

Exercices de remise à niveau & corrigé

A savoir:

- Analyse nodale, analyse maillée
- Théorème de Superposition
- Théorème de Thévenin et Norton
- Impédances complexes en régime sinusoïdal
- Puissance en régime continu & alternatif
- Fonctionnement des composants passifs idéaux R, L, C
- Caractéristiques de charge/décharge d'un circuit RC
- Comportement intégrateur (dérivateur) d'un circuit RC (CR)

EXERCICE 1

Soit le circuit suivant où R_L est la résistance de charge.

- 1) Déterminer le circuit équivalent Thévenin vu par la charge entre les points a et b.
- 2) Calculer la valeur de R_L qui permette de transmettre un maximum de puissance à la charge. Quelle est alors la valeur de la puissance transmise ?
- 3) Calculer la puissance transmise à la charge si celle-ci a une valeur double de celle trouvée au 2).

EXERCICE 2

- 1 Déterminer le générateur de Thévenin vu par la charge Z_L . La source e(t) délivre une tension sinusoïdale d'amplitude E=10V et de fréquence f=48kHz. Les valeurs des composnts sont C=3,3 nF et R=1 k Ω .
- ${f 2}$ Quelle doit être la nature de Z_L pour que le maximum de puissance lui soit délivré en moyenne ? Quelle est la valeur de cette puissance ?

EXERCICE 3

On considère une capacité C de 1 nF initialement chargée à V_0 =10V qui se décharge au travers d'une résistance R de 1 k Ω . On note v(t) la tension aux bornes de C.

- 1- Sans résoudre d'équation différentielle, déterminer la tangente à v(t) en t=0 ainsi que son asymptote pour t >> RC.
- 2- Quelle est la valeur de la tangente en t = RC?
- 3- Déterminer la forme exacte de v(t) en résolvant l'équation différentielle caractéristique du circuit. Quelle est la valeur de v(t) et t=RC et en t=5RC.
- 4- Tracer v(t).

EXERCICE 4

Donner l'allure des signaux de sortie Vs(t) en régime stationnaire pour les montages suivants. Le signal d'entrée Ve(t) est un signal carré de fréquence 10 kHz.

EXERCICE 5

1 - Soit le circuit de la figure 1a. Calculer les éléments \mathfrak{g}_{th} et Z_{th} du générateur de Thévenin équivalent vu par Z entre A et B.

Application : déterminer \underline{e}_{th} et Z_{th} dans le cas particulier du tripôle de la figure 1b. On posera $x=RC\omega$.

2 - Soit le circuit de la figure 2a. Calculer les éléments $\underline{e'}_{th}$ et Z'_{th} du générateur de Thévenin équivalent vu par Z entre A et B. On les exprimera en fonction de \underline{e}_{o} , Z_{o} et \underline{e}_{th} , Z_{th} .

- 3 On considère le filtre en T ponté de la figure 2b alimenté par le générateur parfait e_g et fonctionnant avec une charge infinie. A l'aide des questions précédentes déterminer v en fonction de e_g , Z_0 , Z_3 , Z_1 , Z_{th} de la première question.
- **4 -** Dans le cas où Z_o est une self-inductance L de résistance r et Z_1 , Z_2 , Z_3 sont les impédances de la figure 1b, déterminer la condition pour laquelle v = 0. On admettra que $Z_o + Z_{th}$ ne peut être infinie.
- ${\bf 5}$ Montrer que cette condition est réalisée pour une fréquence ${\bf f}_0$ (fréquence de résonance) et pour une relation particulière entre les éléments du montage.
- **6** Application numérique : la fréquence de résonance imposée est f_o = 50 kHz, la self-inductance vaut L = 1 mH, son coefficient de qualité est 80 à f_o .

Déterminer les valeurs à imposer aux autres éléments du montage

7 - Que vaut v pour f = 0 et $f = \infty$. En déduire l'allure du module de la courbe de transmission $T(f) = |\underline{y}/\underline{e}_g|$.

CORRIGE

EXERCICE 1

1) circuit équivalent Thévenin : Eth = 120 V et Rth = 40Ω

2) Condition d'adaptation d'impédance : $R_L = Rth = 40 \Omega$ puissance transmise : $P = R_L (Eth/(R_L + Rth))^2 = 90 W$

3) Pour $R_L = 80 \Omega$ on trouve P = 80 W.

