend zu spiegeln.

2.6.4 Potentialwirbel

- 1. Es gilt $\Gamma = 5$. Das Gebiet ist in diesem Fall $[1, 2] \times [1, 2]$. Die analytische Lösung besagt, dass für die mittlere Zelle folgende Werte angenommen werden müssen: $\Psi \approx -0.59845$. Dies stimmt mit der berechneten Lösung, unter Berücksichtigung der Maschinengenauigkeit, überein, das maximale Residuum beträgt bei beiden Berechnungen 0.00e + 00.
- 2. Die analytischen Werte berechnen sich nach den Formeln:

$$\Phi = \frac{\Gamma}{2\pi} \arctan\left(\frac{y}{x}\right),\tag{2.60}$$

$$\Phi = \frac{\Gamma}{2\pi} \arctan\left(\frac{y}{x}\right), \qquad (2.60)$$

$$\Psi = -\frac{\Gamma}{2\pi} \ln\sqrt{x^2 + y^2}. \qquad (2.61)$$

Es wird lediglich ein Iterationsschritt ausgeführt...

3. Visualisierungen:

Abbildung 2.9: Äquipotentiallinien, Po- Abbildung 2.10: Stromlinien, Potentialtentialwirbel wirbel

Aufgrund der Rotationssymmetrie des Laplace-Operators (siehe (2.12) und (2.13)), ist dieses Ergebnis auf die verbleibenden drei Quadranten entsprechend zu spiegeln.

2.6.5 Dipol

- 1. Es gilt M=5. Das Gebiet ist in diesem Fall $[1,2]\times[1,2]$. Die analytische Lösung besagt, dass für die mittlere Zelle folgende Werte angenommen werden müssen: $\Psi \approx -0.5627$. Dies stimmt mit der berechneten Lösung, unter Berücksichtigung der Maschinengenauigkeit, überein, das maximale Residuum beträgt bei beiden Berechnungen 0.00e + 00.
- 2. Die analytischen Werte berechnen sich nach den Formeln:

$$\Phi = \frac{M}{2\pi} \frac{x}{\sqrt{x^2 + y^2}},\tag{2.62}$$

$$\Phi = \frac{M}{2\pi} \frac{x}{\sqrt{x^2 + y^2}},$$

$$\Psi = -\frac{M}{2\pi} \frac{x}{\sqrt{x^2 + y^2}}.$$
(2.62)

3. Visualisierungen:

Abbildung 2.11: Äquipotentiallinien, Abbildung 2.12: Stromlinien, Dipol Dipol

Aufgrund der Rotationssymmetrie des Laplace-Operators (siehe (2.12) und (2.13)), ist dieses Ergebnis auf die verbleibenden drei Quadranten entsprechend zu spiegeln, bzw. weiter ins Unendliche.

Es ist erkennbar, dass alle getesteten Potentialströmungen hinreichend exakte Ergebnisse liefern (die Ergebnisse sind nicht exakt der analytischen Lösung aufgrund Rundungsfehler infolge der Maschinengenauigkeit).

Kapitel 3

Konvektions-Diffusions-Strömung

3.1 Aufgabenstellung

Ziel ist es, eine inkompressible, instationäre und zweidimensionale Strömung zu simulieren, welche Konvektions- und Diffusionsprozesse enthält.

Analag zu Kapitel 2 wird zunächst auf die mathematische Modellbildung eingegagnen, anschließend werden numerische Methoden zum Lösen der entstandenen Gleichungen vorgestellt und schließlich, werden Testfälle bzw. Resultate des Programms diskutiert und somit das Programm validiert.

3.2 Mathematische Modellbildung

Es wird die Bilanzgröße Φ betrachet. Stellt man die Bilanz der konvektiven und diffusiven Flüsse, sowie der Quellterme für ein diferentielles Element im Zweidimensionalen auf, so ergibt sich für die horizontalen (konvektiven und diffusiven) Flüsse:

$$f_{konv,links} = \rho u \Phi dy,$$
 $f_{konv,rechts} = \left(\rho u \Phi + \frac{\partial (\rho u \Phi)}{\partial x} dx\right) dy,$ (3.1)

$$f_{diff,links} = -a \frac{\partial \Phi}{\partial x} dy,$$
 $f_{diff,rechts} = -\left(a \frac{\partial \Phi}{\partial x} + \frac{\partial}{\partial x} \left(a \frac{\partial \Phi}{\partial x}\right) dx\right) dy.$ (3.2)

Analog gilt für die vertikalen Flüsse:

$$g_{konv,unten} = \rho u \Phi dx,$$
 $g_{konv,oben} = \left(\rho u \Phi + \frac{\partial \left(\rho u \Phi\right)}{\partial y} dy\right) dx,$ (3.3)

$$g_{diff,unten} = -a \frac{\partial \Phi}{\partial y} dx,$$
 $g_{diff,oben} = -\left(a \frac{\partial \Phi}{\partial y} + \frac{\partial}{\partial y} \left(a \frac{\partial \Phi}{\partial y}\right) dy\right) dx.$ (3.4)

Für die Quellterme gilt:

$$s \cdot dxdy. \tag{3.5}$$

Mittels dieser Flüsse bzw. Quellterme ist folgende Bilanzgleichung aufstellbar:

$$\frac{\partial (\rho \Phi)}{\partial t} = f_{konv,links} - f_{konv,rechts} + g_{konv,unten} + g_{konv,oben} + f_{diff,links} - f_{diff,rechts} + g_{diff,unten} - g_{diff,oben} + s \cdot dx dy.$$

Nach Einsetzen und Kürzen ergibt sich die folgende Formel für die Bilanzierung der Bilanzgröße Φ im differtentiellen Element der Abmessungen $dx \times dy$:

$$\frac{\partial \left(\rho \Phi\right)}{\partial t} + \frac{\partial \left(\rho u \Phi\right)}{\partial x} + \frac{\partial \left(\rho v \Phi\right)}{\partial y} = \frac{\partial}{\partial x} \left(a \frac{\partial \Phi}{\partial x} \right) + \frac{\partial}{\partial y} \left(a \frac{\partial \Phi}{\partial y} \right) + s, \tag{3.6}$$

wobei Φ für den Fall $s \equiv 0$ eine Erhaltungsgröße darstellt, da weder Quellen, noch Senken vorhanden sind. Allgemeiner sieht diese Formel wie folgt aus:

$$\frac{\partial (\rho \Phi)}{\partial t} + div (\rho \vec{v} \Phi) = div (\alpha \cdot \nabla \Phi) + s. \tag{3.7}$$

Gleichung (3.6) stellt die konservative Form der Differentialgleichung dar. Unter Anwendung der Kettenregel und Nutzung der Konitnuitätsgleichung

$$\frac{\partial \rho}{\partial t} + \frac{\partial (\rho u)}{\partial x} + \frac{\partial (\rho v)}{\partial y} = 0 \tag{3.8}$$

gelangt man zu der nicht-konservativen Darstellung:

$$\rho \frac{\partial \Phi}{\partial t} + \rho \cdot u \frac{\partial \Phi}{\partial x} + \rho \cdot v \frac{\partial \Phi}{\partial y} = \frac{\partial}{\partial x} \left(a \frac{\partial \Phi}{\partial x} \right) + \frac{\partial}{\partial y} \left(a \frac{\partial \Phi}{\partial y} \right) + s. \tag{3.9}$$

Nach Anwendung eines Volumenintegrals auf (3.7) über das komplette Volumen Ω und der anschließenden Anwendung der Gauss'schen Integralsatzes gelangt man zu folgender Form:

$$\frac{\partial}{\partial t} \int_{\Omega} (\rho \Phi) \, d\Omega + \oint_{\partial \Omega} (\rho \vec{v} \Phi - \alpha \cdot \nabla \Phi) \cdot d\vec{A} = \int_{\Omega} s d\Omega, \tag{3.10}$$

wobei $\vec{F} = \rho \vec{v}\Phi - \alpha \cdot grad(\Phi)$ den Fluss bezeichnet. Die rechte Seite dieser Formel stellt die Bilanz der Quellen über das gesamte Integrationsgebiet Ω dar, die linke Seite stellt die Summe aus zeitlicher Änderung der Bilanzgröße und der Bilanz aller Flüsse über die Gebietsoberfläche dar.

