Recurrence Relation

Definition

A recurrence relation for the sequence $\{an\}$ is an equation that expresses an in terms of one or more of the previous terms of the sequence, namely, a0, a1, ..., an-1, for all integers n with $n \ge n0$, where n0 is a nonnegative integer.

A sequence is called a solution of a recurrence relation if its terms satisfy the recurrence relation. The initial conditions for a sequence specify the terms that precede the first term where the recurrence relation takes effect.

Example - Fibonacci Series

Geometric Progression

$$a_{n} = 3. a_{n-1}$$
 $a_{n} = 3. (3^{n})$
 $a_{n} = 3. (3^{n})$

Example - The Tower of Hanoi

Towers of Hanoi

- ightharpoonup Given 3 pegs where first peg contains n disks
- ► Goal: Move all the disks to a different peg (e.g., second one)
- ▶ Rule 1: Larger disks cannot rest on top of smaller disks
- ▶ Rule 2: Can only move the top-most disk at a time
- Question: How many steps does it take to move all n disks?

A Recursive Solution

- ▶ Solve recursively $-T_n$ is number of steps to move n disks
- ▶ Base case: n = 1, move disk from first peg to second: $T_1 = 1$
- Induction: Suppose we can move n-1 disks in T_{n-1} steps; how many steps does it take to move T_n disks?
- ▶ Idea: First move the topmost n-1 disks to peg 3; can be done in T_{n-1} steps
- Now, move bottom-most disk to peg 2 − takes just 1 step
- Finally, recursively move n-1 disks in peg 3 to peg 2 can be done in T_{n-1} steps

$$T(n) = 2 T(n-1) + 1.$$

Find a recurrence relation and initial conditions for 1,5,17,53,161,485.....

So $a_n = 3a_{n-1} + 2$ is our recurrence relation and the initial condition is $a_0 = 1$.

To get a feel for the recurrence relation, write out the first few terms of

Solve the recurrence relation $a_n = a_{n-1} + n$ with initial term $a_0 = 4$.

the sequence: $4, 5, 7, 10, 14, 19, \ldots$ Look at the difference between terms. $a_1 - a_0 = 1$ and $a_2 - a_1 = 2$ and so on. The key thing here is that the difference between terms is n. We can write this explicitly: $a_n - a_{n-1} = n$.

difference between terms is
$$n$$
. We can write this explicitly: $a_n-a_{n-1}=n$. Now use this equation over and over again, changing n each time:
$$a_1-a_0=1$$

$$a_2-a_1=2$$

$$a_1 - a_0 = 1 \ a_2 - a_1 = 2$$

$$egin{aligned} a_3-a_2&=3\ dots\ &dots\ a_n-a_{n-1}&=n. \end{aligned}$$

Add all these equations together. On the right-hand side, we get the sum

$$1+2+3+\cdots+n$$
. We already know this can be simplified to $\frac{n(n+1)}{2}$. What happens on the left-hand side? We get

$$(a_1-a_0)+(a_2-a_1)+(a_3-a_2)+\cdots(a_{n-1}-a_{n-2})+(a_n-a_{n-1}).$$
 $-a_0+a_n=rac{n(n+1)}{2}$ or $a_n=rac{n(n+1)}{2}+a_0.$ But we know that $a_0=4.$ So the

What happens on the left-hand side? We get

solution to the recurrence relation, subject to the initial condition is

 $a_n = \frac{n(n+1)}{2} + 4.$

Linear Recurrence relation with constant coefficients

A Recurrence Relations is called linear if its degree is one.

The general form of linear recurrence relation with constant coefficient is

$$C_0 y_{n+r} + C_1 y_{n+r-1} + C_2 y_{n+r-2} + \cdots + C_r y_n = R(n)$$

Where $C_0, C_1, C_2, \ldots, C_n$ are constant and R (n) is some function. Maximum degree of y is 1 hence it is linear.

The equation is said to be linear homogeneous difference equation if and only if R(n) = 0

The equation is said to be linear non-homogeneous difference equation if $R(n) \neq 0$.

Order of the Recurrence Relation:

The order of the recurrence relation or difference equation is defined to be the difference between the highest and lowest subscripts of f(x) or $a_r = y_k$.

Example1: The equation $13a_r + 20a_{r-1} = 0$ is a first order recurrence relation.

Example1: The equation $y_{k+3}^3 + 2y_{k+2}^2 + 2y_{k+1} = 0$ has the degree 3, as the highest power of y_k is 3.