EXERCICE 2

1- On passe en notations complexes (valeurs soulignées). Pour trouver la fem de Thévenin équivalente eth, on

se place en circuit ouvert entre A et B. On a alors
$$\underline{\mathbf{e}}_{\mathsf{th}} = \frac{\frac{1}{\mathbf{j} \mathbf{C} \omega}}{\mathbf{R} + \frac{1}{\mathbf{j} \mathbf{C} \omega}} \underline{\mathbf{e}} = \frac{1}{1 + \mathbf{R} \mathbf{j} \mathbf{C} \omega} \underline{\mathbf{e}}$$
.

Pour trouver l'impédance équivalente Z_{th} , on éteint la source e et on a donc : $Z_{th} = R //C = \frac{R}{1 + iRC\omega}$

Comme $RC\omega \approx 1$, les deux expressions se simplifient :

$$\begin{split} \underline{e}_{\mathsf{th}} &= \frac{1}{1+j}\underline{e} \ \ \mathsf{et} \ \ \boldsymbol{Z}_{\mathsf{th}} = \frac{R}{1+j}. \\ \mathsf{Comme} \ 1+\boldsymbol{j} &= \sqrt{2}e^{\boldsymbol{j}\frac{\pi}{4}}, \ \mathsf{on} \ \mathsf{a} \ \underline{e}_{\mathsf{th}} = \frac{1}{\sqrt{2}}e^{-\boldsymbol{j}\frac{\pi}{4}}\underline{e} = \frac{E}{\sqrt{2}}e^{\boldsymbol{j}\left(\omega t - \frac{\pi}{4}\right)}. \ \mathsf{Or} \ \boldsymbol{e}_{\mathsf{th}}\left(\boldsymbol{t}\right) = Re\left(\underline{e}_{\mathsf{th}}\right), \ \mathsf{donc} \\ \underline{e}_{\mathsf{th}}\left(\boldsymbol{t}\right) &= 5\sqrt{2}\cos\left(\omega t - \frac{\pi}{4}\right). \\ \boldsymbol{Z}_{\mathsf{th}} &= \frac{R}{2}(1-\boldsymbol{j}) = R_{\mathsf{th}} + \frac{1}{\boldsymbol{j}C_{\mathsf{th}}\omega}: Z_{\mathsf{th}} \ \mathsf{est} \ \mathsf{de} \ \mathsf{nature} \ \mathsf{capacitive} \ (\mathsf{et} \ \mathsf{r\acute{e}sistive}). \end{split}$$

 $AN : C_{th} = 6.6 \text{ nF et } R_{th} = 500 \Omega$

2- On dit qu'on a **adaptation d'impédance** lorsque la puissance délivrée à la charge (ici Z_L) est maximale. Cette condition est réalisée quand $Z_L = Z_{th}^*$. Or on a vu que Z_{th} est de nature capacitive, on en déduit donc que Z_L est

$$\text{de nature inductive.} \text{ On a ainsi}: \ \textbf{Z}_{L} = \textbf{R}_{th} + \textbf{j} \textbf{L}_{th} \omega = \textbf{R}_{th} + \frac{\textbf{j}}{\textbf{C}_{th} \omega}. \ \textbf{D'où} \ \textbf{L}_{th} = \frac{1}{\textbf{C}_{th} \omega^2}.$$

 $AN : L_{th} = 1,7 \text{ mH}.$

La puissance moyenne P reçue par la charge Z_L s'écrit : $P = \frac{1}{2} Re(\underline{v}_{ZL} \times \underline{i}_{ZL}^*)$

$$\underline{\mathbf{V}}_{\mathsf{ZL}} = \frac{\mathbf{Z}_{\mathsf{th}}}{\mathbf{Z}_{\mathsf{th}} + \mathbf{Z}_{\mathsf{L}}} \underline{\mathbf{e}}_{\mathsf{th}} \text{ (diviseur de tension) et } \underline{\mathbf{i}}_{\mathsf{ZL}} = \frac{\underline{\mathbf{e}}_{\mathsf{th}}}{\mathbf{Z}_{\mathsf{th}} + \mathbf{Z}_{\mathsf{L}}} \ .$$

On en déduit :
$$P = \frac{1}{2} \cdot \frac{\left|\underline{e}_{th}\right|^2}{4 \times R_{th}^2} \cdot R_{th} = \frac{E^2}{16 \times R_{th}} \text{ (on a en effet } Z_{th} + Z_L = R_{th}).$$

AN : P = 12,5 mW.