3.3 Diskretisierung

Das gesamte Integrationsgebiet Ω wird in kleine, sich nicht überlappende, Volumen zerlegt. Das dadurch entstehende numerische Verfahren ist das **Finite-Volumen-Verfahren**. Mit der so entstandenen Diskretisierung bzw. dem so entstandenen Gitter gilt mit Gleichung 3.10 für jedes finite Volumen j folgende Gleichung:

$$\frac{\partial}{\partial t} \left(\rho \Phi_j \right) \Delta V_j + \sum_{Seiten} \vec{F} \left(\Phi \right) \cdot \Delta \vec{A} = s_j \Delta V_j. \tag{3.11}$$

In den folgenden Unterkapiteln wird näher auf die einzelnen Terme dieser Gleichung, bzw. besonders auf deren numerische Berechnung eingegangen.

3.3.1 Finite Volumen

Als Erstes eröffnet sich die Frage, wie die finiten Volumen ΔV_j zu wählen sind. Es werden drei Bedingungen an diese gestellt:

- 1. $\bigcup_{j} \Delta V_{j} \stackrel{!}{=} \Omega$, d.h. die Summe aller finiten Volumen spannen das gesamte Integrationsgebiet auf.
- 2. $\Delta V_i \cup \Delta V_j = \emptyset$, $\forall i \neq j$, d.h. die finiten Volumen überschneiden sich nicht. Außerdem gehört jede Begrenzungskante oder -fläche zu zwei finiten Volumen gleichzeitig.
- 3. Die Berechnung der Flüsse über die Zellflächen muss unabhängig von den Zellen geschehen, so dass sicher gestellt ist, dass der eintretende Fluss über eine Zellfläche der einen Zelle, gleich dem austretenden Fluss der benachbarten Zelle über die selbe Zellfläche ist.

Im Folgenden wird eine zellzentrierte Interpretation gewählt, sprich die diskreten Werte der Bilanzgröße Φ werden innerhalb eines finiten Volumens/ einer Zelle angenommen und nicht an den Knotenpunten mehrerer Zellen.

3.3.2 Numerischer Fluss

Es wird eine numerische Berechnung für den in 3.11 beschriebenen Fluss gesucht. Betrachtet man die Kante zwischen den Punkten P_1 und P_2 einer Zelle, so ist der Fluss über diese Oberfläche gegeben durch:

$$\vec{F}_{P_1 P_2} = \begin{bmatrix} f \\ g \end{bmatrix}, \tag{3.12}$$

wobei f und g jeweils die horizontale bzw. vertikale Komponenten sind (vgl. (3.1), (3.2),(3.3),(3.4)). Mit dem Normalenvektor der betrachteten Kante

$$\vec{n}_{P_1P_2} = \frac{1}{\sqrt{\Delta x^2 + \Delta y^2}} \begin{bmatrix} \Delta y \\ -\Delta x \end{bmatrix}$$
, folgt für den Fluss über die Kante $\overline{P_1P_2}$:

$$\vec{F}_{P_1P_2} \cdot \vec{n}_{P_1P_2} = (f\Delta y - g\Delta x)_{P_1P_2}.$$
 (3.13)

Eingesetzt in (3.11) folgt:

$$\frac{\partial}{\partial t} (\rho \Phi_j) \Delta V_j + \sum_{Seiten} (f \Delta y - g \Delta x) = s_j \Delta V_j, \quad \forall j.$$
 (3.14)

3.3.2.1 Flusskomponenten

In Gleichung (3.14) ist noch unklar, wie sich die numerischen Flusskomponenten f^* bzw. g^* über eine Zellfläche berechnen.

Es gibt beispielsweise folgende Möglichkeiten für den konvektiven Anteil:

- 1. $f_{P_1P_2}^* = \frac{f_j + f_{j+1}}{2}$, wobei j und j+1 die Zellen bezeichnen die sich die gemeinsame Kante $\overline{P_1P_2}$ teilen.
- 2. $f_{P_1P_2}^* = f\left(\frac{\Phi_j + \Phi_{j+1}}{2}\right)$, mit j und j+1 wie bei 1..

3.
$$f_{P_1P_2}^* = \frac{f_{P_1+f_{P_2}}}{2}$$
.

Es existieren wesentlich mehr Möglichkeiten, an dieser Stelle wird nicht auf diese eingangen. Der diffusive Anteil, der sich mittels $\vec{F}_{diff} = -\alpha \cdot \nabla \Phi$ berechnet, wird in seine x- und y-Anteile aufgespalten, so dass sich folgende Approximation ergibt:

$$f_{P_1P_2} \approx -\alpha_{P_1P_2} \cdot \frac{\Phi_{i+1,j} - \Phi_{i,j}}{\Delta x}, \quad g_{P_1P_2} \approx -\alpha_{P_1P_2} \cdot \frac{\Phi_{i,j+1} - \Phi_{i,j}}{\Delta 1}.$$
 (3.15)

Somit ergibt sich für die Summe der diffusiven Flüsse der Zelle $\{P_1, P_2, P_3, P_4\}$ folgende zentrale Approximation:

$$f_{P_1P_2} - f_{P_3P_4} \approx \alpha_{P_1P_2} \cdot \frac{\Phi_{i+1,j} - 2\Phi_{i,j} + \Phi_{i-1,j}}{\Delta x},$$
 (3.16)

$$g_{P_2P_3} - f_{P_4P_1} \approx \alpha_{P_1P_2} \cdot \frac{\Phi_{i,j+1} - 2\Phi_{i,j} + \Phi_{i,j-1}}{\Delta y},$$
 (3.17)

wobei i, j den Wert von Φ in der bilanzierten Zelle entspricht, i, j+1 dem Wert der Zelle darüber usw..

3.3.3 Zeit-Evolution

Für den Term $\frac{\partial}{\partial t}$ in (3.11) zu approximieren, wird die explizite Euler-Methode verwendet, so dass:

$$\frac{\partial}{\partial t} \left(\rho \Phi_j \right) \approx \frac{\Phi_j^{n+1} - \Phi_j^n}{\Delta t},\tag{3.18}$$

wobei n der Zeit-Index ist und j wie bereits beschrieben, das finite Volumen indiziert.. Eingesetzt ergibt sich nun folgendes Verfahren, für $\rho=const$, sprich eine inkompressible Strömung:

$$\Phi_j^{n+1} \approx \Phi_j^n + \frac{\Delta t}{\rho} \cdot s_j - \frac{\Delta t \Delta V_j}{\rho} \cdot \sum_{Seiten} (f \Delta y - g \Delta x).$$
 (3.19)

Die Flusskomponenten f und g setzen sich, wie in Kapitel 3.3.2.1 beschrieben, aus diffusiven und konvektiven Anteilen zusammen.

