- 1 import pandas as pd
- 2 df = pd.read_csv('sample_data/dirty_data.csv')

1 df.head()

	date	station	PRCP	SNOW	SNWD	TMAX	TMIN	TOBS	WESF	inclement
0	2018-01- 01T00:00:00	?	0.0	0.0	-inf	5505.0	-40.0	NaN	NaN	
1	2018-01- 01T00:00:00	?	0.0	0.0	-inf	5505.0	-40.0	NaN	NaN	
2	2018-01- 01T00:00:00	?	0.0	0.0	-inf	5505.0	-40.0	NaN	NaN	
3	2018-01- 02T00:00:00	GHCND:USC00280907	0.0	0.0	-inf	-8.3	-16.1	-12.2	NaN	
4	2018-01- 03T00:00:00	GHCND:USC00280907	0.0	0.0	-inf	-4.4	-13.9	-13.3	NaN	

1 df.describe()

/usr/local/lib/python3.10/dist-packages/numpy/lib/function_base.py:4655: RuntimeWarning
 diff_b_a = subtract(b, a)

	PRCP	SNOW	SNWD	TMAX	TMIN	TOBS	WESF	
count	765.000000	577.000000	577.0	765.000000	765.000000	398.000000	11.000000	
mean	5.360392	4.202773	NaN	2649.175294	-15.914379	8.632161	16.290909	
std	10.002138	25.086077	NaN	2744.156281	24.242849	9.815054	9.489832	
min	0.000000	0.000000	-inf	-11.700000	-40.000000	-16.100000	1.800000	
25%	0.000000	0.000000	NaN	13.300000	-40.000000	0.150000	8.600000	
50%	0.000000	0.000000	NaN	32.800000	-11.100000	8.300000	19.300000	
75%	5.800000	0.000000	NaN	5505.000000	6.700000	18.300000	24.900000	
max	61.700000	229.000000	inf	5505.000000	23.900000	26.100000	28.700000	

1 df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 765 entries, 0 to 764
Data columns (total 10 columns):

Column Non-Null Count Dtype

```
765 non-null
                                         object
    0
        date
    1
       station
                         765 non-null object
                         765 non-null
                                         float64
    2
       PRCP
    3
       SNOW
                         577 non-null float64
    4
       SNWD
                         577 non-null float64
                         765 non-null float64
    5
       TMAX
                         765 non-null float64
    6
       TMIN
       TOBS
                          398 non-null float64
    7
    8
       WESF
                         11 non-null
                                      float64
    9
        inclement_weather 408 non-null object
   dtypes: float64(7), object(3)
   memory usage: 59.9+ KB
1 contain_nulls = df[
2 df.SNOW.isnull() | df.SNWD.isna()\
3 | pd.isnull(df.TOBS) | pd.isna(df.WESF)\
4 | df.inclement weather.isna()
5 ]
6 contain_nulls.shape[0]
   765
```

1 contain nulls.head(10)

	date	station	PRCP	SNOW	SNWD	TMAX	TMIN	TOBS	WESF	inclemen [.]
0	2018-01- 01T00:00:00	?	0.0	0.0	-inf	5505.0	-40.0	NaN	NaN	
1	2018-01- 01T00:00:00	?	0.0	0.0	-inf	5505.0	-40.0	NaN	NaN	
2	2018-01- 01T00:00:00	?	0.0	0.0	-inf	5505.0	-40.0	NaN	NaN	
3	2018-01- 02T00:00:00	GHCND:USC00280907	0.0	0.0	-inf	-8.3	-16.1	-12.2	NaN	
4	2018-01- 03T00:00:00	GHCND:USC00280907	0.0	0.0	-inf	-4.4	-13.9	-13.3	NaN	
5	2018-01- 03T00:00:00	GHCND:USC00280907	0.0	0.0	-inf	-4.4	-13.9	-13.3	NaN	
6	2018-01- 03T00:00:00	GHCND:USC00280907	0.0	0.0	-inf	-4.4	-13.9	-13.3	NaN	
7	2018-01- 04T00:00:00	?	20.6	229.0	inf	5505.0	-40.0	NaN	19.3	
8	2018-01- 04T00:00:00	?	20.6	229.0	inf	5505.0	-40.0	NaN	19.3	
9	2018-01- 05T00:00:00	?	0.3	NaN	NaN	5505.0	-40.0	NaN	NaN	

```
1 df[df.inclement_weather == 'NaN'].shape[0]
```

0

0

1 df[df.inclement_weather.isna()].shape[0]
2

357

1 df[df.SNWD.isin([-np.inf, np.inf])].shape[0]

¹ import numpy as np

² df[df.inclement_weather == np.nan].shape[0]

