

UNIDAD 3 MODELO LÓGICO RELACIONAL

BASES DE DATOS 22/23 CFGS DAW

BOLETÍN 3.B. MODELO (LÓGICO) RELACIONAL. NIVEL MEDIO. CON SOLUCIONES.

Revisado por:

Sergio Badal, Abelardo Martínez y Pau Miñana

Autores:

Raquel Torres Paco Aldarias

Fecha: 13/11/22

Licencia Creative Commons

Reconocimiento - NoComercial - Compartirlgual (by-nc-sa): No se permite un uso comercial de la obra original ni de las posibles obras derivadas, la distribución de las cuales se debe hacer con una licencia igual a la que regula la obra original.

ÍNDICE DE CONTENIDO

1. INDICACIONES	
2. Enunciados	
2.1 Ejercicio 1. Asignatura	
2.2 Ejercicio 2. Docencia	
2.3 Ejercicio 3. Bancos	
2.4 Ejercicio 4. Seguros	
2.5 Ejercicio 5. Ciclismo	
2.6 Eiercicio 6. Ventas.	

1. INDICACIONES

- 1. Transforma a Modelo Relacional los siguientes esquemas E/R, definiendo el dominio de los atributos solo cuando lo indique.
- 2. En los esquemas en los que no aparezcan las participaciones, puedes asumir que todas las mínimas son cero (no hay cardinalidad mínima).
- 3. Respecto a las máximas, el rombo relleno indica una participación de x,N en el lado indicado, donde x (mínima) será cero si no se indica nada.
- 4. Es VITAL que indiques si hay pérdida semántica o no en cada uno de los casos y, en caso afirmativo, qué restricciones de integridad establecerías.

2. ENUNCIADOS

2.1 Ejercicio 1. Asignatura

Dadas las siguientes entidades, transforma a Modelo Relacional los siguientes esquemas E/R definiendo el dominio de los atributos:

Solución:

Curso: {Cod-Cur, Nombre curs, Titulacion cur, Descripción cur}

CP: {Cod-Cur}

Proyecto: {Código, Tema, Titulacion_proy, Descripción_proy}

CP: {Codigo}

Alumno: {Exp, Nombre_alum, Especialidad}

CP: {Exp}

Profesor: {DNI, Nombre_prof, Categoria}

CP: {DNI}

Asignatura: {Cod-As, Nombre asig, Horas, Departamento, Especialidad asig}

CP: {Cod-As}

Dominio

Cod-Cur: cadena(10)

Nombre cur: cadena(20)

Titulacion_cur: cadena(100)

Descripción_cur: cadena(200)

Código: cadena(10)

Tema: cadena(20)

Titulacion_proy: cadena(100)

Descripción proy: cadena(200)

Nombre_alum: cadena(20)

Exp: numerico(5)

Especialidad: cadena(100)

Nombre_prof: cadena(20)

DNI: cadena(10)

Categoria: cadena(100)

Nombre_asig: cadena(20)

Cod-As: cadena(10)

Horas: numerico(4)

Departamento: cadena(20)

Especialidad_asig: cadena(100)

TEXTO NECESARIO EN EXAMEN Y EVALUABLES PARA PODER OPTAR A LA MÁXIMA NOTA:

En binarias, sería necesaria una RESTRICCIÓN DE INTEGRIDAD por pérdida semántica por cada relación 1:N al no poderse representar las cardinalidades mínimas en esas situaciones.

En ternarias, sería necesaria una RESTRICCIÓN DE INTEGRIDAD por pérdida semántica por cada relación x:x.x cuando x=1, al no poderse representar las cardinalidades mínimas en esas situaciones.

2.2 Ejercicio 2. Docencia

Transforma a Modelo Relacional los siguientes esquemas E/R.

