MATH 7211 Homework 1

Andrea Bourque

May 9, 2023

1 Problem 13.1.2

Show that $x^3 - 2x - 2$ is irreducible over \mathbb{Q} and let θ be a root. Compute $(1+\theta)(1+\theta+\theta^2)$ and $\frac{1+\theta}{1+\theta+\theta^2}$ in $\mathbb{Q}(\theta)$.

Proof. The irreducibility of x^3-2x-2 can be checked by either Eisenstein's criterion or the rational root theorem. For Eisenstein's criterion, we apply it for the prime 2. We see that 2 divides the non-leading coefficients 0, -2, -2, and $2^2=4$ does not divide the constant coefficient -2. To apply rational root theorem for irreducibility, we note that a cubic can only be non-trivially factored into a product of a linear term and a quadratic term. The presence of a linear term means that the polynomial, if reducible, must have a root in \mathbb{Q} . The rational root theorem says that the only possible rational roots of $p(x)=x^3-2x-2$ are 1,2,-1,-2, and we can check in each of these cases that these are not roots: p(1)=-3, p(2)=2, p(-1)=-1, p(-2)=-6.

Note that $\theta^3 = 2\theta + 2$. Now

$$(1+\theta)(1+\theta+\theta^2) = 1+2\theta+2\theta^2+\theta^3 = 3+4\theta+2\theta^2.$$

To compute the next expression, we find the inverse of $1+\theta+\theta^2$, say $a+b\theta+c\theta^2 \in \mathbb{Q}(\theta)$. We have

$$(1 + \theta + \theta^2)(a + b\theta + c\theta^2) = 1;$$

$$a + 2b + 2c + (a + 3b + 4c)\theta + (a + b + 3c)\theta^2 = 1.$$

Therefore

$$\begin{pmatrix} 1 & 2 & 2 \\ 1 & 3 & 4 \\ 1 & 1 & 3 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix};$$
$$\begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} 5/3 \\ 1/3 \\ -2/3 \end{pmatrix}.$$

Thus

$$\frac{1+\theta}{1+\theta+\theta^2} = (1+\theta)\left(\frac{5}{3} + \frac{1}{3}\theta - \frac{2}{3}\theta^2\right) = \frac{1}{3} + \frac{2}{3}\theta - \frac{1}{3}\theta^2.$$

Prove directly that the map $a+b\sqrt{2}\mapsto a-b\sqrt{2}$ is an isomorphism of $\mathbb{Q}(\sqrt{2})$ with itself.

Proof. First we show the map is a homomorphism.

$$(a+b\sqrt{2}) + (c+d\sqrt{2}) = (a+c) + (b+d)\sqrt{2} \mapsto (a+c) - (b+d)\sqrt{2},$$

$$(a+c) - (b+d)\sqrt{2} = (a-b\sqrt{2}) + (c-d\sqrt{2}).$$

$$(a+b\sqrt{2})(c+d\sqrt{2}) = (ac+2bd) + (ad+bc)\sqrt{2} \mapsto (ac+2bd) - (ad+bc)\sqrt{2},$$

$$(ac+2bd) - (ad+bc)\sqrt{2} = (a-b\sqrt{2})(c-d\sqrt{2}).$$

The map is surjective since for any element $a+b\sqrt{2}\in\mathbb{Q}(\sqrt{2})$, we have $a-b\sqrt{2}\mapsto a+b\sqrt{2}$. Finally, the map is injective, since if $a+b\sqrt{2}\mapsto a-b\sqrt{2}=0$, then a=0 and b=0, so $a+b\sqrt{2}=0$.

Suppose α is a rational root of a monic polynomial in $\mathbb{Z}[x]$. Prove that α is an integer.

Proof. By the rational root theorem, any rational root of a polynomial in $\mathbb{Z}[x]$ has a denominator which divides the leading coefficient. For a monic polynomial, the leading coefficient is 1, and the only divisors of 1 are 1 and -1. Thus a rational root of a monic polynomial in $\mathbb{Z}[x]$ has a denominator of ± 1 , meaning it is an integer.

Show that if α is a root of $a_nx^n+a_{n-1}x^{n-1}+\ldots+a_1x+a_0$, then $a_n\alpha$ is a root of the monic polynomial $x^n+a_{n-1}x^{n-1}+a_na_{n-2}x^{n-2}+\ldots+a_n^{n-2}a_1x+a_n^{n-1}a_0$. Proof.

$$(a_n\alpha)^n + a_{n-1}(a_n\alpha)^{n-1} + a_na_{n-2}(a_n\alpha)^{n-2} + \dots + a_n^{n-2}a_1(a_n\alpha) + a_n^{n-1}a_0$$
$$= a_n^{n-1} (a_n\alpha^n + a_{n-1}\alpha^{n-1} + \dots + a_1\alpha + a_0) = a_n^{n-1} \cdot 0 = 0.$$

Prove that $x^5 - ax - 1 \in \mathbb{Z}[x]$ is irreducible unless a = 0, 2, -1.

Proof. First suppose that $x^5 - ax - 1$ has a linear factor over $\mathbb{Z}[x]$, i.e. there is an integer root. The rational root theorem says that the only possible integer roots of $x^5 - ax - 1$ are 1 and -1. If 1 is a root, then 1 - a - 1 = -a = 0, so a = 0. If -1 is a root, then -1 + a - 1 = a - 2 = 0, so a = 2.

Now suppose there are no linear factors. The only possible decomposition is into a product of quadratic and cubic factors. Thus suppose

$$x^5 - ax - 1 = (x^2 + bx \pm 1)(x^3 + cx^2 + dx \mp 1)$$

for $b, c, d \in \mathbb{Z}$. Note the constant terms are $\pm 1, \mp 1$, since the only possible factorization of -1 over \mathbb{Z} is $-1 \cdot 1$. After expanding the right hand side, the coefficient of x^4 is b+c. Since this coefficient must vanish, we have c=-b. Expanding the rest of the right hand side in terms of b, d gives

$$x^{5} + (d - b^{2} \pm 1)x^{3} + (\mp 1 + bd \mp b)x^{2} + (\mp b \pm d)x - 1.$$

The coefficient of x^3 must vanish, so $d=b^2\mp 1$. The coefficient of x^2 also vanishes, so $\mp 1+bd\mp b=b^3\mp 2b\mp 1=0$. Since $b\in\mathbb{Z}$, the rational root theorem implies b is either 1 or -1. Checking these cases shows that the only possibility is that $b^3-2b-1=0$ and b=-1. Thus d=0 and a=b-d=-1.

Since the reducibility of $x^5 - ax - 1$ implies a = 0, 2, -1, we have that $x^5 - ax - 1$ is irreducible for $a \neq 0, 2, -1$.