

SEQUENCE LISTING

<110> Rottier, Petrus J.M.
de Haan, Cornelis A.M.
Haijema, Bert J.
Bosch, Berend J.

<120> Corona-virus-like particles comprising functionally deleted genomes

<130> P56179US20

<140> US 10/750,411
<141> 2003-12-30

<150> PCT/NL02/00318
<151> 2002-05-17

<150> EP 01201861.0
<151> 2001-05-17

<160> 80

<170> PatentIn Ver. 3.1

<210> 1
<211> 43
<212> DNA
<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: primer 1089

<400> 1

acctgcagga ctaatctaaa ctttattctt ttttagggcca cgcc

43

<210> 2
<211> 19
<212> DNA
<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: primer 1092

<400> 2

ccttaaggaa ttgaactgc

19

<210> 3
<211> 29
<212> DNA
<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: primer 1128

<400> 3
acggtccgac tgcgcgcttg aacacgttg 29

<210> 4
<211> 31
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer 1130

<400> 4
catgcaagct ttatggaca tttacttaggc t 31

<210> 5
<211> 34
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer 1129

<400> 5
gtcaaataaa gcttgcatga ggcataatct aaac 34

<210> 6
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer 1127

<400> 6
ccagtaagca ataatgtgg 19

<210> 7
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer 1261

<400> 7
gctgcttact cctatcatac 20

<210> 8
<211> 21
<212> DNA
<213> Artificial Sequence

<220>		
<223> Description of Artificial Sequence: primer 990		
<400> 8		
cctgatttat ctctcgattt c		21
<210> 9		
<211> 19		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence: primer 1173		
<400> 9		
gacttagtcc ttcctttga		19
<210> 10		
<211> 18		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence: primer 1260		
<400> 10		
cttcaacggt ctcagtgc		18
<210> 11		
<211> 9		
<212> RNA		
<213> mouse hepatitis virus		
<220>		
<221> misc_feature		
<222> (1)...(9)		
<223> /note="Consensus transcription regulatory signal"		
<400> 11		
aaucuaaac		9
<210> 12		
<211> 25		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence: primer 1C		
<400> 12		
gtgtatagat atgaaaggta ccgtg		25

<210> 13
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer 1097

<400> 13
cgaaccagat cggctagcag 20

<210> 14
<211> 32
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer 1095

<400> 14
agattagata tcttaggttc tcaacaatgc gg 32

<210> 15
<211> 34
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer 1096

<400> 15
gaacctaaga tatctaattct aaactttaag gatg 34

<210> 16
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer 1286

<400> 16
ggatactaat ctaaaacttta g 21

<210> 17
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer 1287

<400> 17

ctagctaaag ttttagattag atatcctgca	30
<210> 18	
<211> 19	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: primer 1412	
<400> 18	
ctgcggacca gttatcatc	19
<210> 19	
<211> 34	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: primer 1091	
<400> 19	
gttacaaacc tgaatctcat cttaattctg gtcg	34
<210> 20	
<211> 21	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: primer 1413	
<400> 20	
catccgttcc ctttgttctg g	21
<210> 21	
<211> 22	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: primer 1173	
<400> 21	
gacttagtcc tctccttgat tg	22
<210> 22	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	

<223> Description of Artificial Sequence: primer 1475	
<400> 22	
gcctaatgca gttgctctcc	20
<210> 23	
<211> 25	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: primer 935	
<400> 23	
gtttagcac agggtgtggc tcatg	25
<210> 24	
<211> 18	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: primer 1474	
<400> 24	
ccatcttcca gcggatag	18
<210> 25	
<211> 38	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: forward primer	
<400> 25	
gcggatccat cgaaggcgt gatttatctc tcgatttc	38
<210> 26	
<211> 27	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: reverse primer	
<400> 26	
cgaattcatt ctttgagggtt gatgtag	27
<210> 27	
<211> 18	
<212> DNA	

<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence: primer 1244		
<400> 27		
gccattctca ttgataac		18
<210> 28		
<211> 39		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence: primer 1514		
<400> 28		
ctgagtctag agtagcttagc taatgactaa taagtttag		39
<210> 29		
<211> 20		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence: primer 1245		
<400> 29		
gcttctgttg agtaatcacc		20
<210> 30		
<211> 32		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence: primer 1513		
<400> 30		
gctagctact ctagactcag gcggttctaa ac		32
<210> 31		
<211> 8		
<212> DNA		
<213> Coronavirus sp.		
<220>		
<223> /Note="Infectious Bronchitis Coronavirus TRS"		
<400> 31		
cttaacaa		8

<210> 32
<211> 8
<212> DNA
<213> Human Coronavirus sp.

<220>
<223> /Note="Human Coronavirus TRS"

<400> 32
tctcaact 8

<210> 33
<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: sequence of
new junction created in recombinant MHV-virus

<400> 33
gaggattgac tatkacagcc cctgcaggaa agacagaaaa tctaaacaat 50

<210> 34
<211> 77
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: sequence of
new junction created in recombinant MHV-virus

<400> 34
gaggattgac tatkacagcc cctgcaggac taatctaaac tttattcttt ttagggccac 60
gcagctcgaa agaaatg 77

<210> 35
<211> 37
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: sequence of
new junction created in recombinant MHV-virus

<400> 35
gtcaaataaa gcttgcatga ggcataatct aaacatg 37

<210> 36
<211> 30
<212> DNA
<213> Artificial Sequence

```

<220>
<223> Description of Artificial Sequence: primer 1287
      used for the introduction of an intergenic
      promotor sequence (IGS) in front of the renilla
      (RL) and firefly luciferase (FL) gene

<400> 36
acgtcctata gattagattt gaaatcgatc

<210> 37
<211> 55
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: nucleotide
      sequence of pBRDI1 and pBRDI2 around the 5' end of
      the FIPV genome sequence

<400> 37
ctcgagtcga aattaatacg actcaactata gggttttaa agtaaagtga gtgta 55

<210> 38
<211> 36
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: pBRDI sequence
      at the pol 1A/pol1B junction

<400> 38
gttattgaag gtgagctctg gactgtgttt tgtaca 36

<210> 39
<211> 12
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: protein
      sequence derived from pBRDI sequence at the
      pol1A/1B junction

<400> 39
Val Ile Glu Gly Glu Leu Trp Thr Val Phe Cys Thr
   1           5           10

<210> 40
<211> 31
<212> DNA
<213> Artificial Sequence

```

<220>
<223> Description of Artificial Sequence: pBRDI
sequence at the 3' end of the cDNA construct

<400> 40
tagtgataca aaaaaaaaaaa aaagcggccg c 31

<210> 41
<211> 54
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: nucleotide
sequence at the FIPV pol1B-MHV S transition in
pTMFS1 and pBRDI2

<400> 41
gttaatgtgc catgctgttc gtgtttattc tattttgcc ctcttgttta gggt 54

<210> 42
<211> 13
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: protein
sequence derived from nucleotide sequence at the
FIPV pol1B-MHV S transition in pTMFS1 and pBRDI2

<400> 42
Pro Cys Cys Ser Cys Leu Phe Tyr Phe Cys Pro Leu Val
1 5 10

<210> 43
<211> 11
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: protein
sequence derived from nucleotide sequence at the
FIPV pol1B-MHV S transition in pTMFS1 and pBRDI2

<400> 43
Met Leu Phe Val Phe Ile Leu Phe Leu Pro Ser
1 5 10

<210> 44
<211> 25
<212> PRT
<213> mouse hepatitis virus

<400> 44

Ser Ser Tyr Gly Met Ser Glu Ser Ala Asp Ala Asn Gly Ser Ala Glu
1 5 10 15

Asn Asn Ser Arg Leu Thr Glu Lys Asn
20 25

<210> 45

<211> 25

<212> PRT

<213> Human coronavirus

<400> 45

Tyr Asn Tyr Gly Met Ser Gln Asn Tyr Ala Asp Ala Asn Val Ala Ala
1 5 10 15

Glu Asn Gln Ser Arg Leu Ser Glu Asn
20 25

<210> 46

<211> 42

<212> PRT

<213> Human coronavirus

<400> 46

Ser Ala Tyr Gln Thr Gln Glu Ala Lys Thr Asn Val Thr Gly Val Asn
1 5 10 15

Asp Ala Ile Thr Gln Thr Ser Gln Ala Leu Gln Val Ala Asn Gln Asn
20 25 30

His Thr Ser Arg Gln Ala Asp Thr Gln Gln
35 40

<210> 47

<211> 43

<212> PRT

<213> Feline infectious peritonitis virus

<400> 47

Ala Ala Tyr Gln Thr Asn Lys Gln Asn Asn Thr Gln Gly Lys Val Asn
1 5 10 15

Asp Ala Ile His Gln Thr Ser Gln Gly Leu Ala Val Ala Lys Ala Thr
20 25 30

Gln Ser His Thr Val Gln Gln Ser Asn Glu Ser
35 40

<210> 48
<211> 36
<212> PRT
<213> Infectious bronchitis virus

<400> 48

Ala Thr Gln His Gln Ser Leu Lys Glu Lys Ala Lys His Arg Ser Leu
1 5 10 15

Gln Gln Ser Lys Ser Ala Ile Thr Glu Thr Ala Ser Asn Lys Val Gln
20 25 30

Gln Phe Gln Asn
35

<210> 49
<211> 102
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: peptide HR1

