

## LUO MAOYUAN

"Computing is my passion!"



## **GUPTA RAGHAV**

"I feel a deep sense of satisfaction from solving complex algorithms"



## GOKUL

"I like doing Data Analysis in my free time!"



## **Table Of Contents**





## **Drug Consumption Statistics**



## **Breakdown**

From the graph, we can see that a significant proportion of caught drug users are new offenders

### Chart 1: Total and new drug abusers





## **Drug Consumption Statistics**



### <u>Breakdown</u>

Majority of drug users used:

- Methamphetamine
- Heroin
- Cannabis





## IS THERE A WAY TO PREDICT DRUG USAGE?

- Identify relationship between personal factors and drug usages
- Create a model that is able to identify individuals at higher risk of consuming drugs
- An accurate model would allow individuals who are more at risk to be alert to their own susceptibility



# Drug Consumption Statistics (UCI Machine Learning Repository)



## 7 Personality Factors

 Personality factors values are stated based on a normal distribution

# Categorical Drug Consumption values

- Drug consumption categories are listed as follows:
  - ➤ CL0 Never Used
  - > CL1 Used over a Decade Ago
  - > CL2 Used in Last Decade
  - > CL3 Used in Last Year
  - ➤ CL4 Used in Last Month
  - > CL5 Used in Last Week
  - ➤ CL6 Used in Last Day





# Removal of inaccurate data

Eg: Semer is a fake drug so responses from people that indicated they used Semer will be erroneous



 The dataset rows with responses that are **NOT CLO** will be removed



# Reclassification Of Drug Usage Categorical Values

Values will be reclassified to:

CL0: Never used before CL1: Used before

```
Before classification:
       1424
CL0
CL3
        148
CL2
         95
         73
CL6
CL4
         50
CL5
         48
         39
CL1
Name: Meth, dtype: int64
After classification:
CL0
       1424
Name: Meth, dtype: int64
```



- **LO** Individual displays the least amount of a certain personality
- L1 Individual displays a very high amount of a certain personality

```
Escore (Real)
0 -0.57545
1 1.93886
2 0.80523
3 -0.80615
4 -1.63340
Name: Escore (Real), dtype: float64
```



```
L2 562
L1 449
L3 438
L0 428
Name: Escore (Real), dtype: int64
```



## **Multiple Barplots**



- Compare the relationship between usage of drugs and the spectrum of the personality factor that the individual lies on
- This is done for every single personality factor against every high consumption drugs
- Eg: For people with a higher Oscore, they generally see an increase in drug usage across all drug types



 Prepare the dataset for Machine Learning & Chi-Squared EDA by converting all categorical values to numerical values

```
L2 562
L1 449
L3 438
L0 428
Name: Escore (Real), dtype: int64
```



```
3 562
2 449
4 438
1 428
Name: Escore (Real), dtype: int64
```

## **Chi-Squared Statistics**

| p_Value ~ 0 | Nscore  | Escore  | Oscore   | Ascore  | Cscore   | Impulsiveness |
|-------------|---------|---------|----------|---------|----------|---------------|
| Meth        | 67.3386 | 22.6983 | 74.4518  | 40.7313 | 73.2611  | 72.2018       |
| Cannabis    | 25.7094 | 10.7557 | 177.5247 | 36.8214 | 106.9018 | 120.5951      |
| Heroin      | 61.2076 | 10.6299 | 46.8324  | 28.6642 | 51.3036  | 72.6781       |

$$\chi_c^2 = \sum \frac{(O_i - E_i)^2}{E_i}$$

• All the personality factors were relevant in predicting drug usages for Meth, Cannabis & Heroin

## **Insights Gained**



- An increase in NScore, Oscore & Impulsiveness correlated to a increase in consumption of drugs
- An decrease in EScore & Ascore correlated to a decrease in consumption of drugs



Values for Chi-Squared obtained showcases that all the personality factors are relevant in predicting drug usage due to good association between the categorical values





### SUPPORT VECTOR



Works by mapping data points to a high-dimensional space and then finding the optimal hyperplane that divides the data into two classes

#### NEURAL NETWORK



A series of algorithms that endeavors to recognize underlying relationships in a set of data through a process that mimics the way the human brain operates