EXERCICE 3

Décharge d'un circuit RC

On considère une capacité C de 1 nF initialement chargée à V_0 =10V qui se décharge au travers d'une résistance R de 1 k Ω . On note v(t) la tension aux bornes de C.

- 5- tangente à v(t) en t=0 : $dV/dt = -V_0/RC$ asymptote pour t >> RC : v = 0 (axe des abscisses).
- 6- en t = RC la tangente à l'origine vaut 0.
- 7- forme exacte de $v(t) = V_0 \exp(-t/RC)$ en $t=RC \ v(t) = 3.7V \ (63\% \ de \ la \ décharge \ effectué)$ et en $t=5RC \ v(t) = 0.1V \ (99\% \ de \ la \ décharge \ effectué)$.
- 8- Tracer v(t).

EXERCICE 4

Il suffit de comparer la période T du signal Ve au temps de réponse du circuit τ =RC. On a T = 1/f = 0.1 ms

- 1) τ =2.2 μ s donc $\tau \ll T \Rightarrow Vs(t) = Ve(t)$ (C est un circuit ouvert)
- 2) τ =33 ms donc $\tau >> T => Vs(t)$ triangulaire (montage intégrateur)
- 3) τ =70.5 ms donc $\tau >> T => Vs(t) = Ve(t)$ (C est un court-circuit)
- 4) $\tau=1.5$ µs donc $\tau \ll T \Rightarrow Vs(t)$ suite de pulses positif et négatif (montage dérivateur)

EXERCICE 5

1- e_{th} est la tension U_{AB} en circuit ouvert :

On a donc:
$$e_{th} = \frac{Z_3}{Z_1 + Z_3} e_1$$
 (diviseur de tension).

 $Z_{th} \ est \ l'imp\'edance \ vu \ entre \ A \ et \ B \ lorsqu'on \ \'eteint \ toutes \ les \ sources \ non \ li\'ees, \ donc \ ici \ e_1:$

$$Z_{th} = Z_2 + (Z_1 /\!/ Z_3) = Z_2 + \frac{Z_1 Z_3}{Z_1 + Z_3}.$$

Application:
$$Z_1 = Z_2 = \frac{1}{jC\omega}$$
; $Z_3 = R$. On pose $x = RC\omega$.

$$\mathrm{On\ en\ d\acute{e}duit:}\ e_{\mathsf{th}} = \frac{jx}{1+jx}e_1 \ \mathrm{et}\ Z_{\mathsf{th}} = \frac{1}{jC\omega} + \frac{\frac{R}{jC\omega}}{\frac{1}{jC\omega} + R} = \frac{1+2jx}{jC\omega(1+jx)}.$$

2- Le schéma de la figure 5c est équivalent au schéma suivant :

En circuit ouvert, on applique le théorème de Millman au point A pour trouver e_{th} :

$$V_{A} = e_{th}^{'} = \frac{\frac{e_{0}}{Z_{0}} + \frac{e_{th}}{Z_{th}}}{\frac{1}{Z_{0}} + \frac{1}{Z_{th}}} = \frac{Z_{th}e_{0} + Z_{0}e_{th}}{Z_{0} + Z_{th}}.$$

L'impédance du générateur de Thévenin équivalent \mathbf{Z}_{th} s'obtient encore en éteignant toutes les sources indépendantes, c'est-à-dire e_0 et e_{th} .

$$Z_{th}^{'} = Z_{0} /\!/ Z_{th} = \frac{Z_{0} Z_{th}}{Z_{0} + Z_{th}}$$

3- Le schéma de la figure 5d est équivalent au schéma de la figure 5c en remplaçant e_0 et e_1 par e_g . La tension v est donc la fem du générateur de Thévenin équivalent entre A et B. Il suffit donc de remplacer e_0 et e_1 par e_g dans l'expression de e_{th} .