<400> 49
Gly Pro Ile Glu Gly Arg Gln Tyr Arg Ile Asn Gly Leu Gly Val Thr
1 5 10 15

Met Asn Val Leu Ser Glu Asn Gln Lys Met Ile Ala Ser Ala Phe Asn
20 25 30

Asn Ala Leu Gly Ala Ile Gln Asp Gly Phe Asp Ala Thr Asn Ser Ala
35 40 45

Leu Gly Lys Ile Gln Ser Val Val Asn Ala Asn Ala Glu Ala Leu Asn
50 55 60

Asn Leu Leu Asn Gln Leu Ser Asn Arg Phe Gly Ala Ile Ser Ala Ser
65 70 75 80

Leu Gln Glu Ile Leu Thr Arg Leu Glu Ala Val Glu Ala Lys Ala Gln
85 90 95

Ile Asp Arg Leu Ile Asn
100

<210> 50
<211> 82
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: peptide HR1a

<400> 50

20 25 30

Gln Ser Val Val Asn Ala Asn Ala Glu Ala Leu Asn Asn Leu Leu Asn
35 40 45

Gln Leu Ser Asn Arg Phe Gly Ala Ile Ser Ala Ser Leu Gln Glu Ile
50 55 60

Leu Thr Arg Leu Glu Ala Val Glu Ala Lys Ala Gln Ile Asp Arg Leu
65 70 75 80

Ile Asn

<210> 51

<211> 49

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: peptide HR1b

<400> 51

Gly Pro Asn Gln Lys Met Ile Ala Ser Ala Phe Asn Asn Ala Leu Gly
1 5 10 15

Ala Ile Gln Asp Gly Phe Asp Ala Thr Asn Ser Ala Leu Gly Lys Ile
20 25 30

Gln Ser Val Val Asn Ala Asn Ala Glu Ala Leu Asn Asn Leu Leu Asn Gln
35 40 45

<210> 52

<211> 52

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: peptide HR1c

<400> 52

Gly Pro Ile Glu Gly Arg Asn Ala Asn Ala Glu Ala Leu Asn Asn Leu
1 5 10 15

Leu Asn Gln Leu Ser Asn Arg Phe Gly Ala Ile Ser Ala Ser Leu Gln
20 25 30

Glu Ile Leu Thr Arg Leu Glu Ala Val Glu Ala Lys Ala Gln Ile Asp
35 40 45

Arg Leu Ile Asn
50

<210> 53

<211> 17

<210> 53
<211> 17
<212> PRT
<213> mouse hepatitis virus

<400> 53

Phe Glu Lys Leu Tyr Asn Asp Ala Lys Lys Glu Tyr Glu Gly Thr Tyr
1 5 10 15

Met

<210> 54
<211> 17
<212> PRT
<213> Human coronavirus

<400> 54

Phe Glu Lys Leu Tyr Asn Asp Ala Lys Lys Glu Tyr Glu Gly Thr Tyr
1 5 10 15

Met

<210> 55
<211> 27
<212> PRT
<213> Human coronavirus

<400> 55

Val Gln Gln Ser Ser Thr Asn Lys Ser Ala Glu Leu Asn Tyr Thr Val
1 5 10 15

Gln Lys Leu Gln Thr Asp Asn Ser Trp Asn Arg
20 25

<210> 56
<211> 29
<212> PRT
<213> Feline infectious peritonitis virus

<400> 56

Phe Ile Ala Tyr Gly Asp Asp Phe Arg Ser Glu Lys Leu His Asn Thr
1 5 10 15

Thr Val Glu Leu Ala Ile Asp Asn Asn Glu Trp Asn Arg
20 25

<210> 57

<211> 19
<212> PRT
<213> Infectious bronchitis virus

<400> 57

Phe Asp Lys Phe Asn Thr Pro Asp Ser Asp Gly Gln Gly Asp Glu Lys
1 5 10 15

Ser Ile Lys

<210> 58
<211> 45
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: peptide HR2

<400> 58

Gly Pro Ile Glu Gly Arg Asp Leu Ser Leu Asp Phe Glu Lys Leu Asn
1 5 10 15

Val Thr Leu Leu Asp Leu Thr Tyr Glu Met Asn Arg Ile Gln Asp Ala
20 25 30

Ile Lys Lys Leu Asn Glu Ser Tyr Ile Asn Leu Lys Glu
35 40 45

<210> 59
<211> 53
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: sequence of
junction generated in recombinant MHV-virus

<400> 59

gaggattgac tatcacagcc cctgcaggaa agacagaaaa tctaaacaat tta 53

<210> 60
<211> 41
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: sequence of
junction generated in recombinant MHV-virus

<400> 60

gaggattgac tatcacagcc ccatctaattc caaacattat g 41

<210> 61
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: sequence of junction generated in recombinant MHV-virus

<400> 61
agaacctaag atggaaagac agaaaaatcta aacaattta 39

<210> 62
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: sequence of junction generated in recombinant MHV-virus

<400> 62
gatatctaat ctaaacttta aggatg 26

<210> 63
<211> 37
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: sequence of junction generated in recombinant MHV-virus

<400> 63
gtcaaataaa gcttgcatga ggcataatct aaacatg 37

<210> 64
<211> 38
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: sequence of junction generated in recombinant MHV-virus

<400> 64
gtcaaataag cgaaaaagaca gaaaatctaa acaattta 38

<210> 65
<211> 40
<212> DNA
<213> Artificial Sequence

<220>		
<223> Description of Artificial Sequence: sequence of junction generated in recombinant MHV-virus		
<400> 65		
agaacctaag atagcttgca tgaggcataa tctaaacatg		40
<210> 66		
<211> 28		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence: sequence of junction generated in recombinant MHV-virus		
<400> 66		
gaggattgac tatacacagcc cccgcgca		28
<210> 67		
<211> 32		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence: sequence of junction generated in recombinant MHV-virus		
<400> 67		
gtcaaataaa gctatctaat ccaaacatta tg		32
<210> 68		
<211> 18		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence: primer 1 for SOE-PCR		
<400> 68		
gccattctca ttgataac		18
<210> 69		
<211> 20		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence: primer 2 for SOE-PCR		
<400> 69		

gcttctgttg agtaatcacc	20
<210> 70	
<211> 34	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: primer 3 for SOE-PCR	
<400> 70	
gtcattacag gtcttgtatg acgttcccta gggc	34
<210> 71	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: primer 4 for SOE-PCR	
<400> 71	
catacaagac ctgtaatgac	20
<210> 72	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: primer 5 for SOE-PCR	
<400> 72	
ggtgattact caacagaagc	20
<210> 73	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: primer 6 for SOE-PCR	
<400> 73	
gcggccgctt tttttttt	20
<210> 74	
<211> 33	

<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer 7 for SOE-PCR

<400> 74
gaggttacga attaaactga gttataaggc aac 33

<210> 75
<211> 16
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer 8 for SOE-PCR