Solución:

Docencia (<u>Cod-Cur, DNI</u> , <u>Cod-As</u>)	Curso (Cod-Cur)
CP: {Cod-Cur, DNI, Cod-As}	CP: {Cod-Cur}
CAj: {Cod-Cur} → Curso	
CAj: {DNI} -> Profesor	Profesor (Cod-Prof)
CAj: {Cod-As} → Asignatura	CP: {Cod-Prof}
	Asignatura (Cod-As)
	CP: {Cod-As}

TEXTO NECESARIO EN EXAMEN Y EVALUABLES PARA PODER OPTAR A LA MÁXIMA NOTA:

En binarias, sería necesaria una RESTRICCIÓN DE INTEGRIDAD por pérdida semántica por cada relación 1:N al no poderse representar las cardinalidades mínimas en esas situaciones.

En ternarias, sería necesaria una RESTRICCIÓN DE INTEGRIDAD por pérdida semántica por cada relación x:x.x cuando x=1, al no poderse representar las cardinalidades mínimas en esas situaciones.

2.3 Ejercicio 3. Bancos

Transforma a Modelo Relacional los siguientes esquemas E/R. No pongas los dominios de los atributos.

RECUERDA LAS EQUIVALENCIAS EN NOTACIÓN:

Solución:

1.- Cliente(dni, direccion, edad, telefono)

CP:(dni)

2.- Banco(numbanco, sede)

CP: (numbanco)

3.- **Sucursal**(<u>numsuc, numbanco</u>, direccion, director)

CP: (numsuc, numbanco)CA: (numbanco) → Banco

4.- **Cuenta** (<u>numcta</u>, tipo, saldo, <u>dn</u>i, <u>numsuc</u>, <u>numbco</u>)

CP: (numcta, numsuc, numbco)

CA: (numsuc, numbanco) → Sucursal

CA: (dni) → Cliente

VNN: (dni)

TEXTO NECESARIO EN EXAMEN Y EVALUABLES PARA PODER OPTAR A LA MÁXIMA NOTA:

En binarias, sería necesaria una RESTRICCIÓN DE INTEGRIDAD por pérdida semántica por cada relación 1:N al no poderse representar las cardinalidades mínimas en esas situaciones.

En ternarias, sería necesaria una RESTRICCIÓN DE INTEGRIDAD por pérdida semántica por cada relación x:x.x cuando x=1, al no poderse representar las cardinalidades mínimas en esas situaciones.

2.4 Ejercicio 4. Seguros

Transforma a Modelo Relacional los siguientes esquemas E/R. No pongas los dominios de los atributos.

Solución:

1.- Cliente (dnicli, fechanac, nomci)

CP:(dnicli)

2.- Agente (dniagente, nomagente)

CP: (dniagente)

3.- Conductor (dniconduc, nomcond)

CP: (dnicond)

4.- Riesto (codriesgo, tarifa)

CP: (codriesgo)

5.- **Beneficiario** (<u>dnibene</u>, nombene)

CP: (dnibene)

6.- **Poliza** (<u>numpoliza</u>, fechacontra, fechaven, <u>dnicli</u>, <u>dniagente</u>, importecubierto)

CP: (numpoliza)

CA: (dnicli) → Cliente

CA: (dniagente) \rightarrow Agente

VNN: (dnicli) VNN: (dniagente)

7.- PolizaVida (<u>numpoliza</u>, fecha)

CP: (numpoliza)

CA: (numpoliza) → Poliza

8.- **PolizaAuto** (<u>numpoliza</u>, <u>dniconduc</u>, matricula)

CP: (numpoliza)

CA: (numpoliza) → Poliza

CA: (dniconduc) → Conductor

9.- PolizaVivienda (numpoliza, direc, poblac)

CP: (numpoliza)

CA: (numpoliza) → Poliza

10.- Cubre (numpoliza, codriesgo)

CP: (numpoliza, codriesgo)

CA: (numpoliza) \rightarrow Poliza CA: (codriesgo) \rightarrow

Riesgo

11.- Tiene (numpoliz, dnibene)

CP: (numpoliz, dnibene)

