SIN 251 – Organização de Computadores (2023)

Aula 08 – O Sistema de Computação

Prof. João Fernando Mari joaof.mari@ufv.br

Roteiro

- Sistemas Computacionais
- Arquitetura X Organização
- Níveis, máquinas virtuais e linguagens
- Níveis de Abstração em uma máquina convencional

Sistemas Computacionais

- Sistemas Computacionais:
 - Crescimento acelerado.
 - Empregados em vários setores.
 - Possibilidades que se tornaram realidade:
 - Caixas Eletrônicos
 - Computação embarcada em automóveis.
 - Computadores laptop.
 - Projeto do Genoma Humano
 - World Wide Web.
 - ...
 - Classificação:
 - Desktop
 - Servidores
 - Supercomputadores
 - Computadores embarcados
 - Computação móvel (smartphones, tablets, smartwatches, etc...)

Desktops e Servidores

- Desktops
 - Bom desempenho para um único usuário.
 - Baixo custo.
 - Normalmente s\(\tilde{a}\) o usados para executar software independente.
 - Um dos maiores mercados para os computadores
 - É a motivação para a evolução de muitas tecnologias de computação.
- Servidores
 - Projetados para suportar grandes cargas de trabalho
 - Aplicações científicas ou
 - Aplicações empresariais.
 - Construídos a partir da mesma tecnologia básica dos computadores desktop.
 - Porém, fornecem maior capacidade de expansão
 - Processamento.
 - Armazenamento.
 - E/S de dados.

Supercomputadores

- Blue Gene (EUA)
- 131.000 processadores
- 360 trilhões de operações por segundo.
- 31.634 vezes mais rápido que o Deep Blue.
- https://www.ibm.com/ibm/history/ibm1 00/us/en/icons/bluegene/

- Tianhe-1 (China)
- Mais poderoso em 2015
- 3,12 milhões de núcleos
- 54,9 PetaFLOPS
- 1,3 Petabytes de RAM
- 12,4 Petabytes de HD.

- Fugaku (Japãp)
- Atualmente (2021) o mais poderoso do mundo.
- 158,976 nós de processamento
 - 48 núcleos por nó
- 7,630,848 núcleos
- 442 PetaFLOPS
 - LINPACK benchmark
- 5,087,232 GB de RAM
- https://www.fujitsu.com/global/about/in novation/fugaku/

- Lista dos 500 supercomputadores mais potentes.
 - http://www.top500.org
- FLOP "FLoating-point Operations Per Second", ou "operações de ponto flutuante por segundo".
- Peta 10¹⁵ ou 1.000.000.000.000.000.

Computadores embarcados

- Maior classe de computadores
 - Ampla faixa de aplicações e desempenho.
- Projetados para executar uma aplicação ou um conjunto de aplicações relacionadas como um único sistema.
- Combinam desempenho mínimo com limitações rígidas em relação a custo ou e consumo de energia.
- Atualmente encontramos computadores embarcados em eletrodomésticos, televisões, aparelhos de DVD e Blue-Ray, automóveis, aviões, etc...

Arquitetura X Organização

Arquitetura

- Refere-se aos atributos de um sistema que são visíveis para o programador, ou seja, que possuem impacto direto sobre a execução lógica de um programa.
 - Exemplos: conjunto de instruções, número de bits usado para representar os tipos de dados, mecanismos de E/S, técnicas de endereçamento de memória.

Organização

- Refere-se às unidades operacionais e suas interconexões que implementam as especificações da sua arquitetura.
 - Exemplos: sinais de controle, interfaces entre o computador e os periféricos, tecnologia de memória utilizada.

Arquitetura X Organização

- Exemplos:
 - Definir se um computador deve ou não ter uma instrução de multiplicação.
 - Decisão de Arquitetura.
 - Definir se uma instrução de multiplicação será implementada por uma unidade especial de multiplicação ou por um mecanismo que utiliza repetidamente sua unidade de soma.
 - Decisão de Organização.