3.3.4 Upwind-Diskretisierung

Es wird im eindimensionalen Fall die Kante mit Indes $i + \frac{1}{2}$ betrachtet, welche die Zellen mit Werten Φ_i und Φ_{i+1} verbindet. Es gilt folgender Zusammenhang:

$$(\rho u \Phi)_{i+\frac{1}{2}} = \begin{cases} (\rho u)_{i+\frac{1}{2}} \cdot \Phi_i &, u_{i+\frac{1}{2}} \ge 0\\ (\rho u)_{i+\frac{1}{2}} \cdot \Phi_{i+1} &, u_{i+\frac{1}{2}} < 0 \end{cases},$$
(3.20)

d.h. die Richtung der Transportgeschwindigkeit ist hier entscheidend. Nachteil dieser Methode ist, dass die Upwind-Diskretisierung lediglich erster Ordnung ist, die zentrale Diskretisierung hingegen zweiter Ordnung. Verbesserungsmöglichkeiten werden in Kapitel 3.3.4.1 diskutiert.

3.3.4.1 Höhere Ordnung

Es existieren optimierte Upwind-Methoden, wie z.b. QUICK. Hier wird statt eines treppenförmigen Profils eine quadratische Rekonstruktion von Φ auf drei stromauf versetzten Knotenpunkten angesetzt. So wird eine Approximation zweiter Ordnung für äquidistante Gitter erreicht, im Gegensatz zu der ersten Ordnung der *normalen* Upwind-Diskretisierung.

3.3.5 Vereinheitliche Programmierung

Wir betrachten die bereits beschrieben diskretisierte Gleichung

$$\rho \frac{\Phi_{i,j}^{k+1} - \Phi_{i,j}^{k}}{\Delta t} \Delta x \Delta y = -a_{i,j} \cdot \Phi_{i,j} + a_{i,j+1} \cdot \Phi_{i,j+1}^{k} + a_{i+1,j} \cdot \Phi_{i+1,j}^{k} + a_{i,j-1} \cdot \Phi_{i,j-1}^{k} + a_{i-1,j} \cdot \Phi_{i-1,j}^{k}.$$
(3.21)

Es gilt weiterhin:

$$a_{i,j} = a_{i,j+1} + a_{i+1,j} + a_{i,j-1} + a_{i-1,j} + \left(f_{i+\frac{1}{2},j} - f_{i-\frac{1}{2},j}\right) \Delta y + \left(g_{i,j+\frac{1}{2}} - g_{i,j-\frac{1}{2}}\right) \Delta x.$$
 (3.22)

Da die Kontinuitätsgleichung

$$\left(f_{i+\frac{1}{2},j} - f_{i-\frac{1}{2},j}\right) \Delta y + \left(g_{i,j+\frac{1}{2}} - g_{i,j-\frac{1}{2}}\right) \Delta x = 0$$
(3.23)

erfüllt sein muss, vereinfacht sich Gleichung (3.22) dementsprechend. Für die Berechnung eines Zellmittelwerts im nächsten Zeitschritt, kann folgende verallgemeinerte Formel angenommen werden:

$$\tilde{a}_{i,j}\Phi_{i,j}^{k+1} = a_{i,j+1} \cdot \Phi_{i,j+1}^k + a_{i+1,j} \cdot \Phi_{i+1,j}^k + a_{i,j-1} \cdot \Phi_{i,j-1}^k + a_{i-1,j} \cdot \Phi_{i-1,j}^k + b, \tag{3.24}$$

$$b = a_{i,j}^k \cdot \Phi_{i,j}^k, \tag{3.25}$$

$$a_{i,j}^k = \frac{\rho \Delta x \Delta y}{\Delta t},\tag{3.26}$$

$$\tilde{a}_{i,j} = a_{i,j+1} + a_{i+1,j} + a_{i,j-1} + a_{i-1,j} + a_{i,j}. \tag{3.27}$$

wobei i,j die Ortsindizes und k der Zeitindex sind. Das Einflussgebiet sieht also wie folgt aus:

Tabelle 3.1: Einflussgebiet von Zelle i, j

Die Koeffizienten $a_{\bullet,\bullet}$ errechnen sich wie folgt:

$$a_{i,j+1} = D_{i,j+1} \cdot \Delta x \cdot A(|Pe_{i,j+1}|) + max(-g_{i,j+1}\Delta x, 0), \qquad (3.28)$$

$$a_{i+1,j} = D_{i+1,j} \cdot \Delta y \cdot A(|Pe_{i+1,j1}|) + max(-f_{i+1,j}\Delta y, 0), \qquad (3.29)$$

$$a_{i,j-1} = D_{i,j-1} \cdot \Delta x \cdot A(|Pe_{i,j-1}|) + \max(g_{i,j-1}\Delta x, 0), \qquad (3.30)$$

$$a_{i-1,j} = D_{i-1,j} \cdot \Delta y \cdot A(|Pe_{i-1,j}|) + \max(f_{i-1,j}\Delta y, 0), \qquad (3.31)$$

wobei $f_{\bullet,\bullet} = \rho \cdot u_{\bullet,\bullet}$ und $g_{\bullet,\bullet} = \rho \cdot v_{\bullet,\bullet}$. Für die Peclet-Zahl gilt $Pe_{\bullet,\bullet} = \frac{\rho u_{\bullet,\bullet}l}{\alpha}$, mit charakteristischer Länge l und es gilt zum Beispiel $D_{i,j+1} = \frac{\alpha}{\Delta x}$. Für die Berechnung von A(|Pe|) können die folgenden verschiedenen Schemata verwendet werden:

Schema	A(Pe)
Zentrale Differenzen	$1-\frac{ Pe }{2}$
Upwind, 1. Ordnung	1
Hybrid	$max\left(0,1-\frac{ Pe }{2}\right)$
Potenzgesetz	$max\left(0,\left(1-\frac{ Pe }{10}\right)^{5}\right)$
Exponentialgesetz	$\frac{ Pe }{exp(Pe) - 1}$

Tabelle 3.2: Berechnung von A(|Pe|)

Es ist ersichtlich, dass für das Zentrale Differenzen-Schema A(|Pe|) kleiner Null wird, sobald |Pe| > 2 ist. Da stabile Verfahren ein positives A vorraussetzen, ist bei Verwendung dieses Schemas stets auf die Peclet-Zahl zu achten.

3.4 Validierung des Programms

3.4.1 Konvektion

Zunächst wird nur eine konvektive Strömung verwendet um das Programm zu validieren, d.h. der Diffusionskoeffizient α wird zu Null.

1. Es wird ein 3×3 -Gitter verwendet mit folgenden Initial- bzw. Randwerten (lediglich Dirichlet-Ränder):

1	1	1
1	4711	1
1	1	1

Zunächst wird die Zentrale-Differenzen-Methode verwendet, danach die Upwind-Methode. Bei beiden sind beide Geschwindigkeitskomponenten größer Null. Bei der ersten Variante sollte sich der mittlere Wert nicht ändern, da er zu gleichen Teilen vom oberen, unteren, rechten und linken Wert abhängt, die alle den gleichen numerischen Wert haben. Bei der Upwind-Methode sollte sich der Wert der linken Zelle durchsetzen, da dies die Zelle stromauf der konvektiven Strömung ist. Die Ergebnisse zeigen genau dieses Resultat:

Abbildung 3.1: Zentrale-Differenzen- **Abbildung 3.2:** Upwind-Methode, sta-Methode, stationäre Endlösung tionäre Endlösung

2. Es wird ein 3×3 -Gitter verwendet mit folgenden Initial- bzw. Randwerten (lediglich Dirichlet-Ränder):

1	0	-1
1	10	-1
1	0	-1

Das Strömungsfeld wird vorgegeben, zunächst sei u=1 und v=0. Es wird die Upwind-Methode verwendet, d.h. als stationärer Endwert in der mittleren Zelle muss sich der Wert der linken Zelle, sprich der Wert 1, durchsetzen. Die Resultate der numerischen Berechnung geben genau dieses Ergebnis wieder:

Abbildung 3.3: Upwind-Methode, Initi- **Abbildung 3.4:** Upwind-Methode, staalzustand tionäre Endlösung (v = 0)