CA: $(numpoliz) \rightarrow Vida$

CA: (dnibene) → Beneficiario

TEXTO NECESARIO EN EXAMEN Y EVALUABLES PARA PODER OPTAR A LA MÁXIMA NOTA:

A simple vista no sería necesaria ninguna RESTRICCIÓN DE INTEGRIDAD por pérdida semántica, al no existir ninguna relación 1:N ni haber ternarias. En cambio, al tener una especialización distinta a P+S tenemos que incluir esta restricción:

- Restricción de integridad: Comprobar que toda póliza debe, necesariamente, ser de vida, auto o vivienda y no puede ser de más de un tipo a la vez (T+D).
- Implementamos la T+D como si fuera una P+S y añadimos esa restricción de integridad

2.5 Ejercicio 5. Ciclismo

Transforma a Modelo Relacional los siguientes esquemas E/R. No pongas los dominios de los atributos.

Solución:

ESTE EJERCICIO EXCEDE LOS CONTENIDOS DE ESTE CURSO, YA QUE NO SE EXIGIRÁN TRANSFORMACIONES DE TERNARIAS DISTINTAS A N:M:P.

1.- Equipo (nomeq, director)

CP: (nomeq)

2.- Ciclista (dorsal, nombre, edad, nomeg)

CP: (dorsal)

CA: (nomeq) \rightarrow Equipo

VNN: (nomeq)

3.- **Etapa** (<u>numetapa</u>, km, salida, llegada,

dorsal)

CP: (numetapa)

CA: (dorsal) → Ciclista

4.- Puerto (nombre, altura, categoria,

<u>numetapa</u>, <u>dorsal</u>)

CP: (nombre)

CA: $(numetapa) \rightarrow Etapa$

CA: (dorsal) → Ciclista

VNN: (numetapa)

5.- Maillot (tipo, premio, color)

CP: (tipo)

6.- Llevar (dorsal, numetapa, tipo)

CP: (numetapa,tipo)

CA: (numetapa) → Etapa

CA: (dorsal) → Ciclista

CA: (tipo) → Maillot

VNN: (dorsal)

TEXTO NECESARIO EN EXAMEN Y EVALUABLES PARA PODER OPTAR A LA MÁXIMA NOTA:

En binarias, sería necesaria una RESTRICCIÓN DE INTEGRIDAD por pérdida semántica por cada relación 1:N al no poderse representar las cardinalidades mínimas en esas situaciones.

En ternarias, sería necesaria una RESTRICCIÓN DE INTEGRIDAD por pérdida semántica por cada relación x:x.x cuando x=1, al no poderse representar las cardinalidades mínimas en esas situaciones.

2.6 Ejercicio 6. Ventas

Solución:

1. **USUARIO** (dni, nombre, fecha_nac, edad)

CP: DNI

edad= fecha actual()- fecha nac

2. CLIENTE (dni)

CP: dni

CA: dni → Usuario

PEDIDO (codigo, fecha, dni cliente)

CP:codigo

CA: dni_cliente → Cliente

VNN: dni cliente

4. **LINEA** (<u>numero_linea</u>, precio, <u>codigo_pedido</u>, <u>codigo_producto</u>, cantidad)

CP: { numero_linea, codigo_pedido}

CA: Codigo pedido → Pedido

CA: codigo_producto → Producto

VNN: codigo producto

Aclaración: codigo_pedido no hace falta poner VNN porque es parte de la clave primaria.

4. **PRODUCTO** (codigo_producto, nombre, precio)

CP: codigo_producto

TEXTO NECESARIO EN EXAMEN Y EVALUABLES PARA PODER OPTAR A LA MÁXIMA NOTA:

Sería necesaria una RESTRICCIÓN DE INTEGRIDAD por pérdida semántica por cada relación 1:N al no poderse representar las cardinalidades mínimas en esas situaciones.

• Restricción de integridad: Comprobar que todo pedido tiene como mínimo una línea.