<400> 75
tttaattcgt aacctc 16

<210> 76
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer 9 for SOE-PCR

<400> 76
caggagccag aagaagacgc taa 23

<210> 77
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer 10 for SOE-PCR

<400> 77
ctcaatctag aggaagacac c 21

<210> 78
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer 11 for

SOE-PCR

<400> 78	
gaccagttt agacatcg	18
<210> 79	
<211> 14196	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: sequence of	
plasmid pBRDII1	
<400> 79	
ctcgagtcga aattaatacg actcaactata gggttttaa agtaaagtga gtgtacgtg 60	
gctataactc ttctttact ttaactagcc ttgtgctaga tttgtctcg gacaccaact 120	
cgaactaaac gaaatatttgc tctctctatg aaaccataga agacaagcgt tgattatttc 180	
accagtttg caatcactcc taggaacggg gttgagagaa cggcgcacca gggttccgtc 240	
cctgttgtt aagtctgtcta gtattagctg cggcgttcc gcccgtcgtt gttggtaga 300	
ccgggttccg tcctgtgatc tccctcgccg gccgccagga gaatgagttc caaacaattt 360	
aagatcctcg ttaatgagga ctaccaagtc aacgttccta gccttcctt ccgtgacgca 420	
ctgcaggaaa ttaagtactg ctaccgtAAC ggtttgtat gctatgtctt cgtgcctgaa 480	
taccgtcgtg acctagttga ttgcaatcgt aaggatcact acgtcattgg tgttttgggt 540	
aacggaataa gtgatcttaa acctgttctc cttaccgaac cttccgtcat gttgcagggt 600	
ttcattgtta gagccaactg caatggcggtt cttgaggact ttgacctaa attcgccccgt 660	
actggaaacg ggcgcataata tttggaccAA tacatgtgtg gtgtctgtt aaagccagtt 720	
attgaaggtg agctctggac tttttttgtt acaagtgttA atacgtcattc atcagaaggt 780	
tttctgtattt gtattaaacta cttaggacca tactgtgaca aagcaatagt agatggaaat 840	
ataatgcattt ccaatttatatttggaga aactctacAA ttatggcttot atcacataaac 900	
tcagtccttag acactccaaa atttaagtgc cttgttAA atgcacttattt tgtaatttA 960	
aaagaaaaaaag aattgaatga aatggtcgtt ggattactaa ggaagggtAA gttactcatt 1020	
agaaataatg gcaagctact aaactttgggtt aatcattttag ttaatgtgcc atgattgtgc 1080	
tcgttaacttg cctctgttA ttatgttcat accacacagt tttgagtaca acaaataatg 1140	
aatgcataca agttAACgtt acacaattgg ctggcaatga aaaccttattc agagattttc 1200	
tgttttagtaa ctttaaagaa gaaggaagtgg tagttgttgg tggttattac cctacagagg 1260	
tgtgttacaa ctgtcttaga acagctcgaa ctactgcctt tcagtatttt aataatatac 1320	
atgcctttta ttttgttatg gaagccatgg AAAATAGCAC tggtaatgca cgtggtaaac 1380	
cattattttt tcatgtgcat ggtgagctgtt ttagtggat tatatcggtt tataaggatg 1440	
atgtgcaaca aaggccccctt taaaacatgtt ggttagtgtt cataactaaa aatcgccata 1500	
ttaactatgtt acaatttacc tccaaccagt ggaatttccac atgtacgggt gctgacagaaa 1560	
aaattccctt ctctgtcata cccacggaca atgaaacaaa aatctatggt cttgagtggA 1620	
atgatgactt tggttacagctt tattttgtt gtcgttcttA tcacttgaac atcaataacta 1680	
atgggtttaa caatgtcaca cttttgtatt cacgctcaag cactgctacc tggaaatACA 1740	
gtgctgcata tgcttaccaa ggtgttttca acttcacttA ttacaagttt aataacacca 1800	
atggtctaaa aacctatgaa ttatgtgaag attatgttA ttgcactggc tatgttacca 1860	
atgtatttgc tccgacatca ggtgggttaca tacctgtatgg atttagttt aacaatttgg 1920	
tcttgcttac aaatagttcc acttttggta gtggcagggtt tgtaacaaat caaccattat 1980	
tgattaatttgc tttgtggcca gtggccaggAA ttgtgttgc acgcacaaagaa ttttgggtt 2040	
aagggtcaca gtttagccaa tggtaatgggtt tggctttttaa taacacagtg gatgttattt 2100	
gattcaacccctt taatttactt gcaatgttac aatctgtt ggggtgtaca gtatTTTcAC 2160	
tgaataacaac aggtgggttc attcttggaa tttcatgttA tagtgacaca gtgagtgagt 2220	
ctagttctta cagttatggt gaaatcccgt tcggcataac tgacggacca cgatactgtt 2280	
atgtacttta caatggcaca gctcttaaat atttaggaac attaccaccc agtgtaaagg 2340	
aaatttgcata tagtaagtgg ggccttttta atattaatgg ttacaatttC tttagcacat 2400	
ttcctattgg ttgttatattttt ttaatttAA ccactgggtt tagtgagct ttttggacaa 2460	

ttgcttacac atcgatact gaagcattag tacaaggta aaacacagct attaaaaatg 2520
tgacgtattg taacagtac attaataaca ttaaatgttc tcaactact gctaatttg 2580
ataatggatt ttatccgtt gctcaagtg aagtaggtt cgttaataag agtgttgt 2640
tattacctag cttttcaca tacaccgctg tcaatataac cattgatctt ggtatgaagc 2700
tttagtggta tggcaaccc atagcctcga cactaagtaa catcacacta ccaatgcagg 2760
ataacaatac tgatgtgtac tgtattcggt ctaaccattt ctcaagttt gttcattcca 2820
cttgcaaaag ttctttatgg gacaatattt ttaatcaaga ctgcacggat gtttagagg 2880
ctacagctgt tataaaaact ggtacttgc ctttctcatt tgataaattt aacaattact 2940
tgactttaa caagttctgt ttgtcgttga gtcctgttgg tgctattgc aagtttgatg 3000
ttgctgcacg tacaagaacc aatgagcagg ttgttagaaag tctatatgtt atatatgaag 3060
aaggagacaa catagtggtt gtaccgtctg ataatagcgg tctgcacgat ttgtctgtc 3120
tacacctaga ctccgtaca gattacaata tatatggtag aactgggtt ggtattatta 3180
gacgaactaa cagtagccta cttagtggtt tatattacac atcaactatca ggtgatttg 3240
taggcttaa aaatgttagt gatgggtcata tttattctgt gacgccatgt gatgtaaagc 3300
cacaagcggc tggatttgat ggtccatag ttggagctat gacttccatt aacagtgaac 3360
tgtaggtct aacacattgg acaacgacac ctaattttt ttactactct atatataatt 3420
acacaagtga gaggactcgt ggcactgcaa ttgacagtaa cgatgttgc tttggtttt attaacgtca 3540
tcataaccta ttctaatata ggtgttgtt aaaaatggtc tttggtttt cctacaaatt 3600
cacattctga cgagacgtg caaccaatta gcactggtaa tgtcacgata tcaatagatt 3660
ttactatatc tggcaagtt gaatacatgc aggttacac tacaccagta caatatgtt 3720
gtgcaagata cgttggtaat ggttaacccta gatgtaaaca attgtaaca aacatggagg 3780
ctgcatgtca aactattgaa caagcacttgc caatgggtgc cagactgaa gaggcgttca 3840
ttgattccat gttgttgc tcggaaaatg cccttaaatt ggcacatgtt ggttcttggc 3900
atagtagcaga aaatttttagt cctattaca aagaatggcc tagcataggt ggttctgcta 3960
taggaggtct aaaagatata ctaccgtccc ataatagcaa acgtaagtat gatgaagatt 4020
tagaagattt gctttttagt aaagtgtaa catctggtt aggtacagtt tattacaatg 4080
ataaacgttg tactgggtt tacgacatag cagacttgcgt gtgtgctcaa acagcatcac 4140
gcatcatggt tctaccaggat gtagctaatg ctgacaagat gactatgtac ttgtgttgc 4200
ttgcaggtgg tataacatta ggtcaacttgc gtgggtggcgc cgtgctata aataaaaacc 4260
tagcagttaca ggctagactt aattatgttgc ctctacaaac tgatgtattt gcttttggta 4320
aacagatcct ggtaatgtct tcaatcaag ctattggtaa cattacacag aaagcgttgg 4380
aggttaatgt tgcatacat caaacatcac aaggcttgc cactgttgc acagtacaat 4440
caaaaatgtca agatgtgtc aacacacaag ggcaagctt aagtccatggtgc 4500
tgcaaaaataa tttcaagcc attagtagtt ctattatgttgc ttttataac aggcttgcac 4560
aactgagtgc tgatgcacaa gttgataggc tgattacagg tagacttaca caacttgcca 4620
catttggc tcagactcta accagacaag cagaggttag ggctagtaga tggtaatgt 4680
aagacaaggta taatgaatgt gttaggtctc agtctcagag attccgattt tttcatacag 4740
gtacacattt gtttcaacta gcaaatgcag caccaaatgg catgatttc gttcagatg 4800
tactattacc aacagcttat gaaactgtaa cagctggc aggtattgt cgtaatctag 4860
gcatgtgcac tttcgactt gtcgttaaag atgtgcaggat gacgttgcattt atgatgttgc 4920
atgacaagtt ctatttgacc cccagaacta tttatcagcc tagagttgc attgatttgc 4980
attttggtaa aattgaaggg tgtgatgtgt ttttgcattt cgcgactgtt ttagaaaatt 5040
ctagtattat acctgactat attgacattt atcaaaactgt tcaagacata acctatttaa 5100
acagacaaa ctggactgtt cctgaatttta cacttgatatttcaacgc aacactacag 5160
atctgactgg tggaaattgtat gacttaggt ttaggtcaga aaagctacat gttttagtag 5220
tagaacttgc cattctcatt gataacattttaaataatcatt agtcaatctt gttttagtag 5280
atagaattgtt aactttagttaa aatggcctt ggtatgtgt gctactgata tggatgtca 5340
tagtattttt cattaccattt ctgttattt gctgttttag cacaggttgc gaaaattatg 5400
taggttggttt aggaagttgtt tgcactcttata ttagtagtag aagacaattt gttttagtag 5460
aaccatgtt aaaaatgtcat gtcactttttttaaaggatgtt aggatgttgc tctattgaca 5520
taagaactaa acttatttagt cattacaggat tttgtatggcatttgcataactctt 5580
tattcgtaga cgctgtactt gacgaacttgc accgtgcata ctttgcgttgcactt 5640
tagaattttaa gactggtaaa ctacttgcgtt gtatagggtt tgggtgcacaca aatagtgcata 5700
ctaaggacaa agcgtatgtct aagcttgcgtt cttccctttat tgaagaagtc tttggtataa 5760
cagttgttta gtattactgtt tacaagttt aagccaaat tttggtataa actacctttt 5820
gaaacttagac ttgttatcat taaacacaca agacccaaag cattaaatgttgcataactt 5880
gtaaagagag attatagaaa aattggcattt cttaaatttca tggcaaaatg attggtggc 5880

