Здесь будет титульник, листай ниже

СОДЕРЖАНИЕ

1 ПОСТАНОВКА ЗАДАЧИ	5
1.1 Описание входных данных	5
1.2 Описание выходных данных	6
2 МЕТОД РЕШЕНИЯ	7
3 ОПИСАНИЕ АЛГОРИТМОВ	8
3.1 Алгоритм конструктора класса cl1	8
3.2 Алгоритм метода set_num класса cl2	8
3.3 Алгоритм функции main	9
3.4 Алгоритм функции f	9
4 БЛОК-СХЕМЫ АЛГОРИТМОВ	11
5 КОД ПРОГРАММЫ	13
5.1 Файл cl1	13
5.2 Файл cl2	13
5.3 Файл main.cpp	14
6 ТЕСТИРОВАНИЕ	15
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	16

1 ПОСТАНОВКА ЗАДАЧИ

Создать объект первого типа, у которого одно целочисленное свойство. Значение данного свойства определяется посредством параметризированного конструктора.

Создать объект второго типа, у которого две целочисленных свойства. Значение данных свойств определяется посредством метода объекта.

Реализовать дружественную функцию, которая находит максимальное значение полей объекта первого типа и полей объекта второго типа.

Написать программу:

- 1. Вводит значение для поля объекта первого типа.
- 2. Создает объект первого типа.
- 3. Вводит значения полей для полей объекта второго типа.
- 4. Создает объект второго типа.
- 5. Определяет значения полей объекта второго типа.
- 6. Определяет максимальное значение полей, созданных двух объектов разного типа посредством дружественной функции.
 - 7. Выводит полученный результат.

1.1 Описание входных данных

Первая строка:

«целое число в десятичном формате»

Вторая строка:

«целое число в десятичном формате» «целое число в десятичном формате»

1.2 Описание выходных данных

Первая строка, с первой позиции:

max = «целочисленное значение в десятеричном формате»

2 МЕТОД РЕШЕНИЯ

Для решения поставленной задачи используется: условный оператор if объект класса cl1 объект класса cl2 функция f(cl1& A, cl2& B) - является дружественной функцией для классов cl1 и cl2. Находит максимальное значение полей объекта класса cl1 и полей объекта класса cl2 объект потокового ввода сіп объект потокового вывода cout оператор цикла for класс cl1: поля: Методы: Доступные: конструктор cl1(int n) - параметризированный конструктор, определяющий значение скрытого свойства класс cl2: Методы: Доступные: set_num(int num1, int num2) - определяет значение скрытых полей m1 и m2. Поля:

3 ОПИСАНИЕ АЛГОРИТМОВ

Согласно этапам разработки, после определения необходимого инструментария в разделе «Метод», составляются подробные описания алгоритмов для методов классов и функций.

3.1 Алгоритм конструктора класса cl1

Функционал: Определение значения свойства n.

Параметры: int num.

Алгоритм конструктора представлен в таблице 1.

Таблица 1 – Алгоритм конструктора класса cl1

N	□ Предикат	Действия	No
			перехода
-		Присвоение свойству п значения аргумента num	Ø

3.2 Алгоритм метода set_num класса cl2

Функционал: Определение значения свойств m1 и m2.

Параметры: int num1, int num2.

Возвращаемое значение: void.

Алгоритм метода представлен в таблице 2.

Таблица 2 – Алгоритм метода set_num класса cl2

Nº	Предикат	Действия	No
			перехода
1		Присвоение свойствам m1, m2 значений аргументов num1, num2	Ø
		СООТВЕТСВТЕННО	

3.3 Алгоритм функции main

Функционал: Главный метод программы.

Параметры: .

Возвращаемое значение: void.

Алгоритм функции представлен в таблице 3.

Таблица 3 – Алгоритм функции таіп

N₂	Предикат	Действия	No
			перехода
1		Объявление целочисленных переменных n, m1, m2	2
2		Ввод целочисленных перемменных n, m1, m2	3
3		Создание объекта класса cl1 с передаваемым аргументом п	4
4		Создание объекта класса cl2	5
5		Вызов метода set_num с передаваемыми ему аргументами m1, m2	6
6		Вывод результата работы функции f с передаваемыми ей в качетсве	Ø
		аргументов элементами классов cl1 и cl2	

3.4 Алгоритм функции f

Функционал: Вычисление максимального значения полей элементов классов.