1 import numpy as np


```
2 def get_inf_count(df):
 """Find the number of inf/-inf values per column in the dataframe"""
4 return {
5 col : df[df[col].isin([np.inf, -np.inf])].shape[0] for col in df.columns
7 get_inf_count(df)
   {'date': 0,
     'station': 0,
     'PRCP': 0,
     'SNOW': 0,
     'SNWD': 577,
     'TMAX': 0,
     'TMIN': 0,
     'TOBS': 0,
     'WESF': 0,
     'inclement_weather': 0}
1 pd.DataFrame({
2 'np.inf Snow Depth': df[df.SNWD == np.inf].SNOW.describe(),
3 '-np.inf Snow Depth': df[df.SNWD == -np.inf].SNOW.describe()
4 }).T
```


1 df.describe(include='object')

	date	station	<pre>inclement_weather</pre>	
count	765	765	408	
unique	324	2	2	
top	2018-07-05T00:00:00	GHCND:USC00280907	False	
freq	8	398	384	

1 df[df.duplicated()].shape[0]

284

1 df[df.duplicated(keep=False)].shape[0]

482

1 df[df.duplicated(['date', 'station'])].shape[0]

284

1 df[df.duplicated()].head()

	date	station	PRCP	SNOW	SNWD	TMAX	TMIN	TOBS	WESF	inclemen [.]
1	2018-01- 01T00:00:00	?	0.0	0.0	-inf	5505.0	-40.0	NaN	NaN	
2	2018-01- 01T00:00:00	?	0.0	0.0	-inf	5505.0	-40.0	NaN	NaN	
5	2018-01- 03T00:00:00	GHCND:USC00280907	0.0	0.0	-inf	-4.4	-13.9	-13.3	NaN	
6	2018-01- 03T00:00:00	GHCND:USC00280907	0.0	0.0	-inf	-4.4	-13.9	-13.3	NaN	
8	2018-01- 04T00:00:00	?	20.6	229.0	inf	5505.0	-40.0	NaN	19.3	

1 df[df.WESF.notna()].station.unique()

array(['?'], dtype=object)

```
1 # save this information for later
 2 station_qm_wesf = df[df.station == '?'].WESF
 3 # sort ? to the bottom
 4 df.sort_values('station', ascending=False, inplace=True)
 5 # drop duplicates based on the date column keeping the first occurrence
 6 # which will be the valid station if it has data
 7 df_deduped = df.drop_duplicates('date').drop(
 8 # remove the station column because we are done with it
 9 # and WESF because we need to replace it later
10 columns=['station', 'WESF']
11 ).sort_values('date').assign( # sort by the date
12 # add back the WESF column which will be properly matched because of the index
13 WESF=station qm wesf
14 )
15 df deduped.shape
    (324, 9)
```

1 df_deduped.head()

	date	PRCP	SNOW	SNWD	TMAX	TMIN	TOBS	<pre>inclement_weather</pre>	WESF	===
0	2018-01- 01T00:00:00	0.0	0.0	-inf	5505.0	-40.0	NaN	NaN	NaN	11.
3	2018-01- 02T00:00:00	0.0	0.0	-inf	-8.3	-16.1	-12.2	False	NaN	
6	2018-01- 03T00:00:00	0.0	0.0	-inf	-4.4	-13.9	-13.3	False	NaN	
8	2018-01- 04T00:00:00	20.6	229.0	inf	5505.0	-40.0	NaN	True	19.3	
11	2018-01- 05T00:00:00	14.2	127.0	inf	-4.4	-13.9	-13.9	True	NaN	

```
1 df_deduped.dropna().shape
```

(0, 9)

1 df_deduped.dropna(how='all').shape

(324, 9)

```
1 df_deduped.dropna(
2 how='all', subset=['inclement_weather', 'SNOW', 'SNWD']
3 ).shape
```

(293, 9)

1 df_deduped.dropna(axis='columns', thresh=df_deduped.shape[0]*.75).columns

1 df_deduped.loc[:,'WESF'].fillna(0, inplace=True)

2 df_deduped.head()

	date	PRCP	SNOW	SNWD	TMAX	TMIN	TOBS	inclement_weather	WESF	
0	2018-01- 01T00:00:00	0.0	0.0	-inf	5505.0	-40.0	NaN	NaN	0.0	1
3	2018-01- 02T00:00:00	0.0	0.0	-inf	-8.3	-16.1	-12.2	False	0.0	
6	2018-01- 03T00:00:00	0.0	0.0	-inf	-4.4	-13.9	-13.3	False	0.0	
8	2018-01- 04T00:00:00	20.6	229.0	inf	5505.0	-40.0	NaN	True	19.3	
11	2018-01- 05T00:00:00	14.2	127.0	inf	-4.4	-13.9	-13.9	True	0.0	