Example2: The equation $a_{r}^{4}+3a_{r-1}^{3}+6a_{r-2}^{2}+4a_{r-3}=0$ has the degree 4, as the highest power of a_{r} is 4.

Example3: The equation $y_{k+3} + 2y_{k+2} + 4y_{k+1} + 2y_k = k(x)$ has the degree 1, because the highest power of y_k is 1 and its order is 3.

order 2.

 $C_0 y_n + C_1 y_{n-1} + C_2 y_{n-2} + \cdots + C_r y_{n-r} = 0$

Example1: The equation $a_{r+3}+6a_{r+2}+12a_{r+1}+8a_r=0$ is a linear non-homogeneous equation of

A linear homogeneous difference equation with constant coefficients is given by

order 3.

Example2: The equation a_{r+2} - $4a_{r+1}$ + $4a_r$ = 3r + 2^r is a linear non-homogeneous equation of

Determine which of these are linear homogeneous recurrence relations with constant coefficients.

a $a_n = 3a_{n-1} + 4a_{n-2} + 5a_{n-3}$ Yes. Degree 3.

b $a_n = 2na_{n-1} + a_{n-2}$

No. 2n is not a constant coefficient.

 $c a_n = a_{n-1} + a_{n-4}$

Yes. Degree 4.

 $\mathbf{d} \ a_n = a_{n-1} + 2$

No. This is nonhomogeneous because of the 2.

Determine which of these are linear homogeneous recurrence relations with constant coefficients.

e
$$a_n = a_{n-1}^2 + a_{n-2}$$

No. This is not linear because of a_{n-1}^2 .

$$f a_n = a_{n-2}$$

Yes. Degree 2.

$$g \ a_n = a_{n-1} + n$$

No. This is nonhomogeneous because of the n.

Solving Recurrence relation

- 1) Iteration
- 2) Characteristic Roots
- 3) Generating Functions

Use iteration to solve the recurrence relation $a_n = a_{n-1} + n$ with $a_0 = 4$.

Again, start by writing down the recurrence relation when n = 1. This time, don't subtract the a_{n-1} terms to the other side: $a_1 = a_0 + 1$.

Now $a_2 = a_1 + 2$, but we know what a_1 is. By substitution, we get

$$a_2 = (a_0+1)+2.$$

Now go to
$$a_3 = a_2 + 3$$
, using our known value of a_2 :

 $a_3 = ((a_0 + 1) + 2) + 3.$

current index. So $a_n = ((((a_0 + 1) + 2) + 3) + \cdots + n - 1) + n.$

Regrouping terms, we notice that
$$a_n$$
 is just a_0 plus the sum of the integers from 1 to n . So, since $a_0=4$,

We notice a pattern. Each time, we take the previous term and add the

 $a_n=4+\frac{n(n+1)}{2}.$

• Now, $a_1 = a_0 + 1 = 1 + 0$ $a_2 = a_1 + 2 = 2 + 1 + 0$ $a_3 = a_2 + 3 = 3 + 2 + 1 + 0$

• Solve this recurrence relation and find a_{100} .

 $a_k = a_{k-1} + k$ with $a_0 = 0$.

• Let $\{a_i\}$ be the sequence given by:

- $a_4 = a_3 + 4 = 4 + 3 + 2 + 1 + 0$ Thus $a_n = n + (n-1) + (n-2) + ... + 3 + 2 + 1 + 0$ so $a_n = n(n+1)/2.$
- Plugging in n = 100: $a_{100} = 100(101)/2 = 5050$.

Solve
$$a_{n}-6a_{n-1}+8a_{n-2}=0$$
 $\rho_{w}+a_{n}=\frac{8^{n}}{8^{n}-6x^{n-1}+8x^{n-2}}=0$
 $p_{1}=0$
 $p_{1}=0$
 $p_{2}=0$
 $p_{2}=0$
 $p_{3}=0$
 $p_{2}=0$
 $p_{3}=0$
 $p_{3}=0$

$$a_n = 2a_{n-1}$$
 for $n \ge 1, a_0 = 3$

Characteristic equation: r - 2 = 0

Characteristic root: r=2

use the initial condition, $a_0 = 3$, to find it.

$$3 = \alpha 2^{0}$$

$$3 = \alpha 1$$

$$3 = \alpha$$

So our solution to the recurrence relation is $a_n = 3 \cdot 2^n$.