Параметры: cl1& A, cl2& B.

Возвращаемое значение: int.

Алгоритм функции представлен в таблице 4.

Таблица 4 – Алгоритм функции f

No	Предикат	Действия	No
			перехода
1		Присвоение целочисленной переменной тах	2
		значения свойства п объекта А	
2	Значение тах <= значения	присвоение переменной тах значения свойства т1	3

No	Предикат	Действия	No
			перехода
	свойства m1 объекта В	объекта В	
			3
3	Значение тах <= значения	присвоение переменной max значения свойства m2	4
	свойства m2 объекта В	объекта В	
			4
4		Возврат переменной тах	Ø

4 БЛОК-СХЕМЫ АЛГОРИТМОВ

Представим описание алгоритмов в графическом виде на рисунках 1-2.

Рисунок 1 – Блок-схема алгоритма

Рисунок 2 – Блок-схема алгоритма

5 КОД ПРОГРАММЫ

Программная реализация алгоритмов для решения задачи представлена ниже.

5.1 Файл cl1

Листинг 1 - cl1

```
#include <stdlib.h>
#include <stdio.h>
#include <iostream>
using namespace std;
class cl2;
class cl1{
private:
    int n;
public:
    cl1(int num){
        n = num;
    }
    friend int f(cl1&, cl2&);
};
```

5.2 Файл cl2

Листинг 2 – cl2

```
#include <stdlib.h>
#include <stdio.h>
#include <iostream>
using namespace std;
class cl2{
private:
    int m1, m2;
public:
    void set_num(int num1, int num2){
        m1 = num1;
        m2 = num2;
    }
    friend int f(cl1&, cl2&);
};
```

5.3 Файл таіп.срр

Листинг 3 – таіп.срр

```
#include <stdlib.h>
#include <stdio.h>
#include <iostream>
#include "cl1"
#include "cl2"
using namespace std;
int f(cl1& A, cl2& B){
      int max = A.n;
      if (max \le B.m1){
             max = B.m1;
      if (max <= B.m2){
             max = B.m2;
      return max;
int main()
      int n, m1, m2;
      cin >> n >> m1 >> m2;
      cl1 obj1(n);
      cl2 obj2;
      obj2.set_num(m1, m2);
cout << "max = " << f(obj1, obj2);
```

6 ТЕСТИРОВАНИЕ

Результат тестирования программы представлен в таблице 5.

Таблица 5 – Результат тестирования программы

	Входные данные	Ожидаемые выходные	Фактические выходные
1	10 100	<u>данные</u> max = 100	данные max = 100

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Васильев А.Н. Объектно-ориентированное программирование на С++. Издательство: Наука и Техника. Санкт-Петербург, 2016г. 543 стр.
- 2. Шилдт Г. С++: базовый курс. 3-е изд. Пер. с англ.. М.: Вильямс, 2017. 624 с.
- 3. Методическое пособие для проведения практических заданий, контрольных и курсовых работ по дисциплине «Объектно-ориентированное программирование» [Электронный ресурс] URL: https://mirea.aco-avrora.ru/student/files/methodichescoe_posobie_dlya_laboratorny h_rabot_3.pdf (дата обращения 05.05.2021).
- 4. Приложение к методическому пособию студента по выполнению заданий в рамках курса «Объектно-ориентированное программирование» [Электронный ресурс]. URL: https://mirea.aco-avrora.ru/student/files/Prilozheniye_k_methodichke.pdf (дата обращения 05.05.2021).
- 5. Видео лекции по курсу «Объектно-ориентированное программирование» [Электронный ресурс]. ACO «Аврора».
- 6. Антик М.И. Дискретная математика [Электронный ресурс]: Учебное пособие /Антик М.И., Казанцева Л.В. М.: МИРЭА Российский технологический университет, 2018 1 электрон. опт. диск (CD-ROM).