Nun wird das Geschwindigkeitsfeld zu u=0 und v=1 geändert. Aufgrund der gleichen Argumentation, muss sich jetzt der Wert der unteren Zelle, sprich der Wert 0 in der mittleren Zelle durchsetzen. Die numerische Simulation stimmt mit dieser Überlegung überein:

Abbildung 3.5: Upwind-Methode, Initialzustand

Abbildung 3.6: Upwind-Methode, stationäre Endlösung (u = 0)

3. Die Software gibt anscheinend für das Konvektionsproblem das richtige Ergebnis aus. Abschließend wird eine konvektive Strömung auf einem größeren Gitter der Größe 100×100 mit Geschwindigkeiten u=1 und v=2 simuliert. Das Integrationsgebiet ist ebenfalls 100×100 groß. Im Folgenden wird die zeitliche Evolution des skalaren Wertes Φ über das gesamte Integrationsgebiet dargestellt. Hierfür ist die Upwind-Methode verwendet worden:

Abbildung 3.8: zeitliche Evolution konvektiver Strömung

Im stationären Endfall werden im gesamten Integrationsgebiet die Werte der Dirchichlet-Ränder, nämlich 42, angenommen, was auch der richtigen Lösung für die Upwind-Methode entspricht.

3.4.2 Diffusion

Nun werden die Geschwindigkeiten u und v zu Null gesetzt, der Diffusionskoeffizient α hat nun einen Wert ungleich Null.

1. Es gilt $\alpha=1$ und es wird ein 3×3 -Gitter verwendet mit folgenden Initial- bzw. Randwerten (lediglich Dirichlet-Ränder):

1	1	1
1	4711	1
1	1	1

Da die Randwerte fest sind ist der Mittelwert der mittleren Zelle für die stationäre Endlösung gleich Eins, da alles über die Ränder hinaus diffundiert ist. Diese Überlegung stimmt mit dem berechneten Ergebnis überein:

Abbildung 3.9: Initialwerte

Abbildung 3.10: stationäre Endlösung

2. Die Software gibt anscheinend für das Diffusionsproblem das richtige Ergebnis aus. Abschließend wird eine diffusive Strömung auf einem größeren Gitter der Größe 100×100 mit Diffusionskoeffizient $\alpha=50$ simuliert. Das Integrationsgebiet ist ebenfalls 100×100 groß. Im Folgenden wird die zeitliche Evolution des skalaren Wertes Φ über das gesamte Integrationsgebiet dargestellt:

Abbildung 3.12: zeitliche Evolution diffusiver Strömung

Im stationären Endfall, der hier nicht visualisiert ist, werden im gesamten Integrationsgebiet die Werte der Dirchichlet-Ränder, nämlich 42, angenommen, was auch der richtigen Lösung entspricht.

3.4.3 Konvektion-Diffusion

1. Im Folgenden wird eine Konvektion-Diffusions-Strömung visualisiert. Die Parameter sind $\alpha = 50$, u = 5 und v = 10. Das Gebiet ist das selbe 100×100 -Gebiet, wie in den vorherigen Testfällen, wo Konvektion und Diffusion getrennt betrachtet worden sind. Das Ergebnis der Simulation sieht wie folgt aus:

Abbildung 3.14: zeitliche Evolution konvektiv-diffusiver Strömung

Im stationären Endfall, der hier nicht visualisiert ist, werden im gesamten Integrationsgebiet die Werte der Dirchichlet-Ränder, nämlich 42, angenommen, was auch der richtigen Lösung entspricht. Weiterhin ist erkennbar, dass sich die Randwerte von unten und links in das Gebiet hineinpflanzen und dass am Ende der skalare Wert Φ mit der Zeit hinaus-diffundiert.

3.4.4 Neumann-Ränder

Biser wurden in sämtlichen Testfällen Dirichlet-Randbedingungen verwendet. Im Folgenden werden in einem Testfall die Implementierung der Neumann-Ränder getestet und visualisert. Es wird eine 50×50 -Diskretisierung für das 3×3 große Gitter verwendet. Die Anfangswerte sind über das ganze Integrationsgebiet 4.711. Am nördlichen und östlichen Rand fließt der Skalar Φ ebenfalls mit 4.711 pro Sekunde heraus. An dem südlichen und westlichen Rand, fließt der Skalar Φ mit 42 pro Sekunde rein. Als Konvektionsgeschwindigkeiten sind u=1 und v=1 gesetzt, der Diffusionskoeffizient α ist zu Null gesetzt. Es wird die zeitliche Evolution des skalaren Wertes Φ dargestellt, welche der physikalischen Überlegung, dass sich der Skalar Richtung Nord-Osten bewegt und dort aufstaut, entspricht (bei den Grafiken ist die Änderung der Skala zu beachten):

Abbildung 3.16: zeitliche Evolution konvektiver Strömung mit Neumann-Rändern

3.4.5 Quellen

Es wird wieder eine 50×50 -Diskretisierung für ein 3×3 großes Integrationsgebiet verwendet. Es werden undruchlässige Wände an allen vier Wänden simuliert, die Konvektionsgeschwindigkeiten sind beide Null und der Diffusionskoeffizient beträgt $\alpha=10$. Als Initialwerte für den Skalar Φ wird wieder über dem gesamten Gebiet der Wert 4.711 gesetzt. An der Stelle (1,1) befindet eine Quelle, die pro Sekunde 100 Einheiten des Skalars Φ in das Integrationsgebiet einbringt, an der Stelle (2,2) befindet sich eine Senke die 15 Einheiten des Skalars Φ pro Sekunde absaugt. Es ergibt sich folgende, physikalisch korrektes, zeitliche Evolution (Bemerkung: Es werden nur positive Werte von Φ angezeigt, nicht die negativen Werte, welche aus der Senke resultieren. So wird deutlicher, welchen Einfluss die Senke bzw. die Quelle aufeinander haben).

Abbildung 3.18: zeitliche Evolution diffusiver Strömung mit Quelle und Senke

Kapitel 4

Berechnung des Geschwindigkeitsfeldes

4.1 Aufgabenstellung

In der bisherigen Implementierung der Konvektion-Diffusion-Strömung ist das Geschwindigkeitsfeld als gegeben angenommen worden. Nun soll dieses Geschwindigkeitsfeld unter Vorgabe des Druckfeldes während der Berechnung berechnet werden. Im Folgenden wird auf die mathematische Herleitung der benötigten Formeln eingegangen. Validiert wird die implementierte Software in Kapitel 6.

4.2 Mathematische Modellbildung

Für die Berechnung der beiden Geschwindigkeitskomponenten u und v wird eine weitere (vektorielle) Formel benötigt. Zunächst wird die Impulsgleichung in x-Richtung

$$\frac{\partial (\rho u)}{\partial t} + \frac{\partial (\rho u \cdot u)}{\partial x} + \frac{\partial (\rho v \cdot u)}{\partial y} = -\frac{\partial p}{\partial x} + \eta \frac{\partial^2 u}{\partial x^2} + \eta \frac{\partial^2 u}{\partial y^2}$$
(4.1)

betrachtet, bzw. im eindimensionalen Fall

$$\frac{\partial (\rho u)}{\partial t} + \frac{\partial (\rho u \cdot u)}{\partial x} = -\frac{\partial p}{\partial x} + \eta \frac{\partial^2 u}{\partial x^2}.$$
 (4.2)