¹ df_deduped.assign(

^{4).}head()

	date	PRCP	SNOW	SNWD	TMAX	TMIN	TOBS	<pre>inclement_weather</pre>	WESF	
0	2018-01- 01T00:00:00	0.0	0.0	-inf	NaN	NaN	NaN	NaN	0.0	11.
3	2018-01- 02T00:00:00	0.0	0.0	-inf	-8.3	-16.1	-12.2	False	0.0	
6	2018-01- 03T00:00:00	0.0	0.0	-inf	-4.4	-13.9	-13.3	False	0.0	
8	2018-01- 04T00:00:00	20.6	229.0	inf	-4.4	-13.9	NaN	True	19.3	
11	2018-01- 05T00:00:00	14.2	127.0	inf	-4.4	-13.9	-13.9	True	0.0	

² TMAX=lambda x: x.TMAX.replace(5505, np.nan).fillna(method='ffill'),

³ TMIN=lambda x: x.TMIN.replace(-40, np.nan).fillna(method='ffill')

- 1 df_deduped.assign(
- 2 SNWD=lambda x: np.nan_to_num(x.SNWD)
- 3).head()

	date	PRCP	SNOW	SNWD	TMAX	TMIN	TOBS	<pre>inclement_weather</pre>	WESF
0	2018-01- 01T00:00:00	0.0	0.0	-1.797693e+308	5505.0	-40.0	NaN	NaN	0.0
3	2018-01- 02T00:00:00	0.0	0.0	-1.797693e+308	-8.3	-16.1	-12.2	False	0.0
6	2018-01- 03T00:00:00	0.0	0.0	-1.797693e+308	-4.4	-13.9	-13.3	False	0.0
8	2018-01- 04T00:00:00	20.6	229.0	1.797693e+308	5505.0	-40.0	NaN	True	19.3
11	2018-01- 05T00:00:00	14.2	127.0	1.797693e+308	-4.4	-13.9	-13.9	True	0.0

7

	date	PRCP	SNOW	SNWD	TMAX	TMIN	TOBS	inclement_weather	WESF	
0	2018-01- 01T00:00:00	0.0	0.0	-inf	22.8	0.0	11.4	NaN	0.0	
3	2018-01- 02T00:00:00	0.0	0.0	-inf	-8.3	-16.1	-12.2	False	0.0	
6	2018-01- 03T00:00:00	0.0	0.0	-inf	-4.4	-13.9	-13.3	False	0.0	
8	2018-01- 04T00:00:00	20.6	229.0	inf	22.8	0.0	11.4	True	19.3	
11	2018-01- 05T00:00:00	14.2	127.0	inf	-4.4	-13.9	-13.9	True	0.0	

¹ df_deduped.assign(

² TMAX=lambda x: x.TMAX.replace(5505, np.nan).fillna(x.TMAX.median()),

³ TMIN=lambda x: x.TMIN.replace(-40, np.nan).fillna(x.TMIN.median()),

^{4 #} average of TMAX and TMIN

⁵ TOBS=lambda x: x.TOBS.fillna((x.TMAX + x.TMIN) / 2)

^{6).}head()

- 1 df deduped.assign(
- 2 # make TMAX and TMIN NaN where appropriate
- 3 TMAX=lambda x: x.TMAX.replace(5505, np.nan),
- 4 TMIN=lambda x: x.TMIN.replace(-40, np.nan)
- 5).set index('date').apply(
- 6 # rolling calculations will be covered in chapter 4, this is a rolling 7 day median
- 7 # we set min_periods (# of periods required for calculation) to 0 so we always get a re
- 8 lambda x: x.fillna(x.rolling(7, min_periods=0).median())
- 9).head(10)

	PRCP	SNOW	SNWD	TMAX	TMIN	TOBS	<pre>inclement_weather</pre>	WESF	H
date									
2018-01- 01T00:00:00	0.0	0.0	-inf	NaN	NaN	NaN	NaN	0.0	
2018-01- 02T00:00:00	0.0	0.0	-inf	-8.30	-16.1	-12.20	False	0.0	
2018-01- 03T00:00:00	0.0	0.0	-inf	-4.40	-13.9	-13.30	False	0.0	
2018-01- 04T00:00:00	20.6	229.0	inf	-6.35	-15.0	-12.75	True	19.3	
2018-01- 05T00:00:00	14.2	127.0	inf	-4.40	-13.9	-13.90	True	0.0	
2018-01- 06T00:00:00	0.0	0.0	-inf	-10.00	-15.6	-15.00	False	0.0	
2018-01- 07T00:00:00	0.0	0.0	-inf	-11.70	-17.2	-16.10	False	0.0	
2018-01- 08T00:00:00	0.0	0.0	-inf	-7.80	-16.7	-8.30	False	0.0	

¹ df deduped.assign(

^{2 #} make TMAX and TMIN NaN where appropriate

³ TMAX=lambda x: x.TMAX.replace(5505, np.nan),

⁴ TMIN=lambda x: x.TMIN.replace(-40, np.nan),

⁵ date=lambda x: pd.to_datetime(x.date)

^{6).}set index('date').reindex(

⁷ pd.date_range('2018-01-01', '2018-12-31', freq='D')

^{8).}apply(

⁹ lambda x: x.interpolate()

^{10).}head(10)