#### RANDOM FOREST



Combines the output of multiple decision trees to reach a single result. It is able to handle both classification and regression problems

### RANDOM FOREST



Graph shows the importance of each of the personality factors in creating the random forest classifier model

### KFOLD and SHUFFLESPLIT

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| Meth 0       | 0.80      | 0.91   | 0.85     | 289     |
| Meth 1       | 0.45      | 0.24   | 0.31     | 87      |
| Cannabis_0   | 0.50      | 0.29   | 0.37     | 92      |
| Cannabis 1   | 0.80      | 0.90   | 0.85     | 284     |
| Heroin 0     | 0.87      | 0.97   | 0.92     | 325     |
| Heroin_1     | 0.27      | 0.08   | 0.12     | 51      |
| micro avg    | 0.79      | 0.79   | 0.79     | 1128    |
| macro avg    | 0.61      | 0.57   | 0.57     | 1128    |
| weighted avg | 0.74      | 0.79   | 0.76     | 1128    |
| samples avg  | 0.79      | 0.79   | 0.79     | 1128    |

Accuracy: 0.48

Results of random forest classifier using random train test split

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| Meth_0       | 0.79      | 0.87   | 0.83     | 289     |
| Meth 1       | 0.36      | 0.23   | 0.28     | 86      |
| Cannabis_0   | 0.54      | 0.41   | 0.46     | 86      |
| Cannabis 1   | 0.84      | 0.90   | 0.86     | 289     |
| Heroin 0     | 0.86      | 0.94   | 0.90     | 323     |
| Heroin_1     | 0.18      | 0.08   | 0.11     | 52      |
| micro avg    | 0.78      | 0.78   | 0.78     | 1125    |
| macro avg    | 0.59      | 0.57   | 0.58     | 1125    |
| weighted avg | 0.74      | 0.78   | 0.76     | 1125    |
| samples avg  | 0.78      | 0.78   | 0.78     | 1125    |

| Meth 1       | 0.42 | 0.28 | 0.34 | 90   |
|--------------|------|------|------|------|
| Cannabis 0   | 0.51 | 0.28 | 0.37 | 81   |
| Cannabis 1   | 0.82 | 0.92 | 0.87 | 295  |
| Heroin_0     | 0.84 | 0.94 | 0.89 | 314  |
| Heroin_1     | 0.24 | 0.10 | 0.14 | 62   |
| micro avg    | 0.77 | 0.77 | 0.77 | 1128 |
| macro avg    | 0.61 | 0.56 | 0.57 | 1128 |
| weighted avg | 0.73 | 0.77 | 0.75 | 1128 |
| samples avg  | 0.77 | 0.77 | 0.77 | 1128 |
|              |      |      |      |      |

precision

0.79

Meth 0

recall f1-score

0.83

286

0.87

Average accuracy: 0.47

Average accuracy: 0.47

# SUPPORT VECTOR

Meth



Confusion Matrix: [[284 5] [ 76 11]]

Accuracy: 0.7845744680851063

Cannabis



Confusion Matrix: [[ 22 70] [ 16 268]]

Accuracy: 0.7712765957446809

Heroin



Confusion Matrix: [[325 0] [51 0]]

Accuracy: 0.8643617021276596

### NEURAL NETWORK

- A series of algorithms that endeavors to recognize underlying relationships in a set of data through a process that mimics the way human brain operates
- 2 Hidden layers which contain 6 nodes and 4 nodes respectively and uses the keras library to train

Train accuracy: 0.93

Test accuracy: 0.94





#### CONCLUSION

#### **CHI-SQUARED**

All personality factors are useful in predicting drug usage

#### **IMPORTANCE**

Ascore (real) is the most important personality factor in predicting drug usage, while least important are Cscore (real) and Impulsive (real)

#### **BAR-GRAPH**

Increase in Nscore,
Oscore, Impulsiveness
led to increase in drug
usage, while decrease in
Escore & Ascore
correlated to decrease in
usage of drugs

#### CLASS IMBALANCE

High class imbalance could lead to worse performance of ML models since minority groups are underrepresented

#### NEURAL NETWORKS

Neural network allows us to most accurately predict drug usage based on personality factors

