Soru-1 Şekildeki devrede I_2 =50µA ve (kullanılan tranzistorlar için) β_F =100, $|V_{BE}|$ =0.7V ve değerleri verilmektedir.

- a) DC durumda $V_{\rm B2}$ =2.5V, $V_{\rm C2}$ =0 olması için I₁ akım kaynağının ve R_E direncinin değerini bulunuz.(10Puan))
- b) devrenin rin giriş direncini bulunuz.(10Puan)
- b) Devrenin v_L/v_s ac kazancını bulunuz.(10Puan)
- c) Devrenin girişine 5mV'luk sinüs işareti uygulanmaktadır.
- T₁ tranzistorunun ac gücünü bulunuz.(10Puan)

Soru-2 Şekilde ac durumu verilen devre 10V'luk DC kaynaktan beslenmekte olup MOS tranzistorlar için β_1 = β_2 =2mA/V², V_{TH1} =- V_{TH2} =1V ve V_A = ∞ değerleri verilmektedir.

- a) MOS tranzistorlar için DC durumda V_{G1} =3V, V_{D1} =6V, V_{G2} =7V ve V_{D2} =4V değerleri verilmektedir. Tranzistorlar için ac durum büyüklükleri olarak g_{m1} = g_{m2} =2mS ve rin=210k Ω değerleri de verilmektedir. Devreyi çizip direnç değerlerini bulunuz.(15Puan) **Not:** Gerekli yerlerde kondansatör kullanmayı unutmayınız.
- b) Devrenin ac modelini bulunuz.(15Puan)

Soru-3 Şekildeki devrede kullanılan tranzistorlar için B_f =100 ve V_{BE} =0.6V verilmektedir. Devrede V1 ve V2 olmak üzere iki farklı giriş tanımlanmıştır.

- a) Tranzistorların DC Ic akımlarını V1=V2=0V için bulunuz.(10Puan)
- **b)** K_{Vd} =vo/(v₁-v₂) şeklinde tanımlanan ac kazancı bulunuz. **Not:** Toplamsallık ilkesini kullanabilirsiniz. (10Puan)
- **c)** $v_1=v_2$ özel durumu için $K_{Vc}=vo/v_2$ ac kazancını bulup K_{Vd}/K_{Vc} oranının değerini dB olarak veriniz.(10Puan).

BJT için ac durumda bazı bağıntılar;

O.E. Kuv.:
$$\frac{v_c}{v_h} = -\frac{gmRc}{1 + gmR_e} \qquad R_i' = \beta_F (r_e + R_e)$$

E.Ç. Kuv.:
$$\frac{v_e}{v_h} = -\frac{gmR_e}{1 + gmR_e} \qquad R_i' = \beta_F (r_e + R_e)$$

O.B. Kuv.:
$$\frac{v_c}{v_e} = \frac{gmR_c}{1 + gm\frac{R_b}{\beta_F}} \qquad R_i' = r_e + \frac{R_b}{\beta_F + 1}$$

MOSFET için:
$$c \rightarrow d$$
 $b \rightarrow g$ $e \rightarrow s$ $\beta_F \rightarrow \infty$

BJT

İleri aktif bölge şartı;

NPN: $V_C > V_B > V_E$ PNP: $V_E > V_B > V_C$

İleri aktif bölgede;

 $I_C = \beta_F x I_B$ $I_C = I_{SE} e^{|VBE|/VT}$

$$\label{eq:mosfet} \begin{split} &\text{MOSFET}\\ &\text{Doyma şartı;}\\ &\text{NMOS: V_{GD}<V_{Th}}\\ &\text{PMOS: V_{GD}>V_{Th}} \end{split}$$

Doymada: $I_D = (\beta/2)(V_{GS} - V_{Th})^2$

$$C-J-Q) \quad J_{2}=Ie_{1} \stackrel{\sim}{=} Ic_{1} \quad (T_{1} \stackrel{\sim}{=} le_{1} le$$

16 15 Tes ic 12=180h P-1-21 = 16 Ve + 26 2 + 16. Ve (4 Ne = 1 Vs = 500 = 500 = 500 = 1500 Vc = Ini. (2=360) + Nc = 360.5 mV ic=-Vc = 0,6V

(-2 a) +10V A F (52 400L A F (52) 710 A F C-2- 9/ Smi = Sm2 = 2MS = VIPITO = VZPIJOL To1 = In= InA/1 (Trangliterior Lymada) -£ (VGSI-VTM)2 = 12 (VGS2-VTM) 95V 1611 =-1/62=2V STOI=IMA ROI= VASIEN 191=1h 161=700h 162=300k NG1+NG1 K = Cor Vs1=10V-Jor. Nor 152=1k 当初此 美龙

b) Vi Vi Vi Vi Vious Skal Skal Skales Vious Skales V Vs = V2 Vs = -Smi. Rd1 - Inr. Nor Vi = Vi V2] 1+ Smi. 0 1+ faro =-2m.4k. -2m.4k=64/ 10 = 4k Vin=210h V: \$ 1 66.7: Revient ac modeli

C-7- 5/ 1/5=55V, -55V2 Ku = 7/-1/2 = 55 VI=12 olurso gapsi tomamen Smettill dur le 60 derm da vez ile ver aroisin da alum alemaz. Oslayisiyla 8991 ortadan ili parcaya ayrılıp incelerebility 10 = -Pm2. Rez 10 = -Pm2. Rez 1+Rm2 Ner 1-0,5 16 = 20lg 55 = 40 lb 296]-61