tttttcttaa cactcttagt tttgttattg ttagtaacca tgttattgtt aataacacag 5940
caaatgtgca tactacacaa catgaaaatg ttatagtaca acagcattag gttgttagt 6000
ctagaacaca aaattattac ccagagttca gcatcgctgt actctttgt aatgtttgg 6060
ctttgtaccg tagtacaaac tttaaagacgt gtgtcggcat cttaatgttt aagattgtat 6120
caatgacact ttagggccct atgcttatag catatggta ctacattgtat ggcattgtt 6180
caataactgt ctagctta agattttct acttagcata ctttggat gttaatagta 6240
ggtccgaatt tattttatac aatacaacga cactcatgtt tgtacatggc agagctgcac 6300
cgtttatgag aagttctcac agctcttattt atgtcacatt gtatggggc ataaattata 6360
tggttgaa tgacctcacg ttgcattttg tagaccctat gcttgaaga atagcaatac 6420
tggtcttagc tcatactgtat ctaactgttt ttagagcagt tgaacttctc aatggtgatt 6480
ttatataatgt attttcacag gagccctgt tagccgttta caatgcagcc tcttcagg 6540
cggttctaaa cgaatttgac taaaagaag aagaagaaga ccataactat gacgtccct 6600
agggcattta ctatcataga tgaccatggc atgggtgtt gcgtcttcct 6660
ttgataatta tattgtatatt gtttcaata gcattgctaa atgtattaa attgtgcatt 6720
gtatgtgca atttggtaa gactattata gtactaccgt cacccatgc atatgatgcc 6780
tataagacct ttatgcaaaac caaggcataat aatcccgaacg aagcattttt ggttgaact 6840
aaacaaaatg aagtacattt tgctaatact cgccgtcata attgcatgcg ttatggta 6900
acgctactgt gccatgcaag acagttgtt gcagttgtatt aatggcacaattcaagat 6960
tcaaaccctgc ttgaacgtg gtgatctt ttggcatctt gctaactggg aactcagctg 7020
gtctgtataa ttgattgtt ttataacagt gttacaatat ggcagaccac aatttagctg 7080
gctcgtttat ggcattaaaaa tgctgtatcat gtggctattt tggctattt ttctagcgct 7140
tacgattttt aatgcataact ctgagttacca agtttccaga tatgtatgt tcggctttag 7200
tggtgcaggt gcagttgtaa cggttgcact ttggatgtt tattttgtga gatctgttca 7260
gctatataga agaaccataat catggggc tttaatctt gagactaatg caattcttg 7320
tgtaatgca ttggtagaa gttatgtgtt ccccttagat ggtactccta cagggttac 7380
ccttaactcta ctttcaggaa atcttatatgc tgaaggttt aaaaatggctg gtggtttaac 7440
catcgagcat ttgcctaaat acgtcatgtat tgctacacact agtagaacca tcgtttatac 7500
attagtggaa aaacaattaa aagcaactac tgccacagga tgggttact acgtaaaatc 7560
taaagctggt gattactcaa cagaagcacg tactgacaat ttgagtgaac atgaaaatt 7620
attacatatg gttaactaa acttcaaat gcccacacag ggacaacgcg tcaactggg 7680
agatgaacact tccaaaagac gtggcgttca taactctcg ggtcggaaaga ataatgat 7740
acctttgtca ttctacaacc ccattaccct cgaacaaggaa tctaaatttt ggaattttag 7800
tccgagagac ctgttccccca aaggaatagg taataaggat caacaaattt gttattggaa 7860
tagacagatt cggtatcgta ttgtaaaagg ccagcgtaa gaactcgctg agaggtgg 7920
cttttacttc ttaggtacag gacctcatgc tgatgtttaa ttcaagaca agattgtatgg 7980
agtctctgg gtgcaggg atggccat gaacaagccc acaacgcctg gcactcggtt 8040
aaccaataac gaatccaaac cactgagatt tgatggtaag ataccgcac agtttcaagct 8100
tgaagtgaac cggtcttaga acaattcaag gtctggttct cagtttagat ctgttcaag 8160
aaacagatct caatcttaga gaagacacca ttccaataac cagaataata atgttgagga 8220
tacaattgtt gccgtgtttt aaaaattagg tgttactgac aaacaaaggat cacgttctaa 8280
accttagagaa cgtagtgatt ccaaaacctag ggacacacaaca cctaagaatg ccaacaacaa 8340
cacctggaaag aaaactgcag gcaaggggaga tttgacact ttctatggt cttagaagtag 8400
ttcagctaac ttgggtata gtgatctgt tgccaaatgtt aacgcgttca aatgctaccc 8460
tcagatagct gaatgtgtt catcagtgtc tagcataatc tttggcagtc aatggtotgc 8520
tgaagaagct ggtgatcaag tgaaagtca gtcactcac accactacc tgccaaagga 8580
tgatgccaaa actagtcaat tcctagaaca gattgacgct tacaagcgac cttctgaagt 8640
ggctaaaggat cagaggcaaa gaagatccccg ttctaaatgtt gctgataaga agcctgagga 8700
gttgcgtttaa actcttgcg aggcatcac agatgtgtt gatgacacac aggttggat 8760
gattgtatgg gttacgaact aaacgcattgc tcgtttcgat ccatgctgtt ctgttacag 8820
ctttatctt actactaatt ggttagatcc aattactaga aagggttta ctcagtcattc 8880
tgcttaatct tacaacagtc agtaatgttt taggtgtgcc tgacagtagt ctgcgtgtaa 8940
attgtttgca gctttgaaa ccagactgccc ttgatctttaa tatcttacat aaagttttag 9000
cagaaaccag gttacttagta gtagtactgc gatgtatctt tctagttctt ctagggtttt 9060
cctgctatac attgttgggt gcattttt aacatcatga ttgttgaat cttgtgtgt 9120
atcttttgg ctaatggaaat taaagctact gctgtgcataa atgaccttca tgaacatccc 9180
gttcttacact gggattttt acagcatttc ataggacata ccctctacat tacaacacac 9240
caggtcttag cactaccgcgt tggatctgtt gttgatgttgg agggatcga aggttcaat 9300