Arquitetura X Organização

- Organização
 - Tempo de vida relativamente curto.
 - Muda com a evolução da tecnologia.
 - Pode mudar sem afetar a arquitetura
 - Transparente ao programador
- Arquitetura
 - Pode sobreviver por muitos anos.
 - Isso garante compatibilidade de software.
 - Pelo menos retrocompatibilidade.
- Exemplos:
 - A família Intel x86 possui a mesma arquitetura básica
 - A família IBM System/370 também.

- Aplicações convencionais podem consistir em centenas de milhares a milhões de linhas de código e se basear em bibliotecas de software que implementam funções complexas.
- No entanto, o hardware em um computador só pode executar instruções de baixo nível extremamente simples.
 - A linguagem compreensível pelo hardware é denominada de linguagem de máquina.

- Um sistema computacional opera através de sinais elétricos (ligado e desligado),
 - Representados, respectivamente, por 1 e 0.
 - Este alfabeto é denominado sistema binário.

- Embora só possuam dois símbolos, estes não limitam o poder de expressividade da linguagem.
 - Fazendo associação com o alfabeto.
 - Com 1 dígito \rightarrow 2¹ elementos diferentes.
 - Com 4 dígitos \rightarrow 2⁴ elementos diferentes.
 - Com 32 dígitos \rightarrow 2³² elementos diferentes.
 - Com 64 dígitos \rightarrow 2⁶⁴ elementos diferentes.

- Linguagem de máquina não é muito conveniente para nós humanos.
- Para resolver este problema, criamos um novo conjunto de instruções mais conveniente para os usuários do que as instruções de linguagem de máquina.
- Este novo conjunto de instruções pode ser visto como uma nova camada ou abstração do conjunto de instruções da camada anterior.

Compiladores

- Consiste em substituir cada uma das instruções da camada de nível mais alto por uma sequencia equivalente de instruções da camada de nível mais baixo.
- Gera um novo arquivo.
- Possui boa performance.
- Utilizado pelas linguagens C, Java, Pascal, etc...

Interpretadores

- Examina cada uma das instruções do programa durante a execução.
- Transforma cada instrução de alto nível em instruções de baixo nível. Em seguida, esta instrução é executada antes do exame da próxima instrução de alto nível.
- Não gera um novo arquivo
- Não possui uma boa performance, porém é interessante como linguagem de cola (glue language)
- Utilizado por linguagens como Python, Ruby, TCL-TK...

Níveis de abstração – Máquina convencional

- Os níveis mais comuns encontrados nos computadores:
 - Nível da Lógica Digital
 - Nível mais baixo, cujos objetos de interesse são as portas lógicas.
 - Nível da Microarquitetura
 - Nível cujo objetos de interesse são os registradores, unidade lógica aritmética (ULA) e o caminho de dados.
 - Nível da Arquitetura do Conjunto de Instruções (Nível ISA).
 - Formado pelo conjunto de instruções aceitas por um determinado hardware.
 - Nível do Sistema Operacional
 - Nível mais abstrato, formado por um interpretador e possui instruções em comum com o nível anterior.
 - Nível da Linguagem do Montador
 - Corresponde à linguagem de montagem (assembly).
 - Nível das Linguagens de Alto Nível.
 - Corresponde ao nível utilizado pelos programadores de aplicação.

Níveis de abstração – Máquina convencional

Hardware Vs. Software

- Consequências dessa Evolução
 - Sistemas Operacionais.
 - Maior produtividade e aumento da qualidade dos programas gerados.
 - Crescimento da importância do software.
- Soluções por Hardware, em geral possuem:
 - Melhor performance.
 - Menor consumo de energia.
 - Alto custo.
 - Baixo grau de flexibilidade.
- Soluções por software, em geral possuem:
 - Pior performance.
 - Maior consumo de energia.
 - Baixo custo.
 - Alto grau de flexibilidade.
- Decidir o que será implementado em hardware ou em software é um dos grandes problemas da computação atual.

Referências

- STALLINGS, W.
 - Arquitetura e Organização de Computadores
 - 5. Ed., Pearson, 2010.
 - Capitulo 1
- TANENBAUM, A. S.
 - Organização Estruturada de Computadores
 - 5. Ed., Prentice-Hall, 2006
 - Seção 1.1
 - Seção 1.3

FIM