4.3 Diskretisierung

Für die Diskretisierung wird ein versetzes Gitter verwendet. Da bei der Diskretisierung auf dem Gitter für den Skalar Φ die Druckwerte benachbarter Gitterzellen entkoppelt werden würden, würde beispielsweise ein oszillierender Druck (Zick-Zack-Verteilung), welcher von einer zur anderen Zelle jeweils von Wert 1 auf Wert 2 oder umgekehrt springt, entkoppelt werden. Dass heißt das bei der Betrachtung von Zelle i nur die Druckwerte in den Zellen i-1 und i+1 von Relevanz wären, nicht aber der Druck in Zelle i selbst (analog für die y-Richtung und die y-Richtung). Die Verwendung eines versetzten Gitters bringt eine Abhilfe für dieses Problem. Es gibt nun 2 weitere Gitter für beide Geschwindigkeitskomponenten. Für u wird das kartesische Gitter für Φ um eine halbe Zellbreite in horizontaler Richtung verschoben, d.h. die neuen horizontalen Kanten für das Gitter liegen auf den alten Kanten, die vertikalen Kanten gehen nun aber durch die Zellmittelpunkte der physikalischen Zellen für Φ . Analoges gilt für das Gitter für v. Dort laufen nun die horizontalen Kanten durch die Zellmittelpunkte der physikalischen Zellen für Φ . Diese Betrachtungsweise ist ebenfalls sinnvoll, da die

Geschwindigkeitskomponenten für die Berechnung der Flüsse über die Zellkanten gerade auf diesen definiert sind, und nicht in den Zellmittelpunkte der physikalischen Zellen für Φ . Es wird die Zellkante an der Stelle $i + \frac{1}{2}, j$ betrachtet. Unter Verwendung zentraler Differenz zur Approximation des Druckgradienten in (4.1) bzw. (4.2), sprich

$$\frac{\partial p}{\partial x} \approx \frac{p_{i+1,j} - p_{i,j}}{x_{i+1} - x_i} \tag{4.3}$$

für das u-Gitter und

$$\frac{\partial p}{\partial y} \approx \frac{p_{i,j+1} - p_{i,j}}{y_{j+1} - y_i} \tag{4.4}$$

für das v-Gitter, gelangt man (analog zu Formeln in Kapitel 3) zu folgender Diskreitisierung:

$$\tilde{a}_{i+\frac{1}{2},j} \cdot u_{i+\frac{1}{2},j}^{k} = a_{i+\frac{1}{2},j} \cdot u_{i+\frac{3}{2},j}^{k} + a_{i-\frac{1}{2},j} \cdot u_{i-\frac{1}{2},j}^{k} + a_{i+\frac{1}{2},j+1} \cdot u_{i+\frac{1}{2},j+1}^{k} + a_{i+\frac{1}{2},j-1} \cdot u_{i+\frac{1}{2},j-1}^{k} + b + \frac{p_{i,j} - p_{i+1,j}}{x_{i+1} - x_{i}} \cdot (x_{i+1} - x_{i}) \Delta y_{j},$$

$$(4.5)$$

bzw.

$$\tilde{a}_{i,j+\frac{1}{2}} \cdot v_{i,j+\frac{1}{2}}^{k} =
a_{i+1,j+\frac{1}{2}} \cdot v_{i+1,j+\frac{1}{2}}^{k} + a_{i-1,j+\frac{1}{2}} \cdot v_{i-1,j+\frac{1}{2}}^{k} + a_{i,j+\frac{3}{2}} \cdot v_{i,j+\frac{3}{2}}^{k} + a_{i,j-\frac{1}{2}} \cdot v_{i,j-\frac{1}{2}1}^{k} +
b + \frac{p_{i,j} - p_{i,j+1}}{x_{i+1} - x_{i}} \cdot (y_{j+1} - y_{j}) \Delta x_{i}.$$
(4.6)

In den Formeln wurden die Indizes jeweils auf das physikalische Gitter des Skalars Φ bezogen, da dies in der Software genau so umgesetzt worden ist. Die Formeln für die Koeffizienten entsprechen denen aus Kapitel 3 auf dem oben definierten versetztem Gitter.

Kapitel 5

Berechnung des Druck- und Geschwindigkeitsfeldes

5.1 Aufgabenstellung

Im vorherigen Kapitel ist das Geschwindigkeitsfeld mit Hilfe eines gegebenen Druckfeldes bestimmt worden. Zuletzt wird nun ebenfalls das Druckfeld berechnet und nicht vorgegeben. Der Aufbau dieses Kapitels befasst sich zunächst mit der Herleitung des SIMPLER-Algorithmus. Die Validierung ist ausführlich in Kapitel 6 zu sehen.

5.2 Mathematische Modellbildung und Diskretisierung

Zur Bestimmung des Druckfeldes kann die Kontinuitätsgleichung benutzt werden, da dies die einzig bisher nicht verwendete Gleichung ist. Aus dem vorherigen Kapitel folgen folgende vorläufige Gleichungen für die Geschwindigkeitskomponenten u und v:

$$\tilde{a}_{i+\frac{1}{2},j} \cdot u_{i+\frac{1}{2},j}^* = \sum_n a_n \cdot u_n^* + b + \left(p_{i,j}^* - p_{i+1,j}^* \right) \cdot A_{i+\frac{1}{2},j}, \tag{5.1}$$

$$\tilde{a}_{i,j+\frac{1}{2}} \cdot v_{i,j+\frac{1}{2}}^* = \sum_{n} a_n \cdot v_n^* + b + \left(p_{i,j}^* - p_{i,j+1}^* \right) \cdot A_{i,j+\frac{1}{2}}. \tag{5.2}$$

Der Index * bezeichnet die zunächst geschätzten Größen für Geschwindigkeit und Druck, d.h. diese Größe sind noch nicht korrekt. Für die korrekten Werte ist noch ein Korrekturterm (Index ') hinzuzufügen:

$$p = p^* + p', \tag{5.3}$$

$$u = u^* + u', \tag{5.4}$$

$$v = v^* + v'. \tag{5.5}$$

Die Summe über alle u bzw. v koppeln sämtliche Geschwindigkeiten miteinander, sodass das Lösen für die Korrekturterme zu einem impliziten Gleichungssystem führt, welches rechenintensiv gelöst werden müsste. Aus diesem Grund werden diese Summenterme einfach fallen gelassen, was nicht die Genauigkeit der konvergenten Lösung verschlechtert:

$$u'_{i+\frac{1}{2},j} = \left(p'_{i,j} - p'_{i+1,j}\right) \cdot \frac{A_{i+\frac{1}{2},j}}{\tilde{a}_{i+\frac{1}{2},j}},\tag{5.6}$$

$$v'_{i,j+\frac{1}{2}} = \left(p'_{i,j} - p'_{i,j+1}\right) \cdot \frac{A_{i,j+\frac{1}{2}}}{\tilde{a}_{i,j+\frac{1}{2}}}.$$
(5.7)

Es fehlt nun lediglich der Druckkorrekturterm p'. In die diskretisierte Kontinuitätsgleichung

$$\left(\rho_{i,j}^{k+1} - \rho_{i,j}^{k}\right) \frac{\Delta x \Delta y \Delta z}{\Delta t} + \left(\left(\rho u A\right)_{i+\frac{1}{2},j} - \left(\rho u A\right)_{i-\frac{1}{2},j}\right) + \left(\left(\rho v A\right)_{i,j+\frac{1}{2}} - \left(\rho v A\right)_{i,j-\frac{1}{2}}\right) = 0 \quad (5.8)$$

werden die Formeln (5.6) und (5.7) eingesetzt, woraus die Druck-Korrekturgleichung folgt:

$$\tilde{a}_{i,j} \cdot p'_{i,j} = a_{i+1,j} \cdot p'_{i+1,j} + a_{i-1,j} \cdot p'_{i-1,j} + a_{i,j+1} \cdot p'_{i,j+1} + a_{i,j-1} \cdot p'_{i,j-1} + b, \tag{5.9}$$

mit den Koeffizienten:

$$a_{i+1,j} = \left(\frac{\rho A}{\tilde{a}}\right)_{i+\frac{1}{2},j} \Delta y \Delta z,\tag{5.10}$$

$$a_{i-1,j} = \left(\frac{\rho A}{\tilde{a}}\right)_{i-\frac{1}{2},j} \Delta y \Delta z, \tag{5.11}$$

$$a_{i,j+1} = \left(\frac{\rho A}{\tilde{a}}\right)_{i,j+\frac{1}{2}} \Delta x \Delta z,\tag{5.12}$$

$$a_{i,j-1} = \left(\frac{\rho A}{\tilde{a}}\right)_{i,j-\frac{1}{2}} \Delta x \Delta z,\tag{5.13}$$

$$b = \left(\rho_{i,j}^{k+1} - \rho_{i,j}^{k}\right) \frac{\Delta x \Delta y \Delta z}{\Delta t} + \left(\left(\rho u^{*} A\right)_{i+\frac{1}{2},j} - \left(\rho u^{*} A\right)_{i-\frac{1}{2},j}\right) + \left(\left(\rho v^{*} A\right)_{i,j+\frac{1}{2}} - \left(\rho v^{*} A\right)_{i,j-\frac{1}{2}}\right). \tag{5.14}$$