tgcacatggc ctggcttca agatcctgca catgatcata ttgatttcta ctttgatctt 9360
 tctaattcatt tctattcatt tgttagataat ttttatattg taagtggagg aaatcaaaga 9420
 atcaatctca gattgggttgg tgctgtgccaa aacaaaaga gattaaatgt tggttgtcat 9480
 acatcatttgc ctgttgatct tccattttggg attcagatat accatgacag ggattttcaa 9540
 cacccctgttgc atggcagaca tctagattgt actcacagag tgactttgt gaagtactgt 9600
 ccacataacc tgcatggta ttgcttaat gagaggctga aagtttatga cttgaagcaa 9660
 ttcagaagca agaaggcttgc cgacaaaaatc aaccaacatc ataaaaactga gttataaggc 9720
 aaccgcgtgt ctaaaactgg tcttccgag gaattacggg tcacatcgct gcctactctt 9780
 gtacagaatg gtaaggcacgt gtaataggag gtacaagcaa ccctattgca tattaggaag 9840
 ttttagatttgc atttggcaat gctagatttgc gtaatttgc aagttttaaa gatccgctat 9900
 gacgagccaa caatggaaaga gctaacgtct ggatcttagt attgtttaaa atgtaaaatt 9960
 gtttggaaat ttcccttttgc atagtgatac aaaaaaaaaaaa aaaaaaaagcg gccgcaaaat 10020
 tcttgaagac gaaaggccct cgtgatacgc ctatTTTAT aggttaatgt catgataata 10080
 atggtttctt agacgtcagg tggcactttt cggggaaatg tgccgcggac ccctatttgc 10140
 ttatTTTCTT aaatacattc aaatatgtat ccgcctcatgc gacaataacc ctgataaaatg 10200
 cttaataat attgaaaaag gaagagtatg agtattcaac atttccgtgt cgcccttatt 10260
 ccctttttgc cggcattttgc cttccctgtt tttgctcacc cagaaacgc ggtgaaagta 10320
 aaagatgctg aagatcagg tggtgcacga gtgggttaca tgcactggc tctcaacagc 10380
 ggtaagatcc ttgagatgtt tcgccccgaa gaacgtttc caatgatgag cacttttaaa 10440
 gttctgctat gtggcgcggc attatcccgt gttgacgcgc ggcaagagca actcgctcgc 10500
 cgcatacact attctcagaa tgacttgggtt gacttgcac cagtcacaga aaagcatctt 10560
 acggatggca tgacagtaag agaattatgc agtgcgtccca taaccatgag tgataaacact 10620
 gcgcccaact tacttctgac aacgatcgga ggaccgaagg agctaaccgc tttttgcac 10680
 aacatggggg atcatgtaac tcgccttgat cggtggaaac cggagctgaa tgaagccata 10740
 ccaaaccgacg agcgtgacac cagcatgcct gcagcaatgg caacaacgtt gcgcaaaacta 10800
 ttaactggcg aactacttac tctagcttcc cggcaacaat taatagactg gatggaggcg 10860
 gataaagttg caggaccact tctgcgtcg gcccTTCCGG ctggctgggtt tattgctgat 10920
 aaatctggag cgggtgagcg tgggtctcgc ggtatcatttgc cagcactggg gccagatgg 10980
 aagccctccc gtatcgtatg tatctacacg acggggagtc aggcaactat ggatgaacga 11040
 aatagacaga tcgctgagat aggtgcctca ctgattaagc attggtaact gtcagaccaa 11100
 gtttactcat atatacttgc gattgatttgc aaacttcattttaaattttaa aaggatctag 11160
 gtgaagatcc ttttgataa tctcatgacc aaaatccctt aacgtgatgtt ttcgttccac 11220
 tgagcgtcag accccgtaga aaagatcaaa ggatcttgc gatgtccctt ttttctgcgc 11280
 gtaatctgct gcttgcaaaac aaaaaaaaaacc ccgctaccag cggtggttttgc tttgcggat 11340
 caagagctac caactctttt tccgaaggta actggcttca gcagagcgc gataccaaat 11400
 actgtccttc tagttagtgc gtagtttagc caccacttca agaactctgt agcaccgcct 11460
 acatacctcg ctctgctaatttgc cctgttacca gtggctgtcg ccagtggcga taagtctgt 11520
 ctaccgggt tggactcaag acgatagtttgc cggataagg cgcagcggc gggctgaacg 11580
 ggggttcgt gcacacagcc cagctggag cgaacgacct acaccgaact gagataccata 11640
 cagcgtgagc tatgagaaag cggccacgtt cccgaaggaa gaaaggcggc caggtatccg 11700
 gtaagcggca gggtcggaaac aggagagcgc acgagggagc ttccagggggaaacgcctgg 11760
 tatctttata gtcctgtcg gtttgcaccatctgcacttgc agcgtcgatt tttgtgatgc 11820
 tcgtcagggg ggcggagcct atggaaaaac gcccggcaacg cggccttttgc acggttcctg 11880
 gccttttgc ggccttttgc tcacatgttc tttcctgtgt tatccccgtt ttctgtggat 11940
 aaccgttata cccgccttgc gtcgtatgttgc accgctcgcc gcagccgaac gaccgagcgc 12000
 agcgagtcag tgagcggagga agcggaaagag cgcctgtatgc ggtatTTTGT ccttaacgc 12060
 ctgtcggta tttcacacccg catatggtgc actctcgtatgc caatctgctc tgatgccgca 12120
 tagttaaagcc agtatacact cccgccttgc tacgtactg ggtatgttgc ggcggccgac 12180
 acccgccaac acccgctgac gcccggcgttgc gggcttgcgtt gctccggca tccgottaca 12240
 gacaagctgt gaccgtctcc gggagctgca tgcgtcagag gtttgcaccg tcacatcgat 12300
 aacgcgcgag gcagctgcgg taaagctcat cagcgtggcgt gtgaagcgtat tcacagatgt 12360
 ctgcctgttc atccgcgtcc agctcggttgc gtttctccat aacgcgttacat gtctggcttc 12420
 tgataaagcg ggcgtatgttgc gggcggtttt tttcctgtttt ggtactgtat gcctccgtgt 12480
 aagggggatt tctgttcatg ggggtaatga taccgtatgc acgagagagg atgctcacga 12540
 tacgggttac tgatgtatgc catgccccgt tactggaaacg ttgtgagggtt aaacaactgg 12600
 cggatggat gcccgggac cagaaaaaa tcactcagggg tcaatgccag cgcttcgttgc 12660
 atacagatgt aggtgttca cagggtatgc agcagcatcc tgcgatgcag atccggaaaca 12720

taatggtgca	gggcgctgac	ttccgcgtt	ccagacttta	cgaaaacacgg	aaaccgaaga	12780
ccattcatgt	tgttgcgtcg	gtcgcagacg	tttgcagca	gcagtcgtt	cacgttcgtct	12840
cgcgtatcg	tgattcattc	tgctaaccag	taaggcaacc	ccgcccagcct	agccgggtcc	12900
tcaacgacag	gagcacgatc	atgcgcaccc	gtggccagga	cccaaagctg	ccc gagatgc	12960
gccgcgtgcg	gctgctggag	atggcggacg	cgatggatat	gttctgccaa	gggttggttt	13020
gcmcattcac	agttctccgc	aagaattgat	tggctccaat	tcttggagtg	gtgaatccgt	13080
tagcgaggtg	ccgcccggctt	ccattcaggt	cgaggtggcc	cggctccatg	caccgcgacg	13140
caacgcgggg	aggcagacaa	ggtatagggc	ggcgcctaca	atccatgcca	acccgttcca	13200
tgtgctcgcc	gaggcggcat	aaatcgccgt	gacgatcagc	gttccagtga	tcgaagttag	13260
gctggtaaga	gccgcgagcg	atccttgaag	ctgtccctga	tggtcgtcat	ctacctgcct	13320
ggacagcatg	gcctgcaacg	cgggcatccc	gatgccgccc	gaagcgagaa	aatcataat	13380
ggggaaaggcc	atccagcctc	gcgtcgcgaa	cgccagcaag	acgtagccca	gcgcgtcgcc	13440
cgccatgccc	gcgataatgg	cctgcttctc	ggcggaaacgt	ttgggtggcgg	gaccagtgac	13500
gaaggcttga	gcgagggcgt	gcaagattcc	gaataccgca	agcgacaggc	cgatcatcgt	13560
cgcgctccag	cgaaaagcggt	cctcggcgaa	aatgacccag	agcgctgccc	gcacctgtcc	13620
tacgagttgc	atgataaaaga	agacagtcat	aagtgcggcg	acgatagtca	tgccccgcgc	13680
ccaccggaaag	gagctgactg	ggttgaaggc	tctcaagggc	atcggtcgac	gctctccctt	13740
atgcgactcc	tgcat tagga	agcagccag	tagtaggtt	aggccgttga	gcaccgcgc	13800
cgcaaggaaat	ggtgcattgca	aggagatggc	gccccaaacagt	ccccccggcca	cgggggctgc	13860
caccatacc	acgcccggaaac	aagcgctcat	gagcccgaaag	tggcgagccc	gatcttcccc	13920
atcggtgtat	tccggcgat	aggcgccagc	aaccgcac	gtggcgccgg	tgatgcccggc	13980
cacgatgcgt	ccggcgtaga	ggatccacag	gacgggtgt	gtcgccatga	tcgcgtagtc	14040
gatagtggct	ccaagtagcg	aagcgagcag	gactggccgg	cgcccaaagc	ggtcggacag	14100
tgctccgaga	acgggtgcgc	atagaattt	catcaacgca	tatagcgcta	gcagcacgccc	14160
atagtgtact	cgatgtgt	cggaatggac	gatccg			14196

```
<210> 80
<211> 13817
<212> DNA
<213> Artificial Sequence
```

