Worksheet 11: Continued Fractions

1. Find continued fraction expansions for

(a)
$$\frac{100}{37}$$

(c)
$$\frac{21}{13}$$

(e)
$$\frac{13}{35}$$

(b)
$$\frac{1001}{45}$$

(d)
$$\frac{1000}{301}$$

(f)
$$\frac{\sqrt{5}-1}{2}$$

2. Compute

(a)
$$[2,3,2,3,\ldots]$$

(c)
$$[1,2,2,2,\ldots]$$

- 3. Compute the start of a continued fraction expansion for π and compare the accuracy of $[a_0, a_1, \dots, a_n]$ with that of the decimal expansion up to n digits, for n = 1, 2, 3, 4.
- 4. Compute the continued fraction expansions of e, $\sqrt{19}$, and $\tan(1)$ with sage.
- 5. Prove that $[a_0, a_1, \ldots, a_n] = \frac{p_n}{q_n}$ where

$$p_0 = a_0$$
 $p_1 = a_0$ $q_1 = a_0$

$$p_0 = a_0$$
 $p_1 = a_1 p_0 + 1$ $p_n = a_n p_{n-1} + p_{n-2}$ for $n \ge 2$ $q_0 = 1$ $q_1 = a_1$ $q_n = a_n q_{n-1} + q_{n-2}$

6. Keeping the notation from 5., show that

$$p_n q_{n-1} - q_n p_{n-1} = (-1)^{n-1}.$$

(Hint: an easy way to proceed is to extend the definition of the p_j 's and q_j 's by setting $p_{-2} = q_{-1} = 0$ and $q_{-2} = p_{-1} = 1$.) Conclude that $gcd(p_n, q_n) = 1$, i.e., the fraction $[a_0, a_1, \ldots, a_n] = \frac{p_n}{a_n}$ is written in lowest terms.

- 7. Prove that the sequence $(\frac{p_n}{q_n})_{n\geq 1}$ converges. (*Hint*: first show that $(q_n)_{n\geq 1}$ is strictly increasing, and then prove that $(\frac{p_n}{q_n})_{n\geq 1}$ is a Cauchy sequence.)
- 8. Show that

$$p_n q_{n-2} - q_n p_{n-2} = (-1)^n a_n$$

and conclude that $(\frac{p_{2n}}{q_{2n}})_{n\geq 1}$ increases and $(\frac{p_{2n+1}}{q_{2n+1}})_{n\geq 1}$ decreases.

9. Suppose $a \in \mathbb{R} \setminus \mathbb{Q}$ has an eventually periodic continued fraction expansion, i.e.,

$$a = [a_0, a_1, \ldots, a_n, a_{n+1}, \ldots, a_{n+k}, a_{n+1}, \ldots, a_{n+k}, \ldots]$$

for some positive integers n and k. Prove that $[a_{n+1}, \ldots, a_{n+k}, a_{n+1}, \ldots, a_{n+k}, \ldots]$ satisfies a quadratic equation and conclude that a = b + cx where $b, c \in \mathbb{Q}$ and $x \in \mathbb{R}$ satisfies a quadratic equation, i.e., a is a quadratic irrational.

- 10. Stein 5.1-4.
- 11. Write down a precise statement for each definition we have given this week. For each definition, give an example and a non-example.