Der Term für b entspricht der diskretisierten Kontinuitätsgleichung (siehe (5.8)) mit den geschätzten Geschwindigkeiten. Folglich signalisiert die Bedingung $b\approx 0$, dass die Kontinuitätsgleichung erfüllt ist durch die geschätzten Geschwindigkeiten. Somit stellt $b\approx 0$ ein vernünftiges Abbruchkriterium für die Iteration dar, d.h. Ziel ist es durch Druck- und Geschwindigkeitsiteration diesen Term iterativ gegen Null laufen zu lassen. Außerdem wird eine Unterrelaxation des Druckes mit $p=p^*+\omega\cdot p'$ mit $\omega\in[0,1]$ verwendet. Das bisher beschriebene Verfahren ist der SIMPLE-Algorithmus. Dieser ist bereits überarbeitet worden zu dem SIMPLER-Algorithmus. Da das Ergebnis des ersten Algorithmus eine schlechte Druckkorrektur liefert, wird das bisher beschriebene Verfahren nur zur Geschwindigkeitskorrektur verwendet, zur Druckkorrektur wird anders, wie im Folgenden erläutert, vorgegangen.

Sei \hat{u} bzw. \hat{v} eine Pseudo-Geschwindigkeit, für welche gilt:

$$\hat{u}_{i+\frac{1}{2},j} = \frac{1}{\tilde{a}_{i+\frac{1}{2},j}} \cdot \left[\sum_{n} a_n u_n + b \right]. \tag{5.15}$$

Dies entspricht der Geschwindigkeit, welche aus der Impulsgleichung hervor ging (vergleiche Kapitel 4), jedoch ist der Term $\frac{1}{\tilde{a}_{i+\frac{1}{2},j}} \cdot \left[(p_{i,j} - p_{i+1,j}) \, A_{i+\frac{1}{2},j} \right]$ hier nicht betrachtet worden.

Analoges gilt für die Pseudo-Geschwindigkeiten in den anderen Richtungen. Diese neuen Pseudo-Geschwindigkeiten sind demnach unabhängig vom Druckfeld. Analog zu vorher, werden diese Geschwindigkeiten in die diskretisierte Kontinuitätsgleichung (5.8) eingesetzt und man gelangt zu folgender Formel:

$$\tilde{a}_{i,j} \cdot p_{i,j} = a_{i+1,j} \cdot p_{i+1,j} + a_{i-1,j} \cdot p_{i-1,j} + a_{i,j+1} \cdot p_{i,j+1} + a_{i,j-1} \cdot p_{i,j-1} + b, \tag{5.16}$$

welche Formel (5.9) entspricht, es wurden lediglich die Druckkorrekturterme an den jeweiligen Stellen durch den tatsächlichen Druck ersetzt. Der Term b wird demenstprechend ebenfalls

Kapitel 5 Berechnung des Druck- und Ges**öhtwilmfähigkeintsfrisch** Modellbildung und Diskretisierung

mit den neuen Pseudo-Geschwindigkeiten gebildet, ist sonst allerdings analog zu (5.14). Für den nun erhaltenen SIMPLER-Algorithmus gilt, dass nicht wie vorher große Druckkorrekturterme auftreten und somit weniger Iterationen bis zur Konvergenz benötigt werden. Der implementierte Algorithmus sieht dann wie folgt aus:

- 1. Schätze die Geschwindigkeiten u^* und v^* ,
- 2. Bestimme die Pseudo-Geschwindikeiten.
- 3. Bestimme das Druckfeld gemäß Formel (5.16).
- 4. Verwende diese Gleichung als Schätzung p^* . Berechne daraus die neuen Geschwindigkeiten u und v.
- 5. Berechne b und dadurch die Druckkorrektur p'.
- 6. Korrigiere sämtliche Geschwindigkeitskomponenten, analog zu Kapitel 4. ¹
- 7. Transportiere den Skalar Φ mit dem neuen Geschwindigkeitsfeld. 2
- 8. Gehe zurück zu Schritt 2 und wiederhole so lange, bis der Term b klein genug ist, d.h. bis Konvergenz vorliegt.

¹Das Druckfeld wird nicht korrigiert, diese ist bereits im vorherigen Schritt korrigirert worden.

²Dies ist nur innerhalb der Iteration zu tun, falls der Transport einen Einfluss auf das Geschwindigkeitsfeld hat. Ansonsten kann dies, um Rechenzeit zu sparen, auch nach der Iteration geschehen.

Kapitel 6

Anwendungsfälle

In diesem Kapitel werden Anwendungsfälle der in den vorangegangenen Kapiteln dargestellten Verfahren diskutiert.

6.1 Finite Differenzen: Potentialströmung - Kanalströmung

Für die Kanalströmung werden vier verschiedene Kanalformen diskutiert:

1.

$$h_u(x) = 0,$$

$$h_o(x) = \arctan(x) + 2,$$

$$x \in [-5, 5],$$

2.

$$h_u(x) = -\arctan(x) - 2,$$

$$h_o(x) = \arctan(x) + 2,$$

$$x \in [-5, 5],$$

3.

$$h_u(x) = \arctan(x) - 2,$$

$$h_o(x) = -\arctan(x) + 2,$$

$$x \in [-5, 5].$$

4.

$$h_u(x) = \arctan(x),$$

$$h_o(x) = \arctan(x) + 2,$$

$$x \in [-5, 5].$$

Die Ergebnisse sehen wie folgt aus: BLOCKSATZ IN AUFZÄHLUNG!!!

1. Zunächst werden die Ableitungen, die beispielsweise in (2.30) benötigt werden, überprüft. Die analytischen Lösungen sehen für das genannte Problem wie folgt aus (vgl. (2.27)):

$$\xi\left(x,y\right)=10x+50, \qquad \eta\left(x,y\right)=\frac{50y}{arctan(x)+2}$$

$$\frac{\partial \xi}{\partial x}=10, \qquad \frac{\partial \eta}{\partial x}=\frac{-50y}{\left(1+x^2\right)\left(arctan(x)+2\right)^2},$$

$$\frac{\partial^2 \xi}{\partial x^2}=0, \qquad \frac{\partial^2 \eta}{\partial x^2}=\frac{100\left(x\cdot arctan(x)+1+2x\right)}{\left(1+x^2\right)^2\left(arctan(x)+2\right)^3},$$

$$\frac{\partial \xi}{\partial y}=0, \qquad \frac{\partial \eta}{\partial y}=\frac{50}{arctan(x)+2},$$

$$\frac{\partial^2 \xi}{\partial y^2}=0, \qquad \frac{\partial^2 \eta}{\partial y^2}=0.$$

Diese Ableitungen wurden an mehreren Knotenpunkten analytisch berechnet und mit den, vom Programm berechneten, Werten verglichen. RESULTATE!!