<220>
<223> Description of Artificial Sequence: sequence of
plasmid pBRDI2

<400> 80
ctcgagtcga aattaatacg actcactata gggttttaa agtaaagtga gtgttagcgtg 60
gctataactc ttctttact ttaactagcc ttgtgctaga tttgtcttcg gacaccaact 120
cgaactaaac gaaatatttg tctcttatg aaaccataga agacaagcgt tgattatttc 180
accagtttgg caatcactcc taggaacggg gttgagagaa cggcgcacca gggttccgtc 240
cctgttttgtt aagtgcgtcta gtattagctg cggcggttcc gcccgtcgta gttgggtaga 300
ccgggttcccg tcctgtgatc tccctcgccg gcccgcagga gaatgagttc caaacaaattt 360
aagatcctcg ttaatgagga ctaccaagtc aacgttccca gccttcctt ccgtgacgca 420
ctgcagaaaa ttaagtactg ctaccgtAAC gtttttgatg gctatgtctt cgtgcctgaa 480
taccgtcgtg acctagttga ttgcaatcgt aaggatcaact acgtcattgg tttttgggt 540
aacggaaataa gtgatcttaa acctgttctc cttaccgaac cttccgtcat gttgcagggt 600
ttcattgtta gagccaaactg caatggcggtt cttgaggact ttgaccttaa attcgcccg 660
actggaaacg gcgccatata tgtggaccaa tacatgtgtg gtgctgatgg aaagccagtt 720
attgaagggtg agctctggac tgtgtttgt acaagtgtta atacgtcatc atcagaaggt 780
tttctgattt gtattaacta cttaggacca tactgtgaca aagaatagt agatggaaat 840
ataatgcattt ccaatttatat attttggaga aactctacaa ttatggctct atcacataac 900
tcagtcctag acactccaaa attaagtgc cggtgtaaaca atgcacttat tgtaattta 960
aaagaaaaaaag aattgaatga aatggcggtt ggattactaa ggaagggtaa gttactcatt 1020
agaaataatg gcaagctact aaactttgggt aatcatatttgc ttaatgtgcc atgctgttcg 1080
tggttatttctt attttggcc tcttgggtttag ggtatattgg tgattttttaga tgatccagc 1140
ttgtgaatttcc aacgggtgtc aatgttagtgc ctccaagcat tagcactgag accgttgaag 1200

tttcacaagg cctgggaca tattatgtgt tagatcgagt ttattnaat gccacattat 1260
 tgcttactgg ttactacccg gtcgatggtt ctaagtttag aaacctcgct cttagggaa 1320
 ctaactcagt tagcttgctg tggttcaac caccctattt aaatcagtt aatgatggca 1380
 tatttgcga ggtcagaac cttaaagacaa gtacgccatc aggtgcaact gcatatttc 1440
 ctactatagt tataggtagt ttgttggct atacttecta taccegttcta atagagccat 1500
 ataatgggtgt tataatggcc tcagtgtgcc agtataccat ttgtcagtt ccttacactg 1560
 attgttaagcc taacactaat ggtaataagc ttatagggtt ttggcacacg gatgtaaaac 1620
 ccccaatttg tgtgttaaag cgaaaatttca cgcttaatgt taatgctgat gcattttatt 1680
 ttcatttttccaacatgggt ggtactttt atgcgtacta tgccgataaa ccctccgcta 1740
 ctacgtttt gtttagtcta tatattggcg atattnaac acagtattat gtgttacatt 1800
 tcatctgcaa cccaaacagct ggttagcactt ttgctccgctt ctattgggtt acaccccttgg 1860
 ttaagcgcca atatttgcattt aatttcaacc agaagggtgt cattactagt gctgttgatt 1920
 gtgttagtagt ttataccagt gaaataaaaat gtaagaccca gagcatgtt cctagcactg 1980
 gtgtctatga gttatccggt tatacggtcc aaccagttgg agttgtatac cggcgtgtt 2040
 ctaacctccc agcttgtaat atagaggagt ggcttactgc taggtcagtc ccctccccctc 2100
 tcaactggga gcgtaaagact tttcagaatt gtaattttaa tttaaagcagc ctgttacgtt 2160
 atgttcaggc tgagagttt ttttgcataa atatcgatgc ttccaaagtg tatggcaggt 2220
 gctttggtag tatttcagtt gataagttt ctgtaccccg aagttaggcaa gttgatttac 2280
 agcttggtaa ctctggattt ctgcagactg ctaattataa gattgataca gctgccactt 2340
 cgtgtcagct gcattacacc ttgcctaaga ataatgtcac cataaacaac cataacccct 2400
 cgtcttggaa taggaggtat ggctttaatg atgctggcgt ctttggcaaa aaccaacatg 2460
 acgttgttta cgctcagcaa tgtttactg taagatctag ttattgcccgt tgcgtcaac 2520
 cggacatagt tagcccttgc actactcaga ctaaggctaa gtctgctttt gttaatgtgg 2580
 gtgaccattt gtaaggctt ggtgttttag aagataattt tggcaatgtt gatccacata 2640
 agggttgtat ctgtgccaac aattcatttta ttggatggtc acatgatacc tgccttgc 2700
 atgatcgctg ccaaattttt gctaataat tttttttttt gattaatagt ggtaccacat 2760
 gttccacaga ttgcagttt cctaataactg aagtggtttac tggcattttt gttttttttt 2820
 acctctacgg tattactggc caagggtttt ttaaagaggt taaggctgac tattataata 2880
 gctggcaaac cttctgtat gatgttaatg gtaattttttt gttttttcgat gatcttacca 2940
 ctaacaagac ttatacgata agggactgtt atagtggccg ttgttctgtt gcatatttata 3000
 aagatgcacc cgaaccggct ctgtcttatac gtaatataaa ttgttagctat gttttttttt 3060
 ataataatttcccg tggaggag aacccttta attacttttta tagttttttt gttttttttt 3120
 ttaatgctga taaccgcacg gatgaggcgc ttcttaattt gatctccgtt atgggtgtt 3180
 gcttatgcgt tgatttttca aaatcacgcg gggctcaccg atcagtttctt actggcttac 3240
 ggttaactac atttgagcca tacactccga tgtagttttt gatgtgttcaatccgtt 3300
 atggattata tgagatgcaaa ataccaacca attttactat tggcaccat gaggagttca 3360
 ttcaaaacttag atctccaaag gtgactatag attgtgttgc attttttttt ggtgataaca 3420
 ctgcattgcag gcagcagttt gtttagtgc gctctttctt gttttttttt gttttttttt 3480
 ttaatgaggt taataacccctt ttggataata tgcacttaca agttgttgc gatattttttt 3540
 aggggtttac tataagctcg agactgccag acggcatctc agggccctata gatgacattt 3600
 atttttttttccctacttttgcg tgcataagggtt caacatgtgc tgaagacggc aatggaccta 3660
 gtgcaatccg agggcgttctt gctatagagg attttttttt tgacaagggtt aaattttttt 3720
 atgttggctt tgtcaggct tataataattt gcaagggtt gcaagggtt cgtgacccctt 3780
 ttttttttttcaat ggcataaaat gttttttttt tttttttttt gttttttttt gttttttttt 3840
 tctctggctt cacaaccggc gctactgcgg cagctatgtt cccaccgtgg tcagcagctg 3900
 ccgggtgttcc atttttttttcaat gttttttttt gttttttttt gttttttttt gttttttttt 3960
 atgtgttttttgcg tgagaaccaa aagatgattt ctgtgtttt taacaatgcg ctgggtgtt 4020
 tccaggatgg gtttttttttcaat accaattctt cttttttttt gatccaggctt gttttttttt 4080
 caaatgctga agcactcaat aacttactaa atcagcttcc taacagggtt ggtgttattt 4140
 gtgttttttttccctacttttcaat gttttttttt gttttttttt gttttttttt gttttttttt 4200
 atcgctttttaat gtttttttttcaat tttttttttt gttttttttt gttttttttt gttttttttt 4260
 atagatcgct tatttttttttcaat agtgcgttcc agggccataga aaaggtcaat gatgtgtt 4320
 agagccaaac cacgcgttcc atttttttttcaat gttttttttt gttttttttt gttttttttt 4380
 agaatgcttcc ttatggcttta ttttttttttcaat acttcagctt tttttttttt gttttttttt 4440
 cccggaaatgtt gatgtgttcc ttgttgcattt ctgggtatag aggatttagca cctaaagctg 4500
 gatatttttttcaat gtttttttttcaat gttttttttt gttttttttt gttttttttt gttttttttt 4560
 aaccatttttttcaat agataaaaac agtgcattt gttttttttt gttttttttt gttttttttt 4620

