Responsible Lending

By John Lassetter Oct. 29, 2021

Background

Source: experian.com

Background

Source: experian.com

	Payment Difficulties	Contract Type	Gender	 Owns Home	Income	Credit
300k Rows	1	Cash loans	М	 Υ	202500.0	406597.5
	0	Cash loans	F	 N	270000.0	1293502.5
	0	Revolving loans	М	 Y	67500.0	135000.0
	0	Cash loans	F	 Y	135000.0	312682.5
	0	Cash loans	М	 Y	121500.0	513000.0
			:			
			\			

121 Features

121 Features

121 Features

Wealthy Clients

- Wealthy Clients
- Loans range 100k >1M

- Wealthy Clients
- Loans range 100k >1M
- Mostly Cash Loans

Pipeline

Numerical Pipeline

Categorical Pipeline

Model

Logistic Regression

> Random Forest

Gradient

Boosted

Forest

Model	F1 Score
Logistic Regression	0.23
Random Forest	0.22
Gradient Boosted Forest	0.25

Model	F1 Score	% of PD flagged
Logistic Regression	0.23	36%
Random Forest	0.22	43%
Gradient Boosted Forest	0.25	37%

Model	F1 Score	% of PD flagged	True + False +
Logistic Regression	0.23	36%	1:5
Random Forest	0.22	43%	1:5.7
Gradient Boosted Forest	0.25	37%	1:4.4

Important Features

Numerical	Categorical
Days in current job	Employment Industry
Age	Doc. 14
Price of Loan	Doc. 13
# Defaults in social circle	Region rating
Days since changing phone	Brought someone to apply for loan

Important Features

Takeaways:

(P = Prob. of P.D.)

- Steady job = ↓P
- Older = ↓P
- Bigger loan = ↓P
- More defaults in social circle = ↑P

Numerical	Categorical
Days in current job	Employment Industry
Age	Doc. 14
Price of Loan	Doc. 13
# Defaults in social circle	Region rating
Days since changing phone	Brought someone to apply for loan

Dashboard Prototype

Example Output

```
Higher Risk Loan (probability of PD = 0.223)
Top 5 reasons for denial and their normalized values:
                        normalized feat value
  FLAG DOCUMENT 2 0
  FLAG DOCUMENT 5 0
  FLAG DOCUMENT 6 0
  FLAG DOCUMENT 9 0
  FLAG DOCUMENT 7 0
```

Potential Improvements

More features

- Had payment difficulties or default previously
- Reason for loan (e.g. debt consolidation)

More feature engineering

- Explore interaction terms more thoroughly
- Implement Dashboard for Prediction
 - Probability of payment difficulties
 - Top 5 reasons for decision

Questions

Appendix

Appendix