Abbildung 6.1: Kanal 1: Äquipotential- und Stromlinien

Es ist ersichtlich, dass sich alle Äquipotential- und Stromlinien senkrecht schneiden, so wie es auch aus der Theorie vorgeschrieben wird. Desweiteren stehen die Äquipotentiallinien senkrecht auf der Kontur.

Abbildung 6.2: Kanal 1: Geschwindigkeitsfeld

Abbildung 6.3: Kanal 1: Druckfeld

Am Auslauf des Kanals ist der Druckbeiwert bei eirea Eins, da $u_{lokal} > u_{\infty}$. Am Einlauf gilt hingegen $u_{lokal} \approx u_{\infty}$, so dass der Druckbeiwert dort ungefährt gleich Null ist.

Abbildung 6.4: Kanal 2: Äquipotential- und Stromlinien

2. Es folgen die gleichen Ergebnisse wie bei Kanal 1.

Abbildung 6.5: Kanal 2: Geschwindigkeitsfeld

Abbildung 6.6: Kanal 3: Äquipotential- und Stromlinien

3. Es folgen die gleichen Ergebnisse wie bei Kanal 1.

Abbildung 6.7: Kanal 3: Geschwindigkeitsfeld

Abbildung 6.8: Kanal 4: Äquipotential- und Stromlinien

4. Es folgen die gleichen Ergebnisse wie bei Kanal 1.

Abbildung 6.9: Kanal 4: Geschwindigkeitsfeld

Bemerkung: Die Schnittpunkte aus Äquipotentiallinien und Stromlinien bilden ein Gitter auf dem Integrationsgebiet. Somit kann man sich durch Berechnung und Abspeichern dieser Schnittpunkte ein Gitter für weitere Diskretisierungen erstellen. Die Knotenpunkte für Kanal 2) könnten beispielsweise wie folgt aussehen (die Linien mit $\Phi = const$ bzw. $\Psi = const$ sind logarithmisch verteilt, wäre dies nicht der Fall, wären die erzeugten Gitterpunkte zum Rand des Kanals hin enger als in der Mitte):

Abbildung 6.10: Kanal 2: erzeugtes/berechnetes Gitter

6.2 Finite Volumen: verschiedene Anwendungsfälle

6.2.1 Berechnung des Transports eines Skalars

6.2.1.1 Flussströmung mit Ein- und Abflussrohr am Rand

Betrachtet wird ein Fluss bzw. ein Kanal, welcher stationär mit der selben Geschwindigkeit u in x-Richtung fließt. Am Rand dieses Kanals befindet sich ein Einflussrohr, beispielsweise ein Abfluss einer Fabrik oder ein Zufluss eines anderen Kanals, welches einen Stoff gleicher Dichte ρ in das strömende Fluid des Kanals gibt. Die Ausströmrichtung dieses Rohres steht senkrecht zur Kanalströmung.

Im Folgenden werden zwei Fälle verglichen:

- Links: Es wird lediglich ein Stoff in die Kanalströmung eingeführt.
- Rechts: Kurz hinter dem Einfluss des neuen Stoffes wird das Fluid des Kanals abgesaugt, ebenfalls am unteren Rand.

Die zwei Strömungen werden an fünf diskreten Punkten visualisiert. Gerechnet wurde auf einem 100×50 -Gitter.

Abbildung 6.12: Vergleich Flussströmungen: links mit Quelle, rechts mit Quelle und Senke

Man erkennt, dass nach 10 Sekunden der eingeführte Stoff von der Kanalströmung noch nicht weit genug transportiert wurde, sodass die Zustände zu diesem Punkt rechts und links identisch sind. Erst ab eine 20 Sekunden wird ein Unterschied deutlich. Trotz Quelle bleibt jedoch ein Teil des eingeführten Fluids im Kanal verbleiben, da das Einströmrohr diesen Stoff so weit in die Mitte des Kanals einströmt, dass es nicht komplett von der Senke bzw. dem Abflussrohr wieder abgesogen werden kann.

6.2.1.2 Flussströmung mit Ein- und Abflussrohr in der Mitte

Es wird ein ähnlicher Anwendungsfall wie in 6.2.1.1 diskutiert. Allerdings befindet sich das Ein- (Quelle) bzw. Abflussrohr (Senke) in der Mitte des Kanals bzw. des Flusses. Es werden

drei Ergebnisse gegenübergestellt:

- Links:Die Quelle stromauf der Senke fügt 10× soviel des neuen Fluids hinzu als die Senke absaugt.
- Mitte:Die Stärke bzw. der Betrag der Ergiebigkeit der Quelle und Senke sind gleich groß.
- Rechts:Die Senke stromab der Quelle saugt 10× soviel des neuen Fluids ab als die Quelle hinzufügt.

Die Simulationseinstellungen bleiben ansonsten die gleichen wie in 6.2.1.1.

Abbildung 6.14: Vergleich Flussströmungen mit verschiedenen Ergiebigkeiten der Quellen und Senken

Links wird, aufgrund der stärkeren Quelle, das neue Fluid entlang des Kanals transportiert, da die Senke zu schwach ist, um es komplett wieder abzusaugen. Hingegen wird beim rechten Fall sogar fast alles aus der Quelle wieder abgesaugt. Hier wird allerdings auch viel Fluid des Flusses abgesaugt. Da die Skala nicht neu skaliert worden ist, wird das hier nicht komplett ersichtlich. Dies ist bewusst gemacht worden, da so zum Einen die drei Fälle besser verglichen werden können und zum Anderen das Reskalieren den Effekt nicht so deutlich erscheinen lässt. Gleiches gilt auch für die Grafiken aus 6.2.1.1.

6.2.2 Berechnung des Geschwindigkeitsfeldes bei gegebenem Druck

6.2.2.1 Couette-Strömung

Es wird eine Strömung durch zwei ebene, in z-Richtung theoretisch unendlich ausgedehnte, Platten der Länge L (Ausdehnung in x-Richtung) betrachtet, die mit Abstand b (in y-Richtung) zueinander stehen. Die untere Platte ist starr und bewegt sich nicht, die obere hingegen bewegt sich in x-Richtung mit Geschwindigkeit u_{Wand} . Links strömt ein Fluid mit der Geschwindigkeit u_{∞} über die komplette Breite in den Zwischenraum der beiden ebenen Platten ein. Dargestellt wird der stationäre Endzustand der Lösung. Die analytische Lösung sieht mit Hilfe der Haftbedingung $u_{Fluid}|_{Wand} \stackrel{!}{=} u_{Wand}$ und konstantem Druckfeld wie folgt aus:

$$\eta \frac{\partial^{2} u}{\partial y^{2}} = -\frac{\partial p}{\partial x}
p = const \Rightarrow \frac{\partial p}{\partial x} = 0
u (y = 0) \stackrel{!}{=} 0
u (y = b) \stackrel{!}{=} u_{in}$$

$$u (y) = \frac{u_{in}}{b} \cdot y.$$

Das heißt stationär stellt sich ein lineares Geschwindigkeitsprofil mit Steigung $\frac{u_{in}}{b}$ in y-Richtung ein. Das numerische Ergebnis stellt auch genau dies dar:

Abbildung 6.15: Couette-Strömung: stationärer Endzustand

6.2.2.2 Poiseuille-Strömung

Analog zur Couette-Strömung in 6.2.2.1 wird wieder die Strömung durch zwei ebene, in z-Richtung theoretisch unendlich ausgedehnte, Platten der Länge L (Ausdehnung in x-Richtung) betrachtet, die mit Abstand b (in y-Richtung) zueinander stehen untersucht. Im Gegensatz zu 6.2.2.1 bewegt sich jetzt allerdings keine der beiden Platten, allerdings herrscht ein linearer Druckgradient $\frac{\partial p}{\partial x} = const$ Somit stellt sich ein Geschwindigkeitsprofil folgender