cacctgaagt tttcttgaac acttcaatac ctaatccacc cgactttaag gaggagttag 4680
ataaatgggt taagaatcg acgtctattg cgcctgattt atctctcgat ttcgagaagt 4740
taaatgttac ttgctggac ctgacgtatg agatgaacag gattcaggat gcaattaaga 4800
agttaaatga gagctacatc aacctaagg aagttggcac atatgaaatg tatgtaaaat 4860
ggccttgta ttgtggcta ctgatagggt tagtagtagt attttgcata ccattactgc 4920
tattttgctg ttttagcaca ggttggcgt gatgcatagg ttgttttagga agttgttgc 4980
actctatag tagtagaaga caatttggaa attatgaacc aattgaaaaaa gtgcgtgtcc 5040
actaaattt aagttaaagga tggtaataa attcctaagg aactaaactt attagtctt 5100
acaggtctt gatggacatt gtcaaatac ttgacatatt cgtagacgt gtacttgacg 5160
aacttgaccg tgcatactt gctgttaactc ttaaagtata attaagact ggtaaactac 5220
ttgtgtgtat aggtttggt gacacacttc ttgaggctaa ggacaaagcg tatgctaagc 5280
ttggtctctc ctttattgaa gaagtcaata gtcatacagt tgtagtat tactgtttac 5340
aagttaaag ccaaattttg gtataaacta cctttgaaa ctagactttg tatcattaaa 5400
cacacaagac ccaaagcatt aagtgttaca aaacaagtaa agagagatta tagaaaaatt 5460
gccattctaa attccatgct aaaaatgattt gttggacttt tcttaacact cttagttt 5520
taatttggtag taaccatgtt attttaata acacagcaaa tggcataact acacaacatg 5580
aaaatgttat agtacaacag cattagttt tagtgctgt aacacaaaat tattacccag 5640
agttcagcat cgctgtactc tttgtatcat tttggctt gtaccgtgt acaaacttta 5700
agacgtgtgt cggcatctt atgtaaga ttgtatcaat gacacttgc gggcctatgc 5760
ttatagcata tggtaactac attgatggca ttgttacaat aactgtctt gctttaagat 5820
ttttctactt agcatactt tggtagtta atagtaggtc cgaattttt ttatacaata 5880
caacgacact catgtttgtt catggcagag ctgcaccgtt tatgagaagt tctcacagct 5940
ctatttatgt cacattgtt ggtggcataa attataatgtt tggtaatgac ctcacgttgc 6000
attttgtaga ccctatgctt gtaagaatag caatacgtgg cttagctcat gctgatctaa 6060
ctgttttagt agcagttgaa ctctcaatg gtgattttat atatgttatt tcacaggagc 6120
ccgtagccgg tggtaataat gcagcctt ctcaggcgtt tctaaacgaa attgacttaa 6180
aagaagaaga agaagaccat aactatgacg ttcccttaggg catttactat catagatgac 6240
catggcatgg tggtagcgt cttcttctgg ctcctgttga taatttatatt gatattgtt 6300
tcaatagcat tgctaaatgt tattaaattt tgcattgtt gttgcaattt ggtaagact 6360
attatagtac tacctgcacg ccatgcataat gatgcctata agacctttt gcaaaaccaag 6420
gcatataatc ccgacgaagc attttgggtt tgaactaaac aaaatgaagt acattttgct 6480
aatactcgcg tgcataattt catgcgttta tggtaaacgc tactgtgcca tgcaagacag 6540
tggcttgcag tggtaatgt gcacaaattt aagatgtcaa acctgtttt aacgtgggtga 6600
tcttattttgg catcttgcta actggaaactt cagctggctt gtaatattga ttgttttat 6660
aacagtgtt caatatggca gaccacaatt tagctggctc gtttatggca taaaatgtt 6720
gatcatgtgg ctattatggc ctattgttct agcgcttacg atttttaatg catactctga 6780
gtaccaagtt tccagatatg taatgttgcg cttagtgcattt gcaaggcgtt ttgttaacgtt 6840
tgcaacttgg atgatgtatt ttgttagatc tggtaagatc tatagaagaaa ccaaatacatg 6900
gtggctttt aatcctgaga ctaatgcattt tctttgtttt aatgcattgg gtagaaagtt 6960
tgccttccc ttagatggta ctccctacagg tggtaaccctt actctacttt cagaaatct 7020
atatgctgaa ggtttcaaaa tggctgggg tttaccatc gacatttgc ctaataatgt 7080
catgattgtt acaccttagta gaaccatcgt ttatacatta gttggaaaac aattaaaagc 7140
aactactgcc acaggatggg cttactacgt aaaatctaa gctgggtattt actcaacaga 7200
agcacgtact gacaatttga gtgaacatga aaaatttata catatgggtt aactaaactt 7260
tcaaatggcc acacaggggac aacgcgtcaa ctggggagat gaaaccttcca aaagacgtgg 7320
tcgttctaac tctcggtt ggaagaataa tgatatactt ttgtcattttt acaacccat 7380
taccctcgaa caaggatcta aattttggaa ttatgtccg agagacctt gttccaaagg 7440
aataggtat aaggatcaac aaattgggtt ttgaaataga cagattcggtt atcgattttgt 7500
aaaaggccag cgtaaggaac tcgctgagag gtggttctt tacttcttag gtacaggacc 7560
tcgtgctgat gctaaattca aagacaagat tgatggagtc ttctgggtt caaggatgg 7620
tgccatgaac aagcccacaa cgcttggcac tcgtggacc aataacgaat ccaaaccact 7680
gagatttgcgtt ggtaaagatac cgccacagtt tcagttgaa gtgaaccgtt ctaggaacaa 7740
ttcaagggtct ggttctcgtt cttagatctgt ttcaagaaac agatctcaat ctagaggaag 7800
acaccattcc aataaccaga ataataatgt tgaggataca attgttagccg tgcttggaaa 7860
attaggtgtt actgacaaaac aaaggtcagc ttctaaacct agagaacgtt gtgattccaa 7920
accttagggac acaacaccta agaatacgccaa caaacacacc tggaaagaaaa ctgcaggccaa 7980
gggagatgtt acaacttttct atggtagtca aagtagttca gctaactttt gtgatagtga 8040