$$e_{th}^{'} = \frac{Z_1 Z_2 + Z_1 Z_3 + Z_2 Z_3 + Z_0 Z_3}{\left(Z_0 + Z_{th}\right)\!\left(Z_1 + Z_3\right)} e_g \,. \label{eq:eth}$$

4 et 5- Avec les données de l'énoncé, le numérateur de l'expression de e_{th} vaut :

$$\left(\frac{1}{jC\omega}\right)^2 + R \times \frac{1}{jC\omega} + R \times \frac{1}{jC\omega} + \left(r + jL\omega\right) \times R \text{ . (On a choisi la représentation série pour la bobine (voir TD1)).}$$

Pour annuler cette expression (on admet que $Z_0 + Z_{th}$ ne peut être infini), on annule sa partie imaginaire et sa partie réelle. On trouve alors :

$$-\frac{1}{C^2\omega^2} + r \times R = 0 \quad \text{et} \quad LR\omega - \frac{2R}{C\omega} = 0 \; . \; \text{Ceci est réalisé à la pulsation de résonance } \omega_0 \; \text{donnée par :} \quad \frac{1}{C^2\omega^2} + \frac{1}{C^2\omega^2} + \frac{1}{C^2\omega^2} = 0 \; . \; \text{Ceci est réalisé à la pulsation de résonance } \omega_0 \; \text{donnée par :} \quad \frac{1}{C^2\omega^2} + \frac{1}{C^2\omega^2} + \frac{1}{C^2\omega^2} = 0 \; . \; \text{Ceci est réalisé à la pulsation de résonance } \omega_0 \; \text{donnée par :} \quad \frac{1}{C^2\omega^2} + \frac{1}{C^2\omega^2} + \frac{1}{C^2\omega^2} = 0 \; . \; \text{Ceci est réalisé à la pulsation de résonance } \omega_0 \; \text{donnée par :} \quad \frac{1}{C^2\omega^2} + \frac{1}{C^2\omega^2} + \frac{1}{C^2\omega^2} = 0 \; . \; \text{Ceci est réalisé à la pulsation de résonance } \omega_0 \; \text{donnée par :} \quad \frac{1}{C^2\omega^2} + \frac{1}{C^2\omega^2} + \frac{1}{C^2\omega^2} = 0 \; . \; \text{Ceci est réalisé à la pulsation de résonance } \omega_0 \; \text{donnée par :} \quad \frac{1}{C^2\omega^2} + \frac{1}$$

$$\omega_0 = \frac{1}{\sqrt{rR}C} = \sqrt{\frac{2}{LC}} \ \ (a).$$

On en déduit une relation entre les éléments du montage : $L = 2 \times r \times R \times C$ (b).

6- Le coefficient de qualité de la bobine à la fréquence $\mathbf{f}_0 = \frac{\omega_0}{2\pi}$ est $\mathbf{Q}(\mathbf{f}_0) = \frac{\mathsf{L}\omega_0}{\mathsf{r}}$.

D'où
$$r = \frac{L \times 2\pi f_0}{Q(f_0)}$$
.

On peut déduire de l'équation (a) de la question 5 l'expression de C : $C = \frac{2}{L \times (2\pi f_0)^2}$

De l'équation (b), on tire l'expression de R : $R = \frac{L}{2rC}$

AN:
$$r = 4 Ω$$
; $C = 20 nF$; $R = 6.28 kΩ$.

7- Lorsque f = 0, les condensateurs sont équivalents à des circuits ouverts et la bobine est équivalente à un court-circuit. Le schéma équivalent est alors le suivant :

On a donc $v = e_g$ en régime continu (f = 0).

Lorsque $f = \infty$, les condensateurs sont équivalents à des courts-circuits et la bobine est équivalente à un circuit ouvert. Le schéma équivalent est alors le suivant :

On a donc $v = e_g$ lorsque $f = \infty$.

L'allure du module de la fonction de transfert $T(f) = \left| \frac{v}{e_g} \right|$ est la suivante :