Form ein:

$$\left. \begin{array}{l} \eta \frac{\partial^2 u}{\partial y^2} = -\frac{\partial p}{\partial x} \\ \frac{\partial p}{\partial x} = const \\ u\left(y=0\right) \stackrel{!}{=} 0 \\ u\left(y=b\right) \stackrel{!}{=} 0 \end{array} \right\} u\left(y\right) = -\frac{1}{2\eta} \frac{\partial p}{\partial x} \left(y^2 - yb\right).$$

Als Randbedingungen wird dieses Geschwindigkeitsprofil am Einström- und Auströmrand vorgegeben. Als stationärer Endzustand sollte sich dieses Profil über die komplette Länge L eingestellt haben. Mit folgenden gegebenen Initialdaten

Abbildung 6.16: Poiseuille-Strömung: gegebenes Druckfeld

Abbildung 6.17: Poiseuille-Strömung: gegebene Anfangswerte des Geschwindigkeitsfeldes ergibt sich folgendes Resultat:

Abbildung 6.18: Poiseuille-Strömung: stationärer Endzustand

Man erkennt, dass sich das initiale Parabelprofil an den Rändern (siehe 6.17) im gesamten Kanal ausgebreitet hat. Dies entspricht auch der korrekten Lösung, die Software berechnet die gegebenen Strömungen also wahrscheinlich korrekt.

6.2.3 Berechnung des Druck- und Geschwindigkeitsfeldes mit Hilfe des SIMPLE-Algorithmus

6.2.3.1 Festkörperrotation

Es wird das Druck- und Geschwindigkeitsfeld eines rotierenden Fluides betrachet. Folgende Formeln sind hierfür relevant um das kartesische Koordinatensystem in ein tangential-radial-Koordinatensystem zu transformieren bzw. umgekehrt:

$$r = \sqrt{x^2 + y^2},\tag{6.1}$$

$$x = r \cdot \cos\left(\phi\right),\tag{6.2}$$

$$y = r \cdot \sin\left(\phi\right),\tag{6.3}$$

$$u = -\sin\left(\phi\right) \cdot v_{\phi},\tag{6.4}$$

$$v = +\cos\left(\phi\right) \cdot v_{\phi},\tag{6.5}$$

$$v_{\phi} = \omega \cdot r,\tag{6.6}$$

$$\frac{\partial p}{\partial r} = \rho r \omega^2 \Rightarrow p(r) = \frac{1}{2} \rho r^2 \omega^2 + p_0. \tag{6.7}$$

Zunächst wird ein 3×3 -Gitter untersucht. Die Randbedingungen an den äußeren Zellen sind durch die oben genannten Formeln gegeben, die Werte der mittleren Zelle werden ausgerechnet. Es sei $p_0 = 100, x_0 = 0, y_0 = 0, \omega = 5, \eta = 2, \rho = 2.5$ und das Integrationsgebiet sei $[2;5] \times [2;5]$.

Es müssen sich folgende Werte für die mittlere Zelle einstellen:

$$\begin{array}{c} p = 865.625, \\ u_{unten} = -15, \quad v_{unten} = 17.5, \\ u_{oben} = -20, \quad v_{oben} = 17.5, \\ u_{links} = -17.5, \quad v_{links} = 15, \\ u_{rechts} = -17.5, \quad v_{rechts} = 20. \end{array}$$

Das numerische Resultat dieses Testfalles ergibt genau diese Werte, d.h. der Algorithmus scheint zu funktionieren.

Im Folgenden werden das Druckfeld und das Geschwindigkeitsfeld dieses Problems dargestellt, allerdings wird das Integrationsgebiet auf $[-5;5] \times [-5;5]$ erweitert und dieses wird mit einem 50×50 -Gitter diskretisiert:

Abbildung 6.19: Festkörperrotation: Druckfeld

Dieses Druckfeld stimmt ebenfalls mit der analytischen Lösung überein. Die Konturen konstanten Druckes bilden konzentrische Kreise um den Ursprung (0;0), da $p \sim r^2$.

Abbildung 6.20: Festkörperrotation: Geschwindigkeitsfeld

Diese Grafik visualisiert eine im mathematisch Sinn positive Drehbewegung, was wegen der Vorgaeb $\omega=5$ auch die exakte Lösung wiederspiegelt. Aufgrund der Beziehung $v_{\phi}\sim r$ werden die Tangentialgeschwindigkeiten Richtung Kurvenaußen proportional zum Radius größer, da $\omega=const.$

6.2.3.2 Driven Cavity

Es wird ein Behälter betrachtet, der unten, links und rechts undurchlässige Wände besitzt. Überhalb dieses Behälters fließt ein Fluid mit konstantem Druck und konstanter Geschwindigkeit in x-Richtung. Nun wird das Druck- und Geschwindigkeitsfeld simuliert, welches sich in dem Behälter einstellt. Als Randbedingungen gilt einerseits die Haftbedingung an den drei festen undruchlässigen Wänden ($u_{Wand} = v_{Wand} = 0$), am oberen Rand gilt $u_{Fluid,oben} = u_{\ddot{a}u\&ere\ Str\ddot{o}mung}$. Gleiches gilt für den Druck: $p_{Fluid,oben} = p_{\ddot{a}u\&ere\ Str\ddot{o}mung}$. Der Behälter ist von den Dimensionen 3x3 groß und wird mit einem 50×50 -Gitter diskretisiert. Folgendes Druck- und Geschwindigkeitsfeld stellen sich ein:

Abbildung 6.21: Driven Cavity: Druckfeld

Abbildung 6.22: Driven Cavity: Geschwindigkeitsfeld

6.2.3.3 Gartenschlauch

Wie in einem Gartenschlauch wird eine Art Kanal betrachtet, welcher oben und unten undruchlässige Wände besitzt (wie im Querschnitt eines Gartenschlauches). Am Einströmrand wird eine Geschwindigkeit u vorgegeben, die von der Ventilstellung der Wasserzuleitung abhängt. Am Ausströmrand wird ein Druck vorgegeben, in diesem Fall der Umgebungsdruck p_a . Folgendes Druck- und Geschwindigkeitsfeld stellen sich ein:

Abbildung 6.23: Gartenschlauch: Druckfeld

Abbildung 6.24: Gartenschlauch: Geschwindigkeitsfeld

6.2.3.4 Kanalvergrößerung

Zunächst wird eine laminare, ausgebildete Strömung betrachtet mit einem Geschwindigkeitsfeld wie bereits in 6.2.2.2 beschrieben. Der Kanal wird nun schlagartig

vergrößert, wodurch sich direkt hinter dem Übergang Wirbel einstellen. Nach einer kritischen Länge haben diese allerdings keinen signifikanten Einfluss mehr auf die Strömung, sodass sich wieder das Parabelprofil wie in 6.2.2.2 einstellt. Folgendes Druck- und Geschwindigkeitsfeld stellen sich ein:

Abbildung 6.25: Kanalvergrößerung: Druckfeld

Abbildung 6.26: Kanalvergrößerung: Geschwindigkeitsfeld

6.2.3.5 Stolperdraht

Es wird wieder eine ausgebildete, laminare Strömung wie in 6.2.2.2 betrachtet. Am unteren Rand befindet sich nun allerdings ein kleiner Stolperdraht, sodass ein laminar-turbulenter Umschlag erreicht wird und sich Wirbel in der Strömung ausbilden: Folgendes Druck- und Geschwindigkeitsfeld stellen sich ein:

Abbildung 6.27: Stolperdraht: Druckfeld

Abbildung 6.28: Stolperdraht: Geschwindigkeitsfeld