tctcggtgcc aatggtaacg ctgc当地atg ctaccctcag atagctgaat gtgtccatc 8100
 agtgtctagc ataatcttg gcagtcaatg gtctgtgaa gaagctggg atcaagtgaa 8160
 agtcacgctc actcacaccc actacatgcc aaaggatgt gccaacta gtcaattcct 8220
 agaacagatt gacgcttaca agcgaccc tcgatgtggg aaggatcaga ggcaaagaag 8280
 atcccgttct aagtctgtg ataagaagcc tgaggatgg tctgtactc ttgtggaggc 8340
 atacacagat gtgttgatg acacacaggt tgagatgatt gatgaggta cgaactaaac 8400
 gcatgctcg tttcgccat gctgtactt taacagctt aatcttacta ctaattggta 8460
 gaatccaatt actagaaagg ttgttactca gtcatctgct taatcttaca acagttagt 8520
 atgttttagg tgcgttgc acgtgtctgc gtgtaaattt ttgcagctt ttgaaaccag 8580
 actgccttga ttttaatatc ttacataaaag ttttagcaga aaccaggta ctatgttag 8640
 tactgcagt gatcttctt gttttcttag gttttcttgc ctatacattt ttgggtgc 8700
 tatttttaca tcatgattt tttatgttgc ttgtgtatct ttttggctaa tggattaaa 8760
 gctactgctg tgcaaaatga ctttcatgaa catcccggtt ttacctggg tttattacag 8820
 catttcatag gacataccct ctacattaca acacaccagg tcttagcact accgcttgg 8880
 tctcggttg agtgtgaggg ttttgcgttgc ttcaatttgc catggcctgg ctttcaagat 8940
 cctgcacatg atcatatttgc ttcttactt gatcttcttgc atccttcttgc ttcatgtt 9000
 gataatttt atattgttgc tgaggaaat caaagaatca atctcagatt gttttgttgc 9060
 gtgc当地aaac aaaagagatt aaatgttgc tgcatatcat catttgcgtt tgatcttcca 9120
 tttggatttcc agatataccca tgacaggat ttcaacacc ctgttgcgtt cagacatcta 9180
 gattgtactc acagagtgtt ctttgcgttgc tactgtccac ataaccttgc tggattttgc 9240
 tttaatgaga ggctgaaatg ttatgtacttgc aagcaatttgc gaagcaagaa ggtcttcgac 9300
 aaaatcaacc aacatcataa aactgagtttgc taaggcaacc cgtatgtctt aactgttctt 9360
 tccgaggaat tacgggtcat cgcgctgcct actcttgcgttgc agaatggtaa gcacgtgtt 9420
 taggaggtac aagcaaccctt atttgcatttgc aggaagtttgc gattttgttgc ggcaatgtt 9480
 gatttagtta tttagagaag tttaaagatc cgctatgttgc agccaacaat ggaagagctt 9540
 acgtctggat ctatgttgc tttaaatttttgc gaaaatttttgc cttttgttgc 9600
 tgatacaataaaaaaa aaaaagggccggc caaaatttttgc gaagacgaaa gggcctcgtt 9660
 atacgcctat tttaatgttgc taatgttgcata gataataatgg ttcttgcgttgc gtcaggtggc 9720
 acttttgcgg gaaatgttgc cggaaccctt atttgcatttgc tttaatgttgc acattcaat 9780
 atgtatccgc tcatgagaca ataacccttgc taaatgttgc aataatatttgc aaaaagggaa 9840
 agttagtgc ttcaacatttgc ccgttgcgttgc tttaatgttgc tttaatgttgc 9900
 ccttttttgc ctcacccaga aacgctggatg aaagtttttgc atgcttgcgttgc tcaatgttgc 9960
 gcacgagtttgc ttacatgttgc actggatcttgc aacagcggttgc agatccttgc gagtttttgc 10020
 cccgaagaac gttttccat gatgagact tttaaatttttgc tgctatgttgc cgcgttgc 10080
 tcccggttgc acggccggca agagcaacttgc ggtcgccgc tacactatttgc tcagaatgtt 10140
 ttgggttgcgtt actcaccatgc cacagaaaatg catcttgcgttgc atggcatgttgc agtaagagaa 10200
 ttatgttgcgtt ctgc当地aaac catgatgttgc aacactgttgc ccaacttact tctgacaacg 10260
 atcggaggac cgaaggagacttgc aaccgttttgc ttgcacaaca tggggatgttgc tgtaactcgc 10320
 cttgatgttgc gggaaaccggca gcttgcgttgc gtttttttgc gtttttttgc tgacaccacg 10380
 atgccttgcgtt caatggcaac aacgttgcgttgc aaactattaa ctggcgttgc acttacttgc 10440
 gcttccggc aacaattaaat agactggatg gaggcggttgc aagtttgcgttgc accacttcttgc 10500
 cgctcgcccccc ttccgggttgc ctgggttgc ttccgggttgc gtttttttgc ctggagccggc tgaggttgc 10560
 tctcggttgc ttccgggttgc actggggccatgc gatgttgcgttgc ctttttttgc ctttttttgc 10620
 tacacgacgg ggagtcaggc aactatgttgc gtttttttgc gtttttttgc tgatgttgc 10680
 gccttgcgtt ttaaggatgttgc gtttttttgc gtttttttgc gtttttttgc tgatgttgc 10740
 gatttttttgc ttccgggttgc attttttttgc gtttttttgc gtttttttgc tgatgttgc 10800
 atgaccaaaa tcccttgcgttgc tgatgttgc ttccgggttgc gtttttttgc gtttttttgc 10860
 atcaaaggat ttccgggttgc ttccgggttgc gtttttttgc gtttttttgc gtttttttgc 10920
 aaaccaccgc taccagcggttgc gtttttttgc gtttttttgc gtttttttgc tgatgttgc 10980
 aaggtaacttgc gcttgcgttgc agcgccgttgc cccaaatacttgc tccttgcgttgc gtagccgttgc 11040
 ttagggccacc acttgcgttgc ctcttgcgttgc cccaaatacttgc tccttgcgttgc gtagccgttgc 11100
 ttaccaggat ttccgggttgc gtttttttgc gtttttttgc gtttttttgc gtttttttgc 11160
 tagttaccgg ataaggccgttgc gtttttttgc gtttttttgc gtttttttgc tgatgttgc 11220
 ttggagcgaa cgacccatgc cgaactgttgc taccttgcgttgc gtttttttgc gtttttttgc 11280
 acgttcccg aaggggagaaa gggccgttgc tatccgggttgc gggccgttgc cggacacagg 11340
 gagcgacgc gggccgttgc agggggaaac gcttgcgttgc ttatgttgc ttttttttgc 11400
 cggccacccatgc gacttgcgttgc tgatgttgc cccaaatacttgc tccttgcgttgc gtagccgttgc 11460

aaaaacgcca gcaacgcggc cttttacgg ttcctggcct tttgctggcc tttgctcac 11520
atgttcttc ctgcgttata ccctgattct gtggataacc gtattaccgc ctttgagtga 11580
gctgataccg ctgcggcgag ccgaacgacc gagcgcagcg agtcagttag cgaggaagcg 11640
gaagagcgcc tgatgcggta ttttctccct acgcatactgt gcggtatttc acaccgcata 11700
tggtgactc tcagtacaat ctgctctgat gccgcatagt taagccagta tacactccgc 11760
tatcgctacg tgactgggtc atggctgcgc cccgacaccc gccaacaccc gctgacgcgc 11820
cctgacgggc ttgtctgctc ccggcatccg cttacagaca agctgtgacc gtctccggga 11880
gctgcatgtg tcagagggtt tcaccgtcat caccgaaaacg cgcgaggcgag ctgcggtaaa 11940
gctcatcagc gtggctgtga agcgattcac agatgtctgc ctgttcatcc gcgtccagct 12000
cggttagttt ctccagaagc gttaatgtct ggcttctgat aaagcgggcc atgttaaggg 12060
cggtttttc ctgtttggtc actgtatgcct ccgtgttaagg gggatttctg ttcatggggg 12120
taatgataacc gatgaaacga gagaggatgc tcacgatacg ggttactgtat gatgaacatg 12180
cccggttaact ggaacgttgc gagggttaaac aactggcggt atggatgcgg cgggaccaga 12240
gaaaaatcac tcagggtaaa tgccagcgct tcgttaatac agatgttaggt gttccacagg 12300
gtagccagca gcatcctgcg atgcagatcc ggaacataat ggtgcaggggc gctgacttcc 12360
gcgtttccag actttacgaa acacggaaac cgaagaccat tcatgttgc gctcaggctc 12420
cagacgtttt gcagcagcag tcgcttcacg ttgcgtcg tatcggtgat tcattctgct 12480
aaccagtaag gcaaccccgc cagcctagcc gggtcctcaa cgacaggagc acgatcatgc 12540
gcacccgtgg ccaggaccca acgctgccc agatgcgcgc cgtgcggctg ctggagatgg 12600
cggaacgcgat ggatatgttc tgccaaagggt tggtttgcgc attcacagtt ctccgcaaga 12660
attgattggc tccaattttt ggagtggta atccgttagc gaggtgcccgc cggcttccat 12720
tcaggtcgag gtggccccgc tccatgcacc ggcacgcaac gcggggaggc agacaaggta 12780
tagggcggcgc cctacaatcc atgccaaccc gttccatgtg ctcgcccagg cggcataaat 12840
cgccgtgacg atcagcggtc cagtgtatcga agttaggctg gtaagagccg cgagcgtatcc 12900
ttgaagctgt ccctgatggc cgtcatctac ctgcctggac agcatggcct gcaacgcggg 12960
catcccgatg ccggcggaaag cgagaagaat cataatgggg aaggccatcc agcctcgct 13020
cgcaacgcgc agcaagacgt agcccgacgc gtcggccgc atgcccgcga taatggctg 13080
cttctcgccg aaacgtttgg tggcgccgacc agtgacgaa gcttgagcga gggcgtgcaa 13140
gattccgaat accgcaagcg acaggccgat catcgatcg ctccagcgcgaa agcggtcctc 13200
gccaaaatg acccagagcg ctgcccgcac ctgtcctacg agttgcata gaaaggagc 13260
agtcataagt gcccgcacga tagtcatgcc ccgcggccac cggaaaggagc tgactgggtt 13320
gaaggctctc aagggcatcg gtcgacgctc tcccttatgc gactcctgca ttaggaagca 13380
gcccagtagt aggttggggc cgttgagcgc cggccgcgcgaa aggaatgggt catgcacagg 13440
gatggcgccc aacagtcccc cggccacggg gcctgccacc ataccacgc cgaaacaagc 13500
gctcatgagc ccgaagtggc gagccgcata tccccatcg gtatgtcgg cgatataaggc 13560
gccagcaacc gcacctgtgg cggccgtgat gcccggccacg atgcgtccgg cgtagaggat 13620
ccacaggacg ggtgtggcgc ccatgatcgc gtatgcata gtggctccaa gtagcgaagc 13680
gagcaggact gggcgccgc caaagcggtc ggacagtgc cccgagaacgg gtgcgcata 13740
aaattgcata aacgcata ggcgtacgac cacgcatacg tgactggcga tgctgtcgga 13800
atggacgatc cgctcga 13817